An adapted ray-launching method for optimising wifi coverage.

Hayley Wragg H.Wragg@bath.ac.uk

Supervisors: Prof. C. J. Budd, Dr. R. Watson, Dr. K. Briggs, Dr. M. Fitch

University of Bath, BT

Overview of ray-launching methods

- Use rays to model electromagentic waves.
- Rays give the direction of the waves.
- Calculate the field or power using ray lengths.

Mathematical motivation

• A model for the field is the **Helmholtz equation**:

$$\nabla^2 \boldsymbol{\phi}(\mathbf{x}) + \underbrace{k}_{\text{Number}} {}^2 \boldsymbol{\phi}(\mathbf{x}) = 0. \tag{1}$$

ullet Where k is the wave number given by

$$k = 2\pi(\lambda^{-1}) = 2\pi(\text{wavelength}^{-1})$$

ullet Using the WKB ansatz $oldsymbol{\phi} = u(\mathbf{x})e^{ikS(\mathbf{x})}$,

$$k^{-2}\Delta u - (|\nabla S|^2 - 1 + i(k^{-1})(2(\nabla S \cdot \nabla) + \Delta S))u = 0$$

Using the expansion $u = u_0 + k^{-1}u_1 + k^{-2}u_2 + ...$

$$O(k^2): e^{ikS} \Big(1 - |\nabla S|^2\Big) u_0 = 0$$

$$O(k): e^{ikS} \left[\left(1 - |\nabla S|^2 \right) u_1 + i \left(2i \left(\nabla S \cdot \nabla \right) u_0 + \Delta S u_0 \right) \right] = 0$$

$$O(k^0): e^{ikS} \left[\Delta u_0 + \left(1 - |\nabla S|^2\right) u_2 + i \left(2 \left(\nabla S \cdot \nabla\right) u_1 + \Delta S\right) \right]$$

Since $k \gg 1$, S satisfies the **Eikonal Equation**:

$$|\nabla S|^2 = 1 \Rightarrow |\nabla S| = 1 \tag{}$$

Definition (wavefront)

Wavefronts $W(\mathbf{x})$ of a solution to (1) are the surfaces with $S(\mathbf{x}) = constant$.

Definition (ray)

Rays parameterised by σ corresponding to a wavefront $W(\mathbf{x}(\sigma))$, are the curves orthogonal to $W(\mathbf{x}(\sigma))$.

i.e. Set $\gamma(\mathbf{x})$ to be an arbitrary proportionality factor. Then $S(\mathbf{x})$ and σ satisfy the orthogonality condition.

$$\frac{dx_j}{d\sigma} = \gamma(\mathbf{x}) \frac{dS}{dx_j}, \quad j = 1, 2, 3.$$
 (4)

The equation of the ray is a straight line when $S(\mathbf{x})$ satisfies the Eikonal equation. The transport equations can then be used to find $u_0(\mathbf{x})$.

Why ultra-high frequency?

f / GHz		<u>'</u>	pros		cons
2.5	Wifi			penetrates walls	narrow bandwidth
5	V V 11		well understood	penetrates wans	less reflection
3.4		4G			expensive
30	5G		wide bandwidth low cost	reflects	doesn't penetrate walls still under study
60					susceptible to roughness short range

- New technologies enable ultra-high frequency electromagnetic waves.
- Old propagation models are designed for lower frequencies.
- This research focuses on a **domestic environment**.
- This model will then be used to optimise **the** location of transmitters, the choice of transmitters, and the number of transmitters in the home.

Trajectory approximations

• Take a template room and consider the ray paths from the transmitter.

Figure 1

• In Figure (1) ray-launching has been applied to a 2D and 3D environment. The rays show the directions the electromagnetic wavefronts travel in.

Adapted ray-launching method

Storage structure

- Discretise the environment into N_x , N_y , and N_z pieces in the x,y and zdirections so that the spacing in each direction is δ .
- Each term in the mesh corresponds N_{Ra} +1) × to a (N_{Re} * number of number of reflections rays
- N_{Ob} $*N_{Re}+1)$ sparse matrix.

Each term in this matrix corresponds to a possible ray (N_{Ra}) , obstacle (N_{Ob}) interaction after N_{Re} reflections.

