Generell Topologi

Richard Williamson May 6, 2013

12 Thursday 21st February

12.1 Quotients of Hausdorff topological spaces

Let (X, \mathcal{O}_X) be a Hausdorff topological space, and let \sim be an equivalence relation on X. Then $(X/\sim, \mathcal{O}_{X/\sim})$ is not necessarily Hausdorff.

Example 12.1. Recall from Recollection 5.17 that $\mathbb{R} \sqcup \mathbb{R}$ is the set $(\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\})$. By Examples 11.7 (1) we have that $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ is Hausdorff. Thus by Proposition 11.15 we have that $(\mathbb{R} \sqcup \mathbb{R}, \mathcal{O}_{\mathbb{R} \sqcup \mathbb{R}})$ is Hausdorff.

Let \sim be the equivalence relation on $\mathbb{R} \sqcup \mathbb{R}$ defined by $(x,0) \sim (x,1)$ for all $x \neq 0$. To put it slightly less formally, we have two copies of \mathbb{R} and identify every real number except zero in the first copy of \mathbb{R} with the same real number in the second copy of \mathbb{R} .

The topological space $((\mathbb{R} \sqcup \mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R} \sqcup \mathbb{R})/\sim})$ is known as the *real line with two origins*. It is not Hausdorff — indeed is not even T0. Let us prove this.

To avoid confusion let us for the remainder of this example adopt the notation]a, b[for the open interval from a real number a to a real number b, rather than our usual (a, b). Let

$$\mathbb{R}\sqcup\mathbb{R}\stackrel{\pi}{-\!\!\!-\!\!\!-\!\!\!-}(\mathbb{R}\sqcup\mathbb{R})/\sim$$

denote the quotient map.

Let U be a neighbourhood of $\pi((0,0))$ in $((\mathbb{R} \sqcup \mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R} \sqcup \mathbb{R})/\sim})$. We claim that $\pi((0,1)) \in U$. First let us make two observations.

- (1) By definition of $\mathcal{O}_{(\mathbb{R}\sqcup\mathbb{R})/\sim}$ we have that $\pi^{-1}(U)$ is open in $(\mathbb{R}\sqcup\mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R}\sqcup\mathbb{R})/\sim})$.
- (2) By definition of $\mathcal{O}_{\mathbb{R}}$ we have that

$$\{\]a,b[\ |\ a,b\in\mathbb{R}\}$$

is a basis for $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$. Hence — see the Exercise Sheet — we have that

$$\{ |a, b| \times \{0\} \mid a, b \in \mathbb{R} \} \cup \{ |a, b| \times \{1\} \mid a, b \in \mathbb{R} \}$$

is a basis for $(\mathbb{R} \sqcup \mathbb{R}, \mathcal{O}_{\mathbb{R} \sqcup \mathbb{R}})$.

(3) We have that $(0,0) \in \pi^{-1}(U)$.

By (1) – (3) together with Question 3 (a) on Exercise Sheet 2 we deduce there are $a, b \in \mathbb{R}$ such that $0 \in [a, b[$ and $[a, b[\times \{0\} \subset \pi^{-1}(U).$

From the latter we deduce that

$$\pi(]a, b[\times \{0\}) \subset \pi(\pi^{-1}(U)) = U.$$

Thus

$$\pi^{-1}\Big(\pi\big(\,]a,b[\,\times\,\{0\}\big)\Big)\subset\pi^{-1}(U).$$

Moreover

$$\pi^{-1}\Big(\pi\big(a,b[\times\{0\}]\big) = (a,b[\times\{0\}]) \sqcup (a,b[\times\{1\}]).$$

Since $0 \in]a, b[$ we have that $(0,1) \in]a, b[\times \{1\}$. We deduce that $(0,1) \in \pi^{-1}(U)$, and hence that $\pi((0,1)) \in U$ as claimed.

