§ 1.3-1.4 事件的概率与古典概型

- 随机事件的频率
- 概率的统计定义
- 概率的公理化定义
- 古典概型 (等可能概型)

1. 随机事件的频率

随机事件在一次试验中是否发生是不确定的,我们可以用大量重复试验来研究该事件发生的可能性大小。

仅从事件出现的次数不能确切地描述 该事件出现的可能性的大小,还应该考虑该事件出 现次数在试验总次数中所占的百分比。

例如: 掷一枚硬币100次,事件A="正面朝上" 发生了61次。

"正面朝上"的次数与总的试验次数之比为:

频数
$$\frac{61}{100} = 0.61$$

1. 随机事件的频率

设在相同的条件下,进行了n次试验,事件A发生的次数 n_A 称为事件A发生的频数,

比值 $\frac{n_A}{n}$ 称为事件A发生的频率,记作 $f_n(A)$

频率具有如下性质:

$$(1)0 \le f_n(A) \le 1 \qquad (2)f_n(\varnothing) = 0; f_n(S) = 1$$

(3)设事件A,B互不相容,

$$f_n(A \cup B) = f_n(A) + f_n(B)$$

互斥事件的和事件的频率等于频率的和

1. 随机事件的频率

设在相同的条件下,进行了n次试验,事件A发生的次数 n_A 称为事件A发生的频数,

比值 $\frac{n_A}{n}$ 称为事件A发生的频率,记作 $f_n(A)$

频率具有如下性质:

$$(1)0 \le f_n(A) \le 1 \qquad (2)f_n(\varnothing) = 0; f_n(S) = 1$$

(3)若 $A_1, A_2, \cdots A_k$ 两两互斥,

频率越大的事件发生越频繁, 该事件在一次试验中发生的可能性 就大。反之亦然。因次,我们可以 考虑用频率来表示事件在一次试验 中发生的可能性的大小.

例如:

掷硬币n次,观察正面 (H) 出现的次数 n(H)

波动幅度: 1.0-0.2=0.8

n = 5		
n(H)	$f_n(H)$	
2	0.4	
3	0.6	
1	0.2	
5	1.0	
1	0.2	
2	0.4	
4	0.8	
2	0.4	
3	0.6	
3	0.6	

n = 50		
n(H)	$f_n(H)$	
22	0.44	
25	0.50	
21	0.42	
25	0.50	
24	0.48	
21	0.42	
18	0.36	
24	0.48	
27	0.54	
31	0.62	

n = 500		
<i>n</i> (<i>H</i>)	$f_n(H)$	
251	0.502	
249	0.498	
256	0.512	
253	0.506	
251	0.502	
246	0.492	
244	0.488	
258	0.516	
262	0.524	
247	0.494	

波动幅度: 0.62-0.36=0.26

波动幅度: 0.524-0.488=0.036

历史上一些试验结果

试验者	试验次数	正面朝上 的次数	正面朝上 的频率
德•摩根	2048	1061	0.5181
蒲丰	4040	2048	0.5069
皮尔逊	12000	6019	0.5016
皮尔逊	24000	12012	0.5005

当重复试验的次数n逐渐增大时,"正面朝上"频率越来越接近0.5 呈现出一种稳定性。

概率

这种频率稳定性就是所谓的统计规律性。

2. 概率的统计定义

在相同条件下,独立地重复进行n次试验,事件A发生的频率稳定地在某一常数p附近摆动,且随n越大,摆动的幅度越小,则称p为事件A的概率.记为P(A).

注: (1)事件的概率是先于试验存在的,不受试验次数 左右,且在每次试验(只要条件相同)中是一致的.

