Compiladores

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

João Paulo Aramuni

- * Email Pessoal: joaopauloaramuni@gmail.com
- * Email Acadêmico: joaopauloaramuni@fumec.br
- * Doutor em Sistemas de Informação e Gestão do Conhecimento
 - * Universidade FUMEC (2017-2020)
 - * <u>Tese</u>: Gestão Ágil do Conhecimento: Uma Análise da Influência que a Filosofia Ágil Exerce na Gestão do Conhecimento em Organizações do Segmento de Tecnologia da Informação
- Mestre em Sistemas de Informação e Gestão do Conhecimento
 - * Universidade FUMEC (2014-2015)
 - * <u>Dissertação</u>: Análise da Adoção do *Lean Manufacturing* na Gestão de Projetos de Tecnologia da Informação: Estudo de Caso em uma Multinacional desse Segmento
- Bacharel em Ciência da Computação
 - * Universidade FUMEC (2010-2013)
 - * Monografia: Desenvolvimento Ágil de Aplicações WEB

- * Atuação Profissional:
 - * Desenvolvimento e análise de sistemas:
 - Principais projetos em que atuei
 - * HotMilhas Python
 - Prosegur Brasil JavaFX e Java Web
 - ANP (Agência Nacional de Petróleo) VB6 e Java Web
 - Oi Telecomunicações ASP Clássico, VB6 e Java Web
 - * Atualmente:
 - Lead Instructor na Trybe
 - Responsável pelo módulo de Computer Science

- * Áreas de Interesse:
 - * Desenvolvimento de Sistemas
 - Metodologias Ágeis de Desenvolvimento
 - * Arquitetura e boas práticas de programação
 - * Educação e Tecnologias para Ensino Remoto
- * Áreas de Pesquisa:
 - Gestão Ágil de Projetos
 - * Métodos Ágeis
 - * Lean Manufacturing
 - Gestão Ágil do Conhecimento
- * Orientação Acadêmica:
 - + de 30 TCC's orientados e aprovados

- * Hobbies
 - * Mu Online
 - * Tibia
 - * Basquete

Objetivos da Disciplina

- * Oferecer uma visão geral sobre compiladores, seus módulos e seus principais componentes, fornecendo os conceitos de natureza teórica e prática e apresentando a forma de implementação desses módulos em conformidade com os padrões léxicos e gramaticais estabelecidos pelas linguagens de alto nível.
- * Permitir, através da implementação de pequenos módulos, utilizando os microcomputadores dos laboratórios, a oportunidade de colocar em prática os conceitos teóricos estudados.

Ementa

* Conceitos Básicos de Compiladores, Análise Léxica, Análise Sintática, Análise Semântica, Geração de Código, Otimização de Código.

- * 1. Conceitos Básicos de Compiladores
 - 1.1 Introdução e Conceituação Geral
 - * 1.2 Tradutores, Compiladores e Interpretadores
 - 1.3 Estrutura de um compilador
 - * 1.3.1 Compilação
 - * 1.3.2 Fases
 - * 1.3.3 Passos da compilação
- 2. Análise Léxica
 - * 2.1 Conceitos Básicos em Gramáticas e Linguagens
 - 2.2 Analisador Léxico
 - * 2.3 Descrição de Símbolos com Gramáticas Regulares
 - * 2.4 Descrição de Símbolos com Autômatos Finitos

- * 3. Análise Sintática
 - * 3.1 Introdução
 - * 3.2 Gramáticas Livres de Contexto
 - * 3.3 Análise descendente e ascendente
 - * 3.4 Analisadores LL e LR
- * 4. Análise Semântica
 - * 4.1 Introdução
 - * 4.2 Tabela de símbolos
 - * 4.3 Alocação de memória
 - * 4.4 Análise semântica em tipos de variáveis
 - * 4.5 Análise semântica em comandos

- * 5. Geração de Código Intermediário
 - 5.1 Introdução
 - 5.2 Verificação estática
 - * 5.2.1 Verificação sintática
 - 5.2.2 Verificação de tipo
 - 5.3 Código de três endereços
 - * 5.4 Comandos de fluxo de controle
- 6. Geração de Código
 - * 6.1 Introdução
 - 6.2 Seleção das instruções de máquina
 - * 6.3 Definição de registros e de blocos sequenciais de código
 - * 6.4 Otimizações de fluxo de controle

