多様なコンテンツが混在する技術文書

□ 目次

- 1. 数式・化学式セクション
- 2. プログラミングコード
- 3. 多言語混在テキスト
- 4. 複雑な表構造
- 5. 図表・チャート
- 6. 引用·注釈

図 数式・化学式セクション

数学的表現

基本数式 線形代数における固有値問題: $\mathbf{A}\mathbf{x} = \boldsymbol{\lambda}\mathbf{x}$ ここで、 \mathbf{A} は $\mathbf{n} \times \mathbf{n}$ 行列、 $\boldsymbol{\lambda}$ は固有値、 \mathbf{x} は固有ベクトルを表す。

微積分 関数 $f(x) = x^2 + 2x + 1$ の導関数 : f'(x) = 2x + 2

定積分の計算: $[o^1 x^2 dx = [x^3/3]o^1 = 1/3]$

統計・確率 正規分布の確率密度関数 : $f(x) = (1/\sqrt{(2\pi\sigma^2)}) \times e^{-(-(x-\mu)^2/(2\sigma^2))}$

ベイズの定理: P(A|B) = P(B|A) × P(A) / P(B)

化学式・分子構造

有機化合物

グルコース: ○□□□□□□□

アスピリン: ○□□□○□

化学反応式 燃焼反応:CH₄ + 2O₂ → CO₂ + 2H₂O

酸塩基反応:HCl + NaOH → NaCl + H₂O

物理化学定数

定数	記号	値	単位
アボガドロ数	N⊠	6.022×10^{23}	mol\(\infty\) ¹ m/s J\(\infty\)s m/s ²
光速	c	$2.998 \times 10 \times 10^{23}$	
プランク定数	h	$6.626 \times 10 \times 3^{3} \times 10^{23}$	
重力加速度	g	9.807	

図 プログラミングコード

Python 実装例

```
データ処理パイプライン
```

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
class DataProcessor:
    """ データ前処理を行うクラス"""
   def __init__(self, scaling=True, test_size=0.2):
       self.scaling = scaling
       self.test_size = test_size
       self.scaler = StandardScaler() if scaling else None
   def preprocess(self, df, target_column):
       Args:
           df (pd.DataFrame): 入力データフレーム
           target_column (str): 目的変数のカラム名
       Returns:
           tuple: (X_train, X_test, y_train, y_test)
       # 欠損值処理
       df_clean = df.dropna()
       # 特徴量と目的変数の分離
       X = df_clean.drop(columns=[target_column])
       y = df_clean[target_column]
```

```
# 学習・テストデータ分割
       X_train, X_test, y_train, y_test = train_test_split(
           X, y, test_size=self.test_size, random_state=42
       #標準化
       if self.scaling:
           X_train = self.scaler.fit_transform(X_train)
           X_test = self.scaler.transform(X_test)
       return X_train, X_test, y_train, y_test
# 使用例
processor = DataProcessor(scaling=True, test_size=0.3)
X_train, X_test, y_train, y_test = processor.preprocess(data, 'target')
機械学習モデル
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
def evaluate_model(model, X_test, y_test, model_name="Model"):
    モデルの評価を行う関数
   y_pred = model.predict(X_test)
    # 評価指標計算
   mse = mean_squared_error(y_test, y_pred)
   rmse = np.sqrt(mse)
   r2 = r2_score(y_test, y_pred)
   print(f"=== {model_name} 評価結果 ===")
   print(f"MSE: {mse:.4f}")
   print(f"RMSE: {rmse:.4f}")
   print(f"R2: {r2:.4f}")
    # 予測 vs 実際値のプロット
   plt.figure(figsize=(8, 6))
   plt.scatter(y_test, y_pred, alpha=0.6)
   plt.plot([y_test.min(), y_test.max()],
            [y_test.min(), y_test.max()], 'r--', lw=2)
   plt.xlabel('実際値')
   plt.ylabel('予測値')
   plt.title(f'{model_name} - 予測精度')
```

