● 多类情况 2

采用每对划分,即ω_i/ω_j两分法,此时一个判别界面只能分开两种类别,但不能把它与其余所有的界面分开。 其判别函数为:

$$d_{ij}(x) = w_{ij}^T x$$

若 $d_{ii}(x)>0$, $\forall j \neq i$, 则 $x \in \omega_i$

重要性质: $d_{ij} = -d_{ji}$

图例:对一个三类情况, $d_{12}(x)=0$ 仅能 $分开 \omega_1 和 \omega_2$ 类,不能分开 ω_1 和 ω_3 类。

要分开 M 类模式, 共需 M(M-1)/2 个判别函数。

不确定区域: 若所有 $d_{ii}(x)$, 找不到 $\forall j \neq i$, $d_{ii}(x) > 0$ 的情况。

例:设有一个三类问题,其判别函数为:

$$d_{12}(x) = -x_1 - x_2 + 5$$
, $d_{13}(x) = -x_1 + 3$, $d_{23}(x) = -x_1 + x_2$

若
$$x=(4,3)^T$$
, 则: $d_{12}(x)=-2$, $d_{13}(x)=-1$, $d_{23}(x)=-1$

有:
$$\begin{cases} d_{12}(x) < 0 \\ d_{13}(x) < 0 \end{cases}$$

$$\begin{cases} d_{21}(x) = -d_{12}(x) > 0 \\ d_{23}(x) < 0 \end{cases}$$

$$\begin{cases} d_{31}(x) = -d_{13}(x) > 0 \\ d_{32}(x) = -d_{23}(x) > 0 \end{cases}$$

从而 $x \in \omega_3$

若
$$x=(2.8, 2.5)^T$$
, 则: $d_{12}(x)=-0.3$, $d_{13}(x)=0.2$, $d_{23}(x)=-0.3$

有:
$$\begin{cases} d_{12}(x) < 0 \\ d_{13}(x) > 0 \end{cases}$$
,
$$\begin{cases} d_{21}(x) > 0 \\ d_{23}(x) < 0 \end{cases}$$
,
$$\begin{cases} d_{31}(x) < 0 \\ d_{32}(x) > 0 \end{cases}$$

分类失败。