Assignment 10

Adrian Bracher (Matr. Nr. 01637180)

9.6.2021

Contents

1	Intr	roduction to survey data	2
	1.1	Visualizing the weights	2
	1.2	Designs in R	3
	1.3	Stratified designs in R	4
	1.4	Cluster designs in R	6
	1.5	Comparing survey weights of different designs	7
	1.6	NHANES weights	10
	1.7	Tying it all together!	10
2	Exploring categorical data 11		
	2.1	Summarizing a categorical variable	11
	2.2	Graphing a categorical variable	11
	2.3	Creating contingency tables	11
	2.4	Building segments bar graphs	12
	2.5	Summarizing with svytotal()	12
	2.6	Running a chi squared test	12
	2.7	Tying it all together!	12
3	Exploring quantitative data 13		
	3.1	Survey statistics	13
	3.2	Estimating quantiles	13
	3.3	Bar plots of survey-weighted means	13
	3.4	Bar plots with error	14
	3.5	Survey-weighted histograms	14
	3.6	Survey-weighted density plots	15
	3.7	· · ·	15
	3.8	Tying it all together!	15
4	Mo	deling quantitative data	15
	4.1	Bubble plots	15
	4.2	-	16
	4.3	Use of color in scatter plots	16
	4.4	Line of best fit	16
	4.5	Trend lines	17
	4.6	Regression model	17
	4.7	Multiple linear regression	
	4.8	Tving it all together	17

1 Introduction to survey data

Note: Sadly I could not find the NHANES data, so a lot of the code can not be evaluated.

```
library(irr)
library(psych)
library(psychometric)
library(dplyr)
library(likert)
library(car)
library(Hmisc)
library(tidyr)
library(corrplot)
library(lavaan)
```

1.1 Visualizing the weights

```
# Load ggplot2
library(ggplot2)

ce = read.csv("ce.csv")

# Construct a histogram of the weights
ggplot(data = ce, mapping = aes(x = FINLWT21)) + geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

1.2 Designs in R

In this exercise we learn how to use the function svydesign from the package survey.

```
library(survey)
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
            expand, pack, unpack
##
## Attaching package: 'survey'
## The following object is masked from 'package:Hmisc':
##
##
            deff
## The following object is masked from 'package:graphics':
##
            dotchart
# Look at the apisrs dataset
data(api)
glimpse(apisrs)
## Rows: 200
## Columns: 39
                         <chr> "15739081534155", "19642126066716", "30664493030640", "196445~
## $ cds
## $ stype
                         <fct> H, E, H, E, E, E, M, E, E, E, E, H, M, E, E, E, M, M, H, E, E~
## $ name
                         <chr> "McFarland High", "Stowers (Cecil ", "Brea-Olinda Hig", "Alam~
                         <chr> "McFarland High", "Stowers (Cecil B.) Elementary", "Brea-Olin~
## $ sname
                         <dbl> 1039, 1124, 2868, 1273, 4926, 2463, 2031, 1736, 2142, 4754, 1~
## $ snum
## $ dname
                         <chr> "McFarland Unified", "ABC Unified", "Brea-Olinda Unified", "D~
## $ dnum
                         <int> 432, 1, 79, 187, 640, 284, 401, 401, 470, 632, 401, 753, 784,~
## $ cname
                         <chr> "Kern", "Los Angeles", "Orange", "Los Angeles", "San Luis Obi~
                         <int> 14, 18, 29, 18, 39, 18, 18, 18, 18, 37, 18, 24, 14, 1, 47, 18~
## $ cnum
## $ flag
                         ## $ pcttest
                         <int> 98, 100, 98, 99, 99, 93, 98, 99, 100, 90, 95, 100, 97, 99, 98~
                         <int> 462, 878, 734, 772, 739, 835, 456, 506, 543, 649, 556, 671, 5~
## $ api00
## $ api99
                         <int> 448, 831, 742, 657, 719, 822, 472, 474, 458, 604, 575, 620, 5~
## $ target
                         <int> 18, NA, 3, 7, 4, NA, 16, 16, 17, 10, 11, 9, 14, 5, 15, 10, 6,~
                         <int> 14, 47, -8, 115, 20, 13, -16, 32, 85, 45, -19, 51, 4, 51, 50,~
## $ growth
## $ sch.wide <fct> No, Yes, No, Yes, Yes, Yes, Yes, Yes, Yes, Yes, No, Yes
## $ comp.imp <fct> Yes, Yes, No, Yes, Yes, Yes, No, Yes, Yes, No, No, Yes, No, Y~
## $ both
                         <fct> No, Yes, No, Yes, Yes, Yes, No, Yes, Yes, No, No, Yes, No, Ye~
## $ awards
                         <fct> No, Yes, No, Yes, Yes, No, No, Yes, Yes, No, No, Yes, No, Yes~
                         <int> 44, 8, 10, 70, 43, 16, 81, 98, 94, 85, 81, 67, 77, 20, 70, 75~
## $ meals
## $ ell
                         <int> 31, 25, 10, 25, 12, 19, 40, 65, 65, 57, 4, 25, 32, 16, 23, 18~
## $ yr.rnd
                         <fct> NA, NA, NA, NA, NA, NA, NA, NO, NA, NA, NA, NA, NA, NA, NA, NA, No, N~
## $ mobility <int> 6, 15, 7, 23, 12, 13, 22, 43, 15, 10, 20, 12, 4, 32, 17, 9, 1~
## $ acs.k3
                         <int> NA, 19, NA, 23, 20, 19, NA, 18, 19, 16, 16, NA, NA, 19, 21, 2~
```

```
<int> NA, 30, NA, NA, 29, 29, 30, 29, 32, 25, 27, NA, NA, 29, 30, 2~
## $ acs.core <int> 24, NA, 28, NA, NA, NA, 27, NA, NA, 30, NA, 17, 27, NA, NA, N~
## $ pct.resp <int> 82, 97, 95, 100, 91, 71, 49, 75, 99, 49, 62, 96, 77, 96, 39, ~
## $ not.hsg <int> 44, 4, 5, 37, 8, 1, 30, 49, 48, 23, 5, 44, 40, 4, 14, 18, 15,~
## $ hsg
              <int> 34, 10, 9, 40, 21, 8, 27, 31, 34, 36, 38, 19, 34, 14, 57, 28,~
## $ some.col <int> 12, 23, 21, 14, 27, 20, 18, 15, 14, 14, 29, 17, 16, 25, 18, 2~
## $ col.grad <int> 7, 43, 41, 8, 34, 38, 22, 2, 4, 21, 24, 19, 8, 37, 10, 23, 28~
## $ grad.sch <int> 3, 21, 24, 1, 10, 34, 2, 3, 1, 6, 5, 2, 2, 19, 1, 3, 10, 32, ~
## $ avg.ed
              <dbl> 1.91, 3.66, 3.71, 1.96, 3.17, 3.96, 2.39, 1.79, 1.77, 2.51, 2~
## $ full
              <int> 71, 90, 83, 85, 100, 75, 72, 69, 68, 81, 84, 100, 89, 95, 96,~
## $ emer
              <int> 35, 10, 18, 18, 0, 20, 25, 22, 29, 7, 16, 0, 11, 5, 6, 10, 8,~
              <int> 477, 478, 1410, 342, 217, 258, 1274, 566, 645, 311, 328, 210,~
## $ enroll
             <int> 429, 420, 1287, 291, 189, 211, 1090, 353, 563, 258, 253, 166,~
## $ api.stu
              <dbl> 30.97, 30.97, 30.97, 30.97, 30.97, 30.97, 30.97, 30.97, 30.97
## $ pw
## $ fpc
              <dbl> 6194, 6194, 6194, 6194, 6194, 6194, 6194, 6194, 6194, 6194, 6194, 6
# Specify a simple random sampling for apisrs
apisrs_design <- svydesign(data = apisrs, weights = ~pw, fpc = ~fpc, id = ~1)
# Produce a summary of the design
summary(apisrs_design)
## Independent Sampling design
## svydesign(data = apisrs, weights = ~pw, fpc = ~fpc, id = ~1)
## Probabilities:
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
## 0.03229 0.03229 0.03229 0.03229 0.03229
## Population size (PSUs): 6194
## Data variables:
##
   [1] "cds"
                   "stype"
                                          "sname"
                                                     "snum"
                                                                "dname"
                              "name"
                   "cname"
                              "cnum"
                                          "flag"
                                                     "pcttest"
                                                                "api00"
##
   [7] "dnum"
## [13] "api99"
                   "target"
                              "growth"
                                         "sch.wide"
                                                     "comp.imp"
                                                                "both"
## [19] "awards"
                              "ell"
                                                     "mobility"
                   "meals"
                                          "yr.rnd"
                                                                "acs.k3"
## [25] "acs.46"
                   "acs.core"
                              "pct.resp"
                                         "not.hsg"
                                                     "hsg"
                                                                "some.col"
## [31] "col.grad"
                   "grad.sch" "avg.ed"
                                         "full"
                                                     "emer"
                                                                "enroll"
## [37] "api.stu"
                   "wq"
                              "fpc"
```

1.3 Stratified designs in R

Glimpse the data

We specify stratified sampling design in the code below.

