Langages réguliers

Quentin Fortier

September 3, 2024

Motivation des langages formels

• Recherche de motif dans un texte.

Recherche d'email dans Visual Code

• Formalisation de la syntaxe d'un langage de programmation (et conception de nouveau langage) : BNF d'OCaml, de Python.

Définitions

• Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.

- Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.
- Un **mot** m d'un alphabet Σ est une suite finie m_1 , ..., m_n de lettres de Σ , et on note $m=m_1...m_n$.

- Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.
- Un **mot** m d'un alphabet Σ est une suite finie m_1 , ..., m_n de lettres de Σ , et on note $m=m_1...m_n$. n est la **longueur** de m, qu'on note |m|.

- Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.
- Un **mot** m d'un alphabet Σ est une suite finie m_1 , ..., m_n de lettres de Σ , et on note $m=m_1...m_n$. n est la **longueur** de m, qu'on note |m|.
- Le **mot vide** (contenant aucune lettre) est noté ε .

- Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.
- Un **mot** m d'un alphabet Σ est une suite finie m_1 , ..., m_n de lettres de Σ , et on note $m=m_1...m_n$. n est la **longueur** de m, qu'on note |m|.
- Le **mot vide** (contenant aucune lettre) est noté ε .
- On note Σ^* l'ensemble des mots de Σ et $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$.

- Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.
- Un **mot** m d'un alphabet Σ est une suite finie m_1 , ..., m_n de lettres de Σ , et on note $m=m_1...m_n$. n est la **longueur** de m, qu'on note |m|.
- Le **mot vide** (contenant aucune lettre) est noté ε .
- On note Σ^* l'ensemble des mots de Σ et $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$.
- On note Σ^n l'ensemble des mots de Σ de taille n.

Définitions

- Un alphabet est un ensemble Σ fini, dont les éléments sont des lettres.
- Un **mot** m d'un alphabet Σ est une suite finie m_1 , ..., m_n de lettres de Σ , et on note $m=m_1...m_n$. n est la **longueur** de m, qu'on note |m|.
- Le **mot vide** (contenant aucune lettre) est noté ε .
- On note Σ^* l'ensemble des mots de Σ et $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$.
- On note Σ^n l'ensemble des mots de Σ de taille n.

 $\frac{\mathsf{Remarque}}{a \text{ et le mot } a...} \ \mathsf{C'est} \ \mathsf{le contexte} \ \mathsf{qui} \ \mathsf{permet} \ \mathsf{de faire \ la \ différence}.$

Définition : Égalité de mots

Deux mots $u=u_1...u_n$ et $v=v_1...v_p$ sur le même alphabet Σ sont **égaux** s'ils ont la même longueur (n=p) et si pour tout $i\in\{1,...,n\}$, $u_i=v_i$.

Définition : Égalité de mots

Deux mots $u=u_1...u_n$ et $v=v_1...v_p$ sur le même alphabet Σ sont **égaux** s'ils ont la même longueur (n=p) et si pour tout $i\in\{1,...,n\}$, $u_i=v_i$.

Définition : Concaténation et puissance

• La concaténation de deux mots $u=u_1...u_n$ et $v=v_1...v_p$ est :

$$uv = u_1...u_n v_1...v_p$$

Elle est aussi parfois notée $u \cdot v$.

Définition : Égalité de mots

Deux mots $u=u_1...u_n$ et $v=v_1...v_p$ sur le même alphabet Σ sont **égaux** s'ils ont la même longueur (n=p) et si pour tout $i\in\{1,...,n\}$, $u_i=v_i$.

Définition : Concaténation et puissance

• La concaténation de deux mots $u=u_1...u_n$ et $v=v_1...v_p$ est :

$$uv = u_1...u_nv_1...v_p$$

Elle est aussi parfois notée $u \cdot v$.

ullet Si u est un mot, on définit $u^0=\varepsilon$ et $u^k=\underbrace{uu...u}$

Définition : Égalité de mots

Deux mots $u=u_1...u_n$ et $v=v_1...v_p$ sur le même alphabet Σ sont **égaux** s'ils ont la même longueur (n=p) et si pour tout $i\in\{1,...,n\}$, $u_i=v_i$.

