TECE Projet 6: Calcul matriciel

IBRAHIM ALAME

09/11/2023

1. Soit \mathcal{N} l'algèbre des matrices triangulaires supérieurs strictes de $\mathcal{M}_3(\mathbb{R})$.

$$N \in \mathcal{N} \Longleftrightarrow N = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right)$$

On associe à \mathcal{N} l'ensemble \mathcal{U} des matrices U = I + N, où I est la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

(a) Montrer que le produit de trois matrices quelconques de \mathcal{N} est nul. En particulier $N^3=0$ si $N\in\mathcal{N}$.

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a' & b' \\ 0 & 0 & c' \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a'' & b'' \\ 0 & 0 & c'' \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & ac' \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a'' & b'' \\ 0 & 0 & c'' \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- (b) Montrer que \mathscr{U} est un sous groupe non commutatif du groupe linéaire de $\mathscr{M}_3(\mathbb{R})$.
 - $I \in \mathcal{U}$ donc \mathcal{U} est non vide.

$$-U = I + N = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \text{ est inversible car } \det(U) = 1 \neq 0.$$

$$\operatorname{Soit} U_1 = \begin{pmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } U_2 = \begin{pmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{pmatrix}, \operatorname{donc} U_2^{-1} = \begin{pmatrix} 1 & -a_2 & a_2c_2 - b_2 \\ 0 & 1 & -c_2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{On a} U_1 U_2^{-1} = \begin{pmatrix} 1 & a_1 - a_2 & b_1 - b_2 - (a_1 - a_2)b_2 \\ 0 & 1 & c_1 - c_2 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{U}$$

De plus

$$U_1 U_2 = \begin{pmatrix} 0 & 0 & a_1 c_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & a_2 c_1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = U_2 U_1$$

Donc \mathscr{U} est un sous groupe non commutatif de $GL_3(\mathbb{R})$.

(c) Pour tout réel α , on définit la matrice U^{α} par

$$U^{\alpha} = I + \alpha N + \frac{\alpha(\alpha - 1)}{2}N^2$$

Il sera commode de poser $N_{\alpha} = \alpha N + \frac{\alpha(\alpha - 1)}{2} N^2$. Vérifier que pour α et β réels arbitraires, on a

$$U^{\alpha}U^{\beta} = U^{\alpha+\beta}$$
 et $(U^{\alpha})^{\beta} = U^{\alpha\beta}$

On forme $U^{\alpha}U^{\beta}$ en utilisant $N^3=0$,

$$U^{\alpha}U^{\beta} = \left[I + \alpha N + \frac{\alpha(\alpha - 1)}{2}N^{2}\right] \left[I + \beta N + \frac{\beta(\beta - 1)}{2}N^{2}\right]$$

$$= I + (\alpha + \beta)N + \left(\frac{\alpha(\alpha - 1) + \beta(\beta - 1)}{2} + \alpha\beta\right)N^{2}$$

$$= I + (\alpha + \beta)N + \frac{(\alpha + \beta)(\alpha + \beta - 1)}{2}N^{2}$$

$$= U^{\alpha + \beta}$$

De même

$$\begin{split} (U^{\alpha})^{\beta} &= (I+N_{\alpha})^{\beta} &= I+\beta N_{\alpha} + \frac{\beta(\beta-1)}{2}N_{\alpha}^{2} \\ &= I+\beta\left[\alpha N + \frac{\alpha(\alpha-1)}{2}N^{2}\right] + \frac{\alpha^{2}\beta(\beta-1)}{2}N^{2} \\ &= I+\alpha\beta N + \frac{\alpha\beta(\alpha\beta-1)}{2}N^{2} \\ &= U^{\alpha\beta} \end{split}$$

(d) Que peut-on dire de U^{α} pour $\alpha \in \mathbb{Z}$?

Pour $\alpha = n \in \mathbb{N}^*$, on peut appliquer la formule de binôme de Newton à $(I+N)^n$. Puisque $N^3 = 0$, on vérifie que U^{α} coïncide avec la puissance $n^{\text{ième}}$ de U.

Pour $\alpha = -1$, $U^{-1} = I - N + N^2$ est l'inverse de I + N sur \mathcal{U} . Pour tout $\alpha \in \mathbb{Z}$, on obtient donc la puissance d'ordre α de U.

(e) On définit une application dite exponentielle, noté exp, de ${\mathscr N}$ dans ${\mathscr U}$:

$$\forall N \in \mathcal{N}, \qquad \exp(N) = I + N + \frac{N^2}{2}$$

Montrer que l'application exp est une bijection de $\mathcal N$ dans $\mathcal U$.

Si $\exp N = \exp N'$, on a $N + \frac{N^2}{2} = N' + \frac{N'^2}{2}$ en élevant au carré, on en déduit $N^2 = N'^2$, puis N = N'. L'application exp est donc injective.

