

American Express-Default Prediction

Predict if a customer will default in the future

>> Table of contents

- 1 Competition Description
- **2** Exploratory Data Analysis
- **3** Generate Machine Learning Model
- 4 Insight about ML models & TODO

1

Competition Description

Part 1 >> Competition Description

American Express Business Model

Part 1 >>

Discount Revenue(60%)

: 카드 결제 수수료

American Express Business Model

revenues

Part 1 >>

Discount Revenue(60%)

66

Whether out at a restaurant or buying tickets to a concert, modern life counts on the convenience of a credit card to make daily purchases. It saves us from carrying large amounts of cash and also can advance a full purchase that can be paid over time. How do card issuers know we'll pay back what we charge? That's a complex problem with many existing solutions—and even more potential improvements, to be explored in this competition.

"

Cardholder

Merchants

Part 1 >>

Discount Revenue(60%) : 카드 결제 수수료

66

American Express Business Model

revenues

How do card issuers know we'll pay back what we charge?

Cardholders

Merchants

"

Exploratory Data Analysis

Part 2 >> Exploratory Data Analysis

train_data.csv(16.39 GB), test_data.csv(33.82 GB)

industrial scale data set (50.31 GB)

Reduce data size

EDA
Exploratory Data Analysis

- Change Data types
- File format : csv → parquet
- save → Multiple Files or Not

Part 2 >> Exploratory Data Analysis_ How to reduce Data size?

File Format

- 압축률과 저장순서, dtype 기억 여부 고려
- csv:행별저장 parquet:열별저장
- feather, parquet, pickle: 데이터를 압축
- csv:dtype기억× parquet:dtype기억 o

Reduce dtypes

- column 'customer_ID'
- column 'S_2'
 - $\cdot \, \mathsf{pd.to_datetime()}$
 - \cdot 10 \rightarrow 4byte

>>

- categorical column (11) :int8로 변환 [8→1byte]
- numerical column (171)
 :float64 → float32

File Saving type

Multiple Files or

Not

>>

Remove Noise

Features

>>

- integers
- random noise injected
- float32(4byte)
 - \rightarrow int8(1byte)

Verification_Missing Value

Verification_Missing Value

66

Verification_Missing Value for 1000 customers

We have 735 no-target customers and 265 target

(target=1)

향후 채무 불이행 가능성 : 기본 25%

plt.title("Class distribution", fontsize=16)

plt.xlabel("count", fontsize=14)

결측치가 매우 많음. 처리 필요

→ 결측치 비율이 특정 임계값 넘어서면 해당 column제거

265명(25%)

"

66

Verification_Missing Value for 1000 customers

```
# Removing Columns With NaNs Rate Higher Than Threshold
nan_pct_threshold = 80
to_remove_cols = list(nan_values_pct[nan_values_pct > nan_pct_threshold].index)
print(f"Columns With NaN Values Rate > {nan_pct_threshold}%: {len(to_remove_cols)} Columns")
train_data = train_data.drop(columns=to_remove_cols).reset_index(drop=True)
```

Columns With NaN Values Rate > 80%: 23 Columns

Part 2 >> Exploratory Data Analysis_ Statistical Values

Verification_Statistical value (count,mean,std,min,max,4분위값)_target '0'

```
ex_customer_data[ex_customer_data["target"] == 0][b_cols[:10]].describe()
```

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8
count	9032.000000	9032.000000	9032.000000	9032.000000	9032.000000	9032.000000	9032.000000	8.989000e+03
mean	0.081276	0.719796	0.081671	0.130928	0.097953	0.161655	0.133657	3.310980e-01
std	0.156970	0.355266	0.181874	0.182206	0.331847	0.319970	0.192023	4.688353e-01
min	-0.141469	0.000184	0.000003	0.000017	0.000007	-0.000552	-0.096913	2.764867e-07
25%	0.007554	0.620152	0.004455	0.019144	0.007463	0.037204	0.024911	3.603379e-03
50%	0.021453	0.817121	0.008435	0.055663	0.017671	0.140455	0.045870	7.330273e-03
75%	0.061725	1.003689	0.041836	0.161069	0.072235	0.199933	0.156390	1.002241e+00
max	1.320823	1.009999	1.171260	1.283849	12.974426	20.331217	1.252293	1.010181e+00
4								•

