Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/051234

International filing date: 17 March 2005 (17.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 035 787.0

Filing date: 23 July 2004 (23.07.2004)

Date of receipt at the International Bureau: 15 June 2005 (15.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

PCT/EP200 5 / 0 5 1 2 3 4

BUNDESREPUBLIK DEUTSCHLAND

EP05/51234

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 035 787.0

Anmeldetag:

23. Juli 2004

Anmelder/Inhaber:

Koenig & Bauer Aktiengesellschaft,

97080 Würzburg/DE

Bezeichnung:

Druckmaschinen mit mindestens einem mit einem

Stellglied einstellbaren Maschinenelement

Priorität:

23. März 2004 DE 10 2004 014 533.4

30. April 2004 WO PCT/EP 2004/050658

08. Juli 2004 WO PCT/EP 2004/051406

IPC:

B 41 F 31/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 8. April 2005 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Beschreibung

Druckmaschinen mit mindestens einem mit einem Stellglied einstellbaren Maschinenelement

Die Erfindung betrifft Druckmaschinen mit mindestens einem mit einem Stellglied einstellbaren Maschinenelement gemäß dem Oberbegriff des Anspruchs 1, 2, 3, 4 oder 5.

Durch die EP 0 763 426 B1 und ihre prioritätsbegründende DE 195 33 822 A1 sind ein Verfahren zum Regeln der Farbgebung beim Drucken mit einer Druckmaschine, insbesondere einer Offsetbogendruckmaschine mit mehreren Druckwerken, bekannt, bei dem z. B. farbmetrische Istwerte mit einer Bildaufnahmeeinheit an einer Vielzahl von ausgewählten, über die gesamte Fläche eines Aufzeichnungsträgers verteilten Messorten gewonnen und als Sollwerte für mindestens einen nachfolgenden Druck gespeichert werden, wobei im nachfolgenden Druck an mit den zuvor ausgewählten Messorten übereinstimmenden Messorten Istwerte gewonnen werden, wobei die Farbgebung im Fortdruck ausschließlich an den sich am stärksten verändernden Messorten mit an diesen Messorten wirksamen Stellgliedern geregelt wird. Als Stellglieder sind in Zonen wirkende Stellelemente für die Schichtdicke der Druckfarbe, Stellelemente für die Menge des Feuchtmittels und Stellelemente für das Register benannt. Es ist eine die jeweiligen Stellelemente steuernde Steuereinheit und eine die gesamte bedruckte Oberfläche eines Bogens erfassende Bildaufnahmeeinheit vorgesehen. Eingaben an eine mit der Steuereinheit verbundenen Recheneinheit können über eine Tastatur erfolgen.

Durch die EP 0 598 490 A1 ist ein Farbregistersystem für eine Druckmaschine bekannt, wobei ein Computer mit einer Kamera oder einer Gruppe von Kameras durch einen Vergleich eines aktuellen Bildes mit einem gespeicherten Referenzbild eine Fehlausrichtung von Farben eines Druckbildes bestimmt und mit einer Drucksteuerung eine Längs-, Quer- und Drehposition von Zylindern der Druckmaschine relativ zu einer

durch die Druckmaschine bewegten, zu bedruckenden Bahn derart ausrichtet, dass diese ein Mehrfarbenbild mit zueinander richtig angeordneten Farben erzeugen.

Durch die EP 0 882 588 A1 sind eine Vorrichtung und ein Verfahren zur registerhaltigen Abstimmung von Druckzylindern einer Rollenrotationsmaschine bekannt, wobei ein auf eine Seite der Bahn druckender erster Zylinder von einem ersten Motor und ein auf die gleiche Seite der Bahn druckender zweiter Zylinder von einem zweiten Motor angetrieben werden und die Winkellage des zweiten Zylinders durch einen Regler registerhaltig zum ersten Zylinder abgestimmt wird, wobei von den Zylindern auf die Bahn mitgedruckte Passermarken mit einer hinter dem in Produktionsrichtung letzten Zylinder angeordneten Sensor, z. B. einer CCD-Kamera, aufgenommen und anhand von Kennlinien als Führungsgröße für den Regler ausgewertet werden.

Die bekannten Vorrichtungen zur Beeinflussung einer Qualität des Druckes folgen im Wesentlichen einem singulären Lösungsansatz, indem sie einen einzelnen Störeinfluss losgelöst von seinem Zusammenwirken mit einem weiteren Störeinfluss mit einer anderen Ursache betrachten. Dies wird dem tatsächlichen Geschehen in der Praxis nicht gerecht.

An die Qualität eines von einer Druckmaschine ausgeführten Druckes werden vom Auftraggeber des Druckes immer höhere Anforderungen gestellt, wobei der Begriff der Qualität eines Druckes durch an Exemplaren des Druckes vorhandenen Eigenschaften ein komplexes, zumeist durch eine Vielzahl von Parametern gekennzeichnetes Niveau bildet, welches von demjenigen, der den Druck mit der Druckmaschine ausgeführt, gegebenenfalls unter Berücksichtigung einer vereinbarungsgemäß zulässigen Toleranz zu erreichen und für möglichst alle Exemplare des Druckes einzuhalten ist. Schon allein aus wirtschaftlichen Gründen besteht daher seitens des den Druck Ausführenden das Bedürfnis, Makulatur durch nicht verkaufsfähige Exemplare des Druckes sowohl im Andruck als auch im Fortdruck zu minimieren.

Da druckmaschinenbauliche Maßnahmen allein eine Reproduzierbarkeit der den Druck umfassenden Exemplare zumeist nicht garantieren können, weil im laufenden Druck selbst mit hoher Präzision gefertigte Maschinenelemente der Druckmaschine z. B. verschleißbedingten Veränderungen und auch hochwertige im Druck verarbeitete Materialien z. B. thermischen Veränderungen unterworfen sind, sind ergänzend druckverfahrenstechnische Maßnahmen erforderlich, um ein Erreichen und eine konstante Einhaltung der dem Auftraggeber des Druckes zugesicherten Qualität des Druckes und damit der die Qualität definierenden Eigenschaften sicherzustellen. Diese Eigenschaften betreffen z. B. insbesondere die Farbgebung des Druckes, den Umfang der im Druck wiedergegebenen Farbtonwerte, die Schärfe und den Kontrast gedruckter Rasterpunkte, die Präzision des Übereinanderdruckes am Druck beteiligter, zu einem bestimmten Druckbild gehörender Farbauszüge sowie die Lagegenauigkeit von beidseitig eines Bedruckstoffes gedruckten Druckbildern.

Diese Eigenschaften können jeweils für sich oder in Kombination unter anderem durch die Beschaffenheit der am Druck beteiligten Materialien, z. B. der Druckfarbe und/oder des Bedruckstoffes, durch deren Verhalten während ihres durch die Druckmaschine führenden Transportes sowie durch die Einstellung von am Druck beteiligten Maschinenelementen und/oder das Zeitverhalten bei einer Veränderung ihrer Einstellung, d. h. den Zeitbedarf bis zum Erreichen eines hinsichtlich des Druckes stabilen Betriebszustandes nach einer Veränderung der Einstellung eines oder mehrerer Maschinenelemente, nachhaltig beeinflusst werden. In dieser Betrachtungsweise ergibt sich für die Druckmaschine ein komplexes Regelsystem, in welchem die Qualität des Druckes als eine Störeinflüssen entgegenwirkende, zu regelnde Strecke aufgefasst wird.

Der Erfindung liegt die Aufgabe zugrunde, Druckmaschinen mit mindestens einem mit einem Stellglied einstellbaren Maschinenelement zu schaffen, wobei eine Qualität des Druckes einstellbar und auf dem eingestellten Niveau im Fortdruck stabil ist.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1, 2, 3, 4 oder 5 gelöst.

Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, dass eine Qualität des Druckes einstellbar ist und auf dem eingestellten Niveau im Fortdruck gehalten werden kann. Einer die Qualität des Druckes negativ beeinflussenden Störgröße wird in einer Zusammenschau mit anderen Störgrößen in abgestimmter Weise wirksam entgegengewirkt, sobald die Erfassungseinrichtung die negative Auswirkung der Störgröße auf die Qualität des Druckes erfasst. Das ist möglich, weil mit der Erfassungseinrichtung alle auf die Qualität des Druckes wirkenden Störgrößen erfassbar sind. Eine gleichzeitige Erfassung aller Störgrößen, und zwar sowohl in Echtzeit als auch nah an dem Ort, an dem die Qualität des Druckes produziert wird, ermöglicht durch eine Auswertung des Ausgangssignals lediglich einer Erfassungseinrichtung eine schnell wirksame Regelung, sodass hinsichtlich des Druckes bereits nach sehr kurzer Zeit ein stabiler Betriebszustand mit einer guten Qualität erreichbar ist. Die ganzheitliche Erfassung der Qualität des Druckes in Verbindung mit einer Auswertung der mit ihr korrelierenden Daten hinsichtlich mehrerer, vorzugsweise aller die Qualität des Druckes beeinträchtigenden Störeinflüsse bedeutet für eine die Druckmaschine bedienende Bedienperson eine erhebliche Arbeitserleichterung, weil diese nicht eine Vielzahl von unterschiedlichen Steuer- und/oder Regeleinrichtungen beobachten und/oder betätigen muss.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben.

Es zeigen:

Fig. 1 eine vereinfachte Darstellung einer Offsetbogendruckmaschine in einer Seitenansicht;

Fig. 2 ein vereinfachtes Blockschaltbild eines die Qualität eines Druckes regelnden Regelkreises.

Die Fig.1 zeigt eine Druckmaschine, die beispielhaft als eine Bogendruckmaschine ausgebildet ist. Alternativ kann die Druckmaschine jedoch auch als eine Rollendruckmaschine ausgebildet sein. Die Druckmaschine ist insbesondere als eine Offsetdruckmaschine ausgebildet. Es kann aber auch vorgesehen sein, dass die Druckmaschine unter Anwendung eines wasserlosen Offsetdruckverfahrens druckt.

Die Druckmaschine weist vorzugsweise mehrere, denselben Bedruckstoff jeweils mit einer Druckfarbe bedruckende Druckwerke 01 auf. In dem Beispiel der Fig. 1 sind in Transportrichtung des Bedruckstoffes in Reihenbauweise einander nachfolgend fünf Druckwerke 01 vorgesehen. Es folgen danach eine Lackiereinrichtung in Form eines Lackturmes 02 sowie eine Auslageverlängerung 03 und der eigentliche Ausleger 04. Am gegenüberliegenden Ende der Bogendruckmaschine ist ein Bogenanleger 06 angeordnet. Die Zahl der einander nachfolgenden Druckwerke 01 kann je nach Bedarf niedriger oder höher als in dem dargestellten Beispiel gewählt sein. Eine Erweiterung bis auf zehn Druckwerke 01 ist durchaus möglich. Auch kann die Bogendruckmaschine für einen Schön- und Widerdruck vorgesehen sein, d. h. für einen beidseitigen Druck auf dem die Bogendruckmaschine durchlaufenden Bedruckstoff, und zur Realisierung dieser Funktion z. B. eine Wendeeinrichtung aufweisen. Außer einer Anordnung der Druckwerke 01 in Reihenbauweise kann auch eine Anordnung in Form eines Turms mit einer im Wesentlichen vertikalen Führung des Bedruckstoffes vorgesehen sein.

Im Fall einer Ausbildung der Druckmaschine als eine hier nicht dargestellte, dem Fachmann aber in ihrem grundsätzlichen Aufbau bekannte Rollendruckmaschine wird der Bedruckstoff vorzugsweise durch einen Rollenwechsler den Druckwerken 01 zugeführt; nach dem Durchlauf durch die Druckwerke 01 wird der Bedruckstoff vorzugsweise einem

der Rollendruckmaschine zugeordneten Falzapparat zugeführt.

Bei dem Bedruckstoff handelt es sich je nach verwendetem Typ von Druckmaschine um Material in Form von Bogen oder um eine Materialbahn, die jeweils vorzugsweise aus einem aus aufgeschlossenen Pflanzenfasern hergestellten Werkstoff bestehen und je nach ihrer Anwendung und ihrem Flächengewicht der Produktsorte Papier (< 150 g/m²), Karton (150 bis 600 g/m²) oder Pappe (> 600 g/m²) zuzurechnen sind. Die Größe eines Bogens kann längs zu seiner Transportrichtung durch die Druckmaschine z. B. mehr als 1.000 mm und quer zu seiner Transportrichtung z. B. mehr als 700 mm betragen. Auch eine Materialbahn kann längs zu ihrer Transportrichtung durch die Druckmaschine eine Breite z. B. von mehr als 1.000 mm aufweisen.

