

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Basics of Neural Network Programming

Binary Classification

Binary classification

• Notation

$$(\vec{x}, y)$$
 $x \in R^{n_x}, y \in \{0,1\}$

Binary classification

• m training example: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}, ..., (x^{(m)}, y^{(m)})\}$

Logistic Regression

• Given x, output $\hat{y} = P(y=1|x)$ $0 \le \hat{y} \le 1$

 $x \in \mathbb{R}^{n_x}$ parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$

$$\hat{y} = w^T x + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

if z large $\sigma(z) \approx 1$

if z large negative $\sigma(z) \approx 0$

Logistic Regression

•
$$\hat{y} = \sigma(\underbrace{w^T x + b})$$

$$x_0 = 1, x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = w^T x$$

$$W = \begin{bmatrix} b = w_0 \\ w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_{nx} \end{bmatrix}$$

Logistic Regression cost function

- Loss (error) function: $L(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2 = \frac{1}{2}(\sigma(w^Tx + b) y)^2$ SE: Square Error
- Non-convex graph:

https://mlstory.org/optimization.html

- In mathematics, a real-valued function is called **convex** if the line segment between any two distinct points on the graph of the function lies above the graph between the two points.
- Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set.

Cross Entropy

• $L(\hat{y}, y) = -(y \log \hat{y} + (1-y)\log(1-\hat{y}))$

if
$$y=1$$
: $L(\hat{y}, y) = -\log \hat{y}$

if
$$y=0$$
: $L(\hat{y}, y) = -\log(1-\hat{y})$

• Cost function: $J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)})$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

Basics of Neural Network Programming

Gradient Descent

Gradient Descent

• 1) $\alpha > 0$ Repeat { $w = w - \alpha \frac{dJ(w)}{d(w)}$ } until convergence $w = w - \alpha dw$ $w^* = (x^T x)^{-1} x^T y$ $y = (x^{-\frac{n^3}{2}} 1)^2$ $\frac{dy}{dx} = 2(x - 1) = 0$ x = 1

- $z = w^T x + b$
- $\hat{y} = a = \sigma(z)$
- $L(a, y) = -(y \log a + (1 y) \log(1 a))$

Gradient Descent

Computational Graph

Gradient Descent

$$egin{align*} w_1 &= w_1 - lpha \, dw_1 \ w_2 &= w_2 - lpha \, dw_2 \ b &= b - lpha \, db \ \end{pmatrix}$$

$$\begin{cases} w_1 temp = w_1 - \alpha \, dw_1 \\ w_2 temp = w_2 - \alpha \, dw_2 \\ b temp = b - \alpha \, db \end{cases}$$

$$\begin{cases} w_1 = w_1 temp \\ w_2 = w_2 temp \\ b = b temp \end{cases}$$

•
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y^{(i)})$$

•
$$a^{(i)} = \hat{y}^{(i)} = \sigma(z^{(i)}) =$$

 $\sigma(wx^{(i)} + b)$

•
$$dw_1^{(i)}$$
 $dw_2^{(i)}$ $db^{(i)}$

•
$$\underbrace{\mathrm{d}J(w,b)}_{dw_1} = \frac{1}{\mathrm{m}} \sum_{i=1}^{\mathrm{m}} \underbrace{\frac{d\mathrm{L}(a^{(i)},y^{(i)})}{dw_1}}_{i=1}$$

Logistic regression on m examples

$$J=0;$$
 $dw_1=0;$ $dw_2=0;$ $db=0;$ $w_1\leftarrow \mathrm{ran} dom$ $w_2\leftarrow \mathrm{ran} dom$ $b\leftarrow \mathrm{ran} dom$ $\mathit{Repeat}\{$ For $\mathit{i=1}$ to m

