

TIME-AWARE ANALYSIS OF OVERLAPPING CYCLING SEGMENTS FROM ACTIVITY TRACKER DATA

IEEE 23rd International Symposium on Intelligent Systems and Informatics (SISY 2025)

Authors:

Tilen Hliš (<u>tilen.hlis@um.si</u>), Iztok Fister (<u>iztok.fister@proton.me</u>), Patrik Rek (<u>patrik.rek@um.si</u>) and Iztok Fister Jr. (<u>iztok.fister1@um.si</u>)

PRESENTATION AGENDA

- 1. Motivation and purpose of the article
- 2. TCX data and preprocessing
- 3. Property graphs
- 4. Segment overlap detection algorithm
- 5. Experimental results
- 6. Discussion and future work
- 7. Conclusion

MOTIVATION

 GPS tracker data: Modern cycling trackers record detailed metrics (location, speed, heart rate, etc.) for every ride, producing large real-world datasets to analyze.

- Need for deeper insights:
 Detecting overlapping segments in cycling sessions can reveal behavioral patterns and performance trends.
- Temporal dimension matters: A rider's performance on a given route can vary by time of day, day of week, and over multiple rides, so analyzing segments with time context is crucial for uncovering true performance patterns.

PURPOSE

- Efficient detection pipeline (TCX2Graph.jl):
 Developed a pipeline combining candidate segment generation, KD-tree spatial filtering, and discrete
 Fréchet distance validation for accurate segment matching.
- Contextual data enrichment: Integrated
 OpenStreetMap data to enrich each detected
 segment with road conditions and environmental
 context, providing deeper insights into performance
 variations.
- Temporal performance study: Conducted a case study on a frequently ridden segment, examining how speed, heart rate, and segment times differ between morning vs. afternoon, weekday vs. weekend, and over time.

TCX DATA STRUCTURE

What is a TCX File?

- Training Center XML (TCX):
 Developed to store data from GPS-enabled fitness devices.
- Stores detailed workout data:
 - GPS Coordinates (latitude, longitude, altitude).
 - Performance Metrics (speed, heart rate, cadence, power).
 - Time-based session details.

TCX File Hierarchy

- Activity:
 Overall session data (sport type, session metadata).
- Lap: Segments of the session (time, distance, heart rate).
- Trackpoint: Individual data points (timestamp, GPS, metrics).

TCX FILE


```
<TrainingCenterDatabase>
<Activities>
 <Activity Sport="Biking">
  <ld><ld>2023-10-19T10:38:47.000Z</ld></ld></ld>
  <Lap StartTime="2023-10-19T10:38:47.000Z">
   <TotalTimeSeconds>5050.412</TotalTimeSeconds>
   <DistanceMeters>29305.5</DistanceMeters>
   <MaximumSpeed>10.039999961853027</MaximumSpeed>
   <Calories>571</Calories>
   <AverageHeartRateBpm>
   <Value>121</Value>
   </AverageHeartRateBpm>
   <MaximumHeartRateBpm>
   <Value>160</Value>
   </MaximumHeartRateBpm>
   <Intensity>Active</Intensity>
   <TriggerMethod>Manual</TriggerMethod>
   <Track>
   <Trackpoint>
      <Time>2023-10-19T10:38:47.000Z</Time>
      <Position>
       <LatitudeDegrees>46.3886827044189</LatitudeDegrees>
       <LongitudeDegrees>15.728210052475333
      </Position>
      <AltitudeMeters>237.60000610351562</AltitudeMeters>
      <DistanceMeters>0.0</DistanceMeters>
      <HeartRateBpm>
       <Value>91</Value>
      </HeartRateBpm>
      <Extensions>
       <ns3:TPX>
        <ns3:Speed>0.0</ns3:Speed>
       </ns3:TPX>
      </Extensions>
     </Trackpoint>
```

TCX FILES READING AND OSM FUSION

TCXReader.jl Library (https://github.com/firefly-cpp/TCXReader.jl)

• Custom-built Julia library for efficient reading and processing of TCX files.

Data Fusion with OpenStreetMap

- o GPS alone isn't enough we add **context** with OSM:
 - o Batch queries via Overpass API, linked to each trackpoint.

Altitude	Cadence	Lane markings	Smoothness
Longitude	Speed	Lit	Surface
Latitude	Max speed	Crossing	Land use
Heart rate	Time	Width	_
Power	Distance	Incline	_
File name	_	Barrier	_ 7

CONSTRUCTING THE PROPERTY GRAPH

Purpose of Property Graphs

- Provides a **structured representation** of TCX data for efficient storage and retrieval.
- Organizes GPS track points and related performance metrics for analysis.
- Facilitates the enrichment of detected overlapping segments with performance data.

What is a Property Graph?

- A **Directed Multigraph** with nodes and edges storing rich data.
- Nodes (Vertices): Represent GPS track points from TCX files.
- Edges (Arcs): Connect consecutive points, forming the athlete's path.
- **Properties:** Store key-value pairs (e.g., speed, heart rate, cadence).