Définition : Concaténation et puissance

• La concaténation de deux mots $u=u_1...u_n$ et $v=v_1...v_p$ est :

$$uv = u_1...u_n v_1...v_p$$

Elle est aussi parfois notée $u \cdot v$.

ullet Si u est un mot, on définit $u^0=arepsilon$ et $u^k=\underbrace{uu...u}_{}$

Exercice

Soient Σ un alphabet, a, $b \in \Sigma$ et $u \in \Sigma^*$. On suppose au = ub. Montrer que a = b et qu'il existe $k \in \mathbb{N}$ tel que $u = a^k$.

Un monoïde (HP) est comme un groupe, sauf qu'il n'y a pas forcément d'inverse.

Lemme

 (Σ^*,\cdot) est un monoïde, où \cdot est la concaténation de mots, c'est-à-dire :

- $\varepsilon \cdot m = m \cdot \varepsilon = m$ (ε est élément neutre)
- $(m \cdot n) \cdot p = m \cdot (n \cdot p)$ (associativité)

Un monoïde (HP) est comme un groupe, sauf qu'il n'y a pas forcément d'inverse.

Lemme

 (Σ^*,\cdot) est un monoïde, où \cdot est la concaténation de mots, c'est-à-dire :

- $\varepsilon \cdot m = m \cdot \varepsilon = m$ (ε est élément neutre)
- $(m \cdot n) \cdot p = m \cdot (n \cdot p)$ (associativité)

Lemme

La fonction qui à un mot associe sa longueur est un morphisme de monoı̈de de (Σ^*,\cdot) vers $(\mathbb{N},+)$, c'est-à-dire :

- \bullet $|\varepsilon| = 0$
- $\bullet |m \cdot n| = |m| + |n|$

Soit u et m deux mots de Σ^* .

Définitions

• u est un **préfixe** de m s'il existe un mot v tel que m=uv.

Soit u et m deux mots de Σ^* .

- u est un **préfixe** de m s'il existe un mot v tel que m=uv.
- u est un **suffixe** de m s'il existe un mot v tel que m = vu.

Soit u et m deux mots de Σ^* .

- u est un **préfixe** de m s'il existe un mot v tel que m = uv.
- u est un **suffixe** de m s'il existe un mot v tel que m = vu.
- u est un **facteur** (substring en anglais) de m s'il existe des mots v, w tels que m=vuw.

Soit u et m deux mots de Σ^* .

Définitions

- u est un **préfixe** de m s'il existe un mot v tel que m = uv.
- u est un **suffixe** de m s'il existe un mot v tel que m = vu.
- u est un **facteur** (substring en anglais) de m s'il existe des mots v, w tels que m=vuw.
- u est un sous-mot (subsequence en anglais) de m si u est une sous-suite (ou : suite extraite) de m.

Exemple : abc est un sous-mot de aabacb, mais pas un facteur.

Soit u et m deux mots de Σ^* .

Définitions

- u est un **préfixe** de m s'il existe un mot v tel que m = uv.
- u est un **suffixe** de m s'il existe un mot v tel que m = vu.
- u est un **facteur** (substring en anglais) de m s'il existe des mots v, w tels que m=vuw.
- u est un sous-mot (subsequence en anglais) de m si u est une sous-suite (ou : suite extraite) de m.

Exemple : abc est un sous-mot de aabacb, mais pas un facteur.

Exercice

Soit m un mot de taille n dont toutes les lettres sont différentes. Quel est son nombre de préfixes, de suffixes, de facteurs et de sous-mots ? Et si des lettres peuvent être répétées ?

Rappels d'utilisation d'une chaîne de caractères (string) :

```
let s = "abc" (* défini une chaîne de caractères *)
s.[1] (* donne 'b' *)
String.length s (* donne 3 *)
"abc" ^ "def" (* concaténation *)
```

Remarque : Contrairement à array, le type string est immuable (on ne peut pas modifier un caractère d'une chaîne de caractères).

Rappels d'utilisation d'une chaîne de caractères (string) :

```
let s = "abc" (* défini une chaîne de caractères *)
s.[1] (* donne 'b' *)
String.length s (* donne 3 *)
"abc" ^ "def" (* concaténation *)
```

Remarque : Contrairement à array, le type string est immuable (on ne peut pas modifier un caractère d'une chaîne de caractères).

Question

Écrire une fonction sous_mot : string -> string -> bool qui teste si un mot est un sous-mot d'un autre, en complexité linéaire.

