# Am29LV800BB-90EC

### 基本参数

容量: 8M 电源 2.7-3.6V 响应时间: 90ms 引脚数: 48

#### 引脚图



#### **PIN CONFIGURATION**

A0-A18 = 19 addresses

DQ0-DQ14= 15 data inputs/outputs

DQ15/A-1 = DQ15 (data input/output, word 式比字模式多 mode),

A-1 (LSB address input, byte mode)

BYTE# = Selects 8-bit or 16-bit mode

CE# = Chip enable
OE# = Output enable
WE# = Write enable

RESET# = Hardware reset pin, active low

RY/BY# = Ready/Busy# output

V<sub>CC</sub> = 3.0 volt-only single power supply (see Product Selector Guide for

speed options and voltage supply

tolerances)

V<sub>SS</sub> = Device ground

NC = Pin not connected internally

#### **LOGIC SYMBOL**



## 与 S3C2440 接线



根据连线可知,BYTE#键设置模式为字配置状态。

## 设备总线操作

Table 1. Am29LV800B Device Bus Operations

|                            |                         |     |         |                         |                                              |                  |                            | DQ8-DQ15                   |
|----------------------------|-------------------------|-----|---------|-------------------------|----------------------------------------------|------------------|----------------------------|----------------------------|
| Operation                  | CE#                     | OE# | WE<br># | RESET#                  | Addresses<br>(Note 1)                        | DQ0-<br>DQ7      | BYTE#<br>= V <sub>IH</sub> | BYTE#<br>= V <sub>IL</sub> |
| Read                       | L                       | L   | Ι       | Н                       | $A_{IN}$                                     | D <sub>OUT</sub> | D <sub>OUT</sub>           | DQ8-DQ14 = High-Z,         |
| Write                      | L                       | Н   | L       | Н                       | $A_{IN}$                                     | D <sub>IN</sub>  | D <sub>IN</sub>            | DQ15 = A-1                 |
| Standby                    | V <sub>CC</sub> ± 0.3 V | х   | X       | V <sub>CC</sub> ± 0.3 V | Х                                            | High-Z           | High-Z                     | High-Z                     |
| Output Disable             | L                       | Н   | Н       | Н                       | X                                            | High-Z           | High-Z                     | High-Z                     |
| Reset                      | Х                       | Х   | Χ       | L                       | Х                                            | High-Z           | High-Z                     | High-Z                     |
| Sector Protect (Note 2)    | L                       | н   | L       | V <sub>ID</sub>         | Sector Address,<br>A6 = L, A1 = H,<br>A0 = L | D <sub>IN</sub>  | ×                          | х                          |
| Sector Unprotect (Note 2)  | L                       | н   | L       | V <sub>ID</sub>         | Sector Address,<br>A6 = H, A1 = H,<br>A0 = L | D <sub>IN</sub>  | ×                          | х                          |
| Temporary Sector Unprotect | Х                       | X   | X       | $V_{ID}$                | A <sub>IN</sub>                              | D <sub>IN</sub>  | D <sub>IN</sub>            | High-Z                     |

#### Legend:

#### Notes:

- 1. Addresses are A18:A0 in word mode (BYTE# =  $V_{IH}$ ), A18:A-1 in byte mode (BYTE# =  $V_{IL}$ ).
- 2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the "Sector Protection/Unprotection" section.

## 扇区划分

 $L = Logic\ Low = V_{IL},\ H = Logic\ High = V_{IH},\ V_{ID} = 12.0 \pm 0.5\ V,\ X = Don't\ Care,\ A_{IN} = Address\ In,\ D_{IN} = Data\ In,\ D_{OUT} = Data\ Out$ 

