

FCC Part 15C Test Report

FCC ID: 2AFHW-VTA80

Product Name:	Music Center with Bluetooth
Trademark:	Victrola or Innovative Technology
Model Name :	VTA-80 VTA-80-ESP, VTA-80XXXX (XXXX can be digit 0 to 9, A-Z or blank to indicate different cosmetics)
Prepared For :	INNOVATIVE TECHNOLOGY ELECTRONICS LLC
Address :	1 CHANNEL DRIVE, PORT WASHINGTON New York 11050, United States
Prepared By :	Shenzhen BCTC Testing Co., Ltd.
Address :	BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China
Test Date:	May 30, 2019 – Jun. 14, 2019
Date of Report :	Jun. 14, 2019
Report No.:	BCTC-FY190502922E

TEST RESULT CERTIFICATION

Applicant's name.....: INNOVATIVE TECHNOLOGY ELECTRONICS LLC

Address 1 CHANNEL DRIVE, PORT WASHINGTON New York

11050, United States

Manufacture's Name.....: Amega Electronics (HZ) Limited

Address 3/F., Hengfengyuan Building, Huangshi Industrial Park,

Baishi Village, Qiuchang Town, Huiyang District, Huizhou

Report No.: BCTC-FY190502922E

City, China

Product description

Product name Music Center with Bluetooth

Trademark Victrola or Innovative Technology

Model and/or type reference VTA-80

or blank to indicate different cosmetics)

Standards FCC Part15.247

ANSI C63.10:2013

This device described above has been tested by BCTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BCTC, this document may be altered or revised by BCTC, personal only, and shall be noted in the revision of the document.

Prepared by (Engineer): Cai Fang Zhong (ai Fang Zhong

Reviewer(Supervisor): Eric Yang

Approved(Manager): Zero Zhou

Table of Contents

Report No.: BCTC-FY190502922E

Test I	Report Declaration	Page
1.	TEST SUMMARY	5
2.	TEST FACILITY	6
3.	MEASUREMENT UNCERTAINTY	6
4.	GENERAL INFORMATION	
4.1	GENERAL DESCRIPTION OF EUT	7
4.2	Test Setup Configuration	7
4.3	Support Equipment	8
4.4	Channel List	9
4.5	Test Mode	
5.	TEST FACILITY AND TEST INSTRUMENT USED	11
5.1	Test Facility	
5.2	Test Instrument Used	
6.	CONDUCTED EMISSIONS	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	
6.3	Test procedure	
6.4	Test Result	
7.	RADIATED EMISSIONS	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	Test Result	
7.5	RADIATED Band EMISSION MEASUREMENT	
8.	CONDUCTED EMISSION	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	Test Result	
9.	20 DB BANDWIDTH	
9.1	Block Diagram Of Test Setup	
9.2	Limit	
9.3	Test procedure	
9.4	Test Result	
10.	MAXIMUM PEAK OUTPUT POWER	
10.1	3	
10.2		
10.3	1	
10.4		
11.	HOPPING CHANNEL SEPARATION	
11.1	1	
11.2	2 Limit	50

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190502922E

11.3	Test procedure	50
11.4	Test Result	51
	NUMBER OF HOPPING FREQUENCY	
12.1	Block Diagram Of Test Setup	56
	Limit	
12.3	Test procedure	56
12.4	Test Result	57
13.	DWELL TIME	59
13.1	Block Diagram Of Test Setup	59
13.2	Limit	59
13.3	Test procedure	59
13.4	Test Result	60
14.	ANTENNA REQUIREMENT	66
15.	EUT TEST SETUP PHOTOGRAPHS	67
16.	EUT PHOTOGRAPHS	69

(Note: N/A means not applicable)

1. TEST SUMMARY

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C							
Standard Section	Test Item	Judgment	Remark				
15.205(a) 15.209 15.247(d)	Radiated Spurious Emissions	PASS					
15.247(d)	Conducted Spurious emissions	PASS					
15.247(d) 15.205(a)	Band edge	PASS					
15.207	Conducted Emission	PASS					
15.247(a)	20dB Bandwidth	PASS					
15.247(b)	Maximum Peak Output Power	PASS					
15.247(a)	Frequency Separation	PASS					
15.247(a)	Number of Hopping Frequency	PASS					
15.247(a)	Dwell time	PASS					
15.203	Antenna Requirement	PASS					

Note: (1)" N/A" denotes test is not applicable in this Test Report

2. TEST FACILITY

Shenzhen BCTC Testing Co., Ltd.

