Valores esperados e Operadores; Potenciais simples não confinantes: potencial degrau Aula 11

Prof. Márcio Sampaio Gomes Filho

Observação

- Esses slides são um complemento à aula ministrada em sala;
- Explicações/desenvolvimentos serão feitas no quadro.

Informação

Página do curso: https://marciosampaio.github.io/ fisica-quantica-2025.1.html

Postulado 4

Para cada grandeza física (mensurável), associa-se um operador matemático.

- Ψ(x, t) contém toda informação sobre o estado da partícula microscópica
- Como extrair informações sobre:
 - posição;
 - momento;
 - energia;
 - Outras grandezas que caracterizam o movimento de uma partícula.

Operadores

De maneira geral, um operador é um objeto matemático que atua em funções e retornam uma nova função. Exemplo: derivada.

Exemplo: Operador momento linear: \hat{p}

Operador momento linear

Vimos que, em mecânica quântica, o momento linear é um operador diferencial:

$$\hat{\rho} = \frac{i}{\hbar} \frac{\partial}{\partial x} = -i\hbar \frac{\partial}{\partial x} \tag{1}$$

Operadores e observáveis

Observável	Operador
Posição: x	$\hat{x} = x$
Momento linear: p	$\hat{ ho}=-i\hbarrac{\partial}{\partial x}$
Energia total: <i>E</i>	$\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$
Energia total: <i>E</i>	$\hat{H}=i\hbarrac{\partial}{\partial t}$
Energia potencial: $V(x)$	V(x) = V(x)
Energia cinética: E_k	$\hat{E_k} = -rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}$
	$ec{\hat{L}}=ec{\hat{r}} imesec{\hat{ ho}}$

Table: Observáveis e seus operadores em mecânica quântica.

Valores Esperados

O valor esperado de um operador \hat{O} em um estado quântico $\Psi(x,t)$ é a média dos resultados que se obteria ao realizar muitas medições do observável associado a \hat{O} em sistemas idênticos preparados no mesmo estado. Esse valor é dado por:

$$\langle O \rangle = \int_{-\infty}^{+\infty} \Psi^*(x,t) \, \hat{O} \, \Psi(x,t) dx$$
 (2)

e a sua incerteza dada por:

$$\Delta O = \sqrt{\langle O^2 \rangle - \langle O \rangle^2}.$$
 (3)

Onde:

$$\langle O^2 \rangle = \int_{-\infty}^{+\infty} \Psi^*(x,t) \, \hat{O} \hat{O} \, \Psi(x,t) dx$$
 (4)

Exercício: Partícula livre (parte 1).

- a) Obtenha a função de onda para uma partícula livre.
- b) Densidade de probabilidade: a partícula está localizada? A função de onda é normalizável?
- c) Suponha agora, como uma aproximação, que a partícula livre está confinada a uma região extensa do espaço: -L < x < L.
 Fora dessa região, a probabilidade de encontrar a partícula é nula. Determine a constante de normalização.

Exercício: Partícula livre (parte 2).

- d) Encontre o valor esperado da posição x e sua incerteza Δx .
- e) Encontre o valor esperado do momento linear p e sua incerteza Δp .
- f) Discuta o princípio da incerteza de Heisenberg.
- g) Encontre o valor esperado da energia total E e sua incerteza ΔE .

Comentários

- Comprimento de onda associado à função de onda.
- Auto-estados de energia.

Potenciais simples não confinantes: potencial degrau

Degrau de Potencial

- \bullet $E < V_0$ (sala de aula);
- \clubsuit $E > V_0$ (dever de casa).