Table 3. Am29LV800BB Bottom Boot Block Sector Addresses

|        |     |     |     |     |     |     |     | Sector Size | Address Range | (in hexadecimal) |
|--------|-----|-----|-----|-----|-----|-----|-----|-------------|---------------|------------------|
|        |     |     |     |     |     |     |     | (Kbytes/    | (x8)          | (x16)            |
| Sector | A18 | A17 | A16 | A15 | A14 | A13 | A12 | Kwords)     | Address Range | Address Range    |
| SA0    | 0   | 0   | 0   | 0   | 0   | 0   | X   | 16/8        | 00000h-03FFFh | 00000h-01FFFh    |
| SA1    | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 8/4         | 04000h-05FFFh | 02000h-02FFFh    |
| SA2    | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 8/4         | 06000h-07FFFh | 03000h-03FFFh    |
| SA3    | 0   | 0   | 0   | 0   | 1   | X   | X   | 32/16       | 08000h-0FFFFh | 04000h-07FFFh    |
| SA4    | 0   | 0   | 0   | 1   | X   | X   | Х   | 64/32       | 10000h-1FFFFh | 08000h-0FFFFh    |
| SA5    | 0   | 0   | 1   | 0   | X   | Х   | Х   | 64/32       | 20000h-2FFFFh | 10000h-17FFFh    |
| SA6    | 0   | 0   | 1   | 1   | X   | Х   | X   | 64/32       | 30000h-3FFFFh | 18000h-1FFFFh    |
| SA7    | 0   | 1   | 0   | 0   | X   | X   | X   | 64/32       | 40000h-4FFFFh | 20000h-27FFFh    |
| SA8    | 0   | 1   | 0   | 1   | X   | X   | X   | 64/32       | 50000h-5FFFFh | 28000h-2FFFFh    |
| SA9    | 0   | 1   | 1   | 0   | X   | X   | X   | 64/32       | 60000h-6FFFFh | 30000h-37FFFh    |
| SA10   | 0   | 1   | 1   | 1   | X   | X   | X   | 64/32       | 70000h-7FFFFh | 38000h-3FFFFh    |
| SA11   | 1   | 0   | 0   | 0   | X   | Х   | Х   | 64/32       | 80000h-8FFFFh | 40000h-47FFFh    |
| SA12   | 1   | 0   | 0   | 1   | X   | Х   | Х   | 64/32       | 90000h-9FFFFh | 48000h-4FFFFh    |
| SA13   | 1   | 0   | 1   | 0   | X   | X   | X   | 64/32       | A0000h-AFFFFh | 50000h-57FFFh    |
| SA14   | 1   | 0   | 1   | 1   | X   | X   | X   | 64/32       | B0000h-BFFFFh | 58000h-5FFFFh    |
| SA15   | 1   | 1   | 0   | 0   | X   | X   | X   | 64/32       | C0000h-CFFFFh | 60000h-67FFFh    |
| SA16   | 1   | 1   | 0   | 1   | X   | X   | X   | 64/32       | D0000h-DFFFFh | 68000h-6FFFFh    |
| SA17   | 1   | 1   | 1   | 0   | X   | X   | X   | 64/32       | E0000h-EFFFFh | 70000h-77FFFh    |
| SA18   | 1   | 1   | 1   | 1   | X   | X   | Х   | 64/32       | F0000h-FFFFFh | 78000h-7FFFFh    |

**Note for Tables 2 and 3:** Address range is A18:A-1 in byte mode and A18:A0 in word mode. See "Word/Byte Configuration" section.

