

Arm® Server Base System Architecture

Revision: r2p0

Architecture Compliance Test Scenario

Non-Confidential

Issue 03

Copyright $\ensuremath{\mathbb{C}}$ 2018, 2020 Arm Limited (or its affiliates).

PJDOC-2042731200-3439

All rights reserved.

Arm® Server Base System Architecture

Architecture Compliance Test Scenario

Copyright © 2018, 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue	Date	Confidentiality	Change
02	05 May 2018	Non-Confidential	Changes from REL 1.0. The document now follows a new format.
03	20 March 2020	Non-Confidential	Changes from REL 2.3 and REL 2.4

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with $^{\circ}$ or $^{\intercal M}$ are registered trademarks or trademarks of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document

may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright [©] 2018, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

Contents

1 Introduction	9
1.1 Product revision status	9
1.2 Intended audience	9
1.3 Conventions	9
1.3.1 Glossary	9
1.3.2 Typographical conventions	10
1.4 Additional reading	10
1.5 Feedback	12
1.5.1 Feedback on this product	12
1.5.2 Feedback on content	12
2 About this document	13
2.1 Terms and abbreviations	13
2.2 Scope	13
3 Introduction to SBSA	14
4 Cross reference to architecture and tests	15
4.1 PE	15
4.2 GIC	18
4.3 Timer	19
4.4 Watchdog	21
4.5 PCIe	22
4.6 Exerciser	29
4.7 Wakeup semantics	30
4.8 Peripherals	31
4.9 IO Virtualization (SMMU)	33
4.10 EL3 – Trusted Firmware	34
5 Test scenarios	37
5.1 VAL APIs	37
5.2 PE	37
5.2.1 Number of PFs	37

5.2.2 PEs must implement SIMD extensions	38
5.2.3 PEs must implement 16-bit ASID support	38
5.2.4 PEs must support 4KB and 64KB at stage 1 and 2	38
5.2.5 Cache are implemented as VIPT or PIPT	38
5.2.6 All PEs are coherent and in the same Inner Shareable domain	38
5.2.7 PEs must implement Cryptography extensions	38
5.2.8 PEs must have LE support	39
5.2.9 PEs must implement EL2	39
5.2.10 PEs must implement AArch64	39
5.2.11 PMU overflow signal	39
5.2.12 PMU counters	40
5.2.13 PEs must implement a minimum of four synchronous watchpoints	40
5.2.14 Breakpoints	40
5.2.15 All PEs are architecturally symmetric	40
5.2.16 EL3 must be implemented	41
5.2.17 CRC32 instruction must be implemented	41
5.2.18 PMBIRQ will be wired as PPI 21	41
5.2.19 All PEs must implement the RAS extension introduced in Armv8.2	41
5.2.20 All PEs must implement support for 16-bit VMD.	42
5.2.21 All PEs must implement virtual host extensions	42
5.2.22 All PEs must provide support for stage 2 control of memory types and Cacheability, as introduced by Armv8.4 extensions	
5.2.23 All PEs must implement enhanced nested Virtualization	42
5.2.24 All PEs must support changing of page table mapping size using level 1 and level 2 solution proposed in the Armv8.4 extension	42
5.2.25 If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined the Arm architecture	
5.2.26 All PEs must implement the Activity Monitors Extension	43
5.2.27 Where export control allows, all PEs must implement cryptography support for SHA3 and SHA5	
5.2.28 Where PEs implement the scalar vector extension, the vector length maximum must be at leas 256 bits	
5.3 GIC	43
5.3.1 GIC version	43
5.3.2 If the system includes PCI Express, then the GICv3 interrupt controller will implement ITS and LP	1.44
5.3.3 The GICv3 interrupt controller will support two Security states	44
5.3.4 GIC maintenance interrupt shall be wired as PPI 25	44

5.4 System and Generic Timer4	4
5.4.1 System counter of the Generic Timer will run at a minimum frequency of 10 and at a maximum frequency of 400MHz4	5
5.4.2 The local PE timer when expiring must generate a PPI when the EL1 physical timer expires4	5
5.4.3 The local PE timer when expiring must generate a PPI when the virtual timer expires4	5
5.4.4 The local PE timer when expiring must generate a PPI when the EL2 physical timer expires4	6
5.4.5 The Local PE timer when expiring must generate a PPI when the EL2 virtual timer expires4	6
5.4.6 In systems that implement EL3, the memory mapped timer must be mapped into the Non-secure address space (the CNTBaseN frame and associated CNTCTLBase frame)	7
5.4.7 Unless all of the local PE timers are always on, the base server system will implement a system-specific system wakeup timer	7
5.4.8 System-specific system timer shall generate an SPI	8
5.5 Watchdog4	8
5.5.1 System implements a Generic Watchdog as specified in SBSA specification4	8
5.5.2 Watchdog Signal 0 is routed as SPI (or LPI) and usable as an EL2 interrupt4	8
5.6 Peripherals and memory4	.9
5.6.1 If the system has a USB2.0 (USB3.0) host controller peripheral, it must conform to EHCl v1.1 (XHCl v1.0) or later4	
5.6.2 If the system has a SATA host controller peripheral, it must conform to AHCI v1.3 or later4	.9
5.6.3 Base server system will include a Generic UART as specified in Appendix B. Check that that Generic UART is mapped to Non-secure address space4	
5.6.4 The UARTINTR interrupt output is connected to the GIC	.9
5.6.5 Memory access to an unpopulated part of the addressable memory space5	0
5.6.6 Non-secure access to Secure address must cause exception5	0
5.7 Power states and wakeup5	0
5.7.1 In state B, a PE must be able to wake on receipt of an SGI, PPI or SPI that directly targets the PE5	0
5.8 IO Virtualization5	2
5.8.1 SMMU if present is compatible with Arm SMMU v15	2
5.8.2 SMMU if present, must support a 64KB translation granule5	2
5.8.3 All the System MMUs in the system must be compliant with the same architecture version5	2
5.8.4 If PCIe, check the stall model	2
5.8.5 If SMMUv3 is in use, check the compliance with Appendix E: SMMUv3 integration5	3
5.8.6 If SMMUv2 is in use, Each context bank must present a unique physical interrupt to the GIC5	3
5.8.7 Each function, or virtual function, that requires hardware I/O Virtualization is associated with an SMMU context.	3
5.0.0015	

5.9.1 Systems must map memory space to PCI Express configuration space, using the PCI Express Enhanced Configuration Access Mechanism (ECAM)	53
5.9.2 ECAM value present in MCFG	54
5.9.3 PEs are able to access ECAM	54
5.9.4 PCIe space is device or non-cacheable	54
5.9.5 When PCI Express memory space is mapped as normal memory, the system must support unaligned accesses to that region	54
5.9.6 In systems that are compatible with level 3 or above of the SBSA, the addresses sent by PCI Expr devices must be presented to the memory system or SMMU unmodified	
5.9.7 In a system with an SMMU for PCI Express there are no transformations to addresses being sent PCI Express devices before they are presented as an input address to the SMMU	-
5.9.8 Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices	55
5.9.9 Each unique MSI(-X) shall trigger an interrupt with a unique ID and the MSI(-X) shall target GIC registers requiring no hardware-specific software to service the interrupt	55
5.9.10 All MSIs and MSI-x are mapped to LPI.	55
5.9.11 If the system supports PCIe PASID, then at least 16 bits of PASID must be supported	56
5.9.12 The PCI Express root complex is in the same Inner Shareable domain as the PEs	56
5.9.13 Each of the 4 legacy interrupt lines must be allocated a unique SPI ID and is programmed as lev sensitive	
5.9.14 All Non-secure on-chip masters in a base server system that are expected to be under the cont of the OS or hypervisor must be capable of addressing all of the NS address space	
5.9.15 Memory Attributes of DMA traffic	57
5.9.16 PCI Express transactions not marked as No_snoop accessing memory that the PE translation tal attribute as cacheable and shared are I/O Coherent with the PEs	
5.9.17 For Non-prefetchable (NP) memory, type-1 headers only support 32bit address, systems complaint with SBSA level 4 or above must support 32bit programming of NP BARs on such endpoints	.57
5.9.18 Root Port must implement minimal ACS features if P2P supported	57
5.9.19 All switches must implement minimal ACS features if P2P supported	58
5.9.20 Multifunction devices must implement minimal ACS features if P2P supported	58
5.9.21 Type 0/1 common config rules check	58
5.9.22 Type 0 config header rules check	58
5.9.23 Type 1 config header rules check	59
5.9.24 PCIe capability rules check	59
5.9.25 Device capabilites register rules check	59
5.9.26 Device Control register rule check	59
5.9.27 Device capabilities 2 register rules check	60
5.9.28 Device control 2 reg rules check	60
5.9.29 Power management capability rules check	60

