Index

(Graffiti have been indexed too.)

WHEN AN INDEX ENTRY refers to a page containing a relevant exercise, the answer to that exercise (in Appendix A) might divulge further information; an answer page is not indexed here unless it refers to a topic that isn't included in the statement of the relevant exercise. Some notations not indexed here (like x^n , $\lfloor x \rfloor$, and $\binom{n}{m}$) are listed on pages x and xi, just before the table of contents.

```
0°, 162
                                                           \prod-notation, 64, 106
\sqrt{2} (\approx 1.41421), 100
                                                           ↑-notation, 65
\sqrt{3} (\approx 1.73205), 378
                                                           ⇒: if and only if, 68
3: imaginary part, 64
                                                           ⇒: implies, 71
£: logarithmico-exponential functions, 442-443
                                                           \: divides, 102
R: real part, 64, 212, 451
                                                           \\: exactly divides, 146
\gamma \ (\approx 0.57722), see Euler's constant
                                                           \perp: is relatively prime to, 115
Γ, see Gamma function
                                                           \prec: grows slower than, 440-443
\delta, 47–56
                                                           ≻: grows faster than, 440-443
\Delta: difference operator, 47-55, 241, 470-471
                                                           \asymp: grows as fast as, 442-443
\epsilon_p(n): largest power of p dividing n, 112-114,
                                                           \sim: is asymptotic to, 8, 428-429
     146
                                                           \approx: approximates, 23
\zeta, see zeta function
                                                           \equiv: is congruent to, 123-126
ϑ, 219-221, 310, 347
                                                           #: cardinality, 39
Θ: Big Theta notation, 448
                                                           !: factorial, 111-115
κ<sub>m</sub>, see cumulants
                                                           j: subfactorial, 194-200
μ, see Möbius function
                                                           ..: interval notation, 73-74
v, see nu function
                                                           ...: ellipsis, 21, 50, 108, ...
\pi ( \approx 3.14159), 26, 70, 146, 244, 485, 564, 596
                                                           Aaronson, Bette Jane, ix
\pi(x), see pi function
                                                           Abel, Niels Henrik, 604, 634
σ: standard deviation, 388; see also Stirling's
                                                           Abramowitz, Milton, 42, 604
     constant
                                                           absolute convergence, 60-62, 64
\sigma_n(x), see Stirling polynomials
                                                           absolute error, 452, 455
\phi (\approx 1.61803): golden ratio, 70, 97, 299-301,
                                                           absolute value of complex number, 64
     310, 553
                                                           absorption identities, 157-158, 261
φ, see phi function
                                                           Acton, John Emerich Edward Dalberg, Baron,
Φ: sum of \varphi, 137-139, 462-463
\Omega: Big Omega notation, 448
                                                           Adams, William Wells, 604, 635
\sum-notation, 22-25, 245
                                                           Addison-Wesley, ix
```

addition formula for $\binom{n}{k}$, 158–159	asymptotics, 439-496
analog for $\binom{n}{k}$, 268	from convergent series, 451
(10)	of Bernoulli numbers, 286, 452
analogs for $\binom{n}{k}$ and $\binom{n}{k}$, 259, 261	of binomial coefficients, 248, 251, 495, 598
dual, 530	of discrepancies, 492, 495
Aho, Alfred Vaino, 604, 633	of factorials, 112, 452, 481–482, 491
Ahrens, Wilhelm Ernst Martin Georg, 8, 604	of harmonic numbers, 276-278, 452, 480-481,
Akhiezer, Naum II'ich, 604	491
Alfred [Brousseau], Brother Ulbertus, 607, 633	of hashing, 426
algebraic integers, 106, 147	of nth prime, 110-111, 456-457, 490
algorithms, analysis of, 138, 413-426	of Stirling numbers, 495, 602
divide and conquer, 79	of sums, using Euler's summation formula,
Euclid's, 103, 123, 303–304	469-489
Fibonacci's, 95, 101	of sums, using tail-exchange, 466-469,
Gosper's, 224–227	486-489
Gosper-Zeilberger, 229-241, 254-255	of sums of powers, 491
greedy, 101, 295 self-certifying, 104	of wheel winners, 76, 453–454
Alice, 31, 408-410, 430	table of expansions, 452
Allardice, Robert Edgar, 2, 604	usefulness of, 76, 439
ambiguous notation, 245	Atkinson, Michael David, 605, 633
American Mathematical Society, viii	Austin, Alan Keith, 607
AMS Euler, ix, 657	automaton, 405
analysis of algorithms, 138, 413–426	automorphic numbers, 520
analytic functions, 196	average, 384
ancestor, 117, 291	of a reciprocal, 432
André, Antoine Désiré, 604, 635	variance, 423-425
Andrews, George W. Eyre, 215, 330, 530, 575,	B _n , see Bernoulli numbers
605, 634, 635	Bachmann, Paul Gustav Heinrich, 443, 462, 605
answers, notes on, 497, 637, viii	Bailey, Wilfrid Norman, 223, 548, 605, 634
anti-derivative operator, 48, 470-471	Ball, Walter William Rouse, 605, 633
anti-difference operator, 48, 54, 470-471	Banach, Stefan, 433
Apéry, Roger, 238, 605, 629, 634	Barlow, Peter, 605, 634
numbers, 238–239, 255	Barton, David Elliott, 602, 609
approximation, see asymptotics	base term, 240
of sums by integrals, 45, 276–277, 469–475	baseball, 73, 148, 195, 519, 648, 653
Archibald, Raymond Clare, 608	BASIC, 173, 446
argument of hypergeometric, 205	basic fractions, 134, 138
arithmetic progression, 30, 376	basis of induction, 3, 10-11, 320-321
floored, 89-94	Bateman, Harry, 626
sum of, 6, 26, 30–31	Baum, Lyman Frank, 581
Armageddon, 85	Beatty, Samuel, 605, 633
Armstrong, Daniel Louis (= Satchmo), 80	bee trees, 291
Arnol'd, Vladimir Igorevich, 605, 635	Beeton, Barbara Ann Neuhaus Friend Smith,
art and science, 234	viii
ascents, 267-268, 270	Bell, Eric Temple, 332, 605, 635
Askey, Richard Allen, 634	numbers, 373, 493, 603
associative law, 30, 61, 64	Bender, Edward Anton, 606, 636

Bernoulli, Jakob (= Jacobi = Jacques = James),	reciprocal of, 188–189, 246, 254
283, 470, 606	top ten identities of, 174
numbers, see Bernoulli numbers	wraparound, 250 (exercise 75), 315
polynomials, 367–368, 470–475	binomial convolution, 365, 367
polynomials, graphs of, 473	binomial distribution, 401-402, 415, 428, 432
trials, 402; see also coins, flipping	negative, 402-403, 428
Bernoulli, Johann (= Jean), 622	binomial number system, 245
Bernoulli numbers, 283-290	binomial series, generalized, 200-204, 243,
asymptotics of, 286, 452	252, 363
calculation of, 288, 620	binomial theorem, 162-163
denominators of, 315	as hypergeometric series, 206, 221
generalized, see Stirling polynomials	discovered mechanically, 230-233
generating function for, 285, 351, 365	for factorial powers, 245
relation to tangent numbers, 287	special cases, 163, 199
table of, 284, 620	Blom, Gunnar, 606, 636
Bernshtein (= Bernstein), Sergei Natanovich,	bloopergeometric series, 243
636	Boas, Ralph Philip, Jr., 600, 606, 636, viii
Bertrand, Joseph Louis François, 145, 606, 633	Boggs, Wade Anthony, 195
postulate, 145, 500, 550	Bohl, Piers Paul Felix [= Bol', Pirs Georgievich],
Bessel, Friedrich Wilhelm, functions, 206, 527	87, 606
Beyer, William Hyman, 606	Bois-Reymond, Paul David Gustav du, 440, 610,
biased coin, 401	617
bicycles, 260, 500	Boncompagni, Prince Baldassarre, 613
Bieberbach, Ludwig, 617	bootstrapping, 463-466
Bienaymé, Irénée Jules, 606	to estimate nth prime, 456-457
Big Ell notation, 444	Borchardt, Carl Wilhelm, 617
Big Oh notation, 76, 443-449	Borel, Émile Félix Édouard Justin, 606, 636
Big Omega notation, 448	Borwein, Jonathan Michael, 606, 635
Big Theta notation, 448	Borwein, Peter Benjamin, 606, 635
bijection, 39	bound variables, 22
Bill, 408–410, 430	boundary conditions on sums,
binary logarithm, 70	can be difficult, 75, 86
binary notation (radix 2), 11-13, 15-16, 70,	made easier, 24–25, 159
113–114	bowling, 6
binary partitions, 377	box principle, 95, 130, 512
binary search, 121, 183	bracket notation,
binary trees, 117	for coefficients, 197, 331
Binet, Jacques Philippe Marie, 299, 303,	for true/false values, 24-25
606, 633	Brahma, Tower of, 1, 4, 278
binomial coefficients, 153-242	Branges, Louis de, 617
addition formula, 158–159	Brent, Richard Peirce, 306, 525, 564, 606
asymptotics of, 248, 251, 495, 598	bricks, 313, 374
combinatorial interpretation, 153, 158, 160,	Brillhart, John David, 606, 633
169-170	Brocot, Achille, 116, 607
definition, 154, 211	Broder, Andrei Zary, 632, ix
dual, 530	Brooke, Maxey, 607, 635
generalized, 211, 318, 530	Brousseau, Brother Alfred, 607, 633
indices of, 154	Brown, Mark Robbin, 632
middle, 187, 255–256, 495	Brown, Morton, 501, 607
, 10,, 200 200, 100	,,,,,,,,

