# Reconfigurable Heterogeneous Quorum Systems

Xiao Li, Mohsen Lesani University of California, Santa Cruz



#### Contributions

- A graph characterization of heterogeneous quorum systems, and its application to optimize reconfiguration and a sink discovery protocol
- Trade-offs between reconfiguration guarantees
- Reconfiguration protocols for joining and leaving of a process, and adding and removing of a quorum, and their proofs of correctness

#### Heterogeneous Quorum Systems (HQS)

$$\mathcal{P} = \mathcal{W} \cup \mathcal{B}, \quad \mathcal{W} = \{1, 3, 4, 5\}, \quad \mathcal{B} = \{2\} \\
\mathcal{Q} = \{1 \mapsto \{\{1, 2, 3\}, \{1, 4\}\}, \\
3 \mapsto \{\{3, 4\}, \{1, 3\}\} \\
4 \mapsto \{\{3, 4\}\} \\
5 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$4 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

#### Heterogeneous Quorum Systems (HQS)

$$\mathcal{P} = \mathcal{W} \cup \mathcal{B}, \quad \mathcal{W} = \{1, 3, 4, 5\}, \quad \mathcal{B} = \{2\} \\
\mathcal{Q} = \{1 \mapsto \{\{1, 2, 3\}, \{1, 4\}\}, \\
3 \mapsto \{\{3, 4\}, \{1, 3\}\} \\
4 \mapsto \{\{3, 4\}\} \\
5 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$4 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$5 \mapsto \{\{1, 2, 3, 5\}\}$$

#### Heterogeneous Quorum Systems (HQS)

$$\mathcal{P} = \mathcal{W} \cup \mathcal{B}, \quad \mathcal{W} = \{1, 3, 4, 5\}, \quad \mathcal{B} = \{2\} \\
\mathcal{Q} = \{1 \mapsto \{\{1, 2, 3\}, \{1, 4\}\}, \\
3 \mapsto \{\{3, 4\}, \{1, 3\}\} \\
4 \mapsto \{\{3, 4\}\} \\
5 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$4 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$3 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$4 \mapsto \{\{1, 2, 3, 5\}\}\}$$

$$5 \mapsto \{\{1, 2, 3, 5\}\}$$

#### Quorum Intersection at $\mathcal{O}$

$$\mathcal{O} = \{1, 3, 4\}$$

#### Quorum Intersection at $\mathcal{O}$



$$\mathcal{O} = \{1, 3, 4\}$$

#### Quorum Intersection at $\mathcal{O}$



#### Availability inside $\mathcal{O}$

$$\mathcal{O} = \{1, 3, 4\}$$

## Availability inside $\mathcal O$

$$\mathcal{O} = \{1, 3, 4\}$$

## Availability inside $\mathcal O$



$$\mathcal{O} = \{1, 3, 4\}$$

## Availability inside $\mathcal O$

$$\mathcal{O} = \{1, 3, 4\}$$

## Quorum Inclusion for ${\cal O}$

$$\mathcal{O} = \{1, 3, 4\}$$

## Quorum Inclusion for ${\cal O}$

$$\mathcal{O} = \{1, 3, 4\}$$

#### Quorum Inclusion for $\mathcal{O}$



$$\mathcal{O} = \{1, 3, 4\}$$

## Quorum Inclusion for ${\cal O}$



$$\mathcal{O} = \{1, 3, 4\}$$

#### Outlived Quorum Systems

There is a set of well-behaved processes  $\mathcal{O}$  such that the quorum system has

- quorum intersection at  $\mathcal{O}$ ,
- ullet quorum availability inside  $\mathcal{O}$ , and
- quorum inclusion for  $\mathcal{O}$ .

