DUALITIES IN KOSZUL GRADED AS GORENSTEIN ALGEBRAS

ROBERTO MARTÍNEZ-VILLA

ABSTRACT. The paper is dedicated to the study of certain non commutative graded AS Gorenstein algebras Λ [10], [13], [14].

The main result of the paper is that for Koszul algebras Λ with Yoneda algebra Γ , such that both Λ and Γ are graded AS Gorenstein noetherian of finite local cohomology dimension on both sides, there are dualities of triangulated categories:

 $gr_{\Lambda}[\Omega^{-1}] \cong D^b(Qgr_{\Gamma}) \text{ and } gr_{\Gamma}[\Omega^{-1}] \cong D^b(Qgr_{\Lambda})$

where, and Qgr_{Γ} is the category of tails, this is: the category of finitely generated graded modules gr_{Γ} divided by the modules of finite length, and $D^b(Qgr_{\Gamma})$ the corresponding derived category and $\underline{gr}_{\Lambda}[\Omega^{-1}]$ the stabilization of the category of finetely generated graded Λ -modules, module the finetely generated projective modules.

1. Introduction

The paper is dedicated to the study of certain non commutative graded AS Gorenstein algebras Λ [10], [13], [14] those which are noetherian of finite local cohomology dimension on both sides, and Koszul. We proved in [13] that the Yoneda algebra Γ of a Koszul graded AS Gorenstein algebra is again graded AS Gorenstein. We will assume in addition Λ and Γ are both noetherian and of finite local cohomology dimension on both sides.

For such algebras we can generalize the classical Bernstein-Gelfand-Gelfand [3] theorem, which says that there is an equivalence of triangulated categories: $\underline{gr}_{\Lambda} \cong D^b(CohP_n)$, where \underline{gr}_{Λ} is the stable category of the finitely generated graded Λ -modules over the exterior algebra in n variables and $D^b(CohP_n)$ is the derived category of bounded complexes of coherent sheaves on n-dimensional projective space.

This theorem was generalized in [15] and [16] as follows:

Let Λ be a finite dimensional Koszul algebra with noetherianYoneda algebra Γ . Then there is a duality of triangulated categories: $\underline{gr}_{\Lambda}[\Omega^{-1}] \cong D^b(Qgr_{\Gamma})$, where $\underline{gr}_{\Lambda}[\Omega^{-1}]$ is the stabilization of \underline{gr}_{Λ} (in the sense of [Buchweitz], [2]) and Qgr_{Γ} is the category of tails, this is: the category of finitely generated graded modules gr_{Γ} divided by the modules of finite length, and $D^b(Qgr_{\Gamma})$ the corresponding derived category.

Date: October 22, 2012.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18. Key words and phrases. local cohomology, Castelnovo-Mumford regularity.

The main result of the paper is that for Koszul algebras Λ with Yoneda algebra Γ , such that both Λ and Γ are graded AS Gorenstein noetherian of finite local cohomology dimension on both sides, there are dualities of triangulated categories: $gr_{\Lambda}[\Omega^{-1}] \cong D^b(Qgr_{\Gamma}) \text{ and } gr_{\Gamma}[\Omega^{-1}] \cong D^b(Qgr_{\Lambda}).$

Thanks: I express my gratitude to Jun-ichi Miyachi for his criticism and some helpful suggestions.

2. Castelnovo-Mumford regularity

This section is dedicated to review the concepts and results developed by P. JØrgensen in [8], [9] and to check they apply to the algebras considered in the paper, for completeness we reproduce his proofs here. The main result is the following:

Theorem 1. Let Λ be a noetherian Koszul AS Gorenstein algebra of finite local cohomology dimension. Then for any finitely generated graded module M there is a truncation $M_{\geq k}$ such that $M_{\geq k}[k]$ is Koszul.

To prove it we use the line of arguments given in [8] and [9] for connected graded algebras, checking that they easily extend to positively graded locally finite algebras A over a field k. This is $A=\mathop{\oplus}\limits_{i>0}A_i$, where $A_0=\Bbbk\times \Bbbk\times \ldots\times \Bbbk$ and for each $i\geq 0$ $\dim_{\mathbb{K}} A_i < \infty$.

We use the following notation: Given a complex Y of graded left Λ -modules we will denote by Y' the dual complex $Y' = Hom_{\mathbb{k}}(Y, \mathbb{k})$.

Given graded Λ -modules Y, Z the degree zero maps will be denoted by $Hom_{Gr_{\Lambda}}(Y,Z), Z[i]$ is the shift defined as $Z[i]_{j} = Z_{i+j}$ and $Hom_{\Lambda}(Y,Z) =$ $\bigoplus_{i\in\mathbb{Z}} Hom_{Gr_{\Lambda}}(Y, Z[i]).$

Proposition 1. Let A be a positively graded k-algebra, A^{op} the opposite algebra and X, Y complexes, $X \in D^b(Gr_{A^{op}})$ and $Y \in D^-(Gr_A)$. Then $(X \overset{L}{\otimes}_A Y)' =$ RHom(Y, X').

Proof. Let $F \to Y$ be a quasi-isomorphism from a complex of free modules F. Then $X \overset{L}{\otimes}_A Y \cong X \otimes_A F$ and $(X \otimes_A F)^n = \underset{p+q=n}{\oplus} X^p \otimes F^q$, where $F^q = \underset{J_q}{\oplus} A$, hence, $(X \otimes_A F)^n = \underset{p+q=n}{\oplus} X^p \otimes \underset{J_q}{\oplus} A = \underset{p+q=n}{\oplus} \underset{J_q}{\oplus} X^p$.

Therefore: $Hom_{\Bbbk}((X \otimes_A F)^n, \Bbbk) = Hom_{\Bbbk}(\underset{p+q=nJ_q}{\oplus} X^p, \Bbbk) = \underset{p+q=nJ_q}{\prod} Hom_{\Bbbk}(X^p, \Bbbk)$

$$= \prod_{q} Hom_{\mathbb{k}}(X^{n-q}, \mathbb{k}).$$

In the other hand,
$$\operatorname{RHom}_A(\mathbf{Y},\mathbf{X}')^{-n} = \operatorname{Hom}^{\circ}(\mathbf{F},\mathbf{X}')^{-n} = \prod_{q} \operatorname{Hom}_A(\mathbf{F}^q,(\mathbf{X}')^{q-n})$$

= $\prod_{q} \operatorname{Hom}_A(\bigoplus_{J_q} \mathbf{A},(\mathbf{X}')^{q-n}) = \prod_{q} \prod_{J_q} (\mathbf{X}')^{q-n} = \prod_{q} \prod_{J_q} (\mathbf{X}^{n-q})' = (\mathbf{X} \otimes_A \mathbf{F})'^{-n}.$

Let's recall the definition of local cohomology dimension.

Definition 1. Let $A = \bigoplus_{i \geq 0} A_i$ be a positively graded \mathbb{k} -algebra with graded Jacobson radical $\mathfrak{m}=\underset{i\geq 1}{\oplus}A_i$, define a left exact endo functor $\Gamma_{\mathfrak{m}}:Gr_A^+\to Gr_A^+$ in the category of bounded above graded A-modules Gr_A^+ , by $\Gamma_{\mathfrak{m}}(M) = \varinjlim_{k} Hom_A(A/A_{\geq k}, M)$

M). Denote by $\Gamma^n_{\mathfrak{m}}(-)$, the n-th derived functor. It is clear that $\Gamma^n_{\mathfrak{m}}(M) = \varinjlim_k Ext^n_A(A/A_{\geq k}, M)$. We say that A has finite local cohomology dimension, if there exist a non negative integer d such that for all $M \in Gr^+_A$ and $n \geq d$, $\Gamma^n_{\mathfrak{m}}(M) = 0$

We refer to [5] IX Corollary 2.4a for the proof of the following:

Lemma 1. Let A be a k-algebra and I an injective A- A bimodule. The I is injective both as left and as a right A-module.

In order to prove next proposition we need the following:

Lemma 2. Let A be a positively graded left noetherian \mathbb{k} -algebra of finite local cohomology dimension on the left and $\{Z_i\}_{i\in K}$ a family of Γ_m -acyclic modules. Then $\underset{i\in K}{\oplus} Z_i$ is Γ_m -acyclic.

Proof. Let $\{Z_i\}_{i\in K}$ be a family of Γ_m -acyclic modules, this is: each Z_i has an injective resolution:

$$\begin{array}{c} 0 \rightarrow Z_i \rightarrow I_0^i \rightarrow I_1^i \rightarrow I_2^i \rightarrow ...I_k^i \rightarrow I_{k+1}^i \rightarrow ... \text{ such that } 0 \rightarrow \Gamma_m(I_0^i) \rightarrow \Gamma_m(I_1^i) \rightarrow \Gamma_m(I_2^i) \rightarrow ...\Gamma_m(I_k^i) \rightarrow \Gamma_m(I_{k+1}^i) \rightarrow ... \end{array}$$

has homology zero except at degree zero. Since A is noetherian the exact sequence:

$$0 \to \underset{i \in K}{\oplus} (Z_i) \to \underset{i \in K}{\oplus} (I_0^i) \to \underset{i \in K}{\oplus} (I_1^i) \to \underset{i \in K}{\oplus} (I_2^i) \to \dots \underset{i \in K}{\oplus} (I_k^i) \to \underset{i \in K}{\oplus} (I_{k+1}^i) \to \dots$$

Is an injective resolution of
$$\underset{i \in K}{\oplus} (Z_i) \text{ and } \Gamma_m(\underset{i \in K}{\oplus} (I_k^i)) = \underset{s}{\varinjlim} Hom_A(A/A_{\geq s},\underset{i \in K}{\oplus} (I_k^i))$$

and $A/A_{\geq s}$ finitely presented (again noetherian) $\varinjlim^s Hom_A(A/A_{\geq s}, \bigoplus_{i \in K} (I_k^i)) =$

$$\varinjlim_{s} \bigoplus_{i \in K} Hom_A(A/A_{\geq s}, (I_k^i)) = \bigoplus_{i \in K} \varinjlim Hom_A(A/A_{\geq s}, (I_k^i)) = \bigoplus_{i \in K} \Gamma_m(I_k^i).$$

In fact:
$$0 \to \Gamma_m(\underset{i \in K}{\oplus}(Z_i)) \to \Gamma_m(\underset{i \in K}{\oplus}(I_0^i)) \to \Gamma_m(\underset{i \in K}{\oplus}(I_1^i)) \to \Gamma_m(\underset{i \in K}{\oplus}(I_2^i)) \to \Gamma_m(\underset$$

$$\ldots \Gamma_m(\underset{i \in K}{\oplus}(I_k^i)) \to \Gamma_m \underset{i \in K}{\oplus} (I_{k+1}^i))$$

is isomorphic to
$$0 \to \bigoplus_{i \in K} \Gamma_m(Z_i) \to \bigoplus_{i \in K} \Gamma_m(I_0^i) \to \bigoplus_{i \in K} \Gamma_m((I_1^i) \to \bigoplus_{i \in K} \Gamma_m((I_2^i) \to \bigoplus_{i \in K} \Gamma_m(I_2^i))$$

$$... \underset{i \in K}{\oplus} \Gamma_m(I_k^i) \to \underset{i \in K}{\oplus} \Gamma_m(I_{k+1}^i) \to$$
 the claim follows.