Brown, Roy Howard, ix	Chace, Arnold Buffum, 608, 633
Brown, Thomas Craig, 607, 633	Chaimovich, Mark, 608
Brown, Trivial, 607	chain rule, 54, 483
Brown, William Gordon, 607	change, 327-330, 374
Brown University, ix	large amounts of, 344–346, 492
Browning, Elizabeth Barrett, 320	changing the index of summation, 30–31, 39
Bruijn, Nicolaas Govert de, 444, 447, 500, 609,	changing the tails of a sum, 466-469
635, 636	cheating, viii, 195, 388, 401
cycle, 500	not, 158, 323
bubblesort, 448	Chebyshev, Pafnutiĭ L'vovich, 38, 145, 608, 633
Buckholtz, Thomas Joel, 620	inequality, 390-391, 428, 430
Bulwer-Lytton, Edward George Earle Lytton,	monotonic inequalities, 38, 576
Baron, v	cheese slicing, 19
Burma-Shave, 541	Chen, Pang-Chieh, 632
Burr, Stefan Andrus, 607, 635	Chinese Remainder Theorem, 126, 146
	Chu Shih-Chieh [= Zhū Shìjié], 169
calculators, 67, 77, 459	Chung, Fan-Rong King, ix, 608, 635
failure of, 344	Clausen, Thomas, 608, 634, 635
calculus, vi, 33	product identities, 253
finite and infinite, 47–56	clearly, clarified, 417–418, 581
candy, 36	clichés, 166, 324, 357
Canfield, Earl Rodney, 602, 607, 636	closed form, 3, 7, 321
cards,	for generating functions, 317
shuffling, 437	not, 108, 573
stacking, 273–274, 280, 309	pretty good, 346
Carlitz, Leonard, 607, 635	closed interval, 73-74
Carroll, Lewis (= Dodgson, Rev. Charles	Cobb, Tyrus Raymond, 195
Lutwidge), 31, 293, 607, 608, 630	coefficient extraction, 197, 331
carries,	• • •
across the decimal point, 70	Cohen, Henri José, 238
in divisibility of $\binom{m+n}{m}$, 245, 536	coins, 327–330
in Fibonacci number system, 297, 561	biased, 401
Cassini, Jean Dominique, 292, 607	fair, 401, 430
identity, 292–293, 300	flipping, 401–410, 430–432, 437–438
identity, converse, 314	spinning, 401
identity, generalized, 303, 310	Collingwood, Stuart Dodgson, 608
Catalan, Eugène Charles, 203, 361, 607	Collins, John, 624
Catalan numbers, 203	Colombo, Cristoforo (= Columbus, Christo-
combinatorial interpretations, 358-360,	pher), 74
565, 568	coloring, 496
generalized, 361	Columbia University, ix
in sums, 181, 203, 317	combinations, 153
table of, 203	common logarithm, 449
Cauchy, Augustin Louis, 607, 633	commutative law, 30, 61, 64
Čech, Eduard, vi	failure of, 322, 502, 551
ceiling function, 67-69	relaxed, 31
converted to floor, 68, 96	complete graph, 368
graph of, 68	complex factorial powers, 211
center of gravity, 273-274, 309	complex numbers, 64
certificate of correctness, 104	roots of unity, 149, 204, 375, 553, 574, 598

composite numbers, 105, 518	Crelle, August Leopold, 609, 633
composition of generating functions, 428	cribbage, 65
computer algebra, 42, 268, 501, 539	Crispin, Mark Reed, 628
Comtet, Louis, 609, 636	Crowe, Donald Warren, 609, 633
Concrete Math Club, 74	crudification, 447
concrete mathematics, defined, vi	Csirik, János András, 590, 609
conditional convergence, 59	cubes, sum of consecutive, 51, 63, 283, 289, 367
conditional probability, 416-419, 424-425	cumulants, 397-401
confluent hypergeometric series, 206, 245	infinite, 576
congruences, 123-126	of binomial distribution, 432
Connection Machine, 131	of discrete distribution, 438
contiguous hypergeometrics, 529	of Poisson distribution, 428-429
continuants, 301-309, 501	third and fourth, 429, 579, 589
and matrices, 318-319	CUNY (= City University of New York), ix
Euler's identity for, 303, 312	Curtiss, David Raymond, 609, 634
zero parameters in, 314	cycles,
continued fractions, 301, 304-309, 319	de Bruijn, 500
large partial quotients of, 553, 563, 564, 602	of beads, 139–140
convergence,	of permutations, 259–262
absolute, 60–62, 64	cyclic shift, 12
conditional, 59	cyclotomic polynomials, 149
of power series, 206, 331, 451, 532	D 1
convex regions, 5, 20, 497	D, see derivative operator
convolution, 197, 246, 333, 353-364	Dating Game, 506
binomial, 365, 367	David, Florence Nightingale, 602, 609
identities for, 202, 272, 373	Davis, Philip Jacob, 609
polynomials, 373	Davison, John Leslie, 307, 604, 609, 635
Stirling, 272, 290	de Branges, Louis, 617
Vandermonde, see Vandermonde convolution	de Bruijn, Nicolaas Govert, 444, 447, 500, 609,
Conway, John Horton, 410, 609	635, 636
cotangent function, 286, 317	cycle, 500
counting,	de Finetti, Bruno, 24, 613
combinations, 153	de Lagny, Thomas Fantet, 304, 621
cycle arrangements, 259–262	de Moivre, Abraham, 297, 481, 609
derangements, 193–196, 199–200	Dedekind, Julius Wilhelm Richard, 136–137, 609
integers in intervals, 73-74	definite sums, analogous to definite integrals,
necklaces, 139–141	49–50
parenthesized formulas, 357-359	deg, 226, 232
permutations, 111	degenerate hypergeometric series, 209-210, 216,
permutations by ascents, 267-268	222, 247
permutations by cycles, 262	derangements, 194–196
set partitions, 258–259	generating function, 199-200
spanning trees, 348-350, 356, 368-369, 374	derivative operator, 47-49
with generating functions, 320-330	converting between D and Δ , 470-471
coupon collecting, 583	converting between D and θ, 310
Cover, Thomas Merrill, 636	with generating functions, 33, 333, 364-365
Coxeter, Harold Scott Macdonald, 605	with hypergeometric series, 219-221
Cramér, Carl Harald, 525, 609, 634	descents, see ascents
Cray X-MP, 109	dgf: Dirichlet generating function, 370

