Problem Set 5 CS/MATH 113 Discrete Mathematics

Habib University — Spring 2023

Week 06

1 Problems

Problem 1. [Chapter 2.1, Question 12] Determine whether these statements are true or false.

- (a) $\phi \in \{\phi\}$
- (b) $\phi \in \{\phi, \{\phi\}\}\$
- (c) $\{\phi\} \in \{\phi\}$
- (d) $\{\phi\} \in \{\{\phi\}\}\$
- (e) $\{\phi\} \subset \{\phi, \{\phi\}\}$
- (f) $\{\{\phi\}\}\subset \{\phi, \{\phi\}\}$
- (g) $\{\{\phi\}\}\subset\{\{\phi\},\{\phi\}\}\}$

Problem 2. [Chapter 2.1, Question 23] Find the power set of these sets where a and b are distinct elements.

- (a) $\{a\}$
- (b) $\{a, b\}$
- (c) $\{\phi, \{\phi\}\}$

Problem 3. [Chapter 2.1, Question 24] Can you conclude that A = B if A and B are two sets with the same power set?

Problem 4. [Chapter 2.1, Question 25] How many elements does each of these sets have where a and b are distinct elements?

- (a) $\mathcal{P}(\{a,b,\{a,b\}\})$
- (b) $\mathcal{P}(\{\phi, a, \{a\}, \{\{a\}\}\})$
- (c) $\mathcal{P}(\mathcal{P}(\phi))$

Problem 5. [Chapter 2.1, Question 27] Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$

Problem 6. [Chapter 2.1, Question 28] Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$

Problem 7. [Chapter 2.1, Question 29] Let $A = \{a, b, c, d\}$ and $B = \{x, y\}$. Find

- (a) $A \times B$
- (b) $B \times A$

Problem 8. [Chapter 2.1, Question 40] Show that $A \times B \neq B \times A$, when A and B are nonempty, unless A = B

Problem 9. [Chapter 2.1, Question 44] Prove or disprove that if A, B, and C are nonempty sets, and $A \times B = B \times C$, then B = C

Problem 10. [Chapter 2.2, Question 5] Prove the complementation law in Table 1 by showing that $\bar{A} = A$

Problem 11. [Chapter 2.2, Question 11] Let A and B sets. Prove the commutative laws from Table 1 by showing that

- (a) $A \cup B = B \cup A$
- (b) $A \cap B = B \cap A$

Problem 12. [Chapter 2.2, Question 19] Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \bar{A} \cup \bar{B} \cup \bar{C}$

- (a) by showing each side is a subset of the other side
- (b) using a membership table.

Problem 12. [Chapter 2.2, Question 36] Prove or disprove that for all sets A, B, A and C we have

- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Problem 13. [Chapter 2.2, Question 50] Show that if A and B are finite sets, then $A \cup B$ is a finite set.

Problem 14. [Chapter 2.2, Question 51] Show that if A is an infinite set, then whenever B is a set, $A \cup B$ is also an infinite set.