Title here

Authors here

Abstract-Insert abstract here Index Terms-Keywords here

NOTATION

Indices	
n	node
u	generation unit
ℓ	transmission line
0	operating condition
ν	iteration
Sets	
$\Psi_n^G \ \Psi^L$	existing generation units at node n
	existing transmission lines
$\Psi_n^{G+} \ \Psi^{L+}$	candidate generation units at node n
	candidate transmission lines
$\Phi^{L1/L2/L3}$	1st/2nd/3rd level decision variables
Ω	uncertainty set
Ξ	feasibility set
Parameters	
W_o	the weight of operating condition o
$ ilde{D}_n$	nominal demand at node n
\hat{D}_n	demand increase at node n
$C_u^x \ C_\ell^y$	investment cost of candidate unit u
C^y_ℓ	investment cost of candidate transmission
	line ℓ
$C_u^G \Lambda^D$	generation cost of unit u
	demand uncertainty budget
$\Lambda^{min/max}$	minimum/maximum price
Variables	
d_n	uncertain demand at node n
$z_{o,n}$	auxiliary variables for linearizing $\lambda_{o,n}d_n$
$\lambda_{o,n}$	price in condition o at node n
$\tilde{\lambda}_{o,n}$	auxiliary variables for linearizing $\lambda_{o,n}d_n$
$f_{o,\ell, u}$	transmission flow in line ℓ in condition o
	at iteration ν
$g_{o,u, u}$	generation at unit u in condition o at
_	iteration ν
$ar{eta}_{o,u}$	dual variable for maximum generation of
_	unit u in condition o
$\underline{\beta}_{o,u}$	dual variable for minimum generation of
,	unit u in condition o
$ar{\mu}_{o,\ell}$	dual variable for maximum flow in line ℓ
	in condition o
$\underline{\mu}_{o,\ell}$	dual variable for maximum flow in line ℓ
	in condition o

equal 1 if demand is increased from the u_n nominal level at node n

I. MATHEMATICAL FORMULATION

A. Stochastic robust optimization problem

The stochastic robust optimization problem is

$$\min_{\Phi^{L1}} \sum_{u \in \Psi^{G+}} C_u^x x_u + \sum_{\ell \in \Psi^{L+}} C_\ell^y y_\ell + \tag{1}$$

$$\max_{\Phi^{L2}\in\Omega} \quad \min_{\Phi^{L3}\in\Xi} \sum_{o} W_{o} \sum_{u} C_{u}^{g} g_{o,u}, \tag{2} \label{eq:definition}$$

where $\Phi^{L1}=\{x_u\,\forall u\in \Psi^{G+},y_\ell\,\forall \ell\in \Psi^{L+}\},\;\Phi^{L2}=\{d_n\,\forall n\},\; \text{and}\;\;\Phi^{L3}=\{g_{o,u}\,\forall o,u,f_{o,\ell}\,\forall o,\ell\}.$ The uncertainty set Ω is given by

$$\Omega = \{ d_n = \tilde{D}_n + u_n \hat{D}_n \qquad \forall n$$

$$\sum_n d_n \le \Lambda^D \}.$$
(3)

Given the optimal values $x_u^* \, \forall u \in \Psi^{G+}$, $y_\ell^* \, \forall \ell \in \Psi^{L+}$, and $d_n^* \, \forall n$, the feasibility set $\Xi(g_{o,u},f_{o,\ell})$ is

$$\left\{\sum_{u \in \Psi_n^G} g_{o,u} + \sum_{\ell} Y_{\ell,n} f_{o,\ell} = d_n^* \quad \forall o, n \quad (4)\right\}$$

$$0 \le g_{o,u} \le G_{o,u}^{max} \qquad \forall o, u \in \Psi_n^G \qquad (5)$$

$$F_{o,\ell}^{min} \le f_{o,\ell} \le F_{o,\ell}^{max} \qquad \forall o, \ell \in \Psi^L \qquad (6)$$

$$0 \leq g_{o,u} \leq G_{o,u}^{max} x_{\ell}^{*} \qquad \forall o, u \in \Psi_{n}^{G+} \qquad (7)$$

$$F_{o,\ell}^{min} y_{\ell}^{*} \leq f_{o,\ell} \leq F_{o,\ell}^{max} y_{\ell}^{*} \qquad \forall o, \ell \in \Psi^{L+}. \} \qquad (8)$$

$\forall o, \ell \in \Psi^{L+}.$ (8)

B. Master problem

The master problem at iteration ν is

$$\underset{\Phi^{L1}, \Omega_{o,\nu}^M, \theta}{\text{minimize}} \sum_{u \in \Psi^{G+}} C_u^x x_u + \sum_{\ell \in \Psi^{L+}} C_\ell^y y_\ell + \theta \tag{9}$$

$$\theta \ge \sum_{o} W_o \sum_{u} C_u^g g_{o,u,\nu'} \qquad \forall \nu' \le \nu$$
(10)

$$\sum_{u \in \Psi^G} g_{o,u,\nu'} + \sum_{\ell} Y_{\ell,n} f_{o,\ell,\nu'} = d_{n,\nu'}^* \qquad \forall o, n, \nu' \le \nu$$