dice, 381-384	Dixon, Alfred Cardew, 610, 634
fair, 382, 417, 429	formula, 214
loaded, 382, 429, 431	DNA, Martian, 377
nonstandard, 431	Dodgson, Charles Lutwidge, see Carroll
pgf for, 399–400	domino tilings, 320-327, 371, 379
probability of doubles, 427	ordered pairs of, 375
supposedly fair, 392	Dorothy Gale, 581
Dickson, Leonard Eugene, 510, 609	double generating functions, see super generat-
Dieudonné, Jean Alexandre, 523	ing functions
difference operator, 47-55, 241	double sums, 34–41, 246, 249
converting between D and Δ , 470–471	considered useful, 46, 183–185
nth difference, 187-192, 280-281	faulty use of, 63, 65
nth difference of product, 571	infinite, 61
differentiably finite power series, 374, 380	over divisors, 105
differential operators, see derivative operator,	telescoping, 255
theta operator	doubloons, 436–437
difficulty measure for summation, 181	doubly exponential recurrences, 97, 100,
Dijkstra, Edsger Wybe, 173, 609, 635	101, 109
dimers and dimes, 320, see dominoes and	doubly infinite sums, 59, 98, 482-483
change	Dougall, John, 171, 610
diphages, 434, 438	downward generalization, 2, 95, 320-321
Dirichlet, Peter Gustav Lejeune, 370, 610, 633	Doyle, Sir Arthur Conan, 162, 228-229, 405, 610
box principle, 95, 130, 512	drones, 291
generating functions, 370-371, 373, 432, 451	Drysdale, Robert Lewis (Scot), III, 632
probability generating functions, 432	du Bois-Reymond, Paul David Gustav, 440, 610,
discrepancy, 88–89, 97	617
and continued fractions, 319, 492, 602	duality, 69 $\binom{n}{n}$ 11 $\binom{n-1}{n}$ 522
asymptotics of, 492, 495	between $\binom{n}{k}$ and $1/n\binom{n-1}{k}$, 530
discrete probability, 381–438	between factorial and Gamma functions, 211
defined, 381	between floors and ceilings, 68-69, 96
disease, 333	between gcd and lcm, 107
distribution,	between rising and falling powers, 63 between Stirling numbers of different kinds,
of fractional parts, 87	267
of primes, 111	Dubner, Harvey, 610, 631, 633
of probabilities, see probability distributions	Dudeney, Henry Ernest, 610, 633
of things into groups, 83-85	Dunkel, Otto, 614, 633
distributive law, 30, 35, 60, 64	Dunn, Angela Fox, 627, 635
for gcd and lcm, 145	Dunnington, Guy Waldo, 610
for mod, 83	duplication formulas, 186, 244
divergent sums, 57, 60	Dupré, Lyn Oppenheim, ix
considered useful, 346-348, 451	Durst, Lincoln Kearney, viii
illegitimate, 504, 532	Dyson, Freeman John, 172, 239, 610, 615
divide and conquer, 79	
divides exactly, 146	$e (\approx 2.71828),$
in binomial coefficients, 245	as canonical constant, 70, 596
in factorials, 112–114, 146	representations of, 122, 150
divisibility, 102–105	en, see Euclid numbers
by 3, 147	E: expected value, 385-386
of polynomials, 225	E: shift operator, 55, 188, 191

En, see Euler numbers	numbers, 559, 570, 620; see also Eulerian
Edwards, Anthony William Fairbank, 610	numbers
eeny-meeny-miny-mo, see Josephus problem	polynomials, 574
efficiency, different notions of, 24, 133	pronunciation of name, 147
egf: exponential generating function, 364	summation formula, 469–475
eggs, 158	theorem, 133, 142, 147
Egyptian mathematics, 95, 150	totient function, see phi function
bibliography of, 608	triangle, 268, 316
Einstein, Albert, 72, 307	Eulerian numbers, 267-271, 310, 316, 378, 574
Eisele, Carolyn, 624-625	combinatorial interpretations, 267-268, 557
Eisenstein, Ferdinand Gotthold Max, 202, 610	generalized, 313
Ekhad, Shalosh B, 546	generating function for, 351
elementary events, 381-382	second-order, 270-271
Elkies, Noam David, 131, 610	table of, 268
ellipsis (···), 21	event, 382
advantage of, 21, 25, 50	eventually positive function, 442
disadvantage of, 25	exact cover, 376
elimination of, 108	exactly divides, 146
empirical estimates, 391-393, 427	in binomial coefficients, 245
empty case,	in factorials, 112-114, 146
for spanning trees, 349, 565	excedances, 316
for Stirling numbers, 258	exercises, levels of, viii, 72-73, 95, 511
for tilings, 320-321	exp: exponential function, 455
for Tower of Hanoi, 2	expectation, see expected value
empty product, 48, 106, 111	expected value, 385-387
empty sum, 24, 48	using a pgf, 395
entier function, see floor function	exponential function, discrete analog of, 54
equality, one-way, 446-447, 489-490	exponential function, discrete analog of, 34 exponential generating functions, 364-369,
equivalence relation, 124	421–422
Eratosthenes, sieve of, 111	
Erdélyi, Arthur, 629, 636	exponential series, generalized, 200-202, 242,
Erdős, Pál (= Paul), 418, 525, 548, 575,	364, 369
610-611, 634, 636	exponents, laws of, 52, 63
error function, 166	F, see hypergeometric functions
errors, absolute versus relative, 452, 455	F _n , see Fibonacci numbers
errors, locating our own, 183	factorial expansion of binomial coefficients, 156
Eswarathasan, Arulappah, 611, 635	211
Euclid (= $E \psi \kappa \lambda \epsilon \iota \delta \eta \varsigma$), 107–108, 147, 611	factorial function, 111-115, 346-348
algorithm, 103–104, 123, 303–304	approximation to, see Stirling's approxima-
numbers, 108–109, 145, 147, 150, 151	tion
Euler, Leonhard, i, vii, ix, 6, 48, 122, 132–134,	duplication formula, 244
202, 205, 207, 210, 267, 277, 278, 286, 299,	generalized to nonintegers, 192, 210-211,
301–303, 469, 471, 513, 529, 575, 603, 605,	213–214, 316
609, 611–613, 629, 633–636	factorial powers, see falling factorial powers,
constant (≈ 0.57722), 278, 306-307, 319,	rising factorial powers
481, 596	factorization into primes, 106-107, 110
disproved conjecture, 131	factorization of summation conditions, 36
identity for continuants, 303, 312	fair coins, 401, 430
identity for hypergeometrics, 244	fair dice, 382, 417
INCIDENT TOT THE POLECULION, ALL	1411 4100, 002, 111

falling factorial powers, 47	Fisher, Sir Ronald Aylmer, 613, 636
binomial theorem for, 245	fixed points, 12, 393-394
complex, 211	pgf for, 400-401, 428
difference of, 48, 53, 188	flipping coins, 401-410, 430-432, 437-438
negative, 52, 63, 188	floor function, 67-69
related to ordinary powers, 51, 262-263, 598	converted to ceiling, 68, 96
related to rising powers, 63, 312	graph of, 68
summation of, 50-53	Floyd, Robert W, 634, 635
fans, ix, 193, 348	food, see candy, cheese, eggs, pizza, sherry
Farey, John, series, 118-119, 617	football, 182
consecutive elements of, 118-119, 150	football victory problem, 193-196, 199-200, 428
distribution of, 152	generalized, 429
enumeration of, 134, 137-139, 462-463	mean and variance, 393-394, 400-401
Faulhaber, Johann, 288, 613, 620	Forcadel, Pierre, 613, 634
Feder, Tomás, 635	formal power series, 206, 331, 348, 532
Feigenbaum, Joan, 632	FORTRAN, 446
Feller, William, 381, 613, 636	Fourier, Jean Baptiste Joseph, 22, 613
Fermat, Pierre de, 130, 131, 613	series, 495
numbers, 131–132, 145, 525	fractional parts, 70
Fermat's Last Theorem, 130-131, 150, 524, 555	in Euler's summation formula, 470
Fermat's theorem (= Fermat's Little Theorem),	in polynomials, 100
131–133, 141–143, 149	related to mod, 83
converse of, 132, 148	uniformly distributed, 87
Fibonacci, Leonardo, 95, 292, 549, 613, 633, 634	fractions, 116-123
addition, 296-297, 317	basic, 134, 138
algorithm, 95, 101	continued, 301, 304-309, 319, 564
factorial, 492	partial, see partial fraction expansions
multiplication, 561	unit, 95, 150
number system, 296-297, 301, 307, 310, 318	unreduced, 134-135, 151
odd and even, 307–308	Fraenkel, Aviezri S, 515, 563, 613-614, 633
Fibonacci numbers, 290-301, 575	Frame, James Sutherland, 614, 633
and continuants, 302	Francesca, Piero della, 614, 635
and sunflowers, 291	Franel, Jérome, 614
closed forms for, 299-300, 331	number, 549
combinatorial interpretations of, 291-292,	Fraser, Alexander Yule, 2, 604
302, 321, 549	Frazer, William Donald, 614, 634
egf for, 570	Fredman, Michael Lawrence, 513, 614
ordinary generating functions for, 297-300,	free variables, 22
337-340, 351	Freĭman, Grigoriĭ Abelevich, 608
second-order, 375	friendly monster, 545
table of, 290, 293	frisbees, 434-435, 437
Fibonomial coefficients, 318, 556	Frye, Roger Edward, 131
Fine, Henry Burchard, 625	Fundamental Theorem of Algebra, 207
Fine, Nathan Jacob, 603	Fundamental Theorem of Arithmetic, 106-107
Finetti, Bruno de, 24, 613	Fundamental Theorem of Calculus, 48
finite calculus, 47–56	Fuss, Nicolaĭ Ivanovich, 361, 614
finite state language, 405	Fuss-Catalan numbers, 361
Finkel, Raphael Ari, 628	Fuss, Paul Heinrich von [= Fus, Pavel Nikolae-
Fisher, Michael Ellis, 613, 636	ich], 611-612