```
glimpse(apistrat)
## Rows: 200
## Columns: 39
             <chr> "19647336097927", "19647336016018", "19648816021505", "196473~
## $ cds
## $ stype
             <fct> E, M, M, H, M, H, E, E, M, M, E, E~
             <chr> "Open Magnet: Ce", "Belvedere Eleme", "Altadena Elemen", "Sot~
## $ name
             <chr> "Open Magnet: Center for Individual (Char", "Belvedere Elemen~
## $ sname
## $ snum
             <dbl> 2077, 1622, 2236, 1921, 6140, 6077, 6071, 904, 4637, 4311, 41~
## $ dname
             <chr> "Los Angeles Unified", "Los Angeles Unified", "Pasadena Unifi~
## $ dnum
             <int> 401, 401, 541, 401, 460, 689, 689, 41, 702, 135, 590, 767, 25~
## $ cname
            <chr> "Los Angeles", "Los Angeles", "Los Angeles", "Los Angeles", "~
## $ cnum
            <int> 18, 18, 18, 18, 55, 55, 55, 14, 36, 36, 35, 32, 9, 1, 32, 18,~
## $ flag
```

```
<int> 99, 100, 99, 100, 100, 100, 99, 98, 100, 100, 99, 99, 93, 95,~
            <int> 840, 516, 531, 501, 720, 805, 778, 731, 592, 669, 496, 505, 4~
## $ api00
            <int> 816, 476, 544, 457, 659, 780, 787, 731, 508, 658, 479, 499, 4~
## $ api99
            <int> NA, 16, 13, 17, 7, 1, 1, 3, 15, 7, 16, 15, 17, 20, 13, 18, 11~
## $ target
## $ growth
            <int> 24, 40, -13, 44, 61, 25, -9, 0, 84, 11, 17, 6, 7, 3, -10, 57,~
## $ sch.wide <fct> Yes, Yes, No, Yes, Yes, Yes, No, No, Yes, Yes, Yes, No, No, No
## $ both
## $ awards
            ## $ meals
            <int> 33, 98, 64, 83, 26, 7, 9, 45, 75, 47, 69, 60, 66, 54, 35, 95,~
## $ ell
            <int> 25, 77, 23, 63, 17, 0, 2, 2, 58, 23, 25, 10, 43, 26, 7, 66, 7~
            <fct> No, Yes, No, No, No, No, No, Yes, No, No, No, No, No, No, No, ~
## $ yr.rnd
## $ mobility <int> 11, 26, 17, 13, 31, 12, 10, 15, 23, 19, 26, 22, 16, 44, 18, 1~
## $ acs.k3
            <int> 20, 19, 20, 17, 20, 19, 19, 19, 20, 18, NA, NA, NA, NA, NA, 1~
## $ acs.46
            <int> 29, 28, 30, 30, 30, 29, 31, 31, 32, 29, 32, 32, NA, 32, NA, 3~
## $ pct.resp <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 67, 50, 70, 71, 2, 91, 0~
## $ not.hsg <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 49, 12, 20, 45, 9, 22, 0~
## $ hsg
            <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 34, 20, 33, 20, 36, 64, 20, ~
## $ some.col <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 15, 23, 31, 11, 18, 32, ~
## $ col.grad <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 29, 23, 8, 9, 16, 10~
## $ grad.sch <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 3, 6, 0, 0, 11, 0, 2, ~
            <dbl> 3.32, 1.67, 2.34, 1.86, 3.17, 3.64, 3.55, 3.10, 2.17, 2.82, 2~
## $ avg.ed
            <int> 100, 57, 81, 64, 90, 95, 96, 93, 91, 96, 84, 65, 93, 55, 80, ~
## $ full
## $ emer
            <int> 0, 40, 26, 24, 7, 0, 0, 8, 14, 0, 18, 37, 17, 26, 19, 33, 3, ~
