

ESCUELA TECNOLÓGICA INSTITUTO TÉCNICO CENTRAL (ETITC)

Facultad de sistemas

Taller 4 : Funciones, Límites y Derivadas en los Complejos Matemáticas Especiales

Autores

Sergio Alejandro Enrrique Caballero Leon Johan Alejandro Sogamoso Camacho David Andrés Valero Vanegas

Presentado a:

Carlos Romero

Bogotá, Octubre de 2022.

Aplicando Hopital:

$$f'(z_0) = \lim_{z \to 2} \frac{2-5}{2(2)} \iff \frac{-3}{4} \iff \boxed{\frac{3}{4}}$$

$$\begin{array}{c} (11) \lim_{\mathbf{z} \to 3\mathbf{i}} \frac{\mathbf{z}^4 + 10\,\mathbf{z}^2 + 9}{\mathbf{z}^2 - 4\,\mathbf{i}\,\mathbf{z} - 3} \end{array}$$

$$\lim_{z \to 3i} \frac{z^4 + 10z^2 + 9}{z^2 - 4iz - 3} = \frac{(3i)^4 + 10(3i)^2 + 9}{(3i)^2 - 4i(3i) - 3} = \frac{81i^4 + 90i^2 + 9}{9i^2 - 12i^2 - 3}$$

$$= \frac{81 - 90 + 9}{-9 + 12 - 3} = \frac{90 - 90}{12 - 12} = \frac{0}{0}$$

Usamos la regla de L'Hopital.

$$= \lim_{z \to 3i} \frac{4z^3 + 20z}{2z - 4i} = \frac{4(3i)^3 + 20(3i)}{2(3i) - 4i} = \frac{4(-27i) + 60i}{6i - 4i} = \frac{-108i + 60i}{2i} = \frac{-48i}{2i}$$

$$= \frac{-48i}{2i} \times \frac{-2i}{-2i} = \frac{96i^2}{-4i^2} = \frac{-96}{4} = -24$$

Derivadas

(12) Use la fórmula de la **Definición de Derivada** mostrada a continuación:

$$\mathbf{f}'(\mathbf{z_0}) = \lim_{\Delta \mathbf{z} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{z_0} + \Delta \mathbf{z}) - \mathbf{f}(\mathbf{z_0})}{\Delta \mathbf{z}}$$

para calcular la derivada de la función $\mathbf{f}(\mathbf{z}) = \mathbf{z} Im(\mathbf{z})$ en los puntos $\mathbf{z_0} = \mathbf{0}, \mathbf{z_0} = \mathbf{1} + \mathbf{i}$ y $\mathbf{z_0} = -\mathbf{2} - \mathbf{i}$. ¿Ésta función es Analítica?

Recordemos que:

 \bigcirc Calcular la derivada del punto $z_0 = 0$.

 \implies Construir $f(z_0 + \Delta z)$ y $f(z_0)$.

$$f(z_0 + \Delta z) = (z_0 + \Delta z) Im(z_0 + \Delta z) = (0 + 0i + \Delta x + i \Delta y) Im(0 + 0i + \Delta x + i \Delta y)$$

$$= [(0 + \Delta x) + i(0 + \Delta y)] Im [(0 + \Delta x) + i(0 + \Delta y)] = (\Delta x + i\Delta y) Im(\Delta x + i\Delta y)$$

$$f(z_0 + \Delta z) = \Delta y (\Delta x + i \Delta y)$$

$$f(z_0) = z_0 Im(z_0) = (0 + 0i) Im(0 + 0i) = (0 + 0i) 0 = 0$$

riangleq Sustituir $f(z_0 + \Delta z)$ y $f(z_0)$ en la defición de Derivadas.

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta y (\Delta x + i \Delta y) - 0}{\Delta x + i \Delta y} = \lim_{\Delta z \to 0} \frac{\Delta y (\Delta x + i \Delta y)}{\Delta x + i \Delta y}$$

 \blacksquare Trayectoria \parallel eje x \Rightarrow $\Delta y = 0$

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{0(\Delta x + 0i)}{\Delta x + 0i} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0$$

$$L_1 = 0$$

 \blacksquare Trayectoria \parallel eje $y \Rightarrow \Delta x = 0$

$$f'(z_0) = \lim_{\Delta y \to 0} \frac{\Delta y (0 + i\Delta y)}{0 + i\Delta y} = \lim_{\Delta y \to 0} \frac{i(\Delta y)^{2}}{i\Delta y} = \lim_{\Delta y \to 0} \frac{i\Delta y}{i} = \frac{0i}{i} = 0$$

$$L_2 = 0$$

 \bigcirc Calcular la derivada del punto $z_0 = 1 + i$.