Proposition 2. Let A be a positively graded left noetherian \mathbb{k} -algebra of finite local cohomology dimension on the left. Then for any $X \in D^b(Gr_{A^e})$, $Y \in D^-(Gr_A)$, there is an isomorphism $R\Gamma_{\mathfrak{m}}(X \overset{L}{\otimes}_A Y) \cong R\Gamma_{\mathfrak{m}}(X) \overset{L}{\otimes}_A Y$.

Proof. The complex X is in D^+ , hence, it has an injective resolution with objects in Gr_{A^e} , $X \to I$ and $X \in D^b(Gr_{A^e})$ implies $H^i(X) = 0$ for almost all i.

Assume $\mathrm{H}^i(X)=0$ for i>s and let $Z=Kerd_s$, where $d_s:I^s\to I^{s+1}$ is the differential. Hence, $0\to Z\to I^s\to I^{s+1}\to I^{s+2}...\to I^{s+k}\to$ is an injective resolution of Z as A-A bimodule.

Since A has finite local cohomology dimension, there exists an integer t such that $\Gamma^j_{\mathfrak{m}}(Z)=0$ for j>t. If $Z'=\operatorname{Im} d_t,\ d_t:I^t\to I^{t+1}$ is the differential, then $\Gamma^j_{\mathfrak{m}}(Z')=0$ for j>0, this is Z' is $\Gamma_{\mathfrak{m}}$ -acyclic.

The complex $Q: 0 \to I^0 \to I^1 \to ...I^t \to Z' \to 0$ is a complex $\Gamma_{\mathfrak{m}}$ -acyclic which is quasi-isomorphic to I.

The $\Gamma_{\mathfrak{m}}$ -acyclic complexes form an adapted class (See [7], [19]).

Let $L \to Y$ be a free resolution of Y. Then we have isomorphisms: $X \overset{L}{\otimes}_A Y \cong$ $X \otimes_A L \cong Q \otimes_A L$.

The module $(Q \otimes_A L)^n$ is a direct sum of objects in the complex Q and Anoetherian implies sums of injective is injective, therefore $Q \otimes_A L$ is $\Gamma_{\mathfrak{m}}$ -acyclic.

It follows
$$R\Gamma_{\mathfrak{m}}(X \overset{L}{\otimes}_{A} Y \cong \Gamma_{\mathfrak{m}}(Q \otimes_{A} L)$$
. But we have isomorphisms:
$$Hom_{A}(A/A_{\geq k}, (Q \otimes_{A} L)^{n}) = Hom_{A}(A/A_{\geq k}, Q^{p} \otimes_{A} \underset{J_{n-p}}{\oplus} A) = \underset{J_{n-p}}{\oplus} Hom_{A}(A/A_{\geq k}, Q^{p} \otimes_{A} \underset{J_{n-p}}{\oplus} A) = \underset{J_{n-p}}{\oplus$$

$$Q^{p}) = Hom_{A}(A/A_{\geq k}, Q^{p}) \otimes_{A} \bigoplus_{J_{n-p}} A = Hom_{A}(A/A_{\geq k}, Q^{p}) \otimes_{A} L^{n-p}.$$

Therefore:
$$\varinjlim_{k} Hom_{A}(A/A_{\geq k}, (Q \otimes_{A} L)^{n}) = (\varinjlim_{k} Hom_{A}(A/A_{\geq k}, Q^{p})) \otimes_{A} L^{n-p}.$$

We are using the fact that A is noetherian, hence ${}^{\kappa}A/A_{\geq k}$ is finitely presented.

We have proved:
$$\Gamma_{\mathfrak{m}}(Q \otimes_A L) \cong \Gamma_{\mathfrak{m}}(Q) \otimes_A L$$
, therefore: $R\Gamma_{\mathfrak{m}}(X \otimes_A Y) \cong R\Gamma_{\mathfrak{m}}(X) \otimes_A Y$.

The proof of the following lemma was given in [8] and reproduced in [14], we will not give it here.

Proposition 3. Let Λ be a positively graded k-algebra such that the graded simple have projective resolutions consisting of finitely generated projective modules, m the graded radical of Λ and \mathfrak{m}^{op} the graded radical of Λ^{op} . Then for any integer k, $\Gamma^k_{\mathfrak{m}}(\Lambda) = \Gamma^k_{\mathfrak{m}^{op}}(\Lambda).$

We can prove now the following:

Proposition 4. Let A be a positively graded locally finite noetherian k-algebra of finite local cohomology dimension on both sides. Let X, Y be bounded complexes of finitely generated graded A-modules. Then there exists a natural isomorphism:

$$RHom_A(R\Gamma_{\mathfrak{m}}(X), Y) \cong RHom_A(X, Y).$$

Proof. Letting Y' be $Y' = Hom_{\mathbb{K}}(Y,\mathbb{K})$, there is an isomorphism $RHom_A(R\Gamma_{\mathfrak{m}}(X),\mathbb{K})$ $Y) \cong RHom_A(R\Gamma_{\mathfrak{m}}(X), Y'').$

By Proposition 1, $RHom_A(R\Gamma_{\mathfrak{m}^{op}}(A), Y'') \cong (Y' \overset{L}{\otimes}_A R\Gamma_{\mathfrak{m}^{op}}(A))'$.

By Proposition 2, $Y' \overset{L}{\otimes}_A R\Gamma_{\mathfrak{m}^{op}}(A) \cong R\Gamma_{\mathfrak{m}^{op}}(Y' \overset{L}{\otimes}_A A) \cong R\Gamma_{\mathfrak{m}^{op}}(Y')$.

Let F be a free resolution of Y, it consists of finitely generated A-modules. Hence Y' consists of finitely cogenerated injective A-modules, then of torsion modules, and $\Gamma_{\mathfrak{m}^{op}}(Y') \cong \Gamma_{\mathfrak{m}^{op}}(F') = F' \cong Y'.$

Therefore: $RHom_A(R\Gamma_{\mathfrak{m}^{op}}(A), Y) \cong Y'' \cong Y$.

Now, there are isomorphisms:

 $RHom_A(R\Gamma_{\mathfrak{m}}(X),Y)\cong RHom_A(R\Gamma_{\mathfrak{m}}(A\overset{L}{\otimes}_AX),Y)\cong RHom_A(R\Gamma_{\mathfrak{m}}(A)\overset{L}{\otimes}_AX),$ $Y) \cong RHom_A(X, RHom(R\Gamma_{\mathfrak{m}}(A), Y).$

The last isomorphism is by adjunction and the previous one is by Proposition 2. By Proposition 3, $RHom_A(R\Gamma_{\mathfrak{m}}(X), Y) \cong RHom_A(X, RHom(R\Gamma_{\mathfrak{m}^{op}}(A), Y).$ It follows: $RHom_A(R\Gamma_{\mathfrak{m}}(X), Y) \cong RHom_A(X, Y)$.

Next we have:

Lemma 3. For complexes $X \in D^-(Gr_A)$, $Y \in D^+(Gr_A)$, there exists a spectral sequence $E_2^{m,n} = Ext_A^m(h^{-n}X, Y)$ converging to $Ext_A^{n+m}(X, Y)$.

Proof. Let $Y \to J$ be an injective resolution. The complex X is of the form:

$$X: \dots \to X^{-m} \to \dots \to X^{-k} \to X^{-k+1} \to \dots X^{-\ell} \to 0.$$

For each n, there is a complex: $Hom_A(X, J^n)$:

$$0 \to Hom_A(X^{-\ell}, J^n) \to Hom_A(X^{-\ell-1}, J^n) \to Hom_A(X^{-k+1}, J^n) \to \dots$$

$$Hom_A(X^{-m}, J^n) \to \dots$$

Since J^n is injective, $H^m(Hom_A(X, J^n)) \cong Hom_A(H^m(X), J^n)$.

If $M^{m,n} = Hom_A(X^{-m}, J^n)$, then $M = (M^{m,n})$ is a complex in the third quadrant.

Taking first the horizontal homology, then the vertical homology, we obtain the spectral sequence $E_2^{m,n} = \operatorname{Ext}_A^m(h^{-n}X,Y)$ which converges to the homology of the total complex, which by definition, is $\operatorname{Ext}_A^{n+m}(X,Y)$ [24].

For the next lemma we need to assume either A is Gorenstein or it is of finite local cohomology dimension.

Lemma 4. For $X \in D^-(Gr_A)$, there is a spectral sequence $E_2^{m,n} = Tor_{-m}^A(\Gamma_{\mathfrak{m}^{op}}^n(A), X)$ converging to $\Gamma_{\mathfrak{m}}^{m+n}(X)$.

Proof. By definition, $\Gamma_{\mathfrak{m}}^m = h^m R \Gamma_{\mathfrak{m}}$. Let F be a free resolution of X.

Then we have a double complex $M^{m,n} = (R\Gamma_{\mathfrak{m}^{op}}A)^m \otimes F^n$.