Add.: BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China

Test Firm Registration Number: 712850

Test site MRA number: CN1212

IC Registered No.: 23583

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 , providing a level of confidence of approximately 95 % ,

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59℃

4. GENERAL INFORMATION

4.1 GENERAL DESCRIPTION OF EUT

Equipment	Music Center with Bluetooth				
Trade Name	Victrola or Innovative Technology				
Model Name	VTA-80 VTA-80-ESP, VTA-80XXXX (XXXX can be digit 0 to 9, A-Z or blank to indicate different cosmetics)				
Model Difference	All the model are the smodel names.	same circuit and RF module, except			
Product Description	The EUT is a Music Center with Bluetooth Operation Frequency: 2402-2480 MHz Modulation Type: GFSK, Pi/4DQPSK, 8DPSK Number Of Channel: 79CH Antenna Designation: PCB Antenna Antenna Gain: 0dBi Bluetooth Chip: BK8000L Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical				
Channel List	Please refer to the Note	e 2.			
Ratings	AC120V/60Hz				
Connecting I/O Port(s)	Please refer to the User's Manual				
Hardware Version:	H1.0				
Software Version:	S1.0				

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual Conducted Emission Test

Radiated Spurious Emission Test

Support Equipment 4.3

No.	Device Type	Brand	Model	Series No.	Data Cable
E-1	Music Center with Bluetooth	Victrola or Innovative Technology	VTA-80	N/A	EUT

Item	Shielded Type	Ferrite Core Length		Note	
C-1	C-1 NO		1.2M	AC cable unshielded	

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Report No.: BCTC-FY190502922E

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

The EUT is Continue Transmitting.

The software is installed in operation system, named "RFTestTool.apk", Version 1.0.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(Pi/4DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK) 2402MHz 2441MHz 2480MHz					
4	Transmitting (conducted emission and Radiated emission)					

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

RF conduction and RadiationTest equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4407B	MY45109572	2018.06.20	2019.06.20
2	Test Receiver (9kHz-7GHz)	R&S	ESR7	101154	2018.06.20	2019.06.20
3	Bilog Antenna (30MHz-3GHz)	SCHWARZB ECK	VULB9163	VULB9163-9 42	2018.06.23	2019.06.23
4	Horn Antenna (1GHz-18GHz)	SCHWARZB ECK	BBHA9120D	1541	2018.06.23	2021.06.22
5	Horn Antenna (18GHz-40GHz)	SCHWARZB ECK	BBHA9170	822	2018.08.06	2019.08.06
6	Amplifier (9KHz-6GHz)	SCHWARZB ECK	BBV9744	9744-0037	2018.06.20	2019.06.20
7	Amplifier (0.5GHz-18GHz)	SCHWARZB ECK	BBV9718	9718-309	2018.06.20	2019.06.20
8	Amplifier (18GHz-40GHz)	MITEQ	TTA1840-35 -HG	2034381	2018.08.06	2019.08.06
9	Loop Antenna (9KHz-30MHz)	SCHWARZB ECK	FMZB1519B	014	2018.06.23	2019.06.23
10	RF cables1 (9kHz-30MHz)	Huber+Suhna r	9kHz-30MH z	B1702988-00 08	2019.02.12	2020.02.12
11	RF cables2 (30MHz-1GHz)	Huber+Suhna r	Z	1486150	2019.03.27	2020.03.27
12	RF cables3 (1GHz-40GHz)	Huber+Suhna r	1GHz-40GH z	1607106	2018.06.19	2019.06.19
13	Power Metter	Keysight	E4419	\	2018.06.15	2019.06.15
14	Power Sensor (AV)	Keysight	E9 300A	\	2018.06.15	2019.06.15
15	Signal Analyzer 20kHz-26.5GHz	KEYSIGHT	N9020A	MY49100060	2018.08.14	2019.08.13
16	Test Receiver 9kHz-40GHz	R&S	FSP40	100550	2018.06.16	2019.06.15
17	D.C. Power Supply	LongWei	TPR-6405D	\	\	\
18	Software	Frad	EZ-EMC	FA-03A2 RE	\	\

