

Getting Started with MATLAB

By Garmit Pant

Hi I'm Garmit Pant

Final Year Undergraduate at IIITD Incoming EDG Associate at MathWorks EDG Intern at MathWorks, 2022 Chairperson of IEEE-IIITD Student Branch, 2022

in @garmitpant

Why MATLAB?

Designed for Engineering Tasks

MATLAB is a computing platform that is specifically made for engineering and scientific applications.

Toolboxes have you covered

MATLAB offers professionally developed Toolboxes for various engineering and scientific domains that offer great usability.

Great Documentation. Greater Support.

MATLAB has a very meticulously documented code base. MATLAB also offers dedicated professional support and has an active, supportive community.

```
s.FaceLighting = 'gouraud';
s.AmbientStrength = 0.3;
s.DiffuseStrength = 0.6;
s.BackFaceLighting = 'lit';
s.SpecularStrength = 1;
s.SpecularColorReflectance = 1;
s.SpecularExponent = 7;
    140
    120
    100
     80
     60
     40
     20
     -20
     -40
    200
         150
```


Search through the

Write and execute MATLAB commands. It also shows command line output.

Documentation

doc function_name

Opens the documentation for the given function.

help function_name

Displays abbreviated version of documentation in Command Window.

Command Window

>> help sum

sum Sum of elements.

S = sum(X) is the sum of the elements of the vector X. If X is a matrix, S is a row vector with the sum over each column. For N-D arrays, sum(X) operates along the first non-singleton dimension.

S = sum(X, "all") sums all elements of X.

S = sum(X,DIM) sums along the dimension DIM.

S = sum(X, VECDIM) operates on the dimensions specified in the vector VECDIM. For example, $sum(X, [1\ 2])$ operates on the elements contained in the first and second dimensions of X.

Pro Tip:

Click on the 'fx' symbol to search for the function you need.

Variables

Dynamically Typed Language

Data type is associated with value, not the variable name

```
%double
var1 = 1;
var3 = 'Hello World!'; %char array
                     %displays the contents of the workspace
whos
         Size
                     Bytes Class
                                  Attributes
 Name
         1x1
                        8 double
 var1
         1x1
                        8 double
 var2
         1x12
                       24 char
 var3
```

Array and Matrices

Output

NOTE:

In MATLAB, arrays are indexed from 1!

Loops and Conditionals

Just the way you know them

Loops and Conditional statements are similar to other languages. Close the loops and if-elses with "end".

While loops also exist in MATLAB and work similarly to while loops in other languages.

```
A = randi(10,1,20);
%for loop
for i = 1:length(A)
    %if statement
    if A(i)==3
        disp('For');
    end
end
```

Functions

- Defined as separate .m scripts or at the end of live scripts.
- You can define multiple local functions within a function file, but only the primary function can be used by other scripts.

Function arguments

Return variable

Importing Data

- Using Import Tool. Handles many steps.
- Using readtable function

Changing Tables

Adding a column based on entries in another column

```
data.Is_Employed = double(data.DAYS_EMPLOYED < 0);</pre>
```

```
Rearranging rows

data = sortrows(data, 'AMT_INCOME_TOTAL', 'descend');

data = movevars(data, 'AMT_INCOME_TOTAL', 'After', 'CODE_GENDER');
```

Plotting

Plot away!

MATLAB offers various plotting options like line plots, scatterplots, histograms, bar graphs, heatmaps etc.


```
h = histogram(data.CODE_GENDER)
xlabel('Gender');
ylabel('Count');
title('Histogram of frequency of each gender in the subset.');
counts = h.Values;
fprintf('Number of females = %4.2f and number of men = %4.2f', counts(1), counts(2));
```

Plotting

h3 = histogram(data.0CCUPATION_TYPE, "Orientation", "horizontal", "DisplayOrder", "ascend")

Access the codes used in the slides here:

OR

https://github.com/GarmitPant/MATLAB-Session