

Packet Tracer — Redundância do encaminhador e do comutador

Tabela de Endereçamento

Dispositivo	Endereço IP	Másc. sub-rede	Gateway predefinido	Local
Web Server externo	209.165.201.10	255.255.255.0	N/A	Internet
R1	10.44.1.2	255.255.255.0	N/A	Metropolis Bank HQ
R2	10.44.1.3	255.255.255.0	N/A	Metropolis Bank HQ
Computador do Phil	10.44.1.12	255.255.255.0	10.44.1.1	Metropolis Bank HQ
Computador do Tim	10.44.2.11	255.255.255.0	10.44.2.1	Gotham Healthcare Branch

Objetivos

Parte 1: Observe uma recuperação de rede com encaminhadores redundantes.

Parte 2: Observe uma recuperação de rede com comutadores redundantes.

Segundo Plano

Nesta atividade, observará a recuperação bem-sucedida da rede Metropolis, que utiliza encaminhadores múltiplos para fornecer a redundância do gateway padrão. Posteriormente em todo o mundo, observará a recuperação bem-sucedida da rede de Gotham utilizando vários comutadores para fornecer caminhos de rede redundantes. O endereçamento IP, a configuração de rede e as configurações de serviço já foram realizados. Você usará os dispositivos cliente nas diferentes regiões geográficas para testar os caminhos antes e após a recuperação bem-sucedida da rede.

Parte 1: Observe a recuperação de rede com encaminhadores redundantes.

Passo 1: Aceda ao prompt da linha de comando no computador do Phil.

- a. Clique no site Metropolis Bank HQ e, em seguida, clique no portátil do Phil.
- b. Clique na aba **Desktop** e depois em **Command Prompt**.

Passo 2: Rastreie o caminho para o servidor Web externo.

- a. Ping o servidor Web externo na Internet através do comando ping 209.165.201.10 no prompt da linha de comando.
- b. Rastreie o caminho para o servidor **External Web** na **Internet** usando o comando **tracert 209.165.201.10** no prompt da linha de comandos.
- c. Cada endereço IP mostrado na saída do comando **tracert** é um dispositivo de rede por onde o tráfego está a passar.

Quais são os endereços IP dos dispositivos que o tráfego do portátil do Phil atravessa para chegar ao servidor Web externo?

O primeiro endereço da saída do comando tracert é o gateway padrão (ponto de saída) da rede.

d. Comparando a saída do comando **tracert** com a tabela de endereçamento no início deste laboratório, que encaminhador está a operar como o gateway padrão atual?

Passo 3: Causar uma recuperação de rede.

- a. Dentro do site do Metropolis Bank HQ , clique no comutador HQ_S1.
- b. Clique na aba CLI.
- c. Desative a porta de uplink Gig0/2 usando os seguintes comandos:

enable
configure terminal
interface Gigabitethernet0/2
shutdown

Passo 4: Rastreie novamente o caminho para o servidor Web externo.

- a. Dentro do site Metropolis Bank HQ, clique no portátil do Phil.
- b. Clique na aba **Desktop** e depois em **Command Prompt**.
- c. Ping o servidor **Web externo** na **Internet** através do comando **ping 209.165.201.10** no prompt da linha de comando.
- d. Rastreie o caminho para o servidor **External Web** na **Internet** usando o comando **tracert 209.165.201.10** no prompt da linha de comando.

Cada endereço IP mostrado na saída do comando **tracert** é um dispositivo de rede por onde o tráfego está a passar.

Quais são os endereços IP dos dispositivos que o tráfego do portátil do Phil atravessa para chegar ao servidor Web externo?

e. O primeiro endereço da saída do comando **tracert** é o gateway padrão (ponto de saída) da rede.

Que encaminhador está agora a operar como gateway padrão?

f. No **Command Prompt** introduza o comando **ipconfig**. O gateway padrão está listado como 10.44.1.1, que não é nem o 10.44.1.2 da primeira vez que o comando tracert foi usado, nem o 10.44.1.3 da segunda vez que o comando foi usado. Isto mostra que o gateway padrão de 10.44.1.1 é na realidade encaminhado através de encaminhadores redundantes com diferentes endereços IP, o encaminhador R1 em 10.44.1.2 ou o encaminhador R2 em 10.44.1.3, se o R1 não estiver disponível.

Parte 2: Observe uma recuperação de falha de rede com comutadores redundantes

Passo 1: Aceda ao prompt da linha de comandos do computador do Tim.

- a. Clique em Gotham Healthcare Branch e depois clique no computador do Tim.
- b. Clique na aba **Desktop** e depois em **Command Prompt**.

Passo 2: Rastreie o caminho para o servidor Web externo.

- a. Ping o servidor Web externo na Internet através do comando ping 209.165.201.10 no prompt da linha de comando.
- b. Pode usar um ping constante para observar a recuperação da rede.

Ping o servidor **External Web** com um ping constante, escrevendo **ping -t 209.165.201.10** no prompt da linha de comandos.

Minimize a janela do computador do Tim.

Passo 3: Provoque uma recuperação de rede

- a. Dentro do Gotham Healthcare Branch clique no comutador \$3.
- b. Clique na aba CLI.
- c. Desative a porta de uplink Gig0/2 usando os seguintes comandos:

```
enable
configure terminal
interface GigabitEthernet0/2
shutdown
```

Passo 4: Rastreie novamente o caminho para o servidor Web externo.

- a. Dentro do Gotham Healthcare Branch, maximize a janela do computador do Tim.
- b. Espere entre 30 a 60 segundos. Também pode observar as luzes dos portos do comutador no Gotham Healthcare Branch.
- c. A saída no computador do Tim deve ser similar ao seguinte:

```
PC> ping -t 209.165.201.10
Pinging 209.165.201.10 with 32 bytes of data:
Reply from 209.165.201.10: bytes=32 time=47ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
Reply from 209.165.201.10: bytes=32 time=43ms TTL=126
Request timed out.
Reply from 209.165.201.10: bytes=32 time=41ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
```

d. Feche a janela.

Que cabo estavam os dados a atravessar durante as respostas bem sucedidas **antes** da mensagem "Request timed out" aparecer?

Que cabo estavam os dados a atravessar durante as respostas bem sucedidas **depois** da mensagem "Request timed out" aparecer?

e. O que é que este cenário prova sobre a redundância do comutador, quando uma porta Gigabit Ethernet é parada de repente?

Pontuação Sugerida

Secção da Atividade	Localização da Questão	Pontos Possíveis	Pontos Ganhos
Parte 1: Observe uma	Passo 2	10	
recuperação de rede com encaminhadores	Passo 2	10	
redundantes.	Passo 4	10	
	Passo 4	10	
Parte 2: Observe uma	Passo 4	5	
recuperação de rede com	Passo 4	5	
comutadores redundantes.	Passo 4	10	
	Perguntas	60	
Pontuação do	40		
Р	100		