We have now proven that every neighbourhood of $\pi((0,0))$ in $((\mathbb{R} \sqcup \mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R} \sqcup \mathbb{R})/\sim})$ contains $\pi((0,1))$. Thus $((\mathbb{R} \sqcup \mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R} \sqcup \mathbb{R})/\sim})$ is not T1. An entirely analogous argument demonstrates that every neighbourhood of $\pi((0,1))$ in $((\mathbb{R} \sqcup \mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R} \sqcup \mathbb{R})/\sim})$ contains $\pi((0,0))$. We conclude that $((\mathbb{R} \sqcup \mathbb{R})/\sim, \mathcal{O}_{(\mathbb{R} \sqcup \mathbb{R})/\sim})$ is not T0.

Notation 12.2. Let X be a set and let \sim be a relation on X. Let

$$R_{\sim} := \{ (x, x') \in X \times X \mid x \sim x' \}.$$

Proposition 12.3. Let (X, \mathcal{O}_X) be a Hausdorff topological space. Let \sim be an equivalence relation on X. If $(X/\sim, \mathcal{O}_{X/\sim})$ is a Hausdorff topological space then R_{\sim} is a closed subset of $(X\times X, \mathcal{O}_{X\times X})$.

Proof. Let

$$X \xrightarrow{\pi} X/\sim$$

be the quotient map.

Let

$$X \times X \xrightarrow{\pi \times \pi} (X/\sim) \times (X/\sim)$$

be the map given by $(x, x') \mapsto (\pi(x), \pi(x'))$. By Observation 3.7 we have that π is continuous. By Question 4 (c) on Exercise Sheet 3 we deduce that $\pi \times \pi$ is continuous.

If X/\sim is Hausdorff then by Proposition 11.9 we have that $\Delta(X/\sim)$ is closed in

$$(X/\sim)\times(X/\sim).$$

By Question 1 (a) on Exercise Sheet 3 we deduce that $(\pi \times \pi)^{-1} (\Delta(X/\sim))$ is closed in $X \times X$. Note that $R_{\sim} = (\pi \times \pi)^{-1} (\Delta(X/\sim))$. We conclude that R_{\sim} is closed in $X \times X$.

Remark 12.4. We will shortly introduce compact topological spaces. If (X, \mathcal{O}_X) is compact we will see in a later lecture that the requirement that R_{\sim} be closed in $(X \times X, \mathcal{O}_{X \times X})$ is not only necessary but sufficient to ensure that if (X, \mathcal{O}_X) is Hausdorff then $(X/\sim, \mathcal{O}_{X/\sim})$ is Hausdorff.

That R_{\sim} be closed in $(X \times X, \mathcal{O}_{X \times X})$ is not sufficient in general to ensure that $(X/\sim, \mathcal{O}_{X/\sim})$ is Hausdorff, as the following example demonstrates.

Example 12.5. For the purposes of this example let \mathbb{N} be the set $\{1, 2, \ldots\}$, namely the set of natural numbers without 0. Let $\Sigma = \left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$. Let \mathcal{O}' be the set

$$\big\{(a,b)\mid a,b\in\mathbb{R}\big\}\cup\big\{(a,b)\setminus\big((a,b)\cap\Sigma\big)\mid a,b\in\mathbb{R}\big\}.$$

Then \mathcal{O}' satisfies the conditions of Proposition 2.2. Let \mathcal{O} denote the corresponding topology on \mathbb{R} with basis \mathcal{O}' . Note that $\mathcal{O}_{\mathbb{R}} \subset \mathcal{O}$. Since $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ is Hausdorff we deduce that $(\mathbb{R}, \mathcal{O})$ is Hausdorff.

