

RX ファミリ

R20AN0548JJ0115 Rev.1.15

2022.03.31

TSIP(Trusted Secure IP)モジュール Firmware Integration Technology (バイナリ版)

要旨

本資料は、RX ファミリ搭載の TSIP(Trusted Secure IP) および TSIP-Lite を活用するためのソフトウェア・ドライバの使用方法を記します。このソフトウェア・ドライバは TSIP ドライバと呼びます。TSIP ドライバは 表 1 にまとめた暗号機能、およびファームウェアアップデートをセキュアに行うための API を持ちます。

表 1 各種暗号アルゴリズム

		TSIP-Lite(注 1)	TSIP(注 2)	
公開	暗号化/復号	-	RSAES-PKCS1-v1_5	
鍵暗	署名生成/検証	-	RSASSA-PKCS1-v1_5, ECDSA	
号	鍵生成	-	RSA(1024/2048 bit), ECC P-192/224/256/384	
共通 鍵暗	AES	AES(128/256 bit) ECB/CBC/GCM/CCM	AES(128/256 bit) ECB/CBC/GCM/CCM	
号	DES	-	Triple-DES(56/56x2/56x3 bit) ECB/CBC	
	ARC4	-	ARC4(2048 bit)	
ハッ	SHA	-	SHA-1, SHA-256	
シュ	MD5	-	MD5	
メッセ	ージ認証	CMAC(AES), GMAC	CMAC(AES), GMAC, HMAC(SHA)	
疑似乱	数ビット生成	SP 800-90A	SP 800-90A	
乱数生	成	SP 800-22 で検定済み	SP 800-22 で検定済み	
SSL/TI	LS 連携機能	-	TLS1.2, TLS1.3 準拠	
			サポートしている cipher suite(TLS1.2):	
			TLS_RSA_WITH_AES_128_CBC_SHA	
			TLS_RSA_WITH_AES_256_CBC_SHA	
			TLS_RSA_WITH_AES_128_CBC_SHA256	
			TLS_RSA_WITH_AES_256_CBC_SHA256	
			TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256	
			TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256	
			TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	
			TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	
			サポートしている cipher suite(TLS1.3) (注 3):	
			TLS_AES_128_GCM_SHA256	
			TLS_AES_128_CCM_SHA256	
鍵更新	機能	AES	AES, RSA, DES, ARC4, ECC, HMAC	
鍵共有	•	-	ECDH P-256, ECDHE P-512, DH(2048 bit)	
Key Wrap AES(12		AES(128/256 bit)	AES(128/256 bit)	

- 【注】 1. 対象デバイスは、RX231 グループ, RX23W グループ, RX66T グループ, RX72T グループです。
 - 2. 対象デバイスは、RX65N, RX651 グループ, RX66N グループ, RX671 グループ, RX72M グループ, RX72N グループです。
 - 3. 対象デバイスは RX65N, RX651 グループ、RX66N グループ、RX72M グループ、RX72N グループです。

TSIP ドライバは、Firmware Integration Technology(FIT)モジュールとして提供されます。FIT の概念については以下 URL を参照してください。

https://www.renesas.com/jp/ja/products/software-tools/software-os-middleware-driver/software-package/fit.html

動作確認デバイス

RX231 グループ、RX23W グループ、RX65N, RX651 グループ、RX66T グループ、RX671 グループ、RX72M グループ、RX72N グループ、RX72T グループ

TSIP 機能がある製品型名については各 RX マイコンのユーザーズマニュアルを参照してください。

RX ファミリに搭載される TSIP ドライバの詳細について書かれたアプリケーションノートおよびソースファイルを別途ご用意しています。

また、本アプリケーションノートではサンプルの鍵を使って説明しています。量産等に適用する場合は独自の鍵を生成する必要があり、それらの詳細が書かれたアプリケーションノートを別途ご用意しています。

ルネサスマイコンをご採用/ご採用予定のお客様にご提供させていただいていますので、お取引のあるルネサスエレクトロニクス営業窓口にお問合せください。

https://www.renesas.com/contact/

目次

1.	概要	9
1.1	用語	9
1.2	TSIP 概要	11
1.3	製品構成	12
1.4	開発環境	14
1.5	コードサイズ	15
1.6	セクション情報	15
1.7	性能情報(RX231)	16
1.8	性能情報(RX23W)	19
1.9	性能情報(RX66T)	22
1.10) 性能情報(RX72T)	25
1.11	性能情報(RX65N)	28
1.12	? 性能情報(RX671)	36
1.13	3 性能情報(RX72M)	44
1.14	- 性能情報(RX72N)	52
_		
	API 情報	
2.1	ハードウェアの要求	
2.2	ソフトウェアの要求	
2.3	サポートされているツールチェイン	
2.4	ヘッダファイル	
2.5	整数型	
2.6	API データ構造	
2.7	戻り値	
2.8	FIT モジュールの追加方法	63
3.	API 関数	64
3.1	API 一覧	64
3.2	大態遷移図	76
3.3	API 使用時の注意事項	77
3.3.1	1 各 API の呼び出し方法	77
3.3.2	2 BSP FIT モジュールに関する注意事項	78
4.	API 関数詳細説明(TSIP-Lite/TSIP 共通)	79
4.1	R_TSIP_Open	
4.2	R TSIP Close	
4.3	R TSIP SoftwareReset	
4.4	R TSIP GetVersion	
4.5	R_TSIP_GenerateAes128KeyIndex	
4.6	R_TSIP_GenerateAes256KeyIndex	
4.7	R_TSIP_GenerateUpdateKeyRingKeyIndex	
4.8	R_TSIP_UpdateAes128KeyIndex	
4.9	R_TSIP_UpdateAes256KeyIndex	
4.10		
4.11		
	R_TSIP_GenerateRandomNumber	

		_StartUpdateFirmware	
4.14	R_TSIP	_GenerateFirmwareMAC	92
4.15	R_TSIP_	_VerifyFirmwareMAC	96
4.16	R_TSIP_	_Aes128EcbEncryptInit	97
4.17	R_TSIP_	_Aes128EcbEncryptUpdate	98
4.18	R_TSIP_	_Aes128EcbEncryptFinal	99
4.19	R_TSIP_	_Aes128EcbDecryptInit	100
4.20	R_TSIP_	_Aes128EcbDecryptUpdate	101
4.21	R_TSIP_	_Aes128EcbDecryptFinal	102
		_Aes256EcbEncryptInit	
4.23	R_TSIP_	_Aes256EcbEncryptUpdate	104
4.24	R_TSIP_	_Aes256EcbEncryptFinal	105
		_Aes256EcbDecryptInit	
4.26	R_TSIP_	_Aes256EcbDecryptUpdate	107
		_Aes256EcbDecryptFinal	
		_Aes128CbcEncryptInit	
		_Aes128CbcEncryptUpdate	
		_Aes128CbcEncryptFinal	
4.31		_Aes128CbcDecryptInit	
		_Aes128CbcDecryptUpdate	
		_Aes128CbcDecryptFinal	
		_Aes256CbcEncryptInit	
		_Aes256CbcEncryptUpdate	
		_Aes256CbcEncryptFinal	
		_Aes256CbcDecryptInit	
		_Aes256CbcDecryptUpdate	
4.39		_Aes256CbcDecryptFinal	
		_Aes128GcmEncryptInit	
		_Aes128GcmEncryptUpdate	
		_Aes128GcmEncryptFinal	
		_Aes128GcmDecryptInit	
		_Aes128GcmDecryptUpdate	
		_Aes128GcmDecryptFinal	
		_Aes256GcmEncryptInit	
		_Aes256GcmEncryptUpdate	
		_Aes256GcmEncryptFinal	
		_Aes256GcmDecryptInit	
		_Aes256GcmDecryptUpdate	
		_Aes256GcmDecryptFinal	
		_Aes128CcmEncryptInit	
		_Aes128CcmEncryptUpdate	
		_Aes128CcmEncryptFinal	
		_Aes128CcmDecryptInit	
		_Aes128CcmDecryptUpdate	
		_Aes128CcmDecryptFinal	
		_Aes256CcmEncryptInit	
4.59	KISIP	Aes256CcmEncryptUpdate	140

4.60	R_TSIP_Aes256CcmEncryptFinal	141
4.61	R_TSIP_Aes256CcmDecryptInit	142
4.62	R_TSIP_Aes256CcmDecryptUpdate	143
4.63	R_TSIP_Aes256CcmDecryptFinal	144
4.64	R_TSIP_Aes128CmacGenerateInit	145
4.65	R_TSIP_Aes128CmacGenerateUpdate	146
4.66	R_TSIP_Aes128CmacGenerateFinal	147
4.67	R_TSIP_Aes256CmacGenerateInit	148
4.68	R_TSIP_Aes256CmacGenerateUpdate	149
4.69	R_TSIP_Aes256CmacGenerateFinal	150
4.70	R_TSIP_Aes128CmacVerifyInit	151
4.71	R_TSIP_Aes128CmacVerifyUpdate	152
4.72	R_TSIP_Aes128CmacVerifyFinal	153
4.73	R_TSIP_Aes256CmacVerifyInit	154
4.74	R_TSIP_Aes256CmacVerifyUpdate	155
4.75	R_TSIP_Aes256CmacVerifyFinal	156
4.76	R_TSIP_Aes128KeyWrap	157
4.77	R_TSIP_Aes256KeyWrap	158
4.78	R_TSIP_Aes128KeyUnwrap	159
4.79	R_TSIP_Aes256KeyUnwrap	160
F	ADI 間粉型细冠四/TCID 四)	101
	API 関数詳細説明(TSIP 用)	
5.1	R_TSIP_Sha1Init	
5.2	R_TSIP_Sha1Update R_TSIP_Sha1Final	
5.3 E.4	R TSIP Sha256Init	
5.4 5.5		
	R_TSIP_Sha256Update R_TSIP_Sha256Final	
5.6 5.7	R_TSIP_Md5Init	
5.7 = 0		
5.8 5.9	R_TSIP_Md5UpdateR TSIP Md5Final	
5.10 5.11	R_TSIP_GenerateTdesKeyIndex	
	R_TSIP_GenerateTdesRandomKeyIndex	
	R_TSIP_UpdateTdesKeyIndex	
	R_TSIP_TdesEcbEncryptInit	
5.14	~ .	
	R TSIP TdesEcbEncryptFinal	
	R_TSIP_TdesEcbDecryptInit	
		
	· · ·	
	R_TSIP_TdesEcbDecryptFinal	
5.20 5.21	R_TSIP_TdesCbcEncryptUpdate	
5.22 5.23	R_TSIP_TdesCbcPcervetlnit	
	R_TSIP_TdesCbcDecryptUpdate	
ეე	R_TSIP_TdesCbcDecryptFinal	185

5.26	R_TSIP_GenerateArc4KeyIndex	186
5.27	R_TSIP_GenerateArc4RandomKeyIndex	187
5.28	R_TSIP_UpdateArc4KeyIndex	188
5.29	R_TSIP_Arc4EncryptInit	189
5.30	R_TSIP_Arc4EncryptUpdate	190
5.31	R_TSIP_Arc4EncryptFinal	191
5.32	R_TSIP_Arc4DecryptInit	192
5.33	R_TSIP_Arc4DecryptUpdate	193
5.34	R_TSIP_Arc4DecryptFinal	194
5.35	R_TSIP_GenerateRsa1024PublicKeyIndex	195
5.36	R_TSIP_GenerateRsa1024PrivateKeyIndex	197
5.37	R_TSIP_GenerateRsa2048PublicKeyIndex	198
5.38	R_TSIP_GenerateRsa2048PrivateKeyIndex	200
5.39	R_TSIP_GenerateRsa1024RandomKeyIndex	201
5.40	R_TSIP_GenerateRsa2048RandomKeyIndex	202
5.41	R_TSIP_UpdateRsa1024PublicKeyIndex	203
5.42	R_TSIP_UpdateRsa1024PrivateKeyIndex	204
5.43	R_TSIP_UpdateRsa2048PublicKeyIndex	205
5.44	R_TSIP_UpdateRsa2048PrivateKeyIndex	206
5.45	R_TSIP_RsaesPkcs1024Encrypt	207
5.46	R_TSIP_RsaesPkcs1024Decrypt	208
5.47	R_TSIP_RsaesPkcs2048Encrypt	209
5.48	R_TSIP_RsaesPkcs2048Decrypt	210
5.49	R_TSIP_RsassaPkcs1024SignatureGenerate	211
5.50	R_TSIP_RsassaPkcs1024SignatureVerification	
5.51	R_TSIP_RsassaPkcs2048SignatureGenerate	215
5.52	R_TSIP_RsassaPkcs2048SignatureVerification	
5.53	R_TSIP_Rsa2048DhKeyAgreement	
5.54	R_TSIP_Sha1HmacGenerateInit	
5.55		
	R_TSIP_Sha1HmacGenerateFinal	
5.57	R_TSIP_Sha256HmacGenerateInit	
5.58	R_TSIP_Sha256HmacGenerateUpdate	
5.59	R_TSIP_Sha256HmacGenerateFinal	
5.60	R_TSIP_Sha1HmacVerifyInit	
5.61	R_TSIP_Sha1HmacVerifyUpdate	
5.62	R_TSIP_Sha1HmacVerifyFinal	
5.63	R_TSIP_Sha256HmacVerifyInit	
5.64	R_TSIP_Sha256HmacVerifyUpdate	
5.65	R_TSIP_Sha256HmacVerifyFinal	
5.66	R_TSIP_GenerateTisRsaPublicKeyIndex	
5.67	R_TSIP_UpdateTlsRsaPublicKeyIndex	
5.68	R_TSIP_TIsRootCertificateVerification	
5.69	R_TSIP_TIsCertificateVerification	
5.70	R_TSIP_TIsCertificateVerificationExtension	
5.71	R_TSIP_TIsGeneratePreMasterSecret	
5.72	R_TSIP_TIsEncryptPreMasterSecretWithRsa2048PublicKey	241

5.73	R_TSIP_TIsGenerateMasterSecret	. 242
5.74	R_TSIP_TIsGenerateSessionKey	. 243
5.75	R_TSIP_TIsGenerateVerifyData	. 245
5.76	R_TSIP_TIsServersEphemeralEcdhPublicKeyRetrieves	. 246
5.77	R_TSIP_TIsGeneratePreMasterSecretWithEccP256Key	. 248
5.78	R_TSIP_GenerateTlsP256EccKeyIndex	. 249
5.79	R_TSIP_GenerateTls13P256EccKeyIndex	. 250
5.80	R_TSIP_TIs13GenerateEcdheSharedSecret	. 251
5.81	R_TSIP_TIs13GenerateHandshakeSecret	. 252
5.82	R_TSIP_TIs13GenerateServerHandshakeTrafficKey	. 253
5.83	R_TSIP_TIs13ServerHandshakeVerification	. 254
5.84	R_TSIP_TIs13GenerateClientHandshakeTrafficKey	. 256
5.85	R_TSIP_TIs13GenerateMasterSecret	. 257
5.86	R_TSIP_TIs13GenerateApplicationTrafficKey	. 258
5.87	R_TSIP_TIs13UpdateApplicationTrafficKey	. 260
5.88	R_TSIP_TIs13EncryptInit	. 262
5.89	R_TSIP_TIs13EncryptUpdate	. 263
5.90	R_TSIP_TIs13EncryptFinal	. 264
5.91	R_TSIP_TIs13DecryptInit	. 265
5.92	R_TSIP_TIs13DecryptUpdate	. 266
5.93	R_TSIP_TIs13DecryptFinal	. 267
5.94	R_TSIP_TIs13CertificateVerifyGenerate	. 268
5.95	R_TSIP_TIs13CertificateVerifyVerification	. 269
5.96	R_TSIP_GenerateEccP192PublicKeyIndex	. 270
5.97	R_TSIP_GenerateEccP224PublicKeyIndex	. 271
5.98	R_TSIP_GenerateEccP256PublicKeyIndex	. 272
5.99	R_TSIP_GenerateEccP384PublicKeyIndex	. 273
5.100	R_TSIP_GenerateEccP192PrivateKeyIndex	. 274
5.101	R_TSIP_GenerateEccP224PrivateKeyIndex	. 275
5.102	R_TSIP_GenerateEccP256PrivateKeyIndex	. 276
5.103	R_TSIP_GenerateEccP384PrivateKeyIndex	. 277
5.104	R_TSIP_GenerateEccP192RandomKeyIndex	. 278
5.105	R_TSIP_GenerateEccP224RandomKeyIndex	. 279
5.106	R_TSIP_GenerateEccP256RandomKeyIndex	. 280
5.107	R_TSIP_GenerateEccP384RandomKeyIndex	. 281
5.108	R_TSIP_GenerateSha1HmacKeyIndex	. 282
5.109	R_TSIP_GenerateSha256HmacKeyIndex	. 283
5.110	R_TSIP_UpdateEccP192PublicKeyIndex	. 284
5.111	R_TSIP_UpdateEccP224PublicKeyIndex	. 285
5.112	R_TSIP_UpdateEccP256PublicKeyIndex	. 286
5.113	R_TSIP_UpdateEccP384PublicKeyIndex	. 287
5.114	R_TSIP_UpdateEccP192PrivateKeyIndex	. 288
5.115	R_TSIP_UpdateEccP224PrivateKeyIndex	. 289
5.116	R_TSIP_UpdateEccP256PrivateKeyIndex	. 290
5.117	R_TSIP_UpdateEccP384PrivateKeyIndex	. 291
5.118	R_TSIP_UpdateSha1HmacKeyIndex	. 292
5.119	R TSIP UpdateSha256HmacKeyIndex	. 293

RX ファミリTSIP(Trusted Secure IP)モジュール Firmware Integration Technology(バイナリ版)

5.120 R_TSIP_EcdsaP192SignatureGenerate	294
5.121 R_TSIP_EcdsaP224SignatureGenerate	295
5.122 R_TSIP_EcdsaP256SignatureGenerate	296
5.123 R_TSIP_EcdsaP384SignatureGenerate	297
5.124 R_TSIP_EcdsaP192SignatureVerification	298
5.125 R_TSIP_EcdsaP224SignatureVerification	300
5.126 R_TSIP_EcdsaP256SignatureVerification	302
5.127 R_TSIP_EcdsaP384SignatureVerification	303
5.128 R_TSIP_EcdhP256Init	304
5.129 R_TSIP_EcdhP256ReadPublicKey	305
5.130 R_TSIP_EcdhP256MakePublicKey	306
5.131 R_TSIP_EcdhP256CalculateSharedSecretIndex	308
5.132 R_TSIP_EcdhP256KeyDerivation	309
5.133 R_TSIP_EcdheP512KeyAgreement	311
A 1 55 W	
6. コールバック関数	
6.1 TSIP_GEN_MAC_CB_FUNC_T 型	312
7. 鍵データの運用	315
・・・~~~~	
7.1.1 AES ユーザ鍵インストール概要	
7.1.2 AES ユーザ鍵 encrypted key の作成方法	
7.2 TDES ユーザ鍵の運用	
7.2.1 TDES ユーザ鍵インストール概要	
7.2.2 TDES ユーザ鍵 encrypted key の作成方法	
7.3 ARC4 ユーザ鍵の運用	
7.3.1 ARC4 ユーザ鍵インストール概要	
7.3.2 ARC4 ユーザ鍵 encrypted key の作成方法	
7.4 HMAC ユーザ鍵の運用	
7.4.1 HMAC ユーザ鍵インストール概要	
7.4.2 HMAC ユーザ鍵 encrypted key の作成方法	
7.5 RSA 公開鍵、秘密鍵の運用	
7.5.1 RSA 公開鍵、秘密鍵データインストール概要概要	
7.5.2 RSA 公開鍵、秘密鍵 encrypted key の作成方法	
7.6 ECC 公開鍵、秘密鍵の運用	
7.6.1 ECC 公開鍵、秘密鍵データインストール概要概要	
7.6.2 ECC 公開鍵、秘密鍵 encrypted key の作成方法	
8. 付録	
8.1 動作確認環境	
8.2 トラブルシューティング	334
0	225

1. 概要

1.1 用語

本資料中の用語説明をいたします。鍵の用語は各 MCU のユーザーズマニュアル ハードウェア編 TSIP もしくはセキュリティ機能の章にある「鍵インストール概念図」と(図 1-1)合わせてご確認ください。

表 1-1 用語説明

用語	内容	鍵インストール概 念図との対応
ユーザ鍵、user key	AES、DES、ARC4、HMAC の場合、ユーザが設定す る共通鍵	Key-1
	RSA、ECC の場合、ユーザが設定する公開鍵、秘密鍵	
encrypted key	user key を provisioning key を使って AES128 で暗号 化した鍵情報	eKey-1
鍵生成情報、	user key などの鍵情報を TSIP で使用できるデータに	Index-1
key index	変換したデータ。	もしくは
	user key は key index に変換される。	Index-2
provisioning key user key を AES128 で暗号化&MAC 付与するた。 ユーザが設定する AES128 共通鍵束		Key-2
encrypted provisioning key	TSIP で encrypted key を復号し、key index に変換するための鍵情報	Index-2
	provisioning key が DLM サーバでラッピングされた鍵情報	
DLM サーバ	Renesas 鍵管理サーバ	-
	Device Lifecycle Management サーバの略	
	provisioning key をラッピングするのに使用する	

図 1-1 鍵インストール概念図 (RX65N グループ、RX651 グループ ユーザーズマニュアル ハードウェア 編 52. Trusted Secure IP 図 52.4 より抜粋)

1.2 TSIP 概要

RX ファミリ内の Trusted Secure IP(TSIP)ブロックは、不正アクセスを監視することで、MCU 内部に安全な領域を作成します。これにより、TSIP は暗号化エンジンおよび暗号鍵(user key)を確実に安全に使用することが可能です。TSIP は、TSIP ブロックの外部において、暗号鍵(user key)を安全で解読不可能な鍵生成情報と呼ばれる形式で扱います。このため信頼できる安全な暗号処理において最も重要な要素である暗号鍵(user key)を、フラッシュメモリ内に保存することが可能です。

TSIP ブロックには安全領域があり、暗号化エンジン、平文鍵用のストレージおよび Hidden Root Key が格納されています。

TSIP は、TSIP 内部で鍵生成情報から暗号演算に使用する暗号鍵(user key)を復元します。鍵生成情報は、Unique ID に紐付けられて生成されているため、デバイス固有の値になります。このため、あるデバイスの鍵生成情報を別のデバイスにコピーして使用することができません。アプリケーションから TSIP ハードウェアにアクセスするためには、TSIP ドライバを使用する必要があります。

図 1-2 TSIP 搭載 MCU

1.3 製品構成

本製品は、以下の表 1-2 のファイルが含まれます。

表 1-2 製品構成

ファイル/ディレクト	リ (太字) 名	内容	
r20an0548jj0115-rx-tsip-security.pdf		TSIP ドライバ アプリケーションノート(日本語)	
r20an0548ej0115-rx-tsip-security.pdf		TSIP ドライバ アプリケーションノート(英語)	
reference_documents		FIT モジュールを各種統合開発環境で使用する方法等を記したドキュメントを格納するフォルダ	
ja		FIT モジュールを各種統合開発環境で使用する方法等を記したドキュメントを格納するフォルダ(日本語)	
r01an1826jj0110-rx.p	df	CS+に組み込む方法(日本語)	
r01an1723ju0121-rx.p	odf	e2studio に組み込む方法(日本語)	
r20an0451js0140-e2s	tudio-sc.pdf	スマート・コンフィグレータ ユーザーガイド(日本語)	
r01an5792jj0101-rx-ts	sip.pdf	AES 暗号プロジェクト アプリケーションノート(日本語)	
r01an5880jj0101-rx-ts	sip.pdf	TLS 連携機能プロジェクト アプリケーションノート(日本語)	
en		FIT モジュールを各種統合開発環境で使用する方法等を記したドキュメントを格納するフォルダ(英語)	
r01an1826ej0110-rx.p	odf	CS+に組み込む方法(英語)	
r01an1723eu0121-rx.	pdf	e2studio に組み込む方法(英語)	
r20an0451es0140-e2	studio-sc.pdf	スマート・コンフィグレータ ユーザーガイド(英語)	
r01an5792ej0101-rx-t	sip.pdf	AES 暗号プロジェクト アプリケーションノート(英語)	
r01an5880ej0101-rx-t	sip.pdf	TLS 連携機能プロジェクト アプリケーションノート(英語)	
FITModules		FIT モジュールフォルダ	
r_tsip_rx_v1.15.l.zip		TSIP ドライバ FIT Module	
r_tsip_rx_v1.15.l.xml		TSIP ドライバ FIT Module e2 studio FIT プラグイン用 XML ファイル	
r_tsip_rx_v1.15.l_extend.mdf		TSIP ドライバ FIT Module スマート・コンフィグレータ 用コンフィグレーション設定ファイル	
FITDemos		デモプロジェクトフォルダ	
rx231_rsk_tsip_sample		鍵書き込み方法、鍵更新方法を示す RX231 用プロジェクト	
rx65n_2mb_rsk_tsip_sa	ample	鍵書き込み方法、鍵更新方法を示す RX65N 用プロジェクト	
rx66t_rsk_tsip_sample		鍵書き込み方法、鍵更新方法を示す RX66T 用プロジェクト	
rx671_rsk_tsip_sample		鍵書き込み方法、鍵更新方法を示す RX671 用プロジェクト	
rx72m_rsk_tsip_sample	9	鍵書き込み方法、鍵更新方法を示す RX72M 用プロジェクト	
rx72n_rsk_tsip_sample		鍵書き込み方法、鍵更新方法を示す RX72N 用プロジェクト	
rx72t_rsk_tsip_sample		鍵書き込み方法、鍵更新方法を示す RX72T 用プロジェクト	
rx65n_2mb_rsk_tsip_ac	es_sample	RX65N 用 AES 暗号プロジェクト	
rx72n_ek_tsip_aes_sar	nple	RX72N 用 AES 暗号プロジェクト	

RX ファミリTSIP(Trusted Secure IP)モジュール Firmware Integration Technology(バイナリ版)

rx_tsip_freertos_mbedtls_sample		TLS 連携機能プロジェクト	
to	pol		
	Renesas Secure Flash Programmer.exe	鍵とユーザプログラムに対し暗号化するツール	

1.4 開発環境

TSIPドライバは以下の開発環境を用いて開発しました。ユーザアプリケーション開発時は以下のバージョン、またはより新しいものをご使用ください。

(1)統合開発環境

「8.1 動作確認環境」の項目「統合開発環境」を参照してください。

(2)C コンパイラ

「8.1 動作確認環境」の項目「Cコンパイラ」を参照してください。

(3)エミュレータデバッガ

E1/E20/E2 Lite

(4)評価ボード

「8.1 動作確認環境」の項目「使用ボード」を参照してください。

いずれも、暗号機能付きの特別版の製品です。

製品型名をよくご確認の上、ご購入ください。

評価およびデモプロジェクト作成は、 e^2 studio と CC-RX の組合せで実施しました。

プロジェクト変換機能で e² studio から CS+への変換が可能ですが、コンパイルエラー等問題が発生する場合はお問い合わせください。

1.5 コードサイズ

本モジュールの ROM サイズ、RAM サイズ、最大使用スタックサイズを下表に示します。

下表の値は下記条件で確認しています。

モジュールリビジョン: r_tsip_rx rev1.15

コンパイラバージョン: Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00

(統合開発環境のデフォルト設定に"-lang = c99"オプションを追加)

GCC for Renesas RX 8.3.0.202104

(統合開発環境のデフォルト設定に"-std=gnu99"オプションを追加)

IAR C/C++ Compiler for Renesas RX version 4.20.01

(統合開発環境のデフォルト設定)

	ROM、RAM およびスタックのコードサイズ				
デバイス	分類	使用メモリ			
		Renesas Compiler	GCC	IAR Compiler	
TSIP-Lite	ROM	54,675 パイト	55,310 パイト	54,150 パイト	
	RAM	796 パイト	796 バイト	796 バイト	
	スタック	184 バイト	-	164 バイト	
TSIP	ROM	306,103 パイト	312,602 パイト	298,896 パイト	
	RAM	7,432 パイト	7,432 パイト	7,432 バイト	
	スタック	888 バイト	-	856 バイト	

1.6 セクション情報

TSIP ドライバはデフォルトセクションを使用します。

1.7 性能情報(RX231)

以下に RX231 の TSIP-Lite ドライバの性能情報を示します。性能はコアクロックである ICLK のサイクル 単位での計測になります。TSIP-Lite の動作クロック PCLKB は ICLK: PCLKB = 2:1 の設定をしています。

最適化レベル2で実施しています。

表 1-3 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	7,359,176
R_TSIP_Close	444
R_TSIP_GetVersion	32
R_TSIP_GenerateAes128KeyIndex	3,990
R_TSIP_GenerateAes256KeyIndex	4,342
R_TSIP_GenerateAes128RandomKeyIndex	2,228
R_TSIP_GenerateAes256RandomKeyIndex	3,062
R_TSIP_GenerateRandomNumber	936
R_TSIP_GenerateUpdateKeyRingKeyIndex	4,328
R_TSIP_UpdaeteAes128KeyIndex	3,528
R_TSIP_UpdaeteAes256KeyIndex	3,888

表 1-4 Firmware 検証の性能

API	性能 (単位:サイクル)		
	2K バイト処理	4K バイト処理	6K バイト処理
R_TSIP_VerifyFirmwareMAC	12,014	23,276	34,538

表 1-5 AES の性能

API		性能 (単位:サイクル	L)
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,318	1,318	1,318
R_TSIP_Aes128EcbEncryptUpdate	612	792	964
R_TSIP_Aes128EcbEncryptFinal	566	566	566
R_TSIP_Aes128EcbDecryptInit	1,320	1,320	1,320
R_TSIP_Aes128EcbDecryptUpdate	722	892	1,074
R_TSIP_Aes128EcbDecryptFinal	578	578	578
R_TSIP_Aes256EcbEncryptInit	1,628	1,630	1,630
R_TSIP_Aes256EcbEncryptUpdate	652	892	1,134
R_TSIP_Aes256EcbEncryptFinal	554	554	554
R_TSIP_Aes256EcbDecryptInit	1,636	1,638	1,638
R_TSIP_Aes256EcbDecryptUpdate	794	1,034	1,276
R_TSIP_Aes256EcbDecryptFinal	568	568	568
R_TSIP_Aes128CbcEncryptInit	1,380	1,380	1,380
R_TSIP_Aes128CbcEncryptUpdate	682	862	1,034
R_TSIP_Aes128CbcEncryptFinal	590	590	590
R_TSIP_Aes128CbcDecryptInit	1,388	1,390	1,390
R_TSIP_Aes128CbcDecryptUpdate	790	960	1,142
R_TSIP_Aes128CbcDecryptFinal	600	600	600
R_TSIP_Aes256CbcEncryptInit	1,698	1,698	1,698
R_TSIP_Aes256CbcEncryptUpdate	720	960	1,202
R_TSIP_Aes256CbcEncryptFinal	578	578	578
R_TSIP_Aes256CbcDecryptInit	1,704	1,706	1,706
R_TSIP_Aes256CbcDecryptUpdate	870	1,110	1,352
R_TSIP_Aes256CbcDecryptFinal	588	588	588

表 1-6 AES-GCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128GcmEncryptInit	5,460	5,460	5,460
R_TSIP_Aes128GcmEncryptUpdate	2,832	3,332	3,832
R_TSIP_Aes128GcmEncryptFinal	1,296	1,296	1,296
R_TSIP_Aes128GcmDecryptInit	5,454	5,456	5,456
R_TSIP_Aes128GcmDecryptUpdate	2,420	2,518	2,616
R_TSIP_Aes128GcmDecryptFinal	2,084	2,084	2,084
R_TSIP_Aes256GcmEncryptInit	6,154	6,156	6,156
R_TSIP_Aes256GcmEncryptUpdate	2,938	3,476	4,014
R_TSIP_Aes256GcmEncryptFinal	1,328	1,328	1,328
R_TSIP_Aes256GcmDecryptInit	6,146	6,148	6,148
R_TSIP_Aes256GcmDecryptUpdate	2,514	2,632	2,760
R_TSIP_Aes256GcmDecryptFinal	2,114	2,114	2,114

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-7 AES-CCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	2,602	2,602	2,602
R_TSIP_Aes128CcmEncryptUpdate	1,522	1,690	1,868
R_TSIP_Aes128CcmEncryptFinal	1,174	1,174	1,174
R_TSIP_Aes128CcmDecryptInit	2,414	2,416	2,416
R_TSIP_Aes128CcmDecryptUpdate	1,420	1,588	1,766
R_TSIP_Aes128CcmDecryptFinal	1,936	1,936	1,936
R_TSIP_Aes256CcmEncryptInit	2,986	2,986	2,986
R_TSIP_Aes256CcmEncryptUpdate	1,728	1,976	2,214
R_TSIP_Aes256CcmEncryptFinal	1,208	1,208	1,208
R_TSIP_Aes256CcmDecryptInit	2,984	2,984	2,984
R_TSIP_Aes256CcmDecryptUpdate	1,626	1,874	2,112
R_TSIP_Aes256CcmDecryptFinal	1,968	1,968	1,968

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-8 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	914	914	914
R_TSIP_Aes128CmacGenerateUpdate	812	900	988
R_TSIP_Aes128CmacGenerateFinal	1,074	1,074	1,074
R_TSIP_Aes128CmacVerifyInit	910	914	914
R_TSIP_Aes128CmacVerifyUpdate	806	890	978
R_TSIP_Aes128CmacVerifyFinal	1,786	1,786	1,786
R_TSIP_Aes256CmacGenerateInit	1,216	1,222	1,222
R_TSIP_Aes256CmacGenerateUpdate	876	1,000	1,128
R_TSIP_Aes256CmacGenerateFinal	1,152	1,152	1,152
R_TSIP_Aes256CmacVerifyInit	1,216	1,220	1,220
R_TSIP_Aes256CmacVerifyUpdate	870	998	1,116
R_TSIP_Aes256CmacVerifyFinal	1,852	1,852	1,852

表 1-9 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	9,532	15,260	
R_TSIP_Aes256KeyWrap	10,314	16,522	
R_TSIP_Aes128KeyUnwrap	11,946	17,710	
R_TSIP_Aes256KeyUnwrap	12,724	18,968	

1.8 性能情報(RX23W)

以下に RX23W の TSIP-Lite ドライバの性能情報を示します。性能はコアクロックである ICLK のサイクル 単位での計測になります。TSIP-Lite の動作クロック PCLKB は ICLK: PCLKB = 2:1 の設定をしています。

最適化レベル2で実施しています。

表 1-10 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	7,384,208
R_TSIP_Close	666
R_TSIP_GetVersion	40
R_TSIP_GenerateAes128KeyIndex	4,332
R_TSIP_GenerateAes256KeyIndex	4,672
R_TSIP_GenerateAes128RandomKeyIndex	2,414
R_TSIP_GenerateAes256RandomKeyIndex	3,310
R_TSIP_GenerateRandomNumber	1,042
R_TSIP_GenerateUpdateKeyRingKeyIndex	4,694
R_TSIP_UpdaeteAes128KeyIndex	3,814
R_TSIP_UpdaeteAes256KeyIndex	4,190

表 1-11 Firmware 検証の性能

API	性能 (単位:サイクル)		
	2K バイト処理	4K バイト処理	6K バイト処理
R_TSIP_VerifyFirmwareMAC	12,070	23,342	34,600

表 1-12 AES の性能

API		性能 (単位:サイクル	·)
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,500	1,502	1,502
R_TSIP_Aes128EcbEncryptUpdate	734	912	1,096
R_TSIP_Aes128EcbEncryptFinal	658	658	658
R_TSIP_Aes128EcbDecryptInit	1,510	1,510	1,510
R_TSIP_Aes128EcbDecryptUpdate	856	1,038	1,222
R_TSIP_Aes128EcbDecryptFinal	680	680	680
R_TSIP_Aes256EcbEncryptInit	1,824	1,826	1,826
R_TSIP_Aes256EcbEncryptUpdate	770	1,006	1,260
R_TSIP_Aes256EcbEncryptFinal	662	662	662
R_TSIP_Aes256EcbDecryptInit	1,838	1,842	1,842
R_TSIP_Aes256EcbDecryptUpdate	916	1,166	1,406
R_TSIP_Aes256EcbDecryptFinal	680	680	680
R_TSIP_Aes128CbcEncryptInit	1,592	1,594	1,594
R_TSIP_Aes128CbcEncryptUpdate	838	1,016	1,200
R_TSIP_Aes128CbcEncryptFinal	694	694	694
R_TSIP_Aes128CbcDecryptInit	1,604	1,606	1,606
R_TSIP_Aes128CbcDecryptUpdate	946	1,128	1,312
R_TSIP_Aes128CbcDecryptFinal	708	708	708
R_TSIP_Aes256CbcEncryptInit	1,916	1,916	1,916
R_TSIP_Aes256CbcEncryptUpdate	870	1,106	1,360
R_TSIP_Aes256CbcEncryptFinal	700	700	700
R_TSIP_Aes256CbcDecryptInit	1,932	1,936	1,936
R_TSIP_Aes256CbcDecryptUpdate	1,014	1,264	1,504
R_TSIP_Aes256CbcDecryptFinal	712	712	712

表 1-13 AES-GCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128GcmEncryptInit	6,198	6,200	6,200
R_TSIP_Aes128GcmEncryptUpdate	3,328	3,888	4,448
R_TSIP_Aes128GcmEncryptFinal	1,480	1,480	1,480
R_TSIP_Aes128GcmDecryptInit	6,196	6,196	6,196
R_TSIP_Aes128GcmDecryptUpdate	2,874	2,980	3,086
R_TSIP_Aes128GcmDecryptFinal	2,338	2,338	2,338
R_TSIP_Aes256GcmEncryptInit	6,928	6,930	6,930
R_TSIP_Aes256GcmEncryptUpdate	3,456	4,058	4,660
R_TSIP_Aes256GcmEncryptFinal	1,520	1,520	1,520
R_TSIP_Aes256GcmDecryptInit	6,928	6,930	6,930
R_TSIP_Aes256GcmDecryptUpdate	2,932	3,052	3,186
R_TSIP_Aes256GcmDecryptFinal	2,376	2,376	2,376

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-14 AES-CCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	3,036	3,036	3,036
R_TSIP_Aes128CcmEncryptUpdate	1,780	1,956	2,132
R_TSIP_Aes128CcmEncryptFinal	1,434	1,434	1,434
R_TSIP_Aes128CcmDecryptInit	2,730	2,732	2,732
R_TSIP_Aes128CcmDecryptUpdate	1,644	1,820	1,996
R_TSIP_Aes128CcmDecryptFinal	2,234	2,234	2,234
R_TSIP_Aes256CcmEncryptInit	3,292	3,292	3,292
R_TSIP_Aes256CcmEncryptUpdate	2,008	2,240	2,486
R_TSIP_Aes256CcmEncryptFinal	1,480	1,480	1,480
R_TSIP_Aes256CcmDecryptInit	3,300	3,300	3,300
R_TSIP_Aes256CcmDecryptUpdate	1,856	2,102	2,348
R_TSIP_Aes256CcmDecryptFinal	2,278	2,278	2,278

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-15 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	1,016	1,018	1,018
R_TSIP_Aes128CmacGenerateUpdate	942	1,040	1,122
R_TSIP_Aes128CmacGenerateFinal	1,260	1,260	1,260
R_TSIP_Aes128CmacVerifyInit	1,016	1,016	1,016
R_TSIP_Aes128CmacVerifyUpdate	950	1,048	1,130
R_TSIP_Aes128CmacVerifyFinal	2,018	2,018	2,018
R_TSIP_Aes256CmacGenerateInit	1,336	1,338	1,338
R_TSIP_Aes256CmacGenerateUpdate	1,026	1,158	1,268
R_TSIP_Aes256CmacGenerateFinal	1,336	1,336	1,336
R_TSIP_Aes256CmacVerifyInit	1,336	1,336	1,336
R_TSIP_Aes256CmacVerifyUpdate	1,024	1,156	1,266
R_TSIP_Aes256CmacVerifyFinal	2,092	2,092	2,092

表 1-16 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	10,452	16,734	
R_TSIP_Aes256KeyWrap	11,148	17,764	
R_TSIP_Aes128KeyUnwrap	13,214	19,486	
R_TSIP_Aes256KeyUnwrap	13,994	20,602	

1.9 性能情報(RX66T)

以下に RX66T の TSIP-Lite ドライバの性能情報を示します。性能はコアクロックである ICLK のサイクル 単位での計測になります。TSIP-Lite の動作クロック PCLKB は ICLK: PCLKB = 2:1 の設定をしています。

最適化レベル2で実施しています。

表 1-17 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	7,353,148
R_TSIP_Close	286
R_TSIP_GetVersion	22
R_TSIP_GenerateAes128KeyIndex	3,890
R_TSIP_GenerateAes256KeyIndex	4,234
R_TSIP_GenerateAes128RandomKeyIndex	2,192
R_TSIP_GenerateAes256RandomKeyIndex	2,984
R_TSIP_GenerateRandomNumber	906
R_TSIP_GenerateUpdateKeyRingKeyIndex	4,238
R_TSIP_UpdateAes128KeyIndex	3,460
R_TSIP_UpdateAes256KeyIndex	3,798

表 1-18 Firmware 検証の性能

API	性能 (単位:サイクル)		
	2K バイト処理	4K バイト処理	6K バイト処理
R_TSIP_VerifyFirmwareMAC	11,942	23,204	34,468

表 1-19 AES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,284	1,278	1,278
R_TSIP_Aes128EcbEncryptUpdate	560	742	918
R_TSIP_Aes128EcbEncryptFinal	514	510	510
R_TSIP_Aes128EcbDecryptInit	1,284	1,286	1,286
R_TSIP_Aes128EcbDecryptUpdate	672	854	1,030
R_TSIP_Aes128EcbDecryptFinal	524	524	524
R_TSIP_Aes256EcbEncryptInit	1,594	1,592	1,594
R_TSIP_Aes256EcbEncryptUpdate	608	850	1,090
R_TSIP_Aes256EcbEncryptFinal	520	518	520
R_TSIP_Aes256EcbDecryptInit	1,602	1,602	1,604
R_TSIP_Aes256EcbDecryptUpdate	748	990	1,230
R_TSIP_Aes256EcbDecryptFinal	528	526	528
R_TSIP_Aes128CbcEncryptInit	1,336	1,334	1,334
R_TSIP_Aes128CbcEncryptUpdate	616	800	976
R_TSIP_Aes128CbcEncryptFinal	536	536	536
R_TSIP_Aes128CbcDecryptInit	1,342	1,344	1,342
R_TSIP_Aes128CbcDecryptUpdate	728	910	1,086
R_TSIP_Aes128CbcDecryptFinal	548	548	548
R_TSIP_Aes256CbcEncryptInit	1,652	1,652	1,652
R_TSIP_Aes256CbcEncryptUpdate	670	912	1,152
R_TSIP_Aes256CbcEncryptFinal	538	538	536
R_TSIP_Aes256CbcDecryptInit	1,660	1,662	1,662
R_TSIP_Aes256CbcDecryptUpdate	814	1,060	1,300
R_TSIP_Aes256CbcDecryptFinal	548	548	548

表 1-20 AES-GCM の性能

API		性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理	
R_TSIP_Aes128GcmEncryptInit	5,120	5,116	5,116	
R_TSIP_Aes128GcmEncryptUpdate	2,596	3,084	3,576	
R_TSIP_Aes128GcmEncryptFinal	1,238	1,236	1,234	
R_TSIP_Aes128GcmDecryptInit	5,120	5,126	5,126	
R_TSIP_Aes128GcmDecryptUpdate	2,194	2,286	2,374	
R_TSIP_Aes128GcmDecryptFinal	2,020	2,018	2,018	
R_TSIP_Aes256GcmEncryptInit	5,830	5,830	5,830	
R_TSIP_Aes256GcmEncryptUpdate	2,702	3,222	3,744	
R_TSIP_Aes256GcmEncryptFinal	1,286	1,288	1,288	
R_TSIP_Aes256GcmDecryptInit	5,830	5,830	5,832	
R_TSIP_Aes256GcmDecryptUpdate	2,294	2,414	2,534	
R_TSIP_Aes256GcmDecryptFinal	2,062	2,060	2,060	

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-21 AES-CCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	2,452	2,450	2,450
R_TSIP_Aes128CcmEncryptUpdate	1,452	1,628	1,804
R_TSIP_Aes128CcmEncryptFinal	1,138	1,138	1,138
R_TSIP_Aes128CcmDecryptInit	2,238	2,240	2,240
R_TSIP_Aes128CcmDecryptUpdate	1,348	1,524	1,700
R_TSIP_Aes128CcmDecryptFinal	1,874	1,874	1,872
R_TSIP_Aes256CcmEncryptInit	2,818	2,816	2,816
R_TSIP_Aes256CcmEncryptUpdate	1,656	1,906	2,146
R_TSIP_Aes256CcmEncryptFinal	1,174	1,174	1,174
R_TSIP_Aes256CcmDecryptInit	2,812	2,810	2,810
R_TSIP_Aes256CcmDecryptUpdate	1,558	1,806	2,046
R_TSIP_Aes256CcmDecryptFinal	1,922	1,916	1,916

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-22 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	876	876	876
R_TSIP_Aes128CmacGenerateUpdate	720	810	898
R_TSIP_Aes128CmacGenerateFinal	1,024	1,022	1,022
R_TSIP_Aes128CmacVerifyInit	878	878	878
R_TSIP_Aes128CmacVerifyUpdate	720	808	896
R_TSIP_Aes128CmacVerifyFinal	1,714	1,714	1,714
R_TSIP_Aes256CmacGenerateInit	1,182	1,180	1,180
R_TSIP_Aes256CmacGenerateUpdate	790	916	1,036
R_TSIP_Aes256CmacGenerateFinal	1,100	1,100	1,098
R_TSIP_Aes256CmacVerifyInit	1,182	1,184	1,184
R_TSIP_Aes256CmacVerifyUpdate	792	918	1,038
R_TSIP_Aes256CmacVerifyFinal	1,790	1,790	1,788

表 1-23 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	9,350	14,996	
R_TSIP_Aes256KeyWrap	10,040	16,072	
R_TSIP_Aes128KeyUnwrap	11,678	17,364	
R_TSIP_Aes256KeyUnwrap	12,410	18,482	

1.10 性能情報(RX72T)

以下に RX72T の TSIP-Lite ドライバの性能情報を示します。性能はコアクロックである ICLK のサイクル 単位での計測になります。TSIP-Lite の動作クロック PCLKB は ICLK: PCLKB = 2:1 の設定をしています。

最適化レベル2で実施しています。

表 1-24 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	7,354,918
R_TSIP_Close	286
R_TSIP_GetVersion	20
R_TSIP_GenerateAes128KeyIndex	3,892
R_TSIP_GenerateAes256KeyIndex	4,234
R_TSIP_GenerateAes128RandomKeyIndex	2,174
R_TSIP_GenerateAes256RandomKeyIndex	2,978
R_TSIP_GenerateRandomNumber	896
R_TSIP_GenerateUpdateKeyRingKeyIndex	4,242
R_TSIP_UpdateAes128KeyIndex	3,460
R_TSIP_UpdateAes256KeyIndex	3,808

表 1-25 Firmware 検証の性能

API	性能 (単位:サイクル)		
	2K バイト処理	4K バイト処理	6K バイト処理
R_TSIP_VerifyFirmwareMAC	11,938	23,200	34,464

表 1-26 AES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,284	1,280	1,280
R_TSIP_Aes128EcbEncryptUpdate	560	738	914
R_TSIP_Aes128EcbEncryptFinal	510	506	506
R_TSIP_Aes128EcbDecryptInit	1,288	1,286	1,286
R_TSIP_Aes128EcbDecryptUpdate	668	848	1,024
R_TSIP_Aes128EcbDecryptFinal	518	518	518
R_TSIP_Aes256EcbEncryptInit	1,594	1,592	1,590
R_TSIP_Aes256EcbEncryptUpdate	606	852	1,092
R_TSIP_Aes256EcbEncryptFinal	512	512	512
R_TSIP_Aes256EcbDecryptInit	1,602	1,604	1,602
R_TSIP_Aes256EcbDecryptUpdate	746	990	1,230
R_TSIP_Aes256EcbDecryptFinal	522	524	524
R_TSIP_Aes128CbcEncryptInit	1,338	1,336	1,336
R_TSIP_Aes128CbcEncryptUpdate	614	796	972
R_TSIP_Aes128CbcEncryptFinal	528	528	528
R_TSIP_Aes128CbcDecryptInit	1,344	1,344	1,344
R_TSIP_Aes128CbcDecryptUpdate	724	906	1,082
R_TSIP_Aes128CbcDecryptFinal	542	542	542
R_TSIP_Aes256CbcEncryptInit	1,650	1,650	1,648
R_TSIP_Aes256CbcEncryptUpdate	666	910	1,150
R_TSIP_Aes256CbcEncryptFinal	532	532	532
R_TSIP_Aes256CbcDecryptInit	1,660	1,660	1,660
R_TSIP_Aes256CbcDecryptUpdate	810	1,056	1,296
R_TSIP_Aes256CbcDecryptFinal	538	538	538

表 1-27 AES-GCM の性能

API		性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理	
R_TSIP_Aes128GcmEncryptInit	5,116	5,114	5,114	
R_TSIP_Aes128GcmEncryptUpdate	2,576	3,064	3,552	
R_TSIP_Aes128GcmEncryptFinal	1,240	1,238	1,238	
R_TSIP_Aes128GcmDecryptInit	5,114	5,120	5,118	
R_TSIP_Aes128GcmDecryptUpdate	2,196	2,284	2,372	
R_TSIP_Aes128GcmDecryptFinal	2,014	2,012	2,012	
R_TSIP_Aes256GcmEncryptInit	5,820	5,822	5,822	
R_TSIP_Aes256GcmEncryptUpdate	2,698	3,218	3,740	
R_TSIP_Aes256GcmEncryptFinal	1,278	1,278	1,278	
R_TSIP_Aes256GcmDecryptInit	5,834	5,834	5,834	
R_TSIP_Aes256GcmDecryptUpdate	2,292	2,412	2,532	
R_TSIP_Aes256GcmDecryptFinal	2,058	2,056	2,056	

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-28 AES-CCM の性能

API	性能 (単位: サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	2,448	2,448	2,448
R_TSIP_Aes128CcmEncryptUpdate	1,452	1,628	1,804
R_TSIP_Aes128CcmEncryptFinal	1,136	1,136	1,136
R_TSIP_Aes128CcmDecryptInit	2,234	2,232	2,232
R_TSIP_Aes128CcmDecryptUpdate	1,348	1,524	1,700
R_TSIP_Aes128CcmDecryptFinal	1,874	1,874	1,872
R_TSIP_Aes256CcmEncryptInit	2,814	2,810	2,810
R_TSIP_Aes256CcmEncryptUpdate	1,658	1,904	2,144
R_TSIP_Aes256CcmEncryptFinal	1,176	1,174	1,174
R_TSIP_Aes256CcmDecryptInit	2,802	2,800	2,800
R_TSIP_Aes256CcmDecryptUpdate	1,560	1,808	2,048
R_TSIP_Aes256CcmDecryptFinal	1,918	1,916	1,916

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-29 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	870	872	872
R_TSIP_Aes128CmacGenerateUpdate	716	806	896
R_TSIP_Aes128CmacGenerateFinal	1,022	1,022	1,022
R_TSIP_Aes128CmacVerifyInit	870	870	870
R_TSIP_Aes128CmacVerifyUpdate	716	806	896
R_TSIP_Aes128CmacVerifyFinal	1,718	1,716	1,716
R_TSIP_Aes256CmacGenerateInit	1,186	1,182	1,182
R_TSIP_Aes256CmacGenerateUpdate	792	918	1,038
R_TSIP_Aes256CmacGenerateFinal	1,098	1,094	1,094
R_TSIP_Aes256CmacVerifyInit	1,184	1,184	1,184
R_TSIP_Aes256CmacVerifyUpdate	792	918	1,038
R_TSIP_Aes256CmacVerifyFinal	1,786	1,786	1,786

表 1-30 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	9,352	15,000	
R_TSIP_Aes256KeyWrap	10,046	16,078	
R_TSIP_Aes128KeyUnwrap	11,668	17,352	
R_TSIP_Aes256KeyUnwrap	12,398	18,470	

1.11 性能情報(RX65N)

以下に RX65Nの TSIP ドライバの性能情報を示します。性能はコアクロックである ICLKのサイクル単位での計測になります。TSIPの動作クロック PCLKBは ICLK: PCLKB = 2:1の設定をしています。

最適化レベル2で実施しています。

表 1-31 共通 APIの性能

API	性能 (単位:サイクル)
R_TSIP_Open	5,681,760
R_TSIP_Close	476
R_TSIP_GetVersion	34
R_TSIP_GenerateAes128KeyIndex	2,626
R_TSIP_GenerateAes256KeyIndex	2,740
R_TSIP_GenerateAes128RandomKeyIndex	1,460
R_TSIP_GenerateAes256RandomKeyIndex	2,014
R_TSIP_GenerateRandomNumber	642
R_TSIP_GenerateUpdateKeyRingKeyIndex	2,768
R_TSIP_UpdateAes128KeyIndex	2,234
R_TSIP_UpdateAes256KeyIndex	2,350

表 1-32 Firmware 検証の性能

API	性能 (単位:サイクル)		
	8K バイト処理 16K バイト処理 24K バイト処理		
R_TSIP_VerifyFirmwareMAC	20,018	39,474	58,930

表 1-33 AES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,590	1,592	1,590
R_TSIP_Aes128EcbEncryptUpdate	518	662	840
R_TSIP_Aes128EcbEncryptFinal	450	450	450
R_TSIP_Aes128EcbDecryptInit	1,606	1,606	1,606
R_TSIP_Aes128EcbDecryptUpdate	574	716	896
R_TSIP_Aes128EcbDecryptFinal	464	464	464
R_TSIP_Aes256EcbEncryptInit	1,748	1,750	1,750
R_TSIP_Aes256EcbEncryptUpdate	530	680	860
R_TSIP_Aes256EcbEncryptFinal	436	436	436
R_TSIP_Aes256EcbDecryptInit	1,762	1,762	1,760
R_TSIP_Aes256EcbDecryptUpdate	610	748	930
R_TSIP_Aes256EcbDecryptFinal	454	454	454
R_TSIP_Aes128CbcEncryptInit	1,672	1,672	1,672
R_TSIP_Aes128CbcEncryptUpdate	600	744	926
R_TSIP_Aes128CbcEncryptFinal	474	474	474
R_TSIP_Aes128CbcDecryptInit	1,688	1,688	1,688
R_TSIP_Aes128CbcDecryptUpdate	656	798	978
R_TSIP_Aes128CbcDecryptFinal	490	490	490
R_TSIP_Aes256CbcEncryptInit	1,832	1,832	1,832
R_TSIP_Aes256CbcEncryptUpdate	618	770	950
R_TSIP_Aes256CbcEncryptFinal	472	472	472
R_TSIP_Aes256CbcDecryptInit	1,856	1,856	1,856
R_TSIP_Aes256CbcDecryptUpdate	686	826	1,004
R_TSIP_Aes256CbcDecryptFinal	482	482	482

表 1-34 AES-GCM の性能

API		性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理	
R_TSIP_Aes128GcmEncryptInit	5,468	5,468	5,468	
R_TSIP_Aes128GcmEncryptUpdate	2,074	2,176	2,266	
R_TSIP_Aes128GcmEncryptFinal	1,304	1,304	1,304	
R_TSIP_Aes128GcmDecryptInit	5,326	5,326	5,326	
R_TSIP_Aes128GcmDecryptUpdate	2,056	2,150	2,238	
R_TSIP_Aes128GcmDecryptFinal	2,204	2,204	2,206	
R_TSIP_Aes256GcmEncryptInit	5,370	5,372	5,374	
R_TSIP_Aes256GcmEncryptUpdate	2,100	2,216	2,304	
R_TSIP_Aes256GcmEncryptFinal	1,090	1,090	1,090	
R_TSIP_Aes256GcmDecryptInit	5,404	5,404	5,404	
R_TSIP_Aes256GcmDecryptUpdate	2,096	2,200	2,286	
R_TSIP_Aes256GcmDecryptFinal	1,974	1,972	1,972	

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-35 AES-CCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	2,978	2,978	2,978
R_TSIP_Aes128CcmEncryptUpdate	1,108	1,208	1,296
R_TSIP_Aes128CcmEncryptFinal	922	922	922
R_TSIP_Aes128CcmDecryptInit	3,112	3,114	3,116
R_TSIP_Aes128CcmDecryptUpdate	1,048	1,134	1,222
R_TSIP_Aes128CcmDecryptFinal	1,916	1,914	1,916
R_TSIP_Aes256CcmEncryptInit	2,372	2,372	2,372
R_TSIP_Aes256CcmEncryptUpdate	1,166	1,266	1,354
R_TSIP_Aes256CcmEncryptFinal	974	974	974
R_TSIP_Aes256CcmDecryptInit	2,348	2,348	2,348
R_TSIP_Aes256CcmDecryptUpdate	1,078	1,168	1,256
R_TSIP_Aes256CcmDecryptFinal	2,026	2,026	2,028

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-36 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	1,142	1,142	1,142
R_TSIP_Aes128CmacGenerateUpdate	662	706	750
R_TSIP_Aes128CmacGenerateFinal	792	792	790
R_TSIP_Aes128CmacVerifyInit	1,144	1,144	1,144
R_TSIP_Aes128CmacVerifyUpdate	664	708	754
R_TSIP_Aes128CmacVerifyFinal	1,668	1,666	1,666
R_TSIP_Aes256CmacGenerateInit	1,280	1,280	1,280
R_TSIP_Aes256CmacGenerateUpdate	690	734	780
R_TSIP_Aes256CmacGenerateFinal	820	820	820
R_TSIP_Aes256CmacVerifyInit	1,278	1,276	1,276
R_TSIP_Aes256CmacVerifyUpdate	700	746	790
R_TSIP_Aes256CmacVerifyFinal	1,690	1,690	1,690

表 1-37 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	8,232	12,934	
R_TSIP_Aes256KeyWrap	8,384	13,084	
R_TSIP_Aes128KeyUnwrap	9,266	13,924	
R_TSIP_Aes256KeyUnwrap	9,418	14,078	

表 1-38 共通 API(TDES ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateTdesKeyIndex	2,744
R_TSIP_GenerateTdesRandomKeyIndex	2,032
R_TSIP_UpdateTdesKeyIndex	2,366

表 1-39 TDES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_TdesEcbEncryptInit	1,048	1,048	1,048
R_TSIP_TdesEcbEncryptUpdate	550	796	1,036
R_TSIP_TdesEcbEncryptFinal	432	432	432
R_TSIP_TdesEcbDecryptInit	1,060	1,062	1,062
R_TSIP_TdesEcbDecryptUpdate	582	828	1,068
R_TSIP_TdesEcbDecryptFinal	444	444	444
R_TSIP_TdesCbcEncryptInit	1,128	1,126	1,126
R_TSIP_TdesCbcEncryptUpdate	628	874	1,114
R_TSIP_TdesCbcEncryptFinal	460	460	460
R_TSIP_TdesCbcDecryptInit	1,132	1,132	1,134
R_TSIP_TdesCbcDecryptUpdate	656	902	1,144
R_TSIP_TdesCbcDecryptFinal	482	482	482

表 1-40 共通 API(RSA ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateRsa1024PublicKeyIndex	37,536
R_TSIP_GenerateRsa1024PrivateKeyIndex	38,620
R_TSIP_GenerateRsa2048PublicKeyIndex	137,504
R_TSIP_GenerateRsa2048PrivateKeyIndex	139,686
R_TSIP_GenerateRsa1024RandomKeyIndex (注)	55,269,285
R_TSIP_GenerateRsa2048RandomKeyIndex (注)	540,959,708
R_TSIP_UpdateRsa1024PublicKeyIndex	37,134
R_TSIP_UpdateRsa1024PrivateKeyIndex	38,230
R_TSIP_UpdateRsa2048PublicKeyIndex	137,132
R_TSIP_UpdateRsa2048PrivateKeyIndex	139,296

[【]注】 10 回実行時の平均値です。

表 1-41 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA1)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,266,372	1,267,788	1,268,268
R_TSIP_RsassaPkcs1024SignatureVerification	17,234	18,646	19,124
R_TSIP_RsassaPkcs2048SignatureGenerate	26,227,124	26,228,528	26,229,006
R_TSIP_RsassaPkcs2048SignatureVerification	135,548	136,956	137,436

表 1-42 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA256)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,266,472	1,267,948	1,268,356
R_TSIP_RsassaPkcs1024SignatureVerification	17,326	18,802	19,210
R_TSIP_RsassaPkcs2048SignatureGenerate	26,227,212	26,228,686	26,229,094
R_TSIP_RsassaPkcs2048SignatureVerification	135,632	137,108	137,516

表 1-43 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=MD5)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,266,352	1,267,672	1,268,080
R_TSIP_RsassaPkcs1024SignatureVerification	17,216	18,530	18,938
R_TSIP_RsassaPkcs2048SignatureGenerate	26,227,090	26,228,412	26,228,820
R_TSIP_RsassaPkcs2048SignatureVerification	135,524	136,840	137,246

表 1-44 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 1024bit

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=117byte	
R_TSIP_RsaesPkcs1024Encrypt	22,196	16,834	
R_TSIP_RsaesPkcs1024Decrypt	1,265,498	1,265,488	

表 1-45 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 2048bit

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=245byte	
R_TSIP_RsaesPkcs2048Encrypt	146,486	135,000	
R_TSIP_RsaesPkcs2048Decrypt	26,226,422	26,226,424	

表 1-46 HASH(SHA1)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha1Init	128	128	128
R_TSIP_Sha1Update	1,504	1,744	1,982
R_TSIP_Sha1Final	826	826	826

表 1-47 HASH(SHA256)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256Init	182	182	182
R_TSIP_Sha256Update	1,552	1,756	1,960
R_TSIP_Sha256Final	842	842	842

表 1-48 HASH(MD5)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Md5Init	124	124	124
R_TSIP_Md5Update	1,406	1,610	1,814
R_TSIP_Md5Final	780	780	780

表 1-49 共通 API(HMAC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateSha1HmacKeyIndex	2,956
R_TSIP_GenerateSha256HmacKeyIndex	2,960
R_TSIP_UpdateSha1HmacKeyIndex	2,580
R_TSIP_UpdateSha256HmacKeyIndex	2,586

表 1-50 HMAC(SHA1)の性能

API		性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理	
R_TSIP_Sha1HmacGenerateInit	1,366	1,366	1,366	
R_TSIP_Sha1HmacGenerateUpdate	962	1,202	1,444	
R_TSIP_Sha1HmacGenerateFinal	1,974	1,974	1,974	
R_TSIP_Sha1HmacVerifyInit	1,364	1,366	1,366	
R_TSIP_Sha1HmacVerifyUpdate	972	1,212	1,452	
R_TSIP_Sha1HmacVerifyFinal	3,602	3,602	3,604	

表 1-51 HMAC(SHA256)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256HmacGenerateInit	1,782	1,782	1,784
R_TSIP_Sha256HmacGenerateUpdate	900	1,106	1,308
R_TSIP_Sha256HmacGenerateFinal	1,946	1,946	1,946
R_TSIP_Sha256HmacVerifyInit	1,778	1,778	1,778
R_TSIP_Sha256HmacVerifyUpdate	904	1,108	1,312
R_TSIP_Sha256HmacVerifyFinal	3,590	3,590	3,590

表 1-52 共通 API(ECC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateEccP192PublicKeyIndex	3,288
R_TSIP_GenerateEccP224PublicKeyIndex	3,282
R_TSIP_GenerateEccP256PublicKeyIndex	3,282
R_TSIP_GenerateEccP384PublicKeyIndex	3,396
R_TSIP_GenerateEccP192PrivateKeyIndex	2,946
R_TSIP_GenerateEccP224PrivateKeyIndex	2,948
R_TSIP_GenerateEccP256PrivateKeyIndex	2,948
R_TSIP_GenerateEccP384PrivateKeyIndex	2,870
R_TSIP_GenerateEccP192RandomKeyIndex (注)	143,553
R_TSIP_GenerateEccP224RandomKeyIndex (注)	154,008
R_TSIP_GenerateEccP256RandomKeyIndex (注)	154,656
R_TSIP_GenerateEccP384RandomKeyIndex (注)	1,053,934
R_TSIP_UpdateEccP192PublicKeyIndex	2,896
R_TSIP_UpdateEccP224PublicKeyIndex	2,894
R_TSIP_UpdateEccP256PublicKeyIndex	2,896
R_TSIP_UpdateEccP384PublicKeyIndex	3,010
R_TSIP_UpdateEccP192PrivateKeyIndex	2,574
R_TSIP_UpdateEccP224PrivateKeyIndex	2,576
R_TSIP_UpdateEccP256PrivateKeyIndex	2,574
R_TSIP_UpdateEccP384PrivateKeyIndex	2,480

【注】 10 回実行時の平均値です。

表 1-53 ECDSA 署名生成/検証の性能

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_EcdsaP192SignatureGenerate	176,104	178,264	173,872
R_TSIP_EcdsaP224SignatureGenerate	177,366	175,984	179,824
R_TSIP_EcdsaP256SignatureGenerate	177,528	181,006	183,418
R_TSIP_EcdsaP384SignatureGenerate(注)	1,158,780		
R_TSIP_EcdsaP192SignatureVerification	330,380	329,230	329,638
R_TSIP_EcdsaP224SignatureVerification	346,052	350,996	352,882
R_TSIP_EcdsaP256SignatureVerification	350,084	352,246	355,390
R_TSIP_EcdsaP384SignatureVerification(注)	2,233,408		

【注】SHA384計算は含まれません

表 1-54 鍵共有の性能

API	性能 (単位:サイクル)	
R_TSIP_EcdhP256Init	58	
R_TSIP_EcdhP256ReadPublicKey	357,856	
R_TSIP_EcdhP256MakePublicKey	328,834	
R_TSIP_EcdhP256CalculateSharedSecretIndex	375,366	
R_TSIP_EcdhP256KeyDerivation	3,772	
R_TSIP_EcdheP512KeyAgreement	3,286,902	
R_TSIP_Rsa2048DhKeyAgreement	52,726,694	

(KeyAgreement を除いた)鍵共有の性能は、鍵交換形式を ECDHE、派生させる鍵の種類を AES-128 に固定して計測しました。

1.12 性能情報(RX671)

以下に RX671 の TSIP ドライバの性能情報を示します。性能はコアクロックである ICLK のサイクル単位での計測になります。TSIP の動作クロック PCLKB は ICLK: PCLKB = 2:1 の設定をしています。

最適化レベル2で実施しています。

表 1-55 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	5,349,650
R_TSIP_Close	300
R_TSIP_GetVersion	22
R_TSIP_GenerateAes128KeyIndex	2,034
R_TSIP_GenerateAes256KeyIndex	2,172
R_TSIP_GenerateAes128RandomKeyIndex	1,160
R_TSIP_GenerateAes256RandomKeyIndex	1,608
R_TSIP_GenerateRandomNumber	530
R_TSIP_GenerateUpdateKeyRingKeyIndex	2,168
R_TSIP_UpdateAes128KeyIndex	1,790
R_TSIP_UpdateAes256KeyIndex	1,924

表 1-56 Firmware 検証の性能

API	性能 (単位:サイクル)		
	8K バイト処理	16K バイト処理	24K バイト処理
R_TSIP_VerifyFirmwareMAC	16,802	33,180	49,564

表 1-57 AES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,218	1,200	1,200
R_TSIP_Aes128EcbEncryptUpdate	378	486	618
R_TSIP_Aes128EcbEncryptFinal	318	306	306
R_TSIP_Aes128EcbDecryptInit	1,216	1,216	1,216
R_TSIP_Aes128EcbDecryptUpdate	440	540	672
R_TSIP_Aes128EcbDecryptFinal	324	324	324
R_TSIP_Aes256EcbEncryptInit	1,334	1,312	1,310
R_TSIP_Aes256EcbEncryptUpdate	394	516	646
R_TSIP_Aes256EcbEncryptFinal	326	322	322
R_TSIP_Aes256EcbDecryptInit	1,324	1,324	1,324
R_TSIP_Aes256EcbDecryptUpdate	466	582	714
R_TSIP_Aes256EcbDecryptFinal	332	332	332
R_TSIP_Aes128CbcEncryptInit	1,268	1,262	1,262
R_TSIP_Aes128CbcEncryptUpdate	432	540	672
R_TSIP_Aes128CbcEncryptFinal	338	336	338
R_TSIP_Aes128CbcDecryptInit	1,286	1,284	1,286
R_TSIP_Aes128CbcDecryptUpdate	492	590	722
R_TSIP_Aes128CbcDecryptFinal	348	346	346
R_TSIP_Aes256CbcEncryptInit	1,386	1,376	1,376
R_TSIP_Aes256CbcEncryptUpdate	456	576	708
R_TSIP_Aes256CbcEncryptFinal	338	336	338
R_TSIP_Aes256CbcDecryptInit	1,394	1,394	1,396
R_TSIP_Aes256CbcDecryptUpdate	534	650	782
R_TSIP_Aes256CbcDecryptFinal	354	352	352

表 1-58 AES-GCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128GcmEncryptInit	3,940	3,932	3,932
R_TSIP_Aes128GcmEncryptUpdate	1,532	1,612	1,676
R_TSIP_Aes128GcmEncryptFinal	820	818	818
R_TSIP_Aes128GcmDecryptInit	3,954	3,952	3,952
R_TSIP_Aes128GcmDecryptUpdate	1,532	1,592	1,656
R_TSIP_Aes128GcmDecryptFinal	1,430	1,424	1,426
R_TSIP_Aes256GcmEncryptInit	4,068	4,066	4,066
R_TSIP_Aes256GcmEncryptUpdate	1,568	1,662	1,726
R_TSIP_Aes256GcmEncryptFinal	832	820	820
R_TSIP_Aes256GcmDecryptInit	4,080	4,078	4,080
R_TSIP_Aes256GcmDecryptUpdate	1,564	1,616	1,688
R_TSIP_Aes256GcmDecryptFinal	1,446	1,438	1,438

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-59 AES-CCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	1,884	1,874	1,874
R_TSIP_Aes128CcmEncryptUpdate	880	958	1,030
R_TSIP_Aes128CcmEncryptFinal	750	740	740
R_TSIP_Aes128CcmDecryptInit	1,720	1,700	1,700
R_TSIP_Aes128CcmDecryptUpdate	790	856	936
R_TSIP_Aes128CcmDecryptFinal	1,472	1,462	1,462
R_TSIP_Aes256CcmEncryptInit	1,866	1,854	1,854
R_TSIP_Aes256CcmEncryptUpdate	928	1,022	1,110
R_TSIP_Aes256CcmEncryptFinal	768	760	760
R_TSIP_Aes256CcmDecryptInit	1,868	1,864	1,864
R_TSIP_Aes256CcmDecryptUpdate	836	920	1,016
R_TSIP_Aes256CcmDecryptFinal	1,476	1,470	1,470

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-60 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	868	860	860
R_TSIP_Aes128CmacGenerateUpdate	482	512	554
R_TSIP_Aes128CmacGenerateFinal	618	610	610
R_TSIP_Aes128CmacVerifyInit	868	866	866
R_TSIP_Aes128CmacVerifyUpdate	484	514	556
R_TSIP_Aes128CmacVerifyFinal	1,230	1,226	1,226
R_TSIP_Aes256CmacGenerateInit	978	978	980
R_TSIP_Aes256CmacGenerateUpdate	512	546	596
R_TSIP_Aes256CmacGenerateFinal	652	640	640
R_TSIP_Aes256CmacVerifyInit	980	984	984
R_TSIP_Aes256CmacVerifyUpdate	506	536	586
R_TSIP_Aes256CmacVerifyFinal	1,254	1,248	1,248

表 1-61 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	6,322	10,012	
R_TSIP_Aes256KeyWrap	6,520	10,310	
R_TSIP_Aes128KeyUnwrap	7,102	10,708	
R_TSIP_Aes256KeyUnwrap	7,322	11,026	

表 1-62 共通 API(TDES ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)	
R_TSIP_GenerateTdesKeyIndex	2,174	
R_TSIP_GenerateTdesRandomKeyIndex	1,614	
R_TSIP_UpdateTdesKeyIndex	1,928	

表 1-63 TDES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_TdesEcbEncryptInit	810	802	802
R_TSIP_TdesEcbEncryptUpdate	418	602	794
R_TSIP_TdesEcbEncryptFinal	314	306	304
R_TSIP_TdesEcbDecryptInit	810	812	812
R_TSIP_TdesEcbDecryptUpdate	440	628	820
R_TSIP_TdesEcbDecryptFinal	316	314	314
R_TSIP_TdesCbcEncryptInit	866	854	854
R_TSIP_TdesCbcEncryptUpdate	482	676	868
R_TSIP_TdesCbcEncryptFinal	328	328	328
R_TSIP_TdesCbcDecryptInit	866	866	866
R_TSIP_TdesCbcDecryptUpdate	516	704	896
R_TSIP_TdesCbcDecryptFinal	342	342	342

表 1-64 共通 API(RSA ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateRsa1024PublicKeyIndex	36,594
R_TSIP_GenerateRsa1024PrivateKeyIndex	37,598
R_TSIP_GenerateRsa2048PublicKeyIndex	136,338
R_TSIP_GenerateRsa2048PrivateKeyIndex	138,330
R_TSIP_GenerateRsa1024RandomKeyIndex (注)	54,125,760
R_TSIP_GenerateRsa2048RandomKeyIndex (注)	294,773,725
R_TSIP_UpdateRsa1024PublicKeyIndex	36,342
R_TSIP_UpdateRsa1024PrivateKeyIndex	37,332
R_TSIP_UpdateRsa2048PublicKeyIndex	136,078
R_TSIP_UpdateRsa2048PrivateKeyIndex	138,064

[【]注】 10 回実行時の平均値です。

表 1-65 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA1)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,778	1,233,882	1,234,296
R_TSIP_RsassaPkcs1024SignatureVerification	15,960	17,086	17,502
R_TSIP_RsassaPkcs2048SignatureGenerate	26,094,764	26,095,882	26,096,298
R_TSIP_RsassaPkcs2048SignatureVerification	133,510	134,626	135,042

表 1-66 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA256)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,832	1,233,972	1,234,324
R_TSIP_RsassaPkcs1024SignatureVerification	16,026	17,178	17,530
R_TSIP_RsassaPkcs2048SignatureGenerate	26,094,808	26,095,966	26,096,322
R_TSIP_RsassaPkcs2048SignatureVerification	133,566	134,716	135,068

表 1-67 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=MD5)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,734	1,233,750	1,234,102
R_TSIP_RsassaPkcs1024SignatureVerification	15,928	16,962	17,314
R_TSIP_RsassaPkcs2048SignatureGenerate	26,094,712	26,095,754	26,096,102
R_TSIP_RsassaPkcs2048SignatureVerification	133,474	134,516	134,870

表 1-68 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 1024bit

API	性能 (単位:サイクル)		
	Message size=1byte Message size=117		
R_TSIP_RsaesPkcs1024Encrypt	19,662	15,488	
R_TSIP_RsaesPkcs1024Decrypt	1,232,066	1,232,064	

表 1-69 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 2048bit

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=245byte	
R_TSIP_RsaesPkcs2048Encrypt	141,756	132,866	
R_TSIP_RsaesPkcs2048Decrypt	26,094,272	26,094,260	

表 1-70 HASH(SHA1)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha1Init	112	110	108
R_TSIP_Sha1Update	1,208	1,414	1,622
R_TSIP_Sha1Final	660	660	658

表 1-71 HASH(SHA256)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256Init	154	154	152
R_TSIP_Sha256Update	1,226	1,398	1,574
R_TSIP_Sha256Final	664	662	662

表 1-72 HASH(MD5)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Md5Init	108	100	102
R_TSIP_Md5Update	1,122	1,290	1,466
R_TSIP_Md5Final	626	626	626

表 1-73 共通 API(HMAC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateSha1HmacKeyIndex	2,254
R_TSIP_GenerateSha256HmacKeyIndex	2,238
R_TSIP_UpdateSha1HmacKeyIndex	2,006
R_TSIP_UpdateSha256HmacKeyIndex	1,984

表 1-74 HMAC(SHA1)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha1HmacGenerateInit	1,038	1,036	1,032
R_TSIP_Sha1HmacGenerateUpdate	786	992	1,200
R_TSIP_Sha1HmacGenerateFinal	1,584	1,578	1,576
R_TSIP_Sha1HmacVerifyInit	1,038	1,038	1,038
R_TSIP_Sha1HmacVerifyUpdate	784	996	1,204
R_TSIP_Sha1HmacVerifyFinal	2,694	2,692	2,692

表 1-75 HMAC(SHA256)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256HmacGenerateInit	1,234	1,228	1,226
R_TSIP_Sha256HmacGenerateUpdate	724	894	1,070
R_TSIP_Sha256HmacGenerateFinal	1,546	1,534	1,534
R_TSIP_Sha256HmacVerifyInit	1,220	1,222	1,222
R_TSIP_Sha256HmacVerifyUpdate	722	898	1,074
R_TSIP_Sha256HmacVerifyFinal	2,668	2,662	2,662

表 1-76 共通 API(ECC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateEccP192PublicKeyIndex	2,546
R_TSIP_GenerateEccP224PublicKeyIndex	2,538
R_TSIP_GenerateEccP256PublicKeyIndex	2,538
R_TSIP_GenerateEccP384PublicKeyIndex	2,696
R_TSIP_GenerateEccP192PrivateKeyIndex	2,252
R_TSIP_GenerateEccP224PrivateKeyIndex	2,238
R_TSIP_GenerateEccP256PrivateKeyIndex	2,238
R_TSIP_GenerateEccP384PrivateKeyIndex	2,288
R_TSIP_GenerateEccP192RandomKeyIndex (注)	132,597
R_TSIP_GenerateEccP224RandomKeyIndex (注)	142,060
R_TSIP_GenerateEccP256RandomKeyIndex (注)	142,198
R_TSIP_GenerateEccP384RandomKeyIndex (注)	1,009,854
R_TSIP_UpdateEccP192PublicKeyIndex	2,312
R_TSIP_UpdateEccP224PublicKeyIndex	2,290
R_TSIP_UpdateEccP256PublicKeyIndex	2,288
R_TSIP_UpdateEccP384PublicKeyIndex	2,460
R_TSIP_UpdateEccP192PrivateKeyIndex	2,004
R_TSIP_UpdateEccP224PrivateKeyIndex	1,990
R_TSIP_UpdateEccP256PrivateKeyIndex	1,990
R_TSIP_UpdateEccP384PrivateKeyIndex	2,046

【注】 10回実行時の平均値です。

表 1-77 ECDSA 署名生成/検証の性能

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_EcdsaP192SignatureGenerate	160,126	164,428	166,008
R_TSIP_EcdsaP224SignatureGenerate	163,544	163,420	160,816
R_TSIP_EcdsaP256SignatureGenerate	164,380	168,060	165,996
R_TSIP_EcdsaP384SignatureGenerate(注)	1,133,010		
R_TSIP_EcdsaP192SignatureVerification	298,614	303,594	303,346
R_TSIP_EcdsaP224SignatureVerification	322,254	320,898	324,414
R_TSIP_EcdsaP256SignatureVerification	329,212	329,672	330,672
R_TSIP_EcdsaP384SignatureVerification(注)		2,101,300	

【注】SHA384 計算は含まれません

表 1-78 鍵共有の性能

API	性能 (単位:サイクル)
R_TSIP_EcdhP256Init	42
R_TSIP_EcdhP256ReadPublicKey	330,888
R_TSIP_EcdhP256MakePublicKey	307,876
R_TSIP_EcdhP256CalculateSharedSecretIndex	350,378
R_TSIP_EcdhP256KeyDerivation	2,992
R_TSIP_EcdheP512KeyAgreement	3,158,968
R_TSIP_Rsa2048DhKeyAgreement	52,461,504

(KeyAgreement を除いた)鍵共有の性能は、鍵交換形式を ECDHE、派生させる鍵の種類を AES-128 に固定して計測しました。

1.13 性能情報(RX72M)

以下に RX72Mの TSIP ドライバの性能情報を示します。性能はコアクロックである ICLK のサイクル単位での計測になります。TSIP の動作クロック PCLKB は ICLK: PCLKB = 2:1 の設定をしています。

最適化レベル2で実施しています。

表 1-79 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	6,311,502
R_TSIP_Close	296
R_TSIP_GetVersion	18
R_TSIP_GenerateAes128KeyIndex	2,124
R_TSIP_GenerateAes256KeyIndex	2,260
R_TSIP_GenerateAes128RandomKeyIndex	1,238
R_TSIP_GenerateAes256RandomKeyIndex	1,724
R_TSIP_GenerateRandomNumber	552
R_TSIP_GenerateUpdateKeyRingKeyIndex	2,264
R_TSIP_UpdateAes128KeyIndex	1,868
R_TSIP_UpdateAes256KeyIndex	2,004

表 1-80 Firmware 検証の性能

API	性能 (単位:サイクル)		
	8K バイト処理 16K バイト処理 24K バイト処理		
R_TSIP_VerifyFirmwareMAC	18,842	37,272	55,704

表 1-81 AES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,266	1,264	1,264
R_TSIP_Aes128EcbEncryptUpdate	386	504	640
R_TSIP_Aes128EcbEncryptFinal	330	328	328
R_TSIP_Aes128EcbDecryptInit	1,276	1,278	1,278
R_TSIP_Aes128EcbDecryptUpdate	452	562	698
R_TSIP_Aes128EcbDecryptFinal	342	342	342
R_TSIP_Aes256EcbEncryptInit	1,380	1,376	1,376
R_TSIP_Aes256EcbEncryptUpdate	404	524	662
R_TSIP_Aes256EcbEncryptFinal	328	330	330
R_TSIP_Aes256EcbDecryptInit	1,390	1,388	1,390
R_TSIP_Aes256EcbDecryptUpdate	474	596	732
R_TSIP_Aes256EcbDecryptFinal	344	346	346
R_TSIP_Aes128CbcEncryptInit	1,326	1,324	1,324
R_TSIP_Aes128CbcEncryptUpdate	454	574	708
R_TSIP_Aes128CbcEncryptFinal	356	358	356
R_TSIP_Aes128CbcDecryptInit	1,342	1,342	1,342
R_TSIP_Aes128CbcDecryptUpdate	516	626	762
R_TSIP_Aes128CbcDecryptFinal	370	370	372
R_TSIP_Aes256CbcEncryptInit	1,442	1,442	1,440
R_TSIP_Aes256CbcEncryptUpdate	470	590	726
R_TSIP_Aes256CbcEncryptFinal	358	358	358
R_TSIP_Aes256CbcDecryptInit	1,458	1,458	1,458
R_TSIP_Aes256CbcDecryptUpdate	538	660	796
R_TSIP_Aes256CbcDecryptFinal	370	370	368

表 1-82 AES-GCM の性能

API		性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理	
R_TSIP_Aes128GcmEncryptInit	4,324	4,324	4,322	
R_TSIP_Aes128GcmEncryptUpdate	1,564	1,650	1,716	
R_TSIP_Aes128GcmEncryptFinal	1,050	1,050	1,050	
R_TSIP_Aes128GcmDecryptInit	4,226	4,226	4,226	
R_TSIP_Aes128GcmDecryptUpdate	1,572	1,640	1,706	
R_TSIP_Aes128GcmDecryptFinal	1,658	1,658	1,658	
R_TSIP_Aes256GcmEncryptInit	4,278	4,278	4,278	
R_TSIP_Aes256GcmEncryptUpdate	1,602	1,698	1,768	
R_TSIP_Aes256GcmEncryptFinal	858	858	858	
R_TSIP_Aes256GcmDecryptInit	4,284	4,282	4,284	
R_TSIP_Aes256GcmDecryptUpdate	1,598	1,664	1,732	
R_TSIP_Aes256GcmDecryptFinal	1,488	1,488	1,486	

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-83 AES-CCM の性能

API		性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理	
R_TSIP_Aes128CcmEncryptInit	2,356	2,350	2,350	
R_TSIP_Aes128CcmEncryptUpdate	894	962	1,040	
R_TSIP_Aes128CcmEncryptFinal	752	748	750	
R_TSIP_Aes128CcmDecryptInit	2,454	2,450	2,450	
R_TSIP_Aes128CcmDecryptUpdate	812	888	966	
R_TSIP_Aes128CcmDecryptFinal	1,440	1,440	1,440	
R_TSIP_Aes256CcmEncryptInit	1,920	1,920	1,920	
R_TSIP_Aes256CcmEncryptUpdate	952	1,040	1,138	
R_TSIP_Aes256CcmEncryptFinal	790	790	790	
R_TSIP_Aes256CcmDecryptInit	1,926	1,926	1,926	
R_TSIP_Aes256CcmDecryptUpdate	856	952	1,040	
R_TSIP_Aes256CcmDecryptFinal	1,512	1,510	1,510	

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-84 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	904	902	902
R_TSIP_Aes128CmacGenerateUpdate	490	526	564
R_TSIP_Aes128CmacGenerateFinal	630	636	638
R_TSIP_Aes128CmacVerifyInit	898	902	902
R_TSIP_Aes128CmacVerifyUpdate	486	524	562
R_TSIP_Aes128CmacVerifyFinal	1,268	1,268	1,268
R_TSIP_Aes256CmacGenerateInit	1,012	1,014	1,014
R_TSIP_Aes256CmacGenerateUpdate	512	556	602
R_TSIP_Aes256CmacGenerateFinal	664	660	660
R_TSIP_Aes256CmacVerifyInit	1,012	1,014	1,012
R_TSIP_Aes256CmacVerifyUpdate	512	556	602
R_TSIP_Aes256CmacVerifyFinal	1,290	1,292	1,290

