ENSIIE 2A 2018-2019 UE Méthodes de Simulation

Feuille 1 de Travaux pratiques

1. Méthode d'inversion

Rappel de la méthode d'inversion. On suppose que l'on sait simuler des réalisations indépendantes de loi uniforme sur [0,1], c'est-à-dire, une suite $(U_n)_{n\geq 1}$ de variables aléatoires indépendantes de même loi $\mathcal{U}[0,1]$. L'appel à la fonction rand génère une réalisation $u=U(\omega)$ de la loi uniforme sur]0,1[.

Soit $U \sim \mathcal{U}([0,1])$ et soit X une variable aléatoire de fonction de répartition $F: F(x) = \mathbb{P}(X \leq x)$, $\forall x \in \mathbb{R}$. Pour simuler des réalisations de variables aléatoires $(X_n)_{n\geq 1}$ indépendantes de même loi que X on utilise le résultat suivant: si

$$F^{-1}(u) := \inf\{t \in \mathbb{R} : F(t) > u\}, \quad \text{pour tout } u \in]0,1[$$

alors X et $F^{-1}(U)$ ont même loi: on note $X \stackrel{\mathcal{L}}{=} F^{-1}(U)$.

Exercice 1. (Loi de Bernoulli) Soit U une loi uniforme sur [0,1] et soit $p \in]0,1[$.

- 1. Vérifier que la variable aléatoire $X=\mathbb{1}_{\{U\leq p\}}$ suit une loi de Bernoulli de paramètre p.
- 2. Utiliser la question précédente pour simuler un échantillon indépendant $(X_i)_{1 \le i \le N}$ de taille N de la loi de Bernoulli de paramètre p=0.3, pour N=100,1000 puis 10000.
- 3. Calculer pour chaque N, la quantité

$$\frac{\#\{i \in \{1, \cdots, N\} \text{ tel que } X_i = 1\}}{N}$$

et le comparer avec p.

4. On rappelle le *Théorème Central Limite* (TCL): Pour toute suite de variables aléatoires $(X_n)_{n\geq 1}$ iid de moyenne $\mu=\mathbb{E}(X_1)$ et de variance finie σ^2 , on a:

$$Z_n := \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \quad \stackrel{n \to \infty}{\longrightarrow} \quad Z \sim \mathcal{N}(0, 1), \tag{1}$$

où $\bar{X}_n = (X_1 + \ldots + X_n)/n$ est la moyenne empirique associée à l'échantillon.

- (a) Gérérez un échantillon $(Z_n^i)_{i=1,\dots,N}$ de taille N=10 de la loi de Z_n pour n=10,30,40.
- (b) Gérérez un échantillon $(Z_n^i)_{i=1,\dots,N}$ de taille $N=10^5$ de la loi de Z_n pour n=10, 30, 40. Pour tout $n\in\{10,30,40\}$, tracez sur le même graphique l'histogramme empirique associé à l'échantillon $(Z_n^i)_{i=1,\dots,N}$ et la densité

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

d'une loi $\mathcal{N}(0,1)$.

(c) Commentez les graphiques obtenus dans la question précédente.

Exercice 2. (Loi binomiale) Soit n=30 et p=0.1. Soit $(U_k)_{k\geq 1}$ une suite de variables aléatoires indépendantes de loi uniforme sur]0,1[.

1. Vérifiez, que la variable aléatoire X suivante suit une loi binomiale de paramètres (n, p):

$$X = \sum_{k=1}^{n} \mathbb{1}_{\{U_k \le p\}}.$$

- 2. Générez un échantillon indépendant de taille N=10000 de la loi binomiale de paramètres (n,p) en utilisant la question précédente.
- 3. Tracez l'histogramme des fréquences empiriques associées à léchantillon simulé.
- 4. Tracez le graphe $k\in\{0,\cdots,n\}\mapsto p_k=\mathbb{P}(X=k),\ k=0,\cdots,n$ et comparez le avec l'histogramme des fréquences empiriques.
- 5. On rappelle à nouveau le *Théorème Central Limite* (TCL): Pour toute suite de variables aléatoires $(X_k)_{k\geq 1}$ iid de moyenne $\mu=\mathbb{E}(X_1)$ et de variance finie σ^2 , on a:

$$Z_k := \sqrt{n} \frac{\bar{X}_k - \mu}{\sigma} \quad \stackrel{k \to \infty}{\longrightarrow} \quad Z \sim \mathcal{N}(0, 1), \tag{2}$$

où $\bar{X}_k = (X_1 + \ldots + X_k)/k$ est la moyenne empirique associée à l'échantillon.

- (a) Gérérez un échantillon $(Z_k^i)_{i=1,\ldots,N}$ de taille N=10 de la loi de Z_k pour k=10,30,40.
- (b) Gérérez un échantillon $(Z_k^i)_{i=1,\dots,N}$ de taille $N=10^5$ de la loi de Z_n pour k=10,30,40. Pour tout $k\in\{10,30,40\}$, tracez sur le même graphique l'histogramme empirique associé à l'échantillon $(Z_k^i)_{i=1,\dots,N}$ et la densité

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

d'une loi $\mathcal{N}(0,1)$.

6. Reprendre toute la question 5. mais avec cette fois-ci p=0.5. Comparez les résutats obtenus avec ceux de la question 5.

Exercice 3. (Loi discrète quelconque) Soit X une variable aléatoire prenant ses valeurs dans $\{a_1, a_2, a_3, a_4\}$ avec $a_1 := 0.5$; $a_2 := 1$ $a_3 := 1.5$; $a_4 := 2$ et soit $(p_i)_{i=1,\dots,4}$ les poids associés définis par

$$\begin{cases} p_1 = \mathbb{P}(X = a_1) = 1/4 \\ p_2 = \mathbb{P}(X = a_2) = 1/8 \\ p_3 = \mathbb{P}(X = a_3) = 1/8 \\ p_4 = \mathbb{P}(X = a_4) = 3/8. \end{cases}$$

- 1. Simuler un échantillon indépendant de taille N=10000 de X et tracer l'histogramme des fréquences.
- 2. Comparer l'histogramme au graphe $i \in \{1, \dots, 4\} \mapsto p_i$.

Exercice 4. Ecrivez une fonction qui considère les lois usuelles: *Bernouilli, binomiale, de Poisson, exponentielle, Weibull* et qui, pour une loi choisie:

- 1. Demande en entrée les paramètres de la loi.
- 2. Trace sur le même graphique l'histogramme des fréquences empiriques de Z_k dans (2), pour k=30, et la densité d'une loi normale standard.