# CCG3013/N Computer Graphics Final Exam Answer Script September 2022 Set A

## Section A (60 marks)

1) Name and discuss four applications of computer graphics.

(12 marks)

| Application                | Discussion                                                                                                                                   |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Augmented reality(AR)      | It renders virtual environment and virtual objects with a given target image.                                                                |
| Virtual reality(VR)        | It renders virtual environment and virtual objects using an immersive display equipment.                                                     |
| Data visualisation         | It generates graphic objects to illustrate static and dynamic data.                                                                          |
| Computer aided design(CAD) | It supports achitects, engineers, and artists to demonstrate the blueprints of products, in terms of look and feel at multiple perspectives. |
| Medical imagery            | It captures either the interior and exterior of a human body, then it encodes the signal into images and videos.                             |

<sup>1</sup> mark will be awarded for each correct application, maximum four only.

2) Explain and draw five Euclid's postulates.

(15 marks)

| 2) Explain and draw iive Edolid's postalates:                                                |              | ( TO THATRO) |
|----------------------------------------------------------------------------------------------|--------------|--------------|
| Euclid's postulates                                                                          | Illustration |              |
| <ul><li>a. Given two points, it is possible to draw a right line.</li><li>(1 mark)</li></ul> | A            |              |
|                                                                                              | В            | (2 marks)    |
| <ul><li>b. The right line can be extended in both directions.</li><li>(1 mark)</li></ul>     | 7            |              |
|                                                                                              |              | (2 marks)    |
| c. Given a center and a radius, we can draw a circle. (1 mark)                               | A            |              |
|                                                                                              |              | (2 marks)    |

<sup>2</sup> marks will be awarded for each correct corresponding discussion, maximum four only.

| d. All right angles are equal. (1 mark) |                 |
|-----------------------------------------|-----------------|
| e. Parallel postulate. (1 mark)         | (2 marks)       |
|                                         | a b a + b ≤ 180 |
|                                         | (2 marks)       |

3) Explain a unit form. Then, specify the two dimensional (2D) primitives and the corresponding quantities for a unit form in Figure 1 below. (10 marks)



Figure 1: Unit form

It is a combination of simple objects that generate a more refined object. (2 marks)

| e especie inai generale a mere remied es |          |           |
|------------------------------------------|----------|-----------|
| Shape                                    | Quantity | Marks     |
| Line                                     | 3        | (2 marks) |
| Triangle                                 | 2        | (2 marks) |
| Rectangular                              | 3        | (2 marks) |
| Circle                                   | 4        | (2 marks) |

4) Given a three-dimensional (3D) original point, (x, y, z) at (15, 20, 25) in the 3D space. Compute the corresponding image point with the following transformations.

(a) Translate with a vector of (10, -20, -25), (4 marks)

(b) Rotate clockwise (CW) at 50 degrees along y-axis, (4 marks)

(c) Rotate counter-clockwise (CCW) at 78 degrees along z-axis, (4 marks)

(d) Scale with the factors of (2/5, 1/2, 4). (4 marks)

(a)
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 (2 marks)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & -20 \\ 0 & 0 & 1 & -25 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 20 \\ 25 \\ 1 \end{bmatrix}$$
 (1 mark)
$$= \begin{bmatrix} 25 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 (1 mark)

(b) 
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$
 (2 marks) 
$$= \begin{bmatrix} \cos(50) & 0 & \sin(50) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(50) & 0 & \cos(50) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 20 \\ 25 \\ 0 \end{bmatrix}$$
 (1 mark) 
$$= \begin{bmatrix} 15\cos(50) + 25\sin(50) \\ 20 \\ -15\sin(50) + 25\cos(50) \\ 0 \end{bmatrix}$$
 
$$= \begin{bmatrix} 28.79 \\ 20 \\ 4.58 \\ 0 \end{bmatrix}$$
 (1 mark)

