

<u>Course</u> > <u>Unit 1:</u> ... > <u>Lec. 1:</u> ... > 18. Exe...

18. Exercise: Using countable additivity

Exercises due Feb 5, 2020 05:29 IST Completed

Exercise: Using countable additivity

1/1 point (graded)

Let the sample space be the set of positive integers and suppose that $\mathbf{P}(n)=1/2^n$, for $n=1,2,\ldots$ Find the probability of the set $\{3,6,9,\ldots\}$, that is, of the set of positive integers that are multiples of 3.

✓ Answer: 0.14286

Solution:

Using countable additivity, and with $lpha=2^{-3}=1/8$, the desired probability is

$$\frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^9} + \dots = \alpha + \alpha^2 + \alpha^3 + \dots = \frac{\alpha}{1 - \alpha} = \frac{1/8}{1 - (1/8)} = \frac{1}{7}.$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 1: Probability models and axioms:Lec. 1: Probability models and axioms / 18. Exercise: Using countable additivity

Alternative solution	1
Confused on P(outcome is even) Hi there, So I understand the P(outcome is even) = P({2, 4, 6,}) = 1/3 However, if you do P(outcome is o	2
? why sum of probabilities? Hi all, I've got how to solve the problem, but I think I don't have deep understanding. In the problem is a	3
Grader question for 18. Exercise: Using countable additivity With some changes (taking a factor) to the sum of probabilities, it will be a series for which we know wh	6 new_
<u>Useful tip</u> You will need the formula for the sum (S) of infinite geometric series used in the previous video: S= 1/(1	1
Finally getting it! Though, remembering geometric sequences from so many years ago was not pleasant.	1
Syntax I seem to be using the wrong syntax, no commas or letters? what do I use? Thanks!	1
? countability This YouTube video sheds some light on what it means to be uncountable, using Cantors diagonalization.	. 2
Good explanation for geometric series I happened to find this explanation on geometric series, which should be in the mathematical backgroun.	. 1
List of number types I found this list (from Wikipedia) helpful, learned some things about numbers I thought I knew but didn't.	. 1

© All Rights Reserved

