2. Соотнесите структурные формулы приведенных молекул и количество типов структурно неэквивалентных атомов водорода в них. Объясните ваш выбор. Некоторые из представленных соединений могут реагировать между собой. Проиллюстрируйте это двумя химическими реакциями, укажите условия их протекания.

•	A	Б	В	Γ	Д	E
Структурная формула	H ₃ C CH ₃	OH		\Diamond	Br Br	
Количество типов структурно неэквивалентных атомов водорода	1	2	3	4	5	6

№ 2 П вариант

Неэквивалентными называются такие атомы или группы атомов, которые не могут быть сопоставлены друг с другом путём применения к ним операций симметрии. Для того, чтобы определить количество неэквивалентных протонов (химически неэквивалентных) применим к данным структурам операции симметрии. Так, последовательный поворот молекулы циклогексана Γ на 60° вокруг проходящей через центр молекулы оси показывает, что все протоны молекулы «превращаются» друг в друга (примем, что конформации кольца изменяются быстро). Перейдём к случаю Б: видно, что при повороте молекулы изопропанола на 180° вокруг оси, проходящей через атом кислорода и метиновый атом углерода, протоны метильных групп переходят друг в друга. В то же время, протон метиновой группы и гидроксильный протон «уникальны». Обратимся к молекуле В, где поворот молекулы этилбензола на 180° вокруг оси, проходящей углерод метиленовой группы и четвертичный атом углерода, приводит к «превращению» друг в друга атомов водорода в орто- и метаположениях, в то время, как *пара*-протон уникален. Рассмотрим отдельно случай \mathbf{A} – молекулу цис-1,2-диметилциклопропана. Протоны метильных групп в ней являются эквивалентными; эквивалентны друг другу и метиновые протоны. В то же время, протоны метиленовой группы не эквивалентны друг другу, так как один из них находится в пространстве ближе к метильным группам, а другой – к метиновым протонам, и, таким образом, в молекуле А содержатся 4 неэквивалентных типа протонов.

	Γ	Д	Б	A	В	E
Структурная формула		Br	ĕ–(H ₃ C CH ₃		
Количество неэквивалентных атомов водорода	1	2	3	4	5	6

Возможные варианты химических реакций между приведёнными соединениями:

Допустимо указание *орто*-замещённого продукта, *пара*-замещённого продукта и *орто*, *пара*-дизамещённого продукта.

Критерии оценивания:

Количество неэквивалентных протонов для молекул Б, В, Г, Д по 0.5 балла
Количество неэквивалентных протонов для молекул А, Е по 1 баллу
Возможные реакции по 0.5 балла

ИТОГО: 5 баллов