Définition

Un langage L sur un alphabet Σ est un ensemble de mots de Σ

Définition

Un langage L sur un alphabet Σ est un ensemble de mots de Σ , ce qui est équivalent à $L\subseteq \Sigma^*$ ou encore $L\in \mathcal{P}(\Sigma^*)$.

Définition

Un langage L sur un alphabet Σ est un ensemble de mots de Σ , ce qui est équivalent à $L \subseteq \Sigma^*$ ou encore $L \in \mathcal{P}(\Sigma^*)$.

Exemples:

① L'ensemble L_1 des mots du dictionnaire français sur $\Sigma = \{a, b, ..., z\}$.

Définition

Un langage L sur un alphabet Σ est un ensemble de mots de Σ , ce qui est équivalent à $L \subseteq \Sigma^*$ ou encore $L \in \mathcal{P}(\Sigma^*)$.

Exemples:

- **①** L'ensemble L_1 des mots du dictionnaire français sur $\Sigma = \{a, b, ..., z\}$.
- ② L'ensemble L_2 des formules arithmétiques sur $\Sigma = \{0, ..., 9, +, -, /, *\}$.

Définition

Un **langage** L sur un alphabet Σ est un ensemble de mots de Σ , ce qui est équivalent à $L \subseteq \Sigma^*$ ou encore $L \in \mathcal{P}(\Sigma^*)$.

Exemples:

- **1** L'ensemble L_1 des mots du dictionnaire français sur $\Sigma = \{a, b, ..., z\}$.
- ② L'ensemble L_2 des formules arithmétiques sur $\Sigma = \{0,...,9,+,-,/,*\}.$
- $\textbf{ 0 L'ensemble L_3 des programmes OCaml sur $\Sigma=\{a,...,z,,!,<,>,...\}$. }$

Définition

Un **langage** L sur un alphabet Σ est un ensemble de mots de Σ , ce qui est équivalent à $L \subseteq \Sigma^*$ ou encore $L \in \mathcal{P}(\Sigma^*)$.

Exemples:

- **1** L'ensemble L_1 des mots du dictionnaire français sur $\Sigma = \{a, b, ..., z\}$.
- 2 L'ensemble L_2 des formules arithmétiques sur $\Sigma = \{0,...,9,+,-,/,*\}$.
- **③** L'ensemble L_3 des programmes OCaml sur $\Sigma = \{a, ..., z, !, <, >, ...\}$.
- **1** L'ensemble L_4 des ADN sur $\Sigma = \{A, C, G, T\}$.

Exercice : Résumé des définitions

Soit $\Sigma = \{a, b\}$.

- $oldsymbol{0}$ Σ est
- \mathbf{a} est
- \circ ε est
- abaaabb est
- $\{a, b, abaaabb\}$ est

Exercice : Résumé des définitions

Soit $\Sigma = \{a, b\}$.

- \bullet Σ est un alphabet.
- \mathbf{Q} a est une lettre (et aussi un mot de longueur 1...).
- \bullet ε est le mot vide.
- abaaabb est un mot.
- $\{a, b, abaaabb\}$ est un langage.

On veut des algorithmes pour résoudre les problèmes suivants :

Problème

Étant donné un langage L et un mot m, est-ce que $m \in L$?

<u>Applications</u>: correcteur orthographique, coloration syntaxique...

On veut des algorithmes pour résoudre les problèmes suivants :

Problème

Étant donné un langage L et un mot m, est-ce que $m \in L$?

Applications : correcteur orthographique, coloration syntaxique...

Problème

Étant donné un texte s et un langage L, s contient-il un mot de L?

On veut des algorithmes pour résoudre les problèmes suivants :

Problème

Étant donné un langage L et un mot m, est-ce que $m \in L$?

Applications : correcteur orthographique, coloration syntaxique...

Problème

Étant donné un texte s et un langage L, s contient-il un mot de L? (Cas particulier $L=\{m\}$: le mot m apparaît-il dans un texte s?)

<u>Application</u> : recherche de motif (adresse mail, séquence d'ADN...) dans un texte.

Opérations sur les langages

Soient L_1 et L_2 deux langages de même alphabet.

Définition : Concaténation

La concaténation L_1L_2 de L_1 et L_2 est défini par :

$$L_1L_2 = \{m_1m_2 \mid m_1 \in L_1, m_2 \in L_2\}$$

Opérations sur les langages

Soient L_1 et L_2 deux langages de même alphabet.

