

Zhenhuan Liu^{1,2} Liang Li¹ Jiayu Xiao^{1,2} Zheng-Jun Zha³ Qingming Huang^{1,2,4}

¹Institute of Computing Technology ³University of Science and Technology of China ²University of Chinese Academy of Sciences

⁴Peng Cheng Laboratory

Text-Driven Generative Domain Adaptation

Text as Guidance of Target Image

Benefiting from Vision-Language models learning from large image-text pairs, text can be leveraged as a description of abstract visual semantics to guide generative

Mode Collapse in Adaptation Process

- Original identity attributes are collapsed after early training stage.
- Styles and diversity are entangled in the optimization process.

Challenges

- How to measure the diversity of distribution quantitatively?
- How to regularize diversity without restricting style adaptation?

Measuring Diversity from Geometric Point of View

$$egin{split} &\lim_{\Delta z o 0} d^2(G(z), G(z+\Delta z)) = \ &d^2(G(z), G(z)) + rac{\partial d^2(G(z), G(z+\Delta z))}{\partial \Delta z} \cdot \Delta z + \ &\Delta z^T \cdot rac{\partial^2 d^2(G(z), G(z+\Delta z))}{\partial \Delta z^2} \cdot \Delta z \end{split}$$

- 1. Measuring distribution diversity via second order gradient.
- 2. Preventing absolute features to be restricted.

Spectral Consistency Regularization

$$\mathcal{L} = \mathcal{L}_{dir} + \lambda_{spectral} rac{\|
abla_{G_L} \mathcal{L}_{dir}\|}{\|
abla_{G_L} \mathcal{L}_{reg}\|} \, \mathcal{L}_{reg}$$

Directional Loss: Bring close the distance between generated images and target text description.

Spectral Consistency Regularization: Preserve intra-domain variations of source domain without restricting style effects of target generators.

Diversity Preserving Domain Adaptation

Experiments

Quantitative Results Compared with Previous Methods

Results	Photo \rightarrow Sketch		Photo \rightarrow Mona Lisa		$Human \rightarrow werewolf$		Photo \rightarrow Pixar	
	PPL	Trace	PPL	Trace	PPL	Trace	PPL	Trace
SCC	547.34	0.526	485.70	0.521	428.45	0.343	440.17	0.535
WDC	378.25	0.090	363.17	0.191	311.34	0.116	345.31	0.167
MS	466.99	0.167	331.06	0.233	352.61	0.191	377.88	0.358
PPL	241.50	0.028	209.09	0.061	297.74	0.062	300.19	0.063
CDC	348.01	0.062	259.92	0.079	351.73	0.089	299.49	0.111
NADA	323.25	0.061	281.59	0.098	302.91	0.101	343.54	0.112
Ours	463.57	0.116	321.43	0.140	383.19	0.137	353.80	0.181

Model Comparison	Quality	Style	Attributes	
Ours vs. NADA [5]	86.4%	59.4%	91.2%	
Ours vs. SCC [35]	64.2%	86.2%	65.0%	
Ours vs. MS [14]	59.4%	83.6%	54.2%	
Ours vs. WDC [36]	62.2%	89.8%	49.8%	
Ours vs. PPL [11]	92.4%	71.4%	95.0%	
Ours vs. CDC [17]	79.6%	60.6%	87.8%	

Granularity-adaptive Regularization

