Elementary Linear Algebra - MATH 2250 - Day 16

Name:

- 1. T F If AB = I then BA = I. $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $BA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \overline{I}$ 2. T F If Q is an orthonormal matrix, then $Q^{T}Q = I$ and $QQ^{T} = I$.
- 3. The F If Q is an orthonormal matrix, then QQ^T is a projection matrix. $(QQ^T)^T = QQ^T = QQ^T = QQ^T = QQ^T$
- 4. Assume that we start with independent vectors v_1, v_2 , and v_3 , and proceed with the Gram-Schmidt algorithm, and produce w_1, w_2 , and w_3 . What relations hold between w_1, w_2 , and w_3 ?
 - $\begin{cases}
 \omega_1 \perp \omega_2 \\
 \omega_2 \perp \omega_3 \\
 \omega_1 \perp \omega_2
 \end{cases}, \begin{cases}
 ||\omega_1|| = 1 \\
 ||\omega_2|| = 1 \\
 ||\omega_1| + ||\omega_2|| = 1
 \end{cases}$
 - i.e. wi's are mutually orthogonal, and length of each of them is 1.
- 5. Let b = (4,0,0,0), v = (1,1,1,1), and w = (1,-1,1,-1). Find the projection of b onto v and call it u_1 . Find the projection of **b** onto w and call it u_2 . Find the projection of **b** onto the space spanned by v and w,
- ATA= 40 (ATA) = 1 [10] $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{bmatrix}$ $U_3 = P_0 = \frac{1}{8} \begin{bmatrix} 4 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0/2 \\ 1/2 \end{bmatrix}$

and call it u_3 . What is the relation between u_1, u_2 , and u_3 .

$$U_3 = \frac{1}{4} \left(U_1 + U_2 \right)$$

6. Consider the vectors $\mathbf{a}_1 = (1, 1, 1, 1)$, $\mathbf{a}_2 = (1, 1, 1, 0)$, and $\mathbf{a}_3 = (1, 1, 0, 0)$. Proceed with Gram-Schmidt algorithm and produce 3 vectors $\mathbf{q}_1, \mathbf{q}_2$, and \mathbf{q}_3 . Recall that in the QR-decomposition of a matrix A, Q is

Check with some software.

found by Gram-Schmidt algorithm and $R = Q^T A$. Let $A = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{bmatrix}$. Find the QR-decomposition of A.

7. Compare C(A) and C(Q).

 $C(A) = C(Q) \cdot (why?)$

8. Recall that if A = QR, where Q is orthormal and R is upper-triangular, then instead of solving $A\mathbf{x} = \mathbf{b}$, one can easily solve $R\hat{\mathbf{x}} = Q^T\mathbf{b}$. Solve the equation $A\mathbf{x} = \mathbf{b}$, for A as above and $\mathbf{b} = (1, 0, 0, 0)$.

check with some software.