Chapitre 1: Suites de Cauchy

X Attention X Certaines démonstrations ont été omises dans ce cours. Je les ai en format papier, n'hésitez pas à me demander à e.rodriguesdeoliveir@gmail.com.

I Rappels sur les suites

A Définitions générales

On ne rappelera que ce qui n'est pas "évident" dans le cours de L1.

Définition : Une sous-suite (ou suite extraite) d'une suite (u_n) est une suite (v_n) : $\exists \varphi: \mathbb{N} \to \mathbb{N}$, strictement croissante tq $v_n = u_{\varphi(n)}$

 $oldsymbol{\wp}$ Vocabulaire : Une sous-suite de (u_n) est aussi notée (u_{n_k}) .

Définition : Une suite (u_n) converge vers $l \in \mathbb{R}$ si : $\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall n \geq N_\varepsilon, |u_n - l| < \varepsilon$

Description Vocabulaire: Si elle ne converge pas on dit qu'elle diverge.

Attention: une suite peut diverger mais avoir une limite (une suite qui tend vers l'infini).

Propriété: Bornes (admise)

Si une suite (u_n) converge, alors elle est bornée : $\exists M > 0, \forall n \in \mathbb{N}, |u_n| \leq M$.

Propriété : Convergence des sous-suites (admise)

Si une suite (u_n) converge vers l, alors toute sous-suite (u_{n_k}) converge aussi vers l.

B Propriétés et théorèmes fondamentaux

Propriété : Espace-vectoriel (admise)

L'ensemble des suites réelles convergentes est un ℝ-espace vectoriel.

Théorème: Suites adjacentes (admis)

Deux suites (u_n) et (v_n) sont dites adjacentes si :

- (u_n) est croissante et (v_n) est décroissante
- $u_n \leq v_n, \forall n \in \mathbb{N}$
- $v_n u_n \xrightarrow[n \to \infty]{} 0$

Si deux suites sont adjacentes, alors elles convergent vers la même limite.

Théorème: Bolzano-Weierstrass (admis)

Toute suite réelle bornée admet une sous-suite convergente.

II Suites de Cauchy

Définition : Une suite (u_n) est une suite de Cauchy si : $\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall p, q \geq N_{\varepsilon}, |u_p - u_q| < \varepsilon$

Définition : autre formulation utile

Soit (u_n) une suite à valeur dans $(K, |\cdot|)$.

 (u_n) est une suite de Cauchy si : $\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall n \geq N_\varepsilon, \forall p \in \mathbb{N}, |u_{n+p} - u_n| < \varepsilon$

Propriété : Convergence

Toute suite convergente est une suite de Cauchy.

Preuve: Soit $\varepsilon \in 0$

Comme (u_n) est convergent, $\forall N_{\varepsilon} \in \mathbb{N}$ tel que $|u_n - \ell| < \varepsilon/2$, $\forall n \geq N_{\varepsilon}$

 $\forall p, q \ge N_{\varepsilon}, |u_p - u_q| = |u_p - \ell + \ell - u_q| \le |u_p - \ell| + |\ell - u_q| < \varepsilon/2 + \varepsilon/2 = \varepsilon$

Ainsi, $\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}$ tel que $\forall p, q \geq N_{\varepsilon}$ on a $|u_p - u_q| < \varepsilon$

Proposition: Bornes

Toute suite de Cauchy est bornée.

Preuve:

 $\text{Prenons } \varepsilon = 1, \exists N \in \mathbb{N} \text{ tel que } \forall p,q \geq N \text{, on a } |u_p - u_q| < 1 \Rightarrow |u_p - u_q| < 1 \Rightarrow |u_p| < 1 + |u_q|.$

On a $\forall p \geq N$, on a $|u_p| < 1 + |u_q|$. Posons $M \in \mathbb{R}_+ := max\{|u_0|, |u_1|, ..., |u_{N-1}|, |u_N|\}$

Alors $|u_p| \leq M, \forall p \in \mathbb{N}$

Théorème:

Toute suite de Cauchy dans \mathbb{R} converge dans \mathbb{R} .

Preuve: Soit $(u_n)_{n\in\mathbb{R}}$ de Cauchy.

On sait que (u_n) est bornée par la proposition précédente.

Par le théorème de Bozano-Weierstrass, $\exists \varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(u_{\varphi}(n))$ est convergente.

Soit $\ell \in \mathbb{R}$ sa limite. Soit $\varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ tel que $\forall n \geq N_{\varepsilon}$, on a $|u_{\varphi}(n) - \ell| < \varepsilon/2$.

