An Introduction to Missing Data and Bayesian Statistics with Blimp

Brian T. Keller

Assistant Professor Statistics, Measurement, & Evaluation in Education Educational, School, & Counseling Psychology University of Missouri

Developer, Blimp

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024) 1

Workshop Content

Blimp available at

https://www.appliedmissingdata.com/blimp

Workshop content at

https://github.com/blimp-stats/Yonsei-Workshop

Briair i Heirer (Griveren) er ivisse arry	mine and and any country that sure and	c renser crare (fame 20, 2021)

Acknowledgements

Brian T. Keller (University of Missouri)

Craig Enders, Ph.D. (UCLA)

Han Du, Ph.D. (UCLA)

Jiwon Kim, Ph.D. (UT Austin)

Suyoung Kim, M.A. (UT Austin)

Missing Data and Bayesian Statistics with Blimp

Workshop Outline

Day 1:

An Introduction to Missing Data and Bayesian Statistics with Blimp

Day 2:

- Finish remaining material from Day 1.
- Latent Variable Models with Blimp

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	4

Day 1's Overview

- Missing Data Processes
- Introduction to Bayesian Statistics
- Fitting Regression Models in Blimp
- Understanding Blimp Output
- Incomplete Categorical Variables
- Interaction Effects in Blimp

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	5

Why Bayesian statistics?

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	5
			—
			—
			—
			—
			_
			_
			_
			_
			_
			_
			_

Things Bayesian approaches are good at...

- Direct estimation for complex models with missing data
- Introduction of mixed response metrics (normal, binary, ordinal, etc.)
- Nonlinear effects (interactions, curvilinear, etc.)
- Multilevel data (random effects, interactions, heterogenous variance)
- Complex latent variable modeling (interactions, multilevel)

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	7

Missing Data Processes

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 8

Introduction to Missing Data

Brian T. Keller (University of Missouri)

Generally, statistical methods are developed to make population inferences from *rectangular data sets*, where the rows are observations and the columns represent random variables.

Data		
Υ	X	
4	2	
1	7	
1	5	
1	8	
9	2	
3	3	
4	8	
2	1	

Missing Data and Bayesian Statistics with Blimp

- Missing or incomplete data is concerned with instances where some entries in our data set are not observed.
- Missing data can occur on different types of variables in the design: covariates, mediators, moderators, final outcome variables of interest.

Brian T. Keller (University of Missouri)

Υ	X
4	2
NA	7
1	5
1	NA
9	2
NA	3
4	NA
NA	1

Data

Missing Data and Bayesian Statistics with Blimp

Partitioning the Data

Com	plete	=	Obse	rved	+	Miss	sing	
Υ	X		Υ	X		Υ	X	
4	2		4	2				
1	7		NA	7		1		
1	5		1	5				
1	8		1	NA			8	
9	2		9	2				
3	3		NA	3		3		
4	8		4	NA			8	
2	1		NA	1		2		

Indicators

 M_X

0

0

0

1

0

0

1

0

 M_Y

Two Distinct Concepts

- The missingness pattern describes the configuration of the observed and missing values in a data set.
- The missingness mechanism describes the relationship between the missingness and the values of variables in the data.

Brian I. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	12

Missing Data Mechanisms

- Conceptually, we are treating the missing data indicator as a binary variable representing if an observation for a variable is missing (M = 1) or observed (M = 0).
- The missing data mechanism is a classification of the relationship between the missing data indicator to the variables in the data set.
- Missingness may be independent of the data, or it could relate to the observed or missing parts (or both).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 13

Missing Completely at Random (MCAR)

Missing completely at random stipulates that the probability of observations being missing is *unrelated* — be it directly or via spurious relationships — to the data.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Scatterplot of X and Y

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

MCAR – Scatterplot of Missing and Observed Values

Missing at Random (MAR)

Missing at random stipulates that the probability of observations being missing is related — be it directly or via spurious relationships — to the *observed data but not the missing data*.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

MAR – Scatterplot of Missing and Observed Values

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Missing Not at Random (MNAR)

Missing not at random stipulates that the probability of observations being missing is related — be it directly or via spurious relationships — to the *missing data*.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blim

@ Yonsei University (June 25, 2024)

MNAR – Scatterplot of Missing and Observed Values

Brian T. Kelle	r (University	of N	lissouri)
----------------	---------------	------	-----------

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Mechanisms Summary...

- Missing completely at random ⇒ haphazard missingness
- Missing at random ⇒ systematic missingness solely related to observed values
- Missing not at random ⇒ systematic missingness related to the value of the missing observation

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	21

Working Assumptions

- Bayesian methods and modeling approach we discuss assume that the missing process is MAR.
- Missing at random is untestable because it involves knowing the "Truth" about the unobserved scores.
- These methods can extended to MNAR with additional modeling (but not discussed in this workshop).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	22

Introduction to Bayesian Statistics

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	23

Why Bayesian statistics?

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 24

Bayesian¹ v. Frequentist²

¹ What I am.

Brian 1. Rener (Criversity of Missouri)	 C Tonser Chiversity (June 25, 2021)

² If you don't know, probably what you are.

Frequentist

- Probability is defined by an event's hypothetical relative long run frequency.
- Probability is applied to hypothetical future sampled data (e.g., sampling distributions for estimates).
- Parameters are 'fixed' at some unknown value in the population.

Bayesian

- Probability is defined by one's degree of belief
- Probability can be applied to anything really.
- Parameters are 'random' and represented by a probability distribution of plausible values.

 We try to estimate the distribution based on one's belief.

	U		
			-

Frequentist Approach

- A Frequentist point of view finds the single fixed value that is most likely given the sample we observed (via maximum likelihood, FIML).
- FIML uses the probability of the data given the parameter values—the likelihood of the data given a fixed parameter in the population;

 P (data | parameters).

Brian T. Keller (University o	of Missouri) Miss	ing Data and Bayesian St	tatistics with Blimp	@ Yonsei University (June	25, 2024) 27

Bayesian Approach

- Bayesian takes this one step further and estimates the probability of the parameters given the data—P (parameters | data).
- Because most parameters are continuous, this means we characterize all values that the parameter potentially could take via a probability distribution.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	28

How do we obtain the probability of the parameters given the observed data when what we have is the reverse?

Brian T. Keller	(University	of Missouri
-----------------	-------------	-------------

Bayes' Theorem

$$P\left(\text{parameters} \mid \text{data}\right) = \frac{P\left(\text{data} \mid \text{parameters}\right) P\left(\text{parameters}\right)}{P\left(\text{data}\right)}$$

P (parameters | data): The posterior distribution. The probability of the parameters given the data (what we want).

Brian 1. Rener (Critive sity of Wissour)	Wilson's Bata and Bayesian Statistics With Billip	© 10113c1 CHIVC131ty (June 25, 2024)
<u> </u>		·

Bayes' Theorem

$$P\left(\text{parameters} \mid \text{data}\right) = \frac{P\left(\text{data} \mid \text{parameters}\right) P\left(\text{parameters}\right)}{P\left(\text{data}\right)}$$

- P (data | parameters): The likelihood. The probability of the data given the parameters (what we observe).
- P (parameters): The prior distribution. The probability of the parameters overall. This represents the a priori knowledge we have about the parameters.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 31

Bayes' Theorem

$$P\left(\text{parameters} \mid \text{data}\right) = \frac{P\left(\text{data} \mid \text{parameters}\right) P\left(\text{parameters}\right)}{P\left(\text{data}\right)}$$

P (data): A scaling term that makes the sum of P (parameters | data) equal one. We are not interested in this.

