```
In [40]: import pandas as pd
         from lifelines import CoxPHFitter
         import numpy as np
         from lifelines.utils import concordance index
         from sklearn.preprocessing import StandardScaler
         # Read the Excel file into a pandas DataFrame
         data = pd.read excel('DATA1.xlsx')
         # Standardize the covariates
         scaler = StandardScaler()
         data scaled = pd.DataFrame(scaler.fit transform(data.drop(['Months', 'DEATH'], axis=1)), columns=data.columns[2:])
         # Add the 'Months' and 'DEATH' columns back to the scaled data
         data_scaled[['Months', 'DEATH']] = data[['Months', 'DEATH']]
         # Create a CoxPHFitter object
         cph = CoxPHFitter()
         # Fit the Cox proportional hazards model with the standardized covariates
         cph.fit(data_scaled, duration_col='Months', event_col='DEATH')
         # Print the summary of the model
         cph.print summary()
```

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'DEATH'
baseline estimation	breslow
number of observations	343
number of events observed	176
partial log-likelihood	-881.93
time fit was run	2023-08-17 09:50:13 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
AGE	0.22	1.24	0.09	0.04	0.39	1.04	1.48	0.00	2.44	0.01	6.09
SEX	-0.02	0.98	0.08	-0.17	0.13	0.84	1.14	0.00	-0.27	0.78	0.35
CompositeStage	0.89	2.43	0.09	0.71	1.07	2.03	2.91	0.00	9.64	< 0.005	70.65
LNInvolment	-0.39	0.68	0.08	-0.55	-0.23	0.58	0.80	0.00	-4.72	< 0.005	18.73
Comorbidity	-0.04	0.96	0.08	-0.20	0.12	0.82	1.12	0.00	-0.53	0.59	0.75
FamiliyHistoryOfCancer	-0.09	0.91	0.08	-0.25	0.06	0.78	1.06	0.00	-1.17	0.24	2.04

Concordance	0.72
Partial AIC	1775.85
log-likelihood ratio test	123.55 on 6 df
-log2(p) of II-ratio test	78.18

```
In [42]: concordance scores = {}
         for variable in data.columns:
             if variable not in ['Months', 'DEATH','ID']:
                 concordance = concordance index(data['Months'], -cph.predict partial hazard(data), data['DEATH'])
                 concordance scores[variable] = concordance
         # Print the concordance index for each variable
         for variable, concordance in concordance scores.items():
             print(f"Concordance index for {variable}: {concordance}")
       Concordance index for AGE: 0.5883362585174479
       Concordance index for SEX: 0.5883362585174479
       Concordance index for CompositeStage: 0.5883362585174479
       Concordance index for LNInvolment: 0.5883362585174479
       Concordance index for Comorbidity: 0.5883362585174479
       Concordance index for FamiliyHistoryOfCancer: 0.5883362585174479
In [43]: univariate results = []
         univariate aic bic = []
         for col in data.columns:
             if col not in ['Months', 'ID']:
                 cph univariate = CoxPHFitter(penalizer=0.1)
                 cph univariate.fit(data[['Months', 'ID', col]], duration col='Months', event col='ID', show progress=True)
                 univariate results.append((col, cph univariate.print summary()))
                 n = len(data)
                 llf = cph univariate.log likelihood
                 k = cph_univariate.params_.shape[0]
                 aic = -2 * 11f + 2 * k
                 bic = -2 * 11f + k * np.log(n)
                 univariate_aic_bic.append((col, aic, bic))
                 print(f"\nColumn: {col}")
                 print(f"AIC value: {aic}")
                 print(f"BIC value: {bic}")
```

```
Iteration 1: norm_delta = 0.77722, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 70.49318, seconds_since_start
= 0.0
Iteration 2: norm_delta = 0.01332, step_size = 0.9500, log_lik = -1595.37158, newton_decrement = 0.02032, seconds_since_start = 0.1
Iteration 3: norm_delta = 0.00069, step_size = 0.9500, log_lik = -1595.35129, newton_decrement = 0.00005, seconds_since_start = 0.1
Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1595.35124, newton_decrement = 0.00000, seconds_since_start = 0.1
Convergence success after 4 iterations.
```

