OUR LADY OF AFRICA S.S NAMILYANGO (OLAN) SOLUTIONS TO A LEVEL SUBSIDIARY MATHEMATICS S475 SEMINAR QUESTIONS 2022.

1(a)	$U_n = a + (n-1)d$, $u_2 = a + (2-1)d = 1$, $a + d = 15$ (1)							
	$u_5 = a + (5-1)d = 21,$ $a + 4d = 21 \dots (ii)$							
	Solving (i)and (ii)simultaneousl $a = 13, d = 2$ n							
	$s_n = \frac{n}{2}[2a + (n-1)d], \ s_{10} = \frac{10}{2}[2(13) + (10-1)2] = 220$							
	Therefore the $ar{f}$ irst term is 13,common $ar{d}$ if ference is 2							
	and the sum of the first ten terms is 220.							
(b)	$n-2$, n , $n+3$ $\frac{n}{n-2} = \frac{n+3}{n}$							
	$n-2$, n , $n+3$ $\frac{n}{n-2} = \frac{n+3}{n}$ On cross multiplying, $n^2 = (n-2)(n+3)$, $n^2 = n^2 + n - 6$, $n = 6$							
	n-2 n $n+3$ y							
	$a + ar + ar^2 + ar^3$							
	$4 + 6 + 9 r = \frac{ar}{a} = \frac{6}{4} = 1.5$ $ar^{3} = 4(1.5)^{3} = 13.5,$							
	$ar^{3} = 4(1.5)^{3} = 13.5,$							
	Therefore the next term is 13.5							
(c)	$P(1+\frac{r}{100})^n > A$, $800000(1+\frac{15}{100})^n > 8000000$							
	$1.15^n > 10$ Introduce log_{10} on both sides							
	$\log_{10} 1.15^n > \log_{10} 10$							
	$n\frac{\log_{10} 1.15}{\log_{10} 1.15} > \frac{\log_{10} 10}{\log_{10} 1.15}$							
	n > 16.4751 $n = 17 years$							
2(a)	$n = 17 years$ $\sqrt{8} + \sqrt{18} - 2\sqrt{2} = \sqrt{4X2} + \sqrt{9X2} - 2\sqrt{2}$							
(i)	$\sqrt{8+\sqrt{18-2}}\sqrt{2} = \sqrt{4}X2+\sqrt{9}X2-2\sqrt{2}$ = $2\sqrt{2} + 3\sqrt{2} - 2\sqrt{2}$							
	$= 2\sqrt{2} + 3\sqrt{2}$ $= 3\sqrt{2}$							
(ii)	$\sqrt{24} - 3\sqrt{6} - \sqrt{216} + \sqrt{294} = \sqrt{4X6} - 3\sqrt{6} - \sqrt{36X6} + \sqrt{49X6}$							
	$= 2\sqrt{6} - 3\sqrt{6} - 6\sqrt{6} + 7\sqrt{6}$							
	$=0\sqrt{6}$							
	=0							
(b)	$\frac{2}{(3-\sqrt{2})}, Rationalizing the denominator, \frac{2}{(3-\sqrt{2})} \frac{3+\sqrt{2}}{(3+\sqrt{2})} = \frac{6+2\sqrt{2}}{9-2}$							
	$(3-\sqrt{2})^{3}$, Rationalizing the denominator, $(3-\sqrt{2})(3+\sqrt{2})^{2} - 9-2$							
	$= \frac{6}{7} + \frac{2\sqrt{2}}{7}$ in the form $A + B\sqrt{C}$							
	Where; $A = \frac{6}{7}$, $B = \frac{2}{7}$, $C = 2$.							
3(a)	$x^2 - px + 8 = 0, sum = p, product = 8$							

