Math 102. Zab 1- Complex Numbers

Zivear Combinations

Definition: A linear combination of vectors $\vec{u}_1, \vec{u}_2, \vec{u}_3$ and \vec{u}_4 in \mathbb{R}^3 is any vector of the form $1 \cdot \vec{u}_1 + 1_2 \cdot \vec{u}_2 + 1_3 \cdot \vec{u}_3 + 1_4 \cdot \vec{u}_4$ Scalar multiplication where 1, 12, 13, 14 & R (i.e., 1, 12, 13, 14 are numbers)

1 The span of the vectors vi, viz, viz, viz, viz, viz the set Span $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} = \{ A \| \text{linear combinations of } \vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ $:= \{ \lambda_1 \cdot \vec{u}_1 + \lambda_2 \cdot \vec{u}_2 + \lambda_3 \cdot \vec{u}_3 + \lambda_4 \cdot \vec{u}_4 \mid \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} \}$

Sixample 1: Let \vec{x} , \vec{u}_1 , \vec{u}_2 , \vec{u}_3 , and \vec{u}_4 be vectors in \mathbb{R}^3 and suppose that: $3\vec{u}_1 - \frac{4}{5}\vec{u}_4 + 6\vec{x} = -\vec{u}_2 + 0\vec{u}_3$ (*)

Write \$\overline{x}\$ as a linear combination of \$\overline{u}_1, \overline{u}_2, \overline{u}_3, \overline{u}_4.\$ Solution: Rearrange (*): 62 = -3. \vec{u}_1 - \vec{u}_2 + 0. \vec{u}_3 + \frac{4}{5} \cdot \vec{u}_4

 $= \frac{1}{2} \cdot \vec{u}_1 - \frac{1}{6} \cdot \vec{u}_2 + 0 \cdot \vec{u}_3 + \frac{1}{30} \cdot \vec{u}_4$ $= \frac{1}{2} \cdot \vec{u}_1 + \frac{1}{2} \cdot \vec{u}_2 + \frac{1}{2} \cdot \vec{u}_3 + \frac{1}{2} \cdot \vec{u}_4$ where $\lambda_1 = -\frac{3}{5}, \lambda_2 = -\frac{1}{5},$ $\lambda_3 = 0, \lambda_4 = \frac{4}{30}$

IS ZESpan {], uz, uz, uz, 22, 27.

Example 2: Sketch the set of all vectors of the form a.v.+b.v., where 0=a:1,-1:b=2, and \vec{v}_1 = (-3,0), \vec{v}_2 =(0,5) are vectors in \mathbb{R}^2 . (0,10) (a=0,b=2) (-3,10), (a=1,b=2) Solution: a.v.+ b.v2 (0,5) (a=0,b=1) = a. (-3,0)+b.(0,5) (-3,5) - . E (a=1,b=1) = (-3a,5b)

(a=1,b=0)(-3,0) , (0,0) (a=0,6=0) (0,-5) (a=0, b=-1) (a=1, b=-1) $\mathbb{R}^2 = C$

(x,y) = x+iy $E = \{(x,y) \in \mathbb{R}^2 \mid -3 \le x \le 0, -5 \le y \le 10\}$

= { x+iy & C | -3 = x = 0, -5 = y = 10}