at everyone

1 | Complete the Representation

Function	First four terms	Generalized
$\frac{1}{1-2x}$	$1 + 2x + 4x^2 + 8x^3 + \cdots$	$\sum_{k=0}^{\infty} 2^k x^k$
$\cos(3x)$	$1 - \frac{9x^2}{2!} + \frac{81x^4}{4!} - \frac{729x^6}{6!} + \cdots$	$\sum_{k=0}^{\infty} \frac{(-1)^k (3x)^{2k}}{2k!}$
$\frac{e^x}{e^2}$	$\frac{1}{e^2} + \frac{x}{e^2} + \frac{x^2}{e^2 2!} + \cdots$	$\sum_{k=0}^{\infty} \frac{x^k}{e^2 k!}$
$\sin(x^2)$	$x^2 - \frac{x^6}{3!} + \frac{x^10}{5!} + \frac{x^14}{7!} + \cdots$	$\sum_{k=0}^{\infty} \frac{e^{-k!}}{(2k+1)!}$
$\frac{1}{1+x^4}$	$1 - x^4 + x^8 - x^{16} + \cdots$	$\sum_{k=0}^{\infty} (-x^2)^n$
$e^{(x-1)^2}$	$1 + \frac{(x-1)^2}{+} \frac{(x-1)^4}{2!} + \frac{(x-1)^6}{3!} + \cdots$	$\sum_{k=0}^{\infty} \frac{(x-1)^{2k}}{k!}$
$\frac{\cos(x)-1}{x^2}$	$-\frac{1}{2!} + \frac{x^2}{4!} - \frac{x^4}{6!} + \cdots$	$\sum_{k=1}^{\infty} \frac{(-1)^k x^{2(k-1)}}{(2k)!}$
$2x\ln(1+2x)$		$\sum_{k=1}^{\infty} \frac{2x(-1)^{k-1}(2x)^k}{k}$
$\frac{2x}{1+x^2}$	$2x - 2x^3 + 2x^5 - 2x^7 + \cdots$	$\sum_{k=0}^{n-1} 2x(-1)^k x^{2k}$

2 | page 3

2.1 | a: skipped

2.2 | find maclaurin series for f'(x) where $f(x) = \sum_{k=0} \frac{(2x)^{k+1}}{k+1}$

$$\frac{d}{dx}\frac{(2x)^{n+1}}{n+1} = \frac{(n+1)^2(2x)^n(2)}{(n+1)^2} = 2(2x)^n$$

So, our series is just

$$\sum_{k=0}^{\infty} 2(2x)^k = 2 + 4x + 8x^2 + 16x^3 + \cdots$$

2.3 | estimate $f'\left(-\frac{1}{3}\right)$

When only using the first 4 terms:

$$2 + 4\frac{-1}{3} + 8\left(\frac{-1}{3}\right)^2 + 16\left(\frac{-1}{3}\right)^2 = \frac{10}{3}$$

For the entire sequence:

$$\sum_{k=0}^{\infty} 2\left(\frac{-2}{3}\right)^k = 2\sum_{k=0}^{\infty} \left(-\frac{2}{3}\right)^k = \frac{2}{1 - -\frac{2}{3}} = \frac{2}{\frac{5}{3}} = \frac{6}{5}$$

because the series is geometric.

3 | page 4

3.1 | find
$$1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$

That series is just the taylor series for

$$f(x) = \frac{\sin x}{x}$$

So the derivative at zero is zero, and the second derivative:

$$\frac{d}{dx}\frac{x\cos x - \sin x}{x^2} = \frac{x^2\left(-x\sin x + \cos x - \cos x\right) - \left(x\cos x - \sin x\right)(2x)}{x^4}$$
$$= \frac{-x^3\sin x - 2x\left(x\cos x - \sin x\right)}{x^4}$$

is undefined at zero. However, the top of the fraction will be negative ($x^3 \sin x$ is like x^4 when $x \approx 0$ and $x \cos x - \sin x = x(\cos x - \frac{\sin x}{x})$, so the second derivative is zero at x. (Checked with desmos). Thus, the function has a local maximum at x = 0.

3.2 | show approximation at x=1 is within $\epsilon < \frac{1}{100}$ with $1-\frac{1}{3!}$

$$f(1) - \left(1 - \frac{1}{3!}\right) = \frac{1^4}{5!} - \frac{1^6}{7!} + \cdots$$
$$= \frac{1}{5!} - \frac{1}{7!} + \cdots$$
$$< \frac{1}{5!} = \frac{1}{120} < \frac{1}{100}$$

3.3 | solution to the differential equation $xy' + y = \cos x$

$$xy' + y = \cos x \implies y = \cos x - xy'$$

$$= \cos x - \cancel{x} \frac{x \cos x - \sin x}{\cancel{x}^{\cancel{x}}}$$

$$= \cos x - \frac{x \cos x - \sin x}{x}$$

$$= \cos x - \frac{\cancel{x} \cos x}{\cancel{x}} + \frac{\sin x}{x}$$

$$= \cos x - \cos x + \frac{\sin x}{x}$$

$$y = \frac{\sin x}{x}$$