Prior Distribution

- Bayesian analyses require prior distributions that encode our beliefs about the parameter values prior to analyzing the data.
- Blimp adopts non-informative (diffuse) priors by default that impart as little information as possible (i.e., let the data do the talking).
- A diffuse prior for means and coefficients conveys that all possible parameter values are equally likely (a flat distribution).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	33

Posterior Distributions

- The prior and likelihood function as two data sources that merge to define the posterior distribution of the parameters.
- The posterior describes the distribution of plausible values that could have produced the particular data given our model.
- Instead of estimates varying around a fixed parameter (Frequentist), the parameters vary around a fixed data set (Bayesian).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	34

Bayesian Statistics and this Workshop

- We will largely ignore the philosophical debate regarding what probability ought to represent.
- Instead, we will focus on using it practically and in a framework that does not require you to be a Bayesian.
- The priors we will use are generally diffuse and provide little information. These will generally fall under what is called an 'uninformative' or a 'weakly informative' prior.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	36

Workshop Data

Chronic Pain Data – Variable Definitions

Brian T. Keller (University of Missouri)

Name	Definition	Missing %	Range
disab	Psychosocial disability composite	9.1	10 to 34
depress	Depression composite score	13.5	7 to 28
severity	Severe pain dummy code	7.3	0 or 1
male	Biological sex dummy Code	0.0	0 or 1

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

 	1	0

One Predictor Regression Illustration

A study that is investigating the relationship of psychological disability predicted by depression scores.

$$\mathtt{disab}_i = eta_0 + eta_1 \left(\mathtt{depress}_i\right) + e_i$$

Both measures have missing values that must be handled.

Posterior Distributions

	Median	SD	CI 2.5%	CI 97.5%
Intercept (β_0)	17.50	0.74	16.05	18.97
Depression Slope (β_1)	0.30	0.05	0.21	0.39
Residual Var. (σ_e^2)	18.08	1.69	15.17	21.79

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Estimator Comparison

Brian T. Keller (University of Missouri)

> Two approaches provide numerically equivalent results and inferences.

		Bayesian			Frequentist (FIML)				
	Median	SD	CI 2.5%	CI 97.5%		Estimate	SE	CI 2.5%	CI 97.5%
Intercept (β_0)	17.50	0.74	16.05	18.97		17.55	0.74	16.10	19.00
Depression Slope (β_1)	0.30	0.05	0.21	0.39		0.30	0.05	0.21	0.39
Residual Var. (σ_e^2)	18.08	1.69	15.17	21.79		17.49	1.68	14.19	20.79

<u> </u>	 •	•	

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Markov Chain Monte Carlo (MCMC)

- A Bayesian analysis involves estimating the distribution of model parameters and the missing values by sampling methods.
- → Typically, MCMC breaks the complex problem involving multiple unknown quantities (parameters and missing values) into separate steps.
- Each step estimates one unknown at a time, treating the current values of all other quantities as known constants.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 41

MCMC Estimation

Do for t = 1 to T iterations:

- Estimate focal model parameters given filled-in data
- Estimate predictor model parameters given filled-in data
- Fill-in missing outcome scores given focal model parameters
- Fill-in missing predictor scores given focal and predictor model parameters

Repeat

Estimate Regression Models

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

What do I mean by "Estimation"?

- A posterior distribution characterizes the probability of a parameter's "true" value given the data we observed and the model.
- MCMC uses computer simulation (random number generation) to sample from this distribution. We can then use descriptive statistics to summarize the posterior distribution.
- Parameters and missing data scores are unknown, so their values constantly change with new samples during the MCMC sequence.

Briar	T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 43

Parameters from 50 MCMC Iterations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Depression Slope from 50 MCMC Iterations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

2 Yonsei University (June 25, 2024)

Depression Slope from 500 MCMC Iterations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

2 Yonsei University (June 25, 2024)

1(

Depression Slope from 5000 MCMC Iterations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

1/

Filling-in Missing Data (Imputation)

- Missing scores are filled-in or "imputed" by randomly drawing replacement scores from a distribution of plausible values.
- Like parameters, we draw a new set of imputed scores for each missing variable in each iteration.
- Imputing predictors is more complex than imputing outcomes.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	48

Predicted Scores on Outcome

Brian T. Keller (University of Missouri

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Distribution of Imputations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Distribution of Imputations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Э.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

∠2

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Brian T. Keller (University of Missouri)

Depression Score

Missing Data and Bayesian Statistics with Blimp

Incomplete Predictors

- Incomplete predictor variables require a model and distribution.
- We must model the multivariate distribution of our outcome and predictors.
- Using a pure multivariate distribution can *misspecify* the data distribution and cause biased estimates.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	56

Factored Regression Modeling

Blimp's Modeling Framework

Brian T. Keller (University of Missouri)

Factored Regression modeling invokes separate regression models (and distributions) for incomplete predictors and outcomes.

 $f(\text{outcomes}, \text{predictors}) = f(\text{outcomes} \mid \text{predictors}) \times f(\text{predictors})$

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

$f(\text{outcomes}, \text{predictors}) = f(\text{outcomes} \mid \text{predictors}) \times f(\text{predictors})$

$\frac{\text{Predictor Model(s)}}{X_1}$ $\frac{X_1}{X_2}$ $\frac{X_2}{X_3}$ Outcome Model(s)

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

)(

Returning to Simple Regression Example...

Factorization:

$$f(\texttt{disab}, \texttt{depress}\,) = f\big(\texttt{disab} \mid \texttt{depress}\,\big) \times f(\texttt{depress}\,)$$

Fitted Models:

$$f(exttt{disab} \mid exttt{depress})
ightarrow \qquad exttt{disab}_i = eta_0 + eta_1 \left(exttt{depress}_i
ight) + e_i$$
 $f(exttt{depress})
ightarrow \qquad exttt{depress}_i = \gamma_0 + r_i$

			, 0 , ,	

Distributions...

$$f(exttt{disab} \mid exttt{depress})
ightarrow ext{disab}_i = eta_0 + eta_1 \left(exttt{depress}_i
ight) + e_i$$

Brian T. Keller	

Imputing Incomplete Predictors

- The missing predictor appears in two models (at least):
 - ➤ A predictor in the focal model
 - ♣ As an outcome in it's own model
- The distribution for the missing predictor is a composite of the two distributions:

$$f \big(\texttt{depress} \mid \texttt{disab} \, \big) \propto f \big(\texttt{disab} \mid \texttt{depress} \, \big) \times f (\texttt{depress})$$

Ditait in itemer (Cinversity	·	O .	1	o ronder orniversity () and 2	0, =0=1)
				· · · · · · · · · · · · · · · · · · ·	

The distributions must be analytically solved based on the factorization.

$$f(\texttt{depress} \mid \texttt{disab}) \propto f(\texttt{disab} \mid \texttt{depress}) \times f(\texttt{depress})$$

