CÁLCULOS DE CRITICIDAD - PARTE I CURSO ESFM-IPN

Arturo Delfín Loya

https://arturodelfinloya.github.io/MCNP

Agosto, 2016

Cálculos de criticidad - Parte I

- ► Repaso de criticidad
- ► Estimadores de criticidad
- ► Tarjetas KCODE & KSRC
- ► Ejemplos y archivos de salida

Cálculos de criticidad - Parte II

- Convergencia
- Graficado
- Ejemplos y gráficas
- Continuación de la corrida

Repaso de Criticidad

(2)

$$[\hat{\Omega}.\nabla + \Sigma_{T}(\vec{r}, E)].\Psi(\vec{r}, E, \hat{\Omega}) = \int \int \Psi(\vec{r}, E', \hat{\Omega}') \Sigma_{S}(\vec{r}, E' \to E, \hat{\Omega}.\hat{\Omega}') d\hat{\Omega}' dE' + \frac{1}{k_{\alpha\beta\beta}} \frac{\chi((E)}{4\pi} \int \int v \Sigma_{F}(\vec{r}, E') \Psi(\vec{r}, E', \hat{\Omega}') d\hat{\Omega}' dE'$$
(1)

$$[L+T]\Psi = S\Psi + \frac{1}{k_{eff}}M\Psi$$

donde: $k_{eff} = k$ -efectiva, es el eigenvalor, para el modo fundamental $\Psi(\vec{r}, E, \hat{\Omega}) =$ flujo angular, para el k-eigenmodo fundamental

L	Operador Fuga	S	Operador Dispersión
Т	Operador Colisión	M	Operador Multiplicación por fisión

Conjuntamente se busca k_{eff} y $\Psi(\vec{r}, E, \hat{\Omega})$ para las ecuaciones de balance

► Ecuaciones del eigenvalor-*k*

$$[L+T]\Psi = S\Psi + \frac{1}{k_{eff}}M\Psi \tag{3}$$

- ightharpoonup Esta es una ecuación **estática**, un **problema de valor propio** para k_{eff} y Ψ sin dependencia del tiempo
- ► k_{eff} se denomina factor de multiplicación efectiva

Supercrítico	$k_{eff} > 1$
Crítico	$k_{eff} = 1$
Subcrítico	$k_{eff} < 1$

- Nunca use k_{eff} y Ψ para modelar problemas con dependencia del tiempo
- ightharpoonup Problemas k_{eff} -eigenvalor pueden ser resueltos por Monte Carlo

⇒ Esta ecuación de eigenvalor puede resolverse por iteración de potencias

$$[L+T-S]\Psi = \frac{1}{k_{eff}}M\Psi \tag{4}$$

$$\Psi = \frac{1}{k_{eff}} [L + T - S]^{-1} M \Psi$$
 (5)

$$\Psi = \frac{1}{k_{eff}} F \Psi \tag{6}$$

Procedimiento de iteración de potencias

- 1. Estimación inicial para k_{eff} y Ψ $k_{eff}^{(0)}$, $\Psi^{(0)}$
- 2. Resolver para $\Psi^{(0)}$ [Monte Carlo, realiza travectoria aleatoria para N partículas]

$$\Psi^{(n+1)} = \frac{1}{k_{off}^{(n)}} F \Psi^{(n)} \tag{7}$$

Puntos de origen para $\Psi^{(0)}$

Puntos de origen para $\Psi^{(n+1)}$

3. Calcular la nueva k_{eff}

$$k_{eff}^{(n+1)} = k_{eff}^{(n)} \frac{\int M\Psi^{(n+1)} d\vec{r}}{\int M\Psi^{(n)} d\vec{r}}$$
 (8)

4. Repetir los pasos 1-3 hasta que ambos $k_{eff}^{(n+1)}$ y $\Psi^{(n+1)}$ hayan convergido

$$\Psi^{(n+1)} = \frac{1}{k_{eff}^{(n)}} F \Psi^{(n)} \tag{9}$$

- ▶ Una estimación incial de la distribución de la fuente
- ► Realiza iteraciones hasta que converge (cómo hace esto?)
- ► Entonces:
 - Para el código S_n : hace, imprime resultados
 - Para Monte Carlo: Inicia los Tallies, sigue corriendo hasta que las incertidumbres son lo suficientemente pequeñas
- ► ¿Convergencia? Estacionario? ¿Tendencia? ¿Estadística?

