A/B Testing the Udacity Website

Exercise 1

```
In [12]: # Import libraries
    import warnings
    warnings.simplefilter('ignore')
    import pandas as pd
    import numpy as np
    from scipy.stats import ttest_ind #t-test
    import statsmodels.formula.api as smf #regression

# Load data
    control = pd.read_csv("https://media.githubusercontent.com/media/nickeub
    ank/MIDS_Data/master/udacity_AB_testing/control_data.csv")
    experimental = pd.read_csv("https://media.githubusercontent.com/media/nickeubank/MIDS_Data/master/udacity_AB_testing/experiment_data.csv")
    control.head()
```

Out[12]:

	Date	Pageviews	Clicks	Enrollments	Payments
0	Sat, Oct 11	7723	687	134.0	70.0
1	Sun, Oct 12	9102	779	147.0	70.0
2	Mon, Oct 13	10511	909	167.0	95.0
3	Tue, Oct 14	9871	836	156.0	105.0
4	Wed. Oct 15	10014	837	163.0	64.0

Exercise 2

The unit of observation is the Date. We are observing the number of pageviews, clicks, enrollments, and payments across all Udacity visitors for that specific date.

Exercise 3

```
In [2]: # Add column for treatment
    control['treatment'] = 0
    experimental['treatment'] = 1

# Combine dataframes
    combined = pd.concat([control,experimental])
    combined.sample(10)
```

Out[2]:

	Date	Pageviews	Clicks	Enrollments	Payments	treatment
1	Sun, Oct 12	9288	785	116.0	91.0	1
4	Wed, Oct 15	10014	837	163.0	64.0	0
21	Sat, Nov 1	8460	681	156.0	93.0	0
6	Fri, Oct 17	9008	748	146.0	76.0	0
13	Fri, Oct 24	9434	673	220.0	122.0	0
14	Sat, Oct 25	8669	669	127.0	81.0	1
32	Wed, Nov 12	10042	802	NaN	NaN	1
29	Sun, Nov 9	9656	825	NaN	NaN	0
13	Fri, Oct 24	9402	697	194.0	94.0	1
10	Tue, Oct 21	10551	864	143.0	71.0	1

Exercise 4

The experiment evaluated the effect on the number of payments after selecting the "Start Free Trial" option. Therefore, our predictor variable is Payments.

We are interested in seeing if the treatment led to a higher number of payments per clicks. We will likely need to create a hybrid variable of payments per click or enrollments per click to standardize by clicks.

Exercise 5

```
In [3]: views_control=np.mean(control['Pageviews'])
    views_experiment=np.mean(experimental['Pageviews'])
    print (f'The mean number of pageviews in the control group is {views_con trol:.2f}')
    print (f'The mean number of pageviews in the control group in experiment al group is {views_experiment:.2f}')
```

The mean number of pageviews in the control group is 9339.00 The mean number of pageviews in the control group in experimental group is 9315.14

The average number of pageviews for the control and experimental groups are fairly similar (around 9300).

Exercise 6

The t-test shows a p-value of 0.88 which is greater than 0.05. There is no significant difference in pageviews between the experimental and control groups.

Exercise 7

Clicks is another pre-treatment variable because users clicked to review the page before that were forwarded to two versions of the website.

Exercise 8

```
In [5]: clicks_control=np.mean(control['Clicks'])
    clicks_experiment=np.mean(experimental['Clicks'])
    print (f'The mean number of clicks in the control group is:{clicks_control:.2f}')
    print (f'The mean number of clicks in the experimental group is {clicks_experiment:.2f}')
    ttest_ind(control.Clicks.values, experimental.Clicks.values)

The mean number of clicks in the control group is:766.97
    The mean number of clicks in the experimental group is 765.54

Out[5]: Ttest_indResult(statistic=0.09270642968639531, pvalue=0.926394264248270 3)
```

The difference between treatment and control group means is also **not** statistically significant.

Exercise 9

```
In [6]: # Determine number of nulls in payments
    combined['Payments'].isnull().sum()
Out[6]: 28
```

The data has 28 missing values for Payment column. We will drop the missing values to run the t-test to estimate whether the effect of new website design is statistically significant.

The p-value is 0.592, which indicates that there is no significant difference in payments per click between the experimental and control groups.

Exercise 10

For the bivariate regression, the x variable will be "Clicks" and the y-variable will be "Payments per click".

```
In [8]: # Create regression model between payments per click and treatment
    model=smf.ols(formula='Payments_per_Click~treatment', data=combined_new)
    res=model.fit()
    print (res.summary())
    print(res.pvalues)
```

