UHMob International Conference - Organic Semiconductors

Charge storage mechanism in metal-organic polymers for alkali-ion battery electrodes

Andriy Zhugayevych

Max Planck Institute for Polymer Research, Polymer Theory Department

September 7, 2022

Acknowledgments

Experiment Roman Kapaev

Project Leaders

Keith Stevenson Pavel Troshin

R Kapaev, A Zhugayevych, S Ryazantsev, D Aksyonov, D Novichkov, P Matveev, K Stevenson, Charge storage mechanisms of a π -d conjugated polymer for advanced alkali-ion battery anodes, Chem Sci 13, 8161 (2022)

Electrochemical energy storage: Metal-ion batteries

10⁴

100 h

1h

36 s

Power and energy, mass and volumetric capacities are the main parameters of a battery from practical perspective...

... More detailed list of parameters for electrodes

- Operational stability, reversibility
- High voltage
- Fast charging
- High ionic mobility
- High electronic conductivity
- Ease of production etc.

No single material can perfectly satisfy all these requirements organic materials might find their own niche applications

Possible niche for organic and metal-organic materials

Adv Energy Mater 12, 2102904 (2022)

Among the best are transition metal oxides (NMC, LFP) showing high voltage and operational stability, but

- Not fully reversible e.g. due to cation mixing
- Low ionic mobility (lattice is too rigid)
- Bulk carbon (organics) is added for electronic conductivity
- Graphite (organics) is used as anode
- ⇒ A lot of "opportunities" for organic materials

Focus of this work: fast charging solid state electrode

(organic materials are soft so it is reasonable to expect fast ion intercalation)

Some common problems of solid organic alkali-ion electrodes:

(easy to synthesize molecular and polymers, no frameworks)

- Technological problems
 - ► Irreversible changes creates many other problems
 - Poor electronic conductivity
- Theoretical problems
 - ▶ No structural data ⇒⇒
 - ⇒ no atomistic model for first-principle modeling
 - ▶ Limited material characterization ⇒
 - ⇒ no way to cross-validate first-principle models
 - Consequently, very limited understanding of mechanisms
- Fundamental intrinsic problems
 - Organic materials need separated subsystems for
 - (1) keeping structural rigidity and transporting electrons, and
 - (2) charging or doping (next slide)

We are going to address (lucky to) most of these problems except for poor electronic conductivity

What happens if we dope/charge π -conjugated backbone

A toy model of a flexible polymer with local doping/charging

Upon Li-intercalation $pp\pi$ -bonding pattern changes dramatically

Deep electronic traps appear on Li-deficient monomers (-0.5 eV)

Upon ion intercalation irreversible structural changes are expected

Polymer under study: NiBTA in alkali-ion batteries

(BTA=benzenetetramine, considered alkali metals are Li, Na, K)

- Good performance in fast-charging metal-ion batteries
- Semicrystalline structure
- Fully reversible changes upon charge/discharge

However published reports contained controversial statements on

- Intermolecular packing (herringbone or π -stack, ions location)
- Electronic structure (metal or insulator, frontier orbitals)
- Mechanism of operation and role of transition metal...

... Previously proposed charge storage mechanisms

The primary goal is to resolve controversies and understand mechanism of operation

Experimental methodology

(synthesis and characterization are performed by Roman Kapaev)

- Operando XRD
- Operando Raman
- UV-Vis-NIR absorption
- Cyclic voltammetry
- Galvanostatic cycling
- Microscopy and elemental analysis (HAADF-STEM and EDX)
- XANES by Sergey Ryazantsev

Rarely a theoretician is given such a comprehensive set of data + the only known to me fully characterized material of its class

HAADF=High-Angle Annular Dark-Field imaging, STEM=Scanning Transmission Electron Microscopy, EDX=Energy-Dispersive X-ray spectroscopy, XANES=X-ray Absorption Near Edge Structure

Computational methodology

(difference from commonly used approaches for metal-organic electrodes, in other words, many controversies can be resolved just by choosing the right method)

Intermolecular geometry

- PBE, fitting 3 broad XRD peaks → PBE-D3
- Ad hoc structure prediction followed by ab initio MD

Intramolecular geometry and electronic structure

- PBE, GGA+U, B3LYP → PBE0, CAM-B3LYP
- composite basis of 6-31G* till Ar and TZVP after Ar

Analysis of electronic structure

- bands, canonic MO → localized MO and inter-LMO couplings
- charge density → wave-function

Validation

- crystal structure and UV-Vis of oligomers
- use of methods well-benchmarked for semiconductors

MD=Molecular Dynamics, MO=Molecular Orbital, LMO=Localized MO

Results: Good performance in battery with metal electrode

Material is stable at high charge-discharge rates

Fully reversible changes upon charge-discharge cycling (operando XRD and Raman)

Material has well-defined structure, changes are fully reversible

Resonance Raman spectra have several distinctive peaks

(and new peak appears at 750 cm⁻¹ upon alkali ion intercalation)

Important for validation of atomistic models
(Raman for intramolecular structure and XRD for intermolecular)

UV-Vis-NIR and XANES spectroscopies are puzzling

(mutually inconsistent and inconsistent with published calculations)

This and other questions to theoreticians:

- Interpretation of spectroscopic data
- Atomic positions (controversial published reports)
- Electronic structure (controversial published reports)
- Mechanism of operation (controversial published reports)

Electronic structure of a single polymer chain

(localized molecular orbital analysis of π -system using proper density functional)

Polymer chain remains planar in operational range up to 2e per Ni

Ni itself is electrochemically inactive but pre-charges* (dopes) organic part of the π -conjugated polymer (BTA ligand)

^{*} in analogy to π -backbonding Ni donates 2e through Ni-N σ -bonds but withdraws them back from BTA π -system, so that formally Ni is in Ni $^{(0)}$ state

... This immediately explains spectroscopic data

- Optical gap is increased upon reduction because π -system of BTA ligand returns to its normal occupation state in the most stable form of free BTA molecule
- Raman peak at 750 cm⁻¹ (breathing mode) is invisible in pristine polymer because of zero electronic density on vertical C-C bonds whose stretching constitutes the breathing
- Linear fit to XANES is valid but with Ni charge rescaled to computed values showing +0.54 to +0.23 reduction

... and also explains structural stability during charging

- All bonding molecular orbitals remain intact upon charging with up to 2e per repeating unit
- Further reduction populates Ni-N antibonding orbitals thus loosening the structure

Intermolecular structure and ion intercalation mechanism

(considered all structures with 2 monomers per unit cell, then ran MD in supercell)

- Pristine material has herringbone packing
- Facile rotations and displacements of polymer chains allows for fast ion intercalation between (011) planes
- lons intercalate in pairs according to energy estimates
- Small ions (Li) slightly distort the initial structure
- Large ions (K) open wide channels resulting in restructuring...

... Other structures

- Although ab initio MD captures restructuring, more XRD peaks are needed to identify Na- and K-ion structures
- π -stacking is stable only for small ions and only with them
- Larger scale MD should help, but force field is required

Summary and Outlook

Metal-organic polymers

- Late transition metal itself is electrochemically inactive but pre-charges (dopes) organic part of the π -conjugated polymer
- Rigid polymers allow for fast reversible alkali-ion intercalation
- More structural characterization and modeling is needed to get details of intercalation of Na and K ions

Outlook

- NiBTA is not special, so other metal-organic crystalline polymers and molecular solids should be studied to get a broad picture of organic electrode materials
- Can we replace organic material + bulk carbon composite by a single organic material with good electronic conductivity?
- 2D and 3D frameworks might be promising due to enhanced rigidity and electronic transport