- ► Las historias se ejecutan en lotes de N partículas
- Distribución espacial:
 - La distribución inicial de la posición de la fuente de fisión vienen de la tarjeta KSRC, SDEF, o SRCTP
 - Después de primer lote, la posición de la fuente son tomadas de lote anterior
- ▶ El peso total de cada lote es N
- ▶ Para cada lote, 3 estimaciones de Keff se hacen para cada uno
 - Estimación de k_{eff} por la longitud de la trayectoria (track-length)
 - Estimación de k_{eff} por colisiones
 - Estimación de k_{eff} por absorciones

- ▶ Se desechan los D lotes iniciales (los inactivos, donde la fuente puede ser convergente), acumula resultados totales para lotes activos D+1...M
- ► Al final del problema, las estimaciones de los lotes desde los lotes activos son combinados en 7 estimaciones totales (solo los últimos en cuestión)
 - 3 estimaciones del k_{eff} acumulativos usando longitud de trayectoria, colisión y absorción
 - 3 estimaciones del k_{eff} acumulativos usando pares
 - 1 Estimación de la combinación acumulada de todo, basada en todos los datos

Lote = Ciclo = Iteración = Generación

Estimadores de k-efectiva

- ► Estimador de longitud de trayectoria para el flujo
 - Flujo \equiv longitud de trayectoria de viaje realizado por todos los neutrones por unidad de volumen por unidad de tiempo
 - Para el flujo total en una celda

$$\phi = \frac{1}{W.V} \sum_{tt} d_k . wgt \tag{10}$$

tt = todas las trayectorias en la celda, V = volumen de la celda,

W = peso total inicial

- ► Estimador de colisión para el flujo
 - Rapidez de colisión = $\Sigma_T \phi$ con ϕ = [rapidez de colisión]/ Σ_t
 - Para el flujo en una celda

$$\phi = \frac{1}{W.V} \sum_{tc} \frac{wgt}{\Sigma_T} \tag{11}$$

tc = todas las colisiones en la celda

P-03 Básico MCNP

- Estimador de absorción para el flujo
- Rapidez de absorción = $\Sigma_A \phi$ con $\phi = [rapidez de colisión]/\Sigma_A$ - Para el flujo en una celda, ta = todas las absorciones en la celda

$$\phi = \frac{1}{W.V} \sum_{ta} \frac{wgt}{\Sigma_A}$$

Estimadores de k_{eff} para un ciclo

Rapidez de producción de neutrones = $v\Sigma_F\phi$

Estimador de longitud de trayectoria para k_{eff} en el ciclo n

de longitud de trayectoria para
$$\kappa_{eff}$$
 en el ciclo n

$$k_{tray}^{(n)} = \left[\sum_{tt} wgt_j.d_j.v\Sigma_F\right]/W$$
 $W=$ Peso total inicial del ciclo n

tt = todas las trayectorias

(13)

(12)

15/30

(15)

ightharpoonup Estimador de colisión para k_{eff} en el ciclo n

$$k_{col}^{(n)} = \left[\sum_{tc} \frac{wgt_j.v\Sigma_F}{\Sigma_T} \right] / W \tag{14}$$

W =Peso total inicial del ciclo ntc =todas las colisiones

ightharpoonup Estimador de absorción para k_{eff} en el ciclo n

$$k_{abs}^{(n)} = \left[\sum_{t,a} \frac{wgt_j.v\Sigma_F}{\Sigma_A}\right]/W$$

W =Peso total inicial del ciclo n ta =todas las absorciones

	Estimadores Simples			
k_{tray}	promedio sobre todos los ciclos activos de $k_{tray}^{(n)}$			
k_{col}	promedio sobre todos los ciclos activos de $k_{\it col}^{(n)}$			
k_{abs}	promedio sobre todos los ciclos activos de $k_{abs}^{(n)}$ Estimadores Dobles (incluyendo correlación)			
	Estimadores Dobles (incluyendo correlación)			
k_{p-c}	promedio combinado sobre todos los ciclos de $k_{tray}^{(n)}$ y $k_{col}^{(n)}$			
k_{p-a}	promedio combinado sobre todos los ciclos de $k_{trav}^{(n)}$ y $k_{abs}^{(n)}$			
k_{c-a}	promedio combinado sobre todos los ciclos de $k_{col}^{(n)}$ y $k_{abs}^{(n)}$ Estimador Total Combinado [el mejor, únicamente para reporte]			
	Estimador Total Combinado [el mejor, únicamente para reporte]			
	(incluyendo correlación)			
k_{p-c-a}	promedio combinado sobre todos los ciclos activos de $k_{tray}^{(n)},k_{col}^{(n)}$ y $k_{abs}^{(n)}$			

