TDTP – a Trivial Data Transfer Protocol

© 2009, Yuri Tiomkin

A TDTP protocol is similar to the TFTP protocol, but it has a few remarkable extensions:

- Using Crc32 for the each packet
- Unique Session ID for the each session
- Total data size field as standard part of the protocol
- Variable data portion size per packet

A **TDTP** protocol uses **UDP** protocol as the transport layer.

The UDP ports numbers are not a part of the protocol and the port number value can be any valid UDP port number. In the **TDTP** examples, a host UDP port number was selected as 50000, the peer UDP port number – as 11094.

1. TDTP protocol messages

All 2-bytes and 4-bytes message fields are transferred in the network (big endian) byte order. Address and Data message fields are transferred as sequence of bytes (octets).

1.1 "WR" message

A "WR" message establishes a session to send data to the peer and sends a portion of the data.

1.1.1 "WR" message format

Cmd	Session ID	Block Num	Tsize	Address Length	Address	Data	CRC32
(1 byte)	(4 bytes)	(4 bytes)	(4 bytes)	(2 bytes)	(variable)	(variable)	(4 bytes)

Cmd For the message "WR" this field is 3 (TDTP CMD WR)

Session ID This ID will be a current session ID. It should be unique for the each session

Block Num Current block number (for the command "WR" this field is '0' if it is a single block

transfer session or '1' if it is a multi-block transfer session).

Tsize Total size of transferred data (like a file length).

Address Length Length of the Address field.

Address may be a file name/path or device name/id etc.

Data

A packet's data. A packet's data length is calculated as

Data length = UDP payload length -(1 + 4 + 4 + 4 + 2 + Address Length + 4)

CRC32 for the overall "WR" packet (includes header fields and data)

1.2 "WR_DATA" message

A "WR_DATA" message sends a portion of the data to the peer.

1.2.1 "WR_DATA" message format

Cmd	Session ID	Block Num	Data	CRC32
(1 byte)	(4 bytes)	(4 bytes)	(variable)	(4 bytes)

Cmd For the message "WR DATA" this field is 4 (TDTP CMD WR DATA)

Session ID A current session ID.

Block Num Current block number.

Data A packet's data. A packet's data length is calculated as

Data length = UDP payload length -(1+4+4+4)

CRC32 for the overall "WR DATA" packet (includes header fields and data)

1.3 "RD" message

A "RD" message establishes a session to receive data from the peer.

1.3.1 "RD" message format.

Cmd	Session ID	Address Length	Address	CRC32
(1 byte)	(4 bytes)	(2 bytes)	(variable)	(4 bytes)

Cmd For the message "RD" this field is 1 (TDTP CMD RD)

Session ID This ID will be a current session ID. It should be unique for the each session.

Address Length Length of the Address field.

Address Address may be a file name/path or device name/id etc.

CRC32 for the overall "RD" packet (includes header fields and data)

1.4 "RD DATA" message

A "RD DATA" message sends a portion of the data from the peer.

1.4.1. "RD DATA" message format.

Cmd	Session ID	Block Num	Tsize	Data	CRC32
(1 byte)	(4 bytes)	(4 bytes)	(4 bytes)	(variable)	(4 bytes)

Cmd For the message "RD_DATA" this field is 2 (TDTP_CMD_RD_DATA)

Session ID A current session ID.

Block Num Current block number.

Tsize Total size of transferred data (like a file length) – the same in the all "RD DATA"

blocks

Data A packet's data. A packet's data length is calculated as

Data length = UDP payload length -(1 + 4 + 4 + 4 + 4)

CRC32 for the overall "RD_DATA" packet (includes header fields and data)

1..5 "ACK" message

An "ACK" is used to send response for other commands. An **ACK message** field contains a positive/ negative response or other information.

1.5.1. "ACK" message format

Cmd	Session ID	Block Num	ACK message	CRC32
(1 byte)	(4 bytes)	(4 bytes)	(4 bytes)	(4 bytes)

Cmd For the message "ACK" this field is 5 (TDTP_CMD_ACK_RD) or 6 (TDTP_CMD_ACK_WR)

Session ID A current session ID.

Block Num A block number for the response.

ACK message The "ACK" response info.

CRC32 for the overall "ACK" packet

2. A TDTP data transfer scenarios

The host sends a data to the peer

The host reads a data from the peer

3. An implementation examples

A source code for **TDTP** protocol implementation can be obtained (it's free under BSD-like license) from the $\underline{\text{www.tnkernel.com}}$ (TN NET TCP/IP stack examples)