ПОНЯТИЕ ЗА СОФТУЕРНА АРХИТЕКТУРА

Какво е Софтуерна Архитектура (СА)

- Обикновено СА се създава като първа стъпка по време на проектирането, като целта е да се гарантира наличието на дадени качества в системата
- Детайли като алгоритми, представяне на данни, реализация, и т.н. не са предмет на СА
- Предмет на СА е поведението и връзките между различни елементи, разглеждани като "черни кутии"

Дефиниция

• Съгласно Software Engineering Institute:

"Архитектура на дадена софтуерна система е съвкупност от *структури*, показващи различните софтуерни елементи на системата, външно видимите им свойства и връзките между тях"

Софтуерна архитектура

- Различни дефиниции
 - Основните решения по дизайна на софтуерната система, които включват
 - Структура
 - Поведение
 - Взаимодействия (вътрешни и с други системи)
 - Качествени характеристики
 - Подробно описание на конструкцията и начините за развитие на софтуерната система
 - И т.н.
- Над 50 дефиниции има на следния адрес:
 - http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Use of architectural models

- As a way of facilitating discussion about the system design
 - A high-level architectural view of a system is useful for communication with system stakeholders and project planning because it is not cluttered with detail. Stakeholders can relate to it and understand an abstract view of the system. They can then discuss the system as a whole without being confused by detail.
- As a way of documenting an architecture that has been designed
 - The aim here is to produce a complete system model that shows the different components in a system, their interfaces and their connections.

По-общо понятие за архитектура

- Организационна архитектура (Enterprise architecture)
 - Основните процеси, технологичните и бизнес-стратегии в дадена организация
- Системна архитектура (System architecture)
 - Организацията на програмите и инфраструктурата върху която те се изпълняват
- Архитектура на приложението (Application architecture)
 - Организация на приложение, подсистема или компонент

По-общо понятие за архитектура

Enterprise architecture

System architecture

Application architecture

Software architecture

От какво се определя СА?

- Широко разпространено е схващането, че СА зависи само от изискванията;
- Истината е, че се намесват и много други фактори на обкръжението (environment), а именно:
 - технически, бизнес и социални влияния;
 - опит, знания и умения на архитекта;
 - съвременните технологии;
- От друга страна, самото създаване на СА повлиява върху обкръжението, т.е. процесът е цикличен;

Цикличен процес на създаване на архитектурата

Anthony J. Lattanze, Architecting Software Intensive Systems: A Practitioner's Guide, 2009 Taylor & Francis Group, LLC

Понятие за stakeholder

- Stakeholder Заинтересовано Лице (ЗЛ)
 - Това са всички, които имат отношение към създаването на софтуерната система – напр. собствениците, управителите, специалистите по продажби, ръководителя на проекта, разработчиците, екипа по поддръжка, различни прослойки от страна на клиента, крайните потребители и т.н.

Понятие за stakeholder

- Всички те имат разнопосочни интереси, напр.:
 - Да се държи по определен начин;
 - Да работи добре на определен хардуер;
 - Да може лесно да се променя;
 - Да се стане бързо;
 - Да стане евтино;
 - Да я правят хора с конкретни умения;
 - Да е многофункционална;
 - И Т.H.

Влияние на ЗЛ върху архитектурата

- Тези интереси най-често си противоречат;
- Архитектът е в неблагоприятна позиция какъвто и ход да предприеме, все някой от списъка със ЗЛ ще е недоволен;
- Ролята му е да балансира между различните ЗЛ за бъдат конкретните интереси отразени в спецификацията на изискванията!

Влияние на организацията върху архитектурата

- Основното влияние идва от целите, заради които се създава системата (изискванията отразяват най-пълно тях);
- Други влияния са:
 - Текущо състояние на организацията;
 - Употреба на предишни разработки;
 - Организационна структура;
 - Стратегия за дългосрочни инвестиции;

Влияние на технологиите

- Частен случай на влиянието на опита и средата на архитекта е влиянието на текущите технологии:
 - Индустриални стандарти;
 - Най-добри практики;
 - Преобладаващи инженерни техники;
- В настоящия момент модерни са уеб-базираните, ориентирани към услуги софтуерни архитектури.

