Cálculo II

Tema 3: Cálculo diferencial de funciones de varias variables I

Francisco Javier Mercader Martínez

1) Decir si es o no diferenciable en el punto (0,0) la función real

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Para comprobar si f(x, y) es diferenciable o no en el punto (0, 0), lo primero que debemos hacer es comprobar si la función es continua en dicho punto, ya que en caso de no serlo directamente diríamos que es diferenciable.

• Estudio de la continuidad en (0,0):

$$\lim_{(x,y)\to(0,0)}\frac{2xy}{x^2+y^2}=\left\{\begin{array}{l} x=r\cos\theta\\ y=r\sin\theta \end{array}\right\}=\lim_{r\to0}\frac{2\cdot r\cos\theta\cdot r\sin\theta}{r^2\cos^2\theta+r^2\sin^2\theta}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2(\cos^2\theta+\sin^2\theta)}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2}=\lim_{r\to0}\frac{2r^2\cos\theta\sin\theta}{r^2}=\lim_{r\to\infty}\frac{2r^2\cos\theta}{r^2}=\lim_{r\to\infty}\frac{2r^2\cos\theta}{r^2}=\lim_{r\to\infty}\frac{2r^2\cos\theta}{r^2}=\lim$$

Como no existe el límite, entonces f(x,y) no es diferenciable en (0,0) y por lo tanto, podemos asegurar que tanto es diferenciable en dicho punto.

2) Comprobar que la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} x \sin \frac{1}{x} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

es continua en (0,0), pero no es diferenciable en dicho punto.

Para comprobar si f(x, y) es diferenciable o no en el punto (0, 0), lo primero que debemos hacer es comprobar si la función es continua en dicho punto, ya que en caso de serlo directamente diríamos que no diferenciable.

• Estudio de la continuidad en (0,0):

$$\lim_{(x,y)\to(0,0)} x \sin\frac{1}{x} = \{\text{Teorema del Sándwich}\} = 0$$

Como el límite coincide con f(0,0) = 0, la función f(x,y) es continua en (0,0).

• Comprobar que f(x,y) no es diferenciable en (0,0):

La función f(x,y) es diferenciable en (0,0) si existe un plano tangente que se aproxime localmente a f(x,y). Esto ocurre si:

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - \frac{\partial f}{\partial x}(0,0)h - \frac{\partial f}{\partial y}(0,0)k}{\sqrt{h^2 + k^2}} = 0$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h \sin \frac{1}{x} - 0}{h} = \lim_{h \to 0} \sin \frac{1}{h}$$

El término $\sin \frac{1}{x}$ oscila entre -1 y 1 de manera no convergente cuando $h \to 0$, por lo que este límite no existe. Por lo tanto, la función no es diferenciable en (0,0).

3) Estudiar la continuidad y la diferenciabilidad de la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

1

Calcular su derivada direccional de cualquier vector $v = (v_1, v_2)$ en el punto (0,0).

• Estudio de la continuidad en el punto (0,0):

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = \left\{ \begin{array}{l} x = r\cos\theta \\ y = r\sin\theta \end{array} \right\} = \lim_{r\to 0} \frac{r\cos\theta r^2\sin^2\theta}{\frac{r^2\cos^2\theta + r^2\sin^2\theta}{r^2}} = \lim_{r\to 0} \frac{r^{\frac{2}{3}}\cos\theta\sin^2\theta}{\frac{r^2}{3}} = \lim_{r\to 0} r\cos\theta\sin^2\theta = 0$$

Como el límite coincide con f(0,0) = 0, la función f(x,y) es continua en dicho punto.

• Comprobar que f(x,y) es diferenciable en (0,0):

Para verificar la diferenciabilidad en (0,0), usando el criterio de que la función es diferenciable si existe un plano tangente local, lo que requiere que:

$$\lim_{(h,k)\to(0,0)}\frac{\left|f(h,k)-f(0,0)-\frac{\partial f}{\partial x}(0,0)h-\frac{\partial f}{\partial y}(0,0)k\right|}{\sqrt{h^2+k^2}}=0$$

Esto requiere calcular las derivadas parciales en (0,0)

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0 - 0}{k} = 0$$

Si f(x,y) fuera diferenciable, se debería cumplir:

$$\lim_{(x,y)\to(0,0)} \frac{f(h,k)-0}{\sqrt{h^2+k^2}} = \left\{ \begin{array}{l} h = r\cos\theta \\ k = r\sin\theta \end{array} \right\} = \lim_{r\to0} \frac{\frac{r\cos\theta r^2\sin^2\theta}{r^2\cos^2\theta + r^2\sin^2\theta}}{\sqrt{\frac{r^2\cos^2\theta + r^2\sin^2\theta}{r^2}}} = \lim_{r\to0} \frac{r^3\cos\theta\sin^2\theta}{r^3}$$
$$= \cos\theta\sin^2\theta \longrightarrow \nexists \lim$$

El término $\cos\theta\sin^2\theta$ depende de θ , lo que implica que el límite no existe uniformemente. Por lo tanto, la función no es diferenciable en (0,0).

• Derivada direccional en (0,0):

La derivada direccional en la dirección $v = (v_1, v_2)$ está dada por:

$$D_{\mathbf{v}}f(0,0) = \lim_{t \to 0} \frac{f(tv_1, tv_2) - f(0,0)}{t} = \lim_{t \to 0} \frac{\frac{(tv_1)(tv_2)^2}{(tv_1)^2 + (tv_2)^2} - 0}{t} = \lim_{t \to 0} \frac{\frac{t^3v_1v_2^2}{t^2(v_1^2 + v_2^2)}}{t}$$
$$= \lim_{t \to 0} \frac{t^3v_1v_2^2}{t^3(v_1^2 + v_2^2)} = \frac{v_1v_2^2}{v_1^2 + v_2^2}$$

La derivada direccional no siempre es cero, ya que depende de los valores de v_1 y v_2 .

4) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Comprobar que f tiene derivada direccional respecto de cualquier vector de \mathbb{R}^2 en el punto (0,0), pero f no es derivable en dicho punto.

• Derivada direccional en (0,0):

La derivada direccional de f(x,y) en la dirección de un vector $\mathbf{v}=(v_1,v_2)\in\mathbb{R}^2$ se define como:

$$\begin{split} D_{\mathbf{v}}f(0,0) &= \lim_{t \to 0} \frac{f(tv_1,tv_2) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tv_1,tv_2)}{t} = \lim_{t \to 0} \frac{\frac{(tv_1)(tv_2)^2}{(tv_1)^2 + (tv_2)^4}}{t} = \lim_{t \to 0} \frac{\frac{t^3v_1v_2^2}{t^2v_1^2 + t^4v_2^4}}{t} \\ &= \lim_{t \to 0} \frac{t^3v_1v_2^2}{t(t^2v_1^2 + t^4v_2^4)} = \lim_{t \to 0} \frac{t^2(v_1v_2^2)}{t^2(v_1^2 + t^2v_2^4)} = \lim_{t \to 0} \frac{v_1v_2^2}{v_2^2 + t^2v_2^4} = \frac{v_1v_2^2}{v_1^2} = \frac{v_2^2}{v_1^2} \end{split}$$

La derivada direccional existe para cualquier vector $\mathbf{v} = (v_1, v_2)$ y está dada por

$$D_{\mathbf{v}}f(0,0) = \begin{cases} \frac{v_2^2}{v_1}, & \text{si } v_1 \neq 0\\ 0 & \text{si } v_1 = 0 \text{ y } v_2 = 0 \end{cases}$$

• Diferenciabilidad de f(x,y) en (0,0):

La función f(x,y) es diferenciable en (0,0) si existe:

$$\lim_{(h,k)\to(0,0)} \frac{\left| f(h,k) - f(0,0) - \frac{\partial f}{\partial x}(0,0)h - \frac{\partial f}{\partial y}(0,0)k \right|}{\sqrt{h^2 + k^2}} = 0$$

Esto requiere calcular las derivadas parciales en (0,0).

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$
$$\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0 - 0}{k} = 0$$

Si f(x, y) fuera diferenciable en (0, 0), las derivadas direccionales serían consistentes con las derivadas parciales. Sin embargo, observamos que

$$D_{\mathbf{v}}f(0,0) = \frac{v_2^2}{v_1}, \quad \text{si } v_1 \neq 0,$$

y esto depende de la dirección $\mathbf{v}=(v_1,v_2)$, lo cual indica que f(x,y) no puede aproximarse localmente por una aplicación lineal.