	$\propto + \propto +2 = p, 2 \propto +2 = p \dots \dots \dots (i)$
	$\propto (\propto +2) = 8, \qquad \propto^2 + 2 \propto -8 = 0, (\propto -2)(\propto +4) = 0$
	$either, \propto = 2 \text{ or } \propto = -4$
	$ for \propto = 2, from(i), 2 \propto +2 = p, \qquad 2(2) + 2 = p, p = 6$
	$ for \propto = -4, from(i), 2 \propto +2 = p, 2(-4) + 2 = p, p = -6$
	the two possible values of p are – 6 and 6
(b)	let one of the roots be \propto and the other $\propto -1$
	$sum = \infty + \infty - 1 = 2 \propto -1$, $product = \infty (\infty - 1)$
	equation given, $ax^2 + bx + c = 0$
	$sum = \frac{-b}{a}$, $product = \frac{c}{a}$, $2 \propto -1 = \frac{-b}{a}$, $2 \propto 1 + \frac{b}{a}$
	$\propto = \frac{a-b}{2a}$, substitute $\propto in \propto (\propto -1) = \frac{c}{a}$, $\left(\frac{a-b}{2a}\right)^2 - \left(\frac{a-b}{2a}\right) = \frac{c}{a}$
	$(a-b)^2$ $a-b$ c $(a-b)^2-2a(a-b)$ c
	$\frac{(a-b)^2}{4a^2} - \frac{a-b}{2a} = \frac{c}{a}, \qquad \frac{(a-b)^2 - 2a(a-b)}{4a^2} = \frac{c}{a}$
	$(a-b)^2 - 2a(a-b) = 4ac$, $a^2 - 2ab + b^2 - 2a^2 + 2ab = 4ac$
	$b^2 - a^2 = 4ac$, $a^2 = b^2 - 4ac$ as required
(c)	Using the remainder theorem
` '	$f(x) = (x-a)Q(x) + R(x), ax^4 + bx^3 - 8x + 6 = (x^2 - 1)Q(x) + 2x + 1$
	when $x = 1$, $a(1)^4 + b(1)^3 - 8(1) + 6 = (1 - 1)Q(x) + 2(1) + 1$
	$a + b = 5 \dots \dots$
	when $x = -1$, $a(-1)^4 + b(-1)^3 - 8(-1) + 6 = 2(-1) + 1$
	a-b-8+6=-1, a-b=1(ii)
	solving (i) and (ii) simultaneously, $a = 3$, $b = 2$
4(a)	$log_2^{(x+y)} = log_2^{100}, \ log_2^{(x+y)} = log_2^{10^2}, \ log_2^{(x+y)} = 2log_2^{10}$
()	
	$log_2^{(x+y)} = 2$, $x + y = 4$ (i)
	$log_2^{(2x-y)} = log^{10}$, $log_2^{(2x-y)} = log^{10^1}$, $log_2^{(2x-y)} = 1$
	$2x - y = 2 \dots \dots \dots \dots (ii)$
	solving (i) and (ii) simultaneaously; $x = 2$ and $y = 2$
b(i)	by completing squares, $t^2 - 4t - 8 = 0$
	$t^2 - 4t + (-2)^2 = 8 + (-2)^2$, $(t-2)^2 = 8 = 4$
	$(t-2)^2 = 12$, $(t-2) = \pm \sqrt{12}$, $t = 2 \pm \sqrt{12}$
	either t = 5.4641 or $t = -1.4641$
b(ii)	by completing squares, $2t^2 - 6t + 4 = 0$
	n n
	$t^2 - 3t + 2 = 0$, $t^2 - 3t + \left(-\frac{3}{2}\right)^2 = -2 + \left(-\frac{3}{2}\right)^2$
	$\left(t - \frac{3}{2}\right)^2 = -2 + \frac{9}{4}$, $\left(t - \frac{3}{2}\right)^2 = \frac{1}{4}$, $t - \frac{3}{2} = \pm \sqrt{\frac{1}{4}}$
	$(t-\frac{1}{2})^2 = -2 + \frac{1}{4}, (t-\frac{1}{2}) = \frac{1}{4}, t-\frac{1}{2} = \pm \frac{1}{4}$
	N N
	$t - \frac{1}{2} = \pm \frac{1}{2}$ either $t = \frac{1}{2} - \frac{1}{2} = 1$ or $t = \frac{1}{2} + \frac{1}{2} = 2$
(c)	$t - \frac{3}{2} = \pm \frac{1}{2} \text{either } t = \frac{3}{2} - \frac{1}{2} = 1 \text{or } t = \frac{3}{2} + \frac{1}{2} = 2$ $e^{3x} - 2e^{2x} - e^{x} + 2 = 0 e^{x.3} - 2e^{x.2} - e^{x} + 2 = 0 \text{let } e^{x} = y$
•	