The software will do this for you, but as an example:

$$\hat{\texttt{depress}}_i = \frac{\sigma_r^2 \beta_1 \left(\texttt{disab}_i - \beta_0 \right) + \sigma_e^2 \gamma_0}{\sigma_r^2 \beta_1^2 + \sigma_e^2}$$

$$\sigma_{\text{depress}|\text{disab}}^2 = \frac{\sigma_e^2 \sigma_r^2}{\sigma_r^2 \beta_1^2 + \sigma_e^2}$$

Missing Data and Bayesian Statistics with Blimp

Distribution of Imputations for Predictor

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Distribution of Imputations

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Sampling an Imputation for Predictor

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

© Yonsei University (June 25, 2024)

65

Sampling an Imputation for Predictor

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Fitting Regression Models in Blimp

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024) 67

Workshop Data

Chronic Pain Data – Variable Definitions

Brian T. Keller (University of Missouri)

Name	Definition	Missing %	Range
disab	Psychosocial disability composite	9.1	10 to 34
depress	Depression composite score	13.5	7 to 28
control	Perceived pain control composite	0.0	6 to 30
severity	Severe pain dummy code	7.3	0 or 1
male	Biological sex dummy Code	0.0	0 or 1

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Analysis Model

A study that is investigating the relationship of psychological disability predicted by depression scores, perceived control over pain, and biological sex.

$$\mathtt{disab}_i = eta_0 + eta_1 \left(\mathtt{depress}_i\right) + eta_2 \left(\mathtt{control}_i\right) + eta_3 \left(\mathtt{male}_i\right) + e_i$$

disab and depress have missing values that must be handled.

Difait 1. Reflet (Offiversity of Missouri)	winsing Data and Dayesian Statistics with Dillip	© Toliser Offiversity (June 25, 2024)
<u> </u>	<u> </u>	

$f(\texttt{disab} \mid \texttt{depress}, \texttt{control}, \texttt{male}\,) \times f(\texttt{depress}, \texttt{control}, \texttt{male}\,)$

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

$f(\text{disab} \mid \text{depress}, \text{control}, \text{male}) \times f(\text{depress} \mid \text{control}, \text{male})$

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

7.

Blimp Script for Multiple Regression

```
DATA: pain.dat;
                          # Read Data in
VARIABLES:
                          # List Variable Names
    id txgrp male age edugroup workhrs
    exercise pain severity anxiety stress
    control depress interfere disab
    dep1:dep7 interf1:interf6 disab1:disab6;
MISSING: 999;
                          # Missing data code
# Specify Regression Model
MODEL:
   focal: disab ~ depress control male;
    predictor: depress ~ control male;
# Specify the MCMC sampler parameters
SEED: 19723;
                        # Set a prng seed
BURN: 2500;
                        # Set number of burn iterations
ITERATIONS: 10000;
                        # Set number of analysis iterations
CHAINS: 4;
                          # Specify number independent of chains
```

В	Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	72

Brian T. Keller (University of Missouri)

DATA and VARIABLES

DATA: pain.dat; # Read Data in

VARIABLES: # List Variable Names

id txgrp male age edugroup workhrs
exercise pain severity anxiety stress
control depress interfere disab

dep1:dep7 interf1:interf6 disab1:disab6;

MISSING: 999; # Missing data code

MODEL Specification

Specify Regression Model

MODEL:

Brian T. Keller (University of Missouri)

focal: disab ~ depress control male;

predictor: depress ~ control male;

Missing Data and Bayesian Statistics with Blimp

Path Diagram

MODEL Specification

Specify Regression Model
MODEL:
 focal:
 disab ~ depress control male;
 predictor:
 depress ~ control male;

Brian T. Keller (University of Missouri)

@ Yonsei University (June 25, 2024)

Missing Data and Bayesian Statistics with Blimp

MCMC Estimation

- MCMC uses a computer simulation to sample parameters from their posterior distribution.
- Each individual estimate itself is meaningless, but the entire sample of estimates can be used to characterize the distribution.

Understanding MCMC Specification

Within Each Iteration

Estimate Regression Models

Across the MCMC Run

MCMC Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

MCMC Sampler Specification

Specify the MCMC sampler
Set a prng seed
SEED: 19723;
Set number of burn iterations
BURN: 2500;
Set number of analysis iterations
ITERATIONS: 10000;
Specify number of chains
CHAINS: 4;

Understanding Blimp Output

Difait 1. Kellei	(University of Missouri)	Missing Data and bayesia	in statistics with billip	@ fonser University (june 25, 2024) 79

MCMC Convergence

- MCMC "converges" when the posterior distributions are stationary.
- This means that parameter estimates oscillate around a stable mean, and the variation does not change with additional iterations.
- We should always set burn-in iterations greater than number of iterations needed for "convergence."

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	80

- The simulative algorithm MCMC uses requires monitoring of convergence.
- Convergence can loosely be thought of as determining if our algorithm has correctly drawn from the distribution it is trying to simulate from.
- We need to monitor convergence on every parameter in our model.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 81

Distribution We are Trying To Simulate

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Arbitrary Starting Values for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Iteration 1 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Iteration 2 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Iteration 3 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Iteration 6 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Iteration 10 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Iteration 25 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Iteration 50 for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

9(

Bayesian Diagnostics

Diagnostics are used for two main purposes:

- To determine if we have issues estimating the model.
- To determine the appropriate burn-in iterations (i.e., how many iterations we will "throw away" before starting to sample from the distributions).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	91

50 Iterations for 5 Chains

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Potential Scale Reduction Factor

- The potential scale reduction factor (PSR, PSRF, Rhat, \hat{R}) compares parameter distributions generated from multiple unique MCMC processes.
- MCMC converges when the two chains give estimates with same mean and spread.
- A rule of thumb for PSRF is that convergence has been reached if the PSRF is constantly below 1.05.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 93

MCMC has not converged

MCMC has converged

$$(PSRF < 1.05)$$

Brian T. Keller	(University	of Missouri

Blimp PSRF Output

POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's iterations to create twice as many chains.

ı						
	Comparing iterations a	across	4 (chains	Highest PSR	Parameter #
		63	to	125	1.054	5
		126	to	250	1.021	3
١		188	to	375	1.010	10
١		251	to	500	1.008	14
١						
				•		
				:		
١		1001	to	2000	1.002	4
		1063	to	2125	1.002	16
		1126	to	2250	1.002	12
		1188	to	2375	1.002	12
	Worst PSRF < 1.05	1251	to	2500	1.002	12

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 95

General Recommendations

- Look at the *PSRF* statistics. If the highest PSR falls below 1.05 or so and consistently stays below that then run a few extra iterations and use that as burn-in value.
- Most likely your model is not supported by your data (i.e., you do not have enough information to estimate the model). So simplify the model.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 96	6
			_
			_
			_
			_
			_

You can never run too many iterations!

Error on the side of caution always.

Difait 1. Keller (Offiversity of Missouri)	Missing Data and Dayesian Statistics with Dillip	© Toriser Offiversity (June 25, 2024)
	<u> </u>	<u> </u>

Posterior Mean and Median

- The posterior *mean* and *median* quantifies the parameter value most likely to be on average.
- They can be considered analog to point estimates in a standard Frequentist analysis.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Posterior Standard Deviation

- The posterior *standard deviation* quantifies the

 uncertainty we have in knowing
 the parameter value.
- This is similar to a Frequentist standard error but without reference to repeated sampling.

