

MODELE A CORRECTION D'ERREUR (MCE) ET APPPLICATIONS

Hélène Hamisultane

▶ To cite this version:

Hélène Hamisultane. MODELE A CORRECTION D'ERREUR (MCE) ET APPPLICATIONS. Master. France. 2002. cel-01261167

HAL Id: cel-01261167 https://halshs.archives-ouvertes.fr/cel-01261167

Submitted on 24 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MODELE A CORRECTION D'ERREUR ET APPLICATIONS

Hélène HAMISULTANE

Bibliographie:

- Bourbonnais R. (2000), Econométrie, DUNOD.
- Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques et Financières, Economica.

I. COINTEGRATION ET MODELES A CORRECTION D'ERREUR

I.1 COINTEGRATION

Soient 2 variables x_t et y_t **indépendantes** l'une de l'autre et suivant chacune une marche aléatoire :

$$x_t = x_{t-1} + \varepsilon_t$$
 et $y_t = y_{t-1} + \varepsilon_t$. (1)

Ces 2 variables sont **non stationnaires** (ici on a $y_t \sim I(1)$, $x_t \sim I(1)$ car il suffit de les différencier une seule fois pour les rendre stationnaires).

Elles sont non stationnaires car lorsque l'on procède par récurrence, on a par exemple pour y_t :

$$\begin{split} y_1 &= y_0 + \epsilon_1 \\ y_2 &= y_1 + \epsilon_2 = y_0 + \epsilon_1 + \epsilon_2 \\ \dots \\ y_t &= y_0 + \sum_{i=1}^t \epsilon_i \ \text{où} \ \epsilon_i \sim > iid(0, \sigma_\epsilon^2) \end{split}$$

Ce processus est non stationnaire car on a :

$$Var(y_t) = Var\left(\sum_{i=1}^t \varepsilon_i\right) = \sum_{i=1}^t Var(\varepsilon_i) = \sum_{i=1}^t \sigma_{\varepsilon}^2 = t \sigma_{\varepsilon}^2.$$
 (2)

On constate que la variance du processus y_t dépend du temps t: plus $t \to \infty$ et plus $Var(y_t) \to \infty$.

Définition de la stationnarité :

Un processus y_t est stationnaire si les conditions suivantes sont vérifiées :

- 1. E(y_t) est indépendante de t
- 2. var(y_t) est une constante finie indépendante de t
- 3. $cov(y_t, y_{t-1})$ est une fonction finie de k ne dépendant pas de t.

Lorsque l'on régresse à l'aide des MCO le modèle suivant comprenant les 2 variables non stationnaires :

$$y_t = ax_t + b + \varepsilon_t \tag{3}$$

on obtient:

$$y_t - ax_t - b = \varepsilon_t \sim I(1). \tag{4}$$

 $\epsilon_t \nearrow I(0)$, ϵ_t n'est donc pas stationnaire (il y a ici autocorrélation des erreurs car le DW est très faible).

De manière générale, si x_t et y_t sont des séries I(d) alors en général la combinaison linéaire $\varepsilon_t = y_t$ - ax_t - b est aussi I(d).

En outre, la régression effectuée est dite fallacieuse ou illusoire ("spurious regression"). Elle est caractérisée par un R² et des t de Student très élevés alors que les deux variables n'ont aucun lien entre elles!

Pour éviter ce problème, on peut effectuer la régression sur des variables en différence première qui sont stationnaires ($\Delta y_t \sim I(0)$ et $\Delta x_t \sim I(0)$ si $y_t \sim I(1)$, $x_t \sim I(1)$):

$$\Delta y_t = \alpha \, \Delta x_t + \beta + \mu_t \,. \tag{5}$$

On obtiendrait:

$$\Delta y_t - \alpha \Delta x_t - \beta = \mu_t \sim I(0). \tag{6}$$

Toutefois, il arrive que l'on souhaite travailler avec des variables plutôt en niveau qu'en différence première (donc plutôt avec des variables non stationnaires). Dans ce cas, comment régresser des variables non stationnaires et savoir si la régression obtenue n'est pas fallacieuse? C'est alors qu'intervient la notion de cointégration. **Nous n'avons pas de régression fallacieuse lorsque les variables x_t et y_t sont cointégrées, c'est à dire lorsque l'on a y_t - ax_t - b = \varepsilon_t \sim I(0) alors que y_t \sim I(1) et x_t \sim I(1).**

Granger a montré que si on avait deux variables non stationnaires $(y_t \sim I(1))$ et $x_t \sim I(1)$, on pouvait avoir :

$$y_t - ax_t - b = \varepsilon_t \sim I(1) \tag{7}$$

ou

$$y_t - ax_t - b = \varepsilon_t \sim I(0) !$$
 (8)

L'idée sous-jacente de la cointégration est la suivante : à court terme, x_t et y_t peuvent avoir une évolution divergente (elles sont toutes les deux non stationnaires) mais elles vont évoluer ensemble à long terme. Il existe alors une relation stable à long terme entre x_t et y_t . La relation de long terme ou relation de cointégration est donnée par $y_t = ax_t + b$.

Définition de la cointégration :

Deux séries non stationnaires ($y_t \sim I(1)$ et $x_t \sim I(1)$) sont dites cointégrées si on a :

$$y_t - ax_t - b = \varepsilon_t \sim I(0). \tag{9}$$

Les séries y_t et x_t sont alors notées :

$$x_t, y_t \sim CI(1,1)$$
. (10)

De manière générale, si x_t et y_t sont deux séries I(d) alors il est possible que la combinaison linéaire $\varepsilon_t = y_t$ - ax_t - b ne soit pas I(d) mais I(d-b) où b est un entier positif (avec $0 < b \le d$). Le vecteur (1 -a -b) est appelé "vecteur de cointégration". Les séries sont alors cointégrées (x_t , $y_t \sim CI(d,b)$).

Les conditions de cointégration :

Deux séries x_t et y_t sont dites cointégrées si les deux conditions suivantes sont vérifiées :

- 1. elles sont intégrées d'ordre d;
- 2. la combinaison linéaire de ces 2 séries permet de se ramener à une série d'ordre d'intégration inférieur.

Afin de vérifier si la régression effectuée sur des variables non stationnaires ne sera pas fallacieuse, il faut d'abord réaliser un test de cointégration.

<u>I.2 COINTEGRATION ENTRE DEUX VARIABLES: L'APPROCHE DE ENGLE ET GRANGER (1987)</u>

a) Test de cointégration

Etape 1 : tester l'ordre d'intégration des deux variables :

Une condition nécessaire de cointégration est que les séries doivent être intégrées de même ordre. Si les séries ne sont pas intégrées de même ordre, elles ne peuvent être cointégrées.

Il convient donc de vérifier l'ordre d'intégration des chroniques étudiées à l'aide par exemple du test de Dickey-Fuller (simple ou augmenté).

Si les séries considérées ne sont pas intégrées de même ordre, il n'y a alors pas de risque de cointégration et la procédure s'arrête à cette première étape.

Etape 2 : estimation de la relation de long terme

Si on a:

$$x_t \sim I(1)$$
 et $y_t \sim I(1)$.

On estime par les MCO la relation de long terme :

$$y_t = ax_t + b + \varepsilon_t. (11)$$

Pour qu'il y ait cointégration, il faut que le résidu et issu de la régression soit stationnaire :

$$e_t = y_t - \hat{a}x_t - \hat{b} \sim I(0)$$
. (12)

La stationnarité du résidu est testée à l'aide du test de Dickey-Fuller (simple ou augmenté).

On remarque ici que la relation porte sur les résidus estimés et non pas sur les « vrais » résidus de l'équation de cointégration. Par conséquent, nous ne pouvons pas nous référer aux tables de Dickey-Fuller pour mener le test de stationnarité. Il faut regarder ici les tables de MacKinnon.

Si le résidu est stationnaire nous pouvons alors estimer un modèle appelé modèle à correction d'erreur (MCE) qui intègre les variables en variation et en niveau (le théorème de la représentation de Granger met en évidence le lien entre cointégration et modèle à correction d'erreur). L'emploi d'un modèle à correction d'erreur dans le cas de la cointégration permet d'obtenir des prévisions plus fiables que si on avait utilisé la relation de long terme car les résultats de l'estimation de cette relation sont faussés par la non stationnarité des séries.

b/ Modèle à correction d'erreur

Si on a deux séries cointégrées $(y_t - \hat{a}x_t - \hat{b} \sim I(0))$, on peut estimer le modèle à correction d'erreur (MCE) suivant :

$$\Delta v_t = \gamma \Delta x_t + \delta (v_{t-1} - a x_{t-1} - b) + v_t \text{ avec } \delta < 0.$$
 (13)

On peut remarquer que le paramètre δ doit être négatif pour qu'il y ait un retour de y_t à sa valeur d'équilibre de long terme qui est $(ax_{t-1} + b)$. En effet, lorsque y_{t-1} est supérieur à $(ax_{t-1} + b)$, il n'y a une force de rappel vers l'équilibre de long terme que si $\delta < 0$.

Le MCE permet de modéliser conjointement les dynamiques de court terme (représentées par les variables en différence première) et de long terme (représentées par les variables en niveau).

La dynamique de court terme s'écrit :

$$y_{t} = \alpha_{0} + \alpha_{1} y_{t-1} + \alpha_{2} x_{t} + \alpha_{3} x_{t-1} + v_{t}$$
(14)

La dynamique de long terme s'exprime de la manière suivante :

$$y_t = ax_t + b + \varepsilon_t \tag{15}$$

car à long terme, on a $y_{t-1} = y_t$, $x_{t-1} = x_t$ et la dynamique de court terme devient à long terme :

$$y_t = \alpha_0 + \alpha_1 y_t + \alpha_2 x_t + \alpha_3 x_t + v_t \tag{16}$$

$$(1 - \alpha_1)y_t = (\alpha_2 + \alpha_3)x_t + \alpha_0 + v_t$$
 (17)

D'où

$$y_t = ax_t + b + \varepsilon_t \tag{18}$$

avec
$$a = \frac{\alpha_2 + \alpha_3}{1 - \alpha_1}$$
, $b = \frac{\alpha_0}{1 - \alpha_1}$, $\epsilon_t = \frac{\nu_t}{1 - \alpha_1}$.

