

Figure 1: MDP problem with (action, reward) pairs.

episode length 3

$$[1a]$$
 i) $[5]$ = -
 $[4]$ $[5]$ $[$

$$V_{\overline{q}} = \frac{1}{7} \left(20 + 10r + 5r^2 \right)$$

$$N = \begin{cases} r^2/6 \\ 0 \\ 0 \\ r^25 \end{cases}$$

$$V_7 = \frac{21}{4} p^2$$

Optimal policy is (-) when $\sigma = 0.001$

(S₁₃) = -

$$N = \begin{cases} 0 \\ rS \\ 0 \end{cases}$$

$$V_{\overline{q}} = \frac{1}{7} (10r + 5r)$$

$$U = \begin{cases} 0 \\ 0 \\ 16 \end{cases}$$

$$V_{\overline{\eta}} = g_{\overline{\gamma}}$$

$$\sqrt{q_{11}} - \sqrt{q_{12}} = \frac{5}{2}r + \frac{5}{4}r^{2} - 8r$$

$$= \frac{5}{4}r(r - \frac{22}{5}) < 0$$
when $r \in (91)$

.: Optimel policy is always (+)