Watts' Network Cascades Model A Simple Model of Global Cascades on Random Networks

Marco Brack Carsten Hartenfels

2016-08-05

Content

- Motivation
- Simulation
- Explanation
- ► Watts' Model
- Findings
- Limitations

Motivation - Culture

Twilight

Source: https://en.wikipedia.org/wiki/File:Twilightbook.jpg

Motivation - Technology Adoption

WhatsApp

Source: https://commons.wikimedia.org/wiki/File:WhatsApp.svg

Motivation - Social Dynamics

Political Coups

Source: http://tinyurl.com/jmv529r

Network Cascades

Network Cascades

(Maybe)

Network Cascades

(Maybe)

(It's a Nice Model Anyway)

Simulation

https://github.com/turbopope/nss/tree/master/simulator

Nodes

► Observe *k* Neighbors

▶ State $\in \{0,1\}$

▶ Threshold $\Phi \in [0, 1]$

Random Impulse Happens

Nodes Check in Random Intervals

Stuff Happens

► Things Occur

Coup Successful

Watts' Model

► Each person/agent is a node in a graph

▶ Agents have a state $\in \{0, 1\}$

Agents observe their neighbors

▶ Agents change to a state if a fraction of their neighbors has that state

n nodes

n nodes

 $ightharpoonup p_k$ propability of n to have k neighbors

n nodes

 \triangleright p_k propability of n to have k neighbors

• $z = \langle k \rangle$ expectation value or average degree

n nodes

 \triangleright p_k propability of n to have k neighbors

- $ightharpoonup z = \langle k \rangle$ expectation value or average degree
- $ho_k = rac{e^{-z}z^k}{k!}$ Poisson-distributed (Erdős–Rényi-Model with $p = rac{z}{n}$)

► Cascades in Sparse Networks

Cascades in Sparse Networks

Limited by Connectivity

Cascades in Sparse Networks

Limited by Connectivity

Cascade Size Exhibits Power-Law Distribution

Cascades in Sparse Networks

- Limited by Connectivity
- Cascade Size Exhibits Power-Law Distribution

Most Highly Connected Cluster is Critical Triggers

Cascades in Dense Networks

Cascades in Dense Networks

Limited by Threshold

Cascades in Dense Networks

Limited by Threshold

Cascade Size Bimodal (Most are Small, Some are Large)

Cascades in Dense Networks

Limited by Threshold

► Cascade Size Bimodal (Most are Small, Some are Large)

Cluster with Average Degrees are Triggers (Because They are Frequent)

▶ Threshold Heterogenity Increases Cascade Likelihood

► Threshold Heterogenity Increases Cascade Likelihood

Degree Heterogenity Decreases Cascade Likelihood

► No Personal Knowledge

- ► No Personal Knowledge
- ► No Global Adoption Rate

- No Personal Knowledge
- ▶ No Global Adoption Rate
- ▶ No Relationship Strength

- ► No Personal Knowledge
- ► No Global Adoption Rate
- ► No Relationship Strength
- One-Way Threshold

- ▶ No Personal Knowledge
- No Global Adoption Rate
- ► No Relationship Strength
- One-Way Threshold
- Sample Size for Bimodal Distribution Very Limited

- ▶ No Personal Knowledge
- No Global Adoption Rate
- ► No Relationship Strength
- One-Way Threshold
- Sample Size for Bimodal Distribution Very Limited
- ▶ No Threats to Validity Mentioned

Thank You All For Listening