10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1.
$$x = 1 - t^2$$
, $y = 2t - t^2$, $-1 \le t \le 2$

t	-1	0	1	2
x	0	1	0	-3
y	-3	0	1	0

t	-2	-1	0	1	2
x	-10	-2	0	2	10
y	6	3	2	3	6

t	$-\pi$	$-\pi/2$	0	$\pi/2$ π
x	$-\pi$	$-\pi/2 + 1$	0	$\pi/2+1$ π
y	-1	0	1	0 -1

t	-2	-1	0	1	2
x	$e^2 - 2$	e-1	1	$e^{-1} + 1$	$e^{-2} + 2$
	5.39	1.72		1.37	2.14
y	$e^{-2} + 2$	$e^{-1} + 1$	1	e-1	$e^{2} - 2$
	2.14	1.37		1.72	5.39

(b)
$$x = 2t - 1 \implies 2t = x + 1 \implies t = \frac{1}{2}x + \frac{1}{2}$$
, so
$$y = \frac{1}{2}t + 1 = \frac{1}{2}\left(\frac{1}{2}x + \frac{1}{2}\right) + 1 = \frac{1}{4}x + \frac{1}{4} + 1 \implies y = \frac{1}{4}x + \frac{5}{4}$$

864 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

6.
$$x = 3t + 2$$
, $y = 2t + 3$

(a)	

t	-4	-2	0	2	4
x	-10	-4	2	8	14
y	-5	-1	3	7	11

(b)
$$x = 3t + 2 \implies 3t = x - 2 \implies t = \frac{1}{3}x - \frac{2}{3}$$
, so

$$y = 2t + 3 = 2(\frac{1}{3}x - \frac{2}{3}) + 3 = \frac{2}{3}x - \frac{4}{3} + 3 \implies y = \frac{2}{3}x + \frac{5}{3}$$

7. $x = t^2 - 3$, y = t + 2, $-3 \le t \le 3$

(a)

t	-3	-1	1	3
x	6	-2	-2	6
y	-1	1	3	5

(b)
$$y = t + 2 \implies t = y - 2$$
, so

$$x = t^2 - 3 = (y - 2)^2 - 3 = y^2 - 4y + 4 - 3 \implies$$

$$x = y^2 - 4y + 1, -1 \le y \le 5$$

8. $x = \sin t$, $y = 1 - \cos t$, $0 \le t \le 2\pi$

(a)

t	0	$\pi/2$	π	$3\pi/2$	2π
\boldsymbol{x}	0	1	0	-1	0
y	0	1	2	1	0

(b)
$$x = \sin t$$
, $y = 1 - \cos t$ [or $y - 1 = -\cos t$] \Rightarrow

$$x^{2} + (y-1)^{2} = (\sin t)^{2} + (-\cos t)^{2} \implies x^{2} + (y-1)^{2} = 1.$$

As t varies from 0 to 2π , the circle with center (0,1) and radius 1 is traced out.

9. $x = \sqrt{t}, \ y = 1 - t$

(a)

	t	0	1	2	3	4
	x	0	1	1.414	1.732	2
ſ	y	1	0	-1	-2	-3

So the curve is the right half of the parabola $y = 1 - x^2$.

^{© 2016} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

10.	x	=	t^2 .	u	=	t^3
10.	u	_	υ,	9	_	U

(a)						
,	t	-2	-1	0	1	
	x	4	1	0	1	

t	-2	-1	0	1	2
x	4	1	0	1	4
y	-8	-1	0	1	8

(b)
$$y=t^3 \quad \Rightarrow \quad t=\sqrt[3]{y} \quad \Rightarrow \quad x=t^2=\left(\sqrt[3]{y}\right)^2=y^{2/3}. \quad t\in\mathbb{R},\,y\in\mathbb{R},\,x\geq0.$$

11. (a) $x = \sin \frac{1}{2}\theta, y = \cos \frac{1}{2}\theta, -\pi \le \theta \le \pi.$ $x^{2} + y^{2} = \sin^{2} \frac{1}{2}\theta + \cos^{2} \frac{1}{2}\theta = 1$. For $-\pi \le \theta \le 0$, we have $-1 \le x \le 0$ and $0 \le y \le 1$. For $0 < \theta \le \pi$, we have $0 < x \le 1$ and $1 > y \ge 0$. The graph is a semicircle.

