Лекция 1 Случайные процессы и их характеристики

Артемов А. В. мФТиАД ФКН ВШЭ

31 января 2018 г.

1 Введение в курс

Как понятно из названия, этот пункт посвящён простой цели: вспомнить основные понятия, необходимые для дальнейшего чтения. Начнём с самого основного: *вероятностного* пространства.

Определение 1. Вероятностное пространство, или *тройка Колмогорова* — это тройка $(\Omega, \mathcal{F}, \mathsf{P})$, где

- Ω простанство элементарных исходов.
- $\mathcal{F} \sigma$ -алгебра над Ω , пространство событий. Неформально говоря, \mathcal{F} определяет объекты, относительно которых делаются утверждения.
- $P: \mathcal{F} \mapsto [0,1]$ вероятностная мера.

На всякий случай напомню определения сигма-алгебры и вероятностной меры.

Определение 2. σ -алгебра над множеством A — это множество $\mathcal{F} \subseteq 2^A$, обладающее следующими свойствами:

- 1. $\varnothing \in \mathcal{F}$.
- 2. Если $X \in \mathcal{F}$, то и дополнение $A \setminus X \in \mathcal{F}$.
- 3. \mathcal{F} замкнуто относительно счётного объединения, то есть объединение счётного подсемейства из \mathcal{F} лежит в \mathcal{F} .

Определение 3. Пусть Ω — пространство элементарных исходов, а \mathcal{F} — σ -алгебра его подмножеств (пространство событий). Вероятностной мерой или же вероятностью называется функция $\mathsf{P}: \mathcal{F} \mapsto [0,1]$, удовлетворяющая двум свойствам:

1. (счётная аддитивность) Пусть $\{A_n\}_{n=1}^{\infty}$ — последовательность попарно не пересекающихся событий. Тогда

$$\mathsf{P}\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathsf{P}(A_n)$$

2. (нормированность) $P(\Omega) = 1$.

 $^{^{1}}$ То есть это алгебра, к которой конечное объединение заменено на счётное.

Теперь посмотрим на несколько примеров вероятностных пространств.

Пример 1. Допустим, что человек бросает монетку. В данном случае элементарными исходами являются "орёл" и "решка". Обозначим их за 0 и 1 соответственно. Тогда вероятностное пространство будет устроено следующим образом: пространство элементарных исходов $\Omega = \{0,1\}$, пространство событий $\mathcal{F} = \{\varnothing, \{0\}, \{1\}, \Omega\}$, а вероятность P определяется следующим образом:

$$\mathsf{P}(\varnothing) = 0, \quad \mathsf{P}(\{1\}) = p, \qquad \mathsf{P}(\{0\}) = 1 - p, \qquad \mathsf{P}(\Omega) = 1, \quad p \in [0,1].$$

Пример 2. Теперь подбросим монетку n раз. В таком случае $\Omega = \{0,1\}^n$, то есть если $\omega \in \Omega$, то $\omega = (\omega_1, \dots, \omega_n)$, где $\omega_i \in \{0,1\}$. Пространство событий же введём просто как множество всех подмножеств: $\mathcal{F} = 2^{\Omega}$. Введение же вероятностной меры оставим читателю.

В дискретном случае алгебра событий, как известно, очень проста: обычно это просто множество всех подмножеств. Теперь перейдём от дискретного случая к более общему. Пусть $\Omega = \mathbb{R}$. Как тогда ввести алгебру событий? Ведь, как известно, в \mathbb{R} есть неизмеримые подмножества. Для этого вводят борелевскую σ -алгебру $\mathcal{B}(\mathbb{R})$ и говорят, что $\mathcal{F} = \mathcal{B}(\mathbb{R})$. Напомню определение:

Определение 4. Борелевская σ -алгебра над \mathbb{R} $\mathcal{B}(\mathbb{R})$ — это минимальная (по включению) сигма-алгебра над \mathbb{R} , содержащая все полуинтервалы вида (a,b].²

Всё это вводилось ради того, с чем мы работаем на постоянной основе: ради *случайных* величин.

Определение 5. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство. Случайной величиной будем называть отображение $\xi : \Omega \mapsto \mathbb{R}$ такое, что для любого $x \in \mathbb{R}$ событие $\{\xi \leqslant x\} = \{\omega \in \Omega : \xi(\omega) \leqslant x\}$ лежит в \mathcal{F} .

