1

Assignment 12

Sachinkumar Dubey - EE20MTECH11009

Download the latex-tikz codes from

https://github.com/sachinomdubey/Matrix-theory/Assignment12

1 Problem

(Hoffman/Page261/5):

Let T be the linear operator on \mathbb{R}^8 which is represented in the standard basis by the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 (1.0.1)

- 1) Find the characteristic polynomial and the invariant factors.
- 2) Find the primary decomposition of \mathbb{R}^8 under \mathbb{T} and the projections on the primary components. Find cyclic decompositions of each primary component as in Theorem 3.
- 3) Find the Jordan form of A.
- 4) Find a direct-sum decomposition of \mathbb{R}^8 into T-cyclic subspaces as in Theorem 3.

2 DEFINITION AND RESULT USED

Characteristic Polynomial	The characteristic polynomial of a $n \times n$ matrix A is given by: $\boxed{\det(\lambda \mathbf{I} - \mathbf{A})}$ Where, I is $n \times n$ identity matrix
Minimal Polynomial	The minimal polynomial of an $n \times n$ matrix \mathbf{A} over a field F is the monic polynomial P over F of least degree such that $P(\mathbf{A}) = 0$.
Invariant factors	The invariant factors of a $n \times n$ matrix \mathbf{A} are: $f_1, f_2, f_3, \dots, f_n$ Where f_1, f_2, \dots, f_n are monic non-zero elements of $F[x]$ (Set of all polynomials over field F) and satisfy the following:

• f_1 divides f_2 , which in turn	divides f_3 , and so on, denoted as:
$f_1 \mid f_2 \mid f_3 \mid \cdots \mid f_n$	

- f_n is the minimal polynomial of **A**
- The product $f_1 f_2 f_3 f_4 \cdots f_n = \text{char}_A(x) = \text{det}(x\mathbf{I} \mathbf{A})$

Primary decomposition theorem

Let T be a linear operator on the Finite-dimensional vector space V over the field F. Let p be the minimal polynomial for T,

$$p = p_1^{r_1} \cdots p_k^{r_k} \tag{2.0.1}$$

where the p_i are distinct irreducible monic polynomials over F and the r_i are positive integers. Let W_i be the null space of $p_i(T)^{r_i}$, $i = 1, \dots, k$. Then

- $\mathbf{V} = \mathbf{W}_1 \oplus ... \oplus \mathbf{W}_k$;
- Each W_i is invariant under T
- If T_i is the operator induced on W_i by T, then the minimal polynomial for T_i is $p_i^{r_i}$

Projections associated with direct decomposition of a vector space.

If $V = W_1 \oplus \cdots \oplus W_k$ then there exist k linear operators (called projections) E_1, \cdots, E_k on V such that:

- Each \mathbf{E}_i is a projection $(\mathbf{E}_i^2 = \mathbf{E}_i)$;
- $\mathbf{E}_i \mathbf{E}_j = 0$, if $i \neq j$;
- $I = E_1 + \cdots + E_k$

Also, for $i \in [1, k]$,

$$\mathbf{E}_{i}(\mathbf{v}) = \begin{cases} \mathbf{v} & \text{for } \mathbf{v} \in \mathbf{W}_{i} \\ 0 & \text{for } \mathbf{v} \notin \mathbf{W}_{i} \end{cases}$$
 (2.0.2)

Cyclic decomposition theorem

Let T be a linear operator on a finite-dimensional vector space \mathbf{V} and let \mathbf{W}_0 be a proper T-admissible subspace of \mathbf{V} . There exists non zero vectors $\alpha_1, \alpha_2, \ldots, \alpha_r$ in \mathbf{V} with respective T-annihilators p_1, p_2, \ldots, p_r such that:

- $\mathbf{V} = \mathbf{W}_0 \oplus \mathbf{Z}(\alpha_1; T) \oplus \mathbf{Z}(\alpha_2; T) \oplus \ldots \oplus \mathbf{Z}(\alpha_r; T)$
- p_k divides $p_{k-1}, k = 2, ..., r$