Le MCE s'obtient à partir de la dynamique de court terme :

$$y_{t} = \alpha_{0} + \alpha_{1} y_{t-1} + \alpha_{2} x_{t} + \alpha_{3} x_{t-1} + v_{t}$$
(19)

$$y_{t} - y_{t-1} = \alpha_0 + \alpha_1 y_{t-1} - y_{t-1} + \alpha_2 x_{t} - \alpha_2 x_{t-1} + \alpha_2 x_{t-1} + \alpha_3 x_{t-1} + v_t$$
 (20)

$$\Delta y_{t} = (\alpha_{1}-1)y_{t-1} + \alpha_{2}(x_{t}-x_{t-1}) + \alpha_{0} + (\alpha_{2}+\alpha_{3})x_{t-1} + \upsilon_{t}$$
(21)

$$\Delta y_t = -(1 - \alpha_1)y_{t-1} + \alpha_2(x_t - x_{t-1}) + \alpha_0 + (\alpha_2 + \alpha_3)x_{t-1} + v_t$$
(22)

$$\Delta y_{t} = -(1 - \alpha_{1}) \left(y_{t-1} - \frac{\alpha_{2} + \alpha_{3}}{1 - \alpha_{1}} x_{t-1} - \frac{\alpha_{0}}{1 - \alpha_{1}} \right) + \alpha_{2} \Delta x_{t} + v_{t}$$
 (23)

$$\Delta y_{t} = \gamma \Delta x_{t} + \delta(y_{t-1} - ax_{t-1} - b) + v_{t}$$
 (24)

où
$$\alpha_2 = \gamma$$
, $\delta = -(1-\alpha_1)$, $a = \frac{\alpha_2 + \alpha_3}{1-\alpha_1}$ et $b = \frac{\alpha_0}{1-\alpha_1}$.

c/ Estimation du MCE avec une seule variable explicative

Si les séries Y_t et X_t sont cointégrées :

$$x_t, y_t \sim CI(1,1)$$

nous pouvons estimer le MCE.

Etape 1 : estimation par les MCO de la relation de la relation de long terme :

$$y_t = ax_t + b + \varepsilon_t. (25)$$

Etape 2 : estimation par les MCO de la relation du modèle dynamique de court terme :

$$\Delta y_t = \gamma \Delta x_t + \delta e_{t-1} + v_t \quad \text{avec} \quad \delta < 0$$
 (26)

où
$$e_t = y_t - \hat{a}x_t - \hat{b}$$
.

Le coefficient δ doit être significativement négatif. Dans le cas contraire, la spécification de type MCE n'est pas valable.

L'inconvénient de la méthode de Engle et Granger (1987) est qu'elle ne permet pas de distinguer plusieurs relations de cointégration. En effet, si on étudie simultanément N variables avec N > 2, on peut avoir jusqu'à (N-1) relations de cointégration. La méthode de Engle et Granger (1987) ne nous permet d'obtenir qu'une seule relation de cointégration. Afin de pallier cette difficulté, Johansen (1988) a proposé une approche multivariée de la cointégration fondée sur la méthode du maximum de vraisemblance.

<u>I.2 COINTEGRATION ENTRE PLUSIEURS VARIABLES : L'APPROCHE DE JOHANSEN (1998)</u>

a) Test de cointégration

Considérons un vecteur X_t contenant N variables $\sim I(1)$. La représentation VAR(p) de X_t est :

Exemple : un modèle VAR(2) composé de 3 variables $(x_{1t}, x_{2t} \text{ et } x_{3t})$ pour X_t avec p = 2 retards :

$$X_{t} = A_{1} X_{t-1} + A_{2} X_{t-2} + \varepsilon_{t}$$
 (28)

$$\begin{pmatrix} x_{1t} \\ x_{2t} \\ x_{3t} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \\ x_{3t-1} \end{pmatrix} + \begin{pmatrix} a_{14} & a_{15} & a_{16} \\ a_{24} & a_{25} & a_{26} \\ a_{34} & a_{35} & a_{36} \end{pmatrix} \begin{pmatrix} x_{1t-2} \\ x_{2t-2} \\ x_{3t-2} \end{pmatrix} + \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \\ \epsilon_{3t} \end{pmatrix}.$$

car on a le système d'équations suivant :

$$\left\{ \begin{array}{l} x_{1t} = a_{11} \, x_{1t\text{-}1} + a_{12} \, x_{2t\text{-}1} + a_{13} \, x_{3t\text{-}1} + a_{14} \, x_{1t\text{-}2} + a_{15} \, x_{2t\text{-}2} + a_{16} \, x_{3t\text{-}2} + \epsilon_{1t} \\ x_{2t} = a_{21} \, x_{1t\text{-}1} + a_{22} \, x_{2t\text{-}1} + a_{23} \, x_{3t\text{-}1} + a_{24} \, x_{1t\text{-}2} + a_{25} \, x_{2t\text{-}2} + a_{26} \, x_{3t\text{-}2} + \epsilon_{2t} \\ x_{3t} = a_{31} \, x_{1t\text{-}1} + a_{32} \, x_{2t\text{-}1} + a_{33} \, x_{3t\text{-}1} + a_{34} \, x_{1t\text{-}2} + a_{35} \, x_{2t\text{-}2} + a_{36} \, x_{3t\text{-}2} + \epsilon_{3t} \end{array} \right.$$

On peut réecrire le modèle VAR(2) sous forme d'un VECM ("Vector Error Correction Model") :

On écrit le modèle VAR(2) en différence première et en fonction de X_{t-1} en ajoutant les termes suivants (en gras) :

$$X_{t} - X_{t-1} = A_1 X_{t-1} - X_{t-1} + A_2 X_{t-2} + A_2 X_{t-1} - A_2 X_{t-1} + \varepsilon_{t}$$
(29)

$$\Delta X_{t} = (A_{1} - I)X_{t-1} - A_{2}(X_{t-1} - X_{t-2}) + A_{2}X_{t-1} + \varepsilon_{t}$$
(30)

$$\Delta X_{t} = -A_{2} \Delta X_{t-1} + (A_{1} + A_{2} - I)X_{t-1} + \varepsilon_{t}$$
(31)

$$\Delta X_{t} = B_{1} \Delta X_{t-1} + \Pi X_{t-1} + \varepsilon_{t}$$
 (32)

où $B_1 = -A_2$ et $\Pi = A_1 + A_2 - I$.

Posons $\Pi_{(3,3)} = \alpha_{(3,r)} \beta'_{(r,3)}$ avec β' comprenant r vecteurs de cointégration (avec 0 < r < N) afin de mettre en évidence un modèle VECM. Supposons que r = 2, on a :

$$\begin{pmatrix} \Delta x_{1t} \\ \Delta x_{2t} \\ \Delta x_{3t} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} \Delta x_{1t-1} \\ \Delta x_{2t-1} \\ \Delta x_{3t-1} \end{pmatrix} + \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32} \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{21} & \beta_{22} & \beta_{23} \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \\ x_{3t-1} \end{pmatrix} + \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \\ \epsilon_{3t} \end{pmatrix}.$$

De manière générale, si on a la représentation VAR(p) suivante pour X_t:

le modèle VECM va s'écrire comme suit :

$$\Delta X_{t} = B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1} + \prod X_{t-1} + \varepsilon_{t}$$
(33)

où
$$B_i = \sum_{j=i+1}^p -A_j$$
 avec $i=1,\,...,\,k\text{-}1$ et $\Pi = A_1 + ... + A_k - I.$

On pose $\Pi = \alpha$ β ' avec α une matrice (N,r) avec r < N contenant les vitesses d'ajustement pour chacun des vecteurs de cointégration et β ' une matrice (r,N) comprenant les r relations de cointégration. Donc pour pouvoir estimer un modèle VECM, il faut que $Rg(\Pi) = Rg(\alpha \beta')$ = r ce qui implique que Π a r valeurs propres non nulles.

Or $Rg(\Pi) = Rg(\alpha \beta') \le Min(Rg(\alpha), Rg(\beta'))$. Donc il faut que $Rg(\beta') = r$ pour que $Rg(\Pi) = r$. Donc il faut que β' possède r valeurs propres non nulles.

Remarque:

Le modèle (33) peut également s'écrire sous la forme suivante :

$$\Delta X_{t} = B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1} + \prod X_{t-p} + \varepsilon_{t}$$
(34)

En effet, si on ajoute les termes en gras suivants dans le modèle VAR(2), on obtient :

$$X_{t} - X_{t-1} = A_{1} X_{t-1} + A_{2} X_{t-2} - X_{t-1} + X_{t-2} - X_{t-2} + A_{1} X_{t-2} - A_{1} X_{t-2} + \varepsilon_{t}$$
(35)

$$\Delta X_{t} = A_{1}(X_{t-1} - X_{t-2}) - (X_{t-1} - X_{t-2}) + (A_{1} + A_{2} - I) X_{t-2} + \varepsilon_{t}$$
(36)

$$\Delta X_{t} = A_{1} \Delta X_{t-1} - \Delta X_{t-1} + (A_{1} + A_{2} - I) X_{t-2} + \varepsilon_{t}$$
(37)

$$\Delta X_{t} = (A_{1} - I)\Delta X_{t-1} + (A_{1} + A_{2} - I) X_{t-2} + \varepsilon_{t}$$
(38)

$$\Delta X_{t} = B_{1} \Delta X_{t-1} + \prod X_{t-2} + \varepsilon_{t}$$
 (39)

Trois cas peuvent se présenter :

- Rg(Π) = 0 donc r = 0 : il n'existe donc pas de relation de cointégration. On ne peut donc pas estimer un modèle VECM. En revanche, il est possible d'estimer un modèle VAR sur ΔX_t.
- $Rg(\Pi) = r$: il existe r relations de cointégration. Un modèle VECM peut alors être estimé.
- $Rg(\Pi) = N$: il n'existe pas de relation de cointégration. Un modèle VAR peut être estimé directement sur X_t .

Pour déterminer le nombre de relations r de cointégration , Johansen (1988) se base sur la maximisation de la log-vraisemblance suivante :

Log L(α, β, B₁, ..., B_{p-1}, Σ) = -
$$\frac{NT}{2}$$
 log(2π) - $\frac{T}{2}$ log[det(Σ)] - $\frac{1}{2}\sum_{t=1}^{T} ε_{t}^{'} Σ^{-1} ε_{t}$ (40)

où T est le nombre d'observations, N le nombre de variables dans X et $det(\Sigma)$ représente le déterminant de la matrice de variance-covariance.

