Modeling and control of cyber-physical systems Project I

Sophie M. Fosson

April 19, 2024

In this project, we apply the mathematical models and algorithms discussed in class to estimate the state of a system, possibly in the presence of sensors attacks. In particular, we consider problems of target localization, in a two-dimensional indoor area.

The work is conceived for groups of 3-4 students. The choice of the programming language is free; we suggest MATLAB or Python.

Students are required to write a report (\sim 4-5 pages) with the analysis of the obtained results.

Objectives

The goal of this activity is to learn to

- 1. implement algorithms for CPSs
- 2. enhance the algorithms to improve the performance (e.g., by a suitable tuning of the hyperparameters)
- 3. analyse the obtained results
- 4. write a technical report

Requirements

- 1. Implement the algorithms and solve the proposed problems
- 2. Write a report (\sim 4-5 pages) with the analysis of the obtained results
- 3. Upload the report and the code in the delivery page of the course, at least one week before the oral examination

Task 1: Implementation of ISTA

Given $C \in \mathbb{R}^{q,p}$, a h-sparse $\widetilde{x} \in \mathbb{R}^p$, and noisy measurements $y = C\widetilde{x} + \eta$, where $\eta \in \mathbb{R}^q$ is the measurement noise, the LASSO problem is:

$$\min_{x \in \mathbb{R}^p} \frac{1}{2} \|Cx - y\|_2^2 + \lambda \|x\|_1$$

where $\lambda \in \mathbb{R}$ is a design hyperparameter.

Solve LASSO by implementing ISTA.

Algorithm 1 ISTA

- 1: Initialization: $x(0) = 0 \in \mathbb{R}^p$
- 2: **for all** $k = 0, ..., T_{max}$ **do**
- 3: $x(k+1) = \mathbb{S}_{\tau\Lambda} \left[x(k) + \tau C^{\top} (y Cx(k)) \right]$
- 4: end for

Given $x \in \mathbb{R}^p$, the shrinkage/thresholding operator $\mathbb{S}_{\gamma} : \mathbb{R}^p \mapsto \mathbb{R}^p$, with $\gamma = (\gamma_1, \dots, \gamma_p)^{\top} \in \mathbb{R}^p_+$, is defined as

$$\mathbb{S}_{\gamma_i}(x_i) := \begin{cases} x_i - \gamma_i & \text{if } x_i > \gamma_i \\ x_i + \gamma_i & \text{if } x_i < -\gamma_i \\ 0 & \text{if } |x_i| \le \gamma_i \end{cases}$$

for each $i = 1, \ldots, p$.

Suggested setting:

- 1. $\tau = ||C||_2^{-2} \epsilon$, $\epsilon = 10^{-8}$
- 2. q = 10, p = 20, k = 2, $\lambda = \frac{1}{100\tau}$ $(\Rightarrow \Lambda = \lambda(1, \dots, 1)^{\top}, \ \tau \Lambda = 10^{-2}(1, 1, \dots, 1)^{\top}).$
- 3. Generate the components of C according to a standard normal distribution $\sim \mathcal{N}(0,1)$ (randn)
- 4. Generate the support S of the true \widetilde{x} with uniform distribution and the non-zero components $i \in S$ such that $\widetilde{x}_i \in [-2,-1] \cup [1,2]$, with uniform distribution
- 5. Measurement noise $\eta \sim \mathcal{N}(0,\sigma^2)$, $\sigma = 10^{-2} \; (\sigma*{\rm randn})$

6. Stop criterion: $T_{max}=$ first step such that $\|x(T_{max}+1)-x(T_{max})\|_2<\delta$, $\delta=10^{-12}$.

Repeat the experiment for at least 20 runs and analyse the mean results, by considering the following points:

- 1. Support recovery rate: how many times the support of \widetilde{x} is correctly estimated?
- 2. Can we obtain 100% of success in the support recovery by increasing q?
- 3. Convergence time: how many iterations are required (mean, min, max)?
- 4. Try different values for τ , by keeping $\tau\lambda$ constant
- 5. Try different values for λ , by keeping τ constant

Task 2: Secure estimation under sparse sensor attacks

Reminder: we can extend LASSO by a assigning a different ℓ_1 weight to each component, e.g.,

$$\min_{x \in \mathbb{R}^p} \frac{1}{2} ||Cx - y||_2^2 + \sum_{i=1}^p \lambda_i |x_i|.$$

Reformulate the previous problem to estimate a (non-sparse) $\widetilde{x} \in \mathbb{R}^n$ under sparse sensor attacks, by using ISTA, given the measurements $y = C\widetilde{x} + a + \eta$, where $\eta \in \mathbb{R}^q$ is the measurement noise.