 \implies Construir $f(z_0 + \Delta z)$ y $f(z_0)$.

$$f(z_0 + \Delta z) = (z_0 + \Delta z) Im(z_0 + \Delta z) = (1 + i + \Delta x + i \Delta y) Im(1 + i + \Delta x + i \Delta y)$$

$$= [(1 + \Delta x) + i(1 + \Delta y)] Im [(1 + \Delta x) + i(1 + \Delta y)] = [(1 + \Delta x) + i(1 + \Delta y)] (1 + \Delta y)$$

$$f(z_0 + \Delta z) = (1 + \Delta y) [(1 + \Delta x) + i(1 + \Delta y)]$$

$$f(z_0) = z_0 Im(z_0) = (1+i) Im(1+i) = 1+i$$

$$f(z_0) = 1 + i$$

 \blacksquare Sustituir $f(z_0 + \Delta z)$ y $f(z_0)$ en la defición de Derivadas.

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{(1 + \Delta y) [(1 + \Delta x) + i (1 + \Delta y)] - (1 + i)}{\Delta x + i \Delta y}$$

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{(1+0)[(1+\Delta x) + i(1+0)] - 1 - i}{\Delta x + 0i} = \lim_{\Delta x \to 0} \frac{1+\Delta x + i - 1 - i}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0} 1 = 1$$

$$L_1 = 1$$

 \implies Trayectoria \parallel eje $x \implies \Delta y = 0$

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{(-1+0)[(-2+\Delta x) + i(-1+0)] - 2 - i}{\Delta x + 0i}$$

$$= \lim_{\Delta x \to 0} \frac{(-1) \left[(-2 + \Delta x) - i \right] - 2 - i}{\Delta x + 0 i} = \lim_{\Delta x \to 0} \frac{(-1) \left(-2 + \Delta x \right) + i - 2 - i}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2 - \Delta x - 2}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x} = \lim_{\Delta x \to 0} -1 = -1$$

$$L_1 = -1$$

 \implies Trayectoria || eje y \implies $\Delta x = 0$

$$f'(z_0) = \lim_{\Delta y \to 0} \frac{(-1 + \Delta y) [(-2 + 0) + i (-1 + \Delta y)] - 2 - i}{0 + i \Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{2 - 2\Delta y + i(-1 + \Delta y)^2 - 2 - i}{i\Delta y} = \lim_{\Delta y \to 0} \frac{-2\Delta y + i(-1 + \Delta y)^2 - i}{i\Delta y}$$

$$=\lim_{\Delta y\to 0}\frac{-2\,\Delta\,y\,+\,i\,[1\,-\,2\,\Delta\,y\,+\,(\Delta\,y)^2]\,-\,i}{i\,\Delta\,y}=\lim_{\Delta y\to 0}\frac{-\,2\,\Delta\,y\,+\,i\,-\,2\,i\,\Delta\,y\,+\,i\,(\Delta\,y)^2\,-\,i}{i\,\Delta\,y}$$

$$=\lim_{\Delta y \to 0} \frac{-2\Delta y - 2i\Delta y + i(\Delta y)^2}{i\Delta y} = \lim_{\Delta y \to 0} \frac{-2 - 2i + i\Delta y}{i} = \lim_{\Delta y \to 0} \frac{-2 + i(-2 + \Delta y)}{i}$$

$$= \frac{-2+i(-2+0)}{i} = \frac{-2-2i}{i}$$

$$= \frac{-2 + i(-2 + 0)}{i} = \frac{-2 - 2i}{i}$$

$$L_2 = \frac{-2 - 2i}{i} \times \frac{-i}{-i} = \frac{2i + 2i^2}{-i^2} = -2 + 2i$$

Conclusión:

La función f(z) = z Im(z) no es una función analítica, porque los puntos $z_0 = 1 + i$ y $z_0 = -2 - i$ sus límites $L_1 \neq L_2$ tomando 2 trayectorias diferentes; entonces no existe límite o derivada para los puntos anteriormente mecionados. Pero para el punto $z_0 = 0$ su límites $L_1 = L_2$ tomando 2 trayectorias diferentes; demuestra que exite límete unicamente en ese punto, por lo tanto tambien existe la derivada en dicho punto.

