Calcular la Tranformada de Laplace $\mathcal{L}\{f(t)\}\$ de :

4)
$$f(t) = \cos^2(t) = \frac{1 + \cos(2t)}{2} = \frac{1}{2} + \frac{1}{2} \cdot \cos(2t)$$

$$F(s) = \frac{1/2}{s} + \frac{1}{2} \left[\frac{s}{s^2 + 4} \right]_{1/2}$$

Calcular la Tranformada de Laplace $\mathcal{L}\{f(t)\}\$ de :

ace
$$\mathcal{L}\left\{f(t)\right\}$$
 de :

5)
$$f(t) = \sin(t)\cos(t)$$
 5 SEN(2x) = 25EN(x) (x)

$$\frac{\text{SEU}(2t)}{2} = \frac{\text{SEU}(t)}{2}$$

$$2)f(t) = \frac{1}{2}2f(seu(2t))$$
 $5eu(kt); k=2$

$$F(s) = \frac{1}{2} \left[\frac{2}{s^2 + 4} \right] = \frac{1}{s^2 + 4}$$

TRANSFORMADA DE LAPLACE DE FUNCIONES POR TRAMOS

Calcular la Tranformada de Laplace $\mathcal{L}\{f(t)\}\$ de la funcion por tramos:

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{2}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3}(t) = 1, f_{3}(t) = 0$$

$$f(t) = t, f_{3}(t) = 1, f_{3$$

TRANSFORMADA INVERSA DE LAPLACE $(\mathcal{L}^{-1} \{F(S)\})$

$$a) 1 = \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}$$

b)
$$t^n = \mathcal{L}^{-1} \left\{ \frac{n!}{s^{n+1}} \right\}, \quad n = 1, 2, 3, \dots$$

c)
$$e^{at} = \mathcal{L}^{-1} \left\{ \frac{1}{s-a} \right\}$$

d) sen
$$kt = \mathcal{L}^{-1}\left\{\frac{k}{s^2 + k^2}\right\}$$

e)
$$\cos kt = \mathcal{L}^{-1}\left\{\frac{s}{s^2 + k^2}\right\}$$

f) senh
$$kt = \mathcal{L}^{-1}\left\{\frac{k}{s^2 - k^2}\right\}$$

$$\mathbf{g)} \quad \cosh kt = \mathcal{L}^{-1} \left\{ \frac{s}{s^2 - k^2} \right\}$$

$$\mathbf{1}) \, \boldsymbol{F}(\boldsymbol{s}) = \frac{2}{s}$$

Calcular la Tranformada Inversa
$$\mathcal{L}^{-1}{F(S)}$$
 de :

1) $F(s) = \frac{2}{s}$; $\mathcal{L}^{-1}{F(s)} = \mathcal{L}^{-1}{\frac{2}{5}}$; $\frac{\mathbb{C}}{5}$

$$f(t) = 2/$$