પ્રશ્ન 1(a) [3 ગુણ]

વૈશ્વિક પર્યાવરણીય ઉછાળ ક્યારે થાય છે? કારણો સાથે સમજાવો.

જવાબ:

કોષ્ટક: પર્યાવરણીય ઉછાળની શરતો

શરત	นต์า	અસર
સંસાધન ઘટાડો	વપરાશ પુનઃજનન દર કરતા વધારે	ખાદ્ય સંચય
વસ્તી દબાણ	માનવ માંગ વહન ક્ષમતા કરતા વધારે	સંસાધન અછત
કચરાનો સંગ્રહ	ઉત્પાદન શોષણ ક્ષમતા કરતા વધારે	પર્યાવરણ અદ્યોગતિ

પર્યાવરણીય ઉછાળ ત્યારે થાય છે જ્યારે માનવતાનું પર્યાવરણીય પદચિહ્ન પૃથ્વીની જૈવિક ક્ષમતા કરતા વધી જાય છે.

મુખ્ય કારણો:

- વસ્તી વૃદ્ધિ: માનવ સંખ્યામાં વધારો
- વપરાશની પદ્ધતિ: વ્યક્તિ દીઠ ઊંચો સંસાધન ઉપયોગ
- ટેકનોલોજીની અસર: બિનકાર્યક્ષમ સંસાધન ઉપયોગ

यादशास्ति सूत्र: "POP-CON-TECH" (Population-Consumption-Technology)

પ્રશ્ન 1(b) [4 ગુણ]

આકૃતિની મદદથી પોષણ કડી સમજાવો.

જવાબ:

પોષણ કડી એ ઇકોસિસ્ટમમાં એક ટ્રોફિક સ્તરથી બીજા સ્તરમાં ઉર્જા સ્થાનાંતરણનો રેખીય ક્રમ દર્શાવે છે.

ઘટકો:

- ઉત્પાદકો: સૂર્ય ઉર્જાને રાસાયણિક ઉર્જામાં રૂપાંતરિત કરે છે
- પ્રાથમિક ઉપલોક્તા: ઉત્પાદકોને ખાય છે (શાકાહારી)
- ગોંણ ઉપલોક્તા: પ્રાથમિક ઉપલોક્તાને ખાય છે (માંસાહારી)
- અપઘટક: મૃત જીવોને વિઘટિત કરે છે

ઉર્જા પ્રવાહ: સૂર્યથી ટોચના શિકારી સુધી એક દિશામાં 10% કાર્યક્ષમતા સાથે.

યાદશક્તિ સૂત્ર: "PPSD" (Producer-Primary-Secondary-Decomposer)

પ્રશ્ન 1(c) [7 ગુણ]

કાર્બન ચક્ર પર ટૂંકી નોંધ લખો.

જવાબ:

કાર્બન ચક એ જૈવ-ભૂ-રાસાયણિક પ્રક્રિયા છે જેમાં કાર્બન વાતાવરણ, જીવમંડળ, જળમંડળ અને ભૂમંડળમાં ફરે છે.

મુખ્ય પ્રક્રિયાઓ:

- પ્રકાશસંશ્લેષણ: છોડ વાતાવરણમાંથી CO2 શોષે છે
- શ્વસન: જીવો CO2 પાછું વાતાવરણમાં છોડે છે
- અપઘટન: મૃત કાર્બનિક પદાર્થ સંગ્રહિત કાર્બન મુક્ત કરે છે
- સમુદ્રી વિનિમય: CO2 સમુદ્રના પાણીમાં ઓગળીને કાર્બોનિક એસિડ બનાવે છે

માનવીય પ્રભાવ:

- અશ્મિભૂત ઇંધણ દહન: વાતાવરણીય CO2 વધારે છે
- વનનાશ: કાર્બન પ્રતિબંધની ક્ષમતા ઘટાડે છે
- ઔદ્યોગિક પ્રક્રિયાઓ: વધારાના કાર્બન ઉત્સર્જન

પર્યાવરણીય મહત્વ: વાતાવરણીય CO2 સંતુલન જાળવે છે, વૈશ્વિક તાપમાન નિયંત્રિત કરે છે, જીવન પ્રક્રિયાઓને આધાર આપે છે.

यादशक्ति सूत्र: "PRDO-FDI" (Photosynthesis-Respiration-Decomposition-Ocean, Fossil-Deforestation-Industry)

પ્રશ્ન 1(c) અથવા [7 ગુણ]

જળીય નિવસનતંત્રનું વર્ગીકરણ કરો. દરિયાઈ નિવસનતંત્ર સમજાવો.

જવાબ:

કોષ્ટક: જળીય નિવસનતંત્ર વર્ગીકરણ

уѕіғ	લાક્ષણિકતાઓ	ઉદાહરણો
તાજા પાણીનું	ઓછું મીઠું (<1%)	નદીઓ, તળાવો, તાલાવો
દરિયાઈ	વધારે મીઠું (3.5%)	મહાસાગરો, સમુદ્રો
ખારા	મિશ્રિત તાજા-ખારા પાણી	નદીમુખો, લગૂન

દરિયાઈ નિવસનતંત્રના ઘટકો:

દરિયાઈ નિવસનતંત્ર પૃથ્વીની સપાટીના 71% ભાગને આવરી લે છે, જેમાં જટિલ ખાધ જાળ સાથે ખારા પાણીના મોટા વિસ્તારો છે.

ઝોન:

• પેલેજિક: ખુલ્લા પાણીનો સ્તંભ જેમાં પ્લાન્કટન, માછલીઓ

• બેન્થિક: સમુદ્રનું તળ જેમાં તળિયે રહેતા જીવો

• **આંતરજોવારી**: ભરતી-ઓટના વચ્ચેનો કિનારાનો વિસ્તાર

મહત્વ:

• આબોહવા નિયંત્રણ: સમુદ્રી પ્રવાહો વૈશ્વિક તાપમાન નિયંત્રિત કરે છે

• ઓક્સિજન ઉત્પાદન: દરિયાઈ ફાયટોપ્લાન્કટન વાતાવરણીય ઓક્સિજનના 50% ઉત્પાદન કરે છે

• આર્થિક મૂલ્ય: મત્સ્થવ્યવસાય, પરિવહન, પર્યટન

यादशक्ति सूत्र: "PBI-COE" (Pelagic-Benthic-Intertidal, Climate-Oxygen-Economy)

પ્રશ્ન 2(a) [3 ગુણ]

પૃથ્વીની વહન ક્ષમતા એટલે શું?

જવાબ:

કોષ્ટક: વહન ક્ષમતાના કારકો

કારક	વર્ણન	મર્યાદા
સંસાધનો	ઉપલબ્ધ જમીન, પાણી, ખનિજો	મર્યાદિત
ખાદ્ય ઉત્પાદન	કૃષિ ક્ષમતા	માટી દ્વારા મર્યાદિત
કચરા શોષણ	ઇક્રોસિસ્ટમની કચરા પ્રક્રિયા	સંવૃપ્તિ બિંદુ

વહન ક્ષમતા એ પર્યાવરણને અધોગતિ કર્યા વિના અનિશ્ચિત સમય સુધી ટકાવી શકાય તેવી મહત્તમ વસ્તી માપ છે.

પૃથ્વીની વહન ક્ષમતા આ પર આધાર રાખે છે:

• સંસાધન ઉપલબ્ધતા: તાજું પાણી, ખેતીલાયક જમીન, ઉર્જા સ્રોતો

• ટેકનોલોજી સ્તર: સંસાધન ઉપયોગની કાર્યક્ષમતા

• વપરાશની પદ્ધતિ: વ્યક્તિ દીઠ સંસાધન માંગ

વર્તમાન અંદાજ: વપરાશ સ્તર અને તકનીકી પ્રગતિના આધારે 4-16 અબજ લોકો.

थादशक्ति सूत्र: "RTC" (Resources-Technology-Consumption)

પ્રશ્ન 2(b) [4 ગુણ]

આહાર જાળ એ પોષણ કડી સાથે કેવી રીતે સંબંધિત છે?

જવાબ:

આહાર જાળ એ ઇકોસિસ્ટમમાં જટિલ ખાદ્ય સંબંધો દર્શાવતા બહુવિધ પોષણ કડીઓનું પરસ્પર જોડાયેલું જાળ છે.