Zur Verbesserung der Bedruckbarkeit des Bedruckstoffes kann insbesondere ein aus Papier bestehender Bedruckstoff einseitig oder beidseitig auf seiner Oberfläche gestrichen sein, d. h. mit einer weißen, einschichtig oder mehrschichtig aufgetragenen Strichmenge aus Pigmenten, Bindemitteln und Zusatzstoffen, z. B. optischen Aufhellern, versehen sein, wodurch die Oberfläche des Bedruckstoffes hinsichtlich ihrer Helligkeit, ihres Farbtons und/oder ihrer herstellungsbedingten Struktur oder Rauheit gezielt beeinflusst wird. Das Flächengewicht der Strichmenge liegt dabei z. B. im Bereich zwischen 5 und 20 g/m², vorzugsweise zwischen 5 g/m² und 10 g/m². Auch kann nach dem Streichen der Oberfläche des Bedruckstoffes dessen Satinage, d. h. eine Glättung der Oberfläche des Bedruckstoffes in einem Kalander, erfolgen, was sich wiederum auch auf die optischen Eigenschaften des Bedruckstoffes und dessen Bedruckbarkeit auswirkt. Die Oberfläche des Bedruckstoffes kann z. B. zur Verwendung als Banknotenpapier oder Dokumentenpapier auch eine eingeprägte oder aufgeprägte Struktur aufweisen, wobei diese Struktur flächig oder als ein Relief ausgebildet sein kann.

Bei einem Durchlauf des Bedruckstoffes durch die Druckmaschine ist dessen Beeinflussung durch Feuchtigkeit aus ihn umgebender Luft, aus einer auf seiner Oberfläche aufgetragenen Druckfarbe oder aus einem dem Druckprozess zugeführten Feuchtmittel oder durch einen Angriff mechanischer Kräfte unvermeidbar. Je nach seiner Beschaffenheit wirken sich diese Einflüsse unterschiedlich auf eine Dehnung von dessen Oberfläche quer und/oder längs in dessen durch die Druckmaschine verlaufender Transportrichtung aus, wobei je nach Ursache zwischen einer Feuchtdehnung und/oder einer mechanischen Dehnung zu unterscheiden ist. Diese sich am Bedruckstoff zeigenden Wirkungen beeinflussen seine Verdruckbarkeit.

Am Druck sind zumeist mehrere Druckfarben beteiligt, die sich nach dem Übereinanderdruck mehrerer Farbauszüge in einem autotypischen Farbmischprozess zu einem mehrfarbigen Druckbild ergänzen, wobei jeder Farbauszug jeweils nur eine der am Druck beteiligten Druckfarben auf den Bedruckstoff druckt. Häufig verwendet man als Primärdruckfarben Druckfarben in den Farbtönen Magenta, Cyan und Gelb, aus denen eine Vielzahl weiterer Farbtöne gemischt werden. Um den technologischen Aufwand zur Erzeugung von Schwarz oder von einem Grauton als Mischung aus den drei zuvor genannten Buntfarben zu reduzieren und dadurch hochwertige Buntfarben einzusparen, wird zumeist zusätzlich Druckfarbe im Farbton Schwarz eingesetzt. Darüber hinaus können eine oder mehrere Sonderfarben verdruckt werden, um im Druck einen kundenspezifischen Farbton oder Effekt zu erzeugen. Dabei beeinflussen die farbmetrischen Eigenschaften der im Druck verwendeten Druckfarben in Verbindung mit der Beschaffenheit des Bedruckstoffes, auf den die Druckfarben in der Druckmaschine aufgetragen werden, den im Druck reproduzierbaren Farbumfang erheblich. Die farbmetrischen Eigenschaften der Druckfarben sind u. a. auch von der chemischen Zusammensetzung ihrer Farbpigmente abhängig. Zumeist vergleichsweise teure Farbpigmente können beispielsweise den mit dieser Druckfarbe reproduzierbaren Farbraum erweitern. Überdies ist vom verwendeten Bedruckstoff z. B. der mit einer Druckfarbe wiedergebbare Farbkontrast abhängig. Bei gestrichenen Papieren ist im Übereinanderdruck der Primärdruckfarben für den Vollton eine optische Dichte von etwa zwei Dichteeinheiten erreichbar.

Beim autotypischen Farbmischprozess wird das mehrfarbige Druckbild durch jeweils Rasterpunkte aufweisende Farbauszüge drucktechnisch zusammengesetzt, wobei für alle am Druck beteiligten Druckfarben jeweils ein Farbauszug vorgesehen ist und die Rasterpunkte unterschiedlicher Farbauszüge auf dem Bedruckstoff sowohl freistehend nebeneinander als auch übereinander aufgetragen werden. Die Qualität des Druckes wird von der Art und der Feinheit der Rasterung, d. h. der Formgebung und Anordnung der Rasterpunkte, beeinflusst. In einem Offsetdruckverfahren können Rasterpunkte typischerweise ab einer Größe von ca. 10 µm zuverlässig übertragen werden, wobei im Mehrfarbendruck Rasterweiten zwischen 50 und 80 Linien pro cm gebräuchlich sind. Feinraster zur Wiedergabe filigraner Strukturen weisen bis zu 150 Linien pro cm auf, denn je feiner die Rasterung ist, desto höher ist das Auflösungsvermögen des Druckes und damit die Reproduktionsfähigkeit feiner Strukturen. Um im Mehrfarbendruck Moiré, d. h. eine Interferenzerscheinung, oder eine Rosettenbildung zu vermeiden, empfiehlt es sich, die Rasterung nichtperiodisch auszubilden. Durch eine Kombination einer periodischen und einer nichtperiodischen Rasterung lässt sich die Qualität des Druckes weiter steigern. Durch eine geeignete Rasterwinkelung von am Druck beteiligten Farbauszügen in Winkelabständen von z. B. jeweils 15° kann Moiré weitgehend vermieden werden.

Rasterpunkte können z. B. eine kreisförmige, quadratische oder elliptische Form aufweisen und in einer amplitudenmodulierten, frequenzmodulierten oder intensitätsmodulierten Rasterung angeordnet sein. Bei einer amplitudenmodulierten Rasterung weisen die einzelnen Rasterpunkte einen konstanten Mittelpunktsabstand auf und variieren in ihrer Flächenausdehnung, wohingegen bei einer frequenzmodulierten Rasterung die einzelnen Rasterpunkte eine konstante Flächenausdehnung mit variierenden Mittelpunktsabständen aufweisen. Bei einer intensitätsmodulierten Rasterung wird die Schichtdicke der auf dem Bedruckstoff aufgetragenen Rasterpunkte variiert, wodurch die optische Dichte der Rasterpunkte verändert wird. Mischformen der Rasterung mit einer mehrdimensionalen Modulation sind möglich. Im Mehrfarbendruck

nimmt die relative Positionierung der Rasterpunkte unterschiedlicher am Druck beteiligter Farbauszüge zueinander sowie der Grad der flächigen Verteilung der Rasterpunkte in jedem dieser Farbauszüge beim Übereinanderdruck der Rasterpunkte auf die Qualität des Druckes Einfluss. Beim Übereinanderdruck wird die relative Lage der Farbauszüge zueinander als Farbregister oder auch als Passer bezeichnet.

Die Beschaffenheit der im Druck verwendeten Druckfarben wirkt nachhaltig auf die Qualität des Druckes. Zur Beschaffenheit der Druckfarbe zählt auch ihr rheologisches Verhalten, d. h. ihre Fließfähigkeit und ihr Haftungsvermögen auf dem Bedruckstoff sowie auf Rasterpunkten zumindest eines zuvor gedruckten Farbauszuges. Die Fließfähigkeit der Druckfarbe ist durch ihre Viskosität bestimmt. Je hochviskoser eine Druckfarbe ist, desto zäher ist sie, was zur Folge hat, dass sie schlechter verläuft und sich schwieriger zu einem homogenen Film verteilen lässt. Das Haftungsvermögen der Druckfarbe wird durch ihre Zügigkeit spezifiziert. Je höher die in Form eines Tackwertes angegebene Zügigkeit der Druckfarbe ist, desto schlechter ist sie spaltfähig, sodass es höherer Kräfte bedarf, um einen Film dieser Druckfarbe durch eine Anordnung von Rotationskörpern zu transportieren und auf den Bedruckstoff zu übertragen, was in der Druckmaschine zufolge eines höheren Reibungswiderstandes zu einer Wärmeerzeugung führt.

Die Viskosität und Zügigkeit einer Druckfarbe sind temperaturabhängig. Auch eine Produktionsgeschwindigkeit der Druckmaschine, mit der der Bedruckstoff durch die Druckmaschine transportiert wird und die z. B. bei einer Bogendruckmaschine 18.000 Bogen/h oder bei einer Rollendruckmaschine 16 m/s betragen kann, nimmt zumindest indirekt auf die Viskosität und Zügigkeit der Druckfarbe Einfluss. Damit beim Übereinanderdruck mehrerer Druckfarben eine nachfolgend gedruckte Druckfarbe auf einer zuvor gedruckten Druckfarbe haftet, muss die nachfolgende Druckfarbe einen geringeren Tackwert aufweisen ("Trapping").

Die in dem Beispiel der Fig. 1 gezeigte Druckmaschine weist mindestens ein mit einem

Stellglied 07 einstellbares Maschinenelement 08 auf, wobei eine Einstellung des mindestens einen Maschinenelementes 08 auf die Qualität des von der Druckmaschine ausgeführten Druckes als eine Regelstrecke 09, d. h. eine zu regelnde Strecke, wirkt, wobei eine Erfassungseinrichtung 11, vorzugsweise eine optische Erfassungseinrichtung 11, mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung 11 empfangene Regeleinrichtung 12 mit dem Stellglied 07 das mindestens eine Maschinenelement 08 in Abhängigkeit einer Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der als Istwert von der optischen Erfassungseinrichtung 11 erfassten Qualität des Druckes vorzugsweise nach dem Erreichen oder Überschreiten einer zulässigen Toleranzgrenze in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt.

Das mindestens eine hinsichtlich der Qualität des Druckes einstellbare Maschinenelement 08 ist z. B. eine Temperiereinrichtung zur Temperierung zumindest eines Teils einer Mantelfläche eines Rotationskörpers der Druckmaschine, wobei der Rotationskörper am Transport einer Druckfarbe zu dem in der Druckmaschine mit der Druckfarbe bedruckten Bedruckstoff beteiligt ist. Dabei kann die Temperiereinrichtung die Temperierung mit einem gasförmigen und/oder einem flüssigen Temperierungsmittel durchführen, also die Temperierung z. B. mit Luft oder mit Wasser vornehmen, wobei das Temperierungsmittel z. B. mantelflächennahe Kanäle des Rotationskörpers durchströmt. Die Temperiereinrichtung sorgt dafür, dass die u. a. auf einen im Druckwerk 01 angeordneten Formzylinder und dann in einem weiteren Übertragungsweg auf den Bedruckstoff zu übertragene Druckfarbe ihre Temperatur z. B. in einem Bereich zwischen 20°C und 40°C hält.

Die Temperiereinrichtung wirkt auf mindestens eine rheologische Eigenschaft der Druckfarbe, wobei die rheologische Eigenschaft der Druckfarbe vorzugsweise deren Viskosität oder Zügigkeit ist. Die Temperiereinrichtung hält die Viskosität der Druckfarbe

in einem sich auf die Umgebungsluft der Druckmaschine beziehenden Temperaturbereich von z. B. 20°C bis 40°C auf einen vorzugsweise im Bereich zwischen 1 und 150 Pa*s liegenden Wert konstant, insbesondere auf einen im Bereich zwischen 10 Pa*s und 100 Pa*s liegenden Wert. Die Zügigkeit der Druckfarbe wird von der Temperiereinrichtung im Temperaturbereich zwischen 20°C und 40°C vorzugsweise auf einen Tackwert im Bereich zwischen 6 bis 9,5 gehalten, insbesondere auf einen Tackwert im Bereich zwischen 7 bis 8,5, und in dem jeweiligen Bereich der Tackwerte vorzugsweise auf einen annähernd konstanten Tackwert.

Die Temperiereinrichtung kann derart eingestellt sein, dass sie alternativ oder zusätzlich zu ihrer Einstellung im Temperaturbereich zwischen 20°C und 40°C die Zügigkeit der Druckfarbe für eine Produktionsgeschwindigkeit der Druckmaschine von 3 m/s bis 16 m/s auf einen Tackwert im Bereich zwischen 4 und 12 hält. Vorzugsweise hält die Temperiereinrichtung die Zügigkeit der Druckfarbe für eine Produktionsgeschwindigkeit der Druckmaschine von 3 m/s bis 16 m/s auf einen annähernd konstanten Tackwert.

Beim Druck von mehreren Druckfarben auf denselben Bedruckstoff stellt die Temperiereinrichtung den Tackwert der verdruckten Druckfarben vorzugsweise unterschiedlich ein. Damit weisen die von mindestens zwei Druckwerken auf denselben Bedruckstoff gedruckten Druckfarben sich voneinander unterscheidende Tackwerte auf. Um ein gutes Haftungsvermögen beim Übereinanderdruck von Druckfarben zu erzielen, wird die Temperiereinrichtung vorzugsweise derart eingestellt, dass sich beim Druck von mehreren Druckfarben auf denselben Bedruckstoff der Tackwert der verdruckten Druckfarben von der ersten bis zur letzten verdruckten Druckfarbe stetig verringern. Zu diesem Zweck ist es vorteilhaft, dass jedes Druckwerk 01 mindestens eine Temperiereinrichtung zur Temperierung zumindest eines Teils der Mantelfläche mindestens eines Rotationskörpers des Druckwerks 01 aufweist und dass des Weiteren jede Temperiereinrichtung unabhängig von einer anderen Temperiereinrichtung in demselben oder in einem anderen Druckwerk 01 einstellbar ist. In der bevorzugten

Ausführung ist der temperierte Rotationskörper als ein Formzylinder 08 oder als eine Rasterwalze in einem Druckfarbe auf dem Formzylinder 08 auftragenden Farbwerk 13 ausgebildet.

