bq30z50-R1 and bq30z55-R1

Technical Reference

Literature Number: SLUU852 January 2012

Contents

Prefa	ce		11		
1	Intro	duction	13		
2	Calib	ration	15		
_	2.1	Overview			
	2.2	Combining Calibrations			
	2.3	Cell Voltage Calibration			
	2.4	BAT Voltage Calibration			
	2.5	PACK Voltage Calibration			
	2.6	Current Calibration			
		2.6.1 Offset Calibration			
		2.6.2 Board Offset Calibration			
		2.6.3 Gain Calibration			
	2.7	Temperature Calibration			
		2.7.1 Internal Temperature Sensor Calibration (Option 1)			
		2.7.2 Internal Temperature Sensor Calibration (Option 2)			
		2.7.3 TS1 Calibration (Option 1)			
		2.7.4 TS1 Calibration (Option 2)			
		2.7.5 TS2 Calibration (Option 1)	22		
		2.7.6 TS2 Calibration (Option 2)	22		
		2.7.7 TS3 Calibration (Option 1)	23		
		2.7.8 TS3 Calibration (Option 2)	23		
		2.7.9 TS4 Calibration (Option 1)	23		
		2.7.10 TS4 Calibration (Option 2)	23		
3	Prote	ections	25		
	3.1	Introduction	25		
	3.2	Cell Undervoltage Protection	25		
	3.3	Cell Undervoltage Compensated Protection	25		
	3.4	Cell Overvoltage Protection	26		
	3.5	Overcurrent in Charge Protection	27		
	3.6	Overcurrent in Discharge Protection	27		
	3.7	Hardware-Based Protection	28		
		3.7.1 Overload in Discharge Protection	28		
		3.7.2 Short Circuit in Charge Protection	29		
		3.7.3 Short Circuit in Discharge Protection	29		
	3.8	Overtemperature in Charge Protection	30		
	3.9	Overtemperature in Discharge Protection	30		
	3.10	Overtemperature FET Protection	30		
	3.11	SBS Host Watchdog Protection	31		
	3.12	Pre-Charge Timeout Protection	31		
	3.13	B Fast Charge Timeout Protection			
	3.14	Overcharge Protection			
	3.15	Over-ChargingVoltage() Protection			
	3.16	Over-ChargingCurrent() Protection	33		
4	Adva	nced Charge Algorithm	35		

	4.1	Introduction	35
	4.2	Charge Temperature Ranges	
	4.3	Voltage Range	36
	4.4	Charging Current	36
	4.5	Charging Voltage	37
	4.6	Valid Charge Termination	37
	4.7	Charge Inhibit	37
	4.8	Charge Suspend	38
	4.9	ChargingVoltage() Rate of Change	38
	4.10	ChargingCurrent() Rate of Change	38
	4.11	Charging Loss Compensation	39
5	Perm	anent Fail	41
•	5.1	Introduction	
	5.2	Black Box Recorder	
	5.3	Cell Undervoltage Permanent Fail	
	5.4	Cell Overvoltage Permanent Fail	
	5.5	Copper Deposition Permanent Fail	
	5.6	Overtemperature Cell Permanent Fail	
	5.7	Overtemperature FET Permanent Fail	
	5.8	QMax Imbalance Permanent Fail	
	5.9	Cell Balancing Permanent Fail	
	5.10	Capacity Degradation Permanent Fail	
	5.11	Impedance Permanent Fail	
	5.12	Voltage Imbalance at Rest Permanent Fail	
	5.13	Voltage Imbalance Active Permanent Fail	
	5.14	Charge FET Permanent Fail	
	5.15	Discharge FET Permanent Fail	
	5.16	Thermistor Permanent Fail	
	5.17	Chemical Fuse Permanent Fail	
	5.18	AFE Register Permanent Fail	
	5.19	AFE Communication Permanent Fail	
	5.20	Second Level Protection Permanent Fail	
	5.21	PTC Permanent Fail	
	5.22	Instruction Flash Checksum Permanent Fail	
	5.23	Open Cell Voltage Connection Permanent Fail	
	5.23 5.24	Data Flash Permanent Fail	
_			
6		r Modes	
	6.1	Normal Mode	
	6.2	Sleep Mode	
		6.2.1 Device Sleep	
		6.2.2 ManufacturerAccess Sleep	
	6.3	Ship Mode	
		6.3.1 Ship Hibernate Mode	
		6.3.2 Ship Shutdown Mode	
	6.4	Shutdown Mode	
		6.4.1 Voltage Based Shutdown	50
7	Gaug	ing	51
	7.1	Impedance Track	
	7.2	Gas Gauge Mode	
8		Display	
0		• •	
	8.1	LED Display State of Charge	
	8.2	LED Display PF Codes	54

9	Lifeti	me Data	Collection	55
10	Device Security			
	10.1		tion	
	10.2	•	Description	
	10.3		Description	
	10.4		ication	
	10.5	Unseal/	Full Access	58
11	SBS	Comma	nds	59
	11.1		anufacturerAccess()	
			0x0000 ManufacturerData	
			0x0001 Device Type	
			0x0002 Firmware Version	
			0x0003 Hardware Version	
			0x0004 Instruction Flash Checksum	
		11.1.6	0x0005 Data Flash Checksum	60
			0x0006 Chemical ID	
			0x0010 Shutdown Mode	
		11.1.9	0x0011 Sleep Mode	60
			0x0012 Device Reset	
		11.1.11	0x001d Fuse Toggle	61
		11.1.12	0x001e PRE-CHG FET	61
		11.1.13	0x001f CHG FET	62
		11.1.14	0x0020 DSG FET	62
		11.1.15	0x0021 Gauging	62
		11.1.16	ManufacturerAccess() 0x0022 FET Control	62
		11.1.17	ManufacturerAccess() 0x0023 Lifetime Data Collection	62
		11.1.18	ManufacturerAccess() 0x0024 Permanent Failure	63
		11.1.19	ManufacturerAccess() 0x0025 Black Box Recorder	63
		11.1.20	ManufacturerAccess() 0x0026 Fuse	63
		11.1.21	ManufacturerAccess() 0x0027 LED Enable	64
		11.1.22	ManufacturerAccess() 0x0028 Lifetime Data Reset	64
		11.1.23	ManufacturerAccess() 0x0029 Permanent Fail Data Reset	64
		11.1.24		
		11.1.25	ManufacturerAccess() 0x002b LED Toggle	64
		11.1.26	ManufacturerAccess() 0x002c LED Display On	
		11.1.27	ManufacturerAccess() 0x002D CAL Mode	64
		11.1.28	ManufacturerAccess() 0x0030 Seal Device	65
		11.1.29	V	
		11.1.30	V	
		11.1.31	V	
		11.1.32	V	
		11.1.33	.,	
		11.1.34	V	
		11.1.35	,	
		11.1.36	V	
		11.1.37	V	
		11.1.38	V	
		11.1.39	V	
		11.1.40	V	
		11.1.41	ManufacturerAccess() 0x0055 ChargingStatus	
		11.1.42	v 5 5	
		11.1.43	V	
		11.1.44	ManufacturerAccess() 0x0058 AFE Register	68

	11.1.45 ManufacturerAccess() 0x0060 Lifetime Data Block 1	
	11.1.46 ManufacturerAccess() 0x0061 Lifetime Data Block 2	69
	11.1.47 ManufacturerAccess() 0x0062 Lifetime Data Block 3	69
	11.1.48 ManufacturerAccess() 0x0070 ManufacturerInfo	69
	11.1.49 ManufacturerAccess() 0x0071 Voltages	69
	11.1.50 ManufacturerAccess() 0x0072 Temperatures	
	11.1.51 ManufacturerAccess() 0x0073 ITSTATUS1	
	11.1.52 ManufacturerAccess() 0x0074 ITSTATUS2	
	11.1.53 ManufacturerAccess() 0xF080 Exit Calibration Output Mode	
	11.1.54 ManufacturerAccess() 0xF081 Output CC and ADC for Calibration	
	11.1.55 ManufacturerAccess() 0xF082 Output shorted Cc AND ADC Offset for Calibration	
	11.1.56 ManufacturerAccess() 0x01yy DF Access Row Address	
11.2	0x01 RemainingCapacityAlarm()	
	0x02 RemainingCapacityAlarm()	
11.3		
11.4	0x03 BatteryMode()	
11.5	0x04 AtRate()	
11.6	0x05 AtRateToFull()	
11.7	0x06 AtRateToEmpty()	
11.8	0x07 AtRateOK()	
11.9	0x08 Temperature()	
11.10	0x09 Voltage()	
11.11	0x0A Current()	
11.12	0x0B AverageCurrent()	
11.13	0x0C MaxError()	
11.14	0x0D RelativeStateOfCharge()	75
11.15	0x0E AbsoluteStateOfCharge()	
11.16	0x0F RemainingCapacity()	75
11.17	0x10 FullChargeCapacity()	75
11.18	0x11 RunTimeToEmpty()	75
11.19	0x12 AverageTimeToEmpty()	76
11.20	0x13 AverageTimeToFull()	
11.21	0x14 ChargingCurrent()	
11.22	0x15 ChargingVoltage()	
11.23	0x16 BatteryStatus()	
11.24	0x17 CycleCount()	
	0x18 DesignCapacity()	
11.26	0x19 DesignVoltage()	
11.27	0x1A SpecificationInfo()	
11.28	0x1B ManufacturerDate()	
11.29	0x1C SerialNumber()	
11.30	0x20 ManufacturerName()	
	0x21 DeviceName()	
11.31	y .	
	0x22 DeviceChemistry()	
11.33	V	
11.34	0x2F Authentication() AND ManufacturerInput()	
11.35	0x3C-0x3F Cell Voltages()	
11.36	0x50 SafetyAlert()	
11.37	0x51 SafetyStatus()	
11.38	0x52 PFAlert()	
11.39	0x53 PFStatus()	
11.40	0x54 OperationStatus()	
11.41	0x55 ChargingStatus()	
11.42	0x56 GaugingStatus()	93

		0x57 ManufacturingStatus()	
	11.44	0x58 AFERegisters()	. 95
	11.45	0x60 Lifetime Data Block 1	. 96
	11.46		
	11.47		
	11.48		
	11.49	0x71 Voltages()	. 98
	11.50	0x72 Temperatures()	. 98
	11.51	0x73 ITStatus1()	
	11.52	0x74 ITStatus2()	. 99
12	Data I	Flash Values and Device Configuration	103
	12.1	Data Formats	103
		12.1.1 Unsigned Integer	103
		12.1.2 Integer	103
		12.1.3 Floating Point	103
		12.1.4 Hex	103
		12.1.5 String	
	12.2	Protections	
		12.2.1 CUV—Cell Undervoltage	
		12.2.2 CUVC—Cell Undervoltage Compensated	
		12.2.3 COV—Cell Overvoltage	
		12.2.4 OCC1—Overcurrent In Charge 1	
		12.2.5 OCC2—Overcurrent In Charge 2	
		12.2.6 OCC Overcurrent In Charge Recovery	
		12.2.7 OCD1—Overcurrent In Discharge 1	
		12.2.8 OCD2—Overcurrent In Discharge 2	
		12.2.9 OCD—Overcurrent In Discharge Recovery	
		12.2.10 OLD—Overload in Discharge	
		12.2.11 SCC—Short Circuit In Charge	
		· · · · · · · · · · · · · · · · · · ·	
		12.2.12 SCD1—Short Circuit In Discharge 1	
		12.2.13 SCD2—Short Circuit in Discharge 2	
		12.2.14 SCD—Short Circuit in Discharge	
		12.2.15 OTC—Over Temperature in Charge	
		12.2.16 OTD—Over Temperature in Discharge	
		12.2.17 OTF—Over Temperature FET	
		12.2.18 HWD—Host Watchdog	
		12.2.19 PTO—Pre Charge Mode Time Out	
		12.2.20 CTO—Fast Charge Mode Time Out	
		12.2.21 OC—Over Charge	
		12.2.22 CHGV—ChargingVoltage	
		12.2.23 CHGC—ChargingCurrent	
	12.3	Permanent Fail	
		12.3.1 CUV—Cell Undervoltage	109
		12.3.2 COV—Cell Overvoltage	109
		12.3.3 CUDEP—Copper Deposition	109
		12.3.4 OTCE—Over Temperature Cell	109
		12.3.5 OTF—Over Temperature FET	110
		12.3.6 QIM—QMax Imbalance	110
		12.3.7 CB—Cell Balance	110
		12.3.8 VIMR—Voltage Imbalance at Rest	110
		12.3.9 VIMA—Voltage Imbalance Active	110
		12.3.10 IMP—Impedance Imbalance	111
		12.3.11 CD—Capacity Degradation	

	12.3.12 CFETF—CHG FET Failure	111
	12.3.13 DFET—DFET Failure	111
	12.3.14 TH—NTC Thermistor Failure	111
	12.3.15 FUSE—FUSE Failure	111
	12.3.16 AFER—AFE Register	112
	12.3.17 AFEC—AFE Communication	
	12.3.18 2LVL—2nd Level OV	
	12.3.19 OCECO—Open Cell Connection	
12.4	Advanced Charge Algorithm	
12.7	12.4.1 Temperature Ranges	
	12.4.2 Low Temp Charging	
	12.4.3 Standard Temp Charging	
	12.4.4 High Temp Charging	
	12.4.5 REC Temp Charging	
	12.4.6 PCHG	
	12.4.7 MCHG	
	12.4.8 Voltage Range	
	12.4.9 Termination Config	
	12.4.10 Cell Balancing Config	
	12.4.11 Charging Rate of Change	
	12.4.12 Charge Loss Compensation	
12.5	System Data	116
	12.5.1 Manufacturer Data	116
12.6	SBS Configuration	116
	12.6.1 Data	116
	12.6.2 FD	118
	12.6.3 FC	118
	12.6.4 TDA	118
	12.6.5 TCA	118
	12.6.6 Max Error	
12.7	Lifetimes	119
	12.7.1 Voltage	
	12.7.2 Current	
	12.7.3 Safety Events	
	12.7.4 Charging Events	
	12.7.5 Gauging Events	
	12.7.5 Gauging Events	121
	12.7.7 Cell Balancing	
	12.7.8 Temperature	
40.0	12.7.9 Time	
12.8	Settings	
	12.8.1 Fuse	
	12.8.2 Manufacturing	
	12.8.3 Protection	
	12.8.4 Permanent Failure	
	12.8.5 Configuration	126
	12.8.6 AFE	135
12.9	Power	136
	12.9.1 Power	136
	12.9.2 Shutdown	136
	12.9.3 Sleep	136
	12.9.4 Ship	136
12.10	Gas Gauging	137

		12.10.1	Current Thresholds	137
		12.10.2	State	137
	12.11	IT Config	g	138
	12.12	LED Cor	nfig	140
	12.13	RA Tabl	e	141
		12.13.1	R_a0	141
		12.13.2	R_a1	141
		12.13.3	R_a2	142
		12.13.4	R_a3	143
		12.13.5	R_a0x	143
		12.13.6	R_a1x	144
		12.13.7	R_a2x	145
		12.13.8	R_a3x	146
	12.14	PF Statu	JS	148
		12.14.1	Device Status Data	148
		12.14.2	Device Voltage Data	160
		12.14.3	Device Current Data	161
		12.14.4	Device Temperature Data	161
			Device Gauging Data	
			AFE Regs	
	12.15		XCX	
			Safety Status	
			PF Status	
	12.16	Calibrati	on	
		12.16.1	Voltage	
			Current	
			Current Offset	
		12.16.4	Temperature	
		12.16.5	Internal Temp Model	
			Cell Temp Model	
			FET Temp Model	
			Filter	
		12.16.9	Current Deadband	183
Α	AFE 1	Threshol	ld and Delay Settings	185
	A.1	Overload	d in Discharge Protection (OLD)	185
	A.2	Short Cir	rcuit in Charge (SCC)	186
	A.3	Short Cir	rcuit in Discharge (SCD1 and SCD2)	186
В	Readi	ing and	Writing to Data Flash	189
С	Samp	le Filter	Settings	229

Preface

Read this First

This manual discusses the modules and peripherals of the bq30z50-R1 and bq30z55-R1 devices, and how each is used to build a complete battery pack gas gauge and protection solution.

Notational Conventions

The following notation is used, if SBS commands and data flash values are mentioned within a text block:

- SBS commands are set in italic; for example, Voltage.
- SBS bits and flags are capitalized, set in italic and enclosed with square brackets; for example, [TCA].
- Data flash values are set in bold italic; for example, CUV Threshold.
- All data flash bits and flags are capitalized, set in bold italic and enclosed with square brackets, for example, [NR].

All SBS commands, data flash values, and flags mentioned in a chapter are listed at the end of each chapter for reference.

The reference format for SBS commands is: SBS:Command Name(Command No.):Manufacturer Access(MA No.)[Flag], for example:

SBS:Voltage(0x09), or SBS:ManufacturerAccess(0x00):Seal Device(0x0020)

The reference format for data flash values is: DF:Class Name:Subclass Name(Subclass ID):Value Name(Offset)[Flag], for example:

DF:1st Level Safety:Voltage(576):CUV Threshold(13), or

DF:ChargeControl:ChargingFaults(482)Charge Fault Cfg(8)[OC].

11

Introduction

The bq30z50-R1 and bq30z55-R1 device provides a feature-rich gas gauging solution for 2-series cell to 4-series cell battery-pack applications. The device has extended capabilities, including:

- SBS Data Updates Every 250 ms; Values Are Filtered, Not Averaged
- · Unseal via Authentication with Keys in IF, Enhanced Security
- Advanced Impedance Track Algorithm v3.75 with Cell Balancing During Rest
- · Fast Host-Side Calibration
- · Fast Qmax Learning
- · Independent Function Enable/Disable: FET, IT, BB, LT, PF, FUSE, LED
- Cell and FET Temperature Configuration Options and up to Five Independently Selectable Sources for Each Option
- · Manufacturer Access Commands for Test: Fuse, FET, LED, Toggle
- · Extended Lifetimes Tracking
- · Black Box Recorder

Calibration

2.1 Overview

The device has integrated routines that support calibration of current, voltage, and temperature readings, accessible after writing 0xF080 to 0xF082 to **ManufacturerAccess()**. When the calibration routines are activated, the **ManufacturerStatus()**[CAL] flag is set, and raw ADC data is available on **ManufacturerData()**.

ManufacturerAccess()	Description
0xF02d	Enable/Disable Calibration mode in ManufactureringStatus()
0xF080	Disable raw ADC data output on ManufacturerData()
0xF081	Output raw ADC data of voltage, current, and temperature on ManufacturerData()
0xF082	Output raw ADC data of voltage, current, and temperature on ManufacturerData() . This mode includes a shunt of the coulomb counter input.

The ManufacturerData() output format is:

ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilijjJJkkKKllLL,

where:

Value	Format	Description
ZZ	byte	8-bit counter, increments when raw ADC values are refreshed, typically every 250 ms
YY	byte	Output status ManufacturerAccess() = 0xF081: 1 ManufacturerAccess() = 0xF082: 2
AAaa	2's comp	ManufacturerAccess() = 0xF081: coulomb counter ManufacturerAccess() = 0xF082: internal shorted coulomb counter
BBbb	2's comp	Cell Voltage 1
CCcc	2's comp	Cell Voltage 2
DDdd	2's comp	Cell Voltage 3
EEee	2's comp	Cell Voltage 4
FFff	2's comp	Internal temperature sensor
GGgg	2's comp	Temperature Sensor 1
HHhh	2's comp	Temperature Sensor 2
Ilii	2's comp	Temperature Sensor 3
JJjj	2's comp	Temperature Sensor 4
KKkk	2's comp	PACK Voltage
LLII	2's comp	BAT Voltage

Combining Calibrations www.ti.com

2.2 Combining Calibrations

Calibrations can be combined to shorten calibration time. Calibration times under four seconds are achievable using this method.

Table 2-1. Combining Calibrations

Time (s) ZZ in ManufacturerData()		Action	
0	N	 Read DF values Apply 0 mA current Apply cell voltages Apply known temperature ManufacturerAccess() = 0xF082 Poll ManufacturerData() for ZZ increment 	
0.25	N + 1	Poll ManufacturerData() for ZZ increment	
0.5	N + 2	Store ManufacturerData() block 1 Poll ManufacturerData() for ZZ increment	
0.75	N + 3	Store ManufacturerData() block 2 Poll ManufacturerData() for ZZ increment	
1	N + 4	 Store ManufacturerData() block 3 Poll ManufacturerData() for ZZ increment 	
1.25	N + 5	 Store ManufacturerData() block 4 Apply Pack Voltage ManufacturerAccess() = 0xF081 Poll ManufacturerData() for ZZ increment 	
1.5	N + 6	Poll ManufacturerData() for ZZ increment	
1.75	N + 7	Store ManufacturerData() block 5 Poll ManufacturerData() for ZZ increment	
2	N + 8	Store ManufacturerData() block 6 Poll ManufacturerData() for ZZ increment	
2.25	N + 9	 Store ManufacturerData() block 7 Poll ManufacturerData() for ZZ increment 	
2.5	N + 10	 Store ManufacturerData() block 8 Apply calibration current Poll ManufacturerData() for ZZ increment 	
2.75	N + 11	Poll ManufacturerData() for ZZ increment	
3	N + 12	 Store ManufacturerData() block 9 Poll ManufacturerData() for ZZ increment 	
3.25	N + 13	 Store ManufacturerData() block 10 Poll ManufacturerData() for ZZ increment 	
3.5	N + 14	Store ManufacturerData() block 11 Poll ManufacturerData() for ZZ increment	
3.75	N + 15	Store ManufacturerData() block 12 Calculate CC Offset using blocks 1 to 4 Calculate board Offset using blocks 5 to 8 Calculate current gain using blocks 9 to 12 Calculate Cell Voltage 1–4 using blocks 1 to 4 Calculate Pack Voltage using blocks 5 to 8 Calculate Temperatures using blocks 5 to 8 Write values to data flash	

Cell Voltage Calibration www.ti.com

Cell Voltage Calibration 2.3

- 1. Apply known voltages in mV to the cell voltage inputs:
 - V_{CELLO} between VC4 pin and VSS pin
 - V_{CELL1} between VC3 pin and VC4 pin
 - V_{CELL2} between VC2 pin and VC3 pin
 - V_{CELL3} between VC1 pin and VC2 pin
- 2. Send 0xF081 or 0xF082 to ManufacturerAccess() to enable raw cell voltage output on ManufacturerData().
- 3. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 4. Grab the ADC conversion readings of cell voltages from ManufacturerData():
 - ADC_{CELL0} = AAaa of ManufacturerData(), is ADC_{CELL0} < 0x8000? If yes, use ADC_{CELL0}; otherwise, $ADC_{CELLO} = AAaa - 0xFFFF + 0x0001$
 - ADC_{CELL1} = BBbb of **ManufacturerData()**, is ADC_{CELL1} < 0x8000? If yes, use ADC_{CELL1}; otherwise, $ADC_{CELL1} = BBbb - 0xFFFF + 0x0001$
 - $ADC_{CELL2} = CCcc$ of ManufacturerData(), is $ADC_{CELL2} < 0x8000$? If yes, use ADC_{CELL2} ; otherwise, $ADC_{CELL2} = CCcc - 0xFFFF + 0x0001$
 - ADC_{CELL3} = DDdd of ManufacturerData(), is ADC_{CELL3} < 0x8000? If yes, use ADC_{CELL3}; otherwise, $ADC_{CELL3} = DDdd - 0xFFFF + 0x0001$
- 5. Average several readings for higher accuracy. Poll ManufacturerData() until ZZ increments, which indicates updated values.
- 6. Calculate gain values:

Calculate gain values:
$$Cell \ Scale \ 0 = \frac{V_{CELL0}}{ADC_{CELL0}} * 2^{16}$$

$$Cell \ Scale \ 1 = \frac{V_{CELL0} + V_{CELL1}}{ADC_{CELL0} + ADC_{CELL1}} * 2^{16} Cell \ Scale \ 2 = \frac{V_{CELL0} + V_{CELL1} + V_{CELL1}}{ADC_{CELL0} + ADC_{CELL1}} * 2^{16}$$

$$Cell \ Scale \ 3 = \frac{V_{CELL0} + V_{CELL1} + V_{CELL2} + V_{CELL3}}{ADC_{CELL0} + ADC_{CELL1} + ADC_{CELL2}} * 2^{16}$$

$$Cell \ Scale \ 3 = \frac{V_{CELL0} + V_{CELL1} + V_{CELL2} + V_{CELL3}}{ADC_{CELL0} + ADC_{CELL1} + ADC_{CELL3}} * 2^{16}$$

7. Update the data flash with Cell Scale 0, Cell Scale 1, Cell Scale 2, Cell Scale 3.

BAT Voltage Calibration www.ti.com

8. Re-check the voltage reading. Repeat the steps if the readings are not accurate.

2.4 BAT Voltage Calibration

- 1. Apply known voltages in mV to the voltage input:
 - V_{BAT} between VC4 pin and VSS pin
- 2. Enter calibration mode if ManufacturerStatus()[CAL] = 0, send 0x002D to ManufacturerAccess()
- Send 0xF081 or 0xF082 to ManufacturerAccess() to enable raw cell voltage output on ManufacturerData().
- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab ADC conversion readings of cell stack voltage from ManufacturerData():
 - ADC_{BAT} = LLII of ManufacturerData(), is ADC_{BAT} < 0x8000? If yes use ADC_{BAT}, otherwise ADC_{BAT} = LLII – 0xFFFF – 0x0001
- 6. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments, which indicates updated values.
 - ADC_{BAT} = [ADC_{BAT}(reading n) + ... + ADC_{BAT}(reading 1)]/n
- 7. Calculate gain value:

$$BAT \ Gain = \frac{V_{BAT}}{ADC_{BAT}} * 2^{16}$$

- 8. Update data flash with BAT Gain.
- 9. Re-check the voltage reading, and repeat steps if the readings are not accurate.
- 10. Exit calibration mode by sending 0x002D to ManufacturerAccess() or continue with calibration.

2.5 PACK Voltage Calibration

- 1. Apply known voltages in mV to the voltage input:
 - V_{PACK} between PACK pin and VSS pin
- 2. Enter calibration mode if ManufacturerStatus()[CAL] = 0, send 0x002D to ManufacturerAccess().
- Send 0xF081 or 0xF082 to ManufacturerAccess() to enable raw cell voltage output on ManufacturerData().
- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab ADC conversion readings of pack voltage from ManufacturerData():

$$ADC_{PACK} = KKkk$$
 of **ManufacturerData()**, is $ADC_{PACK} < 0x8000$? If yes, use ADC_{PACK} , otherwise $ADC_{PACK} = KKkk - 0xFFFF - 0x0001$.

- 6. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments, which indicates updated values.
 - ADC_{PACK} = [ADC_{PACK}(reading n) + ... + ADC_{PACK}(reading 1)]/n
- 7. Calculate gain value:

www.ti.com Current Calibration

$$PACK \ Gain = \frac{V_{PACK}}{ADC_{PACK}} * 2^{16}$$

- 8. Update data flash with PACK Gain.
- 9. Re-check voltage reading; repeat Steps 4 to 6 if readings are not accurate.
- 10. Exit calibration mode by sending 0x002D to ManufacturerAccess() or continue with calibration.

2.6 Current Calibration

2.6.1 Offset Calibration

- 1. Apply a known current of 0 mA:
 - Make sure no current is flowing through the sense resistor connected between the SRP and SRN pins.
- Send 0xF082 to ManufacturerAccess() to enable raw CC output on ManufacturerData() with CC shunt.
- 3. Read Coulomb Counter Offset Samples from data flash.
- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab the ADC conversion readings of current from ManufacturerData():
 - ADC_{CC} = AAaa of ManufacturerData(), is ADC_{CC} < 0x8000? If yes, use ADC_{CC}; otherwise, ADC_{CC} = AAaa 0xFFFF 0x0001.
- 6. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments, which indicates updated values.
 - ADC_{cc} = [ADC_{cc}(reading n) + ... + ADC_{cc}(reading 1)]/n
- 7. Calculate offset value:

 $CC \, offset = ADCcc * (Coulomb \, Counter \, Offset \, Samples)$

- 8. Update the data flash with CC Offset.
- 9. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.6.2 Board Offset Calibration

- 1. Apply a known current of 0 mA:
 - Make sure no current is flowing through the sense resistor connected between SRP pin and SRN pin.
- 2. Send 0xF081 to ManufacturerAccess() to enable raw CC output on ManufacturerData().
- 3. Read Coulomb Counter Offset Samples from data flash.

- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab the ADC conversion readings of current from ManufacturerData():
 - ADC_{CC} = AAaa of ManufacturerData(), is ADC_{CC} < 0x8000? If yes, use ADC_{CC}; otherwise, ADC_{CC} = AAaa 0xFFFF 0x0001.
- 6. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments, which indicates updated values.
 - ADC_{cc} = [ADC_{cc}(reading n) + ... + ADC_{cc}(reading 1)]/n
- 7. Calculate offset value:

 $Board offset = (ADC_{cc} - CC Offset / (Coulomb Counter Offset Samples))*(Coulomb Counter Offset Samples)$

- 8. Update the data flash with Board Offset.
- 9. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.6.3 Gain Calibration

- 1. Apply a known current in mA to the current input.
 - Make sure current I_{CC} is flowing through the sense resistor connected between SRP pin and SRN pin.
- 2. Send 0xF081 to ManufacturerAccess() to enable raw CC output on ManufacturerData().
- 3. Read Coulomb Counter Offset Samples from data flash.
- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab the ADC conversion readings of current from ManufacturerData():
 - ADC_{CC} = AAaa of **ManufacturerData()**, is ADC_{CC} < 0x8000? If yes, use ADC_{CC}; otherwise, ADC_{CC} = AAaa 0xFFFF 0x0001.
- 6. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments, which indicates updated values.
 - ADC_{cc} = [ADC_{cc}(reading n) + ... + ADC_{cc}(reading 1)]/n
- 7. Calculate gain values:

$$CC Gain = \frac{Icc}{\left(Board \ Offset\right) + (CC \ Offset)}$$

$$ADCcc - \frac{\left(Board \ Offset\right) + (CC \ Offset)}{\left(Coulomb \ Counter \ Offset \ Samples\right)}$$

$$Capacity \ Gain = CC \ Gain * 298261.6178$$

- 8. Update the data flash with CC Gain, Capacity Gain.
- 9. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.7 Temperature Calibration

2.7.1 Internal Temperature Sensor Calibration (Option 1)

- 1. Apply a known temperature in 0.1°C.
 - Make sure temperature Temp_{TINT} is applied to the device.
- 2. Enable TINT as the SBS temperature source by setting the Misc Configuration bit 7 to 1.

- 3. Grab the reported temperature from the SBS temperature.
- 4. Calculate temperature offset: $TINT \ offset = TEMP_{TINT} - TINT + TINT \ offset_{old}$
- 5. Update the data flash with the calculated value.
- Re-check the current reading. Repeat the steps if the readings are not accurate.

2.7.2 Internal Temperature Sensor Calibration (Option 2)

- 1. Apply a known temperature in 0.1°C.
 - Make sure temperature $Temp_{TINT}$ is applied to the device.
- 2. Read Int Coeff 1, Int Coeff 2, Int Coeff 3, Int Coeff 4 from data flash.
- 3. Send 0xF081 or 0xF082 to ManufacturerAccess() to enable raw cell voltage output on ManufacturerData().
- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab the ADC conversion readings of temperature from Temperature():
 - ADC_{TINT} = FFff of **ManufacturerData()**, is ADC_{INT} < 0x8000? If yes, use ADC_{TINT}; otherwise, $ADC_{TINT} = FFff - 0xFFFF - 0x0001.$
- 6. To average several readings for higher accuracy, poll ManufacturerData() until ZZ increments, which indicates updated values.
 - $ADC_{TINT} = [ADC_{TINT}(reading n) + ... + ADC_{TINT}(reading 1)]/n$
- 7. Calculate temperature offset:

$$A = ADC_{TINT} / 2^{16}$$

$$T_{TINT} = ((INT\ Coeff\ 1) *_A^3 + (INT\ Coeff\ 2) *_A^2 + (INT\ Coeff\ 3) *_A + (INT\ Coeff\ 4)) *_0.1 - 273.15$$

$$Internal\ Temperature\ Offset = TEMP_{TINT} - T_{TINT}$$

- 8. Update the data flash with the Internal Temperature Offset.
- 9. Re-check the temperature reading. Repeat the steps if the readings are not accurate.

2.7.3 TS1 Calibration (Option 1)

- 1. Apply a known temperature in 0.1°C.
 - Make sure temperature Temp_{TS1} is applied to the thermistor connected to the TS1 pin.
- 2. Enable TS1 as the SBS temperature source by setting the Misc Configuration bit 7 to 0.
- 3. Grab the reported temperature from the SBS temperature.
- 4. Calculate the temperature offset: $TS1 \ offset = TEMP_{TS1} - TS1 + TS1 \ offset_{old}$
- 5. Update the data flash with the calculated value.
- 6. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.7.4 TS1 Calibration (Option 2)

- 1. Apply a known temperature in 0.1°C.
 - Make sure temperature Temp_{TS1} is applied to the thermistor connected to the TS1 pin.
- 2. Read Coeff a1, Coeff a2, Coeff a3, Coeff a4, Coeff b1, Coeff b2, Coeff b3, Coeff b4 from data flash.
- 3. Send 0xF081 or 0xF082 to ManufacturerAccess() to enable raw cell voltage output on ManufacturerData().
- 4. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 5. Grab the ADC conversion readings of temperature from ManufacturerData():
 - ADC_{TS1}= GGgg of **ManufacturerData()**, is ADC_{TS1} < 0x8000? If yes, use ADC_{TS1}; otherwise, $ADC_{TS1} = GGgg - 0xFFFF - 0x0001.$
- 6. To average several readings for higher accuracy, poll ManufacturerData() until ZZ increments, which

indicates updated values.

7. Calculate temperature offset:

$$A = \frac{1}{2^{15}}$$

$$B = \frac{A}{(Coeff\ A1)^*A^{4} + (Coeff\ A2)^*A^{3} + (Coeff\ A3)^*A^{2} + (Coeff\ A4)^*A + (Coeff\ A5)^{4}}^{2}$$

$$T_{TS1} = ((Coeff\ B1)^*B^{3} + (Coeff\ B2)^*B^{2} + (Coeff\ B3)^*B^{1} + (Coeff\ B4))^*0.1 - 273.15$$
External Temperature Offset = TEMP_{TS1} - T_{TS1}

- 8. Update the data flash with the calculated External 1 Temperature Offset.
- 9. Re-check the temperature reading. Repeat the steps if the readings are not accurate.

2.7.5 TS2 Calibration (Option 1)

- 1. Apply a known temperature in 0.1°C.
 - Make sure temperature Temp_{TS2} is applied to the thermistor connected to the TS2 pin.
- 2. Enable TS2 by setting the Secondary Thermistor to 1.
- 3. Grab the reported temperature from the extended command 0x7D.
- 4. Calculate temperature offset: $TS2 \ offset = TEMP_{TS2} TS2 + TS2 \ offset_{old}$
- 5. Update the data flash with the calculated value.
- 6. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.7.6 TS2 Calibration (Option 2)

- 1. Apply a known temperature in 0.1°C.
 - Make sure temperature Temp_{TS2} is applied to the thermistor connected to the TS2 pin.
- 2. Read Coeff a1, Coeff a2, Coeff a3, Coeff a4, Coeff b1, Coeff b2, Coeff b3, Coeff b4 from data flash based on TS2 configuration to cell or FET temperature.
- 3. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 4. Grab ADC conversion readings of temperature from ManufacturerData():
 - ADC_{TS2} = HHhh of ManufacturerData(), is ADC_{TS2} < 0x8000? If yes use ADC_{TS2}, otherwise ADC_{TS2} =
 -(0xFFFF HHhh + 0x0001)
- 5. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments, which indicates updated values.
 - ADC_{TS2} = [ADC_{TS2}(reading n) + ... + ADC_{TS2}(reading 1)]/n
- 6. Calculate temperature offset:

$$A = \frac{ADC_{TS2}}{2^{15}}$$

$$B = \frac{A}{(CoeffA1)^*A^4 + (CoeffA2)^*A^3 + (CoeffA3)^*A^2 + (CoeffA4)^*A + (CoeffA5)^*}^2 2^{14}$$

$$T_{TS2} = ((Coeff B1)^*B^3 + (Coeff B2)^*B^2 + (Coeff B3)^*B^1 + (Coeff B4))^*0.1 - 273.15$$
External 2 Temperature Offset = TEMP_{TS2} - T_{TS2}

- 7. Update the data flash with calculated with External 2 Temperature Offset.
- 8. Re-check the temperature reading. Repeat the steps if the readings are not accurate.

2.7.7 TS3 Calibration (Option 1)

- 1. Apply a known temperature in 0.1°C
 - Make sure temperature Temp_{TS3} is applied to the thermistor connected to the TS3 pin.
- 2. Enable TS3 by setting the Secondary Thermistor to 1.
- 3. Grab the reported temperature from the extended command 0x7D.
- 4. Calculate temperature offset: $TS3 \ offset = TEMP_{TS3} - TS3 + TS3 \ offset_{old}$
- 5. Update the data flash with the calculated value.
- 6. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.7.8 TS3 Calibration (Option 2)

- 1. Apply a known temperature in 0.1°C
 - Make sure temperature Temp_{TS3} is applied to the thermistor connected to the TS3 pin.
- 2. Read Coeff a1, Coeff a2, Coeff a3, Coeff a4, Coeff b1, Coeff b2, Coeff b3, Coeff b4 from data flash based on TS3 configuration to cell or FET temperature.
- 3. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 4. Grab ADC conversion readings of temperature from ManufacturerData():
 - $ADC_{TS3} = IIii$ of ManufacturerData(), is $ADC_{TS3} < 0x8000$? If yes use ADC_{TS3} , otherwise $ADC_{TS3} = III$ Ilii - 0xFFFF - 0x0001
- 5. To average several readings for higher accuracy, poll ManufacturerData() until ZZ increments that indicates updates values.
 - $ADC_{TS3} = [ADC_{TS3}(reading n) + ... + ADC_{TS3}(reading 1)]/n$
- 6. Calculate temperature offset:

$$A = \frac{ADCIS3}{2^{15}}$$

$$B = \frac{A}{(CoeffA1)^*A^4 + (CoeffA2)^*A^3 + (CoeffA3)^*A^2 + (CoeffA4)^*A + (CoeffA5)}^*2^{14}$$

$$T_{TS3} = ((Coeff B1)^*B^3 + (Coeff B2)^*B^2 + (Coeff B3)^*B^1 + (Coeff B4))^*0.1 - 273.15$$
External 3 Temperature Offset = TEMP_{TS3} - T_{TS3}

- 7. Update the data flash with calculated with External 3 Temperature Offset.
- 8. Re-check the temperature reading. Repeat the steps if the readings are not accurate.

2.7.9 TS4 Calibration (Option 1)

- Apply a known temperature in 0.1°C
 - Make sure temperature Temp_{TS4} is applied to the thermistor connected to the TS4 pin.
- 2. Enable TS4 by setting the Secondary Thermistor to 1.
- 3. Grab the reported temperature from the extended command 0x7D.
- 4. Calculate temperature offset: $TS4 \ offset = TEMP_{TS4} - TS4 + TS4 \ offset_{old}$
- 5. Update the data flash with the calculated value.
- 6. Re-check the current reading. Repeat the steps if the readings are not accurate.

2.7.10 TS4 Calibration (Option 2)

- 1. Apply a known temperature in 0.1°C
 - Make sure temperature Temp_{TS4} is applied to the thermistor connected to the TS4 pin.

- 2. Read Coeff a1, Coeff a2, Coeff a3, Coeff a4, Coeff b1, Coeff b2, Coeff b3, Coeff b4 from data flash based on TS4 configuration to cell or FET temperature.
- 3. Poll ManufacturerData() until ZZ increments by 2 before reading data.
- 4. Grab ADC conversion readings of temperature from ManufacturerData():
 - ADC_{TS4} = JJjj of **ManufacturerData()**, is ADC_{TS4} < 0x8000? If yes use ADC_{TS4}, otherwise ADC_{TS4} = JJjj 0xFFFF 0x0001
- 5. To average several readings for higher accuracy, poll **ManufacturerData()** until ZZ increments that indicates updates values.
 - ADC_{TS4} = [ADC_{TS4}(reading n) + ... + ADC_{TS4}(reading 1)]/n
- 6. Calculate temperature offset:

$$A = \frac{ADC_{TS4}}{2^{15}}$$

$$B = \frac{A}{(CoeffA1)^*A^4 + (CoeffA2)^*A^3 + (CoeffA3)^*A^2 + (CoeffA4)^*A + (CoeffA5)^*}^2 2^{14}$$

$$T_{TS4} = ((Coeff B1)^*B^3 + (Coeff B2)^*B^2 + (Coeff B3)^*B^1 + (Coeff B4))^*0.1 - 273.15$$
External 4 Temperature Offset = TEMP_{TS4} - T_{TS4}

- 7. Update the data flash with calculated with External 4 Temperature Offset.
- 8. Re-check the temperature reading. Repeat the steps if the readings are not accurate.

Protections

3.1 Introduction

All of the protection items can be enabled or disabled under Settings/Enabled Protections 0–15 and Settings/Enabled Protections 16–31.

3.2 Cell Undervoltage Protection

The device can detect undervoltage in batteries and protect cells from damage by preventing further discharge.

Status	Condition	Action
Normal All Cell voltages in Voltages() > Threshold		 SafetyAlert()[CUV] = 0 BatteryStatus()[TDA] = 0
Alert	Any Cell voltages in Voltages() ≤ <i>Threshold</i>	 SafetyAlert()[CUV] = 1 If not charging, BatteryStatus()[TDA] = 1.
Trip	Any Cell voltages in Voltages() continuous ≤ Threshold for Delay duration	 SafetyAlert()[CUV] = 0 SafetyStatus()[CUV] = 1 BatteryStatus()[FD] = 1 Discharging is not allowed.
Recovery	SafetyStatus()[CUV] = 1 AND All Cell voltages in Voltages() > Recovery AND (CUV_RECOV_CHG = 0 OR (CUV_RECOV_CHG = 1 AND Charging Detected))	 SafetyStatus()[CUV] = 0 BatteryStatus()[FD] = 0 Discharging is allowed.

3.3 Cell Undervoltage Compensated Protection

The device can detect undervoltage in batteries and protect cells from damage by preventing further discharge. The protection is compensated by the Current() * CellResistance4..1.

Status	Condition	Action
Normal	All Cell voltages in Voltages() – Current() * Cell Resistance > Threshold	SafetyAlert()[CUVC] = 0BatteryStatus()[TDA] = 0
Alert	Any Cell voltages in Voltages() – Current() * Cell Resistance ≤ Threshold	 SafetyAlert()[CUVC] = 1 If not charging, BatteryStatus()[TDA] = 1.
Trip	Any Cell voltages in Voltages() – Current() * Cell Resistance continuous ≤ Threshold for Delay duration	 SafetyAlert()[CUVC] = 0 SafetyStatus()[CUVC] = 1 BatteryStatus()[FD] = 1 BatteryStatus()[TDA] = 0 Discharging is not allowed.
Recovery	SafetyStatus()[CUVC] = 1 AND All Cell voltages in Voltages() > Recovery AND (CUV_RECOV_CHG = 0 OR (CUV_RECOV_CHG = 1 AND Charging Detected))	 SafetyStatus()[CUVC] = 0 BatteryStatus()[FD] = 0 Discharging is allowed.

3.4 Cell Overvoltage Protection

The device can detect cell overvoltage in batteries and protect cells from damage by preventing further charging.

Status	Condition	Action
Normal	Temperature() ≤ T2 AND all Cell voltages in Voltages() < Threshold Low Temp	SafetyAlert()[COV] = 0
Normal	T2 < Temperature() ≤ T3 AND all Cell voltages in Voltages() < Threshold Standard Temp	SafetyAlert()[COV] = 0
Normal	T3 < Temperature() AND all Cell voltages in Voltages() < Threshold High Temp	SafetyAlert()[COV] = 0
Normal	T5 < Temperature() ≤ T6 AND all Cell voltages in Voltages() < Threshold Rec Temp	SafetyAlert()[COV] = 0
Alert	Temperature() ≤ T2 AND any Cell voltages in Voltages() ≥ Threshold Low Temp	SafetyAlert()[COV] = 1
Alert	T2 < Temperature() ≤ T3 AND any Cell voltages in Voltages() ≥ Threshold Standard Temp	SafetyAlert()[COV] = 1
Alert	T3 < Temperature() AND any Cell voltages in Voltages() ≥ Threshold High Temp	SafetyAlert()[COV] = 1
Alert	T5 < Temperature() ≤ T6 AND any Cell voltages in Voltages() ≥ Threshold Rec Temp	SafetyAlert()[COV] = 1
Trip	Temperature() ≤ T2 AND any Cell voltages in Voltages() continuous ≥ Threshold Low Temp for Delay duration	 SafetyAlert()[COV] = 0 SafetyStatus()[COV] = 1 If charging, BatteryStatus()[TCA] = 1 If charging, BatteryStatus()[OCA] = 1 Charging is not allowed.
Trip	T2 < Temperature() ≤ T3 AND any Cell voltages in Voltages() <i>continuous</i> ≥ Threshold Standard Temp for Delay duration	 SafetyAlert()[COV] = 0 SafetyStatus()[COV] = 1 If charging, BatteryStatus()[TCA] = 1 If charging, BatteryStatus()[OCA] = 1 Charging is not allowed.
Trip	T3 < Temperature() AND any Cell voltages in Voltages() continuous ≥ Threshold High Temp for Delay duration	 SafetyAlert()[COV] = 0 SafetyStatus()[COV] = 1 If charging, BatteryStatus()[TCA] = 1 If charging, BatteryStatus()[OCA] = 1 Charging is not allowed.
Trip	T5 < Temperature() ≤ T6 AND any Cell voltages in Voltages() continuous ≥ Threshold Rec Temp for Delay duration	 SafetyAlert()[COV] = 0 SafetyStatus()[COV] = 1 If charging, BatteryStatus()[TCA] = 1 If charging, BatteryStatus()[OCA] = 1 Charging is not allowed.
Recovery	SafetyStatus()[COV] = 1 AND Temperature() ≤ T2 AND all Cell voltages in Voltages() < Recovery Low Temp	 SafetyStatus()[COV] = 0 BatteryStatus()[TCA] = 0 BatteryStatus()[OCA] = 0 Charging is allowed.
Recovery	SafetyStatus()[COV] = 1 AND T2 < Temperature() ≤ T3 AND all Cell voltages in Voltages() < Recovery Standard Temp	 SafetyStatus()[COV] = 0 BatteryStatus()[TCA] = 0 BatteryStatus()[OCA] = 0 Charging is allowed.
Recovery	SafetyStatus()[COV] = 1 AND T3 < Temperature() AND all Cell voltages in Voltages() < Recovery High Temp	 SafetyStatus()[COV] = 0 BatteryStatus()[TCA] = 0 BatteryStatus()[OCA] = 0 Charging is allowed.

Status	Condition	Action
Recovery	SafetyStatus()[COV] = 1 AND T5 < Temperature() ≤ T6 AND all Cell voltages in Voltages() < Recovery Rec Temp	 SafetyStatus()[COV] = 0 BatteryStatus()[TCA] = 0 BatteryStatus()[OCA] = 0 Charging is allowed.

3.5 Overcurrent in Charge Protection

The device has two independent overcurrent in charge protections that can be set to different current and delay thresholds to accommodate different charging behaviors.

Status	Condition	Action
Normal	Current() < OCC1:Threshold	SafetyAlert()[OCC1] = 0
Normal	Current() < OCC2:Threshold	SafetyAlert()[OCC2] = 0
Alert	Current() ≥ OCC1:Threshold	SafetyAlert()[OCC1] = 1
Alert	Current() ≥ OCC2:Threshold	SafetyAlert()[OCC2] = 1
Trip	Current() continuous ≥ OCC1:Threshold for OCC1:Delay duration	 SafetyAlert()[OCC1] = 0 SafetyStatus()[OCC1] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. Start recovery delay timer
Trip	Current() continuous ≥ OCC2:Threshold for OCC2:Delay duration	 SafetyAlert()[OCC2] = 0 SafetyStatus()[OCC2] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. Start recovery delay timer
Recovery	[SafetyStatus()[OCC1] = 1 OR SafetyStatus()[OCC2] = 1] AND Current() < OCC:Recovery Threshold AND recovery delay timer running > OCC:Recovery Delay Time	 SafetyStatus()[OCC1] = 0 SafetyStatus()[OCC2] = 0 BatteryStatus()[TCA] = 0 Charging is allowed.

3.6 Overcurrent in Discharge Protection

The device has two independent overcurrent in discharge protections that can be set to different current and delay thresholds to accommodate different load behaviors.

Status	Condition	Action
Normal	Current() > OCD1:Threshold	SafetyAlert()[OCD1] = 0
Normal	Current() > OCD2:Threshold	SafetyAlert()[OCD2] = 0
Alert	Current() ≤ OCD1:Threshold	SafetyAlert()[OCD1] = 1
Alert	Current() ≤ OCD2:Threshold	SafetyAlert()[OCD2] = 1
Trip	Current() continuous ≤ OCD1:Threshold for OCD1:Delay duration	 SafetyAlert()[OCD1] = 0 SafetyStatus()[OCD1] = 1 Discharging is not allowed. Start recovery delay timer
Trip	Current() continuous ≤ OCD2:Threshold for OCD2:Delay duration	 SafetyAlert()[OCD2] = 0 SafetyStatus()[OCD2] = 1 Discharging is not allowed. Start recovery delay timer
Recovery	[SafetyStatus()[OCD1] = 1 OR SafetyStatus()[OCD2] = 1] AND Current() > OCD:Recovery Threshold and recovery delay timer running > OCD:Recovery Delay Time	 SafetyStatus()[OCD1] = 0 SafetyStatus()[OCD2] = 0 Discharging is allowed.

