24 Differentiation

25 Differentiation II

Differentiation

Differentiation 3/2

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 24
Differentiation
Tuesday 5 November 2019

Announcements

Assignment 4 is posted and is due on Tuesday 12 Nov 2019, 2:25pm, via crowdmark. 4/27

Definition (Derivative)

Let f be defined on an interval I and let $x_0 \in I$. The *derivative* of f at x_0 , denoted by $f'(x_0)$, is defined as

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

provided either that this limit exists or is infinite. If $f'(x_0)$ is finite we say that f is differentiable at x_0 . If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a differentiable function.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

Example

$$f(x) = x^2$$
. Find $f'(2)$.

$$f'(2) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

Note:

- In the first two limits, we must have $x \neq 2$.
- But in the third limit, we just plug in x = 2.
- Two things are equal, but in one $x \neq 2$ and in the other x = 2.
- Good illustration of why it is important to define the meaning of limits rigorously.

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Lecture 24: Differentiable at 0**
- Submit.

Example

Let f be defined in a neighbourhood I of 0, and suppose $|f(x)| \le x^2$ for all $x \in I$. Is f necessarily differentiable at 0? e.g.,

Example (Trapping principle)

Suppose
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$
 Then:

$$\forall x \neq 0: \quad \left| \frac{f(x) - f(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{x^2 \sin \frac{1}{x^2}}{x} \right| = \left| x \sin \frac{1}{x^2} \right| \le |x|$$

Therefore:

$$|f'(0)| = \left|\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}\right| = \lim_{x \to 0} \left|\frac{f(x) - f(0)}{x - 0}\right| \le \lim_{x \to 0} |x| = 0.$$

 \therefore f is differentiable at 0 and f'(0) = 0.

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_0 \in I$. The **right-hand derivative** of f at x_0 , denoted by $f'_+(x_0)$, is the limit

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0},$$

provided either that this one-sided limit exists or is infinite. Similarly, the **left-hand derivative** of f at x_0 , denoted by $f'_-(x_0)$, is the limit

$$f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

Note:

If $x_0 \in I^{\circ}$ then f is differentiable at x_0 iff $f'_{+}(x_0) = f'_{-}(x_0) \neq \pm \infty$.

Example

- Same slope from left and right. Why isn't f differentiable???
- $\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^+} f'(x) = \lim_{x\to 0} f'(x) = 1.$

- Higher derivatives: we write
 - f'' = (f')' if f' is differentiable;
 - $f^{(n+1)} = (f^{(n)})'$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$\frac{df}{dx} = f'(x)$$

$$D=\frac{d}{dx}$$

$$D^n f(x) = \frac{d^n f}{dx} = f^{(n)}(x)$$

Theorem (Differentiable \implies continuous)

If f is defined in a neighbourhood I of x_0 and f is differentiable at x_0 then f is continuous at x_0 .

Proof.

Must show
$$\lim_{x \to x_0} f(x) = f(x_0)$$
, *i.e.*, $\lim_{x \to x_0} (f(x) - f(x_0)) = 0$.

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0) \right)$$

$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) \times \lim_{x \to x_0} (x - x_0)$$

$$= f'(x_0) \times 0 = 0,$$

where we have used the theorem on the algebra of limits.

Theorem (Algebra of derivatives)

Suppose f and g are defined on an interval I and $x_0 \in I$. If f and g are differentiable at x_0 then f+g and fg are differentiable at x_0 . If, in addition, $g(x_0) \neq 0$ then f/g is differentiable at x_0 . Under these conditions:

- **11** $(cf)'(x_0) = cf'(x_0)$ for all $c \in \mathbb{R}$;
- $(f+g)'(x_0) = (f'+g')(x_0);$
- 3 $(fg)'(x_0) = (f'g + fg')(x_0);$

(Textbook (TBB) Theorem 7.7, p. 408)

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_0 and g is defined in a neighbourhood V of $f(x_0)$ such that $f(U) \subseteq V$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$ then the composite function f is differentiable at f and

$$h'(x_0) = (g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

(Textbook (TBB) §7.3.2, p. 411)

TBB provide a very good motivating discussion of this proof, which is quite technical.

Differentiation 17/27

The Derivative

Theorem (Derivative at local extrema)

Let $f:(a,b)\to\mathbb{R}$. If x is a maximum or minimum point of f in (a,b), and f is differentiable at x, then f'(x)=0.

