Rockchip RKMedia Development Guide

File identification: RK-KF-YF-382

Release version: V1.0.0

Date: 2020-09-03

File Confidentiality: \Box Top Secret \Box Secret \Box Internal Information \blacksquare Public

Disclaime

This document is provided "as is". Rockchip Microelectronics Co., Ltd. ("the company", the same below) does not give any statement, information and content
The accuracy, reliability, completeness, merchantability, specific purpose and non-infringement of the content provide any express or implied statement or guarantee. this
The document is only used as a reference for instructions.

Due to product version upgrades or other reasons, this document may be updated or modified from time to time without any notice.

Trademark statement

"Rockchip", "Rockchip" and "Rockchip" are all registered trademarks of our company and are owned by our company.

All other registered trademarks or trademarks that may be mentioned in this document are owned by their respective owners.

Copyright © 2020 Rockchip Microelectronics Co., Ltd.

Beyond the scope of fair use, without the written permission of the company, any unit or individual shall not extract or copy part or all of the content of this document without authorization. Ministry, not spread in any form.

Rockchip Microelectronics Co., Ltd.

Rockchip Electronics Co., Ltd.

Address: No. 18, Area A, Software Park, Tongpan Road, Fuzhou City, Fujian Province

URL: www.rock-chips.com

Customer Service Tel: +86-4007-700-590

Customer Service Fax: +86-591-83951833

Customer Service Email: fae@rock-chips.com

Page 2

Preface

Overview

This article mainly describes the RKMedia media development reference.

product version

Chip name Kernel version

RK1126/RK1109 Linux V4.19

Audience

This document (this guide) is mainly applicable to the following engineers:

Technical Support Engineer

Software Development Engineer

Revision record

version number Author Modified date Modify the description

V0.0.1 Fan Lichuang/Yu Yongzhen 2020-08-31 initial version

 $V1.0.0 \hspace{1.5cm} \hbox{Lin Liu Diming} \hspace{1.5cm} 2020\text{-}09\text{-}03 \hspace{1.5cm} \hbox{Add data type and error code, associated link}$

Page 3

table of Contents

Rockchip RKMedia Development Guide

1. System Overview

1.1 Overview

1.2 System architectur

1.3 Number of system resources table

2. System Control

2.1 Overview

2.2 Function description

2.2.1 System binding

2.3 API reference

2.3.1 RK MPI SYS Init

2.3.2 RK MPI SYS DumpChn

2.3.3 RK MPI SYS Bind

2.3.4 RK MPI SYS UnBind

2.3.5 RK MPI SYS RegisterEventCb

2.3.6 RK MPI SYS RegisterOutCb

2.3.7 RK MPI SYS SendMediaBuffer 2.3.9 RK MPI MB ReleaseBuffer 2.3.10 RK MPI MB GetPtr 2.3.11 RK MPI MB GetFD 2.3.12 RK MPI MB GetSize 2.3.13 RK MPI MB GetModeID 2.3.14 RK MPI MB GetChannelID 2.3.15 RK MPI MB GetTimestamp 2.4.1 Basic data types 2.4.1.1 Common data types 2.4.1.2 IMAGE TYPE E 2.4.1.3 CODEC TYPE E 2.4.1.4 MOD ID E 2.4.1.5 Sample Format E 2.4.1.6 RECT S 2.4.2 System control data type 2.4.2.1 MPP CHN S 2.4.2.2 EventCbFunc 2.4.2.3 MEDIA BUFFER 2.4.2.4 OutCbFunc 2.4.2.5 MB IMAGE INFO S 2.5 Error code 3.1 Overview 3.2 Function description 3.2.1 VI node name 3.2.2 VI working mode 3.3 API reference 3.3.1 RK MPI VI EnableChn 3.3.2 RK MPI VI DisableChn 3.3.3 RK MPI VI SetChnAttr 3.3.4 RK MPI VI GetChnRegionLuma 3.3.5 RK MPI VI StartStream 3.4.1 VI MAX DEV NUM 3.4.2 VI MAX CHN NUM

3.4.3 VI PIPE

Page 4

3.4.4 VI CHN 3.4.5 VI CHN ATTR S 3.4.6 VIDEO REGION INFO S 3.5 Error code 4. Video encoding 4.1 Overview 4.2 Function description 4.2.1 Data flow chart 4.2.2 Rate control 4.2.3 GOP Mode 4.2.4 Region of Interest (ROI) 4.2.5 Rotation 4.3 API reference 4.3.1 RK MPI VENC CreateChn 4.3.2 RK MPI VENC DestroyChn 4.3.3 RK MPI VENC SetRcParam 4.3.4 RK MPI VENC SetRcMode 4.3.5 RK MPI VENC SetRcQuality 4.3.6 RK MPI VENC SetBitrate 4.3.7 RK MPI VENC RequestIDR 4.3.8 RK MPI VENC SetFps 4.3.9 RK MPI VENC SetGop 4.3.10 RK MPI VENC SetAvcProfile 4.3.11 RK MPI VENC InsertUserData 4.3.12 RK MPI VENC SetRoiAttr 4.3.13 RK MPI VENC SetGopMode 4.3.14 RK MPI VENC RGN Init 4.3.15 RK MPI VENC RGN SetBitMap 4.3.16 RK MPI VENC RGN SetCover 4.3.17 RK MPI VENC SetJpegParam 4.3.18 RK MPI VENC StartRecvFrame 4.4 Data Type 4.4.1 VENC MAX CHN NUM

4.4.2 VENC CHN

4.4.3 VENC ATTR JPEG S 4.4.4 VENC ATTR MJPEG S 4.4.5 VENC ATTR H264 S 4.4.6 VENC ATTR H265 S 4.4.7 VENC ATTR S 4.4.8 VENC MJPEG CBR S 4.4.9 VENC MJPEG VBR S 4.4.10 VENC H264 CBR S 4.4.11 VENC H264 VBR S 4.4.12 VENC H265 CBR S 4.4.13 VENC H265 VBR S 4.4.14 VENC RC MODE E 4.4.15 VENC RC ATTR S 4.4.16 VENC GOP MODE E 4.4.17 VENC GOP ATTR S 4.4.18 VENC CHN ATTR S 4.4.19 VENC PARAM MJPEG S 4.4.20 VENC PARAM H264 S 4.4.21 VENC PARAM H265 S 4.4.22 VENC RC PARAM S 4.4.23 VENC RC QUALITY E 4.4.24 VENC ROI ATTR S 4.4.25 OSD REGION ID E

Page 5

4.4.26 OSD REGION INFO S 4.4.27 OSD PIXEL FORMAT E 4.4.28 BITMAP S 4.4.29 COVER INFO S 4.4.30 VENC RECV PIC PARAM S 4.4.31 VENC JPEG PARAM S 4.5 Error code 5. Motion detection 5.1 Overview 5.2 Function description 5.3 API reference 5.3.1 RK MPI ALGO MD CreateChn 5.3.2 RK MPI ALGO MD DestroyChn 5.4 Data Type 5.4.1 ALGO MD MAX CHN NUM 5.4.2 ALGO MD ROI RET MAX 5.4.3 ALGO MD CHN 5.4.4 ALGO MD ATTR S 5.5 Error code 6. Occlusion detection 6.1 Overview 6.2 Function description 6.3 API reference 6.3.1 RK MPI ALGO OD CreateChn 6.3.2 RK MPI ALGO OD DestroyChn 6.4 Data Type 6.4.1 ALGO OD MAX CHN NUM 6.4.2 ALGO OD ROI RET MAX 6.4.3 ALGO OD CHN 6.4.4 ALGO OD ATTR S 6.5 Error code 7. Audio 7.2 Function description 7.2.1 Audio input and output 7.2.2 Audio Codec 7.2.3 Audio Algorithm 7.3 API reference 7.3.1 Audio input 7.3.1.1 RK MPI AI EnableChn 7.3.1.2 RK MPI AI DisableChn 7.3.1.3 RK MPI AI SetChnAttr 7.3.1.4 RK MPI AI SetVolume 7.3.1.5 RK MPI AI GetVolume 7.3.1.6 RK MPI AI SetTalkVqeAttr 7.3.1.7 RK MPI AI GetTalkVqeAttr 7.3.1.8 RK MPI AI SetRecordVgeAttr 7.3.1.9 RK MPI AI GetRecordVqeAttr 7.3.1.10 RK MPI AI EnableVge 7.3.1.11 RK MPI AI DisableVge

```
7.3.2 Audio output
7.3.2.1 RK MPI AO EnableChn
             7.3.2.2 RK MPI AO DisableChn
             7.3.2.3 RK MPI AO SetChnAttr
             7.3.2.4 RK MPI AO SetVolume
             7.3.2.5 RK MPI AO GetVolume
             7.3.2.6 RK MPI AO SetVqeAttr
             7.3.2.7 RK MPI AO GetVqeAttr
             7.3.2.8 RK MPI AO EnableVge
             7.3.2.9 RK MPI AO DisableVge
        7.3.3 Audio coding
             7.3.3.1 RK MPI AENC CreateChn
             7.3.3.2 RK MPI AENC DestroyChn
         7.3.4 Audio decoding
             7.3.4.1 RK MPI ADEC CreateChn
             7.3.4.2 RK MPI ADEC DestroyChn
    7.4 Data Type
        7.4.1 Audio input
             7.4.1.1 AI MAX CHN NUM
             7.4.1.2 AI CHN
             7.4.1.3 AI CHN ATTR S
             7.4.1.4 AI TALKVQE CONFIG S
             7.4.1.5 AI RECORDVQE CONFIG S
             7.4.2.1 AO MAX CHN NUM
             7.4.2.2 AO CHN
             7.4.2.3 AO CHN ATTR S
             7.4.2.4 AO VQE CONFIG S
             7.4.3.1 AENC MAX CHN NUM
             7.4.3.2 AENC CHN
             7.4.3.3 AENC ATTR AAC S
             7.4.3.4 AENC ATTR MP2 S
             7.4.3.5 AENC ATTR G711A S
              7.4.3.6 AENC ATTR G711U S
             7.4.3.7 AENC ATTR G726 S
             7.4.3.8 AENC CHN ATTR S
        7.4.4 Audio decoding
             7.4.4.1 ADEC MAX CHN NUM
              7.4.4.2 ADEC CHN
             7.4.4.3 ADEC ATTR AAC S
             7.4.4.4 ADEC ATTR MP2 S
             7.4.4.5 ADEC ATTR G711A S
             7.4.4.6 ADEC ATTR G711U S
             7.4.4.7 ADEC ATTR G726 S
             7.4.4.8 ADEC CHN ATTR S
    7.5 Error code
         7.5.1 Audio input error code
        7.5.2 Audio output error code
         7.5.3 Audio encoding error code
         7.5.4 Audio decoding error code
    8.1 Overview
    8.2 Function description
        8.3.1 RK MPI RGA CreateChn
        8.3.2 RK MPI RGA DestroyChn
    8.4 Data Type
        8.4.1 RGA MAX CHN NUM
        8.4.2 RGA CHN
        8.4.3 RGA INFO S
        8.4.4 RGA ATTR S
    8.5 Error code
9. Video output
    9.1 Overview
    9.2 Function description
```

Page 7

9.3.1 RK MPI VO CreateChn 9.3.2 RK MPI VO DestroyChn

9.3 API reference

8. RGA

9.4 Data Type
9.4.1 VO MAX CHN NUM
9.4.2 VO CHN
9.4.3 VO CHN ATTR S
9.5 Error code

10. Restrictions on Use

Page 8

1. System Overview

1.1 Overview

RKMedia provides a media processing solution that supports the rapid development of application software. RKMedia takes further steps on the basic API of each module Packaging simplifies the difficulty of application development. The platform supports the following functions: VI (input video capture),
VENC (H.265/H.264/JPEG/MJPEG encoding), VDEC (H.265/H.264/JPEG, MJPEG decoding), VO (video output display),
RGA video processing (including rotation, scaling, cropping), AI (audio capture), AO (audio output), AENC (audio coding),
ADEC (audio decoding), MD (motion detection), OD (occlusion detection).

1.2 System Architecture

1.3 Number of system resources table

Page 9

Module name	Number of channels
VI	4
VENC	16
VDEC	16
AI	1
AO	1
AENC	16
ADEC	16
MD	4
OD	4
RGA	16
vo	2

2. System control

2.1 Overview

The system controls the initialization of the basic system, and at the same time is responsible for completing the initialization and de-initialization of each module and managing the operation of each but

 $Binding\ relationship,\ provide\ current\ system\ version,\ system\ log\ management.$

2.2 Function description

2.2.1 System binding

RKMedia provides system binding interface (RK MPI SYS Bind), that is, to establish the relationship between the two by binding the data source to the data receiver Link (only allow the data receiver to bind the data source). After binding, the data generated by the data source will be automatically sent to the receiver. Currently supported bindings The relationship is shown in Table 2-1Shown.

Table 2-1 Binding relationship supported by RKMedia

Page 10

data source	Data recipient
VI	VO/RGA/VENC/MD/OD
VDEC	VO/RGA/VENC/MD/OD
RGA	VO/VENC/MD/OD
AI	AO/AENC

AO

2.3 API reference

ADEC

2.3.1 RK_MPI_SYS_Init

[description]	
Initialize the system.	
[grammar]	
RK_S32 RK_MPI_SYS_Init();	
[parameter]	
no.	
[return value]	
return value	description
0	success.
Non-zero	Failure, see <u>error code for</u> its value.
[demand]	
Header file: rkmedia_api.h	
Library file: libeasymedia.so	
[note]	
no.	

[Example]

no.

[related topic]

no.

Page 11

2.3.2 RK_MPI_SYS_DumpChn

[description]

Print channel information.

[grammar]

 $RK_VOID\ RK_MPI_SYS_DumpChn(\underline{MOD\ ID\ E}\ enModId);$

[parameter]

parameter name description Input / output

enModId Module number. enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

2.3.3 RK_MPI_SYS_Bind

[description]

Data source to data receiver binding interface.

[grammar]

 $RK_S32\ RK_MPI_SYS_Bind(const\ \underline{MPP\ CHN\ S}\ *pstSrcChn,const\underline{MPP\ CHN\ S}\ *pstDestChn);$

[parameter]

parameter name description Input / output

pstSrcChn Source channel pointer. enter

pstDestChn Destination channel pointer. enter

Page 12

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

note

Binding relationship is currently supported systems, see <u>Table 2-1</u>.

If you use this function, you cannot use $\underline{RK\ MPI\ MB\ Release Buffer}$ retrieve data.

[Example]

no.

[related topic]

RK MPI SYS UnBind

2.3.4 RK_MPI_SYS_UnBind

[description]

Data source to data receiver unbinding interface.

[grammar]

 $RK_MPI_SYS_UnBind(const~\underline{MPP~CHN~S}~*pstSrcChn,const\\\underline{MPP~CHN~S}~*pstDestChn);$

[parameter]

parameter name description Input / output

pstSrcChn Source channel pointer. enter

pstDestChn Destination channel pointer. enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

Page 13

[note]

no.

[Example]

no.

[related topic]

RK MPI SYS Bind

2.3.5 RK_MPI_SYS_RegisterEventCb

[description]

Register event callbacks, such as motion detection events.

[grammar]

 $RK_S32\ RK_MPI_SYS_RegisterEventCb(const\ \underline{MPP\ CHN\ S}\ *pstChn, \underline{EventCbFunc}\ cb);$

[parameter]

parameter name description Input / output

pstChn Specify the channel pointer. enter

cb Event callback function. Output

return value

return value description

0 success.

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

Page 14

2.3.6 RK_MPI_SYS_RegisterOutCb

[description]

Register data output callback.