	Here, the T-cyclic subspace $\mathbf{Z}(\alpha_i;T)$ is defined as : • $\mathbf{Z}(\alpha_i;T) = \operatorname{Span}\left\{\alpha_i,\mathbf{T}\alpha_i,\ldots,\mathbf{T}^{k-1}\alpha_i\right\}$ • Where $k = \operatorname{Degree}$ of p_i
Jordan form of a matrix	Every matrix A can be expressed as:
	$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J} \tag{2.0.3}$
	Where J is an upper triangular matrix of a particular form called a Jordan matrix. Matrix J is of the form: $\mathbf{J} = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_p \end{bmatrix} \qquad \text{Where, } J_i = \begin{bmatrix} \lambda_i & 1 & \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{bmatrix}.$

3 Solution

Characteristic polynomial			
Finding the Characte-ristic polynomial	The linear operator T is represented in standard basis by matrix A given as:		
	$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $ The characteristic polynomial is given by:		
	$ \lambda \mathbf{I} - \mathbf{A} = \begin{vmatrix} \lambda - 1 & -1 & -1 & -1 & -1 & -1 & 1 \\ 0 & \lambda & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & \lambda & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & -1 & \lambda & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & \lambda - 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & \lambda - 1 & 0 & -1 \\ 0 & 1 & 1 & 1 & 1 & 0 & \lambda - 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda \end{vmatrix} $ (3.0.2)		

$$= (\lambda - 1) \begin{vmatrix} \lambda & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & \lambda & 0 & 0 & 0 & 0 & 1 \\ -1 & -1 & \lambda & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & \lambda - 1 & 0 & 0 & 0 \\ -1 & -1 & -1 & -1 & \lambda - 1 & 0 & -1 \\ 1 & 1 & 1 & 1 & 0 & \lambda - 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda \end{vmatrix}$$
 (3.0.3)

$$= (\lambda - 1)\lambda \begin{vmatrix} \lambda & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 & 0 & 0 \\ -1 & -1 & \lambda & 0 & 0 & 0 \\ 0 & 0 & -1 & \lambda - 1 & 0 & 0 \\ -1 & -1 & -1 & -1 & \lambda - 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & \lambda - 1 \end{vmatrix}$$
(3.0.4)

$$= (\lambda - 1)^4 \lambda^4 = \left[\lambda^8 - 4\lambda^7 + 6\lambda^6 - 4\lambda^5 + \lambda^4 \right]$$
 (3.0.5)

This is the required characteristic polynomial.

Invariant factors

Finding the Invariant factors

From the obtained characteristic polynomials, Let us find the minimal polynomial $p(\lambda)$ which satisfies the condition $p(\mathbf{A}) = 0$ and has least degree. Starting from smallest degree and moving up:

Consider $(\lambda - 1)\lambda = \lambda^2 - \lambda$

Verification:

Thus, $\lambda^2 - \lambda$ is not our minimal polynomial

Consider
$$(\lambda - 1)\lambda^2 = \lambda^3 - \lambda^2$$

Verification:
 $p(\mathbf{A}) = \mathbf{A}^3 - \mathbf{A}^2$

Thus, $\lambda^3 - \lambda^2$ is not our minimal polynomial

Consider $(\lambda - 1)^2 \lambda = \lambda^3 - 2\lambda^2 + \lambda$

Verification:

 $p(\mathbf{A}) \neq \mathbf{0}$ Thus, $\lambda^3 - 2\lambda^2 + \lambda$ is not our minimal polynomial

Consider $(\lambda - 1)^2 \lambda^2 = \lambda^4 - 2\lambda^3 + \lambda^2$

Verification:

Thus, $\lambda^4 - 2\lambda^3 + \lambda^2$ is the minimal polynomial

Let $f_1, f_2, f_3, \dots, f_8$ be the invariant factors of A. Then f_8 is the minimal polynomial of \mathbf{A} and so $f_8 = \lambda^4 - 2\lambda^3 + \lambda^2$. We also know that the product $f_1f_2f_3f_4f_5f_6f_7f_8 = \text{char}_A(x) = \det(x\mathbf{I} - \mathbf{A})$. Thus, the invariant factors are:

$$\implies \boxed{1 \mid 1 \mid 1 \mid 1 \mid 1 \mid 1 \mid 1 \mid (\lambda^4 - 2\lambda^3 + \lambda^2) \mid (\lambda^4 - 2\lambda^3 + \lambda^2)}$$

- Here, each f_i divides f_{i+1} ,
- The last factor f_8 is our minimal polynomial, and
- The product of all factors is equal to the characteristic polynomial.