La función no es diferenciable en (0,0) porque las derivadas direccionales no son consistentes con una aproximación lineal.

5) Calcular las derivadas parciales de la función

$$f(x,y) = x^2 \tan \frac{y^2}{x^2 + y^2}$$

definida para todo punto de $\mathbb{R}^2 \setminus \{(0,0)\},$ y comprobar que

$$xD_1f(x,y) + yD_2f(x,y) = 2f(x,y)$$

Denotamos $u = \frac{y^2}{x^2 + y^2}$. Entonces:

$$f(x,y) = x^2 \tan(u)$$

$$\begin{split} \frac{\partial f}{\partial x} &= 2x \tan(u) + x^2 (\tan^2(u) + 1) \frac{\partial u}{\partial x} = 2x \tan(u) + x^2 (\tan^2(u) + 1) \cdot \left(-\frac{2xy^2}{(x^2 + y^2)^2} \right) \\ \frac{\partial f}{\partial y} &= x^2 (\tan^2(u) + 1) \cdot \frac{\partial u}{\partial y} = x^2 (\tan^2(u) + 1) \cdot \left(\frac{2y(x^{2+y^2-y^2\cdot 2y})}{(x^2 + y^2)^2} \right) = x^2 (\tan^2(u) + 1) \cdot \left(\frac{2x^2y + 2y^3 - 2y^3}{(x^2 + y^2)^2} \right) \end{split}$$

$$= x^{2}(\tan^{2}(u) + 1) \cdot \left(\frac{2x^{2}y}{(x^{2} + y^{2})^{2}}\right)$$

$$xD_1f(x,y) + yD_2f(x,y) = x \cdot \left[2x\tan(u) + x^2(\tan^2(u) + 1) \cdot \left(-\frac{2xy^2}{(x^2 + y^2)^2}\right)\right] + y \cdot \left[x^2(\tan^2(u) + 1) \cdot \left(\frac{2x^2y}{(x^2 + y^2)^2}\right)\right]$$

$$=2x^{2}\tan(u)-\frac{2x^{4}y^{2}}{(x^{2}+y^{2})^{2}}\cdot(\tan^{2}(u)+1)+\frac{2x^{4}y^{2}}{(x^{2}+y^{2})^{2}}\cdot(\tan^{2}(u)+1)=2x^{2}\tan(u)$$

Por lo tanto:

$$x \cdot \frac{\partial f}{\partial x} + y \cdot \frac{\partial f}{\partial y} = 2 \cdot f(x, y)$$

6) Calcular las derivadas parciales de la función

$$f(x,y) = \frac{\sqrt{x} + \sqrt{y}}{x + y}$$

definida en el conjunto $\{(x,y): x>0, y>0\}$, y comprobar que

$$xD_1f(x,y) + yD_2f(x,y) = -\frac{1}{2}f(x,y)$$

$$\frac{\partial f}{\partial x} = \frac{\frac{1}{2\sqrt{x}}(x+y) - (\sqrt{x} + \sqrt{y}) \cdot 1}{(x+y)^2} = \frac{\frac{1}{2\sqrt{x}}(x+y) - (\sqrt{x} + \sqrt{y})}{(x+y)^2}$$

$$\begin{split} \frac{\partial f}{\partial y} &= \frac{\frac{1}{2\sqrt{y}}(x+y) - (\sqrt{x}+\sqrt{y}) \cdot 1}{(x+y)^2} = \frac{\frac{1}{2\sqrt{y}}(x+y) - (\sqrt{x}+\sqrt{y})}{(x+y)^2} \\ x \cdot \frac{\partial f}{\partial y} + y \cdot \frac{\partial f}{\partial y} &= x \cdot \frac{\frac{1}{2\sqrt{x}}(x+y) - (\sqrt{x}+\sqrt{y})}{(x+y)^2} + y \cdot \frac{\frac{1}{2\sqrt{y}}(x+y) - (\sqrt{x}+\sqrt{y})}{(x+y)^2} \\ &= \frac{x \cdot \left(\frac{1}{2\sqrt{x}}(x+y) - (\sqrt{x}+\sqrt{y})\right) + y \cdot \left(\frac{1}{2\sqrt{y}}(x+y) - (\sqrt{x}+\sqrt{y})\right)}{(x+y)^2} \\ &= \frac{\frac{\sqrt{x}}{2}(x+y) - x(\sqrt{x}+\sqrt{y}) + \frac{\sqrt{y}}{2}(x+y) - y(\sqrt{x}+\sqrt{y})}{(x+y)^2} \\ &= \frac{\frac{1}{2}(\sqrt{x}+\sqrt{y})(x+y) - (\sqrt{x}+\sqrt{y})(x+y)}{(x+y)^2} = \frac{\left(\frac{1}{2}-1\right)(\sqrt{x}+\sqrt{y})(x+y)}{(x+y)^2} = -\frac{1}{2} \cdot \frac{\sqrt{x}+\sqrt{y}}{x+y} \end{split}$$

Por lo tanto:

$$x \cdot \frac{\partial f}{\partial x} + y \cdot \frac{\partial f}{\partial y} = -\frac{1}{2} \cdot f(x, y)$$

7) Calcular las derivadas parciales de la función

$$f(x,y) = y \cdot \log \frac{x^3 y}{x^2 + y^2}$$

definida en el conjunto $\{(x,y): x>0, y>0\}$, y calcular su diferencial en el punto (1,1).

$$\begin{split} \frac{\partial f}{\partial x} &= y \cdot \frac{1}{\frac{x^3 y}{x^2 + y^2}} \cdot \frac{3x^2 y \cdot (x^2 + y^2) - x^3 y \cdot 2x}{(x^2 + y^2)^2} = \frac{x^2 + y^2}{x^3 y} \cdot \frac{3x^4 y + 3x^2 y^3 - 2x^4 y}{(x^2 + y^2)^{\frac{3}{2}}} \cdot y \\ &= y \cdot \frac{x^4 y + 3x^2 y^3}{x^3 y (x^2 + y^2)} = y \cdot \frac{x^4 y + 3x^2 y^3}{x^5 y + x^3 y^3} = \frac{x^4 y + 3x^2 y^3}{x^5 + x^3 y^2} \\ \frac{\partial f}{\partial y} &= 1 \cdot \log \frac{x^3 y}{x^2 + y^2} + y \cdot \frac{x^2 + y^2}{x^3 y} \cdot \frac{x^3 (x^2 + y^2) - x^3 y \cdot 2y}{(x^2 + y^2)^{\frac{3}{2}}} = \log \frac{x^3 y}{x^2 + y^2} + \frac{x^2 + y^2 - 2y^2}{x^2 + y^2} = \log \frac{x^3 y}{x^2 + y^2} + \frac{x^2 - y^2}{x^2 + y^2} \\ \frac{\partial f}{\partial x} &(1, 1) = \frac{1^3 \cdot 1 + 3 \cdot 1^2 \cdot 1^3}{1^5 + 1^3 \cdot y^2} = \frac{4}{2} = 2 \\ \frac{\partial f}{\partial y} &(1, 1) = \log \frac{1^3 \cdot 1}{1^2 + 1^2} + \frac{1^2 - 1^2}{1^2 + 1^2} = \log \frac{1}{2} \end{split}$$

El diferencial en (1,1) es

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} (1, 1) dy = 2 dx + \log \frac{1}{2} dy$$

8) Calcular las derivadas parciales de la función

$$f(x,y) = \sqrt{xy + \frac{x}{y}}$$

definida en el conjunto $\{(x,y): x>0, y>0\}$, y calcular su diferencial en el punto (2,1).

$$\begin{split} \frac{\partial f}{\partial x} &= \frac{1}{2\sqrt{xy + \frac{x}{y}}} \cdot \left(y + \frac{1}{y}\right) \longrightarrow \frac{\partial f}{\partial x}(2, 1) = \frac{1}{2\sqrt{2 \cdot 1 + \frac{2}{1}}} \cdot \left(1 + \frac{1}{1}\right) = \frac{2}{2\sqrt{4}} = \frac{1}{2} \\ \frac{\partial f}{\partial y} &= \frac{1}{2\sqrt{xy + \frac{x}{y}}} \cdot \left(x - \frac{y}{x^2}\right) \longrightarrow \frac{\partial f}{\partial y}(2, 1) = \frac{1}{2\sqrt{2 \cdot 1 + \frac{2}{1}}} \cdot \left(2 - \frac{2}{1}\right) = 0 \end{split}$$

