SOCIAL DATA SCIENCE

TIDY DATA, DATA MANIPULATION & FUNCTIONS

Sebastian Barfort

August 06, 2016

University of Copenhagen Department of Economics

INTRO

"Herein lies the dirty secret about most data scientists' work – it's more data munging than deep learning. The best minds of my generation are deleting commas from log files, and that makes me sad. A Ph.D. is a terrible thing to waste."

Source

DATA JANITOR

TECHNOLOGY

For Big-Data Scientists, 'Janitor Work' Is Key Hurdle to Insights

By STEVE LOHR AUG. 17, 2014

Share

▼ Tweet

Save

Technology revolutions come in measured, sometimes foot-dragging steps. The lab science and marketing enthusiasm tend to underestimate the bottlenecks to progress that must be overcome with hard work and practical engineering.

The field known as 'big data' offers a contemporary case study. The catchphrase stands for the modern abundance of digital data from many sources — the web, sensors, smartphones and corporate databases that can be mined with elever software for discoveries and insights. Its promise is smarter, data-driven decision-making in every field. That is why data scientist is the economy's hot new job.

Yet far too much handcrafted work — what data scientists call "data wrangling." "data

Monica Rogati, Jawbone's vice president for data science, with Brian Wilt, a senior data scientist. Peter DaSilva for The New York Times

Source

RAW VERSUS PROCESSED DATA

Raw data

The original source of the data

Often hard to use directly for data analysis

You should never process your original data

Processed data

Data that is ready for analysis

Data manipulation involves going from raw to processed data.

This can include merging, subsetting, transforming, etc.

All steps that take you from raw to processed data should be scripted

TODAY

Introduce some tricks for working (efficiently) with data
Introduce concept and tools for working with tidy data (tidyr)
Manipulate tidy data using dplyr
Iterate over elements using functions (purrr)
String processing (stringr, regular expressions)

WORKFLOW

The Pipe

magrittr::

THE PIPE OPERATOR

The pipe operator %>% (RStudio has keyboard shortcuts, learn to use them!) let's you write sequences instead of nested functions

$$x \% > \% f(y) -> f(x,y)$$

$$x \% \% f(z, .) -> f(z, x)$$

Read %>% as "then". First do this, then do this, etc...

It's implemented in R by a Danish econometrician

All the packages you will learn today work with the pipe.

```
enjoy(cool(bake(shape(beat(append(bowl(rep("flour", 2),
"yeast", "water", "milk", "oil"), "flour", until =
"soft"), duration = "3mins"), as = "balls", style =
"slightly-flat"), degrees = 200, duration = "15mins"),
duration = "5mins"))
bowl(rep("flour", 2), "yeast", "water", "milk", "oil") %>%
   append("flour", until = "soft") %>%
   beat(duration = "3mins") %>%
   shape(as = "balls", style = "slightly-flat") %>%
   bake(degrees = 200, duration = "15mins") %>%
   cool(buns, duration = "5mins") %>%
   enjoy()
```

source

Tidy data

tidyr

Tidy data: observations are in the rows, variables are in the columns

tidyr: take your messy data and turn it into a tidy format

Advantages of tidy data:

- Consistency
- · Allows you to spend more time on your analysis
- Speed

TIDY DATA

FUNCTIONS IN tidyr

- · gather: Reshape from wide to long
- · spread: Reshape from long to wide
- · separate: Split a variable into multiple variables.

(Also more complicated functions such as **nest** for nested data frames, but we won't go into detail with those here)

```
library("readr")
gh.link = "https://raw.githubusercontent.com/"
user.repo = "hadley/tidyr/"
branch = "master/"
link = "vignettes/pew.csv"
data.link = paste0(gh.link, user.repo, branch, link)
df = read_csv(data.link)
```

First five columns

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k
Agnostic	27	34	60	81
Atheist	12	27	37	52
Buddhist	27	21	30	34

Question 1: What variables are in this dataset?

Question 2: How does a tidy version of this data look like?

THE gather FUNCTION

Problem: Column names are not names of a variable, but *values* of a variable.

