February 1, 2025

MATH 576 Homework 2

Problem 1 Prove that $*1 + *2 + *3 + \cdots + *(4k + 3) = *0$ for any nonnegative integer k.

Let \oplus denote the nim-sum, let | denote concatenation, and let m_2 represent the binary representation of n for any $n \in \mathbb{N}$. We note that for any $k \in \mathbb{N}$ and $0 \le a, b \le 3$, we have

$$*(4k+a) + *(4k+b) = *a + *b.$$
 (*)

This is because multiplying by 4 corresponds to left-shifting by 2 in binary and a_2 will have length 2 (after left-padding with 0s), so $(4k + a)_2 = k_2|a_2$ and $(4k + b)_2 = k_2|b_2$. We can then write

$$(k_2|a_2) \oplus (k_2|b_2) = (k_2 \oplus k_2)|(a_2 \oplus b_2) = a_2 \oplus b_2,$$

proving (\star) .

We now prove the claim by induction on k. For the base case, we have

$$*1 + *2 + *3 = 01_2 \oplus 10_2 \oplus 11_2 = 11_2 \oplus 11_2 = 00_2 = *0.$$
 (**)

Now, let $k \in \mathbb{N}$, k > 0, and suppose the claim holds for k - 1. Then, we have

$$*1 + *2 + *3 + \dots + *(4k + 3)$$

$$= *1 + *2 + *3 + \dots + *(4k - 1) + *(4k) + *(4k + 1) + *(4k + 2) + *(4k + 3)$$

$$= \left[*1 + *2 + *3 + \dots + *(4(k - 1) + 3) \right] + *(4k) + *(4k + 1) + *(4k + 2) + *(4k + 3)$$

$$= *0 + *(4k) + *(4k + 1) + *(4k + 2) + *(4k + 3)$$
 (induction hypothesis)
$$= \left[*(4k) + *(4k + 1) \right] + \left[*(4k + 2) + *(4k + 3) \right]$$
 (nim-sum is associative)
$$= *0 + *1 + *2 + *3$$
 (from (**) and associativity)
$$= *0 + *0 = *0.$$
 (from (***))

Problem 2 Find an option from the Nim position (22, 40, 51) that is in \mathcal{P} .

We claim that (22, 37, 51) is in \mathcal{P} . We compute

$$22 \oplus 37 \oplus 51 = 010110_2 \oplus 100101_2 \oplus 110011_2$$

= $110011_2 \oplus 110011_2$
= $0_2 = 0$,

which verifies the claim.

Problem 3 *Misère Nim* is the game of Nim played under the misère play convention, so that the player who removes the last token is the **loser**. Describe the winning strategy for Misère Nim.

Let G be a game of Misère Nim. Then the \mathcal{N} ext player is winning if and only if one of the following hold:

Nathan Bickel

- 1. G has at least one heap with more than one token, and the nim-sum is non-zero.
- 2. G has no heaps with more than one token, and there are an even number of heaps with one token.

To see why this is true, consider any position $(a_1, a_2, ..., a_k)$ where exactly one heap has more than one token (without loss of generality, assume it is a_1 and that heaps a_2 through a_k have one token). Then this position must have non-zero nim-sum, and the \mathcal{N} ext player has a winning strategy by taking all the tokens in a_1 if k-1 is odd and all but one of the tokens in a_1 if k-1 is even. The players then alternate taking heaps of size one until the other player loses by taking the last heap.

Since Misère Nim is finite, such a position above must occur eventually. Since it will have non-zero nim-sum, and the nim-sum can be forced to alternate between zero and non-zero by the player on whose turn the sum is non-zero, the \mathcal{N} ext player can employ this strategy when, and only when, they are in Case 1 to eventually get to Case 2 and win.

Problem 4 Determine the nimbers for the Subtraction-{1, 2, 4} game. Formally prove your answer by strong induction. (It may be helpful to compute the first 10 or so nimbers to spot the pattern).

Let \underline{n} denote \underline{n} . We claim that \underline{n} will have nimber $*(n \mod 3)$. We prove this by induction on n.

For the base case, observe that

- Since $\underline{0}$ has no options, it has nimber *0,
- Since 1 has 0 as its only option which has nimber *0, 1 has nimber *.
- Since $\underline{2}$ has $\underline{0}$ and $\underline{1}$ as its options, which have nimbers *0 and *1 respectively, $\underline{2}$ has nimber *2.
- Since 3 has 1 and 2 as its options, which have nimbers *1 and *2 respectively, 3 has nimber *0.

Now, let $n \ge 4$ and suppose that for all n' < n, $\underline{n'}$ has nimber $*(n' \mod 3)$.

Case 0: $n \equiv 0 \pmod{3}$. Then \underline{n} has options $\underline{n-1}$, $\underline{n-2}$, and $\underline{n-4}$, which have nimbers *2, *1, and *2 respectively by the induction hypothesis. Thus, \underline{n} has nimber *0.

Case 1: $n \equiv 1 \pmod{3}$. Then \underline{n} has options $\underline{n-1}$, $\underline{n-2}$, and $\underline{n-4}$, which have nimbers *0, *2, and *0 respectively by the induction hypothesis. Thus, \underline{n} has nimber *.

Case 2: $n \equiv 2 \pmod{3}$. Then \underline{n} has options $\underline{n-1}$, $\underline{n-2}$, and $\underline{n-4}$, which have nimbers *1, *0, and *1 respectively by the induction hypothesis. Thus, n has nimber *2.

Problem 5 Let G be the game sum H + J, where $H = \{*0, *, *9, *8, *4, *3\}$ and $J = \{*0, *2, *4, *, *12\}$. Find the nimber associated with G.

We compute that the number of H is *2 and the number of J is *3 by taking the mex of each set. Then, the number of G is *2 + *3, which by the num-sum we calculate to be *.