week08

Work

- finish reinforcement learning: an introduction chapter 3,4,5 and reproduce the given example based on existing template
- car rental problem && gambler problem

- optimization problem review and reproduce code in Matlab and Julia
- David Silver Slide remarked and upload to repo
- GitHub repo rearrange to better store

ASSIST2019 Notes

- Session 3
 - Tony Quek AI: A Networking and Communication Perspective
 - Federated Learning
 - Threshold-based
 - Stochastic Binarization Layer
 - Bo An When AI meets Game Theory
 - RL and GT

- Computer Poker
- RL solves the Fraud Detection Problem
- Nan Jiang Sample-efficient Exploration in Reinforcement Learning with Function Approximation

Session 5

- John C.S. Lui An Online Learning Approach to Network Application Optimization with Guarantee
 - online is essential for the real world where the PARAMs are unknown.
 - optimization with guarantee minimum guarantee threshold MAB
 - use least coins to get your estimates
 - deal with exploration and exploitation short-term and long-term
 - two-layer reward combined into combined reward
 - stochastic (level-1) and non-stochastic (level-2)
 - the total level-1 reward is guaranteed
- Atilla Eryilmaz Leveraging Side-Information for Learning and Optimization Under Uncertainty with Applications in Social and Communication Networks
 - Learning to Control Renewal Processes
 - UCB + interrupt Algorithm
 - Heavy-tailed distribution
 - Median of Mean Estimator
 - Online Free Trail Strategy
 - stochastic knapsack problem
- Mengdi Wang Reinforcement Leaning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
 - control problem + information theory
 - problems
 - how many samples are needed to learn a 90%-optimal policy
 - how many regret to pay when learning to control real time
 - information-theoretical limit
 - the optimal sampling-based algorithm
 - Q-learning is provably efficient
 - Bellman equation is equivalent to a bilinear saddle point problem (duality)
 - Dimension Reduction
 - state feature map
 - representing value function using linear combination of features
 - Reducing bellman equation using features
 - · Hilbert space embedding of transition kernel
 - the MatrixRL algorithm

- Jia Liu Combinatorial Bandits with Fairness Constraints
 - reward max v.s. fairness
 - MAB
 - Combinational MAB
 - Sleeping MAB
 - MAB with constraints