Multi-agent learning

Fictitious Play

Gerard Vreeswijk, Intelligent Software Systems, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands.

Wednesday 13th May, 2020

 One of the most important, if not the most important,

■ One of the most important, if not the most important, representative of a follower strategy.

- One of the most important, if not the most important, representative of a follower strategy.
- Rather than considering your own payoffs, monitor the behaviour of your opponent(s).

- One of the most important, if not the most important, representative of a follower strategy.
- Rather than considering your own payoffs, monitor the behaviour of your opponent(s).
- Project the behaviour of an opponent onto a single mixed strategy, *s*.

- One of the most important, if not the most important, representative of a follower strategy.
- Rather than considering your own payoffs, monitor the behaviour of your opponent(s).
- Project the behaviour of an opponent onto a single mixed strategy, s.
- \blacksquare Then issue a best response to s.

- One of the most important, if not the most important, representative of a follower strategy.
- Rather than considering your own payoffs, monitor the behaviour of your opponent(s).
- Project the behaviour of an opponent onto a single mixed strategy, *s*.
- \blacksquare Then issue a best response to s.
- Brown (1951): explanation for Nash equilibrium play.

- One of the most important, if not the most important, representative of a follower strategy.
- Rather than considering your own payoffs, monitor the behaviour of your opponent(s).
- Project the behaviour of an opponent onto a single mixed strategy, *s*.
- \blacksquare Then issue a best response to s.
- Brown (1951): explanation for Nash equilibrium play. In terms of current use, the name actually is a bit of a misnomer, since play actually occurs (Berger, 2005).

Author: Gerard Vreeswijk. Slides last modified on May 13^{th} , 2020 at 16:41

Part I. Best reply strategy

Part I. Best reply strategy

1. Pure fictitious play.

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

Part II. Extensions and approximations of fictitious play

1. Smoothed fictitious play.

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

- 1. Smoothed fictitious play.
- 2. Exponential regret matching.

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

- 1. Smoothed fictitious play.
- 2. Exponential regret matching.
- 3. No-regret property of smoothed fictitious play (Fudenberg *et al.*, 1995).

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

- 1. Smoothed fictitious play.
- 2. Exponential regret matching.
- 3. No-regret property of smoothed fictitious play (Fudenberg *et al.*, 1995).
- 4. Convergence when players have limited resources (Young, 1998).

Part I. Best reply strategy

- 1. Pure fictitious play.
- 2. Results that connect pure fictitious play to Nash equilibria.

Part II. Extensions and approximations of fictitious play

- 1. Smoothed fictitious play.
- 2. Exponential regret matching.
- 3. No-regret property of smoothed fictitious play (Fudenberg *et al.*, 1995).
- 4. Convergence when players have limited resources (Young, 1998).

Shoham et al. (2009): Multi-agent Systems. Ch. 7: "Learning and Teaching". H. Young (2004): Strategic Learning and it Limits, Oxford UP. D. Fudenberg and D.K. Levine (1998), The Theory of Learning in Games, MIT Press.

Part I: Pure fictitious play

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

* = chosen randomly.

Round A's action B's action A's beliefs B's beliefs

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.				

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L*	R*		

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	Γ_*	R*	(0,1)	(1,0)
2.	R	L		

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1,1)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1,1)
3.	L*	R*	` '	` ,

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1,1)
3.	L*	R*	(1,2)	(2,1)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L*	R*	(1,2)	(2,1)
4.	R	L	•	

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1,1)
3.	L*	R*	(1,2)	(2,1)
4.	R	L	(2,2)	(2,2)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L*	R*	(1, 2)	(2, 1)
4.	R	L	(2,2)	(2,2)
5.	R*	R*	, ,	. ,

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L*	R*	(1, 2)	(2, 1)
4.	R	L	(2, 2)	(2,2)
5.	R*	R*	(2,3)	(2,3)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L*	R*	(1, 2)	(2, 1)
4.	R	L	(2,2)	(2,2)
5.	R*	R*	(2,3)	(2,3)
6.	R	R	, ,	,

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1, 1)	(1, 1)
3.	L^*	R*	(1, 2)	(2, 1)
4.	R	L	(2,2)	(2,2)
5.	R*	R*	(2,3)	(2,3)
6.	R	R	(2,4)	(2,4)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L^*	R*	(1,2)	(2, 1)
4.	R	L	(2,2)	(2,2)
5.	R*	R*	(2,3)	(2,3)
6.	R	R	(2,4)	(2,4)
7.	R	R	,	` ,

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L^*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L*	R*	(1,2)	(2, 1)
4.	R	L	(2,2)	(2,2)
5.	R*	R*	(2,3)	(2,3)
6.	R	R	(2,4)	(2,4)
7.	R	R	(2,5)	(2,5)

Players receive a positive payoff iff they coordinate. This game possesses three Nash equilibria, viz. (0,0), (0.5,0.5), and (1,1).

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0,0)	(0,0)
1.	L*	R*	(0,1)	(1,0)
2.	R	L	(1,1)	(1, 1)
3.	L*	R*	(1,2)	(2, 1)
4.	R	L	(2,2)	(2,2)
5.	R*	R*	(2,3)	(2,3)
6.	R	R	(2,4)	(2,4)
7.	R	R	(2,5)	(2,5)
:	: :	: :	• •	• •

■ Nash. No party wins by unilateral deviation.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation. Implies Pareto-optimality.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation. Implies Pareto-optimality. Opposite: ? (Not weak: a Nash equilibrium can be both strong and weak, either, or neither.)

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation. Implies Pareto-optimality. Opposite: ? (Not weak: a Nash equilibrium can be both strong and weak, either, or neither.)
- Stable Nash. No party wins by small unilateral deviation, moreover the the one who deviates then loses.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation. Implies Pareto-optimality. Opposite: ? (Not weak: a Nash equilibrium can be both strong and weak, either, or neither.)
- Stable Nash. No party wins by small unilateral deviation, moreover the the one who deviates then loses. Opposite: unstable.

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation. Implies Pareto-optimality. Opposite: ? (Not weak: a Nash equilibrium can be both strong and weak, either, or neither.)
- Stable Nash. No party wins by small unilateral deviation, moreover the the one who deviates then loses. Opposite: unstable.

There are many more equilibrium types (semi-strict, locally stable, ϵ -equilibrium, correlated, coarse correlated, ...).

- Nash. No party wins by unilateral deviation.
- Strict Nash. Every party loses by unilateral deviation, i.e. $B(s) = \{s\}$. Opposite: weak Nash.
- Pure Nash. Every party maintains a pure strategy. Opposite: mixed (one, more, all may be pure), and fully mixed (all mixed).
- Strong Nash. No coalition wins by unilateral deviation. Implies Pareto-optimality. Opposite: ? (Not weak: a Nash equilibrium can be both strong and weak, either, or neither.)
- Stable Nash. No party wins by small unilateral deviation, moreover the the one who deviates then loses. Opposite: unstable.

There are many more equilibrium types (semi-strict, locally stable, ϵ -equilibrium, correlated, coarse correlated, ...). Which equilibrium types imply which other equilibrium types is an interesting question.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary)

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game. Proof.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, \dots, a^n)$ is a steady state.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, ..., a^n)$ is a steady state. Let $1 \le i \le n$ be the index of an arbitrary player.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, ..., a^n)$ is a steady state. Let $1 \le i \le n$ be the index of an arbitrary player. At every round, i's opponent model is a^{-i} .

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, ..., a^n)$ is a steady state. Let $1 \le i \le n$ be the index of an arbitrary player. At every round, i's opponent model is a^{-i} . By definition of fictitious play, player i must have played a best response

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, ..., a^n)$ is a steady state. Let $1 \le i \le n$ be the index of an arbitrary player. At every round, i's opponent model is a^{-i} . By definition of fictitious play, player i must have played a best response, i.e.,

$$a^i \in \mathrm{BR}(a^{-i}).$$

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, ..., a^n)$ is a steady state. Let $1 \le i \le n$ be the index of an arbitrary player. At every round, i's opponent model is a^{-i} . By definition of fictitious play, player i must have played a best response, i.e.,

$$a^i \in \mathrm{BR}(a^{-i}).$$

Since i was arbitrary, this holds for every player i.

