Reply to Office Action of August 11, 2008

AMENDMENS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

2

1. (Currently Amended) A compound having the structure

$$\begin{array}{c|c}
(G'')_{m} & & \\
R^{1} & & \\
N & & M
\end{array}$$

$$\begin{array}{c|c}
R^{2a} & & \\
Y & & \\
\end{array}$$

$$\begin{array}{c|c}
(G')_{n'} & & (I)
\end{array}$$

wherein

 R^1 represents H, (C_1-C_3) alkyl, or cyclopropyl;

R² represents (C₁-C₃)alkyl, cyclopropyl, O(C₁-C₃)alkyl, or NR³R⁴

wherein R³ and R⁴ are H, (C₁-C₃)alkyl, or cyclopropyl;

R^{2a} represents H or halogen;

M represents CH or N;

L represents a carbonyl group, O, NR⁵, CR⁶R⁷, or (C₂-C₃)alkylenyl which is optionally substituted up to twice by groups independently selected from halogen and OH; wherein

 R^5 is H or (C_1-C_3) alkyl; and

R⁶ and R⁷ are independently H, CH₃, halogen, or OH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

wherein R⁸ represents H or (C₁-C₃)alkyl;

G" represents a substituent selected from the group consisting of (C_1-C_3) alkyl, cyclopropyl, $O(C_1-C_3)$ alkyl, halogen, CF_3 , CN and CO_2R^9 ; wherein

 R^9 represents H or (C_1-C_3) alkyl; and

m represents the number of substituents G", and is 0, 1, or 2;

G represents a substituent located on ring J;
G' represents a substituent located on ring Y;
n represents the number of substituents G; and
n' represents the number of substituents G';
n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G11, to a maximum total of 3 substituents on rings J and Y, and
- 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12-G37;

and subject to the further provisos

- 4) when J is phenyl, G is other than OH or alkylthio; and when J is phenyl or pyridyl, n is 1, 2, or 3;
- 5) when J is phenyl, and G is G4 shown below, then R² is NR³R⁴;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) $O(C_1-C_4)$ alkyl which optionally is substituted up to two times by $O(C_1-C_2)$ alkyl;
- G3) OH;
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;
- G5) OCF_3 ;
- G6) NHC(O)(C_1 - C_3)alkyl;
- G7) NHSO₂(C_1 - C_3)alkyl;
 - G8) $NR^{10}R^{11}$, wherein R^{10} and R^{11} are independently selected from H, CH_3 , cyclopropyl, benzyl, $NR^{12}R^{13}$ wherein R^{12} and R^{13} are independently H or (C_1-C_3) alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups

independently selected from hydroxyl, O(C₁-C₃)alkyl, and

 $NR^{14}R^{15}$, wherein R^{14} and R^{15} are independently H or (C_1-C_3) alkyl, or R¹⁴ and R¹⁵ can join to form a heterocycle of formula

Q represents CH₂, O, or NR¹⁶, and R^{16} represents H or (C_1-C_3) alkyl,

R¹⁰ and R¹¹ may be joined to form a saturated 5-6-membered

N-containing ring which is optionally substituted up to two times

by OH,

NR¹⁷R¹⁸, wherein

 R^{17} and R^{18} are H or (C_1-C_3) alkyl,

or by

(C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl;

(CH₂)_a-NR¹⁹R²⁰ wherein G9)

 R^{19} and R^{20} are independently H, (C₁-C₅)alkyl, or (C₃-C₆)cycloalkyl, or may be joined to form a saturated 5-6-membered N-containing ring; and

the subscript "a" is an integer of 1-4;

wherein G10) Q' is O or NR²¹; R^{21} is H, (C_1-C_3) alkyl, or cyclopropyl; and the subscript "b" is an integer of 1-3;

G11) CH₂NR²²(CH₂)_cOCH₃ wherein R^{22} is H, (C_1-C_3) alkyl, or cyclopropyl; and the subscript "c" is an integer of 2-4;