Brian	Т	Keller	(University	of Missouri
DHan	Ι.	Kener	(Ulliversity	or iviissouri

95% Credible Intervals

- The posterior 95% credible interval quantifies the limits that span 95% of the parameter's range.
- This is similar to a Frequentist confidence interval but references a range of highly plausible values.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Blimp Outcome Model Output for Focal Model

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances:						
Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.3422
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173.699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024) 101

Posterior Median

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances: Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients: Intercept depress control male	21.978 0.257 -0.178 -0.461	1.548 0.048 0.054 0.542	18.965 0.163 -0.283 -1.506	24.995 0.351 -0.071 0.599	1.000 1.000 1.000 1.001	6922.092 6400.560 7121.600 8150.781
Standardized Coefficients: depress control male	0.342 -0.199 -0.048	0.060 0.059 0.056	0.219 -0.311 -0.155	0.452 -0.080 0.063	1.001 1.000 1.001	6285.317 7173.699 8143.181
Proportion Variance Explained by Coefficients by Residual Variation	0.207 0.793	0.045 0.045	0.121 0.702	0.298 0.879	1.000 1.000	6372.151 6372.151
T .						

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Posterior Standard Deviation

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances: Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients: Intercept depress control male	21.978	1.548	18.965	24.995	1.000	6922.092
	0.257	0.048	0.163	0.351	1.000	6400.560
	-0.178	0.054	-0.283	-0.071	1.000	7121.600
	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients: depress control male Proportion Variance Explained	0.342	0.060	0.219	0.452	1.001	6285.317
	-0.199	0.059	-0.311	-0.080	1.000	7173.699
	-0.048	0.056	-0.155	0.063	1.001	8143.181
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793		0.702	0.879	1.000	6372.151

Brian T Kallar	(University of Missouri)
DHan I. Nenei	(Offiversity of Missouri)

95% Credible Intervals

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances:						
Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173.699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151
					, 	

Brian T. Keller (University of Missouri)

Post-Burn Diagnostic Output

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances:						
Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173.699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Variances and Covariances

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Brian T. Keller (University of Missouri)

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances:						
Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173.699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151

Coefficients

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

.5% 97.5% PSR N_Ef	2.5%	dian Std	Median	Parameters
573 20.768 1.001 7139.34	14.573	.338 1.	17.338	Variances: Residual Var.
				Coefficients:
965 24.995 1.000 6922.09	18.965	.978 1.	21.978	Intercept
163 0.351 1.000 6400.56	0.163	.257 0.	0.257	depress
283 -0.071 1.000 7121.60	-0.283	.178 0.	-0.178	control
506 0.599 1.001 8150.78	-1.506	.461 0.5	-0.461	male
			:	Standardized Coefficients:
219 0.452 1.001 6285.31	0.219	.342 0.	0.342	depress
311 -0.080 1.000 7173.69	-0.311	.199 0.	-0.199	control
155 0.063 1.001 8143.18	-0.155	.048 0.	-0.048	male
			ined	Proportion Variance Explai
121 0.298 1.000 6372.15	0.121	.207 0.	0.207	
702 0.879 1.000 6372.15	0.702	.793 0.	0.793	by Residual Variation
			0.207	by Coefficients

Brian T. Keller (University of Missouri)

Standardized Coefficients

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances: Residual Var.	17.338	1.596	14.573	 20.768	1.001	7139.342
Residuat val.	17.550	1.390	14.3/3	20.700	1.001	7139.342
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173.699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151

Dilair	1. Iteliei	(Chiverbity	or missouri)

Effect Size Estimates

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances: Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173,699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Posterior Distributions

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

110

Analysis Model

Brian T. Keller (University of Missouri)

A study that is investigating the relationship of psychological disability predicted by depression scores, perceived control over pain, and biological sex.

$$\mathtt{disab}_i = \beta_0 + \beta_1 \left(\mathtt{depress}_i\right) + \beta_2 \left(\mathtt{control}_i\right) + \beta_3 \left(\mathtt{male}_i\right) + e_i$$

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Reminder! These are partial regression coefficients.

Example Interpretation

- For two participants who share the same biological sex and perceived control of pain, scoring one point higher on the depression scale is associated with a 0.257 increase on the psychological disability construct.
- The slope is "significantly different" from zero because zero is not within the 95% credible intervals (0.163, 0.351).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 112

Do I have enough iterations?

- MCMC estimates are not independent across iterations.
- The effective sample size (N_EFF) estimates the number of independent samples that are used in the posterior summaries.
- The literature recommends at least 100 independent MCMC samples per parameter (Gelman et al., 2014; p. 267).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	113

Effective Sample Size in Blimp

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 4 chains.

focal block:

All parameters effective sample size are above 100.

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances:	17 220	1 506	14 572	20.760	1 001	7120 242
Residual Var.	17.338	1.596	14.573	20.768	1.001	7139.342
Coefficients:						
Intercept	21.978	1.548	18.965	24.995	1.000	6922.092
depress	0.257	0.048	0.163	0.351	1.000	6400.560
control	-0.178	0.054	-0.283	-0.071	1.000	7121.600
male	-0.461	0.542	-1.506	0.599	1.001	8150.781
Standardized Coefficients:						
depress	0.342	0.060	0.219	0.452	1.001	6285.317
control	-0.199	0.059	-0.311	-0.080	1.000	7173.699
male	-0.048	0.056	-0.155	0.063	1.001	8143.181
Proportion Variance Explained						
by Coefficients	0.207	0.045	0.121	0.298	1.000	6372.151
by Residual Variation	0.793	0.045	0.702	0.879	1.000	6372.151

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 11	.4

Estimator Comparison

Brian T. Keller (University of Missouri)

> Two approaches provide numerically equivalent results and inferences.

		Bayesian				Frequentist (FIML)			
	Median	SD	CI 2.5%	CI 97.5%	Estimate	SE	CI 2.5%	CI 97.5%	
Intercept (β_0)	21.98	1.55	18.97	25.00	21.86	1.58	18.77	24.96	
Depression Slope (β_1)	0.26	0.05	0.16	0.35	0.26	0.05	0.16	0.35	
Control Slope (β_2)	-0.18	0.05	-0.28	-0.07	-0.17	0.06	-0.28	-0.06	
Male Slope (β_3)	-0.46	0.54	-1.51	0.60	-0.53	0.56	-1.64	0.57	
Residual Var. (σ_e^2)	17.34	1.60	14.57	20.77	16.74	1.61	13.58	19.90	

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

What about the predictor model?

- Blimp also supplies output for the specified predictor model.
- These parameter estimates can be considered nuisance parameters—that is, parameters we don't generally care about.
- We still need to monitor their convergence, including looking at PSRF and effective sample sizes.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	116

Predictor Model Output

predictor block:

Outcome Variable: depress						
Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances: Residual Var.	34.596	3.247	28.955	41.666	1.001	7506.952
Coefficients:						
Intercept	22.470	1.574	19.369	25.526	1.000	7871.944
control	-0.390	0.072	-0.530	-0.249	1.000	7796.725
male	0.787	0.771	-0.695	2.317	1.001	7902.691
Standardized Coefficients:						
control	-0.327	0.055	-0.429	-0.212	1.001	7789.083
male	0.061	0.060	-0.055	0.178	1.001	7915.869
Proportion Variance Explained						
by Coefficients	0.116	0.037	0.053	0.195	1.001	7753.436
by Residual Variation	0.884	0.037	0.805	0.947	1.001	7753.436

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Bayesian Wald Test

Brian T. Keller (University of Missouri)

Asparouhov and Muthén (2021) proposed a Bayesian Wald test that mimics familiar likelihood-based Wald tests.

$$T = (\boldsymbol{\theta} - \boldsymbol{\theta}_0) \, \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \, (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

T is the sum of squared standardized differences (chi-square metric) between the posterior means and null hypothesis.

