Shell Interactivity and SSH Basics

Computer Science Practice and Experience: Development Basics CS1XC3

Professor: Kevin Browne

E-mail: brownek@mcmaster.ca

Operating systems

- An operating system manages computer hardware and software resources and provides access to services for applications (i.e. computer programs)
 - Examples include Windows, macOS, Linux
 - Specialized operating systems exist for servers (e.g. Windows Server), and mobile (e.g. iOS)
- Services an OS may provide include things like:
 - File access
 - Interprocess communication
 - Network access

Operating systems

- Operating systems include a kernel which manages access to memory, CPU time, and other resources
 - The kernel is the core of the operating system, all operating systems include a kernel
- Kernels provide an application programming interface (API) of services used by OS services and applications
 - e.g. output information to the screen, input information from devices
- These API services are accessed via system calls
 - When a system call executes, the kernel takes over to carry out the functionality of the system call
 - user mode -> kernel mode -> user mode transition

Shells

- A shell is an interface for the services of an OS
 - Typically used by humans, but can be an interface for programs too
 - e.g. a shell can be used to run an application, search for files, etc.
- Shells can have different types of interfaces
 - A graphical user interface (GUI) is one type of shell
 - A command-line interface (CLI) is another type of shell
- Graphical user interfaces are easier for users to learn
 - Much better for non-technical users (e.g. running productivity software, games, etc.)

Shells

- Command-line interfaces are more powerful, precise, and flexible... very developer-friendly traits
 - e.g. we can run commands with precise sets of options
 - "Find all hidden files that have the file extension png, including all subfolders"
 - We can use the output of one command as the input to another command
 - We can use **shell scripting** which involves running a series of commands in a file... essentially programs of shell commands
- While the above might be technically possible with GUIs, it's slower and less programmatic / automatable

Shell and applications both use system calls... so while we can think of applications as being another layer, they also share a layer with the shell in accessing the kernel via system calls...

Unix-like systems

- Unix is a family of related operating systems that conform to a specification
- Unix-like systems include systems similar to Unix such as Linux and macOS
- The term *Unix-like* is informal, not technical/precise
- But Unix-like systems will share a similar modular design and characteristics, such as shells

Linux

- Linux is itself a family of operating systems which all share the Linux kernel
- Many distributions of Linux exist, for example: Ubuntu, Fedora, CentOS, Debian, Gentoo
- Linux is famously open source software
 - Open source software allows users to view and edit source code
 - Different licenses exist that allow for different forms of sharing modified versions of the software

Fun fact: Ancaster-native (town located 5 mins from McMaster) Bob Young co-founded Linux tech giant Red Hat... named after the red hats he would wear at the time...

Bash shell

- Bash shell is a (very) common shell for Unix-like systems
- Bash availability...
 - It is available on macOS systems (open a terminal, enter the command "bash")
 - It is the default shell on most Linux distributions
 - It's even available on *Windows 10* now via the Windows Subsystem for Linux:
 - https://en.wikipedia.org/wiki/Windows Subsystem for Linux
- Other shells exist... Z shell (zsh), Korn shell (ksh), etc.
 - Bash command syntax is actually a superset of the Bourne shell... people conflate the two as a result

Commands

- A large set of commands are supported by shells in all Unix systems and virtually all Unix-like systems
 - https://en.wikipedia.org/wiki/List_of_Unix_commands
- Examples:
 - cd change the working directory
 - **Is** list directory contents
 - mkdir make directory
- We'll get into more advanced shell features like scripting and pipes/filters soon enough!
 - But we'll start with some basic interactivity first...

Let's try out a Bash shell!

Some commands

- cat outputs content of the file
- cd change the working directory
- cp copy a file
- **Is** list directory contents
- man show a command's man page (i.e. manual)
- **mkdir** make directory
- mv move a file
- **ps** lists all processes
- pwd outputs current working directory
- **rm** removes a file
- rmdir removes a directory if it is empty
- grep searches file contents

Commands

 If you're ever unsure how a command works you can always run man to bring up instructions, but be mindful the instructions will be lengthy and not beginner-friendly:
man commandName

- Commands can have arguments
 - cp source_file target_file
- Commands can have option flags that modify the behaviour of the command
 - cp -R /home/kevin/new /home/kevin/old
- We'll go over specific commands in more detail in lab next week!

SSH (Secure Shell)

- The Secure Shell (SSH) Protocol is a network protocol for secure remote login and other secure network services over an insecure network
 - A network protocol is a set of rules that allow computers on a network to transmit information to each other
- SSH is most typically used to access a shell on a remote machine from your local machine
 - i.e. access another computer's shell from your computer
 - But SSH has other issues such as file transfer via SCP, SFTP, technologies we'll talk about soon

SSH Client

- An SSH client allows us to access a remote machine's shell using SSH
- OpenSSH comes with macOS and Linux
 - An open source command-line tool
 - https://en.wikipedia.org/wiki/OpenSSH
 - It's now being included with newer versions of Windows
- PuTTY is a popular SSH client for Windows
 - https://www.putty.org/

OpenSSH usage

- Basic usage: ssh username@remote.machine.com
- Where username is an account on the remote machine
- And remote.machine.com is the hostname or IP address for the remote machine
 - An IP address is a numerical address for identifying machines on a network (such as the Internet)
 - A hostname is a more human-friendly identifier, for example something like server.mcmaster.ca

PuTTY has a GUI interface for entering hostname and username information...

moore server

 Every student in this course should have access to an account (and bash shell) on the moore server maintained by the department

- To access your account:
 - Visit this URL and enter your MacID (e.g. smithj) and your MacID password when asked: https://www.cas.mcmaster.ca/macid
 - This will create an account for you on Moore with a username set to your MacID and your MacID password
 - You can then login using ssh:
 - e.g. ssh yourmacid@moore.mcmaster.ca

Let's try out an SSH client!

Try accessing the Moore server

- Try accessing your Moore server account via an SSH client
- Follow the steps in the previous slide
 - i.e. make sure you visit that URL and enter your username and password
- You'll need access to a bash shell for the first assignment... Moore is an easy way to get access to one
 - Everyone should be able to access Moore throughout the course
 - We can also run C programs on Moore and other tools throughout the course...