James Hahn

CS1645

Homework #1

1. Below are the answers to A, B, and C:

A.

Machine Type	Number of Processors	Location
Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	2,282,544	Oak Ridge National Laboratory, USA
Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	10,649,600	National Supercomputing Center in Wuxi, China
Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	1,572,480	DOE/NNSA/LLNL, United States
Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5- 2692v2 12C 2.2GHz, TH Express-2, Matrix-2000	4,981,760	National Super Computer Center in Guangzhou, China
AI Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR	391,680	National Institute of Advanced Industrial Science and Technology, Japan

		Γ
Machine Type	Number of Processors	Location
Oakforest-PACS -	556,104	
PRIMERGY CX1640		Joint Center for Advanced High
M1, Intel Xeon Phi 7250		Performance Computing
68C 1.4GHz, Intel		
Omni-Path		, Japan
Stampede2 -	367,024	Texas Advanced Computing Center/Univ.
PowerEdge		of Texas, United States
C6320P/C6420, Intel		
Xeon Phi 7250 68C		
1.4GHz/Platinum 8160,		
Intel Omni-Path		
Marconi Intel Xeon	312,936	CINECA, Italy
Phi - CINECA Cluster,	,	•
Lenovo SD530/S720AP,		
Intel Xeon Phi 7250 68C		
1.4GHz/Platinum 8160,		
Intel Omni-Path		
TSUBAME3.0 - SGI	135,828	GSIC Center, Tokyo Institute of
ICE XA, IP139-SXM2,		Technology, Japan
Xeon E5-2680v4 14C		
2.4GHz, Intel Omni-		
Path, NVIDIA Tesla		
P100 SXM2		
MareNostrum - Lenovo	153,216	
SD530, Xeon Platinum		Barcelona Supercomputing Center
8160 24C 2.1GHz, Intel		
Omni-Path		, Spain

C. 122300 / 8162 = 14.98, or about **15x faster**

2. Below are the results:

A. Speedup =
$$62 / 17 = 3.65$$

Efficiency =
$$62 / (17*4) = 62 / 68 = 91.18\%$$

B. Speedup =
$$242 / 62 = 3.90$$

Efficiency =
$$242 / (62*4) = 242 / 248 = 97.58\%$$

C. Maximum speedup for 1GB = 62 / 2 = 31

Maximum speedup for 10GB = 242 / 2 = 121

D. Efficiency(1000 processors) = 242 / (2.24 * 1000) = 242 / 2240 = 10.80%Efficiency(3000 processors) = 242 / (2.08 * 3000) = 242 / 6240 = 3.88%Efficiency gain = 10.80 - 3.88 =**6.92%**

3. Below is the pseudocode (NOTE: I swapped out Pid == 0 with Pid == 1 for ease of

calculations in the pseudocode):

```
If (Pid == 1) { /* this part is executed by processor whose Pid = 1*/
    max = my_max;
    /* receive maximum_value_1 and maximum_value_2 from processor i*2 and (i*2)+1; */
    maximum_value = max(maximum_value_1, maximum_value_2);
    if (maximum_value > max) {
        max = maximum_value;
    }
}
else { /* this part is executed by all other processors with Pid != 1 */
    /* receive max_value_1, max_value_2 from processor i*2 and (i*2)+1; */
    my_max = max(max_value_1, max_value_2);
    if (pid % 2 == 0) {
            /* send my_max to the processor whose Pid = pid/2 */;
    }
    else {
            /* send my_max to the processor whose Pid = (pid - 1)/2 */;
    }
}
```

4. Below is the pseudocode (**NOTE:** I swapped out Pid == 0 with Pid == 1 for ease of calculations in the pseudocode):

```
Let k = power of n (i.e. 2, 3, 4, ...)
If (Pid == 1) \{ /* this part is executed by processor whose Pid = 1 */
        max = my_max;
        /* receive maximum_value_list = [ maximum_value_1, maximum_value_2, ..., maximum_value_k from processor (i*k),
(i*k)+1, ..., (i*k)+(k-1) ]; */
for ( maximum_value : maximum_value_list ) {
                if (maximum_value > max) {
                       max = maximum_value;
        }
else \{\ /*\ 	ext{this part is executed by all other processors with Pid }!=1*/
       /* receive max_value_list = [ max_value_1, max_value_2, ..., max_value_k from processor (i*k), (i*k)+1, ...,
(i*k)+(k-1)]; */
        my_max = max_value_list[0];
        for ( max_value : max_value_list ) {
                if max_value > max) {
                        my_max = max_value;
        if (pid % k == 0) {
                /* send my_max to the processor whose Pid = pid/k */;
        else {
                for (i = pid; i > k; i--) {
                        if (i % k == 0) {
                                /* send my_max to the processor whose Pid = (pid - 1)/k */;
                }
       }
}
```