mpi* - lycée montaigne informatique

TD5 - Autour des automates

Questions diverses

Question 1. Soit A un NFA. Comment déterminer une expression régulière qui dénote le langage accepté par cet automate?

Question 2. Montrer que tout langage fini est régulier.

Question 3. Étant donnés deux langages A et B, on définit :

avoid
$$(A, B) = \{ w \in A \mid w \text{ ne contient aucune sous-chaîne dans } B \}$$

Si A et B sont réguliers, prouver que avoid(A,B) est également régulier.

Question 4. Étant donnés deux langages A and B sur un alphabet Σ , on définit :

$$A/B = \{ w \in \Sigma^* \mid \exists x \in B \text{ tel que } wx \in A \}$$

Si A et B sont réguliers, prouver que A/B est également régulier.

Question 5. Soit L un langage sur un alphabet Σ . On définit :

$$\mathrm{half}(L) = \{w \in \Sigma^* \mid \exists y \in \Sigma^* \text{ tel que } wy \in L, |w| = |y| \}$$

Si L est régulier, prouver que $\mathrm{half}(L)$ est également régulier.

Question 6. Si L est un langage, combien de DFA admet-il?

Question 7. Soit l'alphabet $\Sigma = \{0, 1, 2\}$ et le langage :

$$L = \{w \in \Sigma^* \mid w \text{ est une représentation ternaire d'un entier multiple de 5} \}$$

Construire un DFA qui reconnaît L.

Question 8. Sur l'alphabet $\Sigma = \{a, b, c\}$, on considère l'expression régulière $a^*b^*c^*$. Construire directement un DFA complet qui reconnaît le langage dénoté par cette expression régulière. Par directement, on entend sans passer par l'intermédiaire d'un NFA ou d'un ε -NFA et d'une déterminisation.

Question 9. Soit l'alphabet $\Sigma = \{0\}$. Combien de langages réguliers définis sur cet alphabet unaire, associés à des DFA n'ayant que trois états, est-il possible de construire?

Question 10. Soit \mathcal{A}_1 (resp. \mathcal{A}_2) un DFA ayant n_1 états et f_1 états acceptants (resp. n_2 états et f_2 états acceptants). Soit \mathcal{A} l'automate tel que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$ où $\mathcal{L}(\mathcal{A})$ désigne le langage accepté par l'automate \mathcal{A} . Combien d'états acceptants \mathcal{A} admet-il?

Question 11. Sur un alphabet Σ , on considère un langage régulier R et un langage non nécessairement régulier L. Montrer que R/L est régulier sachant :

$$R/L = \{ w \in \Sigma^* \mid \exists x \in L \text{ tel que } wx \in R \}$$

Question 12. Soit Σ un alphabet et $h: \Sigma^* \to \Sigma^*$ un morphisme tel que pour tous mots w_1, w_2, \dots, w_n de Σ^* :

$$h(w_1 w_2 \dots w_n) = h(w_1) h(w_2) \dots h(w_n)$$

Si L est un langage, on note $h(L) = \{h(w), w \in L\}$. Si L est régulier, prouver que h(L) est également régulier.

Question 13. Soit Σ et Δ deux alphabets et h un morphisme de Σ^* dans Δ^* défini par $h(\varepsilon) = \varepsilon$ et pour tous mots u et v de Σ^* , h(uv) = h(u)h(v). Soit L un langage sur Δ . On définit l'homomorphisme inverse h^{-1} de L par :

$$h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$$

Prouver que les langages réguliers sont clos par homomorphisme inverse.

Question 14. Si $L \cap R$ est non régulier et R est régulier, que dire de L? Justifier votre réponse.

Question 15. Si L est non régulier, que dire de son complémentaire? Justifier votre réponse.

Question 16. Sur l'alphabet $\Sigma = \{a,b\}$, on considère le langage : $L = \{a^ib^j \mid i,j \in \mathbb{N}, i < j\}$. Montrer que L n'est pas régulier.

Question 17. Soit L_1 le langage défini sur l'alphabet $\Sigma = \{a,b\}$ par : $L_1 = \{a^ib^j \mid i,j \in \mathbb{N}, i < j\}$.

Soit L_2 le langage défini sur l'alphabet $\Delta=\{c,d,e\}$ par : $L_2=\{c^nd^ke^{n+1}\mid k,n\in\mathbb{N}\}.$

En considérant le morphisme $h: \Delta^* \to \Sigma^*$ tel que h(c) = a, h(d) = b, h(e) = b, montrer que L_2 n'est pas régulier. Cette démonstration est dite par réduction du langage L_2 au langage L_1 .

mpi* - lycée montaigne informatique

Vrai ou faux?

Pour chaque question, justifier votre réponse.

Question 18.	L'intersection de deux langages non réguliers est toujours un langage non régulier.	□ V - □ F
Question 19.	Le complémentaire d'un langage non régulier est toujours un langage non régulier.	□ V - □ F
Question 20.	L'union de deux langages réguliers est toujours un langage régulier.	□ V - □ F
Question 21.	L'intersection de deux langages réguliers est toujours un langage régulier.	□ V - □ F
Question 22.	La classe des langages non réguliers est close par complémentation.	□ V - □ F
Question 23.	Si le complémentaire de L est non régulier alors L est $\mathit{forcément}$ non régulier.	□ V - □ F
Question 24.	La classe des langages non réguliers est close par union et intersection.	□ V - □ F
Question 25.	La classe des langages réguliers est closes par union, intersection et complémentation.	□ V - □ F
Question 26.	Si R est régulier et L non régulier alors $R\cap L$ peut donner un langage régulier.	□ V - □ F
Question 27.	Si R est régulier et L non régulier alors $R\cap L$ peut donner un langage non régulier.	□ V - □ F
Question 28.	Si R est régulier et L non régulier alors $R \cup L$ est toujours un langage régulier.	□ V - □ F
Question 29.	Si R est régulier et si $R\cap L$ est non régulier alors L est $forcément$ non régulier.	□ V - □ F
Question 30.	Si R est régulier et si $\overline{R \cap L}$ est non régulier alors L est $forcément$ non régulier.	□ V - □ F