進捗報告

1 今週行ったこと

- VGG16のモデルで猫がいるか否かではなく,猫 に耳カットがあるか否かの識別を行った.
- Optuna を使ってみた (learningrate のみを変える実験).

2 耳カットの実験

VGG16を転移学習させて、猫の耳カットを識別させるモデルを作った。表 1,表 2にモデルのパラメータとクラスをそれぞれ示す。クラスとしては、耳カットなし、あり、不明の 3 クラスとなる。図 1,図 2 に accuracy,loss をそれぞれ示す。

表 1: 耳カット識別のモデル

<u> </u>		
クラス	3クラス分類	
訓練データ数	合計 250	
input	$image(224 \times 224 \times 3)$	
output	class(3)	
ベースモデル	VGG16	
optimizer	adam	
学習率	0.001	
損失関数	categorical_crossentropy	
train:validation	2:1	
初期重み	ImageNet	
batch_size	32	
epochs	30	

表 2: 耳カットのクラス及び訓練データ数

クラス	noncut	cut	unknown
耳カット	している	していない	わからない
訓練データ数	39	76	135

図 1: 耳カット識別の accuracy の推移

図 2: 耳カット識別の loss の推移

少数の訓練データ数の割には7割ほどの識別率が得られたが、それ以上改善は見られず、データの不均衡性に関する検討などが必要である. 訓練データ数をふやして更なる識別率の向上を目指したい

3 Optuna

耳カットと同じデータを使って, lr を 1e-5 1e-1 の 範囲で optuna を使うと表 3 のようになった.

表 3: Optuna における validation_accuracy の変化

lr	1e-5	1e-1
	1回目	最高値
lr	1.08e-05	0.00265
validation_accuracy	0.710	0.783

4 次回行うこと

● 各クラスのデータの量をそろえて、全体のデータ数も増やして再実験