2020/7/22 上午11:54 PDF.js viewer

第 4 讲 集合的基本运算 (全集与补集)

👰 学习目标点

- 1、了解全集、补集的含义及其符号表示.
- 2. 理解给定集合中一个子集的补集的含义,并会求给定子集的补集.
- 3. 会用 Venn 图、数轴进行集合的运算.

■ 知识集装箱

知识点 1: 全集

(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.

(2)记法:全集通常记作 U.

思考: 全集一定是实数集 R 吗?

[提示] 全集是一个相对概念,因研究问题的不同而变化,如在实数范围内解不等式,

全集为实数集 R, 而在整数范围内解不等式,则全集为整数集 Z.

知识点 2: 补集

文字语言	对于一个集合 A ,由全集 U 中不属于集合 \underline{A} 的所有元素组成的集合称
	为集合 A 相对于全集 U 的补集,记作 U
符号语言	$L_{UA} = \{x x \in U, \exists \ x \notin A\}$
图形语言	A MANAGEMENT OF THE PARTY OF TH

PDF.js viewer 2020/7/22 上午11:54

(1) 畲例研究室

案例 1: 补集的基本运算

已知全集 U, 集合 $A = \{1,3,5,7\}$, $C_UA = \{2,4,6\}$, $C_UB = \{1,4,6\}$, 求集合 B.

[思路分析] 先由集合 A 与 C vA 求出全集,再由补集定义求出集合 B,或利用 Venn 图 求出集合 B.

[解析] 解法一: $A = \{1,3,5,7\}$, $C_{UA} = \{2,4,6\}$,

 $\therefore U = \{1,2,3,4,5,6,7\},\$

又 $C_UB = \{1,4,6\}, :: B = \{2,3,5,7\}.$

解法二: 借助 Venn 图, 如图所示, 由图可知 $B = \{2,3,5,7\}$

『规律方法』 求集合补集的基本方法及处理技巧

- (1)基本方法: 定义法.
- (2)两种处理技巧:
- ①当集合用列举法表示时,可借助 Venn 图求解.
- ②当集合是用描述表示的连续数集时,可借助数轴,利用数轴分析求解.

实验 1.1

(1)设全集 $U = \{x \in \mathbb{N} | x \ge 2\}$,集合 $A = \{x \in \mathbb{N} | x^2 \ge 5\}$,则 $C_{U}A = (B_{U}A)$

A. Ø

B. {2}

C. {5}

D. {2,5}

实验 1.2

已知全集 $U = \{x | 1 \le x \le 5\}$, $A = \{x | 1 \le x < a\}$,若 $U = \{x | 2 \le x \le 5\}$,则 a = 2.

[解析] (1)由题意知集合 $A = \{x \in \mathbb{N} | x \ge \sqrt{5}\}$, 则 $C_{U}A = \{x \in \mathbb{N} | 2 \le x < \sqrt{5}\} = \{2\}$, 故选 B.

(2): A ∪ $(C \cup A) = U$, $\coprod A \cap (C \cup A) = \emptyset$,

 $\therefore A = \{x | 1 \le x \le 2\}, \quad \therefore a = 2.$

页码: 2/10

案例 2: 交集、并集、补集的综合运算

已知全集 $U = \{x | x \le 4\}$, 集合 $A = \{x | -2 < x < 3\}$, $B = \{x | -3 \le x \le 2\}$, 求 $A \cap B$, (C vA) $\cup B$, $A \cap (C vB)$.

[思路分析] 对于无限集,可以利用数轴,分别表示出全集 U 及集合 $A \times B$,先求出 $\mathbb{C}_{U}A$ 及 $\mathbb{C}_{U}B$,再求解.