# Blocking Set

 $p_{\scriptscriptstyleullet}$ 

# Blocking Set



# Blocking Set



lf

• Quorum system  $\mathcal Q$  is available inside  $\mathcal O$ 



lf

- Quorum system  ${\mathcal Q}$  is available inside  ${\mathcal O}$
- Process p is in  ${\mathcal O}$



lf

- Quorum system  ${\mathcal Q}$  is available inside  ${\mathcal O}$
- Process p is in  ${\mathcal O}$



lf

- Quorum system  $\mathcal Q$  is available inside  $\mathcal O$
- Process p is in  ${\mathcal O}$
- ${\mathscr B}$  is a blocking set for p



#### lf

- Quorum system  $\mathcal Q$  is available inside  $\mathcal O$
- Process p is in  ${\mathcal O}$
- $\mathscr{B}$  is a blocking set for p

#### Then

•  ${\mathscr B}$  intersects with  ${\mathscr O}$ 









 ${\it Q}$  has quorum inclusion for  ${\it O}$ 



 ${\mathcal Q}$  has quorum inclusion for  ${\mathcal O}$ 



 ${\it Q}$  has quorum inclusion for  ${\it O}$ 





$$(q_1^* \cap q_2^*) \setminus \{p^*\}$$
 is  $p^*$ -blocking



$$(q_1^* \cap q_2^*) \setminus \{p^*\}$$
 is  $p^*$ -blocking



$$\begin{array}{l} (q_1^* \cap q_2^*) \ \backslash \ \{p^*\} \text{ is } p^*\text{-blocking} \\ (q_1^* \cap q_2^*) \ \backslash \ \{p^*\} \text{ intersects } \mathcal{O} \end{array}$$



$$\begin{array}{l} (q_1^* \cap q_2^*) \ \backslash \ \{p^*\} \text{ is } p^*\text{-blocking} \\ (q_1^* \cap q_2^*) \ \backslash \ \{p^*\} \text{ intersects } \mathcal{O} \end{array}$$



$$\begin{array}{l} (q_1^* \cap q_2^*) \ \backslash \ \{p^*\} \ \text{is} \ p^*\text{-blocking} \\ (q_1^* \cap q_2^*) \ \backslash \ \{p^*\} \ \text{intersects} \ \mathscr{O} \\ (q_1 \cap q_2) \ \backslash \ \{p^*\} \ \text{intersects} \ \mathscr{O} \end{array}$$







 ${\it Q}$  has quorum inclusion for  ${\it O}$ 



 ${\it Q}$  has quorum inclusion for  ${\it O}$ 



 ${\mathcal Q}$  has quorum inclusion for  ${\mathcal O}$ 







 $p' \in tomb$ 



 $p' \in tomb$   $\forall q_1, q_2 \in Q \ . \ (q_1 \cap q_2) \ \setminus \ (tomb \cup \{p^*\}) \ \text{is} \ p^*\text{-blocking}$ 



 $\begin{aligned} p' &\in tomb \\ \forall q_1,q_2 &\in Q \ . \ (q_1 \cap q_2) \ \setminus \ (tomb \cup \{p^*\}) \ \text{is} \ p^*\text{-blocking} \\ (q_1^* \cap q_2^*) \ \setminus \ \{p',p^*\} \ \text{is} \ p^*\text{-blocking} \end{aligned}$ 



 $\begin{aligned} p' &\in tomb \\ \forall q_1,q_2 &\in \mathcal{Q} . \ (q_1 \cap q_2) \ \setminus \ (tomb \cup \{p^*\}) \ \text{is $p^*$-blocking} \\ (q_1^* \cap q_2^*) \ \setminus \ \{p',p^*\} \ \text{is $p^*$-blocking} \end{aligned} \qquad \textit{$\mathcal{Q}$ is available inside $\mathcal{O}$}$ 



$$\begin{aligned} p' &\in tomb \\ \forall q_1, q_2 &\in \mathcal{Q} . \ (q_1 \cap q_2) \ \setminus \ (tomb \cup \{p^*\}) \ \text{is $p^*$-blocking} \\ (q_1^* \cap q_2^*) \ \setminus \ \{p', p^*\} \ \text{is $p^*$-blocking} \qquad \textit{$\mathcal{Q}$ is available inside $\mathcal{O}$} \\ (q_1^* \cap q_2^*) \ \setminus \ \{p', p^*\} \ \text{intersects $\mathcal{O}$} \end{aligned}$$



