ECE 443/518 – Computer Cyber Security Lecture 08 Euclidean Algorithm, Fermat's Little Theorem

Professor Jia Wang

Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 19, 2022

Outline

Euclidean Algorithm

Reading Assignment

► This lecture: UC 6.3

Next lecture: UC 6, 7, except 7.6

Outline

Euclidean Algorithm

Euclidean Algorithm

```
two integers a > b > 0
  Input:
      1 r_0 = a, r_1 = b, i = 1
      2 Do:
      3 i = i + 1
      4 r_i = r_{i-2} \mod r_{i-1}
      5 While r_i \neq 0
Output: gcd(a, b) = r_{i-1}
```

- Example: $r_0 = 27$, $r_1 = 21$, $r_2 = 6$, $r_3 = 3$, $r_4 = 0$
 - In practice, there is no need to keep each r_k we use them just for ease of presentation.
- For a proof of correctness

$$r_{i-1} = \gcd(0, r_{i-1}) = \gcd(r_i, r_{i-1}) = \dots = \gcd(r_k, r_{k-1})$$

$$= \gcd(r_{k-2} \bmod r_{k-1}, r_{k-1}) = \gcd(r_{k-2}, r_{k-1}) = \dots$$

$$= \gcd(r_1, r_0) = \gcd(a, b)$$

$$r_1 > r_2 > \dots > r_{i-1} > r_i = 0$$

Is this algorithm better than the simple one?

Time Complexity of Euclidean Algorithm

▶ Let $q_{k-1} = \lfloor \frac{r_{k-2}}{r_{k-1}} \rfloor$. Since $r_{k-2} \ge r_{k-1}$, $q_{k-1} \ge 1$. So, $r_{k-2} = q_{k-1}r_{k-1} + r_k \ge r_{k-1} + r_k \ge 2r_k, \forall k = 2, 3, \dots, i.$

For i being odd, we have,

$$a = r_0 \ge 2r_2 \ge 2^2 r_4 \ge \dots \ge 2^{\frac{i-1}{2}} r_{i-1} \ge 2^{\frac{i-1}{2}}.$$

- Similar for i being even.
- ▶ The loop iterates $O(\log a) = O(N)$ rounds.
 - ▶ Overall the time complexity is $O(N^3)$.
- GCD can be computed efficiently in polynomial time.
 - What is the complexity to obtain any divisor of a that is not 1 or a? Or to prove that a is a prime number?

Extended Euclidean Algorithm (EEA)

```
Input: two integers a \ge b > 0

1 r_0 = a, r_1 = b, s_0 = 1, t_0 = 0, s_1 = 0, t_1 = 1, i = 1

2 Do:

3 i = i + 1

4 r_i = r_{i-2} \mod r_{i-1}, q_{i-1} = \lfloor \frac{r_{i-2}}{r_{i-1}} \rfloor

5 s_i = s_{i-2} - q_{i-1}s_{i-1}, t_i = t_{i-2} - q_{i-1}t_{i-1}

6 While r_i \ne 0

Output: gcd(a, b) = r_{i-1}, s = s_{i-1}, t = t_{i-1}
```

- ► Same time complexity as Euclidean Algorithm: $O(N^3)$
 - Same rounds of iterations. Additional calculations do not increase complexity.
- ► Anything special?

Extended Euclidean Algorithm (EEA Cont.)

▶ Starting with $\begin{pmatrix} r_0 & r_1 \end{pmatrix} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} s_0 & s_1 \\ t_0 & t_1 \end{pmatrix}$. We have,

$$(r_1 r_2) = (r_0 r_1) \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix} = (a b) \begin{pmatrix} s_0 & s_1 \\ t_0 & t_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix}$$

$$= (a b) \begin{pmatrix} s_1 & s_2 \\ t_1 & t_2 \end{pmatrix}$$

- So we can prove $(r_{i-1} \quad r_i) = (a \quad b) \begin{pmatrix} s_{i-1} & s_i \\ t_{i-1} & t_i \end{pmatrix}$.
- ▶ In other words, $as + bt = as_{i-1} + bt_{i-1} = r_{i-1} = gcd(a, b)$

Solve Modular Algebra Equations

- $ightharpoonup ax \equiv b \pmod{m}$
 - Assume gcd(a, m) = 1.
 - Apply EEA to find s and t such that as + mt = 1.
 - Solution: $x \equiv bs \pmod{m}$
 - ▶ Check: $ax \equiv abs \equiv b(1 mt) \equiv b bmt \equiv b \pmod{m}$.
- ▶ Time complexity is $O(N^3)$, dominated by EEA.

Examples 1

► Solve $5x \equiv 1 \pmod{192}$.

k	0	1	2	3	4
r_k	192	5			
$egin{pmatrix} 1 \ -q_{k-1} \end{pmatrix}$					
(s_k)	1	0			
(t_k)	0	1			

- ▶ $192 \cdot (-2) + 5 \cdot 77 = 1$

Solve System of Modular Algebra Equations

- $ightharpoonup x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}$
 - A.k.a. Chinese Remainder Theorem.
 - Assume $gcd(m_1, m_2) = 1$.
 - ▶ Apply EEA to find s and t such that $m_1s + m_2t = 1$.
 - Solution: $x \equiv a_1 m_2 t + a_2 m_1 s \pmod{m_1 m_2}$
 - Check: $x \equiv a_1 m_2 t \equiv a_1 (1 m_1 s) \equiv a_1 \pmod{m_1}$. $x \equiv a_2 m_1 s \equiv a_2 (1 - m_2 t) \equiv a_2 \pmod{m_2}$.
 - In particular, if $a_1 = a_2 = a$, the solution is $x \equiv am_2t + am_1s \equiv a(m_2t + m_1s) \equiv a \pmod{m_1m_2}$
- ▶ Time complexity is $O(N^3)$, dominated by EEA.