表 1-85 AES Key Wrap の性能

API	性能 (単位:サイクル)	
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256
R_TSIP_Aes128KeyWrap	6,476	10,244
R_TSIP_Aes256KeyWrap	6,692	10,586
R_TSIP_Aes128KeyUnwrap	7,342	11,058
R_TSIP_Aes256KeyUnwrap	7,566	11,398

表 1-86 共通 API(TDES ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateTdesKeyIndex	2,260
R_TSIP_GenerateTdesRandomKeyIndex	1,726
R_TSIP_UpdateTdesKeyIndex	2,016

表 1-87 TDES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_TdesEcbEncryptInit	828	826	826
R_TSIP_TdesEcbEncryptUpdate	430	628	828
R_TSIP_TdesEcbEncryptFinal	336	330	330
R_TSIP_TdesEcbDecryptInit	828	828	828
R_TSIP_TdesEcbDecryptUpdate	456	656	856
R_TSIP_TdesEcbDecryptFinal	350	350	350
R_TSIP_TdesCbcEncryptInit	880	878	878
R_TSIP_TdesCbcEncryptUpdate	496	696	896
R_TSIP_TdesCbcEncryptFinal	360	360	362
R_TSIP_TdesCbcDecryptInit	888	888	888
R_TSIP_TdesCbcDecryptUpdate	520	722	922
R_TSIP_TdesCbcDecryptFinal	370	370	370

表 1-88 共通 API(RSA ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateRsa1024PublicKeyIndex	36,738
R_TSIP_GenerateRsa1024PrivateKeyIndex	37,730
R_TSIP_GenerateRsa2048PublicKeyIndex	136,500
R_TSIP_GenerateRsa2048PrivateKeyIndex	138,462
R_TSIP_GenerateRsa1024RandomKeyIndex (注)	36,044,236
R_TSIP_GenerateRsa2048RandomKeyIndex (注)	547,787,593
R_TSIP_UpdateRsa1024PublicKeyIndex	36,492
R_TSIP_UpdateRsa1024PrivateKeyIndex	37,460
R_TSIP_UpdateRsa2048PublicKeyIndex	136,252
R_TSIP_UpdateRsa2048PrivateKeyIndex	138,208

[【]注】 10 回実行時の平均値です。

表 1-89 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA1)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,974	1,234,158	1,234,562
R_TSIP_RsassaPkcs1024SignatureVerification	16,074	17,266	17,672
R_TSIP_RsassaPkcs2048SignatureGenerate	26,095,154	26,096,344	26,096,750
R_TSIP_RsassaPkcs2048SignatureVerification	133,728	134,912	135,322

表 1-90 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA256)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,233,052	1,234,258	1,234,604
R_TSIP_RsassaPkcs1024SignatureVerification	16,160	17,362	17,710
R_TSIP_RsassaPkcs2048SignatureGenerate	26,095,240	26,096,444	26,096,790
R_TSIP_RsassaPkcs2048SignatureVerification	133,806	135,008	135,356

表 1-91 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=MD5)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,932	1,234,016	1,234,364
R_TSIP_RsassaPkcs1024SignatureVerification	16,048	17,128	17,478
R_TSIP_RsassaPkcs2048SignatureGenerate	26,095,122	26,096,206	26,096,552
R_TSIP_RsassaPkcs2048SignatureVerification	133,690	134,766	135,114

表 1-92 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 1024bit

API	性能 (単位:サイクル)	
	Message size=1byte	Message size=117byte
R_TSIP_RsaesPkcs1024Encrypt	20,108	15,644
R_TSIP_RsaesPkcs1024Decrypt	1,232,284	1,232,284

表 1-93 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 2048bit

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=245byte	
R_TSIP_RsaesPkcs2048Encrypt	142,666	133,122	
R_TSIP_RsaesPkcs2048Decrypt	26,094,668	26,094,668	

表 1-94 HASH(SHA1)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha1Init	106	104	104
R_TSIP_Sha1Update	1,242	1,446	1,650
R_TSIP_Sha1Final	664	662	662

表 1-95 HASH(SHA256)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256Init	148	148	148
R_TSIP_Sha256Update	1,276	1,448	1,624
R_TSIP_Sha256Final	686	684	684

表 1-96 HASH(MD5)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Md5Init	100	98	98
R_TSIP_Md5Update	1,148	1,322	1,496
R_TSIP_Md5Final	628	628	628

表 1-97 共通 API(HMAC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateSha1HmacKeyIndex	2,346
R_TSIP_GenerateSha256HmacKeyIndex	2,342
R_TSIP_UpdateSha1HmacKeyIndex	2,106
R_TSIP_UpdateSha256HmacKeyIndex	2,100

表 1-98 HMAC(SHA1)の性能

API		性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理	
R_TSIP_Sha1HmacGenerateInit	1,080	1,080	1,080	
R_TSIP_Sha1HmacGenerateUpdate	804	1,006	1,210	
R_TSIP_Sha1HmacGenerateFinal	1,616	1,614	1,614	
R_TSIP_Sha1HmacVerifyInit	1,080	1,080	1,082	
R_TSIP_Sha1HmacVerifyUpdate	804	1,010	1,212	
R_TSIP_Sha1HmacVerifyFinal	2,748	2,746	2,746	

表 1-99 HMAC(SHA256)の性能

API	性能 (単位:サイクル)		
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256HmacGenerateInit	1,408	1,406	1,406
R_TSIP_Sha256HmacGenerateUpdate	734	906	1,078
R_TSIP_Sha256HmacGenerateFinal	1,582	1,580	1,580
R_TSIP_Sha256HmacVerifyInit	1,408	1,408	1,408
R_TSIP_Sha256HmacVerifyUpdate	732	906	1,080
R_TSIP_Sha256HmacVerifyFinal	2,736	2,736	2,734

表 1-100 共通 API(ECC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateEccP192PublicKeyIndex	2,650
R_TSIP_GenerateEccP224PublicKeyIndex	2,644
R_TSIP_GenerateEccP256PublicKeyIndex	2,642
R_TSIP_GenerateEccP384PublicKeyIndex	2,812
R_TSIP_GenerateEccP192PrivateKeyIndex	2,350
R_TSIP_GenerateEccP224PrivateKeyIndex	2,348
R_TSIP_GenerateEccP256PrivateKeyIndex	2,352
R_TSIP_GenerateEccP384PrivateKeyIndex	2,380
R_TSIP_GenerateEccP192RandomKeyIndex (注)	133,181
R_TSIP_GenerateEccP224RandomKeyIndex (注)	142,484
R_TSIP_GenerateEccP256RandomKeyIndex (注)	143,212
R_TSIP_GenerateEccP384RandomKeyIndex (注)	1,001,983
R_TSIP_UpdateEccP192PublicKeyIndex	2,400
R_TSIP_UpdateEccP224PublicKeyIndex	2,398
R_TSIP_UpdateEccP256PublicKeyIndex	2,398
R_TSIP_UpdateEccP384PublicKeyIndex	2,568
R_TSIP_UpdateEccP192PrivateKeyIndex	2,108
R_TSIP_UpdateEccP224PrivateKeyIndex	2,102
R_TSIP_UpdateEccP256PrivateKeyIndex	2,102
R_TSIP_UpdateEccP384PrivateKeyIndex	2,124

【注】 10回実行時の平均値です。

表 1-101 ECDSA 署名生成/検証の性能

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_EcdsaP192SignatureGenerate	163,264	162,488	163,534
R_TSIP_EcdsaP224SignatureGenerate	163,642	165,936	163,324
R_TSIP_EcdsaP256SignatureGenerate	166,324	168,118	167,926
R_TSIP_EcdsaP384SignatureGenerate(注)		1,082,840	
R_TSIP_EcdsaP192SignatureVerification	306,388	306,412	301,572
R_TSIP_EcdsaP224SignatureVerification	326,756	327,964	319,370
R_TSIP_EcdsaP256SignatureVerification	327,288	329,824	333,924
R_TSIP_EcdsaP384SignatureVerification(注)		2,099,972	

【注】SHA384 計算は含まれません

表 1-102 鍵共有の性能

API	性能 (単位:サイクル)
R_TSIP_EcdhP256Init	38
R_TSIP_EcdhP256ReadPublicKey	332,290
R_TSIP_EcdhP256MakePublicKey	307,870
R_TSIP_EcdhP256CalculateSharedSecretIndex	350,762
R_TSIP_EcdhP256KeyDerivation	3,122
R_TSIP_EcdheP512KeyAgreement	3,299,252
R_TSIP_Rsa2048DhKeyAgreement	52,462,430

(KeyAgreement を除いた)鍵共有の性能は、鍵交換形式を ECDHE、派生させる鍵の種類を AES-128 に固定して計測しました。

1.14 性能情報(RX72N)

以下に RX72Nの TSIP ドライバの性能情報を示します。性能はコアクロックである ICLKのサイクル単位での計測になります。TSIPの動作クロック PCLKBは ICLK: PCLKB = 2:1の設定をしています。

最適化レベル2で実施しています。

表 1-103 共通 API の性能

API	性能 (単位:サイクル)
R_TSIP_Open	6,209,080
R_TSIP_Close	302
R_TSIP_GetVersion	20
R_TSIP_GenerateAes128KeyIndex	2,136
R_TSIP_GenerateAes256KeyIndex	2,256
R_TSIP_GenerateAes128RandomKeyIndex	1,246
R_TSIP_GenerateAes256RandomKeyIndex	1,730
R_TSIP_GenerateRandomNumber	560
R_TSIP_GenerateUpdateKeyRingKeyIndex	2,260
R_TSIP_UpdateAes128KeyIndex	1,874
R_TSIP_UpdateAes256KeyIndex	2,006

表 1-104 Firmware 検証の性能

API	性能 (単位:サイクル)		
	8K バイト処理 16K バイト処理 24K バイト処理		
R_TSIP_VerifyFirmwareMAC	18,850	37,280	55,712

表 1-105 AES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_Aes128EcbEncryptInit	1,266	1,264	1,264
R_TSIP_Aes128EcbEncryptUpdate	380	498	634
R_TSIP_Aes128EcbEncryptFinal	334	332	332
R_TSIP_Aes128EcbDecryptInit	1,278	1,278	1,276
R_TSIP_Aes128EcbDecryptUpdate	448	558	694
R_TSIP_Aes128EcbDecryptFinal	348	346	348
R_TSIP_Aes256EcbEncryptInit	1,386	1,380	1,380
R_TSIP_Aes256EcbEncryptUpdate	396	520	656
R_TSIP_Aes256EcbEncryptFinal	332	332	332
R_TSIP_Aes256EcbDecryptInit	1,392	1,392	1,392
R_TSIP_Aes256EcbDecryptUpdate	470	592	728
R_TSIP_Aes256EcbDecryptFinal	346	346	348
R_TSIP_Aes128CbcEncryptInit	1,322	1,324	1,324
R_TSIP_Aes128CbcEncryptUpdate	448	566	702
R_TSIP_Aes128CbcEncryptFinal	362	362	362
R_TSIP_Aes128CbcDecryptInit	1,342	1,344	1,344
R_TSIP_Aes128CbcDecryptUpdate	514	626	762
R_TSIP_Aes128CbcDecryptFinal	374	372	372
R_TSIP_Aes256CbcEncryptInit	1,442	1,440	1,442
R_TSIP_Aes256CbcEncryptUpdate	466	590	726
R_TSIP_Aes256CbcEncryptFinal	362	362	360
R_TSIP_Aes256CbcDecryptInit	1,460	1,458	1,460
R_TSIP_Aes256CbcDecryptUpdate	534	660	796
R_TSIP_Aes256CbcDecryptFinal	372	372	372

表 1-106 AES-GCM の性能

API		性能 (単位:サイクノ	レ)
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128GcmEncryptInit	4,332	4,334	4,334
R_TSIP_Aes128GcmEncryptUpdate	1,574	1,656	1,726
R_TSIP_Aes128GcmEncryptFinal	1,048	1,046	1,046
R_TSIP_Aes128GcmDecryptInit	4,216	4,214	4,214
R_TSIP_Aes128GcmDecryptUpdate	1,566	1,632	1,700
R_TSIP_Aes128GcmDecryptFinal	1,654	1,654	1,652
R_TSIP_Aes256GcmEncryptInit	4,280	4,276	4,276
R_TSIP_Aes256GcmEncryptUpdate	1,586	1,686	1,754
R_TSIP_Aes256GcmEncryptFinal	864	860	860
R_TSIP_Aes256GcmDecryptInit	4,290	4,292	4,292
R_TSIP_Aes256GcmDecryptUpdate	1,590	1,654	1,722
R_TSIP_Aes256GcmDecryptFinal	1,476	1,478	1,476

GCM の性能は、ivec を 1024bit、追加認証データを 720bit、認証タグを 128bit に固定して計測しました。

表 1-107 AES-CCM の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CcmEncryptInit	2,360	2,350	2,350
R_TSIP_Aes128CcmEncryptUpdate	890	958	1,036
R_TSIP_Aes128CcmEncryptFinal	746	746	746
R_TSIP_Aes128CcmDecryptInit	2,458	2,456	2,456
R_TSIP_Aes128CcmDecryptUpdate	814	890	968
R_TSIP_Aes128CcmDecryptFinal	1,440	1,440	1,440
R_TSIP_Aes256CcmEncryptInit	1,924	1,924	1,924
R_TSIP_Aes256CcmEncryptUpdate	954	1,042	1,140
R_TSIP_Aes256CcmEncryptFinal	790	790	790
R_TSIP_Aes256CcmDecryptInit	1,924	1,920	1,922
R_TSIP_Aes256CcmDecryptUpdate	852	950	1,038
R_TSIP_Aes256CcmDecryptFinal	1,512	1,508	1,510

CCM の性能は、ノンスを 104bit、追加認証データを 880bit、MAC を 128bit に固定して計測しました。

表 1-108 AES-CMAC の性能

API	性能 (単位:サイクル)		
	48 バイト処理	64 バイト処理	80 バイト処理
R_TSIP_Aes128CmacGenerateInit	912	908	908
R_TSIP_Aes128CmacGenerateUpdate	480	516	552
R_TSIP_Aes128CmacGenerateFinal	624	622	622
R_TSIP_Aes128CmacVerifyInit	904	910	908
R_TSIP_Aes128CmacVerifyUpdate	482	518	554
R_TSIP_Aes128CmacVerifyFinal	1,252	1,252	1,252
R_TSIP_Aes256CmacGenerateInit	1,022	1,020	1,020
R_TSIP_Aes256CmacGenerateUpdate	512	556	604
R_TSIP_Aes256CmacGenerateFinal	656	654	654
R_TSIP_Aes256CmacVerifyInit	1,020	1,020	1,020
R_TSIP_Aes256CmacVerifyUpdate	514	558	604
R_TSIP_Aes256CmacVerifyFinal	1,286	1,286	1,284

表 1-109 AES Key Wrap の性能

API	性能 (単位:サイクル)		
	ラップ対象鍵 AES-128	ラップ対象鍵 AES-256	
R_TSIP_Aes128KeyWrap	6,476	10,248	
R_TSIP_Aes256KeyWrap	6,698	10,598	
R_TSIP_Aes128KeyUnwrap	7,342	11,060	
R_TSIP_Aes256KeyUnwrap	7,570	11,410	

表 1-110 共通 API(TDES ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateTdesKeyIndex	2,252
R_TSIP_GenerateTdesRandomKeyIndex	1,730
R_TSIP_UpdateTdesKeyIndex	2,002

表 1-111 TDES の性能

API	性能 (単位:サイクル)		
	16 バイト処理	48 バイト処理	80 バイト処理
R_TSIP_TdesEcbEncryptInit	826	820	822
R_TSIP_TdesEcbEncryptUpdate	430	628	826
R_TSIP_TdesEcbEncryptFinal	320	320	320
R_TSIP_TdesEcbDecryptInit	832	830	830
R_TSIP_TdesEcbDecryptUpdate	456	656	856
R_TSIP_TdesEcbDecryptFinal	338	340	340
R_TSIP_TdesCbcEncryptInit	880	878	878
R_TSIP_TdesCbcEncryptUpdate	488	688	888
R_TSIP_TdesCbcEncryptFinal	348	348	346
R_TSIP_TdesCbcDecryptInit	888	886	888
R_TSIP_TdesCbcDecryptUpdate	520	722	922
R_TSIP_TdesCbcDecryptFinal	360	360	360

表 1-112 共通 API(RSA ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateRsa1024PublicKeyIndex	36,742
R_TSIP_GenerateRsa1024PrivateKeyIndex	37,724
R_TSIP_GenerateRsa2048PublicKeyIndex	136,500
R_TSIP_GenerateRsa2048PrivateKeyIndex	138,464
R_TSIP_GenerateRsa1024RandomKeyIndex (注)	35,336,114
R_TSIP_GenerateRsa2048RandomKeyIndex (注)	327,733,742
R_TSIP_UpdateRsa1024PublicKeyIndex	36,486
R_TSIP_UpdateRsa1024PrivateKeyIndex	37,454
R_TSIP_UpdateRsa2048PublicKeyIndex	136,244
R_TSIP_UpdateRsa2048PrivateKeyIndex	138,196

[【]注】 10 回実行時の平均値です。

表 1-113 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA1)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,996	1,234,172	1,234,584
R_TSIP_RsassaPkcs1024SignatureVerification	16,086	17,276	17,684
R_TSIP_RsassaPkcs2048SignatureGenerate	26,095,164	26,096,356	26,096,764
R_TSIP_RsassaPkcs2048SignatureVerification	133,738	134,928	135,336

表 1-114 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=SHA256)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,233,054	1,234,242	1,234,590
R_TSIP_RsassaPkcs1024SignatureVerification	16,150	17,346	17,694
R_TSIP_RsassaPkcs2048SignatureGenerate	26,095,226	26,096,426	26,096,776
R_TSIP_RsassaPkcs2048SignatureVerification	133,806	135,000	135,348

表 1-115 RSASSA-PKCS1-v1_5 署名生成/検証の性能(HASH=MD5)

API	性能 (単位:サイクル)		
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_RsassaPkcs1024SignatureGenerate	1,232,946	1,234,026	1,234,374
R_TSIP_RsassaPkcs1024SignatureVerification	16,054	17,136	17,484
R_TSIP_RsassaPkcs2048SignatureGenerate	26,095,128	26,096,212	26,096,560
R_TSIP_RsassaPkcs2048SignatureVerification	133,704	134,786	135,134

表 1-116 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 1024bit

API	性能 (単位:サイクル)	
	Message size=1byte	Message size=117byte
R_TSIP_RsaesPkcs1024Encrypt	20,198	15,704
R_TSIP_RsaesPkcs1024Decrypt	1,232,282	1,232,282

表 1-117 RSAES-PKCS1-v1_5 暗号化/復号の性能 鍵サイズ 2048bit

API	性能 (単位	፲: サイクル)
	Message size=1byte	Message size=245byte
R_TSIP_RsaesPkcs2048Encrypt	142,724	133,130
R_TSIP_RsaesPkcs2048Decrypt	26,094,662	26,094,662

表 1-118 HASH(SHA1)の性能

API		性能 (単位:サイクル)
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha1Init	102	102	104
R_TSIP_Sha1Update	1,252	1,456	1,660
R_TSIP_Sha1Final	668	668	668

表 1-119 HASH(SHA256)の性能

API		性能 (単位:サイクル)
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256Init	146	146	146
R_TSIP_Sha256Update	1,262	1,434	1,608
R_TSIP_Sha256Final	682	678	678

表 1-120 HASH(MD5)の性能

API		性能 (単位:サイクル)
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Md5Init	100	98	96
R_TSIP_Md5Update	1,156	1,330	1,504
R_TSIP_Md5Final	636	636	636

表 1-121 共通 API(HMAC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateSha1HmacKeyIndex	2,346
R_TSIP_GenerateSha256HmacKeyIndex	2,340
R_TSIP_UpdateSha1HmacKeyIndex	2,102
R_TSIP_UpdateSha256HmacKeyIndex	2,098

表 1-122 HMAC(SHA1)の性能

API		性能 (単位:サイクル)
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha1HmacGenerateInit	1,084	1,080	1,080
R_TSIP_Sha1HmacGenerateUpdate	802	1,002	1,206
R_TSIP_Sha1HmacGenerateFinal	1,616	1,616	1,616
R_TSIP_Sha1HmacVerifyInit	1,080	1,082	1,082
R_TSIP_Sha1HmacVerifyUpdate	802	1,006	1,210
R_TSIP_Sha1HmacVerifyFinal	2,752	2,750	2,750

表 1-123 HMAC(SHA256)の性能

API		性能 (単位:サイクル)
	128 バイト処理	192 バイト処理	256 バイト処理
R_TSIP_Sha256HmacGenerateInit	1,414	1,410	1,410
R_TSIP_Sha256HmacGenerateUpdate	732	904	1,076
R_TSIP_Sha256HmacGenerateFinal	1,582	1,580	1,580
R_TSIP_Sha256HmacVerifyInit	1,408	1,408	1,408
R_TSIP_Sha256HmacVerifyUpdate	730	904	1,078
R_TSIP_Sha256HmacVerifyFinal	2,742	2,744	2,742

表 1-124 共通 API(ECC ユーザ鍵生成情報生成)の性能

API	性能 (単位:サイクル)
R_TSIP_GenerateEccP192PublicKeyIndex	2,646
R_TSIP_GenerateEccP224PublicKeyIndex	2,644
R_TSIP_GenerateEccP256PublicKeyIndex	2,644
R_TSIP_GenerateEccP384PublicKeyIndex	2,816
R_TSIP_GenerateEccP192PrivateKeyIndex	2,342
R_TSIP_GenerateEccP224PrivateKeyIndex	2,340
R_TSIP_GenerateEccP256PrivateKeyIndex	2,342
R_TSIP_GenerateEccP384PrivateKeyIndex	2,374
R_TSIP_GenerateEccP192RandomKeyIndex (注)	133,526
R_TSIP_GenerateEccP224RandomKeyIndex (注)	141,792
R_TSIP_GenerateEccP256RandomKeyIndex (注)	143,159
R_TSIP_GenerateEccP384RandomKeyIndex (注)	1,013,024
R_TSIP_UpdateEccP192PublicKeyIndex	2,412
R_TSIP_UpdateEccP224PublicKeyIndex	2,402
R_TSIP_UpdateEccP256PublicKeyIndex	2,400
R_TSIP_UpdateEccP384PublicKeyIndex	2,562
R_TSIP_UpdateEccP192PrivateKeyIndex	2,102
R_TSIP_UpdateEccP224PrivateKeyIndex	2,096
R_TSIP_UpdateEccP256PrivateKeyIndex	2,098
R_TSIP_UpdateEccP384PrivateKeyIndex	2,130

【注】 10 回実行時の平均値です。

表 1-125 ECDSA 署名生成/検証の性能

API		性能 (単位:サイクル	·)
	Message size=1byte	Message size=128byte	Message size=256byte
R_TSIP_EcdsaP192SignatureGenerate	163,274	165,056	164,224
R_TSIP_EcdsaP224SignatureGenerate	163,644	163,514	165,142
R_TSIP_EcdsaP256SignatureGenerate	163,764	168,714	169,204
R_TSIP_EcdsaP384SignatureGenerate(注)		1,112,166	
R_TSIP_EcdsaP192SignatureVerification	306,430	307,040	308,616
R_TSIP_EcdsaP224SignatureVerification	321,672	322,232	322,478
R_TSIP_EcdsaP256SignatureVerification	333,054	332,974	330,710
R_TSIP_EcdsaP384SignatureVerification(注)		2,080,726	

【注】SHA384計算は含まれません

表 1-126 鍵共有の性能

API	性能 (単位:サイクル)
R_TSIP_EcdhP256Init	40
R_TSIP_EcdhP256ReadPublicKey	332,294
R_TSIP_EcdhP256MakePublicKey	309,134
R_TSIP_EcdhP256CalculateSharedSecretIndex	350,764
R_TSIP_EcdhP256KeyDerivation	3,118
R_TSIP_EcdheP512KeyAgreement	3,196,194
R_TSIP_Rsa2048DhKeyAgreement	52,462,412

(KeyAgreement を除いた)鍵共有の性能は、鍵交換形式を ECDHE、派生させる鍵の種類を AES-128 に固定して計測しました。

2. API 情報

2.1 ハードウェアの要求

TSIP ドライバは、MCU 内蔵の TSIP 機能に依存します。RX231 グループ、RX23W グループ、RX65N, RX651 グループ、RX66N グループ、RX66T グループ、RX671 グループ、RX72M グループ、RX72N グループ、または RX72T グループの内、TSIP を搭載している型名のものをご使用ください。

2.2 ソフトウェアの要求

TSIP ドライバは、以下モジュールに依存します。

- r_bsp V7.00 以降をご使用ください。(BSP=Board Support Package)
- ■RX231、RX23W を使用する場合(RX231 では、下記コメントの" = Chip"以降が一部異なります。)

r_config フォルダの r_bsp_config.h の以下マクロの値を 0xB、0xD(RX23W のみ)のいずれかに変更してください。

```
/* Chip version.
 Character(s) = Value for macro =
          =0xA
                       = Chip version A
                   = Security function not included.
 В
                       = Chip version B
          =0xB
                   = Security function included.
 C
                       = Chip version C
          =0xC
                   = Security function not included.
 D
          =0xD
                       = Chip version D
                   = Security function included.
#define BSP_CFG_MCU_PART_VERSION
                                              (0xB)
```

■RX66T、RX72T を使用する場合(RX72T では、下記コメントの"= PGA"以降が一部異なります。)

r_config フォルダの r_bsp_config.h の以下マクロの値を 0xE、0xF、0x10 のいずれかに変更してください。

```
/* Whether PGA differential input, Encryption and USB are included or not.
```

Character(s) = Value for macro = Description

#define BSP_CFG_MCU_PART_FUNCTION (0xE)

```
=0xA
                      = PGA differential input included, Encryption module not included,
                   USB module not included
В
        =0xB
                      = PGA differential input not included, Encryption module not included,
                   USB module not included
\mathbf{C}
        =0xC
                      = PGA differential input included, Encryption module not included,
                   USB module included
E
        =0xE
                      = PGA differential input included, Encryption module included,
                   USB module not included
F
        =0xF
                      = PGA differential input not included, Encryption module included,
                   USB module not included
G
        = 0x10
                       = PGA differential input included, Encryption module included,
                   USB module included
```

■RX66N、RX671、RX72M、RX72N を使用する場合

r_config フォルダの r_bsp_config.h の以下マクロの値を 0x11 に変更してください。

/* Whether Encryption is included or not.

Character(s) = Value for macro = Description

D = 0xD = Encryption module not included H = 0x11 = Encryption module included

#define BSP_CFG_MCU_PART_FUNCTION (0x11)

■RX65N を使用する場合

r config フォルダの r bsp config.h の以下マクロの値を true に変更してください。

/* Whether Encryption and SDHI/SDSI are included or not.

Character(s) = Value for macro = Description

= false = Encryption module not included, SDHI/SDSI module not included = Encryption module not included, SDHI/SDSI module included В = false = Encryption module not included, SDHI/SDSI module included D = false = Encryption module included, SDHI/SDSI module not included Е = true F = true = Encryption module included, SDHI/SDSI module included Н = true = Encryption module included, SDHI/SDSI module included

#define BSP_CFG_MCU_PART_ENCRYPTION_INCLUDED (true)

2.3 サポートされているツールチェイン

TSIP ドライバは、以下のツールチェインで動作を確認しています。

RX ファミリ用 C/C++コンパイラパッケージ V3.04.00

2.4 ヘッダファイル

すべての API 呼び出しとそれをサポートするインタフェース定義は r_tsip_rx_if.h に記載しています。

2.5 整数型

このプロジェクトは ANSI C99 を使用しています。

2.6 API データ構造

TSIP ドライバが使用するデータ構造体についての情報は r_tsip_rx_if.h を参照してください。

2.7 戻り値

以下に本モジュールの API 関数で使用できる戻り値を示します。戻り値の列挙型は、API 関数の宣言と共に r_tsip_rx_if.h に記載されています。

```
typedef enum e_tsip_err
  TSIP SUCCESS=0,
                          // 自己診断が異常終了
  TSIP_ERR_FAIL,
                          // R_TSIP_VerifyFirmwareMAC による MAC 異常検出
                          // または R_TSIP_各 API の内部エラー
  TSIP_ERR_RESOURCE_CONFLICT, // 本処理に必要なリソースが他の処理で利用されている
                          // ことによるリソース衝突が発生
  TSIP ERR RETRY,
                         // 自己診断が異常終了。本関数を再実行してください。
                          // 異常な鍵生成情報が入力された
  TSIP_ERR_KEY_SET,
  TSIP_ERR_AUTHENTICATION, // 認証が失敗
                         // または RSASSA-PKCS1-V.1.5 による署名文検証失敗
  TSIP_ERR_CALLBACK_UNREGIST, // コールバック関数未登録
                    // 入力データが不正
  TSIP_ERR_PARAMETER,
  TSIP_ERR_PROHIBIT_FUNCTION, // 不正な関数呼び出しが発生した
  TSIP_RESUME_FIRMWARE_GENERATE_MAC, / / 処理の続きがあります。API の再呼び出しが必要
  TSIP_ERR_VERIFICATION_FAIL, // TLS1.3 のハンドシェイク検証が失敗
}e_tsip_err_t
```

2.8 FIT モジュールの追加方法

本モジュールは、使用するプロジェクトごとに追加する必要があります。ルネサスでは、Smart Configurator を使用した(1)、(3)の追加方法を推奨しています。ただし、Smart Configurator は、一部の RX デバイスのみサポートしています。サポートされていない RX デバイスについては(2)、(4)の方法を使用してください。

- (1) e² studio 上で Smart Configurator を使用して FIT モジュールを追加する場合 e² studio の Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーションノート「Renesas e² studio スマート・コンフィグレータ ユーザーガイド (R20AN0451)」を参照してください。
- (2) e² studio 上で FIT Configurator を使用して FIT モジュールを追加する場合 e² studio の FIT Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加することができます。詳細は、アプリケーションノート「RX ファミリ e² studio に組み込む方法 Firmware Integration Technology (R01AN1723)」を参照してください。
- (3) CS+上で Smart Configurator を使用して FIT モジュールを追加する場合 CS+上で、スタンドアロン版 Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーションノート「Renesas e² studio スマート・コンフィグレータ ユーザーガイド (R20AN0451)」を参照してください。
- (4) CS+上で FIT モジュールを追加する場合 CS+上で、手動でユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーション ノート「RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826)」を参照してください。

3. API 関数

3.1 API 一覧

TSIP ドライバでは、以下の API を実装しています。

- ① TSIP 初期化関連の API
- ② AES/DES/ARC4/RSA/ECC 暗号および HMAC で使用するユーザ鍵生成情報を生成する API、鍵 更新用の鍵生成情報を生成する API、および、ユーザ鍵生成情報を更新する API
- ③ AES、DES、ARC4、RSA、ECC のユーザ鍵生成情報を乱数から自動生成するための API
- ④ 乱数を生成するための API
- ⑤ 各種暗号アルゴリズムの API
- ⑥ ファームウェアアップデートやブートをセキュアに行うための API
- ⑦ SSL/TLS 連携機能 API
- ⑧ 鍵共有のための API
- ⑨ Key Wrap のための API

表 3-1 API

	API	説明	TSIP	TSIP
覧			-Lite	
分				
類				
1	R_TSIP_Open	TSIP 機能を有効にしま	~	~
		す		
	R_TSIP_Close	TSIP 機能を無効にしま	~	V
		す		
	R_TSIP_SoftwareReset	TSIP モジュールをリ	~	'
		セットします。		
	R_TSIP_GetVersion	TSIP ドライバのバー	~	'
		ジョンを出力します。		
2	R_TSIP_GenerateAes128KeyIndex	AES 128 ビット用ユーザ	~	'
		鍵生成情報を生成しま		
		す。		
	R_TSIP_GenerateAes256KeyIndex	AES256 ビット用ユーザ	~	'
		鍵生成情報を生成しま		
		す。		
	R_TSIP_GenerateUpdateKeyRingKeyIndex	鍵更新用鍵束用の鍵生成	~	'
		情報を生成します。		
	R_TSIP_GenerateTdesKeyIndex	Triple-DES 用のユーザ鍵		'
		生成情報を生成します。		
	R_TSIP_GenerateArc4KeyIndex	ARC4 用のユーザ鍵生成		'
		情報を生成します。		
	R_TSIP_GenerateRsa1024PrivateKeyIndex	RSA1024 ビット秘密鍵		'
		用ユーザ鍵生成情報を生		
		成します。		
	R_TSIP_GenerateRsa1024PublicKeyIndex	RSA1024 ビット公開鍵		'
		用ユーザ鍵生成情報を生		
		成します。		
	R_TSIP_GenerateRsa2048PrivateKeyIndex	RSA2048 ビット秘密鍵		'
		用ユーザ鍵生成情報を生		
		成します。		

R_TSIP_GenerateRsa2048PublicKeyIndex	RSA2048 ビット公開鍵 用ユーザ鍵生成情報を生	~
	成します。	
R_TSIP_GenerateTlsRsaPublicKeyIndex	TLS 連携で使用する	V
,	RSA 公開鍵鍵生成情報	
	を生成します。	
R_TSIP_GenerateEccP192PublicKeyIndex	ECC P-192 公開鍵用	
	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP224PublicKeyIndex	ECC P-224 公開鍵用	·
The reministration of the second seco	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP256PublicKeyIndex	ECC P-256 公開鍵用	V
N_1011 _Generale_cor zoor abilioreyinaex	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP384PublicKeyIndex	ECC P-384 公開鍵用	·
TY_TON _Generalogues Goal abilioney mack	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP192PrivateKeyIndex	ECC P-192 秘密鍵用	V
N_1011_OcherateLeer 1021 invalence/index	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP224PrivateKeyIndex	ECC P-224 秘密鍵用	
N_13ir_GeneraleEccr224FilvaleReylindex	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP256PrivateKeyIndex	ECC P-256 秘密鍵用	V
R_13IF_GeneraleEccF230FilvaleReylindex	ユーザ鍵生成情報を生成	
	します。	
R_TSIP_GenerateEccP384PrivateKeyIndex	Cより。 ECC P-384 秘密鍵用	/
R_151P_GeneraleEccP364PffvaleReyIndex	ユーザ鍵生成情報を生成	-
	します。	
R_TSIP_GenerateSha1HmacKeyIndex	SHA1-HMAC 用ユーザ鍵	V
K_TSIF_GenerateShaThinackeyindex	生成情報を生成します。	•
D. TCID. Concrete Che 25Cl Impedicate dest		
R_TSIP_GenerateSha256HmacKeyIndex	SHA256-HMAC 用ユー	-
	ザ鍵生成情報を生成しま	
D. TOID He date A and OOK and a day.	す。	
R_TSIP_UpdateAes128KeyIndex	AES 128 ビット用ユーザ ノ	~
	鍵生成情報を更新しま	
D TOID II I A OFOIC I I	j .	
R_TSIP_UpdateAes256KeyIndex	AES256 ビット用ユーザ ✔	-
	鍵生成情報を更新しま	
D TOID II I (T I () I	
R_TSIP_UpdateTdesKeyIndex	TDES 用ユーザ鍵生成情	~
	報を更新します。	
R_TSIP_UpdateArc4KeyIndex	ARC4 用ユーザ鍵生成情	~
	報を更新します。	
R_TSIP_UpdateRsa1024PrivateKeyIndex	RSA1024 ビット秘密鍵	~
	用ユーザ鍵生成情報を更	
	新します。	
R_TSIP_UpdateRsa1024PublicKeyIndex	RSA1024 ビット公開鍵	~
	用ユーザ鍵生成情報を更	
	新します。	
R_TSIP_UpdateRsa2048PrivateKeyIndex	RSA2048 ビット秘密鍵	1

		用ユーザ鍵生成情報を更		
		新します。		
	R_TSIP_UpdateRsa2048PublicKeyIndex	RSA2048 ビット公開鍵		~
	,	用ユーザ鍵生成情報を更		
		新します。		
	R_TSIP_UpdateTlsRsaPublicKeyIndex	TLS 連携で使用する		~
		RSA 公開鍵鍵生成情報		
		を更新します。		
	R TSIP UpdateEccP192PublicKeyIndex	ECC P-192 公開鍵用		~
	· · _ · · · · · · · · · · · · · · · ·	ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateEccP224PublicKeyIndex	ECC P-224 公開鍵用		~
		ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateEccP256PublicKeyIndex	ECC P-256 公開鍵用		~
		ユーザ鍵生成情報を更新		
		します。		
	R TSIP UpdateEccP384PublicKeyIndex	ECC P-384 公開鍵用		~
	N_TON _Opuato_con oo n ubnortoyindox	ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateEccP192PrivateKeyIndex	ECC P-192 秘密鍵用		~
	The Ton London 1021 Watertoy Maox	ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateEccP224PrivateKeyIndex	ECC P-224 秘密鍵用		~
	N_1011 _opdato2001 22 11 IIVato1toyIIIdox	ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateEccP256PrivateKeyIndex	ECC P-256 秘密鍵用		~
	The Ton Lobation 2001 Watertoyindox	ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateEccP384PrivateKeyIndex	ECC P-384 秘密鍵用		~
	The rem _epadace_eer eer invalories/index	ユーザ鍵生成情報を更新		
		します。		
	R_TSIP_UpdateSha1HmacKeyIndex	SHA1-HMAC 用ユーザ鍵		~
		生成情報を更新します。		
	R_TSIP_UpdateSha256HmacKeyIndex	SHA256-HMAC 用ユー		~
	TY_TON _OpdateOnd2001 inidoReyindex	ザ鍵生成情報を更新しま		
		す。		
3	R_TSIP_GenerateAes128RandomKeyIndex		<u> </u>	~
•	TY_TON _Generale/1651261/dindoffitely/fidex	鍵生成情報を生成しま	•	
		す。		
	R_TSIP_GenerateAes256RandomKeyIndex		<u> </u>	~
	N_1011 _GenerateAc32301\andothin\cylindex	鍵生成情報を生成しま		
		要工機構を工機しる。		
	R_TSIP_GenerateTdesRandomKeyIndex	ファット		~
	1. Ton _oonerater destraindeninteyindex	成情報を生成します。		•
	R_TSIP_GenerateArc4RandomKeyIndex	ARC4 用ユーザ鍵生成情		V
	N_1011 _001101ate/11041tandonnteyindex	報を生成します。		•
	R_TSIP_GenerateRsa1024RandomKeyIndex	RSA1024 ビット秘密鍵		V
	N_1 SIF_Generalensa 1024Randonneyindex	用ユーザ鍵生成情報と対		•
		用ユーザ鍵生成情報と対		
		よりる公開鍵を生成しま す。公開鍵指数部は		
		9 。公開艇相級副は		
		0.8.10001 回足 0.9。		

	R_TSIP_GenerateRsa2048RandomKeyIndex	RSA2048 ビット秘密鍵 用ユーザ鍵生成情報と対 応する公開鍵を生成しま す。公開鍵指数部は 0x10001 固定です。		•
	R_TSIP_GenerateTlsP256EccKeyIndex	TLS 連携機能で使用する 乱数から 256bit 素体上の 楕円曲線暗号のための鍵 ペアを生成します。		~
	R_TSIP_GenerateTls13P256EccKeyIndex	TLS1.3 連携機能で使用 する乱数から 256bit 素体 上の楕円曲線暗号のため の鍵ペアを生成します。		<i>'</i>
	R_TSIP_GenerateEccP192RandomKeyIndex	ECC P-192 秘密鍵用 ユーザ鍵生成情報と対応 する公開鍵を生成しま す。		V
	R_TSIP_GenerateEccP224RandomKeyIndex	ECC P-224 秘密鍵用 ユーザ鍵生成情報と対応 する公開鍵を生成しま す。		~
	R_TSIP_GenerateEccP256RandomKeyIndex	ECC P-256 秘密鍵用 ユーザ鍵生成情報と対応 する公開鍵を生成しま す。		~
	R_TSIP_GenerateEccP384RandomKeyIndex	ECC P-384 秘密鍵用 ユーザ鍵生成情報と対応 する公開鍵を生成しま す。		~
4	R_TSIP_GenerateRandomNumber	乱数を生成します。	~	~
(5)	R_TSIP_Aes128EcbEncryptInit	AES128 ビット用ユーザ 鍵生成情報を用いて AES128-ECB モード暗 号化を行う準備をしま す。	~	~
	R_TSIP_Aes128EcbEncryptUpdate	AES128-ECB モード暗 号化をします。	~	~
	R_TSIP_Aes128EcbEncryptFinal	AES128-ECB モード暗 号化の終了処理を行いま す。	~	~
	R_TSIP_Aes128EcbDecryptInit	AES128 ビット用ユーザ 鍵生成情報を用いて AES128-ECB モード復 号を行う準備をします。	~	~
	R_TSIP_Aes128EcbDecryptUpdate	AES128-ECB モード復 号をします。	~	~
	R_TSIP_Aes128EcbDecryptFinal	AES128-ECB モード復 号の終了処理をします。	~	~
	R_TSIP_Aes256EcbEncryptInit	AES256 ビット用ユーザ 鍵生成情報を用いて AES256-ECB モード暗 号化を行う準備をしま	~	~

	す。		
R_TSIP_Aes256EcbEncryptUpdate	AES256-ECB モード暗	~	•
	号化します。		
R_TSIP_Aes256EcbEncryptFinal	AES256-ECB モード暗	1	•
	号化の終了処理をしま		
	す。		
R_TSIP_Aes256EcbDecryptInit	AES256 ビット用ユーザ	~	١,
K_TSIP_Aes256EcbDecryptifiit		•	١,
	鍵生成情報を用いて		
	AES256-ECB モード復		
	号を行う準備をします。		
R_TSIP_Aes256EcbDecryptUpdate	AES256-ECB モード復	~	•
	号をします。		
R_TSIP_Aes256EcbDecryptFinal	AES256-ECB モード復	~	•
,,	号の終了処理をします。		
R_TSIP_Aes128CbcEncryptInit	AES128 ビット用ユーザ	~	١,
on _/too/200boErioryptime	鍵生成情報を用いて	•	'
	妊エ次情報を用いて AES128-CBC モードで		
	暗号化を行う準備をしま		
D TOID A 4000' -	す。		\perp
R_TSIP_Aes128CbcEncryptUpdate	AES128-CBC モードで	~	١
	暗号化します。		
R_TSIP_Aes128CbcEncryptFinal	AES128-CBC モード暗	~	•
	号化の終了処理をしま		
	す。		
R_TSIP_Aes128CbcDecryptInit	AES128 ビット用ユーザ	V	١.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	鍵生成情報を用いて		'
	AES128-CBC モード復		
	号を行う準備をします。		
D TOID A 4000L D 411 L4			
R_TSIP_Aes128CbcDecryptUpdate	AES128-CBC モード復	~	١
	号をします。		
R_TSIP_Aes128CbcDecryptFinal	AES128-CBC モード復	~	•
	号の終了処理をします。		
R_TSIP_Aes256CbcEncryptInit	AES256 ビット用ユーザ	~	•
	鍵生成情報を用いて		
	AES256-CBC モード暗		
	号化を行う準備をしま		
	す。		
R_TSIP_Aes256CbcEncryptUpdate	AES256-CBC モード暗	~	١,
N_TOIL_A632300b0E1101ypt0puate	号化をします。		'
D TOID According to			+
R_TSIP_Aes256CbcEncryptFinal	AES256-CBC モード暗	~	١
	号化の終了処理をしま		
	す。		
R_TSIP_Aes256CbcDecryptInit	AES256 ビット用ユーザ	~	•
	鍵生成情報を用いて		
	AES256-CBC モード復		
	号を行う準備をします。		
R_TSIP_Aes256CbcDecryptUpdate	AES256-CBC モード復	~	١,
	号をします。	•	"
D TOID Acc256ChoDoorustEinel		~	+
R_TSIP_Aes256CbcDecryptFinal	AES256-CBC モード復	V	•
	号の終了処理をします。		
R_TSIP_Aes128GcmEncryptInit	AES128 ビット用ユーザ	/	١
	鍵生成情報を用いて		

