Programación Orientada a Objetos

Luis Miguel de la Cruz Salas

GMMC, Recursos Naturales

Octubre 2019

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE101019

Proyecto

Crear un sistema que permita realizar el seguimiento de partículas en un fluido en movimiento, el cual está contenido en un dominio Cartesiano, en 2D y 3D. El sistema debe permitir al usuario definir: la dimensión del dominio, el tamaño del dominio, el campo de velocidades mediante una fórmula, la resolución del campo de velocidades, la posición inicial de una o varias partículas dentro del dominio, el tiempo durante el cual se hará el seguimiento y el método para realizar el cálculo de la trayectoria. El sistema hará el cálculo y guardará en uno o varios archivos las posiciones de la(s) trayectoria(s), presentará un extracto de estas posiciones en pantalla y graficará las trayectorias.

Notación UML

¿Qué es UML?

- UML (Unified Modeling Language) es un lenguaje estándar para especificar, visualizar, construir y documentar los artefactos de sistemas de software. Fue creado por el Object Management Group (OMG) y la especificación UML 1.0 se propuso en enero de 1997. Se usa en otros ámbitos además del software.
 - UML es un modelo estandarizado para describir el enfoque de la Programación Orientada a Objetos (POO).
 - Las clases son los principales artefactos en la POO.
 - En un diagrama UML, se pueden representar componentes, clases que serán programadas, los objetos principales y/o las interacciones entre clases y objetos.
 - Estos diagramas describen la *arquitectura del sistema* y al mismo tiempo lo documentan para para su mantenimiento futuro y su posible actualización.

Clases

- Las clases son estructuras que describen que debe estar presente en el sistema.
- Las diferentes secciones en un diagrama de clases indican lo que se debe implementar
- El diagrama contiene tres secciones:
 - El nombre de la clase.
 - Los atributos de la clase.
 - Los métodos o comportamiento.

Objetos

- Un diagrama de objetos proporciona un vistazo de alto nivel del sistema.
- Representa un ejemplo concreto (instance) de un diagrama de clases en un instante específico.
- Se enfoca en los atributos de un conjunto de objetos y cómo esos objetos se relacionan entre ellos.

Identificación de clases, atributos y métodos

Crear un sistema que permita realizar el seguimiento de partículas en un fluido en movimiento, el cual está contenido en un dominio Cartesiano, en 2D y 3D. El sistema debe permitir al usuario definir: la dimensión del dominio, el tamaño del dominio, el campo de velocidades mediante una fórmula, la resolución del campo de velocidades, la posición inicial de una o varias partículas dentro del dominio, el tiempo durante el cual se hará el seguimiento y el método para realizar el cálculo de la trayectoria. El sistema hará el cálculo y guardará en uno o varios archivos las posiciones de la(s) trayectoria(s), presentará un extracto de estas posiciones en pantalla y graficará las trayectorias.

Sustantivos y verbos

partículas	velocidad	seguimiento
fluidos	fórmula	movimiento
dominio	resolución	cálcular
Cartesiano	posición	guardar
dimensión	inicial	presentar
2D	tiempo	graficar
3D	trayectoria	
campo	pantalla	

