Exam 1 - Practice Problems

Table of contents

Part 1:	Manual calculation																1
Part 2:	Excel Calculation .																5

The exam will consist of two sections: Part 1: Manual calculation and Part 2: Excel calculation.

Part 1: Manual calculation

Problem 1.

Given a simulated dataset below. The tuition is in thousands.

Year (x)	Tuition (y)
2020	20
2021	21.5
2022	23
2023	24.5
2024	26

- 1. Calculate the differences of tuition in consecutive years and ratio of tuition for consecutive years to determine if the data is exponential or linear.
- 2. Write the equation of the model.
- 3. Use the model to predict the tuition in 2030.
- 4. What year the tuition will be more than 100k?

Solution

1. We have the following table. For a tuition difference, subtract the tuition of a year to the tuition of the previous year (for example: 21.5-20 = 1.5). For a tuition ratio, divide the tuition of a year to the tuition of the previous year (for example: 21.5/20 = 1.075)

Year (since 2020)	Tuition	Tuition Difference	Tuition Ratio
0	20		
1	21.5	1.5	1.075
2	23	1.5	1.069767
3	24.5	1.5	1.065217
4	26	1.5	1.061224

We observe that the tuition difference is a constant, hence the data is linear.

2. Let the equation be

$$y = mx + b$$
.

Where y and x are the tuition and year, respectively.

We need to find the constant m and b. The slope m is always the different constant, so m = 1.5.

To find b, plug in a data point, say, x = 0 and y = 20, we have:

$$20 = b$$

Thus,

$$b = 20$$

Therefore, the equation is:

$$y = 1.5 * x + 20$$

3. To predict the tuition in 2030, plug x = 2030 - 2020 = 10 (since 2030 is 10 years since 2020) into the equation in 2. to find y.

$$y = 1.5 * 10 + 20 = 35$$

The model predicts the tuition in 2030 to be 35k.

4. To find the year the tuition passes 100k, plug y = 100 into the equation to find x

We have

$$100 = 1.5 * x + 20$$

Thus,

$$x = \frac{100 - 20}{1.5} = 53.33$$

.

Therefore the tuition will pass 100k in the year of 2020 + 53.33 = 2073.33 or 2074. (round it up to the next year).

Problem 2.

Given a simulated dataset below. The tuition is in thousands.

Year (since 2010)	Tuition
0	20
1	22
2	24.2
3	26.62
4	29.282

- 1. Calculate the differences of tuition in consecutive years and ratio of tuition for consecutive years to determine if the data is exponential or linear.
- 2. Write the equation of the model.
- 3. Use the model to predict the tuition in 2030.
- 4. What year the tuition will be more than 100k?

Solution

1. We have the following table. For a tuition difference, subtract the tuition of a year to the tuition of the previous year (for example: 22-20=2). For a tuition ratio, divide the tuition of a year to the tuition of the previous year (for example: 22/20=1.1)

Year	Tuition	Tuition Difference	Tuition Ratio
0	20		
1	22	2	1.1
2	24.2	2.2	1.1

Year	Tuition	Tuition Difference	Tuition Ratio
3	26.62	2.42	1.1
4	29.282	2.662	1.1

We observe that the tuition ratio is a constant, hence the data is exponential.

2. Let the equation be

$$y = a.b^x$$

Where y and x are the tuition and year, respectively.

We need to find the constant a and b. The base m is always the different ratio, so b = 1.1.

To find a, plug in a data point, say, x = 0 and y = 20, we have:

$$20 = a * 1.1^0$$

Thus,

$$a = 20$$

.

Therefore, the equation is:

$$y = 20 * 1.1^x$$

3. To predict the tuition in 2030, plug x=2030-2010=20 into the equation in 2. to find y.

$$y = 20 * 1.1^{20} = 134.55$$

The model predicts the tuition in 2030 to be 134.55

4. To find the year the tuition passes 100k, plug y = 100 into the equation to find x

We have

$$100 = 20 * 1.1^x$$

Thus, $1.1^x = 100/20 = 5$.

$$x = \log_{1.1} 5 = 16.88632$$

Therefore the tuition will pass 100k in 17 years since 2010, which is 2027.

Part 2: Excel Calculation

Year	Population (000s)
2012	2.3
2013	2.51
2014	2.73
2015	2.98
2016	3.25

- 1. Model the dataset using exponential model and calculate the MAPE of the model.
- 2. Model the dataset using linear model and calculate the MAPE of the model.
- 3. Compare the models in term of MAPE to decide the better model. Use the better model to predict the population in 2017.

Solution