Ein weiteres Maschinenelement 08 kann als eine Dosiereinrichtung des Farbwerks 13 zum Dosieren der Menge der auf den Bedruckstoff zu übertragenden Druckfarbe ausgebildet sein. Diese Dosiereinrichtung kann in Axialrichtung des Formzylinders 08 mehrere, z. B. zwischen 30 und 60 Zonen aufweisen, wobei die Dosierung der auf den Bedruckstoff zu übertragenen Druckfarbe in unterschiedlichen Zonen unterschiedlich einstellbar ist. Die Dosiereinrichtung kann z. B. steuerbare Zonenschrauben aufweisen, wobei in der im Mehrfarbendruck druckenden Druckmaschine insgesamt mehrere hundert jeweils einzeln steuerbare Zonenschrauben vorgesehen sein können. Die Dosiereinrichtung dosiert eine Menge der auf den Bedruckstoff zu übertragenden Druckfarbe durch eine Einstellung ihrer Schichtdicke und/oder ihrer Auftragungsdauer.

In einer Offsetdruckmaschine sind zumindest ein Formzylinder 08 und ein mit diesem Formzylinder 08 zusammenwirkender Übertragungszylinder 14 vorgesehen, wobei es vorteilhaft ist, dass der Formzylinder 08 und der Übertragungszylinder 14 als deren Stellglieder 07 vorzugsweise einen jeweils unabhängig voneinander z. B. elektrisch steuerbaren, vorzugsweise lagegeregelten Antrieb aufweisen. Die Druckmaschine ist demnach vorzugsweise wellenlos ausgebildet, wobei die Antriebe der Formzylinder 08 und/oder der Übertragungszylinder 14 von einem Antrieb eines zugehörigen Gegendruckzylinders 16 mechanisch entkoppelt sind, und die Antriebe die Zylinder 08; 14; 16 während des Druckens rotativ antreiben. Es kann zwar vorgesehen sein, dass der Formzylinder 08 und der Übertragungszylinder 14 z. B. mit Zahnrädern mechanisch gekoppelt sind und einen gemeinsamen steuerbaren, lagegeregelten Antrieb aufweisen, dass aber dieser gemeinsame Antrieb auf jeden Fall von einem Antrieb des Gegendruckzylinders 16 mechanisch entkoppelt ist. Mit mindestens einem der steuerbaren Antriebe ist eine Phasenlage oder eine Winkellage zwischen dem

Formzylinder 08 und/oder dem Übertragungszylinder 14 gegenüber dem Gegendruckzylinder 16 oder relativ zu einem anderen Formzylinder 08 der Druckmaschine einstellbar und vorzugsweise regelbar, wobei die Phasenlage oder Winkellage zur Einstellung eines Umfangsregisters nutzbar ist. Es kann aber auch bei formschlüssiger Kopplung des Formzylinders 08 an den Gegendruckzylinder 14 ein Stellantrieb zur Phasenverstellung vorgesehen sein. Das Umfangsregister beeinflusst die Lagegenauigkeit eines Farbauszugs relativ zu einer quer zur Transportrichtung des Bedruckstoffes gerichteten Bezugskante oder Bezugslinie des Bedruckstoffes.

Der Bedruckstoff wird zwischen dem Gegendruckzylinder 16 und einem mit dem Gegendruckzylinder 16 zusammenwirkenden Übertragungszylinder 14 hindurchgeführt. Des Weiteren weist jedes Druckwerk 01 der in der Fig. 1 beispielhaft dargestellten Druckmaschine jeweils ein mit dem Formzylinder 08 zusammenwirkendes Farbwerk 13 und ein Feuchtwerk 17 auf, wobei die von mindestens zwei Druckwerken 01 auf denselben Bedruckstoff gedruckten Druckfarben vorzugsweise sich voneinander unterscheidende Farbtöne aufweisen.

Ein weiteres in der Druckmaschine vorgesehenes Stellglied 07 kann eine Stelleinrichtung zum Einstellen einer Anpresskraft sein, wobei eine Walze des Farbwerks 13 oder eine Walze des ein Feuchtmittel auf den Formzylinder 08 übertragenden Feuchtwerks 17 die Anpresskraft auf den Formzylinder 08 oder auf eine jeweils andere Walze des Farbwerks 13 oder des Feuchtwerks 17 ausübt. Diese Stelleinrichtung kann z. B. als ein fernbetätigbares Walzenschloss ausgebildet sein, in welchem die Enden der Walze des Farbwerks 13 oder des Feuchtwerks 17 gelagert sind, wobei das Walzenschloss durch in ihm angeordnete Aktoren die von einer Walze ausgeübte Anpresskraft, die Breite eines Walzenstreifens oder eine Spaltweite zwischen der Mantelfläche von zwei zusammenwirkenden Walzen einstellt. Vorzugsweise weisen mindestens zwei Walzen des Farbwerks 13 oder des Feuchtwerks 17 jeweils einen unabhängig voneinander steuerbaren Antrieb auf, wobei ein weiteres Stellglied 07 der Druckmaschine z. B. eine

Steuereinrichtung ist, welche eine Relativgeschwindigkeit zwischen den unabhängig voneinander angetriebenen Walzen steuert. Insbesondere verändert die Steuereinrichtung die Relativgeschwindigkeit zwischen den Walzen des Feuchtwerks 17 zur Dosierung der auf den Formzylinder 08 übertragenen Feuchtmittelmenge in Abhängigkeit von der Menge der vom Farbwerk 13 auf den Formzylinder 08 übertragenen Menge an Druckfarbe.

Es ist vorteilhaft, dass die Druckmaschine als ein weiteres Stellglied 07 einen Stellantrieb zum Einstellen einer zum Bedruckstoff relativen Schrägstellung eines in der Druckmaschine angeordneten Formzylinders 08 aufweist. Dadurch kann der sogenannte "Cocking"-Effekt ausgeglichen werden, wenn ein Druckbild auf einer Druckform und/oder eine Druckform auf einem Formzylinder 08 relativ zur Axialrichtung des Formzylinders 08 schräg angeordnet ist. Beispielsweise ist mindestens ein axiales Ende des Formzylinders 08 in einem exzentrisch verstellbaren Lager gelagert, wobei der Stellantrieb zur Schrägstellung des Formzylinders 08 dessen Lagerung in dem mindestens einen exzentrisch verstellbaren Lager relativ zur Lagerung in dem das andere Ende des Formzylinders 08 lagernden Lager exzentrisch verstellt. Mindestens ein Lager des Formzylinders 08 ist z. B. als eine Exzenterbuchse ausgebildet. Wenn die Schrägstellung des Formzylinders 08 nicht durch ein Schwenken des Formzylinders 08 um einen seiner Lagerpunkte erfolgt, sondern um einen zwischen den beiden Lagerpunkten angeordneten Schwenkpunkt, so verstellt der Stellantrieb zum Einstellen der Schrägstellung des Formzylinders 08 diesen hinsichtlich einer lotrecht auf der Oberfläche des Bedruckstoffes stehenden Achse zentralsymmetrisch.

Ein weiteres Stellglied 07 der Druckmaschine kann eine Stelleinrichtung zur Axialverschiebung des Formzylinders 08 sein. Des Weiteren kann als ein Stellglied 07 auch eine Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder 08 angeordneten Druckform sein. Die Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder 08 angeordneten Druckform verschiebt diese z. B. relativ zu

mindestens einer anderen auf demselben Formzylinder 08 angeordneten Druckform. Die Stelleinrichtung zur Axialverschiebung des Formzylinders 08 oder die Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder 08 angeordneten Druckform können die auf dem Formzylinder 08 angeordnete Druckform auch relativ zu einer Druckform auf einem anderen in derselben Druckmaschine angeordneten Formzylinder 08 verschieben. Die Stelleinrichtung zur Axialverschiebung des Formzylinders 08 oder die Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder 08 angeordneten Druckform können zur Einstellung eines Seitenregisters und/oder auch zu einer zumindest teilweisen Kompensation einer feuchtigkeitsbedingten Querdehnung des Bedruckstoffes während seines Transports durch die Druckmaschine, d. h. zur Kompensation von Fan-out, genutzt werden. Das Seitenregister beeinflusst die Lagegenauigkeit eines Farbauszugs relativ zu einer in Transportrichtung des Bedruckstoffes gerichteten Bezugskante oder Bezugslinie des Bedruckstoffes.

Insbesondere zur Kompensation von Fan-out kann als ein weiteres Maschinenelement 08 ein eine Querdehnung des Bedruckstoffes zumindest teilweise kompensierender Bildregler vorgesehen sein, wobei der Bildregler auf die Oberfläche des Bedruckstoffes wirkende Rollen oder Blasdüsen aufweist und zwischen zwei Druckwerken 01 in Transportrichtung des Bedruckstoffes vorzugsweise nahe vor dem den Bedruckstoff nachfolgend bedruckenden Druckwerk 01 angeordnet ist.

Zur Erfassung der Qualität des Druckes ist eine optische Erfassungseinrichtung 11 mit einem auf die Oberfläche des in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor vorgesehen. Die optische Erfassungseinrichtung 11 ist vorzugsweise als ein Inspektionssystem ausgebildet, insbesondere als ein den Bedruckstoff während seines Transports durch die Druckmaschine inspizierendes Inline-Inspektionssystem. Ein Inspektionssystem erweitert die Funktionalität einer optischen Erfassungseinrichtung 11 dahingehend, dass alternativ oder insbesondere zusätzlich zur Detektion der z. B. densitometrisch ermittelbaren optischen Dichte einer auf dem Bedruckstoff aufgetragenen

Druckfarbe, des farbmetrisch, insbesondere spektralfotometrisch ermittelbaren Farbtons, des von Farbauszügen zueinander eingenommenen Farbregisters oder des Umfangsregisters und/oder des Seitenregisters eines Farbauszuges auch noch eventuelle Störungen im Druck, die z. B. durch den Transport des Bedruckstoffes oder den Druckprozess verursacht sind, erkannt und geeignete Maßnahmen zur Beseitigung der Störung oder zur Ausschleusung des fehlerhaften Druckerzeugnisses ergriffen werden können. Von einem Inspektionssystem erkannte Störungen sind z. B. Kratzer, Knicke, Papier- oder Schmutzpartikel, Farbablagerungen oder Butzen.

Die optische Erfassungseinrichtung 11 erfasst berührungslos in ihrer Grundfunktion eine Annahme von mindestens einer am Druck beteiligten Druckfarbe auf dem in der Druckmaschine bedruckten Bedruckstoff. Wenn mindestens eine im Druck verwendete Druckfarbe auf dem in der Druckmaschine bedruckten Bedruckstoff am Erfassungsort der optischen Erfassungseinrichtung 11 vorhanden ist, erkennt die optische Erfassungseinrichtung 11 das Vorhandensein der Druckfarbe an mindestens einer Beschaffenheit dieser Druckfarbe.

Die Beschaffenheit der Druckfarbe kann ihr farbmetrischer Farbton, eine optische Dichte oder eine Schichtdicke, eine Form, eine Position, eine Winkelung oder eine flächige Verteilung ihrer auf dem Bedruckstoff aufgetragenen Rasterpunkte sein. Die optische Erfassungseinrichtung 11 kann auch z. B. eine Lage von mindestens einem Rasterpunkt einer am Druck beteiligten Druckfarbe relativ zu einer Lage von mindestens einem Rasterpunkt mindestens einer anderen am Druck beteiligten Druckfarbe oder eine Lage von mindestens einem Rasterpunkt einer am Druck beteiligten Druckfarbe in einem auf dem Bedruckstoff gedruckten Druckbild erfassen, wobei die zuerst genannte Erfassungsoption eine Relativmessung und die zweite Erfassungsoption eine Absolutmessung, d. h. eine Bestimmung von Koordinaten des Rasterpunktes mit Bezug auf das zu druckende Druckbild, ist.

Insbesondere wenn die Druckmaschine den Bedruckstoff beidseitig bedruckt, d. h. als Bogendruckmaschine im Schön- und Widerdruck arbeitet, kann die optische Erfassungseinrichtung 11 auf gegenüberliegenden Seiten desselben Bedruckstoffes gedruckte Druckbilder und deren relative Lage zueinander erfassen, d. h. ein sogenanntes Wenderegister. Es versteht sich, dass das auf dem Bedruckstoff gedruckte Druckbild vorzugsweise aus mehreren Farbauszügen besteht.

