Theorem 3.1. The operator A defined above is the generator of a semigroup $(T(t))_{t\geq 0}$ on E.

For every $f \in E$, $t \ge 0$ we have for a.e. $s \in [-1,0]$

(3.3)
$$(T(t)f)(s) = \begin{cases} f(t+s) & \text{if } t+s \leq 0 \\ \phi(T(t+s)f) & \text{if } t+s > 0 \end{cases}$$

Moreover, if $f \in D(A)$ then the translation property (T) (see B-IV, Thm.3.1) is satisfied.

<u>Proof.</u> Consider $E_1:=D(A)$ endowed with the graph norm and $A_1:=A$ restricted to $D(A_1):=D(A^2)$. By (A-I,3.5) A_1 generates the semigroup $(T(t)_{|D(A)})_{t\geq 0}$. On E_1 point evaluation is a continuous mapping and therefore the translation property can be shown as in the proof of B-IV, Thm. 3.1. Hence we obtain

(3.4)
$$(T(t)f)(s) = \begin{cases} f(t+s) & \text{if } t+s \le 0 \\ \phi(T(t+s)f) & \text{if } t+s > 0 \end{cases} = \begin{cases} f(t+s) & \text{if } t+s \le 0 \\ (T(t+s)f)(0) & \text{if } t+s > 0; \end{cases}$$

i.e. (3.3) is valid for $f \in D(A)$. It remains to show (3.3) for all $f \in E$. Fix $t \in \mathbb{R}_+$ and $s \in [-t,0]$. For t+s>0 the equality follows immediately by the continuity of Φ from (3.4). For the case $t+s \le 0$ we consider $g \in L^{\infty}[-1,0]$ with supp $g \subseteq [-1,-t]$. Comparing (3.1) and (3.4) we see that $\langle (T(t)-T_O(t))f,g \rangle = 0$ for all $f \in D(A)$, and hence for all $f \in E$.

Consequently $(T(t)-T_O(t))f = 0$ a.e. on [-1,-t] which shows (T(t)f)(s) = f(t+s) for a.e. $s \in [-1,-t]$.

П

The following corollary corresponds to B-IV, Cor. 3.2 and assures the well-posedness of (RE):

Corollary 3.2. For every f (E the function u defined by

(3.5)
$$u(t) := \begin{cases} f(t) & \text{if } -1 \le t \le 0 \\ \phi(T(t)f) & \text{if } t > 0 \end{cases}$$

is the unique solution of (RE), in particular (RE) is well-posed. If $f \in D(A)$ then u(t) = T(t)f(0) for t > 0.

<u>Proof.</u> As in the proof of B-IV,Cor.3.2 we have $u_t = T(t)f$ for $t \ge 0$ since $u_t(s) = u(t+s) = (T(t)f)(s)$ by the definition of u and by formula (3.3). Thus $u(t) = \phi(T(t)f) = \phi(u_t)$ if $t \ge 0$. Also by the definition of u we have $u_0 = f$.

It remains to show uniqueness. Let $\ w\$ be a solution of (RE) with initial function $\ w_{_{\mbox{\scriptsize O}}}=0$. Then