IPI WS23/24 Solutions

Igor Dimitrov

2023-10-30

Table of contents

face	3
tel 01	4
Aufgabe 3	4
3.1	
3.2	
3.3	5
tel 02	8
Aufgabe 2	8
Aufgabe 3	10

Preface

Solutions of the assignment sheets for the lecture "IPI WS23/24" at Uni Heidelberg.

Zettel 01

Aufgabe 3

3.1

- In der VL beschriebe TM ist ein "Transducer", d.h. ein Automat, das aus einem Input ein Output produziert. Die Beschreibung in der Online-version definiert die TM als ein "Acceptor". D.h. ein Automat, das fuer eine gegebene Eingabe "Yes" oder "No" produziert. Jedoch kann die Online Version auch als ein Transducer betrieben werden.
- Die online Version erlaubt dem Schreib-/Lesekopf keine Bewegung bei einem Uebergang. Also darf der Kopf auf dem gleichen Feld bleiben. In der VL-version sind dagegen nur die Bewegungen "links" oder "rechts" definiert.
- Die Online-version hat einen "Blank" Symbol, die VL-version hingegen nicht.

3.2

Wie im Online-tutorial erklaert entsprechen die Zustaende der TM dem "Rechenfortschritt" der Berechnung. (Computational Progress).

Bei der "Even number of Zeros"-TM gibt es zwei Zustaende q_0 und q_1 :

- q_0 entspricht der Situation, dass bis jetzt eine **gerade** Anzahl von 0's gelesen wurde.
- q_1 enptricht der Situation, dass bist gelesene Anzahl von 0's **ungerade** ist.

Oder kuerzer:

$$q_0 \iff \#0's \equiv 0 \mod 2$$

 $q_1 \iff \#0's \equiv 1 \mod 2$

Am Anfang der Berechnung ist die Anzahl der gelesenen 0's gleich 0. Somit ist q_0 der initiale Zustand. Die Uebergaenge sind so definiert, dass das Ablesen einer 0 einen Zustanduebergang $q_i \to q_{i\oplus 1}$ verursacht, wobei $i\oplus 1$ Addition mod 2 ist. Hingegen verursacht das Ablesen einer 1 keinen Zustanduebergang: $q_i \to q_i$ D.h. das Ablesen einer 0 'flippt' die Paritaet der 0's und Ablesen einer 1 hat keinen Einfluss darauf. Der Kopf bewegt sich rechts bis das 'Blank'

erreicht wird. Falls dann der Zustand q_0 ist, ist ein Uebergang auf $q_{\rm accept}$ definiert und die Maschine akzeptiert somit die Eingabe. Sonnst sind keine Uebergange mehr definiert und die Berechnung terminiert in einem nicht-akzeptierenden Zustand.

Siehe Figure 1 und Figure 2 fuer die Uebergangstabelle und den Ubergangsgraph

Zustand	Input	Operation	Next State	Comment
	0	0, >	q1	
*q0	1	1, >	q0	Initialer Zustand
	_		qAccept	
~1	0	0, >	q0	
q_1	1	1, >	q1	
qAccept				Endzustand

Figure 1: Uebergangstabelle

Figure 2: Uebergangsgraph

3.3

In der VL definierte TM enthaelt kein "Blank"-symbol. Stattdessen symbolisiert "0" das Ender einer Zeichenkette von Einsen. Da, in der Online-version es "Blanks" gibt, ersetzten wir 0 durch "Blanks".

Das Programm zur Verdoppelung einer Einsenkette (Auch im Zip als txt datei enthalten):

```
// Input: a string of 1's of length n
// Ouput: a string of 1's of length 2n
// Example: if 111 is given as input. The machine terminates at an accepting state
```

```
// with 111111 as the string on the band.
//
//
name: double up a string of 1's
init: q1
accept: q8
q1, 1
q2,X,>
q2,_
q3,Y,<
q2,1
q2,1,>
q3,1
q3,1,<
q3,X
q4,1,>
q4,1
q5,X,>
q4,Y
q8,1,>
q5,1
q5,1,>
q5,Y
q6,Y,>
q6,1
q6,1,>
q6,_
q7,1,<
```

```
q7,1
q7,1,<
q7,Y
q3,Y,<
```

Wir haben das Program auf die Inputs 1, 11 und 11111 getestet und richtige Ergebnisse erhalten:

Zettel 02

Aufgabe 2

Idee: Vertausche erstes 0 und letzets 1 und interpretiere die Anzahl der 1'en auf dem Band als das Ergebniss.

