Contents

- Introduction
- MAC Definition
 - PRF
 - Secure PRF → Secure MAC
- ECBC-MAC
- Cryptographic hash functions
 - Collision resistance
 - MACs from CR
 - Merkle-Damgard iterative construction
- HMAC

Introduction

Integrity

- Integrity: maintaining accuracy and completeness of data
- Goal
 - Prevent adversary from modifying data
 - More feasible: detect if data has been altered
- Examples
 - Protecting files on disks
 - Assuring installation of correct software
 - Assuring the delivered packet has not been tempered with in traffic

Message Authentication Code

$$MACI = (S, V)$$
 defined over (K, M, T) is a pair of algs.:
 $S: K \times M \rightarrow T$
 $V: K \times M \times T \rightarrow \{0,1\}$ $|M| \gg |T|$

such that

$$\forall k \in K, m \in M: V(k, m, S(k, m)) = 1$$

Is a shared secret required?

- Is all these secrecy required?
- Could we not just simply use
 - MD-5 or
 - SHA-{1,2,3} or
 - CRC?

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure MAC (def)

I=(S,V) is a **secure MAC** if for all "efficient" adversaries A

$$Adv_{MAC}[A, I] = Pr[Chal. outputs 1]$$
 is "negligible".

Secure MAC

- Attacker's power: Chosen message attack
 - For $m_1...m_q$ attacker is given $t_i = S(k, m_i)$
- Attacker's goal: Existential forgery
 - Produce a **new** valid (m,t) s. t.

$$(m,t) \notin \{(m_1,t_1)...(m_q,t_q)\}$$

Implications

- → attacker cannot produce a valid tag for a new message
- \rightarrow given (m,t) attacker cannot produce (m,t') for $t \neq t'$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure MAC

- Negligible?
 - Assume less than 2^{-80}
- Suppose a *S*(*k*, *m*) computes 10-bit tags
 - Is such a MAC secure, why?

Adaptation of: Dan Boneh, Cryptography I, Stanford.

(Recall) Secure PRF

- Let $F: K \times X \rightarrow Y$ be a PRF
 - Funs[X,Y] the set of all functions from X to Y
 - $-S_F = \{F(k, -) : \forall k \in K\} \quad \subseteq Funs[X, Y]$

Intuitively

– A PRF is secure if a random function in Funs[X, Y] is indistinguishable from a random function in S_F

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure PRF → Secure MAC

• For a PRF $F: K \times X \rightarrow Y$ define MAC $I_F = (S, V)$

$$S(k,m) := F(k,m)$$

$$V(k, m, t) := \begin{cases} 1 & t = F(k, m) \\ 0 & \text{otherwise} \end{cases}$$

• Thm. If F is a secure PRF and 1/|Y| is negligible (i.e. |Y| is sufficiently large), then I_F is a secure MAC.

(Recall) Secure PRF (def.)

• For $b \in \{0,1\}$ define experiment EXP(b) as

• Def: F is a secure PRF if for all eff. adversaries A $\operatorname{Adv}_{\operatorname{PRF}}[A,F]$ is negligible.

$$\mathsf{Adv}_{\mathsf{PRF}}[\mathit{A}\,\mathsf{,}\mathit{F}\,]\!:=\!\!|\mathsf{Pr}[\,\mathsf{EXP}(0)\!=\!1]\!-\!\mathsf{Pr}[\,\mathsf{EXP}(1)\!=\!1]\!|$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Truncating MACs based on PRFs

- Lemma: Suppose $F: K \times X \rightarrow \{0,1\}^n$ is a secure PRF. So is $F_t(k,m) := F(k,m)[1...t]$ for all $1 \le t \le n$
- If (S, V) is a MAC based on a secure PRF that outputs *n*-bit tags, then the truncated MAC that outputs *w* bits is also secure.
 - As long as 2-w is still negligible

Examples of secure MAC

- AES (or any secure PRF)
 - A secure MAC for 16-byte (128-bit) messages
- Longer messages?
 - CBC-MAC
 - HMAC
- Both convert a small-PRF into a big-PRF

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Hash-MAC (HMAC)

- Built from collision resistance
- Let $H: M \to T$ be a hash function $|M| \gg |T|$
- A **collision** for H is a pair $m_0, m_1 \in M$ such that: $H(m_0) = H(m_1)$ and $m_0 \neq m_1$
- Function H is **collision resistant** if for all explicit "eff." algs. A $\operatorname{Adv}_{\operatorname{CR}}[A,H]$ is negligible.