આહાર જાળ અને પોષણ કડી વચ્ચેનો સંબંધ:

- **પોષણ કડી**: ઉર્જા સ્થાનાંતરણનો રેખીય ક્રમ
- આહાર જાળ: બહુવિધ પરસ્પર જોડાયેલી પોષણ કડીઓ
- જરિલતા: આહાર જાળ વાસ્તવિક ઇકોસિસ્ટમ ક્રિયાપ્રતિક્રિયા દર્શાવે છે
- સ્થિરતા: બહુવિધ માર્ગો ઇકોસિસ્ટમ પ્રતિરોધક ક્ષમતા પ્રદાન કરે છે

મુખ્ય તફાવતો:

- **માળખું**: કડી રેખીય, જાળ નેટવર્ક આધારિત
- ઉર્જા પ્રવાહ: કડી એક માર્ગ, જાળ બહુવિધ માર્ગો
- પ્રજાતિ ક્રિયાપ્રતિક્રિયા: જાળ સર્વભક્ષીતા અને વૈકલ્પિક ખાદ્ય દર્શાવે છે

યાદશક્તિ સૂત્ર: "LNCR" (Linear-Network, Chain-Resilience)

પ્રશ્ન 2(c) [7 ગુણ]

હવા પ્રદૂષણ પર નોંધ લખો.

જવાબ:

કોષ્ટક: હવા પ્રદૂષણના સ્રોતો અને અસરો

у Ӗ⁄яғ	સ્રોત	આરોગ્ય અસર
PM2.5/PM10	વાહનો, ઉદ્યોગો	શ્વસન રોગો
SO2	કોલસાનું દહન	એસિડ વરસાદ, અસ્થમા
NOx	વાહન એક્ઝોસ્ટ	સ્મોગ રચના
СО	અપૂર્ણ દહન	ઓક્સિજનની ઉણપ

હવા પ્રદૂષણ એ વાતાવરણમાં હાનિકારક પદાર્થોથી થતું દૂષણ છે જે માનવ આરોગ્ય અને પર્યાવરણ પર નકારાત્મક અસર કરે છે.

સ્રોત પ્રમાણે વર્ગીકરણ:

• પ્રાથમિક પ્રદૂષક: સીધું ઉત્સર્જિત (CO, SO2, કણો)

• ગૌણ પ્રદૂષક: રાસાયણિક પ્રતિક્રિયા દ્વારા રચાય (ઓઝોન, એસિડ વરસાદ)

મુખ્ય સ્રોતો:

• ગતિશીલ સ્રોતો: વાહનો, વિમાન, જહાજો

• સ્થિર સ્રોતો: પાવર પ્લાન્ટ, ઉદ્યોગો, રહેણાંક હોટિંગ

• કુદરતી સ્રોતો: જ્વાળામુખી વિસ્ફોટ, જંગલી આગ, ધૂળના તોફાન

નિયંત્રણ પગલાં:

• તકનીકી: કેટેલિટિક કન્વર્ટર, સ્ક્રબર, ફિલ્ટર

• નિયમનકારી: ઉત્સર્જન ધોરણો, ઇંધણ ગુણવત્તા નિયમો

• વૈકલ્પિક ઊર્જા: નવીકરણીય સ્રોતો, ઇલેક્ટ્રિક વાહનો

આરોગ્ય અસરો: શ્વસન રોગો, હૃદયરોગ સમસ્યાઓ, કેન્સર, આયુષ્યમાં ઘટાડો.

પર્યાવરણીય અસરો: એસિડ વરસાદ, ઓઝોન ઘટાડો, આબોહવા પરિવર્તન, વૃશ્યતામાં ઘટાડો.

યાદશક્તિ સૂત્ર: "PSMT-RE-HE" (Primary-Secondary-Mobile-stationary-Technological-Regulatory-Health-Environment)

પ્રશ્ન 2(a) અથવા [3 ગુણ]

પ્લાસ્ટિક કચરાની પર્યાવરણ પર ખરાબ અસરો સમજાવો.

જવાબ:

કોષ્ટક: પ્લાસ્ટિક કચરાની પર્યાવરણીય અસરો

અસરનું ક્ષેત્ર	અસર	સમયગાળો
દરિયાઈ જીવન	ફસાવટ, ગળવું	કાયમી
માટી	માઇક્રોપ્લાસ્ટિક દૂષણ	500+ qษโ
ખાદ્ય શૃંખલા	બાયોએક્યુ <u>મ્યુ</u> લેશન	પેઢીદર પેઢી

પ્લાસ્ટિક કચરો તેની બિન-બાયોડિગ્રેડેબલ પ્રકૃતિને કારણે ગંભીર પર્યાવરણીય અધોગતિનું કારણ બને છે.

પર્યાવરણીય અસરો:

- **દરિયાઈ પ્રદૂષણ**: સમુદ્રમાં પ્લાસ્ટિક દરિયાઈ પ્રાણીઓને ફસાવટ અને ગળવાથી મારી નાખે છે
- માટી દૂષણ: માઇક્રોપ્લાસ્ટિક માટીની ફળદ્રુપતા અને પાકની વૃદ્ધિને અસર કરે છે
- ખાદ્ય શૃંખલા વિક્ષેપ: પ્લાસ્ટિકના કણો જીવોમાં સંચિત થાય છે

લાંબાગાળાની અસરો: કાયમી કાર્બનિક પ્રદૂષક, આવાસનો વિનાશ, ઇકોસિસ્ટમ અસંતુલન.

यादशन्ति सूत्र: "MSF" (Marine-Soil-Foodchain)

પ્રશ્ન 2(b) અથવા [4 ગુણ]

દૂષિત પાણીના લક્ષણો કયા છે? જળ પ્રદૂષણના મુખ્ય સ્રોતોની યાદી બનાવો.

જવાબ:

કોષ્ટક: જળ પ્રદૂષણના સૂચકો અને સ્રોતો

લક્ષણો	માપન	સ્રોતો
ઊંચું BOD/COD	>5 mg/L	ઔદ્યોગિક ડિસ્ચાર્જ
ટર્બિડિટી	ધૂંધળાપણું	કૃષિ અપવાહ
pH ફેરફાર	<6.5 અથવા >8.5	એસિડ ખાણ ડ્રેનેજ
દુર્ગંધ	H2S ગંધ	ગટર ડિસ્થાર્જ

દૂષિત પાણીના લક્ષણો:

- લૌતિક: રંગ ફેરફાર, ટર્બિડિટી, તરતા કચરા, ગંધ
- **રાસાયણિક**: ઊંચું BOD/COD, pH વિચલન, ભારે ધાતુઓ, ઝેરી સંયોજનો
- જૈવિક: રોગકારક સૂક્ષ્મજીવો, એલ્ગલ બ્લૂમ, માછલીઓનું મૃત્યુ

મુખ્ય સ્રોતો:

- બિંદુ સ્રોતો: ઔદ્યોગિક ડિસ્ચાર્જ, ગટર આઉટફોલ, કેન્દ્રિત પ્રાણી ખવડાવવું
- બિન-બિંદુ સ્રોતો: કૃષિ અપવાહ, શહેરી વરસાદી પાણી, વાતાવરણીય નિક્ષેપ

यादशक्ति सूत्र: "PCB-PIN" (Physical-Chemical-Biological, Point-Non-point)

પ્રશ્ન 2(c) અથવા [7 ગુણ]

ઈ-કચરો શું છે? ઈ-કચરાને પુન:ઉપયોગી કેવી રીતે બનાવી શકાય?

