One Period=7 days (costs scaled by 1,000,000 during optimization)
Solved using solve_and_process_lagrangian_threshold_0.075_use_smart_stepsize_True_L1_optGap_0.025_L2_optGap_0.075_L2_max_time_500 Infected - No intervention Infected Cumulative Deaths - No intervention Cumulative Deaths Recovered - No intervention Recovered Susceptible - No intervention 250000 Susceptible \$800,000 Cumulative Costs of Interventions Cumulative Cost Total Cumulative Cost Total - No intervention 200000 \$600,000 <u>≤</u> 150000 - \$400,000 100000 - \$200,000 20 28 98 100 Period 98 99 -27 -28 -98 -99 -97 2. Social Gatherings (in a house) A: $\$[0, 0, 0, 0] \cdot 10^2$ B: $\$[0 , 0 , 0 , 0] \cdot 10^2$ C: $\$[8 , 10 , 12 , 14] \cdot 10^2$ 3. Non-Food Service (bank, retail, etc) 2 3 3 2 2 1 \$7.7e+ \$3.2e+ \$4.4e+ 0.536 \$3.7e+ \$1.4e+05 \$3.7e+ \$0.0 \$1.8e+ \$1.4e+05 0.509 1.000 \$4.9e+09 \$0.0 \$4.9e+09 1.000 \$4e+10 \$3.7e+09 \$3.7e+10 0.509 \$4.1e+08 \$0.0 \$4.1e+08 1.000

Movement

A: \$[5000 ,10000] 10² **B:** \$[10000,20000] 10² C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

A: $\$[0, 0] \cdot 10^2$ **B**: $\$[0, 0] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

Education (University level)

P: [.99 ,.99 ,.97 ,.93]

A: \$[2500 ,5000 ,10000] ·10² B: $\$[5000, 10000, 20000] \cdot 10^2$ C: $\$[8 , 10 , 14] \cdot 10^2$ P: [.99 ,.95 ,.93]

A: $\$[0 , 0 , 0] \cdot 10^2$ B: $\$[0 , 0 , 0] \cdot 10^2$

C: \$[8 ,10 ,14] 10² P: [.99 ,.95 ,.93]

A: $\$[2500,5000,10000]\cdot 10^2$

B: \$[5000 ,10000,20000] 10² C: \$[8] , 10 , 14 $]\cdot 10^2$ P: [.99 ,.95 ,.93]

4. Restaurants

5. Masking

6. Mega Events

7. Border Control A: $\$[5000, 10000] \cdot 10^2$ **B:** \$[10000,20000] 10²

A: $\$[0] 10^2$ **B:** \$[0] 1.10^2

C: $\$[10] 10^2$ P: [.93]

C: \$[10 ,14]·10² P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL

Probability Factor

Cost Per Period: POLICY Cost Per Period: DISEASE

A: \$[5000 ,10000] 10²

B: \$[10000,20000] 10² C: \$[10 ,14] 10² P: [.95 ,.93]