FACULDADE DE COMPUTAÇÃO E INFORMÁTICA CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO Algoritmos e Programação I

AULAS 04 e 05: OPERADORES E EXPRESSÕES LÓGICAS, ESTRUTURAS CONDICIONAIS SIMPLES E COMPOSTA

Nossos objetivos nesta aula são:

- Saber o que é uma estrutura de controle de fluxo
- Conhecer os operadores relacionais e os operadores lógicos.
- Desenvolver e avaliar o resultado de expressões lógicas envolvendo operadores relacionais e lógicos
- Construir algoritmos com desvio de fluxo.
- Utilizar os principais comandos condicionais: simples e composto.
- Ser capaz de ler, escrever e implementar programas que empregam estruturas condicionais.

A referência para esta aula são as seções 3.1 (O que é uma estrutura de controle), 3.2 (Expressões lógicas) e 3.3 (Controle de Seleção) do Capítulo 3 (Control Structures) do livro:

DIERBACH, C. Introduction to Computer Science Using Python: A Computational Problem Solving Focus. 1st Edition, New York: Wiley, 2012.

O QUE É UMA ESTRUTURA DE CONTROLE?

- A ordem em que as instruções de um programa são executadas é chamada de controle de fluxo.
- Existem três formas fundamentais de controlar o fluxo de um programa: estrutura de controle sequencial, estrutura de controle de seleção ou condicional e estrutura de controle de repetição, iterativo ou laço.

- A estrutura de controle sequencial, caracteriza pelos problemas visto até agora, é uma forma implícita de controle, em que as instruções são executadas na ordem em que são escritas.
- Conheceremos o segundo tipo de controle de fluxo, a estrutura de seleção ou condicional. Porém, antes vamos saber o que é uma expressão lógica.

EXPRESSÕES LÓGICAS

- Nesta aula, vamos estudar dois operadores que são usados em expressões lógicas (booleanas): operadores relacionais e operadores lógicos.
- Uma expressão lógica é uma expressão que resulta em um valor lógico True (verdadeiro) ou False (falso).

Operadores Relacionais

• Os operadores relacionais são usados em comparações entre valores. O resultado da comparação será um valor lógico. São eles:

Operadores		Exemplo	Resultado
==	igual a	10 == 10	True
!=	diferente	10 != 10	False
<	menor que	10 < 20	True
>	maior que	"Alan" > "Brenda"	False
<=	menor ou igual a	10 <= 10	True
>=	maior ou igual a	"A" >= "D"	False

EXERCÍCIO TUTORADO 1

O que será exibido ao digitarmos as seguintes linhas de comando?

>>> 10 == 20	>>> \2' < \9'	>>> 'Hello' == "Hello"
>>> 10 != 20	>>> \12' < \9'	>>> 'Hello' < 'Zebra'
>>> 10 <= 20	>>> \12' > \9'	>>> 'hello' < 'ZEBRA'

EXERCÍCIO COM DISCUSSÃO EM DUPLAS 1

Considerando a = 4, b = 10, c = 50, d = 1 e f = 5, qual será o resultado lógico (True/False) das seguintes expressões:

Expressão	Resultado
a == c	
a < b	
d > b	
c != f	
a == b	
c < d	
b > a	
c >= f	
c <= c	
c <= f	

Operadores Lógicos

- Os operadores lógicos podem ser usados para construir expressões lógicas mais complexas combinando comparações. São eles: and (e), or (ou), not (não).
- O operador lógico and resulta verdadeiro somente quando seus operandos forem verdadeiros.
- O operador lógico or resulta verdadeiro quando, pelo menos, um dos seus operandos for verdadeiro.
- O operador lógico **not** inverte o valor do operando.
- Tabela verdade dos operadores lógicos:

x	У	x and y	x or y	not x
False	False	False	False	True
True	False	False	True	False
False	True	False	True	
True	True	True	True	

• É preciso ser cauteloso aos usar operadores lógicos. Por exemplo, na matemática, para indicar que um valor está dentro de um determinado intervalo escrevemos:

• No entanto, na maioria das linguagens de programação esta expressão não faz sentido. Para entender porque, vamos assumir que num tem o valor 15.

1 <= num <= 10
$$\rightarrow$$
 1 <= 15 <= 10 \rightarrow True <= 10 \rightarrow ???

 Não faz sentido verificar se True é menor ou igual a 10. A maneira correta de escrever a expressão deve usar o operador lógico and

EXERCÍCIO TUTORADO 2

O que será exibido ao digitarmos as seguintes linhas de comando?