[解析] 如图,

由图可得 $C_UA = \{x | x \leq -2, \text{ 或 } 3 \leq x \leq 4\}.$

如图,

由图可得 $C_{UB} = \{x | x < -3, \text{ 或 } 2 < x \leq 4\}.$

如图,

由图可得 $A \cap B = \{x \mid -2 < x \le 2\}$,

 \therefore (C UA) \cup $B = \{x | x \le 2 \text{ d} 3 \le x \le 4\}$,

 $A \cap (C \cup B) = \{x | 2 < x < 3\}.$

『规律方法』 求集合交、并、补运算的方法

实验 2.1:

已知集合 $U=\{1,2,3,4\}$, $A=\{1,3\}$, $B=\{1,3,4\}$, 则 $A\cup (C\cup B)=\{1,2,3\}$;

实验 2.2:

设 $U=\mathbb{R}$, $A=\{x|x>0\}$, $B=\{x|x>1\}$, 则 $A\cap(\mathbb{C}\ _UB)=(\mathbb{B}\)$

A. $\{x | 0 \le x \le 1\}$

B. $\{x | 0 \le x \le 1\}$

C. $\{x | x < 0\}$

D. $\{x | x > 1\}$

案例 3: 忽视空集或补集的性质易致错

已知全集 $U = \{1,2,3,4,5\}$, $A = \{x | x^2 - 5x + q = 0\}$, $A \subseteq U$,求 $C \cup A$ 及 q 的值.

[错解] 当 q=0 时, $x^2-5x+q=0$ 的根为 x=5,x=0, $5\in U$,此时 $A=\{5\}$,C $vA=\{1,2,3,4\}$.

当 $q \neq 0$ 时, 由韦达定理知方程 $x^2 - 5x + q = 0$ 的根在 1,2,3,4,5 中取时, 只可能是 3 或 2,1 或 4, 因此

$$q=6$$
 时, $A=\{2,3\}$, C $UA=\{1,4,5\}$. $q=4$ 时, $A=\{1,4\}$, C $UA=\{2,3,5\}$.

所以 q=0 时, $C_{UA}=\{1,2,3,4\}$,

q=4 时,C $UA=\{2,3,5\}$,q=6 时,C $UA=\{1,4,5\}$.

[错因分析] 错解中没有注意到 $A\subseteq U$,当 q=0 时, $A=\{0,5\}U$,另外,当 $A=\varnothing$ 时, $\mathbb{C}_{U}A=U$,此时方程 $x^2-5x+q=0$ 无实数解.

[正解] ①若 $A=\emptyset$,则C $_U\!A=U$,此时方程 $x^2-5x+q=0$ 无实数解. $\therefore \Delta < 0$,即 25 -4q < 0, $\therefore q > \frac{25}{4}$.

②若 $A \neq \emptyset$,由于方程 $x^2 - 5x + q = 0$ 的两根之和为 5,又由于两根只能从 1,2,3,4,5 中取

值,因此 *A*={1,4}或{2,3}

当 $A=\{1,4\}$ 时, $C_{U}A=\{2,3,5\}$,q=.4;

当 $A=\{2,3\}$ 时, $C_{U}A=\{1,4,5\}$,q=6.

[警示] 本题易错点: (一)忽略 $A \subseteq U$,求出 q 的值后不验证 $A \subseteq U$ 是否成立; (二)不考察 $A = \emptyset$ 的情形.

Phie,

PDF.js viewer 2020/7/22 上午11:54

实验 3.1

设全集 $I = \{2,3, x^2 + 2x - 3\}$, $A = \{5\}$, $C_{IA} = \{2, y\}$, 求实数 x, y 的值.

[解析] 因为 $A = \{5\}$, $C_1A = \{2, y\}$.

所以 $I=\{2,5,y\}$,

$$\nabla I = \{2,3, x^2+2x-3\},$$

所以
$$\begin{cases} x^2+2x-3=5 \\ y=3 \end{cases}$$
 ,

所以
$$\begin{cases} x=-4 \\ y=3 \end{cases}$$
 或 $\begin{cases} x=2 \\ y=3 \end{cases}$.

故
$$x=2$$
, $y=3$ 或 $x=-4$, $y=3$.

案例 4: "正难则反"思想的应用

"正难则反"策略是指当某一问题从正面解决较困难时,我们可以从其反面入手解决。已知全集 U,求子集 A,若直接求 A 困难,可运用"正难则反"策略先求 C vA,再由 C v(C vA)=A 求 A.