[description]

Register data output callback. Note: The callback function cannot handle time-consuming operations, otherwise the data stream of the corresponding channel will be blocked.

grammar

 $RK_S32\ RK_MPI_SYS_RegisterOutCb(const\ \underline{MPP\ CHN\ S}\ *pstChn, \underline{OutCbFunc}\ cb);$

[parameter]

parameter name description Input / output
pstChn Specify the channel pointer. enter

cb Data output callback function. Output

[return value]

return value description

0 success.

Non-zero Failure, see the error code for its value .

[demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note]

The callback function cannot handle time-consuming operations, otherwise the data flow of the corresponding channel will be blocked.

[Example]

no.

[related topic]

$2.3.7\ RK_MPI_SYS_SendMediaBuffer$

[description]

Input data to the specified channel, such as sending the local yuv file to the encoder for encoding.

[grammar]

RK_S32 RK_MPI_SYS_SendMediaBuffer(MOD_ID_E enModID, RK_S32 s32ChnID, MEDIA_BUFFER

buffer);

[parameter]

Page 15

parameter name	description	Input / output
enModID	Module number.	enter
s32ChnID	Channel number.	enter
buffer	Buffer.	enter
【return value】		

return value description 0 success.

Failure, see the error code for its value . Non-zero

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

note

no.

[Example]

related topic

RK MPI SYS GetMediaBuffer

2.3.8 RK_MPI_SYS_GetMediaBuffer

[description]

Obtain data from the specified channel.

 $\underline{\textbf{MEDIA BUFFER}} \text{RK_MPI_SYS_GetMediaBuffer} (\text{MOD_ID_E enModID}, \text{RK_S32 s32ChnID}, \text{RK_S32}$

s32MilliSec);

[parameter]

parameter name description Input / output
enModID Module number. enter
s32ChnID Channel number. enter
s32MilliSec Block waiting time. enter

Page 16

Return value type description

MEDIA_BUFFER
Buffer pointer.

[demand]
Header file: rkmedia_api.h
Library file: libeasymedia.so

[note]
If usedRK_MPI_SYS_Bind, this function cannot get data.

[Example]
no.

[related topic]

RK MPI SYS SendMediaBuffer

RK MPI MB ReleaseBuffer

$2.3.9~RK_MPI_MB_ReleaseBuffer$

[description]

Release the buffer.

[grammar

RK_S32 RK_MPI_MB_ReleaseBuffer(MEDIA_BUFFER mb);

[parameter]

parameter name description Input / output

mb Buffer. enter

[return value]

return value description
0 success.

Non-zero Failure, see the error code for its value .

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI SYS GetMediaBuffer

2.3.10 RK_MPI_MB_GetPtr

[description]

Obtain the buffer pointer from the specified $\underline{\text{MEDIA BUFFER}}$.

grammar

void *RK_MPI_MB_GetPtr(<u>MEDIA_BUFFER</u> mb);

[parameter]

parameter name description Input / output

mb Buffer. enter

[return value]

Return value type description

void * Buffer pointer.

[demand]

Header file: rkmedia_buffer.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

2.3.11 RK_MPI_MB_GetFD

[description]

Obtain the file descriptor from the specified $\underline{\mathsf{MEDIA}}\; \underline{\mathsf{BUFFER}}$.

[grammar]

int RK_MPI_MB_GetFD(MEDIA BUFFER mb);

[parameter]

Page 18

parameter name description Input / output

nb Buffer. enter

[return value]

Return value type description
int File descriptor.

[demand]

Header file: rkmedia_buffer.h

Library file: libeasymedia.so (note) [Example] no. [related topic] no. 2.3.12 RK_MPI_MB_GetSize [description] Obtain the buffer size from the specified ${\underline{\sf MEDIA}}\ {\underline{\sf BUFFER}}$. [grammar] size_t RK_MPI_MB_GetSize(MEDIA_BUFFER_mb); [parameter] parameter name description Input / output Buffer. enter [return value] Return value type description size_t The buffer size. [demand] Header file: rkmedia_buffer.h Library file: libeasymedia.so [note] [Example] no. [related topic] 2.3.13 RK_MPI_MB_GetModeID [description] Obtain the module ID from the specified $\underline{\text{MEDIA BUFFER}}$. [grammar] MOD ID E_RK_MPI_MB_GetModeID(MEDIA_BUFFER mb); [parameter] parameter name description Input / output mb Buffer. [return value] Return value type description

MOD ID E Module ID.

[demand]

Header file: rkmedia_buffer.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

2.3.14 RK_MPI_MB_GetChannelID

[description]

Obtain the channel ID from the specified $\underline{\text{MEDIA BUFFER}}$.

[grammar]

 $RK_S16\ RK_MPI_MB_GetChannelID(\ \underline{MEDIA}\ \ \underline{BUFFER}\ mb);$

[parameter]

Page 20

parameter name description Input / output

mb Buffer. enter

[return value]

Return value type description

RK_S16 Channel ID.

[demand]

Header file: rkmedia_buffer.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

2.3.15 RK_MPI_MB_GetTimestamp

[description]

Get the timestamp from the specified $\underline{\text{MEDIA BUFFER}}$.

[grammar]

 $RK_U64\ RK_MPI_MB_GetTimestamp(\underline{MEDIA\ BUFFER}\ mb);$

[parameter]

parameter name description Input / output

mb Buffer. enter

```
[return value]

Return value type description

RK_S16 Timestamp.

[demand]

Header file: rkmedia_buffer.h

Library file: libeasymedia.so

[note]

no.
```

```
[Example]
no.
[related topic]
no.
```

2.4 data types

2.4.1 Basic data types

The basic data types are defined as follows:

2.4.1.1 Common data types

```
typedef unsigned char RK_U8;
typedef unsigned short RK_U16;
typedef unsigned int RK_U32;
typedef signed char RK_S8;
typedef short RK_S16;
typedef int RK_S32;
typedef unsigned long RK_UL;
typedef signed long RK_SL;
typedef float RK_FLOAT;
typedef double RK_DOUBLE;
#ifndef _M_IX86
typedef unsigned long long RK_U64;
typedef long long RK_S64;
typedef unsigned __int64 RK_U64;
typedef __int64 RK_S64;
#endif
typedef char RK_CHAR;
#define RK_VOID void
typedef unsigned int RK_HANDLE;
 * const defination
typedef enum {
  RK_FALSE = 0,
  RK_TRUE = 1,
} RK_BOOL;
#ifndef NULL
#define NULL 0L
```

#endif

```
#define RK_NULL 0L
#define RK_SUCCESS 0
#define RK_FAILURE (-1)
#define MAX_FILE_PATH_LEN 256
```

2.4.1.2 IMAGE_TYPE_E

[Description]

Define the image format enumeration type.

definition

```
typedef enum rk_IMAGE_TYPE_E {
  IMAGE\_TYPE\_UNKNOW = 0,
  IMAGE_TYPE_GRAY8,
  IMAGE_TYPE_GRAY16,
  IMAGE_TYPE_YUV420P,
  IMAGE_TYPE_NV12,
  IMAGE_TYPE_NV21,
  IMAGE_TYPE_YV12,
  IMAGE_TYPE_FBC2,
  IMAGE_TYPE_FBC0,
  IMAGE_TYPE_YUV422P,
  IMAGE_TYPE_NV16,
  IMAGE_TYPE_NV61,
  IMAGE_TYPE_YV16,
  IMAGE_TYPE_YUYV422,
  IMAGE_TYPE_UYVY422,
  IMAGE_TYPE_RGB332,
  IMAGE_TYPE_RGB565,
  IMAGE_TYPE_BGR565,
  IMAGE_TYPE_RGB888,
  IMAGE_TYPE_BGR888,
  IMAGE_TYPE_ARGB8888,
  IMAGE_TYPE_ABGR8888,
  IMAGE_TYPE_JPEG,
  IMAGE_TYPE_BUTT
} IMAGE_TYPE_E;
```

2.4.1.3 CODEC_TYPE_E

[Description]

Define the codec format enumeration type.

[definition]

```
typedef enum rk_CODEC_TYPE_E {
   RK_CODEC_TYPE_NONE = -1,
   // Audio
   RK_CODEC_TYPE_AAC,
```

Page 23

```
RK_CODEC_TYPE_MP2,
RK_CODEC_TYPE_VORBIS,
RK_CODEC_TYPE_G711A,
RK_CODEC_TYPE_G711U,
RK_CODEC_TYPE_G726,
// Video
RK_CODEC_TYPE_H264,
RK_CODEC_TYPE_H265,
RK_CODEC_TYPE_JPEG,
RK_CODEC_TYPE_MJPEG,
RK_CODEC_TYPE_NB
} CODEC_TYPE_E;
```

2.4.1.4 MOD_ID_E

[Description]

Define the module ID enumeration type.

definition

```
typedef enum rkMOD_ID_E {
  RK_ID_UNKNOW = 0,
  RK_ID_VB,
  RK_ID_SYS,
  RK_ID_VDEC,
  RK_ID_VENC,
  RK_ID_H264E,
  RK_ID_JPEGE,
  RK_ID_H265E,
  RK_ID_VO,
  RK_ID_VI,
  RK_ID_AIO,
  RK_ID_AI,
  RK_ID_AO,
  RK_ID_AENC,
  RK_ID_ADEC,
  RK_ID_ALGO_MD,
  RK_ID_ALGO_OD,
  RK_ID_RGA,
  RK_ID_BUTT,
} MOD_ID_E;
```

2.4.1.5 Sample_Format_E

[Description]

Define the sampling format enumeration type.

[definition]

```
typedef enum rkSample_Format_E { RK_SAMPLE_FMT_NONE = -1 , RK_SAMPLE_FMT_U8,
```

Page 24

```
RK_SAMPLE_FMT_S16,
RK_SAMPLE_FMT_S32,
RK_SAMPLE_FMT_FLT,
RK_SAMPLE_FMT_U8P,
RK_SAMPLE_FMT_S16P,
RK_SAMPLE_FMT_S32P,
RK_SAMPLE_FMT_FLTP,
RK_SAMPLE_FMT_G711A,
RK_SAMPLE_FMT_G711U,
RK_SAMPLE_FMT_B711U,
RK_SAMPLE_FMT_B7
```

2.4.1.6 RECT_S

[Description]

Define the area attribute structure.

[definition]

```
typedef struct rkRECT_S {
RK_S32 s32X;
RK_S32 s32Y;
RK_U32 u32Width;
```

```
RK_U32 u32Height; } RECT_S;
```

member

Member name description

s32X X-axis coordinate of the area

s32Y Y-axis coordinate of the area

u32Width The width of the area

u32Height The height of the area

[Precautions]

no.

[Related data types and interfaces]

no.

2.4.2 System control data type

The data types related to system control are defined as follows:

 $\underline{\mathsf{MPP}\ \mathsf{CHN}\ \mathsf{S}}\text{:}$ Define the channel structure of the module device.

EventCbFunc: Event callback function pointer.

Page 25

MEDIA BUFFER: Data buffer pointer.

 $\underline{OutCbFunc}\hbox{: Data output callback function pointer.}$

 $\underline{MB\ IMAGE\ INFO\ S}$: Image information structure.

2.4.2.1 MPP_CHN_S

[Description]

Define the module device channel structure.

definition

```
typedef struct rkMPP_CHN_S {
    MOD_ID_E enModId;
    RK_S32 s32DevId;
    RK_S32 s32ChnId;
} MPP_CHN_S;
```

[member]

Member name description
enModId Module number.
s32DevId Device No.
s32ChnId Channel number.

2.4.2.2 EventCbFunc

[Description]

Event callback function pointer.

[definition]

```
typedef struct rkMD_EVENT_S {
    RK_U16 u16Cnt;
```

```
RK_U32 u32Width;
RK_U32 u32Height;
RECT_S stRects[ 4096 ];
} MD_EVENT_S;

typedef struct rkOD_EVENT_S {
RK_U16 u16Cnt;
RK_U32 u32Width;
RK_U32 u32Height;
RECT_S stRects[ 10 ];
RK_U16 u16Occlusion[ 10 ];
} OD_EVENT_S;

typedef struct rkEVENT_S {
EVENT_TYPE_E type;
```

```
MOD_ID_E mode_id;
union {

    MD_EVENT_S md_event;
    OD_EVENT_S stOdEvent;
};
} EVENT_5;

typedef void (* EventCbFunc)(EVENT_S * event);
```

[member]

 Member name
 description

 type
 Event type.

 mode_id
 Module number.

 md_event
 Motion detection event.

 stOdEvent
 Occlusion detection event.

2.4.2.3 MEDIA_BUFFER

[Description]

Data buffer pointer.

definition

typedef void * MEDIA_BUFFER;

[Related data types and interfaces]

OutCbFunc

2.4.2.4 OutCbFunc

[Description]

Data output callback function pointer.

[definition]

typedef void (* OutCbFunc)(MEDIA_BUFFER mb);

[Related data types and interfaces]

MEDIA BUFFER

2.4.2.5 MB_IMAGE_INFO_S

[Description]

Image information structure.

[definition]

typedef struct rkMB_IMAGE_INFO {
 RK_U32 u32Width;
 RK_U32 u32Height;
 RK_U32 u32VerStride;
 RK_U32 u32HorStride;
 IMAGE_TYPE_E enImgType;
} MB_IMAGE_INFO_S;

member

Member name	description
u32Width	width.
u32Height	height.
u32VerStride	Imaginary wide.
u32HorStride	False height.
enImgType	Image format type

[Related data types and interfaces]

IMAGE TYPE E

2.5 Error code

System control error codes such as <u>Table 2-2</u> shows:

Table 2-2 System control API error codes

error code	Macro definition	description
1	RK_ERR_SYS_NULL_PTR	Null pointer error
2	RK_ERR_SYS_NOTREADY	System control properties are not configured
3	RK_ERR_SYS_NOT_PERM	Operation not allowed
4	RK_ERR_SYS_NOMEM	Failed to allocate memory, such as insufficient system memory
5	RK_ERR_SYS_ILLEGAL_PARAM	Invalid parameter setting
6	RK_ERR_SYS_BUSY	System is busy
7	RK_ERR_SYS_NOT_SUPPORT	Unsupported features

Page 28

3. Video input

3.1 Overview

The function realized by the video input (VI) module: ISPP driver realizes the standard V4L2 device, through the encapsulation of the V4L2 API, it can be collected ISPP multi-channel video data. VI stores the received data into the designated memory area to realize the collection of video data.

3.2 Functional description

3.2.1 VI node name

The creation of VI needs to specify the name of the video node, such as "/dev/video0". It is special on the RV1126/RV1109 platform, corresponding to the node name As follows.

Table 3-1 ISPP node name (RV1126/RV1109 chip)

ISPP node name	Video node path	Maximum width	Supported output format
rkispp_m_bypass	/dev/video13	Does not support setting resolution, Support zoom	no NV12/NV16/YUYV/ FBC0 / FBC2
rkispp_scale0	/dev/video14	3264, up to 8 times zoom	NV12/NV16/YUYV
rkispp_scale1	/dev/video15	1280, maximum support 8 times zoom	NV12/NV16/YUYV
rkispp_scale2	/dev/video16	1280, maximum support 8 times zoom	NV12/NV16/YUYV

3.2.2 VI working mode

VI has two working modes, as shown in the following table

Pattern name	Macro definition name	Function Description
Normal mode	VI_WORK_MODE_NORMAL	Compared to "brightness mode", In this mode, the camera data is normally read and sent to the subsequent stage.
Brightness mode	VI_WORK_MODE_LUMA_ONLY	In brightness mode, the VI is only used for brightness statistics. At this time, the VI module cannot pass the callback function or RK MPI SYS GetMediaBuffer gets data.

3.3 API reference

Page 29

3.3.1 RK_MPI_VI_EnableChn

[description]

Enable the VI channel.

grammar

 $RK_S32\ RK_MPI_VI_EnableChn(\ \underline{VI\ PIPE}\ ViPipe,\ \underline{VI\ CHN}\ ViChn);$

[parameter]

parameter name description Input / output

ViPipe VI pipe number. enter

enter

ViChn VI channel number. Value range: [0, VI MAX CHN NUM).