Examples 2

Solve $x \equiv 6 \pmod{13}$, $x \equiv 11 \pmod{17}$

k	0	1	2	3	4
r_k	17	13			
$oxed{ \begin{pmatrix} 1 \ -q_{k-1} \end{pmatrix} }$					
(s_k)	1	0			
(t_k)	0	1			

- $ightharpoonup 17 \cdot (-3) + 13 \cdot 4 = 1$
- $x \equiv 11 \cdot 13 \cdot 4 + 6 \cdot 17 \cdot (-3) \equiv 266 \equiv 45 \pmod{221}$

Outline

Euclidean Algorithm

Modular n-th Root

▶ What about modular *n*-th root?

$$x^n \equiv a \pmod{m}$$
.

- Obviously you can solve it via brute-force in $O(2^N)$ time for a N-bit m. However, this is not what we are interested into.
- ▶ Consider the case when m = p is a prime number first.

- Consider an integer x that is not a multiple of p.
- What does the sequence $kx \mod p$ look like for $k = 1, 2, \dots, p 1$?
 - ▶ A permutation of 1, 2, ..., p-1 since
 - ▶ These p-1 remainders are all within 1, 2, ..., p-1.
 - ▶ They are all different since *p* is prime.
 - So $x \cdot (2x) \cdots ((p-1)x) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}$.
- In other words, $(p-1)!x^{p-1} \equiv (p-1)! \pmod{p}$.
 - So $x^{p-1} \equiv 1 \pmod{p}$ since gcd((p-1)!, p) = 1.
- Fermat's Little Theorem: $x^p \equiv x \pmod{p}$
 - Also include the case $x \equiv 0 \pmod{p}$.
- Example: $2^{13} \equiv 2 \pmod{13}$, $3^{13} \equiv 3 \pmod{13}$.

Solve Modular *n*-th Root for Prime *p*

- Solve $x^5 \equiv 2 \pmod{13}$.
 - $x^{10} \equiv 4 \pmod{13}$, $x^{15} \equiv 8 \pmod{13}$, $x^{25} \equiv 6 \pmod{13}$.
 - Fermat's Little Theorem: $x^{13} \equiv x \pmod{13}$
 - So $x^{25} \equiv x^{13}x^{12} \equiv xx^{12} \equiv x \pmod{13}$.
 - ▶ Solution: $x \equiv 6 \pmod{13}$
- ▶ How about $x^n \equiv a \pmod{p}$?
 - Assume gcd(n, p-1) = 1.
 - No, you can't use this method if n = 2.
 - Solve $ny \equiv 1 \pmod{p-1}$ for $y \pmod{\text{EEA}}$.
 - Solution: $x \equiv a^y \pmod{p}$, or practically $x = a^y \pmod{p}$.
 - ► Check: $x^n \equiv a^{ny} \equiv a^{(ny) \mod (p-1)} \equiv a \pmod{p}$.
- Time complexity
 - ightharpoonup EEA takes $O(N^3)$ time.
 - $ightharpoonup a^y \mod p$ can be completed in $O(N^3)$ time. (How?)
 - ▶ Overall $O(N^3)$ time again!

Example

- Solve $x^5 \equiv 10 \pmod{17}$.
- Apply EEA to solve $5y \equiv 1 \pmod{16}$
 - $y \equiv 13 \pmod{16}$
- $x \equiv 10^{13} \pmod{17}$
 - \triangleright Can we use a calculator to compute 10^{13} mod 17?

Square-and-Multiply

- ► Compute 10¹³ mod 17
- $ightharpoonup 10^{13} \equiv 10^8 \cdot 10^4 \cdot 10^1 \pmod{17}$
 - ightharpoonup Since $13 = (1101)_2$
- ▶ Use square to calculate 10² mod 7, 10⁴ mod 7, etc.
 - $ightharpoonup 10^2 \equiv 100 \equiv 15 \pmod{17}$
 - ► $10^4 \equiv 225 \equiv 4 \pmod{17}$
 - $ightharpoonup 10^8 \equiv 16 \pmod{17}$
- So $x \equiv 10^{13} \equiv 16 \cdot 4 \cdot 10 \equiv 11 \pmod{17}$
- ▶ Indeed, this algorithm computes $a^y \mod p$ in $O(N^3)$ time.
 - O(N) modular multiplications.

Square-and-Multiply by Hand

$$10^{13} \equiv 10^{12} \cdot 10$$

$$\equiv 100^{6} \cdot 10 \equiv 15^{6} \cdot 10$$

$$\equiv 225^{3} \cdot 10 \equiv 4^{3} \cdot 10$$

$$\equiv 4^{2} \cdot 40 \equiv 4^{2} \cdot 6$$

$$\equiv 16 \cdot 6 \equiv 96 \equiv 11 \pmod{17}$$

► Be creative with your calculators!

Summary

- ► EEA is essential for solving modular algebra equations.
 - ▶ In particular, if gcd(a, b) = 1, we can apply EEA to find integers s and t such that as + bt = 1.
- ▶ EEA is efficient with a time complexity of $O(N^3)$ for N-bit inputs.
- With Fermat's Little Theorem, we are able to solve modular n-th root for prime numbers in many cases for $O(N^3)$ time as well.