Procesarea Imaginilor Digitale Tema 3 - Filtrare tece-jos

1. Filtrarea imaginii grayscale sau color cu un filtru medie aritmetică (1p) + 1p dacă se realizează cu imaginea integrală.

Cerinte

- în meniul Filtre adăugați o opțiune de meniu Filtrul medie aritmetica
- citiți dintr-o casetă de dialog dimensiunea măștii de filtrare. Dacă valoarea introdusă este pară, se alege următoarea valoare impară.
- filtraţi imaginea cu filtrul corespunzător. La imaginile color filtrarea se face pe fiecare canal de culoare.
- 2. Filtrarea imaginii grayscale sau color cu un filtru binomial (2p) Cerințe
 - în meniul Filtre adăugați o opțiune de meniu Filtrul binomial
 - \bullet citiți dintr-o casetă de dialog dimensiunea măștii de filtrare n.
 - calculați masca de filtrare utilizând coeficienții binomului de ordin n-1, dacă n impar și cu coeficienții binomului de ordin n, dacă n par (folosiți triunghiul lui Pascal).
 - filtraţi imaginea cu masca construită. La imaginile color filtrarea se face pe fiecare canal de culoare.
- 3. Filtrarea imaginii grayscale sau color cu 2 filtre binomiale 1D (2p) Cerințe
 - în meniul Filtre adăugați o opțiune de meniu Filtrul binomial separabil
 - \bullet citiți dintr-o casetă de dialog dimensiunea măștii de filtrare n.
 - calculați masca de filtrare $n \times 1$ utilizând coeficienții binomului de ordin n-1, dacă n impar și cu coeficienții binomului de ordin n, dacă n par (folosiți triunghiul lui Pascal).

- filtraţi imaginea cu masca construită întâi după direcţia orizontală şi apoi după direcţia verticală. La imaginile color filtrarea se face pe fiecare canal de culoare.
- 4. Filtrarea grayscale sau color imaginii cu fitrul Gauss (2p) Cerințe
 - în meniul Filtre adăugați o opțiune de meniu Filtrul Gauss
 - ullet citiți dintr-o casetă de dialog valoarea σ
 - estimați dimensiunea măștii de filtrare conform indicațiilor din curs
 - calculați coeficienții măștii de filtrare cu formulele din curs
 - filtrați imaginea cu masca construită. La imaginile color filtrarea se face pe fiecare canal de culoare.
- 5. Filtrarea grayscale sau color imaginii cu 2 filtre Gauss 1D (2p) Cerințe
 - în meniul Filtre adăugați o opțiune de meniu Filtrul Gauss separabil
 - \bullet citiți dintr-o casetă de dialog valoarea σ
 - estimați dimensiunea măștii de filtrare 1D conform indicațiilor din curs
 - calculați coeficienții măștii de filtrare 1D cu formulele din curs (gaussiană unidimensională)
 - filtrați imaginea cu masca 1D construită întâi după direcția orizontală, apoi după direcția verticală.. La imaginile color filtrarea se face pe fiecare canal de culoare.
- 6. Filtrarea imaginii cu un filtru median algoritmul rapid **Cerințe**
 - în meniul Filtre adăugați o opțiune de meniu Filtrul median
 - citiți dintr-o casetă de dialog dimensiunea măștii de filtrare
 - aplicați filtrul median, utilizând un calcul rapid pentru median, pe baza histogramelor locale (vezi articol de pe elearning)(5p) / Variantă paralelizare. (3p)
- 7. Operatorul Unsharp Mask (2p)
 - Cerinte
 - în meniul Filtre adăugați o opțiune de meniu Unsharp mask
 - \bullet aplicați operatorul unsharp mask utilizând unul dintre filtrele trece-jos: gauss sau binomial 3×3

- 8. Filtrarea imaginilor color utilizând filtrul median vectorial 3×3 sau 5×5 (2p) Cerințe
 - în meniul Filtre adăugați o opțiune de meniu Filtrul median vectorial
 - filtrați imaginea conform algoritmului din curs
- 9. Filtrarea imaginilor grayscale cu un filtru de tip Kuwahara (2p) Cerințe
 - în meniul Filtre adăugați o opțiune de meniu Filtrul Kuwahara
 - filtraţi imaginea conform algoritmului din curs eficientizând calculul valorilor de medie şi varianţă pentru vecinătăţi.
- 10. Filtrarea imaginilor graysacle cu un filtru bilateral (**3p**) **Cerințe**
 - în meniul Filtre adăugați o opțiune de meniu Filtrul bilateral
 - citiți dintr-o casetă de dialog valorile σ_d și σ_r
 - $\bullet\,$ calculați coeficienții măștii de filtrare h_d
 - aplicați filtrarea bilaterală.