Esempi di Spazi vettoriali

L'insieme dei numeri reali

La somma di due numeri reali è un'operazione che associa ad ogni coppia di numeri reali a e b un altro numero reale, indicato con a+b. Quindi la somma è una funzione che ha come dominio $\mathbb{R} \times \mathbb{R}$ e come codominio \mathbb{R} :

$$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$$

 $(a,b) \mapsto a+b.$

La somma di numeri reali è:

- commutativa: a+b=b+a per ogni $a,b\in\mathbb{R}$;
- associativa: (a+b)+c=a+(b+c) per ogni $a,b,c\in\mathbb{R}$;
- ammette elemento neutro, cioè esiste un numero, lo 0, tale che 0 + a = a + 0 = a per ogni $a \in \mathbb{R}$;
- ogni numero reale a ammette opposto, cioè esiste un altro numero, che indichiamo con -a, tale che a + (-a) = 0.

Il prodotto di due numeri reali è un'operazione che associa ad ogni coppia di numeri reali a e b un altro numero reale, indicato con ab. Quindi anche il prodotto è una funzione che ha come dominio $\mathbb{R} \times \mathbb{R}$ e come codominio \mathbb{R} :

$$\begin{array}{cccc}
\cdot : & \mathbb{R} \times \mathbb{R} & \to & \mathbb{R} \\
(a,b) & \mapsto & ab.
\end{array}$$

Il prodotto di numeri reali è:

- commutativo: ab = ba per ogni $a, b \in \mathbb{R}$;
- associativo: (ab)c = a(bc) per ogni $a, b, c \in \mathbb{R}$;
- ammette elemento neutro, cioè esiste un numero, 1, tale che 1a = a1 = a per ogni $a \in \mathbb{R}$;
- distributivo rispetto alla somma: a(b+c) = ab + ac per ogni $a, b, c \in \mathbb{R}$.

Spazi Vettoriali

Definizione 2.3.1 Si dice *spazio vettoriale* reale un insieme V munito di due operazioni dette rispettivamente *somma e prodotto per scalari*:

$$+: V \times V \longrightarrow V \qquad \cdots : \mathbb{R} \times V \longrightarrow V$$

$$(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} + \mathbf{v} \qquad (\lambda, \mathbf{u}) \mapsto \lambda \mathbf{u}$$

che soddisfino le seguenti proprietà:

la somma + è:

- 1. commutativa, cioè $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$, per ogni $\mathbf{u}, \mathbf{v} \in V$;
- 2. associativa, cioè $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;
- 3. ammette un *elemento neutro*, cioè esiste $\mathbf{0} \in V$ tale che $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u}$ per ogni \mathbf{u} in V;
- 4. ogni elemento di V ha un *opposto*, cioè per ogni $\mathbf{u} \in V$ esiste un vettore \mathbf{a} tale che $\mathbf{a} + \mathbf{u} = \mathbf{u} + \mathbf{a} = \mathbf{0}$.

Inoltre valgono le seguenti proprietà:

- 6. $(\lambda \mu)\mathbf{u} = \lambda(\mu \mathbf{u})$, per ogni $\mathbf{u} \in V$ e per ogni $\lambda, \mu \in \mathbb{R}$;
- 7. $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$, per ogni $\mathbf{u}, \mathbf{v} \in V$ e per ogni $\lambda \in \mathbb{R}$;
- 8. $(\lambda + \mu)\mathbf{u} = \lambda \mathbf{u} + \mu \mathbf{u}$, per ogni $\mathbf{u}, \mathbf{v} \in V$ e per ogni $\lambda \in \mathbb{R}$.

Gli elementi di uno spazio vettoriale si dicono vettori mentre i numeri reali si dicono scalari. L'elemento neutro rispetto alla somma in V si chiama $vettore\ nullo$.

Uno spazio vettoriale gode anche delle seguenti proprietà, che sono CONSEGUENZE della definizione e devono essere dimostrate (la dimpstrazione è sul libro)

Proposizione 2.3.5 Sia V uno spazio vettoriale. Allora valgono le seguenti proprietà:

- i) Il vettore nullo è unico e verrà indicato con $\mathbf{0}_V$.
- ii) Se \mathbf{u} è un vettore di V il suo opposto è unico e lo indicheremo con $-\mathbf{u}$.
- iii) $\lambda \mathbf{0}_V = \mathbf{0}_V$, per ogni scalare $\lambda \in \mathbb{R}$.
- iv) $0\mathbf{u} = \mathbf{0}_V$, per ogni $\mathbf{u} \in V$ (si noti il diverso senso dello zero al primo e al secondo membro!).

v) Se $\lambda \mathbf{u} = \mathbf{0}_V$ allora è o $\lambda = 0$ o $\mathbf{u} = \mathbf{0}_V$. vi) $(-\lambda)\mathbf{u} = \lambda(-\mathbf{u}) = -\lambda\mathbf{u}$. opposto di a constant a moliplicato per di a moliplicato per di a moliplicato per di