>>> (10 < 0) and (10 > 2)
>>> (10 < 0) or (10 > 2)
>>> not(10 < 0) or (10 > 2)
>>> not(10 < 0 or 10 > 2)

EXERCÍCIO COM DISCUSSÃO EM DUPLAS 2

Qual será o valor das seguintes expressões lógicas:

a)
$$((5 > 3) \text{ or } (4 < 2)) \text{ and } (1 < 7)$$

b)
$$(not(5 > 3) or (1 < 2)) and $(not(1<7))$$$

Precedência dos Operadores

A precedência dos operadores relacionais e lógicos, bem a associatividade dos operadores é dada conforme segue a tabela:

Operador	Associatividade	
<, >, <=, >=, !=, ==	Esquerda para direita	
not	Esquerda para direita	
and	Esquerda para direita	
or	Esquerda para direita	

Uma vez que expressões lógicas, pode conter também operadores aritméticos, vistos na aula anterior, podemos estender para a tabela seguinte:

Operador	Associatividade	
**	Direita para esquerda	
- (negação)	Esquerda para direita	
* / // e %	Esquerda para direita	
+ e – (substração)	Esquerda para direita	
<, >, <=, >=, !=, ==	Esquerda para direita	
not	Esquerda para direita	
and	Esquerda para direita	
or	Esquerda para direita	

ESTRUTURAS DE SELEÇÃO OU CONDICIONAL

- A partir de agora vamos estudar as estruturas condicionais que permitem que o programa execute diferentes sequências de instruções em diferentes casos, dependendo da avaliação de uma expressão lógica.
- Uma expressão lógica é uma expressão cujos operadores são lógicos e/ou relacionais e cujos operandos são relações e/ou variáveis do tipo lógico.
- Em programação, o uso de condições para permitir a escolha de executar ou não um trecho de programa é muito utilizado, principalmente quando precisamos incluir no programa condições de controle, para evitar situações não permitidas, que podem resultar em erros. Por exemplo, para evitar divisões por zero.
- A estrutura lógica que permite que o fluxo de execução de um algoritmo possa sofrer desvios é conhecida como estrutura condicional ou de seleção.
- Quando temos apenas um bloco especial de comando ou instruções apenas para quando a expressão lógica for verdadeira, esse tipo de estrutura chama-se estrutura de condicional simples.

ESTRUTURA CONDICIONAL SIMPLES

Sintaxe:

```
if condição:
   instrução(ões)_verdadeiro
```

Exemplo:

```
if nota >= 6.0:
    print("Aluno aprovado")
if nota < 6.0:
    print("Aluno reprovado")</pre>
```

- O texto "Aluno aprovado" só será exibido se a condição nota >= 6.0 for verdadeira; caso contrário, o controle passa para a próxima instrução que tem outra condição nota < 6.0 a ser avaliada. Se o resultado for verdadeiro então será exibido o texto "Aluno reprovado".</p>
- Uma característica singular da linguagem Python é que a quantidade de recuo (indentação) está associada à um bloco de instruções. Esta indentação é obrigatória para se definir qual instrução ou instruções devem ser executadas quando o resultado lógico da expressão for verdadeiro.

Indentação válida	Indentação inválida	
if condição: instrução instrução instrução	if condição: instrução instrução instrução	

- Analisando o exemplo anterior, podemos perceber que para escrever apenas uma das mensagens foram necessárias duas condições.
- Existe outra estrutura, chamada de estrutura condicional composta, em que temos uma única condição e dois caminhos que podem ser seguidos – o caminho do resultado verdadeiro e o caminho do resultado falso.

ESTRUTURA CONDICIONAL COMPOSTA

Sintaxe:

```
if condição:
    instrução (ões)_verdadeiro
else:
    instrução (ões)_falso
```

Exemplo:

```
if nota >= 6.0:
    print("Aluno aprovado")
else:
    print("Aluno reprovado")
```

- Neste caso, será avaliada a condição nota >= 6.0 e se o resultado for verdadeiro então será apresentado o texto "Aluno aprovado"; caso contrário (else), será apresentado o texto "Aluno reprovado".
- Como na estrutura condicional simples, instrução(ões)_verdadeiro e instrução(ões)_falso devem ser indentadas adequadamente.

Indentaçõ	ies válidas	Indentações inválidas		
if condição: instrução instrução else: instrução instrução instrução	if condição: instrução instrução else: instrução instrução	if condição: instrução instrução else: instrução instrução instrução	if condição: instrução instrução else: instrução instrução	

EXERCÍCIO TUTORADO 3

Escreva a estrutura apropriada para cada um dos seguintes itens:

a) Apresente "dentro do intervalo" se 1 <= num <= 100.

b) Apresente "dentro do intervalo" se 30 < num < 70, caso contrário, apresente "fora do intervalo".</p>

EXERCÍCIOS COM DISCUSSÃO EM DUPLAS 3

1) Resolva as expressões lógicas abaixo:

a)
$$s = ((not (1 == 2)) and (3 < 4))$$

b)
$$s = ((1 < 2) \text{ or } (3 > 4))$$

c)
$$s = (((2 == 2) \text{ and } (3 > 4)) \text{ or } (3 > 4))$$

- 2) Escreva um programa que leia dois números distintos e apresente o quadrado do maior número.
- 3) Escreva um programa que leia um número inteiro e exiba se ele é um número par ou ímpar.
- 4) Um comerciante comprou um produto e quer vendê-lo com um lucro de 45% se o valor da compra for menor que R\$ 20,00; caso contrário, o lucro será de 30%. Escreva um programa que receba o valor do produto e exiba o valor da venda.

- 5) Escreva um programa que faz a conversão de temperatura de Celsius para Farenheit e de Farenheit para Celsius. Sugestão: utilize um caracter para definir em que unidade está a temperatura dada pelo usuário.
- 6) As maçãs custam R\$ 1,30 cada se forem compradas menos de uma dúzia, e R\$ 1,00 se forem compradas pelo menos 12. Escreva um programa que leia o número de maçãs compradas, calcule e escreva o custo total da compra.

ATIVIDADE DE LABORATÓRIO

Exercícios propostos:

- 1) Faça um programa que leia um número e mostre uma mensagem indicando se este número é positivo ou negativo.
- 2) Faça um programa que apresenta o maior de dois números lidos do usuário.
- 3) Faça um programa que coloque dois nomes em ordem alfabética.
- 4) Faça um programa que apresente se o número que o usuário digitou é divisível por 3 e por 5 ao mesmo tempo.
- 5) Faça um programa que receba um ano (quatro dígitos) e informe se é um ano bissexto ou não. Pesquise quais as regras para o número ser bissexto.
- 6) Elabore um programa que leia do teclado o sexo de uma pessoa. Se o sexo digitado for "M" ou "m" ou "F" ou "f", escrever na tela "Sexo válido!". Caso contrário, exibir "Sexo inválido!".
- 7) Num determinado Estado, para transferências de veículos, o DETRAN cobra uma taxa de 2,5% para carros fabricados antes de 2010 e uma taxa de 3,5% para os fabricados de 2010 em diante, taxa esta incidindo sobre o valor de tabela do carro. Escreva um programa lê o ano e o preço do carro e a seguir calcula e imprime a taxa a ser paga.

EXERCÍCIOS EXTRAS

1) Quais das seguintes expressões são avaliadas como True?

- (a) 10 >= 8
- **(b)** 8 <= 10
- (c) 10 == 8
- (d) 10 != 8 (e) '8' < '10'

2) Quais das seguintes expressões são avaliadas como True?

- (a) 'Dave' < 'Ed' (b) 'dave' < 'Ed' (c) 'Dave' < 'Dale'

3) Qual é o valor da variável num após a seguinte execução?

```
>>> num = 10
>>> num = num + 5
>>> num == 20
>>> num = num + 1
```

4) Avalie as seguintes expressões lógicas usando as regras de precedência dos operadores:

```
(a) 10 >= 8 and 5 != 3
```

```
(b) 10 >= 8 and 5 == 3 or 14 < 5
```

5) Qual das seguintes expressões lógicas não é logicamente equivalente às outras duas?

```
(a) not (num <0 or num > 10)
(b) num > 0 and num < 10
```

```
(c) num >= 0 and num <= 10
```

6) Determine os resultados obtidos na avaliação das expressões lógicas seguintes sabendo que **a**, **b**, **c** contém, respectivamente, **2**, **7**, **3.5**, e que existem duas variáveis **m** e **n** cujos conteúdos são, respectivamente, **False** e **True**:

```
a) b == a * c and (m or n)
b) b > a or b == math.pow(a,a)
c) m and b // a >= c or not a <= c
d) not m or n and math.sqrt(a + b) >= c
e) b/a == c or b/a != c
f) m or math.pow(b,a) <= c * 10 + a * b</pre>
```

- 7) Escreva um programa que leia um número e apresente a raiz quadrada caso seja positivo ou nulo, e o quadrado do número caso seja negativo.
- 8) Elabore um programa que leia dois números reais e mostre o resultado da diferença do maior valor pelo menor.
- 9) Escreva um programa que leia um número inteiro de 3 dígitos e imprima se o algarismo da dezena é par ou ímpar.
- 10) Elabore um programa que leia notas de três avaliações de um aluno. A primeira avaliação tem peso 2, a segunda tem peso 3 e, a terceira, peso 5. Calcule a média do aluno. Se a média do aluno for maior ou igual a 6, o aluno está aprovado; caso contrário, o aluno está reprovado. Mostre o resultado da decisão.
- 11) Um pescador comprou um computador para controlar o rendimento diário de seu trabalho. Toda vez que ele traz um peso de peixes maior que o estabelecido pelo regulamento de pesca do Estado de São Paulo (50 quilos), deve pagar uma multa de R\$ 4,00 por quilo excedente. Escreva um programa que leia o peso de peixes, e verifique se há excesso. Se houver, determine o peso excedente e o valor da multa. Caso contrário, mostrar "Dentro do regulamento".