Reflection Groups and Coxeter Groups -Humphreys

Jesse Cobb

Table of Contents

1.	Finit	e Reflection Groups	. 3
	1.1.	Reflections	. 3
	1.2.	Roots	. 3
	1.3.	Positive and Simple Systems	. 4
	1.4.	Conjugacy of Positive and Simple Systems	. 5
	1.5.	Generation by Simple Reflections	. 5
	1.6.	The Length Function	. 6
	1.7.	Deletion and Exchange Conditions	. 7
	1.8.	Simple Transitivity and the Longest Element	. 8
	1.9.	Generators and Relations	. 8
	1.10.	Parabolic subgroups and Minimal Coset Representatives	. 9
	1.11.	Poincare Polynomials	10
	1.12.	Fundamental Domains	11
	1.13.	The Latiice of Parabolic Subgroups	12
	1.14.	Reflections in W	12
	1.15.	The Coxeter Complex	12
	1.16.	An Alternating Sum Formula	13
2.	Clas	sification of Finite Reflection Groups	15
	2.1.	Isomorphisms	
	2.2.	Irreducible Components	
	2.3.	Coxeter Graphs and Associated Bilinear Forms	
	2.4.	Some Positive Definite Graphs	
	2.5.	Some Positive Semidefinite Graphs	
	2.6.	Subgraphs	
	2.7.	Classification of Graphs of Positive Type	
	2.8.	Crystallographic Groups	
	2.9.	Crystallographic Root Systems and Weyl Groups	
	2.10.	Construction of Root Systems	
		Computing the Order of W	
		Exceptional Weyl Groups	
		Groups of Types H_3 and H_4	
2		nomial Invariants of Finite Reflection Groups	
	•	•	
4.		ne Reflection Groups	
		Affine Reflections	
	4.2.	Affine Weyl Groups	
	4.3.	Alcoves	
	4.4.	Counting Hyperplanes	
	4.5.	Simple Transitivity	28

TABLE OF CONTENTS

29 29
29 29
30
30
30
31
31
32
33
33
34
34
35

1. Finite Reflection Groups

1.1. Reflections

1.1.1. Notation

O(V) denotes the group of all orthogonal transformations of V

1.1.2. Remark

Each reflection s_{α} in W determines a reflecting hyperplane H_{α} and a line $L_{\alpha}=\mathbb{R}\alpha$ which is orthogonal to it.

1.1.3. Proposition

If $t \in O(V)$ and α is any nonzero vector in V, then $ts_{\alpha}t^{-1} = s_{t\alpha}$. In particular, if $w \in W$, then $s_{w\alpha}$ belongs to W whenever s_{α} does.

Proof:

1.2. Roots

1.2.1. Definition: Root System

Let Φ be a finite set of nonzero vectors in V satisfying:

- 1. $\Phi \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$;
- 2. $s_{\alpha}\Phi = \Phi$ for all $\alpha \in \Phi$.

 Φ is called a **root system** and we let W be the group generated by the reflections $s_{\alpha}, \alpha \in \Phi$.

1.2.2. **Remark**

Any finite reflection group can be realized in this way (as a result of a root system). Conversely, any group W arising from a root system is finite.

Given a root system Φ and corresponding reflection group W, define Φ' to be the set of unit vectors proportional to the vectors in Φ . Then Φ' is a root system, with W as corresponding reflection group.

1.3. Positive and Simple Systems

1.3.1. Definition: Total Ordering of Real Vector Space

A **total ordering** of a real vector space V is a transitive relation on V (<) satisfying:

- 1. For any $\lambda, \mu \in V$ exactly one of $\lambda < \mu, \lambda = \mu, \mu < \lambda$ holds;
- 2. For any $\lambda, \mu, \nu \in V$, if $\mu < \nu$ then $\lambda + \mu < \lambda + \nu$;
- 3. If $\mu < \nu$ and c is a nonzero real number, then $c\mu < c\nu$ if c > 0 while $c\nu < c\mu$ if c < 0.

 $\lambda \in V$ is **positive** if $0 < \lambda$.

1.3.2. Example

Choose arbitrary ordered basis $\lambda_1,...,\lambda_n$ of V. Then define

$$\sum a_i \lambda_i < \sum b_i \lambda_i$$

if $a_k < b_k$ where k is the least index i for which $a_i \neq b_i$.

1.3.3. Definition: Positive System

For a root system Φ , a subset Π is a **positive system** if it consists of all those roots which are positive relative to some total ordering of V. We have that $-\Pi$ is a **negative system**.

1.3.4. **Remark**

Since roots come in pairs $\{\alpha, -\alpha\}$ we have that $\Phi = \Pi \sqcup (-\Pi)$.

1.3.5. Definition: Simple System

A subset Δ of a root system Φ is a simple system if Δ is a vector space basis for the \mathbb{R} -span of Φ in V and if moreover $\alpha \in \Phi$ is a linear combination of Δ with coefficients all of the same sign.

The cardinality of a simple system is an invariant of Φ , since it measures the dimension of the span of Φ in V. This is called the **rank** of W.

1.3.6. Theorem

- 1. If Δ is a simple system in Φ , then there is a unique positive system containing Δ .
- 2. Every positive system Π in Φ contains a unique simple system; in particular, simple systems exist.

1.3.7. Corollary $\begin{tabular}{l} If Δ is a simple system in Φ, then $(\alpha,\beta) \le 0$ for all $\alpha \ne \beta$ in Δ. \\ \begin{tabular}{l} Proof: \end{tabular}$

1.4. Conjugacy of Positive and Simple Systems

1.4.1. **Remark**

For any simple system Δ and $w \in W$ we have that $w\Delta$ is a simple system with corresponding positive system $w\Pi$.

1.4.2. Proposition

Let Δ be a simple system, contained in the positive system Π . If $\alpha \in \Delta$, then $s_{\alpha}(\Pi \setminus \{\alpha\}) = \Pi \setminus \{\alpha\}$.