Hardware-Based Protection www.ti.com

3.7 Hardware-Based Protection

The device has three main hardware-based protections—OLD, SCC, and SCD—with adjustable current and delay time. The data flash protection Threshold and Delay settings are documented in Appendix A. By setting the [RSNS] bit under Settings:AFE State Control provide an option to divide the Threshold value into half. The Threshold settings are in mV, hence, the actual current that will trigger the protection is based on the RSNS resistor used in the schematic design.

All the hardware-based protections provides a short term Trip/Alert/Recovery protection to account for a current spike as well as a Trip/Alert/Latch protection for true faulty condition. The latch feature also stops the FETs from toggling on and off continuously, preventing damage to the FETs.

In general, when a fault is Detected after the Delay time, both CHG and DSG FETs will be disabled (Trip stage). An internal fault counter will be incremented (Alert stage). Since both FETs are off, the current will drop to 0 mA, after Recovery time, the CHG and DSG FETs will be turned on again (Recovery stage).

If the alert is caused by a current spike, the fault count will be decremented after Counter Dec Delay time. If this is a true faulty condition, the device will enter the Trip stage after Delay time, and repeat the Trip/Alert/Recovery cycle. The internal fault counter is incremented every time the device goes through the Trip/Alert/Recovery cycle. Once the internal fault counter hits the Latch Limit, the protection enters a Latch stage and the fault will only be cleared through the Latch Reset condition.

The Trip/Alert/Recovery/Latch stages are documented in each hardware-based protection sections below.

3.7.1 Overload in Discharge Protection

The device has a hardware-based overload in discharge protection with adjustable current and delay.

Status	Condition	Action
Normal	Current() > (Threshold / RSNS)	SafetyAlert()[OLD] = 0, if OLD counter = 0
Trip	Current() continuous ≤ (Threshold / RSNS) for Delay duration	 SafetyStatus()[OLD] = 1 CHG FET and DSG FET disabled Increment OLD counter
Alert	OLD counter > 0	 SafetyAlert()[OLD] = 1 Decrement OLD counter by one after each Counter Dec Delay period
Recovery	SafetyStatus()[OLD] = 1 AND SafetyStatus()[OLDL] = 0 AND Recovery duration wait time	 SafetyStatus()[OLD] = 0 CHG FET and DSG FET return to normal
Latch	OLD counter ≥ Latch Limit	 SafetyStatus()[OLD] = 0 SafetyStatus()[OLDL] = 1 Reset OLD counter Disable recovery method Enable reset method
Latch Reset (NR = 0)	SafetyStatus()[OLDL] = 1 AND System Configuration[NR] = 0 AND Low-high-low transition on PRES pin	 SafetyStatus()[OLDL] = 0 CHG FET and DSG FET return to normal Disable reset method Enable recovery method
Latch Reset (NR = 1)	SafetyStatus()[OLDL] = 1 AND System Configuration[NR] = 1 AND Reset duration wait time	 SafetyStatus()[OLDL] = 0 CHG FET and DSG FET return to normal Disable reset method Enable recovery method

3.7.2 Short Circuit in Charge Protection

The device has a hardware-based short circuit in charge protection with adjustable current and delay.

Status	Condition	Action
Normal	Current() < (Threshold[2:0] / RSNS)	SafetyAlert()[SCC] = 0, if SCC counter = 0
Trip	Current() continuous ≥ (Threshold[2:0] / RSNS) for Threshold[7:4] duration	 SafetyStatus()[SCC] = 1 If charging, BatteryStatus()[TCA] = 1 CHG FET and DSG FET disabled Increment SCC counter
Alert	SCC counter > 0	 SafetyAlert()[SCC] = 1 Decrement SCC counter by one after each Counter Dec Delay period
Recovery	SafetyStatus()[SCC] = 1 AND SafetyStatus()[SCCL] = 0 AND Recovery duration wait time	 SafetyStatus()[SCC] = 0 BatteryStatus()[TCA] = 0 CHG FET and DSG FET return to normal
Latch	SCC counter ≥ Latch Limit	 SafetyStatus()[SCC] = 0 SafetyStatus()[SCCL] = 1 Reset SCC counter Disable recovery method Enable reset method
Latch Reset (NR = 0)	SafetyStatus()[SCCL] = 1 AND System Configuration[NR] = 0 AND Low-high-low transition on PRES pin	 SafetyStatus()[SCCL] = 0 BatteryStatus()[TCA] = 0 CHG FET and DSG FET return to normal Disable reset method Enable recovery method
Latch Reset (NR = 1)	SafetyStatus()[SCCL] = 1 AND System Configuration[NR] = 1 AND Reset duration wait time	 SafetyStatus()[SCCL] = 0 BatteryStatus()[TCA] = 0 CHG FET and DSG FET return to normal Disable reset method Enable recovery method

3.7.3 Short Circuit in Discharge Protection

The device has a hardware-based short circuit in discharge protection with adjustable current and delay.

Status	Condition	Action
Normal	Current() > (Threshold[2:0] / RSNS)	SafetyAlert()[SCD] = 0, if SCD counter = 0
Trip	Current() continuous ≤ (Threshold[2:0] / RSNS) for Threshold[7:4] duration	SafetyStatus()[SCD] = 1 CHG FET and DSG FET disabled Increment SCD counter
Alert	SCD counter > 0	SafetyAlert()[SCD] = 1 Decrement SCD counter by one after each Counter Dec Delay period
Recovery	SafetyStatus()[SCD] = 1 AND SafetyStatus()[SCDL] = 0 AND Recovery duration wait time	SafetyStatus()[SCD] = 0 CHG FET and DSG FET return to normal
Latch	SCD counter ≥ Latch limit	SafetyStatus()[SCD] = 0 SafetyStatus()[SCDL] = 1 Reset SCD counter Disable recovery method Enable reset method

Status	Condition	Action
Latch Reset (NR = 0)	SafetyStatus()[SCDL] = 1 AND System Configuration[NR] = 0 AND Low-high-low transition on PRES pin	 SafetyStatus()[SCDL] = 0 CHG FET and DSG FET return to normal Disable reset method Enable recovery method
Latch Reset (NR = 1)	SafetyStatus()[SCCL] = 1 AND System Configuration[NR] = 1 AND Reset duration wait time	 SafetyStatus()[SCDL] = 0 CHG FET and DSG FET return to normal Disable reset method Enable recovery method

3.8 Overtemperature in Charge Protection

The device has an overtemperature protection for cells in charge direction.

Status	Condition	Action
Normal	Cell Temperature in Temperatures() < Threshold AND charging	SafetyAlert()[OTC] = 0
Alert	Cell Temperature in Temperatures() ≥ Threshold AND charging	SafetyAlert()[OTC] = 1
Trip	Cell Temperature in Temperatures() ≥ Threshold AND charging for Delay duration	 SafetyAlert()[OTC] = 0 SafetyStatus()[OTC] = 1 BatteryStatus()[OTA] = 1 If charging, BatteryStatus()[TCA] = 1 Charging Disabled if Temperature Configuration[OTFET] = 1
Recovery	SafetyStatus()[OTC] AND Cell Temperature in Temperatures() < Recovery	 SafetyStatus()[OTC] = 0 BatteryStatus()[OTA] = 0 BatteryStatus()[TCA] = 0 Charging is allowed if Temperature Configuration[OTFET] = 1.

3.9 Overtemperature in Discharge Protection

The device has an overtemperature protection for cells in discharge direction.

Status	Condition	Action
Normal	Cell Temperature in Temperatures() < Threshold AND discharging	SafetyAlert()[OTD] = 0
Alert	Cell Temperature in Temperatures() ≥ Threshold AND discharging	SafetyAlert()[OTD] = 1
Trip	Cell Temperature in Temperatures() ≥ Threshold AND discharging for Delay duration	 SafetyAlert()[OTD] = 0 SafetyStatus()[OTD] = 1 BatteryStatus()[OTA] = 1 Discharging Disabled if Temperature Configuration[OTFET] = 1
Recovery	SafetyStatus()[OTD] AND Cell Temperature in Temperatures() < Recovery	 SafetyStatus()[OTD] = 0 BatteryStatus()[OTA] = 0 Discharging is allowed if Temperature Configuration[OTFET] = 1.

3.10 Overtemperature FET Protection

The device has an overtemperature protection to limit the FET temperature.

Status	Condition	Action
Normal	FET Temperature in Temperatures() < Threshold	SafetyAlert()[OTF] = 0
Alert	FET Temperature in Temperatures() ≥ Threshold	SafetyAlert()[OTF] = 1
Trip	FET Temperature in Temperatures() ≥ Threshold for Delay duration	 SafetyAlert()[OTF] = 0 SafetyStatus()[OTF] = 1 BatteryStatus()[OTA] = 1 CHG FET and DSG FET off if Temperature Configuration[OTFET] = 1
Recovery	SafetyStatus()[OTF] AND FET Temperature in Temperatures() < Recovery	 SafetyStatus()[OTD] = 0 BatteryStatus()[OTA] = 0 CHG FET and DSG FET return to normal

3.11 SBS Host Watchdog Protection

The device can check for periodic communication over SBS and prevent usage of the battery pack if no valid communication is Detected.

Status	Condition	Action
Trip	No valid SBS transaction for Delay duration	SafetyStatus()[HWD] = 1Charging disabled, CHG FET off
Recovery	Valid SBS transaction Detected	 SafetyStatus()[HWD] = 0 CHG FET returns to normal, charging is allowed.

3.12 Pre-Charge Timeout Protection

The device can measure the pre-charge time and stop charging if it exceeds the adjustable period.

Status	Condition	Action				
Enable	Current() > Charge Threshold AND ChargingStatus()[PV] = 1	 Start PTO timer SafetyAlert()[PTO] = 1 SafetyAlert()[PTOS] = 0 				
Suspend or Recovery	Current() < Suspend Threshold	 Stop PTO timer SafetyAlert()[PTO] = 1 SafetyAlert()[PTOS] = 1 				
Trip	PTO time > Delay	 Stop PTO timer SafetyAlert()[PTO] = 0 SafetyStatus()[PTO] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. 				
Reset	SafetyStatus()[PTO] = 1 AND System Configuration[NR] = 0 AND (Discharge by an amount of Reset OR low-high-low transition on PRES)	 Stop and reset PTO timer SafetyAlert()[PTO] = 0 SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 				
Reset	SafetyStatus()[PTO] = 1 AND System Configuration[NR] = 1 AND (Discharge by an amount of Reset)	 Stop and reset PTO timer SafetyAlert()[PTO] = 0 SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 				

3.13 Fast Charge Timeout Protection

The device can measure the charge time and stop charging if it exceeds the adjustable period.

Status	Condition	Action			
Enable	Current() > Charge Threshold AND (ChargingStatus()[LV] = 1 OR ChargingStatus()[MV] = 1 OR ChargingStatus()[HV] = 1)	 Start CTO timer SafetyAlert()[CTO] = 1 SafetyAlert()[CTOS] = 0 			
Suspend or Recovery	Current() < Suspend Threshold	 Stop CTO timer SafetyAlert()[CTO] = 1 SafetyAlert()[CTOS] = 1 			
Trip	CTO time > <i>Delay</i>	 Stop CTO timer SafetyAlert()[CTO] = 0 SafetyStatus()[CTO] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. 			
Reset	SafetyStatus()[CTO] = 1 AND System Configuration[NR] = 0 AND (Discharge by an amount of Reset OR low-high-low transition on PRES)	 Stop and reset CTO timer SafetyAlert()[CTO] = 0 SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 			
Reset	SafetyStatus()[CTO] = 1 AND System Configuration[NR] = 1 AND (Discharge by an amount of Reset)	 Stop and reset CTO timer SafetyAlert()[CTO] = 0 SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 			

3.14 Overcharge Protection

The device can prevent continuing charging if the pack is charged in excess over FullChargeCapacity().

Status	Condition	Action			
Normal	RemainingCapacity() < FullChargeCapacity()	SafetyAlert()[OC] = 0			
Alert	RemainingCapacity() ≥ FullChargeCapacity()	SafetyAlert()[OC] = 1			
Trip	RemainingCapacity() ≥ FullChargeCapacity() + Threshold	 SafetyAlert()[OC] = 0 SafetyStatus()[OC] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. 			
Recovery	SafetyStatus()[OC] = 1 System Configuration[NR] = 0 AND (Low-high-low transition on PRES pin	 SafetyStatus()[OC] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. SafetyStatus()[OC] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 			
Recovery	SafetyStatus()[OC] =1 System Configuration[NR] = 1 AND continuous discharge of Recovery OR RemainingStateOfCharge() < RSOC Recovery				

3.15 Over-ChargingVoltage() Protection

The device can stop charging if it measures a difference between the requested **ChargingVoltage()** and the delivered voltage from the charger.

Status	Condition	Action			
Normal	Voltage() < ChargingVoltage() + CHGV:Threshold	SafetyAlert()[CHGV] = 0			
Alert	Voltage() ≥ ChargingVoltage() + CHGV:Threshold	SafetyAlert()[CHGV] = 1			
Trip	Voltage() continuous ≥ ChargingVoltage() + CHGV:Threshold for CHGV:Delay period	 SafetyAlert()[CHGV] = 0 SafetyStatus()[CHGV] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. 			
Recovery	SafetyStatus()[CHGV] = 1 AND Voltage() ≤ ChargingVoltage() + CHGV Recovery	 SafetyStatus()[CHGV] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 			

3.16 Over-ChargingCurrent() Protection

The device can stop charging if it measures a difference between the requested **ChargingCurrent()** and the delivered current from the charger.

Status	Condition	Action				
Normal	Current() < ChargingCurrent() + CHGC:Threshold	SafetyAlert()[CHGC] = 0				
Alert	Current() ≥ ChargingCurrent() + CHGC:Threshold	SafetyAlert()[CHGC] = 1				
Trip	Current() continuous ≥ ChargingCurrent() + CHGC:Threshold for CHGC:Delay period	 SafetyAlert()[CHGC] = 0 SafetyStatus()[CHGC] = 1 If charging, BatteryStatus()[TCA] = 1 Charging is not allowed. 				
Recovery	SafetyStatus()[CHGC] = 1 AND Current() ≤ ChargingCurrent() + CHGC Recovery	 SafetyStatus()[CHGC] = 0 BatteryStatus()[TCA] = 0 Charging is allowed. 				

Advanced Charge Algorithm

4.1 Introduction

The device can change value of **ChargingVoltage()** and **ChargingCurrent()** based on **Temperature()** and **Cell Voltage1..4()**. Its flexible charging algorithm is JEITA compatible and can also meet ATL cell charge requirements. The **ChargingStatus()** register shows the state of the charging algorithm.

4.2 Charge Temperature Ranges

The measured temperature is segmented into several temperature ranges. The charging algorithm adjusts **ChargingCurrent()** and **ChargingVoltage()** according to the temperature range. The temperature range need to be set to following:

 $T1 \le T2 \le T5 \le T6 \le T3 \le T4$

Status	Condition	Action		
Under Temp	Temperature() < T1	ChargingStatus()[UT] = 1		
Low Temp	T1 < Temperature() < T2	ChargingStatus()[LT] = 1		
Standard Temp Low	T2 < Temperature() < T5	ChargingStatus()[STL] = 1		
Recommended	T5 < Temperature() < T6	ChargingStatus()[RT] = 1		

Voltage Range www.ti.com

Status	Condition	Action		
Standard Temp High	T6 < Temperature() < T3	ChargingStatus()[STH] = 1		
High Temp	T3 < Temperature() < T4	ChargingStatus()[HT] = 1		
Over Temp	T4 < Temperature()	ChargingStatus()[OT] = 1		

4.3 Voltage Range

The measured cell voltage is segmented into several voltage ranges. The charging algorithm adjusts **ChargingCurrent()** according to the temperature range and voltage range. The voltage range need to be set to following:

Charging Voltage Low \leq Charging Voltage Med \leq Charging Voltage High \leq x Temp Charging: Voltage

Status	Condition	Action				
Pre-Charge	Any Cell Voltages in Voltages() < Charging Voltage Low	ChargingStatus()[PV] = 1				
Low	Charging Voltage Low < all Cell Voltages in Voltages() OR any Cell Voltages in Voltages() < Charging Voltage Med	ChargingStatus()[LV] = 1				
Medium	Charging Voltage Med < all Cell Voltages in Voltages() OR any Cell Voltages in Voltages() < Charging Voltage High	ChargingStatus()[MV] = 1				
High	Charging Voltage High < all Cell Voltages in Voltages()	ChargingStatus()[HV] = 1				

A voltage hysteresis setting is available, and is applied when the voltage decreases.

4.4 Charging Current

The ChargingCurrent() value will change depending on charge algorithm.

ChargingStatus()							Action			
UT	LT	STL/STH	HT	RT	ОТ	PV	LV	MV	HV	Action
1	0	0	0	0	0	х	х	х	х	ChargingCurrent() = 0
0	х	х	х	х	0	1	0	0	0	ChargingCurrent() = PCHG:Current
0	1	0	0	0	0	0	1	0	0	ChargingCurrent() = Low Temp Charging:Current Low
0	1	0	0	0	0	0	0	1	0	ChargingCurrent() = Low Temp Charging:Current Med
0	1	0	0	0	0	0	0	0	1	ChargingCurrent() = Low Temp Charging:Current High
0	0	1	0	0	0	0	1	0	0	ChargingCurrent() = Standard Temp Charging:Current Low
0	0	1	0	0	0	0	0	1	0	ChargingCurrent() = Standard Temp Charging:Current Med
0	0	1	0	0	0	0	0	0	1	ChargingCurrent() = Standard Temp Charging:Current High
0	0	0	1	0	0	0	1	0	0	ChargingCurrent() = Standard Temp Charging:Current Low
0	0	0	1	0	0	0	0	1	0	ChargingCurrent() = Standard Temp Charging:Current Med
0	0	0	1	0	0	0	0	0	1	ChargingCurrent() = Standard Temp Charging:Current High
0	0	0	0	1	0	0	1	0	0	ChargingCurrent() = Rec Temp Charging:Current Low
0	0	0	0	1	0	0	0	1	0	ChargingCurrent() =Rec Temp Charging:Current Med

Charging Voltage www.ti.com

	ChargingStatus()							Action		
UT	LT	STL/STH	HT	RT	ОТ	PV	LV	MV	HV	Action
0	0	0	0	1	0	0	0	0	1	ChargingCurrent() = Rec Temp Charging:Current High
0	0	0	0	0	1	х	х	х	х	ChargingCurrent() = 0

4.5 **Charging Voltage**

The ChargingVoltage() will change depending on the charge algorithm.

	ChargingStatus()					Action
UT	LT	STL/STH	HT	RT	ОТ	- Action
1	0	0	0	0	0	ChargingVoltage() = 0
0	1	0	0	0	0	ChargingVoltage() = Low Temp Charging:Voltage * Number of cells
0	0	1	0	0	0	ChargingVoltage() = Standard Temp Charging: Voltage * Number of cells
0	0	0	1	0	0	ChargingVoltage() = High Temp Charging:Voltage * Number of cells
0	0	0	0	1	0	ChargingVoltage() = Rec Temp Charging:Voltage * Number of cells
0	0	0	0	0	1	ChargingCurrent() = 0

A temperature hysteresis setting is available, and is applied when temperature decreases.

4.6 **Valid Charge Termination**

The charge termination condition has to be met to enable valid charge termination.

Status	Condition	Action
Charging	GaugingStatus()[REST] = 0 AND GaugingStatus()[DSG] = 0	Charge Algorithm active
Valid Charge Termination	(Charging AND AverageCurrent() continuous < Charge Term Taper Current AND Voltage() > ChargingVoltage()/Number of Cells + Charge Term Voltage AND Δcharge > Taper Charge) for two consecutive 40-s periods	 ChargingStatus()[VCT] sets If SBS Configuration[FCSETVCT], BatteryStatus[FC] = 1 If SBS Configuration[TCASETVCT], BatteryStatus[TCA] = 1 If BatteryStatus[TCA], ChargingStatus[MCHG] = 1 If ChargingStatus[MCHG]: If Charging Configuration[CHGFET] = 1, CHG and PCHG FET off AND ChargingCurrent() = 0 If Charging Configuration[CHGFET] = 0, CHG FET active and ChargingCurrent() = MaintainenceCurrent

4.7 **Charge Inhibit**

The device can prevent start of charging at high and low temperatures to prevent damage of the cells.

Status	Condition	Action
Normal	T1 < Temperature() < T3	 ChargingStatus()[IN] = 0 ChargingVoltage() = charging algorithm ChargingCurrent() = charging algorithm
Trip	Temperature() < T1	 ChargingStatus()[IN] = 1 ChargingVoltage() = 0 ChargingCurrent() = 0 No charging is allowed if Charging Configuration[CHGIN] = 1.

www.ti.com Charge Suspend

Status	Condition	Action
Trip	Temperature() > T3 while no charging	 ChargingStatus()[IN] = 1 ChargingVoltage() = 0 ChargingCurrent() = 0 No charging is allowed if Charging Configuration[CHGIN] = 1.

Charge Suspend 4.8

The device can stop charging at high and low temperatures to prevent damage of the cells.

Status	Condition	Action
Normal	T1 < Temperature() < T4	 ChargingStatus()[SU] = 0 ChargingVoltage() = charging algorithm ChargingCurrent() = charging algorithm
Trip	Temperature() < T1	 ChargingStatus()[SU] = 1 ChargingVoltage() = 0 ChargingCurrent() = 0 No charging is allowed if Charging Configuration[CHGSU] = 1.
Trip	Temperature() > T4	 ChargingStatus()[SU] = 1 ChargingVoltage() = 0 ChargingCurrent() = 0 No charging is allowed if Charging Configuration[CHGSU] = 1.

4.9 ChargingVoltage() Rate of Change

The device can slope the value changes from one range to another to avoid jumping between different voltage ranges.

NOTE: The host needs to read ChargingVoltage() at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Trip	ChargingVoltage() Range Change	 ChargingStatus()[CVR] = 1 ChargingVoltage() = OldRange + n * (New Range – Old Range)/Voltage Rate, n = 1 Voltage Rate for Voltage Rate seconds

4.10 ChargingCurrent() Rate of Change

The device can slope the value changes from one range to another to avoid jumping between different current ranges.

NOTE: The host needs to read ChargingCurrent() at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Trip	ChargingCurrent() Range Change	 ChargingStatus()[CCR] = 1 ChargingCurrent() = OldRange + n * (New Range – Old Range)/Current Rate, n = 1 Current Rate for Current Rate seconds

4.11 Charging Loss Compensation

The device can modify **ChargingVoltage()** and **ChargingCurrent()** to compensate losses caused by the FETs, the fuse, and the sense resistor by measuring the cell voltages directly and adjusting **ChargingCurrent()** and **ChargingVoltage()** accordingly.

In constant current mode, the device can increase the **ChargingVoltage()** value to compensate the drop losses.

NOTE: The host must read **ChargingVoltage()** and/or **ChargingCurrent()** at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Normal	Current() > CCC Current Threshold AND Sum(Cell Voltages in Voltages()) = Charging algorithm voltage	 ChargingStatus()[CCC] = 0 ChargingVoltage() = Charge Algorithm
Active	Current() > CCC Current Threshold AND Sum(Cell Voltages in Voltages()) < Charging algorithm voltage	 ChargingStatus()[CCC] = 1 ChargingVoltage() = Charge Algorithm + [PackVoltage() - Sum(CellVoltages in Voltages())]
Limit	[PackVoltage() – Sum(Cell Voltages in Voltages())] > CCC Voltage Threshold	ChargingVoltage() = Charge Algorithm + CCC Voltage

Permanent Fail

5.1 Introduction

The device can permanently disable the use of the battery pack in case of a severe failure. The following actions in sequence are taken in permanent fail (PF) mode when the Settings:Manufacturing Status[PF_EN] bit is enabled. An individual PF event can be enabled and disabled with **Settings:Enabled PF0–15** and **Settings:Enabled PF16–31** even after [PF_EN] bit is enabled.

- 1. Precharge, charge, and discharge FETs are turned off.
- 2. The following SBS data is changed: If charging, BatteryStatus()[TCA] = 1, if not charging,BatteryStatus()[TDA] = 1, ChargingCurrent() = 0, ChargingVoltage() = 0.
- A backup of the internal AFE hardware registers are written to data flash: STATUS, STATE_CONTROL, OUTPUT_STATUS, FUNCTION_CONTROL, CELL_SEL, OCDV, OCDD, SCD1, SCD2
- 4. The black box data of the last three SafetyStatus() changes leading up to PF with time difference is written into data flash.
- 5. The cause of the permanent fail is logged into PFAlert and PFStatus.
- 6. The following SBS values are preserved in data flash for failure analysis:
 - SafetyAlert()
 - SafetyStatus()
 - PFAlert()
 - PFStatus()
 - OperationStatus()
 - ChargingStatus()
 - GaugingStatus()
 - Voltages()
 - Temperatures()
 - DOD()
- 7. Data flash writing is disabled, except subsequent PFStatus flags.
- 8. Subsequent PFs are appended to PFAlert and PFStatus in PF Status class. PF Status is also logged separately to the Black Box Recorder 1st, 2nd, and 3rd PF Status.
- 9. The FUSE pin is driven high if configured for specific failures.

5.2 Black Box Recorder

The black box recorder maintains the last three updates of **SafetyStatus()** in memory. In case of permanent failure, this information is written to data flash together with the first three updates of **PFStatus()** after the PF event.

NOTE: This information is useful in failure analysis, and can provide a full recording of the events and conditions leading up to the permanent failure.

If there were less than three safety events before PF, then some information will be left blank.

5.3 Cell Undervoltage Permanent Fail

The device can permanently disable the battery in case of severe low level of cell voltage.

Status	Condition	Action
Normal	All Cell voltages in Voltages() > Threshold	 PFAlert()[CUV] = 0 BatteryStatus()[TDA] = 0
Alert	Any Cell voltages in Voltages() ≤ Threshold	 PFAlert()[CUV] = 1 If not charging, BatteryStatus()[TDA] = 1.
Trip	Any Cell voltages in Voltages() continuous ≤ Threshold for Delay duration AND Enabled PF 0–15[CUV] = 1	 PFAlert()[CUV] = 0 PFStatus()[CUV] = 1 BatteryStatus()[FD] = 1 If not charging, BatteryStatus()[TDA] = 1.

5.4 Cell Overvoltage Permanent Fail

The device can permanently disable the battery in case of severe cell overvoltage.

Status	Condition	Action
Normal	All Cell voltages in Voltages() < Threshold	PFAlert()[COV] = 0
Alert	Any Cell voltages in Voltages() ≥ Threshold	PFAlert()[COV] = 1
Trip	Any Cell voltages in Voltages() continuous ≥ Threshold for Delay duration AND Enabled PF 0–15[COV] = 1	 PFAlert()[COV] = 0 PFStatus()[COV] = 1 If charging, BatteryStatus()[OCA] = 1

5.5 Copper Deposition Permanent Fail

The device can permanently disable the battery in case of severe low level of cell voltage. The copper deposition check checks cell voltages upon wake up from shutdown mode while keeping the charge and precharge FETs off until the check is complete.

Status	Condition	Action
Normal	All Cell voltages in Voltages() > Threshold	 PFAlert()[CUDEP] = 0 BatteryStatus()[TDA] = 0
Alert	Any Cell voltages in Voltages() ≤ Threshold	 PFAlert()[CUDEP] = 1 If not charging, BatteryStatus()[TDA] = 1.
Trip	Any Cell voltages in Voltages() continuous ≤ Threshold for Delay duration AND Enabled PF 0–15[CUDEP] = 1	 PFAlert()[CUDEP] = 0 PFStatus()[CUDEP] = 1 BatteryStatus()[FD] = 1 If not charging, BatteryStatus()[TDA] = 1.

5.6 Overtemperature Cell Permanent Fail

The device can permanently disable the battery pack in case of severe overtemperature of the cells.

Status	Condition	Action
Normal	Cell Temperature in Temperatures() < Threshold	PFAlert()[OTCE] = 0
Alert	Cell Temperature in Temperatures() ≥ Threshold	PFAlert()[OTCE] = 1
Trip	Cell Temperature in Temperatures() continuous ≥ Threshold for Delay duration AND Enabled PF 0–15[OTCE] = 1	 PFAlert()[OTCE] = 0 PFStatus()[OTCE] = 1 BatteryStatus()[OTA] = 1

5.7 Overtemperature FET Permanent Fail

The device can permanently disable the battery pack in case of severe overtemperature on the power FET.

Status	Condition	Action
Normal	FET Temperature in Temperatures() < Threshold	PFAlert()[OTF] = 0
Alert	FET Temperature in Temperatures() ≥ Threshold	PFAlert()[OTF] = 1
Trip	FET Temperature in Temperatures() continuous ≥ Threshold for Delay duration AND Enabled PF 0–15[OTF] = 1	 PFAlert()[OTF] = 0 PFStatus()[OTF] = 1 BatteryStatus()[OTA] = 1

5.8 QMax Imbalance Permanent Fail

The device can permanently disable the battery pack in case the capacity of one of the cells is much lower than the others.

Status	Condition	Action
Normal	Δ(QMax Cell 03) < Threshold	PFAIert()[QIM] = 0
Alert	∆(QMax Cell 03) ≥ Threshold	PFAIert()[QIM] = 1
Trip	Δ(<i>QMax Cell 03</i>) continuous ≥ Threshold for Delay duration AND Enabled PF 0–15[QIM] = 1	 PFAlert()[QIM] = 0 PFStatus()[QIM] = 1

5.9 Cell Balancing Permanent Fail

The device can permanently disable the battery pack in case one of the cells in stack is cell balanced much more than the others.

Status	Condition	Action
Normal	Δ(Time Cell 03) < Delta Threshold	PFAlert()[CB] = 0
Alert	∆(Time Cell 03) ≥ Delta Threshold	PFAlert()[CB] = 1
Trip	∆(Time Cell 03) continuous ≥ Delta Threshold for Delay duration AND Enabled PF 0–15[CB] = 1	PFAlert()[CB] = 0PFStatus()[CB] = 1
Trip	Max (Time Cell 03) ≥ Max Threshold AND Enabled PF 0–15[CB] = 1	 PFAlert()[CB] = 0 PFStatus()[CB] = 1

5.10 Capacity Degradation Permanent Fail

The device can permanently disable the battery pack in case the capacity of the cell stack is degraded below a threshold.

Status	Condition	Action
Normal	All(QMax14) > Threshold	PFAlert()[CD] = 0
Alert	Any(QMax14) ≤ Threshold	PFAlert()[CD] = 1
Trip	Any(QMax14) continuous ≤ Threshold for Delay cycles AND Enabled PF 0–15[CD] = 1	 PFAlert()[CD] = 0 PFStatus()[CD] = 1

5.11 Impedance Permanent Fail

The device can permanently disable the battery pack in case the impedance of one of the cells is much higher than the others.

NOTE: Reference Grid is configurable from 0 (resistance at fully charged cell) to 14 (resistance at fully discharged cell). The Design Resistance will be automatically calculated and updated during learning cycle and is part of the golden image).

Status	Condition	Action
Normal	Δ(Cell03 R_a at Reference Grid) < (Delta Threshold * Design Resistance)	PFAlert()[IMP] = 0
Alert	Δ(Cell03 R_a at Reference Grid) ≥ (Delta Threshold * Design Resistance)	PFAlert()[IMP] = 1
Trip	∆(Cell03 R_a at Reference Grid) ≥ (Delta Threshold * Design Resistance) for Ra Update Counts AND Enabled PF 0–15[IMP] = 1	 PFAlert()[IMP] = 0 PFStatus()[IMP] = 1
Trip	∆(Cell03 R_a at Reference Grid) ≥ (Max Threshold * Design Resistance) AND Enabled PF 0–15[IMP] = 1	 PFAlert()[IMP] = 0 PFStatus()[IMP] = 1

5.12 Voltage Imbalance at Rest Permanent Fail

The device can permanently disable the battery pack in case of voltage difference between the cells in a stack while at rest.

Status	Condition	Action
Normal	 All Cell voltages in Voltages() < Check Voltage Current() > Check Current Δ(Cell voltages in Voltages()) < Delta Threshold 	PFAlert()[VIMR] = 0
Alert	Any Cell voltages in Voltages() ≥ Check Voltage AND Current() continuous < Check Current for Duration AND Δ(Cell voltages in Voltages()) ≥ Delta Threshold	PFAlert()[VIMR] = 1

Status	Condition	Action
Trip	[Any Cell voltages in Voltages() ≥ Check Voltage AND Current() continuous < Check Current for Duration AND Δ(Cell voltages in Voltages()) ≥ Delta Threshold] for Delay duration AND Enabled PF 0–15[VIMR] = 1	PFAlert()[VIMR] = 0PFStatus()[VIMR] = 1

5.13 Voltage Imbalance Active Permanent Fail

The device can permanently disable the battery pack in case of voltage difference between the cells in a stack while active.

Status	Condition	Action
Normal	 All Cell voltages in Voltages() < Check Voltage Current() < Check Current Δ(Cell voltages in Voltages()) < Delta Threshold 	PFAlert()[VIMA] = 0
Alert	Any Cell voltages in Voltages() ≥ Check Voltage AND Current() continuous > Check Current for Duration AND Δ(Cell voltages in Voltages()) ≥ Delta Threshold	PFAlert()[VIMA] = 1
Trip	[Any Cell voltages in Voltages() ≥ Check Voltage AND Current() continuous > Check Current for Duration AND ∆(Cell voltages in Voltages()) continuous ≥ Delta Threshold] for Delay duration AND Enabled PF 0–15[VIMA] = 1	PFAlert()[VIMA] = 0PFStatus()[VIMA] = 1

5.14 Charge FET Permanent Fail

The device can permanently disable the battery pack in case the charge FET is not working properly.

Status	Condition	Action
Normal	CHG FET off AND Current() < OFF Threshold	PFAlert()[CFETF] = 0
Alert	CHG FET off AND Current() ≥ OFF Threshold	PFAlert()[CFETF] = 1
Trip	CHG FET off AND Current() continuously ≥ OFF Threshold for Delay duration AND Enabled PF 16–32[CFETF] = 1	PFAlert()[CFETF] = 0PFStatus()[CFETF] = 1

5.15 Discharge FET Permanent Fail

The device can permanently disable the battery pack in case the discharge FET is not working properly.

Status	Condition	Action
Normal	DSG FET off AND Current() > OFF Threshold	PFAlert()[DFET] = 0
Alert	DSG FET off AND Current() ≤ OFF Threshold	PFAlert()[DFET] = 1
Trip	DSG FET off AND Current() continuously ≤ OFF Threshold for Delay duration AND Enabled PF 16–32[DFET] = 1	PFAlert()[DFET] = 0PFStatus()[DFET] = 1

5.16 Thermistor Permanent Fail

The device can permanently disable the battery pack when it detects an open (internally pulled up) or short (grounded) failure in the thermistor circuit. When a fault is Detected, the PFALER()[TH] bit will be set to 1. If the fault is still present after the Permanent Fail:ADC Delay time, the PFALER()[TH] bit will be cleared and PFStatus()[TH] will be set to 1.

45

5.17 Chemical Fuse Permanent Fail

The device can detect a non-working fuse. The device cannot disable the battery pack permanently but can record this event for analysis.

Status	Condition	Action
Normal	FUSE pin = high AND Current() < Threshold	PFAlert()[FUSE] = 0
Alert	FUSE pin = high AND Current() ≥ Threshold	PFAlert()[FUSE] = 1
Trip	FUSE pin = high AND Current() continuous ≥ Threshold for Delay duration AND Enabled PF 16–32[FUSE] = 1	PFAlert()[FUSE] = 0PFStatus()[FUSE] = 1

5.18 AFE Register Permanent Fail

The device compares the AFE hardware register periodically with a RAM backup. If the comparison fails too many times, the device disables the pack permanently.

Status	Condition	Action
Normal	AFE register fail counter = 0	 PFAlert()[AFER] = 0 Compare AFE register and RAM backup every Compare Period
Alert	AFE register fail counter > 0	 PFAlert()[AFER] = 1 Decrement AFE register fail counter by one after each Delay Period
		Compare AFE register and RAM backup every Compare Period
Trip	AFE register fail counter ≥ Threshold AND Enabled PF 16–32[AFER] = 1	 PFAlert()[AFER] = 0 PFStatus()[AFER] = 1

5.19 AFE Communication Permanent Fail

The device monitors the internal communication to the AFE hardware. If the read or write fails exceed a limit within a timeframe, the device disables the pack permanently.

Status	Condition	Action
Normal	AFE read/write fail counter = 0	PFAlert()[AFEC] = 0
Alert	AFE read/write fail counter > 0	 PFAlert()[AFEC] = 1 Decrement AFE read/write fail counter by one after each Delay period
Trip	Read and Write Fail counter ≥ Threshold AND Enabled PF 16–32[AFEC] = 1	 PFAlert()[AFEC] = 0 PFStatus()[AFEC] = 1

5.20 Second Level Protection Permanent Fail

The device can detect external trigger of the chemical fuse by an external protection circuit such as a 2nd-level protector by monitoring the FUSE pin state.

If the device detects FUSE pin high state, the CHG and DSG FET are turned off.

PTC Permanent Fail www.ti.com

Status	Condition	Action
Normal	Reset AFE and FUSE pin = low AND no FUSE trigger by firmware	 PFAlert()[2LVL] = 0 Reset internal PF 2LVL counter
Alert	FUSE pin = high AND no FUSE trigger by firmware	 PFAlert()[2LVL] = 1 Increment internal PF 2LVL counter Wait for PF 2LVL Delay time Reset AFE
Trip	Internal PF 2LVL counter > Threshold AND Enabled PF 16–32[2LVL] = 1	PFAlert()[2LVL] = 0PFStatus()[2LVL] = 1

5.21 PTC Permanent Fail

The device can detect overtemperature using a positive temperature coefficient (PTC) resistor connected to PTC pin. This protection also works in shutdown mode.

If the device detects PTC pin high state, the CHG and DSG FET are turned off. Pack is disabled permanently. State can only be reset by fully power cycle the device.

If PTC permanent fail is not used, the PTC pin should be connected to VSS with a 10-k Ω resistor.

Status	Condition	Action
Normal	Reset AFE and PTC pin = low AND no FUSE trigger by firmware	PFStatus()[PTC] = 0
Trip	PTC pin = high	 PFStatus()[PTC] = 1 FUSE = high

5.22 Instruction Flash Checksum Permanent Fail

The device can permanently disable the battery in case it detects a difference between the stored IF checksum and the calculated IF checksum right after device reset.

Status	Condition	Action
Normal	Stored and calculated IF checksum match	PFAlert()[IFC] = 0
Trip	Stored and calculated IF checksum after reset don't match AND Enabled PF 16–32[IFC] = 1	PFAlert()[IFC] = 0PFStatus()[IFC] = 1

5.23 Open Cell Voltage Connection Permanent Fail

The device can permanently disable the battery in case it detects a difference between the BAT pin voltage and the sum of the individual cell voltages.

Status	Condition	Action
Normal	Sum(Cell voltages in Voltages())—BAT voltage in Voltages() < Threshold	PFAlert()[OCECO] = 0
Alert	Sum(Cell voltages in Voltages())—BAT voltage in Voltages() ≥ Threshold	PFAlert()[OCECO] = 1
Trip	Sum(Cell voltages in Voltages())—BAT voltage in Voltages() continuous ≥ Threshold for Delay Period AND Enabled PF 16–32[OCEC0] = 1	PFAlert()[OCECO] = 0PFStatus()[OCECO] = 1

5.24 Data Flash Permanent Fail

The device can permanently disable the battery in case a data flash write fails.

47

Data Flash Permanent Fail www.ti.com

Status	Condition	Action
Normal	Data flash write ok	PFAlert()[DFW] = 0
Trip	Data flash write not successful AND Enabled PF 16–32[DFW] = 1	 PFAlert()[DFW] = 0 PFStatus()[DFW] = 1

Power Modes

To enhance battery life, the bq30z50-R1 and bq30z55-R1 supports different power modes to save power and minimize power consumption during operation.

6.1 Normal Mode

In Normal mode, the device takes voltage, current, and temperature readings every 250 ms, performs protection and gauging calculations, and updates SBS data. Between these periods of activity, the device is in a reduced power state.

6.2 Sleep Mode

6.2.1 Device Sleep

When the sleep conditions are met, the device goes to Sleep mode with periodic wake-ups to reduce power consumption. The device returns to Normal mode if SBS communication and current is detected.

Status	Condition	Action
Enable	System Configuration[SLEEP] = 1	OperationStatus()[SLEEP] = 1
Activate	System Configuration[NR] = 0 AND OperationStatus()[PRES] = 0 AND Current() < Sleep:Sleep Current AND SMBus clock and data lines low for 5 s.	 Turn off CHG FET, DSG FET, PCHG FET Device goes to sleep Device wakes up every <i>Sleep Voltage Time</i> period to measure voltage and temperature Device wakes up every <i>Sleep Current Time</i> period to measure current
Activate	System Configuration[NR] = 1 AND Current() < Sleep:Sleep Current AND SMBus clock and data lines low for 5 s.	 Turn off CHG FET, PHCG FET if System Configuration[SLEEPCHG] = 0 Device goes to sleep Device wakes up every Sleep Voltage Time period to measure voltage and temperature Device wakes up every Sleep Current Time period to measure current
Exit	System Configuration[NR] = 0 AND OperationStatus()[PRES] = 1	Return to Normal mode
Exit	Current() > Sleep:Sleep Current	Return to Normal mode
Exit	SMBus clock and data lines high	Return to Normal mode
Exit	Wake comparator trips	Return to Normal mode
Exit	SafetyAlert() flag or PFAlert() flag set	Return to Normal mode

6.2.1.1 Wake Function

The device can exit Sleep mode, if enabled, by the presence of a voltage across SRP and SRN. The level of the current signal needed is programmed in Power: Wake Current Reg.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Low Byte	RSVD	RSVD	RSVD	RSVD	RSVD	IWAKE	RSNS1	RSNS0

Ship Mode www.ti.com

Reserved (Bits 7-3): Reserved, do not use.

IWAKE (Bit 2):

0 = 0.5A (or if RSNS0=RSNS1=0 then this function is disabled)

1 = 1.0A (or if RSNS0=RSNS1=0 then this function is disabled)

RSNS1	RSNS0	Resistance
0	0	Disabled (default)
0	1	2.5 mΩ
1	0	5 mΩ
1	1	10 mΩ

6.2.2 ManufacturerAccess Sleep

The device can be sent to sleep with **ManufacturerAccess()** if the sleep conditions are met. This function is used to test sleep exit conditions.

6.3 Ship Mode

In Ship mode, the device enters a low power mode with no voltage, current, and temperature measurements.

6.3.1 Ship Hibernate Mode

In Ship Hibernate mode, the device enters a low-power mode with no voltage, current, and temperature measurements, the FETs are turned off, and the MCU is in a halt state. The device will return to Normal mode on SBS communication detection. The device can be configured to ship hibernate with discharge FET on through Settings:System Configuration[SHIPDSG]. The device can be send to this mode with **ManufacturerAccess()** Ship command.

6.3.2 Ship Shutdown Mode

In Ship Shutdown mode, the device shuts down to minimize power consumption, and the FETs are turned off. The device will return to Normal mode when voltage at PACK pin > VSTARTUP. The device can be sent to this mode with the **ManufacturerAccess() Shutdown** command. Charger voltage must not be present for the device to enter Ship Shutdown mode.

6.4 Shutdown Mode

6.4.1 Voltage Based Shutdown

The device can be configured to shutdown at a programmable stack voltage threshold to minimize power consumption and avoid draining the battery. This function also works in Permanent Failure mode to prevent polymer cell swelling.

Status	Condition	Action
Enable	Min(Cell Voltage in Voltages()) < Shutdown Voltage	OperationStatus()[SDV]= 1
Activate	Min(Cell Voltage in Voltages()) continuous < Shutdown Voltage for Shutdown Time	The device disables everything and turns off.
Exit	Voltage at PACK pin > VSTARTUP	OperationStatus()[SDV]= 0 Return to Normal mode

Gauging

7.1 Impedance Track

The device features the most advanced Impedance Track gauging algorithm v3.75, and is capable of supporting a maximum battery pack capacity of 32 Ah. The algorithm estimates run time and capacity.

The Impedance Track algorithm v3.75 features the following:

- Cell balancing during relax (CBR)
- Ability to learn Qmax without a rest period following the end of discharge (FAST_QMax)
- Compatible with LiFePO4 chemistries (LFP_RELAX)
- Greatly improved low temperature accuracy
- Greatly improved RSOC convergence to 0% at EDV (RSOC_CONV)
- Detailed status information via SBS for convenient debug and evaluation (no GG logging necessary)
 - DOD0
 - Qpassed
 - Grid numbers
 - Ra calculations
 - Balance timers
- Option to apply low pass filter smoothing to RemCap and FCC (SMOOTH)
- Option to prevent RSOC jumps during discharge (RSOC_HOLD)

7.2 Gas Gauge Mode

Status	Condition	Action
Charge	Current() > Chg Current Threshold	GaugingStatus()[DSG] = 0GaugingStatus()[REST] = 0
Relax	GaugingStatus()[DSG] = 0–1 transition AND Current() < Quit Current Threshold for Chg Relax Time	 GaugingStatus()[DSG] = 1 GaugingStatus()[REST] = 1, if: DOD0 updated and OCV updated and QMax updated
Relax	GaugingStatus()[DSG] = 1–0 transition AND Current() < Quit Current Threshold for Dsg Relax Time	 GaugingStatus()[DSG] = 1 GaugingStatus()[REST] = 1, if: DOD0 updated and OCV updated and QMax updated
Discharge	Current() < (–) Dsg Current Threshold	GaugingStatus()[DSG] = 1GaugingStatus()[REST] = 0RA update

51

LED Display

The device has a LED display that can show various status information.

Status	Condition	Action
Activate	High—low transition of DISP pin	 LED Display shows state of charge for LED Support:LED Hold Time LED Display shows each active PF code for 2x LED Hold Time if Settings:LED Configuration[LEDPF1][LEDPF0] = 0,1
Activate	Settings:LED Configuration[LEDR] = 1 AND device reset	 LED Display shows state of charge for LEDSupport:LED Hold Time LED Display shows each active PF code for 2x LED Hold Time if Settings:LED Configuration[LEDPF1][LEDPF0] = 0,1
Activate	Settings: LED Configuration[LEDRCA] = 1 AND BatteryStatus[RCA] 0 to 1 transition	LED Display flashes with LED Flash Rate
Activate	Settings:LED Configuration[LEDCHG] = 1 AND Current() > 0	 LED Display shows state of charge for LEDSupport:LED Hold Time LED Display shows each active PF code for 2x LED Hold Time if Settings:LED Configuration[LEDPF1][LEDPF0] = 0,1
Activate	ManufacturerStatus()=0x002C	 LED Display shows state of charge for LED Support:LED Hold Time LED Display shows each active PF code for 2x LED Hold Time if Settings:LED Configuration[LEDPF1][LEDPF0] = 0,1
Toggle	ManufacturerStatus()=0x002B	Toggle LED on or off
Disabled	SafetyStatus()[CUV] = 1	LED Display Disabled

8.1 LED Display State of Charge

The state of charge can display **RelativeStateOfCharge()** or **(AbsoluteStateOfCharge()** / **DesignCapacity())**, selectable with Settings: *LED Configuration*[LEDMODE]. All data flash settings are available through LED Support: LED Config subclass.

	State of Charge	
	Current() > 0	Current() <= 0
Flash Alert	0% – CHG Flash Alarm	0% – DSG Flash Alarm
LED1	CHG Thresh 1 – 100%	DSG Thresh 1 – 100%
LED2	CHG Thresh 2 – 100%	DSG Thresh 2 – 100%
LED3	CHG Thresh 3 – 100%	DSG Thresh 3 – 100%
LED4	CHG Thresh 4 – 100%	DSG Thresh 4 – 100%
LED5	CHG Thresh 5 – 100%	DSG Thresh 5 – 100%

LED Display PF Codes www.ti.com

8.2 LED Display PF Codes

Each active PF code is shown for 2x *LED Hold Time* with lowest priority to highest priority.

PF Flag	Priority	LED3	LED2	LED1
No PF	0	LED Blink Period	off	off
CUV	0	LED Blink Period	on	off
COV	1	LED Blink Period	LED Flash Period	off
CUDEP	2	Fast Blink	off	on
OTCE	3	LED Blink Period	LED Flash Period	on
OTF	4	LED Blink Period	On	LED Flash Period
QIM	5	LED Blink Period	LED Flash Period	LED Flash Period
СВ	6	LED Blink Period	off	LED Blink Period
IMP	7	LED Blink Period	on	LED Blink Period
CD	8	LED Flash Period	LED Blink Period	off
VIMR	9	off	LED Blink Period	off
VIMA	10	on	LED Blink Period	off
CFETF	11	LED Flash Period	LED Blink Period	LED Flash Period
DFETF	12	off	LED Blink Period	LED Flash Period
THERM	13	on	LED Blink Period	LED Flash Period
FUSE	14	LED Flash Period	LED Blink Period	LED Blink Period
AFE_P	15	off	LED Blink Period	LED Blink Period
AFE_C	16	on	off	LED Blink Period
2LVL	17	LED Flash Period	off	LED Blink Period
Reserved	18	off	off	LED Blink Period
Reserved	19	on	on	LED Blink Period
OCECO	20	LED Flash Period	on	LED Blink Period
DFW	21	off	on	LED Blink Period

Lifetime Data Collection

The device has extensive capabilities logging events over life of battery useful for analysis. The data is collected in RAM and only written DF under following conditions to avoid wear out of flash:

- · Every 10 hours if RAM content is different from flash
- · In permanent fail, before data flash updates are disabled
- · A reset counter increments
- · Before scheduled shutdown
- · Before low voltage shutdown

The lifetime data stops collecting under following conditions:

- After permanent fail
- Lifetime Data collection is disabled

Total firmware Runtime starts when lifetime data is enabled.

