Diplomado: Herramientas de Programación para Ciencias e Ingeniería

Módulo: MATLAB

Docente: Juan Sebastián Salcedo Gallo

Universidad Nacional de Colombia Sede Manizales

Módulo: MATLAB

Objetivo general: Nivelar en conocimientos básicos del lenguaje de programación MATLAB a los estudiantes admitidos a programas de Ciencias e Ingeniería con el fin de desarrollar habilidades en el uso de herramientas básicas en programación.

Población a la que está dirigido: Estudiantes admitidos a la Universidad Nacional de Colombia Sede Manizales para el primer semestre de 2019.

Duración: 30 horas.

Contenido

- Introducción a MATLAB
- 2. Operadores aritméticos
- 3. Comandos de propósito general, constructores de lenguaje
- Manipulación de matrices, funciones de funciones, funciones de cadena, entrada y salida
- 5. Gráficos e impresión
- Funciones elementales, álgebra lineal numérica, funciones polinomiales e interpolación
- 7. Análisis básico de datos (Estadística).
- 8. Cálculo simbólico con MATLAB, variables y funciones simbólicas.

Contenido

- 9. Sustitución y operadores funcionales
- 10. Cálculo de límites y series
- 11. Cálculo de derivadas e integrales básicas
- 12. Solución de ecuaciones
- 13. Proyecto final

1. Introducción a MATLAB

¿Qué es MATLAB?

(abreviatura de *MATrix LABoratory*, "laboratorio de matrices")

- Es un sistema de cómputo numérico que ofrece un entorno de desarrollo integrado (IDE) con un lenguaje de programación propio (lenguaje M).
- Este lenguaje es interpretado y de alto nivel. Este lenguaje permite operaciones de vectores y matrices, funciones y programación orientada a objetos.
- MATLAB está licenciado por MathWorks. \$550 USD. Octave es Gratis.

¿Qué puede Hacer MATLAB?

- Probabilidad y estadística
- Procesamiento de señales
- Sistemas de control
- Sistemas dinámicos
- Finanzas
- Visualización de datos
- Aprendizaje de máquina
- Entre Muchas otras más

¿Por qué es importante aprender a programar?

Porque te brinda una gran ventaja competitiva a la hora de resolver problemas que serían bastante costosos si no se hiciesen con ayuda de un lenguaje de programación. El pensamiento computacional se extiende a todas las ramas del conocimiento y resulta ser útil en Biología, Medicina, Física, Ingeniería, Artes y Humanidades.

Introducción a MATLAB

2. Operadores Aritméticos

Operación	Símbolo	Expresión en MATLAB
Suma	+	a + b
Resta	-	a - b
Multiplicación	*	a * b
División	1	a / b
Potencia	۸	a ^ b

Operadores Aritméticos

Orden de Operaciones	
1°	^
2°	* , /
3°	+, -

- Si queremos que MATLAB ejecute la operación pero NO muestre el resultado ponemos (;) al final de la sentencia.
- Si la sentencia es demasiado larga para que quepa en una línea, ponemos

 (...) seguido de Enter, para continuar en la siguiente línea.

Ejemplos

```
>> a = 7; %Asignamos un valor a la variable a
>> b = 5; %Asignamos un valor a la variable b
>> c = a*b; %Asignamos un valor a la variable c
>> c
c = 35
>> |
```

```
>> a = 7;
>> b = 5;
>> a * b
ans = 35
>> ans %El resultado se almacena en la variable ans
ans = 35
>> |
```

Ejemplos

```
>> ((a * b) + (c * d)) / (a * b)
>> a = 7;
                      ans = 673.28
>> b = 5;
                      >> ((a + b) * (c + d)) - (a + b)
>> c = a / b;
                      ans = 201688.80000
>> d = a ^ b;
                      >> (a^(b*c))^(d)
>> c , d
                      ans = Inf
                      >> b*c*d
c = 1.4000
                      ans = 117649
d = 16807
                      >> 7^ans
                      ans = Inf
                      >>
```

Ejemplos

```
>> who
Variables in the current scope:
     ans b c
a
>> whos
Variables in the current scope:
                    Size
   Attr Name
                                                     Class
                   1x1
                                                     double
                   1x1
                                                     double
        ans
                    1x1
                                                     double
        b
                   1x1
                                                     double
        C
                    1x1
                                                     double
Total is 5 elements using 40 bytes
>>
```

who: muestra una lista de los nombres de las variables usadas.
 whos: muestra una lista de las variables usadas más completa que la anterior

Almacenar y Recuperar Datos

MATLAB permite guardar y cargar datos. En el menú **File**, la opción **Save Workspace as...** guarda todas las variables actuales, mientras que **Import Data...** carga variables de un espacio de trabajo guardado previamente.

Otra forma de guardar es usar el comando >>save (nombre de archivo)
Y para cargar se usa >>load (nombre de archivo)

Eliminar Variables y Limpiar el Espacio de Trabajo

- Para eliminar una variable deseada del espacio de trabajo: >> clear (nombre de la variable)
- Para eliminarlas todas: >> clear
- Para limpiar el espacio de trabajo (sin eliminar las variables): >>clc

Eliminar Variables y Limpiar el Espacio de Trabajo

```
>> load example
>> who
Variables in the current scope:
a ans b c d
>> clear a b
>> who
Variables in the current scope:
ans c d
>> load example
>> who
Variables in the current scope:
a ans b c d
```

Formatos de Visualización

Comando MATLAB	Resultado	Ejemplo: >>pi
format short	Formato coma fija con 4 dígitos después de la coma (es el formato que viene por defecto)	3.1416
format long	Formato coma fija con 14 o 15 dígitos después de la coma	3.14159265358979
format short e	Formato coma flotante con 4 dígitos después de la coma	3.1416e+000
format long e	Formato coma flotante con 14 o 15 dígitos después de la coma	3.141592653589793e+000
format short g	La mejor entre coma fija o flotante con 4 dígitos después de la coma	3.1416
format long g	La mejor entre coma fija o flotante con 14 o 15 dígitos después de la coma	3.14159265358979

Formatos de Visualización

Comando MATLAB	Resultado	Ejemplo: >>pi
format short eng	Notación científica con 4 dígitos después de la coma y un exponente de 3	3.1416e+000
format long eng	Notación científica con 16 dígitos significantes y un exponente de 3	3.14159265358979e+000
format bank	Formato coma fija con 2 dígitos después de la coma	3.14
format hex	Hexadecimal	400921fb54442d18
format rat	Aproximación racional	355/113
format +	Positivo, negativo o espacio en blanco	+

^{*} MATLAB no cambia la representación de un número cuando se escogen distintos formatos de visualización, sólo se modifica la forma de imprimirlo en pantalla.

Variables

Variable	Definición	Valor
ans	Variable usada por defecto para almacenar el último resultado	-
pi	Razón de una circunferencia a su diámetro	3.1416
eps	Número más pequeño, tal que cuando se le suma 1, crea un número en coma flotante en el computador mayor que 1	2.2204e-016
inf	Infinito	Inf

Variables

Variable	Definición	Valor
nan	Magnitud no-numérica	NaN
i, j	i = j = sqrt(-1)	0 + 1.0000i
realmin	El número real positivo más pequeño que es utilizable	2.2251e-308
realmax	El número real positivo más grande que es utilizable	1.7977e+308

^{*} MATLAB almacena el último resultado en la variable **ans**. Las variables son sensibles a las mayúsculas, deben comenzar siempre con una letra, no pueden contener espacios en blanco y pueden nombrarse hasta con 63 caracteres. Más de 63 caracteres, la variables se truncará. Comando **namelengthmax.**

Fecha, Hora, Calendario

MATLAB facilita información sobre la fecha, la hora y el calendario.

Para ver la fecha basta con escribir: >> date

Para ver la hora: >> clock

Para ver el calendario (mes actual): >> calendar

Los comentarios se escriben después del símbolo (%), de este modo todo lo que se escriba a continuación en la misma línea no será leído por MATLAB

Aproximaciones

Función	¿Qué hace?	Ejemplo x = 5.92
ceil(x)	Redondea hacia el siguiente entero (hacia más infinito)	6
fix(x)	Redondea hacia el número que esté más cerca a cero	5
floor(x)	Redondea hacia menos infinito	5
round(x)	Redondea hacia el entero más próximo	6

Función help

Si queremos consultar un comando determinado podemos buscar información escribiendo en la ventana de comandos >> help (comando que queremos consultar). Así obtendremos información sobre el comando.

MATLAB distingue mayúsculas y minúsculas. Por lo tanto, hay que ser cuidadosos a la hora de nombrar variables para evitar confusión.

Es importante que los espacios de trabajo exportados estén en la misma ubicación actual del usuario (Explicación más detallada). comandos **cd** y **pwd** en el prompt.

Clase o Tipo de Variables

Podemos declarar variables de cualquier tipo (clases).

Estas clases pueden ser *char* o *strings* (en el caso de cadenas de texto). *double* en el caso de variables con valores numéricos asociados con posiciones decimales. También está el tipo *single*, es similar a double, pero double soporta más cifras decimales.

También pueden declararse variables de tipo *logical* para almacenar variables con valores verdadero/falso (1/0)

Clase o Tipo de Variables

```
>> a = true;
>> class(a)
ans = logical
>> a = "Hola a todos";
>> class(a)
ans = char
>> a = 22;
>> class(a)
ans = double
>>
```

Más adelante veremos la importancia de poder declarar todos estos tipos de variables !!!

Ejercicios

- Calcule: $5\sqrt{78^5-10\sqrt{40^2}}$, asigne el resultado a una variable (a) y muestre el resultado en formato short, long y rat.
- Calcule: $\frac{2^6+\frac{26}{5}}{0.5-3\sqrt{8}}$, asigne el resultado a una variable **(b)** y muestre el

resultado en formato short, long y rat.

- ullet Calcule: c=a+b y redondee el resultado al entero próximo superior.
- Guarde el Espacio de Trabajo con las variables a, b y c en un archivo con nombre: ejemplo. Ahora elimine las variables y limpie el espacio de trabajo.
- Recupere las variables, a, b y c del archivo ejemplo. Borre la variable a, y recuperela nuevamente.

Ejercicios

- Imprima el signo de las variables a, b y c.
- Aplique los comandos ceil, fix, floor y round a la variable c.
- Realice las operaciones 0/0 e inf/inf, e imprima su respectivo signo.
- Obtenga la expresión >> 5/16 + 2/7
 ans =
 67/112

Calcule las siguientes expresiones y verifíquelas usando la consola de

Ejercicios

- Cree una variable F que almacene la temperatura en Fahrenheit, y una variable C que convierta la variable F en unidades de °C. Asumiendo que el factor de conversión es C = (F - 32) * 5/9.
- ¿Cuál es la diferencia entre 5 y "5"?
- Cree tres variables R1, R2, R3 y calcule la resistencia equivalente de este sistema asumiendo que las tres resistencias están en Paralelo. Asumiendo que la Resistencia Equivalente Re = 1/(1/R1 + 1/R2 + 1/R3).
- Imprima el tipo o clase de a = 22 y a = "22".
- Explique la diferencia entre: result = 9*2 result = 9*2;