

problem model

model

```
I want YOU to encode this CP problem
```

```
x = intvar(-9, 9, name="x")
y = intvar(-9, 9, name="y")
m = Model(
    x < 0,
    x < 1,
    x > 2,
    (x + y > 0) | (y < 0),
    (y >= 0) | (x >= 0),
    (y < 0) | (x < 0),
    AllDifferent(x,y)
)</pre>
```

model

solve

```
I want YOU to encode this CP problem
```

```
x = intvar(-9, 9, name="x")
y = intvar(-9, 9, name="y")
m = Model(
    x < 0,
    x < 1,
    x > 2,
    (x + y > 0) | (y < 0),
    (y >= 0) | (x >= 0),
    (y < 0) | (x < 0),
    AllDifferent(x,y)</pre>
```

model

solve

UNSAT

```
I want YOU to encode this CP problem
```



```
x = intvar(-9, 9, name="x")
y = intvar(-9, 9, name="y")
m = Model(
    x < 0,
    x < 1,
    x > 2,
    (x + y > 0) | (y < 0),
    (y >= 0) | (x >= 0),
    (y < 0) | (x < 0),
    AllDifferent(x,y)</pre>
```

Solver says UNSAT, what now?

- (Human) modeling error?
- Problem is <u>over-constrained</u> or <u>unsatisfiable</u>?

Talk consists of

1. Using Constraint Solvers as an oracle, with CPMpy

- 2. Explaining (un)satisfiability: examples of master/sub-problem solving
- 3. Advanced examples: Explaining Optimality (using logic cutting-planes)

Conclusion, outlook and questions

= Need for an explanation of UNSAT

- = Need for an explanation of UNSAT
- Identify <u>conflicting constraints</u> as explanation for UNSAT
 - → Extract Minimum Unsatisfiable Subset (MUS) a.k.a Irreducible Inconsistent Subsystem (IIS)

- = Need for an explanation of UNSAT
- Identify <u>conflicting constraints</u> as explanation for UNSAT
 - → Extract Minimum Unsatisfiable Subset (MUS) a.k.a Irreducible Inconsistent Subsystem (IIS)
- 2. Identify Maximal Satisfiable Subset (MSS)

- = Need for an explanation of UNSAT
- Identify <u>conflicting constraints</u> as explanation for UNSAT
 - → Extract a Minimum Unsatisfiable Subset (MUS) a.k.a Irreducible Inconsistent Subsystem (IIS)
- 2. Identify Maximal Satisfiable Subset (MSS)
- 3. "Correct" the infeasibility in the model
 - → Extract Minimum Correction Subsets (MCS)

 Complement of some MSS, removal/correction leads to a satisfiable subset

- = Need for an explanation of UNSAT
- Identify <u>conflicting constraints</u> as explanation for UNSAT
 - → Extract Minimum Unsatisfiable Subset (MUS) a.k.a Irreducible Inconsistent Subsystem (IIS)
- 2. Identify Maximal Satisfiable Subset (MSS)
- 3. "Correct" the infeasibility in the model
 - → Extract Minimum Correction Subsets (MCS)

 Complement of some MSS, removal/correction leads to a satisfiable subset

Explaining UNSAT with MUSes

Methods

- 1. Some solvers provide an implementation for extracting unsatisfiable cores as explanations of UNSAT.
- 2. **Deletion-based** Minimal unsatisfiable subsets
 - Iterate over constraints
 - Delete constraints if removing them leaves the model UNSAT

```
def mus(constraints):
    m = Model(constraints)
    assert ~m.solve(), "MUS: model must be UNSAT"

    core = m.get_core() # or all constraints
    i = 0
    while i < len(core):
        subcore = core[:i] + core[i+1:] # check if all but i makes core SAT

    if Model(subcore).solve():
        i += 1 # removing it makes it SAT, must keep
    else:
        core = subcore # overwrite core, so core[i] is next one

    return core</pre>
```

Joao Marques-Silva. Minimal Unsatisfiability: Models, Algorithms and Applications. ISMVL 2010. pp. 9-14

