Model_Building_Part_2

April 18, 2025

Import all Modules

```
[105]: # Import Modules
       import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       #Import os
       import os
       # Import Sklearn modules
       from sklearn.model_selection import train_test_split
       from sklearn.preprocessing import StandardScaler
       from sklearn.preprocessing import LabelEncoder
       from sklearn.metrics import classification_report, confusion_matrix, __
        →accuracy_score
       # Import Pytorch modules
       import torch
       import torch.nn as nn
       import torch.optim as optim
       from torch.utils.data import TensorDataset, DataLoader, random_split
```

Displaying Data

Exploratory Data Analysis (EDA)

```
[107]: # Exploratory Data Analysis (EDA)
       def univariate_analysis(X, y):
           Performs univariate analysis on numerical features and the target variable.
           Arqs:
               X (pd.DataFrame): The feature DataFrame.
               y (pd.Series): The target Series.
           # Univariate Analysis of Numerical Features
           numerical_features = X.select_dtypes(include=np.number).columns
           num_cols = 3  # Number of columns in the plot grid
           num_rows = (len(numerical_features) + num_cols - 1) // num_cols #__
        → Calculate number of rows
           plt.figure(figsize=(15, 5 * num_rows)) # Adjust figure height dynamically
           for i, feature in enumerate(numerical_features):
               plt.subplot(num_rows, num_cols, i + 1)
               sns.histplot(X[feature], bins=20, kde=True) # Use histplot for better_
        →visuals
               plt.title(f'Distribution of {feature}')
               plt.xlabel(feature)
               plt.ylabel('Frequency')
           plt.suptitle('Univariate Analysis of Numerical Features', y=0.99, __
        ofontsize=16) # Move suptitle to the end
           plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to prevent_
        \hookrightarrowoverlap
           plt.show()
           # Univariate Analysis of Target Variable
```

```
plt.figure(figsize=(8, 6))
    sns.countplot(x=y)
   plt.title('Distribution of GradeClass')
   plt.xlabel('GradeClass')
   plt.ylabel('Count')
   plt.show()
def bivariate_analysis(X, y):
   Performs bivariate analysis between numerical features and the target,
 \neg variable.
   Arqs:
       X (pd.DataFrame): The feature DataFrame.
        y (pd.Series): The target Series.
    # Bivariate Analysis: Numerical Features vs. GradeClass (Boxplots)
   numerical_features = X.select_dtypes(include=np.number).columns
   num cols = 3
   num_rows = (len(numerical_features) + num_cols - 1) // num_cols
   plt.figure(figsize=(15, 5 * num_rows))
   for i, feature in enumerate(numerical_features):
       plt.subplot(num_rows, num_cols, i + 1)
        sns.boxplot(x=y, y=X[feature])
       plt.title(f'{feature} vs. GradeClass')
       plt.xlabel('GradeClass')
       plt.ylabel(feature)
   plt.suptitle('Bivariate Analysis: Numerical Features vs. GradeClass', y=0.
 99, fontsize=16)
   plt.tight_layout(rect=[0, 0.03, 1, 0.95])
   plt.show()
   # Bivariate Analysis: Correlation Heatmap (Lower Triangle)
   corr_matrix = X.corr()
   mask = np.triu(np.ones_like(corr_matrix, dtype=bool))  # Create a mask for_
 ⇔the upper triangle
   plt.figure(figsize=(15, 13))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f",__
 →annot_kws={"size": 10}, mask=mask) # Apply the mask
   plt.title('Correlation Heatmap (Lower Triangle)')
   plt.show()
 Main EDA Execution
```

univariate_analysis(X, y)
bivariate_analysis(X, y)

Create Train and Test Sets

```
[108]: # Create train and test sets using the loaded indices
X_train = X.iloc[train_index]
X_test = X.iloc[test_index]
y_train = y.iloc[train_index]
y_test = y.iloc[test_index]

print("X_train head:")
print(X_train.head())

print("\nData shapes:")
```

```
print("X_train:", X_train.shape)
       print("X_test:", X_test.shape)
       print("y_train:", y_train.shape)
       print("y_test:", y_test.shape)
      X train head:
            StudentID Age
                            Gender Ethnicity ParentalEducation StudyTimeWeekly \
      1764
                 2765
                                                                          9.247229
                        15
                                 1
                                             1
                                                                1
      1479
                 2480
                        18
                                 0
                                             0
                                                                4
                                                                          8.978234
      1529
                                 0
                                             0
                 2530
                        18
                                                                1
                                                                         10.088421
      2196
                 3197
                        17
                                  1
                                             1
                                                                          1.001291
                                  0
      2146
                 3147
                        15
                                             0
                                                                         12.324485
            Absences
                      Tutoring ParentalSupport Extracurricular
                                                                   Sports Music
      1764
                                                                        1
                  21
                             1
      1479
                   3
                             0
                                               2
                                                                0
                                                                        1
                                                                               0
                  13
                             0
                                                                0
                                                                        0
                                                                               0
      1529
                                               1
                                               2
      2196
                   0
                             0
                                                                0
                                                                        0
                                                                               0
      2146
                   0
                             0
                                                                1
                                                                        0
                                                                               0
            Volunteering
                               GPA Attendance Activity StudyTimeNorm Engagement
      1764
                       0 1.455085
                                      0.300000
                                                                0.462361
                                                                            0.558708
                                                        1
      1479
                       0 2.747908
                                      0.900000
                                                        1
                                                                0.448912
                                                                            0.794674
      1529
                       0 1.820844
                                      0.566667
                                                        0
                                                                0.504421
                                                                            0.377993
                                                        0
      2196
                       0 2.995458
                                      1.000000
                                                                0.050065
                                                                            0.415019
      2146
                       0 3.333970
                                      1.000000
                                                        1
                                                                0.616224
                                                                            0.884867
      Data shapes:
      X_train: (1902, 18)
      X_test: (476, 18)
      y_train: (1902,)
      y_test: (476,)
      Processing and Tensors
[109]: | # Scale numerical features - FIT only on training data, TRANSFORM both
       numerical_cols = X_train.select_dtypes(include=np.number).columns
       scaler = StandardScaler()
       X_train_scaled = scaler.fit_transform(X_train[numerical_cols])
       X_test_scaled = scaler.transform(X_test[numerical_cols]) # Apply same scaling_
       ⇔to test
```

Encode the target variable - ONLY FIT on the training data

y_test_encoded = label_encoder.transform(y_test.values.ravel())

y_train_encoded = label_encoder.fit_transform(y_train.values.ravel())

label_encoder = LabelEncoder()

Convert to PyTorch tensors

```
X_train_tensor = torch.tensor(X_train_scaled, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train_encoded, dtype=torch.long)
X_test_tensor = torch.tensor(X_test_scaled, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test_encoded, dtype=torch.long)
```

Create TensorDatasets and DataLoaders

Define the Neural Network Model

```
[111]: class Net(nn.Module):
           def __init__(self, input_size, num_classes):
               super(Net, self).__init__()
               self.fc1 = nn.Linear(input_size, 256)
               self.bn1 = nn.BatchNorm1d(256)
               self.relu1 = nn.ReLU()
               self.dropout1 = nn.Dropout(0.5)
               self.fc2 = nn.Linear(256, 256)
               self.bn2 = nn.BatchNorm1d(256)
               self.relu2 = nn.ReLU()
               self.dropout2 = nn.Dropout(0.5)
               self.fc3 = nn.Linear(256, 128)
               self.bn3 = nn.BatchNorm1d(128)
               self.relu3 = nn.ReLU()
               self.dropout3 = nn.Dropout(0.3)
               self.fc4 = nn.Linear(128, 64)
               self.relu4 = nn.ReLU()
               self.fc5 = nn.Linear(64, num_classes)
           def forward(self, x):
               x = self.fc1(x)
               x = self.bn1(x)
               x = self.relu1(x)
```

```
x = self.dropout1(x)
        x = self.fc2(x)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.dropout2(x)
        x = self.fc3(x)
        x = self.bn3(x)
        x = self.relu3(x)
        x = self.dropout3(x)
        x = self.fc4(x)
        x = self.relu4(x)
        x = self.fc5(x)
        return x
input_size = X_train_tensor.shape[1]
num_classes = len(label_encoder.classes_)
model = Net(input_size, num_classes)
```

