

یادگیری عمیق

مدرس: محمدرضا محمدی بهار ۱۴۰۲

روششناسی کاربردی

Practical Methodology

انتخاب ابرپارامترها

- در طراحی و آموزش هر شبکه ابرپارامترهای بسیار زیادی از جمله نرخ آموزش، تعداد لایهها، تعداد واحدها، توابع فعال سازی، تابع ضرر، ابعاد فیلترها و ... وجود دارند
 - تاثیر بر زمان و حافظه اجرای الگوریتم
 - تأثیر بر کیفیت مدل آموزشدیده
 - دو رویکرد اصلی برای انتخاب ابرپارامترها وجود دارد:
 - انتخاب دستی
 - نیاز به درک ابرپارامترها دارد
 - انتخاب خودکار
 - اغلب از نظر محاسباتی بسیار پرهزینه هستند

تنظیم دستی ابرپارامترها

• نیاز است تا رابطه میان ابرپارامترها با خطای آموزش، خطای تعمیمدهی، و منابع محاسباتی (زمان و حافظه) درک شده باشد

ظرفیت مدل افزایش می یابد اگر	ابرپارمتر
	تعداد لایههای میانی
	ضریب کاهش وزن
	ابعاد كرنل كانولوشنى
	نرخ Dropout
	نرخ آموزش

تنظيم خودكار ابرپارامترها

- تنظیم دستی ابرپارامترها می تواند بسیار خوب کار کند اگر کاربر دارای تجربه کافی باشد و نقطه شروع خوبی داشته باشد
- الگوریتم یادگیری ماشین ایدهآل فقط یک مجموعه داده و اهداف را می گیرد و تابع تبدیل را بدون نیاز به تنظیم دستی ابرپارامترها محاسبه می کند

جستجوى شبكهاي

- اگر تعداد ابرپارامترها سه یا کمتر باشد
- برای هر ابرپارامتر، مجموعه محدودی از مقادیر برای جستجو انتخاب میشود
 - $lr \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$ مانند -
 - هزينه محاسباتي بالا
 - $O(n^m)$ -
 - معمولاً زمانی بهترین عملکرد را دارد که در چندین مرحله انجام شود
 - در هر مرحله محدوده جستجو کوچکتر و دقیقتر میشود

جستجوى تصادفي

- پیادهسازی ساده، و همگرایی سریعتر
- برای هر ابرپارامتر یک توزیع تصادفی تعریف میشود

$$\log(lr) \sim u(-1, -5) -$$

$$lr = 10^{\log(lr)} -$$

- مجموعه بزرگتری از مقادیر جستجو می شود
- اگر برخی ابرپارامترها اثر زیادی نداشته باشند، بسیار کارآمدتر است

بهینهسازی ابرپارامتر مبتنی بر مدل

- جستجوی ابرپارامترهای مناسب را میتوان به عنوان یک مسئله بهینهسازی در نظر گرفت
 - متغیرهای بهینهسازی، ابرپارامترها هستند
 - تابعی که باید بهینه شود خطای مجموعه اعتبارسنجی است
 - متأسفانه، در اکثر موارد گرادیان در دسترس نیست

$$A^* = \arg\min_{A \in \mathcal{A}} \mathcal{L}_{val}(A(w^*), D_{val})$$

s.t.
$$w^* = \underset{w}{\operatorname{arg min}} \mathcal{L}_{train}(A(w), D_{train})$$

بهینهسازی ابرپارامتر مبتنی بر مدل

- می توان بر اساس آزمایشهای انجام شده، مدلی برای خطای مجموعه اعتبارسنجی ایجاد کرد
 - با انجام بهینهسازی در این مدل، ابرپارامترهای جدیدی پیشنهاد خواهند شد
- می توان از یک مدل رگرسیون Bayesian برای تخمین مقدار مورد انتظار و همچنین عدم قطعیت آن به ازای هر ابرپارامتر استفاده کرد

- اكتشاف (Exploration)
- بهرهبرداری (Exploitation)

جستجوی معماری عصبی (Neural Architecture Search)

جستجوی معماری عصبی (Neural Architecture Search)

- در کنترلر، از یک شبکه بازگشتی برای تولید ابرپارامترهای شبکه کانولوشنی استفاده میشود
 - تعداد لایههای شبکه در هر مرحله ثابت فرض میشود که در طول زمان افزایش مییابد

• پس از همگرایی شبکه کانولوشنی، دقت آن بر روی مجموعه اعتبارسنجی محاسبه شده و پارامترهای کنترلر به روز میشوند

جستجوی معماری عصبی (Neural Architecture Search)

• برای به روزرسانی پارامترهای کنترلر از یادگیری تقویتی استفاده میشود تا دقت اعتبارسنجی مورد انتظار را بیشینه کند

جستجوی مبتنی بر سلول

• در بسیاری از روشهای موجود، یک ساختار پایه (سلول) در طراحی شبکه استفاده میشود

بهینهسازی برای سلول انجام میشود

