Exercise 2.1

Problem: Find a basis in the space of 3×2 matrices $M_{3\times 2}$.

We can tackle this problem utilizing the standard basis vectors $S = \{e_1, e_2, e_3, \dots, e_n\}$.

Let $\alpha_1, \alpha_2, \ldots, \alpha_6 \in \mathbb{R}$.

Let
$$e_1 = \begin{cases} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}$$
, $e_2 = \begin{cases} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases}$, $e_3 = \begin{cases} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{cases}$, ..., $e_6 = \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{cases}$

Every matrix in $M_{3\times 2}$ can be represented as:

$$\begin{cases} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \\ \alpha_5 & \alpha_6 \end{cases} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 + \alpha_4 e_4 + \alpha_5 e_5 + \alpha_6 e_6$$

We can skip the more robust checks and say that S is linearly independent because each coordinate in the matrix is determined by only one coefficient. That means every vector will have a unique combination of coefficients making it up.

Exercise 2.2

Problem: Answer true or alse for the following:

2.2a

Statement: Any set containing a zero vector is linearly dependent.

This is **true**. Because $1 \cdot 0 = 2 \cdot 0 = n \cdot 0 \ \forall n \in \mathbb{R}$, any system of equations involving the zero vector can have any number of non-trivial solutions.

2.2b

Statement: A basis must contain $\vec{0}$.

This is **false** for the same reason as part a. A basis must **not** contain the zero vector as a basis requires a unique combination of coefficients which cannot be achieved with $\vec{0}$.

2.2c

Statement: Subsets of linearly dependent sets are linearly dependent;

This is **false**. To show this a simple counterexample in \mathbb{R}^2 is proposed.

Let
$$S = \vec{v_1}, \vec{v_2}, \vec{v_3}$$
.

And let

$$\vec{v_1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$
$$\vec{v_2} = \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$\vec{v_3} = \begin{pmatrix} 0\\2 \end{pmatrix}$$

Because $\vec{v_3} = 2 \cdot \vec{v_2}$, this set is linearly dependent. It is of note though, that the subset $s = \vec{v_1}, \vec{v_2}$ is linearly independent.

2.2d

Statement: Subsets of linearly independent sets are linearly independent;

This is **true**.

Due to the restrictions already in place to be linearly independent, these will hold with different subsets as well. An equation with all 0 coefficients will not suddenly acquire a non-trivial solution when you remove one of the variables.

2.2e

Statement: If $\alpha_1 \vec{v_1}, \alpha_2 \vec{v_2}, + \dots, + \alpha_n \vec{v_n} = \vec{0}$ then all scalars α_k are zero;

This is **FALSE** and can be shown as such with a simple counter example.

Let
$$S = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$$

and let

$$\vec{v_1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$
$$\vec{v_2} = \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$\vec{v_3} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

Then

$$0 \cdot \vec{v_1} + 0 \cdot \vec{v_2} + 573000 \cdot \vec{v_3} = 0$$

Exercise 2.3

Recall, that a matrix is called *symmetric* if $A^T = A$. Write down a basis in the space of *symmetric* 2×2 matrices. How many elements are in the basis?

For this problem I find it useful to visualize a symmetric transpose. This requires square matrices. With a square transpose it is important to remember the top left and bottom right cells stay where they are.

For the transpose to be equal to the original matrix there is a restriction; that b=c. This is critical here. Normally a matrix with n elements is going to require n basis vectors to create a basis, but that's not the case here. Because the top right and bottom left need to be the same, they can both be handled by one scalar. So, a basis can be accomplished with n-1 basis vectors.

Here we have $S = \{e_1, e_2, e_3\}$ as our basis.

$$e_1 = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$$

$$e_2 = \begin{cases} 0 & 1 \\ 1 & 0 \end{cases}$$

$$e_3 = \begin{cases} 0 & 0 \\ 0 & 1 \end{cases}$$