Big data: architectures and data analytics

Spark Mllib - Introduction to Machine Learning

Credits to:

Elena Baralis, DAUIN, Politecnico di Torino Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 Dr. Christoph F. Eick - Director UH Data Analysis and Intelligent Systems Lab, University of Houston Ethem Alpaydin - Department of Computer Engineering, Bogaziçi University

What is Machine Learning?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

What is Machine Learning?

- Data is cheap and abundant (data warehouses,...);
 knowledge is expensive and scarce.
- Build a model that is a good and useful approximation to the data.

What is Machine Learning?

- ML algorithms:
 - Improve their performance
 - at some task
 - with experience
- Role of Statistics: inference from a sample
- Role of Computer science: efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

Growth of Machine Learning

Machine learning has been out for more than 50 years, but in the last 10 years usage has exploded:

- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- New sensors / IO devices
- It turns out to be difficult to extract knowledge from human experts → failure of expert systems in the 1980's.

ML – classification

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
- Reinforcement Learning
- Itemset and Association Rule Analysis
- ...

ML – classification

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
- Reinforcement Learning
- Itemset and Association Rule Analysis
- •

What we will see with Spark MLlib

Classification

Objective: prediction of a class label

Classification: example

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Model

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Classification: Face Recognition

Training examples of a person

Test images

Classification: Applications

Aka Pattern recognition

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertising: Predict if a user clicks on an ad on the Internet.

Prediction: Regression

- Example: Price of a used car
- x : car attributes

y : price

$$y = g(x \mid \theta)$$

g() model,

 θ parameters

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Other applications: Summarization, Association Analysis

Reinforcement Learning

Topics:

- Policies: what actions should an agent take in a particular situation
- Utility estimation: how good is a state (→used by policy)
- No supervised output but delayed reward
- Credit assignment problem (what was responsible for the outcome)
- Applications:
 - Game playing
 - Robot in a maze

Learning Associations

Basket analysis:

P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Classification - Model performance evaluation

Classification

Objective: prediction of a class label

Classification: definition

- Given
 - a collection of class labels
 - a collection of data objects labelled with a class label
- Find a descriptive profile of each class, which will allow the assignment of unlabeled objects to the appropriate class

Classification techniques

- Decision trees
- Random forests
- Neural Networks (Multilayer perceptron)
- Naïve Bayes
- Linear Support Vector Machines

•

Classification techniques

- Decision trees
- Random forests
- Neural Networks (Multilayer perceptron)
- Naïve Bayes
- Linear Support Vector Machines

•

All these are available in MLlib

Model evaluation

- Methods for performance evaluation
 - Partitioning techniques for training and validation sets

Definitions

- **Training set:** Collection of labeled data objects used to learn the classification model
- Validation set: Collection of labeled data objects used to validate the classification model, i.e., tune the parameters of a classifier
- **Test set:** A set of examples used only to assess the performance of a fully specified classifier

But ...

- Sometimes there is not proper test set
- In this case often "validation set" and "test set" are referred to the same set
- More on this topic later...

Methods of estimation

- Partitioning labeled data in
 - Training / validation /(test)
- Several partitioning techniques
 - Fixed split ratio
 - Cross validation

- ...

Holdout

- Fixed partitioning
 - reserve 2/3 for training and 1/3 for validation
- Appropriate for large datasets
 - may be repeated several times
 - repeated holdout

Cross validation

- Cross validation
 - partition data into k disjoint subsets (i.e., folds)
 - k-fold: train on k-1 partitions, validate on the remaining one
 - repeat for all folds
 - reliable accuracy estimation, not appropriate for very large datasets
- Leave-one-out
 - cross validation for k=n
 - only appropriate for very small datasets

Evaluation of classification techniques

- Quality of the prediction
 - Confusion matrix
 - Accuracy
 - Precision, Recall, F-measure
- Efficiency
 - model building time
 - classification time
- Scalability
 - training set size
 - attribute number
- Robustness
 - noise, missing data
- Interpretability
 - model interpretability
 - model compactness

Methods for performance evaluation

- Objective
 - reliable estimate of performance
- Performance of a model may depend on other factors besides the learning algorithm
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Metrics for model evaluation

- Evaluate the predictive accuracy of a model
- Confusion matrix
 - binary classifier

	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

Most widely-used metric for model evaluation

Accuracy = Number of correctly classified objects
Number of classified objects

Not always a reliable metric

Accuracy

For a binary classifier

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)	
	Class=No	c (FP)	d (TN)	

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitations of accuracy

- Consider a binary problem
 - Cardinality of Class 0 = 9900
 - Cardinality of Class 1 = 100
- Model
 - $() \rightarrow class 0$
 - Model predicts everything to be class 0
 - accuracy is 9900/10000 = 99.0 %
- Accuracy is misleading because the model does not detect any class 1 object

Limitations of accuracy

- Classes may have different importance
 - Misclassification of objects of a given class is more important
 - e.g., ill patients erroneously assigned to the healthy patients class
- Accuracy is not appropriate for
 - unbalanced class label distribution
 - different class relevance

Class specific measures

Evaluate separately for each class C

Recall (r) =
$$\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects belonging to C}}$$

Precision (p) =
$$\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects assigned to C}}$$

Maximize

F - measure (F) =
$$\frac{2rp}{r+p}$$

Class specific measures

For a binary classification problem on the confusion matrix, for the positive class

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F - measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$