Is this transaction fraudulent?

Kaitan Sun, Nada Liang, Duncan Wingfield, Travis Li

Machine Learning Project

Agenda

Business Problem

Dataset

Data Exploration

Models

Classification Tree

Logistic Regression (Lasso)

Random Forest

Stacking (SVM, Log)

Business Interpretation & Application

Summary

Part 1

Business Scenario

Business Problem

Who are we?

E-Commerce company

What's our Goal?

To identify fraudulent customers at their first transaction.

What type of question is it?

Classification: 0 (not fraudulent) or 1 (fraudulent)

Business Interpretation

TN

Predicted Result

Not fraudulent (0)

Fraudulent (1)

Type error I (FP):

Actual

Not fraudulent (0)

Fraudulent

Type error II (FN):
The transaction is not fraudulent, but we predicted it was.

TP
The transaction is fraudulent, but we predicted not.

Part 2 Dataset & Feature Engineering

Dataset: Each user first transaction

How large is it?

151,112 records / transactions

11 predictors

Response:

"Class"

0 (not fraudulent)

1 (fraudulent)

User_id [numeric]

Signup_time [date,time]

Purchase_time [date,time]

Purchase_value [numeric]

Device_id [string]

Source [string]

Browser [string]

Sex [string]

Age [numeric]

Ip_address [numeric]

Ip_address_to_country [string]

Unique User ID

Time when user created account

Time when user bought an item

Cost of the item purchased

Unique physical device identification

How the user found and clicked on

the site

The internet browser the user used

User sex (male/female)

User age

User numeric IP address

Shows what Country the IP address is

in upon purchase

Feature engineering: 11p → 15p → 48col

- 1. Delete user ID
- 2. Divide time
- 3. Calculate Time difference
- 4. Transform ip, device id, country info
- 5. Transform string into categorical for tree based model
- 6. Transform categorical data to dummy variables for logistic regression
- 7. Scale data for logistic regression

Part 3

Data Exploration

Naive model

(If we predict that every transaction is not fraudulent)

Accuracy: 90.64%

Distribution of Response Values

First Glimpse of Target by Age & Gender

Clustering

Method

k means (2,3,4,5)

Fraud rate:

Average: 9.36% (k=4) Cluster1:30%

Part 4

Model & Results

Metric Selection

- 1. Since the dataset is imbalanced, we are not going to use ACCURACY as the sole metric
- 2. AUC and ROC curve will be leveraged as a trade-off metric

Model 1: Random Forest

Type I error 0.00%

Type II error 45.97%

95.68% Accuracy

AUC 0.848

Actual

Fraud

Prediction

Not fraud Fraud Not fraud 0 27380 1536 1307

Model 1: Random Forest

MeanDecreaseAccuracy

Variable Importance in the Random Forest

time diff n shared device n shared ip purchase quarter purchase month signup month purchase day signup day signup_quarter source purchase value age sex n_shared_country browser

n_shared_ip time_diff n_shared_device purchase_month purchase_value signup_month age purchase_quarter n_shared_country purchase_day signup_day browser signup_quarter source sex

Model 2: Logistic Regression (Lasso)

Type I error 0.46%

Type II error 45.48%

Accuracy 95.30%

AUC 0.844

Prediction

Not fraud Fraud Not fraud 27253 127 1550 1293

Actual

Fraud

Model 2: Logistic Regression + New Loss

X_train Y_train Labeled M1 **M2**

pred1	pred2
0.72	0.70
0.25	0.22
0.80	0.96
0.58	0.52
0.20	0.93

0.66

0.27

0.37

0.09

0.91

0.11

0.38

0.66

0.66

0.42

0.92

0

0

Training

M3: SVM/LR

Test

Y_test X_test

M1 **M2**

pred1	pred2
0.50	0.39
0.59	0.46
0.31	0.54
0.47	0.09
0.09	0.61

У	
?	
?	
?	
?	
?	l

Model 3: Stacking

M3: logistic regression

M3: SVM

AUC of linear sym

Summary of Models

Random Forest is the best model.

(overall performance is great, more simple than stacking)

	Classification Tree Logistic Regressio		Classification Tree Logistic Regression Random Forest		Stacking-SVM Stacking-Logistic Regression		n
Type I error	0.00%	0.46%	0.00%	0.00%	0.18%		
Type II error	45.94%	45.48%	45.97%	45.97%	45.55%		
Accuracy	95.68%	95.30%	95.68%	95.68%	95.55%		
AUC	0.7704	0.844	0.848	0.848	0.847		

BusinessPart 5 Interpretation & Application

Patterns of Fraudulent Transactions

Transactions that were difficult to identify:

6551/151112

4.3% of total records \rightarrow acc 95.66%

6551/14151

46.3% of fraud records → type error II

Lower Cutoff

To Get a Lower Type II Error

Based on Random Forest:

Cutoff Points	0.05	0.1	0.2	0.3	0.5
Accuracy	86.69%	91.83%	94.58%	95.43%	95.68%
Type error I	11.96%	5.87%	1.83%	0.37%	0.00%
Type error II	26.28%	30.25%	40.03%	45.02%	45.97%

Action Plan

Based on the fraud probability from our model, set ALERT 1 (0.1) and ALERT 2 (0.5)

If p < ALERT 1:

Normal, no alert

Cutoff Points	0.1	0.5	
Accuracy	91.83%	95.68%	
Type error I	5.87%	0.00%	
Type error II	30.25%	45.97%	

If ALERT 1 < p < ALERT 2:

The purchase is suspicious, we will ask the customer for additional authorization. For example, send email or SMS to the customer, let him/her authorize the purchase.

If p > **ALERT 2**:

Then the purchase is highly suspicious. Not only ask the customer for additional authorization via email or SMS, but also put the purchase on hold and send the purchase information to relevant departments for further investigation.

Part 6 Summary

Summary and Recommendations

- In this scenario, type II error is more important.
- Random forest is our best model.
- We lowered the cutoff points and deigned two alert levels based on 0.1 and 0.5 cutoff points.
- There is always a fraction of fraud that we can not distinguish (46%). Therefore, more data should be collected.

 For those who have had more than one IP address and purchased the products before signing up for 12 hours:

99.95% are fraudulent.

- Important variables:
 - Time difference between purchase time and sign-up time
 - Number of shared devices
 - Number of shared IPs
 - Purchase value
 - Purchase time (month/quarter)