补集作为一种思想方法给我们研究问题开辟了新思路,今后要有意识地去体会并运用.在顺向思维受阻时,改用逆向思维,可能"柳暗花明".从这个意义上讲,补集思想具有转换研究对象的功能,这是转化思想的又一体现.

已知 $A = \{x | x^2 - 2x - 8 = 0\}$, $B = \{x | x^2 + ax + a^2 - 12 = 0\}$. 若 $B \cup A \neq A$, 求实数 a 的取值集合...

[思路分析] 要求 $B \cup A \neq A$,可先求 $B \cup A = A$ 时,a 的取值集合,再求出该集合在实数集 \mathbf{R} 中的补集即可.

- ①当 $B = \emptyset$ 时, $\Delta = a^2 4(a^2 12) < 0$,即 $a^2 > 16$, $\therefore a < -4$ 或 a > 4;
- ②当 B 是单元素集时, $\Delta = a^2 4(a^2 12) = 0$, $\therefore a = -4$ 或 a = 4.

若
$$a=-4$$
,则 $B=\{2\}$;若 $a=4$,则 $B=\{-2\}\subseteq A$;

③当
$$B = \{-2,4\}$$
时, $-2,4$ 是方程 $x^2 + ax + a^2 - 12 = 0$ 的两根, \therefore $\begin{cases} -a = -2 + 4 \\ a^2 - 12 = -2 \times 4 \end{cases}$,

 $\therefore a = -2$.

综上可得, $B \cup A = A$ 时, a 的取值集合为 $\{a \mid a < -4$ 或 a = -2 或 $a \ge 4\}$.

 $\therefore B \cup A \neq A$ 的实数 a 的取值集合为 $\{a \mid -4 \leq a \leq 4 \text{ 且 } a \neq -2\}$.

实验 4.1

已知全集 $U=\mathbb{R}$, 集合 $A=\{x|x<-1\}$, $B=\{x|2a< x< a+3\}$, 且 $B\subseteq \mathbb{C}$ $\mathbb{R}A$, 求 a 的取值范 围.

[解析] 由题意得 $C_{R}A = \{x | x \ge -1\}$.

(1)若 $B=\emptyset$,则 $a+3\leq 2a$,即 $a\geq 3$,满足 $B\subseteq \mathbb{C}_{\mathbb{R}}A$.

(2)若 $B \neq \emptyset$,则由 $B \subseteq \mathbb{C}_{\mathbb{R}}A$,得 $2a \ge -1$ 且 $2a \le a + 3$,

即
$$-\frac{1}{2} \le a < 3$$
.综上可得 $a \ge -\frac{1}{2}$.

 $\therefore B \cup A \neq A$ 的实数 a 的取值集合为 $\{a \mid -4 \leq a \leq 4 \perp 1\}$.

13/hx2) 已知集合 $A = \{x | x^2 + ax + 12b = 0\}$ 和 $B = \{x | x^2 - ax + b = 0\}$,满足($C \cup A$) $\cap B = \{2\}$, $A \cap (C \cup A)$ UB)={4}, U=**R**, 求实数 a, b 的值.

[解析]
$$:(C_{UA}) \cap B = \{2\}, :: 2 \in B,$$

$$\therefore 4-2a+b=0.1$$

$$\mathbb{X} : A \cap (\mathbb{C} \cup B) = \{4\}, : ..4 \in A,$$

$$\therefore 16+4a+12b=0.2$$

联立①②,得
$$\begin{cases} 4-2a+b=0\\ 16+4a+12b=0 \end{cases}$$
,解得 $\begin{cases} a=\frac{8}{7}\\ b=-\frac{12}{7} \end{cases}$

经检验,符合题意: $: a = \frac{8}{7}, b = -\frac{12}{7}$

🗐 思维军械序

- 1、求集合补集的基本方法及处理技巧
 - (1)基本方法: 定义法.
 - (2)两种处理技巧:
 - ①当集合用列举法表示时,可借助 Venn 图求解.
 - ②当集合是用描述表示的连续数集时,可借助数轴,利用数轴分析求解.
- 2、"正难则反"策略是指当某一问题从正面解决较困难时,我们可以从其反面入手解决。已知全集 U,求子集 A,若直接求 A 困难,可运用"正难则反"策略先求 C VA,再由

C U(C UA) = A RA.

