KTH ei1110 Elkretsanalys (utökad kurs) CELTE, Kontrollskrivning (KS1) 2020-09-16 kl 08-10.

Hjälpmedel: Enkel miniräknare, t.ex. kalkylatorn i Windows.

Lycka till och ta det lugnt!

Q1

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = \dots$$
 Ohm, $R_2 = \dots$ Ohm, $R_3 = \dots$ Ohm.

$$R = R_1 + \frac{R_2 R_3}{R_2 + R_3}$$

Q2

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = ... \text{ Ohm}, R_2 = ... \text{ Ohm}, R_3 = ... \text{ Ohm}.$$

$$R = \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$$

Q3

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = ... \text{ Ohm}, R_2 = ... \text{ Ohm}, R_3 = ... \text{ Ohm}.$$

$$R = \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$$

Q4

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = \dots$$
 Ohm, $R_2 = \dots$ Ohm.

Eftersom R_2 kortsluts: $R = R_1$

 Q_5

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = \dots$$
 Ohm, $R_2 = \dots$ Ohm.

$$R_1$$
 R_2

$$R = R_1 + R_2$$

Q6

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = \dots$$
 Ohm, $R_2 = \dots$ Ohm.

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

Q7

Bestäm ersättningsresistansen för kretsen nedan:

$$R_1 = \dots$$
 Ohm, $R_2 = \dots$ Ohm, $R_3 = \dots$ Ohm.

 ${\cal R}={\cal R}_1,$ eftersom ${\cal R}_2$ och ${\cal R}_3$ är en lös ledning och ingen ström flyter i den.

Q8

Bestäm v_x .

 $V_1 = \dots \text{ Volt}, V_2 = \dots \text{ Volt}, I_1 = \dots \text{ Ampere.}$

KVL:
$$+V_1 - v_x + V_2 = 0 \rightarrow v_x = V_1 + V_2$$

Q9

Bestäm v_x .

 $V_1 = \dots \text{ Volt}, I_1 = \dots \text{ Ampere.}$

KVL: $+V_1 + v_x = 0 \rightarrow v_x = -V_1$

Q10

Bestäm v_x .

 $R_1 = \dots$ Ohm, $I_1 = \dots$ Ampere, $k = \dots$ Ohm.

 $v_x = ki_x$ och $i_x = -I_1 \rightarrow v_x = -kI_1$

Q11

Bestäm I_x så att KVL och KCL uppfylls.

 $V_1=\dots$ Volt, $V_2=\dots$ Volt, $I_1=\dots$ Ampere, $I_2=\dots$ Ampere.

KCL: $-I_x - I_2 + I_1 = 0 \rightarrow I_x = I_1 - I_2$. KVL kan uppfyllas eftersom spänningen över strömkällorna sätts av resten av kretsen.

Q12 Bestäm k så att KVL och KCL uppfylls.

 $V_1 = \dots$ Volt, $V_2 = \dots$ Volt, $I_1 = \dots$ Ampere, $I_2 = \dots$ Ampere.

KCL: $-I_1 + ki_x - I_2 = 0$ och $i_x = I_2$. $-I_1 + kI_2 - I_2 = 0 \rightarrow k = \frac{I_2 + I_1}{I_2}$.

Q13

Bestäm k så att KVL och KCL uppfylls:

 $V_1 = \dots \text{ Volt}, V_2 = \dots \text{ Volt}, I_1 = \dots \text{ Ampere.}$

$$i_x=I_1.$$
 KVL: $+V_2-V_1+ki_x=0\rightarrow k=\frac{V_1-V_2}{I_1}$

Q14

Bestäm v_x .

 $V_1=\dots$ Volt, $R_1=\dots$ Ohm, $R_2=\dots$ Ohm, $R_3=\dots$ Ohm, $R_4=\dots$ Ohm, k = 1 Ohm.

KVL på vänstra sidan $\rightarrow i_x=\frac{V_1}{R_1+R_2}$. Ohms lag på högra sidan (och pga. hur v_x är definierad jämfört med strömmen) $\rightarrow v_x=-ki_xR_4=-kR_4\frac{V_1}{R_1+R_2}$.

Q15

Bestäm v_x :

 $I_1=\dots$ Ampere, $I_2=\dots$ Ampere, $R_1=\dots$ Ohm, $R_2=\dots$ Ohm, $R_3=\dots$ Ohm.

KCL och Ohms lag ger: $v_x = (I_1 - I_2)R_2$

Q16

Bestäm v_x :

 $V_1 = \dots \text{ Volt}, V_2 = \dots \text{ Volt}, R_1 = \dots \text{ Ohm}, R_2 = \dots \text{ Ohm}.$

KVL: $+V_1 - v_x - V_2 = 0 \rightarrow v_x = V_1 - V_2$

Q17

Bestäm i_x :

 $V_1 = \dots$ Volt, $V_2 = \dots$ Volt, $R_1 = \dots$ Ohm, $R_2 = \dots$ Ohm.

 $i_x = \frac{V_2}{R_2}$

Q18

Bestäm v_x :

 $V_1=\dots$ Volt, $V_2=\dots$ Volt, $I_1=\dots$ Ampere, $I_2=\dots$ Ampere, $R_1=\dots$ Ohm, $R_2=\dots$ Ohm, $R_3=\dots$ Ohm.

KVL: $+V_2 - V_1 + v_x = 0 \rightarrow v_x = V_1 - V_2$

Q19

Bestäm V_{TH} sett in i porten som är markerad i kretsen.

 $V_1 = \dots$ Volt, $R_1 = \dots$ Ohm, $R_2 = \dots$ Ohm, $R_3 = \dots$ Ohm.

Spänningen över R_1 är V_1 och med en spänningsdelning får vi (och med $v_b=0$): $V_{TH}=v_a-v_b=V_1\frac{R_3}{R_3+R_2}$

Q20

Bestäm R_{TH} sett in i porten som är markerad i kretsen.

 $V_1=\dots$ Volt, $I_1=\dots$ Ampere, $R_1=\dots$ Ohm, $R_2=\dots$ Ohm, $R_3=\dots$ Ohm.

Här kan vi nollställa källorna och vi får då: $R_{TH}=rac{R_3(R_1+R_2)}{R_1+R_2+R_3}$

Q21

Bestäm ${\cal I}_N$ för porten som är markerad i kretsen.

 $I_1 = \dots$ Ampere, $R_1 = \dots$ Ohm, $R_2 = \dots$ Ohm, $R_3 = \dots$ Ohm.

När porten kortsluts så bidrar inte R_3 med något och riktningen på kortslutningsströmmen, dvs I_N , blir sådan att $I_N = -I_1$ (eftersom I_N går från (a) till (b) och $V_{TH} = va - vb$).

Q22

Bestäm effekten som utvecklas i V_1 .

 $V_1 = \dots \text{ Volt}, I_1 = \dots \text{ Ampere.}$

Riktningen på strömmen genom V1 gör att vi får: $P_{V1} = V_1(-I_1)$

Q23

Bestäm effekten som utvecklas i R_1 .

 $I_1=\dots$ Ampere, $I_2=\dots$ Ampere, $R_1=\dots$ Ohm, $R_2=\dots$ Ohm, $R_3=\dots$ Ohm.

 $P_{R1} = R_1 I_1^2$

Q24

Bestäm effekten som utvecklas i I_1 .

 $I_1 = \dots$ Ampere, $R_1 = \dots$ Ohm, $R_2 = \dots$ Ohm.

Vi bestämmer spänningen över de parallellkopplade resistorerna och definierar denna (enligt passiv konvention) att följa strömmen som går ner genom R_1 och R_2 . Spänningen över I_1 blir samma som denna spänning och därmed lämnar strömmen "+ terminalen" av denna spänning och då vi ska ha ett minustecken framför strömmen. $P_{I1} = \frac{I_1 R_1 R_2}{R_1 + R_2} (-I_1)$

Q25

Antag att effekten som utvecklas i R_1 , R_2 och V_1 är känd. Bestäm effekten som utvecklas i I_1 .

 $P_{V1} = \dots$ Watt, $P_{R1} = \dots$ Watt, $P_{R2} = \dots$ Watt.

Vi använder att summan av alla effekterna måste vara lika med noll i en krets (enligt Tellegens teorem): $P_{I1}+P_{V1}+P_{R1}+P_{R2}=0-->P_{I1}=-(P_{V1}+P_{R1}+P_{R2})$