	Problem formulation and mathematical modelling Mathematical translation.
	The aim is to describe the vertical motion of 9 ball
	dropped from a height subject to
	& Gravitational force
ton of	> Elastic collision with the ground.
addin n tagartani	· · · · · · · · · · · · · · · · · · ·
History S	- Complete mathematical model.
_	Acceleration of the ball at initial hight
أمين	a(t) = q where a = gravitational force
	From Newton's recond law.
_	Therefore, velocitys
	$V(E) = \left[a dt = g dt = gt + c = gt + V_0 \right]$
_	
_	So, ball position,
	y(t) = [v(t)dt = [(gt+vo)dt = 1 gt+vot+c
-	12011201
	$= 1.9t^2 + V_0 + 4.0$
	Including the coefficient of rostitution, e,
	madaing the coefficient of hatriquente,
	e= Measure of how bouncy the collision is.
	e = Varter (ratio hetween 0-1)
	A P E Loce
	Velocity after collision,
	1 new = 1 dd * -6.
	Here;>Constraints
	++y(t)≥0
	>Boynces occur at y=0
	7 stop simulation when kinetic energy is zero: