과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 기계가 스스로 배우는 뇌를 가질 수 있을까?	① 본 학습 내용으로 들 어가기 전, <mark>학습 주제</mark>
•학습열기	인간의 뇌는 경험을 통해 배웁니다. 어린아이가 사과를 여러 번 본 후 '이건 사과야!'라고 인식	의 흥미를 이끌 만한 도입부의 내용이 있
•학습목표	하는 것처럼, 인공지능도 반복적인 데이터를 통해 무엇이 무엇인지를 알아갑니다. CNN(합성	다면 제시해주세요.
 ▶학습하기 1. CNN 구현 (후반부) 2. CNN 학습 3. CNN 평가 	곱 신경망)은 이미지 인식 분야에서 인간 시각 시스템을 모방하여 '기계의 눈'을 갖게 해주는 기술입니다. 여러분은 SNS에서 친구 얼굴을 자동으로 태그하거나, 고양이 사진을 자동으로 분류하는 경험을 해보셨을 겁니다. 이런 기능들 대부분이 CNN으로 구현됩니다. 이 강의에서 는 단순히 CNN 구조를 배우는 것을 넘어, 손실 함수와 옵티마이저의 설정부터 학습 정확도 시각화, 실제 이미지 예측까지의 전 과정을 직접 실습하게 됩니다. 그렇다면 우리가 만든 이 '인공 두뇌'는 어느 수준까지 정답을 맞히고, 어느 순간 실수하게 될까요? CNN이 학습하면서 '사람처럼 성장'하는 과정을 함께 들여다봅시다.	 ② ex. 관련 뉴스기사, 실생활과 관련된 이 야기 등 ③ 저작권 침해가 되지 않도록 내용을 구성 해 주세요. ④ 출처가 있을 경우 반 드시 작성해 주세요.
▶ 적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		3

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro		① 학습내용과 학습목표 는 강의계획서와 일
•학습열기		치해야 하며, 필요시
•학습목표	◈ 학습목표	강의계획서를 수정할 수 있습니다.
	1. 전체 CNN 모델을 완성할 수 있다.	② <mark>학습목표</mark>
▶학습하기1. CNN 구현(후반부)	1. 전세 CNN 모델을 편성할 수 있다. 2. 손실 함수와 옵티마이저를 설정하여 모델을 학습할 수 있다. 3. 테스트 데이터에서 성능을 평가하고 결과를 분석할 수 있다.	✓ 각 레슨에 맞는 학습 목표를 2~3개 작성 해 주세요.
2. CNN 학습 3. CNN 평가	J. 네ㅡㅡ 데이디에서 ㅎㅎㅋ ㅎ거이고 크피크 군국될 구 ᆻ다.	③ <mark>학습내용</mark>
3. CIVIN 67		✓ 1회차 당 25분 분량 이 되도록 2~3개 레 슨으로 구성해주세요.
	◈ 학습내용	✓ 학습내용과 레슨명은 일치해야 합니다.
-1041-1	1. CNN 구현 (후반부)	용어설명
▶적용하기	2. CNN 학습	<u> </u>
≻Outro	3. CNN 평가	
•문제풀기		
내 레 이		
션		4

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	9	화면설명
≻Intro					
•학습열기					
•학습목표					
▶학습하기		간지			
1. CNN 구현 (후반부)					
2. CNN 학습					
3. CNN 평가		CN	INI 구혀	(후반부)	
		Civ			
▶ 적용하기					용어설명
≻Outro					
•문제풀기					
내					
내 레 이 션					
션					

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 전체 CNN 모델 준비	
•학습열기	모델 생성해서 GPU 또는 CPU에서 실행 준비	
•학습목표	• 전체 CNN 모델 구조 출력	
▶학습하기	torchsummary.summary 함수	
1. CNN 구현 (후반부)	summary를 쓰기 위해선 from torchsummary import summary 임포트	
2. CNN 학습	net 모델의 전체 레이어 구조, 출력 크기, 파라미터 수 등을 요약해서 출력	
3. CNN 평가	(3, 32, 32)는 입력 이미지 CIFAR-10의 채널 수와 크기(RGB 이미지 32 x 32)를 의미	
	# 3. 모델 준비 및 구조 출력 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = SimpleCNN().to(device) summary(net, (3, 32, 32))	요시서대
▶적용하기	Summary (11ec, (3, 32, 32))	용어설명
≻Outro		
•문제풀기		
내 레 이 션		6

	I			
과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 9		화면설명
≻Intro	• CNN 구조 요약 결과			
•학습열기	Layer (type)	Output Shape	Param #	
•학습목표	======================================	[-1, 32, 32, 32] [-1, 32, 32, 32]	896 64	
▶학습하기1. CNN 구현 (후반부)	ReLU-3 MaxPool2d-4 Conv2d-5 BatchNorm2d-6	[-1, 32, 32, 32] [-1, 32, 16, 16] [-1, 64, 16, 16] [-1, 64, 16, 16]	0 0 18,496 128	
2. CNN 학습 3. CNN 평가	ReLU-7 MaxPool2d-8 Conv2d-9 BatchNorm2d-10 ReLU-11 MaxPool2d-12 Linear-13 ====================================	[-1, 64, 16, 16] [-1, 64, 8, 8] [-1, 128, 8, 8] [-1, 128, 8, 8] [-1, 128, 8, 8] [-1, 128, 4, 4] [-1, 10]	0 0 73,856 256 0 0 20,490	
≻적용하기	Trainable params: 114,186 Non-trainable params: 0			용어설명
➤Outro •문제풀기	Input size (MB): 0.01 Forward/backward pass size Params size (MB): 0.44 Estimated Total Size (MB):			
내 레 이 션				

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명 9	화면설명
≻Intro				
•학습열기				
•학습목표				
▶학습하기		간지		
1. CNN 구현 (후반부)				
(구년 T) 2. CNN 학습				
3. CNN 평가			CNN 학습	
			CIVIN 3 H	
▶ 적용하기				용어설명
≻Outro				
•문제풀기				
_ "_ '				
LH				
레				
내 레 이 션				
				8

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
▶Intro •학습열기 •학습목표 ▶학습하기 1. CNN 구현 (후반부) 2. CNN 학습 3. CNN 평가	• 손실 함수와 옵티마이저를 설정 • 학습 중에 성능을 기록할 변수들을 초기화 # 4. 학습을 위한 손실함수와 옵티마이저 설정 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), 1r=0.001) # 학습 과정 시, 손실 값과 정확도를 저장할 변수 초기화 train_losses = [] test_accuracies = []	
≻적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		9

과정명	PyTorch로 배우는 머신러닝 알고리즘 회	차명 9	화면설명
≻Intro	• 손실 함수 설정		
•학습열기	nn.CrossEntropyLoss()는 분류(classification	ı) 문제에서 자주 쓰는 손실 함수	
•학습목표	출력 값이 확률 형태가 아니더라도 사용 기	- <u>L</u>	
▶학습하기 1. CNN 구현 (후반부) 2. CNN 학습 3. CNN 평가	# 4. 학습을 위한 손실함수와 옵티마이지 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parame # 학습 과정 시, 손실 값과 정확도를 저 train_losses = [] test_accuracies = []	eters(), lr=0.001)	
▶적용하기			용어설명
≻Outro			
•문제풀기			
내 레 이 션			