El diferencial en (2,1) es:

$$df = \frac{\partial f}{\partial x}(2,1) dx + \frac{\partial f}{\partial y}(2,1) dy = \frac{1}{2} dx$$

9) Dada la función $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$\vec{f}(x,y) = (x^4 + y^3, x^2y^2 - 3y^2)$$

formar su matriz jacobiana en el punto (1,1). Comprobar que \vec{f} es diferenciable en dicho punto y calcular su diferencial.

$$f(x,y) = (x^4 + y^3, x^2y^2 - 3y^2) = \begin{cases} f_1(x,y) = x^4 + y^3 \\ f_2(x,y) = x^2y^2 - 3y^2 \end{cases}$$

$$J(f) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 4x^3 & 3y^2 \\ 2xy^2 & 2x^2y - 6y \end{pmatrix} \longrightarrow J(1,1) = \begin{pmatrix} 4 & 3 \\ 2 & -4 \end{pmatrix}$$

Como todas las funciones son continuas y con derivadas primeras continuas, podemos asegurar que es diferenciable.

Su diferencial, al ser una función vectorial, vendrá dado por:

$$df(P)(h,k) = J(f)(P)(h,k) = df(1,1)(h,k) = J(f)(1,1) \binom{h}{k}$$

$$= \binom{4}{2} \binom{3}{-4} \cdot \binom{h}{k} = \binom{4h+3k}{2h-4k} \longrightarrow df(1,1)(h,k) = (4h+3k, 2h-4k)$$

10) Dada la función $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$\vec{f}(x,y) = (x\cos y, x\sin y, x\cos y\sin y)$$

formar su matriz jacobiana en el punto $\left(\pi, \frac{\pi}{2}\right)$. Comprobar que \vec{f} es diferenciable en dicho punto y calcular su diferencial.

$$\vec{f}(x,y) = (x\cos y, x\sin y, x\cos y\sin y) = \begin{cases} f_1(x,y) = x\cos y\\ f_2(x,y) = x\sin y\\ f_3(x,y) = x\cos y\sin y \end{cases}$$

$$J(f) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos y & -x \sin y \\ \sin y & x \cos y \\ \cos y \sin y & x(-\sin^2 y + \cos^2 y) \end{pmatrix} \longrightarrow J(f) \left(\pi, \frac{\pi}{2}\right) = \begin{pmatrix} 0 & -\pi \\ 1 & 0 \\ 0 & -\pi \end{pmatrix}$$

Como todas las funciones son continuas y con derivadas primeras continuas, entonces podemos asegurar que todas las funciones coordenada son C^1 , por lo tanto la función $\vec{f}(x,y)$ es también C^1 y también es diferenciable.

$$df(P)(h,k) = J(f)(P)(h,k) = df\left(\pi, \frac{\pi}{2}\right)(h,k) = J(f)\left(\pi, \frac{\pi}{2}\right) \begin{pmatrix} h \\ k \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\pi \\ 1 & 0 \\ 0 & -\pi \end{pmatrix} \cdot \begin{pmatrix} h \\ k \end{pmatrix} = (-\pi k, h, -\pi k) \longrightarrow df\left(\pi, \frac{\pi}{2}\right)(h,k) = (-\pi k, h, -\pi k)$$

11) Comprobar que la función $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$\vec{f}(x, y, z) = (x^2 + yz - z^2, xy - xz + 2z^2, xyz)$$

es diferenciable en todo punto de \mathbb{R}^3 y calcularla en el punto (3,2,1)

$$\vec{f}(x,y,z) = (x^2 + yz - z^2, xy - xz + 2z^2, xyz) = \begin{cases} f_1(x,y,z) = x^2 + yz - z^2 \\ f_2(x,y,z) = xy - xz + 2z^2 \\ f_3(x,y,z) = xyz \end{cases}$$

Como todas las funciones son continuas y con derivadas primeras continuas, entonces podemos asegurar que son diferenciables, por consecuencia, $\vec{f}(x, y, z)$ también es diferenciable.

$$J(f) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{pmatrix} = \begin{pmatrix} 2x & z & y - 2z \\ y - z & x & -x + 4z \\ yz & xz & xy \end{pmatrix} \longrightarrow J(f)(3, 2, 1) = \begin{pmatrix} 6 & 1 & 0 \\ 1 & 3 & 1 \\ 2 & 3 & 6 \end{pmatrix}$$

Su diferencial al ser una función vectorial, vendrá dado por:

$$df(P)(h,k,j) = J(f)(P)(h,k,j) \longrightarrow df(3,2,1)(h,k,j) = J(f)(3,2,1) \begin{pmatrix} h \\ k \\ j \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 1 & 0 \\ 1 & 3 & 1 \\ 2 & 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} h \\ k \\ j \end{pmatrix} = (6h+k, h+3k+j, 2h+3k+6j)$$

$$\longrightarrow df(3,2,1)(h,k,j) = (6h+k, h+3k+j, 2h+3k+6j)$$

12) Calcular la matriz jacobiana de las siguientes funciones:

a)
$$f(x, y, z) = x^{y+z}$$

$$J(f) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} (y+z)x^{y+z-1} & x^{y+z} \cdot \ln(x) & x^{y+z} \cdot \ln(x) \end{pmatrix}$$

b) $f(x, y, z) = x^{y^2}$

$$J(f) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} y^z \cdot x^{y^z - 1} & x^{y^z} \cdot \ln(x) \cdot z \cdot y^{z - 1} & x^{y^z} \cdot \ln(x) \cdot y^z \cdot \ln(y) \end{pmatrix}$$

c) $f(x, y, z) = \sin(x \sin(y \sin z))$

$$\begin{split} J(f) &= \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \quad \frac{\partial f}{\partial z}\right) \\ &= \left(\cos(x\sin(y\sin z)) \cdot \left(\sin(y\sin z)\right), \cos(x\sin(y\sin z)) \cdot x \cdot \cos(y\sin z) \cdot \sin z, \cos(x\sin(y\sin z)) \cdot x \cdot \cos(y\sin z) \cdot y \cos z\right) \end{split}$$

d) $\vec{f}(x,y) = (\sin(xy), \sin(x\sin y), x^4)$

$$J(f) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos(xy) \cdot y & \cos(x,y) \cdot x \\ \cos(x\sin y) \cdot \sin y & \cos(x\sin y) \cdot x \cdot \cos(y) \\ 4x^3 & 0 \end{pmatrix}$$

13) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$f(x,y) = \begin{cases} \left(x^2 + x^2 \sin \frac{1}{x}, y\right) & \text{si } (x,y) \neq (0,0) \\ (0,y) & \text{si } (x,y) = (0,y) \end{cases}$$

Comprobar que f es diferenciable.

$$f(x,y) = \begin{cases} \left(x^2 + x^2 \sin\frac{1}{x}, y\right) & \text{si } x \neq 0\\ (0,y) & \text{si } x = 0 \end{cases}$$

• Caso $x \neq 0$:

La función es C^1 en esta región porque las funciones x^2 , $\sin \frac{1}{x}$, y y son derivables, y no hay discontinuidades cuando $x \neq 0$. Por lo tanto, f es diferenciable en esta región.

• Caso x = 0:

Cuando x = 0, la función se define como

$$f(x,y) = (0,y)$$

En este caso, debemos comprobar la diferenciabilidad en el punto $(0, y_0)$ para cualquier y_0 . Empezamos calculando las derivadas parciales.

• Primera componente $f_1(x,y)$:

$$f_1(x,y) = \begin{cases} x^2 + x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Para $x \neq 0$, la derivada parcial respecto a x es:

$$\frac{\partial f_1}{\partial x} = 2x + 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \cdot \left(-\frac{1}{x^2}\right) = 2x + 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

• Segunda componente $f_2(x,y)$:

$$f_2(x,y) = y$$

La derivada parcial respecto a y es constante, y vale 1 en todo \mathbb{R}^2 .

En el caso x=0, el comportamiento de $\frac{\partial f_1}{\partial x}$ es consistente con la definición y es continuo. Por lo tanto, todas las derivadas son continuas en $(0, y_0)$.

Dado que la función f(x,y) es de clase C^1 en $x \neq 0$ y las derivadas parciales son continuas en x=0, podemos concluir que f(x,y) es diferenciable en \mathbb{R}^2 .

14) Sabiendo que
$$f(x,y) = \sqrt{\log(xy) + \arcsin\frac{y}{x}}$$
, calcular

$$xf(x,y)D_1f(x,y) + yf(x,y)D_2f(x,y).$$

$$\frac{\partial f}{\partial x} = \frac{1}{2\sqrt{\log(xy) + \arcsin\frac{y}{x}}} \cdot \left(\frac{1}{xy} \cdot y + \frac{1}{\sqrt{1 - \frac{y^2}{x^2}}} \cdot \left(-\frac{y}{x^2}\right)\right)$$

$$\frac{\partial f}{\partial y} = \frac{1}{2\sqrt{\log(xy) + \arcsin\frac{y}{x}}} \cdot \left(\frac{1}{xy} \cdot x + \frac{1}{\sqrt{1 - \frac{y^2}{x^2}}} \cdot \frac{1}{x}\right)$$

$$xf(x, y)D_1f(x, y) + yf(x, y)D_2f(x, y) = x \cdot \sqrt{\log(xy) + \arcsin\frac{y}{x}} \cdot \frac{1}{2\sqrt{\log(xy) + \arcsin\frac{y}{x}}} \left(\frac{1}{x} - \frac{y}{x^2\sqrt{1 - \frac{y^2}{x^2}}}\right)$$

$$+ y \cdot \sqrt{\log(xy) + \arcsin\frac{y}{x}} \cdot \frac{1}{2\sqrt{\log(xy) + \arcsin\frac{y}{x}}} \left(\frac{1}{y} + \frac{1}{x\sqrt{1 - \frac{y^2}{x^2}}}\right)$$

$$= \frac{1}{2} - \frac{y}{2x\sqrt{1 - \frac{y^2}{x^2}}} + \frac{1}{2} + \frac{y}{2x\sqrt{1 - \frac{y^2}{x^2}}} = 1$$

15) Sabiendo que $f(x,y) = \sin \frac{2x+y}{2x-y}$, calcular

$$xD_1f(x,y) + yD_2f(x,y).$$

$$\frac{\partial f}{\partial x} = \cos \frac{2x + y}{2x - y} \cdot \left(\frac{2 \cdot (2x - y) - (2x + y) \cdot 2}{(2x - y)^2} \right) = \cos \frac{2x + y}{2x - y} \cdot \left(\frac{4x - 2y - 4x - 2y}{(2x - y)^2} \right) = \cos \frac{2x + y}{2x - y} \cdot \left(\frac{-4y}{(2x - y)^2} \right)$$

$$\frac{\partial f}{\partial y} = \cos \frac{2x + y}{2x - y} \cdot \left(\frac{1 \cdot (2x - y) - (2x + y) \cdot (-1)}{(2x - y)^2} \right) = \cos \frac{2x + y}{2x - y} \cdot \left(\frac{2x - y + 2x + y}{(2x - y)^2} \right) = \cos \frac{2x + y}{2x - y} \cdot \left(\frac{4x}{(2x - y)^2} \right)$$

$$xD_1 f(x, y) + yD_2 f(x, y) = x \cdot \cos \frac{2x + y}{2x - y} \cdot \left(\frac{-4y}{(2x - y)^2} \right) + y \cdot \cos \frac{2x + y}{2x - y} \cdot \left(\frac{4x}{(2x - y)^2} \right)$$

$$= \cos \frac{2x + y}{2x - y} \cdot \left(\frac{-4xy}{(2x - y)^2} + \frac{4xy}{(2x - y)^2} \right) = 0$$

16) Hallar la ecuación del plano tangente a la superficie $z = x^2 + y^2$ en los punto (0,0) y (1,2).

La ecuación del plano tangente, viene dada por:

$$z - c = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$$

• Para el punto (0,0):

$$\begin{split} c &= f(0,0) = 0 \\ \frac{\partial f}{\partial x} &= 2x \longrightarrow \frac{\partial f}{\partial x}(0,0) = 0 \\ \frac{\partial f}{\partial y} &= 2y \longrightarrow \frac{\partial f}{\partial y}(0,0) = 0 \end{split} \qquad z - 0 = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y \longrightarrow z = 0 \end{split}$$

• Para el punto (1, 2)

$$c = f(1,2) = 1^2 + 2^2 = 5$$

$$\frac{\partial f}{\partial x} = 2x \longrightarrow \frac{\partial f}{\partial x}(1,2) = 2$$

$$\frac{\partial f}{\partial y} = 2y \longrightarrow \frac{\partial f}{\partial y}(1,2) = 4$$

$$z - 5 = \frac{\partial f}{\partial x}(1,2)(x-1) + \frac{\partial f}{\partial y}(1,2)(y-2) \longrightarrow z - 5 = 2(x-1) + 4(y-2)$$

$$\longrightarrow z = 2x - 2 + 4y - 8 + 5$$

$$\longrightarrow z = 2x + 4y - 5$$

17) Hallar la ecuación del plano tangente a la superficie $z = \log x^2 + \log y^2$ en los puntos (3,1) y (x_0, y_0) .

La del plano tangente, viene dada por:

$$z - c = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$$

• Para el punto (3,1):

$$c = f(3,1) = \log(3^2) + \log(1^2) = \log(9 \cdot 1) = \log(9)$$

$$\frac{\partial f}{\partial x} = \frac{1}{x^2} \cdot 2x = \frac{2}{x} \longrightarrow \frac{\partial f}{\partial x}(3,1) = \frac{2}{3}$$

$$z - \log(9) = \frac{2}{3}(x-3) + 2(y-1)$$

$$z = \frac{2}{3}x - 2 + 2y - 2 + \log(9)$$

$$z = \frac{2}{3}x - 2 + 2y - 2 + \log(9)$$

$$z = \frac{2}{3}x + 2y - 4 + \log(9)$$

• Para el punto (x_0)

$$c = f(x_0, y_0) = \log(x_0^2) + \log(y_0^2) = \log(x_0 \cdot y_0)$$

$$\frac{\partial f}{\partial x} = \frac{1}{x^2} \cdot 2x = \frac{2}{x} \longrightarrow \frac{\partial f}{\partial x}(x_0, y_0) = \frac{2}{x_0}$$

$$z - \log(x_0 \cdot y_0) = \frac{2}{x_0}(x - x_0) + \frac{2}{y_0}(y - y_0)$$

$$\frac{\partial f}{\partial y} = \frac{1}{y^2} \cdot 2y = \frac{2}{y} \longrightarrow \frac{\partial f}{\partial y}(x_0, y_0) = \frac{2}{y_0}$$

18) Sea A un abierto de \mathbb{R}^3 y $f:A\subseteq\mathbb{R}^3\to\mathbb{R}$. Supongamos que f es diferenciable en un punto $(a_1,a_2,a_3)\in A$ y que $Df(a_1,a_2,a_3)(x_1,x_2,x_3)=x_1+x_2+x_3$ para todo $(x_1,x_2,x_3)\in\mathbb{R}^3$. Calcular $D_{\rm v}f(a_1,a_2,a_3)$ siendo v el vector siguiente:

Sabemos que la derivada linea $Df(a_1, a_2, a_3)(x_1, x_2, x_3)$ es:

$$Df(a_1, a_2, a_3)(x_1, x_2, x_3) = x_1 + x_2 + x_3.$$

Esto implica que el gradiente de f en cualquier punto (a_1, a_2, a_3) es:

$$\nabla f(a_1, a_2, a_3) = (1, 1, 1)$$

La derivada direccional en la dirección del vector $\mathbf{v} = (v_1, v_2, v_3)$ se calcula como:

$$D_{\mathbf{v}}f(a_1, a_2, a_3) = \nabla f(a_1, a_2, a_3) \cdot \mathbf{v} = (1, 1, 1) \cdot (v_1, v_2, v_3).$$

El producto escalar es:

$$D_{\mathbf{v}}f(a_1, a_2, a_3) = 1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 = v_1 + v_2 + v_3.$$

a) v = (1, 2, 3)

$$D_{\mathbf{v}}f(a_1, a_2, a_3) = 1 + 2 + 3 = 6$$

b) v = (0, 1, 1)

$$D_{\mathbf{v}}f(a_1, a_2, a_3) = 0 + 1 + 1 = 2$$

c) v = (-1, 1, 2)

$$D_{\mathbf{v}}f(a_1, a_2, a_3) = -1 + 1 + 2 = 2$$

19) Sea A un abierto de \mathbb{R}^3 y $\vec{f}: A \subseteq \mathbb{R}^3 \to \mathbb{R}^2$. Supongamos que \vec{f} es diferenciable en un punto $(a_1, a_2, a_3) \in A$. Si $\vec{f} = (f_1, f_2)$ y $D_{v_i} f_j(a_1, a_2, a_3) = i + j$ para j = 1, 2 e i = 1, 2, 3 donde $v_1 = (1, 1, 1), v_2 = (0, 1, 1)$ y $v_3 = (0, 0, 1)$, determinar el diferencial de \vec{f} en dicho punto.

Para determinar diferencial de la función vectorial \vec{f} en el punto (a_1, a_2, a_3) , recordemos que el diferencial es una matriz 2×3 que contiene las derivadas parciales de cada componente de \vec{f} :

$$Df(a_1, a_2, a_3) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{bmatrix}.$$

Dado que conocemos las derivadas direccionales de f_1 y f_2 en las direcciones de los vectores $v_1 = (1, 1, 1)$, $v_2 = (0, 1, 1)$ y $v_3 = (0, 0, 1)$, podemos usar la relación entre la derivada direccional y las derivadas parciales:

$$D_{\mathbf{v}_i} f_j(a_1, a_2, a_3) = \nabla f_j(a_1, a_2, a_3) \cdot \mathbf{v}_i,$$

donde
$$\nabla f_j(a_1, a_2, a_3) = \left(\frac{\partial f_j}{\partial x_1}, \frac{\partial f_j}{\partial x_2}, \frac{\partial f_j}{\partial x_3}\right).$$

Con esta información, determinaremos las derivadas parciales.

• Componente $f_1(j=1)$:

1) Para
$$i = 1(v_1 = (1, 1, 1))$$
:

$$D_{v_1}f_1(a_1, a_2, a_3) = \frac{\partial f_1}{\partial x_1} \cdot 1 + \frac{\partial f_1}{\partial x_2} \cdot 1 + \frac{\partial f_1}{\partial x_3} \cdot 1 = 1 + 1 = 2 \longrightarrow \frac{\partial f_1}{\partial x_1} + \frac{\partial f_1}{\partial x_2} + \frac{\partial f_1}{\partial x_3} = 2$$

2) Para $i = 2(v_2 = (0, 1, 1))$:

$$D_{\mathbf{v}_2}f_1(a_1,a_2,a_3) = \frac{\partial f_1}{\partial x_1} \cdot 0 + \frac{\partial f_1}{\partial x_2} \cdot 1 + \frac{\partial f_1}{\partial x_3} \cdot 1 = 1 + 2 = 3 \longrightarrow \frac{\partial f_1}{\partial x_2} + \frac{\partial f_1}{\partial x_3} = 3$$

3) Para $i = 3(v_3 = (0, 0, 1))$:

$$D_{v_3}f_1(a_1, a_2, a_3) = \frac{\partial f_1}{\partial x_1} \cdot 0 + \frac{\partial f_1}{\partial x_2} \cdot 0 + \frac{\partial f_1}{\partial x_3} \cdot 1 = 1 + 3 = 4 \longrightarrow \frac{\partial f_1}{\partial x_3} = 4$$

Sustituyendo tenemos que:

$$\begin{split} \frac{\partial f_1}{\partial x_3} &= 4\\ \frac{\partial f_1}{\partial x_2} + \frac{\partial f_1}{\partial x_3} &= 2 \longrightarrow \frac{\partial f_1}{\partial x_2} = 3 - 4 = -1\\ \frac{\partial f_1}{\partial x_1} + \frac{\partial f_1}{\partial x_2} + \frac{\partial f_1}{\partial x_3} &= 2 \longrightarrow \frac{\partial f_1}{\partial x_1} = 2 - (-1) - 4 = -1 \end{split}$$

• Componente $f_2(j=2)$:

1) Para $i = 1(v_1 = (1, 1, 1))$:

$$D_{\mathbf{v}_1} f_2(a_1, a_2, a_3) = \frac{\partial f_2}{\partial x_1} \cdot 1 + \frac{\partial f_2}{\partial x_2} \cdot 1 + \frac{\partial f_2}{\partial x_3} \cdot 1 = 2 + 1 = 3 \longrightarrow \frac{\partial f_2}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_2}{\partial x_3} = 3$$

2) Para $i = 2(v_2 = (0, 1, 1))$:

$$D_{v_2} f_2(a_1, a_2, a_3) = \frac{\partial f_2}{\partial x_1} \cdot 0 + \frac{\partial f_2}{\partial x_2} \cdot 1 + \frac{\partial f_2}{\partial x_3} \cdot 1 = 2 + 2 = 4 \longrightarrow \frac{\partial f_2}{\partial x_2} + \frac{\partial f_2}{\partial x_3} = 4$$

3) Para $i = 3(v_3 = (0, 0, 1))$:

$$D_{\mathbf{v}_3}f_2(a_1,a_2,a_3) = \frac{\partial f_2}{\partial x_1} \cdot 0 + \frac{\partial f_2}{\partial x_2} \cdot 0 + \frac{\partial f_2}{\partial x_3} \cdot 1 = 2 + 3 = 5 \longrightarrow \frac{\partial f_2}{\partial x_3} = 5$$

Sustituyendo tenemos que:

$$\begin{aligned} \frac{\partial f_2}{\partial x_3} &= 5\\ \frac{\partial f_2}{\partial x_2} + \frac{\partial f_2}{\partial x_3} &= 4 \longrightarrow \frac{\partial f_2}{\partial x_2} = 4 - 5 = -1\\ \frac{\partial f_2}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_2}{\partial x_3} &= 3 \longrightarrow \frac{\partial f_2}{\partial x_1} = 3 - (-1) - 5 = -1 \end{aligned}$$

El diferencial de \vec{f} en el punto (a_1, a_2, a_3) es:

$$Df(a_1, a_2, a_3) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{x_3} \end{bmatrix} = \begin{bmatrix} -1 & -1 & 4 \\ -1 & -1 & 5 \end{bmatrix}$$

20) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x \sin y - y \sin x}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Comprobar que existen las derivadas parciales segundas $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ y $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Primero verificamos las derivadas parciales de primer orden en (0,0). Para calcular las derivadas parciales, tomamos los límites respectivos:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$
$$\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0 - 0}{k} = 0$$

Ahora calculamos las derivadas parciales mixtas en (0,0):

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}(x,y) \right) = \frac{\partial}{\partial x} \left(\frac{(x \cos y - \sin x)(x^2 + y^2) - (x \sin y - y \sin x) \cdot 2y}{(x^2 + y^2)^2} \right)$$

Ahora calculamos el límite cuando $x \to 0$ para evaluar $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (0,0)$.

$$\lim_{h \to 0} \frac{\frac{\partial f}{\partial y}(h,0) - \frac{\partial f}{\partial y}(0,0)}{h} = (*) = \lim_{h \to 0} \frac{\frac{h - \sin h}{h^2} - 0}{h} = \left\{ \sin h \approx h - \frac{h^3}{6} \right\} = \lim_{h \to 0} \frac{\cancel{h} - \left(\cancel{h} - \frac{h^3}{6}\right)}{h^3} = \lim_{h \to 0} \frac{\frac{h^3}{6}}{h^3} = \frac{1}{6}$$

$$(*) = \frac{\partial f}{\partial u}(h,0) = \frac{(h\cos 0^{-1}\sin h) \cdot h^{2}}{h^{4}} = \frac{h - \sin h}{h^{2}}$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}(x,y) \right) = \frac{\partial}{\partial y} \left(\frac{(\sin y - y \cos x) \cdot (x^2 + y^2) - (x \sin y - y \sin x) \cdot 2x}{(x^2 + y^2)^2} \right)$$

Ahora calculamos el límite cuando $y \to 0$ para evaluar $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) (0, 0)$.

