How to create tidy and reproducible spreadsheets Some (very basal) good practice guidance for data handling

Roman M. Link

University of Würzburg

July 31, 2019

How datasheets often look like

4	kopiert werden soll.	С	D	Е	F	G	Н	1	J	К	L	M	N
	Height (m)/Sampling tree ring number from pith	Н3	H2	HI	т		mean-H3				mean-H1	sd-H1	mean-T si
ľ	0	7-9	11-13	15-18	24-25	27-30	126.8105	66.4122	127.8238	72.1244			
	1.3	6-7	10-11	14-16	22-24	25-28	156.3900	66.3379	185.7622	63.8564			
	3.8	5-6	8-9	15-16	22-23	25-27	153.3162	62.5290	192.4373	52.2249			
	6.3	3-4	7.8	12-13	17-18	19-21	152.1864	44.3087	155.4903	39.5131		57.8282	
	8.8	1-4	5-7	8-9	9-10	10-14	143.8754	36.6903	164.9568	57.3062			
	11.3		1-2	3-4	5-6	7-9			130.9386	33.5562			
	0	10-11	18-20	25-26	35-37	39-43	177.4023	50.5611	175.1471	57.7171			
	1.3	8-9	14-16	22-24	30-34	36-40	124.1157	44.0238	166.6570	73.4100		47.5352	
	3.8	7-8	12-14	19-21	30-32	34-37	202.0969	34.8620	193.8636	59.9496			
	6.3	6-8	11-12	15-17	23-25	27-30	209.3379	52,7908	215.6250	41.6247		56.8417	
	8.8	6-8	11-12	14-15	19-21	24-27	186,9061	45.2097	207.8444	23.1942			
	11.3	6-7	10-11	13-16	18-19	21-24	165.9997	27.8235	197.1963	35.4516	216.0156	33.0659	190.6444
	13.8	4-5	7.9	11-12	13-14	16-17							
	0	9-10	16-18	24-25	28-30	31-33	164.3226	39.6517	157.4609	50.5740		71.1383	
	1.3	7-8	11-12	17-18	26-28	29-32	179.4890	45.3813	194.7687	48.9111			
	3.8	7-8	12-14	19-20	26-27	29-30	168.3417	42.8019	168.2942	61.7713		67.8582	
	6.3	4-6	9-10	14-15	20-22	24-27	170.4199	44.6890	190.3797	42.9845		57.7621	
	8.8	1-5	6-9	10-16	17	18-22	127.4685	28.3830	165.1716	49.0346		43.7274	
	11.3		1-4	5-9	10	11-16			135.5505	34.5744	152.8270	48.5895	152.5273
	Height (m)/Sampling tree ring number from pith	H3	H2	H1	T		mean-H3	sd-H3			mean-H1	sd-H1	mean-T se
	0	7.9	11-13	15-18	24-25	27-30	15.7414	4.0328		3.7495			
	1.3	6-7	10-11	14-16	22-24	25-28	15.6771	5.0043		6.2775			
	3.8	5-6	8-9	15-16	22-23	25-27	14.4573	2.5162	22.5611	4.6616			
	6.3	3-4	7-8	12-13	17-18	19-21	18.2293	5.3181	17.6986	3.9953			
	8.8	1-4	5-7	8-9	9-10	10-14	24.5550	10.7211	18.3327	6.8659		6.2324	
	11.3		1-2	3-4	5-6	7-9			14.3876	5.0128			
	0	10-11	18-20	25-26	35-37	39-43	18.0858	6.4663	17.0532	6.3837	23.9316	8.8978	20.4616
	1.3	8-9	14-16	22-24	30-34	36-40	14.7886	4.7394	19.5521	6.0184	20.2647	7.0007	21.8543
	3.8	7-8	12-14	19-21	30-32	34-37	22.2514	8.4005	21.9845	5.6868	22.1407	5.3998	22.6555
	6.3	6-8	11-12	15-17	23-25	27-30	19.8574	7.8061	21.8686	6.4527	29.7834	7.2834	25.0980
	8.8	6-8	11-12	14-15	19-21	24-27	19.2573	5.3629	21.2129	7.3059	22.8607	6.0112	25.1384
	11.3	6-7	10-11	13-16	18-19	21-24	20.7304	6.3607	21.7833	4.9576	32.4353	6.6055	24.7970
	13.8	4-5	7-9	11-12	13-14	16-17							
	0	9-10	16-18	24-25	28-30	31-33	16.1888	3.9260	17.0750	4.5888	19.0203	7.3010	32.2862
	1.3	7-8	11-12	17-18	26-28	29-32	15.4653	3.6609	19.1954	6.1743	18.8216	3.9954	25.9690
	3.8	7-8	12-14	19-20	26-27	29-30	25.8628	10.4058	19 5091	4.0772	23.1992	7.3450	26.5840
	Raw data Note tree information	ring width	(±)						1.0				

