IFCE - CURSO: Engenharia de Mecatrônica/Licenciatura em Física - 2015-1 Cálculo I

VARIAÇÃO DE FUNÇÕES: ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO

Ponto Crítico

Um ponto c do domínio de uma função f é chamado de ponto crítico de f se f '(c) = 0, ou f '(c) não existe, ou c não é ponto interior do domínio de f.

Encontre os pontos críticos de f. sendo:

1)
$$f(x) = x^3 - 3x + 2$$

2)
$$f(x) = x^4 - 2x^2 + 3$$

3)
$$f(x) = \sqrt[5]{x+3}$$

4)
$$f(x) = \sqrt[3]{x^2 - 4}$$

1)
$$f(x) = x^3 - 3x + 2$$
 2) $f(x) = x^4 - 2x^2 + 3$ 3) $f(x) = \sqrt[5]{x+3}$
4) $f(x) = \sqrt[3]{x^2 - 4}$ 5) $f(x) = x^3 - 6x + 4$, $x \in [-2,5]$

Função Crescente e Função Decrescente

Uma função f é dita crescente num intervalo I, se a medida que x cresce, o valor de f(x) também cresce e, uma função f é dita **decrescente** num intervalo I, se a medida que x cresce, o valor de f(x) decresce.

Determinação dos Intervalos de Crescimento e Decrescimento

Seja f uma função continua em [a,b] e derivável em (a,b).

a) Se f'(x)>0 para todo $x \in (a,b)$ então f é crescente em [a,b]

b) Se f'(x)<0 para todo $x \in (a,b)$ então f é decrescente em [a,b]

Determine os intervalos de crescimento e decrescimento das funções dadas por:

1)
$$f(x)=x^3-5$$

2)
$$f(x)=x^4-8x^2-5$$
 3) $f(x)=2x-1$

3)
$$f(x) = 2x - \frac{1}{2}$$

4)
$$f(x) = x^4 - 4x^3$$
 5) $f(x) = x(5-x)^4$

5)
$$f(x) = x(5-x)^{-1}$$

Observe o gráfico da função representada abaixo e localize os pontos no eixo x que você caracteriza como pontos de máximo ou pontos de mínimo relativos(locais) da função e os correspondentes máximos e mínimo absolutos da função.

Esses pontos são chamados pontos extremos da função. Os pontos x_1 e x_2 são pontos de máximo relativos (ou local), enquanto que $f(x_1)$ e $f(x_3)$ são valores máximos relativos. Os pontos x_2 e x_4 são Chamados pontos de mínimo relativos (ou local), enquanto que $f(x_2)$ e $f(x_4)$ são os valores mínimos relativos. Além disso, observamos que f é crescente para $x < x_1$, $x \in (x_2, x_3)$ e $x > x_4$, e decrescente para $x \in (x_1, x_2)$ e $x \in (x_3, x_4).$

Determinação dos Extremos Relativos de uma Função: Teste da Derivada Primeira

Seja f uma função continua e derivável em (a,b), exceto possivelmente em $c \in (a,b)$

a) Se f' passa de positiva para negativa em c então f(c) é máximo relativo de f

b) Se f' passa de negativa para positiva em c então f(c) é mínimo relativo de f

c) Se f' não muda de sinal em c então f(c) não é extremo relativo de f

Encontre os máximos e mínimos relativos das funções dadas por:

Teste da Derivada Segunda:

Seja f uma função derivável em (a,b) e c∈ (a,b), tal que f '(c)= 0

- a) Se f "(c) > 0 então f(c) é mínimo relativo de f.
- b) Se f "(c) < 0 então f(c) é máximo relativo de f.
- c) Se f "(c) = 0, nada podemos concluir.

Encontre os máximos e mínimos relativos das funções dadas por:

1)
$$f(x) = x^3 - 12x + 4$$

1) $f(x) = x^3 - 12x + 4$ 2) $f(x) = x^3 - 3x^2 + 5$ 3) $f(x) = x^4 - 8x^2 + 6$ 4) $f(x) = 3x^5 - 5x^3$

Concavidade e Inflexão

Teste da Concavidade

Se f''(x) existe em um intervalo (a,b) então o gráfico de f é

- a) côncavo para baixo (CPB) se f "(x) < 0, \forall x \in (a, b).
- b) côncavo para cima (CPC) se f "(x) > 0, \forall x \in (a, b).

Ponto de Inflexão

Um ponto c pertencente ao domínio da f é um ponto de inflexão de f se o gráfico de f muda a concavidade em c. Neste caso, (c,f(c)) é um ponto de inflexão do gráfico de f.

Encontre os intervalos de Concavidades para cima e para baixo das funções dadas por:

1)
$$f(x) = x^3 - 3x$$
 CPB: $(-\infty,0)$, CPC: $(0,+\infty)$ 2) $f(x) = 2x^4 - 12x^2$ CPB: $(-1,1)$, CPC: $(-\infty,-1) \cup (1,+\infty)$

2)
$$f(x) = 2x^4 - 12x^2$$
 CPB: (-1.1) CPC

3)
$$f(y) = 3y^4 = 12y^3 + 26$$

3)
$$f(x) = 3x^4 - 12x^3 + 26$$
 CPB: (0,2), CPC: $(-\infty,0) \cup (2,+\infty)$

4)
$$f(x) = x^3 + 3x^2 - 9x - 5$$

4)
$$f(x) = x^3 + 3x^2 - 9x - 5$$
 CPB: $(-\infty, -1)$, CPC: $(-1, +\infty)$

Faça um estudo completo do comportamento das funções abaixo.

1)
$$f(x) = 3x^4 - 8x^3 + 6x^4$$

1)
$$f(x) = 3x^4 - 8x^3 + 6x^2$$
 Cresc.: $[0,+\infty)$, Decresc.: $(-\infty,0]$, Máx. Relativo: Não exist,

 $\label{eq:min.relativo} \text{M\'in. relativo}: f(0) = 0 \;, \quad \text{Conc.p/baixo}: \; (\frac{1}{3},\!1) \;, \qquad \text{Conc. p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \; e \; 1 \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: \; \frac{1}{3} \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \\ \text{Conc.p/cima}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \quad \text{Pt.inflex\~ao}: (-\infty,\frac{1}{3}) \cup (1,\!+\infty) \;, \\$

2)
$$f(x) = 2x^3 - 3x^2 - 12x + 10$$

2)
$$f(x) = 2x^3 - 3x^2 - 12x + 10$$
 3) $f(x) = \frac{x^3}{3} - 2x^2 + 3x + 10$

4)
$$f(x) = x^2 - 4x + 6$$

4)
$$f(x) = x^2 - 4x + 6$$
 5) $f(x) = \frac{x^3}{3} - \frac{3}{2}x^2 + 2x + 1$ 6) $f(x) = x^3 - 6x^2 + 12x - 4$

6)
$$f(x) = x^3 - 6x^2 + 12x - 4$$

1)Dada a função $f(x) = x^3 - 6x^2 + 9x - 1$, determine onde o gráfico é côncavo para cima e onde é côncavo para baixo e o ponto de inflexão. . Faça um esboço gráfico.

Resp.: Pt. inflexão em x = 2; côncavo para baixo em x < 2; côncavo para cima em x > 2

2) Esboce o gráfico da função $f(x) = x^4 + \frac{4}{3}x^3 - 4x^2$ e ache os máximos e mínimos relativos

Resp.: máximo relativo em x = 0mínimos relativos em x = -2 e x = 1

Máximos e Mínimos:

1) Encontre os valores absolutos máximo e mínimo da função: a) $f(x) = x^3 - 3x^2 + 1$ $-1/2 \le x \le 4$ b) $f(x) = x^3 - 6x^2 + 9x + 2$, [-1, 4] c) f(x) = senx + cosx, [0, $\pi/3$]

- 1) Encontre os números críticos de f(x) = $x^{\frac{3}{5}}(4-x)$
- 2) Determine os intervalos em que cada função definida a seguir é crescente e os intervalos em que é decrescente.

a) $f(x) = x + \frac{3}{x^2}$ b) $G(x) = \frac{3x^2 + 4x}{1 + x^2}$ c) $U(s) = \frac{s^2 - s + 1}{2(s - 1)}$

- **R)** a) a) Crescente: $]-\infty,0[\cup]\sqrt[3]{6},+\infty[$; Decrescente: $]0,\sqrt[3]{6}[$
 - b) Crescente: $\left] -\frac{1}{2}, 3\right[$; Decrescente: $\left] -\infty, -\frac{1}{2}\right[\cup]2, +\infty[$
 - c) Crescente: $]-\infty,0[\cup]2,+\infty[$; Decrescente:]0,2[
- 3). Consideremos a função $\mathbf{f}: \mathbf{R} \to \mathbf{R}$ definida por $\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 6\mathbf{x}$.
 - a.) Determine os pontos em que f' se anula
 - b). Determine os intervalos onde f é crescente e onde f é decrescente.

 $\text{R. } \begin{cases} f \text{ \'e crescentenos intervalos }]\text{-}\infty;\text{-}\sqrt{2}]..e....[\sqrt{2}...;...+\infty[\\ f \text{ \'e decrescente no intervalo } [\text{-}\sqrt{2}\text{ };\text{ }\sqrt{2}\text{ }] \end{cases}$

4) Seja a função $\mathbf{f}: \mathbf{R} \to \mathbf{R}$ definida por $\mathbf{f}(\mathbf{x}) = 2\mathbf{x}^3 - 24\mathbf{x} + 8$.

a) Determine os pontos onde f se anula b).os intervalos onde f é crescente e decrescente.

