CE-210 Digital Systems I Assignment # 7 – Chapter #7 - Solution

1- The D & Clk signals applied to a NOR-gate-based D-latch are shown below. Draw the output waveform of this latch.

2- The D & Clk signals applied to a positive-edge-triggered D-FF are shown below. Draw the output waveform of this FF.

3- The T & Clk signals applied to a positive-edge-triggered T-FF are shown below. Draw the output waveform of this FF. Assume that the initial state of the FF is 0.

4- The J, K & Clk signals applied to a positive-edge-triggered JK-FF are shown below. Draw the output waveform of this FF.

5- Circuit analysis: Obtain a transition diagram and a state diagram for the circuit shown below. Z is the output. Show your work.

1- Excitation and output equations

D1 = ((X.Q0)'. (X'.Q1)'. (X'.Q0')')' = X.Q0 + X'.Q1 + X'.Q0'

 $D0 = Q1' \cdot Q0' + X \cdot Q1$

Z = X . Q0 + X' . Q1'

2- Excitation and output maps

3- Partial Transition Tables

Q1Q0	0	1	0100	0	1	Q1Q0	0	1	Q1Q0	0	1	0100	0	1
00	1	0	4.40			4.45			4.40	1		4.40	1	
				l										
01	0	1	01	0	0	01	1	1	01	0	1	01	0	0
11	1			I					11					
10	1	0	10	0	1	10	0	0	10	1	0	10	0	1
	D	1		D	0		Z	<u>:</u>			Q1 ⁿ⁺	1	Q0 ⁿ	n+1

4,5- Transition Table, and State Table

6- Transition Graph, and State Graph

6- Circuit analysis: Obtain a transition diagram and a state diagram for the circuit shown below. Z is the output. Show your work.

1- Excitation and output equations

$$T1 = ((X . Q1' . Q0)' . (X' . Q1' . Q0') . (X . Q1 . Q0'))' = X . Q1' . Q0 + X' . Q1' . Q0' + X . Q1 . Q0' \\ T0 = Q1' + X . Q0$$

2- Excitation and output maps

Z = X . Q0 + X' . Q1

3- Partial Transition Tables

Q1Q0	0	1	Q1Q0	0	1	Q1Q0	0	1	Q1Q0	0	1	0100	0	1
00	1	0	00			W I WU			00			00	4	1
		0									0		'	ı
01	0	1	01	1	1	01	0	1	01	0	1	01	0	0
11	0	0							11					
10	0	1	10	0	0	10	1	0	10	1	0	10	0	0
		T1		Т	0		Z	<u>.</u>			Q1 ⁿ⁺¹		Q0 ⁿ	+1

4,5- Transition Table and State Table

Q1Q0 Q1Q0 d, 0 b, 0 00 00 11,0 01, 0 00, 0 10, 1 01 11, 1 10, 1 11 00, 0 10 10 10, 1 Q1ⁿ⁺¹ Q0ⁿ⁺¹, Z $\mathbf{Q}^{n+1},\,\mathbf{Z}$

6- Transition Graph and State Graph

7- Circuit analysis: Obtain a transition diagram and a state diagram for the circuit shown below. **Z** is the output. Show your work.

2) Excitation and output maps

Q1Q0	0	1	O100	0	1	0100	0	1	Q1Q0	0	1	0100	0	1
	1								00					
							l		01					
11	0	1	11	0	0	11	0	0	11	0	1	11	1	0
10	1	0	10	0	1	10	0	0	10	0	1	10	0	0
		J1			K1		J	0		k	(0		Z	<u>.</u>

3- Partial Transition Tables

4,5- Transition Table and State Table

Q1Q0	0	1	Q1Q0	0	1	Q1Q0	0	1	· Q1Q0	QX	0	1
00	1	0		1	1	00	11, 0	01, 1	00	a	d, 0	b, 1
01	0	1	01	0	0	01	00, 1	10, 1	01	b	a, 1	c, 1
11	1	1	01 11	1	0	11	11, 1	10, 0	11	d	d, 1	c, 0
		0	10	0	0	10	10, 0	00, 0	10	С	c, 0	a, 0
	Q1 ⁿ⁻	+ 1		Q0 ⁿ	+1		Q1 ⁿ⁺¹ (Q0 ⁿ⁺¹ , Z			Qn	⁺¹ , Z

6- Transition Graph and State Graph