	$y^3 - 2y^2 - y + 2 = 0$, using inspection with $y = 1$ $1^3 - 2(1)^2 - 1 + 2 = 0$, so $(y - 1)$ is a factor. by long division or factorisation, $y^3 - 2y^2 - y + 2 = (y - 1)(y^2 - y - 2)$ $(y - 1)(y^2 - y - 2) = 0$, $(y - 1)(y + 1)(y - 2) = 0$								
	Either, $y = 1$, $y = -1$, $y = 2$								
	For $y = 1$, $e^x = 1$, $lne^x = ln1$, $x = 0$ $for y = -1$, $e^x = -1$, $lne^x = ln - 1$, $x = DNE$								
	$y = 2$, $e^x = 2$, $lne^x = ln2$, $x = 0.693$								
(d)	Method 1.								
	$f(x)=2+x-3x^2$ writing it in the form $a-b(x+c)^2$ expanding $a-b(x+c)^2$, $a-b[(x+c)(x+c)]$ $a-bx^2-2bxc-bc^2$ $2+x-b^2$								
	$3x^{2} = a - bc^{2} - 2bxc - bx^{2}$								
	Comparing the coefficients,								
	$2=a-bc^2, 1=-2bc, 3=b, b=3, c=\frac{-1}{6}, a=\frac{25}{12}$								
	$2 + x - 3x^2 = \frac{25}{12} - 3\left(x - \frac{1}{6}\right)^2$								
	Method 2								
	$f(x) = -3\left(x^2 - \frac{x}{3} - \frac{2}{3}\right), -3\left[\left(x - \frac{1}{6}\right)^2 - \left(\frac{1}{6}\right)^2 - \frac{2}{3}\right] - 3\left[\left(x - \frac{1}{6}\right)^2 - \frac{25}{36}\right] f(x) = \frac{25}{12}$								
	$B(x-\frac{1}{6})^2$ where $a=\frac{25}{12}, b=3, c=\frac{-1}{6}$								
	$f(x)_{min} = \frac{25}{12}$ and it occurs when $(x - \frac{1}{6})^2 = 0$, $x = \frac{1}{6}$								
5(a)(i	$(x^2 + 3x)^7$,								
)	Let $y = (x^2 + 3x)^7$								
	Let $u = x^2 + 3x$, $\frac{du}{dx} = 2x + 3$, let $y = u^7$, $\frac{dy}{du} = 7u^6$								
	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 7u^6 \cdot 2x + 3 = 7(2x+3)(x^2+3x)^6$								
(ii)	$(x+3)\sqrt{(1-x^3)}$								
	Let $u = x + 3$, $\frac{du}{dx} = 1$, $v = \sqrt{(1 - x^3)}$ $\frac{dv}{dx} = \frac{1}{2} (1 - x^3)^{\frac{-1}{2}} - 3x^2$								
	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}, \frac{(x+3)3x}{2(1-x^3)^{\frac{1}{2}}} + (1-x^3)^{\frac{1}{2}}.1 = \frac{-3x(x+3)+2(1-x^3)}{2(1-x^3)^{\frac{1}{2}}} = \frac{2-9x-3x^2-2x^3}{2(1-x^3)^{\frac{1}{2}}}$								
(iii)	$\left(\frac{1+x^2}{2}\right)^{\frac{1}{2}}$								
	Method 1.								
	Let $y = (\frac{1+x^2}{x})^{\frac{1}{2}} y^2 = (\frac{1+x^2}{x})$, introducing $\ln both \ sides$, $\ln y^2 = [\ln(1+x^2) - \ln x]$								
	, , , , , , , , , , , , , , , , , , ,								
	$ \frac{2}{y} \frac{dy}{dx} = \frac{2x}{1+x^2} - \frac{1}{x}, \frac{dy}{dx} = \frac{2x^2 - 1 - x^2}{2x(1+x^2)}. y = \frac{x^2 - 1}{2x(1+x^2)} (\frac{1+x^2}{x})^{\frac{1}{2}} = \frac{x^2 - 1}{2x\sqrt{x((1+x^2))}} $								
	Method 2. $1 + x^2 > \frac{1}{2} = \sqrt{1 + x^2} $								
	Let $y = (\frac{1+x^2}{x})^{\frac{1}{2}} = \frac{\sqrt{1+x^2}}{\sqrt{x}}$ let $u = \sqrt{1+x^2}$ $\frac{du}{dx} = \frac{1}{2}(1+x^2)^{\frac{-1}{2}}2x = \frac{x}{\sqrt{1+x^2}}$,								

