Test 4

April Camp 2021

Time: $4\frac{1}{2}$ hours

- 1. We have n boxes labelled B_1, B_2, \ldots, B_n . Initially there are n balls in total in these n boxes. (There may be some boxes with more than one ball, and some boxes that are empty.) One each turn, we are allowed to perform one of three operations:
 - If there is at least 1 ball in box B_1 , we can remove this ball from box B_1 and add a ball to box B_2 .
 - If there are at least 2 balls in box B_i where 1 < i < n, then we can remove 2 balls from box B_i , and add 1 ball to each of boxes B_{i-1} and B_{i+1} .
 - If there is at least 1 ball in box B_n , we can remove this ball from box B_n and add a ball to box B_{n-1} .

Show that no matter how the balls are initially distributed, it is possible to use these operations to obtain the situation where there is exactly one ball in each box.

- 2. Let ABC be an isosceles triangle with BC = CA, and let D be a point on segment AB such that AD < DB. Let P and Q be points on segments BC and CA respectively such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of PQ meet line segment CQ at E, and let the circumcircles of ABC and CPQ meet again at point F, different to C.
 - Suppose that P, E, and F are collinear. Prove that $\angle ACB = 90^{\circ}$.
- 3. For any odd prime p and any integer n, let $d_p(n) \in \{0, 1, 2, \dots, p-1\}$ denote the remainder when n is divided by p. We say that (a_0, a_1, a_2, \dots) is a p-sequence if a_0 is a positive integer coprime to p and $a_{n+1} = a_n + d_p(a_n)$ for $n \ge 0$.
 - (a) Do there exist infinitely many primes p for which there exist p-sequences (a_0, a_1, \dots) and (b_0, b_1, \dots) such that $a_n > b_n$ for infinitely many n and $a_n < b_n$ for infinitely many n?
 - (b) Do there exist infinitely many primes p for which there exist p-sequences (a_0, a_1, \ldots) and (b_0, b_1, \ldots) such that $a_0 < b_0$ but $a_n > b_n$ for all $n \ge 1$?

- Submit your solutions at https://forms.gle/uhMSLew7qTQ9Qbqr6.
- Submit each question in a single separate PDF file (with multiple pages if necessary).
- If you take photographs of your work, use a document scanner such as Office Lens to convert to PDF.
- If you have multiple PDF files for a question, combine them using software such as PDFsam.