5.9.30 Power management/status rule check	.60
5.9.31 Check Command Register memory space enable functionality	.61
5.9.32 Type0/1 BIST Reg verification rule	.61
5.9.33 Check HDR CapPtr Reg verification rule	.61
5.9.34 Max payload size supported check	.61
5.9.35 BAR memory space and Type rule check	.62
5.9.36 Function level reset rule check	.62
5.9.37 Check ARI forwarding support rule	.62
5.9.38 Check OBFF supported rule	.62
5.9.39 Check CTRS and CTDS rule	.63
5.9.40 Check i-EP atomicop rule	.63
5.9.41 Check Root Port ATS and PRI rule	.63
5.9.42 Check MSI and MSI-X support rule	.63
5.9.43 Check Power Management rules	.64
5.9.44 Check ARI forwarding enable rule	.64
5.9.45 Check device under RP in same ECAM	.64
5.9.46 Check all RP under a HB is in same ECAM	.64
5.10 EL3 – Trusted firmware	.65
5.10.1 Watchdog Signal 1 is available. This may be confirmed in the data base. This may not be possible to exercise as its handling is platform-specific	
5.10.2 Must implement at least 56 bits	.65
5.10.3 The local PE timer when expiring must generate a PPI when EL3 physical timer expires	.66
5.10.4 Any local timers that are marked by PE as always ON must be able to wake up the system. This applies to expiry of all Secure views of the local timer (CNTPS)	.67
5.10.5 Secure Generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the Secure generic UART is connected to the GIC as an SPI	.67
5.10.6 A Secure system wakeup timer is present and the interrupt is presented to GIC as a SPI	.67
Annendiy A Revisions	68

1 Introduction

1.1 Product revision status

The *rmpn* identifier indicates the revision status of the product described in this book, for example, r1p2, where:

rm Identifies the major revision of the product, for example, r1.

рn

Identifies the minor revision or modification status of the product, for example, p2.

1.2 Intended audience

This document is for engineers who are verifying an implementation of Arm® Server Base System Architecture.

1.3 Conventions

The following subsections describe conventions used in Arm documents.

1.3.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

1.3.2 Typographical conventions

Convention	Use
italic	Introduces citations.
bold	Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.
monospace bold	Denotes language keywords when used outside example code.
monospace underline	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0, <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>
SMALL CAPITALS	Used in body text for a few terms that have specific technical meanings, that are defined in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
Caution	This represents a recommendation which, if not followed, might lead to system failure or damage.
Warning	This represents a requirement for the system that, if not followed, might result in system failure or damage.
Danger	This represents a requirement for the system that, if not followed, will result in system failure or damage.
Note	This represents an important piece of information that needs your attention.
- Tip	This represents a useful tip that might make it easier, better or faster to perform a task.
Remember	This is a reminder of something important that relates to the information you are reading.

1.4 Additional reading

This document contains information that is specific to this product. See the following documents for other relevant information:

Table 1-1 Arm publications

Document name	Document ID	Licensee only
Server Base System Architecture (Version 6.0)	ARM DEN 0029C	No
Arm® Architecture Reference Manual ARMv8, for Armv8-A architecture	ARM DDI 0487F.a	No

Table 1-2 Other publications

Document ID	Document name
-	-

1.5 Feedback

Arm welcomes feedback on this product and its documentation.

1.5.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

1.5.2 Feedback on content

If you have comments on content, send an email to support-enterprise-acs@arm.com and give:

- The title Arm® SBSA Architecture Compliance Test Scenario.
- The number PJDOC-2042731200-3439.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality of the represented document when used with any other PDF reader.

2 About this document

This document describes the test scenarios for SBSA Architecture Compliance.

2.1 Terms and abbreviations

This document uses the following terms and abbreviations.

ACPI Advanced Configuration and Power Interface LPI Low Power Interrupt MSI Message Signaled Interrupts PAL Platform Abstraction Layer PASID Process Address Space ID PE Processing Element PMU Performance Monitoring Unit PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt VIPT Virtually Indexed Physically Tagged	Term	Meaning
MSI Message Signaled Interrupts PAL Platform Abstraction Layer PASID Process Address Space ID PE Processing Element PMU Performance Monitoring Unit PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	ACPI	Advanced Configuration and Power Interface
PASID Process Address Space ID PE Processing Element PMU Performance Monitoring Unit PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	LPI	Low Power Interrupt
PASID Process Address Space ID PE Processing Element PMU Performance Monitoring Unit PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	MSI	Message Signaled Interrupts
PE Processing Element PMU Performance Monitoring Unit PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	PAL	Platform Abstraction Layer
PMU Performance Monitoring Unit PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	PASID	Process Address Space ID
PIPT Physically Indexed Physically Tagged PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	PE	Processing Element
PPI Private Peripheral Interrupt SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	PMU	Performance Monitoring Unit
SBSA Server Base System Architecture SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	PIPT	Physically Indexed Physically Tagged
SGI Software Generated Input SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	PPI	Private Peripheral Interrupt
SMC Secure Monitor Call SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	SBSA	Server Base System Architecture
SMMU System Memory Management Unit SPI Shared Peripheral Interrupt	SGI	Software Generated Input
SPI Shared Peripheral Interrupt	SMC	Secure Monitor Call
	SMMU	System Memory Management Unit
VIPT Virtually Indexed Physically Tagged	SPI	Shared Peripheral Interrupt
	VIPT	Virtually Indexed Physically Tagged

2.2 Scope

This document describes the verification scenarios and the strategy that is followed for creating Architecture Compliance Suite (ACS) tests for configuration system features described in SBSA architecture.

3 Introduction to SBSA

The SBSA specifies a hardware system architecture that is based on Arm 64-bit architecture. The server system software such as operating systems, hypervisors, and firmware can rely on this architecture. It addresses PE features and key aspects of system architecture.

The primary goal is to ensure enough standard system architecture to enable a suitably built single OS image to run on all hardware compliant with this specification. A driver-based model for advanced platform capabilities beyond basic system configuration and boot are required. However, that is outside the scope of this document. Fully discoverable and describable peripherals aid the implementation of such a driver model.

SBSA also specifies features that firmware can rely on, allowing for some commonality in firmware implementation across platforms.

4 Cross reference to architecture and tests

The tests are divided into a hierarchy of subcategories depending on the runtime environment and the component submodules that are required for achieving the verification. The top level of the hierarchy is consistent with the target hardware subsystem which is validated by the test.

These are compliance level 0 to compliance level 5 as per SBSA specification version 6.0.

A test may check for different parameters of the hardware subsystem based on the level of compliance requested.

Also, the tests are further subclassified as required, to run in an EL3 environment. The communication between the ACS and the EL3 firmware is through Arm SMC.

The tests are classified as:

- PE
- GIC
- Timer
- Watchdog
- PCle
- Exerciser
- Wakeup semantics
- Peripherals
- IO Virtualization (SMMU)
- EL3 Trusted Firmware

4.1 PE

PE tests require the following tests in the table to run all the PEs in the system, requiring a Software-Generated Interrupt (SGI) is broadcast with the test address as an entry point.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
1	Number of PEs does not exceed 8	ACPI MADT	No	Level 0, 1
	exceed o	table		
	Number of PEs does not exceed 2^28			Level 2+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
2	PEs implement Advanced SIMD extensions	CPU System Register Read	No	Level 0+
3	PE will implement 16-bit ASID support	CPU System Register Read	No	Level 0+
4	PE will support 4KB and 64KB at stage 1 and 2	CPU System Register Read	No	Level 0+
5	Cache is implemented as VIPT or PIPT	CPU System Register Read	No	Level 0+
6	All PEs are coherent and in the same Inner Shareable domain	CPU System Register Read	No	Level 0+
7	PEs must implement Cryptography Extensions	CPU System Register Read	No	Level 0+
8	PEs will implement little- endian support	CPU System Register Read and functional	No	Level 0+
9	PEs will implement EL2	CPU System Register Read	No	Level 0+
10	PEs will implement AArch64 at all ELs	CPU System Register Read	No	Level 0+
11	PMU overflow signal from each PE must be wired to a unique PPI or SPI interrupt	ACPI MADT and functional	No	Level 0+
12	Each PE implements a minimum of four programmable PMU counters	CPU System Register Read	No	Level 0
	Each PE implements a minimum of six programmable PMU counters			Level 1+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
13	Each PE implements a minimum of four synchronous watchpoints	CPU System Register Read	No	Level 0+
14	Each PE implements a minimum of four breakpoints	CPU System Register Read	No	Level 0
	Each PE implements a minimum of six breakpoints			Level 1+
15	All PEs are architecturally symmetric except for permitted differences	CPU System Register Read	No	Level 0+
16	Each PE will implement the EL3 Exception level	CPU System Register Read	No	Level 3+
17	Each PE implements CRC32 instructions	CPU System Register Read	No	Level 3+
18	PMBIRQ signal must be wired to PPI ID 21	CPU System Register Read and functional	Yes	Level 2+
19	All PEs must implement the RAS extension introduced in Armv8.2	CPU System Register Read and functional	No	Level 4+
20	All PEs must implement support for 16-bit VMD	CPU System Register Read and functional	No	Level 4+
21	All PEs must implement virtual host extensions	CPU System Register Read and functional	No	Level 4+
22	All PEs must provide support for stage 2 control of memory types and Cacheability, as introduced by Armv8.4 extensions	CPU System Register Read and functional	No	Level 5+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
23	All PEs must implement enhanced nested Virtualization	CPU System Register Read and functional	No	Level 5+
24	All PEs must support changing of page table mapping size using level 1 and level 2 solution proposed in the Armv8.4 extension. Level 2 is recommended.	CPU System Register Read and functional	No	Level 5+
25	If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined by the Arm architecture	CPU System Register Read and functional	No	Level 4+
26	All PEs must implement the Activity Monitors Extension	CPU System Register Read and functional	No	Level 5+
27	Where export control allows, all PEs must implement cryptography support for SHA3 and SHA512	CPU System Register Read and functional	No	Level 5+
28	Where PEs implement the scalar vector extension, the vector length maximum must be at least 256 bits	CPU System Register Read and functional	Yes	Level 3+

