PySeawATES

Python Seawat ATES model developed by KWR and TU Delft

Contact: j.m.bloemendal@tudelft.nl

Stijn.beernink@kwrwater.nl

PySeawATES

- Model to calculate thermal impact and performance of ATES systems
 - Monowells
 - Doublets
 - HT-ATES
- Grid functionality
 - Axisymmetrical (1 [mono] or 3 layers [doublet])
 - 3D
- Easy input file and understandable settings

Requirements & setup

- Python 3.7
- Swtv4 executable (<u>SEAWAT</u>)
- Flopy (version 3.2)

- Recommended: use <u>python</u> with <u>Anaconda</u> & <u>Spyder</u>
- Conda → install flopy

Main structure

Wells are handled as object and for the basis of the model for grid building and control

- wellData.xlsx

 Wells and subsurface composition are specified
- pyseawATES.py → main code controls simulation
- Agent_functions.py → definition of well objects
- Grid_functions.py → definition of the grid objects

Structure of PySeawATES.py

- [A] Load data/packages etc main model inputs an charateristics
- [B] detailed inputs, parameter values, grid charateristics
- [C] iterate the model

 NB. model is run for each time step separately. This allows for control of flows at run-time.
- [D] post processing of data, calculate efficiencies, prepare data for plotting
- [E] plot figures

Grid functions

2 Options

- Linear/uniform (close to well) + logarithmic at boundaries
- All logarithmic

Grid settings 3D

3D, topview, linear

3D, topview, logarithmic

[No 'dmin_bound']

Grid settings Axial symmetric

AXI, sideview, linear

AXI, sideview, logarithmic

[No 'dmin_bound']

You are using the pyhton code developed to simulate Aquifer Thermal Energy Storage (ATES) systems in MODFLOW/MT3D-MS/SEAWAT This code is developed at Delft University of Technology and KWR water research institute Various researchers have contributed to key elements of this code: dr. Martin Bloemendal, dr.Marc Jaxa-Rozen, prof.dr.Theo Olsthoorn, Stijn Beernink. If you have any questions or remarks please contact:

Martin BLoemendal: <u>j.m.bloemendal@tudelft.nl</u>

Stijn Beernink: stijn.beernink@kwrwater.nl

The authors take no responsibility for any damage the may follow from using or implementing (the results produced by) this model infrastructure