Definition (Steady state). Let S by a dynamic process. A state s^* is said to be steady (or absorbing, or stationary) if it is the case that whenever S is in state s^* , it remains so.

Theorem. Suppose a pure strategy profile is a steady state of fictitious play. Then it must be a (possibly weak) pure Nash equilibrium in the stage game.

Proof. Suppose $a = (a^1, ..., a^n)$ is a steady state. Let $1 \le i \le n$ be the index of an arbitrary player. At every round, i's opponent model is a^{-i} . By definition of fictitious play, player i must have played a best response, i.e.,

$$a^i \in \mathrm{BR}(a^{-i}).$$

Since i was arbitrary, this holds for every player i. The action profile a is therefore a Nash equilibrium. \square

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

"pure strategy profile" for Nash equilibria.

Author: Gerard Vreeswijk. Slides last modified on May 13th, 2020 at 16:41

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium. Suppose a is played at round t.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium. Suppose a is played at round t. Because a is strict, a_i is the unique best response to a_{-i} , for each i.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium. Suppose a is played at round t. Because a is strict, a_i is the unique best response to a_{-i} , for each i. Therefore, the action profile a will be played in round t+1 again.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium. Suppose a is played at round t. Because a is strict, a_i is the unique best response to a_{-i} , for each i. Therefore, the action profile a will be played in round t+1 again.

Summary of the two theorems:

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium. Suppose a is played at round t. Because a is strict, a_i is the unique best response to a_{-i} , for each i. Therefore, the action profile a will be played in round t+1 again.

Summary of the two theorems:

Strict and pure Nash \Rightarrow Steady state \Rightarrow Pure Nash.

Theorem. Suppose a pure strategy profile is a <u>strict</u> Nash equilibrium of a stage game. Then it must be a steady state of fictitious play.

Notice the use of terminology:

- "pure strategy profile" for Nash equilibria.
- "steady state" for fictitious play.

Proof. Suppose the pure action profile a is a strict Nash equilibrium. Suppose a is played at round t. Because a is strict, a_i is the unique best response to a_{-i} , for each i. Therefore, the action profile a will be played in round t+1 again.

Summary of the two theorems:

Strict and pure Nash \Rightarrow Steady state \Rightarrow Pure Nash.

But what if all equilibria are mixed?

Example. Matching Pennies.

Example. Matching Pennies. This is a zero-sum game.

Example. Matching Pennies. This is a zero-sum game. A's goal is to have pennies matched. B's goal is the opposite.

Round A's action B's action A's beliefs B's beliefs

Round	A's action	B's action	A's beliefs	B's beliefs
0.				

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T		

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н		

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	Т	Н		,

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	` '	

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	,	. ,

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	,	

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	(6.5, 3.0)	(5.0, 4.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	(6.5, 3.0)	(5.0, 4.5)
7.	Н	T	,	,

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	(6.5, 3.0)	(5.0, 4.5)
7.	Н	T	(6.5, 4.0)	(6.0, 4.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	(6.5, 3.0)	(5.0, 4.5)
7.	Н	T	(6.5, 4.0)	(6.0, 4.5)
8.	Н	T		

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	(6.5, 3.0)	(5.0, 4.5)
7.	Н	T	(6.5, 4.0)	(6.0, 4.5)
8.	H	T	(6.5, 5.0)	(7.0, 4.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(1.5, 2.0)	(2.0, 1.5)
1.	T	T	(1.5, 3.0)	(2.0, 2.5)
2.	T	Н	(2.5, 3.0)	(2.0, 3.5)
3.	T	Н	(3.5, 3.0)	(2.0, 4.5)
4.	Н	Н	(4.5, 3.0)	(3.0, 4.5)
5.	Н	Н	(5.5, 3.0)	(4.0, 4.5)
6.	Н	Н	(6.5, 3.0)	(5.0, 4.5)
7.	Н	T	(6.5, 4.0)	(6.0, 4.5)
8.	Н	T	(6.5, 5.0)	(7.0, 4.5)
•	•	•	:	:

Frequencies of fictitious play

```
☑ 4 $ ... 3D
                    setup
     clear-drawing
                                            matrix: [[[1 -1] [-1 1]] [[-1 1] [1 -1]]]
                                            action: [1 1]
                                            frequencies: [[0 1] [0 1]]
           step
                     go
                                            expected-rewards: [[-1 1] [1 -1]]
game-type
                                            matrix: [[[1 -1] [-1 1]] [[-1 1] [1 -1]]]
matching-pennies
                        V
                                            action: [1 0]
                                            frequencies: [[0 2] [1 1]]
                                            expected-rewards: [[0 0] [1 -1]]
   nr-of-actions
                                            matrix: [[[1 -1] [-1 1]] [[-1 1] [1 -1]]]
                                            action: [1 0]
   epsilon
                      0.10
                                            frequencies: [[0 3] [2 1]]
                                            expected-rewards: [[0.3333333333333 -0.33333333333333
   initial-cumulative
                                            matrix: [[[1 -1] [-1 1]] [[-1 1] [1 -1]]]
                                            action: [0 0]
   initial-geometric
                       50
                                            frequencies: [[1 3] [3 1]]
                                            expected-rewards: [[0.5 -0.5] [0.5 -0.5]]
   learning-rate
                      0.20
                                            matrix: [[[1 -1] [-1 1]] [[-1 1] [1 -1]]]
                                            action: [0 0]
                                            frequencies: [[2 3] [4 1]]
   max-payoff
                      100
                                            matrix: [[[1 -1] [-1 1]] [[-1 1] [1 -1]]]
   penalty
                       -15
                                            action: [0 0]
                                            frequencies: [[3 3] [5 1]]
   lambda
                     0.100
                                            expected-rewards: [[0.66666666666667 -0.666666666666666
```

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof.

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let i be arbitrary.

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let i be arbitrary. If the empirical distribution converges to q, then i's opponent model converges to q^{-i} .

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to q, then i's opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$.

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to q, then i's opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$. Because of convergence, all such (mixed) best replies converge along.

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to *q*, then *i*'s opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$. Because of convergence, all such (mixed) best replies converge along. By definition *q* is a Nash equilibrium. □

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to *q*, then *i*'s opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$. Because of convergence, all such (mixed) best replies converge along. By definition *q* is a Nash equilibrium. □

Remarks:

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to *q*, then *i*'s opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$. Because of convergence, all such (mixed) best replies converge along. By definition *q* is a Nash equilibrium. □

Remarks:

1. The q^i may be mixed.

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to *q*, then *i*'s opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$. Because of convergence, all such (mixed) best replies converge along. By definition *q* is a Nash equilibrium. □

Remarks:

- 1. The q^i may be mixed.
- 2. It actually suffices that the q^{-i} converge asymptotically to the actual distribution (Fudenberg & Levine, 1998).

Theorem. If the empirical distribution of strategies converges in fictitious play, then it converges to a Nash equilibrium.

Proof. Let *i* be arbitrary. If the empirical distribution converges to *q*, then *i*'s opponent model converges to q^{-i} . By definition of fictitious play, $q^i \in BR(q^{-i})$. Because of convergence, all such (mixed) best replies converge along. By definition *q* is a Nash equilibrium. □

Remarks:

- 1. The q^i may be mixed.
- 2. It actually suffices that the q^{-i} converge asymptotically to the actual distribution (Fudenberg & Levine, 1998).
- 3. If the empirical distributions converge (hence, converge to a Nash equilibrium), the actually played responses per stage need not be Nash equilibria of the stage game.

Repeated Coordination Game. Players receive payoff 1 iff they coordinate, else 0.

Round A's action B's action A's beliefs B's beliefs

Round	A's action	B's action	A's beliefs	B's beliefs
0.				

