

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

integers.	lue of x for whi	CII 3(2) = 7	. Give your	answer in the	$\frac{101111}{\ln b}$, where a ar	iu <i>b</i>
							•••••
				•••••		•••••	
							•••••
							•••••
							•••••
				••••••		•••••	•••••
							•••••
	•••••	•••••		•••••		•••••	•••••
••••••	•••••			••••••	••••••	•••••	•••••
•••••				••••••	•••••	••••••	•••••
•••••				••••••	•••••	••••••	•••••
••••••			••••••••••	•••••	•••••	•••••	•••••
							•••••

									•••••
•••••		•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••		•••••	•••••
•••••		••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••		••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	•••••
									•••••
••••••	•	••••••	••••••	•	• • • • • • • • • • • • • • • • • • • •	••••••	•	••••••	•••••
									•••••
••••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	•••••
•••••						•••••		••••••	•••••
									•••••
••••••	•	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••								•••••
••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	•••••

(••)	Given the complex numbers $u = a + ib$ and $w = c + id$, where a , b , c and d are real, prove $(u + w)^* = u^* + w^*$.
(b)	Solve the equation $(z + 2 + i)^* + (2 + i)z = 0$, giving your answer in the form $x + iy$ where x y are real.

Express $\frac{4x^2 - 13x + 13}{(2x - 1)(x - 3)}$ in partial fractions.	

5	(a)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z - 3 - 2i \le 1$ and $\text{Im } z \ge 2$. [4]
	(b)	Find the greatest value of $\arg z$ for points in the shaded region, giving your answer in degrees. [3]
	(b)	
	(b)	[3]
	(b)	[3]
	(b)	
	(b)	[3]
	(b)	
	(b)	
	(b)	

6	(a)	Using the expansions of $\sin(3x + 2x)$ and $\sin(3x - 2x)$, show that								
		$\frac{1}{2}(\sin 5x + \sin x) \equiv \sin 3x \cos 2x.$	[3]							
			•••••							
			•••••							
			•••••							
			•••••							
			••••••							
			•••••							
			••••••							
			•••••							
			•••••							
			••••••							

Hence show that $\int_0^{\frac{1}{4}\pi} \sin 3x \cos 2x dx = \frac{1}{5}(3 - \sqrt{2}).$	

7	The	variables 3	x and	y satisfy	the	differential	equation

$$e^{2x}\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy^2,$$

and it is given that y = 1 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [7]

[3]		$\theta \equiv 1 - \frac{1}{2}\sin^2 2\theta$	$\cos^{1}\theta + \sin^{2}\theta$		
			•••••		
	••••••	••••••	••••••	••••••	•••••
			•••••	•••••	
		•••••	•••••••••••	••••••	•••••
			••••••		
				•••••	
		•••••	••••••	••••••	••••••
				•••••	•••••
		•••••	••••••	••••••	••••••
				•••••	

	13
(b)	Hence solve the equation $\cos^4 \theta + \sin^4 \theta = \frac{5}{9},$
	$\cos \theta + \sin \theta - \frac{1}{9}$, for $0^{\circ} < \theta < 180^{\circ}$.

(a)	Show that $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$.	

10	With \overrightarrow{OB}	th respect to the origin O , the position vectors of the points A and B are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $= \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.
	(a)	Find a vector equation for the line l through A and B . [3]
	(b)	The point C lies on l and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$.
		Find the position vector of C . [2]

Find the possible position vectors of the point P on l such that $OP = \sqrt{14}$.	
	•••••
	••••••

11 The equation of a curve is $y = \sqrt{\tan x}$, for $0 \le x < \frac{1}{2}\pi$.

(a)	Express $\frac{dy}{dx}$ in terms of $\tan x$,	and verify that $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$.	[4]
-----	--	---	-----

.....

The value of $\frac{dy}{dx}$ is also 1 at another point on the curve where x = a, as shown in the diagram.

(b) Show that
$$t^3 + t^2 + 3t - 1 = 0$$
, where $t = \tan a$. [4]

(c)	Use the iterative formula
(C)	
	$a_{n+1} = \tan^{-1} \left(\frac{1}{3} (1 - \tan^2 a_n - \tan^3 a_n) \right)$
	to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
	[3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.