LES 7 GRANDEURS FONDAMENTALES

- Les symboles des grandeurs sont notés en italique, les symboles des unités sans italique.
- Les noms des unités sont des noms communs, ils s'écrivent donc toujours en minuscule.

Gran	deur	Unité SI						
Nom	Notation littérale usuelle	Nom	Symbole					
longueur	L	mètre	m					
masse	m	kilogramme	kg					
temps	t	seconde	S					
intensité du courant électrique	I	ampère	А					
température absolue	Т	kelvin	К					
quantité de matière	n	mole	mol					
intensité lumineuse	$I_{\rm t}$	candela	cd					

LES PRINCIPALES GRANDEURS USUELLES

Grandeu	1	Unité usuelle						
Nom	Notation littérale usuelle	Relation de définition	Symbole					
masse volumique	ρ	$ \rho = \frac{m}{V} $	kg·m⁻³					
densité	d	$d=rac{ ho_{ ext{liquide}}}{ ho_{ ext{eau}}}$	-					
vitesse	V	$v = \frac{L}{\Delta t}$	m·s ^{−1}					
période	Т	-	S					
fréquence	f ou ν	$f = \frac{1}{T}$	Hz (hertz)					
longueur d'onde	λ	-	m					
force	F	-	N (newton)					
poids	Р	$P = m \cdot g$	N					
intensité de la pesanteur	g	-	N·kg ^{−1}					
pression	Р	$P = \frac{F}{S}$	Pa (pascal)					
tension	U	-	V (volt)					
résistance	R	$U = R \cdot I$	Ω (ohm)					
énergie	E	-	J (joule)					
travail d'une force	$W_{\overrightarrow{AB}}(\overrightarrow{F})$	$W_{\overrightarrow{AB}}(\overrightarrow{F}) = \overrightarrow{AB} \cdot \overrightarrow{F}$	J (joule)					
puissance	Р	$P = \frac{E}{\Delta t}$	W (watt)					
masse molaire	М	$M = \frac{m}{n}$	g·mol⁻¹					
concentration en masse	γ	$\gamma = \frac{m}{V}$	g∙L ⁻¹					
concentration en quantité de matière	С	$c = \frac{n}{V}$	g·mol⁻¹					

CONSTANTES ET GRANDEURS CLASSIQUES

Constante	Valeur	Valeur approchée
vitesse de propagation de la lumière dans le vide	c = 299 792 458 m⋅s ⁻¹	$c = 3,00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
constante de gravitation	$G = 6,67408 imes 10^{-11}\mathrm{N\cdot m^2\cdot kg^{-2}}$	$G = 6,67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
charge élémentaire	e = 1,602 176 634 × 10 ⁻¹⁹ C	e = 1,60 × 10 ⁻¹⁹ C
constante d'Avogadro	$N_{\rm A} = 6,02214076 \times 10^{23}{\rm mol^{-1}}$	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
masse du proton	$m_{\rm p} = 1,672622 \times 10^{-27}{\rm kg}$	$m_{\rm p} = 1,673 \times 10^{-27} \text{ kg}$
masse du neutron	$m_{\rm n} = 1,674927\times10^{-27}{\rm kg}$	$m_{\rm n} = 1,675 \times 10^{-27} \text{ kg}$
masse de l'électron	$m_{\rm e} = 9,1093835 \times 10^{-31} \rm kg$	$m_{\rm e} = 9,109 \times 10^{-31} \rm kg$
année lumière	1 a.l. = 9,460730473 × 10 ¹⁵ m	1 a.l. = 9,46 × 10 ¹⁵ m
unité astronomique	1 ua = 1,495 978 707 × 10 ¹¹ m	1 ua = 1,50 × 10 ¹¹ m
constante de Planck	$h = 6,626\ 070\ 04 \times 10^{-34}\ \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-1}$	$h = 6.63 \times 10^{-34} \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-1}$

MULTIPLES ET SOUS-MULTIPLES

Préfixe	femto	pico	nano	micro	milli	centi	deci	-	kilo	méga	giga	téra	péta
Abréviation	f	р	n	μ	m	С	d	-	k	M	G	Т	Р
Correspondance en puissance de 10	× 10 ⁻¹⁵	× 10 ⁻¹²	× 10 ⁻⁹	× 10 ⁻⁶	× 10 ⁻³	× 10 ⁻²	× 10 ⁻¹	1	× 10³	× 10 ⁶	× 10 ⁹	× 10 ¹²	× 10 ¹⁵

[•] Pour convertir depuis un multiple ou un sous-multiple à l'unité de base, on remplace le préfixe par la puissance de 10 associée. Exemple: $E_1 = 2,6 \text{ MJ} = 2,6 \times 10^6 \text{ J}$; $f = 3,37 \times 10^{-2} \text{ THz} = 3,37 \times 10^{-2} \times 10^{12} \text{ Hz} = 3,37 \times 10^{10} \text{ Hz}$; $U_D = 3 \text{ kV} = 3 \times 10^3 \times 10^6 \text{ } \mu\text{V} = 3 \times 10^9 \text{ } \mu\text{V}$.

LETTRES GRECQUES UTILES EN PHYSIQUE-CHIMIE

Symbole	α	β	γ	Δ	δ	ε	θ	λ	μ	ν	π	ρ	Σ	σ	φ	χ	ω
Nom	alpha	bêta	gamma	Delta	delta	epsilon	thêta	lambda	mu	nu	pi	rhô	Sigma	sigma	phi	khi/ chi	oméga