Bayesian Networks

George Konidaris

gdk@cs.brown.edu

Fall 2021

Recall

Joint distributions:

- $P(X_1, ..., X_n)$.
- All you (statistically) need to know about $X_1 \ldots X_n$.
- From it you can infer $P(X_1)$, $P(X_1 \mid X_S)$, etc.

Raining	Cold	Prob.
True	True	0.3
True	False	0.1
False	True	0.4
False	False	0.2

Joint Distributions Are Useful

- $P[X_1][X_2 ... X_n]$ things you know
 - thing you want to know

Co-occurrence

• $P(X_a, X_b)$

how likely are these two things together?

Rare event detection

P(X₁, ..., X_n)

Independence

If independent, can break JPD into separate tables.

P(A, B) = P(A)P(B)

			, DE
Prob.		Cold	Prob
0.6		True	0.75
0.4		False	0.25
			0.20
	+		
	0.6	0.6	0.6 True

Raining	Cold	Prob.
True	True	0.45
True	False	0.15
False	True	0.3
False	False	0.1

Conditional Independence

A and B are conditionally independent given C if:

- P(A | B, C) = P(A | C)
- P(A, B | C) = P(A | C) P(B | C)

(recall independence: P(A, B) = P(A)P(B))

This means that, if we know C, we can treat A and B as if they were independent.

A and B might not be independent otherwise!

Example

Consider 3 RVs:

- Temperature
- Humidity
- Season

Temperature and humidity are not independent.

But, they might be, given the season: the season explains both, and they become independent of each other.

Bayes Nets

A particular type of graphical model:

- · A directed, acyclic graph.
- A node for each RV.

Given parents, each RV independent of nondescendants.

Bayes Net

JPD decomposes:

$$P(x_1, ..., x_n) = \prod_{i} P(x_i | \text{parents}(x_i))$$

So for each node, store conditional probability table (CPT): $P(x_i|parents(x_i))$

CPTs

Conditional Probability Table

- Probability distribution over variable given parents.
- One distribution per setting of parents.

Example

Suppose we know:

- The flu causes sinus inflammation.
- Allergies cause sinus inflammation.
- · Sinus inflammation causes a runny nose.
- Sinus inflammation causes headaches.

Example

Nose	Sinus	P
True	True	0.8
False	True	0.2
True	False	0.3
False	False	0.7

joint: 32 (31) entries

Headache	Sinus	\mathbf{P}
True	True	0.6
False	True	0.4
True	False	0.5
False	False	0.5

Uses

Things you can do with a Bayes Net:

- Inference: given some variables, posterior?
 - · (might be intractable: NP-hard)
- Learning (fill in CPTs)
- Structure Learning (fill in edges)

Generally:

- Often few parents.
- Inference cost often reasonable.
- Can include domain knowledge.

What is:

P(f | h)?

Given A compute P(B | A).

What is:

P(F=True | H=True)?

$$P(f|h) = \frac{P(f,h)}{P(h)} = \sum_{SAN} \frac{\sum_{SAN} P(f,h,S,A,N)}{\sum_{SANF} P(h,S,A,N,F)}$$

identity

$$P(a) = \sum_{B=T,F} P(a,B)$$

$$P(a) = \sum_{B=T,F} \sum_{C=T,F} P(a,B,C)$$

$$P(f|h) = \frac{P(f,h)}{P(h)} = \frac{\sum_{SAN} P(f,h,S,A,N)}{\sum_{SANF} P(h,S,A,N,F)}$$

We know from definition of Bayes net:

$$P(h) = \sum_{SANF} P(h, S, A, N, F)$$

$$P(h) = \sum_{SANF} P(h|S)P(N|S)P(S|A,F)P(F)P(A)$$

So we have:

$$P(h) = \sum_{SANF} P(h|S)P(N|S)P(S|A,F)P(F)P(A)$$

... we can eliminate variables one at a time: (distributive law)

$$P(h) = \sum_{SN} P(h|S)P(N|S) \sum_{AF} P(S|A,F)P(F)P(A)$$

$$P(h) = \sum_{S} P(h|S) \sum_{N} P(N|S) \sum_{AF} P(S|A, F) P(F) P(A)$$

$$P(h) = \sum_{S} P(h|S) \sum_{N} P(N|S) \sum_{AF} P(S|A, F) P(F) P(A)$$

sinus = true

$$0.6 \times \sum_{N} P(N|S = True) \sum_{AF} P(S = True|A, F) P(F) P(A) +$$

$$0.5 \times \sum_{N} P(N|S = False) \sum_{AF} P(S = False|A, F) P(F) P(A)$$

sinus = false

Headache	Sings	Р
True	True	0.6
False	True	0.4
True	False	0.5
False	False	0.5

$$P(h) = \sum_{S} P(h|S) \sum_{N} P(N|S) \sum_{AF} P(S|A, F) P(F) P(A)$$

$$0.6 \times [0.8 \times \sum_{AF} P(S = True|A, F)P(F)P(A) +$$

$$0.2 \times \sum_{AF} P(S = True|A, F)P(F)P(A)] +$$

$$0.5 \times [0.3 \times \sum_{AF} P(S = False | A, F)P(F)P(A) +$$

$$0.7 \times \sum_{A,F} P(S = False|A, F)P(F)P(A)]$$

Nose	Sinus	P
True	True	0.8
False	True	0.2
True	False	0.3
False	False	0.7

Downsides:

- How to simplify? (Hard in general.)
- Computational complexity
- Hard to parallelize

Alternative

Sampling approaches

- Based on drawing random numbers
- · Computationally expensive, but easy to code!
- Easy to parallelize

Sampling

What's a sample?

