Neuroprothetik Exercise 6 Electric Stimulation

Auguste Schulz, Korbinian Steger

SS 2018

1 Calculate the Potential Field

The potential at a distance r from a current point-source can be calculated by:

$$\Phi = \frac{\rho}{4\pi} \cdot \frac{I}{r}$$

1.1 Potential Field

Using the following parameters, plot the potential field for a $50 \,\mu m$ by $50 \,\mu m$ slice in a distance of $10 \,\mu m$ from the point source.

$$\frac{\text{Paramters}}{\rho_{medium} = 300 \,\Omega \text{cm}} \quad I = 1 \,\text{mA}$$

1.2 Activation Function

Calculate and plot a) the external potential, b) the electric field and c) the activation function along a $50\,\mu m$ peace of axon positioned $10\,\mu m$ from a current point source. Plot the three graphs for a electrode current of $1\,\mathrm{mA}$ and for $-1\,\mathrm{mA}$

2 Create a Neuron Model

Enhance the model from the last exercise to consider the influence of an external potential. Change the parameters given in the table below.

Parameters		
$\rho_{axon} = 0.01 \mathrm{k}\Omega\mathrm{cm}$	$r_{axon} = 1.5 \cdot 10^{-4} \mathrm{cm}$	$l_{comp} = 0.5 \cdot 10^{-4} \mathrm{cm}$

2.1 Stimulate the Axon

Create the following stimulation sequences and run a simultain with your axon positioned as in section 1.2. Run the simulation for about 30 ms and position your puls at t=5 ms

- 1. Stimulation by a mono-phasic current pulse, phase duration = 1 ms, current = $-0.25\,\mathrm{mA}$
- 2. Stimulation by a mono-phasic current pulse, phase duration = 1 ms, current = $-1\,\mathrm{mA}$
- 3. Stimulation by a bi-phasic current pulse (negative phase first), phase duration = 1 ms, amplitude = 0.5 mA
- 4. Stimulation by a bi-phasic current pulse (negative phase first), phase duration = 1 ms, amplitude = 2 mA
- 5. Stimulation by a mono-phasic current pulse, phase duration = 1 ms, current = $0.25\,\mathrm{mA}$
- 6. Stimulation by a mono-phasic current pulse, phase duration = $1 \,\mathrm{ms}$, current = $5 \,\mathrm{mA}$

Plot the results and give a short interpretation.

3 Solution

Here you can see how the resulting plots should look like. This is just to give you an idea if your results are valid.

3.1 Potential Field

Abbildung 1: Potential field for $I=1\,\mathrm{mA}$

3.2 Activation Function

Abbildung 2: External potential in $d=10\,\mu\mathrm{m}$ for $i=1\,\mathrm{mA}$ (left) and $i=-1\,\mathrm{mA}$ (right)

Abbildung 3: Electric field in $d=10\,\mu\mathrm{m}$ for $i=1\,\mathrm{mA}$ (left) and $i=-1\,\mathrm{mA}$ (right)

Abbildung 4: Activation function in $d=10\,\mu\mathrm{m}$ for $i=1\,\mathrm{mA}$ (left) and $i=-1\,\mathrm{mA}$ (right)

3.3 Create a Neuron Model

Abbildung 5: Propagation of the action potential when stimulated at $t=5\,\mathrm{ms}$ with a phase duration of 1 ms. Additionally parameter: Top: mono-phasic pulse with $-0.25\,\mathrm{mA}$. Middle: mono-phasic pulse with $-1\,\mathrm{mA}$. Bottom: bi-phasic pulse with $0.5\,\mathrm{mA}$

Abbildung 6: Propagation of the action potential when stimulated at $t=5\,\mathrm{ms}$ with a phase duration of 1 ms. Additionally parameter: Top: bi-phasic pulse with 2 mA. Middle: mono-phasic pulse with 0.25 mA. Bottom: mono-phasic pulse with 5 mA