Lecture 16 The Real Business Cycle Model Part 3: Competitive Equilibrium

Hui-Jun Chen

National Tsing Hua University

October 29, 2025

Overview

- > Recall that in Lecture 13, there is no production in dynamic model.
- ➤ The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - >> Lecture 14: consumer
 - >> Lecture 15: firm
 - >> Lecture 16: competitive equilibrium
 - >> Lecture 17: formal example
 - >> Lecture 18: application to bring RBC to data

Outline

1 Complete the Model

2 Work with Model

Review: Consumer's Problem

Taken $\{w, w', r, T, T', \pi, \pi'\}$ as given, a representative consumer chooses $\{C', N_S, N_S'\}$ to solve

$$\max_{C',N_S,N_S'} u\left(wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r}\right),$$

$$-v(N_S) + u(C') - v(N_S')$$
(1)

which we can back out C, S, l, l'.

Review: Firm's Problem

Taken $\{w, w', r\}$ as given, a representative firm chooses $\{N_D, N_D', K'\}$ to solve

$$\max_{N_{D},N'_{D},K'} zF(K,N_{D}) - wN_{D} - [K' - (1-\delta)K] + \frac{z'F(K',N'_{D}) - w'N'_{D} + (1-\delta)K'}{1+r},$$
(2)

which we can back out Y, Y', π, π', I

Government Budget Constraint

Government behaves exactly the same in two-period model:

> current budget constraint: G = T + B

▶ future budget constraint: G' + (1 + r)B = T'

▶ lifetime budget constraint: $G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$

Taken $\{r\}$ as given, government satisfy lifetime budget constraint by choosing $\{T, T', B\}$.

Market Clear

There are three markets to clear:

- 1. labor markets clear at each date determines wage:
 - \Rightarrow find w such that $N_S = N_D$
 - >> find w' such that $N'_S = N'_D$
- 2. goods markets clear at each date determines consumption and investment:
 - **>>** date 0 (today): Y = C + I + G
 - \Rightarrow date 1 (tomorrow): Y' = C' + I' + G'
- 3. bonds market clears at date 0 determines real interest rate:
 - \Rightarrow find r such that S = B

Competitive Equilibrium: RBC Model

Given exogenous quantities $\{G, G', z, z', K\}$, a competitive equilibrium is a set of

- 1. consumer choices $\{C, C', N_S, N_S', l, l', S\}$,
- 2. firm choices $\{Y, Y', \pi, \pi', N_D, N_D', I, K'\}$,
- 3. government choices $\{T, T', B\}$, and
- 4. prices $\{w, w', r\}$

such that

- 1. consumer solves problems in (1),
- 2. firm solves problems in (2),
- 3. government balances its budget, and
- 4. all three markets clear.

Plan to analyze the Model

In the following slides, we are going to use graphical analysis on two markets in current period:

- 1. current labor market: interaction of firm and consumer today
 - >> similar to static model: labor supply and labor demand curves

>> what's new: both curves reflect the dynamic tradeoff through interest rate

- 2. current goods market: interaction of firm, consumer and government today
 - >> new: construct and analyze output supply and output demand curves

Outline

1 Complete the Model

2 Work with Model

The Current Labor Market

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate r

- ➤ consumer optimality: ceteris paribus, N^s ↑ in w
 - **>>** N1: $\frac{dN^S}{dw} > 0$, substitution dominates income effect
- **>** firm optimality: N^d ↓ in w
 - \Rightarrow MPN = w, : diminishing MPN
- account for multiple markets: intersect at N*(r)
 - **>>** note: top figure is given r, π
 - >> labor mkt clearing w is $w^*(r)$

The Current Labor Market (Cont.)

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate r

- > r increases?
 - >> N2 (consumer): $N^s(r) \uparrow \text{in } r \Rightarrow w \downarrow$, $N^*(r) \uparrow$
 - \Rightarrow firm: : MPN = w, same
- > consumer wealth increases?
 - **>>** N3 (consumer): $N^s(r)$ ↓⇒ $w \uparrow$, $N^*(r)$ ↓
 - >> firm: nothing
- ▶ Bottom chart: $N^*(r) \rightarrow Y^*(r)$, output supply!

