The Phillips Curve - Part 1

EC 313, Macroeconomics

Alex Li

Book Chapter 8

Monetary Goals

The Federal Reserve works to **promote a strong U.S. economy**.

Congress has directed **the Fed** to conduct the nation's monetary policy to support **three specific goals**:

- 1. Maximum sustainable employment. (output Y)
- 2. Stable prices. (price P)
- 3. Moderate long-term interest rates. (**implied by 2.**)

Note the second goal relates to our focus of this lecture.

Brief History

- In 1958, A.W. Phillips plotted the historical relationship between the inflation rate and the unemployment rate in the United Kingdom between 1861 and 1957.
- He found strong evidence of a **negative relationship between inflation** and unemployment.
- That is, when **inflation is high, unemployment is low**. And when inflation is low, unemployment is high.
- In 1960, **Paul Samuelson** and **Robert Solow** found evidence of the same relationship using **U.S. data**.

The Phillips Curve

- The **negative relationship** between the inflation rate and unemployment.
- In the 1970s, however, this **relationship broke down**. Both high inflation and high unemployment (stagflation).
- Phillips curve still is the primary framework for understanding and forecasting inflation used in central banks.

Functions of Money

Before we start talking about price and changes in price (inflation), let's talk about money.

There are three functions of money:

- The medium of exchange.
- Store of value.
- Unit of account.

Functions of Money

Economists like to argue that money belongs in the same class as the wheel and the inclined plane among **ancient inventions of great social utility**.

Price stability allows that invention to work with minimal friction.

Why Stable Price

The Dual Role of Price Stability

- Price stability plays a dual role in modern central banking: It is both
- An end (goal) of monetary policy
- A means of monetary policy

Price Stability - Goal

- Fundamentally, price stability preserves the integrity and purchasing power of the nation's money.
 - People can hold money without having to worry that inflation will eat away at the real value of their money balances.

Price Stability - Goal

- Equally important, stable prices allow people to rely on the dollar as a measure of value when making long-term contracts, engaging in longterm planning, or borrowing or lending for long periods.
 - Price stability permits tax laws, accounting rules to be expressed in dollar terms without being subject to distortions arising from fluctuations in the value of money.

Price Stability - Means

When price stability likely to

- Enhance Long-term Economic growth (related to goal 1)
- Matain stable Long-term interest rates (related to goal 2)

Price Stability - Means

Price stability helps maintain long-term economic growth by...

- **reducing concern** about unpredictable fluctuations in the purchasing power of money.
- improving economic activities
- making sure markets operate efficiently.

Price Stability - Means

Price stability helps maintain long-term economic growth because

- The dollar provides a reasonably secure gauge of real economic values only when inflation is low and stable.
- High and variable inflation degrades the quality of the signals coming from the price system
- Producers and consumers find it difficult to distinguish **price changes** arising from changes in product supplies and demands from changes arising from general inflation.

Price Stability - Means

Price stability helps maintain long-term interest rate.

To understand this, we need to understand Fisher Equation

Let i be the nominal interest rate, r be the real interest rate, and π be the inflation rate.

The Fisher Equation is:

$$i = r + \pi$$

Conclusion:

Stable π is necessary for stable i.

Empirical Discovery

During the period 1900-1960 in the United States,

- A low unemployment rate was associated with a high inflation rate
- A high unemployment rate was associated with a low inflation rate.

Empirical Discovery

Why is the Phillips Curve an important discovery?

- It states that there is a trade-off between the unemployment rate and the inflation rate.
- The Fed wants a low sustainable unemployment rate.
- The Fed wants a low sustainable inflation rate.
- The Phillips Curve gives the Fed a guidance on how to reach a balance between these two goals.

Theory

In Macroeconomics, we **can't run controlled experiments**; we rely on models to explain what we observe in the data.

The theory supporting the Phillips Curve is coming from the **Labor Market Equilibrium**. Assuming technology A = 1, we have labor supply (WS) and labor demand (PS):

$$ext{WS}: oldsymbol{W} = P^e F(u,z) \ ext{PS}: P = (1+m) oldsymbol{W}$$

The Labor Market Equilibrium states:

$$P = (1+m)P^eF(u,z)$$

Theory

The Labor Market Equilibrium states:

$$P = P^e(1+m)F(u,z)$$

Recall that F(u,z) is a decreasing function in u and an increasing function in z.

To make life easier, we assume

$$F(u,z) = 1 - \alpha u + z$$

where $\alpha > 0$.

$$P = P^e(1+m)(1-\alpha u + z)$$

Theory

We need to go from **price to inflation**. Recall inflation: **The growth rate in prices over time.**

$$\pi_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

$$\pi_t = \frac{P_t}{P_{t-1}} - 1$$

$$1+\pi_t = \frac{P_t}{P_{t-1}}$$

We can perform the **same analysis** for expected inflation π_t^e at time t:

$$1+\pi^e_t=rac{P^e_t}{P_{t-1}}$$

Theory

The Labor Market Equilibrium

$$egin{aligned} P &= P^e (1+m) (1-lpha u+z) \ P_t &= P^e_t (1+m) (1-lpha u_t+z) \ rac{P_t}{P_{t-1}} &= rac{P^e_t}{P_{t-1}} (1+m) (1-lpha u_t+z) \ 1+\pi_t &= (1+\pi^e_t) (1+m) (1-lpha u_t+z) \ 1+\pi_t &= 1+\pi^e_t + m-lpha u_t+z \ \pi_t &= \pi^e_t + (m+z) - lpha u_t \end{aligned}$$

I won't make you do this derivation in the exams.

Theory

Now we have our Labor Market Equilibrium written in terms of inflations.

$$\pi=\pi^e+(m+z)-lpha u$$

- Increase in expected inflation --> Increase in actual inflation
- Increase in z --> increase in actual inflation
- Increase in m --> Increase in actual inflation
- Increase in unemployment --> decrease in inflation (Phillips Curve)

Theory

Incease in expected inflation --> increase in actual inflation

- Expected Inflation increases...
- The expected price is higher in the next period...
- Workers ask for a higher wage (WS Relation)...
- More costly for firms to produce goods because labor is more expensive...
- Firms set higher price in the next period (PS Relation)...

Theory

- Increase in z --> increase in actual inflation
- Increase in z...
- Workers ask for a higher wage (WS Relation) in the next period...
- More costly for firms to produce goods because labor is more expensive...
- Firms set higher price in the next period (PS Relation)...

Theory

- Increase in m --> increase in actual inflation
- Increase in m...
- Firms will set a **higher price** because firms have a **higher mark-up** in the next period.

Examples for **m**:

- 1. Monopoly Power.
- 2. Higher Input Price.

Theory

- Increase in the unemployment rate --> decrease in inflation (Phillips Curve)
- Higher unemployment rate
- Workers ask for a lower wage (WS Relation)
- It is less costly for firms to produce goods because labor is cheaper...
- Firms will set a lower price in the next period.

Theory

Recall the Phillips Curve is

$$\pi=\pi^e+(m+z)-lpha u$$

We need to use **time indexes** so that we can refer to variables like inflation, or expected inflation, or unemployment, **in a specific year**.

$$\pi_t = \pi_t^e + (m+z) - lpha u_t$$

The data doesn't tell us anything about the inflation expectation π_t^e .

The theory tells us how inflation expectation π_t^e influences the actual inflation rate.

Recall the Phillips Curve is

$$\pi=\pi^e+(m+z)-lpha u$$

We need to use **time indexes** so that we can refer to variables like inflation, or expected inflation, or unemployment, **in a specific year**.

$$\pi_t = \pi_t^e + (m+z) - lpha u_t$$

To connect the **theory to data**, we need to infer how expectations are formed.

- Expectation formation is difficult to study.
- It's brain activity.

Models

Eventually, we want to find the best mathematical model to describe expectation formation. Here is how we should proceed:

- Consider a large selection of expectation selection models
- Combine each one of the expectation formation model with the theory

$$\pi_t = \pi_t^e + (m+z) - lpha u_t$$

- ullet Back out how the model-theory combo **implies** π_t
- Check if the implied π_t matches the data or makes sense (rational).

Static Expectations

$$\pi^e_t=0$$

- I observe the current price level
- I assume that future prices will be the same as they are today.

Adaptive Expectations

$$\pi_t^e = f(\pi_{t-1})$$

- Next year's inflation depends on this year's inflation.
- I expect inflation to be similar to what it was last period.

Rational Expectations (Not Required)

 π_t^e is the **true**, **statistical expectation** of π_t .

- I know the entire distribution of possible inflation rates
- I know the probabilities of each of these rates occurring
- I can calculate the true expected inflation rate.

Modern Macroeconomic Modeling almost entirely relies on Rational Expectations!

Inflation History

Note: **Before 1960** (when Phillips Curve was first discovered), inflation was positive in some years and negative in others, on average it was around zero.

Inflation History

Note: During the 70s hit twice in the 1970s by a substantial Increase in the price of oil. Inflation, in general, maintained at a higher level.

Inflation History

Note: During the 70s hit twice in the 1970s by a substantial Increase in the price of oil. Inflation, in general, maintained at a higher level.

Inflation History

Note: **Since 1990** inflation, in general, has been **roughly stable at a lower level**. (Except for the year when great recession happened.)

Inflation History

How do you think **people formed their expectations for inflation before** the 60s?

- **Before 1960** (when Phillips Curve was first discovered), inflation was positive in some years and negative in others, on average it was around zero.
- It is reasonable for people to expect that **inflation will be equal to zero** over the next year as well.

Unemployment History

Note: **During the 70s** hit twice in the 1970s by **a substantial Increase in the price of oil**. The unemployment rate increased.

Unemployment History

Note: **In general**, we can see that there is a **bussiness cycle** in terms of the unemployment rate.

Unemployment History

Note: **In general**, we can see that there is a **bussiness cycle** in terms of the unemployment rate.