Характеризовать поведение случайной величины помогает функция распределения:

Определение 6. Пусть ξ — случайная величина на вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$. Функцией распределения случайной величины ξ называют функцию $F_{\xi} : \mathbb{R} \mapsto [0, 1]$, определяемую следующим образом: $F_{\xi}(x) = \mathsf{P}(\xi \leqslant x)$.

Дальше по плану сходимости. Как известно, их четыре типа, и они не равноценны. Чтобы не повторяться, сразу же введём обозначения. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, а $\{\xi_n\}_{n=1}^{\infty}$ и ξ — случайные величины на нём.

Определение 7. ξ_n сходится к ξ почти наверное, если

$$\mathsf{P}\Big(\Big\{\omega\in\Omega: \lim_{n\to\infty}\xi_n(\omega)=\xi(\omega)\Big\}\Big)=1.$$

Обозначение: $\xi_n \xrightarrow{\text{п.н.}} \xi$ или же просто $\xi_n \to \xi$ (если не указан вид сходимости и он не ясен из контекста, то сходимость идёт почти наверное).

 $^{^{2}}$ Хоть она и минимальна, но всё равно она огромна — найти неборелевское множество не так уж и просто.

³Это свойство принято называть измеримостью. Такое требование нужно для того, чтобы были осмысленны вопросы типа "Чему равна вероятность того, что значение случайной величины будет лежать в таком-то отрезке?".

Определение 8. ξ_n сходится к ξ по вероятности, если для любого $\varepsilon > 0$

$$\lim_{n \to \infty} \mathsf{P}(\{\omega \in \Omega : |\xi_n(\omega) - \xi(\omega)| > \varepsilon\}) = 0.$$

Обозначение: $\xi_n \xrightarrow{\mathsf{P}} \xi$.

Определение 9. ξ_n сходится к ξ в среднем порядка p, если

$$\lim_{n\to\infty} \mathsf{E}[|\xi_n - \xi|^p] = 0.$$

Обозначение: $\xi_n \xrightarrow{L^p} \xi$.

На практике обычно берётся p=2. В таком случае говорят, что имеет место cxodu-мость в cpedhekeadpamuчном смысле. У такой сходимости есть аж три разных обозначения: $\xi_n \xrightarrow{L^2} \xi$, $\xi_n \xrightarrow{\text{c.k.}} \xi$ или же вообще $\xi = \text{l. i. m. } \xi_n$.

Определение 10. ξ_n сходятся к ξ по распределению, ⁴ если для любой ограниченной непрерывной функции $f: \mathbb{R} \mapsto \mathbb{R}$

$$\lim_{n\to\infty} \mathsf{E}[f(\xi_n)] = \mathsf{E}[f(\xi)].$$

Обозначение: $\xi_n \xrightarrow{\mathrm{d}} \xi$.

Цепочка взаимосвязей сходимостей устроена следующим образом. На данном рисунке $p>s\geqslant 1$ и стрелка из A в B означает "из A следует B":

$$L^p \xrightarrow{L^s} P \xrightarrow{\qquad} d$$

Поехали дальше. Для случайных величин вводились такие вещи, как матожидание и дисперсия. Напомню:

Определение 11. *Математическое ожидание* случайной величины ξ с функцией распределения F_{ξ} и плотностью p_{ξ} — это интеграл

$$\mathsf{E}[\xi] \equiv \int_{-\infty}^{+\infty} x \, dF_{\xi}(x) = \int_{-\infty}^{+\infty} x p_{\xi}(x) \, dx$$

Рядом с матожиданием вводятся дисперсия, ковариация и корреляция.

Определение 12. Дисперсией случайной величины ξ называется $D[\xi] = E[(\xi - E[\xi])^2] = E[\xi^2] - (E[\xi])^2$. Корень из дисперсии σ называется cpednekeadpamunым отклонением.

Определение 13. Коварциацией случайных величин ξ и η называется

$$\mathsf{cov}(\xi,\eta) = \mathsf{E}[(\xi - \mathsf{E}[\xi])(\eta - \mathsf{E}[\eta])] = \mathsf{E}[\xi\eta] - \mathsf{E}[\xi]\,\mathsf{E}[\eta].$$

Определение 14. Корреляцией случайных величин ξ и η называется

$$\rho(\xi, \eta) = \frac{\mathsf{cov}(\xi, \eta)}{\sqrt{\mathsf{D}[\xi] \, \mathsf{D}[\eta]}}.$$

 $^{^4}$ Она так называется по той причине, что в одномерном случае её условие расносильно сходиости функций распределения почти наверное.