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 옵티마이저 설정	
•학습열기	optim.Adam은 대표적인 경사 하강법 기반 옵티마이저 중 하나	
•학습목표	SGD보다 빠르고 튜닝도 간편	
▶학습하기	net.parameters():	
1. CNN 구현 (후반부)	학습 대상인 모델의 모든 파라미터(가중치, 편향 등)를 넘겨 줌	
2. CNN 학습	lr=0.001:	
3. CNN 평가	learning rate로, 모델이 가중치를 얼마나 크게 조정할지를 의미	
	너무 크면 발산하고, 너무 작으면 느려지니 보통은 0.001에서 시작해서 튜닝	
	# 4. 학습을 위한 손실함수와 옵티마이저 설정 criterion = nn.CrossEntropyLoss()	
▶ 적용하기	optimizer = optim.Adam(net.parameters(), lr=0.001)	용어설명
≻Outro	# 학습 과정 시, 손실 값과 정확도를 저장할 변수 초기화	
•문제풀기	<pre>train_losses = [] test_accuracies = []</pre>	
내		
내 레 이		
션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
➤Intro •학습열기	• CNN 학습의 기본 구조 에폭(epoch)마다 학습 데이터를 반복하면서 손실을 계산하고, 모델을 업데이트	
•학습목표 >학습하기	# 5. 학습 루프 epochs = 10 # 총 10번의 epoch 동안 반복 for epoch in range(epochs):	
1. CNN 구현 (후반부) 2. CNN 학습	net.train() # 모델을 학습 모드로 설정 (Dropout, BatchNorm 등 활성화) running_loss = 0.0 # epoch 동안 손실값을 누적할 변수 초기화	
3. CNN 평가	# 훈련 데이터(trainloader)에서 배치 단위로 반복 for i, (inputs, labels) in enumerate(trainloader): # 입력 데이터와 정답 레이블을 GPU 또는 CPU로 이동 inputs, labels = inputs.to(device), labels.to(device)	
▶적용하기 ▶Outro	optimizer.zero_grad() # 이전에 계산된 gradient를 초기화 outputs = net(inputs) # 모델에 입력을 넣고 예측값 출력 loss = criterion(outputs, labels) # 손실(loss) 계산 loss.backward() # 역전파로 gradient 계산 optimizer.step() # gradient를 사용해 모델 파라미터 업데이트	용어설명
•문제풀기	running_loss += loss.item() # 배치 손실값을 누적 (float 값)	
내 레 이 션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 데이터 시각화를 위해 모델 학습 과정에서의 평균 손실 값 저장	
•학습열기	에폭(epoch)마다 학습 손실(loss)의 평균값을 계산해 avg_loss에 저장	
•학습목표	avg_loss를 train_losses 리스트에 계속 누적	
▶ 학습하기 1. CNN 구현 (후반부) 2. CNN 학습 3. CNN 평가	# 5. 학습 루프 epochs = 10 # 총 10번의 epoch 동안 반복 for epoch in range(epochs): net.train() # 모델을 학습 모드로 설정 (Dropout, BatchNorm 등 활성화) running_loss = 0.0 # epoch 동안 손실값을 누적할 변수 초기화	
	# 훈련 데이터(trainloader)에서 배치 단위로 반복 for i, (inputs, labels) in enumerate(trainloader): # 입력 데이터와 정답 레이블을 GPU 또는 CPU로 이동 inputs, labels = inputs.to(device), labels.to(device)	
≻적 용 하기	 running_loss += loss.item() # 배치 손실값을 누적 (float 값)	용어설명
≻Outro	# epoch 별 평균 손실값 계산	
•문제풀기	avg_loss = running_loss / len(trainloader) train_losses.append(avg_loss) # 그래프 시각화 등을 위한 손실 기록	
내 레 이 션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 데이터 시각화를 위해 모델 학습 과정에서의 테스트 데이터의 정확도 저장	
•학습열기	epoch가 끝난 후 테스트 정확도(accuracy)를 계산하고, 이를 test_accuracies에 저장	
•학습목표	# 5. 학습 루프	
▷학습하기	epochs = 10 # 총 10번의 epoch 동안 반복 for epoch in range(epochs):	
1. CNN 구현 (후반부)	… # 평가 모드로 전환 (Dropout, BatchNorm <mark>등 비활성화</mark>)	
2. CNN 학습 3. CNN 평가	net.eval() <mark>correct = 0 # 맞힌 샘플 수</mark>	
3. CIVIV 67	total = 0 # 전체 샘플 수	
	# 테스트 시에는 gradient 계산 필요 없음 → 연산 효율 높임 with torch.no grad():	
	# 테스트 데이터셋에서 배치 단위로 평가	
	for inputs, labels in testloader:	
▶적용하기	total += labels.size(0) # 총 정답 수 누적	용어설명
≻Outro	correct += (predicted == labels).sum().item() # 맞힌 개수 누적	
•문제풀기	# 정확도(%) 계산 accuracy = 100 * correct / total	
	test_accuracies.append(accuracy) # 정확도 기록	
내		
레 이		
션		1

