# Section 2 Fluids Review (Chap A2)





(self-study lectures)

## Roadmap (A2.1):

Aerodynamic tools. Review of vector relations (for convenience in expressing) the aerodynamic tools) Useful concepts for the Basic flow equations (containing the fundamental implementation of the physics of flows) basic flow equations Substantial derivative Continuity equation Streamline Momentum equation Energy equation Vorticity Circulation Stream function Velocity potential The solution of practical aerodynamic

problems

## Vector Math (A2.2):

# **Gradient of a Scalar Field (A2.2.5)**

quadrent of P: 
$$\vec{\nabla}$$
 P magnitude = max spatial rate of change

## Divergence of a Vector Field (A2.2.6)

$$\overline{\nabla} \cdot \overline{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$
 (scalar)

Curl of a Verber Freld (A 2.2.7)

$$\vec{\nabla} \times \vec{\nabla} = \left(\frac{\partial V_z}{\partial V_z} - \frac{\partial V_z}{\partial V_z}\right) \vec{i} + \left(\frac{\partial V_z}{\partial V_z} - \frac{\partial V_z}{\partial V_z}\right) \vec{j}$$

Vorticity: 2w = J x V

$$Vorticity: 2W = \sqrt{2} \times \sqrt{2}$$

$$2.0 \text{ flow}: W = \frac{1}{2} \left( \frac{3V}{3x} - \frac{3U}{3y} \right)$$

# Usef-1 Theorems

surface S Held A

Stokes:

$$\oint \vec{A} \cdot d\vec{s} = \iint (\vec{\nabla} \times \vec{A}) \cdot d\vec{s}$$

$$c \qquad c \qquad c \qquad c \qquad c \qquad c \qquad c \qquad c$$

Divergence.

Gradieit:

UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson

## Continuity (A2.4)

$$\dot{M} = \rho V_{\Lambda} A \qquad \left( \frac{M}{L^{3}} \frac{L}{T} L^{2} = \frac{M}{T} \right)$$

Mass Flax 
$$\frac{\dot{m}}{A} = \rho V_{\Lambda}$$

Notation: 
$$\vec{V}(x,y,t) = Vx\vec{i} + Vy\vec{j} + Vz\vec{k}$$

$$= u\vec{i} + v\vec{j} + w\vec{k}$$

Principal: Mous can be neither created or distroyed fixed CV:

Byr

Net mass-flow volume V surface S out of CV through = decrease of mass

bounding surface S inside CV

(LHS)

Time rate of

(RHS)

aiross elevental = p Vn dS = p V-ds

unface ds inface ds

Integrate Sprids = LHS mass-fla over entire surface S

· RHS

of shape

- it sport

regare

regare

volume muss

LHS = RHS

· Continuity in Differential Form:

$$\frac{\partial}{\partial t} \iiint (dv + \iint (\vec{v} \cdot d\vec{s}) = 0$$

fixed cv

Use Divergence Meron to convert to volume integral

$$\int \frac{\partial f}{\partial \rho} + \frac{\partial f}{\partial \rho} + \frac{\partial f}{\partial \rho} = 0$$

volune is

arbitray must always be true

only way is for integrand b Equal zero!

Continuity in

· No assumptions at all except Continuum - totally general!

· Incompressible :  $\nabla \cdot \vec{V} = 0$  "Divergence · Free" Stendy

# Momentum (A2.5)

$$\Sigma \vec{F} = \frac{d}{dt} (m\vec{V})$$

# · Externally applied forces:

Surface (pressure and slear note on S)

(repathe because)

free in direction

opposite do

# Rate of change of Momentum =

net outflow rate time rate of change of nonetum across + of monetum not outflow rate sortace S

(Term 1)

(term 2)

| UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Morestan (Cont)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Drag of 3-23-D/Body 2.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Term 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| · time rote et change it nomentum (fixed CV):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| and the same of th |
| recall $\dot{m} = \rho \vec{k} \vec{l} \cdot d\vec{s} = \begin{pmatrix} \frac{M}{T} \end{pmatrix}$ mass-flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| though area ds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| : flow rote et nomentur nevoss AS = (pv.d5) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mass<br>nut the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| monents<br>mot time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mit time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| out ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Net flow rode of manentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| turench entre surtine S = S(pv.dv) V (Term 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| turoigh entre soutine S = 1 (pv. as) V (lerm 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pos:toe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| if ontflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Term 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m elevental volume dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| rearrange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of nonentum isside = \frac{1}{2t} \pridr (Tem 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| extende CV V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · Rate of change of nomentum inside CV = Term 2 + Term 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

.....

Bring all terms back logether:

$$\frac{d}{dt}(m\vec{v}) = 2\vec{F}$$

time rate of change of momentum inside CV

ret entitlen rate of momentum through CV's surface S pressure body vireous forces force of CV, 8

# General Integral form of Momentum Equation

· Follow text (p133-134) to got Differential Form it Mon. Egn:

· Simplified flow case: Steady inviscial no body forces

# Monetur Equation becomes:

$$\frac{\partial}{\partial x} \cdot (\rho v \vec{V}) = -\frac{\partial P}{\partial x}$$

$$\frac{\partial}{\partial y} \cdot (\rho v \vec{V}) = -\frac{\partial P}{\partial y}$$

$$\frac{\partial}{\partial y} \cdot (\rho v \vec{V}) = -\frac{\partial P}{\partial y}$$

(2.71)

Steady
Invited
No Boy Force

(2.72)

· Notation reminder: expansion of terms

$$= \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} +$$

= 
$$\frac{\partial}{\partial x} (\rho N^2) \vec{i} + \frac{\partial}{\partial y} (\rho N^2) \vec{j} + \frac{\partial}{\partial z} (\rho N^2) \vec{k}$$

spatial gradients it momentum terms

# Drag of a 2-D Body (2.6)



Fire on awbil

Z R

(resultant of Parl T)

Fore in CV due to airfoil ラーマーア

ZFCV = fore due to pressure dist over CV + fore due to airfoil = - SS p ds - R

· Steady flev: Monenton Egn:

: x-component:

out tunt all static pressure = Pro Inittoyh dyn pressure changes = walke)

stemply concerts out in the

D' = - S (p v. 13) N (x.der only)

Top and batter of CV: 52, so Vn = 0

Bry in Continuely ...

$$U_1 = \omega_{n}$$
  $U_2 = f(y)$ 

drop = moment m deficit

$$\frac{M}{L^3} = \frac{L}{T}$$

$$\frac{M}{T^2} = \frac{F}{L}$$

Dry perant spon

# **Substantial Derivative Forms (A2.9-10)**

. Time rate of change, following a moving fluid element:

$$\frac{D}{Dt} = \frac{3}{9t} + N \frac{3}{3} + N \frac{3}{3} + W \frac{3}$$

= 
$$\frac{\partial}{\partial t} + \vec{V} \cdot \vec{\nabla}$$

10cal

• Continuity:

$$\frac{DP}{Dt} + P \vec{\nabla} \cdot \vec{V} = 0$$

· X. Moneton:

$$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \rho f_x + F_x$$
role of chece pressure body stear
of normation

## **Streamlines (A2.11)**

· Defin: a curve whose target at every point is porallel to velocity rector at that point.



· Equation :



do locally 11 to V

If we know K(x,y,z) tra integrate to get SL equal f(x,y,z)

#### UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson

- · 20 flow:
- $vdx udy = 0 \implies \frac{dy}{dx} = \frac{v}{u}$



Slope of 2D Stranglic

- · Strennlie: mass does not (103) SL (since velocity always 11 to it)
- · Strenn Tube: bundle of SL's



Q.V.A. = prv2Az (cont)

## Vorticity (A2.12)





Fluid element at time,  $t + \Delta t$ 

Fluid element at time t

Angular Velocity of fluid elevent

Ary mymlar velocity of AB ad AC lines

or, 
$$w_{\overline{z}} = \frac{1}{2} \left( \frac{d\theta_1}{dt} + \frac{d\theta_2}{dt} \right)$$

of velocity freld

· From figure:

AC: 
$$tand\theta_2 = \left(\frac{\partial v}{\partial x}\right) dx \Delta t = \frac{\partial v}{\partial x} \Delta t = \Delta \theta_2$$

$$\frac{do_{L}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta o_{L}}{\Delta t} = \frac{\partial v}{\partial x} ; \quad \frac{do_{L}}{\partial t} = -\frac{\partial u}{\partial y}$$

UC Davis EAE-127 Fall 2014 Prof. S.K. Robinson

any rotational relacity - rall it was

$$: W_{\frac{1}{2}} = \frac{1}{2} \left( \frac{dQ_{1}}{dt} + \frac{dQ_{2}}{dt} \right)$$

$$= \frac{1}{1} \left( \frac{5x}{2x} - \frac{5x}{9x} \right)$$

· In gereral,

$$\vec{w} = \frac{1}{2} \left[ \left( \frac{\partial w}{\partial y} - \frac{\partial v}{\partial t} \right) \vec{i} + \left( \frac{\partial M}{\partial t} - \frac{\partial w}{\partial x} \right) \vec{j} + \left( \frac{\partial U}{\partial x} - \frac{\partial M}{\partial y} \right) \vec{k} \right]$$

again relocity of fluid element

· Or, defin Vortsity \$ = 2W



# Circulation (A2.13) - Fundamental Conyet for Computy Lift



Defin of Circulation

$$\Gamma = -\phi_C \mathbf{V} \cdot \mathbf{ds}$$

. No flow rotation implied, terms refers to path of integration

+ to + and my party

· But circulation is related to writing: .. neg. sign

we Stokes Than

$$T = - \begin{cases} 5 & \vec{v} \cdot d\vec{s} = - \\ 5 & \vec{v} \cdot d\vec{s} \end{cases} = - \begin{cases} 7 \times \vec{v} \cdot d\vec{s} \\ 5 & \vec{v} \cdot d\vec{s} \end{cases}$$

Cirentation

Surface

Integral

of vortectly

· If flow w/m C is irrotational, hen I = 0

## **Stream and Potential Functions (A2.14-16)**

Stream Function - (2D) Steady Flow Only!

· Defined by its graduent in a flowfreld:

$$N = \frac{\partial A}{\partial A}$$

$$N = -\frac{\partial A}{\partial A}$$

 $N = \frac{\partial \Psi}{\partial y}$  incompressible Bolefin Derved from the definition of a streamline

- · 4 = constant along streamlines
- Defined Gr boh rotational + horst flows
- · Defined for 2D flows only

# Velocity Potential Ø

· Vector I dutity: if 
$$\emptyset$$
 is a scalar,

then  $\vec{\nabla} \times (\vec{\nabla} \emptyset) = 0$ 

(curl of a gradient of a scalar = 0)

. So for irrot, flow we can define a scalar of

such that  $\vec{V} = \vec{J} \vec{O}$  definition of potential function

• 
$$N = \frac{3x}{3x}$$
,  $V = \frac{3y}{3y}$ ,  $W = \frac{3t}{3t}$ 

· Irrotational Flows = "Potential Flows"

A . Mosh simpler, sien some for one unknown & instead of 3 (u.v.w)

· Yad & (where both defred) are 1 (20 int flows only)

# Text 7.2: Momentum Integral Estimates for Turbulent Boundary Layers

**Example 3.11 (Sec 3.4 Linear Momentum Integral Equation)** 



- In chapter 3, we used the Reynolds Transport Theorem (RTT) to derive a form of the livear momentum principle that can be used for flow-through control volumes (CV:s). Let is apply that to a boundary layer (laminar or turbulat) to find the drag force D on a flat plate.
- · Carefully choose your CV (this takes practice!):

#### **Text 7.2: Momentum Integral Estimates for Turbulent Boundary Layers** review from 3.4:

CF=点(mブ)

Linear Momentum for fixed CV

$$\vec{z}\vec{F} = \frac{d}{dt}(\vec{y}\vec{v}\rho d\vec{v}) + \vec{y}\vec{v}\rho(\vec{v}\cdot\vec{n})dA$$

vector sum rate of change of of all forces momentum within CV acting on CV

= surface forces (Pad T) body bones (gravely)

rate of momentum ontflow - inflow through CV

(3.37)

# Text 7.2: Momentum Integral Estimates for Turbulent Boundary Layers

· Choose CV carefully:



Side (1.0 flow)

2 : along SL, so no mass flows through it (by detin of JL)

Voin = 0 (smart thorse!)

