

Design and Analysis of Algorithms

Lecture - 7

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Learning Objective

Discuss the methods of recursion tree and Master theorem

Understand when Master theorem is applicable

Recursion Tree Method

Recursion Tree Method

f(n) = n #recursive calls = 2 Size of sub problem = n/2

Problem size	# nodes	Amount of work done
n	1	n
n/2	2	2(n/2) = n
n/4	4	4(n/4) = n
1	n	n * 1 = n

Cost

Cost = Cost of internal nodes + Cost of leaf nodes

$$= [n+n+....] + n * 1$$

$$= \sum_{i=0}^{\log n-1} n + n$$

$$= n \sum_{i=0}^{\log n-1} 1 + n = n [\log n - 1 + 1] + n = O(n \log n)$$

Pause & Think

If problem of size (n) is reduced by a constant factor (1/3) after every recursive call, at what level does the problem get reduced to size of 1?

$$\frac{n}{3^{i}} = 1$$

$$i = \log_3 n$$

Recursion Tree Method

Recursion Tree Method

 $f(n) = n^2$ #recursive calls = 3 Size of sub problem = n/4

Problem size	# nodes	Amount of work done
n	1	n^2
n/4	3	$3(n^2/16)$
n/16	9	$9(n^2/256)$
1	$3^{\log_4 n}$	$n^{\log_4 3}$

Cost

$$\sum_{i=0}^{\infty} a^i = \frac{a}{1-a} \qquad a < 1$$

=
$$[n^2 + 3(n^2/16) + 9(n^2/256)...] + n^{\log_4 3}$$

$$= \sum_{i=0}^{\log_4 n-1} (3^i) (n^2/16^i) + n^{\log_4 3}$$

$$< n^2 \sum_{i=0}^{\infty} (3/16)^i + n^{\log_4 3} = (3/13)n^2 + n^{\log_4 3} = O(n^2)$$

Is there a shortcut?

$$T(n) = \frac{2T(n/2) + n}{1}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\bullet$$

$$\bigcirc (n \log n)$$

Master theorem

Theorem

If
$$T(n) = aT(n/b) + (n^d)$$
 [for constants $a > 0$, $b > 1$, $d \ge 0$] then
$$O(n^{\log_b a}) \qquad n^{\log_b a} > n^d$$

$$O(n^d \log n) \qquad n^{\log_b a} = n^d$$

$$O(n^d) \qquad n^{\log_b a} < n^d$$

$$a.f(n/b) < c.f(n) \text{ for some c } [0,1]$$

$$T(n) = O(n^d)$$

Master theorem

It belongs to case 3

Regularity Condition

$$a \cdot f(n/b) \le c \cdot f(n)$$

$$3\left(\frac{n}{4}\right)^2 \le c \cdot n^2$$

$$\frac{3}{16}n^2 = c \cdot n^2$$
 $C = \frac{3}{16} [0.1875]$

а	3
р	4
d	2
n^d	n^2
$n^{\log_b a}$	$n^{\log_4 3} = n^{0.79}$

It belongs to case 3 $T(n) = O(n^2)$

$$T(n) = 3T(n/2) + n$$
, $n > 1$

а	3
b	2
d	1
n^d	n
$n^{\log_b a}$	$n^{\log_2 3} = n^{1.58}$

It belongs to case 1 T(n) = $O(n^{\log_2 3})$

$$T(n) = 2T(n/2) + n$$
, $n > 1$

а	2
b	2
d	1
n^d	n
$n^{\log_b a}$	$n^{\log_2 2} = n$

It belongs to case $2 T(n) = O(n \log n)$

When Master theorem is not applicable?

If f(n) and $n^{\log_b a}$ does not differ by polynomial

$$T(n) = 3T(n/4) + n \log n$$

Pause & Think

How will you prove master theorem?

Using recursion tree

Cost = cost of root node + cost of internal node + cost of leaf node

$$n^d + \sum_{i=0}^{\log n} n^d (a/b^i)^d + n^{\log_b a}$$

Case 1: $n^{\log_b a} > n^d$ [constant multiple of n^d] (a > b^d)

Case 2:
$$n^d = n^{\log_b a} [n^d * \sum_{i=0}^{\log n} (1)^i] = n^d \log n$$

Case 3: $n^d > n^{\log_b a}$ [a.f(n/b) <= c.f(n)] (a < b^d)

Summary

• For problems that are reduced by constant factor on every recursive call with polynomial computation, learnt a shortcut for assessing time complexity.

Thank You Happ Learning

Success is always inevitable with Hard Work and Perseverance