pval
$$\sum_{k=B}^{n} {n \choose k} (p^k) (1-p)^{n-k}$$

 $\frac{a-np}{\sqrt{np(1-p)}} = -z_{(1-\alpha/2)} \text{ ner}$
 $\frac{b-1-np}{\sqrt{np(1-p)}} = z_{(1-\alpha/2)} \text{ upp}$
CLT power alpha=0.05
 $1 - \Phi(1.645 - \frac{\mu_{true} - \mu_0}{\sigma/\sqrt{n}})$

BIN power:

$$1 - \Phi(1.645\sqrt{\frac{.25}{p(1-p)}} - \frac{p-.5}{\sqrt{p(1-p)/n}})$$

Two: 1. calculate $D_{obs} = \bar{X}_i - \bar{X}_j$ 2. From N randomly allocate values to n_i and n_j 3. for each permut calc D^* 4. upper p
value

$$U = mn - W + \frac{m(m+1)}{2}$$
 normAP $P(z \ge \frac{W_1 - \frac{1}{2}m(N+1)}{\sqrt{\frac{1}{12}mn(N+1)}})$
$$var(W_{tie}) = \frac{mn(N+1)}{12} - \frac{mn\sum_{i}^{k}(t_i^3 - t_i)}{12N(N-1)} \text{ dont forget to square } 1.X_i - X_i \text{ and order}$$

$$var(W_{tie}) = \frac{mn(N+1)}{12} - \frac{mn\sum_{i=1}^{k} (t_i^3 - t_i)}{12N(N-1)}$$
 dont forget to square

 $1.X_i - X_j$ and order

2. Find k_a & k_b s.th. $P(k_a \le U \le k_b - 1) = 1 - \alpha \Rightarrow pwd(k_a) \le \Delta \le pwd(k_b)$

3.Small m & n $k_a = l + 1$ $k_b = u$

SCORES

KS: rank, if in treatment add $1/n_{group}$, find all abs diff per value.

reject if
$$\left| \frac{\sqrt{2}\hat{D}_{i}}{\sqrt{MSE(\frac{1}{n_{i}} + \frac{1}{n_{j}})}} \right| > q(1 - \alpha; k; N - k)$$

$$all = \frac{N!}{n_{1}!n_{2}!...n_{k}!}$$

$$KW = \frac{12}{N(N+1)} \sum_{i}^{k} n_{i} (\bar{R}_{i} - \frac{N+1}{2})^{2}$$

$$KW_{tie} = \frac{KW}{1 - \sum_{i}^{N} t_{i}^{3} - i_{i}}}{KW_{large}} \sim \chi_{k-1}^{2}$$

lsd 1. obs T_{ij} 2. perm by selecting n_i n_j from N 3. T_{ij} from each 4. 100α point of permutaiton

distirbution = $t^*(\alpha)$, reject if $T_{ij} > t^*(\alpha)$ HSD 1. obs $|T_{ij}| = \frac{|\vec{R}_i - \vec{R}_j|}{\sqrt{\frac{MSE}{2}(\frac{1}{n_i} + \frac{1}{n_j})}}$ 2. perm as F, calc $Q^* = \max_{ij} |T_{ij}|$ 3.let $q^*(\alpha)$ be upper α^{th} quantile

4.signif
$$|T_{ij}| > q^*(\alpha)$$
 5. pval but with $> |\bar{R}_i - \bar{R}_j| \ge q(\alpha, k, \infty) \sqrt{\frac{N(N+1)}{24} (\frac{1}{n_i} + \frac{1}{n_j})}$ Z for LSD, and Z alpha/g for bon with LSD

