E204

FÍSICA DOS SEMICONDUTORES

- No ano de 1913, Bohr aplicou ao estudo do átomo a teoria dos quanta, proposta por Max Planck em 1905.
- Conforme essa teoria, a energia eletromagnética é múltipla de um valor fundamental denominado *quantum.*
- A lei de Planck estabelece que um quantum de energia de qualquer irradiação eletromagnética é proporcional a frequência dessa irradiação, ou seja

$$E_g = h.f$$

onde f corresponde à frequência de irradiação em hertz e $h = 6,626 \times 10^{-34} J.s$ é a constante de Planck.

Max Karl Ernst Ludwig Planck

Niels Henrik David Bohr

Bohr relaciona a distribuição dos elétrons na eletrosfera com a sua quantidade de energia que é liberada na forma de "pacotes", não na forma contínua. Esses "pacotes" de energia ficaram conhecidos como quantum de energia.

Postulados de Bohr (Quatro Postulados que permitem identificar o comportamento dos elétrons no átomo)

- 1. Os elétrons se movimentam em órbitas circulares estáveis ao redor do núcleo, denominadas órbitas estacionárias, e, em quanto em órbita, não emitem nenhuma energia.
- 2. Ao absorver energia o elétron afasta-se do núcleo e ocupa uma órbita estacionária correspondente ao seu novo valor de energia. Se um elétron emite (perde) uma certa quantidade de energia correspondente a diferença entre dois níveis, ou seja, um quantum de energia, ele ocupará uma camada mais interna do átomo.
- 3. O quantum de energia necessário para deslocar um elétron é inversamente proporcional à distância entre a posição do elétron e o centro do núcleo do átomo.
- 4. A facilidade de ativação de um elétron, com sua mudança de energia, varia dentre os átomos dos diferentes elementos da natureza.

• Cada órbita estacionária é denominada de estado estacionário e pode ser designada por letras:

Cada camada pode apresentar um número máximo de elétrons

Nível (n)	Camada	Número máximo de Elétrons		
1	K	2		Eletrosfera
2	L	8		Lictrosicia
3	M	18	8 18 32 32 18 8 2 K L M N O P Q	Núcleo
4	N	32		
5	Ο	32		Elétron
6	Р	18		
7	Q	8		

- Cada nível de energia (camadas eletrônicas) é caracterizado por um número quântico (n), que pode assumir valores inteiros: 1,2,3,4,5,6,7.
- Alta energia nas órbitas maiores. Energia que podem levar elétrons para órbitas maiores são: Calor, luz e tensão.

Partículas	Massa Relativa	Carga
Nêutron	1	0
Próton	1	+ e = 1,6x10 ⁻¹⁹ C
Elétron	1/1836	- e = 1,6x10 ⁻¹⁹ C

- Em uma estrutura atômica isolada existem níveis discretos de energia, associados à órbita do elétron.
- Os Gaps de energia correspondem aos intervalos existentes entre os níveis discretos de energia.
- A energia associada a cada elétron é medida em elétron volts, o que corresponde a energia absorvida por um elétron submetido a uma diferença de potencial de 1 [V].

$$W = Q \times V = 1,6 \times 10^{-19} [C] \times 1[V] = 1,6 \times 10^{-19} [J] = 1[eV]$$

• A energia necessária para mover um elétron de um nível de energia para outro é dada por

$$E_g = \frac{h.c}{\lambda} = h.f[J].$$

Onde:

h = Constante de Planck = $6,626 \times 10^{-34} [J.s]$

 $c = Velocidade da Luz = 3 \times 10^8 [m/s]$

 λ = Comprimento de onda da irradiação [m]

f = Frequência em [Hz]

https://www.vascak.cz/data/android/physicsatschool/template.php?s=atom_vodik&l=pt

Os materiais pode ser classificados quanto a sua condutibilidade elétrica em Isolantes, Condutores ou Semicondutores.

- A 0 K ou 273,15° C, todos os elétrons da banda de valência dos semicondutores estão presos à camada mais externa do átomo, denominada Banda de Valência.
- À temperatura ambiente (300 K ou 25° C), um grande número de elétrons de valência adquirem energia suficiente para sair da banda de valência e atravessar o Gap de energia (Banda Proibida), definido por E_g, e entrar na **Banda de Condução**.