$$\lim_{k \to 0} \frac{\frac{\partial f}{\partial x}(0, k) - \frac{\partial f}{\partial x}(0, 0)}{k} = (*) = \lim_{k \to 0} \frac{\frac{\sin k - k}{k^2} - 0}{k} = \left\{ \sin k \approx k - \frac{k^3}{6} \right\} = \lim_{k \to 0} \frac{\left(k - \frac{k^3}{6}\right) - k}{k^3} = \lim_{k \to 0} -\frac{\frac{k^3}{6}}{k^3} = -\frac{1}{6}$$

$$(*) = \frac{\partial f}{\partial x}(0, k) = \frac{\left(\sin k - k\cos 0\right)^{1} k^{2}}{k^{4}} = \frac{\sin k - k}{k^{2}}$$

21) Se consideran las funciones $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$ y $\vec{g}: \mathbb{R}^2 \to \mathbb{R}^2$ definidas por $\vec{f}(x,y) = (x^2y^4, x^3y^3 + 4xy^2)$ y $\vec{g}(x,y) = (x\sin y, y\sin x)$. Sea $\vec{F} = \vec{g} \circ \vec{f}$. Calcular la matriz jacobiana de \vec{F} en el punto (2, -1)

La composición $f \circ g$ viene dada por:

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2 \xrightarrow{g \circ f} \mathbb{R}^2$$

$$(2,-1) \xrightarrow{(4,0)} \mathbb{R}^2$$

$$J(f) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 2xy^4 & 4x^2y^3 \\ 3x^2y^3 + 4y^2 & 3x^3y^2 + 8xy \end{pmatrix} \longrightarrow J(f)(2, -1) = \begin{pmatrix} 4 & -16 \\ -8 & 8 \end{pmatrix}$$

$$J(g) = \begin{pmatrix} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \end{pmatrix} = \begin{pmatrix} \sin y & x \cos y \\ y \cos x & \sin x \end{pmatrix} \longrightarrow J(g)(4,0) = \begin{pmatrix} 0 & 4 \\ 0 & \sin 4 \end{pmatrix}$$

$$J(F)(2,-1) = J(g)(4,0) \cdot J(f)(2,-1) = \begin{pmatrix} 0 & 4 \\ 0 & \sin 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & -16 \\ -8 & 8 \end{pmatrix} = \begin{pmatrix} -32 & 32 \\ -8\sin 4 & 8\sin 4 \end{pmatrix}$$

22) Se consideran las funciones $\vec{f}: \mathbb{R} \to \mathbb{R}^3$ y $\vec{g}: \mathbb{R}^3 \to \mathbb{R}^2$ definidas por $\vec{f}(t) = (t^2, 3t - 1, 1 - t^2)$ y $\vec{g}(x, y, z) = (x^2 - y - zx, y^2 + xy + z^2)$. Sean $\vec{F} = \vec{g} \circ \vec{f}$. Calcular la matriz jacobiana de \vec{F} en el punto -1. ¿Es posible calcular la matriz jacobiana de la función $\vec{G} = \vec{f} \circ \vec{g}$ en el punto (1, 1, 1)?

$$\vec{F}(t) = \vec{g}(\vec{f}(t)) = \vec{g}(t^2, 3t - 1, 1 - t^2)$$

Sustituyendo $(x, y, z) = (t^2, 3t - 1, 1 - t^2)$ en \vec{g} :

$$\vec{F}(t) = \begin{pmatrix} (t^2)^2 - (3t - 1) - (1 - t^2) \cdot t^2 \\ (3t - 1)^2 + t^2 \cdot (3t - 1) + (1 - t^2)^2 \end{pmatrix} = \begin{pmatrix} t^4 - 3t + 1 - t^2 + t^4 \\ 9t^2 - 6t + 1 + 3t^3 - t^2 + t^4 - 2t^2 + 1 \end{pmatrix} = \begin{pmatrix} 2t^4 - t^2 - 3t + 1 \\ t^4 + 3t^3 + 6t^2 - 6t + 2 \end{pmatrix}$$

$$J_{\vec{F}}(t) = \begin{pmatrix} \frac{\partial F_1}{\partial t} \\ \frac{\partial F_2}{\partial t} \end{pmatrix} = \begin{pmatrix} 8t^3 - 2t - 3 \\ 4t^3 + 9t^2 + 12t - 6 \end{pmatrix} \longrightarrow J_{\vec{F}}(-1) = \begin{pmatrix} -9 \\ -13 \end{pmatrix}$$

Composición de $\vec{G} = \vec{f} \circ \vec{g}$:

Para que la composición $\vec{f} \circ \vec{g}$ esté definida, la función \vec{g} debe producir un resultado en \mathbb{R} , pero $\vec{g}(x,y,z) : \mathbb{R}^3 \to \mathbb{R}^2$. Esto hace que la composición $\vec{f} \circ \vec{g}$ no sea válida, ya que los dominios y codominios no son compatibles.

23) Hallar la expresión de las derivadas parciales de la función $F:\mathbb{R}^2\to\mathbb{R}$ definida por

$$F(x,y) = f(g(x)k(y), g(x) + h(y))$$

donde $f: \mathbb{R}^2 \to \mathbb{R}$ es de clase $C^1(\mathbb{R})$ y $g, h, k: \mathbb{R} \to \mathbb{R}$ son de clase $C^1(\mathbb{R})$.

La función f(u,v) depende de dos variables:

- u = g(x)k(y)
- v = g(x) + h(y)

$$\begin{cases} \frac{\partial F}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial F}{\partial y} = \frac{\partial f}{\partial y} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{cases}$$

$$\begin{split} \frac{\partial u}{\partial x} &= g'(x)h(y) \\ \frac{\partial v}{\partial x} &= g'(x) \\ \frac{\partial F}{\partial x} &= \frac{\partial f}{\partial u} \cdot g'(x)h(y) + \frac{\partial f}{\partial v} \cdot g'(x) \\ \frac{\partial u}{\partial y} &= g(x)h'(y) \\ \frac{\partial v}{\partial y} &= h'(y) \\ \frac{\partial F}{\partial y} &= \frac{\partial f}{\partial u} \cdot g(x)h'(y) + \frac{\partial f}{\partial v} \cdot h'(y) \end{split}$$

24) Calcular la expresión de las derivadas parciales de la función $F:\mathbb{R}^3 \to \mathbb{R}$ dada por

$$F(x, y, z) = f(x^y, y^z, z^x)$$

donde $f: M \subseteq \mathbb{R}^3 \to \mathbb{R}$ es una función de clase $C^1(M)$ con

$$M = \{(x, y, z) : x > 0, y > 0, z > 0\}.$$

La función F(x, y, z) puede escribirse como:

$$F(x, y, z) = f(u(x, y, z), v(x, y, z), w(x, y, z))$$

donde

$$u(x, y, z) = x^y$$
, $v = (x, y, z) = y^z$, $w(x, y, z) = z^x$

$$\begin{cases} \frac{\partial F}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial x} \\ \frac{\partial F}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial y} \\ \frac{\partial F}{\partial z} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial z} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial z} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial z} \end{cases}$$

$$\begin{split} \frac{\partial u}{\partial x} &= y \cdot x^{y-1} \\ \frac{\partial v}{\partial x} &= 0 \\ \frac{\partial w}{\partial x} &= z^x \cdot \ln(z) \\ \frac{\partial F}{\partial x} &= \frac{\partial f}{\partial u} \cdot y \cdot x^{y-1} + \frac{\partial f}{\partial w} \cdot z^x \cdot \ln(z) \\ \frac{\partial u}{\partial y} &= x^y \ln(x) \\ \frac{\partial v}{\partial y} &= z \cdot y^{z-1} \\ \frac{\partial w}{\partial y} &= 0 \\ \frac{\partial F}{\partial y} &= \frac{\partial f}{\partial u} \cdot x^y \ln(x) + \frac{\partial f}{\partial v} \cdot z \cdot y^{z-1} \\ \frac{\partial u}{\partial z} &= 0 \\ \frac{\partial v}{\partial z} &= y^z \ln(y) \\ \frac{\partial w}{\partial z} &= x \cdot z^{x-1} \\ \frac{\partial F}{\partial z} &= \frac{\partial f}{\partial v} \cdot y^z \ln(y) + \frac{\partial f}{\partial w} \cdot x \cdot z^{x-1} \\ \end{split}$$
Calcular la expression de las derivadas

25) Calcular la expresión de las derivadas parciales de las funciones $F:\mathbb{R}^3 \to \mathbb{R}$ dadas por

a)
$$F(x,y,z) = \int_0^{x+y+z} \sin t \, dt$$

Según la regla de Leibniz, la derivada parcial de F(x, y, z) respecto a cada variable es:

$$\frac{\partial F}{\partial x} = \sin(x+y+z) \cdot \frac{\partial(x+y+z)}{\partial x} = \sin(x+z+y)$$

$$\frac{\partial F}{\partial y} = \sin(x+y+z) \cdot \frac{\partial(x+y+z)}{\partial y} = \sin(x+z+y)$$

$$\frac{\partial F}{\partial z} = \sin(x+y+z) \cdot \frac{\partial(x+y+z)}{\partial z} = \sin(x+z+y)$$

b)
$$F(x,y,z) = \int_0^{xyz} t \sin t \, dt$$

Según la regla de Leibniz, la derivada parcial de F(x,y,z) respecto a cada variable es:

$$\frac{\partial F}{\partial x} = \sin(xyz) \cdot \frac{\partial(xyz)}{\partial x} = \sin(x+z+y) \cdot yz$$

$$\frac{\partial F}{\partial y} = \sin(xyz) \cdot \frac{\partial(xyz)}{\partial y} = \sin(x+z+y) \cdot xz$$

$$\frac{\partial F}{\partial z} = \sin(xyz) \cdot \frac{\partial(xyz)}{\partial z} = \sin(x+z+y) \cdot xy$$

c)
$$F(x,y,z) = \int_{x^2+u^2}^{xyz} \sin t \, dt$$

Según la regla de Leibniz, la derivada parcial de F(x, y, z) respecto a cada variable es:

$$\frac{\partial F}{\partial x} = \sin(xyz) \cdot \frac{\partial(xyz)}{\partial x} - \sin(x^2 + y^2) \frac{\partial(x^2 + y^2)}{\partial x} = \sin(x + z + y) \cdot yz - \sin(x^2 + y^2) \cdot 2x$$

$$\frac{\partial F}{\partial y} = \sin(xyz) \cdot \frac{\partial(xyz)}{\partial y} - \sin(x^2 + y^2) \frac{\partial(x^2 + y^2)}{\partial y} = \sin(x + z + y) \cdot xz - \sin(x^2 + y^2) \cdot 2y$$

$$\frac{\partial F}{\partial z} = \sin(xyz) \cdot \frac{\partial(xyz)}{\partial x} - \sin(x^2 + y^2) \frac{\partial(x^2 + y^2)}{\partial z} = \sin(x + z + y) \cdot xy$$

26) Sea $f: \mathbb{R} \to \mathbb{R}$ una función de clase $C^2(\mathbb{R}, \mathbb{R})$ y sea $F: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$F(x,y) = f\left(\frac{1}{y} - \frac{1}{x}\right) \text{ con } x, y \neq 0.$$

Comprobar que se satisfacen las siguientes igualdades:

a)
$$x^{2} \frac{\partial F}{\partial x}(x, y) + y^{2} \frac{\partial F}{\partial y}(x, y) = 0$$
$$\frac{\partial F}{\partial x} = \frac{1}{x^{2}}$$
$$\frac{\partial F}{\partial y} = -\frac{1}{y^{2}}$$
$$x^{2} \cdot \frac{1}{x^{2}} + y^{2} \cdot \left(-\frac{1}{y^{2}}\right) = 1 - 1 = 0$$

b)
$$xy(x+y)\frac{\partial^2 F}{\partial x \partial y}(x,y) + x^2 \frac{\partial^2 F}{\partial x^2}(x,y) + y^2 \frac{\partial^2 F}{\partial y^2}(x,y) = 0$$

$$\frac{\partial^2 F}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{1}{y} - \frac{1}{x}\right)\right) = \frac{\partial}{\partial x} \left(\frac{1}{x^2}\right) = -\frac{2}{x^3}$$

$$\frac{\partial^2 F}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(\frac{1}{y} - \frac{1}{x}\right)\right) = \frac{\partial}{\partial y} \left(-\frac{1}{y^2}\right) = \frac{2}{y^3}$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(\frac{1}{y} - \frac{1}{x}\right)\right) = \frac{\partial}{\partial x} \left(-\frac{1}{y^2}\right) = 0$$

$$xy(x+y) \cdot 0 + x^2 \cdot \left(-\frac{2}{x^3}\right) + y^2 \cdot \frac{2}{y^3} = -\frac{2}{x} + \frac{2}{y} \neq 0$$

27) Sea $f:\mathbb{R}\to\mathbb{R}$ una función de clase $C^2(\mathbb{R})$ y sea $F:\mathbb{R}^2\to\mathbb{R}$ definida por

$$F(x,y) = \frac{f\left(\frac{y}{x}\right)}{x} \text{ con } x \neq 0.$$

Comprobar que se satisfacen las igualdades:

$$a) \ x \frac{\partial F}{\partial x}(x,y) + y \frac{\partial F}{\partial y}(x,y) + F(x,y) = 0$$

$$\frac{\partial F}{\partial x} = \frac{\partial}{\partial x} \left(\frac{f\left(\frac{y}{x}\right)}{x} \right) = \frac{x \cdot f'\left(\frac{y}{x}\right) \cdot \left(-\frac{y}{x^2}\right) + \left(\frac{y}{x}\right) \cdot 1}{x^2} = \frac{-f'\left(\frac{y}{x}\right) \cdot \frac{y}{x} - f\left(\frac{y}{x}\right)}{x^2}$$

$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial x} \left(\frac{f\left(\frac{y}{x}\right)}{x} \right) = \frac{1}{x} f'\left(\frac{y}{x}\right) \cdot \frac{1}{x} = \frac{f'\left(\frac{y}{x}\right)}{x^2}$$

$$\cancel{x} \cdot \left(\frac{-f'\left(\frac{y}{x}\right) \cdot \frac{y}{x} - f\left(\frac{y}{x}\right)}{x^2} \right) + y \cdot \left(\frac{f'\left(\frac{y}{x}\right)}{x^2} \right) + \frac{f\left(\frac{y}{x}\right)}{x} = \frac{-f'\left(\frac{y}{x}\right) \cdot \frac{y}{x} - f\left(\frac{y}{x}\right)}{x} + \frac{y \cdot f'\left(\frac{y}{x}\right)}{x^2} + \frac{f\left(\frac{y}{x}\right)}{x} = -\frac{f'\left(\frac{y}{x}\right) \cdot y}{x^2} + \frac{y \cdot f'\left(\frac{y}{x}\right)}{x^2} = 0$$

$$\begin{array}{l} \mathbf{b)} \ \ x^2 \frac{\partial^2 F}{\partial x^2}(x,y) + y^2 \frac{\partial^2 F}{\partial y^2}(x,y) + 2xy \frac{\partial^2 F}{\partial x \partial y}(x,y) = 2F(x,y) \\ \\ \frac{\partial^2 F}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{-f'\left(\frac{y}{x}\right) \cdot \frac{y}{x} - f\left(\frac{y}{x}\right)}{x^2} \right) = \frac{2f''\left(\frac{y}{x}\right) \cdot \frac{y^2}{x^4} + 2f'\left(\frac{y}{x}\right) \cdot \frac{y}{x^3}}{x^2} \\ \\ \frac{\partial^2 F}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{f'\left(\frac{y}{x}\right)}{x} \right) = \frac{f''\left(\frac{y}{x}\right)}{x^4} \\ \\ \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{f'\left(\frac{y}{x}\right)}{x} \right) = \frac{-f''\left(\frac{y}{x}\right) \cdot \frac{y}{x^3}}{x^2} \end{array}$$

Sustituimos $x = \sin t$ y $y = \sin t$ en $f(x, y) = x^2 + y^2$:

$$F(t) = f(x(t), y(t)) = (\sin t)^{2} + t^{2}$$

• Primera derivada:

Usamos la regla de la derivada para cada término:

$$F'(t) = \frac{\partial}{\partial t}(\sin^2 t) + \frac{\partial}{\partial t}(t^2) = 2 \cdot \sin t \cdot \cos t + 2t$$

• Segunda derivada:

