Real Analysis

learning note For reading translation

我真的不懂忧郁

Real Analysis

learning note For reading translation

by

我真的不懂忧郁

Student Name Student Number

First Surname 1234567

Instructor: I. Surname
Teaching Assistant: I. Surname

Project Duration: Month, Year - Month, Year

Faculty: Faculty of Aerospace Engineering, Delft

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA under

CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

A preface...

我真的不懂忧郁 Delft, October 2024

Summary

 $A\ summary...$

目录

Preface		ì
Su	ımmary	ii
No	omenclature	iv
	Folland. Measure	1
	1.1 Exercises.1	1
Re	References	
A	Source Code Example	5
В	Task Division Example	6

Nomenclature

If a nomenclature is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

Abbreviations

Abbreviation	Definition
ISA	International Standard Atmosphere

Symbols

Symbol	Definition	Unit
V	Velocity	[m/s]
ρ	Density	[kg/m ³]

Chapter 1

Folland. Measure

1.1. Exercises.1

Question 1: A family of sets $\mathcal{R} \subset \mathcal{P}(X)$ is call **Ring**, if it is closed under unions and differences(i.e. if $E_1, \dots, E_n \in \mathcal{R}$, then $\bigcup_{j=1}^n E_j \in \mathcal{R}$, if $E, F \in \mathcal{R}$, then $E/F \in \mathcal{R}$)¹

- 1. Rings(resp. σ -rings) are closed under finite(resp. countable) intersections;
- 2. If \mathcal{R} is a Ring, then \mathcal{R} is a Algebra² iff $X \in \mathcal{R}$;
- 3. If \mathcal{R} is a σ ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ algebra;
- 4. If \mathcal{R} is a σ ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ algebra;

proof: 1. $\forall E_1, E_2 \in \mathcal{R}, E_1 \cap E_2 = E_1/(E_1/E_2) \in \mathcal{R}$ by closed under differences;

- 2. if $X \in \mathcal{R}$, $\forall E \subset X, E \in \mathcal{R}$, $X/E = E^c \in \mathcal{R}$ by closed under differences; If \mathcal{R} is a Algebra, the conclusion natually.
- 3. Let's $S := \{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}, \text{ if } E \in \mathcal{S}, (E^c)^c \in \mathcal{S} \Rightarrow E^c \in \mathcal{S}, \text{ and } X = E \cup E^c \in \mathcal{S} \text{ by closed under unions;}$
- 4. Let's $S := \{ E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R} \},$
 - (a) Assume $E \in \mathcal{S}$, we prove $E^c \in \mathcal{S}$. if $E^c \in \mathcal{S}$, then $\forall F \in \mathcal{R}$, $E^c \cap F \in \mathcal{R} \Rightarrow F/(E \cap F) = \mathcal{R}$, then $E \cap F \in \mathcal{R}$ by closed under differences, so $E \in \mathcal{S}$;
 - (b) prove closed of unions;

 $^{^{1}}$ If a Ring countable for unions,then be called σ -Ring

 $^{^2}$ A family set $\mathcal{A} \in \mathcal{P}(X)$ has proporty as : $(1)X \in \mathcal{A}, (2)E \in \mathcal{A}, E^c \in \mathcal{A}, (3) \forall E_i \in \mathcal{R}, \bigcup_{i=0}^n E_i \in \mathcal{R}$

1.1. Exercises.1

 $\forall E_1, E_2, \cdots, E_n \in \mathcal{S}$, If $\bigcup_{i=1}^n E_i \in \mathcal{S}$, then

$$\left(\bigcup_{i=1}^{n} E_{i}\right) \cap F = \bigcup_{i=1}^{n} (E_{i} \cap F) \in \mathcal{R}, \ \forall F \in \mathcal{R}$$

$$(1.1)$$

So
$$(\bigcup_{i=1}^n E_i) \in \mathcal{S}$$

It is trivial to verify that the intersection of any family of σ -algebra on X is again a σ -algebra. It follows that if \mathcal{E} is any subset of $\mathcal{P}(X)$, there is a **unique smallest** σ -algebra $\mathcal{M}(\mathcal{E})$ contains \mathcal{E} , $\mathcal{M}(\mathcal{E})$ is called the σ -algebra generated by \mathcal{E} .

If X is any metric space, or more generally any topological space, the σ -algebra generated by the family of open sets (or, equivalently, by the family of closed sets in X) in X is called the **Borel** σ -Algebra and is denoted by \mathcal{B}_X . Its members are called **Borel** sets.

Question 2: $\mathcal{B}_{\mathbb{R}}$ is generated by each of the following:

- 1. the open intervals: $\mathcal{E}_1 = \{(a,b) : a < b\}$,
- 2. the closed intervals: $\mathcal{E}_2 = \{[a, b] : a < b\}$,
- 3. the half-open intervals: $\mathcal{E}_3 = \{(a, b] : a < b\} \text{ or } \mathcal{E}_4 = \{[a, b) : a < b\}$
- 4. the open rays: $\mathcal{E}_5 = \{(a, \infty) : a \in \mathbb{R}\} \text{ or } \mathcal{E}_6 = \{(-\infty, a) : a \in \mathbb{R}\},$
- 5. the closed rays: $\mathcal{E}_7 = \{[a, \infty) : a \in \mathbb{R}\}\$ or $\mathcal{E}_8 = \{(-\infty, a] : a \in \mathbb{R}\}\$,

proof: Just prove

1. prove $M(\mathcal{E}_i) \subset \mathcal{B}_{\mathbb{R}}$;

 $\mathcal{M}(\mathcal{E}_j) \subset \mathcal{B}_{\mathbb{R}}$ is natually for j=1,2 by definition. for j=3,4,the element of \mathcal{E}_3 and \mathcal{E}_4 are G_δ sets^a, for example,

$$(a,b] = \bigcap_{1}^{\infty} (a,b + \frac{1}{n}) \tag{1.2}$$

So all there are Borel sets, so $\mathcal{M}(\mathcal{E}) \subset \mathcal{B}_{\mathbb{R}}$.

2. prove $\mathcal{B}_{\mathbb{R}} \subset M(\mathcal{E}_i)$;

Every open set in \mathbb{R} is a countable union of open intervals, so $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_1)$, for $j \geqslant 2$ can now be established by showing that all open intervals lie in $\mathcal{M}(\mathcal{E}_j)$, note that $\mathcal{M}(\mathcal{E}_l)$ is σ -algebra, for example

$$(a,b) = \bigcup_{1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n}\right] \in \mathcal{M}(\mathcal{E}_2)$$
(1.3)

$$(a,b) = \bigcap_{1}^{\infty} (a,b + \frac{1}{n}] \in \mathcal{M}(\mathcal{E}_3)$$
 (1.4)

Question 3: Let \mathcal{M} be an infinite σ -algebra.

- 1. M contains an infinite sequence disjoint sets,
- 2. $card(\mathcal{M}) \geqslant c$.

^aA countable intersection of open sets is called a G_{δ} sets; a countable unions of closed sets is called an F_{δ} sets.

1.1. Exercises.1

proof: Assume $\mathcal{M} \subset \mathcal{P}(X)$ is a σ -algebra I.

Question 4: An algebra \mathcal{A} is a σ -algebra iff \mathcal{A} is closed under countable increasing unions(i.e. if $\{E_j\}_1^\infty \subset \mathcal{A}$ and $E_1 \subset E_2 \subset \cdots$, then $\bigcup_1^\infty E_j \in \mathcal{A}$)

proof:

Question 5: If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} .(Hint: Show that the latter object is a σ -algebra).

proof:

References

[1] I. Surname, I. Surname, and I. Surname. "The Title of the Article". In: *The Title of the Journal* 1.2 (2000), pp. 123–456.

Source Code Example

Adding source code to your report/thesis is supported with the package listings. An example can be found below. Files can be added using \lstinputlisting[language=<language>] {<filename>}.

```
^{2} ISA Calculator: import the function, specify the height and it will return a
_3 list in the following format: [Temperature, Density, Pressure, Speed of Sound].
4 Note that there is no check to see if the maximum altitude is reached.
7 import math
g0 = 9.80665
9 R = 287.0
10 layer1 = [0, 288.15, 101325.0]
11 alt = [0,11000,20000,32000,47000,51000,71000,86000]
a = [-.0065, 0, .0010, .0028, 0, -.0028, -.0020]
14 def atmosphere(h):
      for i in range(0,len(alt)-1):
16
          if h >= alt[i]:
              layer0 = layer1[:]
17
              layer1[0] = min(h,alt[i+1])
18
              if a[i] != 0:
19
                  layer1[1] = layer0[1] + a[i]*(layer1[0]-layer0[0])
20
                  layer1[2] = layer0[2] * (layer1[1]/layer0[1])**(-g0/(a[i]*R))
                  layer1[2] = layer0[2]*math.exp((-g0/(R*layer1[1]))*(layer1[0]-layer0[0]))
23
      return [layer1[1],layer1[2]/(R*layer1[1]),layer1[2],math.sqrt(1.4*R*layer1[1])]
```


Task Division Example

If a task division is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

表 B.1: Distribution of the workload

	Task	Student Name(s)
	Summary	
Chapter 1	Introduction	
Chapter 2		
Chapter 3		
Chapter *		
Chapter *	Conclusion	
	Editors	
	CAD and Figures	
	Document Design and Layout	