Category Theory

- A Journey from Concretization to Abstraction -

Ji, Yong-Hyeon

A document presented for the Category Theory

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

Contents

1	Cate	egorical	3
		Example: Application in \mathbb{R}^2	
	1.2	Currying, Kleisli Category, Grothendieck Construction	14
		1.2.1 Currying	14

Chapter 1

Categorical

Example 1.1 (Determinant).

[Two Categories]

- 1. Category of Commutative Rings (CRing)
 - **Objects**: Commutative rings *R*, *S*, ...
 - **Morphisms**: Ring homomorphisms ϕ : R → S
- 2. Category of Groups (Grp)
 - Objects: Groups
 - Morphisms: Group homomorphisms

[**Two Functors**] Note that GL_n represents the functor, while GL_n denotes the group.

- 1. General Linear Group Functor ($GL_n : CRing \rightarrow Grp$)
 - On Objects:

$$R \mapsto GL_n(R)$$

Maps a ring R to the general linear group $GL_n(R)$, which consists of all $n \times n$ invertible matrices over R.

– On Morphisms: Let $GL_n(\phi)$: $GL_n(R)$ → $GL_n(S)$.

$$\phi \mapsto \mathbf{GL}_n(\phi)$$

It preserves invertibility.

- 2. Unit Functor (U : CRing \rightarrow Grp)
 - On Objects:

$$R \mapsto R^{\times}$$

– On Morphisms: Let $\mathbf{U}(\phi)$: \mathbb{R}^{\times} → \mathbb{S}^{\times} .

$$\phi \mapsto \mathbf{U}(\phi)$$

It preserves the unit property.

• [Natural Transformation: Determinant] The determinant

$$\det_R : GL_n(R) \to R^{\times}$$

is a natural transformation between two functors, GL_n and U.

- On Objects: $η_R : GL_n(R) → R^{\times}$
- Naturality Condition: The following diagram commutes:

Example 1.2. Consider
$$\mathbb{Z}$$
 and $GL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) : ad - bc \neq 0 \right\}$.

[Two Categories]

- 1. Category of Commutative Rings (CRing)
 - **Object**: Commutative ring $(\mathbb{Z}, +, \times)$
 - **Morphism**: Ring homomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$
- 2. Category of Groups (Grp)
 - **Objects**: Groups ($GL_2(\mathbb{Z})$, *) and (\mathbb{Z}^{\times} , ×). Here '*' denotes matrix multiplication. Note that

$$\mathbb{Z}^{\times} = \{1, -1\}.$$

- Morphisms: Group homomorphisms

$$\sigma: GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z})$$
 and $\tau: \mathbb{Z}^{\times} \to \mathbb{Z}^{\times}$.

Note that $\tau : \{\pm 1\} \rightarrow \{\pm 1\}$

[**Two Functors**] Note that GL_2 represents the functor, while GL_2 denotes the group.

- 1. General Linear Group Functor ($GL_2 : CRing \rightarrow Grp$)
 - On Object:

$$\mathbb{Z} \mapsto GL_2(\mathbb{Z})$$

- On Morphism:

$$\phi \mapsto \sigma = \mathbf{GL}_2(\phi)$$

It preserves invertibility.

- 2. Unit Functor (U : CRing \rightarrow Grp)
 - On Object:

$$\mathbb{Z} \mapsto \mathbb{Z}^{\times} = \{\pm 1\}$$

- On Morphism:

$$\phi \mapsto \tau = \mathbf{U}(\phi)$$

It preserves the unit property.

• [Natural Transformation: Determinant] The determinant

$$\det_{\mathbb{Z}} : GL_2(\mathbb{Z}) \longrightarrow \mathbb{Z}^{\times} = \{\pm 1\}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto ad - bc = \det_{\mathbb{Z}} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a natural transformation between two functors, GL_2 and U.

- Naturality Condition: The following diagram commutes:

$$GL_{2}(\mathbb{Z}) \xrightarrow{\eta_{\mathbb{Z}} = \det_{\mathbb{Z}}} \mathbb{Z}^{\times}$$

$$\downarrow^{\sigma = GL_{2}(\phi)} \qquad \qquad \downarrow^{\tau = U(\phi)}$$

$$GL_{n}(\mathbb{Z}) \xrightarrow{\eta_{\mathbb{Z}} = \det_{\mathbb{Z}}} \mathbb{Z}^{\times}$$

Requires additional constraints or specific structures

Example 1.3 (Evaluation Mapping as Natural Transformation).

Definition (Evaluation Map)

- Let *V* , *K* be sets, and
- let K^V be the set of all mappings from V to K.