Seien z.B.: n := 4, m := 3. Dann gilt:

$$4+3 \equiv 1111 \boxed{0}11 \boxed{1}0$$
 (Kodieren der Eingabe)
 $\Rightarrow 1111 \boxed{1}11 \boxed{0}0$ (Vertausche erstes 0 und letztes 1)
 $\equiv 7$ (Dekodieren der Ausgabe)

Die TM - gegeben durch den folgenden Uebergangsgraph und Uebergangstabelle (Siehe Figure 4 und Figure 3) - realisiert diese Berechnung:

Begruendung/Erklaerung der Vorgehensweise dieser TM:

- q_0 : Das ist der initialer Zustand. Lese 1'en und bewege den Kopf rechts bis erstes 0 gefunden wird. Ersetze diesen 0 durch einen 1, bewege den Kopf rechts und gehe zum Zustand q_1 ueber
- q_1 : Erstes 0 wurde gefunden und durch 1 ersetzt. Lese 1'en und bewege den Kopf rechts bis der zweite 0 gefunden wird. Das ist das Ende der Eingabe. Bewege den Kopf ein mal links zurueck und gehe zum Zustand q_2 ueber.
- q_2 : Der Kopf steht auf den letzten 1 der Eingabe. Ersetze diesen 1 durch einen 0 und bewege den Kopf ein mal links. Da das Ziel erreicht wurde (vertauschen der ersten 0 und letzten 1) gehe zum Zustand q_A ueber.
- q_A : Das ist der akzeptierende Zustand. Falls die Eingabe gueltig ist haelt der TM im Zustand q_A mit dem richtigen Ergebniss auf dem Band.

Folgendes Programm realisiert diese TM auf dem TM simulator, wobei 0's durch blanks ersetz wurden, und letzte Bewegung 'hold' statt 'links' ist. (Das Programm ist auch als txt datei im Zip enthalten)

1 0	Operation 1, >	Next State q0	Comment Initialer Zustand
		q0	Initialer Zustand
0	4		
	1, >	q1	
1	1, >	q1	
0	0, <	q2	
1	0, <	qA	
			Endzustand
	0	0 0, <	0 0, < q2

Figure 3: Uebergangstabelle

Figure 4: Uebergangsgraph

```
//TM machine to add two numbers n and m
//Input: string of n 1's and a string of m 1's seperated my a blank
//Output: string of m + n 1's
//Example: Input: "1111 111"
           Output: "1111111"
name: add two numbers
init: q0
accept: qA
q0,1
q0,1,>
q0,_
q1,1,>
q1,1
q1,1,>
q1,_
q2,_,<
q2,1
qA,_,-
```

Alternativ: link zur realisierung der TM auf der Webseite.

Aufgabe 3

Eine sprache fuer lineare Gleichungssysteme kann z.B. durch folgende EBNF-syntaxbeschreibung definiert werden:

```
 \langle Gleichung \rangle system \rangle ::= \langle Gleichung \rangle \{ \underline{\ \ } \underline{\ \ \ \ } \langle Gleichung \rangle \}   \langle Gleichung \rangle ::= [\langle Zahl \rangle] \underline{x} \langle Index \rangle \{ \langle Vorzeichen \rangle [\langle Zahl \rangle] \underline{x} \langle Index \rangle \} \underline{=} \langle Zahl \rangle   \langle Vorzeichen \rangle ::= \underline{-}|\underline{+}   \langle Zahl \rangle ::= \langle Ersteziffer \rangle \{ \langle Ziffer \rangle \}   \langle Ersteziffer \rangle ::= \underline{1}|\underline{2}|\underline{3}|\underline{4}|\underline{5}|\underline{6}|\underline{7}|\underline{8}|\underline{9}|   \langle Ziffer \rangle ::= \underline{0}|\langle Ersteziffer \rangle   \langle Index \rangle ::= \underline{0}|\langle Subzahl \rangle   \langle Subzahl \rangle ::= \langle Erstesubziffer \rangle \{ \langle Subziffer \rangle \}   \langle Erstesubziffer \rangle ::= \underline{1}|\underline{2}|\underline{3}|\underline{4}|\underline{5}|\underline{6}|\underline{7}|\underline{8}|\underline{9}|   \langle Subziffer \rangle ::= \underline{0}|\langle Erstesubziffer \rangle
```

Die Anforderung "Die Anzahl der Variablen ist gleich der Anzahl der Gleichungen" ist eine Beschreibung die von dem Kontext des Erzeugten Wortes abhaengt - gueltige Gleichungssysteme duerfen beliebige Anzahl an Variablen haben. Da mit EBNF nur kontextfreie Sprachen definiert werden koennen ist diese Anforderung nicht umsetzbar.