Contents:

- Komponenten
- Eingabewerten
- Ausgabewerten

Komponenten

Es gibts 8 Komponenten in das Schaubild des Pufferspeichers: 'fixedTemperature',

'sink1', 'sink2', 'source1', 'source2', 'm_flow1', 'm_flow2', 'storage'.

'fixedTemperature' wird die Außentemperatur mit 'storage' verbinden.

'source1' und 'source2' werden die Eintrittstemperatur von Heißwasser und Kaltwasser definieren und in storage importieren.

'm_flow1' und 'm_flow2' werden die Massenstrom des Wassers und dessen Beladungs- und Entladungszeit definieren.

In 'storage' besteht Gleichgewicht der Temperatur.

'sink1' und 'sink2' zeigen die Ausgabewerten.

• Eingabewerten

■ Storage:

height	2. 0					
V	1.0	0				
thickness_ins	0.005					
thickness_wall	1					
height:		h(m)	'Höhe des Pufferspeichers'			
V:		$V(m^3)$	'Volumen des Pufferspeichers'			
thickness_ins	:	diso(m)	'Isolationsdicke'			
thickness_wa	II:	dw(m)	'Mauerdicke'			
Asec:		Asec (m^2) 'Querfläche des Pufferspeich				
damit:	V=h*A	sec Asec=	$d = \sqrt{\frac{Asec}{\pi}} * 4 = 0.8 \text{m}$			
		/ (1.0 / (alpha_out * diameter_ext ins * ASec) + 1.0 / (alpha_in * ASe	W W W W W W W W W W	W/(m2. K) W/(m2. K) W/(m. K) W/K W/K		
alpha_out	∂_{out}	'Wärmeübergaı	ngskoeffizient außerhalb des Speichers'			
alpha_in	∂_{in}	'Wärmeübergar	ngskoeffizient außerhalb des Speichers'			
lambda_ins	λ_{iso}	'Wärmeleitfähig	gkeit des Isoliermaterials '			
UA_wall	Uw	'Wärmedurchg	gangskoeffizient der Wand'			
UA_top	Ut	'Wärmedurchg	'Wärmedurchgangskoeffizient der oben Decke'			
UA_bot	Ub	'Wärmedurchgangskoeffizient der Unterseite'				

Berechnung zur Qv (Verlustleistung):

Qw 'Verlustleistung durch Wand'

Qiso 'Verlustleistung durch Isolation'

Qt 'Verlustleistung durch Decke'

Qb 'Verlustleistung durch Unterseite'

T 'Temperatur in Pufferspeicher'

da 'Außenumfang'

$$Qv = Qw + Qiso + Qt + Qb$$

$$Qw = Uw * (T-25)$$

Qiso =
$$\lambda_{iso}$$
 * A * (T – 25) / diso

$$Qt = Ut * (T - 25)$$

$$Qb = Ub * (T - 25)$$

■ Beladung

 m_flow
 0.83

 Kg/s
 Fixed mass flow rate going out of the fluid port

 T
 333.15

 X
 Medium.X_default

 Fixed value of composition

 C
 fill(0, Medium.nC)

 Fixed values of trace substances

Beladungszeit : $t_{zu} = 18000s / 3600s = 5h$

 $m_flow = 0.83 kg / s$

T_soll = 333.15 K = 60 °C

■ Entladung

Fixed inputs					
m_flow	0.83	kg/s Fixed mass flow rate going out of the fluid port			
T	283. 15	Fixed value of temperature			
X	Medium. X_default	Fixed value of composition			
С	fill(0, Medium.nC)	Fixed values of trace substances			

Startzeit für Entladung : $t_{start} = 28800s / 3600s = 8h$

Entladungszeit : $t_{ent} = 57600s / 3600s = 16h$

 $m_flow = 0.83 kg/s$

 $T_{kalt} = 283.15 \text{ K} = 10 \text{ }^{\circ}\text{C}$

Ausgabewerten

T_{storage} sind wie folgende Bild gezeigt :

m_flow1 (Entladung) und m_flow2 (Zuladung) sind wie Bild gezeigt.

Tkw , Tww und Theat sin wie folgende Bild gezeigt :