જવાબ:

કોષ્ટક: ઈ-કચરાનું વર્ગીકરણ

શ્રેણી	ઉદાહરણો	હાનિકારક ઘટકો
મોટા ઉપકરણો	રેફ્રિજરેટર, વોશિંગ મશીન	CFCs, ભારે ધાતુઓ
નાના ઉપકરણો	માઇક્રોવેવ, વેક્યુમ ક્લીનર	પ્લાસ્ટિક, ધાતુઓ
IT સાધનો	કમ્પ્યુટર, પ્રિંટર	લેડ, પારો, કેડમિયમ
ઉપભોક્તા ઇલેક્ટ્રોનિક્સ	TV, મોબાઇલ ફોન	દુર્લભ પૃથ્વી તત્વો

ઈ-કચરાનું વર્ગીકરણ:

• સફેદ સામાન: મોટા ઘરેલું ઉપકરણો

• બ્રાઉન સામાન: મનોરંજન ઇલેક્ટ્રોનિક્સ

• ગ્રે સામાન: IT અને ટેલિકોમ્યુનિકેશન સાધનો

• ગ્રીન સામાન: નવીકરણીય ઊર્જા સાધનો

ઈ-કચરા રિસાયકલિંગ પ્રક્રિયા:

રિસાયકલિંગ પદ્ધતિઓ:

• યાંત્રિક: સામગ્રીનું ભૌતિક વિભાજન

• ધાતુશાસ્ત્રીય: ધાતુ પુનઃપ્રાપ્તિ માટે ઊંચા તાપમાનની પ્રક્રિયા

• રાસાયણિક: કિંમતી ધાતુઓ માટે લીચિંગ પ્રક્રિયાઓ

પડકારો: હાનિકારક સામગ્રી હેન્ડલિંગ, જટિલ રચના, આર્થિક વ્યવહાર્યતા.

ફાયદાઓ: સંસાધન સંરક્ષણ, પ્રદૂષણ નિવારણ, રોજગાર સર્જન, ખાણકામની જરૂરિયાત ઘટાડવી.

યાદશક્તિ સૂત્ર: "WBGG-CSDSMR" (White-Brown-Gray-Green, Collection-Sorting-Dismantling-Shredding-Separation-Material-Refining)

પ્રશ્ન 3(a) [3 ગુણ]

BOD અને COD વચ્ચેનો તકાવત લખો.

જવાબ:

કોષ્ટક: BOD વિ COD સરખામણી

પેરામીટર	BOD	COD
પૂર્ણ સ્વરૂપ	બાયોકેમિકલ ઓક્સિજન ડિમાન્ડ	કેમિકલ ઓક્સિજન ડિમાન્ડ
ટેસ્ટ સમયગાળો	5 દિવસ	2-3 ୫ଖା୫
ઓક્સિડેશન પ્રકાર	જેવિક	રાસાયણિક
અપઘટન	ફક્ત બાયોડિગ્રેડેબલ કાર્બનિક	બધા કાર્બનિક સંયોજનો

BOD (બાયોકેમિકલ ઓક્સિજન ડિમાન્ડ):

- સૂક્ષ્મજીવો દ્વારા વપરાતી ઓક્સિજન માપે છે
- બાયોડિગ્રેડેબલ કાર્બનિક પ્રદૂષણ દર્શાવે છે
- માનક ટેસ્ટ: 20°C પર 5 દિવસ

COD (કેમિકલ ઓક્સિજન ડિમાન્ડ):

- રાસાયણિક ઓક્સિડેશન માટે જરૂરી ઓક્સિજન માપે છે
- કુલ કાર્બનિક પ્રદૂષણ દર્શાવે છે
- મજબૂત ઓક્સિડાઇઝિંગ એજન્ટ વાપરે છે (પોટેશિયમ ડાઇક્રોમેટ)

યાદશક્તિ સૂત્ર: "BTCD" (Biological-Time-Chemical-Degradation)

પ્રશ્ન 3(b) [4 ગુણ]

ઘન કચરાનું વર્ગીકરણ કરો.

જવાબ:

કોષ્ટક: ઘન કચરાનું વર્ગીકરણ

વર્ગીકરણ	หลเร	ઉદાહરણો
સ્રોત દ્વારા	મ્યુનિસિપલ, ઔદ્યોગિક, કૃષિ	ઘરેલું, ફેક્ટરી, ખેતીનો કચરો
રથના દ્વારા	કાર્બનિક, અકાર્બનિક	ખાદ્ય કચરો, પ્લાસ્ટિક
જોખમ દ્વારા	હાનિકારક, બિન-હાનિકારક	તબીબી, કાગળ

ઘન કચરાનું વર્ગીકરણ:

સ્રોત દ્વારા:

• મ્યુનિસિપલ: રહેણાંક, વ્યાપારી, સંસ્થાકીય કચરો

• **ઔદ્યોગિક**: ઉત્પાદન, પ્રક્રિયાકરણ ઉપ-ઉત્પાદનો

• કૃષિ: પાક અવશેષો, પ્રાણીઓનો કચરો

રચના દ્વારા: કાર્બનિક (બાયોડિગ્રેડેબલ), અકાર્બનિક (બિન-બાયોડિગ્રેડેબલ), રિસાયક્લેબલ સામગ્રી.

વ્યવસ્થાપન હાયરાકીં: ઘટાડો, પુનઃઉપયોગ, રિસાયકલ, પુનઃપ્રાપ્તિ, નિકાલ.

यादशक्ति सूत्र: "MIA-OIR" (Municipal-Industrial-Agricultural, Organic-Inorganic-Recyclable)

પ્રશ્ન 3(c) [7 ગુણ]

આકૃતિની મદદથી સોલર ફોટોવોલ્ટેઇક સિસ્ટમ સમજાવો.

જવાબ:

સોલર ફોટોવોલ્ટેઇક સિસ્ટમ સેમિકન્ડક્ટર સામગ્રીનો ઉપયોગ કરીને સૂર્યપ્રકાશને સીધા વીજળીમાં રૂપાંતરિત કરે છે.

ઘટકો:

- PV મોક્યુલ: સિલિકોન સેલ્સ પ્રકાશને DC વીજળીમાં રૂપાંતરિત કરે છે
- **ઇન્વર્ટર**: DC ને AC પાવરમાં રૂપાંતરિત કરે છે
- બેટરી સ્ટોરેજ: વધારાની ઊર્જા પછીના ઉપયોગ માટે સંગ્રહિત કરે છે
- **યાર્જ કંટ્રોલર**: બેટરી ચાર્જિંગને નિયંત્રિત કરે છે
- મોનિટરિંગ સિસ્ટમ: પ્રદર્શન અને ખામીઓને ટ્રેક કરે છે

કાર્થિંગ સિદ્ધાંત:

1. ફોટોવોલ્ટેઇક અસર: સોલર સેલ્સ ફોટોન્સને શોષે છે

2. **ઇલેક્ટ્રોન ઉત્તેજના**: ઇલેક્ટ્રોન-હોલ જોડી બનાવે છે

3. **કરંટ જનરેશન**: ઇલેક્ટ્રોન પ્રવાહ DC કરંટ બનાવે છે

4. **પાવર કંડિશનિંગ**: ઇન્વર્ટર DC ને AC માં રૂપાંતરિત કરે છે

પ્રકારો:

• ગ્રિડ-કનેક્ટેડ: યુટિલિટી ગ્રિડ સાથે સમન્વચિત

• સ્ટેન્ડ-એલોન: બેટરી બેકઅપ સાથે સ્વતંત્ર સિસ્ટમ

• હાઇબ્રિડ: ગ્રિડ-કનેક્ટેડ અને બેટરી સ્ટોરેજનું સંયોજન

ઉપયોગો: રહેણાંક છત, વ્યાપારી ઇમારતો, યુટિલિટી-સ્કેલ પાવર પ્લાન્ટ, દૂરના વિસ્તારોમાં વીજકરણ.

ફાયદાઓ: સ્વચ્છ ઊર્જા, ઓછા જાળવણી, મોડ્યુલર ડિઝાઇન, લાંબી આયુષ્ય (25+ વર્ષ).

યાદશક્તિ સૂત્ર: "PIBCM-PECG" (Panel-Inverter-Battery-Controller-Monitor, Photovoltaic-Electron-Current-Grid)

પ્રશ્ન 3(a) અથવા [3 ગુણ]

પરંપરાગત અને બિનપરંપરાગત ઊર્જા સ્રોતોની સરખામણી કરો.

જવાબ:

કોષ્ટક: ઊર્જા સ્રોતોની સરખામણી

પાસું	પરંપરાગત	બિનપરંપરાગત
ઉપલબ્ધતા	મર્યાદિત ભંડાર	અમર્યાદિત/નવીકરણીય
પર્યાવરણીય અસર	વધારે પ્રદૂષણ	સ્વચ્છ/ન્યૂનતમ અસર
કિંમત	શુરુઆતમાં ઓછી	ઝડપથી ઘટતી

પરંપરાગત ઊર્જા સ્રોતો: કોલસો, તેલ, કુદરતી ગેસ, પરમાણુ શક્તિ - મર્યાદિત સંસાધનો પર્યાવરણીય ચિંતાઓ સાથે.