G12) $OSO_2NR^{23}R^{24}$ wherein R^{23} and R^{24} independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶, wherein

R²⁵ and R²⁶ independently represent H or (C_1-C_3) alkyl;

G13) CN;

G14) NO_2 ;

- G15) cyclopropyl;
- G16) OR^{27} , wherein R^{27} represents phenyl or benzyl;
- G17) $S(C_1-C_3)alkyl;$

G20)

G18) CH=CH-(CH₂)₁₋₃-OR⁵; wherein R^5 represents H or (C₁-C₃)alkyl;

G21) $C(O)NR^{28}R^{29}$, wherein R^{28} and R^{29} are independently selected from

cyclopropyl, provided that both R^{28} and R^{29} are not simultaneously cyclopropyl,

Docket No.: 67322(303981)

, provided that this group does not constitute both R^{28} and R^{29} simultaneously,

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

or R^{28} and R^{29} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by (C_1-C_3) alkyl which in turn is optionally substituted up to two times by OH or $O(C_1-C_3)$ alkyl;

G22)
$$\bigvee_{\substack{Q'' \text{ wherein} \\ Q'' \text{ is O or NR}^{30}, \text{ and } \\ R^{30} \text{ is}}}$$

H, cyclopropyl, or

(C₁-C₃)alkyl which is optionally substituted once by halogen, OH, or O(C₁-C₃)alkyl;

G23) $O-(CH_2)_d-NR^{31}R^{32}$ wherein

R³¹ and R³² are independently H, (C₁-C₃)alkyl, or cyclopropyl, or may be joined to form a saturated 5-6-membered N-containing ring; and

the subscript "d" is an integer of 2-4;

G24) $O - CH_2 - N - Q'''$ wherein the subscript "e" is an integer of 2-3; and Q"' is O or NR^{33} ; and R^{33} is H, (C_1-C_3) alkyl, or cyclopropyl;

G25) $\begin{cases} O \\ -\overset{\circ}{\text{L}} - N \\ Q^{iv} \\ \text{wherein} \\ Q^{iv} \text{ is O or NR}^{34}; \text{ and} \\ R^{34} \text{ is H, } (C_1 - C_3) \text{alkyl, or cyclopropyl;} \end{cases}$

G26) $C(O)NR^{35}(CH_2)_fOR^{36}$ wherein R^{35} is H, (C_1-C_3) alkyl, or cyclopropyl; R^{36} is (C_1-C_6) alkyl optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl, and the subscript "f" is an integer of 2-4;

- G27) CO_2R^{37} wherein R^{37} is H or (C_1-C_3) alkyl;
 - G28) phenyl, which is optionally substituted by up to 2 groups selected from halogen, (C₁-C₃)alkyl, OR³⁸, CN, CF₃, and NR³⁹R⁴⁰ wherein R³⁸ represents H or (C₁-C₃)alkyl; and R³⁹ and R⁴⁰ represent H or (C₁-C₃)alkyl;
 - G29) $NR^{41}SO_2NR^{42}R^{43}$ wherein R^{41} represents H, or (C_1-C_4) alkyl, and R^{42} and R^{43} independently represent H, CH_3 , or (C_2-C_3) alkyl which may optionally be substituted once by -OH or $NR^{44}R^{45}$, wherein R^{44} and R^{45} independently represent H or (C_1-C_3) alkyl;
 - G30) OC(O)- CH_2 - $NR^{46}R^{47}$ wherein R^{46} and R^{47} independently represent H, $(C_1$ - $C_3)$ alkyl, or $CO_2(t$ -butyl), provided that R^{46} and R^{47} are not both simultaneously $CO_2(t$ -butyl);

Application No. 10/573,227 Amendment dated November 19, 2008 Reply to Office Action of August 11, 2008

G32) $C(O)-(C_1-C_3)$ alkyl;

