Lesson 28: Practice Problems

Wronskian and Linear Independence

Part A: Basic Wronskian Calculations (6 problems)

- 1. Calculate the Wronskian of $y_1 = e^{3t}$ and $y_2 = e^{-t}$.
- 2. Find W(t) for the solutions $\mathbf{x}_1 = \begin{bmatrix} e^t \\ e^t \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} e^{2t} \\ 2e^{2t} \end{bmatrix}$.
- 3. Compute the Wronskian of $y_1 = \cos(2t)$, $y_2 = \sin(2t)$.
- 4. Calculate $W[t, t^2]$ and determine linear independence.
- 5. Find the Wronskian of $\mathbf{x}_1 = \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$.
- 6. Compute $W[e^t, te^t]$ for the repeated root case.

Part B: Abel's Identity Applications (5 problems)

- 7. Given $\mathbf{x}' = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \mathbf{x}$ with W(0) = 2, find W(t) using Abel's identity.
- 8. For the system $\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix} \mathbf{x}$, use Abel's identity to find W(t) if $W(1) = e^{-4}$.
- 9. The trace of $A(t) = \begin{bmatrix} t & 1 \\ 0 & -t \end{bmatrix}$ is zero. What does this imply about W(t)?
- 10. Find W(2) if W(0) = 3 for solutions of $\mathbf{x}' = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \mathbf{x}$.
- 11. Given y'' + p(t)y' + q(t)y = 0, express the Wronskian using Abel's identity.

1

Part C: Linear Independence Testing (5 problems)

- 12. Determine if $y_1 = e^{2t}$, $y_2 = e^{-2t}$, $y_3 = \cosh(2t)$ are linearly independent.
- 13. Test independence of $\mathbf{x}_1 = e^t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{x}_2 = e^t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{x}_3 = e^t \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
- 14. Are $y_1 = t^2$, $y_2 = t|t|$ linearly independent on (-1,1)?
- 15. Check if $\sin t$, $\cos t$, $\sin(t + \pi/4)$ are linearly independent.
- 16. Determine independence of $e^t \cos t$, $e^t \sin t$ as solutions to a second-order equation.

Part D: Wronskian Theory (5 problems)

- 17. Prove that if $W(t_0) = 0$ for solutions of $\mathbf{x}' = A(t)\mathbf{x}$, then W(t) = 0 for all t.
- 18. Show that the Wronskian of a fundamental matrix equals its determinant.
- 19. If y_1 and y_2 are solutions with $W[y_1, y_2](0) = 0$ and $y_1(0) = 1$, $y'_1(0) = 2$, find $y_2(0)$ and $y'_2(0)$.
- 20. Prove that if the Wronskian of n functions is identically zero, and n-1 of them are linearly independent, then all n cannot be solutions to the same nth-order linear homogeneous ODE.
- 21. Show that $W[cy_1, y_2] = c \cdot W[y_1, y_2]$ for any constant c.

Part E: Constructing Equations from Solutions (4 problems)

- 22. Find the second-order ODE having e^{2t} and e^{-3t} as solutions.
- 23. Construct the third-order equation with solutions 1, t, t^2 .
- 24. Given solutions $e^t \cos t$ and $e^t \sin t$, find the differential equation.
- 25. Find the system matrix A if solutions have Wronskian $W(t) = e^{5t}$ and tr(A) = 5.

2

Part F: Exam-Style Problems (5 problems)

- 26. (Prof. Ditkowski style) For the system $\mathbf{x}' = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix} \mathbf{x}$:
 - (a) Find two linearly independent solutions

- (b) Calculate their Wronskian directly
- (c) Verify using Abel's identity
- (d) Explain why the Wronskian is never zero

27. Given that $y_1 = t^2$ and $y_2 = t^2 \ln t$ are solutions to $t^2 y'' - 3ty' + 4y = 0$ for t > 0:

- (a) Compute $W[y_1, y_2](t)$
- (b) Verify they're linearly independent
- (c) Use Abel's identity to check your answer
- (d) Find the general solution

28. The Wronskian of three solutions satisfies $W(t) = e^{-6t}$.

- (a) Find tr(A) for the system matrix
- (b) If the eigenvalues are $\lambda_1 = 1$, $\lambda_2 = -2$, find λ_3
- (c) Write a possible system matrix A

29. Consider solutions $\mathbf{x}_1(t) = e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{x}_2(t) = e^{2t} \begin{bmatrix} t \\ 1+2t \end{bmatrix}$:

- (a) Calculate W(t)
- (b) Explain the presence of t in \mathbf{x}_2
- (c) Find the system matrix A
- (d) Verify Abel's identity

30. (Comprehensive) Given the differential equation y''' - 6y'' + 11y' - 6y = 0:

- (a) Verify that e^t , e^{2t} , e^{3t} are solutions
- (b) Calculate the Wronskian $W[e^t, e^{2t}, e^{3t}](t)$
- (c) Convert to a system and find tr(A)
- (d) Verify Abel's identity connects your answers
- (e) Prove these solutions form a fundamental set

Solutions and Hints

Selected Solutions:

Problem 1: $W(t) = e^{3t}(-e^{-t}) - e^{-t}(3e^{3t}) = -4e^{2t}$

Problem 3: $W(t) = \cos(2t) \cdot 2\cos(2t) - \sin(2t) \cdot (-2\sin(2t)) = 2$

Problem 7: tr(A) = 1 + 3 = 4, so $W(t) = 2e^{4t}$

Problem 12: Dependent! $y_3 = \cosh(2t) = \frac{1}{2}(e^{2t} + e^{-2t}) = \frac{1}{2}y_1 + \frac{1}{2}y_2$

Problem 17: If W = 0, then $y_2(0) = ky_1(0) = k$ and $y_2'(0) = ky_1'(0) = 2k$ for some k

Problem 21: The equation is y'' + y' - 6y = 0

Problem 26: $W(t) = t^2 \cdot \frac{2t \ln t + t}{t} - t^2 \ln t \cdot 2t = t^2$ **Problem 30:** Wronskian is $2e^{6t}$, and $\operatorname{tr}(A) = 6$ confirms Abel's identity **Key Insights:**

- \bullet Wronskian zero at one point \Rightarrow zero everywhere
- Abel's identity: $W(t) = W(t_0)e^{\int_{t_0}^t \operatorname{tr}(A(s))ds}$
- For constant A: $W(t) = W(0)e^{\operatorname{tr}(A) \cdot t}$
- \bullet Quick test: Different exponential rates \Rightarrow independent
- \bullet Proportional solutions \Rightarrow Wronskian zero