Therefore, The given factors are valid invariant factors of matrix A

Primary decomposition of R^8 under T.

Finding the primary decomposition of \mathbf{R}^8 under \mathbf{T}

The minimal polynomial of the matrix **A** is:

$$p(\lambda) = \lambda^3 - 2\lambda^2 + \lambda = (\lambda - 1)^2 \lambda^2$$
 (3.0.6)

By Primary decomposition theorem, The vector space $\mathbf{R^8}$ can be decomposed into the primary components (or subspaces) as:

$$\mathbf{R}^8 = \mathbf{W}_1 \oplus \mathbf{W}_2; \tag{3.0.7}$$

Where,

$$\mathbf{W}_1 = \text{Null space of } (\mathbf{A} - \mathbf{I})^2$$
 (3.0.8)

$$\mathbf{W}_2 = \text{Null space of } (\mathbf{A})^2 \tag{3.0.9}$$

Finding primary component W_1 :

$$(\mathbf{A} - \mathbf{I})^2 \mathbf{v} = 0 \tag{3.0.10}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 2 \\
0 & -2 & -2 & 1 & 0 & 0 & 0 & -2 \\
0 & 1 & 1 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \mathbf{v} = 0$$
(3.0.11)

Row reduced echelon form:

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \mathbf{v} = 0$$
(3.0.12)

$$\therefore \mathbf{W}_{1} = \begin{pmatrix} v_{1} \\ 0 \\ 0 \\ 0 \\ v_{5} \\ v_{6} \\ v_{7} \\ 0 \end{pmatrix} \tag{3.0.13}$$

Finding primary component W_2 :

$$\mathbf{A}^2 \mathbf{v} = 0 \tag{3.0.15}$$

$$\begin{pmatrix}
1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 2 & 2 & 2 & 2 & 1 & 0 & 2 \\
0 & -2 & -2 & -2 & -2 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \mathbf{v} = 0$$
(3.0.16)

Row reduced echelon form:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \mathbf{v} = 0$$
(3.0.17)

$$\therefore \mathbf{W}_{2} = \begin{pmatrix}
0 \\
-v_{3} - v_{4} - v_{5} - v_{8} \\
v_{3} \\
v_{4} \\
v_{5} \\
0 \\
0 \\
v_{8}
\end{pmatrix} (3.0.18)$$

$$\therefore \mathbf{W}_{2} = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
(3.0.19)

Projections on primary components W₁ and W₂.

Finding the projection \mathbf{E}_1 on the primary component \mathbf{W}_1

Finding the projection E_1 that projects R^8 on W_1 : We know that projection E_1 will satisfy the following:

$$\mathbf{E}_{1}(\mathbf{v}) = \begin{cases} \mathbf{v} & \text{for } \mathbf{v} \in \mathbf{W}_{1} \\ 0 & \text{for } \mathbf{v} \notin \mathbf{W}_{1} \end{cases}$$
 (3.0.20)

Using the above result and the equations (3.0.14) and (3.0.19), we can write:

By using the equation (3.0.21), we can write:

