QUI212 (T06) - Qu	Pontuação ↓		
Data: 17/06/2025	Questões: 3	Pontos totais: 20	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	8	
2	5	
3	7	
Total:	20	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. É permitido o uso de calculadora científica.
- 4. A Tabela Periódica dos Elementos está ao final da prova.
- 5. Equações:

(a) Média (
$$\bar{x}$$
): $\bar{x} = \frac{1}{n} \times \sum_{i=1}^{n} x_i$

(b) Desvio padrão (s):
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

1. (8 pontos) Um aluno foi incumbido de calibrar um balão volumétrico de 25 mL. Para tal, o método gravimétrico foi utilizado. O balão foi pesado vazio (m_{vazio}) , preenchido com água até a marcação referente a 25 mL e subsequentemente pesado (m_{cheio}) . O balão foi esvaziado e o procedimento foi repetido mais duas vezes. Os valores obtidos estão dispostos na **Tabela 1**.

Tabela 1: Valores de massa do balão volumétrico (m_{vazio}) e com 25 mL de água (m_{cheio}) .

Medida	(m_{vazio}) (g)	$(m_{\rm cheio})$ (g)	T (°C)
1	22,1252	47,2280	23
2	22,1261	$47,\!2267$	23
3	22,1260	47,2283	23

O valor de densidade da água à $23\,^{\circ}$ C é igual a $0.99753~\rm g\,mL^{-1}$ e o limite de tolerância para um balão volumétrico de $25~\rm mL$ é $0.03~\rm mL$. Com base nos dados e valores fornecidos, o balão volumétrico está calibrado? Se não, qual o valor nominal de volume que deve ser considerado?

2. (5 pontos) Durante um experimento para verificação de evidências macroscópicas de reações químicas, uma aluna foi incumbida de adicionar 0.5 g de carbonato de cálcio (CaCO₃) em 50 mL de uma solução 1 mol L^{-1} de ácido clorídrico (HCl). A reação química que descreve o processo é descrita pela **Equação 1**.

$$CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2CO_3(aq) \longrightarrow CaCl_2(aq) + CO_2(g) + H_2O(l).$$
 (1)

Com base na equação e nas informações fornecidas sobre o processo, descreva quais evidências macroscópicas de uma reação química seriam observáveis.

3. (7 pontos) Durante a análise de equilíbrios químicos, uma aluna foi incumbida de verificar o comportamento do equilíbrio entre os ânions cromato, CrO_4^{2-} , e dicromato, $\text{Cr}_2\text{O}_7^{2-}$. Para tal, adicionou 2 mL de uma solução 0,1 mol L⁻¹ de K₂Cr₂O₇ (cor laranja) a dois tubos de ensaio, enumerados 1 e 2. Em outros dois tubos, enumerados 3 e 4, adicionou 2 mL de uma solução 0,1 mol L⁻¹ de K₂CrO₄ (cor amarela).

O primeiro teste envolveu a adição de duas gotas de uma solução 0.5 mol L^{-1} de $\text{Ba}(\text{NO}_3)_2$ aos tubos 1 e 3, observando a formação de um precipitado amarelo e intensificação da coloração amarela no tubo 3, e nenhuma evidência de reação no tubo 1. O segundo teste envolveu a adição de 10 gotas de uma solução 1 mol L^{-1} de ácido clorídrico (HCl) aos tubos 2 e 4, observando que apenas o tubo 4 apresentou mudança de cor para o laranja, seguida da adição de 10 gotas de uma solução 1 mol L^{-1} de carbonato de cálcio (CaCO₃), observando que apenas o tubo 4 apresentou mudança de cor para o amarelo.

O equilíbrio que descreve esse processo, desconsiderando íons espectadores, é demonstrado na **Equação 2**.

$$H_2O(l) + Cr_2O_7^{2-}(aq) \Longrightarrow 2 CrO_4^{2-}(aq) + 2 H^+(aq).$$
 (2)

- (a) Por que, ao adicionar a solução de $Ba(NO_3)_2$ ao tubo 3, além da formação do precipitado amarelo, a solução também fica mais amarelada? Considere que a solubilidade do $BaCrO_4$ em água é igual a 8.5×10^{-11} mol L^{-1} e que o $BaCr_2O_7$ é completamente solúvel em água.
- (b) Por que a adição de HCl muda a coloração do tubo 4 para laranja e por que a adição de CaCO₃ faz com que a cor retorne para o amarelo?