12. (a) $x = \frac{1}{2}\cos\theta, y = 2\sin\theta, 0 \le \theta \le \pi$. $(2x)^2 + (\frac{1}{2}y)^2 = \cos^2\theta + \sin^2\theta = 1 \implies 4x^2 + \frac{1}{4}y^2 = 1$ $\frac{x^2}{(1/2)^2} + \frac{y^2}{2^2} = 1$, which is an equation of an ellipse with x-intercepts $\pm \frac{1}{2}$ and y-intercepts ± 2 . For $0 \le \theta \le \pi/2$, we have $\frac{1}{2} \ge x \ge 0$ and $0 \le y \le 2$. For $\pi/2 < \theta \le \pi$, we have $0 > x \ge -\frac{1}{2}$ and $2 > y \ge 0$. So the graph is the top half of the ellipse.

13. (a) $x = \sin t$, $y = \csc t$, $0 < t < \frac{\pi}{2}$. $y = \csc t = \frac{1}{\sin t} = \frac{1}{x}$. For $0 < t < \frac{\pi}{2}$, we have 0 < x < 1 and y > 1. Thus, the curve is the portion of the hyperbola y = 1/x with y > 1.

14. (a) $y = e^{-2t} = (e^t)^{-2} = x^{-2} = 1/x^2$ for x > 0 since $x = e^t$.

15. (a)
$$y = \ln t \implies t = e^y$$
, so $x = t^2 = (e^y)^2 = e^{2y}$.

(b)

(b)

16. (a)
$$x=\sqrt{t+1} \Rightarrow x^2=t+1 \Rightarrow t=x^2-1$$
.
$$y=\sqrt{t-1}=\sqrt{(x^2-1)-1}=\sqrt{x^2-2}$$
. The curve is the part of the hyperbola $x^2-y^2=2$ with $x\geq \sqrt{2}$ and $y\geq 0$.

17. (a) $x=\sinh t,\,y=\cosh t \ \Rightarrow \ y^2-x^2=\cosh^2 t-\sinh^2 t=1.$ Since $y=\cosh t\geq 1,$ we have the upper branch of the hyperbola $y^2-x^2=1.$

18. (a) $x = \tan^2 \theta$, $y = \sec \theta$, $-\pi/2 < \theta < \pi/2$. $1 + \tan^2 \theta = \sec^2 \theta \quad \Rightarrow \quad 1 + x = y^2 \quad \Rightarrow \quad x = y^2 - 1$. For $-\pi/2 < \theta \le 0$, we have $x \ge 0$ and $y \ge 1$. For $0 < \theta < \pi/2$, we have 0 < x and 1 < y. Thus, the curve is the portion of the parabola $x = y^2 - 1$ in the first quadrant. As θ increases from $-\pi/2$ to 0, the point (x, y) approaches (0, 1) along the parabola. As θ increases from 0 to $\pi/2$, the point (x, y) retreats from (0, 1) along the parabola.

- **19.** $x = 5 + 2\cos \pi t, \ y = 3 + 2\sin \pi t \implies \cos \pi t = \frac{x-5}{2}, \ \sin \pi t = \frac{y-3}{2}. \quad \cos^2(\pi t) + \sin^2(\pi t) = 1 \implies \left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1.$ The motion of the particle takes place on a circle centered at (5,3) with a radius 2. As t goes from 1 to 2, the particle starts at the point (3,3) and moves counterclockwise along the circle $\left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$ to (7,3) [one-half of a circle].
- **20.** $x = 2 + \sin t, y = 1 + 3\cos t \implies \sin t = x 2, \cos t = \frac{y 1}{3}. \sin^2 t + \cos^2 t = 1 \implies (x 2)^2 + \left(\frac{y 1}{3}\right)^2 = 1.$

The motion of the particle takes place on an ellipse centered at (2, 1). As t goes from $\pi/2$ to 2π , the particle starts at the point (3, 1) and moves counterclockwise three-fourths of the way around the ellipse to (2, 4).

