Semantics

operational	l semantics

In I calculus, Breduction is an operational semantics

K-franwirk

denotational semantics

Pixels -> Neural retwork -> cat/dog

R^n -> f -> R^n

Allenhiable probabilither

a xiomatic semantics

$$X = x + 1$$
if $\alpha > 0$ then after executing $X = x + 1$
 $X = x + 1$
 $X = x + 1$

Semantics with apprications

anthmetic expressions

a:=
$$n | \alpha | \alpha_1 + \alpha_2 | \alpha_1 * \alpha_2 | \alpha_1 - \alpha_2$$

Boolean expression

program

$$[x = y] = false$$

[b]: State -> TB

$$\boxed{\alpha \leq n} \qquad \left(\alpha := \alpha, \leq \right) \longrightarrow S\left[\alpha \rightarrow [\alpha](s)\right]$$

sequential
$$(P_1, j, P_2, s) \longrightarrow s''$$
where $(P_1, s) \longrightarrow s'$
 $(P_2, s') \longrightarrow s''$

alternative
$$P_{1,j}S \longrightarrow S'$$
 $P_{2,1}S' \longrightarrow S''$

$$P_{1,j}P_{2,1}S \longrightarrow S''$$

if (mi) (if b the P, else Pr, s) -> s'

If [b](s) = bre

and (P, s) -> s'

(if b the P, else Pr, S) $\longrightarrow S'$ if [b](S) = falseand $(P_2, S) \longrightarrow S'$

while (he) (while b do P, S)
$$\longrightarrow$$
 5"

if [b](S) = hre

and (P,S) \longrightarrow 5'

and (while b do P, S') \longrightarrow 5"

S.=
$$\int \alpha \mapsto S$$

 $y \mapsto 7$
 $y \mapsto 7$
 $z \mapsto S$
 $z \mapsto S$
 $z \mapsto S$
 $z \mapsto S$

Properties

two programs P, $\longrightarrow P_2$ are equivalent iff forch S_1S' $(P_1, S) \longrightarrow S'$ iff $(P_2, S) \longrightarrow S'$

4.9. We can prove that

while b do P

is equivalent to

if b then

P;

while b do P

else

Skip;

Theorem: the semantics are deterministic assume $(P,5) \rightarrow S'$ $(P,5) \rightarrow S''$ $(P,5) \rightarrow S''$ $(P,5) \rightarrow S''$ $(P,5) \rightarrow S''$ $(P,5) \rightarrow S''$

program senatics

[[P]]: State -> State

this is a parkal function

non-securiration

E.s. [while the do Xi=1](s) = undef

Concurrent / Shared memory setting

$$\langle P, S \rangle \rightarrow \langle P', S' \rangle$$