

AutoDim: Field-aware Embedding Dimension Search in Recommender Systems

Xiangyu Zhao¹, Haochen Liu¹, Hui Liu¹, Jiliang Tang¹ Weiwei Guo², Jun Shi², Sida Wang², Huiji Gao², Bo Long³

1: Data Science and Engineering Lab, Michigan State University

2: LinkedIn 3: JD.com

Embedding Components

- Real-world recommender systems involve numerous feature fields
 - Users
 - e.g., gender and age
 - Items
 - e.g., category and price
 - Contextual information
 - e.g., time and location
 - Their interactions
 - e.g., users' purchased items at location A

- Features → Embeddings
 - Unified dimension for all feature fields

Unified Embedding Dimension

- Memory inefficiency problem
 - Embedding dimension → Capacity to encode information
 - Different feature fields have different cardinality

Target	Weekday	Gender	User_ID		
1	Tuesday	Male	0000001		
0	Monday	Female	3495682		
1	Thursday	Female	5676562		
0	Friday	Male	9231237		

7 2 million

Challenges

- Complex relationship
 - Embedding dimensions
 - Feature distributions
 - Neural network architectures

- Large search space
 - M feature field (M > 100)
 - K candidate dimensions
 - K^M selecion space

AutoDim: Automated embedding dimension selection

Overview

Two-stage framework

(a) Dimension Search

(b) Parameter Retraining

Dimension Search Stage

(a) Dimension Search

(b) Parameter Retraining

Candidate Embedding Assignment

Separate Embeddings

Weight-sharing Embeddings

Dimension Search Stage

(a) Dimension Search

(b) Parameter Retraining

Linear Transformation

Linear Transformation

$$\widetilde{\mathbf{x}}_m^n \leftarrow \mathbf{W}_n^{\mathsf{T}} \mathbf{x}_m^n + \mathbf{b}_n \quad \forall n \in [1, N]$$

Linear Transformation

$$\widetilde{\mathbf{x}}_m^n \leftarrow \mathbf{W}_n^{\mathsf{T}} \mathbf{x}_m^n + \mathbf{b}_n \quad \forall n \in [1, N]$$

Zero Padding

Dimension Search Stage

(a) Dimension Search

(b) Parameter Retraining

Dimension Selection

- Hard selection from categorical distribution
 - Search framework is non-differentiable
- Gumbel-softmax approximates the hard selection

Inference and Loss

- Inference layer
 - Hidden layer

$$\mathbf{h}_l = \sigma \left(\mathbf{W}_l^{\top} \mathbf{h}_{l-1} + \mathbf{b}_l \right)$$

Output layer

$$\hat{y} = \sigma \left(\mathbf{W}_o^{\top} \mathbf{h}_L + \mathbf{b}_o \right)$$

- Click-Through Rate prediction
 - y = 1: click 0: non-click

$$\mathcal{L}(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Bilevel Optimization

- Two set of parameters
 - Normal deep RecSys parameters W
 - Architectural weights α (weighted sum probabilities)
- Alternately update W on the training set and α on the validation set

$$\min_{\boldsymbol{\alpha}} \mathcal{L}_{val}(\mathbf{W}^*(\boldsymbol{\alpha}), \boldsymbol{\alpha})$$
s.t. $\mathbf{W}^*(\boldsymbol{\alpha}) = \arg\min_{\mathbf{W}} \mathcal{L}_{train}(\mathbf{W}, \boldsymbol{\alpha}^*)$

where
$$\mathcal{L} = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Algorithm 1 DARTS based Optimization for AutoDim.

Input: the features (x_1, \dots, x_M) of user-item interactions and the corresponding ground-truth labels y

Output: the well-learned DLRS parameters W^* ; the well-learned weights on various embedding spaces α^*

- while not converged do
- 2: Sample a mini-batch of user-item interactions from validation data
- Update α by descending $\nabla_{\alpha} \mathcal{L}_{val}(\mathbf{W}^*(\alpha), \alpha)$ with the approximation in Eq.(12)
- 4: Collect a mini-batch of training data
- Generate predictions ŷ via DLRS with current W and architectural weights α
- 6: Update W by descending $\nabla_{\mathbf{W}} \mathcal{L}_{train}(\mathbf{W}, \boldsymbol{\alpha})$
- 7: end while

Parameter Retraining Stage

(a) Dimension Search

(b) Parameter Retraining

Parameter Retraining Stage

- Retraining stage is necessary
 - To eliminate the influence of suboptimal embedding dimensions

