```
> x = c(2, 6, 8, 8, 12, 16, 20, 20, 22, 26)
> y = c(58,105,88,118,117,137,157,169,149,202)
> N = length(x)
> Xmat = cbind(rep(1,N), x)
> Xmat
        X
 [1,] 1 2
 [2,] 1 6
 [3,] 1 8
 [4,] 1 8
 [5,] 1 12
 [6,] 1 16
 [7,] 1 20
 [8,] 1 20
 [9,] 1 22
[10,] 1 26
> XX = t(Xmat) %*% Xmat
> XX
        Х
  10 140
x 140 2528
> XXinv = solve(XX)
> XXinv
   0.44507042 -0.024647887
x -0.02464789 0.001760563
> XY = t(Xmat) %*% y
> XY
  [,1]
  1300
x 21040
> betahat = XXinv %*% XY
> betahat
  [,1]
   60
X
   5
```

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \dots \\ \mathbf{Y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

$$E(\hat{\beta}) = \beta$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$
 $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}, \quad Var(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}.$

```
> # joint confidence region for the parameters
> fit = lm(y \sim x)
> library(ellipse)
> plot(ellipse(fit,c(1,2),level=0.95),type="1")
> # plot(ellipse(fit), type="l")
> title("95% joint confidence region for beta0 and beta1")
> points(fit$coeff[1],fit$coeff[2])
```

95% joint confidence region for beta0 and beta1

STAT 420

Consider the following data set: 1

Consider the following data set:	<i>x</i> ₁	<i>x</i> ₂	У
	0	1	11
	11	5	15
	11	4	13
Consider the model	7	3	14
$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + e_{i}$.	4	1	0
$i=1,\ldots,8$.	10	4	19
where e_i 's are i.i.d. N (0, σ_e^2).	5	4	16
	8	2	8

$$\mathbf{X}^{\mathrm{T}}\mathbf{X} = \begin{bmatrix} 8 & 56 & 24 \\ 56 & 496 & 200 \\ 24 & 200 & 88 \end{bmatrix}, \qquad \mathbf{X}^{\mathrm{T}}\mathbf{Y} = \begin{bmatrix} 96 \\ 740 \\ 336 \end{bmatrix},$$

$$\mathbf{C} = (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} = \begin{bmatrix} 0.7125 & -0.025 & -0.1375 \\ -0.025 & 0.025 & -0.05 \\ -0.1375 & -0.05 & 0.1625 \end{bmatrix},$$

Obtain the least-squares estimates $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$. a)

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y} = \begin{bmatrix} 0.7125 & -0.025 & -0.1375 \\ -0.025 & 0.025 & -0.05 \\ -0.1375 & -0.05 & 0.1625 \end{bmatrix} \begin{bmatrix} 96 \\ 740 \\ 336 \end{bmatrix} = \begin{bmatrix} \mathbf{3.7} \\ -\mathbf{0.7} \\ \mathbf{4.4} \end{bmatrix}.$$

SYY =
$$\sum (y - \bar{y})^2 = 240$$
, RSS = $\sum (y - \hat{y})^2 = 76.4$,

Perform the significance of the regression test at a 5% level of significance. b)

$$H_0: \beta_1 = \beta_2 = 0$$

 H_a : at least one of β_1 and β_2 is significantly different from 0.

Source	SS	DF	MS	F
Regression	163.6	p - 1 = 2	81.8	5.3534
Error (Residual)	76.4	n-p=5	15.28	
-				

Total

240

n - 1 = 7

Critical Value: $F_{0.05}(2,5) = 5.79$.

Reject H_0 if F > 5.79.

Decision: Do NOT Reject H₀.

c) Test $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$ at $\alpha = 0.10$. Find the p-value.

$$\hat{V}$$
ar $(\hat{\beta}_1) = C_{11} \times s^2 = 0.025 \times 15.28 = 0.382.$

Test Statistic:
$$t = \frac{-0.7 - 0}{\sqrt{0.382}} \approx -1.1326$$
.

$$n - p = 5$$
 d.f.

$$-1.476$$
 < -1.1326 < -0.727
 $-t_{0.10}(5)$ < t < $-t_{0.25}(5)$

0.10 < left tail < 0.25

p-value = 2 tails.

0.20 < p-value < **0.50**.

(p-value ≈ 0.308765 .)