Pour obtenir l'estimateur du maximum de vraisemblance de β , il faut résoudre l'équation suivante :

Det [
$$\lambda S_{pp} - S_{p0} S_{00}^{-1} S_{0p}] = 0$$
 (41)

où $S_{ij} = \frac{1}{T} \sum_{t=1}^{T} e_{it} e_{jt}^{'}$ pour i,j = 0,p. Les termes e_{0t} et e_{pt} sont donnés par :

$$\Delta X_{t} = \Theta_{01} \Delta X_{t-1} + \dots + \Theta_{0p-1} \Delta X_{t-(p-1)} + e_{0t}$$
(42)

et

$$X_{t-p} = \Theta_{p1} \Delta X_{t-1} + ... + \Theta_{pp-1} \Delta X_{t-(p-1)} + e_{pt}$$
(43)

avec $\Theta_{0i} = (B_i - \alpha \beta' B_i)$ et $\Theta_{pi} = B_i$ pour i = 1, ..., p-1.

Ces deux équations découlent de la décomposition de l'équation (34) de la manière suivante :

$$\Delta X_{t} - \alpha \beta' X_{t-1} = B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1} + \varepsilon_{t}$$

$$= B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1}$$

$$+ \alpha \beta' [B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1}]$$

$$- \alpha \beta' [B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1}] + \varepsilon_{t}$$

$$(44)$$

$$\Delta X_{t} - \alpha \beta' X_{t-p} = [B_{1} - \alpha \beta' B_{1}] \Delta X_{t-1} + \dots + [B_{p-1} - \alpha \beta' B_{p-1}] \Delta X_{t-p+1}$$

$$+ \alpha \beta' [B_{1} \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1}] + \varepsilon_{t}$$
(46)

$$\Delta X_{t} - [B_{1} - \alpha \beta' B_{1}] \Delta X_{t-1} + ... + [B_{p-1} - \alpha \beta' B_{p-1}] \Delta X_{t-p+1}$$

$$- \alpha \beta' [X_{t-p} - B_{1} \Delta X_{t-1} + ... + B_{p-1} \Delta X_{t-p+1}] = e_{0t} - \alpha \beta' e_{pt} = \varepsilon_{t}.$$
(47)

La résolution de l'équation (41) nous donne les N valeurs propres $(\hat{\lambda}_1,...,\hat{\lambda}_N)$ avec $\hat{\lambda}_1 > ... > \hat{\lambda}_N$ et les N vecteurs propres associés. Pour déterminer les r valeurs propres non nulles qui vont nous donner les r relations de cointégration, Johansen a proposé le test de la trace.

Ce test repose sur l'hypothèse nulle qu'il existe *au plus* r relations de cointégration (ce qui signifie qu'il y a r valeurs propres non nulles et N-r valeurs propres nulles) :

$$H_0: \lambda_i = 0$$
, $i = r + 1, ..., N$.

La statistique de test est la suivante :

$$TR = -T \sum_{i=r+1}^{N} log(1 - \hat{\lambda}_i).$$
 (48)

Les valeurs critiques de la statistique TR ont été tabulées par Johansen et Juselius (1990) puis par Osterwald-Lenum (1992). On accepte H₀ lorsque la valeur de la statistique TR est inférieure à sa valeur critique.

Remarque:

On a supposé jusqu'à présent que le modèle VECM n'avait pas de constante et que les relations de cointégration ne comportaient ni tendance déterministe ni constante. Or il se peut que le modèle VECM possède une constante et/ou les relations de cointégration admettent une constante et/ou une tendance déterministe. Pour ces cas, les valeurs critiques du test de la trace changent. Par conséquent, il convient de déterminer le cas dans lequel on se trouve avant de procéder au test de la trace. Les cas à distinguer sont :

- Absence ou présence de constante dans le modèle VECM
- Absence ou présence de constante et de tendance dans les relations de cointégration.

Synthèse de la procédure de test de cointégration et d'estimation du VECM :

Etape 1: Test de stationnarité sur les séries pour déterminer s'il y a possibilité de cointégration ou non.

Etape 2: Si le test de stationnarité montre que les séries sont intégrées d'un même ordre, il y a alors risque de cointégration. On peut envisager l'estimation d'un modèle VECM. Pour ce faire, on commence par déterminer le nombre de retards p du modèle VAR(p) à l'aide des critères d'information (Akaike et Schwarz).

Etape 3 : Mise en place du test de Johansen permettant de connaître le nombre de relations de cointégration.

Etape 4 : Identification des relations de cointégration, c'est-à-dire des relations de long terme entre les variables.

Etape 5 : Estimation par la méthode du maximum de vraisemblance du modèle VECM et validation des tests usuels : significativité des coefficients et vérification que les résidus sont des bruits blancs (test de Ljung-Box).

II. ABSENCE DE COINTEGRATION ENTRE PLUSIEURS VARIABLES ET MODELE VAR

L'absence de cointégration entre deux séries non stationnaires Y_{1t} et Y_{2t} ($Y_{1t} \sim I(1)$ et $Y_{2t} \sim I(1)$), mais l'existence d'une causalité entre les séries stationnaires ΔY_{1t} et $\Delta Y_{2t} (\Delta Y_{1t} \sim I(0))$ et $\Delta Y_{2t} \sim I(0)$ nous permet d'estimer un modèle VAR.

II.1 PRESENTATION DU MODELE VAR

Le modèle VAR("Vector AutoRegressive") à k variables et p retards noté VAR(p) s'écrit :

$$Y_t = A_0 + A_1 Y_{t-1} + A_2 Y_{t-2} + ... + A_n Y_{t-n} + v_t$$

$$\begin{pmatrix} y_{1,t} \\ y_{2,t} \\ \vdots \\ y_{k,t} \end{pmatrix} = \begin{pmatrix} a_{0,1} \\ a_{0,2} \\ \vdots \\ a_{0,k} \end{pmatrix} + \begin{pmatrix} a_{1,1}^1 & a_{1,2}^1 & \dots & a_{1,k}^1 \\ a_{1,1}^1 & a_{1,2}^1 & \dots & a_{1,k}^1 \\ a_{2,1}^1 & a_{2,2}^1 & \dots & a_{2,k}^1 \\ \vdots \\ a_{k,1}^1 & a_{k,2}^1 & \dots & a_{k,k}^1 \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \\ \vdots \\ y_{k,t-1} \end{pmatrix} + \begin{pmatrix} a_{1,1}^2 & a_{1,2}^2 & \dots & a_{1,k}^2 \\ a_{2,1}^2 & a_{2,2}^2 & \dots & a_{2,k}^2 \\ a_{k,1}^2 & a_{k,2}^2 & \dots & a_{k,k}^2 \end{pmatrix} \begin{pmatrix} y_{1,t-2} \\ y_{2,t-2} \\ \vdots \\ y_{k,t-2} \end{pmatrix}$$

$$+ \ldots + \begin{pmatrix} a_{1,1}^p & a_{1,2}^p & \ldots & a_{1,k}^p \\ a_{2,1}^p & a_{2,2}^p & \ldots & a_{2,k}^p \\ a_{k,1}^p & a_{k,2}^p & \ldots & a_{k,k}^p \end{pmatrix} \begin{pmatrix} y_{1,t-p} \\ y_{2,t-p} \\ \vdots \\ y_{k,t-p} \end{pmatrix} + \begin{pmatrix} v_{1,t} \\ v_{2,t} \\ \vdots \\ v_{k,t} \end{pmatrix}$$

Les variables $y_{1,t}$, $y_{2,t}$, ..., $y_{k,t}$ sont <u>stationnaires</u>. Les perturbations $v_{1,t}$, $v_{2,t}$, ..., $v_{k,t}$ sont des bruits blancs de variances constantes et non autocorrélées.

II.2 TEST DE CAUSALITE AU SENS DE GRANGER

Soit le modèle VAR(p) pour lequel les variables y_{1t} et y_{2t} sont <u>stationnaires</u>:

$$\left\{ \begin{array}{l} {{y}_{1t}}={{\gamma }_{1}}+{{\alpha }_{11}}{{y}_{1t\text{-}1}}+{{\alpha }_{12}}{{y}_{1t\text{-}2}}+\ldots +{{\alpha }_{1p}}{{y}_{1t\text{-}p}}+{{\beta }_{11}}{{y}_{2t\text{-}1}}+{{\beta }_{12}}{{y}_{2t\text{-}2}}+\ldots +{{\beta }_{1p}}{{y}_{2t\text{-}p}}+{{\upsilon }_{1t}}\\ \\ {{y}_{2t}}={{\gamma }_{2}}+{{\alpha }_{21}}{{y}_{1t\text{-}1}}+{{\alpha }_{22}}{{y}_{1t\text{-}2}}+\ldots +{{\alpha }_{2p}}{{y}_{1t\text{-}p}}+{{\beta }_{21}}{{y}_{2t\text{-}1}}+{{\beta }_{22}}{{y}_{2t\text{-}2}}+\ldots +{{\beta }_{2p}}{{y}_{2t\text{-}p}}+{{\upsilon }_{2t}}\\ \end{array} \right.$$

Le test consiste à poser ces deux hypothèses :

• y_{2t} ne cause pas y_{1t} si l'hypothèse H₀ suivante est acceptée :

$$\beta_{11} = \beta_{12} = \beta_{13} = \dots = \beta_{1p} = 0$$

 \bullet \boldsymbol{y}_{1t} ne cause pas \boldsymbol{y}_{2t} si l'hypothèse H_0 suivante est acceptée :

$$\alpha_{21} = \alpha_{22} = \alpha_{23} = \dots = \alpha_{2p} = 0$$

On teste ces deux hypothèses à l'aide d'un test de Fisher classique. On peut faire le test équation par équation :

$$\begin{cases} H_0: & \beta_{11} = \beta_{12} = \beta_{13} = \ldots = \beta_{1p} = 0 \text{ et } y_{1t} = \gamma_1 + \alpha_{11} y_{1t-1} + \alpha_{12} y_{1t-2} + \ldots + \alpha_{1p} y_{1t-p} + \upsilon_{1t} \\ H_1: & \text{au moins un des coefficients } \beta \neq 0 \text{ et } y_{2t} \text{ cause } y_{1t} \\ \end{cases}$$

$$\begin{cases} H_0: & \alpha_{21} = \alpha_{22} = \alpha_{23} = \ldots = \alpha_{2p} = 0 \text{ et } y_{2t} = \gamma_2 + \beta_{21} y_{2t-1} + \beta_{22} y_{2t-2} + \ldots + \beta_{2p} y_{2t-p} + \upsilon_{2t} \\ H_1: & \text{au moins un des coefficients } \alpha \neq 0 \text{ et } y_{1t} \text{ cause } y_{2t} \end{cases}$$

Si nous sommes amenés à accepter les deux hypothèses que y_{1t} cause y_{2t} et que y_{2t} cause y_{1t} , on parle de boucle rétroactif.

