JUN 0 6 2002 W

In re Application of)	
ARNOLD E. GOLDMAN, K. JUERGEN FLAMM,)	
JOHN G. MARK & IKE SONG)	
Serial No. 09/917,578)	Art Unit 2873
Filed: 28 July 2001)	
For: SLEEVE FOR PIG-TAILING OPTICAL FIBER)	Examiner Omar Z. Hindi
Serial No. 09/917,578 Filed: 28 July 2001 For: SLEEVE FOR PIG-TAILING OPTICAL FIBER))	

CLEAN COPY VERSION OF CLAIMS

(Per Response to Office Action dated 28 February 2002)

RECEIVEU JUN 14 2002 TC 2800 MAIL ROOM

COPY OF PAPERS ORIGINALLY FILED

1. A vehicle for enabling attachment of an optic fiber to a multi-integrated optic chip in optical communication therewith, and for maintaining alignment of the fiber at 2 its end adjacent the chip, domprising: 3 4 a sleeve having a symmetrically-shaped cavity bounded by termini which respectively interface with the chip and the fiber; and 5 an adhesive disposed within the cavity and symmetrically bonding the 6 7 fiber to the chip. 2. A vehicle for enabling attachment of an optic fiber to a multi-integrated optic 1 2 chip in optical communication therewith, and for maintaining alignment of the fiber at 3 its end adjacent the chip, comprising: a sleeve which has a symmetrically-shaped cavity bounded by termini that 4 respectively interface with the chip and the fiber, and in which 5 6 said cavity has an axis and is internally bounded by a wall which is 7 substantially centered on the axis and which extends from said chip-interfacing terminus to said fiber-interfacing terminus, 8 9 said termini are centered on the axis, and a line, lying within any plane intersecting the axis at right angles 10 thereto and terminating in said cavity wall, is bisected into two equal segments; and 11 12 an adhesive disposed within the cavity and symmetrically bonding the 13 fiber to the chip.

	,					
1	3. A vehicle for enabling attachment of an optic fiber to a multi-integrated optic					
2	chip in optical communication therewith, and for maintaining alignment of the fiber at					
3	its end adjacent the chip, comprising:					
4	a sleeve which has a symmetrically-shaped cavity bounded by termini that					
5	respectively interface with the chip and the fiber, and which is configured to fit onto the					
6	chip and is disposed to accept the fiber; and					
7	an adhesive disposed within the cavity and symmetrically bonding the					
8	fiber to the chip.					
1	4. A vehicle according to claim 3 wherein:					
2	said cavity has an axis and is internally bounded by a wall which is					
3	substantially centered on the axis and which extends from said chip-fitting terminus to					
4	said fiber-accepting terminus;					
5	said termini are centered on the axis; and					
6	a line lying within any plane intersecting the axis at right angles thereto					
7	and terminating in said cavity wall is bisected into two equal segments.					
1	5. A vehicle according to claim 4 wherein said cavity wall slopes from said					
2	chip-fitting terminus to said fiber-accepting terminus.					
1	6. A vehicle according to claim 4 in which said sleeve so controls said					
2	adhesive as to provide and preserve a symmetrical bonding of the fiber with respect to					
3	the chip over gravitational and wicking effects.					

in a like in the print of the second of

7. A vehicle according to claim 6 in which said cavity wall is shaped as a truncated right circular cone.

1 8. A vehicle according to claim 6 in which said cavity wall is shaped as a 2 truncated pyramid.

- 9. A vehicle according to claim 4 in which said sleeve is temporarily attached to said adhesive and the chip.
- 1 10. A vehicle according to claim 4 in which said sleeve is permanently 2 attached to said adhesive and the chip.
- 1 11. A method for attaching an optic fiber to an optic chip and for maintaining
 2 alignment of the fiber at its end adjacent the chip, comprising the steps of:
 3 positioning a sleeve having a symmetrically shaped cavity on the chip;
 4 placing an adhesive into the sleeve cavity;
 5 inserting the fiber into the cavity;
 6 securing the fiber to the chip; and
- 7 curing the adhesive.

1	12. A method according to claim 11 further comprising the step of aligning the
2	fiber within the cavity and positioning the fiber end adjacent the chip.

3

1 13. A method according to claim 11 further comprising the step of removing

2 the sleeve from the chip after the adhesive has cured.

1 14. A method according to claim 11 further comprising the step of leaving the

2 sleeve securely on the chip after the adhesive has cured.

1 15. A method according to claim 11 further comprising the step of providing

2 the sleeve cavity with a truncated pyramid configuration.

1 16. A method according to claim 11 further comprising the step of providing

2 the sleeve cavity with a truncated right circular cone configuration.

1 17. A method for attaching an optic fiber to an optic chip and for maintaining

2 alignment of the fiber at its end adjacent the chip, comprising the steps of:

3 utilizing a sleeve having a symmetrically shaped cavity;

4 placing an adhesive into the sleeve cavity;

5 positioning the sleeve onto the chip;

6		inserting the fiber into the cavity;
7		aligning the fiber within the cavity and positioning the fiber end adjacent
8	the chip;	
9		securing the fiber to the chip; and
10		curing the adhesive.
1	18.	A method according to claim 17 further comprising the step of removing
$\bigcup_{n=1}^{\infty} \binom{2}{n}$	the sleeve fro	om the chip after the adhesive has cured.
Const		
1	19.	A method according to claim 17 further comprising the step of leaving the
2	sleeve secur	ely on the chip after the adhesive has cured.
1	20.	A method according to claim 17 further comprising the step of providing
2	the sleeve ca	vity with a truncated pyramid configuration.
1	21.	A method according to claim 1/7 further comprising the step of providing
2	the sleeve ca	vity with a truncated right circular cone configuration.