

petBOA – A Python tool for Parameter Estimation of "black box" Macro- and Micro-kinetic Models with Bayesian Optimization

Sashank Kasiraju, Yifan Wang, Dionisios Vlachos*
University of Delaware
Saurabh Bhandari, Aayush Singh
The Dow Chemical Company

Fine-tuning MKMs

- Microkinetic models are adjusted to ensure better parity with experimental observations
- The adjustments are done to the DFT potential energies of reactant and product intermediates and transition state species (within the DFT error ~20-30 kJ/mol)
- MKM parameters are updated by defining an optimization problem which reduces the disparity between model and experimental quantities of interest.

Literature Example 1: Methanol Synthesis

- Methanol Synthesis on Cu through CO₂ and CO Hydrogenation
- 49 Elementary Steps Included in the Microkinetic Model

Table 2. The 49 Elementary Steps Included in the Microkinetic Model^a

no.	reaction	$E_{ m int}/{ m eV}$ IS/FS	$\Delta E/eV$	E_{a} / eV	sticking probability or pre-exponential factor	ω
R1	$CO_2 + * \rightarrow CO_2*$		-0.08		1	
R2	$H_2 + 2^* \rightarrow 2 H^*$		-0.29		1	
R3	$CO + * \rightarrow CO*$		-0.86		1	
R4	$H_2O + * \rightarrow H_2O^*$		-0.21		1	
R5	$HCOOH + * \rightarrow HCOOH*$		-0.22		1	
R6	$CH_2O + * \rightarrow CH_2O*$		-0.04		1	
R7	$CH_3OH + * \rightarrow CH_3OH^*$		-0.28		1	
R8	$HCOOCH_3 + * \rightarrow HCOOCH_3*$		-0.10		1	
R9	$CO^* + O^* \rightarrow CO_2^* + ^*$	0.14/0.76	-1.12	0.65	1.195×10^{12}	0.44
R10	$CO^* + OH^* \rightarrow COOH^* + *$	0/0	0.14	0.56	4.667×10^{11}	0.36
R11	$COOH^* + * \rightarrow CO_2^* + H^*$	0.00/0.11	-0.55	1.23	2.326×10^{13}	0.32
$R12^b$	$COOH^* + OH^* \rightarrow CO_2^* + H_2O^*$	-0.34/0.22	-0.76	0	1.000×10^{13}	0.00
R13	$COOH^* + H^* \rightarrow HCOOH^* + *$	-0.01/0.00	-0.59	0.73	6.793×10^{13}	0.35
R14	$H_2O^* + * \rightarrow OH^* + H^*$	0.01/0.08	0.21	1.39	1.436×10^{11}	0.60

