Problems in the NDN Data Plane and How to Avoid Them

Maziar Mirzazad-Barijough University of California Santa Cruz

Named Data Networking

Interest Packet

Data Packet

Problem with Current Forwarding Strategies

Undetected Interest Loops

Strategy for Interest Forwarding and Aggregation with Hop-Counts (SIFAH)

Interest Packet

HFAR1: $n(j) \in PIT^i \wedge h^I(k) > h^I(i)$

HFAR2: $n(j) \notin PIT^i \wedge \exists v(v \in S^i_{n(j)^*} \wedge h^I(k) > h(i, n(j)^*, v))$

Loop Detection in SIFAH

Correctness of SIFAH

 Theorem: Interest loops cannot occur and be undetected in a network in which SIFAH is used

 Theorem: SIFAH ensures that an NDO message for name n(j) or a NACK is received within a finite time by any consumer who issues an Interest for NDO with name n(j)

Performance Comparison Storage Complexity:

PIT Storage Size for NDN

$$SS_{NDN} = O((INT + |id|I) |PIT^{i}|_{NDN})$$

PIT Storage Size for SIFAH

 $SS_{SIFAH} = O((INT + |mh|)|PIT^{i}|_{SIFAH})$

Performance Comparison Undetected loops

Custom Loop Scenario

Average PIT Entry Pending Times

Average PIT Table Sizes

Average Round Trip Times

Summary

NDN and CCN may fail to detect interest loops

SIFAH can detect any loops using Hop Count info

Less storage overhead

 In contrast to NDN and CCN, in presence of loops, PIT size, PIT entry pending time and RTTs are not affected using SIFAH.

Future Work

Retransmission Strategies

Decrease Storage Complexity of Routers

Multipath Forwarding of Interests and Data

Questions