Tutorial de instalación y configuración para el proyecto ML

Visual Studio + Anaconda

Requisitos mínimos para Anaconda

- Procesador: Un procesador de 64 bits de doble núcleo a 1.6 GHz o superior.
- Memoria RAM: 8 GB de RAM (se recomiendan 16 GB o más para proyectos grandes).
- **Almacenamiento**: 20 GB de espacio libre en disco (se recomiendan 50 GB o más si vas a trabajar con conjuntos de datos grandes).
- **Sistema operativo**: Windows 10 u 11 (64 bits), macOS 10.15 o posterior, o una distribución de Linux compatible.

Recomendaciones adicionales

- Procesador: Se recomienda un procesador de cuatro núcleos o más para un rendimiento óptimo, especialmente si vas a trabajar con modelos de Machine Learning complejos.
- Memoria RAM: Si vas a trabajar con conjuntos de datos grandes o modelos que requieren mucha memoria, 16 GB de RAM o más son esenciales.
- Almacenamiento: Un disco de estado sólido (SSD) puede mejorar significativamente los tiempos de carga y procesamiento de datos en comparación con un disco duro tradicional (HDD).
- Tarjeta gráfica (GPU): Si vas a trabajar con Deep Learning, una tarjeta gráfica dedicada con soporte para CUDA (NVIDIA) o ROCm (AMD) puede acelerar el entrenamiento de modelos.

Consideraciones adicionales

- Uso de entornos virtuales: Es altamente recomendable utilizar entornos virtuales en Anaconda para aislar las dependencias de cada proyecto y evitar conflictos entre librerías.
- Actualización de paquetes: Mantén tus paquetes de Anaconda actualizados para asegurar el mejor rendimiento y compatibilidad.
- Optimización del código: Escribe código eficiente y optimizado para evitar el uso innecesario de recursos.

En resumen

Si tu computadora cumple con los requisitos mínimos y sigues las recomendaciones adicionales, Anaconda debería funcionar de manera fluida para la mayoría de los proyectos de Machine Learning. Sin embargo, si vas a trabajar con proyectos muy grandes o complejos, es posible que necesites un equipo más potente.

Para trabajar proyectos de Machine Learning en Python usando Visual Studio Code (VS Code), te recomiendo las siguientes configuraciones y extensiones:

1. Descarga e instalación de Anaconda

- Ve al sitio web de Anaconda: https://docs.anaconda.com/anacondaorg/
- Elige la versión de Anaconda que corresponda a tu sistema operativo (Windows, macOS o Linux).
- Descarga el instalador.
- Ejecuta el instalador descargado.
- Sigue las instrucciones en pantalla. Generalmente, deberás aceptar los términos de licencia y elegir la ubicación de instalación.
- Importante: Durante la instalación, asegúrate de marcar la opción para añadir Anaconda a tu variable de entorno PATH. Esto te permitirá ejecutar comandos de Anaconda desde la línea de comandos.

Para computadores con menores recursos (menos de 8GB de RAM) usar **Miniconda** en vez de Anaconda.

Qué es Miniconda?

Miniconda es un instalador mínimo de Conda. A diferencia de Anaconda, que instala una gran cantidad de paquetes predefinidos, Miniconda solo instala Conda, Python y las dependencias básicas. Esto lo hace más ligero y rápido de instalar, ideal si solo necesitas Conda para gestionar tus entornos y paquetes.

Pasos para instalar Miniconda en Windows

1. Descarga Miniconda:

- Ve al sitio web de Miniconda: https://docs.com/en/latest/miniconda.html
- Elige la versión de Miniconda que corresponda a tu sistema operativo (Windows)
 y a la versión de Python que desees (por ejemplo, Python 3.9).

o Descarga el instalador.

2. Ejecuta el instalador:

- Ejecuta el archivo instalador descargado.
- Sigue las instrucciones en pantalla. Generalmente, deberás aceptar los términos de licencia y elegir la ubicación de instalación.
- Importante: Durante la instalación, asegúrate de marcar la opción para añadir Miniconda a tu variable de entorno PATH. Esto te permitirá ejecutar comandos de Conda desde la línea de comandos.

3. Verifica la instalación:

- Abre una nueva ventana de línea de comandos (símbolo del sistema o PowerShell).
- Escribe el siguiente comando y presiona Enter:

Bash conda --version

4.

o Si Miniconda se instaló correctamente, mostrará la versión de Conda.

Ventajas de usar Miniconda

- Ligero: La instalación es más pequeña y rápida que Anaconda.
- Personalizable: Solo instalas los paquetes que necesitas.
- Control: Tienes más control sobre tu entorno.

