Tests Statistiques

Les savoir-faire pour les évaluations

Théorie:

- 1. Connaître le principe du test en 6 étapes
- 2. Connaître la définition des risques de première et seconde espèces α et β ainsi que celle de la puissance
- 3. Savoir choisir l'hypothèse nulle H_0 et alternative H_1 en fonction de l'énoncé du problème
- 4. Savoir choisir la bonne statistique de test et calculer la zone de rejet (qui dépend de l'hypothèse H_1)
- 5. Savoir calculer la réalisation de la statistique ainsi que la p-valeur

Pour le calcul de la p-valeur ainsi que de la région de rejet, il faut être capable de trouver la valeur dans les tables statistiques.

Pratique (test sur l'espérance):

- 1. Savoir tester l'espérance d'un échantillon gaussien ($\mu = \mu_0$) avec variance connue
- 2. Savoir tester l'espérance d'un échantillon gaussien $(\mu = \mu_0)$ avec variance inconnue
- 3. Savoir tester l'espérance d'un échantillon de loi inconnue $(\mu = \mu_0)$ avec n grand (TCL)
- 4. Savoir tester la valeur d'un pourcentage $(p = p_0)$ avec n grand (TCL) et n petit (loi Binomiale)

Pratique (un test sur la variance) : Savoir tester la valeur d'une variance pour un échantillon gaussien ($\sigma^2 = \sigma_0^2$)

Pratique (Comparaison de deux échantillons) :

- 1. Savoir tester l'égalité de l'espérance de deux échantillons gaussien qui ont la même variance inconnue
- 2. Savoir tester l'égalité de l'espérance de deux échantillons quelconque avec n_1 et n_2 grands (TCL)
- 3. Savoir tester l'égalité de deux pourcentages avec n_1 et n_2 grands (TCL)
- 4. Savoir tester l'égalité de l'espérance de deux échantillons appariés (n petit et n grand)
- 5. Savoir tester l'égalité des variances de deux échantillons gaussien (test de Fisher)

Pratique (les tests du Khi-2):

- 1. Savoir tester l'adéquation à une loi
- 2. Savoir tester l'indépendance de deux variables