N_1 | Forme développée

Une fonction f définie sur $\mathbb R$ est une fonction polynôme du second degré ou fonction du second degré si elle est de la forme $|f(x) = ax^2 + bx + c|$ où a, b et c sont des réels tels que $a \neq 0$.

D Définition : Parabole

La représentation graphique ou courbe représentative d'une fonction du second degré est une parabole.

L'équation de la parabole est : $y = ax^2 + bx + c$

V Vocabulaire

- L'expression algébrique $ax^2 + bx + c$ est appelée **trinôme du second degré**.
- L'écriture $f(x) = ax^2 + bx + c$ de la fonction f est la forme développée de f.

Déterminer si les fonctions suivantes sont des fonctions du second degré et donner le cas échéant les trois coefficients a, b et c:

$$\boxed{1} \quad f_1(x) = 6 - 3x^2 + 2x$$

$$\boxed{2} \quad f_2(x) = 4 + 7x$$

$$f_5(x) = (3x+7)(3x-7)$$
 6 $f_6(x) = 4(2x-3)^2$

$$\boxed{6} \quad f_6(x) = 4(2x-3)^2$$

N_2 | Forme canonique

La forme canonique de la fonction du second degré f définie par $f(x)=ax^2+bx+c$ est :

$$f(x) = a(x-lpha)^2 + eta$$
 avec $lpha = -rac{b}{2a}$ et $eta = f(lpha)$. Cette forme canonique est unique.

Donner la forme canonique des fonctions du second degré suivantes :

$$\boxed{1} \ f_1(x) = 4x^2 + 5x + 9$$

$$f_3(x) = 7x - x^2 - 10$$

$$f_4(x) = 9x^2 + 16 - 24x$$
 $f_5(x) = 81 - 49x^2$

$$f_5(x) = 81 - 49x^2$$

$$\boxed{7} \ f_7(x) = 6x^2 - 9x + 1$$

7
$$f_7(x) = 6x^2 - 9x + 1$$
 8 $f_8(x) = rac{x^2}{3} - rac{x}{6} + 1$

$$\boxed{9 \quad f_9(x) = 4 - 12x + 9x^2}$$

N_3 | Forme canonique : parabole

P Propriété

La parabole C_f , courbe représentative de la fonction du second degré f de forme canonique $f(x) = a(x-lpha)^2 + eta$ a pour sommet S(lpha;eta)

Donner la forme canonique des fonctions du second degré suivantes :

Parabole C_{f_1}

Parabole C_{f_2}

N₄ Symétrie de la parabole

P Propriété : Symétrie de la parabole

La parabole C_f , courbe représentative de la fonction du second degré f de forme canonique $f(x) = a(x-\alpha)^2 + \beta$ est symétrique par rapport à la droite verticale d'équation $x = \alpha$.

Tracer la courbe représentative des fonctions suivantes en traçant l'axe de symétrie :

$$f_1(x) = (x-8)^2 + 2$$

$$f_2(x) = 2(x+1)^2 + 3$$

$$f_3(x) = -2(4+x)^2 - 3$$

$$\boxed{4} \ f_4(x) = (3x-3)^2$$

$$\boxed{5} \ f_5(x) = 6x^2 - 8x + 3$$

$$\boxed{ 6 \quad f_6(x) = (2x+5)(2x-5) }$$

N_5 | Sens de variation

P Sens de variation

On considère la fonction du second degré f de forme canonique $f(x)=a(x-lpha)^2+eta$ alors :

si a < 0

Construire le tableau de variations des fonctions du second degré suivantes :

$$f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{4} \quad f_4(x) = (5x-3)^2$$

$$f_5(x) = 9x^2 - 2x + 5$$

7
$$f_7(x) = (x-3)^2$$

$$\boxed{10} \ f_{10}(x) = (3x+1)^2$$

11
$$f_{11}(x) = x^2 - 2x + 1$$

12
$$f_{12}(x) = (2x+4)(x+1)$$

N₆ Extremum

P Extremum

On considère la fonction du second degré f de forme canonique $f(x) = a(x-lpha)^2 + eta$ alors :

 ${m f}$ admet ${m eta}$ comme extremum qui est atteint pour ${m x}={m lpha}.$

- C'est un maximum si *a* est négatif.
- C'est un minimum si a est positif.

Construire le tableau de variations des fonctions du second degré suivantes :

$$f_1(x) = -(x-4)^2 + 1$$

$$f_4(x) = (3x-2)^2$$

$$\boxed{5} \ f_5(x) = 5x^2 - 5x + 1$$

$$f_6(x) = (6x+4)(6x-4)$$

$$f_7(x) = (3x+6)^2$$

$$f_8(x) = 2x^2 - 4x + 3$$

9
$$f_9(x) = (x+1)(x-1)$$

$$\boxed{10} \ f_{10}(x) = (4x+1)^2$$

$$\boxed{11} \ f_{11}(x) = x^2 - 4x + 4$$

12
$$f_{12}(x) = (2x+4)(2x-4)$$

N_7 Inéquation du second degré et signe d'un trinôme : forme canonique

■ Définition et propriétés

Soient a, b et c des nombres réels tels que $a \neq 0$ et f la fonction du second degré définie par $f(x) = ax^2 + bx + c$ de courbe représentative C_f .

