Exploratory Data Analysis on Malware IoT Traffic

Dataset used: https://www.kaggle.com/datasets/agungpambudi/network-malware-detection-connection-analysis

This dataset describes network traffic which has been flagged by IoT malware detection systems. Important attributes for the data include the timestamp, uid (unique identifier), source IP address and port, destination IP address and port, and the label of the connection.

In this exercise, I perform the following:

- Download a dataset from Kaggle about network traffic and uploaded it to Colab.
- Organize the data into columns utilizing the file's unique delimitter ()).
- · Perform basic cleaning tasks such as dropping null values and irrelevant columns.
- · Explore the data by asking and answering 5 simple EDA questions.
- · Discuss the results of the analysis and suggest potential next steps.

I initially import any necessary libraries and load all 12 of the files.

```
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Loading files
df_1 = pd.read_csv("/content/CTU-IoT-Malware-Capture-1-1conn.log.labeled.csv")
df_2 = pd.read_csv("/content/CTU-IoT-Malware-Capture-20-1conn.log.labeled.csv")
df_3 = pd.read_csv("/content/CTU-IoT-Malware-Capture-21-1conn.log.labeled.csv")
df_4 = pd.read_csv("/content/CTU-IoT-Malware-Capture-3-1conn.log.labeled.csv")
df_5 = pd.read_csv("/content/CTU-IoT-Malware-Capture-34-1conn.log.labeled.csv")
df_6 = pd.read_csv("/content/CTU-IoT-Malware-Capture-35-1conn.log.labeled.csv")
df_7 = pd.read_csv("/content/CTU-IoT-Malware-Capture-42-1conn.log.labeled.csv")
df_8 = pd.read_csv("/content/CTU-IoT-Malware-Capture-44-1conn.log.labeled.csv")
df_9 = pd.read_csv("/content/CTU-IoT-Malware-Capture-48-1conn.log.labeled.csv")
df_10 = pd.read_csv("/content/CTU-IoT-Malware-Capture-60-1conn.log.labeled.csv")
df_11 = pd.read_csv("/content/CTU-IoT-Malware-Capture-8-1conn.log.labeled.csv")
df_12 = pd.read_csv("/content/CTU-IoT-Malware-Capture-9-1conn.log.labeled.csv")
```

