Relazione Assignments Web Semantico

Studio Libreria RDFLib e Definizione di una Ontologia RDF/OWL per Wireless Sensor Network e Multi-Agent System

•••

A.A. 2020/2021 filippo.paganelli3@studio.unibo.it 0000926989

Assignment 1: Studio Libreria Python RDFLib

- Features Libreria
- Struttura Libreria
- Criticità Libreria

Assignment 2: Definizione RDF

- Analisi Dominio WSN-MAS
- Analisi Ontologie Riusabili
- Binding Namespaces
- Enumerazione Termini
- Definizione Tassonomia
- Definizione Classi e Proprietà

Assignment 3: Definizione OWL

- Estensione RDF
- Definizione Istanze
- Serializzazione e Validazione
- Query SPARQL

RDFLib

- libreria Python open-source per la manipolazione di RDF
- mantenuta su Github (https://github.com/RDFLib/rdflib/) dal 2005
- disponibile tramite Python Package Index (pip install rdflib)
- catalogata dal W3C sotto le categorie Triple Store¹ e Programming Environment² (https://www.w3.org/2001/sw/wiki/RDFLib)

- 1 Tools che possono essere usati come RDF Database. Altri esempi di tools appartenenti a questa categoria sono RDFox, Oracle Spatial, Apache Jena e GraphDB.
- 2 Tools che forniscono un ambiente funzionante per lo sviluppo di applicazioni riguardanti il Web Semantico nella forma di librerie o moduli. Altri esempi di tools appartenenti a questa categoria sono Apache Jena, Mobi, Sesame e Redland RDF.

La grande community che supporta il progetto mantiene anche altri progetti correlati al Web Semantico come librerie e plugin:

- sparqlwrapper Wrapper
 SPARQL in Python per eseguire query remote.
- pyLODE Tool Python per lo sviluppo di ontologie OWL basato su LODE.
- **rdflib-jsonld** Plugin per RDFLib, implementazione di JSON-LD.

Principali Features

Le principali funzionalità fornite dalla libreria RDFLib sono:

- parsers e serializers per RDF/XML, N3, NTriples, N-Quads, Turtle, TriX, Trig e JSON-LD
- una interfaccia Graph che supporta diverse implementazioni di Store (single graph, conjunctive graph o dataset graph)
- implementazioni di store per memorizzazioni persistenti o in-memory basate su BerkeleyDB
- supporto a query e update SPARQL 1.1

Struttura Libreria

- **RDF Terms** Oggetti che possono comparire all'interno di una tripla RDF. Ognuna delle seguenti principali tipologie di RDF Terms è sottoclasse della classe Identifier:
 - Blank Node Nodo in un RDF Graph che rappresenta una risorsa anonima, per il quale non è presente un URI o un literal.
 Può essere usato solamente come subject o object in una tripla RDF.
 - o **URI Reference** Stringa Unicode rappresentante un URI valido.
 - Literal Rappresenta il valore degli attributi RDF e può avere un data-type oun tag language.
- **RDF Nodes** I nodi del grafo sono un sottoinsieme dei termini che lo store memorizza e consistono nei subject e object delle triple del grafo.
- RDF Namespaces Con namespace si intende una collezione di nomi, identificati da URI e utilizzati nei documenti
- come nomi per gli attributi e tipi per gli elementi. Tra i namespace già disponibili all'interno della libreria è possibile trovare RDFS, OWL, XSD, FOAF e DC ma è possibile anche definire un proprio namespace tramite l'apposito NamespaceManager ed effettuare il binding al documento RDF.

- **RDF Graph** Grafo orientato a etichette ed identificato da un Identifier o BNode, dove gli archi rappresentano le relazioni tra le risorse, queste ultime rappresentate dai nodi. La libreria RDFLib permette la definizione delle seguenti tipologie di grafo:
 - Graph Insieme di triple RDF, modellate con tuple a 3 terms nella forma <subject, predicate, object>.
 - Quoted Graph Ad ogni grafo è associato un identificatore fornito dal parser N3 e permette la definizione di formule N3.
 - **Conjunctive Graph** Aggregazione (unnamed) di tutti i named graphs contenuti in uno store.
 - Dataset Estensione del grafo di tipo Conjunctive
 Graph che non può essere identificato da un BNode.
 Fornisce metodi differenti per manipolare il grafo.

• **RDF Store** - Chiamati anche Triple Store o Quad Store e sono ideati per memorizzare triple RDF e altre informazioni sul contesto e sul grafo. Dovrebbe fornire sia interfacce standard per la gestione delle connessioni a DBMS che interfacce standard per la manipolazione, gestione, creazione o rimozione (operazioni CRUD) di triple RDF.

