Отчет по лабораторной 10.2

Усольцев Антон, группа 21209, ФИТ

ПИ- регулятор

Для настройки по Никольсу-Циглеру:

Для интегральной оценки качества:

Для оценки по формулам:

```
.define T_a 5.7*T_0 .define T_emk 2.81*T_0 .define T_if (0.153 * ((T_emk + T_1) / T_a) + 0.362) * T_a .define K_f 1 / (1.905 * ((T_emk + T_1) / T_a) + 0.826)
```

$T_1 = 0$

- Настройка по Никольсу-Циглеру
 - 1. Отключаем интегрирующее звено и ищем $K_{\kappa pum}=2.36$
 - 2. На границе устойчивости $T_{\kappa pum}=12.74$
 - 3. Восстанавливаем звено интегрирования $K=0.45*K_{\it \kappa pum}$, $T_u=T_{\it \kappa pum}/1.2$ После настройки

- Оптимальная настройка
 - 1. $K=0.45*K_{\kappa pum}=1.062$, $T_u=T_{\kappa pum}/1.2=10.62$
 - 2. Фиксируем K и меняем T. При исходных параметрах I=10

Т	I	
11.74/1.2	9.44	
10.74/1.2	8.887	
9.4/1.2	8.595	Оптимальное

Фиксируем Т = 9.4/1.2

K	I	
0.45*2.32	8.523	
0.45*2.33	8.545	
0.45*2.31	8.513	
0.45*2.22	8.448	
0.45*2.20	8.445	Оптимальное

Получаем

$$K = 0.45 * 2.2 = 1$$
 , $T_{\it u} = 9.4/1.2 = 7.83$

• Настройка по формулам

Интегральная оценка качества = 10.14

T 1 = 1.5

- Настройка по Никольсу-Циглеру
 - 1. Отключаем интегрирующее звено и ищем $K_{\kappa pum}=1.76$
 - 2. На границе устойчивости $T_{\kappa pum}=16.19$
 - 3. Восстанавливаем звено интегрирования $K=0.45*K_{\it \kappa pum}$, $T_{\it u}=T_{\it \kappa pum}/1.2$ После настройки

- Оптимальная настройка
 - 1. $K=0.45*K_{\mathit{\kappa pum}}=0.792$, $T_u=T_{\mathit{\kappa pum}}/1.2=13.5$
 - 2. Фиксируем K и меняем T. При исходных параметрах I=17.7

Т	I	
15.19/1.2	16.7	
13.19/1.2	14.609	
11.19/1.2	12.517	
9.9/1.2	10.95	
8.9/1.2	10.9	
9.4/1.2	10.885	Оптимальное

K	I	
0.45*1.76	10.885	
0.45*1.66	10.837	
0.45*1.71	10.808	Оптимальное

Получаем

$$K = 0.45*1.71 = 0.77$$
 , $T_{\it u} = 9.4/1.2 = 7.83$

• Настройка по формулам

Интегральная оценка качества = 13.215

$T_1 = 3.0$

- Настройка по Никольсу-Циглеру
 - 1. Отключаем интегрирующее звено и ищем $K_{\kappa pum}=1.49$
 - 2. На границе устойчивости $T_{\kappa pum} = 19.457$
 - 3. Восстанавливаем звено интегрирования $K=0.45*K_{\it \kappa pum}$, $T_u=T_{\it \kappa pum}/1.2$ После настройки

• Оптимальная настройка

1.
$$K=0.45*K_{\kappa pum}=0.67$$
 , $T_u=T_{\kappa pum}/1.2=16.2$

2. Фиксируем K и меняем T. При исходных параметрах I=24.1

Т	I	
17.5/1.2	21.7	
14.5/1.2	18.01	
11.5/1.2	14.3	
9.4/1.2	13.1	Оптимальное

Фиксируем Т = 9.4/1.2

K	I	
0.45*1.49	13.1	
0.45*1.39	12.929	Оптимальное
0.45*1.35	13.052	

Получаем

$$K = 0.45 * 1.35 = 0.6075$$
 , $T_u = 9.4/1.2 = 7.83$

• Настройка по формулам

Интегральная оценка качества = 16.032

ПИД- регулятор

Для настройки по формулам:

.define T_a
$$5.7*T_0$$
 .define T_emk $2.81*T_0$.define T_if $(0.186*((T_emk + T_1) / T_a) + 0.532)*T_a$.define K_f $1/(1.552*((T_emk + T_1) / T_a) + 0.078)$

