Chicago Traffic Crashes Data Analysis

Laboratory of Data Science

Sara Hoxha Alessandro Carella Rafael Ignacio Urbina Hincapie

01 Data Understanding & Cleaning

Data Understanding

Datasets

Three datasets regarding data about incidents of crashes, the people and vehicles involved in the crashes.

Observations

Some key issues we identified across all three datasets were:

- Missing data
- Inconsistent formatting
- Erroneous values

Data Cleaning: People 🥋

Data **Inconsistency**

AGE: Set 'NaN' for drivers < 10, assuming errors or anomalies.

VEHICLE ID & AGE:

Convert from float to integer for consistency.

CITY:Set "Unknown"

when numeric, too short (<2), or starts with "UNK."

STATE: Set "Unknown" when CITY is "Unknown" or STATE = "XX."

Missing values

Columns with "Unknown" values: Fill missing observations with existing "Unknown" equivalents.

Driver-related columns (for passengers): Use "N/A".

SEX: Map NaN values to "U" (Unknown) for consistency.

Data Cleaning: Vehicles 😜

Data Inconsistency

YEAR: Years recorded beyond 2024 were marked as 'UNKNOWN'. '999' was identified as a typo for '1999'.

LICENSE PLATE STATE:

Set "*Unknown*" for *NaN* or "XX".

MAKE & MODEL: Duplicates removed. 'UNKNOWN' and 'UKNOW' values were standardized to 'UNKNOWN'.

Missing values

Columns with "Unknown"

values: Fill missing observations with existing "*Unknown*" equivalents.

Example columns:

- VEHICLE_TYPE
- VEHICLE_USE
- VEHICLE_DIRECTION
- etc...

Data **Inconsistency**

RD_NO: Two entries began with lower-case letters, differently from the usual format (hz273623 and hz125235).

NUM_UNITS & INJURIES TOTAL: Convert from float to integer for consistency.

Missing values

Columns with "Unknown" values: Fill missing observations with existing "Unknown" equivalents.

LATITUDE, LONGITUDE, POINT:

Use API and STREET_NAME & STREET NO to fill values.

BEAT_OF_OCCURRENCE:

Filled using discovered values from the previous 3 columns.

Data Transformation

Split into four separate columns: DAY, MONTH, YEAR, and TIME to improve granularity and analysis flexibility.

New derived column called "DELTA_TIME_CRASH_DATE_POLICE_REPORT_DATE". This feature is expressed in the format "days minutes seconds."

02 Data Warehouse Schema

Fact Table

Granularity

Each entry corresponds to a reimbursement transaction for damages caused by vehicle crashes.

'Cost' allows for aggregation and analysis of total reimbursement amounts. It is an additive measure.

Composite Primary Key

Comprised of three foreign keys Crash ID, Person ID, and Vehicle ID linking the fact table to the respective dimensions.

'Cost_Category' classifies the reimbursement based on its monetary value.

Dimensions

Contains information about crashes.

Normalized into three subdimensions:

CrashLocation,

CrashCondition,

Injury

Contains temporal data.

Shared dimension
between Crash and
Vehicle

Contains information about people in crashes.

Vehicle

Contains information about vehicles in crashes.

O3
SSIS Queries

Query 6a

- Start with Person table, extracting key demographic details such as ID, Type, Sex, and Age.
- Link data to the DamageReimbursement table to retrieve crash IDs.
- Link data to the Crash table to obtain crash dates.
- Link data to the DateTime table to extract the year of the crash.
- 5. Aggregate data by counting the number of crashes for each participant per year, generating a "Total Crashes" metric.
- 6. Sort results by year and total crashes.
- Store in the "Query 6 result" table.

Query 7a

- Extract relevant columns from the Crash(Number of Units), CrashLocation(Beat of occurrence), and DateTime tables, joining them sequentially on their IDs.
- Create a Time Category field ("Day" or "Night") based on timestamps.
- Split by Time Category, aggregated by Beat of occurrence, and summed for vehicle counts (Number of Units Day and Night)
- 4. Final ratio calculation is performed using a derived column transformation that handles potential division by zero cases, setting the index to 0 when no daytime crashes exist.
- 5. Store in the "Query 7 result" table.

Query 8a

- Join the DamageReimbursement, Crash, CrashLocation, CrashCondition, DateTime, and Person tables using lookup.
- Counting individuals over and under 21, we aggregate by the required columns
- Create new column containing the ratio.
- 4. Store in the "Query 6 result" table.

Query 9a

Query to examine the ratio of older individuals (over 60) involved in interstate movements in Chicago.

- 1. Use lookup to join relevant tables together.
- Classifying individuals as over or under 60.
- Aggregate the data by quarter and license plate registration.
- 4. Ratio is calculated, sorted using a sorting operator.
- 5. Store in the "Query 9 result" table.

