2. Use the Fished equation RRER = [(1+AIRER)/(1+Rate of Inflation)]-1 Where; RRER = The Roal RTSK Free Rate MRER = Noming Risk-Ree Rute To derive the more commonly seen version, where we neglect very small values : RRFR ~ NRFR - Rate of In Habier RRFR = [(I+NRFR)/(1+ Rate of Inflation)]-1 RRFR = 1+NRFR 1+ Rate of Inflation (1+RRFR) x (1+ Rate of Inflation) = (1+ MRFR) overy small values -1 + RRFR + Rate of In Hahlon + (RRFRXRate of Inglation) = 1 + NRFR Then, as RRFR x Rate of Intlation is very small & approaches zero, - It can be dropped from the equation & re-arranging the equation gives. RRFR ~ NRFR - Rate of Inflation.

page	51 in the book PDF ' #5	(D)			
3.	During the part five years, you owned two shocks to	at			
	had the following amual rates of return:				
	year Stock T Stock B. HPR por stock T				
The same	1 019 0.08 1.19				
3.374	2 0.08 0.03 1.08	• 31 - 7			
	3 -0.12 -0.09 6.88				
	4 -0.03 0.02 0.97				
	5 0.15 0.04 1.15				
Miles S	Hb X Hb X				
a) compute the arthmetic mean amuch rate of return for					
166	each stock.				
-	- unich stock is most desirable by this measure?				
	Arithometic Mean (AM) = \(\frac{1}{L=1} \) HPY_\(\tau\)				
	unore				
	** EHPY = is the sum of all the annual HPYs **HPY = Holding period yield = HPR-1				
	. ITPR = Holding porriod return = Ending value of	nveit			
	Beginning value	of inves			
•	$MAM_{T} = (0.19) + (0.08) + (-0.12) + (-0.03) + (0.15) = 0.054$				
	5				
	$AM_{-} = 0.03 + 0.03 - 0.09 + 0.02 + 0.04 = 0.03 - 0.016$				

Stock T is more desirable because the arithmetic mean annual rate of return a higher.

b) compade the southernation many annual kade of veture for compute the standard deviation of the annual rule of return for each stock. - By this measure, which is the preferable stock? Standard deviation $\sigma = \sum_{i=1}^{n} [R_i - E(R_i)]^2$ RE= Possible Return & E(RE) = Expected Return. sum of derivation squared = $(0.19 - 0.054)^2 + (0.08 - 0.54)^2 + (-0.12 - 0.054)^2 +$ CO.15-0.054)2 = 0.01350 + 0.00068 + 0.03028 + 0.00708 + 0.00922 = 0.06574 $\frac{1}{5}$ $\frac{07}{5} = 0.06574 = 0.01315$ 07 = 10.01315 = 0.11467 ZB=(0.08-0.016)2+(0.03-0.16)2+(-0.09-0.016)2+(0.02-0.016)2+ (0.04-0.016)2 = 0.00410+0.000020+0.01124+0.00002+0.00058 0 = · 0.01614 = 0.00323 OR = \0.00323 = 0.05681 Stock B is preferable as it has the smallest. standard - douration.

(3)

3. c) compute the coefficient of variation for each stock. - By this relative measure of risk, which stock is preferable? Coefficient of Vaniation = Standard Deviation Expected Return. CVT = 0.11466 = 2.123 CVB = 0.05687 = 3.55/3 that a targest coefficient of preservable because it d) compute the geometric mean rate of return for each - Discuss the difference between the arithmetic mean return & the geometric mean return for each stock - Discuss the differences in the magn returns relative to the standard deviation of the return for each stack. GM = [THPR] 1/n-1 Geometric Mean (GM) = TVn-1 2 0,08+1-1.03 Where; IT = Product of the HRS 3 -0.12+1 = 0.82 4 -0,03+1 = 0.97 GMT = [(1.19)(1.08) (0.88) (0.97)(1.15)] 5-1 1 0115+1=1.15 = [1.26160] V5-1 = 1.04757-1 "HPR=HPY+1 = 0.04757 42 GMB = [(1.08)(1.03)(0.91)(1.02)(1.04)] 5-1 = [1.07383] 5-1 = 1.01435-1=0.01435 = Stock T has more varicibility than stock B. The greater the variability of returns, the greater the difference between the orithmetic & geometric moon returns.

Con	on book page 52 #6			
41	You are considering acquiring share of common stocking			
1)				
	The Melaison Bear Corpor	the Meidison Beer Corporation your rule of return		
	expectations are as follows;			
	Passible Rate of Return Probability			
	-0.10	0.30		
	0.00	0.10		
	0.10	0.30		
	0.25	0.30		
		[E(Ri)] on you investment in		
	Madison Beer.			
	Marison Veer.			
	E(RMRC) = (0.30) (-0.10) +(0	10)(0.00)+(0.30)(0.10)+(0.30)(0.21)		
	= (-0.03) + 0.000 + 0.03+0.07			
	= 0.0754			
. 1/	Possible Rate of Roturn -			
# 5)	-0.60			
	-0.30			
	-0.10	0.10		
	0.20	0.30		
	0.40	0.20		
4	0.80	0.15		
	Compute the expected return [E(Ri)]			
	E(Ricc) = (0.05) (-0.60) + (0.20) (-0.30) + (0.10) (-0.10) + (0.30) (0.20)			
	+ (0.20)(0.40) + (DIS)(0.80).			
1.44	= (-0.03) + (-0.06) + (-0.01) + (-0.06) + 0.08 + 0.12			
	=0.164			
中的	which one is risk?			
, ,	The LCC presents greater risk as an investment because			
	the range of possible returns is much under.			
	The foreign of possible results of much under.			