PRINCE DR K VASUDEVAN COLLEGE OF ENGINEERING AND TECNOLOGY

Mambakkam - Medavakkam Main Rd, Ponmar, Chennai, Tamil Nadu 600127

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.

WEB PHISHING DETECTION (ASSIGNMENT 2)

DATE : 26-09-2022

PROBLEM: PERFORM TASKS ACCORDINGLY

NAME: VENKATASUBRAMANIAN S

OUTPUT:

SCREENSHOTS:

1.Download the Dataset

2.Load the Dataset

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn

In [2]: data = pd.read_csv(r"C:\Users\chand\Downloads\IBM-Project\Assignments\Ass-2\Churn_Modelling.csv")
```

3.Perform below Visualizations

Univariate Analysis

Univariate Analysis

In [3]: sns.distplot(data['Age'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar fle xibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[3]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [4]: sns.histplot(data['Age'])

Out[4]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [5]: sns.boxplot(data['Age'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword a rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

warnings.warn(

Out[5]: <AxesSubplot:xlabel='Age'>

Bi - Variate Analysis

In [6]: sns.lineplot(data['Age'],data['Tenure'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[6]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [7]: sns.barplot(data['Age'],data['Tenure'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [8]: sns.scatterplot(data['Age'],data['Tenure'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[8]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

Multi - Variate Analysis

In [9]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

C:\Users\chand\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[9]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

Out[10]: <seaborn.axisgrid.PairGrid at 0x1733b682190>

4. Descriptive Statistics

In [11]: data.mean()

C:\Users\chand\AppData\Local\Temp\ipykernel_7968\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns befor e calling the reduction. data.mean()

Out[11]: RowNumber

5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age Tenure 3.892180e+01 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

In [12]: data.median()

C:\Users\chand\AppData\Local\Temp\ipykernel_7968\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

Out[12]: RowNumber

5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 3.700000e+01 Age Tenure 5.000000e+00 Balance 9.7198540+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00 dtype: float64

In [13]: data.mode()

Out[13]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sala
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1.0	24924.9
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
	***	(***				***		***	***	***	***		
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

10000 rows × 14 columns

5. Missing Values

In [14]: data.isnull().any()

Out[14]: RowNumber False CustomerId False Surname False CreditScore False Geography False Gender False False Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False dtype: bool

There are no missing values

6.Handling Outliners

	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
1	1000.9	15591167.1	521.0	27.0	1.0	0.0	1.0	0.0	0.0	20273.58	0.0
ta	.quantile([0.1,0.5])									
	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
).1	1000.9	15591167.1	521.0	27.0	1.0	0.00	1.0	0.0	0.0	20273.580	0.0
.5	5000.5	15690738.0	652.0	37.0	5.0	97198.54	1.0	1.0	1.0	100193.915	0.0
ata	.quantile([0.1,0.9])									
	RowNumber	Customerld	CreditScore	Age	Tenure	Balanc	e NumOfProduc	ts HasCrCa	rd IsActiveMemb	er Estimated Sala	ry Exited
0.1	1000.9	15591167.1	521.0	27.0	1.0	0.00	0 1	.0 0	0.0	.0 20273.58	30 0.0
0.9	9000.1	15790830.7	770.0	53.0	9.0	149244.79		.0 1	.0 1	.0 179674.70	1.0

7.Perform Encoding

In [19]:	<pre>from sklearn import preprocessing</pre>													
In [20]:	<pre>le = preprocessing.LabelEncoder()</pre>													
In [21]:	<pre>oneh = preprocessing.OneHotEncoder()</pre>													
In [22]:	dat	ta['Age'] =	le.fit_tr	ansform(data['Age'])								
In [23]:	dat	ta.head()												
Out[23]:		RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
	0	1	15634602	Hargrave	619	France	Female	24	2	0.00	1	1	1	101348.88
	1	2	15647311	Hill	608	Spain	Female	23	1	83807.86	1	0	1	112542.58
	2	3	15619304	Onio	502	France	Female	24	8	159660.80	3	1	0	113931.57
	3	4	15701354	Boni	699	France	Female	21	1	0.00	2	0	0	93826.63
	4	5	15737888	Mitchell	850	Spain	Female	25	2	125510.82	1	1	1	79084.10
	1.5					- pani			_	.200,0.02			11.5	

8. Split into Dependent and Independent variables (X and Y)

```
In [24]: x = data.iloc[:,0:12]
In [25]: x
Out[25]:
            RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember
              1
                       15634602 Hargrave
                                                  France Female 24
                                                                           0.00
          1
                    2
                       15647311
                                            608
                                                   Spain Female 23
                                                                      1 83807.86
                                                                                                  0
          2
                   3 15619304
                                  Onio
                                         502
                                                  France Female 24
                                                                     8 159660.80
          3
                   4 15701354
                                 Boni
                                        699
                                                  France Female 21
                                                                   1
                                                                            0.00
                                                                                          2
                                                                                                  0
                                                                                                              0
                                        850
                 5 15737888 Mitchell
                                                 Spain Female 25 2 125510.82
        9995
                  9996 15606229 Obijiaku
                                                        Male 21 5
                       15569892 Johnstone
                  9998 15584532 Liu
                                            709 France Female 18
                                                                            0.00
         9998
                                                         Male 24
                                                                      3 75075.31
                                                                                          2
                       15682355 Sabbatini
                                            772 Germany
                                            792 France Female 10 4 130142.79
                 10000 15628319 Walker
        9999
        10000 rows × 12 columns
In [26]: y = data['Balance']
```

```
In [27]: y
Out[27]: 0
                83807.86
        2
               159660.80
                    0.00
        4
               125510.82
                0.00
        9995
                57369.61
        9996
        9997
                   0.00
                75075.31
        9999
               130142.79
        Name: Balance, Length: 10000, dtype: float64
```

9. Scale Independent values

10.Split the data into train and test

```
In [12]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
In [13]: x_train
Out[13]: array([[ 0.92889885],
                   [ 1.39655257],
[-0.4532777 ],
                   [-0.60119484],
                   [ 1.67853045],
[-0.78548505]])
In [15]: x_train.shape
Out[15]: (7000, 1)
In [16]: y_train
Out[16]: 7681
                   146193.60
                  0.00
160979.68
           9031
           3691
           202
                          0.00
           5625
                    143262.04
                    120074.97
           9225
           4859
3264
                    114440.24
                   161274.05
           2732 108076.33
           Name: Balance, Length: 7000, dtype: float64
```