

75 75 75

SUBJECT PROGRAM

YO. SUBJECT IDENTIFICATION

Subject: Analysis and Design of Software		Acronym: INF-236	Approval date 10/11/2016 (CC.DD. Agreement 13/2016)		10/11/2016		
UTFSM Credits: 3	Prerequisites: INF-253	Exam: Does not have	Faculty.				
SCT Credits: 5	INF-239		Computer Science Department				
Looking House	Weekly	Weekly Laboratory	Semester in which it is taught				
Lecture Hours Weekly:3	Assistantship Hours: 1.5	Hours: 0	Odd	Pair X	Both		
Formative axis: Applied Engineering - Software Development							
Total time dedicated to the subject: 150 chronological hours							

Subject Description

The student builds software using object-oriented analysis and design techniques. Develops a small 3-layer Web system, applying use case techniques for the analysis and specification of small project requirements, and object-oriented techniques (patterns and frameworks) for the design of software systems based on specifications. Practical activities strengthen teamwork.

Entry requirements

- · Understand the object-oriented paradigm.
- Program in an object-oriented language (Java, C++ or others).
- Design data models and implement them in databases.
- · Understand technical texts in English.

Contribution to the graduation profile

Specific Competence

• Develop, implement and maintain reliable, efficient and feasible software systems.

Transversal Competencies

- Communicate oral and written information effectively within the organizations in which one works, as well as with entities in the environment.
- Act with autonomy, flexibility, initiative, and critical thinking when facing professional problems.
- Develop their work with solid criteria that allow you to ensure quality from a systemic perspective.

Learning Results expected to be achieved in this subject

- Analyzes various domains, applying object-oriented paradigms: inheritance and polymorphism.
- Prepare functional requirements specifications for Web systems, applying them in use cases.
- **Develop** structural and dynamic models of object-oriented software, using use case specifications.
- Identifies application opportunities for software design patterns, applying them to specific design situations.
- Evaluates software design models, adjusting them to requirements and intrinsic quality.
- Describe the logic used to arrive at the proposed solution, arguing its analysis and design decisions.

Thematic contents

- Object orientation: objects, types/polymorphism, classes/inheritance.
- Software requirements: use cases, domain models.
- Dynamic modeling: collaborations, sequences, states, activities.
- Preliminary design: class models.
- Design techniques: object-oriented frameworks, design patterns.
- Design patterns for Web systems: presentation, concurrency, persistence.
- Design quality: metrics, design reviews, traceability.

Teaching and learning methodology

- Expository classes supported by audiovisual media.
- Learning based on the analysis and discussion of cases.
- Learning based on the development of a project.
- Independent study and student presentations on specific topics.

Evaluation and grading of the subject (Adjusted to Institutional Regulations-Regulation No. 1)

Evaluation and grading of the subject (Adjusted to institutional Regulations-Regulation No. 1)				
Approval and qualification requirements	Evaluation and qualification process:			
	The final grade is calculated as the weighted average of the grades of: two exams (C 1 and C 2) 30% each. tasks associated with a project (T) 30% and, participation and presentations (NP) - 10%			
	• <u>Semiannual average</u> (PS) is calculated according to: If (C1+C2)/2>=50 & T>=50 & NP>=50			
	$PS \square C 1 \square 30\% \square C 2 \square 30 \% \square T \square 30\% \square NP \square 10\%$			
	But			
	$PS \square \min((C1 \square C2)/2, T, NP)$			

Resources for learning.

Virtual platform

Bibliography:

Dibliography.	
Guide Text	 Martin, Fowler. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley Professional. Doug Rosenberg and Matt Stephens. (2007). Use Case Driven Object Modeling with UML: Theory and Practice. Press.
Complementary or Optional	 Alistair Cockburn.(2000).Writing Effective Use Cases Addison-Wesley Professional Daryl Kulak and Eamonn Guiney. (2003). Use Cases: Requirements in Context (2nd ^{Ed.}) Addison-Wesley Professional. Axel van Lamsweerde. (2009) Requirements Engineering: From System Goals to UML Models to Software Specifications. Wiley.

CALCULATION OF NUMBER OF HOURS OF DEDICATION - (SCT-Chile) - SUBJECT SUMMARY TABLE II.

	Number of hours of dedication				
ACTIVITY					
	Number of hours per	Number of weeks	Total number of hours		
	week				
	PRESE	NCE			
Lecture or theoretical classes	3	fifteen	Four. Five		
Assistantship/Exercises	1.5	14	twenty-one		
Industrial visits (from Field)					
Laboratories / Workshop					
Evaluations (exams, others)	2	2	4		
Others (specify)					
	NO PRES	ENCE			
Assistantship					
Mandatory tasks	3	16	48		
Individual and Group Work					
Others: Personal Study	2	16	32		
TOTAL (HOURS)			150		
	Total number of TRANSF	ERABLE CREDITS	5		