Открытая студенческая олимпиада по математике Казахстанского филиала МГУ

12 декабря 2010

1. Композиция непрерывных функций является непрерывной функцией. Композиция сюръективных функций — сюръективной. Значит, $h_1(x) = f(g(x))$ и $h_2(x) = g(f(x))$ — непрерывные сюръективные функции.

Из сюръективности $h_1(x)$ и $h_2(x)$ следует, что существуют такая точка x_1 , что $h_1(x_1) = 1$, и существует такая точка x_2 , что $h_2(x_2) = 1$. Значит для функции $h(x) = h_1(x) - h_2(x)$ верно, что $h(x_1) \ge 0$ и $h(x_2) \le 0$. По теореме Вейерштрасса, существует такая точка, что $h(x_0) = 0$, что и требовалось.

2. Ответ:

$$\sin(1) + \sin(1) \sum_{k=1}^{\infty} \left((-1)^k \prod_{s=0}^{2k-1} (r-s) \right) + \\ + \cos(1) \sum_{k=0}^{\infty} \left((-1)^k \prod_{s=0}^{2k} (r-s) \right) - r \bmod 2.$$

Сумма под пределом является суммой Дарбу для функции $x^r \cos x$ на отрезке [0;1] при равномерном разбиении:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{r} \cos \frac{k}{n} = \int_{0}^{1} x^{r} \cos(x) dx = I_{r},$$

где I_r находятся стандартным интегрированием по частям:

$$I_r = \int_0^1 x^r \cos x dx = \int_0^1 x^r d(\sin x) =$$

$$= \sin(1) + r \int_0^1 x^{r-1} d(\cos x) =$$

$$= \sin(1) + r \cos(1) - r(r-1)I_{r-2}.$$

После замены $J_r = \frac{I_r}{r!}$ получается простое рекуррентное соотношение:

$$J_r = \frac{1}{r!}\sin(1) + \frac{1}{(r-1)!}\cos(1) - J_{r-2},$$

которое позволяет выписать в явном виде I_r при четном и нечетном r.

- 3. Рассмотрим степенной ряд $\sum_{n=1}^{\infty} a_n x^{n-1}$. Поскольку он сходится в точке x=1, то, по второй теореме Абеля, он сходится равномерно на [0,1]. Следовательно, предельная функция непрерывна на [0;1]. Отсюда следует утверждение задачи.
- 4. Сначала докажем, что если неравенство верно для n, то оно верно и для 2n. Для этого достаточно применить неравенство для n точек:

$$\frac{x_1+x_2}{2}, \frac{x_3+x_4}{2}, \dots, \frac{x_{2n-1}+x_{2n}}{2}.$$

Методом математической индукции получается неравенство для всех $n=2^k$.

Далее докажем, что если неравенство верно для n, то оно верно и для n-1. Для этого достаточно применить неравенство для n точек:

$$x_1, x_2, \dots, x_{n-1}, \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}.$$

C учетом первой части, получаем, что неравенство верно для всех n.

- 5. Натуральное число $a=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ имеет в точности $(\alpha_1+1)(\alpha_2+1)...(\alpha_k+1)$ делителей. По условию задачи это число простое. Значит, без ограничения общности, $\alpha_1=p-1$, а все остальные $\alpha_i=0$. То есть $a=q^{p-1}$. Если q=p, то $a(a^k-1)$ делится на p явно. Если $q\neq p$, то (p,q)=1 и можно применить малую теорему Ферма: $q^{p-1}\equiv 1\pmod{p}$. Значит, $a^k\equiv 1\pmod{p}$.
- 6. Легко заметить, что следы произведений матриц AB и BA всегда совпадают:

$$\mathbf{tr}AB = \sum_{i} (AB)_{ii} = \sum_{i} \sum_{j} a_{ij}b_{ji} = \sum_{j} (BA)_{jj} = \mathbf{tr}BA.$$

Матриц, удовлетворяющих условию, не существует, так как след матрицы слева равен 0, а след матрицы справа равен размерности матрицы.

7. Ответ: —1. Данный ряд сходится условно. Значит, последовательность $S_N^+ + S_N^-$ сходится к некоторой константе, а $S_N^+ - S_N^-$ к $+\infty$.

$$\lim_{N \to \infty} (S_N^+ + S_N^-) = C$$

Так как, S_N^- стремится к $-\infty$, то

$$\lim_{N \to \infty} \frac{S_N^+}{S_N^-} = \lim_{N \to \infty} \frac{C - S_N^-}{S_N^-} = -1.$$

8. Предлагаем решить эту задачу самостоятельно. И не забудьте прислать решение авторам пособия.