## $ enroll
            <int> 276, 841, 441, 298, 354, 330, 385, 583, 763, 381, 1293, 1043,~
## $ api.stu <int> 241, 631, 415, 288, 319, 315, 363, 510, 652, 322, 1035, 815, ~
            <dbl> 44.21, 44.21, 44.21, 44.21, 44.21, 44.21, 44.21, 44.21, 44.21
## $ pw
## $ fpc
            <dbl> 4421, 4421, 4421, 4421, 4421, 4421, 4421, 4421, 4421, 4421, 1~
# Summarize strata sample sizes
apistrat %>%
 count(stype)
##
    stype
           n
## 1
        E 100
## 2
        H 50
        М
          50
## 3
# Specify the design
apistrat_design <- svydesign(data = apistrat, weights = ~pw, fpc = ~fpc, id = ~1, strata = ~stype)
# Look at the summary information stored in the design object
summary(apistrat_design)
## Stratified Independent Sampling design
## svydesign(data = apistrat, weights = ~pw, fpc = ~fpc, id = ~1,
      strata = ~stype)
## Probabilities:
                           Mean 3rd Qu.
     Min. 1st Qu. Median
## 0.02262 0.02262 0.03587 0.04014 0.05339 0.06623
## Stratum Sizes:
##
              E H M
## obs
            100 50 50
## design.PSU 100 50 50
## actual.PSU 100 50 50
```

```
## Population stratum sizes (PSUs):
      Ε
##
           Η
                 Μ
## 4421
        755 1018
## Data variables:
    [1] "cds"
                    "stype"
                                "name"
                                            "sname"
                                                        "snum"
                                                                    "dname"
                    "cname"
                                                        "pcttest"
                                                                    "api00"
##
   [7] "dnum"
                                "cnum"
                                            "flag"
## [13] "api99"
                                                        "comp.imp" "both"
                    "target"
                                "growth"
                                            "sch.wide"
## [19] "awards"
                    "meals"
                                "ell"
                                            "yr.rnd"
                                                        "mobility" "acs.k3"
                                            "not.hsg"
## [25] "acs.46"
                    "acs.core"
                                "pct.resp"
                                                        "hsg"
                                                                    "some.col"
                                            "full"
                                                                    "enroll"
## [31] "col.grad"
                    "grad.sch" "avg.ed"
                                                        "emer"
## [37] "api.stu"
                    "wq"
                                "fpc"
```

1.4 Cluster designs in R

Svydesign also supports clustered sampling designs.

