Aufgabe: Orientierungstreue von Diffeomorphismen

- (a) Sei $\Phi \colon U \xrightarrow{\cong} V$ ein Diffeomorphismus zwischen offenen Mengen $U, V \subset \mathbb{R}^n$. Man zeige: Ist U wegzusammenhängend, so ist Φ entweder orientierungserhaltend oder orientierungsumkehrend.
- (b) Sei $U = B_1 \cup B_2 \subset \mathbb{R}^n$ die disjunkte Vereinigung zweier offener Bälle. Man zeige: Es gibt einen Diffeomorphismus $\Phi \colon U \mapsto U$, der weder orientierungserhaltend noch orientierungsumkehrend ist.

Lösung

Teil (a):

Wir müssen zeigen, dass für einen Diffeomorphismus $\Phi: U \to V$ auf einer wegzusammenhängenden offenen Menge $U \subset \mathbb{R}^n$ gilt: Entweder ist $\det(D\Phi_x) > 0$ für alle $x \in U$ (orientierungserhaltend) oder $\det(D\Phi_x) < 0$ für alle $x \in U$ (orientierungsumkehrend).

Beweis:

Da Φ ein Diffeomorphismus ist, ist Φ insbesondere stetig differenzierbar und die Ableitung $D\Phi_x$ ist für jedes $x \in U$ invertierbar. Daraus folgt, dass $\det(D\Phi_x) \neq 0$ für alle $x \in U$.

Betrachten wir die Funktion

$$f: U \to \mathbb{R} \setminus \{0\}, \quad f(x) = \det(D\Phi_x).$$

Diese Funktion ist stetig, da die Determinante eine stetige Funktion der Matrixeinträge ist und die partiellen Ableitungen von Φ nach Voraussetzung stetig sind.

Da U wegzusammenhängend ist und f stetig ist, muss das Bild f(U) wegzusammenhängend in $\mathbb{R} \setminus \{0\}$ sein.

Nun ist aber $\mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ die disjunkte Vereinigung zweier offener Intervalle. Diese Menge ist nicht wegzusammenhängend: Es gibt keinen stetigen Weg, der einen Punkt aus $(-\infty, 0)$ mit einem Punkt aus $(0, \infty)$ verbindet, ohne durch 0 zu gehen.

Da f(U) wegzusammenhängend sein muss, kann f(U) nicht sowohl Punkte aus $(-\infty,0)$ als auch aus $(0,\infty)$ enthalten. Daher gilt entweder $f(U)\subset (0,\infty)$ oder $f(U)\subset (-\infty,0)$.

Dies bedeutet:

- Falls $f(U) \subset (0, \infty)$, dann ist $\det(D\Phi_x) > 0$ für alle $x \in U$, also ist Φ orientierungserhaltend.
- Falls $f(U) \subset (-\infty, 0)$, dann ist $\det(D\Phi_x) < 0$ für alle $x \in U$, also ist Φ orientierungsumkehrend.

Teil (b):

Wir konstruieren einen Diffeomorphismus $\Phi: U \to U$ auf $U = B_1 \cup B_2$, der weder orientierungserhaltend noch orientierungsumkehrend ist.

Konstruktion:

Seien $B_1 = B((-2,0,\ldots,0),1)$ und $B_2 = B((2,0,\ldots,0),1)$ zwei disjunkte offene Bälle in \mathbb{R}^n mit Radius 1 und Mittelpunkten bei $(-2,0,\ldots,0)$ bzw. $(2,0,\ldots,0)$.

Definiere $\Phi: U \to U$ durch:

$$\Phi(x) = \begin{cases} x & \text{falls } x \in B_1, \\ (4 - x_1, x_2, \dots, x_n) & \text{falls } x = (x_1, x_2, \dots, x_n) \in B_2. \end{cases}$$

Verifikation, dass Φ ein Diffeomorphismus ist:

1. Φ ist wohldefiniert und bijektiv:

Auf B_1 ist Φ die Identität, also trivialerweise bijektiv von B_1 nach B_1 .

Auf B_2 ist Φ eine Spiegelung an der Hyperebene $x_1=2$. Für $x=(x_1,x_2,\ldots,x_n)\in B_2$ gilt $|x_1-2|<1$, also $1< x_1<3$. Dann ist $1< 4-x_1<3$, also $|4-x_1-2|=|2-x_1|<1$. Da die anderen Koordinaten unverändert bleiben, folgt $\Phi(x)\in B_2$. Die Umkehrabbildung ist $\Phi^{-1}(y)=(4-y_1,y_2,\ldots,y_n)$ für $y\in B_2$, also $\Phi|_{B_2}$ bijektiv.

2. Φ ist glatt:

Auf B_1 ist $\Phi(x) = x$ offensichtlich glatt.

Auf B_2 ist $\Phi(x_1, \ldots, x_n) = (4 - x_1, x_2, \ldots, x_n)$ ebenfalls glatt als affinlineare Abbildung.

3. Φ^{-1} ist glatt:

Es gilt $\Phi^{-1} = \Phi$, da sowohl die Identität als auch die Spiegelung selbstinvers sind. Daher ist Φ^{-1} aus denselben Gründen glatt.

Berechnung der Jacobi-Matrix:

Für $x \in B_1$ ist $D\Phi_x = I$ (Einheitsmatrix), also $\det(D\Phi_x) = 1 > 0$. Für $x \in B_2$ ist

$$D\Phi_x = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix},$$

also $\det(D\Phi_x) = -1 < 0$.

Schlussfolgerung:

Der konstruierte Diffeomorphismus Φ hat die Eigenschaft, dass $\det(D\Phi_x) > 0$ für alle $x \in B_1$ und $\det(D\Phi_x) < 0$ für alle $x \in B_2$. Daher ist Φ weder orientierungserhaltend (da die Determinante auf B_2 negativ ist) noch orientierungsumkehrend (da die Determinante auf B_1 positiv ist).