Définition : Concaténation

La concaténation L_1L_2 de L_1 et L_2 est défini par :

$$L_1L_2 = \{ m_1m_2 \mid m_1 \in L_1, m_2 \in L_2 \}$$

 L_1L_2 est donc l'ensemble des mots obtenus par concaténation d'un mot de L_1 et d'un mot de L_2 .

Opérations sur les langages

Soient L_1 et L_2 deux langages de même alphabet.

Définition : Concaténation

La concaténation L_1L_2 de L_1 et L_2 est défini par :

$$L_1L_2 = \{ m_1m_2 \mid m_1 \in L_1, \ m_2 \in L_2 \}$$

 L_1L_2 est donc l'ensemble des mots obtenus par concaténation d'un mot de L_1 et d'un mot de L_2 .

Exercice

- Soit $L_1 = \{a, ab\}$ et $L_2 = \{\varepsilon, b, bba\}$. Déterminer L_1L_2 .
- 2 Quel lien a t-on entre $|L_1L_2|$ et $|L_1||L_2|$, dans le cas général ?

Soient L un langage et $n \in \mathbb{N}$.

Définition : Puissance

On définit la puissance ${\cal L}^n$ de ${\cal L}$ par récurrence :

$$L^0 = \{\varepsilon\}$$

$$L^n = L^{n-1}L, \text{ pour } n \ge 1$$

Soient L un langage et $n \in \mathbb{N}$.

Définition : Puissance

On définit la puissance L^n de L par récurrence :

$$L^0 = \{\varepsilon\}$$

$$L^n = L^{n-1}L, \text{ pour } n \ge 1$$

Dit autrement :
$$L^n = \underbrace{L \cdot ... \cdot L}_{n} = \{m_1 \cdot ... \cdot m_n \mid m_1 \in L, ..., m_n \in L\}.$$

Soient L un langage et $n \in \mathbb{N}$.

Définition : Puissance

On définit la puissance L^n de L par récurrence :

$$L^0 = \{\varepsilon\}$$

$$L^n = L^{n-1}L, \text{ pour } n \ge 1$$

Dit autrement :
$$L^n = \underbrace{L \cdot \ldots \cdot L}_n = \{m_1 \cdots m_n \mid m_1 \in L, \ldots, m_n \in L\}.$$

 $\underline{\mathsf{Exemple}} : \Sigma^n \text{ est l'ensemble des mots de longueur } n \text{ sur l'alphabet } \Sigma.$

Soient L un langage et $n \in \mathbb{N}$.

Définition : Puissance

On définit la puissance L^n de L par récurrence :

$$L^0 = \{\varepsilon\}$$

$$L^n = L^{n-1}L, \text{ pour } n \ge 1$$

Dit autrement :
$$L^n = \underbrace{L \cdot ... \cdot L}_{n} = \{m_1 \cdot ... \cdot m_n \mid m_1 \in L, ..., m_n \in L\}.$$

Exemple : Σ^n est l'ensemble des mots de longueur n sur l'alphabet Σ .

Exercice

- **1** À quelle condition a t-on $L \subseteq L^2$?
- **Q** Quel lien a t-on entre L^2 et $\{u^2 \mid u \in L\}$?

Soit L un langage.

Définition : Étoile de Kleene

On définit l'**étoile de Kleene** L^* de L par :

$$L^* = \bigcup_{k \in \mathbb{N}} L^k$$

Soit L un langage.

Définition : Étoile de Kleene

On définit l'**étoile de Kleene** L^* de L par :

$$L^* = \bigcup_{k \in \mathbb{N}} L^k$$

 L^{*} est donc l'ensemble des mots obtenus par concaténation d'un nombre quelconque de mots de L.

Soit L un langage.

Définition : Étoile de Kleene

On définit l'**étoile de Kleene** L^* de L par :

$$L^* = \bigcup_{k \in \mathbb{N}} L^k$$

 L^{\ast} est donc l'ensemble des mots obtenus par concaténation d'un nombre quelconque de mots de L.

Remarque : L^* contient toujours ε , car $L^0 = \{\varepsilon\}$.

Soit L un langage.

Définition : Étoile de Kleene

On définit l'étoile de Kleene L^* de L par :

$$L^* = \bigcup_{k \in \mathbb{N}} L^k$$

 L^{\ast} est donc l'ensemble des mots obtenus par concaténation d'un nombre quelconque de mots de L.

Remarque : L^* contient toujours ε , car $L^0 = \{\varepsilon\}$.

