The Problem

- 1. You have one box of Chocolate Cookies and one box of Vanilla Cookies.
- 2. You will deliver one of the boxes to Alice and one of the boxes to Bob. Neither has a preference of flavor.
- 3. You flip a coin to decide who gets which box.¹
- 4. Alice has a favorite angle, α . Bob also has a favorite angle, β . You write down the numbers $100 \times \cos^2 \alpha$, $100 \times \sin^2 \alpha$, $100 \times \cos^2 \beta$, and $100 \times \sin^2 \beta$. Also, you have a pair of ten-sided dice. You can roll these dice to get a number between zero and ninety-nine.
- 5. Suppose Alice is getting the box of Chocolate Cookies. You roll the dice. If the number you roll is less than $100 \times \cos^2 \alpha$, then you write +1 on the box. Otherwise you write $-1.^2$
- 6. Suppose, on the other hand, that Alice is getting the box of Vanilla Cookies. You roll the dice. If the number you roll is less than $100 \times \sin^2 \alpha$, then you write +1 on the box. Otherwise you write -1.
- 7. Suppose Bob is getting the box of Chocolate Cookies. You roll the dice. If the number you roll is less than $100 \times \cos^2 \beta$, then you write +1 on the box. Otherwise you write -1.
- 8. Suppose, on the other hand, that Bob is getting the box of Vanilla Cookies. You roll the dice. If the number you roll is less than $100 \times \sin^2 \beta$, then you write +1 on the box. Otherwise you write -1.

² This is equivalent to a photon being detected in one of the channels of a polarizing beam splitter.

9. Calculate the correlation coefficient of the numbers written on the cookie boxes, as a function of $\alpha-\beta.^3$

The Solution

First let us solve the problem for $\alpha=\alpha_0$ and $\beta=\beta_0=0$. We will use β_0 as an angular origin. Then

$$\cos^2 \alpha = \cos^2 \alpha_0$$
$$\sin^2 \alpha = \sin^2 \alpha_0$$
$$\cos^2 \beta = 1$$
$$\sin^2 \beta = 0$$

The choice of markings as $\{+1, -1\}$ makes the correlation coefficient simple to compute. It is

$$\rho_0 = \rho_0^{++} + \rho_0^{+-} + \rho_0^{-+} + \rho_0^{--}$$

where

³ The answer from quantum mechanics is $-\cos\{2(\alpha-\beta)\}$, and physicists assure us only quantum mechanical systems can achieve this correlation. According to physicists, not even logically equivalent systems can do so!

$$\begin{split} \rho_0^{++} &= \frac{1}{2} \, (+1) \, (+1) \sin^2 \alpha_0 \\ \rho_0^{+-} &= \frac{1}{2} \, (+1) \, (-1) \cos^2 \alpha_0 \\ \\ \rho_0^{-+} &= \frac{1}{2} \, (-1) \, (+1) \cos^2 \alpha_0 \\ \\ \rho_0^{--} &= \frac{1}{2} \, (-1) \, (-1) \sin^2 \alpha_0 \end{split}$$

Thus (by a double-angle identity found in reference books)

$$\rho_0 = -(\cos^2 \alpha_0 - \sin^2 \alpha_0) = -\cos(2\alpha_0)$$

Let $\alpha = \alpha_0 + \beta$. Then ρ_0 is the desired solution, so rename it ρ without the subscript:

$$\rho = -\cos\{2(\alpha - \beta)\}\$$

Although the particular arrangement of +1 and -1 marks depends on the specific values of α and β , the correlation coefficient depends only on their difference.⁴ Of course the corresponding fact was always true of Bell test experiments.

⁴ This solution is the same as the one from quantum mechanics. Presumably some physicists would Gish Gallop a lot of objections to my solution. Such persons are allowed to teach classes?