	,
	let $v = \sqrt{x}$ $\frac{dv}{dx} = \frac{1}{2\sqrt{x}}$ by quotient rule, $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{\sqrt{x} - \frac{x}{\sqrt{1+x^2}} - \sqrt{1+x^2} \frac{1}{2\sqrt{x}}}{(\sqrt{x})^2}$
	$= \frac{2x^2 - (1+x^2)}{2x\sqrt{x}\sqrt{1+x^2}} = \frac{x^2 - 1}{2x\sqrt{x((1+x^2))}}$
(iv)	$y = 3\sqrt[3]{x} + 2\sqrt{x} \frac{dy}{dx} = 3\frac{d(x)^{3/2}}{dx} + 2\frac{d(x)^{3/2}}{dx} = 3.\frac{3}{2}(x)^{1/2} + 2.\frac{1}{2}(x)^{\frac{-1}{2}}$
	$=\frac{9\sqrt{x}}{2} + \frac{1}{\sqrt{x}} = \frac{9x+2}{2\sqrt{x}}$
(v)	$y = 3x^2 \cos x$ let $u = x^2$, $\frac{du}{dx} = 2x$ $v = \cos x$, $\frac{dv}{dx} = -\sin x$
	$\frac{dy}{dx} = 3\left[u\frac{dv}{dx} + v\frac{du}{dx}\right] = 3.2x\cos x - 3x^2\sin x, = 6x\cos x - 3x^2\sin x.$ $x^2 - 3xy + y^2 - 2y + 4x = 0,$
(b)	$x^2 - 3xy + y^2 - 2y + 4x = 0,$
	$2x - 3\left[x\frac{dy}{dx} + y\right] + 2y\frac{dy}{dx} - 2\frac{dy}{dx} + 4 = 0(i)$ $(2y - 2 - 3x)\frac{dy}{dx} = 3y - 4 - 2x, \frac{dy}{dx} = \frac{3y - 4 - 2x}{(2y - 2 - 3x)}$
	$(2y-2-3x)\frac{1}{dx} = 3y-4-2x, \frac{1}{dx} = \frac{1}{(2y-2-3x)}$
	from equation (i), $2 - 3\left[\frac{dy}{dx} + x\frac{d^2y}{dx^2} + \frac{dy}{dx}\right] + 2\left[(\frac{dy}{dx})^2 + y\frac{d^2y}{dx^2}\right] - 2\frac{d^2y}{dx^2} = 0$
	collecting like terms together, $(2y-2-3x)\frac{d^2y}{dx^2}-6\frac{dy}{dx}+2(\frac{dy}{dx})^2+2=0$
	$collecting \ like \ terms \ together, (2y-2-3x)\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 2(\frac{dy}{dx})^2 + 2 = 0$ $\frac{d^2y}{dx^2} = \frac{2y-2-3x}{6\frac{dy}{dx}-2\frac{dy}{dx})^2 - 2}, = \frac{(2y-2-3x)}{6\frac{3y-4-2x}{(2y-2-3x)}-2(\frac{3y-4-2x}{(2y-2-3x)})^2 + 2} = \frac{(2y-2-3x)^3}{2(2y-2-3x)(11y-10-9x)-2(3y-4-2x)^2}$
	$y = 2x^3 + 3x^2 - 12x + 7$ $\frac{dy}{dx} = 6x^2 + 6x - 12$, For turning points;
	$\frac{dy}{dx} = 0. \ 6x^2 + 6x - 12 = 0, x^2 + x - 2 = 0,$
	$x^{2} - x + 2x - 2 = 0, x(x - 1) + 2(x - 1) = 0, (x + 2)(x - 1) = 0,$
	$x = 1, or \ x = -2.$ when $x = 1, y = 0$ (1,0) and when $x = -2, y = 27(-2,27)$
	to distinguish between the points, $d^{2}y$ $d^{2}y$
	$\frac{d^2y}{dx^2} = 12x + 6 \frac{d^2y}{dx^2}_{x=1} > 0 \text{ and } \frac{d^2y}{dx^2}_{x=-2} < 0$
	Therefore (1,0) is a minimum point and (-2,27) is a maximum point.
	intercepts; for $x = 0, y = 7$ (0,7). for $y = 0, x_1 = 1, x_2 = -3.5$ (1,0), (-3.5,0)

