

Data Engineer

Galaxy – Schema:

WH Star und Snowflakeschema

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: multidimensional model
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

May 15, 2025

Creating the Dimensional Model

□Identify fact tables

- Translate business measures into fact tables
- Analyze source system information for additional measures
- Identify base and derived measures
- Document additivity of measures
- □ Identify dimension tables
- □Link fact tables to the dimension tables
- □Create views for users

Dimension Tables

Dimension tables have the following characteristics:

- Contain textual information that represents the attributes of the business
- Contain relatively static data
- Are joined to a fact table through a foreign key reference

Fact Tables

Fact tables have the following characteristics:

- Contain numeric measures (metric) of the business
- May contain summarized (aggregated) data
- May contain date-stamped data
- Are typically additive
- Have key value that is typically a concatenated key composed of the primary keys of the dimensions
- Joined to dimension tables through foreign keys that reference primary keys in the dimension tables

Star Schema Model

 The star schema separates <u>business process data</u> into *facts*, which hold the measurable, quantitative data about a business, and *dimensions*, which are descriptive attributes related to fact data.

Facts and Dimension attribute

- Examples of fact data include
 - sales price, sale quantity, and time, distance, speed, and weight measurements.
- Related dimension attribute examples include
 - product models, product colors, product sizes, geographic locations, and salesperson name

Star Schema Model

- Central fact table
- Radiating dimensions
- Denormalized model

Features of Star Schema Model

- Easy for users to understand
- Fast response to queries
- Simple metadata
- Supported by many front end tools
- Less robust to change
- Slower to build
- Does not support history

Classic star schema

- A single fact table containing a compound primary key, with one segment for each dimension and additional columns of additive numeric facts
- A single dimensional table (for each dimension) with a generated key, and a level indicator that describe the attribute level of each record

- The single fact will contain the <u>detail data</u>, such as sales dollars for a given store, for a given product, in a given time period
- The fact table may also contain <u>partially consolidated data</u>, such as sales dollars for a region, for a given product, in a given time period

Classic Star Schema Model

Limitation

- Star schema must contain
 - either All of the combination of aggregated data or
 - At least views of every combination
- Dimension table must carry a level indicator for every record and every query must use it
 - Select a.store_key, a.period_key, a.dollars From Fact table a Where a.store_key in (select store_key from store_dimension Where region = "Nrth' and level=3);

Snowflake Schema Model

- There is no level in the dimension table
- Dimension tables are normalized by decomposing at the attribute level
- Each dimension table has only one key for each level of dimension's hierarchy
- The lowest level key joins the dimension table to both the fact table and the lower level attribute table.

Snowflake Schema Model

Snowflake Schema Model

- Direct use by some tools
- More flexible to change
- Provides for speedier data loading
- May become large and unmanageable
- Degrades query performance
- More complex metadata

Snowflake Schema

• The snowflake structure can reduce the effectiveness of browsing, since more joins will be needed to execute a query.

Fact constelation Schema Galaxy Scheme

 Sophisticated applications may require multiple fact tables to share dimension tables. This kind of schema can be viewed as a collection of stars, and hence is call a galaxy schema or fact constellation

- For Data Marts, star or snowflake schema are commonly used, since both are generated toward modeling single subject
- Star schema is more popular and efficient

Example of Star Schema

Example of Snowflake Schema

May 15, 2025 24

Example of Fact Constellation

Example of Fact Constellation

Families of Stars

Star schemas for property sales and affatraining property advertising

Blog

https://bimanu.de/blog/galaxy-schema/

Fragen?