- **21.** $x = 5\sin t, y = 2\cos t \implies \sin t = \frac{x}{5}, \cos t = \frac{y}{2}.$ $\sin^2 t + \cos^2 t = 1 \implies \left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1.$ The motion of the particle takes place on an ellipse centered at (0,0). As t goes from $-\pi$ to 5π , the particle starts at the point (0,-2) and moves clockwise around the ellipse 3 times.
- 22. $y = \cos^2 t = 1 \sin^2 t = 1 x^2$. The motion of the particle takes place on the parabola $y = 1 x^2$. As t goes from -2π to $-\pi$, the particle starts at the point (0,1), moves to (1,0), and goes back to (0,1). As t goes from $-\pi$ to 0, the particle moves to (-1,0) and goes back to (0,1). The particle repeats this motion as t goes from 0 to 2π .
- 23. We must have $1 \le x \le 4$ and $2 \le y \le 3$. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].
- **24.** (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- **25.** When t = -1, (x, y) = (1, 1). As t increases to 0, x and y both decrease to 0. As t increases from 0 to 1, x increases from 0 to 1 and y decreases from 0 to -1. As t increases beyond 1, x continues to increase and y continues to decrease. For t < -1, x and y are both positive and decreasing. We could achieve greater accuracy by estimating x- and y-values for selected values of tfrom the given graphs and plotting the corresponding points.

26. When t = -1, (x, y) = (0, 0). As t increases to 0, x increases from 0 to 1, while y first decreases to -1 and then increases to 0. As t increases from 0 to 1, x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

27. When t = -1, (x, y) = (0, 1). As t increases to 0, x increases from 0 to 1 and y decreases from 1 to 0. As t increases from 0 to 1, the curve is retraced in the opposite direction with x decreasing from 1 to 0 and y increasing from 0 to 1. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

- **28.** (a) $x = t^4 t + 1 = (t^4 + 1) t > 0$ [think of the graphs of $y = t^4 + 1$ and y = t] and $y = t^2 \ge 0$, so these equations are matched with graph V.
 - (b) $y = \sqrt{t} \ge 0$. $x = t^2 2t = t(t 2)$ is negative for 0 < t < 2, so these equations are matched with graph I.
 - (c) $x=\sin 2t$ has period $2\pi/2=\pi$. Note that $y(t+2\pi)=\sin[t+2\pi+\sin 2(t+2\pi)]=\sin(t+2\pi+\sin 2t)=\sin(t+\sin 2t)=y(t)$, so y has period 2π . These equations match graph II since x cycles through the values -1 to 1 twice as y cycles through those values once.
 - (d) $x = \cos 5t$ has period $2\pi/5$ and $y = \sin 2t$ has period π , so x will take on the values -1 to 1, and then 1 to -1, before y takes on the values -1 to 1. Note that when t = 0, (x, y) = (1, 0). These equations are matched with graph VI.
 - (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$. As t becomes large, t and t^2 become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y = x^2$, but with oscillations. These equations are matched with graph IV.
 - (f) $x = \frac{\sin 2t}{4 + t^2}$, $y = \frac{\cos 2t}{4 + t^2}$. As $t \to \infty$, x and y both approach 0. These equations are matched with graph III.
- **29.** Use y=t and $x=t-2\sin \pi t$ with a t-interval of $[-\pi,\pi]$.

30. Use $x_1 = t$, $y_1 = t^3 - 4t$ and $x_2 = t^3 - 4t$, $y_2 = t$ with a t-interval of [-3,3]. There are 9 points of intersection; (0,0) is fairly obvious. The point in quadrant I is approximately (2.2,2.2), and by symmetry, the point in quadrant III is approximately (-2.2,-2.2). The other six points are approximately $(\mp 1.9,\pm 0.5)$, $(\mp 1.7,\pm 1.7)$, and $(\mp 0.5,\pm 1.9)$.