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1595.35
time fit was run	2023-08-17 09:51:10 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
DEATH	1.50	4.49	0.13	1.24	1.76	3.46	5.82	0.00	11.35	<0.005	96.84

Concordance	0.66
Partial AIC	3192.70
log-likelihood ratio test	135.66 on 1 df
-log2(p) of II-ratio test	101.73

Column: DEATH

AIC value: 3192.7024728287324 BIC value: 3196.5402032758984

Iteration 1: norm_delta = 0.01879, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 0.06380, seconds_since_start =

0.0

Iteration 2: norm_delta = 0.00085, step_size = 0.9500, log_lik = -1663.11614, newton_decrement = 0.00013, seconds_since_start =

0.0

Iteration 3: norm_delta = 0.00004, step_size = 0.9500, log_lik = -1663.11600, newton_decrement = 0.00000, seconds_since_start =

0.1

Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1663.11600, newton_decrement = 0.00000, seconds_since_start =

0.1

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1663.12
time fit was run	2023-08-17 09:51:10 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
AGE	-0.00	1.00	0.00	-0.01	0.01	0.99	1.01	0.00	-0.36	0.72	0.47

Concordance 0.51
Partial AIC 3328.23
log-likelihood ratio test 0.13 on 1 df
-log2(p) of II-ratio test 0.47

Column: AGE

AIC value: 3328.2320093107332 BIC value: 3332.0697397578992

Iteration 1: norm_delta = 0.01792, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 0.06049, seconds_since_start =

0.0

Iteration 2: norm_delta = 0.00095, step_size = 0.9500, log_lik = -1663.11915, newton_decrement = 0.00017, seconds_since_start =

0.0

0.0

Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1663.11898, newton_decrement = 0.00000, seconds_since_start =

0.1

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1663.12
time fit was run	2023-08-17 09:51:10 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	-log2(p)
SEX	0.04	1.04	0.11	-0.17	0.24	0.84	1.28	0.00	0.35	0.73	0.46

Concordance 0.50
Partial AIC 3328.24
log-likelihood ratio test 0.12 on 1 df
-log2(p) of II-ratio test 0.46

Column: SEX

AIC value: 3328.2379525488923 BIC value: 3332.0756829960583

Iteration 1: norm_delta = 0.43056, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 27.12197, seconds_since_start

= 0.0

Iteration 2: norm_delta = 0.04153, step_size = 0.9500, log_lik = -1635.53782, newton_decrement = 0.22899, seconds_since_start =

0.0

Iteration 3: norm_delta = 0.00238, step_size = 0.9500, log_lik = -1635.30845, newton_decrement = 0.00074, seconds_since_start =

0.1

Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1635.30771, newton_decrement = 0.00000, seconds_since_start =

0.1

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1635.31
time fit was run	2023-08-17 09:51:10 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
CompositeStage	0.50	1.64	0.07	0.36	0.63	1.44	1.88	0.00	7.29	<0.005	41.59

Concordance	0.63
Partial AIC	3272.62
log-likelihood ratio test	55.74 on 1 df
-log2(p) of II-ratio test	43.46

Column: CompositeStage

AIC value: 3272.615419213587 BIC value: 3276.453149660753

Iteration 1: norm_delta = 0.13600, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 3.86282, seconds_since_start =

0.0

0.0

0.0

Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1659.19905, newton_decrement = 0.00000, seconds_since_start =

0.1

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1659.20
time fit was run	2023-08-17 09:51:10 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
LNInvolment	-0.32	0.73	0.11	-0.54	-0.09	0.58	0.91	0.00	-2.77	0.01	7.48

Concordance 0.56
Partial AIC 3320.40
log-likelihood ratio test 7.96 on 1 df
-log2(p) of II-ratio test 7.71

Column: LNInvolment

AIC value: 3320.3980925560595 BIC value: 3324.2358230032255

Iteration 1: norm_delta = 0.06577, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 0.79658, seconds_since_start =

0.0

0.0

0.0

Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1662.38756, newton_decrement = 0.00000, seconds_since_start =