- Uno store può essere:
 - o Formula-aware Store in grado di distinguere statements asserted da statements quoted. (Notation3)
 - Context-aware Store in grado di memorizzare statements insieme al contesto, permettendo la partizione del modello RDF che rappresenta in named sub-graphs.

Criticità Libreria

- **Problemi di upgrade della libreria** Rilascio della nuova versione 6.0.0 programmata entro fine 2021 con supporto a versioni Python >= 3.6 .
- Problemi di compatibilità tra le dipendenze della libreria Non per tutte le dipendenze della libreria è definita una specifica versione: questo comporta una risoluzione automatica delle dipendenze da parte di PyPI che potrebbe portare a conflitti/breaking changes.
- **Problemi di performance** Scarse performance di alcuni algoritmi riguardanti principalmente l'esecuzione di query SPARQL e parsing.
- Conflitti con alcune specifiche dello standard W3C.
- >200 Issue e >25 Pull Request aperte¹

Progettazione Ontologia

Il processo di sviluppo adottato per la progettazione della ontologia, segue a grandi linee quello indicato da Noy e McGuinness in "Ontology Development 101: A Guide to Create Your First Ontology"¹:

- Analisi del dominio
- Analisi ontologie riusabili
- Enumerazione termini
- Definizione tassonomia
- Definizione schema (Classi e Proprietà)
- Definizione istanze
- Serializzazione e validazione

Analisi del dominio - Enumerazione dei termini

Il dominio scelto è quello delle Wireless Sensor Networks e Multi-Agent System, applicate allo scenario di rilevazione degli incendi.

Il primo passo utile per la definizione di una ontologia è la scrittura di una lista di tutti i termini rilevanti del dominio che ci si aspetta di modellare con la ontologia.

- Wireless Sensor Network
 - Device
 - Sensor
 - Router
 - o Node
 - o Environment
- Multi-Agent System
 - Agent
 - o Platform
 - o JID
 - Contact

Analisi Ontologie Riusabili

Raramente è necessario partire da zero nella definizione di una nuova ontologia: quasi sempre è disponibile una ontologia di terze parti che fornisce un buon punto di partenza. Le ontologie esistenti individuate come base di sviluppo sono:

- **SSN (Semantic Sensor Network Ontology)** Ontologia che descrive sensori, attuatori, osservazioni e concetti relativi.
- SOSA (Sensor, Observation, Sample, and Actuator Ontology) Ontologia basata sull'ontologia SSN sviluppata dal W3C Semantic Sensor Networks Incubator Group (SSN-XG) con considerazioni dal W3C/OGC Spatial Data on the Web Working Group.
- **QUDT** Ontologia che descrive specifiche riguardanti unita` di misura, tipo di quantita`, dimensioni e tipi di dato.
- **GEO** Ontologia per rappresentare latitudine, longitudine e altre informazioni relative a oggetti spatially-located.

Definizione Tassonomie e Proprietà

Con tassonomia si intende la disciplina che si occupa della classificazione gerarchica di elementi. Dopo aver identificato i termini rilevanti `e necessario organizzarli in una ben precisa tassonomia gerarchica che permetta il rispetto della semantica dei costrutti primitivi forniti dalle tecnologie adottate.

Definizione Schema RDF

Lo schema RDF permette la definizione del vocabolario utilizzato nel data model RDF. In particolare consente di descrivere quali proprietà sono applicate a quali tipologie di oggetti, quali valori esse possono assumere e le relazioni che intercorrono tra gli oggetti.

In RDFLib è possibile definire sia lo schema RDFS che le istanze RDF tramite l'inserimento di triple in un grafo aventi la forma standard (subject, predicate, object).

- Definizione della classe

 DHT11: sensore presente su
 ogni nodo della rete che
 permette di rilevare
 temperatura e umidità
 dell'ambiente in cui si trova.
- Estende la classe Sensor definita nell'ontologia SSN.

- Definizione proprietà
 TempAccuracy della classe
 DHT11: rappresenta
 l'accuratezza del sensore nel misurare la temperatura.
- Estende la proprietà
 Accuracy definita
 nell'ontologia
 SSN_SYSTEM

La proprietà *hostsAgentContainer*, con cui `e stata estesa la classe Platform dell'ontologia SOSA, rappresenta il punto di connessione tra i due domini Wireless Sensor Network e Multi-Agent System. Essa infatti definisce la relazione tra la piattaforma hardware della rete di sensori, cioè il nodo, e l'insieme/container di agenti, modellato tramite la classe AgentContainer, che utilizza tale piattaforma come ambiente di esecuzione.

