Lying for Profit: An Empirical Evaluation of Antecedents of Dishonesty

Michael Geden & Amanda Young

Introduction

- •Counterproductive work behaviors (CWB): volitional acts that harm (or intend to harm) an organization or its members (Spector et al., 2006)
 - Different CWBs have different antecedents; we focused on theft
- •Theft costs organizations a lot of money, BUT it is hard to measure because people are motivated to lie on self-report measures
- We created an empirical proxy for organizational theft in which participants could earn more money by lying
 - •Similar to getting paid more for lying on a time card

Antecedents:

- Temporary cognitions and more stable dispositional traits both influence behaviors
- •Moral disengagement: dispositional propensity to rationalize immoral action as just to avoid guilt (Bandura, 1986)
- Cognitive Dissonance: holding inconsistent cognitions creates an unpleasant tension that individuals seek to reduce (Festinger, 1957)
 - "I am a good person" + "I stole something" + "Stealing is bad and good people don't do it" = dissonance
 - Hypocrisy: induces cognitive dissonance; after committing a transgression, individuals act in a compensatory moral manner to reduce dissonance (Greene & Low, 2014)
 - •Moral Licensing: reduces cognitive dissonance; after committing a moral behavior, individuals are more likely to engage in immoral behavior (Jordan, Mullen, & Murnigham, 2011)
- •The current study tested the whether moral disengagement and either inducing (hypocrisy) or reducing (moral licensing) cognitive dissonance would influence individuals' response to an empirical proxy for theft.

Hypotheses

- **H1:** Moral licensing will be positively related to theft.
- **H2:** Hypocrisy will be negatively related to theft.
- **H3:** Moral disengagement will be positively related to theft.

Experimental Method/Data

Primary Dataset:

- Gave survey to 138 Mechanical Turk workers
- Between-subjects design with 3 conditions:
 - Control: no dissonance manipulation baseline
 - Hypocrisy: increase dissonance by writing ramifications of theft essay followed by describing a time you stole in the past
 - Moral licensing: decrease dissonance by writing ramifications of theft essay followed by describing a time you were ethical in the past
- Moral disengagement measure via self-report assessment
- Empirical theft proxy
 - Given an impossible word search supposedly containing "Latin Names for Plants" and offered a bonus payment for every work they self-reported finding
 - There were actually no words to find
 - 1 minute time limit to make it seem hard instead of impossible
 - Lying with the intent to profit = any number of words reported above 0

Prior Dataset:

- 503 participants from Mechanical Turk
- Completed same empirical theft proxy, but no measure of antecedents
- Used to create informative priors for the intercept in regression models for primary dataset

Impossible Word Search

AKIYTGYWWKJIMUV

ASCLEPIAS LIEX INCANA **DULCAMARA SYRIACA MALUS SYMPLOCARPUS DAUCUS PRUNUS PLANTANUS RUDBECKIA** LYONOTHAMNUS **POMIFERA** SOLANIUM HIRTA

Models

Three Types of Models:

Poisson

 $Y_i \sim Poisson(\lambda_i)$

 $log(\lambda_i) = \beta_0 + \beta_1 * Licensing_i + \beta_2 * Hypocrisy_i + \beta_3 * Moral Disengagement_i$

2. Overdispersed Poisson

 $Y_i \sim Poisson(\lambda_i)$

 $log(\lambda_i) = \beta_0 + \beta_1 * Licensing_i + \beta_2 * Hypocrisy_i + \beta_3 * Moral Disengagement_i + \gamma_i$ $\gamma_i \sim \text{Normal}(0, \sigma^2)$

Negative Binomial

- Y_i ~ NegativeBinomial(p_i, r)

- $r \sim Uniform(0,50)$

 $log(\lambda_i) = \beta_0 + \beta_1 * Licensing_i + \beta_2 * Hypocrisy_i + \beta_3 * Moral Disengagement_i$

Priors for Intercept:

- Licensing & Hypocrisy are dummy-coded indicators of condition, and moral disengagement was mean-centered, so β_0 represents base degree of lying
- Prior dataset used to create informative priors for intercept (β_0)
- Found mean (μ_{prior}) and variance (σ^2_{prior}) for posterior distribution of the β_0
- Run for Poisson, Overdispersed Poisson, and Negative Binomial
- 3 different priors used for β_0
- Uninformative: $\beta_0 \sim \text{Normal}(0, 1000)$
- 2. Weak Prior: $\beta_0 \sim \text{Normal}(\mu_{prior}, \frac{\sigma^2 prior}{\Delta})$
- 3. Strong Prior: $\beta_0 \sim \text{Normal}(\mu_{prior}, \sigma^2_{prior})$

Uniformative Slope Priors:

- $\beta_1 \sim \text{Normal}(0, 1000)$
- $\beta_2 \sim Normal(0, 1000)$
- $\beta_3 \sim Normal(0, 1000)$

Analysis Implementation

- All analyses used JAGs via R
- 3 Markov chains
- Burn-in = 15,000 iterations
- 20,000 iterations per chain
- Trace plots and Gelman–Rubin diagnostic indicated convergence
- Minimum effective sample size > 2,000 for all parameters

Model Selection

10-fold Cross Validation:

Poisson:

β_{0} Prior	MSE B	sias	Average SD Cov	erage
Uninformative	14.26	-0.02	1.17	0.86
Weak	14.12	0.07	1.20	0.85
Strong	14.18	0.14	1.23	0.86

Overdispersed Poisson:

β_0 Prior	MSE	Bias	Average SD (Coverage
Uninformative	28677.87	7 38.80	2333.55	0.95
Weak	645.60	0 10.00	511.42	0.95
Strong	438.2	7 6.75	5 256.03	0.94

Negative Binomial:

β_0 Prior	MSE E	3ias	Average SD C	Coverage
Uninformative	57.04	1.56	39.15	0.95
Weak	55.33	1.83	20.85	0.97
Strong	143.85	3.11	30.79	0.98

DIC:

Penalized Deviance:

Model	Strong W	/eak	Uninformative
Poisson	741.2	739.7	7 739.8
Overdispersed Poisson	281.1	274.2	1 266.0
Negative Binomial	365.8	363.4	4 362.5

Model Comparison

Figure 1. Actual (black line) and posterior (pink lines) densities for the uninformative β_0 prior. Posterior densities are a sample of 50 draws. Plots for weak and strong priors were very similar

Residual Plots

Figure 2. Residual plots for the models using the uninformative β_0 prior. Plots for weak and strong priors were very similar

Results

- The Overdispersed Poisson model was chosen based on DIC, similarity of posterior to actual densities, and residual plots
 - Hypotheses were evaluated using Overdispersed Poisson models with uninformative, weak, and strong priors for β_0
- Hypothesis 1: Not Supported
- 95% Credible Sets included 0 for β_1 Hypothesis 2: Not Supported
- - 95% Credible Sets included 0 for β_2
- Hypothesis 3: Supported • 95% Credible Sets did not include 0 for β_3
 - Mean posterior β_3 values: 1.11 (uninformative), 0.98 (weak), 0.42 (strong) ctionary motive

Conclusions

- Overdispersed Poisson models were preferred to Poisson and Negative Binomial models for this data
- Higher moral disengagement is related to increased magnitude of lying for profit
- Moral licensing and hypocrisy were not related to lying
- Conclusions were not affected by using prior information on base rate Magnitude of moral disengagement effect smaller for stronger
- Future research:

priors

- Create strong feelings of dissonance or consonance
- Test other cognitive variables
- Replicate in a field setting
- Is moral disengagement stable or can it be decrease with training?