0.1

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1662.39
time fit was run	2023-08-17 09:51:11 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
Comorbidity	-0.13	0.88	0.10	-0.33	0.07	0.72	1.08	0.00	-1.26	0.21	2.27

Concordance 0.53
Partial AIC 3326.78
log-likelihood ratio test 1.58 on 1 df
-log2(p) of II-ratio test 2.26

Column: Comorbidity

AIC value: 3326.7751119395402 BIC value: 3330.6128423867062

Iteration 1: norm_delta = 0.02937, step_size = 0.9500, log_lik = -1663.17959, newton_decrement = 0.15086, seconds_since_start =

0.0

Iteration 2: norm_delta = 0.00064, step_size = 0.9500, log_lik = -1663.03168, newton_decrement = 0.00008, seconds_since_start =

0.0

 $\label{eq:cond_signal} \textbf{Iteration 3: norm_delta = 0.00003, step_size = 0.9500, log_lik = -1663.03161, newton_decrement = 0.00000, seconds_since_start = 0.000000, seconds_since_start = 0.00000, seconds_since_start = 0.000000, seconds_since_start = 0.000000, seconds_since_start = 0.0000000, seconds_since_start = 0.000000, seconds_since_start = 0.0000000, seconds_since_start = 0.000000, seconds_since_start = 0.0000000, seconds_since_start = 0.000000, seconds_since_start = 0.000$

0.0

Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -1663.03161, newton_decrement = 0.00000, seconds_since_start =

0.0

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'ID'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	343
partial log-likelihood	-1663.03
time fit was run	2023-08-17 09:51:11 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	Z	р	log2(p)
FamiliyHistoryOfCancer	0.09	1.09	0.16	-0.22	0.39	0.80	1.48	0.00	0.55	0.58	0.78

Concordance 0.50
Partial AIC 3328.06
log-likelihood ratio test 0.30 on 1 df
-log2(p) of Il-ratio test 0.77