Next, I look at samples from several of the datasets to ensure everything loaded properly. They are initially difficult to read and very cramped.

```
print(df_1.sample(10))
print(df_2.sample(10))
print(df_3.sample(10))
                                     ts|uid|id.orig\_h|id.orig\_p|id.resp\_h|id.resp\_p|proto|service|duration|orig\_bytes|resp\_bytes|conn\_state|local\_orig|local\_resp|miss|
  ₹
               896734 1526234439.023739|C117nV2tuI40rjTab5|192.168.1...
               166776 1525942582.007071 Ct4J9k3cnQDbpY3Uq8 192.168.1...
                                        1525880001.056842 | CQcf6wkGdOsUIIZrj | 87.18.20.3...
               562
               607186 1526111240.009333|Ct3S462jXplw70Bhqf|192.168.1...
               6321
                                       1525882122.020218 | COqf5mJH4F4ChbTS1 | 192.168.10...
               590879 1526104785.99969 | Cav45Q3KChmskf7Fg4 | 192.168.10...
               291096 1525989920.022084 | CbvNqG2Ji3hWxlDste | 192.168.1...
               199024 1525954942.042392 | CmHpWf1JFSndenSA01 | 192.168.1...
               646916 1526127222.003587 | C2q6Vp16Ikuz5K1Zma | 192.168.1...
               527663 1526080143.022516 | C9tKtoRuzoo63xfU2 | 192.168.10...
                               ts | uid| id.orig\_h| id.orig\_p| id.resp\_h| id.resp\_p| proto| service| duration| orig\_bytes| resp\_bytes| conn\_state| local\_orig| local\_resp| missed| conn\_orig| local\_orig| local\_orig| conn\_state| local\_orig| local\_orig| local\_orig| conn\_orig| local\_orig| conn\_orig| local\_orig| conn\_orig| conn\_or
               1456 1538511440.549519 Cm5sc44p0imtUxH1F2 192.168.1...
               2239 1538534917.550741 C5zNNT33RKN970zpii 192.168.1...
               3087 1538559991.550287 C5RSk8vixRM8WJWLb | 192.168.10...
                               1538495831.551009|CZ5cGQOWmiyEkhOPa|192.168.10...
               1888 1538522980.548459 | CRWht03rqNjbsI0qAi | 192.168.1...
                                 1538478864.657195 | CE1jSk2DkfDD8Rz3Ch | 192.168.1...
               2712 1538557185.548839|CLkJwe1esJjqSGerCd|192.168.1...
               1892 1538523237.547834 Cf4a9qNp55FgFHN3 192.168.100...
               2062 1538530289.550990 | CmbNp71ntVpmPzHvUc | 192.168.1...
               1580 1538512542.557450 CZSCbb3i4tGZEEGgLa | 192.168.1...
                               ts|uid|id.orig\_h|id.orig\_p|id.resp\_h|id.resp\_p|proto|service|duration|orig\_bytes|resp\_bytes|conn\_state|local\_orig|local\_resp|missed| ts|uid|id.orig\_bytes|resp\_bytes|conn\_state|local\_orig|local\_resp|missed| ts|uid|id.orig\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|resp\_bytes|re
               1287 1538598907.658338|ChbKUA4sT67t1WGMTa|192.168.1...
               1787 1538602199.708768 | CPLYDiu5lDeWyKNlj | 192.168.10...
               2662 1538615249.677118 | CQcGcf3g0IdFp9Zt26 | 192.168.1...
               3143 1538636956.798863 CCfsLs2yNLnKI8dLM3 192.168.1...
               1997 1538603528.686001 CT1qpO2dIYqwaa6Qji 192.168.1...
               215
                                 1538574376.657881 | CeIxNx1BiFfVE69IT8 | 192.168.1...
               2348 1538613286.665555 | CzDfM8DbQDLa07vGh | 192.168.10...
                                1538596211.660903 | CWSz7Y1CpsYltz7Atk | 192.168.1...
```

```
2243 1538612691.676344|CR8bdp3HfZFZiJdpoj|192.168.1...
1439 1538599845.657468|Ca06414BZnC3JnsUq3|192.168.1...
```

The next step is to perform basic EDA to gain understanding of the data.

In this step, I learned that even though the datasets hold the information for every column, this information is instead stored in a single column with the datatype "object". This leads to difficulties reading and filtering the data.