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A		

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В		

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	` '	

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	(2.5, 2.0)	(2.0, 2.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	(2.5, 2.0)	(2.0, 2.5)
4.	A	В	,	

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	(2.5, 2.0)	(2.0, 2.5)
4.	A	В	(2.5, 3.0)	(3.0, 2.5)

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	(2.5, 2.0)	(2.0, 2.5)
4.	A	В	(2.5, 3.0)	(3.0, 2.5)
•	:	•	:	:

Repeated Coordination Game. Players receive payoff 1 iff they coordinate, else 0.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	(2.5, 2.0)	(2.0, 2.5)
4.	A	В	(2.5, 3.0)	(3.0, 2.5)
•	• •	• •	• •	• •

■ This game possesses three equilibria, viz. (0,0), (0.5,0.5), and (1,1), with expected payoffs 1, 0.5, and 1, respectively.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.5, 1.0)	(1.0, 0.5)
1.	В	A	(1.5, 1.0)	(1.0, 1.5)
2.	A	В	(1.5, 2.0)	(2.0, 1.5)
3.	В	A	(2.5, 2.0)	(2.0, 2.5)
4.	A	В	(2.5, 3.0)	(3.0, 2.5)
• •	: :	: :	: :	: :

- This game possesses three equilibria, viz. (0,0), (0.5,0.5), and (1,1), with expected payoffs 1, 0.5, and 1, respectively.
- Empirical distribution of play converges to (0.5, 0.5),—with payoff 0, rather than 0.5.

Rock-paper-scissors. Winner receives payoff 1, else 0.

■ Rock-paper-scissors with these payoffs is known as Shapley's game.

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Rock-paper-scissors. Winner receives payoff 1, else 0.

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round A's action B's action A's beliefs B's beliefs

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.				

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors		

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper		

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	,	,

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	(0.0, 2.0, 1.5)	(3.0, 0.5, 0.0)

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	(0.0, 2.0, 1.5)	(3.0, 0.5, 0.0)
4.	Scissors	Paper		

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	(0.0, 2.0, 1.5)	(3.0, 0.5, 0.0)
4.	Scissors	Paper	(0.0, 3.0, 1.5)	(3.0, 0.5, 1.0)

Empirical distr. of play does not need to converge

Rock-paper-scissors. Winner receives payoff 1, else 0.

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	(0.0, 2.0, 1.5)	(3.0, 0.5, 0.0)
4.	Scissors	Paper	(0.0, 3.0, 1.5)	(3.0, 0.5, 1.0)
5.	Scissors	Paper		

Empirical distr. of play does not need to converge

Rock-paper-scissors. Winner receives payoff 1, else 0.

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	(0.0, 2.0, 1.5)	(3.0, 0.5, 0.0)
4.	Scissors	Paper	(0.0, 3.0, 1.5)	(3.0, 0.5, 1.0)
5.	Scissors	Paper	(0.0, 4.0, 1.5)	(3.0, 0.5, 2.0)

Empirical distr. of play does not need to converge

Rock-paper-scissors. Winner receives payoff 1, else 0.

- Rock-paper-scissors with these payoffs is known as Shapley's game.
- Shapley's game possesses one equilibrium, viz. (1/3, 1/3, 1/3), with expected payoff 1/3.

Round	A's action	B's action	A's beliefs	B's beliefs
0.			(0.0, 0.0, 0.5)	(0.0, 0.5, 0.0)
1.	Rock	Scissors	(0.0, 0.0, 1.5)	(1.0, 0.5, 0.0)
2.	Rock	Paper	(0.0, 1.0, 1.5)	(2.0, 0.5, 0.0)
3.	Rock	Paper	(0.0, 2.0, 1.5)	(3.0, 0.5, 0.0)
4.	Scissors	Paper	(0.0, 3.0, 1.5)	(3.0, 0.5, 1.0)
5.	Scissors	Paper	(0.0, 4.0, 1.5)	(3.0, 0.5, 2.0)
•	•	• •	:	• •

Repeated Shapley game: phase diagram

FP on Shapley's game; strategy profiles in a simplex

There are many player couples. Each couple is connected by a gray line. Yellow is row; green is column. Player location is determined by the mixed strategy it projects on its opponent (i.e., normalised action count of its opponent). Each player starts with a biased action count. For example, with [100,0,0] (lower left) or [0,100,0] (lower right) or [33,33,33] (center). Initial action counts of player pairs are unrelated.

FP on a 3x3 game; strategy profiles in a simplex

There are many player couples. Each couple is connected by a gray line. Yellow is row; green is column. Player location is determined by the mixed strategy it projects on its opponent (i.e., normalised action count of its opponent). Each player starts with a biased action count. For example, with [100,0,0] (lower left) or [0,100,0] (lower right) or [33,33,33] (center). Initial action counts of player pairs are unrelated.

Part II: Extensions and approximations of fictitious play

Author: Gerard Vreeswijk. Slides last modified on May 13^{th} , 2020 at 16:41

1. Build forecasts, not on *complete history*, but on

- 1. Build forecasts, not on *complete history*, but on
 - Recent data

- 1. Build forecasts, not on *complete history*, but on
 - \blacksquare **Recent data**, say on m most recent rounds.

- 1. Build forecasts, not on *complete history*, but on
 - \blacksquare **Recent data**, say on m most recent rounds.
 - Discounted data

- 1. Build forecasts, not on *complete history*, but on
 - **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .

- 1. Build forecasts, not on *complete history*, but on
 - **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - Perturbed data

- 1. Build forecasts, not on *complete history*, but on
 - \blacksquare **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.

- 1. Build forecasts, not on complete history, but on
 - **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.
 - Random samples of historical data

- 1. Build forecasts, not on *complete history*, but on
 - \blacksquare **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.
 - Random samples of historical data, say on random samples of size m.

- 1. Build forecasts, not on *complete history*, but on
 - **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.
 - Random samples of historical data, say on random samples of size m.
- 2. Give not necessarily best responses, but

- 1. Build forecasts, not on complete history, but on
 - \blacksquare **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.
 - Random samples of historical data, say on random samples of size m.
- 2. Give not necessarily best responses, but
 - \blacksquare ϵ -greedy.

- 1. Build forecasts, not on complete history, but on
 - \blacksquare **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.
 - Random samples of historical data, say on random samples of size *m*.
- 2. Give not necessarily best responses, but
 - \blacksquare ϵ -greedy.
 - **Perturbed throughout**, with small random shocks.

- 1. Build forecasts, not on complete history, but on
 - **Recent data**, say on m most recent rounds.
 - **Discounted data**, say with discount factor γ .
 - **Perturbed data**, say with error ϵ on individual observations.
 - Random samples of historical data, say on random samples of size *m*.
- 2. Give not necessarily best responses, but
 - \blacksquare ϵ -greedy.
 - **Perturbed throughout**, with small random shocks.
 - Randomly, and **proportional to expected payoff**.

Jordan's framework for FP

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i)$$
.

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i).$$

A predictive learning rule for player *i* is the combination of a forecasting rule and a response rule.

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i)$$
.

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i)$$
.

A predictive learning rule for player i is the combination of a forecasting rule and a response rule. This is typically written as (f_i, g_i) .

■ This framework can be attributed to J.S. Jordan (1993).

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i)$$
.

- This framework can be attributed to J.S. Jordan (1993).
- Forecasting and response functions are deterministic.

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i).$$

- This framework can be attributed to J.S. Jordan (1993).
- Forecasting and response functions are deterministic.
- Reinforcement and regret do not fit.

A forecasting rule for player i is a function that maps a history to a probability distribution over the opponents' actions in the next round:

$$f_i: H \to \Delta(X_{-i}).$$

A response rule for player i is a function that maps a history to a probability distribution over i's own actions in the next round :

$$g_i: H \to \Delta(X_i).$$

- This framework can be attributed to J.S. Jordan (1993).
- Forecasting and response functions are deterministic.
- Reinforcement and regret do not fit. (They are not involved with prediction.)

Forecasting and response rules for fictitious play

Let $h^t \in H^t$ be a history of play up to and including round t

Forecasting and response rules for fictitious play

Let $h^t \in H^t$ be a history of play *up to and including* round t and $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let f_i be a fictitious play forecasting rule.

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let f_i be a fictitious play forecasting rule. Then g_i is said to be a fictitious play response rule if all values are best responses to values of f_i .

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let f_i be a fictitious play forecasting rule. Then g_i is said to be a fictitious play response rule if all values are best responses to values of f_i .

Remarks:

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let f_i be a fictitious play forecasting rule. Then g_i is said to be a fictitious play response rule if all values are best responses to values of f_i .

Remarks:

1. Player i attributes a mixed strategy ϕ^{jt} to player j. This strategy reflects the number of times each action is played by j.

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let f_i be a fictitious play forecasting rule. Then g_i is said to be a fictitious play response rule if all values are best responses to values of f_i .

Remarks:

- 1. Player i attributes a mixed strategy ϕ^{jt} to player j. This strategy reflects the number of times each action is played by j.
- 2. The mixed strategies are assumed to be independent.

Let $h^t \in H^t$ be a history of play up to and including round t and

 $\phi^{jt} =_{Def}$ the empirical distribution of j's actions u.t.a.i. round t.

Then the fictitious play forecasting rule is given by

$$f_i(h^t) =_{Def} \prod_{j \neq i} \phi^{jt}.$$

Let f_i be a fictitious play forecasting rule. Then g_i is said to be a fictitious play response rule if all values are best responses to values of f_i .

Remarks:

- 1. Player i attributes a mixed strategy ϕ^{jt} to player j. This strategy reflects the number of times each action is played by j.
- 2. The mixed strategies are assumed to be independent.
- 3. Both (1) and (2) are simplifying assumptions.

Notation:

Notation:

 p^{-i} : strategy profile of opponents as predicted by f_i in round t.

Notation:

 p^{-i} : strategy profile of opponents as predicted by f_i in round t. $u_i(x_i, p^{-i})$: expected utility of action x_i , given p^{-i} .

```
Notation: p^{-i}: strategy profile of opponents as predicted by f_i in round t. u_i(x_i, p^{-i}): expected utility of action x_i, given p^{-i}. q^i: strategy profile of player i in round t + 1. I.e., g_i(h).
```

```
Notation: p^{-i}: strategy profile of opponents as predicted by f_i in round t. u_i(x_i, p^{-i}): expected utility of action x_i, given p^{-i}.
```

 q^i : strategy profile of player i in round t+1. I.e., $g_i(h)$.

Task: define q^i given p^{-i} and $u_i(x_i, p^{-i})$.

```
Notation:
```

 p^{-i} : strategy profile of opponents as predicted by f_i in round t. $u_i(x_i, p^{-i})$: expected utility of action x_i , given p^{-i} . q^i : strategy profile of player i in round t+1. I.e., $g_i(h)$.

Task: define q^i given p^{-i} and $u_i(x_i, p^{-i})$.

Idea:

Respond randomly, but (somehow) proportional to expected payoff.

Notation:

 p^{-i} : strategy profile of opponents as predicted by f_i in round t.

 $u_i(x_i, p^{-i})$: expected utility of action x_i , given p^{-i} .

 q^i : strategy profile of player i in round t+1. I.e., $g_i(h)$.

Task: define q^i given p^{-i} and $u_i(x_i, p^{-i})$.

Idea:

Respond randomly, but (somehow) proportional to expected payoff.

Elaborations of this idea:

b) Through soft max (a.k.a. mixed logit):

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i},p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i},p^{-i})/\gamma}}.$$

Notation:

 p^{-i} : strategy profile of opponents as predicted by f_i in round t.

 $u_i(x_i, p^{-i})$: expected utility of action x_i , given p^{-i} .

 q^i : strategy profile of player i in round t+1. I.e., $g_i(h)$.

Task: define q^i given p^{-i} and $u_i(x_i, p^{-i})$.

Idea:

Respond randomly, but (somehow) proportional to expected payoff.

Elaborations of this idea:

a) Strictly proportional:

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{u_{i}(x_{i}, p^{-i})}{\sum_{x'_{i} \in X_{i}} u_{i}(x'_{i}, p^{-i})}.$$

Notation:

 p^{-i} : strategy profile of opponents as predicted by f_i in round t.

 $u_i(x_i, p^{-i})$: expected utility of action x_i , given p^{-i} .

 q^i : strategy profile of player i in round t+1. I.e., $g_i(h)$.

Task: define q^i given p^{-i} and $u_i(x_i, p^{-i})$.

Idea:

Respond randomly, but (somehow) proportional to expected payoff.

Elaborations of this idea:

a) Strictly proportional:

b) Through soft max (a.k.a. mixed logit):

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{u_{i}(x_{i}, p^{-i})}{\sum_{x'_{i} \in X_{i}} u_{i}(x'_{i}, p^{-i})} \cdot q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i}, p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i}, p^{-i})/\gamma}}.$$

Soft max:

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i},p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i},p^{-i})/\gamma}}.$$

Soft max:

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i},p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i},p^{-i})/\gamma}}.$$

Soft max:

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i},p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i},p^{-i})/\gamma}}.$$

Soft max:

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i},p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i},p^{-i})/\gamma}}.$$

Soft max:

$$q^{i}(x_{i} \mid p^{-i}) =_{Def} \frac{e^{u_{i}(x_{i},p^{-i})/\gamma}}{\sum_{x'_{i} \in X_{i}} e^{u_{i}(x'_{i},p^{-i})/\gamma}}.$$

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If a given player uses smoothed fictitious play with a sufficiently small smoothing γ , then with probability one his regrets are bounded above by ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If a given player uses smoothed fictitious play with a sufficiently small smoothing γ , then with probability one his regrets are bounded above by ϵ .

Young does not reproduce the proof of Fudenberg *et al.*, but shows that in this case ϵ -regret can be derived from a later and more general result of Hart and Mas-Colell in 2001.

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If a given player uses smoothed fictitious play with a sufficiently small smoothing γ , then with probability one his regrets are bounded above by ϵ .

- Young does not reproduce the proof of Fudenberg *et al.*, but shows that in this case ϵ -regret can be derived from a later and more general result of Hart and Mas-Colell in 2001.
- This later result identifies a large family of rules that eliminate regret, based on an extension of Blackwell's approachability theorem.

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If a given player uses smoothed fictitious play with a sufficiently small smoothing γ , then with probability one his regrets are bounded above by ϵ .

- Young does not reproduce the proof of Fudenberg *et al.*, but shows that in this case ϵ -regret can be derived from a later and more general result of Hart and Mas-Colell in 2001.
- This later result identifies a large family of rules that eliminate regret, based on an extension of Blackwell's approachability theorem.
 - (Blackwell's approachability theorem generalises maxmin reasoning to vector-valued payoffs.)

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If a given player uses smoothed fictitious play with a sufficiently small smoothing γ , then with probability one his regrets are bounded above by ϵ .

- Young does not reproduce the proof of Fudenberg *et al.*, but shows that in this case ϵ -regret can be derived from a later and more general result of Hart and Mas-Colell in 2001.
- This later result identifies a large family of rules that eliminate regret, based on an extension of Blackwell's approachability theorem.
 - (Blackwell's approachability theorem generalises maxmin reasoning to vector-valued payoffs.)

Fudenberg & Levine, 1995. "Consistency and cautious fictitious play," *Journal of Economic Dynamics and Control*, Vol. **19** (5-7), pp. 1065-1089.

Hart & Mas-Colell, 2001. "A General Class of Adaptive Strategies," *Journal of Economic Theory*, Vol. **98**(1), pp. 26-54.

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$.

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If all players use smoothed fictitious play with sufficiently small smoothing parameters γ_i , then empirical play converges to the set of coarse correlated ϵ -equilibria a.s.

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If all players use smoothed fictitious play with sufficiently small smoothing parameters γ_i , then empirical play converges to the set of coarse correlated ϵ -equilibria a.s.

Summary of the two theorems:

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If all players use smoothed fictitious play with sufficiently small smoothing parameters γ_i , then empirical play converges to the set of coarse correlated ϵ -equilibria a.s.

Summary of the two theorems:

Smoothed fictitious play limits regret.

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If all players use smoothed fictitious play with sufficiently small smoothing parameters γ_i , then empirical play converges to the set of coarse correlated ϵ -equilibria a.s.

Summary of the two theorems:

- Smoothed fictitious play limits regret.
- Smoothed fictitious play converges to ϵ -CCE.

