

Faculty of Engineering Technology

1 404110 4 21 21 21 21 21 21 21 21 21 21 21 21 21		
Department	: Mathematics and Statistics	
Programme	: B. Tech. (All Branches)	
Semester / Batch	: 2 / 2023	
Course Code	: MTF111A	
Course Title	: Engineering Mathematics - 2	

<u>Tutorial – 11: Fourier Transforms</u>

SI No	Questions	
	Determine the Fourier transform of the given functions.	
	Function	Fourier transform
	a. $f(t) = \begin{cases} 1 - t^2, & \text{for } t \le 1 \\ 0, & \text{for } t > 1 \end{cases}$	$\mathcal{F}(\omega) = \frac{4(\sin \omega - \omega \cos \omega)}{\omega^3}$
1	b. $f(t) = \begin{cases} 1 - t , & \text{for } t \le 1 \\ 0, & \text{for } t > 1 \end{cases}$	$\mathcal{F}(\omega) = \frac{2(1 - \cos \omega)}{\omega^2}$
	c. $f(t) = \begin{cases} 2, \text{ for } t \le 1 \\ 0, \text{ for } t > 1 \end{cases}$	$\mathcal{F}(\omega) = \frac{4}{\omega} \sin \omega$
	$d. f(t) = te^{- t }$	$\mathcal{F}(\omega) = -\frac{4i\omega}{(1+\omega^2)^2}$
	$e. f(t) = e^{-a t }$	$\mathcal{F}(\omega) = \frac{2a}{a^2 + \omega^2}$