The complex $R\Gamma_{\mathfrak{m}^{op}}A$ is bounded in the Gorenstein case. If A is of finite local cohomology dimension $R\Gamma_{\mathfrak{m}^{op}}A$, can be truncated to a bounded complex of $\Gamma_{\mathfrak{m}^{op}}$ -acyclic modules.

Taking the second filtration, we obtain a spectral sequence $E_2^{m,n} = \operatorname{Tor}_{-m}^A(\Gamma_{\mathfrak{m}^{op}}^n(A),X)$ converging to the total complex of M.

We have isomorphisms
$$TotM \cong (R\Gamma_{\mathfrak{m}^{op}}A) \overset{L}{\otimes}_A X \cong (R\Gamma_{\mathfrak{m}}A) \overset{L}{\otimes}_A X \cong R\Gamma_{\mathfrak{m}}X$$
. \square

Definition 2. (Castelnovo-Mumford) A complex $X \in D(Gr_A)$ is called p-regular if $\Gamma_{\mathfrak{m}}^m(X)_{\geq p+1-m} = 0$ for all m.

If X is p-regular but not p-1-regular, then we say it has Cohen Macaulay regularity p and write CMregX = p. If X is not p-regular for any p, the we say $CMregX = \infty$.

If X is p-regular for all p, this is
$$R\Gamma_{\mathfrak{m}}X = 0$$
, then $CMregX = -\infty$.

Artin and Schelter introduced in [1] a notion of a non commutative regular algebra that has been very important. We will use here a generalization of non commutative Gorenstein that extends the notion of Artin-Schelter regular. This is a variation of the definition given for connected algebras in [10].

Definition 3. Let k be a field and Λ a locally finite positively graded k-algebra. Then we say that Λ is graded Artin-Schelter Gorenstein (AS Gorenstein, for short) if the following conditions are satisfied:

There exists a non negative integer n, called the graded injective dimension of Λ , such that:

- i) For all graded simple S_i concentrated in degree zero and non negative integers $j \neq n$, $Ext^{j}_{\Lambda}(S_{i}, \Lambda) = 0$.
 - ii) We have an equality $Ext_{\Lambda}^{n}(S_{i},\Lambda) = S'_{i}[-n_{i}]$, with S'_{i} a graded Λ^{op} -simple.
- iii) For a non negative integer $k \neq n$, $Ext^k_{\Lambda^{op}}(Ext^n_{\Lambda}(S_i,\Lambda),\Lambda) = 0$ and $Ext^n_{\Lambda^{op}}(Ext^n_{\Lambda}(S_i,\Lambda),\Lambda) = S_i.$

We need to assume now A is graded AS Gorenstein noetherian of finite local cohomology dimension. Under this conditions the following was proved in [14].

Theorem 2. Let Λ be a graded AS Gorenstein algebra of graded injective dimension n and such that all graded simple modules have projective resolutions consisting of finitely generated projective modules and assume Λ has finite local cohomology dimension. Then for any graded left module M there is a natural isomorphism: $D(\varinjlim Ext^i_{\Lambda}(\Lambda/\Lambda_{\geq k}, M)) = Ext^{n-i}_{\Lambda}(M, D(\Gamma^n_{\mathfrak{m}}(\Lambda)), \text{ for } 0 \leq i \leq n.$

Let $D_{fq}^b(Gr_A)$ be the subcategory of $D^b(Gr_A)$ of all bounded complexes with finitely generated homology.

Let $X \in D^b_{fg}(Gr_A)$ and $X \to I$ an injective resolution. Since X is bounded, there is an integer t such that $H^k(X) = H^k(I) = 0$ for k > t.

As above, we can truncate I to obtain a complex $I_{>}$ consisting of $\Gamma_{\mathfrak{m}}$ -acyclic modules, $I_{>} \cong X$ and $I_{>} \in D_{fg}^{b}(Gr_{A})$.

We want to prove $R\Gamma_{\mathfrak{m}}(X)' \in D^b_{fg}(Gr_A)$.

$$X: 0 \rightarrow X_{s_1} \stackrel{d_1}{\rightarrow} X_{s_2} \rightarrow ... X_{s_{\ell-1}} \stackrel{d_{\ell-1}^{1/3}}{\rightarrow} X_{s_{\ell}} \rightarrow 0.$$
 We apply induction on ℓ .

If $\ell = 1$, then X is concentrated in degree s_1 and X of finitely generated homology means X is finitely generated and it has a projective resolution:

$$... \rightarrow P_k \rightarrow P_{k-1} \rightarrow ... P_1 \rightarrow P_0 \rightarrow X \rightarrow 0$$
 with each P_i finitely generated.

Dualizing with respect to the ring we obtain a complex:

 $P^*: 0 \rightarrow P_0^* \rightarrow P_1^* \rightarrow ... P_k^* \rightarrow P_{k+1}^* \rightarrow ... \text{ with homology } H^i(P^*) = Ext_A^i(X,A).$ Since A^{op} is noetherian, each $Ext_A^i(X,A)$ is finitely generated.

But it was proved in Theorem ?, $Ext^i_A(X,A)\cong D((\varinjlim Ext^{n-i}_A(A/A_{\geq k},X))=$ $(\Gamma_{\mathfrak{m}}^{n-i}(X))'$ and $Ext_A^i(X,A)$ finitely generated, implies $R\Gamma_{\mathfrak{m}}(X)' \in D_{fg}^b(Gr_A)$.

Let C be $C = \operatorname{Coker} d_{\ell-1} = H^{\ell}(X)$ and $B_{\ell} = \operatorname{Im} d_{\ell-1}$.

Then there is an exact sequence of complexes:

The complex:

 $Y: 0 \to X_{s_1} \stackrel{d_1}{\to} X_{s_2} \to ... X_{s_{\ell-1}} \stackrel{d_{\ell-1}}{\to} B_{\ell} \to 0 \text{ is quasi- isomorphic to the complex:}$ $0 \to X_{s_1} \stackrel{d_1}{\to} X_{s_2} \to ... X_{s_{\ell-2}} \stackrel{d_{\ell-2}}{\to} Z_{s_{\ell-1}} \to 0 \text{ with } Z_{s_{\ell-1}} = Kerd_{\ell-1}.$

By induction hypothesis $R\Gamma_{\mathfrak{m}}(Y)' \in D_{fg}^b(Gr_A)$.

We have a triangle $Y \to X \to C \to Y[1]$ which induces a triangle:

 $R\Gamma_{\mathfrak{m}}(Y) \to R\Gamma_{\mathfrak{m}}(X) \to R\Gamma_{\mathfrak{m}}(C) \to R\Gamma_{\mathfrak{m}}(Y)[1]$

By the long homology sequence, there is an exact sequence:

 $\Gamma^{j-1}_{\mathfrak{m}}(C) \to \Gamma^{j}_{\mathfrak{m}}(Y) \to \Gamma^{j}_{\mathfrak{m}}(X) \to \Gamma^{j}_{\mathfrak{m}}(C) \to \Gamma^{j+1}_{\mathfrak{m}}(Y)$

Dualizing with respect to k, there is an exact sequence:

 $(\Gamma^j_{\mathfrak{m}}(C))' \to (\Gamma^j_{\mathfrak{m}}(X))' \to (\Gamma^j_{\mathfrak{m}}(Y))'.$

Using A is noetherian and induction, it follows $(\Gamma_{\mathfrak{m}}^{j}(X))'$ is finitely generated.

Since for any complex Z and any i there is an isomorphism $H^i(Z)' \cong H^i(Z')$.

It follows $R\Gamma_{\mathfrak{m}}(X)' \in D^b_{fg}(Gr_A)$.

Therefore $R\Gamma_{\mathfrak{m}}(X)$ is a complex with finitely cogenerated homology and each $\Gamma^{j}_{\mathfrak{m}}(X)$ is finitely cogenerated hence $CMregX \neq \infty$ and $CMregX \neq -\infty$.

In the graded AS Gorenstein case, there is an integer n such that $\Gamma^{j}_{\mathfrak{m}}(A) = \Gamma^{j}_{\mathfrak{m}^{op}}(A) = 0$ for $j \neq n$. According to [14], $I'_{n} = \Gamma^{n}_{\mathfrak{m}}(A) = \Gamma^{n}_{\mathfrak{m}^{op}}(A) = J'_{n}$, where $I'_{n} = \oplus D(P^{*}_{j})[-n_{\sigma(j)}]$ and $J'_{n} = \oplus D(P_{j})[-n_{\tau(j)}]$.

Since σ and τ are permutations, I'_n is cogenerated as left module in the same degrees as J'_n is cogenerated as right module and $CMreg(_AA) = CMreg(_AA)$.

Definition 4. (Ext-regularity) The complex $X \in D(Gr_A)$ is r-Ext-regular if $Ext_A^m(X, A_0)_{\leq r-1-m} = 0$ for all m.

If X is r-Ext-regular and is not (r-1)-Ext-regular we say Ext-regular (X) = r. If X is not r-Ext-regular for any r, then Ext-regular $(X) = \infty$ and if for all r the complex X is r-Ext-regular, this is $Ext_A(X, A_0) = 0$, then Ext-regular $(X) = -\infty$.

In [15] we gave the following definition.

Definition 5. A complex of graded modules over a graded algebra is subdiagonal if for each i the ith module is generated in degrees at least i, provided is not zero.

We will make use of the following:

Lemma 5. Let A be a locally finite graded noetherian algebra over a field k and X a complex in $D_{fg}^-(Gr_A)$. Then X has a projective resolution $P \to X$ consisting of finitely generated graded projective modules such that P is subdiagonal.

Proof. Since X has a graded projective resolution P we may consider P instead of X and prove that $P = P' \oplus P''$ where P' is a subdiagonal complex of finitely generated projective graded modules and $H^i(P'') = 0$ for all i.

$$P: \dots \to P_{n+1} \to P_n \to P_{n-1} \to \dots P_1 \to P_0 \to 0$$

There is an exact sequence: $0 \to B_1 \to P_0 \to C \to 0$ with $H^0(P) = C$ finitely generated.