બિનપરંપરાગત ઊર્જા સ્રોતો: સૌર, પવન, હાઇડ્રો, બાયોમાસ - ટકાઉ લાક્ષણિકતાઓ સાથે નવીકરણીય સંસાધનો.

મુખ્ય તફાવતો: ઘટાડો વિ નવીકરણીય, પ્રદૂષણ વિ સ્વચ્છ, સ્થાપિત વિ ઉભરતી ટેકનોલોજી.

थाद्दशक्ति सूत्र: "AEC" (Availability-Environmental-Cost)

પ્રશ્ન 3(b) અથવા [4 ગુણ]

કુદરતી પરિભ્રમણ આધારિત સોલર વોટર હીટરનું કાર્યિંગ સમજાવો.

જવાબ:

કુદરતી પરિભ્રમણ સોલર વોટર હીટર બાહ્ય પંપ વિના પાણીના પરિભ્રમણ માટે થર્મોસાઇફોન સિદ્ધાંતનો ઉપયોગ કરે છે.

કાર્થિંગ સિદ્ધાંત:

- સોલર કલેક્શન: કલેક્ટર સૂર્ય કિરણોત્સર્ગ શોષીને પાણીને ગરમ કરે છે
- **ઘનતાનો તફાવત**: ગરમ પાણી ઓછું ઘન બને છે, કુદરતી રીતે ઉપર આવે છે
- પરિભ્રમણ: ટાંકીના તળિયેથી ઠંડું પાણી કલેક્ટરમાં વહે છે
- સંગ્રહ: ગરમ પાણી ઇન્સ્યુલેટેડ સ્ટોરેજ ટાંકીમાં એકત્રિત થાય છે

ઘટકો: ફ્લેટ પ્લેટ કલેક્ટર, ઇન્સ્યુલેટેડ સ્ટોરેજ ટાંકી, જોડાણ પાઇપ, સેફ્ટી વાલ્વ.

ફાયદાઓ: વીજળીની જરૂર નથી, સરળ ડિઝાઇન, ઓછી જાળવણી, ખર્ચ-અસરકારક.

યાદશક્તિ સૂત્ર: "SDCS" (Solar-Density-Circulation-Storage)

પ્રશ્ન 3(c) અથવા [7 ગુણ]

હોરિઝોન્ટલ એક્સિસ વિન્ડ ટર્બાઇનનો કાર્યસિદ્ધાંત સમજાવો.

જવાબ:

હોરિઝોન્ટલ એક્સિસ વિન્ડ ટર્બાઇન (HAWT) એરોડાયનેમિક લિફ્ટ સિદ્ધાંતનો ઉપયોગ કરીને પવનની ગતિ ઊર્જાને વિદ્યુત ઊર્જામાં રૂપાંતરિત કરે છે.

કાર્થિંગ સિદ્ધાંત:

- 1. **પવન કેપ્ચર**: રોટર બ્લેડ એરોડાયનેમિક પ્રોફાઇલ સાથે ડિઝાઇન કરેલા
- 2. **લિક્ટ જનરેશન**: બ્લેડ સપાટીઓ પર દબાણનો તફાવત લિફ્ટ બળ બનાવે છે
- 3. **રોટેશન**: લિફ્ટ બળ રોટરને આડી ધરી આસપાસ ફેરવે છે
- 4. સ્પીડ કન્વર્ઝન: ગિયરબોક્સ રોટેશનલ સ્પીડ 30-50 rpm થી 1500 rpm સુધી વધારે છે
- 5. **પાવર જનરેશન**: ઊંચી સ્પીડ રોટેશન વિદ્યુત જનરેટર ચલાવે છે

ઘટકોઃ

• રોટર એસેમ્બલી: 2-3 બ્લેડ, હબ, પિચ કંટ્રોલ સિસ્ટમ

• નેસેલ: ગિયરબોક્સ, જનરેટર, કંટ્રોલ સિસ્ટમ્સ હાઉસ કરે છે

• **ટાવર**: ઓપ્ટિમલ ઊંચાઈ (50-120m) પર નેસેલને સપોર્ટ કરે છે

• ફાઉન્ડેશન: માળખાકીય સ્થિરતા માટે કોંક્રિટ બેઝ

કંટ્રોલ સિસ્ટમ્સ:

• યાવ સિસ્ટમ: ટર્બાઇનને પવનની દિશા તરફ ઓરિએન્ટ કરે છે

• પિચ કંટોલ: ઓપ્ટિમલ પવન કેપ્ચર માટે બ્લેડ એંગલ એડજસ્ટ કરે છે

• બ્રેક સિસ્ટમ: ઈમર્જન્સી સ્ટોપિંગ મેકેનિઝમ

ફાયદાઓ: ઊંચી કાર્યક્ષમતા (35-45%), સાબિત ટેકનોલોજી, સ્કેલની અર્થવ્યવસ્થા. **ગેરફાયદાઓ**: વિઝ્યુઅલ ઈમ્પેક્ટ, ઘોંઘાટ, પક્ષીઓની અથડામણ, પવનની પરિવર્તનશીલતા.

પાવર કેલ્ક્યુલેશન: $P = 0.5 \times \rho \times A \times V^3 \times Cp$

જ્યાં: p = હવાની ઘનતા, A = સ્વેપ્ટ એરિયા, V = પવનની ઝડપ, Cp = પાવર કોએફિશિયન્ટ

યાદશક્તિ સૂત્ર: "WLRSG-RNTP-YPB" (Wind-Lift-Rotation-Speed-Generation, Rotor-Nacelle-Tower-Foundation,

Yaw-Pitch-Brake)

પ્રશ્ન 4(a) [3 ગુણ]

ભરતી ઊર્જાના લાભ અને ગેરલાભ જણાવો.

જવાબ:

કોષ્ટક: ભરતી ઊર્જાના ફાયદા અને ગેરફાયદા

ફાયદાઓ	ગેરફાયદાઓ
અનુમાનિત ઊર્જા સ્રોત	મર્યાદિત યોગ્ય સ્થાનો
ગ્રીનહાઉસ ગેસ ઉત્સર્જન નથી	ઊંચી પ્રારંભિક મૂડી કિંમત
લાંબી આયુષ્ય (100+ વર્ષ)	દરિયાઈ જીવન પર પર્યાવરણીય અસર

લરતી ઊર્જા પૃથ્વી, ચંદ્ર અને સૂર્ય વચ્ચેના ગુરૂત્વાકર્ષણ બળોનો ઉપયોગ કરીને વીજળી ઉત્પન્ન કરે છે.

ફાયદાઓ:

• વિશ્વસનીયતા: અત્યંત અનુમાનિત ભરતી ચક્ર

• સ્વચ્છ ઊર્જા: શૂન્ય ઓપરેશનલ ઉત્સર્જન

• ટકાઉપણું: ઇન્ફ્રાસ્ટ્રક્ચર દાયકાઓ ટકે છે

ગેરકાયદાઓ:

• ભૌગોલિક મર્યાદાઓ: યોક્કસ કિનારાકીય પરિસ્થિતિઓની જરૂર

• ઊંચી કિંમતો: મોંઘું ઇન્સ્ટોલેશન અને જાળવણી

• ઇકોલોજિકલ ઈમ્પેક્ટ: દરિયાઈ ઇકોસિસ્ટમ્સને અસર કરે છે

यादशक्ति सूत्र: "RCD-GHE" (Reliable-Clean-Durable, Geographic-High cost-Ecological)

પ્રશ્ન 4(b) [4 ગુણ]

બાયોગેસ પ્લાન્ટનો કાર્યસિદ્ધાંત સમજાવો.

જવાબ:

બાયોગેસ પ્લાન્ટ કાર્બનિક કચરા સામગ્રીના એનેરોબિક ડાયજેસ્શન દ્વારા મિથેન સમૃદ્ધ ગેસ ઉત્પન્ન કરે છે.

