

- 6. Give comparison between the following:
- (a) C_3 and C_4 pathways
- (b) Cyclic and non-cydic photophosphorylation (c) Anatomy of leaf in C₃ and C₄ plants.

Solution: (a) The differences between C_3 and C_4

	C ₃ pathway	C ₄ pathway
(i)	Ribulose	Phosphoenol
	biphosphate is the	pyruvate is the
	first acceptor of	first acceptor
	CO ₂ .	of CO ₂ , while
		ribulose
		biphosphate is the
		second acceptor.
(ii)	Phosphoglyceric	Oxaloacetic
	acid is the first	acid is the first
	product.	product.
(iii)	The plants	Plants operate a
	operate only	dicarboxylic acid
	Calvin cycle.	cycle in addition
		to Calvin cycle.
(iv)	CO ₂	CO ₂
	compensation	compensation
	point is 25 – 100	point is 0 – 10
	ppm.	ppm.
(v)	Mesophyll cells	Mesophyll cells
	perform complete	perform only
	photosynthesis.	initial fixation.

(vi)	The rate of carbon	The rate of carbon
	assimilation is	assimilation is
	slow.	quite rapid.
(vii)	The plants are	Photosynthesis
	unable to perform	continues even
	photosynthesis	at very low CO ₂
	at very low CO ₂	concentration of
	concentration (say	10 – 50 ppm.
	10 – 50 ppm).	
(viii)	The cycle operates	The cycle is found
	in all plants.	only in some
		plants like maize,
		sugarcane etc.
(ix)	Fixation of one	Fixation of one
	molecule of CO ₂	molecule of CO ₂
	uses 3 ATP and	requires 5 ATP
	2NADPH.	and 2NADPH.

⁽b) The differences between cyclic and non-cyclic photophosphorylation are as follows :

	To 11	
	Cyclic photophos- phoryaltion	Non-cyclic photo- phosphorylation
(i)	It is performed by photosystem I independently.	It is performed by collaboration of both photosys- tems I and II.
(ii)	It is not connected with photolysis of water. There- fore, no oxygen is evolved.	It is connected with photolysis of water and libera- tion of oxygen.
(iii)	It synthesises only ATP.	Non-cyclic pho- tophosphoryla- tion is not only connected with ATP synthesis but also production of NADPH.
(iv)	It operates under low light intensity, anaerobic conditions or when CO ₂ availability is poor.	Non-cyclic photo- phosphorylation takes place under optimum light, aerobic conditions and in the pres- ence of carbon dioxide.
(v)	It occurs mostly in stromal or intergranal thylakoids.	It occurs in the granal thylakoids.

⁽c) Differences between the leaf anatomy of $\ensuremath{\text{G}}$ and $\ensuremath{\text{C}}_4\text{plants}$ are as follows :

	C ₃ plants	C₄ plants
(i)	The leaves do not possess kranz anatomy.	The leaves have kranz anatomy.
(ii)	Chloroplasts do not have periph- eral reticulum.	Chloroplasts have peripheral reticu- lum.
(iii)	Chloroplasts are of one type (monomorphic).	There are two types of chloro- plasts (dimorphic).
(iv)	Bundle sheath cells usually do not contain chloro- plasts.	Bundle sheath cells possess prominent chloro- plasts.
(v)	In higher plants, operating C ₃ cycle, all the chloroplasts are granal.	
(vi)	Mesophyll cells perform complete photosynthesis.	Mesophyll cells perform only initial fixation.
(vii)	Perform photosyn- thesis only when stomata are open.	Perform photo- synthesis even when stomata are closed (from CO ₂ produced in respiration).
(vi)	ATP synthesis is not affected by DCMU.	DCMU inhibits non-cyclic photo- phosphorylation.

^{7.} Look at leaves of the same plant on the shady side and compare it with the leaves on the sunny side. Or ompare the potted plants kept in the sunlight with those in the shade. Which of them has leaves that are darker green? Why?

Solution: The leaves of the shaded side are darker green than those kept in sunlight due to two reasons:

⁽i) The chloroplasts occur mostly in the mesophyll cells along their walls for receiving optimum quantity of incident light.

⁽ii) The chloroplasts align themselves in vertical position along the

lateral walls of high light intensity and along tangential wails in moderate light.

8. The given figure shows the effect of light on the rate of photosynthesis. Based on the graph, answer the following questions.

Fig.: Graph showing effect of light intensity on the rate of photosynthesis

- (a) At which point/s (A, B or C) in the curve is light limiting factor?
- (b) What could be the limiting factor/s in region A?
- (c) What do C and D represent on the curve? Solution:
- (a) At regions A and B light is the limiting factor.
- (b) In the region A', light can be a limiting factor.
- (c) C is the region where the rate of photosynthesis is not increased when light intensity is increased. D is the point where some other factors become limiting.
- 9. Why is the colour of a leaf kept in the dark frequently becomes yellow, or pale green? Which pigment do you think is more stable? Solution: Carotenoid pigments are found in all photosynthetic cells. They are accessory pigments also found in roots, petals etc. These pigments do not breakdown easily thus temporarily reveal their colour due to unmasking, following breakdown of chlorophylls. Thus the colour of leaf kept in dark is yellow or pale green.

