1.8. Mediana (m_d) Estatística Aplicada

1.8 Mediana (m_d)

É um valor real que separa o Rol em duas partes deixando à sua esquerda o mesmo número de elementos que à sua direita. Portanto, a mediana é um valor que ocupa a posição central em uma série.

1.8.1 Dados Brutos ou Rol

O primeiro passo a fazer é ordenar os elementos caso sejam dados brutos, obtendo o Rol. Daí, determinar o número de elementos do Rol.

Se **n é ímpar**, o Rol admite apenas um termo central, que ocupa a posição $(\frac{n+1}{2})^{\circ}$.

Ex.:

$$X$$
: 2,20,12,23,20,8,12
o rol X : 2,8,12,**12**,20,20,23
 $n=7 \rightarrow \left(\frac{7+1}{2}\right)^{\circ} = 4^{\circ} \text{ termo } \Rightarrow m_d = 12$

"A metade dos valores da série são menores ou iguais a 12, e metade dos valores são maiores ou iguais a 12."

Se **n é par**, o Rol admite dois termos centrais que ocupam as posições $(\frac{n}{2})^{\circ}$ e $(\frac{n}{2}+1)$. A mediana é convencionada como sendo a média dos valores que ocupam estas posições centrais.

Ex.:

$$X$$
: 7,21,13,15,10,8,9,13
o rol X : 7,8,9,10,13,13,15,21
 $n=8 \rightarrow \left(\frac{8}{2}\right)^{\circ} = 4^{\circ} \text{ termo e } 5^{\circ} \text{ termo}$
 $m_d = \frac{10+13}{2} = 11,5$

1.8.2 Variável Discreta

Eles já estão naturalmente organizados e basta que apliquemos o raciocínio anterior. Para nos auxiliar na localização dos termos centrais, utilizamos a frequência acumulada.

Ex.:

$$x_i$$
 | f_i | F_i | T_i | f_i | T_i | T_i

Analisemos outro exemplo:

1.8. Mediana (m_d) Estatística Aplicada

x_i	<i>f_i</i> 3 5 8 10 6	F_i	$n = 32 \rightarrow \left(\frac{32}{2}\right)^{\circ} = 16^{\circ}$ termo e 17° termo.
0	3	3	$\binom{n}{2}$
1	5	8	Podemos observar na tabela que o 16° termo se encontra na linha onde $F_i = 16$ ($i = 3$), ou
2	8	16	seja, é o elemento $x_i = x_3 = 2$. E o 17° termo se encontra na linha onde $F_i = 26$ ($i = 4$),
3	10	26	ou seja, é o elemento $x_i = x_4 = 3$.
5	6	32	Logo: $m_d = \frac{x_3 + x_4}{2} = \frac{2+3}{2} = 2.5$.

1.8.3 Variável Contínua

Neste ponto, devemos lembrar que quando utilizamos não podemos identificar os elementos da série e sim o intervalo de elementos. Portanto, não podemos aplicar o raciocínio até aqui utilizado. Com o objetivo de generalizar a fórmula do cálculo da mediana, vamos estudar um exemplo:

Classe	Int. Classe	f_i		
1	3 6	2		
2	6 — 9 9 — 12	5		
3	9 12	8	\Longrightarrow	n = 19 elem
4	12 15	3		
5	15 18	1		

A mediana por definição, separa o número de elementos da série em dois grupos, contendo cada um deles 50% dos elementos. Assim a posição da mediana na série é n/2. No exemplo, $(19/2)^{\circ} = 9,5^{\circ}$. Este valor, nos diz que a mediana é um elemento posicionado entre o 9° e o 10° elemento da série.

Para identificarmos em qual classe está o 9° e o 10° elementos vamos calcular as frequências acumuladas:

	Int. Classe			
1	3 6	2	2	
2	$3 \mid -6$ $6 \mid -9$ $9 \mid -12$ $12 \mid -15$ $15 \mid -18$	5	7	Podemos observar que o 9° e o 10° elementos estão na
3	9 12	8	15	classe 3.
4	12 15	3	18	
5	15 18	1	19	

A classe 3 contém a mediana e a chamamos de *classe mediana*. Este intervalo de 3 unidades contém 8 elementos, supondo que eles estão distribuídos uniformemente, podemos então:

Generalizando:

$$m_d = l_{md} + \frac{n/2 - F_{ant}}{f_{md}} \cdot h$$

• O valor obtido por esta fórmula é um valor aproximado do verdadeiro valor da mediana da série.

