(一)实数与数轴

有理数: $\frac{P}{q}$ 其中p, q为既约整数, 且 $q \neq 0$.

实数与数轴上的点是一一对应的。

(二)绝对值

设x为一实数,则其绝对值定义为

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

几何意义: |x|表示数轴上点x到原点的距离。

|x - y|表示数轴上两点x和y之间的距离。

(二)绝对值

绝对值不等式的解:

$$|x| < a \Leftrightarrow -a < x < a;$$
 $|x| > a \Leftrightarrow x < -a \text{ if } x > a$
 $|a| = \sqrt{a^2};$

(二)绝对值

$$|3x| < 3$$
 \longrightarrow $-3 < 3x < 3$ \longrightarrow $-1 < x < 1$

随堂练习

• 利用绝对值不等式求出以下不等式中的未知数x的取值范围

$$(1) |3x - 1| > 2 \qquad (2) |2x - 4| \le 4$$

$$(2) |2x - 4| \le 4$$

$$(3)\sqrt{(x-1)^2} \ge 2$$
 $(4)\sqrt{(x-2)^2} < 1$

$$(4)\sqrt{(x-2)^2} < 1$$

解答:

$$(1) x > 1 \vec{\boxtimes} x < -\frac{1}{3} \qquad (2) 0 \le x \le 4$$

$$(2) 0 \le x \le 4$$

(三)区间

我们都知道数轴上的第一个点对应一个实数,那么 数轴上的一段怎么表示?

(三)区间

我们都知道数轴上的第一个点对应一个实数,那么 🕝 🖜 数轴上的一段怎么表示?

开区间 $(a,b) \stackrel{\text{def}}{=} \{x | a < x < b\}$

闭区间 $[a,b] \stackrel{\text{def}}{=} \{x | a \leq x \leq b\}$

(三)区间

半开区间 $[a,b) \stackrel{\text{def}}{=} \{x | a \le x < b\}$

半开区间 $(a,b] \stackrel{\text{def}}{=} \{x | a < x \le b\}$

(三)区间

无穷区间

$$[a, +\infty) \stackrel{\text{def}}{=} \{x | x \ge a\}$$

$$(-\infty, b) \stackrel{\text{def}}{=} \{x | x < b\}$$

$$(-\infty, +\infty) \stackrel{\text{def}}{=} \{x | x \in R\}$$
 表示任意的实数 0

随堂练习

• 根据区间定义,使用区间表示以下x的范围

$$(1)-1 < x < 1$$

$$(2)-1 < x \le 1$$

$$(1) - 1 < x < 1$$
 $(2) - 1 < x \le 1$ $(3) - 1 \le x \le 1$ $(4) - 1 \le x < 1$

$$(4) - 1 \le x < 1$$

$$(5) x \ge 3$$

$$(5) x \ge 3 \qquad (6) x > 3 \qquad (7) x \le -3 \qquad (8) x < -3$$

$$(8) x < -3$$

$$(9) x < -3$$
或 $x \ge 3$

解答:

$$(1)(-1,1)$$

$$(2)(-1,1)$$

$$(3)[-1,1]$$

$$(1)(-1,1)$$
 $(2)(-1,1]$ $(3)[-1,1]$ $(4)[-1,1)$

$$(5) [3, +\infty)$$

$$(6) (3, +\infty)$$

$$(7) \ (-\infty, -3]$$

$$(5) [3, +\infty) \qquad (6) (3, +\infty) \qquad (7) (-\infty, -3] \qquad (8) (-\infty, -3)$$

$$(9) (-\infty, -3) \cup [3, +\infty)$$

(四)邻域

我们都知道数轴上的第一个点对应一个实数,那么 ⑥ • 怎么在数轴上表示某一个点的邻居?

