Risk-aware Sparse Predictive Control

Sparsity

promoting

Motivation: Model Pred. Control

- From chess game to control theory
- ☐ Receding horizon strategy (first action)
- ☐ Minimum pieces in chess checkmate

Objective: Sparse Pred. Control

Seek a control sequences with "risk-aware" and "input sparsity" to arrive at target set

Minimum control effort in control systems

"Soft State + Hard Input" Constrs.

$$\mathbb{P}\left\{\theta \in \Theta : h(\overline{u}, \theta) \le 0\right\} \ge 1 - \epsilon$$

$$Du_{j|t} \le d, \ j \in \mathcal{N}$$

• Fact: risk-aware solution $\overline{u}_{\epsilon}^*$ is hard to calculate !!!

Dracle: Data-Driven Sampling

Result: Prob. Robust. Guarantee

• data-driven \overline{u}_{K}^{*} approximates risk-aware $\overline{u}_{\epsilon}^{*}$ with a high probability, i.e.,

$$\mathbb{P}^{K}\left(\mathbb{P}\left(h(\overline{u}_{K}^{*},\theta)>0\right)\leq\epsilon\right)\geq1-\beta$$

SPC enjoys good sparsity and robustness