

Enhanced Benders' Decomposition for Stochastic Unit Commitment Using Interval Variables

Mathis Azéma ¹, Vincent Leclère ¹, Wim van Ackooij ²

¹Ecole des Ponts ²EDF R&D

June 24, 2025

Outline

- 1 Deterministic Unit Commitment in 3bin formulation
- 2 3-bin approaches for Stochastic Unit Commitment Extensive formulation Benders' Decomposition
- 3 Extended Formulation
- 4 Computational Experiments
- 6 Conclusion

Section 1. Deterministic Unit Commitment in 3bin formulation

Description

Figure: Unit Commitment

- ullet \mathcal{G} : set of generators
- T: time horizon (T=24 for a day)
- $\xi \in \mathbb{R}^T$: vector of demand

Variables

Variables

• $p_{g,t}$: power generation of generator g at time t.

$$\sum_{g \in \mathcal{G}} p_g = \xi$$

Variables

Variables

• $p_{g,t}$: power generation of generator g at time t.

$$\sum_{{\sf g}\in\mathcal{G}} {\sf p}_{\sf g} = \xi$$

- $\mathbf{x}_{\mathbf{g},t} = (\mathbf{u}_{\mathbf{g},t}, \mathbf{v}_{\mathbf{g},t}, \mathbf{w}_{\mathbf{g},t}) \in \{0,1\}^3$
 - $u_{g,t}$: Binary variable equal to 1 if generator g is on at time t.
 - $\mathbf{v}_{g,t}$: Binary variable equal to 1 if generator g starts up at time t.
 - $\mathbf{w}_{\mathbf{g},\mathbf{t}}$: Binary variable equal to 1 if generator \mathbf{g} shuts down at time \mathbf{t} .

t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$u_{g,t}$	0	0	1	1	1	0	0	1	1	0	1	1	1	0	0
$v_{g,t}$	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0
$w_{g,t}$	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0

Technical Constraints

Constraints linking the variables x and p

$$W_g x_g \leq A_g p_g$$

Example:

ullet Capacity constraints: $P_g^{min}u_{g,t} \leq p_{g,t} \leq P_g^{max}u_{g,t}$

Technical Constraints

Constraints linking the variables x and p

$$W_g x_g \leq A_g p_g \quad \forall g$$

Constraints on the commitment variables x = (u, v, w)

$$u_{g,t} - u_{g,t-1} = v_{g,t} - w_{g,t}$$
 $\forall g, \forall t$
 $x_g \in X_g$ $\forall g$

Minimum uptime constraint in X_g :

$$\sum_{k \in [t-T_g^U+1,t]} v_{g,k} \le u_{g,t}$$

Technical Constraints

Constraints linking the variables x and p

$$W_g x_g \leq A_g p_g \quad \forall g$$

Constraints on the commitment variables x = (u, v, w)

$$u_{g,t} - u_{g,t-1} = v_{g,t} - w_{g,t}$$
 $\forall g, \forall t$
 $x_g \in X_g$ $\forall g$

Satisfaction of the demand:

$$\sum_{g \in \mathcal{G}} p_g = \xi$$

3-bin formulation

$$\begin{split} & \underset{x,p}{\min} & \sum_{g \in \mathcal{G}, \, t \in [T]} C_{g,t}^{\top} x_{g,t} + \sum_{g \in \mathcal{G}, \, t \in [T]} c_{g,t} \, p_{g,t} \\ & \text{s.t.} & \sum_{g \in \mathcal{G}} p_g = \xi \\ & W_g x_g \leq A_g p_g & \forall g \\ & u_{g,t} - u_{g,t-1} = v_{g,t} - w_{g,t} & \forall g, \forall t \\ & x_g \in X_g & \forall g \\ & x_{g,t} = \left(u_{g,t}, v_{g,t}, w_{g,t}\right) \\ & x_g \in \{0,1\}^{3T}, \, p_g \in \mathbb{R}^T. \end{split}$$