实数x的左邻右里

(四)邻域

邻域 在数轴上,以点 x_0 为中心,以 $\delta(>0)$ 为半径的开区间 $(x_0 - \delta, x_0 + \delta)$,称为 x_0 的邻域,记为 $U(x_0, \delta)$ 。

$$U(x_0, \delta) \stackrel{\text{def}}{=} \{x | x_0 - \delta < x < x_0 + \delta\}$$

$$U\left(1, \frac{1}{2}\right) \stackrel{\text{def}}{=} \left\{ x \left| 1 - \frac{1}{2} < x < 1 + \frac{1}{2} \right\} = \left\{ x \left| \frac{1}{2} < x < \frac{3}{2} \right\} = \left(\frac{1}{2}, \frac{3}{2} \right) \right\}$$

(四)邻域

空心邻域 在数轴上,以点 x_0 为中心,以 $\delta(>0)$ 为半径,且不包括 x_0 的开区间 $(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$,称为 x_0 的空心邻域,记为 $\dot{U}(x_0, \delta)$ 。

$$\dot{U}(x_0, \delta) \stackrel{\text{def}}{=} \{x | x_0 - \delta < x < x_0 \stackrel{\text{def}}{=} x_0 < x < x_0 + \delta\}$$

例如

$$\dot{U}\left(1, \frac{1}{2}\right) \stackrel{\text{def}}{=} \left\{ x \middle| 1 - \frac{1}{2} < x < 1 \vec{\boxtimes} 1 < x < 1 + \frac{1}{2} \right\}$$

$$= \left\{ x \middle| \frac{1}{2} < x < 1 \vec{\boxtimes} 1 < x < \frac{3}{2} \right\} = \left(\frac{1}{2}, 1\right) \cup \left(1, \frac{3}{2}\right)$$

随堂练习

- 请写出以 $x_0 = 3$ 为中心,以 $\delta = 1$ 为半径的 $\frac{9}{3}$ U(3,1) = (2,4)
- 请写出以 $x_0 = 3$ 为中心,以 $\delta = 1$ 为半径的空心邻域 $\dot{U}(3,1) = (2,3) \cup (3,4)$

(一)函数概念

• UP主收入 ~ 视频播放量

(一)函数概念

海拔(米)	气压 (mb)				
-400	1062.2				
-200	1037.5				
0	1013.3				
200	989.5				
400	966.1				
600	943.2				
800	920.8				
1000	898.7				
1200	877.2				
1400	856				
1600	835.2				
1800	814.9				
2000	795				
2200	775.4				
2400	756.3				
2600	737.5				
2800	719.1				
3000	701.1				
3200	683.4				
3400	666.2				
3600	649.2				
3800	632.6				
4000	616.4				
4200	600.5				
4400	584.9				
4600	569.7				

$$P_a = 101.3 \times \left[1 - 0.0255 \times \frac{H}{1000} \left(\frac{6357}{6357 + \frac{H}{1000}} \right) \right]^{5.256}$$

式中, P_a ——当地平均大气压,kPa; H——当地海拔高度,m。

因变量

自变量

(一) 函数概念

若D是一个非空集合,设有一个对应规则f,使得每一个 $x \in D$ 都有一个唯一确定的实数y与之对应,则称f为定义在D上的一个<u>函数关系</u>,或称变量y是变量x的函数,记作y = f(x), $x \in D$ 。

海拔(米)	-400	-200	0	200	400	600	800	1000	1200	1400
气压 (mb)	1062. 2	1037. 5	1013. 3	989. 5	966. 1	943. 2	920. 8	898. 7	877. 2	856

$$P_a = 101.3 \times \left[1 - 0.0255 \times \frac{H}{1000} \left(\frac{6357}{6357 + \frac{H}{1000}} \right) \right]^{5.256}$$

式中, P_a ——当地平均大气压,kPa; H——当地海拔高度,m。

这个数学计算式即是对应法则

(一) 函数概念

若D是一个非空集合,设有一个对应规则f,使得每一个 $x \in D$ 都有一个唯一确定的实数y与之对应,则称f为定义在D上的一个<u>函数关系</u>,或称变量y是变量x的函数,记作y = f(x), $x \in D$ 。

- 变量x称为<u>自变量</u>,变量y称为因变量
- 集合D称为函数f的定义域,记为D(f)
- · f所有可能的取值构成的集合称为该函数的值域,记为

$$R_f = f(D) = \{y | y = f(x), x \in D\}$$

• 不是所有的对应法则都可以用明确的数学公式表示

(一)函数概念

若D是一个非空集合,设有一个对应规则f,使得每一个 $x \in D$ 都有一个唯一确定的实数y与之对应,则称f为定义在D上的一个<u>函数关系</u>,或称变量y是变量x的函数,记作y = f(x), $x \in D$ 。

函数由定义域与对应规则这两个要素确定!!!