Question

Montrer que $(L^*)^* = L^*$.

Soit Σ un alphabet.

Définition

L'ensemble des langages réguliers de Σ est le plus petit ensemble de langages de Σ contenant les langages finis de Σ et stable par concaténation, union, étoile de Kleene.

Soit Σ un alphabet.

Définition

L'ensemble des langages réguliers de Σ est le plus petit ensemble de langages de Σ contenant les langages finis de Σ et stable par concaténation, union, étoile de Kleene.

Dit autrement :

Définition

- Tout langage fini est régulier
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier
- L régulier $\implies L^*$ régulier

Soit Σ un alphabet.

Définition

L'ensemble des langages réguliers de Σ est le plus petit ensemble de langages de Σ contenant les langages finis de Σ et stable par concaténation, union, étoile de Kleene.

Dit autrement :

Définition

- Tout langage fini est régulier
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier
- L régulier $\implies L^*$ régulier

<u>Attention</u> : une union infinie de langages réguliers n'est pas forcément régulière.

Définition

- Tout langage fini est régulier.
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier.
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier.
- \bullet L régulier \Longrightarrow L^* régulier.

Exemples:

① Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.

Définition

- Tout langage fini est régulier.
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier.
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier.
- L régulier $\implies L^*$ régulier.

- ① Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.
- ② Σ est fini donc est régulier. Σ^* est l'étoile d'un langage régulier donc est régulier.

Définition

- Tout langage fini est régulier.
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier.
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier.
- L régulier $\implies L^*$ régulier.

- ① Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.
- 2 Σ est fini donc est régulier. Σ^* est l'étoile d'un langage régulier donc est régulier.
- $oldsymbol{3}$ Soit m un mot. L'ensemble des mots ayant comme facteur m

Définition

- Tout langage fini est régulier.
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier.
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier.
- L régulier $\implies L^*$ régulier.

- ① Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.
- 2 Σ est fini donc est régulier. Σ^* est l'étoile d'un langage régulier donc est régulier.
- **③** Soit m un mot. L'ensemble des mots ayant comme facteur m est égal à $\Sigma^* m \Sigma^*$ donc est un langage régulier.
- ullet Soit $m=m_1\cdots m_n$ un mot. L'ensemble des mots ayant comme sous-mot m

Définition

- Tout langage fini est régulier.
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier.
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier.
- L régulier $\implies L^*$ régulier.

- ① Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.
- $oldsymbol{2}$ Σ est fini donc est régulier. Σ^* est l'étoile d'un langage régulier donc est régulier.
- **3** Soit m un mot. L'ensemble des mots ayant comme facteur m est égal à $\Sigma^* m \Sigma^*$ donc est un langage régulier.
- **③** Soit $m=m_1\cdots m_n$ un mot. L'ensemble des mots ayant comme sous-mot m est égal à $\Sigma^*m_1\Sigma^*m_2\cdots\Sigma^*m_n\Sigma^*$ donc est un langage régulier.

Exercice

Montrer que les langages suivants sont réguliers sur $\Sigma = \{a,b\}$:

- Mots commençants par a.
- $oldsymbol{2}$ Mots commençants par a et finissant par b
- Mots de taille paire.
- Mots de taille impaire.

Les expressions régulières sont une notation plus concise pour représenter un langage régulier :

Expressions régulières

L'ensemble des **expressions régulières** sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma$, $a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}$, $\varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}$, $(e_1|e_2) \in \mathcal{R}$ et $(e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

Les expressions régulières sont une notation plus concise pour représenter un langage régulier :

Expressions régulières

L'ensemble des **expressions régulières** sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma, a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}$, $\varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}$, $(e_1|e_2) \in \mathcal{R}$ et $(e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

Remarques:

- On utilisera seulement les parenthèses nécessaires. Ainsi, (((ab)c)|d) sera noté abc|d.
- $e_1|e_2$ est aussi noté $e_1 + e_2$.

Les expressions régulières sont une notation plus concise pour représenter un langage régulier :

Expressions régulières

L'ensemble des **expressions régulières** sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma, a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}$, $\varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}$, $(e_1|e_2) \in \mathcal{R}$ et $(e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

Remarques:

- On utilisera seulement les parenthèses nécessaires. Ainsi, (((ab)c)|d) sera noté abc|d.
- $e_1|e_2$ est aussi noté $e_1 + e_2$.