Es kann vorgesehen sein, dass die optische Erfassungseinrichtung 11 eine Beschaffenheit des in der Druckmaschine bedruckten Bedruckstoffes erfasst. Die Beschaffenheit des Bedruckstoffes ist insbesondere eine dessen Bedruckbarkeit oder dessen Verdruckbarkeit betreffende Eigenschaft. So kann die Beschaffenheit des Bedruckstoffes eine Feuchtdehnung und/oder eine mechanische Dehnung von dessen Oberfläche quer und/oder längs in dessen durch die Druckmaschine verlaufender Transportrichtung sein. Die Beschaffenheit des Bedruckstoffes kann auch eine auf dessen Oberfläche aufgetragene Strichmenge sein, insbesondere eine auf die Oberfläche des Bedruckstoffes aufgetragene Strichmenge mit einem Strichgewicht von mehr als 5 g/m². Die Beschaffenheit des Bedruckstoffes kann auch einen Weißgrad von dessen Oberfläche betreffen.

Die optische Erfassungseinrichtung 11 erfasst z. B. mindestens eine einem Farbauszug zugeordnete Marke. Vorzugsweise erfasst die optische Erfassungseinrichtung 11 zwei einem Farbauszug zugeordnete, quer zur Transportrichtung des Bedruckstoffes voneinander beabstandete Marken gleichzeitig, um z. B. einen Störeinfluss durch Fan-out zu erkennen. Es ist vorteilhaft, die Marke als eine Mikromarke mit einer Weite von höchstens 0,2 mm auszubilden, also in einer Ausdehnung, die unterhalb des Auflösungsvermögens des menschlichen Auges liegt.

Alternativ oder zusätzlich zur Erfassung mindestens einer Marke kann die optische Erfassungseinrichtung 11 mindestens ein einem Farbauszug zugeordnetes Messfeld

erfassen, wobei das Messfeld z. B. ein Ausschnitt aus einem Farbauszug ist und Rasterpunkte mindestens einer Druckfarbe enthält. Das Messfeld kann auch als ein vorzugsweise außerhalb eines Satzspiegels des Druckbildes angeordneter Messstreifen ausgebildet sein. Die optische Erfassungseinrichtung 11 kann z. B. jeweils eine Lage von zwei einem Farbauszug zugeordneten, quer zur Transportrichtung des Bedruckstoffes nicht deckungsgleichen Messfeldern gleichzeitig erfassen, um durch die Lage der Messfelder zueinander z. B. einen Störeinfluss durch Fan-out zu erkennen.

Die optische Erfassungseinrichtung 11 kann insbesondere durch den Einsatz einer optischen Einrichtung, z. B. eines Objektives, derart ausgebildet sein, dass sie zumindest eine quer zur Transportrichtung verlaufende Breite eines Farbauszugs vollständig erfasst, vorzugsweise sogar eine quer zur Transportrichtung verlaufende Breite des Bedruckstoffes.

Die optische Erfassungseinrichtung 11 ist vorzugsweise hinter dem in Transportrichtung des Bedruckstoffes letzten Druckwerk 01 angeordnet. In einer im Schön- und Widerdruck arbeitenden Bogendruckmaschine ist die optische Erfassungseinrichtung 11 vor einer Wendeeinrichtung des Bedruckstoffes angeordnet.

Der Sensor der optischen Erfassungseinrichtung 11 ist vorzugsweise als ein Bildsensor ausgebildet. Die optische Erfassungseinrichtung 11 kann mehrere Sensoren, auch mehrere Bildsensoren, aufweisen. Der Sensor ist z. B. als eine Fotodiode ausgebildet, der Bildsensor z. B. als ein CCD-Chip oder als ein CMOS-Chip. Der Sensor sensiert vorzugsweise mehrere Farbtöne, insbesondere gleichzeitig. Die optische Erfassungseinrichtung 11 weist z. B. eine Zeilenkamera oder eine Flächenkamera auf.

Für die optische Erfassungseinrichtung 11 ist vorzugsweise eine Beleuchtungseinrichtung 18 vorgesehen. Die Beleuchtungseinrichtung 18 kann ihr Licht permanent oder gepulst aussenden und z. B. als eine Kaltlichtquelle ausgebildet sein, d. h. als eine Lichtquelle mit einem nur sehr geringen oder praktisch nicht vorhandenem Infrarotanteil in ihrem Licht. Als Leuchtmittel werden in der Beleuchtungseinrichtung 18 z. B. mehrere Leuchtdioden oder Laserdioden zum Einsatz gebracht. Es ist vorteilhaft, in der Beleuchtungseinrichtung 18 insbesondere für ihr Leuchtmittel eine Kühleinrichtung vorzusehen. Die Kühleinrichtung kann die Kühlung der Leuchtmittel mit einem gasförmigen oder flüssigen Kühlmittel durchführen. Die Beleuchtungseinrichtung 18 kann für eine leichtere Adaption an eine quer zur Transportrichtung des Bedruckstoffes gerichtete, zu erfassende Breite des

Messfeldes, des Farbauszuges oder des Bedruckstoffes aus mehreren aneinander reihbaren Modulen bestehen.

Die Beleuchtungseinrichtung 18 ist vorzugsweise nah am Druckfarbe auf den Bedruckstoff übertragenden Zylinder, z. B. dem Übertragungszylinder 14, oder nah an dem Gegendruckzylinder 16 angeordnet. Bei einer Bogendruckmaschine ist die Beleuchtungseinrichtung 18 z. B. unter einem Fußtritt hinter dem letzten Druckwerk der Druckmaschine angeordnet. Die Beleuchtungseinrichtung 18 weist zur Oberfläche des bedruckten Bedruckstoffes einen Abstand z. B. im Bereich zwischen 30 mm und 200 mm auf, vorzugsweise zwischen 80 mm und 140 mm, wohingegen der Sensor der optischen Erfassungseinrichtung 11 zum Bedruckstoff einen sich im Bereich zwischen 10 mm und 1.000 mm, vorzugsweise zwischen 50 mm und 400 mm bemessenen Abstand aufweist. Der Abstand der Beleuchtungseinrichtung 18 zur Oberfläche des bedruckten Bedruckstoffes ist derart gewählt, dass einerseits eine gleichmäßige, intensive Ausleuchtung der Oberfläche des Bedruckstoffes erfolgt, andererseits aber eine Verschmutzung der Beleuchtungseinrichtung 18 durch beim Transport des Bedruckstoffes aufgewirbelte Schmutzpartikel oder einen Farbsprühnebel weitgehend vermieden wird.

Die optische Erfassungseinrichtung 11 stellt an ihrem Ausgang entsprechend der Detektion ihres Sensors Daten, z. B. digitale Bilddaten, bereit, die von einer mit der optischen Erfassungseinrichtung 11 verbundenen Regeleinrichtung 12 empfangen werden. Die optische Erfassungseinrichtung 11 kann vorzugsweise über die Regeleinrichtung 12 zum Ausgleich einer systematisch auftretenden Differenz zwischen dem Sollwert und dem Istwert auch ein Signal s an eine Bebilderungseinrichtung zum Bebildern einer einen Farbauszug druckenden Druckform absetzen.

Wenn die Druckmaschine als eine Rollendruckmaschine ausgebildet ist, kann des Weiteren vorgesehen sein, dass die optische Erfassungseinrichtung 11 wiederum vorzugsweise über die Regeleinrichtung 12 ein Signal s an eine Steuereinrichtung zur

Steuerung eines den Druckwerken 01 nachgeordneten Falzapparates abgibt, wobei dieses Signal s insbesondere zur Steuerung eines Schneidzylinders des Falzapparates genutzt wird, um eine mit den Druckwerken 01 der Druckmaschine bedruckte Materialbahn quer zu ihrer Transportrichtung in Abhängigkeit von der Lage des gedruckten Druckbildes abzuschneiden oder zu perforieren. Es kann auch vorgesehen sein, eine Schneideinrichtung oder eine Perforiereinrichtung an einer quer zur Transportrichtung der Materialbahn variablen Position in Abhängigkeit von der von der optischen Erfassungseinrichtung 11 erkannten Lage des gedruckten Druckbildes zur Durchführung eines zur Transportrichtung der Materialbahn längs gerichteten Schnittes zu positionieren, wobei diese Schneideinrichtung oder Perforiereinrichtung z. B. im Falzapparat angeordnet ist. Auf diese Weise kann der Beschnitt des Bedruckstoffes jeweils in Abhängigkeit von der von der optischen Erfassungseinrichtung 11 erkannten Lage des gedruckten Druckbildes durchgeführt werden, wodurch die Regeleinrichtung 12 dann das sogenannte Schnittregister steuert. Die Lage des gedruckten Druckbildes kann relativ zu einer Bezugskante oder Bezugslinie des Bedruckstoffes oder relativ zu einem maschinenfesten Ortsbezug, z. B. zur Mitte des Druckzylinders oder zu einem sich seitlich zum Bedruckstoff erstreckenden Gestell der Druckmaschine, ermittelt und/oder überwacht werden.

Überdies kann an einer Rollendruckmaschine vorgesehen sein, dass wiederum vorzugsweise mit einem Signal s der Regeleinrichtung 12 z. B. in Abhängigkeit von der von der optischen Erfassungseinrichtung 11 erkannten Lage des gedruckten Druckbildes eine Bahnfangeinrichtung oder eine Bahnkappungseinrichtung angesteuert oder die Druckmaschine zum Stillstand gebracht wird, wenn die Regeleinrichtung 12 aus den Daten der optischen Erfassungseinrichtung 11 aufgrund einer signifikanten Abweichung des aktuell aufgenommenen gedruckten Druckbildes von seiner erwarteten Lage einen Bahnriss oder eine andere schwerwiegende Störung in der mit der Druckmaschine ausgeführten Produktion erkennt. Die Bahnfangeinrichtung kann mindestens eine Fangwalze aufweisen. Die Bahnkappungseinrichtung weist z. B. ein Abschlagmesser auf.

Die signifikante Abweichung der Lage des gedruckten Druckbildes kann in einer Überschreitung eines voreingestellten Schwellwertes bestehen. Auch kann die Regeleinrichtung 12 ein Signal s an eine Steuereinrichtung absetzen, wenn die Regeleinrichtung 12 aus den Daten der optischen Erfassungseinrichtung 11 ein Loch im Bedruckstoff erkennt.

Bei einer Feststellung einer Differenz zwischen dem Sollwert und dem Istwert ermittelt die Regeleinrichtung 12 z. B. ferner eine Veränderung eines Abstandes zwischen zwei quer zur Transportrichtung des Bedruckstoffes in dem Abstand oder zumindest in ihrer jeweiligen Lage nicht deckungsgleich angeordneten Marken oder Messfeldern, wobei die optische Erfassungseinrichtung 11 die beiden jeweils demselben Farbauszug zugeordneten Marken oder Messfelder vorzugsweise gleichzeitig erfasst und die Regeleinrichtung 12 in Abhängigkeit der ermittelten Veränderung des Abstandes mit dem Stellglied 07 das mindestens eine Maschinenelement 08 einstellt. Auf diese Weise kann einem Störeinfluss durch Fan-out, d. h. einer während des Druckprozesses erfolgten Breitenänderung des Bedruckstoffes, entgegengewirkt werden.

Es ist vorteilhaft, dass die Regeleinrichtung 12 den Vorgang der Einstellung des mindestens einen Maschinenelementes 08 im Druck fortlaufend durchführt, wobei der Regeleingriff vorzugsweise dann erfolgt, wenn durch aktuell detektierte Istwerte insbesondere wiederholt eine zulässige Toleranzgrenze erreicht oder überschritten wird. Die zulässige Toleranzgrenze kann z. B. Abweichungen vom Sollwert von 10 % zulassen. Die zulässige Toleranzgrenze kann auch festgelegt sein z. B. als eine Lageabweichung der Rasterpunkte von weniger als 10 μm, als ein Farbmessfehler von ΔΕ≥3 oder als eine Fehlergenauigkeit der optischen Dichte von ΔD>0,02, wobei sich dieser letzte Toleranzwert daran orientiert, welche Tonwertschwankungen vom menschlichen Auge typischerweise noch gerade wahrgenommen werden können. Geringfügigere Tonwertschwankungen werden vom menschlichen Auge praktisch nicht mehr als ein

ungleichmäßiger Farbauftrag wahrgenommen und bedürfen daher auch keines Regeleingriffs durch die Regeleinrichtung 12.