	AES128-GCM 暗号化の		
	準備をします。		
R_TSIP_Aes128GcmEncryptUpdate	AES128-GCM 暗号化を します。	~	•
R_TSIP_Aes128GcmEncryptFinal	AES128-GCM 暗号化の 終了処理をします。	~	~
R_TSIP_Aes128GcmDecryptInit	AES128 ビット用ユーザ 鍵生成情報を用いて AES128-GCM 復号の準 備をします。	~	•
R_TSIP_Aes128GcmDecryptUpdate	AES128-GCM 復号をします。	~	-
R_TSIP_Aes128GcmDecryptFinal	AES128-GCM 復号の終 了処理をします。	~	-
R_TSIP_Aes256GcmEncryptInit	AES256 ビット用ユーザ 鍵生成情報を用いて AES256-GCM 暗号化の 準備をします。	~	•
R_TSIP_Aes256GcmEncryptUpdate	AES256-GCM 暗号化を します。	~	-
R_TSIP_Aes256GcmEncryptFinal	AES256-GCM 暗号化の 終了処理をします。	~	~
R_TSIP_Aes256GcmDecryptInit	AES256 ビット用ユーザ 鍵生成情報を用いて AES256-GCM 復号の準 備をします。	~	~
R_TSIP_Aes256GcmDecryptUpdate	AES256-GCM 復号をします。	~	-
R_TSIP_Aes256GcmDecryptFinal	AES256-GCM 復号の終 了処理をします。	~	~
R_TSIP_Aes128CcmEncryptInit	AES128 ビット用ユーザ 鍵生成情報を用いて AES128-CCM 暗号化の 準備をします。	'	~
R_TSIP_Aes128CcmEncryptUpdate	AES128-CCM の暗号化 をします。	~	•
R_TSIP_Aes128CcmEncryptFinal	AES128-CCM 暗号化の 終了処理をします。	~	~
R_TSIP_Aes128CcmDecryptInit	AES128 ビット用ユーザ 鍵生成情報を用いて AES128-CCM 復号の準 備をします。	~	•
R_TSIP_Aes128CcmDecryptUpdate	AES-128CCM の復号処 理をします。	~	-
R_TSIP_Aes128CcmDecryptFinal	AES-128CCM 復号の終 了処理をします。	~	•
R_TSIP_Aes256CcmEncryptInit	AES256 ビット用ユーザ 鍵生成情報を用いて AES256-CCM 暗号化の 準備をします。	~	-
R_TSIP_Aes256CcmEncryptUpdate	AES256-CCM の暗号化 をします。	~	~

R_TSIP_Aes256CcmEncryptFinal	AES256-CCM 暗号化の 終了処理をします。	~	~
R_TSIP_Aes256CcmDecryptInit	AES256 ビット用ユーザ	~	V
N_13IF_Aes230CcIIIDeci yptillit	鍵生成情報を用いて		
	AES256-CCM 復号の準		
	備をします。		
R_TSIP_Aes256CcmDecryptUpdate	AES-256CCM の復号処	/	~
	理をします。		
R_TSIP_Aes256CcmDecryptFinal	AES-256CCM 復号の終	~	~
	了処理をします。		
R_TSIP_Aes128CmacGenerateInit	AES128 ビット用ユーザ	~	~
	鍵生成情報を用いて		
	AES128-CMAC モード		
	MAC生成を行う準備を		
	します。		
D TOID AssA000ms of assessed in data	1 -		
R_TSIP_Aes128CmacGenerateUpdate	AES128-CMAC ₹— F	~	~
	MAC 生成を行います。		
R_TSIP_Aes128CmacGenerateFinal	AES128-CMAC モード	~	~
	MAC 生成の終了処理を		
	行います。		
R_TSIP_Aes128CmacVerifyInit	AES128 ビット用ユーザ	/	~
	鍵生成情報を用いて		
	AES128-CMAC モードで		
	生成された MAC の検証		
	を行う準備をします。		
P TSID Acc120CmacNariful Indata	AES128-CMAC モードで	~	
R_TSIP_Aes128CmacVerifyUpdate			-
	生成された MAC の検証		
	を行います。		
R_TSIP_Aes128CmacVerifyFinal	AES128-CMAC モードで	~	~
	生成された MAC の検証		
	の終了処理を行います。		
R_TSIP_Aes256CmacGenerateInit	AES256 ビット用ユーザ	/	~
_	鍵生成情報を用いて		
	AES256-CMAC ₹— F		
	MAC 生成を行う準備を		
	します。		
P TSID Acc256CmacCanaratal Indata			
R_TSIP_Aes256CmacGenerateUpdate	AES256-CMAC モード	~	/
D TOID A 0500 C . T	MAC生成を行います。	<u> </u>	
R_TSIP_Aes256CmacGenerateFinal	AES256-CMAC ₹— F	~	~
	MAC 生成の終了処理を		
	行います。		
R_TSIP_Aes256CmacVerifyInit	AES256 ビット用ユーザ	/	~
·	鍵生成情報を用いて		
	AES256-CMAC モードで		
	生成された MAC の検証		
	を行う準備をします。		
R_TSIP_Aes256CmacVerifyUpdate	AES256-CMAC モードで	~	V
N_TOIF_Aes2500macvemyOpuate		•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	生成された MAC の検証		
	を行います。		\bot
R_TSIP_Aes256CmacVerifyFinal	AES256 ビット鍵を用い	~	~
	て CMAC モードで生成		
	· · · · · · · · · · · · · · · · · · ·		

	了処理を行います。	
R_TSIP_TdesEcbEncryptInit	TDES-ECB モード暗号	V
	化を行う準備をします。	
R_TSIP_TdesEcbEncryptUpdate	TDES-ECB モード暗号	V
	化します。	
R_TSIP_TdesEcbEncryptFinal	TDES-ECB モード暗号	·
	化の終了処理をします。	
R_TSIP_TdesEcbDecryptInit	TDES-ECB モード復号	V
	を行う準備をします。	
R_TSIP_TdesEcbDecryptUpdate	TDES-ECB モード復号	V
	をします。	
R_TSIP_TdesEcbDecryptFinal	TDES-ECB モード復号	V
	の終了処理をします。	
R_TSIP_TdesCbcEncryptInit	TDES-CBC モードで暗	V
	号化を行う準備をしま	
	す。	
R_TSIP_TdesCbcEncryptUpdate	TDES-CBC モードで暗	V
	号化します。	
R_TSIP_TdesCbcEncryptFinal	TDES-CBC モード暗号	V
	化の終了処理をします。	
R_TSIP_TdesCbcDecryptInit	TDES-CBC モード復号	V
	を行う準備をします。	
R_TSIP_TdesCbcDecryptUpdate	TDES-CBC モード復号	V
	をします。	
R_TSIP_TdesCbcDecryptFinal	TDES-CBC モード復号	V
	の終了処理をします。	
R_TSIP_Arc4EncryptInit	ARC4 暗号化を行う準備	V
	をします。	
R_TSIP_Arc4EncryptUpdate	ARC4 暗号化します。	V
R_TSIP_Arc4EncryptFinal	ARC4 暗号化の終了処理	V
	をします。	
R_TSIP_Arc4DecryptInit	ARC4 復号を行う準備を	V
	します。	
R_TSIP_Arc4DecryptUpdate	ARC4 復号をします。	V
R_TSIP_Arc4DecryptFinal	ARC4 復号の終了処理を	V
	します。	
R_TSIP_RsaesPkcs1024Encrypt	RSAES-PKCS1-V1_5 IC	V
	よる 1024bit RSA 暗号化	
	をします。	
R_TSIP_RsaesPkcs1024Decrypt	RSAES-PKCS1-V1_5 C	V
	よる 1024bit RSA 復号を	
	します。	
R_TSIP_RsaesPkcs2048Encrypt	RSAES-PKCS1-V1_5 IC	V
	よる 2048bit RSA 暗号化	
	をします。	
R_TSIP_RsaesPkcs2048Decrypt	RSAES-PKCS1-V1_5 IC	V
	よる 2048bit RSA 復号を	
	します。	
R_TSIP_RsassaPkcs1024SignatureGenerate	RSASSA-PKCS1-V1_5	V
	による 1024bit 電子署名	
	を生成します。	

R_TSIP_RsassaPkcs1024SignatureVerification	RSASSA-PKCS1-V1_5 による 1024bit 電子署名	-
R_TSIP_RsassaPkcs2048SignatureGenerate	の検証をします。 RSASSA-PKCS1-V1_5 による 2048bit 電子署名 を生成します。	•
R_TSIP_RsassaPkcs2048SignatureVerification	RSASSA-PKCS1-V1_5 による 2048bit 電子署名 の検証をします。	•
R_TSIP_Sha1Init	SHA-1 によるハッシュ値 生成を行う準備をしま す。	•
R_TSIP_Sha1Update	SHA-1 によるハッシュ値 生成を行います。	•
R_TSIP_Sha1Final	SHA-1 によるハッシュ値 生成の終了処理をしま す。	-
R_TSIP_Sha256Init	SHA-256 によるハッ シュ値生成を行う準備を します。	•
R_TSIP_Sha256Update	SHA-256によるハッ シュ値生成を行います。	~
R_TSIP_Sha256Final	SHA-256 によるハッ シュ値生成の終了処理を します。	~
R_TSIP_Sha1HmacGenerateInit	SHA1-HMAC 演算をする 準備をします。	•
R_TSIP_Sha1HmacGenerateUpdate	SHA1-HMAC 演算をしま す。	~
R_TSIP_Sha1HmacGenerateFinal	SHA1-HMAC 演算の終了 処理をします。	~
R_TSIP_Sha256HmacGenerateInit	SHA256-HMAC 演算を する準備をします。	-
R_TSIP_Sha256HmacGenerateUpdate	SHA256-HMAC 演算を します。	~
R_TSIP_Sha256HmacGenerateFinal	SHA256-HMAC 演算の 終了処理をします。	-
R_TSIP_Sha1HmacVerifyInit	SHA1-HMAC 演算検証を する準備をします。	-
R_TSIP_Sha1HmacVerifyUpdate	SHA1-HMAC 演算検証を します。	-
R_TSIP_Sha1HmacVerifyFinal	SHA1-HMAC 演算検証の 終了処理をします。	-
R_TSIP_Sha256HmacVerifyInit	SHA256-HMAC 演算検 証をする準備をします。	-
R_TSIP_Sha256HmacVerifyUpdate	SHA256-HMAC 演算検 証をします。	•
R_TSIP_Sha256HmacVerifyFinal	SHA256-HMAC 演算検 証の終了処理をします。	•
R_TSIP_Md5Init	MD5 によるハッシュ値 生成を行う準備をしま す。	-

	R_TSIP_Md5Update	MD5 によるハッシュ値		V
		生成を行います。		
	R_TSIP_Md5Final	MD5 によるハッシュ値		~
		生成の終了処理をしま		
		す。		
	R_TSIP_GetCurrentHashDigestValue	ハッシュ値演算途中経過		V
	v	を取得します。		
	R_TSIP_EcdsaP192SignatureGenerate	ECDSA P-192による電		~
		子署名を生成します。		
	R_TSIP_EcdsaP224SignatureGenerate	ECDSA P-224 による電		V
		子署名を生成します。		
	R_TSIP_EcdsaP256SignatureGenerate	ECDSA P-256による電		V
	T_TON	子署名を生成します。		
	R_TSIP_EcdsaP384SignatureGenerate	ECDSA P-384 による電		V
	N_131F_Ecusar 30431ghatureGenerate	子署名を生成します。		
	D. TCID. Fodge D402 Sign of type \/ ovification	ECDSA P-192 による電		
	R_TSIP_EcdsaP192SignatureVerification	子署名の検証をします。		~
	D. TOID. Feder DOOAG: mare to mark to self to a file.			
	R_TSIP_EcdsaP224SignatureVerification	ECDSA P-224 による電		'
	D TOID 5 1 D07001 11 11 11	子署名の検証をします。		
	R_TSIP_EcdsaP256SignatureVerification	ECDSA P-256 による電		~
		子署名の検証をします。		
	R_TSIP_EcdsaP384SignatureVerification	ECDSA P-384 による電		~
		子署名の検証をします。		
6	R_TSIP_StartUpdateFirmware	ファームウェアアップ	/	~
		デートモードに遷移しま		
		す。		
	R_TSIP_GenerateFirmwareMAC	暗号化されたファーム	~	~
		ウェアの復号と MAC 生		
		成を行います。		
	R_TSIP_VerifyFirmwareMAC	ファームウェアの MAC	~	V
		チェックを行います。		
7	R_TSIP_TIsRootCertificateVerification	ルート CA 証明書の束を		V
		検証します。		
	R_TSIP_TIsCertificateVerification	サーバ証明書、中間証明		~
		書の署名を検証します。		
	R_TSIP_TIsCertificateVerificationExtension	サーバ証明書、中間証明		V
		書の署名を検証します。		
	R_TSIP_TIsGeneratePreMasterSecret	暗号化された		· /
	N_TON_NOCHORAGI TEMASTEROECIET	PreMasterSecret を生成		
		します。		
	R_TSIP_TlsEncryptPreMasterSecretWithRsa2048PublicKey	PreMasterSecret &		·
	N_TOIT_H9EHOLYPITTEIVIASIELSEGIELVVILHINSAZU40FUDIICNEY 	RSA2048 で暗号化しま		
		RSA2046 C暗号化しま す。		
	D TSID TicCongrateMactorSecret	 暗号化された		
	R_TSIP_TlsGenerateMasterSecret			'
		MasterSecret を生成しま す。		
	D. TSID. TloConorate Consider/			
	R_TSIP_TlsGenerateSessionKey	TLS 通信の各種鍵を出力		'
		します。		
	R_TSIP_TlsGenerateVerifyData	Verify データを生成しま		~
		す。		
	R_TSIP_TlsServersEphemeralEcdhPublicKeyRetrieves	SorverKeyEyehenes (C		V
	N_TON_NOGIVERSEPTICITICIALECULIF UDITIONEYNETHEVES	ServerKeyExchange Ø		

	署名を検証します。	
R_TSIP_TlsGeneratePreMasterSecretWithEccP256Key	ECC で暗号化された PreMasterSecret を生成 します。	-
R_TSIP_Tls13GenerateEcdheSharedSecret	Shared Secret 鍵生成情 報を生成します。	-
R_TSIP_Tls13GenerateHandshakeSecret	Handshake Secret 鍵生 成情報を生成します。	~
R_TSIP_Tls13GenerateServerHandshakeTrafficKey	Server Write Key 及び Server Finished Key の 鍵生成情報を生成しま す。	~
R_TSIP_TIs13ServerHandshakeVerification	サーバから提供される Finished の情報を検証し ます。	~
R_TSIP_Tls13GenerateClientHandshakeTrafficKey	Client Write Key 及び Client Finished Key の鍵 生成情報を生成します。	-
R_TSIP_Tls13GenerateMasterSecret	Master Secret の鍵生成 情報を生成します。	•
R_TSIP_Tls13GenerateApplicationTrafficKey	Application Traffic Secret と Application Traffic Key の鍵生成情報を生成しま す。	-
R_TSIP_Tls13UpdateApplicationTrafficKey	Application Traffic Secret と Application Traffic Key の鍵生成情報を更新しま す。	~
R_TSIP_Tls13EncryptInit	TLS1.3 通信データの暗 号化を行う準備をしま す。	•
R_TSIP_Tls13EncryptUpdate	TLS1.3 通信データの暗 号化をします。	~
R_TSIP_Tls13EncryptFinal	TLS1.3 通信データの暗 号化の終了処理をしま す。	•
R_TSIP_TIs13DecryptInit	TLS1.3 通信データの復 号を行う準備をします。	•
R_TSIP_TIs13DecryptUpdate	TLS1.3 通信データの復 号をします。	~
R_TSIP_Tls13DecryptFinal	TLS1.3 通信データの復 号の終了処理をします。	•
R_TSIP_TIs13CertificateVerifyGenerate	サーバに送信する CertificateVerify を生成 します。	~
R_TSIP_TIs13CertificateVerifyVerification	サーバから受信した	✓

		CertificateVerify を検証 します。		
8	R_TSIP_EcdhP256Init	ECDH P-256 鍵交換演算 の準備をします		~
	R_TSIP_EcdhP256ReadPublicKey	鍵共有相手の ECC P- 256 公開鍵の署名を検証 します。		'
	R_TSIP_EcdhP256MakePublicKey	ECC P-256 秘密鍵に署 名をつけます。		~
	R_TSIP_EcdhP256CalculateSharedSecretIndex	鍵共有相手の公開鍵と自 分の秘密鍵から、共有秘 密 Z を計算します。		'
	R_TSIP_EcdhP256KeyDerivation	Zから共有鍵を導出します。		~
	R_TSIP_EcdheP512KeyAgreement	Brainpool P512r1 を用い て ECDHE 演算を行いま す。		~
	R_TSIP_Rsa2048DhKeyAgreement	RSA-2048 による DH 演 算を実施します。		~
9	R_TSIP_Aes128KeyWrap	AES 128 鍵で、鍵を ラップします。	~	~
	R_TSIP_Aes256KeyWrap	AES 128 鍵で、鍵をア ンラップします。	~	~
	R_TSIP_Aes128KeyUnwrap	AES 256 鍵で、鍵を ラップします。	~	~
	R_TSIP_Aes256KeyUnwrap	AES 256 鍵で、鍵をア ンラップします。	~	~

3.2 状態遷移図

TSIP はソフトウェアによる TSIP レジスタアクセスを監視しています。

TSIP は適切な状態遷移と制御手順の元、API 関数の実行を許可します。

TSIP は不正な TSIP レジスタアクセスを検出すると TSIP 不正アクセス検出状態に遷移し、処理途中で無限ループとなります。ウォッチドッグタイマ等を使用してこの無限ループを検出し、システム動作を復旧させることを推奨します。

以下に TSIP の状態遷移図を示します。

【注】 R_TSIP_Open()実行中に RX をスタンバイモードに遷移させないでください。これを防ぐため、R_TSIP_Open()では、割り込み禁止 API の R_BSP_InterruptsDisable()と割り込み許可 API の R_BSP_InterruptsEnable()を呼び出しています。

3.3 API 使用時の注意事項

3.3.1 各 API の呼び出し方法

TSIPドライバは各アルゴリズム API を実行するときに、アルゴリズムごとに Init API→Update API→Final API を呼ぶ必要があります。複数のアルゴリズムを同時に使用することができません。例えば AES-ECB 128key の暗号化と復号を同時に使用する場合、R_TSIP_Aes128EcbEncryptInit()を呼び出し後、R_TSIP_Aes128EcbEncryptFinal()呼び出し前に R_TSIP_Aes128EcbDecryptInit()を呼び出すような使用方法はできません。呼び出し順が正常に行われなかった場合は、戻り値で TSIP_ERR_RESOURCE_CONFLICT もしくは TSIP_ERR_PROHIBIT_FUNCTION を返します。

ただし、ハッシュ演算(SHA-1, SHA-256, MD5)API は AES などの他のアルゴリズムと同時に使用することが可能です。例えば、R_TSIP_Sha1Init()→R_TSIP_Sha1Update()→R_TSIP_Aes128EcbEncryptInit()→R_TSIP_Aes128EcbEncryptUpdate()→R_TSIP_Aes128EcbEncryptFinal()→R_TSIP_Sha1Update()→R_TSIP_Sha1Final()のような呼び方をすることが可能です。

図 3-2 AES-ECB 128 の暗号化、復号を使用する例

3.3.2 BSP FIT モジュールに関する注意事項

TSIP ドライバは、2.2 章にあるように、内部で BSP FIT モジュールを使用しています。TSIP ドライバを使用する際には、以下の API をリンクしてください。詳細は、「ボードサポートパッケージモジュール Firmware Integration Technology アプリケーションノート(R01AN1685xJxxxx)」を参照してください。

- R_BSP_RegisterProtectEnable()
- R_BSP_RegisterProtectDisable()
- R_BSP_InterruptsEnable()
- R_BSP_InterruptsDisable()

また、これらの API が呼び出される前に、BSP のスタートアップが完了していることを想定しています。 BSP のスタートアップを使用しない場合、事前に R_BSP_StartupOpen()を呼び出してください。上記 API 内で使用する内部変数の初期化を行います。

4. API 関数詳細説明(TSIP-Lite/TSIP 共通)

4.1 R TSIP Open

Format

Parameters

key_index_1 入力 TLS 連携 RSA 公開鍵束鍵生成情報

key_index_2 入力 鍵更新用鍵束鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 自己診断が異常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_RETRY: 自己診断が異常終了。

本関数を再実行してください。

Description

TSIP 機能を使用可能にします。

key_index_1 には R_TSIP_GenerateTlsRsaPublicKeyIndex()または R_TSIP_UpdateTlsRsaPublicKeyIndex()で生成した「TLS 連携 RSA 公開鍵の鍵生成情報」を入力してください。TLS 連携機能を使用しない場合は NULL ポインタを入力してください。

key_index_2 には R_TSIP_GenerateUpdateKeyRingKeyIndex()で生成した「鍵更新用鍵束鍵生成情報」を入力してください。鍵更新機能を使用しない場合は NULL ポインタを入力してください。

<状態遷移>

有効な実行前の状態は TSIP 動作停止状態 です。

実行前の状態は TSIP 動作停止状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.2 R_TSIP_Close

Format

#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Close(void)

Parameters

なし.

Return Values

TSIP_SUCCESS:

正常終了

Description

TSIP 機能を停止します。

<状態遷移>

有効な実行前の状態は <u>任意</u> です。

実行後は TSIP 動作停止状態 に遷移します。

Reentrant

4.3 R_TSIP_SoftwareReset

Format

#include "r_tsip_rx_if.h" void R_TSIP_SoftwareReset(void)

Parameters

なし

Return Values

なし

Description

TSIP を初期状態に戻します。

実行前の状態は任意です。

実行後の状態遷移先は TSIP 動作停止状態です。

Reentrant

4.4 R_TSIP_GetVersion

Format

#include "r_tsip_rx_if.h" uint32_t R_TSIP_GetVersion(void)

Parameters

なし

Return Values

上位 2 バイト:メジャーバージョン (10 進表示)下位 2 バイト:マイナーバージョン (10 進表示)

Description

TSIP ドライバのバージョン情報を取得することができます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

Reentrant

4.5 R_TSIP_GenerateAes128KeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 上 入力 暗号化され MAC を付けられたユーザ鍵 key index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

AES128bit のユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	AES128 鍵			
16-31	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「<u>7 章 鍵データの運用</u>」を参照してください。

Reentrant

4.6 R_TSIP_GenerateAes256KeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ encrypted_key 人力 暗号化され MAC を付けられたユーザ鍵 key_index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

AES256bit のユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	AES256 鍵			
16-31				
32-47	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.7 R_TSIP_GenerateUpdateKeyRingKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ encrypted_key index 入力/出力 は要新用鍵束鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

鍵更新鍵束の鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	鍵更新用鍵束			
16-31				
32-47	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

4.8 R_TSIP_UpdateAes128KeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられたユーザ鍵

key_index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

AES128 鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	AES128 鍵			
16-31	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.9 R_TSIP_UpdateAes256KeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられたユーザ鍵

key_index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

AES256 鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	AES256 鍵			
16-31				
32-47	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.10 R_TSIP_GenerateAes128RandomKeyIndex

Format

Parameters

key_index 入力/出力 AES128 bit の AES ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

AES128bit のユーザ鍵生成情報を出力するための API です。

本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。API が出力するユーザ鍵生成情報を使用しデータを暗号化することにより、データのデッドコピーを防ぐことができます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

key_indexの使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.11 R_TSIP_GenerateAes256RandomKeyIndex

Format

Parameters

key index 入力/出力 AES256 bit の AES ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

AES256bit のユーザ鍵生成情報を出力するための API です。

本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号化することにより、データのデッドコピー を防ぐことができます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

key_indexの使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.12 R_TSIP_GenerateRandomNumber

Format

Parameters

random 入力/出力 4 ワード(16 バイト)の乱数値

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

NIST SP800-90A に準拠した 4 ワードの乱数値を生成することができます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

Reentrant

4.13 R_TSIP_StartUpdateFirmware

Format

#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_StartUpdateFirmware(void)

Parameters

なし

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で使用されていることによるリソース衝突が発生

Description

ファームウェアアップデート状態へ移行します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は ファームウェアアップデート状態に遷移します。

Reentrant

4.14 R_TSIP_GenerateFirmwareMAC

Format

Parameters

InData_KeyIndex	入力	InData_SessionKey の復号、ファームウェアの MAC 値を			
		生成するためのユーザ鍵生成情報領域			
InData_SessionKey	入力	暗号化されたファームウェアの復号、チェックサム値検証			
		するためのセッション鍵領域			
InData_UpProgram	入力	暗号化されたファームウェアを一時的に格納するための			
		領域(デモプロジェクトでは、512 ワード(2048 バイト)			
		分確保)			
InData_IV	入力	暗号化されたファームウェアを復号するための			
		初期化ベクタ領域			
OutData_Program	入力/出力	復号されたファームウェアを一時的に格納するための			
		領域(デモプロジェクトでは、512 ワード(2048 バイト)			
		分確保)			
MAX_CNT	入力	暗号化されたファームウェアのワードサイズ+MAC サイズ			
		ファームウェアのワードサイズは4の倍数である必要があ			
		る。MAC は 4 ワード(128bit)固定のため、ファームウェ			
		アのワードサイズ+4 を入力。			
		暗号化されたファームウェアは 16 ワードが最小である			
		ため、MAX_CNT の最小値は 20			
p_callback	入力/出力	ユーザ側で対応が必要な場合に、複数回呼ばれる。			
		対応内容は、列挙型 TSIP_FW_CB_REQ_TYPE で判別する。			
tsip_firmware_generate_mac_resume_handle					

入力/出力

R_TSIP_GenerateFirmwaraMAC 用ハンドラ(ワーク領域)

RX ファミリTSIP(Trusted Secure IP)モジュール Firmware Integration Technology (バイナリ版)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

本処理に必要なハードウェアリソースが他 TSIP_ERR_RESOURCE_CONFLICT:

の処理で使用されていることによるリソー

ス衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_CALLBACK_UNREGIST: p_callback の値が不正 TSIP_ERR_PARAMETER: 入力データが不正 TSIP_RESUME_FIRMWARE_GENERATE_MAC: 処理の続きがあります。

API の再呼び出しが必要。

Description

暗号化されたファームウェアとファームウェアチェックサム値に対し、ファームウェアの復号と新 たな MAC 値生成を行います。ユーザは復号されたファームウェアと新たな MAC 値をフラッシュ ROMに書き込むことでファームウェアアップデートを行うことができます。

ファームウェアの暗号化アルゴリズムは AES-CBC, MAC は AES-CMAC を使用しています。

本 API のコールバック関数呼び出しフローは以下になります。

凶 4-1 コールハック 関数呼び出しプロー凶

ファームウェアデータのリード、ライト処理を4ワード毎に行います。このため、第七引数 p_callback で登録されたコールバック関数を以下の順で呼び出します。()内はコールバック関数 p_callback 第一引数"req_type"の処理種別になります。

- 1. インクリメント調整(TSIP_FW_CB_REQ_BUFF_CNT)
- 2. 復号されたファームウェアを保存先へ書き込み(TSIP FW CB REQ PRG WT)
- 3. 暗号化されたファームウェアの InData_UpProgram への格納(TSIP_FW_CB_REQ_PRG_RD)
- コールバック関数内の処理は、毎回実施する必要はなく、確保した InData_Program /OutData_Program のサイズに応じて対応してください。

例えば、512 ワードのバッファを確保した場合は、512/4=128 回目にバッファ位置のインクリメント調整(TSIP_FW_CB_REQ_BUFF_CNT)、保存先への書き込み(TSIP_FW_CB_REQ_PRG_WT)、暗号化されたファームウェアを InData_UpProgram (TSIP_FW_CB_REQ_PRG_RD)に格納を実施します。

最後の保存先への書き込み要求は、TSIP_FW_CB_REQ_PRG_WT ではなく、req_type = TSIP_FW_CB_REQ_PRG_WT_LAST_BLK を指定します。

また、本 API は全ファームウェアの読み込み・書き込み完了後に、再度、コールバック関数 p_callback を呼び出します。ユーザはコールバック関数 p_callback の第一引数"req_type"が TSIP_FW_CB_REQ_GET_UPDATE_PRG_CHKSUM であることを確認後、チェックサム値を p_callback の第四引数"InData_UpProgram"に渡してください。また本 API はチェックサム値読み込み後、チェックサム値検証が正しければファームウェア MAC 値を生成します。その後、コールバック関数 p_callback の第一引数"req_type"が TSIP_FW_CB_REQ_STORE_MAC で第五引数"OutData_Program"で MAC 値をユーザに渡します。ユーザは MAC 値をフラッシュ領域に保存してください。

tsip_firmware_generate_mac_resume_handle.use_resume_flag=true に設定して呼び出した場合、ファームアップデート処理をすべて行わず、ファームアップデートの開始、更新関数として動作します。処理の続きがある場合、戻り値に TSIP_RESUME_FIRMWARE_GENERATE_MAC を返します。戻り値が TSIP_SUCCESS になるまで、R_TSIP_GenerateFirmwareMAC()を呼んでください。戻り値に TSIP_SUCCESS が返ったら、ファームアップデート処理は正常終了したことを示します。

有効な実行前の状態は ファームウェアアップデート状態です。 実行後は ファームウェアアップデート状態に遷移します。

Reentrant

4.15 R_TSIP_VerifyFirmwareMAC

Format

Parameters

InData_Program 入力 ファームウェア

MAX CNT 入力 ファームウェアのワードサイズ+MAC サイズ

4の倍数である必要がある。

MAC は 4 ワード(16byte)固定のため、ファームウェ

アのワードサイズ+4を入力。

ファームウェアは 16 ワード以上が最小である

ため、MAX CNT の最小値は 20

InData_MAC 入力 比較する MAC 値(16byte)

Return Values

TSIP_SUCCESS: 正常終了 TSIP ERR FAIL: 不正な MAC 値

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR PARAMETER: 入力データが不正

Description

ファームウェアと MAC 値に対し、MAC 値の検証を行います。第三引数"InData_Mac"にはR_TSIP_GenerateFirmwareMAC()で生成した MAC 値を渡してください。

MAC 検証アルゴリズムは AES-CMAC を使用しています。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

不正な MAC 値を検出すると TSIP 不正アクセス検出状態 に遷移します。

Reentrant

4.16 R_TSIP_Aes128EcbEncryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128EcbEncryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。handle は、続く R_TSIP_Aes128EcbEncryptUpdate()関数および R_TSIP_Aes128EcbEncryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.17 R_TSIP_Aes128EcbEncryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128EcbEncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_Aes128EcbEncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.18 R_TSIP_Aes128EcbEncryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128EcbEncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に 0 が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.19 R_TSIP_Aes128EcbDecryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128EcbDecryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes128EcbDecryptUpdate()関数および R_TSIP_Aes128EcbDecryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.20 R_TSIP_Aes128EcbDecryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher_length 入力 暗号文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128EcbDecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_Aes128EcbDecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.21 R_TSIP_Aes128EcbDecryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128EcbDecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_length には常に 0 が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.22 R_TSIP_Aes256EcbEncryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR KEY SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256EcbEncryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes256EcbEncryptUpdate()関数および R_TSIP_Aes256EcbEncryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.23 R_TSIP_Aes256EcbEncryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256EcbEncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_Aes256EcbEncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.24 R_TSIP_Aes256EcbEncryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256EcbEncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に 0 が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.25 R_TSIP_Aes256EcbDecryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256EcbDecryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes256EcbDecryptUpdate()関数および R_TSIP_Aes256EcbDecryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.26 R_TSIP_Aes256EcbDecryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher_length 入力 暗号文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256EcbDecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_Aes256EcbDecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.27 R_TSIP_Aes256EcbDecryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256EcbDecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_length には常に 0 が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.28 R_TSIP_Aes128CbcEncryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域ivec入力初期化ベクタ(16 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128CbcEncryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes128CbcEncryptUpdate()関数および R_TSIP_Aes128CbcEncryptFinal()関数で引数として使用されます。

TLS 連携機能で使用する場合、key_index には R_TSIP_TIsGenerateSessionKey()で生成された client_crypto_key_index もしくは server_crypto_key_index を入力してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.29 R_TSIP_Aes128CbcEncryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CbcEncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_Aes128CbcEncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.30 R_TSIP_Aes128CbcEncryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CbcEncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に 0 が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.31 R_TSIP_Aes128CbcDecryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域ivec入力初期化ベクタ(16 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128CbcDecryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes128CbcDecryptUpdate()関数および R_TSIP_Aes128CbcDecryptFinal()関数で引数として使用されます。

TLS 連携機能で使用する場合、key_index には R_TSIP_TIsGenerateSessionKey()で生成された client_crypto_key_index もしくは server_crypto_key_index を入力してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.32 R_TSIP_Aes128CbcDecryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher_length 入力 暗号文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CbcDecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_Aes128CbcDecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.33 R_TSIP_Aes128CbcDecryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CbcDecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_length には常に 0 が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.34 R_TSIP_Aes256CbcEncryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域ivec入力初期化ベクタ(16 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256CbcEncryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes256CbcEncryptUpdate()関数および R_TSIP_Aes256CbcEncryptFinal()関数で引数として使用されます。

TLS 連携機能で使用する場合、key_index には R_TSIP_TIsGenerateSessionKey()で生成された client_crypto_key_index もしくは server_crypto_key_index を入力してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.35 R_TSIP_Aes256CbcEncryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CbcEncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_Aes256CbcEncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.36 R_TSIP_Aes256CbcEncryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CbcEncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に 0 が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.37 R_TSIP_Aes256CbcDecryptInit

Format

Parameters

handle入力/出力AES 用ハンドラ(ワーク領域)key_index入力ユーザ鍵生成情報領域ivec入力初期化ベクタ(16 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256CbcDecryptInit() 関数は、AES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes256CbcDecryptUpdate()関数および R_TSIP_Aes256CbcDecryptFinal()関数で引数として使用されます。

TLS 連携機能で使用する場合、key_index には R_TSIP_TIsGenerateSessionKey()で生成された client_crypto_key_index もしくは server_crypto_key_index を入力してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.38 R_TSIP_Aes256CbcDecryptUpdate

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher_length 入力 暗号文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CbcDecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_Aes256CbcDecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.39 R_TSIP_Aes256CbcDecryptFinal

Format

Parameters

handle 入力/出力 AES 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CbcDecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は 16 バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には 16 バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_length には常に 0 が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.40 R_TSIP_Aes128GcmEncryptInit

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

ivec入力初期化ベクタ領域 (iv_len byte) 【注】ivec_len入力初期化ベクタ長 (1~任意 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正 TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128GcmEncryptInit()関数は、GCM 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes128GcmEncryptUpdate()関数および R_TSIP_Aes128GcmEncryptFinal()関数で引数として使用されます。また ivec は 4 の倍数の RAM アドレスを指定してください。

【注】

key_index->type が"TSIP_KEY_INDEX_TYPE_AES128_FOR_TLS"の場合

R_TSIP_TIsGenerateSessionKey ()関数で select_cipher:6, 7 を指定して生成した key_index は、96bit の IV を含んでいます。第三引数の ivec には NULL ポインタを入力してください。第四引数の ivec len に 0 を指定してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.41 R_TSIP_Aes128GcmEncryptUpdate

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) plain 入力 平文データ領域 cipher 入力/出力 暗号文データ領域 plain_data_len 入力 平文データ長 (0~任意 byte) aad 入力 追加認証データ (aad_len byte) 入力 追加認証データ長 (0~任意 byte) aad len

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: plain データの入力の後に、aad が入力された

不正なハンドルが入力された 不正な関数が呼び出された

TSIP_ERR_PROHIBIT_FUNCTION:

Description

R_TSIP_Aes128GcmEncryptUpdate()関数は、第二引数"plain"で指定された平文から R_TSIP_Aes128GcmEncryptInit()で指定された" key_index"と"ivec"、第五引数で指定された"aad"を 用いて GCM で暗号化します。本関数内部で、aad, plain の入力値が 16byte を超えるまでユーザが 入力したデータをバッファリングします。暗号化結果は"plain"入力データが 16byte 以上になってから、第三引数で指定された"cipher"に出力します。入力する"plain", "aad"データ長はそれぞれ第四引数の"plain_data_len",第六引数の"aad_len"で指定します。ここでは、"aad", "plain"入力データの総バイト数ではなく、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の"plain"および"aad" は 16byte で割り切れない場合、パディング処理は関数内部で実施します。データの入力は"aad", "plain"の順で処理してください。"plain"データ入力開始後、"aad"データを入力するとエラーとなります。"aad"データと"plain"データが同時に本関数に入力された場合、"aad"データ処理後、"plain"データ入力状態に移行します。plain と cipher は領域が重ならないように配置してください。また plain と cipher と aad は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.42 R_TSIP_Aes128GcmEncryptFinal

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) cipher 入力/出力 暗号文データ領域 (data_len byte) ripher_data_len入力/出力 暗号文データ長 (0~任意 byte) atag 入力/出力 認証タグ領域(16byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128GcmEncryptFinal () 関数は、R_TSIP_Aes128GcmEncryptUpdate()で入力した plain の総データ長に 16byte の端数データがある場合、第二引数で指定された"cipher"に端数分の暗号化したデータを出力します。このとき、16byte に満たない部分は 0 padding されています。認証タグは第四引数の"atag"に出力します。また cipher と atag は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.43 R_TSIP_Aes128GcmDecryptInit

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

ivec入力初期化ベクタ領域 (iv_len byte) 【注】ivec len入力初期化ベクタ長 (1~任意 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正 TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128GcmDecryptInit() 関数は、GCM 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Aes128 GcmDecryptUpdate()関数および R_TSIP_Aes128GcmDecryptFinal()関数で引数として使用されます。また ivec は 4 の倍数の RAM アドレスを指定してください。

【注】

key_index->type が"TSIP_KEY_INDEX_TYPE_AES128_FOR_TLS"の場合

R_TSIP_TIsGenerateSessionKey ()関数で select_cipher:6, 7 を指定して生成した key_index は、96bit の IV を含んでいます。第三引数の ivec には NULL ポインタを入力してください。第四引数の ivec_len に 0 を指定してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

4.44 R_TSIP_Aes128GcmDecryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Aes128GcmDecryptUpdate(
        tsip gcm handle t *handle,
        uint8 t *cipher,
        uint8_t *plain,
        uint32 t cipher data len,
        uint8_t *aad,
        uint32_t aad_len
)
```

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) cipher 暗号文データ領域 入力

plain 入力/出力 平文データ領域

cipher_data_len入力 暗号文データ長 (0~任意 byte) aad 入力 追加認証データ (aad len byte) aad len 入力 追加認証データ長 (0~任意 byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: plain データの入力の後に、aad が入力された

不正なハンドルが入力された

不正な関数が呼び出された TSIP_ERR_PROHIBIT_FUNCTION:

Description

R TSIP Aes128GcmDecryptUpdate() 関数は、第二引数"cipher"で指定された暗号文から R_TSIP_Aes128GcmDecryptInit()で指定された" key_index"と"ivec"、第五引数で指定された"aad"を 用いて GCM で復号します。本関数内部で、aad, plain の入力値が 16byte を超えるまでユーザが入 カしたデータをバッファリングします。復号結果は"cipher"入力データが 16byte 以上になってから、 第三引数で指定された"plain"に出力します。入力する"cipher", "aad"データ長はそれぞれ第四引数 の"cipher_data_len", 第六引数の"aad_len"で指定します。ここでは、"aad", "cipher"入力データの総 バイト数ではなく、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値 の"cipher"および"aad" は 16byte で割り切れない場合、パディング処理は関数内部で実施します。 データの入力は"aad". "cipher"の順で処理してください。"cipher"データ入力開始後、"aad"データを 入力するとエラーとなります。"aad"データと"cipher"データが同時に本関数に入力された場 合、"aad"データ処理後、"cipher"データ入力状態に移行します。plain と cipher は領域が重ならない ように配置してください。また plain と cipher と aad は 4 の倍数の RAM アドレスを指定してくだ さい。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.45 R_TSIP_Aes128GcmDecryptFinal

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) plain 入力/出力 平文データ領域 (data_len byte) 中はin_data_len 入力/出力 平文データ長 (0~任意 byte) おは スカ/出力 認証タグ領域 (atag_len byte) おは 表力/出力 認証タグ長 (4,8,12,13,14,15,16byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_AUTHENTICATION: 認証が失敗

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128GcmDecryptFinal()関数は、R_TSIP_Aes128GcmDecryptUpdate()で指定された 16byte に満たない端数の暗号文を GCM で復号し、GCM 復号機能を終了させます。復号データ、認証タグはそれぞれ第二引数で指定された"plain"および、第四引数の"atag"に出力します。復号された総データ長は第三引数の"plain_data_len"に出力します。認証に失敗した場合は、戻り値 TSIP_ERR_AUTHENTICATION が返ります。第四引数で指定する"atag"は 16byte 以下で入力してください。16byte に満たない場合は、本関数内で 0padding を実施します。また plain と atag は 4 の 倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.46 R_TSIP_Aes256GcmEncryptInit

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

ivec入力初期化ベクタ領域 (iv_len byte)ivec_len入力初期化ベクタ長 (1~任意 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正 TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256GcmEncryptInit()関数は、GCM 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は続く R_TSIP_Aes128GcmEncryptUpdate()関数および R_TSIP_Aes256GcmEncryptFinal()関数で引数として使用されます。また ivec は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.47 R_TSIP_Aes256GcmEncryptUpdate

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) plain 平文データ領域 入力 cipher 入力/出力 暗号文データ領域 plain_data_len 入力 平文データ長 (0~任意 byte) aad 入力 追加認証データ (aad_len byte) aad len 入力 追加認証データ長 (0~任意 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: plain データの入力の後に、aad が入力された

不正なハンドルが入力された 不正な関数が呼び出された

TSIP_ERR_PROHIBIT_FUNCTION:

Description

R_TSIP_Aes256GcmEncryptUpdate()関数は、第二引数"plain"で指定された平文から R_TSIP_Aes256GcmEncryptInit()で指定された" key_index"と"ivec"、第五引数で指定された"aad"を 用いて GCM で暗号化します。本関数内部で、aad, plain の入力値が 16byte を超えるまでユーザが 入力したデータをバッファリングします。暗号化結果は"plain"入力データが 16byte 以上になってから、第三引数で指定された"cipher"に出力します。入力する"plain", "aad"データ長はそれぞれ第四引数の"plain_data_len",第六引数の"aad_len"で指定します。ここでは、"aad","plain"入力データの総バイト数ではなく、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の"plain"および"aad" は 16byte で割り切れない場合、パディング処理は関数内部で実施します。データの入力は"aad","plain"の順で処理してください。"plain"データ入力開始後、"aad"データを入力するとエラーとなります。"aad"データと"plain"データが同時に本関数に入力された場合、"aad"データ処理後、"plain"データ入力状態に移行します。plain と cipher は領域が重ならないように配置してください。また plain と cipher と aad は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。 実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.48 R_TSIP_Aes256GcmEncryptFinal

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) cipher 入力/出力 暗号文データ領域 (data_len byte) ripher_data_len入力/出力 暗号文データ長 (0~任意 byte) atag 入力/出力 認証タグ領域 (16byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256GcmEncryptFinal () 関数は、R_TSIP_Aes256GcmEncryptUpdate()で入力した plain の総データ長が 16byte に満たない場合、第二引数で指定された"cipher"に端数分の暗号化したデータが出力されます。このとき、16byte に満たない部分は 0padding されています。認証タグは第四引数の"atag"に出力します。また cipher と atag は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.49 R_TSIP_Aes256GcmDecryptInit

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

ivec入力初期化ベクタ領域 (iv_len byte)ivec_len入力初期化ベクタ長 (1~任意 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正 TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256GcmDecryptInit()関数は、GCM 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は続く R_TSIP_Aes256GcmDecryptUpdate()関数および R_TSIP_Aes256GcmDecryptFinal()関数で引数として使用されます。また ivec は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.50 R_TSIP_Aes256GcmDecryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Aes256GcmDecryptUpdate(
        tsip gcm handle t *handle,
        uint8 t *cipher,
        uint8_t *plain,
        uint32 t cipher data len,
        uint8_t *aad,
        uint32_t aad_len
)
```