(ii)	Equation of the curve $\frac{dy}{dx} = kx$, $\int dy = \int 3x dx$ $y = \frac{3x^2}{3} + c$ At (2,3) $3 = \frac{3x^4}{3} + c$
	$c, c = -3, y = \frac{3x^2}{3} - 3$
(iii)	Gradient of the tangent m=6, gradient of the normal =-1/6. Using
	$y = mx + c At (2,3) 3 = \frac{-1}{6}(2) + c, c = \frac{10}{3} y = -\frac{1}{6}x + \frac{10}{3}$
(d)(i)	$\frac{dA}{dt} = -3\sqrt{t} \text{ by separating variables, } dA = -3\sqrt{t} dt \int dA = \int -3\sqrt{t} dt A=-$
	$3(\frac{2}{3}t^{3/2}) + c \text{At } t = 0, A = 16 16 = -2(0)^{3/2} + c, c = 16.$
	$A = -2t^{3/2} + 16.$
(ii)(a)	Reduce to $14mm^2$, $A = 14$, $t = ?$ $14 = -2t^{3/2} + 16$. $-2 = -2t^{\frac{3}{2}}$, $1 = t^{\frac{3}{2}}$, $t = 1 day$.
(ii)(b)	To heal completely, $A = 0$ $t = ?$ $0 = -2t^{\frac{3}{2}} + 16$, $-16 = -2t^{\frac{3}{2}}$, $2^3 = t^{\frac{3}{2}}$ $t = 4days$
7(a)	$2\sin^{2}\theta + \cos\theta + 1 = 0, let y = \cos\theta, 2(1 - \cos^{2}\theta) + \cos\theta + 1 = 0, -2\cos^{2}\theta + \cos\theta + 3 = 0 -2y^{2} + y + 3 = 0$
	$y = \frac{-1 \pm \sqrt{1^2 - 4(-2)(3)}}{2(-2)} y_1 = 1, y_2 = 1.5 \ cos = -1,$
	$\cos^{-1}(-1) = 180 \cos\theta = 1.5,$ $\theta = \cos^{-1} 1.5,,DNE. The reflex angle \theta = 180^{\circ}$
(b)	$2\sin 2\theta = 3\cos \theta, \ \ 2(2\sin \theta \cos \theta) = 3\cos \theta, 4\sin \theta \cos \theta - 3\cos \theta = 0, \ \cos \theta(4\sin \theta - 3\cos \theta) = 3\cos \theta, 4\sin \theta \cos \theta = 0$
	0 , either $\cos\theta = 0$, $\theta = \cos^{-1}(0) = 90^{\circ},270^{\circ}$
	Or $4\sin\theta = 3$, $\sin\theta = \frac{3}{4}$, $\theta = \sin^{-1}(\frac{3}{4}) = 48.6, 131.4$.
	$\therefore \theta = 48.4^{\circ}, 90^{\circ}, 131.4^{\circ}, 270^{\circ}.$
8(i)	$\frac{\sin\theta + \tan\theta}{1 + \cos\theta} = \tan\theta. considering the LHS, \frac{\sin\theta}{1 + \cos\theta} + \frac{\sin\theta}{\cos\theta(1 + \cos\theta)}$ $\frac{\sin\theta(1 - \cos\theta)}{1 - \cos^2\theta} + \frac{\sin\theta(1 - \cos\theta)}{\cos\theta(1 - \cos^2\theta)}, \frac{\cos\theta\sin\theta - \sin\theta\cos^2\theta + \sin\theta - \cos\theta\sin\theta}{\cos\theta(1 - \cos^2\theta)}$
	$\frac{\sin\theta ((1-\cos^2\theta)}{\cos\theta (1-\cos^2\theta)}, = \tan\theta As \ required.$
/**	$\cos\theta(1-\cos^2\theta)$, -tulio As required.
(ii)	$\frac{1+sinx+cosx}{1+sinx-cosx} = \cot\frac{x}{2}, \text{ use t} = \tan\frac{x}{2} \text{ substitution, to obtain } \frac{1}{t}$
(iii)	$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$
	(sinxcosy + sinycosx)(sinxcosy - sinycosx),
	$\sin^2 x \cos^2 y - \sin x \cos y \sin y \cos x + \sin x \cos y \sin y \cos x - \sin^2 y \cos^2 x$
	$sin^2xcos^2y - sin^2ycos^2x, sin^2x(1 - sin^2y) - sin^2y(1 - sin^2x)$ $sin^2x - sin^2xsin^2y - sin^2y + sin^2ysin^2x, = sin^2x - sin^2y \text{ As required.}$
b(i)	$x = a\cos\theta, y = b\sin\theta, from x^2 = a^2\cos^2\theta, \qquad a^2(1 - \sin^2\theta), a^2(1 - (y/b)^2),$
	$x^{2} = a^{2} - (a^{2}(y/b)^{2}), b^{2}x^{2} + a^{2}y^{2} = a^{2}b^{2}.$
	ALTERNATIVELY ; $\frac{x}{a} = \cos\theta$, $\frac{y}{b} = \sin\theta$, from $\sin^2\theta + \cos^2\theta = 1$, $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$,

	$b^2x^2 + a^2y^2 = a^2b^2.$
(ii)	$x = \sin\theta + \cos\theta, \dots \dots (1) \qquad y = \sin\theta - \cos\theta \dots \dots (2),$
	$(1) + (2)gives \frac{(x+y)}{2} = sin\theta$
	$(1) - (2)gives \frac{(x-y)}{2} = cos\theta.$
	from $\sin^2\theta + \cos^2\theta = 1$; $\left(\frac{(x+y)}{2}\right)^2 + \left(\frac{(x-y)}{2}\right)^2 = 1$
9a(i)	$\overrightarrow{OA} = 2i + 2j, \overrightarrow{BA} = 7i - j, \overrightarrow{OB} = ?, \overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB},$ $\binom{7i}{-j} = \binom{2i}{2j} - \overrightarrow{OB}, \overrightarrow{OB} = \binom{-5i}{3j}$
(ii)	$from \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}, \overrightarrow{AM} = \frac{1}{2}(-\overrightarrow{BA}) = -\frac{1}{2}\binom{7i}{-j} = -\frac{7}{2}i + \frac{1}{2}j$
	$\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA}, \left(-\frac{7}{2}i + \frac{1}{2}j\right) = \overrightarrow{OM} - (2i + 2j), \overrightarrow{OM} = \frac{-3}{2}i + \frac{5}{2}j$
b(i)	$a = 3i - 4j, \qquad b = -5i + 12j,$
	(3a+b). b = 3(3i-4j) + (-5i+12j) = 4i. 4i. (-5i+12j) = -20 + 0 = -20
(ii)	Angle between a and b , $\cos\theta = \frac{a.b}{ a b }$ a.b=(3i - 4j).(-5i + 12j), -15 - 48 =
	$ -63, a = \sqrt{3^2 + (-4)^2} = 5, b = \sqrt{(-5)^2 + 12^2} = 13, a b = 65, \cos\theta = \frac{a.b}{ a b } =$
	$\left \frac{-63}{65}, \ \theta = \cos^{-1} \left(\frac{-63}{65} \right), 165.8^{\circ}, 194.3^{\circ} \right $
c(i)	a+2b-3c = (-2i+4j)+2(-5i+10j)-3(3i+4j)
	$= -21i + 12j $ $= \sqrt{(-21)^2 + (12)^2} = 24.2Units.$
(ii)	$r = c + \lambda(a - b)$
,	$r = (3i + 4j) + \lambda ((-2i + 4j) - (-5i + 10j))$
	$= (3+3\lambda)i + (4-6\lambda)j$
	r = 10
	$\sqrt{(3+3\lambda)^2 + (4-6\lambda)^2} = 10$ $9\lambda^2 + 6\lambda - 15 = 0$
	$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a = 9, b = 6, c = -15$
	$\lambda_1 = 1, \lambda_2 = 5/3$
10a(i	$\lambda_{1} = 1, \lambda_{2} = 5/3$ $ABC = {5 \choose 0} {1 \choose 2} {-2 \choose 1} {2 \choose 0} {1 \choose 1} {1 \choose 5} {2 \choose 2}$
)	$= \begin{pmatrix} -9 & 15 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 5 & 2 \end{pmatrix}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$=\begin{pmatrix} -3 & 66 & 39 \\ 4 & 2 & -2 \end{pmatrix}$

