Due: September 11

- 1) Write a program to evaluate $E_n = \int_0^1 x^n \exp(x-1) dx$ for $n = 1, 2, \ldots$ Using integration by parts, show that $E_n = 1 nE_{n-1}$ for $n \ge 2$. Use the recurrence to compute approximations to the first 9 values of E_n . Find an upper bound for E_n .
- 2) A computer uses an extended precision floating point number representation in hexadecimal base, with 128 bits, one for the sign, seven for the exponent in excess-64 notation, and the rest for mantissa.
 - a) What is the range of numbers it can represent in normalized form?
 - b) How many numbers are in this set?
 - c) Give an estimate of the relative accuracy of the arithmetic.
- 3) What are the largest and smallest positive, finite, normalized numbers that can be represented as IEEE single precision floating point number?
- 4) Explain the output of the following R code

Mxval = .Machine\$integer.max

N1= Mxval+Mxval

N2 = 2*Mxval

N3= -Mxval-Mxval

N4 = 2*(-Mxval);

 $cat("Mxval=", Mxval," \n")$

 $cat("N1=", N1, \n")$

cat("N2=", N2, n")

cat("N3=", N3, n")

cat("N4=", N4, n")

.3 + .6 == .9

5) Using IEEE single precision format, for what rang of x around zero, does the function $f(x) = x^{10}$ evaluates to zero?

6) Consider the computation of trace(AB) using the following R code. Explain why the three ways of evaluating the trace lead to different computation times. What are the floating point computation cost of each method in terms of n and m?

```
\begin{split} n &= 1000; \ m = 500 \\ A &= matrix(runif(n^*m),n,m) \\ B &= matrix(runif(n^*m),m,n) \\ system.time(sum(diag(A\%*\%B))) \\ system.time(sum(diag(B\%*\%A))) \\ system.time(sum(A*t(B))) \end{split}
```

- 7) Let $b \ge 2$ be an integer. Suppose $x = b^N \sum_{v=1}^{\infty} x_v b^{-v}$ and $y = b^M \sum_{v=1}^{\infty} y_v b^{-v}$ where N and M are signed integers, $x_v, y_v \in \{0, 1, \dots, b-1\}$ and $x_1, y_1 \ne 0$. Prove that if N > M, then $x \ge y$.
- 8) Generate n numbers uniformly distributed on the unit interval and use them to simulated a Bernoulli random variable with success probability p = .5. Estimate p from the sample. Repeat the experiment for n in nlist = seq(100, 10000, by = 500) and obtain 20 estimates for p. Obtain a plot of (n, \hat{p}) .
- 9) You want to compute $L = (1/10)^s (1 1/10)^{n-s}$ where s = 10. Suppose we use floating point numbers of the form $0.d_1d_2d_3 \times 10^E$, where d1, d_2 and d_3 are decimal digits and E is an integer exponent in the range 100 to +100. For what values of n can we compute L without underflow?