$$0 \le g_{o,u,\nu'} \le G_{o,u}^{max} \qquad \forall o, u \in \Psi_n^G, \nu' \le \nu$$
(12)

$$F_{o,\ell}^{min} \le f_{o,\ell,\nu'} \le F_{o,\ell}^{max} \qquad \forall o, \ell \in \Psi^L, \nu' \le \nu$$
(13)

$$0 \leq g_{o,u,\nu'} \leq G_{o,u}^{max} x_{\ell} \qquad \forall o, u \in \Psi_{n}^{G+}, \nu' \leq \nu$$

$$(14)$$

$$F_{o,\ell}^{min} y_{\ell} \leq f_{o,\ell,\nu'} \leq F_{o,\ell}^{max} y_{\ell} \qquad \forall o, \ell \in \Psi^{L+}, \nu' \leq \nu,$$

$$(15)$$

where $\Omega^{M}_{o,\nu}=\{g_{o,u,\nu'}\,\forall u,f_{o,\ell,\nu'}\,\forall\ell\},\,\forall o,\nu'\leq \nu.$ $d_{n,\nu'}^{*},\,\forall n,\nu'\leq \nu$ are input data obtained from all the previous solutions of the subproblem.

C. Subproblem

The subproblem is

$$\begin{aligned} & \underset{\Phi^{L2},\Omega_{o}^{S}}{\text{maximize}} \sum_{o} \left[\sum_{n} \lambda_{o,n} d_{n} + \\ & \sum_{u \in \Psi^{G}} \bar{\beta}_{o,u} G_{o,u}^{max} + \\ & \sum_{\ell \in \Psi^{L}} \bar{\mu}_{o,\ell} F_{o,\ell}^{max} - \underline{\mu}_{o,\ell} F_{o,\ell}^{min} + \\ & \sum_{u \in \Psi^{G+}} \bar{\beta}_{o,u} G_{o,u}^{max} x_{u}^{*} + \\ & \sum_{\ell \in \Psi^{L+}} \left(\bar{\mu}_{o,\ell} F_{o,\ell}^{max} - \underline{\mu}_{o,\ell} F_{o,\ell}^{min} \right) y_{\ell}^{*} \right] \end{aligned}$$
 (16)

subject to

$$\lambda_{o,u(n)} - \bar{\beta}_{o,u} + \underline{\beta}_{o,u} = C_u^g W_o \quad \forall o, u$$
 (17)

$$\sum_{n} Y_{\ell,n} \lambda_{o,n} - \bar{\mu}_{o,\ell} + \underline{\mu}_{o,\ell} = 0 \quad \forall o, \ell$$
 (18)

Eqs.
$$(3)$$
, (19)

where $\Omega_o^S = \{\lambda_{o,n} \forall n, \bar{\beta}_{o,u} \forall u, \underline{\beta}_{o,u} \forall u, \bar{\mu}_{o,\ell} \forall \ell, \underline{\mu}_{o,\ell} \forall \ell\}, \forall o. x_u^* \forall u \in \Psi^{G+} \text{ and } y_\ell^* \forall \ell \in \Psi^{L+} \text{ are input data obtained from the previous solution of the master problem. The index } u(n) \text{ denotes the node at which unit } u \text{ is located.}$

The product of a continuous and a binary variable $\lambda_{o,n}d_n$ in the objective function (16) is linearized exactly with $\lambda_{o,n}d_n=z_{o,n}\hat{D}_n+\lambda_{o,n}\tilde{D}_n$ and by adding the following constraints to the subproblem

$$z_{o,n} = \lambda_{o,n} - \tilde{\lambda}_{o,n} \forall o, n$$
 (20)

$$\Lambda^{min} u_n \le z_{o,n} \le \Lambda^{max} u_n \tag{21}$$

$$\Lambda^{min}(1 - u_n) \le \tilde{\lambda}_{o,n} \le \Lambda^{max}(1 - u_n) \tag{22}$$

Consequently, the decision variables $d_n \, \forall n$ are replaced with $z_{o,n} \forall o, n, \tilde{\lambda}_{o,n} \forall o, n$ in the subproblem.

II. SAMPLE DATA

Sample data is in Table I.

REFERENCES

Variable	Value
n	[0, 1, 2, 3]
u	[0, 1, 2, 3]
ℓ	[0, 1, 2, 3]
0	[0, 1]
Ψ_n^G	{1: 1, 3: 3}
Ψ_n^{n+}	{0: 0, 2: 2}
Ψ^L	[0, 2]
Ψ^{L+}	[1, 3]
C_u^G	[1, 5, 5, 5]
C_u^{max}	10
$G_{o,u}^{max}$ F^{max}	- "
1 o.l.	5
$F_{o,\ell}^{min}$	-5
	$\lceil -1 1 0 0 \rceil$
V.	0 -1 1 0
$Y_{\ell,n}$	$\left \begin{array}{cccc} 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{array}\right $
	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$
W_o	[0.5, 0.5]
C_u^x	1
$C_{\ell}^{\widetilde{y}}$	1
C_u^{S} C_u^{V} \tilde{C}_ℓ^{V} \tilde{D}_n \bar{D}_n	3
\bar{D}_n	1
Λ^{D}	2
$\Lambda^{min/max}$	-100 / 100
11 '	TABLE I

SAMPLE DATA