Lab 5: Introducing Classification

Objectives:

- · To gain hands-on experience classifying small dataset
- To implement concepts related to Decision Tree classifier (i.e. Entropy, Information Gain), along with using existing libraries.

```
# Run this cell if you use Colab
from google.colab import drive
drive.mount('/content/drive')
```

→ Mounted at /content/drive

Code it yourself

```
import pandas as pd
import numpy as np

# Read the data
df = pd.read_csv('./toy_data.csv')
df
```

_		age	income	student	credit rating	huvs computer
		age	THEOME	Student		buys compacer
	0	<=30	high	no	fair	no
	1	<=30	high	no	excellent	no
	2	31-40	high	no	fair	yes
	3	>40	medium	no	fair	yes
	4	>40	low	yes	fair	yes
	5	>40	low	yes	excellent	no
	6	31-40	low	yes	excellent	yes
	7	<=30	medium	no	fair	no
	8	<=30	low	yes	fair	yes
	9	>40	medium	yes	fair	yes
	10	<=30	medium	yes	excellent	yes
	11	31-40	medium	no	excellent	yes
	12	31-40	high	yes	fair	yes
	13	>40	medium	no	excellent	no

Next steps: Generate code with df View recommended plots New interactive sheet

print(df.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14 entries, 0 to 13
Data columns (total 5 columns):
                   Non-Null Count
 # Column
                                   Dtype
                   14 non-null
                                    object
     age
                   14 non-null
                                    object
     income
     student
                   14 non-null
                                    object
     credit rating 14 non-null
                                    object
 4 buys computer 14 non-null
                                    object
dtypes: object(5)
memory usage: 692.0+ bytes
None
```

TODO: Write functions to compute Gain and Entropy, as discussed in the lecture.

```
import math
# Write your code here
entropy_t = pd.Series(df['buys computer'].value_counts().values/df['buys computer'].count())
entropy t = -entropy t.apply(lambda x: x*math.log2(x)).sum()
entropy_t
→ 0.9402859586706311
ni_n = df.groupby('age')['buys computer'].count()/df['buys computer'].count()
entropy_age = (
   df.groupby('age')['buys computer'].value_counts()/df.groupby('age')['buys computer'].count()
   ).apply(lambda x: -x*math.log2(x)).groupby('age').sum()*ni_n
entropy_age
₹
                  a
       age
     31-40 0.000000
      <=30
            0.346768
      >40
            0.346768
     dtype: float64
gain_age = entropy_t - entropy_age.sum()
gain_age
→ 0.24674981977443933
to_cal_attr = df.columns[:4]
gain_attr = {}
for attr in to_cal_attr:
   ni_n = df.groupby(attr)['buys computer'].count()/df['buys computer'].count()
   entropy_attr = (
       df.groupby(attr)['buys computer'].value_counts()/df.groupby(attr)['buys computer'].count()
       ).apply(lambda x: -x*math.log2(x)).groupby(attr).sum()*ni_n
   gain_attr[attr] = entropy_t - entropy_attr.sum()
gain attr
'income': 0.02922256565895487,
      'student': 0.15183550136234159,
      'credit rating': 0.04812703040826949}
```

Using Libraries

Now that you know how to compute these values by yourselfs, now let's use some libraries.

Steps:

- Split the Data → Divide dataset into training (80%) and testing (20%).
- Train the Model \rightarrow Fit a Decision Tree using the training data.
- Test the Model \rightarrow Use the trained model to predict on test data.
- Evaluate Performance → Compare predictions with actual values (e.g., Accuracy Score).

Prepare features and labels.

```
# Features
features = df.drop('buys computer', axis=1)
features
# Alternatively, you can use this:
```

```
# features = df.iloc[:, :-1]
```

credit rating	Student	income	age	
fair	no	high	<=30	0
excellent	no	high	<=30	1
fair	no	high	31-40	2
fair	no	medium	>40	3
fair	yes	low	>40	4
excellent	yes	low	>40	5
excellent	yes	low	31-40	6
fair	no	medium	<=30	7
fair	yes	low	<=30	8
fair	yes	medium	>40	9
excellent	yes	medium	<=30	10
excellent	no	medium	31-40	11
fair	yes	high	31-40	12
excellent	no	medium	>40	13

