Podstawy logiki i teorii mnogości

8. Algebry Boole'a.

Algebrą Boole'anazywamy zbiór Bz dwoma działaniami dwuargumentowymi $\vee,\wedge,$ działaniem jednoargumentowym'oraz różnymi elementami 0,1 spełniającymi poniższe warunki.

• prawa przemienności:

- 1a) $x \lor y = y \lor x$,
- 1b) $x \wedge y = y \wedge x$,

• prawa łączności:

- 2a) $(x \lor y) \lor z = x \lor (y \lor z)$,
- 2b) $(x \wedge y) \wedge z = x \wedge (y \wedge z)$,

• prawa rozdzielności:

- 3a) $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$,
- 3b) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$,

• prawa identyczności:

- 4a) $x \vee 0 = x$,
- 4b) $x \wedge 1 = x$,

• prawa dopełnienia:

- 5a) $x \vee x' = 1$,
- 5b) $x \wedge x' = 0$.

Algebrę Boole'a oznaczamy $(B, \vee, \wedge, ', 0, 1)$. Działanie \vee nazywamy sumq, działanie \wedge nazywamy iloczynem, a działanie ' nazywamy dopelnieniem.

Przykład 1 Algebrą Boole'a jest ($\{0,1\}, \vee, \wedge, \neg, 0, 1$), gdzie 0 i 1 oznaczają wartości logiczne fałszu i prawdy, \vee jest działaniem alternatywy, \wedge jest działaniem koniunkcji i dopełnieniem jest działanie negacji \neg .

Przykład 2 Niech S będzie dowolnym zbiorem. Wtedy $(\mathcal{P}(S), \cup, \cap, ^c, \emptyset, S)$ jest algebrą Boole'a.

Zauważmy, że jeśli zamienimy ze sobą działania \vee i \wedge w prawach definiujących algebrę Boole'a i jednocześnie zamienimy ze sobą 0 i 1, to otrzymamy z powrotem te prawa (w każdym punkcie definicji prawa a i b zamienią się ze sobą). Konsekwencją tej obserwacji jest poniższa zasada.

Zasada dualności: Jeśli zamienimy ze sobą znaki \vee i \wedge oraz 0 i 1 wszędzie we wzorze prawdziwym we wszystkich algebrach Boole'a, to otrzymany wzór będzie też prawdziwy we wszystkich algebrach Boole'a.

Wyrażenia boolowskie mogą być realizowane jako układy elektroniczne i wyrażenia równoważne odpowiadają układom elektronicznym, które działają identycznie, tzn. dają te same wyniki dla takich samych danych. Z tego powodu interesuje nas "upraszczanie" wyrażeń boolowskich. Ich optymalną postać możemy znaleźć na przykład za pomocą metody tablic Karnaugha.

Zadania.

Zadanie 1 Udowodnić, że $X = \{0,1\}^n$, $n \ge 2$, gdzie $\{0,1\}$ ma takie samo znaczenie jak w Przykładzie 1, jest algebrą Boole'a.

Zadanie 2 Udowodnić, że w każdej algebrze Boole'a zachodzą poniższe prawa.

- prawa idempotentności:
- 6a) $x \vee x = x$,
- 6b) $x \wedge x = x$,
- prawa identyczności:
- 7a) $x \vee 1 = 1$,
- 7b) $x \wedge 0 = 0$,
- prawa pochłaniania:
- 8a) $(x \wedge y) \vee x = x$,
- 8b) $(x \lor y) \land x = x$.

Zadanie 3 Udowodnić, że w każdej algebrze Boole'a zachodzą poniższe prawa de Morgana:

- 9a) $(x \vee y)' = x' \wedge y'$,
- 9b) $(x \wedge y)' = x' \vee y'$.

Wskazówka: Pokazać, że jeśli $w \lor z = 1$ i $w \land z = 0$, to z = w'.

Zadanie 4 Sprawdzić, że relacja ≤ określona na algebrze Boole'a wzorem

$$w \leqslant y \Leftrightarrow x \lor y = y$$

jest częściowym porządkiem.

Zadanie 5 Udowodnić, że w dowolnej algebrze Boole'a zachodzi równoważność

$$x \lor y = y \Leftrightarrow x \land y = x$$
.

Zadanie 6 Znaleźć optymalną postać podanego wyrażenia boolowskiego za pomocą metody tablic Karnaugha:

- a) $(p \vee q)' \vee [r \wedge (p' \vee (q \vee r'))],$
- b) $[(p' \lor q) \land r'] \lor [p \lor (q \land r)]'$.

Zadanie 7 Wyznaczyć minimalną postać APN i KPN podanych zdań korzystając z metody tablic Karnaugha:

- $a) (p \land q \Rightarrow r) \Rightarrow [p \Rightarrow \neg(q \Rightarrow r)],$
- b) $[p \lor (q \lor r)] \Rightarrow [(p \land q) \lor (p \land r)],$
- $c) \neg (p \land q) \Rightarrow [(q \Leftrightarrow r) \lor p],$
- $d) \ (p \Rightarrow r) \Rightarrow [(p \Rightarrow q) \land (q \Rightarrow r)].$