Boolean Algebra

Product of Maxterms

- To express a Boolean function as a product of maxterms, it must first be brought into a form of OR terms.
 - This may be done by using the distributive law,

$$x + yz = (x + y)(x + z).$$

- Then any missing variable x in each OR term is ORed with xx'.
- The product symbol, , denotes the ANDing of maxterms;
- An alternative procedure for deriving the maxterms of a Boolean function
 - obtain the truth table of the function directly from the algebraic expression and then read the maxterms from the truth table.

Product of Maxterms – Example

- Express the Boolean function F = xy + x'z as a product of maxterms.
 - Convert the function into OR terms by using the distributive law

•
$$F = xy + x'z = (xy + x')(xy + z)$$

= $(x + x')(y + x')(x + z)(y + z) = (x' + y)(x + z)(y + z)$

- The function has three variables: x, y, and z
- Each OR term is missing one variable

•
$$x' + y = x' + y + zz' = (x' + y + z)(x' + y + z')$$

•
$$x + z = x + z + yy' = (x + y + z)(x + y' + z)$$

•
$$y + z = y + z + xx' = (x + y + z)(x' + y + z)$$

 Combining all the terms and removing those which appear more than once;

•
$$F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$

= $M_0 M_2 M_4 M_5$
(ie) $F(x, y, z) = \prod (0, 2, 4, 5)$

Conversion between Canonical Forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
- Boolean expression: F = xy + x'z
 - The function expressed as a sum of minterms as:
 - $F(x, y, z) = \sum (1, 3, 6, 7)$
 - The function expressed as a product of maxterms as:
 - $F(x, y, z) = \prod (0, 2, 4, 5)$

		-	
X	y	Z	F
0	0	0	0 \
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0-/
1	1	0	14/
1	1	1	1 ×

Standard Forms

- Another way to express Boolean functions is in standard form
- Problem with canonical form:
 - minterm or maxterm must contain, by definition,
 all the variables, either complemented or uncomplemented
- The terms that form the function may contain one, two, or any number of literals.
- There are two types of standard forms:
 - sum of products
 - products of sums

Sum of Products(SOP) & Product of Sums(POS)

SOP

- The sum of products is a Boolean expression containing AND terms, called product terms, with one or more literals each.
- The sum denotes the ORing of these terms.
- Example:

$$F1 = y' + xy + x'yz'$$

 The logic diagram of a sum-of-products expression consists of a group of AND gates followed by a single OR gate.

POS

- A product of sums is a Boolean expression containing OR terms, called sum terms.
- Each term may have any number of literals.
- The product denotes the ANDing of these terms.
- Example

$$F2 = x(y' + z)(x' + y + z')$$

 The logic diagram of a sum-of-products expression consists of a group of AND gates followed by a single OR gate.

Two level Implementation

- In SOP
 - each product term requires an AND gate, except for a term with a single literal.
 - The logic sum is formed with an OR gate whose inputs are the outputs of the AND gates and the single literal.
- In POS
 - The gate structure of the product-of-sums expression consists of a group of OR gates for the sum terms (except for a single literal), followed by an AND gate.
- It is assumed that the input variables are directly available in their complements, so inverters are not included in the diagram.
- This circuit configuration is referred to as a two-level implementation.

Two level implementation

- In general, a two-level implementation is preferred because it produces the least amount of delay through the gates when the signal propagates from the inputs to the output.
- However, the number of inputs to a given gate might not be practical.

Nonstandard form

- F3 = AB + C(D + E)
 - is neither in sum-of-products nor in product-of-sums form.
 - It can be changed to a standard form by using the distributive law to remove the parentheses:

$$F3 = AB + C(D + E) = AB + CD + CE$$

Other Logic Functions

- When the binary operators AND and OR are placed between two variables, x and y, they form two Boolean functions, x . y and x + y,
- There are 2^{2^n} functions for n binary variables.
 - For two variables, n = 2,
 - The number of possible Boolean functions is 16.
- The 16 functions listed can be subdivided into three categories:
 - Two functions that produce a constant 0 or 1.
 - Four functions with unary operations: complement and transfer.
 - Ten functions with binary operators that define eight different operations: AND,
 OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication

Truth Tables for the 16 Functions of Two Binary Variables

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$	-	Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Other Logic Operations

- Constants for binary functions can be equal to only 1 or 0.
- The complement function produces the complement of each of the binary variables.
- A function that is equal to an input variable has been given the name transfer,
 - because the variable x or y is transferred through the gate that forms the function without changing its value.
- Of the eight binary operators, two (inhibition and implication) are used by logicians,
 - but are seldom used in computer logic.
- The AND and OR operators have been mentioned in conjunction with Boolean algebra.
- The other four functions are used extensively in the design of digital systems.

Other Logic Operations

- The NOR function is the complement of the OR function,
 - and its name is an abbreviation of not-OR.
- The NAND is the complement of AND
 - and is an abbreviation of not-AND.
- The exclusive-OR, abbreviated XOR, is similar to OR, but excludes the combination of both x and y being equal to 1;
 - it holds only when x and y differ in value. (It is sometimes referred to as the binary difference operator.)
- Equivalence is a function that is 1 when the two binary variables are equal
 - (i.e., when both are 0 or both are 1).
- The exclusive-OR and equivalence functions are the complements of each other.
 - For this reason, the equivalence function is called exclusive-NOR, abbreviated XNOR.