Definition. Let X be action profiles, and $q \in \Delta(X)$. Then q is a coarse correlated equilibrium (CCE) if no one wants to opt out prior to a realisation of q in the form of an action profile.

In a coarse correlated ϵ -equilibrium (ϵ -CCE), no player wants to opt out to gain more in expected utility than ϵ .

Theorem (Fudenberg & Levine, 1995). Let G be a finite game and let $\epsilon > 0$. If all players use smoothed fictitious play with sufficiently small smoothing parameters γ_i , then empirical play converges to the set of coarse correlated ϵ -equilibria a.s.

Summary of the two theorems:

- Smoothed fictitious play limits regret.
- Smoothed fictitious play converges to ϵ -CCE.

But there is another l.a. with **no** regret and convergence to **zero-**CCE!

Exponentiated regret matching

Let

Let j: action j, where $1 \le j \le k$

Let j: action j, where $1 \le j \le k$

 \bar{u}_i^t : *i*'s (realised) average payoff up to and including round *t*

```
Let j: action j, where 1 \le j \le k \bar{u}_i^t: i's (realised) average payoff up to and including round t \phi^{-it}: the (realised) joint empirical distribution of i's opponents
```

```
Let j: action j, where 1 \le j \le k \bar{u}_i^t: i's (realised) average payoff up to and including round t \phi^{-it}: the (realised) joint empirical distribution of i's opponents \bar{u}_i(j,\phi^{-it}): i's hypothetical mean payoff for playing j against
```

```
Let j: action j, where 1 \le j \le k \bar{u}_i^t: i's (realised) average payoff up to and including round t \phi^{-it}: the (realised) joint empirical distribution of i's opponents \bar{u}_i(j,\phi^{-it}): i's hypothetical mean payoff for playing j against \phi^{-it}
```

```
Let j: action j, where 1 \le j \le k \bar{u}_i^t: i's (realised) average payoff up to and including round t \phi^{-it}: the (realised) joint empirical distribution of i's opponents \bar{u}_i(j,\phi^{-it}): i's hypothetical mean payoff for playing j against \phi^{-it} \bar{r}^{it}: player i's regret vector in round t, i.e., \bar{u}_i(j,\phi^{-it}) - \bar{u}_i^t
```

```
Let j: action j, where 1 \le j \le k \bar{u}_i^t: i's (realised) average payoff up to and including round t \phi^{-it}: the (realised) joint empirical distribution of i's opponents \bar{u}_i(j,\phi^{-it}): i's hypothetical mean payoff for playing j against \phi^{-it} \bar{r}^{it}: player i's regret vector in round t, i.e., \bar{u}_i(j,\phi^{-it}) - \bar{u}_i^t
```

Exponentiated regret matching (PY, p. 59) is defined as

$$q_j^{i(t+1)} \propto [\bar{r}_j^{it}]_+^{\mathbf{a}}$$

where a > 0.

Let j: action j, where $1 \le j \le k$ \bar{u}_i^t : i's (realised) average payoff up to and including round t ϕ^{-it} : the (realised) joint empirical distribution of i's opponents $\bar{u}_i(j,\phi^{-it})$: i's hypothetical mean payoff for playing j against ϕ^{-it} \bar{r}^{it} : player i's regret vector in round t, i.e., $\bar{u}_i(j,\phi^{-it}) - \bar{u}_i^t$

Exponentiated regret matching (PY, p. 59) is defined as

$$q_j^{i(t+1)} \propto [\bar{r}_j^{it}]_+^{\mathbf{a}}$$

where a > 0. (For a = 1 we have ordinary regret matching.)

```
Let j: action j, where 1 \le j \le k \bar{u}_i^t: i's (realised) average payoff up to and including round t \phi^{-it}: the (realised) joint empirical distribution of i's opponents \bar{u}_i(j,\phi^{-it}): i's hypothetical mean payoff for playing j against \phi^{-it} \bar{r}^{it}: player i's regret vector in round t, i.e., \bar{u}_i(j,\phi^{-it}) - \bar{u}_i^t
```

Exponentiated regret matching (PY, p. 59) is defined as

$$q_j^{i(t+1)} \propto [\bar{r}_j^{it}]_+^{\mathbf{a}}$$

where a > 0. (For a = 1 we have ordinary regret matching.)

A theorem on exponentiated regret matching (Mas-Colell *et al.*, 2001) ensures that individual players have no-regret with probability one, and the empirical distribution of play converges to the set of coarse correlated equilibria (PY, p. 37 for RM, p. 60 for ERM).

FP

FP vs. Smoothed FP

FP vs. Smoothed FP vs. Exponentiated regret matching

Author: Gerard Vreeswijk. Slides last modified on May $13^{\mbox{th}}$, 2020 at 16:41

■ Fictitious play is a best reply strategy: it plays a best reply to sampled past play.

- Fictitious play is a best reply strategy: it plays a best reply to sampled past play.
- **Regret matching** may be called a **better** reply strategy: it plays a reply for which the expected payoff is better than past average payoff.

- Fictitious play is a best reply strategy: it plays a best reply to sampled past play.
- **Regret matching** may be called a **better** reply strategy: it plays a reply for which the expected payoff is better than past average payoff.
- Smoothed fictitious play is a best reply strategy nor a better reply strategy.

- Fictitious play is a best reply strategy: it plays a best reply to sampled past play.
- **Regret matching** may be called a **better** reply strategy: it plays a reply for which the expected payoff is better than past average payoff.
- Smoothed fictitious play is a best reply strategy nor a better reply strategy.
 - It is not a best reply strategy because it puts positive probabilities on all actions at every period.

- Fictitious play is a best reply strategy: it plays a best reply to sampled past play.
- **Regret matching** may be called a **better** reply strategy: it plays a reply for which the expected payoff is better than past average payoff.
- Smoothed fictitious play is a best reply strategy nor a better reply strategy.
 - It is not a best reply strategy because it puts positive probabilities on all actions at every period.
 - It is not a better reply strategy because it is not concerned with past payoffs.

- Fictitious play is a best reply strategy: it plays a best reply to sampled past play.
- **Regret matching** may be called a **better** reply strategy: it plays a reply for which the expected payoff is better than past average payoff.
- Smoothed fictitious play is a best reply strategy nor a better reply strategy.
 - It is not a best reply strategy because it puts positive probabilities on all actions at every period.
 - It is not a better reply strategy because it is not concerned with past payoffs.

Hart, S., and Mas-Colell, A. (2000). "A simple adaptive procedure leading to correlated equilibrium". *Econometrica*, **68**, pp. 1127-1150.

Fictitious play Plays best responses.

Fictitious play Plays best responses.

Does depend on past play of opponent(s).

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

Does depend on past play of opponent(s).

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

- Does depend on past play of opponent(s).
- Puts non-zero probabilities on sub-optimal responses.

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

- Does depend on past play of opponent(s).
- Puts non-zero probabilities on sub-optimal responses.

Approaches fictitious play when $\gamma \downarrow 0$ (PY, p. 84).

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

- Does depend on past play of opponent(s).
- Puts non-zero probabilities on sub-optimal responses.

Approaches fictitious play when $\gamma \downarrow 0$ (PY, p. 84).

Exponentiated regret matching
Plays regret suboptimally, i.e.,
proportional to a power of positive
regret.

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

- Does depend on past play of opponent(s).
- Puts non-zero probabilities on sub-optimal responses.

Approaches fictitious play when $\gamma \downarrow 0$ (PY, p. 84).

Exponentiated regret matching Plays regret suboptimally, i.e.,

proportional to a power of positive regret.

Does depend on own past payoffs.

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

- Does depend on past play of opponent(s).
- Puts non-zero probabilities on sub-optimal responses.

Approaches fictitious play when $\gamma \downarrow 0$ (PY, p. 84).

Exponentiated regret matching

Plays regret suboptimally, i.e., proportional to a power of positive regret.

- Does depend on own past payoffs.
- Puts non-zero probabilities on sub-optimal responses.

Fictitious play Plays best responses.

- Does depend on past play of opponent(s).
- Puts zero probabilities on sub-optimal responses.

