

组委会基于《RoboMaster 裁判系统串口协议附录 V1.4》新增如下修订:

● 串口配置方式及通信协议格式不变,涉及修订的单条协议及其数据链路将完全替代旧文件中的描述,以该修订说明为准。

- 补充说明的内容需参考旧文件中未被替换的内容。
- RMUL 在 V1.4 的基础上适配以下第一节的修订内容; RMUC 在 V1.4 的基础上适配以下第二节的修订内容; 两节内容互相独立。

1. 高校联盟赛(RMUL)

1. 修订自定义控制器交互数据

表 1-1 命令码 ID 为 0x0302 的协议说明

命令码	数据段长度	功能说明	
0x0302	30	自定义控制器与机器人交互数据,发送方触发发送,频率上限为 30Hz	

操作手可使用自定义控制器连接选手端向对应的机器人发送数据,学生可从裁判系统电源管理模块的 User 串口接收数据。

表 1-2 命令码 ID: 0x0302

字节偏移量	大小	说明
0	30	内容段数据

typedef __packed struct
{
 uint8_t data[30];
}custom robot data t;

2.超级对抗赛(RMUC)

1. 补充说明裁判系统数据链路

裁判系统串口数据链路有两种: 常规链路、图传链路。

● 常规链路由裁判系统服务器和主控模块进行数据转发,从电源管理模块的 User 串口收发数据,示意图如下:

● 图传链路由裁判系统选手端和图传模块进行数据转发,从图传模块(发送端)的串口接收数据,示意 图如下:

2. 修订命令码 ID 为 0x0104、0x0208、0x0302 的说明;新增命令码 ID 为 0x020B、0x020C、0x0306、0x0307 的说明

表 2-1 命令码 ID 一览

命令码	数据段长度	数据链路	功能说明	
0x0104	2	常规链路	己方收到的裁判系统人工判罚数据,警告发生后发送	
0x0208	6	常规链路	允许发弹量相关数据,对地面机器人和空中机器人发送,以 10Hz 频率发送	
0x020B	40	常规链路	地面机器人位置数据,对哨兵机器人发送,以 1Hz 频率发送	
0x020C	6	常规链路	雷达标记进度数据,向雷达发送,以 1Hz 频率发送	
0x0302	30	图传链路	自定义控制器与机器人交互数据,发送方触发发送,频率上限为 30Hz	
0x0306	8	图传链路	自定义控制器与选手端交互数据,发送方触发发送,频率上限为 30Hz	
0x0307	103	常规链路	选手端小地图接收哨兵数据,频率上限为 1Hz	

3. 修订命令码 ID 为 0x0104 的协议

表 2-2 命令码 ID: 0x0104

字节偏移量	大小	说明	
0	1	判罚等级: ● 1: 黄牌● 2: 红牌● 3: 判负	
1	1	违规机器人 ID。判负和双方黄牌时,该值为 0	

typedef __packed struct
{
 uint8_t level;
 uint8_t offending_robot_id;
}referee_warning_t;

4. 修订命令码 ID 为 0x0208 的协议

表 2-3 命令码 ID: 0x0208

字节偏移量	大小	说明
0	2	17mm 弹丸允许发弹量
2	2	42mm 弹丸允许发弹量
4	2	剩余金币数量

```
typedef __packed struct
{
    uint16_t projectile_allowance_17mm;
    uint16_t projectile_allowance_42mm;
    uint16_t remaining_gold_coin;
}projectile_allowance_t;
```

5. 新增命令码 ID 为 0x020B 的协议

场地围挡在红方补给站附近的交点为坐标原点,沿场地长边向蓝方为X轴正方向,沿场地短边向红方停机坪为Y轴正方向。

表 2-4 命令码 ID: 0x020B

字节偏移量	大小	说明
0	4	己方英雄机器人位置 X 轴坐标,单位: m。
4	4	己方英雄机器人位置 Y 轴坐标,单位: m
8	4	己方工程机器人位置 X 轴坐标,单位: m
12	4	己方工程机器人位置 Y 轴坐标,单位: m
16	4	己方 3 号步兵机器人位置 X 轴坐标,单位: m
20	4	己方 3 号步兵机器人位置 Y 轴坐标,单位: m
24	4	己方 4 号步兵机器人位置 X 轴坐标,单位: m
28	4	己方 4 号步兵机器人位置 Y 轴坐标,单位: m
32	4	己方 5 号步兵机器人位置 X 轴坐标,单位: m
36	4	己方 5 号步兵机器人位置 Y 轴坐标,单位: m

typedef __packed struct

```
float hero_x;
float hero_y;
float engineer_x;
float engineer_y;
float standard_3_x;
float standard_3_y;
float standard_4_x;
float standard_4_y;
float standard_5_x;
float standard_5_x;
float standard_5_y;
}ground_robot_position_t;
```

6. 新增命令码 ID 为 0x020C 的协议

表 2-5 命令码 ID: 0x020C

字节偏移量	大小	说明
0	1	对方英雄机器人被标记进度: 0~120
1	1	对方工程机器人被标记进度: 0~120
2	1	对方 3 号步兵机器人被标记进度: 0~120
3	1	对方 4 号步兵机器人被标记进度: 0~120
4	1	对方 5 号步兵机器人被标记进度: 0~120
5	1	对方哨兵机器人被标记进度: 0~120

```
typedef __packed struct
{
    uint8_t mark_hero_progress;
    uint8_t mark_engineer_progress;
    uint8_t mark_standard_3_progress;
    uint8_t mark_standard_4_progress;
    uint8_t mark_standard_5_progress;
    uint8_t mark_sentry_progress;
}radar_mark_data_t;
```

7. 修订命令码 ID 为 0x0302 的协议

操作手可使用自定义控制器通过图传链路向对应的机器人发送数据。

表 2-6 命令码 ID: 0x0302

字节偏移量	大小	说明
0	30	自定义数据

```
typedef __packed struct
```

uint8_t data[x]; }custom_robot_data_t;

8. 补充说明命令码 ID 为 0x0303 的协议

0x0303 协议两次发送间隔不得低于 3 秒。

9. 新增命令码 ID 为 0x0306 的协议

操作手可使用自定义控制器模拟键鼠操作选手端。

表 2-7 命令码 ID: 0x0306

字节偏移量	大小	说明	备注
0	2	键盘键值: ■ bit 0-7: 按键 1 键值 ■ bit 8-15: 按键 2 键值	仅响应选手端开放的按键使用通用键值,支持2键无冲,键值顺序变更不会改变按下状态,若无新的按键信息,将保持上一帧数据的按下状态
2	2	bit 0-11: 鼠标 X 轴像素位置bit 12-15: 鼠标左键状态	 ● 位置信息使用绝对像素点值(赛事客户端使用的分辨率为1920×1080,屏幕左上角为(0,0)) ● 鼠标按键状态1为按下,其他值为未按
4	2	bit 0-11: 鼠标 Y 轴像素位置bit 12-15: 鼠标右键状态	下,仅在出现鼠标图标后响应该信息,若 无新的鼠标信息,选手端将保持上一帧数 据的鼠标信息,当鼠标图标消失后该数据 不再保持
6	2	保留位	-

一次鼠标移动点击需要先发送鼠标未按下及指定位置的数据帧,再发送保持该位置时按下鼠标的数据帧,最后发送保持该位置时鼠标未按下的数据帧。

```
typedef __packed struct
{
    uint16_t key_value;
    uint16_t x_position:12;
    uint16_t mouse_left:4;
    uint16_t y_position:12;
    uint16_t mouse_right:4;
    uint16_t reserved;
}custom_client_data_t;
```

10. 新增命令码 ID 为 0x0307 的协议

哨兵机器人可向己方空中机器人选手端发送路径坐标数据,该路径会在其小地图上显示。

表 2-8 命令码 ID: 0x0307

字节偏移量	大小	说明	备注
0	1	 到目标点攻击 到目标点防守 移动到目标点 	-
1	2	路径起点 X 轴坐标,单位: dm	小地图左下角为坐标原点,水平向右为 X 轴正方向,竖直向上为 Y 轴正方向。显示位置将按照场地尺寸与小地图尺寸等
3	2	路径起点 Y 轴坐标,单位: dm	比缩放,超出边界的位置将在边界处显示
5	49	路径点X轴增量数组,单位:dm	增量相较于上一个点位进行计算,共 49 个新点位, X 与 Y 轴增量对应组成点位
54	49	路径点 Y 轴增量数组,单位: dm	增量相较于上一个点位进行计算,共 49 个新点位, X 与 Y 轴增量对应组成点位

typedef __packed struct { uint8_t intention; uint16_t start_position_x; uint16_t start_position_v:

uint16_t start_position_y; int8_t delta_x[49];

int8_t delta_x[49]; int8_t delta_y[49];

11. 新增 ID 编号说明

}map_sentry_data_t;

机器人 ID 编号如下所示:

- 1: 红方英雄机器人
- 2: 红方工程机器人
- 3/4/5: 红方步兵机器人(与机器人ID 3~5 对应)
- 6: 红方空中机器人
- 7: 红方哨兵机器人
- 8: 红方飞镖

- 9: 红方雷达
- 10: 红方前哨站
- 11: 红方基地
- 101: 蓝方英雄机器人
- 102: 蓝方工程机器人
- 103/104/105: 蓝方步兵机器人(与机器人ID 3~5 对应)
- 106: 蓝方空中机器人
- 107: 蓝方哨兵机器人
- 108: 蓝方飞镖
- 109: 蓝方雷达
- 110: 蓝方前哨站
- 111: 蓝方基地

选手端 ID 如下所示:

- 0x0101: 红方英雄机器人选手端
- 0x0102: 红方工程机器人选手端
- 0x0103/0x0104/0x0105: 红方步兵机器人选手端(与机器人 ID3~5 对应)
- 0x0106: 红方空中机器人选手端
- 0x0165: 蓝方英雄机器人选手端
- 0x0166: 蓝方工程机器人选手端
- 0x0167/0x0168/0x0169: 蓝方步兵机器人选手端(与机器人 ID3~5 对应)
- 0x016A: 蓝方空中机器人选手端

邮箱: robomaster@dji.com

论坛: http://bbs.robomaster.com 官网: http://www.robomaster.com

电话: 0755-36383255(周-至周五10:30-19:30)

地址: 广东省深圳市南山区西丽街道仙茶路与兴科路交叉口大疆天空之城T2 22F