Paired:

$$H_0: F(x) = 1 - F(-x) \ H_a: F(x) < 1 - F(-x), F(x) > 1 - F(-x)$$

perm 1. for all 2^n perm, comp D_i 2. all possible assingment of +,- 3. find \bar{D} 4. pval as usual

$$\bar{D} = \frac{\sum U_i |D_i|}{n} P(U_i = 1) = P(U_i = -1) = .5$$

perm for lare n
$$\bar{D} = \frac{\sum U_i |D_i|}{n} P(U_i = 1) = P(U_i = -1) = .5$$
 normAP
$$z = \frac{\bar{D}}{\sqrt{\frac{1}{n^2} \sum |D_i|^2}}$$

$$z = \frac{SR_+ - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$

$$z_{tie,no0} = \frac{SR_+ - \frac{1}{2} \sum R_i}{\sqrt{\frac{1}{4} \sum R_i^2}}$$
 sign test:

sign test:

$$H_0: \theta_D = 0 \ H_a: \theta_D > 0$$

Trend:

- 1. r obs
- 2. fix x, perm n! for y

3. calc r

4. pval as usaul

$$z = r\sqrt{n-1}$$

$$D = \sum [R(X_i) - R(Y_i)]^2$$

$$r_s = 1 - \frac{6D}{n(n^2 - 1)}$$

$$r_{s,tie} = \frac{1 - \frac{6D}{n(n^2 - 1)} - C_1}{C_2}$$

$$C_1 = \frac{\sum (s_i^3 - s_i) + \sum (t_i^3 - t_i)}{2n(n^2 - 1)}$$

$$C_2 = \sqrt{[1 - \frac{\sum (s_i^3 - s_i)}{n(n^2 - 1)}][1 - \frac{\sum (t_i^3 - t_i)}{n(n^2 - 1)}]}$$

tau

1.
$$U_{ij} = 1_{conc} = 1/2$$
 if tie
2. $V_i = \sum U_{ij}$ for that pair
3. $r_{\tau} = 2 \frac{\sum_{i}^{n-1} V_i}{nC_2} - 1$

normap $z = r_{\tau} 3\sqrt{\frac{n^2 - n}{4n + 10}}$ slope

$$\hat{\beta}_1 = r \frac{S_Y}{S_X}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

$$t = \hat{\beta_1} \sqrt{\frac{\sum (X_i - \bar{X})^2}{MSE}}$$
1.
obs 2.fix X, n! for Y 3. p as usual

Ho: $p_{ij} = p_i.p_{.j} \ V(i,j) \text{ vs } H_a: p_{ij} \neq p_{i.p_{.j}}$ $e_{ij} = \frac{n_i.n_{.j}}{n_{..}}$ $\chi^2 = \sum_{i}^{r} \sum_{j}^{c} \frac{(n_{ij} - e_{ij})^2}{e_{ij}} \sim \chi^2_{(r-1)(c-1)} \text{ if } e_{ij} < 5 \ / \text{Rightarrow fix margins and randomize. if A - 2, two sample with } (n_{1.} + n_{2.}) C_{n_{1.}}$ Fisher exact $E(K_{ij}) = \sum_{j=0}^{n_{ij}} \sum_{j=0}^{n_{ij}} (n_{ij} - e_{ij})^2 (n_{ij} - e_{ij} - e_{ij})^2 (n_{ij} - e_{ij} - e_{ij})^2 (n_{ij} - e_{ij} - e_{$

$$P(X=x) = \frac{{}^{(n_{.1})}C_{(x)}*{}^{(n_{.2})}C_{(n_{1.}-x)}}{{}^{n}C_{n_{1}}}$$

Fisher exact $P(X = x) = \frac{{_{(n,1)}C_{(x)}*_{(n,2)}C_{(n_1,-x)}}}{{_{n,..}C_{n_1}}}$ mcnemar $P_{AB} = P_{BA}$ vs $P_{AB} \neq P_{BA}$ large n: $T = \frac{(X_{AB} - X_{BA})^2}{X_{AB} + X_{BA}} \sim \chi_1^2$ small: $X_{AB} \sim Bin(X_{AB} + X_{BA}, 1/2)$