કાર્થિંગ સિદ્ધાંત:

- 1. ફ્રીડ તૈયારી: કાર્બનિક કચરો પાણી સાથે મિક્સ (1:1 રેશિયો)
- 2. **એનેરોબિક ડાયજેસ્શન**: ઓક્સિજન-મુક્ત વાતાવરણમાં બેક્ટેરિયા કાર્બનિક પદાર્થને તોડે છે
- 3. ગેસ ઉત્પાદન: મિથેન (50-70%) અને CO2 (30-40%) ઉત્પન્ન થાય છે
- 4. ગેસ કલેક્શન: બાયોગેસ ગેસ હોલ્ડર ડોમમાં એકત્રિત થાય છે

પ્રક્રિયાના તબક્કાઓ:

- હાયડ્રોલિસિસ: જટિલ કાર્બનિક પદાર્થો સરળ સંયોજનોમાં તૂટે છે
- એસિડોજેનેસિસ: કાર્બનિક એસિડ રચના
- મિથેનોજેનેસિસ: મિથેનોજેનિક બેક્ટેરિયા દ્વારા મિથેન ઉત્પાદન

ઓપ્ટિમલ કંડિશન્સ: તાપમાન 35-40°C, pH 6.8-7.2, રિટેન્શન ટાઇમ 15-30 દિવસ.

यादशक्ति सूत्र: "FAGH-HAM" (Feed-Anaerobic-Gas-Holder, Hydrolysis-Acidogenesis-Methanogenesis)

પ્રશ્ન 4(c) [7 ગુણ]

ગ્રીનહાઉસ અસર સમજાવો.

જવાબ:

ગ્રીનહાઉસ અસર એ પ્રક્રિયા છે જેમાં વાતાવરણીય ગેસેસ સૂર્યથી આવતી ગરમીને પકડી રાખે છે, જેનાથી પૃથ્વીની સપાટીનું તાપમાન સામાન્ય કરતાં વધારે થાય છે.

કુદરતી ગ્રીનહાઉસ અસર:

- સૂર્ય કિરણોત્સર્ગ: સૂર્ય શોર્ટ-વેવ કિરણોત્સર્ગ (દૃશ્ય પ્રકાશ) ઉત્સર્જિત કરે છે
- સપાટી શોષણ: પૃથ્વી સૂર્ય ઊર્જા શોષીને ગરમ થાય છે
- હીટ રી-ઇમિશન: પૃથ્વી લોંગ-વેવ ઇન્ફ્રારેડ કિરણોત્સર્ગ ઉત્સર્જિત કરે છે

- ગેસ શોષણ: ગ્રીનહાઉસ ગેસેસ ઇન્ક્રારેડ કિરણોત્સર્ગ શોષે છે
- હીટ રિટેન્શન: પકડાયેલી ગરમી નીચલા વાતાવરણને ગરમ કરે છે

ગ્રીનહાઉસ ગેસેસ અને યોગદાન:

- કાર્બન ડાયોક્સાઇડ (CO2): 76% અશ્મિભૂત ઇંધણ દહન, વનનાશ
- **મિથેન (CH4)**: 16% કૃષિ, લેન્ડફિલ, પશુધન
- **નાઇટ્સ ઓક્સાઇડ (N2O)**: 6% ફર્ટિલાઇઝર, અશ્મિભૂત ઇંધણ દહન
- ફ્લોરિનેટેડ ગેસેસ: 2% ઔદ્યોગિક પ્રક્રિયાઓ, રેફ્રિજરેશન

વધેલી ગ્રીનહાઉસ અસર: માનવીય પ્રવૃત્તિઓ ગ્રીનહાઉસ ગેસની સાંદ્રતા વધારે છે, હીટ ટ્રેપિંગ તીવ્ર બનાવે છે.

પરિણામો:

- **ગ્લોબલ ટેમ્પરેચર રાઇઝ**: પ્રિ-ઇન્ડસ્ટ્રિયલ કાળથી સરેરાશ 1.1°C વધારો
- આબોહવા પરિવર્તન: બદલાયેલા વરસાદી પેટર્ન, આત્યંતિક હવામાન ઘટનાઓ
- સમુદ્રી સપાટીમાં વધારો: થર્મલ વિસ્તરણ અને બરફની ચાદર પીગળવી
- **ઇકોસિસ્ટમ વિક્ષેપ**: પ્રજાતિઓનું સ્થાનાંતરણ, કોરલ બ્લીચિંગ, જંગલની આગ

શમન વ્યૂહરચનાઓ:

- નવીકરણીય ઊર્જા: અશ્મિભૂત ઇંધણ અવલંબન ઘટાડવું
- ઊર્જા કાર્યક્ષમતા: ટેકનોલોજી અને પ્રથાઓમાં સુધારો
- કાર્બન સિક્વેસ્ટ્રેશન: વન પુનઃસ્થાપન, કાર્બન કેપ્ચર સ્ટોરેજ
- આંતરરાષ્ટ્રીય સહકાર: પેરિસ એગ્રીમેન્ટ, ઉત્સર્જન ઘટાડાના લક્ષ્યો

यादशक्ति सूत्र: "SSAHR-CMNO-GTSE-RECC" (Solar-Surface-Absorption-Heat-Radiation, CO2-Methane-Nitrous-Other, Global-Temperature-Sea-Ecosystem, Renewable-Efficiency-Carbon-Cooperation)

પ્રશ્ન 4(a) અથવા [3 ગુણ]

આબોહવા પરિવર્તન શું છે?

જવાબ:

કોષ્ટક: આબોહવા પરિવર્તનના સૂચકો

સૂચક	પરિવર્તન	પુરાવા
तापभान	+1.1°C 1880 થી	વૈશ્વિક તાપમાન રેકોર્ડ્સ
સમુદ્રી સ્તર	+21 cm 1900 થી	સેટેલાઇટ માપન
આર્કટિક બરફ	-13% มดิ ยเขรเ	સેટેલાઇટ ઇમેજરી

આબોહવા પરિવર્તન એ વૈશ્વિક તાપમાન અને હવામાનની પેટર્નમાં લાંબાગાળાના ફેરફારોનો સંદર્ભ છે, જે મુખ્યત્વે 20મી સદીના મધ્યથી માનવીય પ્રવૃત્તિઓને કારણે થયા છે.

મુખ્ય લાક્ષણિકતાઓ:

• તાપમાન વૃદ્ધિ: વૈશ્વિક સરેરાશ તાપમાનમાં વધારો

• હવામાનની આત્યંતિકતા: વધુ વારંવાર વાવાઝોડા, દુષ્કાળ, પૂર

• ઇકોસિસ્ટમ ફેરફારો: પ્રજાતિ સ્થાનાંતરણ, આવાસ નુકસાન

પ્રાથમિક કારણ: અશ્મિભૂત ઇંધણ દહન, વનનાશ, ઔદ્યોગિક પ્રક્રિયાઓથી વધેલા ગ્રીનહાઉસ ગેસ ઉત્સર્જન.

યાદશક્તિ સૂત્ર: "TSE" (Temperature-Sea level-Ecosystem)

પ્રશ્ન 4(b) અથવા [4 ગુણ]

આબોહવા પરિવર્તનને નિયંત્રિત કરવા કયા કયા પગલાં ભરી શકાય?

