

Entwicklung der digitalisierungsbezogenen Kompetenzen von Lehramtsstudierenden

Auswertungsstrategien einer längsschnittlichen Begleitevaluation

Sonja Hahn, PH Karlsruhe Marie-Luise Springmann, PH Karlsruhe Olga Kunina-Habenicht, TU Dortmund

GEFÖRDERT VON

Förderhinweis:

Hintergrund

- Zunehmende Relevanz digitaler Medien für (angehende) Lehrkräfte (Kultusministerkonferenz, 2016)
- Theoretische Verortung: TPACK-Modell (Mishra & Koehler, 2006)
- Schulleistungs-Untersuchungen: verwandte Konstrukte (z.B. Selbstwirksamkeit, Eickelmann et al., 2019)
- Projekt InDiKo: Lehrveranstaltungen zur Förderung digitalisierungsbezogener Kompetenzen
- Evaluation durch quasiexperimentelles längsschnittliches Design (vgl. Kramarski & Michalsky, 2010; Rienties et al., 2020)

und Forschung

Stichprobe

- Modul Medienbildung (EG, seit WiSe 2020/21)
- Kontrollgruppe (CG)
 - Vorlesung Forschungsmethoden (seit WiSe 2020/21, SoSe 2021, WiSe 2021/22)
 - Vorlesung Diagn. in pädagogischen Handlungsfeldern, TU Dortmund (WiSe 2021/22)
- Pre- (T0), Post (T1) und FollowUp-Tests; bisher drei Kohorten
- Imputation auf Skalenebene mit mice (van Buuren et al. 2011, 100 Imputationen)

Gruppe	N _{imputiert}	(N _{pre})	(N _{beide})	(N _{post})	Weibl.	Männl.	M _{Semester}	(SD)	Bachelor	Primar
EG	250	(218)	(82)	(114)	89%	11%	6.6	(1.8)	48%	68%
CG	360	(317)	(86)	(129)	88%	11%	3.4	(1.5)	97%	60%

und Forschung

Verwendete Skalen und Angaben

- T(P)K-Selbsteinschätzung (5-stufige Likert-Skalen, je 4 Items, vgl. Schmidt et al. 2009, aber auch OECD 2017, und Schmid et al. 2019)
 - **TK T**echnological **K**nowledge ($\alpha = 0.74$)
 - **PS** Technological Problem Solving ($\alpha = 0.86$)
 - **TPK T**echnological **P**edagogical **K**nowledge ($\alpha = 0.90$)
- Technologiebezogene Selbstwirksamkeit (4-stufig, vgl. ICILS, Gerick et al. 2018)
 - **S.E. Base** (α = 0.73, 8 Items, einfache Aufgaben)
 - S.E. Advanced (α = 0.78, 7 Items, komplexere Aufgaben)
 - **S.E. Educational** (α = 0.81, 9 Items, lehrbezogene Aufgaben)
- Demographische und studienbezogene Angaben

und Forschung

Verteilungen der Pre- und Post-Werte

Vergleich zwischen verschiedenen Analyseverfahren

- 1. Differenzwerte
- 2. ANCOVA
- 3. Propensity Score-Matching

1. Differenzwerte z.B. in Rienties et al. (2020)

Grundidee:

- 1. Differenzbildung zwischen Pre- und Post-Test
- 2. **Gruppen**unterschiede auf der Differenzvariable
- 3. Zusätzlich Kovariaten möglich (Kohorte, Fachsem., Geschlecht)

Voraussetzungen/Annahmen:

- Stabiler Einfluss von unbeob. Confoundern
- "Common trend assumption" (Lechner 2010)

Vergleich erster Ergebnisse

Verfahren		Skala	a: TPK		5	Anmerkung			
	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff. ¹	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff. ¹	
Differenz- werte	<i>b</i> = 0.605	(0.129)	p < .001	β = 0.404	b = 0.629	(0.086)	p < .001	β = 0.613	Deckeneffekte: ungleiche Veränderung
ANCOVA	b = 0.417	(0.112)	p < .001	β = 0.323	b = 0.580	(0.078)	p < .001	β = 0.565	Deckeneffekte? Reliabilitäten
P.S Matching	b = 0.409	(0.171)	p = .022	β = 0.322	<i>b</i> = 0.543	(0.118)	p < .001	β = 0.504	SUTVA? N = 156