Do NOT Reject H₀.

d) Test $H_0: \beta_2 = 0$ vs. $H_a: \beta_2 \neq 0$ at $\alpha = 0.05$. Find the p-value.

$$\hat{V}$$
ar $(\hat{\beta}_2) = C_{22} \times s^2 = 0.1625 \times 15.28 = 2.483.$

Test Statistic:
$$t = \frac{4.4 - 0}{\sqrt{2.483}} \approx 2.792$$
.

n - p = 5 d.f.

```
t_{0.025}(5) < t < t_{0.01}(5)
     0.01 < \text{right tail} < 0.025
     p-value = 2 tails.
                                  0.02 < p-value < 0.05.
                                  (p-value \approx 0.03834.)
     Reject H<sub>0</sub>.
a), b), c), d)
> x1 = c(0,11,11,7,4,10,5,8)
> x2 = c(1, 5, 4, 3, 1, 4, 4, 2)
> y = c(11, 15, 13, 14, 0, 19, 16, 8)
> fit = lm(y \sim x1 + x2)
> summary(fit)
Call:
lm(formula = y \sim x1 + x2)
Residuals:
              3 4 5 6 7 8
 2.9 -3.0 -0.6 2.0 -5.3 4.7 -1.8 1.1
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                            3.2995
                                     1.121
(Intercept) 3.7000
                                                0.3131
x1
              -0.7000
                            0.6181 -1.133
                                                0.3088
                4.4000
                            1.5758 2.792
x2
                                              0.0383 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.909 on 5 degrees of freedom
Multiple R-Squared: 0.6817, Adjusted R-squared: 0.5543
F-statistic: 5.353 on 2 and 5 DF, p-value: 0.05717
     H_0: \beta_1 = \beta_2 = 0 vs. H_a: \text{not } H_0.
b)
     Full: Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i,
     Null: Y_i = \beta_0
                                 +e_i.
```

2.517 < 2.792 < 3.365

```
> anova(lm(y~1),fit)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y \sim x1 + x2
 Res.Df RSS Df Sum of Sq F Pr(>F)
      7 240.0
       5 76.4 2 163.6 5.3534 0.05717 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
     H_0: \beta_1 = 0 vs. H_a: \beta_1 \neq 0.
c)
     Full: Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i,
     Null: Y_i = \beta_0 + \beta_2 x_{i2} + e_i.
> fitc = lm(y \sim x2)
> anova(fitc,fit)
Analysis of Variance Table
Model 1: y \sim x2
Model 2: y \sim x1 + x2
  Res.Df RSS Df Sum of Sq F Pr(>F)
1 6 96.0
      5 76.4 1 19.6 1.2827 0.3088
     H_0: \beta_2 = 0 vs. H_a: \beta_2 \neq 0.
d)
     Full: Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i,
     Null: Y_i = \beta_0 + \beta_1 x_{i1} + e_i.
> fitd = lm(y \sim x1)
> anova(fitd, fit)
Analysis of Variance Table
Model 1: y \sim x1
Model 2: y \sim x1 + x2
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 6 195.54
      5 76.40 1 119.14 7.797 0.03834 *
2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{e}, \qquad \mathbf{E}(\boldsymbol{e}) = \mathbf{0}, \quad \mathbf{Var}(\boldsymbol{e}) = ((\mathbf{Cov}(\boldsymbol{e}_i, \boldsymbol{e}_j)))_{ij} = \sigma^2 \mathbf{I}_n.$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \dots \\ \mathbf{Y}_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p-1} \\ 1 & x_{21} & x_{22} & \dots & x_{2p-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np-1} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \dots \\ \boldsymbol{\beta}_{p-1} \end{bmatrix}, \quad \boldsymbol{e} = \begin{bmatrix} \boldsymbol{e}_1 \\ \boldsymbol{e}_2 \\ \dots \\ \boldsymbol{e}_n \end{bmatrix}.$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$

$$E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}, \qquad \operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1}.$$

Let
$$V_0 = \{ a \mathbf{1}, a \in \mathbf{R} \},$$
 where $\mathbf{1} = [1, 1, ..., 1]^T \in \mathbf{R}^n,$
$$V = \{ a_0 \mathbf{1} + a_1 \mathbf{x_1} + ... + a_{p-1} \mathbf{x_{p-1}}, a_0, a_1, ..., a_{p-1} \in \mathbf{R} \}.$$

$$\dim(V_0) = 1,$$

$$\dim(V) = p.$$

$$\sum_{i=1}^{n} \left(\mathbf{Y}_{i} - \hat{\mathbf{Y}}_{0i} \right)^{2} = \sum_{i=1}^{n} \left(\mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i} \right)^{2} + \sum_{i=1}^{n} \left(\hat{\mathbf{Y}}_{i} - \hat{\mathbf{Y}}_{0i} \right)^{2} \qquad \qquad \hat{\mathbf{Y}}_{\mathbf{0}} = \left[\overline{\mathbf{Y}}, \overline{\mathbf{Y}}, \dots, \overline{\mathbf{Y}} \right]^{\mathrm{T}}$$

ANOVA table:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$$

Source	SS	df	MS	F
Regr	$\sum_{i=1}^{n} (\hat{\mathbf{Y}}_i - \hat{\mathbf{Y}}_{0i})^2$	$\dim(V) - \dim(V_0)$ $p - 1$	SS Regr df Regr	MS Regr MS Resid
Resid	$\sum_{i=1}^{n} \left(\mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i} \right)^{2}$	$n - \dim(V)$ $n - p$	SS Resid df Resid	– estimator for σ^2
Total	$\sum_{i=1}^{n} \left(\mathbf{Y}_i - \hat{\mathbf{Y}}_{0i} \right)^2$	$n - \dim(V_0)$ $n - 1$		

More general: q < p H_0 : $\beta_q = \beta_{q+1} = ... = \beta_{p-1} = 0$

$$\begin{split} \text{Let} \quad & \mathbf{V_0} = \{ \, a_0 \, \mathbf{1} + a_1 \, \boldsymbol{x_1} + \ldots + a_p \, \boldsymbol{x_{q-1}}, \quad a_0, a_1, \ldots, a_{q-1} \in \mathbf{R} \, \}, \\ & \mathbf{V} = \{ \, a_0 \, \mathbf{1} + a_1 \, \boldsymbol{x_1} + \ldots + a_p \, \boldsymbol{x_{p-1}}, \quad a_0, a_1, \ldots, a_{p-1} \in \mathbf{R} \, \}. \end{split}$$

	SS	df	MS	F
Diff.	$\sum_{i=1}^{n} \left(\hat{\mathbf{Y}}_i - \hat{\mathbf{Y}}_{0i} \right)^2$	$\dim(V) - \dim(V_0)$ $p - q$	•••	•••
Full	$\sum_{i=1}^{n} \left(\mathbf{Y}_i - \hat{\mathbf{Y}}_i \right)^2$	$n - \dim(V)$ $n - p$	•••	
Null	$\sum_{i=1}^{n} \left(\mathbf{Y}_i - \hat{\mathbf{Y}}_{0i} \right)^2$	$n - \dim(V_0)$ $n - q$		

d $\frac{1}{4}$)* Test $H_0: \beta_0 = \beta_2$ vs. $H_a: \beta_0 \neq \beta_2$ at $\alpha = 0.10$. Find the p-value.

$$H_0: \beta_0 - \beta_2 = 0$$
 vs. $H_a: \beta_0 - \beta_2 \neq 0$

$$X_0^T = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$\beta_0 - \beta_2 = X_0^T \boldsymbol{\beta}$$
.

$$X_0^T = [1 \ 0 \ -1]$$
 $\beta_0 - \beta_2 = X_0^T \beta.$ $X_0^T \hat{\beta} = -0.7.$

$$\mathbf{X}_{0}^{\mathrm{T}} \mathbf{C} \, \mathbf{X}_{0} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0.7125 & -0.025 & -0.1375 \\ -0.025 & 0.025 & -0.05 \\ -0.1375 & -0.05 & 0.1625 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 1.15.$$

$$\hat{\mathbf{Var}}(\mathbf{X}_{0}^{T}\hat{\boldsymbol{\beta}}) = [\mathbf{X}_{0}^{T}\mathbf{C}\mathbf{X}_{0}]s^{2} = 1.15 \times 15.28 = 17.572.$$

Test Statistic:
$$t = \frac{-0.7 - 0}{\sqrt{17.572}} \approx -0.167.$$

$$n - p = 5$$
 d.f.

$$-0.167$$
 > -0.267
t > $-t_{0.40}(5)$

left tail > 0.40

p-value = 2 tails.

p-value > 0.80.

(p-value ≈ 0.8739 .)

Do NOT Reject H₀.