В многомерном случае ситуация немного изменяется. Матожидание случайного вектора определяется, как вектор из матожиданий компонент. Ковариация (да и дисперсия тоже) случайных векторов $\boldsymbol{\xi} \in \mathbb{R}^m$ и $\boldsymbol{\eta} \in \mathbb{R}^n$ равна

$$\mathsf{cov}(\pmb{\xi}, \pmb{\eta}) = \mathsf{E}[(\pmb{\xi} - \mathsf{E}[\pmb{\xi}])(\pmb{\eta} - \mathsf{E}[\pmb{\eta}])^{\mathsf{T}}] = (\mathsf{cov}(\xi_i, \eta_j))_{m \times n}.$$

При анализе некоторых вещей могут понадобиться условные матожидания. Введём их.

Определение 15. Пусть ξ — случайная величина, а η — случайный вектор из \mathbb{R}^n . Тогда условным математическим ожиданием ξ относительно η называется случайная величина $\mathsf{E}[\xi \mid \eta]$, удовлетворяющая двум условиям:

- 1. $\mathsf{E}[\xi \mid \pmb{\eta}] = \varphi(\pmb{\eta})$, где $\varphi: \mathbb{R}^n \mapsto \mathbb{R}$ некоторая борелевская функция (свойство измеримости).
- 2. Для любого $B \in \mathcal{B}(\mathbb{R}^n)$ $\mathsf{E}[\xi \, \mathsf{I}\{\boldsymbol{\eta} \in B\}] = \mathsf{E}[\mathsf{E}[\xi \, | \, \boldsymbol{\eta}] \, \mathsf{I}\{\boldsymbol{\eta} \in B\}]$ (интегральное свойство).

Но считать условное матожидание по определению весьма грустно. Поэтому введём две теоремы, которые упрощают жизнь. Они опираются на понятие *условного распределения* и условной плотности.

Определение 16. Условным распределением случайной величины ξ при условии, что $\eta = \mathbf{y}$ назовём функцию $\mathsf{P}(\xi \in B \mid \boldsymbol{\eta} = \mathbf{y}) \equiv \mathsf{E}[\mathsf{I}\{\xi \in B\} \mid \boldsymbol{\eta} = \mathbf{y}]$, рассматриваемую, как функцию от $B \in \mathcal{B}(\mathbb{R}^n)$ при фиксированном $\mathbf{y} \in \mathbb{R}^k$.

Определение 17. Если условное распределение имеет плотность $p_{\xi|\eta}(x \mid \mathbf{y})$, то назовём его условной плотностью ξ относительно η . То есть для любого $B \in \mathcal{B}(\mathbb{R})$

$$P(\xi \in B \mid \boldsymbol{\eta} = \mathbf{y}) = \int_{B} p_{\xi \mid \boldsymbol{\eta}}(x \mid \mathbf{y}) dx.$$

Теорема 1 (о вычислении условного математического ожидания). Пусть ξ — случайная величина, а f(x) — некоторая борелевская функция. Если $\mathsf{E}[|f(\xi)|] < +\infty$ и существует плотность $p_{\xi|\eta}(x\mid \mathbf{y})$, то

$$\mathsf{E}[f(\xi) \mid \boldsymbol{\eta} = \mathbf{y}] = \int_{\mathbb{R}} f(x) p_{\xi \mid \boldsymbol{\eta}}(x \mid \mathbf{y}) \, dx.$$

Теорема 2. Пусть ξ и η таковы, что есть совместная плотность $p_{\xi,\eta}(x,y)$. Тогда существует условная плотность $p_{\xi|\eta}(x\mid y)$ и она равна

$$p_{\xi|\eta}(x \mid y) = \frac{p_{\xi,\eta}(x,y)}{p_{\eta}(y)} I\{p_{\eta}(y) > 0\}$$

Обобщение на многомерный случай ровно такое же, как и для обычных матожиданий.

2 Основы теории случайных процессов

2.1 Основные понятия

Теперь можно приступать к делу. Для начала введём понятие случайной функции.

Определение 18. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, а T — произвольное неслучайное множество (множество индексов). Тогда любое множество случайных величин $X = \{X_t \mid t \in T\}$ называется случайной функцией.

Случайные функции можно классифицировать по строению множества индексов.

