Расчет цепей переменного тока

Действующие значения переменного тока

- Действующим значением переменного тока называется такой постоянный ток, который на одинаковом сопротивлении R за время, равное одному периоду, выделяет такое же количество тепла, что и данный переменный ток за то же время.
- Действующие значения обозначают большими буквами без индексов: I, U, E.
- Хействующее значение переменного тока I (E, U) значение силы тока (напряжения, э.д.с.) в √2 раз меньше амплитудного значения

Действующие (или эффективные) значения тока и

напряжения:

$$I = \frac{I_m}{\sqrt{2}} \qquad U = \frac{U_m}{\sqrt{2}}$$

$$\sqrt{2}=1,41$$

Тогда при действующим значении напряжения в бытовой электросети U = 220 B Амплитуда максимального значения

напряжения будет *u*_m = 220•1,41=310 В

АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

 Электрические устройства, преобразующие электрическую энергию во внутреннюю, называются активными сопротивлениями.

АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Активное сопротивление в цепи переменного тока зависит:

$$R = \rho \frac{\iota}{S}$$

Конденсатор в цепи переменного тока

Величину, обратную произведению циклической частоты ω на электроемкость С, называют емкостным сопротивлением.

$$Xc = 1/\omega C$$

Частота — число полных колебаний за единицу времени.

$$f = \frac{N}{t}$$

Измеряется в Герцах

 \blacksquare Циклическая (круговая) частота колебаний – частота , равная числу колебаний , совершаемых материальной точкой за $\frac{2\pi}{2}$

совершаемых материальной точкой за

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Измеряется в радианах в секунду

Пример:

Конденсатор емкостью 10 мкф включен в цепь переменного тока частотой f= 50 Гц найти емкостное сопротивление конденсатору Хс Ом

$$Xc = \frac{1}{\omega C}$$
 $\omega = 2\pi f = 2 \cdot 3,14 \cdot 50 = 314$ рад/сек
 $C = 10$ мкф или 0,00001 ф
 $Xc = \frac{1}{\omega C} = \frac{1000000}{314 \cdot 10} = 318,4$ Ом

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Индуктивное сопротивление- величина, характеризующее сопротивление, оказываемое переменному току индуктивностью цепи

Индуктивность в цепи переменного тока

Катушка индуктивности оказывает сопротивление проходящему по ней переменному току. ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и, наоборот, поддерживает его при убывании. Сопротивление вызывается в конечном счете индуктивностью катушки и называется оно индуктивным сопротивлением.

Графики тока и напряжения на индуктивности:

$$X_L = \omega L = 2\pi \gamma L$$

Где:

L - это индуктивность катушки, измеряется в Генри (Гн);

 ω - угловая <u>частота</u> переменного тока (рад/сек).

f – частота тока в Гц
 π – 3,14

Частота — число полных колебаний за единицу времени.

$$f = \frac{N}{t}$$

Измеряется в Герцах

• Циклическая (круговая) частота колебаний — частота, равная числу колебаний, совершаемых материальной точкой за $\frac{2\pi}{c}$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Измеряется в радианах в секунду

Пример:

Катушка индуктивностью L= 100 Гн включена в цепь переменного тока частотой f= 50 Гц найти индуктивное сопротивление катушки X_L Ом

$$X_L=\omega \cdot L$$
 $\omega = 2\pi f = 2 \cdot 3,14 \cdot 50 = 314$ рад/сек $X_L=\omega \cdot L = 314 \cdot 100 = 31400$ Ом

Полное сопротивление цепи переменного тока.

при последовательном соединении активного и реактивного сопротивления.

Z – полное сопротивление цепи

R – активное сопротивление

$$R = \rho \frac{l}{S}$$

ω L − индуктивное (реактивное) сопротивление катушки

Задача:

Найти полное сопротивление катушки индуктивности Z=? в цепи переменного тока частотой f-100 Гц если активное сопротивление провода катушки R-200 Ом а индуктивность L-0,5 Гн

$$Z = \sqrt{R^2 + (\omega L)^2}$$

$$X_L=\omega \cdot L$$
 $\omega = 2\pi f = 2 \cdot 3,14 \cdot 100 = 628$ рад/сек $X_L=\omega \cdot L = 628 \cdot 0,5 = 314$ Ом

$$Z = \sqrt{200^2 + 314^2} = 372,3 \text{ Om}$$

Задача №1:

Найти полное сопротивление катушки индуктивности Z=? в цепи переменного тока частотой f-50 Гц если активное сопротивление провода катушки R- 100 Ом индуктивность L- 0,1 Гн

Полное сопротивление цепи с активным сопротивлением и емкостью.

Z – полное сопротивление цепи

R – активное сопротивление

1/СС – емкостное (реактивное) сопротивление конденсатора

Задача №2:

Найти полное сопротивление активного сопротивления и конденсатора Z=? в цепи переменного тока частотой *f*-50 Гц если активное сопротивление R- 10 Ом емкость конденсатора С — 0,1 мкф

Полное сопротивление цепи содержащей R, L и C.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

$$X = X_L - X_C = \omega L - \frac{1}{\omega C}$$

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (X_1 или X_2 преобладает).

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

- **Z** полное сопротивление цепи
- **R** активное сопротивление
- **СО L** − индуктивное (реактивное) сопротивление катушки
- **1/**ωС емкостное (реактивное) сопротивление конденсатора

Задача №3:

Найти полное сопротивление цепи переменного тока Z=? частотой f-50 Гц если активное сопротивление провода катушки R- 20 Ом а индуктивность L- 0,1 Гн емкость конденсатора C – 0,1 мкф

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

$$Z = \frac{R \omega L}{\sqrt{R^2 + (\omega L)^2}}$$

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

$$Z = \frac{R \frac{1}{\omega C}}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}$$

Резонанс токов и напряжений

 Резонанс напряжений возникает в последовательной RLC цепи

 Максимальный ток + перенапряжения!!!

 Резонанс токов возникает в параллельно соединенными катушкой, резистором и конденсатором

Теоретически бесконечное индуктивное сопротивление!!!

сопротивление цепи становится минимальным ТОК становится максимальным.

мощность в цепи переменного тока

$$S = \sqrt{P^2 + (Q_L - Q_C)^2}$$
 $Q = Q_L - Q_C$ $\cos \varphi = \frac{P}{S}$ где S – полная мощность, BA Q – реактивная мощность, BAp QL – индуктивная мощность, BAp QC – емкостная мощность, BAp P – активная мощность, P P – активная мощность

Мощность в цепи переменного тока

Вид мощности	Обозн ачени е	Единицы измерения	Формула	
Активная	Р	Вт (Ватты)	P = U*I*cosφ	
Реактивная	Q	Вар (Вольт- амперы реактивные)	Q = U*I*sinφ	
Полная	S	ВА (Вольт- амперы)	$S = \sqrt{P_{\cdot}^2 + Q_{\cdot}^2}$	
Коэффициент мощности переменного тока	Cosφ Sinφ		Cosφ = P/S Sinφ = Q/S	

Закон Ома в цепи переменного тока

$$I = \frac{U}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

- полное сопротивление цепи

Мощность в цепи переменного тока

- Действующие <u>значения</u> напряжения и силы тока фиксируются электроизмерительными <u>приборами</u> и позволяют непосредственно <u>вычислять</u> мощность <u>переменного тока</u>.
- □ Мощность в цепи ПЕРЕМЕННОГО ТОКА <u>определяется</u> теми же <u>соотношениями</u>, что и мощность ПОСТОЯННОГО ТОКА, в которые вместо силы постоянного тока и постоянного напряжения соответствующие ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ:

$$P = U \cdot I$$

Когда между напряжением и силой тока СДВИГ ФАЗ, мощность определяется по формуле:

$$P = U \cdot I \cdot \cos \varphi$$

Расчетная работа №8

ТЕМА: «Расчет цепи переменного тока»

- 1. Зарисовать расчетную схему.
- 2. Выполнить расчеты X_L,Xc ,Z, I, P,Q ,S, $\cos \varphi$
- 3. Полученные данные записать в таблицу

Найти индуктивное XL, емкостное XC и полное Z сопротивление цепи переменного тока а так же активную P (Вт), реактивную Q (Вар) и полную мощность S (ВА)цепи.

 $\cos \varphi = ?$

Таблица ответов

Дано				Найти								
R	L	С	f	U	XL	Xc	Z	1	Р	Q	S	$\cos \boldsymbol{\varphi}$
(OM)	(Гн)	мкф	(Гц	(B)	(OM)	(OM)	(OM)	(A)	(Вт)	(Bap)	(BA)	
100	0,04	0,2	200	50								

Nº	Дано								
варианта	R	L	С	f	U				
	(OM)	(Гн)	мкф	(Гц	(B)				
1	100	0,04	0,2	200	50				