oot

Common problems

- Not computer readable
 - Multiple headers
 - Several tables per sheet
 - Special characters in column titles (units etc)

oot

Common problems

- Not computer readable
 - Multiple headers
 - Several tables per sheet
 - Special characters in column titles (units etc)
- Not human readable
 - Not well documented
 - Unclear variable names
 - Messy structure spread over several sheets and/or files

bot²

Happy families are all alike; every unhappy family is unhappy in its own way

Leo Tolstoy, quoted after Hadley Wickham (2014)

 General structure of data: collection of values that belong to a variable and an observation

- General structure of data: collection of values that belong to a variable and an observation
- Datasets are tidy when
 - Each variable forms a column
 - 2 Each observation forms a row
 - 3 Each type of observational unit forms a table

- General structure of data: collection of values that belong to a variable and an observation
- Datasets are tidy when
 - 1 Each variable forms a column
 - 2 Each observation forms a row
 - 3 Each type of observational unit forms a table
- Leading paradigm for data handling in the tidyverse

Minimum requirements for data input

- Create datasets having in mind their analysis
 - Computer-readable headers with single rows for variable names
 - Short but easy to remember column titles
 - One table per sheet
 - No unnecessary whitespace or fancy formatting (united cells etc.)

Minimum requirements for data input

Create datasets having in mind their analysis

- Computer-readable headers with single rows for variable names
- Short but easy to remember column titles
- One table per sheet
- No unnecessary whitespace or fancy formatting (united cells etc.)

Keep the data tidy if possible

- One variable per column
- One observation per row
- One table per observational unit (e.g. tree-level vs. plot-level data)

Minimum requirements for data input

- Create datasets having in mind their analysis
 - Computer-readable headers with single rows for variable names
 - Short but easy to remember column titles
 - One table per sheet
 - No unnecessary whitespace or fancy formatting (united cells etc.)
- Keep the data tidy if possible
 - One variable per column
 - One observation per row
 - One table per observational unit (e.g. tree-level vs. plot-level data)
- But keep in mind that...
 - ... exceptions may make sense at the data entry stage
 - ... rearranging clean data is easy