Energia necessária para chegar a banda de condução:

- Silício (Si): $E_g = 1,1$ [eV]
- Germânio (Ge): $E_g = 0.67$ [eV]
- Arseneto de Gálio (GaAs): E_g = 1,43 [eV]
- Isolante: $E_g = 5$ [eV] praticamente não possuem elétrons livres na banda de condução. A Mica, isolante térmico possui uma resistividade na ordem de $10^{12} \Omega.cm$.

Condutor: Tem elétrons na banda de condução mesmo a 0 K. Isso ocorre devido a sobreposição das bandas de valência e condução. O cobre que é um condutor elétrico, possui uma resistividade na ordem de $10^{-6}\,\Omega.cm$.

Energia

Sobreposição de bandas

Banda de condução

Banda de valência

Condutor

Semicondutor

de condução

- Semicondutor: Possuem bandas proibidas inferiores a 2 [eV], o que resulta em resistividade menor que a dos isolantes e maior do que a dos condutores. O silício, semicondutor muito empregado na confecção de dispositivos eletrônicos, possui uma resistividade de aproximadamente $50 k \Omega.cm$.
- Nos materiais semicondutores, a banda proibida revelará a sensibilidade de cada material às variações de temperatura.
- No caso do Ge, ó número de elétrons que absorvem energia térmica e entram na banda de condução é maior do que no Si, devido ao menor valor do Gap de energia necessária para vencer a Banda proibida.

- Os materiais semicondutores in natura se caracterizam por serem tetravalentes, ou seja, possuem 4 elétrons na Banda de valência.
- O silício (Si), número atômico 14, e o Germânio (Ge), número atômico 32, são os materiais semicondutores mais usados na construção de dispositivos eletrônicos.

Estrutura Atômica do Ge e do Si

Camada de valência (4 elétrons de valência)

Tabela Periódica

Trivalentes: Boro, Alumínio, Gálio, Índio, Tálio, Ununtrio

Tetravalentes: Carbono, Silício, Germânio, Estanho, Chumbo e Ununquádium Pentavalentes: Nitrogênio, Fósforo, Arsênio, Antimônio, Bismuto, Ununpentio

Rede Cristalina do Si Intrínseco (Modelo completo)

Semicondutor intrínseco é aquele encontrado na natureza na sua forma mais pura, ou seja quando não têm dopagem, têm apenas átomos do semicondutor-base.

Rede Cristalina do Si Intrínseco (Modelo completo)

• A ligação entre átomos estabelecida pelo compartilhamento de elétrons é chamada de ligação covalente.

Rede cristalina do Si intrínseco

Geração do par Elétron - Lacuna

Estado Livre

- À temperatura ambiente, elétrons da banda de valência absorvem energia de fontes externas e quebram ligações covalentes, assumindo um estado livre.
- Os elétrons livres, denominados portadores intrínsecos, se tornam sensíveis a campos elétricos externos podendo produzir corrente elétrica.
- O número de portadores intrínsecos de um semicondutor é importante na determinação da sua utilização, entretanto, outro fato importante é a mobilidade relativa desses portadores intrínsecos dos portadores livres se deslocarem por todo o semicondutor.
- A temperatura ambiente, o número de portadores intrínsecos por centímetro cúbico no Ge é 1,67 mil vezes maior do que no Si e 14,7 milhões de vezes maior do que GaAs (Arseneto de Gálio).
- Portadores intrínsecos por cm³, à temperatura ambiente:

GaAs: 1,7 x 10⁶ portadores intrínsecos (elétrons livres)

Si: 15 x 10⁹ portadores intrínsecos (elétrons livres)

Ge: 25 x 10¹² portadores intrínsecos (elétrons livres)

Mobilidade Relativa

- Os portadores livres no GaAs têm mobilidade relativa maior do que 5 vezes com relação ao Si.
- O resultado é que os dispositivos eletrônicos construídos com GaAs podem ser 5 vezes mais rápidos do que os construídos com Si.
- A mobilidade relativa dos portadores livres no Ge é maior de 2 vezes do que no Si.