II.3 ESTIMATION DU MODELE VAR(p)

Dans le cas du modèle VAR, chacune des équations peut être estimée par les MCO, indépendamment les unes des autres (ou par la méthode de vraisemblance).

Comme il y a énormément de coefficients à estimer dans un modèle VAR, il est préférable d'effectuer un test de causalité avant de chercher à estimer le modèle VAR. On pourra ainsi éliminer du modèle à estimer les variables qui n'interviennent pas sur la variable à expliquer.

CONCLUSION:

- Si x_t , $y_t \sim I(0)$ et y_t $x_t a$ $b \sim I(0)$: on estime $y_t = x_t a + b + \varepsilon_t$ ou un modèle VAR en niveau pour plusieurs variables.
- Si x_t , $y_t \sim I(1)$ et y_t $x_t a$ $b \sim I(0)$: on estime un modèle à correction d'erreur ou un modèle VECM pour plusieurs variables.
- Si x_t , $y_t \sim I(1)$ et y_t $x_t a$ b $\sim I(0)$ et Δx_t , $\Delta y_t \sim I(0)$ avec lien de causalité : on estime la relation $\Delta y_t = \Delta x_t$ a + b + η_t ou un modèle VAR en différence première pour plusieurs variables.

ANNEXE: TESTS DE STATIONNARITE

Les tests de Dickey-Fuller, Dickey-Fuller Augmenté et de Phillips-Perron permettent de rendre compte de la stationnarité ou non d'une série. Le test de Dickey-Fuller Augmenté a été proposé pour améliorer le test de Dickey-Fuller en prenant en compte le fait que les erreurs ne soient pas des bruits blancs mais puissent être corrélées. Le test de Phillips-Perron intègre en complément l'hétéroscédasticité des erreurs.

a) Test de Dickey-Fuller

Il repose sur les hypothèses suivantes :

```
\begin{cases} H_0: \text{processus non stationnaire, les formes de non stationnarité sont}: \\ [1] \quad X_t = \varnothing_1 \ X_{t-1} + \epsilon_t \\ [2] \quad X_t = \varnothing_1 \ X_{t-1} + c + \epsilon_t \\ [3] \quad X_t = \varnothing_1 \ X_{t-1} + bt + c + \epsilon_t \\ \\ \text{où } \quad \varnothing_1 = 1 \quad \text{et} \quad \epsilon_t \sim > iid(0, \sigma^2) \\ H_1: \varnothing_1 < 1. \end{cases}
```

Ces hypothèses peuvent également s'écrire sous la forme suivante :

```
\begin{cases} H_0: \text{processus non stationnaire, les formes de non stationnarité sont}: \\ [1] \quad \Delta X_t = (\varnothing_1 - 1) \; X_{t\text{-}1} + \epsilon_t \\ [2] \quad \Delta X_t = (\varnothing_1 - 1) \; X_{t\text{-}1} + c + \epsilon_t \\ [3] \quad \Delta X_t = (\varnothing_1 - 1) \; X_{t\text{-}1} + bt + c + \epsilon_t \\ \\ \text{où } (\varnothing_1 - 1) = 0 \; \text{ et } \; \epsilon_t \sim > iid(0, \, \sigma^2) \\ \\ H_1: \varnothing_1 < 1 \end{cases}
```

Sous H_0 vraie, la statistique de test pour l'estimateur de \emptyset_1 est donnée par :

$$t_{\hat{\phi}_1} = \frac{\hat{\phi}_1 - 1}{\hat{\sigma}_{\hat{\phi}_1}} \ .$$

La procédure de ce test consiste à analyser successivement les trois formes possibles de non stationnarité (du modèle général [3] au modèle [1]) de la série temporelle. Or sous H_0 vraie, le processus étudié est non stationnaire ($X_t \sim I(1)$) et l'estimateur de \emptyset_1 ne suit pas une distribution normale. Par conséquent, le t-Student de \emptyset_1 ne peut pas être comparé aux valeurs critiques de la table de Student. Dickey et Fuller (1979) ont donc étudié la distribution asymptotique des estimateurs de b, c et \emptyset_1 sous H_0 vraie. Ils ont tabulé les valeurs critiques pour des échantillons de différentes tailles. Pour une taille supérieure à 500 observations, les valeurs critiques sont 2.78 à 5% pour la tendance du modèle [3], 2.52 à 5% pour la constante du modèle [2] et -1.95 à 5% pour le paramètre \emptyset_1 du modèle [1]. On débute le test par l'analyse du modèle [3] et par une comparaison de la statistique $t_{\hat{\psi}_1}$ aux seuils tabulés par Dickey et Fuller. Si l'hypothèse nulle \emptyset_1 = 1 est rejetée, on compare le t-Student de l'estimateur de b aux valeurs critiques usuelles (1.96 à 5%). Autrement, le t-Student de \hat{b} doit être comparé au seuil déterminé par Dickey et Fuller. Si la tendance n'est pas significative, on poursuit le test par l'analyse du modèle [2] et ainsi de suite.

b) Test de Dickey-Fuller Augmenté

Dans le test de Dickey-Fuller que nous venons de présenter, l'erreur ε_t est par hypothèse un bruit blanc. Or il n'y a aucune raison pour que cette hypothèse soit, a priori, vérifiée. Le test de Dickey-Fuller Augmenté prend en considération l'autocorrélation des erreurs en proposant une représentation AR(p-1) pour l'erreur.

Les hypothèses du test de Dickey-Fuller deviennent alors :

H₀: processus non stationnaire, les formes de non stationnarité sont :

[1]
$$\Delta X_t = \rho X_{t-1} - \sum_{k=2}^{p} \gamma_k \Delta X_{t-k+1} + \eta_t$$

[2]
$$\Delta X_t = \rho X_{t-1} - \sum_{k=2}^{p} \gamma_k \Delta X_{t-k+1} + c + \eta_t$$

$$k=2$$

$$[2] \quad \Delta X_{t} = \rho X_{t-1} - \sum_{k=2}^{p} \gamma_{k} \Delta X_{t-k+1} + c + \eta_{t}$$

$$[3] \quad \Delta X_{t} = \rho X_{t-1} - \sum_{k=2}^{p} \gamma_{k} \Delta X_{t-k+1} + bt + c + \eta_{t}$$

$$0 \quad \rho = 0 \quad , \quad \emptyset_{1} = 1 \quad \text{et} \quad \eta_{t} \sim \text{iid}(0, \sigma_{\eta}^{2})$$

où
$$\rho = 0$$
, $\omega_1 = 1$ et $\eta_t \sim \operatorname{iid}(0, \sigma_{\eta_t}^2)$

La valeur p permettant de blanchir les résidus peut être déterminée à l'aide du corrélogramme partiel de la série différenciée ΔX_t. On retiendra alors pour la valeur p le nombre retard p connu, le déroulement du test est identique à celui du test de Dickey-Fuller simple. En adoptant une structure AR(p-1) pour l'erreur, Dickey et Fuller (1979) obtiennent des distributions asymptotiques des statistiques de test qui sont similaires à celles obtenues pour les modèles du test de Dickey-Fuller simple. Les valeurs critiques sont donc identiques pour les tests de Dickey-Fuller simple et Augmenté.

III. APPLICATIONS AVEC LE LOGICIEL EVIEWS

Test de cointégration avec 2 variables (avec des taux d'intérêt) : approche de Engle et **Granger (1987)**

On considère les séries de taux d'intérêt à court terme des Etats-Unis et du Canada. Ces séries ont été transformées en logarithme.

LCUS = logarithme du taux court US

LCCAN = logarithme du taux court CAN.

Etape 1 : Test de stationnarité sur les séries (test de Dickey-Fuller Augmenté) :

- 1. Sélectionner une série dans Workfile en double-cliquant dessus
- 2. Pour déterminer le nombre de retards p à retenir dans les régressions des tests ADF, on peut représenter le corrélogramme de la série en différence première.

Dans **View**, sélectionner **Correlogram** puis **1st différence**. On constate que la première autocorrélation partielle est significativement différente de zéro. Ceci nous conduit à retenir p = 1.

3. Pour effectuer le test ADF, on va dans **View** puis on choisi **Unit Root Test**. On sélectionne **Augmented Dickey-Fuller**, **Trend and intercept**, **level** et **lagged differences** = 1.

Tableau 1 : Test ADF : modèle (3) pour la série LCUS

ADF Test Statistic	-2.020374	1% Critical Value*	-3.9892
		5% Critical Value	-3.4249
		10% Critical Value	-3.1352

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LCUS) Method: Least Squares Sample(adjusted): 3 336

Included observations: 334 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCUS(-1)	-0.015592	0.007718	-2.020374	0.0442
D(LCUS(-1))	0.448826	0.049317	9.100863	0.0000
C	0.032295	0.020362	1.586065	0.1137
@TREND(1)	-4.55E-05	4.98E-05	-0.913180	0.3618
R-squared	0.206742	Mean dependent var		-0.003134
Adjusted R-squared	0.199531	S.D. dependent v	ar ar	0.066119
S.E. of regression	0.059156	Akaike info criteri	on	-2.805385
Sum squared resid	1.154800	Schwarz criterion	ı	-2.759742
Log likelihood	472.4993	F-statistic		28.66863
Durbin-Watson stat	1.919548	Prob(F-statistic)	=	0.000000

- Série LCUS est un processus DS car la statistique de test = -2.02 > -3.42
- On compare la t-statistique de la tendance à sa valeur critique qui est 2.78 (voir table ADF): -0.91 < 2.78 ⇒ H₀: la tendance n'est pas significative. On passe donc à l'étude du modèle (2) du test ADF.

