Joint Probability Distributions Continuous Case Section 6.2 STAT/MATH 395 Spring 2020

Vincent Roulet

Lecture 6, April 10th, 2020

Ask questions via chat on Zoom Answer quiz via PollEverywhere (username: vincentroulet)

Anouncements

Office hours (After poll)

- ▶ Mondays 14:30 to 15:30 with T.A. Z. Yuan by Zoom
- ▶ Fridays 11:30 to 12:30 with instructor V. Roulet
- Register in advance to access the zoom session

Lecture material

Updated slides with solutions given at the end of the lecture

Answer Previous Exercise

Exercise

Roll a normal die 100 times. Find the probability that among the 100 rolls, we observe exactly 22 ones, 17 fives.

Answer Previous Exercise

Exercise

Roll a normal die 100 times. Find the probability that among the 100 rolls, we observe exactly 22 ones, 17 fives.

Solution Denote X_1, X_5 the number of times you get a 1 or a 5 resp. among 100 rolls We have $\mathbb{P}(\text{"face is 1"}) = \mathbb{P}(\text{"face is 5"}) = 1/6$ We could model $X_1, X_2, X_3, X_4, X_5, X_6$ as a multinomial but that can be simplified Denote $Y = X_2 + X_3 + X_4 + X_6$ the number of times you get any other face We have \mathbb{P} "face is not 1 or 5" = 4/6 = 2/3 Then $(X_1, X_5, Y) \sim \text{Multinom}(100, 3, 1/6, 1/6, 2/3)$ So $\mathbb{P}(X_1 = 22, X_5 = 17, Y = 100 - (22 + 17)) = \frac{100!}{22!17!6!!} \left(\frac{1}{6}\right)^{22} \left(\frac{1}{6}\right)^{17} \left(\frac{2}{3}\right)^{61} \approx 0.0037$

Definition (Joint probability density function)

Random variables X_1, \ldots, X_n are jointly continuous if there exists a joint probability density function $f : \mathbb{R}^n \to \mathbb{R}$ such that for any $B \subset \mathbb{R}^n$,

$$\mathbb{P}(X_1,\ldots,X_n\in B)=\int \ldots \int_B f(x_1,\ldots,x_n)dx_1\ldots dx_n$$

Note:

- $f(x_1,\ldots,x_n)\geq 0$ and $\int_{-\infty}^{+\infty}\ldots\int_{-\infty}^{+\infty}f(x_1,\ldots,x_n)dx_1\ldots dx_n=1$
- \triangleright X and Y have a p.d.f. does not imply that (X, Y) is jointly continuous!

 $^{^1{\}rm Think}$ of B as for example $[a,b]^n.$ Again a rigorous definition requires B to belong to the Borel algebra of \mathbb{R}^n

Definition (Joint probability density function)

Random variables X_1, \ldots, X_n are **jointly continuous** if there exists a **joint probability density function** $f : \mathbb{R}^n \to \mathbb{R}$ such that for any $B \subset \mathbb{R}^n$,

$$\mathbb{P}(X_1,\ldots,X_n\in B)=\int_{B} \ldots \int_{B} f(x_1,\ldots,x_n)dx_1\ldots dx_n$$

Note:

- $f(x_1,\ldots,x_n)\geq 0$ and $\int_{-\infty}^{+\infty}\ldots\int_{-\infty}^{+\infty}f(x_1,\ldots,x_n)dx_1\ldots dx_n=1$
- \blacktriangleright X and Y have a p.d.f. does not imply that (X, Y) is jointly continuous!

Example: Take X any continuous r.v., define Y = X, s.t. $\mathbb{P}(X = Y) = 1$. If (X,Y) had a joint p.d.f. f, denoting $D = \{(x,y) : x = y\}$, we would have

$$\mathbb{P}(X=Y) = \int \int \int f(x,y) dx dy = \int_{-\infty}^{+\infty} \left(\int_{x}^{x} f(x,y) dy \right) dx = 0$$

 $^{^1}$ Think of B as for example $[a,b]^n$. Again a rigorous definition requires B to belong to the Borel algebra of \mathbb{R}^n

Lemma

Let X_1, \ldots, X_n be n jointly continuous r.v.. Then for any subset $A \subset \mathbb{R}^n$ included in a linear subspace $E \subset \mathbb{R}^n$ of dimension $\dim(E) = m < n$,

$$\mathbb{P}((X_1,\ldots,X_n)\in A)=0$$

Lemma

Let X_1, \ldots, X_n be n jointly continuous r.v.. Then for any subset $A \subset \mathbb{R}^n$ included in a linear subspace $E \subset \mathbb{R}^n$ of dimension $\dim(E) = m < n$,

$$\mathbb{P}((X_1,\ldots,X_n)\in A)=0$$

Proof General case requires change of variables, let's consider $A=[a,b]^m \subset \mathbb{R}^n$ Denote f the joint p.d.f. of (X_1,\ldots,X_n) ,

$$\mathbb{P}((X_1,\ldots,X_n)\in A)=\underbrace{\int_a^b\ldots\int_a^b\underbrace{\int_0^0\ldots\int_0^0}_{n-m\ times}f(x_1,\ldots,x_n)dx_1\ldots dx_n=0$$

Example (Synthetic)

Assume X, Y have a joint p.d.f.

$$f(x,y) = \begin{cases} \frac{3}{2}(xy^2 + y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

1. Check that it is a valid joint p.d.f.

Example (Synthetic)

Assume X, Y have a joint p.d.f.

$$f(x,y) = \begin{cases} \frac{3}{2}(xy^2 + y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

1. Check that it is a valid joint p.d.f.

Solution We have $f(x, y) \ge 0$ and

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \frac{3}{2} \int_{0}^{1} \left(\int_{0}^{1} xy^{2} + y dx \right) dy$$
$$= \frac{3}{2} \int_{0}^{1} \left(\frac{1}{2} y^{2} + y \right) dy = \frac{3}{2} \left(\frac{1}{6} + \frac{1}{2} \right) = 1$$

Example (Synthetic)

Assume X, Y have a joint p.d.f.

$$f(x,y) = \begin{cases} \frac{3}{2}(xy^2 + y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

2. Compute $\mathbb{P}(X < Y)$

Example (Synthetic)

Assume X, Y have a joint p.d.f.

$$f(x,y) = \begin{cases} \frac{3}{2}(xy^2 + y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

2. Compute $\mathbb{P}(X < Y)$

Solution

$$\mathbb{P}(X < Y) = \frac{3}{2} \int_0^1 \left(\int_0^y (xy^2 + y) dx \right) dy$$
$$= \frac{3}{2} \int_0^1 \left(\frac{1}{2} y^4 + y^2 \right) dy$$
$$= \frac{3}{2} \left(\frac{1}{10} + \frac{1}{3} \right) = 0.65$$

Definition (Uniform continuous random variable in dimension 2 or 3)

Let D be a bounded subset of \mathbb{R}^2 s.t. Area $(D) < +\infty$. The random point (X,Y) is **uniformly distributed on** D if its joint p.d.f. reads

$$f(x,y) = \frac{1}{\operatorname{Area}(D)} \mathbf{1}_D(x,y) = \begin{cases} \frac{1}{\operatorname{Area}(D)} & \text{if}(x,y) \in D\\ 0 & \text{otherwise} \end{cases}$$

Let D be a bounded subset of \mathbb{R}^3 s.t. $Vol(D) < +\infty$. The random point (X,Y,Z) is **uniformly distributed on** D if its joint p.d.f. reads

$$f(x,y,z) = \frac{1}{\operatorname{Vol}(D)} \mathbf{1}_D(x,y) \begin{cases} \frac{1}{\operatorname{Vol}(D)} & \text{if}(x,y.z) \in D \\ 0 & \text{otherwise} \end{cases}$$

We denote $(X, Y) \sim \text{Unif}(D)$ or $(X, Y, Z) \sim \text{Unif}(D)$.

Lemma

Let $(X,Y) \sim \mathsf{Unif}(D)$ for $D \subset \mathbb{R}^2$, then for any $G \subset D$, (similar for \mathbb{R}^3)

$$\mathbb{P}((X,Y)\in G)=\frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Lemma

Let $(X,Y) \sim \mathsf{Unif}(D)$ for $D \subset \mathbb{R}^2$, then for any $G \subset D$, (similar for \mathbb{R}^3)

$$\mathbb{P}((X,Y)\in G)=\frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Proof

$$\Pr((X,Y) \in G) = \frac{1}{\operatorname{Area}(D)} \int \int \mathbf{1}_G(x,y) \, \mathbf{1}_D(x,y) dx dy = \int \int \mathbf{1}_G(x,y) dx dy = \frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Lemma

Let $(X,Y) \sim \mathsf{Unif}(D)$ for $D \subset \mathbb{R}^2$, then for any $G \subset D$, (similar for \mathbb{R}^3)

$$\mathbb{P}((X,Y)\in G)=\frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Proof

$$\Pr((X,Y) \in G) = \frac{1}{\operatorname{Area}(D)} \int \int \mathbf{1}_G(x,y) \, \mathbf{1}_D(x,y) dx dy = \int \int \mathbf{1}_G(x,y) dx dy = \frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Example

Denote $D_r = \{(x, y) : x^2 + y^2 < r^2\}$ a disk of radius r

Throw a dart uniformly at random on a disk of radius 2

What is the probability that the dart is in the central disk of radius one?

Lemma

Let $(X,Y) \sim \mathsf{Unif}(D)$ for $D \subset \mathbb{R}^2$, then for any $G \subset D$, (similar for \mathbb{R}^3)

$$\mathbb{P}((X,Y)\in G)=\frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Proof

$$\Pr((X,Y) \in G) = \frac{1}{\operatorname{Area}(D)} \int \int \mathbf{1}_G(x,y) \mathbf{1}_D(x,y) dx dy = \int \int \mathbf{1}_G(x,y) dx dy = \frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Example

Denote $D_r = \{(x, y) : x^2 + y^2 < r^2\}$ a disk of radius r

Throw a dart uniformly at random on a disk of radius 2

What is the probability that the dart is in the central disk of radius one?

Solution $(X, Y) \sim \text{Unif}(D_2)$

$$\mathbb{P}((X,Y) \in D_1) = \frac{\pi 1^2}{\pi 2^2} = \frac{1}{4}$$

Lemma

Let $g:\mathbb{R}^n \to \mathbb{R}$ and let X_1,\ldots,X_n be jointly continuous r.v. with joint p.d.f. f,

$$\mathbb{E}[g(x_1,\ldots x_n)]=\int_{-\infty}^{+\infty}\ldots\int_{-\infty}^{+\infty}g(x_1,\ldots,x_n)f(x_1,\ldots,x_n)dx_1\ldots dx_n$$

Example

Throw a dart uniformly at random on a square of edge size 2 centered on 0 Assume your score is equal to the square distance to the center What is your average score?

Lemma

Let $g: \mathbb{R}^n \to \mathbb{R}$ and let X_1, \ldots, X_n be jointly continuous r.v. with joint p.d.f. f,

$$\mathbb{E}[g(x_1,\ldots x_n)] = \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} g(x_1,\ldots,x_n) f(x_1,\ldots,x_n) dx_1 \ldots dx_n$$

Example

Throw a dart uniformly at random on a square of edge size 2 centered on 0 Assume your score is equal to the square distance to the center What is your average score?

Solution
$$(X,Y)\sim \text{Unif}(S)$$
 with $S=\{(x,y):-1\leq x\leq 1,-1\leq y\leq 1\}$ Score is $g(x,y)=x^2+y^2$ Average score

$$\mathbb{E}[g(X,Y)] = \frac{1}{4} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) \mathbf{1}_{S}(x,y) dx dy = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} (x^{2} + y^{2}) dx dy = 1/3$$

Definition (Marginal probability density function)

Let X,Y be jointly continuous r.v. and denote $f_{X,Y}$ their joint p.d.f. then the p.d.f. of X exists and is given by

$$f_X(X) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$

Definition (Marginal probability density function)

Let X,Y be jointly continuous r.v. and denote $f_{X,Y}$ their joint p.d.f. then the p.d.f. of X exists and is given by

$$f_X(X) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$

Proof We have by definition of the joint p.d.f. an expression of the c.d.f. of X as

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{P}(X \le t, -\infty \le Y \le +\infty) = \int_{-\infty}^t \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy dx$$

Therefore
$$f_X(x) = F_X'(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y)$$

Example

Consider a disk of radius r, $D_r = \{(x, y) : x^2 + y^2 \le r\}$ and $(X, Y) \sim \text{Unif}(D_r)$. What is the marginal p.d.f. of X?

Example

Consider a disk of radius r, $D_r = \{(x, y) : x^2 + y^2 \le r\}$ and $(X, Y) \sim \text{Unif}(D_r)$. What is the marginal p.d.f. of X?