By using the equation (3.0.22), we can write:

$$\begin{pmatrix}
E_{13} - E_{12} & E_{14} - E_{12} & E_{15} - E_{12} & E_{18} - E_{12} \\
E_{23} - E_{22} & E_{24} - E_{22} & E_{25} - E_{22} & E_{28} - E_{22} \\
E_{33} - E_{32} & E_{34} - E_{32} & E_{35} - E_{32} & E_{38} - E_{32} \\
E_{43} - E_{42} & E_{44} - E_{42} & E_{45} - E_{42} & E_{48} - E_{42} \\
E_{53} - E_{52} & E_{54} - E_{52} & E_{55} - E_{52} & E_{58} - E_{52} \\
E_{63} - E_{62} & E_{64} - E_{62} & E_{65} - E_{62} & E_{68} - E_{62} \\
E_{73} - E_{72} & E_{74} - E_{72} & E_{75} - E_{72} & E_{78} - E_{72} \\
E_{83} - E_{82} & E_{84} - E_{82} & E_{85} - E_{82} & E_{88} - E_{82}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(3.0.24)

Obtaining each elements of \mathbf{E}_1 by equating both sides in equations (3.0.23) and (3.0.24):

$\mathbf{E}_1 =$

Here, $\mathbf{E}_1^2 = \mathbf{E}_1$. thus the obtained \mathbf{E}_1 is valid projection.

Finding the projection \mathbf{E}_2 on the primary component \mathbf{W}_2

Finding the projection \mathbf{E}_2 that projects \mathbf{R}^8 on \mathbf{W}_2 : We know that projection \mathbf{E}_2 will satisfy the following:

$$\mathbf{E}_{2}(\mathbf{v}) = \begin{cases} \mathbf{v} & \text{for } \mathbf{v} \in \mathbf{W}_{2} \\ 0 & \text{for } \mathbf{v} \notin \mathbf{W}_{2} \end{cases}$$
 (3.0.26)

Using this and the equations (3.0.14) and (3.0.19), we can write:

By using the equation (3.0.27), we can write:

$$\begin{pmatrix}
E_{13} - E_{12} & E_{14} - E_{12} & E_{15} - E_{12} & E_{18} - E_{12} \\
E_{23} - E_{22} & E_{24} - E_{22} & E_{25} - E_{22} & E_{28} - E_{22} \\
E_{33} - E_{32} & E_{34} - E_{32} & E_{35} - E_{32} & E_{38} - E_{32} \\
E_{43} - E_{42} & E_{44} - E_{42} & E_{45} - E_{42} & E_{48} - E_{42} \\
E_{53} - E_{52} & E_{54} - E_{52} & E_{55} - E_{52} & E_{58} - E_{52} \\
E_{63} - E_{62} & E_{64} - E_{62} & E_{65} - E_{62} & E_{68} - E_{62} \\
E_{73} - E_{72} & E_{74} - E_{72} & E_{75} - E_{72} & E_{78} - E_{72} \\
E_{83} - E_{82} & E_{84} - E_{82} & E_{85} - E_{82} & E_{88} - E_{82}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(3.0.29)

By using the equation (3.0.28), we can write:

Obtaining each elements of \mathbf{E}_2 by equating both sides in equations (3.0.29) and (3.0.30)::

Here, $\mathbf{E}_2^2 = \mathbf{E}_2$. thus the obtained \mathbf{E}_2 is valid projection.

Also, from equations (3.0.25) and (3.0.31), It is also verified that $\mathbf{E}_1 + \mathbf{E}_2 = \mathbf{I}$

Jordan form

Finding Jordan form

The characteristic polynomial of the matrix **A** is:

$$(\lambda - 1)^4 \lambda^4 = \lambda^8 - 4\lambda^7 + 6\lambda^6 - 4\lambda^5 + \lambda^4$$
 (3.0.32)

Thus, the eigen values are 1, 1, 1, 1, 0, 0, 0, 0

The eigen space corresponding to the eigenvalue 1 is the null space of (A - I):

$$(\mathbf{A} - \mathbf{I})\mathbf{v} = 0$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} \mathbf{v} = 0$$

$$(3.0.33)$$

$$\mathbf{v} = 0$$

Row reduced echelon form:

