

Отчет по Лабораторной работе №2 по курсу "Вычислительная математика"

Вариант №3

Выполнил: Студент группы Р32082 Дробыш Дмитрий Александрович

> Преподаватель: Машина Екатерина Алексеевна

1. Задание лабораторной работы.

Лабораторная работа №2 Численное решение нелинейных уравнений и систем

<u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

№ варианта определяется как номер в списке группы согласно ИСУ.

Лабораторная работа состоит из двух частей: вычислительной и программной.

1 Вычислительная реализация задачи:

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
 - 2. Определить интервалы изоляции корней.
 - 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью $\varepsilon = 10^{-2}$.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
 - 5.1 Для метода половинного деления заполнить таблицу 1.
 - 5.2 Для метода хорд заполнить таблицу 2.
 - 5.3 Для метода Ньютона заполнить таблицу 3.
 - 5.4 Для метода секущих заполнить таблицу 4.
 - 5.5 Для метода простой итерации заполнить таблицу 5.
 - 6. Заполненные таблицы отобразить в отчете.

Таблица 1

	у гочнение корня уравнения методом половинного деления								
№ шага	a	b	X	f(a)	f(b)	f(x)	a-b		
1									
2									
3									

Таблица 2

Уточнение корня уравнения методом хорд

				F J F			
№ шага	a	b	X	f(a)	f(b)	f(x)	x_{k+1} - x_k
1							
2							
3							

Таблица 3

Уточнение корня уравнения методом Ньютона

№ итера- ции	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_{k+1}-x_k $
1					
2					
3					

Таблица 4

Утс	чнение і	корня	урав	внения	мет	годом	секу	ущих

					/
№ итера- ции	Xk-1	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1					
2					
3					

Таблица 5

3 точнение корня уравнения методом простои итерации								
№ итера-	x_k	x_{k+1}	$f(x_{k+1})$	x_{k+1} - x_k				
ции	$\mathcal{N}_{\mathcal{K}}$	<i>X</i> _K +1	$J(N_{k+1})$	$ \mathcal{X}_{K+1} - \mathcal{X}_{K} $				
1								
2								
3								

2 Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы (см. табл. 8) должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом), выбор начального приближения (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x_1, x_2 .
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$
- 8. Проверить правильность решения системы нелинейных уравнений.

3 Оформить отчет, который должен содержать:

- 1. Титульный лист.
- 2. Цель лабораторной работы.
- 3. Порядок выполнения работы.
- 4. Рабочие формулы используемых методов.
- 5. Графики функций на исследуемом интервале.
- 6. Заполненные таблицы вычислительной части лабораторной работы (в зависимости от варианта: табл. 1-5).
 - 7. Листинг программы, по крайней мере, коды используемых методов.
 - 8. Результаты выполнения программы при различных исходных данных.
 - 9. Выводы

Таблица 6 Вид нелинейного уравнения для вычислительной реализации

№ вари-	Функция	№ вари-	Функция
анта 1	$2,74x^3 - 1,93x^2 - 15,28x - 3,72$	анта 21	$1,8x^3 - 2,47x^2 - 5,53x + 1,539$
2	$-1,38x^3 - 5,42x^2 + 2,57x + 10,95$	22	$x^3 - 3,78x^2 + 1,25x + 3,49$
3	$x^3 + 2,84x^2 - 5,606x - 14,766$	23	$-x^3 + 5,67x^2 - 7,12x + 1,34$
4	$x^3 - 1,89x^2 - 2x + 1,76$	24	$x^3 - 2,92x^2 + 1,435x + 0,791$
5	$-2.7x^3 - 1.48x^2 + 19.23x + 6.35$	25	$x^3 - 2,56x^2 - 1,325x + 4,395$
6	$2x^3 + 3{,}41x^2 - 23{,}74x + 2{,}95$	26	$1,62x^3 - 8,15x^2 + 4,39x + 4,29$
7	$x^3 + 2,28x^2 - 1,934x - 3,907$	27	$2,335x^3 + 3,98x^2 - 4,52x - 3,11$
8	$3x^3 + 1,7x^2 - 15,42x + 6,89$	28	$-1,85x^3 - 4,75x^2 - 2,53x + 0,49$
9	$-1,8x^3 - 2,94x^2 + 10,37x + 5,38$	29	$-1,78x^3 - 5,05x^2 + 3,64x + 1,37$
10	$x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$	30	$-2,75x^3 - 4,53x^2 + 17,87x - 1,94$
11	$4,45x^3 + 7,81x^2 - 9,62x - 8,17$	31	$-3,64x^3 + 2,12x^2 + 10,73x + 1,49$
12	$x^3 - 4,5x^2 - 9,21x - 0,383$	32	$x^3 + 1,41x^2 - 5,472x - 7,38$
13	$x^3 + 4,81x^2 - 17,37x + 5,38$	33	$x^3 - 0.12x^2 - 1.475x + 0.192$
14	$2,3x^3 + 5,75x^2 - 7,41x - 10,6$	34	$x^3 - 0.77x^2 - 1.251x + 0.43$
15	$-2,4x^3 + 1,27x^2 + 8,63x + 2,31$	35	$x^3 - 0.78x^2 - 0.826x + 0.145$
16	$5,74x^3 - 2,95x^2 - 10,28x - 4,23$	36	$1,7x^3 - 3,45x^2 - 5,31x + 1,123$
17	$-0.38x^3 - 3.42x^2 + 2.51x + 8.75$	37	$x^3 - 3,75x^2 + 2,25x + 3,51$
18	$x^3 + 2,64x^2 - 5,41x - 11,76$	38	$-x^3 + 5{,}32x^2 - 6{,}12x + 0{,}34$
19	$2x^3 - 1,89x^2 - 5x + 2,34$	39	$x^3 - 2,95x^2 + 1,52x + 0,91$
20	$-2,8x^3 - 3,48x^2 + 10,23x + 9,35$	40	$0.5x^3 - 2.56x^2 - 1.35x + 4.39$