Proof:

1.4.3. Theorem

Any two positive (resp. simple) systems in Φ are conjugate under W.

Proof:

1.5. Generation by Simple Reflections

1.5.1. Definition: Height

If $\beta \in \Phi$ we can write $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$ uniquely. We call $\sum c_{\alpha}$ the **height** of β (relative to Δ) abbreviated $\mathrm{ht}(\beta)$.

1.5.2. Theorem

For a fixed simple system Δ , W is generated by the reflections $s_{\alpha}(\alpha \in \Delta)$.

Proof:

1.5.3. Corollary

Given Δ , for every $\beta \in \Phi$ there exists $w \in W$ such that $w\beta \in \Delta$.

Proof:

1.6. The Length Function

1.6.1. Definition: Length

For any $w \in W$ the **length** $\ell(w)$ of w (relative to Δ) is the smallest r such that

$$w = s_1 \cdots s_r$$

where $s_i = s_{\alpha_i}$ with $\alpha_i \in \Delta$. The expression is called **reduced**. By convention we have $\ell(1) = 0$.

1.6.2. Remark

Note that $\ell(w)=1$ if and only if $w=s_{\alpha}$ for some $\alpha\in\Delta$. Also note that $\ell(w)=\ell(w^{-1})$ and since we have $\det(s_{\alpha})=-1$ we have that $\det(w)=(-1)^{\ell(w)}$. This implies that if w is written as the product of r reflections then r and $\ell(w)$ must have the same parity. Therefore $\ell(s_{\alpha}w)\in\{\ell(w)+1,\ell(w)-1\}$.

1.6.3. Notation

For a fixed simple system Δ and corresponding positive system Π , define

 $n(w) := \operatorname{Card}(\Pi \cap w^{-1}(-\Pi)) = \text{number of positive roots sent to negative roots by } w.$

Note we have $n(w^{-1}) = n(w)$.

1.6.4. Lemma $\text{Let } \alpha \in \Delta, w \in W. \text{ Then:} \\ 1. \ w\alpha > 0 \implies n(s_{\alpha}w) = n(w) + 1 \\ 2. \ w\alpha < 0 \implies n(s_{\alpha}w) = n(w) - 1 \\ 1. \ w^{-1}\alpha > 0 \implies n(ws_{\alpha}) = n(w) + 1 \\ 2. \ w^{-1}\alpha < 0 \implies n(ws_{\alpha}) = n(w) - 1$ Proof:

1.6.5. Corollary

If $w \in W$ is written as $w = s_1 \cdots s_r$, then $n(w) \le r$. In particular, $n(w) \le \ell(w)$.

Proof:

1.7. Deletion and Exchange Conditions

1.7.1. Theorem

Fix a simple system Δ . Let $w = s_1 \cdots s_r$ be any expression of $w \in W$ as a product of simple reflections ($s_i = s_{\alpha_i}$ with repetitions permitted). Suppose n(w) < r. Then there exist indices $1 \le i < j \le r$ satisfying:

- 1. $\alpha_i = (s_{i+1} \cdots s_{j-1}) \alpha_j;$
- $2. \ s_{i+1}s_{i+2} \cdots s_j = s_i s_{i+1} \cdots s_{j-1};$
- 3. $w = s_1 \cdots \hat{s_i} \cdots \hat{s_i} \cdots s_r$ where hat denotes omission (**deletion condition**).

Proof:

1.7.2. Corollary

If $w \in W$, then $n(w) = \ell(w)$.

1.7.3. Remark

Let $\Pi(w) := \Pi \cap w^{-1}(-\Pi)$ and let

$$\beta_i \coloneqq s_r s_{r-1} \cdots s_{i+1}(\alpha_i), \quad \beta_r \coloneqq \alpha_r$$

where $w=s_1\cdots s_r$ is a reduced expression and $s_i=s_{\alpha_i}$. Then $\Pi(w)=\{\beta_1,...,\beta_r\}$ where β_i is distinct.

1.7.4. Proposition: Exchange Condition

Let $w=s_1\cdots s_r$, where each s_i is a simple reflection. If $\ell(ws)<\ell(w)$ for some simple reflection $s=s_\alpha$, then there exists an index i for which $ws=s_1\cdots \hat{s_i}\cdots s_r$. In particular, w has a reduced expression ending in s if and only if $\ell(ws)<\ell(w)$.

Proof:

1.8. Simple Transitivity and the Longest Element

1.8.1. Theorem

Let Δ be a simple system, Π the corresponding positive system. The following conditions on $w \in W$ are equivalent:

- 1. $w\Pi = \Pi$;
- 2. $w\Delta = \Delta$;
- 3. n(w) = 0;
- 4. $\ell(w) = 0$;
- 5. w = 1.

Proof:

1.9. Generators and Relations

1.9.1. Notation

For any roots α, β we say $m(\alpha, \beta)$ is the order of $s_{\alpha}s_{\beta}$ in W.

1.9.2. Theorem

Fix a simple system Δ in Φ . Then W is generated by the set $S := \{s_{\alpha}, \alpha \in \Delta\}$, subject only to the relations:

$$\left(s_{\alpha}s_{\beta}\right)^{m(\alpha,\beta)}=1.$$

Proof:

1.9.3. Definition: Coxeter System

The tuple (W, S) is called a **Coxeter system** where W is the group generated by the set S and is therefore called a **Coxeter group**.

It is required that $m(\alpha, \alpha) = 1$ but a relation $\left(s_{\alpha}s_{\beta}\right)^{m(\alpha, \beta)} = 1$ may be omitted to allow infinite order.

1.10. Parabolic subgroups and Minimal Coset Representatives

1.10.1. Definition: Parabolic Subgroup

For a given simple system Δ let S be the set of simple reflections $s_{\alpha}, \alpha \in \Delta$. For any subset $I \subseteq S$ define W_I to be the subgroup of W generated by all $s_{\alpha} \in I$ and let $\Delta_I := \{\alpha \in \Delta \mid s_{\alpha} \in I\}$. W_I is called a **parabolic subgroup**.