Gale, Dorotny, 581	Genocchi, Angelo, 615
games, see bowling, cards, cribbage, dice,	numbers, 551, 574
Penny ante, sports	geometric progression, 32
Gamma function, 210-214, 609	floored, 114
duplication formula for, 528	generalized, 205-206
Stirling's approximation for, 482	sum of, 32–33, 54
gaps between primes, 150-151, 525	Gessel, Ira Martin, 270, 615, 634
Gardner, Martin, 614, 634, 636	Gibbs, Josiah Willard, 630
Garfunkel, Jack, 614, 636	Gilbert, William Schwenck, 444
Gasper, George, Jr., 223, 614	Ginsburg, Jekuthiel, 615
Gauß (= Gauss), Karl (= Carl) Friedrich, vii,	Glaisher, James Whitbread Lee, 615, 636
6, 7, 123, 205, 207, 212, 501, 510, 529, 610,	constant (≈ 1.28243), 595
615, 633, 634	
hypergeometric series, 207	God, 1, 307, 521
identity for hypergeometrics, 222, 247, 539	Goldbach, Christian, 611-612
trick, 6, 30, 112, 313	theorem, 66
gcd, 103, see greatest common divisor	golden ratio, 299, see phi
generalization, 11, 13, 16	golf, 431
downward, 2, 95, 320-321	Golomb, Solomon Wolf, 460, 507, 615, 629, 633
generalized binomial coefficients, 211, 318, 530	digit-count sum, 460-462, 490 (exercise 22),
generalized binomial series, 200–204, 243,	494
252, 363	self-describing sequence, 66, 495
generalized exponential series, 200-202, 242,	Good, Irving John, 615, 634
364, 369	Goodfellow, Geoffrey Scott, 628
generalized factorial function, 192, 210-211,	Gopinath, Bhaskarpillai, 501, 621
213–214, 316	Gordon, Peter Stuart, ix
generalized harmonic numbers, 277, 283, 286, 370	Gosper, Ralph William, Jr., 224, 564, 615, 634
generalized Stirling numbers, 271–272, 311, 316,	algorithm, 224-227
319, 598	algorithm, examples, 227–229, 245, 247–248,
generating functions, 196-204, 297-300, 320-380	253-254, 534
composition of, 428	Gosper-Zeilberger algorithm, 229–241, 319
Dirichlet, 370-371, 373, 432, 451	examples, 254–255, 547
exponential, 364-369, 421-422	summary, 233
for Bernoulli numbers, 285, 351, 365	goto, considered harmful, 173
for convolutions, 197, 333–334, 353–364,	Gottschalk, Walter Helbig, vii
369, 421	graffiti, vii, ix, 59, 637
for Eulerian numbers, 351, 353	Graham, Cheryl, ix
for Fibonacci numbers, 297–300, 337–340,	Graham, Ronald Lewis, iii, iv, vi, ix, 102, 506,
351, 570	608-609, 611, 615-616, 629, 632, 633, 635
for harmonic numbers, 351–352	Grandi, Luigi Guido, 58, 616
for minima, 377	Granville, Andrew James, 548
for probabilities, 394–401	graph theory, see spanning trees
for simple sequences, 335	graphs of functions,
for special numbers, 351–353	1/x, 262–263
for spectra, 307, 319	$e^{-x^2/10}$, 483
for Stirling numbers, 351–352, 559	Bernoulli polynomials, 473
Newtonian, 378	floor and ceiling, 68
of generating functions, 351, 353, 421	hyperbola, 440
super, 353, 421	partial sums of a sequence, 345–346
table of manipulations, 334	Graves, William Henson, 632
vanie or mampuravions, 334	Graves, vviillam mensoll, USZ

gravity, center of, 273-274, 309	hcf, 103, see greatest common divisor
Gray, Frank, code, 497	Heath-Brown, David Rodney, 629
greatest common divisor, 92, 103-104, 107, 145	Heiberg, Johan Ludvig, 611
greatest integer function, see floor function	Heisenberg, Werner Karl, 481
greatest lower bound, 65	Helmbold, David Paul, 632
greed, 74, 387-388; <i>see also</i> rewards	Henrici, Peter Karl Eugen, 332, 545, 602, 617,
greedy algorithm, 101, 295	
Green, Research Sink, 607	634, 636
Greene, Daniel Hill, 616	Hermite, Charles, 538, 555, 617, 628, 634
Greitzer, Samuel Louis, 616, 633	herring, red, 497
Gross, Oliver Alfred, 616, 635	Herstein, Israel Nathan, 8, 618
Grünbaum, Branko, 498, 616	hexagon property, 155–156, 242, 251
Grundy, Patrick Michael, 627, 633	highest common factor, see greatest common
Guibas, Leonidas Ioannis (= Leo John), 590,	divisor
616, 632, 636	Hillman, Abraham P, 618, 634
Guy, Richard Kenneth, 523, 525, 616	Hoare, Charles Antony Richard, 28, 73, 618, 620
11 1 1	Hofstadter, Douglas Richard, 633
H _n , see harmonic numbers	Hoggatt, Verner Emil, Jr., 618, 622, 634
Haar, Alfréd, vii	Holden, Edward Singleton, 624
Hacker's Dictionary, 124, 628	- · · · · · · · · · · · · · · · · · · ·
Haiman, Mark, 632	Holmboe, Berndt Michael, 604
Håland, Inger Johanne, 616, 633	Holmes, Thomas Sherlock Scott, 162, 228-229
half-open interval, 73–74	holomorphic functions, 196
Hall, Marshall, Jr., 616	homogeneous linear equations, 239, 543
Halmos, Paul Richard, v, vi, 616-617	horses, 17, 18, 468, 503
Halphen, Georges Henri, 305, 617	Hsu, Lee- $Tsch$ (= $Lietz$ = $Leetch$) $Ching-Siur$,
halving, 79, 186–187	618, 634
Hamburger, Hans Ludwig, 591, 617	Hurwitz, Adolf, 635
Hammersley, John Michael, v, 617, 636	hyperbola, 440
Hanoi, Tower of, 1–4, 26–27, 109, 146	hyperbolic functions, 285-286
variations on, 17-20	hyperfactorial, 243, 491
Hansen, Eldon Robert, 42, 617	hypergeometric series, 204–223
Hardy, Godfrey Harold, 111, 442–443, 617,	confluent, 206, 245
633, 636	contiguous, 529
harmonic numbers, 29, 272–282	5 ,
analogous to logarithms, 53	degenerate, 209-210, 216, 222, 247
asymptotics of, 276–278, 452, 480–481, 491	differential equation for, 219-221
complex, 311, 316	Gaussian, 207
divisibility of, 311, 314, 319	partial sums of, 165–166, 223–230, 224, 245
generalized, 277, 283, 286, 370	transformations of, 216-223, 247, 253
generating function for, 351-352	hypergeometric terms, 224, 243, 245, 527, 575
second-order, 277, 280, 311, 550-552	similar, 541
sums of, 41, 313, 316, 354–355	: 00
sums using summation by parts, 56, 279–282,	i, 22
312	implicit recurrences, 136–139, 193–195, 284
table of, 273	indefinite summation, 48–49
harmonic series, divergence of, 62, 275-276	by parts, 54-56
Harry, Matthew Arnold, double sum, 249 hashing, 411-426, 430	of binomial coefficients, 161, 223-224, 246, 248, 313
hats, see football victory problem	of hypergeometric terms, 224-229