There is also high variance in file size, ranging from 237 rows to over 10 million.

```
# Obtaining the shape of the data (rows, columns)
print(df_1.shape)
print(df_2.shape)
print(df_3.shape)
print(df_4.shape)
print(df_5.shape)
print(df_6.shape)
print(df_7.shape)
print(df_8.shape)
print(df_9.shape)
print(df 10.shape)
print(df_11.shape)
print(df_12.shape)
# Obtaining a basic description of the data (unique and common values)
print(df 1.describe())
print(df_2.describe())
print(df_3.describe())
# Obtaining info about data (datatype)
print(df_1.info())
print(df_2.info())
print(df_3.info())
→ (1008748, 1)
     (3209, 1)
     (3286, 1)
     (156103, 1)
     (23145, 1)
     (10447787, 1)
     (4426, 1)
     (237, 1)
     (3394338, 1)
     (3581028, 1)
     (10403, 1)
     (6378293, 1)
            ts|uid|id.orig\_h|id.orig\_p|id.resp\_h|id.resp\_p|proto|service|duration|orig\_bytes|resp\_bytes|conn\_state|local\_orig|local\_resp|miss|
                                                         1008748
     count
     uniaue
                                                        1008748
             1525879831.015811 | CUmrqr4svHuSXJy5z7 | 192.168.1...
     top
     freq
            ts|uid|id.orig_h|id.orig_p|id.resp_h|id.resp_p|proto|service|duration|orig_bytes|resp_bytes|conn_state|local_orig|local_resp|miss
                                                            3209
     count
     unique
                                                            3209
     top
             1538478769.600293 | CSQG794riQ4XnzTxP2 | 192.168.1...
     freq
            ts|uid|id.orig\_h|id.orig\_p|id.resp\_h|id.resp\_p|proto|service|duration|orig\_bytes|resp\_bytes|conn\_state|local\_orig|local\_resp|miss|
     count
                                                            3286
     unique
                                                            3286
             1538572953.710599|Cu3Tieri43IPsyBO3|192.168.10...
     top
     freq
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1008748 entries, 0 to 1008747
     Data columns (total 1 columns):
      # Column
     0 ts|uid|id.orig_h|id.orig_p|id.resp_h|id.resp_p|proto|service|duration|orig_bytes|resp_bytes|conn_state|local_orig|local_resp|missed
     dtypes: object(1)
     memory usage: 7.7+ MB
     None
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 3209 entries, 0 to 3208
     Data columns (total 1 columns):
      # Column
     ---
         ts|uid|id.orig_h|id.orig_p|id.resp_h|id.resp_p|proto|service|duration|orig_bytes|resp_bytes|conn_state|local_orig|local_resp|missed
     dtypes: object(1)
     memory usage: 25.2+ KB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3286 entries, 0 to 3285
Data columns (total 1 columns):
# Column
0 ts|uid|id.orig_h|id.orig_p|id.resp_h|id.resp_p|proto|service|duration|orig_bytes|resp_bytes|conn_state|local_orig|local_resp|missed
dtypes: object(1)
memory usage: 25.8+ KB
None
```

The next step is to finally organize the data so that it properly fits into columns.

(This took me quite some time and was very difficult for me to eventually get right, so I was quite pleased to when it eventually worked.)

I decide to work with 1 dataframe instead of the initial 12 here.

```
# Rename the existing column to 'column_name'
df_1 = df_1.rename(columns={df_1.columns[0]: 'column_name'})
# Organize the data into correct columns using the delimitter to separate values
df_1[['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_sta
#df_2 = df_2.rename(columns={df_2.columns[0]: 'column_name'})
#df_2[['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_st
#df_3 = df_3.rename(columns={df_3.columns[0]: 'column_name'})
#df_3[['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_st
df_1.head()
```

₹	column_nam		ts uid		id.orig_h	id.orig_p	id.resp_h id
	0	1525879831.015811 CUmrqr4svHuSXJy5z7 192.168.1	1525879831.015811	CUmrqr4svHuSXJy5z7	192.168.100.103	51524	65.127.233.163
	1	1525879831.025055 CH98aB3s1kJeq6SFOc 192.168.1	1525879831.025055	CH98aB3s1kJeq6SFOc	192.168.100.103	56305	63.150.16.171
	2	1525879831.045045 C3GBTkINvXNjVGtN5 192.168.10	1525879831.045045	C3GBTklNvXNjVGtN5	192.168.100.103	41101	111.40.23.49
	3	1525879832.016240 CDe43c1PtgynajGl6 192.168.10	1525879832.016240	CDe43c1PtgynajGl6	192.168.100.103	60905	131.174.215.147
	4	1525879832.024985 CJaDcG3MZzvf1YVYI4 192.168.1	1525879832.024985	CJaDcG3MZzvf1YVYI4	192.168.100.103	44301	91.42.47.63

