An introduction to Bayesian statistics

Sensor fusion & nonlinear filtering

Lars Hammarstrand

WHAT IS BAYESIAN STATISTICS?

A statistical inference framework.

 Can be used for estimation, classification, detection, model selection, etc.

 Key characteristic: unknown quantities are described as random.

APPLICATIONS OF BAYESIAN STATISTICS

- A medical application: analyze the disease of a patient.
 - Quantity of interest: the disease, θ .
 - Observations: blood samples, temperature, comments by patient, etc.

- In Bayesian statistics θ is described as random
 - → we can make statements like: "based on our observations, patient has disease X with 97% probability".
- Possible concern: is the disease random?

APPLICATIONS OF BAYESIAN STATISTICS

- Self-driving vehicles rely on the ability to position surrounding vehicles.
- This enables the system safely navigate its surroundings without causing accidents with other road users.
 - Quantity of interest: relative position and velocity of other vehicles at the current time.
 - Observations: wheel speeds, INS measurements, radar detections (distance and angle), Lidar point clouds, camera images, etc.
- Bayesian statistics: vehicle motions are modelled statistically → helps us to rule out unrealistic trajectories.
- Possible concern: are the vehicle motions random?

COMPARISON: BAYES VS FREQUENTIST

- There are two main strategies to decision making:
 Bayesian and frequentist statistics.
- In frequenstist statistics, the quantities of interest are described as unknown and deterministic.

Bayes vs Frequentist

We wish to estimate the height of the Eiffel tower. Is the height random or not?

- Frequentist perspective: the tower has a certain height and is therefore not random.
- Bayesian perspective: we describe our uncertainties in the height stochastically
 height is described as random!

OVERVIEW OF THE BAYESIAN STRATEGY

Suppose we wish to estimate θ given measurements y.

Key steps in a Bayesian method:

- 1. **Modeling.** Model what we know about θ (using a prior $p(\theta)$) and the how the measurements y relate to θ (using a density $p(y|\theta)$).
- 2. **Measurement update.** Combine what we knew before (the prior) with our measurement (with $p(y|\theta)$, also called the likelihood) to summarize what we know about θ ($p(\theta|y)$).
- 3. **Decision making.** Given what we know about θ (described by $p(\theta|y)$) and a loss function, we compute an optimal decision.

SELF-ASSESSMENT QUESTIONS

Which of the following statements are correct:

- Bayesian methods can be used to solve many types of decision making problems including estimation, detection and classification.
- We can model the height of the Eiffel tower as random only if we think that there are many similar towers with different heights.
- In Bayesian statistics we describe what we know about θ (the quantity of interest) before observing any measurements.

Check all that apply.

Bayes' rule - a first example

Sensor fusion & nonlinear filtering

Lars Hammarstrand

BAYES' RULE: A FIRST EXAMPLE

Selecting fruit from an urn

An urn is selected at random (prob. 1/2, 1/2).
 From that urn we pick a fruit.

• If fruit is orange, what is probability that we chose the red urn?

PROBABILITY THEORY

• Bayesian statistics is simple! We only need two rules:

Conditional probability (product rule)

$$\Pr\{y,\theta\} = \Pr\{y|\theta\} \Pr\{\theta\}$$

The law of total probability (sum rule)

$$\Pr\{y\} = \sum_{\theta} \Pr\{y, \theta\}$$
 discrete variables $p(y) = \int_{\theta} p(y, \theta) \, d\theta$ continuous variables

PROBABILITY THEORY - BAYES' RULE

Bayes' rule is a consequence of conditional probability,

$$p(y|\theta)p(\theta) = p(\theta|y)p(y).$$

Bayes' rule

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

- Usage of Bayes' rule: express a relation of interest, $p(\theta|y)$, in terms of the relation that we know $p(y|\theta)$.
- Note that $p(y) = \int_{\theta} p(y|\theta)p(\theta) d\theta$.

BAYES' RULE: A FIRST EXAMPLE

- Let $\theta \in \{r, b\}$ be color of urn, and $y \in \{o, a\}$ be the fruit.
- Question: If fruit is orange, what is probability that we chose the red urn?

$$P_{r}\{\theta=r \mid y=0\} = \frac{P_{r}\{y=0|\theta=r\}P_{r}\{\theta=r\}}{P_{r}\{y=0\}} = \frac{\frac{3}{4} \cdot \frac{1}{2}}{\frac{1}{2}} = \frac{3}{4}$$

$$P_{r}\{y=0\} = P_{r}\{y=0\} - r\} + P_{r}\{y=0,\theta=0\} = \frac{3}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{2}$$

BAYES' RULE: A FIRST EXAMPLE

- Let $\theta \in \{r, b\}$ be color of urn, and $y \in \{o, a\}$ be the fruit.
- Question: If fruit is orange, what is probability that we chose the red urn?
- Bayes' rule gives

$$Pr{\theta = r | y = o} = \frac{Pr{y = o | \theta = r} Pr{\theta = r}}{Pr{y = o}}$$

where
$$Pr\{\theta = r\} = 1/2$$
, $Pr\{y = o | \theta = r\} = 3/4$ and

$$Pr{y = o} = Pr{y = o, \theta = r} + Pr{y = o, \theta = b}$$
$$= \frac{3}{4} \frac{1}{2} + \frac{1}{4} \frac{1}{2} = \frac{1}{2}.$$

• Thus,
$$\Pr\{\theta = r | y = o\} = \frac{3}{4}$$
.