Since C has a finitely generated projective cover P'_0 , there is an exact commutative diagram:

Hence $B_1 \cong B_1' \oplus P_0''$ and B_1' has a finitely generated projective cover P_1' and there is an exact sequence: $0 \to Z_1' \to P_1' \to B_1' \to 0$.

We have an exact commutative diagram:

Therefore: P is isomorphic to the complex:

$$\ldots \to P_n \to P_{n-1} \to \ldots P_2 \stackrel{d_2}{\to} P_1' \oplus P_0'' \oplus P_1'' \stackrel{d_1}{\to} P_0' \oplus P_0'' \to 0$$
 with Im $d_2 \subseteq Z_1' \oplus P_1''$.

It follows P decomposes as $P = P' \oplus P''$ with:

$$P': ... \rightarrow P_n \rightarrow P_{n-1} \rightarrow ... P_2 \xrightarrow{d_2} P'_1 \oplus P''_1 \xrightarrow{d_1} P'_0 \rightarrow 0$$

$$P'': 0 \rightarrow P''_0 \rightarrow P''_0 \rightarrow 0$$

The projective P'_0 is finitely generated.

Assume now $P = P' \oplus P''$, where $H^i(P'') = 0$ for all i and

 $P': .. \to P_{n+1} \to P_n \to P_{n-1} \to ... P_1 \to P_0 \to 0$ with P_i finitely generated for $0 \le i \le n-2$.

Hence $B_{n-2} = \text{Im } d_{n-1}$ is finitely generated, therefore it has finitely generated projective cover P'_{n-1} and as before, there is a commutative exact diagram:

Therefore: $Z_{n-1} \cong Z'_{n-1} \oplus P''_{n-1}$.

Letting B_{n-1} be the image of d_n and H_{n-1} the homology $H^{n-1}(P)$, which we assume finitely generated, there is an exact sequence: $0 \to B_{n-1} \to Z'_{n-1} \oplus P''_{n-1} \to H_{n-1} \to 0$ and an induced commutative, exact diagram:

with $\overline{B}_{n-1} = B_{n-1} \cap Z'_{n-1}$ and H''_{n-1} is finitely generated.

Therefore: the exact sequence: $0 \to B''_{n-1} : \to P''_{n-1} \to H''_{n-1} \to 0$ is isomorphic to the direct sum of the exact sequences:

 $0 \to L_{n-1} : \to Q''_{n-1} \to H''_{n-1} \to 0$ and $0 \to Q'_{n-1} \to Q'_{n-1} \to 0 \to 0$, with Q''_{n-1} the projective cover of H''_{n-1} , hence finitely generated. Then $B''_{n-1} \cong L_{n-1} \oplus Q'_{n-1}$. There is a commutative exact diagram:

where \overline{B}_{n-1} and L_{n-1} are finitely generated. It follows $B_{n-1} \cong B'_{n-1} \oplus Q'_{n-1}$ with B'_{n-1} finitely generated.

We have an exact sequence: $0 \to B'_{n-1} \oplus Q'_{n-1} \to P'_{n-1} \oplus Q'_{n-1} \oplus Q''_{n-1} \to P_{n-2}$. Taking the projective cover of B'_{n-1} we obtain an exact sequence: $0 \to Z'_n \to P'_n \to B'_{n-1} \to 0$. Therefore: $0 \to Z'_n \to P'_n \oplus Q'_{n-1} \to B'_{n-1} \oplus Q'_{n-1} \to 0$ is exact. As above, P_n decomposes $P'_n \oplus Q'_{n-1} \oplus P''_n$.

We have proved that P decomposes in the direct sum of the complexes:

$$. \to P_{n+1} \to P'_n \oplus P''_n \to P'_{n-1} \oplus Q''_{n-1} \to P_{n-2}...P_1 \to P_0 \to 0$$
 and $0 \to Q'_{n-1} \to Q'_{n-1} \to 0.... \to 0 \to 0$, where $P'_{n-1} \oplus Q''_{n-1}$ is finitely generated.

With the same hypothesis as in the previous lemma, let $X \in D^b_{fg}(Gr_A)$, we can choose a projective resolution of finitely generated projective graded modules: $P \to X$ such that the differential map $d_j: P_j \to P_{j-1}$ has image contained in the radical of P_{j-1} .

Hence the complex $Hom_A(P, A_0)$:

 $0 \to Hom_A(P_0, A_0) \to Hom_A(P_1, A_0) \to ... Hom_A(P_n, A_0) \to ...$ has zero differential.

It follows $Ext_A^k(X, A_0) = Hom_A(P_k, A_0) \neq 0$ and $Ext_A(X, A_0) \neq 0$.

It follows $Ext\text{-}regular(X) \neq -\infty$, but $Ext\text{-}regular(X) = \infty$ is possible.

Assume Ext-regular(X) = r is finite.

There is a left decomposition of A in indecomposable summands: $A = \bigoplus_{i=1}^{m} Q_i$ and of each projective $P_j = \bigoplus_{i=1}^{n} Q_i^{(m_i)}[-n_i^j]$ with $m_i \geq 0$ and n_i^j integers.

Then $Ext_A^j(X, A_0) = Hom_A(P_j, A_0) = \bigoplus_{i=1}^n D(Q_i/rQ_i)^{(m_i)}[n_i^j].$

Therefore: $Hom_A(P_j, A_0)_k \neq 0$ if and only if for some $i, n_i^j + k = 0$. Since the resolution is subdiagonal, $n_i^j \geq j$.

By definition $Ext_A^j(X,A_0)_{\leq -r-1-j}=0$, this means $-r-j\leq -n_i^j$ or $r\geq n_i^j-j$, for all i and $r'=\max\{n_i^j-j\}$, exists.

Then $Ext_A^j(X, A_0) \leq -r' - j - 1 = 0$ and $Ext_A^j(X, A_0) = (n^i - j) - j \neq 0$.

We have proved Ext- $reg(X) = r = \max\{n_i^j - j\}.$

Let $P: ... \to P_{n+1} \to P_n \to P_{n-1} \to ... P_1 \to P_0 \to A_0 \to 0$ and $P': ... \to P'_{n+1} \to P'_n \to P'_{n-1} \to ... P'_1 \to P'_0 \to A_0 \to 0$ be minimal projective resolutions of A_0 as left and as right module, respectively. Each P_j has a decomposition $P_j = \bigoplus_{i=1}^m Q_i^{(m_i)}[-n_i^j]$ and $Tor_n^A(A_0, A_0)$ is computed

as the *nth*-homology of the complex $A_0 \otimes_A P$:

$$... \to A_0 \otimes_A P_{n+1} \to A_0 \otimes_A P_n \to A_0 \otimes_A P_{n-1} \to ... A_0 \otimes_A P_1 \to A_0 \otimes_A P_0 \to 0 \text{ and}$$

$$A_0 \otimes_A P_n = A_0 \otimes_A \bigoplus_{i=1}^m Q_i^{(m_i)} [-n_i^n] = A/\mathfrak{m} \otimes_A \bigoplus_{i=1}^m Q_i^{(m_i)} [-n_i^n] \cong \bigoplus_{i=1}^m (Q_i/\mathfrak{m}Q_i)^{(m_i)} [-n_i^n]$$

 $\cong \bigoplus_{i=1}^m (S_i)^{(m_i)}[-n_i^n]$ and the differential of $A_0 \otimes_A P$ is zero.

Using the second resolution $Tor_n^A(A_0, A_0)$ is the *nth*-homology of the complex $P'\otimes_A A_0:$

$$... \to P'_{n+1} \otimes_A A_0 \to P'_n \otimes_A A_0 \to P'_{n-1} \otimes_A A_0 \to ... P'_1 \otimes_A A_0 \to P'_0 \otimes_A A_0 \to 0$$

Each P'_j has a decomposition $P'_j = \bigoplus_{i=1}^m Q'_i^{(m_i)}[-n'^j_i]$ and $P'_n \otimes_A A_0 = 0$

 $(\overset{m}{\bigoplus} Q_i'^{(m_i)}[-n_i'^j]) \otimes_A A_0 = \overset{m}{\underset{i=1}{\bigoplus}} (Q_i'/(Q_i') \mathfrak{m}^{(m_i)}[-n_i'^j] \cong \overset{m}{\underset{i=1}{\bigoplus}} (S_i')^{(m_i)}[-n_i'^j] \text{ and the differential}$ ferential of $P' \otimes_A A_0$ is zero.

It follows $n_i^j = n_i^{\prime j}$ for all i.

By the above remark, Ext- $reg_A A_0 = Ext$ - $reg A_{0A} = Ext$ - $reg A_0$.

We write this as a theorem.

Theorem 3. Let A be a locally finite \mathbb{k} -algebra. Then Ext- reg_AA₀ = Ext $regA_{0A} = Ext - regA_0$.

We next have:

Theorem 4. Let A be a noetherian graded AS Gorenstein algebra of finite local cohomology dimension. Given $X \in D^b_{fg}(Gr_A), X \neq 0$. Then Ext- $reg(X) \leq$ $CMreg(X) + Ext - regA_0$.

Proof. We proved above $CMreg(X) \neq -\infty$. If Ext- $regA_0 = \infty$, then the inequality is trivially satisfied.

We may assume Ext- $regA_0 = r$ is finite.

Let $P \to A_0$ be a minimal projective resolution. Changing notation, $P:...P^{(n+1)} \to P^{(n)} \to ...P^{(1)} \to P^{(0)} \to 0$

$$P: ...P^{(n+1)} \to P^{(n)} \to ...P^{(1)} \to P^{(0)} \to 0$$

where $P^{(m)} = \bigoplus P_j^{(m)}[-\sigma_{m,j}]$ and $\sigma_{m,j} \leq r + m$.

Dualizing, we obtain an injective resolution I with $I^m = \bigoplus D(P_i^{(m)})[\sigma_{m,j}]$, of A_0 as right module.

