9.10.5.3

Question : In figure 1 or, figure $2,\angle PQR=100^\circ,$ where P,Q and R are points on a circle with centre O.Find $\angle OPR.$

Solution:

Input Parameters	Description	Value
0	Center(at origin)	0
r	Radius	1
θ	$\angle PQR$	100°
θ_1	$\angle NOQ$	θ_1°
θ_2	$\angle NOP$	165°
θ_3	$\angle NOR$	5°

Table 1: Table of input parameters

Output Parameters	Description	Value
Q	Point	$\begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix}$
P	Point	$\begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix}$
R	Point	$\begin{pmatrix} \cos \theta_3 \\ \sin \theta_3 \end{pmatrix}$

Table 2: Table of output parameters

For getting the value of the $\angle NOQ$

$$\cos \theta = \frac{(\mathbf{R} - \mathbf{Q})^{\top} (\mathbf{P} - \mathbf{Q})}{||\mathbf{R} - \mathbf{Q}||||\mathbf{P} - \mathbf{Q}||}$$
(1)

$$or, \cos \theta = \frac{\sin \frac{\theta_1 + \theta_2}{2} \cos \frac{\theta_2 + \theta_3}{2}}{\sin \frac{\theta_2 - \theta_1}{2}} \tag{2}$$

$$so, \theta_1 = 2 \tan^{-1} \left(\tan \left(\frac{\theta_2}{2} \right) \left(\frac{\cos \theta + \cos \frac{\theta_2 + \theta_3}{2}}{\cos \theta - \cos \frac{\theta_2 + \theta_3}{2}} \right) \right)$$
 (3)

$$or, \theta_1 = 2 \tan^{-1} \left(\tan \left(\frac{\theta_2}{2} \right) \left(\frac{\cos \theta - \cos \frac{\theta_2 + \theta_3}{2}}{\cos \theta + \cos \frac{\theta_2 + \theta_3}{2}} \right) \right)$$
 (4)

$$\implies \theta_1 = 136.696^{\circ} \tag{5}$$
$$= 175^{\circ} \tag{6}$$

For getting the value of the $\angle OPR$

$$\cos \angle OPR = \frac{(\mathbf{O} - \mathbf{P})^{\top} (\mathbf{R} - \mathbf{P})}{||\mathbf{O} - \mathbf{P}||||\mathbf{R} - \mathbf{P}||}$$
(7)

$$=\sqrt{\frac{1-\cos\left(\theta_2-\theta_3\right)}{2}}\tag{8}$$

$$\angle OPR = 10^{\circ} \tag{9}$$

Figure 1:

Figure 2: