CS 448 Database Systems

Serializability
Theory

Serializability Theory

- We will develop a theory that determines what types of interleaving of transactions are acceptable (i.e. serializable).
- Introduce a new model with
 - transactions
 - histories

- A transaction consists of read and write operations on database objects.
- It also specifies an order in which the operations are executed. This may be a partial order, i.e., some pairs of operations are not strictly ordered in time. The order describes the "happened-before" relationship.

- Each operation of a transaction will be represented by the following symbols:
 - $-r_1[x] \tan T_1$ reads data item x
 - $-w_1[x] \tan T_1$ writes data item x
 - $-c_1 \tan T_1$ commits
 - $-a_1 \tan T_1$ aborts
 - The start of a txn is implicit

- A txn is represented as a partial order $(\Sigma,<)$, where Σ is the set of elements being ordered (i.e., the operations of the transaction), and < is the ordering relation.
- The final operation in a transaction must be a commit or abort.

- A transaction T_i is a partial order with ordering relation \leq_i , where
 - $-T_i \subseteq \{r_i[x], w_i[x] \mid x \text{ is a data item}\} \cup \{ai, ci\};$
 - $-a_i \in T_i \text{ iff } c_i \notin T_i;$
 - If t_i is c_i or a_i (whichever is in T_i), for any other operation $p \in T_i$, $p <_i t_i$;
 - If $r_i[x]$, $w_i[x] \subset T_i$, then either $r_i[x] <_i w_i[x]$ or $w_i[x] <_i r_i[x]$.

- A partial order can be represented by a directed acyclic graph (DAG).
- E.g.

- Ignore all other actions of txns
- Can model input values as read statements.

Histories

- A history captures the execution of several transactions.
- Histories are collections of the partial orders of txns and are partial orders too.
- They need to be more that just the sum of the partial orders of their constituent transactions though they MUST order conflicting operations
- A pair of operations *conflict* if they both operate on the same data item and at least one of them is a write.

Complete Histories

• Let $T = \{T_1, T_2, ..., T_n\}$ be a set of transactions. A complete history H over T is a partial order with ordering relation \leq_H where:

$$-H = \bigcup_{i=1}^{n} T_{i};$$

- $-<_H \supseteq \bigcup_{i=1}^n <_i$; and
- For any two conflicting operation, p, $q \in H$, either $p <_H q$ or $q <_H p$.
- A *history* is simply a prefix of a complete history.

Example

•
$$T_1 = r_1[x] \rightarrow w_1[x] \rightarrow c_1$$

•
$$T_2 = r_2[x] \rightarrow w_2[y] \rightarrow w_2[x] \rightarrow c_2$$

•
$$T_3 = r_3[y] \rightarrow w_3[x] \rightarrow w_3[y] \rightarrow c_3$$

$$r_{1}[x] \rightarrow w_{1}[x] \rightarrow c_{1}$$

$$r_{3}[y] \rightarrow w_{3}[x] \rightarrow w_{3}[y] \rightarrow c_{3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$r_{2}[x] \rightarrow w_{2}[y] \rightarrow w_{2}[x] \rightarrow c_{2}$$

Order implied by transitivity are omitted. For total orders, we can drop the arrows.

Committed Projection of a History

- The committed projection of a history H, denoted *C(H)*, is the history obtained from *H* by deleting all operations that do not belong to committed txns.
- This is important for the definition of serializable histories.

Equivalent Histories

- We want to allow only those histories that are EQUIVALENT to some serial history.
- We define two histories *H* and *H* to be equivalent
 (≡) if
 - They are defined over the same set of transactions and have the same operations; and
 - They order conflicting operations of non-aborted transactions in the same way; that is, for any conflicting operations p_i and q_j belonging to transactions T_i and T_j (respectively) where a_j , $a_i \not\models H$, if $p_i <_H q_j$ then $p_i <_{H'} q_j$.

Serializable Histories

- Because only the complete execution of txns represents a consistent state, we define a history to be serializable (SR) if its committed projection, C(H), is equivalent to some serial history H_s .
- A serialization graph can be used to determine whether a history is serializable.

Serialization Graph (SG)

• The SG(H) is a directed graph whose nodes are committed txns in H, and whose edges are $T_i \rightarrow T_j$ such that one of T_i 's operations precedes and conflicts with one of T_j 's operations in H.

E.g.
$$r_3[x] \rightarrow w_3[x] \rightarrow c_3$$

$$r_1[x] \rightarrow w_1[x] \rightarrow w_1[y] \rightarrow c_1$$

$$r_2[x] \rightarrow w_2[y] \rightarrow c_2$$

$$T_2 \rightarrow T_1 \rightarrow T_3$$

NOTE: SG may not be transitive!

Serializability Theorem

A History H is serializable iff SG(H) is acyclic