Vpisna številka

1. kolokvij iz Matematike II, FMF, Aplikativna matematika

29. 1. 2025

Čas pisanja je 120 minut. Veliko uspeha!

Ime in priimek

1. naloga (25 točk)

a) Dan je dvakratni integral

$$\int_{-6}^{2} \left(\int_{\frac{x^2}{4} - 1}^{2 - x} f(x, y) \, dy \right) \, dx.$$

Skicirajte integracijsko območje in obrnite vrstni red integracije.

b) Za a > 0 in $n \in \mathbb{N}$ izračunajte

$$\int_0^\infty e^{-ax} x^{n-1} \, dx.$$

c) Dokažite, da za a, b, c > 0 velja

$$B(a,b)B(a+b,c) = B(b,c)B(a,b+c),$$

kjer B(x,y) funkcija beta. 2-X= 5-1 O= 学+X-3

X = = -1 ± 14 = -2 ± 4

 $\int_{-6}^{2} \left(\int_{\frac{X^{2}-1}{4}-1}^{2-x} f(x,y) dy \right) dx = \int_{-2\sqrt{y+1}}^{2-x} \left(\int_{-2\sqrt{y+1}}^{2-x} f(x,y) dx \right) dy + \int_{-2\sqrt{y+1}}^{2-x} \left(\int_{-2\sqrt{y+1}}^{2-x} f(x,y) dx \right) dy$

$$= (x_1 y) dy) dx =$$

b)
$$\int_{0}^{\infty} e^{-ax} x^{n-1} = 1$$
 $\int_{0}^{\infty} e^{-u} \left(\frac{u}{a}\right)^{n-1} du = \frac{1}{a^{n}} \int_{0}^{\infty} u^{n-1} e^{-u} du = \frac{\Gamma(h)}{a^{n}} = \frac{(n-n)!}{a^{n}}$

B(a,b)B(a+b,c) =
$$\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\frac{\Gamma(a+b)\Gamma(c)}{\Gamma(a+b+c)} = \frac{\Gamma(a)\Gamma(b)\Gamma(c)}{\Gamma(a+b+c)}$$

$$B(b,c)B(a,b+c) = \frac{\Gamma(b)\Gamma(c)}{\Gamma(b+c)} \frac{\Gamma(a)\Gamma(b+c)}{\Gamma(a+b+c)} = \frac{\Gamma(a)\Gamma(b)\Pi(c)}{\Gamma(a+b+c)}$$

2. naloga (25 točk)

Dana je

$$F(\alpha) = \int_0^{\frac{\pi}{2}} \ln(\sin^2 x + \alpha^2 \cos^2 x) \, dx,$$

kjer $\alpha > 0$.

ZVEZNO ODVEDLJIVA, LAYKO ODVAJAHO F(a)

a) S pomočjo substitucije $t=\tan x$ in trigonometrične zveze $\cos^2 x=\frac{1}{1+\tan^2 x}$ dokažite

b) Določite
$$F(\alpha)$$
.

$$\frac{\pi}{2} = \frac{2\alpha \cos^2 x}{\sin^2 x + \alpha^2 \cos^2 x} = 2\alpha \int_{0}^{\pi} \frac{dx}{\tan^2 x + \alpha^2} = 2\alpha \int_{0}^{\pi} \frac{dx}{(1+t^2)(-(x^2+t^2))} = (x)$$

$$t = tah x$$

$$dt = \frac{1}{\cos^2 x} dx = (1+t^2) dx$$

$$\frac{1}{(1+t^2)(d^2+t^2)} = \frac{At+B}{t^2+A} + \frac{Ct+D}{t^2+A^2} = 1 = \frac{At+B}{t^2+A} + \frac{Ct+D}{t^2+A^2} + \frac{Ct+D}{t^2+A} + \frac{Ct+D}{t^2+A^2} + \frac{Ct+D}$$

$$(A) = \frac{2\alpha}{\alpha^{2}-1} \int_{0}^{\infty} \left(\frac{1}{t^{2}+1} - \frac{1}{t^{2}+\alpha^{2}}\right) dt = \frac{2\alpha}{\alpha^{2}-1} \left(\operatorname{arctg}(t)\right)^{\infty} - \frac{1}{\alpha} \operatorname{arctg}(\frac{t}{\alpha})^{\infty}\right) = \frac{2\alpha}{\alpha^{2}-1} \cdot \frac{\pi}{2} \left(1 - \frac{1}{\alpha}\right) = \frac{\pi\alpha}{\alpha^{2}-1} \cdot \frac{\alpha-1}{\alpha} = \left[\frac{\pi}{\alpha+1}\right]$$

b)
$$F(\alpha) = \int F'(\alpha)d\alpha + C = \pi \ln(\alpha + \Lambda) + C$$

 $F(\Lambda) = \int \int \ln(\sin^2 x + \cos^2 x) dx = O = \pi \ln(2) + C = \pi C = -\pi \ln(2)$
 $F(\alpha) = \int \int \ln(\sin^2 x + \cos^2 x) dx = O = \pi \ln(2) + C = \pi C = -\pi \ln(2)$

$$= 7 [F(\alpha)] = 17 (\ln |\alpha+1| - \ln 2) = 17 [\ln |\frac{\alpha+1}{2}]$$

3. naloga (25 točk)

Naj bo T telo v prvem oktantu $(x,y,z\geq 0)$, ki leži nad ploskvijo $z=\sqrt{3x^2+3y^2}$ in pod ploskvijo $x^2+y^2+z^2=9$.