Part 2 >> Exploratory Data Analysis_ Statistical Values

Verification_Statistical value (count,mean,std,min,max,4분위값)_target '1'

```
ex_customer_data[ex_customer_data["target"] == 1][b_cols[:10]].describe()
```

3030.000000 0.257518	3030.000000	3030.000000					
0.257518			3030.000000	3030.000000	3030.000000	3030.000000	3022.000000
0.237310	0.299894	0.298945	0.328520	0.031458	0.043737	0.355820	0.734537
0.279484	0.375638	0.300259	0.296676	0.084002	0.085808	0.252973	0.444182
-0.046796	0.000034	0.000085	0.000082	0.000006	-0.002122	0.000510	0.000006
0.054462	0.028687	0.036761	0.120258	0.007023	0.009662	0.159904	0.009335
0.136546	0.066485	0.220646	0.251262	0.011993	0.017531	0.309124	1.003016
0.378923	0.810611	0.455126	0.450153	0.023515	0.038585	0.510301	1.006530
1.323411	1.009960	1.258546	2.187350	2.188328	1.926984	1.252394	1.010065
(-0.046796 0.054462 0.136546 0.378923	-0.046796 0.000034 0.054462 0.028687 0.136546 0.066485 0.378923 0.810611	-0.046796 0.000034 0.000085 0.054462 0.028687 0.036761 0.136546 0.066485 0.220646 0.378923 0.810611 0.455126	-0.046796 0.000034 0.000085 0.000082 0.054462 0.028687 0.036761 0.120258 0.136546 0.066485 0.220646 0.251262 0.378923 0.810611 0.455126 0.450153	-0.046796 0.000034 0.000085 0.000082 0.000006 0.054462 0.028687 0.036761 0.120258 0.007023 0.136546 0.066485 0.220646 0.251262 0.011993 0.378923 0.810611 0.455126 0.450153 0.023515	-0.046796 0.000034 0.000085 0.000082 0.000006 -0.002122 0.054462 0.028687 0.036761 0.120258 0.007023 0.009662 0.136546 0.066485 0.220646 0.251262 0.011993 0.017531 0.378923 0.810611 0.455126 0.450153 0.023515 0.038585	-0.046796 0.000034 0.000085 0.000082 0.000006 -0.002122 0.000510 0.054462 0.028687 0.036761 0.120258 0.007023 0.009662 0.159904 0.136546 0.066485 0.220646 0.251262 0.011993 0.017531 0.309124 0.378923 0.810611 0.455126 0.450153 0.023515 0.038585 0.510301

Part 2 >> Exploratory Data Analysis_Correlation

Verification_Correlation between variables(heatmap)

insight

Feature 상관관계 파악필요 → Heatmap이용해 시각화

상관관계가 뚜렷하지 않음

일부 색이 진한 점들은 다시 결과값 unstack해야 함

Part 2 >> Exploratory Data Analysis_ Statistical Values

Verification_Correlation between Unstacked Variables

```
In [38]:
    unstacked = correlations.unstack()
    unstacked = unstacked.sort_values(ascending=False, kind="quicksort").drop_duplicates().hea
    d(25)
    unstacked
```

```
P_2 P_2
              1.000000
D_103 D_104
              0.999779
D_77 D_62
              0.999774
D_139 D_143
              0.999629
      D_141
              0.998261
D_143 D_141
              0.997794
B_11 B_1
              0.995475
B_23 B_7
              0.995041
D_119 D_118
              0.994861
B_1 B_37
              0.993209
     B_11
              0.988153
D_75 D_74
              0.987574
D_137 D_135
              0.983981
S_22 S_24
              0.978798
D_58 D_75
              0.925743
      D_74
              0.922671
D_138 D_137
              0.918552
B_14 B_15
              0.913476
B_33 B_2
              0.912731
D_135 D_138
              0.908674
D_137 D_136
              0.907234
     S_3
              0.903646
D_135 D_136
              0.903043
B_42 D_76
              0.888606
B_20 B_16
              0.888382
dtype: float64
```

