

FEED-FORWARD NETWORKS WITH ATTENTION CAN SOLVE SOME LONG-TERM MEMORY PROBLEMS

Colin Raffel (craffel@gmail.com) and Daniel P. W. Ellis (dpwe@ee.columbia.edu)

We propose a simplified model of attention which is applicable to feed-forward neural networks and demonstrate that the resulting model can solve the synthetic "addition" and "multiplication" long-term memory problems for sequence lengths which are both longer and more widely varying than the best published results for these tasks.

Toy long-term memory problems

	Input									Target				
0.5	-0.7	0.3	0.1	-0.2		-0.5	0.9		0.8	0.2	+	×		
-1	0	1	0	0		0	1		0	-1	0.8	0.27		

Epochs until perfect accuracy, or accuracy after 100 epochs

Task		Addition							
Length	50	100	500	1000	5000	10000	50-10000		
Attention	1	1	1	1	2	3	99.9%		
Unweighted	1	1	1	2	8	17	77.4%		
Task	Multiplication								
Length	50	100	500	1000	5000	10000	50-10000		
Attention	1	2	4	2	15	6	99.4%		
Unweighted	2	2	8	33	89.8%	80.8%	55.5%		

See also

"Pruning Subsequence Search with Attention-Based Embedding", in *Proceedings of the 41st IEEE International Conference on Acoustics, Speech and Signal Processing*, 2016.

