In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: df=pd.read_csv("Heart.csv")

In [3]: df

Out[3]:

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak
0	1	63	1	typical	145	233	1	2	150	0	2.3
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5
4	5	41	0	nontypical	130	204	0	2	172	0	1.4
											•••
298	299	45	1	typical	110	264	0	0	132	0	1.2
299	300	68	1	asymptomatic	144	193	1	0	141	0	3.4
300	301	57	1	asymptomatic	130	131	0	0	115	1	1.2
301	302	57	0	nontypical	130	236	0	2	174	0	0.0
302	303	38	1	nonanginal	138	175	0	0	173	0	0.0

303 rows × 15 columns

```
In [4]: size=[145,233,1,2,150,2.3]
    labels='RestBP','Chol','fbs','RestECG','MaxHR','oldspeak'
    plt.pie(size,labels=labels)
    plt.title('physical condition at age 63')
    plt.axis("equal")
    plt.show()
```

physical condition at age 63


```
In [5]: data={'63':233,'67':286,'37':250,'41':204,'45':268}
    age= list(data.keys())
    values=list(data.values())
    fig=plt.figure(figsize=(10,5))
    plt.bar(age,values,color="maroon",width=0.4)
    plt.xlabel("Age of person")
    plt.ylabel("Rate of chol")
    plt.title("Rate of chol according to age person")
```

Out[5]: Text(0.5, 1.0, 'Rate of chol according to age person')

In [6]: data=df.RestBP
 plt.hist(data,bins=30,color='skyblue',edgecolor='black')
 plt.xlabel("RestBP")
 plt.ylabel("Age")
 plt.show()

In [7]: x=df.Age
 y=df.RestBP
 plt.xlabel("Age")
 plt.ylabel("RestBP")
 plt.scatter(x,y)
 plt.show()


```
In [8]: x=[37,41,63,67]
    y=[130,130,145,160]
    plt.plot(x,y)
    plt.title("Linear graph", fontsize =25, color="green")
    plt.xlabel("Age")
    plt.ylabel("RestBP")
```

Out[8]: Text(0, 0.5, 'RestBP')

In [9]: import seaborn as sns
import pandas as pd
heart=pd.read_csv("Heart.csv")

In [10]: sns.catplot(x='Age',y="RestBP",data=heart)

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1e1959dc990>


```
In [14]: df.boxplot(by='Age',column=['Chol'],grid=False)
```

Out[14]: <Axes: title={'center': 'Chol'}, xlabel='Age'>

Boxplot grouped by Age Chol

In [22]: data=df[["RestBP",'Chol']]
print(data)

	RestBP	Chol
0	145	233
1	160	286
2	120	229
3	130	250
4	130	204
298	110	264
299	144	193
300	130	131
301	130	236
302	138	175

[303 rows x 2 columns]

```
In [23]: data.plot(kind='bar',stacked=True,width=0.9)
    plt.xlabel("Age")
    plt.ylabel("disease")
    plt.show()
```


In []:	
In []:	