

Figure 1 FCPA block diagram





F19. 1A



Input pump diode

Fig. 1C

## Attenuator Module

## **Pigtailed Tap Points**









Attenuator Module package: length, width & height: 40.1mm x 12.7mm x 9.11mm

Pigtailed Tap Points package: length, width & height: 39.1mm x 22.7mm x 10.11mm

For comparison, the outline dimensions for a standard 14pin butterfly package: 30.0mm x 12.7mm





For 50-MHz pulse train, the rise time of 10 ns of AOM is desirable



Fig. 5 (a) Spectrum from oscillator and after first filter, isolator and attenuator module. (b) Component illustration of filter, isolator and attenuator module.





illustration of isolator - attenuator module between Fig. 6a Spectrum from nonlinear amplifier as a spectraloutput at peak current. (b) Component function of pump diode current and ASE nonlinear amplifier and stretcher.



365

360

Fig. 7 Spectrum of pulses with self-phase modulation propagating in a positive dispersion fiber.



Fig. 4.3 Experimentally observed spectra for a nearly Gaussian pulse at the output of a 99-m-long fiber. Spectra are labeled by the maximum phase shift  $\phi_{max}$  related linearly to the peak power (after Ref. 9).



Fig 8 Temporal (a) and spectral (b) profile of the pulse after stretcher







Fig. 9 - Spectrum after power amplifier





Figure 10 - Auto correlations of output pulse (a) 5 ps

range (b) 50 ps range. (c) Spectrum of output



395

Figure 11 FCPA block diagram (second embodiment)





Figure 12 (a) Spectrum from oscillator (b) Spectrum after

## 400 filter module.





Figure 13 (a) spectrum after preamplifier (b) after power

amplifier.





Figure 14(a) Spectrum after compressor and (b)















Fig 17 Acousto-optic Deflector Illustrating Dispersive Characteristic of Induced Bragg Grating



Fig. 18 - Rudimentary Two-pass Chirped-pulse Dispersion-compensated Acoustooptic Switch using Transmission Gratings



Fig. 19 - Lens-enhanced Two-pass Chirped-pulse Dispersion-compensated Acoustooptic Switch using Transmission Gratings



Fig. 20 - Lens-enhanced Four-pass Chirped-pulse Dispersion-compensated Acoustooptic Switch using a Reflection Gratin



Only central ray shown for clarity