LUNDS TEKNISKA HÖGSKOLA MATEMATIK

SVAR OCH ANVISNINGAR TILL ENDIMENSIONELL ANALYS DELKURS B1 2015-01-07 8-13

1. (a)
$$(x-2)(x-3)$$
 (b) $y = -x-4$ (c) $x = 3,4$ (d) $\frac{19}{6}$
(e) $-8 \le x < -5$ (f) $x+y$ (g) $x = -1/2$
(h) 210° (i) $-\frac{3+\sqrt{7}}{2}$ (j) $x = -3$

2. (a)
$$\lim_{x \to 0} \frac{\ln(1+2x)}{x^2+x} = 2$$
, (b) $\lim_{x \to -1} \frac{\ln(2+x)}{x^2+x} = -1$.

- (c) Kurvan har asymptoten y=x då $x\to\infty$ och asymptoten y=x-2 då $x\to-\infty$.
- 3. a) Kurvan är en ellips med centrum i (1,-2) och halvaxlar $\sqrt{3}$ och $\sqrt{2}$. Skärningspunkterna är $(\frac{2}{5}(1\pm\sqrt{6}),\frac{1}{5}(-8\pm2\sqrt{6}))$
 - b) Sökt koefficient är 960. Potenserna i andra faktor är alla på formen x^{4k} och för att få x^{17} i p(x) måste vi multiplicera termen som svarar mot x^{16} (k=4) i denna med termen 4x i först faktorn.
- 4. a) Se geometriboken
 - b) $\alpha = \pi/3$.
- 5. a) Vi ser att f(0) = 0 och $\lim_{x\to\infty} f(x) = 0$ och att funktionen är positiv då x > 0. I punkten (1,0.5) har grafen sitt maximum och är växande till vänster och avtagande till höger. Detta illustreras i figuren till nedan, där även tangenten till b-uppgiften är inritad som heldragen linje.

b) Tangentens ekvation är $y-\frac{2}{5}=-\frac{3}{25}(x-2)$, vilken också kan skrivas som 25y+3x=16. Dess skärning med x-axeln ges av x=16/3.

c) Tangenten till grafen i en godtycklig punkt (a, f(a)) kan skrivas

$$y - \frac{a}{1+a^2} = \frac{1-a^2}{(1+a^2)^2}(x-a).$$

Denna skär x-axeln i den punkt där $x=\frac{2a^3}{a^2-1},$ vilket gör att vi söker a>0 som uppfyller

$$\frac{2a^3}{a^2 - 1} = \frac{16}{3} \Leftrightarrow 3a^3 - 8a^2 + 8 = 0.$$

Detta är ett tredjegradsekvation med lösningen a=2. De övriga nollställen är $a=\frac{1}{3}(1\pm\sqrt{13}).$

Det finns alltså en sådan tangent, nämligen den som är tangent i punkten $x=\frac{1}{3}(1+\sqrt{13})\approx 1.54.$

6. a) Arean ges av

$$A(x) = 50\sqrt{2}\sin(x)\sin(\frac{3\pi}{4} - x).$$

Notera att både x och $\frac{3\pi}{4}-x$ måste ligga mellan 0 och π , vilket ger att $0\leq x\leq 3\pi/4$ måste gälla.

b)

$$x = \frac{3\pi}{8}.$$