TABLE A2
Standard Normal Cumulative Probabilities

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.614
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.651
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901:
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999

z	.842	1.036	1.282	1.645	1.960	2.326
prob ≤ z	.800	.850	.900	.950	.975	.990

TABLE A3
Critical Values for Wilcoxon Rank-Sum Statistic: Sum Is Taken for Treatment with n Observations

							5	%						
$n \rightarrow$		4		5		6		7		8		9	10	
n	Lower	Upper												
↓ ₄	11	25	17	33	24	42	32	52	41	63	51	75	62	88
5	12	28	19	36	26	46	34	57	44	68	54	81	66	94
6	13	31	20	40	28	50	36	62	46	74	57	87	69	101
7	14	34	21	44	29	55	39	66	49	79	60	93	72	108
8	15	37	23	47	31	59	41	71	51	85	63	99	75	115
9	16	40	24	51	33	63	43	76	54	90	66	105	79	121
10	17	43	26	54	35	67	45	81	56	96	69	111	82	128

							2	5%						
$n \rightarrow$	1	4		5		6		7		8		9	10	
m	Lower	Upper												
\downarrow_4	10	26	16	34	23	43	31	53	40	64	49	77	60	90
5	11	29	17	38	24	48	33	58	42	70	52	83	63	97
6	12	32	18	42	26	52	34	64	44	76	55	89	66	104
7	13	35	20	45	27	57	36	69	46	82	57	96	69	111
8	14	38	21	49	29	61	38	74	49	87	60	102	72	118
9	14	42	22	53	31	65	40	79	51	93	62	109	75	125
10	15	45	23	57	32	70	42	84	53	99	65	115	78	132

							1	%						
1 →		4	5		6		7		8		9		10	
n	Lower	Upper												
\downarrow_4		5/9/	15	35	22	44	29	55	38	66	48	78	58	92
5	10	30	16	39	23	49	31	60	40	72	50	85	61	99
6	11	33	17	43	24	54	32	66	42	78	52	92	63	107
7	11	37	18	47	25	59	34	71	43	85	54	99	66	114
8	12	40	19	51	27	63	35	77	45	91	56	106	68	122
9	13	43	20	55	28	68	37	82	47	97	59	112	71	129
10	13	47	21	59	29	73	39	87	49	103	61	119	74	136

TABLE A7
Upper Critical Values of the Chi-Square Distribution

	Uppe	r-Tail Pro	bability		No.	Upper	-Tail Prol	pability	
df	.1	.05	.025	.01	df	.1	.05	.025	.01
1	2.71	3.84	5.02	6.63	31	41.4	45.0	48.2	52.2
2	4.61	5.99	7.38	9.21	32	42.6	46.2	49.5	53.5
3	6.25	7.81	9.35	11.3	33	43.7	47.4	50.7	54.8
4	7.78	9.49	11.1	13.3	34	44.9	48.6	52.0	56.1
5	9.24	11.1	12.8	15.1	35	46.1	49.8	53.2	57.3
6	10.6	12.6	14.4	16.8	36	47.2	51.0	54.4	58.6
7	12.0	14.1	16.0	18.5	37	48.4	52.2	55.7	59.9
8	13.4	15.5	17.5	20.1	38	49.5	53.4	56.9	61.2
9	14.7	16.9	19.0	21.7	39	50.7	54.6	58.1	62.4
10	16.0	18.3	20.5	23.2	40	51.8	55.8	59.3	63.7
11	17.3	19.7	21.9	24.7	41	52.9	56.9	60.6	64.9
12	18.5	21.0	23.3	26.2	42	54.1	58.1	61.8	66.2
13	19.8	22.4	24.7	27.7	43	55.2	59.3	63.0	67.5
14	21.1	23.7	26.1	29.1	44	56.4	60.5	64.2	68.7
15	22.3	25.0	27.5	30.6	45	57.5	61.7	65.4	70.0
16	23.5	26.3	28.8	32.0	46	58.6	62.8	66.6	71.2
17	24.8	27.6	30.2	33.4	47	59.8	64.0	67.8	72.4
18	26.0	28.9	31.5	34.8	48	60.9	65.2	69.0	73.7
19	27.2	30.1	32.9	36.2	49	62.0	66.3	70.2	74.9
20	28.4	31.4	34.2	37.6	50	63.2	67.5	71.4	76.2
21	29.6	32.7	35.5	38.9	51	64.3	68.7	72.6	77.4
22	30.8	33.9	36.8	40.3	52	65.4	69.8	73.8	78.6
23	32.0	35.2	38.1	41.6	53	66.5	71.0	75.0	79.8
24	33.2	36.4	39.4	43.0	54	67.7	72.2	76.2	81.1
25	34.4	37.7	40.6	44.3	55	68.8	73.3	77.4	82.3
26	35.6	38.9	41.9	45.6	56	69.9	74.5	78.6	83.5
27	36.7	40.1	43.2	47.0	57	71.0	75.6	79.8	84.7
28	37.9	41.3	44.5	48.3	58	72.2	76.8	80.9	86.0
29	39.1	42.6	45.7	49.6	59	73.3	77.9	82.1	87.2
30	40.3	43.8	47.0	50.9	60	74.4	79.1	83.3	88.4

