Motives and Implementation: On the Design of Mechanisms to Elicit Opinions by Jacob Glazer and Ariel Rubinstein Eine Analyse

Marcel Pommer

Universität Mannheim

28. Mai 2022

Das Modell

- Eine Maßnahme "0" oder "1" muss getroffen werden.
- Die gewünschte Maßnahme ist abhängig vom Zustand $\omega \in \{0,1\}$, wobei ω mit gleicher Wahrscheinlichkeit den beiden Zuständen entspricht.
- Jeder Agenten aus $N = \{1,...,n\}$, $n \geq 3$, n ungerade erhält ein Signal x_i , welches mit der Wahrscheinlichkeit $\frac{1}{2} dem Zustand <math>\omega$ entspricht.
- Ziel ist die Implementierung der gewünschten Maßnahme. Gegeben *K* Signalen entspricht dies:

$$V(K) = Prob\{ \text{strikte Mehrheit der Agenten erhält das korrekte Signal} \} \\ + \frac{1}{2} Prob\{ \text{H\"{a}lfte der Agenten erh\"{a}lt das korrekte Signal} \}$$

• Für obige Nutzenfunktion gilt V(2k-1) = V(2k) < V(2k+1).

Beweis von V(2k-1) = V(2k)

$$\begin{split} V(2k) &= \sum_{i=0}^{k-1} {2k \choose i} p^{2k-i} (1-p)^i + \frac{1}{2} {2k \choose k} p^k (1-p)^k \\ &= p^{2k} + \sum_{i=1}^{k-1} {2k-1 \choose i} p^{2k-i} (1-p)^i + \sum_{i=1}^{k-1} {2k-1 \choose i-1} p^{2k-i} (1-p)^i + \frac{1}{2} {2k \choose k} p^k (1-p)^k \\ &= p \cdot \sum_{i=0}^{k-1} {2k-1 \choose i} p^{2k-1-i} (1-p)^i + \sum_{i=1}^{k-1} {2k-1 \choose i-1} p^{2k-i} (1-p)^i + \frac{1}{2} {2k \choose k} p^k (1-p)^k \\ &= p \cdot V(2k-1) + (1-p) \sum_{i=0}^{k-2} {2k-1 \choose i} p^{2k-1-i} (1-p)^i + \frac{1}{2} {2k \choose k} p^k (1-p)^k \\ &= p \cdot V(2k-1) + (1-p) \left[\sum_{i=0}^{k-1} {2k-1 \choose i} p^{2k-1-i} (1-p)^i - {2k-1 \choose k-1} p^k (1-p)^{k-1} \right] \\ &+ \frac{1}{2} {2k \choose k} p^k (1-p)^k \\ &= p \cdot V(2k-1) + (1-p) \cdot V(2k-1) - {2k-1 \choose k-1} p^k (1-p)^k + \frac{1}{2} {2k \choose k} p^k (1-p)^k \\ &= V(2k-1) \end{split}$$

Zwei mögliche Mechanismen

- Oer direkte simultane Mechanismus: Alle Agenten sprechen ihre Empfehlung simultan aus, die Mehrheit entscheidet.
- ② Der Führer Mechanismus: Die Agenten $\{1,...,n-1\}$ sprechen simultan ihre Empfehlung aus, welche an Agent n weitergegeben werden. Dieser entscheidet anhand der Empfehlungen der anderen Agenten und seines eigenen Signals, welche Maßnahme getroffen wird.
- Ein Mechanismus implementiert das öffentliche Ziel, falls für jedes sequentielle Gleichgewicht gilt $\pi_1 = V(n)$, wobei π_1 als die Wahrscheinlichkeit definiert ist, dass die gewünschte Maßnahme getroffen wird.

Proposition 1

Proposition 1

"In einer Gesellschaft, in der alle Agenten ausschließlich am Allgemeinwohl interessiert sind, hat jeder Mechanismus ein sequentielles Gleichgewicht indem $\pi_1 \leq V(1)$." [GR98]

Beweisidee von Proposition 1

- 7 Zunächst betrachte einen Mechanismus mit einem Schritt:
 - Falls das Ergebnis konstant ist, gilt $\pi_1 = V(0)$.
 - Falls das Ergebnis nicht konstant ist, gibt es einen Agenten i, sodass die getroffene Maßnahme von seinem Signal abhängt. Jedem Agenten $i \neq i$ wird eine Aktion a_i , unabhängig seines Signals, zugeordnet, sodass das Ergebnis nur vom Signal von Agent i abhängig ist.
 - \rightarrow Kein Agent kann profitabel abweichen, da V(1) = V(2).
- Ein Mechanismus mit zwei Schritten:
 - Falls das Ergebnis nach dem ersten Schritt bereits feststeht, handelt es sich um einen Mechanismus mit einem Schritt.
 - Falls nicht, weise, wie oben erklärt, jedem Agenten im zweiten Schritt eine Aktion zu, sodass das Ergebnis nur vom Signal eines Agenten abhängig ist.
 - Weise zudem jedem Agenten im ersten Schritt eine Aktion, unabhängig vom Signal zu, sodass der erste Schritt eine Teilgeschichte vom zweiten Schritt ist.

Der Mechanismus

Das private Motiv: Alle Agenten sind neben dem Allgemeinwohl auch daran interessiert, $\pi_{2,i}$, die Wahrscheinlichkeit, dass Ihre Empfehlung mit der getroffenen Maßnahme übereinstimmt, zu maximieren.