Der der Regeleinrichtung 12 als eine Referenz zur Verfügung gestellte Sollwert der Qualität des Druckes ist z. B. Daten aus einer dem Druck vorgelagerten Vorstufe oder einem vor dem Druck durch die Druckmaschine transportierten Referenzbedruckstoff entnommen. Alternativ oder ergänzend kann der Sollwert der Qualität des Druckes mit mindestens einem Eingabemittel der Regeleinrichtung 12 vor dem Druck eingegeben worden sein, sodass die Regeleinrichtung 12 den Sollwert diesen eingegebenen Daten entnehmen kann. Dabei kann die Eingabe der den Sollwert festlegenden Daten das Treffen einer Auswahl aus einer Menge von Daten sein, indem der Sollwert z. B. aus einer Menge von Standardwerten entsprechend der aktuell vorliegenden Anwendung auszuwählen ist. Auch kann vorgesehen sein, dass mindestens ein Istwert von in der Druckmaschine zuvor bedrucktem Bedruckstoff den Sollwert für in der Druckmaschine nachfolgend bedruckten Bedruckstoff bildet. Darüber hinaus kann vorgesehen sein, dass ein Mittelwert über mehrere Istwerte von in der Druckmaschine zuvor bedrucktem Bedruckstoff den Sollwert für in der Druckmaschine nachfolgend bedruckten Bedruckstoff bildet. Insofern kann die Regeleinrichtung 12 als ein adaptives, selbstlernendes System ausgebildet sein.

Es ist vorteilhaft, dass die Regeleinrichtung 12 die Differenz zwischen dem Sollwert und dem Istwert an einer Anzeigevorrichtung anzeigt, bei einer Differenz zwischen dem Sollwert und dem Istwert eine akustische und/oder eine optische Warnmeldung ausgibt und/oder die Differenz zwischen dem Sollwert und dem Istwert registriert und protokolliert. Dabei erleichtert die ganzheitliche Erfassung der Qualität des Druckes durch die optische Erfassungseinrichtung 11 ein vorzugsweise über alle produzierten Exemplare des Druckes erstelltes Protokoll, welches vom Ausführenden des Druckes als Nachweis gegenüber dem Auftraggeber verwendet werden kann.

In einer Ausführungsform stellt die Regeleinrichtung 12 bei einer Differenz zwischen dem Sollwert und dem Istwert mit dem Stellglied 07 das mindestens eine Maschinenelement 08 erst nach einer Freigabe durch eine Bedienperson in einer die Differenz minimierender Weise ein. In einer anderen Ausführungsform stellt die Regeleinrichtung 12 bei einer Differenz zwischen dem Sollwert und dem Istwert mit dem Stellglied 07 das mindestens eine Maschinenelement 08 selbsttätig in einer die Differenz minimierender Weise ein. Es kann vorgesehen sein, dass die Regeleinrichtung 12 das mindestens eine Maschinenelement 08 nur dann mit dem Stellglied 07 einstellt, wenn die Differenz zwischen dem Sollwert und dem Istwert einen vorgegebenen Schwellwert erreicht oder überschreitet. Vorteilhafterweise ist die Regeleinrichtung 12 in einem zur Druckmaschine gehörenden Leitstand integriert.

Das das mindestens eine Maschinenelement 08 einstellende Stellglied 07 ist z. B. als ein elektrischer, als ein hydraulischer oder als ein pneumatischer Antrieb ausgebildet, wobei das Stellglied 07 z. B. elektrisch betätigt ist. Vorzugsweise ist für jedes einstellbare Maschinenelement 08 ein eigenes Stellglied 07 vorgesehen, wobei die Stellglieder 07 unterschiedlicher Maschinenelemente 08 von der Regeleinrichtung 12 unabhängig voneinander einstellbar sind.

Es ist vorteilhaft, dass zumindest die optische Erfassungseinrichtung 11, die Regeleinrichtung 12 und mindestens eines der Stellglieder 07 an einen gemeinsamen Datenbus angeschlossen sind.

Die zuvor beschriebene Druckmaschine weist somit als ein hinsichtlich der Qualität des Druckes einstellbares Maschinenelement 08 z. B. Zylinder, Walzen, eine Temperiereinrichtung, eine Dosiereinrichtung eines Farbwerks 13 und/oder einen Bildregler auf. Als Stellglieder 07 sind z. B. Einzelantriebe für die Zylinder und/oder Walzen, eine Stelleinrichtung für eine Schrägstellung des Zylinders, eine Stelleinrichtung zur Einstellung einer zwischen Walzen ausgeübten Anpresskraft und/oder eine

Steuereinrichtung zur Steuerung einer zwischen Walzen bestehenden
Relativgeschwindigkeit vorgesehen. Die mit dem jeweiligen zugeordneten Stellglied 07
vorgenommene Einstellung jedes dieser Maschinenelemente 08 wirkt sich unmittelbar in
wahrnehmbarer Weise auf die Qualität des Druckes aus, wobei die optische
Erfassungseinrichtung 11 die von der Druckmaschine aktuell produzierte Qualität des
Druckes sensorisch vorzugsweise fortlaufend oder zumindest in einer schnellen Taktfolge
erfasst und mit der Qualität des Druckes korrelierende Daten der Regeleinrichtung 12
zuführt, die ihrerseits mit mindestens einem Stellglied 07 mindestens eines der
Maschinenelemente 08 in Abhängigkeit einer Differenz zwischen einer als Sollwert
vorgegebenen Qualität des Druckes und der als Istwert von der optischen
Erfassungseinrichtung 11 erfassten Qualität des Druckes in einer diese Differenz
zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt. Es ergibt sich
demnach ein geschlossener Regelkreis, wie er schematisch in einem vereinfachten
Blockschaltbild gemäß der Fig. 2 dargestellt ist.

Die Maschinenelemente 08 der Druckmaschine wirken zum einen auf die durch Koordinaten bestimmbare Lage von auf den Bedruckstoff gedruckten Rasterpunkten, und zwar auf die Lage der Rasterpunkte relativ zu einer Bezugslinie des Bedruckstoffes, wobei die Bezugslinie z. B. eine seitliche Kante des Bedruckstoffes sein kann, und/oder auf die Lage von Rasterpunkten unterschiedlicher Druckfarbe, die diese Rasterpunkte relativ zueinander einnehmen. Andererseits beeinflussen die Maschinenelemente 08 der Druckmaschine den Farbreiz der verdruckten Druckfarben, d. h. ihre physikalisch messbaren, farbmetrischen Eigenschaften, und zwar sowohl für eine einzelne Druckfarbe als auch im Zusammenwirken mit weiteren am Aufbau desselben Druckbildes beteiligten Druckfarben. Auf die Lage von auf den Bedruckstoff gedruckten Rasterpunkten und ihren Farbreiz wirken auch Eigenschaften des Bedruckstoffes, weshalb diese vorteilhafterweise in den die Qualität des Druckes regelnden Regelkreis einzubeziehen sind.

Zur Regelung der Qualität des Druckes ergibt sich mit den zuvor beschriebenen Einflussgrössen eine Matrix von miteinander kombinierbaren Parametern, wobei bestimmte Kombinationen von auf die Qualität des Druckes wirkenden Einstellungen zur Einstellung der Qualität des Druckes z. B. im Andruck der Druckmaschine und zur Stabilisierung der Qualität des Druckes auf dem eingestellten Niveau insbesondere im Fortdruck der Druckmaschine besonders vorteilhaft sind, weil sie während des Druckes auftretenden, z. B. verschleißbedingten, thermischen oder klimatischen Störeinflüssen, die die Reproduzierbarkeit der Qualität des Druckes und damit die Regelstrecke 09 negativ beeinflussen, besonders wirksam entgegenwirken. Verschleißbedingte Störeinflüsse ergeben sich an am Druck beteiligten Maschinenelementen, thermische Störeinflüsse wirken sich auf die Verdruckbarkeit der am beteiligten Druckfarben aus und klimatische Störeinflüsse wie eine Umgebungstemperatur und Feuchte beeinflussen die Verdruckbarkeit des Bedruckstoffes. Alle diese Störeinflüsse können in beliebiger, meist nicht vorhersehbarer Kombination und Intensität auf die Qualität des Druckes einwirken, d. h. sie beeinträchtigen, sodass eine fortlaufende Kontrolle der Qualität des Druckes vorteilhaft ist. Das Zeitverhalten der einzelnen Störeinflüsse kann sehr unterschiedlich sein und von langsam bis schnell veränderlich reichen oder oszillierend sein. Des Weiteren können die Störeinflüsse im Druck gleichmäßig oder ungleichmäßig auftreten und mithin eine stochastische Verteilung aufweisen.

Alle auf die Regelstrecke 09 wirkenden Störeinflüsse sind unabhängig von ihrer jeweiligen Ursache, ihres jeweiligen Zeitverhaltens oder ihrer flächenmäßigen Einwirkung auf den Druck in der Fig. 2 mit dem Bezugszeichen z versehen. Die von der optischen Erfassungseinrichtung 11 ausgegebenen Daten, die mit der erfassten Qualität des Druckes korrelieren und für die Regeleinrichtung 12 eine Regelgröße x bilden, sind in der Fig. 2 unabhängig von ihrer physikalischen Beschaffenheit zusammenfassend mit dem Bezugszeichen x bezeichnet. Der der Regeleinrichtung 12 als eine Führungsgröße w zugeführte Sollwert ist in der Fig. 2 mit dem Bezugszeichen w angegeben. Die Regeleinrichtung 12 wirkt mit einem in der Fig. 2 zusammenfassend mit dem

Bezugszeichen y versehenen Signal y zumindest auf ein Stellglied 07 des Regelkreises, sie kann jedoch auch noch insbesondere zusätzlich ein weiteres mit dem Bezugszeichen s gekennzeichnetes Signal s an eine oder mehrere weitere Steuereinrichtungen abgeben.

Bezüglich der die Qualität des Druckes und damit die Regelstrecke 09 beeinflussenden Kombinationen ist es z. B. vorteilhaft vorzusehen, dass das mindestens eine Maschinenelement 08 eine Temperiereinrichtung zur Temperierung zumindest eines Teils einer Mantelfläche eines Rotationskörpers der Druckmaschine ist, wobei der Rotationskörper am Transport einer Druckfarbe zu dem in der Druckmaschine mit der Druckfarbe bedruckten Bedruckstoff beteiligt ist, weil mit der Temperiereinrichtung auf die rheologischen Eigenschaften der Druckfarbe Einfluss genommen werden kann.

Es ist vorteilhaft, in einer weiteren Kombination vorzusehen, dass das Stellglied 07 ein Stellantrieb zum Einstellen einer zum Bedruckstoff relativen Schrägstellung eines in der Druckmaschine angeordneten Formzylinders 08 ist, weil damit dem "cocking"-Effekt entgegengewirkt werden kann.

Ferner ist es vorteilhaft, in einer weiteren Kombination vorzusehen, dass das Stellglied 07 beim Druck von mehreren Druckfarben auf denselben Bedruckstoff bei den verdruckten Druckfarben deren Tackwert jeweils unterschiedlich einstellt, um einen Übereinanderdruck mit einem guten Haftungsvermögen von am Druck beteiligten Druckfarben zu ermöglichen.

Es ist vorteilhaft, in einer Kombination vorzusehen, dass die Regeleinrichtung 12 bei einer Feststellung einer Differenz zwischen dem Sollwert und dem Istwert eine Veränderung eines Abstandes zwischen zwei quer zur Transportrichtung des Bedruckstoffes in dem Abstand oder zumindest in ihrer jeweiligen Lage nicht deckungsgleich angeordneten Marken oder Messfeldern ermittelt, wobei die optische Erfassungseinrichtung 11 die beiden jeweils demselben Farbauszug zugeordneten Marken oder Messfelder gleichzeitig

erfasst, wobei die Regeleinrichtung 12 in Abhängigkeit der ermittelten Veränderung des Abstandes mit dem Stellglied 07 das mindestens eine Maschinenelement 08 einstellt, um z. B. dem Fan-out entgegenzuwirken und dessen Störeinfluss zumindest teilweise zu kompensieren.

Auch ist es vorteilhaft, in einer Kombination vorzusehen, dass das Maschinenelement 08 eine Dosiereinrichtung eines Farbwerks 13 zum Dosieren der Menge der auf den Bedruckstoff zu übertragenden Druckfarbe ist, um die Menge der auf den Bedruckstoff zu übertragenden Druckfarbe durch eine Einstellung ihrer Schichtdicke und/oder ihrer Auftragungsdauer zu beeinflussen. Die Schichtdicke der auf dem Bedruckstoff aufgetragenen Druckfarbe liegt z. B. im Bereich zwischen 1 μm und 3 μm.

Den Kombinationen ist gemeinsam, dass die optische Erfassungseinrichtung 11 die von der Druckmaschine aktuell produzierte Qualität des Druckes sensorisch erfasst und mit der Qualität des Druckes korrelierende Daten der Regeleinrichtung 12 zuführt, die ihrerseits einen erfassten Istwert mit einem vorgegebenen Sollwert abgleicht und die aktuelle Einstellung mindestens eines Maschinenelementes 08 derart neu einstellt oder nachführt, dass die aktuell produzierte Qualität des Druckes an den Sollwert herangeführt und dort möglichst gehalten wird. Die Regeleinrichtung 12 untersucht also die Daten der optischen Erfassungseinrichtung 11 hinsichtlich eines Vorliegens eines Störeinflusses und analysiert beim Vorliegen eines Störeinflusses die Daten hinsichtlich dessen Ursache, Zeitverhalten und/oder flächenmäßiger Einwirkung auf den Druck. Als Ergebnis aus der Analyse setzt die Regeleinrichtung 12 mindestens ein Signal y an ein Stellglied 07 ab, um dem Störeinfluss entgegen zu wirken. Das Signal y kann datentechnisch komplex sein, was auch auf das Signal s zur Steuerung einer mit der Regeleinrichtung 12 in Verbindung stehenden Steuereinrichtung zutreffen kann.

