FICHE DE COURS 26

Bilan d'énergie en thermodynamique

Ce que je dois être capable de faire après avoir appris mon cours

_	Definir la notion de transformation en thermodynamique.
	Définir les adjectifs suivants pouvant caractériser une transformation : isotherme, monotherme, isobare, monobare, isochore, adiabatique, quasistatique, réversible.
	Rappeler les conditions respectives pour lesquelles ces adjectifs peuvent liquer à une transformation donnée.
	Savoir que le bilan d'une fonction d'état lors d'une transformation s'écrit comme la somme d'un terme d'échange et d'un terme de création.
	Énoncer le premier principe de la thermodynamique pour un système thermodynamique fermé macroscopiquement au repos (fonction d'état, extensivité, bilan d'énergie sans terme de création).
	Schématiser les échanges d'énergie en distinguant le travail et le transfert thermique que l'on définira.
	Montrer que le premier principe est un principe de conservation et d'équivalence.
	Distinguer l'énergie d'un système des modes de transferts d'énergie de ce système.
	Exprimer de façon générale le travail d'une force.
	Exprimer le travail des forces de pression dans le cas de transformations isobares, monobares et quasistatiques (ou mécaniquement réversible).
	Donner une interprétation du travail des forces de pression dans le diagramme de Watt.
	Distinguer sur un diagramme de Watt les cycles moteurs et des cycles récepteurs.
	Donner les trois processus d'échange d'énergie sous forme thermique.
	Appliquer le premier principe à un GP dans le cas des transformations : isochore, isotherme, monobare avec équilibre mécanique avec l'extérieur à l'état initial et à l'état final, isobare, adiabatique.
	Définir l'enthalpie d'un système thermodynamique et énoncer la deuxième loi de Joule pour un GP.
	Définir la capacité thermique à pression constante et établir les relations de Mayer du GP.
	Démontrer les lois de Laplace dans le cas de la transformation adiabatique et mécaniquement réversible d'un GP.
	Savoir qu'une transformation d'une PCI est isochore.
	Décrire l'expérience de la détente de Joule et Gay-Lussac et analyser ses résultats.
	Décrire les principes de la calorimétrie de mélange et de la calorimétrie électrique.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 \square Bilan thermodynamique d'une fonction d'état X:

$$\underset{IF}{\Delta}X = X_F - X_I = \underset{IF}{X_{\operatorname{\acute{e}ch}}} + X_{\operatorname{cr}}$$

☐ Premier principe de la thermodynamique :

$$\Delta E_c + \Delta U = W + Q$$
 et $dE_c + dU = \delta W + \delta Q$

avec d'une part :

- \star W le travail total algébriquement reçu et Q le transfert thermique total algébriquement reçu par le système étudié.
- \star δW le travail élémentaire algébriquement reçu et δQ le transfert thermique élémentaire algébriquement reçu lors d'une transformation infinitésimale.
- \square Travail des forces de pression :

$$\delta W_{\rm pr} = -P_{\rm surf} dV \qquad \text{et} \qquad W_{\rm pr} = -\int P_{\rm surf} dV$$

Cas d'une transformation monobare et d'une transformation quasistatique (QS) :

$$W_{\mathrm{pr}} = -P_{\mathrm{surf}} \Delta V$$
 et $W_{\mathrm{pr}} = -\int P \mathrm{d}V$

où P_{surf} est la pression qu'exerce le milieu extérieur sur la paroi déformable du système et où P est la pression du système quand elle est définie.

☐ Transformation d'un GP :

$$\Delta U = 0 \\ isotherme$$
 et
$$\Delta H = Q \\ + \epsilon q. méca \\ + \epsilon q. méca \\ enIetF$$

 $\hfill \square$ Relation de Mayer d'un GP et coefficient de Laplace :

$$\boxed{C_P = C_V + nR} \quad \text{et} \quad \boxed{\gamma = \frac{C_P}{C_V} > 1}$$

 $\hfill \Box$ Lois de Laplace pour une transformation adiabatique et mécaniquement réversible d'un GP :

$$PV^{\gamma} = cste$$
 ; $TV^{\gamma-1} = cste$; $P^{1-\gamma}T^{\gamma} = cste$

 $\hfill\Box$ Transformation d'une PCI :

$$\boxed{ dU \simeq dH \simeq C dT } \text{ et } \boxed{ W_{\text{pr}} \simeq 0 }$$