First QUIZ of MLL100

Date : *January 25, 2022*

Day : Tuesday

Time : 10:30 a.m. – 10:50 a.m.

Marks : 10

Mode : Online (Moodle)

Syllabus : *Topics* covered until Jan 19, 2022

MLL 100

Introduction to Materials Science and Engineering

Lecture-7 (January 18, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

Topics covered

☐ Miller-Bravais indices of planes and directions in a hexagonal system

X-ray diffraction

- ☐ Tool used to understand the crystallography of the material.
- ☐ Understanding of the basic principle involved with the technique (XRD).
- Case studies of XRD.

Why can X-ray be used for diffraction?

☐ X-radiation ("X-rays") is electromagnetic radiation with wavelengths between ~ 0.1Å and 100 Å, typically like the interatomic distances (~ 2-3 Å) in a crystal. It permits crystal structures to diffract X-rays.

Lattice parameter of Ni (a_{Ni}) = 3.52 Å \Rightarrow d_{hkl} is equal to a_{Ni} or less than that (e.g. $d_{111} = a_{Ni}/\sqrt{3} = 2.03$ Å)

- \Box Three possibilities (regimes) exist based on the wavelength (λ) and the spacing between the scatterers (a).
 - $\triangleright \lambda < a \rightarrow transmission dominated.$
 - $\triangleright \lambda \sim a \rightarrow diffraction dominated.$
 - $\triangleright \lambda > a \rightarrow reflection dominated (surface phenomenon).$

Diffraction

- Series of parallel waves passes through narrow spaces, get constricted, and either spreads out or bends.
- Series of narrowly spaces slits (diffraction grating) disperses parallel beams according to its wavelength.

Interference

 Two waves encountering each other in the same medium, the effects can either be cancelled out or mutually reinforce each other.

• Amplitude of the disturbance produced by the two combined waves = sum of individual disturbances.

Constructive and Destructive Interference

Can something occur in between Constructive and Destructive Interference?

Diffraction in a crystal

A diffracted beam may be defined as a beam composed of many scattered rays mutually reinforcing each other

- □ Random arrangement of atoms in space gives rise to scattering in all directions: weak effect and intensities add.
- ☐ By atoms arranged periodically in space
 - ☐ In a few specific directions satisfying Bragg's law: strong intensities of the scattered beam: Diffraction
 - ☐ No scattering along directions not satisfying Bragg's law

Consider waves scattered from two successive planes interfering constructively

Phase difference of π introduced during the scattering by the atom.

Destructive interference

- Exact destructive interference (between two planes, with path difference of $\lambda/2$).
- The angle is not Bragg's angle.

Waves scattered from two successive planes interfere (nearly) destructively at a different angle θ'

Consider a coherent wave of X-rays impinging on a crystal with atomic planes at an angle θ to the rays.

Incident and scattered waves are in phase if the:

In-plane scattering is in phase

Extra path traveled by scattered rays → BY

Scattering from across the planes is in phase

- The scattering planes have an interplanar spacing = 'd'.
- Ray-2 travels an extra path as compared to Ray-1 (= PQR).
- Path difference between Ray-1 and $Ray-2 = PQR = (d Sin\theta + d Sin\theta) = (2d.Sin\theta)$.
- For constructive interference, this path difference should be an integral multiple of λ : $n\lambda = 2d \sin\theta \rightarrow the \textit{Bragg's equation}$

 θ is the angle between the incident x-rays and the set of parallel atomic planes (which have a spacing d_{hkl}).

What is the ' 2θ ' we refer to in an XRD plot?

XRD tool Incident Particle Luminous High Voltage Secondary Source Photoelectron **Detection Production** Pulse discriminator, digital counter, X-ray multichannel analyser Detector source Incident optics Light Screen _____ Receiving optics High Voltage Divider & Pulse Amplifier Photoelectron OUTPUT Photo Cathode Photo multiplier Light Guard **Scintillation Counter** Optical Contact Scintillator InstrumentationTools.com 0 **Interpretation** 2θ $2\theta\chi$ Sample (goniometer) $\lambda = 0.1542 \text{ nm (CuK}_{\alpha}\text{-radiation)}$ **Diffraction** diffracting crystallite atomic planes 2θ (degrees) incident The (200) planes The (220) planes X-rays of atoms in NaCl Crystal Structure of atoms in NaCl diffracted X-rays Analysis and Knowledge Discovery Machine Learning

How are X-rays produced?

- X-rays are produced when high-energy charged particles (electrons) accelerated through very high potential difference (30 kV) collide with matter.
- Laboratory source of X-rays consists of an evacuated tube.
- Electrons are emitted from a heated tungsten filament.
- Electron beam accelerated towards an anode by an electric potential difference of ~ 30 kV to impinge on a water-cooled metal target.
- Electrons strike the Cu target fixed to the anode.
- A spectrum of X-rays get emitted.
- X-rays leave the tube through Be window.

 Continuous cooling of anode is necessitated because only a small fraction of electron energy gets converted to X-ray and rest get converted to heat.

- Incident electrons with sufficient energy ionizes Cu 1s electron.
- An electron from outer orbital (2p or 3p) immediately drops down to the vacant K-level.
- Energy released in the transition appears as X-ray radiation.
- Transition energies have fixed values, so, a spectrum of characteristic X-rays results.
- Consider Cu, 2p -----> 1s transition ($\lambda_{K\alpha}$ = 1.5418 Å) and 3p ----> 1s transition ($\lambda_{K\beta}$ = 1.3922 Å) [K_{α} is more intense than K_{β}].

Characteristic X-ray: caused by electronic transitions within an atom

- K_{α} is a doublet $(K_{\alpha_1} = 1.54051 \text{ Å}, K_{\alpha_2} = 1.54433 \text{ Å})$
- The 2p ---> 1s has a slightly different energy for the two possible spin states of the 2p electron which makes the transition, relative to the spin of the vacant 1s orbital.
- K_{α_1} and K_{α_2} are not sometimes resolved and appear as a single peak.