$$V(k_0) = \sum_{t=0}^{\infty} \left[\beta^t \ln(1 - \alpha \beta) + \beta^t \alpha \ln k_t \right]$$

Note de Mathématiques + a' ln ko

$$= \frac{\alpha}{1 - \alpha \beta} \ln \frac{\alpha}{2} + \frac{\beta}{1 - \alpha} \ln(\alpha \beta) \sum_{t=0}^{\infty} \left[\frac{\beta^t}{1 - \alpha} - \frac{(\alpha \beta)^t}{1 - \alpha} \right]$$

$$= \frac{\alpha}{1 - \alpha} \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha} \ln(\alpha \beta)$$

$$= \frac{\alpha}{1 - \alpha} \ln(2 - \alpha \beta) \ln(\alpha \beta)$$

Science 崇尚科学 Innovation 男子创新

Aviation 热爱航空

$$\mathbf{\mathcal{E}}$$
xcellence 追求卓越
右边 = $\max \left\{ u(f(k) - y) + \beta V(y) \right\}$
= $u(f(k) - g(k)) + \beta \left[\frac{\alpha}{1 - \alpha \beta} \ln g(k) + A \right]$

生命之中最快乐的是拼搏,而非成功;生命之中最

痛苦的是懒散, 而非失败
$$k + \beta \left[\frac{\alpha}{1 - \alpha \beta} \left[\ln \alpha \beta + \alpha \ln k \right] + k \right]$$

$$= \alpha \ln k + \frac{\alpha \beta}{1 - \alpha \beta} \alpha \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + (1 - \beta)A + \beta A$$
 整理: 刘通 (LIU Tong) Ethan
 = $\frac{\alpha}{1 - \alpha \beta} \ln k + A$ 整理时间: February 23, 2017

整理时间: February 23, 2017

Email: 1142595791@qq.com

Version: 1.00

目 录

规范	格式示例	3
1.1	编译方式	3
1.2	文档缺陷	3
1.3	插图示例	4
1.4	字体颜色	4
1.5	关于字体	4
1.6	选项设置	4
1.7	数学环境简介	5
1.8	可编辑的字段	8
Série	Entière 幂级数	9
2.1	Rayon de convergence 收敛半径	9
	2.1.1 求收敛半径的方法	11
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	1.2 文档缺陷 1.3 插图示例 1.4 字体颜色 1.5 关于字体 1.6 选项设置 1.7 数学环境简介 1.8 可编辑的字段 Série Entière 幂级数 2.1 Rayon de convergence 收敛半径

第1章

规范格式示例

1.1 编译方式

本模板基于 book 文类, 所以 book 的选项对于本模板也是有效的。但是, 只支持 XHTEX, 编码为 UTF-8, 推荐使用 TEXlive 编译。作者编写环境为 Win8(64bit)+TEXlive 2013。

1.2 文档缺陷

- 1. 定理类的环境在我们这个模板中不能浮动,也不能跨页。
- 2. 某些环境不足,比如例子、假设、性质、结论等环境,在1.00版本中已经增加了这几个环境。

1.3 插图示例

图 1.1: Happiness,We have it!

1.4 字体颜色

这章还有这么大空间,忍不住插个图!

1.5 关于字体

本文主要使用的字体如下

- Adobe Garamond Pro
- Minion Pro & Myriad Pro
- 方正字体
- 华文中宋

② Note: 需要特别注意的是,如果笔记需要使用到抄录环境的,请重新修改字体,此版本并未为抄录环境设置合适字体,本 note 环境的字体即为抄录环境使用到的字体。

1.6 选项设置

本文特殊选项设置共有2类,分为颜色和数学字体。

1.7 数学环境简介 -5/12-

第一类为<mark>颜色</mark>主题设置,内置 3 组颜色主题,分别为 green(default), cyan, blue。 默认为 green 颜色主题。需要改变颜色的话请自行到 elegantnote.cls 文件内对颜色的 RGB 值进行修改。

第二类为数学字体设置,有两个可选项,分别是 computer modern 和 mtpro2 字体,默认使用 cm 字体,无需在类文件前加选项,调用 mtpro2 字体的方法为\documentclass[mtpro]{elegantnote}

表 1.1: Elegant note 模板中的三套颜色主题

1.7 数学环境简介

一般的数学环境:

考虑如下的随机动态规划问题

$$\max(\min) \quad \mathbb{E} \int_{t_0}^{t_1} f(t, x, u) dt$$

s.t.
$$dx = g(t, x, u) dt + \sigma(t, x, u) dz$$

$$k(0) = k_0 \text{ given}$$

在我们这个模板中,定义了三大类环境

- 1. 定理类环境,包含标题和内容两部分。根据格式的不同分为3种
 - newdef 环境,含有一个可选项,编号以章节为单位;

Definition 1.1 Wiener Process

If z is wiener process, then for any partition t_0, t_1, t_2, \ldots of time interval, the random variables $z(t_1) - z(t_0), z(t_2) - z(t_1), \ldots$ are independently and normally distributed with zero means and variance $t_1 - t_0, t_2 - t_1, \ldots$