31. (a) $x = x_1 + (x_2 - x_1)t$, $y = y_1 + (y_2 - y_1)t$, $0 \le t \le 1$. Clearly the curve passes through $P_1(x_1, y_1)$ when t = 0 and through $P_2(x_2, y_2)$ when t = 1. For 0 < t < 1, x is strictly between x_1 and x_2 and y is strictly between y_1 and y_2 . For every value of t, x and y satisfy the relation $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$, which is the equation of the line through $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

Finally, any point (x, y) on that line satisfies $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ yields a value of t in [0, 1]. So the given parametric equations exactly specify the line segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$.

(b)
$$x = -2 + [3 - (-2)]t = -2 + 5t$$
 and $y = 7 + (-1 - 7)t = 7 - 8t$ for $0 \le t \le 1$.

32. For the side of the triangle from A to B, use $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (4, 2)$. Hence, the equations are

$$x = x_1 + (x_2 - x_1) t = 1 + (4 - 1) t = 1 + 3t,$$

 $y = y_1 + (y_2 - y_1) t = 1 + (2 - 1) t = 1 + t.$

Graphing x = 1 + 3t and y = 1 + t with $0 \le t \le 1$ gives us the side of the

triangle from A to B. Similarly, for the side BC we use x = 4 - 3t and y = 2 + 3t, and for the side AC we use x = 1 and y = 1 + 4t.

- 33. The circle $x^2 + (y-1)^2 = 4$ has center (0,1) and radius 2, so by Example 4 it can be represented by $x = 2\cos t$, $y = 1 + 2\sin t$, $0 \le t \le 2\pi$. This representation gives us the circle with a counterclockwise orientation starting at (2,1).
 - (a) To get a clockwise orientation, we could change the equations to $x = 2\cos t$, $y = 1 2\sin t$, $0 \le t \le 2\pi$.
 - (b) To get three times around in the counterclockwise direction, we use the original equations $x=2\cos t$, $y=1+2\sin t$ with the domain expanded to $0 \le t \le 6\pi$.
 - (c) To start at (0,3) using the original equations, we must have $x_1=0$; that is, $2\cos t=0$. Hence, $t=\frac{\pi}{2}$. So we use $x=2\cos t,\,y=1+2\sin t,\,\frac{\pi}{2}\leq t\leq \frac{3\pi}{2}$.

Alternatively, if we want t to start at 0, we could change the equations of the curve. For example, we could use $x=-2\sin t,\,y=1+2\cos t,\,0\leq t\leq \pi.$

34. (a) Let $x^2/a^2=\sin^2 t$ and $y^2/b^2=\cos^2 t$ to obtain $x=a\sin t$ and $y=b\cos t$ with $0\le t\le 2\pi$ as possible parametric equations for the ellipse $x^2/a^2+y^2/b^2=1$.

- (b) The equations are $x = 3 \sin t$ and $y = b \cos t$ for $b \in \{1, 2, 4, 8\}$.
- (c) As b increases, the ellipse stretches vertically.

and

35. Big circle: It's centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

$$x = 2 + 2\cos t$$
, $y = 2 + 2\sin t$, $0 \le t \le 2\pi$

Small circles: They are centered at (1,3) and (3,3) with a radius of 0.1. By Example 4, parametric equations are

(left)
$$x = 1 + 0.1 \cos t$$
, $y = 3 + 0.1 \sin t$, $0 \le t \le 2\pi$
(right) $x = 3 + 0.1 \cos t$, $y = 3 + 0.1 \sin t$, $0 \le t \le 2\pi$

Semicircle: It's the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

$$x = 2 + 1\cos t$$
, $y = 2 + 1\sin t$, $\pi \le t \le 2\pi$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0, 2\pi]$ in order to match the others. We can do this by changing t to 0.5t. This change gives us the upper half. There are several ways to get the lower half—one is to change the "+" to a "-" in the y-assignment, giving us

$$x = 2 + 1\cos(0.5t),$$
 $y = 2 - 1\sin(0.5t),$ $0 \le t \le 2\pi$

36. If you are using a calculator or computer that can overlay graphs (using multiple t-intervals), the following is appropriate.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1,$$
 $y = t,$ $1.5 \le t \le 4$