```
# Glimpse the data
glimpse(apiclus2)
```

```
## Rows: 126
## Columns: 40
             <chr> "31667796031017", "55751846054837", "41688746043517", "416887~
## $ cds
## $ stype
             <fct> E, E, E, M, E, E, E, E, M, H, E, M, E, E, E, E, H, E, E, M, E~
             <chr> "Alta-Dutch Flat", "Tenaya Elementa", "Panorama Elemen", "Lip~
## $ name
             <chr> "Alta-Dutch Flat Elementary", "Tenaya Elementary", "Panorama ~
## $ sname
## $ snum
             <dbl> 3269, 5979, 4958, 4957, 4956, 4915, 2548, 2550, 2549, 348, 34~
## $ dname
             <chr> "Alta-Dutch Flat Elem", "Big Oak Flat-Grvlnd Unif", "Brisbane~
             <int> 15, 63, 83, 83, 83, 117, 132, 132, 132, 152, 152, 152, 173, 1~
## $ dnum
## $ cname
             <chr> "Placer", "Tuolumne", "San Mateo", "San Mateo", "San Mateo", ~
## $ cnum
             <int> 30, 54, 40, 40, 40, 39, 19, 19, 19, 5, 5, 5, 36, 36, 36, 36, ~
             ## $ flag
## $ pcttest
             <int> 100, 100, 98, 100, 98, 100, 100, 100, 100, 96, 98, 100, 100, ~
             <int> 821, 773, 600, 740, 716, 811, 472, 520, 568, 591, 544, 612, 9~
## $ api00
             <int> 785, 718, 632, 740, 711, 779, 432, 494, 589, 585, 554, 583, 9~
## $ api99
             <int> 1, 4, 8, 3, 4, 1, 18, 15, 11, 11, 12, 11, NA, NA, NA, NA, NA, 18,~
## $ target
             <int> 36, 55, -32, 0, 5, 32, 40, 26, -21, 6, -10, 29, 14, 2, 30, -5~
## $ growth
## $ sch.wide <fct> Yes, Yes, No, No, Yes, Yes, Yes, Yes, No, No, No, Yes, Yes, Y~
## $ comp.imp <fct> Yes, Yes, No, No, Yes, Yes, Yes, Yes, No, No, Yes, Yes, Y-
             <fct> Yes, Yes, No, No, Yes, Yes, Yes, Yes, No, No, No, Yes, Yes, Yes
## $ both
## $ awards
             <fct> Yes, Yes, No, No, Yes, Yes, Yes, Yes, No, No, Yes, Yes, Y~
## $ meals
             <int> 27, 43, 33, 11, 5, 25, 78, 76, 68, 42, 63, 54, 0, 4, 1, 6, 47~
## $ ell
             <int> 0, 0, 5, 4, 2, 5, 38, 34, 34, 23, 42, 24, 3, 6, 2, 1, 37, 14,~
             ## $ yr.rnd
## $ mobility <int> 14, 12, 9, 8, 6, 19, 13, 13, 15, 4, 15, 15, 24, 19, 14, 14, 7~
## $ acs.k3
             <int> 17, 18, 19, NA, 18, 20, 19, 25, NA, NA, 20, NA, 19, 18, 19, 1~
             <int> 20, 34, 29, 30, 28, 22, NA, 23, 24, NA, NA, 27, 27, 25, 27, 2~
## $ acs.46
## $ acs.core <int> NA, NA, NA, 24, NA, 31, NA, NA, 25, 21, NA, 18, NA, NA, NA, N~
## $ pct.resp <int> 89, 98, 79, 96, 98, 93, 100, 46, 91, 94, 93, 88, 90, 99, 0, 8~
## $ not.hsg <int> 4, 8, 8, 5, 3, 5, 48, 30, 63, 20, 29, 27, 0, 1, 0, 1, 50, 24,~
             <int> 16, 33, 28, 27, 14, 9, 32, 27, 16, 18, 32, 25, 0, 7, 0, 5, 21~
## $ hsg
## $ some.col <int> 53, 37, 30, 35, 22, 30, 15, 21, 13, 27, 26, 24, 4, 8, 0, 8, 1~
## $ col.grad <int> 21, 15, 32, 27, 58, 37, 4, 13, 6, 28, 7, 18, 51, 42, 0, 42, 1~
## $ grad.sch <int> 6, 7, 1, 6, 3, 19, 1, 9, 2, 7, 6, 7, 44, 41, 100, 45, 1, 6, 3~
             <dbl> 3.07, 2.79, 2.90, 3.03, 3.44, 3.56, 1.77, 2.42, 1.68, 2.84, 2~
## $ avg.ed
             <int> 100, 100, 100, 82, 100, 94, 96, 86, 75, 100, 100, 97, 100, 10~
## $ full
```

```
<int> 0, 0, 0, 18, 8, 6, 8, 24, 21, 4, 4, 3, 0, 4, 0, 4, 28, 18, 11~
## $ enroll <int> 152, 312, 173, 201, 147, 234, 184, 512, 543, 332, 217, 520, 5~
## $ api.stu <int> 120, 270, 151, 179, 136, 189, 158, 419, 423, 303, 182, 438, 4~
             <dbl> 18.925, 18.925, 18.925, 18.925, 18.925, 18.925, 18.925, 18.927
## $ pw
             ## $ fpc1
## $ fpc2
             <int> <array[26]>
# Specify the design
apiclus_design <- svydesign(id = ~dnum + snum, data = apiclus2, weights = ~pw, fpc = ~fpc1 + fpc2)
#Look at the summary information stored in the design object
summary(apiclus_design)
## 2 - level Cluster Sampling design
## With (40, 126) clusters.
## svydesign(id = ~dnum + snum, data = apiclus2, weights = ~pw,
##
      fpc = \sim fpc1 + fpc2)
## Probabilities:
##
      Min. 1st Qu.
                      Median
                                Mean 3rd Qu.
                                                  Max.
## 0.003669 0.037743 0.052840 0.042390 0.052840 0.052840
## Population size (PSUs): 757
## Data variables:
## [1] "cds"
                  "stype"
                             "name"
                                       "sname"
                                                  "snum"
                                                             "dname"
## [7] "dnum"
                  "cname"
                             "cnum"
                                       "flag"
                                                  "pcttest" "api00"
## [13] "api99"
                  "target"
                             "growth"
                                       "sch.wide" "comp.imp" "both"
## [19] "awards"
                  "meals"
                             "ell"
                                       "yr.rnd"
                                                  "mobility" "acs.k3"
## [25] "acs.46"
                  "acs.core" "pct.resp" "not.hsg"
                                                  "hsg"
                                                             "some.col"
## [31] "col.grad" "grad.sch" "avg.ed"
                                       "full"
                                                  "emer"
                                                             "enroll"
## [37] "api.stu"
                                       "fpc2"
                  "wq"
                             "fpc1"
```

1.5 Comparing survey weights of different designs

In the code below we plot and compare histograms.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

1.6 NHANES weights

Here we explore the survey weights of data from the NHANES package.

```
#Create table of average survey weights by race
tab_weights <- NHANESraw %>%
  group_by(Race1) %>%
  summarize(avg_wt = mean(WTMEC4YR))

#Print the table
tab_weights
```

1.7 Tying it all together!

We do further analyzing of the NHANES package.

```
# Specify the NHANES design
NHANES_design <- svydesign(data = NHANESraw, strata = ~SDMVSTRA, id = ~SDMVPSU, nest = TRUE, weights =
# Print summary of design
summary(NHANES_design)
# Number of clusters
NHANESraw %>%
summarize(n_clusters = n_distinct(SDMVSTRA, SDMVPSU))
# Sample sizes in clusters
```

```
NHANESraw %>%
count(SDMVSTRA, SDMVPSU)
```

2 Exploring categorical data

2.1 Summarizing a categorical variable

In this exercise we create a frequency table.

```
# Specify the survey design
NHANESraw <- mutate(NHANESraw, WTMEC4YR = .5 * WTMEC2YR)
NHANES_design <- svydesign(data = NHANESraw, strata = ~SDMVSTRA, id = ~SDMVPSU, nest = TRUE, weights =
# Determine the levels of Depressed
levels(NHANESraw$Depressed)
# Construct a frequency table of Depressed
tab_w <- svytable(~Depressed, design = NHANES_design)
# Determine class of tab_w
class(tab_w)
# Display tab_w
tab_w</pre>
```

2.2 Graphing a categorical variable

Here we compute proportions and then draw a bar plot.

2.3 Creating contingency tables

In the code below we create a contingency table with svytable and NHANES design.

2.4 Building segments bar graphs

Here we create a segmented bar graph of Prop Depressed over HealthGen.

2.5 Summarizing with svytotal()

In this exercise we learn how to use the svytotal and svymean functions.

2.6 Running a chi squared test

Here we run a chi squared test between Depressed and HealthGen.

```
# Run a chi square test between Depressed and HealthGen
svychisq(~Depressed + HealthGen,
    design = NHANES_design,
    statistic = "Chisq")
```

2.7 Tying it all together!

This exercise is a repetition of everything we've learned in this chapter.

```
# Construct a contingency table
tab <- svytable(~HomeOwn + Education, design=NHANES_design)
# Add conditional proportion of levels of HomeOwn for each educational level
tab_df <- as.data.frame(tab) %>%
  group_by(Education) %>%
  mutate(n_Education = sum(Freq), Prop_HomeOwn = Freq / n_Education) %>%
  ungroup()
# Create a segmented bar graph
```

3 Exploring quantitative data

3.1 Survey statistics

Computing survey weighted means is easy, check the code below to see how to do it:

3.2 Estimating quantiles

Here we calculate survey quantiles, once directly via svyquantile and also indirectly with svyby.

3.3 Bar plots of survey-weighted means

In this exercise we create a bar plot of survey-weighted means.

```
# Compute the survey-weighted mean by Gender
out <- svyby(formula = ~SleepHrsNight,</pre>
```

```
by = ~Gender,
    design = NHANES_design,
    FUN = svymean,
    na.rm = TRUE,
    keep.names = FALSE)

# Construct a bar plot of average sleep by gender
ggplot(data = out, mapping = aes(x = Gender, y = SleepHrsNight)) +
    geom_col() +
    labs(y= "Average Nightly Sleep")
```

3.4 Bar plots with error

3.5 Survey-weighted histograms

In this exercise we experimented with the binwidth parameter of geom histogram.

```
# Create a histogram with a set binwidth
ggplot(data = NHANESraw,
       mapping = aes(x = SleepHrsNight, weight = WTMEC4YR)) +
  geom_histogram(binwidth = 1,
                 color = "white") +
 labs(x = "Hours of Sleep")
# Create a histogram with a set binwidth
ggplot(data = NHANESraw,
       mapping = aes(x = SleepHrsNight, weight = WTMEC4YR)) +
  geom_histogram(binwidth = 0.5,
                 color = "white") +
 labs(x = "Hours of Sleep")
# Create a histogram with a set binwidth
ggplot(data = NHANESraw,
       mapping = aes(x = SleepHrsNight, weight = WTMEC4YR)) +
  geom_histogram(binwidth = 2,
                 color = "white") +
  labs(x = "Hours of Sleep")
```

3.6 Survey-weighted density plots

The code below creates density plots where the height represents probabilities.

```
# Density plot of sleep faceted by gender
NHANESraw %>%
    filter(!is.na(SleepHrsNight), !is.na(Gender)) %>%
    group_by(Gender) %>%
    mutate(WTMEC4YR_std = WTMEC4YR/sum(WTMEC4YR)) %>%
    ggplot(mapping = aes(x = SleepHrsNight, weight = WTMEC4YR_std)) +
        geom_density(bw = 0.6, fill = "gold") +
        labs(x = "Hours of Sleep") +
        facet_wrap(~Gender, labeller = "label_both")
```

3.7 Survey-weighted t-test

A t-test answers the question if there's enough evidence for a given hypothesis. We compute such a t-test below.

3.8 Tying it all together!

Repetition is the key to sustained knowledge.

4 Modeling quantitative data

4.1 Bubble plots

In this exercise we create a bubble plot with geom_point and the parameter size in aes().

4.2 Survey-weighted scatter plots

We create more scatter plots with different color and alpha points to distinguish another dimension.

4.3 Use of color in scatter plots

We combine what we've learned before to construct alpha and color varying plots.

4.4 Line of best fit

In this exercise we try to regress data and find a model for our data (linear, quadratic, cubic regression).

```
# Bubble plot with linear of best fit
ggplot(data = NHANESraw, mapping = aes(x = Height, y = Weight, size = WTMEC4YR)) +
geom_point(alpha = 0.1) +
guides(size = FALSE) +
geom_smooth(method = "lm", se = FALSE, mapping = aes(weight = WTMEC4YR))

# Add quadratic curve and cubic curve
ggplot(data = NHANESraw, mapping = aes(x = Height, y = Weight, size = WTMEC4YR)) +
geom_point(alpha = 0.1) +
guides(size = FALSE) +
geom_smooth(method = "lm", se = FALSE, mapping = aes(weight = WTMEC4YR)) +
geom_smooth(method = "lm", se = FALSE, mapping = aes(weight = WTMEC4YR), formula = y ~ poly(x, 2), co
geom_smooth(method = "lm", se = FALSE, mapping = aes(weight = WTMEC4YR), formula = y ~ poly(x, 3), co
```

4.5 Trend lines

Here we're adding linear trend lines based on survey weights.

```
# Add non-survey-weighted trend lines to bubble plot
ggplot(data = NHANES20, mapping = aes(x = Height, y = Weight, size = WTMEC4YR, color = Gender)) +
geom_point(alpha = 0.1) +
guides(size = FALSE) +
geom_smooth(method = "lm", se = FALSE, linetype = 2)

# Add survey-weighted trend lines
ggplot(data = NHANES20, mapping = aes(x = Height, y = Weight, size = WTMEC4YR, color = Gender)) +
geom_point(alpha = 0.1) +
guides(size = FALSE) +
geom_smooth(method = "lm", se = FALSE, linetype = 2) +
geom_smooth(method = "lm", se = FALSE, mapping = aes(weight=WTMEC4YR))
```

4.6 Regression model

We're building a linear regression model again, this time explicitly by creating a model object.

```
# Subset survey design object to only include 20 year olds
NHANES20_design <- subset(NHANES_design, Age == 20)

# Build a linear regression model
mod <- svyglm(Weight ~ Height, design = NHANES20_design)

# Print summary of the model
summary(mod)</pre>
```

4.7 Multiple linear regression

Multiple linear regression can be done with + and * operators.

```
# Build a linear regression model same slope
mod1 <- svyglm(Weight ~ Height + Gender, design = NHANES20_design)

# Print summary of the same slope model
summary(mod1)

mod2 <- svyglm(Weight ~ Height * Gender, design = NHANES20_design)

# Print summary of the same slope model
summary(mod2)</pre>
```

4.8 Tying it all together

Here we revisit everything we've learned in this chapter.

```
# Plot BPDiaAve and BPSysAve by Diabetes and include trend lines
drop_na(NHANESraw, Diabetes) %>%
ggplot(mapping = aes(x = BPDiaAve, y = BPSysAve, size = WTMEC4YR, color = Diabetes)) +
    geom_point(alpha = 0.2) +
    guides(size = FALSE) +
    geom_smooth(method = "lm", se = FALSE, mapping = aes(weight = WTMEC4YR))
```

```
# Build simple linear regression model
mod1 <- svyglm(BPSysAve ~ BPDiaAve, design = NHANES_design)

# Build model with different slopes
mod2 <- svyglm(BPSysAve ~ BPDiaAve * Diabetes, design = NHANES_design)

# Summarize models
summarize(mod1)
summarize(mod2)</pre>
```