Es ist vorteilhaft, in einer Kombination von auf den Druck wirkenden Maschinenelementen 08 solche vorzusehen, die Störeinflüssen unterschiedlicher Ursache sowie verschiedenen

Zeitverhaltens oder flächenmäßigen Einwirkung entgegenwirken. In der bevorzugten Ausführung ist sowohl mindestens ein auf die Maschinentechnik als auch mindestens ein auf die Eigenschaften des am Druck beteiligten Materials, insbesondere der Druckfarbe, wirkendes Maschinenelement 08 vorgesehen, die vorzugsweise unabhängig voneinander jeweils durch mindestens ein Stellglied 07 von der Regeleinrichtung 12 entsprechend der sich aus den von der optischen Erfassungseinrichtung 11 erfassten Daten ergebenden Notwendigkeit zum Einsatz gebracht werden.

Darüber hinaus kann die Regeleinrichtung 12 durch die ganzheitliche Erfassung der Qualität des Druckes mit der optischen Erfassungseinrichtung 11 die empfangenen Daten nach unterschiedlichen Kriterien analysieren und als einen aus der Analyse generierten Regeleingriff in die Regelstrecke 09 ein Signal y ausgeben, dass diverse Stellglieder 07 und/oder Maschinenelemente 08 gemeinsam, d. h. gleichzeitig oder zumindest aufeinander abgestimmt, zu Aktionen veranlasst, die in ihrer Kombination synergetisch unterschiedlichen Störeinflüssen auf den Druck entgegenwirken. Damit reagiert die Regeleinrichtung 12 nicht singulär auf Störeinflüsse, sondern wertet deren Verhalten auf den Druck in ihrer Gesamtauswirkung aus. Eine unerwünschte Unter- oder Überreaktion einzelner Stellglieder 07 und/oder Maschinenelemente 08 kann so minimiert werden.

Die ganzheitliche Erfassung der Qualität des Druckes mit der optischen Erfassungseinrichtung 11 bedeutet nicht notwendigerweise, dass die optische Erfassungseinrichtung 11 grundsätzlich alle Eigenschaften des Druckes erfasst, sondern sie bezieht sich vielmehr auf diejenigen Eigenschaften des Druckes, die der Ausführende des Druckes dessen Auftraggeber zugesichert hat und deren Einhaltung deshalb zu überwachen ist.

Dadurch, dass die Qualität des Druckes vorzugsweise nah an dem Ort ihrer Produktion mit der optischen Erfassungseinrichtung 11 erfasst wird und mehrere, vorzugsweise alle relevanten Störgrößen aus den gleichzeitig erfassten und in Echtzeit vorzugsweise

fortlaufend ausgewerteten Daten ermittelt werden, ist eine schnell wirksame Regelung möglich, sodass hinsichtlich des Druckes bereits nach sehr kurzer Zeit ein stabiler Betriebszustand mit einer guten Qualität erreichbar ist, der aufgrund einer kurzen Reaktionszeit der Regeleinrichtung 12 zu einer geringen Anlaufmakulatur führt und im Fortdruck beibehalten werden kann. Die Verarbeitung, Auswertung und Speicherung der durch die optische Erfassungseinrichtung 11 anfallenden Datenmenge erfordert eine vorzugsweise elektronisch ausgebildete Regeleinrichtung 12 mit einer hohen Prozessgeschwindigkeit, wobei unterschiedliche, aus den Daten der optischen Erfassungseinrichtung 11 erkannte Störeinflüsse in der Regeleinrichtung 12 vorzugsweise in zueinander parallelen Prozesszweigen ausgewertet werden.

Bezugszeichenliste

01	Druck	werk

- 02 Lackturm
- 03 Auslageverlängerung
- 04 Ausleger
- 05 -
- 06 Bogenanleger
- 07 Stellglied
- 08 Maschinenelement; Zylinder; Formzylinder
- 09 Regelstrecke
- 10 -
- 11 Erfassungseinrichtung
- 12 Regeleinrichtung
- 13 Farbwerk
- 14 Zylinder; Übertragungszylinder
- 15 -
- 16 Gegendruckzylinder
- 17 Zylinder; Feuchtwerk
- 18 Beleuchtungseinrichtung
- s Signal
- w Führungsgröße
- x Regelgröße
- y Signal
- z Störeinfluss

Ansprüche

- Druckmaschine mit mindestens einem mit einem Stellglied (07) einstellbaren 1. Maschinenelement (08), wobei eine Einstellung des mindestens einen Maschinenelementes (08) auf eine Qualität eines von der Druckmaschine ausgeführten Druckes wirkt, wobei eine optische Erfassungseinrichtung (11) mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung (11) empfangene Regeleinrichtung (12) mit dem Stellglied (07) das mindestens eine Maschinenelement (08) in Abhängigkeit einer Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der als Istwert von der optischen Erfassungseinrichtung (11) erfassten Qualität des Druckes in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt, dadurch gekennzeichnet, dass das mindestens eine Maschinenelement (08) eine Temperiereinrichtung zur Temperierung zumindest eines Teils einer Mantelfläche eines Rotationskörpers der Druckmaschine ist, wobei der Rotationskörper am Transport einer Druckfarbe zu dem in der Druckmaschine mit der Druckfarbe bedruckten Bedruckstoff beteiligt ist.
 - Druckmaschine mit mindestens einem mit einem Stellglied (07) einstellbaren Maschinenelement (08), wobei eine Einstellung des mindestens einen Maschinenelementes (08) auf eine Qualität eines von der Druckmaschine ausgeführten Druckes wirkt, wobei eine optische Erfassungseinrichtung (11) mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung (11) empfangene Regeleinrichtung (12) mit dem Stellglied (07) das mindestens eine Maschinenelement (08) in Abhängigkeit einer Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der

als Istwert von der optischen Erfassungseinrichtung (11) erfassten Qualität des Druckes in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt, dadurch gekennzeichnet, dass das Stellglied (07) ein Stellantrieb zum Einstellen einer zum Bedruckstoff relativen Schrägstellung eines in der Druckmaschine angeordneten Formzylinders (08) ist.

- 3. Druckmaschine mit mindestens einem mit einem Stellglied (07) einstellbaren Maschinenelement (08), wobei eine Einstellung des mindestens einen Maschinenelementes (08) auf eine Qualität eines von der Druckmaschine ausgeführten Druckes wirkt, wobei eine optische Erfassungseinrichtung (11) mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung (11) empfangene Regeleinrichtung (12) mit dem Stellglied (07) das mindestens eine Maschinenelement (08) in Abhängigkeit einer Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der als Istwert von der optischen Erfassungseinrichtung (11) erfassten Qualität des Druckes in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt, dadurch gekennzeichnet, dass das Stellglied (07) beim Druck von mehreren Druckfarben auf denselben Bedruckstoff bei den verdruckten Druckfarben deren Tackwert jeweils unterschiedlich einstellt.
- 4. Druckmaschine mit mindestens einem mit einem Stellglied (07) einstellbaren Maschinenelement (08), wobei eine Einstellung des mindestens einen Maschinenelementes (08) auf eine Qualität eines von der Druckmaschine ausgeführten Druckes wirkt, wobei eine optische Erfassungseinrichtung (11) mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung (11) empfangene Regeleinrichtung (12) mit dem Stellglied (07) das mindestens eine Maschinenelement (08) in Abhängigkeit einer

Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der als Istwert von der optischen Erfassungseinrichtung (11) erfassten Qualität des Druckes in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Feststellung einer Differenz zwischen dem Sollwert und dem Istwert eine Veränderung eines Abstandes zwischen zwei quer zur Transportrichtung des Bedruckstoffes in dem Abstand oder zumindest in ihrer jeweiligen Lage nicht deckungsgleich angeordneten Marken oder Messfeldern ermittelt, wobei die optische Erfassungseinrichtung (11) die beiden jeweils demselben Farbauszug zugeordneten Marken oder Messfelder gleichzeitig erfasst, wobei die Regeleinrichtung (12) in Abhängigkeit der ermittelten Veränderung des Abstandes mit dem Stellglied (07) das mindestens eine Maschinenelement (08) einstellt.

Druckmaschine mit mindestens einem mit einem Stellglied (07) einstellbaren Maschinenelement (08), wobei eine Einstellung des mindestens einen Maschinenelementes (08) auf eine Qualität eines von der Druckmaschine ausgeführten Druckes wirkt, wobei eine optische Erfassungseinrichtung (11) mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung (11) empfangene Regeleinrichtung (12) mit dem Stellglied (07) das mindestens eine Maschinenelement (08) in Abhängigkeit einer Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der als Istwert von der optischen Erfassungseinrichtung (11) erfassten Qualität des Druckes in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt, dadurch gekennzeichnet, dass das Maschinenelement (08) eine Dosiereinrichtung eines Farbwerks (13) zum Dosieren einer Menge der auf den Bedruckstoff zu übertragenden Druckfarbe ist.

- 6. Druckmaschine nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das Maschinenelement (08) oder ein weiteres Maschinenelement (08) eine Temperiereinrichtung zur Temperierung zumindest eines Teils einer Mantelfläche eines Rotationskörpers der Druckmaschine ist, wobei der Rotationskörper am Transport einer Druckfarbe zu dem in der Druckmaschine mit der Druckfarbe bedruckten Bedruckstoff beteiligt ist.
- 7. Druckmaschine nach einem der Ansprüche 1 oder 3 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) ein Stellantrieb zum Einstellen einer zum Bedruckstoff relativen Schrägstellung eines in der Druckmaschine angeordneten Formzylinders (08) ist.
- 8. Druckmaschine nach einem der Ansprüche 1, 2, 4 oder 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) beim Druck von mehreren Druckfarben auf denselben Bedruckstoff bei den verdruckten Druckfarben deren Tackwert jeweils unterschiedlich einstellt.
- 9. Druckmaschine nach einem der Ansprüche 1, 2, 3 oder 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Feststellung einer Differenz zwischen dem Sollwert und dem Istwert eine Veränderung eines Abstandes zwischen zwei quer zur Transportrichtung des Bedruckstoffes in dem Abstand oder zumindest in ihrer jeweiligen Lage nicht deckungsgleich angeordneten Marken oder Messfeldern ermittelt, wobei die optische Erfassungseinrichtung (11) die beiden jeweils demselben Farbauszug zugeordneten Marken oder Messfelder gleichzeitig erfasst, wobei die Regeleinrichtung (12) in Abhängigkeit der ermittelten Veränderung des Abstandes mit dem Stellglied (07) das mindestens eine Maschinenelement (08) einstellt.

- 10. Druckmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Maschinenelement (08) oder ein weiteres Maschinenelement (08) eine Dosiereinrichtung eines Farbwerks (13) zum Dosieren einer Menge der auf den Bedruckstoff zu übertragenden Druckfarbe ist.
- 11. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Temperierung mit einem gasförmigen und/oder einem flüssigen Temperierungsmittel durchführt.
- 12. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Temperatur der auf den Bedruckstoff zu übertragenen Druckfarbe in einem Bereich zwischen 20°C und 40°C hält.
- 13. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung auf mindestens eine rheologische Eigenschaft der Druckfarbe wirkt.
- 14. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die rheologische Eigenschaft der Druckfarbe deren Viskosität oder Zügigkeit ist.
- 15. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Viskosität der Druckfarbe im Temperaturbereich zwischen 20°C und 40°C auf einen im Bereich zwischen 1 und 150 Pa*s liegenden Wert konstant hält.
- 16. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Zügigkeit der Druckfarbe im Temperaturbereich zwischen 20°C und 40°C auf einen Tackwert im Bereich zwischen 6 bis 9,5 hält.