Let p be p = CMreg(X), $Z = R\Gamma_{\mathfrak{m}}(X)$ and denote by h^{-n} the homology. Then by definition we have:

 $h^{-n}(Z)_{\geq p+1+n} = h^{-n}(R\Gamma_{\mathfrak{m}}(X))_{\geq p+1+n} = \Gamma_{\mathfrak{m}}^{-n}(X)_{\geq p+1+n} = 0$ for all n. Therefore: $(h^{-n}(Z))'_{<-p-1-n} = 0.$

But $Ext_A^m(h^{-n}(Z), A_0)$ is a subquotient of $Hom_A(h^{-n}(Z), I^m) = Hom_A(h^{-n}(Z), I^m)$ $h^{-n}(Z), \oplus D(P_j^{(m)})[\sigma_{m,j}]) = \oplus Hom_A(h^{-n}(Z), D(P_j^{(m)})[\sigma_{m,j}]) \cong$

 $\oplus Hom_{\mathbb{k}}(\ (P_j^{(m)})^* \otimes h^{-n}(Z), \mathbb{k})[\sigma_{m,j}] \cong \oplus Hom_{\mathbb{k}}(\ (e_jh^{-n}(Z), \mathbb{k})[\sigma_{m,j}] \text{ with } e_j \text{ the idempotent corresponding to } P_j^{(m)}.$

Since $(h^{-n}(Z))'_{\leq -p-1-n} = 0$, it follows $Hom_{\mathbb{k}}(\ (e_jh^{-n}(Z), \mathbb{k})_{\leq -p-1-n} = 0$.

Observe that the truncation of a shifted module $M[k]_{<-t-k} = M_{<-t}[k]$.

Therefore: $Ext_A^m(h^{-n}(Z), A_0) \le -p-1-n-r-m = 0.$

We have a converging spectral sequence:

 $E_2^{m,n} = Ext_A^m(h^{-n}(Z), A_0) \Longrightarrow Ext_A^{m+n}(Z, A_0).$

This means $Ext_A^{m+n}(Z, A_0)$ is a subquotient of $E_2^{m,n} = Ext_A^m(h^{-n}(Z), A_0)$ and $Ext_A^m(h^{-n}(Z), A_0) \le -p-1-r-(n+m) = 0$ implies $Ext_A^q(Z, A_0) \le -p-1-r-q = 0$

We have isomorphisms: $Ext_A^q(Z, A_0) = Ext_A^q(R\Gamma_{\mathfrak{m}}(X), A_0) =$ $H^q(RHom(R\Gamma_{\mathfrak{m}}(X), A_0)) \cong H^q(RHom(X, A_0)) = Ext_A^q(X, A_0).$

Therefore: $Ext_A^q(X, A_0)_{\leq -p-1-r-q} = 0.$

This implies $Ext\text{-}reg(X) \leq p + r = CMreg(X) + Ext\text{-}regA_0$.

Corollary 1. Assume the same conditions as in the theorem and Ext- $regA_0$ finite. Then for any $X \in D_{fq}^b(Gr_A)$, Ext-reg(X) is finite.

Proof. This follows from the above remark that CMreg(X) is finite.

Interchanging the roles of Ext-regular and CM-regular we obtain in the next result a similar inequality.

Theorem 5. Let A be a noetherian AS Gorenstein algebra of finite local cohomology dimension. Given $X \in D^b_{fg}(Gr_A), X \neq 0$. Then $CMreg(X) \leq Ext\text{-reg}(X) +$ CMregA.

Proof. Since we know $CMregA \neq -\infty$, the assumption $Ext\text{-}reg(X) = \infty$ gives the inequality and we can assume Ext-reg(X) = r is finite.

As before, there is a projective resolution $P \to X$ of X with $P^{(m)} = \bigoplus P_i^{(m)} [-\sigma_{m,i}]$ and $\sigma_{m,j} \leq r + m$.

Let p be $p = CMreg_A A = CMreg_A A$. Then by definition $\Gamma_{\mathfrak{m}^{op}}^n(A)_{\geq p+1-n} = 0$

 $\operatorname{Tor}_{-m}^A(\Gamma^n_{\mathfrak{m}^{op}}(A),X)$ is a subquotient of $\Gamma^n_{\mathfrak{m}^{op}}(A)\otimes_A P^{(-m)}=\oplus \Gamma^n_{\mathfrak{m}^{op}}(A)\otimes_A$ $P_j^{(-m)}[-\sigma_{-m,j}] = \bigoplus \Gamma_{\mathfrak{m}^{op}}^n(A)e_j[-\sigma_{-m,j}]$ with e_j the idempotent corresponding to $P_j^{(-m)}$ and $\sigma_{-m,j} \leq r - m$.

Therefore: $\Gamma_{\mathfrak{m}^{op}}^n(A)[-\sigma_{-m,j}]_{>p+1-n+(r-m)}=0.$

As above, it follows $\operatorname{Tor}_{-m}^A(\Gamma_{\mathfrak{m}^{op}}^n(A),X)_{\geq p+1-n+r-m}=0$ The spectral sequence $E_2^{-m.n}=\operatorname{Tor}_{-m}^A(\Gamma_{\mathfrak{m}^{op}}^n(A),X)\Longrightarrow\Gamma_{\mathfrak{m}}^{-m+n}(X)$ converges (Lemma 3).

Hence $\Gamma_{\mathfrak{m}}^{m+n}(X)$ is a subquotient of $\operatorname{Tor}_{-m}^{A}(\Gamma_{\mathfrak{m}^{op}}^{n}(A),X)$ and it follows $\Gamma_{\mathfrak{m}}^{q}(X)_{\geq p+1+r-q} = 0.$

We have proved $CMreg(X) \le p + r = Ext\text{-}reg(X) + CMregA$.

Remark 1. The algebra A is Koszul if and only if $Ext\text{-reg}A_0 = 0$.

Corollary 2. Assume the same conditions on A as in the theorem and in addition A Koszul and CMregA = 0. Then Ext-reg(X) = CMreg(X).

We have all the ingredients to prove the main theorem of the section.

Theorem 6. Let A be a noetherian AS Gorenstein algebra of finite local cohomology dimension. Assume A Koszul and let M be a finitely generated graded A-module. Then for $s \geq CMregM$, the projective resolution of $M_{>s}[s]$ is linear.

Proof. Assume $M_{\geq s}[s] \neq 0$ and let $P^{(n+1)} \to P^{(n)} \to ... P^{(1)} \to P^{(0)} \to M_{\geq s}[s] \to 0$ be the projective resolution. The module $M_{\geq s}[s]$ is generated in degree zero and $P^{(m)}$ decomposes as $P^{(m)} = \bigoplus P_j^{(m)} [-\sigma_{m,j}]$ and $m \leq \sigma_{m,j}$.

We most prove $P^{(m)}$ does not have generators in degrees larger than m, or equivalently Ext- $reg(M_{>s}[s]) \leq 0$, which will follow from the above inequalities once we prove $CMreg(M_{>s}[s]) \leq 0$ or equivalently, $CMreg(M_{>s}) \leq s$, this is:

$$\Gamma_{\mathfrak{m}}^m(M_{\geq s})_{\geq s+1-m} = 0.$$

The module $L = M/M_{\geq s}$ is of finite length. By the local cohomology formula, $\varinjlim Ext_A^j(A/\mathfrak{m}^k,L) = D(Ext_A^{n-j}(L,D(\Gamma_{\mathfrak{m}}^n(A))).$

Since A is graded AS Gorenstein $Ext_A^{n-j}(L, D(\Gamma_{\mathfrak{m}}^n(A))) = 0$ for $j \neq n$. It follows

 $\Gamma^{j}_{\mathfrak{m}}(M/M_{\geq s}) = \begin{cases} 0 & \text{if} \quad j \neq s \\ M/M_{\geq s} & \text{if} \quad j = s \end{cases}$ The exact sequence: $0 \to M_{\geq s} \to M \to M/M_{\geq s} \to 0$ induces a triangle $M_{\geq s} \to M \to M/M_{\geq s} \to M_{\geq s}[1]$, hence a triangle $R\Gamma_{\mathfrak{m}}(M_{\geq s}) \to R\Gamma_{\mathfrak{m}}(M) \to R\Gamma_{\mathfrak{m}}(M)$ $R\Gamma_{\mathfrak{m}}(M/M_{\geq s}) \to R\Gamma_{\mathfrak{m}}(M_{\geq s})[1]$, by the long homology sequence we obtain an exact sequence:

$$\to \Gamma^{m-1}_{\mathfrak{m}}(M/M_{\geq s}) \to \Gamma^{m}_{\mathfrak{m}}(M_{\geq s}) \to \Gamma^{m}_{\mathfrak{m}}(M) \to \Gamma^{m}_{\mathfrak{m}}(M/M_{\geq s})$$

 $M/M_{\geq s}$ has length s, $\Gamma^m_{\mathfrak{m}}(M/M_{\geq s})_{\geq s+1-m}=0$ for all m.

It follows
$$\Gamma_{\mathfrak{m}}^m(M_{\geq s})_{\geq s+1-m}=0$$
 for all m .

3. Algebras AS Gorenstein and Koszul

In this section we will use the main theorem of the last section in order to extend a theorem by Bernstein-Gelfand-Gelfand, [3] which claims that for the exterior algebra in n-variables Λ there is an equivalence of triangulated categories $gr_{\Lambda} \cong$ $D^b(CohP_n)$ from the stable category of finitely generated graded modules to the category of bounded complexes of coherent sheaves on projective space P_n . The theorem was extended to finite dimensional Koszul algebras in [15], [16] see also [21]. We want to prove here a version of this theorem for AS Gorenstein algebras of finite cohomological dimension. We will show that the arguments used in [15] can be easily extended to this situation. We will assume the reader is familiar with the results of [13], [15] and [17] and the bibliography given there.

It was proved in [25] and [12] that a finite dimensional Koszul algebra Λ is selfinjective if and only if its Yoneda algebra Γ is Artin Schelter regular [1]. The following generalization was proved in [13] and [22]:

Theorem 7. A Koszul algebra Λ is graded AS Gorenstein if and only if its Yoneda algebra Γ is graded AS Gorenstein.

Remark 2. Observe the following:

i) The algebra Λ can be noetherian with non noetherian Yoneda algebra.

