	DatePage
	Day-211
*	Floyd Warshall Algarithm:
	3
⇒	This algorithm is used for finding multiple source shortest path.
=	It is only applied to directed graph
=	Letis take an example,
7	Suppose, we want to go to C from A, then, $A \stackrel{2}{>} C$ But, $A \stackrel{2}{>} B$, $B \stackrel{2}{\rightarrow} C = A \stackrel{6}{\rightarrow} C$ We can / also take the above path.
	This is logic behind FWA

(ALA) FWA is based on the property that if there is a party between A&B & and B&C. Thon, there must be path from A to -1 C by going through B Son this thing or property is called Transitivity. It is given by Warshall = And the Floyd main tast is to update the distance by choosing min distance So, Jon A > D, $A\stackrel{2}{\rightarrow}B$ $A\stackrel{3}{\rightarrow}D$ This algo works on a very important principle that Small milate jao, large banate
jao (i) (Rohit bhaiya rocks 1) = so, here comes a concept of intermediate nodes. we will consider every other node as intermediate node and check for the

Page In FWA, ordering doesn't matter of taking intermediate node. Suppose, we are taking 2'as a In indermediate node between i & j then it is also possible that other indermediate nodes are prosent Code fanl int k=0; k<n; b++){ fool i=0; (<n; i++){ fan(j=0; j<h; j++)f.
mat[][j] = min (mat[][j], mat(i)[k] + mat(k)[j] Time Camplexity -> O(V3)
Space Complexity -> O(1) FWA can also detect negative cycle and can also work for -ve weights.

	THE RESIDENCE OF THE PARTY OF T
A M	
	Date Page
	Societ the diagonal element that we always have zero value but have any -vo value.
=1	That means -ve cycle present in the graph.
	Fx: 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
=)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
], ====================================	1 → 1 (but self distance can't be -ve) So, -ve cycle present.
	Dijkstnai Unly for + w
1 21 21 21 21 21 21 21 21 21 21 21 21 21	To Spanse Dense $O(E \log V) * V O(V^2) * V O(V^3)$ $V^2 \log V O(V^3)$
7	FW: Fasy to implement.
ALL S	