5/12

Example

- 4	Α	В	С	D	E	F	G	н	1 1	1	К	1	М	N	0	P	Q	R	s -
1	stem								ration HED	ratio7 F	FD ratio8 weighte	ed HED ratio							U7
		FS	P150	1.012		0.976	0.634	0.412	0.223	0.151	0.122				29.562			6.817	4.659
		FS	P200	1.220		1.123	0.683	0.429	0.220	0.142	0.114	1.100	38.373					7.141	4.628
		FS	P250	1.655		1.444	0.824	0.495	0.250	0.164	0.130	1.455	55.327		48.309			8.402	5.553
		FS	P300	2.129		1.768	0.933	0.544	0.269	0.174	0.139		74.471		61.835			9.436	6.129
		FS	P350	2.703		2.081	1.036	0.592	0.290	0.186	0.147	2.257			75.648				6.817
		FS	P400	3.174		2.344	1.127	0.635	0.312	0.199	0.153				87.546				7.436
		FS	P450	3.714		2.619	1.220	0.691	0.336	0.214	0.159				100.644				8.290
		FS	P500	4.142		2.889	1.320	0.746	0.368	0.231	0.170				113.099				9.093
		FS	P150	1.104		1.035	0.691	0.474	0.259	0.167	0.138				30,616			7 804	5.032
		FS	P200	1.611		1.401	0.856	0.550	0.279	0.171	0.131	1.435	50.724		44.849			9.415	5.855
		FS	P250	2.142		1.750	1.005	0.630	0.325	0.201	0.157	1.861	70.607				21.452		6.885
		FS	P300	2.723		2.136	1.157	0.705	0.356	0.224	0.172	2.338		108.225					8.120
		FS	P350	3.274		2.537	1.309	0.780	0.389	0.238	0.180				94.114				8.937
		FS	P400	3.724		2.962	1.476	0.855	0.418	0.254	0.191				115.514				9.922
		FS	P450	4.094		3,471	1.656	0.926	0.443	0.268	0.194				142.001				10.920
		FS	P500	4.379		4.006	1.839	0.996	0.464	0.268	0.185				170,616				11.412
		FS	P150	0.741		0.648	0.495	0.367	0.258	0.182	0.178		27.064		23.826			9.616	6.836
19	FS5S3	FS	P200	1.149	1.040	0.915	0.653	0.460	0.305	0.205	0.191	0.996	45.789	41.803	37.072	26.818	19.126	12.776	8.711
20	FS5S3	FS	P250	1.435	1.259	1.078	0.744	0.511	0.324	0.215	0.196	1.210	59.544	52.639	45.455	31.649	21.935	14.042	9.383
21	FS5S3	FS	P300	1.936	1.646	1.372	0.902	0.593	0.357	0.229	0.206	1.588	83.734	71.696	60.203	39.991	26.514	16.143	10.510
22	FS5S3	FS	P350	2.348	1.958	1.632	1.028	0.657	0.385	0.243	0.211	1,900	105.253	88.027	73,402	46.652	30.013	17.672	11.238
		FS	P400	2.769	2.292	1.907	1.160	0.717	0.406	0.255	0.217	2.225	127.686	106.098	88.383	53.944	33.440	18.985	11.957
24	FS5S3	FS	P450	3.090	2.552	2.139	1.257	0.767	0.425	0.262	0.222	2.477	146.377	121.148	101.671	59.756	36.470	20.203	12.484
25	FS5S3	FS	P500	3.380	2.817	2.384	1.360	0.812	0.441	0.273	0.227	2.721	164.599	136.906	115.946	66.224	39.541	21.493	13.300
	FS5S3		P550	3.613		2.627	1.449	0.852	0.457	0.280	0.231	2.934	180.127	152.344	130.950	72.409	42.648	22.880	14.060
	FS6S2		P150	0.928	1.148	1.241	0.903	0.634	0.352	0.229	0.163	1.034	29.515	36.496	39.600	28.813	20.233	11.278	7.399
28	FS6S2		P200	1.309	1.688	1.822	1.191	0.771	0.402	0.247	0.167	1.472	42.423	53.986	58.363	39.426	26.174	13.931	8.785
		FS	P250	1.818		2.679	1.586	0.970	0.488	0.298	0.200	2.090	57.871		84.347				9.805
		FS	P300	2.292		3.688	1.946	1.126	0.541	0.321	0.213	2.726			114.158				10.646
		FS	P350	2.667		4.665	2.266	1.250	0.580	0.335	0.219	3.285			142.429			18.567	
	FS6S2		P400	2.985		5.654	2.514	1.349	0.610	0.348	0.225	3.785			168.245			19.058	
	FS6S2		P450	3.237		6.570	2.787	1.442	0.644	0.360	0.232				192.372				
		FS	P500	3.442		7.372	2.978	1.529	0.666	0.372	0.237				211.715				
35	FS6S2	FS	P550	3.641	5.882	8.218	3.174	1.623	0.691	0.379	0.240	4.952	103.702	167.474	230.055	90.324	46.279	19.863	10.960 -
4		Metadata	Data + :																Þ

bot²

 Your data are valuable: they are the main outcome of your scientific work

- Your data are valuable: they are the main outcome of your scientific work
- If data are not well documented, they become worthless very fast

bot

- Your data are valuable: they are the main outcome of your scientific work
- If data are not well documented, they become worthless very fast
- To make them last, datasheets have to be created having in mind...

- Your data are valuable: they are the main outcome of your scientific work
- If data are not well documented, they become worthless very fast
- To make them last, datasheets have to be created having in mind...
 - you

- Your data are valuable: they are the main outcome of your scientific work
- If data are not well documented, they become worthless very fast
- To make them last, datasheets have to be created having in mind...
 - you
 - future you

- Your data are valuable: they are the main outcome of your scientific work
- If data are not well documented, they become worthless very fast
- To make them last, datasheets have to be created having in mind...
 - you
 - future you
 - others

- Your data are valuable: they are the main outcome of your scientific work
- If data are not well documented, they become worthless very fast
- To make them last, datasheets have to be created having in mind...
 - you
 - future you
 - others
- ⇒ Need for documentation

bot²

• What was measured?

- What was measured?
- Who did the work? (contact)

- What was measured?
- Who did the work? (contact)
- Where and when was it done?

