Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- \Box Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
- Example:
 - Shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations
 - Driving directions

Shortest path

From PVD to HNL

Shortest Path Properties

Property 1:

A subpath of a shortest path is itself a shortest path

DP!

Property 2:

There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence

Connected & no cycles

Dijkstra's Algorithm

It was designed in 20 min without pencil and paper! (source)

- Dijkstra's algorithm
 computes the distances
 of all the vertices from a given start vertex s
 Single-source all-destination
- Assumption:
 - the edge weights are nonnegative

- We grow a 'cloud" of vertices,
 beginning with s and eventually
 covering all the vertices
- We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
 - We add to the cloud the vertex u outside the cloud with the smallest distance label, d(u)
 - We update the labels of the vertices adjacent to u

Edge Relaxation

- □ Consider an edge e = (u,z) such that
 - u is the vertex most recently added to the cloud
 - z is not in the cloud
- □ The relaxation of edge e updates distance d(z) as follows:

$$d(z) \leftarrow \min\{d(z),d(u) + weight(e)\}$$

Step-by-step Example

Example (cont.)

Example by Table Filling (1/2)

Example by Table Filling (1/2)

Example by Table Filling (2/2)

Animation

Example by Table Filling (2/2)

Selected nodes

Exercise 1 Quiz! Source node Boston Chicago 1500 1200 1000 250 San Francisco⁸⁰⁰ New Denver York 300 1000 1400 900 1700 Los Angeles 1000 New Orleans

Miami

Exercise 2

Source node

5

6

7

2

3

4

9

1

8

Solution!

Exercise 3

Exercise 4

Vertex	Known	Cost	Path
0	Т	0	-1
1	Т	6	0
2	Т	7	0
3	Т	12	6
4	Т	4	0
5	Т	8	4
6	Т	8	2
7	Т	11	14
8	Т	13	4
9	Т	15	5
10	Т	14	3
11	Т	7	14
12	Т	10	11
13	Т	16	9
14	Т	5	0
15	Т	10	11
16	Т	17	15
17	Т	14	3

0				
0	1			
0	2			
0	2	6	3	
0	4			
0	4	5		
0	2	6		
0	14	7		
0	4	8		
0	4	5	9	
0	2	6	3	10
0	14	11		
0	14	11	12	
0	4	5	9	13
0	14			
0	14	11	15	
0	14	11	15	16

Dijkstra's Algorithm

- A heap-based adaptable priority queue with location-aware entries stores the vertices outside the cloud
 - Key: distance
 - Value: vertex
 - Recall that method
 replaceKey(l,k) changes
 the key of entry l
- We store two labels with each vertex:
 - Distance
 - Entry in priority queue

```
Algorithm DijkstraDistances(G, s)
  Q \leftarrow new heap-based priority queue
  for all v \in G.vertices()
     if v = s
        v.setDistance(0)
     else
        v.setDistance(\infty)
     l \leftarrow Q.insert(v.getDistance(), v)
     v.setEntry(l)
  while \neg Q.empty()
     l \leftarrow Q.removeMin()
     u \leftarrow l.getValue()
     for all e \in u.incidentEdges() \{ relax e \}
        z \leftarrow e.opposite(u)
        r \leftarrow u.getDistance() + e.weight()
        if r < z.getDistance()
           z.setDistance(r)
           Q.replaceKey(z.getEntry(), r)
```

Analysis of Dijkstra's Algorithm

- Graph operations
 - Method incidentEdges is called once for each vertex
- Label operations
 - We set/get the distance and locator labels of vertex $z O(\deg(z))$ times
 - Setting/getting a label takes O(1) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
 - The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes $O(\log n)$ time
- □ Dijkstra's algorithm runs in $O((n + m) \log n)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$
- □ The running time can also be expressed as $O(m \log n)$ since the graph is connected

Shortest Paths Tree

- Using the template method pattern, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex a third label:
 - parent edge in the shortest path tree
- In the edge relaxation step, we update the parent label

```
Algorithm DijkstraShortestPathsTree(G, s)
  for all v \in G.vertices()
     v.setParent(\emptyset)
     for all e \in u.incidentEdges()
        { relax edge e }
        z \leftarrow e.opposite(u)
        r \leftarrow u.getDistance() + e.weight()
        if r < z.getDistance()
          z.setDistance(r)
          z.setParent(e)
           O.replaceKey(z.getEntry(),r)
```

Easy for backtracking

Why Dijkstra's Algorithm Works

- Dijkstra's algorithm is based on DP. It adds vertices by increasing distance.
 - Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
 - When the previous node, D, on the true shortest path was considered, its distance was correct
 - But the edge (D,F) was relaxed at that time!
 - Thus, so long as d(F)>d(D), F's distance cannot be wrong. That is, there is no wrong vertex

Why It Doesn't Work for Negative-Weight Edges

Dijkstra's algorithm is based on the DP. It adds vertices by increasing distance, which does not hold if we have negative-weight edges.

Quiz!

Bellman-Ford Algorithm (not in book)

- Works even with negativeweight edges
- Must assume directed edges (for otherwise we would have negativeweight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).
- Can be extended to detect a negative-weight cycle if it exists
 - How?

```
Algorithm BellmanFord(G, s)
  for all v \in G.vertices()
     if v = s
        v.setDistance(0)
     else
        v.setDistance(\infty)
  for i \leftarrow 1 to n-1 do
     for each e \in G.edges()
        { relax edge e }
        u \leftarrow e.origin()
        z \leftarrow e.opposite(u)
        r \leftarrow u.getDistance() + e.weight()
        if r < z.getDistance()
           z.setDistance(r)
```

Bellman-Ford Example

Nodes are labeled with their d(v) values

DAG-based Algorithm (not in book)

- Works even with negative-weight edges
- Uses topological order
- Doesn't use any fancy data structures
- Is much faster than Dijkstra's algorithm
- Running time: O(n+m).

```
Algorithm DagDistances(G, s)
  for all v \in G.vertices()
     if v = s
        v.setDistance(0)
     else
        v.setDistance(\infty)
   { Perform a topological sort of the vertices }
  for u \leftarrow 1 to n do {in topological order}
     for each e \in u.outEdges()
        \{ \text{ relax edge } \boldsymbol{e} \}
        z \leftarrow e.opposite(u)
        r \leftarrow u.getDistance() + e.weight()
        if r < z.getDistance()
        z.setDistance(r)
```

DAG Example

Resources

- Youtube tutorials
 - Dijkstra's algorithm: Single source all destination
 - Bellman-Ford algorithm: Single source all destination
 - Floyd-Warshall algorithm: All pairs shortest path
- Animation
 - Step-by-step animation