(2) 该定义 优点: 直观易懂

缺点:粗糙模糊,不便使用

3.概率的公理化定义(苏联 柯尔莫哥洛夫)

设E是随机试验, S是它的样本空间, 对于E的任一事件A对应一个实数P(A), 称为事件A的概率,其中集合函数P(.)满足下列条件:

(1)非负性:
$$P(A) \ge 0$$

(2)规范性:
$$P(S)=1$$

(3)可列可加性: $若A_1, A_2, \cdots, A_n, \cdots$ 两两互斥,

则
$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

概率的几何解释:

我们可以用面积直观地解释概率:

$$P(S)$$
=矩形区域 S 的面积=1

$$P(A) =$$
图形 A 面积

则P(A), P(B), P(C)满足以上三个条件

3. 概率的一些重要性质:

性质1:
$$P(\emptyset) = 0$$

性质2:(有限可加性)若 A_1, A_2, \cdots, A_n 两两互斥,

$$\text{IIP}(A_1 \cup A_2 \cup \cdots A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

性质3: 若事件 $A \subset B$,则 $P(B) \ge P(A)$

一般地,P(B-A)=P(B)-P(AB)

3.

3. 概率的一些重要性质:

性质4: 逆事件的概率 $P(\overline{A})=1-P(A)$

性质5:(加法公式)对任意两个事件A, B,有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

3. 概率的一些重要性质:

对任意三个事件A,B,C有

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(AC) - P(BC) + P(ABC)$$

例题

例1:设A,B 是两个随机事件,且 $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$,求下列三种情况下 $P(B\overline{A})$ 的概率。

$$(1)A和B互斥 (2)A \subset B (3)P(AB) = \frac{1}{9}$$

解:
$$(1)P(B\overline{A})=P(B-AB)=P(B)-P(AB)=P(B)=\frac{1}{2}$$

 $(2)P(B\overline{A})=P(B-A)=P(B)-P(A)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$

$$(3)P(B\overline{A})=P(B-AB)=P(B)-P(AB)=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}$$

7-11-11-1

例2:设A,B,C是三个随机事件,且

$$P(A) = P(B) = P(C) = \frac{1}{4}$$
, $P(AB) = P(BC) = 0$, $P(AC) = \frac{1}{8}$, 求A, B, C 至少有一个发生的概率。

解:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$-P(AB) - P(AC) - P(BC) + P(ABC)$$

$$= \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - 0 - \frac{1}{8} - 0 + 0 = \frac{5}{8}$$

4.古典概型 (等可能概型)

如果一个随机试验满足:

- (1) 样本空间中的元素只有有限个;
- (2) 试验中每个基本事件发生的可能性相同. 这种试验称为等可能概型.(古典概型)

例如:掷一颗骰子,观察出现的点数.

 $S=\{1,2,3,4,5,6\}$,每个点数出现的可能性都相同.

4.古典概型 (等可能概型)

计算公式: 设 $S=\{e_1,e_2,...,e_n\}$, 由等可能性知 $P(\{e_1\})=P(\{e_2\})=...=P(\{e_n\})=1/n$,

若事件A包含k个基本事件,

$$P(A) = \sum_{j=1}^{k} P(\lbrace e_{i_j} \rbrace) = \frac{k}{n}$$

$$=\frac{A$$
中的基本事件数
S中的基本事件总数

产生 例题

例1:将一枚均匀的硬币抛两次,设 A_1 = "至少一次出现反面", A_2 = "恰有一次出现反面",求 A_1 , A_2 的概率。

解:
$$S = \{HH, HT, TH, TT\}$$

 $A_1 = \{HT, TH, TT\}$ $A_2 = \{HT, TH\}$
则 $P(A_1) = \frac{3}{4}, P(A_2) = \frac{2}{4} = \frac{1}{2}.$

例2:有20件产品,其中5件是次品,现在从产品中任取一件检验,求恰为正品的概率。

解:设A="抽检的一件恰为正品",S的样本点数为20,A的样本点数为15,因此

$$P(A) = \frac{15}{20} = \frac{3}{4}$$
.