¹ van Ginkel 2020: PS-Methode

2. ANCOVA (Multiple Regression)

Grundidee:

Statistische Kontrolle von Kovariaten

aV: **Post-Test**

uV: Kovariaten (u.a. **Pre-Test**, Kohorte,

Fachsem., Geschlecht)

Bedingung (**Gruppe**)

Voraussetzungen/Annahmen:

Form des Zusammenhanges Messfehlerfreie Kovariaten

Einbindung relevanter Kovariaten

(z.B. Eid et al., 2011)

Vergleich erster Ergebnisse

Verfahren		Skala	a: TPK		9	Anmerkung			
	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff.	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff.	
Differenz- werte	<i>b</i> = 0.605	(0.129)	p < .001	β = 0.404	b = 0.629	(0.086)	p < .001	β = 0.613	Deckeneffekte: ungleiche Veränderung
ANCOVA	<i>b</i> = 0.417	(0.112)	<i>p</i> < .001	β = 0.323	b = 0.580	(0.078)	<i>p</i> < .001	β = 0.565	Deckeneffekte? Reliabilitäten
P.S Matching	b = 0.409	(0.171)	p = .022	β = 0.322	<i>b</i> = 0.543	(0.118)	p < .001	β = 0.504	SUTVA? N = 156

3. Propensity Score-Matching MatchThem (Pishgar et al. 2021)

von Lehramtsstudierenden

Vergleich erster Ergebnisse

Verfahren		Skala	a: TPK		S	Anmerkung			
	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff.	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff.	
Differenz- werte	<i>b</i> = 0.605	(0.129)	p < .001	β = 0.404	b = 0.629	(0.086)	p < .001	β = 0.613	Deckeneffekte: ungleiche Veränderung
ANCOVA	<i>b</i> = 0.417	(0.112)	p < .001	β = 0.323	b = 0.580	(0.078)	p < .001	β = 0.565	Deckeneffekte? Reliabilitäten
P.S Matching	<i>b</i> = 0.409	(0.171)	p = .022	β = 0.322	<i>b</i> = 0.543	(0.118)	p < .001	β = 0.504	SUTVA? N = 156

Diskussion

- Effekt des Treatments in allen Auswertungsansätzen
 - Höhere Effekte bei Difference Scores (wenn Kovariaten mit in Berechnung)
 - Effekte von ANCOVA und P.S.-Matching vergleichbar
 - ABER: Geringer Overlap und Deckeneffekte (TPK) lineare ANCOVA gerechtfertigt?
 - → ANCOVA erweitern (nicht-lineare Terme, latenten Variablen)
- Weiteres Vorgehen
 - P.S.-Matching auf erweitertem Datensatz
 - Evtl. P.S.-Matching mit ANCOVA verbinden (Schafer et al. 2008)