3-bin formulation

$$\begin{split} & \underset{x,p}{\min} & & \sum_{g \in \mathcal{G}, \, t \in [T]} C_{g,t}^{\top} x_{g,t} + \sum_{g \in \mathcal{G}, \, t \in [T]} c_{g,t} \, p_{g,t} \\ & \text{s.t.} & & \sum_{g \in \mathcal{G}} p_g = \xi \\ & & & W_g x_g \leq A_g p_g \\ & & & & x \in X, \, p_g \in \mathbb{R}^T. \end{split}$$

Section 2. 3-bin approaches for Stochastic Unit Commitment

$$\begin{aligned} & \underset{x,p}{\min} & & \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{g,t} c_{g,t} p_{g,t} \\ & \text{s.t.} & & \sum_{g} p_g = \boxed{\xi} ? \\ & & W_g x_g \leq A_g p_g & \forall g \\ & & & x \in X, \ p_g \in \mathbb{R}^T. \end{aligned}$$

• Uncertainty on the demand ξ

$$\begin{aligned} & \underset{x,p}{\text{min}} & & \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{g,t} c_{g,t} p_{g,t} \\ & \text{s.t.} & & \sum_{g} p_g = \boxed{\xi} ? \\ & & W_g x_g \leq A_g p_g & \forall g \\ & & & x \in X, \ p_g \in \mathbb{R}^T. \end{aligned}$$

- Uncertainty on the demand ξ
- 2-stage assumption:
 - **First-stage:** Commitment decisions $x_{g,t}$ made before uncertainty is revealed
 - **Second-stage:** Generation decisions $p_{g,t}$ made after uncertainty is realized

$$\min_{x,p} \quad \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s \in \mathcal{S}} \pi_s \sum_{g,t} c_{g,t} p_{s,g,t}$$
s.t.
$$\sum_{g} p_{s,g} = \xi_s \quad \forall s$$

$$x \in X, p_{s,g} \in \mathbb{R}^T.$$

- Uncertainty on the demand ξ
- 2-stage assumption:
 - **First-stage:** Commitment decisions $x_{g,t}$ made before uncertainty is revealed
 - Second-stage: Generation decisions p_{g,t} made after uncertainty is realized
- Set of scenarios ξ_s with probability π_s

$$\min_{x,p} \quad \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s \in \mathcal{S}} \pi_s \sum_{g,t} c_{g,t} p_{s,g,t}$$
s.t.
$$\sum_{g} p_{s,g} = \xi_s \quad \forall s$$

$$x \in X, p_{s,g} \in \mathbb{R}^T.$$

- Uncertainty on the demand ξ
- 2-stage assumption:
 - **First-stage:** Commitment decisions $x_{g,t}$ made before uncertainty is revealed
 - **Second-stage:** Generation decisions $p_{g,t}$ made after uncertainty is realized
- Set of scenarios ξ_s with probability π_s

⇒ Extensive formulation: 1 Mixed-Integer Linear Program

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ))

$$Q(x,\xi) = \min_{p} \quad \sum_{g,t} c_{g,t} p_{g,t}$$
 s.t. $\sum_{g} p_{g} = \xi$ $W_{g} x_{g} \leq A_{g} p_{g} \quad \forall g$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ)

$$Q(x, \xi) = \min_{p} \quad \sum_{g, t} c_{g, t} p_{g, t}$$

s.t. $\sum_{g} p_{g} = \xi$
 $W_{g} x_{g} \le A_{g} p_{g} \quad \forall g$

$$Q(x,\xi) = \min_{p} \quad \sum_{g,t} c_{g,t} p_{g,t}$$

$$\text{s.t.} \quad \sum_{g} p_{g} = \xi$$

$$W_{g} x_{g} \leq A_{g} p_{g} \quad \forall g$$

$$\min_{x,p} \quad \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s \in S} \pi_{s} \sum_{g,t} c_{g,t} p_{s,g,t}$$

$$\text{s.t.} \quad \sum_{g} p_{s,g} = \xi_{s}$$

$$W_{g} x_{g} \leq A_{g} p_{s,g} \quad \forall g, \forall s$$

$$x \in X$$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ)