Smoothed fictitious play May play *sub-optimal responses*, e.g., proportional to their estimated payoffs.

- Does depend on past play of opponent(s).
- Puts non-zero probabilities on sub-optimal responses.

Approaches fictitious play when $\gamma \downarrow 0$ (PY, p. 84).

Exponentiated regret matching

Plays regret suboptimally, i.e., proportional to a power of positive regret.

- Does depend on own past payoffs.
- Puts non-zero probabilities on sub-optimal responses.
- Approaches fictitious play when exponent $a \rightarrow \infty$ (PY, p. 84).

FP Smoothed FP Exponentiated RM

Author: Gerard Vreeswijk. Slides last modified on May 13th, 2020 at 16:41

	FP	Smoothed FP	Exponentiated RM
Depends on past play of opponents	$\sqrt{}$	$\sqrt{}$	_

	FP	Smoothed FP	Exponentiated RM
Depends on past play of opponents	$\sqrt{}$	$\sqrt{}$	_
Depends on own past payoffs	_		$\sqrt{}$

	FP	Smoothed FP	Exponentiated RM
Depends on past play of opponents	$\sqrt{}$	$\sqrt{}$	
Depends on own past payoffs	_		\checkmark
Puts zero probabilities on sub-optimal responses	$\sqrt{}$		

	FP	Smoothed FP	Exponentiated RM
Depends on past play of opponents	$\sqrt{}$	$\sqrt{}$	
Depends on own past payoffs	_		\checkmark
Puts zero probabilities on sub-optimal responses	$\sqrt{}$		
Best response	$\sqrt{}$	when smoothing parameter $\gamma \downarrow 0$	when exponent $a \to \infty$

	FP	Smoothed FP	Exponentiated RM
Depends on past play of opponents	$\sqrt{}$	$\sqrt{}$	
Depends on own past payoffs			$\sqrt{}$
Puts zero probabilities on sub-optimal responses	$\sqrt{}$		
Best response	$\sqrt{}$	when smoothing parameter $\gamma \downarrow 0$	when exponent $a \to \infty$
Individual no-regret	_	Within $\epsilon > 0$, almost always (PY, p. 82)	Exact, almost always (PY, p. 60)

	FP	Smoothed FP	Exponentiated RM
Depends on past play of opponents	$\sqrt{}$	\checkmark	_
Depends on own past payoffs			$\sqrt{}$
Puts zero probabilities on sub-optimal responses	$\sqrt{}$		
Best response	$\sqrt{}$	when smoothing parameter $\gamma \downarrow 0$	when exponent $a \to \infty$
Individual no-regret		Within $\epsilon > 0$, almost always (PY, p. 82)	Exact, almost always (PY, p. 60)
Collective convergence to coarse correlated equilibria	_	Within $\epsilon > 0$, almost always (PY, p. 83)	Exact, almost always (PY, p. 60)

Fictitious play compared to other algorithms

Part III: Finite memory and inertia

Author: Gerard Vreeswijk. Slides last modified on May 13^{th} , 2020 at 16:41

■ In their basic version, most learning rules rely on the entire history of play.

- In their basic version, most learning rules rely on the entire history of play.
- People, as well as computers, have a finite memory.

- In their basic version, most learning rules rely on the entire history of play.
- People, as well as computers, have a finite memory. (On the other hand, for average or discounted payoffs this is no problem.)

- In their basic version, most learning rules rely on the entire history of play.
- People, as well as computers, have a finite memory. (On the other hand, for average or discounted payoffs this is no problem.)
- Nevertheless: experiences in the distant past are apt to be less relevant than more recent ones.

- In their basic version, most learning rules rely on the entire history of play.
- People, as well as computers, have a finite memory. (On the other hand, for average or discounted payoffs this is no problem.)
- Nevertheless: experiences in the distant past are apt to be less relevant than more recent ones.
- Idea: let players have a finite memory of m rounds.

- In their basic version, most learning rules rely on the entire history of play.
- People, as well as computers, have a finite memory. (On the other hand, for average or discounted payoffs this is no problem.)
- Nevertheless: experiences in the distant past are apt to be less relevant than more recent ones.
- Idea: let players have a finite memory of m rounds.

Author: Gerard Vreeswijk. Slides last modified on May 13^{th} , 2020 at 16:41

When players' strategies are constantly re-evaluated, discontinuities in behaviour are likely to occur.

When players' strategies are constantly re-evaluated, discontinuities in behaviour are likely to occur.

Example: the asymmetric coordination game.

When players' strategies are constantly re-evaluated, discontinuities in behaviour are likely to occur.

Example: the asymmetric coordination game.

■ Discontinuities in behaviour are less likely to lead to equilibria of any sort.

When players' strategies are constantly re-evaluated, discontinuities in behaviour are likely to occur.

Example: the asymmetric coordination game.

- Discontinuities in behaviour are less likely to lead to equilibria of any sort.
- Idea: let players play the same action as in the previous round with probability λ .

When players' strategies are constantly re-evaluated, discontinuities in behaviour are likely to occur.

Example: the asymmetric coordination game.

- Discontinuities in behaviour are less likely to lead to equilibria of any sort.
- Idea: let players play the same action as in the previous round with probability λ .

Author: Gerard Vreeswijk. Slides last modified on May 13^{th} , 2020 at 16:41

■ Game G with action space X.

- \blacksquare Game G with action space X.
- \blacksquare G' = (V, E) where V = X and

$$E = \{ (x,y) \mid \text{for some } i : y_{-i} = x_{-i} \text{ and } u_i(y_i, y_{-i}) > u_i(x_i, x_{-i}) \}.$$

- \blacksquare Game G with action space X.
- \blacksquare G' = (V, E) where V = X and

$$E = \{ (x,y) \mid \text{for some } i : y_{-i} = x_{-i} \text{ and } u_i(y_i, y_{-i}) > u_i(x_i, x_{-i}) \}.$$

For all $x \in X$: x is a sink iff x is a pure Nash equilibrium.

- \blacksquare Game G with action space X.
- \blacksquare G' = (V, E) where V = X and

$$E = \{ (x,y) \mid \text{for some } i : y_{-i} = x_{-i} \text{ and } u_i(y_i, y_{-i}) > u_i(x_i, x_{-i}) \}.$$

- For all $x \in X$: x is a sink iff x is a pure Nash equilibrium.
- *G* is said to be weakly acyclic under better replies if every node is connected to a sink.

- \blacksquare Game G with action space X.
- \blacksquare G' = (V, E) where V = X and

$$E = \{ (x,y) \mid \text{for some } i : y_{-i} = x_{-i} \text{ and } u_i(y_i, y_{-i}) > u_i(x_i, x_{-i}) \}.$$

- For all $x \in X$: x is a sink iff x is a pure Nash equilibrium.
- *G* is said to be weakly acyclic under better replies if every node is connected to a sink.
- WAuBR $\Rightarrow \exists$ pure Nash equilibrium.

- \blacksquare Game *G* with action space *X*.
- \blacksquare G' = (V, E) where V = X and

$$E = \{ (x,y) \mid \text{for some } i : y_{-i} = x_{-i} \text{ and } u_i(y_i, y_{-i}) > u_i(x_i, x_{-i}) \}.$$

- For all $x \in X$: x is a sink iff x is a pure Nash equilibrium.
- *G* is said to be weakly acyclic under better replies if every node is connected to a sink.
- WAuBR $\Rightarrow \exists$ pure Nash equilibrium.

Author: Gerard Vreeswijk. Slides last modified on May 13th, 2020 at 16:41

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential,

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i and every action profile $x, y \in X$:

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i and every action profile $x, y \in X$:

$$y_{-i} = x_{-i} \implies u_i(y_i, y_{-i}) - u_i(x_i, x_{-i}) = \rho(y) - \rho(x)$$

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i and every action profile $x, y \in X$:

$$y_{-i} = x_{-i} \implies u_i(y_i, y_{-i}) - u_i(x_i, x_{-i}) = \rho(y) - \rho(x)$$

Example: congestion games.

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i and every action profile $x, y \in X$:

$$y_{-i} = x_{-i} \implies u_i(y_i, y_{-i}) - u_i(x_i, x_{-i}) = \rho(y) - \rho(x)$$

Example: congestion games.

true: The potential function increases along every path.