- Если $T = \{1\}$ (или любое другое одноэлементное множество), то $X = X_1 : \Omega \mapsto \mathbb{R}$ случайная величина.
- \bullet Если $T = \{1, 2, \dots, N\}$, то $X = (X_1, \dots, X_N)$ случайный вектор.
- Если T дискретно (то есть не более, чем счётно), то X называют случайной последовательностью. Например, возьмём $T=\mathbb{N}$ и $\Omega=\{0,1\}$. Тогда случайная последовательность $X=(X_t)_{t\in T}$ соотвествует броскам монетки.
- Если $T \subseteq \mathbb{R}$, то параметр $t \in T$ можно характеризовать, как время. В этом случае X принято называть *случайным процессом*.
- Аналогично, если $T \subseteq \mathbb{R}^d$, где $d \geqslant 1$, то параметр можно характеризовать, как точку в d-мерном пространстве. Тогда X называют случайным полем. Например, если $T = \mathbb{R}^3$, то $X_t(\omega)$ может соответствовать давлению в точке t = (x, y, z) в момент времени ω .

Впрочем, данная классификация не является строгой. Например, понятие "случайный процесс" обычно считается безусловным синонимом термина "случайная функция".

Случайные процессы ещё разбивают по мощности множества индексов. Если оно не более, чем счётно, то говорят, что случайный процесс дискретен во времени. Если же T континуально, то у случайного процесса непрерывное время.

Рассмотрим несколько примеров.

Пример 3. Пусть $T = \mathbb{N}$, а $\{X_n\}_{n=1}^{\infty}$ — последовательность независимых и одинаково распределённых случайных величин с нулевым матожиданием. Тогда $X = (X_t)_{t \in T}$ — случайный процесс с дискретным временем, называемый белым шумом.

Пример 4. Пусть $Y = (Y_t)_{t \in T}$ — последовательность iid случайных величин. Тогда построим новую последовательность случайных величин следующим образом: $X_t = Y_1 + \ldots + Y_t$. Тогда $X = (X_t)_{t \in T}$ — случайный процесс с дискретным временем, называемый случайным блужданием.

Пример 5. Пусть ξ_1, \dots, ξ_d — случайные величины. Тогда "случайный полином"

$$X = (X_t)_{t \in \mathbb{R}}, \quad X_t = \sum_{n=1}^d \xi_n t^n$$

образует случайный процесс.

Пример 6. Пусть некоторое устройство (например, жёсткий диск) начинает работу в момент времени 0 и ломается в момент времени T_1 . В этот же момент его меняют на новое (временем замены пренебрегаем). Оно, в свою очередь, ломается спустя время T_2 , после чего его снова заменяют и этот процесс продолжается. Введём случайные величины

 $^{^5}$ Для удобства в дальнейшем будем иногда сокращать "независимые и одинаково распределённые" до iid (independent and identically distributed).

 $S_n = T_1 + \cdots + T_n$. Случайный процесс $S = (S_t)_{t \in \mathbb{N}}$ называется процессом моментов восстановления. Сечения будут соответствовать моментам "восстановления". Далее, введём следующий случайный процесс:

$$N = (N_t)_{t \in \mathbb{R}}, \quad N_t = \sum_{n=1}^{\infty} I\{S_n \leqslant t\} = \#\{n \in \mathbb{N} \mid S_n \leqslant t\}.$$

Этот процесс принято называть процессом восстановления.

В дальнейшем нам понадобятся понятия *сечения* и *траектории* случайной функции. Введём их.

Определение 19. Пусть $X = (X_t)_{t \in T}$ — случайная функция. Тогда X_t при фиксированном t называется сечением случайной функции.

Определение 20. Пусть $X = (X_t)_{t \in T}$ — случайная функция и $\omega \in \Omega$ — фиксированный исход. *Траекторией* случайной функции называется функция $\varphi_{\omega} : T \mapsto \mathbb{R}$ такая, что $\varphi_{\omega}(t) = X_t(\omega)$.

Теперь вопрос: есть случайный процесс. Как описать вероятность того, что реализация удовлетворяет какому-то условию? Да и вообще, какие вопросы можно задавать относительно реализаций?

Посмотрим на пару частных случаев случайного процесса $X=(X_t)_{t\in T}$

- 1. Пусть $T = \{1\}$. Тогда случайный процесс превращается в случайную величину ξ . Но её значения описываются функцией распределения $F_{\xi}(x) = \mathsf{P}(\xi \leqslant x)$.
- 2. Аналогично, пусть $T = \{1, 2, ..., n\}$. Тогда $X = (X_1, ..., X_n)$ это случайный вектор, а его значения описываются совместной функцией распределения

$$F_X(x_1,\ldots,x_n) = \mathsf{P}(X_1 \leqslant x_1,\ldots,X_n \leqslant x_n)$$

В конечном случае всё хорошо и можно обойтись совместной функцией распределения. А как перейти в бесконечный случай? Сделать прямое обобщение вряд ли получится: учитывать бесконечное число условий сложно и не факт, что возможно. Поэтому будем смотреть на конечные поднаборы. Тем самым мы пришли к следующему определению.

