HOCHSCHULE LUZERN

Informatik
FH Zentralschweiz

Computer Graphik: Projektive Geometrie - Übung 2

Prof. Dr. Josef F. Bürgler

I.BA_CG, SW 03 II

Die Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein.

Sie sollten im Durschnitt 75% der Aufgaben bearbeiten. Abgabetermin ihrer Übungsaufgaben ist die letzte Vorlesungsstunde in der Woche nachdem das Thema im Unterricht besprochen wurde.

Aufgabe 1: Schnittpunkt zweier Geraden mit homogenen Koordinaten

Bestimmen Sie den Schnittpunkt Q der beiden Geraden

$$g: 2x + 3y - 5 = 0$$
 und
 $h: 5x + 11y - 9 = 0$

indem Sie homogene Koordinaten verwenden.

Lösung: Q(4-1).

Aufgabe 2: Punkte und Geraden

Gesucht sind

- (a) die Gerade g durch die Punkte A(5.5 1.0) und B(2.9 8.0)
- (b) die Gerade h, welche zu g parallel ist und durch C(3-6) geht.

Verwenden Sie für die Lösung homogene Koordinaten!

Lösung: (a) 9x + 2.6y - 46.9 = 0, (b) 9x + 2.6y - 11.4 = 0.

Aufgabe 3: Spiegelung an einer Geraden

In der projektiven Ebene \mathbb{P}^2 betrachten wir die Spiegelung σ an der Geraden g, welche durch den Vektor $\mathbf{g} = [2, -3, 2]^T$ gegeben ist. Gesucht sind

- (a) die Matrix von σ
- (b) die Bildpunkte von A(8|1) und B(-65.3|0.2)

Aufgabe 4: Streckung

Gegeben ist eine projektive Transformation η durch ihre Matrix

$$\mathbf{H} = \begin{bmatrix} 1.5 & 0 & -1.5 \\ 0 & 1.5 & 0.5 \\ 0 & 0 & 1 \end{bmatrix}$$

Es stellt sich heraus, dass η eine Streckung ist. Bestimmen Sie den Streckungsfaktor s sowie das Zentrum.

Aufgabe 5: Korrektur einer perspektivischen Verzerrung

Gesucht ist eine projektive Transformation η mit der Matrix **H**, welche die folgende perspektivische Verzerrung korrigiert:

Dabei können Sie die ganzzahligen Koordinaten direkt aus der Abbildung ablesen (z.B. C(3,4) oder D'(1,4) etc.). Weiter können Sie annehmen, dass $h_{33} = 1$.

Viel Spass!

2