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i and every action profile $x, y \in X$:

$$y_{-i} = x_{-i} \implies u_i(y_i, y_{-i}) - u_i(x_i, x_{-i}) = \rho(y) - \rho(x)$$

Example: congestion games.

true: The potential function increases along every path.

 \Rightarrow : Paths cannot cycle.

Examples of weakly acyclic games

Coordination games Two-person games with identical actions for all players, where best responses are formed by the diagonal of the joint action space.

Potential games (Monderer and Shapley, 1996).

There is a function $\rho: X \to R$, called the potential, such that for every player i and every action profile $x, y \in X$:

$$y_{-i} = x_{-i} \implies u_i(y_i, y_{-i}) - u_i(x_i, x_{-i}) = \rho(y) - \rho(x)$$

Example: congestion games.

true: The potential function increases along every path.

 \Rightarrow : Paths cannot cycle.

 \Rightarrow : In finite graphs, paths must end.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

1. Let the state space Z be $X^{\mathbf{m}}$.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

- 1. Let the state space Z be $X^{\mathbf{m}}$.
- 2. A state $\bar{x} \in X^{\mathbf{m}}$ is called homogeneous if it consists of identical action profiles x. Such a state is denoted by $\langle x \rangle$.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

- 1. Let the state space Z be $X^{\mathbf{m}}$.
- 2. A state $\bar{x} \in X^{\mathbf{m}}$ is called homogeneous if it consists of identical action profiles x. Such a state is denoted by $\langle x \rangle$.

```
Z^* =_{Def} { homogeneous states }.
```

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

- 1. Let the state space Z be $X^{\mathbf{m}}$.
- 2. A state $\bar{x} \in X^{\mathbf{m}}$ is called homogeneous if it consists of identical action profiles x. Such a state is denoted by $\langle x \rangle$.

$$Z^* =_{Def}$$
 { homogeneous states }.

3. It can be shown that the process hits Z^* infinitely often.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

- 1. Let the state space Z be $X^{\mathbf{m}}$.
- 2. A state $\bar{x} \in X^{\mathbf{m}}$ is called homogeneous if it consists of identical action profiles x. Such a state is denoted by $\langle x \rangle$.

$$Z^* =_{Def}$$
 { homogeneous states }.

- 3. It can be shown that the process hits Z^* infinitely often.
- 4. It can be shown that the overall

probability to play any action is bounded away from zero.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

- 1. Let the state space Z be $X^{\mathbf{m}}$.
- 2. A state $\bar{x} \in X^{\mathbf{m}}$ is called homogeneous if it consists of identical action profiles x. Such a state is denoted by $\langle x \rangle$.

$$Z^* =_{Def}$$
 { homogeneous states }.

- 3. It can be shown that the process hits Z^* infinitely often.
- 4. It can be shown that the overall

probability to play any action is bounded away from zero.

5. It can be shown that

Absorbing
$$\subseteq$$
 $Z^* \cap$ Pure Nash.

Theorem. Let G be a finite weakly acyclic n-person game. Every better-reply process with finite memory and inertia converges to a pure NE of G.

Proof. (Outline.)

- 1. Let the state space Z be $X^{\mathbf{m}}$.
- 2. A state $\bar{x} \in X^{\mathbf{m}}$ is called homogeneous if it consists of identical action profiles x. Such a state is denoted by $\langle x \rangle$.

$$Z^* =_{Def}$$
 { homogeneous states }.

- 3. It can be shown that the process hits Z^* infinitely often.
- 4. It can be shown that the overall

probability to play any action is bounded away from zero.

5. It can be shown that

Absorbing
$$\stackrel{\subseteq}{\supseteq} Z^* \cap$$
 Pure Nash.

6. It can be shown that, due to weak acyclicity, inertia, and (4), the process eventually lands in an absorbing state which, due to (5), is a repeated pure Nash equilibrium. □

Let inertia be determined by $\lambda > 0$.

Pr(all players play their previous action) = λ^n .

Let inertia be determined by $\lambda > 0$.

Pr(all players play their previous action) = λ^n .

Hence,

Pr(all pl. play their previous action during **m** subsequent rounds) = $\lambda^{n\mathbf{m}}$.

Let inertia be determined by $\lambda > 0$.

Pr(all players play their previous action) = λ^n .

Hence,

Pr(all pl. play their previous action during **m** subsequent rounds) = $\lambda^{n\mathbf{m}}$.

If all players play their previous action during **m** subsequent rounds, then the process arrives at a homogeneous state.

Let inertia be determined by $\lambda > 0$.

Pr(all players play their previous action) = λ^n .

Hence,

Pr(all pl. play their previous action during **m** subsequent rounds) = $\lambda^{n\mathbf{m}}$.

If all players play their previous action during \mathbf{m} subsequent rounds, then the process arrives at a homogeneous state. Therefore, for all t,

Pr(process arrives at a homogeneous state in round $t + \mathbf{m}$) $\geq \lambda^{n\mathbf{m}}$.

Let inertia be determined by $\lambda > 0$.

Pr(all players play their previous action) = λ^n .

Hence,

Pr(all pl. play their previous action during **m** subsequent rounds) = $\lambda^{n\mathbf{m}}$.

If all players play their previous action during \mathbf{m} subsequent rounds, then the process arrives at a homogeneous state. Therefore, for all t,

 $\Pr(\text{process arrives at a homogeneous state in round } t + \mathbf{m}) \ge \lambda^{n\mathbf{m}}.$

Infinitely many disjoint histories of length \mathbf{m} occur, hence infinitely many *independent* events "homogeneous at $t + \mathbf{m}$ " occur.

Let inertia be determined by $\lambda > 0$.

Pr(all players play their previous action) = λ^n .

Hence,

Pr(all pl. play their previous action during **m** subsequent rounds) = $\lambda^{n\mathbf{m}}$.

If all players play their previous action during \mathbf{m} subsequent rounds, then the process arrives at a homogeneous state. Therefore, for all t,

 $\Pr(\text{process arrives at a homogeneous state in round } t + \mathbf{m}) \ge \lambda^{n\mathbf{m}}.$

Infinitely many disjoint histories of length \mathbf{m} occur, hence infinitely many *independent* events "homogeneous at $t + \mathbf{m}$ " occur. Apply the (second) Borel-Cantelli lemma: if $\{E_n\}_n$ are independent events, and $\sum_{n=1}^{\infty} \Pr(E_n)$ is unbounded, then $\Pr($ an infinite number of E_n 's occur)=1. \square

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to\Delta(X_i)$$

possesses two important properties:

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to\Delta(X_i)$$

possesses two important properties:

1. The formula itself is deterministic.

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to\Delta(X_i)$$

possesses two important properties:

- 1. The formula itself is deterministic.
- 2. Every action is played with positive probability.

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to\Delta(X_i)$$

possesses two important properties:

- 1. The formula itself is deterministic.
- 2. Every action is played with positive probability.

Therefore, if

$$\gamma_i =_{Def} \inf \{ \gamma_i(z)(x_i) \mid z \in Z, x_i \in X_i \}.$$

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to \Delta(X_i)$$

possesses two important properties:

- 1. The formula itself is deterministic.
- 2. Every action is played with positive probability.

Therefore, if

$$\gamma_i =_{Def} \inf \{ \gamma_i(z)(x_i) \mid z \in Z, x_i \in X_i \}.$$

then $\gamma_i > 0$ since all $\gamma_i(z)(x_i) > 0$ and Z and X_i are finite.

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to\Delta(X_i)$$

possesses two important properties:

- 1. The formula itself is deterministic.
- 2. Every action is played with positive probability.

Therefore, if

$$\gamma_i =_{Def} \inf \{ \gamma_i(z)(x_i) \mid z \in Z, x_i \in X_i \}.$$

then $\gamma_i > 0$ since all $\gamma_i(z)(x_i) > 0$ and Z and X_i are finite.