Определение 21. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, T — множество индексов, а $X = (X_t)_{t \in T}$ — случайный процесс. Тогда семейством конечномерных распределений случайного процесса X называется набор F его конечномерных функций распределения

$$F_{t_1,\ldots,t_n}(x_1,\ldots,x_n) = P(X_{t_1} \leqslant x_1,\ldots,X_{t_n} \leqslant x_n),$$

то есть

$$F = \{ F_{t_1, \dots, t_n}(x_1, \dots, x_n) \mid n \in \mathbb{N}, t_1, \dots, t_n \in T \}.$$

Пример 7. Пусть $X = (X_t)_{t \in \mathbb{N}}$ — случайный процесс, состоящий из iid случайных величин из распределения $\mathcal{N}(\mu, \sigma^2)$. Тогда

$$F_{t_1,\dots,t_n}(x_1,\dots,x_n) = \prod_{k=1}^n F_{X_{t_k}}(x_k) = \prod_{k=1}^n \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\} dy.$$

Вообще говоря, конечномерное распределение $F_{t_1,\dots,t_n}(x_1,\dots,x_n)$ — это распределение случайного вектора (X_{t_1},\dots,X_{t_n}) .

Как мы видим, по любому случайному процессу можно построить семейство конечномерных функций распределения. Теперь вопрос: а можно ли по семейству построить случайный процесс? Оказывается, что можно.

Теорема 3 (Колмогорова о существовании случайного процесса). Пусть F- заданное семейство конечномерных функций распределения над множеством индексов T, которое удовлетворяет свойству согласованности: для k < n

$$F_{t_1,\dots,t_k}(x_1,\dots,x_k) = F_{t_1,\dots,t_n}(x_1,\dots,x_k,+\infty,\dots,+\infty).$$

Тогда существует вероятностное пространство $(\Omega, \mathcal{F}, \mathsf{P})$ и случайный процесс $X = (X_t)_{t \in T}$ такой, что $\mathsf{P}(X_{t_1} \leqslant x_1, \dots, X_{t_n} \leqslant x_n) = F_{t_1, \dots, t_n}(x_1, \dots, x_n)$.

Вообще, доказательство этой теоремы не особо сложное, но оно требует введения не самых простых вещей наподобие борелевских сигма-аглебр над пространством функций. Поэтому я лишь напишу идею.

Теперь вспомним, что независимость бесконечного набора — это независимость в совокоуности любого конечного поднабора. Тогда из теоремы Колмогорова сразу же получаем следующее

Следствие. Пусть для каждого $t \in T \subseteq \mathbb{R}$ определена одномерная функция распределения $F_t(x)$. Тогда существует вероятностное пространство $(\Omega, \mathcal{F}, \mathsf{P})$ и случайный процесс $X = (X_t)_{t \in T}$ с независимыми сечениями такой, что $\mathsf{P}(X_t \leqslant x) = F_t(x)$.

Теперь рассмотрим пример применения этой теоремы. Пусть T = [0, 1], а

$$F_{t_1,...,t_n}(x_1,...,x_n) = \prod_{k=1}^n \int_{-\infty}^{x_k} g(y) \, dy,$$

где g — симметричная относительно нуля плотность. Возьмём случайный процесс $X = (X_t)_{t \in T}$ из теоремы Колмогорова. Несложно понять, что в таком случае

$$P(X_t > \varepsilon, X_s < -\varepsilon) = \left(\int_{\varepsilon}^{\infty} g(y) \, dy\right)^2$$

Теперь возьмём последовательность событий $A_n = \{X_t > \varepsilon, X_{t+1/n} < -\varepsilon\}$. Если процесс является непрерывным (поточечно), то $A_n \to \varnothing$ при $n \to \infty$. Но тогда нарушается непрерывность вероятностной меры в нуле, то есть $\mathsf{P}(A_n) \not\to 0$. Следовательно, непрерывность, независимость и одинаковая распределённость не совместимы.