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

RK MPI VI DisableChn

[related topic]

3.3.2 RK_MPI_VI_DisableChn

[description]

Close the VI channel.

[grammar]

RK_S32 RK_MPI_VI_DisableChn(<u>VI_PIPE</u> ViPipe,<u>VI_CHN</u> ViChn);

[parameter]

Page 30

parameter name description Input / output

ViPipe VI pipe number. enter

ViChn VI channel number. Value range: [0, VI MAX CHN NUM). enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI VI EnableChn

3.3.3 RK_MPI_VI_SetChnAttr

[description]

Set VI channel properties.

【grammar】

RK_MPI_VI_SetChnAttr(<u>VI_PIPE_ViPipe,VI_CHN_ViChn, constVI_CHN_ATTR_S</u> *pstChnAttr);

[parameter]

parameter name	description	Input / output
ViPipe	VI pipe number.	enter
ViChn	VI channel number. Value range: [0, <u>VI_MAX_CHN_NUM</u>).	enter
pstChnAttr	VI channel attribute structure pointer.	enter

[return value]

Page 31

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

3.3.4 RK_MPI_VI_GetChnRegionLuma

[description]

Obtain the area brightness information.

[grammar]

RK_S32 RK_MPI_VI_GetChnRegionLuma(<u>VI_PIPE_VIPipe,VI_CHN_ViChn_ViChn_Const_VIDEO_REGION_INFO_S_*pstRegionInfo_RK_U64_*pu64LumaData_RK_S32_s32MilliSec);</u>

[parameter]

		lose	
narameter name	description	In /	
parameter name	description	lose	
		Out	
		,	
ViPipe	VI pipe number.	lose	
·	••	Enter	
	VI channel number. Value range: [0, <u>VI_MAX_CHN_NUM</u>)	lose	
ViChn		Enter	
		Enter	
and Domina Info	Regional information. Where pstRegionInfo->pstRegion is the regional attribute of the statistical re-	egiologswhich starts immediately	
pstRegionInfo	Starting position, width, height; pstRegionInfo->u32RegionNum is the number of statistical region	s. Enter	
pu64LumaData	The memory pointer for receiving area brightness and statistics information. The memory size should besgreater than or equal to		
puo izumuzutu	sizeof(RK_U64)×pstRegionInfo->u32RegionNum.	Out	
	Timeout parameter s32MilliSec: -1 means blocking mode; 0 means non-blocking mode; more than	0 meses	
s32MilliSec	Shows the timeout mode, the unit of timeout time is milliseconds (ms).	Enter	

[return value]

Page 32

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

This interface does not support FBC0/FBC2 compression format.

[Example]

no.

[related topic]

no.

3.3.5 RK_MPI_VI_StartStream

[description]

Start the video stream.

[grammar]

 $RK_S32\ RK_MPI_VI_StartStream(\underbrace{VI\ PIPE}\ ViPipe,\underbrace{VI\ CHN}\ ViChn);$

[parameter]

parameter name description Input / output

ViPipe VI pipe number. enter

ViChn VI channel number. Value range: [0, <u>VI MAX CHN NUM</u>). enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

Page 33

[Example]

no.

[related topic]

no.

3.4 data types

The data types related to video input are defined as follows:

 $\underline{\text{VI MAX DEV NUM}}$: Define the maximum number of VI devices.

<u>VI_MAX_CHN_NUM</u>: Define the total number of VI physical channels and extended channels.

VI PIPE: VI pipe number.

VI CHN: VI channel number.

VI CHN ATTR S: VI channel attribute structure pointer.

<u>VIDEO REGION INFO S</u>: Define the video area information.

3.4.1 VI_MAX_DEV_NUM

[Description]

Define the maximum number of VI devices.

[definition]

RV1109 / RV1126:

#define VI_MAX_DEV_NUM 4

3.4.2 VI_MAX_CHN_NUM

[Description]

Define the total number of VI physical channels and expansion channels.

[definition]

RV1109 / RV1126:

#define VI_MAX_CHN_NUM VI_MAX_DEV_NUM

3.4.3 VI_PIPE

[Description]

VI pipe number.

[definition]

Page 34

typedef RK_S32 VI_PIPE;

3.4.4 VI_CHN

[Description]

VI channel number.

[definition]

typedef RK_S32 VI_CHN;

3.4.5 VI_CHN_ATTR_S

[Description]

VI channel attribute structure pointer.

[definition]

```
typedef char RK_CHAR;
```

```
typedef enum rkVI_CHN_WORK_MODE {
    VI_WORK_MODE_NORMAL = 0 ,
    // for vi single caculate luma.

    // In this mode, vi has no output,
    // and data cannot be obtained from vi.
    VI_WORK_MODE_LUMA_ONLY,
} VI_CHN_WORK_MODE;

typedef struct rkVI_CHN_ATTR_S {
    const RK_CHAR * pcVideoNode;
    RK_U32 u32Width;
    RK_U32 u32Height;
    IMAGE_TYPE_E enPixFmt;
    RK_U32 u32BufCnt; // VI capture video buffer cnt.
    VI_CHN_WORK_MODE enWorkMode;
} VI_CHN_ATTR_S;
```

[member]

Page 35

Member name	description
-------------	-------------

pcVideoNode The path of the video node.

u32Width video width.
u32Height video height.

enPixFmt video format.

u32BufCnt VI capture video buffer count

enWorkMode VI channel working mode

[Precautions]

VI_WORK_MODE_LUMA_ONLY mode is used for VI brightness statistics. In this mode, the VI has no output and cannot be obtained from the VI data.

[Related data types and interfaces]

IMAGE TYPE E

RK MPI VI SetChnAttr

3.4.6 VIDEO_REGION_INFO_S

[Description]

Define the video area information.

[definition]

```
typedef struct rkVIDEO_REGION_INFO_S {
    RK_U32 u32RegionNum; /* count of the region */
    RECT_S * pstRegion; /* region attribute */
} VIDEO_REGION_INFO_S;
```

[member]

Member name description

u32RegionNum The number of video areas.

pstRegion Pointer of location information of video area.

[Related data types and interfaces]

RECT S

RK MPI VI GetChnRegionLuma

Page 36

3.5 Error code

Video input API error codes such as <u>Table 3-2</u>Shown:

Table 3-2 Video input API error codes

error code	Macro definition	description
10	RK_ERR_VI_INVALID_CHNID	Invalid video input channel number
11	RK_ERR_VI_BUSY	Video input system is busy
12	RK_ERR_VI_EXIST	Video input channel already exists
13	RK_ERR_VI_NOT_CONFIG	Video input is not configured
14	RK_ERR_VI_TIMEOUT	Video input timeout
15	RK_ERR_VI_BUF_EMPTY	Video input buffer is empty
16	RK_ERR_VI_ILLEGAL_PARAM	Video input parameter setting is invalid
17	RK_ERR_VI_NOTREADY	The video input system is not initialized

4. Video encoding

4.1 Overview

VENC module, namely video encoding module. This module supports multi-channel real-time encoding, and each channel is independent of encoding. The encoding protocol and encoding profile can To be different. While supporting video encoding, the Region module is scheduled to superimpose and occlude the encoded image content. stand by H264/H1265/MJPEG/JPEG encoding.

4.2 Function description

4.2.1 Data flow chart

Note: The functions described in the dashed box are optional and will only be triggered when the encoder is configured accordingly.

4.2.2 Rate control

Encoder type	Support code control type
H265	CBR / VBR
H264	CBR / VBR
MJPEG	CBR / VBR

4.2.3 GOP Mode

GOP Mode is used to customize the dependency of the reference frame, and currently supports the following modes. Note: It can be customized according to requirements.

name	Macro definition	description
Normal mode	VENC_GOPMODE_NORMALP	The most common scenario, one I frame every GopSize
Smart P frame mode	VENC_GOPMODE_SMARTP	A virtual I frame every GopSize, every BgInterval An I frame
Multi-layer time domain formula	reference module VENC_GOPMODE_TSVC	The coding dependency is divided into multiple layers, which can be RK_MPI_MB_GetTsvcLevel to obtain layer information, So as to customize the code stream. For example, only playing the 0th layer code stream can realize quick preview.

4.2.4 Region of Interest (ROI)

By configuring the region of interest of the encoder, the QP can be customized for the specified region. For example, a camera facing the corridor, what the user is really interested in It is in the middle of the corridor. ROI can be configured to make the coding quality in the center of the corridor higher, the image is clearer, and the border of the corridor (wall, ceiling, etc.) The image quality of the non-interest area will be low. In this way, the user's area of interest is highlighted while keeping the bit rate basically unchanged.

The system provides 8 regions of interest, the priority increases from REGION_ID_0~REGION_ID_7. In areas where multiple ROIs overlap, its QP The strategy will be configured according to the high priority area.

REGION_ID_0
REGION_ID_1
REGION_ID_2
REGION_ID_3
REGION_ID_4
REGION_ID_5
REGION_ID_6
REGION_ID_7

Page 38

4.2.5 rotation (Rotation)

The encoder supports 4 types of rotation, 0° , 90° , 180° , 270° . Encoder rotation currently does not support FBC format, FBC format The rotation needs to be achieved by the rotation of ISPP.

4.3 API reference

4.3.1 RK_MPI_VENC_CreateChn

[description]

Create an encoding channel.

[grammar]

RK_MPI_VENC_CreateChn(<u>VENC_CHN</u> VeChn, <u>VENC_CHN_ATTR_S</u> *stVencChnAttr);

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, <u>VENC_MAX_CHN_NUM</u>). enter

stVencChnAttr Encoding channel attribute pointer. enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

Page 39

4.3.2 RK_MPI_VENC_DestroyChn

[description]

Destroy the encoding channel.

[grammar]

RK_S32 RK_MPI_VENC_DestroyChn(VENC_CHN VeChn);

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, VENC MAX CHN NUM). enter

[return value]

return value description

Non-zero

Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

4.3.3 RK_MPI_VENC_SetRcParam

[description]

Set the bit rate control parameters.

[grammar]

 $RK_MPI_VENC_SetRcParam(\ \underline{VENC\ CHN}\ VeChn, const\ \underline{VENC\ RC\ PARAM\ S}\ *pstRcParam);$

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0,VENC MAX CHN NUM]). enter

pstRcParam The advanced parameters of the code rate controller of the encoding channel. enter

Page 40

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

4.3.4 RK_MPI_VENC_SetRcMode

[description]

Set the bit rate control mode.

[grammar]

 $RK_S32\ RK_MPI_VENC_SetRcMode(\ \underline{VENC\ CHN}\ VeChn, \underline{VENC\ RC\ MODE\ E}\ RcMode);$

[parameter]

description Input / output parameter name Encoding channel number. Value range: [0, $\underline{\text{VENC}}$ MAX CHN NUM). VeChn enter RcMode Rate control mode. [return value] return value description Failure, see <u>error code for</u> its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note]

Page 41

no.
【Example】

.....

[related topic]

no.

4.3.5 RK_MPI_VENC_SetRcQuality

[description]

Set the encoding quality. Used for H264/H265 encoder.

[grammar]

 $RK_MPI_VENC_SetRcQuality(\underline{VENC_CHN}_VeChn, \underline{VENC_RC_QUALITY_E}_RcQuality);$

[parameter]

parameter name	description	Input / output
VeChn	Encoding channel number. Value range: [0, $\underline{\text{VENC MAX CHN NUM}}$].	enter
RcQuality	Encoding quality.	enter

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no

4.3.6 RK_MPI_VENC_SetBitrate

[description]

Set the bit rate.

[grammar]

RK_MPI_VENC_SetBitrate(<u>VENC_CHN</u> VeChn, RK_U32 u32BitRate, RK_U32 u32MinBitRate, RK_U32 u32MaxBitRate);

[parameter]

parameter name	description	Input / output
VeChn	Encoding channel number. Value range: [0, $\underline{\text{VENC}}\ \ \text{MAX}\ \ \text{CHN}\ \ \text{NUM}$).	enter
u32BitRate	Target bit rate.	enter
u32MinBitRate	The minimum bit rate.	enter
u32MaxBitRate	Maximum bit rate.	enter

return value

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

demand

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no

4.3.7 RK_MPI_VENC_RequestIDR

[description]

Request IDR frame. After calling this interface, the encoder immediately refreshes the IDR frame.

grammar

 $RK_S32\ RK_MPI_VENC_RequestIDR(\ \underline{VENC\ CHN}\ VeChn,\ RK_BOOL\ bInstant);$

Page 43

[parameter]

parameter name description Input / output

Encoding channel number. Value range: [0, VENC MAX CHN NUM). bInstant Whether to enable IDR frame encoding immediately.

[return value]

VeChn

return value description

success.

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

[related topic]

4.3.8 RK_MPI_VENC_SetFps

[description]

Set the encoding frame rate.

[grammar]

 $RK_S32\ RK_MPI_VENC_SetFps(\underline{VENC\ CHN}\ VeChn,\ RK_U8\ u8OutNum,\ RK_U8\ u8OutDen,\ RK_U8$ u8InNum, RK_U8 u8InDen);

[parameter]

parameter name	description	Input / output
VeChn	Encoding channel number. Value range: [0, $\underline{\text{VENC}}\ \ \text{MAX}\ \ \text{CHN}\ \ \text{NUM}$).	enter
u8OutNum	The denominator of the encoding output frame rate.	enter
u8OutDen	Encode the output frame rate numerator.	enter
u8InNum	Encode the denominator of the input frame rate.	enter
u8InDen	Encode the input frame rate numerator.	enter

Page 44

[return value]

return value description 0 success.

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

The output frame rate cannot be greater than the input frame rate.

[Example]

[related topic]

no.

4.3.9 RK_MPI_VENC_SetGop

[description]

Set the GOP. Used for H264/H265 encoder.

[grammar]

 $RK_S32\ RK_MPI_VENC_SetGop(\underline{VENC\ CHN}\ VeChn,\ RK_U32\ u32Gop);$

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, VENC MAX CHN NUM). enter

u32Gop GOP. enter

return value

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

demand

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

Page 45

no.

[Example]

no.

[related topic]

no.

4.3.10 RK_MPI_VENC_SetAvcProfile

[description]

Set the profile. Used for H264 encoder.

[grammar]

 $RK_MPI_VENC_SetAvcProfile(\underbrace{VENC_CHN}_{}VeChn, RK_U32~u32Profile, RK_U32~u32Level);$

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, VENC MAX CHN NUM). enter

u32Profile Profile IDC value. enter

u32Level Level IDC value. enter

[return value]

return value description

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

For the time being, only u32Profile is supported as 66, 77, and 100, corresponding to Baseline, Main Profile, and High Profile respectively.

[Example]

no.

[related topic]

Page 46

4.3.11 RK_MPI_VENC_InsertUserData

[description]

no.

 $Insert user \ data, the inserted \ data \ will \ be \ reflected \ in \ the \ SEI \ packet \ of \ the \ code \ stream. \ Used \ for \ H264/H265 \ encoder.$

[grammar]

 $RK_MPI_VENC_InsertUserData(\ \underline{VENC\ CHN}\ VeChn,\ RK_U8\ *pu8Data,\ RK_U32\ u32Len);$

[parameter]

parameter name	description	Input / output
VeChn	Encoding channel number. Value range: [0, <u>VENC_MAX_CHN_NUM_</u>).	enter
pu8Data	User data pointer.	enter
u32Len	User data length.	enter

[return value]

return value	description
0	success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

note

 $For the time \ being, only \ u32 Profile \ is \ supported \ as \ 66, \ 77, \ and \ 100, \ corresponding \ to \ Baseline, \ Main \ Profile, \ and \ High \ Profile \ respectively.$

[Example]

no.

[related topic]

no.

4.3.12 RK_MPI_VENC_SetRoiAttr

[description]

Set the ROI coding area of interest. Used for H264/H265 encoder.