- ii) The algebra Λ could be Gorenstein and Γ only weakly Gorentein this is: there exists an integer n such that for all Γ -modules left (right) of finite length $Ext^j_{\Gamma}(M,\Gamma)=0$ for all j>n.
- iii) The algebra Λ could be of finite local cohomology dimension and Γ of infinite local cohomology dimension.

However, there are Koszul algebras Λ with Yoneda algebra Γ such that both Λ and Γ are graded AS Gorenstein, noetherian (in both sides) and of finite cohomological dimension, for example if Λ is selfinjective with noetherian Yoneda algebra Γ then $\Lambda \otimes \Gamma$ is AS Gorenstein Koszul noetherian of finite local cohomology dimension on both sides with Yoneda algebra the skew tensor product (in the sense of [5] or [18]) $\Lambda \boxtimes \Gamma$ which is also AS Gorenstein noetherian and of finite local cohomology dimension on both sides.

A concrete example of such algebras is Λ the exterior algebra in n variables and Γ the polynomial algebra in n variables, this example appears as the cohomology ring of an elementary abelian p-group over a field of positive characteristic $p \neq 2$. [4]

Another example is the trivial extension $\Lambda = \mathbb{k}Q \rhd D(\mathbb{k}Q)$ with Q an Euclidean diagram and Γ the preprojective algebra corresponding to Q [11].

We need the following definitions and results from [17]:

Definition 6. Let Λ be a Koszul algebra with graded Jacobson radical \mathfrak{m} . A finitely generated graded Λ -module M is weakly Koszul if it has a minimal projective resolution:

$$\to P_n \stackrel{d_n}{\to} P_{n-1} \to \dots P_1 \to P_0 \stackrel{d_0}{\to} M \to 0 \text{ such that } \mathfrak{m}^{k+1} P_i \cap \ker d_i = \mathfrak{m}^k \ker d_i.$$

The next result characterizing weakly Koszul modules was proved in [17].

Theorem 8. Let Λ be a Koszul algebra with Yoneda algebra and denote by gr_{Λ} , the category of finitely generated graded Λ -modules, $F: gr_{\Lambda} \to Gr_{\Gamma}$ be the exact functor $F(M) = \bigoplus_{k \geq 0} Ext_{\Lambda}^k(M, \Lambda_0)$. Then M is weakly Koszul if and only if F(M) is Koszul.

As a consequence of this theorem and the results of the last section we have:

Theorem 9. Let Λ be a Koszul algebra with Yoneda algebra Γ such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then given a finitely generated left Λ -module M there is a non negative integer k such that $\Omega^k(M)$ is weakly Koszul.

Proof. Since Λ is Koszul AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides, for any finitely generated graded Λ -module M there is a truncation $M_{\geq s}$ such that $M_{\geq s}[s]$ is Koszul and there is an exact sequence: $0 \to M_{\geq s} \to M \to M/M_{\geq s} \to 0$ with $M/M_{\geq s}$ of finite length. Then we have an exact sequence: $F(M/M_{\geq s}) \to F(M) \to F(M_{\geq s})$. Since F sends simple modules to indecomposable projective, it sends modules of finite length to finitely generated modules and $M_{\geq s}$ Koszul up to shift implies $F(M_{\geq s})$ Koszul up to shift, hence finitely generated. Since we are assuming Γ noetherian, it follows F(M) is finitely generated. By Theorem 6, F(M) has a truncation $F(M)_{\geq t}$ Koszul up to shift and $F(M)_{\geq t} = \bigoplus_{k \geq t} Ext_{\Lambda}^k(M, \Lambda_0)[-t] \cong \bigoplus_{k \geq 0} Ext_{\Lambda}^k(\Omega^t(M), \Lambda_0)[-t] = F(\Omega^t(M))$.

By Theorem 8, $\Omega^t(M)$ is weakly Koszul.

Definition 7. A complex of graded Λ -modules is linear if for each i, the ith module is generated in degree i, provided is not zero.

Let Q be a finite quiver, kQ the path algebra graded by path length and $\Lambda = kQ/I$ be a quotient with I a homogeneous ideal contained in $kQ_{\geq 2}$ and Γ the Yoneda algebra of Λ , it was shown in [16] that there is a functor

$$\Phi: \ell.f.gr_{\Lambda} \to \mathfrak{lcp}_{\Gamma}^-$$

between the category of locally finite graded Λ -modules, ℓ . $f.gr_{\Lambda}$, and the category of right bounded linear complexes of finitely generated graded projective Γ -modules $\mathfrak{lcp}_{\Gamma}^-$. We recall the construction of Φ .

Let $M = \{M_i\}_{i \geq n_0}$ be a finitely generated graded Λ -module and $\mu : \Lambda_1 \otimes_{\Lambda_0} M_k \to M_{k+1}$ the map of Λ_0 -modules given by multiplication.

Since M_k is a finitely generated Λ_0 -module, we have a homomorphism of Λ_0 -modules

$$D(\mu): D(M_{k+1}) \to D(M_k) \otimes_{\Lambda_0} D(\Lambda_1)$$
,

where
$$D(-) = Hom_{\Lambda_0}(-, \Lambda_0)$$
. Applying $Hom_{\Lambda}(-, \Lambda_0)$ to the exact sequence $0 \to \mathfrak{m} \to \Lambda \to \Lambda_0 \to 0$

induces an exact sequence

$$0 \to \operatorname{Hom}_{\Lambda}(\Lambda_0, \Lambda_0) \to \operatorname{Hom}_{\Lambda}(\Lambda, \Lambda_0) \to \operatorname{Hom}_{\Lambda}(\mathfrak{m}, \Lambda_0) \to \operatorname{Ext}^1_{\Lambda}(\Lambda_0, \Lambda_0) \to 0$$

the second map is an isomorphism, which implies $\operatorname{Hom}_{\Lambda}(\mathfrak{m}, \Lambda_0) \to \operatorname{Ext}^1_{\Lambda}(\Lambda_0, \Lambda_0)$ is an isomorphism. Since Λ_0 is semisimple, there is an isomorphism

$$Hom_{\Lambda}(\mathfrak{m}, \Lambda_0) \cong Hom_{\Lambda}(\mathfrak{m}/\mathfrak{m}^2, \Lambda_0)$$

As a result there is an isomorphism $D(\Lambda_1) = \operatorname{Hom}_{\Lambda_0}(\Lambda_1, \Lambda_0) \cong \Gamma_1$ and we have a Λ_0 -linear map $d_{k_0} : D(M_{k+1}) \to D(M_k) \otimes_{\Lambda_0} \Gamma_1$.

For any $\ell \geq 0$, using the fact $\Lambda_0 \cong \Gamma_0$ the multiplication map $v : \Gamma_1 \otimes_{\Gamma_0} \Gamma_\ell \to \Gamma_{\ell+1}$ induces a new map d_{k_ℓ} , as shown in the diagram:

$$\begin{array}{ccc} D(M_{k+1}) \otimes_{\Gamma_0} \Gamma_{\ell} & \to & D(M_k) \otimes_{\Gamma_0} \Gamma_1 \otimes_{\Gamma_0} \Gamma_{\ell} \\ & \searrow & & \downarrow 1 \otimes \upsilon \\ & d_{k_{\ell}} & & D(M_k) \otimes_{\Gamma_0} \Gamma_{\ell+1} \end{array}$$

Hence there is a map in degree zero

$$d_k: D(M_{k+1}) \otimes_{\Gamma_0} \Gamma[-k-1] \to D(M_k) \otimes_{\Gamma_0} \Gamma[-k]$$

Definition 8. We call Φ the linearization functor.

Proposition 5. The sequence $\Phi(M) = \{D(M_{k+1}) \otimes_{\Gamma_0} \Gamma[-k-1], d_k\}$ is a right bounded linear complex of finitely generated graded projective Γ -modules.

The following proposition was proved in [16]

Proposition 6. The algebra $\Lambda = \mathbb{k}Q/I$ is quadratic if and only if $\Phi: \ell.f.gr_{\Lambda} \to \mathfrak{lcp}_{\Gamma}^-$ is a duality.

We can say more in case $\Lambda = \mathbb{k}Q/I$ is a Koszul algebra.

Theorem 10. Suppose $\Lambda = \Bbbk Q/I$ is a Koszul algebra and M a locally finite bounded above graded Λ -module. Then M is Koszul if and only if $\Phi(M)$ is exact, except at minimal degree; in that case, $\Phi(M)$ is a minimal projective resolution of the Koszul module (up to shift) $F(M) = \underset{k \geq t}{\oplus} Ext_{\Lambda}^{k}(M, \Lambda_{0})$.

3.1. Approximations by linear complexes. In this section we will see that the approximations by linear complexes given in [15] can be extended to the family of AS Gorenstein Koszul algebras considered above. Let Λ be a possibly infinite dimensional Koszul algebra with Yoneda algebra Γ . The category of complexes of finitely generated graded projective Γ -modules with bounded homology $K^{-b}(grP_{\Gamma})$, module the homotopy relations, is equivalent to the derived category of bounded complexes $D_{fg}^b(Gr_{\Gamma})$.

We proved in Lemma 4, that any complex X in $D_{fg}^-(Gr_{\Gamma})$ has projective resolution $P \to X$ with P subdiagonal. Linear complexes are by definition subdiagonal.

Lemma 6. Let M and N be complexes of graded modules over a graded algebra and $f: M \to N$ a null-homotopic chain map. If M is linear and N is diagonal, then f = 0.

Corollary 3. Any morphism in a derived category of modules whose domain is a bounded on the right linear complex of projective modules can be represented by a chain map.

Since our interest is in Koszul algebras we need the following:

Definition 9. A complex is said to be totally linear, if it is linear and each of its terms has a linear projective resolution.

Observe that this notion is a generalization of a linear complex of projective modules.

Observe that, though the proposition below has been stated more generally than in [15], the proof is the same as in [15].

Proposition 7. Let Γ be a noetherian graded ring and $M_{\bullet} = \{M_i, d_i\}_{n \geq i \geq 0}$ a bounded totally linear complex of finitely generated graded Γ -modules. Then there exists a bounded on the right linear complex of finitely generated projective graded modules P_{\bullet} and a quasi-isomorphism $\mu: P_{\bullet} \to M_{\bullet}$ such that $\mu_i: P_i \to M_i$ is an epimorphism for each i.