Desventajas de usar Miniconda

- **Menos paquetes preinstalados:** Tendrás que instalar manualmente las librerías que necesites (NumPy, pandas, scikit-learn, etc.).
- Requiere más configuración: Puede requerir un poco más de configuración inicial.

En resumen

Si prefieres tener un control más preciso sobre los paquetes que instalas y no necesitas la gran cantidad de librerías que vienen con Anaconda, Miniconda es una excelente opción. Te permite tener Conda y Python en tu sistema de manera más ligera y personalizada.

2. Verificación de la instalación

• Abre una nueva ventana de línea de comandos (terminal en macOS o Linux).

• Escribe el siguiente comando y presiona Enter:

Bash conda --version

• Si Anaconda se instaló correctamente, mostrará la versión de conda.

3. Instalación de Python (si no se instaló con Anaconda)

 Si por alguna razón no tienes Python instalado, puedes descargarlo desde https://www.python.org/

Versiones de python recomendadas: 3.9 en adelante.

Por qué elegir Python 3.13.2 para Machine Learning?

- **Estabilidad:** Es una versión estable, lo que significa que ha sido probada y corregida para minimizar errores y asegurar un funcionamiento confiable.
- **Soporte:** Cuenta con soporte completo de la comunidad de Python y de las principales librerías de Machine Learning.
- **Actualizaciones:** Incluye mejoras de rendimiento, seguridad y nuevas características que pueden ser útiles para tus proyectos.
- Compatibilidad: Es compatible con la mayoría de las librerías y herramientas de Machine Learning más populares, como TensorFlow, PyTorch, scikit-learn, pandas y NumPy.

¿Dónde descargar Python 3.13.2?

Puedes descargar la versión 3.13.2 de Python desde el sitio web oficial:

https://www.python.org/downloads/

4. Instalación de Visual Studio Code

Descarga e instala VS Code desde https://code.visualstudio.com/

5. Extensiones esenciales

- Python (Microsoft): Esta extensión proporciona soporte completo para Python en VS Code, incluyendo IntelliSense, depuración, formateo de código, etc.
- **Pylance (Microsoft)**: Esta extensión mejora el rendimiento y la precisión de IntelliSense para Python.
- Jupyter (Microsoft): Esta extensión permite trabajar con notebooks de Jupyter (.ipynb) dentro de VS Code.
 - Para instalar estas extensiones, abre VS Code, ve a la pestaña de extensiones (Ctrl+Shift+X) y busca cada una por su nombre.

6. Configuración del entorno virtual (recomendado)

- Es altamente recomendable crear un entorno virtual para cada proyecto de Machine Learning. Esto aísla las dependencias del proyecto y evita conflictos entre librerías.
- Puedes crear un entorno virtual usando venv (incorporado en Python 3) o conda.

venv:

Bash

python3 -m venv .venv # Crea el entorno virtual source .venv/bin/activate # Activa el entorno virtual (Linux/macOS) .venv\Scripts\activate # Activa el entorno virtual (Windows)

0

conda:

Bash

conda create --name mi_entorno python=3.9 # Crea el entorno virtual conda activate mi_entorno # Activa el entorno virtual

0

Dentro del entorno virtual activado, instala las librerías necesarias:

Bash

pip install numpy pandas matplotlib scikit-learn tensorflow # Librerías básicas

•

7. Configuración de VS Code

- Abre la configuración de VS Code (Archivo > Preferencias > Configuración o Ctrl+,).
- Busca las siguientes opciones y configúralas según tus preferencias:
 - "python.defaultInterpreterPath": Ruta al intérprete de Python dentro de tu entorno virtual.
 - "python.formatting.provider": Elige un formateador de código (e.g., autopep8, yapf).
 - o "editor.format0nSave": Formatea el código al guardar el archivo.
 - o "files.autoSave": Guarda automáticamente los archivos.

8. Uso de VS Code para Machine Learning

- Abre la carpeta de tu proyecto en VS Code.
- Crea un nuevo archivo Python (.py) o un notebook de Jupyter (.ipynb).
- Escribe tu código de Machine Learning utilizando las librerías instaladas.
- Ejecuta el código directamente en VS Code o en el notebook de Jupyter.
- Utiliza las herramientas de depuración de VS Code para identificar y corregir errores.

Consejos adicionales

- Explora las extensiones: Hay muchas otras extensiones útiles para VS Code, como GitLens para trabajar con Git, o Bracket Pair Colorizer para resaltar los paréntesis en el código.
- Aprende los atajos de teclado: Los atajos de teclado te ayudarán a ser más productivo en VS Code.
- Personaliza la apariencia: Puedes personalizar la apariencia de VS Code con temas y configuraciones de color.