En los ejercicio (13) al (15) derive las siguientes funciones usando las Reglas de la diferencición (simplifique tanto como sea posible).

$$(13) \mathbf{f}(\mathbf{z}) = -5 \mathbf{z}^2 + \frac{2 + \mathbf{i}}{\mathbf{z}^2}$$

$$f(z) = -5z^{2} + (2+i)z^{-2}$$

$$f'(z) = -5(2z) + (2+i)(-2z^{-3}) = -10z - 2(2+i)z^{-3}$$

$$f'(z) = -10z - \frac{4+2i}{z^3}$$

$$(14) \mathbf{f}(\mathbf{z}) = (\mathbf{i} \, \mathbf{z}^2 + 3 \, \mathbf{z})^5$$

$$f'(z) = 5(iz^2 + 3z)^4 \cdot (2iz + 3)$$

(15)
$$\mathbf{f}(\mathbf{z}) = (\mathbf{z}^2 + 2\mathbf{z} - 7\mathbf{i})^2 (\mathbf{z}^4 - 4\mathbf{i}\mathbf{z})^3$$

$$f'(z) = 2(2z+2)(z^2+2z-7i)(z^4-4iz)^3+3(4z^3-4i)(z^2+2z-7i)^2(z^4-4iz)^2$$

$$f'(z) = (4z + 4)(z^{2} + 2z - 7i)(z^{4} - 4iz)^{3} + (12z^{3} - 12i)(z^{2} + 2z - 7i)^{2}(z^{4} - 4iz)^{2}$$

Ecuaciones de Cauchy-Riemann

En los ejercicio (16) al (20), use las Ecuaciones de Cauchy-Riemann para mostrar si las siguientes funciones complejas son o no Analíticas.

$$(16) \mathbf{f}(\mathbf{z}) = \mathbf{z}^2 + 5 \mathbf{i} \mathbf{z} + 3 - \mathbf{i}$$

$$f(z) = (x + iy)^{2} + 5i(x + iy) + 3 - i$$

$$f(z) = x^2 + 2xiy - y^2 + 5ix - 5y + 3 - i$$

$$u = x^2 - y^2 - 5y + 3$$
; $v = 2xy + 5x - 1$

Usamos la ecuaciones de C-R.

$$\frac{\partial u}{\partial x} = 2x$$

$$\frac{\partial v}{\partial y} = 2x$$

$$\frac{\partial u}{\partial y} = -2y - 5$$

$$-\frac{\partial v}{\partial x} = 2y + 5$$

$$\frac{\partial v}{\partial x} = -2y - 5$$

La función es analítica.

$$(17) \mathbf{f}(\mathbf{z}) = \mathbf{e}^{2\mathbf{x}} (\cos \mathbf{y} + \mathbf{i} \sin \mathbf{y})$$

