PDE'S - EXERCISES 44-47

ALEXANDER ZAHRER

In all these exercises we use the abbreviations $H^s := H^s(\mathbb{R}^d)$, $\dot{H}^s := \dot{H}^s(\mathbb{R}^d)$, $\mathscr{S} := \mathscr{S}(\mathbb{R}^d)$, $\mathscr{S}' := \mathscr{S}'(\mathbb{R}^d)$, $\mathscr{S}_b := \mathscr{C}_b(\mathbb{R}^d)$, $\mathscr{C}_b^k := \mathscr{C}_b^k(\mathbb{R}^d)$ and $\mathscr{C}_c^\infty := \mathscr{C}_c^\infty(\mathbb{R}^d)$. Moreover, for r > 0 we define $B_r := \{x \in \mathbb{R}^d \mid |x| < r\}$ and $S^{d-1} := \{x \in \mathbb{R}^d \mid |x| = 1\}$.

1 EXERCISE 44:

We are asked to show the uniqueness part in the Lax-Milgram Lemma. By assumption we are given a bilinear map $b: H \times H \to \mathbb{R}$, for some real Hilbert space H, which is coercive, i.e. for all $x \in H$ we have $b(x,x) \gtrsim ||x||^2$. For a given bounded linear functional $\varphi \in H^*$, we have already established the existence of a bounded linear operator $B: H \to H$ such that $\varphi = b(A^{-1}w, _)$ for some $w \in H$. We have to show uniqueness of $A^{-1}w \in H$. So suppose $z \in H$ also satisfies $\varphi = b(z, _)$, then by coercivity

$$0 = (\varphi - \varphi)(A^{-1}w - z) = b(A^{-1}w - z, A^{-1}w - z) \gtrsim ||A^{-1}w - z||$$
(1)

and therefore $A^{-1}w = z$, as wanted.

2 EXERCISE 45:

Suppose $d \ge 3$ and pick $p \in [2, \frac{2d}{d-2}]$. Suppose that $(f_l) \subset \mathscr{S}$ is Cauchy in H^1 . We are to show that the sequence $(f_l|f_l|^{p-1}) \subset \mathscr{C}$ is Cauchy in L^1 and give an explanation as to why this defines an element in L^1 . In order to show that this is indeed Cauchy in L^1 we simply estimate

$$\|f_k|f_k|^{p-1} - f_l|f_l|^{p-1}\|_{L^1} \leq \|(f_k - f_l)|f_k|^{p-1}\|_{L^1} + \|f_l(|f_k|^{p-1} - |f_l|^{p-1})\|_{L^1} \tag{2}$$

$$\leq_{\text{H\"{o}lder}} \|f_{k} - f_{l}\|_{L^{p}} \|f_{k}\|_{L^{p}}^{p/q} + \|f_{l}\|_{L^{p}} \| \underbrace{||f_{k}|^{p-1} - |f_{l}|^{p-1}}_{\simeq ||f_{k}| - |f_{l}||^{p-1} \leq |f_{k} - f_{l}|^{p-1}} \|_{L^{q}} \tag{3}$$

$$\lesssim \|f_k - f_l\|_{L^p} \|f_k\|_{L^p}^{p/q} + \|f_l\|_{L^p} \|f_k - f_l\|_{L^p}^{p/q} \tag{4}$$

By Corollary 3.2 from the lecture notes we thus obtain

$$||f_k|f_k|^{p-1} - f_l|f_l|^{p-1}||_{L^1} \lesssim ||f_k - f_l||_{H^1} ||f_k||_{H^1}^{p/q} + ||f_l||_{H^1} ||f_k - f_l||_{H^1}^{p/q} \longrightarrow 0$$
 (5)