Building blocks of Bayesian models – Likelihoods, Priors and Posteriors

Sensor fusion & nonlinear filtering

Lars Hammarstrand

General problem formulation

- We are interested in an unknown parameter $\theta \in \Theta$ for which we observe some related data y.
- Common problem types are estimation (e.g., Θ = ℝⁿ) and detection problems (e.g., Θ = {-1,1}).

Assumption

• The observed data, y, is distributed as

$$y \sim p(y|\theta),$$

where p is a known distribution.

Likelihood

• Since y is observed, we often view $p(y|\theta)$ as a function of θ ,

$$I(\theta|y) = p(y|\theta),$$

where $I(\theta|y)$ is called the likelihood function.

• Note: the likelihood function is *not* a density w.r.t. θ .

Prior

- In Bayesian statistics we have a prior distribution on θ , $p(\theta)$.
- Prior means *earlier*, or before, and $p(\theta)$ describes what we know *before* observing y.

Posterior

 One objective in Bayesian statistics is to compute the posterior

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} \propto l(\theta|y)p(\theta)$$

• Posterior means after and $p(\theta|y)$ describes what we know after observing y.

· We summarize this as

posterior \propto likelihood \times prior.

- Given the posterior, $p(\theta|y)$ we can answer, e.g.,
 - What is the most probable θ ?
 - What is the probability that $\theta \in \mathcal{A}$?
 - What is the posterior mean of θ ?
- We can also minimize expected costs in a decision theoretic manner.

EXAMPLE: SCALAR IN GAUSSIAN NOISE

Estimation of scalar in Gaussian noise

Suppose we observe

$$y= heta+v, \qquad v\sim \mathcal{N}(0,\sigma^2)$$
 such that $p(y| heta)=\mathcal{N}(y; heta,\sigma^2)\propto \exp\{-(y- heta)^2/(2\sigma^2)\}.$

- A common non-informative prior on θ is $p(\theta) \propto 1$.
- What is the posterior?

pat is the posterior?
$$P(\theta|y) \ltimes P(y|\theta) \cdot P(\theta) \propto \exp(-(y-\theta)^2/2\sigma^2) \cdot 1 \times N(\theta; y \cdot \nabla^2)$$

$$\Rightarrow P(\theta|y) = N(\theta; y \cdot \nabla^2)$$

BAYESIAN APPROACH TO SENSOR FUSION

 Suppose we collect measurements from two types of sensors, y₁ and y₂,

Bayesian fusion of independent observations

• We seek the posterior distribution:

$$p(\theta|y_1,y_2) \propto p(\theta)p(y_1,y_2|\theta).$$

· It is often reasonable to assume that

$$p(y_1, y_2|\theta) \approx p(y_1|\theta)p(y_2|\theta),$$

i.e., that measurements are conditionally independent.

SELF-ASSESSMENT

The posterior distribution is $p(\theta|y) \propto p(y|\theta)p(\theta)$. It is also true that:

- The normalization factor is not always unique?
- The posterior $p(\theta|y)$ can always be uniquely determined from the fact that $\int p(\theta|y) d\theta = 1$?
- The posterior distribution can only be uniquely determined if it is proportional to a well known distribution, e.g., a Gaussian.

Only one statement is correct.

Bayesian Decision Theory

Sensor fusion & nonlinear filtering

Lars Hammarstrand

BAYESIAN DECISION PRINCIPLE

- How can we use $p(\theta|y)$ to make decisions?
- Examples of decision problems
 - · How to control a self-driving vehicle.
 - How to invest money.
 - · Select medicine to give to a patient
 - Estimate a parameter vector (may represent temperature, distance, etc).

Basic principle of Bayesian decision theory

- Minimize expected loss or, equivalently,
- Maximize expected utility.

DECISION THEORY - A TOY EXAMPLE

Choosing a course

- · A student wants to decide whether to take a course or not.
- Suppose $\theta \in \{ \text{good course, fair course, bad course} \}$ and

	good course	fair course	bad course
$\Pr\{\theta y\}$	0.3	0.3	0.4

· If the loss function is

	good course	fair course	bad course
Take	0	5	30
Not take	20	5	0

should he/she then take the course?

MINIMUM POSTERIOR EXPECTED LOSS

- We often study loss functions $C(\theta, a)$ instead of utility. (Typically, $C \ge 0$.)
- Let $\hat{\theta}$ denote an estimate of θ .