TABLE A8
Tukey's HSD 5% Critical Values, q(.05, k, df)

df	2	3	4	5	6	7	8	9	10
2	6.08	8.33	9.80	10.88	11.73	12.43	13.03	13.54	13.99
3	4.50	5.91	6.82	7.50	8.04	8.48	8.85	9.18	9.40
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.4
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.10
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.9
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.7
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.6
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.4
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.26	5.3
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.3
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.2
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.2
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.1
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.1
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.0
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.90	5.01
21	2.94	3.56	3.94	4.21	4.42	4.60	4.74	4.87	4.98
22	2.93	3.55	3.93	4.20	4.41	4.58	4.72	4.85	4.96
23	2.93	3.54	3.91	4.18	4.39	4.56	4.70	4.83	4.9
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.9
25	2.91	3.52	3.89	4.15	4.36	4.53	4.67	4.79	4.9
26	2.91	3.51	3.88	4.14	4.35	4.51	4.65	4.77	4.8
27	2.90	3.51	3.87	4.13	4.33	4.50	4.64	4.76	4.80
28	2.90	3.50	3.86	4.12	4.32	4.49	4.62	4.74	4.85
29	2.89	3.49	3.85	4.11	4.31	4.47	4.61	4.73	4.84
30	2.89	3.49	3.85	4.10	4.30	4.46	4.60	4.72	4.82
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73
50	2.84	3.42	3.76	4.00	4.19	4.34	4.47	4.58	4.68
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.6
70	2.82	3.39	3.72	3.96	4.14	4.29	4.42	4.53	4.62
80	2.81	3.38	3.71	3.95	4.13	4.28	4.40	4.51	4.60
90	2.81	3.37	3.70	3.94	4.12	4.27	4.39	4.50	4.5
100	2.81	3.36	3.70	3.93	4.11	4.26	4.38	4.48	4.5
200	2.79	3.34	3.66	3.89	4.07	4.21	4.33	4.44	4.5
00	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.4

A critical value may be obtained in SAS® using the following commands. The illustration is for df = 10 and k = 3.

```
data;
p = probmc("RANGE",.,.95,10,3);
proc print;
```