The **evaluation mapping** for K^V is the mapping $ev : K^V \times V \to K$ defined by:

$$ev(f, v) := f(v)$$

for $f \in K^V$ and $v \in V$.

Consider a linear mapping

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \quad \phi(\mathbf{v}) = \phi(v_1, v_2) = 3v_1 - 2v_2.$$

Then evaluation map $ev : \mathbb{R}^{\mathbb{R}^2} \times \mathbb{R}^2 \to \mathbb{R}$ ensure

$$ev(\phi, (1, 1)) = \phi(1, 1) = 3 \cdot 1 - 2 \cdot 1 = 1.$$

[Category]

- 1. Category of Vector Space (Vect_K)
 - Object:
 - * Vector Spaces over field $K: V, W, \cdots$
 - * Dual Spaces: V^* , W^* , \cdots . Note that

$$V^* := \{ \phi : V \to K \mid \phi \text{ is linear functional} \}$$

* Double dual Spaces: V^{**} , W^{**} , \cdots . Note that

$$V^{**} := \{ \psi \in V^{**} \to K \mid \psi \text{ is linear functional} \}$$

- **Morphism**: Ring homomorphism ϕ : \mathbb{Z} → \mathbb{Z}
- 2. Category of Groups (Grp)
 - **Objects**: Groups ($GL_2(\mathbb{Z})$, ∗) and (\mathbb{Z}^{\times} , ×). Here '∗' denotes matrix multiplication. Note that

$$\mathbb{Z}^{\times} = \{1, -1\}.$$

- Morphisms: Group homomorphisms

$$\sigma: GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z})$$
 and $\tau: \mathbb{Z}^{\times} \to \mathbb{Z}^{\times}$.

Note that $\tau : \{\pm 1\} \rightarrow \{\pm 1\}$

[**Two Functors**] Note that GL_2 represents the functor, while GL_2 denotes the group.

- 1. General Linear Group Functor ($GL_2 : CRing \rightarrow Grp$)
 - On Object:

$$\mathbb{Z} \mapsto GL_2(\mathbb{Z})$$

- On Morphism:

$$\phi \mapsto \sigma = \mathbf{GL}_2(\phi)$$

It preserves invertibility.

- 2. Unit Functor (U : CRing \rightarrow Grp)
 - On Object:

$$\mathbb{Z} \mapsto \mathbb{Z}^{\times} = \{\pm 1\}$$

- On Morphism:

$$\phi \mapsto \tau = \mathbf{U}(\phi)$$

It preserves the unit property.

• [Natural Transformation: Determinant] The determinant

$$\det_{\mathbb{Z}} : GL_2(\mathbb{Z}) \longrightarrow \mathbb{Z}^{\times} = \{\pm 1\}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto ad - bc = \det_{\mathbb{Z}} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a natural transformation between two functors, GL_2 and U.

- Naturality Condition: The following diagram commutes:

$$GL_{2}(\mathbb{Z}) \xrightarrow{\eta_{\mathbb{Z}} = \operatorname{det}_{\mathbb{Z}}} \mathbb{Z}^{\times}$$

$$\downarrow^{\sigma = \operatorname{GL}_{2}(\phi)} \qquad \downarrow^{\tau = \operatorname{U}(\phi)}$$

$$GL_{n}(\mathbb{Z}) \xrightarrow{\eta_{\mathbb{Z}} = \operatorname{det}_{\mathbb{Z}}} \mathbb{Z}^{\times}$$

Definition 1.1 (Vector Space and Dual Space).

- Let *V* be a finite-dimensional *vector space* over field \mathbb{K} . That is, $V = K^n$.
- The *dual space* V^* of V consists of all linear functionals on V. That is,

$$V^* = \{ \phi : V \to \mathbb{R} \mid \phi \text{ is linear} \}.$$

Definition 1.2 (Double Dual Space). The *double dual space* V^{**} of a vector space V is defined as the dual of the dual space, i.e., $V^{**} = (V^*)^*$. For each $\psi \in V^{**}$, ψ is a functional acting on elements of V^* .

Natural Isomorphism Between V and V^{**}

Theorem 1.1 (Canonical Isomorphism). For every finite-dimensional vector space V, there is a canonical isomorphism $\eta_V: V \to V^{**}$ defined by

$$\eta_V(v)(\phi) = \phi(v),$$

for every $v \in V$ and $\phi \in V^*$. This map is a natural isomorphism, meaning it commutes with all linear transformations.

Definition 1.3 (Induced Map on Dual and Double Dual Spaces). For a linear transformation $T: V \to W$ between vector spaces, the induced map on the dual space, $T^*: W^* \to V^*$, is defined by

$$T^*(\phi) = \phi \circ T$$

where $\phi \in W^*$. Similarly, the induced map on the double dual space, $T^{**}: V^{**} \to W^{**}$, is defined by

$$T^{**}(\psi) = \psi \circ T^*,$$

where $\psi \in V^{**}$.