Note that $\Delta \to w\Delta$ then we have $W_I \to wW_Iw^{-1}$.

1.10.2. Proposition

Fix a simple system Δ and the corresponding set S of simple reflections. Let $I \subseteq S$, and define Φ_I to be the intersection of Φ with the \mathbb{R} -span V_I of Δ_I in V.

- 1. Φ_I is a root system in V (resp. V_I) with simplie system Δ_I and with corresponding reflection group W_I (resp. W_I restricted to V_I).
- 2. Viewing W_I as a reflection group, with length function ℓ_I relative to the simple system Δ_I , we have $\ell=\ell_I$ on W_I .
- 3. Define $W^I \coloneqq \{w \in W \mid \ell(ws) > \ell(w) \text{ for all } s \in I\}$. Given $w \in W$, there is a unique $u \in W^I$ and a unique $v \in W_I$ such that w = uv. Their lengths satisfy $\ell(w) = \ell(u) + \ell(v)$. Moreover, u is the unique element of smallest length in the coset wW_I .

1.10.3. Definition: Minimal Coset Representatives

The distinguished coset representatives W^I may be called **minimal coset** representatives.

1.11. Poincare Polynomials

1.11.1. Definition: Poincare Polynomial

Define the following sequence

$$a_n \coloneqq \mathrm{Card}\ \{w \in W \mid \ell(w) = n\}.$$

Then define the polynomial

$$W(t)\coloneqq \sum_{n\geq 0}a_nt^n=\sum_{w\in W}t^{\ell(w)}.$$

W(t) is called the **Poincare polynomial** of W.

1.11.2. Example

Let $W=S_3$ such that $W(t)=1+2t+2t^2+t^3.$

1.11.3. Remark

Note we have that

$$W(t) = W_I(t)W^I(t).$$

This can be used to derive W(t) via an algorithm by induction on |S|.

1.11.4. Notation

Let $(-1)^I = (-1)^{|I|}$.

1.11.5. Proposition

$$\sum_{I\subseteq S} (-1)^I \frac{W(t)}{W_I(t)} = \sum_{I\subseteq S} (-1)^I W^I(t) = t^N$$

where $N := |\Pi|$ is the length of the longest element in W.

1.12. Fundamental Domains

1.12.1. Definition: Fundamental Domain

Let Π be a positive system and H_{α} be a hyperplane with respect to some root α . There exists corresponding open half-spaces A_{α} and $-A_{\alpha}$ where

$$A_\alpha \coloneqq \{\lambda \in V \mid (\lambda, \alpha) > 0\}.$$

Then define

$$C\coloneqq \bigcap_{\alpha\in\Delta}A_\alpha$$

which is open and convex since A_{α} is open and convex. Note C is also a cone (closed under positive scalar multiples). Then let $D=\overline{C}$ be the intersection of closed half-spaces $H_{\alpha}\cup A_{\alpha}$. So

$$D = \{ \lambda \in V \mid (\lambda, \alpha) \ge 0 \text{ for all } \alpha \in \Delta \}.$$

D is a closed convex cone. D is a **fundamental domain** for the action of W on V, i.e., each $\lambda \in V$ is conjugate under W to one and only one point in D.

1.12.2. Lemma

Each $\lambda \in V$ is W-conjugate to some $\mu \in D$. Moreover, $\mu - \lambda$ is a nonnegative \mathbb{R} -linear combination of Δ .

Proof:

1.12.3. Definition: Isotropy Group

The **isotropy group** (or **stabilizer**) of an element $\mu \in V$ is defined by $\{w \in W \mid w\mu = \mu\}$.

1.12.4. Theorem

Fix $\Pi \supseteq \Delta$ (hence *D*), as above.

- 1. If $w\lambda = \mu$ for $\lambda, \mu \in D$, then $\lambda = \mu$ and w is a product of simple reflections fixing λ . In particular, if $\lambda \in C$, then the isotropy group of λ is trivial.
- 2. D is a fundamental domain for the action of W on V.
- 3. If $\lambda \in V$, the isotropy group of λ if generated by those reflections $s_{\alpha}(\alpha \in \Phi)$ which it contains.
- 4. If U is any subset of V, then the subgroup of W fixing U pointwise is generated by those reflections s_{α} which it contains.

1.12.5. Remark

W exhibits a simply transitive action on a family of open sets. This family is the connected components of the complement in V of $\bigcup_{\alpha} H_{\alpha}$ and are called **chambers**.

Given a chamber C corresponding to a simple system Δ , its **walls** are defined to be the hyperplanes $H_{\alpha}(\alpha \in \Delta)$. Each wall has a 'positive' or 'negative' side (with C lying on the positive side). Then the roots in Δ can be characterized as those roots which are orthogonal to some wall of C and positively directed.

1.13. The Latiice of Parabolic Subgroups

1.13.1. Proposition

Under the correspondence $I \mapsto W_I$, the collection of parabolic subgroups $W_I(I \subseteq S)$ is isomorphic to the lattice of subsets of S.

Proof:

1.14. Reflections in W

1.14.1. Proposition

Every reflection in W is of the form s_{α} for some $\alpha \in \Phi$.

Proof:

1.15. The Coxeter Complex

1.15.1. Definition: Coxeter Complex

Fix a simple system Δ and the corresponding set S of simple reflections. For any subset I of S define

$$C_I = \{\lambda \in D \mid (\lambda, \alpha) = 0 \text{ for all } \alpha \in \Delta_I, (\lambda, \alpha) > 0 \text{ for all } \alpha \in \Delta \setminus \Delta_I \}$$

where D is a fundamental domain. The sets C_I partition D, with $C_\emptyset = C$ and $C_S = \{0\}$. V is partitioned by $\mathcal{C} = wC_I(w \in W, I \subseteq S)$. wC_I and $w'C_I$ are disjoint unless w and w' lie in the same left coset in W/W_I in which case they are equal. For distinct I and J we have wC_I and $w'C_J$ are always disjoint. We call \mathcal{C} the **Coxeter complex** of W. Any set wC_I is called a **facet** of type I.