Let \sim be the equivalence relation on \mathbb{R} generated by $1 \sim \frac{1}{n}$ for all $n \in \mathbb{N}$. Let \mathcal{O}_{\sim} denote the quotient topology on \mathbb{R}/\sim with respect to $(\mathbb{R}, \mathcal{O})$ and \sim . Then:

- (1) $(\mathbb{R}/\sim, \mathcal{O}_{\sim})$ is not Hausdorff.
- (2) R_{\sim} is closed in $(\mathbb{R}^2, \mathcal{O}^2)$, where \mathcal{O}^2 denotes the product topology on \mathbb{R}^2 with respect to $(\mathbb{R}, \mathcal{O})$ and $(\mathbb{R}, \mathcal{O})$.

We shall first prove (1). Let

$$\mathbb{R} \xrightarrow{\pi} \mathbb{R} / \sim$$

be the quotient map. Let U be a neighbourhood of $\pi(1)$ in $(\mathbb{R}/\sim, \mathcal{O}_{\sim})$ and let U' be a neighbourhood of $\pi(0)$ in $(\mathbb{R}, \mathcal{O}_{\sim})$. We claim that $U \cap U' \neq \emptyset$. Let us prove this.

Since π is continuous we have that $\pi^{-1}(U)$ is open in $(\mathbb{R}, \mathcal{O})$. Moreover we have that

$$\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}} = \pi^{-1}(\pi(1)) \subset \pi^{-1}(U).$$

Let $n \in \mathbb{N}$. By Question 3 (a) of Exercise Sheet 2 there is a $U_n \in \mathcal{O}'$ such that $\frac{1}{n}$ in $(\mathbb{R}, \mathcal{O})$ and such that $U_n \subset \pi^{-1}(U)$. We make the following observations.

- (i) Since $U_n \subset \pi^{-1}(U)$ for all $n \in \mathbb{N}$ we have that $\bigcup_{n \in \mathbb{N}} U_n \subset \pi^{-1}(U)$.
- (ii) Since $\frac{1}{n}$ does not belong to $(a,b) \setminus \Sigma$ for any $a,b \in \mathbb{R}$ we have that $U_n \in \mathcal{O}_{\mathbb{R}}$.

By (ii) we have that $U_n = (a_n, b_n)$ for some $a_n, b_n \in \mathbb{R}$. Moreover we have that that

$$\inf \left(\bigcup_{n \in \mathbb{N}} U_n \right) \le \inf \left\{ \frac{1}{n} \right\}_{n \in \mathbb{N}} = 0.$$

Since π is continuous we have that $\pi^{-1}(U')$ is open in $(\mathbb{R}, \mathcal{O})$ and that $0 \in \pi^{-1}(U')$. By Question 3 (a) of Exercise Sheet 2 there is a $W \in \mathcal{O}'$ such that $0 \in W$ and such that $W \subset \pi^{-1}(U')$.

By definition of \mathcal{O}' there are $a, b \in \mathbb{R}$ that W = (a, b) or $W = (a, b) \setminus \Sigma$. Either way, since $0 \in W$ we must have that a < 0 and b > 0. We also have that

$$\inf (\pi^{-1}(U)) \le \inf \left(\bigcup_{n \in \mathbb{N}} U_n\right) \le 0.$$

Any $x \in \mathbb{R}$ such that $x \notin \Sigma$ and 0 < x < b belongs to $W \cap \pi^{-1}(U')$. Thus

$$W \cap \pi^{-1}(U') \neq \emptyset$$
.

Hence $\pi^{-1}(U) \cap \pi^{-1}(U') \neq \emptyset$, Since $\pi^{-1}(U \cap U') = \pi^{-1}(U) \cap \pi^{-1}(U')$ we deduce that $\pi^{-1}(U \cap U') \neq \emptyset$. Thus $U \cap U' \neq \emptyset$ as claimed.

We have now proven that for any neighbourhood U of $\pi(0)$ in $(\mathbb{R}/\sim, \mathcal{O}_{\sim})$ and any neighbourhood U' of $\pi(1)$ in $(\mathbb{R}/\sim, \mathcal{O}_{\sim})$ we have that $U \cap U \neq \emptyset$. Thus $(\mathbb{R}/\sim, \mathcal{O}_{\sim})$ is not Hausdorff.