4.2 GIC

GIC functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
101	GICv2 is implemented	ACPI, register read	No	Level 0,1

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	GICv3 is implemented			Level 2+
102	If the base server system includes PCI Express then	MADT Table	No	Level 2+
	the GICv3 interrupt controller will implement ITS and			
	LPI.			
103	The GICv3 interrupt controller will support two Security states.	GIC System Register Read	d No	Level 3+
104	GIC maintenance interrupt	ACPI Table	No	Level 2+
	will be wired as PPI 25.			

4.3 Timer

Timer functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
201	The system counter of the Generic Timer will run at a	ACPI GTDT	No	Level 0+
	minimum frequency of 10MHz and at a maximum			
	frequency of 400MHz			
202	The local PE timer when expiring must generate	CPU System Register Write, GIC APIs	No	Level 0+
	a PPI when EL1 physical timer expires			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	The local PE timer when expiring must generate a PPI when EL1 physical timer expires and PPI			Level 2+
	must be 30			
203	The local PE timer when expiring must generate a PPI when the virtual timer expires	CPU System Register Write, GIC APIs	No	Level 0+
	The local PE timer when expiring must generate a PPI when the virtual timer expires and PPI must			Level 2+
	be 27			
204	The local PE timer when expiring must generate a PPI when the EL2 physical timer expires	CPU System Register Write, GIC APIs	No	Level 0+
	The local PE timer when expiring must generate a PPI when the EL2 physical timer expires and			Level 2+
	must be 26			
205	For systems where PEs are v8.1 or greater, local PE timer when expiring must generate a PPI when the EL2 virtual timer expires	CPU System Register Write, GIC APIs	No	Level 0+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	For systems where PE are v8.1 or greater, local PE timer when expiring must generate a PPI when the EL2 virtual timer expires and must be 28			Level 2+
206	In systems that implement EL3, the memory mapped timer (the CNTBaseN frame and associated NTCTLBase frame) must be mapped into the Non-secure address space	Read/write to Base address	No	Level 2+
206	If the system includes a system wakeup timer, this memory-mapped timer must be mapped on to Non-secure address space	Read/write to Base address	No	Level 3+
207	Unless all the local PE timers are always ON, the base server system will implement a system-specific system wakeup timer	ACPI GTDT	No	Level 1+
208	A system-specific system timer will generate an SPI	Platform-specific	No	Level 0+

4.4 Watchdog

Watchdog functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
301	The system implements a Generic Watchdog as specified in Appendix A: Generic Watchdog.	ACPI GTDT	No	Level 1+
	The watchdog must have both its register frames mapped on to Non-secure address space, which is referred to as the Non-			Level 3+
	Secure watchdog.			
302	Watchdog signal 0 is routed as an SPI to the GIC and usable as an EL2 interrupt.	ACPI GTDT, GIC APIs	No	Level 1+
	Watchdog signal 0 is routed as an SPI or LPI to the GIC and usable as an EL2 interrupt.			Level 2+

4.5 PCle

PCIe functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
401	Systems must map memory space to PCI Express configuration space, using the PCI Express Enhanced Configuration Access Mechanism (ECAM). Tests must be robust to ARI that is implemented.	UEFI PCD, FDT, ACPI	No	Level 1+
402	The base address of each ECAM region is discoverable from system firmware data.	ACPI MCFG table	No	Level 1+
403	PEs can access the ECAM region.	PCI Root Bridge IO Protocol read/write	No	Level 1+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
404	All systems must support mapping PCI Express memory space as either device memory or non-cacheable memory.	Memory Map and read/write	No	Level 1+
	When PCI Express memory space is mapped as normal			
	memory, the system must support unaligned accesses to that region.			
405	In systems that are compatible with level 3 or above of the SBSA, the addresses that the PCI Express devices send must be presented to the memory system or SMMU unmodified.	-	-	Level 3+
	In a system where the PCI Express does not use an SMMU, the PCI Express devices have the same view of physical memory as the PEs.			Level 0+
406	In a system with an SMMU for PCI Express, there are no transformations to addresses that the PCI Express devices send before they are presented as an input address to the SMMU.	-	-	Level 0+
407	Support for Message Signaled Interrupts (MSI or MSI-X) is required for PCI Express devices. MSI and MSI-X are edge-triggered interrupts that are delivered as a memory write transaction.	-	-	Level 1+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
408	Each unique MSI or MSI-X will trigger an interrupt with a unique ID and the MSI or MSI-X will target GIC registers requiring no hardwarespecific software to service the interrupt.	-	-	Level 1+
409	All MSIs and MSI-X are mapped to LPI.	-	-	Level 2+
410	If the system supports PCIe PASID, then at least 16 bits of PASID must be supported.	-	-	Level 3+
411	The PCI Express Root Complex is in the same Inner Shareable domain as the PEs.	-	-	Level 0+
412	Each of the 4 legacy interrupt lines must be allocated a unique SPI ID and is programmed as level sensitive.	-	-	Level 1+
413	All Non-secure on-chip masters in a base server system that are expected to be under the control of the OS or hypervisor must be capable of addressing all of the NS address space. If the master goes through an SMMU then it must be capable of addressing all of the NS address space when the SMMU is off.		-	Level 3+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
	Non-secure off-chip devices that cannot directly address all of the Non-secure address space must be placed behind a stage 1 System MMU compatible with the Arm SMMUv2 or SMMUv3 specification. that has an output address size large enough to address all of the Non-secure address space.			
414	Memory Attributes of DMA traffic are one of (1) Inner WB, Outer WB, Inner Shareable (2) Inner/Outer Non- Cacheable (3) Device TypeIO coherent DMA is as per (1) Inner/Outer WB, Inner Shareable.	-	-	Level 3+
415	PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute as cacheable and shared are I/O coherent with the PEs. I/O coherency fundamentally means that no software coherency management is required on the PEs for the PCI Express root complex, and therefore devices, to get a coherent view of the PE memory.			Level 0+
	PCI Express transactions marked as No_snoop accessing memory that the PE translation tables attribute as cacheable and shared behave correctly when the appropriate SW coherence is deployed.			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
416	For Non-prefetchable (NP) memory, type-1 headers only support 32-bit address, systems complaint with SBSA level 4 or above must support 32-bit programming of NP BARs on such endpoints.	-	-	Level 4+
417	In a system where the PCIe hierarchy allows peer to peer transactions, the Root Ports in an Arm-based SoC must implement PCIe access control service (ACS) features.			Level 3+
418	All PCIe switches should support the minimal features, refer D.13 section for features list			Level 3+
419	All multi-function devices, SR-IOV and non-SR-IOV, that are capable of peer to peer traffic between different functions should support the minimal features, refer D.13 section for features list			Level 3+
420	All PCIe devices, must implement the common			Level 3+
431	registers of Type 0/1 header, as per requirements in E.3			
432	and E.4 section			
421	All PCIe devices, must implement the registers of			Level 3+
434	Type 0 header, as per requirements in E.3 section			
422	All PCIe devices, must implement the registers of Type 1 header, as per requirements in E.4 section			Level 3+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
423	i-EP Root Port must implement the registers of PCIe capability(10h), as per requirements in E.15 section			Level 3+
424 433 435	All PCIe devices, must implement the Device capability register of PCIe capability(10h), as per requirements in E.14/15 section			Level 3+
425	All PCIe devices, must implement the Device Control register of PCIe capability(10h), as per requirements in E.14/15 section			Level 3+
426 436 437	All PCIe devices, must implement the Device capabilities 2 register of PCIe capability(10h), as per requirements in E.14/15 section			Level 3+
427	All PCIe devices, must implement the Device control 2 register of PCIe capability(10h), as per requirements in E.14/15 section			Level 3+
428	All PCIe devices, must implement the power management capability register of power management capability(01h), as per requirements in E.14/15 section			Level 3+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
429	All PCIe devices, must implement the power management control/status register of power management capability(01h), as per requirements in E.14/15 section			Level 3+
430	Memory space access should raise Unsupported Request when device Memory Space enable bit is clear			Level 3+
438 439	iEP root port must follow Completion timeout ranges supported, Completion timeout disable supported and AtomicOp routing supported bit as per section E.15.11			Level 3+
440	Root Port must not support ATS and PRS extended capability			Level 3+
441	RCiEP and iEP end point must support MSI or MSI-X interrupts			Level 3+
442	RCiEP, iEP root port and iEP end point must support Power Management Capability			Level 3+
443	Root Port must implement ARI forwarding enable as per in E.15.12 section			Level 3+
444	Root Port Configuration Space must be under same ECAM as the Configuration Space of Endpoints and switches in hierarchy that originates from that port			Level 3+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
445	All Root Port Configuration Space under same Host Bridge must be in same ECAM			Level 3+

