Membangun Grammar (Part 2)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Revised by:

Context-Free Grammar (revisit)

- Bahasa *L* adalah *context-free* jika dan hanya jika *L* dapat dibentuk oleh suatu *context-free grammar* (CFG) *G*.
- Pada CFG, *left-hand side* pada setiap *rule* harus berupa simbol non-terminal tunggal. Sedangkan *right-hand side* bisa berupa urutan simbol apapun (non-terminal maupun terminal, boleh string kosong).
- CFG adalah superset dari RG (Regular Grammar):
 - Setiap RG adalah juga CFG (tapi tidak kebalikannya!).
- Apakah suatu CFG yang bukan RG hanya mendefinisikan Bahasa nonregular saja?
 - Tidak! Yang benar, setiap RG hanya bisa mendefinisikan bahasa regular.

Sifat Rekursif

- *Rule* pada grammar *G disebut* **rekursif** *iff* berbentuk $X o w_1 Y w_2$ di mana $Y = >_G * w_3 X w_4$ dan $w_1, w_2, w_3, w_4 \in V *$
- Recursive rule memungkinkan grammar yang jumlah rulenya finite dapat membentuk himpunan string yang infinite.
- Grammar G disebut rekursif iff mengandung kurangnya satu rule yang rekursif.
 - Setiap CFG dari Bahasa yang takberhingga memiliki sifat rekursif.
 - Contoh: $S \rightarrow aSb$ dan $S \rightarrow SS$ rekursif
- Q: Apakah RG bisa bersifat rekursif?

Sifat Self-Embedding

- Rule pada grammar G disebut self-embedding iff berbentuk $X \to w_1 Y w_2$ di mana $Y = >_G * w_3 X w_4$ dan $w_1 w_3, w_2 w_4 \in \Sigma^+$
- **Grammar** *G* disebut *self-embedding iff* mengandung minimal satu *self-embedding rule*.
 - Pada contoh sebelumnya, $S \rightarrow aSb \ self\text{-}embedding$.
- Jika G tidak self-embedding, maka L(G) reguler.
 - Q: Jika *G self-embedding*, mungkinkah *L*(*G*) reguler? Contoh:

$$G_1 = (\{S, a\}, \{a\}, \{S \to \varepsilon, S \to a, S \to aSa\}, S)$$

Contoh-contoh Lain

$$S \rightarrow aSa$$

self-embedding

$$S \rightarrow aS$$

recursive tapi tidak selfembedding

$$S \rightarrow aT$$

$$T \rightarrow Sa$$

self-embedding

Merancang CFG

- Akibat self-embedding, ada pasangan *region* yang berelasi, maka kedua *region* tersebut harus dibentuk secara bersamaan. Contoh: AⁿB²ⁿ, A³ⁿB⁴ⁿ.
 - Rule yang self-embedding menyusun isi string "dari luar ke dalam": $T \rightarrow aTbb \mid \epsilon$
- Pasangan region bisa ada di dalam (nested) pasangan lain. Contoh: A³ⁿB^{2m}C^mD²ⁿ
 - Terdapat beberapa tingkatan (nested) self-embedding: $T \rightarrow aaaTdd \mid \epsilon \mid V \qquad V \rightarrow ccVd \mid \epsilon$
- Sejumlah region bisa bersifat konkatenasi. Contoh: AⁿBⁿC^mD^m
 - konkatenasi melalui *rule* $A \rightarrow BCD...$

Konkatenasi Bahasa yang Independent

Let $L = \{a^n b^n c^m : n, m \ge 0\}.$

Keberadaan c^m independent terhadap aⁿbⁿ, sehingga pembuatan bahasa L bisa dibagi menjadi 2 porsi yang terpisah dan akan dikokantenasi.

$$G = (\{S, N, C, a, b, c\}, \{a, b, c\}, R, S\}$$
 where:
 $R = \{S \rightarrow NC$
 $N \rightarrow aNb$
 $N \rightarrow \varepsilon$
 $C \rightarrow cC$
 $C \rightarrow \varepsilon$ }.

Latihan

- $\{a^ib^j: i \neq j\}$, sebuah self embedding dengan prefix atau suffix b+.
- $\{a^ib^j: 5i = 7j\}$, sebuah self embedding.
- $\{a^ib^j: 2i = 3j+4\}$, sebuah self embedding setelah sebuah prefix aa
- $\{a^ib^jc^kd^l: i+l=j+k\}$, kasus i<j maka ada 3 self embedding aXb, bYd, dan bZc; kasus i>=j maka ada 3 self embedding aPb, aQc, dan cZd.
- $\{a^ib^jc^k : 2i+3k=4j\}$