O4 OLAP Cube

Structure

The data cube is organized into dimensions and measure groups.

Dimension	Attributes	Notes
Person	'Person ID', 'Injury Classification', 'Physical Condition', 'Age', 'Type', 'Sex', 'Driver Action', 'Driver Vision', 'Age Group', 'City', 'State'	The Person ID is formatted as 'PersonID-Type-Sex-Age' for clarity and readability. Age Group contains groups 'Under 18', 'Over 65', '18-35', '36-50', '51-65'.
Crash	'Crash ID', 'Crash Date ID', 'Police Notified Date ID', 'Crash Location ID', 'Crash Condition ID', 'Injury ID', 'Primary Contributory Cause', 'Secondary Contributory Cause', 'Difference Between Crash Date & Police Notified' 'Beat of Occurrence', 'Street', 'Street No', 'Longitude', 'Latitude'	For clarity and readability, Crash ID is formatted as 'CrashID-Primary Contributory Cause', Crash Location ID as 'CrashLocationId-Street-StreetNo', Crash Condition ID as 'CrashConditionID-Weather Condition-LightningCondition', Injury ID as Injuries Total.
Vehicle	'Vehicle ID', 'Vehicle Type'	The Vehicle ID is formatted as 'VehicleID-Make-Model' for clarity and readability.
DateTime	'Date Time ID', 'Day', 'Year', 'Month Name', 'Time'	The Date Time ID is formatted as 'Year-Month-Day' for clarity and readability. Month Name represents textual names of months corresponding to their numeric values (1–12). Time is also displayed in a 24H format. It's a role-playing dimension and represents: Crash Date and Police Notified Date.

Measure Groups

The measure groups include Damage Reimbursement and Person.

- Damage Reimbursement captures financial data, including Cost, Damage Reimbursement Count, and Average Cost, which are essential for assessing the financial impact of crashes.
- The Person measure group provides insights into the number and type of individuals involved in crashes, including Person Count, Count of Person Type, and Fatal Crashes.

Hierarchies

The DateTime dimension includes a hierarchy on the date which is specified as Year → Month → Day → Time.

MDX Queries

Show the total damage costs for each location and each month, as well as the total.

Show for every location, damage costs increase or decrease, percentage-wise, relative to the previous year.

```
HTIWE
 MEMBER [Measures]. [Previous Year Damage Cost] AS
     ([Measures].[Cost], [Crash Date].[Date Hierarchy].CURRENTMEMBER.PREVMEMBER)
MEMBER [Measures].[Damage Cost Change Percentage] AS
    IIF(
         [Measures].[Previous Year Damage Cost] = 0,
         (([Measures].[Cost] - [Measures].[Previous Year Damage Cost]) / [Measures].[Previous Year Damage Cost]) * 100
 ,format string = 'Percent'
 SELECT
     {[Measures].[Cost], [Measures].[Damage Cost Change Percentage]} ON COLUMNS,
    NONEMPTY(
         [Crash].[Crash Location].[Crash Location].Members
     ) ON ROWS
 FROM
     [Group ID 4 InsuranceCube]
 WHERE
      [Crash Date].[Date Hierarchy].[Year].&[2017]
```

Show for each vehicle type and each year, show the information and the (total) damage costs of the person with the highest reported damage.

```
- WITH
 MEMBER [Measures].[TotalCost] AS
     SUM(
          [Person].[Person].CURRENTMEMBER,
          [Measures].[Cost]
 SELECT [Measures].[TotalCost] on columns,
 NONEMPTY(
 GENERATE (
 ([Crash Date].[Date Hierarchy].[Year],[Vehicle].[Vehicle Type].[Vehicle Type]),
 TOPCOUNT (
 ([Crash Date].[Date Hierarchy].CURRENTMEMBER,
 [Vehicle].[Vehicle Type].CURRENTMEMBER,
 [Person].[Person]),
 1, [Measures]. [Cost])
 )on rows
 FROM [Group ID 4 InsuranceCube]
```