5 rows × 24 columns

Continuing the data preparation, the next step is to drop the original messy column and then begin the cleaning process.

```
# Dropping the original non-organized column
df_1.drop('column_name', axis=1, inplace=True)
# Checking for shapes and nulls
df 1.shape
df_1.describe()
df_1.info()
# Drops null values
df_1.dropna(inplace=True)
df 1.shape
df_1.info()
df_1.describe()
```

```
→▼ <class 'pandas.core.frame.DataFrame'>
    Index: 212448 entries, 0 to 1008685
    Data columns (total 24 columns):
                   Non-Null Count
     # Column
                                         Dtype
                        -----
     0
                        212448 non-null datetime64[ns]
        ts
                       212448 non-null object
     1
        uid
     2
        id.orig_h 212448 non-null object
id.orig_p 212448 non-null Int64
id.resp_h 212448 non-null object
        id.resp_h
                      212448 non-null Int64
        id.resp_p
                        212448 non-null object
        proto
                        212448 non-null object
        service
     8 duration
                        212448 non-null float64
        orig_bytes
                        212448 non-null Int64
     10 resp_bytes 212448 non-null Int64
                        212448 non-null object
     11 conn_state
     12 local_orig
                        212448 non-null object
     13 local_resp
                       212448 non-null object
     14 missed_bytes 212448 non-null Int64
     15 history
                        212448 non-null object
     16 orig_pkts
                        212448 non-null Int64
     17 orig_ip_bytes 212448 non-null Int64
18 resp_pkts 212448 non-null Int64
     19 resp_ip_bytes 212448 non-null Int64
         tunnel_parents 212448 non-null object
     20
     21 label
                       212448 non-null object
     22 detailed_label 212448 non-null object
                         212448 non-null int32
     23 hour
    dtypes: Int64(9), datetime64[ns](1), float64(1), int32(1), object(12)
    memory usage: 41.5+ MB
    <class 'pandas.core.frame.DataFrame'>
    Index: 212448 entries, 0 to 1008685
    Data columns (total 24 columns):
                        Non-Null Count
                                         Dtype
     # Column
                        _____
        ts
                        212448 non-null datetime64[ns]
                      212448 non-null object
        uid
     1
        id.resp h
        id.resp_p
                      212448 non-null Int64
     5
        proto
                        212448 non-null object
                        212448 non-null object
        service
                        212448 non-null float64
     8
        duration
        orig_bytes
                        212448 non-null Int64
     10 resp_bytes 212448 non-null Int64
     11 conn_state
                        212448 non-null object
     11conn_state212448 non-nullobject12local_orig212448 non-nullobject13local_resp212448 non-nullobject14missed_bytes212448 non-nullInt64
                        212448 non-null object
     15 history
     16 orig_pkts
                        212448 non-null Int64
     17 orig_ip_bytes 212448 non-null Int64
18 resp_pkts 212448 non-null Int64
     19 resp_ip_bytes 212448 non-null Int64
        tunnel_parents 212448 non-null object
     20
     21 label 212448 non-null object
     22 detailed_label 212448 non-null object
     23 hour
                        212448 non-null int32
    dtypes: Int64(9), datetime64[ns](1), float64(1), int32(1), object(12)
    memory usage: 41.5+ MB
```

	ts	id.orig_p	id.resp_p	duration	orig_bytes	resp_bytes	missed_bytes	orig_pkts	orig_ip_bytes	resp_
count	212448	212448.0	212448.0	212448.000000	212448.0	212448.0	212448.0	212448.0	212448.0	212
mean	2018-05-11 19:44:16.420595968	45089.159098	5163.134362	3.203882	4.754095	11.856228	0.0	3.35644	197.463939	0.67
min	2018-05-09 15:30:31.015810966	3.0	0.0	0.000002	0.0	0.0	0.0	0.0	0.0	
25%	2018-05-10 16:32:38.761027328	39022.0	23.0	2.998560	0.0	0.0	0.0	3.0	180.0	
50%	2018-05-11 17:49:09.504612864	46371.5	2323.0	2.998797	0.0	0.0	0.0	3.0	180.0	
7E 0/	2018-05-12	E3660 U	0000 n	2 000042	0.0	0.0	^ ^	3 N	100 N	

[#] Manaully changing datatypes of all columns

[#] Timestamp of connection

```
df_1['ts'] = pd.to_datetime(df_1['ts'], unit ='s')
# Unique ID
df_1['uid'] = df_1['uid'].astype(str)
# Source IP address
df_1['id.orig_h'] = df_1['id.orig_h'].astype(str)
# Source port used
df_1['id.orig_p'] = pd.to_numeric(df_1['id.orig_p'], errors='coerce').astype('Int64')
# Destination IP address
df_1['id.resp_h'] = df_1['id.resp_h'].astype(str)
# Destination port
df_1['id.resp_p'] = pd.to_numeric(df_1['id.resp_p'], errors='coerce').astype('Int64')
# Network protocol used
df_1['proto'] = df_1['proto'].astype(str)
# Service used in connection
df_1['service'] = df_1['service'].astype(str)
# Duration of connection
df 1['duration'] = df 1['duration'].replace('-', np.nan).astype(float)
# Number of bytes sent from source to destination
df_1['orig_bytes'] = pd.to_numeric(df_1['orig_bytes'], errors='coerce').astype('Int64')
# Number of bytes sent back from destination to source
df_1['resp_bytes'] = pd.to_numeric(df_1['resp_bytes'], errors='coerce').astype('Int64')
# State of the connection
df_1['conn_state'] = df_1['conn_state'].astype(str)
# Whether origin of connection is local (blank)
df_1['local_orig'] = df_1['local_orig'].astype(str)
# Whether connection is local (Blank)
df_1['local_resp'] = df_1['local_resp'].astype(str)
# Number of missed bytes
df 1['missed bytes'] = pd.to numeric(df 1['missed bytes'], errors='coerce').astype('Int64')
# History of connection states
df_1['history'] = df_1['history'].astype(str)
# Number of packets sent from source to destination
df_1['orig_pkts'] = pd.to_numeric(df_1['orig_pkts'], errors='coerce').astype('Int64')
# Number of IP bytes sent back from source to destination
df_1['orig_ip_bytes'] = pd.to_numeric(df_1['orig_ip_bytes'], errors='coerce').astype('Int64')
# Number of packets sent from dest to source
df_1['resp_pkts'] = pd.to_numeric(df_1['resp_pkts'], errors='coerce').astype('Int64')
# Number of IP bytes sent back from source to dest
df_1['resp_ip_bytes'] = pd.to_numeric(df_1['resp_ip_bytes'], errors='coerce').astype('Int64')
# Whether connection is part of tunnel
df_1['tunnel_parents'] = df_1['tunnel_parents'].astype(str)
# Basic label for connection (malicious/benign)
df_1['label'] = df_1['label'].astype(str)
# Detailed description for connection
df_1['detailed_label'] = df_1['detailed_label'].astype(str)
df_1.sample(100)
```

https://colab.research.google.com/drive/1d2qE5Gx18HQJslqJ4SfTDb0l6oopVDIj#printMode=true

