

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2021-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Solucionario Quinta Práctica Calificada

- 1. Determine el valor de verdad de las siguientes proposiciones. Justificar, en caso sea verdadero enuncie el resultado realizado en clase o su demostración breve como consecuencia de lo realizado en clase. De otro lado, en caso sea falso dar un contraejemplo:
 - (a) [1 pto.] Si f es contractante entonces el método de Newton converge.
 - (b) [1 pto.] Si f' no es contractante entonces el método de Newton no converge.
 - (c) [1 pto.] Si f no es derivable en \hat{x} , donde $f(\hat{x}) = 0$, entonces el método de Newton no converge.
 - (d) [1 pto.] Si $||A||_{\infty} > 1$ con A que posee inversa entonces el método del punto fijo para resolver Ax = x no converge.

Solución:

- (a) (Falso) f(x) = 0 es contractante pero el método de Newton no converge dado que la sucesión no esta definida.
- (b) (Falso) Tenemos la función $f(x) = e^x 10$ cuya derivada no es contractante, sin embargo, el método de Newton converge.
- (c) (Falso) Tenemos que $f(x) = x^2 + 2|x|$ no posee derivada en x = 0, y que f(0) = 0, sin embargo, el método de Newton converge.
- (d) (Falso) Consideramos:

$$A=egin{pmatrix} 0.5 & 1 \ 0 & 0.5 \end{pmatrix} \Rightarrow x_n=rac{x_0}{2^n}+rac{ny_0}{2^n}, \quad y_n=rac{y_0}{2^n}$$

Tenemos que el método converge cuando $n \to \infty$ para cualquier condición inicial a la solución del sistema Ax = x que es $x = (0,0)^T$.

2. Lucia compra un boogie, por el cual paga $\sqrt[7]{17.0859375}$ ayudale en obtener cual es el monto real a pagar:

- (a) [1 pto.] Modele el problema.
- (b) [1 pto.] Demuestre que el método de Newton tiene la siguiente iteración.

$$x_{n+1} = rac{1}{7} \left[6x_n + rac{17.0859375}{x_n^6}
ight]$$

- (c) [1 pto.] Determine la solución aproximada usando el método de Newton.
- (d) [1 pto.] Determine el vuelto si paga con 5.00 soles.

Solución:

(a) [1 pto.] Sea x: el valor del boogie, donde

$$x = \sqrt[7]{17.0859375} \implies x^7 = 17.0859375.$$

Luego la función es:

$$f(x) = x^7 - 17.0859375 = 0.$$

(b) [1 pto.] Por el método de Newton:

$$egin{array}{lll} x_{k+1} & = & x_k - rac{f(x_k)}{f'(x_k)} \ = \ x_k - rac{x_k^7 - 17.0859375}{7x_k^6} \ = \ rac{1}{7} \left[6x_k + rac{17.0859375}{x_k^6}
ight]. \end{array}$$

(c) [1 pto.] Por el método de Newton:

k	x_k	Error		
0	2			
1	1.7524240	0.2475760		
2	1.5863540	0.1660670		
3	1.5128902	0.0734638		
4	1.5003248	0.0125654		
5	1.5000002	0.0003246		

Entonces

$$x = 1.50$$

(d) [1 pto.] El vuelto que recibe Lucia es:

$$5.00 - 1.50 = 3.50$$

- Un vendedor compra un determinado número de videojuegos por los que ha pagado un total de S/
 Si cada videojuego hubiese costado S/3 menos, el vendedor pudo haber comprado 2 videojuegos más. Ayudale al vendedor que determine los videojuegos que ha comprado así como su precio.
 - (a) [1 pto.] Modele el problema.
 - (b) $[1\ pto.]$ Determine la solución usando el método de Newton con $x_0=(3\ 6)^T$ y $tol=10^{-5}$.
 - (c) [1 pto.] Determine la solución usando el método de Homotopía con $x_0 = (3 \ 6)^T$.
 - (d) [1 pto.] Indique que método recomienda.

Solución:

(a) [1 pto.] Sean:

x: Cantidad de videojuegos.

y: El precio por videojuegos.

Las funciones generadas son:

$$f_1(x,y) = x \cdot y - 72 = 0$$

 $f_2(x,y) = (x+2) \cdot (y-3) - 72 = 0$

(b) [1 pto.] La matiz Jacobiana y su inversa son:

$$JF(x,y)=\left[egin{array}{ccc} y & x \ y-3 & x+2 \end{array}
ight] \ \wedge \ JF(x,y)^{-1}=rac{1}{3x+2y}\left[egin{array}{ccc} x+2 & -x \ 3-y & y \end{array}
ight]$$

La tabla de método de Newton es:

\boldsymbol{k}	x_k	y_k	Error		
0	3	6			
1	7.7142857	14.571429	8.5714286		
2	6.1686183	12.252927	2.3185012		
3	6.0019831	12.002975	0.2499528		
4	6.0000003	12	0.0029742		
5	6	12	0.0000004		