Part 2 >> Exploratory Data Analysis_ Statistical Values

3

Generate Machine Learning Model

1 Random Forest

2 XGBoost

S LightGBM

4 CatBoost

ensemble⊃bagging⊃RF

- subsample에 대해 다수의 결정 트리 classifier를 최적화
- 여러 추론 결과 평균
 → 예측 정확도를 개선
 → 과적합방지
- hyperparameter xgbm보다 적음

Ensemble ⊃ boosting ⊃ GBM ⊃ XGBoost, LightGBM

- 트리기반 앙상블 균형트리분할방식
- 병렬학습이 가능 → GBM의 단점인 오랜 수행시간을 극복
- 예측 성능 우수
- 가지치기 기능 존재 조기중단 기능 존재

- 트리기반 앙상블 리프중심트리분할방식
- XGBoost보다 더 빠르고 메모리 사용량 적음
- 예측 성능 우수
- 10000건 이하의 dataset 처리시 과적합 가능성↑

- Categorical Boosting 범주형 feature 처리중점
- Gradient Boosting 기반
 XGB, LGBM보다 우수
- Feature 자동 타깃인코딩
- 망각 결정 트리 사용 (oblivious decision tree)

Part 3 >> Generate Machine Learning Model_Random Forest

No.	내용요약	소요시간	parameters	scores	
1	Base RandomForest model	1058.8s - GPU	n_estimators=400, max_features='sqrt', bootstrap=True(default), max_depth=30,	score: 0.729	
2		477.1s - CPU	min_samples_leaf=1(default), min_samples_split=5, n_jobs=-1		
3	change n_estimators (v1)	290.8s - CPU	n_estimators → 200	score: 0.727 / ↓	
4		437.6s - CPU	n_estimators → 500	-	
5	change max_depth (v2)	547.8s - CPU	max_depth → 100	score: 0.728 / ↓	
6		538.3s - CPU	max_depth → 40	score: 0.729 / -	
7		535.3s - CPU	max_depth → 50	score: 0.729 / -	
8		244.6s - CPU	max_depth → 10	-	
9		-	max_depth → 20	-	
10	add random_state (v3)	383.9s - CPU	random_state = 77	-	
11	change min_samples_leaf (v4)	-	min_samples_leaf →	-	

No.	내용요약	소요시간	parameters	scores		
1	basic XGB model	190.8s(GPU)	(n_estimators : default 100, early_stopping_rounds=100, learning_rate=0.05)			
2	add n_estimators	186.6s(GPU)	n_estimators=110			
3		176.8s(GPU)	n_estimators=120			
4		190.4s(GPU)	n_estimators=130	변동없음		
5		191.8s(GPU)	n_estimators=140			
6		196.2s(GPU)	n_estimators=150			
7		183.4s - GPU	n_estimators=200			
8	change early_stopping option	192.0s - GPU	n_estimators=200, early_stopping_rounds=150			
9	change n_estimators	201.1s - GPU	n_estimators=300, early_stopping_rounds=150			
10	change learning_rate option	179.0s - GPU	n_estimators=200, learning_rate=0.1, early_stopping_rounds=100			
11		246.3s - GPU	n_estimators=200, learning_rate=0.2, early_stopping_rounds=100			

Insight about ML models & TODO

Part 4 >> Insight about ML models & TODO