补集作为一种思想方法给我们研究问题开辟了新思路,今后要有意识地去体会并运用.在顺向思维受阻时,改用逆向思维,可能"柳暗花明".从这个意义上讲,补集思想具有转换研究对象的功能,这是转化思想的又一体现.

PDF.js viewer 2020/7/22 上午11:54

能力训练场

一、选择题

- 1. 已知全集 $U = \{1,2,3,4\}$, 集合 $A = \{1,2\}$, $B = \{2,3\}$, 则 $C_U(A \cup B) = (D_U(A \cup B))$
- A. {1,3,4}

B. {3,4}

C. {3}

- D. {4}
- 2. 如图, I 是全集, A, B, C 是它的子集, 则阴影部分所表示的集合是(D)

A. $(C A \cap B) \cap C$

B. $(C _{I}B \cup A) \cap C$

C. $(A \cap B) \cap (C \mid C)$

- D. $(A \cap C \wr B) \cap C$
- 3. 已知集合 $U=\{1,2,3,4,5,6,7\}$, $A=\{2,3,4,5\}$, $B=\{2,3,6,7\}$, 则 $B\cap (C\cup A)=(C\cup A)$ Bhx2,
- A. {1,6}

B. {1,7}

C. $\{6,7\}$

D. {1,6,7}

- 二、填空题
- 4. 已知集合 *U*={1,2,3,4,5,6}, *A*={3,4,5}, *B*={4,5,6}, 则(C *vA*)∪(C *vB*)=__{1,2,3,6}_...
- 5. 设全集 $U = \{n \in \mathbb{N} | 1 \le n \le 10\}$, $A = \{1,2,3,5,8\}$, $B = \{1,3,5,7,9\}$, 则($\mathbb{C}_{U}A$) $\cap B = \{1,3,5,7,9\}$ $\{7,9\}$.
- 6. 设 $U=\{0,1,2,3\}$, $A=\{x\in U|x^2+mx=0\}$, 若 $U=\{1,2\}$, 则实数 $m=\underline{-3}$.

[解析] $:: C_{UA} = = \{1,2\}, :: A = \{0,3\}.$

- \therefore 0,3 是方程 $x^2 + mx = 0$ 的两根.
- $\therefore 0+3=-m$. $\therefore m=-3$.
- 7. 已知全集 $U=\mathbf{R}$, $M=\{x|-1 < x < 1\}$, $\mathcal{C}_{U}N=\{x|0 < x < 2\}$, 那么集合 $M \cup N=\underline{\quad \{x < 1 \ \text{ } \ \text$ $x \ge 2$.

[解析] $: U = \mathbb{R}, \ C \ _U N = \{x | 0 < x < 2\},$

- $\therefore N = \{x \mid x \leq 0$ 或 $x \geq 2\}$,
- $:M \cup N = \{x \mid -1 < x < 1\} \cup \{x \mid x \le 0$ 或 $x \ge 2\}$

 $= \{x \mid x < 1 \text{ d} x \ge 2\}.$

三、解答题

8. 已知全集 $U=\mathbb{R}$, $A=\{x|-4 \le x \le 2\}$, $B=\{x|-1 \le x \le 3\}$, $P=\{x|x \le 0 \ \vec{\mathbf{x}} \ x \geqslant \frac{5}{2}\}$, 求 $A \cap B$,

 $(C \cup B) \cup P$, $(A \cap B) \cap (C \cup P)$.

[解析] 将集合 A, B, P 表示在数轴上, 如图.

- $A = \{x \mid -4 \le x \le 2\}, B = \{x \mid -1 \le x \le 3\},$
- $\therefore A \cap B = \{x | -1 < x < 2\}.$
- \therefore C $_UB = \{x | x \le -1$ 或 $x > 3\}$,
- $\therefore (C \cup B) \cup P = \{x | x \leq 0 \text{ if } x \geq \frac{5}{2}\},$

PDF.js viewer 2020/7/22 上午11:54