(c) [1 pto.] Se requiere N=16 en el método de Homotopía (con Runge-Kutta de orden 4), para lograr que la solución se aproxime con un error del 10^{-5} , la tabla es:

k	x_k	y_k	$K1x_k$	$K1y_k$	$K2x_k$	$K2y_k$	$K3x_k$	$K3y_k$	1
0	3	6	0.2946429	0.5357143	0.2802788	0.5141682	0.2808908	0.5150862	0.2
1	3.2808661	6.5150492	0.2682166	0.4960749	0.2570219	0.4792828	0.2574297	0.4798946	0.2
2	3.5382817	6.9949225	0.2473745	0.4648117	0.2383352	0.4512527	0.2386228	0.4516842	0.2
:									
16	6.0000005	12.000001	0.1378252	0.3004878	0.1358295	0.2974943	0.1358536	0.2975304	0.1

- (d) [1 pto.] Se recomienda para el problema el método de Newton, porque se logra la solución en la 5 iteraciones.
- 4. $[4 \ pts.]$ Sea $f: \mathbb{R} \to \mathbb{R}$ una función de clase C^{∞} , y sea $x_* \in \mathbb{R}$ tal que $f(x_*) = 0$ y $f'(x_*) \neq 0$. Consideramos la sucesión:

$$x_{n+1} = \Phi(x_n), \quad \text{donde } \Phi(x) = x - \frac{[f(x)]^2}{f(x+f(x)) - f(x)}$$

(a) Recordamos que el desarrollo de f alrededor de x_* es:

$$f(x_* + h) = f'(x_*)h + O(h^2)$$

Determine el desarrollo de:

(a.1)
$$f(x_* + [h + f(x_* + h)]) = (...)h + O(h^2)$$
.

(a.2)
$$[f(x_* + h)]^2 = (...)h^2 + O(h^3)$$
.

(b) Deducir del ítem anterior que

$$\Phi(x_* + h) = x_* + \mathrm{O}(\mathrm{h}^2)$$

- (c) Muestre que $\Phi(x_*) = x_*$ y que $\Phi'(x_*) = 0$.
- (d) Suponga que existe $\epsilon \in]0,1[$ tal que:

$$\max_{x \in B(x_*,\epsilon)} |\Phi''(x)| \leq 2 \quad ext{ donde } \quad B(x_*,\epsilon) =]x_* - \epsilon, x_* + \epsilon[$$

Muestre que si $x_0 \in B(x_*,\epsilon)$ entonces $x_n \in B(x_*,\epsilon)$ para todo $n \geq 1$, y que:

$$|x_{n+1} - x_*| \le |x_n - x_*|^2$$

Finalmente, concluya con la velocidad de convergencia de dicho método.

Importante: Es posible realizar algunos de los ítems con ayuda de los anteriores incluso si estas no han sido completadas.

Solución:

(a) Realizamos los desarrollos respectivos:

(a.1)
$$f(x_* + [h + f(x_* + h)]) = f(x_* + [f'(x_*)h + bfO(h^2)]) = [f'(x_*)h + O(h^2)]f'(x_*) + O(h^2) = (f'(x_*) + f'^2(x_*))h + O(h^2).$$

(a.2)
$$[f(x_* + h)]^2 = (f'(x_*)h + O(h^2))^2 = f'^2(x_*)h^2 + O(h^3).$$

(b) En este caso:

$$\Phi(x_* + h) = x_* + h - \frac{[f(x_* + h)]^2}{f(x_* + h + f(x_* + h)) - f(x_* + h)} = x_* + h - \frac{f'^2(x_*)h^2 + O(h^3)}{f'^2(x_*)h + O(h^2)}$$

$$\Phi(x_* + h) = x_* + h - \frac{h + O(h^2)}{1 + O(h)} = x_* + O(h^2)$$

(c) Realizando el desarrollo de Φ alrededor de x_* tenemos:

$$\Phi(x_* + h) = \Phi(x_*) + \Phi'(x_*)h + O(h^2)$$

Igualando con respecto al ítem anterior tenemos;

$$\Phi(x_*) = x_*, \quad \text{ y } \quad \Phi'(x_*) = 0$$

(d) En este caso realizamos un desarrollo de Taylor, así para todo $x \in \mathbb{R}$ existe $c \in]x_*, x[$ tal que:

$$\Phi(x) - \Phi(x_*) - \Phi'(x_*)(x - x_*) = \frac{1}{2}\Phi''(c)(x - x_*)^2 = \Phi(x) - \Phi(x_*)$$

Enseguida, supongamos que $x_n \in B(x_*, \epsilon)$. Tenemos:

$$|x_{n+1} - x_*| = |\Phi(x_n) - \Phi(x_*)| = \frac{1}{2} |\Phi''(c)| |x_n - x_*|^2 \le |x_n - x_*|^2$$

En particular,

$$|x_{n+1} - x_*| \le \epsilon^2 \le \epsilon \Rightarrow x_{n+1} \in B(x_*, \epsilon)$$

De esta manera, por recurrencia tenemos que $x_n \in B(x_*, \epsilon)$. Finalmente, podemos ver que la tasa de convergencia es cuadrática.

5. $[4\,pts.]$ Realizó su exposición de la quinta práctica dirigida.

30 de Junio del 2021