Exemples : a^* , $(a|aba)^*$, $a(a|b)^*b$ sont des expressions régulières.

Expressions régulières

L'ensemble des **expressions régulières** sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma$, $a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}$, $\varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}$, $(e_1|e_2) \in \mathcal{R}$ et $(e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

```
type 'a regexp =
    | Vide | Epsilon | L of 'a (* L a est la lettre a *)
    | Union of 'a regexp * 'a regexp
    | Concat of 'a regexp * 'a regexp
    | Etoile of 'a regexp
```

Expressions régulières

L'ensemble des **expressions régulières** sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma$, $a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}$, $\varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}$, $(e_1|e_2) \in \mathcal{R}$ et $(e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

```
type 'a regexp =
    | Vide | Epsilon | L of 'a (* L a est la lettre a *)
    | Union of 'a regexp * 'a regexp
    | Concat of 'a regexp * 'a regexp
    | Etoile of 'a regexp
```

Par exemple, $a(a|b)^*b$ est représenté par :

```
{\tt Concat}(L \ 'a', \ {\tt Concat}({\tt Etoile}({\tt Union}(L \ 'a', \ L \ 'b')), \ L \ 'b'))
```

Question

Écrire une fonction lettres : 'a regexp -> 'a list qui renvoie la liste des lettres utilisées dans une expression régulière.

Langage d'une expression régulière

Le langage L(e) d'une expression régulière e est définie récursivement :

- $\bullet \ L(a) = \{a\} \ \mathrm{si} \ a \in \Sigma$
- $\bullet \ L(\emptyset) = \emptyset, \ L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Par abus de langage, on oublie souvent le L(e) et on confond expression régulière et langage associé.

Langage d'une expression régulière

Le langage L(e) d'une expression régulière e est définie récursivement :

- $L(a) = \{a\}$ si $a \in \Sigma$
- $L(\emptyset) = \emptyset$, $L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Par abus de langage, on oublie souvent le L(e) et on confond expression régulière et langage associé.

Équivalence entre langage régulier et expression régulière

Un langage L est régulier

Il existe une expression régulière e telle que L=L(e)

Langage d'une expression régulière

Le langage L(e) d'une expression régulière e est définie récursivement :

- $\bullet \ L(a) = \{a\} \ \mathrm{si} \ a \in \Sigma$
- $\bullet \ L(\emptyset) = \emptyset, \ L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Exemples avec $\Sigma = \{a, b\}$:

• $(a|b)^*$: ensemble de tous les mots $(= \Sigma^*)$.

Langage d'une expression régulière

Le langage L(e) d'une expression régulière e est définie récursivement :

- $\bullet \ L(a) = \{a\} \ \mathrm{si} \ a \in \Sigma$
- $\bullet \ L(\emptyset) = \emptyset, \ L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Exemples avec $\Sigma = \{a, b\}$:

- $(a|b)^*$: ensemble de tous les mots $(= \Sigma^*)$.
- $(a|b)^*bb$:

Langage d'une expression régulière

Le langage L(e) d'une expression régulière e est définie récursivement :

- $\bullet \ L(a) = \{a\} \ \mathrm{si} \ a \in \Sigma$
- $\bullet \ L(\emptyset) = \emptyset, \ L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Exemples avec $\Sigma = \{a, b\}$:

- $(a|b)^*$: ensemble de tous les mots $(= \Sigma^*)$.
- $(a|b)^*bb$: mots finissant par bb.

Exercice

Donner une expression régulière pour les langages suivants, sur

$$\Sigma = \{a, b\} :$$

- $oldsymbol{0}$ Mots contenant au plus un a.
- **2** Mots de taille $n \equiv 1 \mod 3$.
- \odot Mots contenant un nombre pair de a
- Mots contenant un nombre impair de a

Exercice

Donner une expression régulière pour les langages suivants, sur

$$\Sigma = \{a, b\} :$$

- $oldsymbol{0}$ Mots contenant au plus un a.
- **2** Mots de taille $n \equiv 1 \mod 3$.
- **1** Mots contenant un nombre pair de a: $L((ab^*a|b)^*)$.
- Mots contenant un nombre impair de $a: L(b^*a(ab^*a|b)^*)$

Question

Donner une expression régulière pour les écritures en base 2 d'entiers divisibles par 4.

