

EXAMPLES OF NON-ISOLATED BLOW-UP FOR PERTURBATIONS OF THE SCALAR CURVATURE EQUATION ON NON LOCALLY CONFORMALLY FLAT MANIFOLDS

FRÉDÉRIC ROBERT AND JÉRÔME VÉTOIS

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let (M, g) be a smooth compact Riemannian manifold of dimension $n \geq 3$. Given a sequence $(h_\varepsilon)_{\varepsilon > 0} \in C^\infty(M)$, we are interested in the existence of multi-peaks positive solutions $(u_\varepsilon)_{\varepsilon > 0} \in C^\infty(M)$ to the family of critical equations

$$(1) \quad \Delta_g u_\varepsilon + h_\varepsilon u_\varepsilon = u_\varepsilon^{2^*-1} \text{ in } M \text{ for all } \varepsilon > 0,$$

where $\Delta_g := -\operatorname{div}_g(\nabla)$ is the Laplace-Beltrami operator, and $2^* := \frac{2n}{n-2}$ is the critical Sobolev exponent. We say that the family $(u_\varepsilon)_\varepsilon$ blows up as $\varepsilon \rightarrow 0$ if $\lim_{\varepsilon \rightarrow 0} \|u_\varepsilon\|_\infty = +\infty$. Blowing-up families to equations like (1) are described precisely by Struwe [18] in the energy space $H_1^2(M)$: namely, if the Dirichlet energy of u_ε is uniformly bounded with respect to ε , then there exists $u_0 \in C^\infty(M)$, there exists $k \in \mathbb{N}$, there exists k families $(\xi_{i,\varepsilon})_\varepsilon \in M$ and $(\mu_{i,\varepsilon})_\varepsilon \in (0, +\infty)$ such that

$$(2) \quad u_\varepsilon = u_0 + \sum_{i=1}^k \left(\frac{\sqrt{n(n-2)}\mu_{i,\varepsilon}}{\mu_{i,\varepsilon}^2 + d_g(\cdot, \xi_{i,\varepsilon})^2} \right)^{\frac{n-2}{2}} + o(1),$$

where $\lim_{\varepsilon \rightarrow 0} o(1) = 0$ in $H_1^2(M)$ and $\lim_{\varepsilon \rightarrow 0} \mu_{i,\varepsilon} = 0$ for all $i = 1, \dots, k$. In this situation, we say that u_ε develops k peaks when $\varepsilon \rightarrow 0$.

We say that $\xi_0 \in M$ is a blow-up point for $(u_\varepsilon)_\varepsilon$ if $\lim_{\varepsilon \rightarrow 0} \max_{B_r(\xi_0)} u_\varepsilon = +\infty$ for all $r > 0$. It follows from elliptic theory that the blow-up points of a family of solutions $(u_\varepsilon)_\varepsilon$ to (1) satisfying (2) is exactly $\{\lim_{\varepsilon \rightarrow 0} \xi_{i,\varepsilon} / i = 1, \dots, k\}$.

Following the terminology introduced by Schoen [16], $\xi_0 \in M$ is an isolated point of blow-up for $(u_\varepsilon)_\varepsilon$ if there exists $(\xi_\varepsilon)_\varepsilon \in M$ such that

- ξ_ε is a local maximum point of u_ε for all $\varepsilon > 0$,
- $\lim_{\varepsilon \rightarrow 0} \xi_\varepsilon = \xi_0$,
- there exists $C, \bar{r} > 0$ such that $d_g(x, \xi_\varepsilon)^{\frac{n-2}{2}} u_\varepsilon(x) \leq C$ for all $x \in B_{\bar{r}}(\xi_0)$,
- $\lim_{\varepsilon \rightarrow 0} \max_{B_r(\xi_0)} u_\varepsilon = +\infty$ for all $r > 0$.

The notion has proved to be very useful in the analysis of critical equations. Let $c_n := \frac{n-2}{4(n-1)}$ and R_g be the scalar curvature of (M, g) . Compactness for the Yamabe equation

$$(3) \quad \Delta_g u + c_n R_g u = u^{2^*-1}$$

Date: January 14th, 2013.