Objective: Reshaping wide format to long format

To tidy such data, we need to **gather** the non-variable columns into a two-column key-value pair

gather

Three parameters

- 1. Set of columns that represent values, not variables.
- 2. Name of the variable whose values form the column names (key).
- 3. The name of the variable whose values are spread over the cells (value.

```
library("tidyr")
args(gather)
```

```
## function (data, key, value, ..., na.rm = FALSE, conve
## factor_key = FALSE)
## NULL
```

gather PEW DATA

religion	income	frequency
Agnostic	<\$10k	27
Atheist	<\$10k	12
Buddhist	<\$10k	27
Catholic	<\$10k	418
Don't know/refused	<\$10k	15

ALTERNATIVES

This

returns the same as

Billboard data

```
library("readr")
gh.link = "https://raw.githubusercontent.com/"
user.repo = "hadley/tidyr/"
branch = "master/"
link = "vignettes/billboard.csv"
data.link = paste0(gh.link, user.repo, branch, link)
df = read_csv(data.link)
```

BILLBOARD IS A MESS

df[1:5, 1:5]

year	artist	track	time	date.entered
2000	2 Pac	Baby Don't Cry (Keep	4:22	2000-02-26
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02
2000	3 Doors Down	Kryptonite	3:53	2000-04-08
2000	3 Doors Down	Loser	4:24	2000-10-21
2000	504 Boyz	Wobble Wobble	3:35	2000-04-15

df[1:5, 6:10]

wk5	wk4	wk3	wk2	wk1
87	77	72	82	87
NA	NA	92	87	91
66	67	68	70	81
67	69	72	76	76
17	17	25	34	57

Question: what are the variables here?

TIDYING THE BILLBOARD DATA

To tidy this dataset, we first gather together all the **wk** columns. The column names give the week and the values are the ranks:

Not displaying the track column

year	artist	time	date.entered	week	rank
2000	2 Pac	4:22	2000-02-26	wk1	87
2000	2Ge+her	3:15	2000-09-02	wk1	91
2000	3 Doors Down	3:53	2000-04-08	wk1	81
2000	3 Doors Down	4:24	2000-10-21	wk1	76
2000	504 Boyz	3:35	2000-04-15	wk1	57

Are we done?

DATA CLEANING

Let's turn the week into a numeric variable and create a proper date column

```
library("dplyr")
billboard3 = billboard2 %>%
  mutate(
    week = extract_numeric(week),
    date = as.Date(date.entered) + 7 * (week - 1)) %>%
  select(-date.entered) %>%
  arrange(artist, track, week)
```

What functions from tidyr did we use here?

week
1
2
3
4
5

WHO EXAMPLE

After gathering columns, the key column is sometimes a combination of multiple underlying variable names.

```
library("readr")
gh.link = "https://raw.githubusercontent.com/"
user.repo = "hadley/tidyr/"
branch = "master/"
link = "vignettes/tb.csv"
data.link = paste0(gh.link, user.repo, branch, link)
df = read_csv(data.link)
```

iso2	year	m04	m514	m014	m1524	m2534	m3544
AD	1989	NA	NA	NA	NA	NA	NA
AD	1990	NA	NA	NA	NA	NA	NA
AD	1991	NA	NA	NA	NA	NA	NA
AD	1992	NA	NA	NA	NA	NA	NA
AD	1993	NA	NA	NA	NA	NA	NA

Question: what are the variables here?

ANSWER

The dataset comes from the World Health Organisation, and records the counts of confirmed tuberculosis cases by country, year, and demographic group. The demographic groups are broken down by sex (m, f) and age (0-14, 15-25, 25-34, 35-44, 45-54, 55-64, unknown).

GATHERING THE NON-VARIABLE COLUMNS

```
tb2 = df %>%
  gather(demo, n, -iso2, -year, na.rm = TRUE)
```

iso2	year	demo	n
AD	2005	m04	0
AD	2006	m04	0
AD	2008	m04	0
ΑE	2006	m04	0
AE	2007	m04	0

Is this dataset tidy?