- Unify the selected embeddings into the same dimension
 - Interaction among feature fields

$$y_{FM}(x) = sigmoid\left(\sum_{i=1}^{N} \boldsymbol{\omega_i} x_i + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \langle \boldsymbol{v_i}, \boldsymbol{v_j} \rangle x_i x_j\right)$$

- BatchNorm is no longer in use
 - There is no competition between candidate embeddings

Experimental Settings

- AutoDim is general for any deep recommender systems with embedding layer
- Recommendation models
 - AutoDim → FM, W&D and DeepFM
- Pubilc benchmark datasets
 - Criteo and Avazu

Candidate dimensions

• {2,8,16,24,32}

Table 1: Statistics of the datasets.

Data	Criteo	Avazu			
# Interactions	45,840,617	40,428,968			
# Feature Fields	39	22			
# Sparse Features	1,086,810	2,018,012			

Dataset	Model	Metrics	Search Methods								
			FDE	MDE	DPQ	NIS	MGQE	AEmb	RaS	AD-s	AutoDim
		AUC	0.8020	0.8027	0.8035	0.8042	0.8046	0.8049	0.8056	0.8063	0.8078*
Criteo	FM	Logloss	0.4487	0.4481	0.4472	0.4467	0.4462	0.4460	0.4457	0.4452	0.4438*
		EP (M)	34.778	15.520	20.078	13.636	12.564	13.399	16.236	31.039	11.632*
		AUC	0.8045	0.8051	0.8058	0.8067	0.8070	0.8072	0.8076	0.8081	0.8098*
Criteo	W&D	Logloss	0.4468	0.4464	0.4457	0.4452	0.4446	0.4445	0.4443	0.4439	0.4419*
á		EP (M)	34.778	18.562	22.628	14.728	15.741	15.987	18.233	30.330	12.455*
		AUC	0.8056	0.8060	0.8067	0.8076	0.8080	0.8082	0.8085	0.8089	0.8101*
Criteo	DeepFM	Logloss	0.4457	0.4456	0.4449	0.4442	0.4439	0.4438	0.4436	0.4432	0.4416*
		EP (M)	34.778	17.272	25.737	12.955	13.059	13.437	17.816	31.770	11.457*

[&]quot;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. (M=Million)

• Metrics: AUC \uparrow , Logloss \downarrow , EP \downarrow (embedding parameters)

Dataset	Model	Metrics				S	earch Me	thods			
			FDE	MDE	DPQ	NIS	MGQE	AEmb	RaS	AD-s	AutoDim
Criteo	FM	AUC Logloss EP (M)	0.8020 0.4487 34.778	0.8027 0.4481 15.520	0.8035 0.4472 20.078	0.8042 0.4467 13.636	0.8046 0.4462 12.564	0.8049 0.4460 13.399	0.8056 0.4457 16.236	0.8063 0.4452 31.039	0.8078* 0.4438* 11.632*
Criteo	W&D	AUC Logloss EP (M)	0.8045 0.4468 34.778	0.8051 0.4464 18.562	0.8058 0.4457 22.628	0.8067 0.4452 14.728	0.8070 0.4446 15.741	0.8072 0.4445 15.987	0.8076 0.4443 18.233	0.8081 0.4439 30.330	0.8098* 0.4419* 12.455*
Criteo	DeepFM	AUC Logloss EP (M)	0.8056 0.4457 34.778	0.8060 0.4456 17.272	0.8067 0.4449 25.737	0.8076 0.4442 12.955	0.8080 0.4439 13.059	0.8082 0.4438 13.437	0.8085 0.4436 17.816	0.8089 0.4432 31.770	0.8101* 0.4416* 11.457*

[&]quot;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. (M=Million)

- Metrics: AUC \uparrow , Logloss \downarrow , EP \downarrow (embedding parameters)
- Unified dimension → Wasting memory, and downgrading model performance

