Metódy v bioinformatike CB #2 Úvod do dynamického programovania

Jana Černíková

FMFI UK

02/10/2025

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X

(všetko kladné celé čísla).

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X.

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X

(všetko kladné celé čísla).

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X.

Príklad: k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13.

Odbočka: ešte matematickejšia formulácia bez slov minca, suma, ...

Vstup: kladné celé čísla m_1, m_2, \ldots, m_k a X.

Výstup: celé číslo n a n čísel x_1, \ldots, x_n , pre ktoré platia nasledujúce podmienky:

- $x_i \in \{m_1, m_2, \dots, m_k\}$ pre každé $i = 1, 2, \dots, n$.
- $\sum_{i=1}^{n} x_i = X$.
- *n* je najmenšie možné.

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X (všetko kladné celé čísla).

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X.

Príklad: k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13.

Príklad: k = 3, $m_1 = 1$, $m_2 = 3$, $m_3 = 4$, X = 6.

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

príklad pre k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13:

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

použijeme 5, X = 8

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1
- použijeme 1, X = 0

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1
- použijeme 1, X = 0

Problém s týmto riešením?

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - ▶ odčítaj hodnotu mince od X

príklad pre
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$:

- použijeme 5, X = 8
- použijeme 5, X = 3
- použijeme 2, X = 1
- použijeme 1, X = 0

Problém s týmto riešením? nefunguje vždy

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- algoritmus:

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- ullet algoritmus: 4+1+1

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- ullet algoritmus: 4+1+1
- optimum:

- opakuj kým X > 0:
 - použi najväčšiu mincu, ktorá je najviac X
 - odčítaj hodnotu mince od X

Problém s týmto riešením: nefunguje vždy

- mince hodnôt 1,3,4
- X = 6
- ullet algoritmus: 4+1+1
- optimum: 3 + 3

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X – 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy
 i = 1, 2, 3, ..., X 1, X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]										

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1,2,3,...,X-1,X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0									

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy
 i = 1, 2, 3, ..., X 1, X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1								

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2							

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1						

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1					

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2				

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2	2			

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i	0	1	2	3	4	5	6	7	8	9
A[i]	0	1	2	1	1	2	2	2		

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1,2,3,...,X-1,X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

i		0	l							l	
A[i]	0	1	2	1	1	2	2	2	2	

- zrátame najlepší počet mincí nielen pre X, ale pre všetky možné cieľové sumy 1, 2, 3, ..., X 1, X
- vyrobíme si tabuľku A, do ktorej si pre všetky sumy i=1,2,3,...,X-1,X uložíme najmenší počet mincí, ktorými ich vieme zaplatiť
 - A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

	i	0	1	2	3	4	5	6	7	8	9
ſ	A[i]	0	1	2	1	1	2	2	2	2	3

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá			

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9		

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme			

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3		

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

X = 10, mince: 1, 3, 4

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí			

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4		

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	?

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

$$A[10] = min\{A[9] + 1, A[7] + 1, A[6] + 1\}$$

A[i] = najmenší počet mincí, ktoré treba na zaplatenie sumy i

mince 1, 3, 4

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3

prvá minca	1	3	4
X - prvá	10 - 1 = 9	10 - 3 = 7	10 - 4 = 6
# mincí ešte potrebujeme	3	2	2
dokopy mincí	4	3	3

$$A[10] = min\{A[9] + 1, A[7] + 1, A[6] + 1\}$$

$$A[i] = min\{A[i-1]+1, A[i-3]+1, A[i-4]+1\}$$

Algoritmus pre všeobecnú sústavu k mincí m_1, m_2, \ldots, m_k

Podproblém A[i]

$$A[i] = 1 + \min\{A[i - m_1], A[i - m_2], \dots, A[i - m_k]\}$$

```
m = [1,3,4]
X = 11
k = len(m)
nekonecno = math.inf
A = [0]
for i in range(1, X + 1):
    min = nekonecno
    for j in range(k):
        if i \ge m[j] and A[i - m[j]] < min:
            min = A[i - m[j]]
    A.append(1 + min)
print(A)
```

