Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №6 по дисциплине «Математическая статистика»

Выполнил студент В. А. Рыженко

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург, 2020 г.

Содержание

1.	Пос	тановка задачи	3
2.	2.2.	Простая линейная регрессия Двумерное нормальное распределение 2.2.1. Метод наименьших квадратов 2.2.2. Расчётные формулы для МНК-оценок Робастные оценки коэффициентов линейной регрессии	3 3 3 4 5 6
3.	Pea.	пизация	6
4.	-	Оценки коэффициентов линейной регрессии	7 7 7 7
5.	Обс	уждение	8
6.	При	ложения	8
C	пис	ок иллюстраций	
	1 2	Выборка без возмущений	7 8

1. Постановка задачи

Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8; 2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой с параметрами (0,1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.

2. Теория

2.1. Простая линейная регрессия

2.2. Двумерное нормальное распределение

Регрессионную модель описания данных называют простой линейной регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1..n \tag{1}$$

где $x_1, ..., x_n$ — заданные числа (значения фактора); $y_1, ..., y_n$ — наблюдаемые значения отклика; $\epsilon_1, ..., \epsilon_n$ — независимые, нормально распределённые $N(0,\sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0, β_1 — неизвестные параметры, подлежащие оцениванию. В модели (1) отклик у зависит зависит от одного фактора x, и весь разброс экспериментальных точек объясняется только погрешностями наблюдений (результатов измерений) отклика у. Погрешности результатов измерений x в этой модели полагают существенно меньшими погрешностей результатов измерений y, так что ими можно пренебречь [1, с. 507].

2.2.1. Метод наименьших квадратов

При оценивании параметров регрессионной модели используют различные методы. Один из наиболее распрстранённых подходов заключается в следующем: вводится мера (критерий) рассогласования отклика и регрессионной функции, и оценки параметров регрессии определяются так, чтобы сделать это рассогласование наименьшим. Достаточно простые расчётные формулы для оценок получают при выборе критерия в виде суммы квадратов отклонений значений отклика от значений регрессионной функции (сумма квадратов остатков):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}$$
 (2)

Задача минимизации квадратичного критерия (2) носит название задачи метода наименьших квадратов (МНК), а оценки $\hat{\beta}_0$, $\hat{\beta}_1$ параметров β_0 , β_1 , реализующие минимум критерия (2), называют МНК-оценками [1, с. 508].

2.2.2. Расчётные формулы для МНК-оценок

МНК-оценки параметров $\hat{\beta_0}, \hat{\beta_1}$ находятся из условия обращения функции $Q(\beta_0, \beta_1)$ в минимум.

Для нахождения МНК-оценок $\hat{\beta}_0, \hat{\beta}_1$ выпишем необходимые условия экстремума

$$\begin{cases}
\frac{\partial Q}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0 \\
\frac{\partial Q}{\partial \beta_1} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0
\end{cases}$$
(3)

Далее для упрощения записи сумм будем опускать индекс суммирования. Из системы (3) получим:

$$\begin{cases}
 n\hat{\beta}_0 + \hat{\beta}_1 \sum x_i = \sum y_i \\
 \hat{\beta}_0 \sum x_i + \hat{\beta}_1 \sum x_i^2 = \sum x_i y_i
\end{cases}$$
(4)

Разделим оба уравнения на n:

$$\begin{cases} \hat{\beta}_{0} + \hat{\beta}_{1}(\frac{1}{n}\sum x_{i}) = \frac{1}{n}\sum y_{i} \\ \hat{\beta}_{0}(\frac{1}{n}\sum x_{i}) + \hat{\beta}_{1}(\frac{1}{n}\sum x_{i}^{2}) = \frac{1}{n}\sum x_{i}y_{i} \end{cases}$$
 (5)

и, используя известные статистические обозначения для выборочных первых и вторых начальных моментов

$$\bar{x} = \frac{1}{n} \sum x_i, \bar{y} = \frac{1}{n} \sum y_i, \bar{x^2} = \frac{1}{n} \sum x_i^2, \bar{xy} = \frac{1}{n} \sum x_i y_i,$$
 (6)

получим

$$\begin{cases}
\hat{\beta}_0 + \hat{\beta}_1 \bar{x} = \bar{y} \\
\hat{\beta}_0 \bar{x} + \hat{\beta}_1 \bar{x}^2 = \bar{x} \bar{y},
\end{cases}$$
(7)

откуда МНК-оценку $\hat{\beta_1}$ наклона прямой регрессии находим по формуле Крамера

$$\hat{\beta}_1 = \frac{\bar{x}y - \bar{x} \cdot \bar{y}}{\bar{x}^2 - (\bar{x})^2} \tag{8}$$

а МНК-оценку $\hat{\beta}_0$ определяем непосредственно из первого уравнения системы (7):

$$\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1 \tag{9}$$

Заметим, что определитель системы (7):

$$\bar{x^2} - (\bar{x})^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2 = s_x^2 > 0,$$
 (10)

если среди значений $x_1, ..., x_n$ есть различные, что и будем предполагать. Доказательство минимальности функции $Q(\beta_0, \beta_1)$ в стационарной точке проведём

с помощью известного достаточного признака экстремума функции двух переменных. Имеем:

$$\frac{\partial^2 Q}{\partial \beta_0^2} = 2n, \frac{\partial^2 Q}{\partial \beta_1^2} = 2\sum_i x_i^2 = 2n\bar{x}^2, \frac{\partial^2 Q}{\partial \beta_1 \partial \beta_0} = 2\sum_i x_i = 2n\bar{x}$$
 (11)

$$\triangle = \frac{\partial^2 Q}{\partial \beta_0^2} \cdot \frac{\partial^2 Q}{\partial \beta_1^2} - \left(\frac{\partial^2 Q}{\partial \beta_1 \partial \beta_0}\right)^2 = 4n^2 \bar{x}^2 - 4n^2 (\bar{x})^2 = 4n^2 \left[\bar{x}^2 - (\bar{x})^2\right] = 4n^2 \left[\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})\right] = 4n^2 s_x^2 > 0.$$

$$(12)$$

Этот результат вместе с условием $\frac{\partial^2 Q}{\partial \beta_0^2} = 2n > 0$ означает, что в стационарной точке функция Q имеет минимум.

2.3. Робастные оценки коэффициентов линейной регрессии

Робастность оценок коэффициентов линейной регрессии (т.е. их устойчивость по отношению к наличию в данных редких, но больших по величине выбросов) может быть обеспечена различными способами. Одним из них является использование метода наименьших модулей вместо метода наименьших квадратов:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}$$
 (13)

Напомним, что использование метода наименьших модулей в задаче оценивания параметра сдвига распределений приводит к оценке в виде выборочной медианы, обладающей робастными свойствами. В отличие от этого случая и от задач метода наименьших квадратов, на практике задача (13) решается численно. Соответствующие процедуры представлены в некоторых современных пакетах программ по статистическому анализу.

Здесь мы рассмотрим простейшую в вычистлительном отношении робастную альтернативу оценкам коэффициентов линейной регрессии по МНК. Для этого сначала запишем выражения для оценок (9) и (8) в другом виде:

$$\hat{\beta}_1 = \frac{\bar{x}y - \bar{x} \cdot \bar{y}}{\bar{x}^2 - (\bar{x})^2} = \frac{k_{xy}}{s_x^2} = \frac{k_{xy}}{s_x s_y} \cdot \frac{s_y}{s_x} = r_{xy} \frac{s_y}{s_x}, \hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1$$
 (14)

В формулах (14) заменим выборочные средние \bar{x} и \bar{y} соответственно на робастные выборочные медианы med x и med y, среднеквадратические отклонения s_x и s_y на робастные нормированные интерквартильные широты q_x^* и q_y^* , выборочный коэффициент корреляции r_{xy} — на знаковый коэффициент корреляции r_Q :

$$\hat{\beta}_{1R} = r_Q \frac{q_y^*}{q_x^*},\tag{15}$$

$$\hat{\beta}_{0R} = medy - \hat{\beta}_{1R} medx, \tag{16}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n sgn(x_i - medx)sgn(y_i - medy), \tag{17}$$

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)},$$

$$\begin{cases} \left[\frac{n}{4}\right] + 1 \text{ при } \frac{n}{4} \text{ дробном,} \\ \frac{n}{4} \text{ при } \frac{n}{4} \text{ целом.} \end{cases}$$

$$j = n - l + 1$$

$$sgn(z) = \begin{cases} 1 \text{ при } z > 0 \\ 0 \text{ при } z = 0 \\ -1 \text{ при } z < 0 \end{cases}$$
(18)

Уравнение регрессии здесь имеет вид

$$y = \hat{\beta}_{0R} + \hat{\beta}_{1R} x \tag{19}$$

Статистики выборочной медианы и интерквартильной широты обладают робастными свойствами в силу того, что основаны на центральных порядковых статистиках, малочувствительных к большим по величине выбросам в данных. Статистика выборочного знакового коэффициента корреляции робастна, так как знаковая функция sgn z чувствительна не к величине аргумента, а только к его знаку. Отсюда оценка прямой регрессии (19) обладает очевидными робастными свойствами устойчивости к выбросам по координате у, но она довольно груба

2.4. Оценка качества

Проводить оценку качества работы метод будем проводить при помощи метода наименьших квадратов 13

3. Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки Visual Code. Исходный код лабораторной работы приведён в приложении.

4. Результаты

4.1. Оценки коэффициентов линейной регрессии

4.1.1. Выборка без возмущений

- Критерий наименьших квадратов: $\hat{a} \approx 2.36, \, \hat{b} \approx 2.06, \, \text{quality} \approx 12.63$
- Критерий наименьших модулей: $\hat{a}\approx 2.65,\,\hat{b}\approx 2.14,\,\mathrm{quality}\approx 13.79$

Рис. 1. Выборка без возмущений

4.1.2. Выборка с возмущениями

- Критерий наименьших квадратов: $\hat{a}\approx 2.36,\,\hat{b}\approx 0.48,\,\mathrm{quality}\approx 38.23$

Рис. 2. Выборка с возмущениями

5. Обсуждение

- Критерий наименьших квадратов точнее оценивает коэффициенты линейной регрессии на выборке без возмущений.
- Для выборки с возмущениями результат получается точнее при оценке критерием наименьших модулей.
- Таким образом, критерий наименьших модулей устойчив к редким выбросам, в отличие от критерия наименьших квадратов.

6. Приложения

Репозиторий на GitHub с релизацией: github.com.

Список литературы

- [1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001. 592 с., илл.
- [2] Вентцель Е.С. Теория вероятностей: Учеб. для вузов. 6-е изд. стер. М.: Высш. шк., 1999.-576 с.