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10, y = t, 1.5 \le t \le 4$$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = t,$$
 $y = 1.5,$ $1 \le t \le 10$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + t$$
, $y = 4 + t$, $0 \le t \le 3$

Left wheel: It's centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x=3+1\cos t, \qquad y=1+1\sin t, \qquad \tfrac{5\pi}{6} \le t \le \tfrac{13\pi}{6}$$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos t$$
, $y = 1 + 1\sin t$, $\frac{5\pi}{6} \le t \le \frac{13\pi}{6}$

If you are using a calculator or computer that cannot overlay graphs (using one t-interval), the following is appropriate.

We'll start by picking the t-interval [0, 2.5] since it easily matches the t-values for the two sides. We now need to find parametric equations for all graphs with $0 \le t \le 2.5$.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1,$$
 $y = 1.5 + t,$ $0 \le t \le 2.5$

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10,$$
 $y = 1.5 + t,$ $0 \le t \le 2.5$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = 1 + 3.6t,$$
 $y = 1.5,$ $0 \le t \le 2.5$

To get the x-assignment, think of creating a linear function such that when t=0, x=1 and when t=2.5, x=10. We can use the point-slope form of a line with $(t_1,x_1)=(0,1)$ and $(t_2,x_2)=(2.5,10)$.

$$x-1 = \frac{10-1}{2.5-0}(t-0) \Rightarrow x = 1+3.6t.$$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + 1.2t,$$
 $y = 4 + 1.2t,$ $0 \le t \le 2.5$

$$(t_1, x_1) = (0, 10)$$
 and $(t_2, x_2) = (2.5, 13)$ gives us $x - 10 = \frac{13 - 10}{2.5 - 0}(t - 0) \implies x = 10 + 1.2t$.

$$(t_1, y_1) = (0, 4)$$
 and $(t_2, y_2) = (2.5, 7)$ gives us $y - 4 = \frac{7 - 4}{2.5 - 0}(t - 0) \implies y = 4 + 1.2t$.

^{© 2016} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

Left wheel: It's centered at (3,1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \leq t \leq 2.5$$

$$(t_1,\theta_1) = \left(0, \frac{5\pi}{6}\right) \text{ and } (t_2,\theta_2) = \left(\frac{5}{2}, \frac{13\pi}{6}\right) \text{ gives us } \theta - \frac{5\pi}{6} = \frac{\frac{13\pi}{6} - \frac{5\pi}{6}}{\frac{5}{2} - 0}(t - 0) \quad \Rightarrow \quad \theta = \frac{5\pi}{6} + \frac{8\pi}{15}t.$$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$

37. (a)
$$x = t^3 \implies t = x^{1/3}$$
, so $y = t^2 = x^{2/3}$.

We get the entire curve $y = x^{2/3}$ traversed in a left to right direction.

If t < 0, then x and y are both larger than 1. If t > 0, then x and y are between 0 and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

38. (a) x = t, so $y = t^{-2} = x^{-2}$. We get the entire curve $y = 1/x^2$ traversed in a left-to-right direction.

(c) $x = e^t$, $y = e^{-2t} = (e^t)^{-2} = x^{-2}$. Since e^t and e^{-2t} are both positive, we only get the first quadrant portion of the curve $y = 1/x^2$.

872 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

39. The case $\frac{\pi}{2} < \theta < \pi$ is illustrated. C has coordinates $(r\theta, r)$ as in Example 7, and Q has coordinates $(r\theta, r + r\cos(\pi - \theta)) = (r\theta, r(1 - \cos\theta))$ [since $\cos(\pi - \alpha) = \cos\pi\cos\alpha + \sin\pi\sin\alpha = -\cos\alpha$], so P has coordinates $(r\theta - r\sin(\pi - \theta), r(1 - \cos\theta)) = (r(\theta - \sin\theta), r(1 - \cos\theta))$ [since $\sin(\pi - \alpha) = \sin\pi\cos\alpha - \cos\pi\sin\alpha = \sin\alpha$]. Again we have the parametric equations $x = r(\theta - \sin\theta), y = r(1 - \cos\theta)$.