Théorème

Soit $\mathcal{P}(L)$ une propriété sur les langages réguliers L telle que :

- ullet $\mathcal{P}(L)$ est vraie pour les langages L finis (cas de base)
- $\mathcal{P}(L_1) \wedge \mathcal{P}(L_2) \implies \mathcal{P}(L_1L_2)$
- $\mathcal{P}(L_1) \wedge \mathcal{P}(L_2) \implies \mathcal{P}(L_1 \cup L_2)$
- $\bullet \ \mathcal{P}(L) \implies \mathcal{P}(L^*)$

Alors $\mathcal{P}(L)$ est vraie pour tout langage régulier L.

Théorème

Soit $\mathcal{P}(L)$ une propriété sur les langages réguliers L telle que :

- ullet $\mathcal{P}(L)$ est vraie pour les langages L finis (cas de base)
- $\mathcal{P}(L_1) \wedge \mathcal{P}(L_2) \implies \mathcal{P}(L_1L_2)$
- $\mathcal{P}(L_1) \wedge \mathcal{P}(L_2) \implies \mathcal{P}(L_1 \cup L_2)$
- $\bullet \ \mathcal{P}(L) \implies \mathcal{P}(L^*)$

Alors $\mathcal{P}(L)$ est vraie pour tout langage régulier L.

 $\{L \mid \mathcal{P}(L)\}$ est alors un ensemble contenant les langages finis et stable par union, concaténation et étoile de Kleene.

Donc il contient tous les langages réguliers, par définition.

Méthode

De même, on peut démontrer une propriété $\mathcal{P}(e)$ sur les expressions régulières e en montrant :

- $\mathcal{P}(\emptyset)$, $\mathcal{P}(\varepsilon)$ sont vraies (cas de base)
- $\mathcal{P}(a)$ est vraie pour $a \in \Sigma$ (cas de base)
- $\mathcal{P}(e_1) \wedge \mathcal{P}(e_2) \implies \mathcal{P}(e_1 e_2)$
- $\mathcal{P}(e_1) \wedge \mathcal{P}(e_2) \implies \mathcal{P}(e_1 \cup e_2)$
- $\bullet \ \mathcal{P}(e) \implies \mathcal{P}(e^*)$

Exercice: Miroir

Si $m=m_1...m_n$ est un mot, on définit son miroir $\widetilde{m}=m_n...m_1$.

Si L est un langage, on définit son miroir $\widetilde{L}=\{\widetilde{m}\mid m\in L\}.$

- Donner une expression régulière du miroir de $a(a|b)^*b$.
- 2 Soit e une expression régulière de langage L. Montrer que \widetilde{L} est régulier.
- Écrire une fonction Caml miroir : 'a regexp -> 'a regexp renvoyant le miroir d'une expression régulière.

En notant
$$e_1 \equiv e_2 \Longleftrightarrow L(e_1) = L(e_2)$$
:

Propriétés sur les expressions régulières

- $\bullet \ \emptyset e \equiv e \emptyset \equiv \emptyset$
- $\varepsilon e \equiv e \varepsilon \equiv e$
- $(e_1|e_2)e_3 \equiv e_1e_3|e_2e_3$ (distributivité)
- $e_1(e_2e_3) \equiv (e_1e_2)e_3$ (associativité)

Méthode

- Pour montrer une égalité de deux mots, on peut faire une récurrence sur la longueur du mot.
- Pour montrer une égalité de deux langages, on peut montrer une double inclusion.

Question

Soient e_1 et e_2 deux expressions régulières.

Montrer que $(e_1^*e_2)^*e_1^* \equiv (e_1|e_2)^*$.

Expression régulière en pratique (non exigible)

grep est une commande Linux qui permet de chercher des motifs dans un texte en utilisant une version étendue des expressions régulières :

Expression régulière	Signification
	n'importe quel caractère
[aei]	un caractère parmi a, e, i
[a-z]	un caractère entre a et z
[^aei]	un caractère qui n'est pas a, e, i
i:	i:

Soit $\boldsymbol{\Sigma}$ un alphabet non vide.

Théorème

 Σ^+ (et donc aussi Σ^*) est infini dénombrable.

Soit $\boldsymbol{\Sigma}$ un alphabet non vide.

Théorème

 Σ^+ (et donc aussi Σ^*) est infini dénombrable.

<u>Preuve</u>: on identifie les p lettres de Σ avec les entiers de 0 à p-1. L'écriture en base p donne une bijection de $\mathbb N$ vers Σ^+ .

