European Transport Simulator:

transport equations, variables and Fortran implementation

D.Kalupin, G.Pereversev, R.Stankiewicz

Table of Contents

General comments	4
Grids:	
Form of transport equations and adiabatic compression terms:	4
Generalized form of transport equations:	6
Current diffusion equation	7
Variables and units:	7
Equation:	7
Boundary Conditions:	8
Definitions for quantities derived from current equation:	9
Translation to generalized form for interface with numerical solver:	
Variables used inside fortran routines:	11
Ion density	
Variables and units:	14
Equation:	14
Boundary Conditions:	
Definitions for quantities derived from ion density equation:	16
Translation to generalized form for interface with numerical solver:	
Variables used inside fortran routines:	18
Electron density	
Variables and units:	
Equation:	
Boundary Conditions:	
Definitions for quantities derived from electron density equation:	
Translation to generalized form for interface with numerical solver:	
Variables used inside fortran routines:	
Quasi-neutrality condition	
Variables and units	
Equations:	
Definitions for quantities derived from quasi-neutrality conditions:	
Variables used inside fortran routines:	
Ion temperatures	
Variables and units:	
Equation:	30
Boundary Conditions:	
Definitions for quantities derived from ion temperature equation:	
Translation to generalized form for interface with numerical solver:	
Variables used inside fortran routines:	
Electron energy transport equation	
Variables and units:	
Equation:	
Boundary Conditions:	
Definitions for quantities derived from electron temperature equation:	
Translation to generalized form for interface with numerical solver:	41

Variables used inside fortran routines:	43
Rotation transport equation	
Variables and units:	
Equation:	46
Boundary Conditions:	
Definitions for quantities derived from rotation equation:	
Translation to generalized form for interface with numerical solver:	
Variables used inside fortran routines:	

General comments

Grids:

ETS uses two types of grids for the toroidal flux coordinate, not normalized ρ and normalized x, which are defined as:

$$\rho = \sqrt{\frac{\Phi}{\pi B_0}} \quad [m];$$

 Φ [Wb] is the toroidal flux and B_0 [T] is the magnetic field measured at the characteristic major radius of the device R_0 [m];

 $x = \frac{\rho}{\rho_b}$ [-], where ρ_b is the coordinate of plasma magnetic boundary.

$$\frac{\partial}{\partial \rho} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \rho} = \frac{1}{\rho_b} \frac{\partial}{\partial x}$$

All interfaces between different modules and subroutines use ρ as the primary coordinate, internally, transport equations are solved using x coordinate.

Use of the normalized coordinate x introduces an artificial non-physical convection term in all transport equations. Any change in the boundary value of $\rho_b(t)$ results in rearrangement of all plasma characteristics throughout the whole cross-section. In many circumstances, as the initial phase of discharge, L-H transition, strong additional heating, etc., the correction is not negligible.

Form of transport equations and adiabatic compression terms:

Consider the equation:

$$\frac{\partial}{\partial t}\Big|_{\rho} \left(\frac{\partial V}{\partial \rho} \cdot \left\langle f \right\rangle\right) + \frac{\partial}{\partial \rho} \left(\frac{\partial V}{\partial \rho} \cdot \left\langle \left| \nabla \rho \right|^{2} \right\rangle \cdot \Gamma_{\rho}\right) = \frac{\partial V}{\partial \rho} \cdot S, \qquad (0.1)$$

where:

- $\Gamma_{\rho} = \left\langle f\left(\vec{u} \vec{u}_{\rho}\right) \nabla \rho \right\rangle / \left\langle \left| \nabla \rho \right|^2 \right\rangle$ is the flux through the surface $\rho = const$. One shall note, that it is different to the diffusive flux $\Gamma_D = \left\langle f\left(\vec{u} \vec{u}_{\Phi}\right) \nabla \rho \right\rangle / \left\langle \left| \nabla \rho \right|^2 \right\rangle$. The difference between Γ_{ρ} and Γ_D can be highlighted by noting that, in absence of collisions, $\Gamma_D \equiv 0$ whereas Γ_{ρ} can be anything. On the other hand under the condition of $\dot{B}_0 = \frac{dB_0}{dt} = 0$, $\Gamma_D \equiv \Gamma_{\rho}$.
- here \vec{u} is the plasma mass velocity and \vec{u}_{ρ} is the velocity of the surface $\rho = const$
- S is the source density.

For negligible variations of f on a flux-surface, the difference between Γ_{ρ} and Γ_{D} is proportional to

$$\left\langle \left(\vec{u}_{\rho} - \vec{u}_{\Phi} \right) \cdot \nabla \rho \right\rangle = \frac{\partial \rho}{\partial t} \bigg|_{\Phi} = \frac{\dot{B}_0}{2B_0} \rho.$$

Thus the transport equation can be re-written in the form:

$$\left. \frac{\partial}{\partial t} \right|_{\rho} \left(\frac{\partial V}{\partial \rho} \left\langle f \right\rangle \right) + \frac{\partial}{\partial \rho} \left(\frac{\partial V}{\partial \rho} \left[\left\langle \left| \nabla \rho \right|^{2} \right\rangle \Gamma_{D} - \frac{\dot{B}_{0}}{2B_{0}} \rho \left\langle f \right\rangle \right] \right) = \frac{\partial V}{\partial \rho} \cdot S$$

or as

$$\left(\frac{\partial}{\partial t}\Big|_{\rho} - \frac{\dot{B}_{0}}{2B_{0}} \frac{\partial}{\partial \rho} \rho\right) \cdot \left(\frac{\partial V}{\partial \rho} \langle f \rangle\right) + \frac{\partial}{\partial \rho} \left(\frac{\partial V}{\partial \rho} \langle |\nabla \rho|^{2} \right) \left(-D \frac{\partial}{\partial \rho} \langle f \rangle + \upsilon \langle f \rangle\right) = \frac{\partial V}{\partial \rho} \cdot S,$$
(0.2)

on the assumption of

$$\Gamma_{D} = -D \frac{\partial}{\partial p} \langle f \rangle + \upsilon \langle f \rangle.$$

This is a standard representation of the transport equation used in ETS for the fixed ho grid

If we introduce following notations:

$$k_{\Phi}(t) = \frac{\dot{\Phi}_b}{2\Phi_b} = k_B(t) + k_{\rho}(t), \quad k_B(t) = \frac{\dot{B}_0}{2B_0} = \frac{1}{2B_0} \cdot \frac{dB}{dt}, \quad k_{\rho}(t) = \frac{\dot{\rho}_b}{\rho_b} = \frac{1}{\rho_b} \cdot \frac{d\rho_b}{dt}$$
(0.3)

The equation can be rewritten as:

$$\frac{\partial}{\partial t}\Big|_{\rho} \cdot \left(\frac{\partial V}{\partial \rho} \langle f \rangle\right) + \frac{\partial}{\partial \rho} \left(\frac{\partial V}{\partial \rho} \left[\langle |\nabla \rho|^{2} \rangle \left(-D \frac{\partial}{\partial \rho} \langle f \rangle + \upsilon \langle f \rangle\right) - k_{B} \rho \langle f \rangle \right] \right) = \frac{\partial V}{\partial \rho} \cdot S.$$
(0.4)

Using (0.3) and

$$\left. \frac{\partial a}{\partial t} \right|_{\rho} = \left. \frac{\partial a}{\partial t} \right|_{x} + \left. \frac{\partial a}{\partial x} \cdot \frac{\partial x}{\partial t} \right|_{\rho},$$

equation (0.4) can be rewritten for the normalised coordinate, x:

$$\frac{\partial}{\partial t}\Big|_{x} \cdot \left(\frac{\partial V}{\partial \rho}\langle f\rangle\right) + \frac{\partial}{\partial \rho}\left(\frac{\partial V}{\partial \rho}\left[\langle \left|\nabla \rho\right|^{2}\rangle\left(-D\frac{\partial}{\partial \rho}\langle f\rangle + \upsilon\langle f\rangle\right)\right] - k_{\Phi}\rho\langle f\rangle\right]\right) = \frac{\partial V}{\partial \rho} \cdot \left(S - k_{\rho}\langle f\rangle\right). \tag{0.5}$$

It is also useful to define some transformations as:

$$\frac{3}{2} \left(\frac{\partial V}{\partial \rho} \right)^{-5/3} \cdot \left(\frac{\partial}{\partial t} \Big|_{\rho} - \frac{\dot{B}_{0}}{2B_{0}} \frac{\partial}{\partial \rho} \cdot \rho \right) \cdot \left[\left(\frac{\partial V}{\partial \rho} \right)^{5/3} \langle f \rangle \right] =$$

$$\frac{3}{2} \left(\frac{\partial V}{\partial \rho} \right)^{-5/3} \frac{\partial}{\partial t} \Big|_{x} \left[\left(\frac{\partial V}{\partial \rho} \right)^{5/3} \langle f \rangle \right] - \left(\frac{\partial V}{\partial \rho} \right)^{-1} \frac{\partial}{\partial \rho} \cdot \left[\left(\frac{\partial V}{\partial \rho} \right) \cdot \frac{3}{2} \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \rho \cdot \langle f \rangle \right] + \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \rho \frac{\partial}{\partial \rho} \ln \frac{\partial V}{\partial \rho} \right] \langle f \rangle$$
(0.6)

and:

$$\rho \frac{\partial}{\partial \rho} \ln \frac{\partial V}{\partial \rho} = 1 + \rho \frac{\partial}{\partial \rho} \ln \left(\frac{1}{\rho} \frac{\partial V}{\partial \rho} \right) = 1 + \rho \frac{\partial}{\partial \rho} \ln \left(\frac{4\pi^2 B_0}{F \left\langle \frac{1}{R^2} \right\rangle} \right) = 1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \left\langle \frac{1}{R^2} \right\rangle \right)$$

$$(0.7)$$

Generalized form of transport equations:

All numerical solvers used within the ETS are adapted to solve the transport equation in the form:

$$\frac{a(x)\cdot Y(x,t) - b(x)\cdot Y(x,t-1)}{h} + \frac{1}{c(x)}\frac{\partial}{\partial x}\left(-d(x)\cdot\frac{\partial Y(x,t)}{\partial x} + e(x)\cdot Y(x,t)\right) =$$

$$= f(x) - g(x)\cdot Y(x,t)$$
(0.8)

where Y is the function, t is the time and x is the radial coordinate.

The boundary conditions shall be provided in the form:

$$v(x_{bnd}) \cdot \frac{\partial Y(x,t)}{\partial x}\bigg|_{bnd} + u(x_{bnd}) \cdot Y(x_{bnd},t) = w(x_{bnd})$$

Therefore the following set of quantities is expected by the numerical solver:

$$x$$
, $a(x)$, $b(x)$, $c(x)$, $d(x)$, $e(x)$, $f(x)$, $g(x)$, h , $Y(x,t-1)$
 $u(1:2)$, $v(1:2)$, $w(1:2)$,

where index 1 refers to the plasma axis and 2 to the plasma boundary.

The solver will return:

$$Y(x,t), \frac{\partial Y(x,t)}{\partial x}$$

Current diffusion equation

Variables and units:

 ψ - flux function [Wb]

 j_{\parallel} - parallel current density [A/m²]

 j_{tor} - toroidal current density [A/m²]

 $Q_{\scriptscriptstyle OH}$ - ohmic heating power [W]

q - safety factor [-]

 E_{\parallel} - parallel electric field [V/m]

 $\sigma_{\scriptscriptstyle \parallel}$ - parallel conductivity [Ohm $^{ ext{-}1}$ m $^{ ext{-}1}$]

 μ_0 - permeability of free space ;

 R_0 - characteristic major radius of the device [m]

 B_0 - magnetic field measured at R_0 [T]

F - diamagnetic function [m·T]

Equation:

For a constant ρ grid, the equation

is
$$\sigma_{\parallel} \left(\frac{\partial \Psi}{\partial t} \Big|_{\rho} - \frac{\rho \dot{B}_{0}}{2B_{0}} \frac{\partial \Psi}{\partial \rho} \right) = \frac{F^{2}}{\mu_{0} B_{0} \rho} \frac{\partial}{\partial \rho} \left[\frac{V'}{4\pi^{2}} \left\langle \left| \frac{\nabla \rho}{R} \right|^{2} \right\rangle \frac{1}{F} \frac{\partial \Psi}{\partial \rho} \right] - \frac{V'}{2\pi \rho} \left(j_{ni,\text{exp}} + j_{ni,\text{imp}} \cdot \Psi \right)$$

Where the diamagnetic function, $F=RB_{\varphi}$, the geometry coefficients V' and $\left\langle \left| \frac{\nabla \rho}{R} \right|^2 \right\rangle$ are provided by the equilibrium solver.

For a constant normalized grid, this becomes

$$\sigma_{\parallel} \frac{\partial \Psi}{\partial t} \bigg|_{x} = \frac{F^{2}}{\mu_{0} B_{0} \rho} \frac{\partial}{\partial \rho} \left[\frac{V'}{4\pi^{2}} \left\langle \left| \frac{\nabla \rho}{R} \right|^{2} \right\rangle \frac{1}{F} \frac{\partial \Psi}{\partial \rho} \right] - \frac{V'}{2\pi \rho} \left(j_{ni, \text{exp}} + j_{ni, imp} \cdot \Psi \right) + \rho \sigma_{\parallel} \cdot \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \frac{\partial \Psi}{\partial \rho}$$

$$(1.1)$$

Equation (1.1) can be reformulated as:

$$\sigma_{\parallel} \frac{\partial \Psi}{\partial t} \Big|_{x} = \frac{F^{2}}{\mu_{0} B_{0} \rho} \frac{\partial}{\partial \rho} \left[\frac{V'}{4\pi^{2}} \left\langle \left| \frac{\nabla \rho}{R} \right|^{2} \right\rangle \frac{1}{F} \frac{\partial \Psi}{\partial \rho} + \frac{\mu_{0} B_{0} \rho^{2} \sigma_{\parallel}}{F^{2}} \cdot \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \Psi \right] - \frac{V'}{2\pi \rho} \left(j_{ni, \text{exp}} + j_{ni, imp} \cdot \Psi \right) \\
+ \sigma_{\parallel} \left(2\rho \cdot \frac{1}{F} \cdot \frac{\partial F}{\partial \rho} - \rho \cdot \frac{1}{\sigma_{\parallel}} \cdot \frac{\partial \sigma_{\parallel}}{\partial \rho} - 2 \right) \cdot \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \Psi \tag{1.2}$$

non inductive current includes contributions in generic form from external sources (computed by other modules, like ICRH, ECRH, NBI, neutrals and etc.), in the form of explicit and implicit terms:

$$j_{ni,\exp} = \sum_{i \text{ source}}^{nsource} m_{source} \cdot j_{isource,\exp}$$
(1.3)

$$j_{ni,imp} = \sum_{isource=1}^{nsource} m_{source} \cdot j_{isource,imp} . \tag{1.4}$$

This summation is done in the workflow by <u>Source_Combiner</u>, where individual weights, m_{source} , can be adjusted.

