Maria-Florina Balcan 03/25/2015

One of the most theoretically well motivated and practically most effective classification algorithms in machine learning.

Directly motivated by Margins and Kernels!

Geometric Margin

WLOG homogeneous linear separators $[w_0 = 0]$.

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

If ||w|| = 1, margin of x w.r.t. w is $|x \cdot w|$.

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.

Margin Important Theme in ML

Both sample complexity and algorithmic implications.

Sample/Mistake Bound complexity:

- If large margin, # mistakes Peceptron makes is small (independent on the dim of the space)!
- If large margin γ and if alg. produces a large margin classifier, then amount of data needed depends only on R/γ [Bartlett & Shawe-Taylor '99].

Algorithmic Implications

Suggests searching for a large margin classifier... SVMs

Directly optimize for the maximum margin separator: SVMs

First, assume we know a lower bound on the margin γ

Output: w, a separator of margin γ over S

Realizable case, where the data is linearly separable by margin γ

加上约束条件.

Directly optimize for the maximum margin separator: SVMs

E.g., search for the best possible γ 3 1

Input:
$$S=\{(x_1, y_1), ..., (x_m, y_m)\};$$

Find: some w and maximum where:

- $||w||^2 = 1$ 所以加上平方 ⇒线性概化 sit. Ax=b
- For all i, $y_i w \cdot x_i \ge \gamma$

Output: maximum margin separator over 5

Directly optimize for the maximum margin separator: SVMs

```
<u>Input</u>: S=\{(x_1, y_1), ..., (x_m, y_m)\};
```

Maximize γ under the constraint:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \ge \gamma$

Directly optimize for the maximum margin separator: SVMs

This is a constrained optimization problem.

 Famous example of constrained optimization: linear programming, where objective fn is linear, constraints are linear (in)equalities

Directly optimize for the maximum margin separator: SVMs

<u>Input</u>: $S=\{(x_1, y_1), ..., (x_m, y_m)\};$

Maximize y under the constraint:

- For all i, $y_i w \cdot x_i \ge \gamma$

In fact, it's even non-convex

Directly optimize for the maximum margin separator: SVMs

Input:
$$S=\{(x_1, y_1), ..., (x_m, y_m)\};$$

Maximize γ under the constraint:

- $||w||^2 = 1 / 3 w' = \frac{w}{3} = 7 ||w'|| = \frac{||w||}{3} = \frac{1}{7}$
- For all i, $y_i w \cdot x_i \ge \gamma$

 $w' = w/\gamma$, then max γ is equiv. to minimizing $||w'||^2$ (since $||w'||^2 = 1/\gamma^2$). So, dividing both sides by γ and writing in terms of w' we get:

Input: $S=\{(x_1,y_1), ..., (x_m,y_m)\};$ Minimize $||w'||^2$ $w'||^2$ under the constraint:

• For all i, $y_i w' \cdot x_i \ge 1$

一)对于什么原动及 WTx 21或WTx =-1 =>|WTx|2| 实际上这些点对地界、间隔的确定没有任何贡献、 靠近边界的总称 Support vectors.

Directly optimize for the maximum margin separator: SVMs

```
Input: S=\{(x_1, y_1), \dots, (x_m, y_m)\}; argmin ||w||^2 s.t.:

• For all i, y_i w \cdot x_i \ge 1
```

This is a constrained optimization problem.

- The objective is convex (quadratic)
- All constraints are linear
- · Can solve efficiently (in poly time) using standard quadratic programing (QP) software
 二次现代:是可求解析解的,但不这样求(慢),因对两的解沟,

~有噪声时.

Question: what if data isn't perfectly linearly separable?

- Issue 1: now have two objectives $w \cdot x = -1$ maximize margin 最小化分类输穿的样本数
- minimize # of misclassifications.

Ans 1: Let's optimize their sum: minimize

$$||w||^2 + C$$
(# misclassifications)

where C is some tradeoff constant.

Issue 2: This is computationally hard (NP-hard).

[even if didn't care about margin and minimized # mistakes]

NP-hard [Guruswami-Raghavendra'06]

Question: what if data isn't perfectly linearly separable?

Replace "# mistakes" with upper bound called "hinge loss"

Input:
$$S=\{(x_1, y_1), ..., (x_m, y_m)\};$$

Minimize $||w'||^2$ under the constraint:

• For all i, $y_i w' \cdot x_i \ge 1$

便对每一个点都有 Y;WK1+31 71 , 与需在优的比 CZ新保证距离不算太大。

=)到了 => 善;= max(0,1-);wxi)=(1-);wxii)= 表示取力的部分。

Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"

Input: $S=\{(x_1, y_1), ..., (x_m, y_m)\};$ Find $\operatorname{argmin}_{W,\xi_1,...,\xi_m} ||w||^2 + C \sum_i \xi_i \text{ s.t.:}$ • For all $i, y_i w \cdot x_i \geq 1 - \xi_i$ $= \lambda$ $\xi_i \geq 0$ $= \lambda$ $\xi_i \text{ are "slack variables"}$

C controls the relative weighting between the twin goals of making the $||w||^2$ small (margin is large) and ensuring that most examples have functional margin ≥ 1 .

 $l(w, x, y) = \max(0, 1 - y \cdot w \cdot x)$

将提供换成LogisticLoss: ourginin = ||w||2+CE(1-o-Y.Wii)

Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"

Input:
$$S=\{(x_1, y_1), ..., (x_m, y_m)\};$$

Find $\underset{w,\xi_1,...,\xi_m}{\operatorname{Find}} ||w||^2 + C \sum_i \xi_i \text{ s.t.}:$

• For all $i, y_i w \cdot x_i \ge 1 - \xi_i$
 $\xi_i \ge 0$

 $w \cdot x = 1$

Total amount have to move the points to get them on the correct side of the lines $w \cdot x = +1/-1$, where the distance between the lines $w \cdot x = 0$ and $w \cdot x = 1$ counts as "1 unit".

