2018-2019 学年第 II 学期

《通信原理》期末考试试题

 单项选择	(每题1分,	共36分)
ーー・バスピリー		/\ JU /J /

1. 若均匀量化器的输入服从均匀分布,则量化信噪比 $\left(\dfrac{S}{N_{\mathrm{q}}} \right)$ 与量化电平数 M 的关系是 $\underline{(1)}$ 。

(1)	$\left(\frac{S}{N_{\rm q}}\right) = \frac{M^2}{2}$	(B) $\left(\frac{S}{N_{\rm q}}\right) = M^2$	(C) $\left(\frac{S}{N_{\rm q}}\right) = 20\log_{10} M$	(D) $\left(\frac{S}{N_{\rm q}}\right) = M$
-----	--	--	--	--

2. 设A律十三折线量化编码的动态范围是-1024mV $\sim+1024$ mV。若译码器输入是11110000,则译码输出的极性为(2),绝对值是(3)mV。

(2)	(A) 正	(B) 负		
(3)	(A) 288	(B) 384	(C) 528	(D) 576

3. 在 M 进制数字调制的最佳接收中,当(4)时,ML 准则与 MAP 等价;当(5)时,按 ML 准则判决等价于按最小欧氏距离判决。

(4)(5)	(A) 信道无失真	(B) 信道噪声是加性白高斯噪声
(4)(3)	(C) 发送信号等能量	(D) 发送信号先验等概

4. 某8进制数字调制系统的误符号率为p, 其误比特率至少是(6)。

/3	(D) n/3	(C) p/2	(R) n	(Δ) 3n	(6)	
13	$(\mathbf{D}) p/3$	(C) p/2	$(\mathbf{D}) p$	(A) 3p	(0)	
	(D) P'	() P' =	(=) P	() -P	(9)	

5. 为了降低(7), 可将 QPSK 的 Q 路延迟(8)时间, 从而形成 OQPSK 信号。

(7)	(A) 包络起伏	(B) ISI	(C) 误比特率	(D) 噪声功率
(8)	(A) $\frac{T_{\rm b}}{3}$	(B) $\frac{T_{\rm b}}{2}$	(C) T _b	(D) 2T _b

6. 设数据独立等概,基带采用矩形脉冲成形,比特间隔是 $1 \, \text{ms}$,已调信号的幅度是 $\pm 1 \, \text{V}$ 。 OOK 信号的主瓣带宽是(9)kHz,BPSK 信号的主瓣带宽是(10)kHz,正交 $2 \, \text{FSK}$ 的最小频差是(11)kHz。OOK 信号的平均比特能量是(12)mJ,BPSK 信号的平均比特能量是(13)mJ, $2 \, \text{FSK}$ 的平均比特能量是(14)mJ。

(D) 2

7. 下列调制方式中,包络起伏最大的是<u>(15)</u>,只能相干解调的是<u>(16)</u>,可以采用差分相干解调的是<u>(17)</u>。给定 $E_{\rm h}/N_{\rm 0}$,最佳相干解调下误比特率最低的是<u>(18)</u>。

_				
(15)(16)(17)(18)	(A) OOK	(B) 2FSK	(C) 2PSK	(D) 2DPSK

8. 当进制数 M 增加时, MQAM 的(19), MFSK 的(20)。

(10)(20)	(A) 频谱效率提高,	抗噪声能力下降	(B) 频谱效率提高, 抗噪声能力提高
(19)(20)	(C) 频谱效率下降,	抗噪声能力提高	(D) 频谱效率下降,抗噪声能力下降

9. 下列技术中,利用人为的 ISI 来提高频带利用率的是(21)。

10. 下图是无噪声条件下,BPSK系统接收端采样点之前观察到的眼图。在有噪声的情况下,为了使判决错误率尽量小,采样时刻应设置在(22)位置,判决门限应设置在(23)位置。根据这个眼图可以看出该系统(24)。

(22)(23)	(A) ab	(B) cd	(C) ef	(D) gh
(24)	(A) 存在符号间干	扰	(B) 使用了相关编	码
(24)	(C) 使用了差分编	i码	(D) 存在非线性失	英

11. 某带通信号的频带范围是 11kHz~15kHz,对其进行理想采样,采样后频谱不交叠的最低采样率是(25)kHz。

_					
	/ - -:	17.5		(0) 15	
	(25)	(A) Q	(B) 10	(C) 15	(D) 30
	(23)	(A) 0	(D) 10	(C) 13	(D) 30

12. 在二进制第一类部分响应系统中,预编码的目的是<u>(26)</u>,相关编码的目的是<u>(27)</u>。该系统的频带利用率是<u>(28)</u>bit/s/Hz。