Proof. The approximation is constructed by induction. We start with the exact sequence: $0 \to B_0 \to M_0 \to H_0 \to 0$, take the projective cover $P_0 \to M_0 \to 0$ and complete a commutative exact diagram:

Taking the pull back we obtain a commutative exact diagram:

Since M_1 and $\Omega(M_0)$ are both generated in degree one and have linear resolutions, the same is true for W_1 .

It is clear that the complex $0 \to M_n \to \dots \to M_2 \to W_1 \to P_0 \to 0$ is totally linear and quasi-isomorphic to M_{\bullet} and the quasi-isomorphism is an epimorphism in each degree.

Assume by induction we have constructed the totally linear complex: $0 \to M_n \to \dots \to M_{j+1} \to W_j \to P_{j-1} \to \dots \to P_0 \to 0$

together with a quasi-isomorphism μ to the complex M_{\bullet} which is an epimorphism in each degrees k with $0 \le k \le j$ and the identity in degrees k for $j+1 \le k \le n$.

We have a commutative exact diagram:

which induces by pullback the commutative exact diagram:

By Verdier's lemma we have a complex: $P_{\bullet}^{(j)}: 0 \to M_n \to \dots \to M_{j+2} \to W_{j+1} \to P_j \to \dots \to P_0 \to 0$ and a quasi isomorphism $\dot{\mu}: P_{\bullet}^{(j)} \to M_{\bullet}$ which is the identity in degrees k such that $j+2 \le k \le n$ and an epimorphism in the remaining degrees.

We get by induction a totally linear complex: $P_{\bullet}^{(n-1)}: 0 \to W_n \to P_{n-1} \to P_{n-2} \to \dots \to P_0 \to 0$ with P_j for $0 \le j \le n-1$ finitely generated graded projective modules generated in degree j. There is a quasi-isomorphism $\mu: P_{\bullet}^{(n-1)} \to M_{\bullet}$ such that in each degree the maps are epimorphisms.

As above, we obtain the commutative exact diagram:

Since W_n has a linear resolution $\Omega(W_n)$ has a linear resolution $P_{\bullet}^{(n+1)} \to \Omega(W_n)$. It follows $P_{\bullet}^{(n+1)} \to P_n \to P_{n-1} \to P_{n-2} \to \dots \to P_0 \to 0$ is a linear complex of finitely generated graded projective modules which is quasi-isomorphic to M_{\bullet} and all the maps in the quasi-isomorphism are epimorphisms.

We see next that for noetherian AS Gorenstein algebras of finite local cohomology any bounded complex can be approximated by a totally linear complex.

Proposition 8. Let Γ be a Koszul algebra AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then given a bounded complex M_{\bullet} of finitely generated graded Γ -modules, there exists a totally linear subcomplex L_{\bullet} such that M_{\bullet}/L_{\bullet} is a complex of modules of finite length.

Proof. Let M_{\bullet} be the complex $M_{\bullet} = \{M_j \mid 0 \leq j \leq n\}$. By Theorem 6, for each j there is a truncation $(M_j)_{\geq n_j}$ such that $(M_j)_{\geq n_j}[n_j]$ is Koszul. Taking $n = \{\max n_j\}$ each $(M_j)_{\geq n}[n]$ is Koszul. Define $L_{\bullet} = \{L_j \mid L_j = (M_j)_{\geq n+j}\}$. Then L_{\bullet} is totally linear with M_{\bullet}/L_{\bullet} a is a complex of modules of finite length. \square

We have now the following:

Lemma 7. Let Λ be a Koszul algebra AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides with Yoneda algebra Γ and Φ : $gr_{\Lambda} \to \mathfrak{lcp}_{\Gamma}^-$ the linearization functor. Then for any finitely generated module M the complex $\Phi(M)$ is contained in $\mathfrak{lcp}_{\Gamma}^{-,b}$, this is the homology $H^i(\Phi(M)) = 0$ for almost all i.

Proof. According to Theorem 6, there is a truncation $M_{\geq s}$ which is Koszul up to shift, and the exact sequence $0 \to M_{\geq s} \to M \to M/M_{\geq s} \to 0$, which induces an exact sequence of complexes $0 \to \Phi(M/M_{\geq s}) \to \Phi(M) \to \Phi(M_{\geq s}) \to 0$ where $\Phi(M/M_{\geq s})$ is a finite complex and $\Phi(M_{\geq s})$ is exact, except at minimal degree, it follows by the long homology sequence that $H^i(\Phi(M) = 0$ for almost all i.

We remarked above that the categories $D^b(gr_{\Gamma})$ and $K^{-,b}(grP_{\Gamma})$ are equivalent as triangulated categories, we have proved that the image of Φ is contained in $K^{-,b}(grP_{\Gamma})$. Composing with the equivalence, we obtain a functor $\Phi': gr_{\Lambda} \to D^b(gr_{\Gamma})$.

Let \mathcal{A} be an abelian category, a Serre subcategory \mathcal{T} of \mathcal{A} is a full subcategory with the property that for every short exact sequence of \mathcal{A} , say, $0 \to A \to B \to C \to 0$ the object B is in \mathcal{T} if and only if $A, C \in \mathcal{T}$. By [6], we have a quotient abelian category \mathcal{A}/\mathcal{T} and an exact functor $\pi: \mathcal{A} \to \mathcal{A}/\mathcal{T}$, which induces at the level of derived categories an exact functor: $D(\pi): D(\mathcal{A}) \to D(\mathcal{A}/\mathcal{T})$. The following result is well known:

Lemma 8. [20] The kernel of $D(\pi)$ is the full subcategory K with objects the complex with homology in T and $D(\pi)$ induces an equivalence of categories $D^*(A)$ $/K \cong D^*(A/T)$ for *=+,-,b.

We apply the lemma in the following situation:

Let Γ be a noetherian Koszul algebra, gr_{Γ} the category of finitely generated graded Γ -modules. Let Qgr_{Γ} be the quotient category of gr_{Γ} by the Serre subcategory of the modules of finite length. Let $\pi: gr_{\Gamma} \to Qgr_{\Gamma}$ be the natural projection and $D(\pi): D^b(gr_{\Gamma}) \to D^b(Qgr_{\Gamma})$ the induced functor. Denote by \mathcal{F}_{Γ} be the full subcategory of $D^b(gr_{\Gamma})$ consisting of bounded complexes of graded Γ -modules of finite length. Then we have:

Theorem 11. [16] The functor $D(\pi): D^b(gr_{\Gamma}) \to D^b(Qgr_{\Gamma})$ has kernel \mathcal{F}_{Γ} . It induces an equivalence of triangulated categories $\sigma: D^b(gr_{\Gamma}) / \mathcal{F}_{\Gamma} \to D^b(Qgr_{\Gamma})$.

Let $q: D^b(gr_{\Gamma}) \to D^b(gr_{\Gamma}) / \mathcal{F}_{\Gamma}$ be the quotient functor. Then $\sigma q = D(\pi)$. The functor $j: K^{-,b}(grP_{\Gamma}) \to D^b(gr_{\Gamma})$ is truncation, j is an equivalence.

Let Λ be a Koszul algebra with Yoneda algebra Γ such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. The functor $\theta: gr_{\Lambda} \to D^b(Qgr_{\Gamma})$ is the composition: $gr_{\Lambda} \stackrel{\Phi}{\to} \mathfrak{lcp}_{\Gamma}^{-,b} \stackrel{i}{\to} K^{-,b}(grP_{\Gamma}) \stackrel{j}{\to} D^b(gr_{\Gamma}) \stackrel{D(\pi)}{\to} D^b(Qgr_{\Gamma})$, where i is just the inclusion.

$$\begin{array}{ccccc} \mathfrak{lcp}_{\Gamma}^{-,b} & \stackrel{i}{\to} & \mathrm{K}^{-,b}(\mathrm{grP}_{\Gamma}) & \stackrel{j}{\to} & \mathrm{D}^{b}(\mathrm{gr}_{\Gamma}) & \stackrel{q}{\to} & \mathrm{D}^{b}(\mathrm{gr}_{\Gamma})/\mathcal{F}_{\Gamma} \\ \Phi \uparrow & & \mathrm{D}(\pi) \downarrow & \sigma \swarrow \\ & \mathrm{gr}_{\Lambda} & \stackrel{\theta}{\to} & \mathrm{D}^{b}(\mathrm{Qgr}_{\Gamma}) \end{array}$$

Now let P be a finitely generated projective graded Λ -module, $P = \bigoplus P_i[n_i]$, with each P_i generated in degree zero. Then $\Phi(P)$ is isomorphic in the category of complexes over gr_{Γ} to $\bigoplus \Phi(P_i)[n_i]$ and each $\Phi(P_i)$ is a projective resolution of a semisimple Γ -module. It follows θ sends any map factoring through a graded projective module to a zero map in $D^b(\operatorname{Qgr}_{\Gamma})$. Consequently, θ induces a functor $\underline{\theta}:\underline{gr_{\Gamma}} \to D^b(\operatorname{Qgr}_{\Gamma})$. The functor θ sends exact sequences to exact triangles, the syzygy functor $\Omega:\underline{gr_{\Lambda}} \to \underline{gr_{\Lambda}}$ is an endofunctor that makes $\underline{gr_{\Lambda}}$ "half" triangulated, given an exact sequence $0 \to A \xrightarrow{j} B \xrightarrow{t} C \to 0$ in gr_{Λ} and $p: P \to C$ the projective cover, there is an induced exact commutative diagram:

We obtain a half triangle: $\Omega(C) \to A \to B \to C$ and $\underline{\theta}$ sends the half triangle into a triangle in $D^b(\operatorname{Qgr}_{\Gamma})$. We want to construct a triangulated category $\underline{gr}_{\Lambda}[\Omega^{-1}]$ such that Ω is an equivalence which acts as the shift and a functor of half triangulated categories $\lambda : \underline{gr}_{\Lambda} \to \underline{gr}_{\Lambda}[\Omega^{-1}]$ such that given any triangulated category D and a functor of half triangulated categories: $\beta \ \underline{gr}_{\Lambda} \to D$ there is a unique functor of

triangulated categories $\stackrel{\wedge}{\beta}$: $gr_{\Lambda}[\Omega^{-1}] \to D$ such that $\stackrel{\wedge}{\beta}\lambda = \beta$.