# 命令时钟周期

Table 1. Am29LV800B Command Definitions

|              |                        |          |        |            |       |      |      | Bus Cy | cles ( | Notes : | 2-5) |       |      |       |     |
|--------------|------------------------|----------|--------|------------|-------|------|------|--------|--------|---------|------|-------|------|-------|-----|
|              | Command                |          |        | First      |       | Seco | ond  | Thir   | d      | Fou     | ırth | Fifth |      | Sixth |     |
|              | Sequence               |          | Cycles |            | Dat   |      | Dat  |        | Dat    |         |      |       | Dat  |       | Dat |
|              | (Note 1)               |          |        | Addr       | а     | Addr | а    | Addr   | а      | Addr    | Data | Addr  | а    | Addr  | а   |
|              | d (Note 6)             |          | 1      | RA         | RD    |      |      |        |        |         |      |       |      |       |     |
| Res          | et (Note 7)            |          | 1      | XXX        | F0    |      |      |        |        |         |      |       |      |       |     |
|              | Manufacturer ID        | Word     | 4      | 555        | AA    | 2AA  | 55   | 555    | 90     | X00     | 01   |       |      |       |     |
|              | Tidilalactarer 15      | Byte     |        | AAA        | 701   | 555  | 33   | AAA    | 30     | 7,00    | 01   |       |      |       |     |
| e 8)         | Device ID,             | Word     | 4      | 555        | AA    | 2AA  | 55   | 555    | 90     | X01     | 22DA |       |      |       |     |
| (Note        | Top Boot Block         | Byte     | 7      | AAA        | ~~    | 555  | 33   | AAA    | ] 30   | X02     | DA   |       |      |       |     |
| 5            | Device ID,             | Word     | 4      | 555        | AA    | 2AA  | - 55 | 555    | 90     | X01     | 225B |       |      |       |     |
| Autoselect   | Bottom Boot Block      | Byte     | 4      | AAA        | AA    | 555  | 55   | AAA    | 90     | X02     | 5B   |       |      |       |     |
| ose          |                        | Word     |        | 555        | AA 2A | 2AA  | 555  |        | (SA)   | XX00    |      |       |      |       |     |
| Į,           | Sector Protect Verify  | word     | 4      | 555        |       |      | 55   | 555    | 90     | X02     | XX01 |       |      |       |     |
| ~            | (Note 9)               | Byte     | 4      |            |       |      | 55   |        | 90     | (SA)    | 00   |       |      |       |     |
|              |                        |          |        | AAA        |       | 555  |      | AAA    |        | X04     | 01   |       |      |       |     |
| _            |                        | Word     | 4      | 555<br>AAA | 2AA   |      | 555  |        | ) PA I |         |      |       |      |       |     |
| Pro          | gram                   | Byte     | 4      |            | 555   | 55   | AAA  | A0     |        | PD      |      |       |      |       |     |
|              | - d. D                 | Word     | 3      | 555        |       | 2AA  | 55   | 555    | 20     |         |      |       |      |       |     |
| Uni          | ock Bypass             | Byte     | 3      | AAA        | AA    | 555  | 55   | AAA    | 20     |         |      |       |      |       |     |
| Unl          | ock Bypass Program (N  | lote 10) | 2      | XXX        | Α0    | PA   | PD   |        |        |         |      |       |      |       |     |
| Unl          | ock Bypass Reset (Not  | e 11)    | 2      | XXX        | 90    | XXX  | 00   |        |        |         |      |       |      |       |     |
| <b>CI.</b> : | Chip Erase Word Byte   |          | 6      | 555        |       | 2AA  |      | 555    | -00    | 555     |      | 2AA   |      | 555   | 4.0 |
| Cni          |                        |          | Ь      | AAA        | AA    | 555  | - 55 | AAA    | 80     | AAA     | AA   | 555   | 55   | AAA   | 10  |
| _            | Sector Erase Word Byte |          | _      | 555        |       | 2AA  |      | 555    | -00    | 555     | AA   | 2AA   | 55 5 | 64    |     |
| Sec          |                        |          | 6      | AAA AA     | AA    | 555  | 55   | AAA    | 80     | AAA     |      | 555   |      | SA    | 30  |
| Era          | se Suspend (Note 12)   |          | 1      | XXX        | В0    |      |      |        |        |         |      |       |      |       |     |
| Era          | se Resume (Note 13)    |          | 1      | XXX        | 30    |      |      |        |        |         |      |       |      |       |     |

#### Legend:

X = Don't care

RA = Address of the memory location to be read.

RD = Data read from location RA during read operation.

PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later.

PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.

SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A18-A12 uniquely select any sector.

#### Notes:

- 1. See Table 1 for description of bus operations.
- 2. All values are in hexadecimal.
- 3. Except when reading array or autoselect data, all bus cycles are write operations.
- 4. Data bits DQ15-DQ8 are don't cares for unlock and command cycles.
- 5. Address bits A18-A11 are don't cares for unlock and command cycles, unless PA or SA required.
- 6. No unlock or command cycles required when reading array data.
- 7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high (while the device is providing status data).
- 8. The fourth cycle of the autoselect command sequence is a read cycle.
- The data is 00h for an unprotected sector and 01h for a protected sector. See "Autoselect Command Sequence" for more information.
- 10. The Unlock Bypass command is required prior to the Unlock Bypass Program command.
- 11. The Unlock Bypass Reset command is required to return to reading array data when the device is in the unlock bypass mode.
- 12. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation.
- 13. The Erase Resume command is valid only during the Erase Suspend mode.