Keywords: nonlinear elliptic equations, blow-up, conformal invariance. 2010 Mathematics Subject Classification: 35J35, 35J60, 58J05, 35B44. The authors are partially supported by the ANR grant ANR-08-BLAN-0335-01.

when $n \leq 24$ (the full result is due to Kuhri–Marques–Schoen [10]) is established by proving first that the sole possible blow-up points for (3) are isolated, see Schoen [16, 17], Li–Zhu [13], Druet [5], Marques [14], Li–Zhang (Theorem 1.1 in [12]), and Kuhri–Marques–Schoen [10]). When $n \geq 25$, there are examples of non-compactness of equation (3) (Brendle [1] and Brendle–Marques [2]).

In this note, we address the questions to know whether or not blow-up solutions for (1) do exist, and whether or not they necessarily have isolated blow-up points. When $h_\varepsilon \leq c_n R_g$, blow-up does not occur for $n \leq 5$ as shown by Druet [5] (except for the conformal class of the round sphere). When the potential is allowed to be above the scalar curvature, blow-up is possible: we refer to Druet–Hebey [6] for examples of non-isolated blow-up on the sphere with C^1 -perturbations of the scalar curvature term in (3), and to Esposito–Pistoia–Vétois [9] for examples of isolated blow-up on general compact manifolds with arbitrary smooth perturbations of the scalar curvature. We present in this note examples of non-isolated blow-up points for smooth perturbations of the scalar curvature term in (3). This is the subject of the following theorem.

Theorem 1.1. *Let $\mathbb{S}^p \times \mathbb{S}^q$, $p, q \geq 3$ be endowed with the standard product metric g . For any $\xi_0 \in \mathbb{S}^p \times \mathbb{S}^q$, and $r \in \mathbb{N}$, there exists $(h_\varepsilon)_{\varepsilon > 0} \in C^\infty(\mathbb{S}^p \times \mathbb{S}^q)$ such that $\lim_{\varepsilon \rightarrow 0} h_\varepsilon = c_n R_g$ in $C^r(\mathbb{S}^p \times \mathbb{S}^q)$, and there exists $(u_\varepsilon)_{\varepsilon > 0} \in C^\infty(\mathbb{S}^p \times \mathbb{S}^q)$ a family of positive solutions to*

$$\Delta_g u_\varepsilon + h_\varepsilon u_\varepsilon = u_\varepsilon^{2^*-1} \text{ in } \mathbb{S}^p \times \mathbb{S}^q \text{ for all } \varepsilon > 0,$$

such that the u_ε 's blow up at ξ_0 as $\varepsilon \rightarrow 0$ with an arbitrarily large number of peaks. In particular, ξ_0 is not an isolated blow-up point for the u_ε 's.

As a consequence, when dealing with general perturbed equations like (1), one has to deal with the delicate situation of the accumulation of peaks at a single point. The C^0 -theory by Druet–Hebey–Robert [8] addresses this question in the a priori setting and L^∞ -norm. We refer also to Druet [4] and Druet and Hebey [7] where the analysis of the radii of interaction of multi peaks solutions is performed.

The choice of this note is to perturb the potential $c_n R_g$ of the equation. Another point of view is to fix the potential $c_n R_g$ and to multiply the nonlinearity u^{2^*-1} by smooth functions then leading to consider Kazdan–Warner type equations: in this slightly different context, Chen–Lin [3] and Brendle (private communication) have constructed non-isolated local blow-up respectively in the flat case and in the Riemannian case.

Acknowledgements: the authors express their deep thanks to E.Hebey for stimulating discussions and constant support for this project. The first author thanks C.-S.Lin for stimulating discussions and S.Brendle for communicating his unpublished result.

