Calculus

Edward Jex

February 23, 2020

Calculus is the mathematics of change and has two distinct parts. Differentiation and Integration.

Integration

- Rates of change
- Finding the gradient of a tangent to a curve at a point.

Differentiating from First Principles

The gradient of the tangent of the curve at A can be approximated by the gradient of the chord AB. As the distance h gets smaller, the approximation of the gradient gets better.

f'(a) - The gradient of the tangent to the curve f(x) at x = a.

$$f'(A) = \frac{f(B) - f(A)}{B - A}$$

$$\simeq \frac{f(A+h) - f(A)}{h}$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Differentiating $y = x^2$ from First Principles

$$f'(a) = \lim_{h \to 0} \frac{(a+h)^2 - a^2}{h}$$

$$= \lim_{h \to 0} \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$= \lim_{h \to 0} 2a + h$$

$$= 2a$$

Tangents and Normals

Tangent - Intersects the curve once locally. Normal - Perpendicular to the tangent. $m_1 \times m_2 = -1$ for perpendicular lines.

Stationary Points

Stationary points are when $\frac{dy}{dx} = 0$. Types:

- Local minimum Turning point and Stationary point
- Local maximum Turning point and Stationary point
- Points of inflection Stationary point

To tell which type of stationary point we have, we can look at the second derivative $(\frac{d^2y}{dx^3})$:

• At a minimum - $\frac{d^2y}{dx^2} > 0$

- At a maximum $\frac{d^2y}{dx^2} < 0$
- At a point of inflection $\frac{d^2y}{dx^2} = 0$

If $\frac{d^2y}{dx^2} = 0$, the point could also be a turning point, more investigation is required.

Shapes of Curves

Points of infection $(\frac{d^2y}{dx^2} = 0)$ have two types:

- Stationary (where $\frac{dy}{dx} = 0$)
- Non-stationary

Points can be either concave up, concave down or points of infection.

- Concave down $\frac{d^2}{dx^2}$ < 0, Cord is below the curve.
- Concave up $\frac{d^2}{dx^2} > 0$, Cord is above the curve.

Optimisation

Differentiation can be used to find minimum of maximum points for a problem which can be the optimum for given conditions.

Differentiation Rules

Trig Functions

Note that these rules only work in radians.

f(x)	f'(x)
$\sin f(x)$	$f'(x)\cos f(x)$
$\cos f(x)$	$-f'(x)\sin f(x)$
$\tan f(x)$	$\frac{f'(x)}{\cos^2 f(x)} = f'(x) \sec^2 f(x)$

Exponentials and Logarithms

$$\begin{array}{c|c}
f(x) & f'(x) \\
\hline
a^{f(x)} & f'(x)a^{f(x)} \ln a \\
\log_a f(x) & \frac{f'(x)}{f(x) \ln a}
\end{array}$$

Chain Rule

Rates of change can be connected. We can calculate new rates of change by cancelling terms like fractions, although they are not fractions. $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$. We also see fraction like behaviour when taking reciprocals as $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$. Note

that you should not write this as $\frac{dx}{dy}^{-1}$. The general rule is: $(f \circ g)' = (f' \circ g).g'$

Product Rule

The general rule is: (f.g)' = f'.g + f.g'

Note than sometimes an expression may be a fraction. You can treat the denominator as a negative power, or you could use the quotient rule.

Quotient Rule

The general rule is: $y = \frac{f}{g} \Rightarrow y' = \frac{f'.g-f.g'}{g^2}$. This can be easily derived from the product rule. I recommend always using the product rule because it is much nicer.

Implicit Differentiation

Implicit differentiation is used when there is no clear subject e.g. a circle. It relies on the principle than $\frac{d}{dx}f(y)=\frac{d}{dy}f(y)\times\frac{dy}{dx}=f'(y)\frac{dy}{dx}$.

Example 1

$$x^{2} + y^{2} = 25$$

$$\frac{d}{dx}x^{2} + \frac{d}{dx}y^{2} = \frac{d}{dx}25$$

$$2x + 2y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}$$