<400> 2

ccgtgctcat ggtgtccttt c

SEQUENCE LISTING

<110>	GARVER, Eric TU, Guang-Chou	
	ISRAEL, Yedy	
<120>	METHODS OF INHIBITING ALCOHOL CONSUMPTION	
<130>	9855-3U2	
	NOT YET ASSIGNED 2001-08-17	
	US 60/051,705 1997-07-03	
	US 09/109,663 1998-07-02	
<160>	111	
<170>	PatentIn Ver. 2.1	
<210>	1	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	1	
cctcg	ctgag ttctgccggc t	21
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	

<210><211><211><212><213>	· 21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	3	
gatca	tgctt tccgtgctca t	21
<210> <211>	21	
<212>		
\Z13/	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	4	
	tcacc tcctccttgt t	21
<210>		
<211> <212>		
	Artificial Sequence	
	1044000	
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	5	
acact	tactg agtgtgaggg t	21
<210>		
<211> <212>		
	Artificial Sequence	
,		
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	

<400>	6 acct acgacgtggg c	21
<210>	7	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	7	
gtcgcc	tcac agagcaatga c	21
<210>	8	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	0	
	gttoc gaaagoocat t	21
agrgas	gette gaaageeeat t	
<210>	9	
<211>	21	
<212>	DNA	
<21,3>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
2400:		
<400>		21
ggcat	cgaca ttcggggatc c	4 1
<210>	1.0	
<211>		
<212>		
	Artificial Sequence	
·	±	

<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	10	
tgatco	cactc cccctccac t	21
<210>	11	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	11	
	ttgtg agccagaggc a	21
cagee		
<210>	12	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<100×	10	
 <400>	cctga gacatcttca g	21
99499		
4010:	12	
<210><211>		
<211>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	. 13	
	aggaa ggaaggaagg g	21
2222		

<210><211><211><212><213>	21			
<220> <223>	Description of Artificial TNF(alpha) ASO	Sequence:	Candidate	
<400>	14 ggagg gaaggaagga a			21
<210> <211> <212> <213>	20			
<220> <223>	Description of Artificial TNF(alpha) ASO	Sequence:	Candidate	
<400>	15 cgtaa ggaaggctgg			20
<210><211><211><212><213>	21			
<220> <223>	Description of Artificial TNF(alpha) ASO	Sequence:	Candidate	
<400> aataat	16 aaat aataaataaa t			21
<210><211><211><212><213>	21			
<220> <223>	Description of Artificial TNF(alpha) ASO	Sequence:	Candidate	

<400> ttccca		21
<210>	18	
<211>	21	
<212>	AND	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>		21
cccccg	gatec acteaggeat e	<u> </u>
<210>	19	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>		0.1
actcc	cccga tccactcagg c	21
<210>	20	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
40005		
<220>	Description of Artificial Sequence: Candidate	
~ <2232	TNF(alpha) ASO	
	III (alpha) 120	
<400>	20	
tccact	tocco ogatocaeto a	21
•		
/210>	21	
<210> <211>		
<211>		
	Artificial Seguence	

<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	21 eacto cocogatoca c	21
<220>	21	
<400>		21
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400> actcc	23 cccct ccactcccc g	21
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400> tccac	24 etcece cetecactee c	21

	H
	iştî
THE RESERVE THE SAME SAME SAME SAME SAME SAME SAME SAM	
TO THE STATE OF TH	
to the	, in .
to the	
to the	
	er er
The state of	The same
#å	
To the	Time.
A STATE OF	Fee. B
integr	
	53

<211> <212> <213>		
12107		
<220>		
<223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	25	
	cacto coccotocac t	21
<210>	26	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	26	
	ateca etececete e	21
, ,		
<210>		
<211><212>		
	Artificial Sequence	
12137	ALCITICAL CONTROL	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
	A.D.	
<400>		21
gcagc	ctgat ccactccccc c	2.1
<210>	28	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	28	

gaggca	geet gatecaetee e	21
<210>	20	
<211>		
<212>		
	Artificial Sequence	
1210		
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>		0.1
agtgg	agggg ggagtggatc a	21
<210>	3.0	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	30 actgc tacctcacct c	21
CCCCC	actige taccicacci c	
<210>	31	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	২1	
	ccct ccactccc	19
<210>	32	
<211>	18	
<212>		
<213>	Artificial Sequence	
	•	
<220>		

