

Motivation

Probability theory reminders

Appliquons cela pour calculer

$$\frac{\mathbb{P}(\mathbf{T}|\mathbf{B})\mathbb{P}(\mathbf{B})}{\mathbb{P}(\mathbf{T})}$$
 Peut-on calculer ces quantités ?

 $\mathbb{P}(\mathbf{B}|\mathbf{T}) = -$

Il y a 9 fois plus d'**A** que de **B** donc $\,\mathbb{P}(\mathbf{A}) = 9\,\mathbb{P}(\mathbf{B})$

90% des bibliothécaires sont timides donc: $\mathbb{P}(\mathbf{T}|\mathbf{B}) = 0.9$

Or l'espace est restreint aux A et B (il n'y a pas d'autres possibilités) donc

$$\mathbb{P}(\mathbf{A}) + \mathbb{P}(\mathbf{B}) = 1$$

$\mathbb{P}(\mathbf{B}) = 0.1$ Ainsi: $\mathbb{P}(\mathbf{A}) = 0.9$

$$\mathbb{P}(\mathbf{T}) = ?$$

Suite au tableau

Appliquons cela pour calculer $\mathbb{P}(\mathbf{B}|\mathbf{T})$

$$\mathbb{P}(\mathbf{B}|\mathbf{T}) = rac{\mathbb{P}(\mathbf{T}|\mathbf{B})\mathbb{P}(\mathbf{B})}{\mathbb{P}(\mathbf{T})}$$
 Peut-on calculer ces quantités ?

90% des bibliothécaires sont timides donc: $\mathbb{P}(\mathbf{T}|\mathbf{B}) = 0.9$

Il y a 9 fois plus d'**A** que de **B** donc $\mathbb{P}(\mathbf{A}) = 9\,\mathbb{P}(\mathbf{B})$

Or l'espace est restreint aux A et B (il n'y a pas d'autres possibilités) donc

$$\mathbb{P}(\mathbf{A}) + \mathbb{P}(\mathbf{B}) = 1$$

Ainsi:
$$\mathbb{P}(\mathbf{A}) = 0.9$$
 $\mathbb{P}(\mathbf{B}) = 0.1$

$$\mathbb{P}(\mathbf{T}) = ?$$

Suite au tableau

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

Loi des probabilités totales

Soit $(\Omega, \mathcal{P}, \mathcal{A})$ un espace probabilisé. Soit $(A_i)_{i \in \mathbb{N}}$ une partition de Ω , c'est-à-dire que $A_i \cap A_j = \emptyset$ pour $i \neq j$ et $\bigcup_{i \in \mathbb{N}} A_i = \Omega$. Soit $B \in \mathcal{A}$, alors :

$$\mathbb{P}(B) = \sum_{i=1}^{+\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

