Otimização por Algoritmos Genéticos

Aula 02

Ana Carolina Abreu Felipe Borges

prof.carolina@ica.ele.puc-rio.br

prof.felipe@ica.ele.puc-rio.br

Conceitos

Os Algoritmos Genéticos são algoritmos baseados nos mecanismos de seleção natural e genética.

São inspirados no Princípio da Evolução das Espécies proposto por Darwin:

"quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes."

Conceitos

Os Algoritmos Genéticos são flexíveis e permitem a fácil inclusão de instruções específicas para o problema de interesse;

A qualidade dos resultados depende diretamente da qualidade da modelagem do problema:

- ■representação cromossômica e decodificação;
- ■função de avaliação;
- operadores genéticos.

Problema

- •Estudo de <u>Contexto do Problema:</u> Conhecer regras, restrições, objetivos, procedimentos em uso, etc.
- •GAs são indicados em problemas difíceis de otimização:
 - muitos parâmetros e variáveis;
 - mal estruturados: com condições e restrições, difíceis de serem modeladas matematicamente;
 - # grandes espaços de busca onde não é possível a busca exaustiva.

Representação

Representação é fundamental na modelagem de um GA e deve:

- descrever o espaço de busca relevante ao problema
- * codificar geneticamente a "essência" do problema
- ser compatível com os operadores (crossover e mutação) representação adequada evolução, otimização

Representação

- Consiste em uma maneira de traduzir a informação do problema em uma maneira viável de ser tratada pelo computador;
- Quanto mais ela for adequada ao problema, maior a qualidade dos resultados obtidos.

Representação

Tipo de Problema

 \leftrightarrow

Representação

- Numérico
- Ordem
- Grupo
- Misto

- Binário, Real, Inteiro
- Lista
- Vetor
- Mista

Representação em binário

- Primeiro tipo de representação em Algoritmos Genéticos
- Número real é codificado através de um número binário de K bits
- Representação binária descreve um real em detalhes (genes):

13 em binário = 1101=
$$1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 =$$

Representação em binário

- representa números na menor base (2)
- * simples de criar e manipular
- produz bons resultados
- # fácil decodificação numérica (inteiro, real)
- # facilita a demonstração, porém nem sempre é adequada

Decodificação

Construir a solução para o problema a partir de um cromossoma:

Cromossomas "representam" soluções.

■A decodificação é a etapa que permite que cada indivíduo seja efetivamente avaliado;

cromossomo

decodificação

$$0 * 2^6 + 0 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 27$$

Exemplo

Como representar soluções dada a seguinte função de avaliação: $f=x^2-2x$

Considere a população de 10 indivíduos a seguir:

- a) REPRESENTAÇÃO: codificados em binário
- b) DECODIFICAÇÃO: converter os de número binário para decimal.
- c) AVALIAÇÃO: avaliar a população, considerando a função f(x)

ID	REPRESENTAÇÃO	DECODIFICAÇÃO	AVALIAÇÃO
Α	1011	11	99
В	1111	15	195
С	0010	2	0
D	1101	13	143
E	1000	8	48
F	0011	3	3
G	1110	14	168
Н	1100	12	120
1	1010	10	80
J	0111	7	35

Exercício

Considere a população de 10 indivíduos a seguir, codificados com sequências de 6 bits.

ID	INDIVÍDUO
Α	10101
В	111111
С	101010
D	11110
E	100001
F	111
G	1110
Н	1111
1	101011
J	101111

- 1 Decodifique cada um dos indivíduos, convertendo-os de número binário para decimal.
- 2- Avalie a população, considerando a função f(x) a seguir, a ser maximizada

$$f(x)=x^3+15x$$

Representação

Exemplo

Problema das quatro rainhas

Envolve decidir como dispor as rainhas em um tabuleiro de xadrez de dimensão 4 x 4, de forma que nenhuma delas seja atacada por outra. Para tanto, é necessário que duas rainhas quaisquer não estejam numa mesma linha, coluna ou diagonal.

Representação

Exemplo

Problema das quatro rainhas

Representação

Exemplo

Problema das quatro rainhas

Representação

Problema das quatro rainhas

• Pense em uma maneira eficiente de representar e decodificar cada solução no problema das quatro rainhas.

Como seria o cromossomo? Quantos genes teria e o que cada gene representaria?

Observação: Não é para apontar a resposta ótima do problema e sim uma maneira de modelar o mesmo através de Algoritmos Genéticos.

Representação

Exemplo

• Problema das quatro rainhas — uma solução ótima

Avaliação

Problemas em que a solução é tipo "tudo ou "nada" devem ter sua avaliação modificada a fim de introduzir um certo gradualismo;

Por exemplo, no caso das 4 rainhas, pode-se verificar quantas rainhas satisfazem todas as restrições.

Avaliação

- ■É maneira utilizada para determinar a qualidade de um indivíduo como solução do problema em questão;
- ■A função de avaliação permite diferenciar entre as boas e más soluções para um problema;
- ■Devem embutir todo o conhecimento que se possui sobre o problema a ser resolvido, assim como, seus objetivos de qualidade.

Seleção

• O método de seleção de pais deve simular o mecanismo de seleção natural, onde pais mais capazes geram mais filhos, ao mesmo tempo em que os pais menos aptos também podem gerar descendentes.

Seleção

Método da roleta

Cria-se uma roleta na qual cada cromossomo recebe um pedaço proporcional a sua avaliação.

indivíduo	avaliação	pedaço da roleta (%)		
0 0 0 1	1	1,61		
0 0 1 1	9	14,51		
0 1 0 0	16	25,81		
0 1 1 0	36	58,07		
	62	100,0		

Avaliação

- ■É maneira utilizada para determinar a qualidade de um indivíduo como solução do problema em questão;
- ■A função de avaliação permite diferenciar entre as boas e más soluções para um problema;
- ■Devem embutir todo o conhecimento que se possui sobre o problema a ser resolvido, assim como, seus objetivos de qualidade.