1.1 Example: Application in \mathbb{R}^2

Example 1.4 (Matrix Transformation and Double Dual). Consider the vector space $V = \mathbb{R}^2$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be represented by the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

We compute the induced maps T^* and T^{**} and verify the natural transformation property with η_V .

Action of *T* **and** η_V : If $\mathbf{v} = (1, 1)$, then

$$T(\mathbf{v}) = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}.$$

The action of $\eta_{\mathbb{R}^2}$ and ϕ defined by $\phi(\mathbf{v}) = 3v_1 - 2v_2$ gives

$$\eta_{\mathbb{R}^2}((1,1))(\phi) = 1 \text{ and } \eta_{\mathbb{R}^2}((3,7))(\phi) = 3 \times 3 - 2 \times 7 = -5.$$

Verification of Commutativity: To confirm the natural transformation property, we need to show

$$T^{**}(\eta_{\mathbb{R}^2}(\mathbf{v})) = \eta_{\mathbb{R}^2}(T(\mathbf{v})).$$

For $\mathbf{v} = (1,1)$, the calculations show that both sides of the equation represent consistent transformations via the isomorphism $\eta_{\mathbb{R}^2}$, proving the natural transformation.

Example 1.5.

[Category]

Category of Finite Vector Spaces (Vect_K)

- Objects:
 - * Vector space *V* over a field *K*
 - * Dual Space

$$V^* = \left\{ \phi \in K^V : \phi \text{ is linear transformation} \right\} \subseteq (V \times K).$$

- Morphisms:
 - $* f: V \rightarrow W$
 - * $f^*: W^* \to V^*$ defined by

$$f^*(\phi_W) = (\phi_W \circ f) \in V^*$$

for $\phi_W \in W^*$.

- * Let $f: V \to W$ and $g: W \to U$.
- * $f^*: W^* \to V^*, g^*: U^* \to W^*$
- * **DualVec** $(g \circ f) =$ **DualVec** $(f) \circ$ **DualVec** $(g) = f^* \circ g^*$

[Functor]

- 1. **Dual Space Functor** (\mathcal{D} : FinVect_K \rightarrow FinVect_K)
 - On Objects:

$$V \mapsto V^* = \mathcal{D}(V)$$

Maps a vector space V to the dual space V^* , which which consists of all linear functionals from V to K.

- On Morphisms:

$$T \mapsto T^* = \mathcal{D}(T)$$

• [Natural Transformation: Determinant] The determinant

$$\det_R: GL_n(R) \to R^{\times}$$

is a natural transformation between two functors, \mathbf{GL}_n and \mathbf{U} .

1.2 Currying, Kleisli Category, Grothendieck Construction

1.2.1 Currying

Note.

$$\begin{array}{cccc} A^{B\times C} &\simeq & (A^C)^B \\ (f:B\times C\to A) & \stackrel{\mapsto}{\leftarrow} & \left(\begin{array}{ccc} g & : & B & \longrightarrow & [C\to A] \\ & b\in B & \longmapsto & g_b\in A^C \end{array}\right) \,.$$

Consider $f: X \times Y \rightarrow Z$. Then

$$f: X \times Y \to Z \implies f \in Z^{X \times Y}$$

$$\implies f \in (Z^Y)^X, \text{i.e., } x \in X \mapsto f_x \in Z^Y$$

$$\implies f: X \to [Y \to Z].$$

Let *V* be a vector space over a field *K*. Then a dual space (of *V*) is

$$V^* = \left\{ f \in K^V : f \text{ is a linear functional} \right\}$$

$$F : V \longrightarrow V^*$$

$$\mathbf{v} \longmapsto \begin{pmatrix} f : V \longrightarrow K \\ \mathbf{v} \longmapsto f(\mathbf{v}) \end{pmatrix}$$

def f1(x): return (x + 1, str(x) + "+1")

def f2(x): return (x + 2, str(x) + "+2")

def f3(x): return (x + 3, str(x) + "+3")

def unit(x):
 return (x, "Ops:")

def bind(t, f):
 res = f(t[0])
 return (res[0], t[1] + res[1] + ";")

print(bind(bind(bind(unit(x), f1), f2), f3))

$$X \xrightarrow{f} TY \xrightarrow{T_g} T^2Z \xrightarrow{\mu_Z} TZ$$

Bibliography

[1] ProofWiki. "Definition:Set of All Mappings" Accessed on [April 29, 2024]. https://proofwiki.org/wiki/Definition:Set_of_All_Mappings.