Boundary Conditions:

On axis, at $\rho = 0$, ETS assumes:

$$\left. \frac{\partial \psi}{\partial \rho} \right|_{\rho=0} = 0 \tag{1.5}$$

At the edge, at $\rho=
ho_{bnd}$, following options (distinguished by boundary condition type) are available:

type=1 (value)

$$\psi\big|_{\rho=\rho_{bnd}}=\psi_{bnd},\tag{1.6}$$

where ψ_{bnd} is the value of poloidal flux at the outer boundary.

type=2 (total current inside $\rho = \rho_{bnd}$)

$$\frac{\partial \psi}{\partial \rho} \bigg|_{\rho = \rho_{bnd}} = \frac{4\pi^2 \mu_0}{V' \left\langle \left| \frac{\nabla \rho}{R} \right|^2 \right\rangle} I_{bnd} \tag{1.7}$$

where I_{bnd} is the value of plasma current inside the boundary.

type=3 (loop voltage at $ho = ho_{bnd}$)

$$\frac{\partial \psi}{\partial t}\bigg|_{\rho = \rho_{bnd}} = U_{loop,bnd} - \frac{\partial \Psi}{\partial \rho}\bigg|_{\rho = \rho_{bnd}} \cdot \frac{\partial \rho_b}{\partial t} \tag{1.8}$$

where $U_{{\it loop,bnd}}$ is the plasma loop voltage at the boundary.

type=4 (generic)

$$v_{gen} \frac{\partial \psi}{\partial \rho} \bigg|_{\rho = \rho_{bnd}} + u_{gen} \psi \bigg|_{\rho = \rho_{bnd}} = w_{gen} \tag{1.9}$$

Definitions for quantities derived from current equation:

Poloidal components of the magnetic field and flux function:

$$B_{pol} = \frac{\left|\nabla\rho\right|}{2\pi R_0} \frac{\partial\psi}{\partial\rho} \tag{1.10}$$

Safety factor:

$$q = \frac{2\pi B_0 \rho}{(\partial \Psi / \partial \rho)} \tag{1.12}$$

Total current:

(toroidal)
$$j_{tor} = \frac{2\pi R_0}{\mu_0 V'} \cdot \frac{\partial}{\partial \rho} \left(H \frac{\partial \psi}{\partial \rho} \right); \quad H = \frac{V'}{4\pi^2} \cdot \left\langle \left(\frac{\nabla \rho}{R} \right)^2 \right\rangle$$
 (1.13)

$$(\text{parallel}) \quad j_{\parallel} = \frac{2\pi}{\mu_0 R_0 V'} \cdot \left(\frac{F}{B_0}\right)^2 \frac{\partial}{\partial \rho} \left(\frac{R_0 B_0}{F} H \frac{\partial \psi}{\partial \rho}\right) \tag{1.14}$$

Ohmic heating & parallel electric field:

$$Q_{OH} = \sigma_{\parallel} E_{\parallel}^{2} \qquad E_{\parallel} = \frac{1}{\sigma_{\parallel}} \left(j_{\parallel} - j_{ni, \text{exp}} - j_{ni, imp} \cdot \Psi \right) \tag{1.15}$$

If equation (1.2) is not solved, ets will extrapolate the quantities using safety factor profile as primary quantity:

$$\Psi = \int_{0}^{\rho} \frac{2\pi B_0}{q} \rho \,\partial\rho \; ; \tag{1.16}$$

$$j_{tor} = \frac{2\pi R_0}{\mu_0 V'} \cdot \frac{\partial}{\partial \rho} \left(H \frac{2\pi B_0 \rho}{q} \right); \tag{1.17}$$

$$j_{\parallel} = \frac{2\pi}{\mu_0 R_0 V'} \cdot \left(\frac{F}{B_0}\right)^2 \frac{\partial}{\partial \rho} \left(\frac{R_0 B_0}{F} H \frac{2\pi B_0 \rho}{q}\right) \tag{1.18}$$

$$Q_{OH} = \frac{1}{\sigma_{\parallel}} \left(j_{\parallel} - j_{ni,\text{exp}} - j_{ni,imp} \cdot \Psi \right)^2 \tag{1.19}$$

Translation to generalized form for interface with numerical solver:

Rewrite the equation (1.2) using the time discretization: $\frac{\Psi-\Psi^-}{\tau}$, where Ψ^- is the value of the poloidal flux at previous time and τ is the time step.

$$\sigma_{\parallel} \frac{\Psi - \Psi^{-}}{\tau} \Big|_{x} + \frac{F^{2}}{\mu_{0} B_{0} \rho \rho_{b}} \frac{\partial}{\partial x} \left[-\frac{V'}{4\pi^{2}} \left\langle \left| \frac{\nabla \rho}{R} \right|^{2} \right\rangle \frac{1}{F \rho_{b}} \frac{\partial \Psi}{\partial x} - \frac{\mu_{0} B_{0} \rho^{2} \sigma_{\parallel}}{F^{2}} \cdot \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \Psi \right] = -\frac{V'}{2\pi \rho} j_{ni,\text{exp}} \\
- \left[\frac{V'}{2\pi \rho} j_{ni,\text{imp}} + \sigma_{\parallel} \left(2 - 2\rho \cdot \frac{1}{F} \cdot \frac{\partial F}{\partial \rho} + \rho \cdot \frac{1}{\sigma_{\parallel}} \cdot \frac{\partial \sigma_{\parallel}}{\partial \rho} \right) \cdot \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \right] \cdot \Psi \tag{1.20}$$

Then, using the equation (0.8), coefficients for the interface with numerical solver are defined as:

$$a(x) = \sigma_{ii}$$

$$b(x) = \sigma_{\prime\prime}$$

$$c(x) = \frac{\mu_0 B_0 \rho \rho_b}{F^2}$$

$$d(x) = \frac{V'}{4\pi^2} \left\langle \left| \frac{\nabla \rho}{R} \right|^2 \right\rangle \frac{1}{F\rho_b} \tag{1.21}$$

$$e(x) = -\frac{\mu_0 B_0 \rho^2 \sigma_{//}}{F^2} \cdot \frac{\dot{\Phi}_b}{2\Phi_b}$$

$$f(x) = -\frac{V'}{2\pi\rho} j_{ni,exp}$$

$$g(x) = \frac{V'}{2\pi\rho} j_{ni,imp} + \sigma_{ii} \left(2 - 2\rho \cdot \frac{1}{F} \cdot \frac{\partial F}{\partial \rho} + \rho \cdot \frac{1}{\sigma_{ii}} \cdot \frac{\partial \sigma_{ii}}{\partial \rho} \right) \cdot \frac{\dot{\Phi}_b}{2\Phi_b}$$

 $h = \tau$

$$Y^{t-1}(\rho) = \Psi^-$$

boundary conditions (1.22)

at the axis:

$$v(1)=1;$$
 $u(1)=0;$ $w(1)=0$

At the edge, x = 1:

type=1 (value)

$$\psi|_{r=1} - \psi_{bnd} = 0$$

$$v(2)=0; \quad u(2)=1; \quad w(2)=\psi_{bnd}$$

<u>type=2</u> (total current inside x = 1)

$$\left. \frac{\partial \psi}{\partial x} \right|_{x=1} = \frac{4\pi^2 \mu_0}{V' \left\langle \left| \frac{\nabla \rho}{R} \right|^2 \right\rangle} I_{bnd} \cdot \rho_b$$

$$v(2)=1; \quad u(2)=0; \quad w(2)=\frac{4\pi^{2}\mu_{0}}{V'\left\langle \left|\frac{\nabla\rho}{R}\right|^{2}\right\rangle}I_{bnd}\cdot\rho_{b}$$

<u>type=3</u> (loop voltage at x = 1)

$$\overline{\psi\big|_{x=1}} - \left(\tau U_{loop,bnd} + \psi_{bnd}^{-}\right) = 0$$

$$v(2) = 0;$$
 $u(2) = 1;$ $w(2) = \tau U_{loop,bnd} + \psi_{bnd}^{-}$

type=4 (generic)

$$\frac{v_{gen}}{\rho_b} \frac{\partial \Psi}{\partial x} \bigg|_{bnd} + u_{gen} \Psi_{bnd} = w_{gen}$$

$$v(2) = \frac{v_{gen}}{\rho_b}; \quad u(2) = u_{gen}; \quad w(2) = w_{gen}$$

Variables used inside fortran routines:

(Routine: MAIN PLASMA, Subroutine: CURRENT)

Variable	TYPE%NAME used in ETS data flow	Internal name used in CURRENT routine	Units
τ	EVOLUTION%TAU	TAU	S
\dot{B}_0	GEOMETRY%BTPRIME	BTPRIME	T/s
B_0	GEOMETRY%BT	BT	Т
R_0	GEOMETRY%R0	R0	m
ρ	GEOMETRY%RHO	RHO	m

X	GEOMETRY%RHO_NORM	RHO_NORM	-
V'	GEOMETRY%VPR	VPR	m ²
$\left\langle \left \frac{\nabla \rho}{R} \right ^2 \right\rangle$	GEOMETRY%G3	G3	m ⁻²
F	GEOMETRY%FDIA	FDIA	T⋅m
Н		Н	
π		PI	
μ_0		MU0	H/m
Ψ	PROFILES%PSI	PSI	V·s
Ψ-	EVOLUTION%PSIM	PSIM	V·s
q	PROFILES%QSF	QSF	
j_{tor}	PROFILES%CURR_TOR	CURR_TOR	A/m ²
j_{\parallel}	PROFILES %CURR_PAR	CURR_PAR	A/m²
$j_{ni,\text{exp}}$		CURR_NI_EXP	A/m ²
$j_{ni,imp}$		CURR_NI_IMP	A/(V·s·m²)
$j_{source,1}$	SOURCES%CURR_NI_EXP		A/m²
$j_{source,2}$	SOURCES %CURR_NI_IMP		A/(V·s·m²)
$Q_{\scriptscriptstyle OH}$	SOURCES%QOH	QOH	W/m ³
σ_{\parallel}	TRANSPORT%SIGMA or SOURCES%SIGMA or COLLISIONS%SIGMA	SIGMA	(Ohm·m) ⁻¹
E_{\parallel}	PROFILES %E_PAR	E_PAR	V/m
а	SOLVER%A	A	
b	SOLVER%B	В	
С	SOLVER%C	С	
d	SOLVER%D	D	
е	SOLVER%E	E	
f	SOLVER%F	F	
g	SOLVER%G	G	
h	SOLVER%H	Н	
v(1:2)	SOLVER%V	V	
u(1:2)	SOLVER%U	U	

w(1:2)	SOLVER%W	W	
Y^{t-1}	SOLVER%YM	W	
solution	SOLVER%Y	Υ	
derivative of solution	SOLVER%DY	DY	
Functions		Internal name	e used in CURRENT routine
$\frac{\sigma_{/\!/}\mu_0 ho^2}{F^2}$		FUN1	
$rac{\partial}{\partial ho} rac{\sigma_{\scriptscriptstyle{//}} \mu_0 ho^2}{F^2}$		DFUN1	
$\frac{\sigma_{//}\mu_{0}\rho^{2}}{F^{2}}$ $\frac{\partial}{\partial\rho}\frac{\sigma_{//}\mu_{0}\rho^{2}}{F^{2}}$ $\frac{V'}{4\pi^{2}}\left\langle \left \frac{\nabla\rho}{R}\right ^{2}\right\rangle$		FUN2	
$\frac{2\pi B_0}{q}$		FUN3	
$H\frac{\partial \psi}{\partial \rho}$		FUN4	
$\frac{\partial}{\partial \rho} \left(H \frac{\partial \psi}{\partial \rho} \right)$		DFUN4	
$\frac{R_0B_0}{H}\frac{\partial\psi}{\partial\psi}$		FUN5	
$\frac{F}{\partial \rho} \left(\frac{R_0 B_0}{F} H \right)$	$\left(\frac{\partial \psi}{\partial \rho}\right)$	DFUN5	

Ion density

Variables and units:

 n_i - ion density [m⁻³]

 Γ_i - ion flux [s⁻¹]

 γ_i - ion flux contributing to heat transport [A/m²]

 Γ_{Si} - integral source (approximation for the flux if equation is not solved) [s $^{ ext{-}1}$]

 $n_{i,int}$ - interpretative ion density [m⁻³], required if equation is not solved

 D_i - ion diffusion coefficient [m²/s]

 V_i^{pinch} - ion pinch velocity [m/s]

 $S_{i, {
m exp}}$ - explicit part of ion source density [${
m s}^{\text{-1}}$ ${
m m}^{\text{-3}}$]

 $S_{i,imp}$ - implicit part of ion source density [s⁻¹];

Equation:

$$\left(\frac{\partial}{\partial t}\Big|_{\rho} - \frac{\dot{B}_{0}}{2B_{0}} \cdot \frac{\partial}{\partial \rho} \rho\right) (V'n_{i}) + \frac{\partial}{\partial \rho} \Gamma_{i} = V'(S_{i, \exp} - S_{i, imp} \cdot n_{i})$$
(2.1)

where the total flux defined as:

$$\Gamma_{i} = V \left\langle \left| \nabla \rho \right|^{2} \right\rangle \left(-D_{i} \frac{\partial n_{i}}{\partial \rho} + n_{i} V_{i}^{pinch} \right); \tag{2.2}$$

where total transport coefficients, D_i and V_i^{pinch} , are defined as a sum of individual contributions from different transport models weighted with coefficients $m_{\text{mod }el}$:

$$D_i = \sum_{i \text{ mod } el-1}^{n \text{ mod } el} m_{\text{mod } el} \cdot D_{i, i \text{ mod } el} ;$$
(2.3)

$$V_i^{pinch} = \sum_{i \bmod el}^{n \bmod el} m_{\bmod el} \cdot V_{i, i \bmod el}^{pinch} . \tag{2.4}$$

(Combination of individual contributions, $D_{i,i \mod el}$ and $V_{i,i \mod el}^{pinch}$, into D_i and V_i^{pinch} is done outside of the ETS equation solver in **Transport combiner**)

Sources in equation (2.3) include contributions in generic form from NBI, recycling and puffed neutrals, ripple, ergodization, and other possible sources, in the form of explicit and implicit terms:

$$S_{i,\exp} = \sum_{isource=1}^{nsource} m_{source} \cdot S_{i,isource,1}$$
(2.5)

$$S_{i,imp} = \sum_{i source=1}^{nsource} m_{source} \cdot S_{i,isource,2}$$
(2.6)

This summation is done in the workflow by <u>Source_Combiner</u>, where individual weights, m_{source} , can be adjusted.