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190502922E

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Test Receiver	R&S	ESR3	102075	2018.06.20	2019.06.20
2	LISN	SCHWARZBE CK	NSLK8127	8127739	2018.06.19	2019.06.19
3	LISN	R&S	ENV216	101375	2018.06.20	2019.06.20
4	RF cables	Huber+Suhnar	9kHz-30MHz	B1702988-00 08	2019.02.12	2020.02.12
5	Software	Frad	EZ-EMC	EMC-CON 3A1	\	\

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

6.2 Limit

FREQUENCY (MHz)	Limit (Standard	
TINEQUEINOT (IVII IZ)	Quasi-peak	Average	Stariuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded

Report No.: BCTC-FY190502922E

- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.

back and forth in the center forming a bundle 30 to 40 cm long.

e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

6.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Report No.: BCTC-FY190502922E

Remark:

- All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV		dBuV	dBuV	dB	Detector	Comment
1	0.2260	40.51	9.49	50.00	62.60	-12.60	QP	
2	0.2260	29.01	9.49	38.50	52.60	-14.10	AVG	
3	0.6340	38.78	9.88	48.66	56.00	-7.34	QP	
4	0.6340	30.08	9.88	39.96	46.00	-6.04	AVG	
5	1.5300	28.30	9.58	37.88	56.00	-18.12	QP	
6	1.5300	16.99	9.58	26.57	46.00	-19.43	AVG	
7 *	6.7260	49.15	9.73	58.88	60.00	-1.12	QP	
8	6.7260	29.01	9.73	38.74	50.00	-11.26	AVG	
9	11.7620	36.13	9.69	45.82	60.00	-14.18	QP	
10	11.7620	20.89	9.69	30.58	50.00	-19.42	AVG	
11	18.5660	20.32	9.76	30.08	60.00	-29.92	QP	
12	18.5660	9.47	9.76	19.23	50.00	-30.77	AVG	

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Z
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV		dBuV	dBuV	dB	Detector	Comment
1	0.1860	42.21	9.48	51.69	64.21	-12.52	QP	
2	0.1860	23.11	9.48	32.59	54.21	-21.62	AVG	
3	0.6260	38.85	9.91	48.76	56.00	-7.24	QP	
4	0.6260	31.16	9.91	41.07	46.00	-4.93	AVG	
5	1.4220	29.18	9.58	38.76	56.00	-17.24	QP	
6	1.4220	16.88	9.58	26.46	46.00	-19.54	AVG	
7 *	6.6860	48.32	9.73	58.05	60.00	-1.95	QP	
8	6.6860	25.87	9.73	35.60	50.00	-14.40	AVG	
9	12.7420	35.89	9.70	45.59	60.00	-14.41	QP	
10	12.7420	21.21	9.70	30.91	50.00	-19.09	AVG	
11	27.8380	18.27	9.72	27.99	60.00	-32.01	QP	
12	27.8380	7.17	9.72	16.89	50.00	-33.11	AVG	

7. RADIATED EMISSIONS

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190502922E

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Test procedure 7.3

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting	
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak,	
	RBW 1 MHz / VBW 10Hz for Average	

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- Test the EUT in the lowest channel, the middle channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 Test Result

Between 9KHz - 30MHz

Report No.: BCTC-FY190502922E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Test all the modes and only worst case was reported.