(Textbook (TBB) Theorem 7.18, p. 424)

Note: f need not be differentiable or even continuous at other points.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 25
Differentiation II
Thursday 7 November 2019

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Test #1 Result**
- Submit.

Announcements

- Assignment 4 is posted and is due on Tuesday 12 Nov 2019, 2:25pm, via crowdmark.
- Test 1 has been returned via crowdmark. Carefully read the solutions, which are posted on the course web site.

Last time...

- Definition of the derivative.
- Proved differentiable ⇒ continuous.
- Discussed algebra of derivatives and chain rule.
- Pictorial argument that derivative is zero at extrema.
- Defined one-sided derivatives
 - Example

The Mean Value Theorem

Theorem (Rolle's theorem)

If f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then there exists $x \in (a, b)$ such that f'(x) = 0.

Proof.

f continuous on $[a,b] \Longrightarrow f$ has a max and min value on [a,b]. If either a max or min occurs at $x \in (a,b)$ then f'(x) = 0. If no max or min occurs in (a,b) then they must both occur at the endpoints, a and b. But f(a) = f(b), so f is constant. Hence $f'(x) = 0 \ \forall x \in (a,b)$.

Theorem (Mean value theorem)

If f is continuous on [a, b] and differentiable on (a, b) then there exists $x \in (a, b)$ such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

The Mean Value Theorem

Idea for proof:

Proof.

Apply Rolle's theorem to

$$h(x) = f(x) - \left[f(a) + \left(\frac{f(b) - f(a)}{b - a}\right)(x - a)\right].$$

The Mean Value Theorem

Example

f'(x) > 0 on an interval $I \implies f$ strictly increasing on I.

Proof:

Suppose $x_1, x_2 \in I$ and $x_1 < x_2$. We must show $f(x_1) < f(x_2)$.

Since f'(x) exists for all $x \in I$, f is certainly differentiable on the closed subinterval $[x_1, x_2]$.

Hence by the Mean Value Theorem $\exists x_* \in (x_1, x_2)$ such that

$$\frac{f(x_2)-f(x_1)}{x_2-x_1}=f'(x_*).$$

But $x_2 - x_1 > 0$ and since $x_* \in I$, we know $f'(x_*) > 0$.

$$f(x_2) - f(x_1) > 0$$
, i.e., $f(x_1) < f(x_2)$.

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 25: IVP and derivatives
- Submit.

Intermediate value property for derivatives

Theorem (Darboux's Theorem: IVP for derivatives)

If f is differentiable on an interval I then its derivative f' has the intermediate value property on I.

Notes:

- It is f', not f, that is claimed to have the intermediate value property in Darboux's theorem. This theorem does <u>not</u> follow from the standard intermediate value theorem because the derivative f' is <u>not necessarily</u> continuous.
- Equivalent (contrapositive) statement of Darboux's theorem:
 If a function does <u>not</u> have the intermediate value property on I then it is impossible that it is the derivative of any function on I.
- Darboux's theorem implies that a derivative <u>cannot</u> have jump or removable discontinities. Any discontuity of a derivative must be <u>essential</u>. Recall example of a <u>discontinuous function with IVP</u>.

Intermediate value property for derivatives

Proof of Darboux's Theorem.

```
Consider a, b \in I with a < b.
Suppose first that f'(a) < 0 < f'(b). We will show \exists x \in (a, b) such that
f'(x) = 0. Since f' exists on [a, b], we must have f continuous on [a, b],
so the Extreme Value Theorem implies that f attains its minimum at
some point x \in [a, b]. This minimum point cannot be an endpoint of
[a, b] (x \neq a \text{ because } f'(a) < 0 \text{ and } x \neq b \text{ because } f'(b) > 0).
Therefore, x \in (a, b). But f is differentiable everywhere in (a, b), so, by
the theorem on the derivative at local extrema, we must have f'(x) = 0.
Now suppose more generally that f'(a) < K < f'(b). Let
g(x) = f(x) - Kx. Then g is differentiable on I and g'(x) = f'(x) - K
for all x \in I. In addition, g'(a) = f'(a) - K < 0 and
g'(b) = f'(b) - K > 0, so by the argument above, \exists x \in (a, b) such that
g'(x) = 0, i.e., f'(x) - K = 0, i.e., f'(x) = K.
The case f'(a) > K > f'(b) is similar.
```