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) cipher 暗号文データ領域 入力 plain 入力/出力 平文データ領域 cipher_data_len入力 暗号文データ長 (0~任意 byte)

aad 入力 追加認証データ (aad len byte) aad len 入力 追加認証データ長 (0~任意 byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: plain データの入力の後に、aad が入力された

> 不正なハンドルが入力された 不正な関数が呼び出された

TSIP_ERR_PROHIBIT_FUNCTION:

Description

R TSIP Aes256GcmDecryptUpdate()関数は、第二引数"cipher"で指定された暗号文から R_TSIP_Aes256GcmDecryptInit()で指定された" key_index"と"ivec"、第五引数で指定された"aad"を 用いて GCM で復号します。本関数内部で、aad, plain の入力値が 16byte を超えるまでユーザが入 力したデータをバッファリングします。復号結果は"cipher"入力データが 16byte 以上になってから、 第三引数で指定された"plain"に出力します。入力する"cipher", "aad"データ長はそれぞれ第四引数 の"cipher_data_len", 第六引数の"aad_len"で指定します。ここでは、"aad", "cipher"入力データの総 バイト数ではなく、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値 の"cipher"および"aad" は 16byte で割り切れない場合、パディング処理は関数内部で実施します。 データの入力は"aad", "cipher"の順で処理してください。"cipher"データ入力開始後、"aad"データを 入力するとエラーとなります。"aad"データと"cipher"データが同時に本関数に入力された場 合、"aad"データ処理後、"cipher"データ入力状態に移行します。plain と cipher は領域が重ならない ように配置してください。また plain と cipher と aad は 4 の倍数の RAM アドレスを指定してくだ さい。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。 実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.51 R_TSIP_Aes256GcmDecryptFinal

Format

Parameters

handle 入力/出力 AES-GCM 用ハンドラ(ワーク領域) plain 入力/出力 平文データ領域 (data_len byte) 中はin_data_len 入力/出力 平文データ長 (0~任意 byte) おは スカ/出力 認証タグ領域 (atag_len byte) おは 表力/出力 認証タグ長 (4,8,12,13,14,15,16byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_AUTHENTICATION: 認証が失敗

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256GcmDecryptFinal()関数は、R_TSIP_Aes256GcmDecryptUpdate()で指定された 16byte に満たない端数の暗号文を GCM で復号し、GCM 復号機能を終了させます。復号データ、認証タグはそれぞれ第二引数で指定された"plain"および、第四引数の"atag"に出力します。復号された総データ長は第三引数の"plain_data_len"に出力します。認証に失敗した場合は、戻り値 TSIP_ERR_AUTHENTICATION が返ります。第四引数で指定する"atag"は 16byte 以下で入力してください。16byte に満たない場合は、本関数内で Opadding を実施します。また plain と atag は 4 の 倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.52 R_TSIP_Aes128CcmEncryptInit

Format

Parameters

handle	入力/出力	AES-CCM 用ハンドラ(ワーク領域)
key_index	入力	ユーザ鍵生成情報領域
nonce	入力	ノンス
nonce_len	入力	ノンスデータ長(7~13 byte)
adata	入力	追加認証データ
a_len	入力	追加認証データ長(0~110byte)
payload_len	入力	ペイロード長(任意 byte)
mac_len	入力	MAC 長(4, 6, 8, 10, 12, 14, 16 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理

で使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128CcmEncryptInit()関数は、CCM 演算を実行する準備を行い、その結果を第一引数 "handle"に書き出します。handle は、続く R_TSIP_Aes128CcmEncryptUpdate()関数および R_TSIP_Aes128CcmEncryptFinal()関数で引数として使用されます。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.53 R_TSIP_Aes128CcmEncryptUpdate

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された
TSIP_ERR_PARAMETER: 不正なハンドルが入力された

Description

R_TSIP_Aes128CcmEncryptUpdate()関数は、第二引数"plain"で指定された平文から R_TSIP_Aes128CcmEncryptInit()で指定された"key_index", "nonce", "adata"を用いて CCM を用いて暗号化します。本関数内部で plain の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。暗号化結果は"plain"入力データが 16byte 以上になってから、第三引数で指定された"cipher"に出力します。入力する plain の総データ長は R_TSIP_Aes128CcmEncryptInit()の payload_len で指定してください。本関数の plain_length には、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の plain は 16byte で割り切れない場合、パディング処理は関数内部で実施します。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.54 R_TSIP_Aes128CcmEncryptFinal

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域 cipher_length 入力/出力 暗号文データ長

mac 入力/出力 MAC 領域

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

TSIP_ERR_PARAMETER: 入力データが不正 TSIP_ERR_FAIL 内部エラーが発生

Description

R_TSIP_Aes128CcmEncryptFinal()関数は、R_TSIP_Aes128CcmEncryptUpdate()で入力した plain のデータ長に 16byte の端数データがある場合、第二引数で指定された"cipher"に端数分の暗号化したデータを出力します。MAC 値は第四引数の"mac"に出力します。第五引数の"mac_length"には、Aes128CcmEncryptInit()の引数"mac_len"と同じ値を指定してください。また cipher と mac は 4 の 倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.55 R_TSIP_Aes128CcmDecryptInit

Format

```
#include "r_tsip_rx_if.h"

e_tsip_err_t R_TSIP_Aes128CcmDecryptInit(
    tsip_ccm_handle_t *handle,
    tsip_aes_key_index_t *key_index,
    uint8_t *nonce,
    uint32_t nonce_len,
    uint8_t *adata,
    uint8_t a_len,
    uint32_t payload_len,
    uint32_t mac_len
```

Parameters

handle	入力/出力	AES-CCM 用ハンドラ(ワーク領域)
key_index nonce	入力 入力	ユーザ鍵生成情報領域 ノンス
nonce_len	入力	ノンスデータ長(7~13byte)
adata	入力	追加認証データ
a_len	入力	追加認証データ長(0~110byte)
payload_len	入力	ペイロード長(任意 byte)
mac_len	入力	MAC 長(4, 6, 8, 10, 12, 14, 16 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理

で使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128CcmDecryptInit()関数は、CCM 演算を実行する準備を行い、その結果を第一引数 "handle"に書き出します。handle は、続く R_TSIP_Aes128CcmDecryptUpdate 関数および R_TSIP_Aes128CcmDecryptFinal()関数で引数として使用されます。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は **TSIP 使用可能状態** です。

Reentrant

4.56 R_TSIP_Aes128CcmDecryptUpdate

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域)

cipher 入力 平文データ領域

cipher_length 入力 暗号文データ長

入力/出力

Return Values

plain

TSIP_SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された
TSIP_ERR_PARAMETER: 不正なハンドルが入力された

Description

R_TSIP_Aes128CcmDecryptUpdate()関数は、第二引数"cipher"で指定された暗号文から R_TSIP_Aes128CcmDecryptInit()で指定された"key_index", "nonce", "adata"を用いて CCM を用いて復号します。本関数内部で cipher の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。暗号化結果は"cipher"入力データが 16byte 以上になってから、第三引数で指定された"plain"に出力します。入力する cipher の総データ長は R_TSIP_Aes128CcmDecryptInit()の payload_len で指定してください。本関数の cipher_length には、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の cipher は 16byte で割り切れない場合、パディング処理は関数内部で実施します。

暗号文データ領域

cipher と plain は領域が重ならないように配置してください。また cipher と plain は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.57 R_TSIP_Aes128CcmDecryptFinal

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域) plain 入力/出力 平文データ領域 平文データ長 mac 入力 MAC 領域

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR PROHIBIT FUNCTION: 不正な関数が呼び出された

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_FAIL 内部エラーが発生、もしくは認証が失敗

Description

R_TSIP_Aes128CcmDecryptFinal()関数は、R_TSIP_Aes128CcmDecryptUpdate()で入力した cipher のデータ長に 16byte の端数データがある場合、第二引数で指定された"cipher"に端数分の復号したデータを出力します。また、第四引数の"mac"を検証します。第五引数の"mac_length"には、Aes128CcmDecryptInit()の引数"mac_len"と同じ値を指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.58 R_TSIP_Aes256CcmEncryptInit

Format

Parameters

handle	入力/出力	AES-CCM 用ハンドラ(ワーク領域)
key_index	入力	ユーザ鍵生成情報領域
nonce	入力	ノンス
nonce_len	入力	ノンスデータ長(7~13 byte)
adata	入力	追加認証データ
a_len	入力	追加認証データ長(0~110byte)
payload_len	入力	ペイロード長(任意 byte)
mac_len	入力	MAC 長(4, 6, 8, 10, 12, 14, 16 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理

で使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256CcmEncryptInit()関数は、CCM 演算を実行する準備を行い、その結果を第一引数 "handle"に書き出します。handle は、続く R_TSIP_Aes256CcmEncryptUpdate()関数および R_TSIP_Aes256CcmEncryptFinal()関数で引数として使用されます。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.59 R_TSIP_Aes256CcmEncryptUpdate

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域)

plain 入力 平文データ領域

cipher 入力/出力 暗号文データ領域

plain_length 入力 平文データ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された
TSIP_ERR_PARAMETER: 不正なハンドルが入力された

Description

R_TSIP_Aes256CcmEncryptUpdate()関数は、第二引数"plain"で指定された平文から R_TSIP_Aes256CcmEncryptInit()で指定された"key_index", "nonce", "adata"を用いて CCM を用いて CFM を用いて C

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.60 R_TSIP_Aes256CcmEncryptFinal

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域 cipher_length 入力/出力 暗号文データ長

mac 入力/出力 MAC 領域

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR PROHIBIT FUNCTION: 不正な関数が呼び出された

TSIP_ERR_PARAMETER: 入力データが不正 TSIP_ERR_FAIL 内部エラーが発生

Description

R_TSIP_Aes256CcmEncryptFinal()関数は、R_TSIP_Aes256CcmEncryptUpdate()で入力した plain のデータ長に 16byte の端数データがある場合、第二引数で指定された"cipher"に端数分の暗号化したデータを出力します。MAC 値は第四引数の"mac"に出力します。第五引数の"mac_length"には、Aes256CcmEncryptInit()の引数"mac_len"と同じ値を指定してください。また cipher と mac は 4 の 倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.61 R_TSIP_Aes256CcmDecryptInit

Format

```
#include "r_tsip_rx_if.h"

e_tsip_err_t R_TSIP_Aes256CcmDecryptInit(
    tsip_ccm_handle_t *handle,
    tsip_aes_key_index_t *key_index,
    uint8_t *nonce,
    uint32_t nonce_len,
    uint8_t *adata,
    uint8_t a_len,
    uint32_t payload_len,
    uint32_t mac_len
```

Parameters

handle	入力/出力	AES-CCM 用ハンドラ(ワーク領域)
key_index	入力	ユーザ鍵生成情報領域
nonce	入力	ノンス
nonce_len	入力	ノンスデータ長(7~13byte)
adata	入力	追加認証データ
a_len	入力	追加認証データ長(0~110byte)
payload_len	入力	ペイロード長(任意 byte)
mac_len	入力	MAC 長(4, 6, 8, 10, 12, 14, 16 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理

で使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256CcmDecryptInit()関数は、CCM 演算を実行する準備を行い、その結果を第一引数 "handle"に書き出します。handle は、続く R_TSIP_Aes256CcmDecryptUpdate 関数および R_TSIP_Aes256CcmDecryptFinal()関数で引数として使用されます。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.62 R_TSIP_Aes256CcmDecryptUpdate

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域)

cipher 入力 平文データ領域

plain 入力/出力 暗号文データ領域

cipher_length 入力 暗号文データ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された
TSIP_ERR_PARAMETER: 不正なハンドルが入力された

Description

R_TSIP_Aes256CcmDecryptUpdate()関数は、第二引数"cipher"で指定された暗号文からR_TSIP_Aes256CcmDecryptInit()で指定された"key_index", "nonce", "adata"を用いて CCM を用いて復号します。本関数内部で cipher の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。暗号化結果は"cipher"入力データが 16byte 以上になってから、第三引数で指定された"plain"に出力します。入力する cipher の総データ長は R_TSIP_Aes256CcmDecryptInit()の payload_len で指定してください。本関数の cipher_length には、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の cipher は 16byte で割り切れない場合、パディング処理は関数内部で実施します。

cipher と plain は領域が重ならないように配置してください。また cipher と plain は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.63 R_TSIP_Aes256CcmDecryptFinal

Format

Parameters

handle 入力/出力 AES-CCM 用ハンドラ(ワーク領域) plain 入力/出力 平文データ領域 平文データ長 mac 入力 MAC 領域 MAC 長(4.6.8, 10, 12, 14, 16 byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR PROHIBIT FUNCTION: 不正な関数が呼び出された

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_FAIL 内部エラーが発生、もしくは認証が失敗

Description

R_TSIP_Aes256CcmDecryptFinal()関数は、R_TSIP_Aes256CcmDecryptUpdate()で入力した cipher のデータ長に 16byte の端数データがある場合、第二引数で指定された"cipher"に端数分の復号したデータを出力します。また、第四引数の"mac"を検証します。第五引数の"mac_length"には、Aes256CcmDecryptInit()の引数"mac_len"と同じ値を指定してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は <u>TSIP 使用可能状態</u>です。

Reentrant

4.64 R_TSIP_Aes128CmacGenerateInit

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128CmacGenerateInit() 関数は、CMAC 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。handle は続く R_TSIP_Aes128CmacGenerateUpdate()関数や、R_TSIP_Aes128CmacGenerateFinal()関数の引数で使用します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.65 R_TSIP_Aes128CmacGenerateUpdate

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

message 入力 メッセージデータ領域 (message length byte)

message_length 入力 メッセージデータ長 (0~任意 byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CmacGenerateUpdate 関数は、第二引数"message"で指定された message から R_TSIP_Aes128CmacGenerateInit()で指定された" key_index"を用いて MAC 値を生成します。本関数内部で、"message"の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。入力する"message"データ長は第三引数の"message_len"で指定します。ここでは、"message"入力データの総バイト数ではなく、ユーザが本関数を呼ぶ際に入力するメッセージのデータ長を入力してください。入力値の"message"は 16byte で割り切れない場合、パディング処理は関数内部で実施します。また"message"は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.66 R_TSIP_Aes128CmacGenerateFinal

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

mac 入力/出力 MAC データ領域(16byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CmacGenerateFinal() 関数は、第二引数で指定された"mac"に Mac 値を出力し、CMAC の動作を終了させます。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.67 R_TSIP_Aes256CmacGenerateInit

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256CmacGenerateInit() 関数は、CMAC 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。handle は続く R_TSIP_Aes256CmacGenerateUpdate()関数や、R_TSIP_Aes256CmacGenerateFinal()関数の引数で使用します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.68 R_TSIP_Aes256CmacGenerateUpdate

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

message 入力 メッセージデータ領域 (message length byte)

message_length 入力 メッセージデータ長 (0~任意 byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CmacGenerateUpdate 関数は、第二引数"message"で指定された message から R_TSIP_Aes256CmacGenerateInit()で指定された" key_index"を用いて MAC 値を生成します。本関数内部で、"message"の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。入力する"message"データ長はそれぞれ第三引数の"message_len"で指定します。ここでは、"message"入力データの総バイト数ではなく、ユーザが本関数を呼ぶ際に入力するメッセージのデータ長を入力してください。入力値の"message"は 16byte で割り切れない場合、パディング処理は関数内部で実施します。また"message"は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.69 R_TSIP_Aes256CmacGenerateFinal

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

mac 入力/出力 MAC データ領域(16byte)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CmacGenerateFinal() 関数は、第二引数で指定された"mac"に Mac 値を出力し、CMAC の動作を終了させます。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.70 R_TSIP_Aes128CmacVerifyInit

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128CmacVerifyInit() 関数は、CMAC 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は続く R_TSIP_Aes128CmacVerifyUpdate()関数や、R_TSIP_Aes128CmacVerifyFinal()関数の引数で使用します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.71 R_TSIP_Aes128CmacVerifyUpdate

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

message 入力 メッセージデータ領域 (message length byte)

message_length 入力 メッセージデータ長 (0~任意 byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CmacVerifyUpdate 関数は、第二引数"message"で指定された message から R_TSIP_Aes128CmacVerifyInit()で指定された" key_index"を用いて MAC 値を生成します。本関数 内部で、"message"の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。入力する"message"データ長はそれぞれ第三引数の"message_len"で指定します。ここでは、"message"入力データの総バイト数ではなく、ユーザが本関数を呼ぶ際に入力するメッセージのデータ長を入力してください。入力値の"message"は 16byte で割り切れない場合、パディング処理は関数内部で実施します。また"message"は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.72 R_TSIP_Aes128CmacVerifyFinal

Format

Parameters

handle入力/出力AES-CMAC 用ハンドラ(ワーク領域)mac入力MAC データ領域 (mac_length byte)

mac_length 入力 MAC データ長(2~16byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_AUTHENTICATION: 認証が失敗

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes128CmacVerifyFinal()関数は、第二引数で指定された"mac"に Mac 値を入力し、Mac 値を検証します。認証が失敗した場合は、戻り値 TSIP_ERR_AUTHENTICATION が返ります。 Mac 値が 16byte 以下の場合は、本関数内で 0padding をします。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.73 R_TSIP_Aes256CmacVerifyInit

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

key_index 入力 ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256CmacVerifyInit() 関数は、CMAC 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は続く R_TSIP_Aes256CmacVerifyUpdate()関数や、R_TSIP_Aes256CmacVerifyFinal()関数の引数で使用します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

4.74 R_TSIP_Aes256CmacVerifyUpdate

Format

Parameters

handle 入力/出力 AES-CMAC 用ハンドラ(ワーク領域)

message 入力 メッセージデータ領域 (message_length byte)

message_length 入力 メッセージデータ長 (0~任意 byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CmacVerifyUpdate 関数は、第二引数"message"で指定された message から R_TSIP_Aes256CmacVerifyInit()で指定された" key_index"を用いて MAC 値を生成します。本関数 内部で、"message"の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。入力する"message"データ長はそれぞれ第三引数の"message_len"で指定します。ここでは、"message"入力データの総バイト数ではなく、ユーザが本関数を呼ぶ際に入力するメッセージのデータ長を入力してください。入力値の"message"は 16byte で割り切れない場合、パディング処理は関数内部で実施します。また"message"は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.75 R_TSIP_Aes256CmacVerifyFinal

Format

Parameters

handle入力/出力AES-CMAC 用ハンドラ(ワーク領域)mac入力MAC データ領域 (mac_length byte)

mac_length 入力 MAC データ長(2~16byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_AUTHENTICATION: 認証が失敗

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Aes256CmacVerifyFinal()関数は、第二引数で指定された"mac"に Mac 値を入力し、Mac 値を検証します。認証が失敗した場合は、戻り値 TSIP_ERR_AUTHENTICATION が返ります。 Mac 値が 16byte 以下の場合は、本関数内で 0padding をします。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

4.76 R_TSIP_Aes128KeyWrap

Format

Parameters

wrap_key_index 入力 ラップに使用する AES-128 鍵インデックス

target_key_type 入力 ラップする対象の鍵の選択

0(R_TSIP_KEYWRAP_AES128): AES-128 2(R_TSIP_KEYWRAP_AES256): AES-256

他は Reserved

target_key_index 入力 ラップする対象の鍵インデックス

target_key_type 0 : 13 word size target_key_type 2 : 17 word size

wrapped_key 出力 ラップされた鍵

target_key_type 0 : 6 word size target_key_type 2 : 10 word size

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128KeyWrap()関数は、第三引数に入力した target_key_index を第一引数の wrap_key_index を使いラップします。ラップされた鍵は第四引数の wrapped_key に書き出します。ラップのアルゴリズム RFC3394 に準拠します。ラップする対象の鍵は、第二引数の target_key_type で選択してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

4.77 R_TSIP_Aes256KeyWrap

Format

Parameters

wrap_key_index 入力 ラップに使用する AES-256 鍵インデックス

target_key_type 入力 ラップする対象の鍵の選択

0(R_TSIP_KEYWRAP_AES128): AES-128 2(R_TSIP_KEYWRAP_AES256): AES-256

他は Reserved

target_key_index 入力 ラップする対象の鍵インデックス

target_key_type 0 : 13 word size target_key_type 2 : 17 word size

wrapped_key 出力 ラップされた鍵

target_key_type 0 : 6 word size target_key_type 2 : 10 word size

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256KeyWrap()関数は、第三引数に入力した target_key_index を第一引数の wrap_key_index を使いラップします。ラップされた鍵は第四引数の wrapped_key に書き出します。ラップのアルゴリズム RFC3394 に準拠します。ラップする対象の鍵は、第二引数の target_key_type で選択してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

4.78 R_TSIP_Aes128KeyUnwrap

Format

Parameters

wrap key index 入力 アンラップに使用する AES-128 鍵インデックス

target_key_type 入力 アンラップする対象の鍵の選択

0(R_TSIP_KEYWRAP_AES128): AES-128 2(R_TSIP_KEYWRAP_AES256): AES-256

他は Reserved

wrapped_key 入力 ラップされた鍵

target_key_type 0 : 6 word size
target_key_type 2 : 10 word size

target_key_index 出力 鍵インデックス

target_key_type 0 : 13 word size target_key_type 2 : 17 word size

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes128KeyUnwrap 関数は、第三引数に入力した wrapped_key を第一引数の wrap_key_index を使いアンラップします。アンラップされた鍵は第四引数の target_key_index に 書き出します。アンラップのアルゴリズム RFC3394 に準拠します。アンラップする対象の鍵は、第二引数の target_key_type で選択してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

4.79 R_TSIP_Aes256KeyUnwrap

Format

Parameters

wrap key index 入力 アンラップに使用する AES-256 鍵インデックス

target_key_type 入力 アンラップする対象の鍵の選択

0(R_TSIP_KEYWRAP_AES128): AES-128 2(R_TSIP_KEYWRAP_AES256): AES-256

他は Reserved

wrapped_key 入力 ラップされた鍵

target_key_type 0 : 6 word size
target_key_type 2 : 10 word size

target_key_index 出力 鍵インデックス

target_key_type 0 : 13 word size target_key_type 2 : 17 word size

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

Description

R_TSIP_Aes256KeyUnwrap 関数は、第三引数に入力した wrapped_key を第一引数の wrap_key_index を使いアンラップします。アンラップされた鍵は第四引数の target_key_index に 書き出します。アンラップのアルゴリズム RFC3394 に準拠します。アンラップする対象の鍵は、第二引数の target_key_type で選択してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5. API 関数詳細説明(TSIP 用)

5.1 R_TSIP_Sha1Init

Format

Parameters

handle 入力/出力 SHA 用ハンドラ(ワーク領域)

Return Values

TSIP_SUCCESS: 正常終了

Description

R_TSIP_Sha1Init() 関数は、SHA1 ハッシュ演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。"handle"は、続く R_TSIP_Sha1Update() 関数および R_TSIP_Sha1Final() 関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.2 R_TSIP_Sha1Update

Format

Parameters

handle入力/出力SHA 用ハンドラ(ワーク領域)message入力メッセージデータ領域message_length入力メッセージバイトデータ長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha1Update()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します(R_TSIP_GetCurrentHashDigestValue()関数で取得可能)。メッセージ入力が完了した後は、R_TSIP_Sha1Final()を呼び出してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.3 R_TSIP_Sha1Final

Format

Parameters

handle 入力/出力 SHA 用ハンドラ(ワーク領域)

digest 入力/出力 hash データ領域 digest_length 入力/出力 hash データ長(20byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha1Final() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の" digest"に演算結果、第三引数" digest_length"に演算結果の長さを書き出します。

<状態遷移>

実行前の状態は **TSIP 使用可能状態**です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.4 R_TSIP_Sha256Init

Format

Parameters

handle 入力/出力 SHA 用ハンドラ(ワーク領域)

Return Values

TSIP_SUCCESS:

正常終了

Description

R_TSIP_Sha256Init() 関数は、SHA-256 ハッシュ演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Sha256Update() 関数および R_TSIP_Sha256Final() 関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.5 R_TSIP_Sha256Update

Format

Parameters

handle入力/出力SHA 用ハンドラ(ワーク領域)message入力メッセージデータ領域message_length入力メッセージバイトデータ長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha256Update()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します(R_TSIP_GetCurrentHashDigestValue()関数で取得可能)。メッセージ入力が完了した後は、R_TSIP_Sha256Final()を呼び出してください。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.6 R_TSIP_Sha256Final

Format

Parameters

handle 入力/出力 SHA 用ハンドラ(ワーク領域)

digest 入力/出力 hash データ領域 digest_length 入力/出力 hash データ長(32byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha256Final()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"digest"に演算結果、第三引数"digest_length"に演算結果の長さを書き出します。

<状態遷移>

実行前の状態は <u>TSIP 使用可能状態</u>です。 実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.7 R_TSIP_Md5Init

Format

Parameters

handle 入力/出力 MD5 用ハンドラ(ワーク領域)

Return Values

TSIP_SUCCESS:

正常終了

Description

R_TSIP_Md5Init() 関数は、MD5 ハッシュ演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。handle は、続く R_TSIP_Md5Update() 関数および R_TSIP_Md5Final() 関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.8 R_TSIP_Md5Update

Format

Parameters

handle入力/出力MD5 用ハンドラ(ワーク領域)message入力メッセージデータ領域message_length入力メッセージバイトデータ長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Md5Update()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します(R_TSIP_GetCurrentHashDigestValue()関数で取得可能)。メッセージ入力が完了した後は、R_TSIP_Md5Final()を呼び出してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.9 R_TSIP_Md5Final

Format

Parameters

handle 入力/出力 MD5 用ハンドラ(ワーク領域)

digest 入力/出力 hash データ領域 digest_length 入力/出力 hash データ長(16byte)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Md5Final()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"digest"に演算結果、第三引数"digest_length"に演算結果の長さを書き出します。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.10 R_TSIP_GetCurrentHashDigestValue

Format

Parameters

handle入力SHA,MD5 用ハンドラ(ワーク領域)digest出力ハッシュ値演算途中経過データ領域

digest_length 出力 ハッシュ値演算途中経過データ長(16, 20, 32 byte)

hash_type 入力 ハッシュの種類:R_TSIP_HASH_MD5, R_TSIP_HASH_SHA1

または R_TSIP_HASH_SHA256

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

本関数は、引数"handle"で指定されたハンドルを使用し、引数"digest"に各 Update()関数(注)実行後のハッシュ値演算途中経過データ、引数"digest_length"にデータ長を出力します。

【注】R_TSIP_Sha1Update()、R_TSIP_Sha256Update()、または R_TSIP_Md5Update()関数

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

Reentrant

5.11 R_TSIP_GenerateTdesKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv encrypted_key 生成時に使用した初期ベクタ encrypted_key 入力 暗号化され MAC を付けられた Triple-DES ユーザ

鍵

key_index 入力/出力 Triple-DES ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

Triple-DES のユーザ鍵生成情報を出力するための API です。

encrypted_keyには以下のフォーマットのデータを入力してください。

byte	128 bit					
	32bit	32bit	32bit	32bit		
0-15	暗号化された Triple-DES 鍵					
16-31						
32-47	MAC					

DES もしくは 2TDES(2key-TDES)として使用する場合の鍵の入力方法は、

「7章 鍵データの運用」を参照してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_key, iv および encrypted_provisioning_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.12 R_TSIP_GenerateTdesRandomKeyIndex

Format

Parameters

key_index 入力/出力 Triple-DES ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

Triple-DES のユーザ鍵生成情報を出力するための API です。

本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号化することにより、データのデッドコピー を防ぐことができます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.13 R_TSIP_UpdateTdesKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられたユーザ鍵

key_index 入力/出力 Triple-DES ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

Triple-DES 鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit					
	32bit	32bit	32bit	32bit		
0-15	Triple-DES 鍵					
16-31						
32-47	MAC					

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.14 R_TSIP_TdesEcbEncryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesEcbEncryptInit(
    tsip_tdes_handle_t *handle,
        tsip_tdes_key_index_t *key_index
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域) key_index 入力 Triple-DES ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

R_TSIP_TdesEcbEncryptInit() 関数は、DES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_TdesEcbEncryptUpdate()関数および R_TSIP_TdesEcbEncryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.15 R_TSIP_TdesEcbEncryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesEcbEncryptUpdate(
    tsip_tdes_handle_t *handle,
        uint8_t *plain,
        uint8_t *cipher,
        uint32_t plain_length
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長 (8の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesEcbEncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_TdesEcbEncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

5.16 R_TSIP_TdesEcbEncryptFinal

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesEcbEncryptFinal(
    tsip_tdes_handle_t *handle,
        uint8_t *cipher,
        uint32_t *cipher_length
)
```

Parameters

handle 入力/出力 TDES 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesEcbEncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は8バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には8バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に0が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.17 R_TSIP_TdesEcbDecryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesEcbDecryptInit(
    tsip_tdes_handle_t *handle,
        tsip_tdes_key_index_t *key_index
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域) key_index 入力 Triple-DES ユーザ鍵生成情報領域

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

R_TSIP_TdesEcbDecryptInit() 関数は、DES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_TdesEcbDecryptUpdate()関数および R_TSIP_TdesEcbDecryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.18 R_TSIP_TdesEcbDecryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesEcbDecryptUpdate(
    tsip_tdes_handle_t *handle,
        uint8_t *cipher,
        uint8_t *plain,
        uint32_t cipher_length
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher_length 入力 暗号文データ長 (8の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesEcbDecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_TdesEcbDecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.19 R_TSIP_TdesEcbDecryptFinal

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesEcbDecryptFinal(
    tsip_tdes_handle_t *handle,
        uint8_t *plain,
        uint32_t *plain_length
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesEcbDecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は8バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には8バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_lengthには常に0が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.20 R_TSIP_TdesCbcEncryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesCbcEncryptInit(
    tsip_tdes_handle_t *handle,
        tsip_tdes_key_index_t *key_index,
        uint8_t *ivec
)
```

Parameters

handle入力/出力Triple-DES 用ハンドラ(ワーク領域)key_index入力Triple-DES ユーザ鍵生成情報領域ivec入力初期化ベクタ(8 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR KEY SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

R_TSIP_TdesCbcEncryptInit() 関数は、DES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_TdesCbcEncryptUpdate()関数および R_TSIP_TdesCbcEncryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

5.21 R_TSIP_TdesCbcEncryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesCbcEncryptUpdate(
    tsip_tdes_handle_t *handle,
        uint8_t *plain,
        uint8_t *cipher,
        uint32_t plain_length
)
```

Parameters

handle 入力/出力 Trile-des 用ハンドラ(ワーク領域)

plain 入力 平文データ領域 cipher 入力/出力 暗号文データ領域

plain length 入力 平文データ長 (8の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesCbcEncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_TdesCbcEncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

5.22 R_TSIP_TdesCbcEncryptFinal

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesCbcEncryptFinal(
    tsip_tdes_handle_t *handle,
        uint8_t *cipher,
        uint32_t *cipher_length
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesCbcEncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は8バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には8バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に0が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.23 R_TSIP_TdesCbcDecryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesCbcDecryptInit(
    tsip_tdes_handle_t *handle,
        tsip_tdes_key_index_t *key_index,
        uint8_t *ivec
)
```

Parameters

handle入力/出力Triple-DES 用ハンドラ(ワーク領域)key_index入力Triple-DES ユーザ鍵生成情報領域ivec入力初期化ベクタ(8 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR KEY SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

R_TSIP_TdesCbcDecryptInit() 関数は、DES 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_TdesCbcDecryptUpdate()関数および R_TSIP_TdesCbcDecryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

5.24 R_TSIP_TdesCbcDecryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesCbcDecryptUpdate(
    tsip_tdes_handle_t *handle,
        uint8_t *cipher,
        uint8_t *plain,
        uint32_t cipher_length
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher length 入力 暗号文データ長 (8の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesCbcDecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_TdesCbcDecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.25 R_TSIP_TdesCbcDecryptFinal

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TdesCbcDecryptFinal(
    tsip_tdes_handle_t *handle,
        uint8_t *plain,
        uint32_t *plain_length
)
```

Parameters

handle 入力/出力 Triple-DES 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_TdesCbcDecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は8バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には8バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_lengthには常に0が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.26 R_TSIP_GenerateArc4KeyIndex

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_GenerateArc4KeyIndex(
    uint8_t *encrypted_provisioning_key,
    uint8_t *iv,
    uint8_t *encrypted_key,
    tsip_arc4_key_index_t *key_index
)
```

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ encrypted_key 入力 暗号化され MAC を付けられた ARC4 ユーザ

鍵

key index 入力/出力 ARC4ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ARC4 のユーザ鍵生成情報を出力するための API です。

encrypted_keyには以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-255	暗号化された ARC4 鍵				
256-271	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_key, iv および encrypted_provisioning_key の生成方法および key_index の使用方法については「<u>7</u>章 <u>鍵データの運用</u>」を参照してください。

Reentrant

5.27 R_TSIP_GenerateArc4RandomKeyIndex

Format

Parameters

key_index 入力/出力 ARC4 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

ARC4のユーザ鍵生成情報を出力するための API です。

本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号化することにより、データのデッドコピー を防ぐことができます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

key_indexの使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.28 R_TSIP_UpdateArc4KeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられたユーザ鍵

key_index 入力/出力 ARC4 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ARC4 鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-255	ARC4 鍵				
256-271	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.29 R_TSIP_Arc4EncryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Arc4EcbEncryptInit(
    tsip_arc4_handle_t *handle,
        tsip_arc4_key_index_t *key_index
)
```

Parameters

handle 入力/出力 ARC4 用ハンドラ(ワーク領域) key_index 入力 ARC4 ユーザ鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

R_TSIP_Arc4EncryptInit() 関数は、ARC4 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Arc4EncryptUpdate()関数および R_TSIP_Arc4EncryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

 key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

5.30 R_TSIP_Arc4EncryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Arc4EncryptUpdate(
    tsip_arc4_handle_t *handle,
        uint8_t *plain,
        uint8_t *cipher,
        uint32_t plain_length
)
```

Parameters

handle 入力/出力 ARC4 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域

plain_length 入力 平文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Arc4EncryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"を handle に格納された key_index を用いて暗号化し、途中経過を第一引数"handle"に書き出します。また暗号化結果を第三引数"cipher"に書き出します。平文入力が完了した後は、R_TSIP_Arc4EncryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「7章 鍵データの運用」を参照してください。

Reentrant

5.31 R_TSIP_Arc4EncryptFinal

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Arc4EncryptFinal(
    tsip_arc4_handle_t *handle,
        uint8_t *cipher,
        uint32_t *cipher_length
)
```

Parameters

handle 入力/出力 ARC4 用ハンドラ(ワーク領域)

cipher 入力/出力 暗号文データ領域(常に何も書き込まれません) cipher_length 入力/出力 暗号文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Arc4EncryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"に演算結果、第三引数"cipher_length"に演算結果の長さを書き出します。第二引数は、本来は16バイトの倍数に満たない分の端数について暗号化した結果が書き出されますが、Update 関数には16バイトの倍数でしか入力できない制限があるため、cipher には常に何も書き込まれず、cipher_lengthには常に0が書き込まれます。cipher, cipher_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.32 R_TSIP_Arc4DecryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Arc4DecryptInit(
    tsip_arc4_handle_t *handle,
        tsip_arc4_key_index_t *key_index
)
```

Parameters

handle入力/出力ARC4 用ハンドラ(ワーク領域)key_index入力ARC4 ユーザ鍵生成情報領域

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

R_TSIP_Arc4DecryptInit() 関数は、ARC4 演算を実行する準備を行い、その結果を第一引数" handle"に書き出します。handle は、続く R_TSIP_Arc4DecryptUpdate()関数および R_TSIP_Arc4DecryptFinal()関数で引数として使用されます。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

key_index の使用方法については、「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.33 R_TSIP_Arc4DecryptUpdate

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Arc4DecryptUpdate(
    tsip_arc4_handle_t *handle,
        uint8_t *cipher,
        uint8_t *plain,
        uint32_t cipher_length
)
```

Parameters

handle 入力/出力 ARC4 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域

cipher length 入力 暗号文データ長 (16 の倍数である必要があります)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Arc4DecryptUpdate() 関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"cipher"を handle に格納された key_index を用いて復号し、途中経過を第一引数"handle"に書き出します。また復号結果を第三引数"plain"に書き出します。暗号文入力が完了した後は、R_TSIP_Arc4DecryptFinal()を呼び出してください。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.34 R_TSIP_Arc4DecryptFinal

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_Arc4DecryptFinal(
    tsip_arc4_handle_t *handle,
        uint8_t *plain,
        uint32_t *plain_length
)
```

Parameters

handle 入力/出力 ARC4 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域(常に何も書き込まれません)plain_length入力/出力平文データ長 (常に 0 が書き込まれます)

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Arc4DecryptFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"plain"に演算結果、第三引数"plain_length"に演算結果の長さを書き出します。第二引数は、本来は16 バイトの倍数に満たない分の端数について復号した結果が書き出されますが、Update 関数には16 バイトの倍数でしか入力できない制限があるため、plain には常に何も書き込まれず、plain_lengthには常に0 が書き込まれます。plain, plain_length は将来この制限が解除された際の互換性のための引数です。

<状態遷移>

実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態 です。

Reentrant

5.35 R_TSIP_GenerateRsa1024PublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC をつけられた RSA 1024bit 公開鍵

key index 入力/出力 RSA 1024bit 公開鍵ユーザ鍵生成情報

key_index->value.key_management_info1 : 鍵管理情報

key_index->value.key_n : RSA 1024bit 公開鍵 n(平文) key_index->value.key_e : RSA 1024bit 公開鍵 e(平文)

key_index->value.dummy : ダミー

key_index->value.key_management_info2 : 鍵管理情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

1024 bit の RSA 公開鍵ユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-127	RSA 1024 bit 公開鍵 n				
128-143	RSA 1024 bit 公開鍵 e	0 padding			
144-159	MAC				

encrypted keyとkey indexは領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key 生成方法、key_index の使用方法については「<u>7 章 鍵データの運用</u>」を参照してください。

Reentrant

5.36 R_TSIP_GenerateRsa1024PrivateKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC を付けられた RSA 1024bit 秘密鍵

key index 入力/出力 RSA 1024bit 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

1024 bit の RSA 秘密鍵ユーザ鍵生成情報を出力するための API です。

encrypted key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-127	RSA 1024 bit 公開鍵 n				
128-255	RSA 1024 bit 秘密鍵 d				
256-271	MAC				

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.37 R_TSIP_GenerateRsa2048PublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC を付けられた RSA 2048bit 公開鍵

key index 入力/出力 RSA 2048bit 公開鍵ユーザ鍵生成情報

key_index->value.key_management_info1 : 鍵管理情報

key_index->value.key_n : RSA 2048bit 公開鍵 n(平文) key_index->value.key_e : RSA 2048bit 公開鍵 e(平文)

key index->value.dummy : ダミー

key_index->value.key_management_info2 : 鍵管理情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

2048 bit の RSA 公開鍵ユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-255	RSA 2048bit 公開鍵 n				
256-271	RSA 2048 bit 公開鍵 e	0 padding			
272-287	MAC				

encrypted keyとkey indexは領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index の使用方法については「<u>7 章 鍵データの運用</u>」を参照してください。

Reentrant

5.38 R_TSIP_GenerateRsa2048PrivateKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC を付けられた RSA 2048bit 秘密鍵

key index 入力/出力 RSA 2048bit 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

2048 bit の RSA 秘密鍵ユーザ鍵生成情報を出力するための API です。

encrypted key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-255	RSA 2048bit 公開鍵 n				
256-511	RSA 2048 bit 秘密鍵 d				
512-527	MAC				

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index, install_key_index の 使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.39 R_TSIP_GenerateRsa1024RandomKeyIndex

Format

Parameters

key_pair_index 入力/出力 RSA 1024bit 公開鍵、秘密鍵ペアのユーザ鍵生成情報

key_pair_index->public : RSA1024bit 公開鍵ユーザ鍵生成情報

key_pair_index->public.value.key_management_info1 : 鍵管理情報

key_pair_index->public.value.key_n : RSA 1024bit 公開鍵 n(平文) key_pair_index->public.value.key_e : RSA 1024bit 公開鍵 e(平文)

key pair index->public.value.dummy : ダミー

key pair index->public.value.key management info2 : 鍵管理情報

key_pair_index->private : RSA1024bit 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生。鍵生成に失敗