	OLS Regression Results						
====== Dep. Variable:	Payme	ents_per_Cl	ick	R-squ	ared:		
0.007 Model:		(OLS	Adi. I	R-squared:		
-0.016				_	. 54		
Method: 0.2903		Least Squa	res F-statistic:				
Date:	Tue	e, 04 Feb 2	020	Prob	(F-statistic)	:	
0.593 Time:		13 : 59	:14	I'0a-I'.	ikelihood:		
95.810		20107		_09			
No. Observatio	ns:		46	AIC:			
Df Residuals:			44	BIC:			
-184.0							
Df Model: Covariance Typ	e:	nonrob	1 ust				
				=====			
======							
0.975]	coef	std err		t	P> t	[0.025	
Intercept	0.1183	0.006	18	.403	0.000	0.105	
0.131 treatment	-0.0049	0.009	-0	.539	0.593	-0.023	
0.013							
=======	=======	:======	=====	=====		========	
Omnibus:		0.	968	Durbin	n-Watson:		
1.092		•		_	-		
Prob(Omnibus): 0.985		0.	616	Jarque	e-Bera (JB):		
Skew:		0.	316	Prob(3	JB):		
0.611			662	Cond	No		
Kurtosis: 2.662 Cond. No. 2.62							
=====							
Warnings:							
[1] Standard E	rrors assu	me that the	e cov	ariance	e matrix of t	he errors is	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Intercept 2.736586e-22 treatment 5.927559e-01

dtype: float64

Indeed, the p-values between the t-test from the previous exercise and the regression model are equivalent and equal to 0.59276.

```
In [9]: # Create regression model accounting for date
    model=smf.ols(formula='Payments_per_Click~treatment+C(Date)', data=combi
    ned_new)
    res=model.fit()
    print (res.summary())
    print(res.pvalues)
```

OLS Regression Results

=======================================	======	_	=======			
=====						
Dep. Variable: 0.743	Payments_per_Click		ck R-sq	R-squared:		
Model:	OLS		LS Adj.	Adj. R-squared:		
0.475						
Method:	\mathbf{L}_{i}	east Squar	es F-st	atistic:		
2.770			20 Dwoh	(E statistis).		
Date: 0.00991	rue,	04 Feb 20.	20 PIOD	(F-statistic):		
Time:		13:59:	15 Log-	Likelihood:		
126.94						
No. Observations: -205.9		•	46 AIC:			
Df Residuals:		:	22 BIC:			
-162.0			22 2101			
Df Model:		:	23			
Covariance Type:						
=======================================		=======	======	=========	:=======	
	_	coef	std err	t	P> t	
[0.025 0.975]					1 1	
Intercept	_	0 0815	0 016	5.090	0.000	
0.048 0.115		0.0013	0.010	3.070	0.000	
C(Date)[T.Fri, Oct		0.0791	0.022	3.569	0.002	
0.033 0.125	-					
C(Date)[T.Fri, Oct	31]	0.0777	0.022	3.507	0.002	
0.032 0.124 C(Date)[T.Mon, Oct	131	0 0179	0.022	0.809	0.427	
-0.028 0.064	13]	0.0179	0.022	0.009	0.427	
C(Date)[T.Mon, Oct	20]	0.0343	0.022	1.548	0.136	
-0.012 0.080						
C(Date)[T.Mon, Oct 0.034 0.126	27]	0.0799	0.022	3.604	0.002	
C(Date)[T.Sat, Nov	1]	0.0612	0.022	2.763	0.011	
0.015 0.107	•					
C(Date)[T.Sat, Oct	11]	-0.0033	0.022	-0.148	0.884	
-0.049 0.043 C(Date)[T.Sat, Oct	101	0.0239	0.022	1.080	0.292	
-0.022 0.070	10]	0.0233	0.022	1.000	0.272	
C(Date)[T.Sat, Oct	25]	0.0742	0.022	3.347	0.003	
0.028 0.120						
C(Date)[T.Sun, Nov -0.005 0.086	2]	0.0405	0.022	1.826	0.081	
C(Date)[T.Sun, Oct	121	0.0239	0.022	1.078	0.293	
-0.022 0.070	•				-	
C(Date)[T.Sun, Oct	19]	0.0196	0.022	0.887	0.385	
-0.026 0.066 C(Date)[T.Sun, Oct	261	0 0672	0.022	3.038	0.006	
0.021 0.113	20]	0.0673	0.022	3.038	0.000	
C(Date)[T.Thu, Oct	16]	0.0095	0.022	0.430	0.672	
-0.036 0.055						
C(Date)[T.Thu, Oct	23]	0.0161	0.022	0.725	0.476	
-0.030 0.062						

C(Date)[T.Thu, Oct -0.028 0.064	30]	0.0181	0.022	0.817	0.423
C(Date)[T.Tue, Oct -0.007 0.085	14]	0.0394	0.022	1.779	0.089
C(Date)[T.Tue, Oct -0.023 0.069	21]	0.0226	0.022	1.022	0.318
C(Date)[T.Tue, Oct	28]	0.0643	0.022	2.904	0.008
0.018 0.110 C(Date)[T.Wed, Oct	15]	0.0157	0.022	0.709	0.486
-0.030 0.062 C(Date)[T.Wed, Oct	22]	0.0196	0.022	0.884	0.386
-0.026 0.066 C(Date)[T.Wed, Oct	29]	0.0452	0.022	2.040	0.054
-0.001 0.091 treatment		-0.0049	0.007	-0.750	0.461
-0.018 0.009					
======					
Omnibus:		4.114	Durbin-Wa	tson:	
1.713					
Prob(Omnibus): 1.796		0.128	Jarque-Be	ra (JB):	
Skew: 0.407		0.000	Prob(JB):		

2.032

Cond. No.