$T_1 = 0$

- Настройка по Никольсу-Циглеру
 - 1. Отключаем интегрирующее звено и ищем $K_{\kappa pum}=2.36$
 - 2. На границе устойчивости $T_{\kappa pum}=12.74$
 - 3. Восстанавливаем звенья интегрирования и дифференцирования

$$K=0.6*K_{\mathit{\kappa pum}}$$
 , $T_{\mathit{u}}=T_{\mathit{\kappa pum}}/2$

После настройки

- Оптимальная настройка
 - 1. $K=0.6*K_{\kappa pum}=1.416$, $T_u=T_{\kappa pum}/2=6.37$
 - 2. Фиксируем K и меняем T. При исходных параметрах I=6.2

Т	I	
11.74/2	6.3	
13.74/2	6.16	
14.24/2	6.14	Оптимальное

Фиксируем Т = 14.24/2

K	I	
0.6*2.06	6.04	
0.6*2.16	6.01	Оптимальное

Получаем

$$K = 0.6 * 2.16 = 1.3$$
 , $T_u = 14.24/2 = 7.12$

• Настройка по формулам

Интегральная оценка качества = 7.2

$T_1 = 1.5$

- Настройка по Никольсу-Циглеру
 - 1. Отключаем интегрирующее звено и ищем $K_{\kappa pum}=1.76$
 - 2. На границе устойчивости $T_{\kappa pum}=16.19$
 - 3. Восстанавливаем звенья интегрирования и дифференцирования $K=0.6*K_{\kappa pum}$, $T_u=T_{\kappa pum}/2$

После настройки 1.50 0.75 0.76

- Оптимальная настройка
 - 1. $K=0.6*K_{\mathit{\kappa pum}}=1.056$, $T_u=T_{\mathit{\kappa pum}}/2=8.1$
 - 2. Фиксируем K и меняем T. При исходных параметрах I=8.77

Т	I	
15.69/2	8.723	Оптимальное

Фиксируем Т = 15.69/2

K	I	
0.6*1.66	8.526	
0.6*1.61	8.520	Оптимальное

Получаем

$$K = 0.6 * 1.66 = 1$$
 , $T_u = 15.69/2 = 7.845$

• Настройка по формулам

Интегральная оценка качества = 10.3

$T_1 = 3.0$

- Настройка по Никольсу-Циглеру
 - 1. Отключаем интегрирующее звено и ищем $K_{\kappa pum}=1.49$

- 2. На границе устойчивости $T_{\kappa pum}=19.46$
- 3. Восстанавливаем звенья интегрирования и дифференцирования

$$K=0.6*K_{\mathit{\kappa pum}}$$
 , $T_{\mathit{u}}=T_{\mathit{\kappa pum}}/2$

После настройки

• Оптимальная настройка

1.
$$K=0.6*K_{\mathit{\kappa pum}}=0.9$$
 , $T_u=T_{\mathit{\kappa pum}}/2=9.73$

2. Фиксируем K и меняем T. При исходных параметрах I=11.38

Т	I	
18.46/2	11.19	
17.46/2	11.08	Оптимальное

Фиксируем Т = 17.46/2

K	I	
0.6*1.39	10.9	Оптимальное

Получаем

$$K = 0.6 * 1.39 = 0.83$$
 , $T_{\it u} = 17.46/2 = 8.73$

• Настройка по формулам

Интегральная оценка качества = 12.91

Свои формулы настройки:

$$K = 0.55*K_{\mathit{\kappa pum}} \ T = K_{\mathit{\kappa pum}}/2.2$$

Общий итог

Итоговые значения параметров

	T_1	пи			пид		
Способ		K	T_i	I	K	T_i	I
	0	1,062	10,62	10	1,416	6,37	6,2
	1,5	0,792	13,5	17,7	1,056	8,1	8,77
Никольс-Циглер	3	0,67	16,2	24,1	0,9	9,73	11,38
	0	1	7,83	8,445	1,3	7,12	6,01
	1,5	0,77	7,83	10,808	1	7,845	8,52
Оптимальный	3	0,6075	7,83	12,9	0,83	8,73	10,9
	0	0,567	2,917	10,14	1,186	4,159	7,2
	1,5	0,456	3,147	13,215	0,839	4,438	10,3
Формулы	3	0,381	3,376	16,032	0,649	4,717	12,91

Поиск зависимости

Для ПИ:

Для ПИД