Влияние на опита на архитекта

- Знанията и уменията на архитекта влияят върху създаваната СА:
 - Ако архитектът има положителен опит с даден подход, вероятно ще го използва отново;
 - Обратно, ако резултатите са били катастрофални, найвероятно ще се въздържи;
 - Подходът ще зависи и от това къде, какво и колко е учил и чел архитекта;
 - Дали се е сблъсквал с успешни/неуспешни подходи и/или реализации;
 - Наклонности за експерименти;

Реалната картина

- В много редки случаи изискванията, породени от бизнес целите, както и различните влияния, са напълно разбрани, обяснени и документирани
- Това води до конфликти между различните ЗЛ, които трябва да се разрешават
- За целта архитекта трябва да разбере същността, източниците и приоритетите на различните ограничения и трябва да управлява нуждите и очакванията на ЗЛ
- Крайната цел е ЗЛ да бъдат притиснати да приближат позициите си така, че да се намери пресечна точка между противоречивите на пръв поглед изисквания

Важни за архитекта качества

- Казаното до тук предполага, че за да бъде един архитект успешен, той се нуждае от качества като:
 - Отлично познаване на технологиите
 - Отлично аналитично и абстрактно мислене
 - Комуникативност, дипломатичност и умение за убеждаване и въобще за водене на преговори

Важни за софтуерния архитект дейности

- Архитектът взема участие в следните дейности:
 - Вземане на бизнес решения за създаване на системите;
 - Разбиране на изискванията;
 - Създаване или избор на архитектура;
 - Документиране на СА;
 - Анализ и оценка на СА;
 - Създаване на системата;
 - Следене за наличие на съответствие между системата и СА;

Вземане на бизнес решения

- Освен извършването на маркетингово проучване, за да се вземе решение за създаване на дадена система следва да се отговори на въпросите:
 - Каква е целевата функция?
 - Колко ще струва?
 - За колко време?
 - В каква среда ще работи (интерфейси с други системи)?
 - Някакви ограничения?
- Все въпроси, по които архитекта следва да вземе отношение. Ако той не участва във вземането на бизнес решението, вероятността за провал се увеличава.

Разбиране на изискванията

- Изискванията (функционални и нефункционални) обуславят СА;
- Те трябва да се дефинират по възможно найнедвусмислен начин;
- Ако архитектът участва в дефиницията на изискванията, вероятността да се създаде система, която отговаря на поставените бизнес цели е поголяма.

Създаване или избор на архитектура

- Създаването или изборът на архитектура е същинската работа на архитекта;
- Същественото тук е, че успешен проект и разработка могат да се изградят само ако е налице идейна цялост, а идейна цялост може да се постигне само посредством последователен и подреден мисловен процес от страна на специализирани (малко на брой) архитекти;

Документиране на СА

- Втората част от същинската работа на архитекта;
- И най-добрата архитектура е безполезна, ако тя не бъде по подходящ начин представена на всички ЗЛ;
- Нюансът тук е, че формата, под която следва да бъде представена СА зависи от конкретните ЗЛ;

Анализ и оценка на СА

- Както при всеки процес на проектиране, и при създаване на СА най-вероятно има няколко варианта, които следва да се оценят и анализират и да се избере най-добрия;
- Архитектурите подлежат на оценка както по отношение на изпълняване на изискванията, така и по отношение на финансови параметри;

Създаване на системата

- Ролята на архитекта по време на създаването (implementation) на системата е основно да следни дали се спазват предписанията на СА;
- Това, че има прекрасна, добре документирана и преразказана архитектура е добре, но ако хората, които правят системата не я следват, ефектът е нулев.

Следене за съответствие

 След като системата бъда разработена и премине във фаза на поддръжка, архитектът трябва да следи за съответствието между СА и системата – по време на поддръжката се налагат промени; тяхната реализация следва да е съгласно принципите на архитектурата; от своя страна, СА също трябва да се адаптира към промените

ЩО Е ТО СОФТУЕРНА АРХИТЕКТУРА?

Paul Clements et all., Documenting Software Architectures: Views and Beyond, Pearson Education, 2011

Paul Clements et all., Documenting Software Architectures: Views and Beyond, Pearson Education, 2011