```
> x3 = x2 + 1
> x3
[1] 2 6 5 4 2 5 5 3
> fite = lm(y \sim x1 + x3 + 0)
> anova(fite, fit)
Analysis of Variance Table
Model 1: y \sim x1 + x3 + 0
Model 2: y \sim x1 + x2
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 6 76.826
2 5 76.400 1 0.426 0.0279 0.874
```

d $\frac{1}{2}$)* Test $H_0: 2\beta_1 + \beta_2 = 0$ vs. $H_a: 2\beta_1 + \beta_2 \neq 0$ at $\alpha = 0.05$. Find the p-value.

$$X_0^{T} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \qquad 2\beta_1 + \beta_2 = X_0^{T} \boldsymbol{\beta}. \qquad X_0^{T} \hat{\boldsymbol{\beta}} = 3.0.$$

$$X_0^{T} \mathbf{C} X_0 = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.7125 & -0.025 & -0.1375 \\ -0.025 & 0.025 & -0.05 \\ -0.1375 & -0.05 & 0.1625 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = 0.0625.$$

$$\hat{\mathbf{Var}}(\mathbf{X}_{0}^{\mathsf{T}}\hat{\boldsymbol{\beta}}) = [\mathbf{X}_{0}^{\mathsf{T}}\mathbf{C}\mathbf{X}_{0}]s^{2} = 0.0625 \times 15.28 = 0.955.$$

Test Statistic:
$$t = \frac{3.0 - 0}{\sqrt{0.955}} \approx 3.070$$
.

$$n - p = 5$$
 d.f.

$$2.571$$
 < 3.070 < 3.365
 $t_{0.025}(5)$ < t < $t_{0.01}(5)$

0.01 < right tail < 0.025

p-value = 2 tails.

0.02 < p-value < 0.05.

(p-value ≈ 0.0278 .)

Reject H₀.

e) Construct a 90% prediction interval for the value of Y at $x_{01} = 2$ and $x_{02} = 3$.

$$X_0^T = [1 \ 2 \ 3]$$
 $\hat{Y}_0 = 1 \times 3.7 + 2 \times (-0.7) + 3 \times 4.4 = 15.5.$

$$\mathbf{X}_{0}^{\mathrm{T}} \mathbf{C} \, \mathbf{X}_{0} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0.7125 & -0.025 & -0.1375 \\ -0.025 & 0.025 & -0.05 \\ -0.1375 & -0.05 & 0.1625 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 0.75.$$

$$[1 + X_0^T \mathbf{C} X_0] s^2 = (1 + 0.75) \times 15.28 = 26.74.$$

$$t_{0.05}(5) = 2.015.$$
 $15.5 \pm 2.015 \times \sqrt{26.74}$ 15.5 ± 10.42 (5.08, 25.92)

f) Construct a 90% prediction interval for the value of Y at $x_{01} = 8$ and $x_{02} = 5$.

$$X_0^T = [1 \ 8 \ 5]$$
 $\hat{Y}_0 = 1 \times 3.7 + 8 \times (-0.7) + 5 \times 4.4 = 20.1.$

$$\mathbf{X}_{0}^{\mathrm{T}} \mathbf{C} \, \mathbf{X}_{0} = \begin{bmatrix} 1 & 8 & 5 \end{bmatrix} \cdot \begin{bmatrix} 0.7125 & -0.025 & -0.1375 \\ -0.025 & 0.025 & -0.05 \\ -0.1375 & -0.05 & 0.1625 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 8 \\ 5 \end{bmatrix} = 0.60.$$

$$[1 + X_0^T \mathbf{C} X_0] s^2 = (1 + 0.60) \times 15.28 = 24.448.$$

$$t_{0.05}(5) = 2.015.$$
 $20.1 \pm 2.015 \times \sqrt{24.448}$ **20.1 ± 9.96** (10.14, 30.06)

```
> x1 = c(0,11,11,7,4,10,5,8)
> x2 = c(1, 5, 4, 3, 1, 4, 4, 2)
> y = c(11, 15, 13, 14, 0, 19, 16, 8)
> X = cbind(rep(1,8), x1, x2)
> X
       x1 x2
[1,] 1 0 1
[2,] 1 11
           5
[3,] 1 11
           4
    1 7
           3
[4,]
[5,]
     1 4
           1
[6,] 1 10
           4
[7,] 1 5
           4
[8,] 1
           2
       8
>
> t(X) %*% X
       x1
           x2
       56
    8
           24
x1 56 496 200
x2 24 200
          88
> solve( t(X) %*% X )
                x1
                        x2
    0.7125 - 0.025 - 0.1375
x1 - 0.0250 \quad 0.025 - 0.0500
x2 - 0.1375 - 0.050 0.1625
> t(X) %*% y
   [,1]
     96
  740
x1
x2
    336
>
> solve( t(X) %*% X ) %*% t(X) %*% y
   [,1]
   3.7
x1 - 0.7
  4.4
x2
```

95% joint confidence region for beta1 and beta2

Consider $\mathbf{H_0}: \beta_1 = \beta_2 = 0$ vs. $\mathbf{H_1}:$ at least one of β_1 and β_2 is not zero.

Recall part (b): **Do NOT Reject H**₀ at $\alpha = 0.05$ (p-value = 0.05717).

Note that the origin (0,0) lies **inside** the 95% joint confidence region for β_1 and β_2 .

90% joint confidence region for beta1 and beta2

Reject H₀: $\beta_1 = \beta_2 = 0$ at $\alpha = 0.10$.

Note that the origin (0,0) lies **outside** the 90% joint confidence region for β_1 and β_2 .