Анализ данных и Машинное обучение в гидрологии

•••

Неделя 5

План

Лекция

- что такое машинное обучение?
- сможет ли машинное обучение решить все проблемы?
- могу ли я доверять решениям машины?
- гугл строит новый скайнет. Когда мы все умрем?

Вопросы

- какие планы на год?
- какая модель машинного обучения самая лучшая?
- я скоро заканчиваю универ, стоит мне идти в науку?
- куда переедет ИВП РАН?
- когда следующий **Plovcast**?

Research workflow

Машинное обучение

Машинное обучение

Машинное обучение

Google, Yandex

Что умеют современные модели Распознавание образов

Что умеют современные модели Распознавание речи

Что умеют современные модели
Перевод

Что умеют современные модели Улучшение прогноза погоды

Но как?

КАК ОНИ ЭТО ДЕЛАЮТ?

Ну как-то так...

$$\times \frac{\prod_{i \neq k} \Gamma(n_{m,(\cdot)}^{i,-(m,n)} + \alpha_i)}{\Gamma((\sum_{i=1}^K n_{m,(\cdot)}^{i,-(m,n)} + \alpha_i) + 1)} \prod_{i \neq k} \frac{\Gamma(n_{(\cdot),v}^{i,-(m,n)} + \beta_v)}{\Gamma(\sum_{r=1}^V n_{(\cdot),r}^{i,-(m,n)} + \beta_r)}$$

$$\times \Gamma(n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k + 1) \frac{\Gamma(n_{(\cdot),v}^{k,-(m,n)} + \beta_v + 1)}{\Gamma((\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_v + 1)}$$

$$\times \frac{\Gamma(n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k + 1)}{\Gamma((\sum_{r=1}^K n_{m,(\cdot)}^{i,-(m,n)} + \alpha_i) + 1)} \frac{\Gamma(n_{(\cdot),v}^{k,-(m,n)} + \beta_v + 1)}{\Gamma((\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_v + 1)}$$

$$= \frac{\Gamma(n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k) (n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k)}{\Gamma(\sum_{i=1}^K n_{m,(\cdot)}^{i,-(m,n)} + \alpha_i) (\sum_{i=1}^K n_{m,(\cdot)}^{i,-(m,n)} + \alpha_i)} \frac{\Gamma(n_{(\cdot),v}^{k,-(m,n)} + \beta_v) (n_{(\cdot),v}^{k,-(m,n)} + \beta_v)}{\Gamma(\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_r) (\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_r)}$$

$$\times \frac{(n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k)}{(\sum_{i=1}^K n_{m,(\cdot)}^{i,-(m,n)} + \alpha_i)} \frac{(n_{(\cdot),v}^{k,-(m,n)} + \beta_v)}{(\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_r)}$$

$$\times (n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k) \frac{(n_{(\cdot),v}^{k,-(m,n)} + \beta_v)}{(\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_r)}$$

$$\times (n_{m,(\cdot)}^{k,-(m,n)} + \alpha_k) \frac{(n_{(\cdot),v}^{k,-(m,n)} + \beta_v)}{(\sum_{r=1}^V n_{(\cdot),r}^{k,-(m,n)} + \beta_r)}$$

Взгляд со стороны

Отношение к машинному обучению Нужно принять решение

Разобраться

• Время: > месяца

• Усилия: большие

Сказать, что это говно

• Время: сразу

• Усилия: никаких

МАТАН — ДОБРО

Регрессия

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Регрессия

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Классификация

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$[\theta]$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\begin{vmatrix} \operatorname{Cost}(h_{\theta}(x), y) = \\ = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\min_{\theta} J(\theta)$$

Классификация

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Кластеризация

Идея обучения с учителем

Workflow

Forming ----

Norming ----

Storming ----

Performing

Forming (получение данных)

- txt
- CSV
- netcdf
- sql
- xml
- web api

- 1. import ...
- 2. path =
- 3. connection =
- 4. data = parse(path)

profit!

Norming (предварительная обработка)

- сортировка
- группировка
- заполнение пропусков
- удаление выбросов
- создание новых переменных

- 1. import numpy as np
- 2. import pandas as pd
- 3. from sklearn import Preprocessing
- 4. library.method()

profit!

Storming (моделирование, анализ)

- классификация
- кластеризация
- регрессия
- распознавание образов
- моделирование
- прогнозирование

- from sklearn import
 SVR
- 2. model = SVR()
- 3. model.fit(X, y)
- 4. metrics(model)
- 5. model.predict(y)
 - profit!

Performing (представление результатов)

- научная графика
- воспроизводимые результаты
- переиспользование кода
- создание веб-

- Matplotlib, Seaborn
- ☐ Ipython notebook,

 Docker, Git(hub)
- OOP, Gist
- ☐ Flask

Что дальше?

Стадии развития методов машинного обучения (Vapnik, 1995):

- первые алгоритмы машинного обучения
- основы теории
- нейронные сети
- альтернативы нейронным сетям
- глубокие нейронные сети (Айзель, 201X)

План

23.01	Нейронные сети
06.02	Альтернативы нейронным сетям
20.02	Глубокие нейронные сети
06.03 (+ 20.03)	Хакатон "Машинное обучение для расчетов речного стока"

Чем занять себя две недели?

Микро-курс:

Getting started
with machine
learning in
hydrology

Виноградовские чтения, 2015

Расчет паводочного стока малого водосбора с использованием машин опорных векторов

Важно

Вы можете помочь существенно улучшить этот курс!

- ayzelgv@gmail.com, hydrogo@yandex.ru
- vk.com/ayzelgv, facebook.com/ayzelgv
- ИВП РАН, кабинет 617

Q&A: questions and answers

AMA: ask me anything