Definizione RDF

Una ontologia, per essere definita tale deve rispettare alcune proprietà, tra cui:

- **Linguaggio formale** Il formalismo è una condizione necessaria per permettere alle macchine l'elaborazione delle informazioni.
- **Assunzioni su un dominio** Definisce/modella uno specifico dominio concettualizzando aspetti reali.
- **Condivisa** La comunità ritiene adeguata la modellazione del dominio fatta, cioè diversi utilizzatori hanno la stessa visione del dominio modellato.

- Esempio di definizione di una istanza della classe **EdgeDevice** utilizzando RDFLib
- Tramite l'ontologia **GEO** è definita la sua posizione nello spazio.
- **Elemento container Bag** (fornito da RDF) per indicare una collezione di sensori e attuatori presenti fisicamente sul nodo.
- Elemento container Bag per indicare una collezione di nodi Router della rete in grado di instradare i dati verso questo nodo.

Estensione OWL

Con **OWL** (Ontology Web Language) si intende un semantic markup language standard W3C per la rappresentazione della conoscenza tramite la definizione e la condivisione di ontologie sul web, fornendo una maggiore espressività rispetto a RDF/RDFS.

RDF/RDFS soffrono la mancanza di alcune features importanti (presenti in OWL), ad esempio:

- Definizione di range delle proprietà che si applicano solamente ad alcune classi.
- Disgiunzione tra le classi. In RDFS è possibile definire solo relazioni del tipo subClassOf.
- Definizione di nuove classi tramite la combinazione di altre classi utilizzando operatori come unione, intersezione e complemento.
- Definizione di vincoli di cardinalità delle proprietà.

OWL: Namespace = Namespace('http://www.w3.org/2002/07/owl#') wsd ffd owl.bind('owl', OWL)

Import e binding namespace OWL in RDFLib

Tramite il linguaggio OWL è stato possibile definire associazioni/vincoli tra le classi e le proprietà che compongono il sistema. Alcuni dei costrutti utilizzati sono:

- **Restriction** Utilizzato per modellare i vincoli del dominio.
- **onProperty** Utilizzato per associare i vincoli alle specifiche proprietà.
- inverseOf Utilizzato per esplicitare proprietà che sono una l'inverso dell'altra.
- **disjointWith** Utilizzato per esplicitare classi disgiunte fra loro.

```
base_rdf_ontology_uri:str = 'https://gitlab.com/paganelli.f/ws-project-paganelli-1920/-/raw/develop/wsd-ffd-pretty-xml.rdf'
```

```
RDF_ONTOLOGY: Namespace = Namespace(base_rdf_ontology_uri) wsd_ffd_owl.bind('wsn-ffd-rdf', MY_RDF_ONTOLOGY)
```

Import ontologia RDF definita nel secondo assignment per estensione OWL del terzo assignment con RDFLib. Dopo aver effettuato il binding dell'ontologia al nome *wsn-ffd-rdf* è possibile utilizzare classi e proprietà in essa definite con il prefisso **wsn-ffd-rdf**: (i.e. wsn-ffd-rdf:SerialNum).

La WSN d'esempio modellata in OWL tramite la definizione delle istanze è composta da:

- un nodo coordinator
- tre nodi router
- sei nodi edge

Le proprietà **canRoute** e **isRoutedBy** permettono di definire la topologia WSN.

Per ogni nodo edge della rete è definito un relativo **AgentContainer** che rappresenta l'ambiente di esecuzione degli agenti che compongono il MAS.

Serializzazione Grafo

Una delle importanti features della libreria RDFLib è la serializzazione del grafo RDF definito in diversi formati e diversi encoding. Per il progetto il grafo è stato serializzato nei formati

- xml
- ullet pretty-xml
- turtle

```
wsd ffd rdf.serialize(
destination=os.getcwd()+'/wsd-ffd-xml.rdf',
format='xml')
wsd ffd rdf.serialize(
destination=os.getcwd()+'/wsd-ffd-pretty-xml.rdf',
format='pretty=xml')
wsd ffd rdf.serialize(
destination=os.getcwd()+'/wsd-ffd-turtle.ttl',
format='turtle')
```

Validazione

- Ogni documento serializzato tramite RDFLib è stato validato utilizzando il tool ufficiale W3C (https://www.w3.org/RDF/Validator/).
- La validazione ha avuto esito positivo per tutti e tre i formati serializzati (xml, pretty-xml e turtle), sia nel secondo assignment che nel terzo assignment indicando quindi una buona qualità di serializzazione dei documenti da parte della libreria RDFLib.