1.9. $\operatorname{Moda}(m_o)$ Estatística Aplicada

1.9 Moda (m_o)

É o valor de maior frequência em um conjunto de dados.

1.9.1 Dados brutos ou Rol

Ex.:

- 1. X: 2,8,3,**5**,4,**5**,3,**5**,5,1 $m_o = 5$, unimodal
- 2. X: 6,10,5,6,10,2 $m_o = 6$ e 10, bimodal
- 3. X: 2,2,5,8,5,8 $m_0 = 2,5,8$, amodal

1.9.2 Variável Discreta

Ex.:

x_i		
0	2	
2	5	m = 2 unimodel
3	8	$m_o = 3$, unimodal
4	3	
0 2 3 4 5	1	

Utilização das Medidas de Tendência Central

Na maioria das situações, não necessitamos calcular as três medidas de tendência central. Normalmente, precisamos apenas de uma medida para caracterizar o centro da série. A medida ideal em cada caso é aquela que melhor representa a maioria dos dados da série.

Podemos utilizar como critério a concentração dos dados:

- na área central: média
- afastados do centro: mediana
- existe um elemento típico: moda

Exercícios Propostos

- 1. Calcule a mediana da sequência:
 - a) X: 2, 5, 8, 10, 12, 15, 8, 5, 12
 - b) Y: 3,4; 5,2; 4,7; 6; 8,4; 9,3; 2,1; 4,8
- 2. Interprete os valores obtidos no exercício anterior.

3. Calcule a mediana da distribuição do número de acidentes por dia, observados em determinado cruzamento, durante 40 dias.

N° de acidentes por dia	Número de dias
0	30
1	5
2	3
3	1
4	1

- 4. Interprete o valor da mediana obtida no problema anterior.
- 5. Uma máquina produz peças que são embaladas em caixas contendo 48 unidades. Uma pesquisa realizada com 59 caixas, revelou a existência de peças defeituosas seguindo a tabela:

N° de peças defeituosas por caixa	Número de caixas
0	20
1	15
2	12
3	6
4	4
5	2

Determine o valor mediano da série.

- 6. Interprete o valor obtido no problema anterior.
- 7. O departamento de recursos humanos de uma empresa, tendo em vista o aumento de produtividade de seus vendedores, resolvel, premiar com um aumento de 5% no salário, a metade de seus vendedores mais eficientes. Para isto, fez um levantamento de vendas semanais, por vendedor, obtendo a tabela:

Classe	Vendas \$	N° de vendedores
1	0 10.000	1
2	10.000 20.000	12
3	20.000 30.000	27
4	30.000 40.000	31
5	40.000 50.000	10

A partir de qual volume de vendas o vendedor será premiado?

- 8. Calcule a moda das séries abaixo:
 - a) X: 2,3,5,4,5,2,5,7
 - b) Y: 4,12,5,9,12,4,3
 - c) J: 7,7,7,7
 - d) Z: 4,5,6,6,6,7,8,8,8,9,10,10,10,11
- 9. Interprete os valores obtidos na questão anterior.
- 10. Calcule a moda da distribuição abaixo e interprete o seu valor.

x_i	f_i
2	1
3	7
4	2
5	2

11. Calcule a moda da série:

$\bar{x_i}$	f_i
4	3
5	7
6	7
8	3

- 12. Calcule a moda da distribuição do número de acidentes diário, observados em um cruzamento, durante 40 dias (tabela da questão 5). Interprete o valor obtido.
- 13. Qual é a medida de tendência central que melhor representa a série do problema 11.
- 14. Qual é a medida de tendência central que melhor representa a série do problema 12.

Referências Bibliográficas

[1] Silva, E. M.; Gonçalves, V.; Silva, E. M.; Murolo, A. C., Estatística, Editora Atlas S.A., 1995.