$$\begin{aligned} p' &\in tomb \\ \forall q_1, q_2 &\in \mathcal{Q} . \ (q_1 \cap q_2) \ \setminus \ (tomb \cup \{p^*\}) \ \text{is $p^*$-blocking} \\ (q_1^* \cap q_2^*) \ \setminus \ \{p', p^*\} \ \text{is $p^*$-blocking} \qquad \textit{$\mathcal{Q}$ is available inside $\mathcal{O}$} \\ (q_1^* \cap q_2^*) \ \setminus \ \{p', p^*\} \ \text{intersects $\mathcal{O}$} \end{aligned}$$



```
\begin{aligned} &p' \in tomb \\ &\forall q_1,q_2 \in \mathcal{Q} . \ (q_1 \cap q_2) \ \setminus \ (tomb \cup \{p^*\}) \text{ is } p^*\text{-blocking} \\ &(q_1^* \cap q_2^*) \ \setminus \ \{p',p^*\} \text{ is } p^*\text{-blocking} \qquad \mathscr{Q} \text{ is available inside } \mathscr{O} \\ &(q_1^* \cap q_2^*) \ \setminus \ \{p',p^*\} \text{ intersects } \mathscr{O} \\ &(q_1 \cap q_2) \ \setminus \ \{p',p^*\} \text{ intersects } \mathscr{O} \end{aligned}
```

# Reconfigurable Heterogeneous Quorum Systems

Xiao Li, Mohsen Lesani University of California, Santa Cruz



# Reconfigurability, the last missing property

|                              | Proof-of-work | Proof-of-stake | Byzantine<br>Replication | HQS      | Reconfigurable<br>HQS |
|------------------------------|---------------|----------------|--------------------------|----------|-----------------------|
| Heterogenous<br>trust        |               |                | X                        |          |                       |
| Reconfigurability (Openness) |               |                | X                        | X        |                       |
| Energy<br>efficiency         | X             |                |                          | <b>Y</b> |                       |
| Consistency                  |               |                |                          |          |                       |
| Finality                     | X             | X              |                          |          |                       |
| Equity                       |               | X              |                          | <b>/</b> |                       |











# Blocking set



## Quorum Graphs and the Sink Component

**Theorem:** In any quorum system with consistency and quorum sharing, there is one sink component.

all well-behaved processes of the minimal quorums are in the sink component.

$$\mathcal{P} = \{1, 2, 3, 4, 5, 6\}, \mathcal{B} = \{5\},\$$

$$\mathcal{Q}(1) = \{\{1, 2\}, \{1, 3, 5\}\},\$$

$$\mathcal{Q}(2) = \{\{1, 2\}\},\$$

$$\mathcal{Q}(3) = \{\{1, 3, 5\}\},\$$

$$\mathcal{Q}(4) = \{\{1, 2, 4\}\},\$$

$$\mathcal{Q}(5) = \{\{1, 3, 5\}\},\$$

$$\mathcal{Q}(6) = \{\{1, 2, 6\}\},\$$

$$MQ(\mathcal{Q}) = \{\{1, 2\}, \{1, 3, 5\}\},\$$



## Motivation for Heterogeneous Quorum Systems

#### Uniform Trust:

All processes trust the same sets of quorums. No personal preference.



#### Public Trust:

All processes know the quorums that others trust. Not feasible in an open network.

Byzantine nodes can lie about quorums.



## Reconfiguration Trade-offs

**Theorem:** There is no Leave or Remove reconfiguration protocol that is policy-preserving, availability-preserving and terminating.

## Reconfiguration Trade-offs

**Theorem:** There is no Leave or Remove reconfiguration protocol that is policy-preserving, availability-preserving and terminating.

The Leave protocol that we saw availability-preserving and terminating.

## Reconfiguration Trade-offs

**Theorem:** There is no Leave or Remove reconfiguration protocol that is policy-preserving, availability-preserving and terminating.

The Leave protocol that we saw availability-preserving and terminating.

**Theorem:** There is no Add reconfiguration protocol that is consistency-preserving, policy-preserving, and terminating.