$$E_{\rm f} = E_{\rm f,DFT} + \omega(\Delta H - \Delta E_{\rm DFT}),$$

Table 5. Fully Optimized Parameter Set Used in the Microkinetic Model^a

kinetic Model ^a	
parameter	optimized value
$\Delta H_{ m fit}$ (H)	$-0.07\mathrm{eV}$
$\Delta H_{ m fit}$ (O)	$0.00\mathrm{eV}$
$\Delta H_{ m fit}$ (OH)	$-0.41\mathrm{eV}$
$\Delta H_{\mathrm{fit}} \left(\mathrm{H_2O} \right)$	$0.00\mathrm{eV}$
ΔH_{fit} (CO)	$0.10\mathrm{eV}$
ΔH_{fit} (CO ₂)	$0.00\mathrm{eV}$
ΔH_{fit} (COOH)	−0.31 eV
ΔH_{fit} (HCO)	$-0.55\mathrm{eV}$
ΔH_{fit} (HCOO)	$-0.60\mathrm{eV}$
$\Delta H_{\mathrm{fit}} \left(\mathrm{H_{2}COO} \right)$	$0.00\mathrm{eV}$
ΔH_{fit} (HCOOH)	$-0.49\mathrm{eV}$
$\Delta H_{\mathrm{fit}} \left(\mathrm{CH_{3}O_{2}} \right)$	−0.55 eV
$\Delta H_{\mathrm{fit}}\left(\mathrm{CH_{2}O}\right)$	−0.43 eV
$\Delta H_{\mathrm{fit}}\left(\mathrm{CH_{3}O}\right)$	$-0.64\mathrm{eV}$
ΔH_{fit} (CH ₂ OH)	$0.00\mathrm{eV}$
ΔH_{fit} (CH ₃ OH)	−0.23 eV
$\omega(\text{CO*} + \text{H*} \rightarrow \text{HCO*} + \text{*})$	0.68
$\omega(HCO^* + H^* \rightarrow CH_2O^* + *)$	0.26
$\omega(CH_2O^* + H^* \rightarrow CH_3O^* + *)$	0.21
$\omega(\text{CO}_2^* + \text{H}^* \rightarrow \text{HCOO}^* + ^*)$	0.82
$\omega(\text{HCOO*} + \text{H*} \rightarrow \text{HCOOH*} + \text{*})$	0.68
$\omega(\text{HCOO*} + \text{H*} \rightarrow \text{H}_2\text{CO}_2^* + *)$	0.33
$\omega(\text{HCOOH*} + \text{H*} \rightarrow \text{CH}_3\text{O}_2^*)$	0.30
$\omega(\text{CO*} + \text{O*} \rightarrow \text{CO}_2^* + *)$	0.23
$\omega(\text{CO*} + \text{OH*} \rightarrow \text{COOH*} + *)$	0.59
$\omega(\text{COOH}^* + * \rightarrow \text{CO}_2^* + \text{H}^*)$	0.33
$\omega(H_2O^* + * \rightarrow OH^* + H^*)$	0.87
$\omega(OH^* + * \rightarrow O^* + H^*)$	0.91
ω (2 OH* + * \rightarrow H ₂ O* + O*)	0.66

L. C. Grabow and M. Mavrikakis, Mechanism of Methanol Synthesis on Cu through CO₂ and CO Hydrogenation, ACS Catalysis, 365-384, 2011.

Literature Example 1: Methanol Synthesis

- Methanol Synthesis on Cu through CO₂ and CO Hydrogenation
- 49 Elementary Steps Included in the Microkinetic Model

Table 2. The 49 Elementary Steps Included in the Microkinetic Model^a

					sticking probability or	
no.	reaction	$E_{\rm int}/{\rm eV}~{\rm IS/FS}$	$\Delta E/eV$	$E_{\rm a}$ / eV	pre-exponential factor	ω
R1	$CO_2 + * \rightarrow CO_2*$		-0.08		1	
R2	$H_2 + 2^* \rightarrow 2 H^*$		-0.29		1	
R3	$CO + * \rightarrow CO*$		-0.86		1	
R4	$H_2O + * \rightarrow H_2O^*$		-0.21		1	
R5	$HCOOH + * \rightarrow HCOOH*$		-0.22		1	
R6	$CH_2O + * \rightarrow CH_2O*$		-0.04		1	
R7	$CH_3OH + * \rightarrow CH_3OH*$		-0.28		1	
R8	$HCOOCH_3 + * \rightarrow HCOOCH_3*$		-0.10		1	
R9	$CO^* + O^* \rightarrow CO_2^* + *$	0.14/0.76	-1.12	0.65	1.195×10^{12}	0.44
R10	$CO^* + OH^* \rightarrow COOH^* + *$	0/0	0.14	0.56	4.667×10^{11}	0.36
R11	$COOH^* + * \rightarrow CO_2^* + H^*$	0.00/0.11	-0.55	1.23	2.326×10^{13}	0.32
$R12^b$	$COOH^* + OH^* \rightarrow CO_2^* + H_2O^*$	-0.34/0.22	-0.76	0	1.000×10^{13}	0.00
R13	$COOH^* + H^* \rightarrow HCOOH^* + *$	-0.01/0.00	-0.59	0.73	6.793×10^{13}	0.35
R14	$H_2O^* + * \rightarrow OH^* + H^*$	0.01/0.08	0.21	1.39	1.436×10^{11}	0.60

$$E_{\rm f} = E_{\rm f,DFT} + \omega(\Delta H - \Delta E_{\rm DFT})$$

Figure 4. Parity plot of experimental and calculated TOF. Full circles represent CH₃OH production rates; open circles, H₂O production rates. Experimental data is taken from refs 27 and 28. Quality of fit: R^2 -(CH₃OH) = 0.90, R^2 (H₂O) = 0.94, R^2 (overall) = 0.92.