```
Next steps: Generate code with features View recommended plots New interactive sheet
```

Labels (or Target)
labels = df['buys computer']

labels

Alternatively, you can use this:

labels = df.iloc[:, [-1]]

∑ *		buys	computer
	0		no
	1		no
	2		yes
	3		yes
	4		yes
	5		no
	6		yes
	7		no
	8		yes
	9		yes
	10		yes
	11		yes
	12		yes
	13		no

dtype: object

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree

# 1. Load the dataset
X = features.values # Features
y = labels.values # Target labels
```

```
Copy of Lab+5+-+Classification.ipynb - Colab
# 2. Split the dataset into training (80%) and testing (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. Create and train a Decision Tree model with entropy criterion
clf = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=42)
clf.fit(X_train, y_train)
∓
     ValueError
                                               Traceback (most recent call last)
     <ipython-input-25-047a60d5fd52> in <cell line: 0>()
          13 # 3. Create and train a Decision Tree model with entropy criterion
          14 clf = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=42)
     ---> 15 clf.fit(X_train, y_train)
                                       💲 5 frames
     /usr/local/lib/python3.11/dist-packages/sklearn/utils/ array api.py in _asarray_with_order(array, dtype, order, copy, xp, device)
         837
                         array = numpy.array(array, order=order, dtype=dtype)
         838
                     else:
     --> 839
                         array = numpy.asarray(array, order=order, dtype=dtype)
         840
                     # At this point array is a NumPy ndarray. We convert it to an array
     ValueError: could not convert string to float: '31-40'
 Next steps: (Explain error
There's an error:
ValueError: could not convert string to float: '31-40'
from sklearn.preprocessing import LabelEncoder
# Initialize LabelEncoder
label_encoder = LabelEncoder()
# Apply Label Encoding for all categorical columns
df['age'] = label_encoder.fit_transform(df['age'])
df['income'] = label_encoder.fit_transform(df['income'])
df['student'] = label_encoder.fit_transform(df['student'])
df['credit rating'] = label_encoder.fit_transform(df['credit rating'])
df['buys computer'] = label_encoder.fit_transform(df['buys computer'])
# Display the encoded DataFrame
print(df)
```

₹		age	income	student	credit rating	buys computer
	0	1	0	0	1	0
	1	1	0	0	0	0
	2	0	0	0	1	1
	3	2	2	0	1	1
	4	2	1	1	1	1
	5	2	1	1	0	0
	6	0	1	1	0	1
	7	1	2	0	1	0
	8	1	1	1	1	1
	9	2	2	1	1	1
	10	1	2	1	0	1
	11	0	2	0	0	1
	12	0	0	1	1	1
	13	2	2	0	0	0

Let's check out an updated dataframe.

df

20, 1.21	1 141				001
₹	ag	e incom	e student	credit rating buys	computer
0)	1	0 0) 1	0
1	ı	1	0 0	0	0
2	2	0	0 0) 1	1
3	3	2	2 () 1	1
4	1	2	1 1	1	1
5	5	2	1 1	0	0
6	5	0	1 1	0	1
7			2 (0
8			1 1		1
9			2 1		1
10			2 1 2 (1
1:			0 1		1
13			2 (0
Next st	eps:	Genera	e code with	df View recomm	ended plots
lf = De	ecisi		lassifier(ion Tree model with e criterion='entropy',	
_ →				DecisionTreeClassifie	er
De	ecisi	onTreeCl	assifier(d	riterion='entropy', m	max_depth=3,
		n.shape))		
→ (1:					
Now we	e're g	oing buil	d the Decis	sion Tree Classifier	
from ski	learn	.tree in	nport Deci	sionTreeClassifier	
				e classifier criterion='entropy',	random_stat
# Train			crain)		
# Predic y_pred =			st set :(X_test)		
And eva	aluate	our mo	del.		
C	,			, .	C:+:

 $https://colab.research.google.com/drive/1IyAH7EYMxZKyDaof-p58XtOgzpe3sy_M\#scrollTo=398vBm_07Khg\&printMode=true$

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

```
Copy of Lab+5+-+Classification.ipynb - Colab
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
# Classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Confusion Matrix
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
   Accuracy: 1.00
    Classification Report:
                 precision
                              recall f1-score
                                                support
               0
                      1.00
                               1.00
                                         1.00
                                                     1
               1
                      1.00
                               1.00
                                         1.00
                                                     2
        accuracy
                                         1.00
                                                     3
                      1.00
                                1.00
                                         1.00
       macro avg
    weighted avg
                               1.00
                                         1.00
                      1.00
    Confusion Matrix:
    [[1 0]
     [0 2]]
And visualize our tree!
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
# Plot the decision tree
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=X.columns, class_names=['no', 'yes'], rounded=True)
plt.show()
₹
                                             age <= 0.5
                                          entropy = 0.946
                                            samples = 11
                                            value = [4, 7]
                                             class = yes
                                       True
                                                        <del>ય ાત</del>lse
                                                      student <= 0.5
                                entropy = 0.0
                                                       entropy = 1.0
                                 samples = 3
                                                        samples = 8
                                value = [0, 3]
                                                       value = [4, 4]
                                  class = yes
                                                         class = no
                                                                                      credit rating <= 0.5
                  credit rating \leq 0.5
                    entropy = 0.811
                                                                                        entropy = 0.811
                     samples = 4
                                                                                          samples = 4
                     value = [3, 1]
                                                                                         value = [1, 3]
                       class = no
                                                                                           class = yes
                                 age <= 1.5
                                                                               age <= 1.5
         entropy = 0.0
                                                                                                     entropy = 0.0
                                 entropy = 1.0
                                                                              entropy = 1.0
          samples = 2
                                                                                                      samples = 2
                                 samples = 2
                                                                               samples = 2
          value = [2, 0]
                                                                                                     value = [0, 2]
                                 value = [1, 1]
                                                                              value = [1, 1]
                                                                                                      class = yes
           class = no
                                  class = no
                                                                                class = no
                                                                   entropy = 0.0
                     entropy = 0.0
                                            entropy = 0.0
                                                                                         entropy = 0.0
                     samples = 1
                                            samples = 1
                                                                   samples = 1
                                                                                          samples = 1
                     value = [1, 0]
                                            value = [0, 1]
                                                                   value = [0, 1]
                                                                                          value = [1, 0]
                       class = no
                                             class = yes
                                                                    class = yes
                                                                                           class = no
```

Put them all together.

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
# data
data = pd.read_csv('./toy_data.csv')
df = pd.DataFrame(data)
# Encode categorical columns using LabelEncoder
label_encoder = LabelEncoder()
df['age'] = label_encoder.fit_transform(df['age'])
df['income'] = label_encoder.fit_transform(df['income'])
df['student'] = label_encoder.fit_transform(df['student'])
df['credit rating'] = label_encoder.fit_transform(df['credit rating'])
df['buys computer'] = label_encoder.fit_transform(df['buys computer'])
# Separate features (X) and target (y)
X = df.drop('buys computer', axis=1)
y = df['buys computer']
# Split the dataset into training and test sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the Decision Tree classifier
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)
# Train the model
clf.fit(X_train, y_train)
# Predict on the test set
y_pred = clf.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
# Classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Confusion Matrix
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
# Plot the decision tree
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=X.columns, class_names=['no', 'yes'], rounded=True)
plt.show()
```

```
→ Accuracy: 1.00
    Classification Report:
                precision
                            recall f1-score
                                             support
             0
                     1.00
                             1.00
                                      1.00
              1
                     1.00
                              1.00
                                      1.00
                                                  2
                                                  3
       accuracy
                                      1.00
      macro avg
                     1.00
                              1.00
                                       1.00
                                                  3
                              1.00
                                       1.00
                     1.00
   weighted avg
   Confusion Matrix:
    [[1 0]
    [0 2]]
                                          age <= 0.5
                                        entropy = 0.946
                                         samples = 11
                                         value = [4, 7]
                                           class = yes
                                     True
                                                     ्याचीse
                                                   student <= 0.5
                               entropy = 0.0
                                                    entropy = 1.0
                               samples = 3
                                                     samples = 8
                               value = [0, 3]
                                                    value = [4, 4]
                                class = yes
                                                      class = no
                                                                                  credit rating <= 0.5
                credit rating \leq 0.5
                  entropy = 0.811
                                                                                    entropy = 0.811
                    samples = 4
                                                                                      samples = 4
                   value = [3, 1]
                                                                                     value = [1, 3]
                                                                                      class = yes
                     class = no
                               age <= 1.5
                                                                           age <= 1.5
         entropy = 0.0
                                                                                                entropy = 0.0
                              entropy = 1.0
                                                                          entropy = 1.0
         samples = 2
                                                                                                 samples = 2
                               samples = 2
                                                                           samples = 2
         value = [2, 0]
                                                                                                value = [0, 2]
                              value = [1, 1]
                                                                          value = [1, 1]
          class = no
                                                                                                 class = yes
                                class = no
                                                                            class = no
                                         entropy = 0.0
                   entropy = 0.0
                                                               entropy = 0.0
                                                                                     entropy = 0.0
                    samples = 1
                                                                                      samples = 1
                                          samples = 1
                                                                samples = 1
                    value = [1, 0]
                                          value = [0, 1]
                                                                value = [0, 1]
                                                                                     value = [1, 0]
                     class = no
                                           class = yes
                                                                 class = yes
                                                                                       class = no
```

Is the output tree the same as what you calculated yourself? Explain in your own words why they are the same or different.

Ans: Nope, The output tree is different because the model was trained on only 80% of the data, but the manual calculation used all the data. This caused changes in entropy values, information gain, and the tree structure.

Another example, another dataset -- Iris

```
from sklearn.datasets import load_iris

# 1. Load the Iris dataset
iris = load_iris()
X = iris.data  # Features
y = iris.target  # Target labels

# 2. Split the dataset into training (80%) and testing (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 3. Create and train a Decision Tree model with entropy criterion
clf = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=42)
clf.fit(X_train, y_train)

# 4. Make predictions on the test set
```

```
y_prea = cit.preaict(x_test)
```

5. Evaluate the model

accuracy = accuracy_score(y_test, y_pred) print(f"Model Accuracy: {accuracy:.2f}")

6. Visualize the Decision Tree

plt.figure(figsize=(10, 6))

plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)

plt.show()

→ Model Accuracy: 1.00

Start coding or generate with AI.

Start coding or generate with AI.