We recall the construction given by Buchweitz and reproduced in [2], [15].

Let (\mathcal{A}, ϕ) be a category with endofunctor, if (\mathcal{B}, ψ) is another pair, then a functor $F: \mathcal{A} \to \mathcal{B}$ is said a morphism of pairs if it makes the diagram

$$\begin{array}{ccc}
\mathcal{A} & \stackrel{\phi}{\to} & \mathcal{A} \\
\downarrow F & & \downarrow F \\
\mathcal{B} & \stackrel{\psi}{\to} & \mathcal{B}
\end{array}$$

commute, this is: the functors $F\phi$ and ψF are naturally isomorphic. If ψ happens to be an auto equivalence, we say that the morphism F inverts ϕ . Then there is a the following universal problem. Given a pair (\mathcal{A}, ϕ) , find a pair $(\mathcal{A}[\phi^{-1}], \rho)$ and a morphism of pairs $G: (\mathcal{A}, \phi) \to (\mathcal{A}[\phi^{-1}], \rho)$ such that G inverts ϕ and for any morphism of pairs $F: (\mathcal{A}, \phi) \to (\mathcal{B}, \psi)$ such that F inverts ϕ , there is a unique morphism of pairs $F': (\mathcal{A}[\phi^{-1}], \rho) \to (\mathcal{B}, \psi)$ making the diagram

$$\begin{array}{cccc}
(\mathcal{A}, \phi) & \xrightarrow{F} & (\mathcal{B}, \psi) \\
G & \searrow & & \nearrow & F' \\
(\mathcal{A}[\phi^{-1}], \rho) & & & & & & & & \\
\end{array}$$

Commute.

The objects of $\mathcal{A}[\phi^{-1}]$ are the formal symbols $\phi^{-n}M$ where M is an object of \mathcal{A} and $n \geq 0$, $\phi^0 M = M$. If M, N are objects in $\mathcal{A}[\phi^{-1}]$, we define the morphisms by

$$Mor_{\mathcal{A}[\phi^{-1}]}(M,N) = \underset{k}{\varinjlim} Mor_{\mathcal{A}}(\phi^{k}M,\phi^{k}N)$$

where we assume $M=\phi^{-m}M'$ and $N=\phi^{-n}N'$ and $k\geq \max\{m,n\}$. (See [MM] for details)

We define the endofunctor $\rho: \mathcal{A}[\phi^{-1}] \to \mathcal{A}[\phi^{-1}]$ by setting $\rho(M) = \phi(M)$ and $\rho(\phi^{-n}M) = \phi^{-n+1}(M)$ for any M in \mathcal{A} and any natural number n. If f is a morphism represented by some $f_n: \phi^n M \to \phi^n N$ and n sufficiently large, then $\rho(f)$ is represented by $\phi(f_n)$.

We obtain the morphism of pairs $G: (\mathcal{A}, \phi) \to (\mathcal{A}[\phi^{-1}], \rho)$ having the desired properties.

We apply this construction to our pair $(\underline{gr}_{\Lambda}, \Omega)$ to obtain a pair $(\underline{gr}_{\Lambda}[\Omega^{-1}], \Omega)$ and a map of pairs $G: (\underline{gr}_{\Lambda}, \Omega) \to (\underline{gr}_{\Lambda}[\Omega^{-1}], \Omega^{-1})$

One can check as in [15] or [2] that $(\underline{gr}_{\Lambda}[\Omega^{-1}], \Omega^{-1})$ is a triangulated category and $\underline{\theta}:\underline{gr}_{\Lambda}\to D^b(\operatorname{gr}_{\Gamma})$ induces an exact functor $\overset{\wedge}{\theta}:\underline{gr}_{\Lambda}[\Omega^{-1}]\to D^b(\operatorname{Qgr}_{\Gamma})$ such that the triangle

$$\begin{array}{ccc} & \underline{gr}_{\Lambda} \\ \lambda \downarrow & \searrow \underline{\theta} \\ & \underline{gr}_{\Lambda} [\Omega^{-1}] & \xrightarrow{\hat{\theta}} & D^b(Qgr_{\Gamma}) \end{array}$$

We now state the main result of the paper.

Theorem 12. Let Λ be a Koszul algebra with Yoneda algebra Γ such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then the linearization functor

$$\overset{\wedge}{\theta}: \underline{gr}_{\Lambda}[\Omega^{-1}] \to D^b(Qgr_{\Gamma}) \text{ is a duality of triangulated categories.}$$

Proof. We will only check the functor $\overset{\wedge}{\theta}$ is dense, for the rest of the proof we proceed as in [15].

Choose any bounded complex B_{\bullet} of finitely generated graded Γ -modules. By Proposition 8, the complex B_{\bullet} is isomorphic in $D^b(Qgr_{\Gamma})$ to a totally linear complex, which is in turn, by Proposition 7, isomorphic to a linear complex P_{\bullet} of finitely

generated graded projective Γ -modules with zero homology except for a finite number of indices. By Proposition 6, there is a finitely generated graded Λ -module M such that $\Phi(M) \cong P_{\bullet}$. Therefore : $\overset{\wedge}{\theta}(M) \cong B_{\bullet}$ in $D^b(Qgr_{\Gamma})$.

Corollary 4. Let Λ be a Koszul algebra with Yoneda algebra Γ such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then the linearization functor $\overset{\wedge}{\theta'}:\underline{gr}_{\Gamma}[\Omega^{-1}]\to D^b(Qgr_{\Lambda})$ is a duality of triangulated categories.

Proof. It follows by symmetry.

References

- [1] Artin M., Schelter W. Graded algebras of global dimension 3, Adv. Math. 66 (1987), 171-216.
- [2] Beligiannis A. The homological theory of contravariantly finite subcategories: Auslander-Buchweitz Contexts, Gorenstein Categories and (C9)-Stabilizations, Comm. in Algebra 28 (19), (2000), 4547-4596.
- [3] Bernstein J., Gelfand I.M., Gelfand S.I., Algebraic vector bundles over P^n and problems of linear algebra. Finkt. Anal. Prilozh. 12, No. 3, 66-67, (1978) English transl. Funct. Anal. Appl. 12, 212-214 (1979)
- [4] Carlson J.F. The Varieties and the Cohomology Ring of a Module, J. of Algebra, Vol. 85, No. 1, (1983) 104-143.
- [5] Cartan H. Eilenberg S. Homological Algebra, Princeton Mathematical Series 19, Princeton University Press 1956.
- [6] Gabriel P. Des Catégories abeliennes, Bull. Soc. Math. France, 90 (1962), 323-448.
- [7] Gelfand S.I., Manin Yu. I., Methods of homological algebra, Springer-Verlag (1996).
- [8] Jørgensen P. Local Cohomology for Non Commutative Graded Algebras. Comm. in Algebra, 25(2), 575-591 (1997)
- [9] Jørgensen P. Linear free resolutions over non-commutative algebras. Compositio Math. 140 (2004) 1053-1058.
- [10] Jørgensen, P.; Zhang, James J. Gourmet's guide to Gorensteinness. Adv. Math. 151 (2000), no. 2, 313–345.
- [11] Martínez-Villa, R. Applications of Koszul algebras: the preprojective algebra. Representation theory of algebras (Cocoyoc, 1994), 487–504, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996.
- [12] Martinez-Villa, R. Graded, Selfinjective, and Koszul Algebras, J. Algebra $215,\,34\text{-}72\,\,1999$
- [13] Martinez-Villa, R. Koszul algebras and the Gorenstein condition. Representations of algebras (São Paulo, 1999), 135–156, Lecture Notes in Pure and Appl. Math., 224, Dekker, New York, 2002.
- [14] Martinez-Villa, R. Local cohomology and non commutative Gorenstein Algebras, Preprint, Centro de Ciencias Matemáticas, UNAM (2012).
- [15] Martínez-Villa, R., Martsinkovsky, A. Stable Projective Homotopy Theory of Modules, Tails, and Koszul Duality, Comm. Algebra 38 (2010), no. 10, 3941–3973.

- [16] Martínez Villa, R; Saorín, M. Koszul equivalences and dualities. Pacific J. Math. 214 (2004), no. 2, 359–378.
- [17] Martínez-Villa, R.; Zacharia, Dan Approximations with modules having linear resolutions. J. Algebra 266 (2003), no. 2, 671–697.
- [18] Martínez-Villa, R.; Zacharia, Dan Selfinjective Koszul algebras. Théories d'homologie, représentations et algèbres de Hopf. AMA Algebra Montp. Announc. 2003, Paper 5, 5 pp. (electronic).
- [19] Miyachi, Jun-Ichi, Derived Categories with Applications to Representation of Algebras, Chiba University, June 2000.
- [20] Miyachi, Jun-Ichi, Localization of triangulated categories and derived categories, J. Algebra, 141 (1991), 463-483.
- [21] Mazorchuk, V. Ovsienko, S. A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra, J. Math. Kyoto Univ. 45 (2005) no. 4, 711-741.
- [22] Mori, I., Rationality of the Poincare series for Koszul algebras, Journal of Algebra, V. 276, no. 2, (2004) pag. 602-624.
- [23] Popescu N. Abelian categories with applications to rings and modules, Academic Press (1973).
- [24] Rotman J.J. An Introduction to Homological Algebra, Second Edition Universitext, Springer, 2009.
- [25] Smith P. Some finite dimensional algebras related to elliptic curves, "Rep. Theory of Algebras and Related Topics", CMS Conference Proceedings, Vol. 19, 315-348, Amer. Math. Soc. Providence, 1996.

CENTRO DE CIENCIAS MATEMÁTICAS, UNAM, MORELIA

E-mail address: mvilla@matmor.unam.mx

 URL : http://www.matmor.unam.mx