Extract, Transform, Load (ETL)

Original slides were written by Torben Bach Pedersen

The ETL Process

- The most underestimated process in DW development
- The most time-consuming process in DW development
 - 80% of development time is spent on ETL!
- Extract
 - Extract relevant data
- Transform
 - Transform data to DW format
 - Build keys, etc.
 - Cleansing of data
- Load
 - Load data into DW
 - Build aggregates, etc.

ETL Overview

- General ETL issues
 - ETL/DW refreshment process
 - Building dimensions
 - Building fact tables
 - Extract
 - Transformations/cleansing
 - Load
- MS Integration Services

Aalborg University 2007 - DWML course

2

Refreshment Workflow

ETL In The Architecture

Aalborg University 2007 - DWML course

5

Data Staging Area (DSA)

- Transit storage for data in the ETL process
 - Transformations/cleansing done here
- No user queries
- Sequential operations on large data volumes
 - Performed by central ETL logic
 - No need for locking, logging, etc.
 - RDBMS or flat files? (DBMS have become better at this)
- Finished dimensions copied from DSA to relevant marts
- Allows centralized backup/recovery
 - Often too time consuming to initial load all data marts by failure
 - Backup/recovery facilities needed
 - Better to do this centrally in DSA than in all data marts

Aalborg University 2007 - DWML course

6

ETL Construction Process

- Plan
 - n Make high-level diagram of source-destination flow
 - ²⁾ Test, choose and implement ETL tool
 - Outline complex transformations, key generation and job sequence for every destination table
- Construction of dimensions
 - 4) Construct and test building static dimension
 - 5) Construct and test change mechanisms for one dimension
 - 6) Construct and test remaining dimension builds
- Construction of fact tables and automation
 - 7) Construct and test initial fact table build
 - 8) Construct and test incremental update
 - 9) Construct and test aggregate build (you do this later)
 - Design, construct, and test ETL automation

Building Dimensions

- Static dimension table
 - DW key assignment: production keys to DW keys using table
 - Combination of data sources: find common key?
 - · Check one-one and one-many relationships using sorting
- Handling dimension changes
 - Described in last lecture
 - Find the newest DW key for a given production key
 - Table for mapping production keys to DW keys must be updated
- Load of dimensions
 - Small dimensions: replace
 - Large dimensions: load only changes

Aalborg University 2007 - DWML course 7 Aalborg University 2007 - DWML course 8

Building Fact Tables

- · Two types of load
- Initial load
 - ETL for all data up till now
 - Done when DW is started the first time
 - Very heavy large data volumes
- · Incremental update
 - Move only changes since last load
 - Done periodically (e.g., month or week) after DW start
 - Less heavy smaller data volumes
- Dimensions must be updated before facts
 - The relevant dimension rows for new facts must be in place
 - Special key considerations if initial load must be performed again

Aalborg University 2007 - DWML course

9

Types of Data Sources

- Non-cooperative sources
 - Snapshot sources provides only full copy of source, e.g., files
 - Specific sources each is different, e.g., legacy systems
 - Logged sources writes change log, e.g., DB log
 - Queryable sources provides query interface, e.g., RDBMS
- Cooperative sources
 - Replicated sources publish/subscribe mechanism
 - Call back sources calls external code (ETL) when changes occur
 - Internal action sources only internal actions when changes occur
 - DB triggers is an example
- Extract strategy depends on the source types

Aalborg University 2007 - DWML course

10

Extract

- Goal: fast extract of relevant data
 - Extract from source systems can take long time
- Types of extracts:
 - Extract applications (SQL): co-existence with other applications
 - DB unload tools: faster than SQL-based extracts
- Extract applications the only solution in some scenarios
- Too time consuming to ETL all data at each load
 - Extraction can take days/weeks
 - Drain on the operational systems
 - Drain on DW systems
 - => Extract/ETL only changes since last load (delta)

Computing Deltas

- Delta = changes since last load
- Store sorted total extracts in DSA
 - Delta can easily be computed from current+last extract
 - + Always possible
 - + Handles deletions
 - High extraction time
- Put update timestamp on all rows (in sources)
 - Updated by DB trigger
 - Extract only where "timestamp > time for last extract"
 - + Reduces extract time
 - Cannot (alone) handle deletions
 - Source system must be changed, operational overhead

Aalborg University 2007 - DWML course 11 Aalborg University 2007 - DWML course 12

Changed Data Capture

- Messages
 - Applications insert messages in a "queue" at updates
 - + Works for all types of updates and systems
 - Operational applications must be changed+operational overhead
- DB triggers
 - Triggers execute actions on INSERT/UPDATE/DELETE
 - + Operational applications need **not** be changed
 - + Enables real-time update of DW
 - Operational overhead
- Replication based on DB log
 - Find changes directly in DB log which is written anyway
 - + Operational applications need not be changed
 - + No operational overhead
 - Not possible in some DBMS

Aalborg University 2007 - DWML course

13

Common Transformations

- Data type conversions
 - EBCDIC → ASCII/UniCode
 - String manipulations
 - Date/time format conversions
- Normalization/denormalization
 - To the desired DW format
 - Depending on source format
- Building keys
 - Table matches production keys to surrogate DW keys
 - Correct handling of history especially for total reload

Aalborg University 2007 - DWML course

14

Data Quality

- · Data almost never has decent quality
- Data in DW must be:
 - Precise
 - DW data must match known numbers or explanation needed
 - Complete
 - DW has all relevant data and the users know
 - Consistent
 - · No contradictory data: aggregates fit with detail data
 - Unique
 - The same things is called the same and has the same key (customers)
 - Timely
 - Data is updated "frequently enough" and the users know when

Cleansing

- BI does not work on "raw" data
 - Pre-processing necessary for BI analysis
- Handle inconsistent data formats
 - Spellings, codings, ...
- Remove unnecessary attributes
 - Production keys, comments,...
- Replace codes with text (Why?)
 - City name instead of ZIP code,...
- Combine data from multiple sources with common key
 - E.g., customer data from customer address, customer name, ...

Aalborg University 2007 - DWML course 15 Aalborg University 2007 - DWML course 16

Types Of Cleansing

- Conversion and normalization
 - Text coding, date formats, etc.
 - Most common type of cleansing
- Special-purpose cleansing
 - Normalize spellings of names, addresses, etc.
 - Remove duplicates, e.g., duplicate customers
- Domain-independent cleansing
 - Approximate, "fuzzy" joins on records from different sources
- Rule-based cleansing
 - User-specifed rules, if-then style
 - Automatic rules: use data mining to find patterns in data
 - · Guess missing sales person based on customer and item

Aalborg University 2007 - DWML course

17

Cleansing

- Mark facts with Data Status dimension
 - Normal, abnormal, outside bounds, impossible,...
 - Facts can be taken in/out of analyses
- Uniform treatment of NULL
 - Use explicit NULL value rather than "special" value (0,-1,...)
 - Use NULLs only for measure values (estimates instead?)
 - Use special dimension keys for NULL dimension values
 - · Avoid problems in joins, since NULL is not equal to NULL
- Mark facts with changed status
 - New customer, Customer about to cancel contract,

Aalborg University 2007 - DWML course

18

Improving Data Quality

- Appoint "data quality administrator"
 - Responsibility for data quality
 - Includes manual inspections and corrections!
- Source-controlled improvements
 - The optimal?
- Construct programs that check data quality
 - Are totals as expected?
 - Do results agree with alternative source?
 - Number of NULL values?
- Do not fix all problems with data quality
 - Allow management to see "weird" data in their reports?
 - Such data may be meaningful for them? (e.g., fraud detection)

Load

- Goal: fast loading into DW
 - Loading deltas is much faster than total load
- SQL-based update is slow
 - Large overhead (optimization, locking, etc.) for every SQL call
 - DB load tools are much faster
- · Index on tables slows load a lot
 - Drop index and rebuild after load
 - Can be done per index partition
- Parallellization
 - Dimensions can be loaded concurrently
 - Fact tables can be loaded concurrently
 - Partitions can be loaded concurrently

Load

- · Relationships in the data
 - Referential integrity and data consistency must be ensured (Why?)
 - Can be done by loader
- Aggregates
 - Can be built and loaded at the same time as the detail data
- Load tuning
 - Load without log
 - Sort load file first
 - Make only simple transformations in loader
 - Use loader facilities for building aggregates
- Should DW be on-line 24*7?
 - Use partitions or several sets of tables (like MS Analysis)

Aalborg University 2007 - DWML course

21

ETL Tools

- · ETL tools from the big vendors
 - Oracle Warehouse Builder
 - IBM DB2 Warehouse Manager
 - Microsoft Integration Services
- · Offers much functionality at a reasonable price
 - Data modeling
 - ETL code generation
 - Scheduling DW jobs
 - ...
- The "best" tool does not exist
 - Choose based on your own needs
 - Check first if the "standard tools" from the big vendors are OK

Aalborg University 2007 - DWML course

22

Issues

- Pipes
 - Redirect output from one process to input of another process

ls | grep 'a' | sort -r

- Files versus streams/pipes
 - Streams/pipes: no disk overhead, fast throughput
 - Files: easier restart, often only possibility
- ETL tool or not
 - Code: easy start, co-existence with IT infrastructure
 - Tool: better productivity on subsequent projects
- Load frequency
 - ETL time dependent of data volumes
 - Daily load is much faster than monthly
 - Applies to all steps in the ETL process

MS Integration Services

- A concrete ETL tool
- Example ETL flow
- Demo

Integration Services (IS)