4.6 Exerciser

Exerciser functionality is verified by running the tests on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
801	PEs are able to access the ECAM region			Level 3+
802	PEs are able to access the BAR address of Exerciser			Level 3+
803	In a system where the PCI Express does not use an SMMU, the PCI Express devices have the same view of physical memory as the PEs	DMA transactions trigger		Level 3+
804	Each unique MSI(-X) shall trigger an interrupt with a unique ID and the MSI(-X) shall target GIC registers requiring no hardware- specific software to service the interrupt	System Interrupt and MSI(-X) mapping		Level 3+
805	If the system supports PCIe PASID, then at least 16 bits of PASID must be supported			Level 3+
806	Trigger Legacy Interrupt using Interrupt Pin register	System Interrupt and Interrupt Pin mapping		Level 3+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
807	PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute as cacheable and shared are I/O coherent with the PEs	DMA transactions trigger		Level 3+
808	Memory space access should raise Unsupported Request, when device Memory Space enable bit is clear of RootPort			Level 3+
809	Configuration transactions indented for secondary bus of root port must be of Type0	Platform-specific		Level 3+
810	Configuration transactions indented for subordinate bus range of root port must be of Type1	Platform-specific		Level 3+

4.7 Wakeup semantics

Wakeup semantics functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
501	Wake up from power semantic B due to ELO Physical Timer Interrupt (PTI).	System Register write, GIC APIs	No	Level 2+
502	Wake up from power semantic B due to EL0 Virtual Timer Interrupt (VTI).	System Register write, GIC APIs	No	Level 2+
503	Wake up from power semantic B due to EL2 PTI.	System Register write, GIC APIs	No	Level 2+
504	Wake up from power semantic B due to watchdog WSO interrupt.	System Register write, GIC APIs	No	Level 2+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
505	Wake up from power semantic B due to system timer interrupt.	Platform code	No	Level 2+

4.8 Peripherals

Peripheral functionality is verified from running the test on a single PE in the system.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
601	If the system has a USB 2.0 host controller peripheral, it must conform to EHCI v1.1 or later. But peripheral subsystems which do not conform to the same are permitted, provided that they are not required to boot and install an OS.	USB EHCIHostController Protocol	No	Level 0+
	If the system has a USB 3.0 host controller Peripheral, it must conform to XHCI v1.0 or later. But peripheral subsystems which do not conform to the above are permitted, provided that they are not required to boot and install an OS.	USB XHCIHostController Protocol		
602	If the system has a SATA host controller peripheral it must conform to AHCI v1.3 or later. But peripheral subsystems which do not conform to the above are permitted, provided that they are not required to boot and install an OS.	SATA AHCIHostController	No	Level 0+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
603	For the purpose of system development and bring up, the base server system will include a Generic UART. The Generic	Protocol	No	Level 1+
	UART is specified in Appendix B. The UARTINTR interrupt output is connected to the GIC as an SPI.			
	Check that the Generic UART is mapped to Nonsecure address space.	Register read		Level 3+
604	UARTINTR of the generic UART will be connected as SPI or LPI.	Yes	No	Level 2+
605	Accesses to the unpopulated part of the memory map must not deadlock and cause a precise Data Abort, SEI or SPU interrupt delivered to the GIC.	UEFI Memory Map	No	Level 0+
	In a memory access to an unpopulated part of the addressable memory space, the accesses must be terminated in a manner that is presented to the PE as either a precise Data Abort or that causes a system error interrupt or SPI, LPI interrupt to be delivered to the GIC.			Level 2+

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
606	Secure generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the Secure generic UART is connected to the GIC as an SPI.	Register read/write	Yes	Level 3+

4.9 IO Virtualization (SMMU)

IO Virtualization functionality is verified from running the test on a single PE in the system.

.o vii ca	anzacion functionality is verific			
Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
701	The SMMU, if present must support a 64KB granule.	Register read	No	Level 0+
702	All the System MMUs in the system must be compliant with the same architecture version.	ACPI IORT table	No	Level 3+
703	If SMMUv3 is in use, the integration of the System MMUs is compliant with the specification in Appendix H: SMMUv3 Integration.	ACPI IORT table	No	Level 3+
	A System MMU compatible with the Arm SMMUv2 or SMMUv3 specification must provide stage 2 System MMU functionality.	Register read	-	

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
704	The SMMUv3 specification requires that PCIe root complex must not use the stall model due to potential deadlock.	ACPI table, Register read	-	Level 3+
705	If SMMUv2 is in use, each context bank must present a unique physical interrupt to the GIC.	Yes	-	Level 3+
706	Each function, or virtual function, that requires hardware I/O Virtualization is associated with an SMMU context. The programming of this association is			Level 1+
	IMPLEMENTATION DEFINED and is expected to be described by system firmware data.			

4.10 EL3 - Trusted Firmware

Running the EL3-Firmware tests is not required for ServerReady certification.

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
901	Watchdog Signal 1 is available. This may be confirmed in the data base. This may not be possible to exercise as its handling is platform-specific.	Watchdog APIs and GIC APIs	Yes	Level 1+
	The Watchdog Signal 1 is routed as a SPI to GIC and usable as an EL3 interrupt, directly targeting a single			Level 3+
	PE.			
902	Must implement at least 56 bits.	Timer APIs and PE APIs	Yes	Level 0+
	The counter shall be sized and programmed to ensure that rollover never occurs in practice.			Level 0+
	In systems that implement EL3, CNTControlBase should be mapped to Secure address space only.			Level 1+
	Generic Timer required registers are implemented as specified in section 4.2.3.1 Summary of required			Level 1+
	registers of the CNTControlBase frame.			
903	The local PE timer when expiring must generate a PPI when EL3 physical timer expires.	Secure firmware APIs	Yes	Level 0+
	The local PE timer when expiring must generate a PPI when EL3 physical timer expires, and PPI must			Level 2+
	be 29.			

Test ID	Test case	System interface dependency	Requirement of Secure firmware	Level
904	Any local timers that are marked by PE as always ON	Secure firmware APIs	Yes	Level 0+
	must be able to wake up the system. This applies to expiry of all Secure views of the local timer (CNTPS).			
	Secure Watchdog is implemented. Secure watchdog is not aliased in Non-secure address space. Signal 0 if Secure watchdog is routed as an SPI and usable as an interrupt to EL3, directly targeting a single PE.			Level 3+
905	Secure Generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the Secure generic UART is connected to the GIC as an SPI.	Secure firmware APIs	Yes	Level 3+
906	A Secure system wakeup timer is present, and the interrupt is presented to GIC as a SPI.	Secure firmware APIs	Yes	Level 3+

5 Test scenarios

The test scenarios are divided based on the functionality and the hardware domain access. The test suite follows this division of test scenarios to better categorize the test report.

The level of target compliance is an input to each of these test scenarios. The scenarios are classified into the following:

5.1 VAL APIs

The following VAL APIs are consumed by all the tests and are not mentioned explicitly for each test.

- val_initialize_test
- val_run_test_payload
- val_pe_get_index_mpid
- val_pe_get_mpid
- val_set_status
- val_report_status

5.2 PE

The VAL API val_pe_create_info_table must be called before any of the following test scenarios are executed.

5.2.1 Number of PEs

The PEs referred to in the SBSA specification are those that are running the operating system or hypervisor, not PEs that are acting as devices.

Does not exceed 8

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
1	val_pe_get_num	4.1.1	Level 0,1

Does not exceed 2^28

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
1	val_pe_get_num	4.1.1	Level 2+

5.2.2 PEs must implement SIMD extensions

ID_AA64PFR0_EL1 must indicate support bits [23:20].