======

Kurtosis:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Intercept			0.000042
C(Date)[T.Fri,	Oct	24]	0.001717
C(Date)[T.Fri,	Oct	31]	0.001990
C(Date)[T.Mon,	Oct	13]	0.426989
C(Date)[T.Mon,	Oct	20]	0.135859
C(Date)[T.Mon,	Oct	27]	0.001576
C(Date)[T.Sat,	Nov	1]	0.011346
C(Date)[T.Sat,	Oct	11]	0.883664
C(Date)[T.Sat,	Oct	18]	0.292025
C(Date)[T.Sat,	Oct	25]	0.002919
C(Date)[T.Sun,	Nov	2]	0.081384
C(Date)[T.Sun,	Oct	12]	0.292706
C(Date)[T.Sun,	Oct	19]	0.384842
C(Date)[T.Sun,	Oct	26]	0.006036
C(Date)[T.Thu,	Oct	16]	0.671727
C(Date)[T.Thu,	Oct	23]	0.476235
C(Date)[T.Thu,	Oct	30]	0.422735
C(Date)[T.Tue,	Oct	14]	0.089062
C(Date)[T.Tue,	Oct	21]	0.318067
C(Date)[T.Tue,	Oct	28]	0.008233
C(Date)[T.Wed,	Oct	15]	0.485587
C(Date)[T.Wed,	Oct	22]	0.386368
C(Date)[T.Wed,	Oct	29]	0.053501
treatment			0.461482
dtype: float64			

dtype: float64

After including the Date as a predictor variable to our model, the standard error dropped from 0.009 to 0.007, which is about a 22% decrease.

Exercise 12

Udacity's trial was not statistically effective/significant. Even after including the date as a predictor, the p-value for treatment was still above 0.05 which is a standard significance level. There is no evidence to suggest that the treatment increased payments after clicking "Start Free Trial."

Exercise 13

In [10]:	<pre># Look at datatypes combined_new.dtypes</pre>	of objects	
Out[10]:	Date	object	
	Pageviews	int64	
	Clicks	int64	
	Enrollments	float64	
	Payments	float64	
	treatment	int64	
	Payments_per_Click dtype: object	float64	

OLS Regression Results

		Regres				
=======================================		-=====	=====			:=====
====== Dep. Variable: 0.138	Payments_per	_Click	R-squared:			
Model:		Adj.	R-squared:			
-0.021 Method:	Least S	Squares	F-st	atistic:		
0.8687 Date:	Tue, 04 Fe	h 2020	Drob	(F-statisti	(a) •	
0.540	ide, of le	.D 2020	1100	(I-SCACISCI		
Time: 99.073	13	3:59:59	Log-	Likelihood:		
No. Observations:		46	AIC:			
-182.1		2.0				
Df Residuals: -167.5		38	BIC:			
Df Model:		7				
Covariance Type:						
=======================================						
	coef	c+d	orr	t	D> +	
[0.025 0.975]	COET	sta	ell	C	P> C	
Intercept	0.1337	0.	013	9.971	0.000	
0.107 0.161						
C(Day)[T.Monday]	-0.0082	0.	018	-0.461	0.647	_
0.044 0.028	0 0122	0	017	0.704	0 430	
C(Day)[T.Saturday] 0.047 0.021	-0.0133	0.	017	-0.794	0.432	_
C(Day)[T.Sunday]	-0.0144	0.	017	-0.865	0.393	_
0.048 0.019						
C(Day)[T.Thursday] 0.074 -0.002	-0.0377	0.	018	-2.113	0.041	_
C(Day)[T.Tuesday]	-0.0101	0.	018	-0.568	0.574	_
0.046 0.026 C(Day)[T.Wednesday] -0.0254	0.	018	-1.425	0.162	_
0.062 0.011	, 0.0231	•	010	1.123	0.102	
treatment	-0.0049	0.	009	-0.538	0.594	_
0.023 0.014						
======						
Omnibus:		0.703	Durh	in-Watson:		
0.986		0.703	Duib	III-wacson:		
Prob(Omnibus):		0.704	Jarq	ue-Bera (JB)	:	
0.237		0 155	5 1	(75)		
Skew:		-0.155	Prob	(JB):		
0.888 Kurtosis:		3.168	Cond	. No.		
9.27		3.100	Cond	• 140 •		
=======================================			=====	========		:=====
======						

Warnings:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

Intercept	3.701754e-12
C(Day)[T.Monday]	6.472255e-01
<pre>C(Day)[T.Saturday]</pre>	4.319236e-01
C(Day)[T.Sunday]	3.925824e-01
C(Day)[T.Thursday]	4.118523e-02
C(Day)[T.Tuesday]	5.735312e-01
C(Day)[T.Wednesday]	1.622519e-01
treatment	5.940538e-01
dtype: float64	

When we use day of the week, the p-value for treatment is 0.594, which is still not statistically significant. It does not appear that Udacity's treatment was effective.