independent random variables, 384, 427	recurrence, generalized, 13-16, 79-81, 498
pairwise, 437	subset, 20
products of, 386	Jouaillec, Louis Maurice, 632
sums of, 386, 396–398	Jungen, Reinwald, 618, 635
index set, 22, 30, 61	K, see continuants
index variable, 22, 34, 60	Kafkaesque scenario, 274
induction, 3, 7, 10-11, 43	Kaplansky, Irving, 8, 618
backwards, 18	Karamata, Jovan, 257, 618
basis of, 3, 320–321	Karlin, Anna Rochelle, 632
failure of, 17, 575	Kaucký, Josef, 618, 635
important lesson about, 508, 549	Keiper, Jerry Bruce, 619
inductive leap, 4, 43	Kellogg, Oliver Dimon, 609
infinite sums, 56-62, 64	Kent, Clark (= Kal-El), 372
doubly, 59, 98, 482–483	kernel functions, 370
information retrieval, 411-413	, , , , , , , , , , , , , , , , , , ,
INT function, 67	Ketcham, Henry King, 148
insurance agents, 391	kilometers, 301, 310, 550
integer part, 70	Kilroy, James Joseph, vii
integration, 45-46, 48	Kipling, Joseph Rudyard, 260
by parts, 54, 472	Kissinger, Henry Alfred, 379
of generating functions, 333, 365	Klamkin, Murray Seymour, 619, 633, 635
interchanging the order of summation, 34-41,	Klarner, David Anthony, 632
105, 136, 183, 185, 546	knockout tournament, 432-433
interpolation, 191-192	Knoebel, Robert Arthur, 619
intervals, 73-74	Knopp, Konrad, 619, 636
invariant relation, 117	Knuth, Donald Ervin, iii-vi, viii, ix, 102, 267,
inverse modulo m, 125, 132, 147	411, 506, 553, 616, 618–620, 632, 633,
inversion formulas, 193	636, 657
for binomial coefficients, 192-196	numbers, 78, 97, 100
for Stirling numbers, 264, 310	Knuth, John Martin, 636
for sums over divisors, 136–139	Knuth, Nancy Jill Carter, ix
irrational numbers, 238	Kramp, Christian, 111, 620
continued fraction representations, 306	Kronecker, Leopold, 521
rational approximations to, 122–123	delta notation, 24
spectra of, 77, 96, 514	Kruk, John Martin, 519
Stern-Brocot representations, 122-123	Kummer, Ernst Eduard, 206, 529, 620-621, 634
Iverson, Kenneth Eugene, 24, 67, 618, 633	formula for hypergeometrics, 213, 217, 535
convention, 24-25, 31, 34, 68, 75	Kurshan, Robert Paul, 501, 621
Jacobi, Carl Gustav Jacob, 64, 618	L_n , see Lucas numbers
polynomials, 543, 605	Lagny, Thomas Fantet de, 304, 621
Janson, Carl Svante, 618	Lagrange (= de la Grange), Joseph Louis,
Jarden, Dov, 556, 618	comte, 470, 621, 635
Jeopardy, 361	identity, 64
joint distribution, 384	Lah, Ivo, 621, 634
Jonassen, Arne Tormod, 618	Lambert, Johann Heinrich, 201, 363, 613, 621
Jones, Bush, 618	Landau, Edmund Georg Hermann, 443, 448,
Josephus, Flavius, 8, 12, 19–20, 618	621, 634, 636
numbers, 81, 97, 100	Laplace, Pierre Simon, marquis de, 466, 606, 621
problem 8-17 79-81 95 100 144	last but not least 132 469

T	
Law of Large Numbers, 391	lower index of binomial coefficient, 154
lcm, 103, see least common multiple	complex valued, 211
leading coefficient, 235	lower parameters of hypergeometric series, 205
least common multiple, 103, 107, 145	Loyd, Samuel, 560, 622
of {1,,n}, 251, 319, 500	Lucas, François Édouard Anatole, 1, 292,
least integer function, see ceiling function	622–623, 633–635
least upper bound, 57, 61	numbers, 312, 316, 556
LeChiffre, Mark Well, 148	Łuczak, Tomasz Jan, 618
left-to-right maxima, 316	Lyness, Robert Cranston, 501, 623
Legendre, Adrien Marie, 621, 633	Maclaurin, Colin, 469, 623
polynomials, 543, 573, 575	MacMahon, Maj. Percy Alexander, 140, 623
Lehmer, Derrick Henry, 526, 622, 633, 635	magic tricks, 293
Leibniz, Gottfried Wilhelm, Freiherr von, vii,	Mallows, Colin Lingwood, 506
168, 616, 622	Markov, Andreĭ Andreevich (the elder), pro-
Lekkerkerker, Cornelius Gerrit, 622	cesses, 405
Lengyel, Tamás Lóránt, 622, 635	Martian DNA, 377
levels of problems, viii, 72-73, 95, 511	Martzloff, Jean-Claude, 623
Levine, Eugene, 611, 635	mathematical induction, 3, 7, 10-11, 43
lexicographic order, 441	backwards, 18
lg: binary logarithm, 70	basis of, 3, 320–321
L'Hospital, Guillaume François Antoine de,	failure of, 17, 575
marquis de Sainte Mesme, rule, 340,	important lesson about, 508, 549
396, 542	Mathews, Edwin Lee (= 41), 8, 21, 94, 105,
Lĭ Shànlán Rénshū [= Qiūrèn], 269, 622	106, 343
Liang, Franklin Mark, 632	Matiîasevich (= Matijasevich), Îuriĭ (= Yuri)
Lieb, Elliott Hershel, 622, 636	Vladimirovich, 294, 623, 635
lies, and statistics, 195	Mauldin, Richard Daniel, 611
Lincoln, Abraham, 401	Maxfield, Margaret Waugh, 630, 635
linear difference operators, 240	Mayr, Ernst, ix, 632, 633
lines in the plane, 4-8, 17, 19	McEliece, Robert James, 71
Liouville, Joseph, 136-137, 622	McGrath, James Patrick, 632
little oh notation, 448	McKellar, Archie Charles, 614, 634
considered harmful, 448-449	mean (average) of a probability distribution,
Littlewood, John Edensor, 239	384–399
ln: natural logarithm, 276	median, 384, 385, 437
discrete analog of, 53-54	mediant, 116
sum of, 481–482	Melzak, Zdzislaw Alexander, vi, 623
log: common logarithm, 449	Mendelsohn, Nathan Saul, 623, 634
Logan, Benjamin Franklin (= Tex), Jr., 287,	Merchant, Arif Abdulhussein, 632
622, 634–635	merging, 79, 175
logarithmico-exponential functions, 442-443	Mersenne, Marin, 109-110, 131, 613, 623
logarithms, 449	numbers, 109–110, 151, 292
binary, 70	primes, 109-110, 127, 522-523
discrete analog of, 53–54	Mertens, Franz Carl Joseph, 139, 623
in O-notation, 449	constant, 23
natural, 276	miles, 301, 310, 550
Long, Calvin Thomas, 622, 634	Mills, Stella, 623
lottery, 387-388, 436-437	Mills, William Harold, 623, 634
Loú Shìtūo, 622	minimum, 65, 249, 377
,	1 1 1

Mirsky, Leon, 635	Newman, Morris, 635
mixture of probability distributions, 428	Newton, Sir Isaac, 189, 277, 624
mnemonics, 74, 164	series, 189-192
Möbius, August Ferdinand, 136, 138, 623	Newtonian generating function, 378
function, 136-139, 145, 149, 370-371, 462-463	Niven, Ivan Morton, 332, 624, 633
mod: binary operation, 81-85	nonprime numbers, 105, 518
mod: congruence relation, 123-126	nontransitive paradox, 410
mod 0, 82-83, 515	normal distribution, 438
mode, 384, 385, 437	notation, $x-xi$, 2, 637
modular arithmetic, 123–129	extension of, 49, 52, 154, 210-211, 266, 271,
modulus, 82	311, 319
Moessner, Alfred, 624, 636	ghastly, 67, 175
Moivre, Abraham de, 297, 481, 609	need for new, 83, 115, 267
moments, 398–399	nu function: sum of digits,
Montgomery, Hugh Lowell, 463, 624	binary (radix 2), 12, 114, 250, 525, 557
Montgomery, Peter Lawrence, 624, 634	other radices, 146, 525, 552
Moriarty, James, 162	null case,
Morse, Samuel Finley Breese, code, 302–303,	for spanning trees, 349, 565
324, 551 Magaz I ac 624 622	for Stirling numbers, 258
Moser, Leo, 624, 633	for tilings, 320-321
Motzkin, Theodor Samuel, 556, 564, 618, 624	for Tower of Hanoi, 2
mountain ranges, 359, 565	number system, 107, 119
mu function, see Möbius function	binomial, 245
multinomial coefficients, 168, 171–172, 569	Fibonacci, 296–297, 301, 307, 310, 318
recurrence for, 252	prime-exponent, 107, 116
multinomial theorem, 149, 168	radix, see radix notation
multiple of a number, 102	residue, 126–129, 144
multiple sums, 34-41, 61; see also double sums	Stern-Brocot, see Stern-Brocot number
multiple-precision numbers, 127	system
multiplicative functions, 134-136, 144, 371	number theory, 102-152
multisets, 77, 270	o, considered harmful, 448-449
mumble function, 83, 84, 88, 507, 513	O-notation, 76, 443–449
Murdock, Phoebe James, viii	
Murphy's Law, 74	abuse of, 447–448, 489
Myers, Basil Roland, 624, 635	one-way equalities with, 446-447, 489-490
0 20 00 120	obvious, clarified, 417, 526
name and conquer, 2, 32, 88, 139	odds, 410
National Science Foundation, ix	Odlyzko, Andrew Michael, 81, 564, 590, 616,
natural logarithm, 53-54, 276, 481-482	624, 636
Naval Research, ix	Office of Naval Research, ix
Navel research, 299	one-way equalities, 446-447, 489-490
nearest integer, 95	open interval, 73-74, 96
rounding to, 195, 300, 344, 491	operators, 47
unbiased, 507	anti-derivative $(\underline{\int})$, 48
necessary and sufficient conditions, 72	anti-difference (\sum) , 48
necklaces, 139-141, 259	derivative (D), 47, 310
negating the upper index, 164-165	difference (Δ) , 47
negative binomial distribution, 402-403, 428	equations of, 188, 191, 241, 310, 471
negative factorial powers, 52, 63, 188	shift (E, K, N), 55, 240
Newman, James Roy, 630	theta (ϑ) , 219, 310