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
2	val_pe_reg_read	4.1.1	Level 0+

5.2.3 PEs must implement 16-bit ASID support

ID_AA64MMFR0_EL1 must indicate support for 16-bit ASIDs in ASIDBits == 0010 for all cores.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
3	val_pe_reg_read	4.1.1	Level 0+

5.2.4 PEs must support 4KB and 64KB at stage 1 and 2

ID_AA64MMFR0_EL1 must indicate support for 4KB and 64KB granules for all cores.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
4	val_pe_reg_read	4.1.1	Level 0+

5.2.5 Cache are implemented as VIPT or PIPT

CTR_ELO bits 15:14 must indicate the instruction cache type.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
5	val_pe_reg_read	4.1.1	Level 0+

5.2.6 All PEs are coherent and in the same Inner Shareable domain

ID_MMFRO_EL1.InnerShr must indicate hardware coherency support for InnerShr across all cores, ShreLvI must be 0001 across all cores (later is mandated for Armv8). Functional verification is optional.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
6	val_pe_reg_read	4.1.1	Level 0+

5.2.7 PEs must implement Cryptography extensions

ID_ISAR5_EL1 must indicate support for SHA1 and SHA2, AES, and PMULL and PMULL2 instructions. This test must be run only when Export restriction allows Cryptography Extensions.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable	
7	val_pe_reg_read	4.1.1	Level 0+	
Copyright © 2018, 2020 Arm Limited (or its affiliates). All rights reserved. Non-Confidential				

5.2.8 PEs must have LE support

ID_AA64MMFRO_EL1 indicates whether mixed-endian support is present. If mixed-endian is not supported then SCTLR_ELx.EE must strictly read as 0 indicating endianness as little-endian. If mixed-endian is supported, then memory reads with toggled SCTLR_ELx.EE must return swizzled data.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
8	val_pe_reg_read	4.1.1	Level 0+

5.2.9 PEs must implement EL2

ID_AA64PFR0_EL1 bits 11:8 must indicate EL2 is supported.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
9	val_pe_reg_read	4.1.1	Level 0+

5.2.10 PEs must implement AArch64

ID_AA64PFR0_EL1 must indicate support for AArch64 for all levels.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
10	val_pe_reg_read	4.1.1	Level 0+

5.2.11 PMU overflow signal

The generated PMUIRQ must be wired to unique ID and returned as part of the platform code.

Must be wired to a unique PPI or SPI

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
10	<pre>val_pe_reg_read val_pe_reg_write val_gic_install_isr</pre>	4.1.1	Level 0, 1
	val_pe_get_pmu_gsiv		

Must be wired to PPI 23

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
11	<pre>val_pe_reg_read val_pe_reg_write val_gic_install_isr</pre>	4.1.1	Level 2+
	val_pe_get_pmu_gsiv		

5.2.12 PMU counters

Implement minimum of 4

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
12	val_pe_reg_read	4.1.1	Level 0

Implement minimum of 6

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
12	val_pe_reg_read	4.2.1	Level 1+

5.2.13 PEs must implement a minimum of four synchronous watchpoints

ID_AA64DFR0_EL1.WRPs must indicate a value of at least 3.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
13	val_pe_reg_read	4.1.1	Level 0+

5.2.14 Breakpoints

ID_AA64DFR0_EL1.BRPs indicates number of breakpoints implemented. ID_AA64DFR0_EL1.CTX_CMPs should read at least 1.

Implement minimum of 4

ID_AA64DFR0_EL1.WRPs must indicate a value of at least 3. ID_AA64DFR0_EL1.CTX_CMPs must read at least 1.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
14	val_pe_reg_read	4.1.1	Level 0

Implement minimum of 6

ID_AA64DFR0_EL1.WRPs must indicate a value of at least 5. ID_AA64DFR0_EL1.CTX_CMPs must read at least 1.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
14	val_pe_reg_read	4.2.1	Level 1+

5.2.15 All PEs are architecturally symmetric

Read all the processor ID registers from all PEs and then compare the values with the main PE (cpu_id 0).

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
15	val_pe_reg_read	4.1.1	Level 0+
	val_set_test_data		
	val_data_cache_ci_va		

5.2.16 EL3 must be implemented

ID_AA64PFR0_EL1 bits 15:12 must indicate EL3 is supported.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
16	val_pe_reg_read	4.4.1	Level 3+

5.2.17 CRC32 instruction must be implemented

Read processor register ID_AA64ISAR0_EL1 bits 19:16.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
17	val_pe_reg_read	4.4.1	Level 3+

5.2.18 PMBIRQ will be wired as PPI 21

The generated PMBIRQ must be wired to unique ID will be returned as part of the platform code.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
18	val_pe_reg_read	4.4.1	Level 2+
	<pre>val_pe_reg_write val_gic_install_isr val_secure_call_smc</pre>		
	<pre>val_pe_spe_program_under_p rofiling</pre>		
	val_pe_spe_disable		

5.2.19 All PEs must implement the RAS extension introduced in Armv8.2

Read PE register ID_AA64PFR0_EL1 bits 31:28.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
19	val_pe_reg_read	4.3.1	Level 4+

5.2.20 All PEs must implement support for 16-bit VMD

Read PE register ID_AA64MMFR1_EL1 bits 7:4.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
20	val_pe_reg_read	4.3.1	Level 4+

5.2.21 All PEs must implement virtual host extensions

Read PE register ID_AA64MMFR1_EL1 bits 11:8.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
21	val_pe_reg_read	4.3.1	Level 4+

5.2.22 All PEs must provide support for stage 2 control of memory types and Cacheability, as introduced by Armv8.4 extensions

Read PE register ID_AA64MMFR2_EL1.FWB bits 43:40.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
22	val_pe_reg_read	4.4.1	Level 5+

5.2.23 All PEs must implement enhanced nested Virtualization

Read PE register ID_AA64MMFR2_EL1.FWB bits 27:24.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
23	val_pe_reg_read	4.4.1	Level 5+

5.2.24 All PEs must support changing of page table mapping size using level 1 and level 2 solution proposed in the Armv8.4 extension

Read PE register ID_AA64MMFR2_EL1.FWB bits 55:52.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
24	val_pe_reg_read	4.4.1	Level 5+

5.2.25 If PEs implement Armv8.3 pointer signing, the PEs must provide the standard algorithm defined by the Arm architecture

Read PE register ID_AA64ISAR1_EL1 and check bits[7:4], bits[11:8], bits[27:24] and bits[31:28].

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
25	val_pe_reg_read	4.4.1	Level 4+

5.2.26 All PEs must implement the Activity Monitors Extension

Read PE register ID_AA64PFR0_EL1 bits 47:44.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
26	val_pe_reg_read	4.4.1	Level 5+

5.2.27 Where export control allows, all PEs must implement cryptography support for SHA3 and SHA512

Read PE register ID_AA64ISAR0_EL1.SHA3 bits [35:32] and bits [15:12].

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
27	val_pe_reg_read	4.4.1	Level 5+

5.2.28 Where PEs implement the scalar vector extension, the vector length maximum must be at least 256 bits

Read PE register ID_AA64PFR0_EL1 bits [35:32] and check PE register RDVL value

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
28	val_pe_reg_read	4.4.1	Level 3+

5.3 GIC

The VAL API val_gic_create_info_table needs to be called before any of the following test scenarios are executed.

5.3.1 GIC version

GIC V2 is implemented

ID registers are at offset 0xFE8 (ICPIDR2.ArchRev) == 0x2. On ACPI tables, GICD structure in MADT must indicate revision 2 for the GIC.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
101	val_gic_get_info	4.1.2	Level 0, 1

GIC V3 is implemented

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
101	val_gic_get_info	4.3.2	Level 2+

5.3.2 If the system includes PCI Express, then the GICv3 interrupt controller will implement ITS and LPI

Check if ECAM is present, if yes, assume the system implements PCIe. Check for the presence of ITS from MADT table and HW register value.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
102	val_gic_get_info	4.3.2	Level 2+
	val_pcie_get_info		

5.3.3 The GICv3 interrupt controller will support two Security states

Check GICD_CTLR.DS bit (bit6 == 0 : 2 states, bit 6 == 1 : 1 state).

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
103	val_gic_get_gicd_base	4.4.4	Level 3+
	val_gic_get_info		

5.3.4 GIC maintenance interrupt shall be wired as PPI 25

The generated GIC maintenance interrupt must be wired as PPI 25.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
104	val_gic_get_info val_gic_install_isr val_gic_reg_read val_gic_reg_write	4.4.4	Level 3+
	val_gic_end_of_interrupt		

5.4 System and Generic Timer

Call the VAL API val_timer_create_info_table before any of the following test scenarios are executed.

5.4.1 System counter of the Generic Timer will run at a minimum frequency of 10 and at a maximum frequency of 400MHz

ACPI GTDT table gives the frequency of the timer. The test must check that the frequency matches the value read from CNTFREQ registers. The functional test of the timer clock frequency is beyond the capability of the AVS suite.