G33) (CH₂)_g-N(R⁵⁵)-C(O)-R⁵⁶ wherein g represents 1, 2, or 3; R⁵⁵ represents H or (C₁-C₃)alkyl; R⁵⁶ represents (C₁-C₃)alkyl optionally substituted up to two times by OR⁵⁷ or NR⁵⁸R⁵⁹, wherein R⁵⁷ represents H or (C₁-C₃)alkyl, and R⁵⁸ and R⁵⁹ each represents H or (C₁-C₃)alkyl, (C₁-C₃)alkyl, (C₁-C₃)alkyl, (R⁶⁰) h or R⁵⁶ represents halogen, (C₁-C₃)alkyl, O(C₁-C₃)alkyl, CN, OH, CF₃, or NR⁶¹R⁶², wherein R⁶¹ and R⁶² represent H or (C₁-C₃)alkyl; and h represents 0, 1, or 2;

 $\begin{array}{ll} G34) & (CH_2)_i\text{-}N(R^{63})\text{-}C(O)\text{-}NR^{64}R^{65} \text{ wherein} \\ & \text{i represents 1, 2, or 3;} \\ & R^{63} \text{ represents H or } (C_1\text{-}C_3)\text{alkyl;} \\ & R^{64} \text{ and } R^{65} \text{ each represents H or } (C_1\text{-}C_3)\text{alkyl;} \end{array}$

 R^{64} and R^{65} may be joined to form Q^{V} wherein Q^{V} represents CH_{2} , O or NR^{66} wherein R^{66} represents H or $(C_{1}-C_{3})$ alkyl;

or

Amendment dated November 19, 2008 Reply to Office Action of August 11, 2008

> j represents 1, 2, or 3; R⁶⁷represents H or (C₁-C₃)alkyl; and R⁶⁸ represents H or (C₁-C₃)alkyl;

G36) $(CH_2)_k$ - $N(R^{69})$ - SO_2 - R^{70} wherein

k represents 1, 2, or 3;

 R^{69} represents H or (C_1-C_3) alkyl; and

R⁷⁰ represents (C₁-C₄)alkyl, or phenyl which is optionally substituted up to perhalo by halogen or up to three times by

 OR^{71} , CN, CF_3 , or $NR^{72}R^{73}$, wherein R^{71} represents H or (C_1-C_3) alkyl; and

R⁷² and R⁷³ each represents H or (C₁-C₃)alkyl;

Docket No.: 67322(303981)

G37) $CH=CH-(CH_2)_{1-3}-NR^{74}R^{75}$ wherein

 R^{74} and R^{75} represent H or (C_1-C_3) alkyl;

or a pharmaceutically acceptable salt, solvate, solvate of a salt, or stereoisomer thereof.

2. (Original) The compound of claim 1

wherein

R¹ represents H;

M represents CH;

J represents a heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G13, G22, G29, and G31;

and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) $O(C_1-C_4)$ alkyl which optionally is substituted up to two times by $O(C_1-C_2)$ alkyl;

- OH; G3)
- (C₁-C₅)alkyl, which is optionally substituted independently up to two G4) times by groups selected from hydroxyl and cyano, or up to three times by halogen;
- G5) OCF_3 ;
 - NR¹⁰R¹¹, wherein G8) R¹⁰ and R¹¹ are independently selected from CH_3 ,

cyclopropyl,

benzyl, $NR^{12}R^{13}$ wherein

R¹² and R¹³ are independently H or (C₁-C₃)alkyl, provided that both R¹⁰ and R¹¹ are not NR¹²R¹³ simultaneously,

and

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein

 R^{14} and R^{15} are independently H or (C₁-C₃)alkyl, or R¹⁴ and R¹⁵ can join to form a heterocycle of

wherein formula

Q represents CH₂, O, or NR¹⁶, and R¹⁶represents H or (C₁-C₃)alkyl,

R¹⁰ and R¹¹ may be joined to form a saturated 5-6-membered

N-containing ring which is optionally substituted up to two times

OH,

 $NR^{17}R^{18}$, wherein R^{17} and R^{18} are H or (C_1-C_3) alkyl,

or by

(C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl;

