Supplementary Materials

Algorithm 1 Implementation of the adaptive model

Recording and pre-processing

- Record resting data and training data
- Calibrate activity detection
- Initialize inducing points using k-Means and train sGPs w.r.t. their hyperparameters σ_n,σ_s,l

Prediction steps

Data: WL EMG-feature of eight electrodes Result: Velocity vector v*

1: while New data points arrive do if Activity detected then Computation of \mathbf{v}^* Add sample \mathbf{x}^* to active batch (X^*) if size of $X^* > k^*$ then Pass X^* to the *update branch* 6: 7: else Add sample to resting batch (X^o) 10: if size of $X^o > k^o$ then Pass X^o to the update branch if No activity detected for t seconds then 11: 12: 13: Reset active batch

Update rules

	δ	ϵ	$\bar{\sigma}^{*2}$	$ar{\mathbf{v}}^*$	label	
1)	_	+	$-, (> \lambda_{\sigma 1})$	$v_1 > v_2$	class 1	1
2)	_		$++, (> \lambda_{\sigma 1})$	$v_1 > v_2$	class 1]
3)	+	o	$0, (> \lambda_{\sigma 2})$	$v_1 \gg v_2$	class 1	
4)	+	o	o	$v_1 \approx v_2$	diag. label	1
5)	(-)		(++)			
6)		(+)	(+)			

Here, - indicates small values, o medium values, + large values and ++ is defined as almost one. $\lambda_{\sigma 1}:=0.2$ and $\lambda_{\sigma 2}:=0.3$. An inducing point is added to X_u at $\tilde{\mathbf{x}}^*$ if all conditions in () in one row are fulfilled.

Update steps
Data: Active batch or resting batch Result: Modified data structure of the sGPs

	1:	if X^* is passed then
	2:	Calculate $\tilde{\mathbf{x}}^*, \bar{\mathbf{v}}^*$ and $\bar{\sigma}^{*2}$
	3:	Calculate δ and ϵ using $\tilde{\mathbf{x}}^*$
	4:	Pull $\boldsymbol{\mu}_{1,j+1}^m$ towards $\tilde{\tilde{\mathbf{x}}}^*$
	5:	if $\delta > 0.55$ then
	6:	Pull $\boldsymbol{\mu}_{2,j+1}^m$ towards $\mathbf{\tilde{x}}^*$
	7:	if Update rule is fulfilled then
	8:	Add rand subset of X^* to \mathcal{D}_d and remove rand subset
		of \mathcal{D}_d with equivalent label
	9:	if Update rule to update X_u is fulfilled then
	10:	Add $\tilde{\mathbf{x}}^*$ to X_u of all sGPs
	11:	if Number of updates $> t_{u1}$ or update rule 5 or 6 then
	12:	Optimize X_u of each sGP
	13:	
	14:	Recalculate μ_c^0 and Σ_c^0 using \mathcal{D}_{sub}
	15:	else if X^0 is passed then
	16:	Add rand subset of X^0 to \mathcal{D}_d and remove rand subset of
		\mathcal{D}_d
	17:	if Data structure of sGPs is modified then
	18:	Recomputation of model structures within the library which
		are effected by changes of \mathcal{D}_d or X_u
1	19:	Overwrite adapted model structures in prediction branch

Parameterization						
Parameter	Value	Parameter	Value			
k^*	50	$\alpha 1$	0.1			
k^o	1000	$\alpha 2$	0.025			
t	0.1	$\lambda_{\sigma 1}$	0.2			
t_{u1}	15	$\lambda_{\sigma 2}$	0.3			
t_{u2}	20					

Table 1: Results of the Friedman test

Friedman:	$\begin{array}{c} \textbf{Chi-Square Value} \\ (\chi^2_{\rm R})(2) \end{array}$	p-Value (p)	Effect Size (ω)
Position 1	33.917	< 0.0001	0.485
Position 2*	64.825	< 0.0001	0.671
Position 2**	104.039	< 0.0001	0.850
Main Axes	68.474	< 0.0001	0.563
Diagonal Axes	123.293	< 0.0001	0.756

Figure 1: Results of the questionnaire on the satisfaction of the control with the range from -2.5 to +2.5. Subjects answered the questionnaire at the end of each test session.

Figure 2: Results of the Fitts analysis; upper part: results for the different directions, direction 1-4 refer to the main axes and direction 5-8 to the diagonal axes; lower part: results for the different positions.

Figure 3: Distribution of time with respect to navigation along the main axes (top subplot) or diagonal axes (bottom subplot). Note that a time of 16s corresponds to failed trials.

Figure 4: Distribution of time with respect to the different positions. Note that a time of 16s corresponds to failed trials.