Formal Definition: $G=\langle N,A,K,V,\alpha,\kappa,\pi \rangle$

CONSTRUCTING THE PROPERTY GRAPH

Graph Construction Workflow

- 1. Parse TCX Files: using TCXReader.jl.
- **2. Add Nodes:** Each GPS track point becomes a graph vertex.
- **3. Connect Nodes with Edges:** Sequential points are linked to form a path.
- **4. Attach Properties:** Key metrics (speed, heart rate, cadence,...) are stored as properties of nodes and edges.

SEGMENTS OVERLAP DETECTION

Motivation for segment overlap detection

- Cyclists often repeat routes, leading to overlapping segments in TCX data.
- Detecting these overlaps helps analyze how performance changes across sessions.
- Understanding repeated segments provides insights into training behavior and physiological responses.

Challenges in detection

- GPS inaccuracies: Slight deviations in recorded data due to device errors.
- Path variations: Small changes in route due to cyclist behavior or environmental factors.
- Efficient processing: Large datasets require optimized algorithms for real-time analysis.

SEGMENTS OVERLAP DETECTION

- **1. Reference ride:** Select one ride and generate candidate segments.
- **2. KD-Tree filter:** Use KD-tree to find nearby rides within a bounding region.
- **3. Fréchet check:** Compare shapes using discrete Fréchet distance.
- **4. Validation:** Mark as overlap if distance ≤ tolerance.

EXPERIMENTAL SETUP

Objective

Time-aware performance analyses by isolating the effect of temporal factors on cycling

performance using a controlled, consistent road segment.

Data sources:

TCX files + OSM geospatial context fused into one enriched dataset.

Dataset:

o 462 TCX rides, single cyclist, repeated sessions.

Selected segment for case studies:

- Length 1.027 m, 52 rides, asphalt, flat terrain (avg. gain 1.85 m).
- \circ Consistently appears early in each ride (~first 40% of path) \rightarrow minimal fatigue confounding.
- Stable characteristics ideal for temporal comparisons.

CASE STUDY 1 - MORNING VS AFTERNOON

Research Question (RQ1):

o Does the cyclist's performance on the segment differ between morning and

afternoon rides?

Grouping:

Morning rides: Start before 12:00 (n = 21)

• Afternoon rides: Start at or after 12:00 (n = 31)

Results:

o Afternoon rides significantly faster and shorter.

Interpretation:

O Clear **time-of-day effect**, consistent with known **circadian peaks** in sports performance.

€ 45		
(km		
p 40		
Spe		
ag 35		
Average Speed (km/h)		
₹ 30		
25		<u></u> _
	AM	PM
	Tin	ne of Day
	e in anarta	

13

50

Metric	AM (n = 21)	PM (n = 31)	p-value
Avg. Speed (km/h)	28.29 ± 2.82	31.36 ± 4.49	0.004
Avg. Heart Rate (bpm)	136.21 ± 11.35	141.13 ± 11.80	0.139
Duration (s)	129.33 ± 13.81	116.87 ± 17.89	0.007

CASE STUDY 2 - WEEKDAY VS WEEKEND

Research Question (RQ2):

Does performance on the segment differ between weekdays and weekends?

Grouping:

Weekdays: Monday-Friday (n = 38)

Weekends: Saturday-Sunday (n = 14)

Results:

No statistically significant differences.

Interpretation:

- o Performance remained consistent regardless of weekly schedule.
- o Slight weekday speed edge likely random or due to minor external factors

weekaay speed eage likely random or due to minor external factors.							
Metric	Weekday (n = 38)	Weekend (n = 14)	p-value				
Avg. Speed (km/h)	30.58 ± 4.40	28.87 ± 3.23	0.135				
Avg. Heart Rate (bpm)	140.36 ± 11.86	135.85 ± 11.24	0.218				
Duration (s)	120.39 ± 18.34	126.00 ± 14.12	0.253				

14

CASE STUDY 3 - PERFORMANCE OVER TIME

Research Question (RQ2):

o Does performance improve, decline, or remain stable over repeated rides?

Approach:

- o Chronologically ordered all **52 rides**.
- o Applied **linear regression** to:
 - Speed (km/h), Heart rate (bpm), Duration (s).

Results:

No statistically significant differences.

Interpretation:

O Stable performance over time, no measurable training improvement or decline.

50)								
(y/w	5								
Average Speed (km/h)	0								
age Sp	5		•	•)	•	•	
Avers			•	•	•	•	• •	•	•
2!		•			• •				
	0	1	LO	20	0 Run O	30 rder	4	-0	50

Metric	Slope (per ride)	p-value
Avg. Speed (km/h)	-0.005	0.891
Avg. Heart Rate (bpm)	+0.051	0.641
Duration (s)	+0.077	0.636

DISCUSSION AND FUTURE WORK

- Segment-based temporal analysis enables precise, repeatable insights into performance on specific road segments, supporting personalized training and terrain-specific performance evaluation.
- Ongoing integration of weather data will soon allow detailed analysis of how environmental conditions influence performance.
- o Development of **association rule mining (ARM)** capabilities is in progress to discover complex patterns and relationships across multiple overlapping segments and rides.
- o Broader potential beyond sports: applications in **urban cycling planning**, **route optimization**, and **transportation research**.
- Future capability to generate entirely new paths by intelligently combining discovered overlapping segments, opening new possibilities.
- Expanding datasets and refining algorithms will extend the potential of TCX2Graph.jl to other domains.

THANK YOU FOR YOUR ATTENTION