_1=1=1		41-11-1
과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 테스트 데이터의 정확도 계산	
•학습열기	학습된 모델을 테스트 데이터셋에 대해 정확도(accuracy) 기준으로 평가하는 부분	
•학습목표	torch.no_grad()를 통해 불필요한 연산을 줄이고	
▶학습하기	모델이 얼마나 정답을 잘 맞추는지 accuracy에 퍼센트로 계산한 다음	
1. CNN 구현 (후반부)	test_accuracies 리스트에 저장	
2. CNN 학습 3. CNN 평가	# 테스트 시에는 gradient 계산 필요 없음 → 연산 효율 높임 with torch.no_grad(): # 테스트 데이터셋에서 배치 단위로 평가 for inputs, labels in testloader: inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) # 모델 예측 _, predicted = torch.max(outputs, 1) # 가장 높은 확률을 가진 클래스 선택 total += labels.size(0) # 총 정답 수 누적	
▶적용하기	correct += (predicted == labels).sum().item() # 맞힌 개수 누적	용어설명
➤Outro •문제풀기	# 정확도(%) 계산 accuracy = 100 * correct / total test_accuracies.append(accuracy) # 정확도 기록	
내 레 이 션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• torch.max() 이해	
•학습열기	텐서(tensor)에서 최댓값을 찾는 함수	
•학습목표	하나의 값에서 최대값을 찾거나	
▶학습하기	차원을 기준으로 여러 값 중 최대값과 해당 인덱스(index)를 함께 반환	
1. CNN 구현 (후반부)	torch.max(x)	
2. CNN 학습	텐서 전체에서 가장 큰 값을 반환	
3. CNN 평가	<pre>x = torch.tensor([1, 5, 3]) max_value = torch.max(x) print(max_value) # tensor(5)</pre>	
≻적 용 하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		1.

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• torch.max(, dim=1)	
•학습열기	차원을 기준으로 최댓값과 인덱스를 함께 반환	
•학습목표	dim=1: 행(row)마다 열(column) 기준으로 최댓값을 계산	
▷ 학습하기 1. CNN 구현 (후반부)	dim=0: 열마다 행 기준으로 계산	
2. CNN 학습		
3. CNN 평가	x = torch.tensor([
≻적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 분류 모델에서 예측 클래스 뽑기	
•학습열기	분류 모델에서는 각 샘플에서 가장 높은 확률의 클래스를 고르는 데 사용	
•학습목표	predicted: 각 행(샘플)에 대해 가장 큰 값을 가진 열 = 예측 클래스	
▶학습하기	_: 실제 max 값은 필요 없으니까 무시하기 위해 사용	
1. CNN 구현 (후반부)	import torch	
2. CNN 학습 3. CNN 평가 ➤ 적용하기 ➤ Outro	# 예: 모델의 예측 결과 (batch_size=3, num_classes=4) outputs = torch.tensor([[0.1, 0.2, 0.6, 0.1], # 샘플 0 → class 2 [0.8, 0.1, 0.05, 0.05], # 샘플 1 → class 0 [0.3, 0.4, 0.1, 0.2] # 샘플 2 → class 1]) # 각 행(샘플)에서 가장 큰 값의 인덱스를 가져옴 _, predicted = torch.max(outputs, 1) print("Outputs:\n", outputs) print("Predicted class indices:", predicted) print("variable :",)	용어설명
•문제풀기	Outputs: tensor([[0.1000, 0.2000, 0.6000, 0.1000],	
내 레 이 션	[0.3000, 0.4000, 0.1000, 0.2000]]) Predicted class indices: tensor([2, 0, 1]) variable _: tensor([0.6000, 0.8000, 0.4000])	

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 매 에폭마다 평균 손실 값과 정확도를 출력	
•학습열기		
•학습목표	# 5. 학습 루프 epochs = 10 # 총 10번의 epoch 동안 반복	
▶학습하기	for epoch in range (epochs):	
/ 작 급 이 / 1 1. CNN 구현 (후반부)	···	
2. CNN 학습	# epoch <mark>결과 출력</mark>	
3. CNN 평가	<pre>print(f'[Epoch {epoch+1}] Loss: {avg_loss:.3f} Test Accuracy: {accuracy:.2f}%</pre>	')
➤ 적용하기 ➤Outro •문제풀기	[Epoch 1] Loss: 1.387 Test Accuracy: 61.53% [Epoch 2] Loss: 1.030 Test Accuracy: 66.44% [Epoch 3] Loss: 0.912 Test Accuracy: 68.67% [Epoch 4] Loss: 0.847 Test Accuracy: 73.22% [Epoch 5] Loss: 0.801 Test Accuracy: 74.53% [Epoch 6] Loss: 0.755 Test Accuracy: 74.22% [Epoch 7] Loss: 0.721 Test Accuracy: 72.89% [Epoch 8] Loss: 0.691 Test Accuracy: 75.98% [Epoch 9] Loss: 0.666 Test Accuracy: 78.51% [Epoch 10] Loss: 0.653 Test Accuracy: 79.43%	용어설명
내 레 이 션		1

		•			
과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명 9		화면설명
≻Intro					
•학습열기					
•학습목표					
▶학습하기		간지		-	
1. CNN 구현 (후반부)					
2. CNN 학습					
3. CNN 평가			CNINI TH 71		
			CNN 평가		
> HO쉬기				-	용어설명
▶적용하기					0-120
≻Outro					
•문제풀기					
내					
레 이					
내 레 이 션					
					2

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 9		화면설명
≻Intro	• 평가 준비			
•학습열기	모델을 평가 모드로 설정			
•학습목표	정확도 계산을 위한 변수 초기화			
▶학습하기	결과 시각화를 위한 리스트 초기화			
1. CNN 구현 (후반부) 2. CNN 학습 3. CNN 평가	# 6. 테스트 정확도 및 예측 수집 # 모델을 평가 모드로 설정 (Dropout, B net.eval()	BatchNorm 비활성	성화)	
	# 정확도 계산을 위한 변수 초기화 correct = 0 # 맞힌 개수 total = 0 # 전체 테스트 샘플 수			
≽적용하기	# 결과 시각화를 위한 리스트들 all_preds = [] # 예측된 레이블 저짐 all_images = [] # 이미지 데이터 저짐	당용 당요		용어설명
≻Outro	all_labels = [] # 실제 정답 저장용	0 0		
•문제풀기				
내 레 이 션				2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 테스트 데이터로 정확도를 위한 계산	
•학습열기	전체 수와 맞힌 수 누적	
•학습목표	# gradient 계산은 하지 않도록 설정 → 속도 ↑, 메모리 ↓	
▶학습하기	with torch.no_grad(): # 테스트 데이터셋을 배치 단위로 평가	
1. CNN 구현 (후반부)	for inputs, labels in testloader: # 입력과 레이블을 CPU 또는 GPU로 이동	
2. CNN 학습	<pre>inputs, labels = inputs.to(device), labels.to(device)</pre>	
3. CNN 평가	# 모델에 입력을 넣고 출력(예측값) 계산 outputs = net(inputs)	
	# 가장 높은 확률값을 갖는 클래스 인덱스를 예측값으로 선택 _, predicted = torch.max(outputs, 1) # 전체 수와 맞힌 수 누적 total += labels.size(0)	
▶적용하기	<pre>correct += (predicted == labels).sum().item()</pre>	용어설명
≻Outro	# 결과 저장 (CPU로 이동한 뒤 numpy나 텐서로 저장)	
•문제풀기	<pre>all_preds.extend(predicted.cpu().numpy()) all_images.extend(inputs.cpu()) all_labels.extend(labels.cpu())</pre>	
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	9	화면설명
≻Intro	• 정확도 출력		j	
•학습열기				
•학습목표	# 최종 정확도 출력 print(f'Test Accuracy: {100 * c	correct /	total:.2f}%')	
▶학습하기				
1. CNN 구현 (후반부)	Test Accuracy: 79.43%		j	
2. CNN 학습 3. CNN 평가				
▶적용하기				용어설명
≻Outro				
•문제풀기				
내 레 이 션				2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 실제 이미지와 예측 값 출력	
•학습열기	이미지 복원 및 시각화 함수 정의	
•학습목표		
 ▶학습하기 1. CNN 구현 (후반부) 2. CNN 학습 3. CNN 평가 	# 7. 이미지 복원 및 시각화 함수 정의 def imshow(img): # CIFAR-10 데이터셋에 적용된 정규화를 복원 (역정규화) mean = torch.tensor([0.4914, 0.4822, 0.4465]).view(3, std = torch.tensor([0.2023, 0.1994, 0.2010]).view(3, img = img * std + mean # 정규화 반대로 되돌리기	
	# 텐서를 numpy로 변환하고 픽셀 값 범위를 0~1로 제한 img = img.numpy() img = np.clip(img, 0, 1)	
▶ 적용하기	# (채널, 높이, 너비) → (높이, 너비, 채널) 로 차원 전환 후 (plt.imshow(np.transpose(img, (1, 2, 0))) plt.axis('off') # 축은 생략	이미시 울덕 용 어설명
≻Outro		
•문제풀기		
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
≻Intro	• 실제 이미지와 예측 값 출력 코드	
•학습열기	# 8. 예측 결과 시각화 (앞에서 가져온 이미지 중 10개만)	
•학습목표	fig = plt.figure(figsize=(6, 4)) # 전체 출력 이미지 크기 설정	
 ▶학습하기 1. CNN 구현 (후반부) 	# 예측을 점검을 시작 첨자 설정, 0, 10, 20, 등 설저 start_idx = 20 for idx in range(10): # 2행 5열의 서브플롯에 이미지 추가 ax = fig.add subplot(2, 5, idx+1, xticks=[], yticks=[])	
2. CNN 학습 3. CNN 평가	# idx번째 이미지 출력	
	idx = idx + start_idx imshow(all_images[idx]) # 예측 라벨을 이미지 상단에 표시 ax.set_title(f"{classes[all_preds[idx]]}", # 정답이면 초록, 오답이면 빨강	
▶ 적용하기	<pre>color=('green' if all_preds[idx] ==all_labels[idx] else 'red'))</pre>	용어설명
▶Outro •문제풀기	# 전체 타이틀 및 레이아웃 정리 plt.suptitle("CIFAR-10 Test Predictions") plt.tight_layout() plt.show()	
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	9	화면설명
≻Intro	• 실제 이미지와 예측 값 출력 결과			
•학습열기	붉은색은 잘못된 예측 결과			
•학습목표	정답이 dog인데 deer로 예측			
▶학습하기	정답이 bird인데 frog로 예측			
1. CNN 구현 (후반부)	CIFAR-10 Test	t Predictions		
2. CNN 학습 3. CNN 평가	horse airplane dee	er tru	ıck <mark>deer</mark>	
▶적용하기	frog deer airpla	ane tru	ıck frog	용어설명
≻Outro			The same of	
•문제풀기		1		
내 레 이 션				2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 9	화면설명
➤ Intro	 모델을 학습한 후, 테스트 데이터의 정확도를 평가하고 이를 시각화하는 과정은 CNN 모델의 성능을 해석하는 데 매우 중요합니다. 학습 중 저장한 손실 값 (train_losses)과 정확도(test_accuracies)를 어떻게 활용하면 효과적인 모델 평가와 개선이 가능한지 설명해 주세요. 또한, 잘못된 예측 사례 시각화가 왜 중요한지 구체적인 예시와 함께 작성해 보세요." 1. train_losses와 test_accuracies는 각각 학습 과정에서의 손실 감소와 정확도 향상을 시각적으로 보여주는 지표입니다. 이를 에폭별로 그래프로 나타내면 과적합(overfitting) 여부나 학습 안정성을 쉽게 판단할 수 있습니다. 2. 예를 들어, 손실은 감소하는데 정확도가 떨어진다면 모델이 학습 데이터를 외워버렸을 가능성이 있으므로 조기 종료(Early Stopping)나 정규화(Regularization) 기법을 도입할 수 있습니다. 	① 학습 내용과 관련하여 실제 적용력을 높일 수 있는 문제, 혹은 주제를 작성해 주세요. ② ex. 사례 제시 후 전문가 의견, 실습과제, 응용 예시 시뮬레이션등 ③ 저작권 침해가 되지않도록 내용을 구성해 주세요. ④ 출처가 있을 경우 반드시 작성해 주세요.
▶ 적용하기 ▶Outro •문제풀기	 3. 또한, 잘못된 예측 이미지를 시각화하면 어떤 클래스 간 혼동이 있는지 식별할 수 있습니다. 예컨대, dog 이미지를 deer로 잘못 예측한 경우, 두 이미지 간 특징이 겹치거나 학습데이터가 불균형했을 가능성이 있습니다. 4. 따라서 정확도 시각화 + 예측 결과 시각화 = 모델 디버깅과 개선의 출발점이 됩니다. 	용어설명
내 레 이 션		2