Description

1024 bit の RSA 公開鍵、秘密鍵ペアのユーザ鍵生成情報を出力するための API です。本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号化することにより、データのデッドコピーを防ぐことができます。key_pair_index->public に公開鍵の鍵生成情報、key_pair_index->private に秘密鍵の鍵生成情報を生成します。公開鍵の exponent は 0x00010001 のみを生成しています。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_pair_index->public ならびに key_pair_index->private 使用方法については「<u>7章 鍵データの運用</u>」を参照してください。key_pair_index->public は R_TSIP_GenerateRsa1024PublicKeyIndex()から出力される公開鍵のユーザ鍵生成情報、key_pair_index->private は

R_TSIP_GenerateRsa1024PrivateKeyIndex()から出力される秘密鍵のユーザ鍵生成情報と同様の運用になります。

Reentrant

5.40 R_TSIP_GenerateRsa2048RandomKeyIndex

Format

Parameters

key_pair_index 入力/出力 RSA 2048bit 公開鍵、秘密鍵ペアのユーザ鍵生成情報

key_pair_index->public : RSA2048bit 公開鍵ユーザ鍵生成情報

key_pair_index->public.value.key_management_info1 : 鍵管理情報

key_pair_index->public.value.key_n : RSA 2048bit 公開鍵 n(平文) key_pair_index->public.value.key_e : RSA 2048bit 公開鍵 e(平文)

key pair index->public.value.dummy : ダミー

key pair index->public.value.key management info2 : 鍵管理情報

key_pair_index->private : RSA2048bit 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生。鍵生成に失敗

Description

2048 bit の RSA 公開鍵、秘密鍵ペアのユーザ鍵生成情報を出力するための API です。本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号化することにより、データのデッドコピーを防ぐことができます。key_pair_index->public に公開鍵の鍵生成情報、key_pair_index->private に秘密鍵の鍵生成情報を生成します。公開鍵の exponent は 0x00010001 のみを生成しています。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は <u>TSIP 使用可能状態</u>です。

key_pair_index->public ならびに key_pair_index->private 使用方法については「<u>7章 鍵データの運用</u>」を参照してください。key_pair_index->public は R_TSIP_GenerateRsa2048PublicKeyIndex()から出力される公開鍵のユーザ鍵生成情報、key_pair_index->private は

R_TSIP_GenerateRsa2048PrivateKeyIndex()から出力される秘密鍵のユーザ鍵生成情報と同様の運用になります。

Reentrant

5.41 R_TSIP_UpdateRsa1024PublicKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵

key_index 入力/出力 RSA 1024bit 公開鍵のユーザ鍵生成情報

key_index->value.key_management_info1 : 鍵管理情報

key_index->value.key_n : RSA 1024bit 公開鍵 n(平文) key_index->value.key_e : RSA 1024bit 公開鍵 e(平文)

key_index->value.dummy : ダミー

key_index->value.key_management_info2 : 鍵管理情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

RSA 1024bit 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-127	RSA 1024 bit 公開鍵 n				
128-143	RSA 1024 bit 公開鍵 e	0 padding			
144-159	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.42 R_TSIP_UpdateRsa1024PrivateKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた秘密鍵

key_index 入力/出力 RSA 1024bit 秘密鍵のユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

RSA 1024bit 秘密鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-127	RSA 1024 bit 公開鍵 n				
128-255	RSA 1024 bit 秘密鍵 d				
256-271	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.43 R_TSIP_UpdateRsa2048PublicKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵

key_index 入力/出力 RSA 2048bit 公開鍵のユーザ鍵生成情報

key_index->value.key_management_info1 : 鍵管理情報

key_index->value.key_n : RSA 2048bit 公開鍵 n(平文) key_index->value.key_e : RSA 2048bit 公開鍵 e(平文)

key_index->value.dummy : ダミー

key_index->value.key_management_info2 : 鍵管理情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

RSA 2048bit 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-255	RSA 2048 bit 公開鍵 n				
256-271	RSA 2048 bit 公開鍵 e	0 padding			
272-287	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.44 R_TSIP_UpdateRsa2048PrivateKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた秘密鍵

key_index 入力/出力 RSA 2048bit 秘密鍵のユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

RSA 2048bit 秘密鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-255	RSA 2048 bit 公開鍵 n				
256-511	RSA 2048 bit 秘密鍵 d				
512-527	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.45 R_TSIP_RsaesPkcs1024Encrypt

Format

Parameters

plain 入力 平文

plain->pdata : 平文を格納している配列のポインタを指定

plain->data_length : 平文配列の有効データ長を指定 データサイズ <= 公開鍵 n サイズ-11

cipher 入力/出力 暗号文

cipher->pdata : 暗号文を格納する配列のポインタを指定 cipher->data_length : 暗号文のバッファサイズを入力

暗号化後、有効データ長を出力(公開鍵 n サイズ)

key index 入力 鍵データ領域 : 1024bit RSA 公開鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

Description

R_TSIP_RsaesPkcs1024Encrypt()関数は、第一引数"plain"に入力された平文を RSAES-PKCS1-V1_5 に従って、RSA 暗号化をします。暗号化結果を第二引数"cipher"に書き出します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.46 R_TSIP_RsaesPkcs1024Decrypt

Format

Parameters

cipher 入力 暗号文

cipher->pdata: 暗号文を格納している配列のポインタを指定cipher->data_length: 暗号文配列の有効データ長を指定

(公開鍵 n サイズ)

plain 入力/出力 平文

plain->pdata : 平文を格納する配列のポインタを指定

plain->data_length : 平文バッファサイズ入力

平文バッファサイズ >= 公開鍵 n サイズ-11 を満たすバッファを用意してください

復号後、有効データ長を出力

key_index 入力 鍵データ領域:1024bit RSA 秘密鍵のユーザ鍵生成情報を入力

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

Description

R_TSIP_RsaesPkcs1024Decrypt()関数は、第一引数"cipher"に入力された暗号文を RSAES-PKCS1-V1_5 に従って、RSA 復号を行います。復号結果を第二引数"plain"に出力します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.47 R_TSIP_RsaesPkcs2048Encrypt

Format

Parameters

plain 入力 平文

plain->pdata : 平文を格納している配列のポインタを指定

plain->data_length : 平文配列の有効データ長を指定 データサイズ <= 公開鍵 n サイズ-11

cipher 入力/出力 暗号文

cipher->pdata : 暗号文を格納する配列のポインタを指定 cipher->data_length : 暗号文のバッファサイズを入力

暗号化後、有効データ長を出力(公開鍵 n サイズ)

key index 入力 鍵データ領域 : 2048bit RSA 公開鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

Description

R_TSIP_RsaesPkcs2048Encrypt()関数は、第一引数"plain"に入力された平文を RSAES-PKCS1-V1_5 に従って、RSA 暗号化をします。暗号化結果を第二引数"cipher"に書き出します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.48 R_TSIP_RsaesPkcs2048Decrypt

Format

Parameters

cipher 入力 暗号文

cipher->pdata: 暗号文を格納している配列のポインタを指定cipher->data_length: 暗号文配列の有効データ長を指定

(公開鍵 n サイズ)

plain 入力/出力 平文

plain->pdata : 平文を格納する配列のポインタを指定

plain->data_length : 平文バッファサイズ入力

平文バッファサイズ >= 公開鍵 n サイズ-11 を満たすバッファを用意してください

復号後、有効データ長を出力

key_index 入力 鍵データ領域:2048bit RSA 秘密鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

Description

R_TSIP_RsaesPkcs2048Decrypt()関数は、第一引数"cipher"に入力された暗号文を RSAES-PKCS1-V1_5 に従って、RSA 復号を行います。復号結果を第二引数"plain"に出力します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.49 R_TSIP_RsassaPkcs1024SignatureGenerate

Format

Parameters

message hash 入力 署名を付けるメッセージまたはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ:0 ハッシュ値:1

signature 入力/出力 署名文格納先情報

signature->pdata : 署名文を格納する配列のポインタを指定

signature->data_length : データ長(バイト単位)

key_index 入力 鍵データ領域 : 1024bit RSA 秘密鍵のユーザ鍵生成情報を入力

hash_type 入力 hash の種類 : R_TSIP_RSA_HASH_MD5,

R_TSIP_RSA_HASH_SHA1

または R TSIP RSA HASH SHA256

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

R_TSIP_RsassaPkcs1024SignatureGenerate()関数は、RSASSA-PKCS1-V1_5 に従って、第一引数"message_hash"に入力されたメッセージ文またはハッシュ値から、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報を使って署名文を計算し、第二引数"signature"に書き出します。第一引数"message_hash->data_type"でメッセージを指定した場合、メッセージに対して第四引数"hash_type"で指定された HASH 計算を行います。第一引数"message_hash->data_type"でハッシュ値を指定した場合、第四引数"hash_type"で指定したハッシュアルゴリズムで計算したハッシュ値を"message_hash->pdata"へ入力してください。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.50 R_TSIP_RsassaPkcs1024SignatureVerification

Format

Parameters

signature 入力 検証する署名文情報

signature->pdata : 署名文を格納している配列のポインタを指定

signature->data_length :配列の有効データ長を指定

message hash 入力 検証するメッセージ文またはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message hash->data type : message hashのデータ種別を選択

メッセージ:0 ハッシュ値:1

key index 入力 鍵データ領域 : 1024bit RSA 公開鍵のユーザ鍵生成情報を入力

hash_type 入力 hash の種類 : R_TSIP_RSA_HASH_MD5,

R_TSIP_RSA_HASH_SHA1

または R_TSIP_RSA_HASH_SHA256

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_AUTHENTICATION: 署名検証失敗
TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

R_TSIP_RsassaPkcs1024SignatureVerification()関数は、RSASSA-PKCS1-V1_5に従って、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報を使い第一引数"signature"に入力された署名文と第二引数"message_hash"に入力されたメッセージ文またはハッシュ値の検証をします。第二引数"message_hash->data_type"でメッセージを指定した場合、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報と第四引数"hash_type"で指定された HASH 計算を行います。第二引数"message_hash->data_type"でハッシュ値を指定した場合、第四引数"hash_type"で指定しハッシュアルゴリズムで計算したハッシュ値を"message_hash->pdata"へ入力してください。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.51 R_TSIP_RsassaPkcs2048SignatureGenerate

Format

Parameters

message hash 入力 署名を付けるメッセージまたはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ:0 ハッシュ値:1

signature 入力/出力 署名文格納先情報

signature->pdata : 署名文を格納する配列のポインタを指定

signature->data_length : データ長(バイト単位)

key index 入力 鍵データ領域 : 2048bit RSA 秘密鍵のユーザ鍵生成情報を入力

hash_type 入力 hash の種類 : R_TSIP_RSA_HASH_MD5,

R_TSIP_RSA_HASH_SHA1

または R TSIP RSA HASH SHA256

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

R_TSIP_RsassaPkcs2048SignatureGenerate()関数は、RSASSA-PKCS1-V1_5に従って、第一引数"message_hash"に入力されたメッセージ文またはハッシュ値から、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報を使って署名文を計算し、第二引数"signature"に書き出します。第一引数"message_hash->data_type"でメッセージを指定した場合、メッセージに対して第四引数"hash_type"で指定された HASH 計算を行います。第一引数"message_hash->data_type"でハッシュ値を指定した場合、第四引数"hash_type"で指定したハッシュアルゴリズムで計算したハッシュ値を"message_hash->pdata"へ入力してください。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.52 R_TSIP_RsassaPkcs2048SignatureVerification

Format

Parameters

signature 入力 検証する署名文情報

signature->pdata : 署名文を格納している配列のポインタを指定

signature->data_length :配列の有効データ長を指定

message hash 入力 検証するメッセージ文またはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message hash->data type : message hashのデータ種別を選択

メッセージ:0 ハッシュ値:1

key index 入力 鍵データ領域 : 1024bit RSA 公開鍵のユーザ鍵生成情報を入力

hash_type 入力 hash の種類 : R_TSIP_RSA_HASH_MD5,

R_TSIP_RSA_HASH_SHA1

または R_TSIP_RSA_HASH_SHA256

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_AUTHENTICATION: 署名検証失敗
TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

R_TSIP_RsassaPkcs2048SignatureVerification()関数は、RSASSA-PKCS1-V1_5に従って、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報を使い第一引数"signature"に入力された署名文と第二引数"message_hash"に入力されたメッセージ文またはハッシュ値の検証をします。第二引数"message_hash->data_type"でメッセージを指定した場合、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報と第四引数"hash_type"で指定された HASH 計算を行います。第二引数"message_hash->data_type"でハッシュ値を指定した場合、第四引数"hash_type"で指定しハッシュアルゴリズムで計算したハッシュ値を"message_hash->pdata"へ入力してください。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.53 R_TSIP_Rsa2048DhKeyAgreement

Format

Parameters

key_index 入力 AES-128 CMAC 演算用ユーザ鍵生成情報領域

sender_private_key_index 入力 DH 演算で使用する秘密鍵生成情報

秘密鍵生成情報に含まれる秘密鍵 d を TSIP 内部で

復号し、利用します

message 入力 メッセージ(2048bit)

sender_private_key_index に含まれる素数(d)より

小さい値を設定してください

receiver_modulus 入力 Receiver が計算したべき乗剰余演算結果 + MAC

2048bit べき乗剰余演算 || 128bit

sender_modulus 入力/出力 Sender が計算したべき乗剰余演算結果 + MAC

2048bit べき乗剰余演算 || 128bit

Return Values

TSIP SUCCESS: 正常終了

TSIP ERR KEY SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

. RSA-2048 による DH 演算を実施します。

なお、Sender は TSIP、Receiver は鍵交換相手を示します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

Reentrant

5.54 R_TSIP_Sha1HmacGenerateInit

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドラ(ワーク領域)

key_index 入力 MAC 鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常な MAC 鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で使用されていることによるリソース衝突が発生

Description

R_TSIP_Sha1HmacGenerateInit()関数は、第二引数の"key_index"を用い SHA1-HMAC 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。"key_index"には、TLS 連携機能の場合、R_TSIP_TIsGenerateSessionKey()関数で生成された MAC 鍵生成情報を使用してください。"handle"は続く R_TSIP_Sha1HmacGenerateUpdate()関数や、R_TSIP_Sha1HmacGenerateFinal()関数の引数で使用します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.55 R_TSIP_Sha1HmacGenerateUpdate

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

message 入力 メッセージ領域 message_length 入力 メッセージ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha1HmacGenerateUpdate()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します。メッセージ入力が完了した後は、R_TSIP_Sha1HmacGenerateFinal()を呼び出してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.56 R_TSIP_Sha1HmacGenerateFinal

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

mac 入力/出力 HMAC 領域(20 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha1HmacGenerateFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"mac"に演算結果を書き出します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.57 R_TSIP_Sha256HmacGenerateInit

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドラ(ワーク領域)

key_index 入力 MAC 鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常な MAC 鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で使用されていることによるリソース衝突が発生

Description

R_TSIP_Sha256HmacGenerateInit()関数は、第二引数の"key_index"を用い SHA256-HMAC 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。"key_index"には、TLS 連携機能で使用する場合は R_TSIP_TIsGenerateSessionKey()関数で生成された MAC 鍵生成情報を使用してください。"handle"は続く R_TSIP_Sha256HmacGenerateUpdate()関数や、R_TSIP_Sha256HmacGenerateFinal()関数の引数で使用します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.58 R_TSIP_Sha256HmacGenerateUpdate

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

message 入力 メッセージ領域 message_length 入力 メッセージ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha256HmacGenerateUpdate()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します。メッセージ入力が完了した後は、R_TSIP_Sha256HmacGenerateFinal()を呼び出してください。

実行前の状態は **TSIP 使用可能状態**です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.59 R_TSIP_Sha256HmacGenerateFinal

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

mac 入力/出力 HMAC 領域(32 バイト)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha256HmacGenerateFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"mac"に演算結果を書き出します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.60 R_TSIP_Sha1HmacVerifyInit

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドラ(ワーク領域)

key_index 入力 MAC 鍵生成情報領域

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常な MAC 鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で使用されていることによるリソース衝突が発生

Description

R_TSIP_Sha1HmacVerifyInit()関数は、第一引数の"key_index"を用い SHA1-HMAC 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。"key_index"には、TLS 連携機能で使用する場合、R_TSIP_TIsGenerateSessionKey()関数で生成された MAC 鍵生成情報を使用してください。"handle"は続く R_TSIP_Sha1HmacVerifyUpdate()関数や、R_TSIP_Sha1HmacVerifyFinal()関数の引数で使用します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.61 R_TSIP_Sha1HmacVerifyUpdate

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

message 入力 メッセージ領域 message_length 入力 メッセージ長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha1HmacVerifyUpdate()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します。メッセージ入力が完了した後は、R_TSIP_Sha1HmacVerifyFinal()を呼び出してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.62 R_TSIP_Sha1HmacVerifyFinal

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

mac 入力 HMAC 領域 mac_length 入力 HMAC 長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生、もしくは認証が失敗

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha1HmacVerifyFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"mac"と第三引数の"mac_length"から mac 値の検証を行います。"mac_length"の単位は byte で 4 以上 20 以下の値を入力してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.63 R_TSIP_Sha256HmacVerifyInit

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドラ(ワーク領域)

key index 入力 MAC 鍵生成情報領域

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常な MAC 鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で使用されていることによるリソース衝突が発生

Description

R_TSIP_Sha256HmacVerifyInit()関数は、第二引数の"key_index"を用い SHA256-HMAC 演算を実行する準備を行い、その結果を第一引数"handle"に書き出します。"key_index"には TLS 連携機能で使用する場合、R_TSIP_TIsGenerateSessionKey()関数で生成された MAC 鍵生成情報を使用してください。"handle"は続く R_TSIP_Sha256HmacVerifyUpdate()関数や、R_TSIP_Sha256HmacVerifyFinal()関数の引数で使用します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.64 R_TSIP_Sha256HmacVerifyUpdate

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

message 入力 メッセージ領域 message_length 入力 メッセージ長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha256HmacVerifyUpdate()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"message"と第三引数の"message_length"からハッシュ値を演算し、途中経過を第一引数"handle"に書き出します。メッセージ入力が完了した後は、R_TSIP_Sha256HmacVerifyFinal()を呼び出してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.65 R_TSIP_Sha256HmacVerifyFinal

Format

Parameters

handle 入力/出力 SHA-HMAC 用ハンドル(ワーク領域)

mac 入力 HMAC 領域 mac_length 入力 HMAC 長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生、もしくは認証が失敗

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_Sha256HmacVerifyFinal()関数は、第一引数"handle"で指定されたハンドルを使用し、第二引数の"mac"と第三引数の"mac_length"から mac 値の検証を行います。"mac_length"の単位は byte で 4 以上 32 以下の値を入力してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.66 R_TSIP_GenerateTIsRsaPublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ encrypted_key 入力 AES128-ECB モードで暗号化された 2048bit RSA

公開鎖

key_index 入力/出力 TLS 連携機能で使用する 2048bit 長の RSA 公開鍵

生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

TLS 連携機能で使用する 2048bit RSA の公開鍵のユーザ鍵生成情報を出力するための API です。 encrypted_key には以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-255	RSA 2048 bit 公開鍵 n			
256-271	RSA 2048 bit 公開鍵 e	0 padding		
272-287	MAC			

encrypted_keyと key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態 です。

実行後の状態は TSIP 使用可能状態 です。

encrypted_provisioning_key, iv および encrypted_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.67 R_TSIP_UpdateTlsRsaPublicKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵key_index 入力/出力 TLS 連携機能で使用する RSA 2048bit 公開鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

TLS 連携機能で使用する RSA 2048bit 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-255	RSA 2048 bit 公開鍵 n			
256-271	RSA 2048 bit 公開鍵 e	0 padding		
272-287	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.68 R_TSIP_TIsRootCertificateVerification

Format

Parameters

public_key_type	入力	証明書に含まれている公開鍵の種類 0: RSA 2048bit, 2: ECC P-256, 他は Reserved
certificate	入力	ルート CA 証明書の束(DER 形式)
certificate_length	入力	ルート CA 証明書の束のバイト長
public_key_n_start_position	入力	引数 certificate のアドレスを起点とした 公開鍵の開始バイト位置
public_key_n_end_position	入力	公開鍵 public_key_type 0 : n, 2 :Qx 引数 certificate のアドレスを起点とした 公開鍵の終了バイト位置
	7 .	公開鍵 public_key_type 0 : n, 2 :Qx
public_key_e_start_position	入力	引数 certificate のアドレスを起点とした 公開鍵の開始バイト位置
muhlia kay a and masition	2 +	公開鍵 public_key_type 0 : e, 2 :Qy
public_key_e_end_position	入力	引数 certificate のアドレスを起点とした 公開鍵の終了バイト位置
signature	入力	公開鍵 public_key_type 0 : e, 2 :Qy ルート CA 証明書の束に対する署名データ
Signature	777	署名データは 256 バイト入力してください 署名方式は「RSA2048 PSS with SHA256」
encrypted_root_public_key	入力/出力	R_TSIP_TIsCertificateVerification または R_TSIP_TIsCertificateVerificationExtensionで使用する暗号化された ECDSA P256 もしくは RSA2048 公開鍵 public_key_type が 0 の場合 560 バイト, 2 の場合 96 バイト出力されます

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で使用されていることによるリソース衝突が発生

Description

ルート CA 証明書の束を検証するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.69 R_TSIP_TIsCertificateVerification

```
Format
```

Parameters

neters		
public_key_type	入力	証明書に含まれている公開鍵の種類 0: RSA 2048bit, 1: RSA 4096bit, 2: ECC P-256, 他は Reserved ただし1: RSA 4096bit は RX651/RX65N のみ対応
encrypted_input_public_key	入力	R_TSIP_TIsRootCertificateVerification、 R_TSIP_TIsCertificateVerification または、 R_TSIP_TIsCertificateVerificationExtension で出力 された、暗号化された公開鍵 データサイズ public_key_type 0: 140 ワード, 2:24 ワード
certificate	入力	証明書の束(DER 形式)
certificate_length	入力	証明書の束のバイト長
signature	入力	証明書の東に対する署名データ public_key_type:0 データサイズ 256 バイト
		署名アルゴリズムは sha256 With RSA2048 Encryption public_key_type:1 データサイズ 512 バイト
		署名アルゴリズムは sha256 With RSA4096 Encryption public_key_type:2
		データサイズ 64 バイト"r(256bit) s(256bit)" 署名アルゴリズムは sha256 With ECDSA P-256 Encryption
public_key_n_start_position	入力	引数 certificate のアドレスを起点とした 公開鍵の開始バイト位置 公開鍵 public_key_type 0,1:n,2:Qx
public_key_n_end_position	入力	引数 certificate のアドレスを起点とした 公開鍵の終了バイト位置 公開鍵 public_key_type 0,1 : n, 2 :Qx
public_key_e_start_position	入力	引数 certificate のアドレスを起点とした 公開鍵の開始バイト位置 公開鍵 public_key_type 0,1:e,2:Qy
public_key_e_end_position	入力	引数 certificate のアドレスを起点とした 公開鍵の終了バイト位置

encrypted output public key 入力/出力

公開鍵 public_key_type 0,1 : e, 2 :Qy R_TSIP_TIsCertificateVerification、

R_TSIP_TIsCertificateVerificationExtension、R_TSIP_TIsEncryptPreWasterSecretWithRsa2048PublicKey

または

 $R_TSIP_TIsServersEphemeralEcdhPublicKeyRetrives~ \\ \mathfrak{C}$

使用する暗号化された公開鍵

ただし public_key_type=1 選択時は R_TSIP_TIsCertificateVerification 及び

R TSIP TIsCertificateVerificationExtension でのみ

使用可能 データサイズ

public key type 0,1: 140 7- F, 2:24 7- F

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

サーバ証明書、中間証明書の署名を検証するための API です。

R_TSIP_TIsCertificateVerificationExtension()関数と同じ用途で使用しますが、署名検証をする鍵のアルゴリズムと certificate から取り出す鍵のアルゴリズムが同一の場合には、こちらの関数を使用してください。

また、pub_key_type が 1: RSA 4096bit の場合は RX651/RX65N のみ対応しています。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.70 R_TSIP_TIsCertificateVerificationExtension

Format

```
#include "r_tsip_rx_if.h"

e_tsip_err_t R_TSIP_TIsCertificateVerificationExtension(
    uint32_t public_key_type,
    uint32_t *encrypted_input_public_key,
    uint32_t *encrypted_input_public_key,
    uint32_t certificate,
    uint32_t certificate_length,
    uint8_t *signature,
    uint32_t public_key_n_start_position,
    uint32_t public_key_n_end_position,
    uint32_t public_key_e_start_position,
    uint32_t public_key_e_end_position,
    uint32_t public_key_e_end_position,
    uint32_t *encrypted_output_public_key
)
```

Parameters

ieters		
public_key_type	入力	入力する証明書に含まれている公開鍵の種類 0:RSA 2048bit, 1:RSA 4096bit, 2:ECC P-256, 他は Reserved
public_key_output_type	入力	certificate から出力する鍵の種類 0 : RSA 2048bit, 1 : RSA 4096bit 2 : ECC P-256, 他は Reserved
encrypted_input_public_key	入力	R_TSIP_TIsRootCertificateVerification、 R_TSIP_TIsCertificateVerification または、 R_TSIP_TIsCertificateVerificationExtension で出力 された、暗号化された公開鍵 データサイズ public_key_type 0,1: 140 ワード, 2:24 ワード
certificate	入力	証明書の東(DER 形式)
certificate_length	入力	証明書の束のバイト長
signature	入力	証明書の束に対する署名データ
		public_key_type:0 データサイズ 256 バイト 署名アルゴリズムは sha256 With RSA2048 Encryption public_key_type:1 データサイズ 512 バイト 署名アルゴリズムは sha256 With RSA4096 Encryption public_key_type:2 データサイズ 64 バイト"r(256bit) s(256bit)" 署名アルゴリズムは sha256 With ECDSA P-256 Encryption
public_key_n_start_position	入力	引数 certificate のアドレスを起点とした 公開鍵の開始バイト位置 公開鍵 public_output_key_type 0,1 : n, 2 :Qx
public_key_n_end_position	入力	引数 certificate のアドレスを起点とした 公開鍵の終了バイト位置 公開鍵 public_output_key_type 0,1 : n, 2 :Qx
public_key_e_start_position	入力	引数 certificate のアドレスを起点とした 公開鍵の開始バイト位置

公開鍵 public_output_key_type 0,1 : e, 2 :Qy public_key_e_end_position 入力 引数 certificate のアドレスを起点とした

公開鍵の終了バイト位置

公開鍵 public_output_key_type 0,1:e, 2:Qy

encrypted_output_public_key 入力/出力 R_TSIP_TIsCertificateVerification、

R_TSIP_TIsCertificateVerificationExtension または、R_TSIP_TIsEncryptPreMasterSecretWithRsa2048PublicKey, R_TSIP_TIsServersEphemeralEcdhPublicKeyRetrives で

使用する暗号化された公開鍵

ただし public_output_key_type =1 選択時は R_TSIP_TIsCertificateVerification 及び

R_TSIP_TIsCertificateVerificationExtension でのみ

使用可能 データサイズ

public_key_type 0,1: 140 ワード, 2:24 ワード

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

サーバ証明書、中間証明書の署名を検証するための API です。R_TSIP_TIsCertificateVerification() 関数と同じ用途で使用しますが、署名検証をする鍵のアルゴリズムと certificate から取り出す鍵のアルゴリズムが異なる場合には、こちらの関数を使用してください。

本 API は、RX651/RX65N のみ対応しています。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.71 R_TSIP_TIsGeneratePreMasterSecret

Format

Parameters

tsip_pre_master_secret 入力/出力 TSIP 固有の変換を施した pre-master secret データ

80 バイト出力されます。

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

暗号化された PreMasterSecret を生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.72 R_TSIP_TIsEncryptPreMasterSecretWithRsa2048PublicKey

Format

Parameters

encrypted_public_key 入力 R_TSIP_TIsCertificateVerification または

R TSIP TIsCertificateVerificationExtension が出力

する、暗号化された公開鍵データ

140 ワードサイズ

tsip_pre_master_secret 入力 R_TSIP_TlsGeneratePreMasterSecret が出力する

TSIP 固有の変換を施した pre-master secret データ

encrypted_pre_master_secret 入力/出力 public_key を用いて RSA2048 で暗号化した

pre-master secret データ

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

入力データの公開鍵を用いて、PreMasterSecret を RSA2048 で暗号化するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.73 R_TSIP_TIsGenerateMasterSecret

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TlsGenerateMasterSecret(
        uint32 t select cipher suite,
        uint32_t *tsip_pre_master_secret,
        uint8_t *client_random,
        uint8 t *server random,
        uint32_t *tsip_master_secret
)
```

Parameters

select_cipher_suite	入力	選択する cipher_suite	
_ , _	R_TSIP_TLS_RS	SA_WITH_AES_128_CBC_SHA	:0
	R_TSIP_TLS_RS	SA_WITH_AES_256_CBC_SHA	:1
	R_TSIP_TLS_RS	SA_WITH_AES_128_CBC_SHA256	:2
	R_TSIP_TLS_RS	SA_WITH_AES_256_CBC_SHA256	:3
	R_TSIP_TLS_EC	CDHE_ECDSA_WITH_AES_128_CBC_SHA256	:4
	R_TSIP_TLS_EC	CDHE_RSA_WITH_AES_128_CBC_SHA256	:5
		CDHE_ECDSA_WITH_AES_128_GCM_SHA256	:6
	R_TSIP_TLS_EC	DHE_RSA_WITH_AES_128_GCM_SHA256	:7
tsip_pre_master_secret	入力	R_TSIP_TIsGeneratePreMasterSecret または	
		R_TSIP_TlsGeneratePreMasterSecretWithEcc	
		P256Key が出力する	

TSIP 固有の変換を施した pre-master secret データ 入力 ClientHello で通知した乱数値 32 バイト 入力 ServerHello で通知された乱数値 32 バイト

入力/出力 tsip_master_secret TSIP 固有の変換を施した master secret データ

20 ワードで出力されます。

Return Values

client_random

server_random

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

本処理に必要なハードウェアリソースが他の処理で TSIP ERR RESOURCE CONFLICT:

使用されていることによるリソース衝突が発生

Description

暗号化された MasterSecret を生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.74 R_TSIP_TIsGenerateSessionKey

Format

Parameters

neters			
select_cipher_suite	入力	選択する cipher_suite	
	R_TSIP_TLS_RSA_W	ITH_AES_128_CBC_SHA	:0
		ITH_AES_256_CBC_SHA	:1
		ITH_AES_128_CBC_SHA256	:2
		ITH_AES_256_CBC_SHA256	:3
		_ECDSA_WITH_AES_128_CBC_SHA256	:4
		_RSA_WITH_AES_128_CBC_SHA256	:5
		_ECDSA_WITH_AES_128_GCM_SHA256	:6
		_RSA_WITH_AES_128_GCM_SHA256	:7
tsip_master_secret	入力	R_TSIP_TIsGenerateMasterSecret が出力する	
		TSIP 固有の変換を施した master secret データ	
client_random	入力	ClientHello で通知した乱数値 32 バイト	
server_random	入力	ServerHello で通知された乱数値 32 バイト	
nonce_explicit	入力	cipher suite AES128GCM で使用するノンス	
<u> </u>		select_cipher_suite=6-7: 8 バイト	
client_mac_key_index	入力/出力	クライアント→サーバ通信時の MAC 鍵生成情報	退
olioni_mao_koy_maox	у (уз/ ш уз	select_cipher_suite=0-5: 17 ワード	-IA
server_mac_key_index	入力/出力	サーバ→クライアント通信時の MAC 鍵生成情報	超
	7	select_cipher_suite=0-5: 17 ワード	
client_crypto_key_index	x 入力/出力	クライアント→サーバ通信時の	
onom_orypro_noy_mae.	. У (УЗ/ДДУЗ	AES 共通鍵生成情報	
		select_cipher_suite=0, 2, 4, 5: 13 ワード	
		select_cipher_suite=1, 3, 6, 7: 17 ワード	
	. 	- · - · · ·	
server_crypto_key_inde	ex 入力/出力	サーバ→クライアント通信時の	
		AES 共通鍵生成情報	
		select_cipher_suite=0, 2, 4, 5: 13 ワード	
		select_cipher_suite=1, 3, 6, 7: 17 ワード	
client_iv	入力/出力	select_cipher_suite が 0~5 の時に、Client から	
		Sever へ送信時に使用する IV を出力します。	
		(RX651,RX65Nで NetX Duo を使用する場合に使	吏用
		します)	
		それ以外の場合には、何も出力されません	
server_iv	入力/出力	select_cipher_suite が 0~5 の時に、Server から	平
301 401 _14	ハハハロン	信時に使用するIVを出力します。	×
			+ ==
		(RX651,RX65N で NetX Duo を使用する場合に	史用

します)

それ以外の場合には、何も出力されません

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

TLS 通信の各種鍵を出力するための API です。

client_iv、server_iv 引数には、引数の説明にある場合以外には何も出力されません。

通信で用いる鍵情報は TSIP 内部に保持します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.75 R_TSIP_TIsGenerateVerifyData

Format

Parameters

select_verify_data 入力 選択する Client/Server の種別

R_TSIP_TLS_GENERATE_CLIENT_VERIFY

ClientVerifyData の生成

R_TSIP_TLS_GENERATE_SERVER_VERIFY

ServerVerifyData の生成

tsip_master_secret 入力 R_TSIP_TIsGenerateMasterSecret が出力する

TSIP 固有の変換を施した master secret データ

hand_shake_hash 入力 TLS ハンドシェイクメッセージ全体の

SHA256 HASH 値

verify_data 入力/出力 Finished メッセージ用の VerifyData

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

Verify データを生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.76 R_TSIP_TIsServersEphemeralEcdhPublicKeyRetrieves

Format

Parameters

入力 公開鍵の種類 public_key_type 0: RSA 2048bit, 1: Reserved, 2: ECDSA P-256 client random 入力 ClientHello で通知した乱数値(32 バイト) server random 入力 ServerHello で通知された乱数値(32 バイト) server_ephemeral_ecdh_public_key サーバから受け取った ephemeral ECDH 公開鍵 入力 (非圧縮形式) Opadding(24bit) || 04(8bit) || Qx(256bit) || Qy(256bit) server_key_exchange_signature ServerKeyExchange の署名データ 入力 公開鍵: RSA2048bit の場合 256 バイト ECDSA P-256 の場合 64 バイト 出力された暗号化された ephemeral ECDH 公開鍵 encrypted_public_key 入力 署名検証のための暗号化された公開鍵 R_TSIP_CertificateVerification から出力された 暗号化された公開鍵情報 公開鍵: RSA2048bit の場合 140 ワードサイズ ECDSA P-256 の場合 24 ワードサイズ

encrypted_ephemeral_ecdh_public_key

入力/出力

暗号化された ephemeral ECDH 公開鍵 R_TSIP_TIsGeneratePreMasterSecretWithEccP256

Keyに入力する(24 ワードサイズ)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

入力された公開鍵データを用いて、ServerKeyExchange の署名を検証します。署名に成功した場合、R_TSIP_TIsGeneratePreMasterSecretWithEccP256Key で使用する ephemeral ECDH public key を暗号化して出力します。

該当暗号スイート: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256、

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256、

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256、

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.77 R_TSIP_TIsGeneratePreMasterSecretWithEccP256Key

Format

Parameters

encrypted_public_key 入力 R_TSIP_TlsServersEphemeralEcdhPublicKey

Retrieves から出力された暗号化された ephemeral

ECDH 公開鍵

tls_p256_ecc_key_index 入力 R_TSIP_GenerateTlsP256EccKeyIndex

から出力された鍵情報

tsip_pre_master_secret 入力/出力 TSIP 固有の変換を施した pre-master secret データ

64 バイト出力されます。

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

入力された鍵データを用いて、暗号化された PreMasterSecret を生成するための API です。

該当暗号スイート: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256、

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256、

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256、

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.78 R_TSIP_GenerateTIsP256EccKeyIndex

Format

Parameters

tls_p256_ecc_key_index 出力 PreMasterSecret 生成のための鍵情報

R TSIP TlsGeneratePreMasterSecretWithEccP256Key ~

入力

ephemeral_ecdh_public_key 出力 ephemeral ECDH 公開鍵

公開鍵 Qx(256bit) || 公開鍵 Qy(256bit)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

TLS 連携機能で使用する乱数から 256bit 素体上の楕円曲線暗号のための鍵ペアを生成する API です。

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

Reentrant

5.79 R_TSIP_GenerateTIs13P256EccKeyIndex

Format

Parameters

handle 入力/出力 同一セッションを示すハンドル番号(ワーク領域)

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

key_index 入力/出力 Ephemeral ECC 秘密鍵生成情報

R_TSIP_TIs13GenerateEcdheSharedSecret の入力

key_index に使用してください。

ephemeral_ecdh_public_key 入力/出力 Ephemeral ECDH 公開鍵

公開鍵 Qx(256bit) || 公開鍵 Qy(256bit)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

Description

TLS1.3 連携機能で使用する、乱数から 256bit 素体上の楕円曲線暗号のための鍵ペアを生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.80 R TSIP TIs13GenerateEcdheSharedSecret

Format

Parameters

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

server_public_key 入力 サーバから提供される公開鍵

Qx(256bit) || Qy(256bit)

key_index 入力 Ephemeral ECC 秘密鍵生成情報

R TSIP GenerateTls13P256EccKeyIndex の出力

key index を使用してください。

shared_secret_key_index 入力/出力 Shared Secret の Ephemeral 鍵生成情報

R_TSIP_TIs13GenerateHandshakeSecret の 入力 shared_secret_key_index に使用してくださ

い。

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

TLS1.3 連携機能で使用する、サーバから提供される公開鍵とあらかじめ演算した秘密鍵を用いて、256bit 素体上の共有鍵である Shared Secret を計算し、鍵生成情報を生成するための API です。

該当暗号スイート: TLS_AES_128_GCM_SHA256, TLS_AES_128_CCM_SHA256

鍵交換の方式: ECDHE NIST P-256

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.81 R TSIP TIs13GenerateHandshakeSecret

Format

Parameters

shared_secret_key_index 入力 Shared Secret の Ephemeral 鍵生成情報

R_TSIP_TIs13GenerateEcdheSharedSecret の出力 shared_secret_key_index を使用してください。

handshake_secret_key_index 入力/出力 Handshake Secret の Ephemeral 鍵生成情報 R TSIP TIs13GenerateServerHandshakeTrafficKey、

R_TSIP_TIs13GenerateClientHandshakeTrafficKey 及びR_TSIP_TIs13GenerateMasterSecret の入力 handshake secret key index の入力に使用してく

ださい。

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

TLS1.3 連携機能で使用する、Shared Secret の Ephemeral 鍵を用いて、Handshake Secret 鍵生成情報を生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.82 R_TSIP_TIs13GenerateServerHandshakeTrafficKey

Format

Parameters

handle 入力/出力 同一セッションを示すハンドル番号(ワーク領域)

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

handshake_secret_key_index 入力 Handshake Secret の Ephemeral 鍵生成情報

R_TSIP_TIs13GenerateHandshakeSecret の 出力 handshake_secret_key_index を使用し

てください。

digest 入力 SHA256 で演算したメッセージハッシュ

(ClientHello||ServerHello)のハッシュ値を演算し、 R_TSIP_Sha256Final の出力 digest を使用

してください。

server_write_key_index 入力/出力 Server Write Key の Ephemeral 鍵生成情報

R_TSIP_TIs13DecryptInit の入力

server_write_key_index に使用してください。

server_finished_key_index 入力/出力 Server Finished Key の Ephemeral 鍵生成情報

R_TSIP_TIs13ServerHandshakeVerification の入力 server_finished_key_index に使用してください。

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

TLS1.3 連携機能で使用する、R_TSIP_TIs13GenerateHandshakeSecret で出力された Handshake Secret を用いて Server Write Key 及び Server Finished Key の鍵生成情報を生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.83 R TSIP TIs13ServerHandshakeVerification

Format

Parameters

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

server_finished_key_index 入力 Server Finished Keyの Ephemeral

鍵生成情報

R_TSIP_TIs13GenerateServerHandshakeTrafficKeyの 出力 server_write_key_index を使用してください。

digest 入力 SHA256 で演算したメッセージハッシュ

(ClientHello||ServerHello||EncryptedExtensions ||CertificateRequest||Certificate||CertificateVerify) のように、ハンドシェイクメッセージを連結した値のハッシュ値を演算して入力してください。R_TSIP_Sha256Final の出力 digest を使用

してください。

server_finished 入力 サーバから提供される暗号化された Finished 情報

R_TSIP_TIs13DecryptUpdate/Final により取得した

ServerFinished のデータを格納している バッファの先頭アドレスを入力してください。

verify_data_index 入力/出力 Server Handshake 検証結果

R_TSIP_TIs13GenerateMasterSecret の入力 verify_data_index に使用してください。

データを出力するバッファの先頭アドレスを入力 してください。必要サイズは8ワード(32 バイト)

です。

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_VERIFICATION_FAIL 検証で合格しなかった

Description

TLS1.3 連携機能で使用する、サーバから提供される Finished の情報を検証するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

R	ee	n	tı	ra	n	t

5.84 R_TSIP_TIs13GenerateClientHandshakeTrafficKey

Format

Parameters

handle 入力/出力 同一セッションを示すハンドル番号(ワーク領域)

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

handshake secret key index 入力 Handshake Secret の Ephemeral 鍵生成情報

R_TSIP_TIs13GenerateHandshakeSecret の 出力 handshake_secret_key_index を使用し

てください。

digest 入力 SHA256 で演算したメッセージハッシュ

(ClientHello||ServerHello)のハッシュ値を演算し、 R TSIP Sha256Final の出力 digest を使用

してください。

client_write_key_index 入力/出力 Client Write Key の Ephemeral 鍵生成情報

R_TSIP_TIs13EncryptInit の入力

client_write_key_index に使用してください。

client_finished_key_index 入力/出力 Client Finished Key の Ephemeral 鍵生成情報

Client Finished の生成に使用してください。 R_TSIP_Sha256HmacGenerateInit の入力

key_index に使用してください。

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

TLS1.3 連携機能で使用する、R_TSIP_TIs13GenerateHandshakeSecret で出力された Handshake Secret を用いて Client Write Key 及び Client Finished Key の鍵生成情報を生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.85 R TSIP TIs13GenerateMasterSecret

Format

Parameters

handle 入力/出力 同一セッションを示すハンドル番号(ワーク領域)

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

handshake_secret_key_index 入力 Handshake Secret の Ephemeral 鍵生成情報

R_TSIP_TIs13GenerateHandshakeSecret の 出力 handshake_secret_key_index を使用し

てください。

verify_data_index 入力 Server Handshake 検証結果

R_TSIP_TIs13ServerHandshakeVerification の 出力 verify_data_index を使用してください。

master_secret_key_index 入力/出力 Master Secret の Ephemeral 鍵生成情報

R_TSIP_TIs13GenerateApplicationTrafficKeyの入力 master_secret_key_indexに使用してください。

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

TLS1.3 連携機能で使用する、Handshake Secret の Ephemeral 鍵を用いて、Master Secret の Ephemeral 鍵生成情報を生成するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.86 R_TSIP_TIs13GenerateApplicationTrafficKey

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TIs13GenerateApplicationTrafficKey(
       tsip tls13 handle t *handle,
       e tsip tls13 mode t mode,
       tsip tls13_ephemeral_master_secret_key_index_t * master_secret_key_index,
       uint8 t * digest,
       tsip_tls13_ephemeral_app_secret_key_index_t * server_app_secret_key_index,
       tsip_tls13_ephemeral_app_secret_key_index_t * client_app_secret_key_index,
       tsip aes key index t * server write key index,
       tsip_aes_key_index_t * client_write_key_index
)
```

