

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD

36V Low Current Consumption 300mA CMOS Voltage Regulator

CJ6376 Series

■ INTRODUCTION

CJ6376 series is a group of positive regulators manufactured voltage by CMOS process, which has low power consumption and low dropout voltage. Even if the input and output voltage difference is very small, it can also provide larger output current. CJ6376 series can provide mA output current and allow input voltage up to 36V. This series of products are very suitable for battery powered devices, such RF applications other and systems requiring quiet voltage sources.

■ APPLICATIONS

- Cordless Phones
- Radio Control Systems
- Laptop, Palmtops and PDAs
- Single-lens Reflex DSC
- PC Peripherals with Memory

BLOCK DIAGRAM

■ FEATURES

- Low Quiescent Current: 2µA
- Operating Voltage Range: 2.5V ~ 36V
- Output Current: 300mA
- Low Dropout Voltage: 200mV@100mA (V_{OUT} = 3.3V)
- Output Voltage: 1.2 ~ 12V
- High Accuracy: ±2%/±1% (Typ.)
- High Power Supply Rejection Ratio: 70dB@1kHz
- Low Output Noise:
 27xV_{OUT} μV_{RMS} (10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection
- LAN Cards
- Ultra Low Power Microcontrollers
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems

ORDER INFORMATION

CJ6376(1)(2)(3)(4)

DESIGNATOR	SYMBOL	DESCRIPTION
	Α	Standard
1)	В	High Active, pull-down resistor built-in, with C _{OUT} discharge resistor
23	Integer	Output Voltage e.g.3.3V=②:3, ③:3
	M/MC/MY	Package:SOT-23-3L
4	M/MR/MF	Package:SOT-23-5L
	G/GW/GL	Package:SOT-223

Pin Configuration

(Top View)

SOT-23-3L

SOT-23-5L

SOT-223

SOT-23-3L

PIN NUMBER				
C	J6376AxxM/MC	/MY	PIN NAME	FUNCTION
М	МС	MY	PIN NAIVIE	FUNCTION
1	3	3	V _{SS}	Ground
2	2	1	V _{OUT}	Output
3	1	2	V _{IN}	Power Input

SOT-23-5L

	PIN NUMBER				
CJ6376BxxM	CJ6376AxxMF/MR		PIN NAME	FUNCTION	
М	MF	MR			
1	1	2	V _{IN}	Power Input	
2	2	1	V _{SS}	Ground	
3	/	1	CE	Chip Enable Pin	
4	3/4	4/5	NC	No Connection	
5	5	3	V _{OUT}	Output	

SOT-223

	PIN NUMBE		PIN NAME	FUNCTION
G	GW	GL		
1	1	2	V _{IN}	Power input
2	3	1	V _{SS}	Ground
3	2	3	V _{OUT}	Output

■ ABSOLUTE MAXIMUM RATINGS(1)

(T_A = 25°C, Unless otherwise specified)

PARAMETER	PARAMETER			UNITS	
Input Voltage ⁽²⁾	Input Voltage ⁽²⁾			V	
Output Voltage ⁽²⁾		V _{OUT}	-0.3~13	V	
CE Pin Voltage		V_{CE}	-0.3~33	V	
Output Current	I _{OUT}	600	mA		
Maximum	SOT-23-3L				
Maximum Power Dissipation	SOT-23-5L	P _{D Max} (3)	OTP Limited	W	
l ower Bloompation	SOT-223				
Maximum Junction Tempe	T _{J Max}	150	°C		
Storage Temperature	T _{stg}	-65~150	°C		
Lead Temperature(Soldering	ng, 10 sec)	T _{solder}	260	°C	

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3) Refer to Thermal Information for details.
- (4) This IC includes over temperature protection that is intended to protect the device during momentary over-load. Junction temperature will exceed 125°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN.	NOM.	MAX.	UNITS
Supply voltage at V _{IN}	2.5		36	V
Operating junction temperature range, T _J	-40		125	°C
Operating free air temperature range, T _A	-40		85	°C

■ THERMAL INFORMATION

THERMAL METRIC(5)	SYMBOL	(UNIT		
THERWAL WETRIC	STIVIBUL	SOT-23-3L	SOT-23-5L	SOT-223	UNIT
Junction-to-ambient thermal resistance	R _{⊝JA}	250	250	100	°C/W
Junction-to-case thermal					
resistance	R _{⊝JC}	125	125	50	°C/W
Maximum power dissipation for reference	P _{D Ref}	0.4	0.4	1.0	W

(5) The junction temperature must be maintained below the maximum temperature specified in the *data sheet*. To calculate the dissipated power required for the design, the following formula can be used:

$$P_D = \frac{T_J - T_A}{R_{\theta JA}}$$

where, T_J = Junction Temperature, T_A = Free Air Temperature, P_D = Power Dissipation, θ_{JA} = Junction-to-Ambient Thermal Resistance.

Electrical Characteristics

CJ6376 Series ($V_{IN} = V_{OUT} + 1V$, $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $T_A = 25^{\circ}C$, unless otherwise specified)

PARAMETER	SYMBOL	CONDI	TIONS	MIN.	TYP. ⁽⁶⁾	MAX.	UNITS
Input Voltage	V _{IN}			2.5	_	36	V
Output Voltage Range	V _{OUT}			2.1	_	12	V
DC Output Acquirecy		I _{OUT} =1	Om A	-2	_	2	%
DC Output Accuracy		IOUT-I	UIIIA	-1	_	1	%
Dropout Voltage	$V_{dif}^{(7)}$	I _{OUT} =100mA	,V _{OUT} =3.3V	_	200	_	mV
Supply Current	I _{SS}	I _{OUT} =0A 7.00	<v<sub>OUT≤7.0V</v<sub>	_	2	5	μA
Supply Culterit	155	7.0V	′ <v<sub>OUT≤12V</v<sub>	_	3	6	μA
Line Degulation	$\Delta V_{ m OUT}$	I _{OUT} =1	I0mA		0.01	0.3	%/V
Line Regulation	$V_{OUT} \times \Delta V_{IN}$	V _{OUT} +1V≤	≤V _{IN} ≤36V		0.01	0.5	70/ V
Load Regulation	ΔV_OUT	V _{IN} = V _{OI}	_{JT} +1V,	_	10		mV
Load Negalation	<u>∆</u> √001	1mA≤l _{out}	≤100mA		10		1117
Temperature	$\Delta V_{ m OUT}$	I _{OUT} =4	ŕ		50		ppm
Coefficient	$V_{OUT} \times \Delta T_A$	-40°C <t< td=""><td>A<85°C</td><td></td><td>30</td><td></td><td>рріп</td></t<>	A<85°C		30		рріп
Output Current Limit	I _{LIM}	V _{OUT} = 0.5 x \	VouT(Normal),	350	600		mA
	·LIIVI	Vin=5V					, .
Short Current	Ishort	V _{OUT} =	:V _{SS}	_	100	_	mA
			100Hz		75		
Power Supply	PSRR	I _{OUT} =50mA	1kHz	_	70	_	dB
Rejection Ratio	TORK	1001-30117	10kHz		55	_	GD.
			100kHz		40		
Output Noise Voltage	V_{ON}	BW=10Hz	to 100kHz	_	27 x V _{OUT}	_	μV_{RMS}
Thermal Shutdown Temperature	T _{SD}		_	_	160	_	°C
Thermal Shutdown Hysteresis	ΔT _{SD}			_	20	ĺ	°C
Standby Current	I _{STBY}	CE =V _{SS}				0.5	μA
CE "High" Voltage	V _{CE} "H"			1.5		V_{IN}	V
CE "Low" Voltage	V _{CE} "L"					0.3	V
C _{OUT} Auto-Discharge Resistance	R _{Dischage}	V _{IN} =5V, V V _{CE} =V _{SS}	OUT =3.0V,	_	150	_	Ω

⁽⁶⁾ Typical numbers are at 25°C and represent the most likely norm.

■ ESD RATINGS

ESD RAT	ESD RATINGS			UNIT
Electrostatic discharge ⁽⁸⁾	Human body model	V _{ESD-HBM}	1 000	\/
	Machine model	V_{ESD-MM}	200	V

⁽⁸⁾ ESD testing is performed according to the respective JESD22(JEDEC) standard. The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

⁽⁷⁾ Vdif: The difference of output voltage and input voltage when input voltage is decreased gradually till output voltage equals to 98% of $V_{OUT}(E)$.

Typical Characteristics

(Unless otherwise specified, T_A=25°C)

PSRR vs Frequency

Typical Characteristics

(Unless otherwise specified, T_A=25°C)

Power Up Response

Power Up Response

Load Transient Response

Load Transient Response

■ TYPICAL APPLICATION CIRCUIT

SOT-23-3L Package Outline Dimensions

Comah al	Dimensions	In Millimeters	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-3L Suggested Pad Layout

Note:

- 1. Controlling dimemsion"in"milimeters.
- 2.General tolerance: ±0.05mm.
- 3. The pad layout is for reference purpose only.

SOT-23-5L Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimension	ns In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950	D(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-5L Suggested Pad Layout

Note:

- 1. Controlling dimemsion"in"milimeters.
- 2.General tolerance: ±0.05mm.
- 3. The pad layout is for reference purpose only.

SOT-223 Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
E	6.700	7.300	0.264	0.287	
E1	3.300	3.700	0.130	0.146	
е	2.300	2.300(BSC)		I(BSC)	
L	0.750		0.030		
θ	0°	10°	0°	10°	

SOT-223 Suggested Pad Layout

Note:

- 1. Controlling dimemsion"in"milimeters.
- 2.General tolerance: ±0.05mm.
- 3. The pad layout is for reference purpose only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.