L. C. Grabow and M. Mavrikakis, Mechanism of Methanol Synthesis on Cu through CO₂ and CO Hydrogenation, ACS Catalysis, 365-384, 2011.

Literature Example 2: Sequential Optimization

A sequential optimization algorithm for parameter estimation of MKMs

Objective Function

$$Z_{\text{Param.Est}} = \min \sum_{c \in C} (y_c - \overline{y}_c)^T W (y_c - \overline{y}_c)$$
$$+ \delta (\pi - \pi_{\text{nom}})^T (\pi - \pi_{\text{nom}})$$

$$\Delta H_{j} = \sum_{i \in I_{j}} \nu_{ij} H_{i} \quad \forall j \in J$$

$$H_{i} = H_{i}^{DFT} + \Delta BE_{i} \quad \forall i \in I$$

$$\Delta H_{j} = \sum_{i \in I_{j}} \nu_{ij} H_{i} \qquad \forall j \in J$$

$$E_{a,j} = E_{a,j}^{DFT} + \Delta E_{a,j}$$

$$H_{i} = H_{i}^{DFT} + \Delta B E_{i} \qquad \forall i \in I$$

$$E_{a,j} = H_{TS,j}^{DFT} + \Delta E_{TS,j} \qquad \forall j \in J$$

Binding Energy Deviation

Transition State Deviation

$$\frac{\mathrm{d}x_c}{\mathrm{d}t} = f(x_c, k_c, u_c)$$

$$g(x_c, k_c, u_c) = 0$$

$$y_c = Bx_c(t \to \infty); \quad x_c(0) = x_0(u_c);$$

$$u_c = \{F_{\mathrm{in},c}, P_{\mathrm{tot},c}, T_c\}$$

$$h(y_c, u_c, k_c) \ge 0$$

$$k_c = \psi(p, \pi_c, u_c)$$

$$k_{\text{for},j} = k_{0j} e^{-E_{a,j}/RT} \qquad \forall j \in J$$

$$k_{\text{for},j} = K_j k_{\text{rev},j} \qquad \forall j \in J$$

$$K_j = e^{-\Delta H_j/RT} e^{\Delta S_j/R} = K_{0j} e^{-\Delta H_j/RT} \qquad \forall j \in J$$

Rate/Equilibrium constants

$$\begin{split} E_{\mathbf{a},j} &\geq 0 \qquad \forall j \in J \\ E_{\mathbf{a},j} &\geq \Delta H_j \qquad \forall j \in J \\ \pi_{\mathrm{LB},n} &\leq \pi_n \leq \pi_{\mathrm{UB},n} \qquad \forall \, n \in \{1, \, 2, \, ..., \, N\} \end{split}$$

Thermodynamic Constraints

Literature Example 2: Sequential Optimization

A sequential optimization algorithm for parameter estimation of MKMs

Objective Function

$$Z_{\text{Param.Est}} = \min \sum_{c \in C} (y_c - \overline{y_c})^T W (y_c - \overline{y_c})$$
$$+ \delta (\pi - \pi_{\text{nom}})^T (\pi - \pi_{\text{nom}})$$

$$\frac{dx_{c}}{dt} = f(x_{c}, k_{c}, u_{c})$$

$$g(x_{c}, k_{c}, u_{c}) = 0$$

$$y_{c} = Bx_{c}(t \to \infty); \quad x_{c}(0) = x_{0}(u_{c});$$

$$u_{c} = \{F_{\text{in},c}, P_{\text{tot},c}, T_{c}\}$$

$$h(y_{c}, u_{c}, k_{c}) \ge 0$$

$$k_{c} = \psi(p, \pi_{c}, u_{c})$$

Figure 1. Schematic of the information flow in the sequential method for solving nonlinear optimization problems with an embedded system of DAEs. The flow of decision variables π , objective Z, state profiles y, x(t), and sensitivities $\left(\frac{\mathrm{d}y}{\mathrm{d}\pi}\right)^T$ have been marked explicitly. Inputs to the optimization block are constants p such as the DFT-derived kinetics and thermochemistry, initial guesses of decision variables π^0 , reactor inputs u such as the temperature, pressure, and feed composition, and experimental data \overline{y} , while the outputs are the optimal values of the decision variables π and model predictions y.