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Adding TEST Command

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Wald Test Output

MODEL FIT:

:

```
WALD TESTS (Asparouhov & Muthén, 2021)

Test #1

Full:
    [1] disab ~ Intercept depress@b1 control@b2 male@b3

Restricted:
    [1] disab ~ Intercept depress@b1 control@b2 male@b3

Constraints in Restricted:
    [1] b1 = 0

Wald Statistic (Chi-Square)
Number of Parameters Tested (df)
Probability

0.000
```

@ Yonsei University (June 25, 2024)

Brian T. Keller (University of Missouri)

Wald Test #2 Output

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Brian T. Keller (University of Missouri)

Wald Test #3 Output

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Wald Test #4 Output

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 123

Reporting Template – Diagnostics

Brian T. Keller (University of Missouri)

We used Bayesian methods in Blimp 3.2 (Keller & Enders, 2021) to treat missing values under the assumption that missingness is random after conditioning on the observed data. Potential scale reduction factor convergence diagnostics (Gelman & Rubin, 1992) from a preliminary run indicated that a burn-in period of 2,500 iterations was sufficiently conservative. Based on this information, we used four MCMC chains with random starting values to generate posterior summaries consisting of 10,000 estimates following the initial burn-in period. We verified this setting was sufficient by examining the effective number of independent MCMC samples for each parameter, all of which were greater than the recommended value of 100 (Gelman et al., 2014, p. 287).

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Reporting Template – Results

Brian T. Keller (University of Missouri)

Table 1 displays the posterior summaries from the analysis using uninformative priors. The posterior medians and standard deviations are analogous to frequentist point estimates and standard errors, and the 95% credible interval limits are akin to confidence intervals. These quantities make no reference to repeated samples but instead convey parameter values that are consistent with the observed data. Given the same assumptions and data, Bayesian and likelihood-based missing data handling procedures are numerically equivalent (Enders, 2022).

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Reporting Template – APA Table

Table 1

Parameter Summary from Bayesian Regression Analysis

	Median	SD	CI 2.5%	CI 97.5%
Intercept (β_0)	21.98	1.55	18.97	25.00
Depression Slope (β_1)	0.26	0.05	0.16	0.35
Control Slope (β_2)	-0.18	0.05	-0.28	-0.07
Male Slope (β_3)	-0.46	0.54	-1.51	0.60
R^2	0.21	0.05	0.12	0.30

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

120

Reporting Template – Results Continued

Collectively, the predictors explained approximately 21% of the variation in psychological disability scores. The Bayesian Wald test (Asparouhov & Muthén, 2021) of the full model was statistically significant, $\chi^2(3)=55.80$, p<0.001. While controlling for biological sex, depression scores exhibited a significant positive association with psychological disability scores ($\beta=0.26,\,95\%$ CI=(0.16,0.35)), and the measure of perceived control of pain was inversely related to psychological disability ($\beta=-.18,\,95\%$ CI=-.28,-.07)).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	127

Incomplete Categorical Predictors in Blimp

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Brian T. Keller (University of Missouri)

Factored Regression

- One advantage of Factored Regression is its ability to easily incorporate variables of different response metrics.
- By breaking up the complex multivariate distribution into easier chunks, it is easier to appropriately model the response metric.
- ▶ Blimp can incorporate binary, ordinal, and nominal predictor variables with minor changes to the Blimp syntax.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	129

Latent Propensity Distribution

A threshold parameter divides the latent distribution into segments, with areas under the curve matching the observed proportions.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

130

When the threshold changes (or intercept) changes, then the proportion changes as well.

When the threshold changes (or intercept) changes, then the proportion changes as well.

Latent Propensity Distribution

• Ordinal variables are defined by multiple thresholds to divide the propensity into multiple ordered categories.

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

133

Changing the thresholds produce different distributions of the ordinal responses.

Treating the Latent Responses as Missing

- The latent response scores can be considered missing data that must be imputed.
- MCMC treats the latent responses like any other incomplete variable with the caveat that we know the observed metric when the observed response is complete.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	135

For a binary variable, when the observed value is 0, we impute based on values <u>below</u> the threshold:

When the observed value is 1, we impute based on values <u>above</u> the threshold:

When the observed value is *missing*, we impute based on values across the <u>entire</u> distribution:

Latent Propensity

Brian T. Keller	(University	of Missouri

Workshop Data

Chronic Pain Data – Variable Definitions

Brian T. Keller (University of Missouri)

Name	Definition	Missing %	Range
disab	Psychosocial disability composite	9.1	10 to 34
depress	Depression composite score	13.5	7 to 28
control	Perceived pain control composite	0.0	6 to 30
severity	Severe pain dummy code	7.3	0 or 1
male	Biological sex dummy Code	0.0	0 or 1

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

	-	•	•	

Analysis Model

A study that is investigating the relationship of psychological disability predicted by depression scores, coded severe pain (0 or 1), perceived control over pain, and biological sex.

 $\mathtt{disab}_i = \beta_0 + \beta_1 \left(\mathtt{depress}_i \right) + \beta_2 \left(\mathtt{severity}_i \right) + \beta_3 \left(\mathtt{control}_i \right) + \beta_4 \left(\mathtt{male}_i \right) + e_i$

Brian	Т	Keller	(Universit	v of M	liceouri
DHan	т.	Kener	Compension	V O1 1V.	เมรรดนา

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

14

Factored Regression Model

With the additional incomplete variable (severity) our factorization of outcome and incomplete predictors is as follows:

```
f(\text{disab} \mid \text{depress}, \text{severity}, \text{control}, \text{male}) \times \\ f(\text{depress}, \text{severity} \mid \text{control}, \text{male})
```

Missing Data and Bayesian Statistics with Blimp

We can further split the predictor model into two univariate models, giving us three full models we must specify:

```
f(	exttt{disab} \mid 	exttt{depress}, 	exttt{severity}, 	exttt{control}, 	exttt{male}) 	imes \\ f(	exttt{depress} \mid 	exttt{severity}, 	exttt{control}, 	exttt{male}) 	imes \\ f(	exttt{severity} \mid 	exttt{control}, 	exttt{male})
```

•	0	•		·	

$f(\text{disab} \mid \text{depress}, \text{control}, \text{male}) \times$

 $f(\texttt{depress} \mid \texttt{severity}, \texttt{control}, \texttt{male}) \times f(\texttt{severity} \mid \texttt{control}, \texttt{male})$

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

143

Blimp Script with Incomplete Binary Predictor

```
DATA: pain.dat;
                          # Read Data in
VARIABLES:
                          # List Variable Names
    id txgrp male age edugroup workhrs exercise pain severity anxiety stress
   control depress interfere disab dep1:dep7 interf1:interf6 disab1:disab6;
MISSING: 999; # Missing data code
ORDINAL: severity;
                     # Specify Binary Variables
# Specify Regression Model
MODEL:
   focal:
       disab ~ depress severity control male;
   predictor:
       depress ∼ severity control male;
       severity ~ control male;
# Specify the MCMC sampler
```

:

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024) 144

MODEL Specification

Specify Binary Variables ORDINAL: severity; # Specify Regression Model MODEL: focal: disab ~ depress severity control male; predictor: depress ~ severity control male; severity ~ control male;

Path Diagram

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Blimp PSRF Output

POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's iterations to create twice as many chains.