Avaliação

Método clássico

Atribuir como aptidão de um cromossoma o valor numérico do resultado da avaliação. Este método, embora utilizado em muitos problemas, pode apresentar duas situações que precisam ser tratadas:

- Superindivíduo;
- Competição próxima.

Avaliação

Superindivíduos

Os superindivíduos são indivíduos com avaliação muito superior à média, que podem dominar o processo de seleção;

A presença de superindivíduos impedem que o Algoritmo Genético obtenha novas soluções, potencialmente melhores;

Avaliação

Superindivíduos

Avaliação

Competição próxima

Indivíduos cujas aptidões são numericamente muito próximas dificultam a distinção entre eles quanto à qualidade da solução proporcionada;

Avaliação

Competição próxima

$$f(x,y) = 999.5 - \frac{\left(sen\sqrt{x^2 + y^2}\right)^2 - 0.5}{\left(1.0 + 0.001 * (x^2 + y^2)\right)^2}$$

Avaliação

A fim de resolver os problemas de superindivíduos e competições próximas, existem técnicas de alteração da função de avaliação:

- Normalização
- Windowing

Avaliação

Normalização

Consiste em dar valores às avaliações dentro de um intervalo determinado;

Avaliação

Normalização

Consiste em dar valores às avaliações dentro de um intervalo determinado;

Avaliação

Normalização

Outros tipos de normalização:

$$V' = novo_{min} + \left(\frac{novo_{max} - novo_{min}}{n-1}\right) * (i-1)$$
 (1)

$$V' = log_2(v)$$
 (2)

$$V' = log_{10}(v)$$
 (3)

$$V' = \frac{v - min}{max - \min} \tag{4}$$

$$V' = \frac{v - min}{max - min} * (novo_{max} - novo_{min}) + novo_{min}$$
 (5)

Original	(1)	(2)	(3)	(4)	(5)
256	10	8,0	2,4	1,00	10,00
16	7	4,0	1,2	0,06	1,53
9	4	3,2	1,0	0,03	1,28
1	1	0,0	0,0	0,00	1,00

Avaliação

Normalização

Outros tipos de normalização:

$$V' = novo_{min} + \left(\frac{novo_{max} - novo_{min}}{n-1}\right) * (i-1)$$
 (1)

$$V' = log_2(v) \mid (2)$$

$$V' = log_{10}(v)$$
 (3)

$$V' = \frac{v - min}{max - min} \tag{4}$$

$$V' = \frac{v - min}{max - min} * (novo_{max} - novo_{min}) + novo_{min}$$
 (5)

original

─Eq (1)

— Eq (2) — Eq (3)

—Eq (4)

— Eq (5)

Exercício

Decodifique e avalie os indivíduos da tabela a seguir, considerando a função $f(x) = x^3 + 13$. Em seguida compare as roletas de seleção criadas a partir das aptidões desses indivíduos, considerando as avaliações normalizadas e não normalizadas. Utilize todas as equações de normalização apresentadas em aula. Para os casos de normalização com novos valores de mínimo e máximo utilize, respectivamente, 1 e 10.

Indivíduos
00100
00101
00110
00111
01010
00010
11111
00111
01100
00001
00011
01000
01001
10000

Avaliação

Windowing

Consiste em achar o valor mínimo dentre as funções de avaliação da nossa população e designar para cada um dos cromossomos uma avaliação que seja igual à quantidade que excede este valor mínimo.

$$V' = v - vmin$$

Aptidão mínima de "sobrevivência"

$$V' = v - vmin + APmin$$

Avaliação

14/	•		1			•		
W	ı	n	N	U	W	ı	n	u
* *	ı	•	ч	U	**	ı	•	у

indivíduo	avaliação	windowing	windowing com avaliação mínima
x1	999,979	0,913	0,963
x2	999,066	0	0,05
x3	999,514	0,448	0,498

Exercício

Considerando as avaliações próximas referentes aos indivíduos da tabela a seguir, compare as roletas de seleção destes indivíduos utilizando ou não o windwing e o windwing com avaliação mínima (considere a avaliação mínima = 0,005).

Indivíduos
99,9889
99,9899
99,9978
99,9980
99,9991
99,9788
99,9456
99,9923
99,9880
99,9934
99,9900
99,9888
99,9699
99,9099
99,9900

Representação

- Consiste em uma maneira de traduzir a informação do problema em uma maneira viável de ser tratada pelo computador;
- Quanto mais ela for adequada ao problema, maior a qualidade dos resultados obtidos.

Representação

Exemplo

Problema das quatro rainhas

Envolve decidir como dispor as rainhas em um tabuleiro de xadrez de dimensão 4 x 4, de forma que nenhuma delas seja atacada por outra. Para tanto, é necessário que duas damas quaisquer não estejam numa mesma linha, coluna ou diagonal.

Representação

Exemplo

Problema das quatro rainhas

Representação

Exemplo

• Problema das quatro rainhas

Representação

Exemplo

Problema das quatro rainhas - abordagem 1

Representação

Problema das quatro rainhas

• Pense em uma maneira eficiente de representar e decodificar cada solução no problema das quatro rainhas.

Como seria o cromossomo? Quantos genes teria e o que cada gene representaria?

Observação: Não é para apontar a resposta ótima do problema e sim uma maneira de modelar o mesmo através de Algoritmos Genéticos.

Otimização por Algoritmos Genéticos

Ana Carolina Abreu Felipe Borges

prof.carolina@ica.ele.puc-rio.br prof.felipe@ica.ele.puc-rio.br