古典概型概率的计算步骤:

- (1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
- (2) 计算样本点总数n及事件A包含的样本点数k.
- (3) 用下列公式计算.

$$P = \frac{k}{n}$$

古典概率问题的常用方法:

加法原理:

完成一件工作,有m类方法,而第1类方法有 n_1 种方法,第2类方法有 n_2 种方法,…,第m类方法有 n_m 种方法,任选一种此工作就完成,那么完成这项工作共有 $N=n_1+n_2+...+n_m$ 种不同的方法.

乘法原理:

完成一件工作,需要m个步骤,而第1步有 n_1 种方法,第2步有 n_2 种方法,…,第m步有 n_m 种方法,依次完成这m步时这项工作才完成,那么完成这项工作共有 $N=n_1\times n_2\times ...\times n_m$ 种不同的方法.

一 古典概率问题的常用方法:

有重复排列:

从n个不同的元素中,有放回的取出m个元素排成一列。共有 n^m 种排列.

无重复排列:

从n个不同的元素中,无放回的取出m个元素排成一列。共有 P_n^m 种排列.

组合:

从n个不同的元素中,取出m个元素(不考虑顺序的排列)的组合,共有 C_n^m 种.

例3. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种方式: (a)放回抽样; (b)不放回抽样.

求: (1) 两球颜色相同的概率。

(2) 两球中至少有一只白球的概率。

解:定义事件: A="两球都是白球", B="两球都是红球", C="两球中至少有一只白球",

(a) 放回抽样 (按照有重复排列来考虑)

样本空间:取两次球,共有6×6种取法.

事件A的样本点: 共有4×4 种取法,

事件B的样本点: 共有2×2种取法,

A="两球都是白球", B="两球都是红球", C="两球中至少有一只白球",

故
$$P(A) = \frac{4 \times 4}{6 \times 6} = \frac{4}{9} \approx 0.444$$
, $P(B) = \frac{2 \times 2}{6 \times 6} = \frac{1}{9} \approx 0.111$,

AUB="两个球颜色相同",

则
$$P(A \cup B) = P(A) + P(B) = \frac{16+4}{36} \approx 0.556,$$

$$P(C)=1-P(B) \approx 0.889$$

74444

A="两球都是白球", B="两球都是红球", C="两球中至少有一只白球",

(b) 不放回抽样 (按照无重复排列来考虑)

样本空间:第一次有6种取法,第二次有5种取法, 共有 P_6^2 =6×5种取法.

事件A的样本点: 共有 $P_4^2 = 4 \times 3$ 种取法。

事件B的样本点: 共有 $P_2^2 = 2 \times 1$ 种取法。

故
$$P(A) = \frac{4 \times 3}{6 \times 5} = \frac{2}{5} = 0.4$$
, $P(B) = \frac{2 \times 1}{6 \times 5} = \frac{1}{15} \approx 0.0667$,

例4: 将3只球随机放入10个盒子中去,求

- (1) 指定的3个盒子各有一只球的概率.
- (2) 任意的3个盒子各有一只球的概率.

解:设A="指定的3个盒子各有一只球"

B="任意的3个盒子各有一只球"

S的样本点数为 $10^3 = 1000$,

A的样本点数为 3!=6,

B的样本点数为 $P_{10}^3 = 720$,

故
$$P(A) = \frac{6}{1000} = \frac{3}{500}, P(B) = \frac{720}{1000} = \frac{18}{25}.$$

74444

例5:设一袋中有编号为1,2,...,9的球共9只,

现从中任取3只,试求:

- (1)取到1号球的概率,(事件A)
- (2)最小号码为5的概率.(事件B) (按照组合来考虑)

解:从9个球中任取3只球,共有 C₉ 种取法.

- (1) 取到1号球共有 C_8^2 种取法 $P(A) = \frac{C_8^2}{C_9^3} = \frac{1}{3}$.
- (2) 最小号码为5,共有 C_4^2 种取法.

$$P(B) = \frac{C_4^2}{C_9^3} = \frac{1}{14}$$
.

分球入箱问题):

例6: 将5只球随机放入9个盒子中去,求"每个盒子至多有一只球"的概率.(设盒子的容量不限).