Equation (2.1) can be rewritten for the normalized grid coordinate as:

$$\frac{\partial}{\partial t} \left| \left| \left(V' n_i \right) + \frac{\partial}{\partial \rho} \right| V' \left(\left\langle \left| \nabla \rho \right|^2 \right\rangle \left(-D_i \frac{\partial n_i}{\partial \rho} + n_i V_i^{pinch} \right) - \frac{\dot{\Phi}_b}{2\Phi_b} \cdot \rho n_i \right) \right| = V' \left[S_{i,exp} - \left(S_{i,imp} + \frac{\dot{\rho}_b}{\rho_b} \right) \cdot n_i \right]. \quad (2.7)$$

Boundary Conditions:

NOTE! Specified positive values for $\nabla n_{i,bnd}$ and L_{ni} correspond to "normal" profile with density decreasing towards the edge

On axis, at $\rho = 0$, ETS assumes:

$$\left. \frac{\partial n_i}{\partial \rho} \right|_{x=0} = 0 \text{ and } V_i^{pinch} = 0$$
 (2.8)

At the edge, at $\rho = \rho_{bnd}$, following options (distinguished by boundary condition type) are available:

type=1 (value)

$$n_i\big|_{x=1} = n_{i,bnd} \tag{2.9}$$

type=2 (gradient)

$$\left. \frac{\partial n_i}{\partial \rho} \right|_{x=1} = -\nabla n_{i,bnd} \tag{2.10}$$

type=3 (scale length)

$$\left. \frac{1}{\left(\partial \ln n_i / \partial \rho \right)} \right|_{x=1} = -L_{ni} \tag{2.11}$$

type=4 (flux)

$$V' \left\langle \left| \nabla \rho \right|^2 \right\rangle \left(-D_i \frac{\partial n_i}{\partial \rho} + n_i V_i^{pinch} \right) \bigg|_{r=1} = \Gamma_{i,bnd}$$
 (2.12)

type=5 (generic)

$$v_{gen} \frac{\partial n_i}{\partial \rho}\Big|_{x=1} + u_{gen} n_i\Big|_{x=1} = w_{gen}$$
(2.13)

Definitions for quantities derived from ion density equation:

Ion diffusion equation provides the fulx contributing to ion heat transport, this is produced based on the input from attached transport models:

$$\gamma_{i} = \sum_{i \bmod el=1}^{n \bmod el} c_{1,i \bmod el} V' \langle \left| \nabla \rho \right|^{2} \rangle \left(-D_{i,i \bmod el} \frac{\partial n_{i}}{\partial \rho} + n_{i} V_{i,i \bmod el}^{pinch} \right), \tag{2.14}$$

where $\,c_{\mathrm{l,imod}\it{el}}\,$ are the coefficients 1, 3/2 or 5/2 also provided by transport models.

If equation (2.7) is not solved (NI_BND_TYPE=0), interpretative density, $n_{i,int}$, should be specified and flux is calculated from the integral of sources:

$$n_i = n_{i,\text{int}}; (2.15)$$

$$\Gamma_i = \Gamma_{Si}; \tag{2.16}$$

$$\gamma_i = \frac{3}{2} \Gamma_{Si}; \tag{2.17}$$

where $\, au\,$ is the time step, $\,V^{\, o}\,$ and $\,n_{i,\mathrm{int}}^{\,\,\,\,\,}$ are taken from the previous time step, and

$$\Gamma_{Si} = \frac{\dot{\Phi}_b}{2\Phi_b} \cdot \left(\rho V' n_{i,\text{int}}\right) + \rho_b \int_0^x \left(V' S_{i,\text{exp}} + \frac{V'^- n_{i,\text{int}}^-}{\tau} - n_{i,\text{int}} V' \left(\frac{1}{\tau} + S_{i,imp} + \frac{\dot{\rho}_b}{\rho_b}\right)\right) \partial x; \tag{2.18}$$

Translation to generalized form for interface with numerical solver:

Rewrite the equation (2.7) using the time discretization: $\frac{\partial V' n_i}{\partial t} = \frac{V' n_i - V'^- n_i^-}{\tau}$, where V'^- and n_i^- are taken at the previous time and τ is the time step:

$$\frac{V'n_{i} - V'^{-}n_{i}^{-}}{\tau} + \frac{1}{\rho_{b}} \frac{\partial}{\partial x} \left[V' \left(\left\langle \left| \nabla \rho \right|^{2} \right\rangle \left(-\frac{D_{i}}{\rho_{b}} \frac{\partial n_{i}}{\partial x} + n_{i} V_{i}^{pinch} \right) - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \rho n_{i} \right) \right] =$$

$$= V' S_{i,exp} - \left(S_{i,imp} + \frac{\dot{\rho}_{b}}{\rho_{b}} \right) \cdot V' n_{i}$$
(2.19)

Then, using the equation (0.8), coefficients for the interface with numerical solver are defined as:

$$a(x)=V'$$

$$b(x) = V'^-$$

$$c(x) = \rho_b$$

$$d(x) = V \langle |\nabla \rho|^2 \rangle \frac{D_i}{\rho_b}$$

$$e(x) = V' \langle |\nabla \rho|^2 \rangle V_i^{pinch} - \frac{\dot{\Phi}_b}{2\Phi_b} \cdot \rho V'$$
(2.20)

$$f(x) = V'S_{i,exp}$$

$$g(x) = V' \left(S_{i,imp} + \frac{\dot{\rho}_b}{\rho_b} \right)$$

$$h = \tau$$

$$Y^{t-1}(\rho) = n_i^-$$

boundary conditions:

at the axis, x = 0:

the choice of the boundary condition is connected with the choice on numerical solver, two options are available:

$$\left. \frac{\partial n_i}{\partial \rho} \right|_{x=0} = 0$$
(2.21)

$$v(1)=1;$$
 $u(1)=0;$ $w(1)=0$

Or:

$$\Gamma_i \Big|_{x=0} = 0$$

$$v(1) = -\frac{D_i|_{x=0}}{\rho_h}; \quad u(1) = V_i^{pinch}|_{x=0}; \quad w(1) = 0$$

at the edge, x = 1:

type=1 (value)

$$n_i\big|_{x=1}=n_{i,bnd}$$

$$u(2)=0;$$
 $v(2)=1;$ $w(2)=n_{i,bnd}$

type=2 (gradient)

$$\left. \frac{\partial n_i}{\partial x} \right|_{x=1} = -\nabla n_{i,bnd} \cdot \rho_b$$

$$v(2)=1; \quad u(2)=0; \quad w(2)=-\nabla n_{i,bnd} \cdot \rho_b$$

type=3 (scale lenght)

$$\left. \frac{\rho_b}{\left(\partial \ln n_i / \partial x \right)} \right|_{x=1} = -L_{ni}$$

$$v(2)=1; \quad u(2)=\rho_b/L_{ni}; \quad w(2)=0$$

type=4 (flux)

$$V'\left\langle \left|\nabla \rho\right|^{2}\right\rangle \left(-\frac{D_{i}}{\rho_{b}}\frac{\partial n_{i}}{\partial x}+n_{i}V_{i}^{pinch}\right)_{r=1}=\Gamma_{i,bnd}$$

$$v(2) = -V'\langle |\nabla \rho|^2 \rangle \frac{D_i}{\rho_h}; \quad u(2) = V'\langle |\nabla \rho|^2 \rangle V_i^{pinch}; \quad w(2) = \Gamma_{i,bnd}$$

type=5 (generic)

$$\frac{v_{gen}}{\rho_b} \frac{\partial n_i}{\partial x} \bigg|_{bnd} + u_{gen} n_{i,bnd} = w_{gen}$$

$$v(2) = \frac{v_{gen}}{\rho_h}; \quad u(2) = u_{gen}; \quad w(2) = w_{gen}$$

Variables used inside fortran routines:

(Routine: MAIN_PLASMA, Subroutine: ION_DENSITY)

Variable	TYPE%NAME used in ETS data flow	Internal name used in ION_DENSITY routine	Units
τ	EVOLUTION%TAU	TAU	S
\dot{B}_0	GEOMETRY%BTPRIME	BTPRIME	T/s
B_0	GEOMETRY%BT	ВТ	Т
ρ	GEOMETRY%RHO	RHO	m
V'	GEOMETRY%VPR	VPR	m ²

V'-	EVOLUTION%VPRM	VPRM	m ²
$\langle \left \nabla \rho \right ^2 \rangle$	GEOMETRY%G1	G1	
n_i	PROFILES%NI	NI	m ⁻³
n_i^-	EVOLUTION%NI	NIM	m ⁻³
Γ_i	PROFILES%FLUX_NI	FLUX	1/s
γ_i	PROFILES%FLUX_NI_CONV	FLUX_NI_CONV	1/s
Γ_{Si}	PROFILES%INT_SOURCE_NI	INT_SOURCE	1/s
$S_{i, exp}$	-	SI_EXP	m ⁻³ s ⁻¹
$S_{i,imp}$	-	SI_IMP	1/s
$S_{i,isource,1}$	SOURCES%SI_EXP	-	m ⁻³ s ⁻¹
$S_{i,isource,2}$	SOURCES%SI_IMP	-	1/s
D_i		DIFF	m²/s
V_i^{pinch}		VCONV	m/s
$D_{i,i\mathrm{mod}el}$	TRANSPORT%DIFF_NI	DIFF_MOD	m²/s
$V_{i,i { m mod} el}^{ pinch}$	TRANSPORT%VCONV_NI	VCONV_MOD	m/s
$C_{1,i \bmod el}$	TRANSPORT%C1	C1	
а	SOLVER%A	A	
b	SOLVER%B	В	
С	SOLVER%C	С	
d	SOLVER%D	D	
e	SOLVER%E	E	
f	SOLVER%F	F	
g	SOLVER%G	G	
h	SOLVER%H	Н	
v(1:2)	SOLVER%V	V	
u(1:2)	SOLVER%U	U	
w(1:2)	SOLVER%W	W	
Y^{t-1}	SOLVER%YM	W	
solution	SOLVER%Y	Υ	
derivative of solution	SOLVER%DY	DY	

Functions	Internal name used in ION_DENSITY routine
$\boxed{\frac{1}{\rho} \Biggl(V'S_{i, \exp} + \frac{V'^- n_{i, \text{interpretative}}^-}{\tau} - n_{i, \text{interpretative}} V' \! \left(\frac{1}{\tau} + S_{i, imp} \right) \Biggr)}$	FUN1
$\int_{0}^{\rho} \left(V' S_{i, \exp} + \frac{V'^{-} n_{i, \text{interpretative}}^{-}}{\tau} - n_{i, \text{interpretative}} V' \left(\frac{1}{\tau} + S_{i, imp} \right) \right) \partial \rho$	INTFUN1

Electron density

Variables and units:

 $n_{_{\rho}}$ - electron density [m⁻³]

 Γ_{e} - electron flux [s⁻¹]

 γ_e - electron flux contributing to heat transport [A/m²]

 Γ_{S_e} - integral source (approximation for the flux if equation is not solved) [s⁻¹]

 $n_{e,\mathrm{int}}$ - interpretative electron density $[\mathrm{m}^{\text{-}3}]$, required if equation is not solved

 D_e - electron diffuselectron coefficient [m²/s]

 $V_{a}^{\it pinch}$ - electron pinch velocity [m/s]

 $S_{e,exp}$ - explicit part of electron source density [s⁻¹ m⁻³]

 $S_{e,imp}$ - implicit part of electron source density [s⁻¹];

Equation:

$$\left(\frac{\partial}{\partial t}\Big|_{\rho} - \frac{\dot{B}_{0}}{2B_{0}} \cdot \frac{\partial}{\partial \rho} \rho\right) (V'n_{e}) + \frac{\partial}{\partial \rho} \Gamma_{e} = V'(S_{e, \exp} - S_{e, imp} \cdot n_{e})$$
(3.1)

where the total flux defined as:

$$\Gamma_{e} = V' \langle \left| \nabla \rho \right|^{2} \rangle \left(-D_{e} \frac{\partial n_{e}}{\partial \rho} + n_{e} V_{e}^{pinch} \right); \tag{3.2}$$

where total transport coefficients, D_e and V_e^{pinch} , are defined as a sum of individual contributions from different transport models weighted with coefficients $m_{\mathrm{mod}\,el}$:

$$D_e = \sum_{i \text{ mod } el=1}^{n \text{ mod } el} m_{\text{mod } el} \cdot D_{e, i \text{ mod } el} ; \tag{3.3}$$

$$V_e^{pinch} = \sum_{i \bmod el}^{n \bmod el} m_{\bmod el} \cdot V_{e, i \bmod el}^{pinch} . \tag{3.4}$$

(Combination of individual contributions, $D_{e,i \, \mathrm{mod} \, el}$ and $V_{e,i \, \mathrm{mod} \, el}^{pinch}$, into D_e and V_e^{pinch} is done outside of the ETS equation solver in **Transport combiner**)

Sources in equation (3.3) include contributions in generic form from NBI, recycling and puffed neutrals and other possible sources, in the form of explicit and implicit terms:

$$S_{e, \text{exp}} = \sum_{isource=1}^{nsource} m_{source} \cdot S_{e, isource, \text{exp}}$$
(3.5)

$$S_{e,imp} = \sum_{isource=1}^{nsource} m_{source} \cdot S_{e,isource,imp}$$
(3.6)

This summation is done in the workflow by <u>Source_Combiner</u>, where individual weights, m_{source} , can be adjusted.

