REC-CIS

GE23131-Programming Using C-2024 Quiz navigation Show one page at a time Finish review

Question 1 Correct

Marked out of 1.00 question

convert it to binary and determine the value of the the 4th least significant digit.

Status Finished

Duration 3 mins 52 secs

Example number = 23 $= (10111)_2.$

Returns:

Constraints

 $0 \le \text{number} < 2^{31}$

Sample Case 0

Sample Input 0

STDIN Function

Sample Output 0

0

Function Description Complete the function fourthBit in the editor below.

Started Monday, 13 January 2025, 8:54 AM

Completed Monday, 13 January 2025, 8:58 AM

A binary number is a combination of 1s and 0s. Its nth least significant digit is

the nth digit starting from the right starting with 1. Given a decimal number,

Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^2 + 2^3 + 2^4 +$ The value of the 4th index from the right in the binary representation is 0.

fourthBit has the following parameter(s): int number: a decimal integer int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Input Format for Custom Testing Input from stdin will be processed as follows and passed to the function. The only line contains an integer, number. $32 \rightarrow number = 32$

Explanation 0 Convert the decimal number 32 to binary number: $32_{10} = (100000)_2$. The value of the 4th index from the right in the binary representation is 0. **Sample Case 1 Sample Input 1** STDIN Function $77 \rightarrow \text{number} = 77$ **Sample Output 1 Explanation 1** Convert the decimal number 77 to binary number: $77_{10} = (1001101)_2$. The value of the 4th index from the right in the binary representation is 1.

Answer: (penalty regime: 0 %) Reset answer 1 | /* * Complete the 'fourthBit' function below. 2 3 \ast The function is expected to return an INTEGER. * The function accepts INTEGER number as parameter. 6 */ 7 int fourthBit(int number) 9 🔻 { int binary[32]; 10 int i=0; 11 while(number>0) 12 13 • binary[i]=number%2; 14 number/=2; 15 16 1++; 17 if(i>=4)18 19 20 return binary[3]; 21 else 22 return 0; 23 24 25 } **Expected Got Test** printf("%d", fourthBit(32)) 0 **✓** printf("%d", fourthBit(77)) 1 **/** Passed all tests! <

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the pth element of the list, sorted ascending. If there is no pth element, return 0. **Example** n = 20p = 3The factors of 20 in ascending order are {1, 2, 4, 5, 10, 20}. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned. **Function Description** Complete the function pthFactor in the editor below.

int: the long integer value of the pth integer factor of n or, if there is no factor at

Question **2**

Marked out of

Correct

1.00

▼ Flag

question

Constraints $1 \le n \le 10^{15}$ $1 \le p \le 10^9$ Input Format for Custom Testing Input from stdin will be processed as follows and passed to the function. The first line contains an integer n, the number to factor.

Returns:

pthFactor has the following parameter(s):

int p: the index of the factor to be returned

that index, then 0 is returned

int n: the integer whose factors are to be found

The second line contains an integer p, the 1-based index of the factor to return. **Sample Case 0** Sample Input 0 STDIN Function $10 \rightarrow n = 10$ $3 \rightarrow p = 3$ **Sample Output 0 Explanation 0**

5

Factoring n = 10 results in $\{1, 2, 5, 10\}$. Return the $p = 3^{rd}$ factor, 5, as the answer. Sample Case 1 **Sample Input 1** STDIN Function $10 \rightarrow n = 10$ $5 \rightarrow p = 5$

Sample Output 1

Explanation 1

therefore 0 is returned as the answer.

0

1

3

7

8

9

10

12

13 14 15

16 • 17

18 19 20

25 26

Test

Passed all tests! <

printf("%ld", pthFactor(10, 3))

printf("%ld", pthFactor(1, 1))

printf("%ld", pthFactor(10, 5)) 0

Sample Case 2 Sample Input 2 STDIN Function $1 \rightarrow n = 1$ $1 \rightarrow p = 1$ **Sample Output 2 Explanation 2** Factoring n = 1 results in $\{1\}$. The p = 1st factor of 1 is returned as the answer. **Answer:** (penalty regime: 0 %) Reset answer * Complete the 'pthFactor' function below. * The function is expected to return a LONG_INTEGER. * The function accepts following parameters: * 1. LONG_INTEGER n * 2. LONG_INTEGER p */ long pthFactor(long n, long p) 11 ▼ { int count=0; for(long i=1;i<=n;++i)</pre> **if**(n%i==0) count++; if(count==p) return i; return 0;

Expected Got

✓

Finish review

Factoring n = 10 results in $\{1, 2, 5, 10\}$. There are only 4 factors and p = 5,