MATRIKS

AN R PACKAGE FOR THE AUTOMATIC GENERATION OF RAVEN-LIKE MATRICES

Ottavia M. Epifania, Andrea Brancaccio, Debora de Chiusole, Pasquale Anselmi, Luca Stefautti

University of Padova, IT

MathPsych, ICCM, EMPG, July 2023

Introduction

•0000

Introduction

00000

Introduction

00000

Assessment of fluid intelligence or abstract reasoning Beyond clinical assessment \rightarrow Job recruitment

Issue

Can only be administered once (or after a long time period)

Issue

Introduction

00000

Can only be administered once (or after a long time period)

Aim

Development of an open-source easy-to-use tool for the automatic and rule-based generation of Raven-like matrices

An example: The matrix

An example: The matrix

An example: The matrix

Repetition

Incomplete Correlate Wrong Principle Difference

Repetition
Incomplete Correlate
Wrong Principle
Difference

Repetition
Incomplete Correlate
Wrong Principle
Difference

Repetition
Incomplete Correlate
Wrong Principle
Difference

- Introduction
- Q Generating rules
- The matRiks package
- 4 Why?
- Final remarks

Category	Rule name	Definition
Visuospatial	Object addition	Visually merge two objects
	Movement	Change the position of an object across the cells
	Rotation	Change the spatial orientation of the objects across the cells
	Mental transformation	Apply the characteristics of the objects in the sec- ond cell to the objects in the first cell to obtain the object in the third cell.
	Numerical progression	Quantitative increase or decrease in the number of objects from cell to cell
	Changes in shape	Change objects across cells
	Changes in shade	Change the shade of the objects across cells
	Changes in size	Change the size of the objects across cells
	Changes in outline	Change the outline of the objects across cells
Logical	AND	The third cell contains only the elements that appeared in both the first and second cells (\cap)
	OR	The third cell contains all the elements in the first and second cells (\cup)
	XOR	The third cell contains the elements in the first cell not present in the second cell and vice-versa (Δ)

- Introduction
- Generating rules
- The matRiks package
- 4 Why
- Final remarks

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2 × 2 or 3 × 3 Raven-like matrices
- ullet Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2×2 or 3×3 Raven-like matrices
- ullet Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2 × 2 or 3 × 3 Raven-like matrices
- ullet Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

(Some) of the available objects

. . .

Rotate

Shade

Shape

Size

Logical rules

$XOR(\Delta)$

Object

Object

Rule

rotate

The matRiks architecture: Response options generator

```
Cell1 Cell2 Cell3
Cell4 Cell5 Cell6
Cell7 Cell8 ?
```

The matRiks architecture: Response options generator

```
Cell1 Cell2 Cell3
Cell4 Cell5 Cell6
Cell7 Cell8 ?
```

Response options generator

The matRiks architecture: Response options generator

```
Cell1
             Cell2
                     Cell3
    Cell4
            Cell5
                     Cell6
    Cell7
            Cell8
                                               Correct
                                                                    \times 1
                                              Repetition
                                                                    \times 3
                                       Incomplete Correlate
                                                                    \times 4
Response options generator
                                          Wrong Principle
                                                                    \times 2
                                              Difference
                                                                    \times 1
```

The matRiks package

00000000

Why?

- Introduction
- Generating rules
- The matRiks package
- 4 Why?
- Final remarks

PsycAssist

Stimuli

40 Raven-like matrices:

- ullet 1 imes 1 matrices (jigsaw puzzle) , n=5
- 2×2 matrices, n = 20
- 3×3 matrices, n = 15

Stimuli

40 Raven-like matrices:

- ullet 1 imes 1 matrices (jigsaw puzzle) , n=5
- 2×2 matrices, n = 20
- 3×3 matrices, n = 15

Sample

```
n=600 children aged 4-11 ( M=8.39\pm2.17 ), recruited in Italian schools F=48\% 30% preschoolers
```

Rasch validation

- Monotonicity check
- Fit the Rasch model:
 - \bigcirc Check for item with infit and/or outfit statistics ≥ 2 (underfit)
 - ② Local dependence (Yeun's $Q3 \ge .20$)

Rasch validation

Note

2 matrices were eliminated because of technical issues 4 matrices were eliminated because of a lack of monotonicity

The starting model included 34 matrices:

Madcov	SRMR	<i>p</i> -value
0.95	0.06	0.001

Oufit statistic suggested the underfit of one matrix (item 21) ightarrow removed and refitted the model

- ullet Check for infit/outfit o no matrices were identified as underfitting
- Check for local dependence:
 - $\begin{array}{c|c} \bullet & \mathsf{Matrix} \ 37 40 \\ \bullet & \mathsf{Matrix} \ 37 28 \end{array} \end{array} \right\} \to \mathsf{Matrix} \ 37 \ \mathsf{has} \ \mathsf{been} \ \mathsf{eliminated}$

The final model

Madcov	SRMR	<i>p</i> -value
0.94	0.06	0.001

- Introduction
- Q Generating rules
- The matRiks package
- 4 Why?
- Final remarks

- Formalization of the matrix generation
- ullet Generate similar but different matrices o Equivalent matrices (?)
- Reproducibility of the stimuli
- Ease of use (for useR)

- Formalization of the matrix generation
- ullet Generate similar but different matrices o Equivalent matrices (?)
- Reproducibility of the stimuli
- Ease of use (for useR)

matRiks

https://github.com/OttaviaE/matRiks

Slides

https://github.com/OttaviaE/matRiks

Thank you!

ottavia.epifania@unipd.it