- 17. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Zügigkeit der Druckfarbe im Temperaturbereich zwischen 20°C und 40°C auf einen annähernd konstanten Tackwert hält.
- 18. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Zügigkeit der Druckfarbe für eine Produktionsgeschwindigkeit der Druckmaschine von 3 m/s bis 16 m/s auf einen Tackwert im Bereich zwischen 4 und 12 hält.
- 19. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung die Zügigkeit der Druckfarbe für eine Produktionsgeschwindigkeit der Druckmaschine von 3 m/s bis 16 m/s auf einen annähernd konstanten Tackwert hält.
- 20. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Temperiereinrichtung beim Druck von mehreren Druckfarben auf denselben Bedruckstoff den Tackwert der verdruckten Druckfarben unterschiedlich einstellt.
- 21. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein auf den Bedruckstoff gedrucktes Druckbild aus mehreren Farbauszügen besteht.
- 22. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) als ein den Bedruckstoff während seines Transports durch die Druckmaschine inspizierendes Inline-Inspektionssystem ausgebildet ist.
- 23. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Annahme von mindestens einer am

- Druck beteiligten Druckfarbe auf dem in der Druckmaschine bedruckten Bedruckstoff erfasst.
- 24. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) mindestens eine Beschaffenheit von mindestens einer verdruckten Druckfarbe erfasst.
- 25. Druckmaschine nach Anspruch 24, dadurch gekennzeichnet, dass die Beschaffenheit der Druckfarbe ihr Farbton ist.
- 26. Druckmaschine nach Anspruch 24, dadurch gekennzeichnet, dass die Beschaffenheit der Druckfarbe eine Schichtdicke ihrer auf dem Bedruckstoff aufgetragenen Rasterpunkte ist.
- 27. Druckmaschine nach Anspruch 24, dadurch gekennzeichnet, dass die Beschaffenheit der Druckfarbe eine Form ihrer auf dem Bedruckstoff aufgetragenen Rasterpunkte ist.
- 28. Druckmaschine nach Anspruch 24, dadurch gekennzeichnet, dass die Beschaffenheit der Druckfarbe eine Anordnung ihrer auf dem Bedruckstoff aufgetragenen Rasterpunkte ist.
- 29. Druckmaschine nach Anspruch 28, dadurch gekennzeichnet, dass die Anordnung eine relative Positionierung der Rasterpunkte zu Rasterpunkten mindestens einer anderen am Druck beteiligten Druckfarbe ist.
- 30. Druckmaschine nach Anspruch 24, dadurch gekennzeichnet, dass die Beschaffenheit der Druckfarbe eine flächige Verteilung ihrer auf dem Bedruckstoff aufgetragenen Rasterpunkte ist.

- 31. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Rasterwinkelung der Rasterpunkte von am Druck beteiligten Farbauszügen erfasst.
- 32. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine optische Dichte der auf dem Bedruckstoff aufgetragenen Druckfarbe erfasst.
- 33. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) den Farbton der auf dem Bedruckstoff aufgetragenen Druckfarbe spektralfotometrisch erfasst.
- 34. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Lage von mindestens einem Rasterpunkt einer am Druck beteiligten Druckfarbe relativ zu einer Lage von mindestens einem Rasterpunkt mindestens einer anderen am Druck beteiligten Druckfarbe erfasst.
- 35. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Lage von mindestens einem Rasterpunkt einer am Druck beteiligten Druckfarbe relativ zu einem auf dem Bedruckstoff gedruckten Druckbild erfasst.
- 36. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Lage des auf dem Bedruckstoff gedruckten Druckbildes relativ zu einer Bezugskante oder einer Bezugslinie des Bedruckstoffes erfasst.

- 37. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) auf gegenüberliegenden Seiten desselben Bedruckstoffes gedruckte Druckbilder und deren relative Lage zueinander erfasst.
- 38. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Beschaffenheit des in der Druckmaschine bedruckten Bedruckstoffes erfasst.
- 39. Druckmaschine nach Anspruch 38, dadurch gekennzeichnet, dass die Beschaffenheit des Bedruckstoffes eine dessen Bedruckbarkeit oder dessen Verdruckbarkeit betreffende Eigenschaft ist.
- 40. Druckmaschine nach Anspruch 38, dadurch gekennzeichnet, dass die Beschaffenheit des Bedruckstoffes eine Feuchtdehnung und/oder eine mechanische Dehnung von dessen Oberfläche quer und/oder längs in dessen durch die Druckmaschine verlaufender Transportrichtung ist.
- 41. Druckmaschine nach Anspruch 38, dadurch gekennzeichnet, dass die Beschaffenheit des Bedruckstoffes eine auf dessen Oberfläche aufgetragene Strichmenge ist.
- 42. Druckmaschine nach Anspruch 38, dadurch gekennzeichnet, dass die Beschaffenheit des Bedruckstoffes ein Weißgrad von dessen Oberfläche ist.
- 43. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine optische Eigenschaft einer auf die Oberfläche des Bedruckstoffes aufgetragenen Strichmenge erfasst.

- 2004-07-22
- 44. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Bedruckstoff ein Bogen oder eine Materialbahn ist.
- 45. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Druckmaschine als eine Offsetdruckmaschine ausgebildet ist.
- 46. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Druckmaschine unter Anwendung eines wasserlosen Offsetdruckverfahrens druckt.
- 47. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Druckmaschine als eine Bogendruckmaschine ausgebildet ist.
- 48. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Druckmaschine als eine Rollendruckmaschine ausgebildet ist.
- 49. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mehrere, denselben Bedruckstoff jeweils mit einer Druckfarbe bedruckende Druckwerke (01) vorgesehen sind.
- 50. Druckmaschine nach Anspruch 49, dadurch gekennzeichnet, dass die von mindestens zwei Druckwerken (01) auf denselben Bedruckstoff gedruckten Druckfarben sich voneinander unterscheidende Farbtöne aufweisen.
- 51. Druckmaschine nach Anspruch 49, dadurch gekennzeichnet, dass die von mindestens zwei Druckwerken (01) auf denselben Bedruckstoff gedruckten Druckfarben sich voneinander unterscheidende Tackwerte aufweisen.

- 52. Druckmaschine nach Anspruch 49, dadurch gekennzeichnet, dass jedes Druckwerk (01) mindestens eine Temperiereinrichtung zur Temperierung zumindest eines Teils der Mantelfläche mindestens eines Rotationskörpers des Druckwerks aufweist.
- 53. Druckmaschine nach Anspruch 49, dadurch gekennzeichnet, dass jede
 Temperiereinrichtung unabhängig von einer anderen Temperiereinrichtung in
 demselben oder in einem anderen Druckwerk (01) einstellbar ist.
- 54. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich beim Druck von mehreren Druckfarben auf denselben Bedruckstoff der Tackwert der verdruckten Druckfarben von der ersten bis zur letzten verdruckten Druckfarbe stetig verringern.
- 55. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest ein Formzylinder (08) und ein Gegendruckzylinder (16) vorgesehen sind, wobei der Formzylinder (08) einen unabhängig von einem Antrieb des Gegendruckzylinders (16) steuerbaren, lagegeregelten Antrieb aufweist.
- 56. Druckmaschine nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass der temperierte Rotationskörper als ein Formzylinder (08) oder als eine Rasterwalze in einem Druckfarbe auf dem Formzylinder (08) auftragenden Farbwerk (13) ausgebildet ist.
- 57. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) oder die Regeleinrichtung (12) zum Ausgleich einer systematisch auftretenden Differenz zwischen dem Sollwert und dem Istwert ein Signal (s) an eine Bebilderungseinrichtung zum Bebildern einer einen Farbauszug druckenden Druckform absetzt.

- 58. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) mindestens eine einem Farbauszug zugeordnete Marke erfasst.
- 59. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) zwei einem Farbauszug zugeordnete, quer zur Transportrichtung des Bedruckstoffes voneinander beabstandete Marken gleichzeitig erfasst.
- 60. Druckmaschine nach Anspruch 58, dadurch gekennzeichnet, dass die Marke als eine Mikromarke mit einer Weite von höchstens 0,2 mm ausgebildet ist.
- 61. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) mindestens ein einem Farbauszug zugeordnetes Messfeld erfasst.
- 62. Druckmaschine nach Anspruch 61, dadurch gekennzeichnet, dass das Messfeld ein Ausschnitt aus einem Farbauszug ist.
- 63. Druckmaschine nach Anspruch 61, dadurch gekennzeichnet, dass das Messfeld Rasterpunkte mindestens einer Druckfarbe enthält.
- 64. Druckmaschine nach Anspruch 61, dadurch gekennzeichnet, dass das Messfeld als ein Messstreifen ausgebildet ist.
- 65. Druckmaschine nach Anspruch 61, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) jeweils eine Lage von zwei einem Farbauszug

- zugeordneten, quer zur Transportrichtung des Bedruckstoffes nicht deckungsgleichen Messfeldern gleichzeitig erfasst.
- 66. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) zumindest eine quer zur Transportrichtung verlaufende Breite eines Farbauszugs vollständig erfasst.
- 67. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine quer zur Transportrichtung verlaufende Breite des Bedruckstoffes erfasst.
- 68. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) hinter dem in Transportrichtung des Bedruckstoffes letzten Druckwerk (01) angeordnet ist.
- 69. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) vor einer Wendeeinrichtung des Bedruckstoffes angeordnet ist.
- 70. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) mehrere Sensoren aufweist.
- 71. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sensor mehrere Farbtöne sensiert.
- 72. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sensor als eine Fotodiode oder als ein Bildsensor ausgebildet ist.

- 73. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sensor als ein CCD-Chip oder als ein CMOS-Chip ausgebildet ist.
- 74. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Zeilenkamera oder eine Flächenkamera aufweist.
- 75. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) eine Beleuchtungseinrichtung (18) aufweist.
- Druckmaschine nach Anspruch 75, dadurch gekennzeichnet, dass die Beleuchtungseinrichtung (18) permanent oder gepulst Licht aussendet.
- 77. Druckmaschine nach Anspruch 75, dadurch gekennzeichnet, dass die Beleuchtungseinrichtung (18) als eine Kaltlichtquelle ausgebildet ist.
- 78. Druckmaschine nach Anspruch 75, dadurch gekennzeichnet, dass die Beleuchtungseinrichtung (18) als Leuchtmittel mehrere Leuchtdioden oder Laserdioden aufweist.
- 79. Druckmaschine nach Anspruch 75, dadurch gekennzeichnet, dass die Beleuchtungseinrichtung (18) eine Kühleinrichtung aufweist.
- 80. Druckmaschine nach Anspruch 79, dadurch gekennzeichnet, dass die Kühleinrichtung die Kühlung der Leuchtmittel mit einem gasförmigen oder flüssigen Kühlmittel durchführt.

- 81. Druckmaschine nach Anspruch 75, dadurch gekennzeichnet, dass die Beleuchtungseinrichtung (18) aus mehreren aneinander reihbaren Modulen besteht.
- 82. Druckmaschine nach Anspruch 75, dadurch gekennzeichnet, dass die Beleuchtungseinrichtung (18) in einem Abstand zwischen 30 mm und 200 mm von der Oberfläche des bedruckten Bedruckstoffes angeordnet ist.
- 83. Druckmaschine nach Anspruch 5 oder 10, dadurch gekennzeichnet, dass die Dosiereinrichtung in Axialrichtung des Formzylinders (08) mehrere Zonen aufweist, wobei die Dosierung der auf den Bedruckstoff zu übertragenen Druckfarbe in unterschiedlichen Zonen unterschiedlich einstellbar ist.
- Druckmaschine nach Anspruch 5 oder 10, dadurch gekennzeichnet, dass die Dosiereinrichtung die Menge der auf den Bedruckstoff zu übertragenden Druckfarbe durch eine Einstellung ihrer Schichtdicke und/oder ihrer Auftragungsdauer dosiert.
- 85. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) eine Stelleinrichtung zum Einstellen einer Anpresskraft ist, wobei eine Walze des Farbwerks (13) oder eine Walze eines ein Feuchtmittel auf den Formzylinder (08) übertragenden Feuchtwerks (17) die Anpresskraft auf den Formzylinder (08) oder auf eine jeweils andere Walze des Farbwerks (13) oder des Feuchtwerks (17) ausübt.
- 86. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Farbwerk (13) und/oder ein Feuchtwerk (17) vorgesehen sind, wobei mindestens zwei Walzen des Farbwerks (13) oder des Feuchtwerks (17) jeweils einen unabhängig voneinander steuerbaren Antrieb aufweisen, wobei als das

Stellglied (07) oder als ein weiteres Stellglied (07) eine Steuereinrichtung vorgesehen ist, wobei die Steuereinrichtung eine Relativgeschwindigkeit zwischen den unabhängig voneinander angetriebenen Walzen steuert.