Semicondutor	Mobilidade Relativa (cm²/V.s)
Si	1500
Ge	3900
GaAs	8500

Materiais Semicondutores: Ge, Si, GaAs

1947

- Os primeiros transistores. Fabricados usando o Ge, pois é fácil de refinar até se obter níveis elevados de pureza.
- Porém, transistores de Ge tem baixa confiabilidade, pois são muito sensíveis a temperatura em razão do valor baixo de Gap de energia necessário para gerar portadores intrínsecos.

1954

- Os primeiros transistores de Si, menos sensíveis a temperatura são lançados.
- Porém, com o surgimento de circuitos operando em velocidades cada vez maiores, a mobilidade relativa do Si passou a limitar sua utilização em projetos operando em altas frequências ou altas velocidades de comutação.

Materiais Semicondutores: Ge, Si, GaAs

1970

- Os primeiros transistores GaAs.
- Menos sensível à temperatura e com velocidade de operação 5 vezes superior ao Si.
- A limitação do semicondutor de GaAs está no custo de fabricação, o que, atualmente, limita o seu uso a projetos de circuitos integrados de alta velocidade.
- Atualmente o uso do Ge, por ser altamente sensível a temperatura, encontra aplicação em número limitado de áreas. Por ter mobilidade relativa melhor do que o Si, ainda são utilizados em aplicações de rádio frequência de alta velocidade.
- O Si, menos sensível a temperatura do que o Ge e com mobilidade relativa inferior a do GaAs, atualmente, é líder em materiais semicondutores para componentes eletrônicos e CIs.

Ionização

Processo pelo qual um átomo perde ou ganha elétrons.

Recombinação

- A ionização térmica resulta na geração de pares elétrons-lacuna.
- Os elétrons e lacunas livres se movem aleatoriamente através da estrutura do cristal e, nesse processo, alguns elétrons podem preencher algumas lacunas, o que denomina-se recombinação.
- Da recombinação resulta o desaparecimento de pares elétrons-lacuna livres.
- No equilíbrio térmico, a taxa de recombinação é igual à taxa de ionização.

Difusão e Deriva

- São mecanismos através dos quais elétrons e lacunas se movimentam através de uma cristal.
- Difusão: Corresponde a um fluxo de portadores de cargas (elétrons ou lacuna) de uma região de maior para uma de menor concentração de cargas, gerando um fluxo líquido de cargas, ou seja, corrente elétrica.
- Deriva: Corresponde a um movimento de cargas originado a partir da aplicação de um campo elétrico.

Material Intrínseco e Material Extrínseco

- Material Intrínseco: Material semicondutor livre de impurezas.
- Material Extrínseco: Material semicondutor submetido ao processo de dopagem.
 - Tipo n
 - Obtido a partir de impurezas pentavalentes (5 elétrons na banda de valência).
 - Exemplos: Antimônio, Arsênio, Fósforo.
 - Tipo *p*
 - Obtido a partir de impurezas trivalentes (3 elétrons na banda de valência).
 - Exemplos: Boro, Gálio, Índio.

Estrutura Atômica do Ga e do As

Três elétrons de valência

As

Arsênio (33)

Cinco elétrons de valência

• Átomo Trivalente (Ga) e átomo Pentavalente (As)

Rede cristalina do GaAs intrínseco

Tipo n

Dopagem com átomos Pentavalentes

Dopagem com impurezas Pentavalentes

Tipo n

- O 5º elétron do átomo de impureza não estabelece uma ligação covalente, ficando situado na banda proibida e tenuamente ligado ao átomo de origem.
- Portanto, precisará de menor energia para saltar para a banda de condução:

- E_g = 0,05 [eV] para o Silício (Si)
- $E_g = 0.01$ [eV] para o Germânio (Ge)
- À temperatura ambiente, em um material intrínseco de Si, existe 1 elétron livre para cada 10¹² átomos. No Ge 1 em 10⁹ átomos.

Energia

E, Original

- Para um nível de dopagem de 1 átomo de impureza para cada 10 milhões de átomos de Si (1:10⁷), tem-se um aumento na concentração de portadores livres de 100.000:1 (10¹²/10⁷ = 10⁵).
- As impurezas difundidas com 5 elétrons de valência são chamadas de átomos doadores.