Let us now prove (2). We claim that Σ is closed in $(\mathbb{R}, \mathcal{O})$. Let us prove this.

- (i) If $x \in \mathbb{R}$ is a limit point of Σ in $(\mathbb{R}, \mathcal{O})$ then x is a limit point of Σ in $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$. The only limit point of Σ in $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ which does not belong to Σ is 0.
- (ii) Let a < 0 and b > 0 be real numbers. Then $(a, b) \setminus \Sigma$ is a neighbourhood of 0 in $(\mathbb{R}, \mathcal{O})$. We have that $((a, b) \setminus \Sigma) \cap \Sigma = \emptyset$. Thus 0 is not a limit point of Σ in $(\mathbb{R}, \mathcal{O})$.

Thus every limit point of Σ in $(\mathbb{R}, \mathcal{O})$ belongs to Σ . By Proposition 5.7 we deduce that Σ is closed in $(\mathbb{R}, \mathcal{O})$ as claimed. By Question 5 of Exercise Sheet 3 we thus have that $\Sigma \times \Sigma$ is closed in $(\mathbb{R}^2, \mathcal{O}^2)$. Moreover note that $R_{\sim} = \Sigma \times \Sigma$. We conclude that R_{\sim} is closed in $(\mathbb{R}^2, \mathcal{O}^2)$.

12.2 Compact topological spaces

Terminology 12.6. Let (X, \mathcal{O}) be a topological space. An open covering of X is a set $\{U_j\}_{j\in J}$ of open subsets of X such that $X = \bigcup_{j\in J} U_j$.

Definition 12.7. A topological space (X, \mathcal{O}) is *compact* if for every open covering $\{U_j\}_{j\in J}$ of X there is a finite subset J' of J such that $X = \bigcup_{j'\in J'} U_{j'}$.

Terminology 12.8. Let (X, \mathcal{O}) be a topological space, and let $\{U_j\}_{j\in J}$ be an open covering of X. Suppose that there is a finite subset J' of J such that $X = \bigcup_{j'\in J'} U_{j'}$. We write that $\{U_{j'}\}_{j'\in J'}$ is a *finite subcovering* of $\{U_j\}_{j\in J}$.

Examples 12.9.

- (1) Let (X, \mathcal{O}) be a topological space. If \mathcal{O} is finite then (X, \mathcal{O}) is compact. For if \mathcal{O} is finite then every set $\{U_j\}_{j\in J}$ of open subsets of X is finite.
 - In particular if X is finite then (X, \mathcal{O}) is compact. For if X is finite there are only finitely many subsets of X, and thus \mathcal{O} is finite.
- (2) $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ is not compact. The open covering $\{(-n, n)\}_{n \in \mathbb{N}}$ of \mathbb{R} has no finite subcovering for instance.

(3) $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$ is not compact. The open covering of \mathbb{R}^2 given by

$$\left\{ \mathbb{R} \times (-n,n) \right\}_{n \in \mathbb{N}}$$

has no finite subcovering for instance.

This open covering consists of horizontal strips of increasing height.

A different open covering of \mathbb{R}^2 which has no finite subcovering is given by

$$\{(-n,n)\times(-n,n)\}_{n\in\mathbb{N}}.$$

(4) An open interval $((a,b), \mathcal{O}_{(a,b)})$, where $\mathcal{O}_{(a,b)}$ denotes the subspace topology with respect to $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$, is not compact for any $a, b \in \mathbb{R}$. The open covering of (a,b) given by

$$\big\{\big(a+\frac{1}{n},b-\frac{1}{n}\big)\big\}_{n\in\mathbb{N}\text{ and }\frac{1}{n}<\frac{b-a}{2}}$$

has no finite subcovering for instance.

