CS557: Cryptography

Modern Ciphers (Cryptanalysis-2)

S. Tripathy IIT Patna

Present Class

- Cryptography
 - Modern Ciphers
 - Cryptanalysis
 - Linear Cryptanalysis
 - Differential Cryptanalysis

Piling-Up Lemma

Matsui

- If $Pr(V_i = 0) = \frac{1}{2} + e_i$
- $Pr(V_1 \oplus V_2 \oplus ... \oplus V_n = 0) = \frac{1}{2} + 2^{n-1} \prod_{i=1}^{n} e_i$
- · Vi's are independent random variables
- e_i is the bias $-\frac{1}{2} \le e_i \le \frac{1}{2}$

Use to combine linear equations if view each as independent random variable

Linear Bounds

- * Bound a linear equation holds across q rounds: 0
- Cipher has ng rounds
- Estimate upper bound $\leq p^n$
- 2^b possible plaintexts
- Round key bits, output of a round/input to next round not independent
- If $p^n \le 2^{-b}$, no attack

Ex.: Substitution-Permutation Networks

• Example:

- Suppose l=m=Nr=4. Let π_S be defined as follows, where the input and the output are written in hexadecimal:

input	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
output	E	4	D	1	2	F	В	8	3	A	6	С	5	9	0	7

Let π_P be defined as follows:

input	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
output	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

a1a2a3a4

Finding Linear Relationships

b1b2b3b4

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-2	-2	0	0	-2	6	2	2	0	0	2	2	0	0
2	0	0	-2	-2	0	0	-2	-2	0	0	2	2	0	0	-6	2
3	0	0	0	0	0	0	0	0	2	-6	-2	-2	2	2	-2	-2
4	0	2	0	-2	-2	-4	-2	0	0	-2	0	2	2	-4	2	0
5	0	-2	-2	0	-2	0	4	2	-2	0	4	-2	0	-2	-2	0
6	0	2	-2	4	2	0	0	2	0	-2	2	4	-2	0	0	-2
7	0	-2	0	2	2	-4	2	0	-2	0	2	0	4	2	0	2
8	0	0	0	0	0	0	0	0	-2	2	2	-2	2	-2	-2	6
9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	2	0	4	2	-2
Α	0	4	-2	2	-4	0	2	-2	2	2	0	0	2	2	0	0
В	0	4	0	-4	4	0	4	0	0	0	0	0	0	0	0	0
С	0	-2	4	-2	-2	0	2	0	2	0	2	4	0	2	0	2
D	0	2	2	0	-2	4	0	2	-4	-2	2	0	2	0	0	2
Ε	0	2	2	0	-2	-4	0	2	-2	0	0	-2	-4	2	-2	0
F	0	-2	4	-2	-2	0	2	0	0	-2	4	-2	-2	0	2	0

of times equation holds: a1Y1 \oplus a2Y2 \oplus a3Y3 \oplus a4Y4 = b1Z1 \oplus b2Z2 \oplus b3Z3 \oplus b4 Z4

A linear approximation of an SPN:

Finding the Active S-boxes

- The approximation incorporates four active Sboxes:
 - In S_{12} , $T_1 = U_5^1 \oplus U_7^1 \oplus U_8^1 \oplus V_6^1$ has bias $\frac{1}{4}$
 - In S₂₂, $T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$ has bias -1/4
 - In S_{32} , $T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$ has bias -1/4
 - In S_{34} , $T_4 = U_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3$ has bias $-\frac{1}{4}$
- T_1, T_2, T_3, T_4 have biases that are high in absolute value. Further, we will see their XOR will lead to cancellations of "intermediate" random variables.

- Using Piling-up lemma, $T_1 \oplus T_2 \oplus T_3 \oplus T_4$ has bias equal to $2^3(1/4)(-1/4)^3 = -1/32$.
 - Note: we assume the four round v are independent.
- Then T_1, T_2, T_3, T_4 can be expressed in terms of plaintext bits, bits of \mathbf{u}^4 (input to the last round) and key bits as follows:

$$\begin{split} T_1 &= U_5^1 \oplus U_7^1 \oplus U_8^1 \oplus V_6^1 = X_5 \oplus K_5^1 \oplus X_7 \oplus K_7^1 \oplus X_8 \oplus K_8^1 \oplus V_6^1 \\ T_2 &= U_6^2 \oplus V_6^2 \oplus V_8^2 &= V_6^1 \oplus K_6^2 \oplus V_6^2 \oplus V_8^2 \\ T_3 &= U_6^3 \oplus V_6^3 \oplus V_8^3 &= V_6^2 \oplus K_6^3 \oplus V_6^3 \oplus V_8^3 \\ T_4 &= U_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3 &= V_8^2 \oplus K_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3 \end{split}$$