Optimal Bayesian decisions

Minimize the posterior expected loss

$$\hat{\theta} = \arg\min_{a} \mathbb{E} \left\{ C(\theta, a) | y \right\}$$

where $\mathbb{E}\left\{\mathsf{C}(\theta,a)\big|y\right\} = \int_{\Theta} \mathsf{C}(\theta,a)p(\theta|y)\,d\theta$

• Note: y is given (fixed) and θ is random.

SELF-ASSESSMENT

To make an optimal Bayesian decision it is sufficient to know:

- The prior, $p(\theta)$, the likelihood, $p(y|\theta)$, and a loss function $C(\theta, a)$.
- The likelihood, $p(y|\theta)$, and a loss function $C(\theta, a)$.
- The posterior distribution, $p(\theta|y)$, and a loss function, $C(\theta, a)$.

Check all statements that apply.

COMPARISON: BAYES VS FREQUENTIST

Frequentist	Bayes	
heta is fixed and unknown	Uncertainties in $ heta$ are described stochastically	
$\Rightarrow heta$ is deterministic	$\Rightarrow heta$ is random	
Maximum likelihood (ML) most famous estimator $\hat{\theta}_{ML} = \arg\max_{\theta} l(\theta y)$	Minimum mean square error and maximum a posteriori estimators, e.g., $\hat{\theta}_{MAP} = \arg\max_{\theta} p(\theta) \textit{I}(\theta \textit{y})$	
Study performance by averaging over y for fixed θ	Make decisions conditioned on the observation <i>y</i> .	

- Note 1: most Bayesians also study frequentist performance.
- Note 2: many frequentists agree that parameters may be random in some situations.

Cost functions in Bayesian decision theory

Sensor fusion & nonlinear filtering

Lars Hammarstrand

BAYESIAN DECISION THEORY - SUMMARY

- · Bayesian decision theory relies on
 - 1. Likelihood: $p(y|\theta)$
 - 2. Prior distribution: $p(\theta)$
 - 3. Loss function: $C(\theta, a)$
- Combining likelihood and prior gives posterior

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
.

Posterior and loss gives decisions

$$\hat{\theta} = \arg\min_{a} \int_{\Omega} C(\theta, a) p(\theta|y) d\theta.$$

THE QUADRATIC LOSS FUNCTION

Minimum mean squared error estimator, MMSE

- Parameter estimation, $\theta \in \Theta = \mathbb{R}^n$
- Most common loss function is the quadratic loss

$$C(\theta, a) = \|\theta - a\|_{2}^{2} = (\theta - a)^{T} (\theta - a)$$

• Let:
$$ar{ heta} = \mathbb{E}\left\{ hetaig|y
ight\}$$
, $\mathbf{P} = \mathsf{Cov}\{ hetaig|y\} = \mathbb{E}\left\{\left(heta - ar{ heta}
ight)\left(heta - ar{ heta}
ight)^Tig|y
ight\}$

• Let:
$$\bar{\theta} = \mathbb{E} \{\theta | y\}$$
, $\mathbf{P} = \text{Cov}\{\theta | y\} = \mathbb{E} \{(\theta - \bar{\theta})(\theta - \bar{\theta})^T | y\}$
• Optimal estimator: $\mathbf{E} \{(\theta, a) | y\} = \mathbf{E} \{(\theta - a)^T (\theta - a) | y\} = \mathbf{E} \{(\theta - \bar{\theta})^T (\bar{\theta} - a) | y\} = \mathbf{E} \{(\theta - \bar{\theta})^T (\bar{\theta} - a) | y\} + \mathbf{E} \{(\theta - \bar{\theta})^T (\bar{\theta} - a) + O + (\bar{\theta} - a)^T (\bar{\theta} - a) + O + (\bar{$

THE 0-1 LOSS FUNCTION

Maximum a-posteriori estimator, MAP

- Parameter estimation, $\theta \in \Theta = \mathbb{R}^n$.
- Another common choice is the 0 1 loss function

$$C(\theta, a) = -\delta(\theta - a),$$

$$\delta(\cdot)$$
 is the Dirac's delta function.

$$\Rightarrow \hat{\theta} = \arg\min_{a} -p(\theta|y)\Big|_{\theta=a}$$
$$= \arg\max_{\theta} p(\theta|y)$$

SELF-ASSESSMENT

Suppose $p(\theta|y) = \mathcal{N}(\theta; \bar{\theta}, \mathbf{P})$. The MMSE and MAP estimators are, respectively,

- $\bar{\theta} + \text{tr}\{\mathbf{P}\}$ and $\bar{\theta}$.
- $\bar{\theta}$ and $\mathcal{N}(\theta; \bar{\theta}, \mathbf{P})$.
- $\bar{\theta}$ and $\bar{\theta}$.
- $\bar{\theta} + \text{tr}\{\mathbf{P}\}$ and $\mathcal{N}(\theta; \bar{\theta}, \mathbf{P})$.

Only one statement is correct.