Suggested data and hyperparameters:

- 1. n=10, q=20, h=2 sensor attacks
- 2. $C \sim \mathcal{N}(0,1)$; $\widetilde{x} \sim \mathcal{N}(0,1)$
- 3. Support of the attack vector a: uniform distribution
- 4. How to perform the attacks?
 - "Unaware" attack: $a_i \in [-2, -1] \cup [1, 2]$, uniformly distributed
 - "Aware" attack: the attacker takes the sensor measurement y_i and corrupts it of a quantity equal to $\frac{1}{2}y_i$
- 5. $\tau \Lambda = \tau \lambda (0, \dots, 0, 1, \dots, 1)^{\top} \in \mathbb{R}^{n+q}, \ \tau \lambda = 2 \times 10^{-3}$
- 6. Measurement noise $\eta=0$ and $\eta\sim\mathcal{N}(0,\sigma^2)$, $\sigma=10^{-2}$ (σ *randn)

Repeat the experiment for at least 20 runs and analyse the mean results, by considering the following points:

- 1. Rate of attack detection: how many times the support of a is correctly estimated, i.e., we identify the sensors under attack?
- 2. Estimation accuracy: is the estimation of \tilde{x} accurate? Compute $\|\tilde{x} \hat{x}\|_2^2$ where $\hat{x} = x(T_{max})$ is the obtained estimate.

Task 3: Target localization under sparse sensor attacks

We consider an indoor localization problem with an RSS fingerprinting setting. We propose a localization problem where 3 targets are deployed in a square room with p=100 cells. A sensor network with q=25 sensors is randomly deployed in the room, see the figure. The sensors measure the RSS from targets. We assume that $\it few$ sensors are under attack. The goals are

- 1. Localize the targets, e.g., estimate which cells of the grid are occupied by a target
- 2. Find which sensors are under attack.

Optional task: compare the obtained results to the results of other methods (e.g., k-NN), in terms of estimation accuracy and computational complexity/run time.

The dictionary ${\cal D}$ and the run-time measurements y are given in file localization.mat.

To localize the targets and identify the sensors under attack, implement ISTA to solve the following weighted Lasso

$$\min_{x \in \mathbb{R}^p, a \in \mathbb{R}^q} \left\| (D, I) \begin{pmatrix} x \\ a \end{pmatrix} - y \right\|_2^2 + \lambda_1 \|x\|_1 + \lambda_2 \|a\|_1$$

Hints

- 1. $\lambda_1 = 10$, $\lambda_2 = 20$
- 2. $G = [D, I] \rightarrow \text{normalize } G$, e.g., by using normalize(G) in MATLAB
- 3. $\tau = ||G||_2^{-2} \epsilon$

[Solution:
$$supp(\tilde{x}) = \{23, 36, 87\}, supp(\tilde{a}) = \{12, 16\}$$
]

Task 4: Sparse observer

We consider the problem of Task 3 with moving targets and sparse sensor attacks. There are 3 targets, moving according to the dynamics

$$x(k+1) = Ax(k).$$

A is given in the file tracking_moving_targets.mat. Basically, at each time step, the targets move towards left of one cell. The given $Y \in \mathbb{R}^{q,50}$ are the measurements for 50 time instants, i.e., for $k=0,\ldots,49$.

Implement the sparse observer to track the moving targets and to identify which sensors are under attack.