Выбор метода для вычислительной реализации задачи (табл. 1-5)

- 1 Метод половинного деления
- 2 Метод хорд3 Метод Ньютона
- 4 Метод секущих
- 5 Метод простой итерации

Таблица 7

Методы для вычислительной реализации

№ вари- анта	Крайний правый корень	Крайний левый корень	Цен- траль- ный корень	№ вари- анта	Крайний правый корень	Крайний левый корень	Цен- траль- ный корень
1	3	4	5	21	2	1	5
2	5	2	1	22	5	3	1
3	1	5	3	23	3	5	1
4	5	1	4	24	2	3	5
5	2	5	4	25	5	1	4
6	3	1	5	26	3	2	5
7	1	5	3	27	1	3	5
8	5	2	3	28	2	5	4
9	1	5	4	29	1	3	5
10	3	1	5	30	4	5	1
11	1	2	5	31	2	3	5
12	4	5	1	32	1	5	4
13	5	2	3	33	5	1	3
14	3	5	1	34	2	5	4
15	5	1	2	35	4	2	5
16	2	5	3	36	1	5	3
17	1	4	5	37	2	3	5
18	3	5	2	38	5	2	4
19	5	1	4	39	1	3	5
20	1	3	5	40	2	5	3

Выбор метода для программной реализации задачи

Решение нелинейных уравнений:

- 1 Метод половинного деления
- 2 Метод хорд
- 3 Метод Ньютона
- 4 Метод секущих
- 5 Метод простой итерации

Решение систем нелинейных уравнений:

- 6 Метод Ньютона
- 7 Метод простой итерации

Таблица 8 *Методы, реализуемые в программе*

	· 1		
№ варианта	Методы в программе	№ варианта	Методы в программе
1	1, 3, 5, 6	21	1, 4, 5, 6
2	2, 3, 5, 7	22	2, 3, 5, 7
3	1, 4, 5, 6	23	1, 3, 5, 6
4	1, 3, 5, 7	24	2, 4, 5, 7
5	1, 3, 5, 7	25	2, 3, 5, 6
6	2, 4, 5, 6	26	1, 4, 3, 7
7	1, 4, 5, 6	27	2, 4, 5, 6
8	1, 3, 5, 7	28	1, 3, 5, 6
9	2, 3, 5, 7	29	2, 3, 5, 7
10	2, 3, 5, 6	30	1, 4, 5, 7
11	1, 4, 5, 7	31	2, 3, 5, 6
12	1, 3, 5, 6	32	1, 3, 5, 7
13	1, 4, 5, 6	33	1, 4, 5, 6
14	2, 4, 5, 7	34	2, 4, 5, 7
15	1, 4, 5, 6	35	2, 3, 5, 6
16	2, 3, 5, 6	36	1, 3, 5, 6
17	1, 4, 5, 7	37	1, 4, 5, 7
18	2, 3, 5, 6	38	2, 3, 5, 7
19	1, 4, 5, 6	39	1, 3, 5, 6
20	2, 4, 5, 7	40	2, 4, 5, 7

Контрольные вопросы к защите лабораторной работы:

- 1. Понятие точного и приближенного решений нелинейного уравнения.
- 2. Основная идея метода половинного деления?
- 3. Может ли метод половинного деления найти точное значение корня уравнения?
- 4. В чем суть метода Ньютона?
- 5. Как выбирается начальное приближение для метода Ньютона?
- 6. Идея метода хорд?
- 7. Как выбирается начальное приближение для метода хорд с фиксированным концом интервала изоляции корня?
- 8. По каким причинам методы хорд и касательных предпочтительнее метода простой итерации?
- 9. Какой из методов является трехшаговым методом? Как запустить этот метод?
- 10. В чем суть метода простой итерации?
- 11. Каковы условия применяемости метода простой итерации?
- 12. Как правильно преобразовать исходное нелинейное уравнение y = f(x) к виду $x = \varphi(x)$?
- 13. Каковы основные критерии окончания итерационного процесса?
- 14. Как оценить необходимое количество итераций в методе биссекции при заданной точности?
- 15. Алгоритм решения системы нелинейных уравнений методом Ньютона?
- 16. Каковы преимущества и недостатки графического метода отделения решения для системы двух нелинейных уравнений?
- 17. В каких случаях можно применить метод простой итерации для решения системы нелинейных уравнений?
- 18. Когда можно считать итерационный процесс законченным при использовании метода простой итерации для решения системы нелинейных уравнений?
- 19. Что такое сходимость и скорость сходимости численных методов?
- 20. Дайте определение устойчивости итерационного метода?

Ответы в Readme на GitHub

2. Цель лабораторной работы.

• изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

3. Мой вариант.

• Вариант номер 3;

• Уравнение: $x^3 + 2.84x^2 - 5.606x - 14.766$

No варианта	Крайний правый корень	Крайний левый корень	Центральный корень
3	1	5	3
3	Метод половинного деления	Метод простой итерации	Метод Ньютона

4. Решение.

1) Первым делом необходимо найти левый корень методом простых итераций.

Рабочая формула метода:
$$[a_0\;;\;b_0]$$
 - исходный отрезок, $x_0\in[a_0\;;\;b_0]$ $x_0=\frac{a_0+b_0}{2}$, а критерий окончания: $|b_n-a_n|\leq \varepsilon$ или $|f(x_n)|\leq \varepsilon$

Буду искать решение с точностью $\varepsilon = 0.001$.

На графиках хорошо видно, что этот корень лежит между -4 и -3, поэтому и возьмем их для старта:

N_0 итерации	а	b	х	F(a)	F(b)	F(x)	<i>a</i> – <i>b</i>
0	-4,00000	-3,00000	-3,50000	-10,91000	0,60600	-3,23700	1,00000
1	-3,50000	-3,00000	-3,25000	-3,23700	0,60600	-0,88363	0,50000
2	-3,25000	-3,00000	-3,12500	-0,88363	0,60600	-0,03670	0,25000
3	-3,12500	-3,00000	-3,06250	-0,03670	0,60600	0,30944	0,12500
4	-3,12500	-3,06250	-3,09375	-0,03670	0,30944	0,14266	0,06250
5	-3,12500	-3,09375	-3,10938	-0,03670	0,14266	0,05456	0,03125
6	-3,12500	-3,10938	-3,11719	-0,03670	0,05456	0,00933	0,01563
7	-3,12500	-3,11719	-3,12109	-0,03670	0,00933	-0,01359	0,00781
8	-3,12109	-3,11719	-3,11914	-0,01359	0,00933	-0,00211	0,00391
9	-3,11914	-3,11719	-3,11816	-0,00211	0,00933	0,00362	0,00195
10	-3,11914	-3,11816	-3,11865	-0,00211	0,00362	0,00076	0,00098

$$x * = \frac{a_{10} + b_{10}}{2} = -3.118$$

2) Теперь методом Ньютона вынужден искать центральный корень.

Идея метода: функция y=f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня $x^*=x_n$ принимается точка пересечения касательной с осью абсцисс. Рабочая формула метода:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}, \;\;$$
 а критерий окончания: $|f(x_n)| \leq \varepsilon$

Буду искать ответ с точностью 0.00001.

N_0 итерации	X_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	$ x_{n+1}-x_n $
0	-2,500000	1,369000	-1,054000	-1,201139	1,298861
1	-1,201139	-5,670379	-8,098266	-1,901335	0,700197

N_0 итерации	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	$ x_{n+1} - x_n $
2	-1,901335	-0,717573	-5,558357	-2,030433	0,129098
3	-2,030433	-0,049884	-4,768883	-2,040894	0,010460
4	-2,040894	-0,000357	-4,700535	-2,040970	0,000076

$$x * = -2.04097$$

3) правый корень меня заставили искать методом простой итерации.