Entwicklung der digitalisierungsbezogenen Kompetenzen von Lehramtsstudierenden

Literatur

- Eid, M., Gollwitzer, M., & Schmitt, M. (2011). Statistik und Forschungsmethoden: Lehrbuch. Beltz.
- Eickelmann, B., Bos, W., Gerick, J., Goldhammer, F., Schaumburg, H., Schwippert, K., Senkbeil, M., & Vahrenhold, J. (2019). *ICILS 2018 #Deutschland: Computer- und informationsbezogene Kompetenzen von Schülerinnen und Schülern im zweiten internationalen Vergleich und Kompetenzen im Bereich Computational Thinking*. https://content-select.com/de/portal/media/view/5e6528e6-ea6c-4c3e-9d23-79d7b0dd2d03
- Gerick, J., Vennemann, M., Eickelmann, B., Bos, W., Mews, S., & Waxmann Verlag. (2018). ICILS 2013 Dokumentation der Erhebungsinstrumente der International Computer and Information Literacy Study. https://nbn-resolving.org/urn:nbn:de:101:1-2018121604490633561253
- van Ginkel, J. R. (2020). Standardized Regression Coefficients and Newly Proposed Estimators for \$\${R}^{{2}}\$ in Multiply Imputed Data. *Psychometrika*, 85(1), 185–205. https://doi.org/10.1007/s11336-020-09696-4
- Kramarski, B., & Michalsky, T. (2010). Preparing preservice teachers for self-regulated learning in the context of technological pedagogical content knowledge. *Learning and Instruction*, 20(5), 434–447. https://doi.org/10.1016/j.learninstruc.2009.05.003
- Kultusministerkonferenz. (2016). Bildung in der digitalen Welt Strategie der Kultusministerkonferenz. https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2016/2016_12_08-Bildung-in-der-digitalen-Welt.pdf
- Lechner, M. (2010). The Estimation of Causal Effects by Difference-in-Difference MethodsEstimation of Spatial Panels. Foundations and Trends® in Econometrics, 4(3), 165–224. https://doi.org/10.1561/0800000014
- Lee, J., & Little, T. D. (2017). A practical guide to propensity score analysis for applied clinical research. *Behaviour Research and Therapy*, 98, 76–90. https://doi.org/10.1016/j.brat.2017.01.005
- Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
- OECD (2017). ICT Familiarity Questionnaire for PISA 2018. https://www.oecd.org/pisa/data/2018database/CY7_201710_QST_MS_ICQ_NoNotes_final.pdf
- Pishgar, F., Greifer, N., Leyrat, C., & Stuart, E. (2021). MatchThem: Matching and Weighting after Multiple Imputation. *The R Journal*, 13(2), 228. https://doi.org/10.32614/RJ-2021-073
- Rienties, B., Lewis, T., O'Dowd, R., Rets, I., & Rogaten, J. (2020). The impact of virtual exchange on TPACK and foreign language competence: reviewing a large-scale implementation across 23 virtual exchanges. *Computer Assisted Language Learning*, 1–27. https://doi.org/10.1080/09588221.2020.1737546
- Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized studies: A practical guide and simulated example. *Psychological Methods*, 13(4), 279–313. https://doi.org/10.1037/a0014268
- Schmid, M., Brianza, E., & Petko, D. (2020). Developing a short assessment instrument for Technological Pedagogical Content Knowledge (TPACK.xs) and comparing the factor structure of an integrative and a transformative model. *Computers & Education*, 157, 103967. https://doi.org/10.1016/j.compedu.2020.103967
- Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P., Koehler, M. J., & Shin, T. S. (2009). Technological Pedagogical Content Knowledge (TPACK): The Development and Validation of an Assessment Instrument for Preservice Teachers. *Journal of Research on Technology in Education*, 42(2), 123–149. https://doi.org/10.1080/15391523.2009.10782544van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. *Journal of Statistical Software*, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03

Vergleich erster Ergebnisse

Verfahren		Skala	a: TPK		S	Anmerkung			
	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff.	Effekte/ Reg.Koeff.	(SE)	<i>p</i> -Werte	Standard. Reg.Koeff.	
Differenz- werte	<i>b</i> = 0.605	(0.129)	p < .001	β = 0.404	<i>b</i> = 0.629	(0.086)	p < .001	β = 0.613	Deckeneffekte: ungleiche Veränderung
D. ohne Kovariaten	<i>b</i> = 0.472	(0.097)	p < .001	β = 0.316	<i>b</i> = 0.453	(0.071)	p < .001	β = 0.459	
ANCOVA	<i>b</i> = 0.417	(0.112)	p < .001	β = 0.323	b = 0.580	(0.078)	p < .001	β = 0.565	Deckeneffekte? Reliabilitäten
P.S Matching	<i>b</i> = 0.409	(0.171)	p = .022	β = 0.322	<i>b</i> = 0.543	(0.118)	p < .001	β = 0.504	SUTVA? N = 156

Streudiagramme

