MATA31

Calculus 1, for Mathematical Sciences, Fall 2018

Various Core Proofs/Identities

Current Instructor: Natalia Breuss

Instructor(s):

Dr. Natalia Breuss

Email: n.breuss@utoronto.ca

Office: IC484

Office Hours: Wednesday 11:00 - 13:00

1 Identities

Basic Trigonometric Identities

Reciprocal Identities

$$(\sin x)^{-1} = \csc x$$

 $(\cos x)^{-1} = \sec x$
 $(\tan x)^{-1} = \cot x$

Pythagorean Identities

$$\sin^2 x + \cos^x = 1$$

$$\tan^2 x + 1 = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

Angle Addition Identities
$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$$
$$\cos(x + y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$
$$\cos(x - y) = \cos x \cdot \cos y + \sin x \cdot \sin y$$
$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$$
$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \cdot \tan y}$$

Hyperbolic Trigonometric Identities

$$\sinh x = \frac{e^x - e^{-x}}{2} \qquad \operatorname{csch} x = \frac{2}{e^x - e^{-x}}$$

$$\cosh x = \frac{e^x + e^{-x}}{2} \qquad \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Derivatives of Trigonometric Functions

Derivative of Trigonometric Functions
$$(\sin x)' = \cos x$$
 $(\csc x)' = -\csc x \cot x$ $(\sinh x)' = \cosh x$ $(\operatorname{csch} x)' = -\operatorname{csch} x \cdot \coth x$ $(\cosh x)' = -\operatorname{sin} x$ $(\operatorname{sec} x)' = -\operatorname{csc} x \tan x$ $(\cosh x)' = \operatorname{sinh} x$ $(\operatorname{sech} x)' = -\operatorname{sech} x \cdot \tanh x$ $(\tanh x)' = \operatorname{sech}^2 x$ $(\coth x)' = -\operatorname{csch}^2 x$

Derivative of Inverse Trigonometric Functions

$$(\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}} \qquad (\csc^{-1} x)' = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$(\cos^{-1} x)' = -\frac{1}{\sqrt{1 - x^2}} \qquad (\sec^{-1} x)' = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$(\tan^{-1} x)' = \frac{1}{1 + x^2} \qquad (\cot^{-1} x)' = -\frac{1}{1 + x^2}$$

Derivatives of common functions

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}x^n = nx^{(n-1)}$$

$$\frac{d}{dx}f \cdot g = f' \cdot g + g' \cdot f$$

$$\frac{d}{dx}e^x = e^x \cdot \ln(e)$$

$$\frac{d}{dx}f + h = f' + h'$$

$$\frac{d}{dx}\frac{f}{g} = \frac{g \cdot f' - f \cdot g'}{g^2}$$

$$\frac{d}{dx}e^{2x} = e^x \cdot \ln(e) \cdot \frac{d}{dx}x = e^x \cdot 2x$$

$$\frac{d}{dx}f(g) = f'(g) \cdot g'$$

2 **Definitions of Limits**

Algebraic: $\lim f(x) = L$

$$\forall \epsilon > 0, \exists \delta > 0, \ni : 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$$

Geometric: $\lim x \to cf(x) = L$

$$\forall \epsilon > 0, \exists \delta > 0, \ni : x \in (c - \delta, c) \cup (c, c + \delta) \Rightarrow f(x) \in (L - \epsilon, L + \epsilon)$$

3 Uniqueness of Limits

Theorem. $\lim_{x\to c} f(x) = L \wedge \lim_{x\to c} f(x) = M \Longrightarrow L = M$

$$\lim_{x\to c} f(x) = L \wedge \lim_{x\to c} f(x) = M \Longrightarrow L = M$$

Suppose the contrary that:

$$\lim_{x\to c}f(x)=L\wedge\lim_{x\to c}f(x)=M, L\neq M$$

Assume that L > M, L = M + K, WLOG

Let's choose $\epsilon = \frac{k}{2}$, this way the intervals do not overlap.

$$\lim_{x \to c} f(x) = L : \exists \delta_1 > 0, \ni 0 < |x - c| < \delta_1 \to |f(x) - L| < \epsilon$$

$$\lim_{x \to c} f(x) = M : \exists \delta_2 > 0, \ni : 0 < |x - c| < \delta_2 \to |f(x) - M| < \epsilon$$

Let $\delta = min(\delta_1, \delta_2)$ so that for any $\delta > 0$, $f(x) \in (M - \epsilon, M + \epsilon)$ and $f(x) \in (L - \epsilon, L + \epsilon)$.

