Introducción a Destilación Multicomponente

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

13 de Abril de 2021

Contenidos

- Objetivos de la Clase
- Introducción al diseño de un destilador multicomponente
 - Definición de Parámetros Claves
 - Número de Platos Mínimos
 - Relación de Reflujo Mínimo
 - Corrección de Gilliland

Objetivos de la Clase

- Entender los conceptos de compuestos clave
- Comprender la importancia del método aproximado de resolución de un sistema multicomponente
- Conocer la lógica detrás de los software comerciales para el diseño de una torre de destilación

¿Qué son los tipos de compuestos en una destilación?

En una destilación multicomponentes es importante poder distinguir los siguientes tipos de compuestos:

- Compuestos Claves: Son los compuestos que nos interesa en el destilado y en producto de cola
- Compuestos No Claves: Son los compuestos que están presente en la alimentación, pero que presentan diferentes puntos de ebullición que nos compuestos claves

¿Qué son los tipos de compuestos en una destilación?

En una destilación cualquiera de una solución de 5 componentes (A, B, C, D, E) en donde A es el compuesto más volátil y E es el menos volátil. Y donde se desea obtener un destilado de B de un 95% y un 2% de D. Podemos clasificar los compuestos de la siguiente manera:

Recordatorio de Concepto de Nro. Platos Mínimos

Si nos centramos en los compuestos claves (LK y HK) y tenemos en cuenta que hay reflujo total (D = 0 y L/V = 1) y asumiendo una mezcla ideal

Ecuación de equilibrio

$$\alpha_{LK-HK} = \frac{y_{LK}/x_{LK}}{y_{HK}/x_{HK}}$$

Línea de Operación

$$y_{i,n+1} = \frac{L_n}{V_{n+1}} x_{i,n} + \frac{D}{V_{n+1}} x_D$$

 $y_{i,n+1} = x_{i,n}$

Recordatorio de Concepto de Nro. Platos Mínimos

Entonces, en el plato n +1

$$\frac{y_{LK,n+1}}{y_{HK,n+1}} = \alpha_{LK-HK} \frac{x_{LK,n+1}}{x_{HK,n+1}}$$

$$\frac{x_{LK,n}}{x_{HK,n}} = \alpha_{LK-HK} \frac{x_{LK,n+1}}{x_{HK,n+1}}$$

Resolviendo el sistema de n + 1 platos, tenemos que:

$$\frac{x_{LK,D}}{x_{HK,D}} = (\alpha_{LK-HK})^{N_{min}+1} \frac{x_{LK,B}}{x_{HK,B}}$$

$$N_{min} = \frac{\ln[(x_{LK,D}/x_{LK,B})/(x_{HK,D}/x_{HK,B})]}{\ln \alpha_{LK-HK}} - 1$$

Ecuación de Fenske

Recordatorio de Concepto de Nro. Platos Mínimos

Resolviendo el sistema de n + 1 platos, tenemos que:

$$\frac{x_{LK,D}}{x_{HK,D}} = (\alpha_{LK-HK})^{N_{min}+1} \frac{x_{LK,B}}{x_{HK,B}}$$

$$N_{min} = \frac{\ln[(x_{LK,D}/x_{LK,B})/(x_{HK,D}/x_{HK,B})]}{\ln \alpha_{LK-HK}} - 1$$

Pero, se puede ajustar de mejor manera el valor de la volatilidad considerando la temperatura de la alimentación, la zona superior y la zona inferior:

$$N_{min} = \frac{\ln[(x_{LK,D}/x_{LK,B})/(x_{HK,D}/x_{HK,B})]}{\ln \bar{\alpha}_{LK-HK}} - 1$$

$$\bar{\alpha}_{LK-HK} = \sqrt[3]{\alpha_{D,LK-HK}\alpha_{F,LK-HK}\alpha_{,LK-HK}}$$

Recordatorio de Concepto de Reflujo Mínimo

En el mismo sistema anterior, para determinar el Reflujo Mínimo se puede obtener utilizando las ecuaciones de balance y considerando que si se opera en reflujo mínimo existen zonas invariantes (zonas sin cambios de concentración)

El balance en la zona superior:

$$V_{n+1} \, y_{i,n+1} = L_n x_{i,n} + D x_D$$

Pero
$$x_{i,n} = y_{i,n}/K_i$$

$$V_{n+1} y_{i,n+1} = \frac{L_n y_{i,n}}{K_i} + D x_D$$

Y como existe reflujo mínimo

$$V_{\infty}y_{i,\infty} = \frac{L_{\infty}y_{i,\infty}}{K_{i,\infty}} + Dx_D$$

Recordatorio de Concepto de Reflujo Mínimo

En la zona superior con reflujo mínimo

$$V_{\infty}y_{i,\infty} = \frac{L_{\infty}y_{i,\infty}}{K_{i,\infty}} + Dx_{i,D}$$

$$y_{i,\infty} = \frac{D}{V_{\infty}} \left(\frac{x_{i,D}}{1 - L_{\infty} / (V_{\infty} K_{i,\infty})} \right)$$

Considerando todos los compuestos, tenemos que:

$$\sum y_{i,\infty} = 1.0 = \frac{D}{V_{\infty}} \sum \left(\frac{x_{i,D}}{1 - L_{\infty} / (V_{\infty} K_{i,\infty})} \right)$$

De manera análoga:

$$\sum y_{i,\infty} = 1.0 = \frac{B}{\overline{V}_{\infty}} \sum \left(\frac{x_{i,B}}{\overline{L}_{\infty}/(\overline{V}_{\infty}\overline{K}_{i,\infty}) - 1} \right)$$

Aproximación al Reflujo Mínimo – Ecuación de Underwood

Alternativamente al sistema de ecuaciones anterior para estimar el reflujo mínimo, Underwood en 1948 desarrolló un método para estimar este reflujo mínimo asumiendo que:

- La volatilidad relativa para cada componente es la misma en las zonas invariantes
- El flujo molar es constante
- En la metodología se utiliza el término $\alpha_{o,i} = K_i/K_{ref}$ donde la referencia en general se utiliza el compuesto clave pesado (HK)

$$1 - q = \sum \frac{\alpha_{o,i} x_{Fi}}{\alpha_{o,i} - \phi}$$

El valor de ϕ se utiliza para obtener V_{min}/D

$$\frac{V_{min}}{D} = R_{D,min} + 1 = \sum \frac{\alpha_{o,i} x_{Di}}{\alpha_{o,i} - \phi}$$

Estimación de Platos de Destilación

Gilliland y Erbar y Maddox desarrollaron correlaciones para poder estimar el número de platos de un sistema considerando que las volatilidades relativas son casi constantes.

Correlación de Erbar-Maddox

Conceptos Revisados en la Clase

- Entender los conceptos de compuestos clave
- Comprender la importancia del método aproximado de resolución de un sistema multicomponente
- Conocer la lógica detrás de los software comerciales para el diseño de una torre de destilación

Introducción a Destilación Multicomponente

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

13 de Abril de 2021