 $Adv_{CR}[A,H] := Pr[A \text{ outputs collision for } H]$

• Example: SHA-256

ECBC-MAC

https://en.wikipedia.org/wiki/CBC-MAC

MAC from CR

- Let I = (S, V) be a MAC for short messages over (K, M, T) (e.g. AES)
- Let $H: M^{\text{BIG}} \to M$
- Def: $I^{\text{BIG}} = (S^{\text{BIG}}, V^{\text{BIG}})$ over (K, M^{BIG}, T) as: $S^{\text{BIG}}(k, m) := S(k, H(m))$ $V^{\text{BIG}}(k, m, t) := V(k, H(m), t)$
- Thm. If I is a secure MAC and H is collision resistant, then I^{BIG} is a secure MAC.
- Example: $S(k,m) := AES_{2-block-CBC}(k,SHA-256(m))$

Example: Integrity using CR hash

READ-ONLY

public space

 $H(F_2)$

 $H(F_1)$

 $H(F_N)$

Protecting software packages (Linux distros)

- User downloads a package and verifies it using hashes in public space
 - If H is collision resistant, the attacker cannot modify packages without being detected
- We require <u>no shared secret</u>, but we need a <u>read-only public space</u>

Adaptation of: Dan Boneh, Cryptography I, Stanford.

The birthday paradox

• **Thm.** Let $r_1...r_n \in [1...B]$ be independent and identically distributed integers. If we sample $n=1.2\times \sqrt{B}$ samples from interval [1...B] then the probability of finding a collision is

$$\Pr\left[\exists i \neq j : r_i = r_j\right] \ge 0.5$$

Approximation of collision probability given n samples with Taylor series

$$p(n) \approx 1 - e^{\frac{-n(n-1)}{2B}}$$

Generic attack on CR

- Let $H: M \rightarrow \{0,1\}^n$ be a hash function $|M| \gg 2^n$
- Generic algorithm to find a collision 1)Chose $\sqrt{2^n} = 2^{\frac{n}{2}}$ random messages: $m_1 ... m_{2^{n/2}} \in M$ wh.p.
 - 2) For $i = 1...2^{n/2}$: compute $t_i = H(m_i)$
 - 3)Look for a collision $(t_i=t_j)$. If not found, go to 1.
- How many iterations before we find a collision?

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Generic attack on CR

- Let $H: M \rightarrow \{0,1\}^n$ be a hash function $|M| \gg 2^n$
- Generic algorithm to find a collision
 - 1)Chose $\sqrt{2^n} = 2^{\frac{n}{2}}$ random messages: $m_1 \dots m_{2^{n/2}} \in M$ distinct w.h.p.
 - 2) For $i = 1...2^{n/2}$: compute $t_i = H(m_i)$
 - 3)Look for a collision $(t_i=t_j)$. If not found, go to 1.
- How many iterations before we find a collision?
 - ~ 2
 - Running time $O(2^{\frac{n}{2}})$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Example CR hash functions

Function	Digest (tag) size [bits]	Generic attack time
MD-5	128	2 ⁶⁴
SHA-1*	160	2 ⁸⁰
SHA-256	256	2 ¹²⁸
SHA-512	512	2 ²⁵⁶
Whirpool	512	2 ²⁵⁶

^{*} Found collision by performing 263.1 evaluations https://shattered.it

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Merkle-Damgard construction

<u>Goal:</u> given CR function for **short** messages, construct CR function for **long** messages

- CR for short messages (compression function) $h: T \times X \rightarrow T$
- CR for long messages $H: X^{\leq L} \rightarrow T$
- PB: padding block 10..0 || msg len (in bits)
 - If no space for PB, add an extra block
- **Thm.** If *h* is CR, so is *H*.

Compression functions

- Built from block ciphers $E: K \times \{0,1\}^n \rightarrow \{0,1\}^n$
- Several constructions
 - Davies-Meyer

$$h(H,m) := E(m,H) \oplus H$$

- Matyas-Meyer-Oseas
- Miyaguchi-Preneel

https://en.wikipedia.org/wiki/One-way_compression_functions

Example: SHA-256

- Merkle-Damgard iterative construction
- Davies-Meyer compression function
 - Block cipher: SHACAL-2

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Standardized solution: HMAC

- Most commonly used on the Internet
 - https://tools.ietf.org/html/rfc2104
- Given CR hash function H, define a MAC as

$$S(k,m) := H(k \oplus \text{opad} \parallel H(k \oplus \text{ipad} \parallel m))$$

- Built from a black-box implementation of SHA-256
- Assumed to be a secure PRF
- TLS 1.2 requires support of HMAC-SHA1-96 (TLS 1.3 does not)

MAC from M-D hash func.

