**8 Suppose V and W are two vector spaces. We can make the set

$$V \times W = \{(\alpha, \beta) \mid \alpha \in V, \beta \in W\}$$

into a vector space as follows:

$$(\alpha_1, \beta_1) + (\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)$$
$$c(\alpha_1, \beta_1) = (c\alpha_1, c\beta_1)$$

You can assume the axioms of a vector space hold for $V \times W$.

a. If V and W are finite dimensional, what is the dimension of $V \times W$? Prove your answer.

b. Now suppose W_1 and W_2 are two subspaces of V. We can define a linear map

$$\Phi \colon W_1 \times W_2 \to V$$

by

$$\Phi(\alpha, \beta) = \alpha + \beta.$$

Show that $R(\Phi) = W_1 + W_2$.

c. Show $\dim(N(\Phi)) = \dim(W_1 \cap W_2)$.

Solution a. Let $A = \{\alpha_1, \dots, \alpha_n\}$ be a basis for V, and let $B = \{\beta_1, \dots, \beta_m\}$ be a basis for W. Suppose $(\gamma_1, \gamma_2) \in V \times W$. Then by the defined addition, we have $(\gamma_1, \gamma_2) = (\gamma_1, 0) + (0, \gamma_2)$.

Since $\gamma_1 \in V$ and A is a basis for V, we have that $\gamma_1 = c_1 \alpha_1 + \cdots + c_n \alpha_n$. Similarly, $\gamma_2 = d_1 \beta_1 + \cdots + d_m \beta_m$. Substituting those for γ_1 and γ_2 , we have

$$(\gamma_1, \gamma_2) = (\gamma_1, 0) + (0, \gamma_2)$$

$$= (c_1\alpha_1 + \dots + c_n\alpha_n, 0) + (0, d_1\beta_1 + \dots + d_m\beta_m)$$

$$= (c_1\alpha_1, 0) + \dots + (c_n\alpha_n, 0) + (0, d_1\beta_1) + \dots + (0, d_m\beta_m)$$

$$= c_1(\alpha_1, 0) + \dots + c_n(\alpha_n, 0) + d_1(0, \beta_1) + \dots + d_m(0, \beta_m)$$

We made no assumptions about (γ_1, γ_2) , so every vector in $V \times W$ can be written as a linear combination of the vectors $(\alpha_1, 0), \ldots, (\alpha_n, 0), (0, \beta_1), \ldots, (0, \beta_m)$. We will now show that these vectors are linearly independent.

Consider the sum

$$c_{1}(\alpha_{1},0) + \dots + c_{n}(\alpha_{n},0) + d_{1}(0,\beta_{1}) + \dots + d_{m}(0,\beta_{m}) = (0,0)$$

$$(c_{1}\alpha_{1} + \dots + c_{n}\alpha_{n},0) + (0,d_{1}\beta_{1} + \dots + d_{m}\beta_{m}) = (0,0)$$

$$(c_{1}\alpha_{1} + \dots + c_{n}\alpha_{n},d_{1}\beta_{1} + \dots + d_{m}\beta_{m}) = (0,0)$$

$$\implies c_{1}\alpha_{1} + \dots + c_{n}\alpha_{n} = 0$$

$$\implies d_{1}\beta_{1} + \dots + d_{m}\beta_{m} = 0$$

But A and B are each linearly independent, so we must have $c_1 = \cdots = c_n = d_1 = \cdots = d_m$. Thus, $(\alpha_1, 0), \ldots, (\alpha_n, 0), (0, \beta_1), \ldots, (0, \beta_m)$ are linearly independent and they span $V \times W$. By definition, the vectors form a basis of $V \times W$. There are n + m vectors, where $n = \dim V$ and $m = \dim W$, so $\dim(V \times W) = n + m = \dim V + \dim W$.

b. Let $\gamma \in W_1 \times W_2$, $A = \{\alpha_1, \dots, \alpha_n\}$ be a basis for W_1 , and $B = \{\beta_1, \dots, \beta_m\}$ be a basis of W_2 . Then

$$(\gamma_1, \gamma_2) = (c_1 \alpha_1 + \dots + c_n \alpha_n, 0) + (0, d_1 \beta_1 + \dots + d_m \beta_m)$$

Then since Φ is linear, we can write the equality as

$$\Phi(\gamma_1, \gamma_2) = \Phi((c_1\alpha_1 + \dots + c_n\alpha_n, 0) + (0, d_1\beta_1 + \dots + d_m\beta_m))$$

$$\gamma_1 + \gamma_2 = \underbrace{c_1\alpha_1 + \dots + c_n\alpha_n}_{\in W_1} + \underbrace{(d_1\beta_1 + \dots + d_m\beta_m)}_{\in W_2}$$

Thus, for any $\gamma \in W_1 \times W_2$, $\Phi(\gamma) \in W_1 + W_2 \iff R(\Phi) \subseteq W_1 + W_2$.

We now wish to show that any vector $\gamma \in W_1 + W_2$ (γ different from the one above) is also an element of $R(\Phi)$. By definition, there exists $\alpha \in W_1$ and $\beta \in W_2$ such that $\alpha + \beta = \gamma$. By the definition of Φ , we can rewrite the left-hand-side as $\Phi(\alpha, \beta) = \gamma$. Thus, $\gamma \in R(\Phi)$, so $W_1 + W_2 \subseteq R(\Phi)$.

Taking the two results together, we have $R(\Phi) \subseteq W_1 + W_2 \subseteq R(\Phi) \implies R(\Phi) = W_1 + W_2$.

c. Let $T: W_1 \cap W_2 \to V \times W$, $\alpha \mapsto T(\alpha) = (\alpha, -\alpha)$.

Note that $\Phi(T(\alpha)) = \alpha - \alpha = 0$ for all $\alpha \in W_1 \cap W_2$. This means that $R(\alpha) \subseteq N(\Phi)$.

Let $(\alpha, \beta) \in N(\Phi)$. Then by definition, $\Phi(\alpha, \beta) = \alpha + \beta = 0 \implies \beta = -\alpha \implies (\alpha, \beta) = (\alpha, -\alpha) \in R(\alpha)$. Thus, $N(\Phi) \subseteq R(T)$, which, along with the result in the previous paragraph, that $R(T) = N(\Phi)$.

Then consider $T(\alpha) = (\alpha, -\alpha) = 0$. The solution to this equation is $\alpha = -\alpha = 0$, so we have dim N(T) = 0.

Finally, by rank-nullity, we have

$$\dim(W_1 \cap W_2) = \dim R(T) + \dim N(T) = \dim N(\Phi).$$

- **9 3.1.13 Let V be a vector space and T a linear transformation from V into V. Prove that the following two statements about T are equivalent.
 - a. The intersection of the range of T and the null space of T is the zero subspace of V.
 - b. If $T(T\alpha) = 0$, then $T\alpha = 0$.

Solution $a \implies b$:

Let $R(T) \cap N(T) = \{0\}$. If $T(T\alpha) = 0$, then we must have that $T\alpha \in N(T)$. But by definition, $T\alpha \in R(T)$ also, so $T\alpha \in R(T) \cap N(T) \implies T(\alpha) = 0$.

 $b \implies a$

Suppose that if $T(T\alpha) = 0$, then $T\alpha = 0$. Let $\beta = T\alpha$. By definition, $\beta \in R(T)$. From the hypothesis, if $\beta \in N(T)$ also, then $\beta = 0$. Combining the statements, we have that if $\beta \in R(T) \cap N(T)$, then $\beta = 0$. Thus, $R(T) \cap N(T) = \{0\}$.

Since each statement implies the other, the statements must be equivalent.