Refinement Reflection: Complete Verification with SMT

Niki Vazou¹, Anish Tondwalkar², Vikraman Choudhury³, Ryan Scott³, Ryan Newton³, Philip Wadler⁴, and Ranjit Jhala²

> ¹University of Maryland ²UC San Diego ³Indiana University ⁴University of Edinburgh

$$i \le 1 \land v = 1 \Rightarrow 0 < v \land i \le v$$

SMT-Valid

not
$$i \le 1$$
 $0 < v_{i-1} \land i-1 \le v_{i-1}$
 $0 < v_{i-2} \land i-2 \le v_{i-2}$
 $v = v_{i-1} + v_{i-2}$

$$SMT-Valid$$

Verified

Verification with SMT To be **Practical**, SMT queries are **Decidable**

Can verification be Complete?

Complete Verification with SMT

How to express theorems about functions?

```
\forall i. 0 \le i \Longrightarrow fib i \le fib (i+1)
```

How to express theorems about functions?

Step 1: Definition

In SMT fib is "Uninterpreted Function"
\forall i j. i = j => fib i = fib j

How to connect logic fib with target fib?

How to connect logic fib with target fib?

```
fib :: i:{Int|0≤i} > {v:Int|0<v∧iv⟩
 fib
    otherwise = Tib (i-1) + Tib
\foralli.
          then fibia = 1
         rib i = fib (i-1) + fib (i-2)
```

How to connect logic fib with target fib?

Refinement Reflection

```
fib :: i:{Int|0 \le i} -> {v:Int| v = fib i \land i \le 1 \text{ then fib } i = 1 \text{ else fib } i = fib (i-1) + fib (i-2)}
```

Refinement Reflection

Step 1: Definition

Step 2: Reflection

```
fib :: i:{Int|0≤i} → {v:Int| v=fib i Λ
    if i≤1 then fib i = 1
    else fib i = fib (i−1) + fib (i−2)
    }
```

Refinement Reflection

Step 1: Definition

Step 2: Reflection

```
fib :: i:{Int|0≤i} → {v:Int| v=fib i Λ
    if i≤1 then fib i = 1
    else fib i = fib (i-1) + fib (i-2)
    }
```

Step 3: Application

```
fib 1 :: \{v:Int | v=fib 1 \land fib 1 = 1\}
```

Application is Type Level Computation

fib 1

fib 1 = 1

Application Type Level Computation

```
fib 1 = 1
fib 1
fib 0
            fib 2 = fib 1 + fib 0
fib 2
fib i
```

? if $i \le 1$ then fib i = 1 else fib i = 1 (i-2)

Application Type Level Computation

```
fib 1 = 1
    fib 1
    fib 0
                fib 2 = fib 1 + fib 0
    fib 2
if 1<i then
            fib i = fib (i-1) + fib (i-2)
    fib i
            \{fib (i+1) = fib i + fib (i-1)\}
  fib (i+1)
```

Theorem Proving

```
fibUp :: i:Nat -> {v:() | fib i ≤ fib (i+1)}
fibUp i
 i == 0
 = fib 0 <. fib 1
 *** QED
 i == 1
 = fib 1 <=. fib 1 + fib 0 <=. fib 2
 *** QED
 l otherwise
 = fib i
 <=. fib i + fib (i-1)
 <=. fib (i+1)
 *** QED
```

Reflection for Theorem Proving

Theorems are refinement types.

Proofs are functions.

Check that functions prove theorems.

Proofs are functions.

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}
```

Proofs are functions.

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}
```

Let's call them!

```
fibUp 4 :: {fib 4 \leq fib 5}
fibUp i :: {fib i \leq fib (i+1)}
fibUp (j-1) :: {fib (j-1) \leq fib j}
```

Proofs are functions. Let's call them!

```
fibMono :: i:Nat -> j:{Nat| i < j}</pre>
        \rightarrow {fib i \le fib j}
fibMono i j
 | i + 1 == j
 = fib i
 <=. fib (i+1) ? fibUp i
 ==. fib j
 *** QED
 | otherwise
 = fib i
 <=. fib (j-1) ? fibMono i (j-1)
 <=. fib j ? fibUp (j-1)
 *** 0ED
```

