Comprimento do gráfico de uma função polinomial.

Seja o polinômio $P(x) = \sum_{i=0}^{n} a_i x^i, \ a_n \neq 0$, de domínio real.

Vamos encontrar o comprimento do seu gráfico no intervalo [a, b]. Para tal, do Cálculo, temos a fórmula, que nos dá o comprimento de uma função f diferenciável, e de derivada contínua, qualquer, no intervalo [a, b]:

$$L(\lambda) = \int_a^b \sqrt{1 + [f'(x)]^2} \ dx$$

Assim:

$$L = \int_{a}^{b} \sqrt{1 + \left(d \frac{\sum_{i=0}^{n} a_{i} x^{i}}{dx}\right)^{2} dx}$$

$$L = \int_{a}^{b} \sqrt{1 + \left(\sum_{i=0}^{n-1} (i+1) a_{i+1} x^{i}\right)^{2}} dx$$

$$L = \int_a^b \sqrt{1 + (\sum_{i=0}^{n-1} (i+1)a_{i+1}x^i)^2} \ dx$$

Exemplo:

Seja $P(x) = x^2$ e o intervalo $[0, x_0]$:

$$L = \int_0^{x_0} \sqrt{1 + (2x)^2} \ dx$$

Seja
$$x = \frac{\tan \theta}{2}$$
, $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $dx = \frac{\sec^2 x}{2} d\theta$.

$$L = \int_0^{\arctan 2x_0} \frac{\sec^3 \theta}{2} d\theta = \left(\frac{\ln|\sec \theta + \tan \theta| + (\sec \theta)(\tan \theta)}{4} \right) \Big|_0^{\arctan 2x_0}$$

$$L = \frac{\ln|\sqrt{1+4x_0^2} + 2x_0| + 2x_0\sqrt{1+4x_0^2}}{4}$$

Seja, por exemplo, $x_0 = 2$:

$$L = \frac{\ln|\sqrt{17} + 4| + 4\sqrt{17}}{4} \approx 4,6468$$

Agora, por exemplo, $x_0 = 3$:

$$L = \frac{\ln|\sqrt{37} + 6| + 6\sqrt{37}}{4} \approx 9,7471$$

Abaixo, em uma tabela, mais pares de valores de x_0 e L aproximado para $P(x) = x^2$:

$P(x) = x^2$	
x_0	L
4	16,81863357
5	25,87424479
6	36,9197301
7	49,95821036
8	64,99155593
9	82,02097611
10	101,0472979
11	122,0711119
12	145,0928545

Seja agora, como outro exemplo, $P(x) = x^2 - x$ e o intervalo $[0, x_0]$:

Com um pouco de trabalho ou utilizando uma calculadora ou software, pode-se chegar a:

$$\begin{split} L &= \frac{8x_0^3\sqrt{u} + 4x_0^2 \ln|2x_0 - 1 + \sqrt{u}|}{16x_0^2 - 16x_0 + 8} \\ &- \frac{12x_0^2\sqrt{u} - 4x_0 \ln|2x_0 - 1 + \sqrt{u}|}{16x_0^2 - 16x_0 + 8} + \\ &+ \frac{8x_0\sqrt{u} + 2\ln|2x_0 - 1| + \sqrt{u} - 2\sqrt{u}}{16x_0^2 - 16x_0 + 8} - \\ &- \frac{\ln(\sqrt{2} - 1) - \sqrt{2}}{4} \\ \text{Com } u &= 4x_0^2 - 4x_0 + 2. \end{split}$$

Construindo a tabela com auxílio de um software:

$P(x) = x^2 - x$	
x_0	L
1	1,147793575
2	2,82631986
3	6,951883977
4	13,03539886
5	21,09797756
6	31,14801835
7	43,18970877
8	57,22543808
9	73,25669817

Documento compilado em Wednesday $12^{\rm th}$ March, 2025, 23:40, (tempo no servidor).

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematical
ramblings_public".

Comunicar erro: "a.vandre.g@gmail.com".