We can verify that the sequence $(f_l|f_l|^{p-1}) \subset \mathscr{S}$ defines an element in L^1 by showing that there exists a sequence of Schwarz functions (g_l) which are Cauchy in L^1 and which satisfy $||f_l|f_l|^{p-1} - g_l||_{L^1} \longrightarrow 0$. Let $\varphi \in \mathscr{C}_c^{\infty}$ be such that $\int \varphi = 1$ and set $\varphi_k = k^d \varphi(k)$. In a quite similar fashion as in Lemma 2.41 and Proposition 2.42 from the lecture notes one can prove that $g_k(x) := \lim_{l \to \infty} (\varphi_k * f_l|f_l|^{p-1})(x)$ exists for all $x \in \mathbb{R}^d$ and that $(g_k) \subset \mathscr{C}_b^{\infty}$ satisfies $||f_k|f_k|^{p-1} - g_k||_{L^1} \longrightarrow 0$ (one might want to use DCT to show that more easily). By means of Exercise 34 we then obtain a sequence $(\hat{g}_k) \subset \mathscr{S}$ such that $||\hat{g}_k - f_k|f_k|^{p-1}||_{L^1} \longrightarrow 0$.

3 EXERCISE 46:

We are given $m, \lambda > 0$ and p > 2. Our assumption is that $f \in \mathcal{S}$ is a non-trivial solution of the PDE

$$-\Delta \psi + \psi = \psi |\psi|^{p-1} \tag{6}$$

and we are asked to derive that this yields a solution to the equation

$$-\Delta \psi + m\psi = \lambda \psi |\psi|^{p-1} \tag{7}$$

We make the ansatz $\psi := af(.b)$ and calculate

$$-\Delta \psi + m\psi = -a\Delta f(.b)b^2 + maf(.b) = a\left[-\Delta f(.b)b^2 + mf(.b)\right]$$
(8)

$$\stackrel{b=\sqrt{m}}{=} ab \left[-\Delta f(.b) + f(.b) \right] = abf(.b) |f(.b)|^{p-1} = a^{1-p} b \psi |\psi|^{p-1}$$
(9)

$$\stackrel{a=(b/\lambda)^{1/(p-1)}}{=} \lambda \psi |\psi|^{p-1} \tag{10}$$

4 EXERCISE 47:

Let $p \in [1, \infty]$. We shall first prove that $L^p_{\mathrm{rad}} \subset L^p$ is closed. First note that we surely have that the closure of all radial Schwarz functions contains L^p_{rad} , that is, $\overline{\mathscr{S}_{\mathrm{rad}}} \supset L^p_{\mathrm{rad}}$. Suppose, by way of contradiction, that there exists a sequence $(f_l) \subset \mathscr{S}_{\mathrm{rad}}$ which converges to an element $F \in L^p \setminus L^p_{\mathrm{rad}}$. We immediately infer that, if $(g_k) \subset \mathscr{S}$ is a representative for F, then

$$0 = \lim_{l} ||f_{l} - F||_{L^{p}} = \lim_{l} \lim_{k} ||f_{l} - g_{k}||_{L^{p}}$$
(11)

Now let $\varepsilon > 0$, then there exists $L = L(\varepsilon) \in \mathbb{N}$ such that for all $l, n \ge L$ we have

$$\lim_{k} \|f_l - g_k\|_{L^p} < \varepsilon \qquad \|f_l - f_n\|_{L^p} < \varepsilon \tag{12}$$

Now as $\lim_k \|f_L - g_k\|_{L^p} < \varepsilon$, there exists $\mathbb{N} \ni K = K(\varepsilon) > L(\varepsilon)$ such that for all $k \ge K(\varepsilon)$ we have $\|f_L - g_k\|_{L^p} < \varepsilon$. Thus for all $k, l \ge K(\varepsilon)$ we obtain

$$||f_l - g_k||_{L^p} \le ||f_l - f_L||_{L^p} + ||f_L - g_k||_{L^p} < 2\varepsilon$$
 (13)

In particular, for all $l \ge K(\varepsilon)$ we obtain

$$||f_l - g_l||_{L^p} < 2\varepsilon \tag{14}$$

which exactly means $||f_l - g_l||_{L^p} \longrightarrow 0$. Therefore, $(f_l) \subset \mathscr{S}_{rad}$ is a representative of F, which contradicts our assumption.

Upon noting that the above proof works all the same for the norms $\|.\|_{H^s}$ and $\|.\|_{W^{k,p}}$, we conclude that H^s_{rad} resp. $W^{k,p}_{\text{rad}}$ is closed in H^s resp. $W^{k,p}$.