- What was measured?
- Who did the work? (contact)
- Where and when was it done?
- How was it measured?
 - Equipment
 - Software
 - Equations used for calculation
 - Data source of publicly available datasets
 - Measurement units

- What was measured?
- Who did the work? (contact)
- Where and when was it done?
- How was it measured?
 - Equipment
 - Software
 - Equations used for calculation
 - Data source of publicly available datasets
 - Measurement units
- Additional information, e.g.
 - Associated publications (must-cites)
 - Licenses for data use

How to document metadata

• Fancy method: associated meta data (e.g. .xml) files linked to each dataset in a large a database

How to document metadata

- Fancy method: associated meta data (e.g. .xml) files linked to each dataset in a large a database
- Day-to-day method: add a metadata sheet to each of your datasets in Calc, Excel etc...

S2	FS	P500	
S2	FS	P550	
	Metadata	Data	+

Description

Example

Calibration dataset for measurements performed with the HFD method (Nadezhdina et al., 1998, 2000)

Measurements were performed by Sebastian Fuchs in summer 2014 using a HFD50 Sensor (ICT International Pty Ltd., Armidale, Australia), using stem segments with 1.4 m length and around 8.6-16 cm diameter. Water flow was induced by applying subatmospheric pressure

to the upper end of the stem, and flow rates were tracked with a balance and consecutively converted to flux densities using sample length

and sapwood areas based from cross-sections of paint-perfused stems.

Data were aggregated over 1-hour measurement intervals at different pressure levels, excluding each the observations from the first 15 min (which were affected by a time-lag in pressure equilibration), Additionally, the first three pressure levels (0 mbar, 50 mbar and 100 mbar) were excluded since they were below the gravitative water potential over the stem length, which led to rather inconsistent measurements.

Given are predictions of sap flux density based on the original equation of Nadezhdina et. al. (1998, 2012) from the ICP sap flow tool and new predictions of sap flux density based on our (species specific vs. species-independent) calibration equations (statistical analysis.

12 R. Link. 2016).

13

14 Additional information about data collection and processing can be found in our paper:

15 Fuchs, S., Leuschner, C., Link, R., Coners, H., & Schuldt, B., 2017: Calibration and comparison of thermal dissipation,

16 heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology.

17					
18	Variable	Unit	Description	Example	
19	stem	NA	Unique identifier for each analyzed stem	FS5S1	
20	species	NA	Species (FS = Fagus sylvatica, TC = Tilia cordata, AP = Acer pseudoplatanus)	FS	
21	pressure_level	NA	Pressure level (number codes for the intended average suction in mbar)	P150	
22	HFD_ratio1	unitless	HFD ratio readings from the HFD sensor at 0.5 cm depth.	1.012	
23	HFD_ratio2	unitless	HFD ratio readings from the HFD sensor at 1.0 cm depth.	1.089	
24	HFD_ratio3	unitless	HFD ratio readings from the HFD sensor at 1.5 cm depth.	0.976	
25	HFD_ratio4	unitless	HFD ratio readings from the HFD sensor at 2.0 cm depth.	0.634	
26	HFD_ratio5	unitless	HFD ratio readings from the HFD sensor at 2.5 cm depth.	0.412	
27	HFD_ratio6	unitless	HFD ratio readings from the HFD sensor at 3.0 cm depth.	0.223	
28	HFD_ratio7	unitless	HFD ratio readings from the HFD sensor at 3.5 cm depth.	0.151	
29	HFD_ratio8	unitless	HFD ratio readings from the HFD sensor at 4.0 cm depth.	0.122	
			Weighted average of the HFD ratios at different depths weighted by the area		
			contribution of the corresponding annulus to the total stem area (see paper for		
30	weighted_HFD_ratio	unitless	details)	0.935	
			Calculated sap flux density for Sensor 1 from sap flow tool (based on the		
31	U1	10^{-6}*m^3*m^2*s^{-1}	method of Nadezhdina et al., 1998, 2012)	30.522	

R. Link (Uni Würzburg)

Tidy spreadsheets

bot²

• Import is very easy if your data are tidy

- Import is very easy if your data are tidy
- Tools for data import
 - Base R: read.csv(), read.table()
 - Packages: readr, readxl, gdata etc.

- Import is very easy if your data are tidy
- Tools for data import
 - Base R: read.csv(), read.table()
 - Packages: readr, readxl, gdata etc.
- Tools for data wrangling
 - Packages from the tidyverse: dplyr, tidyr etc.

bot²

- Import is very easy if your data are tidy
- Tools for data import
 - Base R: read.csv(), read.table()
 - Packages: readr, readxl, gdata etc.
- Tools for data wrangling
 - Packages from the tidyverse: dplyr, tidyr etc.
- Most common problems
 - Font encoding (Windows, I am looking at you!)
 - Decimal and field separators
 - Formatting errors
 - Data entry errors (e.g. text in a numeric column)

Room for questions

12 / 12