- Voltage
 - Max/Min Cell Voltage Each Cell
 - Max Delta Voltage
- Current
 - Max Charge/Discharge Current
 - Max Average Discharge Current
 - Max Average Discharge Power
- Safety Events (12 most common are tracked)
 - Number of Safety Events
 - Cycle Count at Last Safety Event(s)
- Charging Events
 - Number of Valid Charge Terminations
 - Cycle Count at Last Charge Termination
- Gauging Events
 - Number of QMax updates
 - Cycle Count at Last QMax update
 - Number of RA updates
 - Cycle Count at Last RA update
- · Power Events: Number of Resets
- Cell Balancing
 - Cell Balancing Time each Cell
- Temperature
 - Max/Min Cell Temp
 - Delta Cell Temp
 - Max/Min Int Temp Senser
 - Max FET Temp
- Time

- Total runtime
- Time spent different temperature ranges

Device Security

10.1 Description

The device uses SHA-1 one way has function for device authentication by host system. Unseal or Full Access mode is also protected using SHA-1 authentication.

10.2 SHA-1 Description

The SHA-1 is known as a one-way hash function, meaning there is no known mathematical method of computing the input given only the output. The specification of the SHA-1, as defined by FIPS 180–2, states that the input consists of 512 bit blocks with a total input length less than 264 bits. Inputs which do not conform to integer multiples of 512 bit blocks are padded before any block is input to the hash function. The SHA-1 algorithm outputs 160 bits, commonly referred to as the digest.

(As of April 23, 2004 the latest revision is FIPS 180–2). SHA-1 or secure hash algorithm is used to compute a condensed representation of a message or data also known as hash. For messages < 2^64 the SHA-1 produces an 160-bit output called digest.

The device generates an SHA-1 input block of 288 bits (total input = 160 bit message + 128 bit key). To complete the 512 bit block size requirement of the SHA-1, the device pads the key and message with a 1, followed by 159 0's, followed by the 64 bit value for 288 (000...00100100000), which conforms to the pad requirements specified by FIPS 180–2.

Detailed information about the SHA-1 algorithm can be found:

- 1. http://www.itl.nist.gov/fipspubs/fip180–1.htm
- http://csrc.nist.gov/publications/fips
- 3. www.faqs.org/rfcs/rfc3174.html

10.3 HMAC Description

The SHA-1 engine is used to calculate a modified HMAC value. Using a public message and a secret key, the HMAC output is considered to be a secure fingerprint that authenticates the device used to generate the HMAC.

To compute the HMAC let H designate the SHA-1 hash function, M designate the message transmitted to the device, and KD designate the unique 128 bit unseal/full access/authentication key of the device. HMAC(M) is defined as:

H[KD || H(KD || M)], where || symbolizes an append operation

The message, M, is appended to the unseal/full access/authentication key, KD, and padded to become the input to the SHA-1 hash. The output of this first calculation is then appended to the unseal/full access/authentication key, KD, padded again, and cycled through the SHA-1 hash a second time. The output is the HMAC digest value.

10.4 Authentication

- 1. Generate 160-bit message M using a random number generator that meets approved random number generators described in FIPS PUB 140–2
- 2. Generate SHA-1 input block B1 of 512 bytes (total input =128-bit authentication key KD + 160 bit message M + 1 + 159 0s + 100100000)
- 3. Generate SHA-1 hash HMAC1 using B1.

57

Unseal/Full Access www.ti.com

- 4. Generate SHA-1 input block B2 of 512 bytes (total input =128-bit authentication key KD + 160 bit hash HMAC1 + 1 + 159 0s + 100100000)
- 5. Generate SHA-1 hash HMAC2 using B2.
- 6. With no active **ManufacturerInput()** data waiting, write 160-bit message M to **ManufacturerInput()** in the format 0xAABBCCDDEEFFGGHHIJJKKLLMMNNOOPPQQRRSSTT, where AA is LSB
- 7. Wait 250 ms, then read ManufacturerInput() for HMAC3.
- 8. Compare host HMAC2 with device HMAC3, it matches, both host and device have the same key KD and device is authenticated.

10.5 Unseal/Full Access

- 1. Send Unseal (0x0031) or Full Access (0x0032) command to ManufacturerAccess().
- Read 160-bit message M from ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIJJKKLLMMNNOOPPQQRRSSTT, where AA is LSB
- 3. Generate SHA-1 input block B1 of 512 bytes (total input =128-bit unseal/full access key KD + 160 bit message M + 1 + 159 0s + 100100000)
- 4. Generate SHA-1 hash HMAC1 using B1.
- 5. Generate SHA-1 input block B2 of 512 bytes (total input =128-bit unseal/full access key KD + 160 bit hash HMAC1 + 1 + 159 0s + 100100000)
- 6. Generate SHA-1 hash HMAC2 using B2.
- 7. Write 160-bit hash HMAC2 to **ManufacturerInput()** in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTT, where AA is LSB
- 8. Device compares hash HMAC2 with internal calculated hash HMAC3. If it matches, device allows unsealed/full access mode indicated with the **OperationStatus()[SEC1],[SEC0]** flags.

SBS Commands

11.1 0x00 ManufacturerAccess()

The **ManufacturerAccess()** command has several functions depending on the data written to this command.

11.1.1 0x0000 ManufacturerData

This command returns ManufacturerData() information.

Status	Condition	Action
Activate	0x0000 to ManufacturerAccess()	Output ManufacturerData() on ManufacturerData()

11.1.2 0x0001 Device Type

The device can be checked for the IC part number.

Status	Condition	Action
Enable	0x0001 to ManufacturerAccess()	Returns the IC part number on subsequent read on ManufacturerData() in the following format: aaAA, where:
		aaAA: device type

11.1.3 0x0002 Firmware Version

The device can be checked for the firmware version of the IC.

Status	Condition	Action
Enable	0x0002 to ManufacturerAccess()	Returns the firmware revision on ManufacturerData() in the following format: ddDDvvVVbbBBttzzZZRREE, where: ddDD: Device Number vvVV: Version bbBB: build number tt: Firmware type zzZZ: Impedance Track Version RR: reserved EE: reserved
Enable	Write following sequence within 4 seconds; also works in sealed mode: 1. Block write to 0x22 with block size 62 2. Block write to 0x20 with block size 62 3. Block write to 0x22 with block size 62	Returns the firmware revision on ManufacturerData() in the following format: ddDDvvVVbbBBttzzZZRREE, where: ddDD: Device Number vvVV: Version bbBB: build number tt: Firmware type zzZZ: Impedance Track Version RR: reserved EE: reserved

11.1.4 0x0003 Hardware Version

The device can be checked for the hardware version of the IC.

Status	Condition	Action
Enable	0x0003 to ManufacturerAccess()	Returns the hardware revision on subsequent read on ManufacturerData()

11.1.5 0x0004 Instruction Flash Checksum

The device can return the instruction flash checksum.

Status	Condition	Action
Enable	0x0004 to ManufacturerAccess()	Returns the IF checksum on subsequent read on ManufacturerData() after a wait time of 250 ms

11.1.6 0x0005 Data Flash Checksum

The device can return the data flash checksum.

Status	Condition	Action
Enable	V	Returns the DF checksum on subsequent read on ManufacturerData() after a wait time of 250 ms. Only static DF items are included in the checksum. No items modified by the device or items that are different device to device are included.

11.1.7 0x0006 Chemical ID

This command returns the chemical ID of the OCV tables used in the gauging algorithm.

Status	Condition	Action
Enable	· ·	Returns the chemical ID on subsequent read on ManufacturerData()

11.1.8 0x0010 Shutdown Mode

The device can be sent to shutdown mode before shipping to reduce power consumption to a minimum. The device will wake up when a voltage is applied to PACK.

Status	Condition	Action
Normal	OperationStatus()[SH] = 0	
Enable	0x0010 to ManufacturerAccess; when sealed, two times in a row	OperationStatus()[SD] = 1
Trip	[NR] = 1 AND Current() = 0 AND Voltage on PACK = 0	FETs are turned off after Power:Shutdown time. Device will enter shutdown mode after another passage of Power:Shutdown time. (i.e. 2x of the Shutdown time after the command is set and 1x of the Shutdown time after the FETs are off)
Trip	Delay after command is sent > Power:Shutdown Time	No charging or discharging is allowed; device is shutdown.

11.1.9 0x0011 Sleep Mode

The device can be send to sleep with ManufacturerAccess() if the sleep conditions are met.

Status	Condition	Action
Enable	0x0011 to ManufacturerAccess()	OperationStatus()[SLEEPM] = 1
Activate	Settings:System Configuration[NR] = 0 AND OperationStatus()[PRES] = 0 AND Current() < Power:Sleep Current	 Turn off CHG FET, DSG FET, PCHG FET Device goes to sleep Device wakes up every Power: Sleep Voltage Time period to measure voltage and temperature Device wakes up every Power: Sleep Current Time period to measure current
Activate	Settings:System Configuration:System[NR] = 1 AND Current() < Power:Sleep Current	 Turn off DSG FET, PCHG FET Turn off CHG FET if Settings:System Configuration[SLEEPCHG] = 0 Device goes to sleep Device wakes up every Power:Sleep Voltage Time period to measure voltage and temperature Device wakes up every Power:Sleep Current Time period to measure current
Exit	Settings:System Configuration[NR] = 0 AND OperationStatus()[PRES] = 1	OperationStatus()[SLEEPM] = 0 Return to Normal mode
Exit	Current() > Power:Sleep Current	OperationStatus()[SLEEPM] = 0 Return to Normal mode
Exit	Wake Comparator trips	OperationStatus()[SLEEPM] = 0Return to Normal mode
Exit	SafetyAlert() flag or PFAlert() flag set	OperationStatus()[SLEEPM] = 0Return to Normal mode

11.1.10 0x0012 Device Reset

This command resets the device.

Status	Condition	Action
Enable	0x0012 to ManufacturerAccess()	Reset the device

11.1.11 0x001d Fuse Toggle

This command activate/deactivate FUSE pin for ease of manufacturing testing.

Status	Condition	Action
Disable	OperationStatus()[FUSE] = 1 AND 0x001d to ManufacturerAccess()	OperationStatus()[FUSE] = 0FUSE pin drive low
Enable	OperationStatus()[FUSE] = 0 AND 0x001d to ManufacturerAccess()	OperationStatus()[FUSE] = 1FUSE pin drive high

11.1.12 0x001e PRE-CHG FET

This command turns on/off Pre-CHG FET drive function to ease testing during manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[FET][PCHG] = 0,1 AND 0x001e to ManufacturerAccess()	 ManufacturingStatus()[FET][PCHG] = 0,0 precharge function defined with PCHG1,PCHG0 turns off
Enable	ManufacturingStatus()[FET][PCHG] = 0,0 AND 0x001e to ManufacturerAccess()	 ManufacturingStatus()[FET][PCHG] = 0,1 precharge function defined with PCHG1,PCHG0 turns on

11.1.13 0x001f CHG FET

This command turns on/off CHG FET drive function to ease testing during manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[FET][CHG] = 0,1 AND 0x001f to ManufacturerAccess()	ManufacturingStatus()[FET][CHG] = 0,0CHG FET turns off
Enable	ManufacturingStatus()[FET][CHG] = 0,0 AND 0x001f to ManufacturerAccess()	ManufacturingStatus()[FET][CHG] = 0,1CHG FET turns on

11.1.14 0x0020 DSG FET

This command turns on/off DSG FET drive function to ease testing during manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[FET][DSG] = 0,1 AND 0x0020 to ManufacturerAccess()	ManufacturingStatus()[FET][DSG] = 0,0DSG FET turns off
Enable	ManufacturingStatus()[FET][DSG] = 0,0 AND 0x0020 to ManufacturerAccess()	ManufacturingStatus()[FET][DSG] = 0,1DSG FET turns on

11.1.15 0x0021 Gauging

This command enables or disable the gauging function to ease testing during manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[Gauge] = 1 AND 0x0021 to ManufacturerAccess()	ManufacturingStatus()[Gauge] = 0disable gauging feature
Enable	ManufacturingStatus()[Gauge] = 0 AND 0x0021 to ManufacturerAccess()	ManufacturingStatus()[Gauge] = 1Enable gauging feature

11.1.16 ManufacturerAccess() 0x0022 FET Control

This command enables/disables control of the CHG, DSG, and PCHG FET by the firmware.

Status	Condition	Action
Disable	ManufacturingStatus()[FET] = 1 AND 0x0022 to ManufacturerAccess()	 ManufacturingStatus()[FET] = 0 CHG, DSG and PCHG FET are disabled and remain OFF
Enable	ManufacturingStatus()[FET] = 0 AND 0x0022 to ManufacturerAccess()	 ManufacturingStatus()[FET] = 1 CHG, DSG and PCHG FET are controlled by the firmware

11.1.17 ManufacturerAccess() 0x0023 Lifetime Data Collection

This command enables/disables Lifetime data collection for ease of manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[LF] = 1 AND 0x0023 to ManufacturerAccess()	 ManufacturingStatus()[LF] = 0 Lifetime Data collection feature disabled
Enable	ManufacturingStatus()[LF] = 0 AND 0x0023 to ManufacturerAccess()	 ManufacturingStatus()[LF] = 1 Lifetime Data collection feature enabled

11.1.18 ManufacturerAccess() 0x0024 Permanent Failure

This command enables/disables Permanent Failure for ease of manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[PF] = 1 AND 0x0024 to ManufacturerAccess()	 ManufacturingStatus()[PF] = 0 Permanent Failure feature disabled
Enable	ManufacturingStatus()[PF] = 0 AND 0x0024 to ManufacturerAccess()	 ManufacturingStatus()[PF] = 1 Permanent Failure feature enabled

11.1.19 ManufacturerAccess() 0x0025 Black Box Recorder

This command enables/disables Black box recorder function for ease of manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[BBR] = 1 AND 0x0025 to ManufacturerAccess()	 ManufacturingStatus()[BBR] = 0 Black Box Recorder feature disabled
Enable	ManufacturingStatus()[BBR] = 0 AND 0x0025 to ManufacturerAccess()	 ManufacturingStatus()[BBR] = 1 Black Box Recorder feature enabled

11.1.20 ManufacturerAccess() 0x0026 Fuse

This command enables/disables firmware fuse toggle function for ease of manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[FUSE] = 1 AND 0x0026 to ManufacturerAccess()	 ManufacturingStatus()[FUSE] = 0 FUSE pin action disabled
Enable	ManufacturingStatus()[FUSE] = 0 AND 0x0026 to ManufacturerAccess()	 ManufacturingStatus()[FUSE] = 1 FUSE pin action enabled

11.1.21 ManufacturerAccess() 0x0027 LED Enable

This command enables/disables LED Display function for ease of manufacturing.

Status	Condition	Action
Disable	ManufacturingStatus()[LED] = 1 AND 0x0027 to ManufacturerAccess()	ManufacturingStatus()[LED] = 0 LED Display action disabled
Enable	ManufacturingStatus()[LED] = 0 AND 0x0027 to ManufacturerAccess()	ManufacturingStatus()[LED] = 1 LED Display action enabled

11.1.22 ManufacturerAccess() 0x0028 Lifetime Data Reset

This command resets Lifetime data in data flash for ease of manufacturing.

Status	Condition	Action
Reset	0x0028 to ManufacturerAccess()	Clear Lifetime Data in DF

11.1.23 ManufacturerAccess() 0x0029 Permanent Fail Data Reset

This command resets PF data in data flash for ease of manufacturing.

Status	Condition	Action
Reset	0x0029 to ManufacturerAccess()	Clear PF Data in DF

11.1.24 ManufacturerAccess() 0x002a Black Box Recorder Reset

This command resets the black box recorder data in data flash for ease of manufacturing.

Status	Condition	Action
Reset	0x002a to ManufacturerAccess()	Clear Black Box Recorder data in DF

11.1.25 ManufacturerAccess() 0x002b LED Toggle

This command activate/deactivate configured LEDs for ease of manufacturing testing.

Status	Condition	Action
Disable	OperationStatus()[LED] = 1 AND 0x002b to ManufacturerAccess()	OperationStatus()[LED] = 0LED disabled
Enable	OperationStatus()[LED] = 0 AND 0x002b to ManufacturerAccess()	OperationStatus()[LED] = 1LED enabled

11.1.26 ManufacturerAccess() 0x002c LED Display On

This command simulates low-high-low detection on the /DISP pin for ease of manufacturing testing.

Status	Condition	Action
Activate	0x002c to ManufacturerAccess()	Simulates low-high-low detection on the DISP pin

11.1.27 ManufacturerAccess() 0x002D CAL Mode

This command enables output of the raw ADC and CC data on ManufacturerData().

Status	Condition	Action
Disable	ManufacturingStatus()[CAL] = 1 AND 0x002D to ManufacturerAccess()	 ManufacturingStatus()[CAL] = 0 disable output of ADC and CC raw data on ManufacturingData()
Enable	ManufacturingStatus()[CAL] = 0 AND 0x002D to ManufacturerAccess()	 ManufacturingStatus()[CAL] = 1 Enable output of ADC and CC raw data on ManufacturingData(), controllable with 0xF081 and 0xF082 on ManufacturerAccess()

11.1.28 ManufacturerAccess() 0x0030 Seal Device

This command seals the device for the field, disabling certain SBS commands and access to DF.

Status	Condition	Action
Sealed	OperationStatus()[SEC1,SEC0] = 0,1 or 1,0 AND 0x0030 to ManufacturerAccess()	 OperationStatus()[SEC1,SEC0] = 1,1 Certain SBS Commands not available, see SBS table for details

11.1.29 ManufacturerAccess() 0x0031 UnSeal Device

This command unseals the device after valid SHA-1 authentication.

Status	Condition	Action
Initiate	OperationStatus()[SEC1,SEC0] = 1,1 AND 0x0031 to ManufacturerAccess()	OperationStatus()[AUTH] = 1 160-bit random number message available at ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP QQRRSSTTT, where AA is LSB
Unseal	Correct 160-bit HMAC digest computed with random number + Unseal Key written to ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNO OPP, where AA is LSB	 OperationStatus()[SEC1,SEC0] = 0,1 OperationStatus()[AUTH] = 0 device unsealed after 250 ms, for available SBS commands in unseal mode see SBS table.
Invalid	incorrect 160-bit hash written to ManufacturerInput()	 wait time 250 ms OperationStatus()[SEC1,SEC0] = 0,0 OperationStatus()[AUTH] = 0

11.1.30 ManufacturerAccess() 0x0032 Full Access Device

This command enable Full Access to the device after valid SHA-1 authentication.

Status	Condition	Action
Initiate	OperationStatus()[SEC1,SEC0] = 1,1 or 1,0 AND 0x0032 to ManufacturerAccess()	OperationStatus()[AUTH] = 1 160-bit random number message available at ManufacturerInput() n the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOP PQQRRSSTTT, where AA is LSB
Full Access	Correct 160-bit HMAC digest computed with random number + Full Access Key written to ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNO OPP, where AA is LSB	 OperationStatus()[SEC1,SEC0] = 1,1 OperationStatus()[AUTH] = 0 device enables full access after 250 ms, for available SBS commands in full access mode see SBS table.
Invalid	Incorrect 160-bit hash written to ManufacturerInput()	 wait time 250 ms OperationStatus()[SEC1,SEC0] = 0,0 OperationStatus()[AUTH] = 0

11.1.31 ManufacturerAccess() 0x0033 ROM Mode

This command enables the ROM mode for IF update.

Status	Condition	Action
ROM Mode	OperationStatus()[SEC1,SEC0] = 1,0 AND 0x0033 to ManufacturerAccess()	Device goes to ROM mode ready for update, use 0x08 to ManufacturerAccess() to return

11.1.32 ManufacturerAccess() 0x0034 Ship Mode

In ship mode the device enters a low power mode with no voltage, current and temperature measurements, FETs turned off and MCU in a halt state. The device will return to Normal mode on SBS communication detection.

Status	Condition	Action
Enable	0x0034 to ManufacturerAccess()	OperationStatus()[SHIPM] = 1
Activate	Current() < Power:Sleep Current AND No SBS communication for power:Ship Mode Com Delay	Turn off CHG FET, PCHG FET Turn off DSG FET, if Settings:System Configuration[SHIPDSG]=0 No Voltage, Temperature or Current Measurements No Gauging MCU in halt state HFO turned off.
Exit	SBS communication to device	OperationStatus()[SHIPM] = 0 Return to Normal mode

11.1.33 ManufacturerAccess() 0x0035 Unseal Key

This command enters a new Unseal key into the device.

Status	Condition	Action
initiate	OperationStatus()[SEC1,SEC0] = 1,0 AND 0x0035 to ManufacturerAccess()	OperationStatus()[AUTH] = 1 160-bit random number message available at ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP QQRRSSTTT, where AA is LSB
Enter Key	Correct 128-bit Key written to ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNN OOPP, where AA is LSB	Wait time 250 ms OperationStatus()[AUTH] = 0 device returns 160-bit digest at ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP QQRRSSTTT, where AA is LSB. Digest was calculated using the random number + key. compare with own calculations check validity of key.

11.1.34 ManufacturerAccess() 0x0036 Full Access Key

This command enters a new Full Access key into the device.

Status	Condition	Action
initiate	OperationStatus()[SEC1,SEC0] = 1,0 AND 0x0036 to ManufacturerAccess()	 OperationStatus()[AUTH] = 1 160-bit random number available at ManufacturerInput()

Status	Condition	Action
Enter Key	Correct 128-bit Key written to ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNO OPP, where AA is LSB	Wait time 250 ms OperationStatus()[AUTH] = 0 device returns 160-bit digest at ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIJJKKLLMMNNOOPP QQRRSSTTT, where AA is LSB. Digest was calculated using the random number + key. compare with own calculations check validity of key.

11.1.35 ManufacturerAccess() 0x0037 Authentication Key

This command enters a new authentication key into the device.

Status	Condition	Action
Initiate	OperationStatus()[SEC1,SEC0] = 1,0 AND 0x0037 to ManufacturerAccess()	 OperationStatus()[AUTH] = 1 160-bit random number available at ManufacturerInput()
Enter Key	Correct 128-bit Key written to ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNO OPP, where AA is LSB	Wait time 250 ms OperationStatus()[AUTH] = 0 device returns 160-bit HMAC digest at ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP QQRRSSTTT, where AA is LSB. The HMAC digest was calculated using the random number + key. Compare with own calculations check validity of key.

11.1.36 ManufacturerAccess() 0x0050 SafetyAlert

This command returns the SafetyAlert() flags on ManufacturerData().

Status	Condition	Action
Activate	0x0050 to ManufacturerAccess()	Output SafetyAlert() flags on ManufacturerData()

11.1.37 ManufacturerAccess() 0x0051 SafetyStatus

This command returns the SafetyStatus() flags on ManufacturerData().

Status	Condition	Action
Activate	0x0051 to ManufacturerAccess()	Output SafetyStatus() flags on ManufacturerData()

11.1.38 ManufacturerAccess() 0x0052 PFAlert

This command returns the PFAlert() flags on ManufacturerData().

Status	Condition	Action
Activate	0x0052 to ManufacturerAccess()	Output PFAlert() flags on ManufacturerData()

11.1.39 ManufacturerAccess() 0x0053 PFStatus

This command returns the PFStatus() flags on ManufacturerData().

Status	Condition	Action
Activate	0x0053 to ManufacturerAccess()	Output PFStatus() flags on ManufacturerData()

11.1.40 ManufacturerAccess() 0x0054 OperationStatus

This command returns the OperationStatus() flags on ManufacturerData().

Status	Condition	Action
Activate	0x0054 to ManufacturerAccess()	Output OperationStatus() flags on ManufacturerData()

11.1.41 ManufacturerAccess() 0x0055 ChargingStatus

This command returns the ChargingStatus() flags on ManufacturerData().

Status	Condition	Action
Activate	0x0055 to ManufacturerAccess()	Output ChargingStatus() flags on ManufacturerData()

11.1.42 ManufacturerAccess() 0x0056 GaugingStatus

This command returns the GaugingStatus() flags on ManufacturerData().

Status	Condition	Action
Activate		Output GaugingStatus() flags on ManufacturerData()

11.1.43 ManufacturerAccess() 0x0057 ManufacturingStatus

This command returns the ManufacturingStatus() flags on ManufacturerData().

Status	Condition	Action
Activate		Output ManufacturingStatus() flags on ManufacturerData()

11.1.44 ManufacturerAccess() 0x0058 AFE Register

This command returns the AFERegister() values on ManufacturerData().

Status	Condition	Action
Activate	0x0058 to ManufacturerAccess()	Output AFERegister() values on ManufacturerData()

11.1.45 ManufacturerAccess() 0x0060 Lifetime Data Block 1

This command returns the Lifetime data on ManufacturerData().

Status	Condition	Action
Activate	0x0060 to ManufacturerAccess()	Output 32 bytes of lifetime data values on ManufacturerData()

11.1.46 ManufacturerAccess() 0x0061 Lifetime Data Block 2

This command returns the Lifetime data on ManufacturerData().

Status	Condition	Action
Activate		Output 27 bytes of lifetime data values on ManufacturerData()

11.1.47 ManufacturerAccess() 0x0062 Lifetime Data Block 3

This command returns the Lifetime data on ManufacturerData().

Status	Condition	Action
Activate		Output 12 bytes of lifetime data values on ManufacturerData()

11.1.48 ManufacturerAccess() 0x0070 ManufacturerInfo

This command returns ManufacturerInfo on ManufacturerData().

Status	Condition	Action
Activate	0x0070 to ManufacturerAccess()	Output 32 bytes of ManufacturerInfo on ManufacturerData()

11.1.49 ManufacturerAccess() 0x0071 Voltages

This command returns the CellVoltages, PackVoltage, and BatVoltage on ManufacturerData().

Status	Condition	Action
Activate	0x0071 to ManufacturerAccess()	Output 12 bytes of voltage data values on ManufacturerData()

11.1.50 ManufacturerAccess() 0x0072 Temperatures

This command returns the internal temp sensor, TS1, TS2, TS3, TS4, CellTemp and FETTemp on ManufacturerData().

Status	Condition	Action
Activate	•	Output 14 bytes of temperature data values on ManufacturerData()

11.1.51 ManufacturerAccess() 0x0073 ITSTATUS1

This command instructs the device to return Impedance Track related gauging information on **ManufacturerData()**.

Status	Condition	Action
Activate	0x0073 to ManufacturerAccess()	Output 30 bytes of IT data values on ManufacturerData()

11.1.52 ManufacturerAccess() 0x0074 ITSTATUS2

This command instructs the device to return Impedance Track related gauging information on **ManufacturerData()**.

Status	Condition	Action
Activate	· ·	Output 10 bytes of IT data values on ManufacturerData()

11.1.53 ManufacturerAccess() 0xF080 Exit Calibration Output Mode

This command returns the data acquisition to Normal mode.

Status	Condition	Action
Activate	ManufacturerData()[CAL] = 1 AND 0xF080 to ManufacturerAccess()	Stop output of ADC or CC data on ManufacturerData() and return to normal data acquisition mode

11.1.54 ManufacturerAccess() 0xF081 Output CC and ADC for Calibration

This command let the device output the raw values of Coulomb counter, CellVoltage1, CellVoltage2, CellVoltage3, CellVoltage4, TS1, TS2, TS3, TS4, Tint, PACK, and BAT as block on **ManufacturerData()** with updates every 250 ms for calibration purposes.

The format of each value 2's complement, MSB first.

Status	Condition	Action
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()	 ManufacturingStatus()[CAL] = 0 Stop output of ADC and CC data on ManufacturerData() and return to normal data acquisition mode
	0xF081 to ManufacturerAccess()	ManufacturingStatus()[CAL] = 1 outputs the raw CC and AD values on ManufacturerData() in the format of ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilljjJJk kKKIILL.
		 ZZ: rolling 8-bit counter, increments when values are refreshed YY: status, 1 when MAC() = 0xF081, 2 when MAC()=0xF082
Enable		- AAaa: Coulomb counter - BBaa: CellVoltage1 - CCaa: CellVoltage2 - DDaa: CellVoltage3 - EEee: CellVoltage4 - FFff: Tint - GGgg: TS1 - HHhh: TS2 - Ilii TS3 - JJjj: TS4
		KKkk: PackVoltageLLII: BatVoltage

11.1.55 ManufacturerAccess() 0xF082 Output shorted Cc AND ADC Offset for Calibration

This command let the device output the raw CC value on ManufacturerData().

The format of each value 2's complement, MSB first.

Status	Condition	Action
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()	 ManufacturingStatus()[CAL] = 0 Stop output of ADC and CC data on ManufacturerData() and return to normal data acquisition mode
Enable	0xF082 to ManufacturerAccess()	ManufacturingStatus()[CAL] = 1 outputs the raw CC and AD values on ManufacturerData() in the format of ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilljjJJk kKKIILL, where: ZZ: rolling 8-bit counter, increments when values are refreshed YY: status, 1 when MAC() = 0xF081, 2 when MAC()=0xF082 AAaa: Coulomb counter BBaa: CellVoltage1 CCaa: CellVoltage3 EEee: CellVoltage3 EEee: CellVoltage4 FFff: Tint GGgg: TS1 HHhh: TS2 Ilii TS3 JJjj: TS4 KKkk: PackVoltage
		LLII: BatVoltage

11.1.56 ManufacturerAccess() 0x01yy DF Access Row Address

This command sets the DF row with address yy on ManufacturerInfo() for immediate read/write on ManufacturingInfo().

Status	Condition	Action
Activate	, ,	Prepare DF 32-byte row with address yy on ManufacturerInfo() for block read or write.

11.2 0x01 RemainingCapacityAlarm()

This read/write word function sets a low capacity alarm threshold.

SBS Cmd	Name	Access			Proto-	Type	Min	Max	Unit	Note
		SE	US	FA	col	Туре	IVIIII	IVIAX	Onit	NOCE
	RemainingCap acityAlarm()								mAh	BatteryMode()[CAPM] = 0
0x01		R/W		Word	U2	0	65535	10 mWh	BatteryMode()[CAPM] = 1	

11.3 0x02 RemainingTimeAlarm()

SBS Cmd	Name	Access			Protocol	Type	Min	Max	Unit	Note
		SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oilit	Note
0x02	RemainingTim eAlarm()	R/W			Word	U2	0	65535	min	

www.ti.com Ox03 BatteryMode()

11.4 0x03 BatteryMode()

SBS	Name		Access	i	Proto-	Туре	Min	Max	Note
Cmd	Name	SE	US	FA	col	Type	IVIIII	IVIAX	Note
0x03	BatteryMode()		R/W		Word	H2	0x0000	0xFFFF	Bit 0: ICC—Internal Charge Controller (R) 0 = Function not supported Bit 1: PBC—Primary Battery Support (R) 1 = Primary or Secondary Battery Support Bit 2: Reserved Bit 3: Reserved Bit 4: Reserved Bit 5: Reserved Bit 6: Reserved Bit 7: CF—Condition Flag 0 = Battery OK 1 = Conditioning cycle requested Bit 8: CCE—Charge Controller Enabled (R/W) 0 = Internal charge controller disabled
0x03	BatteryMode()		R/W		Word	H2	0x0000	0xFFFF	Bit 9: PB—Primary Battery (R/W) 0 = Battery operating in its secondary role (default) 1 = Battery operating in its primary role Bit 10: Reserved Bit 11: Reserved Bit 12: Reserved Bit 13: AM—Alarm Mode (R/W) 0 = Enable Alarm Warning broadcasts to host and smart battery charger 1 = Disable Alarm Warning broadcasts to host and smart battery charger Bit 14: CHGM—Charger Mode (R/W) 0 = Enable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger 1 = Disable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger 1 = Disable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger Bit 15: CAPM—Capacity Mode (R/W) 0 = Report in mA or mAh (default) 1 = Report in 10 mW or 10 mWh

11.5 0x04 AtRate()

This read/write word function sets the value used in calculating **AtRateTimeToFull()** and **AtRateTimeToEmpty()**.

SBS	Nama	Name Access			Proto-	Type	Min	Max	Unit	Note
Cmc	Name	SE	US	FA	col	Type	IVIIII	IVIAX	Onit	Note
0x04	AtRate()	R/W			Word I2	12	-32768	32767	mA	BatteryMode()[CAPM] = 0
								10 mW	BatteryMode()[CAPM]= 1	

11.6 0x05 AtRateToFull()

This word read function returns the remaining time to fully charge the battery stack.

0x06 AtRateToEmpty() www.ti.com

SBS	Name	Access SE US FA		i	Protocol	Type	Min	Max	Unit	Note	
Cmd	d Name		US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onic	Note	
0x05	AtRateToFull()		R		Word	U2	0	65534	min	65535 indicates not being charged	

11.7 0x06 AtRateToEmpty()

This word read function returns the remaining time to fully discharge the battery stack.

SBS	Namo		Access		Protocol	Туре	Min	Max	Unit	Note
Cmd	Ivaille	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onit	Note
0x06	AtRateToEmpty()		R		Word	U2	0	65534	min	65535 indicates not being charged

11.8 0x07 AtRateOK()

	SBS			Access		Protocol	Туре	Min	Max	Unit	Note
	Cmd	Name	SE	SE US		Protocol	Type	IVIIII	IVIAX	Onit	Note
Ī	0x07	AtRateOK()		R		Word					0 = not ok

11.9 0x08 Temperature()

SBS	Name	Access			Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAX	Oilit	Note
0x08	Temperature()		R		Word	U2	0	65535	0.1°K	

11.10 0x09 Voltage()

SBS	Namo	Name			Protocol	Туре	Min	Max	Unit	Note
Cmd	Name	SE US FA		Type	IVIIII	IVIAX	Oilit	Note		
0x09	Voltage()		R		Word	U2	0	65535	mV	

11.11 0x0A Current()

SBS Name		Access			Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	11010001	туре	IVIIII	WIGA	Oille	Note
0x0A	Current()		R		Word	12	-32767	32768	mA	

11.12 0x0B AverageCurrent()

SBS	Name	Access		Protocol	Туре	Min	Max	Unit	Note	
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oilit	Note
0x0B	Current()		R		Word	12	-32767	32768	mA	

11.13 **0x0C MaxError()**

This read word function returns an unsigned integer value of the expected margin of error, in %, in the state-of-charge calculation with a range of 1 to 100%.

SBS	SBS Cmd Name	Access			Protocol	Туре	Min	Max	Unit	Note
Cmd		SE	US	FA	FIOLOCOI	rype	IVIIII	Wax	Oilit	Note
0x0C	MaxError()	R		Word	U2	0	100	%		

Status	Condition	Action
	Full device reset	MaxError() = 100%
	RA-table only updated	MaxError() = 5%
	QMax only updated	MaxError() = 3%
	RA-table and QMax updated	MaxError() = 1%
	Each CycleCount() increment after last valid Qmax update	MaxError() increment by 0.05%
	Configuration:Max Error Time Cycle Equivalent period passed since last valid QMax update	MaxError() increment by 0.05%

11.14 0x0D RelativeStateOfCharge()

This read word function returns the predicted remaining battery capacity as a percentage of **FullChargeCapacity()**.

SBS			Access	3	Protocol	Туре	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	1 1010001	туре	IVIIII	IVIAA	Oille	Note
0x0D	RelativeState OfCharge()		R		Word	U2	0	100	%	

11.15 0x0E AbsoluteStateOfCharge()

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onit	Note
0x0E	AbsoluteState OfCharge()		R		Word	U2	0	100	%	

11.16 0x0F RemainingCapacity()

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onit	Note
0x0F	RemainingCap	R	R	R/W	Word	U2	0	65535	mAh	BatteryMode()[CAPM] = 0
UXUF	acity()			•	vvolu	UZ	U	00000	10 mWh	BatteryMode()[CAPM] = 1

11.17 0x10 FullChargeCapacity()

SBS	Name		Acces	ss	Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onit	Note
0x10	FullChargeCap	R	R	R/W	Word	U2	0	65535	mAh	BatteryMode()[CAPM] = 0
UXTU	acity()				vvolu	02	U	00000	10 mWh	BatteryMode()[CAPM] = 1

11.18 0x11 RunTimeToEmpty()

SBS	Name		Access		Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oilit	Note
0x11	RunTimeToEm pty()	R	R	R	Word	U2	0	65534	min	65535 = Not being discharged

11.19 0x12 AverageTimeToEmpty()

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	Note
Cmd	Ivallie	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oilit	Note
0x12	AverageTim eToEmpty()	R	R	R	Word	U2	0	65534	min	65535 = Not being discharged

11.20 0x13 AverageTimeToFull()

SBS	Name		Access		Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oilit	Note
0x13	AverageTim eToFull()	R	R	R	Word	U2	0	65534	min	65535 = Not being discharged

11.21 0x14 ChargingCurrent()

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	Note	
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onit	Note	
0x14	ChargingCur rent()	R	R	R	Word	U2	0	65534	mA	65535 = request maximum current	

11.22 0x15 ChargingVoltage()

SBS	Name		Access		Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	1 1010001	туре	IVIIII	IVIAA	Oille	Note
0x15	ChargingVolt age()	R	R	R	Word	U2	0	65534	mV	65535 = request maximum voltage

www.ti.com 0x16 BatteryStatus()

11.23 0x16 BatteryStatus()

SBS			Access	;		_			
Cmd	Name	SE	US	FA	Protocol	Type	Min	Max	Note
0x16	BatteryStatus()	R	R	R	Word	H2			Bit 3:0: EC3,EC2,EC1,EC0 Error Code 0x0 = OK 0x1 = Busy 0x2 = Reserved Command 0x3 = Unsupported Command 0x4 = AccessDenied 0x5 = Overflow/Underflow 0x6 = BadSize 0x7 = UnknownError Bit 4: FD—Fully Discharged 0 = Battery ok 1 = Battery fully depleted Bit 5: FC—Fully Charged 0 = Battery fully charged 01 = Battery fully charged 01 = Battery fully charged Bit 6: DSG—Discharging 0 = Battery is charging 1 = Battery is discharging Bit 7: INIT—Initialization 0 = Inactive 1 = Active Bit 8: RTA—Remaining Time Alarm 0 = Inactive 1 = Active
0x16	BatteryStatus()	R	R	R	Word	H2			Bit 9: RCA—Remaining Capacity Alarm 0 = Inactive 1 = Active Bit 10: Reserved Undefined Bit 11: TDA—Terminate Discharge Alarm 0 = Inactive 1 = Active Bit 12: OTA—Overtemperature Alarm 0 = Inactive 1 = Active Bit 13: Reserved Undefined Bit 14: TCA—Terminate Charge Alarm 0 = Inactive 1 = Active Bit 15: OCA—Over Charged Alarm 0 = Inactive 1 = Active Bit 15: OCA—Over Charged Alarm 0 = Inactive 1 = Active

Ox17 CycleCount() www.ti.com

11.24 0x17 CycleCount()

SE	38	Name		Access	5	Protocol	Туре	Min	Max	Unit	Note
Cn	nd	Name	SE	US	FA	11010001	Туре	IVIIII	IVIAA	Oiiit	14016
0x	17	CycleCount()	R	R	R	Word	U2	0	65534	cycles	65535 = 65535 or more cycles

11.25 0x18 DesignCapacity()

SBS	Name		Access	i	Protocol	Type	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	11010001	Type	IVIIII	IVIAA	Oilit	14016
0x18	DesignCapacity()	R	R	R	Word	U2	0	65535	mAh	BatteryMode()[CAPM] = 0
									10 mWh	BatteryMode()[CAPM] = 1

11.26 0x19 DesignVoltage()

SBS	Name		Access	5	Protocol	Туре	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onic	Note
0x19	DesignVoltage()	R	R	R	Word	U2	0	65535	mV	

11.27 0x1A SpecificationInfo()

0,0,1,1 = reported currents and capacities scaled by 10E3 except **ChargingVoltage()** and ChargingCurrent()

www.ti.com

Access SBS Name **Protocol** Type Min Max Note Cmd SE US FA Bit 0,1,2,3: Revision Revision 0,0,0,1 = Version 1.0 and 1.1(default) Bit 4,5,6,7: Version Version 0,0,0,1 = Version 1.00,0,1,1 = Version 1.1 0,0,1,1 = Version 1.1 with optional PEC support Bit 8,9,10,11: VScale Voltage Scale Factor 0,0,0,0 = reported voltages scaled by 10E0 0,0,0,1 = reported voltages scaled by 10E1 0,0,1,0 = reported voltages scaled by 10E2 0x1A SpecificationInfo() R R R Word H2 0x0000 0xFFFF 0,0,1,1 = reported voltages scaled by 10E3 Bit 12,13,14,15: Current 0,0,0,0 = reported currents andcapacities scaled by 10E0 except ChargingVoltage() and ChargingCurrent() 0,0,0,1 = reported currents and capacities scaled by 10E1 except ChargingVoltage() and ChargingCurrent() 0,0,1,0 = reported currents and capacities scaled by 10E2 except ChargingVoltage() and ChargingCurrent()

11.28 0x1B ManufacturerDate()

SBS	Name	Access		Protocol	Type	Min	Max	Note	
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Note
0x1B	ManufacturerDate()	R	R	R	Word				ManufacturerDate() value in the following format:Day + Month*32 + (Year-1980)*256

11.29 0x1C SerialNumber()

SBS	Namo	Name Access		Protocol	Туре	Min	Max	Unit	Note	
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oilit	Note
0x1C	SerialNumber()	R	R	R	Word					

11.30 0x20 ManufacturerName()

	SBS	Name	Access		Protocol	Type	Min	Max	Unit	Note	
	Cmd	Name	SE	US	FA	11010001	туре	WIIII	IVIAX	Oilit	Note
Ī	0x20	ManufacturerName()	R	R	R	Block	S21				

0x21 DeviceName() www.ti.com

11.31 0x21 DeviceName()

SBS	Name		Acces	S	Protocol	Туре	Min	Max	Unit	Note
Cmd	Name	SE	US	FA	11010001	Турс		Max	Oilit	Note
0x21	DeviceName()	R	R	R	Block	S21				

11.32 0x22 DeviceChemistry()

SBS	Name	Access		s	Protocol	Туре	Min	Max	Unit	Note	1
Cmd	Name	SE	US	FA	11010001	Туре	WIIII	IVIAA	Oille	Note	1
0x22	DeviceChemistry()	R	R	R	Block	S4					l

11.33 0x23 ManufacturerData()

SB	Name	Access		Protocol	Type	Min	Max	Unit	Note	
Cm	d	SE	US	FA	11010001	туре	IVIIII	IVIAA	Onic	Note
0x2	3 ManufacturerData()	R	R	R	Block					

11.34 0x2F Authentication() AND ManufacturerInput()

This read/write block function provides SHA-1 authentication in default mode. It is also used to enable data flash read/writes and provide authentication input for sealed, unsealed, full access mode.

SBS	Name	Access		Protocol	Type	Min	Max	Unit	Note	
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Onit	Note
0x2F	ManufacturerInput()	R/W	R/W	R/W	Block					

Status	Condition	Action
Authentication	No active ManufacturerInput() data waiting AND write 160-bit challenge to ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIJJKKLLMMNNO OPPQQRRSSTT, where AA is LSB.	OperationStatus()[AUTH] = 1 Wait 250 ms OperationStatus()[AUTH] = 0 Device returns 160-bit digest at ManufacturerInput() in the format 0xAABBCCDDEEFFGGHHIIJJKKLLMMNNOOPP QQRRSSTTT, where AA is LSB, using the challenge + authentication key. Compare with own calculations to confirm validity of key.
ManufacturerInfo	Valid word sent to ManufacturerAccess()	Output block based on ManufacturerAccess() input for one time readout. Note: 0xF081 and 0xF082 on ManufacturerAccess() will be available for multi-read out until cleared with 0xF080.