```
plt.show()
    return {'mse': mse, 'rmse': rmse, 'r2': r2}
JavaScript (React)
import React, { useState, useEffect } from 'react';
import axios from 'axios';
const DataVisualization = ({ dataEndpoint }) => {
  const [data, setData] = useState([]);
  const [loading, setLoading] = useState(true);
  const [error, setError] = useState(null);
 useEffect(() => {
    const fetchData = async () => {
     try {
        const response = await axios.get(dataEndpoint);
        setData(response.data);
      } catch (err) {
        setError(err.message);
      } finally {
        setLoading(false);
   };
   fetchData();
 }, [dataEndpoint]);
  const processData = (rawData) => {
   return rawData
      .filter(item => item.value > 0)
      .map(item => ({
        ...item,
       normalized: item.value / Math.max(...rawData.map(d => d.value))
      .sort((a, b) => b.value - a.value);
 };
  if (loading) return <div className="loading">データ読み込み中...</div>;
  if (error) return <div className="error">
□ ¬ : {error}</div>;
  const processedData = processData(data);
 return (
    <div className="data-visualization">
```

```
<h2>データ可視化</h2>
      <div className="chart-container">
        {processedData.map((item, index) => (
          <div key={item.id} className="bar-item">
            <span className="label">{item.name}</span>
            <div
              className="bar"
              style={{ width: `${item.normalized * 100}%` }}
              {item.value}
            </div>
          </div>
        ))}
      </div>
    </div>
 );
};
export default DataVisualization;
SQL クエリ
-- 複雑な分析クエリの例
WITH monthly_sales AS (
    SELECT
       DATE_TRUNC('month', order_date) AS month,
        product_category,
        SUM(amount) AS total_sales,
        COUNT(*) AS order_count,
        AVG(amount) AS avg_order_value
    FROM orders o
    JOIN products p ON o.product_id = p.id
    WHERE order date >= '2024-01-01'
    GROUP BY DATE_TRUNC('month', order_date), product_category
),
category_ranking AS (
    SELECT
       month,
       product_category,
       total_sales,
        ROW_NUMBER() OVER (
            PARTITION BY month
            ORDER BY total_sales DESC
        ) AS sales_rank
   FROM monthly_sales
)
```