optical illusions, 292, 293, 560	perfect powers, 66
organ-pipe order, 524	periodic recurrences, 20, 179, 498
Oz, Wizard of, 581	permutations, 111-112
Pacioli, Luca, 614	ascents in, 267-268, 270
Palais, Richard Sheldon, viii	cycles in, 259-262
paradoxes,	excedances in, 314
chessboard, 293, 317	fixed points in, 193-196, 393-394, 400-401,
coin flipping, 408-410	418
pair of boxes, 531, 535, 539	left-to-right maxima in, 314
paradoxical sums, 57	random, 393–394, 400–401, 428
parallel summation, 159, 174, 208-210	up-down, 377
parentheses, 357-359	without fixed points, see derangements
parenthesis conventions, xi	personal computer, 109
partial fraction expansions, 298-299, 338-341	perspiration, 234–235
for easy summation and differentiation, 64,	perturbation method, 32-33, 43-44, 64, 179,
376, 476, 504, 586	284–285
not always easiest, 374	Petkovšek, Marko, 229, 575, 625, 634
of $1/x(x+n)$, 189	Pfaff, Johann Friedrich, 207, 214, 217, 529, 625,
of $1/x {x+n \choose n}$, 189 of $1/(z^n - 1)$, 558	634
powers of, 246, 376	reflection law, 217, 247, 539
partial quotients, 306	pgf: probability generating function, 394
and discrepancies, 319, 598-599, 602	phages, 434, 438
large, 553, 563, 564, 602	phi (≈ 1.61803), 299–301
partial sums, see indefinite summation	as canonical constant, 70
required to be positive, 359-362	continued fraction for, 310
partition into nearly equal parts, 83-85	in fifth roots of unity, 553
partitions, of the integers, 77-78, 96, 99, 101	in solutions to recurrences, 97, 99, 285-286
of a number, 330, 377	Stern-Brocot representation of, 550
of a set, 258–259, 373	phi function, 133-135
Pascal, Blaise, 155, 156, 624, 633	dgf for, 371
Pascal's triangle, 155	divisibility by, 151
extended upward, 164	Phi function: sum of φ, 137–139, 462–463
hexagon property, 155-156, 242, 251	Phidias, 299
row lcms, 251	philosophy, vii, 11, 16, 46, 71, 72, 75, 91, 170,
row products, 243	181, 194, 331, 467, 503, 508, 603
row sums, 163, 165-166	phyllotaxis, 291
variant of, 250	pi (≈ 3.14159, 26, 286
Patashnik, Amy Markowitz, ix	as canonical constant, 70, 416, 423
Patashnik, Oren, iii, iv, vi, ix, 102, 506, 616, 632	large partial quotients of, 564
Patil, Ganapati Parashuram, 624, 636	Stern-Brocot representation of, 146
Paule, Peter, 537, 546	pi function, 110-111, 452, 593
Peirce, Charles Santiago Sanders, 525, 624–625,	preposterous expressions for, 516
634	Pig, Porky, 496
sequence, 151	pigeonhole principle, 130
Penney, Walter Francis, 408, 625	Pincherle, Salvatore, 617
Penney ante, 408-410, 430, 437, 438	Pisano, Leonardo, 613, see Fibonacci
pentagon, 314 (exercise 46), 430, 434	Pittel, Boris Gershon, 576, 618
pentagonal numbers, 380	pizza, 4, 423
Percus, Jerome Kenneth, 625, 636	planes, cutting, 19

pneumathics, 164	prime to, 115
Pochhammer, Leo, 48, 625	prime-exponent representation, 107, 116
symbol, 48	Princeton University, ix, 427
pocket calculators, 67, 77, 459	probabilistic analysis of an algorithm, 413-426
failure of, 344	probability, 195, 381–438
Poincaré, Jules Henri, 625, 636	conditional, 416-419, 424-425
Poisson, Siméon Denis, 471, 625	discrete, 381–438
distribution, 428-429, 579	generating functions, 394-401
summation formula, 602	spaces, 381
Pollak, Henry Otto, 616, 633	probability distributions, 367
Pólya, George (= György), vi, 16, 327, 508, 625,	binomial, 401–402, 415, 428, 432
633, 635, 636	composition or mixture of, 428
polygons,	- '
dissection of, 379	joint, 384
triangulation of, 374	negative binomial, 402–403, 428
	normal, 438
Venn diagrams with, 20	Poisson, 428–429, 579
polynomial argument, 158, 163	uniform, 395-396, 420-421
for rational functions, 527	problems, levels of, viii, 72-73, 95, 511
opposite of, 210	product notation, 64, 106
polynomially recursive sequence, 374	product of consecutive odd numbers, 186, 270
polynomials, 189	progression, see arithmetic progression, geomet-
Bernoulli, 367–368, 470–475	ric progression
continuant, 301-309	proof, 4, 7
convolution, 373	proper terms, 239-241, 255-256
cyclotomic, 149	properties, 23, 34, 72–73
degree of, 158, 226	prove or disprove, 71–72
divisibility of, 225	psi function, 551
Euler, 574	pulling out the large part, 453, 458
Jacobi, 543, 605	puns, ix, 220
Legendre, 543, 573, 575	Pythagoras of Samos, theorem, 510
Newton series for, 189-191	rythagoras of Samos, theorem, 510
reflected, 339	quadratic domain, 147
Stirling, 271-272, 290, 311, 317, 352	quicksort, 28-29, 54
Poonen, Bjorn, 501, 633	quotation marks, xi
Porter, Thomas K, 632	quotient, 81
Portland cement, see concrete (in another book)	1
power series, 196, see generating functions	rabbits, 310
formal, 206, 331, 348, 532	radix notation, 11-13, 15-16, 109, 195, 526
Pr, 381-382	length of, 70, 460
Pratt, Vaughan Ronald, 632	related to prime factors, 113-114, 146-148,
preferential arrangements, 378 (exercise 44)	245
primality testing, 110, 148	Rado, Richard, 625, 635
impractical method, 133	Rahman, Mizanur, 223, 614
prime algebraic integers, 106, 147	Rainville, Earl David, 529, 626
prime numbers, 105–111	Rāmānujan Aiyangār, Srīnivāsa, 330
gaps between, 150–151, 525	Ramaré, Olivier, 548
largest known, 109–110	Ramshaw, Lyle Harold, 73, 632, 634, 636
Mersenne, 109–110, 127, 522	random constant, 399
size of nth, 110–111, 456–457	random variables, 383–386; see also independent
sum of reciprocals, 22–25	random variables
built of reciprocais, 22 20	Tandom variables

