1

FPGA ASSIGNMENT

Koushik Kalyani koushikkalyani369@gmail.com IITH - Future Wireless Communication

1

CONTENTS

Ι Question 1 II Answer 1 Ш **K-Map Implementation** 1 IV**Truth Table** 1 \mathbf{V} Logic Diagram 1 VI **Components** 1 **Implementation**

I. QUESTION

In the circuit shown below, X and Y are digital inputs, and Z is a digital output. The equivalent circuit is a

- (A) NAND gate
- (B) NOR gate

VII

- (C) XOR gate
- (D) XNOR gate

II. ANSWER

The above question can be solved as $X\cdot \bar{Y} + \bar{X}\cdot Y$ i.e equivalent circuit is XOR-circuit.

III. K-MAP IMPLEMENTATION

		X	
		0	1
Y	0	0	1
	1	1	0

Therefore $Z = X \cdot \bar{Y} + \bar{X} \cdot Y$

IV. TRUTH TABLE

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

Truth table for Boolean funtion Z

V. LOGIC DIAGRAM

Fig. 2

VI. COMPONENTS

Components	Values	Quantity
VAMAN	FPGA	1
Jumper	F-M	6
Wires		
Breadboard		1
LED		1
Resistor	≤ 220 Ohms	1

VII. IMPLEMENTATION

VAMAN	INPUT	OUTPUT
PIN		
21	X	
22	Y	
18		F

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect inputs to Vcc for Logic 1, ground for Logic 0.
- 3. Execute the circuit using the below codes.

https://github.com/koushikkalyani/FWC/blob/main/FPGA/helloworldfpa.v

4. Change the values of X, Y in the Hardware and verify the Truth Table.

How to execute

- 1. Write your code in helloworldfpga.v file.
- 2. Also update .pcf file for pin configuration.
- 3. To compile use the below command by changing directory appropriately.

 ql_symbiflow -compile -src /data/data/com.termux/files/home/fpga-examples/blink -d ql-eos-s3 -P PU64 -v helloworldfpga.v -t helloworldfpga -p quickfeather.pcf -dump binary.
- 4. Connect your mobile hotspot to laptop and send .bin file by using command. scp /data/data/com.termux/files/home/fpga-examples/blink/helloworldfpga.bin

pi@192.168.0.114:

change pi as your system name and IP address.

5. If you dont have Tinyfpga then type the following command.

git clone —recursive https://github.com/QuickLogic-Corp/TinyFPGA-Programmer-Application.git sudo pip3 install tinyfpgab pyserial sudo reboot

- 6. Connect the Vaman to the Raspberry Pi through USB.
- 7. There is a button and an LED to the left of the USB port on the Vaman. There is another button to the right of teh LED.
- 8. Press the right button first and immediately press the left button. The LED will be blinking green. The Vaman is now in bootloader mode.
- 9. Then execute the following.

 python3 /home/pi/TinyFPGA-ProgrammerApplication/tinyfpga-programmergui.py -port /dev/ttyACM0 -appfpga
 /home/pi/helloworldfpga.bin -mode fpga
 -reset
 Suitably change pi as your system name.