Parameters

handle 入力/出力 同一セッションを示すハンドル番号(ワーク領域) mode 入力 実施するハンドシェイクプロトコル TSIP TLS13 MODE FULL HANDSHAKE : Full Handshake 入力 Master Secret の Ephemeral 鍵生成情報 master_secret_key_index R TSIP TIs13GenerateMasterSecret の出力 master_secret_key_index を使用してください。 digest 入力 SHA256 で演算したメッセージハッシュ (ClientHello||ServerHello||EncryptedExtensions ||CertificateRequest||Certificate||CertificateVerify ||ServerFinished) のように、ハンドシェイク メッセージを連結した値のハッシュ値を演算し、 R TSIP Sha256Final の出力 digest を使用 してください。 Server Application Traffic Secret O server app secret key index 入力/出力 Ephemeral 鍵生成情報 R_TSIP_TIs13UpdateApplicationTrafficKeyの入力 input app secret key index に使用してください。 client_app_secret_key_index 入力/出力 Client Application Traffic Secret O Ephemeral 鍵生成情報 R_TSIP_TIs13UpdateApplicationTrafficKeyの入力 input app secret key index に使用してください。

server_write_key_index

client write key index

server_write_key_index に使用してください。 Client Write Keyの Ephemeral 鍵生成情報 R_TSIP_TIs13EncryptInit の入力

R_TSIP_TIs13DecryptInit の入力

client_write_key_index に使用してください。

Server Write Key の Ephemeral 鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

異常なユーザ鍵生成情報が入力された TSIP_ERR_KEY_SET:

入力/出力

入力/出力

Description

TLS1.3 連携機能で使用する、Master Secret の Ephemeral 鍵を用いて、Application Traffic Secret 鍵 生成情報を生成するための API です。併せて、Server Write Key 及び Client Write Key の Ephemeral 鍵生成情報を生成します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.87 R_TSIP_TIs13UpdateApplicationTrafficKey

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TIs13UpdateApplicationTrafficKey(
       tsip tls13 handle t *handle,
       e_tsip_tls13_mode_t mode,
       e_tsip_tls13_update_key_type_t key_type,
       tsip tls13 ephemeral app secret key index t * input app secret key index,
       tsip_tls13_ephemeral_app_secret_key_index_t * output_app_secret_key_index,
       tsip_aes_key_index_t * app_write_key_index
)
```

Parameters

handle 入力/出力 同一セッションを示すハンドル番号(ワーク領域) mode 入力 実施するハンドシェイクプロトコル TSIP_TLS13_MODE_FULL_HANDSHAKE : Full Handshake 入力 更新する鍵の種類 key type TSIP_TLS13_UPDATE_SERVER_KEY : Server Application Traffic Secret TSIP_TLS13_UPDATE_CLIENT_KEY : Client Application Traffic Secret Server / Client Application Traffic Secret O input app secret key index 入力 Ephemeral 鍵生成情報 R_TSIP_TIs13GenerateApplicationTrafficKey の 出力 server/clientapp secret key index または

R TSIP TIs13UpdateApplicationTrafficKeyの出力 output_app_secret_key_index のうち、key_type に 指定した鍵の種類に適合した入力を使用

してください。

output app secret key index 入力/出力 Server / Client Application Traffic Secret O

Ephemeral 鍵生成情報

key_type に指定した鍵の種類に対応した出力が

得られます。

R_TSIP_TIs13UpdateApplicationTrafficKeyの 入力 input_app_secret_key_index に使用して

ください。

入力/出力 Server / Client Write Key の Ephemeral 鍵生成情報 app_write_key_index

key_type に指定した鍵の種類に対応した出力が

得られます。

Server Write Key は

R_TSIP_TIs13DecryptInit の入力

server_write_key_index に使用してください。

Client Write Key は

R_TSIP_TIs13EncryptInit の入力

cient_write_key_index に使用してください。

Return Values

RX ファミリTSIP(Trusted Secure IP)モジュール Firmware Integration Technology(バイナリ版)

TSIP_SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSPI_ERR_PARAMETER 入力データが不正

Description

TLS1.3 連携機能で使用する、Application Traffic Secret を用いて、Application Traffic Secret 鍵生成情報と対応する暗号鍵の鍵生成情報を更新するための API です。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.88 R_TSIP_TIs13EncryptInit

Format

```
#include "r_tsip_rx_if.h"
e_tsip_err_t R_TSIP_TIs13EncryptInit(
        tsip tls13 handle t *handle,
        e tsip tls13 phase t phase,
        e_tsip_tls13_mode_t mode,
        e tsip tls13 cipher suite t cipher suite,
        tsip_aes_key_index_t *client_write_key_index,
        uint32_t payload_length
)
```

Parameters

handle 入力/出力 TLS1.3 用ハンドラ(ワーク領域)

phase 入力 通信フェーズ

TSIP_TLS13_PHASE_HANDSHAKE : ハンドシェイクフェーズ

TSIP TLS13 PHASE APPLICATION

: アプリケーションフェーズ

入力 実施するハンドシェイクプロトコル mode

TSIP TLS13 MODE FULL HANDSHAKE

: Full Handshake

暗号スイート cipher_suite 入力

TSIP TLS13 CIPHER SUITE AES 128 GCM SHA256

: TLS_AES_128_GCM_SHA256

TSIP_TLS13_CIPHER_SUITE_AES_128_CCM_SHA256

:TLS AES 128 CCM SHA256

client write key index 入力 Client Write Key の Ephemeral 鍵生成情報

入力 暗号化するデータのバイト長 payload length

Return Values

TSIP SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

異常なユーザ鍵生成情報が入力された TSIP_ERR_KEY_SET:

Description

R TSIP TIs13EncryptInit()関数は、TLS1.3 通信データの暗号化を実行する準備を行い、その結果を 第一引数"handle"に書き出します。handle は、続く R TSIP Tls13EncryptUpdate()関数および R_TSIP_TIs13EncryptFinal()関数で引数として使用されます。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.89 R_TSIP_TIs13EncryptUpdate

Format

Parameters

handle 入力/出力 TLS1.3 用ハンドラ(ワーク領域)

plain入力平文データ領域cipher入力/出力暗号文データ領域plain_length入力平文データ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

TSPI_ERR_PARAMETER 入力データが不正

Description

R_TSIP_TIs13EncryptUpdate()関数は、第二引数"plain"で指定された平文から R_TSIP_TIs13EncryptInit()で指定された"client_write_key_index"を用いて暗号化します。本関数内部で plain の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。暗号化結果は"plain"入力データが 16byte 以上になってから、第三引数で指定された"cipher"に出力します。入力する plain の総データ長は R_TSIP_TIs13EncryptInit()の payload_length で指定してください。本関数の plain_lengthには、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の plain は 16byte で割り切れない場合、パディング処理は関数内部で実施します。

plain と cipher は領域が重ならないように配置してください。また plain と cipher は 4 の倍数の RAM アドレスを指定してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.90 R_TSIP_TIs13EncryptFinal

Format

Parameters

handle 入力/出力 TLS1.3 用ハンドラ(ワーク領域)

cipher入力/出力暗号文データ領域cipher_length入力/出力暗号文データ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

TSPI_ERR_PARAMETER 入力データが不正

Description

R_TSIP_TIs13EncryptFinal()関数は、R_TSIP_TIs13EncryptUpdate()で入力した plain のデータ長に 16byte の端数データがある場合、第二引数で指定された"cipher"に端数分の暗号化したデータを出力します。このとき、16byte に満たない部分は 0padding されています。cipher は 4 の倍数の RAM アドレスを指定してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.91 R_TSIP_TIs13DecryptInit

Format

Parameters

handle 入力/出力 TLS1.3 用ハンドラ(ワーク領域)

phase 入力 通信フェーズ

TSIP_TLS13_PHASE_HANDSHAKE

: ハンドシェイクフェーズ

TSIP TLS13 PHASE APPLICATION

: アプリケーションフェーズ

mode 入力 実施するハンドシェイクプロトコル

TSIP_TLS13_MODE_FULL_HANDSHAKE

: Full Handshake

cipher_suite 入力 暗号スイート

TSIP TLS13 CIPHER SUITE AES 128 GCM SHA256

: TLS_AES_128_GCM_SHA256

TSIP_TLS13_CIPHER_SUITE_AES_128_CCM_SHA256

: TLS_AES_128_CCM_SHA256

server_write_key_index 入力 Server Write Key の Ephemeral 鍵生成情報

payload length 入力 復号するデータのバイト長

Return Values

TSIP SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

Description

R_TSIP_TIs13DecryptInit()関数は、TLS1.3 通信データの復号を実行する準備を行い、その結果を第一引数"handle"に書き出します。handle は、続く R_TSIP_TIs13DecryptUpdate 関数および R_TSIP_TIs13DecryptFinal()関数で引数として使用されます。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.92 R_TSIP_TIs13DecryptUpdate

Format

Parameters

handle 入力/出力 TLS1.3 用ハンドラ(ワーク領域)

cipher入力暗号文データ領域plain入力/出力平文データ領域cipher _length入力暗号文データ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

TSPI ERR PARAMETER 入力データが不正

Description

R_TSIP_Tls13DecryptUpdate()関数は、第二引数"cipher"で指定された暗号文から

R_TSIP_TIs13DecryptInit()で指定された"server_write_key_index"を用いて復号します。本関数内部で cipher の入力値が 16byte を超えるまでユーザが入力したデータをバッファリングします。暗号化結果は"cipher"入力データが 16byte 以上になってから、第三引数で指定された"plain"に出力します。入力する cipher の総データ長は R_TSIP_TIs13DecryptInit()の payload_length で指定してください。本関数の cipher_length には、ユーザが本関数を呼ぶ際に入力するデータ長を指定してください。入力値の cipher は 16byte で割り切れない場合、パディング処理は関数内部で実施します。

cipher と plain は領域が重ならないように配置してください。また cipher と plain は 4 の倍数の RAM アドレスを指定してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.93 R_TSIP_TIs13DecryptFinal

Format

Parameters

handle 入力/出力 TLS1.3 用ハンドラ(ワーク領域)

plain入力/出力平文データ領域plain_length入力/出力平文データ長

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR FAIL: 内部エラーが発生

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

TSPI ERR PARAMETER 入力データが不正

TSPI_ERR_ AUTHENTICATION 認証が失敗

Description

R_TSIP_TIs13DecryptFinal()関数は、R_TSIP_TIs13DecryptUpdate()で入力した cipher のデータ長に 16byte の端数データがある場合、第二引数で指定された"plain"に端数分の復号したデータを出力します。このとき、16byte に満たない部分は 0padding されています。plain は 4 の倍数の RAM アドレスを指定してください。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.94 R_TSIP_TIs13CertificateVerifyGenerate

Format

Parameters

key_index 入力 ECC P-256 秘密鍵ユーザ鍵生成情報

R_TSIP_GenerateEccP256PrivateKeyIndex の

出力 key_index を使用してください。

引数は uint32_t *でキャストしてから入力して

ください。

signature scheme 入力 使用する署名アルゴリズム

TSP TLS13_SGNATURE_SCHEWE_ECDSA_SECP256R1_SHA256

: ecdsa_secp256r1_sha256

digest 入力 SHA256 で演算したメッセージハッシュ

(ClientHello||ServerHello||EncryptedExtensions ||CertificateRequest||Certificate||CertificateVerify

||ServerFinished||Certificate) のように、 ハンドシェイクメッセージを連結した値の ハッシュ演算をし、R_TSIP_Sha256Final の

出力 digest を使用してください。

certificate_verify 入力/出力 CertificateVerify

データは RFC8446 4.4.3 章の Certificate Verify の 形式で出力されます。データ格納に充分な領域を

確保してください。

certificate_verify_len 入力/出力 certificate_verify のバイト長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSPI_ERR_PARAMETER 入力データが不正

Description

TLS1.3 連携機能で使用する、サーバに送信する Certificate Verify を生成するための API です。署名 アルゴリズムは ECDSA P-256、ハッシュアルゴリズムは SHA256 を使用します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.95 R_TSIP_TIs13CertificateVerifyVerification

Format

Parameters

key_index 入力 暗号化された公開鍵

R_TSIP_GenerateEccP256PublicKeyIndex の

出力 key_index を使用してください。

引数は uint32_t *でキャストしてから入力して

ください。

signature scheme 入力 使用する署名アルゴリズム

TSP_TLS13_SGNATURE_SOHEME_EODSA_SECP256R1_SH4256

: ecdsa_secp256r1_sha256

digest 入力 SHA256 で演算したメッセージハッシュ

(ClientHello||ServerHello||EncryptedExtensions ||CertificateRequest||Certificate)のように、ハンドシェイクメッセージを連結した値のハッシュ値を演算して入力してください。
R_TSIP_Sha256Finalの出力 digest を使用

K_TSIP_Sna256Finalの出力 digest を1

してください。

certificate_verify 入力 CertificateVerify

RFC8446 4.4.3 章の Certificate Verify の形式の データを格納しているバッファの先頭アドレスを

入力してください。

certificate_verify_len 入力 certificate_verify のバイト長

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_FAIL: 内部エラーが発生、もしくは署名検証失敗

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSPI_ERR_PARAMETER 入力データが不正

Description

TLS1.3 連携機能で使用する、サーバから受信した Certificate Verify を検証するための API です。署名アルゴリズムは ECDSA P-256、ハッシュアルゴリズムは SHA256 を使用します。

実行前の状態は TSIP 使用可能状態です。

実行後の状態遷移先は TSIP 使用可能状態です。

Reentrant

5.96 R_TSIP_GenerateEccP192PublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC をつけられた ECC P-192 公開鍵

key index 出力 ECC P-192 公開鍵ユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-192 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

ECC P-192 公開鍵ユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit					
	32bit	32bit	32bit	32bit		
0-15	0 padding	0 padding ECC P-1				
16-31	ECC P-192 公開鍵 Qx(ECC P-192 公開鍵 Qx(続き)				
32-47	0 padding ECC P-192 公開鍵 Qy			2 公開鍵 Qy		
48-63	ECC P-192 公開鍵 Qy(続き)					
64-79	MAC					

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key 生成方法、key_index の使用方法については「<u>7</u>章 <u>鍵データの運用</u>」を参照してください。

Reentrant

5.97 R_TSIP_GenerateEccP224PublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC をつけられた ECC P-224 公開鍵

key index 出力 ECC P-224 公開鍵ユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-224 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

ECC P-224 公開鍵ユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	0 padding ECC P-224 公開鍵 Qx			
16-31	ECC P-224 公開鍵 Qx(続き)			
32-47	0 padding	adding ECC P-224 公開鍵 Qy		
48-63	ECC P-224 公開鍵 Qy(続き)			
64-79	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key 生成方法、key_index の使用方法については「<u>7</u>章 <u>鍵データの運用</u>」を参照してください。

Reentrant

5.98 R_TSIP_GenerateEccP256PublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC をつけられた ECC P-256 公開鍵

key index 出力 ECC P-256 公開鍵ユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-256 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

ECC P-256 公開鍵ユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-31	ECC P-256 公開鍵 Qx			
32-63	ECC P-256 公開鍵 Qy			
64-79	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key 生成方法、key_index の使用方法については「<u>7 章 鍵データの運用</u>」を参照してください。

Reentrant

5.99 R_TSIP_GenerateEccP384PublicKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 暗号化され MAC をつけられた ECC P-384 公開鍵

key_index 出力 ECC P-384 公開鍵ユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-384 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR FAIL: 内部エラーが発生

Description

ECC P-384 公開鍵ユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-47	ECC P-384 公開鍵 Qx			
48-95	ECC P-256 公開鍵 Qy			
96-111	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key 生成方法、key_index の使用方法については「<u>7 章 鍵データの運用</u>」を参照してください。

Reentrant

5.100 R_TSIP_GenerateEccP192PrivateKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv encrypted_key 生成時に使用した初期ベクタ encrypted_key index 出力 DLM でラッピングされた provisioning key encrypted_key 生成時に使用した初期ベクタ 暗号化され MAC を付けられた ECC P-192 秘密鍵 ECC P-192 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-192 秘密鍵ユーザ鍵生成情報を出力するための API です。

encrypted key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	0 padding		ECC P-192 秘密鍵	
16-31	ECC P-192 秘密鍵(続き)			
32-47	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.101 R_TSIP_GenerateEccP224PrivateKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv encrypted_key 生成時に使用した初期ベクタ encrypted_key index 出力 DLM でラッピングされた provisioning key encrypted_key 生成時に使用した初期ベクタ 暗号化され MAC を付けられた ECC P-224 秘密鍵 ECC P-224 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-224 秘密鍵ユーザ鍵生成情報を出力するための API です。

encrypted key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	0 padding	ECC P-224 秘密鍵		
16-31	ECC P-224 秘密鍵(続き)			
32-47	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.102 R_TSIP_GenerateEccP256PrivateKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv encrypted_key 生成時に使用した初期ベクタ encrypted_key index 出力 DLM でラッピングされた provisioning key encrypted_key 生成時に使用した初期ベクタ 暗号化され MAC を付けられた ECC P-256 秘密鍵 ECC P-256 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-256 秘密鍵ユーザ鍵生成情報を出力するための API です。

encrypted key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-31	ECC P-256 秘密鍵			
32-47	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.103 R_TSIP_GenerateEccP384PrivateKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv encrypted_key 生成時に使用した初期ベクタ encrypted_key index 出力 DLM でラッピングされた provisioning key encrypted_key 生成時に使用した初期ベクタ 暗号化され MAC を付けられた ECC P-384 秘密鍵 ECC P-384 秘密鍵ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-384 秘密鍵ユーザ鍵生成情報を出力するための API です。

encrypted key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-47	ECC P-384 秘密鍵			
48-63	MAC			

encrypted_key と key_index は領域が重ならないように配置してください。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

encrypted_provisioning_key, iv および encrypted_key の生成方法、key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.104 R_TSIP_GenerateEccP192RandomKeyIndex

Format

Parameters

key_pair_index 出力 ECC P-192 公開鍵、秘密鍵ペアのユーザ鍵生成情報

key_pair_index->public : ECC P-192 公開鍵ユーザ鍵生成情報

key_pair_index->public.value.key_management_info : 鍵管理情報

key_pair_index->public.value.key_q : ECC P-192 公開鍵 Q(平文)

key_pair_index->private : ECC P-192 秘密鍵ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-192 公開鍵、秘密鍵ペアのユーザ鍵生成情報を出力するための API です。本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号処理することにより、データのデッドコピーを防ぐことができます。 $key_pair_index-public$ に公開鍵の鍵生成情報、 $key_pair_index-private$ に秘密鍵の鍵生成情報を生成します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_pair_index->public ならびに key_pair_index->private 使用方法については「<u>7章 鍵データの運用</u>」を参照してください。key_pair_index->public は R_TSIP_GenerateEccP192PublicKeyIndex()から出力される公開鍵のユーザ鍵生成情報、key pair index->private は

R_TSIP_GenerateEccP192PrivateKeyIndex()から出力される秘密鍵のユーザ鍵生成情報と同様の運用になります。

Reentrant

5.105 R_TSIP_GenerateEccP224RandomKeyIndex

Format

Parameters

key_pair_index出力ECC P-224 公開鍵、秘密鍵ペアのユーザ鍵生成情報key_pair_index->public: ECC P-224 公開鍵ユーザ鍵生成情報key_pair_index-

>public.value.key_management_info : 鍵管理情報

key_pair_index->public.value.key_q : ECC P-224 公開鍵 Q(平文) key_pair_index->private : ECC P-224 秘密鍵ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-224 公開鍵、秘密鍵ペアのユーザ鍵生成情報を出力するための API です。本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号処理することにより、データのデッドコピーを防ぐことができます。key_pair_index->public に公開鍵の鍵生成情報、key_pair_index->private に秘密鍵の鍵生成情報を生成します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_pair_index->public ならびに key_pair_index->private 使用方法については「<u>7章 鍵データの運用</u>」を参照してください。key_pair_index->public は R_TSIP_GenerateEccP224PublicKeyIndex()から出力される公開鍵のユーザ鍵生成情報、key_pair_index->private は

R_TSIP_GenerateEccP224PrivateKeyIndex()から出力される秘密鍵のユーザ鍵生成情報と同様の運用になります。

Reentrant

5.106 R_TSIP_GenerateEccP256RandomKeyIndex

Format

Parameters

key_pair_index 出力 ECC P-256 公開鍵、秘密鍵ペアのユーザ鍵生成情報

key_pair_index->public : ECC P-256 公開鍵ユーザ鍵生成情報

key_pair_index->public.value.key_management_info : 鍵管理情報

key_pair_index->public.value.key_q : ECC P-256 公開鍵 Q(平文) key_pair_index->private : ECC P-256 秘密鍵ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-256 公開鍵、秘密鍵ペアのユーザ鍵生成情報を出力するための API です。本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号処理することにより、データのデッドコピーを防ぐことができます。key_pair_index->public に公開鍵の鍵生成情報、key_pair_index->private に秘密鍵の鍵生成情報を生成します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_pair_index->public ならびに key_pair_index->private 使用方法については「<u>7章 鍵データの運</u>用」を参照してください。key_pair_index->public は R_TSIP_GenerateEccP256PublicKeyIndex()から出力される公開鍵のユーザ鍵生成情報、key_pair_index->private は R_TSIP_GenerateEccP256PrivateKeyIndex()から出力される秘密鍵のユーザ鍵生成情報と同様の運用になり

ます。

Reentrant

5.107 R_TSIP_GenerateEccP384RandomKeyIndex

Format

Parameters

key_pair_index 出力 ECC P-384 公開鍵、秘密鍵ペアのユーザ鍵生成情報

key_pair_index->public : ECC P-384 公開鍵ユーザ鍵生成情報

key_pair_index->public.value.key_management_info : 鍵管理情報

key_pair_index->public.value.key_q : ECC P-384 公開鍵 Q(平文) key_pair_index->private : ECC P-384 秘密鍵ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-384 公開鍵、秘密鍵ペアのユーザ鍵生成情報を出力するための API です。本 API は TSIP 内部にて乱数値からユーザ鍵を生成します。従ってユーザ鍵の入力は不要です。本 API が出力するユーザ鍵生成情報を使用しデータを暗号処理することにより、データのデッドコピーを防ぐことができます。key_pair_index->public に公開鍵の鍵生成情報、key_pair_index->private に秘密鍵の鍵生成情報を生成します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_pair_index->public ならびに key_pair_index->private 使用方法については「<u>7章 鍵データの運</u>用」を参照してください。key_pair_index->public は R_TSIP_GenerateEccP384PublicKeyIndex()から出力される公開鍵のユーザ鍵生成情報、key_pair_index->private は R_TSIP_GenerateEccP384PrivateKeyIndex()から出力される秘密鍵のユーザ鍵生成情報と同様の運用になり

Reentrant

ます。

5.108 R_TSIP_GenerateSha1HmacKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 大力 暗号化され MAC を付けられたユーザ鍵 スカ/出力 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

SHA1-HMAC のユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-15	SHA1-HMAC 160bit 鍵				
16-31		0 padding			
32-47		MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.109 R_TSIP_GenerateSha256HmacKeyIndex

Format

Parameters

encrypted_provisioning_key 入力 DLM でラッピングされた provisioning key iv 入力 encrypted_key 上成時に使用した初期ベクタ encrypted_key 大力 暗号化され MAC を付けられたユーザ鍵 key_index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

SHA256-HMAC のユーザ鍵生成情報を出力するための API です。

encrypted_key には provisioning key で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit 32bit 32bit 32bit				
0-15	SHA256-HMAC 256bit 鍵				
16-31					
32-47	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.110 R_TSIP_UpdateEccP192PublicKeyIndex

Format

Parameters

iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵

key_index 出力 ECC P-192 公開鍵のユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-192 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-192 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit	32bit	32bit	32bit	
0-15	0 padding ECC P-1			開鍵 Qx	
16-31	ECC P-192 公開鍵 Qx(続き)				
32-47	0 padding		ECC P-192 公	開鍵 Qy	
48-63	ECC P-192 公開鍵 Qy(続き)				
64-79	MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.111 R_TSIP_UpdateEccP224PublicKeyIndex

Format

Parameters

iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵

key_index 出力 ECC P-224 公開鍵のユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-224 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-224 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	0 padding	ECC P-224 公開鍵 Qx		
16-31	ECC P-224 公開鍵 Qx(続き)			
32-47	0 padding	ECC P-224 公開鍵 Qy		
48-63	ECC P-224 公開鍵 Qy(続き)			
64-79	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.112 R_TSIP_UpdateEccP256PublicKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵

key_index 出力 ECC P-256 公開鍵のユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-256 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-256 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-31	ECC P-256 公開鍵 Qx			
32-63	ECC P-256 公開鍵 Qy			
64-79	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.113 R_TSIP_UpdateEccP384PublicKeyIndex

Format

Parameters

iv A力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた公開鍵

key_index 出力 ECC P-384 公開鍵のユーザ鍵生成情報

key_index->value.key_management_info : 鍵管理情報

key_index->value.key_q : ECC P-384 公開鍵 Q(平文)

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-384 公開鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-47	ECC P-384 公開鍵 Qx			
48-95	ECC P-384 公開鍵 Qy			
96-111	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.114 R_TSIP_UpdateEccP192PrivateKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた秘密鍵

key_index 出力 ECC P-192 秘密鍵のユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-192 秘密鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	0 padding		ECC P-192 秘密鍵	
16-31	ECC P-192 秘密鍵(続き)			
32-47	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.115 R_TSIP_UpdateEccP224PrivateKeyIndex

Format

Parameters

iv入力encrypted_key 生成時に使用した初期ベクタencrypted_key入力鍵更新用鍵束で暗号化され MAC を付けられた秘密鍵key_index出力ECC P-224 秘密鍵のユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-224 秘密鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-15	0 padding	ECC P-224 秘密鍵		
16-31	ECC P-224 秘密鍵(続き)			
32-47	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.116 R_TSIP_UpdateEccP256PrivateKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた秘密鍵

key_index 出力 ECC P-256 秘密鍵のユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-256 秘密鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-31	ECC P-256 秘密鍵			
32-47	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.117 R_TSIP_UpdateEccP384PrivateKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられた秘密鍵

key_index 出力 ECC P-384 秘密鍵のユーザ鍵生成情報

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

ECC P-384 秘密鍵の鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit			
	32bit	32bit	32bit	32bit
0-47	ECC P-384 秘密鍵			
48-63	MAC			

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

iv, encrypted_key の生成方法および key_index の使用方法については「<u>7章 鍵データの運用</u>」を参照してください。

Reentrant

5.118 R_TSIP_UpdateSha1HmacKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted key 入力 鍵更新用鍵束で暗号化され MAC を付けられたユーザ鍵

key_index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

SHA1-HMAC のユーザ鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit					
	32bit	32bit 32bit 32bit 32bit				
0-15	SHA1-HMAC 160bit 鍵					
16-31	0 padding					
32-47		MAC				

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.119 R_TSIP_UpdateSha256HmacKeyIndex

Format

Parameters

iv 入力 encrypted_key 生成時に使用した初期ベクタ

encrypted_key 入力 鍵更新用鍵束で暗号化され MAC を付けられたユーザ鍵

key_index 入力/出力 ユーザ鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

SHA256-HMAC のユーザ鍵生成情報を更新するための API です。

encrypted_keyには鍵更新用鍵束で暗号化した以下のフォーマットのデータを入力してください。

byte	128 bit				
	32bit 32bit 32bit 32bit				
0-15	SHA256-HMAC 256bit 鍵				
16-31	SI IAZSU-I IIVIAU ZSODIL 娾				
32-47		M	AC		

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後は TSIP 使用可能状態に遷移します。

encrypted_provisioning_key, iv, encrypted_key の生成方法および key_index の使用方法については「7章 鍵データの運用」を参照してください。

Reentrant

5.120 R_TSIP_EcdsaP192SignatureGenerate

Format

Parameters

message_hash 入力 署名を付けるメッセージまたはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message hash->data type : message hashのデータ種別を選択

メッセージ:0 ハッシュ値:1

signature 出力 署名文格納先情報

signature->pdata : 署名文を格納する配列のポインタを指定

署名形式は"0 padding(64bit) || 署名 r(192bit) ||

0 padding(64bit) || 署名 s(192bit)"

signature->data_length : データ長(バイト単位)

key_index 入力 鍵データ領域 : ECC P-192 秘密鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR KEY SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生 TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

第一引数"message_hash->data_type"でメッセージを指定した場合、第一引数"message_hash->pdata"に入力されたメッセージ文を SHA-256 ハッシュ計算し、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-192 に従い署名文を第二引数"signature"に書き出します。

第一引数"message_hash->data_type"でハッシュ値を指定した場合、第一引数"message_hash->pdata"に入力された SHA-256 ハッシュ値の先頭 24 バイトに対して、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-192 に従い署名文を第二引数"signature"に書き出します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.121 R_TSIP_EcdsaP224SignatureGenerate

Format

Parameters

message_hash 入力 署名を付けるメッセージまたはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ:0 ハッシュ値:1

signature 出力 署名文格納先情報

signature->pdata : 署名文を格納する配列のポインタを指定

署名形式は"0 padding(32bit) || 署名 r(224bit) ||

0 padding(32bit) || 署名 s(224bit)"

signature->data_length : データ長(バイト単位)

key_index 入力 鍵データ領域 : ECC P-224 秘密鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP ERR KEY SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生 TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

第一引数"message_hash->data_type"でメッセージを指定した場合、第一引数"message_hash->pdata"に入力されたメッセージ文を SHA-256 ハッシュ計算し、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-224 に従い署名文を第二引数"signature"に書き出します。

第一引数"message_hash->data_type"でハッシュ値を指定した場合、第一引数"message_hash->pdata"に入力された SHA-256 ハッシュ値の先頭 28 バイトに対して、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-224 に従い署名文を第二引数"signature"に書き出します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.122 R_TSIP_EcdsaP256SignatureGenerate

Format

Parameters

message_hash 入力 署名を付けるメッセージまたはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ:0 ハッシュ値:1

signature 出力 署名文格納先情報

signature->pdata : 署名文を格納する配列のポインタを指定

署名形式は"署名 r(256bit) || 署名 s(256bit)"

signature->data_length : データ長(バイト単位)

key index 入力 鍵データ領域 : ECC P-256 秘密鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生 TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

第一引数"message_hash->data_type"でメッセージを指定した場合、第一引数"message_hash->pdata"に入力されたメッセージ文を SHA-256 ハッシュ計算し、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-256 に従い署名文を第二引数"signature"に書き出します。

第一引数"message_hash->data_type"でハッシュ値を指定した場合、第一引数"message_hash->pdata"に入力された SHA-256 ハッシュ値の 32 バイト全てに対して、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-256 に従い署名文を第二引数"signature"に書き出します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.123 R_TSIP_EcdsaP384SignatureGenerate

Format

Parameters

message_hash 入力 署名を付けるハッシュ値情報

message_hash->pdata : ハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(不使用)

message_hash->data_type : 1のみ指定可能

signature 出力 署名文格納先情報

signature->pdata : 署名文を格納する配列のポインタを指定

署名形式は"署名 r(384bit) || 署名 s(384bit)"

signature->data_length : データ長(バイト単位)

key_index 入力 鍵データ領域 : ECC P-384 秘密鍵のユーザ鍵生成情報を入力

Return Values

TSIP SUCCESS: 正常終了

TSIP ERR RESOURCE CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生 TSIP_ERR_PARAMETER: 入力データが不正

Description

第一引数"message_hash->pdata"に入力された SHA-384 ハッシュ値の 48 バイト全てに対して、第三引数"key_index"に入力された秘密鍵ユーザ鍵生成情報から、ECDSA P-384 に従い署名文を第二引数"signature"に書き出します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.124 R_TSIP_EcdsaP192SignatureVerification

Format

Parameters

signature 入力 検証する署名文情報

signature->pdata : 署名文を格納している配列のポインタを指定

署名形式は"0 padding(64bit) || 署名 r(192bit) ||

0 padding(64bit) || 署名 s(192bit)"

signature->data_length : データ長(バイト単位)を指定(不使用) message_hash 入力 検証するメッセージ文またはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ : 0 ハッシュ値 : 1

key_index 入力 鍵データ領域 : ECC P-192 公開鍵のユーザ鍵生成情報を入力

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された TSIP_ERR_FAIL: 内部エラーが発生、もしくは署名検証失敗

TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

第二引数"message_hash->data_type"でメッセージを指定した場合、第二引数"message_hash->pdata"に入力されたメッセージ文を SHA-256 ハッシュ計算し、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-192 に従い第一引数"signature"に入力された署名文との検証をします。

第二引数"message_hash->data_type"でハッシュ値を指定した場合、第二引数"message_hash->pdata"に入力された SHA-256 ハッシュ値の先頭 24 バイトに対して、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-192 に従い第一引数"signature"に入力された署名文との検証をします。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.125 R_TSIP_EcdsaP224SignatureVerification

Format

Parameters

signature 入力 検証する署名文情報

signature->pdata : 署名文を格納している配列のポインタを指定

署名形式は"0 padding(32bit) || 署名 r(224bit) ||

0 padding(32bit) || 署名 s(224bit)"

signature->data_length : データ長(バイト単位)を指定(不使用) message_hash 入力 検証するメッセージ文またはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ:0 ハッシュ値:1

key_index 入力 鍵データ領域 : ECC P-224 公開鍵のユーザ鍵生成情報を入力

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された TSIP_ERR_FAIL: 内部エラーが発生、もしくは署名検証失敗

TSIP_ERR_PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

第二引数"message_hash->data_type"でメッセージを指定した場合、第二引数"message_hash->pdata"に入力されたメッセージ文を SHA-256 ハッシュ計算し、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-224 に従い第一引数"signature"に入力された署名文との検証をします。

第二引数"message_hash->data_type"でハッシュ値を指定した場合、第二引数"message_hash->pdata"に入力された SHA-256 ハッシュ値の先頭 28 バイトに対して、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-224 に従い第一引数"signature"に入力された署名文との検証をします。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.126 R_TSIP_EcdsaP256SignatureVerification

Format

Parameters

signature 入力 検証する署名文情報

signature->pdata : 署名文を格納している配列のポインタを指定

署名形式は"署名 r(256bit) || 署名 s(256bit)"

signature->data_length : データ長(バイト単位)を指定(不使用) message hash 入力 検証するメッセージ文またはハッシュ値情報

message_hash->pdata : メッセージまたはハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(メッセージの場合のみ指定)

message_hash->data_type : message_hash のデータ種別を選択

メッセージ:0 ハッシュ値:1

key index 入力 鍵データ領域 : ECC P-256 公開鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された TSIP_ERR_FAIL: 内部エラーが発生、もしくは署名検証失敗

TSIP ERR PARAMETER: 入力データが不正

上記の Return Values 以外 ハッシュ演算を行う内部関数からの戻り値

Description

第二引数"message_hash->data_type"でメッセージを指定した場合、第二引数"message_hash->pdata"に入力されたメッセージ文を SHA-256 ハッシュ計算し、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-256 に従い第一引数"signature"に入力された署名文との検証をします。

第二引数"message_hash->data_type"でハッシュ値を指定した場合、第二引数"message_hash->pdata"に入力された SHA-256 ハッシュ値の 32 バイト全てに対して、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-256 に従い第一引数"signature"に入力された署名文との検証をします。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.127 R_TSIP_EcdsaP384SignatureVerification

Format

Parameters

signature 入力 検証する署名文情報

signature->pdata : 署名文を格納している配列のポインタを指定

署名形式は"署名 r(384bit) || 署名 s(384bit)"

signature->data_length : データ長(バイト単位)を指定(不使用)

message_hash 入力 検証するハッシュ値情報

message_hash->pdata : ハッシュ値を格納している

配列のポインタを指定

message_hash->data_length : 配列の有効データ長(不使用) message hash->data type : 1のみ指定可能

key_index 入力 鍵データ領域 : ECC P-384 公開鍵のユーザ鍵生成情報を入力

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された TSIP_ERR_FAIL: 内部エラーが発生、もしくは署名検証失敗

TSIP_ERR_PARAMETER: 入力データが不正

Description

第二引数"message_hash->pdata"に入力された SHA-384 ハッシュ値の 48 バイト全てに対して、第三引数"key_index"に入力された公開鍵ユーザ鍵生成情報から、ECDSA P-384 に従い第一引数"signature"に入力された署名文との検証をします。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.128 R_TSIP_EcdhP256Init

Format

Parameters

handle入力/出力ECDH 用ハンドラ(ワーク領域)key_type入力鍵交換の種類 0 : ECDHE
1 : ECDH

use_key_id 入力 0: key_id 不使用, 1: key_id 使用

Return Values

TSIP_SUCCESS: 正常終了

TSIP ERR PARAMETER: 入力データが不正

Description

R_TSIP_EcdhP256Init 関数は、ECDH 鍵交換を演算する準備を行い、その結果を第一引数"handle"に 書き出します。"handle"は、続く R_TSIP_EcdhP256ReadPublicKey、

R_TSIP_EcdhP256MakePublicKey、R_TSIP_EcdhP256CalculateSharedSecretIndex、

R_TSIP_EcdhP256KeyDerivation 関数で引数として使用されます。

第二引数の"key_type"では ECDH 鍵交換の種類を選択してください。ECDHE では、

R_TSIP_EcdhP256MakePublicKey 関数で TSIP の乱数生成機能を使い ECC P-256 の鍵ペアを生成します。ECDH では、鍵交換では予めインストールした鍵を使用します。

第三引数の"use_key_id"は、鍵交換の際に key_id を使用する場合"1"を入力してください。key_id はスマートメータ向け規格の DLMS/COSEM 用途です。

<状態遷移>

有効な実行前の状態は <u>TSIP 使用可能状態</u>です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「<u>7章 鍵データの運用</u>」を参照してください

Reentrant

5.129 R_TSIP_EcdhP256ReadPublicKey

Format

Parameters

handle 入力/出力 ECDH 用ハンドラ(ワーク領域) public key index 入力 署名検証向けの公開鍵生成情報領域

public_key_data 入力 key_id を使用しない場合 ECC P-256 公開鍵(512bit)

key_id を使用する場合 key_id (8bit) || 公開鍵 s(512bit)

signature 入力 public key data の ECDSA P-256 署名

key_index 出力 public_key_data の鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された TSIP_ERR_FAIL: 内部エラーが発生、もしくは署名検証失敗

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_EcdhP256ReadPublicKey()関数は ECDH 鍵交換相手の ECC P-256 public key の署名を検証し、署名が正しければ第5引数に public_key_data の鍵生成情報を出力します。

第一引数"handle"は続く R_TSIP_EcdhP256CalculateSharedSecretIndex()関数の引数で使用します。

key_index は R_TSIP_EcdhP256CalculateSharedSecretIndex で Z を計算するための入力として使用 します

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.130 R_TSIP_EcdhP256MakePublicKey

Format

Parameters

neters		
handle	入力/出力	ECDH 用ハンドラ(ワーク領域)
		key_id を使用する場合は、R_TSIP_Ecdh256Init()の
		実行後、handle->key_id に入力してください。
public_key_index	入力	ECDHE の場合は NULL ポインタを入力してください。
		ECDH の場合は、ECC P-256 公開鍵の鍵生成情報を
		入力してください。
private_key_index	入力	署名生成向けの ECC P-256 秘密鍵
public_key	出力	鍵交換用ユーザ公開鍵(512bit)
		key_id を使用する場合 key_id (8bit) 公開鍵(512bit)
		0 padding(24bit)
signature	出力	署名文格納先情報
->pdata		:署名文を格納する配列のポインタを指定
		署名形式は"署名 r(256bit) 署名 s(256bit)"
->data_length	: 🤊	データ長(バイト単位)
key_index	出力	ECDHE の場合は乱数から生成された秘密鍵生成情報
-		ECDH の場合は何も出力されません。

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_EcdhP256MakePublicKey()関数は、ECDH 鍵交換のための公開鍵のユーザ鍵生成情報の署名を計算します。

R_TSIP_EcdhP256Init()関数の key_type で ECDHE を指定した場合、TSIP の乱数生成機能を使い ECC P-256 の鍵ペアを生成します。公開鍵は public_key へ出力し、秘密鍵は key_index に出力されます。

R_TSIP_EcdhP256Init()関数の key_type で ECDH を指定した場合、public_key には public_key_index で入力した公開鍵を出力します。key_index には何も出力されません。

第一引数"handle"は続く R_TSIP_EcdhP256CalculateSharedSecretIndex()関数の引数で使用します。

key_index は R_TSIP_EcdhP256CalculateSharedSecretIndex で Z を計算するための入力として使用します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

 key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.131 R_TSIP_EcdhP256CalculateSharedSecretIndex

Format

Parameters

handle 入力/出力 ECDH 用ハンドラ(ワーク領域)

public_key_index 入力 R_TSIP_EcdhP256ReadPublicKey()で署名検証した

公開鍵の鍵生成情報

private_key_index 入力 秘密鍵の鍵生成情報

shared_secret_index 出力 ECDH 鍵共有で計算した共有秘密 "Z"の鍵生成情報

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_FAIL: 内部エラーが発生

TSIP_ERR_PARAMETER: 不正なハンドルが入力された TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_EcdhP256CalculateSharedSecretIndex()関数は、鍵交換相手の公開鍵と自身の秘密鍵から ECDH 鍵交換アルゴリズムで共有秘密"Z"の鍵生成情報を出力します。

第二引数の public_key_index には、R_TSIP_EcdhP256ReadPublicKey()で署名検証した公開鍵の鍵生成情報を入力してください。

第三引数の private_key_index には、R_TSIP_EcdhP256Init()の key_type が 0 の場合には、R_TSIP_EcdhP256MakePublicKey()の出力の乱数から生成された秘密鍵の鍵生成情報、key_type が 0 以外の場合には、R_TSIP_EcdhP256MakePublicKey()の第二引数と対になる秘密鍵の鍵生成情報を入力してください。

shared_secret_index は、続く R_TSIP_EcdhP256KeyDerivation()でユーザ鍵生成情報を出力するための鍵材料として使用します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.132 R_TSIP_EcdhP256KeyDerivation

Format

Parameters

.010.0			
handle	入力/出力	ECDH 用ハンドラ(ワーク領域)	
shared_secret_index	入力	R_TSIP_EcdhP256CalculateSharedSecretIndex	
		で計算した"Z"の鍵生成情報	
key_type	入力	派生させる鍵の種類 0: AES-128	
		1: AES-256	
		2: SHA256-HMAC	
kdf_type	入力	鍵導出の計算で使用するアルゴリズム	
- <i>7</i> ,		0: SHA256	
		1: SHA256-HMAC	
other_info	入力	鍵導出の計算で使用する追加データ	
		AlgorithmID PartyUInfo PartyVInfo	
other_info_length	入力	other_info のデータ長(147 以下のバイト単位)	
salt_key_index	入力	Salt の鍵生成情報(kdf_type が 0 の場合は NULL を入力)	
key_index	出力	key_type に対応した鍵生成情報	
·		key_type:2 の場合、SHA256-HMAC 鍵生成情報を出力しま	
		す。tsip_hmac_sha_key_index_t 型で事前に確保された領	
		域の先頭アドレスを、(tsip_aes_key_index_t*)型でキャスト	
		7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	

Return Values

TSIP SUCCESS: 正常終了

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

して指定することが可能です。

使用されていることによるリソース衝突が発生

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_PARAMETER: 入力データが不正

TSIP_ERR_PROHIBIT_FUNCTION: 不正な関数が呼び出された

Description

R_TSIP_EcdhP256KeyDerivation()関数は、R_TSIP_EcdhP256CalculateSharedSecretIndex()関数で計算した共有秘密"Z(shared_secret_index)"を鍵材料として、第三引数の key_type で指定した鍵生成情報を導出します。鍵導出のアルゴリズムは、NIST SP800-56C の One-Step Key Derivation です。第四引数 kdf_type で、SHA-256 または SHA-256 HMAC を指定します。SHA-256 HMAC を指定する場合、第七引数 salt_key_indexに、R_TSIP_GenerateSha256HmacKeyIndex()関数またはR_TSIP_UpdateSha256HmacKeyIndex()関数で出力した鍵生成情報を指定します。

第五引数の other info には鍵交換相手と共有している鍵導出のための固定値を入力してください。

第八引数の key_index は key_type に対応した鍵生成情報が出力されます。導出する key_index と、使用可能な関数の組合せを以下に示します。

導出する key index	使用可能な関数
AES-128	AES128全ての Init 関数、R_TSIP_Aes128KeyUnwrap()
AES-256	AES256全ての Init 関数、R_TSIP_Aes256KeyUnwrap()
SHA256-HMAC	R_TSIP_Sha256HmacGenerateInit()、R_TSIP_Sha256HmacVerifyInit()

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

key_index の生成方法については「7章 鍵データの運用」を参照してください

Reentrant

5.133 R_TSIP_EcdheP512KeyAgreement

Format

Parameters

key_index 入力 AES-128 CMAC 演算用ユーザ鍵生成情報領域 receiver_public_key 入力 Receiver の Brainpool P512r1 公開鍵 Q(1024bit)

|| MAC(128bit)

sender_public_key 入力/出力 Sender の Brainpool P512r1 公開鍵 Q(1024bit)

|| MAC(128bit)

Return Values

TSIP_SUCCESS: 正常終了

TSIP_ERR_KEY_SET: 異常なユーザ鍵生成情報が入力された

TSIP_ERR_RESOURCE_CONFLICT: 本処理に必要なハードウェアリソースが他の処理で

使用されていることによるリソース衝突が発生

TSIP_ERR_FAIL: 内部エラーが発生

Description

Brainpool P512r1 を用いて鍵ペア生成の後、ECDHE 演算を行います。

なお、Sender は TSIP、Receiver は鍵交換相手を示します。

<状態遷移>

有効な実行前の状態は TSIP 使用可能状態です。

実行後の状態は TSIP 使用可能状態です。

Reentrant

6. コールバック関数

6.1 TSIP_GEN_MAC_CB_FUNC_T型

Format

#include "r_tsip_rx_if.h"

typedef void (*TSIP_GEN_MAC_CB_FUNC_T)(

TSIP_FW_CB_REQ_TYPE req_type,

入力

uint32_t iLoop,

uint32_t *counter,

uint32_t *InData_UpProgram,

uint32_t *OutData_Program,

uint32_t MAX_CNT)

Parameters

rea type

.04,,,,	, , , , ,	X34 71 (1011 _1 11 _00 _1 11 _1)
iLoop	入力	ループ回数(ワード単位)
counter	入力/出力	領域参照用のオフセット
InData_UpProgram	入力/出力	R_TSIP_GenerateFirmwareMAC()の第三引数 "InData_UpProgram"と同アドレス
OutData_Program	入力/出力	R_TSIP_GenerateFirmwareMAC()の第五引数 "OutData_Program"と同アドレス
MAX_CNT	入力	R_TSIP_GenerateFirmwareMAC()の第六引数"MAX_CNT" と同値

要求内容(TSIP FW CB REQ TYPE)

Return Values

none

Description

R_TSIP_GenerateFirmwareMAC 関数で使用されます。同関数の第七引数で登録します。

復号されたファームウェアと MAC をユーザ側で保存するために使用します。

InData_UpProgram と OutData_Program の領域サイズは、4 の倍数であり、かつ、最低 4 ワード必要です。InData_UpProgram と OutData_Program は、同じサイズにしてください。デモプロジェクトは、コードフラッシュの最小書き込み単位にしています。

本コールバック関数では、R_TSIP_GenerateFirmwareMAC 関数の中で、複数の要求内容で呼び出されます。要求内容は、第一引数"req_type"に格納されます。

第一引数"reg typeには、列挙型 TSIP FW CB REQ TYPEで定義された値が入ります。