11.35 0x3C-0x3F Cell Voltages()

SBS Cmd	Name	Access			Protocol	Туре	Min	Max	Default	Unit	Note
		SE	US	FA							
0x3c	Cell 3 voltage	R	R	R	Word	12	0	32767		mV	
0x3d	Cell 2 voltage	R	R	R	Word	12	0	32767		mV	

SBS Cmd	Name		Access		Protocol	Туре	Min	Max	Default	Unit	Note
0x3e	Cell 1 voltage	R	R	R	Word	12	0	32767		mV	
0x3f	Cell 0 voltage	R	R	R	Word	12	0	32767		mV	

0x50 SafetyAlert() www.ti.com

11.36 0x50 SafetyAlert()

SBS	Nome		Access		Proto-	Turna	Min	Max	Note
Cmd	Name	SE	US	FA	col	Туре	Min	Max	Note
0x50	SafetyAlert()	N/A	R	R	Block				Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in discharge 0 = Inactive 1 = Detected Bit 7: Reserved Bit 7: Reserved Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: Reserved Bit 11: Reserved Bit 12: OTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved

www.ti.com 0x50 SafetyAlert()

SBS	Name		Access		Proto-	T	Min	Max	Note
Cmd	Name	SE	US	FA	col	Туре	IVIII	IVIAX	Note
0x50	SafetyAlert()	N/A	R	R	Block				Bit 16: OTF—FET overtemperature 0 = Inactive 1 = Detected Bit 17: HWD—SBS Host watchdog timeout 0 = Inactive 1 = Detected Bit 18: PTO—Pre-charging timeout 0 = Inactive 1 = Detected Bit 19: PTOS—Pre-charging timeout suspend 0 = Inactive 1 = Detected Bit 20: CTO—Charging timeout 0 = Inactive 1 = Detected Bit 21: CTOS—Charging timeout suspend 0 = Inactive 1 = Detected Bit 22: OC—Overcharge 0 = Inactive 1 = Detected Bit 23: CHGC—Charging Current higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 25: Reserved Bit 25: Reserved Bit 27: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved Bit 31: Reserved

0x51 SafetyStatus() www.ti.com

11.37 0x51 SafetyStatus()

SBS	Nome		Access		Proto-	Tyrna	Min	Mov	Note
Cmd	Name	SE	US	FA	col	Type	Min	Max	Note
0x51	SafetyStatus()	N/A	R	R	Block				Bit 0: CUV—Cell UnderVoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in discharge 0 = Inactive 1 = Detected Bit 7: OLDL—Overload in discharge latch 0 = Inactive 1 = Detected Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected Bit 9: SCCL—Short circuit in charge latch 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge latch 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge

www.ti.com Ox51 SafetyStatus()

SBS	N		Access		Proto-	T			Note
Cmd	Name	SE	US	FA	col	Type	Min	Max	Note
0x51	SafetyStatus()	N/A	R	R	Block				Bit 12: OTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved Bit 15: Reserved Bit 16: OTF—FET overtemperature 0 = Inactive 1 = Detected Bit 17: HWD—SBS Host watchdog timeout 0 = Inactive 1 = Detected Bit 18: PTO—Pre-charging timeout 0 = Inactive 1 = Detected Bit 19: Reserved Bit 20: CTO—Charging timeout 0 = Inactive 1 = Detected Bit 21: Reserved Bit 22: OC—Overcharge 0 = Inactive 1 = Detected Bit 23: CHGC—Charging Current higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 25: Reserved Bit 26: Reserved Bit 26: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved

0x52 PFAlert() www.ti.com

11.38 0x52 PFAlert()

SBS	Name		Access		Proto-	Tuna	Min	Max	Note
Cmd	Name	SE	US	FA	col	Туре	IVIII	IVIAX	Note
0x52	PFAlert()	N/A	R	R	Block				Bit 0: CUV—Cell undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell overvoltage 0 = Inactive 1 = Detected Bit 2: CUDEP—Copper deposition 0 = Inactive 1 = Detected Bit 3: Reserved Bit 4: OTCE—Overtemperature 0 = Inactive 1 = Detected Bit 5: Reserved Bit 6: OTF—Overtemperature FET 0 = Inactive 1 = Detected Bit 7: QIM—QMax Imbalance 0 = Inactive 1 = Detected Bit 8: CB—Cell balancing 0 = Inactive 1 = Detected Bit 9: IMP—Cell impedance 0 = Inactive 1 = Detected Bit 10: CD—Capacity Deterioration 0 = Inactive 1 = Detected Bit 11: VIMR—Voltage imbalance at Rest 0 = Inactive 1 = Detected Bit 12: VIMA—Voltage imbalance at Rest 0 = Inactive 1 = Detected Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 14: Reserved Bit 15: Reserved

www.ti.com Ox52 PFAlert()

SBS	Nama		Access		Proto-	Tuna	Min	Max	Note
Cmd	Name	SE	US	FA	col	Туре	IVIIN	IVIAX	Note
0x52	PFAlert()	N/A	R	R	Block				Bit 16: CFETF—Charge FET 0 = Inactive 1 = Detected Bit 17: DFET—Discharge FET 0 = Inactive 1 = Detected Bit 18: TH—Thermistor 0 = Inactive 1 = Detected Bit 19: FUSE—Fuse 0 = Inactive 1 = Detected Bit 20: AFER—AFE Register 0 = n/a 1 = Detected Bit 21: AFEC—AFE Communication 0 = Inactive 1 = Detected Bit 22: 2LVL—FUSE input indicating fuse trigger by external 2nd level protection 0 = Inactive 1 = Detected Bit 23: Reserved Bit 24: Reserved Bit 25: OCECO—Open VCx 0 = n/a 1 = Detected Bit 26: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved Bit 31: Reserved

0x53 PFStatus() www.ti.com

11.39 0x53 PFStatus()

SBS	Name		Access		Proto-	Tyma	Min	Max	Note
Cmd	Name	SE	US	FA	col	Type	IVIII	IVIAX	Note
0x53	PFStatus()	N/A	R	R	Block				Bit 0: CUV—Cell undervoltage 0 = Inactive 1 = Active Bit 1: COV—Cell overvoltage 0 = Inactive 1 = Active Bit 2: Reserved Bit 3: Reserved Bit 4: OTCE—Overtemperature 0 = Inactive 1 = Active Bit 5: Reserved Bit 6: OTF—Overtemperature FET 0 = Inactive 1 = Active Bit 7: QIM—QMax Imbalance 0 = Inactive 1 = Active Bit 8: CB—Cell balancing 0 = Inactive 1 = Active Bit 9: IMP—Cell impedance 0 = Inactive 1 = Active Bit 10: CD—Capacity Deterioration 0 = Inactive 1 = Active Bit 11: VIMR—Voltage imbalance at Rest 0 = Inactive 1 = Active Bit 12: VIMA—Voltage imbalance at Rest 0 = Inactive 1 = Active Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved

www.ti.com 0x53 PFStatus()

SBS	S. Name		Access		Proto-	Type	Min	Max	Note
Cm	d Name	SE	US	FA	col	Туре	WIII	IVIAX	Note
0x5	3 PFStatus()	N/A	R	R	Block				Bit 16: CFETF—Charge FET 0 = Inactive 1 = Active Bit 17: DFET—Discharge FET 0 = Inactive 1 = Active Bit 18: TH—Thermistor 0 = Inactive 1 = Active Bit 19: FUSE—Fuse 0 = Inactive 1 = Active Bit 20: AFER—AFE Register 0 = n/a 1 = Active Bit 21: AFEC—AFE Communication 0 = Inactive 1 = Active Bit 22: 2LVL FUSE input indicating fuse trigger by external 2nd level protection 0 = Inactive 1 = Active Bit 23:PTC—PTC by AFE 0 = Inactive 1 = Active Bit 24: IFC—Instruction Flash Checksum 0 = n/a 1 = IF checksum failure Bit 25: OCECO—Open VCx 0 = n/a 1 = Active Bit 26: DFW—DF write failure 0 = n/a 1 = Active Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved

0x54 OperationStatus() www.ti.com

11.40 0x54 OperationStatus()

SBS	N 1		Access		Proto-	T			Nete
Cmd	Name	SE	US	FA	col	Type	Min	Max	Note
0x54	OperationSt atus()	N/A	R	R	Block				Bit 0: PRES—PRES input state 0 = PRES pin high 1 = PRES pin low Detected Bit 1: DSG—DSG FET Status 0 = Disabled 1 = Enabled Bit 2: CHG—CHG FET Status 0 = Disabled 1 = Enabled Bit 3: PCHG—PCHG FET Status 0 = Disabled 1 = Enabled Bit 4: GPOD—GPOD FET Status 0 = Disabled 1 = Enabled Bit 5: FUSE—FUSE input 0 = FUSE pin low 1 = FUSE pin high Detected Bit 6: CB—Cell Balancing 0 = Inactive 1 = Active Bit 7: LED—LED Enable 0 = Inactive 1 = Active Bit 9:8: SEC1,SEC0—Security Mode0 0 = Reserved 1, 0 = Full Access 0, 1 = Unsealed 1,1 = Sealed
0x54	OperationSt atus()	N/A	R	R	Block				Bit 10: CAL—Cal Raw ADC/CC output active 0 = Inactive 1 = Active Bit 11: SS—SafetyStatus 0 = Inactive 1 = Active Bit 12: PF—Permanent Failure 0 = Inactive 1 = Active Bit 13: XDSG—Discharging Disabled 0 = Inactive 1 = Active Bit 14: XCHG—Charging Disabled 0 = Inactive 1 = Active Bit 15: SLEEP—Sleep condition met 0 = Disabled 1 = Enabled Bit 15: SLEEP—Sleep condition met 0 = Disabled 1 = Enabled Bit 16: SDM—Shutdown activated by ManufacturerAccess() 0 = Inactive 1 = Active Bit 17: SHIPM—Ship mode activated with ManufacturerAccess() 0 = Inactive 1 = Active Bit 18: AUTH—Authentication ongoing 0 = Inactive 1 = Active

www.ti.com 0x54 OperationStatus()

SBS	Nama		Access		Proto-	T	N/I:	Marr	Note
Cmd	Name	SE	US	FA	col	Туре	Min	Max	Note
0x54	OperationSt atus()	N/A	R	R	Block				Bit 19: AWD—AFE Watchdog failure 0 = Inactive 1 = Active Bit 20: FVS—Fast Voltage Sampling 0 = Inactive 1 = Active Bit 21: CALO—Raw ADC/CC offset output 0 = Inactive 1 = Active Bit 22: SDV—Shutdown activated by voltage 0 = Inactive 1 = Active Bit 23: SLEEPM—Sleep mode active by ManufacturerAccess() 0 = Inactive 1 = Active Bit 24: INIT—Initialization after full reset, cleared when SBS data calculated and available 0 = Inactive 1 = Active Bit 25: SMBLCAL—CC auto offset calibration ongoing after SBS line goes low 0 = Inactive 1 = Active Bit 26: SLEEPQMax—QMax update in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPC—Checking current in Sleep mode 0 = Inactive 1 = Active Bit 28: XLSBS Fast Mode 0 = Inactive 1 = Active Bit 28: XLSBS Fast Mode 0 = Inactive 1 = Active Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved

0x55 ChargingStatus() www.ti.com

11.41 0x55 ChargingStatus()

SBS	Name		Access		Proto-	Turna	Min	Max	Note
Cmd	Name	SE	US	FA	col	Туре	IVIII	IVIAX	Note
0x55	ChargingSta tus()		R	R	Block				Bit 0: UT—Under Temperature Range 0 = Inactive 1 = Active Bit 1: LT—Low Temperature Range 0 = Inactive 1 = Active Bit 2: STL—Standard Temperature Low Range 0 = Inactive 1 = Active Bit 3: RT—Recommended Temperature Range 0 = Inactive 1 = Active Bit 4: ST—Standard Temperature High Range 0 = Inactive 1 = Active Bit 5: HT—High Temperature Range 0 = Inactive 1 = Active Bit 6: OT—Over Temperature Range 0 = Inactive 1 = Active Bit 7: PV—Precharge Voltage Range 0 = Inactive 1 = Active Bit 8: LV—Low Voltage Range 0 = Inactive 1 = Active Bit 9: MV—Mid Voltage Range 0 = Inactive 1 = Active Bit 10: HV—High Voltage Range 0 = Inactive 1 = Active Bit 11: IN—Charge Inhibit 0 = Inactive 1 = Active Bit 12: SU—Charge Suspend 0 = Inactive 1 = Active Bit 13: CCR—ChargingCurrent() Rate 0 = Inactive 1 = Active Bit 15: CCC—ChargingCurrent() Compensation 0 = Inactive 1 = Active Bit 15: CCC—ChargingCurrent() Compensation 0 = Inactive 1 = Active

www.ti.com 0x56 GaugingStatus()

11.42 0x56 GaugingStatus()

SBS			Access		Proto-	_			
Cmd	Name	SE	US	FA	col	Туре	Min	Max	Note
0x56	GaugingStatu s()		R	R	Block				Bit 0: RESTDODO, OCV and QMax Updated 0 = Not updated 1 = Updated Bit 1: DSG—Discharge Detected 0 = Charging 1 = Discharging Bit 2: RU—Resistance update 0 = Disabled 1 = Enabled Bit 3: VOK Cell Voltage OK for QMax update 0 = Inactive 1 = Active Bit 4: QEN—QMax updates 0 = Disabled 1 = Enabled Bit 5: FD—Fully Discharged Detected by gauge algorithm 0 = Disabled 1 = Enabled Bit 6: FC—Fully Charged Detected by gauge algorithm 0 = Disabled 1 = Enabled Bit 7: NSFM—Negative scale factor mode 0 = Disabled 1 = Enabled Bit 8: VDQ—Discharge qualified for learning 0 = Disabled 1 = Enabled Bit 9: QMax—QMax updated. This flag toggles every time QMax is updated. Bit 10: RX—Resistance update. This flag toggles every time Resistance is updated. Bit 11: LDMD—Load Mode 0 = Constant current mode 1 = Constant power mode Bit 12: OCVFR—OCV in flat region 0 = OCV outside flat region 1 = OCV in flat region Bit 13: TDA—Terminate Discharge Alarm set by gauging algorithm 0 = Disabled 1 = Enabled Bit 14: TCA—Terminate Charge Alarm set by gauging algorithm 0 = Disabled 1 = Enabled Bit 15: LPF Relax—LiPh Relax Mode, only active with Chem ID 0x400 0 = Disabled 1 = Enabled Bit 15: LPF Relax—LiPh Relax Mode, only active with Chem ID 0x400 0 = Disabled 1 = Enabled

11.43 0x57 ManufacturingStatus()

The enable bits FET_EN, LF_EN, PF_EN, BBR_ENFUSE_EN, and LED_EN can be set in the golden image if packmaker does not want to send the individual enable commands. The only function that can not be enabled by setting DF Setting Manufacturing Status is IT Enable. The IT Enable cmd is needed to take DOD0 value for fast Qmax, etc.

SBS	Nama		Access		Proto-	T	Min	Marr	Defecult	Note
Cmd	Name	SE	US	FA	col	Туре	Min	Max	Default	Note
0x57	Manufacturin gStatus()		R	R	Block				0x8000	Bit 0: PCHG—PCHG Function, only available with FET = 0 0 = Disabled 1 = Enabled Bit 1: CHG—CHG FET, only available with FET = 0 0 = Disabled 1 = Enabled Bit 2: DSG—DSG FET, only available with FET = 0 0 = Disabled Bit 2: DSG—DSG FET, only available with FET = 0 0 = Disabled 1 = Enabled Bit 3: GAUGE—Gauging 0 = Disabled 1 = Enabled (default) Bit 4: FET—FET action 0 = Disabled 1 = Enabled (default) Bit 5: LF—Lifetime data collection 0 = Disabled 1 = Enabled (default) Bit 6: PF—Permanent Fail 0 = Disabled 1 = Enabled (default) Bit 7: BBR—Black box recorder 0 = Disabled 1 = Enabled (default) Bit 8: FUSE—FUSE action 0 = Disabled 1 = Enabled (default) Bit 9: LED—LED Display 0 = Disabled 1 = Enabled (default) Bit 10: Reserved Bit 11: Reserved Bit 11: Reserved Bit 12: Reserved Bit 14: Reserved Bit 15: CAL ADC or CC output on ManufacturerData() 0 = Disabled 1 = Enabled (default)

www.ti.com Ox58 AFERegisters()

11.44 0x58 AFERegisters()

SBS	Nama		Access	;	Proto-	Min	Mari	Note	
Cmd	Name	SE	US	FA	col	туре	WIIN	Max	Note
0x58	AFERegisters()		R	R	Block				Output AFE register values on ManufacturerData() in the following format: AABBCCDDEEFFGGHHIIJJKK where: AA: STATUS register BB: STATE_CONTROL register CC: OUTPUT_CONTROL register DD: OUTPUT_STATUS register EE: FUNCTION_CONTROL register FF: CELL_SEL register GG: OCDV register HH: OCDD register II: SCC register JJ: SCD1 register KK: SCD2 register

0x60 Lifetime Data Block 1 www.ti.com

11.45 0x60 Lifetime Data Block 1

SBS	N		Access		Proto-	T	N.O		News
Cmd	Name	SE	US	FA	col	Type	Min	Max	Note
0x60	Lifetime Data Block 1		R	R	Block				Output lifetimes values on ManufacturerData() in the following format: AABBCCDDEEFFGGHHIIJJKKLLMMN NOOPPQQRRSSTTUUVVWWXXVVZZ 112233445566 where: in the following format: AA: Max Cell Voltage 1 BB: Max Cell Voltage 2 CC: Max Cell Voltage 3 DD: Max Cell Voltage 4 EE: Min Cell Voltage 1 FF: Min Cell Voltage 3 HH: Min Cell Voltage 3 HH: Min Cell Voltage 4 II: Max Delta Cell Voltage 4 II: Max Delta Cell Voltage 9 JJ: Max Charge Current KK: Max Discharge Current KK: Max Discharge Current MM: Max Average Discharge Current NN: No of COV Events OO: Last COV Event PP: No of CUV Events QQ: Last CUV Event RR: No of OCD1 Events SS: Last OCD1 Event TT: No of OCD2 Events UU: Last OCD2 Event VV: No of OCC1 Events WW: Last OCC1 Event XX: No of OCC2 Event XX: No of OCC2 Event YY: Last OCC2 Event 2Z: No of OLD Events 11: Last OLD Event 22: No of SCD Event 22: No of SCD Event 33: Last SCD Event 44: No of SCC Events 55:Last SCC Event 66: No of OTC Events

11.46 0x61 Lifetime Data Block 2

SBS	NI	,	Access		Proto-	-			Defeat	Nere
Cmd	Name	SE	US	FA	col	Туре	Min	Max	Default	Note
0x61	Lifetime Data Block 2		R	R	Block					Output lifetimes values on ManufacturerData() in the following format: AABBCCDDEEFFGGHHIJJKKL LMMNNOOPPQQRRSSTTUUVV WWXXVVZZ11 where: AA: Last OTC Event BB: No of OTD Events CC: Last OTD Event DD: No of OTF Events EE: Last OTF Event FF: No Valid Charge Terminations GG: Last Valid Charge Termination HH: No of QMax Updates II: Last QMax Updates II: Last QMax Updates KK: Last RA Update JJ: No of RA Disables MM:Last RA Disable NN: No of Shutdowns OO: No of Partial Resets PP: No of Full Resets QQ: No of WDT Resets RR: CB Time Cell 1 SS: CB Time Cell 2 TT: CB Time Cell 3 UU: CB Time Cell 4 VV: Max Temp Cell XX: Max Delta Cell Temp YY:Max Temp Int Sensor ZZ:Min Temp Int Sensor

11.47 0x62 Lifetime Data Block 3

SBS	Name		Access		Proto-	Type	Min	Max	Default	Note
Cmd	Ivallie	SE	US	FA	col	Туре	IVIIII	IVIAX	Delault	Note
										Output lifetimes values on ManufacturerData()
										 in the following format: aaAAbbBBccCCddDDeeEEffFFg gGGhhHH where:
	Lifetime	R								 AAaa: Total firmware Run Time
0x62	Data Block		R R	Block					BBbb: Time Spent in UT	
	3									CCcc: Time Spent in LT
										DDdd: Time Spent in STL *EEee: Time Spent in RT
										FFff: Time Spent in STH
										GGgg: Time Spent in HT
										HHhh: Time Spent in OT

0x70 ManufacturerInfo() www.ti.com

11.48 0x70 ManufacturerInfo()

SBS	Name	Access			Protocol	Туре	Min	Max	Note
Cmd	Name	SE	US	FA	11010001	Type	IVIIII	IVIAA	Note
0x70	ManufacturerI nfo()	R	R/W	R/W	Block				Instruct the device to return 32 bytes of ManufacturerInfo(). Output 32 bytes of ManufacturerInfo on ManufacturerData() in the following format: AABBCCDDEEFFGGHHIJJKKLLMMNN OOPPQQRRSSTTUUVVWWXXVVZZ112 233445566

11.49 0x71 Voltages()

SBS	Name		Access		Protocol	Tyma	Min	Max	Note
Cmd	Name	SE	US	FA		Type	IVIII	IVIAX	Note
0x71	Voltages()	n/a	R	R	Block				Output 12 bytes of voltage data values on ManufacturerData() in the following format: aaAAbbBBccCCddDDeeEEffFF where: • AAaa: Cell Voltage 0 • BBbb: Cell Voltage 1 • CCcc: Cell Voltage 2 • DDdd: Cell Voltage 3 • EEee: BAT Voltage • FFff: PACK Voltage

11.50 0x72 Temperatures()

SBS	Name	Access			Protocol	Тур	Min	Max	Nata
Cmd		SE	US	FA	Protocol	e	IVIII	IVIAX	Note
0x72	Temperatures()	n/a	R	R	Block				Output 14 bytes of temperature data values on ManufacturerData() in the following format: aaAAbbBBccCCddDDeeEEffFF where: AAaa: Int Temperature BBbb: TS1 Temperature CCcc: TS2 Temperature DDdd: TS3 Temperature EEee: TS4 Temperature FFff: Cell Temperature GGgg: FET Temperature

11.51 0x73 ITStatus1()

This read block function returns gauging algorithm related parameters.

www.ti.com 0x74 ITStatus2()

SBS	Name		Access		Proto-	Type	Min	Max	Note
Cmd	Name	SE	US	FA	col	Туре	IVIIII	IVIAX	Note
0x73	ITStatus1()	n/a	R	R	Block				Output 30 bytes of IT data values on ManufacturerData() in the following format: aaAAbbBBccCCddDDeeEEffFFGGggH HhhlliiJJjjkkKKIILLmmMMnnNNooOO where: • AAaa: DOD0 Cell 0 • BBbb: DOD0 Cell 1 • CCcc: DOD0 Cell 2 • DDdd: DOD0 Cell 3 • EEee: Passed Charge since last DOD0 Update • FFff: QMax Cell 0 • GGgg: QMax Cell 1 • HHhh: QMax Cell 2 • Ilii: QMax Cell 3 • JJjjKKkk: State Time • LLII: DOD EOC Cell 0 • MMmm: DOD EOC Cell 1 • NNnn: DOD EOC Cell 2

Attribute	Description	Format
DOD0_0	Depth of discharge cell 0	12
DOD0_1	Depth of discharge cell 1	12
DOD0_2	Depth of discharge cell 2	12
DOD0_3	Depth of discharge cell 3	12
ChargeDOD0Update	Passed charge since last DOD0 update	l2
QMax0	Qmax of cell 0	l2
QMax1	Qmax of cell 1	12
QMax2	Qmax of cell 2	12
QMax3	Qmax of cell 3	12
StateTime	Time past since last state change (DSG,CHG,RST)	U4
DODEOC0	Depth of discharge cell at End of Charge cell 0	U2
DODEOC1	Depth of discharge cell at End of Charge cell 1	U2
DODEOC2	Depth of discharge cell at End of Charge cell 2	U2
DODEOC3	Depth of discharge cell at End of Charge cell 3	U2

11.52 0x74 ITStatus2()

This read block function returns gauging algorithm related parameters.

0x74 ITStatus2() www.ti.com

SBS	Name		Access		Proto-	Type	Min	Max	Note
Cmd	Name	Name SE US FA COI Type Min Max		IVIAX	Note				
0x74	ITStatus2()		R	R	Block				Output 30 bytes of IT data values on ManufacturerData() in the following format: AABBCCDDEEFFggGGhhHHiilljjJJkkKKIILL mmMMnnNNooOOppPPqqQQrrRR where: AA: Pack Grid point BB: Learned Status CC: Grid Cell 0 DD: Grid Cell 1 EE: Grid Cell 2 FF: Grid Cell 3 GGgg: CompRes Cell 0 HHhh: CompRes Cell 1 Ilii: CompRes Cell 2 JJjj: CompRes Cell 3 Kkkk: CB Time Cell 0 LLII: CB Time Cell 1 MMmm: CB Time Cell 2 NNnn: CB Time Cell 3 OOoo: RaScale0 PPpp: RaScale1 QQqq: RaScale2 RRrr: RaScale3

Attribute	Description	Format
PackGrid	Active pack grid point (minimum of CellGrid0 to CellGrid3)	U1
LStatus	Learned status of resistance table	Bit 1,0: CF—QMax status 0,0 = Battery OK 0,1 = QMax is first updated in learning cycle 1,0 = QMax and resistance table updated in learning cycle Bit 2: ITEN—IT enable 0 = IT disabled 1 = IT Enabled Bit 3: ITEN—QMax update in Field 0 = QMax never updated in field 1 = Qmax updated in filed
CellGrid0	Active grid point cell 0	U1
CellGrid1	Active grid point cell 1	U1
CellGrid2	Active grid point cell 2	U1
CellGrid3	Active grid point cell 3	U1
CompRes0	Last calculated temperature compensated resistance cell 0	U2
CompRes1	Last calculated temperature compensated resistance cell 1	U2
CompRes2	Last calculated temperature compensated resistance cell 2	U2
CompRes3	Last calculated temperature compensated resistance cell 3	U2
CBTime0	Calculated cell balancing time cell 0	U2
CBTime1	Calculated cell balancing time cell 1	U2
CBTime2	Calculated cell balancing time cell 2	U2
CBTime3	Calculated cell balancing time cell 3	U2
RaScale0	Ra Table scaling factor cell 0	U2
RaScale1	Ra Table scaling factor cell 1	U2

www.ti.com 0x74 ITStatus2()

Attribute	Description	Format
RaScale2	Ra Table scaling factor cell 2	U2
RaScale3	Ra Table scaling factor cell 3	U2

Data Flash Values and Device Configuration

12.1 Data Formats

12.1.1 Unsigned Integer

Unsigned integers are stored without changes as 1-byte, 2-byte or 4-byte values.

12.1.2 Integer

Integer values are stored in 2's-complement format in 1-byte, 2-byte, or 4-byte values.

12.1.3 Floating Point

Floating point are stored using 4 byte format, where the MSB is the exponent, byte 3 to 0 the mantissa in unsigned integer format, with the MSB in byte 3 as sign bit.

Where:

Exp: Exponent

Mantissa: 23 bit mantissa with 24 bit as sign bit.

The floating point value is represented as:

12.1.4 Hex

Bit register definitions are stored in unsigned integer format.

12.1.5 String

String values are stored with length byte first, followed by a number of data bytes defined with the length byte.

12.2 Protections

12.2.1 CUV—Cell Undervoltage

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	CUV	Threshold	12	0	32767	2800	mV	Cell undervoltage trip threshold
Protections	CUV	Delay	U1	0	255	2	S	Cell undervoltage trip delay
Protections	CUV	Recovery	12	0	32767	3000	mV	Cell undervoltage recovery threshold

Protections www.ti.com

12.2.2 CUVC—Cell Undervoltage Compensated

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	CUVC	Threshold	12	0	32767	2900	mV	Cell undervoltage compensated trip threshold
Protections	CUVC	Delay	U1	0	255	2	s	Cell undervoltage compensated trip delay
Protections	CUVC	Recovery	12	0	32767	3000	mV	Cell undervoltage compensated recovery threshold

12.2.3 COV—Cell Overvoltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	COV	Threshold Low Temp	I2	0	32767	4250	mV	Cell overvoltage low temperature range trip threshold
Protections	COV	Threshold Standard Temp	I2	0	32767	4250	mV	Cell overvoltage standard temperature range trip threshold
Protections	COV	Threshold High Temp	I2	0	32767	4250	mV	Cell overvoltage high temperature range trip threshold
Protections	COV	Threshold Rec Temp	12	0	32767	4250	mV	Cell overvoltage recommended temperature range trip threshold
Protections	COV	Delay	U1	0	255	2	S	Cell overvoltage trip delay
Protections	COV	Recovery Low Temp	I2	0	32767	4150	mV	Cell overvoltage low temperature range recovery threshold
Protections	COV	Recovery Standard Temp	12	0	32767	4150	mV	Cell overvoltage standard temperature recovery range threshold
Protections	COV	Recovery High Temp	12	0	32767	4150	mV	Cell overvoltage high temperature range recovery threshold
Protections	COV	Recovery Rec Temp	I2	0	32767	4150	mV	Cell overvoltage recommended temperature range recovery threshold

12.2.4 OCC1—Overcurrent In Charge 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	OCC1	Threshold	12	-32768	32767	6000	mA	Overcurrent in Charge 1 trip threshold
Protections	OCC1	Delay	U1	0	255	6	S	Overcurrent in Charge 1 trip delay

www.ti.com Protections

12.2.5 OCC2—Overcurrent In Charge 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	OCC2	Threshold	12	-32768	32767	8000	mA	Overcurrent in Charge 2 trip threshold
Protections	OCC2	Delay	U1	0	255	3	S	Overcurrent in Charge 2 trip delay

12.2.6 OCC Overcurrent In Charge Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	occ	Recovery Threshold	12	-32768	32767	-50	mA	Overcurrent in Charge 1 and 2 recovery threshold
Protections	OCC	Recovery Delay	U1	0	255	5	S	Overcurrent in Charge 1 and 2 recovery delay

12.2.7 OCD1—Overcurrent In Discharge 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	OCD1	Threshold	12	-32768	32767	-6000	mA	Overcurrent in Discharge 1 trip threshold
Protections	OCD1	Delay	U1	0	255	6	S	Overcurrent in Discharge 1 trip delay

12.2.8 OCD2—Overcurrent In Discharge 2

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	OCD2	Threshold	12	-32768	32767	-8000	mA	Overcurrent in Discharge 2 trip threshold
Protections	OCD2	Delay	U1	0	255	3	S	Overcurrent in Discharge 2 trip dela

12.2.9 OCD—Overcurrent In Discharge Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	OCD	Recovery	I2	-32768	32767	50	mA	Overcurrent in Discharge 1 and 2 recovery threshold
Protections	OCD	Recovery Delay	U1	0	255	5	S	Overcurrent in Discharge 1 and 2 recovery delay

Protections www.ti.com

12.2.10 OLD—Overload in Discharge

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	OLD	Threshold	H1	0x00	0x0F	0x09	10 mV	Bit 3:0: Overload Trip Threshold between SRP and SRN Threshold can be set from 50 mV to 200 mV with 10 mV step. If Settings:AFE State Control[RSNS] = 1, threshold value will be divided in half. See Appendix A for details.
Protections	OLD	Delay	H1	0x00	0x0F	0x0F	2 ms	Bit 3:0: Overload Trip Delay Delay can be set from 1 ms to 31 s with 2-ms steps. See Appendix A for details.
Protections	OLD	Latch Limit	U1	0	255	0	counts	Overload latch counter trip threshold
Protections	OLD	Counter Dec Delay	U1	0	255	10	S	Overload latch counter decrement delay
Protections	OLD	Recovery	U1	0	255	5	S	Overload recovery time
Protections	OLD	Reset	U1	0	255	15	S	Overload latch reset time

12.2.11 SCC—Short Circuit In Charge

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	scc	Threshold	H1	0x00	0xFF	0x77		Bit 2:0: Short Circuit in Charge Threshold—Threshold can be set from 100 mV to 300 mV in 50-mV steps. If Settings:AFE State Control[RSNS] = 1, Threshold value will be divided in half. Bit 3: Reserved Bit 7:4: Short Circuit in Charge Delay Time—Delay can be set from 0 µs to 915 µs in 61-µs steps. See Appendix A for details.
Protections	SCC	Latch Limit	U1	0	255	0		Short Circuit in Charge Latch counter trip threshold
Protections	SCC	Counter Dec Delay	U1	0	255	10	S	Short Circuit in Charge counter decrement delay
Protections	SCC	Recovery	U1	0	255	5	S	Short Circuit in Charge recovery time
Protections	SCC	Reset	U1	0	255	15	S	Short Circuit in Charge latch reset time

12.2.12 SCD1—Short Circuit In Discharge 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	SDC1	Threshold	H1	0x00	0xFF	0x77		Bit 2:0: Short Circuit in Discharge1 Threshold—Threshold can be set from 100 mV to 300 mV in 50 mV step. If Settings:AFE State Control[RSNS] = 1, Threshold value will be divided in half. Bit 3: Reserved Bit 7:4: Short Circuit in Discharge1 Delay Time—Delay can be set from 0 µs to 915 µs in 61-µs step. If Settings:AFE State Control[SCDDx2] = 1, Delay Time value will be doubled. See Appendix A for details.

www.ti.com Protections

12.2.13 SCD2—Short Circuit in Discharge 2

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	SDC2	Threshold	H1	0x00	0xFF	0xE7		Bit 2:0: Short Circuit in Discharge2 Threshold—Threshold can be set from 100 mV to 300 mV in 50mV step. If Settings:AFE State Control[RSNS] = 1, Threshold value will be divided in half. Bit 3: Reserved Bit 7:4: Short Circuit in Discharge2 Delay Time—Delay can be set from 0 µs to 458 µs in 30 µs step. If Settings:AFE State Control[SCDDx2] = 1, Delay Time value will be doubled. See Appendix A for details.

12.2.14 SCD—Short Circuit in Discharge

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	SCD	Latch Limit	U1	0	255	0		Short Circuit in Discharge Latch counter trip threshold
Protections	SCD	Counter Dec Delay	U1	0	255	10	S	Short Circuit in Discharge counter decrement delay
Protections	SCD	Recovery	U1	0	255	5	S	Short Circuit in Discharge recovery time
Protections	SCD	Reset	U1	0	255	15	S	Short Circuit in Discharge latch reset time

12.2.15 OTC—Over Temperature in Charge

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	OTC	Threshold	12	-400	1500	550	0.1°C	Over Temperature in Charge trip threshold
Protections	ОТС	Delay	U1	0	255	2	S	Over Temperature in Charge Cell trip delay
Protections	ОТС	Recovery	12	-400	1500	500	0.1°C	Over Temperature in Charge Cell recovery threshold

12.2.16 OTD—Over Temperature in Discharge

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	OTD	Threshold	12	-400	1500	600	0.1°C	Over Temperature in Discharge trip threshold
Protections	OTD	Delay	U1	0	255	2	S	Over Temperature in Discharge trip delay
Protections	OTD	Recovery	I2	-400	1500	550	0.1°C	Over Temperature in Discharge recovery threshold

12.2.17 OTF—Over Temperature FET

Protections www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	OTF	Threshold	12	-400	1500	800	0.1°C	Over Temperature FET trip threshold
Protections	OTF	Delay	U1	0	255	2	S	Over Temperature FET trip delay
Protections	OTF	Recovery	12	-400	1500	650	0.1°C	Over Temperature FET recovery threshold

12.2.18 HWD—Host Watchdog

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	HWD	Delay	U1	0	255	10	S	SBS Host watchdog trip delay

12.2.19 PTO—Pre Charge Mode Time Out

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	PTO	Charge Threshold	12	-32768	32767	2000	mA	Pre-Charge Timeout Current Threshold
Protections	PTO	Suspend Threshold	12	-32768	32767	1800	mA	Pre-Charge Timeout Suspend Threshold
Protections	PTO	Delay	U2	0	65535	1800	S	Pre-Charge Timeout trip delay
Protections	PTO	Reset	12	-32768	32767	2	mA	Pre-Charge Timeout Reset Threshold

12.2.20 CTO—Fast Charge Mode Time Out

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	PTO	Charge Threshold	l2	-32768	32767	2500	mA	Fast-Charge Timeout Current Threshold
Protections	PTO	Suspend Threshold	l2	-32768	32767	2000	mA	Fast-Charge Timeout Suspend Threshold
Protections	PTO	Delay	U2	0	65535	54000	S	Fast-Charge Timeout trip delay
Protections	PTO	Reset	12	-32768	32767	2	mA	Fast-Charge Timeout Reset Threshold

12.2.21 OC—Over Charge

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Protections	OC	Threshold	12	-32768	32767	300	mAh	Overcharge trip threshold
Protections	ОС	Recovery	12	-32768	32767	2	mAh	Overcharge recovery threshold
Protections	OC	RSOC Recovery	U1	0	100	90	%	Overcharge RemainingStateOfCharge() recovery threshold

12.2.22 CHGV—ChargingVoltage

www.ti.com Permanent Fail

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	CHGV	Threshold	12	-32768	32767	500	mV	ChargingVoltage() delta trip threshold
Protections	CHGV	Delay	U1	0	255	30	S	ChargingVoltage() delta trip delay
Protections	CHGV	Recovery	12	-32768	32767	-500	mV	ChargingVoltage() delta recovery threshold

12.2.23 CHGC—ChargingCurrent

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Protections	CHGC	Threshold	12	-32768	32767	500	mA	ChargingCurrent() delta trip threshold
Protections	CHGC	Delay	U1	0	255	2	S	ChargingCurrent() delta trip delay
Protections	CHGC	Recovery	12	-32768	32767	100	mA	ChargingCurrent() delta recovery threshold

12.3 Permanent Fail

12.3.1 CUV—Cell Undervoltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	CUV	Threshold	12	0	32767	2500	mV	Cell Undervoltage trip threshold
Permanent Fail	CUV	Delay	U1	0	255	2	S	Cell Undervoltage trip delay

12.3.2 COV—Cell Overvoltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	COV	Threshold	12	0	32767	4400	mV	Cell Overvoltage trip threshold
Permanent Fail	COV	Delay	U1	0	255	2	S	Cell Overvoltage trip delay

12.3.3 CUDEP—Copper Deposition

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	CUDEP	Threshold	12	0	32767	2500	mV	Copper Deposition trip threshold
Permanent Fail	CUDEP	Delay	U1	0	255	2	S	Copper Deposition trip delay

12.3.4 OTCE—Over Temperature Cell

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	OTCE	Threshold	12	-400	1500	650	0.1°C	Over Temperature Cell trip threshold
Permanent Fail	OTCE	Delay	U1	0	255	2	S	Over Temperature Cell trip delay

Permanent Fail www.ti.com

12.3.5 OTF—Over Temperature FET

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	OTF	Threshold	12	-400	1500	1000	0.1°C	Over Temperature FET trip threshold
Permanent Fail	OTF	Delay	U1	0	255	2	S	Over Temperature FET trip delay

12.3.6 QIM—QMax Imbalance

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Permanent Fail	QIM	Threshold	12	0	32767	500	mAh	QMax Imbalance trip threshold
Permanent Fail	QIM	Delay	U1	0	255	2	updates	QMax Imbalance trip delay

12.3.7 CB—Cell Balance

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	СВ	Max Threshold	12	0	32767	120	2h	Cell Balance max trip threshold
Permanent Fail	СВ	Delta Threshold	U1	0	32767	20	2h	Cell Balance cell delta trip threshold
Permanent Fail	СВ	Delay	U1	0	255	2	cycles	Cell Balance trip delay

12.3.8 VIMR—Voltage Imbalance at Rest

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	VIMR	Check Voltage	I2	0	5000	3600	mV	Voltage Imbalance at Rest Check Voltage
Permanent Fail	VIMR	Check Current	I2	0	32767	10	mA	Voltage Imbalance at Rest Check Current
Permanent Fail	VIMR	Delta Threshold	I2	0	5000	200	mV	Voltage Imbalance at Rest trip threshold
Permanent Fail	VIMR	Delay	U1	0	255	2	s	Voltage Imbalance at Rest Check trip delay
Permanent Fail	VIMR	Duration	U2	0	65535	100	s	Voltage Imbalance at Rest Check Duration

12.3.9 VIMA—Voltage Imbalance Active

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	VIMA	Check Voltage	12	0	5000	3600	mV	Voltage Imbalance active Check Voltage
Permanent Fail	VIMA	Check Current	12	0	32767	10	mA	Voltage Imbalance active Check Current
Permanent Fail	VIMA	Delta Threshold	12	0	5000	300	mV	Voltage Imbalance active trip threshold
Permanent Fail	VIMA	Delay	U1	0	255	2	S	Voltage Imbalance active Check trip delay

www.ti.com Permanent Fail

12.3.10 IMP—Impedance Imbalance

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	IMP	Delta Threshold	U1	0	32767	400	%	Impedance Imbalance delta threshold
Permanent Fail	IMP	Max Threshold	12	0	32767	300	%	Impedance Imbalance max threshold
Permanent Fail	IMP	Delay	U1	0	255	2	RA updates	Impedance Imbalance trip delay

12.3.11 CD—Capacity Degradation

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	CD	Threshold	12	0	32767	4200	mAh	Capacity Degradation threshold
Permanent Fail	CD	Delay	U1	0	255	2	cycles	Capacity Degradation trip delay

12.3.12 CFETF—CHG FET Failure

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	CFETF	OFF Threshold	12	0	500	5	mA	CHG FET OFF current trip threshold
Permanent Fail	CFETF	Delay	U1	0	255	2	S	CHG FET OFF trip delay

12.3.13 DFET—DFET Failure

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	DFET	OFF Threshold	12	-500	0	– 5	mA	DSG FET OFF current trip threshold
Permanent Fail	DFET	Delay	U1	0	255	2	S	DSG FET OFF trip delay

12.3.14 TH—NTC Thermistor Failure

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	TH	ADC High Threshold	U2	0	65535	32752	A/D counts	Thermistor open fail raw ADC trip threshold
Permanent Fail	TH	ADC Low Threshold	U2	0	65535	15	A/D counts	Thermistor short fail raw ADC trip threshold
Permanent Fail	TH	ADC Delay	U1	0	255	10	S	Thermistor fail trip delay

12.3.15 FUSE—FUSE Failure

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	FUSE	Threshold	12	0	255	5	mA	FUSE activation fail trip threshold
Permanent Fail	FUSE	Delay	U1	0	255	2	S	FUSE activation fail trip delay

12.3.16 AFER—AFE Register

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	AFER	Threshold	U1	0	255	100	counts	AFE Register comparison fail trip threshold
Permanent Fail	AFER	Delay Period	U1	0	255	2	S	AFE Register comparison fail trip delay
Permanent Fail	AFER	Compare Period	U1	0	255	3	S	AFE Register comparison compare period

12.3.17 AFEC—AFE Communication

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	AFEC	Threshold	U1	0	255	100	counts	AFE Communication fail trip threshold
Permanent Fail	AFEC	Delay Period	U1	0	255	5	S	AFE Communication fail trip delay

12.3.18 2LVL—2nd Level OV

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	2LVL	Threshold	U1	0	255	2	S	2nd Level Protector trip detection delay

12.3.19 OCECO—Open Cell Connection

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Permanent Fail	OCECO	Threshold	U2	0	32767	5000	mV	Open Cell Tab Connection trip threshold
Permanent Fail	OCECO	Delay Period	U1	0	255	2	S	Open Cell Tab Connection trip delay

12.4 Advanced Charge Algorithm

12.4.1 Temperature Ranges

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Temperature Ranges	T1	I1	-128	127	0		T1 low temperature range lower limit
Advanced Charge Algorithms	Temperature Ranges	T2	I1	-128	127	12		T2 low temperature range to standard temperature range

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Temperature Ranges	T5	I1	-128	127	30		T5 recommended temperature range lower limit
Advanced Charge Algorithms	Temperature Ranges	Т6	I1	-128	127	55		T6 recommended temperature range upper limit
Advanced Charge Algorithms	Temperature Ranges	Т3	I1	-128	127	20		T3 standard temperature range to high temperature range
Advanced Charge Algorithms	Temperature Ranges	Т4	I1	-128	127	25		T4 high temperature range upper limit
Advanced Charge Algorithms	Temperature Ranges	Hysteresis	I1	-128	127	0		Temperature Hysteresis, applied when temperature is decreasing

12.4.2 Low Temp Charging

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Low Temp Charging	Voltage	12	0	32767	3000	mV	Low temperature range ChargingVoltage()
Advanced Charge Algorithms	Low Temp Charging	Current Low	12	0	32767	132	mA	Low temperature range low voltage range ChargingCurrent()
Advanced Charge Algorithms	Low Temp Charging	Current Med	12	0	32767	352	mA	Low temperature range medium voltage range ChargingCurrent()
Advanced Charge Algorithms	Low Temp Charging	Current High	12	0	32767	264	mA	Low temperature range high voltage range ChargingCurrent()

12.4.3 Standard Temp Charging

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Standard Temp Charging	Voltage	12	0	32767	4200	mV	Standard temperature range ChargingVoltage()
Advanced Charge Algorithms	Standard Temp Charging	Current Low	12	0	32767	1980	mA	Standard temperature range low voltage range ChargingCurrent()
Advanced Charge Algorithms	Standard Temp Charging	Current Med	12	0	32767	4004	mA	Standard temperature range medium voltage range ChargingCurrent()
Advanced Charge Algorithms	Standard Temp Charging	Current High	12	0	32767	2992	mA	Standard temperature range high voltage range ChargingCurrent()

12.4.4 High Temp Charging

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	High Temp Charging	Voltage	12	0	32767	4000	mV	High temperature range ChargingVoltage()
Advanced Charge Algorithms	High Temp Charging	Current Low	12	0	32767	1012	mA	High temperature range low voltage range ChargingCurrent()

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	High Temp Charging	Current Med	12	0	32767	1980	mA	High temperature range medium voltage range ChargingCurrent()
Advanced Charge Algorithms	High Temp Charging	Current High	12	0	32767	1496	mA	High temperature range high voltage range ChargingCurrent()

12.4.5 REC Temp Charging

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Rec Temp Charging	Voltage	I2	0	32767	4100	mV	Recommended temperature range ChargingVoltage()
Advanced Charge Algorithms	Rec Temp Charging	Current Low	I2	0	32767	2508	mA	Recommended temperature range low voltage range ChargingCurrent()
Advanced Charge Algorithms	Rec Temp Charging	Current Med	I2	0	32767	4488	mA	Recommended temperature range medium voltage range ChargingCurrent()
Advanced Charge Algorithms	Rec Temp Charging	Current High	l2	0	32767	3520	mA	Recommended temperature range high voltage range ChargingCurrent()

12.4.6 PCHG

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	PCHG	Current	12	0	32767	88	mA	Pre-Charge ChargingCurrent()

12.4.7 MCHG

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	MCHG	Current	12	0	32767	44	mA	Maintenance ChargingCurrent()

12.4.8 Voltage Range

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Voltage Range	Charging Voltage Low	12	0	32767	2500	mV	Pre-Charge Voltage range to Charging Voltage Low range
Advanced Charge Algorithms	Voltage Range	Charging Voltage Med	12	0	32767	3600	mV	Charging Voltage Low range to Charging Voltage Med range
Advanced Charge Algorithms	Voltage Range	Charging Voltage High	12	0	32767	4000	mV	Charging Voltage Med to Charging Voltage High range
Advanced Charge Algorithms	Voltage Range	Hysteresis	U1	0	255	0	mV	Charging Voltage Hysteresis applied when voltage is decreasing

12.4.9 Termination Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Termination Config	Charge Term Taper Current	12	0	32767	250	mA	Valid Charge Termination taper current qualifier threshold
Advanced Charge Algorithms	Termination Config	Charge Term Voltage	12	0	32767	75	mV	Valid Charge Termination delta voltage qualifier, max cell based

12.4.10 Cell Balancing Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Cell Balancing Config	Balance Time per mAh cell 0	U2	0	65535	367	s/mAh	Required balance time per mAh, calculated based on external resistor value at VCx pins using following formula: 3600 mA*s/(VCELL/(RVCX+RCB)*DUTY) /1000 where: VCELL = average cell voltage (3.7 V) RVCX = resistor value in series to VCx input (100 Ω) RCB = cell balancing FET RDSON (150 Ω)DUTY = cell balancing duty cycle (66%)
Advanced Charge Algorithms	Cell Balancing Config	Balance Time per mAh cell 1–3	U2	0	65535	514	s/mAh	Required balance time per mAh, calculated based on external resistor value at VCx pins using following formula: 3600 mA*s/(VCELL/(2*RVCX+RCB)*DUT Y)/1000 where: VCELL = average cell voltage (3.7 V) RVCX = resistor value in series to VCx input (100 Ω) RCB = cell balancing FET RDSON (150 Ω) DUTY = cell balancing duty cycle (66%)
Advanced Charge Algorithms	Cell Balancing Config	Min Start Balance Delta	U1	0	255	3	mV	Minimum cell voltage delta to start cell balancing. This condition is checked in relaxation state and so it only applies if cell balancing at reset is enabled.
Advanced Charge Algorithms	Cell Balancing Config	Relax Balance Interval	U4	0	4294967 295	18000	S	Minimum relax time after cell balancing stopped to enable balancing again. This parameter applies to cell balancing at reset only.
Advanced Charge Algorithms	Cell Balancing Config	Min RSOC for Balancing	U1	0	100	80	%	Minimum RelativeStateOfCharge() threshold for cell balancing. This condition is checked during relaxation and so it only applies if cell balancing at reset is enabled.