• Form the ray cone.

reflection history

ray travels to the

centre point of the

elements in the cone.

and the distance the

• Store the **ray**

Figure 2: Cone on mesh

Storing the ray history

- ullet Initialise a temporary vector $oldsymbol{v}$ as empty with datatype complex and length $N_{Ob} * N_{Re} + 1$.
- ullet The obstacle number n_{Ob} , reflection angle $heta_i$, reflection number $n_{Re} \geq 1$ are stored by putting $(e^{j\theta_i})$ in the row $N_{Ob} * (n_{Re} - 1) + n_{ob}$ of v.
- If $n_{Re} = 0$ (i.e line of sight) then 1 is put in the 1^{st} row but is removed before the next reflection.

$$oldsymbol{v} = \sum_{N_{Ob}*(n_{Re}-1)+n_{ob}}^{\bullet} \left(egin{array}{c} \vdots \\ e^{j heta_i} \\ \vdots \\ N_{Ob}*N_{Re} \end{array}\right)$$

Multiply $oldsymbol{v}$ by the distance the ray has traveled. Then store in n_{Ra} $+n_{Re}$ in the mesh element the column number number

of reflections ray has gone through.

Output

• If $n_{Re} > 0$ the column $N_{Re} * n_{Ra} + n_{Re}$ must be either empty or contain

 n_{Re} terms.

• If $n_{Re} = 0$ (i.e. line of sight path) then then column is either empty or contains 1 term in the first row.

- The grid of sparse matrices is returned by the algorithm.
- To get the field or power combine this output with the parameters: dielectric properties of the obstacles, the antenna pattern, and the frequency.

Wifi coverage – Power evaluation

- Calculate the electric/magnetic field from rays using free-space attenuation and loss at reflections.
- The Friis transmission formula gives the field at the receiver ϕ_r in terms of the field at the transmitter ϕ_t , in free-space. A receiver distance r from the transmitter has field:

• The Fresnel reflection coefficients[1] gives the field after reflection^a,

 $\Gamma_{||} \& \Gamma_{\perp}$ depend on the **permittivity** (ϵ) & **permeability** (μ) of the media and the angle of incidence and transmission; ϵ and μ vary with frequency.

- Compute the power from the mesh^b:
 - 1: AnglesMesh=angle(Mesh[nonzero terms])
 - 2: RefMesh=Fresnel(AnglesMesh)
 - 3: CombineRefMesh= $\prod row = r$, RefMesh[r, c]
 - 4: FieldMesh= $\sum_{col=c} \frac{\sqrt{G_{Tc}G_R}}{|\mathsf{Mesh}[c]|}$ CombineRefMesh
 - 5: FieldMesh= $|\phi_0^*| \frac{\lambda}{4\pi}$ FieldMesh
 - 6: PowerMesh= C_{λ} |FieldMesh| 2

(a) First source location

(b) Second source

Figure 3: The power over the environment for two source locations.

|a| & \perp refer to the terms parallel to the polarisation & perpendicular to the polarisation respectively.

 ${}^b \phi$ = the electric field $C_{\lambda} = \epsilon_0 |\phi|^2$, or ϕ = the magnetic field $C_{\lambda} = \mu_0 |\phi|^2$

Comparison to other methods

	Standard ray-launching methods	Adapted ray-launching method	Wave solvers, e.g FDTD, FEM, BEM
Inputs	All environment information	Just the obstacle locations	All environment information in the form of boundary condition
Finds reflection points	Yes	Yes	No
Mesh size	Independent of wavelength	Independent of wavelength	Proportional to the wavelength.
Iteration using rays	Calculate the field along the rays. Convert to power at the end.	Store the history of the ray	N/A
Output	Mesh of power values corresponding to the environment.	Mesh of sparse matrices corresponding to the ray histories.	Mesh of power values corresponding to the environment.
Vary the inputs	Repeat entire process.	Use same output, sub in new values on the power evaluation.	Repeat entire process.
Investigate sensitivity to objects	Many iterations of the whole method.	Apply a function for the derivative of the obstacle coefficient with respect to either ϵ or μ to the output grid.	Many iterations of the whole method.

References

- [1] S Saunders and A Aragon-Zavala. Antennas and Propagation for Wireless Communication Systems. Manning Publications Co., Connecticut, USA, 2008.
- [2] Yingli Wang and Stephen Pettit. E-Logistics: Managing Your Digital Supply Chains for Competitive Advantage.

Kogan Page Publishers, 2016.

-Background.