	ts	uid	id.orig_h	id.orig_p	id.resp_h	id.resp_p	proto	service	duration	orig_by
58566	2018-05-09 21:30:19.012273073	CvwPA31rpmx5lPj619	192.168.100.103	46861	212.222.174.108	23	tcp	-	2.999039	
1006172	2018-05-14 07:06:36.031743050	CqdOCA9YEStldlzz9	192.168.100.103	56524	38.228.142.202	23271	tcp	-	2.998995	
949252	2018-05-14 00:17:45.054860115	CdeVtq2dxyVo7SnSid	192.168.100.103	35017	92.102.52.159	23	tcp	-	NaN	<
454437	2018-05-11 15:22:14.012839079	Cj9WC63cRNuFUZDXm8	192.168.100.103	48907	35.234.77.213	23	tcp	-	2.998792	
641307	2018-05-12 11:35:35.042100906	Cprhlb2UcHiGcmvsGg	192.168.100.103	34972	140.43.84.23	23	tcp	-	NaN	<
191964	2018-05-10 11:37:18.013542891	CT1AZP1kYI7z04nOF4	192.168.100.103	49865	221.218.2.161	2323	tcp	-	2.999308	
294775	2018-05-10 22:28:03.011280060	CJdSEs1w05vnRrC5c3	192.168.100.103	43763	187.203.21.32	24157	udp	-	NaN	<
719320	2018-05-12 20:46:36.024605989	C5fUQE4vOutRN2vdTb	192.168.100.103	51186	161.49.156.221	8080	tcp	-	NaN	<
977372	2018-05-14 03:39:39.040369034	CLpK0s4JloiAw5qbLc	192.168.100.103	41550	216.167.144.248	2323	tcp	-	NaN	<
732800	2018-05-12 22:23:29.025087118	CKJMSI4oI1y6UEO1fg	192.168.100.103	59448	48.131.96.251	23	tcp	-	NaN	<

100 rows × 23 columns

Exploring the Data

1) How many connections were labeled 'Malicious' and how many were labeled 'Benign'?

To answer this, I filter the connections using a 'for' loop and print the results. This is to have a better understanding of the scope of how much malicious content was recorded.

```
# variables to store counts
m_{count} = 0
b_count = 0
# Iterates through the label column
for label in df_1['label']:
 if label == 'Benign':
    # adds 1 to the benign count
    b_count += 1
  elif label == 'Malicious':
    # adds 1 to the malicious count
    m_count += 1
# Print the counts
print("Benign Count:", b_count)
print("Malicious Count:", m_count)
    Benign Count: 469275
     Malicious Count: 539473
```

The results are roughly even, although there are slightly more malicious connections than benign.

2) Which ports are most commonly present within records of malicious connections?

To answer this, I explore which ports are most commonly associated with the malicious label in the dataset. This is to gain insight into which ports may have been involved in a par

```
# Filters through the label column for malicious connections
mal_df = df_1[df_1['label'] == 'Malicious']

# Collecting frequency of each origin and destination port
o_val_counts = mal_df['id.orig_p'].value_counts()
```

```
d_val_counts = mal_df['id.resp_p'].value_counts()
# Printing top 5 results
print(o_val_counts.head(5))
print(d_val_counts.head(5))
    id.orig_p
     54605
     45334
              18
     54239
              17
     40176
              17
     59180
              17
     Name: count, dtype: Int64
     id.resp_p
             95561
     8080
             48289
     2323
             30299
     9527
             15142
     Name: count, dtype: Int64
```

The top origin port was port 54605 with 19 malicious connections associated with it.

The top destination port was port 23 with 95,561 malicious connections associated with it. I assume this is because port 23 is a common port for attacks or was involved in a particular attack(s) that took place.

3) What is the timeframe of the collected records?

To answer this, I initially determine the timestamps of the first and last recorded file. This is to better understand the scope of the timeframe of collected files.

```
first_record = df_1['ts'].min()
last_record = df_1['ts'].max()

print(first_record)
print(last_record)

2018-05-09 15:30:31.015810966
2018-05-14 07:24:41.031404972
```

The initial record was logged on May 9, 2018, at roughly 3:30pm.

The last record was logged on May 14, 2018, at roughly 7:25am.

Thus, these records hold roughly 5 days worth of network traffic logs.

4) What hours of day have the highest number of malicious connections?

To answer this, I explore the counts of attacks for different times of the day. This is to determine if there is or was a particular pattern or common time noteworthy in the data.