Tableau 2: Test ADF: modèle (2) pour la série LCUS

ADF Test Statistic	-1.994236	1% Critical Value*	-3.4518
		5% Critical Value	-2.8704
		10% Critical Value	-2.5714

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LCUS) Method: Least Squares Sample(adjusted): 3 336

Included observations: 334 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCUS(-1)	-0.010397	0.005214	-1.994236	0.0469
D(LCUS(-1))	0.443466	0.048954	9.058822	0.0000
C	0.015811	0.009418	1.678764	0.0941
R-squared	0.204737	Mean dependent	var	-0.003134
Adjusted R-squared	0.199932	S.D. dependent	var	0.066119
S.E. of regression	0.059141	Akaike info criter	ion	-2.808849
Sum squared resid	1.157718	Schwarz criterior	า	-2.774617
Log likelihood	472.0778	F-statistic		42.60738
Durbin-Watson stat	1.915310	Prob(F-statistic)		0.000000

- Série LCUS est un processus DS car la statistique de test = -1.99 > -2.87
- On compare la t-statistique de la constante à sa valeur critique qui est 2.52 (voir table ADF) : $1.67 < 2.52 \implies H_0$: la constante n'est pas significative. On passe donc à l'étude du modèle (1) du test ADF.

Tableau 3: Test ADF: modèle (1) pour la série LCUS

ADF Test Statistic	-1.211698	1% Critical Value*	-2.5718
		5% Critical Value	-1.9405
		10% Critical Value	-1.6161

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LCUS) Method: Least Squares Sample(adjusted): 3 336

Included observations: 334 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCUS(-1) D(LCUS(-1))	-0.002179 0.440332	0.001798 0.049052	-1.211698 8.976797	0.2265 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.197966 0.195551 0.059303 1.167575 470.6619 1.909945	Mean dependent S.D. dependent Akaike info criter Schwarz criterior F-statistic Prob(F-statistic)	/ar ion	-0.003134 0.066119 -2.806359 -2.783538 81.94772 0.000000

- Série LCUS est un processus DS car la statistique de test = -1.21 > -1.94. Elle est non stationnaire. Elle comporte au moins 1 racine unitaire. Pour déterminer l'ordre d'intégration de la série, on applique maintenant le test ADF à la série en différence première.

Tableau 4: Test ADF: modèle (1) pour la série DLCUS

ADF Test Statistic	-10.80468	1% Critical Value*	-2.5718
		5% Critical Value	-1.9405
		10% Critical Value	-1.6161

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCUS,2)

Method: Least Squares Sample(adjusted): 4 336

Included observations: 333 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCUS(-1))	-0.615399	0.056957	-10.80468	0.0000
D(LCUS(-1),2)	0.089481	0.053939	1.658935	0.0981
R-squared	0.296058	Mean dependent	var	-0.000588
Adjusted R-squared	0.293931	S.D. dependent var		0.069595
S.E. of regression	0.058479	Akaike info criteri	on	-2.834304
Sum squared resid	1.131959	Schwarz criterion		-2.811432
Log likelihood	473.9116	F-statistic		139.2089
Durbin-Watson stat	1.910861	Prob(F-statistic)	=	0.000000

- La série DLCUS est stationnaire car on a -10.80 < -1.94. La série LCUS comporte donc une racine unitaire : LCUS est intégrée d'ordre 1 (il faut la différencier une fois pour la rendre stationnaire).

Tableau 5 : Test ADF : modèle (1) pour la série LCCAN

ADF Test Statistic	-1.103550	1% Critical Value*	-2.5718
		5% Critical Value	-1.9405
		10% Critical Value	-1.6161

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCCAN)

Method: Least Squares Sample(adjusted): 3 336

Included observations: 334 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCCAN(-1) D(LCCAN(-1))	-0.001670 0.509903	0.001513 0.047093	-1.103550 10.82752	0.2706 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.262844 0.260624 0.053578 0.953040 504.5675 1.924391	Mean dependent S.D. dependent Akaike info criter Schwarz criterior F-statistic Prob(F-statistic)	var ion	-0.003220 0.062309 -3.009386 -2.986565 118.3797 0.000000

- Série LCCAN est un processus DS car la statistique de test = -1.10 > -1.94.

Elle est non stationnaire. Elle comporte au moins 1 racine unitaire. Pour déterminer l'ordre d'intégration de la série, on applique maintenant le test ADF à la série en différence première.

Tableau 6: Test ADF: modèle (1) pour la série DLCCAN

ADF Test Statistic	-9.675691	1% Critical Value*	-2.5718
		5% Critical Value	-1.9405
		10% Critical Value	-1.6161

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LCCAN,2)

Method: Least Squares Sample(adjusted): 4 336

Included observations: 333 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCCAN(-1)) D(LCCAN(-1),2)	-0.523562 0.072166	0.054111 0.054791	-9.675691 1.317130	0.0000 0.1887
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.248552 0.246281 0.053565 0.949691 503.1437 2.015501	Mean dependent S.D. dependent v Akaike info criter Schwarz criterior F-statistic Prob(F-statistic)	ar ion	-0.000132 0.061698 -3.009872 -2.987000 109.4827 0.000000

- La série DLCAN est stationnaire car on a -9.67 < -1.94. La série LCCAN comporte donc une racine unitaire : LCCAN est intégrée d'ordre 1 (il faut la différencier une fois pour la rendre stationnaire).

<u>Conclusion</u>: LCUS et LCCAN sont toutes les 3 intégrées d'ordre 1. Donc il y a un risque de cointégration. On va donc chercher à estimer un MCE.

Etape 2 : Test de causalité au sens de Granger :

On peut penser que le taux d'intérêt US influence le taux d'intérêt CAN et non pas l'inverse. Pour déterminer la variable endogène de la relation de long terme, on peut mener le test de causalité au sens de Granger.

1. Pour mener le test de causalité au sens de Granger, on a besoin de déterminer le nombre de retards p du modèle VAR(p) avec les 2 variables <u>stationnaires</u>. Pour cela, on utilise les critères AIC et SC.

Allez dans **Quick** puis dans **Estimate VAR**. Choisir **Unrestricted VAR**, **Lag intervals** : 1 1 (pour un retard), **Endogenous** : d(LCUS) d(LCCAN).

Tableau 7: Estimation du modèle VAR(1)

	D(LCUS)	D(LCCAN)
D(LCUS(-1))	0.463147 (0.05871)	0.211480 (0.05177)
	(7.88890)	(4.08479)
D(LCCAN(-1))	-0.042932	0.388011
	(0.06239)	(0.05502)
	(-0.68809)	(7.05198)
С	-0.001897	-0.001349
	(0.00326)	(0.00287)
	(-0.58240)	(-0.46946)
R-squared	0.196332	0.296261
Adj. R-squared	0.191476	0.292009
Sum sq. resids	1.169954	0.909837
S.E. equation	0.059453	0.052429
F-statistic	40.43080	69.67251
Log likelihood	470.3220	512.3149
Akaike AIC	-2.798335	-3.049790
Schwarz SC	-2.764103	-3.015558
Mean dependent	-0.003134	-0.003220
S.D. dependent	0.066119	0.062309
Determinant Residual	Covariance	7.30E-06
Log Likelihood		1027.263
Akaike Information Cri	teria	-6.115349
Schwarz Criteria		-6.046885

Tableau 8 : Estimation du modèle VAR(2)

	D(LCUS)	D(LCCAN)
D(LCUS(-1))	0.470619	0.204969
· · · //	(0.06199)	(0.05554)
	(7.59147)	(3.69042)
D(LCUS(-2))	-0.073059	-0.000496
	(0.06316)	(0.05658)
	(-1.15682)	(-0.00876)
D(LCCAN(-1))	0.002375	0.419007
= (====:(=://	(0.07030)	(0.06298)
	(0.03378)	(6.65250)
	(,	()
D(LCCAN(-2))	-0.034175	-0.053446
	(0.06792)	(0.06085)
	(-0.50315)	(-0.87829)
С	-0.002580	-0.001533
O	(0.00322)	(0.00289)
	(-0.80101)	(-0.53130)
Description		<u>, , , , , , , , , , , , , , , , , , , </u>
R-squared Adj. R-squared	0.200499 0.190749	0.297733 0.289169
Sum sq. resids	1.128838	0.289169
S.E. equation	0.058665	0.052559
F-statistic	20.56397	34.76472
Log likelihood	474.3713	510.9693
Akaike AIC	-2.819047	-3.038855
Schwarz SC	-2.761868	-2.981675
Mean dependent	-0.003762	-0.003373
S.D. dependent	0.065213	0.062340
Determinant Residual		7.06E-06
Log Likelihood	Covaliance	1029.951
Akaike Information Crit	eria	-6.125835
Schwarz Criteria		-6.011476

2. Allez dans Quick puis dans Group Statistics. Choisir Granger Causality Test. Dans le cadre **List of Series**, tapez les <u>variables stationnaires</u> à étudier : d(LCUS) d(LCCAN).

Tableau 9 : Test de causalité au sens de Granger

Pairwise Granger Causality Tests

Sample: 1 336 Lags: 1

Null Hypothesis:	Obs	F-Statistic	Probability
D(LCCAN) does not Granger Cause D(LCUS)	334	0.47347	0.49188
D(LCUS) does not Granger Cause D(LCCAN)		16.6855	5.5E-05

Si la probabilité > 0.05, l'hypothèse nulle est acceptée. On constate que DLCCAN n'influence pas au sens de Granger DLCUS car probabilité > 0.05. En revanche DLCUS influence DLCCAN car probabilité < 0.05 donc H₀ rejetée.

Etape 3 : Estimation de la relation de long terme :

On régresse LCCAN sur une constante et sur LCUS.

Tableau 10 : Estimation de la relation de long terme

Dependent Variable: LCCAN

Method: Least Squares

Sample: 1 336

Included observations: 336

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LCUS	0.504290 0.795454	0.045171 0.024984	11.16405 31.83816	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.752165 0.751423 0.284383 27.01178 -53.26253	Mean dependent S.D. dependent Akaike info crite Schwarz criterio F-statistic	var rion	1.854963 0.570391 0.328944 0.351665 1013.669
Durbin-Watson stat	0.037922	Prob(F-statistic)	_	0.000000

On récupère les résidus de cette relation et on applique le test ADF sur les résidus estimés.

Dans la fenêtre d'estimation de la relation de long terme, on sélectionne Procs puis Make Residuals Series.