THE RESERVE OF THE PARTY OF THE

<223> Description of Artificial Sequence: Candidate TNF(alpha) ASO

<400> 32 tccactcccc cgatccac

18

<210> 33 <211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Candidate TNF(alpha) ASO

<400> 33

tgatccactc ccccct

16

<210> 34 <211> 3634 <212> DNA

<213> Homo sapiens

<400> 34

gaattccggg tgatttcact cccggctgtc caggcttgtc ctgctacccc acccagcctt 60 teetgaggee teaageetge caccaageee ceageteett eteeegeag gaeecaaaca 120 caggeeteag gaeteaacae agetttteee tecaaceegt ttteteteee teaacggaet 180 cagetttetg aageceetee eagttetagt tetatetttt teetgeatee tgtetggaag 240 ttagaaggaa acagaccaca gacctggtcc ccaaaagaaa tggaggcaat aggttttgag 300 gggcatgggg acggggttca gcctccaggg tcctacacac aaatcagtca gtggcccaga 360 agacccccct cggaatcgga gcagggagga tggggagtgt gaggggtatc cttgatgctt 420 qtqtqtcccc aactttccaa atccccqccc ccqcqatqqa qaaqaaaccq agacagaagg 480 tgcagggccc actaccgctt cctccagatg agctcatggg tttctccacc aaggaagttt 540 teegetggtt gaatgattet tteecegeee teetetegee eeagggacat ataaaggeag 600 ttgttggcac acccagccag cagacgctcc ctcagcaagg acagcagagg accagctaag 660 agggagagaa gcaactacag acccccctg aaaacaaccc tcagacgcca catcccctga 720 caagetgeca ggeaggttet etteetetea cataetgace caeggettea ecetetetee 780 cctggaaagg acaccatgag cactgaaagc atgatccggg acgtggagct ggccgaggag 840 gcgctcccca agaagacagg ggggccccag ggctccaggc ggtgcttgtt cctcagcctc 900 ttctccttcc tgatcgtggc aggcgccacc acgctcttct gcctgctgca ctttggagtg 960 ateggeeece agagggaaga ggtgagtgee tggeeageet teatecaete teecaeecaa 1020 ggggaaatga gagacgcaag agagggagag agatgggatg ggtgaaagat gtgcgctgat 1080 agggagggat gagagagaaa aaaacatgga gaaagacggg gatgcagaaa gagatgtggc 1140 aagagatggg gaagagaga agagaaagat ggagagacag gatgtctggc acatggaagg 1200 tgctcactaa gtgtgtatgg agtgaatgaa tgaatgaatg aatgaacaag cagatatata 1260 aataagatat ggagacagat gtggggtgtg agaagagaga tgggggaaga aacaagtgat 1320

```
atgaataaag atggtgagac agaaagagcg ggaaatatga cagctaagga gagagatggg 1380
qqaqataaqq aqaqaaqaaq ataqqqtqtc tqqcacacaq aagacactca gggaaagagc 1440
tgttgaatgc tggaaggtga atacacagat gaatggagag agaaaaccag acacctcagg 1500
gctaagagcg caggccagac aggcagccag ctgttcctcc tttaagggtg actccctcga 1560
tgttaaccat teteettete eccaacagtt ecceagggae etetetetaa teageeetet 1620
ggcccaggca gtcagtaagt gtctccaaac ctctttccta attctgggtt tgggtttggg 1680
ggtagggtta gtaccggtat ggaagcagtg ggggaaattt aaagttttgg tcttggggga 1740
ggatggatgg aggtgaaagt aggggggtat tttctaggaa gtttaagggt ctcagctttt 1800
tettttetet etectettea ggateatett etegaaceee gagtgacaag eetgtageee 1860
atgttgtagg taagagetet gaggatgtgt ettggaactt ggagggetag gatttgggga 1920
ttgaagcccg gctgatggta ggcagaactt ggagacaatg tgagaaggac tcgctgagct 1980
caagggaagg gtggaggaac agcacaggcc ttagtgggat actcagaacg tcatggccag 2040
gtgggatgtg ggatgacaga cagagaggac aggaaccgga tgtggggtgg gcagagctcg 2100
agggecagga tgtggagagt gaaccgacat ggecacactg actetectet cectetetee 2160
ctccctccag caaaccctca agetgagggg cagetccagt ggetgaaccg cegggecaat 2220
gccctcctgg ccaatggcgt ggagctgaga gataaccagc tggtggtgcc atcagagggc 2280
ctgtacctca tctactccca ggtcctcttc aagggccaag gctgcccctc cacccatgtg 2340
ctcctcaccc acaccatcag ccgcatcgcc gtctcctacc agaccaaggt caacctcctc 2400
tetgecatea agageceetg ceagagggag acceeagagg gggetgagge eaagecetgg 2460