- · Microsoft's ETL tool
 - Part of SQL Server 2005
- Tools
 - Import/export wizard simple transformations
 - BI Development Studio advanced development
- · Functionality available in several ways
 - Through GUI basic functionality
 - Programming advanced functionality

Packages

- · The central concept in IS
- · Package for:
 - Sources, Connections
 - Control flow
 - Tasks, Workflows
 - Transformations
 - Destinations
 -

Package

For Loop Container

Task Host

Execute

SQL task

26

Aalborg University 2007 - DWML course

25

Aalborg University 2007 - DWML course

Package Control Flow

- "Containers" provide
 - Structure to packages
 - Services to tasks
- Control flow
 - Foreach loop container
 - Repeat tasks by using an enumerator
 - For loop container
 - · Repeat tasks by testing a condition
 - Sequence container
 - Groups tasks and containers into control flows that are subsets of the package control flow
- Task host container
 - Provides services to a single task

Tasks

- Data Flow runs data flows
- Data Preparation Tasks
 - File System operations on files
 - FTP up/down-load data
- Workflow Tasks
 - Execute package execute other IS packages, good for structure!
 - Execute Process run external application/batch file
- SQL Servers Tasks
 - Bulk insert fast load of data
 - Execute SQL execute any SQL query
- Scripting Tasks
 - Script execute VN .NET code
- · Analysis Services Tasks
 - Analysis Services Processing process dims, cubes, models
 - Analysis Services Execute DDL create/drop/alter cubes, models
- Maintenance Tasks DB maintenance

Event Handlers

- Executables (packages, containers) can raise events
- Event handlers manage the events
- Similar to those in languages JAVA, C#

Aalborg University 2007 - DWML course

29

Data Flow Elements

- Sources
 - Makes external data available
 - All ODBC/OLE DB data sources:
 RDBMS, Excel, Text files,
- Transformations
 - Update
 - Summarize
 - Cleanse
 - Merge
 - Distribute
- Destinations
 - Write data to specific store
 - Create in-memory data set
- · Input, Output, Error output

Aalborg University 2007 - DWML course

Transformations

- Business intelligence transformations
 - Term Extraction extract terms from text
 - Term Lookup look up terms and find term counts
- Row Transformations
 - Character Map applies string functions to character data
 - Derived Column populates columns using expressions
- Rowset Transformations (rowset = tabular data)
 - Aggregate performs aggregations
 - Sort sorts data
 - Percentage Sampling creates sample data set by setting %
- Split and Join Transformations
 - Conditional Split routes data rows to different outputs
 - Merge merges two sorted data sets
 - Lookup Transformation looks up ref values by exact match
- Other Transformations
 - Export Column inserts data from a data flow into a file
 - Import Column reads data from a file and adds it to a data flow
 - Slowly Changing Dimension configures update of a SCD

A Simple IS Case

- Use BI Dev Studio/Import Wizard to copy TREO tables
- Save in
 - SQL Server
 - File system
- Look at package structure
 - Available from mini-project web page
- Look at package parts
 - DROP, CREATE, source, transformation, destination
- Execute package
 - Error messages?
- · Steps execute in parallel
 - But dependencies can be set up

ETL Demo

- Load data into the Product dimension table
 - Construct the DW key for the table by using "IDENTITY"
 - Copy data to the Product dimension table
- Load data into the Sales fact table
 - Join "raw" sales table with other tables to get DW keys for each sales record
 - Output of the query written into the fact table

Aalborg University 2007 - DWML course

34

ETL Part of Mini Project

- · Core:
 - Build an ETL flow using MS DTS that can do an initial (first-time) load of the data warehouse
 - Include logic for generating special DW surrogate integer keys for the tables
 - Discuss and implement basic transformations/data cleansing
- Extensions:
 - Extend the ETL flow to handle incremental loads, i.e., updates to the DW, both for dimensions and facts
 - Extend the DW design and the ETL logic to handle slowly changing dimensions of Type 2
 - Implement more advanced transformations/data cleansing
 - Perform error handling in the ETL flow

A Few Hints on ETL Design

- Don't implement all transformations in one step!
 - Build first step and check that result is as expected
 - Add second step and execute both, check result
 - Add third step...
- Test SQL before putting into IS
- Do one thing at the time
 - Copy source data one-one to DSA
 - Compute deltas
 - Only if doing incremental load
 - Handle versions and DW keys
 - Versions only if handling slowly changing dimensions
 - Implement complex transformations
 - Load dimensions
 - Load facts

Aalborg University 2007 - DWML course 35 Aalborg University 2007 - DWML course 36

Summary

- General ETL issues
 - The ETL process
 - Building dimensions
 - Building fact tables
 - Extract
 - Transformations/cleansing
 - Load
- MS Integration Services

Aalborg University 2007 - DWML course

37

