

средняя линия треугольника CSF). Поскольку SF = SD = SA = 2a, треугольник FDS равнобедренный с основанием $DF = a\sqrt{3}$. Следовательно, косинус искомого угла равен

$$\frac{\frac{1}{2}DF}{SF} = \frac{\frac{a\sqrt{3}}{2}}{2a} = \frac{\sqrt{3}}{4}.$$

Подготовительные задачи

- **1.** Дан куб $ABCDA_1B_1C_1D_1$. Найдите углы между прямыми: а) AA_1 и BC; б) AA_1 и BD; в) AA_1 и BD_1 ; г) BA_1 и CB_1 ; д) CA_1 и BC_1 .
- **2.** Дан правильный тетраэдр ABCD. Точки K, M и N середины рёбер BD, AB и AC соответственно. Найдите углы между прямыми: а) AB и CD; б) DM и BC; в) DM и BN; г) AK и BN.
- **3.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Все рёбра пирамиды равны, M середина бокового ребра SD. Найдите углы между прямыми: a) AS и BD; б) AS и CD; в) SA и CM; г) SB и CM.
- **4.** Дана правильная треугольная призма $ABCA_1B_1C_1$. Боковое ребро AA_1 равно стороне основания ABC. Точка M середина ребра BC. Найдите углы между прямыми: а) AC и B_1C_1 ; б) AA_1 и BC_1 ; в) AM и BC_1 ; г) BC_1 и CA_1 .
- **5.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$. Боковое ребро AA_1 равно стороне основания ABCDEF. Найдите углы между прямыми: а) EA_1 и AB; б) BE_1 и AF; в) BD_1 и CD; г) BE_1 и AB_1 .
- **6.** Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Боковое ребро вдвое больше стороны основания. Найдите углы между прямыми: а) SB и AF; б) SC и AE; в) SB и AE; г) SB и AD.

Задачи на доказательство и вычисление

- **2.1.** Дана треугольная пирамида *ABCD*.
- а) Постройте её сечение плоскостью, проходящей через середину ребра AB параллельно рёбрам AD и BC.
- б) Найдите угол между прямыми AD и BC, если AD = 24, BC = 10, а расстояние между серединами рёбер BD и AC равно 13.
 - **2.2.** Точка K лежит на ребре AD треугольной пирамиды ABCD.
- а) Постройте сечение пирамиды плоскостью α , проходящей через точку K параллельно рёбрам AB и CD.
- б) Пусть M точка пересечения плоскости α с ребром BC. Найдите угол между прямыми AB и CD, если K середина ребра AD, AB = 8, CD = 6, KM = 5.
- **2.3.** В правильной шестиугольной пирамиде SABCDEF с вершиной S точка M середина бокового ребра SC.
- а) Постройте точку пересечения прямой BM с плоскостью грани ESF.
 - б) Найдите угол между прямыми *BM* и *DE*.
- **2.4.** Точка G лежит на боковом ребре SC правильной шестиугольной пирамиды SABCDEF с вершиной S.
- а) Постройте точку пересечения прямой BG с плоскостью боковой грани ESF.
- б) Найдите угол между прямыми BG и AD, если стороны основания пирамиды равны 6, боковые рёбра равны $3\sqrt{13}$, а SG:GC=1:2.
- **2.5.** Основания призмы $ABCA_1B_1C_1$ равносторонние треугольники. Точки M и M_1 центры оснований ABC и $A_1B_1C_1$ соответственно.
 - а) Докажите, что угол между прямыми BM и C_1M_1 равен $60^\circ.$
- б) Найдите угол между прямыми BM_1 и C_1M , если призма прямая и $AB:AA_1=3:2$.
- **2.6.** Основание прямой призмы $ABCA_1B_1C_1$ равнобедренный прямоугольный треугольник ABC с прямым углом при вершине C. Точка M середина ребра AB. Известно, что $AB = 2AA_1$.
 - а) Докажите, что прямые A_1C и MB_1 перпендикулярны.
 - б) Найдите угол между прямыми AC_1 и MB_1 .
- **2.7.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$ со стороной основания $\sqrt{3}$ и боковым ребром 1.
 - а) Докажите, что плоскости ACA_1 и B_1CE_1 перпендикулярны.
 - б) Найдите угол между прямыми BF_1 и CD_1 .

- **2.8.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$.
- а) Докажите, что плоскости AB_1F и ACC_1 перпендикулярны.
- б) Найдите угол между прямыми AB_1 и CF_1 , если $AA_1 = AB\sqrt{2}$.
- **2.9.** Основание пирамиды SABCD параллелограмм ABCD. Точка K лежит на ребре SD и отлична от S и D.
- а) Может ли сечение пирамиды плоскостью, проходящей через прямую AB и точку K, быть параллелограммом?
- б) Пусть K середина ребра SD, M середина ребра AB, а пирамида SABCD правильная, причём все её рёбра равны. Найдите угол между прямыми AK и SM.
- **2.10.** Основание пирамиды SABCD параллелограмм ABCD. Точ-ка K середина ребра SD.
- а) Плоскость проходит через точку K параллельно медианам BM и SN граней BSC и ASD. Постройте прямую пересечения этой плоскости с плоскостью основания пирамиды.
- б) Найдите угол между прямыми BM и SN, если пирамида SABCD правильная, причём все её рёбра равны.
- **2.11.** Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Точки K и L центры граней BB_1C_1C и $A_1B_1C_1D_1$ соответственно.
- а) Докажите, что точка пересечения прямой KL с плоскостью основания ABCD равноудалена от вершин B и C.
- б) Пусть M середина ребра CD. Найдите котангенс угла между прямыми MD_1 и KL, если известно, что $AB = 2AA_1$.
- **2.12.** Дан параллелепипед $ABCDA_1B_1C_1D_1$. Точка M середина ребра A_1B_1 .
- а) Докажите, что любая плоскость, проведённая через точку M параллельно диагонали CA_1 параллелепипеда, проходит через центр грани BB_1C_1C .
- б) Найдите угол между прямыми BM и CB_1 , если параллелепипед прямоугольный, AB = 2BC и $CC_1 : BC = 4 : 3$.
- **2.13.** Основание пирамиды SABCD квадрат ABCD, высота пирамиды проходит через точку D.
- а) Докажите, что все боковые грани пирамиды прямоугольные треугольники.
- б) Пусть M середина бокового ребра SC. Найдите угол между прямыми AM и BC, если известно, что отношение высоты пирамиды к стороне её основания равно $\sqrt{11}$.

