Error estimates and Convergence order

 $E_h = |I - I_h|$: error = true integral I minus approximate integral I_h with interval width h.

$$E_h = Ch^{\alpha}$$

 α is the **convergence order**.

The theory says:

• Composite rectangle rule: $\alpha = 2$

• Composite trapezoid rule: $\alpha = 2$

• Composite Simpson rule: $\alpha = 4$

Absolute

How do I evaluate α ?

$$E_h = Ch^{\alpha}$$

$$E_{h/2} = C\left(\frac{h}{2}\right)^{\alpha}$$

Do the ratio of the two equations

$$2^{\alpha} = \frac{E_h}{E_{h/2}}$$

$$\alpha = \log_2 \frac{E_h}{E_{h/2}} = \log_2 10 \log_{10} \frac{E_h}{E_{h/2}} = \frac{\log_{10} \frac{E_h}{E_{h/2}}}{\log_{10} 2}$$

Remember: $\log_a b = \log_a c \log_c b$

Relative

What if I don't know the true analytical value of the integral I? There is another way to compute α given by

$$\alpha = \frac{\log_{10} \left| \frac{I_h - I_{h/2}}{I_{h/2} - I_{h/4}} \right|}{\log_{10} 2}$$