System Data www.ti.com

12.4.11 Charging Rate of Change

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Charging Rate of Change	Current Rate	U1	1	255	1	steps/s	Number of steps to add between any 2 ChargingCurrent() settings
Advanced Charge Algorithms	Charging Rate of Change	Voltage Rate	U1	1	255	1	steps/s	Number of steps to add between any 2 ChargingVoltage() settings

12.4.12 Charge Loss Compensation

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Advanced Charge Algorithms	Charge Loss Compensation	CCC Current Threshold	12	0	32767	3520	mA	Constant Current Charge mode ChargingCurrent() threshold to activate Charge Loss Compensation
Advanced Charge Algorithms	Charge Loss Compensation	CCC Voltage Threshold	12	0	255	4200	mV	Constant Current Charge mode max ChargingVoltage() increase limit

12.5 System Data

12.5.1 Manufacturer Data

Class	Subclass	Name	Туре	Min	Max	Unit	Description
System Data	Manufacturer Data	ManufacturerInfo	S33				ManufacturerInfo() value
System Data	Manufacturer Data	DF Checksum	U2	0	65535		Holding place for DF checksum, not modified or read by device, for reference only

12.6 SBS Configuration

12.6.1 Data

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
SBS Configuration	Data	Remaining Ah Cap. Alarm	12	0	32767	300	mAh	RemainingCapacityAlarm() value in mAh
SBS Configuration	Data	Remaining Wh Cap. Alarm	12	0	32767	432	10 mWh	RemainingCapacityAlarm() value in 10 mWh
SBS Configuration	Data	Remaining Time Alarm	U2	0	65535	10	min	RemainingTimeAlarm() value

www.ti.com SBS Configuration

i.com	com SBS Config										
Cla	188	Subclass	Name	Tyne	Min	Max	Default	Unit	Description		
SE Config	3S	Subclass Data	Name Initial Battery Mode	H2	Min 0x0000	Max 0xFFFF	Default 0x81	Unit	Description BatteryMode() value Bit 0: ICC Internal_Charge_Controller 0 = Function not supported Bit 1: PBC Primary_Battery_Support 1 = Primary or Secondary Battery Support Bit 2: Reserved Bit 3: Reserved Bit 4: Reserved Bit 5: Reserved Bit 6: Reserved Bit 7: CF—Condition_Flag 0 = Battery OK		
	3S uration	Data	Design Voltage	12	0	32767	14400	mV	1 = Conditioning cycle requested Bit 8: CCE—Charge_Controller_Enabled (R/W) 0 = Internal charge controller disabled Bit 9: PB—Primary_Battery (R/W) 0 = Battery operating in its secondary role (default) 1 = Battery operating in its primary role Bit 10: Reserved Bit 11: Reserved Bit 11: Reserved Bit 12: Reserved Bit 13: AM—Alarm Mode (R/W) 0 = Enable Alarm Warning broadcasts to host and smart battery charger 1 = Disable Alarm Warning broadcasts to host and smart battery charger Bit 14: CHGM—Charger_Mode (R/W) 0 = Enable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger 1 = Disable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger 1 = Disable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger Bit 15: CAPM—Capacity_Mode (R/W) 0 = Report in mA or mAh (default) 1 = Report in 10 mW or 10 mWh DesignVoltage() value		
Config		Data	Specification Information	H2	0x0000	OXFFFF	0x31		SpecificationInfo() value in the following format: Bit 0,1,2,3: Revision Revision 0,0,0,1 = Version 1.0 and 1.1 (default) Bit 4,5,6,7: Version Version 0,0,0,1 = Version 1.0 0,0,1,1 = Version 1.1 0,0,1,1 = Version 1.1 with optional PEC support Bit 8,9,10,11: VScale Voltage Scale Factor 0,0,0,0 = reported voltages scaled by 10E0 0,0,0,1 = reported voltages scaled by 10E1 0,0,1,0 = reported voltages scaled by 10E2 0,0,1,1 = reported voltages scaled by 10E3 Bit 12,13,14,15: IPScale Voltage Scale Factor 0,0,0,0 = reported currents and capacities scaled by 10E0 except ChargingVoltage() and ChargingCurrent() 0,0,0,1 = reported currents and capacities scaled by 10E1 except ChargingVoltage() and ChargingCurrent() 0,0,1,0 = reported currents and capacities scaled by 10E2 except ChargingVoltage() and ChargingCurrent() 0,0,1,1 = reported currents and capacities scaled by 10E2 except ChargingVoltage() and ChargingCurrent() 0,0,1,1 = reported currents and capacities scaled by 10E2 except ChargingVoltage() and ChargingCurrent() 0,0,1,1 = reported currents and capacities scaled by 10E3 except ChargingVoltage() and ChargingCurrent()		
Config	3S uration	Data	Manufacturer Date	U2	0	65535			ManufacturerDate() value in the following format:Day + Month*32 + (Year–1980)*256		
Config	3S uration	Data	Serial Number	H2	0x0000	0xFFFF			SerialNumber() value		
Config	3S uration	Data	Cycle Count	U2	0	65535		cycles	CycleCount() value		
Config	3S uration	Data	Cycle Count Percentage	U1	0	255	90	%	Accumulated discharge of FullChargeCapacity() * (Cycle Count Percentage) to increment CycleCount()		
Config	uration	Data	Max Error Limit	U1	0	100	100	%	MaxError() threshold to set BatteryMode()[CF]		
Config	uration	Data	Design Capacity	12	0	32767	4400	mAh	DesignCapacity() value in mAh		
Config	uration	Data	Design Capacity	12	0	32767	6336	10 mWh	DesignCapacity() value in 10 mWh		
	3S uration	Data	Manufacturer Name	S21					ManufacturerName() value		

SBS Configuration www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
SBS Configuration	Data	Device Name	S21					DeviceName() value
SBS Configuration	Data	Device Chemistry	S 5					DeviceChemistry() value

12.6.2 FD

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
SBS Configuration	FD	Set Voltage Threshold	12	0	5000	3000	mV	BatteryStatus()[FD] cell voltage set threshold
SBS Configuration	FD	Clear Voltage Threshold	12	0	5000	3100	mV	BatteryStatus()[FD] cell voltage clear threshold
SBS Configuration	FD	Set RSOC % Threshold	U1	0	100	0	%	BatteryStatus()[FD]RemainingStateOfCharge() set threshold
SBS Configuration	FD	Clear RSOC % Threshold	U1	0	100	5	%	BatteryStatus()[FD]RemainingStateOfCharge() clear threshold

12.6.3 FC

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
SBS Configuration	FC	Set Voltage Threshold	12	0	5000	4200	mV	BatteryStatus()[FC] cell voltage set threshold
SBS Configuration	FC	Clear Voltage Threshold	12	0	5000	4100	mV	BatteryStatus()[FC] cell voltage clear threshold
SBS Configuration	FC	Set RSOC % Threshold	U1	0	100	100	%	BatteryStatus()[FC]RemainingStateOfCharge() set threshold
SBS Configuration	FC	Clear RSOC % Threshold	U1	0	100	95	%	BatteryStatus()[FC] RemainingStateOfCharge() clear threshold

12.6.4 TDA

Per the Smart Battery Data Specification 1.1, TDA is only active while discharging.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
SBS Configuration	TDA	Set Voltage Threshold	I2	0	5000	3200	mV	BatteryStatus()[TDA] cell voltage set threshold
SBS Configuration	TDA	Clear Voltage Threshold	I2	0	5000	3300	mV	BatteryStatus()[TDA] cell voltage clear threshold
SBS Configuration	TDA	Set RSOC % Threshold	U1	0	100	10	%	BatteryStatus()[TDA] RemainingStateOfCharge() set threshold
SBS Configuration	TDA	Clear RSOC % Threshold	U1	0	100	15	%	BatteryStatus()[TDA] RemainingStateOfCharge() clear threshold

12.6.5 TCA

Per the Smart Battery Data Specification 1.1, TCA is only active while charging.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
SBS Configuration	TCA	Set Voltage Threshold	12	0	5000	4200	mV	BatteryStatus()[TCA] cell voltage set threshold
SBS Configuration	TCA	Clear Voltage Threshold	12	0	5000	4100	mV	BatteryStatus()[TCA] cell voltage clear threshold
SBS Configuration	TCA	Set RSOC % Threshold	U1	0	100	100	%	BatteryStatus()[TCA] RemainingStateOfCharge() set threshold
SBS Configuration	TCA	Clear RSOC % Threshold	U1	0	100	95	%	BatteryStatus()[TCA] RemainingStateOfCharge() clear threshold

www.ti.com Lifetimes

12.6.6 Max Error

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
SBS Configuration	Max Error	Time Cycle Equivalent	U1	0	255	12	2h	After valid QMax update, each passed time period of Time Cycle Equivalent will increment of MaxError() by Cycle Delta. Time Cycle Equivalent is provided for packs which may not get frequent Qmax updates like stand-by batteries. Time Cycle Equivalent increments Max Error by 0.05% for every Time Cycle Equivalent time period following the last Qmax update.
SBS Configuration	Max Error	Cycle Delta	U1	0	255	5	0.01%	Each increment of CycleCount() after valid QMax update will increment of MaxError() by Cycle Delta

12.7 Lifetimes

12.7.1 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Lifetimes	Voltage	Max Voltage Cell 0	U1	0	255	0	20 mV	Maximum reported cell voltage 0
Lifetimes	Voltage	Max Voltage Cell 1	U1	0	255	0	20 mV	Maximum reported cell voltage 1
Lifetimes	Voltage	Max Voltage Cell 2	U1	0	255	0	20 mV	Maximum reported cell voltage 2
Lifetimes	Voltage	Max Voltage Cell 3	U1	0	255	0	20 mV	Maximum reported cell voltage 3
Lifetimes	Voltage	Min Voltage Cell 0	U1	0	255	255	20 mV	Minimum reported cell voltage 0
Lifetimes	Voltage	Min Voltage Cell 1	U1	0	255	255	20 mV	Minimum reported cell voltage 1
Lifetimes	Voltage	Min Voltage Cell 2	U1	0	255	255	20 mV	Minimum reported cell voltage 2
Lifetimes	Voltage	Min Voltage Cell 3	U1	0	255	255	20 mV	Minimum reported cell voltage 3
Lifetimes	Voltage	Max Delta Cell Voltage	U1	0	255	0	20 mV	Maximum reported delta between cell voltages 0 to 3

12.7.2 Current

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Lifetimes	Current	Max Chg Current	U1	0	255	0	200 mA	Maximum reported Current() in charge direction
Lifetimes	Current	Max Dsg Current	U1	0	255	0	200 mA	Maximum reported Current() in discharge direction
Lifetimes	Current	Max Avg Dsg Current	U1	0	255	0	200 mA	Maximum reported AverageCurrent() in discharge direction
Lifetimes	Current	Max Avg Dsg Power	U1	0	255	0	W	Maximum reported Power in discharge direction

12.7.3 Safety Events

Lifetimes www.ti.com

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
			Туре	Min				Description Total number of SefetyStetys(VICOVI
Lifetimes	Safety Events	No of COV Events	U1	0	255	0	8 events	Total number of SafetyStatus()[COV] events
Lifetimes	Safety Events	Last COV Event	U1	0	255	0	4 cycles	Last SafetyStatus()[COV] event in CycleCount() cycles
Lifetimes	Safety Events	No of CUV Events	U1	0	255	0	8 events	Total number of SafetyStatus()[CUV] events
Lifetimes	Safety Events	Last CUV Event	U1	0	255	0	4 cycles	Last SafetyStatus()[CUV] event in CycleCount() cycles
Lifetimes	Safety Events	No of OCD1 Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OCD1] events
Lifetimes	Safety Events	Last OCD1 Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OCD1] event in CycleCount() cycles
Lifetimes	Safety Events	No of OCD2 Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OCD2] events
Lifetimes	Safety Events	Last OCD2 Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OCD2] event in CycleCount() cycles
Lifetimes	Safety Events	No of OCC1 Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OCC1] events
Lifetimes	Safety Events	Last OCC1 Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OCC1] event in CycleCount() cycles
Lifetimes	Safety Events	No of OCC2 Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OCC2] events
Lifetimes	Safety Events	Last OCC2 Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OCC2] event in CycleCount() cycles
Lifetimes	Safety Events	No of OLD Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OLD] events
Lifetimes	Safety Events	Last OLD Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OLD] event in CycleCount() cycles
Lifetimes	Safety Events	No of SCD Events	U1	0	255	0	8 events	Total number of SafetyStatus()[SCD] events
Lifetimes	Safety Events	Last SCD Event	U1	0	255	0	4 cycles	Last SafetyStatus()[SCD] event in CycleCount()cycles
Lifetimes	Safety Events	No of SCC Events	U1	0	255	0	8 events	Total number of SafetyStatus()[SCC] events
Lifetimes	Safety Events	Last SCC Event	U1	0	255	0	4 cycles	Last SafetyStatus()[SCC] event in CycleCount() cycles
Lifetimes	Safety Events	No of OTC Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OTC] events
Lifetimes	Safety Events	Last OTC Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OTC] event in CycleCount() cycles
Lifetimes	Safety Events	No of OTD Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OTD] events
Lifetimes	Safety Events	Last OTD Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OTD] event in CycleCount() cycles
Lifetimes	Safety Events	No of OTF Events	U1	0	255	0	8 events	Total number of SafetyStatus()[OTF] events
Lifetimes	Safety Events	Last OTF Event	U1	0	255	0	4 cycles	Last SafetyStatus()[OTF] event in CycleCount() cycles

12.7.4 Charging Events

www.ti.com Lifetimes

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Lifetimes	Safety Events	No of Valid Charge Terminations	U1	0	255	0	8 events	Total number of valid charge termination events
Lifetimes	Safety Events	Last Valid Charge Termination	U1	0	255	0	4 cycles	Last valid charge termination in CycleCount() cycles

12.7.5 Gauging Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Lifetimes	Gauging Events	No of QMax Updates	U1	0	255	0	8 events	Total number of GaugingStatus()[QMax] toggles
Lifetimes	Gauging Events	Last QMax Update	U1	0	255	0	4 cycles	Last GaugingStatus()[QMax] toggle in CycleCount() cycles
Lifetimes	Gauging Events	No of RA Updates	U1	0	255	0	8 events	Total number of GaugingStatus()[RX] toggles
Lifetimes	Gauging Events	Last RA Update	U1	0	255	0	4 cycles	Last GaugingStatus()[RX] toggle in CycleCount() cycles
Lifetimes	Gauging Events	No of RA Disable	U1	0	255	0	8 events	Total number of GaugingStatus()[RU] =1 events
Lifetimes	Gauging Events	Last RA Disable	U1	0	255	0	4 cycles	Last GaugingStatus()[RU] = 1 events in CycleCount() cycles

12.7.6 Power Events

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Lifetimes	Power Events	No of Shutdowns	U1	0	255	0	events	Total number of Shutdown events

12.7.7 Cell Balancing

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Lifetimes	Cell Balancing	CB Time Cell 0	U1	0	255	0	2h	Total performed cell balancing bypass time cell 0
Lifetimes	Cell Balancing	CB Time Cell 1	U1	0	255	0	2h	Total performed cell balancing bypass time cell 1
Lifetimes	Cell Balancing	CB Time Cell 2	U1	0	255	0	2h	Total performed cell balancing bypass time cell 2
Lifetimes	Cell Balancing	CB Time Cell 3	U1	0	255	0	2h	Total performed cell balancing bypass time cell 3

12.7.8 Temperature

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Lifetimes	Temperature	Max Temp Cell	l1	-128	127	-128	°C	Maximum reported cell temperature
Lifetimes	Temperature	Min Temp Cell	I1	-128	127	127	°C	Minimum reported cell temperature
Lifetimes	Temperature	Max Delta Temp Cell	I1	-128	127	0	°C	Maximum reported temperature delta for TSx inputs configured as cell temperature

Lifetimes www.ti.com

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Lifetimes	Temperature	Max Temp Int Sensor	I1	-128	127	-128	°C	Maximum reported internal temperature sensor temperature
Lifetimes	Temperature	Min Temp Int Sensor	I1	-128	127	127	°C	Minimum reported internal temperature sensor temperature
Lifetimes	Temperature	Max Temp FET	I1	-128	127	-128	°C	Maximum reported FET temperature

12.7.9 Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Lifetimes	Time	Total firmware Runtime	U2	0	65535	0	2 h	Total firmware runtime between resets
Lifetimes	Time	Time Spent in UT	U2	0	65535	0	2 h	Total firmware runtime spent below T1
Lifetimes	Time	Time Spent in LT	U2	0	65535	0	2 h	Total firmware runtime spent between T1 and T2
Lifetimes	Time	Time Spent in STL	U2	0	65535	0	2 h	Total firmware runtime spent between T2 and T5
Lifetimes	Time	Time Spent in RT	U2	0	65535	0	2 h	Total firmware runtime spent between T5 and T6
Lifetimes	Time	Time Spent in STH	U2	0	65535	0	2h	Total firmware runtime spent between T6 and T3
Lifetimes	Time	Time Spent in HT	U2	0	65535	0	2 h	Total firmware runtime spent between T3 and T4
Lifetimes	Time	Time Spent in OT	U2	0	65535	0	2 h	Total firmware runtime spent above T6

www.ti.com Settings

12.8 Settings

12.8.1 Fuse

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Fuse	Permanent Fail Fuse 0–15	H2	0x0000	OXFFFF	0	Bit 0: CUV—Cell undervoltage fuse activation 0 = Disabled 1 = Enabled (default) Bit 1: COV—Cell overvoltage fuse activation 0 = Disabled 1 = Enabled (default) Bit 2: Reserved Bit 3: Reserved Bit 3: Reserved Bit 4: PF_OTCE—Overtemperature fuse activation 0 = Disabled 1 = Enabled (default) Bit 5: Reserved Bit 6: OTF—Overtemperature FET fuse activation 0 = Disabled 1 = Enabled (default) Bit 7: QIM—QMax Imbalance fuse activation 0 = Disabled 1 = Enabled (default) Bit 7: QIM—QMax Imbalance fuse activation 0 = Disabled 1 = Enabled (default) Bit 8: CB—Cell balancing fuse activation 0 = Disabled 1 = Enabled (default) Bit 9: IMP—Cell impedance fuse activation 0 = Disabled 1 = Enabled (default) Bit 10: CD—Capacity Deterioration fuse activation 0 = Disabled 1 = Enabled (default) Bit 11: VIMR—Voltage imbalance at Rest fuse activation 0 = Disabled 1 = Enabled (default) Bit 11: VIMP—Voltage imbalance at Rest fuse activation 0 = Disabled 1 = Enabled (default) Bit 12: VIMA—Voltage imbalance at Rest fuse activation 0 = Disabled 1 = Enabled (default) Bit 13: Reserved Bit 14: Reserved Bit 14: Reserved Bit 15: Reserved
Settings	Fuse	Permanent Fail Fuse 16–32	H2	0x0000	OXFFFF	0	Bit 0: CFETF—Charge FET 0 = Disabled 1 = Enabled (default) Bit 1: DFETF—Discharge FET 0 = Disabled 1 = Enabled (default) Bit 2: THERM—Thermistor 0 = Disabled 1 = Enabled (default) Bit 3: Reserved Bit 4: AFE_PAFE Register 0 = n/a 1 = Enabled (default) Bit 5: AFE_CAFE Communication 0 = Disabled 1 = Enabled (default) Bit 5: AFE_CAFE Communication 0 = Disabled 1 = Enabled (default) Bit 6: 2LVL—FUSE input indicating fuse trigger by external 2nd level protection 0 = Disabled 1 = Enabled (default) Bit 7: Reserved Bit 8: Reserved Bit 8: Reserved Bit 9: OCECO—Open VCx 0 = n/a 1 = Enabled (default) Bit 10: DFW—DF wear out 0 = n/a 1 = Enabled (default) Bit 11: Reserved Bit 12: Reserved Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 14: Reserved Bit 15: Reserved Bit 15: Reserved Bit 15: Reserved
Settings	Fuse	Min Fuse Blow Voltage	l2	0	32767	8000	Minimum voltage required to attempt fuse blow, pack based, FET failures bypass this requirement to blow the fuse

Settings www.ti.com

12.8.2 Manufacturing

Class	Subclass	Name	Type	Min	Max	Default	Description
Settings	Manufacturing	Manufacturing Status	H2	0x0000	OXFFFF	0x8000	Bit 0: PCHG_EN—PCHG Function, only available with FET = 0 0 = Disabled 1 = Enabled Bit 1: CHG_EN—CHG FET, only available with FET = 0 0 = Disabled 1 = Enabled Bit 2: DSG_ENDSG FET, only available with FET = 0 0 = Disabled Bit 2: DSG_ENDSG FET, only available with FET = 0 0 = Disabled Bit 3: GAUGE_EN—Gauging 0 = Disabled 1 = Enabled (default) Bit 4: FET_EN—FET action 0 = Disabled 1 = Enabled (default) Bit 5: LF_EN—Lifettime data collection 0 = Disabled 1 = Enabled (default) Bit 6: PF_EN—Permanent Fail 0 = Disabled 1 = Enabled (default) Bit 7: BBR_EN—Black box recorder 0 = Disabled 1 = Enabled (default) Bit 8: FUSE_EN—FUSE action 0 = Disabled 1 = Enabled (default) Bit 9: LED_EN—LED Display 0 = Disabled 1 = Enabled (default) Bit 10: Reserved Bit 11: Reserved Bit 11: Reserved Bit 11: Reserved Bit 13: Reserved Bit 15: CAL_EN—ADC or CC output on ManufacturerData() 0 = Disabled 1 = Enabled (default)

www.ti.com Settings

12.8.3 Protection

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Protection	Enabled Protections 0–15	H2	0x0000	0xFFFF	0xFFFF	Bit 0: CUV—Cell Undervoltage 0 = Disabled 1 = Enabled (default) Bit 1: COV—Cell Overvoltage 0 = Disabled 1 = Enabled (default) Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Disabled 1 = Enabled (default) Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Disabled 1 = Enabled (default) Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Disabled 1 = Enabled (default) Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Disabled 1 = Enabled (default) Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Disabled 1 = Enabled (default) Bit 6: AOLD—Overload in Discharge 0 = Disabled 1 = Enabled (default) Bit 7: AOLDL—Overload in Discharge latch 0 = Disabled 1 = Enabled (default) Bit 8: ASCC—Short circuit in charge 0 = Disabled 1 = Enabled (default) Bit 9: ASCCL—Short circuit in charge 0 = Disabled 1 = Enabled (default) Bit 10: ASCD—Short circuit in discharge 0 = Disabled 1 = Enabled (default) Bit 11: ASCDD—Short circuit in discharge 0 = Disabled 1 = Enabled (default) Bit 11: ASCDL—Short circuit in discharge 0 = Disabled 1 = Enabled (default) Bit 11: ASCDL—Short circuit in discharge 0 = Disabled 1 = Enabled (default) Bit 11: ASCDL—Short circuit in discharge 0 = Disabled 1 = Enabled (default) Bit 11: ASCDL—Short circuit in discharge 0 = Disabled 1 = Enabled (default) Bit 11: COTC—Overtemperature in charge 0 = Disabled 1 = Enabled (default) Bit 13: OTD—Overtemperature in discharge 0 = Disabled 1 = Enabled (default) Bit 13: COTC—Overtemperature in discharge 0 = Disabled 1 = Enabled (default) Bit 15: COTC—Overtemperature in discharge 0 = Disabled 1 = Enabled (default) Bit 15: COTC—Overtemperature in discharge
Settings	Fuse	Enabled Protections 16–32	H2	0x0000	0xFFFF	0xFFFF	Bit 0: OTF—FET overtemperature 0 = Disabled 1 = Enabled (default) Bit 1: HWDF—SBS Host watchdog timeout 0 = Disabled 1 = Enabled (default) Bit 2: PTO—Pre-charging timeout 0 = Disabled 1 = Enabled (default) Bit 3: PTOS—Pre-charging timeout suspend 0 = Disabled 1 = Enabled (default) Bit 4: CTO—Charging timeout 0 = Disabled 1 = Enabled (default) Bit 5: CTOS—Charging timeout 0 = Disabled 1 = Enabled (default) Bit 5: CTOS—Charging timeout suspend 0 = Disabled 1 = Enabled (default) Bit 6: OC—Overcharge 0 = Disabled 1 = Enabled (default) Bit 7: CHGC—ChargingCurrent() higher than requested 0 = Disabled 1 = Enabled (default) Bit 8: CHGV—ChargingVoltage() higher than requested 0 = Disabled 1 = Enabled (default) Bit 9: Reserved Bit 10: Reserved Bit 11: Reserved Bit 11: Reserved Bit 11: Reserved Bit 11: Reserved Bit 15: Reserved Bit 15: Reserved Bit 15: Reserved Bit 15: Reserved

Settings www.ti.com

12.8.4 Permanent Failure

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Permanent Failure	Enabled PF 0–15	H2	0x0000	OXFFFF	OXFFFF	Bit 0: CUV—Cell undervoltage 0 = Disabled 1 = Enabled (default) Bit 1: COV—Cell overvoltage 0 = Disabled 1 = Enabled (default) Bit 2: CUDEP—Copper Deposition 0 = Disabled 1 = Enabled (default) Bit 3: Reserved Bit 4: PF_OTCE—Overtemperature 0 = Disabled 1 = Enabled (default) Bit 5: Reserved Bit 6: OTF—Overtemperature FET 0 = Disabled 1 = Enabled (default) Bit 7: QIM—QMax Imbalance 0 = Disabled 1 = Enabled (default) Bit 7: QIM—QMax Imbalance 0 = Disabled 1 = Enabled (default) Bit 8: CB—Cell balancing 0 = Disabled 1 = Enabled (default) Bit 9: IMP—Cell impedance 0 = Disabled 1 = Enabled (default) Bit 11: CD—Capacity Degradation 0 = Disabled 1 = Enabled (default) Bit 11: CD—Capacity Degradation 0 = Disabled 1 = Enabled (default) Bit 11: VIMM—Voltage imbalance at Rest 0 = Disabled 1 = Enabled (default) Bit 11: VIMM—Voltage imbalance at Rest 0 = Disabled 1 = Enabled (default) Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved
Settings	Permanent Failure	Enabled PF 16–32	H2	0x0000	OXFFFF	0xFFFF	Bit 0: CFETF—Charge FET 0 = Disabled 1 = Enabled (default) Bit 1: DFET—Discharge FET 0 = Disabled 1 = Enabled (default) Bit 2: TH—Thermistor 0 = Disabled 1 = Enabled (default) Bit 3: FUSE—Fuse 0 = Disabled 1 = Enabled (default) Bit 4: AFER—AFE Register 0 = n/a 1 = Enabled (default) Bit 5: AFEC—AFE Communication 0 = Disabled 1 = Enabled (default) Bit 5: AFEC—AFE Communication 0 = Disabled 1 = Enabled (default) Bit 6: 2LVL—FUSE input indicating fuse trigger by external 2nd level protection 0 = Disabled 1 = Enabled (default) Bit 7: Reserved Bit 8: Reserved Bit 9: OCECO—Open VCx 0 = n/a 1 = Enabled (default) Bit 10: DFW—DF wearout 0 = n/a 1 = Enabled (default) Bit 11: Reserved Bit 12: Reserved Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved

12.8.5 Configuration

12.8.5.1 Protection Configuration

www.ti.com Settings

Class	Subclass	Name	Type	Min	Max	Default	Description
Settings	Configuration	Protection Configuration	H1	0x00	0xFF	0x01	Bit 0: Reserved Bit 1: CUV_RECOV_CHG require charge current to recover CUV and CUVC 0 = disable 1 = enable Bit 2: Reserved Bit 3: Reserved Bit 5: Reserved Bit 6: Reserved Bit 6: Reserved Bit 7: Reserved

12.8.5.2 Temperature Configuration

Class	Subclass	Name	Type	Min	Max	Default	Description
Settings	Configuration	Temperature Configuration	H2	0x0000	OXFFFF	0x0087	Bit 0: Internal TS enable—Internal 0 = Disable internal TS (default) 1 = Enable internal TS Bit 1: TS1 enable—TS1 0 = Disable TS1 1 = Enable TS1 (default) Bit 2: TS2 enable—TS2 0 = Disable TS2 1 = Enable TS2 (default) Bit 3: TS3 enable—TS3 0 = Disable TS3 (default) Bit 3: TS3 enable—TS3 0 = Disable TS3 (default) 1 = Enable TS3 (default) 1 = Enable TS4 0 = Disable TS4 (default) 1 = Enable TS4 0 = Disable TS4 (default) 1 = Far temp Bit 6: TS1 Mode—Cell temp or FET temp 0 = Cell temp (default) 1 = FET temp Bit 7: TS2 Mode—Cell temp or FET temp 0 = Cell temp (default) 1 = FET temp Bit 7: TS2 Mode—Cell temp or FET temp 0 = Cell temp 0 = Cell temp 1 = FET temp Bit 8: TS3 Mode—Cell temp or FET temp 0 = Cell temp 0 = Cell temp (default) 1 = FET temp Bit 9: TS4 Mode—Cell temp or FET temp 0 = Cell temp (default) 1 = FET temp Bit 9: TS4 Mode—Cell temp or FET temp 0 = Cell temp (default) 1 = FET temp Bit 10: CTEMP—Cell Temperature protection source 0 = MAX (default) 1 = Average Bit 11: FTEMP—FET Temperature Protection source 0 = Max (default) 1 = Average Bit 12: OTFET—Overtemperature FET action 0 = FET action (default) 1 = FET action (default)

Settings www.ti.com

12.8.5.3 LED Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Configuration	LED Configuration	H2	0x0000	0xFFFF	0x00D0	Bit 0: LEDR—LED display activation at device reset 0 = LED display not activated (default) 1 = LED display activated Bit 1: LEDRCA—Flashing of LED display when [RCA] is set 0 = LED display does not flash (default) 1 = LED display does flash Bit 2: LEDCHG—LED display during charging 0 = LED display not active (default) 1 = LED display not active (default) 1 = LED display active Bit 3: LEDMODE—LED display capacity selector 0 = Display RSOC (default) 1 = Display ASOC/DC Bit 5,4: LEDPF1, LEDPF0—LED Display PF Error Code 0,0 = PF Error code not available 0,1 = PF Error code shown after SOC if DISP is held low for LED Hold Time (default) 1,0 = PF Error code shown after SOC Bit 7,6: LEDC1, LEDC0—LED Sink Current 0,0 = no limit 0,1 = 3 mA 1,0 = 4 mA 1,1 = 5 mA (default) Bit 8: Reserved Bit 10: Reserved Bit 11: Reserved Bit 11: Reserved Bit 12: Reserved Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved Bit 15: Reserved Bit 15: Reserved

www.ti.com Settings

12.8.5.4 Charging Configuration

Class	Subclass	Name	Type	Min	Max	Default	Description
Settings	Configuration	Charging Configuration	Н	0x00	0xFF	0	Bit 1, 0: PCHG1, PCHG0 Precharge method 0, 0 = internal Precharge FET (not a valid option for bq30z55-R1) 0, 1 = CHG FET (default) 1, 0 = GPOD pin 1, 1 = Precharge disabled Bit 2: CRATE—ChargeCurrent rate 0 = ChargeCurrent() %C calculation based on DesignCapacity()(default) 1 = ChargeCurrent() %C calculation based on FullChargeCapacity() Bit 3: CHGSU—FET action in charge suspend mode 0 = FET active (default) 1 = Charging and Precharging disabled, FETs off Bit 4: CHGIN—FET action in charge inhibit mode 0 = FET active (default) 1 = Charging and Precharging disabled, FETs off Bit 5: CHGFET—FET action on terminate charge alarm (TCA) 0 = FET active (default) 1 = Charging and Precharging disabled, FET off Bit 6: CCC—Constant Current Mode Loss Compensation 0 = Disabled (default) 1 = ChargingVoltage() and ChargingCurrent() values are compensated for voltage drop Bit 7: Reserved

Settings www.ti.com

12.8.5.5 System Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Configuration	System Configuration	H2	0x0000	0xFFFF	0x0032	Bit 1,0: CC1, CC0 Cell Count 0,0 = Reserved 0,1 = 2 cell 1,0 = 3 cell 1,1 = 4 cell (default) Bit 2: NR Use PRES in system detection. 0 = Use PRES, removable mode (default). 1 = Non-removable mode Bit 3: SLEEPCHG—CHG FET enabled during sleep 0 = CHG FET off during sleep (default) 1 = CHG FET remains on during sleep Bit 4: SLEEP—Sleep mode 0 = Disable Sleep mode 0 = Disable Sleep mode 1 = Enable Sleep mode (default) Bit 5: CB—Cell balancing 0 = Disabled cell balancing 1 = Enable cell balancing 1 = Enable cell balancing (default) Bit 6: CBM—Cell balancing (default) 1 = External cell balancing at rest 0 = Disable cell balancing at rest 0 = Disable cell balancing at rest 0 = Disable cell balancing at rest Bit 8: SHIPDSG—DSG FET enabled during ship mode 0 = Disable DSG FET at ship mode(default) 1 = Enable DSG FET at ship mode (default) 1 = Enable DSG FET at ship mode Bit 9: Reserved Bit 10: Reserved Bit 11: Reserved Bit 11: Reserved Bit 13: Reserved Bit 15: Reserved Bit 15: Reserved

www.ti.com Settings

12.8.5.6 Gauging Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Configuration	Gauging Configuration	H2	0×00	0xFF	0x1FDA	Bit 0: CCT—Cycle count threshold 0 = use CC % of DesignCapacity() (default) 1 = use CC % of FullChargeCapacity() Bit 1: CSYNC Sync RemainingCapacity() with FullChargeCapacity() at valid charge termination 0 = RemainingCapacity() is not synchronized 1 = RemainingCapacity() is synchronized (default) Bit 2: RSOCL—RelativeStateOfCharge() and RemainingCapacity() behavior at end of charge 0 = actual value shown (default) 1 = held at 99% until valid charge termination. On entering valid charge termination update to 100% Bit 3: RESCAP—Reserve capacity calculation method 0 = light load 1 = use Load Select (default) Bit 4: LOCK0—Keep RemainingCapacity() and RelativeStateOfCharge() jumping back during relaxation after 0 and FD are reached during discharge. 0 = Disabled (default) 1 = Enabled Bit 5: SMOOTH— Run RemainingCapacity() through a low-pass filter to smooth out jumps at grid point updates, charge termination, and self-discharge adjustments made in relax mode. Smoothing is bypassed at the end of discharge when EDV is reached. Run FullCapacity() through a low-pass filter to smooth out jumps at charge termination and adjustments made in relax mode. Smoothing is bypassed at the end of discharge when EDV is reached. Run FullCapacity() through a low-pass filter time constants are in Table C-1. This smoothing feature uses the following formula updated every 1 second. xfilter_(k) = d*xfilter_(k-1) + (1-q)*xadc_k, where: xfilter_(k): the new filtered value xfilter_(k) = d*xfilter_(k-1) + (1-q)*xadc_k, where: xfilter_(k): the new filtered value xiditer_(k) = semainingCapacity() changes. The SMOOTH function introduces some delays in IT simulation. It could mask out the ReservedCapacity is desired, the user should consider using lower filter time, or increase the ReservedCapacity setting as compensation. The additional amount to compensate can be calculated as follows: Additional ReservedCap(apmAH) = AverageLoadCurrent(mA) * SmoothFilterSetting(sec)/3600 0 = Disabled 1 = Enabled (default) Bit 7: DODOEW—DOD0 error weighting, ca
Settings	Configuration	Gauging Configuration	H2	0x00	0xFF	0x1FDA	1 = Enabled (default) Bit 8: LFP_RELAX, LiFePO4 chemistry has a unique slow relaxation near full charge. Detailed, in-house test data suggests that the relaxation after a full charge takes a few days to settle. The slow decaying voltage causes RSOC to continue to drop every 5 hours. Depending on the full charge taper current, the fully settled voltage could be close to or even below FlatVoltMax in some cases. For chemID 4xx (LiFePO4) series, the condition to exit the long relax mode is: the pack had previously charged to full or near full state, and then either a significant long relaxation or a non-trivial discharge has happened, such that when in relaxation, the OCV < FlatVoltMax. With the above, Qmax update is disabled because dod will not be taken as long as it is in LFP_relax mode. By the time the gas gauge exits the LFP_relax mode, the OCV is already in the flat zone. So Qmax update takes an alternative approach: Once full charge occurs (FC bit set), dod0=Dod_at_EOC is automatically assigned and valid for Qmax update; VOK is set if there is no Qmax update, or if Qmax is updated, VOK is cleared. The dod error as a result of this action is zero or negligible because in the LiFePO4 table, OCV voltage corresponding to dod=0 is much lower. If LFP_RELAX is set, the firmware automatically enables the feature upon detecting that the chemistry is 4xx series. If clear, the feature is disabled. Lithium Iron Phosphate Relax 0 = Disabled (default) 1 = Enabled

Settings www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Configuration	Gauging Configuration	H2	0x00	0xFF	0x1FDA	Bit 9: RSOC_CONV, addresses the convergence of RemCap to 0 at low temperatures and very high rates which may not be satisfactory because of the high granularity of resistance grids. If termination voltage is reached in DOD region with 10% grid interval or at the moment where voltage / SOC dependency is flat, error can be large. Fast resistance scaling will apply a scale factor to resistance in RemCap simulations leading up to 0. This scale factor is computed from actively measured resistance during the discharge. This measured resistance is an active number and may not be used for an Ra update. RSOC, fast resistance scaling 0 = Disabled 1 = Enabled (default) Bit 10: FAST_QMax_LRN, Fast Qmax learning: eliminates previously required relaxation periods, to use enable IT with perfectly relaxed cells ~50% RSOC (37% minimum), discharge to empty, Qmax will be learned when discharge stops. Fast QMax learning, during discharge when update status is 6. Update status will change to 11 if fast learning is successful. 0 = Disabled 1 = Enabled (default) Bit 11: Reserved Bit 12: RSOC_HOLD, prevents RSOC rise during discharge. RSOC will be held until calculated value falls below actual state. 0 = Disabled (default) 1 = Enabled 1 = Enabled (default) 1 = Enabled 1 = Enabled (Befault) 1 =

www.ti.com Settings

12.8.5.7 SBS Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings Settings	Configuration	SBS Configuration	H1	0x00	0xFF	0x20	Bit 0: BCAST—Enable alert and charging broadcast from device to host 0 = Disabled (default) 1 = Enabled Bit 1: CPE—PEC on charger broadcast 0 = Disabled (default) 1 = Enabled Bit 2: HPE—PEC on host communication 0 = Disabled (default) 1 = Enabled Bit 3: HPE—PEC on host communication 0 = Disabled (default) 1 = Enabled Bit 3: XL Enable 400 kHz com mode 0 = Normal SBS bus speed (default) 1 = 400 kHz bus speed Bit 5,4: BLT1, BLT0—Bus low timeout 0,0 = no SBS bus low timeout 0,1 = 1-s SBS bus low timeout 1,0 = 2-s SBS bus low timeout 1,1 = 3-s SBS bus low timeout Bit 6: Reserved Bit 7: Reserved Bit 0: TDASETV—Enable TDA flag set by cell voltage threshold
Settings	Configuration	0–15	HZ	0x0000	UXFFFF	UXUCAF	Bit 0: TDASETV—Enable TDA flag set by cell voltage threshold 1 = Enabled (default) Bit 1: TDACLEARV—Enable TDA flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 2: TDASETRSOC—Enable TDA flag set by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 3: TDACLEARRSOC—Enable TDA flag clear by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 3: TDACLEARRSOC—Enable TDA flag clear by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 4: TCASETV—Enable TCA flag set by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 5: TCACLEARV—Enable TCA flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 6: TCASETRSOC—Enable TCA flag set by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 7: TCACLEARRSOC—Enable TCA flag clear by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 8: TCACLEARCT—Enable TCA flag clear valid charge termination 0 = Disabled 1 = Enabled (default) Bit 9: FCCLEARCT—Enable FC flag clear by valid charge termination 0 = Disabled 1 = Enabled (default) Bit 10: FCSETVCT enable FC flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination 0 = Disabled 1 = Enabled (default) Bit 11: TCASETVCT enable TCA flag set on valid charge termination

Settings www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
		SBS Data Config 16–32	Н1	0x00	0xFF	0xFF	Bit 0: FDSETV—Enable FD flag set by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 1: FDCLEARV—Enable FD flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 2: FDSETRSOC—Enable FD flag set by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 3: FDCLEARRSOC—Enable FD flag clear by RSOC threshold 0 = Disabled (default) Bit 4: FCSETV—Enable FC flag set by cell voltage threshold 0 = Disabled (default) Bit 5: FDCLEARRSOC—Enable FC flag set by cell voltage threshold 0 = Disabled (default) Bit 5: FCCLEARV—Enable FC flag clear by cell voltage threshold 0 = Disabled (default) Bit 6: FCSETRSOC—Enable FC flag set by RSOC threshold 0 = Disabled (default) Bit 6: FCSETRSOC—Enable FC flag set by RSOC threshold 0 = Disabled (default) Bit 7: FCCLEARRSOC—Enable FC flag clear by RSOC threshold 0 = Disabled (default) Bit 7: FCCLEARRSOC—Enable FC flag clear by RSOC threshold 0 = Disabled (default)

www.ti.com Settings

12.8.5.8 SBS Data Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Description
Settings	Configuration	SBS Data Config 0–15	H2	0x0000	OXFFFF	0x0CAF	Bit 0: TDASETV—Enable TDA flag set by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 1: TDACLEARV—Enable TDA flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 2: TDASETRSOC—Enable TDA flag set by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 3: TDACLEARRSOC—Enable TDA flag clear by RSOC threshold 0 = Disabled (default) Bit 3: TDACLEARRSOC—Enable TDA flag clear by RSOC threshold 0 = Disabled (default) Bit 4: TCASETV—Enable TCA flag set by cell voltage threshold 0 = Disabled (default) Bit 5: TCACLEARV—Enable TCA flag clear by cell voltage threshold 0 = Disabled (default) Bit 6: TCASETRSOC—Enable TCA flag set by RSOC threshold 0 = Disabled (default) Bit 6: TCASETRSOC—Enable TCA flag set by RSOC threshold 0 = Disabled (default) Bit 7: TCACLEARRSOC—Enable TCA flag clear by RSOC threshold 0 = Disabled (default) Bit 8: TCACLEARCT—Enable TCA flag clear valid charge termination 0 = Disabled (default) Bit 9: FCCLEARCT—Enable FC flag clear by valid charge termination 0 = Disabled (default) Bit 1: TCASETVCT—Enable FC flag set on valid charge termination 0 = Disabled (default) Bit 1: TCASETVCT—Enable TCA flag set on valid charge termination 0 = Disabled (default) Bit 1: TCASETVCT—Enable TCA flag set on valid charge termination 0 = Disabled (default) Bit 11: TCASETVCT—Enable TCA flag set on valid charge termination 0 = Disabled (default) Bit 11: TCASETVCT—Enable TCA flag set on valid charge termination 0 = Disabled (default) Bit 11: TCASETVCT—Enable TCA flag set on valid charge termination 0 = Disabled (default) Bit 11: Reserved Bit 13: Reserved Bit 13: Reserved Bit 15: Reserved Bit 16: Reserved Bit 16: Reserved Bit 16: Reserved Bit 16: Reserv
		SBS Data Config 16–32	H1	0x00	0xFF	0xFF	Bit 0: FDSETV—Enable FD flag set by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 1: FDCLEARV—Enable FD flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 2: FDSETRSOC—Enable FD flag set by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 3: FDCLEARRSOC—Enable FD flag clear by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 4: FCSETV—Enable FC flag set by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 5: FCCLEARV—Enable FC flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 5: FCCLEARV—Enable FC flag clear by cell voltage threshold 0 = Disabled 1 = Enabled (default) Bit 6: FCSETRSOC—Enable FC flag set by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 7: FCCLEARRSOC—Enable FC flag clear by RSOC threshold 0 = Disabled 1 = Enabled (default) Bit 7: FCCLEARRSOC—Enable FC flag clear by RSOC threshold 0 = Disabled 1 = Enabled (default)

12.8.6 AFE

Power www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Configuration	AFE	AFE State Control	H1	0x00	0xFF	0	AFE state after device start up Bit 0: Reserved Bit 1: Reserved Bit 2: Reserved Bit 3: Reserved Bit 4: RSNS Divide OLD, SCC, SDC1 and SCD2 voltage thresholds by 2 0 = Disabled (default) 1 = Enabled Bit 5: SCDDx2 Double SCD1 and SCD2 delay thresholds 0 = Disabled (default) 1 = Enabled Bit 6: Reserved Bit 6: Reserved Bit 7: Reserved

12.9 Power

12.9.1 Power

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Power	Power	Valid Update Voltage	12	0	32767	7500	mV	Min stack voltage threshold for Flash update, pack based

12.9.2 Shutdown

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Power	Shutdown	Shutdown Voltage	12	0	32767	1750	mV	Cell based shutdown voltage trip threshold
Power	Shutdown	Shutdown Time	U2	0	255	10	S	Cell based shutdown voltage trip delay
Power	Shutdown	Charger Present Threshold	l2	0	32767	3000	mV	Pack pin charger present detect threshold, pack based

12.9.3 Sleep

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Power	Sleep	Sleep Current	12	0	32767	10	mA	Current() threshold to enter Sleep mode
Power	Sleep	Voltage Time	U1	0	255	5	S	Voltage sampling period in Sleep mode
Power	Sleep	Current Time	U1	0	255	20	S	Current sampling period in Sleep mode

12.9.4 Ship

www.ti.com Gas Gauging

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Power	Ship	Delay	12	0	255	5	s	Ship mode entry delay
Power	Ship	Current	I2	-250	250	10	mA	Current() threshold to enter ship mode

12.10 Gas Gauging

12.10.1 Current Thresholds

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	Current Thresholds	Dsg Current Threshold	12	-32768	32767	100	mA	Discharge mode Current() threshold
Gas Gauging	Current Thresholds	Chg Current Threshold	12	-32768	32767	50	mA	Charge mode Current() threshold
Gas Gauging	Current Thresholds	Quit Current	12	0	32767	10	mA	Current() threshold to enter rest mode

12.10.2 State

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	State	QMax Cell 0	l2	0	32767	4400	mAh	QMax Cell 0
Gas Gauging	State	QMax Cell 1	l2	0	32767	4400	mAh	QMax Cell 1
Gas Gauging	State	QMax Cell 2	l2	0	32767	4400	mAh	QMax Cell 2
Gas Gauging	State	QMax Cell 3	12	0	32767	4400	mAh	QMax Cell 3
Gas Gauging	State	QMax Pack	l2	0	32767	4400	mAh	QMax of the whole stack
Gas Gauging	State	Update Status	H1	0x00	0xFF	0		Bit 1:0: Update1, Update0 Update Status 0,0 = Impedance Track gauging and lifetime updating is disabled 0,1 = Ra table updated 1,0 = QMax and Ra table have been updated Bit 2: Enable—Impedance Track gauging and lifetime updating enable 0 = Disabled 1 = Enabled Bit 3: is_QMax_Field_Updated QMax updated with FC and qualified OCV in charge and discharge 0 = Disabled 1 = Enabled 1 = Enabled Sit 3: is_QMax_Field_Updated QMax updated with FC and qualified OCV in charge and discharge 0 = Disabled 1 = Enabled (default) Bit 4: Reserved Bit 5: Reserved Bit 6: Reserved Bit 7: Reserved
Gas Gauging	State	Cell 0 Chg Voltage at EoC	I2	0	32767	4200	mV	Cell 0 voltage value at end of charge
Gas Gauging	State	Cell 1 Chg Voltage at EoC	I2	0	32767	4200	mV	Cell 1 voltage value at end of charge

IT Config www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	State	Cell 2 Chg Voltage at EoC	12	0	32767	4200	mV	Cell 2 voltage value at end of charge
Gas Gauging	State	Cell 3 Chg Voltage at EoC	12	0	32767	4200	mV	Cell 3 voltage value at end of charge
Gas Gauging	State	Current at EoC	12	-32768	32767	250	mA	Current at end of charge
Gas Gauging	State	Avg I Last Run	12	-32768	32767	-2000	mA	Average current last discharge cycle
Gas Gauging	State	Avg P Last Run	12	-32768	32767	-3022	10 mW	Average power last discharge cycle
Gas Gauging	State	Delta Voltage	12	-32768	32767	0	mV	Voltage() delta between normal and short load spikes to optimize run time calculation
Gas Gauging	State	Max I Last Run	12	-32768	32767	-2000	mA	Max current last discharge cycle
Gas Gauging	State	Max P Last Run	12	-32768	32767	-3022	10 mW	Max power last discharge cycle

12.11 IT Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	IT Cfg	Load Select	U1	0	255	7		Defines Load compensation mode used by gauging algorithm:IF Load Mode = 0:0 = Avg I Last Run 1 = Present average discharge current 2 = Current 3 = AverageCurrent 4 = DesignCapacity/5 5 = AtRate (mA) 6 = User-Rate-mA 7 = Max Avg I Last RunIF Load Mode = 1:0 = Avg P Last Run 1 = Present average discharge power 2 = Current x Voltage 3 = AverageCurrent x Average Voltage 4 = DesignEnergy/5 5 = AtRate (10 mW) 6 = User-Rate-mW 7 = Max Avg P Last Run
Gas Gauging	IT Cfg	Load Mode	U1	0	255	0		Defines unit used by gauging algorithm:0 = Constant Current1 = Constant Power
Gas Gauging	IT Cfg	Ra Filter	U2	0	999	500	0.1%	Filter value used in Ra Updates, specifies what percentage or Ra update is from new value (100%—setting) vs. old value (setting). The recommended setting is 80% if RSOC_CONV feature is enabled. Otherwise, the setting should be 50% as default.
Gas Gauging	IT Cfg	Ra Max Delta	U1	0	255	15	% of Design Resistan ce	Maximum value of allowed Ra change

www.ti.com IT Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	IT Cfg	Design Resistance						Averaged cell resistance at Reference Grid point. Automatically updated when Update Status is set to 0x6 by the gauge. To automatically update again set Update Status to 0x4 or manually set when Update Status is set to 0x6.
Gas Gauging	IT Cfg	Reference Grid	UI	0	15	4		Reference grid point used by Design Resistance. The default setting should be used if RSOC_CONV feature is enabled. Otherwise, grid point 11 should be used to ensure resistance updates fast enough at the grid where discharge termination occurs.
Gas Gauging	IT Cfg	Resistance Parameter Filter	U2	1	65534	65142		This is one of the filters used for resistance update. Reducing this filter setting can improve low temperature performance at high rates. The default setting is 41-s time constant. It is recommended to keep this filter within the range of 4 s (i.e. DF setting = 61680) up to the default 41 s (i.e. DF setting = 65142). Examining the Term Voltage Delta setting and Fast Scale Start SOC should be done prior to twisting this parameter when trying to improve the RSOC performance. The following is the formula to convert the DF setting into actual filter time constant: Filter time constant = [0.25/(1 - (DF_Value /65536))] - 0.25
Gas Gauging	IT Cfg	Term Voltage	I2	0	32767	9000	mV	Min stack voltage to be used for capacity calculation
Gas Gauging	IT Cfg	Term Voltage Delta	12	0	32767	300	mV	Controls when the RSOC_CONV feature becomes active. The recommended setting is 3.3 —Term Voltage / Number Cells. The default setting is 300 mV, which is assuming a typical 3V termination voltage per cell. If a different termination voltage is used, this parameter should be adjusted accordingly.
Gas Gauging	IT Cfg	User-Rate- mA	I2	-32768	32768	0	mA	Discharge rate used for capacity calculation selected by Load Select
Gas Gauging	IT Cfg	User-Rate- mW	12	-32768	32768	0	10 mW	Discharge rate used for capacity calculation selected by Load Select
Gas Gauging	IT Cfg	Reserve Cap-mAh	I2	0	32768	0	mAh	Capacity reserved available when gauging algorithm reports 0% RemainingStateOfCharge()
Gas Gauging	IT Cfg	Reserve Cap-mWh	I2	0	32768	0	10 mW	Capacity reserved available when gauging algorithm reports 0% RemainingStateOfCharge()

LED Config www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	IT Cfg	Max IR Correct	12	0	32767	400	mV	Maximum allowable I*R voltage delta for correction
Gas Gauging	IT Cfg	RemCap Smoothing Filter	U1	0	255	250		RemainingCapacity() smoothing filter value. Sample settings and associated low-pass filter time constants are in Table C-1
Gas Gauging	IT Cfg	Fast Scale Start SOC	U1	0	100	10	%	Control the start of RSOC_CONV feature based on RSOC %. Rising this setting can improve RSOC drop at the end of discharge. However, the RSOC % chosen for this setting must keep after the sharp drop of the discharge curve (the keen of the discharge curve).