Equation (3.1) can be rewritten for the normalized grid coordinate as:

$$\frac{\partial}{\partial r} \left| {}_{x} \left(V' n_{e} \right) + \frac{\partial}{\partial \rho} \left[V' \left(\left\langle \left| \nabla \rho \right|^{2} \right\rangle \left(-D_{e} \frac{\partial n_{e}}{\partial \rho} + n_{e} V_{e}^{pinch} \right) - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \rho n_{e} \right) \right] = V' \left[S_{e, \exp} - \left(S_{e, imp} + \frac{\dot{\rho}_{b}}{\rho_{b}} \right) \cdot n_{e} \right]. \tag{3.7}$$

Boundary Conditions:

NOTE! Specified positive values for $\nabla n_{e,bnd}$ and L_{ne} correspond to "normal" profile with density decreasing towards the edge

On axis, at $\rho = 0$, ETS assumes:

$$\left. \frac{\partial n_e}{\partial \rho} \right|_{r=0} = 0 \text{ and } V_e^{pinch} = 0$$
 (3.8)

At the edge, at $\rho = \rho_{bnd}$, following options (distinguished by boundary condition type) are available: type=1 (value)

$$n_e\big|_{x=1} = n_{e,bnd} \tag{3.9}$$

type=2 (gradient)

$$\left. \frac{\partial n_e}{\partial \rho} \right|_{v=1} = -\nabla n_{e,bnd} \tag{3.10}$$

type=3 (scale lenght)

$$\left. \frac{1}{\left(\partial \ln n_e / \partial \rho \right)} \right|_{r=1} = -L_{ne} \tag{3.11}$$

type=4 (flux)

$$V' \left\langle \left| \nabla \rho \right|^2 \right\rangle \left(-D_e \frac{\partial n_e}{\partial \rho} + n_e V_e^{pinch} \right) = \Gamma_{e,bnd} \tag{3.12}$$

type=5 (generic)

$$v_{gen} \frac{\partial n_e}{\partial \rho} \bigg|_{r=1} + u_{gen} n_e = w_{gen} \tag{3.13}$$

Definitions for quantities derived from electron density equation:

If equation (3.7) is not solved , interpretative density, $n_{e,\mathrm{int}}$, should be specified and flux is calculated from the integral of sources:

$$n_e = n_{e,\text{int}}; (3.14)$$

$$\Gamma_e = \Gamma_{Se}; \tag{3.15}$$

$$\gamma_e = \frac{3}{2} \Gamma_{Se}; \tag{3.16}$$

where $\, au\,$ is the time step, $\,V^{\,\prime-}\,$ and $\,n_{e.\mathrm{int}}^{\,\,\,\,\,}$ are taken from the previous time step, and

$$\Gamma_{Se} = \frac{\dot{\Phi}_b}{2\Phi_b} \cdot \left(\rho V' n_{e,\text{int}}\right) + \rho_b \int_0^x \left(V' S_{e,\text{exp}} + \frac{V'' n_{e,\text{int}}}{\tau} - n_{e,\text{int}} V' \left(\frac{1}{\tau} + S_{e,\text{imp}} + \frac{\dot{\rho}_b}{\rho_b}\right)\right) \partial x; \tag{3.17}$$

Translation to generalized form for interface with numerical solver:

Rewrite the equation (3.7) using the time discretization: $\frac{\partial V' n_e}{\partial t} = \frac{V' n_e - V'^- n_e^-}{\tau}$, where V'^- and n_e^- are taken at the previous time and τ is the time step:

$$\frac{V'n_{e} - V'^{-}n_{e}^{-}}{\tau} + \frac{1}{\rho_{b}} \frac{\partial}{\partial x} \left[V' \left(\left\langle \left| \nabla \rho \right|^{2} \right\rangle \left(-\frac{D_{e}}{\rho_{b}} \frac{\partial n_{e}}{\partial x} + n_{e} V_{e}^{pinch} \right) - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \cdot \rho n_{e} \right) \right] =$$

$$= V' S_{e, \exp} - \left(S_{e, imp} + \frac{\dot{\rho}_{b}}{\rho_{b}} \right) \cdot V' n_{e} \tag{3.18}$$

Then, using the equation (0.8), coefficients for the interface with numerical solver are defined as:

$$a(x)=V'$$

$$b(x) = V'^-$$

$$c(x) = \rho_b$$

$$d(x) = V' \langle |\nabla \rho|^2 \rangle \frac{D_e}{\rho_b}$$

$$e(x) = V' \langle |\nabla \rho|^2 \rangle V_e^{pinch} - \frac{\dot{\Phi}_b}{2\Phi_b} \cdot \rho V'$$
(3.19)

$$f(x) = V'S_{e,exp}$$

$$g(x) = V' \left(S_{e,imp} + \frac{\dot{\rho}_b}{\rho_b} \right)$$

$$h = \tau$$

$$Y^{t-1}(\rho) = n_e^-$$

boundary conditions:

at the axis, x = 0:

the choice of the boundary condition is connected with the choice on numerical solver, two options are available:

$$\left. \frac{\partial n_e}{\partial x} \right|_{x=0} = 0 \tag{3.20}$$

$$v(1)=1$$
; $u(1)=0$; $w(1)=0$

Or:

$$\Gamma_e \big|_{x=0} = 0$$

$$v(1) = -\frac{D_e}{\rho_h}\Big|_{x=0}$$
; $u(1) = V_e^{pinch}\Big|_{x=0}$; $w(1) = 0$

at the edge, x = 1:

type=1 (value)

$$\left. n_e \right|_{x=1} = n_{e,bnd}$$

$$u(2) = 0;$$
 $v(2) = 1;$ $w(2) = n_{e,bnd}$

type=2 (gradient)

$$\left. \frac{\partial n_e}{\partial x} \right|_{x=1} = -\nabla n_{e,bnd} \cdot \rho_b$$

$$v(2)=1; \quad u(2)=0; \quad w(2)=-\nabla n_{e,bnd} \cdot \rho_b$$

type=3 (scale lenght)

$$\left. \frac{\rho_b}{\left(\partial \ln n_e / \partial x \right)} \right|_{x=1} = -L_{ne}$$

$$v(2)=1; \quad u(2)=\rho_b/L_{ne}; \quad w(2)=0$$

type=4 (flux)

$$V'\left\langle\left|\nabla\rho\right|^{2}\right\rangle\left(-\frac{D_{e}}{\rho_{b}}\frac{\partial n_{e}}{\partial x}+n_{e}V_{e}^{pinch}\right)_{x=1}=\Gamma_{e,bnd}$$

$$v(2) = -V'\langle |\nabla \rho|^2 \rangle \frac{D_e}{\rho_h}; \quad u(2) = V'\langle |\nabla \rho|^2 \rangle V_e^{pinch}; \quad w(2) = \Gamma_{e,bnd}$$

type=5 (generic)

$$\frac{v_{gen}}{\rho_b} \frac{\partial n_e}{\partial x} \bigg|_{bnd} + u_{gen} n_{e,bnd} = w_{gen}$$

$$v(2) = \frac{v_{gen}}{\rho_b}; \quad u(2) = u_{gen}; \quad w(2) = w_{gen}$$

Variables used inside fortran routines:

(Routine: MAIN_PLASMA, Subroutine: ELECTRON_DENSITY)

Variable	TYPE%NAME used in ETS data flow	Internal name used in ELECTRON_DENSITY routine	Units
τ	EVOLUTELECTRON%TAU	TAU	S
\dot{B}_0	GEOMETRY%BTPRIME	BTPRIME	T/s
B_0	GEOMETRY%BT	ВТ	Т
ρ	GEOMETRY%RHO	RHO	m
V'	GEOMETRY%VPR	VPR	m ²
V'-	EVOLUTELECTRON%VPRM	VPRM	m ²
$\langle \left \nabla \rho \right ^2 \rangle$	GEOMETRY%G1	G1	
	DDOEH ECG/AH	NII	m ⁻³
n_i	PROFILES%NI	NI	
n_i^-	EVOLUTELECTRON%NI	NIM	m ⁻³
Γ_i	PROFILES%FLUX_NI	FLUX	1/s

γ_i	PROFILES%FLUX_NI_CONV	FLUX_NI_CONV	1/s
Γ_{Si}	PROFILES%INT_SOURCE_NI	INT_SOURCE	1/s
$S_{i, exp}$	-	SI_EXP	m ⁻³ s ⁻¹
$S_{i,imp}$	-	SI_IMP	1/s
$S_{i,isource,1}$	SOURCES%SI_EXP	-	m ⁻³ s ⁻¹
$S_{i,isource,2}$	SOURCES%SI_IMP	-	1/s
D_i		DIFF	m²/s
V_i^{pinch}		VCONV	m/s
$D_{i,i\mathrm{mod}el}$	TRANSPORT%DIFF_NI	DIFF_MOD	m²/s
$V_{i,i \mathrm{mod} el}^{ pinch}$	TRANSPORT%VCONV_NI	VCONV_MOD	m/s
$C_{1,i \mod el}$	TRANSPORT%C1	C1	
а	SOLVER%A	A	
b	SOLVER%B	В	
С	SOLVER%C	С	
d	SOLVER%D	D	
е	SOLVER%E	E	
f	SOLVER%F	F	
g	SOLVER%G	G	
h	SOLVER%H	Н	
v(1:2)	SOLVER%V	V	
u(1:2)	SOLVER%U	U	
w(1:2)	SOLVER%W	W	
Y^{t-1}	SOLVER%YM	W	
solution	SOLVER%Y	Υ	
derivative of solution	SOLVER%DY	DY	
Functions		Internal nar ELECTRON_	me used in DENSITY routine
$\frac{1}{\rho} \left(V' S_{i, \exp} + \frac{V}{V} \right)$	$\frac{1 - n_{i,\text{interpretative}}}{\tau} - n_{i,\text{interpretative}} V \cdot \left(\frac{1}{\tau} + \frac{1}{\tau}\right)$	$S_{i,imp}$	

$$\int_{0}^{\rho} \left(V' S_{i, \exp} + \frac{V'^{-} n_{i, \text{interpretative}}^{-}}{\tau} - n_{i, \text{interpretative}} V' \left(\frac{1}{\tau} + S_{i, imp} \right) \right) \partial \rho$$
INTFUN1

Quasi-neutrality condition

Variables and units:

 n_{\cdot}

- ion density [m⁻³]

```
\begin{array}{ll} \Gamma_i & -\text{ion flux [s$^{-1}$]} \\ \gamma_i & -\text{ion flux contributing to heat transport [A/m$^2]} \\ Z_{ion} & -\text{ion charge [-]} \\ n_e & -\text{electron density [m$^{-3}$]} \\ \Gamma_e & -\text{electron flux [s$^{-1}$]} \\ \gamma_e & -\text{electron flux contributing to heat transport [A/m$^2]} \\ \end{array}
```

 n_{imp} - impurity density [m $^{-3}$]

 Γ_{imp} - impurity flux [s⁻¹]

 $Z_{\it imp}$ - impurity charge [-]

 $Z_{\it eff}~$ - plasma effective charge [-]

Equations:

Plasma quasi-neutrality can be described by following conditions:

$$n_e = \sum_{ion} Z_{ion} \cdot n_{ion} + \sum_{imp} Z_{imp} \cdot n_{imp} , \qquad (4.1)$$

$$\Gamma_e = \sum_{ion} Z_{ion} \cdot \Gamma_{ion} + \sum_{imp} Z_{imp} \cdot \Gamma_{imp} , \qquad (4.2)$$

where indexes *e*, *ion* end *imp* refer to electrons, ions and impurity ions retrospectively. Impurity contribution is considered by standalone *Impurity module* and provided to the main transport solver as input.

Definitions for quantities derived from quasi-neutrality conditions:

Quasi-neutrality conditions in ETS can be used to calculate any particle plasma component (electrons or ions) or several of them (several ions).

Electrons computed from quasi-neutrality:

Density and the flux are obtained from equations (4.1) and (4.2), plasma effective charge is computed as:

$$Z_{eff} = \frac{\sum_{ion} Z_{ion}^2 \cdot n_{ion} + \sum_{imp} Z_{imp}^2 \cdot n_{imp}}{n_e}$$
(4.4)

Electron flux contributing to heat transport is obtained as:

$$\gamma_e = \sum_{ion} Z_{ion} \cdot \gamma_{ion} \tag{4.5}$$

Ins computed from quasi-neutrality:

Density and the flux are obtained from:

$$(n \cdot Z)_{sum} = n_e - \sum_{ion} Z_{ion} \cdot n_{ion} - \sum_{imp} Z_{imp} \cdot n_{imp} , \qquad (4.6)$$

$$(\Gamma \cdot Z)_{sum} = \Gamma_e - \sum_{ion} Z_{ion} \cdot \Gamma_{ion} - \sum_{imp} Z_{imp} \cdot \Gamma_{imp} , \qquad (4.7)$$

Here index *ion* refers to ion density and fluxes obtained from solving the diffusion equation (2.7), index *sum* refers to the sum of ions for which the predictive equation is not solved. Individual contributions for these ions are obtained even from:

$$n_{ion} = \frac{(n \cdot Z)_{sum}}{N_{ion}} \cdot \frac{1}{Z_{ion}} , \qquad (4.8)$$

$$\Gamma_{ion} = \frac{(\Gamma \cdot Z)_{sum}}{N_{ion}} \cdot \frac{1}{Z_{ion}} , \qquad (4.9)$$

where $\,N_{\scriptscriptstyle ion}\,$ is the number of ions to be predicted from the quasi neutrality condition.

Or from defining the weights, w_{ion} , between contributions from different ions, then individual contributions are obtained as:

$$n_{ion} = \frac{(n \cdot Z)_{sum}}{\sum_{ion} w_{ion}} \cdot w_{ion} , \qquad (4.10)$$

$$\Gamma_{ion} = \frac{(\Gamma \cdot Z)_{sum}}{\sum_{ion} w_{ion}} \cdot w_{ion} . \tag{4.11}$$

Variables used inside fortran routines:

(Routine: MAIN_PLASMA, Subroutine: QUASI_NEUTRALITY)

Variable	TYPE%NAME used in ETS data flow	Internal name used in QUASI_NEUTRALITY routine	Units
ρ	GEOMETRY%RHO	RHO	m
$\overline{n_e}$	PROFILES%NE	NE	m ⁻³
Γ_e	PROFILES%FLUX_NE	FLUX_NE	1/s
γ_e	PROFILES%FLUX_NE_CONV	FLUX_NE_CONV	1/s
$Z_{\it eff}$	PROFILES%ZEFF	ZEFF	
$\overline{Z_{ion}}$	PROFILES%ZION	ZION	
$\overline{Z_{ion}^2}$	PROFILES%ZION2	ZION2	
n_{ion}	PROFILES%NI	NI	m ⁻³
Γ_{ion}	PROFILES%FLUX_NI	FLUX_NI	1/s
γ_{ion}	PROFILES%FLUX_NI_CONV	FLUX_NI_CONV	1/s
Z_{imp}	IMPURITY%ZIMP	ZIMP	
$\overline{Z_{imp}^2}$	IMPURITY%ZIMP2	ZIMP2	
$\overline{n_{imp}}$	IMPURITY%NZ	NZ	m ⁻³
Γ_{imp}	IMPURITY %FLUX_NZ	FLUX_NZ	1/s

Ion temperatures

Variables and units:

 T_i - ion temperature [eV]

 q_i - ion conductive heat flux [W]

 $T_i \cdot \gamma_i$ - ion convective heat flux [W]

 H_i - total ion heat flux [W]

 $H_{i,\mathrm{int}}$ - total ion heat flux calculated as the integral of sources [W], if equation is not solved

 χ_i - ion heat conductivity [m²/s]

 $V_{\scriptscriptstyle Ti}^{\scriptscriptstyle pinch}$ - ion heat pinch velocity [m/s]

 $Q_{i,\mathrm{exp}}$ - explicit part of ion heat source density [eV·m⁻³s⁻¹]

 $Q_{i,imp}$ - implicit part of ion heat source density [m⁻³s⁻¹];

 Q_{ei} - electron-ion exchange frequency [m⁻³s⁻¹];