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \mathbf{v} = 0$$
(3.0.35)

$$\therefore Nul(\mathbf{A} - \mathbf{I}) = \begin{pmatrix} v_1 \\ 0 \\ 0 \\ 0 \\ -v_7 \\ v_7 \\ 0 \end{pmatrix}$$

$$(3.0.36)$$

$$\therefore Nul(\mathbf{A} - \mathbf{I}) = \operatorname{Span} \left\{ \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\0\\-1\\1\\0 \end{pmatrix} \right\}$$
(3.0.37)

- Since the eigenspace corresponding to eigen value 1 is 2-dimensional, there are 2 Jordan blocks for eigen value 1;
- Also this eigenvalue has algebraic multiplicity 4 (from characteristic polynomial), thus the two blocks have to have sizes adding to 4. Hence, there are two 2×2 blocks.

The eigen space corresponding to the eigenvalue 0 is the null space of A

$$\mathbf{A}\mathbf{v} = 0 \tag{3.0.38}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & -1 & -1 & -1 & -1 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \mathbf{v} = 0$$
(3.0.39)

Row reduced echelon form:

$$\therefore \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \mathbf{v} = 0$$
(3.0.40)

$$\therefore Nul(\mathbf{A} - \mathbf{I}) = \begin{pmatrix} 0 \\ -v_3 \\ v_3 \\ -v_5 \\ v_5 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$(3.0.41)$$

$$\therefore Nul(\mathbf{A} - \mathbf{I}) = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$
(3.0.42)

- Here also, the eigenspace corresponding to eigen value 0 is 2-dimensional, thus there are 2 Jordan blocks for eigen value 0;
- Also this eigenvalue has algebraic multiplicity 4 (from characteristic polynomial), thus the two blocks have to have sizes adding to 4. Hence, there are two 2×2 blocks.

Using all the Jordan blocks, The Jordan form of A can be written as:

Direct sum decomposition into T-cyclic subspaces.

Finding direct-sum decomposition of **R**⁸ into T-cyclic subspaces

T (represented by matrix **A**) is a linear operator on vector space \mathbb{R}^8 (represented by **V**). The *T*-annihilators p_1, p_2, \dots, p_k , such that p_k divides $p_{k-1}, k = 2, \dots, r$, are:

$$p_1 = (\lambda - 1)^2 \lambda^2 \tag{3.0.44}$$

$$p_2 = (\lambda - 1)^2 \lambda \tag{3.0.45}$$

$$p_3 = \lambda \tag{3.0.46}$$

By cyclic decomposition theorem, There will exists non-zero vectors α_1 , α_2 and α_3 in \mathbf{V} with respective T-annihilators p_1 , p_2 and p_3 such that:

$$\mathbf{V} = \mathbf{W}_0 \oplus \mathbf{Z}(\alpha_1; \mathbf{A}) \oplus \mathbf{Z}(\alpha_2; \mathbf{A}) \oplus \mathbf{Z}(\alpha_3; \mathbf{A})$$
(3.0.47)

Where, the T-cyclic subspace $\mathbf{Z}(\alpha_i; T)$ is defined as :

$$\mathbf{Z}(\alpha_i; T) = \operatorname{Span}\left\{\alpha_i, \mathbf{T}\alpha_i, \dots, \mathbf{T}^{k-1}\alpha_i\right\}$$
 (3.0.48)

Where
$$k = \text{Degree of } p_i$$
 (3.0.49)

Here, \mathbf{W}_0 is zero subspace:

$$\mathbf{W}_0 = \mathbf{0} \tag{3.0.50}$$

For defining $\mathbf{Z}(\alpha_1; \mathbf{A})$, we need to find non-zero vector α_1 such that:

$$p_1(\mathbf{A})(\alpha_1) = 0 \tag{3.0.51}$$

Here,
$$p_1 = (\lambda - 1)^2 \lambda^2$$
 (3.0.52)

and
$$p_1(\mathbf{A}) = (\mathbf{A} - \mathbf{I})^2 \mathbf{A}^2 = 0$$
 (3.0.53)

 \implies Any vector $\alpha_1 \in \mathbf{R}^8$ will satisfy (3.0.51)

Let,
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{pmatrix}$$
 (3.0.54)

$$\therefore \mathbf{Z}(\alpha_1; \mathbf{A}) = \operatorname{Span}\left\{\alpha_1, \mathbf{A}\alpha_1, \mathbf{A}^2\alpha_1, \mathbf{A}^3\alpha_1\right\}$$
(3.0.55)

$$\therefore \mathbf{Z}(\alpha_{1}; \mathbf{A}) = \operatorname{Span} \left\{ \begin{pmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 8\\1\\-1\\3\\2\\6\\-4\\0 \end{pmatrix}, \begin{pmatrix} 15\\0\\0\\0\\5\\11\\-9\\0 \end{pmatrix}, \begin{pmatrix} 22\\0\\0\\0\\5\\11\\-9\\0 \end{pmatrix} \right\}$$
(3.0.56)

$$\therefore \dim(\mathbf{Z}(\alpha_1; \mathbf{A})) = \text{Degree of } p_1 = 4$$
 (3.0.57)

For defining $\mathbf{Z}(\alpha_2; \mathbf{A})$, we need to find non-zero vector α_2 such that:

$$\alpha_2 \notin \mathbf{Z}(\alpha_1; \mathbf{A}), p_2(\mathbf{A})(\alpha_2) = 0$$
 (3.0.58)

Here,
$$p_2 = (\lambda - 1)^2 \lambda$$
 (3.0.59)

$$\frac{p_1}{p_2} = \lambda \implies p_2 \text{ divides } p_1 \tag{3.0.60}$$

One such vector that satisfies (3.0.58) is:

Let,
$$\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
 (3.0.62)

$$\therefore \mathbf{Z}(\alpha_2; \mathbf{A}) = \operatorname{Span}\left\{\alpha_2, \mathbf{A}\alpha_2, \mathbf{A}^2\alpha_2\right\}$$
 (3.0.63)

$$\therefore \mathbf{Z}(\alpha_2; \mathbf{A}) = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 3 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 8 \\ 0 \\ 0 \\ 0 \\ 2 \\ 5 \\ -3 \\ 0 \end{pmatrix} \right\}$$
(3.0.64)

$$\therefore \dim(\mathbf{Z}(\alpha_2; \mathbf{A})) = \text{Degree of } p_2 = 3$$
 (3.0.65)

For defining $\mathbf{Z}(\alpha_3; \mathbf{A})$, we need to find non-zero vector α_3 such that:

$$\alpha_3 \notin \mathbf{Z}(\alpha_1; \mathbf{A}), \alpha_3 \notin \mathbf{Z}(\alpha_2; \mathbf{A}) \text{ and } p_3(\mathbf{A})(\alpha_3) = 0$$
 (3.0.66)

Here,
$$p_3 = \lambda$$
 (3.0.67)

$$\frac{p_2}{p_3} = (\lambda - 1)^2 \implies p_3 \text{ divides } p_2$$
 (3.0.68)

$$p_3(\mathbf{A}) = \mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(3.0.69)

One such vector that satisfies (3.0.66) is:

Let,
$$\alpha_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 (3.0.70)

$$\therefore \mathbf{Z}(\alpha_2; \mathbf{A}) = \operatorname{Span} \{\alpha_2\} \tag{3.0.71}$$

$$\therefore \mathbf{Z}(\alpha_2; \mathbf{A}) = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 (3.0.72)

$$\therefore \dim(\mathbf{Z}(\alpha_2; \mathbf{A})) = \text{Degree of } p_3 = 1$$
 (3.0.73)

$$\dim(\mathbf{Z}(\alpha_1; \mathbf{A})) + \dim(\mathbf{Z}(\alpha_2; \mathbf{A})) + \dim(\mathbf{Z}(\alpha_2; \mathbf{A})) = 8$$
 (3.0.74)

Thus, $\mathbf{V} = \mathbf{Z}(\alpha_1; \mathbf{A}) \oplus \mathbf{Z}(\alpha_2; \mathbf{A}) \oplus \mathbf{Z}(\alpha_3; \mathbf{A})$ is the required direct sum decomposition into T-cyclic subspaces.