12.12 LED Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
LED Support	LED Config	LED Flash Period	U2	0	65535	2048	122 µs	LED Flashing period for alarm display
LED Support	LED Config	LED Blink Period	U2	0	65535	4096	122 µs	LED Blinking period for state-of-charge display
LED Support	LED Config	LED Delay	U2	0	65535	400	122 µs	Delay time from LED to LED for state-of-charge display
LED Support	LED Config	LED Hold Time	U2	0	255	16	0.25 s	LED display active time
LED Support	LED Config	CHG Flash Alarm	I1	0	100	10	%	RelativeStateOfCharge() alarm threshold during charging
LED Support	LED Config	CHG Thresh 1	I1	0	100	0	%	RelativeStateOfCharge() threshold for LED1 during charging
LED Support	LED Config	CHG Thresh 2	I1	0	100	20	%	RelativeStateOfCharge() threshold for LED2 during charging
LED Support	LED Config	CHG Thresh	I1	0	100	40	%	RelativeStateOfCharge() threshold for LED3 during charging
LED Support	LED Config	CHG Thresh 4	I1	0	100	60	%	RelativeStateOfCharge() threshold for LED4 during charging
LED Support	LED Config	CHG Thresh 5	I1	0	100	80	%	RelativeStateOfCharge() threshold for LED5 during charging
LED Support	LED Config	DSG Flash Alarm	I1	0	100	10	%	RelativeStateOfCharge() alarm threshold during discharging
LED Support	LED Config	DSG Thresh 1	I1	0	100	0	%	RelativeStateOfCharge() threshold for LED1 during discharging
LED Support	LED Config	DSG Thresh 2	I1	0	100	20	%	RelativeStateOfCharge() threshold for LED2 during discharging
LED Support	LED Config	DSG Thresh 3	I1	0	100	40	%	RelativeStateOfCharge() threshold for LED3 during discharging
LED Support	LED Config	DSG Thresh 4	I1	0	100	60	%	RelativeStateOfCharge() threshold for LED4 during discharging

www.ti.com RA Table

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
LED Support	LED Config	DSG Thresh 5	I1	0	100	80	%	RelativeStateOfCharge() threshold for LED5 during discharging

12.13 RA Table

12.13.1 R_a0

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a0	Cell 0 R_A Flag	H2	0x0000	OxFFFF		High Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update.
RA Table	R_a0	Cell 0 R_A 0	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 0
RA Table	R_a0	Cell 0 R_A 1	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 1
RA Table	R_a0	Cell 0 R_A 2	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 2
RA Table	R_a0	Cell 0 R_A 3	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 3
RA Table	R_a0	Cell 0 R_A 4	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 4
RA Table	R_a0	Cell 0 R_A 5	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 5
RA Table	R_a0	Cell 0 R_A 6	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 6
RA Table	R_a0	Cell 0 R_A 7	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 7
RA Table	R_a0	Cell 0 R_A 8	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 8
RA Table	R_a0	Cell 0 R_A 9	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 9
RA Table	R_a0	Cell 0 R_A 10	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 10
RA Table	R_a0	Cell 0 R_A 11	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 11
RA Table	R_a0	Cell 0 R_A 12	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 12
RA Table	R_a0	Cell 0 R_A 13	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 13
RA Table	R_a0	Cell 0 R_A 14	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 14

12.13.2 R_a1

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a1	Cell 1 R_A Flag	H2	0x0000	0xFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a1	Cell 1 R_A 0	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 0

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a1	Cell 1 R_A 1	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 1
RA Table	R_a1	Cell 1 R_A 2	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 2
RA Table	R_a1	Cell 1 R_A 3	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 3
RA Table	R_a1	Cell 1 R_A 4	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 4
RA Table	R_a1	Cell 1 R_A 5	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 5
RA Table	R_a1	Cell 1 R_A 6	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 6
RA Table	R_a1	Cell 1 R_A 7	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 7
RA Table	R_a1	Cell 1 R_A 8	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 8
RA Table	R_a1	Cell 1 R_A 9	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 9
RA Table	R_a1	Cell 1 R_A 10	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 10
RA Table	R_a1	Cell 1 R_A 11	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 11
RA Table	R_a1	Cell 1 R_A 12	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 12
RA Table	R_a1	Cell 1 R_A 13	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 13
RA Table	R_a1	Cell 1 R_A 14	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 14

12.13.3 R_a2

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a2	Cell 2 R_A Flag	H2	0x0000	OxFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a2	Cell 2 R_A 0	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 0
RA Table	R_a2	Cell 2 R_A 1	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 1
RA Table	R_a2	Cell 2 R_A 2	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 2
RA Table	R_a2	Cell 2 R_A 3	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 3
RA Table	R_a2	Cell 2 R_A 4	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 4
RA Table	R_a2	Cell 2 R_A 5	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 5
RA Table	R_a2	Cell 2 R_A 6	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 6
RA Table	R_a2	Cell 2 R_A 7	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 7
RA Table	R_a2	Cell 2 R_A 8	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 8
RA Table	R_a2	Cell 2 R_A 9	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 9
RA Table	R_a2	Cell 2 R_A 10	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 10
RA Table	R_a2	Cell 2 R_A 11	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 11
RA Table	R_a2	Cell 2 R_A 12	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 12

www.ti.com RA Table

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a2	Cell 2 R_A 13	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 13
RA Table	R_a2	Cell 2 R_A 14	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 14

12.13.4 R_a3

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a3	Cell 3 R_A Flag	H2	0x0000	0xFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a3	Cell 3 R_A 0	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 0
RA Table	R_a3	Cell 3 R_A 1	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 1
RA Table	R_a3	Cell 3 R_A 2	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 2
RA Table	R_a3	Cell 3 R_A 3	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 3
RA Table	R_a3	Cell 3 R_A 4	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 4
RA Table	R_a3	Cell 3 R_A 5	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 5
RA Table	R_a3	Cell 3 R_A 6	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 6
RA Table	R_a3	Cell 3 R_A 7	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 7
RA Table	R_a3	Cell 3 R_A 8	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 8
RA Table	R_a3	Cell 3 R_A 9	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 9
RA Table	R_a3	Cell 3 R_A 10	12	-32768	32768	2^–10 Ω	Cell 3 resistance at grid point 10
RA Table	R_a3	Cell 3 R_A 11	12	-32768	32768	2^–10 Ω	Cell 3 resistance at grid point 11
RA Table	R_a3	Cell 3 R_A 12	12	-32768	32768	2^–10 Ω	Cell 3 resistance at grid point 12
RA Table	R_a3	Cell 3 R_A 13	12	-32768	32768	2^–10 Ω	Cell 3 resistance at grid point 13
RA Table	R_a3	Cell 3 R_A 14	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 14

12.13.5 R_a0x

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a0x	xCell 0 R_A Flag	H2	0x0000	0xFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a0x	xCell 0 R_A 0	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 0
RA Table	R_a0x	xCell 0 R_A 1	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 1
RA Table	R_a0x	xCell 0 R_A 2	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 2
RA Table	R_a0x	xCell 0 R_A 3	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 3
RA Table	R_a0x	xCell 0 R_A 4	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 4
RA Table	R_a0x	xCell 0 R_A 5	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 5
RA Table	R_a0x	xCell 0 R_A 6	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 6
RA Table	R_a0x	xCell 0 R_A 7	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 7
RA Table	R_a0x	xCell 0 R_A 8	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 8
RA Table	R_a0x	xCell 0 R_A 9	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 9
RA Table	R_a0x	xCell 0 R_A 10	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 10
RA Table	R_a0x	xCell 0 R_A 11	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 11
RA Table	R_a0x	xCell 0 R_A 12	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 12
RA Table	R_a0x	xCell 0 R_A 13	12	-32768	32768	2^–10 Ω	Cell 0 resistance at grid point 13
RA Table	R_a0x	xCell 0 R_A 14	12	-32768	32768	2^-10 Ω	Cell 0 resistance at grid point 14

12.13.6 R_a1x

www.ti.com RA Table

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a1x	xCell 1 R_A Flag	H2	0x0000	0xFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and Cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a1x	xCell 1 R_A 0	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 0
RA Table	R_a1x	xCell 1 R_A 1	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 1
RA Table	R_a1x	xCell 1 R_A 2	I2	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 2
RA Table	R_a1x	xCell 1 R_A 3	I2	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 3
RA Table	R_a1x	xCell 1 R_A 4	l2	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 4
RA Table	R_a1x	xCell 1 R_A 5	I2	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 5
RA Table	R_a1x	xCell 1 R_A 6	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 6
RA Table	R_a1x	xCell 1 R_A 7	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 7
RA Table	R_a1x	xCell 1 R_A 8	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 8
RA Table	R_a1x	xCell 1 R_A 9	12	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 9
RA Table	R_a1x	xCell 1 R_A 10	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 10
RA Table	R_a1x	xCell 1 R_A 11	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 11
RA Table	R_a1x	xCell 1 R_A 12	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 12
RA Table	R_a1x	xCell 1 R_A 13	12	-32768	32768	2^-10 Ω	Cell 1 resistance at grid point 13
RA Table	R_a1x	xCell 1 R_A 14	l2	-32768	32768	2^–10 Ω	Cell 1 resistance at grid point 14

12.13.7 R_a2x

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a2x	xCell 2 R_A Flag	H2	0x0000	0xFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a2x	xCell 2 R_A 0	12	-32768	32768	2^–10 Ω	Cell 2 resistance at grid point 0
RA Table	R_a2x	xCell 2 R_A 1	12	-32768	32768	2^–10 Ω	Cell 2 resistance at grid point 1
RA Table	R_a2x	xCell 2 R_A 2	12	-32768	32768	2^–10 Ω	Cell 2 resistance at grid point 2
RA Table	R_a2x	xCell 2 R_A 3	12	-32768	32768	2^–10 Ω	Cell 2 resistance at grid point 3
RA Table	R_a2x	xCell 2 R_A 4	12	-32768	32768	2^–10 Ω	Cell 2 resistance at grid point 4
RA Table	R_a2x	xCell 2 R_A 5	12	-32768	32768	2^–10 Ω	Cell 2 resistance at grid point 5
RA Table	R_a2x	xCell 2 R_A 6	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 6
RA Table	R_a2x	xCell 2 R_A 7	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 7
RA Table	R_a2x	xCell 2 R_A 8	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 8
RA Table	R_a2x	xCell 2 R_A 9	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 9
RA Table	R_a2x	xCell 2 R_A 10	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 10
RA Table	R_a2x	xCell 2 R_A 11	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 11
RA Table	R_a2x	xCell 2 R_A 12	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 12
RA Table	R_a2x	xCell 2 R_A 13	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 13
RA Table	R_a2x	xCell 2 R_A 14	12	-32768	32768	2^-10 Ω	Cell 2 resistance at grid point 14

12.13.8 R_a3x

www.ti.com RA Table

Class	Subclass	Name	Туре	Min	Max	Unit	Description
RA Table	R_a3x	xCell 3 R_A Flag	H2	0x0000	OxFFFF		High-Byte: 0x00: Cell Impedance and QMax updated 0x05: Relaxation mode and QMax update in progress 0x55: Discharge mode and cell updated 0xFF: cell impedance never updated Low-Byte: 0x00: Table not used and QMax updated 0x55: Table being used 0xFF: Table never used, no QMax or cell impedance update
RA Table	R_a3x	xCell 3 R_A 0	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 0
RA Table	R_a3x	xCell 3 R_A 1	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 1
RA Table	R_a3x	xCell 3 R_A 2	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 2
RA Table	R_a3x	xCell 3 R_A 3	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 3
RA Table	R_a3x	xCell 3 R_A 4	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 4
RA Table	R_a3x	xCell 3 R_A 5	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 5
RA Table	R_a3x	xCell 3 R_A 6	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 6
RA Table	R_a3x	xCell 3 R_A 7	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 7
RA Table	R_a3x	xCell 3 R_A 8	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 8
RA Table	R_a3x	xCell 3 R_A 9	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 9
RA Table	R_a3x	xCell 3 R_A 10	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 10
RA Table	R_a3x	xCell 3 R_A 11	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 11
RA Table	R_a3x	xCell 3 R_A 12	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 12
RA Table	R_a3x	xCell 3 R_A 13	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 13
RA Table	R_a3x	xCell 3 R_A 14	12	-32768	32768	2^-10 Ω	Cell 3 resistance at grid point 14

PF Status www.ti.com

12.14 PF Status

12.14.1 Device Status Data

Class	Subclass	Name	Type	Min	Max	Default	Description
PF Status	Device Status Data	Safety Alert 0–15	H2	0x0000	OXFFFF	0	SafetyAlert() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in discharge 2nd Tier 0 = Inactive 1 = Detected Bit 7: OLDL—Overload in discharge 0 = Inactive 1 = Detected Bit 7: OLDL—Overload in discharge latch 0 = Inactive 1 = Detected Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in charge latch 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: COTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 12: OTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	Safety Status 0–15	H2	Ox0000	OxFFFF	0	SafetyStatus() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in discharge 0 = Inactive 1 = Detected Bit 7: OLDL—Overload in discharge latch 0 = Inactive 1 = Detected Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected Bit 9: SCCL—Short circuit in charge latch 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge 1 = Detected Bit 12: OTC—Overtemperature in charge 1 = Detected Bit 13: OTD—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	PF Alert 0–15	H2	0x0000	OxFFFF	0	PFAlert() bit 0 to bit 15 Bit 0: CUV—Cell undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell overvoltage 0 = Inactive 1 = Detected Bit 2: CUDEP—Copper Deposition 0 = Inactive 1 = Detected Bit 3: Reserved Bit 4: OTCE—Overtemperature 0 = Inactive 1 = Detected Bit 5: Reserved Bit 6: OTF—Overtemperature FET 0 = Inactive 1 = Detected Bit 7: QIM—QMax Imbalance 0 = Inactive 1 = Detected Bit 8: CB—Cell balancing 0 = Inactive 1 = Detected Bit 9: IMP—Cell impedance 0 = Inactive 1 = Detected Bit 10: CD—Capacity Deterioration 0 = Inactive 1 = Detected Bit 11: VIMR—Voltage imbalance at Rest 0 = Inactive 1 = Detected Bit 12: VIMA—Voltage imbalance at Rest 0 = Inactive 1 = Detected Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved Bit 15: Reserved

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device	PF Status	H2	0x0000	0xFFFF	0	PFStatus() bit 0 to bit 15
	Status	0–15					Bit 0: CUV—Cell undervoltage
	Data						0 = Inactive
							1 = Active
							Bit 1: COV—Cell overvoltage
							0 = Inactive
							1 = Active
							Bit 2: Reserved
							Bit 3: Reserved
							Bit 4: OTCE—Overtemperature
							0 = Inactive
							1 = Active
							Bit 5: Reserved
							Bit 6: OTF—Overtemperature FET
							0 = Inactive
							1 = Active
							Bit 7: QIM—QMax Imbalance
							0 = Inactive
							1 = Active
							Bit 8: CB—Cell balancing
							0 = Inactive
							1 = Active
							Bit 9: IMP—Cell impedance
					0 = Inactive		
							1 = Active
							Bit 10: CD—Capacity Deterioration
							0 = Inactive
							1 = Active
							Bit 11: VIMR—Voltage imbalance at Res
							0 = Inactive
							1 = Active
						Bit 12: VIMA—Voltage imbalance at Resi	
					0 = Inactive		
							1 = Active
					Bit 13: Reserved		
							Bit 14: Reserved
							Bit 15: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	Safety Alert 16–31	H2	0x0000	OxFFFF	0	SafetyAlert() bit 16 to bit 31 Bit 16: OTF—FET overtemperature 0 = Inactive 1 = Detected Bit 17: HWD—SBS Host watchdog timeout 0 = Inactive 1 = Detected Bit 18: PTO—Pre-charging timeout 0 = Inactive 1 = Detected Bit 19: PTOS—Pre-charging timeout suspend 0 = Inactive 1 = Detected Bit 20: CTO—Charging timeout 0 = Inactive 1 = Detected Bit 21: CTOS—Charging timeout suspend 0 = Inactive 1 = Detected Bit 22: OC—Overcharge 0 = Inactive 1 = Detected Bit 23: CHGC—Charging Current higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 25: Reserved Bit 26: Reserved Bit 27: Reserved Bit 27: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device	Safety	H2	0x0000	0xFFFF	0	SafetyStatus() bit 16 to bit 31
	Status	Status					Bit 16: OTF—FET overtemperature
	Data	16–31					0 = Inactive
							1 = Detected
							Bit 17: HWD—SBS Host watchdog timeo
							0 = Inactive
							1 = Detected
							Bit 18: PTO—Pre-charging timeout
							0 = Inactive
							1 = Detected
							Bit 19: PTOS—Pre-charging timeout
							suspend
							0 = Inactive
							1 = Detected
							Bit 20: CTO—Charging timeout
							0 = Inactive
							1 = Detected
							Bit 21: CTOS—Charging timeout suspend
							0 = Inactive
							1 = Detected
							Bit 22: OC—Overcharge
							0 = Inactive
							1 = Detected
							Bit 23: CHGC—Charging Current higher
							than requested
							0 = Inactive
							1 = Detected
							Bit 24: CHGV—Charging Voltage higher
							than requested
							0 = Inactive
							1 = Detected
							Bit 25: Reserved
							Bit 26: Reserved
					Bit 27: Reserved		
						Bit 28: Reserved	
					Bit 29: Reserved		
						Bit 30: Reserved	
							Bit 31: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	PF Alert 16–31	H2	0x0000	0xFFFF	0	PFAlert() bit 16 to bit 31 Bit 16: CFETF—Charge FET 0 = Inactive 1 = Detected Bit 17: DFET—Discharge FET 0 = Inactive 1 = Detected Bit 18: TH—Thermistor 0 = Inactive 1 = Detected Bit 19: FUSE—Fuse 0 = Inactive 1 = Detected Bit 20: AFER—AFE Register 0 = n/a 1 = Detected Bit 21: AFEC—AFE Communication 0 = Inactive 1 = Detected Bit 22: 2LVL—FUSE input indicating fuse trigger by external 2nd level protection 0 = Inactive 1 = Detected Bit 23: Reserved Bit 23: Reserved Bit 25: OCECO—Open VCx 0 = n/a 1 = Detected Bit 26: Reserved Bit 27: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 29: Reserved Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved Bit 31: Reserved

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device	PF Status	H2	0x0000	0xFFFF	0	PFStatus() bit 16 to bit 31
	Status	16–31					Bit 16: CFETF—Charge FET
	Data						0 = Inactive
							1 = Active
							Bit 17: DFET—Discharge FET
							0 = Inactive
							1 = Active
							Bit 18: TH—Thermistor
							0 = Inactive
							1 = Active
							Bit 19: FUSE—Fuse
							0 = Inactive
							1 = Active
							Bit 20: AFER—AFE Register
							0 = n/a
							1 = Active
							Bit 21: AFEC—AFE Communication
							0 = Inactive
							1 = Active
							Bit 22: 2LVL—FUSE input indicating fuse
							trigger by external 2nd level protection
							0 = Inactive
							1 = Active
							Bit 23:PTC—PTC by AFE
							0 = Inactive
							1 = Active
							Bit 24: IFC—Instruction Flash Checksum
							0 = n/a
							1 = IF checksum failure
							Bit 25: OCECO—Open VCx
							0 = n/a
							1 = Active
							Bit 26: DFW—DF wearout
							0 = n/a
							1 = Active
							Bit 27: Reserved
							Bit 28: Reserved
							Bit 29: Reserved
							Bit 30: Reserved
							Bit 30: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	Operation Status 0–15	H2	0x0000	OxFFFF	0	OperationStatus() bit 0 to bit 15 Bit 0: PRES—PRES input state 0 = PRES pin high 1 = PRES pin low Detected Bit 1: DSG—DSG FET Status 0 = Disabled 1 = Enabled Bit 2: CHG—CHG FET Status 0 = Disabled 1 = Enabled Bit 3: PCHG—PCHG FET Status 0 = Disabled 1 = Enabled Bit 4: GPOD—PPOD FET Status 0 = Disabled 1 = Enabled Bit 5: FUSE—FUSE input 0 = FUSE pin low 1 = FUSE pin high Detected Bit 6: CB—Cell Balancing 0 = Inactive 1 = Active Bit 7: LED—LED Display 0 = Inactive 1 = Active Bit 8:9: SECO,SEC1—Security Mode 0,1 = Unsealed 1,0 = Full Access 1,1 = Sealed Bit 10: CALCal Raw ADC/CC output active 0 = Inactive 1 = Active Bit 11: SS—SafetyStatus 0 = Inactive 1 = Active Bit 12: PF—Permanent Failure 0 = Inactive 1 = Active Bit 13: XDSG—Discharging Disabled 0 = Inactive 1 = Active Bit 14: XCHG—Charging Disabled 0 = Inactive 1 = Active Bit 15: SLEEP—Sleep condition met 0 = Disabled 1 = Enabled

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	Operation Status 16–31	H2	0x0000	OxFFFF	0	OperationStatus() bit 16 to bit 31 Bit 16: SDM—Shutdown activated by ManufacturerAccess() 0 = Inactive 1 = Active Bit 17: SHIPM—Ship Mode activated with ManufacturerAccess() 0 = Inactive 1 = Active Bit 18: AUTH—Authentication ongoing 0 = Inactive 1 = Active Bit 19: AWD—AFE Watchdog failure 0 = Inactive 1 = Active Bit 20: FVS—Fast Voltage Sampling 0 = Inactive 1 = Active Bit 21: CALO—Raw ADC/CC offset output 0 = Inactive 1 = Active Bit 22: SDV—Shutdown activated by voltage 0 = Inactive 1 = Active Bit 23: SLEEPM—Sleep mode active by ManufacturerAccess() 0 = Inactive 1 = Active Bit 24: INIT—Initialization after full reset, cleared when SBS data calculated and available 0 = Inactive 1 = Active Bit 25: SMBL—CALCC auto offset calibration ongoing after SBS line goes low 0 = Inactive 1 = Active Bit 26: SLEEPQMax—QMax update in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPCC—Checking current in Sleep mode 0 = Inactive 1 = Active Bit 28: XLSBS Fast Mode 0 = Inactive 1 = Active Bit 28: XLSBS Fast Mode 0 = Inactive 1 = Active Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved Bit 31: Reserved Bit 31: Reserved

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	Charging Status 0–15	H2	0x0000	0xFFFF	0	ChargingStatus() bit 0 to bit 15 Bit 0: UT—Under Temperature Range 0 = Inactive 1 = Active Bit 1: LT—Low Temperature Range 0 = Inactive 1 = Active Bit 2: ST—Standard Temperature Range 0 = Inactive 1 = Active Bit 3: HT—High Temperature Range 0 = Inactive 1 = Active Bit 4: RT—Recommended Temperature Range 0 = Inactive 1 = Active Bit 5: OT—Over Temperature Range 0 = Inactive 1 = Active Bit 6: PV—Precharge Voltage Range 0 = Inactive 1 = Active Bit 7: LV—Low Voltage Range 0 = Inactive 1 = Active Bit 8: MV—Medium Voltage Range 0 = Inactive 1 = Active Bit 9: HV—High Voltage Range 0 = Inactive 1 = Active Bit 10: IN—Charge Inhibit 0 = Inactive 1 = Active Bit 10: IN—Charge Inhibit 0 = Inactive 1 = Active Bit 11: CCR—ChargingVoltage() Rate 0 = Inactive 1 = Active Bit 13: CVR—ChargingCurrent() Rate 0 = Inactive 1 = Active Bit 14: CCC—ChargingCurrent() Compensation 0 = Inactive 1 = Active Bit 14: CCC—ChargingCurrent() Compensation 0 = Inactive 1 = Active Bit 15: Reserved
PF Status	Device Status Data	Charging Status 16–23	H2	0x0000	0xFFFF	0	ChargingStatus() bit 16 to bit 31 Bit 16: VCT—Valid Charge Termination. This flag toggles every time valid charge termination is Detected. Bit 17: Reserved Bit 18: Reserved Bit 19: Reserved Bit 20: Reserved Bit 21: Reserved Bit 22: Reserved Bit 23: Reserved Bit 24: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
PF Status	Device Status Data	Gauging Status	H2	0x0000	0xFFFF	0	GaugingStatus() bit 0 to bit 15 Bit 0: REST—Device at rest 0 = Inactive 1 = Active Bit 1: DSG—Discharge Detected 0 = Charging 1 = Discharging Bit 2: RU—Resistance update 0 = Disabled 1 = Enabled Bit 3: VOK—Cell Voltage OK for QMax update 0 = Inactive 1 = Active Bit 4: QEN—QMax updates 0 = Disabled 1 = Enabled Bit 5: FD—Fully Discharged Detected by gauge algorithm 0 = Disabled 1 = Enabled Bit 6: FC—Fully Charged Detected by gauge algorithm 0 = Disabled 1 = Enabled Bit 6: FC—Fully Charged Detected by gauge algorithm 0 = Disabled 1 = Enabled
	PF Status	Device Status Data	Gaugi ng Statu s	H2	0x0000	OXFFFF	Bit 7: NSFM—Negative scale factor mode 0 = Disabled 1 = Enabled Bit 8: VDQ—Discharge qualified for learning 0 = Disabled 1 = Enabled Bit 9: QMax—QMax updated. This flag toggles every time QMax is updated. Bit 10: RX—Resistance update This flag toggles every time Resistance is updated Bit 11: LDMD—Load Mode 0 = Constant current mode 1 = Constant power mode Bit 12: OCVFR—OCV in flat region 0 = OCV outside flat region 1 = OCV in flat region Bit 13: TDA—Terminate Discharge Alarm set by gauging algorithm 0 = Disabled 1 = Enabled Bit 14: TCA—Terminate Charge Alarm set by gauging algorithm 0 = Disabled 1 = Enabled Bit 15: LPF Relax—LiPh Relax Mode, only active with Chem ID 0x400 0 = Disabled 1 = Enabled

12.14.2 Device Voltage Data

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
PF Status	Device Voltage Data	Cell Voltage 0	I2	0	32767	0	mV	Cell 0 voltage
PF Status	Device Voltage Data	Cell Voltage 1	I2	0	32767	0	mV	Cell 1 voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
PF Status	Device Voltage Data	Cell Voltage 2	12	0	32767	0	mV	Cell 2 voltage
PF Status	Device Voltage Data	Cell Voltage 3	12	0	32767	0	mV	Cell 3 voltage
PF Status	Device Voltage Data	Bat Direct Voltage	12	0	32767	0	mV	Cell stack voltage
PF Status	Device Voltage Data	Pack Voltage	12	0	32767	0	mV	Pack pin voltage

12.14.3 Device Current Data

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
PF Status	Device Current Data	Current	12	-32768	32767	0	mV	Current()

12.14.4 Device Temperature Data

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
PF Status	Device Temperature Data	Internal Temperature	12	0	9999	0	0.1°K	Internal temperature sensor temperature
PF Status	Device Temperature Data	External 1 Temperature	12	0	9999	0	0.1°K	External TS1 temperature
PF Status	Device Temperature Data	External 2 Temperature	12	0	9999	0	0.1°K	External TS2 temperature
PF Status	Device Temperature Data	External 3 Temperature	12	0	9999	0	0.1°K	External TS3 temperature
PF Status	Device Temperature Data	External 4 Temperature	12	0	9999	0	0.1°K	External TS4 temperature

12.14.5 Device Gauging Data

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
PF Status	Device Gauging Data	Cell 0 DOD0	12	0	32767	0		Cell 0 depth of discharge
PF Status	Device Gauging Data	Cell 1 DOD0	12	0	32767	0		Cell 1 depth of discharge
PF Status	Device Gauging Data	Cell 2 DOD0	12	0	32767	0		Cell 2 depth of discharge
PF Status	Device Gauging Data	Cell 3 DOD0	12	0	32767	0		Cell 3 depth of discharge
PF Status	Device Gauging Data	Passed Charge	12	0	32767	0	mAh	Passed charge since last QMax update

PF Status www.ti.com

12.14.6 AFE Regs

Class	Subclass	Name	Туре	Min	Max	Defaul t	Description
PF Status	AFE Regs	AFE Status	H1	0x00	0xFF	0	Bit 0: SCD1—SCD1 0 = Inactive 1 = Active Bit 1: SCD2—SCD2 0 = Inactive 1 = Active Bit 2: SCC—SCC 0 = Inactive 1 = Active Bit 3: OCD—SCD1 0 = Inactive 1 = Active Bit 4: WDF—WDF 0 = Inactive 1 = Active Bit 5: Reserved Bit 6: PTC—PTC 0 = Inactive 1 = Active Bit 7: FUSE—FUSE 0 = Inactive 1 = Active
PF Status	AFE Regs	AFE State Control	H1	0x00	0xFF	0	Bit 0: Reserved Bit 1: SHUTDOWN—Enables device shutdown when voltage on PACK pins is removed 0 = Disabled 1 = Enabled Bit 2: WDDIS—Enables device watchdog timer 0 = Enabled 1 = Disabled Bit 3: WDRST—Enables device reset when watchdog timer times out 0 = Disabled 1 = Enabled Bit 4: RSNS—Divide OCD, SCC, SDC1 and SCD2 voltage thresholds by 2 0 = Disabled 1 = Enabled Bit 5: SCDDx2—Double SCD1 and SCD2 Delay thresholds 0 = Disabled 1 = Enabled Bit 6: CTM_ENA—Enable customer test mode 0 = Disabled 1 = Enabled Bit 7: FUSE—A part one of FUSE activation sequence 0 = Disabled 1 = Enabled

Class	Subclass	Name	Туре	Min	Max	Defaul t	Description
PF Status	AFE Regs	AFE Control	H1	0x00	0xFF	0	Bit 0: LTCLR—Clear latch condition 0 = Inactive 1 = Active Bit 1: DSG 0 = Inactive 1 = Active Bit 2: CHG 0 = Inactive 1 = Active Bit 3: PCHG—CHG 0 = Inactive 1 = Active Bit 4: GPOD—CHG 0 = Inactive 1 = Active Bit 5: PMS_CHG 0 = Inactive 1 = Active Bit 5: PMS_CHG 0 = Inactive 1 = Active Bit 6: CTM_ENB 0 = Inactive 1 = Active Bit 7: FUSEB 0 = Inactive 1 = Active
PF Status	AFE Regs	AFE Output Status	H1	0x00	0xFF	0	Bit 0: Reserved Bit 1: DSG 0 = Inactive 1 = Active Bit 2: CHG 0 = Inactive 1 = Active Bit 3: PCHG—CHG 0 = Inactive 1 = Active Bit 4: GPOD—CHG 0 = Inactive 1 = Active Bit 5: PMS_CHG 0 = Inactive 1 = Active Bit 6: CTM 0 = Inactive 1 = Active Bit 7: PMS 0 = Inactive 1 = Active
PF Status	AFE Regs	AFE Function Control	H1	0x00	0xFF	0	Bit 0: VMEN 0 = Inactive 1 = Active Bit 1: PACK 0 = Inactive 1 = Active Bit 2: BATDSG 0 = Inactive 1 = Active Bit 3: SC_REC 0 = Inactive 1 = Active Bit 5:4: RV1,RV0:RV Bit 6: Reserved Bit 7: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Defaul t	Description
PF Status	AFE Regs	AFE Cell Select	Н1	0x00	0xFF	0	Bit 1:0: CELL1, CELL0 Cell Select Bit 2: CALCAL 0 = Inactive 1 = Active Bit 3: Reserved Bit 4: CB0 0 = Inactive 1 = Active Bit 5: CB1 0 = Inactive 1 = Active Bit 6: CB2 0 = Inactive 1 = Active Bit 4: CB3 0 = Inactive
PF Status	AFE Regs	AFE OCDV	H1	0x00	0xFF	0	Bit 3:0: Overload Trip Threshold between SRP and SRN 0x00 to 0x0F = 0.050 V to 0.200 V in 10 mV steps when RSNS = 00x00 to 0x0F = 0.025 V to 0.100 V in 5 mV steps when RSNS = 10x00 = 0.050 V or 0.025 V 0x01 = 0.060 V or 0.030 V 0x02 = 0.070 V or 0.035 V 0x03 = 0.080 V or 0.045 V 0x04 = 0.090 V or 0.045 V 0x05 = 0.100 V or 0.050 V 0x06 = 0.110 V or 0.055 V 0x07 = 0.120 V or 0.060 V 0x08 = 0.130 V or 0.065 V 0x09 = 0.140 V or 0.075 V 0x08 = 0.150 V or 0.075 V 0x0B = 0.160 V or 0.075 V 0x0B = 0.160 V or 0.085 V 0x0D = 0.170 V or 0.085 V 0x0D = 0.180 V or 0.090 V 0x0E = 0.190 V or 0.095 V 0x0E = 0.190 V or 0.095 V 0x0F = 0.200 V or 0.095 V
PF Status	AFE Regs	AFE OCDT	H1	0x00	0xFF	0	Bit 3:0: Overload Trip Delay 0x00 to 0x0F = 1 ms to 31 ms in 2-ms steps 0x00 = 1 ms 0x01 = 3 ms 0x02 = 5 ms 0x03 = 7 ms 0x04 = 9 ms 0x05 = 11 ms 0x06 = 13 ms 0x07 = 15 ms 0x08 = 17 ms 0x09 = 19 ms 0x0A = 21 ms 0x0B = 23 ms 0x0C = 25 ms 0x0B = 27 ms 0x0B = 27 ms 0x0B = 29 ms

Class	Subclass	Name	Туре	Min	Max	Defaul t	Description
PF Status	AFE Regs	AFE SCC	H1	0x00	0xFF	0	Bit 2:0: Short Circuit in Charge Threshold between SRP and SRN 0x00 to 0x04 = -0.100 V to -0.300 V in 50 mV steps when RSNS = 00x00 to 0x04 = -0.050 V to -0.150 V in 25-mV steps when RSNS = 1 0x00 = -0.100 V or -0.050 V 0x01 = -0.150 V or -0.075 V 0x02 = -0.200 V or -0.100 V 0x03 = -0.250 V or -0.125 V 0x04 = -0.300 V or -0.150 V 0x05 = Reserved 0x06 = Reserved 0x07 = Reserved Bit 7:4: Short Circuit in Charge Delay Time 0x00 to 0x0F = 0 μs to 915 μs in 61-μs steps 0x00 = 0 μs 0x01 = 61 μs 0x02 = 122 μs 0x03 = 183 μs 0x04 = 244 μs 0x05 = 305 μs 0x06 = 366 μs 0x07 = 427 μs 0x08 = 488 μs 0x09 = 549 μs 0x0A = 610 μs 0x0B = 671 μs 0x0C = 732 μs 0x0C = 732 μs 0x0C = 854 μs 0x0F = 915 μs
PF Status	AFE Regs	AFE SCD1	H1	0x00	0xFF	0	Bit 2:0: Short Circuit in Discharge 1 Threshold between SRP and SRN 0x00 to 0x07 = 0.100 V to 0.300 V in 50 mV steps when RSNS = 00x00 to 0x07 = 0.050 V to 0.150 V in 25 mV steps when RSNS = 1 0x00 = 0.100 V or 0.050 V 0x01 = 0.150 V or 0.075 V 0x02 = 0.200 V or 0.100 V 0x03 = 0.250 V or 0.125 V 0x04 = 0.300 V or 0.150 V 0x05 = 0.350 V or 0.175 V 0x06 = 0.400 V or 0.200 V 0x07 = 0.450 V or 0.225 V Bit 3: Reserved

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Defaul t	Description
PF Status	AFE Regs	AFE SCD1	H1	0x00	0xFF	0	Bit 7:4: Short Circuit in Discharge 1 Delay Time 0x00 to 0x0F = 0 µs to 915 µs in 61-µs steps when SCDDx2 = 00x00 to 0x0F = 0 µs to 1830 µs in 122-µs steps when SCDDx2 = 1 0x00 = 0 µs 0x01 = 61 µs or 122 µs 0x02 = 122 µs or 244 µs 0x03 = 183 µs or 366 µs 0x04 = 244 µs or 488 µs 0x05 = 305 µs or 610 µs 0x06 = 366 µs or 732 µs 0x07 = 427 µs or 854 µs 0x08 = 488 µs or 976 µs 0x09 = 549 µs or 1098 µs 0x0A = 610 µs or 1220 µs 0x0B = 671 µs or 1342 µs 0x0C = 732 µs or 1464 µs 0x0D = 793 µs or 1586 µs 0x0E = 854 µs or 1708 µs 0x0F = 915 µs or 1830 µs
PF Status	AFE Regs	AFE SCD2	H1	0x00	0xFF	0	Bit 2:0: Short Circuit in Discharge 2 Threshold between SRP and SRN 0x00 to 0x07 = 0.100 V to 0.300 V in 50-mV steps when RSNS = 00x00 to 0x07 = 0.050 V to 0.150 V in 25-mV steps when RSNS = 10x00 = 0.100 V or 0.050 V 0x01 = 0.150 V or 0.075 V 0x02 = 0.200 V or 0.100 V 0x03 = 0.250 V or 0.125 V 0x04 = 0.300 V or 0.150 V 0x05 = 0.350 V or 0.175 V 0x06 = 0.400 V or 0.200 V 0x07 = 0.450 V or 0.225 V Bit 3: Reserved Bit 7:4: Short Circuit in Discharge 2 Delay Time 0x00 to 0x0F = 0 µs to 915 µs in 61-µs steps when SCDDx2 = 00x00 to 0x0F = 0 µs to 1830 µs in 122-µs steps when SCDDx2 = 10x00 = 0 µs 0x01 = 30 µs or 61 µs 0x02 = 61 µs or 122 µs 0x03 = 91 µs or 183 µs 0x04 = 122 µs or 244 µs 0x05 = 152 µs or 305 µs 0x06 = 183 µs or 366 µs 0x07 = 213 µs or 427 µs 0x08 = 244 µs or 488 µs 0x09 = 275 µs or 549 µs 0x0A = 305 µs or 610 µs 0x0B = 335 µs or 671 µs 0x0C = 366 µs or 732 µs 0x0C = 366 µs or 732 µs 0x0C = 426 µs or 854 µs 0x0F = 458 µs or 915 µs

www.ti.com Black Box

12.15 Black Box

12.15.1 Safety Status

Class	Subclass	Name	Type	Min	Max	Default	Description
Black Box	Safety Status	1st Safety Status 0–15	H2	0x0000	OXFFFF	0	SafetyStatus() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 3: OCC1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in discharge 0 = Inactive 1 = Detected Bit 7: OLDL—Overload in discharge latch 0 = Inactive 1 = Detected Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected
Black Box	Safety Status	1st Safety Status 0–15	H2	0x0000	OXFFFF	0	Bit 9: SCCL—Short circuit in charge latch 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge latch 0 = Inactive 1 = Detected Bit 12: OTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	Safety Status	1st Safety Status 16–31	H2	0x0000	0xFFFF	0	SafetyStatus() bit 16 to bit 31 Bit 16: OTF—FET overtemperature 0 = Inactive 1 = Detected Bit 17: HWD—SBS Host watchdog timeout 0 = Inactive 1 = Detected Bit 18: PTO—Pre-charging Timeout 0 = Inactive 1 = Detected Bit 19: PTOS—Pre-charging Timeout Suspend 0 = Inactive 1 = Detected Bit 20: CTO—Charging Timeout 0 = Inactive 1 = Detected
Black Box	Safety Status	1st Safety Status 16–31	H2	0x0000	0xFFFF	0	Bit 21: CTOS—Charging Timeout Suspend 0 = Inactive 1 = Detected Bit 22: OC—Overcharge 0 = Inactive 1 = Detected Bit 23: CHGC—Charging Current higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 25: Reserved Bit 26: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved
Black Box	Safety Status	1st Time to Next Event	U1	0	255	0	Time from 1st event to 2nd event
Black Box	Safety Status	2nd Safety Status 0–15	H2	0x0000	0xFFFF	0	SafetyStatus() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in Discharge 0 = Inactive 1 = Detected Bit 6: OLD—Overload in Discharge

www.ti.com Black Box

Class	Subclass	Name	Type	Min	Max	Default	Description
Black Box	Safety Status	2nd Safety Status 0–15	H2	0x0000	0xFFFF	0	Bit 7: OLDL—Overload in discharge latch 0 = Inactive 1 = Detected Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected Bit 9: SCCL—Short circuit in charge latch 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge latch 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge latch 0 = Inactive 1 = Detected Bit 12: OTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved
Black Box	Safety Status	2nd Safety Status 16–31	H2	0x0000	0xFFFF	0	SafetyStatus() bit 16 to bit 31 Bit 16: OTF—FET overtemperature 0 = Inactive 1 = Detected Bit 17: HWD—SBS Host watchdog timeout 0 = Inactive 1 = Detected Bit 18: PTO—Pre-charging timeout 0 = Inactive 1 = Detected Bit 19: PTOS—Pre-charging timeout suspend 0 = Inactive 1 = Detected Bit 20: CTO—Charging timeout 0 = Inactive 1 = Detected Bit 20: CTO—Charging timeout 0 = Inactive 1 = Detected
Black Box	Safety Status	2nd Safety Status 16–31	H2	0x0000	0xFFFF	0	Bit 21: CTOS—Charging timeout suspend 0 = Inactive 1 = Detected Bit 22: OC—Overcharge 0 = Inactive 1 = Detected Bit 23: CHGC—ChargingCurrent higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 25: Reserved Bit 25: Reserved Bit 27: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved
Black Box	Safety Status	2nd Time to Next Event	U1	0	255	0	Time from 2nd event to 3rd event

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	Safety Status	3rd Safety Status 0–15	H2	0x0000	0xFFFF	0	SafetyStatus() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Detected Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Detected Bit 2: OCC1—Overcurrent in Charge 1st Tier 0 = Inactive 1 = Detected Bit 3: OCC2—Overcurrent in Charge 2nd Tier 0 = Inactive 1 = Detected Bit 3: OCC1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 4: OCD1—Overcurrent in Discharge 1st Tier 0 = Inactive 1 = Detected Bit 5: OCD2—Overcurrent in Discharge 2nd Tier 0 = Inactive 1 = Detected Bit 6: OLD—Overload in discharge 0 = Inactive 1 = Detected Bit 7: OLDL—Overload in discharge latch 0 = Inactive 1 = Detected
Black Box	Safety Status	3rd Safety Status 0–15	H2	0x0000	0xFFFF	0	Bit 8: SCC—Short circuit in charge 0 = Inactive 1 = Detected Bit 9: SCCL—Short circuit in charge latch 0 = Inactive 1 = Detected Bit 10: SCD—Short circuit in discharge 0 = Inactive 1 = Detected Bit 11: SCDL—Short circuit in discharge latch 0 = Inactive 1 = Detected Bit 12: OTC—Overtemperature in charge 0 = Inactive 1 = Detected Bit 13: OTD—Overtemperature in discharge 0 = Inactive 1 = Detected Bit 14: CUVC—I*R compensated CUV 0 = Inactive 1 = Detected Bit 15: Reserved
Black Box	Safety Status	3rd Safety Status 16–31	H2	0x0000	0xFFFF	0	SafetyStatus() bit 16 to bit 31 Bit 16: OTF—FET Overtemperature 0 = Inactive 1 = Detected Bit 17: HWDSBS—Host Watchdog Timeout 0 = Inactive 1 = Detected Bit 18: PTO—Pre-charging Timeout 0 = Inactive 1 = Detected Bit 19: PTOS—Pre-charging Timeout Suspend 0 = Inactive 1 = Detected Bit 20: CTO—Charging Timeout 0 = Inactive 1 = Detected Bit 20: CTO—Charging Timeout 0 = Inactive 1 = Detected

www.ti.com Black Box

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	Safety Status	3rd Safety Status 16–31	H2	0x0000	0xFFFF	0	Bit 21: CTOS—Charging Timeout Suspend 0 = Inactive 1 = Detected Bit 22: OC—Overcharge 0 = Inactive 1 = Detected Bit 23: CHGC—Charging Current higher than requested 0 = Inactive 1 = Detected Bit 24: CHGV—Charging Voltage higher than requested 0 = Inactive 1 = Detected Bit 25: Reserved Bit 25: Reserved Bit 26: Reserved Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved
Black Box	Safety Status	3rd Time to Next Event	U1	0	255		Time since 3rd event

12.15.2 PF Status

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	1st PF Status 0–15	H2	0x0000	0xFFFF	0	PFStatus() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Active Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Active Bit 2: CUDEP—Copper Deposition 0 = Inactive 1 = Active Bit 3: Reserved Bit 4: OTCE—Overtemperature 0 = Inactive 1 = Active Bit 5: Reserved Bit 6: OTF—Overtemperature FET 0 = Inactive 1 = Active Bit 7: QIM—QMax Imbalance 0 = Inactive 1 = Active
Black Box	PF Status	1st PF Status 0–15	H2	0x0000	0xFFFF	0	Bit 8: CB—Cell Balancing 0 = Inactive 1 = Active Bit 9: IMP—Cell Impedance 0 = Inactive 1 = Active Bit 10: CD—Capacity Deterioration 0 = Inactive 1 = Active Bit 11: VIMR—Voltage Imbalance at Rest 0 = Inactive 1 = Active Bit 12: VIMA—Voltage Imbalance at Rest 0 = Inactive 1 = Active Bit 12: NIMA—Voltage Imbalance at Rest 0 = Inactive 1 = Active Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	1st PF Status 16–32	H2	0x0000	OXFFFF	0	PFStatus() bit 16 to bit 31 Bit 16: CFETF—Charge FET 0 = Inactive 1 = Active Bit 17: DFET—Discharge FET 0 = Inactive 1 = Active Bit 18: TH—Thermistor 0 = Inactive 1 = Active Bit 19: FUSE—Fuse 0 = Inactive 1 = Active Bit 20: AFER—AFE Register 0 = n/a 1 = Active Bit 21: AFEC—AFE Communication 0 = Inactive 1 = Active Bit 22: 2LVL—FUSE input indicating fuse trigger by external 2nd level protection 0 = Inactive 1 = Active Bit 23: PTC—PTC by AFE 0 = Inactive 1 = Active Bit 24: IFC—Instruction Flash Checksum 0 = n/a 1 = IF checksum failure Bit 25: OCECO—Open VCx 0 = n/a 1 = Active Bit 26: DFW—DF Wearout 0 = n/a 1 = Active Bit 27: Reserved Bit 28: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved

www.ti.com Black Box

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	1st PF Status 16–32	H2	0x0000	0xFFFF	0	Bit 16: SDM—Shutdown activated by ManufacturerAccess() 0 = Inactive 1 = Active Bit 17: SHIPM—Ship mode activated with ManufacturerAccess() 0 = Inactive 1 = Active Bit 18: AUTH—Authentication ongoing 0 = Inactive 1 = Active Bit 19: AWD—AFE Watchdog failure 0 = Inactive 1 = Active Bit 20: FVS—Fast Voltage Sampling 0 = Inactive 1 = Active Bit 21: CALO—Raw ADC/CC offset output 0 = Inactive 1 = Active Bit 22: SDV—Shutdown activated by voltage 0 = Inactive 1 = Active Bit 23: SLEEPM—Sleep mode active by ManufacturerAccess() 0 = Inactive 1 = Active Bit 24: INIT—Initialization after full reset, cleared when SBS data calculated and available 0 = Inactive 1 = Active Bit 25: SMBLCAL—CC auto offset calibration ongoing after SBS line goes low 0 = Inactive 1 = Active Bit 26: SLEEPQMax—QMax update in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPCC—Checking Current in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPCC—Checking Current in Sleep mode 0 = Inactive 1 = Active Bit 28: GPOD—GPOD pin status 0 = Inactive (high) 1 = Active (low) Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved
Black Box	PF Status	1st Time to Next Event	U1	0	255	0	Time from 1st event to 2nd event

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	2nd PF Status 0–15	H2	0x0000	OXFFFF	0	PFStatus() bit 0 to bit 15 Bit 0: CUV—Cell Undervoltage 0 = Inactive 1 = Active Bit 1: COV—Cell Overvoltage 0 = Inactive 1 = Active Bit 2: CUDEP—Copper Deposition 0 = Inactive 1 = Active Bit 3: Reserved Bit 4: OTCE—Overtemperature 0 = Inactive 1 = Active Bit 5: Reserved Bit 6: OTF—Overtemperature FET 0 = Inactive 1 = Active Bit 7: QIM—QMax Imbalance 0 = Inactive 1 = Active Bit 8: CB—Cell Balancing 0 = Inactive 1 = Active Bit 9: IMP—Cell Impedance 0 = Inactive 1 = Active Bit 10: CD—Capacity Deterioration 0 = Inactive 1 = Active Bit 11: VIMR—Voltage Imbalance at Rest 0 = Inactive 1 = Active Bit 12: VIMA—Voltage Imbalance at Rest 0 = Inactive 1 = Active Bit 11: NIMR—Voltage Imbalance at Rest 0 = Inactive 1 = Active Bit 13: Reserved Bit 13: Reserved Bit 14: Reserved Bit 15: Reserved

www.ti.com Black Box

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	2nd PF Status 16–32	H2	0x0000	OXFFFF	0	PFStatus() bit 16 to bit 31 Bit 16: CFETF—Charge FET 0 = Inactive 1 = Active Bit 17: DFET—Discharge FET 0 = Inactive 1 = Active Bit 18: TH—Thermistor 0 = Inactive 1 = Active Bit 19: FUSE—Fuse 0 = Inactive 1 = Active Bit 20: AFER—AFE Register 0 = n/a 1 = Active Bit 21: AFEC—AFE Communication 0 = Inactive 1 = Active Bit 22: 2LVL—FUSE input indicating fuse trigger by external 2nd level protection 0 = Inactive 1 = Active Bit 23: PTC—PTC by AFE 0 = Inactive 1 = Active Bit 24: IFC—Instruction Flash Checksum 0 = n/a 1 = IF checksum failure Bit 25: OCECO—Open VCx 0 = n/a 1 = Active Bit 26: DFW—DF wearout 0 = n/a 1 = Active Bit 27: Reserved Bit 28: Reserved Bit 29: Reserved Bit 30: Reserved Bit 30: Reserved Bit 30: Reserved Bit 31: Reserved

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	2nd PF Status 16–32	H2	0x0000	OXFFFF	0	Bit 16: SDM—Shutdown activated by ManufacturerAccess() 0 = Inactive 1 = Active Bit 17: SHIPM—Ship Mode activated with ManufacturerAccess() 0 = Inactive 1 = Active Bit 18: AUTH—Authentication ongoing 0 = Inactive 1 = Active Bit 19: AWD—AFE Watchdog failure 0 = Inactive 1 = Active Bit 20: FVS—Fast Voltage Sampling 0 = Inactive 1 = Active Bit 21: CALO—Raw ADC/CC offset output 0 = Inactive 1 = Active Bit 22: SDV—Shutdown activated by voltage 0 = Inactive 1 = Active Bit 23: SLEEPM—Sleep mode active by ManufacturerAccess() 0 = Inactive 1 = Active Bit 24: INIT—Initialization after full reset, cleared when SBS data calculated and available 0 = Inactive 1 = Active Bit 25: SMBLCAL—CC auto offset calibration ongoing after SBS line goes low 0 = Inactive 1 = Active Bit 26: SLEEPQMax—QMax update in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPCC—Checking current in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPCC—Checking current in Sleep mode 0 = Inactive 1 = Active Bit 28: GPOD—GPOD pin status 0 = Inactive (high) 1 = Active (low) Bit 29: Reserved Bit 30: Reserved Bit 31: Reserved
Black Box	PF Status	2nd Time to Next Event	U1	0	255	0	Time from 2nd event to 3rd event

www.ti.com Black Box

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	3rd PF Status	H2	0x0000	0xFFFF	0	PFStatus() bit 0 to bit 15
		0–15					Bit 0: CUV—Cell undervoltage
							0 = Inactive
							1 = Active
							Bit 1: COV—Cell overvoltage
							0 = Inactive
							1 = Active
							Bit 2: CUDEP—Copper Deposition
							0 = Inactive
							1 = Active
							Bit 3: Reserved
							Bit 4: OTCE—Overtemperature
							0 = Inactive
							1 = Active
							Bit 5: Reserved
							Bit 6: OTF—Overtemperature FET
							0 = Inactive
							1 = Active
							Bit 7: QIM—QMax Imbalance
							0 = Inactive
							1 = Active
							Bit 8: CB—Cell balancing
							0 = Inactive
							1 = Active
							Bit 9: IMP—Cell impedance
							0 = Inactive
							1 = Active
							Bit 10: CD—Capacity Deterioration
							0 = Inactive
							1 = Active
							Bit 11: VIMR—Voltage imbalance at Rest
							0 = Inactive
							1 = Active
							Bit 12: VIMA—Voltage imbalance at Rest
							0 = Inactive
							1 = Active
							Bit 13: Reserved
							Bit 14: Reserved
							Bit 15: Reserved

