Neyl Gasmi

Exercice 1. Calculer puis donner les résultats sous forme de fraction irréductible.

$$A = \frac{1}{3} + \frac{2}{5} \times \frac{3}{4}, \quad B = \left(\frac{1}{3} + \frac{2}{5}\right) \times \frac{3}{4}, \quad C = \left(\frac{1}{3} + \frac{2}{5}\right) \div \frac{3}{4},$$

$$D = \frac{4}{7} - \frac{1}{7} \times \frac{5}{3}, \quad E = \frac{3}{7} - \frac{2}{5} \times \frac{15}{4}, \quad F = \frac{\frac{3}{5} + \frac{2}{3}}{\frac{9}{4} + 1}.$$

Exercice 2. Calculer puis donner les résultats sous forme de fraction irréductible.

$$A = \left(\frac{1}{5} - \frac{2}{4}\right) \times \left(\frac{3}{7} - \frac{1}{2}\right), \quad B = \left(\frac{3}{7} - \frac{1}{5}\right) \div \left(\frac{3}{2} - \frac{5}{4}\right),$$

$$C = \frac{4}{3} - \frac{1}{3} \times \left(3 + \frac{1}{2}\right), \quad D = \left(\frac{1}{4} - \frac{1}{3}\right) \times \left(\frac{3}{4} - \frac{3}{2}\right),$$

$$E = \left(1 - \frac{2}{3}\right) \div \left(1 + \frac{1}{3}\right).$$

Exercice 3. Calculer les expressions suivantes lorsque $a = \frac{2}{3}$, $b = -\frac{3}{2}$ et

$$c = -\frac{3}{4}.$$

$$A = 3a - b - c$$
, $B = -2a + 4b - 5c$, $C = 6b^2 - 3a + 5$, $D = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$

$$E = \frac{a+c}{a-b}.$$

Exercice 4. Calculer la valeur de
$$F = \frac{x + 5y}{x}$$
 lorsque:
1) $x = \frac{2}{3}$ et $y = -4$; 2) $x = -4$ et $y = -\frac{8}{5}$; 3) $x = -\frac{1}{2}$ et $y = \frac{7}{10}$; 4) $x = -\frac{2}{3}$ et $y = \frac{2}{15}$.

Exercice 5. Calculer puis donner les résultats sous forme de fraction irréductible.

$$A = \frac{\frac{2}{3} + \frac{5}{7}}{\frac{2}{3} \times \frac{5}{7}}, \quad B = \frac{5 + \frac{3}{4} - \frac{1}{3}}{5 - \frac{3}{4} + \frac{1}{3}}, \quad C = \frac{\frac{1}{5} - \frac{3}{4} \times \frac{2}{3}}{\left(\frac{1}{5} - \frac{3}{4}\right) \times \frac{2}{3}}.$$

Exercice 6. Quel est le nombre qu'il faut ajouter au numérateur et au dénominateur de la fraction $\frac{5}{8}$ pour que la nouvelle fraction soit égale à 4?

Exercice 7. Trouver le nombre caché à la place de 📤 et de 📤

1)
$$\frac{87}{60} = \frac{1}{2} + \frac{1}{4} + \frac{1}{3} + \frac{1}{6} + \frac{1}{\spadesuit}$$

1)
$$\frac{87}{60} = \frac{1}{2} + \frac{1}{4} + \frac{1}{3} + \frac{1}{6} + \frac{1}{\spadesuit}$$
2)
$$\frac{31}{17 + \frac{101}{8 - \frac{7}{\clubsuit}}} = \frac{2015}{2014}$$

Exercice 8. (Puissances — Formules)

Série 1 — Écrire les nombres sous la forme
$$3^n$$
 avec n entier relatif. $A = \frac{3^5 \times 3^2}{3^{-7}}, \ B = (3^2 \times 3^3)^4, \ C = 3^2 \times (3^3)^4, \ D = \frac{\left((-3)^2 \times 3^2\right)^3}{(-3)^5}, \ E = \frac{\left((-3)^2\right)^3}{(-3)^3 \times (-3)}, \ F = \frac{3^{-2} \times 9^{-8}}{3^4 \times 27^{-17}}, \ G = \left(\frac{1}{3^5} \times (3^2)^3\right)^2, \ H = \frac{3^2 \times 27}{81^2}.$

Série 2 — Écrire sous la forme
$$a^n$$
 avec a entier naturel et n entier relatif. $A=2^4\times 4^{-5},\ B=2^5\times 8^{-3},\ C=\frac{8^3}{4^3},\ D=0.25^{-6}\times 4^{-25},\ E=5^4\times 25^{-7}\times 125^2,\ F=\frac{7^6\times (-49)^5}{7^{-9}}.$

Série 3 — Écrire sous la forme
$$2^n \times 5^m$$
 avec n, m entiers relatifs. $A = \frac{2^4}{(2^2 \times 5)^5}, \ B = \frac{2 \times (5^2)^3}{2^{-3}}, \ C = \frac{\left(2^3 \times 2^{-4}\right)^2}{(5^3)^2 \times 5^{-5}}, \ D = \frac{\left(10^2\right)^3}{2^{-4} \times \left(25\right)^6}, \ E = \left(\frac{2}{5}\right)^4 \times \left(\frac{5^2}{2}\right)^3, \ F = \frac{64^3 \times 125^4}{250^7}.$

Exercice 9. Nombre de chiffres. Déterminer le nombre de chiffres de $4^{16} \times$ 5^{25} .

Exercice 10. Somme des chiffres. Déterminer la somme des chiffres du nombre $10^{2046} - 2046$.