Investigación y desarrollo

Organización Industrial

Instituto Tecnológico Autónomo de México

Verano 2021

Contenido

Introducción

Carrera por la innovación

Cooperación en la investigación

Investigación y desarrollo

Las empresas tienen incentivos a desarrollar e investigar nuevas tecnologías

- Mejorar el producto
- Reducir costos
- Mantener el poder de mercado

y la innovación puede ser catalogada en 2 ramas:

- Innovación de proceso
- Innovación de producto

Industrias que innovan mucho

- Computadoras
- Fármacos
- Electrónicos
- Vehículos

Industrias que innovan poco

- Textiles
- Alimentos
- Muebles

Innovación de proceso

La innovación de proceso busca eficientar la estructura de costos de la empresa, haciendolos en consecuencia más baratos.

Innovación menor

Una innovación será menor si no induce un monopolio

Innovación mayor

Una innovación será mayor si induce un monopolio

Gráficamente

Carrera por la innovación

Supongamos que dos empresas pueden invertir una cantidad I en investigación. Si llegan a un descubrimiento, entonces podrán registrar una patente con valor \overline{V} .

Sin embargo al investigar, se corre el riesgo de no encontrar nada (o no hacerlo a tiempo).

Los beneficios de la empresa i serán

Podemos concluir que la empresa decidirá investigar si

$$\frac{\overline{V}}{I} \geq \frac{1}{\alpha}$$

y ambas empresas definitivamente invertirán si

$$\frac{\overline{V}}{I} \ge \frac{2}{2\alpha - \alpha^2}$$

Fecha esperada de descubrimiento

Definamos T(n) la fecha en que una de n empresas logrará un descubrimiento en innovación.

Con una empresa investigando

La fecha esperada de un descubrimiento será en el periodo

$$E[T(1)] = \frac{1}{\alpha}$$

Con dos empresas investigando

La fecha esperada de un descubrimiento será en el periodo

$$E[T(2)] = \frac{1}{\alpha(2-\alpha)}$$

Notemos como la presencia de más empresas reduce el tiempo de espera para un descubrimiento.

Cooperación en la investigación

Veamos un modelo en el que 2 empresas fijan su iventigación primero y después compiten en producción.

- En t = 1, deciden cuánto invertir en investigación.
- ▶ En t = 2, la investigación rinde frutos en sus estructuras de costos y compiten en producción.

Definamos la demanda lineal del bien

$$P = 100 - Q \text{ con } Q = q_1 + q_2$$

y costos de prducción $CT_i = c_i q_i$.

La investigación influirá en los costos de producción de la siguiente manera:

$$c_i(x_i, x_i) = 50 - x_i - \beta x_i$$

donde el costo de investigación está dado por

$$CT_i(x_i) = \frac{x_i^2}{2}$$

Recordemos que en Cournot, el equilibrio está dado por

$$q_i = \frac{a - 2c_i + c_j}{3b}$$

de modo que desde el periodo t=1, la empresa i sabe que en t=2 producirá q_i con

$$ightharpoonup c_i = 50 - x_i - \beta x_i$$

$$c_j = 50 - x_j - \beta x_i$$

Supongamos que las empresas puede cooperar o no en la investigación, pero en t=2 deben competir Cournot.

Sin cooperación

$$x^{NC} = \frac{50(2-\beta)}{\frac{9}{2}-(2-\beta)(1+\beta)}$$

Con cooperación

$$x^C = \frac{50(\beta+1)}{\frac{9}{2}-(1+\beta)}$$

La intuición detrás del spillover

Comparando ambos equilibrios, notemos como

- ► Si $\beta > \frac{1}{2}$ entonces $x^C > x^{NC}$ y $Q^C > Q^{NC}$
- ▶ Si $\beta < \frac{1}{2}$ entonces $x^C < x^{NC}$ y $Q^C < Q^{NC}$

Intuitivamente, si el spillover es muy bajo cuidar los secretos de investigación valdrá la pena, pero si hay mucha filtración, es mejor cooperar.