SEPARATING THE demo VARIABLE

separate makes it easy to split a variable into multiple variables. You can either pass it a regular expression to split on or a vector of character positions. In this case we want to split after the first character.

```
tb3 = tb2 %>%
    separate(demo, c("sex", "age"), 1)
```

iso2	year	sex	age	r
AD	2005	m	04	C
AD	2006	m	04	C
AD	2008	m	04	C
ΑE	2006	m	04	C
AE	2007	m	04	(

RESHAPING FROM LONG TO WIDE FORMAT

There are times when we are required to turn long formatted data into wide formatted data. The **spread** function spreads a key-value pair across multiple columns.

spread IN ACTION

```
tb3.wide = tb3 %>% spread(age, n)
```

iso2	year	sex	014	04	1524	2534	3544
AD	1996	f	0	NA	1	1	0
AD	1996	m	0	NA	0	0	4
AD	1997	f	0	NA	1	2	3
AD	1997	m	0	NA	0	1	2
AD	1998	m	0	NA	0	0	1

Data Manipulation

THE SPLIT-APPLY-COMBINE APPROACH

Once you have your data stored in tidy form, you can easily apply a split-apply-combine strategy, where you break up a big problem into manageable pieces, opereate on each piece independently and then put the pieces back together

SPLIT-APPLY-COMBINE

THE dplyr PACKAGE

dplyr: (efficiently) split-apply-combine for data framesVerbs a verb is a function that takes a data frame as it's first argument

filter: select rowsarrange: order rowsselect: select columns

rename: rename columnsdistinct: find distinct rows

· mutate: add new variables

· summarise: summarize across a data set

· sample_n: sample from a data set

In this part of the lecture we will work with the Danish federal budget proposal for 2016

```
library("readr")
library("dplyr")
gh.link = "https://raw.githubusercontent.com/"
user.repo = "sebastianbarfort/sds_summer/"
branch = "gh-pages/"
link = "data/finanslov_tidy.csv"
data.link = paste0(gh.link, user.repo, branch, link)
df = read_csv(data.link)
```

Some nice guy has already cleaned this data for you

VIEW THE DATA

Try yourself

```
View(df)
glimpse(df)
summary(df)
head(df)
```

FILTERING DATA I

filter return rows with matching conditions.

```
df.max.udgift = df %>%
  filter(udgift == max(udgift)) %>%
  select(paragraf, aar, udgift)
```

paragraf	aar	udgift
Beskæftigelsesministeriet	2018	132541.4

FILTERING DATA II

```
df.skat = df %>%
  filter(paragraf == "Skatter og afgifter") %>%
  select(paragraf, aar, udgift) %>%
  arrange(-udgift)
```

paragraf	aar	udgift
Skatter og afgifter	2014	14487.1
Skatter og afgifter	2015	14401.6
Skatter og afgifter	2016	14386.2
Skatter og afgifter	2014	185.9
Skatter og afgifter	2015	185.9

LOGICAL OPERATORS

CREATING NEW VARIABLES

mutate let's you add new variables to your data frame

```
df.mutated = df %>%
  mutate(newVar = udgift/2) %>%
  select(newVar, udgift)
```

newVar	udgift
38.85	77.7
13.20	26.4
193.90	387.8
132.10	264.2
3.25	6.5

SAMPLING FROM A DATA FRAME

We can sample from a data frame using $sample_n$ and $sample_frac$

```
df.sample.n = df %>%
  select(paragraf, aar, udgift) %>%
  sample_n(3)
```

paragraf	aar	udgift
Erhvervs- og Vækstministeriet	2017	-26.0
Transport- og Bygningsministeriet	2016	5.4
Beskæftigelsesministeriet	2016	0.6

GROUPED OPERATIONS

So far, we have primarily learned how to manipulate data frames.

The dplyr package becomes really powerful when we introduce the group_by function

group_by breaks down a dataset into specified groups of rows. When you then apply the verbs above on the resulting object they'll be automatically applied "by group".