- 87. Druckmaschine nach Anspruch 86, dadurch gekennzeichnet, dass die Steuereinrichtung die Relativgeschwindigkeit zwischen den Walzen des Feuchtwerks (17) zur Dosierung der auf den Formzylinder (08) übertragenen Feuchtmittelmenge in Abhängigkeit von der Menge der vom Farbwerk (13) auf den Formzylinder (08) übertragenen Menge an Druckfarbe verändert.
- 88. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) eine Stelleinrichtung zur Axialverschiebung des Formzylinders (08) ist.
- 89. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) eine Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder (08) angeordneten Druckform ist.
- 90. Druckmaschine nach Anspruch 89, dadurch gekennzeichnet, dass die Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder (08) angeordneten Druckform diese relativ zu mindestens einer anderen auf demselben Formzylinder (08) angeordneten Druckform verschiebt.
- 91. Druckmaschine nach Anspruch 88 oder 89, dadurch gekennzeichnet, dass die Stelleinrichtung zur Axialverschiebung des Formzylinders (08) oder die Stelleinrichtung zur Axialverschiebung mindestens einer auf dem Formzylinder (08) angeordneten Druckform die auf dem Formzylinder (08) angeordnete

- Druckform relativ zu einer Druckform auf einem anderen in derselben Druckmaschine angeordneten Formzylinder (08) verschiebt.
- 92. Druckmaschine nach Anspruch 2 oder 7, dadurch gekennzeichnet, dass mindestens ein axiales Ende des Formzylinders (08) in einem exzentrisch verstellbaren Lager gelagert ist, wobei der Stellantrieb zur Schrägstellung des Formzylinders (08) dessen Lagerung in dem mindestens einen exzentrisch verstellbaren Lager relativ zur Lagerung in dem das andere Ende des Formzylinders (08) lagernden Lager exzentrisch verstellt.
- 93. Druckmaschine nach Anspruch 92, dadurch gekennzeichnet, dass mindestens ein Lager des Formzylinders (08) als eine Exzenterbuchse ausgebildet ist.
- 94. Druckmaschine nach Anspruch 2 oder 7, dadurch gekennzeichnet, dass der Stellantrieb zum Einstellen der Schrägstellung des Formzylinders (08) diesen hinsichtlich einer lotrecht auf der Oberfläche des Bedruckstoffes stehenden Achse zentralsymmetrisch verstellt.
- 95. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Maschinenelement (08) oder ein weiteres Maschinenelement (08) ein eine Querdehnung des Bedruckstoffes zumindest teilweise kompensierender Bildregler ist.
- 96. Druckmaschine nach Anspruch 95, dadurch gekennzeichnet, dass der Bildregler auf die Oberfläche des Bedruckstoffes wirkende Rollen oder Blasdüsen aufweist.
- 97. Druckmaschine nach Anspruch 95, dadurch gekennzeichnet, dass der Bildregler zwischen zwei Druckwerken (01) in Transportrichtung des Bedruckstoffes nahe vor dem den Bedruckstoff nachfolgend bedruckenden Druckwerk (01) angeordnet ist.

- 98. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) den Vorgang der Einstellung des mindestens einen Maschinenelementes (08) im Druck fortlaufend durchführt.
- 99. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sollwert der Qualität des Druckes Daten aus einer dem Druck vorgelagerten Vorstufe entnommen ist.
- 100. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sollwert der Qualität des Druckes einem vor dem Druck durch die Druckmaschine transportierten Referenzbedruckstoff entnommen ist.
- 101. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sollwert der Qualität des Druckes der Regeleinrichtung (12) vor dem Druck mit mindestens einem Eingabemittel eingegebenen Daten entnommen ist.
- 102. Druckmaschine nach Anspruch 101, dadurch gekennzeichnet, dass die Eingabe der den Sollwert festlegenden Daten das Treffen einer Auswahl aus einer Menge von Daten ist.
- 103. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens ein Istwert von in der Druckmaschine zuvor bedrucktem Bedruckstoff den Sollwert für in der Druckmaschine nachfolgend bedruckten Bedruckstoff bildet.
- 104. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Mittelwert über mehrere Istwerte von in der Druckmaschine zuvor bedrucktem Bedruckstoff den Sollwert für in der Druckmaschine nachfolgend bedruckten Bedruckstoff bildet.

- 105. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) die Differenz zwischen dem Sollwert und dem Istwert an einer Anzeigevorrichtung anzeigt.
- 106. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Differenz zwischen dem Sollwert und dem Istwert eine akustische und/oder eine optische Warnmeldung ausgibt.
- 107. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) die Differenz zwischen dem Sollwert und dem Istwert registriert und protokolliert.
- 108. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Differenz zwischen dem Sollwert und dem Istwert mit dem Stellglied (07) das mindestens eine Maschinenelement (08) erst nach einer Freigabe durch eine Bedienperson in die Differenz minimierender Weise einstellt.
- 109. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Differenz zwischen dem Sollwert und dem Istwert mit dem Stellglied (07) das mindestens eine Maschinenelement (08) selbsttätig in die Differenz minimierender Weise einstellt.
- 110. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) das mindestens eine Maschinenelement (08) nur dann mit dem Stellglied (07) einstellt, wenn die Differenz zwischen dem Sollwert und dem Istwert einen vorgegebenen Schwellwert erreicht oder überschreitet.

- 111. Druckmaschine nach Anspruch 110, dadurch gekennzeichnet, dass der Schwellwert eine vom Sollwert zulässige Toleranz von 10 % ist.
- 112. Druckmaschine nach Anspruch 110, dadurch gekennzeichnet, dass der Schwellwert eine vom Sollwert zulässige Lageabweichung der Rasterpunkte von weniger als 10 µm ist.
- 113. Druckmaschine nach Anspruch 110, dadurch gekennzeichnet, dass der Schwellwert eine vom Sollwert zulässige Farbabweichung von ΔE≥3 ist.
- 114. Druckmaschine nach Anspruch 110, dadurch gekennzeichnet, dass der Schwellwert eine vom Sollwert zulässige Abweichung der optischen Dichte von ΔD>0,02 ist.
- 115. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in einem zur Druckmaschine gehörenden Leitstand integriert ist.
- 116. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) als ein elektrischer, als ein hydraulischer oder als ein pneumatischer Antrieb ausgebildet ist.
- 117. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) elektrisch betätigt ist.
- 118. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mehrere einstellbare Maschinenelemente (08) vorgesehen sind, wobei jedes einstellbare Maschinenelement (08) ein Stellglied (07) aufweist.

- 119. Druckmaschine nach Anspruch 118, dadurch gekennzeichnet, dass die Stellglieder (07) unterschiedlicher Maschinenelemente (08) von der Regeleinrichtung (12) unabhängig voneinander einstellbar sind.
- 120. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest die optische Erfassungseinrichtung (11), die Regeleinrichtung (12) und das Stellglied (07) an einen gemeinsamen Datenbus angeschlossen sind.
- 121. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten mindestens ein in der Druckmaschine angeordnetes Führungselement zur Führung des Bedruckstoffes während seines Transportes durch die Druckmaschine steuert oder das Führungselement über ein Stellglied (07) regelt.
- 122. Druckmaschine nach Anspruch 121, dadurch gekennzeichnet, dass die Regeleinrichtung (12) das Führungselement über ein Stellglied (07) zur Mittenregelung des Bedruckstoffes regelt.
- 123. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten ein Signal (s) an eine Steuereinrichtung zur Steuerung eines Falzapparates abgibt.
- 124. Druckmaschine nach Anspruch 123, dadurch gekennzeichnet, dass die Regeleinrichtung (12) über die Steuereinrichtung des Falzapparates einen Schneidzylinder des Falzapparates steuert.

- 125. Druckmaschine nach Anspruch 124, dadurch gekennzeichnet, dass der Schneidzylinder einen als eine Materialbahn ausgebildeten bedruckten Bedruckstoff quer zu seiner Transportrichtung in Abhängigkeit von der Lage des gedruckten Druckbildes schneidet oder perforiert.
- 126. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten eine Schneideinrichtung oder eine Perforiereinrichtung an einer quer zur Transportrichtung des bedruckten Bedruckstoffes variablen Position in Abhängigkeit von der von der optischen Erfassungseinrichtung (11) erkannten Lage des gedruckten Druckbildes positioniert.
- 127. Druckmaschine nach Anspruch 126, dadurch gekennzeichnet, dass die Schneideinrichtung oder Perforiereinrichtung im Falzapparat angeordnet ist.
- 128. Druckmaschine nach Anspruch 123 oder 126, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit von der von der optischen Erfassungseinrichtung (11) erkannten Lage des gedruckten Druckbildes ein Schnittregister für einen Beschnitt des Bedruckstoffes steuert oder regelt.
- 129. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Differenz zwischen dem Sollwert und dem Istwert die Daten der optischen Erfassungseinrichtung (11) hinsichtlich des die Differenz verursachenden Störeinflusses, dessen Zeitverhalten und/oder dessen flächenmäßiger Einwirkung auf den Druck analysiert.
- 130. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sowohl mindestens ein auf die Maschinentechnik als auch mindestens ein auf die

Eigenschaften des am Druck beteiligten Materials, insbesondere der Druckfarbe, wirkendes Maschinenelement (08) vorgesehen sind, wobei die Regeleinrichtung (12) bei einer Differenz zwischen dem Sollwert und dem Istwert die unterschiedlich wirkenden Maschinenelemente (08) entsprechend der sich aus den von der optischen Erfassungseinrichtung (11) erfassten Daten ergebenden Notwendigkeit zum Einsatz bringt.

- 131. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) bei einer Differenz zwischen dem Sollwert und dem Istwert mehrere Stellglieder (07) und/oder Maschinenelemente (08) zu einer gemeinsamen, aufeinander abgestimmten, synergetischen Reaktion auf den die Differenz verursachenden Störeinfluss veranlasst.
- 132. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) elektronisch ausgebildet ist und mit einer hohen Prozessgeschwindigkeit arbeitet.
- 133. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) unterschiedliche, aus den Daten der optischen Erfassungseinrichtung (11) erkannte Störeinflüsse in parallelen Prozesszweigen auswertet.
- 134. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass aus den Daten der optischen Erfassungseinrichtung (11) ein Riss oder ein Loch im Bedruckstoff erkennbar ist.
- 135. Druckmaschine nach Anspruch 134, dadurch gekennzeichnet, dass die Regeleinrichtung (12) aus einer signifikanten Abweichung eines aktuell

- aufgenommenen gedruckten Druckbildes von seiner erwarteten Lage einen Riss im Bedruckstoff erkennt.
- 136. Druckmaschine nach Anspruch 135, dadurch gekennzeichnet, dass die signifikante Abweichung der Lage des gedruckten Druckbildes in einer Überschreitung eines voreingestellten Schwellwertes besteht.
- 137. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten im Fall eines erkannten Bahnrisses mit einem Signal (s) eine Bahnfangeinrichtung steuert.
- 138. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten im Fall eines erkannten Bahnrisses mit einem Signal (s) eine Bahnkappungseinrichtung steuert.
- 139. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten im Fall einer erkannten schwerwiegenden Störung in der mit der Druckmaschine ausgeführten Produktion die Druckmaschine zum Stillstand bringt.
- 140. Druckmaschine nach Anspruch 139, dadurch gekennzeichnet, dass die schwerwiegende Störung ein Riss im Bedruckstoff ist.
- 141. Druckmaschine nach Anspruch 55, dadurch gekennzeichnet, dass ein mit diesem Formzylinder (08) zusammenwirkender Übertragungszylinder (14) vorgesehen ist, und der Übertragungszylinder (14) mit dem Gegendruckzylinder (16)

zusammenwirkt, wobei der Formzylinder (08) und/oder der Übertragngszylinder (14) einen jeweils unabhängig voneinander und/oder einen unabhängig von einem Antrieb des Gegendruckzylinders (16) steuerbaren, lagegeregelten Antrieb aufweisen.

- 142. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) eine Stelleinrichtung zur Umfangsverstellung des Formzylinders (08) ist.
- 143. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) oder ein weiteres Stellglied (07) eine Stelleinrichtung zur Umfangsverstellung mindestens einer auf dem Formzylinder (08) angeordneten Druckform ist.
- 144. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) eine Phasenlage eines Formzylinders (08) relativ zur Phasenlage eines zugeordneten Gegendruckzylinders (16) einstellt.
- 145. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Stellglied (07) eine Phasenlage eines Formzylinders (08) relativ zur Phasenlage eines anderen Formzylinders (08) einstellt.
- 146. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Regeleinrichtung (12) in Abhängigkeit der von der optischen Erfassungseinrichtung (11) bereitgestellten Daten eine Markiereinrichtung, z. B. Ink-Jet, zur Kennzeichnung des Bedruckstoffes steuert.

- 147. Druckmaschine nach Anspruch 146, dadurch gekennzeichnet, dass eine Einrichtung, z. B.Weiche, eine Änderung des Transportweges des Bedruckstoffes steuert.
- 148. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Erfassungseinrichtung (11) nach einem Trockner angeordnet ist.
- 149. Druckmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Erfassungseinrichtung (11) einer Leitwalze vor einem Querfalzapparat und/oder vor einem Längsfalztrichter angeordet ist.

Zusammenfassung

Die Erfindung betrifft Druckmaschinen mit mindestens einem mit einem Stellglied einstellbaren Maschinenelement, wobei eine Einstellung des mindestens einen Maschinenelementes auf eine Qualität eines von der Druckmaschine ausgeführten Druckes wirkt, wobei eine optische Erfassungseinrichtung mit einem auf eine Oberfläche eines in der Druckmaschine bedruckten Bedruckstoffes gerichteten Sensor die Qualität des Druckes erfasst und wobei eine Daten von der optischen Erfassungseinrichtung empfangene Regeleinrichtung mit dem Stellglied das mindestens eine Maschinenelement in Abhängigkeit einer Differenz zwischen einer als Sollwert vorgegebenen Qualität des Druckes und der als Istwert von der optischen Erfassungseinrichtung erfassten Qualität des Druckes in einer die Differenz zwischen dem Sollwert und dem Istwert minimierenden Weise einstellt. Der Regelung liegt zugrunde, dass die Qualität des Druckes ganzheitlich von der optischen Erfassungseinrichtung erfasst und deren Daten hinsichtlich auf die Qualität des Druckes einwirkender Störeinflüsse ausgewertet wird.

FIG. 1