 Q_{zi} - impurity-ion exchange frequency [m⁻³s⁻¹];

 Q_{ii} - flow exchange terms [m⁻³s⁻¹];

Equation:

$$\frac{3}{2} \left(\frac{\partial}{\partial t} - \frac{\dot{B}_0}{2B_0} \cdot \frac{\partial}{\partial \rho} \rho \right) \left(n_i T_i V^{\frac{5}{3}} \right) + V^{\frac{2}{3}} \frac{\partial}{\partial \rho} \left(q_i + T_i \gamma_i \right) = V^{\frac{5}{3}} \left[Q_{i, \exp} - Q_{i, imp} \cdot T_i + Q_{ei} + Q_{zi} + Q_{\gamma i} \right]$$
(5.1)

where conductive and convective heat flux are defined as:

$$q_{i} = V \left\langle \left| \nabla \rho \right|^{2} \right\rangle \left[n_{i} \left(-\chi_{i} \frac{\partial T_{i}}{\partial \rho} + T_{i} V_{Ti}^{pinch} \right) \right] \quad \text{and} \quad T_{i} \gamma_{i},$$
(5.2)

 γ_i is defined by equation (2.14)

Total heat flux:

$$H_i = q_i + T_i \gamma_i \tag{5.3}$$

Total transport coefficients are defined as a sum of individual contributions from different transport models weighted with coefficients $m_{\text{mod }el}$:

$$\chi_i = \sum_{i \text{ mod } el-1}^{n \text{ mod } el} m_{\text{mod } el} \cdot \chi_{i, i \text{ mod } el}$$
(5.4)

$$V_{Ti}^{pinch} = \sum_{i \bmod el}^{n \bmod el} m_{\bmod el} \cdot V_{Ti, i \bmod el}^{pinch}$$

$$(5.5)$$

(Combination of individual contributions, $\chi_{i,i \mod el}$ and $V_{Ti,i \mod el}^{pinch}$, into χ_i and V_{Ti}^{pinch} is done outside of the ETS equation solver in **Transport combiner**)

Right hand side of equation (5.1) includes contributions in generic form from external sources (*computed by other modules, like ICRH, ECRH, NBI, neutrals and etc.*), in the form of explicit and implicit terms:

$$Q_{i,\text{exp}} = \sum_{isource=1}^{nsource} m_{source} \cdot Q_{i,isource,\text{exp}}$$
(5.6)

$$Q_{i,imp} = \sum_{isource}^{nsource} m_{source} \cdot Q_{i,isource,imp}$$
(5.7)

This summation is done in the workflow by <u>Source_Combiner</u>, where individual weights, m_{source} , can be adjusted.

Number of source terms are computed by the ETS internally, this includes exchange terms with electrons, $Q_{ei} = v_{ei}(T_e - T_i)$, (5.8)

and impurity ions,

$$Q_{zi} = \sum_{z} v_{zi} (T_z - T_i) = \sum_{z} v_{zi} T_z - T_i \cdot \sum_{z} v_{zi} , \qquad (5.9)$$

where v_{ei} and $\sum_{z} v_{zi}$ are the exchange frequency.

The flow exchange terms are imported from the attached transport models:

$$Q_{ji} = \sum_{i \bmod el=1}^{n \bmod el} Q_{ji,i \bmod el} . \tag{5.10}$$

Making use of equations (0.6-0.7), equation (5.1) can be rewritten for the normalized coordinate x:

$$\frac{3}{2} \frac{\partial}{\partial t} \Big|_{x} n_{i} T_{i} V^{\frac{5}{3}} + V^{\frac{2}{3}} \frac{\partial}{\partial \rho} \Big[V' \Big\langle |\nabla \rho|^{2} \Big\rangle \left(n_{i} \left(-\chi_{i} \frac{\partial T_{i}}{\partial \rho} + T_{i} V_{Ti}^{pinch} \right) \right) + T_{i} \gamma_{i} - V' \frac{3\dot{\Phi}_{b}}{4\Phi_{b}} \cdot \rho n_{i} T_{i} \Big] =$$

$$= V^{\frac{5}{3}} \left[Q_{i, \exp} - Q_{i, imp} \cdot T_{i} + Q_{ei} + Q_{zi} + Q_{\gamma i} - \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{i} T_{i} \right]$$

$$(5.11)$$

Boundary Conditions:

NOTE! Specified positive values for $\nabla T_{i,bnd}$ and L_{Ti} correspond to "normal" profile with density decreasing towards the edge

on axis, x = 0:

$$\left. \frac{\partial T_i}{\partial \rho} \right|_{r=0} = 0$$
 , assuming $V_{Ti}^{pinch} = 0$ (5.12)

at the edge, x = 1

type=1 (value)

$$T_i \Big|_{\rho = \rho_{bnd}} = T_{i,bnd}$$

type=2 (gradient)

$$\left. \frac{\partial T_i}{\partial \rho} \right|_{\rho = \rho_{bnd}} = -\nabla T_{i,bnd}$$

type=3 (scale lenght)

$$\left. \frac{1}{\left(\partial \ln T_i / \partial \rho \right)} \right|_{\rho = \rho_{had}} = -L_{Ti}$$

$$\frac{\text{type=4 (flux)}}{\left(q_i + T_i \gamma_i\right)_{\rho = \rho_{bnd}}} = f_{Ti,bnd}$$

type=5 (generic)

$$v_{gen} \frac{\partial T_i}{\partial \rho}\bigg|_{hnd} + u_{gen} T_{i,bnd} = w_{gen}$$

Definitions for quantities derived from ion temperature equation:

If equation (5.11) is not solved, interpretative temperature should be specified and various flux components are calculated from the integral of sources:

$$T_i = T_{i,\text{interpretative}}; (5.13)$$

$$T_i \gamma_i = \gamma_i \cdot T_{i, \text{interpretative}} \tag{5.14}$$

$$H_i = H_{i,\text{int}} \tag{5.15}$$

$$q_i = H_{i,\text{int}} - \gamma_i \cdot T_{i,\text{interpretative}} \tag{5.16}$$

where:

$$H_{i,\text{int}} = \frac{3\Phi_{b}}{4\Phi_{b}} \cdot \rho n_{i} V' T_{i,\text{interpretative}}$$

$$+ \rho_{b} \cdot \int_{0}^{\rho} V' \left[\frac{3}{2} \frac{n_{i}^{-} T_{i,\text{interpretative}}^{-}}{\tau} \left(\frac{V'^{-}}{V'} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_{e} + \sum_{z} v_{z i} T_{z} \right] \partial x$$

$$- \rho_{b} \cdot \int_{0}^{\rho} V' \left[\frac{3}{2} \frac{n_{i}}{\tau} + Q_{i,imp} + v_{ei} + \sum_{z} v_{z i} + \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{i} \right] \cdot T_{i,\text{interpretative}} \cdot \partial x$$

$$(5.17)$$

Translation to generalized form for interface with numerical solver:

Equation (5.11) can be rewritten using time discretization, $\frac{\partial}{\partial t} n_i T_i V^{\frac{5}{3}} = \frac{n_i T_i V^{\frac{5}{3}} - n_i^- T_i^- V^{\frac{5}{3}}}{\tau}, \text{ as }$ $\frac{3}{2} \frac{n_i T_i V^{\frac{5}{3}} - n_i^- T_i^- V^{\frac{5}{3}}}{\tau} + V^{\frac{2}{3}} \frac{\partial}{\partial \rho} \left[V' \left\langle \left| \nabla \rho \right|^2 \right\rangle \left(n_i \left(-\chi_i \frac{\partial T_i}{\partial \rho} + T_i V_{Ti}^{pinch} \right) \right) + T_i \gamma_i - V^{\frac{3}{4}} \frac{\dot{\Phi}_b}{4\Phi_b} \cdot \rho n_i T_i \right] =$ $= V^{\frac{5}{3}} \left[Q_{i, \text{exp}} - Q_{i, \text{imp}} \cdot T_i + Q_{ei} + Q_{zi} + Q_{yi} - \left[\frac{3}{2} \frac{\dot{\rho}_b}{\rho_b} - \frac{\dot{\Phi}_b}{2\Phi_b} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^2} \right\rangle \right) \right) \right] \cdot n_i T_i \right]$ (5.18)

where $\, au\,$ is the time step, $\,T_{i}^{-}$, $\,n_{i}^{-}$ and $\,V^{\prime-}$ are taken from the previous time step.

To make it compatible with the form defined by the equation (0.8), it can be:

$$\frac{\left(\frac{3}{2}n_{i}V'\right)\cdot T_{i} - \left(\frac{3}{2}n_{i}^{-}\frac{\left(V'^{-}\right)^{\frac{5}{3}}}{V^{\frac{2}{3}}}\right)\cdot T_{i}^{-}}{\tau} + \frac{1}{\rho_{b}}\frac{\partial}{\partial x}\left[-V'\left\langle\left|\nabla\rho\right|^{2}\right\rangle\frac{\chi_{i}n_{i}}{\rho_{b}}\cdot\frac{\partial T_{i}}{\partial x} + \left(V'\left\langle\left|\nabla\rho\right|^{2}\right\rangle n_{i}V_{Ti}^{pinch} + \gamma_{i} - V'\frac{3\dot{\Phi}_{b}}{4\Phi_{b}}\cdot\rho n_{i}\right)\cdot T_{i}\right] \\
= V'\left[Q_{i,\exp_{i}} + Q_{ei} + Q_{zi} + Q_{\gamma i} - \left[Q_{i,imp} + \left(\frac{3}{2}\frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}}\left(1 - \rho\frac{\partial}{\partial \rho}\ln\left(F\cdot\left\langle\frac{1}{R^{2}}\right\rangle\right)\right)\right]\cdot n_{i}\right]\cdot T_{i}\right]$$
(5.19)

Then, taking in account (5.8) and (5.9), coefficients for the interface with numerical solver can be used as:

$$a(x) = \frac{3}{2}V'n_i \tag{5.20}$$

$$b(x) = \frac{3}{2} n_i^{-1} \left(\frac{V^{1-\frac{5}{3}}}{V^{\frac{2}{3}}} \right)$$

$$c(x) = \rho_b$$

$$d(x) = V' \langle |\nabla \rho|^2 \rangle \frac{n_i \chi_i}{\rho_h}$$

$$e(x) = V' \langle |\nabla \rho|^2 \rangle n_i V_{Ti}^{pinch} + \gamma_i - V' \frac{3\dot{\Phi}_b}{4\Phi_b} \cdot \rho n_i$$

$$f(x) = V' \left[Q_{i, \exp} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z \right]$$

$$g(x) = V' \left[Q_{i,imp} + v_{ei} + \sum_{z} v_{zi} + \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{i} \right]$$

$$h = \tau$$

$$Y^{t-1}(\rho) = T_i^-$$

boundary conditions:

at the axis, x = 0:

the choice of the boundary condition is connected with the choice on numerical solver, two options are available:

$$\left. \frac{\partial T_i}{\partial x} \right|_{x=0} = 0 \tag{5.21}$$

$$v(1) = 1$$
; $u(1) = 0$; $w(1) = 0$

at the edge, x = 1:

type=1 (value)

$$\left.T_{i}\right|_{x=1}=T_{i,bnd}$$

$$v(2) = 0;$$
 $u(2) = 1;$ $w(2) = T_{i,bnd}$

type=2 (gradient)

$$\left. \frac{\partial T_i}{\partial x} \right|_{x=1} = -\nabla T_{i,bnd} \cdot \rho_b$$

$$v(2)=1; \quad u(2)=0; \quad w(2)=-\nabla T_{i,bnd} \cdot \rho_b$$

type=3 (scale length)

$$\left. \frac{\rho_b}{\left(\partial \ln T_i / \partial x \right)} \right|_{x=1} = -L_{Ti}$$

$$v(2)=1; \quad u(2)=\rho_b/L_{Ti}; \quad w(2)=0$$

type=4 (flux)

$$\left(q_i + T_i \gamma_i\right)_{x=1} = f_{Ti,bnd}$$

$$v(2) = -\frac{n_i \chi_i V'}{\rho_b} \left\langle \left| \nabla \rho \right|^2 \right\rangle; \quad u(2) = n_i V_{Ti}^{pinch} V' \left\langle \left| \nabla \rho \right|^2 \right\rangle + \gamma_i; \quad w(2) = f_{Ti,bnd}$$

type=5 (generic)

$$\frac{v_{gen}}{\rho_b} \frac{\partial T_i}{\partial x} \bigg|_{bnd} + u_{gen} T_{i,bnd} = w_{gen}$$

$$v(2) = \frac{v_{gen}}{\rho_b}; \quad u(2) = u_{gen}; \quad w(2) = w_{gen}$$

Variables used inside fortran routines:

Variable	TYPE%NAME used in ETS data flow	Internal name used in ION_TEMPERATURE routine	Units
τ	EVOLUTION%TAU	TAU	S
\dot{B}_0	GEOMETRY%BTPRIME	BTPRIME	T/s
B_0	GEOMETRY%BT	ВТ	Т
ρ	GEOMETRY%RHO	RHO	m
V'	GEOMETRY%VPR	VPR	m ²
V'-	EVOLUTION%VPRM	VPRM	m ²
$\partial V'$		DVPR	m
$\overline{\partial \rho}$			
$\left\langle \left abla ho ight ^2 ight angle$	GEOMETRY%G1	G1	

T_i	PROFILES%TI	TI	eV
$\overline{T_i}^-$	EVOLUTION%TI	TIM	eV
$\overline{n_i}$	PROFILES%NI	NI	m ⁻³
n_i^-	EVOLUTION%NI	NIM	m ⁻³
γ_i	PROFILES%FLUX_NI_CONV	FLUX_NI	1/s
H_i	PROFILES%FLUX_TI	FLUX_TI	W
$T_i \gamma_i$	PROFILES%FLUX_TI_CONV	FLUX_TI_CONV	W
q_i	PROFILES%FLUX_TI_COND	FLUX_TI_COND	W
$H_{i,\text{int}}$	PROFILES%INT_SOURCE_TI	INT_SOURCE	W
0		QI_EXP	eV·m⁻³s⁻¹
$Q_{i,\text{exp}}$		QI_IMP	m ⁻³ s ⁻¹
$Q_{i,imp}$	SOURCES%QI_EXP		eV·m ⁻³ s ⁻¹
$Q_{i,isource,1}$	SOURCES%QI_IMP		m ⁻³ s ⁻¹
Q _{i,isource,2}	COLLISIONS%VEI	VEI	m ⁻³ s ⁻¹
$\frac{V_{ei}}{V_{ei}}$	COLLISIONS %QEI	QEI	eV·m ⁻³ s ⁻¹
$\frac{{oldsymbol v}_{ei}T_e}{\sum_{z_i}}$	COLLISIONS %VZI	VZI	m ⁻³ s ⁻¹
$ \frac{\sum_{z} V_{zi}}{\sum_{z} V_{zi} T_{z}} $ $ \frac{Q_{\gamma i}}{} $	COLLISIONS %QZI	QZI	eV·m ⁻³ s ⁻¹
$\frac{z}{Q_{xi}}$		QGI	eV·m ⁻³ s ⁻¹
$\overline{Q_{ji,i\mathrm{mod}el}}$	TRANSPORT%QGI		eV·m⁻³s⁻¹
24		DIFF	m²/s
$rac{{{oldsymbol \chi}_i}}{{V_{Ti}}^{pinch}}$		VCONV	m/s
	TRANSPORT%DIFF_TI		m²/s
$rac{{{{\mathcal{X}}_{i,i { m mod} \it{el}}}}}{{V_{Ti,i { m mod} \it{el}}}}$	TRANSPORT%VCONV_TI		m/s
Ti,i mod ei			
а	SOLVER%A	A	
b	SOLVER%B	В	
С	SOLVER%C	С	
d	SOLVER%D	D	
e	SOLVER%E	E	
f	SOLVER%F	F	

g	SOLVER%G	G	
h	SOLVER%H	Н	
v(1:2)	SOLVER%V	V	
u(1:2)	SOLVER%U	U	
w(1:2)	SOLVER%W	W	
Y^{t-1}	SOLVER%YM	W	
solution	SOLVER%Y	Υ	
derivative of solution	SOLVER%DY	DY	