Use in conjunction with mutate (to add existing rows to your data frame) or summarise (to create a new data frame)

COMMON mutate/summarise OPTIONS

- · mean: mean within groups
- · sum: sum within groups
- · sd: standard deviation within groups
- · max: max within groups
- · n(): number in each group
- first: first in group
- · last: last in group
- \cdot nth(n = 3): nth in group (3rd here)
- · tally: count number in group

OPERATING ON GROUPS I

Which ministry has the largest expenses?

```
df.expense = df %>%
  group_by(paragraf) %>%
  summarise(sum.exp = sum(udgift, na.rm = TRUE)) %>%
  arrange(-sum.exp)
```

paragraf	sum.exp
Social- og Indenrigsministeriet	1231214.6
Beskæftigelsesministeriet	1146997.8
Uddannelses- og Forskningsministeriet	296539.2
Min. for Børn, Undervisning og Ligestilling	180955.1
Pensionsvæsenet	139058.0

OPERATING ON GROUPS II

Add sum.exp to existing data frame

```
df.2 = df %>%
  group_by(paragraf) %>%
  mutate(sum.exp = sum(udgift, na.rm = TRUE)) %>%
  select(paragraf, udgift, sum.exp)
```

paragraf	udgift	sum.exp
Dronningen	77.7	474.7
Medlemmer af det kongelige hus m.fl.	26.4	161.2
Folketinget	387.8	6137.6
Folketinget	264.2	6137.6
Folketinget	6.5	6137.6

OPERATING ON GROUPS III

You can group by several variables

```
df.expense.2 = df %>%
  group_by(paragraf, aar) %>%
  summarise(sum.exp = sum(udgift, na.rm = TRUE)) %>%
  arrange(sum.exp)
```

paragraf	aar	sum.exp
Afdrag på statsgælden (netto)	2016	-77832.3
Afdrag på statsgælden (netto)	2015	-32519.9
Afdrag på statsgælden (netto)	2017	0.0
Afdrag på statsgælden (netto)	2018	0.0
Afdrag på statsgælden (netto)	2019	0.0

OPERATING ON GROUPS IV

Let's first calculate yearly expenses at the paragraf level and then calculate mean expenses over the years.

```
df.expense.3 = df %>%
  group_by(paragraf, aar) %>%
  summarise(exp = sum(udgift, na.rm = TRUE)) %>%
  ungroup() %>%
  group_by(paragraf) %>%
  summarise(sum.exp = mean(exp, na.rm = TRUE))
```

paragraf	sum.exp
Afdrag på statsgælden (netto)	-14628.13333
Beholdningsbevægelser mv.	1540.65000
Beskæftigelsesministeriet	191166.30000
Dronningen	79.11667
Energi-, Forsynings- og Klimaministeriet	2433.18333

MERGING DATA SETS

SUPERHERO EXAMPLE

Look at this dataset

name	alignment	gender	publisher
Magneto	bad	male	Marvel
Storm	good	female	Marvel
Mystique	bad	female	Marvel
Batman	good	male	DC
Joker	bad	male	DC
Catwoman	bad	female	DC
Hellboy	good	male	Dark Horse Comics

PUBLISHERS

And this

publisher	yr_founded
DC	1934
Marvel	1939
Image	1992

INNER JOIN

ijsp = inner_join(superheroes, publishers)

name	alignment	gender	publisher	yr_founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934

LEFT JOIN

ljsp = left_join(superheroes, publishers)

name	alignment	gender	publisher	yr_founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934
Hellboy	good	male	Dark Horse Comics	NA

MERGING DIFFERENT NAMES

```
superheroes = superheroes %>%
  mutate(seblikes = (publisher == "Marvel"))
publishers = publishers %>%
  mutate(seb = (publisher == "Marvel"))
ij2 = inner_join(superheroes, publishers)
## Joining by: "publisher"
```

Mystique	bad	female	Marvel	TRUE	1939	TR
Batman	good	male	DC	FALSE	1934	FAI
Joker	bad	male	DC	FALSE	1934	FAI
Catwoman	bad	female	DC	FALSE	1934	FAI

publisher

Marvel

Marvel

seblikes

TRUE

TRUE

gender

female

male

alignment

bad

good

name Magneto

Storm

yr_founded

1939

1939

sel

TR

TR

MERGING BY DIFFERENT NAMES

name	alignment	gender	publisher	seblikes	yr_founded
Magneto	bad	male	Marvel	TRUE	1939
Storm	good	female	Marvel	TRUE	1939
Mystique	bad	female	Marvel	TRUE	1939
Batman	good	male	DC	FALSE	1934
Joker	bad	male	DC	FALSE	1934
Catwoman	bad	female	DC	FALSE	1934

FULL JOIN

name	alignment	gender	publisher	yr_founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934
Hellboy	good	male	Dark Horse Comics	NA
NA	NA	NA	Image	1992

Functions and Iteration

INTRODUCTION

Perhaps most important skill for being effective when working with data: write functions.

