Worksheet 6

- 1. Determine (with a proof or counter example) whether each of the arithmetic functions below is completely multiplicative, multiplicative or both. Here k is fixed number.
 - (a) f(n) = kn,
 - (b) $f(n) = n^k$.
- 2. Let $n \in \mathbb{N}$. The Liouville λ -function, denoted by $\lambda(n)$, is
 - $\lambda(n) = \begin{cases} 1, & \text{if } n = 1, \\ (-1)^k, & \text{if } n = p_1 p_2 \cdots p_k \text{ where } p_1, p_2, \cdots, p_k \text{ are not necessarily distinct primes.} \end{cases}$

$$\lambda(12) = (-1)^3 = -1, \ 12 = 2.2.3$$

- (a) Prove that λ is a completely multiplicative function.
- (b) Let F(n) be

$$F(n) = \sum_{d|n} \lambda(d).$$

Prove that $F(n) = \begin{cases} 1, & \text{if n is a perfect square,} \\ 0, & \text{otherwise.} \end{cases}$

- 3. Characterize those positive integers n for which each of the following property holds.
 - (a) d(n) = 1,
 - (b) d(n) = 2,
 - (c) d(n) = 3,
 - (d) d(n) = 5.
- 4. Characterize those positive integers n for which d(n) is odd.
- 5. Let $n \in \mathbb{N}$. Define an arithmetic function ρ by $\rho(1) = 1$ and $\rho(n) = 2^r$, where r is the number of distinct prime numbers in the prime factorization of n.

1

Example: $\rho(12) = 2^2 = 4$.

(a) Prove that ρ is multiplicative but not completely multiplicative.

(b) Let $f(n) = \sum_{d|n} \rho(d)$. If $p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ is the prime factorization of n, then find a formula for f(n) in terms of prime factorization.

Hint: note that f is multiplicative and it is determined by the prime powers of n, so use (a) above.

6. Let $n \in \mathbb{N}$. If $k \in \mathbb{N}^*$, then define

$$\sigma_k(n) = \sum_{d|n} d^k.$$

Note that this is a generalization of d(n) and $\sigma(n)$, as when k = 0 we have $\sigma_0(n) = d(n)$ and k = 1 we have $\sigma_1(n) = \sigma(n)$.

- (a) Find $\sigma_3(12)$ and $\sigma_4(8)$.
- (b) Prove that $\sigma_k(n)$ is multiplicative.
- (c) Let $p \in \mathbb{P}$ and $a \in \mathbb{N}$. Find a formula for $\sigma_k(p^a)$.
- (d) Let $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ where p_i 's are distinct primes. Use (b) and (c) to find the formula for $\sigma_k(n)$.