જવાબ:

કોષ્ટક: ગ્લોબલ વોર્મિંગ નિયંત્રણ પગલાં

શ્રેણી	นวเลเ่	અસર
ଔଷ୍	નવીકરણીય સ્રોતો, કાર્યક્ષમતા	CO2 ઉત્સર્જન ઘટાડવું
પરિવહન	ઇલેક્ટ્રિક વાહનો, સાર્વજનિક પરિવહન	ઇંધણ વપરાશ ઓછો
ઉદ્યોગ	સ્વચ્છ ટેકનોલોજી, કાર્બન કેપ્ચર	ઉત્સર્જન ઘટાડવું
વ્યક્તિગત	ઊર્જા બચત, જીવનશૈલીમાં ફેરફાર	સંચિત અસર

નિયંત્રણ પગલાં:

સરકારી સ્તરે:

• નીતિ ફ્રેમવર્ક: કાર્બન પ્રાઇસિંગ, ઉત્સર્જન ધોરણો

• નવીકરણીય ઊર્જા: સોલર, વિન્ડ પાવર પ્રમોશન

• પબ્લિક ટ્રાન્સપોર્ટ: માસ ટ્રાન્ઝિટ સિસ્ટમ ડેવલપમેન્ટ

ઔદ્યોગિક સ્તરે:

• સ્વચ્છ ટેકનોલોજી: કાર્યક્ષમ પ્રક્રિયાઓ, કચરો ઘટાડવો

• કાર્બન કેપ્ચર: સ્ટોરેજ અને યુટિલાઇઝેશન ટેકનોલોજીઓ

• ટકાઉ પ્રથાઓ: ગ્રીન મેન્યુફેક્યરિંગ, સર્ક્યુલર ઇકોનોમી

વ્યક્તિગત સ્તરે:

• **ઊર્જા બચત**: LED લાઇટ્સ, કાર્યક્ષમ ઉપકરણો

• પરિવહન: ચાલવું, સાયક્લિંગ, કારપૂલિંગ

• જીવનશૈલીમાં ફેરફાર: ઓછો વપરાશ, રિસાયક્લિંગ

यादशक्ति सूत्र: "PRT-CCS-ECL" (Policy-Renewable-Transport, Carbon-Clean-Sustainable, Energy-Communication-Lifestyle)

પ્રશ્ન 4(c) અથવા [7 ગુણ]

આબોહવા પરિવર્તનને હળવું કરવા વૈશ્વિક સ્તરે કથા અગત્થના કરારો થયા છે?

જવાબ:

કોષ્ટક: મુખ્ય આબોહવા કરારો

કરાર	น ช์	મુખ્ય લક્ષણો
UNFCCC	1992	ફ્રેમવર્ક કન્વેન્શન
ક્યોટો પ્રોટોકોલ	1997	બંધનકર્તા ઉત્સર્જન લક્ષ્યો
પેરિસ એગ્રીમેન્ટ	2015	વૈશ્વિક તાપમાન મર્યાદા

મહત્વપૂર્ણ વૈશ્વિક આબોહવા કરારો:

1. યુનાઇટેડ નેશન્સ ફ્રેમવર્ક કન્વેન્શન ઓન ક્લાઇમેટ ચેન્જ (UNFCCC) - 1992:

• ઉદ્દેશ્ય: ગ્રીનહાઉસ ગેસની સાંદ્રતા સ્થિર કરવી

• સિદ્ધાંતો: સામાન્ય પરંતુ વિભેદિત જવાબદારીઓ

• ફ્રેમવર્ક: ભાવિ આબોહવા વાટાઘાટોનો આધાર

2. ક્યોટો પ્રોટોકોલ - 1997:

• **બંધનકર્તા લક્ષ્યો**: વિકસિત દેશો 5.2% ઉત્સર્જન ઘટાડો (1990 સ્તર)

• **લવચીક મેકેનિઝમ**: ઉત્સર્જન ટ્રેડિંગ, ક્લીન ડેવલપમેન્ટ મેકેનિઝમ

• **કમિટમેન્ટ પીરિયડ**: પ્રથમ (2008-2012), બીજો (2013-2020)

3. પેરિસ એગ્રીમેન્ટ - 2015:

• **તાપમાન લક્ય**: ગ્લોબલ વોર્મિંગને 2°C કરતાં નીચે, પ્રાધાન્ય 1.5°C

• **રાષ્ટ્રીય નિર્ધારિત યોગદાન (NDCs)**: દેશો પોતાના લક્ષ્યો સેટ કરે છે

• પુનરાવલોકન મેકેનિઝમ: પાંચ વર્ષીય મૂલ્યાંકન અને વિસ્તૃતિકરણ ચક્ર

• આબોહવા ફાઇનાન્સ: વિકાસશીલ દેશો માટે વાર્ષિક \$100 બિલિયન

4. અન્ય મહત્વપૂર્ણ કરારો:

• મોન્ટ્રીયલ પ્રોટોકોલ (1987): ઓઝોન સ્તર સંરક્ષણ, અપ્રત્યક્ષ આબોહવા લાભો

• કોપેનહેગન એકોર્ડ (2009): ઉત્સર્જન ઘટાડા પર રાજકીય કરાર

• દોહા એમેન્ડમેન્ટ (2012): ક્યોટો પ્રોટોકોલ કમિટમેન્ટ વિસ્તૃત

અમલીકરણના પડકારો:

• **અનુપાલન**: સ્વૈચ્છિક બનામ ફરજિયાત પ્રતિબદ્ધતાઓ

• ફાઇનાન્સિંગ: શમન અને અનુકૂલન માટે પૂરતું ફંડિંગ

• ટેકનોલોજી ટ્રાન્સફર: વિકાસશીલ દેશો માટે સ્વચ્છ ટેકનોલોજી પહોંચ

• મોનિટરિંગ: પારદર્શક રિપોર્ટિંગ અને વેરિકિકેશન સિસ્ટમ્સ

તાજેતરના વિકાસો:

• આર્ટિકલ 6 નિયમો: પેરિસ એગ્રીમેન્ટ હેઠળ આંતરરાષ્ટ્રીય કાર્બન માર્કેટ્સ

• લોસ એન્ડ ડેમેજ: આબોહવા-સંવેદનશીલ દેશો માટે સહાય

• નેટ-ઝીરો કમિટમેન્ટ્સ: દેશો કાર્બન ન્યુટ્રાલિટીની પ્રતિજ્ઞા લે છે

યાદશક્તિ સুત્ર: "UKPOM-CDOG-TFMC" (UNFCCC-Kyoto-Paris-Other-Montreal, Copenhagen-Doha-Other-Goals, Technology-Finance-Monitoring-Commitments)

પ્રશ્ન 5(a) [3 ગુણ]

ઓઝોન સ્તરની ક્ષતિની અસરો સમજાવો.

જવાબ:

કોષ્ટક: ઓઝોન ઘટાડાની અસરો

અસરનું ક્ષેત્ર	અસર	પરિણામ
માનવ આરોગ્ય	વદ્યેલું UV-B કિરણોત્સર્ગ	ચામડીનો કેન્સર, મોતિયાંબિંદુ
પર્યાવરણ	ઇકોસિસ્ટમ વિક્ષેપ	દરિયાઈ ખાદ્ય શૃંખલાને નુકસાન
કૃષિ	પાકને નુકસાન	ખાદ્ય ઉત્પાદનમાં ઘટાડો

^{**}ઓઝોન સ્તર ઘટાડાના પરિણામે પૃથ્વીની સપાટી પર વધુ અલ્ટ્રાવાયોલેટ-B (UV-B) કિરણોત્સર્ગ પહોંચે છે.

અસરો:

- માનવ આરોગ્ય: ચામડીના કેન્સરનો દર વધારે, આંખને નુકસાન, રોગપ્રતિકારક તંત્રનું દમન
- દરિયાઈ ઇકોસિસ્ટમ્સ: ફાયટોપ્લાન્કટનમાં ઘટાડો સમુદ્રી ખાદ્ય શૃંખલાને અસર કરે છે
- કૃષિ અસર: પાકની ઉપજમાં ઘટાડો, છોડની વૃદ્ધિમાં અવરોધ

કારણ: ક્લોરોફ્લોરોકાર્બન્સ (CFCs) સ્ટ્રેટોસ્ફિયરમાં ઓઝોન અણુઓનો નાશ કરે છે.

थादृशन्ति सूत्र: "HMA" (Human-Marine-Agricultural)

પ્રશ્ન 5(b) [4 ગુણ]

ગ્રીનહાઉસ વાયુઓ પર ટૂંકી નોંધ લખો.

જવાબ:

કોષ્ટક: મુખ્ય ગ્રીનહાઉસ ગેસેસ

ગેસ	સ્રોતો	ગ્લોબલ વોર્મિંગ પોટેન્શિયલ
CO2	અશ્મિભૂત ઇંધણ, વનનાશ	1 (સંદર્ભ)
CH4	કૃષિ, લેન્ડફિલ	CO2 કરતાં 25 ગણું
N2O	ફર્ટિલાઇઝર, દહન	CO2 કરતાં 298 ગણું
F-ગેસેસ	ઔદ્યોગિક પ્રક્રિયાઓ	CO2 કરતાં 1,000-20,000 ગણું

ગ્રીનહાઉસ ગેસેસ એ વાતાવરણીય સંયોજનો છે જે પૃથ્વીની સપાટીથી વિકરાળેલી ગરમીને પકડી રાખે છે.