3: cuts through BL, so relocity depends ony (20 flow)

V. n = u(y)

 $\vec{y}$ : along wall, just above; sherr force acts on wall  $\vec{v} \cdot \vec{n} = 0$  (why?

Note that wall applies equivalent drag force to CV of -Di (watch these sign!)

# **Text 7.2: Momentum Integral Estimates for Turbulent Boundary Layers**

· Apply x - momentum equation to our BL Control Volume:

$$-D = \rho \int u(0,y)(\vec{v}\cdot\vec{n}) dA + \rho \int u(2,y)(\vec{v}\cdot\vec{n}) dA$$

rate of change in momentum flux through CV inlet and ont let

but wait, we don't know h!

Next bol in the kit is Continuity -s

# **Text 7.2: Momentum Integral Estimates for Turbulent Boundary Layers**

· Conservation of Mass:

Note that the CV is a streamfube so flow only through

$$\rho \int (\vec{v} \cdot \vec{n}) dA = O \quad ((ons. Mass))$$

$$= \rho \int_{0}^{h} (-TI) b dy + \rho \int_{0}^{s} u b dy \int_{x=1}^{x=1}$$

· Plug this into drag equation:

(7.2)

# **Text 7.2: Momentum Integral Estimates for Turbulent Boundary Layers**

TBL "Momentum Thickness": 9



• We just found that day on the plate is
$$D(x) = \rho b \int u(\pi - u) dy \left( \frac{D \log b \rho \text{ plate}}{b \text{ then } 0 \text{ and } x} \right)$$

where 
$$Q = \int_{0}^{\delta} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy$$
 Momentum  
Thickness

Momentum Thickness relates shape of the velocity profile in a boundary layer to its drag. (Total Plate Drag)

73

# Review of Displacement Thickness &\* (Using float-plate boundary lager)

• Iden is to estimate "displaced" boundary
that would give some mass-flow rate
past body that a freetienless flow would.



· How do we derive an expression for this 5\*?

Use continuity, since considering in

· A bounday layer déflects onter streamline (e Bledy) ontward by distance &:



2

· Continuity between O and (2): m, = m2

(depth = b)

$$\pi h = \int_{0}^{S} u \, dy = \int_{0}^{S} \left[ \pi + (u - u) \right] dy$$

$$= \pi S + \int_{0}^{S} (u - u) \, dy$$

$$= \pi (u + s^{*}) + \int_{0}^{S} (u - u) \, dy$$

· Solve Gr 8 :

characteristic 1-1 -> 0 as y >8

# Predicting Flow Patterns, Velocity, and Pressure over a Body - Solving the Equations of Fluid Motion (A2.122)



Figure 2.1: Grid and singularity methods used to represent a velocity vector field V(r).

· Grid Method: governing diff eyns are discretized to solve for relocity field at each grid node



Taylor Serres Expansion: exaple velocity gradient:

$$V_{i+1}$$
,  $j = N_{i,j} + \left(\frac{\partial N}{\partial x}\right)_{i,j} + H.D.T.3$ 

$$\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x} - transation error \left(\frac{Fund}{D.H}\right)$$

• Singularity Method: Point flow-inducers (source, sink, vortex) distributed on bound's surface. Streeths + BC manipulated to approximate natural flow patterns

# Iterative Approach to Solving Potential Flows over Bodies with Thin Viscous Layers:

Potential (inviscid, Irrotational) Flow

Distribute flow-inducing point singularities (source, sink, vortex) on boundaries; adjust singularity strengths to match BC's

Superpose solutions to linear potential flow (Laplace) equations to generate potential flowfield over body

Use boundary layer analysis in potential flowfield to estimate displacement thickness over body

Add displacement thickness distribution to original body shape to get new shape – start over with potential flow analysis

Converged potential flowfield with viscous effects accounted for