Proofs are functions. Let's call them!

```
fibMono :: i:Nat -> j:{Nat| i < j}</pre>
        \rightarrow {fib i \le fib j}
fibMono i j
 | i + 1 == j
 = fib i
 <=. fib (i+1) ? fibUp i
 ==. fib i
 *** QED
 | otherwise
 = fib i
 <=. fib (j-1) ? fibMono i (j-1)
 <=. fib j ? fibUp (j-1)
 *** 0ED
```

Proofs are functions. Let's abstract them!

```
fibMono :: i:Nat -> j:{Nat| i < j}
        -> fib:(Nat -> Int)
        -> (k:Nat -> \{fib k \leq fib (k+1)\})
        -> \{fib i \leq fib j\}
fibMono i j fib fibUp
| i + 1 == j
 = fib i
 <=. fib (i+1) ? fibUp i
 ==. fib i
 *** QED
 l otherwise
 = fib i
 <=. fib (j-1) ? fibMono i (j-1)
 <=. fib j ? fibUp (j-1)
 *** QED
```

Reflection for Theorem Proving

Theorems are refinement types.

Proofs are functions.

Check that functions prove theorems.

Implementation in

Proof by Logical Evaluation (PLE) Idea: Unfold in you can

Proof by Logical Evaluation (PLE) Idea: Unfold in you can

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}
```

Proof by Logical Evaluation (PLE) Idea: Unfold in you can

```
fib i = X
fib (i+1) = X
```

Proof by Logical Evaluation (PLE) Idea: Unfold in you can, using context.

```
if i=0, then

fib i = 1

fib (i+1) = 1
```

Proof by Logical Evaluation (PLE)

Idea: Unfold in you can, using context.

```
if i=1, then
    fib i = 1
    fib (i+1) = fib 1 + fib 0
```

Proof by Logical Evaluation (PLE) Idea: Unfold in you can, using context.

```
if i=1, then
    fib i = 1
    fib (i+1) = fib 1 + fib 0
    fib 1 = 1
    fib 0 = 1
```

Idea: Unfold in you can, using context.

```
if i>1, then
```

```
fib i = fib (i-1) + fib (i-2)
fib (i+1) = fib i + fib (i-1)
```

Idea: Unfold in you can, using context.

if i>1, then

```
fib i = fib (i-1) + fib (i-2)

fib (i+1) = fib i + fib (i-1)

fib (i-1) = X

fib (i-2) = X
```

```
fibUp :: i:Nat -> {v:() | fib i ≤ fib (i+1)}
fibUp i
    | i == 0
    = ()
    | i == 1
    = ()
    | otherwise
    = ()
```

Idea: Unfold in you can, using context.

Prop I: Termination.

Prop II: Completeness.

Application: Proof Simplification.

Proof Simplification.

$$(\textbf{Spec} + \textbf{Proof}) / \textbf{Impl} = \begin{cases} x2.4, \text{ without PLE} \\ x1.6, \text{ with PLE} \end{cases}$$

Evaluation

(Spec + Proof) / Impl x2.4

x1.6

Benchmark	Common		Without PLE Search			With PLE Search		
	Impl (l)	Spec (l)	Proof (l)	Time (s)	SMT (q)	Proof (l)	Time (s)	SMT (q)
Arithmetic								
Fibonacci	7	10	38	2.74	129	16	1.92	79
Ackermann	20	73	196	5.40	566	119	13.80	846
Class Laws								
Monoid	33	50						
Functor	48	44		x4			77	
Applicative	62	110		人士			XX	
Monad	63	42					والمناف والمواقعة والمعالم المعالم الم	
Higher-Order Properties								
Logical Properties	0	20	33	2.71	32	33	2.74	32
Fold Universal	10	44	43	2.17	24	14	1.46	48
Functional Corre	ctness							
SAT-solver	92	34	0	50.00	50	0	50.00	50
Unification	51	60	85	4.77	195	21	5.64	422
Deterministic Parallelism								
Conc. Sets	597	329		7 ^	9			7
<i>n</i> -body	163	251	X	` ' <i> </i>		X	^ ¿	5
Par. Reducers	30	212	23			23		
Total	1176	1279	1524	148.76	1626	638	150.88	4068

Complete Verification with SMT

Refinement Reflection

Reflect function definition in result type Function application gives type level computation

Proof by Logical Evaluation

Unfolds function definitions, if it can

Thanks!