XOR the right side and we get

$$X_{5} \oplus X_{7} \oplus X_{8} \oplus V_{6}^{3} \oplus V_{8}^{3} \oplus V_{14}^{3} \oplus V_{16}^{3}$$

$$\oplus K_{5}^{1} \oplus K_{7}^{1} \oplus K_{8}^{1} \oplus K_{6}^{2} \oplus K_{6}^{3} \oplus K_{14}^{3}$$
(3.1)

• Then replace V_i^3 by U_i^4 and key bits:

$$V_6^3 = U_6^4 \oplus K_6^4$$
 $V_8^3 = U_{14}^4 \oplus K_{14}^4$ $V_{14}^3 = U_8^4 \oplus K_8^4$ $V_{16}^3 = U_{16}^4 \oplus K_{16}^4$

Now substitute them into 3.1:

$$X_{5} \oplus X_{7} \oplus X_{8} \oplus U_{6}^{4} \oplus U_{8}^{4} \oplus U_{14}^{4} \oplus U_{16}^{4}$$

$$\oplus K_{5}^{1} \oplus K_{7}^{1} \oplus K_{8}^{1} \oplus K_{6}^{2} \oplus K_{6}^{3} \oplus K_{14}^{3} \oplus K_{6}^{4} \oplus K_{8}^{4} \oplus K_{14}^{4} \oplus K_{16}^{4} \quad (3.2)$$

- The expression obtained only involves plaintext bits, bits of u⁴ and key bits.
- Suppose the key bits are fixed. Then

$$K_5^1 \oplus K_7^1 \oplus K_8^1 \oplus K_6^2 \oplus K_6^3 \oplus K_{14}^3 \oplus K_6^4 \oplus K_8^4 \oplus K_{14}^4 \oplus K_{16}^4$$

has the (fixed) value 0 or 1.

- It follows that $X_5 \oplus X_7 \oplus X_8 \oplus U_6^4 \oplus U_8^4 \oplus U_{14}^4 \oplus U_{16}^4$ (3.3) has bias -1/32 or 1/32 where the sign depends on the key bits (=0 or =1).
- Suppose that we have T plaintext-ciphertext pairs (denoted by $_{\mathcal{T}}$), all use the same unknown key, K. The attack will allow us to obtain the eight key bits, $K_5^5, K_6^5, K_7^5, K_8^5, K_{13}^5, K_{14}^5, K_{15}^5, K_{16}^5$
- There are 28=256 possibilities for the eight key bits. We refer to a binary 8-tuple as a candidate subkey.

- For each $(x,y) \in \tau$ and for each candidate subkey, compute a partial decryption of y and obtain the resulting value for $u_{(2)}^4$, $u_{(4)}^4$
- Then we compute the value

$$x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$$
 (3.4)

- We maintain an array of counters indexed by the 256 possible candidate subkeys, and increment the counter corresponding to a particular subkey when (equation 3.4) has the value 0.
- At the end, we expect most counters will have a value close to T/2, but the correct candidate subkey will close to $T/2\pm T/32$.

Linear Cryptanalysis Origins

- Linear cryptanalysis first defined on Feal by Matsui and Yamagishi, 1992.
 - Matsui later published a linear attack on DES.
- 16-round DES can be attacked using 2⁴³ known plaintexts - get 26 bits, brute force the remaining 30 bits
 - $2^{43} = 9 \times 10^{12} = 9$ trillion known plaintext blocks

Notation

- P = plaintext
- C = ciphertext
- (P1,P2) = plaintext pair
- (C1,C2) = ciphertext pair
- $\Delta P = P1 \oplus P2$
- $\Delta C = C1 \oplus C2$
- Characteristic: $\Omega = (\lambda_{i1}, \lambda_{o1}, \lambda_{i2}, \lambda_{o2}, \dots, \lambda_{ir}, \lambda_{or})$
 - $\lambda_{i,j} = \bigoplus$ of inputs to round j
 - $\lambda_{oj} = \oplus$ of outputs from round j
 - If pr_j = probability λ_{oj} occurs given λ_{ij}
 - then probability of $\Omega = \Pi \operatorname{pr}_{j}$'s (upper bound)

- Differential cryptanalysis originally defined on DES
 Eli Biham and Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer Verlag, 1993.
- The main difference from linear attack is that differential attack involves comparing the XOR of two inputs to the XOR of the corresponding outputs.
- Differential attack is a chosen-plaintext attack.
- We consider inputs x and x* having a specified XOR value denoted by $x' = x \oplus x^*$
- We decrypt y and y* using all possible key and determine if their XOR has a certain value. Whenever it does, increment the corresponding counter. At the end, we expect the largest one is the most likely subkey.

• It is easy to see that any set $\Delta(x')$ contains 2^m pairs, and that

$$\Delta(x') = \{(x, x \oplus x') : x \in \{0,1\}^m\}$$

- For each pair in $\Delta(x')$, we can compute the output XOR of the S-box. Then we can tabulate the distribution of output XORs. There are 2^m output XORs which are distributed among 2^n possible values.
 - A non-uniform output distribution will be the basis for a successful attack.

			<u> </u>				- , -	. •		
X	x *	У	y *	y'			•			
0000	1011	1110	1100	0010		0000	0	1000	0	1
0001	1010	0100	0110	0010		0000	0	1000	0	
0010	1001	1101	1010	0111		0001	0	1001	0	
0011	1000	0001	0011	0010		0010	8	1010	0	1
0100	1111	0010	0111	0101	6	0010	O	1010	U	
0101	1110	1111	0000	1111	' B	0011	0	1011	0	ľ
0110	1101	1011	1001	0010		0100	0	1100	0	1
0111	1100	1000	0101	1101	001,10					4
1000	0011	0011	0001	0010	le, wh	0101	2	1101	2	I
1001	0010	1010	1101	0111	, Witt	0110	0	1110	0	1
1010	0001	0110	0100	0010	1011,					1
1011	0000	1100	1110	0010	c), y* =	0111	2	1111	2	
1100	0111	0101	1000	1101		105 (30	/ / ,			
1101	0110	1001	1011	0010	<i>y</i> *					
1110	0101	0000	1111	1111						
1111	0100	0111	0010	0101						

Distribution table for x'=1011

								Out	out D	iffere	ence						
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	1	0	0	0	2	0	0	0	2	0	2	4	0	4	2	0	0
n	2	0	0	0	2	0	6	2	2	0	2	0	0	0	0	2	0
p	3	0	0	2	0	2	0	0	0	0	4	2	0	2	0	0	4
u t	4	0	0	0	2	0	0	6	0	0	2	0	4	2	0	0	0
`	5	0	4	0	0	0	2	2	0	0	0	4	0	2	0	0	2
D	6	0	0	0	4	0	4	0	0	0	0	0	0	2	2	2	2
i	7	0	0	2	2	2	0	2	0	0	2	2	0	0	0	0	4
f	8	0	0	0	0	0	0	2	2	0	0	0	4	0	4	2	2
f	9	0	2	0	0	2	0	0	4	2	0	2	2	2	0	0	0
е	Α	0	2	2	0	0	0	0	0	6	0	0	2	0	0	4	0
r	В	0	0	8	0	0	2	0	2	0	0	0	0	0	2	0	2
e n	С	0	2	0	0	2	2	2	0	0	0	0	2	0	6	0	0
l c	D	0	4	0	0	0	0	0	4	2	0	2	0	2	0	2	0
e	Е	0	0	2	4	2	0	0	0	6	0	0	0	0	0	2	0
	F	0	2	0	0	6	0	0	0	0	4	0	2	0	0	2	0

Difference distribution table: values of $N_D(x',y')$

 $N_D(x',y')$ counts the number of pairs with input XOR equal to x' and output XOR equal to y'.

 $\Delta P = [0000 \ 1011 \ 0000 \ 0000]$

Ex.: A differential trail for a SPN

Differential Cryptanalysis Attack Overview

- Determine key bits of last round:
 - Choose pairs (P1,P2) such that ΔP provides λ_{i1} .
 - Decrypt ciphertext with key guess for last round
 - Count # of (C1,C2) pairs such that match characterstic
 - Assume correct key bits is guess with highest count.

Reading Assignment:

Ref: A Tutorial on Linear and Differential Cryptanalysis By H.M. Hey https://www.engr.mun.ca/~howard/PAPERS/Idc_tutorial.pdf