[grammar]

RK_MPI_VENC_SetRoiAttr(<u>VENC_CHN</u> VeChn,const <u>VENC_ROI_ATTR_S</u> *pstRoiAttr);

[parameter]

Page 47

parameter name description Input / output VeChn Encoding channel number. Value range: [0, $\underline{\text{VENC MAX CHN NUM}}$). enter pstRoiAttr ROI area parameters. enter [return value] return value description Failure, see error code for its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so note no. [Example] [related topic]

4.3.13 RK_MPI_VENC_SetGopMode

[description]

Set GopMode. Used for H264/H265 encoder.

[grammar]

RK_S32 RK_MPI_VENC_SetGopMode(<u>VENC_CHN</u> VeChn, <u>VENC_GOP_ATTR_S</u> GopMode);

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, VENC MAX CHN NUM). enter

GopMode GOP attribute structure. enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

Page 48

[demand]

Header file: rkmedia_api.h

```
Library file: libeasymedia.so
[note]
no.
[Example]
[related topic]
4.3.14 RK_MPI_VENC_RGN_Init
[description]
Initialize OSD.
[grammar]
RK_S32 RK_MPI_VENC_RGN_Init(<u>VENC_CHN</u> VeChn);
 [parameter]
  parameter name
                     description
                                                                                                      Input / output
  VeChn
                     Encoding channel number. Value range: [0, VENC MAX CHN NUM ).
                                                                                                      enter
 return value
                                     description
  return value
                                     success.
  Non-zero
                                     Failure, see error code for its value.
[demand]
Header file: rkmedia_api.h
Library file: libeasymedia.so
[note]
CallingRK MPI VENC RGN SetBitMapOr RK MPI VENC RGN SetCoverBefore, you must call this interface first, and
And each encoding channel can only be called once.
[Example]
[related topic]
RK MPI VENC RGN SetBitMap
RK MPI VENC RGN SetCover
```

4.3.15 RK_MPI_VENC_RGN_SetBitMap

[description] Set the OSD bitmap. $RK_S32\ RK_MPI_VENC_RGN_SetBitMap(\ \underline{VENC\ CHN}\ VeChn, const\underline{OSD\ REGION\ INFO\ S}\ *pstRgnInfo, for the property of the$ const BITMAP_S *pstBitmap); (parameter)

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, VENC MAX CHN NUM). pstRgnInfo OSD area information. pstBitmap Bitmap information and data. enter [return value] return value description success. Non-zero Failure, see error code for its value. [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note] Before calling this interface, you must first call RK MPI VENC RGN Init. [Example]

RK MPI VENC RGN Init

4.3.16 RK_MPI_VENC_RGN_SetCover

[description]

[related topic]

Set privacy mask.

[grammar]

Page 50

 $RK_S32\ RK_MPI_VENC_RGN_SetCover(\underline{VENC}\ CHN\ VeChn, const\underline{OSD}\ REGION\ INFO\ \underline{S}\ *pstRgnInfo, const\underline{COVER}\ INFO\ \underline{S}\ *pstCoverInfo);$

[parameter]

parameter name description Input / output

VeChn Encoding channel number. Value range: [0, VENC MAX CHN NUM). enter

pstRgnInfo OSD area information. enter

pstCoverInfo Privacy obscures information. enter

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

note

Before calling this interface, you must first call $\underline{RK\ MPI\ VENC\ RGN\ Init}.$

[Example]

no.

[related topic]

RK MPI VENC RGN Init

4.3.17 RK_MPI_VENC_SetJpegParam

[description]

Set JPEG encoding parameters.

[grammar]

 $RK_S32\ RK_MPI_VENC_SetJpegParam(\underline{VENC\ CHN}\ VeChn,\ const\underline{VENC\ JPEG\ PARAM\ S}$

*pstJpegParam);

[parameter]

parameter name	description	Input / output
VeChn	Encoding channel number. Value range: [0, <u>VENC_MAX_CHN_NUM</u>].	enter
pstJpegParam	The advanced parameters of the JPEG protocol encoding channel.	enter

[return value]

Page 51

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

4.3.18 RK_MPI_VENC_StartRecvFrame

[description]

Set the number of frames received by the encoder. The encoder created by default will continue to receive VI data through

The RK_MPI_VENC_StartRecvFrame interface can set the number of received frames. After reaching the specified number, the encoder will sleep until the next Call this interface one time to change the number of received frames.

[grammar]

RK_S32 RK_MPI_VENC_StartRecvFrame(<u>VENC_CHN</u> VeChn, const <u>VENC_RECV_PIC_PARAM_S</u> *pstRecvParam);

[parameter]

parameter name	description	Input / output
VeChn	Encoding channel number. Value range: [0, <u>VENC_MAX_CHN_NUM</u>].	enter

pstRecvParam Receive image parameter structure pointer, used to specify the number of image frames that entered to be received.

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

Page 52

[note]

no.

[Example]

no.

[related topic]

no.

4.4 Data Type

The video coding related data types are defined as follows:

<u>VENC_MAX_CHN_NUM</u>: Define the total number of VENC physical channels and extended channels.

VENC CHN: VENC channel number.

VENC_ATTR_JPEG_S: Define the attribute structure of the JPEG capture encoder.

<u>VENC_ATTR_MJPEG_S</u>: Define the attribute structure of the MJPEG encoder.

<u>VENC_ATTR_H264_S</u>: Define the attribute structure of the H.264 encoder.

<u>VENC_ATTR_H265_S</u>: Define the attribute structure of the H.265 encoder.

 $\underline{\text{VENC ATTR S}}$: Define the encoder attribute structure.

<u>VENC MJPEG CBR S</u>: Define the CBR attribute structure of the MJPEG encoding channel.

<u>VENC MJPEG VBR S</u>: Define the VBR attribute structure of the MJPEG encoding channel.

VENC H264 CBR S: Define the CBR attribute structure of the H.264 encoding channel.

 $\underline{\underline{VENC}\ \ H264\ \ VBR\ \ S} \text{: Define the VBR attribute structure of the H.264 encoding channel.}$

 $\underline{\text{VENC } \text{H265 } \text{CBR } \text{S}}\text{: Define the CBR attribute structure of the H.265 encoding channel.}$

<u>VENC_H265_VBR_S</u>: Define the VBR attribute structure of the H.265 encoding channel.

<u>VENC_RC_MODE_E</u>: Define the code rate controller mode of the encoding channel.

<u>VENC_RC_ATTR_S</u>: Define the code rate controller attributes of the encoding channel.

<u>VENC GOP MODE E</u>: Define Gop Mode type.

<u>VENC_GOP_ATTR_S</u>: Define the encoder GOP attribute structure.

<u>VENC_CHN_ATTR_S</u>: VENC channel attribute structure.

<u>VENC_PARAM_MJPEG_S</u>: MJPEG channel parameters.

VENC PARAM H264 S: H.264 channel parameters.

VENC PARAM H265 S: H.265 channel parameters.

 $\underline{\text{VENC} \ \text{RC} \ \text{PARAM} \ \text{S}}\text{:} \ \text{Advanced parameters of the code rate controller of the encoding channel}.$

VENC RC QUALITY E: Encoding quality.

VENC ROI ATTR S: ROI attribute structure.

OSD REGION ID E: OSD region ID enumeration type.

```
OSD REGION INFO S: OSD area information.
OSD PIXEL FORMAT E: OSD pixel format type enumeration.
```

BITMAP S: Bitmap information and data.

COVER INFO S: Privacy masking information.

VENC RECV PIC PARAM S: Receive image parameter structure pointer, used to specify the number of image frames that need to be received.

<u>VENC_JPEG_PARAM_S</u>: The advanced parameters of the JPEG protocol encoding channel.

4.4.1 VENC_MAX_CHN_NUM

[Description]

The total number of VENC physical channels and expansion channels.

[definition]

RV1109 / RV1126:

#define VENC_MAX_CHN_NUM 16

4.4.2 VENC CHN

[Description]

VENC channel number.

[definition]

typedef RK_S32 VENC_CHN;

4.4.3 VENC_ATTR_JPEG_S

[Description]

Define the attribute structure of the JPEG capture encoder.

[definition]

```
typedef struct rkVENC_ATTR_JPEG_S {

RK_U32 u32ZoomWidth; // Zoom to specified width

RK_U32 u32ZoomHeight; // Zoom to specified height

RK_U32 u32ZoomVirWidth;

RK_U32 u32ZoomVirHeight;

} VENC_ATTR_JPEG_S;
```

[member]

Page 54

Member name	description
u32ZoomWidth	The specified width of the zoom.
u32ZoomHeight	The specified height of the zoom.
u32ZoomVirWidth	The virtual height of the zoom.
u32ZoomVirHeight	The virtual width of the zoom.

4.4.4 VENC_ATTR_MJPEG_S

[Description]

Define the attribute structure of the MJPEG encoder.

definition

```
typedef struct rkVENC_ATTR_MJPEG_S {

RK_U32 u32ZoomWidth; // Zoom to specified width

RK_U32 u32ZoomHeight; // Zoom to specified height

RK_U32 u32ZoomVirWidth;

RK_U32 u32ZoomVirHeight;

} VENC_ATTR_MJPEG_S;
```

[member]

Member name description

u32ZoomWidth The specified width of the zoom.

u32ZoomHeight The specified height of the zoom.

u32ZoomVirWidth The virtual width of the zoom.

u32ZoomVirHeight The virtual height of the zoom.

4.4.5 VENC_ATTR_H264_S

[Description]

Define the attribute structure of the H.264 encoder.

[definition]

```
typedef struct rkVENC_ATTR_H264_S {
    RK_U32 u32Level;
    // reserved
} VENC_ATTR_H264_S;
```

[member]

Page 55

Member name	description
u32Level	Profile IDC value.

4.4.6 VENC_ATTR_H265_S

[Description]

Define the attribute structure of the H.265 encoder.

[definition]

```
typedef struct rkVENC_ATTR_H265_S {
    // reserved
} VENC_ATTR_H265_S;
```

4.4.7 VENC_ATTR_S

[Description]

Define the encoder attribute structure.

definition

```
typedef struct rkVENC_ATTR_S {
```

CODEC_TYPE_E enType; // RW; the type of encodec

```
IMAGE_TYPE_E imageType; // the type of input image
   RK_U32 u32VirWidth; // stride width, same to buffer_width, must greater than
                                    // width, often set vir_width=(width+15)&(~15)
   RK_U32 u32VirHeight; // stride height, same to buffer_height, must greater
                                    // than height, often set vir_height=(height+15)&(~15)
   RK_U32 u32Profile; // RW;
                                    // H.264: 66: baseline; 77:MP; 100:HP;
                                    // H.265: default:Main;
                                    // Jpege/MJpege: default:Baseline
   RK_BOOL bByFrame; // RW; Range:[0,1];
                                    // get stream mode is slice mode or frame mode
   RK\_U32~u32PicWidth; /\!/~RW; width of a picture to be encoded, in pixel
  RK_U32 u32PicHeight; // RW; height of a picture to be encoded, in pixel
   VENC_ROTATION_E enRotation;
      VENC_ATTR_H264_S stAttrH264e; // attributes of H264e
      VENC_ATTR_H265_S stAttrH265e; // attributes of H265e
      VENC_ATTR_MJPEG_S stAttrMjpege; // attributes of Mjpeg
      VENC_ATTR_JPEG_S stAttrJpege; // attributes of jpeg
} VENC_ATTR_S;
```

[member]

Member name	description
enType	Encoding protocol type.
imageType	Enter the image type.
u32VirWidth	stride width (same as buffer_width), must be greater than
	width, usually set vir_width=(width+15)&(~15).
	stride height (same as buffer_height), must be greater than
u32VirHeight	height, usually set vir_height=(height+15)&
	(~15).
	Encoding level.
	H.264: 66: Baseline; 77: Main Profile; 100: High
u32Profile	Profile;
	H.265: default:Main;
	Jpege/MJpege: default:Baseline
	Whether to obtain the code stream according to the frame mode. Value range: [0, 1].
bByFrame	1: frame mode.
	0: slice mode.
u32PicWidth	Encode the image width. In pixels.
u32PicHeight	The height of the encoded image. In pixels.
stAttrH264e/stAttrH265e/stAttrMjpege/stAttrJpege	Encoder properties of a certain protocol.
[Related data types and interfaces]	
VENC ATTR JPEG S	
VENC ATTR MJPEG S	
VENC ATTR H264 S	
VENC ATTR H265 S	
VENC CHN ATTR S	

4.4.8 VENC_MJPEG_CBR_S

[Description]

Define the CBR attribute structure of the MJPEG encoding channel.

[definition]

```
typedef struct hiVENC_MJPEG_CBR_S {
  RK_U32 u32SrcFrameRateNum;
  RK_U32 u32SrcFrameRateDen;
  RK_FR32 fr32DstFrameRateNum;
  RK_FR32 fr32DstFrameRateDen;
  RK_U32 u32BitRate; // RW; Range:[2000, 98000000]; average bitrate
} VENC_MJPEG_CBR_S;
```

Page 57

[member]

Member name description u32SrcFrameRateNum The frame rate numerator of the data source. u32SrcFrameRateDen The denominator of the frame rate of the data source. fr32DstFrameRateNum Target frame rate numerator. fr32DstFrameRateDen The denominator of the target frame rate.

Average bit rate, value range: [2000, 98000000].

4.4.9 VENC_MJPEG_VBR_S

[Description]

u32BitRate

Define the VBR attribute structure of the MJPEG encoding channel.

[definition]

```
typedef struct hiVENC_MJPEG_VBR_S {
  RK_U32 u32SrcFrameRateNum;
  RK_U32 u32SrcFrameRateDen;
  RK_FR32 fr32DstFrameRateNum;
  RK_FR32 fr32DstFrameRateDen;
  RK_U32 u32BitRate; // RW; Range:[2000, 98000000]; average bitrate
} VENC_MJPEG_VBR_S;
```

[member]

Member name	description
u32SrcFrameRateNum	The frame rate numerator of the data source.
u32SrcFrameRateDen	The denominator of the frame rate of the data source
fr32DstFrameRateNum	Target frame rate numerator.
fr32DstFrameRateDen	The denominator of the target frame rate.
u32BitRate	Average bit rate, value range: [2000, 98000000].

4.4.10 VENC_H264_CBR_S

[Description]

Define the CBR attribute structure of the H.264 encoding channel.

typedef struct rkVENC_H264_CBR_S {

RK_U32 u32Gop; // RW; Range:[1, 65536]; the interval of I Frame.

RK_U32 u32SrcFrameRateNum;

RK_U32 u32SrcFrameRateDen;

RK_FR32 fr32DstFrameRateNum;

RK_FR32 fr32DstFrameRateDen;

RK_U32 u32BitRate; // RW; Range:[2, 614400]; average bitrate

} VENC_H264_CBR_S;

[member]

Member name description

u32Gop I frame interval, value range: [1, 65536].

u32SrcFrameRateNum

The frame rate numerator of the data source.

u32SrcFrameRateDen The denominator of the frame rate of the data source.

 $fr 32 Dst Frame Rate Num \\ Target \ frame \ rate \ numerator.$

fr32DstFrameRateDen The denominator of the target frame rate.

u32BitRate Average bit rate, value range: [2, 614400].

4.4.11 VENC_H264_VBR_S

[Description]

Define the VBR attribute structure of the H.264 encoding channel.

[definition]

typedef struct rkVENC_H264_VBR_S {

RK_U32 u32Gop; // RW; Range:[1, 65536]; the interval of ISLICE.

RK_U32 u32SrcFrameRateNum; RK_U32 u32SrcFrameRateDen; RK_FR32 fr32DstFrameRateNum;

RK_FR32 fr32DstFrameRateDen;

RK_U32 u32MaxBitRate; // RW; Range:[2, 614400]; the max bitrate

} VENC_H264_VBR_S;

[member]

Page 59

Member name description

u32Gop ISLICE interval, value range: [1, 65536].

u32 SrcFrame Rate Num The frame rate numerator of the data source.

u32SrcFrameRateDen The denominator of the frame rate of the data source.

