• • • Memorie

- Memoria locale: registi o banchi di registri.
 Realizzano la memoria di stato delle reti sequanziali.
- Memoria globale: array organizzati di elementi di memorizzazione. Permettono la memorizzazione di dati e programmi. Possono essere di vario tipo e a vari livelli.

Logica sequenziale

- Nelle logiche sequenziali le uscite dipendono non solo dal valore presente degli ingressi ma anche da quello passato
- o La *memoria* del passato viene mantenuta in *registri* che, assieme al valore presente degli ingressi rappresentano lo *stato* della rete.

Tipi di registri

- Esitono due tipi di registri:
- Latch Level-sensitive
 il clock basso: la modalità di attesa
 alto: trasparente
 - Clk

 Clk

 Q
 Q
 Q

Register – Edge-triggered
 memorizza i dati sul fronte di salita
 o discesa del clock (positive o
 negative edge triggered)

Register: Definizione Del Tempo

 t_{su} : setup time

t_{hold}: hold time

 $t_{c\rightarrow q}$: propagation time

Massima frequenza di clock

Deve essere:

$$T \ge t_{c \to q} + t_{plogic} + t_{su}$$

dove:

 $t_{c \rightarrow q}$ è il tempo <u>massimo</u> di propagazione del registro t_{plogic} è il tempo <u>massimo</u> di propagazione della logica combinatoria

Ed inoltre:

$$t_{cdregister} + t_{cdplogic} \ge t_{hold}$$

dove:

 $t_{cdregister}$ è il tempo <u>minimo</u> di propagazione del registro $t_{cdlogic}$ è il tempo <u>minimo</u> di propagazione della logica (tempo di contaminazione)

I Latches

Principio di Bistabilità: flip-flop

Metastabilità

Dal flip-flop al (positive) latch

$$Q = \overline{Clk} \cdot Q + Clk \cdot D$$

Transmission gate – NMOS only

• • Transmission gate – CMOS

Quando Clk=1 allora V_A=V_B

Latch a multiplexer

- Utilizzare il clock come segnale di disaccoppiamento, che distingue tra gli stati trasparenti e opachi
- Due transmission gate fungono da multiplexer

Static

$$Q = \overline{Clk} \cdot Q + Clk \cdot D$$

Dynamic

Latch Positivo e Negativo

Negative latch (transparent when CLK= 0)

$$Q = Clk \cdot Q + \overline{Clk} \cdot D$$

Positive latch (transparent when CLK= 1)

$$Q = \overline{Clk} \cdot Q + Clk \cdot D$$

Master-Slave Register (Edge-Triggered)

Master-Slave Register (Edge-Triggered)

Flip-Flop SR - NAND

Cross-coupled NANDs

Added clock

This is not used in datapaths any more, but is a basic building memory cell