TABLE A9 Signed-Rank Tail Probabilities, $P(SR_+ \ge c)$

c	n = 4	с	n = 8	с	n = 10	c	n = 11	С	n = 12
7	0.313	23	0.273	34	0.278	41	0.260	48	0.259
8	0.188	24	0.230	35	0.246	42	0.232	49	0.235
9	0.125	25	0.191	36	0.216	43	0.207	50	0.212
10	0.063	26	0.156	37	0.188	44	0.183	51	0.190
		- 27	0.125	38	0.161	45	0.160	52	0.170
C	n = 5	28	0.098	39	0.138	46	0.139	53	0.151
10	0.313	29	0.074	40	0.116	47	0.120	54	0.133
11	0.219	30	0.055	41	0.097	48	0.103	55	0.117
12	0.156	31	0.039	42	0.080	49	0.087	56	0.102
13	0.094	32	0.027	43	0.065	50	0.074	57	0.088
14	0.063	33	0.020	44	0.053	51	0.062	58	0.076
15	0.031	34	0.012	45	0.042	52	0.051	59	0.065
	0.051	35	0.008	46	0.032	53	0.042	60	0.055
C	n = 6	36	0.004	47	0.024	54	0.034	61	0.046
	0.004	-		48	0.019	55	0.027	62	0.039
14	0.281	C	n = 9	49	0.014	56	0.021	63	0.032
15	0.219	28	0.285	50	0.010	57	0.016	64	0.026
16	0.156	29	0.248	51	0.007	58	0.012	65	0.021
17	0.109	30	0.213	52	0.005	59	0.009	66	0.017
18	0.078	31	0.180	53	0.003	60	0.007	67	0.013
19	0.047	32	0.150	54	0.002	61	0.005	68	0.010
20	0.031	33	0.125	55	0.001	62	0.003	69	0.008
21	0.016	34	0.102			63	0.002	70	0.006
c	n = 7	35	0.082			64	0.001	71	0.005
· ·	<i>n</i> = 7	36	0.064			65	100.0	72	0.003
8	0.289	37	0.049			66	0.000	73	0.002
9	0.234	38	0.037					74	0.002
0	0.188	39	0.027					75	0.001
1	0.148	40	0.020					76	0.001
2	0.109	41	0.014					77	0.000
3	0.078	42	0.010					78	0.000
4	0.055	43	0.006						
5	0.039	44	0.004						
5	0.023	45	0.004						
•	0.016		0.002						
	0.008								

Lower-tail probabilities may be obtained as $P(SR_+ \le c) = P(SR_+ \ge n(n+1)/2 - c)$.

