FACULTY OF ENGINEERING, ALEXANDRIA UNIVERSITY ELECTRONICS AND COMMUNICATIONS ENGINEERING DEPARTMENT

Computational Mathematics

Project Report

Part II: Numerical Methods

Advisor:	Dr. Sara Hassan Kamel	
Student:	رَحْمَةُ احْمَدِ السَّيِّدِ	20010556
	رَنَا يَاسِرِ مُحَمَّدِ خَيْرِي بَرَكَاتٍ	20010578
	عَلَاءُ عَبْدِ الْمُنْعِمِ الرِّفَاعِي السَّيِّدِ	20010928
	مِنَّةُ اللَّهِ أَشْرَفُ حَجَّاجٍ عَبْدِ الْحَلِيلِ	20012001
	نَدَى عَبْدِ الْغَنِيِّ سَعِيدِ عُثْمَانَ	20012095
	هَايِدِي مُحَمَّدِ عَادِلِ حُسَيْنٍ	20012165
	يَاسَمِينُ عَلَاءٍ أَبُوشَادَى	20012213
	يُمْنَى عَوْنِي عَبْدِ الْمُنْعِمِ مُحَمَّدِ صَالِحٍ	20012237

ALEXANDRIA, EGYPT, MAY 2023

Faculty of Engineering, Alexandria University Electronics and Communications Engineering Department

Contents

1	Matlab Code	3
2	Test Cases	10

1 Matlab Code

• Taking the inputs from the user:

```
X=input('please enter the values of x: ');
Y=input('please enter the values of y: ');
z=menu('Enter your required model.:','A) the linear','B)
exponential','c) power','d) growth rate model');
```

• Choosing the model:

```
switch z
        case 1 %the linear
            x=X;
            y=Y;
        case 2 %exponential
10
            x=X;
11
            y=log(Y);
12
13
        case 3 %power
            x = log10(X);
15
            y=log10(Y);
16
17
        case 4 %growth rate model
18
            x=1./X;
            y=1./Y;
20
   end
^{21}
```


• To find a and b:

```
n=length(x);
   sum_x=sum(x);
24
   sum_y=sum(y);
   sum_x2=sum(x.^2);
   sum_xy=sum(x.*y);
27
   y_y=sum_y./n;
            % to find: a&b
29
   eq1=[n sum_x; sum_x sum_x2];
30
   eq2=[sum_y ;sum_xy];
   A=linsolve(eq1,eq2);
32
   switch z
34
        case 1 %the linear
35
            a=A(1)
            b=A(2)
37
        case 2 %exponential
39
            a=exp(A(1))
40
            b=A(2)
41
42
       case 3 %power
43
            a=10.^A(1)
44
            b=A(2)
45
        case 4 %growth rate model
47
            a=1./A(1)
48
            b=A(2)./A(1)
49
   end
```


• To find the coefficient of determination (r^2) :

```
st=sum((y-y_y).^2);
sr=sum((y-A(1)-x.*A(2)).^2);
coefficient_of_determination=(st-sr)./st
```

• The Linear Model:

```
x_1=X;
   y_1=Y;
59
   sum_x_1=sum(x_1);
   sum_y_1=sum(y_1);
   sum_x2_1=sum(x_1.^2);
62
   sum_xy_1=sum(x_1.*y_1);
63
   eq1_1=[n sum_x_1; sum_x_1 sum_x2_1];
64
   eq2_1=[sum_y_1 ;sum_xy_1];
  A_1=linsolve(eq1_1,eq2_1);
  a_1=A_1(1);
67
  b_1=A_1(2);
  y_y=sum_y_1./n;
   st_1=sum((y_1-y_y).^2);
   sr_1=sum((y_1-A_1(1)-x_1.*A_1(2)).^2);
   r2_1=(st_1-sr_1)./st_1;
   Y1=a_1+b_1.*X;
73
   figure;
   subplot(2,2,1)
75
   plot(X,Y,'o');
76
    hold on;
    plot(X,Y1,'-');
78
    hold off;
    xlabel('x');
80
    ylabel('y');
81
    title('Linear modle');
```


• The Exponential Model:

```
x_2=X;
   y_2=\log(Y);
   sum_x_2=sum(x_2);
   sum_y_2=sum(y_2);
   sum_x2_2=sum(x_2.^2);
89
   sum_xy_2=sum(x_2.*y_2);
   eq1_2=[n sum_x_2; sum_x_2 sum_x2_2];
   eq2_2=[sum_y_2; sum_xy_2];
   A_2=linsolve(eq1_2,eq2_2);
   a_2 = \exp(A_2(1));
94
   b_2=A_2(2);
   y_y=sum_y_2./n;
   st_2=sum((y_2-y_y).^2);
   sr_2=sum((y_2-A_2(1)-x_2.*A_2(2)).^2);
   r2_2=(st_2-sr_2)./st_2;
99
   Y2=a_2.*exp(b_2.*X);
100
   subplot(2,2,2)
    plot(X,Y,'o');
102
    hold on;
103
    plot(X,Y2,'-');
    hold off;
105
    xlabel('x');
106
    ylabel('y');
107
    title('exponential modle');
```


• The Power Model:

```
x_3 = log_{10}(X);
    y_3 = log_{10}(Y);
112
    sum_x_3=sum(x_3);
113
    sum_y_3=sum(y_3);
114
    sum_x2_3=sum(x_3.^2);
115
    sum_xy_3=sum(x_3.*y_3);
    eq1_3=[n sum_x_3; sum_x_3 sum_x2_3];
117
    eq2_3=[sum_y_3; sum_xy_3];
118
    A_3=linsolve(eq1_3,eq2_3);
    a_3=10.^A_3(1);
120
    b_3=A_3(2);
121
    y_y=sum_y_3./n;
122
    st_3=sum((y_3-y_y).^2);
123
    sr_3=sum((y_3-A_3(1)-x_3.*A_3(2)).^2);
124
    r2_3=(st_3-sr_3)./st_3;
125
    Y3=a_3.*(X).^b_3;
126
    subplot(2,2,3)
127
    plot(X,Y,'o');
128
     hold on;
129
     plot(X,Y3,'-');
130
     hold off;
131
     xlabel('x');
132
     ylabel('y');
133
     title('power modle');
134
```


• The Growth Rate Model:

```
x_4=1./X;
    y_4=1./Y;
138
    sum_x_4=sum(x_4);
139
    sum_y_4=sum(y_4);
140
    sum_x2_4=sum(x_4.^2);
141
    sum_xy_4=sum(x_4.*y_4);
    eq1_4=[n sum_x_4; sum_x_4 sum_x2_4];
143
    eq2_4=[sum_y_4 ; sum_xy_4];
144
   A_4=linsolve(eq1_4,eq2_4);
   a_4=1./A_4(1);
146
    b_4=A_4(2)./A_4(1);
147
   y_y=sum_y_4./n;
148
    st_4=sum((y_4-y_y).^2);
149
    sr_4=sum((y_4-A_4(1)-x_4.*A_4(2)).^2);
   r2_4=(st_4-sr_4)./st_4;
151
   Y4=(a_4.*X)./(b_4+X);
152
    subplot(2,2,4)
153
   plot(X,Y,'o');
154
   hold on;
   plot(X,Y4,'-');
156
   hold off;
157
   xlabel('x');
   ylabel('y');
159
   title('growth rate model');
```


• Choosing which model best fits the data:

```
r2=[r2_1 r2_2 r2_3 r2_4];
162
    r2_of_four_models=[r2_1 r2_2 r2_3 r2_4]
163
    TBM=0;
164
    index=0;
    for i=1:4
166
        if TBM <= r2(i)</pre>
167
             TBM=r2(i);
168
             index=i;
169
        else
170
             TBM=TBM;
171
             index=index;
172
        end
173
    end
174
    fprintf('The highest correlation coeffecient is %d ', TBM);
    fprintf('and its index is %d\n', index);
```


2 Test Cases

■ Test Case 1: Linear Model

• Input

$$x = [1, 2, 3, 4, 5]$$

$$y = [2, 4, 6, 8, 10]$$

$$z = c$$

• Output

■ Test Case 2: Exponential Model

• Input

$$x = [1, 2, 3, 4, 5]$$

$$y = [2.7183, 7.3891, 20.0855, 54.5982, 148.4132]$$

$$z = c$$

• Output

■ Test Case 3: Power Model

• Input

$$x = [1, 2, 3, 4, 5]$$

 $y = [1, 4, 9, 16, 25]$

$$z = c$$

Output

■ Test Case 4: Growth Rate Model

• Input

$$x = [1, 2, 3, 4, 5]$$

$$y = [100, 200, 400, 800, 1600]$$

$$z = B$$

• Output