Between 30MHz – 1GHz

Report No.: BCTC-FY190502922E

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	Horizontal

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		72.5916	41.99	-18.77	23.22	40.00	-16.78	QP
2	*	135.5062	54.74	-18.57	36.17	43.50	-7.33	QP
3		193.7726	44.66	-16.70	27.96	43.50	-15.54	QP
4		362.9844	41.01	-11.93	29.08	46.00	-16.92	QP
5		460.7271	38.97	-9.75	29.22	46.00	-16.78	QP
6		750.1082	31.74	-4.34	27.40	46.00	-18.60	QP

Temperature:	26℃	Relative Humidtity:	54%
Pressure:	101kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	Vertical

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		31.6202	40.80	-16.98	23.82	40.00	-16.18	QP
2		46.1779	33.95	-15.06	18.89	40.00	-21.11	QP
3		67.6751	38.52	-17.66	20.86	40.00	-19.14	QP
4		135.5062	39.32	-18.57	20.75	43.50	-22.75	QP
5	*	460.7271	40.01	-9.75	30.26	46.00	-15.74	QP
6		701.7607	34.28	-5.11	29.17	46.00	-16.83	QP

Remark:

Test all the modes and only worst case was reported.

Between 1-25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type		
GFSK Low Channel:2402MHz											
V	4804.00	52.50	39.55	7.77	25.66	46.38	74.00	-27.62	Pk		
V	4804.00	43.15	39.55	7.77	25.66	37.03	54.00	-16.97	AV		
V	7206.00	52.30	38.33	7.3	24.55	45.82	74.00	-28.18	Pk		
V	7206.00	43.58	38.33	7.3	24.55	37.10	54.00	-16.90	AV		
V	15453.36	51.46	35.23	6.6	26.59	49.42	74.00	-24.58	Pk		
Н	4804.00	51.90	39.55	7.77	25.66	45.78	74.00	-28.22	Pk		
Н	4804.00	43.75	39.55	7.77	25.66	37.63	54.00	-16.37	AV		
Н	7206.00	54.49	38.33	7.3	23.55	47.01	74.00	-26.99	Pk		
Н	7206.00	43.90	38.33	7.3	23.22	36.09	54.00	-17.91	AV		
Н	15450.09	50.85	35.45	6.6	27.88	49.88	74.00	-24.12	Pk		

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type		
GFSK Middle Channel:2441MHz											
V	4882.00	51.98	38.89	7.57	25.45	46.11	74.00	-27.89	Pk		
V	4882.00	43.85	38.89	7.57	25.45	37.98	54.00	-16.02	AV		
V	7323.00	51.69	38.78	7.35	24.78	45.04	74.00	-28.96	Pk		
V	7323.00	43.46	38.78	7.35	24.78	36.81	54.00	-17.19	AV		
V	15454.70	52.87	35.89	6.42	26.47	49.87	74.00	-24.13	Pk		
Н	4882.00	53.10	38.89	7.57	25.45	47.23	74.00	-26.77	Pk		
Н	4882.00	43.32	38.89	7.57	25.45	37.45	54.00	-16.55	AV		
Н	7323.00	50.54	38.78	7.35	24.78	43.89	74.00	-30.11	Pk		
Н	7323.00	43.36	38.78	7.35	24.78	36.71	54.00	-17.29	AV		
Н	15453.96	52.99	36.68	6.42	26.65	49.38	74.00	-24.62	Pk		