So if

$$\gamma =_{Def} \min \{ \gamma_i \mid 1 \leq i \leq n \}.$$

A better-reply learning method from states (finite histories) to strategies (probability distributions on actions)

$$\gamma_i:Z\to\Delta(X_i)$$

possesses two important properties:

- 1. The formula itself is deterministic.
- 2. Every action is played with positive probability.

Therefore, if

$$\gamma_i =_{Def} \inf \{ \gamma_i(z)(x_i) \mid z \in Z, x_i \in X_i \}.$$

then $\gamma_i > 0$ since all $\gamma_i(z)(x_i) > 0$ and Z and X_i are finite.

So if

$$\gamma =_{Def} \min \{ \gamma_i \mid 1 \leq i \leq n \}.$$

then $\gamma > 0$.

Author: Gerard Vreeswijk. Slides last modified on May 13th, 2020 at 16:41

Suppose the process is in $\langle x \rangle$.

1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

■ All other players $j \neq i$ keep playing the same action : λ^{n-1} .

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

All other players $j \neq i$ keep playing the same action : λ^{n-1} .

Edge $x \rightarrow y$ is actually traversed : $\gamma \lambda^{n-1}$.

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

■ All other players $j \neq i$ keep playing the same action : λ^{n-1} .

- Edge $x \rightarrow y$ is actually traversed : $\gamma \lambda^{n-1}$.
- Profile y is maintained for another $\mathbf{m} 1$ rounds, so as to arrive at state $\langle y \rangle : \lambda^{n(\mathbf{m}-1)}$.

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

All other players $j \neq i$ keep playing the same action : λ^{n-1} .

- Edge $x \rightarrow y$ is actually traversed : $\gamma \lambda^{n-1}$.
- Profile y is maintained for another $\mathbf{m} 1$ rounds, so as to arrive at state $\langle y \rangle : \lambda^{n(\mathbf{m}-1)}$.
- To traverse from $\langle x \rangle$ to $\langle y \rangle$: $\gamma \lambda^{n-1} \cdot \lambda^{n(\mathbf{m}-1)} = \gamma \lambda^{n\mathbf{m}-1}$.

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

All other players $j \neq i$ keep playing the same action : λ^{n-1} .

- Edge $x \rightarrow y$ is actually traversed : $\gamma \lambda^{n-1}$.
- Profile y is maintained for another $\mathbf{m} 1$ rounds, so as to arrive at state $\langle y \rangle : \lambda^{n(\mathbf{m}-1)}$.
- To traverse from $\langle x \rangle$ to $\langle y \rangle$: $\gamma \lambda^{n-1} \cdot \lambda^{n(\mathbf{m}-1)} = \gamma \lambda^{n\mathbf{m}-1}$.
- The "image" $\langle x^{(1)} \rangle, \ldots, \langle x^{(l)} \rangle$ of a better reply-path $x^{(1)}, \ldots, x^{(l)}$ is followed to a sink: $\geq (\gamma \lambda^{nm-1})^L$, where L is the length of a longest better-reply path.

Final claim: probability to reach a sink from $Z^* > 0$

Suppose the process is in $\langle x \rangle$.

- 1. If *x* is pure Nash, we are done, because response functions are deterministic better replies.
- 2. If x is not pure Nash, there must be an edge $x \rightarrow y$ in the better reply graph. Suppose this edge concerns action x_i of player i. We now know that x_i is played with probability at least γ , irrespective of player and state.

Further probabilities:

■ All other players $j \neq i$ keep playing the same action : λ^{n-1} .

- Edge $x \rightarrow y$ is actually traversed : $\gamma \lambda^{n-1}$.
- Profile y is maintained for another $\mathbf{m} 1$ rounds, so as to arrive at state $\langle y \rangle : \lambda^{n(\mathbf{m}-1)}$.
- To traverse from $\langle x \rangle$ to $\langle y \rangle$: $\gamma \lambda^{n-1} \cdot \lambda^{n(\mathbf{m}-1)} = \gamma \lambda^{n\mathbf{m}-1}$.
- The "image" $\langle x^{(1)} \rangle, \ldots, \langle x^{(l)} \rangle$ of a better reply-path $x^{(1)}, \ldots, x^{(l)}$ is followed to a sink : $\geq (\gamma \lambda^{nm-1})^L$, where L is the length of a longest better-reply path.

Since Z^* is encountered infinitely often, the result follows.

■ With fictitious play, the behaviour of opponents is modelled by (or represented by, or projected on) a mixed strategy.

- With fictitious play, the behaviour of opponents is modelled by (or represented by, or projected on) a mixed strategy.
- Fictitious play ignores sub-optimal actions.

- With fictitious play, the behaviour of opponents is modelled by (or represented by, or projected on) a mixed strategy.
- Fictitious play ignores sub-optimal actions.
- There is a family of so-called better-reply learning rules, that
 i) play sub-optimal actions, and
 ii) can be brought arbitrary close to fictitious play.

- With fictitious play, the behaviour of opponents is modelled by (or represented by, or projected on) a mixed strategy.
- Fictitious play ignores sub-optimal actions.
- There is a family of so-called better-reply learning rules, that
 i) play sub-optimal actions, and
 ii) can be brought arbitrary close to fictitious play.
- In weakly acyclic *n*-person games, every better-reply process with finite memory and inertia converges to a pure Nash equilibrium.

- Like fictitious play, players model (or assess) each other through mixed strategies.
- Strategies are not played, only maintained.
- Due to CKR (common knowledge of rationality, cf. Hargreaves Heap & Varoufakis, 2004), all models of mixed strategies are correct. (I.e., $q^{-i} = s^{-i}$, for all i.)
- Players gradually adapt their mixed strategies through hill-climbing in the payoff space.

Bayesian play:

- Like fictitious play, players model (or assess) each other through mixed strategies.
- Strategies are not played, only maintained.
- Due to CKR (common knowledge of rationality, cf. Hargreaves Heap & Varoufakis, 2004), all models of mixed strategies are correct. (I.e., $q^{-i} = s^{-i}$, for all i.)
- Players gradually adapt their mixed strategies through hill-climbing in the payoff space.

Bayesian play:

■ With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.

- Like fictitious play, players model (or assess) each other through mixed strategies.
- Strategies are not played, only maintained.
- Due to CKR (common knowledge of rationality, cf. Hargreaves Heap & Varoufakis, 2004), all models of mixed strategies are correct. (I.e., $q^{-i} = s^{-i}$, for all i.)
- Players gradually adapt their mixed strategies through hill-climbing in the payoff space.

Bayesian play:

- With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.
- With Bayesian play, opponents are modelled by a probability distribution over (a possibly confined set of) mixed strategies.

Bayesian play:

- With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.
- With Bayesian play, opponents are modelled by a probability distribution over (a possibly confined set of) mixed strategies.

Bayesian play:

- With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.
- With Bayesian play, opponents are modelled by a probability distribution over (a possibly confined set of) mixed strategies.

Gradient dynamics:

■ Like fictitious play, players model (or assess) each other through mixed strategies.

Bayesian play:

- With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.
- With Bayesian play, opponents are modelled by a probability distribution over (a possibly confined set of) mixed strategies.

- Like fictitious play, players model (or assess) each other through mixed strategies.
- Strategies are not played, only maintained.

Bayesian play:

- With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.
- With Bayesian play, opponents are modelled by a probability distribution over (a possibly confined set of) mixed strategies.

- Like fictitious play, players model (or assess) each other through mixed strategies.
- Strategies are not played, only maintained.
- Due to CKR (common knowledge of rationality, cf. Hargreaves Heap & Varoufakis, 2004), all models of mixed strategies are correct. (I.e., $q^{-i} = s^{-i}$, for all i.)

Bayesian play:

- With fictitious play, the behaviour of opponents is modelled by a single mixed strategy.
- With Bayesian play, opponents are modelled by a probability distribution over (a possibly confined set of) mixed strategies.

- Like fictitious play, players model (or assess) each other through mixed strategies.
- Strategies are not played, only maintained.
- Due to CKR (common knowledge of rationality, cf. Hargreaves Heap & Varoufakis, 2004), all models of mixed strategies are correct. (I.e., $q^{-i} = s^{-i}$, for all i.)
- Players gradually adapt their mixed strategies through hill-climbing in the payoff space.