Comparing iterat	ions across 4 chains	Highest PSR	Parameter #
	126 to 250	1.038	30
	251 to 500	1.022	24
	376 to 750	1.019	26
	501 to 1000	1.012	26
ı			
	:		
	:		
	2001 to 4000	1.003	25
	2126 to 4250	1.003	25
	2251 to 4500	1.003	25
	2376 to 4750	1.003	25
₩orst <i>PSRF</i> < 1		1.002	25

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 146

Blimp Outcome Model Output for Focal Model

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Residual Var.	16.927	1.597	14.236	20.525	1.000	7171.144
Coefficients:						
Intercept	21.487	1.541	18.436	24.561	1.001	7717.533
depress	0.238	0.048	0.142	0.331	1.001	6743.617
severity	1.571	0.611	0.368	2.764	1.001	6821.550
control	-0.158	0.054	-0.266	-0.050	1.001	7882.332
male	-0.789	0.555	-1.882	0.291	1.000	8026.602
 Standardized Coefficients:						
depress	0.314	0.060	0.191	0.425	1.001	6461.162
severity	0.156	0.059	0.037	0.271	1.001	6793.303
control	-0.177	0.059	-0.290	-0.056	1.001	7970.693
male	-0.082	0.057	-0.194	0.030	1.000	8069.048
Proportion Variance Explained						
by Coefficients	0.230	0.045	0.145	0.321	1.000	6615.711
by Residual Variation	0.770	0.045	0.679	0.855	1.000	6615.711
		3.0.0	3.070	2.000		

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Example Interpretation

- Comparing two participants who share the same on all other predictors (biological sex, perceived control of pain, and depression score), endorsing severe pain or not is associated with a 1.57 increase on the psychological disability construct.
- The slope is "significantly different" from zero because zero is not within the 95% credible intervals (0.368, 2.764).

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 148

Interaction Effects in Blimp

Dittait 1. Reflet (Chivelotty of	iviissuuii) iviissiiig Da	ita ana bayesian biansiics	with binip	e tonser offiversity (jui	16 23, 2024) 149

Moderated Regression (Interaction Effects)

- ► Moderation occurs when the magnitude of an association of a focal predictor (*X*) depends on a third variable (moderator; *M*).
- Moderated regressions answer the question, for whom does an effect apply?

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 150	
			_
			_
			_
			_
			_
			_
			_
			_
			—
			_

Moderated Regression Model

A moderated regression adds the product of *X* and *M* as a predictor:

$$y_i = \beta_0 + \beta_1(x_i) + \beta_2(m_i) + \beta_3(x_i \times m_i) + e_i$$

 β_3 : Captures the change in the β_1 slope for every one-unit increase of M.

Incomplete Variables in Product Terms

- Factored regression readily handles interactive and other nonlinear effects
- Product terms appear as a deterministic function in the focal regression model.
- The models for the predictor variables remain unchanged.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 152

Workshop Data

Chronic Pain Data – Variable Definitions

Brian T. Keller (University of Missouri)

Name	Definition	Missing %	Range
disab	Psychosocial disability composite	9.1	10 to 34
depress	Depression composite score	13.5	7 to 28
control	Perceived pain control composite	0.0	6 to 30
severity	Severe pain dummy code	7.3	0 or 1
male	Biological sex dummy Code	0.0	0 or 1

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

)r	0 -011001 01111 01011) () 41110 -	

Analysis Model

A study that is investigating the relationship between psychological disability and depression scores moderated by biological sex.

$$\mathtt{disab}_i = \beta_0 + \beta_1 \left(\mathtt{depress}_i \right) + \beta_2 \left(\mathtt{male}_i \right) + \beta_3 \left(\mathtt{depress}_i \times \mathtt{male}_i \right) + e_i$$

Brian	т.	Kallar	(University	of Miccouri

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

$f(\texttt{disab} \mid \texttt{depress}, \texttt{male}\,) \times f(\texttt{depress}, \texttt{male}\,)$

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

$f(\texttt{disab} \mid \texttt{depress}, \texttt{male}) \times f(\texttt{depress} \mid \texttt{male})$

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Factorization:

$$f(\texttt{disab} \mid \texttt{depress}, \texttt{male}\,) \times f(\texttt{depress} \mid \texttt{male}\,)$$

Fitted Models:

$$f(\texttt{disab} \mid \texttt{depress}, \texttt{male}) \rightarrow \qquad \texttt{disab}_i = \beta_0 + \beta_1 \left(\texttt{depress}_i\right) + \beta_2 \left(\texttt{male}_i\right) + \\ \beta_3 \left(\texttt{depress}_i \times \texttt{male}_i\right) + e_i \\ \\ f\left(\texttt{depress} \mid \texttt{male}\right) \rightarrow \qquad \texttt{depress}_i = \gamma_0 + \gamma_1 \left(\texttt{male}_i\right) + r_i \\$$

Brian T	Keller	(University	of Misson	ıri\

Blimp Script for Moderated Regression

```
DATA: pain.dat;
                          # Read Data in
VARIABLES:
                          # List Variable Names
    id txgrp male age edugroup workhrs exercise pain severity anxiety stress
    control depress interfere disab dep1:dep7 interf1:interf6 disab1:disab6;
ORDINAL: male;
                # Specify Binary Variables
MISSING: 999;
                         # Missing data code
FIXED: male;
                         # Specify variables with no missing
CENTER: depress;
                          # Center variables
# Specify Regression Model
MODEL:
    focal: disab ~ depress male depress*male;
   predictor: depress ~ male;
# Conditional Effects Analysis
SIMPLE: depress | male;
# Specify the MCMC sampler
```

:

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

158

MODEL Specification

```
# Specify variables with no missing
FIXED: male;
# Center variables
CENTER: depress;
# Specify Regression Model
MODEL:
    focal:
        disab ~ depress male depress*male;
    predictor:
        depress ~ male;
```

Path Diagram

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Blimp PSRF Output

POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's iterations to create twice as many chains.

ı					-	
	Comparing iterations a	across	4 (chains	Highest PSR	Parameter #
		126	to	250	1.041	12
		251	to	500	1.015	17
ı		376	to	750	1.013	17
İ		501	to	1000	1.008	17
•						
				:		
				•		
1		2001	to	4000	1.002	2
		2126	to	4250	1.002	3
		2251	to	4500	1.002	17
		2376	to	4750	1.002	17
	Worst <i>PSRF</i> < 1.05	2501	to	5000	1.002	17

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	160

Blimp Outcome Model Output for Focal Model

focal block:

Outcome Variable: disab

Grand Mean Centered: depress

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
 Variances:						
Residual Var.	17.713	1.655	14.834	21.324	1.001	6395.983
Coefficients:						
Intercept	22.077	0.389	21.314	22.838	1.001	4422.551
depress	0.405	0.063	0.283	0.529	1.001	5230.217
male	-0.350	0.557	-1.434	0.731	1.000	7061.496
depress _* male	-0.224	0.093	-0.406	-0.043	1.001	5492.627
Standardized Coefficients:						
depress	0.537	0.074	0.384	0.670	1.002	4953.854
male	-0.037	0.058	-0.148	0.076	1.000	7097.749
depress _* male	-0.200	0.081	-0.356	-0.038	1.001	5449.779
Proportion Variance Explained						
by Coefficients	0.189	0.045	0.105	0.279	1.002	4701.979
by Residual Variation	0.811	0.045	0.721	0.895	1.002	4701.979

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024) 161

Conditional Effects Analysis (Simple Effects)

We can rearrange terms to give the conditional effect of a focal predictor (X) on a function of the moderator (M).

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 m_i + \beta_3 x_i m_i + e_i$$

$$= (\beta_0 + \beta_2 m_i) + (\beta_1 x_i + \beta_3 x_i m_i) + e_i$$

$$= (\beta_0 + \beta_2 m_i) + (\beta_1 + \beta_3 m_i) x_i + e_i$$

$$y_i = (\text{simple intercept}) + (\text{simple slope}) x_i + e_i$$

Prion 7	r Vollor	(University	of Mic	2001111
Driain	ı. Keller	tuniversity	OLIVIIS	ssouri

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Conditional Effects Analysis in Blimp

Compute for when male = 0:

$$\begin{split} \mathtt{disab}_i &= (\beta_0 + \beta_2 \times 0) + (\beta_1 + \beta_3 \times 0) \left(\mathtt{depress}_i - \mu_{\mathtt{dep}} \right) + e_i \\ &= (\beta_0) + (\beta_1) \left(\mathtt{depress} - \mu_{\mathtt{dep}} \right) + e_i \end{split}$$

ightharpoonup Compute for when male = 1:

$$\begin{split} \mathtt{disab}_i &= (\beta_0 + \beta_2 \times 1) + (\beta_1 + \beta_3 \times 1) \left(\mathtt{depress}_i - \mu_{\mathtt{dep}} \right) + e_i \\ &= (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \left(\mathtt{depress}_i - \mu_{\mathtt{dep}} \right) + e_i \end{split}$$

Missing Data and Bayesian Statistics with Blimp

Simple Command

```
# Specify Regression Model
```

Conditional Effects Analysis

SIMPLE: depress | male;

Brian T. Keller (University of Missouri)

 $\ensuremath{\text{\#}}$ Focal predictor given values of male values: 0 and 1

Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Blimp Output for SIMPLE Command

Conditional Effects	Median	StdDev	2.5%	97.5%	PSR	N_Eff
depress male @ 0						
Intercept	22.077	0.389	21.314	22.838	1.001	4422.551
Slope	0.405	0.063	0.283	0.529	1.001	5230.217
depress male @ 1						
Intercept	21.727	0.426	20.895	22.559	1.001	7120.648
Slope	0.182	0.070	0.045	0.316	1.001	5066.668

NOTE: Intercepts are computed by setting all predictors not involved in the conditional effect to zero.

brian 1. Kener (Oniversity of Missouri)	Missing Data and Dayesian Statistics with Dillip	© 10Hsel Offiversity (Julie 23, 2024) 103

Plot of Conditional Effects

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Johnson-Neyman Plot of Conditional Slope

Red area represents 0 within 95% interval

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Reporting Template – Diagnostics

Brian T. Keller (University of Missouri)

We used Bayesian methods in Blimp 3.2 (Keller & Enders, 2021) to treat missing values under the assumption that missingness is random after conditioning on the observed data. Potential scale reduction factor convergence diagnostics (Gelman & Rubin, 1992) from a preliminary run indicated that a burn-in period of 5,000 iterations was sufficiently conservative. Based on this information, we used four MCMC chains with random starting values to generate posterior summaries consisting of 10,000 estimates following the initial burn-in period. We verified this setting was sufficient by examining the effective number of independent MCMC samples for each parameter, all of which were greater than the recommended value of 100 (Gelman et al., 2014, p. 287).

Missing Data and Bayesian Statistics with Blimp

Reporting Template – Results

Table 1 displays the posterior summaries from the analysis using uninformative priors. The posterior medians and standard deviations are analogous to frequentist point estimates and standard errors, and the 95% credible interval limits are akin to confidence intervals. These quantities make no reference to repeated samples but instead convey parameter values that are consistent with the observed data. Given the same assumptions and data, Bayesian and likelihood-based missing data handling procedures are numerically equivalent (Enders, 2022).

Reporting Template – APA Table

Table 1

Parameter Summary from Bayesian Regression Analysis

	Median	SD	CI 2.5%	CI 97.5%
Intercept (β_0)	22.08	0.39	21.31	22.84
Depression Slope (β_1)	0.41	0.06	0.28	0.53
Male Slope (β_2)	-0.35	0.56	-1.434	0.731
Depression \times Male (β_3)	-0.22	0.09	-0.41	0.04
R^2	0.19	0.05	0.11	0.28

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Reporting Template – Results Continued

Collectively, the predictors explained approximately 19% of the variation in psychological disability scores. The 95% credible intervals for the interaction effect did not contain zero within the interval (-0.41, -0.04), suggesting that biological sex moderates the association between psychological disability and depression composite scores. The negative interaction coefficient indicates that the strength of the positive association between psychological disability and depression decreases for males compared to females. Conducting a conditional effects analysis reveals that the strength of association is about half for men compared to women. Figure 1 displays the simple slopes for men and women.

Missing Data and Bayesian Statistics with Blimp

Composite Scores with Item Level Missingness

- Often, psychological constructs are composites of multiple items summed or averaged together.
- When one item is missing, the entire composite score is considered missing. This can lead to a loss of information and reduced statistical power.

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	172

Workshop Data

Chronic Pain Data – Variable Definitions

Brian T. Keller (University of Missouri)

Name	Definition	Missing %	Range
disab	Psychosocial disability composite	9.1	10 to 34
depress	Depression composite score	13.5	7 to 28
male	Biological sex dummy Code	0.0	0 or 1

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Workshop Data – Depression Items

Chronic Pain Data – Variable Definitions

Name	Definition	Missing %	Range
disab	Psychosocial disability composite	9.1	10 to 34
male	Biological sex dummy Code	0.0	0 or 1
dep1	Couldn't experience any positive feelings at all	4.7	1 to 4
dep2	Difficult to work up the initiative to do things	2.2	1 to 4
dep3	I felt that I had nothing to look forward to	1.8	1 to 4
dep4	I felt down-hearted and blue	1.5	1 to 4
dep5	Unable to become enthusiastic about anything	2.2	1 to 4
dep6	I felt I wasn't worth much as a person	4.0	1 to 4
dep7	I felt that life was meaningless	2.9	1 to 4

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024) 174

Analysis Model

A study that is investigating the relationship between psychological disability and depression composite moderated by biological sex.

$$\mathtt{disab}_i = eta_0 + eta_1 \left(\mathtt{dep}_i
ight) + eta_2 \left(\mathtt{male}_i
ight) + eta_3 \left(\mathtt{depress}_i imes \mathtt{male}_i
ight) + e_i$$

where...