(26)(27)	(A) 便于隔直流传输	(B) 频谱滚降	(C) 克服差错传播	(D) 引入 ISI
(28)	(A) 0.5	(B) 1	(C) 1.5	(D) 2

13. 某 QPSK 系统发送信号的功率谱密度如下所示。此系统的滚降系数是(29),符号速率是(30)MBaud,比特速率是(31)Mbit/s,频带利用率是(32)bit/s/Hz。

(29)	(A) 1/5	(B) 1/4	(C) 1/3	(D) 1/2
(30)(31)	(A) 4	(B) 5	(C) 8	(D) 10
(32)	(A) 1	(B) 1.2	(C) 1.6	(D) 2

14. 若基带传输系统的符号速率是 $R_{\rm s}=rac{1}{T_{
m s}}$,总体冲激响应是 x(t),总体传递函数是 X(f)。

如欲采样点无符号间干扰,x(t)的采样值 $x_n=x(nT_s)$ 应满足(33),X(f)应满足(34)。 该系统的频带利用率最高是(35)Baud/Hz,达到此极限值时X(f)=(36)。

(33)	(A) $x_n = \begin{cases} 0, & n = 0 \\ 1, & n \neq 0 \end{cases}$		(B) $x_n = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$			
	(C) $x_n = 1, \forall n$		(D) $x_n = \begin{cases} 1, & n = 0, \pm 2, \pm 4, L \\ 0, & n = \pm 1, \pm 3, L \end{cases}$			
(34)	(A) $\sum_{n=-\infty}^{\infty} X(f - nT_s) = T_s$		(B) $\sum_{n=-\infty}^{\infty} X(f - nR_s) = T_s$			
	(C) $\sum_{n=-\infty}^{\infty} X(f - R_s) = T_s$		(D) $\sum_{n=-\infty}^{\infty} X(nf - R_s) = T_s$			
(35)	(A) 0.5	(B) 1	(C) 1.5		(D) 2	
	(A) $\operatorname{sinc}(2fT_{s})$			(B) $\operatorname{sinc}(fT_s)$		
	(C) $\begin{cases} T_{s}, & f \leq \frac{1}{T_{s}} \\ 0, & \text{else} \end{cases}$		((D) $\begin{cases} T_{s}, & f \leq \frac{1}{2T_{s}} \\ 0, & \text{else} \end{cases}$		

二. (16 分) 某系统在[0, T_b]内等概发送 $s_1(t) = \cos(2\pi f_c t)$ 、 $s_2(t) = -\cos(2\pi f_c t)$ 。接收框图如下所示,其中加性白高斯噪声 $n_w(t)$ 的双边功率谱密度是 $N_0/2$ 。试求: (1) 平均比特能量 E_b 、 $s_1(t)$, $s_2(t)$ 的归一化相关系数; (2) 发送 $s_1(t)$ 、 $s_2(t)$ 条件下 y 的均值; (3) y中噪声的方差; (4) 最佳判决门限; (5) 平均判决错误率。

三.(16 分)某 8 进制调制的星座图如图所示,已知星座图完全对称, $s_1 = \sqrt{2} \mathrm{e}^{\frac{\mathrm{j}_4^\pi}{4}}$, s_5 离 s_1, s_6, s_8 的距离相同。各星座点等概出现。发送某个 $s_i, i=1,2,\mathbf{L}$,8,接收端收到 $r=s_i+z$,其中噪声 z 的实部虚部是独立同分布的零均值高斯随机变量,方差均为 0.5。(1)求 $s_5=?$;(2)求平均符号能量 E_{s} 、星座点之间的最小距离 d_{\min} ;

四. (16 分) 某量化器的输入 X 的概率密度函数如下图所示。输出 Y 与输入 X 的关系是

$$\int 2$$
, $1 \le X \le 3$

值的出现概率及量化输出功率 S_q = $\mathbf{E} \big[Y^2 \big]$;(3)量化输入与输出的归一化相关系数

$$\rho = \frac{E[XY]}{\sqrt{S \cdot S_q}};$$
 (4) 量化噪声功率 $N_q = E[(Y - X)^2]$ 。

五.(16 分)设有 3 路模拟基带信号 $m_1(t)$, $m_2(t)$, $m_3(t)$, 每路的最高频率均为 3kHz。对每一路按奈奎斯特速率采样,再对每个样值按 A 律 13 折线编码方式进行量化编码,最后将 3 路数据时分复用为一路速率为 R_b 的数据,再通过带宽为 45kHz 的带通信道传输。

- (1) 写出每一路的采样速率、数据速率,写出复用后的速率 $R_{\rm b}$;
- (2) 设计调制方式,写出符号速率、滚降系数;
- (3) 画出调制解调框图。