IS53012B/A Computer Security

Dr Ida Pu

Room 10, 29 St James Goldsmiths, University of London

2018-19 (since 2007)

Part I

Workshop

Outline

Week 2 Homework

Week 2 Homework

Week 2 Homework

John proposes a cryptosystem that is based on one-time key pad and requires no key exchange. It works as follows: If she wants to send Bob a message m, Alice generates her key k_a , a sequence of random bits (the same length as m), computes $c=m\oplus k_a$ and sends c to Bob, where \oplus represents the bitwise XOR operation. On receipt of c, Bob generates his own random bits k_b of same length, computes $d=c\oplus k_b$ and sends d to Alice. On receipt of d, Alice computes $e=d\oplus k_a$ and sends e to Bob. On receipt of e, Bob computes $e\oplus k_b$ for the last time.

Analyse John's cryptosystem and conclude whether John's cryptosystem works.

Week 2 Homework (continued)

The following format may be adopted to help demonstrate what happens with the plaintext m that from Alice to Bob, where "??" parts are for you to figure out. Each of the 3 columns shows the series of the values (or texts) visible by Alice, Bob or Charlie.

Alice		Charlie		Bob
m				
\downarrow				
??	\rightarrow	??	\rightarrow	??
				\downarrow
??	\leftarrow	??	\leftarrow	??
↓ ??		\downarrow		
??		↓ ??		
\downarrow				
??	\rightarrow	??	\rightarrow	??
		\downarrow		\downarrow
		??		??

How does it work?

Charlie may overhear

Alice		Charlie		Bob
$m \oplus k_a$	\rightarrow	$m \oplus k_a$	\rightarrow	$m \oplus k_a$ \downarrow
$m \oplus k_a \oplus k_b$		$m \oplus k_a \oplus k_b$ \downarrow	\leftarrow	$m \oplus k_a \oplus k_b$
$m \oplus k_a \oplus k_b \oplus k_a$		$(m \oplus k_a) \oplus (m \oplus k_a \oplus k_b) = k_b$		
$m \oplus k_a \oplus k_b \oplus k_a = m \oplus k_b$	\rightarrow	$m \oplus k_b \\ \downarrow \\ k_b \oplus m \oplus k_b = m$	\rightarrow	$ \begin{array}{l} m \oplus k_b \\ \downarrow \\ m \oplus k_b \oplus k_b = m \end{array} $