- ► Intervalo de confianza
 - Rango que contiene el valor verdadero de k_{eff} con una probabilidad especificada
- ► Intervalo de confianza del 68%

$$k_{eff} - \sigma \leq k_{verdadero} \leq k_{eff} + \sigma$$

▶ Intervalo de confianza del 95%

$$k_{eff} - 2\sigma \le k_{verdadero} \le k_{eff} + 2\sigma$$

▶ Intervalo de confianza del 99%

$$k_{eff} - 2.6\sigma \le k_{verdadero} \le k_{eff} + 2.6\sigma$$

▶ Para obtener mejores intervalos de confianza (pequeñas σ) Correr más historia (más ciclos) $\sigma \propto \frac{1}{\sqrt{N}}$

Tarjetas KCODE y KSRC

- ► Cálculos de control para k_{eff} Tarjeta KCODE
 - Número de partículas por ciclo
 - Suposición inicial para k_{eff}
 - Número de ciclos iniciales de omisión
 - Número total de ciclos que debe correr
- ► Suposición para inicio de la fuente

Tarjeta KSRC

- Puede especificar un valor para los puntos x, y, z, para la localización inicial de los neutrones de fisión

Archivo SRCTP

- Puede emplear un archivo con localizaciones de las fuentes de un cálculo previo Tarjeta SDEF
- Puede especificar puntos de la fuente que deben ser tomadas desde un volumen (p.e. esfera, cilindro, caja, etc.)

P-03 Básico MCNP

Tarieta KCODE

```
KCODE
           N
                 kest
                         ndescargas
                                        ntotal
     N
              = número de partículas por ciclo
                 Típicamente: 1K - 2K para prueba
                                5K - 100K para producción
   kest
              = Suposición inicial para k_{eff} usualmente 1.0
              = Número de ciclos inactivos para descargar
ndescargas
                 antes de que comiencen los tallies
ntotal
              = Número total de ciclos a correr
                 deben ser > ndescargas + 100
                 (Ver manual para entradas opcionales)
```

Puede especificar los puntos de localización de la fuente con KSRC o SDEF (no ambos)

ksrc 0 0 0 0 .5 .5 .25 .1 .1 .1 [etc] \$ puntos discretos

Para KSRC, los puntos de la fuente son reutilizados como sea necesario para obtener a partir ubicaciones, todas las partículas en el ciclo inicial

sdef	x = a	d1	y = d2	z = d3
si1	-5.	5.		
sp1	0	1		
si2	15 .	75 .		
sp2	0	1		
si3	0.	100.		
sp3	0	1		

\$ medida en x (-5, 5)
 \$ uniforme en x
 \$ medida en y (15, 75)

\$ uniforme en una caja

\$ medida en z (0, 100)

\$ uniforme en z

\$ uniforme en ν

Sólo para el ciclo inicial, la energía de neutrones se toman muestras a partir del espectro de fisión Watt. (Otros ciclos usan datos actuales de (n, f) y distribuciones de energía)

$$p(E) = Ce^{-\frac{E}{a}}\sinh\sqrt{bE}$$
 (16)

 $a = 0.965 \ MeV, \ b = 2.29 \ MeV^{-1}$

Números aleatorios

- MCNP es un código de Monte Carlo & usa números aleatorios para tomar muestras de la densidades de probabilidad
- Si un cálculo se repite usando la misma entrada & biblioteca de secciones eficaces, parte por parte se obtienen resultados idénticos

Cómo se puede repetir los cálculos empleando diferentes números aleatorios?

