

Ve370 Introduction to Computer Organization

Homework 6

杨毅文 519370910053

Assigned: November 11, 2021

Due: 2:00pm on November 18, 2021

Submit a PDF file on Canvas

1. (10 points) The following code is written in C, where elements within the same row are stored contiguously. Assume each word is a 32-bit integer.

- (1) Which variable references exhibit temporal locality? (5 points) I, J, B[I][0]
- (2) Which variable references exhibit spatial locality? (5 points)

 A[I][J]
- 2. (40 points) Below is a list of 32-bit memory address references, given as word addresses: 0x03, 0xB4, 0x2B, 0x02, 0xBF, 0x58, 0xBE, 0x0E, 0xB5, 0x2C, 0xBA, 0xFD
 - (1) For each of these references, identify the tag and the cache index given a direct-mapped cache with 8 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 points)

	0x03	0xB4	0x2B	0x02	0xBF	0x58	0xBE	0x0E	0xB5	0x2C	0xBA	0xFD
tag	0	10110	101	0	10111	10110	10111	1	10110	101	10111	11111
index	11	100	11	10	111	0	110	110	101	100	10	101
h/m	miss	miss	miss	miss	miss	miss	miss	miss	miss	miss	miss	miss

(1) For each of these references, identify the tag and the cache index given a direct-mapped cache with two-word blocks and a total size of 4 blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 pints)

	0x03	0xB4	0x2B	0x02	0xBF	0x58	0xBE	0x0E	0xB5	0x2C	0xBA	0xFD
tag	0	10110	101	0	10111	10110	10111	1	10110	101	10111	11111
index	01	10	01	01	11	00	11	11	10	10	01	10
h/m	miss	miss	miss	miss	miss	miss	hit	miss	hit	miss	miss	miss

- (2) You are asked to optimize a cache design for the given references. There are three direct-mapped cache designs possible, all with a total of 8 words of data: C1 has 1-wordblocks, C2 has 2-word blocks, and C3 has 4-word blocks. In terms of miss rate, which cache design is the best? If the miss stall time is 35 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (20 points)
 - 1) For C1, miss rate = 100%, and for C2, miss rate = 10/12 = 83.3%.
 For C3, miss rate = 11/12 = 91.7%
 Then C2 is the best.

	0x03	0xB4	0x2B	0x02	0xBF	0x58	0xBE	0x0E	0xB5	0x2C	0xBA	0xFD
tag	0	10110	101	0	10111	10110	10111	1	10110	101	10111	11111
index	0	1	0	0	1	0	1	1	1	1	0	1
h/m	miss	miss	miss	miss	miss	miss	hit	miss	miss	miss	miss	miss

2) C1: $35 \times 12 + 2 \times 12 = 444$ cycles

C2: $35 \times 10 + 3 \times 12 = 386$ cycles

C3: $35 \times 11 + 5 \times 12 = 445$ cycles

Then C2 is the best.

3. (50 points) For a direct-mapped cache design with a 32-bit byte address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31 - 10	9 - 5	4 - 0

- (1) What is the cache block size (in words)? (5 points)
- (2) How many blocks does the cache have? (5 points)

(3) What is the ratio between total bits required for such a cache implementation over the data storage bits? (5 points)

$$(32*8*32+32*22+32*1)/(32*8*32)=1.09$$

Beginning from power on, the following byte addresses for cache references are recorded.

Address											
0x00	0x04	0x10	0x84	0xE8	0xA0	0x400	0x1E	0x8C	0xC1C	0xB4	0x884

- (4) (20 points) For each reference, list
 - a) its tag, index, and offset
 - b) whether it is a hit or a miss, and
 - c) How many blocks were replaced (if any)?

	0x00	0x04	0x10	0x84	0xE8	0xA0	0x400	0x1E	0x8C	0xC1C	0xB4	0x884
tag	0	0	0	0	0	0	1	0	0	11	0	10
index	0	0	0	100	111	101	0	0	100	0	101	100
offset	0	1	100	1	10	0	0	111	11	111	101	1
h/m	miss	hit	hit	miss	miss	miss	miss	miss	hit	miss	hit	miss
replace							yes	yes		yes		yes

(5) What is the hit ratio? (5 points)

$$4/12 = 33.3\%$$

(6) Show the final state of the cache, with each valid line represented as <index, tag, data>.

(10 points)

<000, 11, Mem[1100000xxxxx]>

<100, 10, Mem[1000100xxxxx]>

<111, 0, Mem[0000111xxxxx]>

<101, 0, Mem[0000101xxxxx]>