TABLE A12
Upper-Tail Probabilities for Spearman Rank Correlation, $P(r_1 \ge c)$

n=4	Prob	n = 7	Prob	n = 8	Deal	n = 9	ъ.	n = 10		n = 10	
			1.40.80	_ c	Prob	_ c	Prob	_ c	Prob	<i>c</i>	Prob
.00	.542	.00	.518	.00	.512	.00	.509	.01	.500	.62	.030
.20	.458	.04	.482	.02	.488	.02	.491	.02	.486	.64	.027
.40	.375	.07	.453	.05	.467	.03	.474	.03	.473	.65	.024
.60	.208	.11	.420	.07	.441	.05	.456	.04	.459	.66	.022
.80	.167	.14	.391	.10	.420	.07	.440	.05	.446	.67	.019
1.00	.042	.18	.357	.12	.397	.08	.422	.07	.433	.68	.017
		.21	.331	.14	.376	.10	.405	.08	.419	.70	.015
n = 5	400 00	.25	.297	.17	.352	.12	.388	.09	.406	.71	.013
C	Prob	.29	.278	.19	.332	.13	.372	.10	.393	.72	.012
-00	525	.32	.249	.21	.310	.15	.354	.12	.379	.73	.010
.00	.525	.36	.222	.24	.291	.17	.339	.13	.367	.75	.009
.10	.475	.39	.198	.26	.268	.18	.322	.14	.354	.76	.007
.20	.392	.43	.177	.29	.250	.20	.307	.15	.341	.77	.006
.30	.342	.46	.151	.31	.231	.22	.290	.16	.328	.78	.005
.40	.258	.50	.133	.33	.214	.23	.276	.18	.316	Greater	< .00
.50	.225	.54	.118	.36	.195	.25	.260	.19	.304		
.60	.175	.57	.100	.38	.180	.27	.247	.20	.292		
.70	.117	.61	.083	.40	.163	.28	.231	.21	.280		
.80	.067	.64	.069	.43	.150	.30	.218	.22	.268		
.90	.042	.68	.055	.45	.134	.32	.205	.24	.257		
1.00	.008	.71	.044	.48	.122	.33	.193	.25	.246		
		.75	.033	.50	.108	.35	.179	.26	.235		
n = 6		.79	.024	.52	.098	.37	.168	.27	.224		
C	Prob	.82	.017	.55	.085	.38	.156	.28	.214		
02	500	.86	.012	.57	.076	.40	.146	.30	.203		
.03	.500	.89	.006	.60	.066	.42	.135	.31	.193		
.09	.460	.93	.003	.62	.057	.43	.125	.32	.184		
.14	.401	.96	.001	.64	.048	.45	.115	.33	.174		
.20	.357	1.00	.000	.67	.042	.47	.106	.35	.165		
.26	.329	-		.69	.035	.48	.097	.36	.156		
.31	.282			.71	.029	.50	.089	.37	.148		
.37	.249			.74	.023	.52	.081	.38	.139		
.43	.210			76	.018	.53	.074	.39	.132		
.49	.178			.76 .79	.014	.55	.066	.41	.124		
.54	.149			.81	.011	.57	.060	.42	.116		
.60	.121			.83	.008	.58	.054	.43	.109		
.66	.088			.86	.005	.60	.048	.44	.102		
.71	.068			.88	.004	.62	.043	.45	.096		
.77	.051			.90	.002	.63	.038	.43	.089		
.83	.029			.93	.002	.65	.033		.089		
.89	.017			.95	.001		.033	.48			
.94	.008			.98	.000	.67	.029	.49	.077		
.00	.001			1.00	.000	.68	.025	.50	.072		
				1.00	.000	.70	.022	.52	.067		
					of many	.72	.018	.53	.062		
						.73	.016	.54	.057		
						.75	.013	.55	.052		
						.77	.011	.56	.048		
						.78	.009	.58	.044		
						.80	.007	.59	.040		
						.82	.005	.60	.037		
						Greater	- 005	.61	.033		

TABLE A13
Upper-Tail Probabilities for Kendall's Tau, $P(r_{\tau} \ge c)$

n = 4		n = 7		n = 8		n = 9		n = 10	
c	Prob	c	Prob	c	Prob	c	Prob	с	Prob
.00	.625	.05	.500	.00	.548	.00	.540	.02	.500
.33	.375	.14	.386	.07	.452	.06	.460	.07	.431
.67	.167	.24	.281	.14	.360	.11	.381	.11	.364
1.00	.042	.33	.191	.21	.274	.17	.306	.16	.300
		43	.119	.29	.199	.22	.238	.20	.242
n = 5		.52	.068	.36	.138	.28	.179	.24	.190
C	Prob	.62	.035	.43	.089	.33	.130	.29	.146
.00	.592	.71	.015	.50	.054	.39	.090	.33	.108
.20	.408	.81	.005	.57	.031	.44	.060	.38	.078
.40	.242	.90	.001	.64	.016	.50	.038	.42	.054
.60	.117	1.00	.000	.71	.007	.56	.022	.47	.036
.80	.042		The reality of the	.79	.003	.61	.012	.51	.023
1.00	.008			.86	.001	.67	.006	.56	.014
1.00	.000			.93	.000	.72	.003	.60	.008
n = 6				1.00	.000	.78	.001	.64	.005
c	Prob					.83	.000	.69	.002
						.89	.000	.73	.001
.07	.500					.94	.000	.78	.001
.20	.360					1.00	.000	.82	.000
.33	.235							.87	.000
.47	.136							.91	.000
.60	.068							.96	.000
.73	.028							1.00	.000
.87	.008								
1.00	.001								

For negative values of c, $P(r_{\tau} \le c) = P(r_{\tau} \ge -c)$.