What if the data is far from being linearly separable? 对于非线性的边界

Example:

VS

No good linear separator in pixel representation.

SVM philosophy: "use a Kernel"

minf(x) s.t. g(x)=0, $h(x) \leq 0$ ス v拉格朗日: $L(x,\lambda,v) = f(x) + \lambda g(x) + v h(x)$

=>
$$\sum_{\lambda} m_{\lambda} m_{\lambda} m_{\lambda} \sum_{\lambda} (x_{\lambda}, \lambda_{\lambda} v) = p^{+} p_{\lambda} m_{\lambda} m_{\lambda} \sum_{\lambda} (x_{\lambda}, \lambda_{\lambda} v) = p^{+} p_{\lambda} m_{\lambda} m_{\lambda} m_{\lambda} \sum_{\lambda} (x_{\lambda}, \lambda_{\lambda} v) = q^{+} p_{\lambda} m_{\lambda} m_{\lambda} m_{\lambda} \sum_{\lambda} (x_{\lambda}, \lambda_{\lambda} v) = q^{+} p_{\lambda} m_{\lambda} m_{\lambda} m_{\lambda} m_{\lambda} \sum_{\lambda} (x_{\lambda}, \lambda_{\lambda} v) = q^{+} p_{\lambda} m_{\lambda} m_$$

[(w, xi) = = = [|w||2+\text{2di (Yi(wTx;+b)~1)}
g(x)

Stationary: $\frac{\partial L}{\partial w} = 0$ $\frac{\partial L}{\partial a} = 0$ $\frac{\partial L}{\partial b} = 0$ complementary: $Ai(y_i(w^Tx_i+b)-1) = 0$ primal: $y_i(w^Tx_i+b) = 0$ dual: Ai = 0

 $\frac{\partial L}{\partial w} = w - \sum \alpha_i y_i y_i = 0 = 0$ $w = \sum \alpha_i y_i y_i$

=>钏叫」こうララダはダンツリエン内が

可以在这里有用 kernel function. (对偶)

31 = 2di); =0

假设有加个点、SS(M. 外),…, (xm,xm) =>有mf不等式 >m+ xi xi

Startionary
$$\begin{cases} \frac{\partial L}{\partial w} = 0 & = 0 \\ \frac{\partial L}{\partial b} = 0 \end{cases} = 0 \qquad = 0 \qquad \frac{W}{1-1} \times 10^{-1} \times 10^{$$

Complementary
$$\begin{cases} x_i(y_i(w^Tx_i+b)-1+\frac{1}{3}i) = 0 \\ x_i(y_i(w^Tx_i+b)-1+\frac{1}{3}i) = 0 \end{cases}$$

```
Input: S={(x_1, y_1), ..., (x_m, y_m)};

Find \underset{w,\xi_1,...,\xi_m}{\operatorname{argmin}_{w,\xi_1,...,\xi_m}} ||w||^2 + C \sum_i \xi_i \text{ s.t.}:

• For all i, y_i w \cdot x_i \ge 1 - \xi_i

\xi_i \ge 0
```

Primal form

Which is equivalent to:

(线性可分时)

```
Input: S={(x_1, y_1), ..., (x_m, y_m)};

Find \operatorname{argmin}_{\alpha} \frac{1}{2} \sum_{i} \sum_{j} y_i y_j \alpha_i \alpha_j x_i \cdot x_j - \sum_{i} \alpha_i s.t.;
```

Lagrangian Dual

· For all i, $0 \le c_i$ 对偶的原始约本. $2 y_i \alpha_i = 0$ 。 教证求导的约本 i 的统体计 i 为 i 的约本: $k_i \in C$

SVMs (Lagrangian Dual)

 $w \cdot x = -1$

<u>Input</u>: $S=\{(x_1, y_1), ..., (x_m, y_m)\};$

Find $\operatorname{argmin}_{\alpha} \frac{1}{2} \sum_{i} \sum_{j} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} \cdot x_{j} - \sum_{i} \alpha_{i} \text{ s.t.}$:

• For all i, $0 \le \alpha_i \le C_i$

$$\sum_i y_i \alpha_i = 0$$

• The points x_i for which $\alpha_i \neq 0$ are called the "support vectors"

另有这些点的以和 分别 Support Vector

Kernelizing the Dual SVMs

```
Input: S=\{(x_1,y_1),...,(x_m,y_m)\};
Find \operatorname{argmin}_{\alpha} \frac{1}{2} \sum_{i} \sum_{j} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} \cdot x_{j} + \sum_{i} \alpha_{i} s.t.:
                                                                           Replace x_i \cdot x_i
                                                                           with K(x_i, x_i).
           • For all i, 0 \le \alpha_i \le C_i
```

- Final classifier is: $w = \sum_i \alpha_i y_i x_i$
- The points x_i for which $\alpha_i \neq 0$ are called the "support vectors"
- With a kernel, classify x using $\sum_i \alpha_i y_i K(x, x_i)$

One of the most theoretically well motivated and practically most effective classification algorithms in machine learning.

Directly motivated by Margins and Kernels!

What you should know

- The importance of margins in machine learning.
- The primal form of the SVM optimization problem
- The dual form of the SVM optimization problem.
- Kernelizing SVM.

 Think about how it's related to Regularized Logistic Regression.