1.15.2. Proposition

For each $I \subseteq S$, the isotropy group of the facet C_I of $\mathcal C$ is precisely W_I . Thus the parabolic subgroups of W are the isotropy groups of the elements of $\mathcal C$.

Proof:

1.15.3. Remark

Note you can interpret \mathcal{C} as an abstract simplicial complex where the vertices are the left cosets wW_I , where I is maximal in S. A finite set of vertices determines a 'simplex' if these vertices have a nonempty intersection.

1.16. An Alternating Sum Formula

1.16.1. Note

Let $H_1,...,H_r$ be an arbitrary collection of hyperplanes in V (dimension n). Each hyperplane $H=H^0$ defines a positive half-space H^+ and a negative half-space H^- . An element of the complex $\mathcal K$ is a nonempty intersection of the form

$$K = \bigcap H_i^{\varepsilon_i}, \quad \varepsilon_i \in \{0,+,-\}.$$

 $\dim K = i$ if the linear span has dimension i, where the linear span L is the intersection of all H_i^0 which occur in the definition of K.

1.16.2. Lemma

Denote by n_i the number of elements of \mathcal{K} having dimension i. Then

$$\sum_i (-1)^i n_i = (-1)^n.$$

1.16.3. Proposition						
	$\sum_{I\subseteq S} (-1)^I f_I(w) = \det(w).$					
Proof:						

2. Classification of Finite Reflection Groups

2.1. Isomorphisms

2.1.1. Definition: Coxeter Graph

For a Coxeter group W generated by a simple system Δ , let Γ be a graph with vertex set $V \cong \Delta$. Edges are given for roots $\alpha \neq \beta$ where $m(\alpha, \beta) \geq 3$ labeled with $m(\alpha, \beta)$. Note since simple systems are conjugate, Γ does not depend on the choice Δ .

2.1.2. Example

For the dihedral group $W={\cal D}_m$ we have

For $W = S_{n+1}$ then with n vertices we have

2.1.3. Proposition

For i=1,2 let W_i be a finite reflection group acting on the euclidean space V_i . Assume W_i is essential. If W_1 and W_2 have the same Coxeter graph, then there is an isometry of V_1 onto V_2 inducing an isomorphism of W_1 onto W_2 . (In particular, if $V_1=V_2$, the subgroups W_1 and W_2 are conjugate in O(V).)

Proof:

2.2. Irreducible Components

2.2.1. Definition: Irreducible

A Coxeter system (W, S) is **irreducible** if the Coxeter graph Γ is connected (Φ) is also called irreducible in this case).

2.2.2. Proposition

Let (W,S) have Coxeter graph Γ , with connected components $\Gamma_1,...,\Gamma_r$, and let $S_1,...,S_r$ be the corresponding subsets of S. Then W is the direct product of the parabolic subgroups $W_{S_1},...,W_{S_r}$, and each Coxeter system $\left(W_{S_i},S_i\right)$ is irreducible.

Proof:

2.3. Coxeter Graphs and Associated Bilinear Forms

2.3.1. Remark

We associate to a Coxeter graph Γ with vertex set S of cardinality n a symmetric $n \times n$ matrix A by setting $a(s,s') \coloneqq -\cos\left(\frac{\pi}{m(s,s')}\right)$. This defines a bilinear form x^tAy for any $x,y \in \mathbb{R}^n$.

We call Γ positive definite or positive semidefinite when A has the corresponding property. Also note that A is positive definite (resp. semidefinite) if and only if all its principala minors are positive (resp. nonnegative).

When Γ is derived from a finite reflection group W, the matrix A is positive definite since it represents the standard euclidean inner product relative to the basis Δ of V.

2.4. Some Positive Definite Graphs

2.5. Some Positive Semidefinite Graphs

2.6. Subgraphs

2.6.1. Definition: Subgraph

A subgraph of a Coxeter graph Γ is a graph with some vertices omitted, some of the edges label's decremented, or both.

2.6.2. Definition: Indecomposable

A real $n \times n$ matrix A is **indecomposable** if there is no partition on the index set into nonempty subsets I, J such that $a_{ij} = 0$ whenever $i \in I, j \in J$.

2.6.3. Remark

Coxeter graph is indecomposable precisely when the graph is connected.

2.6.4. Proposition

Let A be a real symmetric $n \times n$ matrix which is positive semidefinite and indecomposable (in particular, the eigenvalues of A are real and nonnegative). Assume $a_{ij} \leq 0$ whenever $i \neq j$. Then:

- 1. $N := \{x \in \mathbb{R}^n \mid x^t A x = 0\}$ coincides with the nullspace of A and has dimension ≤ 1 .
- 2. The smallest eigenvalue of A has multiplicity 1, and has an eigenvector whose coordinates are strictly positive.

Proof:

2.6.5. Corollary

If Γ is a connected Coxeter graph of positive type, then every (proper) subgraph is positive definite.

2.7. Classification of Graphs of Positive Type

2.7.1. Theorem The previous positive definite and positive semidefinite graphs are the only connected Coxeter graphs of positive type. Proof:

2.8. Crystallographic Groups

2.8.1. Definition: Crystallographic Group

A subgroup G of $\mathrm{GL}(V)$ is crystallographic if it stabilizes a lattice in V (the \mathbb{Z} -span of a basis of V): $gL\subseteq L$ for all $g\in G$.

2.8.2. Proposition

If W is crystallographic, then each integer $m(\alpha, \beta)$ must be 2, 3, 4, or 6 when $\alpha \neq \beta$ in Δ .

Proof:

2.8.3. **Remark**

Note this implies groups of type H_3 and H_4 as well of D_n for n=2,4,6,8,12 are not crystallographic.

