

Ch—07 Alternating Current Daily Practice Problem 06

- **Q1.** Determine the impedance of a series LCR-circuit if the reactance of C and L are 250 Ω and 220 Ω respectively and R is 40 Ω .
- **Q2.** A resistor of $12 \, ohm$, a capacitor of reactance $14 \, ohm$ and a pure inductor of inductance $0.1 \, henry$ are joined in series and placed across a $200 \, volt$, $50 \, Hz$ a.c. supply. Calculate
- (i) the current in the circuit and
- (ii) the phase angle between the current and the voltage. Take $\pi=3$ for purpose of calculations.
- **Q3.** A 50 μF capacitor, 0.05 H inductor and a 48 Ω resistor are connected in series with an a.c. source of emf, $\epsilon = 310 \ sin \ 314 \ t$. Calculate the reactance of the circuit and tell its nature. What is the phase angle between the current and the applied emf?
- **Q4.** A $12~\Omega$ resistance and an inductance of $0.05/\pi~H$ with negligible resistance are connected in series. Across the ends of this is connected a 130~V alternating voltage of frequency 50~Hz. Calculate the alternating current in the circuit and the potential difference across the resistance and across the inductance.

Q5. In the circuit shown in the figure neglecting source resistance the voltmeter and ammeter reading will respectively, will be

- **a.** 0 V, 3 A
- **b.** 150 V, 3 A
- c. 150 V, 6 A
- d. 0 V, 8 A

Q6. An LCR-series circuit with L=100~mH, $C=100~\mu$ F, $R=120~\Omega$. is connected to an a.c. source of emf $\epsilon=30~sin~100~t~volt$. Find the impedance, peak current and resonant frequency of the circuit.

- **Q7.** A circuit connected to an AC source of emf $e = e_0 \sin(100t)$ with t in seconds, gives a phase difference of $\frac{\pi}{4}$: between the emf e and current i. Which of the following circuits will exhibit this?
 - **a.** RC circuit with R=1 $k\Omega$ and C=1 μF

- **b.** RL circuit with $R=1\,k\Omega$ and L=1 mH
- **c.** RC circuit with $R = 1 k\Omega$ and C = $10 \mu F$
- **d.** RL circuit with $R = 1 k\Omega$ and L =10 mH

ANSWERS

1. 50 Ω

2. 10 *A*, 53.1°

48 Ω , 45°(current leads voltage)

4. 10 *A*, 120 *V*, 50 *V*

5. d

6. 150 Ω , 0.2 A, 50 Hz

7. c