It is all distributivity

Let • be a binary infix operator. Depending on how we Curry, we can form two classes of unary operators from, the general elements of which are often denoted by (x.) and (.y), defined

$$(x \cdot) = \langle \lambda y : x \cdot y \rangle$$
 $(\cdot y) = \langle \lambda x : x \cdot y \rangle$.

We call them in this note "the derived unary operators".

To begin with we observe - with apologies for the two different usages of parentheses -

$$(x \cdot 2) \cdot y = x \cdot (z \cdot y)$$
= {definition of derived operators}
$$(\cdot y).((x \cdot).z) = (x \cdot).((\cdot y).z)$$
= {definition of functional composition}
$$((\cdot y) \cdot (x \cdot)).z = ((x \cdot) \cdot (\cdot y)).z ,$$

hence, that a binary operator is "associative" means that its derived unary operators commute.

To say that • "distributes over" some binary operator is really a statement about its derived unary operators: "• distributes from the left over " means that for all x, y, z:

$$(x \bullet).(y \Box z) = (x \bullet).y \Box (x \bullet).z;$$

distribution from the right means similarly

$$(\bullet x).(y \square z) = (\bullet x).y \square (\bullet x).z$$

Both formulae are of the form

which captures "f distributes over \square ". But what comes of this formula if \square turns out to be unary? Replacing in the last formula $p \square q$ by g.p, we get

$$f.(g.y) = g.(f.y)$$
 or $f \circ g = g \circ f$

Hence, that two unary operators "commute" means that they distribute over each other. Hence, that a binary operator is associative just means that its derived unary operators distribute over each other.

Austin, 2 November 1992

prof. dr. Edsger W. Dykstra

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712-1188

USA