Assignment 1 – Newton Raphson Method

Oves Badami

January 24, 2023

Note: This Assignment is for 10 Marks Due: 1 week Using the techniques/methods discussed in the class solve the following problems

1. The inter-atomic potential energy of a diatomic molecule is modelled by Lenard-Jones potential, U(r)

$$U(r) = 4\epsilon \left[\left(\frac{\sigma}{d} \right)^{12} - \left(\frac{\sigma}{d} \right)^{6} \right]$$

Here the σ and ϵ are parameters $\sigma=0.31589$ nm, $\epsilon=775$ Joules/mol.

 $(\mathbf{5})$

- (a) Plot the Lenard Jones Potential. Please mark the x and y axis label clearly
- (b) Calculate the bond length of an a molecule with parameters specified.
- (c) Verify that your solution is correct.

Note: The net force acting on an atom is given by $(F = -\nabla U(r))$

2. Consider a circuit shown below: Calculate the current through the diode for the following parameters (5)

The current through diode is $I_D = I_0 \left[exp \left(\frac{V_D}{\eta V_T} \right) - 1 \right]$ R1 = 1k Ω R2 = 3k Ω R3 = 4k Ω R4 = 2k Ω I₀ = 3n A η = 2. Assume that the supply of 5 V