HKUST

MATH1003 Calculus and Linear Algebra

Mock Final Examination (Fall 2024)	Name:	
1 Dec 2024 (Updated)	Student ID:	
Time limit: 3 hours	Lecture Section:	

Directions:

- This is a closed book examination. You may use an ordinary scientific calculator, but calculators with graphical functions are NOT allowed.
- DO NOT open the exam until instructed to do so.
- Turn off all phones and pagers, and remove headphones. All electronic devices should be kept in a bag away from your body.
- Write your name, ID number, and Lecture Section in the space provided above.
- When instructed to open the exam, please check that you have 14 pages of questions including the cover page. This document is updated, with amendments highlighted in red.
- Answer all questions. Show an appropriate amount of work for each short or long problem. If you do not show enough work, you will get only partial credit.
- Cheating is a serious violation of the HKUST Academic Code. This is only a mock exam, with no benefit of cheating here: by cheating, you are not lying to anyone but yourself.
- For answer checking/ marking/ feedback of this mock paper set, please either email me via theskillfulnoob2002@gmail.com or Whatsapp/ Signal via (+852) 9035 4789.

Please read the following statement and sign your signature:

I have neither given nor received any unauthorized aid during this examination. The answers submitted are my own work.

I understand that sanctions will be imposed, if I am found to have violated the University's regulations governing academic integrity.

Student'	S	Signature:	

Question No.	Points	Out of
Q. 1-18		45
Q. 19		10
Q. 20		8
Q. 21		8
Q. 22		12
Q.23		17
Total Points		100

Part I: Multiple Choice Questions (45 Points)

Answer all of the following multiple choice questions.

- Mark your answers clearly in the Multiple Choice Item Answer Boxes below.
- Mark only one answer for each MC question. Multiple answers will be treated as incorrect answer.

Question	1	2	3	4	5	6	7	8	9
Answer									
Question	10	11	12	13	14	15	16	17	18
Answer									

- Qs. 1, 4, 6, 7, 9, 12, 15 are borrowed/ scaled-down from 1012/13 streams of the mock series.
 All MCs except 2, 6, 13, 17, 18 are direct PP references.
- \bullet LQ 19, 22, 23 are direct PP references.
- 1. Suppose $f(x) = \frac{x+3}{3x+4}$ and $g(x) = \frac{2x}{4x-1}$. The domain of f(g(x)) is all real numbers except.

 A. $-\frac{4}{3}$.

 B. $\frac{1}{4}$.

 C. $\frac{1}{4}$ and $-\frac{4}{3}$.

 D. $\frac{2}{11}$ and $\frac{1}{4}$.

 E. $\frac{3}{4}$ and $\frac{1}{14}$.

- 2. Find the limit $\lim_{x \to 4} \frac{x^2 3x 4}{x^2 5x + 4}$ if it exists. A. $-\frac{5}{3}$ B. $\frac{5}{3}$ C. $\frac{3}{5}$

- D. $-\frac{3}{5}$
- E. Does not exist

- 3. Let f(x) and g(x) be functions of x. How many of the following statements must be true?
 - I. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist, $\lim_{x\to c} f(x)g(x)$ exists.
 - II. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both don't exist, $\lim_{x\to c} f(x)g(x)$ doesn't exist.
 - III. If $\lim_{x\to c} f(x) + g(x)$ exists, then both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist.
 - IV. If $\lim_{x\to c} f(x) + g(x)$ doesn't exist, then both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ don't exist.
 - A. 0
- B. 1
- C. 2
- D. 3
- E. 4

4. How many vertical asymptotes does the following function have?

$$y = \frac{x^2 - 2x + 1}{(x^2 - x)(x^2 - 5x - 6)(x^2 + 4)}$$

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

5. For the function $u(x) = \frac{3x^5 + 4x^3 + 5x}{x^4}$ $(x \neq 0)$, find u'(x).

A.
$$u'(x) = 3 + \frac{4}{x^2} + \frac{15}{x^4}$$

B.
$$u'(x) = \frac{15x^4 + 12x^2 - 15}{x^5}$$

C.
$$u'(x) = 3 - \frac{4}{x^2} - \frac{15}{x^4}$$

D.
$$u'(x) = \frac{15x^4 - 12x^2 + 15}{x^5}$$

E.
$$u'(x) = 3 - \frac{4}{x} - \frac{15}{x^3}$$

- 6. Let $p(x) = (x^2 + 5)^{2024} \cdot (6 x)^{1203}$. Find the value of p'(0).
 - A. $1203 \cdot 5^{2023} \cdot 6^{1203}$
 - B. $-2024 \cdot 5^{2023} \cdot 6^{1203}$
 - C. $2024 \cdot 5^{2024} \cdot 6^{1202}$
 - D. $-1203 \cdot 5^{2024} \cdot 6^{1202}$
 - E. $1203 \cdot 5^{2024} \cdot 6^{1202}$

