Suport Proiect 3

- Algoritmul de unificare -

2013-2014 Programare Logica

Cazul monosortat

- \square (S, Σ) signatură monosortată, i.e. $S = \{s\}$.
- \square X mulțime de variabile și $T_{\Sigma}(X)$ termenii cu variabile din X.
- \square O ecuație constă în doi termeni $t,t'\in T_\Sigma(X)$ și o notăm t=t'
- În cazul monosortat cuantificarea înaintea unei ecuații nu este necesară.
- □ Egalitatea termenilor:

dacă
$$t=\sigma(t_1,\ldots,t_n)$$
 și $t'=\tau(t'_1,\ldots,t'_k)$ atunci
$$t=t'\Leftrightarrow\sigma=\tau,\ n=k\ \text{și}\ t_i=t'_i,\ \text{or.}\ \text{i}$$

 $\stackrel{\cdot}{=}$ egalitate formală = egalitate efectivă

Unificare. Cazul monosortat

Fie (S, Σ) signatură monosortată și X mulțime de variabile.

Problema unificării:

Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ găsiți un unificator.

 \square Un unificator pentru U este o substituție $\nu:X o T_\Sigma(X)$ a.î.

$$\nu(t_i) = \nu(t_i')$$
, or. $i = 1, ..., n$.

Un unificator ν pentru U este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru U, există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

Exemple

 \square ν' este unificator, dar nu este gcu

Algoritmul de unificare

- □ Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- □ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: S
 - Lista de rezolvat: R
- ☐ Iniţial:
 - □ Lista soluție: $S = \emptyset$
 - lacksquare Lista de rezolvat: $R = \{t_1 \stackrel{.}{=} t_1', \ldots, t_n \stackrel{.}{=} t_n'\}$

Algoritmul de unificare

Algoritmul constă în aplicarea nedeterministă a regulilor de mai jos:

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul de unificare

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

- În R există o ecuație de forma
 - $f(t_1,\ldots,t_n)\stackrel{.}{=} g(t'_1,\ldots,t'_k)$ cu $f\neq g$.
 - 2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	R' , $t\stackrel{\cdot}{=} t$	
	S	R'	
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 = t'_1, \ldots t_n = t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	$x = t$, $S[x \leftarrow t]$	$R'[x \leftarrow t]$	
Final	S	Ø	

 $S[x \leftarrow t]$: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

- \square $S = \{s\}, \Sigma = \{g : s \rightarrow s, h : s \rightarrow s, f : sss \rightarrow s\}, X = \{x, y, z, w\}$
- \square $U = \{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)\}$ are gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \stackrel{.}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{.}{=} g(z)$	SCOATE
w = h(g(z))		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{\cdot}{=} h(g(z))$		

 $\square \ \nu = \{y \leftarrow z, \ x \leftarrow g(z), \ w \leftarrow h(g(z))\} \text{ este cgu pentru ecuațiile din } U.$

Exemplu

$$\square \ S = \{s\}, \ \Sigma = \{b: \rightarrow s, \ g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z\}$$

$$\square$$
 $U = \{g(y) \stackrel{\cdot}{=} x, \ f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)\}$ are gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(y),y)=f(g(z),b,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(y) \stackrel{.}{=} b, y \stackrel{.}{=} z$	- EŞEC -

- ☐ *h* și *b* sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exemplu

$$\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$$

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(y, w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \doteq y$, variabila y apare în termenul g(y).
- \square Nu există unificator pentru ecuațiile din U.