(ii)	$ (A+B)C = \begin{bmatrix} 5 & 1 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 5 & 2 \end{bmatrix} $
	$= \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 5 & 2 \end{pmatrix}$ $= \begin{pmatrix} 6+4 & 3+20 & -3+8 \\ 2+2 & 1+10 & -1+4 \end{pmatrix}$ $= \begin{pmatrix} 10 & 23 & 5 \\ 4 & 11 & 3 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$
	$\begin{pmatrix} 1 & 2/ & 5 & 2/ \\ 6+4 & 3+20 & -3+8 \end{pmatrix}$
	$= \begin{pmatrix} 2 + 2 & 1 + 10 & -1 + 4 \end{pmatrix}$
	$=\begin{pmatrix}10 & 23 & 3\\4 & 11 & 3\end{pmatrix}$
b(i)	$A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$
	$A^2 + xA + yI = 0$
	$\begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} + x \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
	$\begin{pmatrix} 0 & 20 \\ -5 & 5 \end{pmatrix} + \begin{pmatrix} 2x & 4x \\ -x & 3x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
	$2x + y = 0 \dots \dots$
	from(2) x = -5, y = 1
(c)	3x + 4y = 8
	x + 2y = 3
	using matrix method, $\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$
	$\binom{3}{4}\binom{4}{2}\binom{2}{4}\binom{-4}{2}\binom{x}{2} = \binom{2}{4}\binom{-4}{2}\binom{8}{2}$
	$ \begin{pmatrix} 1 & 2/(-1 & 3)/(y) & (-1 & 3)/(3) \\ (6-4 & -12+12) & (x \\ 2-2 & -4+6) & (y) \end{pmatrix} = \begin{pmatrix} 16-12 \\ -8+9 \end{pmatrix} $
	(2-2 -4+6)(y) = (-8+9)
	$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$
	$2x = 4$, $x = 2$. $2y = 1$, $y = \frac{1}{2}$
(3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(i)	Mode = 3 (the number that appears most)
(ii)	Median, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 10, median is 5.
(iii)	Median, 2,3,3,3,3,4,4,5,6,6,7,7,8,9,10, median is 5. $Mean = \frac{\sum f}{r} = \frac{(2\times1) + (3\times4) + (4\times2) + (5\times1) + (6\times2) + (8\times1) + (9\times1) + (10\times1)}{15} = \frac{80}{15} = 5.33$
(iv)	Standard deviation = $\frac{15}{(X-\overline{X})^2} = \frac{175.0137}{15} = 11.668$
	Standard deviation= $\sqrt{\frac{(X-X)^2}{N}} = \frac{175.0137}{15} = 11.668$

41.2

83.0

55.0 | 3.70 |

2.60

78.0 2.90

3.85 42.5 4.60 163.63 199.33 158.62 193.23

60.0 | 4.35 | 222.00 261.00 203.50 239.25

202.80 226.20 215.80 240.70 588.43 686.53 577.20 673.18

(i)	Paasche's Aggregate price index= $\frac{\sum P_1 Q_1}{\sum P_0 Q_1} X100$									
	$=\frac{686.53}{588.43}X100=116.7$									
	000.10									
	This indicates that the prices increased by 16.7%									
(ii)	Lespeyre's aggregate= $\frac{\sum P_1 Q_0}{\sum P_0 Q_0} X100$									
	$= \frac{673.18}{577.20} X100 = 116.6$ This indicates that the prices increased by 16.6%.									
(iii)	$Value\ index = price\ index \times Quantity\ index;$									
		Σ	$P_1 \sum Q_1 \sum$	P_1Q_1 686.	53					
		$=\frac{1}{\Sigma}$	$\frac{\overline{P_0}}{\sum P_0} \cdot \frac{\overline{P_0}}{\sum \overline{P_0}} = \frac{\overline{P_0}}{\sum \overline{P_0}}$	${P_0 Q_0} = {577.}$	$\frac{53}{20}X100 = 118.9.$					
	This show		re is an incr							
	18.9% in t	he value o	f goods trade	ed in 2018.						
15	Year	Quarte	er Av. price		Moving averages					
			banana	totals						
		1	4500							
	1000	2	5000	20200	5050					
	1998	2	5000	20200	5050					
		3	5200	01000	F200					
		4	5500	21200	5300					
		<u> </u>	3300	21900	5475					
		1	5500	21500	0170					
				22700	5675					
	1999	2	5700							
				23600	5900					
		3	6000							
				24300	6075					
		4	6400							
				25100	6275					
		1	6200							
	2000			25900	6475					
	2000	2	6500	0.6700						
		2	6000	26700						
		3	6800	07000						
		4	7200	27900						
	2001	1	7400							
		2 Y								