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
201	val_gic_get_timer_info	4.1.5	Level 0+

5.4.2 The local PE timer when expiring must generate a PPI when the EL1 physical timer expires

This must test the overflow when programming CNTP_TVAL_ELO or CNTP_CVAL_ELO. The test must ensure for each CPU a PPI is generated, and the PPI is the same for all CPUs.

Must be wired to a unique PPI for associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
202	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr val_timer_set_phy_el1		

Must be wired to PPI 30

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
202	val_gic_get_timer_info	4.3.2.1	Level 2+
	<pre>val_gic_install_isr val_timer_set_phy_el1</pre>		

5.4.3 The local PE timer when expiring must generate a PPI when the virtual timer expires

This must test the overflow when programming CNTV_TVAL_ELO or CNTV_VAL_ELO. The test must ensure for each CPU a PPI is generated, and the PPI is the same for all CPUs.

Must be wired to a unique PPI for the associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
203	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr val_timer_set_vir_el1		

Must be wired to PPI 27

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
203	val_gic_get_timer_info	4.3.2.1	Level 2+
	val_gic_install_isr val_timer_set_vir_el1		

5.4.4 The local PE timer when expiring must generate a PPI when the EL2 physical timer expires

This must test the overflow when programming CNTHP_TVAL_EL2 or CNTHP_CVAL_EL2. The test must ensure for each CPU a PPI is generated, and the PPI is the same for all CPUs.

Must be wired to a unique PPI for the associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
204	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr val_timer_set_phy_el2		

Must be wired to PPI 26

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
204	val_gic_get_timer_info	4.3.2.1	Level 2+
	val_gic_install_isr val_timer_set_phy_el2		

5.4.5 The Local PE timer when expiring must generate a PPI when the EL2 virtual timer expires

Must be wired to a unique PPI for the associated PE

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
205	val_gic_get_timer_info	4.1.5	Level 0, 1
	val_gic_install_isr val_timer_set_vir_el2		
	val_pe_reg_read		

Must be wired to PPI 28

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
205	val_gic_get_timer_info	4.3.2.1	Level 2+
	<pre>val_gic_install_isr val_timer_set_vir_el2</pre>		
	val_pe_reg_read		

5.4.6 In systems that implement EL3, the memory mapped timer must be mapped into the Non-secure address space (the CNTBaseN frame and associated CNTCTLBase frame)

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
206	<pre>val_gic_get_timer_info val_mmio_read val_mmio_write</pre>	4.2.3	Level 1+

If the system includes a system wakeup timer, this memory-mapped timer must be mapped on to Non-secure address space

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
206	<pre>val_gic_get_timer_info val_mmio_read val_mmio_write</pre>	4.3.2.1	Level 3+

5.4.7 Unless all of the local PE timers are always on, the base server system will implement a system-specific system wakeup timer

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
207	val_gic_get_timer_info	4.1.5	Level 0+

5.4.8 System-specific system timer shall generate an SPI

Test ID	VAL APIs consumed	Specification section	Compliance level applicable
208	val_timer_get_info val_timer_skip_if_cntbase_acc ess_not_allowed val_gic_install_isr	4.1.5	Level 0+
	<pre>val_timer_set_system_timer val_timer_disable_system_tim er val_gic_end_of_interrupt</pre>		

5.5 Watchdog

Call the VAL API val_wd_create_info_table before any of the following test scenarios are executed.

5.5.1 System implements a Generic Watchdog as specified in SBSA specification.

Test ID	APIs consumed	Specification section	Compliance level applicable
301	val_wd_get_info	4.2.4	Level 1+

The Non-secure watchdog must have both its register frames mapped on to Non-secure address space

Test ID	APIs consumed	Specification section	Compliance level applicable
301	val_wd_get_info	4.4.7	Level 2+
	val_mmio_read		

5.5.2 Watchdog Signal 0 is routed as SPI (or LPI) and usable as an EL2 interrupt

WSO routed as SPI

Test ID	APIs consumed	Specification section	Compliance level applicable
302	<pre>val_wd_get_info val_gic_install_isr val_wd_set_ws0</pre>	4.2.4	Level 0, 1

WSO routed as SPI or LPI

Test ID	APIs consumed	Specification section	Compliance level applicable
302	val_wd_get_info	4.3.8	Level 2, 3
	<pre>val_gic_install_isr val_wd_set_ws0</pre>		

5.6 Peripherals and memory

Call the VAL APIs val_peripheral_create_info_table and val_memory_create_info_table for relevant test scenarios before their execution.

5.6.1 If the system has a USB2.0 (USB3.0) host controller peripheral, it must conform to EHCI v1.1 (XHCI v1.0) or later.

Test ID	APIs consumed	Specification section	Compliance level applicable
601	val_peripheral_get_info	4.1.11	Level 0+
	val_pcie_read_cfg		

5.6.2 If the system has a SATA host controller peripheral, it must conform to AHCI v1.3 or later.

Test ID	APIs consumed	Specification section	Compliance level applicable
602	val_peripheral_get_info	4.1.11	Level 0+
	val_pcie_read_cfg		

5.6.3 Base server system will include a Generic UART as specified in Appendix B. Check that that Generic UART is mapped to Non-secure address space

Test ID	APIs consumed	Specification section	Compliance level applicable
603	val_peripheral_get_info	4.1.11	Level 0+

5.6.4 The UARTINTR interrupt output is connected to the GIC.

UARTINTR routed as SPI or LPI

Test ID	APIs consumed	Specification section	Compliance level applicable
604	val_peripheral_get_info	B.3	Level 1+
	val_gic_install_isr		

5.6.5 Memory access to an unpopulated part of the addressable memory space

In a memory access to an unpopulated part of the addressable memory space, the accesses must be terminated in a manner that is presented to the PE as either a precise Data Abort or that causes a system error interrupt or SPI, LPI interrupt to be delivered to the GIC.

Test ID	APIs consumed	Specification section	Compliance level applicable
605	val_pe_get_elr_stacked_addr	4.1.3	Level 0+
	val_pe_install_esr val_memory_get_info		

5.6.6 Non-secure access to Secure address must cause exception.

Some memory is mapped in secure address space. The memory shall not be aliased in Non-secure address space.

Test ID	APIs consumed	Specification section	Compliance level applicable
606	val_pe_install_esr	4.1.3	Level 3+
	val_pe_update_elr		
	val_pe_reg_read		

5.7 Power states and wakeup

There are no prerequisite VAL APIs for the following tests.

5.7.1 In state B, a PE must be able to wake on receipt of an SGI, PPI or SPI that directly targets the PE.

Wake up due to ELO PTI

Test ID	APIs consumed	Specification section	Compliance level applicable
501	<pre>val_timer_get_info val_timer_set_phy_el1 val_gic_install_isr</pre>	4.1.8	Level 0+
	val_power_enter_semantic		

Wake up due to EL0 VTI

Test ID	APIs consumed	Specification section	Compliance level applicable
502	val_timer_get_info	4.1.8	Level 0+
	val_timer_set_vir_el1		
	val_timer_set_phy_el1		
	val_gic_install_isr		
	val_power_enter_semantic		

Wake up due to EL2 PTI

Test ID	APIs consumed	Specification section	Compliance level applicable
503	<pre>val_timer_get_info val_timer_set_phy_el2 val_timer_set_phy_el2 val_gic_install_isr</pre>	4.1.8	Level 0+
	val_power_enter_semantic		

Wake up due to Watchdog WSO Interrupt

Test ID	APIs consumed	Specification section	Compliance level applicable
504	<pre>val_wd_get_info val_wd_set_ws0 val_timer_get_info val_timer_set_phy_el1 val_gic_install_isr val_power_enter_semantic</pre>	4.1.8	Level 0+

Wake up due to system time interrupt

Test ID	APIs consumed	Specification section	Compliance level applicable
505	<pre>val_timer_get_info val_timer_set_system_timer val_gic_install_isr</pre>	4.1.8	Level 0+
	val_power_enter_semantic		

5.8 IO Virtualization

5.8.1 SMMU if present is compatible with Arm SMMU v1

This test case can be skipped as it is very unlikely that the 2016/2017 platforms will have an SMMU compatible with version 1.

5.8.2 SMMU if present, must support a 64KB translation granule

ID register gives the supported translation granule size.

Test ID	APIs consumed	Specification section	Compliance level applicable
701	val_smmu_get_info val_smmu_read_cfg	-	Level 0+

5.8.3 All the System MMUs in the system must be compliant with the same architecture version

Test ID	APIs consumed	Specification section	Compliance level applicable
702	val_smmu_get_info	4.1.6	Level 3+

5.8.4 If PCIe, check the stall model

Test ID	APIs consumed	Specification section	Compliance level applicable
704	val_smmu_get_info	Appendix E	Level 3+
	val_pcie_get_info		

5.8.5 If SMMUv3 is in use, check the compliance with Appendix E: SMMUv3 integration

Test ID	APIs consumed	Specification section	Compliance level applicable
703	val_smmu_get_info	4.1.6	Level 3+
	val_smmu_read_cfg	Appendix E	

5.8.6 If SMMUv2 is in use, Each context bank must present a unique physical interrupt to the GIC

Test ID	APIs consumed	Specification section	Compliance level applicable
705	val_smmu_get_info	4.1.6	Level 3+
	val_iovirt_check_unique_ctx_i ntid		

5.8.7 Each function, or virtual function, that requires hardware I/O Virtualization is associated with an SMMU context.

The programming of this association is IMPLEMENTATION DEFINED and is expected to be described by system firmware data.

Test ID	APIs consumed	Specification section	Compliance level applicable
706	val_smmu_get_info	4.1.6	Level 3+
	val_iovirt_unique_rid_strid_r ap	m	

5.9 PCIE

Call the VAL API val_pcie_create_info_table before any of the following test scenarios are executed.

5.9.1 Systems must map memory space to PCI Express configuration space, using the PCI Express Enhanced Configuration Access Mechanism (ECAM)

Test ID	APIs consumed	Specification section	Compliance level applicable
401	val_pcie_get_info	D.1	Level 1

5.9.2 ECAM value present in MCFG

Test ID	APIs consumed	Specification section	Compliance level applicable
402	val_pcie_get_info	D.1	Level 1+

5.9.3 PEs are able to access ECAM

Test ID	APIs consumed	Specification section	Compliance level applicable
403	val_pcie_get_info	D.1	Level 1+
	val_mmio_read		

5.9.4 PCIe space is device or non-cacheable

Test ID	APIs consumed	Specification section	Compliance level applicable
404	val_pcie_get_info	D.2	Level 1+
	val_memory_get_info		

5.9.5 When PCI Express memory space is mapped as normal memory, the system must support unaligned accesses to that region.

Test ID	APIs consumed	Specification section	Compliance level applicable
404	val_pcie_get_info	D.2	Level 1+
	val_memory_get_info		

5.9.6 In systems that are compatible with level 3 or above of the SBSA, the addresses sent by PCI Express devices must be presented to the memory system or SMMU unmodified

In a system where the PCI Express does not use an SMMU, the PCI Express devices have the same view of physical memory as the PEs.PCIe I/O Coherency Scenarios without System MMU are covered. PCIe I/O Coherency Scenarios with System MMU are covered.

Test ID	APIs consumed	Specification section	Compliance level applicable
405	val_pcie_get_info val_memory_get_info val_dma_get_info val_dma_start_from_device val_dma_start_to_device val_smmu_ops	D.3	Level 1+

5.9.7 In a system with an SMMU for PCI Express there are no transformations to addresses being sent by PCI Express devices before they are presented as an input address to the SMMU.

The addresses sent by PCI Express devices must be presented to the memory system or SMMU unmodified.

Test ID	APIs consumed	Specification section	Compliance level applicable
406	<pre>val_pcie_get_info val_memory_get_info val_dma_get_info val_smmu_ops val_dma_device_get_dma_addr</pre>	D.3	Level 1+
	val_dma_mem_alloc		

5.9.8 Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices.

MSI and MSI-X are edge-triggered interrupts that are delivered as a memory write transaction.

Test ID	APIs consumed	Specification section	Compliance level applicable
407	val_peripheral_get_info val_pcie_get_device_type	D.4	Level 1+

5.9.9 Each unique MSI(-X) shall trigger an interrupt with a unique ID and the MSI(-X) shall target GIC registers requiring no hardware-specific software to service the interrupt.

Test ID	APIs consumed	Specification section	Compliance level applicable
408	val_peripheral_get_info val_get_msi_vectors	D.4	Level 1+

5.9.10 All MSIs and MSI-x are mapped to LPI.

Test ID	APIs consumed	Specification section	Compliance level applicable
409	val_peripheral_get_info val_get_msi_vectors	D.4	Level 1+

5.9.11 If the system supports PCIe PASID, then at least 16 bits of PASID must be supported

Test ID	APIs consumed	Specification section	Compliance level applicable
410	val_peripheral_get_info val_smmu_get_info val_smmu_max_pasids	D.14	Level 1+

5.9.12 The PCI Express root complex is in the same Inner Shareable domain as the PEs

Test ID	APIs consumed	Specification section	Compliance level applicable
411	val_iovirt_get_pcie_rc_info	D.8	Level 1+

5.9.13 Each of the 4 legacy interrupt lines must be allocated a unique SPI ID and is programmed as level sensitive

Test ID	APIs consumed	Specification section	Compliance level applicable
412	<pre>val_peripheral_get_info val_pci_get_legacy_irq_map</pre>	D.6	Level 1+

5.9.14 All Non-secure on-chip masters in a base server system that are expected to be under the control of the OS or hypervisor must be capable of addressing all of the NS address space.

If the master goes through an SMMU then it must be capable of addressing all of the NS address space when the SMMU is off. Non-secure off-chip devices that cannot directly address all of the Non-secure address space must be placed behind a stage 1 System MMU compatible with the Arm SMMUv2 or SMMUv3 specification that has an output address size large enough to address all of the Non-secure address space.

Test ID	APIs consumed	Specification section	Compliance level applicable
413	val_peripheral_get_info val_pcie_is_devicedma_64bit val_pcie_is_device_behind_sm mu	4.1.3	Level 1+

5.9.15 Memory Attributes of DMA traffic.

Memory Attributes of DMA traffic are one of (1) Inner WB, Outer WB, Inner Shareable (2) Inner/Outer Non- Cacheable (3) Device Type IO coherent DMA is as per (1) Inner/Outer WB, Inner Shareable.

Test ID	APIs consumed	Specification section	Compliance level applicable
414	<pre>val_dma_get_info val_dma_mem_alloc val_dma_mem_get_attrs</pre>	4.1.11	Level 1+

5.9.16 PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute as cacheable and shared are I/O Coherent with the PEs.

Test ID	APIs consumed	Specification section	Compliance level applicable
415	<pre>val_peripheral_get_info val_pcie_get_device_type val_pcie_get_dma_support</pre>	D.8	Level 1+
	val_pcie_get_snoop_bit		

5.9.17 For Non-prefetchable (NP) memory, type-1 headers only support 32bit address, systems complaint with SBSA level 4 or above must support 32bit programming of NP BARs on such endpoints

Test ID	APIs consumed	Specification section	Compliance level applicable
416	<pre>val_peripheral_get_info val_pcie_get_device_type val_pcie_io_read_cfg</pre>	D.2	Level 3+
	<pre>val_pcie_scan_bridge_devices _and_check_memtype</pre>		

5.9.18 Root Port must implement minimal ACS features if P2P supported

Test ID	APIs consumed	Specification section	Compliance level applicable
417	<pre>val_peripheral_get_info() val_pcie_get_pcie_type() val_pcie_p2p_support() val_pcie_read_ext_cap_word()</pre>	D.13	Level 3+

5.9.19 All switches must implement minimal ACS features if P2P supported

Test ID	APIs consumed	Specification section	Compliance level applicable
418	<pre>val_peripheral_get_info() val_pcie_get_pcie_type() val_pcie_p2p_support()</pre>	D.13	Level 3+
	val_pcie_read_ext_cap_word()		

5.9.20 Multifunction devices must implement minimal ACS features if P2P supported

Test ID	APIs consumed	Specification section	Compliance level applicable
419	val_peripheral_get_info()	D.13	Level 3+
	<pre>val_pcie_get_pcie_type() val_pcie_multifunction_suppo rt() val_pcie_p2p_support() val_pcie_read_ext_cap_word()</pre>		

5.9.21 Type 0/1 common config rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
420	<pre>val_pcie_register_bitfields_ch eck(), val_pcie_disable_eru(bdf), val_pcie_device_port_type(bd f) val_pcie_bitfield_check(), val_pcie_find_capability</pre>	E.3/4	Level 3+

5.9.22 Type 0 config header rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
421	val_pcie_register_bitfields_ch eck()	E.3	Level 3+
	<pre>val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>		

5.9.23 Type 1 config header rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
422	<pre>val_pcie_register_bitfields_ch eck() val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>	E.3	Level 3+

5.9.24 PCIe capability rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
423	<pre>val_pcie_register_bitfields_ch eck() val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>	E.15	Level 3+

5.9.25 Device capabilites register rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
424	<pre>val_pcie_register_bitfields_ch eck() val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>	E.14/15	Level 3+

5.9.26 Device Control register rule check

Test ID	APIs consumed	Specification section	Compliance level applicable
425	<pre>val_pcie_register_bitfields_ch eck() val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>	E.14/15	Level 3+

5.9.27 Device capabilities 2 register rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
426	<pre>val_pcie_register_bitfields_ch eck() val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>	E.14/15	Level 3+

5.9.28 Device control 2 reg rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
427	val_pcie_register_bitfields_ch eck()	E.14/15	Level 3+
	<pre>val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>		

5.9.29 Power management capability rules check

Test ID	APIs consumed	Specification section	Compliance level applicable
428	<pre>val_pcie_register_bitfields_ch eck() val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>	E.14/15	Level 3+

5.9.30 Power management/status rule check

Test ID	APIs consumed	Specification section	Compliance level applicable
429	val_pcie_register_bitfields_ch eck()	E.14/15	Level 3+
	<pre>val_pcie_disable_eru(bdf) val_pcie_device_port_type(bd f) val_pcie_bitfield_check() val_pcie_find_capability</pre>		

5.9.31 Check Command Register memory space enable functionality

Test ID	APIs consumed	Specification section	Compliance level applicable
430	val_pe_update_elr() val_pcie_bdf_table_ptr() val_pe_install_esr() val_pcie_function_header_typ e() val_pcie_get_downstream_fu nction() val_pcie_get_mmio_bar() val_pcie_disable_eru() val_pcie_clear_urd() val_pcie_disable_msa() val_mmio_read() val_pcie is urd()	E.3/4	Level 3+
	val_pcie_enable_msa() val_pcie_find_capability()		

5.9.32 Type0/1 BIST Reg verification rule

Test ID	APIs consumed	Specification section	Compliance level applicable
431	val_pcie_bdf_table_ptr()	E.3/4	Level 3+

5.9.33 Check HDR CapPtr Reg verification rule

Test ID	APIs consumed	Specification section	Compliance level applicable
432	val_pcie_bdf_table_ptr()	E.3/4	Level 3+

5.9.34 Max payload size supported check

Test ID	APIs consumed	Specification section	Compliance level applicable
433	<pre>val_pcie_bdf_table_ptr() val_pcie_find_capability()</pre>	E.14/15	Level 3+

5.9.35 BAR memory space and Type rule check

Test ID	APIs consumed	Specification section	Compliance level applicable
434	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type() val_pcie_is_onchip_peripheral() val_pcie_find_capability()</pre>	E.3	Level 3+

5.9.36 Function level reset rule check

Test ID	APIs consumed	Specification section	Compliance level applicable
435	<pre>val_pe_get_index_mpid() val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_memory_alloc() val_pcie_get_bdf_config_addr() val_memcpy() val_time_delay_ms() val_memory_free() val_pcie_is_onchip_peripheral()</pre>	E.14/15	Level 3+

5.9.37 Check ARI forwarding support rule

Test ID	APIs consumed	Specification section	Compliance level applicable
436	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()</pre>	E.14/15	Level 3+

5.9.38 Check OBFF supported rule

Test ID	APIs consumed	Specification section	Compliance level applicable
437	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()</pre>	E.14/15	Level 3+

5.9.39 Check CTRS and CTDS rule

Test ID	APIs consumed	Specification section	Compliance level applicable
438	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()val _pcie_get_rp_transaction_frwd_su pport(bdf)</pre>	E.15.11	Level 3+

5.9.40 Check i-EP atomicop rule

Test ID	APIs consumed	Specification section	Compliance level applicable
439	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_get_atomicop_requester _capable() val_pcie_is_onchip_peripheral()</pre>	E.15.11	Level 3+

5.9.41 Check Root Port ATS and PRI rule

Test ID	APIs consumed	Specification section	Compliance level applicable
440	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()</pre>	-	Level 3+

5.9.42 Check MSI and MSI-X support rule

Test ID	APIs consumed	Specification section	Compliance level applicable
441	<pre>val_pcie_bdf_table_ptr(), val_pcie_device_port_type(bdf), val_pcie_find_capability(), val_pcie_is_onchip_peripheral()</pre>	E.7	Level 3+

5.9.43 Check Power Management rules

Test ID	APIs consumed	Specification section	Compliance level applicable
442	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()</pre>	E.11	Level 3+

5.9.44 Check ARI forwarding enable rule

Test ID	APIs consumed	Specification section	Compliance level applicable
443	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()</pre>	E.15.12	Level 3+

5.9.45 Check device under RP in same ECAM

Test ID	APIs consumed	Specification section	Compliance level applicable
444	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_get_ecam_base(bdf) val_mmio_read() val_pcie_io_read_cfg() val_pcie_get_info()</pre>	D.1	Level 3+

5.9.46 Check all RP under a HB is in same ECAM

Test ID	APIs consumed	Specification section	Compliance level applicable
445	<pre>val_pcie_bdf_table_ptr() val_pcie_device_port_type(bdf) val_pcie_get_info() val_pcie_get_ecam_base(bdf) val_pcie_find_capability() val_pcie_is_onchip_peripheral()</pre>	D.1	Level 3+

5.10 EL3 – Trusted firmware

Running the EL3-Firmware tests is not required for ServerReady certification.

5.10.1 Watchdog Signal 1 is available. This may be confirmed in the data base. This may not be possible to exercise as its handling is platform-specific

Test ID	APIs consumed	Specification section	Compliance level applicable
901	<pre>val_wd_get_info val_wd_set_ws0 val_gic_install_isr val_secure_get_result</pre>	4.2.4	Level 1+
	val_gic_end_of_interrupt		

The Watchdog Signal 1 is routed as a SPI to GIC and usable as an EL3 interrupt, directly targeting a single PE

Test ID	APIs consumed	Specification section	Compliance level applicable
901	<pre>val_wd_get_info val_wd_set_ws0 val_gic_install_isr val_secure_get_result</pre>	4.5.3	Level 3+
	val_gic_end_of_interrupt		

5.10.2 Must implement at least 56 bits

Test ID	APIs consumed	Specification section	Compliance level applicable
902	val_is_el3_enabled val_secure_call_smc val_secure_get_result val_pe_install_esr val_pe_update_elr	4.1.5	Level 0+

In systems that implement EL3, CNTControlBase should be mapped to Secure address space only.

Test ID	APIs consumed	Specification section	Compliance level applicable
902	val_is_el3_enabled val_secure_call_smc val_secure_get_result val_pe_install_esr val_pe_update_elr	4.1.5	Level 0+

The counter shall be sized and programmed to ensure that rollover never occurs in practice

Test ID	APIs consumed	Specification section	Compliance level applicable
902	<pre>val_is_el3_enabled val_secure_call_smc val_secure_get_result val_pe_install_esr val_pe_update_elr</pre>	4.2.3	Level 1+

Generic Timer required registers are implemented as specified in section 4.2.3.1 "Summary of required registers of the CNTControlBase frame"

Test ID	APIs consumed	Specification section	Compliance level applicable
902	val_is_el3_enabled val_secure_call_smc val_secure_get_result val_pe_install_esr val_pe_update_elr	4.2.3.1	Level 1+

5.10.3 The local PE timer when expiring must generate a PPI when EL3 physical timer expires

Test ID	APIs consumed	Specification section	Compliance level applicable
903	val_secure_call_smc val_secure_get_result	4.1.5	Level 0+
	val_check_for_error		

The local PE timer when expiring must generate a PPI when EL3 physical timer expires, and PPI must be 29.

Test ID	APIs consumed	Specification section	Compliance level applicable
903	val_secure_call_smc val_secure_get_result	4.3.2.1	Level 2+
	val_check_for_error		

5.10.4 Any local timers that are marked by PE as always ON must be able to wake up the system. This applies to expiry of all Secure views of the local timer (CNTPS)

Test ID	APIs consumed	Specification section	Compliance level applicable
904	val_secure_call_smc val_secure_get_result	4.1.7	Level 0+
	val_check_for_error		

Secure Watchdog is implemented. Secure watchdog is not aliased in Non-secure address space. Signal 0 if Secure watchdog is routed as an SPI and usable as an interrupt to EL3, directly targeting a single PE

Test ID	APIs consumed	Specification section	Compliance level applicable
904	val_secure_call_smc val_secure_get_result	4.5.3	Level 3+
	val_check_for_error		

5.10.5 Secure Generic UART is present. It is not aliased in Non-secure address space. The UARTINTR output of the Secure generic UART is connected to the GIC as an SPI

Test ID	APIs consumed	Specification section	Compliance level applicable
905	val_secure_call_smc val_secure_get_result	4.5.4	Level 3+
	val_check_for_error		

5.10.6 A Secure system wakeup timer is present and the interrupt is presented to GIC as a SPI

7	Test ID	APIs consumed	Specification section	Compliance level applicable
g	906	val_secure_call_smc val_secure_get_result	4.5.2	Level 3+
		val_check_for_error		

Appendix A Revisions

This appendix describes the technical changes between released issues of this book.

Table-1 Issue 02

Change	Location	Affects
First issue	-	-

Table-2 Differences between issue 02 and issue 03

Change	Location	Affects
New PCIe tests are added.	See PCIE.	All revisions.