I then organize the counts of malicious files according to hour in the day to determine if a pattern in the results.

```
# Creates an hour column
mal_df['hour'] = mal_df['ts'].dt.hour
# Filters for malicious connections and groups by frequency during each hour of day
mal_hourly_counts = mal_df.groupby('hour').size()
# Prints results
print(mal_hourly_counts)
print(mal_hourly_counts.sort_values(ascending=False))
     hour
<del>_</del>__
           8660
     0
     1
           8383
           8579
     2
     3
           8222
           8331
           8243
     6
           8110
           7653
     8
           6748
     9
           6909
     10
           6890
     11
           6679
```

```
7/20/25, 10:17 PM
         LΖ
         13
```

dtype: int64 hour

dtype: int64

<ipython-input-52-8d5785896c61>:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a

```
# creates histogram for frequency of malicious records during each hour of day
plt.figure(figsize=(10, 6))
plt.bar(mal_hourly_counts.index, mal_hourly_counts.values)
plt.xlabel("Hour of Day")
plt.ylabel("Number of Malicious Connections")
plt.title("Distribution of Malicious Connections by Hour of Day")
# Sets x-axis ticks to represent each hour
plt.xticks(range(24))
plt.grid(True)
plt.show()
```


The hour of day with the highest amount of malicious connections is the 20th hour, between 8-9pm.

It seems that more malicious connections have been logged during the evening and early morning, which lines up as being the opposite of common working hours.

5) What are the most common source and destination IP addresses?

To answer this, I explore the most common source and enpoint IPs, cross referenced with several other variables. This is to determine which, if any, IP addresses are associated with one another or possess a common description.

```
# Checks if there are common values for detailed labels to sort by
df_1.groupby('detailed_label').size()
<del>_</del>_
                detailed_label
                                 23157
      PartOfAHorizontalPortScan 189291
     dtype: int64
# Calculates the most common origin IP and destination IP addresses
orig_IPs = df_1.groupby('id.orig_h').size().sort_values(ascending=False)
resp_IPs = df_1.groupby('id.resp_h').size().sort_values(ascending=False)
# Prints the results
print(orig_IPs.head(10))
print(resp_IPs.head(10))
# Cross referencing which origin and destination IPs are most commonly associated together
grouped_df = df_1.groupby(['id.orig_h', 'id.resp_h']).size().reset_index(name='count')
sort_df = grouped_df.sort_values(by='count', ascending=False)
# Prints the results
print(sort df.head(10))
# Cross referencing which detailed labels are matched with the most origin IP addresses
grouped_df = df_1.groupby(['id.orig_h', 'detailed_label']).size().reset_index(name='count')
sort_df = grouped_df.sort_values(by='count', ascending=False)
# Prints the results
print(sort_df.head(10))
sort_df
```

_	id.orig	_h					
_	192.168	.100.103	21073	39			
	192.168	.100.1	94	19			
	70.45.2	9.240	1	LØ			
	210.206	.154.134		9			
	201.81.	12.29		7			
	146.94.	254.33		6			
	81.130.	230.46		6			
	118.163	.192.88		6			
	221.5.2	24.77		5			
	125.125	.23.137		4			
	dtype:	int64					
	id.resp	_h					
	147.231	.100.5	3849				
	192.168	.100.103	1709				
	89.221.	214.130	995				
	37.187.	104.44	938				
	213.239	.154.12	785				
	210.206	.154.134	127				
	221.5.2	24.77	124				
	175.196	.5.46	124				
	118.163	.192.88	124				
	200.170	.160.2	122				
	dtype:	int64					
		id	.orig_h		id.resp_	h c	ount
	49175	192.168.	100.103	14	17.231.100	. 5	3849
	184682	192.168.	100.103	89.	.221.214.13	30	995
	263	192.16	8.100.1	192	.168.100.10	93	949
	133804	192.168.	100.103	37	7.187.104.4	14	938
	116772	192.168.	100.103	213	3.239.154.1	L2	785
	113812	192.168.	100.103	210	.206.154.13	34	127