Для описания случайных величин вводились такие вещи, как матожидание, дисперсия и так далее. Так вот: их можно ввести и для случайных процессов, хотя это уже будут не константы, а функции (неслучайные).

Определение 22. Математическое ожидание случайного процесса $X = (X_t)_{t \in T}$ — это функция $m: T \mapsto \mathbb{R}$, устроенная следующим образом: $m(t) = \mathsf{E}[X_t]$.

Определение 23. Дисперсия случайного процесса $X = (X_t)_{t \in T}$ — это функция $D : T \mapsto \mathbb{R}$, устроенная следующим образом: $D(t) = \mathsf{D}[X_t] = \mathsf{E}[(X_t - \mathsf{E}[X_t])^2]$.

Определение 24. Среднеквадратичное отклонение случайного процесса $X = (X_t)_{t \in T}$ — это функция $\sigma : T \mapsto \mathbb{R}$, устроенная следующим образом: $\sigma(t) = \sqrt{\mathsf{D}[X_t]}$.

Определение 25. Ковариационная функция случайного процесса $X = (X_t)_{t \in T}$ — это функция $R: T^2 \mapsto \mathbb{R}$, устроенная следующим образом:

$$R(t_1, t_2) = \text{cov}(X_{t_1}, X_{t_2}) = \text{E}[(X_{t_1} - \text{E}[X_{t_1}])(X_{t_2} - \text{E}[X_{t_2}])]$$

Наряду с ковариационной функцией вводят корреляционную функцию

$$r(t_1, t_2) = \frac{R(t_1, t_2)}{\sigma(t_1)\sigma(t_2)}$$

Про неё нужно сказать, что по неравенству Коши-Буняковского-Шварца $|r(t_1, t_2)| \leq 1$. Осталось ввести ещё одну функцию $K: T^2 \mapsto \mathbb{R}$, определяемую следующим образом: $K(t_1, t_2) = \mathsf{E}[X_{t_1} X_{t_2}]$.

Теперь выпишем несколько очевидных свойств:

- $D(t) = R(t,t) \ge 0$, так как дисперсия неотрицательна.
- $K(t_1, t_2) = \mathsf{E}[(X_{t_1} m(t_1) + m(t_1))(X_{t_2} m(t_2) + m(t_2))] = R(t_1, t_2) + m(t_1)m(t_2)$ (проверьте!).
- $R(t_1, t_2) = R(t_2, t_1)$.
- Для любого $n \in \mathbb{N}$ и наборов $(z_1, \ldots, z_n), (t_1, \ldots, t_n)$ матрица $(R(t_i, t_j))_{n \times n}$ неотрицательно определена:

$$\sum_{i,j=1}^{n} R(t_i, t_i) z_i z_j \geqslant 0$$

Это следует из того, что (X_{t_1},\ldots,X_{t_n}) — случайный вектор, а $(R(t_i,t_j))_{n\times n}$ есть его матрица ковариаций.

Допустим, что у нас есть какой-то случайный процесс. Что произойдёт с его параметрами при линейном преобразовании?

Пусть $X = (X_t)_{t \in T}$ — случайный процесс, а $a, b: T \mapsto \mathbb{R}$ — ограниченные неслучайные функции. Построим новый случайный процесс $Y = (Y_t)_{t \in T}$ следующим образом: $Y_t = a(t)X_t + b(t)$. Посмотрим на матожидание, дисперсию и ковариационную функцию данного процесса. Для того, чтобы различать их для разных процессов, будем указывать название процесса в качестве индекса: например, $R_Y(t_1, t_2)$.

$$\begin{split} m_Y(t) &= \mathsf{E}[Y_t] = \mathsf{E}[a(t)X_t + b(t)] = a(t)m_X(t) + b(t) \\ R_Y(t_1,t_2) &= \mathsf{cov}(Y_{t_1},Y_{t_2}) = \mathsf{cov}(a(t_1)X_{t_1} + b(t_1), a(t_2)X_{t_2} + b(t_2)) = a(t_1)a(t_2)R_X(t_1,t_2) \\ D_Y(t) &= R_Y(t,t) = a^2(t)R_X(t,t) = a^2(t)D_X(t) \end{split}$$