Raney, George Neal, 359, 362, 626, 635	Rice University, ix
lemma, 359–360	Riemann, Georg Friedrich Bernhard, 205, 626,
lemma, generalized, 362, 372	633
sequences, 360-361	hypothesis, 526
Rao, Dekkata Rameswar, 626, 633	Riemann's zeta function, 65, 595
rational functions, 207–208, 224–226, 338, 527	as generalized harmonic number, 277–278, 286
rational generating functions, 338-346	as infinite product, 371
expansion theorems for, 340-341	as power series, 601
Rayleigh, John William Strutt, 3rd Baron,	dgf's involving, 370-371, 373, 463, 566, 569
77, 626	evaluated at integers, 238, 286, 571, 595, 597
Read, Ronald Cedric, 625	rising factorial powers, 48
real part, 64, 212, 451	binomial theorem for, 245
reciprocity law, 94	complex, 211
Recorde, Robert, 446, 626	negative, 63
recurrences, 1-20	related to falling powers, 63, 312
and sums, 25–29	related to ordinary powers, 263, 598
doubly exponential, 97, 100, 101, 109	Roberts, Samuel, 626, 633
floor/ceiling, 78-81	rocky road, 36, 37
implicit, 136–138, 193–194, 284	Rødseth, Øystein Johan, 626, 634
periodic, 20, 179, 498	Rolletschek, Heinrich Franz, 514
solving, 337-350	roots of unity, 149, 204, 375, 574, 598
unfolding, 6, 100, 159–160, 312	fifth, 553
unfolding asymptotically, 456	modulo m, 128-129
referee, 175	Roscoe, Andrew William, 620
reference books, 42, 223, 616, 619	Rosser, John Barkley, 111, 626
reflected light rays, 291–292	Rota, Gian-Carlo, 516, 626
reflected polynomials, 339	roulette wheel, 74–76, 453
reflection law for hypergeometrics, 217, 247, 539	rounding to nearest integer, 95, 195, 300,
regions, 4-8, 17, 19	344, 491
Reich, Simeon, 626, 636	unbiased, 507
Reingold, Edward Martin, 70	Roy, Ranjan, 626, 634
relative error, 452, 455	rubber band, 274-275, 278, 312, 493
relatively prime integers, 108, 115–123	ruler function, 113, 146, 148
remainder after division, 81–82	running time, 413, 425-426
remainder in Euler's summation formula, 471,	O-notation for, abused, 447-448
474–475, 479–480	Ruzsa, Imre Zoltán, 611
Renz, Peter Lewis, viii	
	Saalschütz, Louis, 214, 627, 634
repertoire method, 14–15, 19, 250	identity, 214–215, 234–235, 529, 531
for Fibonacci-like recurrences, 312, 314, 372	Saltykov, Al'bert Ivanovich, 463, 627
for sums, 26, 44–45, 63	sample mean and variance, 391–393, 427
replicative function, 100	sample third cumulant, 429
repunit primes, 516	samplesort, 354
residue calculus, 495	sandwiching, 157, 165
residue number system, 126-129, 144	Sárközy, András, 548, 627
retrieving information, 411-413	Sawyer, Walter Warwick, 207, 627
rewards, monetary, ix, 256, 497, 525, 575	Schäffer, Alejandro Alberto, 632
Rham, Georges de, 626, 635	Schinzel, Andrzej, 525
Ribenboim, Paolo, 555, 626, 634	Schlömilch, Oscar Xaver, 627
Rice, Stephan Oswald, 626	Schmidt, Asmus Lorenzen, 634

Schoenfeld, Lowell, 111, 626	solution, 3, 337
Schönheim, Johanen, 608	sorting,
Schröder, Ernst, 627, 635	asymptotic efficiency of, 447-449
Schrödinger, Erwin, 430	bubblesort, 448
Schröter, Heinrich Eduard, 627, 635	merge sort, 79, 175
Schützenberger, Marcel Paul, 636	possible outcomes, 378
science and art, 234	quicksort, 28-29, 54
Scorer, Richard Segar, 627, 633	samplesort, 354
searching a table, 411-413	spanning trees,
Seaver, George Thomas (= 41), 8, 21, 94, 105,	of complete graphs, 368–369
106, 343	of fans, 348-350, 356
secant numbers, 317, 559, 570, 620	of wheels, 374
second-order Eulerian numbers, 270-271	Spec, see spectra
second-order Fibonacci numbers, 375	special numbers, 257–319
second-order harmonic numbers, 277, 280, 311,	spectra, 77–78, 96, 97, 99, 101
550-552	generating functions for, 307, 319
Sedgewick, Robert, 632	spinning coins, 401
Sedláček, Jiří, 627, 635	spiral function, 99
self-certifying algorithms, 104	Spohn, William Gideon, Jr., 628
self-describing sequence, 66, 495	Sports, see baseball, football, frisbees, golf,
self reference, 59, 95, 531-540, 616, 653	tennis
set inclusion in O-notation, 446-447, 490	Sprugnoli, Renzo, 564
Shallit, Jeffrey Outlaw, 627, 635	square pyramidal numbers, 42
Sharkansky, Stefan Michael, 632	square root,
Sharp, Robert Thomas, 273, 627	of 1 (mod m), 128—129
sherry, 433	of 2, 100
shift operator, 55, 240	of 3, 378
binomial theorems for, 188, 191	of -1 , 22
Shiloach, Joseph (= Yossi), 632	squarefree, 145, 151, 373, 525, 548
Shor, Peter Williston, 633	squares, sum of consecutive, 41-46, 51, 180, 245
Sicherman, George Leprechaun, 636	269, 284, 288, 367, 444, 470
sideways addition, 12, 114, 146, 250, 552	stack size, 360-361
Sierpiński, Wacław, 87, 627, 634	stacking bricks, 313, 374
sieve of Eratosthenes, 111	stacking cards, 273-274, 278, 309
Sigma-notation, 22-25	Stallman, Richard Matthew, 628
ambiguity of, 245	standard deviation, 388, 390-394
signum function, 502	Stanford University, v, vii, ix, 427, 458, 632,
Silverman, David L, 627, 635	634, 657
similar hypergeometric terms, 541	Stanley, Richard Peter, 270, 534, 615, 628,
skepticism, 71	635, 636
Skiena, Steven Sol, 548	Staudt, Karl Georg Christian von, 628, 635
Sloane, Neil James Alexander, 42, 341, 464, 604,	Steele, Guy Lewis, Jr., 628
628, 633	Stegun, Irene Anne, 42, 604
Slowinski, David Allen, 109	Stein, Sherman Kopald, 633
small cases, 2, 5, 9, 155, 320-321; see also	Steiner, Jacob, 5, 628, 633
empty case	Steinhaus, Hugo Dyonizy, 636
Smith, Cedric Austen Bardell, 627, 633	Stengel, Charles Dillon (= Casey), 42
Snowwalker, Luke, 435	step functions, 87
Solov'ev, Aleksandr Danilovitch, 408, 628	Stern, Moriz Abraham, 116, 628

Stern-Brocot number system, 119-123	definite, 49–50, 229–241
related to continued fractions, 306	difficulty measure for, 181
representation of $\sqrt{3}$, 572	factors, 27-29, 64, 236, 248, 275, 543
representation of γ , 306	in hypergeometric terms, 224–229
representation of π , 146	indefinite, see indefinite summation
representation of φ, 550	infinite, 56-62, 64
representation of e , 122, 150	interchanging the order of, 34-41, 105, 136,
simplest rational approximations from,	183, 185, 546
	mechanical, 229-241
122-123, 146, 519	on the upper index, 160-161, 175-176
Stern-Brocot tree, 116-123, 148, 525	over divisors, 104–105, 135–137, 141, 370
largest denominators in, 319	
related to continued fractions, 305-306	over triangular arrays, 36-41
Stern-Brocot wreath, 515	parallel, 159, 174, 208-210
Stewart, Bonnie Madison, 614, 633	sums, 21-66; see also summation
Stickelberger, Ludwig, 628, 633	absolutely convergent, 60-62, 64
Stieltjes, Thomas Jan, 617, 628, 633	and recurrences, 25–29
constants, 595, 601	approximation of, by integrals, 45, 276-277,
Stirling, James, 192, 195, 210, 257, 258, 297,	469-475
481, 628	divergent, see divergent sums
•	double, see double sums
approximation, 112, 452, 481–482, 491, 496	doubly infinite, 59, 98, 482-483
approximation, perturbed, 454-455	empty, 24, 48
constant, 481, 485–489	floor/ceiling, 86-94
polynomials, 271–272, 290, 311, 317, 352	formal, 321; see also formal power series
triangles, 258, 259, 267	hypergeometric, see hypergeometric series
Stirling numbers, 257-267	infinite, 56-62, 64
as sums of products, 570	multiple, 34–41, 61; see also double sums
asymptotics of, 495, 602	notations for, 21–25
combinatorial interpretations, 258-262	
convolution formulas, 272, 290	of consecutive cubes, 51, 63, 283, 289, 367
duality of, 267	of consecutive integers, 6, 44, 65
generalized, 271-272, 311, 316, 319, 598	of consecutive mth powers, 42, 283-285,
generating functions for, 351-352, 559	288-290, 366-368
identities for, 264–265, 269, 272, 290, 311,	of consecutive squares, 41-46, 51, 180, 245,
317, 378	269, 284, 288, 367, 444, 470
inversion formulas for, 310	of harmonic numbers, 41, 56, 279–282,
	312-313, 316, 354-355
of the first kind, 259	paradoxical, 57
of the second kind, 258	tails of, 466-469, 488-489, 492
related to Bernoulli numbers, 289–290,	Sun Tsŭ [= Sūnzĭ, Master Sun], 126
317 (exercise 76)	sunflower, 291
table of, 258, 259, 267	super generating functions, 353, 421
Stone, Marshall Harvey, vi	superfactorials, 149, 243
Straus, Ernst Gabor, 564, 611, 624	Swanson, Ellen Esther, viii
Strehl, Karl Ernst Volker, 549, 629, 634	Sweeney, Dura Warren, 629
subfactorial, 194-196, 250	Swinden, Benjamin Alfred, 633
summand, 22	Sylvester, James Joseph, 133, 629, 633
summation, 21–66	symmetry identities,
asymptotic, 87–89, 466–496	for binomial coefficients, 156-157, 183
by parts, 54–56, 63, 279	for continuants, 303
changing the index of, 30-31, 39	for Eulerian numbers, 268
changing the index of, 50-51, 59	for Eulerian numbers, 200