Par ailleurs, comme $(u_n)_{n\in\mathbb{N}}$ est de Cauchy, $\exists N_\varepsilon'\in\mathbb{N}$ tel que $\forall p,q\geq N_\varepsilon'$, on a $|u_p-u_q|<\varepsilon/2$. Alors pour $p\geq N_\varepsilon'$ et n_0 tel que pour $n_0\geq N_\varepsilon$ et $\varphi(n_0)\geq N_\varepsilon'$

 $|u_p - \ell| \le |u_p - u_{\varphi(n_0)}| + |u_{\varphi(n_0)} - \ell| < \varepsilon/2 + \varepsilon/2 = \varepsilon$

 $\text{Ainsi, } \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N} \text{ tel que } |u_p - \ell| < \varepsilon, \forall p \geq N_\varepsilon'.$

Donc, la suite de Cauchy est bien convergente.

 \bigcirc Remarque: On dit que $\mathbb R$ est complet.

Définition : On dit que $(\mathbb{R}, |\cdot|)$ est complet.

Exemple : Notion de complétude

 $(\mathbb{Q}, |\cdot|)$ n'est pas complet : la suite définie par $u_n =$ la partie décimale de $\sqrt{2}$ à la n-ième décimale est une suite de Cauchy dans \mathbb{Q} qui ne converge pas dans \mathbb{Q} (car $\sqrt{2} \notin \mathbb{Q}$).

Par contre, elle converge dans \mathbb{R} .

III Topologie de $\mathbb R$

A Rappels

a) Ouvert

Définition : Soit $x \in \mathbb{R}$ et $V \subset \mathbb{R}$. On dit que V est un voisinage de x si : $\exists \varepsilon > 0, |x - \varepsilon, x + \varepsilon| \subset V$

Définition : $U \subset \mathbb{R}$ est un ouvert de \mathbb{R} si : $\forall x \in U, U$ est un voisinage de x

Exemple :

- \mathbb{R} est un ouvert de \mathbb{R} .
- a, b est un ouvert de \mathbb{R}
- $]a, +\infty[$ est un ouvert de $\mathbb R$
-] $-\infty$, a[est un ouvert de $\mathbb R$
- L'ensemble vide est un ouvert de \mathbb{R} .

Propriété: Opérations sur les ouverts (admise)

- · L'intersection finie d'ouverts est un ouvert.
- · L'union quelconque d'ouverts est un ouvert.

1 Remarque: L'intersection infinie d'ouverts n'est pas forcément un ouvert : $\bigcap_{n=1}^{\infty}] - \frac{1}{n}, \frac{1}{n}[=\{0\}$ qui n'est pas un ouvert de \mathbb{R} .

Toutefois, pour un n_{max} donné l'intersection de n_{max} ouverts est un ouvert.

b) Fermé

Définition : $F \subset \mathbb{R}$ est un fermé de \mathbb{R} si : $\mathbb{R} \setminus F$ est un ouvert de \mathbb{R}

Exemple :

- \mathbb{R} est un fermé de \mathbb{R} .
- [a,b] est un fermé de \mathbb{R}
- Toute famille finie d'éléments de $\mathbb R$ est un fermé de $\mathbb R$.
- L'ensemble vide est un fermé de \mathbb{R} .
- \bigcirc Remarque : \bigcirc n'est ni ouvert ni fermé dans \mathbb{R} .

Propriété : Opérations sur les fermés (admise)

- · L'union finie de fermés est un fermé.
- L'intersection quelconque de fermés est un fermé.

Théorème : Caractérisation séquentielle des fermés

 $F \subset \mathbb{R}$ fermé \Leftrightarrow toute suite (u_n) d'éléments de F qui converge dans \mathbb{R} a sa limite dans F.

Preuve:

 \Rightarrow / Supposons F fermé, on a $\mathbb{R} \setminus F$ ouvert.

Par l'absurde, on suppose qu'il existe une suite (u_n) d'éléments de F qui converge vers $l \in \mathbb{R} \setminus F$. Comme $\mathbb{R} \setminus F$ est un ouvert, $\exists \varepsilon > 0,]l - \varepsilon, l + \varepsilon [\subset \mathbb{R} \setminus F]$.

Par convergence de (u_n) , $\exists N_{\varepsilon} \in \mathbb{N}, \forall n \geq N_{\varepsilon}, |u_n - l| < \varepsilon \Rightarrow u_n \in]l - \varepsilon, l + \varepsilon[\subset \mathbb{R} \setminus F \text{ ce qui est absurde car } (u_n) \text{ est une suite d'éléments de } F.$

←/ On raisonne par contraposée.