(c)
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$
(2 marks)
$$= \begin{bmatrix} \cos(78) & -\sin(78) & 0 & 0 \\ \sin(78) & \cos(78) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 20 \\ 25 \\ 0 \end{bmatrix}$$
 (1 mark)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 15\cos(78) - 20\sin(78) \\ 15\sin(78) + 20\cos(78) \\ 25 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} -16.44 \\ 18.83 \\ 25 \\ 0 \end{bmatrix}$$
 (1 mark)

(d)
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 (2 marks)
$$= \begin{bmatrix} 2/5 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 20 \\ 25 \\ 1 \end{bmatrix}$$
 (1 mark)
$$= \begin{bmatrix} 6 \\ 10 \\ 100 \\ 1 \end{bmatrix}$$
 (1 mark)

5) Briefly describe a digital video. Then, name and explain the two unique parameters of a digital video. (7 marks)

It is a series of images which is played over certain period of time. (1 mark)

| Parameter           | Explanation                                                            |
|---------------------|------------------------------------------------------------------------|
| Frame (1 mark)      | It is an image in a video that ordered with an index. (2 marks)        |
| Frame rate (1 mark) | It is the number of images that flip in a second and measured in frame |
|                     | per second (fps). (2 marks)                                            |

### Section B (10 marks)

1) Evaluate and justify three suitable Disney's principles of animation for a water dam in energy generation. (10 marks)

| Principle of animation     | Justifications                                                         |
|----------------------------|------------------------------------------------------------------------|
| Arc (1 mark)               | In the power generator, there is a fan with blades. (1 mark)           |
|                            | The water inflow will drive each tip of a blade that generates a       |
|                            | circular arc, when it rotates. (1 mark)                                |
| Solid drawing (1 mark)     | The fan in the power generator should be connected with a rotor        |
|                            | through a shaft. (1 mark)                                              |
|                            | The fan, rotor, and shaft should be aligned at a center. (1 mark)      |
| Slow in, slow out (1 mark) | When the velocity of the water inflow increases, the torque of the fan |
|                            | should be gradually increase. (1 mark)                                 |
|                            | When the velocity of the water inflow runs at a constant speed, the    |
|                            | torque of the fan should be at constant too. (1 mark)                  |
|                            | When the velocity of the water inflow decreases, the torque of the     |
|                            | fan should be gradually decreases. (1 mark)                            |

#### Section C (15 marks)

1) Write a function in C++ OpenGL to get a position of a mouse input, (x, y) and to toggle the status of right mouse button. (15 marks) void mouseControl(GLint button, GLint state, int x, int y){ (4 marks) y = window.height - y; (1 mark) switch(button){ (1 mark) case GLUT RIGHT BUTTON: (1 mark) if(state == GLUT DOWN && (1 mark) !transform.rightMouseIsPressed){ (1 mark) transform.mouseX = x; (0.5 marks) transform.mouseY = y; (0.5 marks) transform.rightMouseIsPressed = true; (1 mark) if(state == GLUT\_UP && (1 mark) transform.rightMouseIsPressed){ (1 mark) transform.rightMouseIsPressed = false; (1 mark) break; (1 mark)

### Section D (15 marks)

}

Write a render function in C++ OpenGL to scale a 100 units' radius sphere with a step radius increases by 2%, then stop the animation when the radius reached 200 units. (15 marks)

```
GLfloat radius = 100; (1 mark)
GLfloat stepRadius = 2; (1 mark)
void render(){ (1 mark)
   glPushMatrix(); ((1 mark)
   glFrontFace(GL_CW); (1 mark)
        if(radius < 200){ (1 mark)
        radius = radius*stepRadius; (2 marks)
        }
        glutSolidSphere(radius, 24, 24); (3 marks)
   glFrontFace(GL_CCW); (1 mark)
   glPopMatrix(); (1 mark)
   glutSwapBuffers(); (1 mark)
   glutPostRedisplay(); (1 mark)
}</pre>
```

\*\*\*\*\*