2. PROOFS

We prove the following theorem that covers Theorem 1.1:

Theorem 2.1. *Let (M, g) be a non-locally-conformally flat compact Riemannian manifold of dimension $n \geq 6$ with positive Yamabe invariant. We fix $\xi_0 \in M$ such that the Weyl tensor at ξ_0 is such that $\text{Weyl}_g(\xi_0) \neq 0$. We let $k \geq 1$ and $r \geq 0$ be*

two integers. Then there exists $(h_\varepsilon)_{\varepsilon>0} \in C^\infty(M)$ such that $\lim_{\varepsilon \rightarrow 0} h_\varepsilon = c_n R_g$ in $C^r(M)$, and there exists $(u_\varepsilon)_{\varepsilon>0} \in C^\infty(M)$ a family of solutions to

$$\Delta_g u_\varepsilon + h_\varepsilon u_\varepsilon = u_\varepsilon^{2^*-1} \text{ in } M \text{ for all } \varepsilon > 0,$$

such that $(u_\varepsilon)_\varepsilon$ develops k peaks at the blow-up point ξ_0 . Moreover, ξ_0 is an isolated blow-up point if and only if $k = 1$.

Note that the Weyl tensor of $\mathbb{S}^p \times \mathbb{S}^q$ endowed with the product metric never vanishes. The proof of Theorem 2.1 relies on a Lyapunov-Schmidt reduction. We fix $\xi_0 \in M$ such that $\text{Weyl}_g(\xi_0) \neq 0$. It follows from the classical conformal normal coordinates theorem of Lee-Parker [11] that there exists $\Lambda \in C^\infty(M \times M)$ such that for any $\xi \in M$,

$$R_{g_\xi}(\xi) = 0, \quad \nabla R_{g_\xi}(\xi) = 0, \quad \text{and} \quad \Delta_{g_\xi} R_{g_\xi}(\xi) = \frac{1}{6} \text{Weyl}_g(\xi),$$

where $\Lambda_\xi := \Lambda(\xi, \cdot)$ and $g_\xi := \Lambda_\xi^{4/(n-2)} g$. Without loss of generality, up to a conformal change of metric, we assume that $g_{\xi_0} = g$. We let $r_0 > 0$ be such that $r_0 < i_{g_\xi}(M)$ for all $\xi \in M$ compact, where $i_{g_\xi}(M)$ is the injectivity radius of M with respect to the metric g_ξ . We let $\chi \in C^\infty(\mathbb{R})$ be such that $\chi(x) = 1$ for $x \leq r_0/2$ and $\chi(x) = 0$ for $x \geq r_0$. We define a bubble centered at ξ with parameter δ as:

$$W_{\delta, \xi} := \chi(d_g(\cdot, \xi)) \Lambda_\xi \left(\frac{\sqrt{n(n-2)}\delta}{\delta^2 + d_{g_\xi}(\cdot, \xi)^2} \right)^{\frac{n-2}{2}}.$$

We fix an integer $k \geq 1$. Given $\alpha > 1$ and $K > 0$, we define the set

$$\mathcal{D}_{\alpha, K}^{(k)}(\delta) := \left\{ ((\delta_i)_i, (\xi_i)_i) \in (0, \delta)^k \times M^k \mid \frac{1}{\alpha} < \frac{\delta_i}{\delta_j} < \alpha ; \frac{d_g(\xi_i, \xi_j)^2}{\delta_i \delta_j} > K \text{ for } i \neq j \right\}.$$

For any $h \in C^0(M)$, we define the functional:

$$J_h(u) := \frac{1}{2} \int_M (|\nabla u|_g^2 + h u^2) dv_g - \frac{1}{2^*} \int_M u_+^{2^*} dv_g$$

for all $u \in H_1^2(M)$. For $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_{\alpha, K}^{(k)}$, we define the error

$$R_{(\delta_i)_i, (\xi_i)} := \|(\Delta_g + h)(\sum_{i=1}^k W_{\delta_i, \xi_i}) - (\sum_{i=1}^k W_{\delta_i, \xi_i})^{2^*-1}\|_{\frac{2n}{n+2}}$$

The classical Lyapunov-Schmidt finite-dimensional reduction yields the following:

Proposition 2.2. *We fix $\alpha > 1$, $\eta > 0$ and $C_0 > 0$ such that $\|h\|_\infty \leq C_0$ and $\lambda_1(\Delta_g + h) \geq C_0^{-1}$. Then there exists $K_0 = K_0((M, g), \alpha, C_0, \eta) > 0$, $\delta_0 = \delta_0((M, g), \alpha, C_0, \eta) > 0$ and $\phi \in C^1(\mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0), H_1^2(M))$ such that*

- $R_{(\delta_i)_i, (\xi_i)} < \eta$ for all $(\delta_i)_i, (\xi_i) \in \mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0)$,
- $u(h, (\delta_i)_i, (\xi_i)) := \sum_{i=1}^k W_{\delta_i, \xi_i} + \phi((\delta_i)_i, (\xi_i))$ is a critical point of J_h iff $((\delta_i)_i, (\xi_i))$ is a critical point of $((\delta_i)_i, (\xi_i)) \mapsto J_h(u((\delta_i)_i, (\xi_i)))$ in $\mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0)$,
- $J_h(u(h, (\delta_i)_i, (\xi_i))) = J_h(\sum_{i=1}^k W_{\delta_i, \xi_i}) + O(R_{(\delta_i)_i, (\xi_i)}^2)$.

Here, $|O(1)| \leq C((M, g), \alpha, C_0)$ uniformly in $\mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0)$.

This result is essentially contained in the existing litterature. We refer to Esposito-Pistoia-Vétois [9] and Robert-Vétois [15] for details concerning the proof of this proposition.

From now on, we fix $((\delta_i)_i, (\xi_i)_i) \in \mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0)$. Standard computations yield

$$\begin{aligned} J_h \left(\sum_{i=1}^k W_{\delta_i, \xi_i} \right) &= \sum_{i=1}^k J_h(W_{\delta_i, \xi_i}) + \left(\sum_{i \neq j} \int_M (\nabla W_{\delta_i, \xi_i}, \nabla W_{\delta_j, \xi_j})_g \right. \\ &\quad \left. + h W_{\delta_i, \xi_i} W_{\delta_j, \xi_j} dv_g \right) - \frac{1}{2^\star} \int_M \left(\left(\sum_{i=1}^k W_{\delta_i, \xi_i} \right)^{2^\star} - \sum_{i=1}^k W_{\delta_i, \xi_i}^{2^\star} \right) dv_g \end{aligned}$$

and

$$\int_M \left(\left(\sum_{i=1}^k W_{\delta_i, \xi_i} \right)^{2^\star} - \sum_{i=1}^k W_{\delta_i, \xi_i}^{2^\star} \right) dv_g = O \left(\sum_{i \neq j} \int_{W_{\delta_i, \xi_i} \leq W_{\delta_j, \xi_j}} W_{\delta_i, \xi_i} W_{\delta_j, \xi_j}^{2^\star-1} dv_g \right).$$

Taking K_0 larger if necessary, careful estimates yield

$$J_h \left(\sum_{i=1}^k W_{\delta_i, \xi_i} \right) = \sum_{i=1}^k J_h(W_{\delta_i, \xi_i}) + O \left(\sum_{i \neq j} \left(\frac{\delta_i \delta_j}{d_g(\xi_i, \xi_j)^2} \right)^{\frac{n-2}{2}} \right)$$

and

$$R_{(\delta_i)_i, (\xi_i)} \leq \sum_{i=1}^k \|(\Delta_g + h)W_{\delta_i, \xi_i} - W_{\delta_i, \xi_i}^{2^\star-1}\|_{\frac{2n}{n+2}} + O \left(\sum_{i \neq j} \left(\frac{\delta_i \delta_j}{d_g(\xi_i, \xi_j)^2} \right)^{\frac{n-2}{4}} \right)$$

uniformly in $\mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0)$. Moreover, see Proposition 2.3 in Esposito-Pistoia-Vétois [9], we have that