Coloque esta tarjeta

```
rand gen=k seed=n

gen=k - Escoja el generador de número aleatorio
gen=1 - El generador predeterminado de 48 bits, tiene periodo de 10<sup>14</sup>
gen=2, 3, 4 - Para generadores de 64 bits, el periodo es de 10<sup>18</sup>
seed=n - Establece la semilla aleatoria inicial = n
n - Debe ser un entero impar, 18 dígitos o menos
```

- ▶ Para el ejercicio, ipn3 cambie la semilla aleatoria, salve como ipn3a vuelva a ejecutar el problema, compare las respuestas
- Los resultados deben ser diferentes, pero deben concordar en las estadísticas
- Si los cálculos se realizaron utilizando diferentes semillas aleatorias, los resultados son estadísticamente independientes y se pueden promediar juntos. (usando pesos proporcionales a $\frac{1}{\sigma^2}$)

```
- Cilindro simple
         9.9270e-2
                    -10 -30 imp:n=1
                                        $ Solucion
                                        $ Vacio arriba-solucion
                    -10 +30
                             imp:n=1
    200
         8.6360e-2 10 -20
                             imp:n=1
                                        $ Lata
10
                             imp:n=0
                                        $ Exterior vacío
                    0. 0. 101.7 12.49 $ Interior de la lata
        0. 0. -1.
                    0. 0. 103.7 12.79 $ Esterior de la lata
                                        pz 39.24
                                        $ Calculo de criticidad
                                        $ Posicion de la fuente
ksrc
       0.0 0.0 19.62
m100
                    $ Material de la solucion Pu(NO3)3
mt100
      lwtr
maaa

≰ Material de la lata

rand
      seed=123456789
```

- ► Ejecute nuevamente el problema, ipn3 con la semilla original de default RN
 - Debe conseguir mismo resultado que antes (o muy aproximado): "keff = 0.87804 with an estimated standard deviation of 0.00377" ¿Por qué?
- Examine el archivo de salida para el cálculo de KCODE
 - Archivo de entrada
 - Volúmenes y masas
 - Información del número aleatorio
 - Información de las secciones eficaces
 - Información del ciclo
 - * Ciclos inactivos un solo ciclo k's
 - * Ciclos activos un solo ciclo k's y ciclos acumulativos
 - Tabla de resultado global de las partículas

- Información de KCODE

- * Pruebas
- * "La caja" Resumen de los resultados finales, en general
- * Información de resúmenes, "qué pasaría si"
- * Información de procesamiento por lotes y estadística
- * Más tablas y resúmenes de todo ...
- * Impresión de tablas (uf!) de k_{eff} vs ciclo, con las estadísticas
- * Tabla Qué si es diferente en el número de ciclos descargados ...
- * Impresión de tablas de k_{eff} vs ciclos descargados

- Añadir esta tarjeta en la sección de la tarjeta de datos de: ipn3a print
- ► Corra nuevamente el problema ipn3a
 - Debe conseguir mismo resultado que antes (o muy aproximado): "keff = 0.87804 with an estimated standard deviation of 0.00377" ; Por qué?
- ► Examine el archivo de salida para el cálculo de KCODE
 - Más información se imprime, además de lo que ya encontramos
 - Información de la fuente (origen)
 - Información de las celdas
 - Información de las superficies
 - Constantes del código
 - * Note que el número de Avogadro se imprime como 6.02204...E+23
 - * Cuando debe ser 6.02214...E+23

- ► Los valores Q de fisión (Nota: sólo energía pronta !!!)
 - Primeros 50 puntos de la fuente
 - Balance y resumen información por celda y núclido
 - Información de más lotes
- ► Para el problema ipn3a, cambiar el número de neutrones/ciclo de la tarjeta KCODE a 5000
- ► Corra el problema y compare resultados
- Los resultados pueden ser diferentes, pero deben concordar en las estadísticas
- ightharpoonup Fluctuaciones y k_{eff} final debe contar con estadísticas más pequeñas

$$\sigma \propto \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{(\#ciclos)^{\frac{\#neutrones}{ciclo}}}}$$
 (17)

Estado	Tarjeta	Parámetros	k_{eff} y σ
Previo	kcode	1000 1.0 25 100	$k_{eff} = 0.88385 \pm 0.00367$
Corriendo	kcode	5000 1.0 25 100	$k_{eff} = 0.87816 \pm 0.00173$
Más	kcode	10000 1.0 25 100	$k_{eff} = 0.88158 \pm 0.00118$
	kcode	20000 1.0 25 100	$k_{eff} = 0.88057 \pm 0.00083$
	kcode	50000 1.0 25 250	$k_{eff} = 0.88133 \pm 0.00032$
	kcode	100000 1.0 25 250	$k_{eff} = 0.88???? \pm 0.0002???$

Correr el mismo problema hasta escalarlo en: kcode 1000000 1.0 75 750