 $fr 32 Dst Frame Rate Num \\ Target \ frame \ rate \ numerator.$

fr32DstFrameRateDen

The denominator of the target frame rate.

u32BitRate

Average bit rate, value range: [2, 614400].

4.4.12 VENC_H265_CBR_S

```
[Description]
```

Define the CBR attribute structure of the H.265 encoding channel.

definition

```
typedef struct rkVENC_H264_CBR_S VENC_H265_CBR_S;
```

[Related data types and interfaces]

VENC H264 CBR S

4.4.13 VENC_H265_VBR_S

[Description]

Define the VBR attribute structure of the $\rm H.265$ encoding channel.

definition

```
typedef struct rkVENC_H264_VBR_S VENC_H265_VBR_S;
```

[Related data types and interfaces]

VENC H264 VBR S

4.4.14 VENC_RC_MODE_E

[Description]

Define the code rate controller mode of the encoding channel.

definition

Page 60

```
typedef enum rkVENC_RC_MODE_E {

// H264

VENC_RC_MODE_H264CBR = 1,

VENC_RC_MODE_H264VBR,

// MJPEG

VENC_RC_MODE_MJPEGCBR,

VENC_RC_MODE_MJPEGVBR,

// H265

VENC_RC_MODE_H265CBR,

VENC_RC_MODE_H265VBR,

VENC_RC_MODE_BUTT,

} VENC_RC_MODE_E;
```

4.4.15 VENC_RC_ATTR_S

[Description]

Define the code rate controller properties of the encoding channel.

```
typedef struct rkVENC_RC_ATTR_S {

/* RW; the type of rc*/

VENC_RC_MODE_E enRcMode;
union {

VENC_H264_CBR_S stH264Cbr;

VENC_H264_VBR_S stH264Vbr;
```

```
VENC_MJPEG_CBR_S stMjpegCbr;
VENC_MJPEG_VBR_S stMjpegVbr;
VENC_H265_CBR_S stH265Cbr;
VENC_H265_VBR_S stH265Vbr;
};
} VENC_RC_ATTR_S;
```

[member]

Member name	description
enRcMode	Encoding protocol type.
stH264Cbr	H.264 protocol encoding channel Cbr mode attribute.
stH264Vbr	H.264 protocol encoding channel Vbr mode attribute.
stMjpegCbr	Cbr mode attribute of MJPEG protocol encoding channel.
stMjpegVbr	MJPEG protocol encoding channel Vbr mode attribute.
stH265Cbr	H.265 protocol encoding channel Cbr mode attribute.

H.265 protocol encoding channel Vbr mode attribute.

[Related data types and interfaces]

stH265Vbr

Page 61

```
VENC MJPEG CBR S
```

VENC MJPEG VBR S

VENC H264 CBR S

VENC H264 VBR S

VENC H265 CBR S

VENC H265 VBR S

VENC RC MODE E

4.4.16 VENC_GOP_MODE_E

[Description]

Define the Gop Mode type.

[definition]

```
typedef enum rkVENC_GOP_MODE_E {
    VENC_GOPMODE_NORMALP = 0 ,
    VENC_GOPMODE_TSVC,
    VENC_GOPMODE_SMARTP,
    VENC_GOPMODE_BUTT,
} VENC_GOP_MODE_E;
```

[note]

For specific mode description, please refer to $\underline{\mbox{GOP Mode}}$.

4.4.17 VENC_GOP_ATTR_S

[Description]

Define the encoder GOP attribute structure.

```
typedef struct rkVENC_GOP_ATTR_S {
    VENC_GOP_MODE_E enGopMode;
```

RK_U32 u32GopSize; RK_S32 s32IPQpDelta; RK_U32 u32BgInterval; RK_S32 s32ViQpDelta; VENC_GOP_ATTR_S;

[member]

Page 62

Member name description

enGopMode Encoding GOP type.

u32GopSize Encode GOP size.

s32IPQpDelta The QP difference between the I frame and the P frame.

 $u32BgInterval \\ Long-term\ reference\ frame\ interval.$

s32ViQpDelta The QP difference between the virtual I frame and the normal P frame.

[Related data types and interfaces]

VENC GOP MODE E

4.4.18 VENC_CHN_ATTR_S

[Description]

VENC channel attribute structure.

definition

typedef struct rkVENC_CHN_ATTR_S {

VENC_ATTR_S stVencAttr; // the attribute of video encoder VENC_RC_ATTR_S stRcAttr; // the attribute of rate ctrl VENC_GOP_ATTR_S stGopAttr; // the attribute of gop } VENC_CHN_ATTR_S;

[member]

Member name description

stVencAttr Encoder attributes.

stRcAttr Bit rate controller properties.

stGopAttr GOP attributes.

[Related data types and interfaces]

VENC ATTR S

VENC RC ATTR S

VENC GOP ATTR S

4.4.19 VENC_PARAM_MJPEG_S

[Description]

MJPEG channel parameters.

```
typedef struct rkVENC_PARAM_MJPEG_S {
    // reserved
} VENC_PARAM_MJPEG_S;
```

4.4.20 VENC_PARAM_H264_S

[Description]

H.264 channel parameters.

definition

```
typedef struct rkVENC_PARAM_H264_S {

RK_U32 u32StepQp;

RK_U32 u32MaxQp; // RW; Range:[8, 51];the max QP value

RK_U32 u32MinQp; // RW; Range:[0, 48]; the min QP value,can not be larger than

// u32MaxQp

RK_U32 u32MaxIQp; // RW; max qp for i frame

RK_U32 u32MaxIQp; // RW; min qp for i frame,can not be larger

// than u32MaxIQp

// RK_S32 s32MaxReEncodeTimes; /* RW; Range:[0, 3]; Range:max number

// of re-encode times.*/

} VENC_PARAM_H264_S;
```

member

Member name	description
u32StepQp	The step value of QP.
u32MaxQp	QP maximum value, value range [8, 51].
u32MinQp	The minimum value of QP, the value range is [0, 48], and cannot be greater than u32MaxQp.
u32MaxIQp	The maximum QP of the I frame.

The QP minimum value of the I frame.

4.4.21 VENC_PARAM_H265_S

[Description]

u32MinIQp

H.265 channel parameters.

[definition]

Page 64

```
typedef struct rkVENC_PARAM_H265_S {

RK_U32 u32StepQp;

RK_U32 u32MaxQp; // RW; Range:[8, 51];the max QP value

RK_U32 u32MinQp; // RW; Range:[0, 48];the min QP value ,can not be larger than

// u32MaxQp

RK_U32 u32MaxIQp; // RW; max qp for i frame

RK_U32 u32MaxIQp; // RW; min qp for i frame,can not be larger than u32MaxIQp

// RK_S32 s32MaxReEncodeTimes; /* RW; Range:[0, 3]; Range:max number

// Of re-encode times.*/
```

} VENC_PARAM_H265_S;

[member]

 Member name
 description

 u32StepQp
 The step value of QP.

 u32MaxQp
 QP maximum value, value range [8, 51].

 u32MinQp
 The minimum value of QP, the value range is [0, 48], and cannot be greater than u32MaxQp.

 u32MaxIQp
 The maximum QP of the I frame.

 u32MinIQp
 The QP minimum value of the I frame.

4.4.22 VENC_RC_PARAM_S

[Description]

The advanced parameters of the code rate controller of the encoding channel.

[definition]

```
typedef struct rkVENC_RC_PARAM_S {
   RK_U32 s32FirstFrameStartQp; // RW; Start QP value of the first frame
union {
    VENC_PARAM_H264_S stParamH264;
    VENC_PARAM_H265_S stParamH265;
    VENC_PARAM_MJPEG_S stParamMjpeg;
   };
} VENC_RC_PARAM_S;
```

[member]

 Member name
 description

 s32FirstFrameStartQp
 The QP value of the first frame.

 stParamH264
 H.264 channel parameters.

 stParamH265
 H.265 channel parameters.

 stParamMjpeg
 MJPEG channel parameters.

Page 65

[Related data types and interfaces]

VENC PARAM H264 S

VENC PARAM H265 S

VENC PARAM MJPEG S

4.4.23 VENC_RC_QUALITY_E

[Description]

Enumerated type of encoding quality.

```
typedef enum rkVENC_RC_QUALITY_E {
    VENC_RC_QUALITY_HIGHEST,
    VENC_RC_QUALITY_HIGHER,
    VENC_RC_QUALITY_HIGH,
    VENC_RC_QUALITY_MEDIUM,
    VENC_RC_QUALITY_LOW,
    VENC_RC_QUALITY_LOWER,
    VENC_RC_QUALITY_LOWEST,
    VENC_RC_QUALITY_BUTT,
} VENC_RC_QUALITY_E;
```

4.4.24 VENC_ROI_ATTR_S

[Description]

ROI area parameters.

[definition]

```
typedef struct hiVENC_ROI_ATTR_S {

RK_U32 u32Index; // RW; Range:[0, 7]; Index of an ROI. The system supports

// indexes ranging from 0 to 7

RK_BOOL bEnable; // RW; Range:[0, 1]; Whether to enable this ROI

RK_BOOL bAbsQp; // RW; Range:[0, 1]; QP mode of an ROI.HI_FALSE: relative

// QP.HI_TURE: absolute QP.

RK_S32 s32Qp; // RW; Range:[-51, 51]; QP value,only relative mode can QP value

// less than 0.

RK_BOOL bIntra; // flag of forced intra macroblock

RECT_S stRect; // RW; Region of an ROI

} VENC_ROI_ATTR_S;
```

[member]

Page 66

description Member name u32Index ROI index value, the value range is [0, 7]. bEnable Whether to enable ROI. QP mode of ROI, value range: [0, 1]. 1: absolute QP. bAbsQp 0: relative QP. QP value, value range: [-51, 51]. s32Qp Only the relative mode can make the QP value less than 0. bIntra Mandatory marking of intra-frame macroblocks. stRect

[Related data types and interfaces]

RECT S

4.4.25 OSD_REGION_ID_E

```
[Description]
```

OSD area ID enumeration type.

```
typedef enum rkOSD_REGION_ID_E {
    REGION_ID_0 = 0 ,
    REGION_ID_1,
    REGION_ID_2,
    REGION_ID_3,
    REGION_ID_4,
    REGION_ID_5,
    REGION_ID_6,
    REGION_ID_7
} OSD_REGION_ID_E;
```

4.4.26 OSD_REGION_INFO_S

[Description]

OSD area information.

[definition]

Page 67

```
typedef struct rkOSD_REGION_INFO_S {
    OSD_REGION_ID_E enRegionId;
    RK_U32 u32PosX;
    RK_U32 u32PosY;
    RK_U32 u32PosY;
    RK_U32 u32Width;
    RK_U32 u32Height;
    RK_U8 u8Inverse;
    RK_U8 u8Enable;
} OSD_REGION_INFO_S;
```

[member]

Member name de	escription
----------------	------------

enRegionId OSD area index value, the value range is [0, 7].

u32PosX The X-axis coordinate of the OSD area.

u32PosY The Y-axis coordinate of the OSD area.

u32Width OSD area width.

u32Height The height of the OSD area.

u8Enable Whether the OSD area is inverted.

Whether the OSD area is enabled.

[Related data types and interfaces]

OSD REGION ID E

4.4.27 OSD_PIXEL_FORMAT_E

[Description]

OSD pixel format type enumeration.

[definition]

typedef enum rkOSD_PIXEL_FORMAT_E {
 PIXEL_FORMAT_ARGB_1555 = 0 ,
 PIXEL_FORMAT_ARGB_8888,
} OSD_PIXEL_FORMAT_E;

4.4.28 BITMAP_S

[Description]

Bitmap information and data.

```
typedef struct rkBITMAP_S {
     OSD_PIXEL_FORMAT_E enPixelFormat; /* Bitmap's pixel format */
     RK_U32 u32Width;
                                                      /* Bitmap's width */
     RK_U32 u32Height;
                                                      /* Bitmap's height */
     RK_VOID * pData;
                                                      /* Address of Bitmap's data */
  } BITMAP_S;
 [member]
   Member name
                                                         description
   enPixelFormat
                                                         Bitmap pixel format.
   u32Width
                                                         The width of the bitmap.
  u32Height
                                                         The height of the bitmap.
  pData
                                                         The address of the bitmap data.
[Related data types and interfaces]
OSD PIXEL FORMAT E
4.4.29 COVER_INFO_S
[Description]
Privacy obscures information.
definition
  typedef\ struct\ rkCOVER\_INFO\_S\ \{
    OSD_PIXEL_FORMAT_E enPixelFormat; /* Bitmap's pixel format */
                                                      /* Covered area color */
  } COVER_INFO_S;
 [member]
  Member name
                                                            description
   enPixelFormat
                                                            Bitmap pixel format.
   u32Color
                                                            The color of the occluded area.
[Related data types and interfaces]
OSD PIXEL FORMAT E
4.4.30 VENC_RECV_PIC_PARAM_S
[Description]
Receive image parameter structure pointer, used to specify the number of image frames that need to be received.
 [definition]
  typedef struct rkVENC_RECV_PIC_PARAM_S {
    RK_S32 s32RecvPicNum;
```

Page 69

```
} VENC_RECV_PIC_PARAM_S;
```

[member]

Member name description s32RecvPicNum

The number of image frames that need to be received.

4.4.31 VENC_JPEG_PARAM_S

[Description]

The advanced parameters of the JPEG protocol encoding channel.

[definition]

```
typedef struct rkVENC_JPEG_PARAM_S {
 RK_U32 u32Qfactor; // 1-10
 RK_U8 u8YQt[ 64 ];
 RK_U8 u8CbQt[ 64 ];
 RK_U8 u8CrQt[ 64 ];
 RK_U32 u32MCUPerECS;
} VENC_JPEG_PARAM_S;
```

[member]

Member name	description
u32Qfactor	For specific meaning, please refer to the RFC2435 protocol, value range: $[1,10]$.
u8YQt	Y quantization table.
u8CbQt	Cb quantization table.
u8CrQt	Cr quantization table.
u32MCUPerECS	How many MCUs are included in each ECS.

4.5 Error code

Video encoding API error codes such as <u>Table 4-1</u>Shown:

Table 4-1 Video encoding API error codes

Page 70

Wrong generat	ion Macro definition	description
20	RK_ERR_VENC_INVALID_CHNID	Channel ID is out of legal range
twenty one	RK_ERR_VENC_ILLEGAL_PARAM	Parameter out of legal range
twenty two	RK_ERR_VENC_EXIST	Try to apply for or create an existing device, channel or Resource
twenty three	RK_ERR_VENC_UNEXIST	Attempts to use or destroy non-existent equipment, channels, or Resources
twenty four	RK_ERR_VENC_NULL_PTR	Null pointer in function parameter
25	RK_ERR_VENC_NOT_CONFIG	Not configured before use
26	RK_ERR_VENC_NOT_SUPPORT	Unsupported parameter or function
27	RK_ERR_VENC_NOT_PERM	The operation is not allowed, such as trying to modify static configuration parameters
28	RK_ERR_VENC_NOBUF	Failed to allocate cache, such as the requested data buffer is too large
29	RK_ERR_VENC_BUF_EMPTY	No data in the buffer
30	RK_ERR_VENC_BUF_FULL	Data in the buffer is full

RK_ERR_VENC_NOTREADY The system is not initialized or the corresponding module is not loaded

32 RK_ERR_VENC_BUSY VENC system is busy

5. Motion detection

5.1 Overview

The motion detection (MD) module realizes motion area detection, and supports a maximum of 4096 areas.