The Output Supply Curve

Using our insight from labor market, we can repeat out analysis for any real interest rate r

- ➤ Top: each *r* implies a different "labor market equilibrium", i.e., *w* & *N*
- ▶ Middle: each N(r) yields production $Y^{S}(r)$
- **>** Buttom: combined to show $\frac{dY^S}{dr} > 0$

Shifts in the Output Supply Curve

How do changes in exogenous variables shift $Y^{S}(r)$? Consider 2 cases:

1. shift in lifetime wealth (for example, by gov't spending or taxation)

- 2. change in total factor productivity (TFP) or capital stock
 - >> recall static model: with K fixed, these have the same effect

In each case, we can start our analysis with the current labor market.

Wealth and Output Supply

Suppose $G \uparrow$ or $G' \uparrow$.

- **>** gov. budget: $T \uparrow$ or $T' \uparrow$
- > consumer budget: we ↓
- ▶ N3: $dN^S/d(we) < 0$, $N^S(r) \uparrow$ (shift to the right, top panel)
- **>** Middle: $N \uparrow \Rightarrow Y^S \uparrow$
- bottom: combine, get rightward shift in output supply

TFP / Capital and Output Supply

Suppose TFP $z \uparrow$.

- ▶ firm optimality: $MPN = zD_NF(\cdot) \uparrow \Rightarrow N^d \uparrow$
- **>** Top: N^d shifts out ⇒ $w^* \uparrow$, $N^* \uparrow$
- ➤ Middle: production fcn shifts up, ∵ z ↑
- Bottom: combine, outward shift in output supply

Summary: Current Labor Market

We have constructed most of the model!

- **▶** labor market clearing, conditional on the interest rate
- trace through production function to get output supply curve

Now we need to determine the equilibrium interest rate, r^* .

- pair the output supply curve with the output demand curve
- > who demands goods today, and how much?
 - >> consumer: consumption $C^d(r, Y)$
 - **>>** firm: investment $I^d(r)$
 - >> government: expenditures G
 - >> use GDP accounting to get aggregate demand for goods

Current Goods Demand

Figure 11.18 The Demand for Current Goods

$$D(r, Y) = C^{d}(r, Y) + I^{d}(r) + G$$

- ightharpoonup plot D(r, Y) on y-axis, Y on x-axis
- > C^d depends on wealth:

$$we = wN + \pi - T + \frac{w'N' + \pi' - T'}{1 + r},$$
 which depends on income.

- ➤ Not true for *I* and *G*
 - >> MPC < 1: flatter than 45° line
 - >> MPC diminishing: concave
 - **>>** combine: cross 45° line at $Y^d(r)$

Constructing Output Demand

How different *r* affect output demand?

- **>** C2 (consumer): $C^d(r)$ ↓ if $r \uparrow$ (substitution effect dominates)
- ▶ firm: optimal investment schedule $(r = MPK' \delta), r \uparrow \Rightarrow MPK' \uparrow \Rightarrow I^d \downarrow$
- **>** gov: no change, ∵ *G* exogenous
- > Combine:
 - 1. intersection with 45° line is lower
 - 2. $output demand curve Y^d downward slope$

Constructing Output Demand (Cont.)

Combine:

- 1. intersection with $45^{\circ} \downarrow$
- 2. $output demand curve Y^d downward sloping$

 $Y^{d}(r)$ shift to the right if

- 1. present value of taxes $\downarrow \Rightarrow C^d \uparrow$
- 2. future income $\uparrow \Rightarrow C^d \uparrow$
- 3. future TFP $\uparrow \Rightarrow I^d \uparrow$
- 4. current capital $\downarrow \Rightarrow I^d \uparrow$

Other changes (e.g., current TFP) are ambiguous in general!

Competitive Equilibrium

Figure 11.21 The Complete Real Intertemporal Model

