Expectation Argument

Lemma

Let X be a random variable on a discrete space S such that $E(X) = \mu$. Then $Pr[X \ge \mu] > 0$ and $Pr[X \le \mu] > 0$.

Max cut

```
Data: graph G = \langle V, E \rangle foreach vertex v \in V do | Assign v to A or to B with probability 1/2 return (A, B)
```

Lemma 1 (to prove)

The expected value of the number of edges in the cut (A, B) is at least m/2

Lemma 2 (to prove)

The probability that the cut (A, B) has at least m/2 edges is $\geq \frac{1}{m/2+1}$

Sample and modifying

Lemma 1 (to prove)

Let $G = \langle V, E \rangle$ be a undirected graph. Then $G = \langle V, E \rangle$ has an independent set with at least $\frac{n^2}{4m}$ vertices.

Hint 1: $d = \frac{2m}{n}$ is the average degree.

Hint 2: the proof is a probabilistic algorithm

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/).

