Algebraic Theory I: Homework III

Thomas Fleming

Thu 14 Oct 2021 11:07

Solution (1). 1. First, we note that if xK = yK for some $x \neq y$, then $\overline{\varphi}(xK) = \overline{x}H$ and $\overline{\varphi}(yK) = \overline{y}H$, hence we need to show $\overline{x}H = \overline{y}H$. We see $x^{-1}yK = K$, hence $\overline{\varphi}(x^{-1}yK) = \overline{x^{-1}y}H = \overline{x}^{-1}\overline{y}H = \overline{\varphi}(1K) = 1H$. So, $\overline{x}^{-1}\overline{y} \in H$, hence $\overline{y} \in \overline{x}H$ and similarly, $\overline{x} \in \overline{y}H$. So, $\overline{x}H = \overline{\varphi}(xK) = \overline{y}H = \overline{\varphi}(yK)$, so $\overline{\varphi}$ is well defined. Now,

$$\overline{\varphi}(xKyK) = \overline{\varphi}(xyKK)$$

$$= \overline{xy}H$$

$$= \varphi(xy)H$$

$$= \varphi(x)\varphi(y)H$$

$$= \overline{xy}H$$

$$= \overline{xy}HH \text{ as } H = HH \text{ by closure}$$

$$= \overline{x}H\overline{y}H$$

$$= \overline{\varphi}(xK)\overline{\varphi}(yK).$$

Furthermore, we see $\overline{\varphi}(1K) = \overline{1}H = 1H$ as $\varphi(1) = \overline{1} = 1$ by homomorphism properties. So, $\overline{\varphi}$ is a homomorphism.

- 2. First, note that $Z_0\left(\overline{G}\right)=\{1\}=\overline{Z_0\left(\overline{G}\right)}$. Now, we induce on n and we see $Z_{n-1}\left(G\right) \leq G$ and $Z_{n-1}\left(\overline{G}\right) \leq \overline{G}$ with $\overline{Z_{n-1}\left(G\right)} \leq Z_{n-1}\left(\overline{G}\right)$ by inductive hypothesis, so $\overline{\varphi}:Z_n\left(G\right)/Z_{n-1}\left(G\right) \to Z_n\left(\overline{G}\right)/Z_{n-1}\left(\overline{G}\right)$ is a well defined homomorphism. Hence, letting $\overline{x}\in\overline{Z_n\left(G\right)}$, hence $x\in Z_n\left(G\right)$ and hence $xZ_{n-1}\left(G\right)\in Z_n\left(G\right)/Z_{n-1}\left(G\right)$ implies $\overline{\varphi}xZ_{n-1}\left(G\right)=\overline{x}Z_{n-1}\left(\overline{G}\right)\in Z_n\left(\overline{G}\right)/Z_{n-1}\left(\overline{G}\right)$. Hence, we find $\overline{x}\in Z_n\left(\overline{G}\right)$. This completes the induction.
- 3. Suppose G is nilpotent and let n be the nilpotence class of G. Then, we see $\overline{Z_n(G)} = \overline{G} \leq Z_n(\overline{G})$. Hence, \overline{G} is of nilpotence class at most n, so we see \overline{G} is nilpotent.

4.

5. Suppose n is the nilpotence class of G. Then $Z_n(G) \cap H = G \cap H = H \le Z_n(H)$, so H is of nilpotence class at most n, hence H is nilpotent.

Lemma 0.1. Automorphisms preserve maximality of subgroups. Let $\varphi:G\to G$ be an automorphism and let M< G be a maximal subgroup. Suppose $\varphi(M)=M'$ is not maximal. That is, there is a \overline{M}' such that $M'<\overline{M}'<\overline{M}'< G$. Then, we find

$$\varphi^{-1}\left(\overline{M}'\right) = \varphi^{-1}\left(M' \cup \left(\overline{M}' \setminus M'\right)\right)$$
$$= \varphi^{-1}\left(M'\right) \cup \varphi^{-1}\left(\overline{M}' \setminus M'\right)$$
$$= M \cup \{\varphi^{-1}\left(m\right) : m \in \overline{M}' \setminus M'\}$$
$$> M.$$

