УДК 519.83

ББК 22.18

ТООО: НАЗВАНИЕ СТАТЬИ

Артем И. Пьяных

Московский университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики 119991, Москва, Ленинские горы, 2-й учебный корпус artem.pyanykh@gmail.com

TODO: TITILE ABSTRACT.

Ключевые слова: TODO: ключевые слова.

©2015 А.И. Пьяных

1. Введение

В работе [1] была рассмотрена многошаговая модель биржевых торгов однотипными акциями, в которой торги между собой ведут два игрова. Перед началом торгов случайный ход определяет цену акции на весь период торгов, которая в состояниях рынка L и H равна 0 и 1 соответственно. Выбранная цена сообщается первому игроку и не сообщается второму, при этом второй игрок знает, что первый – инсайдер. Также оба игрока знают вероятность p высокой цены акции.

На каждом шаге торгов игроки одновременно и независимо назначают некоторую цену за акцию. Игроки могут делать произвольные вещественные ставки, причем игрок, предложивший бо́льшую цену, покупает у другого акцию по названной цене. Задачей игроков является максимизация стоимости портфеля, состоящего из некоторого числа акций и суммы денег.

Модель сводится к повторяющейся игре с неполной информацией, как описано в [2], для которой Де Мейером и Салей были найдены оптимальные стратегии игроков и значение игры. Позднее В. Доманским [3] была рассмотрена модицикация модели, в которой ставки игроков могли принимать значения только из заданного дискретного множества $\{i/m, i=\overline{0,m}\}$. В данной постановке им было получено решение игры неограниченной продолжительности.

В обеих работах использовался одинаковый механизм проведения транзакции, при котором акция продается по наибольшей из предложенных цен. Можно, однако, рассмотреть и следующий механизм формирования цены акции, предложенный в [4]: игроки одновременно предлагают цены p_1 и p_2 , при $p_1 > p_2$ акция продается по цене $\beta p_1 + (1-\beta)p_2$, где $\beta \in [0,1]$ – заданный коэффициент, характеризующий переговорную силу продавца.

Фактически, в работах [1] и [3] коэффициент β равен 1. Обобщение дискретной модели на случай произвольного β было рассмотрено в [5]. В данной работе обобщение на случай произвольного β проведено для модели игры с непрерывными ставками.

2. Модель игры

3. Оценка сверху выигрыша первого игрока

4. Оценка снизу выигрыша первого игрока

5. Значение игры

СПИСОК ЛИТЕРАТУРЫ

- 1. De Meyer B., Saley H. On the strategic origin of Brownian motion in finance // Int J Game Theory. 2002. V. 31. P. 285–319
- 2. Aumann R.J., Maschler M.B. Repeated Games with Incomplete Information. The MIT Press, Cambridge, London
- 3. Domansky V. Repeated games with asymmetric information and random price fluctuations at finance markets // Int J Game Theory. 2007. V. 36(2). P. 241–257
- 4. Chatterjee K., Samuelson W. Bargaining under Incomplete Information // Operations Research. 1983. V. 31. N. 5. P. 835–851
- 5. Пьяных А.И. Многошаговая модель биржевых торгов с асимметричной информацией и элементами переговоров // TODO

TODO: TITLE OF THE ARTICLE

Artem Pyanykh, Moscow State University, postgraduate student (artem.pyanykh@gmail.com).

Abstract: TODO: TITILE ABSTRACT.

Keywords: TODO: keywords.