1

Matrix theory Assignment 10

Shivangi Parashar

Abstract—This document contains the concept of vector space V over a field F.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment10/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment10/ Assignment 10.tex

1 Problem

If **V** is a vector space over field **F**, verify that:

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$

2 Theory

vector space V is an Abelian group over field F on operation +(vector addition)as it satisfies following properties.

Closure law: If $\mathbf{u}, \mathbf{v} \in \mathbf{V}$,

$$u + v \in V$$

Commutative law: $\forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$,

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

Associative law: $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$,

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

Additive identity: $\exists \mathbf{v} \in \mathbf{V}$,

$$0 + \mathbf{v} = \mathbf{v}$$

$$\mathbf{v} + 0 = \mathbf{v}$$

Additive inverses: $\forall v \in V$,

$$\mathbf{v} + \mathbf{x} = 0$$

$$\mathbf{x} + \mathbf{v} = 0$$

have a solution \mathbf{x} in \mathbf{V} , called an additive inverse of \mathbf{v} , and denoted by $-\mathbf{v}$.

3 Solution

Using property of commutativity of '+' $\in V$

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = (\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4)$$
(3.0.1)

Using property of associativity of '+' in V

$$(\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4) = \alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)]$$
(3.0.2)

Using property of commutativity of '+' in V

$$\alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)] = \alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4$$
(3.0.3)

Using property of associativity of '+' in V

$$\alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4 = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$
 (3.0.4)