Лекция по математическому анализу №1.

Чудинов Никита (группа 145)

02 сентября 2015

Определение 1. Числовой ряд — формула вида

$$a_1+a_2+\cdots=\sum_{n=1}^\infty a_n;\ a_i\in\mathbb{R}$$
 или \mathbb{C}).

Определение 2. *п*-той частичной суммой ряда называется конечная сумма вида:

$$S_n = \sum_{i=1}^n a_i.$$

Определение 3. Числовой предел *сходится*, если его частичные суммы имеют предел. Такой предел называется *суммой* ряда.

Пример.

$$\sum_{n=0}^{\infty} q^n; \ S_n = \sum_{k=0}^n q^k = 1 + q + \dots + q^k = \frac{1 - q^{n+1}}{1 - q};$$

$$\lim_{n \to \infty} S_n = \begin{cases} \frac{1}{1 - q}; & |q| < 1; \\ \infty; & |q| \geqslant 1; \\ \frac{\pi}{2}; & q = -1. \end{cases}$$

Пример.

$$\sum_{k=1}^{\infty} \frac{1}{k^2 + k}; \ S_n = \sum_{k=1}^n \frac{1}{k^2 + k};$$

$$\frac{1}{k^2 + k} = \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1};$$

$$\sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{k+1};$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} 1 - \frac{1}{k+1} = 1.$$

3 амет ка. В дальнейшем, для простоты, $\sum_{n=1}^{\infty}$ может быть иногда записан как \sum_{1}^{∞} , или, реже, просто \sum .

Определение 4 (Необходимый признак сходимости). Если ряд $\sum_{1}^{\infty} a_n$ сходится, то $\lim_{a\to\infty} a_n = 0$.

Доказательство.

$$a_n = S_n - S_{n-1};$$
 Т.к. $\exists \lim_{n \to \infty} S_n = S$, то $\lim_{n \to \infty} a_n = S - S_n = 0.$

Следствие. Если $a_n \to 0$, то ряд расходится.

Заметка. Обратное неверно! $a_n \to 0 \Rightarrow$ сходимость ряда!

Пример.

$$\sum_{1}^{\infty} \left(\frac{n}{n+2} \right)^n; \ a_n = \left(\frac{n}{n+2} \right)^n \to [1^{\infty}] = \frac{1}{\left(1 + \frac{2}{n} \right)^n} \to \frac{1}{e^2} \neq 0.$$

Пример.

$$\sum_{1}^{\infty} \frac{1}{\sqrt{n}}; \ a_n = \frac{1}{\sqrt{n}} \to 0 \text{ при } n \to \infty;$$

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \geqslant \frac{n}{\sqrt{n}} = \sqrt{n} \to \infty.$$

Ряд не сходится.

Определение 5 (Критерий Коши). Ряд $\sum_{1}^{\infty} a_n$ сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n > N(\varepsilon)$ и $\forall p \in \mathbb{N} : |S_{n+p} - S_n| < \varepsilon$.

Следствие. Ряд \sum_{1}^{∞} расходится $\Leftrightarrow \exists \varepsilon > 0 \ \forall N \ \exists n > N, p : |S_{n+p} - S_n| > \varepsilon$.

 Π ример. $\sum_{1}^{\infty} \frac{1}{n}$ (гармонический ряд):

$$p = n = N; |S_{n+p} - S_n| = |S_{2N} - S_N| = \frac{1}{N+1} + \dots + \frac{1}{2N} \geqslant \frac{1}{2N} \cdot N = \frac{1}{2} = \varepsilon.$$

3аметка (Свойства сходящихся рядов). 1. Если ряды $\sum_{1}^{\infty} a_n = A, \sum_{1}^{\infty} b_n = B$ сходятся, то $\sum_{1}^{\infty} \alpha a_n + \beta b_n = \alpha A + \beta B;$

- 2. Если ряд сходится, то сходится и ряд, полученный выбрасыванием любого конечного числа слагаемых;
- 3. Если ряд сходится, то сходится и ряд, полученный из исходного произвольной группировкой членов.

Заметка. Обратное неверно! $\sum_{1}^{\infty} (-1)^n$ не сходится, но $(-1+1)+(-1+1)+\dots$ сходится!

Теорема. Pяд $\sum_{1}^{\infty} a_n \geqslant 0$ $cxoдится \Leftrightarrow S_n = \sum_{1}^{n}$ ограничена.

Доказательство. Необходимое условие: \sum_{1}^{∞} сходится $\Rightarrow \exists \lim_{n \to \infty} S_n = S \Rightarrow \{S_n\}$ — ограничена (из теории пределов);

Достаточное условие: $S_n \leqslant M \ \forall n. \ S_n$ — монотонная ограниченная последовательность $\Rightarrow \exists \lim_{n \to \infty} S_n = S.$

Определение 6 (Интегральный признак сходимости). Пусть S(x) монотонна на $[1; +\infty)$. Тогда $\sum_{k=1}^{\infty} f(k)$ сходится и расходится одновременно с $\int_{1}^{\infty} f(x) \mathrm{d}x$.

Пример.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}; \ f(x) = \frac{1}{x^{\alpha}}; \ [1; +\infty)f(x) \geqslant 0;$$

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \lim_{n \to \infty} \int_{1}^{n} \frac{\mathrm{d}x}{x^{\alpha}} = \lim_{n \to \infty} \frac{1}{1 - \alpha} \cdot \frac{1}{x^{\alpha - 1}} \Big|_{1}^{n} = \frac{1}{1 - \alpha} \lim_{n \to \infty} \left(\frac{1}{n^{\alpha - 1}} - 1\right);$$

$$\begin{cases} \infty & \text{if } \alpha \leqslant 1 \\ \frac{1}{\alpha - 1} & \text{if } \alpha > 1; \end{cases}$$

Определение 7 (Признак сравнения). Если $\sum_{1}^{\infty} a_n, a_n > 0; \sum_{1}^{\infty} b_n, b_n > 0 \forall n$ и $a_n \leqslant b_n \forall n$, то

- из сходимости $\sum_{1}^{\infty} b_n \Rightarrow \sum a_n$ тоже сходится;
- из расходимости $\sum a_n \Rightarrow \sum b_n$ тоже расходится.

Следствие (Признак сравнения в предельной форме).

$$\sum a_n, a_n > 0 \forall n$$
$$\sum b_n, b_n > 0 \forall n$$

Если $a_n \sim b_n$ при $n \to \infty$ (т.е. $\frac{a_n}{b_n} = \mathrm{const} \neq 0$), то $\sum a_n, \sum b_n$ сходятся или расходятся одновременно.