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

Rekonštrukcia riešenia pre sumu 10:

• B[10] = 4, zostane nám zaplatiť 6

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

- B[10] = 4, zostane nám zaplatiť 6
- B[6] = 3, zostane nám zaplatiť 3

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

- B[10] = 4, zostane nám zaplatiť 6
- B[6] = 3, zostane nám zaplatiť 3
- B[3] = 3, zostáva 0

Pridáme druhú tabuľku B, kde v B[i] si pamätáme, ktorá bola najlepšia prvá minca, keď sme počítali A[i] (ak je viac možností, zoberieme ľubovoľnú, napr. najväčšiu)

i	0	1	2	3	4	5	6	7	8	9	10
A[i]	0	1	2	1	1	2	2	2	2	3	3
B[i]	-	1	1	3	4	4	3	4	4	4	4

- B[10] = 4, zostane nám zaplatiť 6
- B[6] = 3, zostane nám zaplatiť 3
- B[3] = 3, zostáva 0
- riešenie: 4 + 3 + 3

Program aj s výpisom mincí

```
m = [1,3,4]
X = 11
k = len(m)
nekonecno = 1000000
A = [0]
B = \lceil -1 \rceil
for i in range(1, X + 1):
    min = nekonecno
    min_minca = -1
    for j in range(k):
        if i \ge m[j] and A[i - m[j]] < min:
             min = A[i - m[i]]
             min_minca = m[j]
    A.append(1 + min)
    B.append(min_minca)
while X > 0:
    print(B[X])
    X = X - B[X]
```

Program aj s výpisom mincí - okrajové prípady

```
pre m = [2,4,5], X = 11, k = len(m)
inicilizacie: nekonecno = 1000000, A = [0], B = [-1]
for i in range(1, X + 1):
   min = nekonecno
   min_minca = -1  # ak sa suma i neda zaplatit (sumy 0,1,3),
                    # v cykle sa nenastavi ziadna hodnota
   for j in range(k):
        if i \ge m[j] and A[i - m[j]] < min:
            min = A[i - m[i]]
            min_minca = m[j]
    A.append(1 + min)
   B.append(min_minca) #toto by bez tej -1 vyhodilo chybu (not defined)
while X > 0:
   print(B[X]) #vypise 2 4 5;
                #ale napr. pre m = [2,4,6], X = 11 tu program spadne (index -1),
   X = X - B[X]
print(A)
#[0, 1000001, 1, 1000001, 1, 1, 2, 2, 2, 2, 2, 3]
print(B)
\#[-1, -1, 2, -1, 4, 5, 2, 2, 4, 4, 5, 2]
atd. (nemusite riesit, kod je len na ukazku :) )
```

Program aj s výpisom mincí - okrajové prípady

```
pre m = [2,4,6], X = 12, k = len(m)
inicilizacie: nekonecno = 1000000, A = [0], B = [-1]
for i in range(1, X + 1):
    min = nekonecno
    min minca = -1
    for j in range(k):
        if i \ge m[j] and A[i - m[j]] < min:
            min = A[i - m[j]]
            min_minca = m[j]
    A.append(1 + min)
    B.append(min_minca)
while X > 0:
    print(B[X]) # vypise 6 6
   X = X - B[X]
print(A)
#[0, 1000001, 1, 1000001, 1, 1000001, 1, 1000001, 2, 1000001, 2, 1000001, 2]
print(B)
#[-1, -1, 2, -1, 4, -1, 6, -1, 2, -1, 4, -1, 6]
atd. (nemusite riesit, kod je len na ukazku :) )
```

 Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy).

- Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy).
- Riešenia podproblémov ukladáme do tabuľky a používame pri riešení väčších podproblémov.

- Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy).
- Riešenia podproblémov ukladáme do tabuľky a používame pri riešení väčších podproblémov.
- Technika dynamického programovania sa používa na viacero problémov v bioinformatike.
 - napr. hľadanie zarovnaní sekvencií