$$Q(x,\xi) = \min_{p} \sum_{g,t} c_{g,t} p_{g,t}$$

$$\text{s.t.} \sum_{g} p_{g} = \xi$$

$$W_{g} x_{g} \leq A_{g} p_{g} \quad \forall g$$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s \in \mathcal{S}} \pi_{s} \min_{\substack{p_{s}: \sum_{g} p_{s,g} = \xi_{s} \\ W_{g} x_{g} \leq A_{g} p_{s,g}}} \sum_{g,t} c_{g,t} p_{g,t,s}$$

$$\text{s.t.} \quad x \in X$$

$$\min_{\mathbf{x}} \quad \sum_{\mathbf{g}, \mathbf{t}} C_{\mathbf{g}, \mathbf{t}}^{\top} x_{\mathbf{g}, \mathbf{t}} + \sum_{s \in \mathcal{S}} \pi_{s} \min_{\substack{p_{s}: \sum_{g} p_{s, g} = \xi_{s} \\ W_{g} \times_{g} \leq A_{g} p_{s, g}}} \sum_{\mathbf{g}, \mathbf{t}} c_{\mathbf{g}, \mathbf{t}} p_{\mathbf{g}, \mathbf{t}, \mathbf{s}}$$

$$\text{s.t.} \quad \mathbf{x} \in \mathbf{X}$$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ)

$$Q(x,\xi) = \min_{p} \quad \sum_{g,t} c_{g,t} p_{g,t}$$

$$\text{s.t.} \quad \sum_{g} p_{g} = \xi$$

$$W_{g} x_{g} \leq A_{g} p_{g} \quad \forall g$$

$$\min_{x} \quad \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s \in \mathcal{S}} \pi_{s} Q(x,\xi_{s})$$

$$\text{s.t.} \quad x \in X$$

$$\min_{x} \quad \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s \in \mathcal{S}} \pi_{s} Q(x, \xi_{s})$$
s.t. $x \in X$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ))

Primal formulation:

$$\begin{split} Q(x,\xi) &= \min_{p} \quad \sum_{g,\,t} c_{g,\,t} \, p_{g,\,t} \\ \text{s.t.} \quad \sum_{g} p_{g} &= \xi \qquad [\nu] \\ W_{g} x_{g} &\leq A_{g} p_{g} \, \forall g \, [\mu_{g}] \end{split}$$

$$egin{aligned} Q(\mathbf{x}, \xi) &= \max_{
u, \mu}
u^ op \xi + \sum_{\mathbf{g}} \mu_{\mathbf{g}}^ op W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} \ & ext{s.t.} \quad A_{\mathbf{g}}^ op \mu_{\mathbf{g}} +
u &= c_{\mathbf{g}} \quad orall \mathbf{g} \ &\mu_{\mathbf{g}} \geq 0 \quad orall \mathbf{g} \end{aligned}$$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ))

Primal formulation:

$$\begin{split} Q(x,\xi) &= \min_{p} \quad \sum_{g,\,t} c_{g,\,t} \, p_{g,\,t} \\ \text{s.t.} \quad \sum_{g} p_{g} &= \xi \qquad [\nu] \\ W_{g} x_{g} &\leq A_{g} p_{g} \, \forall g \, [\mu_{g}] \end{split}$$

$$\begin{aligned} Q(x,\xi) &= \max_{\nu,\mu} \nu^\top \xi + \sum_{g} \mu_g^\top W_g x_g \\ \text{s.t.} \quad & \pmb{A}_g^\top \mu_g + \nu = \pmb{c}_g \quad \forall \pmb{g} \\ & \mu_g \geq \pmb{0} \quad \forall \pmb{g} \\ & \text{Independent of } x \text{ and } \xi \ ! \end{aligned}$$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ))

Primal formulation:

$$Q(x, \xi) = \min_{p} \quad \sum_{g, t} c_{g, t} p_{g, t}$$
s.t.
$$\sum_{g} p_{g} = \xi \qquad [\nu]$$

$$W_{g} x_{g} \leq A_{g} p_{g} \forall g [\mu_{g}]$$

$$\begin{aligned} Q(x,\xi) &= \max_{\nu,\mu} \nu^\top \xi + \sum_g \mu_g^\top W_g x_g \\ \text{s.t.} \quad & \boldsymbol{A}_g^\top \mu_g + \nu = \boldsymbol{c}_g \quad \forall \boldsymbol{g} \\ & \mu_g \geq \boldsymbol{0} \quad \forall \boldsymbol{g} \\ & \text{Independent of } \boldsymbol{x} \text{ and } \boldsymbol{\xi} \ ! \end{aligned}$$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ))