Tableau 11 : Test ADF : modèle (1) pour les résidus de la relation estimée de long terme

ADF Test Statistic	-2.534897	1% Critical Value*	-2.5718
		5% Critical Value	-1.9405
		10% Critical Value	-1.6161

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID01) Method: Least Squares

Sample(adjusted): 3 336

Included observations: 334 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID01(-1)	-0.025262	0.009966	-2.534897	0.0117
D(RESID01(-1))	0.363512	0.051126	7.110156	0.0000
R-squared	0.139469	Mean dependent	var	-0.000727
Adjusted R-squared	0.136877	S.D. dependent v	/ar	0.055408
S.E. of regression	0.051476	Akaike info criteri	ion	-3.089414
Sum squared resid	0.879743	Schwarz criterion	1	-3.066593
Log likelihood	517.9321	F-statistic		53.80813
Durbin-Watson stat	1.968224	Prob(F-statistic)		0.000000

- La valeur calculée de la statistique de Dickey-Fuller est −2.53. Elle est à comparer aux valeurs tabulées par Engle et Yoo (1987) : -4.48 . La valeur calculée est supérieure à la valeur tabulée, on accepte donc l'hypothèse nulle d'absence de cointégration entre LCUS et LCCAN. Il est alors impossible d'estimer un modèle à correction d'erreur.

Etape 4: Estimation d'un modèle VAR:

L'absence de cointégration entre les séries LCUS et LCCAN mais l'existence d'une causalité entre DLCUS et DLCCAN nous conduit à nous intéresser à la modélisation VAR (plus particulièrement au modèle VAR(p) avec 2 variables qui sont DLCUS et DLCCAN).

Tableau 12 : Estimation du modèle VAR(2)

	D(LCUS)	D(LCCAN)
D(LCUS(-1))	0.470619 (0.06199) (7.59147)	0.204969 (0.05554) (3.69042)
D(LCUS(-2))	-0.073059 (0.06316) (-1.15682)	-0.000496 (0.05658) (-0.00876)
D(LCCAN(-1))	0.002375 (0.07030) (0.03378)	0.419007 (0.06298) (6.65250)
D(LCCAN(-2))	-0.034175 (0.06792) (-0.50315)	-0.053446 (0.06085) (-0.87829)
С	-0.002580 (0.00322) (-0.80101)	-0.001533 (0.00289) (-0.53130)
R-squared	0.200499	0.297733

0.190749	0.289169	
1.128838	0.906088	
0.058665	0.052559	
20.56397	34.76472	
474.3713	510.9693	
-2.819047	-3.038855	
-2.761868	-2.981675	
-0.003762	-0.003373	
0.065213	0.062340	
Covariance	7.06E-06	
Log Likelihood		
Akaike Information Criteria		
	-6.011476	
	1.128838 0.058665 20.56397 474.3713 -2.819047 -2.761868 -0.003762 0.065213 Covariance	

On remarque que DLCUS dépend seulement de sa valeur passée d'une période tandis que DLCCAN dépend à la fois des valeurs retardées d'une période de DLCCAN et de DLCUS.

<u>Test de cointégration avec plusieurs variables (taux d'intérêt) et estimation d'un modèle VECM : approche de Johansen</u>

Etape 1 : Test de stationnarité sur les séries (test de Dickey-Fuller Augmenté) :

Tableau 13: Test ADF: modèle (1) pour la série DLCRU

ADF Test Statistic	-10.40400	1% Critical Value*	-2.5718
		5% Critical Value	-1.9405
		10% Critical Value	-1.6161

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LCRU,2) Method: Least Squares Sample(adjusted): 4 336

Included observations: 333 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRU(-1)) D(LCRU(-1),2)	-0.631828 0.032214	0.060729 0.054912	-10.40400 0.586635	0.0000 0.5578
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.306935 0.304841 0.039944 0.528120 600.8481 2.000045	Mean dependent v. S.D. dependent v. Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	ar	-6.16E-05 0.047908 -3.596685 -3.573814 146.5888 0.000000

- La série DLCRU est stationnaire car on a -10.40 < -1.94. La série LCRU comporte donc une racine unitaire : LCRU est intégrée d'ordre 1 (il faut la différencier une fois pour la rendre stationnaire).

Etape 2 : Détermination du nombre de retards p du modèle VAR(p) :

Allez dans Quick, choisir Estimate VAR. Dans la fenêtre qui apparaît, choisir Unrestricted VAR, mettre dans Endogenous les variables LCUS, LCRU, LCCAN (Attention: variables

non stationnaires en niveau ici!!) et mettre dans Lag intervals : 1 1 (pour un 1 retard à attribuer à chacune des variables LCUS, LCRU, LCCAN).

Tableau 14 : Estimation du modèle VAR(1)

Sample(adjusted): 2 336 Included observations: 335 after adjusting endpoints

Standard errors & t-statistics in parentheses

	LCCAN	LCRU	LCUS
LCCAN(-1)	0.929107	-0.001700	-0.062157
	(0.01697)	(0.01196)	(0.01818)
	(54.7476)	(-0.14210)	(-3.41814)
LCRU(-1)	0.037311	0.974795	0.040545
	(0.01888)	(0.01331)	(0.02023)
	(1.97638)	(73.2524)	(2.00433)
LCUS(-1)	0.038441	0.015360	1.017552
2000(-1)	(0.01076)	(0.00758)	(0.01153)
	(3.57243)	(2.02504)	(88.2525)
	(3.37243)	(2.02304)	(00.2020)
С	-0.013303	0.025716	-0.000409
	(0.01809)	(0.01275)	(0.01939)
	(-0.73527)	(2.01638)	(-0.02110)
R-squared	0.988756	0.990460	0.989132
Adj. R-squared	0.988654	0.990374	0.989034
Sum sq. resids	1.218685	0.605526	1.399250
S.E. equation	0.060678	0.042771	0.065018
F-statistic	9702.206	11455.05	10042.16
Log likelihood	465.3956	582.5501	442.2531
Akaike AIC	-2.754600	-3.454030	-2.616436
Schwarz SC	-2.709058	-3.408488	-2.570894
Mean dependent	1.852642	2.044772	1.695313
S.D. dependent	0.569652	0.435933	0.620880
Determinant Residual	Covariance	1.87E-08	
Log Likelihood		1554.175	
Akaike Information Crit	teria	-9.207014	
Schwarz Criteria		9.070388	_

Tableau 15: Estimation du modèle VAR(2)

Sample(adjusted): 3 336

Included observations: 334 after adjusting endpoints

Standard errors & t-statistics in parentheses

	LCCAN	LCRU	LCUS
LCCAN(-1)	1.349731	-0.047724	-0.052958
	(0.05482)	(0.04217)	(0.06315)
	(24.6206)	(-1.13179)	(-0.83868)
LCCAN(-2)	-0.409269	0.062396	0.016759
	(0.05458)	(0.04198)	(0.06287)
	(-7.49842)	(1.48628)	(0.26657)
LCRU(-1)	0.137583	1.357014	0.075718
	(0.06751)	(0.05193)	(0.07776)
	(2.03792)	(26.1329)	(0.97371)
LCRU(-2)	-0.089703	-0.395312	-0.040875
	(0.06731)	(0.05177)	(0.07753)
	(-1.33263)	(-7.63525)	(-0.52719)
LCUS(-1)	0.178586	0.046097	1.430823

7 0.033059 0) (0.01184) 2) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392 7 6688.331 1 609.8354 7 -3.609793 3 -3.529918 9 2.042279 0 0.434189 9.85E-09 1657.064	(-7.18348) -0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990 6067.500 474.9617 -2.802166 -2.722292 1.692424 0.619552
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392 7 6688.331 1 609.8354 7 -3.609793 3 -3.529918 9 2.042279	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990 6067.500 474.9617 -2.802166 -2.722292 1.692424
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392 7 6688.331 1 609.8354 7 -3.609793 3 -3.529918	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990 6067.500 474.9617 -2.802166 -2.722292
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392 7 6688.331 1 609.8354 7 -3.609793	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990 6067.500 474.9617 -2.802166
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392 7 6688.331 1 609.8354	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990 6067.500 474.9617
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392 7 6688.331	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990 6067.500
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406 4 0.039392	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897 0.058990
0) (0.01184) (2.79155) 1 0.991917 5 0.991769 7 0.507406	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934 1.137897
0) (0.01184) 9) (2.79155) 1 0.991917 5 0.991769	-0.003707 (0.01773) (-0.20903) 0.991098 0.990934
0) (0.01184) 9) (2.79155) 1 0.991917	-0.003707 (0.01773) (-0.20903) 0.991098
0.01184)	-0.003707 (0.01773)
	-0.003707
7 0.033059	,
	(-7.10346)
(-0.91142)	(740240)
3) (0.04017)	(0.06016)
6 -0.036613	-0.432148
(1.15055)	(24.0094)

Tableau 16: Estimation du modèle VAR(3)

Sample(adjusted): 4 336 Included observations: 333 after adjusting endpoints Standard errors & t-statistics in parentheses

	LCCAN	LCRU	LCUS
LCCAN(-1)	1.360998	-0.046028	-0.026658
, ,	(0.06325)	(0.04846)	(0.07148)
	(21.5175)	(-0.94978)	(-0.37294)
1.0041/(0)	0.400400	0.028581	0.007024
LCCAN(-2)	-0.423469		-0.007631
	(0.10303) (-4.11019)	(0.07894) (0.36207)	(0.11643)
	(-4.11019)	(0.36207)	(-0.06554)
LCCAN(-3)	0.002800	0.034369	0.001125
	(0.06115)	(0.04686)	(0.06911)
	(0.04578)	(0.73351)	(0.01628)
LCRU(-1)	0.133488	1.362045	0.027721
LONO(-1)	(0.07397)	(0.05667)	(0.08359)
	(1.80470)	(24.0341)	(0.33163)
	(1.00470)	(24.0041)	(0.00100)
LCRU(-2)	-0.083205	-0.419954	0.085246
	(0.12047)	(0.09230)	(0.13614)
	(-0.69066)	(-4.54979)	(0.62615)
LCRU(-3)	-0.003744	0.019169	-0.087007
20.10(0)	(0.07366)	(0.05643)	(0.08324)
	(-0.05084)	(0.33967)	(-1.04527)
	(/	(,	(,
LCUS(-1)	0.187348	0.020453	1.451249
	(0.05541)	(0.04246)	(0.06262)
	(3.38093)	(0.48175)	(23.1749)
LCUS(-2)	-0.201291	0.062040	-0.548574
2333(2)	(0.09070)	(0.06950)	(0.10250)
	(-2.21920)	(0.89272)	(-5.35175)
	(=:=:0=0)	(=====)	(2.20 0)
LCUS(-3)	0.033898	-0.074752	0.097617
	(0.05654)	(0.04332)	(0.06389)
	(0.59959)	(-1.72572)	(1.52788)

С	-0.019696	0.032688	0.005535
	(0.01575)	(0.01206)	(0.01780)
	(-1.25082)	(2.70937)	(0.31103)
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.992004	0.991902	0.991355
	0.991782	0.991676	0.991114
	0.855944	0.502459	1.093121
	0.051478	0.039441	0.058175
	4452.714	4395.785	4115.284
	520.4484	609.1414	479.7245
	-3.065756	-3.598447	-2.821168
	-2.951397	-3.484088	-2.706810
	1.847758	2.039714	1.688899
	0.567844	0.432300	0.617121
Determinant Residual (Log Likelihood Akaike Information Crit Schwarz Criteria		9.36E-09 1660.465 - 9.792585 - 9.449509	=

Conclusion : on choisit p = 2 pour le modèle VAR avec des variables en niveau.

