Useful Integral:

$$\int_{-\infty}^{\infty} \exp(-ax^2) dx = \sqrt{\frac{\pi}{a}}$$

Problem 1 15% Find the hermitian conjugate of the following operators (a) $\frac{d}{dx} - ix$ (b) $\exp(i\hat{A})$, where $\hat{A} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$. (c) the exchange operator. Which operator(s) is(are) unitary? Which operator(s) is(are) hermitian? **Problem 2** 10% Briefly explain the following terms (a) nucleosynthesis (b) density of state (c) the exchange force (d) energy band

Problem 3 An electron is put in an oscillating electric field $E \cos \omega t$. It is therefore described by the Hamiltonian operator

$$H_0 = \frac{p^2}{2m} - (eE\cos\omega t)x.$$

(a)6% Find $\frac{d\langle x \rangle}{dt}$ and $\frac{d\langle p \rangle}{dt}$. (b) 4% If at t = 0, $\langle x \rangle = 0$, $\langle p \rangle = 0$, find $\frac{d\langle H_0 \rangle}{dt}$ at $t = t_0$.

Problem 4 Consider N ($N \gg 1$) electrons (with mass being m) in a large three dimensional box of size $a \times b \times c$. (a) 7% Find number of states (including effects of spins) per energy level in terms of a, b, c, h and m.

(b)8% At zero temperature, find the degenerate pressure and the Fermi wavelength in terms of a, b, c, h, m and N

(c)5% Now suppose a = 2L, b = L, and c = 3L. Find the total energy at zero temperature when N = 8.

Problem 4 Consider a two-particle wavefunction

$$\Psi(x_1, x_2) = Ne^{-(ax_1^2 + 2bx_1x_2 + cx_2^2)/2},$$

where a and c are positive. N is real. (a)7%What is the condition that this wavefunction can be normalized and find the normalization factor N (b) 8% Calculating the correlation of the coordinates: $\langle (x_1 - \langle x_1 \rangle)(x_2 - \langle x_2 \rangle) \rangle$. What kind of the tendence does the correlation tell us? If x_1 and x_2 are independent, what value does you expect to obtain? (c)5%Now, suppose that these two particles are identical fermions. How should be the corrected wavefunction constructed from $\Psi(x_1, x_2)$? Find the condition that the correct wavefunction can be normalized and find the normalization wavefunction. What is the normalized wavefunction if these two particles are identical bosons?

HmJ>

Problem 5 10%Consider the white dwarf in the semi-relativistic treatment in which only the kinetic energy is treated ultra-relativistically. Show that there is critical mass M_c , beyond which no stable white dwarf exits. Find the approximated M_c in terms of the mass of sun $(M_S = 2 \times 10^{33} g)$.

Problem 6 Consider a potential given by

$$V(x) = \infty \qquad x < 0,$$

= $-V_0 \quad 0 < x < a,$
= $0 \quad a < x.$

(a) 8 % Find the minimum V_0 so that at least, it can hold 6 electrons (including effects of spins) in the well (0 < x < a). (b) 7% Is there any relation of the bound states for this potential to the bound states of the following potential?

$$\tilde{V}(x) = -V_0 - a < x < a$$

$$= 0 \quad a < |x|$$

Following (a), what is the minimum number of electrons that can be hold in the well of $\tilde{V}(x)$ when V_0 exceeds the minimum V_0 ? Explain your result briefly.

Problem 7 A particle of mass m in a symmetric infinite well (-a < x < a) is described by the following wavefunction at t = 0

$$\Psi(x,0) = \frac{N}{\sqrt{a}} \left[(3+2i)\cos(\frac{\pi x}{2a}) - 2\sin(\frac{\pi x}{a}) + 3i\cos(\frac{3\pi x}{2a}) \right]$$

where N is a normalization constant. (a) 5% In the vector space analogy, we use a vector $\begin{pmatrix} a_1 \\ a_2 \\ . \\ . \end{pmatrix}$ to represent a

wavefunction. If we use the normalized energy eigenfunctions of the particle as the basis, express the normalized $\Psi(x,t)$ as a vector in this basis. (b) 5% In the same basis, express the Hamiltonian as a matrix.