Primal formulation:

$$Q(x, \xi) = \min_{p} \quad \sum_{g, t} c_{g, t} p_{g, t}$$
s.t.
$$\sum_{g} p_{g} = \xi \qquad [\nu]$$

$$W_{g} x_{g} \leq A_{g} p_{g} \forall g [\mu_{g}]$$

$$\begin{aligned} Q(x,\xi) &= \max_{\nu,\mu} \nu^\top \xi + \sum_{g} \mu_g^\top W_g x_g \\ \text{s.t.} \quad & \pmb{A}_g^\top \mu_g + \nu = \pmb{c}_g \quad \forall \pmb{g} \\ & \mu_g \geq \pmb{0} \quad \forall \pmb{g} \\ & \text{Independent of } x \text{ and } \xi \ ! \end{aligned}$$

$$Q(x,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_g (\mu_g^f)^\top W_g x_g > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^o)^\top \xi + \sum_g (\mu_g^o)^\top W_g x_g \right) & \text{otherwise.} \end{cases}$$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x, \xi_{s})$$
s.t. $x \in X$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x,\xi_{s})$$

$$\text{s.t. } x \in X$$

$$Q(x,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^{f})^{\top} \xi + \sum_{g} (\mu_{g}^{f})^{\top} W_{g} x_{g} > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^{o})^{\top} \xi + \sum_{g} (\mu_{g}^{o})^{\top} W_{g} x_{g} \right) & \text{otherwise.} \end{cases}$$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x, \xi_{s})$$
s.t. $x \in X$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x,\xi_{s})$$

$$\text{s.t. } x \in X$$

$$Q(x,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^{f})^{\top} \xi + \sum_{g} (\mu_{g}^{f})^{\top} W_{g} x_{g} > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^{o})^{\top} \xi + \sum_{g} (\mu_{g}^{o})^{\top} W_{g} x_{g} \right) & \text{otherwise.} \end{cases}$$

$$egin{aligned} \min_{x} \sum_{g,\,t} C_{g,t}^{ op} x_{g,t} + \sum_{s} \pi_{s} z_{s} \ & ext{s.t. } x \in X \ & z_{s} \geq Q(x, \xi_{s}) \end{aligned} orall
orange
aligned \tau_{s} \tau_{s} \tau_{s} \tag{2}$$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x, \xi_{s})$$
s.t. $x \in X$

$$\min_{\mathbf{x}} \sum_{\mathbf{g}, t} C_{\mathbf{g}, t}^{\top} \mathbf{x}_{\mathbf{g}, t} + \sum_{\mathbf{s}} \pi_{\mathbf{s}} Q(\mathbf{x}, \xi_{\mathbf{s}})$$

$$\mathbf{g}(\mathbf{x}, \xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^{f})^{\top} \xi + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{f})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^{o})^{\top} \xi + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{o})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} \right) \text{ otherwise.} \end{cases}$$

$$\begin{aligned} & \min_{\mathbf{x}} \sum_{\mathbf{g}, t} C_{\mathbf{g}, t}^{\top} \mathbf{x}_{\mathbf{g}, t} + \sum_{\mathbf{s}} \pi_{\mathbf{s}} \mathbf{z}_{\mathbf{s}} \\ & \text{s.t. } \mathbf{x} \in \mathbf{X} \\ & 0 \geq (\nu^{f})^{\top} \xi_{\mathbf{s}} + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{f})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} \quad \forall \mathbf{s}, \ \forall f \in \mathcal{F} \end{aligned}$$

$$\min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x, \xi_{s})$$
s.t. $x \in X$

$$\min_{\mathbf{x}} \sum_{\mathbf{g}, t} C_{\mathbf{g}, t}^{\top} \mathbf{x}_{\mathbf{g}, t} + \sum_{\mathbf{s}} \pi_{\mathbf{s}} Q(\mathbf{x}, \xi_{\mathbf{s}})$$