(5) Generalising (2) let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces, one of which is not compact. Then $(X \times Y, \mathcal{O}_{X \times Y})$ is not compact.

Suppose for example that (X, \mathcal{O}_X) is not compact. Let $\{U_j\}_{j\in J}$ be an open covering of X which does not admit a finite subcovering. Then $\{U_j \times Y\}_{j\in J}$ is an open covering of $X \times Y$ which does not admit a finite subcovering.

For instance let $(S^1 \times (0,1), \mathcal{O}_{S^1 \times (0,1)})$ be a cylinder with the two circles at its ends cut out.

Since (0,1) is not compact by (4) we have that $(S^1 \times (0,1), \mathcal{O}_{S^1 \times (0,1)})$ is not compact.

The open covering

$$\left\{S^1\times \big(\frac{1}{n},1-\frac{1}{n}\big)\right\}_{n\in\mathbb{N}\text{ and }n\geq 2}$$

of $S^1 \times (0,1)$ is pictured below. It does not admit a finite subcovering.

(6) Let $D^2 \setminus S^1$ be the disc D^2 with its boundary circle removed.

In other words $D^2 \setminus S^1$ is

$$\{(x,y) \in \mathbb{R}^2 \mid ||(x,y)|| < 1\}$$

equipped with the subspace topology $\mathcal{O}_{D^2\setminus S^1}$ with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$. Then $(D^2\setminus S^1, \mathcal{O}_{D^2\setminus S^1})$ is not compact. The open covering

$$\{(x,y) \in \mathbb{R}^2 \mid ||(x,y)|| < 1 - \frac{1}{n}\}_{n \in \mathbb{N}}$$

of $D^2 \setminus S^1$ does not admit a finite subcovering for instance.

Proposition 12.10. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Let

$$X \xrightarrow{f} Y$$

be a surjective continuous map. If (X, \mathcal{O}_X) is compact then (Y, \mathcal{O}_Y) is compact.

Proof. Let $\{U_j\}_{j\in J}$ be an open covering of Y. Since f is continuous we have that $f^{-1}(U_j)\in \mathcal{O}_X$ for all $j\in J$. Moreover

$$\bigcup_{j \in J} f^{-1}(U_j) = f^{-1}(\bigcup_{j \in J} U_j)$$
$$= f^{-1}(Y)$$
$$= X.$$

Thus $\{f^{-1}(U_j)\}_{i\in J}$ is an open covering of X.

Since (X, \mathcal{O}_X) is compact there is a finite subset J' of J such that $\{f^{-1}(U_{j'})\}_{j'\in J'}$ is an open covering of X. We have that

$$\bigcup_{j' \in J'} U_{j'} = \bigcup_{j' \in J'} f(f^{-1}(U_{j'}))$$

$$= f(\bigcup_{j' \in J'} f^{-1}(U_{j'}))$$

$$= f(X)$$

$$= Y$$

Thus $\{U_{j'}\}_{j'\in J'}$ is an open covering of Y.

Corollary 12.11. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Let

$$X \xrightarrow{f} Y$$

be a homeomorphism. If (X, \mathcal{O}_X) is compact then (Y, \mathcal{O}_Y) is compact.

Proof. Follows immediately from Proposition 12.10, since by Proposition 3.15 a homeomorphism is in particular surjective and continuous.

Remark 12.12. Let the open interval (a, b) for $a, b \in \mathbb{R}$ be equipped with its subspace topology $\mathcal{O}_{(a,b)}$ with respect to $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$. By Examples 4.7 (6) we have that $((a, b), \mathcal{O}_{(a,b)})$ is homeomorphic to $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$.

Once we know by Examples 12.9 (2) that $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ is not compact we could appeal to Corollary 12.11 to deduce that $((a,b), \mathcal{O}_{(a,b)})$ is not compact. We observed this directly in Examples 12.9 (4).