

Modeling choice and search in decisions from experience: A sequential sampling approach

Doug Markant[†], Tim Pleskac[‡], Adele Diederich^{*}, Thorsten Pachur[‡], Ralph Hertwig[‡]

♦ Center for Adaptive Rationality,
Max Planck Institute for Human Development

Department of Psychology, Jacobs University Bremen

Risky decisions from description

Decisions from experience (DFE)

Adaptive exploration

Do people adapt how they explore?

- Sample size sensitive to the cost of sampling (Busemeyer, 1985; Busemeyer & Rapoport, 1988; Rapoport & Tversky, 1970)
- Increased sample sizes under higher stakes (Hau et al., 2008)
- Increased sample sizes with high experienced variance in outcomes (Lejarraga et al., 2012; Spaniel & Wegier, 2012)

Existing models

- Prospect theory (Fox & Hadar, 2006; Ungemach et al., 2009; Camilleri & Newell, 2011)
- Heuristics (Hau et al., 2008; Hertwig & Pleskac, 2010; Erev et al., 2010)
- Learning/exemplar models
 - Value updating model (Hertwig et al., 2006; Frey et al., 2015)
 - Exemplar Confusion (ExCon; Hawkins et al., 2014)
 - Instance-based learning (Gonzalez & Dutt, 2011)

The uncertain impact of rare events

- Sampling error contributes to underweighting, but its impact depends on sample size and option structure
- Evidence of additional distortion after correcting or controlling for sampling error (Ungemach et al., 2009)

CHASE

Choice from Accumulated Samples of Experience (CHASE)

- Sequential sampling model in which choice and sample size arise from interaction between decision threshold (controlled by decision maker) and the accumulation of relative preference
- Accumulation is driven by relative evaluations of externallygenerated, discrete outcomes
- Drift is parameterized using value and decision weighting functions from cumulative prospect theory (CPT) to capture subjective evaluation of outcomes

CHASE

CHASE

CHASE: Basic predictions

CHASE: Basic predictions

CHASE: Basic predictions

$$d = \frac{V_A - V_B}{\sqrt{\sigma^2}}$$

Low variance options

(H)igh: 2 with 100% chance

(L)ow: 1 with 100% chance

High variance options

(H)igh: 3 with 50% chance; otherwise 1

(L)ow: 2 with 50% chance; otherwise 0

Example applications

- Fit the model with maximum likelihood to observed choice and sample size across all problems in a dataset
- Compared factorial combination of drift parameterizations (linear; value weighting only; <u>decision weighting only</u>; both value and decision weighting) using BIC
- Compared to competing model Instance-Based Learning (IBL) which assumes a fixed sample size distribution (fit to observed distribution)

Technion Prediction Tournament (TPT)

CHASE (probability weighting only)

estimation dataset

MSD: .019 (.009)

p(agree): .94 (.95)

r = .88 (.92)

competition dataset

MSD: .022 (.019)

p(agree): .90 (.83)

r = .68 (.80)

Technion Prediction Tournament (TPT)

CHASE (probability weighting only)

estimation dataset MSD: .019 (.009)

p(agree): .94 (.95)

r = .88 (.92)

competition dataset

MSD: .022 (.019) p(agree): .90 (.83)

r = .68 (.80)

Manipulation of stakes (Hau et al., 2008)

- Best-fitting model: CHASE with probability weighting only
- Increase in payoff magnitude from Exp 1 to Exp 2 (with identical choice problems)
 accounted for by increase in decision threshold.

Manipulation of stakes (Hau et al., 2008)

- Best-fitting model: CHASE with probability weighting only
- Increase in payoff magnitude from Exp 1 to Exp 2 (with identical choice problems)
 accounted for by increase in decision threshold.

Measuring probability weighting

- Parameterizing the drift with CPT allows us to fit the probability weighting function to both choices and sample sizes
- Sampling error is modeled through the interaction between the drift and decision threshold
 - For example, if drift weakly favors option A (due to rare, high-magnitude outcome), the likelihood of reaching the B boundary is high at low thresholds
 - As decision threshold increases (leading to larger sample sizes), likelihood of such "fast errors" decreases

Measuring probability weighting

Best fitting parameter estimates

	TPT	Hau, Exp 1.	Hau, Exp 2.
Choice threshold θ	2	3	5
Start point variability τ	40	40	2.46
Probability of staying (p_{stay})	.68	.49	.46
Weighting function γ	1.41	1.15	.92
Weighting function δ	1	1.61	1.30

Summary

- CHASE combines sequential sampling framework with rankdependent, subjective evaluation of CPT
- Demonstrates how both sample size and choice depend on interactions between the probabilistic structure of choice options and properties of the decision maker
- Moves beyond existing models of DFE with a mechanism for adaptive exploration under different goals, option structures, and properties of the individual decision maker

Thank you!