Column: FamiliyHistoryOfCancer AIC value: 3328.0632186349508 BIC value: 3331.9009490821168

```
In [25]: # Calculate p-values for each variable
p_values = []
for col in data.columns:
    if col not in ['Months', 'DEATH']:
```

```
cph_univariate = CoxPHFitter(penalizer=0.1)
    cph_univariate.fit(data[['Months', 'DEATH', col]], duration_col='Months', event_col='DEATH', show_progress=True)
    p_values.append((col, cph_univariate.summary['p'][col]))

# Sort the p-values list in ascending order
p_values.sort(key=lambda x: x[1])

# Get the significant variable with the lowest p-value
significant_variable_pvalue = p_values[0][0]
significant_variable_pvalue_value = data[significant_variable_pvalue].iloc[0]
print(f"\nSignificant variable based on p-value: {significant_variable_pvalue}")
#print(f"Value of the significant variable: {significant_variable_pvalue_value}")
```

```
Iteration 1: norm delta = 0.35071, step size = 0.9500, log lik = -943.70062, newton decrement = 15.41644, seconds since start =
0.0
Iteration 2: norm delta = 0.01406, step size = 0.9500, log lik = -928.49246, newton decrement = 0.02456, seconds since start =
0.1
Iteration 3: norm delta = 0.00073, step size = 0.9500, log lik = -928.46793, newton decrement = 0.00007, seconds since start =
0.1
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -928.46787, newton decrement = 0.00000, seconds since start =
0.1
Convergence success after 4 iterations.
Iteration 1: norm delta = 0.09094, step size = 0.9500, log lik = -943.70062, newton decrement = 0.84604, seconds since start =
0.0
Iteration 2: norm delta = 0.00646, step size = 0.9500, log lik = -942.84679, newton decrement = 0.00411, seconds since start =
0.0
Iteration 3: norm delta = 0.00033, step size = 0.9500, log lik = -942.84269, newton decrement = 0.00001, seconds since start =
0.0
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -942.84268, newton decrement = 0.00000, seconds since start =
0.0
Convergence success after 4 iterations.
Iteration 1: norm delta = 0.02152, step size = 0.9500, log lik = -943.70062, newton decrement = 0.04824, seconds since start =
0.0
Iteration 2: norm delta = 0.00117, step size = 0.9500, log lik = -943.65238, newton decrement = 0.00014, seconds since start =
0.0
Iteration 3: norm delta = 0.00006, step size = 0.9500, log lik = -943.65224, newton decrement = 0.00000, seconds since start =
0.0
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -943.65224, newton decrement = 0.00000, seconds since start =
0.0
Convergence success after 4 iterations.
Iteration 1: norm delta = 0.60207, step size = 0.9500, log lik = -943.70062, newton decrement = 33.86694, seconds since start =
0.0
Iteration 2: norm_delta = 0.06882, step_size = 0.9500, log_lik = -909.00329, newton_decrement = 0.38483, seconds_since_start =
Iteration 3: norm delta = 0.00442, step size = 0.9500, log lik = -908.61639, newton_decrement = 0.00154, seconds_since_start =
0.0
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -908.61485, newton decrement = 0.00000, seconds since start =
0.0
Convergence success after 4 iterations.
Iteration 1: norm delta = 0.20088, step size = 0.9500, log lik = -943.70062, newton decrement = 4.61862, seconds since start =
0.0
Iteration 2: norm delta = 0.02598, step size = 0.9500, log lik = -938.91722, newton decrement = 0.06679, seconds since start =
0.0
```

```
Iteration 3: norm delta = 0.00161, step size = 0.9500, log lik = -938.85015, newton decrement = 0.00025, seconds since start =
0.0
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -938.84989, newton decrement = 0.00000, seconds since start =
0.0
Convergence success after 4 iterations.
Iteration 1: norm delta = 0.07263, step size = 0.9500, log lik = -943.70062, newton decrement = 0.54710, seconds since start =
0.0
Iteration 2: norm delta = 0.00311, step size = 0.9500, log lik = -943.15727, newton decrement = 0.00102, seconds since start =
0.0
Iteration 3: norm delta = 0.00016, step size = 0.9500, log lik = -943.15625, newton decrement = 0.00000, seconds since start =
0.0
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -943.15625, newton decrement = 0.00000, seconds since start =
0.0
Convergence success after 4 iterations.
Iteration 1: norm delta = 0.02707, step size = 0.9500, log lik = -943.70062, newton decrement = 0.07765, seconds since start =
0.0
Iteration 2: norm delta = 0.00205, step size = 0.9500, log lik = -943.62205, newton decrement = 0.00043, seconds since start =
0.0
Iteration 3: norm delta = 0.00011, step size = 0.9500, log lik = -943.62163, newton decrement = 0.00000, seconds since start =
0.0
Iteration 4: norm delta = 0.00000, step size = 1.0000, log lik = -943.62163, newton decrement = 0.00000, seconds since start =
0.0
Convergence success after 4 iterations.
```

Significant variable based on p-value: CompositeStage

```
In [52]: data['Significant_Category'] = ''

# Define the criteria for assigning categorical values
threshold = 0.05

# Assign categorical values based on the p-value
data.loc[data[significant_variable_pvalue] <= threshold, 'Significant_Category'] = 'Significant'
data.loc[data[significant_variable_pvalue] > threshold, 'Significant_Category'] = 'Not Significant'

# Print the updated dataset
print("Updated data with significant variables as categorical data:\n")
print(data)
```

Updated data with significant variables as categorical data:

	ID	Months	DEATH	AGE	SEX	CompositeStage	LNInvolment	Comorbidity	\
0	1	70	0	50	1	3	1	1	
1	2	68	0	50	2	1	0	1	
2	3	69	0	52	1	2	0	1	
3	4	43	1	55	2	2	0	0	
4	5	71	0	69	2	3	1	1	
						• • •			
338	339	65	0	41	1	3	1	1	
339	340	61	0	52	1	2	0	1	
340	341	65	0	61	2	2	0	1	
341	342	16	1	71	2	4	0	0	
342	343	31	1	60	2	4	1	0	

```
FamiliyHistoryOfCancer Significant_Category
                                Not Significant
0
                                Not Significant
1
                                Not Significant
2
                                Not Significant
                                Not Significant
                                Not Significant
338
                                Not Significant
339
340
                                Not Significant
341
                                Not Significant
                                Not Significant
342
```

