

Institutt for teknisk kybernetikk

Eksamensoppgave i TTK4205 Mønstergjenkjenning

		J
Faglig kontakt under eksamen: Idar Dyrdal		
Tlf.: 99 57 97 53		
Eksamensdato: 17.12.2013		
Eksamenstid (fra-til): 09:00-13:00		
Hjelpemiddelkode/Tillatte hjelpemidler: D / Ingen tryk	ta allar håndel	rovno
hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.	te eller manusi	VI E VI I E
njerpennaler tillatt. Destentt, enker kalkalator tillatt.		
Annen informasjon:		
Målform/språk: Bokmål		
Antall sider: 4		
Antall sider vedlegg: 0		
		17 . 11 .
		Kontrollert av:
	Dato	Sign

Oppg. 1

Innledning

- a) Beskriv hovedkomponentene i et typisk mønstergjenkjenningssystem og forklar hva som menes med begrepene *egenskapsuttrekking* og *klassifisering*.
- b) Forklar hva som menes med begrepet *ledet læring* og nevn eksempler på metoder for dette.
- c) Forklar kortfattet hva som menes med klassifiseringsprinsippene *minimum feilrate* og *minimum risk*.
- d) Beskriv problemstillingen i *klyngeanalyse*. Hvilke hovedgrupper av metoder kan benyttes her?

Oppg. 2

Parametriske metoder

a) Beskriv maksimum likelihood metoden for parameterestimering og vis at likningssystemet for estimatet av parametervektoren $\vec{\theta}$ kan skrives som:

$$\sum_{k=1}^{n} \nabla_{\vec{\theta}} \ln p(\vec{x}_k \mid \vec{\theta}) = \vec{0}$$

der $\vec{x}_k, k = 1, ..., n$ er treningssamplene, og tetthetsfunksjonen $p(\vec{x} \mid \vec{\theta})$ antas å ha kjent form.

b) Anta at tetthetsfunksjonen er en univariat normalfordeling med ukjent forventning μ og ukjent varians σ^2 , slik at den kan skrives som:

$$p(x \mid \vec{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} \exp[-\frac{(x-\mu)^2}{2\sigma^2}], \text{ der parametervektoren er gitt ved } \vec{\theta} = \begin{bmatrix} \mu \\ \sigma^2 \end{bmatrix}.$$

Finn estimatene av forventningen og variansen ved å løse likningssystemet i pkt. a.

Oppg. 3

Diskriminantfunksjoner

- a) Forklar hva som menes med *diskriminantfunksjoner*, og gi et eksempel på slike funksjoner basert på minimum feilrateprinsippet.
- b) I et éndimensjonalt problem med to klasser ω_1 og ω_2 har man samlet inn følgende trenings-sampler fra hver av klassene:

$$\mathcal{X}_1 = \{1.3, 0.4, 1.4, 1.8, 1.2, 1.5, 1.4, 0.8, 1.1, 0.6\}$$
 fra ω_1 ,

$$\mathcal{X}_2 = \{3.4, 2.4, 2.5, 2.6, 1.6, 3.7, 3.2, 2.6, 3.7, 2.1\}$$
 fra ω_2 .

Anta at klassene kan beskrives ved univariate normalfordelinger, som i oppg. 2b. Bruk treningssamplene til å estimere parametrene som inngår i hver av disse fordelingene, og vis at forventningsestimatene for de to klassene blir henholdsvis $\mu_1 = 1.15$ og $\mu_2 = 2.78$, mens de tilhørende estimatene av standardavvikene blir $\sigma_1 = 0.410$ og $\sigma_2 = 0.663$.

- c) Konstruér deretter en toklasse diskriminantfunksjon for dette problemet, basert på minimum feilrateprinsippet. Hvilke estimater for á priorisannsynlighetene har du brukt her? Hva blir desisjonsgrensene?
- d) Lag en skisse av de estimerte fordelingene og markér desisjonsgrensene og desisjonsregionene i figuren.
- e) Bruk diskriminantfunksjonen til å klassifisere et ukjent objekt gitt ved egenskapen $x_0 = 2.0$.

Oppg. 4

Ikke-parametriske metoder

- a) Beskriv tetthetsestimering og sett opp et estimat for tettheten i et vilkårlig punkt \vec{x} i egenskapsrommet basert på et treningssett med n sampler.
- b) Uttrykk tetthetsestimatet ved hjelp av en generell vindufunksjon $\varphi(\vec{u})$, og gi eksempler på mulige funksjoner.
- c) Bruk vindumetoden på det univariate toklasseproblemet i oppg. 3b, med en rektangulær vindufunksjon gitt ved:

$$\varphi(u) = \begin{cases} 1 & \text{hvis } |u| \le \frac{1}{2} \\ 0 & \text{ellers,} \end{cases}$$

- til å estimere tettheten i punktet $x_0 = 2.0$ for hver av klassene, når lengden av vinduet (siden i vindufunksjonen) er satt til h = 1.
- d) Bruk Bayes regel til å klassifisere et ukjent objekt med egenskapen $x_0 = 2.0$ ved hjelp av disse estimatene, basert på minimum feilrateprinsippet.
- e) Vis hvordan á posteriori sannsynlighet for klassene kan estimeres direkte ut fra estimatet i pkt. a, og bruk dette til å utlede *nærmeste-nabo regelen* (NNR) og *k-nærmeste-nabo regelen* (k-NNR).
- f) Klassifisér det ukjente objektet med egenskapen $x_0 = 2.0$ ved hjelp av NNR, og k-NNR med k = 3.

Oppg. 5

Trening av lineær diskriminantfunksjon

- a) Uttrykk en lineær toklasse diskriminantfunksjon ved *utvidet vektvektor* og *utvidet egenskaps-vektor*.
- b) Forklar hva som menes med *lineær separabilitet*.
- c) Anta at man har et separabelt sett av sampler tilgjengelig for trening av vektvektoren i et éndimensjonalt klassifiseringsproblem. Lag en figur som viser samplene i det utvidede egenskapsrommet. Tegn også inn et separerende hyperplan (en rett linje i et todimensjonalt plott), den tilhørende løsningsvektoren og løsningsregionen.
- d) Forklar hvordan man kan bruke treningssettet til å komme frem til en slik løsningsvektor.
- e) Sett opp og begrunn Perceptron kriteriet.
- f) Utled Perceptron algoritmen.