And 1,
$$T(n) = 3T(n/2) + n^2$$

 $T(n) = aT(n/6) + f(n)$
 $a \ge 1$, $b > 1$
on Comparing-
 $a = 3$, $b = 2$, $f(n) = n^2$
Now
 $c = log_b a = log_2 3$
 $c = 1.584$
 $c = n^{1.584} \ge n^2$
 $c = n^{1.584} \ge n^2$

Ans 37
$$T(n) = T(n/2) + 2^n$$

 $0 = 1$, $b = 2$, $f(n) = 2^n$
 $c = log_b a = log_2 1 = 0$
 $n^c = n^0 = 1$
 $f(n) > n^c$
 $T(n) = 0(2^n)$

 $T(n) = O(n^2)$

Ans 57
$$T(n) = 16T(n/4) + n$$

 $a = 16, b = 4$
 $f(n) = n$
 $c = log_4 16 = log_4 4^2 = 2$
 $n^c = n^2$
 $f(n) < n^c$
 $f(n) < n^c$
 $f(n) = 0(n^2)$
A4.

Ans 2+
$$T(n) = 4T(n/2) + n^2$$

 $a \ge 1$, $b \ge 1$
 $a = 4$, $b = 2$, $f(n) = n^2$
 $c = \log_2 4 = 2$
 $n^c = n^2 = f(n)$
 $T(n) = O(n^2 \log n)$

Ans 47
$$T(n) = 2^n T(n/2) + n^n$$

Here Master's Theorem can't
be applied as 'a' must be
constant.

Ans 67
$$T(n) = 2T(n/2) + n \cdot \log n$$

 $a = 2, b = 2$
 $f(n) = n \log n$
 $c = \log_2 2 = 1$
 $n^c = n^1 = n$
 $n \cdot n \cdot \log n > n$
 $f(n) > n^c$
 $f(n) > n^c$

Ans 7+
$$T(n) = 2T(n/2) + n/\log n$$

 $a = 2$, $b = 2$
 $f(n) = n/\log n$
 $c = \log_2 2 = 1$
 $n^c = n' = n$
 $n' = n' = n$
 $n' = n' = n$

Ans 87
$$T(n) = 2T(n/4) + n^{0.51}$$

$$\alpha = 2, b = 4, f(n) = n^{0.51}$$

$$c = \log_{6} \alpha = \log_{4} 2 = 0.5$$

$$n^{c} = n^{0.5}$$

$$n^{0.5} < n^{0.51}$$

$$f(n) > n^{c}$$

$$T(n) = O(n^{0.51})$$

Ans 107
$$T(n) = 16T(n/4) + n!$$
 $a = 16, b = 4, f(n) = n!$
 $c = log_b a = log_4 16 = 2$
 $n^c = n^2$
 $n! > n^2$
 $\Rightarrow T(n) = O(n!)$

Ans 14+
$$T(n) = 3T(n/3) + 89xt(n)$$
 $a = 3, b = 3, c = log_3 3 = 1$
 $n^c = n^1 = n$
 $sqxt(n) < n$
 $f(n) < n^c$
 $T(n) = O(n)$

Ans 16+
$$T(n) = 3T(n/4) + n\log n$$

 $a = 3, b = 4, f(n) = n\log n$
 $c = \log_b a = \log_4 3 = 0.792$
 $n^c = n^{0.792}$
 $n^{0.792} \le n\log n$

 $\Rightarrow T(n) = O(n \log n)$

Ans 9+
$$T(n) = 0.5T(n/2) + 1/n$$

 $\alpha = 0.5, b = 2$
 $\therefore \alpha \angle 1$

> Master Throrum can't be applied.

Ans 11,
$$T(n) = 4T(n/2) + \log n$$

 $a = 4$, $b = 2$, $f(n) = \log n$
 $c = \log_b a = \log_2 4 = 2$
 $n^c = n^2$
 $\log n < n^2$
 $\Rightarrow T(n) = O(n^2)$

Ans 13.7
$$T(n) = 3T(n/2) + n$$

 $a = 3$, $b = 2$, $f(n) = n$
 $c = log_b a = log_2 3 = 1.5849$
 $n < n^{1.5849}$
 $f(n) < n^c$
 $\Rightarrow T(n) = O(n^{1.5489})$

Ans 15:
$$T(n) = 4T(n/2) + cn$$

$$a = 4, b = 2$$

$$c = \log a = \log 4 = 2$$

$$n^{c} = n^{2}$$

$$\therefore cn < n^{2}$$

$$\Rightarrow T(n) = O(n^{2})$$

Anol7,

$$T(n) = 3T(n/3) + n/2$$

 $a = 3, b = 3$
 $c = log_b a = log_3 3 = 1$
 $f(n) = n/2$
 $n' = n' = n$
as $n/2 \le n$
 $f(n) = n/2 \le n$

His 18?
$$T(n) = 6T(n/3) + n^2 \log n$$

 $a = 6$, $b = 3$
 $C = \log_b a = \log_3 6 = 1.6309$
 $n^c = n^{1.6309}$
as $n^{1.6309} < n^2 \log n$
 $\Rightarrow T(n) = O(n^2 \log n)$

Ans 22,
$$T(n) = T(n/2) + n(2-cosn)$$

 $a = 1, b = 2$
 $c = log_b a = log_2 1 = 0$
 $n^c = n^o = 1$
 $n(2-cosn) > n^c$
 $T(n) = 0(n(2-cosn))$

Ans 19,
$$T(n) = 4T(n/2) + n/\log n$$

 $a = 4$, $b = 2$, $f(n) = n/\log n$
 $c = \log_2 4 = 2$
 $n^c = n^2 > n/\log n$
 $\Rightarrow T(n) = O(n^2)$

Ans 21+
$$T(n) = 7T(n/3) + n^2$$

 $a = 7$, $b = 3$, $f(n) = n^2$
 $c = \log_b a = \log_3 7 = 1.7712$
 $n^c = n^{1.7712} < n^2$
 $\Rightarrow T(n) = O(n^2)$