2.9. Crystallographic Root Systems and Weyl Groups

2.9.1. Definition: Weyl Group

A root system Φ is **crystallographic** if it satisfies the additional requirement:

$$\frac{2(\alpha,\beta)}{\beta,\beta} \in \mathbb{Z}, \forall \alpha,\beta \in \Phi.$$

These integers are called **Cartan integers**. The group W generated by all reflections $s_{\alpha}(\alpha \in \Phi)$ is known as the **Weyl group** of Φ .

This requirement ensures all roots are \mathbb{Z} -linear combinations of Δ , and that the \mathbb{Z} -span of Δ in V is a W-stable lattice.

2.9.2. Definition: Dual Root System

Let $a^{\vee} := 2\alpha/(\alpha, \alpha)$ and let Φ^{\vee} of all **coroots** $\alpha^{\vee}(\alpha \in \Phi)$. Φ^{\vee} is also a crystallographic root system in V, with simple system $\Delta^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Delta\}$. This is also called the inverse or dual root system.

Short roots α in a system Φ of type B_n give rise to long roots α^{\vee} in the system Φ^{\vee} of type C_n (and vice versa).

2.9.3. Definition: Root Lattice

For a root system Φ in V the \mathbb{Z} -span $L(\Phi)$ is called the **root lattice**. The **coroot lattice** is defined as $L(\Phi^{\vee})$. Both are W-stable.

The weight lattice and coweight lattice are defined as

$$\hat{L}(\Phi) \coloneqq \{\lambda \in V \mid (\lambda, \alpha^\vee) \in \mathbb{Z}, \forall \alpha \in \Phi\}$$

$$\hat{L}(\Phi^\vee) \coloneqq \{\lambda \in V \mid (\lambda, \alpha) \in \mathbb{Z}, \forall \alpha \in \Phi\}$$

2.9.4. Remark

 $\hat{L}(\Phi)$ is a subgroup of $L(\Phi)$ with finite index f and similarly $\hat{L}(\Phi^{\vee})$ is a subgroup of $L(\Phi^{\vee})$. Where f is the determinant of the matrix of Cartan integers (α, β^{\vee}) for any $\alpha, \beta \in \Delta$. f is also called the **index of connection** in Lie theory.

 \hat{L}/L is isomorphic to the fundamental group of a compact Lie group of adjoint type having W as Weyl group.

2.9.5. Remark

A partial ordering on V (if Δ is fixed) exists: $\mu \leq \lambda$ if and only if $\lambda - \mu$ is a nonnegative \mathbb{Z} -linear combination of Δ .

If Φ is irreducible then there exists a unique highest long root $\tilde{\alpha}$ and unique highest short root.

2.10. Construction of Root Systems

2.10.1. Note

 $(A_n,n\geq 1) \text{ Let } V \text{ be a hyperplan in } \mathbb{R}^{n+1} \text{ consisting of vectors whose coordinates add up to } 0. \ \Phi \text{ is the set } \left\{\varepsilon_i-\varepsilon_j\mid 1\leq i\neq j\leq n+1\right\} \text{ and } \Delta=\left\{\varepsilon_1-\varepsilon_2,\varepsilon_2-\varepsilon_3,...,\varepsilon_n-\varepsilon_{n+1}\right\}. \text{ Then } \tilde{\alpha}=\varepsilon_1-\varepsilon_{n+1}. \ W \text{ is } S_{n+1} \text{ which acts by permutting } \varepsilon_i.$

2.11. Computing the Order of W

2.11.1. Note

Long roots form a single W-orbit (when W is irreducible). $(\tilde{\alpha}, \alpha) \geq 0$ for any $\alpha \in \Delta$ thus $\tilde{\alpha}$ lies in the fundamental domain D. This gives an inductive method for calculating $\operatorname{ord}(W)$ via the Orbit-Stabilizer theorem.

2.12. Exceptional Weyl Groups

2.12.1. Note

 F_4 is the group of symmetries of a regular solid in \mathbb{R}^4 having 24 faces which are octahedra.

 E_{6} is the group of automorphisms of the configuration of 27 lines on a cubic surface.

 E_7 has the following interesting properties: $L(\Phi)/2L(\Phi)$ is a seven-dimensional vector space of \mathbb{F}_2 , $L(\Phi)/2\hat{L}(\Phi)$ is a six-dimensional vector space over F_2 . Both have interesting inner product relations.

 E_8 has $L(\Phi)/2L(\Phi)$ is an eight-dimensional vector space over \mathbb{F}_2 . The inner product has interesting properties as well.

2.13. Groups of Types H_3 and H_4

2.13.1. Note

 H_3 is the symmetry group of the icosahedron (20 triangular faces) in \mathbb{R}^3 (order of 120)

 H_4 is the symmetry group of a regular 120-sided solid (with dodecadegral faces) in \mathbb{R}^4 (order of 14400).

2.13.2. Lemma				
Any finite subgroup G of even order in $\mathbb H$ is a root system (when regarded as a subset of $\mathbb R^4$).				
Proof:				

3. Polynomial Invariants of Finite Reflection Groups

4. Affine Reflection Groups

4.1. Affine Reflections

4.1.1. Definition: Affine Reflection

The **affine group** of V, denoted Aff(V), is the semidirect product of GL(V) and the group of translations by elements of V.

$$gt(\lambda)g^{-1}=t(g\lambda)$$

for any $g \in GL(V)$, $\lambda \in V$, and t any translation. This shows the group of translations is normalized by GL(V).

Define the affine hyperplane for a root α and integer k

$$H_{\alpha,k} = \{ \lambda \in V \mid (\lambda, \alpha) = k \}.$$

 $H_{\alpha,k}$ can be attained by translating the hyperplane H_{α} by $\frac{k}{2}\alpha^{\vee}$. Define \mathcal{H} to be the collection of $H_{\alpha,k}$ for any $\alpha \in$ $\Phi, k \in \mathbb{Z}$.

Define the affine reflection as

$$s_{\alpha,k}(\lambda) := \lambda - ((\lambda, \alpha) - k)\alpha^{\vee}.$$

Note that $s_{\alpha,k} = t(k\alpha^{\vee})s_{\alpha}$.