Notation:

$$z(k) = \begin{pmatrix} x(k) \\ a(k) \end{pmatrix} \qquad \hat{z}(k) = \begin{pmatrix} \hat{x}(k) \\ \hat{a}(k) \end{pmatrix} \qquad \hat{z}^{+}(k) = \begin{pmatrix} \hat{x}^{+}(k) \\ \hat{a}^{+}(k) \end{pmatrix} \qquad G = \begin{pmatrix} D & I \end{pmatrix}$$

Hint: $\lambda = (10, \dots, 10, 20, \dots, 20)$

Algorithm 2 Sparse observer

- 1: **for all** $k = 0, \dots, 49$ **do**
- 2: $\hat{z}^+(k) = \mathbb{S}_{\tau\lambda} \left[\hat{z}(k) + \tau G^\top (y(k) G\hat{z}(k)) \right]$
- 3: $\hat{x}(k+1) = A\hat{x}^+(k)$
- 4: $\hat{a}(k+1) = \hat{a}^+(k)$
- 5: end for

Analyse the following points:

- 1. Does the sparse observer converge?
- 2. After how many iterations the sparse observer converges?

Optional tasks:

- 1. Implement an "aware" time-varying attack: the attacker attacks two sensors by taking their measurements $y_i(k)$ and by adding a quantity equal to $a_i(k)=\frac{1}{2}y_i(k)$
- 2. Implement a time-varying attack where also the sensors under attack change in time; for example, two sensors are under attack for $k=0,\ldots,24$ and two other sensors are under attack for $k=25,\ldots,49$.
- 3. Increase the number of sensors under attack. Which is the maximum number of attacks which allows us to perform a correct tracking of the targets?

Task 5: Distributed target localization under sparse sensor attacks

In this task, we retrieve the target localization problem in Task 3 and we solve it in-network, i.e., in a distributed way, through the distributed ISTA (DISTA). The aim is to localize 2 targets in the presence of sparse sensor attacks. The measurement model is $y=D\widetilde{x}+\eta+\widetilde{a}\in\mathbb{R}^q$, where $\eta\in\mathbb{R}^q$ is a measurement noise and $\widetilde{a}\in\mathbb{R}^q$ is the attack vector.

We remark that the attacks consist in a physical tampering of the sensor measurements in the run-time phase. On the other hand, we assume there are no attacks on the communication links, which are reliable.

This marks a difference with respect to the centralized case, where a manipulation of $D_i\widetilde{x}$ can be done either on the sensor or in the transmission of the data to the fusion center.

We consider a distributed setting where each sensor node $i \in \{1,\ldots,q\}$ knows D_i (= ith row of the dictionary D) and $y_i \in \mathbb{R}$, and it does not share them. In the file distributed_localization_data.mat, we provide the data y and D and 4 possible network topologies, described by 4 different stochastic matrices Q. Check whether these matrices solve the consensus problem, by analyzing their eigenvalues.

Repeat the task for each stochastic matrix. Hints:

1. $G = (D \mid I)$ cannot be normalized, since it is not stored in a fusion center!

- 2. $\tau = 4 \times 10^{-7}$
- 3. $\lambda = (10, \dots, 10, 0.1, \dots, 0.1)$
- 4. Final refinement of the attacks: set to zero all the estimated attack components with magnitude $<0.002\,$
- 5. In the implementation of DISTA, pay attention to the fact theat the estimate of each node is a vector.

Analysis:

- 1. Does DISTA reach a consensus?
- 2. Is the final estimation accurate?

Algorithm 3 DISTA

- 1: Initialization: for each node $i=1,\ldots,q,\,z^{(i)}(0)\in\mathbb{R}^{n+q},\,\text{e.g.},\,z^{(i)}(0)=0$
- 2: **for all** k = 1, ..., T **do**
- 3: for all $i = 1, \ldots, q$ do

4:
$$z^{(i)}(k+1) = \mathbb{S}_{\tau\lambda} \left[\sum_{j=1}^{q} Q_{i,j} z^{(j)}(k) + \tau G_i^T(y_i - G_i z^{(i)}(k)) \right]$$

- 5: end for
- 6: Stop criterion: T= first time instant s.t. $\sum_{i=1}^q \|z^{(i)}(T+1)-z^{(i)}(T)\|_2^2 < \delta$, $\delta=10^{-8}$.
- 7: end for

[Solution: $supp(\widetilde{x}) = \{14, 25\}, supp(\widetilde{a}) = \{8, 23\}$]