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x_0 \in a$, b , найдем очередные приближения: $x_1 = \varphi(x_0) \to x_2 = \varphi(x_1)...$

Рабочая формула метода:
$$x_{i+1} = \varphi(x)$$

 $x^3 + 2.84x^2 - 5.606x - 14.766$

Преобразую к виду : $x = \varphi(x)$.

$$\varphi(x) = \frac{x^3 + 2.84x^2 - 14.766}{5.606}$$

$$\varphi'(x)=rac{3x^2+2\cdot 2.84x}{5.606}$$
 подставим $x=2$. $\qquad \qquad \varphi'(2)=rac{3\cdot 2^2+2\cdot 2.84\cdot 2}{5.606}>$ 1. Способ не работает.

$$x = x + \lambda f(x), \quad \varphi(x) = x + \lambda f(x), \quad \varphi'(x) = 1 + \lambda f'(x).$$

$$\lambda = -\frac{1}{\max_{[a,b]} |f'(x)|}, \qquad f'(2) = 3 \cdot 2^2 + 2 \cdot 2.84 \cdot 2 - 5.604 = 17.756$$

$$f(3) = 38.436$$

$$\lambda = -\frac{1}{38.436}. \quad x = x + \lambda x = -\frac{x^3}{38.436} - \frac{2.84x^2}{38.436} + \frac{44.04x}{38.436} + \frac{14.766}{38.436}$$

No итерации	x_i	x_{i+1}	$\varphi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1} - x_i $
0	3,00000	2,45411	2,36654	3,36074	0,54589
1	2,45411	2,36654	2,33711	1,12647	0,08757
2	2,36654	2,33711	2,32632	0,40995	0,02943
3	2,33711	2,32632	2,32226	0,15161	0,01079
4	2,32632	2,32226	2,32071	0,05484	0,00407
5	2,32226	2,32071	2,32012	0,01809	0,00155
6	2,32071	2,32012	2,31989	0,00870	0,00059

$$x * = 2.320$$

No варианта	Методы					
3	1	4	5	6		
3	Метод половинного деления	Метод секущих	Метод простой итерации	Метод Ньютона		

Метод половинного деления.

Начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню: xo = (ao+bo)/2 И продолжим так делить до тех пор, пока |bn-an|>epsilon, конечно же, не забывая про теорему у существовании корня. (она поможет понять, какой границе интервала присвоить значение xi)


```
Примеры:
```

half

->f or in

->type the link

test1

->Enter interval as 2 numbers like this: 'a b'

-2 -1.5

->Enter epsilon

0.01

->-1.7890625

half

->f or in

->type the link

test2

->Enter interval as 2 numbers like this: 'a b'

->Enter epsilon

0.001

->2.3193359375

Метод секущих

функция y = f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня

x* = xn принимается точка пересечения касательной с осью абсцисс.

Упростим метод Ньютона, заменив f'(x) разностным приближением: $f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Рабочая формула метода:
$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i) \qquad i = 1,2 \dots$$


```
def secant_method(equation, interval):
    check_interval(equation, interval)
    epsilon = float(input("Enter epsilon\n").replace(",", "."))
    equation = list(equation)
    x_prev = interval[0]
    x_next = interval[1]

while abs(x_next - x_prev) > epsilon:
    tmp = x_next
    x_next = x_next - (1 / iteration_derivative(equation, x_next, x_prev)) * function(equation, x_next)
    x_prev = tmp

return x_next
```

```
Примеры работы: secant
->f or in
f
->type the link
test1
->Enter interval as 2 numbers like this: 'a b'
-1 -2
->Enter epsilon
0.01
->-1.7963084498052133
```

```
secant
->f or in
f
->type the link
test2
->Enter interval as 2 numbers like this: 'a b'
-3 -4
->Enter epsilon
0.001
->-3.119844349792143
```

Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x0 \in a, b$, найдем очередные приближения: $x1 = \varphi(x0) \rightarrow x2 = \varphi(x1)$...

Важен выбор начального приближения к корню из малой окрестности для сходимости. Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$, где q – некоторая константа (коэффициент Липшица или коэффициент сжатия)

Чем меньше q, тем выше скорость сходимости.

```
def simple_iteration(equation, interval):
    check_interval(equation, interval)
    epsilon = float(input("Enter epsilon\n").replace(",", "."))
    equation = list(equation)
    a = interval[0]
    b = interval[1]
    derivative_eq = derivative(equation)
    if (function(derivative_eq, a)) > function(derivative_eq, b):
        max_derivative = function(derivative_eq, a)
        xi = a
    else:
        max_derivative = function(derivative_eq, b)
        xi = b
    lambda_var = - 1 / max_derivative
    phi = equation[:]
    for i in range(len(equation)):
        phi[i] *= lambda_var
    if len(phi) < 2:
        phi.append(1)
    else:
        phi[1] += 1

while abs(function(phi, xi) - xi) > epsilon:
        xi = function(phi, xi)

return function(phi, xi)
```


Примеры:

```
simple
->f or in
->type the link
test1
->Enter interval as 2 numbers like this: 'a b'
-2 - 1.5
->Enter epsilon
0.01
->-1.7972350722582324
simple
->f or in
->type the link
test2
->Enter interval as 2 numbers like this: 'a b'
-2.2 - 1
->Enter epsilon
0.01
->-2.0409435847029473
```

Метод Ньютона.

В основе метода лежит использование разложения функций $Fi\ x1,\ x2,\ \dots,\ xn$ в ряд Тейлора в окрестности некоторой фиксированной точки, причем члены, содержащие вторые (и более высоких порядков) производные, отбрасываются.

Пусть начальные приближения неизвестных системы (1) получены и равны соответственно $a1, a2, \ldots, an$. Задача состоит в нахождении приращений (поправок) к этим значениям $\Delta x1$, $\Delta x2, \ldots, \Delta xn$, благодаря которым решение системы запишется в виде

 $x1=a1+\Delta x1$, $x2=a2+\Delta x2$,..., $xn=an+\Delta xn$


```
from computational_math_lib import *
            epsilon = float(input("Enter epsilon\n").replace(",", "."))
print("xex + y*y = 4")
print("y = 3*x*x")
            a = np.arange(-2, 2, 0.01)
t = np.arange(0, 2 * np.pi, 0.01)
            plt.plot(a, 3 * a * a, r * np.sin(t), r * np.cos(t), lw=3)
plt.axis('equal')
             plt.show()
                2xdx + 2ydy = 4 - x*x - y*y -6xdx + dy = 3*x*x - y
       def iteration_sys1(x, y, epsilon):
    dx, dy = gauss(generate_matrix_sys1(x, y))
             print("|x-xi|: " + str(abs(x - xi)) + " |y-yi|: " + str(abs(y - yi)))
             print("x: " + str(x) + " y: " + str(y))
print("Check: x_i, y_i -> equations")
            print(x * x + y * y - 4)
print(y - 3 * x * x)
```

```
def system2():
        epsilon = float(input("Enter epsilon\n").replace(",", "."))
print("2x = y/(1 + y*y)")
        # 2*x + 2*x*y*y - y = 0
print("2y = x/(1+x*x)")
        # 2*y + 2*y*x*x - x = 0
# 100 linearly spaced numbers
         x = np.linspace(-np.pi, np.pi, 100)
t = np.linspace(-np.pi / 1000, np.pi / 1000, 100)
        # setting the axes at the centre
fig = plt.figure()
        fig = ptt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.spines['teft'].set_position('center')
ax.spines['bottom'].set_position('center')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
        plt.plot(y)
plt.plot(z)
        # show the plot
plt.show()
        user_input = input("Enter x0, y0\n").replace(",", ".").split()
x_first, y_first = parse_float_array(user_input)
iteration_sys2(x_first, y_first, epsilon)
        x - x1
y = yi
print("x: " + str(x) + " y: " + str(y))
print("Check: x_i, y_i -> equations")
print(-2 * x + y / (1 + y * y))
print(-2 * y + x / (1 + x * x))
```

Примеры:

Выводы:

В ходе лабораторной работы Я попробовал различные методы решения нелинейных уравнений. Узнал, что некогда использовавшийся способ из доказательств немалого количества теорем уже запрограммирован и используется в вычислительной математике (ПД), кроме того попробовал и метод простой итерации, который работает довольно просто, но необходимость выбора достаточно малого интервала не может радовать. Как любитель оптимизаций, не могу не отметить скорость сходимости метода ньютона, но, к сожалению, для него необходимо считать каждый раз производную... В общем случае это сильно бьет по производительности, но для многочленов этот не так сильно заметен. Во второй части лабораторной работы я попробовал решить систему нелинейных уравнений методом Ньютона. Слабо понимаю смысл такой работы, тк уравнение в общем виде ввести нереально, а пересчитывать корни одной и той же системы никто не захочет... но в ознакомительных целях нормально, скорее всего. Кроме того, приятно знать, что все, чему на продмате СППО уделяли столько времени, пригодилось!