

# فريمبندي



#### سرفصل

• لایه فیزیکی رشتهای از بیتها را در اختیار ما میگذارد. چگونه میشود آنها را به صورت دنبالهای از فریمها در نظر گرفت؟





## روشهای فریمبندی

- وشهای زیر بررسی خواهند شد:
  - شمارش بایت
  - Byte stuffing -
    - Bit stuffing -
- در عمل، لایه فیزیکی اغلب به شناسایی مرزهای فریم کمک میکند.
  - برای مثال: اترنت و 802.11



#### شمارش بایت

- تلاش اول
- بیایید هر فریم را با **طول هر فریم** شروع کنیم.
- ساده است و خوشبختانه به اندازه کافی خوب هست.



## شمارش بایت (۲)



• فكر مىكنيد تا چه اندازه خوب كار كند؟



#### شمارش بایت (۳)

- همزمانی بعد از خطای فریم سخت است.
- دنبال روشی هستیم که شروع فریمها را پیدا کند.





#### **Byte Stuffing**

- ایده بهتر •
- داشتن مقدار بایت مخصوص به عنوان پرچم (flag) برای شروع و پایان فریمها - جایگذاری (و یا stuff) پرچم داخل فریم با یک کد escape
  - پیچیدگی: باید که escape را حساب نکنیم!

| Flag | Header | Payload field | Trailer | Flag |
|------|--------|---------------|---------|------|
|------|--------|---------------|---------|------|



#### Byte Stuffing (2)

- قوانین:
- هر FLAG درون داده را با ESC FLAG جایگذاری کنید.
  - هر ESC درون داده را با ESC ESC جایگذاری کنید.





# Byte Stuffing (3)

• حال، هر Unescaped Flag، شروع و پایان هر فریم است.





## **Bit Stuffing**

- می توان در سطح بیت نیز stuffing را انجام داد.
- یک flag به صورت شش عدد ۱ متوالی در نظر بگیرید.
- برای رفع ابهام اینکه شش عدد متوالی ۱، شروع فریم است یا خود داده چه کار کنیم؟
  - هنگام ارسال، پس از پنج عدد ۱ در داده، یک صفر وارد کنید.
    - هنگام دریافت، صفر پس از پنج عدد ۱ را حذف کنید.



## Bit Stuffing (2)

• مثال:





## مثال لینک: PPP بر روی SONET

- PPP پروتکل نقطه به نقطه است. (Point-to-Point Protocol)
  - به طور گسترده برای فریمبندی لینک استفاده میشود.

- به عنوان مثال، برای فریمبندی بستههای IP که بر روی لینکهای نوری SONET ارسال شدهاند، استفاده می شود.



## مثال لینک: PPP بر روی SONET (۲)

• SONET را به صورت یک رشته بیت در نظر بگیرید و PPP را به عنوان فریمبندی که بستههای IP را بر روی لینک حمل می کند.



## مثال لینک: PPP بر روی SONET (۳)

• فریمبندی از روش Byte stuffing استفاده می کند.

- FLAG برابر ESC و 0x7D برابر ESC و 0x7D در نظر گرفته شدهاست.

| Bytes | 1                | 1                   | 1                | 1 or 2   | variable<br>N | 2 or 4   | 1                |
|-------|------------------|---------------------|------------------|----------|---------------|----------|------------------|
|       | Flag<br>01111110 | Address<br>11111111 | Control 00000011 | Protocol | Payload       | Checksum | Flag<br>01111110 |



#### مثال لینک: PPP بر روی SONET (۴)

- روش Byte stuffing.
- To stuff (unstuff) a byte, add (remove) **ESC** (0x7D), and XOR byte with 0x20
- Removes FLAG from the contents of the frame



#### استفاده از Coding Violations

این روش با همکاری لایه فیزیکی، هنگامی که کدهایی مانند 4B/5B به منظور بازیابی کلاک  $\bullet$ در مدولاسیون استفاده شدهاست، می تواند راهگشا باشد.

• از کدهای رزرو که در لایه فیزیکی استفاده نشدهاست، به منظور شناسایی ابتدای فریم استفاده

مىشود.

| Data (4B) | Codeword (5B) | Data (4B) | Codeword (5B) |
|-----------|---------------|-----------|---------------|
| 0000      | 11110         | 1000      | 10010         |
| 0001      | 01001         | 1001      | 10011         |
| 0010      | 10100         | 1010      | 10110         |
| 0011      | 10101         | 1011      | 10111         |
| 0100      | 01010         | 1100      | 11010         |
| 0101      | 01011         | 1101      | 11011         |
| 0110      | 01110         | 1110      | 11100         |
| 0111      | 01111         | 1111      | 11101         |



## استفاده از ترکیب روشها برای امنیت بیشتر

• بسیاری از پروتکلهای لایه پیوند داده از ترکیب روشهای یادشده به منظور امنیت بیشتر استفاده می کنند.

√ برای مثال اترنت و 802.11 از پترن مشهوری به نام Preamble استفاده می کنند (۷۲ بیت برای 802.11) در ادامه از روش شمارش بایت برای یافتن انتهای فریم استفاده می شود.