$$\mathbf{g}(\mathbf{x}, \xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^{f})^{\top} \xi + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{f})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^{o})^{\top} \xi + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{o})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} \right) \text{ otherwise.} \end{cases}$$

$$\begin{split} \min_{x} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} z_{s} \\ \text{s.t. } x \in X \\ 0 \geq (\nu^{f})^{\top} \xi_{s} + \sum_{g} (\mu_{g}^{f})^{\top} W_{g} x_{g} \quad \forall s, \forall f \in \mathcal{F} \\ z_{s} \geq (\nu^{o})^{\top} \xi_{s} + \sum_{g} (\mu_{g}^{o})^{\top} W_{g} x_{g} \quad \forall s, \forall o \in \mathcal{O} \end{split}$$

$$\begin{aligned} & \min_{\mathbf{x}} \sum_{\mathbf{g}, t} C_{\mathbf{g}, t}^{\top} \mathbf{x}_{\mathbf{g}, t} + \sum_{\mathbf{s}} \pi_{\mathbf{s}} Q(\mathbf{x}, \xi_{\mathbf{s}}) \\ & \text{s.t. } \mathbf{x} \in X \end{aligned}$$

$$\min_{\mathbf{x}} \sum_{\mathbf{g}, t} C_{\mathbf{g}, t}^{\top} \mathbf{x}_{\mathbf{g}, t} + \sum_{\mathbf{s}} \pi_{\mathbf{s}} Q(\mathbf{x}, \xi_{\mathbf{s}})$$

$$\mathbf{g}(\mathbf{x}, \xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^{f})^{\top} \xi + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{f})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} > 0 \\ \max_{\mathbf{o} \in \mathcal{O}} \left((\nu^{o})^{\top} \xi + \sum_{\mathbf{g}} (\mu_{\mathbf{g}}^{o})^{\top} W_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} \right) & \text{otherwise.} \end{cases}$$

$$\begin{aligned} & \min_{x} \sum_{g, t} C_{g, t}^{\top} x_{g, t} + \sum_{s} \pi_{s} z_{s} \\ & \text{s.t. } x \in X \\ & 0 \geq (\nu^{f})^{\top} \xi_{s} + \sum_{g} (\mu_{g}^{f})^{\top} W_{g} x_{g} \quad \forall s, \, \forall f \in \mathcal{F} \\ & z_{s} \geq (\nu^{o})^{\top} \xi_{s} + \sum_{s} (\mu_{g}^{o})^{\top} W_{g} x_{g} \quad \forall s, \, \forall o \in \mathcal{O} \end{aligned}$$

Iterative generation of these feasibility and optimality cuts until convergence!

Section 3. Extended Formulation

Addition of Interval First-Stage Variables

3bin-formulation

$$x_{g,t} = (u_{g,t}, v_{g,t}, w_{g,t}) \in \{0,1\}^3$$

- u_{g,t}: Binary variable equal to 1 if generator g is on at time t.
- v_{g,t}: Binary variable equal to 1 if generator g starts up at time t.
- w_{g,t}: Binary variable equal to 1 if generator g shuts down at time t.

Extended formulation

 $\gamma_{g,a,b}$: equals to 1 if generator g starts up at time a and shuts town at time b

Addition of Interval First-Stage Variables

3bin-formulation

$$x_{g,t} = (u_{g,t}, v_{g,t}, w_{g,t}) \in \{0,1\}^3$$

- u_{g,t}: Binary variable equal to 1 if generator g is on at time t.
- v_{g,t}: Binary variable equal to 1 if generator g starts up at time t.
- w_{g,t}: Binary variable equal to 1 if generator g shuts down at time t.