## 写操作状态表

Table 2. Write Operation Status

|                 | Operation                                    | DQ7<br>(Note 2) | DQ6       | DQ5<br>(Note 1) | DQ3  | DQ2<br>(Note 2) | RY/BY# |
|-----------------|----------------------------------------------|-----------------|-----------|-----------------|------|-----------------|--------|
| Standard        | Embedded Program Algorithm                   | DQ7#            | Toggle    | 0               | N/A  | No toggle       | 0      |
| Mode            | Embedded Erase Algorithm                     | 0               | Toggle    | 0               | 1    | Toggle          | 0      |
| Erase           | Reading within Erase<br>Suspended Sector     | 1               | No toggle | 0               | N/A  | Toggle          | 1      |
| Suspend<br>Mode | Reading within Non-Erase<br>Suspended Sector | Data            | Data      | Data            | Data | Data            | 1      |
|                 | Erase-Suspend-Program                        | DQ7#            | Toggle    | 0               | N/A  | N/A             | 0      |

#### Notes:

- DQ5 switches to '1' when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. See "DQ5: Exceeded Timing Limits" for more information.
- DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.

# E28F128J3A150

## 基本参数

容量: 16M 电源 2.7-3.6V 引脚数: 56

## 引脚图



0667-03

#### NOTES:

- 1. A<sub>22</sub> exists on 64-, 128- and 256-Mbit densities. On 32-Mbit densities this pin is a no-connect (NC).
- 2.  $A_{23}^{22}$  exists on 128-Mbit densities. On 32- and 64-Mbit densities this pin is a no-connect (NC).
- 3. A<sub>24</sub> exists on 256-Mbit densities. On 32-, 64- and 128-Mbit densities this pin is a no-connect (NC).
- 4.  $V_{CC} = 5 \text{ V} \pm 10\%$  for the 28F640J5/28F320J5.

| Symbol                                                    | Туре                       | Name and Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>0</sub>                                            | INPUT                      | BYTE-SELECT ADDRESS: Selects between high and low byte when the device is in x8 mode. This address is latched during a x8 program cycle. Not used in x16 mode (i.e., the A <sub>0</sub> input buffer is turned off when BYTE# is high).                                                                                                                                                                                                                                                                                                               |
| A <sub>1</sub> -A <sub>23</sub>                           | INPUT                      | ADDRESS INPUTS: Inputs for addresses during read and program operations. Addresses are internally latched during a program cycle.  32-Mbit: A <sub>0</sub> -A <sub>21</sub> 64-Mbit: A <sub>0</sub> -A <sub>22</sub> 128-Mbit: A <sub>0</sub> -A <sub>23</sub>                                                                                                                                                                                                                                                                                        |
| DQ <sub>0</sub> -DQ <sub>7</sub>                          | INPUT/<br>OUTPUT           | <b>LOW-BYTE DATA BUS:</b> Inputs data during buffer writes and programming, and inputs commands during Command User Interface (CUI) writes. Outputs array, query, identifier, or status data in the appropriate read mode. Floated when the chip is de-selected or the outputs are disabled. Outputs $DQ_6-DQ_0$ are also floated when the Write State Machine (WSM) is busy. Check SR.7 (status register bit 7) to determine WSM status.                                                                                                             |
| DQ <sub>8</sub> -<br>DQ <sub>15</sub>                     | INPUT/<br>OUTPUT           | HIGH-BYTE DATA BUS: Inputs data during x16 buffer writes and programming operations. Outputs array, query, or identifier data in the appropriate read mode; not used for status register reads. Floated when the chip is de-selected, the outputs are disabled, or the WSM is busy.                                                                                                                                                                                                                                                                   |
| CE <sub>0</sub> ,<br>CE <sub>1</sub> ,<br>CE <sub>2</sub> | INPUT                      | CHIP ENABLES: Activates the device's control logic, input buffers, decoders, and sense amplifiers. When the device is de-selected (see Table 2 on page 7), power reduces to standby levels.  All timing specifications are the same for these three signals. Device selection occurs with the first edge of CE <sub>0</sub> , CE <sub>1</sub> , or CE <sub>2</sub> that enables the device. Device deselection occurs with the first edge of CE <sub>0</sub> , CE <sub>1</sub> , or CE <sub>2</sub> that disables the device (see Table 2 on page 7). |
| RP#                                                       | INPUT                      | RESET/ POWER-DOWN: Resets internal automation and puts the device in power-down mode. RP#-high enables normal operation. Exit from reset sets the device to read array mode. When driven low, RP# inhibits write operations which provides data protection during power transitions.                                                                                                                                                                                                                                                                  |
| OE#                                                       | INPUT                      | <b>OUTPUT ENABLE:</b> Activates the device's outputs through the data buffers during a read cycle. OE# is active low.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WE#                                                       | INPUT                      | WRITE ENABLE: Controls writes to the Command User Interface, the Write Buffer, and array blocks. WE# is active low. Addresses and data are latched on the rising edge of the WE# pulse.                                                                                                                                                                                                                                                                                                                                                               |
| STS                                                       | OPEN<br>DRAIN<br>OUTPUT    | STATUS: Indicates the status of the internal state machine. When configured in level mode (default mode), it acts as a RY/BY# pin. When configured in one of its pulse modes, it can pulse to indicate program and/or erase completion. For alternate configurations of the STATUS pin, see the Configurations command. Tie STS to V <sub>CCQ</sub> with a pull-up resistor.                                                                                                                                                                          |
| BYTE#                                                     | INPUT                      | BYTE ENABLE: BYTE# low places the device in x8 mode. All data is then input or output on $DQ_0-DQ_7$ , while $DQ_8-DQ_{15}$ float. Address $A_0$ selects between the high and low byte. BYTE# high places the device in x16 mode, and turns off the $A_0$ input buffer. Address $A_1$ then becomes the lowest order address.                                                                                                                                                                                                                          |
| V <sub>PEN</sub>                                          | INPUT                      | ERASE / PROGRAM / BLOCK LOCK ENABLE: For erasing array blocks, programming data, or configuring lock-bits.  With V <sub>PEN</sub> ≤ V <sub>PENLK</sub> , memory contents cannot be altered.                                                                                                                                                                                                                                                                                                                                                           |
| V <sub>CC</sub>                                           | SUPPLY                     | <b>DEVICE POWER SUPPLY:</b> With $V_{CC} \le V_{LKO}$ , all write attempts to the flash memory are inhibited.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V <sub>CCQ</sub>                                          | OUTPUT<br>BUFFER<br>SUPPLY | <b>OUTPUT BUFFER POWER SUPPLY:</b> This voltage controls the device's output voltages. To obtain output voltages compatible with system data bus voltages, connect V <sub>CCQ</sub> to the system supply voltage.                                                                                                                                                                                                                                                                                                                                     |
| GND                                                       | SUPPLY                     | GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NC                                                        |                            | NO CONNECT: Lead is not internally connected; it may be driven or floated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DU                                                        |                            | DON'T USE: <b>Do not drive ball to V<sub>IH</sub> or V<sub>IL</sub>, leave disconnected</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 与 S3C2440 连线



根据连线可知,BYTE#键设置模式为字配置状态。

## 分区

Figure 4. Memory Map



## 设备总线操作

Table 3. Bus Operations

| Mode                     | Notes   | RP#             | CE <sub>0,1,2</sub> <sup>(1)</sup> | OE# <sup>(2)</sup> | WE# <sup>(2)</sup> | Address         | V <sub>PEN</sub>  | DQ <sup>(3)</sup>                                         | STS<br>(default<br>mode) |
|--------------------------|---------|-----------------|------------------------------------|--------------------|--------------------|-----------------|-------------------|-----------------------------------------------------------|--------------------------|
| Read Array               | 4,5,6   | V <sub>IH</sub> | Enabled                            | V <sub>IL</sub>    | V <sub>IH</sub>    | Х               | Х                 | D <sub>OUT</sub>                                          | High Z <sup>(7)</sup>    |
| Output Disable           |         | V <sub>IH</sub> | Enabled                            | V <sub>IH</sub>    | V <sub>IH</sub>    | Х               | Х                 | High Z                                                    | Х                        |
| Standby                  |         | V <sub>IH</sub> | Disabled                           | Х                  | X                  | Х               | Х                 | High Z                                                    | X                        |
| Reset/Power-Down<br>Mode |         | V <sub>IL</sub> | х                                  | ×                  | х                  | х               | Х                 | High Z                                                    | High Z <sup>(7)</sup>    |
| Read Identifier Codes    |         | V <sub>IH</sub> | Enabled                            | V <sub>IL</sub>    | V <sub>IH</sub>    | See<br>Figure 5 | Х                 | Note 8                                                    | High Z <sup>(7)</sup>    |
| Read Query               |         | V <sub>IH</sub> | Enabled                            | V <sub>IL</sub>    | V <sub>IH</sub>    | See<br>Table 7  | Х                 | Note 9                                                    | High Z <sup>(7)</sup>    |
| Read Status (WSM off)    |         | V <sub>IH</sub> | Enabled                            | V <sub>IL</sub>    | V <sub>IH</sub>    | Х               | Х                 | D <sub>OUT</sub>                                          |                          |
| Read Status (WSM on)     |         | V <sub>IH</sub> | Enabled                            | V <sub>IL</sub>    | V <sub>IH</sub>    | х               | х                 | $DQ_7 = D_{OUT}$ $DQ_{15-8} = High Z$ $DQ_{6-0} = High Z$ |                          |
| Write                    | 6,10,11 | V <sub>IH</sub> | Enabled                            | V <sub>IH</sub>    | V <sub>IL</sub>    | Х               | V <sub>PENH</sub> | D <sub>IN</sub>                                           | Х                        |

- NOTES:

  1. See Table 2 for valid CE configurations.

  2. OE# and WE# should never be enabled simultaneously.

  3. DQ refers to DQ<sub>0</sub>\_DQ<sub>7</sub> if BYTE# is low and DQ<sub>0</sub>\_DQ<sub>15</sub> if BYTE# is high.

  4. Refer to DC Characteristics. When V<sub>PEN</sub> ≤ V<sub>PENLK</sub>, memory contents can be read, but not altered.

  5. X can be V<sub>IL</sub> or V<sub>IH</sub> for control and address pins, and V<sub>PENLK</sub> or V<sub>PENLK</sub> for V<sub>PENLK</sub>. See DC Characteristics for V<sub>PENLK</sub> and V<sub>PENH</sub> voltages.

  6. In default mode, STS is V<sub>OL</sub> when the WSM is executing internal block erase, program, or lock-bit configuration algorithms. It is V<sub>OH</sub> when the WSM is not busy, in block erase suspend mode (with programming inactive), program suspend mode, or reset/power-down mode.

  7. High Z will be V<sub>OH</sub> with an external pull-up resistor.

  8. See Section 3.6 for read identifier code data.

  9. See Section 4.2 for read query data.

  10. Command writes involving block erase, program, or lock-bit configuration are reliably executed when V<sub>PEN</sub> = V<sub>PENH</sub> and V<sub>CC</sub> is within specification.

  11. Refer to Table 4 for valid D<sub>IN</sub> during a write operation.

# 命令时钟周期

Table 4. Intel<sup>®</sup> StrataFlash™ Memory Command Set Definitions<sup>(1)</sup>

| Command                         | Scalable or<br>Basic<br>Command<br>Set <sup>(2)</sup> | Bus<br>Cycles<br>Req'd. | Notes        | First Bus Cycle     |                     |                       | Second Bus Cycle    |                     |                       |  |
|---------------------------------|-------------------------------------------------------|-------------------------|--------------|---------------------|---------------------|-----------------------|---------------------|---------------------|-----------------------|--|
|                                 |                                                       |                         |              | Oper <sup>(3)</sup> | Addr <sup>(4)</sup> | Data <sup>(5,6)</sup> | Oper <sup>(3)</sup> | Addr <sup>(4)</sup> | Data <sup>(5,6)</sup> |  |
| Read Array                      | SCS/BCS                                               | 1                       |              | Write               | Х                   | FFH                   |                     |                     |                       |  |
| Read Identifier Codes           | SCS/BCS                                               | ≥ 2                     | 7            | Write               | Х                   | 90H                   | Read                | IA                  | ID                    |  |
| Read Query                      | SCS                                                   | ≥ 2                     |              | Write               | Х                   | 98H                   | Read                | QA                  | QD                    |  |
| Read Status Register            | SCS/BCS                                               | 2                       | 8            | Write               | Х                   | 70H                   | Read                | Х                   | SRD                   |  |
| Clear Status Register           | SCS/BCS                                               | 1                       |              | Write               | Х                   | 50H                   |                     |                     |                       |  |
| Write to Buffer                 | SCS/BCS                                               | > 2                     | 9, 10,<br>11 | Write               | ВА                  | E8H                   | Write               | BA                  | N                     |  |
| Word/Byte Program               | SCS/BCS                                               | 2                       | 12,13        | Write               | х                   | 40H<br>or<br>10H      | Write               | PA                  | PD                    |  |
| Block Erase                     | SCS/BCS                                               | 2                       | 11,12        | Write               | BA                  | 20H                   | Write               | BA                  | D0H                   |  |
| Block Erase, Program<br>Suspend | SCS/BCS                                               | 1                       | 12,14        | Write               | x                   | вон                   |                     |                     |                       |  |
| Block Erase, Program<br>Resume  | SCS/BCS                                               | 1                       | 12           | Write               | х                   | D0H                   |                     |                     |                       |  |
| Configuration                   | SCS                                                   | 2                       |              | Write               | Х                   | B8H                   | Write               | Х                   | СС                    |  |
| Set Block Lock-Bit              | SCS                                                   | 2                       |              | Write               | Х                   | 60H                   | Write               | BA                  | 01H                   |  |
| Clear Block Lock-Bits           | scs                                                   | 2                       | 15           | Write               | Х                   | 60H                   | Write               | Х                   | D0H                   |  |
| Protection Program              |                                                       | 2                       |              | Write               | Х                   | C0H                   | Write               | PA                  | PD                    |  |

# 控制寄存器定义

**Table 16. Status Register Definitions** 

| WSMS                    | ESS                                                       | ECLBS           | PSLBS          | VPENS                                                                                                                                                                                                                                                                                                                                                                                                         | PSS DPS R                                                  |                                                                                                                                       |       |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------|-----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| bit 7                   | bit 6                                                     | bit 5           | bit 4          | bit 3                                                                                                                                                                                                                                                                                                                                                                                                         | bit2                                                       | bit 1                                                                                                                                 | bit 0 |  |  |  |  |  |
| High Z<br>When<br>Busy? |                                                           | Status Regis    | ster Bits      | Notes                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                                                                                                                                       |       |  |  |  |  |  |
| No                      | SR.7 = WRITE ST<br>1 = Ready<br>0 = Busy                  | TATE MACHIN     | NE STATUS      |                                                                                                                                                                                                                                                                                                                                                                                                               | program, or lock-bi                                        | Check STS or SR.7 to determine block erase, program, or lock-bit configuration completion. SR.6–SR.0 are not driven while SR.7 = "0." |       |  |  |  |  |  |
| Yes                     | SR.6 = ERASE S<br>1 = Block Eras<br>0 = Block Eras        | se Suspended    |                |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                                                                                                       |       |  |  |  |  |  |
| Yes                     | SR.5 = ERASE A<br>1 = Error in Blo<br>0 = Successfu       | ock Erasure o   | r Clear Lock-l | If both SR.5 and SI lock-bit configuration command sequence                                                                                                                                                                                                                                                                                                                                                   | on attempt, an im                                          |                                                                                                                                       |       |  |  |  |  |  |
| Yes                     | SR.4 = PROGRA<br>1 = Error in Se<br>0 = Successfu         | etting Lock-Bit |                | ATUS                                                                                                                                                                                                                                                                                                                                                                                                          | SR.3 does not provide a continuous programming             |                                                                                                                                       |       |  |  |  |  |  |
| Yes                     | SR.3 = PROGRA<br>1 = Low Progr<br>Aborted<br>0 = Programm | amming Volta    | ge Detected,   | voltage level indicatindicates the programmer Block Erase, Programmer Block Lock-Bits con                                                                                                                                                                                                                                                                                                                     | ition. The WSM ir<br>amming voltage le<br>am, Set Block Lo | iterrogates and<br>evel only after<br>ck-Bit, or Clear                                                                                |       |  |  |  |  |  |
| Yes                     | SR.2 = PROGRA  1 = Program  0 = Program                   | suspended       |                |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                                                                                                       |       |  |  |  |  |  |
| Yes                     | SR.1 = DEVICE F<br>1 = Block Lock<br>0 = Unlock           |                 |                | SR.1 does not provide a continuous indication of block lock-bit values. The WSM interrogates the block lock-bits only after Block Erase, Program, or Lock-Bit configuration command sequences. It informs the system, depending on the attempted operation, if the block lock-bit is set. Read the block lock configuration codes using the Read Identifier Codes command to determine block lock-bit status. |                                                            |                                                                                                                                       |       |  |  |  |  |  |
| Yes                     | SR.0 = RESERVE                                            | ED FOR FUTU     | JRE ENHANC     | SR.0 = RESERVED FOR FUTURE ENHANCEMENTS                                                                                                                                                                                                                                                                                                                                                                       |                                                            |                                                                                                                                       |       |  |  |  |  |  |