Furthermore, $\overline{M}' < G$ by assumption, hence $M < \overline{M}' < G$. $\mbecause 1$

Solution (2). *Proof.* Now, let $\alpha: G \to G$ be an automorphism of G and denote $\alpha(M) = M'$. Then, we see

$$\alpha \left(\Phi \left(G \right) \right) = \alpha \left(\bigcap_{\substack{M < G \\ M \text{ is maximal}}} M \right)$$

$$= \bigcap_{\substack{M < G \\ M \text{ is maximal}}} \alpha \left(M \right)$$

$$= \bigcap_{\substack{M < G \\ M \text{ is maximal}}} M'$$

Then, as M' is maximal and α is an injection, we see if $N \neq M$ are both maximal subgroups, we have $\alpha(N) \neq \alpha(M)$, hence

$$\{M: \underset{M \text{ is maximal}}{M < G}\} = \{M': \underset{M \text{ is maximal}}{M < G}\}.$$

So, we have

$$\alpha\left(\Phi\left(G\right)\right) = \bigcap_{\substack{M < G \\ M \text{ is maximal}}} M' = \bigcap_{\substack{M < G \\ M \text{ is maximal}}} M = \Phi\left(G\right).$$

Solution (3). 1. Let P be a sylow p-group in $\Phi(G) = \Phi$. Then, we have $\Phi \subseteq G$ and $P \subseteq G$, so applying frattini's argument yields

$$G = \Phi N_G(P)$$
.

Suppose P is not normal, so $N_G(P) < G$. Then, as there is some maximal subgroup M with $N_G(P) \le M$ and $\Phi \le M$ for all maximal M, we find $\Phi N_G(P) = G \le M$. $\mit \$ as M was maximal. Hence, we must have $N_G(P) = G$.

2. As all P-groups of Φ are normal in Φ , we have by characterization of nilpotence that Φ is nilpotent.

Lemma 0.2. [M,M] and $\langle x^p:x\in M\rangle$ are characteristic in M. Let $\alpha:M\to M$ be an automorphism. Then, denote $\alpha(x)=x'$ for $x\in M$ and we see,

$$\begin{split} \alpha\left([M,M]\right) &= \alpha\left(\left\langle xyx^{-1}y^{-1}:x,y\in M\right\rangle\right) \\ &= \left\langle \alpha\left(xyx^{-1}y^{-1}\right)x,y\in M\right\rangle \\ &= \left\langle \alpha\left(x\right)\alpha\left(y\right)\alpha\left(x\right)^{-1}\alpha\left(y\right)^{-1}:x,y\in M\right\rangle \\ &= \left\langle x'y'x'^{-1}y'^{-1}:x,y\in M\right\rangle \\ &\leq \left\langle x'y'x'^{-1}y'^{-1}:x',y'\in M\right\rangle \\ &= [M,M] \,. \end{split}$$

Similairly,

$$\begin{split} \alpha\left(\left\langle x^{p}:x\in M\right\rangle\right) &=\left\langle \alpha\left(x^{p}\right):x\in M\right\rangle \\ &=\left\langle \alpha\left(x\right)^{p}:x\in M\right\rangle \\ &=\left\langle x'^{p}:x\in M\right\rangle \\ &\leq\left\langle x'^{p}:x'\in M\right\rangle \\ &=\left\langle x^{p}:x\in M\right\rangle. \end{split}$$

Then, we see as $M \subseteq G$ and these two groups are characteristic we also have $\langle x^p : x \in M \rangle \subseteq G$ and $[M,M] \subseteq G$. Furthermore, we note that as $xyx^{-1}y^{-1} \in M$ for $x,y \in M$ we have $\{M,M\} \subseteq \langle x^p : x \in M \rangle$. Now, Suppose M is not an elementary abelian p-group. Then, we find either [M,M] > 1 or there is an element x of order $q \neq p$.