G12) OSO₂NR²³R²⁴ wherein

R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or

 $NR^{25}R^{26}$, wherein R^{25} and R^{26} independently represent H or (C_1-C_3) alkyl;

Application No. 10/573,227 Amendment dated November 19, 2008 Reply to Office Action of August 11, 2008 Docket No.: 67322(303981)

G13) CN;

G22)
$$Q''$$
 wherein Q'' is O or NR³⁰, and Q'' is

H,

cyclopropyl, or

(C₁-C₃)alkyl which is optionally substituted once by halogen, OH, or $O(C_1-C_3)$ alkyl;

G29) NR⁴¹SO₂NR⁴²R⁴³ wherein

R⁴¹represents H, or (C₁-C₄)alkyl, and

R⁴² and R⁴³ independently represent H, CH₃, or (C₂-C₃)alkyl which may optionally be substituted once by -OH or NR⁴⁴R⁴⁵, wherein
R⁴⁴ and R⁴⁵ independently represent H or

(C₁-C₃)alkyl; and

G31) $N(R^{48})C(O)R^{49}$ wherein

 R^{48} represents H or (C₁-C₃)alkyl; and R^{49} represents

 $(CH_2)_{1-3}$ - CO_2H ,

 $O(C_2-C_4)$ alkyl,

 $(CH_2)_{1-4}$ -NR⁵⁰R⁵¹ wherein

R⁵⁰ and R⁵¹ independently represent H or

 (C_1-C_3) alkyl, or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

R⁵² represents (CH₂)₁₋₄-NH₂, CH₂OH,

CH(CH₃)OH, or (C₁-C₃)alkyl; and

R⁵³ and R⁵⁴ independently represent H or (C_1-C_3) alkyl.

3. (Original) The compound of claim 2

wherein

R¹ represents H;

R² represents O(C₁-C₃)alkyl or NR³R⁴

wherein R^3 and R^4 are H or (C_1-C_3) alkyl;

R^{2a} represents H;

L represents O or CR⁶R⁷ wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of O(C₁-C₃)alkyl, halogen, and CF₃:

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) Cl or F;
- G2) $O(C_1-C_3)$ alkyl;
- G3) OH;
- G4) (C_1-C_3) alkyl, which is optionally substituted up to three times by halogen;
- G5) OCF_3 ;
 - G8) NR¹⁰R¹¹, wherein
 R¹⁰ and R¹¹ are independently selected from
 H,
 CH₃,
 cyclopropyl,

benzyl,

NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or (C_1-C_3) alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

 (C_2-C_4) alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, $O(C_1-C_3)$ alkyl, and $NR^{14}R^{15}$, wherein

 R^{14} and R^{15} are independently H or (C₁-C₃)alkyl, or R^{14} and R^{15} can join to form a heterocycle of

formula wherein Q represents CH₂, O, or NR¹⁶, and R¹⁶represents H or (C₁-C₃)alkyl,

- G12) $OSO_2NR^{23}R^{24}$ wherein R^{23} and R^{24} independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein R^{25} and R^{26} independently represent H or (C₁-C₃)alkyl;
- G13) CN;

G22)
$$\stackrel{\begin{subarray}{l} \end{subarray}}{\begin{subarray}{l} \end{subarray}} \begin{subarray}{l} \$$

G31) $N(R^{48})C(O)R^{49}$ wherein R^{48} represents H or (C_1-C_3) alkyl; and

Amendment dated November 19, 2008
Reply to Office Action of August 11, 2008

 R^{49} represents $(CH_2)_{1-3}$ - CO_2H , $O(C_2$ - C_4)alkyl, $(CH_2)_{1-4}$ - $NR^{50}R^{51}$ wherein R^{50} and R^{51} independently represent H or $(C_1$ - C_3)alkyl, or $CH(R^{52})$ - $NR^{53}R^{54}$ wherein R^{52} represents $(CH_2)_{1-4}$ - NH_2 , CH_2OH , $CH(CH_3)OH$, or $(C_1$ - C_3)alkyl; and

 (C_1-C_3) alkyl; and R^{53} and R^{54} independently represent H or (C_1-C_3) alkyl.