Extended formulation

 $\gamma_{g,a,b}$: equals to 1 if generator g starts up at time a and shuts town at time b

$$oldsymbol{u_{oldsymbol{g},oldsymbol{t}}} = \sum_{[oldsymbol{a},oldsymbol{b}]
eq oldsymbol{t}} oldsymbol{\gamma_{oldsymbol{g},oldsymbol{a},oldsymbol{b}}}$$

															14
$u_{g,t}$	0	0	1	1	1	0	0	1	1	0	1	1	1	0	0

$$\gamma_{g,2,5} = 1$$
 $\gamma_{g,7,9} = 1$ $\gamma_{g,9,13} = 1$

A new formulation of the recourse function

Proposition

Under some weak assumptions, if x and γ represent the "same" first stage decisions, then:

$$Q(x,\xi) = \mathcal{Q}(\gamma,\xi) := \max_{\nu} \left\{ \nu^{\top} \xi + \sum_{g,[a,b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu) \right\},$$

where:

$$\hat{Q}_{g,a,b}(y) = \min_{p \in \mathbb{R}^T} \quad y^\top p \ W_g x_{g,a,b} \le A_g p.$$

Note: $\hat{Q}_{g,a,b}(y)$ is the optimal cost of the second stage when generator g is on between time a and b and its generation cost is y.

t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x_{g,2,5,t}$	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
у	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> 7	<i>y</i> ₈	<i>y</i> 9	<i>y</i> 10	<i>y</i> 11	<i>y</i> 12	<i>y</i> 13	<i>y</i> 14

A new formulation of the recourse function

Proposition

Under some weak assumptions, if ${\it x}$ and ${\it \gamma}$ represent the "same" first stage decisions, then:

$$Q(x,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_g (\mu_g^f)^\top W_g x_g > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^o)^\top \xi + \sum_g (\mu_g^o)^\top W_g x_g \right) & \text{otherwise.} \end{cases}$$
$$= \mathcal{Q}(\gamma,\xi) = \max_{\nu} \nu^\top \xi + \sum_{g,[a,b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu)$$

A new formulation of the recourse function

Proposition

Under some weak assumptions, if ${\it x}$ and ${\it \gamma}$ represent the "same" first stage decisions, then:

$$Q(x,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_g (\mu_g^f)^\top W_g x_g > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^o)^\top \xi + \sum_g (\mu_g^o)^\top W_g x_g \right) & \text{otherwise.} \end{cases}$$

$$= Q(\gamma,\xi) = \max_{\nu} \nu^\top \xi + \sum_{g,[a,b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu)$$

$$= \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^f) > 0 \\ \max_{o \in \mathcal{O}} \left((\nu^o)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu^o) \right) & \text{otherwise.} \end{cases}$$

$$\min_{\mathbf{x},\gamma} \quad \sum_{g,\,t} C_{g,t}^{ op} x_{g,t} + \sum_{s} \pi_{s} Q(\mathbf{x},s)$$
 $\mathrm{s.t.} \quad x \in X, \quad x = (u,v,w)$
 $u_{g,t} = \sum_{[a,b] \ni t} \gamma_{g,a,b} \quad orall g, orall g$

$$\min_{\substack{x,\gamma\\ x,\gamma}} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x,\xi_{s})$$
s.t. $x \in X$, $x = (u,v,w)$

$$u_{g,t} = \sum_{[a,b]\ni t} \gamma_{g,a,b} \ \forall g, \ \forall t$$

$$Q(x,\xi) = Q(\gamma,\xi) = \{ +\infty \text{ if } \exists f \in \mathcal{F}, (\nu^{f})^{\top} \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^{f}) > 0 \}$$

$$\max_{o \in \mathcal{O}} ((\nu^{o})^{\top} \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_{g} - \nu^{o})) \text{ otherwise.}$$

$$\begin{aligned} & \underset{x,\gamma}{\text{min}} & & \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x,\xi_{s}) \\ & \text{s.t.} & & x \in X, \quad x = (u,v,w) \\ & & u_{g,t} = \sum_{[a,b]\ni t} \gamma_{g,a,b} \quad \forall g, \, \forall t \end{aligned}$$

$$Q(x,\xi) = Q(\gamma,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^f) > 0 \\ \max_{o \in \mathcal{O}} ((\nu^o)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu^o)) & \text{otherwise.} \end{cases}$$

$$egin{aligned} \min_{x,\gamma} \sum_{g,\,t} C_{g,t}^{ op} x_{g,t} + \sum_{s} \pi_{s} z_{s} \ & ext{s.t. } x \in X, \quad u_{g,t} = \sum_{[a,b] \ni t} \gamma_{g,a,b} \quad orall g, \, orall t \ & ext{} z_{s} \geq Q(x,\xi_{s}) \end{aligned}$$

