The Draft of MrHeer

MrHeer

July 27, 2019

Contents

1	Throwing eggs from a building	1
2	Throwing two eggs from a building	2

1 Throwing eggs from a building

Question

Suppose that you have an N-story building and plenty of eggs. Suppose also that an egg is broken if it is thrown off floor F or higher, and unhurt otherwise. First, devise a strategy to determine the value of F such that the number of broken eggs is $\sim \lg N$ when using $\sim \lg N$ throws, then find a way to reduce the cost to $\sim 2 \lg F$.

Answer

 $\sim \lg N$: start at the top, always cut search space in half \to binary search. $\sim 2 \lg F$: start at 1, next 2, 4, 8 (i.e., 2^i), once the egg breaks after ($\sim \lg F$ steps) do binary search in the smaller search space (range $\leqslant F$ and hence number of searches $< \sim \lg F$) \to exponential search.

$$\begin{split} 2^{\lfloor \lg F \rfloor} \leqslant F \leqslant 2^{\lceil \lg F \rceil} \\ range &= 2^{\lceil \lg F \rceil} - 2^{\lfloor \lg F \rfloor} = \{0, 2^{\lfloor \lg F \rfloor}\} \leqslant 2^{\lg F} = F \\ range &\leqslant F \end{split}$$

2 Throwing two eggs from a building

Question

Consider the previous question, but now suppose you only have two eggs, and your cost model is the number of throws. Devise a strategy to determine F such that the number of throws is at most $2\sqrt{N}$, then find a way to reduce the cost to $\sim c\sqrt{F}$. This is analogous to a situation where search hits (egg intact) are much cheaper than misses (egg broken).

Answer