5.2 Function description

 $The \ MD \ algorithm \ is \ implemented \ by \ software, \ and \ the \ input \ resolution \ should \ not \ be \ too \ large. \ The \ typical \ resolution \ is \ 640x480. \ The \ larger \ the \ resolution, \ the \ higher \ the \ CPU \ load.$

5.3 API reference

5.3.1 RK_MPI_ALGO_MD_CreateChn

[description]

Create MD channel.

[grammar]

Page 71

 $RK_MPI_ALGO_MD_CreateChn(\underbrace{ALGO_MD_CHN}_{}MdChn, const\underline{ALGO_MD_ATTR_S} *pstChnAttr);$

[parameter]

parameter name description Input / output

MdChn Motion detection channel number. Value range: [0,ALGO MD MAX CHN NUM). enter

pstChnAttr Motion detection channel properties. enter

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI ALGO MD DestroyChn

5.3.2 RK_MPI_ALGO_MD_DestroyChn

[description]

Destroy the MD channel.

[grammar]

 $RK_S32\ RK_MPI_ALGO_MD_DestroyChn(\underline{ALGO\ MD\ CHN}\ MdChn);$

[parameter]

parameter name description

Input / output

MdChn M

Motion detection channel number. Value range: [0,<u>ALGO MD MAX CHN NUM</u>).

[return value]

Page 72

return value description

0 success.

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI ALGO MD CreateChn

5.4 Data Type

The data types related to motion detection are defined as follows:

 $\underline{ALGO\ MD\ MAX\ CHN\ NUM}; \ Define\ the\ maximum\ number\ of\ motion\ detection\ channels.$

ALGO MD ROI RET MAX: Define the maximum number of ROI areas for each channel of motion detection.

ALGO MD CHN: Motion detection channel number.

ALGO MD ATTR S: Define the attribute structure of motion detection channel.

5.4.1 ALGO_MD_MAX_CHN_NUM

[Description]

Define the maximum number of motion detection channels.

[definition]

RV1109 / RV1126:

#define ALGO_MD_MAX_CHN_NUM VI_MAX_CHN_NUM

[Related data types and interfaces]

VI MAX CHN NUM

5.4.2 ALGO_MD_ROI_RET_MAX

[Description]

Define the maximum number of ROI areas for each channel of motion detection.

[definition]

```
RV1109 / RV1126:
```

#define ALGO_MD_ROI_RET_MAX 4096

5.4.3 ALGO_MD_CHN

[Description]

Motion detection channel number.

definition

typedef RK_S32 ALGO_MD_CHN;

5.4.4 ALGO_MD_ATTR_S

[Description]

Define the attribute structure of the motion detection channel.

definition

```
typedef struct rkALGO_MD_ATTR_S {

IMAGE_TYPE_E imageType; // the type of input image

RK_U32 u32Width;

RK_U32 u32Height;

RK_U16 u16RoiCnt; // RW; Range:[0, ALGO_MD_ROI_RET_MAX].

RECT_S stRoiRects[ALGO_MD_ROI_RET_MAX];

RK_U16 u16Sensitivity; // value 0(sys default) or [1-100].

} ALGO_MD_ATTR_S;
```

[member]

Member name	description
imageType	Enter the image type.
u32Width	The width of the motion detection area.
u32Height	The height of the motion detection area.
u16RoiCnt	Number of ROI regions, value range: [0, <u>ALGO MD ROI RET MAX</u>].
stRoiRects	The structure array of the ROI area attribute.
u16Sensitivity	Motion detection sensitivity, value range: [1, 100].

Page 74

[Related data types and interfaces]

RECT S

IMAGE TYPE E

ALGO MD ROI RET MAX

5.5 Error code

Video encoding API error codes such as Table 5-1 Shown:

Table 5-1 Video encoding API error codes

Wrong generation code	ion Macro definition	description
70	RK_ERR_ALGO_MD_INVALID_CHNID	Channel ID is out of legal range
71	RK_ERR_ALGO_MD_BUSY	Motion detection system is busy
72	RK_ERR_ALGO_MD_EXIST	Try to apply for or create an existing device, communication Tao or resource
73	RK_ERR_ALGO_MD_NOT_CONFIG	Not configured before use
74	RK_ERR_ALGO_MD_ILLEGAL_PARAM	Parameter out of legal range

6. occlusion detection

6.1 Overview

The Occlusion Detection module implements occlusion alarms and supports a maximum of 10 areas.

6.2 Function description

The OD algorithm is implemented by software, and the input resolution should not be too large. The typical resolution is 640x480. The larger the resolution, the higher the CPU load.

6.3 API reference

6.3.1 RK_MPI_ALGO_OD_CreateChn

[description]

Create an OD channel.

[grammar]

Page 75

 $RK_S32\ RK_MPI_ALGO_OD_CreateChn(\underline{ALGO\ OD\ CHN}\ OdChn, const\underline{ALGO\ OD\ ATTR\ S}\ *pstChnAttr);$

[parameter]

parameter name	description	Input / output
OdChn	Block detection channel number. Value range: [0,ALGO_OD_MAX_CHN_NUM].	enter
pstChnAttr	The properties of the occlusion detection channel.	enter

[return value]

return value	description	
0	success.	

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

note

no.

[Example]

no.

[related topic]

RK MPI ALGO OD DestroyChn

6.3.2 RK_MPI_ALGO_OD_DestroyChn

[description]

Destroy the OD channel.

[grammar]

RK_S32 RK_MPI_ALGO_OD_DestroyChn(ALGO_OD_CHN OdChn);

[parameter]

parameter name description

Input / output

Block detection channel number. Value range: [0,ALGO OD MAX CHN NUM]. enter

[return value]

OdChn

Page 76

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI ALGO OD CreateChn

6.4 Data Type

The data types related to occlusion detection are defined as follows:

ALGO OD MAX CHN NUM: Define the maximum number of occlusion detection channels.

ALGO OD ROI RET MAX: Define the maximum number of ROI regions for each channel of occlusion detection.

ALGO OD CHN: Block detection channel number.

ALGO OD ATTR S: Define the attribute structure of the occlusion detection channel.

6.4.1 ALGO_OD_MAX_CHN_NUM

[Description]

Define the maximum number of occlusion detection channels.

definition

RV1109 / RV1126:

 ${\tt \#define\ ALGO_OD_MAX_CHN_NUM\ VI_MAX_CHN_NUM}$

[Related data types and interfaces]

VI MAX CHN NUM

Page 77

6.4.2 ALGO_OD_ROI_RET_MAX

[Description]

Define the maximum number of ROI regions for each channel of occlusion detection.

definition

```
RV1109 / RV1126:
```

#define ALGO_OD_ROI_RET_MAX 10

6.4.3 ALGO_OD_CHN

[Description]

Block detection channel number.

[definition]

typedef RK_S32 ALGO_OD_CHN;

6.4.4 ALGO_OD_ATTR_S

[Description]

Define the occlusion detection channel attribute structure.

definition

```
typedef struct rkALGO_OD_ATTR_S {

IMAGE_TYPE_E enImageType; // the type of input image

RK_U32 u32Width;

RK_U32 u32Height;

RK_U16 u16RoiCnt; // RW; Range:[0, ALGO_OD_ROI_RET_MAX].

RECT_S stRoiRects[ALGO_OD_ROI_RET_MAX];

RK_U16 u16Sensitivity; // value 0(sys default) or [1-100].

} ALGO_OD_ATTR_S;
```

[member]

Member name	description
enImageType	Enter the image type.
u32Width	Block the width of the detection area.
u32Height	Block the height of the detection area.
u16RoiCnt	Number of ROI regions, value range: [0, ALGO OD ROI RET MAX].

stRoiRects The structure array of the ROI area attribute.

u16Sensitivity The sensitivity of occlusion detection, the value range: [1, 100].

Page 78

[Related data types and interfaces]

RECT S

IMAGE TYPE E

ALGO OD ROI RET MAX

6.5 Error code

Video encoding API error codes such as $\underline{\text{Table 6-1}}$ Shown:

Table 6-1 Video encoding API error codes

Wrong generation code	ion Macro definition	description
80	RK_ERR_ALGO_OD_INVALID_CHNID	Channel ID is out of legal range
81	RK_ERR_ALGO_OD_BUSY	Motion detection system is busy
82	RK_ERR_ALGO_OD_EXIST	Try to apply for or create an existing device, communication Tao or resource
83	RK_ERR_ALGO_OD_NOT_CONFIG	Not configured before use
84	RK_ERR_ALGO_OD_ILLEGAL_PARAM	Parameter out of legal range

7. Audio

7.1 Overview

The AUDIO module includes four sub-modules: audio input, audio output, audio encoding, and audio decoding.

 $The \ audio \ input \ and \ output \ module \ realizes \ audio \ input \ and \ output \ functions \ by \ encapsulating \ the \ Linux \ ALSA \ audio \ interface.$

The audio encoding and decoding module is realized by encapsulating the ffmpeg audio encoder. Support G711A/G711U/G726/MP2.

7.2 Function description

7.2.1 Audio input and output

Audio input AI output AO, used for docking with Audio Codec to complete sound recording and playback. RKMedia AI/AO depends on Linux ALSA devices, different sound cards, as long as they support the ALSA driver, can use the AI/AO interface. Audio algorithms are integrated in AI, which can be passed The configuration is turned on. After the algorithm is turned on, AI outputs the PCM data processed by the algorithm.

Page 79

7.2.2 Audio Codec

The audio codec is realized through the encapsulation of ffmpeg, and currently supports G711A/G711U/G726/MP2.

7.2.3 Audio Algorithm

Currently supports AEC algorithm for intercom scenes and ANR algorithm for recording scenes.

7.3 API reference

7.3.1 Audio input

7.3.1.1 RK_MPI_AI_EnableChn

[description]

Open the AI channel.

[grammar]

 $RK_S32\ RK_MPI_AI_EnableChn(\ \underline{AI\ CHN}\ AiChn);$

[parameter]

parameter name description Input / output

AiChn Audio input channel number. Value range: [0,<u>AI MAX CHN NUM</u>).

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI AI DisableChn

Page 80

7.3.1.2 RK_MPI_AI_DisableChn

[description]

Close the AI channel.

[grammar]

 $RK_S32\ RK_MPI_AI_DisableChn(\underline{AI_CHN}\ AiChn);$

[parameter]

parameter name description Input / output

AiChn Audio input channel number. Value range: [0,<u>AI_MAX_CHN_NUM</u>). enter

[return value]

return value description

https://translate.googleusercontent.com/translate_f

Failure, see error code for its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note] [Example] no. [related topic] RK MPI AI EnableChn 7.3.1.3 RK_MPI_AI_SetChnAttr [description] Set AO channel properties. 【grammar】 RK_S32 RK_MPI_AI_SetChnAttr(<u>AI_CHN_AiChn, const_AI_CHN_ATTR_S_*pstAttr</u>); [parameter] parameter name description Input / output Audio input channel number. Value range: [0,<u>AI MAX CHN NUM</u>). AiChn enter pstAttr AI channel attribute pointer. enter

Page 81

[return value]

return value description success. Failure, see <u>error code for</u> its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note] no. [Example] no. [related topic] no. 7.3.1.4 RK_MPI_AI_SetVolume [description]

 $RK_S32\ RK_MPI_AI_SetVolume(\ \underline{AI\ CHN}\ AiChn,\ RK_S32\ s32Volume);$

Set the volume.

[parameter]

parameter name description Input / output AiChn Audio input channel number. Value range: [0,AI MAX CHN NUM). enter s32Volume The volume of the audio input channel. Value range: [0, 100]. [return value] return value description success. Failure, see error code for its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note] no. [Example] [related topic] 7.3.1.5 RK_MPI_AI_GetVolume [description] Get the volume. [grammar] $RK_S32\ RK_MPI_AI_GetVolume(\ \underline{AI\ CHN}\ AiChn,\ RK_S32\ *ps32Volume);$ [parameter] parameter name description Input / output AiChn Audio input channel number. Value range: [0, $\underline{AI\ MAX\ CHN\ NUM}$). enter ps32Volume The volume of the audio input channel. Output [return value] return value description success. Non-zero Failure, see error code for its value. demand Header file: rkmedia_api.h Library file: libeasymedia.so [note] no. [Example] [related topic]

7.3.1.6 RK_MPI_AI_SetTalkVqeAttr

[description]

Set AI's sound quality enhancement function (Talk) related attributes.

[grammar]

RK_S32 RK_MPI_AI_SetTalkVqeAttr(<u>AI_CHN_AI_TALKVQE_CONFIG_S</u>*pstVqeConfig);

[narameter]

parameter name description Input / output

AiChn Audio input channel number. Value range: [0,AI MAX CHN NUM). enter

pstVqeConfig Audio input sound quality enhancement configuration structure pointer. enter

[return value]

return value description
0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

7.3.1.7 RK_MPI_AI_GetTalkVqeAttr

[description]

 $\label{eq:GetAI} \mbox{Get AI's sound quality enhancement function (Talk) related attributes.}$

[grammar]

 $RK_S32\ RK_MPI_AI_GetTalkVqeAttr(\ \underline{AI\ CHN}\ AiChn, \underline{AI\ TALKVQE\ CONFIG\ S}\ *pstVqeConfig);$

[parameter]

Page 84

parameter name description Input / output

AiChn Audio input channel number. Value range: [0,AI MAX CHN NUM). enter

Rockchip RKMedia Development Guide Audio input sound quality enhancement configuration structure pointer. pstVqeConfig[return value] return value description success. Non-zero Failure, see error code for its value. [demand] Header file: rkmedia_api.h Library file: libeasymedia.so note no. [Example] [related topic] no. 7.3.1.8 RK_MPI_AI_SetRecordVqeAttr [description] Set AI's sound quality enhancement function (Record) related attributes. [grammar] RK_S32 RK_MPI_AI_SetRecordVqeAttr(AI CHN AiChn, AI RECORDVQE CONFIG S*pstVqeConfig); [parameter] parameter name description Input / output Audio input channel number. Value range: [0,<u>AI MAX CHN NUM</u>). AiChn enter pstVqeConfig Audio input sound quality enhancement configuration structure pointer. return value return value description 0 success. Failure, see error code for its value. Non-zero

Page 85

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

7.3.1.9 RK_MPI_AI_GetRecordVqeAttr

[description]

Get the attributes related to AI's sound quality enhancement function (Record).

[grammar]

 $RK_S32\ RK_MPI_AI_GetRecordVqeAttr(\ \underline{AI\ CHN}\ AiChn, \underline{AI\ RECORDVQE\ CONFIG\ S}\ *pstVqeConfig);$

[parameter]

parameter name description Input / output
AiChn Audio input channel number. Value range: [0,AI MAX CHN NUM). enter
pstVqeConfig Audio input sound quality enhancement configuration structure pointer. Output

[return value]

return value description
0 success.

Non-zero Failure, see error code for its value.

demand)

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

Page 86

7.3.1.10 RK_MPI_AI_EnableVqe

[description]

Enable AI's sound quality enhancement function.

[grammar]

RK_S32 RK_MPI_AI_EnableVqe(AI_CHN AiChn);

[parameter]

parameter name description Input / output

AiChn Audio input channel number. Value range: [0,<u>AI MAX CHN NUM</u>). enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h Library file: libeasymedia.so

note

no.

[Example]

no.

[related topic]

no.

7.3.1.11 RK_MPI_AI_DisableVqe

[description]

Disable AI's sound quality enhancement function.

[grammar]

RK_S32 RK_MPI_AI_DisableVqe(AI_CHN_AiChn);

[parameter]

parameter name description

Input / output

AiChn

Audio input channel number. Value range: [0, AI MAX CHN NUM].

enter

[return value]

Page 87

return value description

Non-zero Failure, see <u>error code for</u> its value.

success.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

no.

7.3.2 Audio output

7.3.2.1 RK_MPI_AO_EnableChn

[description]

Open the AO channel.

[grammar]

 $RK_S32\ RK_MPI_AO_EnableChn(\ \underline{AO_CHN}\ AoChn);$

[parameter]

parameter name description Input / output

AoChn Audio output channel number. Value range: [0,<u>AO MAX CHN NUM</u>).