$$f(z) = e^{2x} \cos y + i e^{2x} \sin y$$

$$u = e^{2x} \cos y \quad ; \quad v = e^{2x} \sin y$$

$\frac{\partial u}{\partial x} = e^{2x} \cos y - 2e^{2x} \cos y$ $\frac{\partial v}{\partial y} = e^{2x} \sin y = e^{2x} \cos y$ $\frac{\partial v}{\partial x} \neq \frac{\partial v}{\partial y}$ $\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(z) = 3\mathbf{z}^2 + 5\mathbf{z} - 6\mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\mathbb{Q}u = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = -6y$ $\frac{\partial v}{\partial x} - 6y$																						15
$\frac{\partial u}{\partial x} = e^{2x} \cos y = 2e^{2x} \cos y$ $\frac{\partial v}{\partial y} = e^{2x} \sin y = e^{2x} \cos y$ $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ $\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(\mathbf{z}) = 3\mathbf{z}^2 + 5\mathbf{z} - 6\mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ *Usamos la ecuaciones de C-R. $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\bar{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$		0				1																
$\frac{\partial v}{\partial y} = e^{2x} \sin y = e^{2x} \cos y$ $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ $\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(z) = 3z^2 + 5z - 6\mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\text{Usamos la ecuaciones de C-R.}$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f}(z) = 4\mathbf{z} - 6\mathbf{z} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3 = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$		Us Us	samos	la ec	uacio	nes de																
$\frac{\partial v}{\partial y} = e^{2x} \sin y = e^{2x} \cos y$ $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ $\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(\mathbf{z}) = 3\mathbf{z}^2 + 5\mathbf{z} - 6\mathbf{i}$ $f(z) = 3(x+iy)^2 + 5(x-iy) - 6i \iff 3(x^2+2ixy-y^2) + 5(x-iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ * Usamos la ecuaciones de C-R. $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\mathbf{z} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$							$\frac{\partial u}{\partial x}$	= e	2x c	os y	= 2	e^{2x}	cos	y								
$\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ $\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(\mathbf{z}) = 3\mathbf{z}^2 + 5\mathbf{z} - 6\mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\mathbf{w}. \text{ Usamos la ecuaciones de C-R.}$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\mathbf{La función es analítica.}$ $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\mathbf{\overline{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$							∂x							+								
$\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ $\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(\mathbf{z}) = 3 \mathbf{z}^2 + 5 \mathbf{z} - 6 \mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\text{Usamos la ecuaciones de C-R.}$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\text{La función es analítica.}$ $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$							$-\frac{\partial v}{\partial x}$	+	e^{2x}	$\sin y$	$=\epsilon$	2x	cos	y								
$\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(\mathbf{z}) = 3\mathbf{z}^2 + 5\mathbf{z} - 6\mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\text{Usamos la ecuaciones de C-R.}$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ $\text{La función es analítica.}$ $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\mathbf{\bar{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$							∂y															
$\therefore \text{ la función no es analítica.}$ $(18) \mathbf{f}(\mathbf{z}) = 3\mathbf{z}^2 + 5\mathbf{z} - 6\mathbf{i}$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\text{Usamos la ecuaciones de C-R.}$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ $\text{La función es analítica.}$ $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\mathbf{\bar{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$									$\frac{\partial u}{\partial x}$	$\frac{u}{-} \neq$	$\frac{\partial v}{\partial x}$											
$f(z) = 3z^2 + 5z - 6i$ $f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $0 = 0 = 0 = 0$ $0 = 0 = 0$ $0 = 0$. 16	funció	n no	og en	alítica			0:	r	oy											
$f(z) = 3(x + iy)^2 + 5(x - iy) - 6i \iff 3(x^2 + 2ixy - y^2) + 5(x - iy) - 6i$ $f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $0 = 0 = 0 = 0 = 0$ $0 = 0 = 0 = 0 = 0 = 0$ $0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$		1a 1	luncio	11 110	es an	antica	.															
$f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ Usamos la ecuaciones de C-R. $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f(z)} = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$		(18)	$\mathbf{f}(\mathbf{z})$	=3z	+	5 z –	6 i															
$f(z) = 3x^2 + 6ixy - 3y^2 + 5x + 5iy - 6i$ $u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ Usamos la ecuaciones de C-R. $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f(z)} = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$																						
$u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$		f(z)	=3	x + i	$y)^2$ -	+ 5(x	-iy) –	6i	\iff	· 3 (a	$^{2} +$	- 2 <i>i</i>	xy	$-y^2$	²) +	5 (x –	- <i>i</i> į	y) –	- 6 i	
$u = 3x^2 + 5x - 3y^2 ; v = 6xy + 5y - 6$ $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$																						
Usamos la ecuaciones de C-R. $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \ \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$					f	(z) =	$3x^2$	+ 6	i x y	- 3	$3y^2$ -	- 5:	x +	5iy	, – 1	6i						
Usamos la ecuaciones de C-R. $\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial v}{\partial y} = -6y$ $\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \ \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$																						
$\frac{\partial u}{\partial x} = 6x + 5$ $\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x + iy) = 4(x + iy) - 6(x - iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x + iy) = (3 - 2x) + 10iy$					-u	=3a	$x^2 + 5$	x -	$3y^2$;	v =	= 6	xy	+ 5	y -	6						
$\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$		७ Us	samos	la ec	uacio	$\operatorname{nes} \operatorname{de}$	e C-R.															
$\frac{\partial v}{\partial y} = 6x + 5$ $\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$									∂u	c	22	_										
$\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$									∂x	= 0	x +	9										
$\frac{\partial u}{\partial y} = -6y$ $-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$									∂v	- 6	œ l	5										
$-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$									∂y	_ 0	x +	9										
$-\frac{\partial v}{\partial x} = 6y$ $\frac{\partial v}{\partial x} = -6y$ La función es analítica. $(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$									∂u	ı	-62											
La función es analítica. $\frac{\partial v}{\partial x} = -6y$ $(19) \mathbf{f(z)} = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$									∂y	/	0 9											
La función es analítica. $\frac{\partial v}{\partial x} = -6y$ $(19) \mathbf{f(z)} = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$									-6	$\frac{\partial v}{\partial v} =$	= 6 11											
La función es analítica. $ (19) \ \mathbf{f(z)} = 4 \ \mathbf{z} - 6 \ \overline{\mathbf{z}} + 3 $ $ f(x+iy) = 4 (x+iy) - 6 (x-iy) + 3 = 4 x + 4 i y - 6 x + 6 i y + 3, = -2 x + 10 i y + 3 $ $ f(x+iy) = (3-2x) + 10 i y $									ϵ	∂x	0 9											
La función es analítica. $ (19) \ \mathbf{f(z)} = 4 \ \mathbf{z} - 6 \ \overline{\mathbf{z}} + 3 $ $ f(x+iy) = 4 (x+iy) - 6 (x-iy) + 3 = 4 x + 4 i y - 6 x + 6 i y + 3, = -2 x + 10 i y + 3 $ $ f(x+iy) = (3-2x) + 10 i y $									$\frac{\partial v}{\partial x}$,	– 6 <i>u</i>											
$(19) \mathbf{f}(\mathbf{z}) = 4\mathbf{z} - 6\overline{\mathbf{z}} + 3$ $f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3$ $f(x+iy) = (3-2x) + 10iy$		T o for	noi én	0.7 0.10	1/4:				$-\partial x$;	9											
f(x+iy) = 4(x+iy) - 6(x-iy) + 3 = 4x + 4iy - 6x + 6iy + 3, = -2x + 10iy + 3 $f(x+iy) = (3-2x) + 10iy$		La Iu	HCIOH	es an	iamu	:a																
f(x + iy) = (3 - 2x) + 10iy		(19)	$\mathbf{f}(\mathbf{z})$	= 4z	- 6	$\overline{z} + 3$	3															
f(x + iy) = (3 - 2x) + 10iy																						
	-f(x)	c + iy) - 4	(x +	-iy)	-6(a	c - i y	r) +	3 =	4 x	+ 4	iy -	- 6	r +	6iy	+ 3	,=	-2	x -	+ 10)iy -	+ 3
u=3-2x ; $v=10y$							f(x -	+ i į	/) =	(3	-2a	;) +	10	iy								
u = 3 - 2x ; v = 10y																						
							u	= 3	- 2	2x	; v	=	10 y									

