Practice Problems 12

Implicit Fuction Theorem

- 1. * Show that there is a vector $p \in R^2$ such that for given $(x_0, y_0) = (\sqrt{2}, \sqrt{2}), p \cdot (x_0, y_0) \le p \cdot (x, y)$ for all $(x, y) \in \{(x, y) | xy \ge 2\}$. Can you derive p?
- 2. Show that there is a vector $p \in R^2$ such that for given $(x_0, y_0) = (\sqrt{2}, \sqrt{2}), p \cdot (x_0, y_0) \ge p \cdot (x, y)$ for all $(x, y) \in \{(x, y) | x^2 + y^2 \le 4, x, y \ge 0\}$. Can you derive p?
- 3. * Prove that the expression $x^2 xy^3 + y^5 = 17$ is an implicit function of y in terms of x in a neighborhood of (x,y) = (5,2). Then Estimate the y value which corresponds to x = 4.8.
- 4. Define $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = y^2x + e^y + z.$$

Show that there exists a differentiable function g(x,z), such that g(1,-1)=0 and

$$f(x, g(x, z), z) = 0$$

Specify the domain of g. Compute Dg(1, -1).

Brouwer's Fixed Point Theorem

5. * Show that there is a Nash Equilibrium in the battle of sexes where the payoff is given as in the table below.

		Tony	
		Action	Comedy
Maria	Action	2, 5	-1, -1
	Comedy	1, 1	5, 2

Jensen's Inequality

6. * Homework Q28