Advantages

- 1. You drastically reduce risk of making mistakes
- 2. When something exogenous changes, you only need to update code in one place
- You can give your function an intuitive name that makes your code easier to read

You should write functions to increase your productivity.


```
my_function = function(input1, input2, ..., inputN)
{
    # define 'output' using input1,...,inputN
    return(output)
}
```

[1] 8

```
add_numbers = function(x, y){
  z = x + y
  return(z)
add_numbers(2, 4)
## [1] 6
add_numbers(2, 6)
```

ERRORS

Now what

```
add_numbers(2, "y")
```

Error in x + y: non-numeric argument to binary operat

```
add_numbers = function(x, y){
  if ( !is.numeric(x) || !is.numeric(y)) {
    warning("either 'x' or 'y' is not numeric")
    return(NA)
  else {
    z = x + y
    return(z)
```

TESTING

```
add numbers(2, 4)
## [1] 6
add_numbers(2, "y")
## Warning in add_numbers(2, "y"): either 'x' or 'y' is
## [1] NA
```

ITERATION

One important skill for being an effective data analyst was being able to write functions. A second is iteration.

Iteration helps you when you need to do the same thing to multiple inputs. For example, repeating the same function on lots of inputs.

Two iteration paradigms

- 1. Imperative programming (for loops, etc.)
- 2. Functional programming

Imagine that we have this data frame, called df

a	b	С	d
0.1801820	-0.8482089	0.7269846	0.0675439
-0.8834473	-0.6590159	0.1412176	0.1648077
-2.4664103	-0.5048838	0.3130126	0.3166068
-0.7819241	-0.9421274	0.8909220	3.6194093
0.4068995	0.3060998	0.2670147	0.2004793

And assume that we want to compute the mean of each column

THE for LOOP

We could iterate through each column, compute the mean and output the results

```
output = vector()
for (i in 1:ncol(df)){
  output[[i]] = mean(df[, i], na.rm = TRUE)
}
output
```

```
## [1] -0.7089400 -0.5296272 0.4678303 0.8737694
```

YOUR TURN

We will do Exercise 4.5.1 (*Prediction Based on Betting Markets*) in Imai (2016) using **for** loops.

intrade

```
library("readr")
gh.link = "https://raw.githubusercontent.com/"
user.repo = "kosukeimai/qss/"
branch = "master/"
link = "PREDICTION/intrade08.csv"
data.link = paste0(gh.link, user.repo, branch, link)
intrade.08 = read_csv(data.link)
```

```
link = "PREDICTION/intrade12.csv"
data.link = paste0(gh.link, user.repo, branch, link)
intrade.12 = read_csv(data.link)
```

Name	Description
day	Date of the session
statename	Full name of each state
state	Abbreviation of each state
PriceD	Predicted vote share of D Nominee's market
PriceR	Predicted vote share of R Nominee's market
VolumeD	Total session trades of D Nominee's market
VolumeR	Total session trades of R Nominee's market

pres

```
link = "PREDICTION/pres08.csv"
data.link = paste0(gh.link, user.repo, branch, link)
pres.08 = read_csv(data.link)
```

```
link = "PREDICTION/pres12.csv"
data.link = paste0(gh.link, user.repo, branch, link)
pres.12 = read_csv(data.link)
```

Name	Description
state.name state	Full name of state (only in pres2008) Two letter state abbreviation
Obama	Vote percentage for Obama
McCain	Vote percentage for McCain
EV	Number of electoral college votes for this state

polls

```
link = "PREDICTION/polls08.csv"
data.link = paste0(gh.link, user.repo, branch, link)
polls.08 = read_csv(data.link)
```

```
link = "PREDICTION/polls12.csv"
data.link = paste0(gh.link, user.repo, branch, link)
polls.12 = read_csv(data.link)
```