- 7. Define $h(x) = x^{2x}$ for x > 0. Find $\frac{h'(x)}{h(x)}$.
- A. $2 \ln x + 2$ B. $2x \ln x + 2x$ C. $2x \ln x + \ln x$
- D. $\ln x + 2$
- E. $2 \ln x$

8. Let $\frac{x^3}{y^3} + x \log_3 y = 10$. Which of the following is correct?

A.
$$\frac{3x^2}{y^3} + \ln y + \left(\frac{x}{\ln 3} - \frac{3x^3}{y^4}\right) \frac{dy}{dx} = 0$$

B.
$$\frac{3x^2}{v^3} + \frac{\ln y}{\ln 3} + \left(\frac{x}{v \ln 3} - \frac{3x^2}{v^4}\right) \frac{dy}{dx} = 10$$

C.
$$\frac{3x^2}{y^3} + \frac{\ln y}{\ln 3} + \left(\frac{x}{y \ln 3} - \frac{3x^3}{y^4}\right) \frac{dy}{dx} = 0$$

D.
$$\frac{3x^2}{y^3} + \frac{1}{\ln 3} + \left(\frac{x}{y \ln 3} - \frac{x^3}{y^4}\right) \frac{dy}{dx} = 10$$

E.
$$\frac{3x^2}{y^3} + \frac{\ln y}{\ln 3} + \left(\frac{x \ln y}{y \ln 3} - \frac{3x^3}{y^4}\right) \frac{dy}{dx} = 0$$

- 9. Find the tangent to the curve $C: y = (x-1)^4 5x$ at x = 2.

- A. y = -x 7 B. y = -x + 11 C. y = x 11 D. y = x + 7 E. y = 4x 17

- 10. Let $q(x) = \frac{3x}{x+1}$. Find q''(1).
 - A. $-\frac{3}{4}$ B. $-\frac{3}{2}$
- C. $\frac{3}{4}$
- D. $\frac{3}{2}$
- E. 3

- 11. Suppose the graph of y = a(x) has a critical point at x = c, and is continuous at x = c. Which of the following must be true?
 - A. a(c) = 0
 - B. a'(c) = 0
 - C. If a''(c) exists, a''(x) changes sign through x = c.
 - D. (c, a(c)) is either a maximum or minimum point of the graph of y = a(x).
 - E. None of the above

12. An open-top box is to be made from a square cardboard of side 6 inches by removing a square from each of its corner and folding up the flaps on each side. To maximize the volume of the box V(x) (in cubic inches) where x inches is the side of the squares to remove, what is the objective function V(x), and the conditions on V'(x) and V''(x)?

A.
$$V(x) = x(6-2x)^2$$
; $V'(x) = 0$ and $V''(x) < 0$

B.
$$V(x) = x(6-2x)^2$$
; $V'(x) = 0$ and $V''(x) > 0$

C.
$$V(x) = x(6-x)^2$$
; $V'(x) = 0$ and $V''(x) = 0$

D.
$$V(x) = x(6-x)^2$$
; $V'(x) = 0$ and $V''(x) < 0$

E.
$$V(x) = x(6-x)^2$$
; $V'(x) = 0$ and $V''(x) > 0$

- 13. A company manufactures and sells x backpacks per week. The weekly price-demand equation is P(x) = 500 0.5x and the cost of production per backpack is given by C(x) = 100 + 0.5x. Which of the following concerning the revenue function R(x) and profit function F(x) is true? [Hint: Profit = Revenue Cost]
 - A. R(x) keeps decreasing as x increases.

B.
$$F(x) = 400 - x$$
.

C.
$$R(x)$$
 is maximized at $x = 500$.

D.
$$F(x)$$
 is maximized at $x = 500$.

- 14. If the sides of a cube are growing at a constant rate of $\frac{1}{6}$ cm/ min, how fast is its volume increasing (in cm^3) when the volume is 512 cm^3 ?
 - A. 16
- B. 32
- C. 48
- D. 64
- E. 96

15. A particle is traveling along the s-axis with velocity function

$$v(t) = -\frac{24}{t+3} + 4$$

for $t \ge 0$ (in seconds). It is at displacement s(0) = 0 initially. Find its displacement s(t) when it is at rest at time t = T.

- A. $-12 \ln 2$

- B. $12(\ln 2 1)$ C. $-24 \ln 2$ D. $12(1 2 \ln 6)$ E. $12(1 2 \ln 2)$

- 16. Suppose g is a continuous function such that $g''(x) = e^x + 6$, g'(0) = 2 and g(0) = 5. What is g(1)?
 - A. e + 7
- B. e + 8
- C. e + 9 D. e + 10 E. 2e + 11

17. Refer to the diagram concerning the plot of y = f(x) below, where the area bounded by y = f(x) and the x-axis are split into regions of respective areas A_1 , A_2 and A_3 :

The value of the definite integral $\int_{8}^{0} f(x)dx$ of the function given below is given by

A.
$$A_1 + A_2 + A_3$$
.

B.
$$-A_1 + A_2 + A_3$$
.

C.
$$A_1 + -A_2 + A_3$$
.

D.
$$A_1 + A_2 - A_3$$
.

E.
$$-A_1 + A_2 - A_3$$
.

18. It is given that F(x) is an antiderivative of the continuous function f(x). Which of the following statements is NOT true?

A.
$$\int_0^1 f(x)dx = F(1) - F(0)$$

B.
$$F(x)$$
 is continuous.

C.
$$\frac{d}{dx}F(x) = f(x)$$

D.
$$\int f(x)dx = F(x)$$

E. None of the above

Part II: Long Questions (55 Points)

Answer each of the following 5 long questions. Unless otherwise specified, numerical answers should be either exact or correct to 2 decimal places.

19. (10 pts) Evaluate the following limits if they exist.

(a)
$$\lim_{x \to 3^+} \frac{x|3-x|}{x-3}$$
 [3pts]

(b)
$$\lim_{h \to 0} \frac{e^8(e^{4h} - 1)}{h}$$
 [3pts]

(c)
$$\lim_{x \to \infty} \left(2x - \sqrt{4x^2 - 5x + 3} \right)$$
 [4pts]

- 20. (8 pts) Consider the curve $C: x^3y^2 y = 6$.
 - (a) Find x when y = 3.

[1pts]

(b) Find the tangent equation to C when y=3.

[4pts]

(c) A point is moving on C. When its y-coordinate is 3, the x-coordinate is decreasing at a rate of 2 units/ second. Find the rate at which its y-coordinate is increasing/ decreasing.

[3pts]

- 21. (8 pts) Suppose at time t = 0 hours, Car A is located 520km south of Car B. Car A heads north, while Car B heads east, both at a constant speed. Two conditions are given:
 - 1. the distance between the two cars attains a minimum at t = 4 hours.
 - 2. at t = 13 hours, the distance between the two cars is increasing at a rate of 60 km per hour.

Let the speeds of Car A and Car B be a and b km/h respectively.

(a) Express S, the distance between the two cars at time t, in terms of t.

[2pts]

(b) Using condition 1, show that $a^2 + b^2 - 130a = 0$.

[2pts]

(c) Find the speeds of the two cars by constructing another equation on a and b.

[4pts]

22. (12 pts) Find/Evaluate the following integrals.

(a) Find
$$\int x^5 - \frac{3}{x} + e^x dx$$
.

[3pts]

(b) Evaluate
$$\int_1^2 \frac{x^2}{5x^3 - 1} dx$$
 [Hint: use substitution.]

[4pts]

(c) Express the area of the finite region bounded by the graphs of $f(x) = x^3 + 5x^2$ and g(x) = 6x as one/ multiple definite integral(s).

You need not compute the integral(s), just set it/ them up.

[5pts]

23. (17 pts) Given a function $f(x) = \frac{x^3 + 5x^2}{(x-1)^2}$, with first and second derivatives below:

$$f'(x) = \frac{x(x^2 - 3x - 10)}{(x - 1)^3}, f''(x) = \frac{2(13x + 5)}{(x - 1)^4}$$

It is further given that $\frac{x^3 + 6x^2}{(x-1)^2} = x + 7 + \frac{13}{x-1} + \frac{6}{(x-1)^2}$. Denote the graph of y = f(x) by Γ .

(a) Find the x-intercept(s) of Γ .

[1pts]

(b) State all asymptotes of Γ .

[2pts]

(c) Determine the interval(s) of increase and interval of decrease of f(x). Also find the minimum/ maximum point(s) of Γ .

[5pts]

(d) Determine the the concave upward and concave downward interval(s) of f(x). Also find the inflection point(s) of Γ .

[5pts]

(e) Sketch the graph of

$$\Gamma: y = f(x) = \frac{x^3 + 6x^2}{(x-1)^2}$$

below, including its intercepts, asymptotes, extreme point(s) and inflection point(s).

Note: Grid scales have changed.