Example of MUS extraction

examples/tutorial_ijcai22/3_musx.ipynb


```
x = intvar(0,3, shape=4, name="x")
# circular 'bigger than', UNSAT
mus_cons = [
    x[0] > x[1],
    x[1] > x[2],
    x[2] > x[0],
    (x[3] > x[0],
    (x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))
]
core = m.get_core() # or all constraints
```

```
# circular 'bigger than', UNSAT
mus cons = [
   x[0] > x[1],
   x[1] > x[2],
   x[2] > x[0],
   x[3] > x[0],
   (x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))
core = m.get core() # or all constraints
i = 0 # we will dynamically shrink mus vars
while i < len(core):</pre>
   # add all other remaining constraints
    subcore = core[:i] + core[i+1:]
    if Model(subcore).solve():
        # with all but 'i' it is SAT, so 'i' belongs to the MUS
        print("\tSAT so in MUS", core[i])
        i += 1
   else:
        # still UNSAT, 'i' does not belong to the MUS
        print("\tUNSAT so not in MUS", core[i])
        # overwrite current 'i' and continue
        core = subcore
```

x = intvar(0,3, shape=4, name="x")

```
x = intvar(0,3, shape=4, name="x")
# circular 'bigger than', UNSAT
mus cons = [
\rightarrow x[0] > x[1],
   x[1] > x[2],
   x[2] > x[0],
   x[3] > x[0],
    (x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))
core = m.get core() # or all constraints
i = 0 # we will dynamically shrink mus vars
while i < len(core):</pre>
    # add all other remaining constraints
    subcore = core[:i] + core[i+1:]
    if Model(subcore).solve():
        # with all but 'i' it is SAT, so 'i' belongs to the MUS
        print("\tSAT so in MUS", core[i])
        i += 1
    else:
        # still UNSAT, 'i' does not belong to the MUS
```

print("\tUNSAT so not in MUS", core[i])
overwrite current 'i' and continue

core = subcore

SAT so in MUS: (x[0]) > (x[1])

```
x = intvar(0,3, shape=4, name="x")
# circular 'bigger than', UNSAT
mus cons = [
   x[0] > x[1],
\rightarrow x[1] > x[2],
   x[2] > x[0],
   x[3] > x[0],
    (x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))
core = m.get core() # or all constraints
i = 0 # we will dynamically shrink mus vars
while i < len(core):</pre>
    # add all other remaining constraints
    subcore = core[:i] + core[i+1:]
    if Model(subcore).solve():
        # with all but 'i' it is SAT, so 'i' belongs to the MUS
```

i += 1

core = subcore

SAT so in MUS: (x[0]) > (x[1])SAT so in MUS: (x[1]) > (x[2])

else:

print("\tSAT so in MUS", core[i])

still UNSAT, 'i' does not belong to the MUS

print("\tUNSAT so not in MUS", core[i])
overwrite current 'i' and continue

```
core = m.get core() # or all constraints
i = 0 # we will dynamically shrink mus vars
while i < len(core):</pre>
    # add all other remaining constraints
    subcore = core[:i] + core[i+1:]
    if Model(subcore).solve():
        # with all but 'i' it is SAT, so 'i' belongs to the MUS
        print("\tSAT so in MUS", core[i])
        i += 1
    else:
        # still UNSAT, 'i' does not belong to the MUS
        print("\tUNSAT so not in MUS", core[i])
        # overwrite current 'i' and continue
        core = subcore
SAT so in MUS: (x[0]) > (x[1])
SAT so in MUS: (x[1]) > (x[2])
SAT so in MUS: (x[2]) > (x[0])
```

x = intvar(0,3, shape=4, name="x")
circular 'bigger than', UNSAT

(x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))

mus cons = [

x[0] > x[1], x[1] > x[2], x[2] > x[0],

x[3] > x[0],

```
x = intvar(0,3, shape=4, name="x")
# circular 'bigger than', UNSAT
mus cons = [
   x[0] > x[1],
   x[1] > x[2],
   x[2] > x[0],
 \rightarrow x[3] > x[0],
    (x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))
core = m.get core() # or all constraints
i = 0 # we will dynamically shrink mus vars
while i < len(core):</pre>
    # add all other remaining constraints
    subcore = core[:i] + core[i+1:]
    if Model(subcore).solve():
        # with all but 'i' it is SAT, so 'i' belongs to the MUS
        print("\tSAT so in MUS", core[i])
        i += 1
    else:
        # still UNSAT, 'i' does not belong to the MUS
        print("\tUNSAT so not in MUS", core[i])
        # overwrite current 'i' and continue
        core = subcore
SAT so in MUS: (x[0]) > (x[1])
SAT so in MUS: (x[1]) > (x[2])
SAT so in MUS: (x[2]) > (x[0])
```

