5G PHY Layer Processing – receive processing (2)

Rohit Budhiraja

Simulation-Based Design of 5G Wireless Standard (EE698H)

Agenda for today

- Discuss receiver processing for the transmit chain discussed
- Discuss scrambling
 - References mentioned later in the slides

Receiver processing – rate recovery principles

- Rate matching
 - Puncturing/repeating bits to match the allocated resources
- Rate recovery
 - \bullet LDPC decoder works only for code rate of 1/3. Code rate should be reverted back to 1/3
 - · Zeros are inserted in place of punctured bits
 - Repeated bits are combined

5G receiver Processing - rate recovery

• Rate recovery of code blocks e.g., second code block

- Write bits starting from RV0. Write neutral information for bits punctured at transmitter
- Feed rate recovered data to LDPC decoder. Validate CRC of each code block

5G transmit and receive chain upto scrambler

Scrambling principles

- Consider a concatenated block of G interleaved bits $b(0), \ldots, b(G-1)$
- ullet Scrambled bits $ilde{b}(0),\ldots, ilde{b}(G-1)$ are given as

$$\tilde{b}(i) = b(i) \oplus c(i)$$
 $i = 0, \ldots, (G-1)$

- c(i) is pseudo random sequence
- Example: 8-bit coded sequence $b = [0\ 0\ 0\ 0\ 0\ 0\ 0]$ and $c = [0\ 1\ 1\ 0\ 1\ 0\ 0\ 1]$

$$\tilde{b}(i) = [0\ 1\ 1\ 0\ 1\ 0\ 1]$$

- Scrambling is done to randomize the output of interleaver
 - ullet both inner and outer signal points in the 16/64/256 QAM constellation to be used

De-scrambling principles

- For block of bits $b(0), \ldots, b(G-1)$, where G is the number of bits in code word
- ullet Received scrambled bits $ilde{b}(0),\ldots, ilde{b}(G-1)$ were calculated as

$$\tilde{b}(i) = b(i) \oplus c(i)$$
 $i = 0, \dots, (G-1)$

• Received descrambled bits $\tilde{b}(0), \ldots, \tilde{b}(G-1)$ can be recovered as

$$b(i) = \tilde{b}(i) \oplus c(i)$$
 $i = 0, \ldots, (G-1)$

• Example: 8-bit coded sequence $b = [0\ 0\ 0\ 0\ 0\ 0\ 0]$ and $c = [0\ 1\ 1\ 0\ 1\ 0\ 0\ 1]$

$$\tilde{b}(i) = [0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1]$$
 $b(i) = \tilde{b}(i) \oplus c(i) = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$

Pseudo random sequence generation in 5G¹ (1)

• Pseudo random sequences in 5G are defined by a length-31 Gold sequence

• Output sequence c(n) of length G where n = 0, 1, ..., G - 1

$$c(n) = x_1(n) \oplus x_2(n)$$

$$x_1(n+31) = x_1(n+3) \oplus x_1(n)$$

$$x_2(n+31) = x_2(n+3) \oplus x_2(n+2) \oplus x_2(n+1) \oplus x_2(n)$$

• Standard rejects first 1600 samples and uses c'(n) = c(n + 1600) instead

Pseudo random sequence generation in 5G (2)

• Pseudo random sequences in 5G are defined by a length-31 Gold sequence

- Output sequence c(n) of length G where n = 0, 1, ..., G 1
- First sequence $x_1(n)$ is initialized as

$$x_1(n) = 1$$
 $n = 0$
= 0 $0 < n \le 30$

Pseudo random sequence generation in 5G (3)

Pseudo random sequences in 5G are defined by a length-31 Gold sequence

- Output sequence c(n) of length G where n = 0, 1, ..., G 1
- Second sequence $x_2(n)$ is initialized by writing a constant c_{init} in binary form
- c_{init} is determined based on a cell ID and RNTI e.g, consider $c_{\text{init}} = 255$. Second sequence $x_2(n)$

$$x_2(n) = 1 \qquad n \le 7$$

= 0 $7 < n \le 30$

