1. Priority queues

2018年9月11日 14:46

Abstract data type

An object (i.e. set, graph, sequence) Operations can perform on this object

Data structure implements the ADT, specifies

- 1) how to represent the object in memory,
- 2) how to implement the operations as algorithms

Example of ADT: Priority Queues

Object set(/multiset) *S* of elements with keys (as integers)

Operations

max() returns the elements of *S* with the largest key

 $extract_{max}($) returns the element of S with the largest key and removes it from S

insert(x) add x (x has a key) to S

Examples of implement

DS	Insert WCRT	Extract-max WCRT
Unsorted Linkedlist	1	n
Sorted linkedlist	n	1
Неар	$\log n$	$\log n$

Max Heap (DS)

Shape(where to store) complete binary tree of size *n*

Complete binary tree in which every level is full except possibly the last one where all nodes are fully to the left. Root -> lv0, level := #edges on the path to the root

Consider a complete binary tree with all full h-1 levels plus one more node

There are 2^h nodes in such tree $1 + 2 + 2^2 + \dots + 2^{h-1} + 1 = (2^h - 1) + 1$

Properties(how to store)

the key of every node is at least the keys of its children. Example

max() returns the root, $max() \in O(1)$

insert(x) put in the leftmost position on the last level, swap with its parent till it's larger than both of its children

Note that the binary tree is only a visualization, in an actual computer, data are stored more like an array For example, the tree above will be in the form of [14,10,11,9,3,3,7,2,8]

Notice that pick any node, take its index being *i*

left(i) = 2i if $2i \le n$ or its left child is empty

$$right(i) = 2i + 1$$

 $parent(i) = floor(\frac{i}{2})$

Hence, the swapping will have at most $\lg n$ times $insert(x) \in O(\log n)$

extract_max() removes the root, move the leftmost leaf to the root position. Swap with its larger child till it's larger than its children.

Similarly, $extract_max() \in O(\log n)$

Max_Heapify(A, i)

Precondition: the left and right subtrees, L, R are max-heap

Postcondition: tree rooted at A[i] will be a max-heap

- 1. l = left(i) // the left node
- 2. r = right(i) // the right node
- 3. if $l \le A$ heap-size and A[r] > A[largest]
- largest = l
- 5. $else\ largest = i$
- 6. if $r \le A$. heap-size and A[r] > A[largest]
- largest = r
- 8. if largest $\neq i$
- swap(A[i], A[largest])
- $\max_{heapify}(A, largest)$

For line 1-9, the alg takes constant steps.

Hence, for the recurrence $T(n) = T\left(\frac{2n}{3}\right) + c$ since the size of a subtree of a compelete binary tree is $\frac{2n}{3}$ (when the last level is exactly half full)

By Master's thrm, $T(n) \in O(\lg n)$

Or, since each time, the swap happens between a parent and a child, A[largest] can at most be swapped to a leaf. Resulting $T(n) \in O(h)$

Build_Max_Heap(A)

- 1. n = length(A)
- 2. $for i = range \left(floor\left(\frac{n}{2}\right), 0, -1\right)$
- $max_heapify(A, i)$

Lemma there are at most $\frac{n}{2^h}$ nodes, whose rooted subtrees are of heigh h

Since
$$2^n \le n \le 2^{n+1} - 1$$

There's only one node whose rooted subtrees are of height h (The root)

Then there are two nodes whose rooted subtrees ar of height $h-1=\frac{n}{2^{h-1}}=2\left(\frac{n}{2^h}\right)$

Claim $T(n) \in O(n)$

$$T(n) \le \sum_{h=0}^{floor(\lg n)} \frac{n}{2^h} O(h)$$

by the lemma there are at most $\frac{n}{2^h}$ nodes on each level and each node will take O(h) time to heapify

dx

$$= cn \sum_{h=0}^{floor(\lg n)} \frac{h}{2^h}$$

by the lefthild there are at his
$$= cn \sum_{h=0}^{floor(\lg n)} \frac{h}{2^h}$$
c is the constant in $O(h)$

$$\leq cn \sum_{h=0}^{\infty} \frac{h}{2^h} = cn \sum_{h=0}^{\infty} h\left(\frac{1}{2}\right)^h$$

dx

By Maclaurin's series
$$\sum_0^\infty h\left(\frac{1}{x}\right)^h = \frac{d}{dx}\sum_1^\infty \left(\frac{1}{x}\right)^h = \frac{d}{dx}\left((1-x)^{-1}\right) = \frac{x}{(1-x)^2}$$
$$= \frac{0.5}{0.25} = 2cn \in O(n)$$

Heapsort(A)

- 1. $build_max_heap(A)$
- 2. for i in range(n, 2, -1):
- 3. swap(A[1], A[i]) //the largest number got moved to the last element
- 4. n //remove the last element (the largest element), shorten the heap
- 5. $max_heapify(A, 1)$ //maintain property

 $T(n) \in \mathcal{O}(n \log n)$