• newthem、newlemma、newcorol 环境,三者颜色一致,但是定理环境编号 以章节为单位,引理和推论为全文编号;

Theorem 1.1 勾股定理

勾股定理的数学表达为

$$a^2 + b^2 = c^2$$

其中a, b为直角三角形的两条直角边长,c为直角三角形斜边长。

Theorem 1.2 勾股定理

勾股定理的数学表达为

$$a^2 + b^2 = c^2$$

其中a,b为直角三角形的两条直角边长,c为直角三角形斜边长。

Lemma 1

假设 $V(\cdot,\cdot)$ 为值函数,则跟据最大值原理,有如下推论

$$V(k,z) = \max \left\{ u(zf(k) - y) + \beta \mathbb{E}V(y,z') \right\}$$

Lemma 2

假设 $V(\cdot,\cdot)$ 为值函数,则跟据最大值原理,有如下推论

$$V(k,z) = \max \left\{ u(zf(k) - y) + \beta \mathbb{E}V(y,z') \right\}$$

Lemma 3

假设 $V(\cdot,\cdot)$ 为值函数,则跟据最大值原理,有如下推论

$$V(k,z) = \max \left\{ u(zf(k) - y) + \beta \mathbb{E}V(y,z') \right\}$$

Corollary 1

假设 $V(\cdot,\cdot)$ 为值函数,则跟据最大值原理,有如下推论

$$V(k, z) = \max \left\{ u(zf(k) - y) + \beta \mathbb{E}V(y, z') \right\}$$

• newprop 环境,含有可选项,编号以章节为单位。

Proposition 1.1 最优性原理

如果 u^* 在 [s,T] 上为最优解,则 u^* 在 [s,T] 任意子区间都是最优解,假设区间为 $[t_0,t_1]$ 的最优解为 u^* ,则 $u(t_0)=u^*(t_0)$,即初始条件必须还是在 u^* 上。

- 2. 证明类环境,有newproof、note 环境,特点是,有引导符和引导词,并且证明环境有结束标志。
- Proof: 因为 $y^* = \alpha \beta z k^{\alpha}$, $V(k,z) = \alpha/1 \alpha \beta \ln k_0 + 1/1 \alpha \beta \ln z_0 + \Delta$ 。

利用 $\mathbb{E}[\ln z'] = 0$,并将对数展开得

右边 =
$$\ln(1 - \alpha\beta) + \ln z + \alpha \ln k + \frac{\alpha\beta}{1 - \alpha\beta} \left[\ln \alpha\beta + \ln z + \alpha \ln k \right] + \frac{\beta}{1 - \alpha\beta} \mu + \beta\Delta$$

= $\frac{\alpha}{1 - \alpha\beta} \ln k + \frac{1}{1 - \alpha\beta} \ln z + \Delta$

所以左边 = 右边,证毕。

- ② Note: 需要特别注意的是,如果笔记需要使用到抄录环境的,请重新修改字体, 此版本并未为抄录环境设置合适字体,本 note 环境的字体即为抄录环境使用到 的字体。
- 3. 示例环境,有example、assumption、conclusion 环境,三者均以粗体的引导词为 开头,字体以灰色,和普通段落格式一致。

Example: 今天看到一则小幽默,是这样说的:别人都关心你飞的有多高,只有我关心你的翅膀好不好吃! 说多了都是泪啊!

Assumptions: 今天看到一则小幽默,是这样说的: 别人都关心你飞的有多高,只有我关心你的翅膀好不好吃! 说多了都是泪啊!

Conclusions: 今天看到一则小幽默,是这样说的: 别人都关心你飞的有多高,只有我关心你的翅膀好不好吃! 说多了都是泪啊!

Conclusions: 今天看到一则小幽默,是这样说的: 别人都关心你飞的有多高,只有我关心你的翅膀好不好吃! 说多了都是泪啊!

1.8 可编辑的字段

在模板中,可以编辑的字段分别为作者\author、\email、\zhtitle、\entitle、\version。并且,可以根据自己的喜好把封面水印效果的cover.pdf 替换掉,以及封面中用到的 logo.pdf。

第2章

Série Entière 幂级数

Note: Pour $n \in \mathbb{N}$, on pose $X^n : z \in \mathbb{C} \mapsto z^n$.

Definition 2.1

Pour $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$, on appelle série entière $((a_nX^n))$. On s'intéresse à la fonction

$$f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$$

2.1 Rayon de convergence 收敛半径

Definition 2.2

设 $((a_nX^n))$ 是一个幂级数, $((a_nX^n))$ 的收敛半径 (RCV) 记为 R_c , 定义为:

$$R_c = sup(\{|z|, z \in \mathbb{C} \ et \ ((a_n X^n)) \ converge\}) \in \mathbb{R}_+ \cup \{+\infty\}$$

(bien défini car $((a_n0^n))$ converge).

Note: $\mathbb{Z} \vee \forall r \in \mathbb{R}_+$

$$D(0,r) = \{z \in \mathbb{C} : |z| < r\}$$

$$\bar{D}(0,r) = \{ z \in \mathbb{C} : |z| \le r \}$$

$$C(0,r) = \{ z \in \mathbb{C} : |z| = r \}$$

Lemma 1 d'Abel

设 $((a_nX^n))$ 是一个幂级数,假设存在 R>0 满足数列 (a_nR^n) 是有界的,则 $\forall r \in]0, R[, ((a_n X^n))$ 在 $\bar{D}(0, r)$ 上 CVN_{\circ}

Proof:

Conclusions: 设 $z \in \mathbb{C}^*$ 满足 f(z) 有定义并且 $((a_n z^n))$ 收敛,则 $\forall z' \in \mathbb{C}$ 满足 |z'| < |z|, $((a_n z'^n))$ 绝对收敛 (Converge absolument)。

Example:

- 1. 求 $((X^n))$ 的收敛半径。 $R_c = 1$
- 2. 求 $((\frac{X^n}{n!}))$ 的收敛半径。 $R_c = +\infty$ 因为 $\forall z \in \mathbb{C}$, $((\frac{X^n}{n!}))$ 收敛于 e^z 。

Theorem 2.1

设 $((a_nX^n))$ 是一个幂级数,收敛半径为 R_c ,对于 $z \in \mathbb{C}$,

- ・若 $|z| < R_c$,则 $((a_n z^n))$ 绝对收敛。
- ・若 $|z| > R_c$,则 $((a_n z^n))$ 无界。

Proof:

Definition 2.3

我们称收敛圆的集合为 $C(0,R_c)$ 。

Example:

- 1. $((X^n))$: 对于 $z \in \mathbb{U}(|z|=1)$, $((z^n))$ 发散。实际上,
 - 若 z=1, $((1^n))$ 发散。
 - 若 $z \neq 1$,设 $N \in \mathbb{N}$, $\sum\limits_{n=0}^{N} z^n = \frac{1-z^{N+1}}{1-z}$, $|z^{N+1}-z^N| = |z^N||z-1|$,其中 $|z^n|=1, |z-1|>0$ 。所以 (z^{N+1}) 发散, $((z^n))$ 发散。
- 2. 求 $((\frac{X^n}{n^2}))$ 的收敛半径。设 $z\in\mathbb{C}^R$, $n\in\mathbb{N}^R$
 - 若 $|z| \le 1$, 则 $\forall n \in \mathbb{N}^*$, $|\frac{z^n}{n^2}| \le \frac{1}{n^2}$.
 - 若 |z| > 1, $(\frac{z^n}{n^2})$ 无界。

Conclusions: Rc=1, $\forall z\in C(0,1)$, $((\frac{z^n}{n^2}))$ 收敛。

2.1.1 求收敛半径的方法

- 如果可以找到 $z_0\in\mathbb{C}$ 满足数列 $(a_nz_0^n)$ 是有界的,则 $R_c\geq |z_0|$ 。
- 如果级数 $((a_0z_0^n))$ 发散或者数列 $(a_nz_0^n)$ 是无界的,则 $R_c \leq |z_0|$ 。

练习题: 求以下幂级数的收敛半径。

1.
$$a_n = \frac{n^n}{n!}$$
(用两种方法)

• 方法 1: 直接使用d'Alembert 判别法。

$$\left|\frac{a_{n+1}}{a_n}\right| = \left(1 + \frac{1}{n}\right)^n \underset{n \to +\infty}{\to} e$$

则 $((a_nX^n))$ 的收敛半径 $R_c=\frac{1}{e}$ 。

• 方法 2: 根据STIRLING 定理, $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$ 。则

$$a_n \underset{n \to +\infty}{\sim} \frac{e^n}{\sqrt{2\pi n}}$$

则根据命题,找级数 $((\frac{e^n}{\sqrt{2\pi n}}X^n))$ 的收敛半径。

$$\left|\frac{\frac{e^{n+1}}{\sqrt{2\pi(n+1)}}}{\frac{e^n}{\sqrt{2\pi n}}}\right| = \left|\frac{e\sqrt{n}}{\sqrt{n+1}}\right| \underset{n \to +\infty}{\to} e$$

则收敛半径是 $\frac{1}{e}$ 。

2.
$$a_n = 1 + \frac{1}{n}$$

$$1 + \frac{1}{n} \sim_{n \to +\infty} 1$$
, 根据命题, $(((1 + \frac{1}{n})X^n))$ 和 $((X^n))$ 相同, $R_c = 1$ 。

3.
$$a_n = \prod_{k=1}^n (\frac{3k+1}{k+\frac{1}{2}})$$

$$|\frac{a_{n+1}}{a_n}| \underset{n \to +\infty}{\to} 3, \quad R_c = \frac{1}{3}.$$

4.
$$a_n = 2 + cosn$$

若 |z|=1: 有级数 ((2+cosn)) 发散,所以 $R_c \le 1$; 并且有数列 (2+cosn) 是有界的,则 $R_c \ge 1$ 。故 $R_c = 1$ 。

5.
$$a_n = C_{2n}^n$$

$$|\frac{a_{n+1}}{a_n}| = |\frac{4n+2}{n+1}| \underset{n \to +\infty}{\to} 4, \ \$$
 故 $R_c = \frac{1}{4}$ 。