4.1.2. Proposition

- $\begin{array}{l} \text{1. If } w \in W \text{, then } wH_{\alpha,k} = H_{w\alpha,k} \text{ and } ws_{\alpha,k}w^{-1} = s_{w\alpha,k}. \\ \text{2. If } \lambda \in V \text{ satisfies } (\lambda,\alpha) \in \mathbb{Z} \text{ for all roots } \alpha \text{, then } t(\lambda)H_{\alpha,k} = H_{\alpha,k+(\lambda,\alpha)} \text{ and } t(\lambda)s_{\alpha,k}t(-\lambda) = s_{\alpha,k+(\lambda,\alpha)}. \end{array}$

Proof:

4.2. Affine Weyl Groups

4.2.1. Definition: Affine Weyl group

Define the **affine Weyl group** W_a to be the subgroup of Aff(V) generated by all affine reflections $s_{\alpha,k}$, where $\alpha \in$ $\Phi, k \in \mathbb{Z}$.

4.2.2. Example: Infinite Dihedral group

The infinite dihedral group is the affine reflection group generated by $s_{\alpha,0} = s_{\alpha}$ and $s_{\alpha,1}$.

4.2.3. Proposition

 W_a is the semidirect product of W and the translation group corresponding to the coroot lattice $L=L(\Phi^\vee)$.

Proof:

4.2.4. Remark

W also normalizes $\hat{L}(\Phi^{\vee})$ such that we can define a semidirect product \widehat{W}_a that contains W_a as a normal subgroup of finite index. \widehat{W}_a/W_a is isomorphic to \hat{L}/L .

4.2.5. Corollary

If $w\in \widehat{W}_a$ and $H_{\alpha,k}\in \mathcal{H}$, then $wH_{\alpha,k}=H_{\beta,l}$ for some $\beta\in \Phi, l\in \mathbb{Z}$, and thus $ws_{\alpha,k}w^{-1}=s_{\beta,l}$.

Proof:

4.3. Alcoves

4.3.1. Definition: Alcoves

We define $V^{\circ} = V/\bigcup_{H \in \mathcal{H}} H$. The connected components in V° , \mathcal{A} , are called **alcoves**. \widehat{W}_a permutes \mathcal{A} .

A specific alcove is of interest when Φ is irreducible

$$\begin{split} A_\circ &= \{\lambda \in V \mid 0 < \langle \lambda, \alpha \rangle < 1 \text{ for all } \alpha \in \Phi^+ \} \\ &= \{\lambda \in V \mid 0 < \langle \lambda, \alpha \rangle \text{ for all } \alpha \in \Delta, \langle \lambda, \tilde{\alpha} \rangle < 1 \} \end{split}$$

for a unique highest root such that $\tilde{\alpha} - \alpha$ is a sum of simple roots. The walls of A_{\circ} are given by H_{α} for every $\alpha \in \Delta$ and $H_{\tilde{\alpha},1}$ and the corresponding reflections to be $S_a := \{s_{\alpha}, \alpha \in \Delta\} \cup \{s_{\tilde{\alpha},1}\}$. The walls of wA_{\circ} can be defined as images of these hyperplanes under w for any $w \in W_a$.

4.3.2. Proposition

The group W_a permutes the collection $\mathcal A$ of all alcoves transitively, and is generated by the set S_a of reflections with respect to the walls of the alcove A_{\circ} .

AFFINE REFLECTION GROUPS

4.3.3. Definition: Length

 S_a generates W_a so we can define the $\mathbf{length}\ \ell(w)$ of an element $w\in W_a$ to be the smallest r for which w is a product of r elements of S_a .

4.4. Counting Hyperplanes

4.4.1. Remark

Define $\mathcal{L}(w) := \{ H \in \mathcal{H} \mid H \text{ separates } A_{\circ} \text{ and } wA_{\circ} \}$ and define $n(w) = |\mathcal{L}(w)|$.

The restriction of n to W_a (instead of its domain of definition \widehat{W}_a) is equivalent to ℓ .

4.4.2. Proposition

Let $w \in \widehat{W}_a$ and fix $s \in S_a$.

- 1. H_s belongs to exactly one of the set $\mathcal{L}(w^{-1})$, $\mathcal{L}(sw^{-1})$. 2. $s(\mathcal{L}(w^{-1})\setminus\{H_s\})=\mathcal{L}(sw^{-1})\setminus\{H_s\}$. 3. n(ws)=n(w)-1 if $H_s\in\mathcal{L}(w^{-1})$, and n(ws)=n(w)+1 otherwise.

Proof:

4.4.3. Corollary

For any $w \in W_a$, we have $n(w) \le \ell(w)$.

Proof:

4.5. Simple Transitivity

4.5.1. Lemma

If $w \neq 1$ in W_a has a reduced expression $w = s_1 \cdots s_r$, with $s_i \in S_a$, then (setting $H_i \coloneqq H_{s_i}$) the hyperplanes

$$H_1, s_1H_2, s_1s_2H_3, ..., s_1 \cdots s_{r-1}H_r$$

are all distinct.

Proof:

4.5.2. Theorem

1. Let $w \neq 1$ in W_a have a reduced expression $w = s_1 \cdots s_r$. Then we have

$$\mathcal{L} = \{H_1, s_1 H_2, s_1 s_2 H_3, ..., s_1 \cdots s_{r-1} H_r\}.$$

Moreover, these r hyperplanes are all distinct.

- 2. The function n on W_a coincides with the length function ℓ .
- 3. The group W_a acts simply transitively on $\mathcal{A}.$

Proof:

4.6. Exchange Condition

4.6.1. Theorem: Exchange Condition

Let $w \in W_a$ have a reduced expression $w = s_1 \cdots s_r$, with $s_i \in S_a$. If $\ell(ws) < \ell(w)$ for $s \in S_a$, then there exists an index $1 \le i \le r$ for which $ws = s_1 \cdots \hat{s_i} \cdots s_r$.