Functions	Internal name used in ION_TEMPERATURE routine
$\frac{V}{\rho} \left(\frac{3}{2} \frac{n_i^- T_{i,\text{int erpretative}}^-}{\tau} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_e + \sum_z v_{zi} T_z - \frac{V^-}{V^-} \left(\frac{V^-}{V^-} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + V_{ei} T_e + \sum_z v_{zi} T_z - V_{zi} T_e + V_{ei} T_e + V$	FUN1
$ - \left[\frac{3}{2} \frac{n_i}{\tau} + Q_{i,imp} + v_{ei} + \sum_{z} v_{zi} - \rho n_i \cdot \frac{\dot{B}_0}{2B_0} \cdot \frac{\partial V'}{\partial \rho} \right] \cdot T_{i,interpretative} $	
$\int_{0}^{\rho} V' \left[\frac{3}{2} \frac{n_{i}^{-} T_{i,\text{interpretative}}}{\tau} \left(\frac{V'^{-}}{V'} \right)^{\frac{5}{3}} + Q_{i,\text{exp}} + Q_{\gamma i} + v_{ei} T_{e} + \sum_{z} v_{zi} T_{z} \right] \partial \rho -$	INTFUN1
$-\int_{0}^{\rho} V' \left[\frac{3}{2} \frac{n_{i}}{\tau} + Q_{i,imp} + V_{ei} + \sum_{z} V_{zi} - \rho n_{i} \cdot \frac{\dot{B}_{0}}{2B_{0}} \cdot \frac{\partial V'}{\partial \rho} \right] \cdot T_{i,interpretative} \cdot \partial \rho$	

Electron energy transport equation

Variables and units:

 T_e - electron temperature [eV]

 q_e - electron conductive heat flux [W]

 $T_e \cdot \gamma_e$ - electron convective heat flux [W]

 H_e - total electron heat flux [W]

 $H_{e,\mathrm{int}}$ - total electron heat flux calculated as the integral of sources [W], if equation is not solved

 χ_e - electron heat conductivity [m²/s]

 $V_{\tau_o}^{\it pinch}$ - electron heat pinch velocity [m/s]

 $Q_{e, \rm exp}$ - explicit part of electron heat source density $[{\rm eV} \cdot {\rm m}^{\text{-3}} {\rm s}^{\text{-1}}]$

 $Q_{e,imp}$ - implicit part of electron heat source density [m⁻³s⁻¹];

 Q_{ie} - ion- electron exchange frequency [m⁻³s⁻¹];

 Q_{ii} - flow exchange terms [m⁻³s⁻¹];

Equation:

$$\frac{3}{2} \left(\frac{\partial}{\partial t} - \frac{\dot{B}_0}{2B_0} \cdot \frac{\partial}{\partial \rho} \rho \right) \left(n_e T_e V^{\frac{5}{3}} \right) + V^{\frac{2}{3}} \frac{\partial}{\partial \rho} \left(q_e + T_e \gamma_e \right) = V^{\frac{5}{3}} \left[Q_{e, \exp} - Q_{e, imp} \cdot T_e + Q_{ie} - Q_{\gamma i} \right]$$

$$(6.1)$$

where conductive and convective heat flux are defined as:

$$q_{e} = V' \langle \left| \nabla \rho \right|^{2} \rangle \left[n_{e} \left(-\chi_{e} \frac{\partial T_{e}}{\partial \rho} + T_{e} V_{Te}^{pinch} \right) \right] \quad \text{and} \quad T_{e} \gamma_{e},$$

$$(6.2)$$

 γ_e is defined by equation (3.14)

Total heat flux:

$$H_e = q_e + T_e \gamma_e \tag{6.3}$$

Total transport coefficients are defined as a sum of individual contributions from different transport models weighted with coefficients $m_{\text{mod}\,el}$:

$$\chi_e = \sum_{i \text{ mod } el}^{n \text{ mod } el} \chi_{e, i \text{ mod } el}$$
(6.4)

$$V_{Te}^{pinch} = \sum_{i=1}^{n \bmod el} m_{\text{mod } el} \cdot V_{Te, i \bmod el}^{pinch}$$

$$(6.5)$$

(Combination of individual contributions, $\chi_{e,i \, \text{mod} \, el}$ and $V_{Te,i \, \text{mod} \, el}^{pinch}$, into χ_e and V_{Te}^{pinch} is done outside of the ETS equation solver in **Transport combiner**)

Right hand side of equation (6.1) includes contributions in generic form from external sources (*computed by other modules, like ICRH, ECRH, NBI, neutrals and etc.*), in the form of explicit and implicit terms:

$$Q_{e,\exp} = \sum_{isource=1}^{nsource} m_{source} \cdot Q_{e,isource,\exp}$$
(6.6)

$$Q_{e,imp} = \sum_{isource=1}^{nsource} m_{source} \cdot Q_{e,isource,imp}$$
(6.7)

This summation is done in the workflow by <u>Source_Combiner</u>, where individual weights, m_{source} , can be adjusted.

Number of source terms are computed by the ETS internally, this includes exchange terms with electrons, $Q_{ie} = \sum_{i} v_{ei} (T_i - T_e), \tag{6.8}$

where $\nu_{_{ei}}$ is the exchange frequency.

The flow exchange terms are imported from the attached transport models:

$$Q_{\gamma i} = \sum_{i \bmod el=1}^{n \bmod el} Q_{\gamma i, i \bmod el} . \tag{6.9}$$

Making use of equations (0.6-0.7), equation (5.1) can be rewritten for the normalized coordinate x:

$$\frac{3}{2} \frac{\partial}{\partial a} \Big|_{x} n_{e} T_{e} V^{\frac{5}{3}} + V^{\frac{2}{3}} \frac{\partial}{\partial \rho} \left[V' \langle |\nabla \rho|^{2} \rangle \left(n_{e} \left(-\chi_{e} \frac{\partial T_{i}}{\partial \rho} + T_{e} V_{Te}^{pinch} \right) \right) + T_{e} \gamma_{e} - V' \frac{3\dot{\Phi}_{b}}{4\Phi_{b}} \cdot \rho n_{e} T_{e} \right] =$$

$$= V^{\frac{5}{3}} \left[Q_{e, \exp} - Q_{e, imp} \cdot T_{e} + Q_{ie} - Q_{ji} - \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{e} T_{e} \right] \tag{6.10}$$

Boundary Conditions:

NOTE! Specified positive values for $\nabla T_{e,bnd}$ and L_{Te} correspond to "normal" profile with density decreasing towards the edge

on axis, x = 0:

$$\left. \frac{\partial T_e}{\partial \rho} \right|_{r=0} = 0$$
 , assuming $V_{Te}^{pinch} = 0$ (6.11)

at the edge, x = 1 type=1 (value)

$$T_e \Big|_{\rho = \rho_{bnd}} = T_{e,bnd}$$

type=2 (gradient)

$$\left. \frac{\partial T_e}{\partial \rho} \right|_{\rho = \rho_{bnd}} = -\nabla T_{e,bnd}$$

type=3 (scale lenght)

$$\left. \frac{1}{\left(\partial \ln T_e / \partial \rho \right)} \right|_{\rho = \rho_{bnd}} = -L_{Te}$$

type=4 (flux)

$$\left(q_e + T_e \gamma_e\right)_{\rho = \rho_{bnd}} = H_{Te,bnd}$$

type=5 (generic)

$$v_{gen} \frac{\partial T_e}{\partial \rho}\Big|_{hard} + u_{gen} T_{e,bnd} = w_{gen}$$

Definitions for quantities derived from electron temperature equation:

If equation (6.10) is not solved, interpretative temperature should be specified and various flux components are calculated from the integral of sources:

$$T_e = T_{e,\text{interpretative}}; (6.12)$$

$$T_e \gamma_e = \gamma_e \cdot T_{e, \text{interpretative}}$$
 (6.13)

$$H_e = H_{e,\text{int}} \tag{6.14}$$

$$q_e = H_{e, \text{int}} - \gamma_e \cdot T_{e, \text{interpretative}} \tag{6.15}$$

where:

$$\begin{split} H_{e,\text{int}} &= \frac{3\dot{\Phi}_{b}}{4\Phi_{b}} \cdot \rho n_{e} V' T_{e,\text{interpretative}} \\ &+ \rho_{b} \cdot \int_{0}^{\rho} V' \left[\frac{3}{2} \frac{n_{e}^{-} T_{e,\text{interpretative}}^{-}}{\tau} \left(\frac{V'^{-}}{V'} \right)^{\frac{5}{3}} + Q_{e,\text{exp}} - Q_{\gamma i} + \sum_{i} \nu_{ei} T_{i} \right] \partial x \\ &- \rho_{b} \cdot \int_{0}^{\rho} V' \left[\frac{3}{2} \frac{n_{e}}{\tau} + Q_{e,\text{imp}} + \sum_{i} \nu_{ei} + \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{e} \right] \cdot T_{e,\text{interpretative}} \cdot \partial x \end{split} \tag{6.16}$$

Translation to generalized form for interface with numerical solver:

Equation (5.11) can be rewritten using time discretization, $\frac{\partial}{\partial t} n_i T_i V^{\frac{5}{3}} = \frac{n_i T_i V^{\frac{5}{3}} - n_i^{-} T_i^{-} V^{\frac{5}{3}}}{\tau}, \text{ as }$

$$\frac{3}{2} \frac{n_{i} T_{i} V^{\frac{5}{3}} - n_{i}^{-} T_{i}^{-} V^{\frac{5}{3}}}{\tau} + V^{\frac{2}{3}} \frac{\partial}{\partial \rho} \left[V' \langle |\nabla \rho|^{2} \rangle \left(n_{i} \left(-\chi_{i} \frac{\partial T_{i}}{\partial \rho} + T_{i} V_{T_{i}}^{pinch} \right) \right) + T_{i} \gamma_{i} - V' \frac{3\dot{\Phi}_{b}}{4\Phi_{b}} \cdot \rho n_{i} T_{i} \right] = \\
= V^{\frac{5}{3}} \left[Q_{i, \exp} - Q_{i, imp} \cdot T_{i} + Q_{ei} + Q_{zi} + Q_{\gamma i} - \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{i} T_{i} \right]$$
(6.17)

where $\, au\,$ is the time step, $\,T_e^{\,-}$, $\,n_e^{\,-}$ and $\,V^{\,-}$ are taken from the previous time step.

To make it compatible with the form defined by the equation (0.8), it can be:

$$\frac{\left(\frac{3}{2}n_{e}V'\right)\cdot T_{e} - \left(\frac{3}{2}n_{e}^{-}\frac{V'^{-\frac{5}{3}}}{V'^{\frac{2}{3}}}\right)\cdot T_{e}^{-}}{\tau} + \frac{1}{\rho_{b}}\frac{\partial}{\partial x}\left[-V'\langle|\nabla\rho|^{2}\rangle\frac{\chi_{e}n_{e}}{\rho_{b}}\cdot\frac{\partial T_{e}}{\partial x} + \left(V'\langle|\nabla\rho|^{2}\rangle n_{e}V_{Te}^{pinch} + \gamma_{e} - V'\frac{3\dot{\Phi}_{b}}{4\Phi_{b}}\cdot\rho n_{e}\right)\cdot T_{e}\right] \\
= V'\left[Q_{e,\exp_{i}} + Q_{ie} - Q_{ji} - \left[Q_{e,imp} + \left(\frac{3}{2}\frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}}\left(1 - \rho\frac{\partial}{\partial\rho}\ln\left(F\cdot\langle\frac{1}{R^{2}}\rangle\right)\right)\right]\cdot n_{e}\right]\cdot T_{e}\right]$$
(6.18)

Then, taking in account (6.8) and (6.9), coefficients for the interface with numerical solver can be used as:

$$a(x) = \frac{3}{2}V'n_e \tag{6.19}$$

$$b(x) = \frac{3}{2} n_e^{-1} \left(\frac{V^{1-\frac{5}{3}}}{V^{\frac{2}{3}}} \right)$$

$$c(x) = \rho_b$$

$$d(x) = V' \langle |\nabla \rho|^2 \rangle \frac{n_e \chi_e}{\rho_b}$$

$$e(x) = V' \langle |\nabla \rho|^2 \rangle n_e V_{Te}^{pinch} + \gamma_e - V' \frac{3\dot{\Phi}_b}{4\Phi_b} \cdot \rho n_e$$

$$f(x) = V' \left[Q_{e, \exp} - Q_{\gamma i} + \sum_{i} v_{ei} T_{i} \right]$$

$$g(x) = V' \left[Q_{e,imp} + \sum_{i} v_{ei} + \left[\frac{3}{2} \frac{\dot{\rho}_{b}}{\rho_{b}} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} \left(1 - \rho \frac{\partial}{\partial \rho} \ln \left(F \cdot \left\langle \frac{1}{R^{2}} \right\rangle \right) \right) \right] \cdot n_{e} \right]$$