Une inéquation du second degré est du type :

- $ullet ax^2 + bx + c < 0 o$ les abscisses x des points de \mathcal{C}_f strictement en **dessous** de l'axe des abscisses.
- ullet $ax^2+bx+c>0 o$ les abscisses x des points de \mathcal{C}_f strictement au **dessus** de l'axe des abscisses.
- $ullet \ ax^2 + bx + c \leqslant 0 o$ les abscisses x des points de \mathcal{C}_f en dessous de l'axe des abscisses.
- $ullet ax^2 + bx + c \geqslant 0 o$ les abscisses x des points de \mathcal{C}_f au **dessus** de l'axe des abscisses.

P Signe

On considère le trinôme $ax^2 + bx + c$ associé à la fonction $f(x) = ax^2 + bx + c$ de forme canonique $f(x) = a(x - \alpha)^2 + \beta$ alors:

si
$$a>0$$
 et $eta\geqslant 0$

si a < 0 et $eta \geqslant 0$

$oldsymbol{x}$	$-\infty$	$lpha - \sqrt{rac{eta}{-a}}$		$lpha + \sqrt{rac{eta}{-a}}$	+∞
f(x)	_	o	+	o	_

si
$$a < 0$$
 et $eta \leqslant 0$

$oldsymbol{x}$	$-\infty$	+∞
f(x)	_	

si a>0 et $eta\leqslant 0$

$oxed{x}$	$-\infty$	$\alpha - \sqrt{rac{-eta}{a}}$		$\alpha + \sqrt{rac{-eta}{a}}$	+∞
f(x)	+	o	_	o	+

Construire le tableau de variations des fonctions du second degré suivantes :

- $f_1(x) = -2(x-3)^2 + 2$
- $f_2(x) = 4(x+2)^2 + 6$

- $f_4(x) = -3(x-2)^2 + 1$
- $\boxed{ \ \, 5 \ \, } f_5(x) = 2(x+1)^2 + 3$
- $f_6(x) = (3x-6)(2-x)$

N₈ Forme factorisée

Soit la forme développée de la fonction $f(x) = ax^2 + bx + c$ $(a \neq 0)$. Dans certains cas, il est possible d'écrire f sous forme factorisée : $f(x) = a(x - x_1)(x - x_2)$.

On remarque que $f(x_1) = 0$ et $f(x_2) = 0$: c'est un bon moyen de trouver la forme factorisée de la fonction f.

On appelle les nombre x_1 et x_2 les racines ou zéros de f.

- On considère la fonction f définie par $f(x)=3x^2+6x-45$
 - a) Calculer f(3) et f(-5)
 - **b)** Donner la forme factorisée de la fonction f
- On considère la fonction f définie par $f(x) = -2x^2 + 4x + 16$
 - a) Démontrer que -2 est une racine de f.
 - **d)** Démontrer que ${f 4}$ est une racine de ${f f}$.
 - c) Donner la forme factorisée de la fonction $m{f}$

N₉ | Signe d'un trinôme: forme factorisée

P Propriétés

On considère le trinôme $ax^2 + bx + c$ associé à la fonction $f(x) = ax^2 + bx + c$ dont la forme factorisée existe : $f(x) = a(x - x_1)(x - x_2)$ avec $x_1 \le x_2$.

• Pour a > 0

$oldsymbol{x}$	$-\infty$	x_1		x_2	+∞
$oxed{a}$	+		+		+
$(x-x_1)$	_	Ó	+		+
$(x-x_2)$	_		_	0	+
f(x)	+	o	_	0	+

ullet Pour a < 0

$oldsymbol{x}$	$-\infty$	$oldsymbol{x_1}$		x_2	+∞
a	_		_		_
$(x-x_1)$	_	Ó	+		+
$(x-x_2)$	_		_	Ó	+
f(x)	_	o	+	0	_

- On considère la fonction f définie par $f(x) = 5x^2 5x 10$
 - a) Démontrer que -1 est une racine de f.
 - **b)** Démontrer que ${m 2}$ est une racine de ${m f}$.
 - **c)** Donner la forme factorisée de la fonction $m{f}$ puis dresser le tableau de signes
- On considère la fonction f définie par $f(x) = -4x^2 4x + 80$
 - a) Démontrer que $oldsymbol{4}$ est une racine de $oldsymbol{f}$.
 - **b)** Démontrer que -5 est une racine de f.
 - c) Donner la forme factorisée de la fonction $m{f}$ puis dresser le tableau de signes
- On considère la fonction f définie par $f(x) = -4x^2 4x + 8$
 - a) Démontrer que -2 est une racine de f.
 - **b)** Trouver une autre racine de f.
 - c) Donner la forme factorisée de la fonction f puis dresser le tableau de signes

n°1 Paramétrage

On considère l'équation $(E): x^2 + 2x + m = 0$. L'objectif de l'exercice est de déterminer pour quelles valeurs de m l'équation (E) admet au moins une solution.

