

**University of Saskatchewan**  
**Department of Mathematics & Statistics**

MATH 223.3 – FINAL EXAMINATION

Instructors: J.W. Stephenson (01), E.D. Tymchatyn (03), J. Brooke (05)

December 15, 2004

9 a.m.

**CLOSED BOOK, NO CALCULATORS, NO ELECTRONIC DEVICES**

The exam is in three parts, Part A, Part B and Part C.

Use a different Exam Booklet for each part.

Please show all of your work. The marks for each question are shown by [x]

**PART A. 34 MARKS.**

Answer the following questions in an Exam Booklet and label it PART A.

[7] 1. Find the area of the parallelogram with vertices  $(1, 2, 3)$ ,  $(4, 3, 7)$ , *check vert*  
 $(-1, 3, 6)$ , and  $(2, 4, 10)$ . Find the equation of the plane containing these points.

[4] 2. Find the distance between the line  $x = 1 - t$ ,  $y = 2 + 3t$ ,  $z = 4 - 2t$   
and the plane  $2x + 4y + 5z = 10$ . *check not parallel*

4  
16  
25  
20  
34  
15  
25  
37  
45

3. A particle has a trajectory defined by  $x = t$ ,  $y = t^2$ ,  $z = t^2$ , where  $t$  is time.  
Find its *velocity*, *speed* and *acceleration* at any time. What are the *normal* and  
*tangential* components of its *velocity* and *acceleration*? 17  
17  
119  
170  
289  
25  
314

[6] 4. A toy train travels *at constant speed* around an oval track which consists  
of semi-circular segments joined together by straight segments as shown in the  
figure below.



1  
34  
35  
15  
20

This problem investigates why the train tends to wobble or even derail at the point  $A$  where the semicircular segment joins the straight line segment of rail.

(i) The position of the train at time  $t$  can be described by a vector function  $\mathbf{r}$ . Find  $\mathbf{r}(t)$  which describes the position of the train before the point  $A$  and after the point  $A$ .

(ii) Show that, with your choice of  $\mathbf{r}(t)$ , the speed of the train is constant.

(iii) Show that the acceleration is discontinuous at  $A$ .

[5] 5. Find the directional derivative of  $f(x, y, z) = x^3y \sin z$  at  $(3, -1, -2)$  along the line  $x = 3 + t, y = -1 + 4t, z = -2 + 2t$  in the direction of decreasing  $x$ .

[5] 6. Find  $\frac{dz}{du}$  if  $z = x^2yv^3$  and  $x = u^3 + 2u, y = \ln(u^2 + 1)$ , and  $v = ue^u$ .

## PART B. 34 MARKS.

Answer the following questions in an Exam Booklet and label it PART B.

[5] 7. Evaluate the double integral of  $(4 - y^2)^{\frac{3}{2}}$  over the region bounded by the circle  $x^2 + y^2 = 4$  in the first quadrant of the  $xy$ -coordinate plane.

[5] 8. Use a double integral to find the volume of the solid of revolution obtained by rotating the region bounded by the curves  $y = x^2 - 2, y = 0$  about the line  $y = -1$ .

[5] 9. Use double integrals to find the centroid of the region bounded by the curves  $y = e^x, y = 0, x = 0$ , and  $x = 1$ .

[7] 10. Evaluate a double iterated integral to find the surface area of  $x^2 + y^2 + z^2 = 2$  inside the cone  $z = \sqrt{x^2 + y^2}$ .

[5] 11. Evaluate the triple integral of  $x + y + z$  over the region  $V$  which is bounded by  $z = 1 - x^2 - y^2$  and  $z = 0$ .

Hint:

- (i) First show that the integrals of  $x$  and  $y$  are zero.
- (ii) Integrate  $z$  by converting to a convenient coordinate system.

[7] 12. Find the volume bounded by the surfaces  $y + z = 2, z = 0$ , and  $y = x^2 + 1$ .



$$\begin{aligned} z=0 &: x^2 + y^2 = 1 \\ z=1 &: x^2 + y^2 = 0 \\ z=2 &: x^2 + y^2 = -2 \\ z=-1 &: x^2 + y^2 = 2 \end{aligned}$$

$$z = -(x^2 + y^2 - 1)$$

$$\begin{array}{r} 15 \\ 3 \\ \hline 45 \\ -10 \\ \hline +3 \\ \hline 35 \\ \hline 38 \\ \hline 15 \end{array}$$



---

PART C. 32 MARKS.Answer the following questions in an Exam Booklet and label it PART C.

---

[8] 13. Verify the identities

(a)  $\text{curl}(\text{grad } f) = \nabla \times (\nabla f) = \mathbf{0}$

(b)  $\text{div}(\text{curl } \mathbf{F}) = \nabla \cdot (\nabla \times \mathbf{F}) = 0$

where  $f(x, y, z)$  is a sufficiently differentiable scalar field and  
 $\mathbf{F}(x, y, z) = P(x, y, z)\hat{\mathbf{i}} + Q(x, y, z)\hat{\mathbf{j}} + R(x, y, z)\hat{\mathbf{k}}$   
is a sufficiently differentiable vector field

[5] 14. Evaluate the line integral  $\int_c ydx + xdy + zdz$ , where  $c$  is the curve  
 $z = x^2 + y^2, x + y = 1$  from  $(1, 0, 1)$  to  $(-1, 2, 5)$ .

[5] 15. Show that the line integral  $\int_c 3x^2y^3dx + 3x^3y^2dy$  is independent of path.  
Evaluate it when  $c$  is the curve  $y = e^x$  from  $(0, 1)$  to  $(1, e)$ .

[5] 16. Use Green's theorem to evaluate the line integral

$$\oint_c (xy^2 + 2x)dx + (x^2y + y + x^2)dy,$$

$$Y^2 = \sqrt{4+x^2}$$

where  $c$  is the boundary of the region enclosed by  $y^2 - x^2 = 4$ ,  $x = 0$  and  $x = 3$   
and the direction of the circuit is counter clockwise.

[9] 17. Find the point(s) on the surface  $z^2 = 1 + xy$  closest to the origin  $(0, 0, 0)$ .

Hints:

- (a) Over what region in the  $xy$ -coordinate plane does the surface lie? In particular, what is the boundary of the region?
- (b) It is simpler to use  $(\text{distance})^2$  since it is a minimum when  $(\text{distance})$  is a minimum.

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ Y & X & Z \end{vmatrix}$$

$$Z_r = Z_y - X_z \neq 0$$

\*\*\*END\*\*\*