- a) Skicirajte telo T.
- b) S pomočjo cilindričnih koordinat z integralom izrazite volumen telesa T_{\cdot}
- c) S pomočjo sferičnih koordinat z integralom izrazite volumen telesa T.
- d) Na poljuben način izračunajte volumen telesa T_{\cdot}

$$|S| \leq Z \leq |S|^{2}$$

$$|S| \leq Z \leq |S|^{2}$$

$$|S| \leq Z \leq |S|^{2}$$

$$|S| \leq |S|^{2}$$

C)
$$\Psi \in [0, \pm]$$
, $r \in [0,3]$, $\Theta \in [\Theta_{MN}, \pm]$ $\Theta_{MN} - ROB STOELA$

$$V = \int_{0}^{\pi} J\Psi \int_{0}^{\pi} cos\Theta J\Theta \int_{0}^{3} r^{2} dr$$

$$V = \int_{0}^{\pi} J\Psi \int_{0}^{\pi} cos\Theta J\Theta \int_{0}^{3} r^{2} dr$$

$$\frac{3}{3} \frac{3}{2} = \frac{\pi}{2} \left(-\frac{1}{3} \frac{(9 - \frac{9}{4})^{3/2} - 3^{3}}{3} - \frac{\sqrt{3}}{3} \frac{3^{3}}{2^{3}} \right) = \frac{\pi}{2} \left(-\frac{1}{2} \frac{(9 - r)^{3/2}}{3/2} \right) - \frac{\pi}{3} \frac{3^{3}}{2^{3}} = \frac{\pi}{2} \left(-\frac{1}{3} \frac{(2 + r)^{3/2}}{8} + 9 - \frac{9\sqrt{3}}{8} \right) = \frac{\pi}{2} \left(-\frac{1}{3} \frac{3^{3} \cdot 3\sqrt{3}}{8} + 9 - \frac{9\sqrt{3}}{8} \right) = \frac{\pi}{2} \left(-\frac{27\sqrt{3}}{8} - \frac{9\sqrt{3}}{8} + 9 \right) = \frac{\pi}{2} \left(9 - \frac{9}{2} \sqrt{3} \right) = \frac{\pi}{2} \left(1 - \frac{\sqrt{3}}{2} \right)$$

$$V = \frac{\pi}{2}, \quad \sin \theta = \frac{3^{3}}{3} = \frac{3^{3}}{2} \left(1 - \frac{3^{2}}{2}\right)$$

4. naloga (25 točk)

Z uvedbo novih spremenljivk izračunajte integral

$$\iint_D (x-y)e^{x^2-y^2} \mathrm{d}x \mathrm{d}y$$

kjer je D območje, omejeno z $x+y=1,\,x+y=3,\,x^2-y^2=-1$ in $x^2-y^2=1.$

1.NA CIN

$$V = X + y = 1 \le N \le 3$$

$$X = \frac{U + N}{Z} \quad Y = \frac{N - U}{Z} \quad J = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

$$X = \frac{U + N}{Z} \quad Y = \frac{N - U}{Z} \quad J = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

$$X = \frac{U + N}{Z} \quad Y = \frac{N - U}{Z} \quad J = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

$$X = \frac{U + N}{Z} \quad Y = \frac{N - U}{Z} \quad J = \frac{1}{2} \quad J = \frac{1}{2}$$

$$X = \frac{U + N}{Z} \quad J = \frac{1}{2} \quad J = \frac{1}{2} \quad J = \frac{1}{2} \quad J = \frac{1}{2}$$

$$X = \frac{U + N}{Z} \quad J = \frac{1}{2} \quad J = \frac{1}{2}$$

$$X-Y = \frac{N}{4} \qquad X = \frac{4 + \frac{N}{4}}{2} \qquad \int \frac{1 - \frac{N}{4^2}}{2} \frac{1}{24} = \frac{1}{24}$$

$$Y = \frac{4 - \frac{N}{4}}{2} \qquad \int \frac{1 - \frac{N}{4^2}}{2} \frac{1}{24} = \frac{1}{24}$$

$$= \frac{\frac{N}{4^2} - 1}{44} - \frac{\frac{N}{4^2} + 1}{24} = \frac{1}{24}$$

$$\int \int (x-y)e^{x^{2}}dxdy = \int du \int dv \frac{v}{u}e^{v} \cdot \left(\frac{1}{2u}\right) = \frac{1}{2} \int \frac{du}{u^{2}} \int ve^{v}dv =$$

$$= \frac{1}{2} \left(1 - \frac{1}{3}\right) \left(ve^{v}\right)^{2} - e^{v}\right) = \frac{1}{3} \left(e + e^{-1} - e + e^{-1}\right) = \frac{2}{3e}$$