$$\begin{aligned} J_h(W_{\delta, \xi}) &= \frac{K_n^{-n}}{n} \left(1 + \frac{2(n-1)}{(n-2)(n-4)} (h - c_n R_g)(\xi) \delta^2 + O(\|h - c_n R_g\|_{C^1}) \delta^3 \right. \\ &\quad \left. - |Weyl_g(\xi)|_g^2 \begin{cases} \frac{1}{64} \delta^4 \ln \frac{1}{\delta} + O(\delta^4) & \text{when } n=6 \\ \frac{1}{24(n-4)(n-6)} \delta^4 + O(\delta^5) & \text{when } n \geq 7 \end{cases} \right) \end{aligned}$$

and

$$\|(\Delta_g + h)W_{\delta, \xi} - W_{\delta, \xi}^{2^\star-1}\|_{\frac{2n}{n+2}} \leq C \delta^2 \begin{cases} 1 + \|h - c_n R_g\|_{C^0} (\ln \frac{1}{\delta})^{2/3} & \text{when } n=6 \\ \sqrt{\delta} + \|h - c_n R_g\|_{C^0} & \text{when } n \geq 7. \end{cases}$$

Here again, $|O(1)| \leq C((M, g), \alpha, C_0)$ uniformly in $\mathcal{D}_{\alpha, K_0}^{(k)}(\delta_0)$.

We now choose the $(\delta_i), (\xi_i)$'s and the function h . For any $\varepsilon > 0$, we let $\delta_\varepsilon > 0$ be such that

$$\delta_\varepsilon^2 \ln \frac{1}{\delta_\varepsilon} = \varepsilon \text{ when } n=6 \text{ and } \delta_\varepsilon^2 = \varepsilon \text{ when } n \geq 7.$$

We let $H \in C^\infty(\mathbb{R}^n)$ be such that

- $H(x) = -1$ for all $|x| > 2$,
- H admits k distinct strict local maxima at $p_{i,0} \in B_1(0)$ for $i = 1, \dots, k$,
- $H(p_{i,0}) > 0$ for all $i = 1, \dots, k$.

We let $\tilde{r} > 0$ be such that for any $i \in \{1, \dots, k\}$, the maximum of H on $B_{2\tilde{r}}(p_{i,0})$ is achieved exactly at $p_{i,0}$ and such that $|p_{i,0} - p_{j,0}| \geq 3\tilde{r}$ for all $i \neq j$. We let $(\mu_\varepsilon)_\varepsilon \in (0, +\infty)$ be such that $\lim_{\varepsilon \rightarrow 0} \mu_\varepsilon = 0$ and

$$(|\ln \varepsilon|)^{-1/4} = o(\mu_\varepsilon) \text{ when } n=6 \text{ and } \varepsilon^{\frac{n-6}{2(n-2)}} = o(\mu_\varepsilon) \text{ when } n \geq 7,$$

where both limits are taken when $\varepsilon \rightarrow 0$. We define

$$h_\varepsilon(x) := c_n R_g(x) + \varepsilon H(\mu_\varepsilon^{-1} \exp_{x_0}^{-1}(x)) \text{ for all } x \in M.$$

Here, the exponential map is taken with respect to the metric g and after assimilation to \mathbb{R}^n of the tangent space at ξ_0 : this definition makes sense for $\varepsilon > 0$ small enough. For $(t_i)_i \in (0, +\infty)^k$ and $(p_i)_i \in (\mathbb{R}^n)^k$, we define

$$\tilde{u}_\varepsilon((t_i)_i, (p_i)_i) := u(h_\varepsilon, (t_i \delta_\varepsilon)_i, (\exp_{\xi_0}(\mu_\varepsilon p_i))_i).$$

