Integrated Circuit Design Homework 2 Image Processing

1. 問題描述

本題輸入為一彩色影像(如圖 1.所示),此彩色影像存放於 Host 端的彩色圖像記憶體模組 (color_mem)中,imgproc 端須發送訊號至 Host 端以索取彩色影像資料,再對彩色影像中每個 pixel 各自進行獨立運算,運算後的結果請寫入 Host 端的記憶體模組 (my_mem) 內,並在整張影像訊號處理完成後,將 finish 訊號拉為 High,接著系統會自動進行比對整張影像資料的正確性。 有關 imgproc 的過程描述於後。

圖 1. 彩色影像範例

2. 設計規格

2.1 系統方塊圖

圖 2. 系統方塊圖

2.2 輸出入訊號和記憶體描述

Signal Name	I/O	Width	Simple Description	
clk	input	1	positive edge clock system	
rst	input	1	active high asynchronous system reset signal	
orig_addr	output	14	address for input image data	
request	output	1	ask for input image data	
orig_ready	input	1	input image data is ready for your system	
orig_data	input	24	input color image data	
imgproc_addr	output	14	send your output data to this address	
imgproc_ready	output	1	tell host that output data is ready	
imgproc_data	output	8	output dark channel data	
finish	output	1	whole processing is finished	

※ PS:

- 1. orig_addr 和 request 為一組,一起發送出去,跟 HOST 要圖片。
- 2. orig_ready 和 orig_data 為一組,一起傳回來,看到 orig_ready 代表 orig_data 可以接收了。
- 3. imgproc_addr, imgproc_ready, imgproc_data 為一組,一起發送出去,將結果送到 HOST 端。
- 4. finish 訊號拉起來之後,開始檢查正確性。

2.3 系統功能描述

本電路功能為當 reset 結束後,imgproc 端才可開始對 Host 端進行動作。當 Host 端在每個時脈訊號負緣觸發時若偵測到 finish 訊號為 Low 且 request 訊號為 High 時表示 imgproc 端對 Host 端要求索取彩色圖像資料。當 orig_ready 訊號為 High,此時 Host 端準備好資料,會依 orig_addr 匯流排所指示的位址將彩色圖像記憶體內的位址資料由 orig_data 匯流排輸入 imgproc 端。

本電路主要功能是計算簡易版本的暗通道(dark channel),輸入影像的每個像素分別有 RGB 三個通道,imgproc 端找出三個通道中,數值最小的通道,並輸出此通道的數值。以圖 3.為例,應輸出之結果為 00010100。

記憶體模組的寫入方式如下,當 Host 端在每個時脈訊號負緣觸發時若偵測到 imgproc_ready 訊號為 High 時,就會將目前 imgproc_data 匯流排上的內容,寫入到 imgproc_mem 記憶體模組的 imgproc_addr 匯流排所指示的位址內,當所有 pixel 都處理完畢後,請將 finish 訊號拉為 High,接著 Host 端就會開始進行結果驗證。

2.4 彩色圖像記憶體對應方式

彩色圖像大小固定為 128x128 pixels,每個像素均為 24 bits 彩色(每個 24 bits 彩色圖像像素的值,都分別由 R/G/B 三個 8 bits 通道組成,每個通道分別介於 0 到 255 之間),因此 Host 端的彩色圖像記憶體模組(color_mem)共有 16384 個位址用以存放各像素的彩色圖像資料,圖像位址與記憶體模組資料的對應及排列方式如下圖所示。