UNSAT so not in MUS: (x[3]) > (x[0])

```
x = intvar(0,3, shape=4, name="x")
# circular 'bigger than', UNSAT
mus cons = [
   x[0] > x[1],
   x[1] > x[2],
   x[2] > x[0],
   x[3] > x[0],
 (x[3] > x[1]).implies(x[3] > x[2]) & ((x[3] == 3) | (x[1] == x[2]))
core = m.get core() # or all constraints
i = 0 # we will dynamically shrink mus vars
while i < len(core):</pre>
   # add all other remaining constraints
    subcore = core[:i] + core[i+1:]
    if Model(subcore).solve():
        # with all but 'i' it is SAT, so 'i' belongs to the MUS
        print("\tSAT so in MUS", core[i])
        i += 1
   else:
        # still UNSAT, 'i' does not belong to the MUS
        print("\tUNSAT so not in MUS", core[i])
        # overwrite current 'i' and continue
        core = subcore
SAT so in MUS: (x[0]) > (x[1])
SAT so in MUS: (x[1]) > (x[2])
```

SAT so in MUS: (x[1]) > (x[2])SAT so in MUS: (x[2]) > (x[0])UNSAT so not in MUS: (x[3]) > (x[0])UNSAT so not in MUS: $(((x[3]) > (x[1])) \rightarrow ((x[3]) > (x[2])))$ and ((x[3] == 3)) or ((x[1]) == (x[2])))

Explaining UNSAT with MUSes

Methods & Insights

- Some solvers provide unsatisfiable cores as a starting point for debugging
- Deletion-based Minimal unsatisfiable subsets

KEY Insights

- ✓ <u>Faster</u> if the solver <u>supports</u> unsat core extraction and <u>assumptions</u> especially for larger problems
 - Most solvers provide an assumption interface
 - ☐ Does not require many modifications
- X Depends on the ordering of the clauses

```
i = 0 # we will dynamically shrink mus var
while i < len(core):
    # add all other remaining constraints
    subcore = core[:i] + core[i+1:]

if Model(subcore).solve():
    # with all but 'i' it is SAT, so 'i' belongs to the MUS
    print("\tSAT so in MUS", core[i])
    i += 1
else:
    # still UNSAT, 'i' does not belong to the MUS
    print("\tUNSAT so not in MUS", core[i])
    # overwrite current 'i' and continue
    core = subcore</pre>
```

Example of using assumptions for MUS extraction

<u>examples/tutorial_ijcai22/3_musx.</u> <u>ipynb</u>

Explaining UNSAT with MUSes

Methods & Insights

- Some solvers provide unsatisfiable cores as a starting point for debugging.
- Deletion-based Minimal unsatisfiable subsets

KEY Insights

- Depends on the ordering of the clauses
- ✓ <u>Faster</u> if the solver <u>supports</u> unsat core extraction and <u>assumptions</u> especially for larger problems
 - ☐ Most solvers provide an assumption interface
 - ☐ Does not require many modifications

Enumerate all Minimal Unsatisfiable Subsets and Maximal Satisfiable Subsets

Master ←→ sub-problem

Marco Polo (1254 –1324)

Marco-Polo

An example of Master ←→ Sub-problem approach

Source: https://9gag.com/gag/a07MMXZ

Marco-Polo

An example of Master ←→ Sub-problem approach

MARCO: Mapping Regions of

Constraints sets

MUS enumeration algorithm

POLO: **Power Logic**

"Map" of the powerset as a propositional logic Formula

```
MARCO Algorithm
Input: Constraint system C
 Map \leftarrow T
 while Map is satisfiable:
    seed ← getUnexplored(Map)
    if seed is satisfiable:
       MSS \leftarrow grow(seed, C)
       output MSS
       Map \leftarrow Map \land blockDown(MSS)
    else:
       MUS ← shrink(seed, C)
       output MUS
       Map \leftarrow Map \land blockUp(MUS)
```

*

K

MarcoPolo MUS/MSS enumeration

<u>examples/tutorial_ijcai22/4_marco-mus-mcs-enumeration.ipynb</u>

Explaining UNSAT with MUSes

Methods & Insights

- Deletion-based MUS extracts only 1MUS
- Efficiently enumerate all Minimal Unsatisfiable Subsets and Maximal Satisfiable Subsets
- No guarantee of cardinal-minimality (only subset minimal)
 - → Smallest Minimal Unsatisfiable Subset (SMUS)

or optimality with weighted constraints

→ Optimal (Constrained) Unsatisfiable Subset (OCUS)

Master ←→ Sub-problem

Implicit hitting set algorithms

Master ←→ Sub-problem approach

Implicit hitting set algorithms

General Structure:

- 1. Find minimum hitting set
- 2. Call subsolver for checking (SAT, UNSAT)

Saikko, Paul, Johannes P. Wallner, and Matti Järvisalo. "Implicit hitting set algorithms for reasoning beyond NP." *Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning*. 2016.

Master ←→ Sub-problem approach

Implicit hitting set algorithms

Smallest MUS [1] and Optimal (C)US [2]:

- Deciding whether a MUS of size \leq k is $\sum_{p}^{2}-complete$
- Extracting a smallest MUS (OCUS/SMUS) is in $FP^{\sum_{p}^{2}}$

Based on the implicit hitting set duality between MCSs and MUSs:

Also used for MaxSAT, the dual of the OCUS-problem, i.e. MaxHS [3]

A set $S \subseteq F$ is a MCS of F if and only if it is a *minimum hitting set* of MUSs(F).

A set $S \subseteq F$ is a MUS of F if and only if it is a *minimum hitting set* of MCSs(F).

^[2] A. Ignatiev, et al. "Smallest MUS extraction with minimal hitting set dualization." CP 2015.

^[3] J. Davies, and B.Fahiem. "Exploiting the power of MIP solvers in MAXSAT." SAT 2013.

Optimal Constrained Unsatisfiable Subsets

Implicit hitting set-based algorithm

→ uses an implicit hitting set algorithm (like SMUS and MaxHS)

```
Algorithm 4: OCUS(T, f, p)
1 \mathcal{H} \leftarrow \emptyset
2 while true do
                                                                                           MIP solver
         S \leftarrow \text{COST-OPTIMAL-HITTINGSET}(\mathcal{H}, f, p)
         if \neg SAT(S) then
4
                                                                                            SAT/CP solver
               return S
5
                                                                                            as an oracle
         end
6
         \mathcal{S} \leftarrow \mathsf{GROW}(\mathcal{S}, T)
         \mathcal{H} \leftarrow \mathcal{H} \cup \{T \setminus \mathcal{S}\}
```


OCUS with assumptions

```
def OCUS_assum(soft, soft_weights, hard=[], solver='ortools', verbose=1):
   # init with hard constraints
   assum_model = Model(hard)
   # make assumption indicators, add reified constraints
   ind = BoolVar(shape=len(soft), name="ind")
   for i,bv in enumerate(ind):
       assum_model += [bv.implies(soft[i])]
   # to map indicator variable back to soft constraints
    indmap = dict((v,i) for (i,v) in enumerate(ind))
    assum solver = SolverLookup.lookup(solver)(assum model)
    if assum_solver.solve(assumptions=ind):
       return []
                                         Hitting set Solver
   hs model = Model(
       # Objective: min sum(x l * w l)
       minimize=sum(x l * w l  for x l, w l  in zip(ind, soft_weights))
    # instantiate hitting set solver
    hittingset solver = SolverLookup.lookup(solver)(hs model)
                                                                                              repeatedly
                                                                                               compute
    while(True).
       hittingset_solver.solve()
                                                                                              hitting sets
       # Get hitting set
       hs = ind[ind.value() == 1]
                                                                                               CP/SAT
                                                                                             as an oracle
       if not assum_solver.solve(assumptions=hs):
           return soft[ind.value() == 1]
                                                                                                  Extract
       # compute complement of model in formula F
       C = ind[ind.value() != 1]
                                                                                          Correction Subset
       # Add complement as a new set to hit: sum x[j] * hij >= 1
       hittingset solver += (sum(C) >= 1)
```

OUS extraction

<u>examples/tutorial_ijcai22/5_ocus_explan</u> <u>ations.ipynb</u>

Optimal Constrained Unsatisfiable Subsets Implicit hitting set-based algorithm

- Example of multi-solver incremental solving
- Made easier and efficient with assumptions

1. Need to repeatedly compute hitting sets.

- > Problem becomes hard as collection of sets-to-hits expands.
- Big efficiency gains if incremental (and not restart)!

2. CP/SAT is used as an oracle

- > (OCUS) CP/SAT checking satisfiability of a subset
- (OCUS) Grow solves a MaxSAT problem, s.t. complement is a (small) MCS

Talk consists of

1. Using Constraint Solvers as an oracle, with CPMpy

- 2. Explaining (un)satisfiability: examples of master/sub-problem solving
- 3. Advanced examples: Explaining Optimality (using logic cutting-planes)

Conclusion, outlook and questions

What if a model is SAT?

What if a model is SAT?

What if a model is SAT?

- User may not understand all derivations
- Or wants to learn about it

"Explain in a human-understandable way how to solve constraint satisfaction problems"

Explanation step

Let E' & S' => n be one explanation step.

E' = a subset of previously derived facts E (Sudoku) Given and derived digits in the grid

S' = a minimal subset of constraints S such that E' & S' => n (Sudoku) Alldifferent column, row, box constraints

= a newly derived fact (from the solution)

How? MUS(¬n & E & S) is a valid explanation step

The best/easiest explanation step...

Let *f*(*S*) be a *cost function* that quantifies how good (e.g. easy to understand) an explanation step is.

Simple MUS-based algo:

```
sol-to-explain = propagate( E & S) \ E
X_best = None
for n in sol-to-explain:
    X = MUS(~n & E & S)
    if f(X) < f(X_best):
        X_best = X
return X_best</pre>
```


MUS gives no guarantees on quality, only subset minimal (SMUS)

The best/easiest explanation step...

Let f(S) be a cost function that quantifies how good (e.g. easy to understand) an explanation step is.

Explain 1 step with OCUS

```
sol-to-explain = propagate(E & S) \setminus E
p = exactly-one(\{\sim n \mid n \in sol-to-explain\}),
return OCUS(n \mid n \in sol-to-explain) \& S \& E \& \{\sim, f, p)
```


A sequence of explanations to explain SAT

OCUS for explaining SUDOKU

Demo

examples/tutorial_ijcai22/6_explain_sudoku.ipynb

The best/easiest explanation step...

```
sol-to-explain = propagate( E & S )
X best = None
for n in sol-to-explain:
     X = MUS (\sim n \& E \& S)
     if f(X) < f(X best):
          X best = X
return X best
p = exactly-one(\{ \sim n \mid n \in sol-to-explain \}),
OCUS(\{ n \mid n \in sol-to-explain \} \& E \& S, f, p)
```


Gamba, E., Bogaerts, B., & Guns, T. (8 2021). Efficiently Explaining CSPs with Unsatisfiable Subset Optimization. In Z.-H. Zhou (Red), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21 (bll 1381–1388). doi:10.24963/ijcai.2021/191.

Incrementality at the Sequence-level

- S Model constraints
 - Do not change from an explanation step to another
- E Derived facts of E
 - Precision-increasing!

Incrementality at the Sequence-level

In practice

Incremental OCUS works with the full unsatisfiable formula of step 0

$$S \& \frac{E_{end}}{} \& \{ \neg n \mid n \in \text{sol-to-explain} \}$$

Initialize hitting set solver **once** and modify objective at every explanation step *i* such that

- Underived facts cannot be taken
- Negated facts (n) already explained should not be selected
- Assumptions are used to deactivate unused clauses

Summary observations

(OCUS) Multi-solver Incremental solving

Multi-solver

- MIP highly effective solving hittingset problem
- CP/SAT is used as an oracle for checking satisfiability of a subset

Incremental

- Need to repeatedly compute hitting sets.
- Problem becomes <u>hard</u> as collection of sets-to-hits <u>expands</u>.
- Big efficiency gains if incremental (and not restart)!
- (Sequence) Sets-to-hit re-used between explanation steps