Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

0.1	Тезис Черча-Тьюринга	2
0.2	Проблема самоприменимости	2
0.3	Проблема остановки	2
0.4	<i>m</i> -сводимость	3
	0.4.1 Свойства m -сводимости	3
0.5	Как получать новые неперечислимые множества?	3
0.6	Существует ли универасальная тотально вычислимая функция?	4

Теорема 0.1. Универсальная Машина Тьюринга существует.

0.1 Тезис Черча-Тьюринга

Подробнее...

0.2 Проблема самоприменимости

Пусть нам дана УМТ U. Рассмотрим $S = \{p | U(p, p) \text{ остановится}\}$

Теорема 0.2 (Тьюринга). S-nеречислимо, неразрешимо

Доказательство.

Перечислимость: S перечислимо, т.к. $S = Dom\ d(p) = U(p,p)$ — область определения вычислимой функции

Нерезрешимость: от противного. Пусть S разрешимо $\Leftrightarrow \chi_S$ вычислимо. Рассмотрим

$$f(x) = \begin{cases} 0, \chi_S(x) = 0\\ \neq U(x, x), \chi_S(x) = 1 \end{cases}$$

Т.к. U(p,p) — УВФ, то $\exists q \forall x U(q,x) = f(x)$.

- (a) $q \in S \Rightarrow U(q,q) = f(q) \neq U(q,q)$
- (b) $q \notin S \Rightarrow f(q) = 0$, но U(q,q) не определено

Получили противоречие.

0.3 Проблема остановки

 $H = \{(p, x)|U(p, x) \text{ остановится}\}$

Теорема 0.3. H — nеречислимо, неразрешимо

Доказательство.

Перечислимость: H перечислимо, т.к. $S = Dom\ U(p,x)$ — область определения вычислимой функции

Нерезрешимость: от противного. Пусть H разрешимо, но тогда и $S = H \cap D$ тоже разрешимо, где $D = \{(p,p)|p$ проивольное $\}$, противоречие, т.к. S неразрешимо.

Рассмотрим множества:

- 1. $C = \{p | \forall x, y(U(p, x), U(p, y) \text{ определены } \Rightarrow U(p, x) = U(p, y))\}$
- 2. $T = \{p | \forall x (U(p, x) \text{ определено})\}$
- 3. $FD = \{p | \{x | U(p, x) \text{ определено} \}$ конечно $\}$

Определение 0.1. Множество X называется коперечислимым, если \overline{X} перечислимо

Утверждение 0.1. $C - \kappa$ оперечислимо, неразрешимо

Доказательство. $\overline{C}=\{p|\exists (x,y,t,s)\ U(p,x)\ \text{ост.}\ \exists a\ t\ \text{шагов}, U(p,y)\ \text{ост.}\ \exists a\ s\ \text{шагов}, U(p,x)\neq U(p,y)\},$ а оно перечислимо

Утверждение 0.2. T, FD — некоперечислимо, некоперечислимо

0.4 m-сводимость

Определение 0.2. $A \leq_m B$, если \exists вычислимая всюду определенная функция $f: \{0,1\}^* \to \{0,1\}^*$, такая, что $\forall x (x \in A \Leftrightarrow f(x) \in B)$.

0.4.1 Свойства m-сводимости

Утверждение 0.3. $A \leq_m B, B$ разрешимо $\Rightarrow A$ — разрешимо

Доказательство. $\chi_A(x) = \chi_B(f(x))$

Утверждение 0.4. $A \leqslant_m B \Leftrightarrow \overline{A} \leqslant_m \overline{B}$

Утверждение 0.5. $A \leqslant_m B, B \leqslant_m C \Leftrightarrow A \leqslant_m C$

Замечание. Т.к. $A \leqslant_m A$, получили, что \leqslant_m — предпорядок

Утверждение 0.6. $A \leq_m B, B$ перечислимо $\Rightarrow A$ — перечислимо

Следствие. $A \leqslant_m B, A$ неперечислимо $\Rightarrow B$ неперечислимо

0.5 Как получать новые неперечислимые множества?

Докажем, что T неперечислимо и некоперечислимо. Заметим, что \overline{H} — неперечислимое множество. Если мы покажем, что

$$\begin{cases}
\overline{H} \leqslant_m T \\
\overline{H} \leqslant_m \overline{T}
\end{cases}$$

То мы получим, что T — неперечислимо, некоперечислимо. Однако, удобнее доказывать, что

$$\begin{cases} H \leqslant_m T(1) \\ H \leqslant_m \overline{T}(2) \end{cases}$$

Для этого

- 1. $(p,x)\mapsto q$, так, что $\forall y U(q,y)=U(p,x)$. Тогда $q\in H\Leftrightarrow q\in T$
- 2. $(p,x)\mapsto q$, так, что

$$U(q,y) = \left\{ egin{array}{ll} 1, \ {
m ec}$$
ли $U(p,x)$ не оставновится за y шагов не определено, иначе

$$(p,x)\in H\Rightarrow\exists t\forall y\geqslant tU(q,y)$$
 не определено $\Rightarrow q\notin T$ $(p,x)\notin H\Rightarrow \forall yU(q,y)=1\Rightarrow q\in T$

Получили T, неперечислимое и некоперечислимое.

0.6 Существует ли универасальная тотально вычислимая функция?

Что мы хотим: $U_T: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$, такую, что

- 1. $\forall p, x \ U_T(p, x)$ определена
- $2.~U_T$ вычислима
- 3. $\forall f: \{0,1\}^* \to \{0,1\}^*$, такая, что f вычислима, всюду определена и $\exists p \forall x f(x) = U_T(p,x)$

Утверждение 0.7. $\sharp U_T$

Доказательство. Иначе рассмотрим
$$d'(x) = U_T(x,x) + 1$$
. Тогда $\exists p \forall x \ d'(x) = U_T(p,x) = d'(p) \Rightarrow U_T(p,p) + 1 = U_T(p,p)$

Рассмотрим множество $NED = \{p | \exists x U(p,x) \text{ определено} \}$. Оно перечислимо (можно добавить квантор, указывающий, за какое число шагов).

Утверждение 0.8. \overline{NED} неперечислимо

Доказательство. Покажем, что $H\leqslant_m NED\Leftrightarrow \overline{H}\leqslant_m \overline{NED}$. Сопостивим $(p,x)\mapsto q$, так, что

$$U(q,y)=\left\{egin{array}{ll} \mbox{ не определено}, U(p,x) \mbox{ не остановится за } y \mbox{ шагов} \mbox{ } , (p,x)\in H\Leftrightarrow q\in NED \mbox{ } 1, \mbox{ иначе} \end{array}\right.$$

Пусть p_1, p_2, \ldots — перечисление \overline{NED} . Рассмотрим

$$U'(n,x) = \begin{cases} \text{ не определено, если } n = 0 \\ U(p_n,x), n > 0 \end{cases}$$

Заметим, что $NED_{U'}=\{n|\exists xU'(n,x) \text{ определено}\}=\mathbb{N}\setminus\{0\}$ — разрешимо \square