we must initialize the table

Collision Resolution: Open Addressing


```
Algorithm get(k)
Input: Key k
Output: Record with key k, or
        null if no record has key k
705 (h(K)
 while (T[pos] = NULL) and (T[pos]getkeyl) = K) do }
          pos ← (pos+1) mod M
    T [pas]=null they return null
 else return T [pos]
```

Linear probing:

h(k), $(h(k)+1) \mod M$, $(h(k) + 2) \mod M$, $((h(k) + 3) \mod M$...

Linear Probing and Double Hashing

h(k) = k mod 11
Records to store in the table
$(3,d_1)$ $(14,d_2)$ $(25,d_3)$ $(5,d_4)$ $(28,d_5)$ $(91,d_6)$

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Secondary hash function:

$$h'(k) = q - (k \mod q)$$

for some prime value q
 $h'(k) = 7 - (k \mod 7)$

Linear probing:

$$h(k)$$
, $(h(k)+1) \mod M$, $(h(k) + 2) \mod M$, $((h(k) + 3) \mod M ...$

Double hashing:

$$h(k)$$
, $(h(k)+h'(k))$ mod M, $(h(k) + 2h'(k))$ mod M, $((h(k) + 3h'(k))$ mod M ...

Double Hashing and Size of the Table

$$h(k) = k \mod 8$$

Records to store in the table

Secondary hash function:

$$h'(k) = q - (k \mod q)$$

for some prime value q

$$h'(k) = 7 - (k \mod 7)$$

Double hashing:

h(k), (h(k)+h'(k)) mod M, (h(k) + 2h'(k)) mod M, ((h(k) + 3h'(k)) mod M ...

The size of the hash table must be a prime number.

Open Addressing: put Method (linear probing)

```
Algorithm put (k,data, M)
In: record (k,data) to insert, size M of hash table
Out: {add record (k,data) to table, or ERROR if insertion not allowed}
pos \leftarrow h(k)
count \leftarrow 0
while (T[pos] != NULL) and (T[pos] != DELETED) do {
  if T[pos].getKey() = k then ERROR
  pos \leftarrow (pos + 1) \mod M
  count \leftarrow count + 1
  if count = Mthen ERROR
T[pos] \leftarrow (k, data)
```

Open Addressing: put Method (double hashing)

```
Algorithm put (k,data, M)
In: record (k,data) to insert, size N of hash table
Out: {add record (k,data) to table, or ERROR if insertion not allowed}
pos \leftarrow h(k)
count \leftarrow 0
while (T[pos] != NULL) and (T[pos] != DELETED) do {
  if T[pos].getKey() = k then ERROR
  pos \leftarrow (pos + h'(k)) mod M
  count \leftarrow count + 1
  if count = Mthen ERROR
T[pos] \leftarrow (k, data)
```

Average Time Complexity of get Operation

Separate chaining Linear Probing Double Hashing Average number of key comparisons

$$1 + \alpha$$

 $\frac{1}{2} + \frac{1}{(2(1 - \alpha)^2)}$
 $\frac{1}{(1 - \alpha)}$