Etape 3 : Mise en place du test de Johansen :

Pour effectuer le test de la trace, il est nécessaire de préciser d'abord les spécifications à retenir :

- Absence ou présence de constante dans le modèle VECM
- Absence ou présence de constante et de tendance dans les relations de cointégration.

Nous effectuons ici le test de la trace en supposant :

• l'existence d'une constante dans la relation de long terme et non dans les données (pas de constante dans le modèle à correction d'erreur).

On sélectionne donc dans Eviews la mention :

Test assumes no deterministic trend in data et Intercept (no trend) in CE (pour relation de cointégration) – no intercept in VAR

• l'existence d'une constante dans la relation de long terme et aussi dans les données (présence d'une constante dans le modèle à correction d'erreur).

On sélectionne donc dans Eviews la mention :

Test assumes deterministic trend in data et Intercept (no trend) in CE and test VAR

Pour mener le test de la trace, on double-clique la ligne contenant l'estimation du modèle VAR dans Worfile. Puis dans **View**, on choisit **Cointegration Test**.

<u>ATTENTION</u>: Pour le nombre de retards à ajouter au modèle, il faut mettre 1 1 dans la case **Lag Intervals**!! car les variables du test seront exprimées en différence première! On avait trouvé à l'étape 2 qu'il fallait 2 retards pour le modèle VAR en niveau!!

Tableau 17: Test de la trace

(constante dans la relation de cointégration mais pas dans le modèle VECM)

Sample: 1 336

Included observations: 334

Test assumption: No deterministic trend in the

data

Series: LCCAN LCRU LCUS

Lags interval: 1 to 1

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	1 Percent Critical Value	Hypothesized No. of CE(s)
0.068660	36.44729	34.91	41.07	None *
0.023931	12.68964	19.96	24.60	At most 1
0.013677	4.599600	9.24	12.97	At most 2

*(**) denotes rejection of the hypothesis at 5%(1%) significance level L.R. test indicates 1 cointegrating equation(s) at 5% significance level

- Il y a cointégration car l'hypothèse nulle d'absence de cointégration a été rejetée (36.44>34.91) au seuil de 5%.
- L'hypothèse nulle selon laquelle il y a au plus 1 relation de cointégration a été acceptée car on a 12.68 < 19.96.
- L'hypothèse nulle selon laquelle il y a au plus 2 relations de cointégration a été aussi acceptée mais il y a qu'une seule relation de cointégration car la première hypothèse nulle selon laquelle il y a au plus 1 relation de cointégration a été acceptée.

Remarque:

Si on avait rejeté l'ensemble des hypothèses nulles, cela aurait impliqué que le rang de la matrice $\Pi = k$ et donc qu'il n'y aurait pas de relation de cointégration car les variables sont toutes I(0).

Tableau 18: Test de la trace (constante dans la relation de cointégration et dans le modèle VECM)

Sample: 1 336

Included observations: 334

Test assumption: Linear deterministic trend in

the data

Series: LCCAN LCRU LCUS

Lags interval: 1 to 1

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	1 Percent Critical Value	Hypothesized No. of CE(s)
0.068526	35.47397	29.68	35.65	None *
0.022290	11.76445	15.41	20.04	At most 1
0.012601	4.235530	3.76	6.65	At most 2 *

*(**) denotes rejection of the hypothesis at 5%(1%) significance level

L.R. test indicates 1 cointegrating equation(s) at 5% significance level

- Il y a cointégration car l'hypothèse nulle d'absence de cointégration a été rejetée (35.47>29.68) au seuil de 5%.

- L'hypothèse nulle selon laquelle il y a au plus 1 relation de cointégration a été acceptée car on a 11.76 < 15.41.

Etape 4 : Identification des relations de cointégration :

Tableau 19 : Estimation de la relation de cointégration (constante dans la relation de cointégration mais pas dans le modèle VECM)

Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s)				
LCCAN 1.000000	LCRU -1.200838 (0.19688)	LCUS -0.072196 (0.13665)	C 0.716188 (0.24052)	
Log likelihood	1650.719		=	=

LCCAN - 1.20 LCRU - 0.07 LCUS + 0.71

<u>Remarque</u>: Les valeurs entre parenthèses sont les écarts-types estimés associés aux coefficients estimés.

Tableau 20 : Estimation de la relation de cointégration (constante dans la relation de cointégration et dans le modèle VECM)

Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s)				
LCCAN 1.000000	LCRU -1.195056 (0.19567)	LCUS -0.074881 (0.13597)	C 0.717787	
Log likelihood	1651.182	=	=	=

Etape 5 : Estimation du modèle VECM :

Pour estimer un modèle VECM, on va **Quick**, on choisit **Estimate VAR** et on coche **Vector Error Correction**. Dans la case **Endogenous**, mettre les variables (non stationnaires): LCCAN, LCRU, LCUS (Eviews les mettra en différence première). Pour **Lag intervals**: mettre 1 1 car Eviews prend en compte les variables en différence première.

Tableau 21 : Estimation du modèle VECM(1)* (constante dans la relation de cointégration mais pas dans le modèle VECM)

Sample(adjusted): 3 336 Included observations: 334 after adjusting endpoints Standard errors & t-statistics in parentheses

Cointegrating Eq:	CointEq1		
LCCAN(-1)	1.000000		
LCRU(-1)	-1.200838 (0.19688) (-6.09933)		
LCUS(-1)	-0.072196 (0.13665) (-0.52832)		
С	0.716188 (0.24052) (2.97762)		
Error Correction:	D(LCCAN)	D(LCRU)	D(LCUS)
CointEq1	-0.045975 (0.01295) (-3.55120)	0.025936 (0.00998) (2.59834)	-0.033632 (0.01491) (-2.25561)
D(LCCAN(-1))	0.410738 (0.05447) (7.54101)	-0.063198 (0.04199) (-1.50491)	-0.024346 (0.06273) (-0.38811)
D(LCRU(-1))	0.098461 (0.06716) (1.46602)	0.402887 (0.05178) (7.78036)	0.043711 (0.07735) (0.56509)
D(LCUS(-1))	0.175640 (0.05158) (3.40514)	0.051397 (0.03977) (1.29237)	0.440595 (0.05941) (7.41660)
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.328879 0.322778 0.867666 0.051277 53.90490 520.2404 -3.091260 -3.045617 -0.003220 0.062309	0.167462 0.159893 0.515784 0.039535 22.12607 607.1005 -3.611380 -3.565738 -0.003081 0.043133	0.209412 0.202225 1.150913 0.059056 29.13694 473.0623 -2.808756 -2.763114 -0.003134 0.066119
Determinant Residual C Log Likelihood Akaike Information Crite Schwarz Criteria		1.02E-08 1650.719 -9.788737 -9.606168	

On a ici un retard pour le modèle VECM car on a choisi un VAR(2).

Tableau 22 : Estimation du modèle VECM(1) (constante dans la relation de cointégration et dans le modèle VECM)

Sample(adjusted): 3 336 Included observations: 334 after adjusting endpoints

Cointegrating Eq: CointEq1	Standard errors & t-statistics in parentheses							
LCRU(-1)	Cointegrating Eq:	CointEq1						
(0.19567) (-6.10761) LCUS(-1) -0.074881 (0.13597) (-0.55073) C 0.717787 Error Correction: D(LCCAN) D(LCRU) D(LCUS) CointEq1 -0.046577 0.025502 -0.034292 (0.01301) (0.01003) (0.01498) (-3.57969) (2.54286) (-2.28862) D(LCCAN(-1)) 0.410225 -0.063845 -0.025127 (0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03881) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent 0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance	LCCAN(-1)	1.000000						
C	LCRU(-1)	(0.19567)						
(0.13597) (-0.55073) C 0.717787 Error Correction: D(LCCAN) D(LCRU) D(LCUS) CointEq1 -0.046577 0.025502 -0.034292 (0.01301) (0.01003) (0.01498) (-3.57969) (2.54286) (-2.28862) D(LCCAN(-1)) 0.410225 -0.063845 -0.025127 (0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent 0.0062309 0.043133 0.066119 Determinant Residual Covariance Log Likelihood	1 CHS(4)	,						
C 0.717787 Error Correction: D(LCCAN) D(LCRU) D(LCUS) CointEq1 -0.046577 (0.01301) (0.01003) (0.01498) (2.54286) (-2.28862) D(LCCAN(-1)) 0.410225 (0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 (0.06737) (0.05193) (0.07758) (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 (0.001945 (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 (0.051326 (0.039561) (0.05916) (LCUS(-1)	(0.13597)						
Error Correction: D(LCCAN) D(LCRU) D(LCUS) CointEq1 -0.046577 0.025502 -0.034292 (0.01301) (0.01003) (0.01498) (-3.57969) (2.54286) (-2.28862) D(LCCAN(-1)) 0.410225 -0.063845 -0.025127 (0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equ		(-0.55073)						
CointEq1 -0.046577 (0.01301) 0.025502 (0.01003) -0.034292 (0.01498) D(LCCAN(-1)) 0.410225 (0.05453) -0.063845 (0.04203) -0.025127 (0.06280) D(LCRU(-1)) 0.096004 (0.06737) 0.400207 (0.05193) 0.040403 (0.07758) D(LCRU(-1)) 0.096004 (0.06737) 0.05193 (0.05193) (0.07758) D(LCUS(-1)) 0.174940 (0.05164) 0.050927 (0.03981) 0.439787 (0.05947) C -0.001101 (0.00282) -0.00217 (0.00217) (0.00394) R-squared 0.321468 0.321468 0.158759 0.200886 0.200886 Sum sq. resids 0.866710 0.514915 0.149351 1.149351 S.E. equation 0.051326 0.039561 0.059106 0.059106 F-statistic 40.44140 16.71094 16.71094 21.92787 21.92787 Log likelihood 520.4246 607.3820 473.2891 473.2891 48aike AIC 3.086375 3.607078 -2.804126 5chwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003209 0.043133 0.066119 Determinant Residual Covariance Log Likelihood 1.02E-08 1.02E-08 1.05128	C	0.717787						
(0.01301) (0.01003) (0.01498) (-3.57969) (2.54286) (-2.28862) D(LCCAN(-1)) 0.410225 -0.063845 -0.025127 (0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood	Error Correction:	D(LCCAN)	D(LCRU)	D(LCUS)				
D(LCCAN(-1)) 0.410225	CointEq1							
D(LCCAN(-1)) 0.410225			,	,				
(0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood		(-3.57969)	(2.54286)	(-2.28862)				
(0.05453) (0.04203) (0.06280) (7.52242) (-1.51891) (-0.40012) D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood	D(LCCAN(-1))	0.410225	-0.063845	-0.025127				
D(LCRU(-1)) 0.096004 0.400207 0.040403 (0.06737) 0.05193) 0.07758) (1.42508) 0.7.70734) 0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) 0.03981) 0.05947) 0.38744) 0.001945 0.001945 0.00282) 0.00217) 0.00324) 0.00282) 0.00217) 0.00324) 0.059168 0.168864 0.210485 0.210485 0.329619 0.168864 0.210485 0.210485 0.321468 0.158759 0.200886 0.321468 0.158759 0.200886 0.321468 0.321468 0.158759 0.200886 0.321468 0.321468 0.329619 0.168864 0.210485 0.210485 0.200886 0.399561 0.059106 0.514915 0.039561 0.059106 0.514915 0.039561 0.059106 0.32066 0.3326	· · · //		(0.04203)	(0.06280)				
(0.06737) (0.05193) (0.07758) (1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182		(7.52242)	(-1.51891)	(-0.40012)				
(1.42508) (7.70734) (0.52081) D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.05947) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182	D(LCRU(-1))	0.096004	0.400207	0.040403				
D(LCUS(-1)) 0.174940 0.050927 0.439787 (0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AlC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance Log Likelihood 1651.182								
(0.05164) (0.03981) (0.05947) (3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182		(1.42508)	(7.70734)	(0.52081)				
(3.38744) (1.27937) (7.39495) C -0.001101 -0.001945 -0.001790 (0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182	D(LCUS(-1))		0.050927	0.439787				
C -0.001101 (0.00282) -0.001945 (0.00217) -0.001790 (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AlC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182			,					
(0.00282) (0.00217) (0.00324) (-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182		(3.38744)	(1.27937)	(7.39495)				
(-0.39068) (-0.89566) (-0.55157) R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182	С							
R-squared 0.329619 0.168864 0.210485 Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Adj. R-squared 0.321468 0.158759 0.200886 Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Sum sq. resids 0.866710 0.514915 1.149351 S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
S.E. equation 0.051326 0.039561 0.059106 F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
F-statistic 40.44140 16.71094 21.92787 Log likelihood 520.4246 607.3820 473.2891 Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Log likelihood 520.4246 607.3820 473.2891 Akaike AlC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Akaike AIC -3.086375 -3.607078 -2.804126 Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Schwarz SC -3.029322 -3.550025 -2.747073 Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Mean dependent -0.003220 -0.003081 -0.003134 S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
S.D. dependent 0.062309 0.043133 0.066119 Determinant Residual Covariance 1.02E-08 Log Likelihood 1651.182								
Log Likelihood 1651.182								
5	Determinant Residual C	Covariance	1.02E-08					
Akaike Information Criteria -9.779531	3							
		eria						
Schwarz Criteria -9.574141	Schwarz Criteria		<u>-</u> 9.574141	=				

Remarques:

- Les 3 constantes des 3 équations ne sont pas significativement différentes de 0. On retient par conséquent le modèle VECM sans constante.
- Les coefficients de la relation de long terme sont significatifs.
- Le terme à correction d'erreur est négatif et significativement différent de 0 pour les taux LCCAN et LCUS.

- Le taux LCCAN dépend de ses valeurs passées et du taux LCUS ce qui reflète l'impact de la variable américaine sur la variable canadienne.
- Le taux LCUS ne dépend que de ses valeurs passées ce qui signifie que les Etats-Unis ne subissent pas l'influence des 2 autres pays ce qui est cohérent d'un point de vue empirique.

Etape 6: Validation du modèle VECM:

On vérifie que les résidus issus de chacune des 3 équations sont des bruits blancs en utilisant la Q-statistique de Ljung-Box.

Test de Box-Pierce:

Le test de Box-Pierce repose sur l'analyse de la statistique Q' qui est définie par :

$$Q' = n \sum_{k=1}^{h} \hat{\rho}_k^2$$

où n est le nombre d'observations et $\hat{\rho}_k$ fait référence à l'autocorrélation empirique d'ordre k. La statistique Q' suit asymptotiquement la loi du χ^2 à h degrés de liberté.

On rejette l'hypothèse nulle de bruit blanc ($\rho_1 = \rho_2 = ... = \rho_k = 0$) au seuil de α si la statistique Q' est supérieure à la valeur critique lue dans la table du χ^2 à h degrés de liberté.

Test de Ljung-Box :

Le test de Ljung-Box repose sur l'analyse de la statistique Q qui est définie par :

$$Q = n (n+2) \sum_{k=1}^{h} \frac{\hat{\rho}_k^2}{n-k}$$
.

La statistique Q suit aussi asymptotiquement la loi du χ^2 à h degrés de liberté.

Cette statistique est souvent préférée à celle de Box-Pierce à cause de ces propriétés asymptotiques supérieures.

Pour effectuer le test de Ljung-Box (seul test donné par Eviews), créer d'abord les séries de résidus des 3 équations en allant dans **Procs** et en choisissant **Make Residuals**.

Cliquer ensuite sur chacune des séries de résidus crées pour effectuer le test de Ljung-Box. Allez dans **View** puis sélectionnez **Correlogram** et **Level**.

Tableau 23 : Corrélogramme de la série des résidus de la première équation

Sample: 1 336 Included observations: 334

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	0.010	0.010	0.0306	0.861
.j.	.j.	2	0.012	0.012	0.0799	0.961
.].	.j.	3	-0.041	-0.041	0.6520	0.884
.j.	.j.	4	-0.056	-0.056	1.7362	0.784
* .	* .	5	-0.077	-0.076	3.7789	0.582
.j. j	.j. j	6	0.012	0.013	3.8323	0.699
.].	.j. j	7	0.018	0.015	3.9458	0.786
. *	. *	8	0.110	0.101	8.0991	0.424
.].	.].	9	0.030	0.022	8.4198	0.492
. .	. .	10	0.060	0.055	9.6530	0.471
.].	.j.	11	0.019	0.031	9.7816	0.550
.j.	.j. j	12	-0.020	-0.005	9.9145	0.623
* .	*į. į	13	-0.127	-0.109	15.563	0.274
* .	* .	14	-0.076	-0.071	17.575	0.227
<u>*</u> j. j	<u>.</u>	15	-0.058	-0.055	18.764	0.225

La statistique Q de Ljung-Box pour le retard h = 15 confirme l'absence d'autocorrélation. En effet, la probabilité du test pour h = 15 est 0.225 > 0.05, donc l'hypothèse nulle de bruit blanc acceptée.

Tableau 24 : Corrélogramme de la série des résidus de la deuxième équation

Sample: 1 336

Included observations: 334

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	-0.008	-0.008	0.0191	0.890
.j. j	.j. j	2	0.005	0.005	0.0284	0.986
.j. j	.j. j	3	-0.047	-0.046	0.7628	0.858
.j. j	. .	4	-0.011	-0.011	0.8018	0.938
.j. j	.j. j	5	0.036	0.037	1.2483	0.940
. *	.[*	6	0.085	0.084	3.7265	0.714
.j. j	.[.]	7	-0.015	-0.015	3.8020	0.802
.j. j	. .	8	-0.003	-0.001	3.8045	0.874
.j. j	. *	9	0.057	0.066	4.9233	0.841
* .	* .	10	-0.060	-0.060	6.1594	0.802
. *	. *	11	0.126	0.120	11.704	0.386
.j. j	.j.	12	0.057	0.061	12.856	0.380
* .	* .	13	-0.088	-0.094	15.554	0.274
.j. j	.j. j	14	-0.048	-0.045	16.357	0.292
* .	<u></u> * .	_ 15_	-0.081	-0.081	18.657	0.230

La statistique Q de Ljung-Box pour le retard h = 15 confirme l'absence d'autocorrélation. En effet, la probabilité du test pour h = 15 est 0.230 > 0.05, donc l'hypothèse nulle de bruit blanc acceptée.

Tableau 25 : Corrélogramme de la série des résidus de la troisième équation

Sample: 1 336 Included observations: 334

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	0.025	0.025	0.2129	0.644
* .	* .	2	-0.075	-0.075	2.0916	0.351
.j. j	.j. j	3	0.012	0.016	2.1381	0.544
.j. j	.j. j	4	-0.015	-0.022	2.2147	0.696
.ĺ* ĺ	. *	5	0.113	0.117	6.5442	0.257
* .	* .	6	-0.063	-0.074	7.8911	0.246
.j. j	. *	7	0.045	0.070	8.5816	0.284
.ĺ* ĺ	. *	8	0.137	0.121	15.065	0.058
.ĺ* ĺ	.[*	9	0.152	0.166	23.038	0.006
.j. j	.j. j	10	0.024	0.019	23.233	0.010
.j. j	.j. j	11	-0.011	0.031	23.276	0.016
* .	* .	12	-0.122	-0.145	28.472	0.005
.j. j	.j. j	13	0.045	0.041	29.169	0.006
.ĺ* ĺ	.[*	14	0.117	0.074	33.946	0.002
* .	* .	_ 15_	-0.109	-0.106	38.090	0.001

La statistique Q de Ljung-Box pour le retard h=9 ne confirme pas l'absence d'autocorrélation. En effet, la probabilité du test pour h=9 est 0.006 < 0.05, donc l'hypothèse nulle de bruit blanc rejetée.