4. (Original) The compound of claim 1

wherein

R¹ represents H;

M represents CH;

J represents a heteroaromatic ring selected from the group consisting of

12

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G21, G25, G26, and G31;

and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3; and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) $O(C_1-C_4)$ alkyl which optionally is substituted up to two times by $O(C_1-C_2)$ alkyl;
- G3) OH;
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;

G5) OCF_3 ;

NR¹⁰R¹¹, wherein G8) R¹⁰ and R¹¹ are independently selected from Η, CH_3 , cyclopropyl, benzyl, NR¹²R¹³ wherein R¹² and R¹³ are independently H or (C₁-C₃)alkyl, provided that both R¹⁰ and R¹¹ are not NR¹²R¹³ simultaneously, and (C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein
R¹⁴ and R¹⁵ are independently H or (C₁-C₃)alkyl, or R¹⁴ and R¹⁵ can join to form a heterocycle of wherein O represents CH₂, O, or NR¹⁶, and R^{16} represents H or (C_1-C_3) alkyl, R¹⁰ and R¹¹ may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, NR¹⁷R¹⁸, wherein R^{17} and R^{18} are H or (C_1-C_3) alkyl, or by (C₁-C₃)alkyl which is optionally substituted up to two times by

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, $CH_3,$ or $(C_2\text{-}C_4)alkyl$ which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein R^{25} and R^{26} independently represent H or $(C_1\text{-}C_3)alkyl;$

halogen, OH, or $O(C_1-C_3)$ alkyl;

G21) $C(O)NR^{28}R^{29}$, wherein R^{28} and R^{29} are independently selected from H,

cyclopropyl, provided that both R^{28} and R^{29} are not simultaneously cyclopropyl,

provided that this group does not constitute both R²⁸ and R²⁹ simultaneously,

and

(C₁-C₃)alkyl which is optionally substituted up to two times by

R²⁸ and R²⁹ may be joined to form a saturated 5-6-membered Ncontaining ring which is optionally substituted up to two times by OH, or by (C₁-C₃)alkyl which in turn is optionally substituted up to two times by OH or $O(C_1-C_3)$ alkyl;

Qiv is O or NR34; and R^{34} is H, (C_1-C_3) alkyl, or cyclopropyl;

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein R^{35} is H, (C_1-C_3) alkyl, or cyclopropyl; R^{36} is (C_1-C_6) alkyl optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl, and the subscript "f" is an integer of 2-4; and

 $N(R^{48})C(O)R^{49}$ wherein R^{48} represents H or $(C_1\text{-}C_3)$ alkyl; and G31) R⁴⁹ represents $(CH_2)_{1-3}$ - CO_2H , $O(C_2-C_4)$ alkyl, $(CH_2)_{1-4}$ -NR⁵⁰R⁵¹ wherein R⁵⁰ and R⁵¹ independently represent H or (C₁-C₃)alkyl, or CH(R⁵²)-NR⁵³R⁵⁴ wherein R⁵² represents (CH₂)₁₋₄-NH₂, CH₂OH, CH(CH₃)OH, or (C_1-C_3) alkyl; and R^{53} and R^{54} independently represent H or (C_1-C_3) alkyl.

(Original) The compound of claim 4 5. wherein R¹ represents H; R² represents O(C₁-C₃)alkyl or NR³R⁴ wherein R^3 and R^4 are H or (C_1-C_3) alkyl; R^{2a} represents H; L represents O or CR⁶R⁷, wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of O(C₁-C₃)alkyl, halogen, and CF₃;

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) Cl or F;
- $O(C_1-C_3)$ alkyl; G2)
- G3) OH;
- (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen; G4)
- OCF_3 ; G5)
 - NR¹⁰R¹¹, wherein G8) R¹⁰ and R¹¹ are independently selected from CH_3 , cyclopropyl, benzyl, NR¹²R¹³ wherein R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R¹⁰ and R¹¹ are not NR¹²R¹³ simultaneously,