Name	Description
state	Abbreviated name of state in which poll was conducted
Obama	Predicted support for Obama (percentage)
Romney	Predicted support for Romney (percentage)
Pollster	Name of organization conducting poll
middate	Middle of the period when poll was conducted
	<u> </u>

for loops emphasize the objects instead of the functions

```
output = vector()
for (i in 1:ncol(df)){
  output[[i]] = median(df[, i], na.rm = TRUE)
}
```

```
output = vector()
for (i in 1:ncol(df)){
  output[[i]] = mean(df[, i], na.rm = TRUE)
}
```

FUNCTIONAL PROGRAMMING II

```
library("purrr")
map_dbl(df, mean)
                       h
##
                                              d
                                  C
## -0.7089400 -0.5296272 0.4678303 0.8737694
map dbl(df, median)
##
## -0.7819241 -0.6590159 0.3130126 0.2004793
```

USING YOU OWN FUNCTION

```
map_chr(df, my_function)
```

```
## a b c ## "mean is:-0.71" "mean is:-0.53" "mean is:0.47" "mea
```

87/114

IMAI EXERCISE: PREPARATION

```
library("dplyr")
library("purrr")
library("ggplot2")
```

```
df.08 = intrade.08 %>%
  left_join(pres.08) %>%
  select(-1) %>%
  mutate(
    days.to.election = as.Date("2008-11-04") -
      as.Date(day),
    obama.intmarg = PriceD - PriceR,
    obama.actmarg = Obama - McCain
  ) %>%
  mutate( # gen sign indicator
    obama.intmarg.sign = sign(obama.intmarg),
    obama.actmarg.sign = sign(obama.actmarg)
```

Number of misclassified states in 2008

##

1

(int)

n


```
library("RcppRoll") # for 'roll_mean' function
df.08.2 = df.08 \%
  filter(days.to.election > 0 &
         days.to.election <= 90) %>%
  arrange(state, days.to.election) %>%
  group_by(state) %>%
  mutate(
    roll.mean = roll mean(x = obama.intmarg, 7,
                              align = "right",
                              fill = NA)) %>%
  ungroup() %>%
  filter(roll.mean > 0) %>%
  group_by(days.to.election) %>%
  summarise(
    EV = sum(EV, na.rm = TRUE))
```


String Processing

REGULAR EXPRESSIONS

A regular expression is a pattern that describes a specific set of strings with a common structure. It is heavily used for string matching / replacing in all programming languages, although specific syntax may differ a bit.

Regular expressions typically specify characters (or character classes) to seek out, possibly with information about repeats and location within the string. This is accomplished with the help of metacharacters that have specific meaning: \$ * + . ? [] ^ { } | () \

They can be difficult

IF YOU'RE HAVIN' PERL PROBLEM'S I FEEL BAD FOR YOU, SON-

SO I USED

QUANTIFIERS

Quantifiers specify how many repetitions of the pattern

- · *: matches at least 0 times
- · +: matches at least 1 times
- · ?: matches at most 1 times
- \cdot {n}: matches exactly *n* times
- \cdot {n,}: matches at least n times
- $\{n,m\}$: matches between n and m times

```
strings = c("a", "ab", "acb", "accb",
          "acccb", "accccb")
grep("ac*b", strings, value = TRUE)
## [1] "ab" "accb" "acccb" "accccb"
grep("ac+b", strings, value = TRUE)
## [1] "acb" "acccb" "accccb"
grep("ac?b", strings, value = TRUE)
## [1] "ab" "acb"
```

```
grep("ac{2}b", strings, value = TRUE)
## [1] "accb"
grep("ac{2,}b", strings, value = TRUE)
## [1] "accb" "acccb" "accccb"
grep("ac{2,3}b", strings, value = TRUE)
## [1] "accb" "acccb"
```

