Hoja nº 6.a

Estructuras Algebraicas

Llamaremos grupo al par (A,*) constituido por un conjunto, A, no vacío y una operación, *, sobre él que verifica las siguientes propiedades:

- 1. es cerrada en $A: a * b \in A \quad \forall a, b \in A$
- 2. asociativa: $(a * b) * c = a * (b * c), \forall a, b, c \in A$
- 3. existencia de elemento neutro: $e \in A$ tal que a * e = e * a = a, $\forall a \in A$
- 4. existencia de elemento inverso/opuesto: $\forall a \in G \quad \exists b \in A \text{ tal que } a * b = b * a = e$

Si todos los elementos del grupo (A, *) verifican la propiedad conmutativa: $a * b = b * a, \forall a, b \in A$; diremos que el grupo es conmutativo o abeliano.

Sea A un conjunto dotado de dos operaciones cerradas (leyes de composición), la suma y el producto, que denotaremos por +y · respectivamente. Diremos que $(A,+,\cdot)$ es un **anillo** si se cumplen los siguientes axiomas:

- 1. (A, +) es un grupo abeliano
- 2. el producto, , es asociativo: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \quad \forall a, b, c \in A$
- 3. propiedades distributivas: $a + (b \cdot c) = a \cdot b + a \cdot c$, $\forall a, b, c \in A \ y \ (a+b) \cdot c = a \cdot c + b \cdot c$, $\forall a, b, c \in A$

Si el producto es conmutativo decimos que el anillo es conmutativo. Si existe elemento neutro (unidad) para el producto se dice que el anillo es unitario (o con unidad).

Llamaremos **cuerpo** a todo anillo $(A, +, \cdot)$ unitario, conmutativo y tal que todo elemento distinto del cero posea inverso. Es decir, que verifique:

- 1. (A, +) es grupo abeliano
- 2. (A, \cdot) es grupo abeliano
- 3. propiedad distributiva: $a + (b \cdot c) = a \cdot b + a \cdot c, \quad \forall a, b, c \in A$
- 1. Decide de manera razonada si los conjuntos son grupos con las operaciones indicadas:
- a) Dado un conjunto no vacío X, el conjunto G de las biyecciones de X con la composición, (G, \circ) .

Calcula el cardinal de G si X es un conjunto finito.

- **b)** $(\mathbb{Z}, *)$ donde para $n, m \in \mathbb{Z}, n * m = \min(n, m)$.
- c) $(\mathbb{N}, *)$ donde para $n, m \in \mathbb{N}, n * m = n$.
- **d)** $(A = \{M \in \mathbb{M}_2(\mathbb{Z}) : \det M = -1\}, \cdot).$
- e) $(B = \{M \in M_2(\mathbb{Z}) : \det M = 1\}, \cdot).$
- f) $(C = \{M \in \mathbb{M}_2(\mathbb{Z}) : \det M = +1, -1\}, \cdot).$
- g) $(D = \{M \in \mathbb{M}_2(\mathbb{Q}) : M \text{ es trigular superior}\}, \cdot).$
- h) $(G = \{1, -1, i, -i\}, \cdot)$, donde $i^2 = -1$.

- **2.** Demuestra que el conjunto $E = \{\overline{5}, \overline{15}, \overline{25}, \overline{35}\} \subset \mathbb{Z}/40\mathbb{Z}$ es un grupo con el producto módulo 40. Identifica el elemento neutro, y el opuesto de cada elemento.
- **3.** Considera el conjunto $F = \{\overline{1}, \overline{9}, \overline{16}, \overline{22}, \overline{53}, \overline{74}, \overline{79}, \overline{81}, \lambda\} \subset \mathbb{Z}/91\mathbb{Z}$. Se sabe que F es un grupo con el producto módulo 91. ¿Cuál es el valor de λ ?
- **4.** Sea $(G = \{a, b, c\}, *)$ un grupo, donde a es el elemento neutro. Escribe su tabla. Deduce que el grupo es abeliano.
- **5.** Sea $(A, +, \cdot)$ un anillo. Demuestra:
- a) Si 0 denota el elemento neutro de (A, +), entonces $a \cdot 0 = 0 \cdot a = 0$, para todo $a \in A$.
- b) Si -a denota el elemento opuesto de a en (A, +), entonces

$$(-a) \cdot b = -(a \cdot b), \qquad a \cdot (-b) = -(a \cdot b), \qquad (-a) \cdot (-b) = (a \cdot b).$$

6. Sea $n \in \mathbb{N}$. Demuestra que las operaciones suma y producto en $\mathbb{Z}/n\mathbb{Z}$:

$$[a] + [b] = [a + b],$$

 $[a] \cdot [b] = [a \cdot b].$

están bien definidas (i.e. no dependen de los representantes elegidos).

- a) Demuestra que $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es un anillo.
- b) Demuestra que si $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es un cuerpo entonces n = p primo. A ese cuerpo se le denota por \mathbb{F}_p .
- 7. Sea d es un entero libre de cuadrados. En $\mathbb{Z}[\sqrt{d}] := \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ se definen las operaciones:

$$(a + b\sqrt{d}) + (a' + b'\sqrt{d}) = (a + a') + (b + b')\sqrt{d},$$

$$(a + b\sqrt{d}) \cdot (a' + b'\sqrt{d}) = (aa' + bb'd) + (ab' + ba')\sqrt{d}.$$

Decidir si $(\mathbb{Z}[\sqrt{d}], +, \cdot)$ es un anillo conmutativo con unidad.

- 8. Sea $(A, +, \cdot)$ un anillo con unidad. Se dice que $a \in A$ es invertible si existe $\widehat{a} \in G$ tal que $a \cdot \widehat{a} = 1 = \widehat{a} \cdot a$. Sea $\mathcal{U}(A)$ el conjunto de elementos invertibles de A. Demuestra que $(\mathcal{U}(A), \cdot)$ es un grupo.
- 9. Un anillo con unidad $(A, +, \cdot)$ se llama anillo de división si $\mathcal{U}(A) = A \setminus \{0\}$. Obsérvese que todo cuerpo es un anillo de división conmutativo. Se definen los cuaterniones (de Hamilton) como

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$$
 tal que $i^2 = j^2 = k^2 = ijk = -1$.

Demuestra que $(\mathbb{H},+,\cdot)$ es un anillo de división no conmutativo.