

X_2 is a hydrophobic residue;
 X_3 is an acidic or an aliphatic residue;
 X_4 is a basic residue;
 X_5 is an apolar residue;
 X_6 is an aromatic residue;
 X_7 is a polar residue;
 X_8 is an aliphatic residue;
 X_9 is an acidic or an aliphatic residue;
 X_{10} is an aromatic residue;
 X_{11} is an aromatic residue;
 X_{12} is a polar residue;
 X_{13} is Ile;
 X_{14} is an apolar residue;
 X_{15} is an acidic residue;
 X_{16} is a polar residue;
 X_{17} is a basic or an aliphatic residue;
 Z_1 is H_2N- , $RHN-$ or, $RRN-$;
 Z_2 is $-C(O)R$, $-C(O)OR$, $-C(O)NHR$, $-C(O)NRR$;
each R is independently (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl,
substituted (C_1-C_6) alkyl, substituted (C_1-C_6) alkenyl or substituted (C_1-C_6) alkynyl;
each “—” between residues Z_1 and X_1 and residues Z_2 and X_{17} represents a
covalent linkage; and
each “—” between residues X_1 through X_{17} represents a covalent linkage,

wherein the compound reduces cell-associated binding of transferrin as measured in
an *in vitro* cellular binding assay and produces at least an additive effect with soluble
HFE β_2m heterodimers in reducing cell-associated binding of transferrin as measured in the
assay.

15. (New) The method of Claim 14, wherein:

X_1 is an apolar amino acid;
 X_2 is an aromatic amino acid;

X_3 is an acidic amino acid;
 X_4 is a basic amino acid;
 X_5 is an apolar amino acid;
 X_6 is an aromatic amino acid;
 X_7 is a polar amino acid;
 X_8 is an aliphatic amino acid;
 X_9 is an acidic amino acid;
 X_{10} is an aromatic amino acid;
 X_{11} is an aromatic amino acid;
 X_{12} is a polar amino acid;
 X_{13} is Ile;
 X_{14} is an apolar amino acid;
 X_{15} is an acidic amino acid;
 X_{16} is a polar amino acid;
 X_{17} is a basic amino acid; and
each " " between residues X_1 through X_{17} is independently an amide, a substituted amide or an isostere of amide.

16. (New) The method of Claim 14, wherein:

X_1 is Gly;
 X_2 is Trp or Ala;
 X_3 is Asp or Ala;
 X_4 is His;
 X_5 is Met;
 X_6 is Phe;
 X_7 is Thr;
 X_8 is Val;
 X_9 is Asp or Ala;
 X_{10} is Phe,
 X_{11} is Trp;
 X_{12} is Thr;

X_{13} is Ile;
 X_{14} is Met;
 X_{15} is Glu;
 X_{16} is Asn;
 X_{17} is His or Ala;
 Z_1 is $H_2N\text{-}$;
 Z_2 is -C(O)OH ; and
each "—" between residues X_1 through X_{17} is an amide linkage.

17. (New) A method of treating an iron overload disease, comprising administering to a subject a therapeutically effective amount of a compound comprising the formula:

wherein:

X_1 is an apolar residue;
 X_2 is a hydrophobic residue;
 X_3 is an acidic or an aliphatic residue;
 X_4 is a basic residue;
 X_5 is an apolar residue;
 X_6 is an aromatic residue;
 X_7 is a polar residue;
 X_8 is an aliphatic residue;
 X_9 is an acidic or an aliphatic residue;
 X_{10} is an aromatic residue;
 X_{11} is an aromatic residue;

X_{12} is a polar residue;

X_{13} is Ile;

X_{14} is an apolar residue;

X_{15} is an acidic residue;

X_{16} is a polar residue;

X_{17} is a basic or an aliphatic residue;

Z_1 is H_2N- , $RHN-$ or, $RRN-$;

Z_2 is $-C(O)R$, $-C(O)OR$, $-C(O)NHR$, $-C(O)NRR$;

each R is independently (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl, substituted (C_1-C_6) alkyl, substituted (C_1-C_6) alkenyl or substituted (C_1-C_6) alkynyl;

each “—” between residues Z_1 and X_1 and residues Z_2 and X_{17} represents a covalent linkage; and

each “—” between residues X_1 through X_{17} represents a covalent linkage,

wherein the compound reduces cell-associated binding of transferrin as measured in an *in vitro* cellular binding assay and produces at least an additive effect with soluble HFE/ β_2m heterodimers in reducing cell-associated binding of transferrin as measured in the assay.

18. (New) The method of Claim 17, wherein:

X_1 is an apolar amino acid;

X_2 is an aromatic amino acid;

X_3 is an acidic amino acid;

X_4 is a basic amino acid;

X_5 is an apolar amino acid;

X_6 is an aromatic amino acid;
 X_7 is a polar amino acid;
 X_8 is a aliphatic amino acid;
 X_9 is a an acidic amino acid;
 X_{10} is an aromatic amino acid;
 X_{11} is an aromatic amino acid;
 X_{12} is a polar amino acid;
 X_{13} is Ile;
 X_{14} is an apolar amino acid;
 X_{15} is an acidic amino acid;
 X_{16} is a polar amino acid;
 X_{17} is a basic amino acid; and
each “—” between residues X_1 through X_{17} is independently an amide, a substituted amide or an isostere of amide.

19. (New) The method of Claim 17, wherein:

X_1 is Gly;
 X_2 is Trp or Ala;
 X_3 is Asp or Ala;
 X_4 is His;
 X_5 is Met;
 X_6 is Phe;
 X_7 is Thr;
 X_8 is Val;