40. The first two diagrams depict the case $\pi < \theta < \frac{3\pi}{2}$, d < r. As in Example 7, C has coordinates $(r\theta, r)$. Now Q (in the second diagram) has coordinates $(r\theta, r + d\cos(\theta - \pi)) = (r\theta, r - d\cos\theta)$, so a typical point P of the trochoid has coordinates $(r\theta + d\sin(\theta - \pi), r - d\cos\theta)$. That is, P has coordinates (x, y), where $x = r\theta - d\sin\theta$ and $y = r - d\cos\theta$. When d = r, these equations agree with those of the cycloid.

41. It is apparent that x=|OQ| and y=|QP|=|ST|. From the diagram, $x=|OQ|=a\cos\theta$ and $y=|ST|=b\sin\theta$. Thus, the parametric equations are $x=a\cos\theta$ and $y=b\sin\theta$. To eliminate θ we rearrange: $\sin\theta=y/b \Rightarrow \sin^2\theta=(y/b)^2$ and $\cos\theta=x/a \Rightarrow \cos^2\theta=(x/a)^2$. Adding the two equations: $\sin^2\theta+\cos^2\theta=1=x^2/a^2+y^2/b^2$. Thus, we have an ellipse.

- **42.** A has coordinates $(a\cos\theta, a\sin\theta)$. Since OA is perpendicular to AB, $\triangle OAB$ is a right triangle and B has coordinates $(a\sec\theta, 0)$. It follows that P has coordinates $(a\sec\theta, b\sin\theta)$. Thus, the parametric equations are $x = a\sec\theta$, $y = b\sin\theta$.
- **43.** $C=(2a\cot\theta,2a)$, so the x-coordinate of P is $x=2a\cot\theta$. Let B=(0,2a). Then $\angle OAB$ is a right angle and $\angle OBA=\theta$, so $|OA|=2a\sin\theta$ and $A=((2a\sin\theta)\cos\theta,(2a\sin\theta)\sin\theta)$. Thus, the y-coordinate of P is $y=2a\sin^2\theta$.

44. (a) Let θ be the angle of inclination of segment OP. Then $|OB| = \frac{2a}{\cos \theta}$. Let C = (2a, 0). Then by use of right triangle OAC we see that $|OA| = 2a\cos \theta$. Now

So P has coordinates $x = 2a \sin \theta \tan \theta \cdot \cos \theta = 2a \sin^2 \theta$ and $y = 2a \sin \theta \tan \theta \cdot \sin \theta = 2a \sin^2 \theta \tan \theta$.

45. (a)

There are 2 points of intersection:

(-3,0) and approximately (-2.1,1.4).

(b) A collision point occurs when $x_1 = x_2$ and $y_1 = y_2$ for the same t. So solve the equations:

$$3\sin t = -3 + \cos t$$
 (1)

$$2\cos t = 1 + \sin t \qquad (2)$$

From (2), $\sin t = 2\cos t - 1$. Substituting into (1), we get $3(2\cos t - 1) = -3 + \cos t \implies 5\cos t = 0 \quad (\star) \implies \cos t = 0 \implies t = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$. We check that $t = \frac{3\pi}{2}$ satisfies (1) and (2) but $t = \frac{\pi}{2}$ does not. So the only collision point occurs when $t = \frac{3\pi}{2}$, and this gives the point (-3,0). [We could check our work by graphing x_1 and x_2 together as functions of t and, on another plot, y_1 and y_2 as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t = \frac{3\pi}{2}$.]