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

```
Header file: rkmedia_api.h
Library file: libeasymedia.so
(note)
[Example]
[related topic]
RK MPI AO DisableChn
7.3.2.2 RK_MPI_AO_DisableChn
[description]
Close the AO channel.
【grammar】
RK_S32 RK_MPI_AO_DisableChn( AO CHN AoChn);
[parameter]
  parameter name
                     description
                                                                                                         Input / output
                     Audio output channel number. Value range: [0,AO MAX CHN NUM).
  AoChn
                                                                                                         enter
 [return value]
  return value
                                     description
                                     success.
  Non-zero
                                     Failure, see error code for its value.
[demand]
Header file: rkmedia_api.h
Library file: libeasymedia.so
[note]
no.
[Example]
[related topic]
RK MPI AO EnableChn
7.3.2.3 RK_MPI_AO_SetChnAttr
[description]
Set AO channel properties.
[grammar]
RK_S32 RK_MPI_AO_SetChnAttr(<u>AO_CHN</u> AoChn, const_<u>AO_CHN_ATTR_S</u> *pstAttr);
```

Page 89

[parameter]

Rockchip RKMedia Development Guide parameter name description Input / output Audio output channel number. Value range: [0, AO MAX CHN NUM). AoChn enter Audio output channel attribute pointer. pstAttr enter [return value] return value description success. Failure, see $\underline{\text{error code for}}$ its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note] [Example] [related topic] no. $7.3.2.4~RK_MPI_AO_SetVolume$ [description] Set the volume. [grammar] RK_S32 RK_MPI_AO_SetVolume(AO_CHN AoChn, RK_S32 s32Volume); [parameter] Input / output parameter name description AoChn Audio output channel number. Value range: [0, AO MAX CHN NUM). enter s32Volume The volume of the audio output channel. Value range: [0, 100]. [return value]

Page 90

return value description 0 success. Non-zero Failure, see error code for its value. demand) Header file: rkmedia_api.h Library file: libeasymedia.so (note) no. [Example]

```
Rockchip RKMedia Development Guide
[related topic]
7.3.2.5 RK_MPI_AO_GetVolume
[description]
Get the volume.
[grammar]
RK_S32 RK_MPI_AO_GetVolume(AO_CHN AoChn, RK_S32 *ps32Volume);
 [parameter]
  parameter name
                       description
                                                                                                        Input / output
                       Audio output channel number. Value range: [0, AO MAX CHN NUM).
  AoChn
                                                                                                        enter
   ps32Volume
                       The volume of the audio output channel.
                                                                                                        Output
 return value
  return value
                                     description
                                     success.
                                     Failure, see error code for its value.
   Non-zero
[demand]
Header file: rkmedia_api.h
Library file: libeasymedia.so
[note]
[Example]
[related topic]
no.
7.3.2.6 RK_MPI_AO_SetVqeAttr
[description]
Set the properties of AO's sound quality enhancement function.
[grammar]
RK_S32 RK_MPI_AO_SetVqeAttr(<u>AO_CHN_</u>AoChn, <u>AO_VQE_CONFIG_S</u> *pstVqeConfig);
 [parameter]
                        description
                                                                                                        Input / output
  parameter name
                        Audio output channel number. Value range: [0,AO MAX CHN NUM).
   AoChn
                                                                                                        enter
  pstVqeConfig
                         Audio output sound quality enhancement configuration structure pointer.
                                                                                                        enter
 [return value]
```

https://translate.googleusercontent.com/translate_f

description success.

Failure, see error code for its value.

return value

Non-zero

```
[demand]
Header file: rkmedia_api.h
Library file: libeasymedia.so
[note]
[Example]
[related topic]
no.
7.3.2.7 RK_MPI_AO_GetVqeAttr
[description]
Get the properties related to the sound quality enhancement function of AO.
[grammar]
RK_S32 RK_MPI_AO_GetVqeAttr( <u>AO_CHN</u> AoChn,<u>AO_VQE_CONFIG_S</u> *pstVqeConfig);
 [parameter]
  parameter name
                         description
                                                                                                            Input / output
                         Audio output channel number. Value range: [0, AO MAX CHN NUM).
   AoChn
                                                                                                            enter
  pstVqeConfig
                         Audio output sound quality enhancement configuration structure pointer.
                                                                                                            Output
 [return value]
  return value
                                      description
                                      success.
  Non-zero
                                      Failure, see error code for its value.
[demand]
Header file: rkmedia_api.h
Library file: libeasymedia.so
[note]
no.
[Example]
[related topic]
7.3.2.8 RK_MPI_AO_EnableVqe
[description]
Enable the sound quality enhancement function of AO.
[grammar]
RK_S32 RK_MPI_AO_EnableVqe( AO CHN AoChn);
 [parameter]
```

parameter name description

Input / output

AoChn Audio output channel number. Value range: [0,<u>AO MAX CHN NUM</u>). enter

[return value]

Page 93

description return value success. Non-zero Failure, see error code for its value. [demand] Header file: rkmedia_api.h Library file: libeasymedia.so (note) no. [Example] [related topic] 7.3.2.9 RK_MPI_AO_DisableVqe [description] Disable the sound quality enhancement function of AO. [grammar] RK_S32 RK_MPI_AO_DisableVqe(AO CHN AoChn); [parameter] Input / output parameter name description AoChn Audio output channel number. Value range: [0, AO MAX CHN NUM). enter [return value] return value description success. Non-zero Failure, see error code for its value. [demand]

Page 94

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

[Example]

no.

[related topic]

no.

7.3.3 Audio coding

7.3.3.1 RK_MPI_AENC_CreateChn

[description]

Create audio encoding channels.

[grammar]

RK_MPI_AENC_CreateChn(<u>AENC_CHN</u> AencChn,const <u>AENC_CHN_ATTR_S</u> *pstAttr);

[parameter]

parameter name description Input / output

AencChn Audio encoding channel number. Value range: [0,AENC_MAX_CHN_NUM]). enter

pstAttr Audio encoding channel attribute pointer. enter

[return value]

return value description

0 success.

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

Currently supports protocols such as $\underline{audio\ codec} Shown.$

[Example]

no.

[related topic]

RK MPI AENC DestroyChn

7.3.3.2 RK_MPI_AENC_DestroyChn

[description]

Destroy the audio encoding channel.

Page 95

【grammar】

 $RK_S32\ RK_MPI_AENC_DestroyChn(\underline{AENC\ CHN}\ AencChn);$

[parameter]

parameter name description Input / output

AencChn Audio encoding channel number. Value range: [0,<u>AENC_MAX_CHN_NUM</u>]). enter

[return value]

return value description

0 success.

Failure, see error code for its value. Non-zero [demand] Header file: rkmedia_api.h Library file: libeasymedia.so [note] no. [Example]

[related topic]

RK MPI AENC CreateChn

7.3.4 Audio decoding

7.3.4.1 RK_MPI_ADEC_CreateChn

[description]

Create audio decoding channel.

[grammar]

RK_S32 RK_MPI_ADEC_CreateChn(ADEC_CHN AdecChn, const ADEC_CHN ATTR_S *pstAttr);

[parameter]

Input / output parameter name description AdecChn Audio decoding channel number. Value range: [0,ADEC MAX CHN NUM). enter

pstAttr Audio decoding channel attribute pointer. enter

[return value]

Page 96

return value description

0 success.

Failure, see error code for its value. Non-zero

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

Currently supports protocols such as $\underline{\text{audio codec}} Shown.$

[Example]

[related topic]

RK MPI ADEC DestroyChn

7.3.4.2 RK_MPI_ADEC_DestroyChn

[description]

Destroy the audio decoding channel.

[grammar]

RK_S32 RK_MPI_ADEC_DestroyChn(<u>ADEC_CHN</u> AdecChn);

[parameter]

parameter name description Input / output

AdecChn Audio decoding channel number. Value range: [0,<u>ADEC_MAX_CHN_NUM_</u>). enter

[return value]

return value description

0 success.

Non-zero Failure, see error code for its value.

demand

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

Page 97

no.

[related topic]

RK MPI ADEC CreateChn

7.4 Data Type

7.4.1 Audio input

The data types related to audio input are defined as follows:

AI MAX CHN NUM: The maximum number of audio input channels.

AI CHN: Audio input channel number.

AI CHN ATTR S: Audio input attribute structure.

 $\underline{\textbf{AI TALKVQE CONFIG S}}: Audio \ input \ sound \ quality \ enhancement \ (Talk) \ configuration \ information \ structure.$

 $\underline{\textbf{AI RECORDVQE CONFIG S}}: Audio input sound quality enhancement (Record) configuration information structure.$

7.4.1.1 AI_MAX_CHN_NUM

[Description]

The maximum number of audio input channels.

[definition]

RV1109 / RV1126:

#define AI_MAX_CHN_NUM 1

7.4.1.2 AI_CHN

[Description]

Audio input channel number.

definition

typedef RK_S32 AI_CHN;

7.4.1.3 AI_CHN_ATTR_S

[Description]

Audio input attribute structure.

definition

Page 98

```
typedef struct rkAl_CHN_ATTR_S {
    RK_CHAR * pcAudioNode;
    Sample_Format_E enSampleFormat;
    RK_U32 u32Channels;
    RK_U32 u32SampleRate;
    RK_U32 u32NbSamples;
} Al_CHN_ATTR_S;
```

[member]

Member name description

pcAudioNode Audio device node path.

enSampleFormat Sampling format.

u32Channels Number of channels.

u32SampleRate Sampling Rate.

u32NbSamples The number of sampling points per frame.

[Related data types and interfaces]

Sample Format E

7.4.1.4 AI_TALKVQE_CONFIG_S

[Description]

Audio input sound quality enhancement (Talk) configuration information structure.

[definition]

```
#define AI_TALKVQE_MASK_AEC 0x1
#define AI_TALKVQE_MASK_ANR 0x2
#define AI_TALKVQE_MASK_AGC 0x4

typedef struct rkAI_TALKVQE_CONFIG_S {
    RK_U32 u32OpenMask;
    RK_S32 s32WorkSampleRate;
    RK_S32 s32FrameSample;
    RK_CHAR aParamFilePath[MAX_FILE_PATH_LEN];
} AI_TALKVQE_CONFIG_S;
```

[member]

Member name description

Mask value enabled by each function of Talk Vqe.

Currently supports AI_TALKVQE_MASK_AEC,

u32OpenMask AI_TALKVQE_MASK_ANR,

AI_TALKVQE_MASK_AGC.

s32WorkSampleRate Working sampling frequency.

s32FrameSample Number of sampling points.

aParamFilePath Parameter file path.

[Related data types and interfaces]

MAX FILE PATH LEN

7.4.1.5 AI_RECORDVQE_CONFIG_S

[Description]

Audio input sound quality enhancement (Record) configuration information structure.

[definition]

```
#define AI_RECORDVQE_MASK_ANR 0x1

typedef struct rkAI_RECORDVQE_CONFIG_S {
    RK_U32 u32OpenMask;
    RK_S32 s32WorkSampleRate;
    RK_S32 s32FrameSample;
    struct {
        RK_FLOAT fPostAddGain; /* post-gain 0*/
        RK_FLOAT fGmin; /* spectral gain floor,unit:(dB),default:-30dB */
        RK_FLOAT fNoiseFactor; /* noise suppression factor,default:0.98 */
    } stAntConfie:
```

[member]

} AI_RECORDVQE_CONFIG_S;

Member name description

u32OpenMask Mask value enabled by each function of Record Vqe.

AI_RECORDVQE_MASK_ANR is currently supported.

 $s32 Work Sample Rate \\ Working sampling frequency.$

s32FrameSample Number of sampling points.

stAnrConfig.fPostAddGain ANR's post-gain.

 $st Anr Config. f Gmin \\ The lower limit of the ANR spectrum gain, in dB, the default value is -30 dB.$

stAnrConfig.fNoiseFactor ANR noise suppression coefficient, the default value is 0.98.

Page 100

7.4.2 Audio output

The audio output related data types are defined as follows:

AO MAX CHN NUM: The maximum number of audio output channels.

AO CHN: Audio output channel number.

AO CHN ATTR S: Audio output attribute structure.

AO VQE CONFIG S: Audio output sound quality enhancement configuration information structure.

7.4.2.1 AO_MAX_CHN_NUM

[Description]

The maximum number of audio output channels.

definition

RV1109 / RV1126:

#define AO_MAX_CHN_NUM 1

7.4.2.2 AO_CHN

[Description]

Audio output channel number.

definition

typedef RK_S32 AO_CHN;

7.4.2.3 AO_CHN_ATTR_S

[Description]

Audio output attribute structure.

[definition]

```
typedef struct rkAO_CHN_ATTR_S {
    RK_CHAR * pcAudioNode;
    Sample_Format_E enSampleFormat;
    RK_U32 u32Channels;
    RK_U32 u32SampleRate;
    RK_U32 u32NbSamples;
} AO_CHN_ATTR_S;
```

[member]

Page 101

Member name description

pcAudioNode Audio device node path.

enSampleFormat Sampling format.

u32SampleRate Sampling Rate.

 ${\it u32NbSamples} \\ {\it The number of sampling points per frame.} \\$

Number of channels.

[Related data types and interfaces]

Sample Format E

u32Channels

7.4.2.4 AO_VQE_CONFIG_S

[Description]

Audio output sound quality enhancement configuration information structure.

[definition]

#define AO_VQE_MASK_ANR 0x1 #define AO_VQE_MASK_AGC 0x2

typedef struct rkAO_VQE_CONFIG_S

```
RK_U32 u32OpenMask;
RK_S32 s32WorkSampleRate;
RK_S32 s32FrameSample;
RK_CHAR aParamFilePath[MAX_FILE_PATH_LEN];
} AO_VQE_CONFIG_S;
```

[member]

Member name description

Mask value enabled by each function of AO Vqe.

u32OpenMask Currently supports AO_VQE_MASK_ANR,

AO_VQE_MASK_AGC.

s32WorkSampleRate Working sampling frequency.

s32FrameSample Number of sampling points.

aParamFilePath Parameter file path.

[Related data types and interfaces]

MAX FILE PATH LEN

Page 102

7.4.3 Audio coding

The audio coding related data types are defined as follows:

AENC MAX CHN NUM: The maximum number of audio coding channels.

AENC CHN: Audio encoding channel number.

AENC ATTR AAC S: AAC encoding protocol attribute structure.

AENC ATTR MP2 S: MP2 encoding protocol attribute structure.

 $\underline{AENC\ ATTR\ G711A\ S}; G.711A\ encoding\ protocol\ attribute\ structure.$

 $\underline{AENC\ ATTR\ G711U\ S}; G.711U\ encoding\ protocol\ attribute\ structure.$

AENC ATTR G726 S: G.726 encoding protocol attribute structure.

AENC CHN ATTR S: Audio coding attribute structure.

7.4.3.1 AENC_MAX_CHN_NUM

[Description]

The maximum number of audio encoding channels.

definition

RV1109 / RV1126:

#define AENC_MAX_CHN_NUM 16

7.4.3.2 AENC_CHN

[Description]

Audio encoding channel number.

[definition]

typedef RK_S32 AENC_CHN;

7.4.3.3 AENC_ATTR_AAC_S

[Description]

AAC encoding protocol attribute structure.

definition

Page 103

[member]

Member name description

u32Channels Number of channels.

 $Sampling \ Rate. \ The \ value \ range \ is: 96000, 88200, 64000, 48000, 44100, 32000, u32Sample Rate$

24000, 22050, 16000, 12000, 11025, 8000, 7350.

7.4.3.4 AENC_ATTR_MP2_S

[Description]

MP2 encoding protocol attribute structure.

[definition]

[member]

Member name description

u32Channels Number of channels.

u32SampleRate Sampling Rate. The value range is: 44100, 48000, 32000, 22050, 24000, 16000, 0.