Contradiction: This is impossible since we set $\epsilon = \frac{k}{2}$ to guarantee intervals do not overlap.

Therefore, $\lim_{x\to c} f(x) = L \wedge \lim_{x\to c} f(x) = M \Longrightarrow L = \overline{M}$ by contradiction.

QED

One Sided Limits

Theorem. $\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$

We need to prove that:

1.
$$\lim_{x \to c} f(x) = L \Rightarrow \lim_{x \to c} f(x) = \lim_{x \to c} f(x) = L$$

1.
$$\lim_{x \to c} f(x) = L \Rightarrow \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$
2.
$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L \Rightarrow \lim_{x \to c} f(x) = L$$

1. Assume
$$\lim_{x\to c} f(x) = I$$

1. Assume
$$\lim_{x \to c} f(x) = L$$

$$\forall \epsilon > 0, \exists \delta > 0, \ni: 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$$

$$0 < |x - c| < \delta \equiv x \in (c - \delta, c) \cup (c, c + \delta)$$

$$x \in (c - \delta, c) \Rightarrow |f(x) - L| < \epsilon$$

$$x \in (c, c + \delta) \Rightarrow |f(x) - L| < \epsilon$$

$$\therefore \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

2. Assume
$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

2. Assume
$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

$$\forall \epsilon > 0, \exists \delta_{1}, \delta_{2} > 0, \ni:$$

$$x \in (c - \delta, c) \lor x \in (c, c + \delta) \Rightarrow |f(x) - L| < \epsilon$$
Let $\delta = \min(\delta_{1}, \delta_{2})$

$$0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$$
By definition: $\lim_{x \to c} f(x) = L$

QED

5 Supremum, Infimum

The Least Upper Bound Axiom: Every none-empty set of real numbers that has an upper bound has a least upper bound.

Theorem. $lub(S) = M \land \epsilon > 0 \Rightarrow \exists s \in S, \ni : M - \epsilon < s \leq M$

Proof: Let $\epsilon > 0$, since M is an upper bound for S, the condition $s \leq M$ is satisfied by all numbers $s \in S$, therefore there must exist a number in S where $M - \epsilon < s$.

Assume the contrary: $\exists ! s \in S, \ni : M - \epsilon < s \Rightarrow \forall x \in S, x < M - \epsilon$

Contradiction: this means that $M - \epsilon$ is the upper bound for set S, but this cannot be as M is our least upper bound and $M - \epsilon < M, \epsilon > 0$

Therefore, there must exist
$$s \in S, \ni : M - \epsilon < s \leq M$$

QED

The Greatest Lower Bound Axiom: Every none-empty set of real numbers that has a lower bound has a greatest lower bound.

Theorem. $glb(S) = m \land \epsilon > 0 \Rightarrow \exists s \in S, \ni : m \leq s < m + \epsilon$

Proof: Let $\epsilon > 0$ be given, since m is a lower bound for S, the condition $m \leq s$ is satisfied by all numbers $s \in S$, therefore there must exist a number in S where $s < m + \epsilon$

Assume the contrary: $\exists ! s \in S, \exists : s < m + \epsilon \Rightarrow \forall s \in S, s \geq m + \epsilon$

Contradiction: this means that $m + \epsilon$ is the lower bound for set S, but this cannot be because m is our greatest lower bound and $m < m + \epsilon, \epsilon > 0$

Therefore, there must exist
$$s \in S, \ni : m \le s < m + \epsilon$$

QED

6 Proofs of continuity

$$\lim_{x \to c} f(x) = f(c)$$

Power Functions $f(x) = x^2$

Constant Functions

Show
$$\lim_{x\to c} f(x) = C$$

Show $\lim_{x\to c} f(x) = C$
 $\forall \epsilon > 0, \exists \delta > 0, \ni : |x-c| < \delta \Rightarrow |f(x)-f(c)| < \epsilon$
 $|f(x)-f(c)| = |C-C| < \epsilon$
 $|C-C| < \epsilon$ is True $\forall \epsilon > 0$.
if we have $P\to Q$, and Q is always true then $P\to Q$ is always true.
 $\therefore \lim_{x\to c} f(x) = f(c)$