Figure 3. Model versus experiment turnover frequency (TOF) parity plot of the primary solution for the parameter estimation problem for methanol synthesis. Purple squares (■) indicate methanol TOF, red circles (●) indicate water TOF, and the dashed line is the parity line.

- petBOA uses Bayesian Optimization for a gradient-free parameter estimation
- petBOA relies on NEXTorch¹ for the Bayesian Optimization routines
- Parameter updates for MKMs i.e., (adsorbate reactant/product/transition state deviations) are handled "on-thefly" leveraging pMuTT and OpenMKM
- Code and detailed example templates can be found at
 - GitHub: https://github.com/vlachosGroup/petBOA

petBOA

Folder Tree for the main project

Examples folder tree

This describes the folder tree for the templates.

petBOA

- petBOA uses Bayesian Optimization for a gradient-free parameter estimation
- petBOA relies on NEXTorch¹ for the Bayesian Optimization routines
- Parameter updates for MKMs i.e., (adsorbate reactant/product/transition state deviations) are handled "on-thefly" leveraging pMuTT and OpenMKM
- Code and detailed example templates can be found at
 - GitHub: https://github.com/vlachosGroup/petBOA

Figure 1. Overview of the active learning framework.

petBOA with OpenMKM

- MKM's solved using OpenMKM
- Parameter tuning using NEXTorch's Bayesian Optimization
- All input files are generated using pMuTT during optimization
- Species binding energies are updated by changing the coefficients (a₅, F) of
- Nasa Polynomials

•
$$\frac{H}{RT} = a_0 + a_1 \frac{T}{2} + a_2 \frac{T^2}{3} + a_3 \frac{T^3}{4} + a_4 \frac{T^4}{5} + a_5 \frac{1}{T}$$

Shomate Polynomials

•
$$\frac{H}{RT} = \frac{1}{RT} \left(At + B \frac{t^2}{2} + C \frac{t^3}{3} + D \frac{t^4}{4} - E \frac{1}{t} + F \right)$$

- When making OpenMKM input files with using updated NASA/Shomate polynomials:
 - pMuTT updates thermo (yaml/xml) for new thermochemistry
 - pMuTT recalculated activation energy (E_a)
 of all elementary steps in which the species
 participates
 - pMuTT ensure newer activation energy is thermodynamically consistent

petBOA Workflow

- Use pMuTT-Excel link to develop OpenMKM input files.
- Decide on what parameters to fit/tune in this exercise i.e., deviations to ground-state species, transition state energies, or explicit activation barriers.
 - Perform sensitivity analysis to identify key params!
- Using Python Programming and pMuTT
 - Editing "reactor.yaml" input file based on experimental data to change operating conditions: P, T, Q, V, initial X, etc.
 - Thermodynamic specification file with new perturbations
 - Edit the "loss function" routine to decide on the logic used for evaluation the loss of the objective function.
- Parts of this workflow are automated, but some tweaks must be done manually.
- Run the parameter estimation and repeat it by "bracketing" the bounds, or multi-starting it identify optimal solution!

```
def loss function(params, **kwargs):
         create_thermo_yaml(params, *args)
         create_reactor_yaml(params, *args)
         qois = model wrapper.run(OpenMKM)
         loss = calculate(gois, input data)
         return loss
def create_thermo_yaml(params):
         parse params(params)
         new thermo = perturb species thermo(params, old species thermo)
         kin_params = recalculate_kinetic_params(new_thermo)
         write thermo file(new thermo, kin params)
def main:
         # Transform experimental data
         # Read Parameter Data
         param_data = read_param_input_file()
         # Populate Model Wrapper with data
         # Run Bayesian Optimization
         result = run BO optimizer(wrapper, params, loss, *, **)
         # plot and save results
```

Demo 1: petBOA – NH₃ Model

See Example at:

VLAB-Workshop/petBOA/

Acknowledgements

- 1. Department of Energy
- 2. RAPID (AIChE)
- 3. State of Delaware

Dr. Jeffrey Frey, HPC Kelly Walker – Logos Jaynell Keely - Logos