For
$$i=1$$
 to m

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += [y^{(i)}Loga^{(i)} + (1 - y^{(i)})Log(1 - a^{(i)})]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$dw_{1} += x_{1}^{(i)} dz^{(i)}$$

$$dw_{2} += x_{2}^{(i)} dz^{(i)}$$

$$db += dz^{(i)}$$

$$J/=m;$$
 $dw_1/=m;$ $dw_2/=m;$

$$w_1 = w_1 - \alpha \, dw_1$$

$$w_2 = w_2 - \alpha \, dw_2 \qquad d\theta = \begin{bmatrix} dw_1 \\ dw_2 \\ db \end{bmatrix} \qquad \theta^t = \begin{bmatrix} w_2 \\ w_3 \\ h^t \end{bmatrix}$$

$$b=b-\alpha db$$

$$\|d\theta\| \le \varepsilon = 10^{-4}$$
 $\theta^{t+1} = \begin{bmatrix} w_1^{t+1} \\ w_2^{t+1} \\ h^{t+1} \end{bmatrix}$ $\|\theta^{t+1} - \theta^t\|_2 \le \varepsilon$

$$\|\theta^{t+1} - \theta^t\|_2 \leq \varepsilon$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

```
• Z=0;

For i in range(n_x)
z += w[i] * x[i]
z += b
```

•
$$Z=0$$
; $z=np.dot(w,x)+b$ SIMD GPU

•
$$Z = \underbrace{np \cdot dot(W \cdot T, X)}_{1, m} + \underbrace{b}_{(1,1)}$$
 "broadcasting" $[b, b \dots, b]_{1 \times m}$

•
$$A = [a^{(1)}, a^{(2)}, ..., a^{(m)}] = \sigma(\underbrace{Z})$$

• $dz^{(1)} = a^{(1)} - y^{(1)}$ $dz^{(2)} = a^{(2)} - y^{(2)}$

• $dz = [dz^{(1)} dz^{(2)} ... dz^{(m)}]_{1 \times m}$

• $A = [a^{(1)} a^{(2)} ... a^{(m)}]$ $Y = [y^{(1)} y^{(2)} ... y^{(m)}]$

• $dZ = A - Y = [a^{(1)} - y^{(1)} a^{(2)} - y^{(2)} ... a^{(m)} - y^{(m)}]$

• $dw = 0$ $db = 0$

• $dw = 0$ $du = 0$

• $dw = 0$ $du = 0$

• $dw = 0$

```
• w_1, w_2, b \leftarrow random

For iter in range(1000)
Z = W^T x + b = np \cdot dot(W.T, X) + b
A = \sigma(Z)
dZ = A - Y
dW = \frac{1}{m}X dZ^T
db = \frac{1}{m}np.sum(dZ)
w = w - \alpha dw
b = b - \alpha db
```

$$a = np \cdot random \cdot randn(5,1)$$
 $a. shape = (5,1)$

Logistic Regression Cost function

•
$$\hat{y} = \sigma(w^T x + b)$$
 $0 < \sigma(z) = \frac{1}{1 + e^{-z}} < 1$

•
$$\hat{y} = p(y = 1|x)$$

• if
$$y = 1$$
: $p(y|x) = \hat{y}$
• if $y = 0$: $p(y|x) = 1 - \hat{y}$

• if
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$p(y|x) = \hat{y}^y + (1 - \hat{y})^{1-y}$$
 distribution? Bernoulli

• if
$$y = 1$$
: $p(y|x) = \hat{y}$

• *if*
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$\log p(y|x) = \log[\hat{y}^y + (1-\hat{y})^{1-y}] = y \log \hat{y} + (1-y) \log(1-\hat{y})$$

= $-L(\hat{y}, y)$ Max Likelihood

Logistic Regression Cost function

- $\log P(labels in trainingset) = \log \prod_{i=1}^{m} P(y^i \mid x^i)$
- $\log P(\dots) = \sum_{i=1}^{m} \log P(y^{(i)} \mid x^{(i)}) = -\sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$

• Cost function
$$\underbrace{J(w,b)}_{minimize} = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

Neural Networks