We use moving averages to "Smooth" data so that we can try to predict future values.

There is a general increase in the prices of the two commodities. 6800 + 7200 + 7400 + Y

$$\frac{6800 + 7200 + 7400 + Y}{4} = 7360, Y = 8040Shillings$$

16	x	1	2	3	4	5		
	P(X=x)	0.10	P	0.20	q	0.30		
	xP(X=x)	0.10	2p	0.60	4q	1.5		
	$x^2 P(X = x)$	0.10	4p	1.8	16q	7.5		
(i)	$\sum P(\lambda)$	X=x) =	= 1, 0.10	+ p + 0	.20 + q	+ 0.3 =	$1, p + q = 0.4 \dots (i)$	
	E(X) = 3.5;							
	0.10 + 2p + 0.60 + 4q + 1.5 = 3.5,							
	$2p + 4q = 1.3 \dots (ii)$							
			solvi	ng (i)an			eously,	
				L	0.15, q =			
(ii)	$Var(x) = \left[\sum_{x} x^{2} P(X = x)\right] - (xP(X = x)^{2} = 14 - 3.5^{2} = 1.75$							
		Stand	lard dev	iation; d	$\sigma = \sqrt{Va}$	$\overline{r(x)} =$	$\sqrt{1.75} = 1.3115$	

(iii)	Var(3-2x) = Var(3) - 2Var(x),							
	but Var(x) = 1.75 $Var(3-2x) = 0 - 2(1.75) = -3.5.$							
(:)								
(iv)	$P(x \ge 2/x \le 4) = \frac{P(x \ge 2 \cap x \le 4)}{P(x \le 4)}, = \frac{P(x = 2, 3, 4)}{P(1, 2, 3, 4)}, = 0.6/0.7, = 6/7$ $P(A) = \frac{2}{5}, P(B) = \frac{1}{2},$							
17(a) (i)								
	P(AnB) = 0, Since they are Mutually Exclusive events.							
(ii)	$P(An\bar{B}) = P(A) = \frac{2}{5} \cdot OR \cdot P(AnB) + P(An\bar{B}) = P(A) \cdot P(An\bar{B}) = \frac{2}{5}$							
(iii)	$P(\bar{A}n\bar{B}) + P(An\bar{B}) = P(\bar{B})$							
	$P(\bar{B}) = 1 - P(B) = \frac{1}{2}$							
	$P(\bar{A}n\bar{B}) = \frac{1}{2} - \frac{2}{5} = 1/10$							
b(i)	Let Isuzu make be x , super tyre make be y , tata make be z Let R represent cars with radios							
	$p(\omega) = 60 - 3$							
	$P(x) = \frac{100}{100} = \frac{5}{5}$							
	$P(y) = \frac{25}{100} = \frac{1}{4}$							
	$P(z) = \frac{150}{15} = \frac{3}{3}$							
	100 - 100 = 20							
	$P(x/R) = \frac{30}{100} = \frac{1}{2}$							
	Ext Represent ears with radios $P(x) = \frac{60}{100} = \frac{3}{5},$ $P(y) = \frac{25}{100} = \frac{1}{4},$ $P(z) = \frac{15}{100} = \frac{3}{20},$ $P(x/R) = \frac{50}{100} = \frac{1}{2},$ $P(x/R) = \frac{50}{100} = \frac{1}{2},$ $P(x/R) = \frac{5}{100} = \frac{1}{20},$							
	$\binom{7R}{100}$ 100 20							
	$P(^{\mathbb{Z}}/_{\mathbb{R}}) = \frac{1}{100}.$							
	$P(R) = P(x).P\left(\frac{R}{x}\right) + P(y).P\left(\frac{R}{y}\right) + P(z).P\left(\frac{R}{z}\right)$							
	$= \left(\frac{3}{5} \times \frac{1}{2}\right) + \left(\frac{1}{4} \times \frac{1}{20}\right) + \left(\frac{3}{20} \times \frac{1}{100}\right) = \frac{157}{500}$							
(ii)	$P({}^{y}/_{R}) = \frac{{}^{P(ynR)}}{{}^{P(R)}} = \frac{\frac{1}{80}}{\frac{157}{500}} = 0.0398$							
18(a) (i)	$\int_{-\infty}^{+\infty} f(x)dx = 1; \int_{0}^{1} kx dx + \int_{1}^{2} \frac{k}{2} x dx = 1, \ k \left[\frac{x^{2}}{2} \right]_{0}^{1} + \frac{k}{2} \left[\frac{x^{2}}{2} \right]_{1}^{2} = 1,$							
	$\frac{k}{2}[(1^2-0^2)] + \frac{k}{4}[(2^2-1^2)] = 1,$							
	$\frac{k}{2} + \frac{3k}{4} = 1, k = \frac{4}{5}$							
(ii)	$E(x) = \int x f(x) dx$							