Polar (H/V)	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detecto		
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	r Type		
GFSK High Channel:2480MHz											
V	4960.00	53.32	38.75	7.38	25.45	47.40	74.00	-26.60	Pk		
V	4960.00	43.71	38.75	7.38	25.45	37.79	54.00	-16.21	AV		
V	7440.00	54.40	38.65	7.15	24.78	47.68	74.00	-26.32	Pk		
V	7440.00	43.60	38.65	7.15	24.78	36.88	54.00	-17.12	AV		
V	15457.71	53.45	35.58	6.25	26.47	50.59	74.00	-23.41	Pk		
Н	4960.00	51.32	38.75	7.38	25.45	45.40	74.00	-28.60	Pk		
Н	4960.00	43.92	38.75	7.38	25.45	38.00	54.00	-16.00	AV		
Н	7440.00	53.12	38.65	7.15	24.78	46.40	74.00	-27.60	Pk		
Н	7440.00	43.55	38.65	7.15	24.78	36.83	54.00	-17.17	AV		
Н	15457.01	53.29	36.42	6.25	26.65	49.77	74.00	-24.23	Pk		

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4. All the Modulation are test, the worst mode is GFSK, the data recording in the report.

7.5 RADIATED Band EMISSION MEASUREMENT

Test Requirement:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)					
FREQUENCT (IVIHZ)	PEAK	AVERAGE				
Above 1000	74	54				

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

TEST RESULT

	Polar Frequency (MHz)		Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission evel (dBuV/m)	Lin (dBu		Result			
			(GBGV)	(GD)	(GD)	(ub/iii)	PK	PK	AV				
	Low Channel 2402MHz												
	Н	2390.00	61.67	38.06	7.42	20.15	51.18	74.00	54.00	PASS			
	Н	2400.00	53.02	38.06	7.42	20.15	42.53	74.00	54.00	PASS			
	V	2390.00	60.54	38.06	7.42	20.15	50.05	74.00	54.00	PASS			
GFSK	V	2400.00	54.63	38.06	7.42	20.15	44.14	74.00	54.00	PASS			
Gran	High Channel 2480MHz												
	Н	2483.50	60.20	38.17	7.45	20.54	50.02	74.00	54.00	PASS			
	Н	2485.50	53.31	38.17	7.45	20.54	43.13	74.00	54.00	PASS			
	V	2483.50	62.83	38.2	7.45	20.54	52.62	74.00	54.00	PASS			
	V	2485.50	54.55	38.2	7.45	20.54	44.34	74.00	54.00	PASS			
				Low	Chann	el 2402MI	-						
	Н	2390.00	62.88	38.06	7.42	20.15	52.39	74.00	54.00	PASS			
	Н	2400.00	53.08	38.06	7.42	20.15	42.59	74.00	54.00	PASS			
	V	2390.00	61.61	38.06	7.42	20.15	51.12	74.00	54.00	PASS			
Pi/4DQPSK	V	2400.00	52.60	38.06	7.42	20.15	42.11	74.00	54.00	PASS			
PI/4DQP3K	High Channel 2480MHz												
	Н	2483.50	61.72	38.17	7.45	20.54	51.54	74.00	54.00	PASS			
	Н	2485.50	54.51	38.17	7.45	20.54	44.33	74.00	54.00	PASS			
	V	2483.50	62.62	38.2	7.45	20.54	52.41	74.00	54.00	PASS			
	V	2485.50	55.26	38.2	7.45	20.54	45.05	74.00	54.00	PASS			
	Low Channel 2402MHz												
	Н	2390.00	60.69	38.06	7.42	20.15	50.20	74.00	54.00	PASS			
	Н	2400.00	53.75	38.06	7.42	20.15	43.26	74.00	54.00	PASS			
	V	2390.00	61.62	38.06	7.42	20.15	51.13	74.00	54.00	PASS			
8DPSK	V	2400.00	53.96	38.06	7.42	20.15	43.47	74.00	54.00	PASS			
ODESK					Chann	el 2480M	Hz						
	Н	2483.50	62.10	38.17	7.45	20.54	51.92	74.00	54.00	PASS			
	Н	2485.50	52.36	38.17	7.45	20.54	42.18	74.00	54.00	PASS			
	V	2483.50	61.82	38.2	7.45	20.54	51.61	74.00	54.00	PASS			
	V	2485.50	54.52	38.2	7.45	20.54	44.31	74.00	54.00	PASS			

Remark:

Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit
 If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