- **2.14.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Точки M и N середины рёбер AB и SC.
- а) Постройте сечение пирамиды плоскостью, проходящей через прямую MN параллельно SA.
- б) Найдите угол между прямыми SA и MN, если боковое ребро пирамиды равно стороне основания.
- **2.15.** В основании пирамиды DABC лежит прямоугольный треугольник ABC с прямым углом при вершине C. Высота пирамиды проходит через точку B.
- а) Докажите, что отрезок, соединяющий середины рёбер BC и AD, равен отрезку, соединяющему середины рёбер AB и CD.
- б) Найдите угол между прямой BD и прямой, проходящей через середины рёбер BC и AD, если известно, что BD = AC.
- **2.16.** Дана правильная треугольная призма $ABCA_1B_1C_1$. На ребре BC взята точка M, причём BM:CM=1:2.
- а) Докажите, что плоскость, проходящая через центры граней $A_1B_1C_1$ и BB_1C_1C параллельно ребру AC, проходит через точку M.
- б) Пусть K середина ребра A_1C_1 , N центр грани BB_1C_1C . Найдите угол между прямыми B_1K и MN, если $AC=18\sqrt{3}$, $AA_1=\sqrt{13}$.
- **2.17.** Основание призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ правильный шестиугольник ABCDEF.
 - а) Постройте точку пересечения прямой B_1E с плоскостью ACD_1 .
- б) Найдите угол между прямыми AB_1 и BD_1 , если призма правильная, а $AA_1:AB=\sqrt{3}:1$.
- **2.18.** Дана прямая призма $ABCA_1B_1C_1$. Плоскость, проходящая через центр основания $A_1B_1C_1$ и середину K ребра BC, параллельна прямой AB. Эта плоскость пересекает прямую CC_1 в точке L.
 - а) Докажите, что $CL = 3CC_1$.
- б) Найдите угол между прямыми KL и AC_1 , если $\angle ACB = 90^\circ$ и $AA_1 = AC = \frac{1}{4}BC$.
- **2.19.** В основании пирамиды SABCD лежит трапеция ABCD с основаниями AD и BC и прямым углом при вершине A, причём BC = 2AD. Высота пирамиды проходит через точку A.
- а) Докажите, что сечение пирамиды плоскостью, проходящей через прямую AD и середину M ребра SC, прямоугольник.
- б) Найдите косинус угла между прямыми AM и CD, если известно, что AD = AB и $SA = \sqrt{3}AB$.
- **2.20.** В основании пирамиды *SABCD* лежит равнобедренная трапеция *ABCD* с основаниями *AD* и *BC*. Высота пирамиды проходит че-

рез точку A, SH — высота треугольника BSC. Известно, что BC = 2AD, AB = AD = 2SA.

- а) Докажите, что SH = CD.
- б) Найдите косинус угла между прямыми CD и SH.
- **2.21.** Основание ABCD прямой призмы $ABCDA_1B_1C_1D_1$ ромб с острым углом 60° при вершине A. Точка M середина ребра CD, точка H лежит на стороне AB, причём DH высота ромба ABCD.
 - а) Докажите, что $D_1M \perp DH$.
 - б) Найдите угол между прямыми MD_1 и BC_1 , если $\angle ABA_1 = 60^\circ$.
- **2.22.** Основание прямой призмы $ABCDA_1B_1C_1D_1$ равнобедренная трапеция ABCD с основаниями AD=2BC и боковой стороной AB=BC.
 - а) Докажите, что $AB \perp DB_1$.
- б) Найдите угол между прямыми CD_1 и DB_1 , если боковая грань AA_1D_1D квадрат.
- **2.23.** Две правильные пирамиды DABC и FABC имеют общее основание ABC и расположены по разные стороны от него. Все плоские углы при вершинах D и F прямые.
- а) Докажите, что угол между плоскостями ADB и AFB равен углу между прямыми CD и CF.
- б) Найдите угол между прямыми AD и BF, если боковые рёбра каждой пирамиды равны 1.
- **2.24.** Две правильные четырёхугольные пирамиды EABCD и FABCD имеют общее основание ABCD и расположены по разные стороны от него. Точки M и N середины рёбер BC и AB соответственно. Все рёбра пирамид равны.
 - а) Докажите, что угол между прямыми AE и BF равен 60° .
 - б) Найдите угол между прямыми *EM* и *FN*.