Szegedy, Márió, 525, 608, 629	Tower of Hanoi, $1-4$, $26-27$, 109 , 146
Szegő, Gábor, 625, 636	variations on, 17-20
	Trabb Pardo, Luis Isidoro, 632
T _n , see tangent numbers	transitive law, 124
tail exchange, 466-469, 486-489	failure of, 410
tail inequalities, 428, 430	traps, 154, 157, 183, 222, 542
tail of a sum, 452–455	trees,
tale of a sum, see squares	2-3 trees, 636
tangent function, 287, 317	binary, 117
tangent numbers, 287, 312, 317, 620	of bees, 291
Tanny, Stephen Michael, 629, 635	spanning, 348-350, 356, 368-369, 374
Tartaglia, Nicolò, triangle, 155	Stern-Brocot, see Stern-Brocot tree
Taylor, Brook, series, 163, 191, 287, 396,	triangular array, summation over, 36-41
470-471	triangular numbers, 6, 155, 195-196, 260, 380
telescoping, 50, 232, 236, 255	triangulation, 374
tennis, 432-433	Tricomi, Francesco Giacomo Filippo, 629, 636
term, 21	tridiagonal matrix, 319
hypergeometric, 224, 243, 245, 527, 575	trigonometric functions,
term ratio, 207–209, 211–212, 224–225	related to Bernoulli numbers, 286–287, 317
$T_{ m FX}$, 219, 432, 657	related to probabilities, 435, 437
Thackeray, Henry St. John, 618	related to tilings, 379
Theisinger, Ludwig, 629, 634	trinomial coefficients, 168, 171, 255, 571
theory of numbers, 102-152	middle, 490
theory of probability, 381-438	trinomial theorem, 168
theta functions, 483, 524	triphages, 434
theta operator, 219-221, 347	trivial, clarified, 129, 417—418, 618
converting between D and θ, 310	Turán, Paul, 636
Thiele, Thorvald Nicolai, 397, 398, 629	typefaces, viii–ix, 657
thinking, 503	Habimana Maianka 605 625
big, 2, 441, 458, 483, 486	Uchimura, Keisuke, 605, 635
not at all, 56, 230, 503	unbiased estimate, 392, 429
small, see downward generalization, small	unbiased rounding, 507
cases	uncertainty principle, 481
three-dots (\cdots) notation, 21	undetermined coefficients, 529
advantage of, 21, 25, 50	unexpected sum, 167, 215-216, 236, 247
disadvantage of, 25	unfolding a recurrence, 6, 100, 159–160, 312
elimination of, 108	asymptotically, 456 Ungar, Peter, 629
tilings, see domino tilings	uniform distribution, 395–396, 418–419
Titchmarsh, Edward Charles, 629, 636	· · · · · · · · · · · · · · · · · · ·
Todd, Horace, 501	uniformity, deviation from, 152; see also
Toledo, Ohio, 73	discrepancy
Tong, Christopher Hing, 632	unique factorization, 106-107, 147
totient function, 133–135	unit, 147
dgf for, 371	unit fractions, 95, 101, 150
	unwinding a recurrence, see unfolding a
divisibility by, 151 summation of, 137–144, 150, 462–463	recurrence
	up-down permutations, 377
Toto, 581	upper index of binomial coefficient, 154
tournament, 432-433	upper negation, 164-165
Tower of Brahma, 1, 4, 278	upper parameters of hypergeometric series, 205

upper summation, 160-161, 176 useless identity, 223, 254 Uspensky, James Victor, 615, 629, 633 V: variance, 387-398, 419-425 van der Poorten, Alfred Jacobus, 629 Vandermonde, Alexandre Théophile, 169, 629, 634 Vandermonde's convolution, 169-170 as a hypergeometric series, 211-213 combinatorial interpretation, 169-170 derived mechanically, 234 derived from generating functions, 198 generalized, 201-202, 218-219, 248 with half-integers, 187 vanilla, 36 Vardi, Ilan, 525, 548, 603, 620, 629, 633, 636 variance of a probability distribution, 387-398, 419-425 infinite, 428, 587 Veech, William Austin, 514	Wiles, Andrew John, 131 Wilf, Herbert Saul, 81, 240, 241, 514, 549, 575, 620, 624, 630-631, 634 Williams, Hugh Cowie, 631, 633 Wilquin, Denys, 634 Wilson, Sir John, theorem, 132-133, 148, 516, 609 Wilson, Martha, 148 wine, 433 Witty, Carl Roger, 509 Wolstenholme, Joseph, 631, 635 theorem, 554 Wood, Derick, 631, 633 Woods, Donald Roy, 628 Woolf, William Blauvelt, viii worm, and apple, 430 on rubber band, 274-275, 278, 312, 493 Worpitzky, Julius Daniel Theodor, 631 identity, 269
Venn, John, 498, 630, 633 diagram, 17, 20 venture capitalists, 493-494 violin string, 29 vocabulary, 75 Voltaire, de (= Arouet, François Marie), 450 von Staudt, Karl Georg Christian, 628, 635	wreath, 515 Wrench, John William, Jr., 600, 606, 636 Wright, Sir Edward Maitland, 111, 617, 631, 633 Wythoff (= Wijthoff), Willem Abraham, 614 Yao, Andrew Chi-Chih, ix, 632 Yao, Foong Frances, ix, 632
Vyssotsky, Victor Alexander, 548 Wall, Charles Robert, 607, 635 Wallis, John, 630, 635 Wanner, Joseph Albert, 42	Yaó, Qí, 622 Youngman, Henry (= Henny), 175 zag, see zig Zagier, Don Bernard, 238
Wapner, Joseph Albert, 43 war, 8, 16, 85, 434 Waring, Edward, 630, 635 Waterhouse, William Charles, 630, 635	Zapf, Hermann, viii, 620, 657 Zave, Derek Alan, 631, 635 Zeckendorf, Edouard, 631 theorem, 295-296, 563
Watson, John Hamish, 229, 405 Waugh, Frederick Vail, 630, 635 Weaver, Warren, 630 Weber, Heinrich, 630 Weigner, Levis, 516, 630	Zeilberger, Doron, ix, 229-231, 238, 240, 241, 631, 634 zero, not considered harmful, 24-25, 159 strongly, 24-25
Weisner, Louis, 516, 630 Wermuth, Edgar Martin Emil, 603, 630 Weyl, Claus Hugo Hermann, 87, 630 Wham-O, 435, 443 wheel, 74, 374 big, 75 of Fortune, 453 Whidden, Samuel Blackwell, viii Whipple, Francis John Welsh, 630, 634 identity, 253	zeta function, 65, 595 and the Riemann hypothesis, 526 as generalized harmonic number, 277-278, 286 as infinite product, 371 as power series, 601 dgf's involving, 370-371, 373, 463, 566, 569 evaluated at integers, 238, 286, 571, 595, 597 Zhu Shijie, see Chu Shih-Chieh zig, 7-8, 19 zig-zag, 19
Whitehead, Alfred North, 91, 503, 603, 630	Zipf, George Kingsley, law, 419