- lacksquare Résoudre, dans $\mathbb R$, les équations : $x^2+2x=0$ et $x^2+2x+1=0$
- Vérifier que pour tout réel $x: x^2+2x+m=(x+1)^2-1+m$
- Justifier alors que résoudre l'équation (E) revient à résoudre l'équation $(x+1)^2=1-m$.
- 4 Conclure.

$n^{\circ}2$ Algorithme: forme canonique

Soit une fonction du second degré $f(x) = ax^2 + bx + c$ de forme canonique $f(x) = a(x - \alpha)^2 + \beta$. Ecrire un algorithme qui détermine les réels α et β de la forme canonique d'une fonction du second degré.

n°3 A partir d'une parabole

Le graphique ci-contre donne la courbe représentative d'un trinôme défini sur \mathbb{R} par $f(x) = ax^2 + bx + c$:

- Donner par lecture graphique f(0); f(-1); f(-2).
- En déduire a, b et c puis l'expression de f.

$n^{\circ}4$ A partir de la forme canonique

Ci-contre est donnée la représentation graphique \mathcal{C}_f d'une fonction trinône f définie sur \mathbb{R} par sa forme canonique $f(x) = a(x - \alpha)^2 + \beta$.

- Lire graphiquement les coordonnées du sommet de la parabole représentant la fonction f.
- Déterminer l'expression de f.

$n^{\circ}5$

On considère la droite (d) d'équation y=2x+3 et A le point de coordonnées (1;1). M est un point quelconque de la droite (d) et on note x l'abscisse de M. On considère le point B de coordonnées (0;3). On définit la fonction f par : $f(x)=AM^2$.

- Justifier que l'ordonnée de M est $y_M=2x+3$. Vérifier que $f(x)=5x^2+6x+5$.
- Vérifier que l'expression $5(x+0,6)^2+3,2$ est la forme canonique du trinôme f.
- Étudier les variations de la fonction f. Pour quelle valeur x_0 la fonction atteint-elle son extremum ?
- M_0 est le point de la droite (d) tel que la distance AM^2 soit minimale. Justifier que les coordonnées de M_0 sont (-0,6;1,8).
- Vérifier que B est un point de la droite (d).
- Déterminer la nature du triangle ABM_0 . Que peut-on dire des droites (AM_0) et (d)?

n°6 Vases

Un artisan fabrique entre 0 et 60 vases par jour et estime que le coût de production de x vases est modélisé par la fonction C donnée par $C(x) = x^2 - 10x + 500$. On note R(x) la recette, en euros, correspondant à la vente de x vases fabriqués.

Un vase est vendu 50 €.

- lacksquare Exprimer R(x) en fonction de x.
- Calculer le coût, la recette et le bénéfice réalisés lorsque l'artisan vend 50 vases.
- Vérifier que le bénéfice, en euros, réalisé par l'artisan est donné par la fonction B dont l'expression est : $B(x) = -x^2 + 60x 500$.
- Développe l'expression : $-(x-30)^2+400$. En déduire le nombre de vases à vendre pour réaliser un bénéfice maximum.

$n^{\circ}7$ Position relative

Voici la droite (d) d'équation y = 6x + 30 et la parabole \mathcal{P} représentant la fonction f:

$$f(x) = -4x^2 + 30x + 10.$$

- Démontrer, qu'étudier les positions relatives de la droite (d) et de la parabole \mathcal{P} revient à résoudre l'inéquation $-4x^2+24x-20\geqslant 0$.
- Vérifier que l'expression $5(x+0,6)^2+3,2$ est la forme canonique du trinôme f.
- Vérifier que, pour tout réel x:
 - $-4x^2 + 24x 20 = -4(x-3)^2 + 16.$
- Résoudre alors l'inéquation $-4x^2 + 24x 20 \ge 0.$
- 5 Conclure.

$n^{\circ}8$ Une parabole et 3 points

La parabole \mathcal{P} coupe l'axe des ordonnées en A(0;3) et passe par B(1;-1) et C(3;1). Déterminer son équation sous la forme $y=ax^2+bx+c$ puis sous la forme canonique. Tracer cette parabole.

n°9 Dans un théâtre

Le directeur d'une salle de théâtre a remarqué qu'à $40 \in la$ place, il peut compter jusqu'à 500 spectateurs et que chaque baisse de $2,50 \in lui$ amène 100 personnes de plus.

Soit x le nombre de baisses du prix de la place de $2,50 \in$. On modélise cette situation par la fonction g.

- Déterminer l'expression de la fonction g.
- Dresser le tableau de variation de $m{g}$ puis tracer sa courbe représentative dans un repère.
- 3 Combien doit-il faire payer la place pour avoir une recette maximale?

n°10 Une belle volée

Un tennisman frappe droit devant lui une volée à 1 m du filet alors que la balle est à 0,9 m de hauteur en A. La balle franchit le filet en B à une hauteur de 1,1 m et atteint en C une hauteur maximale de 1,3 m. La longueur d'un terrain de tennis est 23,77 m. La balle sortira-t-elle du cours ?