(二)函数的定义域

一些常见函数的自然定义域

•
$$y = \sqrt{x}, x \ge 0$$

•
$$y = \log x$$
, $x > 0$

•
$$y = \frac{1}{x}$$
, $x \neq 0$

随堂练习

• 请确定以下函数的(自然)定义域

$$(1) y = \sqrt{x - 1}$$

(1)
$$y = \sqrt{x-1}$$
 (2) $y = \sqrt{(x+1)^2}$

(3)
$$y = \sqrt{x^2 - 1}$$

(1)
$$x \ge 1$$

$$(3) x \ge 1 \overrightarrow{i} x \le -1$$

$$(4) y = \log_2(x - 1)$$

$$(4) y = \log_2(x - 1) \qquad (5) y = \log_2(x^2 + 1) \qquad (6) y = \log_2(x^2 - 1)$$

$$(6) y = \log_2(x^2 - 1)$$

(6)
$$x > 1$$
或 $x < -1$

$$(7) y = \frac{1}{x - 1}$$

$$(8) y = \frac{1}{x^2 - 1}$$

$$(9) y = \frac{1}{x^2 + 1}$$

$$(7) x \neq 1$$

$$(8) x \neq 1 \perp x \neq -1$$

(二)函数的定义域

例1 求函数 $y = \sqrt{3x - 2}$ 的定义域

(二)函数的定义域

例1 求函数 $y = \sqrt{3x - 2}$ 的定义域

解由函数的自然定义域知

$$3x - 2 \ge 0$$

故该函数的定义域为 $x \ge \frac{2}{3}$.

(二)函数的定义域

例1 求函数
$$y = \frac{1}{\log_{10}(3x-2)}$$
的定义域

(二)函数的定义域

例1 求函数
$$y = \frac{1}{\log_{10}(3x-2)}$$
的定义域

解由函数的自然定义域知

$$3x - 2 > 0$$

且

$$\log_{10}(3x-2) \neq 0$$
, $\square 3x-2 \neq 1$

$$\begin{cases} 3x-2>0\\ 3x-2\neq 1 \end{cases}$$
, 故 $x>\frac{2}{3}$ 且 $x\neq 1$,

该函数的定义域为($\frac{2}{3}$,1) U (1,+ ∞)

(二)函数的定义域

例2 判断函数 $y = x = 5y = \frac{x^2}{x}$ 是否是相同的函数关系

例3 判断函数y = x = 5 与 $y = \sqrt{x^2}$ 是否是相同的函数关系

(二)函数的定义域

例2 判断函数 $y = x = 5y = \frac{x^2}{x}$ 是否是相同的函数关系

解:不是,因为定义域不同,前者 $D(f) = (-\infty, +\infty)$,后者 $D(f) = (-\infty, 0) \cup (0, +\infty)$

例3 判断函数y = x = 5 与 $y = \sqrt{x^2}$ 是否是相同的函数关系

解: 不是,因为对应法则不同,前者y = f(x) = x后者y = |x|

(三)分段函数

<u>分段函数</u> 在定义域内不能用单一的对应法则表示自变量x与因变量y的对应关系

(三)分段函数

例如,
$$f(x) = \begin{cases} x^2 - 1, & x \le 0 \\ 2x - 1, & x > 0 \end{cases}$$

注意:分段函数在其定义域内表示一个函数,而不是几个函数。

(三)建立函数关系例题

例4 某工厂生产某产品,每日最多生产100单位。它的日固定成本为130元,生产一个单位产品的可变成本为6元。求该厂日总成本函数及平均单位成本函数。

(三)建立函数关系例题

例4 某工厂生产某产品,每日最多生产100单位。它的日固定成本为130元,生产一个单位产品的可变成本为6元。求该厂日总成本函数及平均单位成本函数。

解 设日总成本为C,平均单位成本为 \overline{C} ,日产量为x,由题设知 $x \leq 100$ 。

日总成本由固定成本与可变成本组成, 故

$$C = 130 + 6x, x \in [0, 100]$$

平均单位成本即为日总成本与日产量之比,

$$\bar{C} = \frac{130 + 6x}{x} = \frac{130}{x} + 6, x \in (0, 100]$$