 $h = \tau$

$$Y^{t-1}(\rho) = T_{\rho}^{-}$$

boundary conditions:

at the axis, x = 0:

the choice of the boundary condition is connected with the choice on numerical solver, two options are available:

$$\left. \frac{\partial T_e}{\partial x} \right|_{x=0} = 0 \tag{6.20}$$

$$v(1) = 1;$$
 $u(1) = 0;$ $w(1) = 0$

at the edge, x = 1:

type=1 (value)

$$T_e\Big|_{x=1} = T_{e,bnd}$$

$$v(2)=0;$$
 $u(2)=1;$ $w(2)=T_{e,bnd}$

type=2 (gradient)

$$\frac{\partial T_e}{\partial x}\Big|_{x=1} = -\nabla T_{e,bnd} \cdot \rho_b$$

$$v(2)=1; u(2)=0; w(2)=-\nabla T_{e,bnd} \cdot \rho_b$$

type=3 (scale length)

$$\left. \frac{\rho_b}{\left(\partial \ln T_e / \partial x \right)} \right|_{x=1} = -L_{Te}$$

$$v(2)=1;$$
 $u(2)=\rho_b/L_{Te};$ $w(2)=0$

type=4 (flux)

$$\left(q_e + T_e \gamma_i\right)_{x=1} = H_{Te,bnd}$$

$$v(2) = -\frac{n_e \chi_e V'}{\rho_b} \left\langle \left| \nabla \rho \right|^2 \right\rangle; \quad u(2) = n_e V_{Te}^{pinch} V' \left\langle \left| \nabla \rho \right|^2 \right\rangle + \gamma_e; \quad w(2) = H_{Te,bnd}$$

type=5 (generic)

$$\frac{v_{gen}}{\rho_b} \frac{\partial T_e}{\partial x} \bigg|_{bnd} + u_{gen} T_{e,bnd} = w_{gen}$$

$$v(2) = \frac{v_{gen}}{\rho_b}; \quad u(2) = u_{gen}; \quad w(2) = w_{gen}$$

Variables used inside fortran routines:

Variable	TYPE%NAME used in ETS data flow	Internal name used in ELECTRON_TEMPERAT URE routine	Units
τ	EVOLUTION%TAU	TAU	S
\dot{B}_0	GEOMETRY%BTPRIME	BTPRIME	T/s
B_0	GEOMETRY%BT	ВТ	Т
ρ	GEOMETRY%RHO	RHO	m
V'	GEOMETRY%VPR	VPR	m ²
V'-	EVOLUTION%VPRM	VPRM	m ²
$\partial V'$		DVPR	m
$\overline{\partial \rho}$			
$\langle \left \nabla \rho \right ^2 \rangle$	GEOMETRY%G1	G1	
T_e	PROFILES%TE	TE	eV
T_e^{-}	EVOLUTION%TE	TEM	eV
n_e	PROFILES%NE	NE	m ⁻³
n_e^-	EVOLUTION%NE	NEM	m ⁻³
γ_e	PROFILES%FLUX_NE_CONV	FLUX_NE	1/s
H_{e}	PROFILES%FLUX_TE	FLUX_TE	W

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_e \gamma_e$	PROFILES%FLUX_TE_CONV	FLUX_TE_CONV	W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PROFILES%FLUX_TE_COND	FLUX_TE_COND	W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PROFILES%INT_SOURCE_TE	INT_SOURCE	W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{e,\mathrm{exp}}$		QE_EXP	eV·m⁻³s⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{e,imp}$		QE_IMP	m ⁻³ s ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{e,isource,1}$	SOURCES%QE_EXP		eV·m⁻³s⁻¹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SOURCES%QE_IMP		m ⁻³ s ⁻¹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		COLLISIONS%VIE	VIE	m ⁻³ s ⁻¹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sum_{i}^{l} v_{ei} T_{i}$	COLLISIONS %QIE	QIE	eV·m ⁻³ s ⁻¹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Q_{\gamma i}$		QGI	eV·m⁻³s⁻¹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TRANSPORT%QGI		eV·m ⁻³ s ⁻¹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	χ_e		DIFF	m²/s
$V_{Te,i mod el}^{pinch} \qquad TRANSPORT%VCONV_TE \qquad \qquad m/s$ $a \qquad SOLVER%A \qquad A \qquad \qquad b$ $SOLVER%B \qquad B \qquad \qquad \qquad d$ $c \qquad SOLVER%C \qquad C \qquad \qquad d$ $d \qquad SOLVER%D \qquad D \qquad \qquad \qquad d$ $e \qquad SOLVER%E \qquad E \qquad \qquad \qquad d$ $f \qquad SOLVER%F \qquad F \qquad \qquad \qquad d$ $g \qquad SOLVER%G \qquad G \qquad \qquad \qquad d$ $h \qquad SOLVER%H \qquad H \qquad \qquad \qquad \qquad d$ $v(1:2) \qquad SOLVER%V \qquad V \qquad \qquad \qquad d$ $v(1:2) \qquad SOLVER%U \qquad U \qquad \qquad \qquad d$ $v(1:2) \qquad SOLVER%W \qquad W \qquad \qquad \qquad d$ $solution \qquad SOLVER%YM \qquad W \qquad \qquad \qquad d$ $derivative of solution \qquad SOLVER%DY \qquad DY \qquad \qquad \qquad d$	$V_{Te}^{\ pinch}$		VCONV	m/s
a SOLVER%A A b SOLVER%B B c SOLVER%C C d SOLVER%C D e SOLVER%D D f SOLVER%E E g SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V w(1:2) SOLVER%U U Y'-1 SOLVER%W W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	$\chi_{e,i\mathrm{mod}el}$	TRANSPORT%DIFF_TE		m²/s
b SOLVER%B B c SOLVER%C C d SOLVER%D D e SOLVER%E E f SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W solution SOLVER%YM W derivative of solution SOLVER%DY DY	$V^{ extit{pinch}}_{Te,i \mathrm{mod} el}$	TRANSPORT%VCONV_TE		m/s
b SOLVER%B B c SOLVER%C C d SOLVER%D D e SOLVER%E E f SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W solution SOLVER%YM W derivative of solution SOLVER%DY DY		COLVEDO/A		
c SOLVER%C C d SOLVER%D D e SOLVER%E E f SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W y'-1 SOLVER%YM W solution SOLVER%YY Y derivative of solution SOLVER%DY DY				
d SOLVER%D D e SOLVER%E E f SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W y ^{t-1} SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY				
e SOLVER%E E f SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W Y'-1 SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY			С	
f SOLVER%F F g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W solution SOLVER%YM W derivative of solution SOLVER%DY DY	d	SOLVER%D		
g SOLVER%G G h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W Y'-1 SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	е	SOLVER%E	E	
h SOLVER%H H v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W y ^{t-1} SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	f	SOLVER%F	F	
v(1:2) SOLVER%V V u(1:2) SOLVER%U U w(1:2) SOLVER%W W Y ^{t-1} SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	g	SOLVER%G	G	
u(1:2) SOLVER%U U w(1:2) SOLVER%W W Y ^{t-1} SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	h	SOLVER%H	Н	
w(1:2) SOLVER%W W Y ^{t-1} SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	v(1:2)	SOLVER%V	V	
Y ^{t-1} SOLVER%YM W solution SOLVER%Y Y derivative of solution SOLVER%DY DY	u(1:2)	SOLVER%U	U	
solution SOLVER%Y Y derivative of solution DY	w(1:2)	SOLVER%W	W	
derivative of solution DY	Y^{t-1}	SOLVER%YM	W	
solution	solution	SOLVER%Y	Υ	
Internal name used in	-	SOLVER%DY	DY	
Internal name used in				
			Internal nam	e used in

Functions	ELECTRON_TEMPERATURE routine
$\frac{V}{\rho} \cdot \left(\frac{3}{2} \frac{n_e^{-} T_{e,\text{int}erpretative}^{-}}{\tau} \left(\frac{V'^{-}}{V'} \right)^{\frac{5}{3}} + Q_{e,\text{exp}} + \sum_{i} v_{ei} T_i - Q_{\gamma i} \right)$	FUN1
$-\left[-\frac{3}{2}\frac{n_{e}}{\tau}Q_{e,imp} + \sum_{i}v_{ei} - \rho n_{e} \cdot \frac{\dot{B}_{0}}{2B_{0}}\frac{1}{V'} \cdot \frac{\partial V'}{\partial \rho}\right] \cdot T_{e,interpretative}$	
$\int_{0}^{\rho} V' \left(\frac{3}{2} \frac{n_{e}^{-} T_{e,\text{interpretative}}^{-}}{\tau} \left(\frac{V'^{-}}{V'} \right)^{\frac{5}{3}} + Q_{e,\text{exp}} + \sum_{i} v_{ei} T_{i} - Q_{\gamma i} \right) \partial \rho -$	INTFUN1
$-\int_{0}^{\rho} V' \left(-\frac{3}{2} \frac{n_{e}}{\tau} Q_{e,imp} + \sum_{i} \nu_{ei} - \rho n_{e} \cdot \frac{\dot{B}_{0}}{2B_{0}} \frac{1}{V'} \cdot \frac{\partial V'}{\partial \rho} \right) \cdot T_{e,interpretative} \partial \rho$	

Rotation transport equation

Variables and units:

 $u_{i,o}$ - ion toroidal rotation velocity [m/s]

 $\omega_{i,\sigma}$ - ion angular toroidal velocity [1/s]

 M_i - ion toroidal momentum [kg*m/s]

 Φ , - ion toroidal momentum flux [kg*m2/s2]

 $\Phi_{i conv}$ - convective component of ion toroidal momentum flux [kg*m2/s2]

 $\Phi_{i,cond}$ - conductive component of ion toroidal momentum flux [kg*m2/s2]

 M_{tot} - total ion toroidal momentum [kg*m/s]

 Φ_{tot} - total ion toroidal momentum flux [kg*m2/s2]

Equation:

$$\left(\frac{\partial}{\partial t}\Big|_{\mathcal{O}} - \frac{\dot{B}_{0}}{2B_{0}} \cdot \frac{\partial}{\partial \rho} \rho\right) \left(V'\langle R\rangle m_{i}n_{i}u_{i,\varphi}\right) + \frac{\partial}{\partial \rho} \Phi_{i} = V'\left(U_{i,\varphi,\exp} - U_{i,\varphi,imp} \cdot u_{i,\varphi} + U_{zi,\varphi}\right) \tag{7.1}$$

where total flux is defined as:

$$\Phi_{i} = V' \langle \left| \nabla \rho \right|^{2} \rangle m_{i} n_{i} \langle R \rangle \cdot \left(-\chi_{u\varphi,i} \frac{\partial u_{i,\varphi}}{\partial \rho} + u_{i,\varphi} V_{u\varphi,i}^{pinch} \right) + m_{i} \langle R \rangle u_{i,\varphi} \Gamma_{i}$$

$$(7.2)$$

with convective and conductive components:

$$\Phi_{i,conv} = m_i \langle R \rangle u_{i,\varphi} \Gamma_i \tag{7.3}$$

$$\Phi_{i,cond} = V' \langle \left| \nabla \rho \right|^2 \rangle m_i n_i \langle R \rangle \cdot \left(-\chi_{u\varphi,i} \frac{\partial u_{i,\varphi}}{\partial \rho} + u_{i,\varphi} V_{u\varphi,i}^{pinch} \right)$$
(7.4)

Total transport coefficients are defined as a sum of individual contributions from different transport models weighted with coefficients $m_{\text{mod}\,el}$:

$$\chi_{u\varphi,i} = \sum_{i \text{ mod } el=1}^{n \text{ mod } el} \chi_{u\varphi,i \text{ mod } el}$$
(7.5)

$$V_{u\varphi}^{pinch} = \sum_{i \text{ mod } el}^{n \text{ mod } el} V_{u\varphi, i \text{ mod } el}^{pinch}$$

$$(7.6)$$

(Combination of individual contributions, $\chi_{u\varphi,i \bmod el}$ and $V_{u\varphi,i \bmod el}^{pinch}$, into $\chi_{u\varphi}$ and $V_{u\varphi}^{pinch}$ is done outside of the ETS equation solver in **Transport combiner**)

Right hand side of equation (7.1) includes contributions in generic form from external sources in the form of explicit and implicit terms:

$$U_{i,\varphi,\exp} = \sum_{\substack{i \text{ source} \\ j \text{ source} = 1}}^{n \text{ source}} U_{i,\varphi,i \text{ source}}$$
(7.7)

$$U_{i,\phi,imp} = \sum_{i \text{source}}^{n \text{source}} W_{i,\phi,i \text{source},imp}$$
(7.8)

This summation is done in the workflow by <u>Source_Combiner</u>, where individual weights, m_{source} , can be adjusted.

momentum exchange with other ion components:

$$U_{zi,\varphi} = \langle R \rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} \left(u_{z,\varphi} - u_{i,\varphi} \right)$$
 (7.9)

various collisions quantities ($\langle R \rangle_z \frac{m_{zi}n_z}{\tau_{zi}}$ and $\langle R \rangle_z \frac{m_{zi}n_zu_{z,\varphi}}{\tau_{zi}}$) should be provided by stand alone

COLLISIONS module

Equation (7.1) can be rewritten in the form:

$$\frac{\partial}{\partial r} \left(V' \langle R \rangle m_{i} n_{i} u_{i,\phi} \right) \\
+ \frac{\partial}{\partial \rho} \left(V' \langle |\nabla \rho|^{2} \rangle m_{i} n_{i} \langle R \rangle \cdot \left(-\chi_{u\phi,i} \frac{\partial u_{i,\phi}}{\partial \rho} + u_{i,\phi} V_{u\phi,i}^{pinch} \right) + m_{i} \langle R \rangle u_{i,\phi} \Gamma_{i} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} V' m_{i} n_{i} \langle R \rangle u_{i,\phi} \rho \right) \\
= V \left(U_{i,\phi,exp} + U_{zi,\phi} - \left(U_{i,\phi,imp} + \frac{\dot{\rho}_{b}}{\rho_{b}} m_{i} n_{i} \langle R \rangle \right) \cdot u_{i,\phi} \right) \tag{7.10}$$

Boundary Conditions:

NOTE! Specified positive values for $\nabla u_{\varphi,bnd}$ and $L_{u\varphi}$ correspond to "normal" profile with density decreasing towards the edge

on axis, $\rho = 0$:

$$\frac{\partial u_{i,\varphi}}{\partial \rho}\bigg|_{\rho=0} = 0 \tag{7.11}$$

at the edge, $\rho = \rho_{bnd}$: type=1 (value)

$$u_{i,\varphi}\Big|_{\rho=\rho_{bnd}}=u_{\varphi,bnd}$$

type=2 (gradient)

$$\left. \frac{\partial u_{i,\varphi}}{\partial \rho} \right|_{\rho = \rho_{bnd}} = -\nabla u_{\varphi,bnd}$$

type=3 (scale lenght)

$$\left. \frac{1}{\left(\partial \ln u_{i,\varphi} \, / \, \partial \rho \right)} \right|_{\rho = \rho_{bnd}} = -L_{u\varphi}$$

type=4 (flux)

$$\Phi\big|_{\rho=\rho_{bnd}}=f_{u\varphi,bnd}$$

type=5 (generic)

$$\left. v_{gen} \frac{\partial u_{i,\varphi,bnd}}{\partial \rho} \right|_{bnd} + u_{gen} u_{i,\varphi,bnd} = w_{gen}$$