- (c) The circle is centered at (3,1) instead of (-3,1). There are still 2 intersection points: (3,0) and (2.1,1.4), but there are no collision points, since (\star) in part (b) becomes $5\cos t = 6 \implies \cos t = \frac{6}{5} > 1$.
- **46.** (a) If $\alpha=30^\circ$ and $v_0=500$ m/s, then the equations become $x=(500\cos30^\circ)t=250\,\sqrt{3}t$ and $y=(500\sin30^\circ)t-\frac{1}{2}(9.8)t^2=250t-4.9t^2$. y=0 when t=0 (when the gun is fired) and again when $t=\frac{250}{4.9}\approx51$ s. Then $x=\left(250\,\sqrt{3}\right)\left(\frac{250}{4.9}\right)\approx22{,}092$ m, so the bullet hits the ground about 22 km from the gun. The formula for y is quadratic in t. To find the maximum y-value, we will complete the square:

$$y = -4.9 \left(t^2 - \frac{250}{4.9}t\right) = -4.9 \left[t^2 - \frac{250}{4.9}t + \left(\frac{125}{4.9}\right)^2\right] + \frac{125^2}{4.9} = -4.9 \left(t - \frac{125}{4.9}\right)^2 + \frac{125^2}{4.9} \le \frac{125^2}{4.9}$$

with equality when $t=\frac{125}{4.9}$ s, so the maximum height attained is $\frac{125^2}{4.9}\approx 3189$ m.

As α (0° < α < 90°) increases up to 45°, the projectile attains a greater height and a greater range. As α increases past 45°, the projectile attains a greater height, but its range decreases.

(c)
$$x = (v_0 \cos \alpha)t \implies t = \frac{x}{v_0 \cos \alpha}$$

$$y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2 \quad \Rightarrow \quad y = (v_0 \sin \alpha)\frac{x}{v_0 \cos \alpha} - \frac{g}{2}\left(\frac{x}{v_0 \cos \alpha}\right)^2 = (\tan \alpha)x - \left(\frac{g}{2v_0^2 \cos^2 \alpha}\right)x^2,$$

which is the equation of a parabola (quadratic in x).

47. $x = t^2$, $y = t^3 - ct$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the x-axis. For c < 0, the graph does not cross itself, but for c = 0 it has a cusp at (0,0) and for c > 0 the graph crosses itself at x = c, so the loop grows larger as c increases.

48. $x=2ct-4t^3, y=-ct^2+3t^4$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the y-axis. When c<0, the graph resembles that of a polynomial of even degree, but when c=0 there is a corner at the origin, and when c>0, the graph crosses itself at the origin, and has two cusps below the x-axis. The size of the "swallowtail" increases as c increases.

49. $x=t+a\cos t, y=t+a\sin t, a>0$. From the first figure, we see that curves roughly follow the line y=x, and they start having loops when a is between 1.4 and 1.6. The loops increase in size as a increases.

While not required, the following is a solution to determine the *exact* values for which the curve has a loop, that is, we seek the values of a for which there exist parameter values t and u such that t < u and $(t + a\cos t, t + a\sin t) = (u + a\cos u, u + a\sin u)$.

In the diagram at the left, T denotes the point (t,t), U the point (u,u), and P the point $(t+a\cos t, t+a\sin t)=(u+a\cos u, u+a\sin u)$. Since $\overline{PT}=\overline{PU}=a$, the triangle PTU is isosceles. Therefore its base angles, $\alpha=\angle PTU$ and $\beta=\angle PUT$ are equal. Since $\alpha=t-\frac{\pi}{4}$ and $\beta=2\pi-\frac{3\pi}{4}-u=\frac{5\pi}{4}-u$, the relation $\alpha=\beta$ implies that $u+t=\frac{3\pi}{2}$ (1).

Since
$$\overline{TU} = \operatorname{distance}((t,t),(u,u)) = \sqrt{2(u-t)^2} = \sqrt{2}\,(u-t)$$
, we see that

$$\cos \alpha = rac{rac{1}{2}\overline{TU}}{\overline{PT}} = rac{(u-t)/\sqrt{2}}{a}, \text{ so } u-t = \sqrt{2}\,a\cos\alpha, \text{ that is,}$$

$$u - t = \sqrt{2} a \cos(t - \frac{\pi}{4})$$
 (2). Now $\cos(t - \frac{\pi}{4}) = \sin(\frac{\pi}{2} - (t - \frac{\pi}{4})) = \sin(\frac{3\pi}{4} - t)$,

so we can rewrite (2) as $u-t=\sqrt{2}\,a\sin\left(\frac{3\pi}{4}-t\right)$ (2'). Subtracting (2') from (1) and

dividing by 2, we obtain
$$t = \frac{3\pi}{4} - \frac{\sqrt{2}}{2}a\sin\left(\frac{3\pi}{4} - t\right)$$
, or $\frac{3\pi}{4} - t = \frac{a}{\sqrt{2}}\sin\left(\frac{3\pi}{4} - t\right)$ (3).