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	3rd PF Status	H2	0x0000	0xFFFF	0	PFStatus() bit 16 to bit 31
		16–32					Bit 16: CFETF—Charge FET
							0 = Inactive
							1 = Active
							Bit 17: DFET—Discharge FET
							0 = Inactive
							1 = Active
							Bit 18: TH—Thermistor
							0 = Inactive
							1 = Active
							Bit 19: FUSE—Fuse
							0 = Inactive
							1 = Active
							Bit 20: AFER—AFE Register
							0 = n/a
							1 = Active
							Bit 21: AFEC—AFE Communication
							0 = Inactive
							1 = Active
							Bit 22: 2LVL—FUSE input indicating fus
							trigger by external 2nd level protection
							0 = Inactive
							1 = Active
							Bit 23:PTC—PTC by AFE
							0 = Inactive
							1 = Active
							Bit 24: IFC—Instruction Flash Checksum
							0 = n/a
							1 = IF checksum failure
							Bit 25: OCECO—Open VCx
							0 = n/a
							1 = Active
							Bit 26: DFW—DF wearout
							0 = n/a
							1 = Active
							Bit 27: Reserved
							Bit 28: Reserved
							Bit 29: Reserved
							Bit 30: Reserved
							Bit 30: Reserved

www.ti.com Black Box

Class	Subclass	Name	Туре	Min	Max	Default	Description
Black Box	PF Status	3rd FF Status 16–32	H2	0x0000	0xFFFF	0	Bit 16: SDM—Shutdown activated by ManufacturerAccess() 0 = Inactive 1 = Active Bit 17: SHIPM—Ship Mode activated with ManufacturerAccess() 0 = Inactive 1 = Active Bit 18: AUTH—Authentication ongoing 0 = Inactive 1 = Active Bit 19: AWD—AFE Watchdog failure 0 = Inactive 1 = Active Bit 20: FVS—Fast Voltage Sampling 0 = Inactive 1 = Active Bit 21: CALO—Raw ADC/CC offset output 0 = Inactive 1 = Active Bit 22: SDV—Shutdown activated by voltage 0 = Inactive 1 = Active Bit 23: SLEEPM—Sleep mode active by ManufacturerAccess() 0 = Inactive 1 = Active Bit 24: INIT—Initialization after full reset, cleared when SBS data calculated and available 0 = Inactive 1 = Active Bit 25: SMBLCAL—CC auto offset calibration ongoing after SBS line goes low 0 = Inactive 1 = Active Bit 26: SLEEPQMax—QMax update in Sleep mode 0 = Inactive 1 = Active Bit 27: SLEEPCC—Checking current in Sleep mode 0 = Inactive 1 = Active Bit 28: GPOD—GPOD pin status 0 = Inactive 1 = Active Bit 28: GPOD—GPOD pin status 0 = Inactive (high) 1 = Active (low) Bit 29: Reserved Bit 31: Reserved Time since 3rd event
DIAUK DUX	rr status	Next Event	υī	U	200	U	Time since sid event

Calibration www.ti.com

12.16 Calibration

12.16.1 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Description
Calibration	Voltage	Cell Scale 0	12	-32768	32767	20451	VC1-VSS Cell 0 gain
Calibration	Voltage	Cell Scale 1	12	-32768	32767	20468	VC2-VC1 Cell 1 gain
Calibration	Voltage	Cell Scale 2	12	-32768	32767	20520	VC3-VC2 Cell 2 gain
Calibration	Voltage	Cell Scale 3	12	-32768	32767	20517	VC4-VC3 Cell 3 gain
Calibration	Voltage	Pack Gain	12	-32768	32767	44100	PACK-VSS gain
Calibration	Voltage	Battery Gain	12	-32768	32767	44100	VC4-VSS gain

12.16.2 Current

Class	Subclass	Name	Type	Min	Max	Default	Description
Calibration	Current	CC Gain	F4	1.00E-001	4.00E+000	0.9419	Coulomb Counter Gain
Calibration	Current	Capacity Gain	F4	2.98E+004	1.19E+006	280932.625	Capacity Gain

12.16.3 Current Offset

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	Current Offset	CC Offset	12	-32768	32767	-7204	Coulomb Counter Offset
Calibration	Current Offset	Coulomb Counter Offset Samples	U2	0	65535	64	Coulomb Counter Offset Samples used for averaging
Calibration	Current Offset	Board Offset	12	-32768	32767	0	PCB board offset

12.16.4 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Calibration	Temperature	Internal Temp Offset	I1	-128	127	0	0.1°C	Internal temperature sensor reading offset
Calibration	Temperature	External 1 Temp Offset	I1	-128	127	0	0.1°C	TS1 temperature sensor reading offset
Calibration	Temperature	External 2 Temp Offset	I1	-128	127	0	0.1°C	TS2 temperature sensor reading offset
Calibration	Temperature	External 3 Temp Offset	I1	-128	127	0	0.1°C	TS3 temperature sensor reading offset
Calibration	Temperature	External 4 Temp Offset	I1	-128	127	0	0.1°C	TS4 temperature sensor reading offset

12.16.5 Internal Temp Model

www.ti.com Calibration

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	Internal Temp Model	Int Coeff 1	12	-32768	32768	0	Internal temperature calculation polynomial value 1
Calibration	Internal Temp Model	Int Coeff 2	12	-32768	32768	0	Internal temperature calculation polynomial value 2
Calibration	Internal Temp Model	Int Coeff 3	12	-32768	32768	-11136	Internal temperature calculation polynomial value 3
Calibration	Internal Temp Model	Int Coeff 4	12	-32768	32768	5754	Internal temperature calculation polynomial value 4
Calibration	Internal Temp Model	Int Minimum AD	12	-32768	32768	0	Minimum AD count used for calculation
Calibration	Internal Temp Model	Int Maximum Temp	12	-32768	32768	5754	Maximum Temperature boundary

12.16.6 Cell Temp Model

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	Cell Temp Model	Coefficient a1	12	-32768	32768	-14520	Cell Temperature calculation polynomial a1
Calibration	Cell Temp Model	Coefficient a2	12	-32768	32768	23696	Cell Temperature calculation polynomial a2
Calibration	Cell Temp Model	Coefficient a3	12	-32768	32768	-20298	Cell Temperature calculation polynomial a3
Calibration	Cell Temp Model	Coefficient a4	12	-32768	32768	28073	Cell Temperature calculation polynomial a4
Calibration	Cell Temp Model	Coefficient a5	12	-32768	32768	865	Cell Temperature calculation polynomial a5
Calibration	Cell Temp Model	Coefficient b1	12	-32768	32768	-694	Cell Temperature calculation polynomial b1
Calibration	Cell Temp Model	Coefficient b2	12	-32768	32768	1326	Cell Temperature calculation polynomial b2
Calibration	Cell Temp Model	Coefficient b3	12	-32768	32768	-3880	Cell Temperature calculation polynomial b3
Calibration	Cell Temp Model	Coefficient b4	12	-32768	32768	5127	Cell Temperature calculation polynomial b4
Calibration	Cell Temp Model	Rc0	12	-32768	32768	11703	Resistance at 25°C
Calibration	Cell Temp Model	Adc0	12	-32768	32768	11703	ADC reading at 25°C
Calibration	Cell Temp Model	Rpad	12	-32768	32768	0	Pad Resistance
Calibration	Cell Temp Model	Rint	12	-32768	32768	0	Pull up resistor resistance

12.16.7 FET Temp Model

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	FET Temp Model	Coefficient a1	12	-32768	32768	-14520	FET Temperature calculation polynomial a1
Calibration	FET Temp Model	Coefficient a2	12	-32768	32768	23696	FET Temperature calculation polynomial a2

Calibration www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	FET Temp Model	Coefficient a3	12	-32768	32768	-20298	FET Temperature calculation polynomial a3
Calibration	FET Temp Model	Coefficient a4	12	-32768	32768	28073	FET Temperature calculation polynomial a4
Calibration	FET Temp Model	Coefficient a5	12	-32768	32768	865	FET Temperature calculation polynomial a5
Calibration	FET Temp Model	Coefficient b1	12	-32768	32768	-694	FET Temperature calculation polynomial b1
Calibration	FET Temp Model	Coefficient b2	12	-32768	32768	1326	FET Temperature calculation polynomial b2
Calibration	FET Temp Model	Coefficient b3	12	-32768	32768	-3880	FET Temperature calculation polynomial b3
Calibration	FET Temp Model	Coefficient b4	12	-32768	32768	5127	FET Temperature calculation polynomial b4
Calibration	FET Temp Model	Rc0	12	-32768	32768	11703	Resistance at 25°C
Calibration	FET Temp Model	Adc0	12	-32768	32768	11703	ADC reading at 25°C
Calibration	FET Temp Model	Rpad	12	-32768	32768	0	Pad Resistance
Calibration	FET Temp Model	Rint	12	-32768	32768	0	Pull up resistor resistance

www.ti.com Calibration

12.16.8 Filter

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	Filter	Cell Voltage 1	U1	0	255	145	
Calibration	Filter	Cell Voltage 2	U1	0	255	145	Low pass filter settings for
Calibration	Filter	Cell Voltage 3	U1	0	255	145	averaging, sample setting
Calibration	Filter	Cell Voltage 4	U1	0	255	145	values and associated low-pass filter time constants
Calibration	Filter	Pack Voltage Out	U1	0	255	10	are in Table C-2. Chosen filter settings will have
Calibration	Filter	Direct Battery Voltage	U1	0	255	10	an effect on protection delays. Higher filter values will cause voltages and temperature to
Calibration	Filter	Summed Battery Voltage	U1	0	255	145	take longer to respond to stimulus to reach threshold, for
Calibration	Filter	Cell Temperature	U1	0	255	145	example. A filter value of 50 closely matches the behavior of previous gas gauges.
Calibration	Filter	FET Temperature	U1	0	255	145	

12.16.9 Current Deadband

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Calibration	Current Deadband	Deadband	U1	0	255	3	mA	Deadband to report 0 mA
Calibration	Current Deadband	Coulomb Counter Deadband	U1	0	255	34	μV	Coulomb counter deadband to report 0 charge

AFE Threshold and Delay Settings

A.1 Overload in Discharge Protection (OLD)

Table A-1. Overload in Discharge Protection Threshold (Settings: AFE State Control [RSNS] = 0)

	OLD Threshold ([RSNS] = 0)							
Setting	Threshold	Setting	Threshold					
0x00	0.050 V	0x08	0.130 V					
0x01	0.060 V	0x09	0.140 V					
0x02	0.070 V	0x0a	0.150 V					
0x03	0.080 V	0x0b	0.160 V					
0x04	0.090 V	0x0c	0.170 V					
0x05	0.100 V	0x0d	0.180 V					
0x06	0.110 V	0x0e	0.190 V					
0x07	0.120 V	0x0f	0.200 V					

Table A-2. Overload in Discharge Protection Threshold (Settings: AFE State Control [RSNS] = 1)

	OLD Threshold ([RSNS] = 1)							
Setting	Threshold	Setting	Threshold					
0x00	0.025 V	0x08	0.065 V					
0x01	0.030 V	0x09	0.070 V					
0x02	0.035 V	0x0a	0.075 V					
0x03	0.040 V	0x0b	0.080 V					
0x04	0.045 V	0x0c	0.085 V					
0x05	0.050 V	0x0d	0.090 V					
0x06	0.055 V	0x0e	0.095 V					
0x07	0.060 V	0x0f	0.100 V					

Table A-3. Overload in Discharge Protection Delay

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	1 ms	0x04	9 ms	0x08	17 ms	0x0c	25 ms
0x01	3 ms	0x05	11 ms	0x09	19 ms	0x0d	27 ms
0x02	5 ms	0x06	13 ms	0x0a	21 ms	0x0e	29 ms
0x03	7 ms	0x07	15 ms	0x0b	23 ms	0x0f	31 ms

A.2 Short Circuit in Charge (SCC)

Table A-4. Short Circuit in Charge Threshold (Settings: AFE State Control [RSNS] = 0)(1)

Setting	Threshold	Setting	Threshold
0x00	-0.100 V	0x04	-0.300 V
0x01	-0.150 V	0x05	N/A
0x02	-0.200 V	0x06	N/A
0x03	-0.250 V	0x07	N/A

⁽¹⁾ Data flash setting Protection: SCC Threshold[2:0] sets the voltage threshold.

Table A-5. Short Circuit in Charge Threshold (Settings: AFE State Control [RSNS] = 1)(1)

Setting	Threshold	Setting	Threshold
0x00	−0.050 V	0x04	−0.150 V
0x01	−0.075 V	0x05	−0.175 V
0x02	-0.100 V	0x06	−0.200 V
0x03	−0.125 V	0x07	−0.225 V

⁽¹⁾ Data flash setting Protection: SCC Threshold[2:0] sets the voltage threshold.

Table A-6. Short Circuit in Charge Delay⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0c	732 µs
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0d	793 µs
0x02	122 µs	0x06	366 µs	0x0a	610 µs	0x0e	854 µs
0x03	183 µs	0x07	427 µs	0x0b	671 µs	0x0f	915 µs

⁽¹⁾ Data flash setting Protection: SCC Threshold[7:4] sets the delay time.

A.3 Short Circuit in Discharge (SCD1 and SCD2)

Table A-7. Short Circuit in Discharge Threshold (Settings: AFE State Control [RSNS] = 0)(1)

Setting	Threshold	Setting	Threshold
0x00	0.100 V	0x04	0.300 V
0x01	0.150 V	0x05	0.350 V
0x02	0.200 V	0x06	0.400 V
0x03	0.250 V	0x07	0.450 V

Data flash setting Protection: SCD1 and SCD2 Threshold[2:0] sets the voltage threshold.

Table A-8. Short Circuit in Discharge Threshold (Settings:AFE State Control[RSNS] = 1)(1)

Setting	Threshold	Setting	Threshold
0x00	0.050 V	0x04	0.150 V
0x01	0.075 V	0x05	0.175 V
0x02	0.100 V	0x06	0.200 V

⁽¹⁾ Data flash setting Protection: SCD1 and SCD2 Threshold[2:0] sets the voltage threshold.

Table A-9. Short Circuit in Discharge 1 Delay (Settings: AFE State Control[SCDDx2] = 0)(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0c	732 µs

⁽¹⁾ Data flash setting Protection: SCD1 and SCD2 Threshold[7:4] sets the delay time.

Table A-9. Short Circuit in Discharge 1 Delay (Settings:AFE State Control[SCDDx2] = 0)⁽¹⁾ (continued)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0d	793 µs
0x02	122 µs	0x06	366 µs	0x0a	610 µs	0x0e	854 µs
0x03	183 µs	0x07	427 µs	0x0b	671 µs	0x0f	915 µs

Table A-10. Short Circuit in Discharge 1 Delay (Settings: AFE State Control[SCDDx2] = 1)(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	488 µs	0x08	976 µs	0x0c	1464 µs
0x01	122 µs	0x05	610 µs	0x09	1098 µs	0x0d	1586 µs
0x02	244 µs	0x06	732 µs	0x0a	1220 µs	0x0e	1708 µs
0x03	366 µs	0x07	854 µs	0x0b	1342 µs	0x0f	1830 µs

⁽¹⁾ Data flash setting Protection:SCD1 Threshold[7:4] sets the delay time.

Table A-11. Short Circuit in Discharge 2 Delay (Settings: AFE State Control[SCDDx2] = 0)(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	122 µs	0x08	244 µs	0x0c	366 µs
0x01	30 µs	0x05	152 µs	0x09	275 µs	0x0d	396 µs
0x02	61 µs	0x06	183 µs	0x0a	305 µs	0x0e	426 µs
0x03	91 µs	0x07	213 µs	0x0b	335 µs	0x0f	458 µs

Data flash setting Protection: SCD2 Threshold[7:4] sets the delay time.

Table A-12. Short Circuit in Discharge 2 Delay (Settings: AFE State Control[SCDDx2] = 1)(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0c	732 µs
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0d	793 µs
0x02	122 µs	0x06	366 µs	0x0a	610 µs	0x0e	854 µs
0x03	183µs	0x07	427 µs	0x0b	671 µs	0x0f	915 µs

⁽¹⁾ Data flash setting Protection: SCD2 Threshold[7:4] sets the delay time.

Reading and Writing to Data Flash

Use **ManufacturerAccess()** 0x01yy and ManufacturerInput() 0x2f to read and right to data flash, which is a 32-byte operation. First, determine the physical address of the target data flash parameter. This information is reflected by the subclass ID and offset, available in Table B-1 and Table B-2.

Below is an example of updating data flash setting Protections: CUV Recovery

Subclass ID of Protections: CUV Recovery = 235

Offset of Protections: CUV Recovery = 3.

Data Type = I2.

- 1. Identify the data flash row number and byte index:
 - (a) Identify the physical address of the target parameter.

The physical address of Protections: CUV Recovery = Subclass ID + Offset = 238.

(b) Find the row number of Protections: CUV Recovery.

Each data flash row is 32-byte long.

Row number of Protections: CUV Recovery = 238\32 = 7.

(c) Find out which byte(s) the target parameter is resided at with the row.

Byte Index = Physical location—(row number * row length).

Byte Index for Protections: CUV Recovery = 238—(7*32) = 14.

Since the data type of Protections: CUV Recovery is I2, this means the target parameter is resided at row 7, byte index 14 and 15.

- 2. Read data flash parameter:
 - (a) Send the data flash row number to bq30z50-R1/55 using MAC command 0x1yy.

From step A2, the row number of *CUV Recovery* is 7.

Issue SMBus write word. cmd = 0x00, word = 0x107.

Note: the row number issue through command 0x1yy must be in Hex.

(b) Use ManufacturerInput() 0x2f to read the data flash row where the target parameter is located.

Issue SMBus block read, cmd = 0x2f, length = 32.

Note: Store the read data into a memory array, e.g. yRowDataArray(0 to 31).

- (c) Data flash parameter Protections: CUV Recovery is located at yRowDataArrray(14) and yRowDataArrray(15).
- 3. Update data flash parameter.
 - (a) From step B3, update the desire value of the target data flash parameter.
 - (b) Follow step B1 to set up the row number.
 - (c) Use ManufacturerInput() 0x2f to write the updated yRowDataArray(0 to 31) back to the device data flash.

Issue SMBus block write, cmd = 0x2f, length = 32.

(d) A read verify (repeat step B1 to B3) is recommend to ensure correct data is written to the data flash.

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Protections	279	CUV							
			0	Threshold	12	0	32767	2800	mV
			2	Delay	U1	0	255	2	S
			3	Recovery	12	0	32767	3000	mV
Protections	284	CUVC							
			0	Threshold	12	0	32767	2900	mV
			2	Delay	U1	0	255	2	S
			3	Recovery	12	0	32767	3000	mV
Protections	289	COV							
			0	Threshold Low Temp	12	0	32767	4250	mV
			2	Threshold Standard Temp	I2	0	32767	4250	mV
			4	Threshold High Temp	l2	0	32767	4250	mV
			6	Threshold Rec Temp	12	0	32767	4250	mV
			8	Delay	U1	0	255	2	s
			9	Recovery Low Temp	12	0	32767	4150	mV
			11	Recovery Standard Temp	I2	0	32767	4150	mV
			13	Recovery High Temp	12	0	32767	4150	mV
			15	Recovery Rec Temp	12	0	32767	4150	mV
Protections	306	OCC1							
			0	Threshold	12	-32768	32767	6000	mA
			2	Delay	U1	0	255	6	s
Protections	309	OCC2							
			0	Threshold	12	-32768	32767	8000	mA
			2	Delay	U1	0	255	3	s
Protections	312	OCC							
			0	Recovery Threshold	12	-32768	32767	– 50	mA
			2	Recovery Delay	U1	0	255	5	S
Protections	315	OCD1							
			0	Threshold	12	-32768	32767	-6000	mA
			2	Delay	U1	0	255	6	s
Protections	318	OCD2							
			0	Threshold	12	-32768	32767	-8000	mA
			2	Delay	U1	0	255	3	S
Protections	321	OCD							
			0	Recovery Threshold	12	-32768	32767	50	mA
			2	Recovery Delay	U1	0	255	5	S
Protections	324	OLD							

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Threshold	H1	0	Of	09	-
			1	Delay	H1	0	Of	Of	-
			2	Latch Limit	U1	0	255	0	-
			3	Counter Dec Delay	U1	0	255	10	S
			4	Recovery	U1	0	255	5	S
			5	Reset	U1	0	255	15	s
Protections	330	SCC							
			0	Threshold	H1	0	ff	77	-
			1	Latch Limit	U1	0	255	0	mA
			2	Counter Dec Delay	U1	0	255	10	s
			3	Recovery	U1	0	255	5	s
			4	Reset	U1	0	255	15	S
Protections	335	SCD1							
			0	Threshold	H1	0	ff	77	-
Protections	336	SCD2	0	Threshold	H1	0	ff	e7	_
Protections	337	SCD						-	
			0	Latch Limit	U1	0	255	0	mA
			1	Counter Dec Delay	U1	0	255	10	S
			2	Recovery	U1	0	255	5	s
			3	Reset	U1	0	255	15	s
Protections	341	OTC						_	
			0	Threshold	12	-400	1500	550	1°C
			2	Delay	U1	0	255	2	S
			3	Recovery	12	-400	1500	500	1°C
Protections	346	OTD		,					
			0	Threshold	12	-400	1500	600	1°C
			2	Delay	U1	0	255	2	S
			3	Recovery	12	-400	1500	550	1°C
Protections	351	OTF		,					
			0	Threshold	12	-400	1500	800	1°C
			2	Delay	U1	0	255	2	S
			3	Recovery	12	-400	1500	650	1°C
Protections	356	HWD		,					
·			0	Delay	U1	0	255	10	s
Protections	357	PTO		,					
			0	Charge Threshold	12	-32768	32767	2000	mA
			2	Suspend Threshold	12	-32768	32767	1800	mA
			4	Delay	U2	0	65535	1800	s
			6	Reset	12	0	32767	2	mAh
Protections	365	СТО							
			0	Charge Threshold	12	-32768	32767	2500	mA

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			2	Suspend Threshold	12	-32768	32767	2000	mA
			4	Delay	U2	0	65535	54000	s
			6	Reset	12	0	32767	2	mAh
Protections	373	ОС							
			0	Threshold	12	-32768	32767	300	mAh
			2	Recovery	12	-32768	32767	2	mAh
			4	RSOC Recovery	U1	0	100	90	%
Protections	378	CHGV	0	Threshold	12	-32768	32767	500	mV
			2	Delay	U1	0	255	30	s
			3	Recovery	12	-32768	32767	-500	mV
Protections	383	CHGC							
			0	Threshold	12	-32768	32767	500	mA
			2	Delay	U1	0	255	2	s
			3	Recovery	12	-32768	32767	100	mA
Permanent Fail	388	CUV							
			0	Threshold	12	0	32767	2500	mV
			2	Delay	U1	0	255	2	S
Permanent Fail	391	COV							
			0	Threshold	12	0	32767	4400	mV
			2	Delay	U1	0	255	2	S
Permanent Fail	394	CUDEP							
			0	Threshold	12	0	32767	2500	mV
			2	Delay	U1	0	255	2	S
Permanent Fail	397	OTCE							
			0	Threshold	12	-400	1500	650	1°C
Permanent Fail	400	OTF	2	Delay	U1	0	255	2	S
			0	Threshold	12	-400	1500	1000	1°C
			2	Delay	U1	0	255	2	S
Permanent Fail	403	QIM							
			0	Delta Threshold	12	0	32767	500	mAh
			2	Delay	U1	0	255	2	updates
Permanent Fail	406	СВ							
			0	Max Threshold	l2	0	32767	120	h
			2	Delta Threshold	U1	0	255	20	h
			3	Delay	U1	0	255	2	cycles
Permanent Fail	410	VIMR							

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Check Voltage	12	0	5000	3600	mV
			2	Check Current	12	0	32767	10	mA
			4	Delta Threshold	12	0	5000	200	mV
			6	Delta Delay	U1	0	255	2	s
			7	Duration	U2	0	65535	100	s
Permanent Fail	419	VIMA							
			0	Check Voltage	12	0	5000	3600	mV
			2	Check Current	12	0	32767	10	mA
			4	Delta Threshold	12	0	5000	300	mV
			6	Delay	U1	0	255	2	S
Permanent Fail	426	IMP							
			0	Delta Threshold	12	0	32767	300	%
			2	Max Threshold	12	0	32767	400	%
			4	Ra Update Counts	U1	0	255	2	counts
Permanent Fail	431	CD							
			0	Threshold	12	0	32767	4200	mAh
Permanent Fail	434	CFETF	2	Delay	U1	0	255	2	cycles
T uii			0	OFF Threshold	12	0	500	5	mA
			2	OFF Delay	U1	0	255	2	s
Permanent Fail	437	DFET		,					
			0	OFF Threshold	12	-500	0	- 5	mA
Permanent Fail	440	TH	2	OFF Delay	U1	0	255	2	S
			4	ADC Delay	U1	0	255	10	s
Permanent Fail	445	FUSE	-	2 2 3 3 3	<u></u>				
			0	Threshold	12	0	255	5	mA
			2	Delay	U1	0	255	2	S
Permanent Fail	448	AFER							
			0	Threshold	U1	0	255	100	-
			1	Delay Period	U1	0	255	2	s
			2	Compare Period	U1	0	255	5	S

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Permanent Fail	451	AFEC							
			0	Threshold	U1	0	255	100	-
			1	Delay Period	U1	0	255	5	s
Permanent Fail	453	2LVL							
			0	Delay	U1	0	255	2	S
Permanent Fail	454	OCECO							
			0	Threshold	12	0	32767	5000	mV
			2	Delay	U1	0	255	2	s
Advanced Charge Algorithm	111	Temperatu re Ranges							
			0	T1 Temp	I1	-128	127	0	°C
			1	T2 Temp	I1	-128	127	12	°C
			2	T5 Temp	I1	-128	127	20	°C
			3	T6 Temp	l1	-128	127	25	°C
			4	T3 Temp	l1	-128	127	30	°C
			5	T4 Temp	l1	-128	127	55	°C
			6	Hysteresis Temp	I1	-128	127	0	°C
Advanced Charge Algorithm	118	Low Temp Charging							
			0	Voltage	12	0	32767	3000	mV
			2	Current Low	12	0	32767	132	mA
			4	Current Med	12	0	32767	352	mA
			6	Current High	12	0	32767	264	mA
Advanced Charge Algorithm	126	Standard Temp Charging							
			0	Voltage	12	0	32767	4200	mV
			2	Current Low	12	0	32767	1980	mA
			4	Current Med	12	0	32767	4004	mA
Advanced Charge Algorithm	134	High Temp Charging	6	Current High	12	0	32767	2992	mA
			0	Voltage	12	0	32767	4000	mV
			2	Current Low	12	0	32767	1012	mA
			4	Current Med	12	0	32767	1980	mA
			6	Current High	12	0	32767	1496	mA
Advanced Charge Algorithm	142	Rec Temp Charging							
			0	Voltage	12	0	32767	4100	mV
			2	Current Low	12	0	32767	2508	mA
			4	Current Med	12	0	32767	4488	mA
		\rfloor	6	Current High	12	0	32767	3520	mA

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Advanced Charge Algorithm	150	Pre- Charging							
			0	Current	12	0	32767	88	mA
Advanced Charge Algorithm	152	Maintenan ce Charging							
Aigontiiii		Charging	0	Current	12	0	32767	44	mA
Advanced Charge Algorithm	154	Voltage Range	0	Current	12	0	32707		IIIA
			0	Charging Voltage Low	12	0	32767	2500	mV
			2	Charging Voltage Med	12	0	32767	3600	mV
			4	Charging Voltage High	12	0	32767	4000	mV
			6	Charging Voltage Hysteresis	U1	0	255	0	mV
Advanced Charge Algorithm	161	Terminatio n Config							
			0	Charge Term Taper Current	12	0	32767	250	mA
			4	Charge Term Voltage	12	0	32767	75	mV
Advanced Charge Algorithm	170	Cell Balancing Config							
			0	Bal Time/mAh Cell 0	U2	0	65535	367	s/mAh
			2	Bal Time/mAh Cell 1–3	U2	0	65535	514	s/mAh
			4	Min Start Balance Delta	U1	0	255	3	mV
			5	Relax Balance Interval	U4	0	429496729 5	18000	S
			9	Min Rsoc for Balancing	U1	0	100	80	%
Advanced Charge Algorithm	180	Charging Rate of Change							
			0	Current Rate	U1	1	255	1	steps
Advanced Charge Algorithm	182	Charge Loss Compensat	1	Voltage Rate	U1	1	255	1	steps
		ion	0	CCC Current Threshold	l2	0	32767	3520	mA
			2	CCC Voltage Threshold	12	0	32767	4200	mV

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
System Data	640	Manufactur er Data							
			0	Manufacturerl nfo	S33	х	Х	abcdefghijklm nopqrstuvwzx y012345	-
System Data	673	Integrity							
			4	Data Flash Checksum	H2	0	ffff	0	-
SBS Configuration	679	Data							
			0	Remaining AH Cap. Alarm	12	0	32767	300	mAh
			2	Remaining WH Cap. Alarm	12	0	32767	432	cWh
			4	Remaining Time Alarm	U2	0	65535	10	min
			6	Initial Battery Mode	H2	0	ffff	81	-
			8	Design Voltage	12	0	32767	14400	mV
			10	Specification Information	H2	0	ffff	31	-
			12	Manufacture Date	U2	0	65535	0	date
			14	Serial Number	H2	0	ffff	1	-
			16	Cycle Count	U2	0	65535	0	-
			18	Cycle Count Percentage	U1	0	100	90	%
			19	Max Error Limit	U1	0	100	100	%
			20	Design Capacity mAh	12	0	32767	4400	mAh
			22	Design Capacity cWh	12	0	32767	6336	cWh
			24	Manufacturer Name	S21	х	х	Texas Instruments	-
			45	Device Name	S21	х	Х	bq30z50-R1	-
			66	Device Chemistry	S 5	х	х	LION	-
SBS Configuration	750	FD							
			0	Set Voltage Threshold	12	0	5000	3000	mV
			2	Clear Voltage Threshold	12	0	5000	3100	mV
			4	Set % RSOC Threshold	U1	0	100	0	%
			5	Clear % RSOC Threshold	U1	0	100	5	%
SBS Configuration	756	FC							

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Set Voltage Threshold	12	0	5000	4200	mV
			2	Clear Voltage Threshold	12	0	5000	4100	mV
			4	Set % RSOC Threshold	U1	0	100	100	%
			5	Clear % RSOC Threshold	U1	0	100	95	%
SBS Configuration	762	TDA							
			0	Set Voltage Threshold	I2	0	5000	3200	mV
			2	Clear Voltage Threshold	12	0	5000	3300	mV
			4	Set % RSOC Threshold	U1	0	100	10	%
			5	Clear % RSOC Threshold	U1	0	100	15	%
SBS Configuration	768	TCA							
			0	Set Voltage Threshold	I2	0	5000	4200	mV
			2	Clear Voltage Threshold	I2	0	5000	4100	mV
			4	Set % RSOC Threshold	U1	0	100	100	%
			5	Clear % RSOC Threshold	U1	0	100	95	%
SBS Configuration	774	Max Error							
			3	Time Cycle Equivalent	U1	0	255	12	h
			4	Cycle Delta	U1	0	255	5	%
Lifetimes	512	Voltage	0	Max Cell Voltage 0	U1	0	255	0	mV
			1	Max Cell Voltage 1	U1	0	255	0	mV
			2	Max Cell Voltage 2	U1	0	255	0	mV
			3	Max Cell Voltage 3	U1	0	255	0	mV
			4	Min Cell Voltage 0	U1	0	255	255	mV
			5	Min Cell Voltage 1	U1	0	255	255	mV
			6	Min Cell Voltage 2	U1	0	255	255	mV
			7	Min Cell Voltage 3	U1	0	255	255	mV
			8	Max Delta Cell Voltage	U1	0	255	0	mV

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Lifetimes	521	Current							
			0	Max Charge Current	U1	0	255	0	mA
			1	Max Discharge Current	U1	0	255	0	mA
			2	Max Avg Dsg Current	U1	0	255	0	mA
			3	Max Avg Dsg Power	U1	0	255	0	W
Lifetimes	525	Safety Events							
			0	No Of Cov Events	U1	0	255	0	events
			1	Last Cov Event	U1	0	255	0	cycles
			2	No Of Cuv Events	U1	0	255	0	events
			3	Last Cuv Event	U1	0	255	0	cycles
			4	No Of Ocd1 Events	U1	0	255	0	events
			5	Last Ocd1 Event	U1	0	255	0	cycles
			6	No Of Ocd2 Events	U1	0	255	0	events
			7	Last Ocd2 Event	U1	0	255	0	cycles
			8	No Of Occ1 Events	U1	0	255	0	events
			9	Last Occ1 Event	U1	0	255	0	cycles
			10	No Of Occ2 Events	U1	0	255	0	events
			11	Last Occ2 Event	U1	0	255	0	cycles
			12	No Of Old Events	U1	0	255	0	events
			13	Last Old Event	U1	0	255	0	cycles
			14	No Of Scd Events	U1	0	255	0	event
			15	Last Scd Event	U1	0	255	0	cycles
			16	No Of Scc Events	U1	0	255	0	event
			17	Last Scc Event	U1	0	255	0	cycles
			18	No Of Otc Events	U1	0	255	0	events
			19	Last Otc Event	U1	0	255	0	cycles
			20	No Of Otd Events	U1	0	255	0	events

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			21	Last Otd Event	U1	0	255	0	cycles
			22	No Of Otf Events	U1	0	255	0	events
			23	Last Otf Event	U1	0	255	0	cycles
Lifetimes	549	Charging Events							
			0	No Valid Charge Term	U1	0	255	0	events
			1	Last Valid Charge Term	U1	0	255	0	cycles
Lifetimes	551	Gauging Events							
			0	No Of Qmax Updates	U1	0	255	0	events
			1	Last Qmax Update	U1	0	255	0	cycles
			2	No Of Ra Updates	U1	0	255	0	event
			3	Last Ra Update	U1	0	255	0	cycles
			4	No Of Ra Disable	U1	0	255	0	event
			5	Last Ra Disable	U1	0	255	0	cycle
Lifetimes	557	Power Events							
			0	No Of Shutdowns	U1	0	255	0	event
Lifetimes	561	Cell Balancing							
			0	Cb Time Cell 0	U1	0	255	0	h
			1	Cb Time Cell	U1	0	255	0	h
			2	Cb Time Cell 2	U1	0	255	0	h
			3	Cb Time Cell	U1	0	255	0	h
Lifetimes	565	Temperatu re							
			0	Max Temp Cell	l1	-128	127	-128	°C
			1	Min Temp Cell	I1	-128	127	127	°C
			2	Max Delta Cell Temp	I1	-128	127	0	°C
			3	Max Temp Int Sensor	I1	-128	127	-128	°C
			4	Min Temp Int Sensor	I1	-128	127	127	°C
			5	Max Temp Fet	I1	-128	127	-128	°C

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Total Fw Runtime	U2	0	65535	0	h
			2	Time Spent In UT	U2	0	65535	0	h
			4	Time Spent In LT	U2	0	65535	0	h
			6	Time Spent In STL	U2	0	65535	0	h
			8	Time Spent In RT	U2	0	65535	0	h
			10	Time Spent In STH	U2	0	65535	0	h
			12	Time Spent In HT	U2	0	65535	0	h
			14	Time Spent In OT	U2	0	65535	0	h
Settings	187	Fuse							
			0	PF Fuse 0–15	H2	0	ffff	0	-
			2	PF Fuse 16–31	H2	0	ffff	0	-
			4	Min Blow Fuse Voltage	12	0	65535	8000	mV
Settings	193	Manufactur ing							
			0	Manufacturin g Status	H2	0	ffff	8000	-
Settings	195	Protection							
			0	Enabled Protections 0–15	H2	0	ffff	ffff	-
			2	Enabled Protections 16–31	H2	0	ffff	ffff	-
Settings	199	Permanent Failure							
			0	Enabled PF 0–15	H2	0	ffff	ffff	-
			2	Enabled PF 16–31	H2	0	ffff	ffff	-
Settings	203	Configurati on							
			0	Protection Configuration	H1	0	ff	01	-
			1	Temperature Configuration	H2	0	ffff	0087	-
			3	LED Configuration	H2	0	ffff	00d0	-
			5	Charging Configuration	H1	0	ff	0	-
			6	System Configuration	H2	0	1ff	32	-
			8	Gauging Configuration	H2	0	fff	1fda	-

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			10	Sbs Configuration	H1	0	ff	20	-
			11	Sbs Data Config. 0–15	H2	0	Offf	0caf	-
			13	Sbs Data Config. 16–23	H1	0	ff	ff	-
Settings	217	AFE							
			1	AFE State Control	H1	0	ff	0	-
Power	232	Power							
			0	Valid Update Voltage	I2	0	32767	7500	mV
Power	234	Shutdown							
			0	Shutdown Voltage	I2	0	32767	1750	mV
			2	Shutdown Time	U1	0	255	10	S
			3	Charger Present Threshold	12	0	32767	3000	mV
Power	239	Sleep							
			0	Sleep Current	12	0	32767	10	mA
			7	Voltage Time	U1	0	255	5	s
			8	Current Time	U1	0	255	20	s
			9	Wake	H1	0	ff	0	-
Power	249	Ship							
			0	Delay	U1	0	255	5	S
			1	Current	12	-250	250	10	mA
Gas Gauging	252	Current Thresholds							
			0	Dsg Current Threshold	12	-32768	32767	100	mA
			2	Chg Current Threshold	I2	-32768	32767	50	mA
			4	Quit Current	12	0	32767	10	mA
Gas Gauging	888	State							
			0	Qmax Cell 0	12	0	32767	4400	mAh
			2	Qmax Cell 1	I2	0	32767	4400	mAh
			4	Qmax Cell 2	12	0	32767	4400	mAh
			6	Qmax Cell 3	12	0	32767	4400	mAh
			8	Qmax Pack	12	0	32767	4400	mAh
			12	Update Status	H1	0	ff	0	-
			13	Cell 0 Chg Voltage at EoC	12	0	32767	4200	mV
			15	Cell 1 Chg Voltage at EoC	12	0	32767	4200	mV
			17	Cell 2 Chg Voltage at EoC	12	0	32767	4200	mV

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass	Subclass	Offset	Name	Data	Min.	Max.	Default	Units
	ID				Туре	Value	Value	Value	
			19	Cell 3 Chg Voltage at EoC	12	0	32767	4200	mV
			21	Current at EoC	12	0	32767	250	mA
			23	Avg I Last Run	12	-32768	32767	-2000	mA
			25	Avg P Last Run	12	-32768	32767	-3022	cW
			27	Delta Voltage	12	-32768	32767	0	mV
			33	Max Avg I Last Run	12	-32768	32767	-2000	mA
			35	Max Avg P Last Run	12	-32768	32767	-3022	cW
Gas Gauging	925	IT Cfg							
			0	Load Select	U1	0	255	7	
			1	Load Mode	U1	0	255	0	
			16	Ra Filter	U2	0	999	500	%
			19	Ra Max Delta	U1	0	255	15	%
			21	Design Resistance	12	1	32767	42	mΩ
			23	Reference Grid	U1	0	14	4	_
			24	Resistance Parameter Filter	U2	1	65534	65142	
			62	Term Voltage	12	0	32767	9000	mV
			64	Term Voltage Delta	12	0	32767	300	mV
			81	User Rate-mA	12	-9000	0	0	mA
			83	User Rate-cW	12	-32768	0	0	cW
			85	Reserve Cap-mAh	12	0	9000	0	mAh
			87	Reserve Cap-cWh	12	0	32000	0	cWh
			93	Remcap Smoothing Filter	U1	0	255	250	_
			94	Fast Scale Start SOC	U1	0	100	10	%
LED Support	260	LED Config							
			0	LED Flash Period	U2	0	65535	2048	488 µ
			2	LED Blink Period	U2	0	65535	4096	488 µ
			4	LED Delay	U2	0	65535	400	488 µ:
			6	LED Hold Time	U1	0	15	16	s
			7	CHG Flash Alarm	I1	0	100	10	%
			8	CHG Thresh 1	I1	0	100	0	%

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			9	CHG Thresh 2	I1	0	100	20	%
			10	CHG Thresh	I1	0	100	40	%
			11	CHG Thresh	I1	0	100	60	%
			12	CHG Thresh 5	l1	0	100	80	%
			13	DSG Flash Alarm	I1	0	100	10	%
			14	DSG Thresh 1	I1	0	100	0	%
			15	DSG Thresh 2	I1	0	100	20	%
			16	DSG Thresh	I1	0	100	40	%
			17	DSG Thresh 4	I1	0	100	60	%
			18	DSG Thresh 5	I1	0	100	80	%
Ra Table	1280	R_a0							
			0	Cell0 R_a flag	H2	0	ffff	ff55	-
			2	Cell0 R_a 0	12	0	32767	182	2^–10 Ω
			4	Cell0 R_a 1	12	0	32767	177	2^–10 Ω
			6	Cell0 R_a 2	12	0	32767	175	2^–10 Ω
			8	Cell0 R_a 3	12	0	32767	167	2^–10 Ω
			10	Cell0 R_a 4	12	0	327672	166	2^–10 Ω
			12	Cell0 R_a 5	12	0	32767	182	2^-10 C
			14	Cell0 R_a 6	12	0	32767	194	2^-10 C
			16	Cell0 R_a 7	12	0	32767	203	2^-10 C
			18	Cell0 R_a 8	12	0	32767	213	2^-10 0
			20	Cell0 R_a 9	12	0	32767	223	2^-10 C
			22	Cell0 R_a 10	12	0	32767	233	2^-10 C
			24	Cell0 R_a 11	12	0	32767	241	2^-10 C
			26	Cell0 R_a 12	12	0	32767	250	2^-10 C
			28	Cell0 R_a 13	12	0	32767	254	2^-10 C
			30	Cell0 R_a 14	12	0	32767	1500	2^-10 C
Ra Table	1344	R_a1							
			0	Cell1 R_a flag	H2	0	ffff	ff55	-
			2	Cell1 R_a 0	12	0	32767	163	2^-10 0
			4	Cell1 R_a 1	12	0	32767	151	2^-10 C
			6	Cell1 R_a 2	12	0	32767	152	2^-10 Ω
			8	Cell1 R_a 3	12	0	32767	143	2^-10 0
			10	Cell1 R_a 4	12	0	32767	145	2^-10 0
			12	Cell1 R_a 5	12	0	32767	162	2^-10 0
			14	Cell1 R_a 6	12	0	32767	178	2^-10 0
			16	Cell1 R_a 7	12	0	32767	188	2^-10 Ω
			18	Cell1 R_a 8	12	0	32767	200	2^-10 Ω

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass	Subclass	Offset	Name	Data	Min.	Max.	Default	Units
	ID				Туре	Value	Value	Value	
			20	Cell1 R_a 9	12	0	32767	206	2^–10 Ω
			22	Cell1 R_a 10	12	0	32767	216	2^–10 Ω
			24	Cell1 R_a 11	12	0	32767	230	2^-10 C
			26	Cell1 R_a 12	12	0	32767	240	2^-10 C
			28	Cell1 R_a 13	12	0	32767	254	2^-10 C
			30	Cell1 R_a 14	12	0	32767	1500	2^–10 Ω
Ra Table	1408	R_a2							
			0	Cell2 R_a flag	H2	0	ffff	ff55	-
			2	Cell2 R_a 0	12	0	32767	157	2^-10 0
			4	Cell2 R_a 1	12	0	32767	147	2^-10 0
			6	Cell2 R_a 2	12	0	32767	146	2^-10 0
			8	Cell2 R_a 3	12	0	32767	138	2^-10 0
			10	Cell2 R_a 4	12	0	32767	139	2^-10 0
			12	Cell2 R_a 5	12	0	32767	156	2^-10 0
			14	Cell2 R_a 6	12	0	32767	172	2^-10 0
			16	Cell2 R_a 7	12	0	32767	184	2^-10 C
			18	Cell2 R_a 8	12	0	32767	195	2^–10 Ω
			20	Cell2 R_a 9	12	0	32767	204	2^-10 C
			22	Cell2 R_a 10	12	0	32767	214	2^-10 0
			24	Cell2 R_a 11	12	0	32767	226	2^-10 0
			26	Cell2 R_a 12	12	0	32767	240	2^-10 0
			28	Cell2 R_a 13	12	0	32767	254	2^-10 0
			30	Cell2 R_a 14	12	0	32767	1500	2^-10 0
Ra Table	1472	R_a3							
			0	Cell3 R_a flag	H2	0	ffff	ff55	-
			2	Cell3 R_a 0	12	0	32767	68	2^-10 0
			4	Cell3 R_a 1	12	0	32767	77	2^-10 0
			6	Cell3 R_a 2	12	0	32767	88	2^-10 0
			8	Cell3 R_a 3	12	0	32767	106	2^-10 0
			10	Cell3 R_a 4	12	0	32767	103	2^-10 0
			12	Cell3 R_a 5	12	0	32767	71	2^-10 0
			14	Cell3 R_a 6	12	0	32767	84	2^-10 0
			16	Cell3 R_a 7	12	0	32767	117	2^-10 0
			18	Cell3 R_a 8	12	0	32767	112	2^-10 0
			20	Cell3 R_a 9	12	0	32767	132	2^-10 0
			22	Cell3 R_a 10	12	0	32767	121	2^-10 0
			24	Cell3 R_a 11	12	0	32767	90	2^-10 0
			26	Cell3 R_a 12	12	0	32767	89	2^-10 0
			28	Cell3 R_a 13	12	0	32767	254	2^-10 0
			30	Cell3 R_a 14	12	0	32767	1500	2^-10 0
Ra Table	1536	R_a0x		5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1				. 300	3.
	.550	11_40/	0	xCell0 R_a flag	H2	0	ffff	ffff	-
	1		2	xCell0 R_a 0	12	0	32767	68	2^-10 0
			4	xCell0 R_a 1	12	0	32767	77	2^-10 0
			6	xCell0 R_a 2	12	0	32767	88	2^-10 9

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			8	xCell0 R_a 3	12	0	32767	106	2^-10 Ω
			10	xCell0 R_a 4	12	0	32767	103	2^-10 Ω
			12	xCell0 R_a 5	12	0	32767	71	2^-10 Ω
			14	xCell0 R_a 6	12	0	32767	84	2^-10 Ω
			16	xCell0 R_a 7	12	0	32767	117	2^-10 Ω
			18	xCell0 R_a 8	12	0	32767	112	2^-10 Ω
			20	xCell0 R_a 9	12	0	32767	132	2^-10 Ω
			22	xCell0 R_a 10	12	0	32767	121	2^–10 Ω
			24	xCell0 R_a 11	12	0	32767	90	2^–10 Ω
			26	xCell0 R_a 12	12	0	32767	89	2^–10 Ω
			28	xCell0 R_a 13	12	0	32767	254	2^–10 Ω
			30	xCell0 R_a 14	12	0	32767	1500	2^–10 Ω
Ra Table	1600	R_a1x							
			0	xCell1 R_a flag	H2	0	ffff	ffff	-
			2	xCell1 R_a 0	12	0	32767	68	2^–10 Ω
			4	xCell1 R_a 1	12	0	32767	77	2^–10 Ω
			6	xCell1 R_a 2	12	0	32767	88	2^–10 Ω
			8	xCell1 R_a 3	12	0	32767	106	2^–10 Ω
			10	xCell1 R_a 4	12	0	32767	103	2^–10 Ω
			12	xCell1 R_a 5	12	0	32767	71	2^–10 Ω
			14	xCell1 R_a 6	12	0	32767	84	2^–10 Ω
			16	xCell1 R_a 7	12	0	32767	117	2^–10 Ω
			18	xCell1 R_a 8	12	0	32767	112	2^–10 Ω
			20	xCell1 R_a 9	12	0	32767	132	2^–10 Ω
			22	xCell1 R_a 10	12	0	32767	121	2^–10 Ω
			24	xCell1 R_a 11	12	0	32767	90	2^–10 Ω
			26	xCell1 R_a 12	12	0	32767	89	2^–10 Ω
			28	xCell1 R_a 13	12	0	32767	254	2^–10 Ω
			30	xCell1 R_a 14	12	0	32767	1500	2^–10 Ω
Ra Table	1664	R_a2x							
			0	xCell2 R_a flag	H2	0	ffff	ffff	-
			2	xCell2 R_a 0	12	0	32767	68	2^–10 Ω
			4	xCell2 R_a 1	12	0	32767	77	2^–10 Ω
			6	xCell2 R_a 2	12	0	32767	88	2^–10 Ω
			8	xCell2 R_a 3	12	0	32767	106	2^-10 C
			10	xCell2 R_a 4	12	0	32767	103	2^-10 C
			12	xCell2 R_a 5	12	0	32767	71	2^–10 Ω
			14	xCell2 R_a 6	12	0	32767	84	2^-10 Ω

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			16	xCell2 R_a 7	12	0	32767	117	2^-10 Ω
			18	xCell2 R_a 8	12	0	32767	112	2^-10 Ω
			20	xCell2 R_a 9	12	0	32767	132	2^-10 Ω
			22	xCell2 R_a 10	12	0	32767	121	2^-10 Ω
			24	xCell2 R_a 11	12	0	32767	90	2^-10 Ω
			26	xCell2 R_a 12	12	0	32767	89	2^-10 Ω
			28	xCell2 R_a 13	12	0	32767	254	2^-10 Ω
			30	xCell2 R_a 14	12	0	32767	1500	2^-10 Ω
Ra Table	1728	R_a3x							
			0	xCell3 R_a flag	H2	0	ffff	ffff	-
			2	xCell3 R_a 0	12	0	32767	68	2^-10 Ω
			4	xCell3 R_a 1	12	0	32767	77	2^-10 Ω
			6	xCell3 R_a 2	12	0	32767	88	2^-10 Ω
			8	xCell3 R_a 3	12	0	32767	106	2^-10 Ω
			10	xCell3 R_a 4	12	0	32767	103	2^-10 Ω
			12	xCell3 R_a 5	12	0	32767	71	2^-10 Ω
			14	xCell3 R_a 6	12	0	32767	84	2^-10 Ω
			16	xCell3 R_a 7	12	0	32767	117	2^-10 Ω
			18	xCell3 R_a 8	12	0	32767	112	2^-10 Ω
			20	xCell3 R_a 9	12	0	32767	132	2^-10 Ω
			22	xCell3 R_a 10	12	0	32767	121	2^-10 Ω
			24	xCell3 R_a 11	12	0	32767	90	2^-10 Ω
			26	xCell3 R_a 12	12	0	32767	89	2^-10 Ω
			28	xCell3 R_a 13	12	0	32767	254	2^-10 Ω
			30	xCell3 R_a 14	12	0	32767	1500	2^–10 Ω
PF Status	779	Device Status Data							
			0	Safety Alert 0–15	H2	0	ffff	0	-
			2	Safety Status 0–15	H2	0	ffff	0	-
			6	PF Alert 0-15	H2	0	ffff	0	-
			8	PF Status 0–15	H2	0	ffff	0	-
			12	Safety Alert 16–31	H2	0	ffff	0	-
			14	Safety Status 16–31	H2	0	ffff	0	-
			18	PF Alert 16–31	H2	0	ffff	0	-

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			20	PF Status 16–31	H2	0	ffff	0	-
			24	Operation Status 0–15	H2	0	ffff	0	-
			26	Operation Status 16–31	H2	0	ffff	0	-
			28	Charging Status 0–15	H2	0	ffff	0	-
			30	Charging Status 16–23	H1	0	ffff	0	-
			31	Gauging Status	H2	0	ffff	0	-
PF Status	812	Device Voltage Data							
			0	Cell Voltage 0	12	-32768	32768	0	mV
			2	Cell Voltage 1	l2	-32768	32768	0	mV
			4	Cell Voltage 2	12	-32768	32768	0	mV
			6	Cell Voltage 3	12	-32768	32768	0	mV
			8	Battery Direct Voltage	12	-32768	32768	0	mV
			10	Pack Voltage	12	-32768	32768	0	mV
PF Status	824	Device Current Data							
			0	Current	12	-32768	32767	0	mA
PF Status	826	Device Temperatu re Data							
			0	Internal Temperature	I2	-32768	32768	0	°C
			2	External 1 Temperature	12	-32768	32768	0	°C
			4	External 2 Temperature	12	-32768	32768	0	°C
			6	External 3 Temperature	12	-32768	32768	0	°C
			8	External 4 Temperature	l2	-32768	32768	0	°C
PF Status	836	Device Gauging Data							
			0	Cell0 Dod0	12	-32768	32767	0	-
			2	Cell1 Dod0	l2	-32768	32767	0	-
			4	Cell2 Dod0	l2	-32768	32767	0	-
			6	Cell3 Dod0	12	-32768	32767	0	-
			8	Passed Charge	l2	-32768	32768	0	mAh
PF Status	846	AFE Regs							
			0	AFE Status	H1	0	ff	0	-
			1	AFE State Control	H1	0	ff	0	-
			2	AFE Control	H1	0	ff	0	-

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			3	AFE Output Status	H1	0	ff	0	-
			4	AFE Function Control	H1	0	ff	0	-
			5	AFE Cell Select	H1	0	ff	0	-
			6	AFE OCDV	H1	0	ff	0	-
			7	AFE OCDT	H1	0	ff	0	-
			8	AFE SCC	H1	0	ff	0	-
			9	AFE SCD1	H1	0	ff	0	-
			10	AFE SCD2	H1	0	ff	0	-
			11	AFE REF TRIM	H1	0	ff	0	-
Black Box	858	Safety Status							
			0	1st Status Status 0–15	H2	0	ffff	0	-
			2	1st Safety Status 16–31	H2	0	ffff	0	-
			4	1st Time to Next Event	U1	0	255	0	S
			5	2nd Safety Status 0–15	H2	0	ffff	0	-
			7	2nd Safety Status 16–31	H2	0	ffff	0	-
			9	2nd Time to Next Event	U1	0	255	0	s
			10	3rd Safety Status 0–15	H2	0	ffff	0	-
			12	3rd Safety Status 16–31	H2	0	ffff	0	-
			14	3rd Time to Next Event	U1	0	255	0	s
Black Box	873	PF Status							
			0	1st PF Status 0–15	H2	0	ffff	0	-
			2	1st PF Status 16–31	H2	0	ffff	0	-
			4	1st Time to Next Event	U1	0	255	0	S
			5	2nd PF Status 0–15	H2	0	ffff	0	-
			7	2nd PF Status 16–31	H2	0	ffff	0	-
			9	2nd Time to Next Event	U1	0	255	0	s
			10	3rd PF Status 0–15	H2	0	ffff	0	-
			12	3rd PF Status 16–31	H2	0	ffff	0	-
			14	3rd Time to Next Event	U1	0	255	0	S
Calibration	0	Voltage							
			0	Cell Scale 0	12	-32767	32767	20451	-

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			2	Cell Scale 1	12	-32767	32767	20468	-
			4	Cell Scale 2	12	-32767	32767	20520	-
			6	Cell Scale 3	12	-32767	32767	20517	-
			8	Pack Gain	U2	0	65535	44100	-
			10	BAT Gain	U2	0	65535	44100	-
	12	Current							
			0	CC Gain	F4	1.00E-01	4.00E+00	0.9419	-
			4	Capacity Gain	F4	2.9826E+ 04	1.193046E +06	280932.625	-
Calibration	20	Current Offset							
			0	CC Offset	12	-32767	32767	-7204	-
			2	Coulomb Counter Offset Samples	U2	0	65535	64	-
			4	Board Offset	12	-32768	32767	0	-
Calibration	26	Temperatu re							
			0	Internal Temp Offset	I1	-128	127	0	°C
			1	External1 Temp Offset	I1	-128	127	0	°C
			2	External2 Temp Offset	I1	-128	127	0	°C
			3	External3 Temp Offset	I1	-128	127	0	°C
			4	External4 Temp Offset	I1	-128	127	0	°C
Calibration	31	Internal Temp Model							
			0	Int Coeff 1	12	-32768	32767	0	-
			2	Int Coeff 2	12	-32768	32767	0	-
			4	Int Coeff 3	12	-32768	32767	-11136	-
			6	Int Coeff 4	12	-32768	32767	5754	-
			8	Int Minimum AD	I2	-32768	32767	0	-
			10	Int Maximum Temp	I2	-32768	32767	5754	0.1degK
Calibration	43	Cell Temperatu re Model							
			0	Coeff a1	12	-32768	32767	-14520	-
			2	Coeff a2	l2	-32768	32767	23696	-
			4	Coeff a3	l2	-32768	32767	-20298	-
			6	Coeff a4	l2	-32768	32767	28073	-
			8	Coeff a5	12	-32768	32767	865	-
			10	Coeff b1	12	-32768	32767	-694	
			12	Coeff b2	I2	-32768	32767	1326	-
			14	Coeff b3	I2	-32768	32767	-3880	-
			16	Coeff b4	12	-32768	32767	5127	-

Table B-1. bq30z50-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			18	Rc0	12	-32768	32767	11703	-
			20	Adc0	12	-32768	32767	11703	-
			22	Rpad	12	-32768	32767	0	-
			24	Rint	12	-32768	32767	0	-
Calibration	69	Fet Temperatu re Model							
			0	Coeff a1	12	-32768	32767	-14520	-
			2	Coeff a2	12	-32768	32767	23696	-
			4	Coeff a3	12	-32768	32767	-20298	-
			6	Coeff a4	12	-32768	32767	28073	-
			8	Coeff a5	12	-32768	32767	865	-
			10	Coeff b1	12	-32768	32767	-694	-
			12	Coeff b2	12	-32768	32767	1326	-
			14	Coeff b3	12	-32768	32767	-3880	-
			16	Coeff b4	12	-32768	32767	5127	-
			18	Rc0	12	-32768	32767	11703	-
			20	Adc0	12	-32768	32767	11703	-
			22	Rpad	12	-32768	32767	0	-
			24	Rint	12	-32768	32767	0	-
Calibration	95	Filter							
			1	Cell Voltage 1	U1	0	255	145	-
			2	Cell Voltage 2	U1	0	255	145	-
			3	Cell Voltage 3	U1	0	255	145	-
			4	Cell Voltage 4	U1	0	255	145	-
			5	Pack Voltage Out	U1	0	255	10	-
			6	Direct Battery Voltage	U1	0	255	10	-
			7	Summed Battery Voltage	U1	0	255	145	-
			8	Cell Temperature	U1	0	255	145	-
			9	FET Temperature	U1	0	255	145	-
Calibration	105	Current Deadband							
			0	Deadband	U1	0	255	3	mA
			1	Coulomb Counter Deadband	U1	0	255	34	290 V

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Protections	256	CUV							
			0	Threshold	12	0	32767	2800	mV
			2	Delay	U1	0	255	2	S
			3	Recovery	12	0	32767	3000	mV

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class Su	ubclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Protections	261	CUVC							
			0	Threshold	12	0	32767	2900	mV
			2	Delay	U1	0	255	2	s
			3	Recovery	12	0	32767	3000	mV
Protections	266	COV							
			0	Threshold Low Temp	12	0	32767	4250	mV
			2	Threshold Standard Temp	I2	0	32767	4250	mV
			4	Threshold High Temp	12	0	32767	4250	mV
			6	Threshold Rec Temp	12	0	32767	4250	mV
			8	Delay	U1	0	255	2	s
			9	Recovery Low Temp	l2	0	32767	4150	mV
			11	Recovery Standard Temp	12	0	32767	4150	mV
			13	Recovery High Temp	12	0	32767	4150	mV
			15	Recovery Rec Temp	12	0	32767	4150	mV
Protections	283	OCC1							
			0	Threshold	12	-32768	32767	6000	mA
			2	Delay	U1	0	255	6	s
Protections	286	OCC2							
			0	Threshold	12	-32768	32767	8000	mA
			2	Delay	U1	0	255	3	s
Protections	289	occ							
			0	Recovery Threshold	I2	-32768	32767	-50	mA
			2	Recovery Delay	U1	0	255	5	s
Protections	292	OCD1							
			0	Threshold	12	-32768	32767	-6000	mA
Protections	295	OCD2	2	Delay	U1	0	255	6	S
			0	Threshold	12	-32768	32767	-8000	mA
			2	Delay	U1	0	255	3	S
Protections	298	OCD		,					
			0	Recovery Threshold	12	-32768	32767	50	mA
			2	Recovery Delay	U1	0	255	5	S
Protections	301	OLD							
			0	Threshold	H1	0	Of	09	-
			1	Delay	H1	0	Of	Of	-
			2	Latch Limit	U1	0	255	0	-
			3	Counter Dec Delay	U1	0	255	10	S
			4	Recovery	U1	0	255	5	S
Protections	307	SCC	5	Reset	U1	0	255	15	S
. 10100110113	507		0	Threshold	H1	0	ff	77	_
				Latch Limit	U1		π 255	0	
			1			0			mA
			2	Counter Dec Delay	U1	0	255	10	S

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			3	Recovery	U1	0	255	5	S
			4	Reset	U1	0	255	15	S
Protections	312	SCD1							
			0	Threshold	H1	0	ff	77	-
Protections	313	SCD2							
			0	Threshold	H1	0	ff	e7	-
Protections	314	SCD							
			0	Latch Limit	U1	0	255	0	mA
			1	Counter Dec Delay	U1	0	255	10	S
			2	Recovery	U1	0	255	5	s
			3	Reset	U1	0	255	15	S
Protections	318	ОТС							
			0	Threshold	12	-400	1500	550	1°C
			2	Delay	U1	0	255	2	s
			3	Recovery	12	-400	1500	500	1°C
Protections	323	OTD		-					
			0	Threshold	12	-400	1500	600	1°C
			2	Delay	U1	0	255	2	S
			3	Recovery	12	-400	1500	550	1°C
Protections	328	OTF		,					
-iotections 32			0	Threshold	12	-400	1500	800	1°C
			2	Delay	U1	0	255	2	s
			3	Recovery	12	-400	1500	650	1°C
Protections	333	HWD	- U	receivery	12	100	1000	000	
10100110110	000	2	0	Delay	U1	0	255	10	s
Protections	334	PTO		20.03	0.			.0	
Totodiono	501	110	0	Charge Threshold	12	-32768	32767	2000	mA
			2	Suspend Threshold	12	-32768	32767	1800	mA
			4	Delay	U2	0	65535	1800	s
			6	Reset	12	0	32767	2	mAl
Protections	342	СТО							
			0	Charge Threshold	12	-32768	32767	2500	mA
			2	Suspend Threshold	12	-32768	32767	2000	mA
-	-		4	Delay	U2	0	65535	54000	S
			6	Reset	12	0	32767	2	mAh
Protections	350	ОС							
			0	Threshold	12	-32768	32767	300	mAł
			2	Recovery	12	-32768	32767	2	mAl
			4	RSOC Recovery	U1	0	100	90	%
Protections	335	CHGV							
			0	Threshold	12	-32768	32767	500	mV
			2	Delay	U1	0	255	30	S
			3	Recovery	12	-32768	32767	-500	mV
Protections	360	CHGC		,					
			0	Threshold	12	-32768	32767	500	mA
			2	Delay	U1	0	255	2	s
			3	Recovery	12	-32768	32767	100	mA

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Permanent Fail	365	CUV							
			0	Threshold	12	0	32767	2500	mV
			2	Delay	U1	0	255	2	s
Permanent Fail	368	COV							
			0	Threshold	12	0	32767	4400	mV
			2	Delay	U1	0	255	2	s
Permanent Fail	371	CUDEP							
			0	Threshold	12	2500	0	32767	mV
			2	Delay	U1	2	0	255	s
Permanent Fail	374	OTCE							
			0	Threshold	12	-400	1500	650	1°C
			2	Delay	U1	0	255	2	S
Permanent Fail	377	OTF							
			0	Threshold	12	-400	1500	1000	1°C
			2	Delay	U1	0	255	2	s
Permanent Fail	380	QIM							
			0	Delta Threshold	12	0	32767	500	mAh
			2	Delay	U1	0	255	2	updates
Permanent Fail	383	СВ							
			0	Max Threshold	12	0	32767	120	h
			2	Delta Threshold	U1	0	255	20	h
			3	Delay	U1	0	255	2	cycles
Permanent Fail	387	VIMR		,					,
			0	Check Voltage	12	0	5000	3600	mV
			2	Check Current	12	0	32767	10	mA
			4	Delta Threshold	12	0	5000	200	mV
			6	Delta Delay	U1	0	255	2	s
			7	Duration	U2	0	65535	100	s
Permanent Fail	396	VIMA		Baration			00000	100	
r cimanent i an	000	VIIVIX	0	Check Voltage	12	0	5000	3600	mV
			2	Check Current	12	0	32767	10	mA
			4	Delta Threshold	12	0	5000	300	mV
			6	Delay	U1	0	255	2	
Permanent Fail	403	IMP	0	Delay	01	U	233	2	S
remanent i an	403	IIVIF	0	Delta Threshold	12	0	32767	300	%
			2		12				%
			4	Max Threshold Ra Update		0	32767 255	400	
			4	Counts	U1	U	200	2	counts
Permanent Fail	408	CD							
			0	Threshold	12	0	32767	4200	mAh
			2	Delay	U1	0	255	2	cycles
Permanent Fail	411	CFETF							-,
			0	OFF Threshold	12	0	500	5	mA
			2	OFF Delay	U1	0	255	2	s
Permanent Fail	414	DFET	_	J Doidy	<u> </u>			<u>-</u>	
a.ioin i ali		2. 2.	0	OFF Threshold	12	-500	0	-5	mA
			2	OFF Delay	U1	0	255	2	S
Permanent Fail	417	TH		Oi i Delay	01	0	200		3
i eillianelli Fall	417	iΠ	4	ADC Delay	U1	0	255	10	
Dormonest Fail	422	ELICE	4	ADC Delay	UI	U	200	10	S
Permanent Fail	422	FUSE	_	Therefore	10		055	-	A
			0	Threshold	12	0	255	5	mA

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			2	Delay	U1	0	255	2	S
Permanent Fail	425	AFER							
			0	Threshold	U1	0	255	100	-
			1	Delay Period	U1	0	255	2	S
			2	Compare Period	U1	0	255	5	S
Permanent Fail	428	AFEC							
			0	Threshold	U1	0	255	100	-
			1	Delay Period	U1	0	255	5	s
Permanent Fail	430	2LVL							
			0	Delay	U1	0	255	2	s
Permanent Fail	431	OCECO							
			0	Threshold	12	0	32767	5000	mV
			2	Delay	U1	0	255	2	S
Advanced Charge Algorithm	109	Temperature Ranges							
			0	T1 Temp	I1	-128	127	0	°C
			1	T2 Temp	I1	-128	127	12	°C
			2	T5 Temp	I1	-128	127	20	°C
			3	T6 Temp	I1	-128	127	25	°C
			4	T3 Temp	I1	-128	127	30	°C
			5	T4 Temp	I1	-128	127	55	°C
			6	Hysteresis Temp	I1	-128	127	0	°C
Advanced Charge Algorithm	116	Low Temp Charging							
			0	Voltage	12	0	32767	3000	mV
			2	Current Low	I2	0	32767	132	mA
			4	Current Med	12	0	32767	352	mA
			6	Current High	12	0	32767	264	mA
Advanced Charge Algorithm	124	Standard Temp Charging							
			0	Voltage	12	0	32767	4200	mV
			2	Current Low	12	0	32767	1980	mA
			4	Current Med	12	0	32767	4004	mA
			6	Current High	12	0	32767	2992	mA
Advanced Charge Algorithm	132	High Temp Charging							
			0	Voltage	I2	0	32767	4000	mV
			2	Current Low	I2	0	32767	1012	%C
			4	Current Med	I2	0	32767	1980	%C
			6	Current High	I2	0	32767	1496	%C
Advanced Charge Algorithm	140	Rec Temp Charging							
			0	Voltage	I2	0	32767	4100	mV
			2	Current Low	12	0	32767	2508	mA
			4	Current Med	12	0	32767	4488	mA
			6	Current High	12	0	32767	3520	mA

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
Advanced Charge Algorithm	148	Pre-Charging							
			0	Current	12	0	32767	88	mA
Advanced Charge Algorithm	150	Maintenance Charging							
			0	Current	12	0	32767	44	mA
Advanced Charge Algorithm	152	Voltage Range							
			0	Charging Voltage Low	12	0	32767	2500	mV
			2	Charging Voltage Med	l2	0	32767	3600	mV
			4	Charging Voltage High	I2	0	32767	4000	mV
			6	Charging Voltage Hysteresis	U1	0	255	0	mV
Advanced Charge Algorithm	159	Termination Config							
			0	Charge Term Taper Current	l2	0	32767	250	mA
			4	Charge Term Voltage	12	0	32767	75	mV
Advanced Charge Algorithm	168	Cell Balancing Config							
			0	Bal Time/mAh Cell 0	U2	0	65535	367	s/mAh
			2	Bal Time/mAh Cell 1–3	U2	0	65535	514	s/mAh
			4	Min Start Balance Delta	U1	0	255	3	mV
			5	Relax Balance Interval	U4	0	4294967295	18000	S
			9	Min Rsoc for Balancing	U1	0	100	80	%
Advanced Charge Algorithm	178	Charging Rate of Change							
			0	Current Rate	U1	1	255	1	steps
			1	Voltage Rate	U1	1	255	1	steps
Advanced Charge Algorithm	180	Charge Loss Compensation							
			0	CCC Current Threshold	l2	0	32767	3520	mA
			1	CCC Voltage Threshold	U1	0	255	210	mV
System Data	640	Manufacturer Data							
			0	ManufacturerInf o	S33	х	Х	abcdefghijklmn opqrstuvwzxy01 2345	-
System Data	673	Integrity							
			4	Data Flash Checksum	H2	0	ffff	0	-
SBS Configuration	679	Data							

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Remaining AH Cap. Alarm	I2	0	32767	300	mAh
			2	Remaining WH Cap. Alarm	l2	0	32767	432	cWh
			4	Remaining Time Alarm	U2	0	65535	10	min
			6	Initial Battery Mode	H2	0	ffff	81	-
			8	Design Voltage	12	0	32767	14400	mV
			10	Specification Information	H2	0	ffff	31	=
			12	Manufacture Date	U2	0	65535	0	date
			14	Serial Number	H2	0	ffff	1	-
			16	Cycle Count	U2	0	65535	0	-
			18	Cycle Count Percentage	U1	0	100	90	%
			19	Max Error Limit	U1	0	100	100	%
			20	Design Capacity mAh	12	0	32767	4400	mAh
			22	Design Capacity cWh	l2	0	32767	6336	cWh
			24	Manufacturer Name	S21	х	Х	Texas Instruments	-
			45	Device Name	S21	х	Х	bq30z50-R1	-
			66	Device Chemistry	S5	х	x	LION	-
SBS Configuration	750	FD							
			0	Set Voltage Threshold	l2	0	5000	3000	mV
			2	Clear Voltage Threshold	l2	0	5000	3100	mV
			4	Set % RSOC Threshold	U1	0	100	0	%
			5	Clear % RSOC Threshold	U1	0	100	5	%
SBS Configuration	756	FC							
			0	Set Voltage Threshold	I2	0	5000	4200	mV
			2	Clear Voltage Threshold	l2	0	5000	4100	mV
			4	Set % RSOC Threshold	U1	0	100	100	%
			5	Clear % RSOC Threshold	U1	0	100	95	%
SBS Configuration	762	TDA							
			0	Set Voltage Threshold	I2	0	5000	3200	mV
			2	Clear Voltage Threshold	12	0	5000	3300	mV
			4	Set % RSOC Threshold	U1	0	100	10	%
005			5	Clear % RSOC Threshold	U1	0	100	15	%
SBS Configuration	768	TCA							

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Set Voltage Threshold	l2	0	5000	4200	mV
			2	Clear Voltage Threshold	12	0	5000	4100	mV
			4	Set % RSOC Threshold	U1	0	100	100	%
			5	Clear % RSOC Threshold	U1	0	100	95	%
SBS Configuration	774	Max Error							
			3	Time Cycle Equivalent	U1	0	255	12	h
			4	Cycle Delta	U1	0	255	5	%
Lifetimes	512	Voltage							
			0	Max Cell Voltage 0	U1	0	255	0	mV
			1	Max Cell Voltage 1	U1	0	255	0	mV
			2	Max Cell Voltage 2	U1	0	255	0	mV
			3	Max Cell Voltage 3	U1	0	255	0	mV
			4	Min Cell Voltage 0	U1	0	255	255	mV
			5	Min Cell Voltage 1	U1	0	255	255	mV
			6	Min Cell Voltage 2	U1	0	255	255	mV
			7	Min Cell Voltage 3	U1	0	255	255	mV
			8	Max Delta Cell Voltage	U1	0	255	0	mV
Lifetimes	521	Current							
			0	Max Charge Current	U1	0	255	0	mA
			1	Max Discharge Current	U1	0	255	0	mA
			2	Max Avg Dsg Current	U1	0	255	0	mA
			3	Max Avg Dsg Power	U1	0	255	0	W
Lifetimes	525	Safety Events							
			0	No Of Cov Events	U1	0	255	0	events
			1	Last Cov Event	U1	0	255	0	cycles
			2	No Of Cuv Events	U1	0	255	0	events
			3	Last Cuv Event	U1	0	255	0	cycles
			4	No Of Ocd1 Events	U1	0	255	0	events
			5	Last Ocd1 Event	U1	0	255	0	cycles
			6	No Of Ocd2 Events	U1	0	255	0	events
			7	Last Ocd2 Event	U1	0	255	0	cycles
			8	No Of Occ1 Events	U1	0	255	0	events
			9	Last Occ1 Event	U1	0	255	0	cycles

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			10	No Of Occ2 Events	U1	0	255	0	events
			11	Last Occ2 Event	U1	0	255	0	cycles
			12	No Of Old Events	U1	0	255	0	events
			13	Last Old Event	U1	0	255	0	cycles
			14	No Of Scd Events	U1	0	255	0	events
			15	Last Scd Event	U1	0	255	0	cycles
			16	No Of Scc Events	U1	0	255	0	events
			17	Last Scc Event	U1	0	255	0	cycles
			18	No Of Otc Events	U1	0	255	0	events
			19	Last Otc Event	U1	0	255	0	cycles
			20	No Of Otd Events	U1	0	255	0	events
			21	Last Otd Event	U1	0	255	0	cycles
			22	No Of Otf Events	U1	0	255	0	events
			23	Last Otf Event	U1	0	255	0	cycles
Lifetimes	549	Charging Events							
			0	No Valid Charge Term	U1	0	255	0	event
			1	Last Valid Charge Term	U1	0	255	0	cycle
Lifetimes	551	Gauging Events							
			0	No Of Qmax Updates	U1	0	255	0	event
			1	Last Qmax Update	U1	0	255	0	cycle
			2	No Of Ra Updates	U1	0	255	0	event
			3	Last Ra Update	U1	0	255	0	cycle
			4	No Of Ra Disable	U1	0	255	0	event
			5	Last Ra Disable	U1	0	255	0	cycle
Lifetimes	557	Power Events	0	No Of Shutdowns	U1	0	255	0	event
Lifetimes	561	Cell Balancing							
			0	Cb Time Cell 0	U1	0	255	0	h
			1	Cb Time Cell 1	U1	0	255	0	h
			2	Cb Time Cell 2	U1	0	255	0	h
			3	Cb Time Cell 3	U1	0	255	0	h
Lifetimes	565	Temperature							
			0	Max Temp Cell	l1	-128	127	-128	°C
			2	Min Temp Cell Max Delta Cell	11 11	-128 -128	127 127	127 0	°C
			3	Temp Max Temp Int Sensor	I1	-128	127	-128	°C
			4	Min Temp Int Sensor	I1	-128	127	127	°C

Table B-2. bg30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Unit
			5	Max Temp Fet	I1	-128	127	-128	°C
Lifetimes	571	Time							
			0	Total Fw Runtime	U2	0	65535	0	h
			2	Time Spent In UT	U2	0	65535	0	h
			4	Time Spent In LT	U2	0	65535	0	h
			6	Time Spent In STL	U2	0	65535	0	h
			8	Time Spent In RT	U2	0	65535	0	h
			10	Time Spent In STH	U2	0	65535	0	h
			12	Time Spent In HT	U2	0	65535	0	h
			14	Time Spent In OT	U2	0	65535	0	h
Settings	185	Fuse							
-			0	PF Fuse 0–15	H2	0	ffff	0	-
			2	PF Fuse 16–31	H2	0	ffff	0	-
			4	Min Blow Fuse Voltage	12	0	65535	8000	mV
Settings	191	Manufacturing							
			0	Manufacturing Status	H2	0	ffff	8000	-
Settings	193	Protection							
			0	Enabled Protections 0–15	H2	0	ffff	ffff	-
			2	Enabled Protections 16–31	H2	0	ffff	ffff	-
Settings	197	Permanent Failure							
			0	Enabled PF 0–15	H2	0	ffff	ffff	-
			2	Enabled PF 16–31	H2	0	ffff	ffff	-
Settings	201	Configuration							
			0	Protection Configuration	H1	0	ff	01	-
			1	Temperature Configuration	H2	0	ffff	0087	-
			3	Charging Configuration	H1	0	ff	0	-
			4	System Configuration	H2	0	1ff	32	-
			6	Gauging Configuration	H2	0	fff	1fda	-
			8	Sbs Configuration	H1	0	ff	20	-
			9	Sbs Data Config. 0–15	H2	0	Offf	0caf	-
			11	Sbs Data Config. 16–23	H1	0	ff	ff	-
Settings	213	AFE							
			1	AFE State Control	H1	0	ff	0	-
Power	228	Power							

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			0	Valid Update Voltage	12	0	32767	7500	mV
Power	230	Shutdown							
			0	Shutdown Voltage	12	0	32767	1750	mV
			2	Shutdown Time	U1	0	255	10	s
			3	Charger	12	0	32767	3000	mV
				Present Threshold					
Power	235	Sleep							
			0	Sleep Current	12	0	32767	10	mA
			7	Voltage Time	U1	0	255	5	S
			8	Current Time	U1	0	255	20	S
			9	Wake	H1	0	ff	0	-
Power	245	Ship							
			0	Delay	U1	0	255	5	s
			1	Current	12	-250	250	10	mA
Gas Gauging	248	Current Thresholds							
			0	Dsg Current Threshold	12	-32768	32767	100	mA
			2	Chg Current Threshold	12	-32768	32767	50	mA
			4	Quit Current	12	0	32767	10	mA
Gas Gauging	884	State							
			0	Qmax Cell 0	12	0	32767	4400	mAh
			2	Qmax Cell 1	12	0	32767	4400	mAh
			4	Qmax Cell 2	12	0	32767	4400	mAh
			6	Qmax Cell 3	12	0	32767	4400	mAh
			8	Qmax Pack	12	0	32767	4400	mAh
			12	Update Status	H1	0	ff	0	-
			13	Cell 0 Chg Voltage at EoC	12	0	32767	4200	mV
			15	Cell 1 Chg Voltage at EoC	12	0	32767	4200	mV
			17	Cell 2 Chg Voltage at EoC	12	0	32767	4200	mV
			19	Cell 3 Chg Voltage at EoC	12	0	32767	4200	mV
			21	Current at EoC	12	0	32767	250	mA
·			23	Avg I Last Run	12	-32768	32767	-2000	mA
			25	Avg P Last Run	12	-32768	32767	-3022	cW
			27	Delta Voltage	12	-32768	32767	0	mV
			33	Max Avg I Last Run	12	-32768	32767	-2000	mA
			35	Max Avg P Last Run	12	-32768	32767	-3022	cW
Gas Gauging	921	IT Cfg							
			0	Load Select	U1	0	255	7	-
			1	Load Mode	U1	0	255	0	=
			16	Ra Filter	U2	0	999	500	%
			19	Ra Max Delta	U1	0	255	15	%
			21	Design Resistance	12	1	32767	42	mOhms
			23	Reference Grid	U1	0	14	4	_

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			62	Term Voltage	12	0	32767	9000	mV
			64	Term Voltage Delta	I2	0	32767	300	mV
			81	User Rate-mA	12	-9000	0	0	mA
			83	User Rate-cW	12	-32768	0	0	cW
			85	Reserve Cap-mAh	12	0	9000	0	mAh
			87	Reserve Cap-cWh	12	0	32000	0	cWh
			93	Remcap Smoothing Filter	U1	0	255	250	-
Ra Table	1280	R_a0							
			0	Cell0 R_a flag	H2	0	ffff	ff55	-
			2	Cell0 R_a 0	12	0	32767	182	2^-10
			4	Cell0 R_a 1	12	0	32767	177	2^-10
			6	Cell0 R_a 2	12	0	32767	175	2^-10
			8	Cell0 R_a 3	12	0	32767	167	2^-10
			10	Cell0 R_a 4	12	0	327672	166	2^-10
			12	Cell0 R_a 5	12	0	32767	182	2^-10
			14	Cell0 R_a 6	12	0	32767	194	2^-10
			16	Cell0 R_a 7	12	0	32767	203	2^-10
			18	Cell0 R_a 8	12	0	32767	213	2^-10
			20	Cell0 R_a 9	12	0	32767	223	2^-10
			22	Cell0 R_a 10	12	0	32767	233	2^-10
			24	Cell0 R_a 11	12	0	32767	241	2^-10
			26	Cell0 R_a 12	12	0	32767	250	2^-10
			28	Cell0 R_a 13	12	0	32767	254	2^-10
			30	Cell0 R_a 14	12	0	32767	1500	2^-10
Ra Table	1344	R_a1							
			0	Cell1 R_a flag	H2	0	ffff	ff55	-
			2	Cell1 R_a 0	12	0	32767	163	2^-10
			4	Cell1 R_a 1	12	0	32767	151	2^-10
			6	Cell1 R_a 2	12	0	32767	152	2^-10
			8	Cell1 R_a 3	12	0	32767	143	2^-10
			10	Cell1 R_a 4	12	0	32767	145	2^-10
			12	Cell1 R_a 5	12	0	32767	162	2^-10
			14	Cell1 R_a 6	12	0	32767	178	2^-10
			16	Cell1 R_a 7	12	0	32767	188	2^-10
			18	Cell1 R_a 8	12	0	32767	200	2^-10
			20	Cell1 R_a 9	12	0	32767	206	2^-10
			22	Cell1 R_a 10	12	0	32767	216	2^-10
			24	Cell1 R_a 11	12	0	32767	230	2^-10
			26	Cell1 R_a 12	12	0	32767	240	2^-10
			28	Cell1 R_a 13	12	0	32767	254	2^-10
			30	Cell1 R_a 14	12	0	32767	1500	2^-10
Ra Table	1408	R_a2		_					
		<u> </u>	0	Cell2 R_a flag	H2	0	ffff	ff55	-
			2	Cell2 R_a 0	12	0	32767	157	2^-10
			4	Cell2 R_a 1	12	0	32767	147	2^-10
			6	Cell2 R_a 2	12	0	32767	146	2^-10
			8	Cell2 R_a 3	12	0	32767	138	2^-10

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			10	Cell2 R_a 4	12	0	32767	139	2^-10 0
			12	Cell2 R_a 5	12	0	32767	156	2^-10 0
			14	Cell2 R_a 6	12	0	32767	172	2^-10
			16	Cell2 R_a 7	12	0	32767	184	2^-10
			18	Cell2 R_a 8	12	0	32767	195	2^-10
			20	Cell2 R_a 9	12	0	32767	204	2^-10
			22	Cell2 R_a 10	12	0	32767	214	2^-10
			24	Cell2 R_a 11	12	0	32767	226	2^-10
			26	Cell2 R_a 12	12	0	32767	240	2^-10
			28	Cell2 R_a 13	12	0	32767	254	2^-10
			30	Cell2 R_a 14	12	0	32767	1500	2^-10
Ra Table	1472	R_a3							
			0	Cell3 R_a flag	H2	0	ffff	ff55	-
			2	Cell3 R_a 0	12	0	32767	68	2^-10
			4	Cell3 R_a 1	12	0	32767	77	2^-10
			6	Cell3 R_a 2	12	0	32767	88	2^-10
			8	Cell3 R_a 3	12	0	32767	106	2^-10
			10	Cell3 R_a 4	12	0	32767	103	2^-10
			12	Cell3 R_a 5	12	0	32767	71	2^-10
			14	Cell3 R_a 6	12	0	32767	84	2^-10
			16	Cell3 R_a 7	12	0	32767	117	2^-10
			18	Cell3 R_a 8	12	0	32767	112	2^-10
			20	Cell3 R_a 9	12	0	32767	132	2^-10
			22	Cell3 R_a 10	12	0	32767	121	2^-10
			24	Cell3 R_a 11	12	0	32767	90	2^-10
			26	Cell3 R_a 12	12	0	32767	89	2^-10
			28	Cell3 R_a 13	12	0	32767	254	2^-10
			30	Cell3 R_a 14	12	0	32767	1500	2^-10
Ra Table	1536	R_a0x							
			0	xCell0 R_a flag	H2	0	ffff	ffff	-
			2	xCell0 R_a 0	12	0	32767	68	2^-10
			4	xCell0 R_a 1	12	0	32767	77	2^-10
			6	xCell0 R_a 2	12	0	32767	88	2^-10
			8	xCell0 R_a 3	12	0	32767	106	2^-10
			10	xCell0 R_a 4	12	0	32767	103	2^-10
			12	xCell0 R_a 5	12	0	32767	71	2^-10
			14	xCell0 R_a 6	12	0	32767	84	2^-10
			16	xCell0 R_a 7	12	0	32767	117	2^-10
			18	xCell0 R_a 8	12	0	32767	112	2^-10
			20	xCell0 R_a 9	12	0	32767	132	2^-10
			22	xCell0 R_a 10	12	0	32767	121	2^-10
			24	xCell0 R_a 11	12	0	32767	90	2^-10
			26	xCell0 R_a 12	12	0	32767	89	2^-10
			28	xCell0 R_a 13	12	0	32767	254	2^-10
			30	xCell0 R_a 14	12	0	32767	1500	2^-10
Ra Table	1600	R_a1x		_					
			0	xCell1 R_a flag	H2	0	ffff	ffff	-
			2	xCell1 R_a 0	12	0	32767	68	2^-10
			4	xCell1 R_a 1	12	0	32767	77	2^-10
			6	xCell1 R_a 2	12	0	32767	88	2^-10
			8	xCell1 R_a 3	12	0	32767	106	2^-10

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class S	ubclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			10	xCell1 R_a 4	12	0	32767	103	2^-10 0
			12	xCell1 R_a 5	12	0	32767	71	2^-10
			14	xCell1 R_a 6	12	0	32767	84	2^-10
			16	xCell1 R_a 7	12	0	32767	117	2^-10
			18	xCell1 R_a 8	12	0	32767	112	2^-10
			20	xCell1 R_a 9	12	0	32767	132	2^-10
			22	xCell1 R_a 10	12	0	32767	121	2^-10
			24	xCell1 R_a 11	12	0	32767	90	2^-10
			26	xCell1 R_a 12	12	0	32767	89	2^-10
			28	xCell1 R_a 13	12	0	32767	254	2^-10
			30	xCell1 R_a 14	12	0	32767	1500	2^-10
Ra Table	1664	R_a2x							
			0	xCell2 R_a flag	H2	0	ffff	ffff	-
			2	xCell2 R_a 0	12	0	32767	68	2^-10
			4	xCell2 R_a 1	12	0	32767	77	2^-10
			6	xCell2 R_a 2	12	0	32767	88	2^-10
			8	xCell2 R_a 3	12	0	32767	106	2^-10
			10	xCell2 R_a 4	12	0	32767	103	2^-10
			12	xCell2 R_a 5	12	0	32767	71	2^-10
			14	xCell2 R_a 6	12	0	32767	84	2^-10
			16	xCell2 R_a 7	12	0	32767	117	2^-10
			18	xCell2 R_a 8	12	0	32767	112	2^-10
			20	xCell2 R_a 9	12	0	32767	132	2^-10
			22	xCell2 R_a 10	12	0	32767	121	2^-10
			24	xCell2 R_a 11	12	0	32767	90	2^-10
			26	xCell2 R_a 12	12	0	32767	89	2^-10
			28	xCell2 R_a 13	12	0	32767	254	2^-10
			30	xCell2 R_a 14	12	0	32767	1500	2^-10
Ra Table	1728	R_a3x							
			0	xCell3 R_a flag	H2	0	ffff	ffff	-
			2	xCell3 R_a 0	12	0	32767	68	2^-10
			4	xCell3 R_a 1	12	0	32767	77	2^-10
			6	xCell3 R_a 2	12	0	32767	88	2^-10
			8	xCell3 R_a 3	12	0	32767	106	2^-10
			10	xCell3 R_a 4	12	0	32767	103	2^-10
			12	xCell3 R_a 5	12	0	32767	71	2^-10
			14	xCell3 R_a 6	12	0	32767	84	2^-10
			16	xCell3 R_a 7	12	0	32767	117	2^-10
			18	xCell3 R_a 8	12	0	32767	112	2^-10
			20	xCell3 R_a 9	12	0	32767	132	2^-10
			22	xCell3 R_a 10	12	0	32767	121	2^-10
			24	xCell3 R_a 11	12	0	32767	90	2^-10
			26	xCell3 R_a 12	12	0	32767	89	2^-10
			28	xCell3 R_a 13	12	0	32767	254	2^-10
PF Status	779	Device Status Data	30	xCell3 R_a 14	l2	0	32767	1500	2^-10
			0	Safety Alert 0–15	H2	0	ffff	0	-
			2	Safety Status 0–15	H2	0	ffff	0	-
			6	PF Alert 0–15	H2	0	ffff	0	-

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			8	PF Status 0-15	H2	0	ffff	0	-
			12	Safety Alert 16–31	H2	0	ffff	0	-
			14	Safety Status 16–31	H2	0	ffff	0	-
			18	PF Alert 16–31	H2	0	ffff	0	-
			20	PF Status 16–31	H2	0	ffff	0	-
			24	Operation Status 0–15	H2	0	ffff	0	-
			26	Operation Status 16–31	H2	0	ffff	0	-
			28	Charging Status 0–15	H2	0	ffff	0	-
			30	Charging Status 16–23	H1	0	ffff	0	-
			31	Gauging Status	H2	0	ffff	0	-
PF Status	812	Device Voltage Data							
			0	Cell Voltage 0	12	-32768	32768	0	mV
			2	Cell Voltage 1	12	-32768	32768	0	mV
			4	Cell Voltage 2	12	-32768	32768	0	mV
			6	Cell Voltage 3	12	-32768	32768	0	mV
			8	Battery Direct Voltage	12	-32768	32768	0	mV
			10	Pack Voltage	12	-32768	32768	0	mV
PF Status	824	Device Current Data							
			0	Current	12	-32768	32767	0	mA
PF Status	826	Device Temperature Data							
			0	Internal Temperature	12	-32768	32768	0	°C
			2	External 1 Temperature	I2	-32768	32768	0	°C
			4	External 2 Temperature	I2	-32768	32768	0	°C
PF Status	832	Device Gauging Data							
			0	Cell0 Dod0	12	-32768	32767	0	-
			2	Cell1 Dod0	I2	-32768	32767	0	-
			4	Cell2 Dod0	I2	-32768	32767	0	-
			6	Cell3 Dod0	12	-32768	32767	0	-
			8	Passed Charge	12	-32768	32768	0	mAh
PF Status	842	AFE Regs							
			0	AFE Status	H1	0	ff	0	-
			1	AFE State Control	H1	0	ff	0	-
			2	AFE Control	H1	0	ff	0	-
			3	AFE Output Status	H1	0	ff	0	-
			4	AFE Function Control	H1	0	ff	0	-
			5	AFE Cell Select	H1	0	ff	0	
			6	AFE OCDV	H1	0	ff	0	-
			7	AFE OCDT	H1	0	ff	0	-

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			8	AFE SCC	H1	0	ff	0	-
-			9	AFE SCD1	H1	0	ff	0	-
			10	AFE SCD2	H1	0	ff	0	-
			11	AFE REF TRIM	H1	0	ff	0	-
Black Box	854	Safety Status							
			0	1st Status Status 0–15	H2	0	ffff	0	-
			2	1st Safety Status 16–31	H2	0	ffff	0	-
			4	1st Time to Next Event	U1	0	255	0	S
			5	2nd Safety Status 0–15	H2	0	ffff	0	-
			7	2nd Safety Status 16–31	H2	0	ffff	0	-
			9	2nd Time to Next Event	U1	0	255	0	S
			10	3rd Safety Status 0–15	H2	0	ffff	0	-
			12	3rd Safety Status 16–31	H2	0	ffff	0	-
			14	3rd Time to Next Event	U1	0	255	0	S
Black Box	869	PF Status							
			0	1st PF Status 0–15	H2	0	ffff	0	-
			2	1st PF Status 16–31	H2	0	ffff	0	-
			4	1st Time to Next Event	U1	0	255	0	S
			5	2nd PF Status 0–15	H2	0	ffff	0	-
			7	2nd PF Status 16–31	H2	0	ffff	0	-
			9	2nd Time to Next Event	U1	0	255	0	S
			10	3rd PF Status 0–15	H2	0	ffff	0	-
			12	3rd PF Status 16–31	H2	0	ffff	0	-
			14	3rd Time to Next Event	U1	0	255	0	S
Calibration	0	Voltage							
			0	Cell Scale 0	12	-32767	32767	20451	-
			2	Cell Scale 1	12	-32767	32767	20468	-
			4	Cell Scale 2	12	-32767	32767	20520	-
			6	Cell Scale 3	12	-32767	32767	20517	-
			8	Pack Gain	U2	0	65535	44100	-
S 111			10	BAT Gain	U2	0	65535	44100	-
Calibration	12	Current	0	CC Gain	F4	1.00E-01	4.00E+00	0.9419	-
			4	Capacity Gain	F4	2.9826E+0 4	1.193046E+ 06	280932.625	=
Calibration	20	Current Offset							
			0	CC Offset	12	-32767	32767	-7204	-
			2	Coulomb Counter Offset Samples	U2	0	65535	64	-

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			4	Board Offset	12	-32768	32767	0	-
Calibration	26	Temperature							
			0	Internal Temp Offset	l1	-128	127	0	°C
			1	External1 Temp Offset	I1	-128	127	0	°C
			2	External2 Temp Offset	I1	-128	127	0	°C
Calibration	29	Internal Temp Model							
			0	Int Coeff 1	12	-32768	32767	0	-
			2	Int Coeff 2	12	-32768	32767	0	-
			4	Int Coeff 3	12	-32768	32767	-11136	-
			6	Int Coeff 4	12	-32768	32767	5754	-
			8	Int Minimum AD	12	-32768	32767	0	-
			10	Int Maximum Temp	I2	-32768	32767	5754	0.1degl
Calibration	41	Cell Temperature Model							
			0	Coeff a1	12	-32768	32767	-14520	-
			2	Coeff a2	12	-32768	32767	23696	-
			4	Coeff a3	12	-32768	32767	-20298	-
			6	Coeff a4	12	-32768	32767	28073	-
			8	Coeff a5	12	-32768	32767	865	-
			10	Coeff b1	12	-32768	32767	-694	-
			12	Coeff b2	12	-32768	32767	1326	-
			14	Coeff b3	12	-32768	32767	-3880	-
			16	Coeff b4	12	-32768	32767	5127	-
			18	Rc0	12	-32768	32767	11703	-
			20	Adc0	12	-32768	32767	11703	-
			22	Rpad	12	-32768	32767	0	-
			24	Rint	I2	-32768	32767	0	-
Calibration	67	Fet Temperature Model							
			0	Coeff a1	12	-32768	32767	-14520	-
			2	Coeff a2	l2	-32768	32767	23696	-
			4	Coeff a3	12	-32768	32767	-20298	-
			6	Coeff a4	12	-32768	32767	28073	-
			8	Coeff a5	l2	-32768	32767	865	-
			10	Coeff b1	l2	-32768	32767	-694	-
			12	Coeff b2	l2	-32768	32767	1326	-
			14	Coeff b3	12	-32768	32767	-3880	-
			16	Coeff b4	12	-32768	32767	5127	-
			18	Rc0	l2	-32768	32767	11703	-
			20	Adc0	I2	-32768	32767	11703	-
			22	Rpad	I2	-32768	32767	0	-
		_	24	Rint	l2	-32768	32767	0	-
Calibration	93	Filter							
			1	Cell Voltage 1	U1	0	255	145	-
			2	Cell Voltage 2	U1	0	255	145	-
			3	Cell Voltage 3	U1	0	255	145	-

Table B-2. bq30z55-R1 Data Flash Subclass ID and Offset (Firmware v0.33) (continued)

Class	Subclass ID	Subclass	Offset	Name	Data Type	Min. Value	Max. Value	Default Value	Units
			5	Pack Voltage Out	U1	0	255	10	-
			6	Direct Battery Voltage	U1	0	255	10	-
			7	Summed Battery Voltage	U1	0	255	145	-
			8	Cell Temperature	U1	0	255	145	-
			9	FET Temperature	U1	0	255	145	-
Calibration	103	Current Deadband							
			0	Deadband	U1	0	255	3	mA
			1	Coulomb Counter Deadband	U1	0	255	34	290 V

Sample Filter Settings

Table C-1. Sample Remcap Filter Settings and Associated Low-Pass Filter Time Constants

Remcap Smoothing Filter	Effective Low-Pass Time Constant
200	11 seconds
230	22 seconds
240	36 seconds
245	54 seconds
250	100 seconds
252	146 seconds
253	3.2 minutes
254	4.8 minutes
255 (max)	9.6 minutes

Table C-2. Sample V/I/T Filter Settings and Associated Low-Pass Filter Time Constants

V/I/T Smoothing Filter	Effective Low-Pass Time Constant
10	0.25 seconds
50	0.5 seconds
145	1 second
200	3 seconds

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

TI E2E Community Home Page

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

e2e.ti.com