4.6.2. Theorem				
The pair (W_a, S_a) is a Coxeter system.				
Proof:				
11001.				

4.7. Coxeter graphs and extended Dynkin diagrams

4.8. Fundamental domain

4.9. A formula for the order of W

If W is an irreducible Weyl group of rank n, then $\operatorname{ord}(W)=n!c_1\cdots c_n f$ where f is the index of connection and c_i are the coefficients of the highest root where $\tilde{\alpha}=\sum c_i\alpha_i$ for $\alpha_i\in\Delta$.

5. Coxeter Groups

5.1. Coxeter systems

5.1.1. Definition: Coxeter system

A **Coxeter system** to be a pair (W, S) consisting of a group W and a set of generators $S \subseteq W$ subject only to relations of the form $(ss')^{m(s,s')} = 1$ where m(s,s) = 1 and $m(s,s') = m(s',s) \ge 2$ for $s \ne s'$ in S. If no relation exists between s and s' we have $m(s,s') = \infty$.

We call |S| the **rank** of (W, S). W is referred to as the **Coxeter group**. It is typically assumed that S is finite but it is not required. A **Coxeter graph** Γ is drawn by treating S as the set of vertices and a weighted edge with the weight m(s, s') if $m(s, s') \geq 3$.

5.1.2. Proposition

There is a unique epimorphism $\varepsilon:W\to\{1,-1\}$ sending each generator $s\in S$ to -1. In particular, each s has order 2 in W.

Proof:

5.2. Length function

5.2.1. Definition: Length

A **length** of $w \in W$ as the number of $s_i \in S$ such that $w = s_1 \cdots s_r$ is a **reduced expression**. Some of the following properties hold:

- 1. $\ell(w) = \ell(w^{-1})$
- 2. $\ell(w) = 1$ if and only if $w \in S$
- 3. $\ell(ww') \le \ell(w) + \ell(w')$
- 4. $\ell(ww') \ge \ell(w) \ell(w')$
- 5. $\ell(w) 1 \le \ell(ws) \le \ell(w) + 1$

Also note that $\ell(1) = 0$ by convention.

5.2.2. Proposition

The homomorphism $\varepsilon:W\to\{\pm 1\}$ is given by $\varepsilon(w)=(-1)^{\ell(w)}$. As a result, $\ell(ws)=\ell(w)\pm 1$, for all $s\in S, w\in W$, and similarly for $\ell(sw)$.

Proof: Let $w=s_1\cdots s_r$ be a reduced expression. Then $\varepsilon(w)=\varepsilon(s_1)\cdots\varepsilon(s_r)=(-1)^{\ell(w)}$.

5.3. Geometric representation of W

5.3.1. Definition: Geometric representation of \boldsymbol{W}

Choose a basis of V over $\mathbb R$ in one-to-one correspondence with S, the impose geometry using a symmetric bilinear form B on V by $B(\alpha_s, \alpha_{s'}) = -\cos\left(\frac{\pi}{m(s,s')}\right)$. H_s , orthogonal to α_s relative to B, is complementary to the line $\mathbb R\alpha_s$.

We can define reflections $\sigma_s \lambda = \lambda - 2B(\alpha_s,\lambda)\alpha_s$. Note $B(\sigma_s \lambda,\sigma_s \mu) = B(\lambda,\mu)$.

5.3.2. Proposition

There is a unique homomorphism $\sigma: W \to \operatorname{GL}(V)$ sending s to σ_s , and the group $\sigma(W)$ preserves the form B on V. Moreover, for each pair $s, s' \in S$, the order of ss' in W is precisely m(s, s').

Proof:

5.4. Positive and negative roots

5.4.1. Definition: Root System

Let the **root system** Φ of W consisting of all vectors $w(\alpha_s) := \sigma(w)(\alpha_s)$ for all $w \in W$ and $s \in S$. These are unit vectors since W preserves the form B on V.

 α is **positive** (resp. **negative**) if it is a linear combination of $\{\alpha_s \mid s \in S\}$ with all nonnegative (resp. nonpositive) weights.

5.4.2. Definition: Parabolic Subgroup

A **parabolic subgroup** W_I of W is the subgroup generated by a subset $I \subseteq S$.

5.4.3. Theorem

Let $w \in W$ and $s \in S$. If $\ell(ws) > \ell(w)$, then $w(\alpha_s) > 0$. If $\ell(ws) < \ell(w)$, then $w(\alpha_s) < 0$.

Proof:

5.4.4. Corollary

The representation $\sigma: W \to \operatorname{GL}(V)$ is faithful.

Proof: Let $w \in \ker(\sigma)$. If $w \neq 1$, there exists $s \in S$ for which $\ell(ws) < \ell(w)$. The previous theorem states that $w(\alpha_s) < 0$. But $w(\alpha_s) = \alpha_s > 0$, which is a contradiction.

5.5. Parabolic subgroups

5.5.1. Theorem

- 1. For each subset I of S, the pair (W_I, I) with the given values m(s, s') is a Coxeter system.
- 2. Let $I \subseteq S$. If $w = s_1 \cdots s_r$ is a reduced expression, and $w \in W_I$, then all $s_i \in I$. In particular, the function ℓ agrees with ℓ_I on W_I , and $W_I \cap S = I$.
- 3. The assignment $I \mapsto W_I$ defines the lattice isomorphism between the collection of subsets of S and the collection of subgroups W_I of W.
- 4. S is a minimal generating set for W.

Proof:

5.6. Geometric interpretation of the length function

5.6.1. Proposition

- 1. If $s \in S$, then s sends α_s to its negative, but permutes the remaining positive roots.
- 2. For any $w \in W$, $\ell(w)$ equals the number of positive roots sent by w to negative roots.

Proof:

 \neg

5.7. Roots and reflections

5.7.1. Remark

If we let $\alpha=w(\alpha_s)$ for some $w\in W, s\in S$ it can by shown $wsw^{-1}(\lambda)=\lambda-2B(\lambda,\alpha)\alpha$ such that the transformation only relies on α . We denote $wsw^{-1}=s_\alpha$.