Show
$$\lim_{x\to c} f(x) = c^2$$

$$\forall \epsilon > 0, \exists \delta > 0, \ni: |x-c| < \delta \Rightarrow |x^2 - c^2| < \epsilon$$

$$|x^2 - c^2| = |x-c||x+c|$$
lets set $\delta \le 1, |x-c| < 1 \Longrightarrow |x| - |c| < 1 \Longrightarrow |x| < 1 + |c|$
Proof:
let $\delta = \min(1, \frac{\epsilon}{1+2|c|})$

$$|x^{2} - c^{2}| = |x - c||x + c| < (1 + 2|c|) \cdot |x - c|$$

$$< (1 + 2|c|) \cdot \frac{\epsilon}{1 + 2|c|} = \epsilon$$

$$\therefore \lim_{x \to c} x^{2} = c^{2}$$

Exponential Functions

$$\begin{split} f(x) &= e^x \\ \text{Show } \lim_{x \to c} f(x) &= e^c \\ \forall \epsilon > 0, \exists \delta > 0, \ni : |x - c| < \delta \Rightarrow |e^x - e^c| < \epsilon \\ |x - c| &< \delta, x - c < \delta \equiv x < c + \delta \equiv e^x < e^{x + \delta} \\ 0 &\leq e^x - e^c < e^c (e^\delta - 1) \end{split}$$

7 Mean Value Theorem

if function f is continuous across [a, b] and differentiable across(a, b)

then, there exists at
least one
$$c \in (a,b)$$
 such that $f'(c) = \frac{f(b) - f(a)}{b-a}$

This means if the conditions satisfy, there will be at least one point c where the instataneous rate of change is the same as the average rate of change.

8 Applications of MVT

Suppose f(x) is continuous on [1,5] and differentiable on (1,5) and $f'(x) < \frac{3}{8}, \forall x \in (1,5)$. If f(1) = 1, show that $f(x) < \frac{5}{2}, \forall x \in [1.5]$

Since f is continuous and differentiable...by Mean Value Theorem, $\exists c \in (1,5), \ni: f'(c) = \frac{f(5) - f(1)}{5 - 1}$

QED

Suppose f(x) is odd for all x and diff across every real number. Prove that for every positive number b, there exists a positive number c, in (-b,b) such that $f'(c) = \frac{f(b)}{b}$

Given b > 0, f(-x) = -f(x)

since f is differentiable on $(-\infty, \infty) \Longrightarrow f$ is continuous on $(-\infty, \infty)$

f is cont on [-b,b] and differentiable on (-b,b)

because $(-b,b)\subset (-\infty,\infty)$,

By MVT,
$$\exists c \in (-b, b) \ni : f'(c) = \frac{f(b) - f(-b)}{b - (-b)} = \frac{f(b) + f(b)}{b + b} = \frac{f(b)}{b}$$

9 Rolle's Theorem

Suppose f is continuous on [a,b] and differentiable on (a,b) and f(a) = f(b) then there exists at least a $c \in (a,b)$ such that f'(c) = 0

10 Applications R'T

Show that the function $2x + \cos x$ has exactly one real root.

Let
$$f(x) = 2x + \cos x$$

$$f(-\pi) = -2\pi + \cos(-\pi) = -2pi - 1 < 0$$

$$f(0) = 2 + \cos(0) = 1 > 0$$

Since f(x) is a sum of a polynomial and periodic trigonometric function, f is continuous and differentiable for all x, By IVT, $\exists c \in (-\pi, 0) \ni : f(c) = 0$

Suppose f(x) ias two roots on a,b a; b, then f(a) = f(b) = 0, Since f is continuous on [a,b] and differentiable on open interval (a,b).

By Rolle's Theorem $\exists r \in (a, b) \ni : f'(r) = 0$

 $f'(x) = 2 - \sin(x) > 0$, Contradiction, rolles theorem fails and therefore there must be exactly one root and one root only.