Validation Service

Skip Navigation Home
Documentation
Feedback

Check and Visualize your RDF documents

olde servlet

Enter a URI or paste an RDF/XML document into the text field above. A 3-tuple (triple) representation of the corresponding data model as well as an optional graphical visualization of the data model will be displayed.

```
-Check by Direct Input
 <?xml version="1.0" encoding="UTF-8"?>
    xmlns:geo="http://www.w3.org/2003/01/geo/wgs84 pos#"
    xmlns:ns1="http://wsn-ffd.org/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:schema="http://schema.org/"
    xmlns:sosa="http://www.w3.org/ns/sosa/"
    xmlns:ssn-system="http://www.w3.org/ns/ssn/systems/"
   <rdf:Description rdf:about="http://wsn-ffd.org/OxygenCondition">
     <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-
     <rdfs:comment>Sensor/Actuator operating oxygen condition</rdfs:comment>
     <rdfs:domain rdf:resource="http://wsn-ffd.org/MQ2"/>
     <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-
 schema#Literal"/>
 Parse RDF Restore the original example Clear the textarea
Display Result Options:
Triples and/or Graph: Triples Only
Graph format: PNG - embedded
                                                                ~
Paste an RDF/XML document into the following text field to have it checked. More options are available in
the Extended interface.
```

SPARQL

- Recommendation W3C RDF Query Language
- La versione latest è la 1.1, rilasciata il 21 Marzo 2013
- Supportato dalla maggior parte dei tool per il Web Semantico, incluso RDFLib
- Nel Semantic Web Stack si posiziona al livello di RDF e non a quello più basso del formato/sintassi specifico (i.e. XML Query Language). Questo permette di utilizzare la stessa sintassi per fare query sia su documenti xml che pretty-xml che turtle perchè SPARQL conosce il data model RDF.

```
prefix sosa: <a href="http://www.w3.org/ns/sosa/">http://www.w3.org/ns/sosa/</a>>
prefix ssn: <a href="http://www.w3.org/ns/ssn/">http://www.w3.org/ns/ssn/</a>
prefix ssn-system: <a href="http://www.w3.org/ns/ssn/systems/">http://www.w3.org/ns/ssn/systems/</a>
prefix geo: <a href="http://www.w3.org/2003/01/geo/wgs84">http://www.w3.org/2003/01/geo/wgs84</a> pos#>
prefix gudt-1-1: <a href="http://gudt.org/1.1/schema/gudt#">http://gudt.org/1.1/schema/gudt#></a>
prefix gudt-unit-1-1: <a href="http://gudt.org/1.1/vocab/unit#">http://gudt.org/1.1/vocab/unit#></a>
prefix schema: <a href="http://schema.org/">http://schema.org/>
prefix wsn-ffd-rdf: <a href="https://gitlab.com/paganelli.f/ws-project-paganelli-1920/-/raw/develop/wsd-ffd-pretty-xml.rdf">https://gitlab.com/paganelli.f/ws-project-paganelli-1920/-/raw/develop/wsd-ffd-pretty-xml.rdf</a>
select ?n ?serial num ?lat ?long
where {
   { ?n rdf:type <http://www.w3.org/2002/07/owl#EdgeDevice>}
       union { ?n rdf:type <http://wsn-ffd.org/EdgeDevice>}
       union { ?n rdf:type <http://www.w3.org/2002/07/owl#RouterNode>}
       union { ?n rdf:type <http://www.w3.org/2002/07/owl#CoordinatorNode>} .
   ?n geo:lat ?lat .
   ?n geo:long ?long.
    ?n wsn-ffd-rdf:SerialNum ?serial num .
order by asc(?serial_num)
```

Esempio di query SPARQL: restituisce la posizione geografica (latitudine e longitudine) di tutti i nodi della Wireless Sensor Network, ordinati in modo crescente per numero seriale

Esempio di query SPARQL: restituisce la routing table della Wireless Sensor Network, ovvero tutti i percorsi di rete (di lunghezza 1) escluso il nodo con numero seriale 'IT234GJ55500001' (nodo coordinator)

Risorse/Link:

- Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer,
 The MIT Press
- Toby Segaran and Colin Evans, Jamie Taylor, Programming the Semantic Web,
 O'Reilly
- https://gitlab.com/paganelli.f/ws-project-paganelli-2021
- https://gitlab.com/paganelli.f/sd-project-paganelli-1920
- https://gitlab.com/paganelli.f/sctm-project-paganelli-2021
- https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
- https://neo4j.com/blog/other-graph-database-technologies/?ref=blog
- https://github.com/RDFLib/rdflib
- https://www.w3.org/2001/sw/wiki/RDFLib