The correspondence of $\alpha\mapsto s_\alpha$ is bijective (for $\alpha\in\Pi\coloneqq\Phi^+$)

5.7.2. Lemma

If $\alpha, \beta \in \Phi$ and $\beta = w(\alpha)$ for some $w \in W$, then $ws_{\alpha}w^{-1} = s_{\beta}$.

Proof:

5.7.3. Proposition

Let $w \in W, \alpha \in \Pi$. Then $\ell(ws_{\alpha}) > \ell(w)$ if and only if $w(\alpha) > 0$.

Proof:

5.8. Strong Exchange Condition

5.8.1. Theorem: Strong Exchange Condition

Let $w=s_1\cdots s_r(s_i\in S)$, not necessarily a reduced expression. Suppose a reflection $t\in T$ satisfies $\ell(wt)<\ell(w)$. Then there is an index i for which $wt=s\cdots \hat{s_i}\cdots s_r$. If the expression w is reduced, then i is unique. Here $T=\bigcup_{w\in W}wSw^{-1}$ is the set of all reflections.

Proof:

5.8.2. Corollary: Deletion Condition

- 1. Suppose $w = s_1 \cdots s_r (s_i \in S)$, with $\ell(w) < r$. Then there exist indices i < j for which $w = s_1 \cdots \hat{s_i} \cdots \hat{s_j} \cdots s_r$.
- 2. If $w = s_1 \cdots s_r$, then a reduced expression for w may be obtained by omitting certain s_i (an even number).

Proof:

5.9. Bruhat ordering

5.9.1. Definition: Bruhat ordering

Write $w' \to w$ if w = w't for some $t \in T$ with $\ell(w) > \ell(w')$. Define w' < w if there is a sequence

$$w'=w_0\to w_1\to\ldots\to w_m=w.$$

 $w' \leq w$ is a partial ordering of W with 1 as the unique minimal element. This ordering is called the **Bruhat** ordering.

If we restrict $t \in s$ we get a **weak ordering** which has a one-sided nature (the Bruhat ordering can be written using either left or right multiplication by t).

5.9.2. Proposition

Let $w' \leq w$ and $s \in S$. Then either $w's \leq w$ or else $w's \leq ws$ (or both).

Proof:

COXETER GROUPS

5.10. Subexpressions

5.10.1. Definition: Subexpressions

Given a reduced expression $w = s_1 \cdots s_r$ we have **subexpressions** of the form $s_{i_1} \cdots s_{i_q}$ where $1 \le i_1 < \dots < i_q \le r$. The subexpression is formally the q-tuple obtained by selecting generators from the tuple for the reduced expression of w.

5.10.2. Theorem

Let $w = s_1 \cdots s_r$ be a fixed, but arbitrary, reduced expression for w. Then $w' \leq w$ if and only if w' can be obtained as a subexpression of this reduced expression.

Proof:

5.10.3. Corollary

If $I \subseteq S$, the Bruhat ordering of W agrees on W_I with the Bruhat ordering of the Coxeter group W_I .

Proof:

5.11. Intervals in the Bruhat ordering

5.11.1. Lemma

Let w' < w, with $\ell(w) = \ell(w') + 1$. Suppose there exists $s \in S$ for which w' < w's and $w's \neq w$. Then both w < ws and w's < ws.

5.11.2. Proposition

Let w' < w. Then there exist $w_0,...,w_m \in W$ such that $w' = w_0 < ... < w_m = w$, and $\ell(w_i) = \ell(w_{i-1}) + 1$ for $1 \le i \le m$.

Proof:

5.12. Poincare series

5.12.1. Remark

$$W^I := \{ w \in W \mid \ell(ws) > \ell(w) \text{ for all } s \in I \}.$$

5.12.2. Definition: Poincare series of W

The **Poincare series** of W is given by

$$W(t) = \sum_{n \geq 0} \operatorname{Card}(\{w \in W \mid \ell(w) = n\}) t^n.$$

5.12.3. Proposition

1. In the field of formal power series in t, we have the identity

$$\sum_{I \subset S} (-1)^I \frac{W(t)}{W_I(t)} = \sum_{I \subset S} (-1)^I W^I(t) = 0$$

unless W is finite, in which case the right side equals t^N .

2. W(t) is an explicitly computable rational function of t.

Proof:

5.13. Fundamental domain for W

5.13.1. Definition

We define a contragredient action $\sigma^*:W\to \mathrm{GL}(V^*)$ by $\langle w(f),w(\lambda)\rangle=\langle f,\lambda\rangle$ for $w\in W,f\in V^*,\lambda\in V.$

For any $s \in S$ we define the hyperplane $Z_s \coloneqq \{f \in V^* \mid \langle f, \alpha_s \rangle = 0\}$ together with the associated half-spaces

$$A_s\coloneqq \{f\in V^*\mid \langle f,\alpha_s\rangle>0\},\quad A_s'\coloneqq \{f\in V^*\mid \langle f,\alpha_s\rangle<0\}=s(A_s).$$

Let C be the intersection of all $A_s, s \in S$.

5.13.2. Lemma

Let $s \in S$ and $w \in W$. Then $\ell(sw) > \ell(w)$ if and only if $w(C) \subseteq A_s$, whereas $\ell(sw) < \ell(w)$ if and only if $w(C) \subseteq A_s'$

Proof:

5.13.3. Theorem

- 1. Let $w \in W$ and $I, J \subseteq S$. If $w(C_I) \cap C_J \neq \emptyset$, then I = J and $w \in W_I$, so $w(C_I) = C_I$. In particular, W_I is the precise stabilizer in W of each point of C_I , and $\mathcal C$ is a partition of U.
- 2. D is a fundamental domain for the action of W on U: the W-orbit of each point of U meets D in exactly one point.
- 3. The cone U is convex, and every closed line segment in U meets just finitely many of the sets in the family \mathcal{C} .

Proof: