Controls on stream carbon in the Amazon Region, Tapajos National Forest

Marc G. Kramer (1), Raimundo Cosme de Oliveira Junior (2) Christopher Potter (3), Steve Klooster (4)

- (1) University of California, Earth Sciences Department, Santa Cruz, USA, NASA Ames. (2) Embrapa Amazonia, Orienta, Belem, Para, Brasil
 - (3) NASA Ames Research Center, Moffett Field, USA (4) California State University, Monterey Bay, Seaside, CA, USA

Collaborators David Fitzjarrald et al.

Motivation

Objective: Examine the influence of land cover, topography and soil on stream hydrology and carbon flux and composition in the Amazon.

•Understand underlying controls (geomorphic and land-use change) on hydrology and carbon flux in the region at the mesocale.

•Parameterize and improve model simulations of hydrology, carbon and nitrogen dynamics.

•

Methods

- Use 90-m SRTM digital elevation (DEM) data and land cover/land use maps derived from Landsat-TM to select several catchments in the Tapajos national forest drainage area with contrasting land use, topography, and soils.
- Field sampling of throughfall, lysimeter and stream water components to provide insight into flow path dynamics and a better understanding of the chemical nature of carbon under contrasting land use patterns.
- End-member sampling of groundwater wells and throughfall.

Santarem

Soy production in Mojui Catchment

Logging activity

SRTM-derived 90m digital elevation model of the area.

Landcover Type

								715. 1765				
Basin	Drainage	Basin Elevation				Geomorphic	Primary	Non-	Green	Secondary	Shadow	Landcover
ld	area	Min	Max	Mean	Std	Setting	forest	forest	Pasture	Forest		Status
	(ha)	(m)	(m)	(m)	(m)		(%)	(%)	(%)	(%)	(%)	
Mojui	123489	56	202	125	30	Lowlands/Plateau	53	8	5	29	6	Altered
Jatuarana	14200	117	216	158	19	Plateau	97	0	0	3	0	Intact
Moju Mara	102704	77	301	179	34	Uplands	99 (60)	0	0	1	0	Intact
Branco	94492	79	318	170	38	Uplands	98 (47)	1	1	5	0	Partially Altered

Sampling Scheme

- •Syringe filtration using 0.7 µm glass fiber filters
- •100 ml of water per sample
- •Measure stream water level
- •Measure stream flow
- •Continuous water level measurements

Sampling Scheme

Monthly sampling scheme Nov 2003- April 2004 Bi-weekly April 2004-Present

PRELIMINARY RESULTS

Total Rainfall 1.74 m

2004 Rainfall from Mojui rain gauge (Courtesy Fitzjarrald et al.)

Dissolved Organic Carbon (2003-2004)

Monthly DOC Flux

Annual DOC flux

Summary

- Our results suggest topography and soils are important controls on hydrology and DOC flux in these catchments. Natural forest catchment DOC flux ranges from 20 kg/ha/year 6 kg/ha/yr depending on landform type and soil drainage.
- A strong seasonal increase in DOC concentration and flux was observed in all natural forested catchments during the wet season.
- By contrast only a slight increase DOC concentration has yet been observed in catchments which have experienced more intensive land-use change.
- These results indicate that DOC enrichment normally associated with the onset of the wet season may be reduced in catchments with more intensive land-use change. Lower amounts and concentrations of DOC in these streams may be the result of less rainfall percolation through the forest canopy [1] and flow-through in thick active A horizons found in natural forests.
- The Mojui drainage basin, where forest conversion to pasture and agriculture is greatest, had the lowest flux of DOC (3 kg/ha/yr). This may be associated with reduced stocks of above ground biomass and soil C.
- A tight linkage between stream hydrograph response and individual rainfall events was observed in upland streams.
- By contrast stream hydrograph response was not well associated with individual rainfall events in lowland streams.

Next Steps

- •Continue monitoring streams and detecting land use change. Land use change is VERY change is rapid...
- •Use stable isotopes 18O and 2H to evaluate differences in evapotranspiration between catchments.
- •Combine isotopic, chemical, hydrometric (continuous water level measurements), rainfall data to infer flow path differences between catchments.
- •Apply and test this geomorphic framework to other catchments in the region.
- •Incorporate results into a modeling framework to predict hydrologic and carbon flux over larger spatial scales and predict future changes.