tatgagecea tetatetggg aggggtette cagetggaga agggtgaeeg aeteageget 2520
gagatcaatc ggcccgacta tctcgacttt gccgagtctg ggcaggtcta ctttgggatc 2580
attgccctgt gaggaggacg aacatccaac cttcccaaac gcctcccctg ccccaatccc 2640
tttattaccc cctccttcag acaccctcaa cctcttctgg ctcaaaaaaga gaattggggg 2700
cttagggtcg gaacccaagc ttagaacttt aagcaacaag accaccactt cgaaacctgg 2760
gattcaggaa tgtgtggcct gcacagtgaa gtgctggcaa ccactaagaa ttcaaactgg 2820
ggcctccaga actcactggg gcctacagct ttgatccctg acatctggaa tctggagacc 2880
agggagcctt tggttctggc cagaatgctg caggacttga gaagacctca cctagaaatt 2940
gacacaagtg gaccttaggc cttcctctct ccagatgttt ccagacttcc ttqaqacacg 3000
gagcccagcc ctccccatgg agccagctcc ctctatttat gtttgcactt gtgattattt 3060
attatttatt tattatttat ttatttacag atgaatgtat ttatttggga gaccggggta 3120
tectggggga cecaatgtag gagetgeett ggeteagaea tgtttteegt gaaaaeggag 3180
ctgaacaata ggctgttccc atgtagcccc ctggcctctg tgccttcttt tgattatgtt 3240
ttttaaaaata tttatctgat taagttgtct aaacaatgct gatttggtga ccaactgtca 3300
ctcattgctg agectctgct ccccagggga gttgtgtctg taatcgccct actattcagt 3360
ggcgagaaat aaagtttgct tagaaaagaa acatggtctc cttcttggaa ttaattctgc 3420
atetgeetet tettgtgggt gggaagaage teeetaagte eteteteeae aggetttaag 3480
atccctcgga cccagtccca tccttagact cctagggccc tggagaccct acataaacaa 3540
agcccaacag aatattcccc atcccccagg aaacaagagc ctgaacctaa ttacctctcc 3600
ctcagggcat gggaatttcc aactctggga attc
                                                                  3634
```

```
<210> 35 <211> 19
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Known

effective ASO

THE RESIDENCE OF THE PERSON OF

<400> 35 cctgctcccc cctggctcc	19
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Known effective ASO	
<400> 36 ccccaccac ttcccctctc	20
<210> 37 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Known effective ASO	
<400> 37 cccccaccac ttcccctctc a	21
<210> 38 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400> 38 tagacgataa aggggtcaga g	21
<210> 39 <211> 21 <212> DNA	

direction.	100	13.00
100	1	Park.
**		1
4		in the same
****	Beer	44444
*****	3	*****
-	F	Phone
ş		
****	4F8	diana.
3	1	Hereit.
	==	;
5	1	Street
		Hereit
	14	

<:	213>	Artificial Sequence	
<	220>		
		Description of Artificial Sequence: Candidate	
		TNF(alpha) ASO	
	400>		21
С	agtct	eggga agetetgagg g	
<	210>	40	
<	211>	19	
	212>		
<	213>	Artificial Sequence	
<	:220>		
		Description of Artificial Sequence: Candidate	
		TNF(alpha) ASO	
	(400>	4.0	
		agctg gtagtttag	19
•	, , ,		
	(210>		
	(211>		
		DNA Artificial Sequence	
Ì	~210/	Willield Sodamon	
	<220>		
4	<223>	Description of Artificial Sequence: Candidate	
	J	TNF(alpha) ASO	
	<400>	> 41	
		cettt ccaagegaac	20
	-010>	4.2	
	<210> <211>		
		> DNA	
		> Artificial Sequence	
	<220		
	<223	> Description of Artificial Sequence: Candidate	
		TNF(alpha) ASO	
	<400	> 42	
		tcctgt ttccggggag a	21

<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400> ctggto	43 ecett ggtgteeteg e	21
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400> ttgcto	44 gttet eeeteetgge t	21
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400> ttctt	45 geect ecetecetae t	21
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	

<400>		21
cctctt	teee ttacceteet g	Z 1
-010>	4.7	
<210> < < 211> 2		
<211> (212>)		
	Artificial Sequence	
<213/ 1	Arciriciar bequence	
<220>		
	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	47	
	cete eccaactete e	21
33		
<210>	48	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
	,	
<400>		21
cttctt	ccct gttcccctgg c	21
<210>	19	
<211>		
<211>		
	Artificial Sequence	
.220,		
<220>		
	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	49	
tatctc	ecete gteteceate t	21
<210>	50,	
<211>	21	
<212>	DNA	
Z0135	Artificial Company	

<220>		
<223>	> Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	> 50	
	cocctc catctccctc c	21
<210		
<2112		
	> DNA > Artificial Sequence	
\Z13,	Artificial Sequence	
<220	>	
<223	> Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
*		
<400		21
gaag	cctccc cgctctttgc c	21
<210	> 52	
<211	> 21	
	> DNA	
<213	> Artificial Sequence	
<220		
	> Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400	> 52	
aaag	ctttaa gtcccccgcc c	23
<210	> 53	
	> 21	
<212	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Description of Artificial Sequence: Candidate TNF(alpha) ASO	
	INI (alpha) noo	
<400	> 53	
ccta	uttocot ttootoocaa a	2

<210> 54 <211> 21 <212> DNA <213> Arti	ficial Sequence			
	ription of Artificial alpha) ASO	Sequence:	Candidate	
<400> 54 cccttaggtt	teccageaag e			21
<210> 55 <211> 21 <212> DNA <213> Arti	ficial Sequence			
	ription of Artificial alpha) ASO	Sequence:	Candidate	
<400> 55 ctggtctttc	cacgtcccat t			21
<210> 56 <211> 21 <212> DNA <213> Arti	ficial Sequence			
	cription of Artificial alpha) ASO	Sequence:	Candidate	
<400> 56 gcagccttgt	cccttgaaga g			21
	ficial Sequence			
<220>	cription of Artificial	Seguence:	Candidate	

TNF(alpha) ASO

<400>		2.1
cttgag	retea geteceteag g	21
<210>	58	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>		0.1
gctgga	agac tecteceagg t	21
<210>	59	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	59	
gctgag	geagg teceettet e	21
<210>	60	
<211>		
<211>		
	Artificial Sequence	
12107	metrotal soquomos	
<220>		
<223>	Description of Artificial Sequence: Candidate	
	TNF(alpha) ASO	
<400>	60	
agagc	cacaa ttccctttct a	21
Z010:	C1	
<210>		
<211>		
<212>		
<<13>	Artificial Sequence	

i.

<220>				
<223>	Description of Artificial STNF(alpha) ASO	Sequence:	Candidate	
<400>	61			
	agac agcttcccaa c			21
50005			•	
<210>	62			
<211>				
<212>				
<213>	Artificial Sequence			
<220>				
	Description of Artificial S	Sequence:	Candidate	
	TNF(alpha) ASO	-		
<400>				
cagtca	legge teeegtggg		=	19
<210>	63			
<211>	21			
<212>	DNA			
<213>	Artificial Sequence			
<220>	Department of De	~		
<223>	Description of Artificial S TNF(alpha) ASO	sequence:	Candidate	
	TWI (alpha) ASO			
<400>	63			
gggaaa	ttcc caggaccagg g		2	21
<210>	6.1			
<211>				
<212>				
	Artificial Sequence			
	-			
<220>				
<223>	Description of Artificial S TNF(alpha) ASO	Sequence:	Candidate	
<400>				
atttgg	aatt cccagagtgg g		2	21
<210>	65			

ië.

<211><212><212>		
<220> <223>	Description of Artificial Sequence: Candidate TNF(alpha) ASO	
<400>	- 65	
	cccag caggtatttg g	21
<210>	- 66	
<211>	• 20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Known effective ASO	
<400>		
cagee	atggt tcccccaac	20
<210>		
<211>		
<212>	Artificial Sequence	
12107	inclificat Sequence	
<220>		
<223>	Description of Artificial Sequence: Known effective ASO	
<400>	67	
ttccc	cagat gcacctgttt	20
<210>	68	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Known effective ASO	
<400>	68	

<220>

\ 2232	effective ASO	Sequence:	Known	
<400>	72 cccag cgtgtgccat			20
<210> <211>				
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial a effective ASO	Sequence:	Known	
<400>	73			
aaccc	ctatt tgtgtcccac c			21
<210>	74			
<211>				
<212> <213>	Artificial Sequence			
	4			
<220>	Doggrintion of Autificial	a .		
~223/	Description of Artificial Seffective ASO	sequence:	Known	
<400>	74			
gtccca	agag ttgaggag			18
<210>				
<211> <212>				
	Artificial Sequence			
<220>				
	Description of Artificial S	Sequence:	Known	
	effective ASO	-		
<400>	75			
cacccg	cctt ggcctcccac			20
<210>	76			
<211>	20			

<212>	DNA			
<213>	Artificial Sequence			
	-			
<220>				
	Description of Artificial	Sequence:	Known	
12201	effective ASO	zoquemec.		
	CIICCLIVE 1100			
<400>	76			
			2	^
teeege	cctgt gacatgcatt		2	0
٠٥10٠	77			
<210>				
<211>				
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial	Sequence:	Known	
	effective ASO			
<400>	77			
ccatco	cegae etegeget		1	8
<210>	78			
<211>	18			
<212>	DNA			
	Artificial Sequence			
	1.1.1.1.1			
<220>				
	Description of Artificial	Seguence:	Known	
12207	effective ASO	bequence.	MIOWII	
	211000110 1100			
<400>	7.8			
			1	0
ccacgi	cccg gatcatgc		1	8
·	7.0			
<210>				
<211>				
<212>				
<213>	Artificial Sequence			
.000				
<220>				
<223>	Description of Artificial	Sequence:	Known	
	effective ASO			
<400>	79			
tctqct	gtcc ctgtaataaa		2:	Ω

<210>	80	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Known	
	effective ASO	
<400>	_	_
aaccca	agtgc tccctttgct 2	0
.010.	^1	
<210>		
<211>		
<212>	Artificial Sequence	
\Z1J/	Arctiferar peddence	
<220>		
<223>	Description of Artificial Sequence: Known	
	effective ASO	
<400>	81	
aaaac	gtcag ccatggtccc 2	C
0.		
<210>		
<400>	82	
000		
<210>	83	
<400>		
000		
<210>	84	
<400>	84	
000 -		
.0.4.0	0.5	
<210>		
< 4000>	გე	

<210>	86
<400>	86
000	

Siste.

<210> <400> 000				
<210><211><211><212><213>	21			
<220>	Description of Artificial oligonucleotide	Sequence:	Control	
<400> cagate	97 gacct cccccgtgga a		2	21
<210> <211> <212> <213>	21			
	Description of Artificial	Sequence:	ASO-9	
<400> tcctcc	98 ettgt teeettegge t		2	21
<210> <211> <212> <213>	21			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Control	
<400>	99 ccact teegtgtagg c		2	21
<210> <211> <212>	21			

<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: 2-base	
	mismatch of ASO-9	
<400>		
teete	gttgt tegettegge t	21
<210>	101	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
40005		
<220>	Description of Artificial Sequence: 3-base	
\2252	mismatch of ASO-9	
<400>	101	
tcctc	gttgt tegeategge t	21
<210>	102	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>	Degenintion of Antificial Company, A have	
\ 2237	Description of Artificial Sequence: 4-base mismatch of ASO-9	
	MIDMACON OF ABO 9	
<400>	102	
tccacq	gttgt acgcatcggc t	21
<210>	103	
<400>		
000		
<210>	104	
<400>		
000	101	
•		
<210>		
<400>	105	

CACAMAN AND THE

Lune