Tipo p

Dopagem com impurezas Tritavalentes

Tipo p

- Com impurezas trivalentes haverá insuficiência de elétrons para completar as ligações covalentes, resultando em lacunas que aceitarão elétrons.
- A condução pelo efeito lacuna se dará quando um elétron adquire energia suficiente para quebrar a sua ligação covalente.

• Assim, ocupará uma lacuna existente e, assim, criar uma nova lacuna na ligação covalente que liberou o elétron.

O efeito Lacuna

- O elétron que se desloca para preencher uma lacuna existente não é livre.
- O efeito elétrico corresponde ao deslocamento de uma lacuna e, portanto, a condução se dá pelo deslocamento de lacunas livres.

Portadores Majoritários

- No estado intrínseco, apenas os elétrons que receberam energia suficiente para quebrar uma ligação covalente se encontram na banda de condução.
- Em um material tipo **n**, o número de lacunas é praticamente o mesmo em relação ao estado intrínseco de semicondutor, mas o número de elétron livres excede, em muito, o número de lacunas, sendo denominados de Portadores Majoritários.
- Já para um material tipo p, as lacunas livres são os Portadores Majoritários.

Cristal tipo p e Cristal tipo n

- Para um átomo pentavalente, quando o 5° elétron abandona o átomo de origem, este adquire uma carga positiva (íons doadores).
- O átomo trivalente, ao receber um elétron, adquire uma carga negativa (íons receptores).

- A junção é a borda onde as regiões do tipo p e do tipo n se encontram, e diodo de junção é outro nome para um cristal pn.
- A palavra diodo é a contração de dois eletrodos, onde *di* representa dois.

Barreira de Potencial

- Os elétrons que se difundem para dentro da região p, se recombinam com as lacunas majoritárias de p e as lacunas que se difundem para dentro da região n se recombinam com o elétron majoritários de n, o que resulta no desaparecimento de lacunas livres do lado p e elétrons livres do lado n.
- Como a recombinação se dá próxima a região da junção, surgirão cargas fixas (íons) negativas no lado p e positivas no lado n. Haverá então uma região de depleção (redução) de portadores de carga de ambos os lados da junção chamada de Região de Depleção.
- A presença de cargas fixas dos dois lados da junção dará origem a um campo elétrico que se oporá à difusão de lacunas na região n e de elétrons na região p, agindo como uma barreira, denominada Barreira de Potencial, a ser superada para que novos elétrons e lacunas se difundam.

Corrente de Difusão e de Deriva (Saturação)

- Corrente de Difusão (I_{mai}):
 - Existe uma maior concentração de lacunas do lado p e de elétrons do lado n (portadores majoritários), logo, lacunas se difundirão de p para n e elétrons de n para p, formando a corrente de difusão.
- Corrente de Deriva ou de saturação (I_S):
 - Os portadores minoritários, elétrons do lado *p* e lacunas do lado *n* se difundirão para a borda da região de depleção, onde serão acelerados pelo campo elétrico lá existente, passando de *p* para *n* e de *n* para *p*, formando a corrente de saturação. O nome saturação significa que não poderá obter-se mais portadores minoritários do que os gerados pela energia térmica.

Corrente de Difusão e de Deriva (Saturação)

- Corrente de Difusão (I_{mai}):
 - É fortemente dependente da largura da barreira de potencial.
- Corrente de Deriva ou de saturação (I_S):
 - Formada pelos portadores minoritários, depende da temperatura. Como não há corrente externa, concluise que $I_{maj} = I_S$.

Corrente de Deriva e Fuga

- Corrente de Fuga (I_{fuga}):
 - Pequena corrente que circula pela superfície do cristal. Provocada pelas impurezas na superfície e estrutura do cristal.
- Diferença entre I_{fuga} e I_S:
 - I_S (muito pequena e depende da Temperatura)
 - I_{fuga} (muito pequena e depende da Tensão)
 - Em uma estrutura com polarização direta, como estudaremos no próximo capítulo, essas correntes são aproximadamente zero.