Hardware Hiding Module

Extended Computer Module

Data Module

Input/Output Module

Computer State Module

Parallelism Control Module

Program Module

Virtual Memory Module

Interrupt Handler Module

Timer Module

Device Interface Module

Air Data Computer Module

Angle of Attack Sensor Module

Audible Signal Device Module

Computer Fail Device Module

Doppler Radar Set Module

Flight Information Displays Module

Forward Looking Radar Module

Head-Up Display Module

Inertial Measurement Set Module

Input-Output Representation Module

Master Function Switch Module

Panel Module

Projected Map Display Set Module

Radar Altimeter Module

Shipboard Inertial Nav System Module

Slew Control Module

Switch Bank Module

TACAN Module

Visual Indicators Module

Waypoint Info. System Module

Weapon Characteristics Module

Weapon Release System Module

Weight on Gear Module

Behavior Hiding Module

Function Driver Module

Air Data Computer Module

Audible Signal Module

Computer Fail Signal Module

Doppler Radar Module

Flight Information Display Module

Forward Looking Radar Module

Head-Up Display Module

Inertial Measurement Set Module

Panel Module

Projected Map Display Set Module

Shipboard Inertial Nav System Module

Visual Indicator Module

Weapon Release Module

Ground Test Module

Shared Services Module

Mode Determination Module

Panel I/O Support Module

Shared Subroutine Module

Stage Director Module

System Value Module

Software Decision Hiding Module

Application Data Type Module

Numeric Data Type Module

State Transition Event Module

Data Banker Module

Singular Values Module

Complex Event Module

Filter Behavior Module

Physical Models Module

Aircraft Motion Module

Earth Characteristics Module

Human Factors Module

Target Behavior Module

Weapon Behavior Module Software Utility Module

Power-Up Initialization Module

Numerical Algorithms Module

System Generation Module

System Generation Parameter Module

Support Software Module

Len Bass, Paul Clemens, Rick Kazman. Software Architecture in Practice, 2nd Edition, Addison Wesley, 2003 EC: Extended Computer Module None DI: Device Interface Module EC.DATA, EC.PGM, EC.IO, EC.PAR, AT.NUM, AT.STE, SU ADC: Air Data Computer PM.ECM IMS: Inertial Measurement PM.ACM Set FD: Function Driver Module EC.DATA, EC.PAR, EC.PGM, AT.NUM, AT.STE, SU, DB.SS.MODE, DB.SS.PNL.INPUT, DB.SS.SYSVAL, DB.DI ADC: Air Data Computer DB.DI.ADC, DI.ADC, FB Functions IMS: IMS Functions DB.DI.IMS, DI.IMS PNL: Panel Functions EC.IO, DB.SS.PNL.CONFIG, SS.PNL. FORMAT, DI.ADC, DI.IMS, DI.PMDS, DI.PNL SS: Shared Services Module EC.DATA, EC.PGM, EC.PAR, AT.NUM, AT.STE, SU PNL: Panel I/O Support DB.SS.MODE, DB.DI.PNL, DB.DI.SWB, SS.PNL.CONFIG, DI.PNL AT: Application Data Type Module EC.DATA, EC.PGM NUM: Numeric Data Types None additional STE: State Transition EC.PAR

Events

Len Bass, Paul Clemens, Rick Kazman. Software Architecture in Practice, 2nd Edition, Addison Wesley, 2003

Deployment structure

Deployment diagram of an order management system

Deployment structure

Архитектурни структури

- Структура съвкупност от софтуерни елементи, техните външно видими свойства и връзките между тях;
- Изглед (view) конкретно документирано представяне на дадена структура;
- Двете понятия в голяма степен са взаимозаменяеми;
- Архитектурните структури се делят най-общо казано на 3 групи:
 - Модулни структури;
 - Структури на процесите;
 - Структури на разположението;

Модулни структури

- Елементите в модулните структури са модули единици работа за изпълнение. Модулите предлагат поглед, ориентиран към реализацията на системата, без значение какво става по време на изпълнението;
- Някои въпроси, на които отговарят тези структури:
 - Коя функционалност в кой модул се реализира?
 - Кои други модули може да използва (и използва) дадения модул?
 - Как са свързани модулите по отношение на специализация и генерализация (наследяване);

Структури на процесите

- Елементите са компоненти, които се проявяват по време на изпълнението (т.е. основните изчислителни процеси) и средствата за комуникация между процесите.
- Някои въпроси, на които отговарят тези структури:
 - Кои са основните изчислителни процеси и как те си взаимодействат?
 - Кои са основните споделени ресурси?
 - Как се развиват данните в системата?
 - Кои части от системата могат да работят паралелно?
 - Как се променя структурата на системата докато тя работи?

Структури на разположението

- Структурите на разположението показват връзката между софтуерните елементи и елементите на околната среда, в която се намира системата по време на разработката или по време на изпълнението;
- Някои въпроси, на които отговарят тези структури:
 - На кой процесор се изпълнява всеки от елементите?
 - В кои файлове се записва сорс кода на елементите по време на разработката?
 - Какво е разпределението на софтуерните елементи по екипи, които създават системата?