Теперь сделаем небольшое обобщение и возьмём линейную комбинацию n процессов. Пусть $X_i = (X_t^i)_{t \in T}, i = 1, \ldots, n$, а a_1, \ldots, a_n — набор ограниченных функций из T в \mathbb{R} . Далее, строим новый случайный процесс $Y = (Y_t)_{t \in T}$ по следующему правилу:

$$Y_t = \sum_{i=1}^{n} a_i(t) X_t^i + b(t)$$

Для упрощения жизни введём взаимную корреляционную функцию $R_{X_i,X_j}(t_1,t_2) = \text{cov}(X_{t_1}^i,X_{t_2}^j)$. Тогда несложно показать, что

$$m_Y(t) = \sum_{i=1}^{n} a_i(t) m_{X_i}(t) + b(t)$$
(2.1)

$$R_Y(t_1, t_2) = \sum_{i=1}^n a_i(t_1)a_i(t_2)R_{X_i}(t_1, t_2) + \sum_{\substack{i,j=1\\i\neq j}}^n a_i(t_1)a_j(t_2)R_{X_i, X_j}(t_1, t_2)$$
(2.2)

$$D_Y(t) = \sum_{i=1}^n a_i^2(t) D_{X_i}(t) + \sum_{\substack{i,j=1\\i\neq j}}^n a_i(t) a_j(t) R_{X_i,X_j}(t,t)$$
(2.3)

2.2 Непрерывность случайных процессов

Вообще, случайные функции — тоже вполне себе функции, поэтому вполне осмысленно посмотреть на её непрерывность. Только в данном случае можно вводить разные виды непрерывности, так как последовательности сходятся не только поточечно.

Определение 26. Случайный процесс $X = (X_t)_{t \in T}$ непрерывыен в среднеквадратичном смысле в точке $t \in T$, если

$$X_{t+\varepsilon} \xrightarrow{\mathrm{c.k.}} X_t$$
 при $\varepsilon \to 0$.

Если это выполнено для любого $t \in T$, то процесс называют непрерывным в среднеквадратичном смысле.

Вот есть у нас процесс. Можем ли мы сказать, что он будет непрерывным в среднеквадратичном смысле, не вспоминая определение каждый раз? Можем.

Теорема 4. Случайный процесс $X = (X_t)_{t \in T}$ непрерывен в среднеквадратичном случае тогда и только тогда, когда непрерывны $R(t_1, t_2)$ и m(t).

Доказательство. Для начала проверим, что этого условия достаточно. Действительно, из непрерывности $R(t_1, t_2)$ и m(t) следует непрерывность K(t, t) и

$$\mathsf{E}\big[(X_{t+\varepsilon}-X_t)^2\big] = \mathsf{E}\big[X_{t+\varepsilon}^2\big] + \mathsf{E}\big[X_t^2\big] - 2\,\mathsf{E}[X_tX_{t+\varepsilon}] = K(t+\varepsilon,t+\varepsilon) + K(t,t) - 2K(t,t+\varepsilon).$$

Устремляя ε к нулю, получаем, что $\mathsf{E}[(X_{t+\varepsilon}-X_t)^2]\to 0$, что и даёт непрерывность в среднеквадратичном смысле. Теперь покажем, что это условие необходимо. Для этого воспользуемся следующей леммой:

Лемма. Пусть $\{X_n\}_{n=1}^{\infty}$, $\{Y_n\}_{n=1}^{\infty}$, X и Y — случайные величины такие, что $X_n \xrightarrow{c.\kappa.} X$, $Y_n \xrightarrow{c.\kappa.} Y$, $\mathsf{E}[X^2] < \infty$ и $\mathsf{E}[Y^2] < \infty$. Тогда

$$\lim_{m,n\to\infty} \mathsf{E}[X_n Y_m] = \mathsf{E}[XY].$$

Доказательство. Для начала покажем, что $(\mathsf{E}[XY])^2 \leqslant \mathsf{E}[X^2] \, \mathsf{E}[Y^2]$. Для этого рассмотрим $f(t) = \mathsf{E}[(tX+Y)^2]$. Понятно, что f(t) есть квадратный трёхчлен от t и он неотрицателен. Тогда его дискриминант отрицателен и мы получаем желаемое. По сути, это просто неравенство Коши-Буняковского-Шварца.

Заметим, что по нему

$$|E[(X_n - X)(Y_m - Y)]| \le \sqrt{E[(X_n - X)^2]E[(Y_n - Y)^2]} \to 0.$$

Теперь раскроем скобки:

$$E[(X_n - X)(Y_m - Y)] = E[X_n Y_m] - E[X_n Y] - E[XY_m] + E[XY]$$

Покажем, что $\mathsf{E}[X_nY] \to \mathsf{E}[XY]$. Действительно,

$$\mathsf{E}[(X_n - X)Y] \leqslant \sqrt{\mathsf{E}[Y^2]\,\mathsf{E}[(X_n - X)^2]} \to 0.$$

Аналогично, $\mathsf{E}[XY_m] \to \mathsf{E}[XY]$. Тем самым мы получаем желаемое.

