LABORATORIO DI INGEGNERIA CELLULARE – ESAME TELEMATICO DEL 10 FEBBRAIO 2022

Cognome:	Nome:	
Matricola:		

ESERCIZIO 1 (10 punti)

Nel sistema di figura scorre un fluido newtoniano di viscosità cinematica $v=2v_{acqua}$ e peso specifico $\gamma=3\gamma_{acqua}$. Prima condizione di lavoro: Il rubinetto R è completamente chiuso, e nel condotto AB il moto è di Poiseuille, con sforzo tangenziale massimo $\tau_0=10$ Pa. Inoltre, il condotto AB è lungo L=50 cm, e nella sezione A la quota piezometrica è pari a $h^*_A=0.4$ m. Determinare:

• la cadente piezometrica i del

moto nel condotto AB e il raggio r₀ del condotto stesso;

- la quota h_B del pelo libero nel recipiente B, trascurando le dissipazioni localizzate di energia;
- la portata Q_u uscente dal serbatoio.

<u>Seconda condizione di lavoro</u>: il rubinetto R è parzialmente aperto e attraversato dalla portata Q_R costante nel tempo. Inoltre: la portata entrante Q_e è invariata rispetto alla prima condizione, la portata uscente Q_u è pari alla metà di Q_R , e la quota della superficie libera nel serbatoio aumenta alla velocità $dh_B/dt=1$ mm/s. Sapendo che il serbatoio ha sezione quadrata di lato L=5 cm, determinare:

• la portata Q_R (modulo e verso).

ESERCIZIO 2 (10 punti)

Sul fondo del recipiente di figura, completamente riempito di un fluido incomprimibile, è praticato un foro quadrato di lato b=10 cm. Il foro è chiuso dalla superficie di traccia ABC, le cui porzioni AB e BC sono tra loro identiche. La pressione sul tetto del recipiente vale p_t=1000 Pa, e l'altezza del recipiente è h=30 cm. Sapendo che la spinta che il fluido esercita sulla superficie ABC ha modulo S=35 N, determinare

- direzione, verso e punto di applicazione della spinta S;
- il peso specifico γ del fluido;
- l'andamento grafico della pressione nel recipiente.

LABORATORIO DI INGEGNERIA CELLULARE – ESAME TELEMATICO DEL 10 FEBBRAIO 2022

Cognome:_	Nome:_	
Matricola:		

DOMANDE A RISPOSTA MULTIPLA (10 PUNTI)

- a) La risposta reologica di un fluido di Bingham è di tipo lineare
 - 1. solo a partire da un valore critico dello sforzo tangenziale
 - 2. solo a partire da un valore critico della viscosità del fluido
 - 3. solo per piccoli valori della viscosità del fluido
- b) Si consideri il sistema di figura, che è in condizioni di quiete. La differenza di pressione (p₁-p₂) è positiva

- 1. solo se si considerano pressioni assolute
- 2. solo se si considerano pressioni relative
- 3. in entrambi i casi
- c) Un serbatoio a tenuta contiene acqua e, al di sopra, un gas. La quota piezometrica dell'acqua nel serbatoio è pari a h*=12 m e la superficie acqua-gas è posta a quota h=3 m. La pressione del gas è pari a circa
 - 1. p=90 kPa.
 - 2. p=9 kPa
 - 3. p=0.9 kPa
- d) In un condotto di diametro d=0.1 m si realizza un moto uniforme turbolento in regime di parete idraulicamente scabra, con coefficiente di resistenza pari a f=0.0196. La scabrezza assoluta equivalente del condotto è pari a circa
 - 1. e/d=0.001
 - 2. e=0.0001 mm
 - 3. i dati sono insufficienti, poiché per rispondere alla domanda si deve conoscere anche il valore del numero di Reynolds del moto nel condotto.
- e) Si consideri una pompa di potenza utile P_u =8 kW e rendimento η =0.8. La potenza assorbita dalla pompa è pari a
 - 1. $P_a = 6.4 \text{ kW}$
 - 2. $P_a=7.2 \text{ kW}$
 - 3. $P_a=10 \text{ Kw}$

- f) Si indichi l'affermazione corretta tra le seguenti
 - 1. L'equazione $\nabla \cdot \vec{v} = 0$ vale solo nell'ipotesi di fluido incompribile newtoniano
 - 2. Il numero di Reynolds esprime il rapporto tra le forze di inerzia temporale e le forze viscose
 - 3. L'equazione di conservazione dell'energia specifica in forma locale è: $\frac{\partial E}{\partial x} = \frac{-\beta}{a} \frac{\partial V}{\partial t} j$
- g) Assimilando il sangue ad un fluido incomprimibile e newtoniano, è ragionevole affermare che
 - 1. $\rho_s=1.05\rho_{H20}$ e $\mu_s=4\mu_{H20}$
 - 2. il sangue scorre nell'intero sistema circolatorio secondo un moto alla Poiseuille
 - 3. in corrispondenza di una diramazione (nodo) di vasi sanguigni $\Sigma Q_e \ll \Sigma Q_u$
- h) In una corrente monodimensionale non stazionaria di fluido ideale l'energia specifica E:
 - 1. diminuisce nella direzione del moto;
 - 2. diminuisce o aumenta nella direzione del moto in funzione dell'accelerazione temporale;
 - 3. rimane costante.
- i) Il diagramma in figura rappresenta l'andamento delle pressioni in un sistema in quiete di tre liquidi incomprimibili sovrapposti. Sapendo che l'andamento per il fluido **u** è certamente corretto, è giusto affermare che il digramma:

- 1. È errato per il fluido i e per il fluido b;
- 2. è errato per il fluido i;
- 3. è corretto ovunque.
- j) Si consideri la figura seguente. La spinta che in diastole il sangue esercita su un leaflet ha l'andamento indicato dal frame:

- 1. **A**;
- 2. **B**;
- 3. **C**.