Now, let $M = p_1^{\varepsilon_1} \dots p_n^{\varepsilon_n}$ for primes p_1, \dots, p_n and $\varepsilon_i \in \mathbb{N}$. Then, let P be a sylow p_i -group in M and we see M is abelian, hence $P \leq M$, hence P is characteristic in M, so we see $P \leq G$ and so P = M as P is assumed nontrivial. So, M is a sylow p_i -group, so $|M| = p_i^{\varepsilon_i}$.

Lastly, note that there is an element $x \in M$ with ord (x) = p, hence $x^p = 1 = 1^p$, so there is no bijection between $\langle x^p : x \in M \rangle$ and M and we see $|\langle x^p : x \in M \rangle| \neq |M|$. Thus, as $\langle x^p : x \in M \rangle \leq M$, we see $\langle x^p : x \in M \rangle < M$, but as this subgroup is characteristic within $M \subseteq G$, we find $\langle x^p : x \in M \rangle \subseteq G$, hence $\langle x^p : x \in M \rangle = \{1\}$. Thus, all elements $x \in M$ have ord (x) = p.

Solution (5). Let G be finite and solvable and let $|G| = p_1^{\alpha_1} \dots p_\ell^{\alpha_\ell}$ and define $\alpha = \sum_{i=1}^\ell \alpha_i$ to be the sum of all powers in the prime factorization of |G|. If $\alpha = 1$, then |G| = p, so $G \simeq \mathbb{Z}/p\mathbb{Z}$. Since $\mathbb{Z}/p\mathbb{Z}$ has no proper nontrivial subgroups, we see its sole maximal subgroup is $\{1\}$ and $|G:\{1\}| = p$.

We induce on α . Suppose the case $\alpha = n$ true and observe the case $\alpha = n + 1$. Let N be a minimal normal subgroup of G. If N = G, then we find G has no normal subgroups hence it is simple. Furthermore, G being solvable implies a chain

$$\{1\} = H_0 \trianglelefteq H_1 \trianglelefteq \ldots \trianglelefteq H_c = G$$

and as G is simple, we see $H_1 = G$ up to prepending copies of $\{1\}$ to the chain. Hence, $H_1/\{1\} \simeq G$ is abelian so $G \simeq \mathbb{Z}/q\mathbb{Z}$ for some prime q. Hence, |G| = q, so $\alpha = 1$ f.

so $\alpha=1$ \(\frac{1}{\ell}.\)
So, we see N < G. Let $|N| = p_1^{\beta_1} \dots p_r^{\beta_r}$ for some $r \leq \ell$ and $\beta_i \leq \alpha_i$ and define $\beta = \sum_{i=1}^r \beta_i$ be the sum of powers of primes in |N|. Then, we see as $\{1\} \neq N$ by assumption, we have $\beta > 0$, so atleast one $\beta_i > 0$. Hence, we find $|G/N| = p_1^{\alpha_1 - \beta_1} \dots p_{\ell}^{\alpha_{\ell} - \beta_{\ell}} < p_1^{\alpha_1} \dots p_{\ell}^{\alpha_{\ell}} = |G|$, hence as the prime bases are the same, we have $\sum_{i=1}^{\ell} \alpha_i > \sum_{i=1}^{\ell} \alpha_i - \beta_i$, so G/N has a sum of prime powers in |G/N|, denoted $\kappa = \sum_{i=1}^{\ell} \alpha_{\ell} - \beta_{\ell}$, at most k. Furthermore, letting $\varphi : G \to G/N$, $x \mapsto xN$, a surjective homomorphism, we see G/N is solvable and as homomorphisms preserve maximality by the earlier lemma, we have a maximal subgroup $M \leq G$ having a direct correspondence with the maximal subgroup $M/N \leq G/N$. Then, as $|G/N : M/N| = p^m$ for some $m \geq 1$ by the inductive hypothesis. And, as $(G/N) / (M/N) \simeq G/M$, we see $|G : M| = p^m$.