5). Seja a função f definida por $f(x) = \frac{x^3}{3} + mx^2 + x + 12$. Determine m de modo que a função seja crescente para todo $x \in \mathbb{R}$ -1 < m < 1

6) Encontre os valores absolutos máximo e mínimo da função $f(x) = x^3 - 3x^2 + 1$ no intervalo $-\frac{1}{2} \le x \le 4$

7) Examine a curva $y = x^4 - 4x^3$ em relação a concavidade, pontos de inflexão, máximos e mínimos locais. Use esta informação para esboçar o gráfico da função.

8)Esboce o gráfico de: a) $g(x) = x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}$ b) $k(x) = xe^x$ 9)Para quais valores de c o polinômio $P(x) = x^4 + cx^3 + x^2$ tem dois pontos de inflexão? Um ponto de inflexão? Nenhum?

Taxas Relacionadas

1) Dois lados paralelos de um retângulo aumentam a razão de 3 cm/s, enquanto os outros dois diminuem de tal modo que a área da figura permanece igual a 48 cm quadrados. Qual a taxa de variação do perímetro do retângulo quando o comprimento do lado que aumenta é $6 \,\mathrm{cm}$? 1) $-2 \,\mathrm{cm/s}$

- 2)Um triângulo isósceles tem os lados iguais com $12~\rm cm$ cada um. Se o ângulo θ entre eles, varia à razão de $2^{\rm o}$ por minuto, com que velocidade varia a área, quando $\theta = 30^{\rm o}$? 2) $\frac{2\sqrt{3}}{5}\pi~\rm cm^2$
- 3)A área de um triângulo retângulo decresce a uma taxa de $10~{\rm cm^2/s}$. Sabendo que a altura decresce a uma taxa duas vezes maior que a base, determine a taxa de variação da base no instante em que o triângulo for isósceles, com catetos medindo $2~{\rm cm}$. 3) $-\frac{10}{3}~{\rm cm/s}$
- 4)Um tanque horizontal tem $16~\rm cm$ de comprimento e suas laterais tem a forma de trapézios isósceles com $4~\rm m$ de altura, base menor igual a $4~\rm m$ e base maior igual a $6~\rm m$. Começa-se a encher o recipiente. Se o nível de água sobe à razão de $0,\!125~\rm m/min$, quando a profundidade é de $2~\rm m$, qual a taxa de entrada da água? R. $10~\rm m^3/min$
- 5)Uma partícula move-se ao longo da curva cuja equação é $y=\sqrt{x}$. Suponhamos que x aumenta a uma taxa de 4 unidades por minuto quando x=3 unidades. Quão rapidamente cresce a distância entre a partícula e o ponto (2,0) nesse instante? R.: 3 unidades / min
- 6)Um avião a uma altura de $3\,\mathrm{km}$ voa ao longo de uma reta que o levará diretamente a um ponto acima de um observador no solo. Se em um dado instante, o observador nota que o ângulo de elevação é de 60° e aumenta à razão de $1^{\circ}/\mathrm{seg}$, determine a velocidade do avião. 6) $80\pi\,\mathrm{km/h}$
- 7)Um carro de corrida anda a uma velocidade constante de 90 milhas por hora sobre uma pista circular. Suponha que exista uma fonte de luz no centro da pista e um muro tangente a pista em um ponto C. Com que rapidez move-se a sombra do carro sobre o muro quando o carro percorreu 1/8 da pista desde C?

R. 180 mi/h

Resolução:

i) $x_c = \theta r$ derivando em relação a t:

$$\frac{d(x_c)}{dt} = r \frac{d\theta}{dt}$$

considerando $\frac{d(x_c)}{dt} = V_c = \text{velocidade do veículo na pista circular}$

Teremos:
$$\frac{d\theta}{dt} = \frac{V_c}{r}(I)$$

ii) $x_s = r.tg\theta$ derivando em relação a t:

$$\frac{d(x_s)}{dt} = r \sec^2 \theta \frac{d\theta}{dt}$$

considerando $\frac{d(x_s)}{dt} = V_s = \text{velocidade da sombra do veículo}$

Teremos:
$$\frac{d\theta}{dt} = \frac{V_s}{r sec^2 \theta}$$
 (II)

Comparando (I) com (II), teremos: $\frac{V_s}{r \sec^2 \theta} = \frac{V_c}{r} : V_s = V_c \sec^2 \theta$

Como
$$V_c = 90 \text{ milhas}; \ \theta = \frac{1}{8} 2\pi = \frac{\pi}{4} \text{ então: } V_s = 90 \text{ sec}^2 \left(\frac{\pi}{4}\right) = 180 \text{ mi} / h$$