7.4.3.5 AENC_ATTR_G711A_S

[Description]

G.711A encoding protocol attribute structure.

[definition]

```
typedef struct rkAENC_ATTR_G711A_S {
   RK_U32 u32Channels;
   RK_U32 u32SampleRate;
   RK_U32 u32NbSample;
} AENC_ATTR_G711A_S;
```

[member]

Member name description

u32Channels Number of channels.

u32SampleRate Sampling Rate.

u32NbSample The number of sampling points per frame.

```
7.4.3.6 AENC_ATTR_G711U_S
```

[Description]

G.711U encoding protocol attribute structure.

[definition]

```
typedef struct rkANEC_ATTR_G711U_S {
    RK_U32 u32Channels;
    RK_U32 u32SampleRate;
    RK_U32 u32NbSample;
} AENC_ATTR_G711U_S;
```

[member]

u32Channels

Member name description

u32SampleRate Sampling Rate.

u32NbSample The number of sampling points per frame.

Number of channels.

7.4.3.7 AENC_ATTR_G726_S

[Description]

G.726 encoding protocol attribute structure.

[definition]

```
typedef struct rkAENC_ATTR_G726_S {
    RK_U32 u32Channels;
    RK_U32 u32SampleRate;
} AENC_ATTR_G726_S;
```

[member]

 Member name
 description

 u32Channels
 Number of channels.

 u32SampleRate
 Sampling Rate.

7.4.3.8 AENC_CHN_ATTR_S

[Description]

Audio encoding attribute structure.

[definition]

Page 105

```
typedef struct rkAENC_CHN_ATTR_S {
    CODEC_TYPE_E enCodecType; /*payload type ()*/
    RK_U32 u32Bitrate;
    RK_U32 u32Quality;
    union {
        AENC_ATTR_AAC_S stAencAAC;
        AENC_ATTR_MP2_S stAencMP2;
        AENC_ATTR_G711A_S stAencG711A;
        AENC_ATTR_G711U_S stAencG711U;
        AENC_ATTR_G726_S stAencG726;
```

} AENC_CHN_ATTR_S;

[member]

Member name description

enCodecType Encoding protocol type.

u32Bitrate Bit rate.

u32Quality Encoding quality.

stAencAAC/stAencMP2/stAencG711A/stAencG711U/stAencG726 Related coding protocol attribute structure.

[Related data types and interfaces]

CODEC TYPE E

7.4.4 Audio decoding

The data types related to audio decoding are defined as follows:

ADEC MAX CHN NUM: The maximum number of audio decoding channels.

ADEC CHN: Audio decoding channel number.

ADEC ATTR AAC S: AAC decoding protocol attribute structure.

ADEC ATTR MP2 S: MP2 decoding protocol attribute structure.

 $\underline{ADEC\ ATTR\ G711A\ S} : G.711A\ decoding\ protocol\ attribute\ structure.$

<u>ADEC_ATTR_G711U_S</u>: G.711U decoding protocol attribute structure.

ADEC ATTR G726 S: G.726 decoding protocol attribute structure.

ADEC CHN ATTR S: Audio decoding attribute structure.

7.4.4.1 ADEC_MAX_CHN_NUM

[Description]

The maximum number of audio decoding channels.

[definition]

Page 106

RV1109 / RV1126:

#define ADEC_MAX_CHN_NUM 16

7.4.4.2 ADEC_CHN

[Description]

Audio decoding channel number.

[definition]

typedef RK_S32 ADEC_CHN;

7.4.4.3 ADEC_ATTR_AAC_S

[Description]

AAC decoding protocol attribute structure.

[definition]

typedef struct rkADEC_ATTR_AAC_S {

// reserved

```
} ADEC_ATTR_AAC_S;
```

7.4.4.4 ADEC_ATTR_MP2_S

[Description]

 $\ensuremath{\mathsf{MP2}}$ decoding protocol attribute structure.

[definition]

typedef struct rkADEC_ATTR_MP2_S {
 // reserved
} ADEC_ATTR_MP2_S;

7.4.4.5 ADEC_ATTR_G711A_S

[Description]

G.711A decoding protocol attribute structure.

[definition]

typedef struct rkADEC_ATTR_G711A_S {
 RK_U32 u32Channels;
 RK_U32 u32SampleRate;
} ADEC_ATTR_G711A_S;

member

Page 107

Member name description

u32Channels Number of channels.

Sampling Rate.

7.4.4.6 ADEC_ATTR_G711U_S

u32SampleRate

[Description]

 $G.711U\ decoding\ protocol\ attribute\ structure.$

[definition]

typedef struct rkADEC_ATTR_G711U_S {
 RK_U32 u32Channels;
 RK_U32 u32SampleRate;
} ADEC_ATTR_G711U_S;

[member]

Member name description
u32Channels Number of channels

u32SampleRate Sampling Rate.

7.4.4.7 ADEC_ATTR_G726_S

[Description]

G.726 decoding protocol attribute structure.

definition

typedef struct rkADEC_ATTR_G726_S {
 // reserved
} ADEC_ATTR_G726_S;

7.4.4.8 ADEC_CHN_ATTR_S

[Description]

Audio decoding attribute structure.

[definition]

Page 108

```
typedef struct rkADEC_CHN_ATTR_S {
   CODEC_TYPE_E enCodecType;
   union {
      ADEC_ATTR_AAC_S stAdecAAC;
      ADEC_ATTR_MP2_S stAdecMP2;
      ADEC_ATTR_G711A_S stAdecG711A;
      ADEC_ATTR_G711U_S stAdecG711U;
      ADEC_ATTR_G726_S stAdecG726;
   };
} ADEC_CHN_ATTR_S;
```

[member]

Member name description

enCodecType Encoding protocol type.

 $stAdecAAC/stAdecMP2/stAdecG711A/stAdecG711U/stAdecG726 \\ Related decoding protocol attribute structure. \\$

[Related data types and interfaces]

CODEC TYPE E

7.5 Error code

7.5.1 Audio input error code

Audio input API error codes such as <u>Table 7-1</u>Shown:

Table 7-1 Audio input API error codes

Wrong generati	on Macro definition	description
40	RK_ERR_AI_INVALID_DEVID	Invalid audio input device number
41	RK_ERR_AI_BUSY	Audio input system is busy
42	RK_ERR_AI_EXIST	Attempt to apply for or create an existing device, channel or capital source
43	RK_ERR_AI_NOTOPEN	The system is not turned on, has not been initialized or enabled
44	RK_ERR_AI_NOT_CONFIG	Not configured before use

7.5.2 Audio output error code

Audio output API error codes such as $\underline{\text{Table 7-2}} Shown:$

Table 7-2 Audio output API error codes

Wrong generation code	n Macro definition	description
50	RK_ERR_AO_INVALID_DEVID	Invalid audio output device number
51	RK_ERR_AO_BUSY	The audio output system is not initialized
52	RK_ERR_AO_NOTREADY	Attempt to apply for or create an existing device, channel or capital source
53	RK_ERR_AO_NOTOPEN	The system is not turned on, has not been initialized or enabled

7.5.3 Audio encoding error codes

Audio encoding API error codes such as $\underline{\text{Table 7-3}}$ Shown:

Table 7-3 Audio coding API error codes

error code	Macro definition	description
60	RK_ERR_AENC_INVALID_DEVID	Invalid audio encoding device number
61	RK_ERR_AENC_BUSY	Audio coding system is busy
62	RK_ERR_AENC_CODEC_NOT_SUPPORT	Audio encoding is not supported

7.5.4 Audio decoding error code

Audio decoding API error codes such as Table 7-4Shown:

Table 7-3 Audio decoding API error codes

error code	Macro definition	description
100	RK_ERR_ADEC_INVALID_DEVID	Invalid audio decoding device number
101	RK_ERR_ADEC_BUSY	Audio decoding system is busy
102	RK_ERR_ADEC_CODEC_NOT_SUPPORT	Audio decoding is not supported

8. RGA

8.1 Overview

The RGA module is used for 2D image cropping, format conversion, scaling, rotation, image overlay, etc.

Page 110

8.2 Function description

The RGA channel in rkmedia only supports format conversion, scaling, cropping, and rotation functions. For image overlay, you need to call librga.so library separately. See docs/Linux/Multimedia/《Rockchip_Developer_Guide_Linux_RGA_CN.pdf》

8.3 API reference

8.3.1 RK_MPI_RGA_CreateChn

[description]

Create RGA channel.

[grammar]

 $RK_S32\ RK_MPI_RGA_CreateChn(\ \underline{RGA_CHN}\ RgaChn, \underline{RGA_ATTR_S}\ *pstRgaAttr);$

[parameter]

parameter name Input / output description

RgaChn RGA channel number. Value range: [0,RGA MAX CHN NUM). enter

pstAttr RGA channel attribute pointer.

[return value]

return value description

success.

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

[related topic]

RK MPI RGA DestroyChn

Page 111

8.3.2 RK_MPI_RGA_DestroyChn

[description]

Destroy the RGA channel.

[grammar]

 $RK_S32\ RK_MPI_RGA_DestroyChn(\underline{RGA\ CHN}\ RgaChn);$

[parameter]

parameter name description Input / output

RGA channel number. Value range: [0,RGA MAX CHN NUM). RgaChn enter

return value

return value description success.

Failure, see error code for its value. Non-zero

```
[demand]
```

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI RGA CreateChn

8.4 Data Type

RGA related data types are defined as follows:

RGA MAX CHN NUM: The maximum number of RGA channels.

RGA CHN: RGA channel number.

RGA INFO S: RGA area attribute structure.

RGA ATTR S: RGA attribute structure.

Page 112

8.4.1 RGA_MAX_CHN_NUM

[Description]

The maximum number of RGA channels.

definition

RV1109 / RV1126:

#define RGA_MAX_CHN_NUM 16

8.4.2 RGA_CHN

[Description]

RGA channel number.

[definition]

typedef RK_S32 RGA_CHN;

8.4.3 RGA_INFO_S

[Description]

RGA area attribute structure.

[definition]

typedef struct rkRGA_INFO_S {

IMAGE_TYPE_E imgType;

RK_U32 u32X;

RK_U32 u32Y;

RK_U32 u32Width; RK_U32 u32Height;

RK_U32 u32HorStride; // horizontal stride

RK_U32 u32VirStride; // virtual stride } RGA_INFO_S;

member

Page 113

Member name description

imgType Image format type.

u32X The X-axis coordinate of RGA.

u32Y The Y-axis coordinate of RGA.

u32Width The width of the RGA.

u32Height The height of the RGA.

u32HorStride Imaginary wide.
u32VirStride False height.

[Related data types and interfaces]

IMAGE TYPE E

8.4.4 RGA_ATTR_S

[Description]

RGA attribute structure.

[definition]

typedef struct rkRGA_ATTR_S {

RGA_INFO_S stImgIn; // input image info RGA_INFO_S stImgOut; // output image info RK_U16 u16Rotaion; // support 0/90/180/270.

RK_BOOL bEnBufPool; RK_U16 u16BufPoolCnt;

} RGA_ATTR_S;

member

Member name description

stImgIn Enter image information.

 $stImgOut \\ \\ Output image information.$

u16Rotaion Rotation angle. Value range: 0, 90, 180, 270.

bEnBufPool

u16BufPoolCnt

Buffer pool count.

[Related data types and interfaces]

RGA INFO S

8.5 Error code

RGA API error codes are shown in $\underline{\text{Table 8-1}}$:

Table 8-1 RGA API error codes

Wrong generat	ion Macro definition	description
90	RK_ERR_RGA_INVALID_CHNID	RGA input device number is invalid
91	RK_ERR_RGA_BUSY	RGA system is busy
92	RK_ERR_RGA_EXIST	Try to apply for or create an existing device, channel or Resources
93	RK_ERR_RGA_NOT_CONFIG	Not configured before use
94	RK_ERR_RGA_ILLEGAL_PARAM	Illegal parameter

9. Video output

9.1 Overview

The VO module is used for video output management.

9.2 Function description

 $The \ VO \ module \ is \ an \ encapsulation \ of \ DRM/KMS \ and \ supports \ multi-VOP \ and \ multi-layer \ display.$

9.3 API reference

9.3.1 RK_MPI_VO_CreateChn

[description]

Create a VO channel.

[grammar]

 $RK_S32\ RK_MPI_VO_CreateChn(\underline{VO\ CHN}\ VoChn,\ const\underline{VO\ CHN\ ATTR\ S}\ *pstAttr);$

[parameter]

Page 115

parameter name	description	Input / output
VoChn	VO channel number. Value range: [0, <u>VO MAX CHN NUM</u>).	enter
pstAttr	VO channel attribute pointer.	enter

[return value]

enter

return value description

0 success.

Non-zero Failure, see error code for its value.

[demand]

Header file: rkmedia_api.h

Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

9.3.2 RK_MPI_VO_DestroyChn

[description]

Destroy the VO channel.

RK MPI VO DestroyChn

[grammar]

RK_S32 RK_MPI_VO_DestroyChn(<u>VO_CHN</u> VoChn);

[parameter]

VoChn

parameter name description Input / output

VO channel number. Value range: [0, VO MAX CHN NUM).

[return value]

return value description

Non-zero Failure, see <u>error code for</u> its value.

[demand]

Page 116

Header file: rkmedia_api.h Library file: libeasymedia.so

[note]

no.

[Example]

no.

[related topic]

RK MPI VO CreateChn

9.4 Data Type

The video output related data types are defined as follows:

<u>VO MAX CHN NUM</u>: The maximum number of video output channels.

VO CHN: Video output channel number.

VO CHN ATTR S: Video output attribute structure.

9.4.1 VO_MAX_CHN_NUM

[Description]

The maximum number of video output channels.

[definition]

RV1109 / RV1126:

#define VO_MAX_CHN_NUM 2

9.4.2 VO_CHN

[Description]

Video output channel number.

definition)

typedef RK_S32 VO_CHN;

9.4.3 VO_CHN_ATTR_S

[Description]

Video output attribute structure.

definition

Page 117

typedef struct rkVO_CHN_ATTR_S {

RK_U32 u32Width;
RK_U32 u32Height;
RK_U32 u32VerStride;
RK_U32 u32HorStride;
IMAGE_TYPE_E enImgType;
RK_U16 u16Fps;
RK_U16 u16Zpos;

RK_U16 u16Zpos; } VO_CHN_ATTR_S;

(member)

Member name description

u32Width Video output width.

u32Height Video output height.

u32VerStride Imaginary wide.

u32HorStride False height.

enImgType Image format type.

u16Fps Frame rate.

u16Zpos Layer selection.

[Related data types and interfaces]

IMAGE TYPE E

9.5 Error code

Video output API error codes such as <u>Table 9-1</u>Shown:

Table 9-1 RGA API error codes

Wrong generation code	on Macro definition	description
110	RK_ERR_VO_INVALID_DEVID	Device ID is out of legal range
111	RK_ERR_VO_EXIST	Try to apply for or create an existing device, channel or Resources
112	RK_ERR_VO_NOT_CONFIG	Not configured before use
113	RK_ERR_VO_TIMEOUT	Video output timeout
114	RK_ERR_VO_BUF_EMPTY	Video output buffer is empty
115	RK_ERR_VO_ILLEGAL_PARAM	Illegal parameter
116	RK_ERR_VO_NOTREADY	The system is not initialized

10. Restrictions on use

It is important to note that rkmedia has special requirements for the destruction order of modules: the subsequent modules in the data flow pipeline must be pinned before the previous modules. destroy. such as:

VI --> RGA --> VENC

The recommended order of destruction is as follows:

destroy VENC

destroy RGA

destroy VI

Take VI as an example. VI is the data generator. The buffer produced by the data pipeline may be occupied by the subsequent stage when the data pipeline is destroyed, resulting in the resources manag Also occupied. When you open it again, you will encounter Device Busy error. This problem may occur when frequently creating and destroying data channels.