$$\begin{aligned} & \underset{x,\gamma}{\text{min}} & & \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x,\xi_{s}) \\ & \text{s.t.} & & x \in X, \quad x = (u,v,w) \\ & & u_{g,t} = \sum_{[a,b]\ni t} \gamma_{g,a,b} \quad \forall g, \, \forall t \end{aligned}$$

$$Q(x,\xi) = Q(\gamma,\xi) = \begin{cases} +\infty & \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^f) > 0 \\ \max_{o \in \mathcal{O}} ((\nu^o)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu^o)) & \text{otherwise.} \end{cases}$$

$$\begin{aligned} & \min_{x,\gamma} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} z_{s} \\ & \text{s.t. } x \in X, \quad u_{g,t} = \sum_{[a,b]\ni t} \gamma_{g,a,b} \quad \forall g, \, \forall t \\ & \quad 0 \ge (\nu^{f})^{\top} \xi_{s} + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^{f}) & \quad \forall s, \, \forall f \in \mathcal{F} \end{aligned}$$

$$\begin{aligned} & \underset{x,\gamma}{\text{min}} & & \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} Q(x,\xi_{s}) \\ & \text{s.t.} & & x \in X, \quad x = (u,v,w) \\ & & u_{g,t} = \sum_{[a,b]\ni t} \gamma_{g,a,b} \quad \forall g, \, \forall t \end{aligned}$$

$$\begin{split} Q(x,\xi) &= \mathcal{Q}(\gamma,\xi) = \\ & \left\{ \begin{array}{l} +\infty \quad \text{if } \exists f \in \mathcal{F}, (\nu^f)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^f) > 0 \\ \max_{o \in \mathcal{O}} ((\nu^o)^\top \xi + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_g - \nu^o)) \end{array} \right. \text{ otherwise.} \end{split}$$

$$\begin{aligned} & \min_{x,\gamma} \sum_{g,t} C_{g,t}^{\top} x_{g,t} + \sum_{s} \pi_{s} z_{s} \\ & \text{s.t. } x \in X, \quad u_{g,t} = \sum_{[a,b]\ni t} \gamma_{g,a,b} \quad \forall g, \, \forall t \\ & 0 \ge (\nu^{f})^{\top} \xi_{s} + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (-\nu^{f}) \qquad \forall s, \, \forall f \in \mathcal{F} \\ & z_{s} \ge (\nu^{o})^{\top} \xi_{s} + \sum_{g,[a:b]} \gamma_{g,a,b} \hat{Q}_{g,a,b} (c_{g} - \nu^{o}) \quad \forall s, \, \forall o \in \mathcal{O} \end{aligned}$$

Summary

Summary

Section 4. Computational Experiments

Instances and Methods

Instance	Generators	Time Steps	Scenarios
SMS++/EDF	10-20-50	24	1-100

Method	First stage variables	Recourse function
3bin-extensive	X	primal $Q(x,\xi)$
3bin BD	X	dual $Q(x,\xi)$
Extended BD	x, γ	$\mathcal{Q}(\gamma,\xi)$

Numerical Results

Units	S	3bin BD	3bin-extensive	Extended BD
10	1	×	0s	3s
10	25	×	8s	7 s
10	50	×	20s	8 s
10	75	×	37s	11s
10	100	×	59s	14s
20	1	×	2s	33s
20	25	×	41s	40s
20	50	×	104s	36s
20	75	×	367s	48s
20	100	×	542s	61 s
50	1	×	6s	66s
50	25	×	333s	54s
50	50	×	816s	60s
50	75	×	2167s	84s
50	100	×	2627s	85s

Section 5. Conclusion

Conclusion

- Proposed a novel Benders' Decomposition approach for two-stage Stochastic Unit Commitment.
- Demonstrated superior performance compared to existing methods on large-scale instances.
- The approach is easily extendable to include network constraints.
- It is also adaptable to various stochastic frameworks, such as Robust Optimization, Risk-Averse models (e.g., AVaR), and Distributionally Robust Optimization.

Thank You!