PROBABILITÉS CONDITIONNELLES E03

EXERCICE N°1 Appréhender la définition et la propriété

Soient Ω un univers et A et B deux événements de probabilité non nulle.

Dans chaque cas vérifier l'indépendance de A et B.

- 1) P(A) = 0.3, P(B) = 0.2 et $P(A \cap B) = 0.06$.
- 2) $P_A(B) = 0.3$ P(B) = 0.5, $P(A \cap B) = 0.15$.
- 3) P(A) = 0.2 P(B) = 0.6 $P(A \cup B) = 0.68$.
- **4)** $P(\overline{A}) = 0.7$ $P(\overline{B}) = 0.8$ $P(A \cap B) = 0.06$.

EXERCICE N°2 Démontrer l'indépendance

Une urne contient 12 boules numérotées de 1 à 12. On tire une boule au hasard.

On note

- D l'événement « obtenir un multiple de deux »,
- T l'événement « obtenir un multiple de trois »,
- N l'événement « obtenir un nombre supérieur ou égal à neuf ».
- 1) Les événements N et T sont-ils indépendants?
- 2) Que dire des événements D et N?

EXERCICE N°3 Indépendance vs incompatibilité

Soient Ω un univers et A et B deux événements tels que : P(A) = 0.4 et P(B) = 0.3.

- 1) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont indépendants.
- 2) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont incompatibles.

EXERCICE N°4 Des questions à se poser...

Soient Ω un univers et A et B deux événements de probabilité non nulle.

Les affirmations suivantes sont-elles vraies ou fausses ? Justifier la réponse.

- 1) L'événement A et son événement contraire \overline{A} sont indépendants.
- 2) Si A et B sont indépendants alors A et B ne sont pas incompatibles.
- 3) Si A et B sont indépendants alors $P_A(B) = P_B(A)$.
- 4) Si A et B sont indépendants alors \overline{A} et B le sont aussi.

EXERCICE N°5 Réussite et/ou travail

Dans une classe de première de 35 élèves, on a étudié deux caractères :

La réussite et le travail à la maison. Le résultat de cette étude est présenté dans le tableau suivant :

	R	\overline{R}	Total
T	12	9	21
\overline{T}	8	6	14
Total	20	15	35

On choisit un élève au hasard dans cette classe. On note les événements :

R : « L'élève est en situation de réussite »

T : « L'élève travaille à la maison »

Les résultats seront donnés sous forme de fraction irréductible.

- 1) Déterminer P(R) et $P_T(R)$ et exprimer par une phrase ce que signifie ces résultats.
- 2) Dans ce contexte, le fait de travailler influence-t-il le fait de réussir ?
- 3) Dans ce contexte, le fait de ne pas travailler influence-t'il le fait de ne pas réussir?

PROBABILITÉS CONDITIONNELLES E03

EXERCICE N°1 Appréhender la définition et la propriété

Soient Ω un univers et A et B deux événements de probabilité non nulle.

Dans chaque cas vérifier l'indépendance de A et B.

- 1) P(A) = 0.3, P(B) = 0.2 et $P(A \cap B) = 0.06$.
- 2) $P_A(B) = 0.3$ P(B) = 0.5, $P(A \cap B) = 0.15$.
- 3) P(A) = 0.2 P(B) = 0.6 $P(A \cup B) = 0.68$.
- **4)** $P(\overline{A}) = 0.7$ $P(\overline{B}) = 0.8$ $P(A \cap B) = 0.06$.

EXERCICE N°2 Démontrer l'indépendance

Une urne contient 12 boules numérotées de 1 à 12. On tire une boule au hasard.

On note

- D l'événement « obtenir un multiple de deux »,
- T l'événement « obtenir un multiple de trois »,
- N l'événement « obtenir un nombre supérieur ou égal à neuf ».
- 1) Les événements N et T sont-ils indépendants?
- 2) Que dire des événements D et N?

EXERCICE N°3 Indépendance vs incompatibilité

Soient Ω un univers et A et B deux événements tels que : P(A) = 0.4 et P(B) = 0.3.

- 1) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont indépendants.
- 2) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont incompatibles.

EXERCICE N°4 Des questions à se poser...

Soient Ω un univers et A et B deux événements de probabilité non nulle.

Les affirmations suivantes sont-elles vraies ou fausses ? Justifier la réponse.

- 1) L'événement A et son événement contraire \overline{A} sont indépendants.
- 2) Si A et B sont indépendants alors A et B ne sont pas incompatibles.
- 3) Si A et B sont indépendants alors $P_A(B) = P_B(A)$.
- 4) Si A et B sont indépendants alors \overline{A} et B le sont aussi.

EXERCICE N°5 Réussite et/ou travail

Dans une classe de première de 35 élèves, on a étudié deux caractères :

La réussite et le travail à la maison. Le résultat de cette étude est présenté dans le tableau suivant :

	R	\overline{R}	Total
T	12	9	21
\overline{T}	8	6	14
Total	20	15	35

On choisit un élève au hasard dans cette classe. On note les événements :

R : « L'élève est en situation de réussite »

T : « L'élève travaille à la maison »

Les résultats seront donnés sous forme de fraction irréductible.

- 1) Déterminer P(R) et $P_T(R)$ et exprimer par une phrase ce que signifie ces résultats.
- 2) Dans ce contexte, le fait de travailler influence-t-il le fait de réussir ?
- 3) Dans ce contexte, le fait de ne pas travailler influence-t'il le fait de ne pas réussir?