8. CONDUCTED EMISSION

8.1 Block Diagram Of Test Setup

8.2 Limit

Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Above 30MHz:

RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold

Testing Co., Ltd. Report No.: BCTC-FY190502922E

8.4 Test Result

30MHz – 25GHz GFSK Low Channel

GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

ing Co., Ltd. Report No.: BCTC-FY190502922E

8DPSK High Channel

GFSK Transmitting Band edge-left side

GFSK Hopping Band edge-left side

GFSK Transmitting Band edge-right side

Pi/4 DQPSK Hopping Band edge-left side

Pi/4 DQPSK Transmitting Band edge-right side

Pi/4 DQPSK Hopping Band edge-right side

8DPSK Hopping Band edge-left side

8DPSK Hopping Band edge-right side

9. 20 DB BANDWIDTH

9.1 Block Diagram Of Test Setup

9.2 Limit

N/A

- 9.3 Test procedure
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

9.4 Test Result

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Low	1.067
GFSK	Middle	1.068
GFSK	High	1.059
Pi/4 DQPSK	Low	1.383
Pi/4 DQPSK	Middle	1.385
Pi/4 DQPSK	High	1.383
8DPSK	Low	1.346
8DPSK	Middle	1.349
8DPSK	High	1.350

Test plots GESK Low Channe

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

10. MAXIMUM PEAK OUTPUT POWER

10.1 Block Diagram Of Test Setup

10.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

10.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.4 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	1.77	21
GFSK	Middle	2.46	21
GFSK	High	2.04	21
Pi/4 DQPSK	Low	3.14	21
Pi/4 DQPSK	Middle	4.06	21
Pi/4 DQPSK	High	3.23	21
8DPSK	Low	3.32	21
8DPSK	Middle	4.03	21
8DPSK	High	3.54	21

Test plots

GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Middle Channel

11. HOPPING CHANNEL SEPARATION

11.1 Block Diagram Of Test Setup

11.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

11.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz, Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.4 Test Result

Modulation	Test Channel	Separation (MHz)		Result
GFSK	Low	1.016	0.711	PASS
GFSK	Middle	0.996	0.712	PASS
GFSK	High	1.014	0.706	PASS
Pi/4 DQPSK	Low	0.990	0.922	PASS
Pi/4 DQPSK	Middle	0.992	0.923	PASS
Pi/4 DQPSK	High	0.994	0.922	PASS
8DPSK	Low	1.002	0.897	PASS
8DPSK	Middle	1.008	0.899	PASS
8DPSK	High	0.992	0.900	PASS

Test plots GFSK Low Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Middle Channel

8DPSK High Channel

12. NUMBER OF HOPPING FREQUENCY

Block Diagram Of Test Setup 12.1

12.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test procedure 12.3

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

12.4 Test Result

Modulation	Hopping No	Limit	Result
GFSK	79	15	PASS
Pi/4 DQPSK	79	15	PASS
8DPSK	79	15	PASS

Test Plots: 79 Channels in total GFSK

13. DWELL TIME

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

13.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.

Modulation	Channel Data	Packet	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	Middle	DH1	0.410	0.131	0.4
		DH3	1.668	0.267	0.4
		DH5	2.940	0.314	0.4
Pi/4DQPSK	Middle	2DH1	0.420	0.134	0.4
		2DH3	1.692	0.271	0.4
		2DH5	2.952	0.315	0.4
8DPSK	Middle	3DH1	0.422	0.135	0.4
		3DH3	1.692	0.271	0.4
		3DH5	2.952	0.315	0.4

Test Plots GFSK DH1 Middle Channel

GFSK DH3 Middle Channel

8DPSK DH3 Middle Channel

14. ANTENNA REQUIREMENT

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT antenna is PCB Antenna, antenna Gain 0dBi. It comply with the standard requirement.

15. EUT TEST SETUP PHOTOGRAPHS

Conducted emissions

Spurious emissions

16. EUT PHOTOGRAPHS

********* END OF REPORT *******