Si $\mathbb{R}\setminus F$ n'est pas un ouvert, $\exists l\in\mathbb{R}\setminus F$ tel que $\forall r>0,]l-r, l+r[\cap F\neq\mathbb{R}\setminus F$ car $\mathbb{R}\setminus F$ est au voisinage de l. Supposons qu'il existe une suite (u_n) d'éléments de F.

En particulier, $\forall n \in \mathbb{N}^*, u_n \in]l - \frac{1}{n}, l + \frac{1}{n}[\cap F \implies u_n \xrightarrow[n \to \infty]{} l \text{ et } (u_n) \in F.$

1 Remarque: Ce théorème est utile pour montrer qu'on a un ensemble fermé.

```
Définition : Soit A \subset \mathbb{R}.
```

On définit l'adhérence de A, notée \overline{A} , comme suit : $\overline{A} = \bigcap_{F \text{ ferm\'e}, A \subset F} F$.

C'est le plus petit fermé contenant A.

Lemme:

```
 \begin{aligned} & \text{Soit } A \subset \mathbb{R}. \\ & x \in \overline{A} \Leftrightarrow \forall \varepsilon > 0, ]x - \varepsilon, x + \varepsilon [\cap A \neq \emptyset. \end{aligned}
```

Preuve:

```
Montrons ⇒ par l'absurde
```

```
Soit x \in \overline{A}. Si \exists r > 0 tel que |x - r, x + r|.
```

On a $\mathbb{R}\setminus]x-r,x+r[\supset A$ qui est fermé. Absurde car $x\in \overline{A}$

Montrons ← par l'absurde

 $\forall r > 0 \text{ tel que }]x - r, x + r[\cap A \neq \emptyset]$

Par l'absurde : Si $x \notin \overline{A} \Rightarrow x \in \mathbb{R} \setminus \overline{A}$ un ouvert

 $\Rightarrow \exists r_0 > 0 \text{ tel que } |x - r, x + r| \subset \mathbb{R} \setminus \overline{A} \subset \mathbb{R} \setminus A.$

Donc $]x-r,x+r[\cap A=\emptyset$. Donc absurde

Théorème:

Soit $A \subset \mathbb{R}$.

Alors $\overline{A} = \{x \in \mathbb{R}, \exists (u_n) \text{ suite d'éléments de } A, u_n \xrightarrow[n \to \infty]{} x\}.$

1 Remarque : Autrement dit, l'adhérence de A est l'ensemble des limites de suites d'éléments de A.

Preuve:

```
Montrons \Rightarrow
```

Si $x \in \overline{A} \Rightarrow \forall x \in \mathbb{N}^*,]x - r, x + r[\cap A \neq \emptyset]$, on construit $(u_n)_{n \in \mathbb{N}^*}$ en choisissant u_n dans $]x - 1/n, x + 1/n[\cap A \neq \emptyset]$. Ainsi, $(u_n)_{n \in \mathbb{N}^*}$ est une suite de A qui tend vers x

 $Montrons \leftarrow$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de A qui tend vers x.

```
\begin{array}{l} \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N} \text{ tel que } \forall n \geq N_\varepsilon, \text{ on a } |u_n - x| < \varepsilon \\ \Rightarrow ]x - \varepsilon, x + \varepsilon [\ni u_n \leftarrow \text{qui est dans } A \\ \Rightarrow \forall \varepsilon > 0, ]x - r, x + r [\cap A \neq \emptyset \end{array}
```

B Complétude

Définition: $F \subset \mathbb{R}$ est complet si toute suite de Cauchy d'éléments de F converge dans F.

 \P Exemple: \mathbb{R} est complet.

Théorème : Caractérisation des parties complètes de ${\mathbb R}$

 $F \subset \mathbb{R}$ est complet $\Leftrightarrow F$ est fermé.

Preuve:

Montrons ⇒ avec l'utilisation de la caractérisation séquentielle des fermés :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de F qui converge vers ℓ .

Or, (u_n) est de Cauchy (car elle converge) dans F.

Comme F est complète on a que $\ell \in F$ et donc F est bien fermé.

$Montrons \Leftarrow$

Soit $(u_n)_{n\in\mathbb{N}}$ de Cauchy de $F\subset\mathbb{R}$, c'est donc une suite de Cauchy dans \mathbb{R} .

Or, comme $\mathbb R$ est complet, on sait que $(u_n)_{n\in\mathbb N}$ converge vers une limie ℓ .

Donc, $(u_n)_{n\in\mathbb{N}}$ est alors une de F convergente vers ℓ (elle converge dans \overline{F}) et F fermé.

Donc $\ell \in F$. Donc F est complète.