મુખ્ય ગ્રીનહાઉસ ગેસેસ:

- કાર્બન ડાયોક્સાઇડ (CO2): સૌથી વધુ મુખ્ય, અશ્મિભૂત ઇંધણ દહનથી
- મિથેન (CH4): શક્તિશાળી પરંતુ ટૂંકી આયુષ્ય, કૃષિમાંથી
- **નાઇટ્સ ઓક્સાઇડ (N2O)**: લાંબી આયુષ્ય, ફર્ટિલાઇઝર અને ઉદ્યોગોથી
- ફ્લોરિનેટેડ ગેસેસ: ખૂબ શક્તિશાળી, રેફ્રિજરેશન અને ઔદ્યોગિક ઉપયોગથી

ગુણધર્મો: ઇન્ફ્રારેડ કિરણોત્સર્ગ શોષે છે, વૃશ્ય પ્રકાશ માટે પારદર્શક, વિવિધ વાતાવરણીય આયુષ્ય.

ગ્લોબલ વોર્મિંગ પોટેન્શિયલ: ચોક્કસ સમયગાળા દરમિયાન CO2 ની તુલનામાં ગરમી પકડવાની ક્ષમતા માપે છે.

યાદશક્તિ સૂત્ર: "CMNF" (Carbon dioxide-Methane-Nitrous oxide-Fluorinated gases)

પ્રશ્ન 5(c) [7 ગુણ]

5R નો ખ્યાલ સમજાવો.

જવાબ:

5R ખ્યાલ એ કચરા વ્યવસ્થાપનની હાયરાર્કી છે જે કચરા નિવારણ અને સંસાધન સંરક્ષણને પ્રાથમિકતા આપે છે.

પ્રાથમિકતાના ક્રમમાં પાંચ R's:

1. Refuse - ยารเล:

- વ્યાખ્યા: બિનજરૂરી વસ્તુઓ સ્વીકારવાનો ઇનકાર
- ઉદાહરણો: સિંગલ-યુઝ પ્લાસ્ટિક, પ્રમોશનલ ફ્રીબીઝ, વધુ પેકેજિંગ
- અસર: સ્રોતે કચરાનું ઉત્પાદન અટકાવે છે

2. Reduce - ยะเร้า:

- વ્યાખ્યા: વપરાશ અને કચરા ઉત્પાદન ઓછું કરવું
- ઉદાહરણો: ફક્ત જરૂરી વસ્તુઓ ખરીદવી, ટકાઉ ઉત્પાદનો પસંદ કરવા, ઊર્જા બચત
- અસર: સંસાધન નિષ્કર્ષણ અને કચરાના પ્રમાણમાં ઘટાડો

3. Reuse - પુનઃઉપયોગ:

- વ્યાખ્યા: વસ્તુઓનો તેમના મૂળ સ્વરૂપમાં વારંવાર ઉપયોગ
- **ઉદાહરણો**: સ્ટોરેજ માટે કાચની બરણીઓ, કપડાંનું દાન, ફર્નિચરનો પુનઃઉપયોગ

• અસર: ઉત્પાદનની આયુષ્ય વધારે છે, બદલીની જરૂરિયાત ઘટાડે છે

4. Repurpose - નવો હેતુ:

• વ્યાખ્યા: ફેંકવાને બદલે વસ્તુઓ માટે નવા ઉપયોગો શોધવા

• ઉદાહરણો: ટાયર પ્લાન્ટર, બોટલ વેઝ, કાર્ડબોર્ડ ઓર્ગેનાઇઝર

• અસર: સર્જનાત્મક કચરા વાળવું, કલાત્મક મૂલ્ય ઉમેરો

5. Recycle - นูาข์รย:

• વ્યાખ્યા: કચરા સામગ્રીને નવા ઉત્પાદનોમાં પ્રક્રિયા કરવી

• ઉદાહરણો: કાગળનું રિસાયકલિંગ, ધાતુ પુનઃપ્રાપ્તિ, પ્લાસ્ટિક રિપ્રોસેસિંગ

• અસર: સંસાધન પુનઃપ્રાપ્તિ, લેન્ડફિલ ભાર ઘટાડવો

5R અભિગમના ફાયદાઓ:

• **પર્યાવરણીય**: ઘટેલું પ્રદૂષણ, સંસાધન સંરક્ષણ, ઇકોસિસ્ટમ સંરક્ષણ

• આર્થિક: ખર્ચ બચત, રિસાયકલિંગ ઉદ્યોગમાં રોજગાર સર્જન

• સામાજિક: સમુદાયિક જાગરૂકતા, ટકાઉ જીવનશૈલી પ્રોત્સાહન

અમલીકરણ હાયરાર્કી: પહેલા ઇનકાર અને ઘટાડા પર ધ્યાન આપો (નિવારણ), પછી પુનઃઉપયોગ અને નવો હેતુ (કથરો વાળવું), અંતે રિસાયકલ (કથરા પ્રક્રિયા).

પડકારો: વર્તન પરિવર્તનની જરૂરિયાતો, ઇન્ફ્રાસ્ટ્રક્ચર વિકાસ, આર્થિક પ્રોત્સાહનોનું સંકલન.

યાદશક્તિ સૂત્ર: "Real Recycling Requires Refusing Rubbish" (Refuse-Reduce-Reuse-Repurpose-Recycle)

પ્રશ્ન 5(a) અથવા [3 ગુણ]

વન્યજીવ સંરક્ષણ કાયદો, 1972 ની નોંધપાત્ર વિશેષતાઓ લખો.

જવાબ:

કોષ્ટક: વન્યજીવ સંરક્ષણ કાયદો 1972 ની વિશેષતાઓ

વિશેષતા	qย์ -	έs
સંરક્ષિત પ્રજાતિઓ	અનુસૂચિત પ્રાણીઓ/છોડ	i + sè
શિકાર પ્રતિબંધ	શિકાર પર પ્રતિબંધ	7 વર્ષ સુધી જેલ
વેપાર નિયંત્રણ	વન્યજીવ ઉત્પાદન વેપાર નિયંત્રણ	જપ્તી + દંડ

વન્યજીવ સંરક્ષણ કાયદો, 1972 ભારતમાં વન્યજીવ સંરક્ષણ માટે કાનૂની માળખું પ્રદાન કરે છે.

નોંધપાત્ર વિશેષતાઓ:

• પ્રજાતિ સંરક્ષણ: સંરક્ષણ સ્તર પ્રમાણે પ્રજાતિઓનું છ અનુસૂચીમાં વર્ગીકરણ

• શિકાર પ્રતિબંધ: સંરક્ષિત પ્રજાતિઓના શિકાર પર સંપૂર્ણ પ્રતિબંધ

• આવાસ સંરક્ષણ: સંરક્ષિત વિસ્તારોનું હોદ્દો અને વ્યવસ્થાપન

• **વેપાર નિયંત્રણ**: વન્યજીવ ઉત્પાદન વાણિજ્યનું નિયંત્રણ

અમલીકરણ: વન્યજીવ અપરાધ નિયંત્રણ બ્યુરો, વન વિભાગો, વન્યજીવ અપરાધો માટે વિશેષ અદાલતો.

સુધારાઓ: નવી પ્રજાતિઓ સામેલ કરવા અને જોગવાઈઓ મજબૂત બનાવવા માટે નિયમિત અપડેટ્સ.

थाहशक्ति सूत्र: "SHTE" (Species-Hunting-Trade-Enforcement)

પ્રશ્ન 5(b) અથવા [4 ગુણ]

ભારતમાં પર્યાવરણ નીતિઓ કઇ કઇ છે?