```
<210> 106
<400> 106
000
<210> 107
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Complement of
      ASO-9
<400> 107
agccgaaggg aacaaggagg a
                                                                   21
<210> 108
<211> 1889
<212> DNA
<213> Rattus norvegicus
<400> 108
getttatetg ctaageteeg eteagtteag catgetgege geegeactea geacegeeg 60
ecgtgggcca egectgagee geetgetgte egecgeegee accagegegg tgecageece 120
caaccagcag cccgaggtct tctgcaacca gatcttcatt aacaatgagt ggcatgatgc 180
tgtcagcaag aaaacattcc ccaccgtcaa cccttccacg ggggaggtca tctgccaggt 240
agccgaaggg aacaaggagg acgtagacaa ggcagtgaag gccgctcagg cagccttcca 300
gctgggctcg ccctggcgcc gcatggatgc atctgacagg ggccggctgt tgtaccgatt 360
ggctgatctc atcgaacggg accggaccta cctggcggcc ttggagaccc tggacaacgg 420
caageettat gteateteet acetggtgga tttggacatg gttetgaaat gteteegeta 480
ttatgctggc tgggctgaca agtaccacgg gaaaaccatt cccatcgatg gcgacttctt 540
cagctacacc cgccacgagc ctgtgggcgt gtgtggacag atcattccgt ggaacttccc 600
gctcctgatg caagcctgga agctgggccc tgccttggca actggaaacg tggtggtgat 660
gaaagtggcc gagcagacac cgctcactgc actctacgtg gccaacttga tcaaggaggc 720
aggetteece eetggtgtgg teaatattgt teetggatte ggeeetaeeg eeggggetge 780
categegtee caegaggatg tggacaaagt ggeetteaea ggtteeaetg aggttggtea 840
cctaatccag gttgccgccg ggagcagcaa tctcaagaga gtaaccctgg aactgggggg 900
aaagagcccc aatatcatca tgtcagacgc tgacatggac tgggctgtgg aacaggccca 960
ctttgccctg ttcttcaacc agggccagtg ctgttgtgcg ggctcccgga ccttcgtgca 1020
ggaggatgtg tatgatgaat tcgtggaacg cagtgtggcc cgggccaagt ctcgggtggt 1080
cgggaaccct ttcgacagcc ggacggagca ggggccgcag gtggatgaga ctcagtttaa 1140
gaagateetg ggetatatea agteaggaea acaagaaggg gegaagetge tgtgeggtgg 1200
```

gggcgccgcc gcagaccgtg gttacttcat ccagcccacc gtgttcggag acgtcaaaga 1260

<210> 109 <211> 21 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Complement of human anti-ALDH2 ASO

<400> 109 agctgaaggg gacaaggaag a

21

<210> 110 <211> 1989 <212> DNA <213> Homo sapiens

<400> 110

geteteggte egetegetgt eegetageee getgegatgt tgegegetge egeegetegg 60 gccccgcctg gccgccgcct cttgtcagcc gccgccaccc aggccgtgcc tgcccccaac 120 cagcagcccg aggtettetg caaccagatt tteataaaca atgaatggea egatgeegte 180 agcaggaaaa cattccccac cgtcaatccg tccactggag aggtcatctg tcaggtagct 240 gaaggggaca aggaagatgt ggacaaggca cgtgaaggcc gcccgggcgc cttccagctg 300 ggctcacctt ggcgccgcat ggacgcatca cacagcggcc ggctgctgaa ccgcctggcc 360 gatetgateg agegggaceg gacetacetg geggeettgg agaeeetgga caatggcaag 420 ccctatgtca tctcctacct ggtggatttg gacatggtcc tcaaatgtct ccggtattat 480 gccggctggg ctgataagta ccacgggaaa accatcccca ttgacggaga cttcttcagc 540 tacacacgcc atgaacctgt gggggtgtgc gggcagatca ttccgtggaa tttcccgctc 600 ctgatgcaag catggaagct gggcccagcc ttggcaactg gaaacgtggt tgtgatgaag 660 gtagctgagc agacacccct caccgccctc tatgtggcca acctgatcaa ggaggctggc 720 tttccccctg gtgtggtcaa cattgtgcct ggatttggcc ccacggctgg ggccgccatt 780 geeteecatg aggatgtgga caaagtggea tteacagget ceactgagat tggeegegta 840 atccaggttg ctgctgggag cagcaacctc aagagagtga ccttggagct ggqqqqqaaq 900 agececaaca teateatgte agatgeegat atggattggg cegtggaaca ggeecaette 960

gccctgttct tcaaccaggg ccagtgctgc tgtgccggct cccggacctt cgtgcaggag 1020 qacatctatq atgaqtttqt gqtqcgqaqc qttqcccggg ccaagtctcg ggtggtcggg 1080 aacccctttg atagcaagac cgagcagggg ccgcaggtgg atgaaactca gtttaagaag 1140 atcctcqqct acatcaacac qqqqaaqcaa qaqqqqqcqa aqctqctqtq tqgtqqqqqc 1200 attgctgctg accgtggtta cttcatccag cccactgtgt ttggagatgt gcaggatggc 1260 atgaccatcq ccaaqqaqqa qatcttcqqq ccaqtqatqc aqatcctqaa qttcaaqacc 1320 atagaggagg ttgttgggag agccaacaat tccacgtacg ggctggccgc agctgtcttc 1380 acaaaqqatt tqqacaaqqc caattacctq tcccaqqccc tccaqqcggg cactqtqtgg 1440 qtcaactqct atqatqttt tqqaqcccaq tcaccctttg gtggctacaa gatgtcgggg 1500 aqtqqccqqq aqttqqqcqa qtacqqqctq caqqcataca ctqaaqtqaa aactqtcaca 1560 qtcaaaqtqc ctcaqaaqaa ctcataaqaa tcatqcaaqc ttcctccctc agccattgat 1620 qqaaaqttca qcaaqatcag caacaaaacc aaqaaaaatg atccttgcgt gctgaatatc 1680 tqaaaagaga aatttttcct acaaaatctc ttgggtcaag aaagttctag aatttgaatt 1740 gataaacatg gtgggttggc tgagggtaag agtatatgag gaacctttta aacgacaaca 1800 atactgctag ctttcaggat gatttttaaa aaatagattc aaatgtgtta tcctctctct 1860 qaaacqcttc ctataactcg agtttatagg ggaagaaaaa gctattgttt acaattatat 1920 caccattaaq qcaactqcta caccctqctt tqtattctqq qctaaqattc attaaaaact 1980 agctgctct

<210> 111 <211> 21 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Human anti-ALDH2 ASO

<400> 111 tcttccttgt ccccttcagc t