16	
10	
Usamos la ecuaciones de C-l	P
Samos la ecuaciones de C-1	
	$\frac{\partial u}{\partial x} = 3 - 2x = -2$
	$\frac{\partial x}{\partial x} = 3 - 2x = -2$
	$\frac{\partial v}{\partial y} = 10 y = 10$
	O y
	∂u , ∂v
	$\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$
: la función no es analítica.	
$(20) \mathbf{f}(\mathbf{z}) = \mathbf{e}^{-\mathbf{x}} (\cos \mathbf{y} - \mathbf{i} \sin \mathbf{z})$	n y)
$u = \epsilon$	$e^{-x}\cos y$; $v = -e^{-x}i\sin y$
Usamos la ecuaciones de C-l	
Obamos la ecuaciones de O-1	
	$\frac{\partial u}{\partial x} = -e^{-x}\cos y$
	∂x
	an
	$\frac{\partial v}{\partial y} = -e^{-x} \cos y$
	$\frac{\partial u}{\partial y} = -e^{-x} \sin y$
	$\frac{\partial y}{\partial y} = -\epsilon$ sin y
	a a
	$-\frac{\partial v}{\partial x} = e^{-x} \sin y$
	$\frac{\partial v}{\partial x} = -e^{-x} \sin y$
	$\frac{\partial x}{\partial x} = -\epsilon$ $\sin y$
La función es analítica.	