Dataset Model		Metrics		Search Methods								
			FDE	MDE	DPQ	NIS	MGQE	AEmb	RaS	AD-s	AutoDim	
Criteo	FM	AUC Logloss EP (M)	0.8020 0.4487 34.778	0.8027 0.4481 15.520	0.8035 0.4472 20.078	0.8042 0.4467 13.636	0.8046 0.4462 12.564	0.8049 0.4460 13.399	0.8056 0.4457 16.236	0.8063 0.4452 31.039	0.8078* 0.4438* 11.632*	
Criteo	W&D	AUC Logloss EP (M)	0.8045 0.4468 34.778	0.8051 0.4464 18.562	0.8058 0.4457 22.628	0.8067 0.4452 14.728	0.8070 0.4446 15.741	0.8072 0.4445 15.987	0.8076 0.4443 18.233	0.8081 0.4439 30.330	0.8098* 0.4419* 12.455*	
Criteo	DeepFM	AUC Logloss EP (M)	0.8056 0.4457 34.778	0.8060 0.4456 17.272	0.8067 0.4449 25.737	0.8076 0.4442 12.955	0.8080 0.4439 13.059	0.8082 0.4438 13.437	0.8085 0.4436 17.816	0.8089 0.4432 31.770	0.8101* 0.4416* 11.457*	

[&]quot;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. (M=Million)

- Metrics: AUC \uparrow , Logloss \downarrow , EP \downarrow (embedding parameters)
- Unified dimension → Wasting memory, and downgrading model performance
- Different feature values with various dimensions → Large search space

Dataset	Model	Metrics	Search Methods								
	1110001		FDE	MDE	DPQ	NIS	MGQE	AEmb	RaS	AD-s	AutoDim
Criteo	FM	AUC Logloss EP (M)	0.8020 0.4487 34.778	0.8027 0.4481 15.520	0.8035 0.4472 20.078	0.8042 0.4467 13.636	0.8046 0.4462 12.564	0.8049 0.4460 13.399	0.8056 0.4457 16.236	0.8063 0.4452 31.039	0.8078* 0.4438* 11.632*
Criteo	W&D	AUC Logloss EP (M)	0.8045 0.4468 34.778	0.8051 0.4464 18.562	0.8058 0.4457 22.628	0.8067 0.4452 14.728	0.8070 0.4446 15.741	0.8072 0.4445 15.987	0.8076 0.4443 18.233	0.8081 0.4439 30.330	0.8098* 0.4419* 12.455*
Criteo	DeepFM	AUC Logloss EP (M)	0.8056 0.4457 34.778	0.8060 0.4456 17.272	0.8067 0.4449 25.737	0.8076 0.4442 12.955	0.8080 0.4439 13.059	0.8082 0.4438 13.437	0.8085 0.4436 17.816	0.8089 0.4432 31.770	0.8101* 0.4416* 11.457*

[&]quot;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. (M=Million)

- Metrics: AUC \uparrow , Logloss \downarrow , EP \downarrow (embedding parameters)
- Unified dimension → Wasting memory, and downgrading model performance
- Different feature values with various dimensions → Large search space
- RaS → Large search space, AD-s → Over-fitting problem

Dataset	Model	Metrics				S	earch Me	thods			
	Wiodei		FDE	MDE	DPQ	NIS	MGQE	AEmb	RaS	AD-s	AutoDim
Criteo	FM	AUC Logloss EP (M)	0.8020 0.4487 34.778	0.8027 0.4481 15.520	0.8035 0.4472 20.078	0.8042 0.4467 13.636	0.8046 0.4462 12.564	0.8049 0.4460 13.399	0.8056 0.4457 16.236	0.8063 0.4452 31.039	0.8078* 0.4438* 11.632*
Criteo	W&D	AUC Logloss EP (M)	0.8045 0.4468 34.778	0.8051 0.4464 18.562	0.8058 0.4457 22.628	0.8067 0.4452 14.728	0.8070 0.4446 15.741	0.8072 0.4445 15.987	0.8076 0.4443 18.233	0.8081 0.4439 30.330	0.8098* 0.4419* 12.455*
Criteo	DeepFM	AUC Logloss EP (M)	0.8056 0.4457 34.778	0.8060 0.4456 17.272	0.8067 0.4449 25.737	0.8076 0.4442 12.955	0.8080 0.4439 13.059	0.8082 0.4438 13.437	0.8085 0.4436 17.816	0.8089 0.4432 31.770	0.8101* 0.4416* 11.457*

[&]quot;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. (M=Million)

- Metrics: AUC \uparrow , Logloss \downarrow , EP \downarrow (embedding parameters)
- Unified dimension → Wasting memory, and downgrading model performance
- Different feature values with various dimensions → Large search space
- RaS → Large search space, AD-s → Over-fitting problem
- AutoDim → Best AUC and Logloss, and saving 70~80% embedding parameters

Conclusion

- AutoDim can automatically select the proper dimensions for all feature fields
 - It can be applied to any deep recommender systems with embedding layer
 - It can save embedding parameters
 - It can improve recommendation performance

zhaoxi35@msu.edu