જવાબ:

કોષ્ટક: ભારતની મુખ્ય પર્યાવરણ નીતિઓ

નીતિ	વર્ષ	ફોકસ એરિયા
રાષ્ટ્રીય પર્યાવરણ નીતિ	2006	વ્યાપક માળખું
રાષ્ટ્રીય જળ નીતિ	2012	જળ સંસાધન વ્યવસ્થાપન
રાષ્ટ્રીય વન નીતિ	1988	વન સંરક્ષણ
આબોહવા પરિવર્તન પર રાષ્ટ્રીય કાર્ય યોજના	2008	આબોહવા પરિવર્તન શમન

મુખ્ય પર્યાવરણ નીતિઓ:

રાષ્ટ્રીય પર્યાવરણ નીતિ (2006):

• ઉદ્દેશ્ય: પર્યાવરણ સંરક્ષણ સાથે ટકાઉ વિકાસ

• સિદ્ધાંતો: પ્રદૂષક ચુકવે, સાવચેતીનો અભિગમ

• અમલીકરણ: વિભાગો વચ્ચે એકીકરણ

ક્ષેત્રીય નીતિઓ:

• રાષ્ટ્રીય જળ નીતિ: એકીકૃત જળ સંસાધન વ્યવસ્થાપન

• રાષ્ટ્રીય વન નીતિ: 33% વન આવરણનું લક્ષ્ય

• રાષ્ટ્રીય સોલર મિશન: નવીકરણીય ઊર્જા પ્રોત્સાહન

• કચરા વ્યવસ્થાપન નિયમો: ઘન કચરો, ઈ-કચરો, પ્લાસ્ટિક કચરા વ્યવસ્થાપન

નિયમનકારી માળખું: પર્યાવરણ સંરક્ષણ કાયદો, જળ અધિનિયમ, વાયુ અધિનિયમ, વન સંરક્ષણ અધિનિયમ.

থাহথাঙ্কির सুत्र: "NWFS" (National-Water-Forest-Solar)

પ્રશ્ન 5(c) અથવા [7 ગુણ]

વરસાદી પાણીનો સંચય વિગતે સમજાવો.

જવાબ:

વરસાદી પાણીનો સંચય એ ફાયદાકારક હેતુઓ માટે વરસાદી પાણીનું સંગ્રહ, સંચય અને ઉપયોગ છે.

વરસાદી પાણી સંચય સિસ્ટમના ઘટકો:

1. કેચમેન્ટ એરિયા:

- કાર્ય: વરસાદ સંગ્રહ માટેની સપાટી (છત, ખુલ્લા વિસ્તારો)
- સામગ્રી: સ્વચ્છ, બિન-ઝેરી હોવી જોઈએ (એસ્બેસ્ટોસ, લેડ પેઇન્ટેડ સપાટીઓ ટાળો)
- **ગણતરી**: સંગ્રહ = કેચમેન્ટ એરિયા × વરસાદ × રનઓફ કોએફિશિયન્ટ

2. સંગ્રહ અને પરિવહન સિસ્ટમ:

- ગટર: કેચમેન્ટ સપાટીથી પાણીને ચેનલ કરે છે
- ડાઉનસ્પાઉટ્સ: ગટર્સથી પાણી લઈ જતા વર્ટિકલ પાઇપ્સ
- પરિવહન: વિવિધ ઘટકોને જોડતા પાઇપ્સ

3. ફર્સ્ટ ફ્લશ ડાયવર્ટર:

- હેતુ: કાટમાળ સાથેનું પ્રારંભિક ગંદું પાણી દૂર કરે છે
- પ્રકારો: મેન્યુઅલ વાલ્વ, ઑટોમેટિક ડાયવર્ટર, ફ્લોટિંગ બોલ સિસ્ટમ
- ક્ષમતા: સામાન્ય રીતે 100 યો.મી. છતના વિસ્તાર દીઠ 10-15 લિટર

4. ફિલ્ટરેશન સિસ્ટમ:

- કોર્સ ફિલ્ટર: પાંદડા, કાટમાળ દૂર કરે છે (મેશ સ્ક્રીન)
- ફાઇન ફિલ્ટર: રેતી, કાંકરી, એક્ટિવેટેડ કાર્બન
- સ્લો સેન્ડ ફિલ્ટર: પીવાના પાણી માટે જૈવિક ટ્રીટમેન્ટ

5. સ્ટોરેજ સિસ્ટમ:

- સરફેસ સ્ટોરેજ: જમીન ઉપર ટાંકીઓ, જળાશયો
- અન્ડરગ્રાઉન્ડ સ્ટોરેજ: જમીન નીચે સમ્પ્સ, સિસ્ટર્ન્સ
- સામગ્રી: ફેરોસિમેન્ટ, પ્લાસ્ટિક, કોંક્રિટ, ફાઇબરગ્લાસ

વરસાદી પાણી સંચયના પ્રકારો:

A. છતની સંચય:

- ડાયરેક્ટ સ્ટોરેજ: તાત્કાલિક ઉપયોગ માટે ટાંકીમાં વરસાદી પાણી સંગ્રહ
- **ઇન્ડાયરેક્ટ રીચાર્જ**: ભૂગર્ભ જળ રીચાર્જ કરવા માટે પાણીને દિશા આપવી

B. સરફેસ વોટર હાર્વેસ્ટિંગ:

• થેક ડેમ્સ: સ્ટ્રીમ્સ વચ્ચે નાના અવરોદ્યો

- પકોંલેશન ટાંકીઓ: કૃત્રિમ રીચાર્જ સ્ટ્રક્ચર્સ
- કન્ટ્રર બંડિંગ: જળ સંચય સાથે માટી સંરક્ષણ

કાયદાઓ:

- જળ સુરક્ષા: બાહ્ય જળ સ્રોતો પર નિર્ભરતા ઘટાડે છે
- ભૂગર્ભ જળ રીચાર્જ: પાણીના સ્તરમાં ઘટાડો અટકાવે છે
- પૂર નિયંત્રણ: સપાટીનો અપવાહ અને શહેરી પૂર ઘટાડે છે
- **ગુણવત્તા સુધારણા**: પ્રદૂષિત વિસ્તારોમાં સામાન્ય રીતે ભૂગર્ભ જળ કરતાં વધુ સારું
- ખર્ચ-અસરકારક: જળ પુરવઠા યોજનાઓ કરતાં ઓછું
- **ઊર્જા બચત**: પમ્પિંગ જરૂરિયાતો ઘટાડે છે

ડિઝાઇન વિચારણાઓ:

- વરસાદી પેટર્ન: મોસમી વિતરણ, તીવ્રતા
- પાણીની માંગ: ઘરેલું જરૂરિયાતો, ઉપયોગ પેટર્ન
- સ્ટોરેજ ક્ષમતા: સૂકા સમયગાળાના આધારે
- ગુણવત્તા જરૂરિયાતો: પીવાના બનામ બિન-પીવાના ઉપયોગ
- **સાઇટ કંડિશન્સ**: જગ્યાની ઉપલબ્ધતા, માટીની પારગમ્યતા

જાળવણી જરૂરિયાતો:

- નિયમિત સફાઈ: ગટર, ફિલ્ટર, સ્ટોરેજ ટાંકીઓ
- છતની જાળવણી: દૂષણ સ્રોતો અટકાવવા
- સિસ્ટમ નિરીક્ષણ: લીકેજ, અવરોધો તપાસવા
- પાણીની ગુણવત્તા પરીક્ષણ: પીવાના ઉપયોગ માટે સમયાંતરે વિશ્લેષણ

સરકારી પહેલો:

- બિલ્ડિંગ કોડ્સ: નવા બાંધકામોમાં વરસાદી પાણી સંચય ફરજિયાત
- સબસિડી: ઇન્સ્ટોલેશન માટે નાણાકીય પ્રોત્સાહનો
- જાગૃતિ કાર્યક્રમો: સમુદાચિક શિક્ષણ અને તાલીમ
- તકનીકી સહાય: ડિઝાઇન ગાઇડલાઇન્સ, અમલીકરણ સહાય

પડકારો:

- પ્રારંભિક ખર્ચ: સંપૂર્ણ સિસ્ટમ માટે સેટઅપ ખર્ચ
- જાળવણી: નિયમિત જાળવણીની જરૂરિયાતો
- જગ્યાની જરૂરિયાતો: સ્ટોરેજ ટાંકી માટે જગ્યાની જરૂર
- **મોસમી ઉપલબ્ધતા**: મોનસૂન પેટર્ન પર નિર્ભરતા
- ગુણવત્તાની ચિંતાઓ: સંભવિત દૂષણ મુદ્દાઓ

ગણતરીનું ઉદાહરણ:

• છતનો વિસ્તાર: 100 ચો.મી.

- વાર્ષિક વરસાદ: 1000 મી.મી.
- રનઓફ કોએફિશિયન્ટ: 0.8
- સંચયપાત્ર પાણી = 100 × 1 × 0.8 = 80,000 લિટર/વર્ષ