	4.1 0.2 4.5311 0.5317
	$\left \frac{4}{5} \int_{0}^{1} x^{2} dx + \frac{2}{5} \int_{1}^{2} x^{2} dx \right = \frac{4}{5} \left[\frac{x^{3}}{3} \right]_{0}^{1} + \frac{2}{5} \left[\frac{x^{3}}{3} \right]_{1}^{2}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$= \frac{4}{15} [1^3 - 0^3] + \frac{2}{15} [2^3 - 1^3] = \frac{4}{15} + \frac{14}{15} = \frac{18}{15}.$ $ Median; k \int_0^1 x dx \ge \frac{1}{2}, \frac{4}{5} \int_0^1 x dx \ge \frac{1}{2}$
(iii)	Median; $k \int_0^1 x dx \ge \frac{1}{2}, \frac{4}{5} \int_0^1 x dx \ge \frac{1}{2}$
	$\frac{4}{5} \left[\frac{x^2}{2} \right]_0^1 \ge \frac{1}{2}$
	$\frac{4}{3}(1^2-0^2) > \frac{1}{3}$
	$\frac{4}{10}(1^2 - 0^2) \ge \frac{1}{2}$ $\frac{2}{5} \le \frac{1}{2}$
	$\frac{2}{r} \leq \frac{1}{2}$
	Since $\frac{2}{5} \le \frac{1}{2}$, the median lies in the second interval.
	3 2
(1-)	Median = 1.225.
(b)	$P\left(\left(\frac{1}{2} \le x \le 1\frac{1}{2}\right) = \right)$
	$\int_{\frac{1}{2}}^{1} kx dx + \frac{k}{2} \int_{1}^{\frac{3}{2}} x dx, \frac{4}{5} \left[\frac{x^{2}}{2} \right]_{\frac{1}{2}}^{\frac{1}{2}} + \frac{2}{5} \left[\frac{x^{2}}{2} \right]_{\frac{1}{5}}^{\frac{1}{5}} (1^{2} - 0.5^{2}) + \frac{1}{5} (1.5^{2} - 0.5^{2})$
10-/:	= 0.3 + 0.25 = 0.55
19a(i	$\mu = 50, \sigma = 10, let \ x \ represent \ marks, P(x > 70) = P\left(Z - \frac{70 - 50}{10}\right) = P(Z > 2)$
'	= 0.5 - P(0 < Z < 2), 0.5 - 0.4772, = 0.02275
(ii)	Between 40 and 60. $P(40 < x < 60) = P(\frac{40-50}{10} < Z < \frac{60-50}{10})$
	= P(-1 < Z < 1), By symmetry, 2(0.3413) = 0.6826.
b(i)	n=10000 $\sigma = 10$), $\mu = 50$, $P(Z > 65)$, $P\left(Z > \frac{65-50}{10}\right)$, $P(Z > 1.5) = 0.5 - 0.5$
	P(0 < Z < 1.5), 0.5 - 0.4332 = 0.0668.
	Number of candidates are $10000X0.0668 = 668$ Students.
(ii)	$P(Z < 45) = P\left(Z < \frac{45-50}{10}\right), P(Z < -0.5) = P(Z > 0.5) = 0.5 - P(0 < z < 0.5),$
	0.5 - 0.1915 = 0.3085. Number of students is $10000X0.3085 = 3085$.
20(a)	Let A represent hot breakfast represent hot lunch. $P(A) = 0.1$, $P(B) = 0.1$
(i) ` ′	0.2, P(AnB) = 0.25. $P(AnB) = 0.25$
(ii)	$P(B/A) = \frac{P(BnA)}{P(A)} = \frac{0.25}{0.1} = 2.5$
44.	
(b)	Box A, 4Red and 3White. Box B, 3Red and 4White.
	$P(Red \ ball \ is \ drawn) = P(AnR) + P(BnR), = \left(\frac{1}{2} \times \frac{4}{7}\right) + \left(\frac{1}{2} \times \frac{3}{7}\right)$
	$= \frac{4}{14} + \frac{3}{14} = \frac{1}{2}$
21(a)	$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}, = \begin{pmatrix} 0 \\ 6 \end{pmatrix} - \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}$
	\0/ \U/ \0/

*****END*****

THANK YOU SO MUCH FOR ATTENDING MAY GOD BLESS YOU ABUNDANTLY