[343 rows x 10 columns]

```
In [53]: cph_univariate = CoxPHFitter(penalizer=0.1)
    cph_univariate.fit(data[['Months', 'DEATH', significant_variable_pvalue]], duration_col='Months', event_col='DEATH', show_prog
    univariate_results = cph_univariate.print_summary()

# Print the univariate analysis result
    print(univariate_results)
```

```
Iteration 1: norm_delta = 0.60207, step_size = 0.9500, log_lik = -943.70062, newton_decrement = 33.86694, seconds_since_start = 0.0
Iteration 2: norm_delta = 0.06882, step_size = 0.9500, log_lik = -909.00329, newton_decrement = 0.38483, seconds_since_start = 0.0
Iteration 3: norm_delta = 0.00442, step_size = 0.9500, log_lik = -908.61639, newton_decrement = 0.00154, seconds_since_start = 0.1
Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -908.61485, newton_decrement = 0.00000, seconds_since_start = 0.1
Convergence success after 4 iterations.
```

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'DEATH'
penalizer	0.1
I1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	176
partial log-likelihood	-908.61
time fit was run	2023-08-17 11:56:10 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	log2(p)
CompositeStage	0.71	2.03	0.09	0.54	0.88	1.71	2.41	0.00	8.06	<0.005	50.27

Concordance	0.68
Partial AIC	1819.23
log-likelihood ratio test	70.17 on 1 df
-log2(p) of II-ratio test	54.03

None

```
In [54]:
cph_multivariate = CoxPHFitter(penalizer=0.1)
cph_multivariate.fit(data[['Months', 'DEATH', significant_variable_pvalue]], duration_col='Months', event_col='DEATH', show_pr
multivariate_results = cph_multivariate.print_summary()
```

Print the multivariate analysis result print(multivariate results)

```
Iteration 1: norm_delta = 0.60207, step_size = 0.9500, log_lik = -943.70062, newton_decrement = 33.86694, seconds_since_start = 0.0
Iteration 2: norm_delta = 0.06882, step_size = 0.9500, log_lik = -909.00329, newton_decrement = 0.38483, seconds_since_start = 0.0
Iteration 3: norm_delta = 0.00442, step_size = 0.9500, log_lik = -908.61639, newton_decrement = 0.00154, seconds_since_start = 0.1
Iteration 4: norm_delta = 0.00000, step_size = 1.0000, log_lik = -908.61485, newton_decrement = 0.00000, seconds_since_start = 0.1
Convergence success after 4 iterations.
```

model	lifelines.CoxPHFitter
duration col	'Months'
event col	'DEATH'
penalizer	0.1
l1 ratio	0.0
baseline estimation	breslow
number of observations	343
number of events observed	176
partial log-likelihood	-908.61
time fit was run	2023-08-17 11:56:12 UTC

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	Z	р	log2(p)
CompositeStage	0.71	2.03	0.09	0.54	0.88	1.71	2.41	0.00	8.06	<0.005	50.27

Concordance 0.68

Partial AIC 1819.23

log-likelihood ratio test 70.17 on 1 df

-log2(p) of Il-ratio test 54.03

None

```
In [55]:
concordance_scores = {}
for variable in data[['Months', 'DEATH', significant_variable_pvalue]].columns:
    if variable not in ['Months', 'DEATH']:
        concordance = concordance_index(data['Months'], -cph_multivariate.predict_partial_hazard(data), data['DEATH'])
        concordance_scores[variable] = concordance
```

```
# Print the concordance index for each variable
for variable, concordance in concordance_scores.items():
    print(f"Concordance index for {variable}: {concordance}")
```

Concordance index for CompositeStage: 0.6820927111294652

```
In [56]: # Calculate AIC and BIC
    n = len(data) # number of observations
    k = len(cph_multivariate.params_) # number of model parameters
    llf = cph_multivariate.log_likelihood_ # log-likelihood of the model

aic = -2 * llf + 2 * k
    bic = -2 * llf + k * np.log(n)

print("AIC:", aic)
print("BIC:", bic)
```

AIC: 1819.2296914692981 BIC: 1823.0674219164641

In []: