线性代数应该这么学, 习题 2.15

叶卢庆*

2014年8月22日

题目 (线性代数应该这么学, 习题 2.15). 如果 U_1, U_2, U_3 是有限维向量空间的子空间, 是否有

$$\dim(U_1 + U_2 + U_3) = \dim U_1 + \dim U_2 + \dim U_3$$
$$-\dim(U_1 \cap U_2) - \dim(U_1 \cap U_3)$$
$$-\dim(U_2 \cap U_3)$$
$$+\dim(U_1 \cap U_2 \cap U_3).$$

 \mathbf{R} . 我们尝试对 U_3 的维数作归纳. 当 $\dim U_3 = 0$, 也就是 $U_3 = \{0\}$ 时, 题目中欲证明的式子会化成

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2),$$

这正是 维数定理. 假设当 $\dim U_3 = k(k \ge 0)$ 时, 题目中的式子成立. 则当 $\dim U_3 = k+1$ 时, 设 U_3 的一组基为 $\{v_1, \dots, v_k, v_{k+1}\}$.

• 如果 $v_{k+1} \notin U_1 + U_2$, 则我们有

$$\begin{cases} \dim(U_1 + U_2 + U_3) = \dim(U_1 + U_2 + Span\{v_1, \dots, v_k\}) + 1, \\ \dim U_1 = \dim U_1, \\ \dim U_2 = \dim U_2, \\ \dim U_3 = \dim(Span\{v_1, \dots, v_k\}) + 1, \\ \dim(U_1 \cap U_2) = \dim(U_1 \cap U_2), \\ \dim(U_1 \cap U_3) = \dim(U_1 \cap Span\{v_1, \dots, v_k\}), \\ \dim(U_2 \cap U_3) = \dim(U_2 \cap Span\{v_1, \dots, v_k\}), \\ \dim(U_1 \cap U_2 \cap U_3) = \dim(U_1 \cap U_2 \cap Span\{v_1, \dots, v_k\}). \end{cases}$$

且根据归纳假设,

$$\dim(U_1 + U_2 + Span\{v_1, \dots, v_k\}) = \dim U_1 + \dim U_2 + \dim Span\{v_1, \dots, v_k\}$$
$$-\dim(U_1 \cap U_2) - \dim(U_1 \cap Span\{v_1, \dots, v_k\})$$
$$-\dim(U_2 \cap Span\{v_1, \dots, v_k\})$$
$$+\dim(U_1 \cap U_2 \cap Span\{v_1, \dots, v_k\}).$$

综合以上式子, 可得当 $\dim U_3 = k+1$ 时, 题目中的式子仍然成立.

- $\exists v_{k+1} \in U_1 + U_2$, $\exists v_{k+1} \in U_1$ 或 $v_{k+1} \in U_2$ 时, 易得题目中的式子也成立.
- 当 $v_{k+1} \in U_1 + U_2$, 且 $v_{k+1} \notin U_1 \cup U_2$ 时, 题目中的式子就不成立了.

可见递推失败. 也就是说, 题目中的式子是个错误的式子.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com