Since a>0 and t< u, it follows from (2') that $\sin\left(\frac{3\pi}{4}-t\right)>0$. Thus from (3) we see that $t<\frac{3\pi}{4}$. [We have implicitly assumed that $0< t<\pi$ by the way we drew our diagram, but we lost no generality by doing so since replacing t by $t+2\pi$ merely increases x and y by 2π . The curve's basic shape repeats every time we change t by 2π .] Solving for a in

(3), we get
$$a = \frac{\sqrt{2}\left(\frac{3\pi}{4} - t\right)}{\sin\left(\frac{3\pi}{4} - t\right)}$$
. Write $z = \frac{3\pi}{4} - t$. Then $a = \frac{\sqrt{2}z}{\sin z}$, where $z > 0$. Now $\sin z < z$ for $z > 0$, so $a > \sqrt{2}$.

$$\left[\text{As } z \to 0^+, \text{ that is, as } t \to \left(\frac{3\pi}{4} \right)^-, a \to \sqrt{2} \, \right].$$

50. Consider the curves $x = \sin t + \sin nt$, $y = \cos t + \cos nt$, where n is a positive integer. For n = 1, we get a circle of radius 2 centered at the origin. For n > 1, we get a curve lying on or inside that circle that traces out n - 1 loops as t ranges from 0 to 2π .

Note:
$$x^{2} + y^{2} = (\sin t + \sin nt)^{2} + (\cos t + \cos nt)^{2}$$
$$= \sin^{2} t + 2\sin t \sin nt + \sin^{2} nt + \cos^{2} t + 2\cos t \cos nt + \cos^{2} nt$$
$$= (\sin^{2} t + \cos^{2} t) + (\sin^{2} nt + \cos^{2} nt) + 2(\cos t \cos nt + \sin t \sin nt)$$
$$= 1 + 1 + 2\cos(t - nt) = 2 + 2\cos((1 - n)t) \le 4 = 2^{2},$$

with equality for n = 1. This shows that each curve lies on or inside the curve for n = 1, which is a circle of radius 2 centered at the origin.

51. Note that all the Lissajous figures are symmetric about the x-axis. The parameters a and b simply stretch the graph in the x- and y-directions respectively. For a = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the graph crosses

^{© 2016} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

876 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

itself at the origin and there are loops above and below the x-axis. In general, the figures have n-1 points of intersection, all of which are on the y-axis, and a total of n closed loops.

52. $x = \cos t$, $y = \sin t - \sin ct$. If c = 1, then y = 0, and the curve is simply the line segment from (-1,0) to (1,0). The graphs are shown for c = 2, 3, 4 and 5.

It is easy to see that all the curves lie in the rectangle [-1,1] by [-2,2]. When c is an integer, $x(t+2\pi)=x(t)$ and $y(t+2\pi)=y(t)$, so the curve is closed. When c is a positive integer greater than 1, the curve intersects the x-axis c+1 times and has c loops (one of which degenerates to a tangency at the origin when c is an odd integer of the form 4k+1). As c increases, the curve's loops become thinner, but stay in the region bounded by the semicircles $y=\pm \left(1+\sqrt{1-x^2}\right)$ and the line segments from (-1,-1) to (-1,1) and from (1,-1) to (1,1). This is true because $|y|=|\sin t-\sin ct|\leq |\sin t|+|\sin ct|\leq \sqrt{1-x^2}+1$. This curve appears to fill the entire region when c is very large, as shown in the figure for c=1000.

^{© 2016} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.