Brian T. Keller (University of Missouri)

$$\mathtt{dep}_i = \mathtt{dep1}_i + \mathtt{dep2}_i + \mathtt{dep3}_i + \ldots + \mathtt{dep7}_i$$

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

Factored Regression Specification

With the multiple items (dep1 to dep7) our factorization of outcome and incomplete predictors is as follows:

```
f(\text{disab} \mid \text{dep1}, \text{dep2}, \text{dep3}, \text{dep4}, \dots, \text{dep7}, \text{male}) \times f(\text{dep1}, \text{dep2}, \text{dep3}, \text{dep4}, \dots, \text{dep7} \mid \text{male})
```

Brian	т	Kallar	(University	of Miccou	ri`
Duan	т.	Kener	TOTHVEISHV	or iviissou	ш

Missing Data and Bayesian Statistics with Blimp

@ Yonsei University (June 25, 2024)

We can further split the predictor model into two univariate models, giving us three full models we must specify:

```
f(\texttt{disab} \mid \texttt{dep1}, \texttt{dep2}, \texttt{dep3}, \texttt{dep4}, \dots, \texttt{dep7}, \texttt{male}) \times \\ f(\texttt{dep1} \mid \texttt{dep2}, \texttt{dep3}, \texttt{dep4}, \dots, \texttt{dep7}, \texttt{male}) \times \\ f(\texttt{dep2} \mid \texttt{dep3}, \texttt{dep4}, \dots, \texttt{dep7}, \texttt{male}) \times \\ f(\texttt{dep3} \mid \texttt{dep4}, \dots, \texttt{dep7}, \texttt{male}) \times \\ \vdots \\ f(\texttt{dep7} \mid \texttt{male}) \times \\
```


Blimp Script for Moderated Regression with Sum Score

(Model Command Only)

Brian T. Keller (University of Missouri)

```
FIXED: male;  # Specify variables with no missing

CENTER: dep1:dep7;  # Center individual items

# Specify Regression Model

MODEL:
  # Define depression composite
  dep = dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7;

focal:
  disab ~ 1@b0 dep@b1 male@b2 dep*male@b3;

predictor:
  dep1:dep7 ~ 1 male;
```

Missing Data and Bayesian Statistics with Blimp

Blimp Output for MODEL INFORMATION

CENTERED PREDICTORS Grand Mean Centered: dep1 dep2 dep3 dep4 dep5 dep6 dep7 **DEFINED VARIABLES** [1] dep = dep1+dep2+dep3+dep4+dep5+dep6+dep7**MODELS** focal: [1] disab ~ Intercept@b0 male@b2 dep@b1 dep*male@b3 predictor: [2] dep1 ~ Intercept dep2 dep3 dep4 dep5 dep6 dep7 male [3] dep2 ~ Intercept dep3 dep4 dep5 dep6 dep7 male [4] dep3 ~ Intercept dep4 dep5 dep6 dep7 male [5] dep4 ~ Intercept dep5 dep6 dep7 male [6] dep5 ~ Intercept dep6 dep7 male [7] dep6 ~ Intercept dep7 male dep7 ~ Intercept male [8]

Brian i. Rener (Chiversity of Missouri)	Wilsonig Butta and Buyesian Statistics With Billip	o foreset entiversity (fatte 20, 2021)

Brian T. Keller (University of Missouri) Missing Data and Bayesian Statistics with Blimp @ Yonsei University (June 25, 2024)

Blimp PSRF Output

POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's iterations to create twice as many chains.

	Comparing iterations across	4	chains	Highest PSR	Parameter #
١	120	to	250	1.182	105
	25	to	500	1.060	109
	370	to	750	1.047	107
			1000	1.032	109
			•		
1	200	to	4000	1.007	111
	2120	to	4250	1.006	107
	225	to	4500	1.006	109
	2370	to	4750	1.007	111
	Worst $PSRF < 1.05$ 250	to	5000	1.008	107

Brian I. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024)	180

Blimp Outcome Model Output for Focal Model

focal block:

Outcome Variable: disab

Parameters	Median	StdDev	2.5%	97.5%	PSR	N_Eff
Variances:						
Residual Var.	17.648	1.605	14.819	21.159	1.001	7433.659
Coefficients:						
Intercept	16.115	0.920	14.346	17.908	1.001	7802.323
male	2.950	1.399	0.168	5.669	1.000	8202.500
dep	0.412	0.060	0.294	0.528	1.001	7421.102
$dep_{f st}$ male	-0.232	0.087	-0.404	-0.060	1.000	8348.711
Standardized Coefficients:						
male	0.310	0.144	0.018	0.588	1.000	8225.067
dep	0.546	0.070	0.398	0.673	1.001	8050.279
dep*male	-0.430	0.157	-0.729	-0.111	1.000	8380.377
Proportion Variance Explained						
by Coefficients	0.191	0.042	0.112	0.278	1.001	8191.891
by Residual Variation	0.809	0.042	0.722	0.888	1.001	8191.891

Brian T. Keller (University of Missouri)	Missing Data and Bayesian Statistics with Blimp	@ Yonsei University (June 25, 2024) 181

Conditional Effects Analysis (Simple Effects)

Brian T. Keller (University of Missouri)

As a reminder, the conditional effects can be calculated using the following equation:

$$y_i = (\text{simple intercept}) + (\text{simple slope}) x_i + e_i$$

= $(\beta_0 + \beta_2 m_i) + (\beta_1 + \beta_3 m_i) x_i + e_i$

Missing Data and Bayesian Statistics with Blimp

Focal Model with Labels

```
focal:
    disab ~ 1@b0 dep@b1 male@b2 dep*male@b3;
```

PARAMETERS Command

```
# Conditional Effects Analysis (manually specify)
PARAMETERS:
    b0_female = b0;
    b1_female = b1;

b0_male = b0 + b2;
    b1_male = b1 + b3;
```

Brian T. Keller (University of Missouri)

Missing Data and Bayesian Statistics with Blimp

Yonsei University (June 25, 2024)

Blimp Output for PARAMETERS Command

GENERATED PARAMETERS:

Summaries based on 10000 iterations using 4 chains.

Parameters	Median	StdDev	2.5%	97 . 5%	PSR	N_Eff
b0_female	16.115	0.920	14.346	17.908	1.001	7802.323
b1_female	0.412	0.060	0.294	0.528	1.001	7421.102
b0_male	19.076	1.045	17.017	21.096	1.000	8811.626
b1_male	0.180	0.063	0.058	0.305	1.000	8501.354

Ditait 1. Keller (Offiversity of Missouri)	Missing Data and Dayesian Statistics with Dillip	@ 10ffset Offiversity (June 25, 2024) 164

Blimp Software

- General-purpose Bayesian estimation for regression and path models.
- Single and multilevel models
- Allows for latent variables, incomplete predictors and outcomes
- Interactive and nonlinear effects
- Nonnormal data
- And more!

Available at

https://www.appliedmissingdata.com/blimp

Ditait 1. Reflet (Offiversity o	 ata ana Dayesian Statistics with L	milip © Toriser Criticistry (Julic 25, 2024)