From a distribution:

From a CPT:

Flu	P
True	0.6
False	0.4

How do we sample from a Bayes Net?

A Bayes Net is known as a generative model.

- Each variable is generated by a distribution.
- Describes the structure of that generation.
- Can generate more data.

Natural way to include domain knowledge via causality.

Sampling the Joint

Algorithm for generating samples drawn from the joint distribution:

For each node with no parents:

- Draw sample from marginal distribution.
- Condition children on choice (removes edge)
- Repeat.

Results in artificial data set.

Probability values - literally just count.

Allergy

Flu	P
True	0.6
Faise	0.4

Flu

Allergy P 0.2 True False 0.8

Sinus	Flu	Allergy	P
True	True	True	0.9
False	True	True	0.1
True	True	False	0.6
False	True	False	0.4
True	False	False	0.2
False	False	False	0.8
True	False	True	0.4
False	False	True	0.6

Sinus

Nose

Nose	Sinus	P
True	True	0.8
False	True	0.2
True	False	0.3
False	False	0.7

Headache

Headache	Sinus	P
True	True	0.6
False	True	0.4
True	False	0.5
False	False	0.5

Flue = True

Nose

Allergy

Allergy	$-\mathbf{P}_{-}$
True	0.2
False	0.8

Sinus

Sinus	Flu	Allergy	P
True	True	True	0.9
False	True	True	0.1
True	True	False	0.6
False	True	False	0.4
Truo	Folso	Folso	0.2
False	False	False	0.8
Т	$\Gamma_{\alpha} 1_{\alpha \alpha}$	Т	\bigcirc 4
			0.1
Taisc	Palse	Truc	0.6

Headache

Nose	Sinus	P
True	True	0.8
False	True	0.2
True	False	0.3
False	False	0.7

Headache	Sinus	P
True	True	0.6
False	True	0.4
True	False	0.5
False	False	0.5

Flue = True

Nose

Allergy = False

	Sinus	Flu	Allergy	P
	T_{ruo}	True	True	0.0
	Folco	True	True	0.1
	True	True	False	0.6
	False	True	False	0.4
Ī	Truo	False	False	0.2
	\mathbf{False}	False	False	0.8
ŀ	Т	Falso	Torra	0.4
	False	False	Truc	0.1
L	1 0150			

Headache

Nose	Sinus	P
True	True	0.8
False	True	0.2
True	False	0.3
False	False	0.7

Headache	Sinus	P
True	True	0.6
False	True	0.4
True	False	0.5
False	False	0.5

Flue = True

Allergy = False

Sinus = True

Nose = True

Headache = False

Nose	Sinus	P
True	True	0.8
False	True	0.2
True	False	0.3
False	False	0.7

Headache	Sinus	P
True	True	0.6
False	True	0.4
True	False	-0.5
-False	False	0.5

Sampling the Conditional

What if we want to know P(A | B)?

We could use the previous procedure, and just divide the data up based on B.

What if we want P(A | b)?

- Could do the same, just use data with B=b.
- · Throw away the rest of the data.
- · Rejection sampling.

Sampling the Conditional

What if b is uncommon? What if b involves many variables?

Importance sampling:

- Bias the sampling process to get more "hits".
 - New distribution, Q.
- · Use a reweighing trick to unbias probabilities.
 - Multiply by P/Q to get probability of sample.

Sampling

Properties of sampling:

- Slow.
- Always works.
- · Always applicable.
- Easy to parallelize.
- · Computers are getting faster.

Independence

What does this look like with a Bayes Net?

Raining	Prob.	<u> </u>	cold	Prob.
True	0.6	$ \overline{T}$	rue	0.75
False	0.4	\mathbf{F}	alse	0.25
	X	Y		
		X		
		X		
— F	Raining	Cold	Pro	
	Raining True	Cold True	Pro 0.45	
				<u> </u>

False

0.1

False

Naive Bayes

P(W1|S) P(W2|S) P(W3|S)

P(Wn|S)

Spam Filter (Naive Bayes) P(S) P(W1|S) P(W2|S) P(W3|S)

P(Wn|S)

Want P(S | $W_1 \dots W_n$)

Naive Bayes

$$P(W_1, ..., W_n | S) = \prod_i P(W_i | S)$$

(from the Bayes Net)

Bayes Nets

Bayes Nets are a type of representation.

Multiple inference algorithms; you can choose!

Al researchers talk about <u>models</u> more than <u>algorithms</u>.

Potentially very compressed but exact.

Requires careful construction!

VS

Approximate representation.

Hope you're not too wrong!

Many, many applications in all areas.