Usamos la regla de la derivada en cada término:

$$F''(t) = \frac{\partial}{\partial t}(2 \cdot \sin t \cdot \cos t) + \frac{\partial}{\partial t}(2t) = 2 \cdot [\cos t \cdot \cos t + \sin t \cdot (-\sin t)] + 2 = 2(\cos^2 t - \sin^2 t) + 2$$

• Tercera derivada:

$$F'''(t) = \frac{\partial}{\partial t}(2(\cos^2 t - \sin^2 t) + \frac{\partial}{\partial t}(2) = 2 \cdot (2 \cdot \cos t(-\sin t) - 2\sin t\cos t) + 0 = -2 \cdot (-4\cos t\sin t) = -8\cos t\sin t$$

29) Dada f(x, y, z) se define el gradiente de f como

$$\operatorname{grad} f(x,y,z) = \left(\frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z)\right).$$

Dadas las coorenadas cilíndricas de \mathbb{R}^3

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

obtener el gradiente de f en estas coordenadas.

$$x \qquad \begin{cases} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta} \cdot \frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} \\ \frac{\partial f}{\partial y} = \frac{\partial f}{\partial r} \cdot \frac{\partial r}{\partial y} + \frac{\partial f}{\partial \theta} \cdot \frac{\partial \theta}{\partial y} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial y} \\ \frac{\partial f}{\partial z} = \frac{\partial f}{\partial r} \cdot \frac{\partial r}{\partial z} + \frac{\partial f}{\partial \theta} \cdot \frac{\partial \theta}{\partial z} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial z} \\ \frac{\partial z}{\partial z} = \frac{\partial f}{\partial r} \cdot \frac{\partial r}{\partial z} + \frac{\partial f}{\partial \theta} \cdot \frac{\partial \theta}{\partial z} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial z} \end{cases}$$

1) Relación para r:

$$r = \sqrt{x^2 + y^2}, \quad \frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}, \quad \frac{\partial r}{\partial z} = 0$$

2) Relación para θ :

$$\theta = \tan^{-1}\left(\frac{y}{x}\right), \quad \frac{\partial \theta}{\partial x} = -\frac{y}{x^2 + y^2}, \quad \frac{\partial \theta}{\partial y} = \frac{x}{x^2 + y^2}, \quad \frac{\partial \theta}{\partial z} = 0$$

3) Relación para z:

$$z = z$$
, $\frac{\partial z}{\partial x} = 0$, $\frac{\partial z}{\partial y} = 0$, $\frac{\partial z}{\partial z} = 1$

Graiente en coordenadas cilíndricas:

El gradiente en coordenadas cilíndricas se expresa como:

$$\mathrm{grad}f(r,\theta,z) = \left(\frac{\partial f}{\partial r}, \frac{1}{r} \cdot \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial z}\right)$$

Derivamos cada componente de f(x, y, z) respecto a (r, θ, z) :

1) Derivada respecto a r:

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

2) Derivada respecto a θ :

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta}^{0} = \frac{\partial f}{\partial x} (-r \sin \theta) + \frac{\partial f}{\partial y} (r \cos \theta)$$

3) Derivada respecto a z

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z}^{0} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z}^{0} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial z} = \frac{\partial f}{\partial z}$$

30) Si ahora tenemos las coordenadas esféricas

$$\begin{cases} x = r \cos \theta \sin \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \varphi \end{cases}$$

obtener el gradiente de la función del ejercicio anterior en estas nuevas coordenadas.

El gradiente de f en coordenadas cartesianas es:

$$\operatorname{grad} f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Queremos expresar este gradiente en términos de coordenadas esféricas (r, θ, φ) .

1) Relación entre derivadas parciales

Usamos la regla de la cadena para expresar las derivadas parciales respecto a (x, y, z) en términos de (r, θ, φ) . Por la regla de la cadena:

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r}$$
$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta}$$
$$\frac{\partial f}{\partial \varphi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \varphi} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \varphi}$$

2) Gradiente en coordenadas esféricas.

$$\begin{split} \frac{\partial f}{\partial r} &= \frac{\partial f}{\partial x} \cos \theta \sin \varphi + \frac{\partial f}{\partial y} \sin \theta \sin \varphi + \frac{\partial f}{\partial z} \cos \theta \\ \frac{\partial f}{\partial \theta} &= \frac{\partial f}{\partial x} (-r \sin \theta \sin \varphi) + \frac{\partial f}{\partial y} (r \cos \theta \sin \varphi) + \frac{\partial f}{\partial z} \cdot 0 = r \sin \varphi \left(-\frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta \right) \\ \frac{\partial f}{\partial \varphi} &= \frac{\partial f}{\partial x} (r \cos \theta \cos \varphi) + \frac{\partial f}{\partial y} (r \sin \theta \cos \varphi) + \frac{\partial f}{\partial z} (-r \sin \varphi) = r \left[\cos \varphi \left(\frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta \right) - \frac{\partial f}{\partial z} \sin \varphi \right] \end{split}$$

31) Sea $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ una función de clase $C^2(\mathbb{R}^2 \setminus \{(0,0)\})$. Comprobar que

$$\frac{1}{x^2+y^2}\left(\frac{\partial^2 f}{\partial x^2}(x,y)+\frac{\partial^2 f}{\partial y^2}(x,y)\right)=4\left(\frac{\partial^2 f}{\partial u^2}(u,v)+\frac{\partial^2 f}{\partial v^2}(u,v)\right)$$

donde $u = x^2 - y^2$ y v = 2xy.

Supongamos que f es una función C^2 , dependiente de (u, v), con $u = x^2 - y^2$ y v = 2xy. Entonces, aplicamos la regla de la cadena para las derivadas parciales de f respecto a x e y:

15

• Derivada parcial de f respecto a x:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial f}{\partial u} \cdot 2x + \frac{\partial f}{\partial v} \cdot 2y.$$

• Derivada parcial de f respecto a y:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} = -\frac{\partial f}{\partial u} \cdot 2y + \frac{\partial f}{\partial v} \cdot 2x$$

Usamos nuevamente la regla de la cadena para calcular las segundas derivadas parciales.

• Seguunda derivada parcial respecto a x:

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial u} \cdot 2x + \frac{\partial f}{\partial v} \cdot 2y \right) = \frac{\partial^2 f}{\partial u^2} \cdot 2x \cdot 2x + \frac{\partial^2 f}{\partial u \partial v} \cdot 2x \cdot 2y + \frac{\partial^2 f}{\partial v \partial u} \cdot 2y \cdot 2x + \frac{\partial^2 f}{\partial v^2} \cdot 2y \cdot 2y + 2 \cdot \frac{\partial f}{\partial u} \right) \\ &= 4x^2 \frac{\partial^2 f}{\partial u^2} + 8xy \frac{\partial^2 f}{\partial u \partial v} + 4y^2 \frac{\partial^2 f}{\partial v^2} + 2\frac{\partial f}{\partial u} \end{split}$$

• Segunda derivada parcial respecto a y:

$$\begin{split} \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(-\frac{\partial f}{\partial u} \cdot 2y + \frac{\partial f}{\partial v} \cdot 2x \right) \\ &= \frac{\partial^2 f}{\partial u^2} \cdot (-2y) \cdot (-2y) + \frac{\partial^2 f}{\partial u \partial v} \cdot 2x \cdot (-2y) + \frac{\partial^2 f}{\partial v \partial u} \cdot (-2y) \cdot 2x + \frac{\partial^2 f}{\partial v^2} \cdot 2x \cdot 2x + \frac{\partial f}{\partial u} \cdot (-2y) \\ &= 4y^2 \frac{\partial^2 f}{\partial u^2} - 8xy \frac{\partial^2 f}{\partial u \partial v} + 4x^2 \frac{\partial^2 f}{\partial v^2} - 2\frac{\partial f}{\partial u} \end{split}$$

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = (4x^2 + 4y^2) \frac{\partial^2 f}{\partial u^2} + (4y^2 + 4x^2) \frac{\partial^2 f}{\partial v^2}$$

Usamos que $r^2 = x^2 + y^2$:

$$\begin{split} \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} &= 4r^2 \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} \right) \\ \frac{\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}}{x^2 + y^2} &= 4 \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} \right) \\ \frac{1}{x^2 + y^2} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) &= 4 \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} \right) \end{split}$$

1)