The above estimates and the choice of the parameters yields

$$(4) \quad \lim_{\varepsilon \rightarrow 0} \frac{J_{h_\varepsilon}(\tilde{u}_\varepsilon((t_i)_i, (p_i)_i)) - k \frac{K_n^{-n}}{n}}{\varepsilon \delta_\varepsilon^2} = \sum_{i=1}^k F_n(t_i, p_i) \text{ in } C_{loc}^0((0, +\infty)^k \times \prod_{i=1}^k B_r(p_{i,0}))$$

where

$$F_n(t, p) := \frac{2(n-1)}{(n-2)(n-4)} H(p)t^2 - d_n |Weyl_g(\xi_0)|_g^2 t^4 \text{ for } (t, p) \in (0, +\infty) \times \mathbb{R}^n$$

with $d_6 = \frac{1}{64}$ and $d_n := \frac{1}{24(n-4)(n-6)}$ for $n \geq 7$. As easily checked, up to choosing the t'_i s in suitable compact intervals I_1, \dots, I_k , the right-hand-side of (4) has a unique maximum point in the interior of $\prod_{i=1}^k I_i \times \prod_{i=1}^k B_{\tilde{r}}(p_{i,0})$. As a consequence, for $\varepsilon > 0$ small enough, $J_{h_\varepsilon}(\tilde{u}_\varepsilon((t_i)_i, (p_i)_i))$ admits a critical point, $((t_{i,\varepsilon})_i, (p_{i,\varepsilon})_i) \in (\alpha, \beta)^k \times \prod_{i=1}^k B_{\tilde{r}}(p_{i,0})$ for some $0 < \alpha < \beta$ independent of ε . Defining $u_\varepsilon := \tilde{u}_\varepsilon((t_{i,\varepsilon})_i, (p_{i,\varepsilon})_i)$, it follows from Proposition 2.2 and the strong maximum principle that

$$\Delta_g u_\varepsilon + h_\varepsilon u_\varepsilon = u_\varepsilon^{2^*-1} \text{ in } M$$

for $\varepsilon > 0$ small enough. In addition to the hypotheses above, we require that $\varepsilon = o(\mu_\varepsilon^r)$ when $\varepsilon \rightarrow 0$, which yields $\lim_{\varepsilon \rightarrow 0} h_\varepsilon = c_n R_g$ in $C^r(M)$.

We prove that $(u_\varepsilon)_\varepsilon$ develops no isolated blow-up point when $k \geq 2$. We argue by contradiction. Moser's iterative scheme yields the convergence of u_ε to 0 in $C_{loc}^2(M \setminus \{\xi_0\})$. We then get that the isolated blow-up point is ξ_0 , and thus that there exists $r_1 > 0$ and $(\xi_\varepsilon)_\varepsilon \in M$ such that $\lim_{\varepsilon \rightarrow 0} \xi_\varepsilon = \xi_0$ and there exists $C > 0$ such that

$$(5) \quad d_g(x, \xi_\varepsilon)^{\frac{n-2}{2}} u_\varepsilon(x) \leq C \text{ for all } \varepsilon > 0 \text{ and } x \in B_{r_1}(\xi_0).$$

For any $i = 1, \dots, k$, we define $\xi_{i,\varepsilon} := \exp_{\xi_0}(\mu_\varepsilon p_{i,\varepsilon})$ and

$$\tilde{u}_{i,\varepsilon}(x) := (\delta_\varepsilon t_{i,\varepsilon})^{\frac{n-2}{2}} u_\varepsilon(\exp_{\xi_{i,\varepsilon}}(\delta_\varepsilon t_{i,\varepsilon} x))$$

for all $|x| < r_0/(2\delta_\varepsilon t_{i,\varepsilon})$. It follows from standard elliptic theory that

$$(6) \quad \lim_{\varepsilon \rightarrow 0} \tilde{u}_{i,\varepsilon} = \left(\frac{\sqrt{n(n-2)}}{1 + |\cdot|^2} \right)^{\frac{n-2}{2}} \text{ in } C_{loc}^2(\mathbb{R}^n).$$

Moreover, if $\delta_\varepsilon = o(d_g(\xi_{i,\varepsilon}, \xi_\varepsilon))$ when $\varepsilon \rightarrow 0$, inequality (5) yields the convergence of $\tilde{u}_{i,\varepsilon}$ in $C_{loc}^0(\mathbb{R}^n)$: a contradiction with (6). Therefore, $d_g(\xi_\varepsilon, \xi_{i,\varepsilon}) = O(\delta_\varepsilon)$ when $\varepsilon \rightarrow 0$ for all $i = 1, \dots, k$, and then $d_g(\xi_{i,\varepsilon}, \xi_{j,\varepsilon}) = O(\delta_\varepsilon) = o(\mu_\varepsilon)$ when $\varepsilon \rightarrow 0$ for all $i \neq j$. This contradicts the fact that $d_g(\xi_{i,\varepsilon}, \xi_{j,\varepsilon}) \geq c_0 \mu_\varepsilon$ when $k \geq 2$. This proves the non-simple blow-up when $k \geq 2$.