Из неё сразу же следует, что при $\varepsilon_1, \varepsilon_2 \to 0$

$$\begin{cases} X_{t_1+\varepsilon_1} \xrightarrow{\text{c.k.}} X_t \\ X_{t_2+\varepsilon_2} \xrightarrow{\text{c.k.}} X_t \end{cases} \implies \mathsf{E}[X_{t_1+\varepsilon_1} X_{t_2+\varepsilon_2}] \to \mathsf{E}[X_{t_1} X_{t_2}] \implies K(t_1+\varepsilon_1,t_2+\varepsilon_2) \to K(t_1,t_2)$$

Это означает непрерывность $K(t_1, t_2)$. Теперь вспомним, что

$$D[|X_{t_1} - X_{t_2}|] = E[(X_{t_1} - X_{t_2})^2] - (E[|X_{t_1} - X_{t_2}|])^2 \geqslant 0$$

Отсюда сразу же следует, что при $t_1 \to t_2 \ \mathsf{E}[|X_{t_1} - X_{t_2}|] \to 0$. Следовательно, $\mathsf{E}[X_{t_1}] \to \mathsf{E}[X_{t_2}]$ и m(t) непрерывна. Отсюда получаем, что и $R(t_1,t_2)$ тоже непрерывна.

Но не среднеквадратичным случаем единым! У него весьма жёсткие требования, так что введём ещё пару видов.

Определение 27. Будем говорить, что $X = (X_t)_{t \in T}$ — случайный процесс с непрерывными траекториями, если для любого $\omega \in \Omega$ траектория φ_{ω} непрерывна, как функция от t.

Пример 8. Пусть $T = [0,1], f : [0,1] \mapsto \mathbb{R}$ — какая-то непрерывная функция, а ξ — случайная величина. Тогда случайный процесс $X = (X_t)_{t \in T}$, построенный по правилу $X_t = f(t)\xi$, будет иметь непрерывные траектории.

Определение 28. Будем говорить, что процесс $X = (X_t)_{t \in T}$ стохастически непрерывен, если выполняется сходимость по вероятности: для любого $t \in X_s \xrightarrow{\mathsf{P}} X_t$ при $s \to t$.

Пример 9. Пусть для любого натурального n T_n — это iid случайные величины с распределением $\text{Exp}(\lambda)$, то есть их плотность равна $p(z) = \lambda e^{-\lambda z} \, \text{I}\{z \geqslant 0\}$. Дальше, $S_n = T_1 + \ldots + T_n$, а для любого $t \geqslant 0$

$$N_t = \sum_{n=1}^{\infty} I\{S_n \leqslant t\} = \#\{n \in \mathbb{N} : S_n < t\}.$$

По сути, это процесс восстановления для экспоненциального распределения. Далее мы докажем, что для него выполнено следующее свойство: для всех $0 \le s < t < +\infty$ $N_t - N_s \sim \text{Pois}(\lambda(t-s))$. Но из него сразу же получается стохастическая непрерывность:

$$\mathsf{P}(|N_t - N_s| > \varepsilon) \leqslant \mathsf{P}(|N_t - N_s| > 0) = \sum_{k=1}^{\infty} \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)} = 1 - e^{-\lambda(t-s)} \xrightarrow[s \to t]{} 0.$$

Вообще говоря, между непрерывностями случайных процессов и видами сходимостей есть прямая связь. Например, если процесс непрерывен в среднеквадратичном смысле, то он будет стохастически непрерывен.

Ранее мы показали, что непрерывность исключает независимость. Можем ли мы сказать, что стохастическая непрерывность тоже исключает независимость? Можем. Пусть $X=(X_t)_{t\in T}$ — случайный процесс такой, что для какой-то окрестности t_0 X_t независимо с X_{t_0} и X_t имеет плотность g(x). Посмотрим на вероятность отклониться на ε :

$$\mathsf{P}(|X_t - X_{t_0}| > \varepsilon) = \iint_{|x - y| > \varepsilon} g(x)g(y) \, dx \, dy.$$

Но этот интеграл не стремится к нулю при $t_0 \to t$. Тогда стохастической непрерывности нет. Впрочем, как и непрерывных траекторий.