Schritt 1: Agent 1 ("controller") bestimmt eine Menge *S* von Agenten, wobei S gerade und Agent 1 nicht Teil der Menge S ist.

Gleichzeitig geben alle Agenten bis auf Agent 1 simultan ihre Empfehlung ab.

Schritt 2: Agent 1 erfährt das Abstimmungsergebnis aus der Menge *S* und gibt seine eigene Stimme ab.

 \rightarrow Die Mehrheit aus $S \cup \{1\}$ entscheidet über die Maßnahme.

Proposition 2

Proposition 2

"In einer Gesellschaft, in der alle Agenten strikt positive Präferenzen bezüglich dem Allgemeinwohl und ihrem privatem Motiv haben, implementiert obiger Mechanismus das PT, es gilt $\pi_1 = V(n)$ für jedes sequentielle Gleichgewicht." [GR98]

Agent 1 wählt $S = N \setminus \{1\}$, alle Agenten $i \in \{2, ..., n\}$ spielen "T", Agent 1 folgt der Mehrheit und spielt im Fall eines Unentschieden selber "T".

Hilfslemma 1

Hilfslemma 1

Sei S eine Teilmenge aller Agenten und ungerade und sei $s_i = 0$ die Strategie von Agent i. Zudem sei N_x die Anzahl Agenten, die die Strategie $x \in \{ T, T, T, T \}$ verfolgen.

Behauptung: Falls $N_0 > N_1$, führt ein Wechsel der Strategie von Agent i zu "T" zu einer Erhöhung von π_1 . Falls $N_0 = N_1$, beeinflusst ein Wechsel von Agent i zur Strategie "T" π_1 nicht.

Beweis Hilfslemma 1

Beweis: Ich nutze, dass "c" mit der Wahrscheinlichkeit $\frac{1}{2}$ dem Zustand ω entspricht.

$$V(2k) \cup "c" = \frac{1}{2} \sum_{i=0}^{k} {2k \choose i} p^{2k-i} (1-p)^{i} + \frac{1}{2} \sum_{i=0}^{k-1} {2k \choose i} p^{2k-i} (1-p)^{i}$$

$$= \sum_{i=0}^{k-1} {2k \choose i} p^{2k-i} (1-p)^{i} + \frac{1}{2} {2k \choose k} p^{2k-i} (1-p)^{i}$$

$$= V(2k)$$

$$= V(2k-1)$$

$$< V(2k+1)$$

Beweisidee Proposition 2

- **1** Agent 1 wählt S, sodass $S_{NT} = \emptyset$.
- \rightarrow folgt, da $V(2k-1) = V(2k) < V(2k) \cup "NT"$
- ② Agent 1 wählt *S*, sodass $||S_0| |S_1|| = k \le 1$.
- \rightarrow falls k > 1, ist das Ergebnis in eine Richtung beeinflusst
- **1** Mit Hilfslemma 1 folgt, dass k = 0. Es gibt einen Agenten $i \in S_c$, der durch ein Abweichen auf "T" π_1 und $\pi_{2,i}$ erhöht.
- Mit Hilfslemma 1 folgt, $S_c = \emptyset$. Jeder Agent $i \in S_c$ kann durch ein Abweichen $\pi_{2,i}$ erhöhen, ohne π_1 zu beeinflussen.
- **5** Jeder Agent $i \notin S$ spielt "T", da seine Srategie π_1 nicht beeinflusst, aber dadurch $\pi_{2,i}$ maximiert wird.
- \rightarrow Es folgt, dass $S = \{2, ..., n\}$ und alle Agenten in S "T" spielen. Agent 1 folgt der Mehrheit und im Fall eines Unentschieden, spielt er "T".

Ein alternatives privates Motiv

Das alternative private Motiv: Jeder Agent ist neben dem Allgemeinwohl daran interessiert, dass sich seine Empfehlung ex post als richtig erweist.

Behauptung

Der in Kapitel drei definierte Mechanismus implementiert das PT für jedes Profil von Präferenzen, das strikt wachsend im PT und dem oben definierten privaten Motiv ist.

Beweis

Der Beweis erfolgt weitestgehend analog zum Beweis von Proposition 2. Im Folgenden die Unterschiede:

- Es gilt $\pi_1 \geq V(1)$, aber $\pi_{2,1} < 1$. Trotzdem steht das private Motiv von Agent 1 dem öffentlichen nicht entgegen.
- \rightarrow Agent 1 maximiert $\pi_{2,1} < 1$, indem er π_1 maximiert, damit wählt er S so informativ wie möglich.
 - Analog zum Beweis von Proposition 2 folgt damit $S_{NT} = \emptyset$.
 - Mit Hilfslemma 1 folgt ebenfalls, dass $S_c = \emptyset$, da ein Agent durch einen Wechsel von der Strategie "c", zur Strategie "T", $\pi_{2.i}$ von $\frac{1}{2}$ auf p erhöht.
 - Da alle Agenten $i \notin S$ ausschließlich daran interessiert sind, dass sich ihre Empfehlung ex post als richtig erweist, spielen sie "T".
- \rightarrow Damit folgt, dass Agent 1 $S = N \setminus \{1\}$ wählt und alle Agenten in S spielen "T". Agent 1 folgt der Mehrheit und im Fall eines Unentschieden folgt er seinem eigenen Signal.

Literatur

[GR98] Jacob Glazer and Ariel Rubinstein. Motives and implementation: On the design of mechanism to elicit opinions. Journal of economic Theory, 79(2):157-173, 1998.