```
SELECT
    month,
    product_category,
    total_sales,
    sales_rank,
    LAG(total_sales) OVER (
        PARTITION BY product_category
        ORDER BY month
    ) AS prev_month_sales,
    ROUND (
        (total_sales - LAG(total_sales) OVER (
            PARTITION BY product_category
            ORDER BY month
        )) / LAG(total sales) OVER (
            PARTITION BY product_category
            ORDER BY month
        ) * 100, 2
    ) AS growth_rate_pct
FROM category_ranking
WHERE sales_rank <= 5</pre>
ORDER BY month DESC, sales_rank ASC;
```

図 多言語混在テキスト

日英混在文書

概要: This document demonstrates 多言語対応 in PDF conversion systems. 特に Japanese と English が混在する technical documentation において、proper parsing and structure preservation が重要である。

Key Challenges:

- 1. Character encoding issues
 - UTF-8 vs Shift-JIS compatibility
 - 特殊文字(※,☆,♪)の handling
 - Emoji support: ☒☒☒☒
- 2. Typography differences
 - 英語: Proportional fonts (Arial, Helvetica)
 - ・ 日本語: Fixed-width fonts (ゴシック, 明朝)
 - Mixed text: バランスの取れた font selection
- 3. Reading direction complexity
 - ・ Horizontal: left-to-right (English, 横書き日本語)
 - Vertical: top-to-bottom, right-to-left (縦書き日本語)

中国語・韓国語サンプル

□ 公体中文示例 机器学□ 在文档□ 理中的□用

☑代文档☑理系☑广泛采用深度学☑技☑来提高☑☑精度。主要包括:

- ・ 巻図神図网図 (CNN): 用于図像特征提取
- ・循図神図网図(RNN): 図理序列数据
- · **注意力机制**: 改**冈**冈序列**冈**理能力

PDF XX XXXXXX XX XXX XXX XXX XXX XXX XXX \boxtimes :

- 1. XXXX XX: XXX XX XX
- 3. NN NN NN: NNN NN

 $\boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \forall x \in \boxtimes, \exists y \in \boxtimes \text{ such that } x \boxtimes y$

- USD: \$1,234.56
- EUR: €1.234,56
- JPY: ¥123,456
- GBP: £1,234.56
- KRW: **1**,234,567

- ⊠⊠: mm, cm, m, km, inch (″), feet (′)
- **⊠**: mg, g, kg, t, oz, lb
- ⊠⊠: ° C, ° F, K ⊠⊠: ° , ′ , ″ , rad

$\boxtimes \boxtimes$							
		Q1	Q2	Q3	Q4		
	\boxtimes	1,200	1,350	1,280	1,420	+180	⊠ +15.2%
		2,100	2,280	2,150	2,380	+290	+14.1%
		3,800	4,200	4,100	4,500	+650	+16.9%
		890	920	980	1,050	+140	+15.8%
		7,990	8,750	8,510	9,350	+1,260	+15.9%
$\boxtimes \boxtimes$		5,200	5,800	5,600	6,100	+880	+16.9%
		1,100	1,200	1,180	1,280	+160	+14.5%
		6,300	7,000	6,780	7,380	+1,040	+16.5%
$\boxtimes \boxtimes$		1,800	1,950	1,900	2,080	+230	+12.4%
		1,200	1,300	1,250	1,380	+180	+15.0%
		1,500	1,620	1,580	1,720	+200	+13.3%
		800	850	820	900	+110	+13.8%
		5,300	5,720	5,550	6,080	+720	+13.6%
	ŭ	⊠⊠ 19,590 21,470 20,840 22,810 +3				+3,020	

			$\boxtimes\boxtimes(\boxtimes\boxtimes\boxtimes)$			
AI	15 X 12 X 8 X 10 X	8 X 15 X 12 X 5 X	2024 🛭 1,200 800 600 500	2025 🛭 800 400 300 200	85% 62% 78% 45%	

\boxtimes	$\boxtimes\boxtimes$	$\boxtimes \boxtimes$	$\boxtimes \boxtimes$			
⊠ A B B ⊠ X C ⊠ X D	100 75 50 200	1,500 2,200 3,000 800	150,000 165,000 150,000 160,000 625,000	10% 15% 5% 20% \(\text{\(10%\)} \)	15,000 24,750 7,500 32,000 79,250	135,000 140,250 142,500 128,000 545,750 54,575 600,325

 $\boxtimes\boxtimes\boxtimes$

CE0

CTO CFO CMO

Dev1 Dev2 Dev3 Finance Marketing Sales Support

$\boxtimes\boxtimes\boxtimes\boxtimes$ ($\boxtimes\boxtimes\boxtimes$)

\boxtimes	1 🛛	2 🛛	3 🛮	4 🛛	5 🛛

Market Research Future, "PDF Software Market Research Report - Global Forecast to 2029"

- · Creative Commons Attribution 4.0 International License
- MIT License (☒☒☒☒)
- Apache License 2.0 (∑∑∑ ∑∑)

$\boxtimes \boxtimes$	
$\boxtimes\boxtimes\boxtimes$	Al Assistant
$\boxtimes\boxtimes\boxtimes$	2024-06-24
$\boxtimes \boxtimes$	1.0.0
$\boxtimes \boxtimes$	oxtimes
$\boxtimes \boxtimes$	Markdown
$\boxtimes\boxtimes\boxtimes$	☑ 15,000 ☑
$\boxtimes\boxtimes\boxtimes$	⊠ 25-30 ⊠⊠ (PDF ⊠⊠ ⊠)

¹ Smith, J., Brown, M., & Davis, R. (2023). "Deep Learning Approaches for Document Analysis: A Comprehensive Survey." Journal of Al Research, 45(3), 123-145.

² Johnson, A., & Lee, K. (2024). "Multimodal Document Understanding with Transformer Networks." Proceedings of ICCV 2024, pp. 234-241.

³ Global PDF Processing Market Report 2024, TechAnalysis Corp.