école — — — normale — — supérieure — — paris – saclay — —

Mini-Project - ML for Time Series

L.Oudre & C.Truong

TSFEL: Time series feature extraction library

Barandas et. al, 2020

MARENGO Matteo & ROBERT Hugo - Binôme n°8 MVA @ENS Paris-Saclay 2023/2024

Feature Extraction; curse or challenge?

- → 1) Extract a set of D features that characterizes the TS
- → 2) Select the K<D features that are relevant for specific task

Data (time series)

Features Extracted

Features Selected

Physics / Spectral Features
- DFT / Spectrogram
Statistical Features (stochastic)

- Mean / Autocorrelation

PCA
Filter methods
Wrapper methods
Embedded methods

What is TSFEL?

- → A Python Package
- → It computes over 60 different features across temporal, statistical and spectral domain.

To what extent can the extraction of generic features provide answers to a wide range of problems?

Datasets

Results

Datasets

Results

Feature Extraction:

- Traditional method, using features specific to the dataset.
- TSFEL, TSFRESH and CESIUM libraries to extract generic features and select the most relevant ones.

Classification:

Comparison of the quality of the features by computing classification accuracy.

Datasets

Results

Dataset 1: Human Locomotion

<u>Time series:</u> Vertical acceleration from the left foot during 20 seconds

Objective: Classify footsteps in healthy/non-healthy

Personalized method: Train a kNN classifier based on the DTW distance with training data

Dataset 2: Radars

<u>Time series:</u> Pulse series described by its width, frequency, power and direction angle theta and phi.

Objective: Classifying radar as a 'threat' or 'non-threat' in a military context.

<u>Personalized method</u>: Specific features; weight and height of the largest lob in power, number of local minimum in power, estimation of the pulse sending frequency. Classifier → Random Forest.

← fréquence puissance →

Dataset 3: EEG for epilepsy detection

<u>Time series:</u> EEG Time Series Dataset

Objective: Classify between three classes, normal, interictal, ictal.

<u>Personalized method</u>: Custom features / Multi Channel wavelet transforms from the literature

Dataset 4: ECG (Normal, Arrhythmia, CHG)

Time series: ECG dataset

Objective: Classify ECG in three classes; Normal, Arrhythmia and CHG

<u>Personalized method</u>: Frequency features (FFT), Time-Frequency domain features (Wavelet Transforms)

Datasets

Results

Results

• Human Locomotion

Method	Accuracy
DTW	0.826923
TSFEL	0.711538
CESIUM	0.634615
TSFRESH MINI	0.596154
TSFRESH EFFICIENT	0.653846
TSFRESH COMPREHENSIVE	0.653846

Radars

Method	Accuracy
personalized	0.88375
TSFEL	0.90250
CESIUM	0.89625
TSFRESH MINI	0.67000
TSFRESH EFFICIENT	0.77125

Results

• EEG for epilepsy detection

	Test	Accuracy
Cesium		0.832
TSFEL		0.968
TSFresh		0.944
TSFresh Mini		0.760
Guo et al.		0.832
Wavelet Transform		0.952

ECG (Normal, Arrhythmia and CHR)

	Test Accuracy
FFT / Wavelet + NN	0.9573
TSFEL + NN	0,3057
TSFEL (Full dataset) + NN	0.6038
TSFEL + RandomForest	0.856
Cesium + RandomForst	0.976

Datasets

Results

Analysis & Conclusion

Results depend largely on the dataset

- DTW performs better than TSFEL on DS 1
- TSFEL performs better than personalized features on DS 2
- TSFEL performs a slightly better than wavelet transforms on DS 3
- Wavelet + NN performs better than TSFEL on DS 4 (classifier !)

Analysis & Conclusion

 TSFEL is a powerful tool for extracting predefined generic feature quickly and easily.

 TSFEL library should not replace the dataset analysis stage to give meaning to the data studied.

 TSFEL can be a powerful tool for obtaining initial results quickly on the dataset.

Outlooks

→ Dictionary Learning for Classification

Multivariate Temporal Dictionary Learning for EEG

Q. Barthélemy^{a,b}, C. Gouy-Pailler^a, Y. Isaac^a, A. Souloumiac^a, A. Larue^{a,*}, J.I. Mars^{a,b}

^aCEA, LIST, Data Analysis Tools Laboratory, Gif-sur-Yvette Cedex, 91191, France ^bGIPSA-lab, DIS, UMR 5216 CNRS, Grenoble INP, Grenoble, 38402, France

→ Other libraries should be studies (e.g sktime)