Definitions for quantities derived from rotation equation:

total toroidal momentum:

$$M_{i} = m_{i} n_{i} \langle R \rangle u_{i,\phi} \tag{7.12}$$

angular velocity for plasma component i:

$$\omega_{i,\varphi} = \frac{u_{i,\varphi}}{\langle \mathbf{R} \rangle} \tag{7.13}$$

total momentum and flux are defined as:

$$M_{tot} = \sum_{i} M_{i}; \quad \Phi_{tot} = \sum_{i} \Phi_{i}$$
 (7.14)

If equation (7.10) is not solved, interpretative toroidal velocity should be specified, momentum and flux are assumed:

$$u_{i,o} = u_{i,o,\text{interpretative}};$$
 (7.15)

$$\omega_{i,\varphi} = \frac{u_{i,\varphi, \text{interpretative}}}{\langle R \rangle}$$
; (7.16)

$$M_i = m_i n_i \langle R \rangle u_{i,\phi,\text{interpretative}};$$
 (7.17)

$$\Phi_i = \Phi_{i,\text{int}} \tag{7.18}$$

$$\Phi_{i,conv} = m_i \langle R \rangle \Gamma_i u_{i,\phi,\text{interpretative}}$$
 (7.19)

$$\Phi_{i,cond} = \Phi_{i,int} - m_i \langle R \rangle \Gamma_i u_{i,\phi,interpretative}$$
(7.20)

$$M_{tot} = \sum_{i} M_{i}; \quad \Phi_{tot} = \sum_{i} \Phi_{i}$$
 (7.21)

where:

$$\begin{split} &\Phi_{i,\text{int}} = \frac{\dot{\Phi}_{b}}{2\Phi_{b}} V' m_{i} n_{i} \left\langle R \right\rangle \rho_{b} x u_{i,\phi,\text{interpretative}} + \\ &+ \rho_{b} \int_{0}^{x} V' \left(U_{i,\phi,\text{exp}} + \left\langle R \right\rangle \sum_{z} \frac{m_{zi} n_{z} u_{z,\phi}}{\tau_{zi}} + \frac{\left\langle R \right\rangle^{-} m_{i} n_{i}^{-} u_{i,\phi,\text{interpretative}}^{-} \left(\frac{V'^{-}}{V'} \right) \right) \partial x \\ &- \rho_{b} \int_{0}^{x} V' \left(U_{i,\phi,imp} - \left\langle R \right\rangle \frac{m_{i} n_{i}}{\tau} - \left\langle R \right\rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} - \frac{\dot{\rho}_{b}}{\rho_{b}} m_{i} n_{i} \left\langle R \right\rangle \right) u_{i,\phi,\text{interpretative}} \partial x \end{split}$$

$$(7.22)$$

Translation to generalized form for interface with numerical solver:

Equation (6.10) can be rewritten using time discretization,

$$\frac{\partial}{\partial t}\bigg|_{x} \left(V'\langle R\rangle m_{i}n_{i}u_{i,\varphi}\right) = \frac{V'\langle R\rangle m_{i}n_{i}u_{i,\varphi} - V'^{-}\langle R\rangle^{-}m_{i}n_{i}^{-}u_{i,\varphi}^{-}}{\tau},$$

where $V^{\text{--}}$, $\ n_{i}^{\text{--}}$, $\left\langle R\right\rangle ^{\text{--}}$ and $u_{i,\varphi}^{\text{--}}$ are taken at the previous time step as:

$$m_{i} \frac{V' n_{i} \langle R \rangle u_{i,\phi} - V'^{-} n_{i}^{-} \langle R \rangle^{-} u_{i,\phi}^{-}}{\tau} + \frac{\partial}{\partial \rho} \left(V' \langle |\nabla \rho|^{2} \rangle m_{i} n_{i} \langle R \rangle \cdot \left(-\chi_{u\phi,i} \frac{\partial u_{i,\phi}}{\partial \rho} + u_{i,\phi} V_{u\phi,i}^{pinch} \right) + m_{i} \langle R \rangle u_{i,\phi} \Gamma_{i} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} V' m_{i} n_{i} \langle R \rangle u_{i,\phi} \rho \right) , \quad (7.23)$$

$$= V \left(U_{i,\phi,exp} + \langle R \rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} \left(u_{z,\phi} - u_{i,\phi} \right) - \left(U_{i,\phi,imp} + \frac{\dot{\rho}_{b}}{\rho_{b}} m_{i} n_{i} \langle R \rangle \right) \cdot u_{i,\phi} \right)$$

or as:

$$m_{i} \frac{V' n_{i} \langle R \rangle u_{i,\varphi} - V'^{-} n_{i}^{-} \langle R \rangle^{-} u_{i,\varphi}^{-}}{\tau} + \frac{1}{\rho_{b}} \frac{\partial}{\partial x} \left(-\frac{V' \langle |\nabla \rho|^{2} \rangle m_{i} n_{i} \langle R \rangle \chi_{u\varphi,i}}{\rho_{b}} \frac{\partial u_{i,\varphi}}{\partial x} + \left(V' \langle |\nabla \rho|^{2} \rangle n_{i} V_{u\varphi,i}^{pinch} + \Gamma_{i} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} V' n_{i} \rho \right) \cdot \langle R \rangle m_{i} \cdot u_{i,\varphi} \right)$$

$$= V' \left(U_{i,\varphi,\exp} + \langle R \rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} u_{z,\varphi} - \left(U_{i,\varphi,imp} + \langle R \rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} + \frac{\dot{\rho}_{b}}{\rho_{b}} m_{i} n_{i} \langle R \rangle \right) \cdot u_{i,\varphi} \right)$$

$$(7.24)$$

Then, taking in account (6.8) and (6.9), coefficients for the interface with numerical solver can be used as:

$$a(x) = V' \langle R \rangle m_{i} n_{i}$$

$$c(x) = V' - \langle R \rangle^{-} m_{i} n_{i}^{-}$$

$$c(x) = \rho_{b}$$

$$d(x) = \frac{V' \langle |\nabla \rho|^{2} \rangle m_{i} n_{i} \langle R \rangle \chi_{u\phi,i}}{\rho_{b}}$$

$$e(\rho) = \left(V' \langle |\nabla \rho|^{2} \rangle n_{i} V_{u\phi,i}^{pinch} + \Gamma_{i} - \frac{\dot{\Phi}_{b}}{2\Phi_{b}} V' n_{i} \rho \right) \cdot \langle R \rangle m_{i}$$

$$f(\rho) = V \left(U_{i,\phi,exp} + \langle R \rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} u_{z,\phi} \right)$$

$$g(\rho) = V \left(U_{i,\phi,imp} + \langle R \rangle \sum_{z} \frac{m_{zi} n_{z}}{\tau_{zi}} + \frac{\dot{\rho}_{b}}{\rho_{b}} m_{i} n_{i} \langle R \rangle \right)$$

$$h = \tau$$

$$Y^{t-1}(\rho) = u_{i,\phi}^{-}$$

boundary conditions:

at the axis, x = 0:

$$\left. \frac{\partial u_{i,\phi}}{\partial x} \right|_{x=0} = 0 \tag{7.26}$$

$$v(1) = 1$$
; $u(1) = 0$; $w(1) = 0$

at the edge, x = 1:

type=1 (value)

$$u_{i,\varphi}\Big|_{x=1}=u_{\varphi,bnd}$$

$$v(2) = 0;$$
 $u(2) = 1;$ $w(2) = u_{\varphi,bnd}$

type=2 (gradient)

$$\left. \frac{\partial u_{i,\varphi}}{\partial x} \right|_{x=1} = -\nabla u_{\varphi,bnd} \cdot \rho_b$$

$$v(2)=1; u(2)=0; w(2)=-\nabla u_{\varphi,bnd} \cdot \rho_b$$

type=3 (scale lenght)

$$\left. \frac{\rho_b}{\left(\partial \ln u_{i,\varphi} / \partial \rho \right)} \right|_{x=1} = -L_{u\varphi}$$

$$v(2)=1;$$
 $u(2)=\frac{\rho_b}{L_{u\phi}};$ $w(2)=0$

type=4 (flux)

$$\Phi|_{r=1} = f_{u\omega,bnd}$$

$$\Phi_{i} = V' \left\langle \left| \nabla \rho \right|^{2} \right\rangle m_{i} n_{i} \left\langle R \right\rangle \cdot \left(-\frac{\chi_{u\phi,i}}{\rho_{b}} \frac{\partial u_{i,\phi}}{\partial x} + u_{i,\phi} V_{u\phi,i}^{pinch} \right) + m_{i} \left\langle R \right\rangle u_{i,\phi} \Gamma_{i}$$

$$v(2) = -V' \langle |\nabla \rho|^2 \rangle \langle R \rangle m_i n_i \frac{\chi_{u\phi,i}}{\rho_b}; \qquad u(2) = V' \langle |\nabla \rho|^2 \rangle \langle R \rangle m_i n_i V_{u\phi,i}^{pinch} + m_i \langle R \rangle \Gamma_i; \qquad w(2) = f_{u\phi,bnd}$$

type=5 (generic)

$$\frac{v_{gen}}{\rho_b} \frac{\partial u_{i,\phi,bnd}}{\partial x} \bigg|_{bnd} + u_{gen} u_{i,\phi,bnd} = w_{gen}$$

$$v(2) = \frac{v_{gen}}{\rho_b}; \quad u(2) = u_{gen}; \quad w(2) = w_{gen}$$

Variables used inside fortran routines:

Variable	TYPE%NAME used in ETS data flow	Internal name used in ROTATION routine	Units
τ	EVOLUTION%TAU	TAU	S
\dot{B}_0	GEOMETRY%BTPRIME	BTPRIME	T/s
B_0	GEOMETRY%BT	ВТ	Т
ρ	GEOMETRY%RHO	RHO	m
V'	GEOMETRY%VPR	VPR	m ²
V^{-}	EVOLUTION%VPRM	VPRM	m ²
$\langle \left \nabla \rho \right ^2 \rangle$	GEOMETRY%G1	G1	
$\langle R \rangle$	GEOMETRY%G2	G2	m
$\langle R \rangle^-$	EVOLUTION%G2M	G2M	m
$u_{i,\phi}$	PROFILES%VTOR	VTOR	m/s
$u_{i,\varphi}^{-}$	EVOLUTION%VTORM	VTORM	m/s
$\omega_{i,arphi}$	PROFILES%WTOR	WTOR	1/s
M_i	PROFILES%MTOR	MTOR	kg*m/s
M_{tot}	PROFILES% MTOR_TOT	MTOR_TOT	kg*m/s
n_i	PROFILES%NI	NI	m ⁻³
n_i^-	EVOLUTION%NI	NIM	m ⁻³
Φ_i	PROFILES%FLUX_MTOR	FLUX_MTOR	kg*m²/s²
$\Phi_{i,conv}$	PROFILES%FLUX_MTOR_CONV	FLUX_MTOR_CONV	kg*m²/s²
$\Phi_{i,cond}$	PROFILES% FLUX_MTOR_COND	FLUX_MTOR_COND	kg*m²/s²
$\Phi_{i, ext{int}}$	PROFILES% INT_SOURCE_MTOR	INT_SOURCE	kg*m²/s²
Φ_{tot}	PROFILES% FLUX_MTOR_TOT	FLUX_MTOR_TOT	kg*m²/s²

$U_{i,\phi, { m exp}}$		UI_EXP	kg/m/s ²	
$U_{i, \varphi, \mathit{imp}}$		UI_IMP	kg/m²/s	
$U_{i,\phi,isource,1}$	SOURCES%UI_EXP		kg/m/s ²	
$U_{i, \varphi, isource, 2}$	SOURCES%UI_IMP		kg/m²/s	
	COLLISIONS %WZI	WZI	kg/m²/s	
$\frac{\langle R \rangle \sum \frac{m_{zi} n_z}{\tau_{zi}}}{\tau_{zi}}$ $\frac{\langle R \rangle \sum \frac{m_{zi} n_z u_{z,i}}{\tau_{zi}}$	COLLISIONS %UZI	UZI	kg/m/s ²	
$\chi_{u\varphi,i}$		DIFF	m²/s	
$V_{uarphi,i}^{\ pinch}$		VCONV	m/s	
$\chi_{u\varphi,i,i\mathrm{mod}el}$	TRANSPORT%DIFF_VTOR		m²/s	
$V_{uarphi,i{ m mod}el}^{pinch}$	TRANSPORT%VCONV_VTOR		m/s	
	COLVEDOVA			
<i>a</i>	SOLVER%A	A		
b	SOLVER%B	В		
C	SOLVER%C	С		
d	SOLVER%D	D		
е	SOLVER%E	E		
f	SOLVER%F	F		
g	SOLVER%G	G		
h	SOLVER%H	Н		
v(1:2)	SOLVER%V	V		
u(1:2)	SOLVER%U	U		
w(1:2)	SOLVER%W	W		
Y^{t-1}	SOLVER%YM	W		
solution	SOLVER%Y	Υ		
derivative of solution	SOLVER%DY	DY		
Functions		Internal name of routine	Internal name used in ROTATION routine	

$\frac{V'}{\rho} \left(U_{i,\varphi,\exp} + \left\langle R \right\rangle \sum_{z} \frac{m_{zi} n_{z} u_{z,\varphi}}{\tau_{zi}} + \frac{\left\langle R \right\rangle^{-} m_{i} n_{i}^{-} u_{i,\varphi,interpretative}^{-}}{\tau} \left(\frac{V''}{V'} \right) \right)$	FUN1
$- \left(U_{i,\varphi,imp} - \left\langle R \right\rangle \frac{m_i n_i}{\tau} - \left\langle R \right\rangle \sum_z \frac{m_{zi} n_z}{\tau_{zi}} \right) \!\! u_{i,\varphi, \text{interpretative}} \right)$	
$\int_{0}^{\rho} V' \left(U_{i,\varphi,\exp} + \left\langle R \right\rangle \sum_{z} \frac{m_{zi} n_{z} u_{z,\varphi}}{\tau_{zi}} + \frac{\left\langle R \right\rangle^{-} m_{i} n_{i}^{-} u_{i,\varphi,int erp retative}}{\tau} \left(\frac{V'^{-}}{V'} \right) \right) \partial \rho$	INTFUN1
$-\int\limits_{0}^{\rho} V \Biggl\{ U_{i,\varphi,imp} - \left\langle R \right\rangle \frac{m_{i}n_{i}}{\tau} - \left\langle R \right\rangle \sum_{z} \frac{m_{zi}n_{z}}{\tau_{zi}} \Biggr\} u_{i,\varphi,interpretative} \partial \rho$	