Define Loss Function

```
[112]: # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)

# DataLoaders
    batch_size = 64
    train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_dataset = TensorDataset(X_val_tensor, y_val_tensor)
    val_loader = DataLoader(val_dataset, batch_size=batch_size)
    test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```

Train the Model

```
[113]: num_epochs = 300
    patience = 10
    best_val_loss = float('inf')
    no_improve_count = 0
    train_losses = []
    val_losses = []

    for epoch in range(num_epochs):
        model.train()
        for inputs, labels in train_loader:
             optimizer.zero_grad()
             outputs = model(inputs)
             loss = criterion(outputs, labels)
```

```
loss.backward()
        optimizer.step()
   model.eval()
   with torch.no_grad():
        train_loss = sum(criterion(model(inputs), labels).item() for inputs,__
 ⇔labels in train_loader) / len(train_loader)
        val_loss = sum(criterion(model(inputs), labels).item() for inputs,__
 →labels in val_loader) / len(val_loader)
   train_losses.append(train_loss)
   val_losses.append(val_loss)
   print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss:.4f}, Valu
 if val_loss < best_val_loss:</pre>
       best_val_loss = val_loss
       no_improve_count = 0
       torch.save(model.state_dict(), 'Neural_Network_Best_Model.pth')
   else:
       no_improve_count += 1
        if no improve count >= patience:
            print('Early stopping!')
            model.load_state_dict(torch.load('Neural_Network_Best_Model.pth'))
            break
# Plotting Loss Curves
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
# Evaluation and Confusion Matrix (AFTER the training loop)
model.eval()
with torch.no grad():
   y_pred = []
   y_true = []
   for inputs, labels in test_loader:
       outputs = model(inputs)
        _, predicted = torch.max(outputs, 1)
       y_pred.extend(predicted.cpu().numpy())
        y_true.extend(labels.cpu().numpy())
   y_pred = np.array(y_pred, dtype=np.int64)
```

```
y_true = np.array(y_true, dtype=np.int64)

target_names = [str(cls) for cls in label_encoder.classes_]
print("Classification Report:\n", classification_report(y_true, y_pred,__)

*target_names=target_names))

# Confusion Matrix
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',__)

*xticklabels=target_names, yticklabels=target_names)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix (Test Set)')
plt.show()

print("Model Evaluation Complete")
```

```
Epoch [1/300], Train Loss: 1.0032, Val Loss: 1.0350
Epoch [2/300], Train Loss: 0.8934, Val Loss: 0.9348
Epoch [3/300], Train Loss: 0.7166, Val Loss: 0.7576
Epoch [4/300], Train Loss: 0.6257, Val Loss: 0.6715
Epoch [5/300], Train Loss: 0.5716, Val Loss: 0.6147
Epoch [6/300], Train Loss: 0.5089, Val Loss: 0.5674
Epoch [7/300], Train Loss: 0.4984, Val Loss: 0.5512
Epoch [8/300], Train Loss: 0.4691, Val Loss: 0.5218
Epoch [9/300], Train Loss: 0.4505, Val Loss: 0.5018
Epoch [10/300], Train Loss: 0.4322, Val Loss: 0.4851
Epoch [11/300], Train Loss: 0.4243, Val Loss: 0.4753
Epoch [12/300], Train Loss: 0.4163, Val Loss: 0.4692
Epoch [13/300], Train Loss: 0.4187, Val Loss: 0.4682
Epoch [14/300], Train Loss: 0.4102, Val Loss: 0.4605
Epoch [15/300], Train Loss: 0.3954, Val Loss: 0.4443
Epoch [16/300], Train Loss: 0.3889, Val Loss: 0.4462
Epoch [17/300], Train Loss: 0.3797, Val Loss: 0.4410
Epoch [18/300], Train Loss: 0.3759, Val Loss: 0.4161
Epoch [19/300], Train Loss: 0.3659, Val Loss: 0.4113
Epoch [20/300], Train Loss: 0.3589, Val Loss: 0.4068
Epoch [21/300], Train Loss: 0.3529, Val Loss: 0.4006
Epoch [22/300], Train Loss: 0.3546, Val Loss: 0.4003
Epoch [23/300], Train Loss: 0.3505, Val Loss: 0.4043
Epoch [24/300], Train Loss: 0.3291, Val Loss: 0.3890
Epoch [25/300], Train Loss: 0.3487, Val Loss: 0.4028
Epoch [26/300], Train Loss: 0.3355, Val Loss: 0.3982
Epoch [27/300], Train Loss: 0.3374, Val Loss: 0.3932
Epoch [28/300], Train Loss: 0.3232, Val Loss: 0.3603
Epoch [29/300], Train Loss: 0.3096, Val Loss: 0.3670
```

