Devoir surveillé n°02

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★

Pour $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{i=1}^n \sum_{j=1}^n \frac{i}{i+j}$$
 et $T_n = \sum_{i=1}^n \sum_{j=1}^n \frac{j}{i+j}$

- 1. Calculer $S_n + T_n$.
- **2.** Justifier que $S_n = T_n$ et en déduire la valeur de S_n et T_n .

Exercice 2 ★★

Pour $n \in \mathbb{N}$, on pose

$$a_n = \frac{1}{n+1} \binom{2n}{n}$$
 $S_n = \sum_{k=0}^n a_k a_{n-k}$ $T_n = \sum_{k=0}^n k a_k a_{n-k}$

- 1. Calculer a_0, a_1, a_2, a_3, a_4 ainsi que S_0, S_1, S_2, S_3, S_4 . Que remarque-t-on?
- **2.** Justifier que pour tout $n \in \mathbb{N}$,

$$T_n = \sum_{k=0}^{n} (n-k)a_{n-k}a_k$$

En déduire que $2T_n = nS_n$.

3. Montrer que pour tout $n \in \mathbb{N}$,

$$(n+2)a_{n+1} = 2(2n+1)a_n$$

4. Déduire des questions précédentes que pour tout $n \in \mathbb{N}$

$$T_{n+1} + S_{n+1} = a_{n+1} + 2(n+1)S_n$$

puis que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

1

- **5.** En déduire par récurrence que $S_n = a_{n+1}$ pour tout $n \in \mathbb{N}$.
- **6.** Montrer que a_n est un entier naturel pour tout $n \in \mathbb{N}$.

Exercice 3 ★★

Si $(p, n) \in \mathbb{N}^2$ avec $p \le n$, on veut montrer que

$$\sum_{k=p}^{n} \binom{n}{k} \binom{k}{p} = 2^{n-p} \binom{n}{p}$$

- **1.** Pour q entier, calculer $\sum_{j=0}^{q} {q \choose j}$.
- **2.** Pour n, p, k entiers avec $0 \le p \le k \le n$, exprimer $\frac{\binom{n}{k}\binom{k}{p}}{\binom{n}{p}}$ sous la forme d'un coefficient binomial.
- 3. En déduire l'égalité voulue.

Exercice 4 ★

Soit $\alpha \in \mathbb{R} \setminus \frac{\pi}{2}\mathbb{Z}$ (α n'est donc pas un multiple de $\frac{\pi}{2}$). On pose pour $n \in \mathbb{N}^*$

$$S_n = \sum_{k=1}^n \frac{\tan(\alpha/2^k)}{2^k}$$

- 1. Justifier que S_n est bien définie.
- 2. Montrer que

$$\frac{1}{\tan(x)} - \frac{2}{\tan(2x)} = \tan(x)$$

On précisera pour quels réels x les membres de cette égalité sont définis.

3. Montrer que

$$S_n = \frac{1}{2^n \tan(\alpha/2^n)} - \frac{1}{\tan(\alpha)}$$

4. Justifier que la suite (S_n) converge vers $\frac{1}{\alpha} - \frac{1}{\tan(\alpha)}$.

Exercice 5 ★★

On pose $s = \cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right)$ et $p = \cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right)$.

- **1.** Montrer que s = 2p.
- 2. En calculant $p \sin\left(\frac{2\pi}{5}\right)$, déterminer la valeur de p et en déduire celle de s.
- 3. En déduire que $\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4}$ et $\cos\left(\frac{4\pi}{5}\right) = \frac{-1-\sqrt{5}}{4}$.