OPERATORS

- •: matches any single character, as shown in the first example.
- [...]: a character list, matches any one of the characters inside the square brackets. We can also use inside the brackets to specify a range of characters.
- · [^...]: an inverted character list, similar to [...], but matches any characters except those inside the square brackets.
- · |: an "or" operator, matches patterns on either side of the |.
- \: suppress the special meaning of metacharacters in regular expression
- · ^: matches the start of the string.

```
strings = c("^ab", "ab", "abc", "abd", "abe", "ab 12")
grep("ab.", strings, value = TRUE)
## [1] "abc" "abd" "abe" "ab 12"
grep("ab[c-e]", strings, value = TRUE)
## [1] "abc" "abd" "abe"
grep("ab[^c]", strings, value = TRUE)
## [1] "abd" "abe" "ab 12"
```

```
grep("^ab", strings, value = TRUE)
## [1] "ab" "abc" "abd" "abe" "ab 12"
grep("\\^ab", strings, value = TRUE)
## [1] "^ab"
grep("abc|abd", strings, value = TRUE)
## [1] "abc" "abd"
```

CHARACTER CLASSES

Character classes allows to specify entire classes of characters, such as numbers, letters, etc.

- · [:digit:] or \d: digits, 0 1 2 3 4 5 6 7 8 9, equivalent to [0-9].
- · \D: non-digits, equivalent to [^0-9].
- · [:lower:]: lower-case letters, equivalent to [a-z].
- · [:upper:]: upper-case letters, equivalent to [A-Z].
- . [:alpha:]: alphabetic characters, equivalent to [[:lower:][:upper:]] or [A-z].
- · [:alnum:]: alphanumeric characters, equivalent to
 - [[:alpha:][:digit:]] or [A-z0-9].
- \w: word characters, equivalent to [[:alnum:]_] or [A-z0-9_].
- · \W: not word, equivalent to [^A-z0-9_].

- [:blank:]: blank characters, i.e. space and tab.
- [:space:]: space characters: tab, newline, vertical tab, form feed, carriage return, space.
- · \s: space. ' '.
- · \S: not space.
- [:punct:]: punctuation characters, ! " # \$ % & '() * + , . / : ;
 - < = > ? (a) ^ ' { | } ~.

THE stringr PACKAGE

The most consistent way of doing string manipulation in R is by using the stringr package.

library("stringr")

All functions in **stringr** start with **str_**.

All functions are pipeable!

USEFUL FUNCTIONS

- · str_length: length of string
- str_c: combine string
- · str_sub: subset string
- str_to_lower: string to lower cases

MATCHING WITH REGULAR EXPRESSIONS

Detect matches

```
x = c("apple", "banana", "pear", "213")
x %>% str detect("e")
## [1] TRUE FALSE TRUE FALSE
x %>% str detect("[0-9]")
## [1] FALSE FALSE FALSE TRUE
x %>% str detect("e.r")
## [1] FALSE FALSE TRUE FALSE
```

Extract matches

```
x %>% str_extract("apple|[0-9]*")

## [1] "apple" "" "213"

x %>% str_extract("a.*")

## [1] "apple" "anana" "ar" NA
```

If the string contains more than more element

```
xx = c("apple 123", "banana", "pear", "213")
xx %>% str_extract("apple|[0-9]*")

## [1] "apple" "" "213"

xx %>% str_extract("a.*")

## [1] "apple 123" "anana" "ar" NA
```

```
xx %>% str_extract_all("apple|[0-9].")
## [[1]]
## [1] "apple" "12"
##
## [[2]]
## character(0)
##
## [[3]]
## character(0)
##
## [[4]]
```

[1] "21"

REPLACING

```
Replacing
```

```
xx %>% str replace("[0-9]", "\\?")
## [1] "apple ?23" "banana" "pear"
                                         "?13"
xx %>% str replace all("[0-9]", "\\?")
## [1] "apple ???" "banana" "pear"
                                     "???"
xx %>% str_replace_all(c("1" = "one", "2" = "x"))
## [1] "apple onex3" "banana"
                             "pear"
                                               "xone3"
```

SPLIT VECTOR

Splitting

```
xx %>% str_split("a")
## [[1]]
## [1] ""
                   "pple 123"
##
## [[2]]
## [1] "b" "n" "n" ""
##
## [[3]]
  [1] "pe" "r"
##
## [[4]]
## [1] "213"
```

```
xx %>% str_split("a", n = 2)
## [[1]]
                   "pple 123"
## [1] ""
##
## [[2]]
## [1] "b" "nana"
##
## [[3]]
## [1] "pe" "r"
##
## [[4]]
## [1] "213"
```