```
typedef enum
{
    TSIP_FW_CB_REQ_PRG_WT = 0u,
    TSIP_FW_CB_REQ_PRG_RD,
    TSIP_FW_CB_REQ_BUFF_CNT,
    TSIP_FW_CB_REQ_PRG_WT_LAST_BLK,
    TSIP_FW_CB_REQ_GET_UPDATE_PRG_CHKSUM,
    TSIP_FW_CB_REQ_STORE_MAC,
}TSIP_FW_CB_REQ_TYPE;
```

この値によって、ユーザ側は必要な対応を行います。

<req_type = TSIP_FW_CB_REQ_PRG_WT>

復号されたファームウェアの保存要求です。

TSIP Module は、4 ワード単位で第五引数"OutData_Program"にデータを格納した後、その都度、本要求を出します。

要求のたびに処理する必要はありません。

ユーザ側で確保した領域に応じて、復号されたファームウェアを保存してください。例えば、8ワード分領域を確保した場合は、2回に1回復号されたファームウェアを保存してください。

復号されたサイズ数の合計は、第二引数"iLoop"に格納されています。

本要求での"iLoop"最大値は、第六引数"MAX_CNT"から 4 ワード分引いた値です。最後の 4 ワードおよび保存できていないファームウェアは、<req_type = TSIP_FW_CB_REQ_PRG_WT_LAST_BLK>の要求で対応します。

<req_type = TSIP_FW_CB_REQ_PRG_RD>

更新する暗号化されたファームウェアの取得要求です。

TSIP Module は、4 ワード単位で復号処理をする前に、その都度、本要求を出します。

仕組みは、<req_type = TSIP_FW_CB_REQ_PRG_WT>と同じです。

ユーザ側で確保した領域に応じて、第四引数"InData UpProgram"に格納してください。

<req_type = TSIP_FW_CB_REQ_BUFF_CNT,>

第四引数"InData_UpProgram"と第五引数"OutData_Program"に参照するときのオフセット値要求です。

第三引数"counter"対して4ワードインクリメントした値を第三引数"counter"に戻してください。

第四引数"InData_UpProgram"と第五引数"OutData_Program"で確保したサイズを超える場合は、第三引数"counter"を初期値に戻してください。

<req_type = TSIP_FW_CB_REQ_PRG_WT_LAST_BLK>

暗号化されたファームウェアの最後のブロックに対して復号された時に要求を出します。復号されたファームウェアで保存できていない領域は、このタイミングで保存してください。

<req_type = TSIP_FW_CB_REQ_GET_UPDATE_PRG_CHKSUM>

更新するファームウェアのファームウェアチェックサム値の取得要求です。

チェックサム値を第四引数"InData_UpProgram"に格納してください。チェックサムのサイズは、16byteです。

<req_type = req_type = TSIP_FW_CB_REQ_STORE_MAC>

復号したファームウェアに対する MAC を出力します。

第五引数"OutData_Program"に MAC が格納されています。サイズは 16byte 分です。

第六引数"MAX_CNT"は、R_TSIP_GenerateFirmwareMAC()の第六引数"MAX_CNT"と同値です。

7. 鍵データの運用

本アプリケーションノートでは provisioning key および encrypted provisioning key に関してサンプルプログラムに添付している鍵を使って説明しています。量産等に適用する場合は独自の鍵を生成する必要があり、それらの詳細が書かれたアプリケーションノートを別途ご用意しています。

ルネサスマイコンをご採用/ご採用予定のお客様に提供させていただいていますので、お取引のあるルネサスエレクトロニクス営業窓口にお問合せください。https://www.renesas.com/contact/

7.1 AES ユーザ鍵の運用

7.1.1 AES ユーザ鍵インストール概要

以下に AES ユーザ鍵をインストールする方法を示します。

AES ユーザ鍵はユーザ PC 内で生成する任意のバイト列(128 ビットまたは 256 ビット)です。

AES ユーザ鍵はユーザ毎にユニークな値です。

本インストール手順にしたがってユーザ鍵のインストールを行ってください。また、ユーザ鍵が以下処理フローを経て RX マイコン内部のデータフラッシュに書き込まれるまでの間は必ず安全なサイト内(ユーザ企業直営工場など)で処理を行ってください。

ユーザ鍵はユーザ鍵生成情報という形式でデータフラッシュに書き込みます。このユーザ鍵生成情報から TSIP 内部でユーザ鍵に復元します。復元されたユーザ鍵は、ソフトウェアでアクセスできません。

ユーザ鍵生成情報を各 API に入力することにより、TSIP 内部でユーザ鍵を復元します。ユーザ鍵生成情報はデバイス固有情報で暗号化されているため、データフラッシュ内のユーザ鍵生成情報を別の TSIP 搭載 RX マイコンにコピーして使用しようとしても、正しい復号結果/暗号化結果は得られません。また、不正なユーザ鍵生成情報を TSIP に入力すると TSIP は正常動作しません。

図 7-1 AES ユーザ鍵をインストールする方法

ユーザ PC 上でユーザ鍵を生成する方法の例を次ページ以降に示します。使用するユーザ PC は Windows PC です。

ユーザ鍵の生成には Renesas Secure Flash Programmer を使用します。

7.1.2 AES ユーザ鍵 encrypted key の作成方法

Renesas Secure Flash Programmer を起動します。

図 7-2 Renesas Secure Flash Programmer(Key Wrap タブ AES128bit 鍵設定時)

Key Wrap タブでユーザ鍵の設定を行います。

AES のユーザが自由に使用できる鍵(AES128bit、AES256bit)とファームウェアアップデート用の鍵(AES128bit)を出力するため設定をします。

Key Wrap タブ Key Type で AES-128bit もしくは AES-256bit を選択してください。

Key Data に AES-128bit 選択時には 16 バイト、AES-256bit 選択時には 32 バイトの鍵情報を入力してください。Register ボタンを押すと、Key List に入力された鍵情報が登録されます。Key List に入力するデータのフォーマットは以下の通りです。

・AES-128bit データフォーマット

byte	128bit
0-15	AES128 鍵データ

・AES-256bit データフォーマット

byte	256bit
0-31	AES256 鍵データ

"provisioning key"に provisioning key File Path と encrypted provisioning key File Path 情報を設定してください。

Path 情報としては、FITDemos フォルダ下に置かれている Key 情報を設定してください。provisioning key File Path には sample.key の Path を、encrypted provisioning key File Path には sample.key_enc.key の Path を設定してください。

必要であれば iv を設定後、[Generate Key File...]ボタンを押すと、R_TSIP_GenerateAesXXXKeyIndex() 関数に入力するための暗号化された鍵(encrypted key)データファイル key_data.c と key_data.h が生成されます。

7.2 TDES ユーザ鍵の運用

7.2.1 TDES ユーザ鍵インストール概要

以下に TDES ユーザ鍵をインストールする方法を示します。

TDES ユーザ鍵はユーザ PC 内で生成する 56 ビット×3の鍵です。

TDES ユーザ鍵はユーザ毎にユニークな値です。

本インストール手順にしたがってユーザ鍵のインストールを行ってください。また、ユーザ鍵が以下処理フローを経て RX マイコン内部のデータフラッシュに書き込まれるまでの間は必ず安全なサイト内(ユーザ企業直営工場など)で処理を行ってください。

ユーザ鍵はユーザ鍵生成情報という形式でデータフラッシュに書き込みます。このユーザ鍵生成情報から TSIP 内部でユーザ鍵に復元します。復元されたユーザ鍵は、ソフトウェアでアクセスできません。

ユーザ鍵生成情報を各 API に入力することにより、TSIP 内部でユーザ鍵を復元します。ユーザ鍵生成情報はデバイス固有情報で暗号化されているため、データフラッシュ内のユーザ鍵生成情報を別の TSIP 搭載 RX マイコンにコピーして使用しようとしても、正しい復号結果/暗号化結果は得られません。また、不正なユーザ鍵生成情報を TSIP に入力すると TSIP は正常動作しません。

図 7-3 TDES ユーザ鍵をインストールする方法

TDES user key format data

byte	128bit				
Byte	32bit 32bit 32bit 32bit				
0-15	DES ユーザ鍵 1*		DES ユーザ鍵 2		
16-31	DES ユーザ鍵 3		0padding		

^{*}DES ユーザ鍵 n

ザ鍵2の値を入力してください。

DES ユーザ鍵の鍵データ長は 56 ビットです。鍵データ 7 ビットに対し、1 ビットの奇数パリティが付加されるため、DES ユーザ鍵長は 64 ビットデータになります。

フォーマットは以下になります。

DES ユーザ鍵 n						
バイト No	0		1		 8	
ビット	7-1	0	7-1	0	 7-1	0
データ	鍵データ	奇数パリティ	鍵データ	奇数パリティ	 鍵データ	奇数パリティ

DES として使用する場合、DES ユーザ鍵 1= DES ユーザ鍵 2= DES ユーザ鍵 3 の値を入力してください。 2Key-TDES として使用する場合、DES ユーザ鍵 1= DES ユーザ鍵 3 かつ、DES ユーザ鍵 1≠ DES ユー

ユーザ PC 上でユーザ鍵を生成する方法の例を次ページ以降に示します。使用するユーザ PC は Windows PC です。

ユーザ鍵の生成には Renesas Secure Flash Programmer を使用します。

7.2.2 TDES ユーザ鍵 encrypted key の作成方法

Renesas Secure Flash Programmer を起動します。

図 7-4 Renesas Secure Flash Programmer(Key Wrap タブ Triple-DES 鍵設定時)

Key Wrap タブでユーザ鍵の設定を行います。

TDES のユーザが自由に使用できる鍵(Triple-DES, 2Key-TDES, DES)を出力するため設定をします。

Key Wrap タブ Key Type で Triple-DES、2Key-TDES、DES を選択してください。

Key Data に Triple-DES 選択時には 24 バイト、2Key-TDES 選択時には 16 バイト、DES 選択時には 8 バイトの鍵情報を入力してください。Register ボタンを押すと、Key List に入力された鍵情報が登録されます。 Key List に入力するデータのフォーマットは以下の通りです。

Triple-DES データフォーマット

byte	DES ユーザ鍵 1	DES ユーザ鍵 2	DES ユーザ鍵 3
0-23	DES 鍵データ	DES 鍵データ	DES 鍵データ

・2Key-TDES データフォーマット

byte	DES ユーザ鍵 1	DES ユーザ鍵 2
0-15	DES 鍵データ	DES 鍵データ

・DES データフォーマット

byte	DES ユーザ鍵 1
0-7	DES 鍵データ

"provisioning key"に provisioning key File Path と encrypted provisioning key File Path 情報を設定してください。

Path 情報としては、FITDemos フォルダ下に置かれている Key 情報を設定してください。provisioning key File Path には sample.key の Path を、encrypted provisioning key File Path には sample.key_enc.key の Path を設定してください。

必要であれば iv を設定後、[Generate Key File...]ボタンを押すと、R_TSIP_GenerateTdesKeyIndex()関数に入力するための暗号化された鍵(encrypted key)データファイル key_data.c と key_data.h が生成されます。

7.3 ARC4 ユーザ鍵の運用

7.3.1 ARC4 ユーザ鍵インストール概要

以下に ARC4 ユーザ鍵をインストールする方法を示します。

ARC4 ユーザ鍵はユーザ PC 内で生成する 2048 ビットの鍵です。

ARC4 ユーザ鍵はユーザ毎にユニークな値です。

本インストール手順にしたがってユーザ鍵のインストールを行ってください。また、ユーザ鍵が以下処理フローを経て RX マイコン内部のデータフラッシュに書き込まれるまでの間は必ず安全なサイト内(ユーザ企業直営工場など)で処理を行ってください。

ユーザ鍵はユーザ鍵生成情報という形式でデータフラッシュに書き込みます。このユーザ鍵生成情報から TSIP 内部でユーザ鍵に復元します。復元されたユーザ鍵は、ソフトウェアでアクセスできません。

ユーザ鍵生成情報を各 API に入力することにより、TSIP 内部でユーザ鍵を復元します。ユーザ鍵生成情報はデバイス固有情報で暗号化されているため、データフラッシュ内のユーザ鍵生成情報を別の TSIP 搭載 RX マイコンにコピーして使用しようとしても、正しい復号結果/暗号化結果は得られません。また、不正なユーザ鍵生成情報を TSIP に入力すると TSIP は正常動作しません。

図 7-5 ARC4 ユーザ鍵をインストールする方法

ユーザ PC 上でユーザ鍵を生成する方法の例を次ページ以降に示します。使用するユーザ PC は Windows PC です。

ユーザ鍵の生成には Renesas Secure Flash Programmer を使用します。

7.3.2 ARC4 ユーザ鍵 encrypted key の作成方法

Renesas Secure Flash Programmer を起動します。

図 7-6 Renesas Secure Flash Programmer(Key Wrap タブ ARC4 鍵設定時)

Key Wrap タブでユーザ鍵の設定を行います。

ARC4 のユーザが自由に使用できる鍵を出力するため設定をします。

Key Wrap タブ Key Type で ARC4-2048bit を選択してください。

Key Data に 256 バイトの鍵情報を入力してください。Register ボタンを押すと、Key List に入力された鍵情報が登録されます。Key List に入力するデータのフォーマットは以下の通りです。

・ARC4 データフォーマット

byte	2048bit
0-255	ARC4 鍵データ

"provisioning key"に provisioning key File Path と encrypted provisioning key File Path 情報を設定してください。

Path 情報としては、FITDemos フォルダ下に置かれている Key 情報を設定してください。provisioning key File Path には sample.key の Path を、encrypted provisioning key File Path には sample.key_enc.key の Path を設定してください。

必要であれば iv を設定後、[Generate Key File...]ボタンを押すと、R_TSIP_GenerateArc4KeyIndex()関数に入力するための暗号化された鍵(encrypted key)データファイル key_data.c と key_data.h が生成されます。

7.4 HMAC ユーザ鍵の運用

7.4.1 HMAC ユーザ鍵インストール概要

以下に HMAC ユーザ鍵をインストールする方法を示します。

HMAC ユーザ鍵はユーザ PC 内で生成する 256 ビットの鍵です。

HMAC ユーザ鍵はユーザ毎にユニークな値です。

本インストール手順にしたがってユーザ鍵のインストールを行ってください。また、ユーザ鍵が以下処理フローを経て RX マイコン内部のデータフラッシュに書き込まれるまでの間は必ず安全なサイト内(ユーザ企業直営工場など)で処理を行ってください。

ユーザ鍵はユーザ鍵生成情報という形式でデータフラッシュに書き込みます。このユーザ鍵生成情報から TSIP 内部でユーザ鍵に復元します。復元されたユーザ鍵は、ソフトウェアでアクセスできません。

ユーザ鍵生成情報を各 API に入力することにより、TSIP 内部でユーザ鍵を復元します。ユーザ鍵生成情報はデバイス固有情報で暗号化されているため、データフラッシュ内のユーザ鍵生成情報を別の TSIP 搭載 RX マイコンにコピーして使用しようとしても、正しい復号結果/暗号化結果は得られません。また、不正なユーザ鍵生成情報を TSIP に入力すると TSIP は正常動作しません。

図 7-7 HMAC ユーザ鍵をインストールする方法

ユーザ PC 上でユーザ鍵を生成する方法の例を次ページ以降に示します。使用するユーザ PC は Windows PC です。

ユーザ鍵の生成には Renesas Secure Flash Programmer を使用します。

7.4.2 HMAC ユーザ鍵 encrypted key の作成方法

Renesas Secure Flash Programmer を起動します。

図 7-8 Renesas Secure Flash Programmer(Key Wrap タブ SHA256-HMAC 鍵設定時)

Key Wrap タブでユーザ鍵の設定を行います。

HMAC のユーザが自由に使用できる鍵(SHA-1、SHA-256)を出力するため設定をします。

Key Wrap タブ Key Type で SHA1-HMAC もしくは SHA256-HMAC を選択してください。

Key Data に SHA1-HMAC 選択時には 20 バイト、SHA256-HMAC 選択時には 32 バイトの鍵情報を入力してください。Register ボタンを押すと、Key List に入力された鍵情報が登録されます。Key List に入力するデータのフォーマットは以下の通りです。

・SHA1-HMAC データフォーマット

byte	160bit
0-19	SHA1-HMAC 鍵データ

・SHA256-HMAC データフォーマット

byte	256bit
0-31	SHA256-HMAC 鍵データ

"provisioning key"に provisioning key File Path と encrypted provisioning key File Path 情報を設定してください。

Path 情報としては、FITDemos フォルダ下に置かれている Key 情報を設定してください。provisioning key File Path には sample.key の Path を、encrypted provisioning key File Path には sample.key_enc.key の Path を設定してください。

必要であれば iv を設定後、[Generate Key File...]ボタンを押すと、

R_TSIP_GenerateShaXXXHmacKeyIndex()関数に入力するための暗号化された鍵(encrypted key)データファイル key_data.c と key_data.h が生成されます。

7.5 RSA 公開鍵、秘密鍵の運用

7.5.1 RSA 公開鍵、秘密鍵データインストール概要

以下に RSA の公開鍵(public key)、秘密鍵(private key)をインストールする方法を示します。

本インストール手順にしたがって公開鍵と秘密鍵のインストールを行ってください。また、公開鍵と秘密鍵が以下処理フローを経て RX マイコン内部のデータフラッシュに書き込まれるまでの間は必ず安全なサイト内(ユーザ企業直営工場など)で処理を行ってください。

ユーザ鍵はユーザ鍵生成情報という形式でデータフラッシュに書き込みます。このユーザ鍵生成情報から TSIP 内部でユーザ鍵に復元します。復元されたユーザ鍵は、ソフトウェアでアクセスできません。

ユーザ鍵生成情報を各 API に入力することにより、TSIP 内部でユーザ鍵を復元します。ユーザ鍵生成情報はデバイス固有情報で暗号化されているため、データフラッシュ内のユーザ鍵生成情報を別の TSIP 搭載 RX マイコンにコピーして使用しようとしても、正しい復号結果/暗号化結果は得られません。また、不正なユーザ鍵生成情報を TSIP に入力すると TSIP は正常動作しません。

図 7-9 RSA 公開鍵、秘密鍵をインストールする方法

• public key format data

byte		12	28bit	
Byte	32bit	32bit	32bit	32bit
1024bit:0-127		DSA 1024/2	 048bit 公開鍵 n	
2048bit:0-255		K3A 1024/20	U4ODIT 公用贩 II	
1024bit:128- 143	RSA 1024/2048bit			
2048bit:256- 271	公開鍵 e		Opadding	

private key format data

byte		12	28bit	
Dyte	32bit	32bit	32bit	32bit
1024bit:0-127		DSA 1024/20	7.4.9.h.t 小門纽 n	
2048bit:0-255	RSA 1024/2048bit 公開鍵 n			
1024bit:128- 255		DSA 1024/20	048bit 秘密鍵 d	
2048bit:256- 511		NGA 1024/20	J4OJII 720	

ユーザ PC 上で公開鍵、秘密鍵情報を生成する方法の例を次ページに示します。使用するユーザ PC は Windows PC です。

公開鍵、秘密鍵の生成には Renesas Secure Flash Programmer を使用します。

7.5.2 RSA 公開鍵、秘密鍵 encrypted key の作成方法

Renesas Secure Flash Programmer を起動します。

図 7-10 Renesas Secure Flash Programmer(Key Wrap タブ RSA-1024bit Public 鍵設定時)

Key Wrap タブでユーザ鍵の設定を行います。

RSA のユーザが自由に使用できる鍵(RSA-1024bit Public/Private/All, RSA-2048bit Public/Private/All)を出力するため設定をします。

Key Wrap タブ Key Type で RSA-1024bit Public、RSA-1024bit Private、RSA-1024bit All、RSA-2048bit Public、RSA-2048bit Private、RSA-2048bit All を選択してください。

Key Data に RSA-1024bit Public 選択時には 132 バイト、RSA-1024bit Private 選択時には 256 バイト、RSA-1024bit All 選択時には 260 バイト、RSA-2048bit Public 選択時には 260 バイト、RSA-2048bit Private 選択時には 512 バイト、RSA-2048bit All 選択時には 516 バイトの鍵情報を入力してください。Register ボタンを押すと、Key List に入力された鍵情報が登録されます(RSA-XXXXbit All 選択時には、RSA-XXXXbit Public と RSA-XXXXxbit Private に分割して登録されます)。Key List に入力するデータのフォーマットは以下の通りです。鍵データが指定ビット長以下の場合は、上位を 0 でパディングしてください。例えば公開鍵 e に 0x10001 を使用する場合は 0x00,0x01,0x00,0x01 を入力してください。

・RSA-1024bit Public データフォーマット

byte	RSA 1024bit Public key n	RSA 1024bit Public key e
0-131	128 バイト RSA 公開鍵 n データ	4 バイト RSA 公開鍵 e データ

・RSA-1024bit Pravate データフォーマット

byte	RSA 1024bit Public key n	RSA 1024bit Private key d
0-255	128 バイト RSA 公開鍵 n データ	128 バイト RSA 秘密鍵 d データ

RSA-1024bit All データフォーマット

byte	RSA 1024bit	RSA 1024bit	RSA 1024bit
	Public key n	Public key e	Private key d
0-259	128 バイト	4バイト	128 バイト
	RSA 公開鍵 n データ	RSA 公開鍵 e データ	RSA 秘密鍵 d データ

・RSA-2048bit Public データフォーマット

byte	RSA 2048bit Public key n	RSA 2048bit Public key e
0-259	256 バイト RSA 公開鍵 n データ	4 バイト RSA 公開鍵 e データ

・RSA-2048bit Private データフォーマット

byte	RSA 2048bit Public key n	RSA 2048bit Private key d
0-511	256 バイト RSA 公開鍵 n データ	256 バイト RSA 秘密鍵 d データ

・RSA-2048bit All データフォーマット

byte	RSA 2048bit	RSA 2048bit	RSA 2048bit
	Public key n	Public key e	Private key d
0-515	256 バイト	4バイト	256 バイト
	RSA 公開鍵 n データ	RSA 公開鍵 e データ	RSA 秘密鍵 d データ

"provisioning key"に provisioning key File Path と encrypted provisioning key File Path 情報を設定してください。

Path 情報としては、FITDemos フォルダ下に置かれている Key 情報を設定してください。provisioning key File Path には sample.key の Path を、encrypted provisioning key File Path には sample.key_enc.key の Path を設定してください。

必要であれば iv を設定後、[Generate Key File...]ボタンを押すと、

R_TSIP_GenerateRsaXXXXPublic/PrivateKeyIndex()関数に入力するための暗号化された鍵(encrypted key) データファイル key_data.c と key_data.h が生成されます。

7.6 ECC 公開鍵、秘密鍵の運用

7.6.1 ECC 公開鍵、秘密鍵データインストール概要

以下に ECC の公開鍵(public key)、秘密鍵(private key)をインストールする方法を示します。

本インストール手順にしたがって公開鍵と秘密鍵のインストールを行ってください。また、公開鍵と秘密鍵が以下処理フローを経て RX マイコン内部のデータフラッシュに書き込まれるまでの間は必ず安全なサイト内(ユーザ企業直営工場など)で処理を行ってください。

ユーザ鍵はユーザ鍵生成情報という形式でデータフラッシュに書き込みます。このユーザ鍵生成情報から TSIP 内部でユーザ鍵に復元します。復元されたユーザ鍵は、ソフトウェアでアクセスできません。

ユーザ鍵生成情報を各 API に入力することにより、TSIP 内部でユーザ鍵を復元します。ユーザ鍵生成情報はデバイス固有情報で暗号化されているため、データフラッシュ内のユーザ鍵生成情報を別の TSIP 搭載 RX マイコンにコピーして使用しようとしても、正しい復号結果/暗号化結果は得られません。また、不正なユーザ鍵生成情報を TSIP に入力すると TSIP は正常動作しません。

図 7-11 ECC 公開鍵、秘密鍵をインストールする方法

public key format data

byte		12	28bit	
5,10	32bit	32bit	32bit	32bit
0-31(注 1)	0 padding(192/224	4bit の場合に必要)	ECC-192/224/25	56/384bit 公開鍵 Qx
32-63(注 2)	0 padding(192/224	4bit の場合に必要)	ECC-192/224/25	56/384bit 公開鍵 Qy

- 【注】 1. ECC-192/224/256bit の場合です。ECC-384bit の場合は 0-47 となります。
 - 2. ECC-192/224/256bit の場合です。ECC-384bit の場合は 48-95 となります。

private key format data

byte		12	28bit	
Sylo	32bit 32bit 32bit 32bit		32bit	
0-31(注 1)	0 padding(192/224bit の場合に必要) ECC-192/224/256/384bit 秘密鍵			

ユーザ PC 上で公開鍵、秘密鍵情報を生成する方法の例を次ページに示します。使用するユーザ PC は Windows PC です。

公開鍵、秘密鍵の生成には Renesas Secure Flash Programmer を使用します。

7.6.2 ECC 公開鍵、秘密鍵 encrypted key の作成方法

Renesas Secure Flash Programmer を起動します。

図 7-12 Renesas Secure Flash Programmer(Key Wrap タブ ECC-256bit Public 鍵設定時)

Key Wrap タブでユーザ鍵の設定を行います。

ECC のユーザが自由に使用できる鍵(ECC-192bit Public/Private/All, ECC-224bit Public/Private/All, ECC-256bit Public/Private/All, ECC-384bit Public/Private/All)を出力するため設定をします。

Key Wrap タブ Key Type で ECC-192bit Public、ECC-192bit Private、ECC-192bit All、ECC-224bit Public、ECC-224bit Private、ECC-224bit All、ECC-256bit Public、ECC-256bit Private、ECC-256bit All、ECC-384bit Private、ECC-384bit All を選択してください。

Key Data に以下のデータフォーマットで示すバイト数の鍵情報を入力してください。Register ボタンを押すと、Key List に入力された鍵情報が登録されます(ECC-XXXbit All 選択時には、ECC-XXXbit Public と ECC-XXXbit Private に分割して登録されます)。Key List に入力するデータのフォーマットは以下の通りです。

• ECC-192bit Public データフォーマット(48 バイト)

byte	ECC-192bit Public key Qx	ECC-192bit Public key Qy
0-47	24 バイト ECC 公開鍵 Qx データ	24 バイト ECC 公開鍵 Qy データ

・ECC-192bit Pravate データフォーマット(24 バイト)

byte	ECC-192bit Private key
0-23	24 バイト ECC 秘密鍵データ

・ECC-192bit All データフォーマット(72 バイト)

byte	ECC-192bit	ECC-192bit	ECC-192bit
	Public key Qx	Public key Qy	Private key
0-71	24 バイト	24 バイト	24 バイト
	ECC 公開鍵 Qx データ	ECC 公開鍵 Qy データ	ECC 秘密鍵データ

• ECC-224bit Public データフォーマット(56 バイト)

byte	ECC-224bit Public key Qx	ECC-224bit Public key Qy	
0-55	28 バイト ECC 公開鍵 Qx データ	28 バイト ECC 公開鍵 Qy データ	

・ECC-224bit Private データフォーマット(28 バイト)

byte	ECC-224bit Private key
0-27	28 バイト ECC 秘密鍵データ

・ECC-224bit All データフォーマット(84 バイト)

byte	ECC-224bit	ECC-224bit	ECC-224bit
	Public key Qx	Public key Qy	Private key
0-83	28 バイト	28 バイト	28 バイト
	ECC 公開鍵 Qx データ	ECC 公開鍵 Qy データ	ECC 秘密鍵データ

・ECC-256bit Public データフォーマット(64 バイト)

byte	ECC-256bit Public key Qx	ECC-256bit Public key Qy	
0-63	32 バイト ECC 公開鍵 Qx データ	32 バイト ECC 公開鍵 Qy データ	

・ECC-256bit Private データフォーマット(32 バイト)

Byte	ECC-256bit Private key
0-31	32 バイト ECC 秘密鍵データ

・ECC-256bit All データフォーマット(96 バイト)

byte	ECC-256bit	ECC-256bit	ECC-256bit
	Public key Qx	Public key Qy	Private key
0-95	32 バイト	32 バイト	32 バイト
	ECC 公開鍵 Qx データ	ECC 公開鍵 Qy データ	ECC 秘密鍵データ

・ECC-384bit Public データフォーマット(96 バイト)

byte	ECC-384bit Public key Qx	ECC-384bit Public key Qy	
0-95	48 バイト ECC 公開鍵 Qx データ	48 バイト ECC 公開鍵 Qy データ	

・ECC-384bit Private データフォーマット(48 バイト)

Byte	ECC-384bit Private key
0-47	48 バイト ECC 秘密鍵データ

• ECC-384bit All データフォーマット(144 バイト)

byte	ECC-384bit	ECC-384bit	ECC-384bit
	Public key Qx	Public key Qy	Private key
0-143	48 バイト	48 バイト	48 バイト
	ECC 公開鍵 Qx データ	ECC 公開鍵 Qy データ	ECC 秘密鍵データ

"provisioning key"に provisioning key File Path と encrypted provisioning key File Path 情報を設定してください。

Path 情報としては、FITDemos フォルダ下に置かれている Key 情報を設定してください。provisioning key File Path には sample.keyの Path を、encrypted provisioning key File Path には sample.key_enc.keyの Path を設定してください。

必要であれば iv を設定後、[Generate Key File...]ボタンを押すと、

R_TSIP_GenerateEccXXXXPublic/PrivateKeyIndex()関数に入力するための暗号化された鍵(encrypted key) データファイル key_data.c と key_data.h が生成されます。

8. 付録

8.1 動作確認環境

本ドライバの動作確認環境を以下に示します。

表 8-1 動作確認環境

項目	内容
統合開発環境	ルネサスエレクトロニクス製 e² studio 2022-01
	IAR Embedded Workbench for Renesas RX 4.20.01
Cコンパイラ	ルネサスエレクトロニクス製 C/C++ Compiler for RX Family(CC-RX) V3.04.00
	コンパイルオプション:統合開発環境のデフォルト設定に以下のオプションを追加
	-lang = c99
	GCC for Renesas RX 8.3.0.202104
	コンパイルオプション:統合開発環境のデフォルト設定に以下のオプションを追加
	-std = gnu99
	IAR C/C++ Compiler for Renesas RX version 4.20.01
	コンパイルオプション:統合開発環境のデフォルト設定
Renesas Secure Flash	以下のソフトウェアが必要
Programmer(GUI ツール)	Microsoft .NET Framework 4.5 以上
エンディアン	ビッグエンディアン/リトルエンディアン
モジュールのバージョン	Ver.1.15
使用ボード	Renesas Starter Kit for RX231(B 版) (型名:R0K505231S020BE)
	Renesas Solution Starter Kit for RX23W(TSIP 搭載) (型名: RTK5523W8BC00001BJ)
	Renesas Starter Kit+ for RX65N-2MB(TSIP 搭載) (型名: RTK50565N2S10010BE)
	Renesas Starter Kit for RX66T(TSIP 搭載) (型名:RTK50566T0S00010BE)
	Renesas Starter Kit+ for RX671 (型名: RTK55671xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
	Renesas Starter Kit+ for RX72M(TSIP 搭載) (型名: RTK5572MNHS10000BE)
	Renesas Starter Kit+ for RX72N(TSIP 搭載) (型名: RTK5572NNHC00000BJ)
	Renesas Starter Kit for RX72T(TSIP 搭載) (型名:RTK5572TKCS00010BE)

8.2 トラブルシューティング

(1) Q:本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「Could not open source file "platform.h"」エラーが発生します。

A: FIT モジュールがプロジェクトに正しく追加されていない可能性があります。プロジェクトへの追加方法をご確認ください。

● CS+を使用している場合 アプリケーションノート「RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826)」

● e² studio を使用している場合 アプリケーションノート「RX ファミリ e² studio に組み込む方法 Firmware Integration Technology (R01AN1723)」

また、本 FIT モジュールを使用する場合、ボードサポートパッケージ FIT モジュール(BSP モジュール)もプロジェクトに追加する必要があります。BSP モジュールの追加方法は、アプリケーションノート「ボードサポートパッケージモジュール(R01AN1685)」を参照してください。

(2) Q: FITDemos の e²studio サンプルプロジェクトを CS+で使用したい。

A: 以下の web サイトを参照してください。

「e²studio から CS+への移行方法」

> 「既存のプロジェクトを変換して CS+の新規プロジェクトを作成」 https://www.renesas.com/jp/ja/products/software-tools/tools/migration-tools/migration-e2studio-to-csplus.html

【注意】: 手順5で

「変換直後のプロジェクト構成ファイルをまとめてバックアップする(C)」 チェックが入っている場合に、[Q0268002]ダイアログが出る場合があります。 [Q0268002]ダイアログで [はい]ボタンを押した場合、コンパイラのインクルード・パスを設定しなおす必要があります。

9. 参考ドキュメント

- ユーザーズマニュアル: ハードウェア (最新版をルネサス エレクトロニクスホームページから入手してください。)
- テクニカルアップデート/テクニカルニュース (最新の情報をルネサス エレクトロニクスホームページから入手してください。)
- ユーザーズマニュアル:開発環境 RX ファミリ CC-RX コンパイラ ユーザーズマニュアル(R20UT3248) (最新版をルネサス エレクトロニクスホームページから入手してください。)

RX ファミリTSIP(Trusted Secure IP)モジュール Firmware Integration Technology(バイナリ版)

ホームページとサポート窓口

ルネサス エレクトロニクスホームページ

https://www.renesas.com/jp/ja/

お問合せ先

https://www.renesas.com/jp/ja/support/contact.html

すべての商標および登録商標は、それぞれの所有者に帰属します。

改訂記録

		改訂内容	
Rev.	発行日	ページ	ポイント
1.00	2020.07.10	_	初版発行
1.11	2020.12.31	_	・ECC P-384 鍵インストール、鍵生成、鍵更新機能を追加
			• ECDSA P-384 機能追加
			・鍵共有機能の RX72M、RX66N、RX72N 対応追加
			・ECDH 鍵交換関数 R_TSIP_EcdhXXX()の関数名を、
			R_TSIP_EcdhP256XXX()に変更
			・ECC 公開鍵の構造体 tsip_ecc_public_key_index_t を変更
			R_TSIP_AesXXXKeyWrap() &
			R_TSIP_AesXXXKeyUnwrap()をTSIP-Lite/TSIP 共通の API 関数に変更
			・コンフィグレーションの記載を削除
			・R_TSIP_GenerateXXXKeyIndex()および
			R_TSIP_UpdateXXXKeyIndex()の Parameters において、iv の説明を統一
			・AES 全ての Init 関数における Return Values に、
			TSIP_ERR_FAIL を記載
			・TSIP_USER_HASH_ENABLED に関する記述を削除
			・開発環境のバージョンを、開発時に使用した番号に変更
			・デバイス名に関する記載順を変更
			1.2 製品構成の表において、mdf ファイル、secure_boot の
			プロジェクト、rsk_tsip_rfp_project、および
			rsk_usb_serial_driver を削除し、RX72N のプロジェクトを 加
			1.4~1.12 本バージョンの情報を記載
			1.5 セキュアブートの記載を削除
			2.2 r_bsp のバージョンを変更
			3.4 TSIP ERR RESOURCE CONFLICT のスペルを修正
			4.14 USB メモリを使用したセキュアアップデートの実装例の記載を削除
			4.40、4.43 key_index->type の違いによる IV の取り扱いにいての情報を記載
			5.23 引数 cipher_length の説明を修正
			5.52 R_TSIP_Rsa2048DhKeyAgreement 関数の記載を移動
			5.113 引数 algorithm_id を key_type に(設定値も含めて)変更
			し、引数 kdf_type および salt_key_index を追加(併せて、戻
			り値 TSIP_ERR_FAIL を削除)
			8.1 Renesas Secure Flash Programmer を追加
1.12	2021.06.30	_	・開発環境のバージョンを、開発時に使用した番号に変更
			・AES-GCM および RSA 復号関数の説明を変更
			1.2 製品構成の表において、AES 暗号プロジェクトおよび
			TLS 連携機能プロジェクトを追加
			1.4~1.12 本バージョンの情報を記載
1.13	2021.08.31	-	• RX671 対応追加
			・開発環境のバージョンを、開発時に使用した番号に変更
			・HMAC ユーザ鍵を追加
			1.2 TSIP 概要 追加(「ユーザ鍵生成のメカニズム」を削除)

			 1.3 製品構成の表において、TSIPドライバ アプリケーションノートは日本語と英語の両方を記載 1.5~1.14 本バージョンの情報を記載 2.2 r_bspのバージョンを変更 3.2 状態遷移図 更新 5.38, 5.39, 5.85, 5.86, 5.87, 5.88 更新 7.1.1, 7.2.1, 7.3.1, 7.4.1, 7.5.1, 7.6.1 更新
1.14	2021.10.22	_	・TLS1.3 対応追加(RX65N のみ)
1.15	2022.03.31	_	 ・TLS1.3 対応追加(RX66N、RX72M、RX72N) ・TLS1.2 RSA 4096bit 対応追加 ・ハッシュ値演算途中経過取得関数追加 ・開発環境のバージョンを、開発時に使用した番号に変更 1.5~1.14 本バージョンの情報を記載 2.2 r_bspのバージョンを変更 3.3.2 BSP FIT モジュールに関する注意事項を追加 5.49~5.52 第四引数 hash_type の各定義名称を変更

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS製品の入力がノイズなどに起因して、V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リパースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リパースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図 しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その青年を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用 を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことに より生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または模製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/