Модулни структури – Декомпозиция на модулите

- Декомпозиция на модулите връзките между модулите са от вида "X е под-модул на Y";
- Това се прави рекурсивно до момента, в който елементите станат достатъчно прости, че да могат да бъдат разбрани лесно;
- Декомпозицията на модулите обуславя в голяма степен възможността за лесна промяна, като обособява логически свързани функционалности на едно място;
- Много често служи и като основа на разпределението на работата между екипите на изпълнителя;

Модулни структури – Употреба на модулите

- Употреба на модулите връзките между модулите са от вида "Х използва Y";
- Ако има нужда от по-детайлно описание, може връзките да са насочени към конкретен интерфейс или ресурс на модула;
- Структурата за употребата на модули обуславя възможността за лесно добавяне на нова функционалност, обособяване на [в голяма степен] самостоятелни подмножества от функционалност, както и позволява последователната разработка, много важна и мощна техника за работа;

Paul Clements et all., Documenting Software Architectures: Views and Beyond, Pearson Education, 2011

Paul Clements et all., Documenting Software Architectures: Views and Beyond, Pearson Education, 2011

Модулни структури – Структура на слоевете

- Като частен случай на структурата на употребата на модули е структурата на слоевете – когато върху употребата са наложени стриктни правила се обособяват слоеве;
- Модулите от слой номер N могат да се възползват само от услугите на модулите от слой номер N-1;
- Слоевете често са реализирани като виртуални машини или обособени подсистеми, които скриват детайлите относно работата си от следващия слой;
- Не е прието (и е признак на лошо възпитание) слоеве да се прескачат;
- Структурата позволява без особени сътресения да бъде подменен цял един слой (напр. да се смени СУБД);

Източник: MSDN

Модулни структури – Йерархия на класовете

- Йерархия на класовете в терминологията на ООП, модулите се наричат "класове", а в настоящата структура връзките между класовете са от вида "класът X наследява класа Y" и "обекта X е инстанция на клас Y";
- Тази структура обосновава наследяването защо подобни поведения или въобще функционалности са обособени в супер-класове или пък защо са дефинирани под-класове за обслужване на параметризирани различия;

Структура на процесите

- Структура на процесите елементите са процеси (или нишки), изпълнявани в системата (компоненти) и комуникационни, синхронизационни или блокиращи операции между тях (конектори); Връзките между тях (attachments) показват как компонентите и конекторите се отнасят помежду си;
- Структурата е полезна, тъй като има отношение по въпросите на бързодействието по време на изпълнението и високата надеждност.

Software Engineering by Ian Sommerville, 9th edition (2010), Addison-Wesley Pub Co;

Структура на потока на данните

Source: visual-paradigm.com

Структури на разположението – Структура на внедряването

- Структура на внедряването показва как софтуера се разполага върху хардуера и комуникационното оборудване;
- Елементите са процеси, хардуерни устройства и комуникационни канали;
- Връзките са напр. "внедрен върху" или "мигрира върху";
- Представлява интерес при разпределени системи и позволява да се разберат особеностите относно бързодействието, интегритета на данните, надеждността, сигурността и т.н.;

Deployment structure

Структури на разположението – Файлова структура

- Файлова структура показва кой модул къде се помещава, по време на различните фази на реализация;
- Структурата е критична за управлението на дейностите по разработка и за създаването и поддържането на обкръжение за build-ове;

Структури на разположението – Разпределение на работата

- Разпределение на работата показва кой модул от кой екип се реализира;
- Елементите са модули и екипи, а връзките са кой модул от кой екип се разработва;
- Под "кой екип" не се има предвид конкретен списък от хора, а по-скоро виртуална група хора с подходящ опит, знания и умения;
- Архитектът трябва да знае какви хора са необходими за изработка на модулите и да участва във вземането на управленчески решения;
- Структурата помага и за това дадени общи функционалности да бъдат обособени и разработени от един екип, вместо всеки сам да си ги прави;

Кои структури да използваме?

- Зависи от системата;
- Съгласно RUP:
 - Logical елементите са ключови абстракции, а връзките взаимодействие между тях. Може да се класифицира като обектно-ориентирана модулна структура;
 - Process адресира паралелното изпълнение и разпределението на процесите. Типична СКК;
 - Development типична структура на разпределението на работата;
 - Physical кой процес на кой хардуер се изпълнява, типична структура на внедряването;

4 + 1 модел на софтуерната архитектура

- 1) Логически изглед показва основните абстракции в системата, като обекти, класове и компоненти
- Изглед на процесите показва системата като съвкупност от взаимодействащи си процеси по време на изпълнение
- Изглед на кода Показва как отделните елементи на системата се разполагат във файлове код
- Физически изглед показва как софтуерните компоненти са разпределени между хардуерните възли в системата
- +1) Съответните сценарии на употреба