Calculate and display the median and maximum time delays (delta time) between when crashes occurred and were reported for each beat of occurrence.

```
-- Calculate the total delay in seconds
MEMBER [Measures].[TotalDelaySeconds] AS
    IIF(
                                                                                                                                        -- Format time delays into readable strings
                                                                                                                                        MEMBER [Measures].[MedianTimeDelay] AS
         [Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value <> "",
                                                                                                                                              WHEN [Measures]. [MedianSeconds] IS NULL THEN NULL
            -- Extract days and convert to seconds
            CINT(LEFT(
                 [Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value,
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, "days") - 1
            )) * 24 * 60 * 60 +
            -- Extract hours and convert to seconds
            CINT(MID(
                 [Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value.
                 INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, ", ") + 2,
                                                                                                                                        MEMBER [Measures].[MaxTimeDelay] AS
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, " hours") -
                                                                                                                                              WHEN [Measures].[MaxSeconds] IS NULL THEN NULL
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, ", ") - 2
                                                                                                                                              ELSE
            )) * 60 * 60 +
            -- Extract minutes and convert to seconds
                 [Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value,
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, "hours, ") + 7,
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, " minutes") -
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, "hours, ") - 7
            -- Extract seconds directly
                                                                                                                                        SELECT
                 [Craska, [Difference Between Crash Date And Police Notified].CurrentMember.Member Value.
                 INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, "minutes, ") + 9,
                                                                                                                                              [Measures].[MedianSeconds],
                INSTR([Crash].[Difference Between Crash Date And Police Notified].CurrentMember.Member Value, " seconds") -
                INSTR([Crash], [Difference Between Crash Date And Police Notified], CurrentMember, Member Value, "minutes, ") - 9
                                                                                                                                           ) ON ROWS
            ))
                                                                                                                                        FROM [Group ID 4 InsuranceCube]
        ),
        NULL
```

```
STR(INT([Measures].[MedianSeconds] / (24 * 3600))) + ' days, ' +
       STR(INT(INT([Measures], [MedianSeconds] - (INT([Measures], [MedianSeconds] / (24 * 3600)) * (24 * 3600)) / 3600)) +
       STR(INT([NT([Measures].[MedianSeconds] - (INT([Measures].[MedianSeconds] / 3600) * 3600)) / 60)) + ' minutes, ' +
       STR(INT([Measures].[MedianSeconds] - (INT([Measures].[MedianSeconds] / 60) * 60))) + ' seconds
       STR(INT([Measures], [MaxSeconds] / (24 * 3600))) + ' days, ' +
       STR(INT([Measures].[MaxSeconds] - (INT([Measures].[MaxSeconds] / (24 * 3600)) * (24 * 3600))) / 3600)) + ' hours, ' +
       STR(INT(INT([Measures].[MaxSeconds] - (INT([Measures].[MaxSeconds] / 3600) * 3600)) / 60)) + ' minutes, ' +
       STR(INT([Measures].[MaxSeconds] - (INT([Measures].[MaxSeconds] / 60) * 60))) + ' seconds'
{[Measures].[MedianTimeDelay], [Measures].[MaxTimeDelay]} ON COLUMNS,
   NONEMPTY([Crash].[Beat Of Occurrence].[Beat Of Occurrence].MEMBERS),
```

Query 8a

Identify the most frequent cause of crashes for each year, calculate the associated total damage costs, and determine the overall most frequent crash cause across all years.

```
-- Calculate weighted frequency of crash causes
MEMBER [Measures], [WeightedCauseCount] AS
        ([Measures].[Person Count], [Crash].[Primary Contributory Cause].CurrentMember) * 2 +
        ([Measures].[Person Count], [Crash].[Secondary Contributory Cause].CurrentMember)
-- Most frequent cause per year
MEMBER [Measures].[MostFrequentCausePerYear] AS
   TOPCOUNT (
        [Crash].[Primary Contributory Cause].[Primary Contributory Cause].MEMBERS.
        ([Measures].[WeightedCauseCount],
         [Crash Date].[Year].CurrentMember)
   ).ITEM(0).MEMBER CAPTION
-- Overall most frequent cause across all years
MEMBER [Measures].[MostFrequentCauseOverall] AS
   TOPCOUNT (
        [Crash].[Primary Contributory Cause].[Primary Contributory Cause].MEMBERS,
        1.
        [Measures].[WeightedCauseCount]
   ).ITEM(0).MEMBER CAPTION
-- Total cost for most frequent cause per year
MEMBER [Measures].[TotalCostPerYearTopCause] AS
   SUM(
        FILTER(
            [Crash].[Primary Contributory Cause].[Primary Contributory Cause].MEMBERS,
            [Crash].[Primary Contributo Cause].CurrentMember.MEMBER CAPTION = [Measures].[MostFrequentCausePerYear]
        [Measures].[Cost]
```

```
SELECT
{
     [Measures].[MostFrequentCausePerYear],
     [Measures].[TotalCostPerYearTopCause],
     [Measures].[MostFrequentCauseOveral1]
} ON COLUMNS,

NON EMPTY
[Crash Date].[Year].[Year].MEMBERS ON ROWS
FROM [Group_ID_4_InsuranceCube]
```

06 Dashboards

NO INDICATION OF INJURY

NO INDICATI.

Under 18

18-35

36-50

Age Group

51-65

Over 65

Thank you for the attention!