- Can we construct a MAC directly from *H*? (e.g SHA-256)
- Naive attempt S(k,m) := H(k||m|)
 - Is it secure?

- If you knew H(k||m) could you compute H(k||m||PB||w) for any w? How?
- Length-extension attack

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Authenticated Encryption

Contents

- · Ciphertext integrity
- AE definitions
- Chosen Ciphertext Attack
- Constructions
 - Encrypt-then-MAC
 - Encrypt-and-MAC
 - MAC-then-Encrypt

AE: Desired properties

– An authenticated encryption system $\zeta\!=\!(E\,,\!D)$ is a cipher where

as usual
$$E: K \times M \times N \rightarrow C$$

but $D: K \times C \times N \rightarrow M \cup \{\bot\}$ $\bot \not\in M$
Nonce CT is invalid (rejected)

- Security: the system must provide
 - · semantic security under CPA, and
 - ciphertext integrity
 - an adversary cannot create a new valid CT (such that would decrypt properly)

Authenticated Encryption (AE)

- Everything demonstrated so far provides
 - either integrity
 - or <u>confidentiality</u> (security against eavesdropping)
- CPA security does not provide secrecy against active attacks (where an attacker can tamper with ciphertext)
 - → If you require integrity → MAC
 - → If you require integrity and confidentiality → AE

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Ciphertext integrity (def)

Let $\zeta = (E, D)$ be a cipher with message space M

Def: $\zeta = (E, D)$ has **ciphertext integrity** if for all "efficient" adversaries $A : Adv_{CI}[A, \zeta]$ is "negligible".

$$Adv_{CI}[A,\zeta] = Pr[Chal. outputs 1]$$

Authenticated Encryption

- Def: A cipher $\zeta = (E, D)$ provides authenticated encryption (AE) if it is
 - 1) semantically secure under CPA, and
 - 2) has ciphertext integrity.
- Do the following ciphers provide AE:
 - AES-CBC,
 - AES-CTR,
 - RC4?
- Why?

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Chosen ciphertext security

- Adversary's power: CPA and CCA
 - Can encrypt any message of her choice
 - Can decrypt any message of her choice other than some challenge
 - (still conservative modeling of real life)
- Adversary's goal: break semantic security
 - Learn about the PT from the CT

Authenticated Encryption

• Implication 1: Authenticity

- An attacker cannot create a new valid $c \notin \{c_1...c_q\}$
- If message decrypts properly $(D(k,c) \neq \bot)$, it must have come from someone who knows secret key k
 - But it could be a replay
- Implication 2: Security against chosen ciphertext attack (CCA)

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Chosen ciphertext security (def)

- Let $\zeta = (E, D)$ be a cipher defined over (K, M, C)
- For $b \in \{0,1\}$ define experiments EXP(b) as

Chosen ciphertext security (def)

- <u>Def.</u> Cipher $\zeta = (E, D)$ is CCA secure if for all efficient adversaries $AAdv_{CCA}[A, \zeta]$ is negligible. $Adv_{CCA}[A, \zeta] := |Pr[EXP(0)=1] Pr[EXP(1)=1]|$
- Thm. A cipher that provides AE is also CCA secure.
- <u>Implication.</u> AE provides confidentiality against an active adversary that can decrypt some ciphertexts.
- Limitations
 - AE does not prevent replay attacks
 - Does not account for side channels attacks (timing)

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Encrypt then MAC

- MAC computed over cipher text
- Used in IPsec, always provides AE
 - Use separate and independent keys

Ex: AES-CTR is not CCA secure

- Recall
 - AES-CTR is effectively a stream cipher
 - Malleability of stream ciphers

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Encrypt and MAC

- MAC computed over plain text and sent unencrypted
- Used in SSH
- Use separate and independent keys

MAC then encrypt

- MAC computed over plain text and then encrypted before sending
- Used in TLS/SSL
- Use separate and independent keys

https://en.wikipedia.org/wiki/Authenticated_encryption

AE: Standardized solutions

- Galois/Counter Mode (GCM)
 - CTR mode encryption then CW-MAC
 - Made popular by Intel's PCLMULQDQ instruction
- CBC-MAC then CTR mode encryption (CCM)
- EAX
- All support authenticated encryption with associated data (AEAD)

Three AE approaches