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and

 $NR^{14}R^{15}$, wherein R^{14} and R^{15} are independently H or (C_1-C_3) alkyl, or R¹⁴ and R¹⁵ can join to form a heterocycle of

> / wherein formula Q represents CH₂, O, or NR¹⁶, and R^{16} represents H or (C_1-C_3) alkyl,

G12) OSO₂NR²³R²⁴ wherein R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶, wherein R^{25} and R^{26} independently represent H or (C_1-C_3) alkyl;

G21) C(O)NR²⁸R²⁹, wherein R²⁸ and R²⁹ are independently selected from Н and

> (C_1-C_3) alkyl which is optionally substituted up to two times by OH;

Amendment dated November 19, 2008 Reply to Office Action of August 11, 2008

G25) Q^{iv} wherein Q^{iv} is O or NR³⁴; and R^{34} is H or (C₁-C₃)alkyl;

G26) $C(O)NR^{35}(CH_2)_fOR^{36}$ wherein R^{35} is H or (C_1-C_3) alkyl;

R³⁶ is (C₁-C₆)alkyl optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl, and

Docket No.: 67322(303981)

the subscript "f" is an integer of 2-4; and

G31) $N(R^{48})C(O)R^{49}$ wherein R^{48} represents H or (C_1-C_3) alkyl; and R^{49} represents $(CH_2)_{1-3}-CO_2H$, $O(C_2-C_4)$ alkyl, $(CH_2)_{1-4}-NR^{50}R^{51}$ wherein R^{50} and R^{51} independently represent H or (C_1-C_3) alkyl, or $CH(R^{52})-NR^{53}R^{54}$ wherein R^{52} represents $(CH_2)_{1-4}-NH_2$, CH_2OH , $CH(CH_3)OH$, or (C_1-C_3) alkyl; and R^{53} and R^{54} independently represent H or (C_1-C_3) alkyl.

6. (Original) The compound of claim 1 wherein

R¹ represents H;

M represents CH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and

3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G22, and G31;

and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) $O(C_1-C_4)$ alkyl which optionally is substituted up to two times by $O(C_1-C_2)$ alkyl;
- G3) OH;
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;
- G5) OCF_3 ;

```
G8) NR<sup>10</sup>R<sup>11</sup>, wherein
R<sup>10</sup> and R<sup>11</sup> are independently selected from
H,
CH<sub>3</sub>,
cyclopropyl,
benzyl,
NR<sup>12</sup>R<sup>13</sup> wherein
R<sup>12</sup> and R<sup>13</sup> are independently H or (C<sub>1</sub>-C<sub>3</sub>)alkyl, provided that both R<sup>10</sup> and R<sup>11</sup> are not NR<sup>12</sup>R<sup>13</sup> simultaneously,
and
(C<sub>2</sub>-C<sub>4</sub>)alkyl which is optionally substituted up to three times by
```

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein

NR¹⁴R¹⁵, wherein
R¹⁴ and R¹⁵ are independently H or (C₁-C₃)alkyl, or
R¹⁴ and R¹⁵ can join to form a heterocycle of

formula wherein Q represents CH_2 , O, or NR^{16} , and R^{16} represents H or (C_1-C_3) alkyl,

or R^{10} and R^{11} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, $NR^{17}R^{18}$, wherein

 R^{17} and R^{18} are H or (C_1-C_3) alkyl,

or by

(C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl;

G22) wherein

Q'' is O or NR^{30} , and R^{30} is

H,

cyclopropyl, or (C_1-C_3) alkyl which is optionally substituted once by halogen, OH, or $O(C_1-C_3)$ alkyl; and

G31) $N(R^{48})C(O)R^{49}$ wherein R^{48} represents H or (C_1-C_3) alkyl; and R^{49} represents $(CH_2)_{1-3}-CO_2H$, $O(C_2-C_4)$ alkyl, $(CH_2)_{1-4}-NR^{50}R^{51}$ wherein R^{50} and R^{51} independently represent H or (C_1-C_3) alkyl, or $CH(R^{52})-NR^{53}R^{54}$ wherein R^{52} represents $(CH_2)_{1-4}-NH_2$, CH_2OH , $CH(CH_3)OH$, or (C_1-C_3) alkyl; and R^{53} and R^{54} independently represent H or (C_1-C_3) alkyl.

7. (Original) The compound of claim 6

wherein

R¹ represents H;

R² represents O(C₁-C₃)alkyl, or NR³R⁴

wherein R^3 and R^4 are H or (C_1-C_3) alkyl;

R^{2a} represents H;

L represents O or CR⁶R⁷, wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of $O(C_1-C_3)$ alkyl, halogen, and CF_3 ;

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

G1) Cl or F:

Docket No.: 67322(303981)

Amendment dated November 19, 2008 Reply to Office Action of August 11, 2008

- G2) $O(C_1-C_3)$ alkyl;
- G3) OH;
- G4) (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen;
- G5) OCF_3 ;
 - G8) $NR^{10}R^{11}$, wherein R^{10} and R^{11} are independently selected from H, CH_3 ,

cyclopropyl,

benzyl, NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or (C_1-C_3) alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

 (C_2-C_4) alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, $O(C_1-C_3)$ alkyl, and $NR^{14}R^{15}$, wherein

NR¹⁴R¹⁵, wherein
R¹⁴ and R¹⁵ are independently H or (C₁-C₃)alkyl, or
R¹⁴ and R¹⁵ can join to form a heterocycle of

formula wherein Q represents CH_2 , O, or NR^{16} , and R^{16} represents H or (C_1-C_3) alkyl;

G22)
$$\bigvee_{\xi=N}^{\xi} Q^{"}$$
 wherein Q'' is O or NR³⁰, and R^{30} is H or (C_1-C_3) alkyl; and

G31) $N(R^{48})C(O)R^{49}$ wherein R^{48} represents H or (C_1-C_3) alkyl; and R^{49} represents $(CH_2)_{1-3}-CO_2H$, $O(C_2-C_4)$ alkyl, $(CH_2)_{1-4}-NR^{50}R^{51}$ wherein

```
R^{50} and R^{51} independently represent H or (C_1\text{-}C_3)alkyl, or CH(R^{52})\text{-}NR^{53}R^{54} wherein R^{52} represents (CH_2)_{1\text{-}4}\text{-}NH_2, CH_2OH, CH(CH_3)OH, or (C_1\text{-}C_3)alkyl; and R^{53} and R^{54} independently represent H or (C_1\text{-}C_3)alkyl.
```

- 8. (Original) A compound selected from the group consisting of
 - 4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}-*N*-methylpyridine-2-carboxamide;
 - 4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridine-2-carboxamide;
 - 4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino|phenoxy}pyridine-2-carbonitrile;
 - 6-phenyl- N^4 -(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - N^4 -{4-[(2-chloropyridin-4-yl)oxy]phenyl}-6-phenylpyrimidine-2,4-diamine;
 - 4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4-yl}phenyl sulfamate;
 - *N*-(4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4-yl}phenyl)glycinamide trifluoroacetate;
 - 6-(4-aminophenyl)- N^4 -(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine:
 - 6-(6-aminopyridin-3-yl)- N^4 -(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - 6-pyridin-3-yl-*N*⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - *N*-[(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methyl]-4-methoxybenzenesulfonamide trifluoroacetate;
 - *N*-[(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methyl]methanesulfonamide trifluoroacetate;

and

- (4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methanol trifluoroacetate (salt).
- 9. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 10. (Original) A method of treatment for a hyperproliferative disorder comprising administering an effective amount of a compound of claim 1 to a subject in need thereof.
- 11. (Original) The method of claim 10 wherein said hyperproliferative disorder is cancer.