- 7. Otimização de Código
 - 7.1 Introdução
 - * 7.2 Otimização de registros e de blocos sequenciais de código
 - * 7.3 Ciclos de controle de fluxo
 - 7.4 Análise de fluxo de dados
 - * 7.5 Resolução de equações de fluxo de dados
 - * 7.6 Transformações de código gerado

- * Básica:
 - * AHO, A.V.; LAM, M. S.; SETHI, R. ULLMAN, J.D. **Compiladores – Princípios, Técnicas e Ferramentas**. 2ed. São Paulo. Editora Pearson Addison-Wesley, 2008.
 - * Também conhecido como o "Livro do Dragão":

Edição de 1995

Edição de 2008

- * Os cursos de compiladores das universidades de **Columbia**, **Harvard** e **Stanford** são baseados neste livro.
- * A edição atual está disponível na Biblioteca Virtual, acessada via SINEF.
- * Link: https://goo.gl/X31DdD (Opcional)

Passos para acessar o livro na Biblioteca Virtual, via SINEF:

* Digite "Compiladores" na barra de pesquisa:

* Selecione o "Livro do Dragão":

* Realize a leitura (gratuita) ou a impressão (paga):

* Realizar a impressão (paga):

* Selecione a quantidade de páginas e clique no botão "Comprar":

* Outras Básicas:

- * GRUNE, Dick. **Projeto Moderno de Compiladores: implementação e aplicações.** Rio de Janeiro: Campus, 2001. 671p.
- * PRICE, Ana Maria de Alencar. *Implementação de Linguagens de Programação: Compiladores.* 2ed. Porto Alegre: UFRGS, 2001.

* Complementar:

- * DELAMARO, Márcio Eduardo. **Como construir um compilador utilizando ferramenta Java**. São Paulo: Novatec, 2004.
- * HOPCROFT, John E.; ULLMAN, Jeffrey D.; MOTWANI, Rajeev. *Introdução à teoria de autômatos, linguagens e computação*. 5ed. Rio de Janeiro: Campus, 2002.

- * Outras Complementares:
 - * LEWIS, Harry R.; PAPADIMITRIOU, Christos H. **Elementos de teoria da computação**. 2ed. Porto Alegre: Bookman, 2000.
 - * MENEZES, Paulo Blauth. *Linguagens formais e autômatos*. 4ed. Porto Alegre: Sagra Luzzatto, 2002.
 - * LOUDEN, Kenneth C. **Compiladores: princípios e práticas**. São Paulo: Pioneira Thomsom Learning, 2004.

Regras

- * A presença em todas as aulas é indispensável e de extrema importância.
- * Sempre haverá chamada.
- * A participação do aluno em sala poderá prover a ele pontuação extra.
- * As aulas serão ministradas em sala e em laboratório.

Trabalhos

- * Todos os trabalhos deverão ser entregues no formato padrão especificado pelo professor em sala.
- * Os trabalhos fora do padrão perderão imediatamente 25% do seu valor total.
- * Os trabalhos serão individuais.

Trabalhos

- * Cópia de trabalho e/ou exercício sempre ZERA a pontuação de NO MÍNIMO 2 trabalhos.
- * O aluno NÃO poderá refazer nenhum trabalho.
- * Os trabalhos serão marcados com um mínimo de 10 dias de antecedência.

Dica

- * O grau de dificuldade da disciplina aumenta muito de uma aula para a outra.
- * Por esse motivo, conquiste seus pontos no inicio, pois as últimas matérias acumulam todo o conteúdo anterior e são bem mais difíceis.

Distribuição de Pontos

- * Provas 80 Pts
 - Primeira Avaliação 30 Pts
 - * Segunda Avaliação 20 Pts
 - * Prova Final 30 Pts
- * AAI 10 Pts
- * RSC 10 Pts
- Exame Especial 30 Pts

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