QED

11 Fermat's Theorem

If f has a local min/max at x = c and f'(c) exists, then f'(c) = 0.

f'(x) = 0 or undefined for c-pts:

 $f'(x) > 0 \Rightarrow f(x)$ is increasing

 $f'(x) < 0 \Rightarrow f(x)$ is decreasing

12 Proof of Sum Law for Limits

Prove
$$\lim_{x \to c} f(x) = L \wedge \lim_{x \to c} g(x) = M \Longrightarrow \lim_{x \to c} [f(x) \pm g(x)] = L \pm M$$

Suppose $\lim_{x \to c} f(x) = L \wedge \lim_{x \to c} g(x) = M$

Suppose
$$\lim_{x \to \infty} f(x) = L \wedge \lim_{x \to \infty} g(x) = M$$

$$\lim_{x \to c} f(x) = L$$

$$x \to c$$
 $\forall \epsilon_1 > 0, \exists \delta_1 > 0, \ni : 0 < |x - c| < \delta_1 \Longrightarrow |f(x) - L| < \epsilon_1$

$$\lim g(x) = M$$

$$\forall \epsilon_2 > 0, \exists \delta_2 > 0, \ni : 0 < |x - c| < \delta_1 \Longrightarrow |g(x) - M| < \epsilon_2$$
Consider $\epsilon_1, \epsilon_2 = \frac{\epsilon}{2}$

Consider
$$\epsilon_1, \epsilon_2 = \frac{\epsilon}{2}$$

There must consequently be a $\delta_1 > 0$ and a $\delta_2 > 0$ such that: $0 < |x - c| < \delta_1 \Longrightarrow |f(x) - L| < \frac{\epsilon}{2}$ $0 < |x - c| < \delta_1 \Longrightarrow |g(x) - M| < \frac{\epsilon}{2}$

$$0 < |x - c| < \delta_1 \Longrightarrow |f(x) - L| < \frac{\epsilon}{2}$$

$$0 < |x - c| < \delta_1 \Longrightarrow |g(x) - M| < \frac{\epsilon}{2}$$

let
$$\delta = \min(\delta_1, \delta_2)$$
 such that $0 < |x - c| < \delta \Longrightarrow |f(x) - L| < \frac{\epsilon}{2} \wedge |g(x) - M| < \frac{\epsilon}{2}$

$$0 < |x - c| < \delta \Longrightarrow |f(x) - L| + |g(x) - M| < \epsilon$$

$$0 < |x - c| < \delta \Longrightarrow |f(x) - L + (g(x) - M)| \le |f(x) - L| + |g(x) - M| < \epsilon$$

$$0 < |x - c| < \delta \Longrightarrow |f(x) + q(x) - (L + M)| < \epsilon$$

Thus:
$$\lim_{x \to 0} f(x) \pm g(x) = L \pm M$$

and:
$$\lim_{x \to c} f(x) = L \wedge \lim_{x \to c} g(x) = M \Longrightarrow \lim_{x \to c} [f(x) \pm g(x)] = L \pm M$$

QED

M3TA3Proof Rofo 1/1 Intitizes and Derivatives PROOF OF LIMITS AND DERIVATIVES

$$\begin{array}{l} \text{Prove } \lim_{x \to 0} \frac{1}{x^2} = \infty \\ \forall M > 0, \exists \delta > 0, \ni : 0 < |x| < \delta \Longrightarrow \frac{1}{x^2} > M \\ \frac{1}{x^2} > M \to x^2 < \frac{1}{M} \to x < \sqrt{\frac{1}{M}} \\ \text{Proof:} \\ \text{Let } \delta = \sqrt{1}M \end{array}$$

Proof: Let
$$\delta = \sqrt{1}M$$
 $|x| < \delta \to \frac{1}{|x|} > M \to \frac{1}{|x|^2} > M \to \frac{1}{x^2} > M$

Prove
$$\frac{d}{dx}[\ln x] = \frac{1}{x}$$

$$\frac{d}{dx}[\ln x] = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \lim_{h \to 0} \frac{\ln(\frac{x+h}{x})}{h}$$

$$= \lim_{h \to 0} \frac{1 + \frac{h}{x}}{h} = \lim_{h \to 0} (\frac{1}{h})[\ln(1 + \frac{h}{x})] = \lim_{h \to 0} [\ln(1 + \frac{h}{x})\frac{1}{h}]$$
let $n = \frac{h}{x}$; $h = nx$; $\frac{1}{h} = \frac{1}{nx}$

$$\lim_{x \to 0} [(\ln(1+n)\frac{1}{n})\frac{1}{x}] = \lim_{x \to 0} \frac{1}{x} \cdot [\ln(1+n)\frac{1}{n}] = \frac{1}{x} \cdot \ln e$$

$$= \frac{1}{x}$$