```
Epoch [30/300], Train Loss: 0.3258, Val Loss: 0.3974
Epoch [31/300], Train Loss: 0.3259, Val Loss: 0.3779
Epoch [32/300], Train Loss: 0.3320, Val Loss: 0.3903
Epoch [33/300], Train Loss: 0.3135, Val Loss: 0.3669
Epoch [34/300], Train Loss: 0.3171, Val Loss: 0.3628
Epoch [35/300], Train Loss: 0.3146, Val Loss: 0.3677
Epoch [36/300], Train Loss: 0.2958, Val Loss: 0.3564
Epoch [37/300], Train Loss: 0.2995, Val Loss: 0.3553
Epoch [38/300], Train Loss: 0.3098, Val Loss: 0.3699
Epoch [39/300], Train Loss: 0.3045, Val Loss: 0.3526
Epoch [40/300], Train Loss: 0.3164, Val Loss: 0.3789
Epoch [41/300], Train Loss: 0.3175, Val Loss: 0.3892
Epoch [42/300], Train Loss: 0.3065, Val Loss: 0.3543
Epoch [43/300], Train Loss: 0.2967, Val Loss: 0.3502
Epoch [44/300], Train Loss: 0.3049, Val Loss: 0.3576
Epoch [45/300], Train Loss: 0.3008, Val Loss: 0.3622
Epoch [46/300], Train Loss: 0.2858, Val Loss: 0.3369
Epoch [47/300], Train Loss: 0.2748, Val Loss: 0.3434
Epoch [48/300], Train Loss: 0.2775, Val Loss: 0.3391
Epoch [49/300], Train Loss: 0.2828, Val Loss: 0.3432
Epoch [50/300], Train Loss: 0.2776, Val Loss: 0.3421
Epoch [51/300], Train Loss: 0.2933, Val Loss: 0.3506
Epoch [52/300], Train Loss: 0.2831, Val Loss: 0.3537
Epoch [53/300], Train Loss: 0.2837, Val Loss: 0.3436
Epoch [54/300], Train Loss: 0.2871, Val Loss: 0.3430
Epoch [55/300], Train Loss: 0.2805, Val Loss: 0.3480
Epoch [56/300], Train Loss: 0.2835, Val Loss: 0.3459
Early stopping!
```


Classification Report:

	<u>-</u>			
	precision	recall	f1-score	support
0.0	0.04	0 50	0.70	07
0.0	0.94	0.56	0.70	27
1.0	0.76	0.74	0.75	46
2.0	0.80	0.82	0.81	83
3.0	0.83	0.78	0.81	69
4.0	0.92	0.97	0.95	251
accuracy			0.87	476
macro avg	0.85	0.77	0.80	476
weighted avg	0.87	0.87	0.87	476

Model Evaluation Complete

Evaluate the Model

```
[114]: # Evaluate the Model
model.eval()
with torch.no_grad():
    y_pred = []
    y_true = []
    for inputs, labels in test_loader:
        outputs = model(inputs)
        _, predicted = torch.max(outputs, 1)
        y_pred.extend(predicted.cpu().numpy())
        y_true.extend(labels.cpu().numpy())

    y_pred = np.array(y_pred)
    y_true = np.array(y_true)
```

Classification Report:

	precision	recall	f1-score	support
0.0	0.94	0.56	0.70	27
1.0	0.76	0.74	0.75	46
2.0	0.80	0.82	0.81	83
3.0	0.83	0.78	0.81	69
4.0	0.92	0.97	0.95	251
accuracy			0.87	476
macro avg	0.85	0.77	0.80	476
weighted avg	0.87	0.87	0.87	476

Accuracy:

0.8718487394957983