PYTHON – Capítulo 3

Disciplina: Algoritmos

Professor: Lucas Gonçalves Nadalete **Aluno:** Camilo Bustamante Moreira

Instruções de Entrega:

- Entrega a ser realizada até o dia 16/03/2016 as 23:55 hrs.
- Os exercícios devem ser resolvidos sobre este documento e entregues via e-mail com extensão.PDF;
- Enviar o arquivo para o e-mail lucas.nadalete@fatec.sp.gov.br;
- O título do e-mail deve ser: <nome_aluno> Python Capítulo 3
- Entrega individual.

3.1. Complete a tabela a seguir, marcando inteiro ou ponto flutuante dependendo do número apresentado.

Número	Tipo numérico		
5	■ Inteiro	□ Ponto Flutuante	
5.0	□ Inteiro	■ Ponto Flutuante	
4.3	□ Inteiro	■ Ponto Flutuante	
-2	■ Inteiro	□ Ponto Flutuante	
100	■ Inteiro	□ Ponto Flutuante	
1.333	□ Inteiro	■ Ponto Flutuante	

3.2. Complete a tabela abaixo, respondendo True ou False. Considere a=4, b=10, c=5.0, d=1 e f=5.

Expressão	Resultado	
a == c	□ True	■ False
a < b	■ True	□ False
d > b	□ True	■ False
c != f	□ True	■ False
a == b	□ True	■ False
c < d	□ True	■ False
b > a	■ True	□ False
c >= f	■ True	□ False
f >= c	■ True	□ False
C <= C	■ True	□ False
c <= f	■ True	□ False

3.3. Complete a tabela a seguir utilizando a = True, b = False e c = True.

•	oto a tabola a	oogan amzanao a	mao, s	1 4100 0 0	
	Expressão	Resultado			
	a and a	■ True	□ False		
	b and b	□ True	■ False		
	not c	□ True	■ False		
	not b	■ True	□ False		
	not a	□ True	■ False		
	a and b	□ True	■ False		
	b and c	□ True	■ False		
	a or b	■ True	□ False		
	b or c	■ True	□ False		
	a or c	■ True	□ False		

b or c	■ True	□ False
c or a	■ True	□ False
c or b	■ True	□ False
c or c	■ True	□ False
b or b	□ True	■ False

3.4. Escreva uma expressão para determinar se uma pessoa deve ou não pagar imposto. Considere que pagam imposto pessoas cujo salário é maior que R\$ 1200,00.

salario > 1200

3.5. Calcule o resultado da expressão A > B and C or D, utilizando os valores da tabela a seguir.

Α	В	С	D	Resultado
1	2	True	False	False
10	3	False	False	False
5	1	True	True	True

3.6. Escreva uma expressão que será utilizada para decidir se um aluno foi ou não aprovado. Para ser aprovado, todas as médias do aluno devem ser maiores que 7. Considere que o aluno cursa apenas três matérias, e que a nota de cada uma está armazenada nas seguintes variáveis: matéria1, matéria2 e matéria3.

```
media = (matéria1 + matéria2 + matéria3)/3 media > 7
```

3.7. Faça um programa que peça dois números inteiros. Imprima a soma desses dois números na tela.

```
num1 = int(input("Entre com o primeiro número"))
num2 = int(input("Entre com o segundo número"))
soma = num1 + num2
print("A soma dos dos números %i e %i é: %i" %(num1, num2, soma))
```

3.8. Escreva um programa que leia um valor em metros e exiba convertido em milímetros.

```
valor_m = int(input("Entre com um valor em metros \n"))
print("O valor convertido em milimetros é %i" %(valor_m*1000))
```

3.9. Escreva um programa que leia a quantidade de dias, horas, minutos e segundos do usuário. Calcule o total em segundos.

```
total_seg = 0
dias = int(input("Entre com o valor em dias \n"))
total_seg = total_seg + (dias * 24 * 60 * 60) #Transforma de dias para segundos e
soma
horas = int(input("Entre com o valor em horas \n"))
```

```
total_seg = total_seg + (horas * 60 * 60) #Transforma de horas para segundos e soma min = int(input("Entre com o valor em minutos \n")) total_seg = total_seg + (min * 60) #Transforma de minutos para segundos e soma seg = int(input("Entre com o valor em segundos \n")) total_seg = total_seg + seg #Soma com o valor anterior da variavel print("O valor total em segundos é %i" %total_seg)
```

3.10. Faça um programa que calcule o aumento de um salário. Ele deve solicitar o valor do salário e a porcentagem do aumento. Exiba o valor do aumento e do novo salário.

```
sal = float(input("Informe o salário \n"))
aumento = float(input("Informa a porcentagem do aumento \n"))
aumento = aumento * .01 #Transforma o valor digitado em 0.0[valor_digitado] para
calcular a porcentagem
sal_final = sal + (sal * aumento)
print("O salário final é R$%.2f" %sal_final)
```

3.11. Faça um programa que solicite o preço de uma mercadoria e o percentual de desconto. Exiba o valor do desconto e o preço a pagar.

```
preco = float(input("Informe o valor da mercadoria \n"))
desc = float(input("Informe a porcentagem do desconto \n"))
desconto = desc * 0.01 #Transforma o valor digitado em 0.0[valor_digitado]
preco_final = preco - (preco * desconto)
print("O valor inicial foi R$%.2f. \nO valor com o desconto é de R$%.2f. \nO valor
do desconto foi de %.1f%%" %(preco, preco_final, desc))
```

3.12. Escreva um programa que calcule o tempo de uma viagem de carro. Pergunte a distância a percorrer e a velocidade média esperada para a viagem.

```
dist = float(input("Qual a distância da viagem? \n"))
vel = float(input("Qual a velocidade média esperada durante a viagem? (km/h) \n"))
tempo = dist/vel
print("Numa viagem de %.1f kilometros, com a velocidade média de %.1fkm/h, a
duração da viagem será de %.1f horas" %(dist, vel, tempo))
```

3.13. Escreva um programa que converta uma temperatura digitada em °C em °F. A fórmula para essa conversão é:

$$F = \frac{9 \times C}{5} + 32$$

```
c = float(input("Digite uma temperatura (em C) \n"))
f = ((9 * c)/5)+32
print("A temperatura digitada foi %.1f°C. \nApós conversão, a temperatura é
%.1f°F" %(c, f))
```

3.14. Escreva um programa que pergunte a quantidade de km percorridos por um carro alugado pelo usuário, assim como a quantidade de dias pelos quais o carro foi alugado. Calcule o preço a pagar, sabendo que o carro custa R\$ 60 por dia e R\$ 0,15por km rodado.

```
km = float(input("Quantos km foram rodados com o carro? \n")) dias = int(input("Quantos dias ficou com o carro? \n")) conta = (km * 0.15) + (dias * 60) #Calcula quanto irá pagar print("Você irá pagar R$%.2f pelo aluguel do carro" %conta)
```

3.15. Escreva um programa para calcular a redução do tempo de vida de um fumante. Pergunte a quantidade de cigarros fumados por dia e quantos anos ele já fumou. Considere que um fumante perde 10 minutos de vida a cada cigarro, calcule quantos dias de vida um fumante perderá. Exiba o total em dias.

```
cig_dia = int(input("Quantos cigarros você fuma por dia? \n"))
anos = float(input("Há quantos anos você fuma? \n"))
dias_perdidos = cig_dia * (365 * anos) * 10 / 6 * 24
print("Você perdeu cerca de %.1f dias na sua expectativa de vida devido ao cigarro" %dias perdidos)
```