圖 3. 圖像位址與記憶體模組資料的對應及排列方式

2.5 時序規格圖

A. 影像輸入時序圖

- a、 reset 訊號持續兩個 Cycle 時間後,電路初始化結束。
- b、 imgproc 端將 request 訊號拉為 High, 並且同時將欲索取的彩色圖像像素,其位址由 orig_addr 匯流排送出。
- c、 Host 端在時脈訊號負緣觸發若偵測到 request 為 High,將 orig_ready 拉為 High,則會將彩色 圖像記憶體內的 orig_addr 匯流排所指示位址的資料由 orig_data 匯流排送到 imgproc 端。若要進行連續索取,只需要將 request 維持在 High,並連續改變 orig_addr 匯流排位址,就可在 orig data 匯流排連續得到不同位址資料。
- d、 接著 imgproc 端就可以針對各 pixel 進行訊號處理流程。
- e、 若 imgproc 端不想要對 Host 端索取任何位址資料,則只須在時脈訊號正緣觸發將 request 拉為 Low,則 Host 端在下個時脈訊號負緣觸發時就不會送出任何位址資料到 color_data 匯流排,且 orig ready 也會被拉為 Low。

B. 影像輸出時序圖

- a、當 imgproc 端完成處理後,請將各 pixel 的處理結果寫入各相對應的記憶體位址中,其方式為將 imgproc_ready 訊號拉為 High,同時把欲寫入的位址及資料分別放在 imgproc_addr 及 imgproc_data 匯流排;Host 在時脈訊號負緣觸發時,就會進行寫入的動作。若想要連續寫入的 話,則只需要持續將 imgproc_ready 維持在 High 後改變 imgproc_data 及 imgproc_addr 即可。
- b、 如果不想繼續寫入資料的話,將 imgproc ready 拉為 Low。
- c、所有的 pixel 都處理完成了,此時 imgproc 端須將 finish 拉為 High。Host 端就會開始進行驗證了,驗證完成後整個模擬會立即結束。

3. 檔案說明

image_process 資料夾中共有 3 個 .v 檔、syn 資料夾和 data 資料夾。 syn 資料夾中共有 3 個檔案,與 design compiler 相關。 data 資料夾中為測資。

- A. RTL simulation 部分用到檔案
 - a. testfixture.v: 本次作業的 testbench,描述 HOST 端記憶體的行為。
 - b. imgproc.v: 已經定義了 imgproc module 的輸入輸出,將描述 imgproc 電路的 verilog code 寫在此檔案裡。
 - c. 模擬時,直接執行:ncverilog testfixture.v imgproc.v 若要記錄 debug 用模擬波形檔,請執行: ncverilog testfixture.v imgproc.v +access+r +define+FSDB
 - d. data/ 資料夾: 本次作業的測資與 golden data。
- B. synthesis 部分用到檔案

RTL 寫完後,請同學將電路合成 gate level netlist。

- a. imgproc.v: 已完成的 RTL code。
- b. syn/.synopsys_dc.setup: Design compiler 的基本設定檔,若 library 位置與預設不同,需修改此檔案內 set search path 路徑。
- c. syn/imgproc.sdc: 描述了合成時對電路的 constraints,只有 cycle time 可以自行修改,預設為 set cycle 100,代表 cycle time 為 100ns。

(100ns 是很寬鬆的 constraint,合成時盡量讓 cycle time 小,代表合出來的電路比較快。)

d. syn/run.tcl: 在 syn 資料夾內執行 dc_shell –f run.tcl 即可完成 synthesis,合成成功後會產生 imgproc_syn.v 即為電路 gate level netlist。(這份是基本版的 script,如果想要更進一步優化電路,可以自行添加指令。Ex: 如 compile_ultra, compile –map_effort high, optimize_register...等)。

除此之外,如果電路有錯誤,請大家試著打開 design compiler 逐行執行 run.tcl 的指令,並去看合成過程中的 error message,很可能是 code 中寫了無法合成的東西、設定檔沒有就緒,或是產生了非預期的 latch,試著看錯誤訊息去排除問題。

