华润微电子(重庆)有限公司

CRST045N10N, CRSS042N10N

SkyMOS1 N-MOSFET 100V, 3.6mΩ, 120A

Features

- Uses CRM(CQ) advanced SkyMOS1 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Product Summary

V_{DS}	100V
R _{DS(on)}	$3.6 m\Omega$
I _D	120A

Applications

- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRST045N10N	-	TO-220	Tube	N/A	N/A	50pcs
CRSS042N10N	-	TO-263	Tube	N/A	N/A	50pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V _{DS}	100	V
Continuous drain current			
$T_C = 25$ °C (Silicon limit)	I_{D}	172	Α
$T_C = 25$ °C (Package limit)	1 D	120	
$T_C = 100$ °C (Silicon limit)		109	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	${ m I}_{ m D\ pulse}$	480	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω)	E _{AS}	256	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	227	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

CRST045N10N, CRSS042N10N

SkyMOS1 N-MOSFET 100V, $3.6m\Omega$, 120A

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.55	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	62	- C/ VV

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davameter	Symbol	Value			IImit.	Tost Condition	
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	100	115	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	2	3	4	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
						V _{DS} =100V,V _{GS} =0V	
Zero gate voltage drain current	I_{DSS}	-	0.05	1	μΑ	T _j =25°C	
		-	-	10		T _j =125°C	
Gate-source leakage current	I_{GSS}	-	±10	±100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$	
						V _{GS} =10V, I _D =50A	
Drain-source on-state resistance	R _{DS(on)}	-	3.6	4.5	0	TO-220	
resistance		-	3.4	4.2	mΩ	TO-263	
Transconductance	g _{fs}	-	50	-	S	$V_{DS}=5V,I_{D}=50A$	

Dynamic Characteristic

Input Capacitance	C _{iss}	-	6772	-		
Output Capacitance	C _{oss}	-	952	-	pF	V_{GS} =0V, V_{DS} =50V, f =1MHz
Reverse Transfer Capacitance	C _{rss}	-	33	-	•	T=IMHZ
Gate Total Charge	Q_{G}	-	90	-		
Gate-Source charge	Q_{gs}	-	28	-	nC	V_{GS} =10V, V_{DS} =50V, I_{D} =20A, f=1MHz
Gate-Drain charge	Q_{gd}	-	19	-		
Turn-on delay time	t _{d(on)}	-	28	1		
Rise time	t _r	-	32	ı	nc	$V_{GS} = 10V, V_{DD} = 50V, R_{G_{ext}} = 3.0\Omega$
Turn-off delay time	t _{d(off)}	-	48	ı	ns	
Fall time	t _f	-	27	1		
Gate resistance	R_G	-	2	-	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

CRST045N10N, CRSS042N10N

SkyMOS1 N-MOSFET 100V, $3.6m\Omega$, 120A

Body Diode Characteristic

Parameter	Symbol		Value		Unit	Test Condition
	Syllibol	min.	typ.	max.	Oilit	rest Condition
Body Diode Forward Voltage	V_{SD}	-	0.89	1.3	V	V_{GS} =0V, I_{SD} =50A
Body Diode Reverse Recovery Time	t _{rr}	-	80	-	ns	I _F =50A,
Body Diode Reverse Recovery Charge	Q _{rr}	-	190	-	nC	I _F =50A, dI/dt=100A/μs

Typical Performance Characteristics

Fig 2: Transfer Characteristics 100 $V_{DS}=5V$ 80 60 آ ا 125°C 25°C 40 20 0 7 0 1 2 5 6 8 3

V_{GS} (V)

Fig 3: Rds(on) vs Drain Current and Gate Voltage 7.0 6.0 R_{DS(on)} (mΩ) 5.0 V_{GS}=10V 4.0 3.0 2.0 1.0 10 20 30 40 50 60 70 80 90 100 $I_D(A)$

Fig 8: Body-diode Forward Characteristics 100 Is - Diode Current(A) 10 125°C 25°C 1 0.1 0.01 0.2 0.6 0.8 1 0 0.4 1.2 V_{SD} - Diode Forward Voltage(V)

Fig 9: Power Dissipation 250 200 P_{tot} (W) 150 100 50 0 0 25 50 75 100 125 150

1000 Limited by Rds(on)

Fig 11: Safe Operating Area

Tc - Case Temperature (°C)

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TO-220-3L

G	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min.	Max.	Min.	Max.
А	4.30	4.80	0.169	0.189
A1	1.20	1.45	0.047	0.057
A2	2.20	2.90	0.087	0.114
b	0.69	0.95	0.027	0.037
b2	1.00	1.60	0.039	0.063
С	0.33	0.65	0.013	0.026
D	14.70	16.20	0.579	0.638
D1	8.59	9.65	0.338	0.380
D2	11.75	13.60	0.463	0.535
е	2.54	BSC.	0.100	BSC.
E	9.60	10.60	0.378	0.417
E1	7.00	8.46	0.276	0.333
H1	6.20	7.00	0.244	0.276
L	12.60	14.80	0.496	0.583
L1	2.70	3.80	0.106	0.150
L2	12.13	16.50	0.478	0.650
Q	2.40	3.10	0.094	0.122
Р	3.50	3.90	0.138	0.154

Package Outline: TO-263

Sumb al	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
А	4.30	4.86	0.169	0.191
A1	0.00	0.25	0.000	0.010
A2	2.34	2.79	0.092	0.110
b	0.68	0.94	0.027	0.037
b2	1.15	1.35	0.045	0.053
С	0.33	0.65	0.013	0.026
c2	1.17	1.40	0.046	0.055
D	8.38	9.45	0.330	0.372
D1	6.90	8.17	0.272	0.322
е	2.54	BSC.	0.100	BSC.
Е	9.78	10.50	0.385	0.413
E1	6.50	8.60	0.256	0.339
Н	14.61	15.88	0.575	0.625
L	2.24	3.00	0.088	0.118
L1	0.70	1.60	0.028	0.063
L2	1.00	1.78	0.039	0.070
L3	0.00	0.25	0.000	0.010

CRST045N10N, CRSS042N10N

SkyMOS1 N-MOSFET 100V, $3.6m\Omega$, 120A

Revision History

Revison	Date	Major changes
1.0	2018-02-09	Release of formal version.
2.0	2019-05-28	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

