Class 5- Machine Learning concepts Part II

Motivation

Machine learning fundamental concepts:

- Inference and prediction
- Part I: The Model
 - Parameters and hyperparameters
 - Parametric vs nonparametric ML models
- Part II: Evaluation metrics
- Part III: Bias-Variance tradeoff
- Part IV: Resampling methods
- Part V: How do machines learn?
- Part VI: Solvers/learners (GD, SGD, Adagrad, Adam, ...)

Part V How do machines learn?

How do machines learn?

The short answer: Algorithms!

- Algorithm: a process or <u>set of rules</u> to be followed in calculations or other problemsolving operations, especially by a computer.
- Generally, the more data a machine learning algorithm is provided the more accurate it becomes.
- Different types of algorithms:
 - Supervised
 - Unsupervised
 - Reinforcement

How do machines learn?

Hyperparameter tuning using cross validation, elbow method, grid search, etc.

Updating the parameters of the model: this is the learning part

Part VI Solvers (GD, SGD, Adagrad, Adam, ...)

Solvers (learners)!

The two most frequently used optimization algorithms when the loss function is differentiable are:

- 1) Gradient Descent (GD)
- 2) Stochastic Gradient Descent (SGD)

Gradient Descent: is an <u>iterative</u> optimization algorithm for finding the minimum of a function. To find a local minimum of a function using gradient descent, one <u>starts at some random point</u> and <u>takes steps</u> proportional to the <u>negative</u> of the gradient of the function at the current point.

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- θ_j is the model's j^{th} parameter
- α is the learning rate
- $I(\theta)$ is the loss function (which is differentiable)

Gradient Descent Visualization

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_i} J(\theta)$$

Gradient descent proceeds in epochs. An epoch consists of using the training set entirely to update each parameter. The learning rate α controls the size of an update

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)
}

Learning rate schedules

CF

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta)$$

If α is too small, gradient descent can be slow

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Beyond Gradient Descent?

Disadvantages of gradient descent:

- Single batch: use the entire training set to <u>update</u> a parameter!
- Sensitive to the choice of the learning rate
- Slow for large datasets

(Minibatch) Stochastic Gradient Descent: is a version of the algorithm that speeds up the computation by approximating the gradient using smaller batches (subsets) of the training data. SGD itself has various "upgrades".

- 1) Adagrad
- 2) Adam

Why SGD?

11

JON M.
HUNTSMAN
SCHOOL OF BUSINESS

UtahStateUniversity

Prof. Pedram Jahangiry

⇒ SGD vs GD

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

12

Why upgrade SGD?

SGD upgrades

- Adagrad (Adaptive Gradient Algorithm): is a version of SGD that scales α for each parameter according to the history of gradients. As a result, is reduced for very large gradients and vice-versa.
- Adam (Adaptive Moment Estimation): is a method that helps accelerate SGD by orienting the gradient descent in the relevant direction and reducing oscillations.

Final message!

Notice that gradient descent and its variants are not machine learning algorithms. They are solvers of minimization problems in which the function to minimize has a gradient (in most points of its domain).