Soit Σ un alphabet non vide.

Théorème

 Σ^+ (et donc aussi Σ^*) est infini dénombrable.

<u>Preuve</u>: on identifie les p lettres de Σ avec les entiers de 0 à p-1. L'écriture en base p donne une bijection de $\mathbb N$ vers Σ^+ .

On en déduit :

Théorème

Un langage $L\subseteq \Sigma^*$ est au plus dénombrable.

Par exemple, le langage des programmes Caml est dénombrable.

Théorème de Cantor

Un ensemble E ne peut pas être en bijection avec $\mathcal{P}(E)$.

Théorème de Cantor

Un ensemble E ne peut pas être en bijection avec $\mathcal{P}(E)$.

<u>Preuve</u> : si $f: E \longrightarrow \mathcal{P}(E)$ alors $Y = \{x \in E \mid x \notin f(x)\}$ n'a pas d'antécédent par f.

Théorème de Cantor

Un ensemble E ne peut pas être en bijection avec $\mathcal{P}(E)$.

Corollaire

L'ensemble $\mathcal{P}(\Sigma^*)$ des langages sur Σ n'est pas dénombrable.

Théorème de Cantor

Un ensemble E ne peut pas être en bijection avec $\mathcal{P}(E)$.

 $\underline{\mathsf{Preuve}}: \mathsf{si}\ f: E \longrightarrow \mathcal{P}(E) \ \mathsf{alors}\ Y = \{x \in E \mid x \not\in f(x)\} \ \mathsf{n'a} \ \mathsf{pas} \ \mathsf{d'antéc\'edent} \ \mathsf{par}\ f.$

Corollaire

L'ensemble $\mathcal{P}(\Sigma^*)$ des langages sur Σ n'est pas dénombrable.

Comme l'ensemble des langages est indénombrable alors que l'ensemble des programmes Caml est dénombrable, il existe des langages L pour lesquels le problème suivant ne peut pas être résolu par un algorithme :

Problème

Étant donné un mot m, est-ce que $m \in L$?

Théorème de Cantor

Un ensemble E ne peut pas être en bijection avec $\mathcal{P}(E)$.

 $\underline{\mathsf{Preuve}}: \mathsf{si}\ f: E \longrightarrow \mathcal{P}(E) \ \mathsf{alors}\ Y = \{x \in E \mid x \not\in f(x)\} \ \mathsf{n'a} \ \mathsf{pas} \ \mathsf{d'antéc\'edent} \ \mathsf{par}\ f.$

Corollaire

L'ensemble $\mathcal{P}(\Sigma^*)$ des langages sur Σ n'est pas dénombrable.

Comme l'ensemble des langages est indénombrable alors que l'ensemble des programmes Caml est dénombrable, il existe des langages L pour lesquels le problème suivant ne peut pas être résolu par un algorithme :

Problème

Étant donné un mot m, est-ce que $m \in L$?

On va donc se restreindre à un ensemble plus simple de langages.

Soit Σ un alphabet non vide.

Théorème

L'ensemble des langages réguliers sur Σ est infini dénombrable.

Preuve:

Soit Σ un alphabet non vide.

Théorème

L'ensemble des langages réguliers sur Σ est infini dénombrable.

 $\underline{\mathsf{Preuve}}$: l'ensemble des expressions régulières sur Σ est dénombrable (c'est un langage) donc l'ensemble des langages réguliers aussi.

Soit Σ un alphabet non vide.

Théorème

L'ensemble des langages réguliers sur Σ est infini dénombrable.

 $\underline{\mathsf{Preuve}}$: l'ensemble des expressions régulières sur Σ est dénombrable (c'est un langage) donc l'ensemble des langages réguliers aussi.

Comme l'ensemble de tous les langages sur Σ est non dénombrable :

Corollaire

Il existe des langages non réguliers sur Σ .

Soit Σ un alphabet non vide.

Théorème

L'ensemble des langages réguliers sur Σ est infini dénombrable.

 $\underline{\mathsf{Preuve}}$: l'ensemble des expressions régulières sur Σ est dénombrable (c'est un langage) donc l'ensemble des langages réguliers aussi.

Comme l'ensemble de tous les langages sur Σ est non dénombrable :

Corollaire

Il existe des langages non réguliers sur Σ .

On verra plus tard comment montrer qu'un langage n'est pas régulier...