Solution Joint p.d.f. is $f_{X,Y}(x,y) = \frac{1}{\pi r^2} \mathbf{1}_{D_r}(x,y)$ where $D_r = \{(x,y) : x^2 + y^2 \le r^2\}$ Marginal density is then $f_X(x) = 0$ for |x| > r, and for $|x| \le r$,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \frac{1}{\pi r^2} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} dy = \frac{2}{\pi r^2} \sqrt{r^2 - x^2}$$

Definition (Marginal probability density function)

Let $X_1, \ldots X_n$ be jointly continuous and denote f their joint p.d.f.. Then for any $j \in \{1, \ldots n\}$, X_j is a continuous random variable with p.d.f.

$$f_{X_j}(x) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, \dots, x_{j-1}, x, x_{j+1}, \dots, x_n) dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n$$

$$(n-1 \text{ integrals})$$

Joint Cumulative Distribution

Definition (Joint cumulative distribution)

The **joint cumulative distribution** of r.v. X_1, \ldots, X_n is defined as

$$F(t_1,\ldots,t_n) = \mathbb{P}(\{X_1 \leq t_1\} \cap \ldots \cap \{X_n \leq t_n\})$$

 $\triangleq \mathbb{P}(X_1 \leq t_1,\ldots,X_n \leq t_n)$

Lemma

1. If (X, Y) are jointly continuous with joint p.d.f. f,

$$F(t,s) = \int_{-\infty}^{t} \int_{-\infty}^{s} f(x,y) dx dy$$

 If (X, Y) are jointly continuous (i.e. there exists a joint p.d.f.) with joint c.d.f. F

$$\frac{\partial^2}{\partial t \partial s} F(t,s) \Big|_{s=x,t=y} = f(x,y)$$

Borel algebra in \mathbb{R}^{n*}

Formal details

- ▶ Until now, we defined proba. distributions on any $B \subset \mathbb{R}^n$ for n=1 or n>1.
- Formal definitions require to restrict our focus to subsets $B \subset \mathbb{R}^n$ that form a σ -algebra \mathcal{B}

Definition (σ -algebra)

Let Ω be a set, a σ -algebra \mathcal{F} on Ω is a subset of $2^{\Omega} = \{B \subset \Omega\}$ such that

- 1. $\Omega \in \mathcal{F}$
- 2. (Stable by complementarity) For any $A \in \mathcal{F}$, $A^c \triangleq \Omega \setminus A \in \mathcal{F}$
- 3. (Stable by countable union) For any $A_1,A_2,\ldots\in\mathcal{F}$, $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{F}$

Why introducing σ -algebra?

You want the probability measure to satisfy that

- ▶ the measure is non-negative
- lacktriangle the measure of the union of disjoint sets is the sum of the measure of union sets

Then you can build a union of sets V_k (see e.g. Vitali set on Wikipedia) s.t.

$$[0,1]\subset igcup_{k=1}^{+\infty} V_k \subset [-1,2] \qquad \mathbb{P}(V_k)=\lambda \geq 0 \quad ext{for all} \ \ k$$

which leads to $1 \leq \sum_{k=1}^{+\infty} \mathbb{P}(V_k) \leq 3$ which is impossible

Borel algebra in \mathbb{R}^{n*}

Formally, we restrict our focus on the Borel algebra of \mathbb{R}^n

Definition (Borel algebra in \mathbb{R}^n)

The Borel algebra in \mathbb{R}^n , denoted \mathcal{B}_n , is the smallest σ -algebra (in terms of inclusion) that contains

- ▶ all product of intervals $[a_1, b_1] \times ... \times [a_n, b_n]$ for $a_i \leq b_i \in \mathbb{R}$ or equivalently defined as the smallest σ -algebra that contains
 - ▶ all product of intervals of the form $(-\infty, a_1] \times ... \times (-\infty, a_n]$ for $a_i \in \mathbb{R}$.

Consequence

- 1. If we can measure all intervals of the form $(-\infty, a_1] \times ... \times (-\infty, a_n]$ for $a_i \in \mathbb{R}$, then we can measure all subsets of interests, i.e. all $B \in \mathcal{B}_n$, \rightarrow we know all the information necessary to describe the proba distribution
- 2. All the information necessary to describe any r.v. is contained in its c.d.f.

Quiz for next lecture

Exercise

I am shooting an arrow on a target on a wall $W = \{(x,y) : -1 \le x \le 1, 0 \le y \le 1\}$. A wind affects my shoot from the left and the gravity also affects my shoot such that the position of the arrow has a p.d.f. proportional to $\frac{e^x}{\sqrt{y+1}}$

 $What is the probability \\ that I touch the target $T=\{(x,y):-0.1\leq x\leq 0.1, 0.4\leq y\leq 0.6\}$?}$