(按照排列来考虑)

解:每一只球都可以放入这9个盒子中的任一个,相当于从1到9这9个数中有放回地选取5次,每次选一个数。共有 9⁵种不同的放法.

"每个盒子至多放一只球"等价于"恰好有5个盒子各放一球",共有 P_9^5 种不同的放法.

则所求事件的概率
$$P = \frac{P_9^3}{9^5}$$

注: 同类型的还有分房问题和生日问题

分房问题):

例7: 有n个人,每个人等可能地进入N (N≥n)间房间中的任何一间,求"恰有n间房各有一人"的概率.

解:将每一个人进入的房间号看作从1到N中随机取出来的一个数,那么"恰有n间房各有一人"就等价于"取出来的n个数完全不同"。

则,所求概率
$$p = \frac{P_N^n}{N^n}$$
。

(生日问题)

例8: 假定每个人在一年365天的任一天都等可能过生日,随机选取 n (小于365)人,求他们生日至少有两个相同的概率。

分析: (365天—365个盒子,人—球) (至少有两个球在同一盒子——对立事件: 每个 盒子至多有一个球)

概率
$$p=1-\frac{P_{365}^n}{365^n}$$
. 若取 $n=64, p=0.997$.

例9: 某接待站在某一周曾接待过12次来访, 已知所有这12次接待都是在周二和周四进行的,问 是否可以推断接待时间是有规定的?

解:假设接待站的接待时间是没有规定,而各来访者在一周的任一天中去接待站的是等可能的,那么,12次接待来访者都在周二、周四的概率为

$$\frac{2^{12}}{7^{12}} = 0.0000003$$

人们在长期实践中总结得到"概率很小的事在一次试验中实际上几乎是不发生的",现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性,从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的.

4444

例10:设有N件产品,其中D件次品,从中任取n件,求其中恰有 $k(k \leq D)$ 件次品的概率.

解:N件中任取n件,可以不考虑次序共有 C_N^n 取法, D件次品中取k件,所有可能取法共有 C_D^k 种取法,

从N-D件正品中取n-k件所有可能的取法共有 C_{N-D}^{n-k} 种,由乘法原理知

$$p = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}.$$

√例11: 15名新生中有3名是优秀生,将这15名新生随机

■ 地平均分配到三个班级中去, 问每班各分配 到一名优秀生的概率是多少?

解: 15名新生平均分到配到三个班级中的分法总数为

$$C_{15}^5 C_{10}^5 C_5^5 = \frac{15!}{10!5!} \cdot \frac{10!}{5!5!} = \frac{15!}{5!5!5!}$$

将3名优秀生平均分到三个班级中(每班一名)共3!种分法,另外12名新生平均分到三个班级中的分法有

$$C_{12}^4 C_8^4 C_4^4 = \frac{12!}{4!4!4!}$$

于是,
$$p = \frac{3! \times \frac{12!}{4!4!4!}}{\frac{15!}{5!5!5!}} = \frac{25}{91} = 0.2747$$

*5.几何概型

如果一个随机试验满足:

- (1) 试验的可能结果有无限多个,且所有结果可以用一个有度量的区域来表示。
- (2) 试验中每个结果的出现具有等可能性.

这种试验称为几何概型。

$$P(A) = \frac{$$
事件 A 的度量
样本空间 S 的度量

(会面问题):

例11: 两个朋友约定在晚上8点到9点在某地会面, 先到者等候另一人20分钟,不到即先行离去,求这 对朋友能会面的概率。

解:以x,y表示两人到达时间,则有 $0 \le x \le 60,0 \le y \le 60$,

样本点(x, y)充满正方形域, 能会面的条件为

$$|x-y| \leq 20$$
,

能满足条件的点充满图中蓝色区域

所以

$$P = \frac{\mathbf{阿影域面积}}{\mathbf{E} \mathbf{F} \mathbf{F} \mathbf{V} \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{N}} = \frac{60^2 - 40^2}{60^2} = \frac{5}{9}.$$