C. Gate level simulation 部分所需檔案

產生 gate level netlist 後仍需要做模擬確定電路正確性。

- a. testfixture.v: 同 RTL 用的 testbench,要根據合成時的 cycle time 去修改裡面的參數,預設是 define CYCLE 100。
- b. img_proc_syn.v: 合成時產生的 gate level netlist。
- c. tsmc13_neg.v: 各個 gate 製程的相關資訊。
- d. syn/img_proc.sdf: 合成時產生的 standard delay fomat 檔案,描述了電路中每個元件的延遲時間。
- e. 模擬時,直接執行:ncverilog testfixture.v imgproc_syn.v tsmc13_neg.v +define+SDF 若要記錄 debug 用模擬波形檔,請執行:

ncverilog testfixture.v imgproc_syn.v tsmc13_neg.v +access+r +define+SDF+FSDB

4. 評分標準

A. RTL 部分

Report 中請將 ncverilog 模擬畫面截圖(至少從 START 到 exit),若成功則會出現以下畫面。

若部分 pixel 出錯則會出現以下畫面,請大家利用 nWave 除錯。

若是出現以下畫面,代表你的模擬無法結束,可能是 finish 訊號線沒有處理好,同樣請大家利用 nWave 除錯。

B. Gate level 部分

Report 中請大家放三張截圖:desing compiler 的 area report(包含 Total cell area)與 timing report(從 Point 到 slack (MET)),以及把 gate level netlist 再跑一次 ncverilog 模擬 後的截圖(一樣從 START 到 exit)。

(記得 test bench 中的 cycle time 要改成與合成時的 cycle time 一樣再跑模擬。)

並請大家在截圖之後(report 最後面)填寫以下四項內容:(下為助教的範例)

Cell area = $5092 \mu m^2$

Cycle time = 4 ns

Total time = 65564 ns

Cell area×total time = 333,851,888 ($\mu m^2 \cdot ns$)

Number of ports:	122
Number of nets:	465
Number of cells:	339
Number of combinational cells:	271
Number of sequential cells:	66
Number of macros/black boxes:	0
Number of buf/inv:	71
Number of references:	60
Combinational area:	2866.908581
Buf/Inv area:	762.132614
Noncombinational area:	2225.291344
Macro/Black Box area:	0.00000
Net Interconnect area:	43446.884033
otal cell area:	5092.199925
Total area:	48539.083958

Des/Clust/Port	Wire Load Model	Library	
imgproc	tsmc13_wl10	slow	
Point		Incr	Path
clock clk (rise electock network delectock network delectock network delectock network delectock network delectock network delectock network (20]/QN (10]/QN (20]/QN (20)/QN (20]/QN (20)/QN (ay (ideal) DFFRX1) DFFRX1)	0.50 0.00 0.99 0.49 0.56 0.24 0.31	0.50 r 1.49 r 1.98 f 2.54 r 2.78 f 3.09 r 3.56 f
clock clk (rise ended clock network delectock uncertainty result_reg[1]/CK library setup timedata required timedata arrival time	ay (ideal) (DFFRX1) e e	4.00 0.50 -0.10 0.00 -0.30	4.00 4.50 4.40 4.40 r 4.10 4.10
slack (MET)			0.00

ncsim> run	
START!!! Simulation Start	
Congratulations!!! Every outputs are correct!	
Simulation complete via \$finish(1) at time 65564 NS + ./testfixture.v:118	0

5. 繳交檔案

評分所需檔案可分為三部份:

- (1) RTL design,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放 進來,以免無法進行編譯。
- (2) gate-level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF 檔。
- (3) Report file •

請將下表檔案先放在資料夾 hw2 內,再用 zip 進行壓縮。此 zip 檔解壓縮後必須是一個資料 夾。

Design stage	File	Descirption
N/A	Report.pdf	design report
RTL Simulation	imgproc.v	Verilog synthesizable RTL code
Pre-layout Gate-level	imgproc_syn.v	Verilog gate-level netlist
Simulation		generated by Synopsys Design
		Compiler
	Imgproc_syn.sdf	SDF timing information
		generated by Synopsys Design
		Compiler
	Imgproc_syn.ddc	design database generated by
		Synopsys Design Compiler