REFERENCES

- [1] S. Brendle, *Blow-up phenomena for the Yamabe equation*, J. Amer. Math. Soc. **21** (2008), no. 4, 951–979.
- [2] S. Brendle and F. C. Marques, *Blow-up phenomena for the Yamabe equation. II*, J. Differential Geom. **81** (2009), no. 2, 225–250.
- [3] C.-C. Chen and C.-S. Lin, *Blowing up with infinite energy of conformal metrics on S^n* , Comm. Partial Differential Equations **24** (1999), no. 5-6, 785–799.
- [4] O. Druet, *From one bubble to several bubbles: the low-dimensional case*, J. Differential Geom. **63** (2003), no. 3, 399–473.
- [5] ———, *Compactness for Yamabe metrics in low dimensions*, Int. Math. Res. Not. **23** (2004), 1143–1191.
- [6] O. Druet and E. Hebey, *Blow-up examples for second order elliptic PDEs of critical Sobolev growth*, Trans. Amer. Math. Soc. **357** (2005), no. 5, 1915–1929 (electronic).
- [7] ———, *Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium*, Anal. PDE **2** (2009), no. 3, 305–359.
- [8] O. Druet, E. Hebey, and F. Robert, *Blow-up theory for elliptic PDEs in Riemannian geometry*, Mathematical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004.
- [9] P. Esposito, A. Pistoia, and J. Vétois, *The effect of linear perturbations on the Yamabe problem*. Preprint.
- [10] M. A. Khuri, F. C. Marques, and R. M. Schoen, *A compactness theorem for the Yamabe problem*, J. Differential Geom. **81** (2009), no. 1, 143–196.
- [11] J.M. Lee and T.H. Parker, *The Yamabe problem*, Bull. Amer. Math. Soc. (N.S.) **17** (1987), no. 1, 37–91.
- [12] Y.Y. Li and L. Zhang, *Compactness of solutions to the Yamabe problem. III*, J. Funct. Anal. **245** (2007), no. 2, 438–474.
- [13] Y. Y. Li and M. J. Zhu, *Yamabe type equations on three-dimensional Riemannian manifolds*, Commun. Contemp. Math. **1** (1999), no. 1, 1–50.
- [14] F. C. Marques, *A priori estimates for the Yamabe problem in the non-locally conformally flat case*, J. Differential Geom. **71** (2005), no. 2, 315–346.
- [15] F. Robert and J. Vétois, *Sign-Changing Blow-Up for Scalar Curvature Type Equations*, Comm. in Partial Differential Equations, DOI 10.1080/03605302.2012.745552, (to appear in print), available at <http://www.tandfonline.com/doi/pdf/10.1080/03605302.2012.745552>.
- [16] R.M. Schoen, *Notes from graduates lecture in Stanford University* (1988).
- [17] ———, *On the number of constant scalar curvature metrics in a conformal class*, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311–320.
- [18] M. Struwe, *A global compactness result for elliptic boundary value problems involving limiting nonlinearities*, Math. Z. **187** (1984), no. 4, 511–517.

FRÉDÉRIC ROBERT, INSTITUT ÉLIE CARTAN, UNIVERSITÉ DE LORRAINE, BP 70239, F-54506
VANDOEUVRE-LÈS-NANCY, FRANCE

E-mail address: `frédéric.robert@univ-lorraine.fr`

JÉRÔME VÉTOIS, UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS, LABORATOIRE J.-A. DIEUDONNÉ,
CNRS UMR 6621, PARC VALROSE, F-06108 NICE CEDEX 2, FRANCE

E-mail address: `vetois@unice.fr`