Elle est aussi surjective. En se donnant $V=I+P\in \mathcal{U}$, on cherche N tel que $P=N+\frac{N^2}{2}$. On a encore

$$P^2 = N^2$$
, d'où $N = P - \frac{P^2}{2}$

(f) On définit également l'application dite logarithme notée ln de ${\mathscr U}$ dans ${\mathscr N}$ par :

Si
$$U = I + N$$
, $\ln(U) = N - \frac{N^2}{2}$

Prouver que l'application ln est la bijection réciproque de exp.

On vient de voir que l'antécédent de V=I+P dans l'application exp est $N=P-\frac{P^2}{2}$; c'est $\ln V$, d'où la relation entre applications

$$\ln = \exp^{-1}$$

(g) Établir les formules

$$\exp(\alpha N) = (\exp(N))^{\alpha}, \quad \ln(U^{\alpha}) = \alpha \ln U, \quad U^{\alpha} = \exp(\alpha \ln U)$$

$$\exp(\alpha N) = I + \alpha N + \frac{\alpha^2}{2} N^2$$
$$(\exp(N))^{\alpha} = I + \alpha N + \frac{\alpha}{2} N^2 + \frac{\alpha(\alpha - 1)}{2} N^2 = \exp(\alpha N)$$

De même $V^{\alpha}=I+\alpha P+\frac{\alpha(\alpha-1)}{2}P^{2},$ d'où

$$\ln V^{\alpha} = \alpha P + \frac{\alpha(\alpha - 1)}{2}P^2 - \frac{\alpha^2}{2}P^2 = \alpha \left(P - \frac{P^2}{2}\right) = \alpha \ln V$$

Enfin, $V^{\alpha} = \exp(\ln V^{\alpha}) = \exp(\alpha \ln V)$.

(h) Application numérique : Soit

$$U = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right)$$

Calculer $\exp(U-I)$, $\ln U$, U^{-1} et U^n pour tout $n \in \mathbb{Z}$.

On trouve

$$\exp(U-I) = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad \ln U = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \quad U^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
$$U^{n} = \begin{pmatrix} 1 & 2n & 2n^{2} + n \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

- 2. Soit A la matrice : $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
 - (a) Montrer que pour tout entier $k \in \mathbb{N}$

$$\begin{cases} A^{2k} = (-1)^k I \\ A^{2k+1} = (-1)^k A \end{cases}$$

On a
$$A^2 = -I$$
 donc $A^{2k} = (A^2)^k = (-I)^k = (-1)^k I$ et $A^{2k+1} = A^{2k}A = (-1)^k A$

(b) On définit l'exponentielle matricielle par la somme de la série $e^M = \sum_{p=0}^{\infty} \frac{M^p}{p!}$. Montrer que

$$\begin{split} e^{tA} &= \left(\begin{array}{cc} \cos t & -\sin t \\ \sin t & \cos t \end{array} \right) \\ e^{A} &= \sum_{p=0}^{\infty} \frac{A^p}{p!} = \sum_{k=0}^{\infty} \frac{A^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{A^{2k+1}}{(2k+1)!} = I \sum_{k=0}^{\infty} \frac{(-1)^k t^{2k}}{(2k)!} + A \sum_{k=0}^{\infty} \frac{(-1)^k t^{2k+1}}{(2k+1)!} \\ e^{A} &= I \cos t + A \sin t = \left(\begin{array}{cc} \cos t & -\sin t \\ \sin t & \cos t \end{array} \right) \end{split}$$

3. Montrer que la matrice suivante est diagonalisable : $A=\begin{pmatrix}0&a&a^2\\\frac{1}{a}&0&a\\\frac{1}{a^2}&\frac{1}{a}&0\end{pmatrix}\qquad(a\neq0)$ En

déduire A^{-1} et A^n où $n \in \mathbb{Z}$

L'équation caractéristique s'écrit

$$\begin{vmatrix} -\lambda & a & a^2 \\ \frac{1}{a} & -\lambda & a \\ \frac{1}{a^2} & \frac{1}{a} & -\lambda \end{vmatrix} = -\lambda^3 + 3\lambda + 2 = (\lambda + 1)^2 (2 - \lambda)$$

La valeur propre double $\lambda = -1$, fournit deux vecteurs propres linéairement indépendants (-a, 1, 0) et $(-a^2, 0, 1)$. La valeur propre simple $\lambda = 2$ fournit le vecteur propre $(a^2, a, 1)$. La matrice P ci dessous diagonalise A; on a formé P^{-1} :

$$P = \begin{pmatrix} -a & -a^2 & a^2 \\ 1 & 0 & a \\ 0 & 1 & 1 \end{pmatrix}, \qquad P^{-1} = \begin{pmatrix} -a & 2a^2 & -a^3 \\ -1 & -a & 2a^2 \\ 1 & a & a^2 \end{pmatrix}$$

On sait que

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = P^{-1}AP$$

d'où

$$D^{n} = \begin{pmatrix} (-1)^{n} & 0 & 0\\ 0 & (-1)^{n} & 0\\ 0 & 0 & 2^{n} \end{pmatrix} = P^{-1}A^{n}P$$

D'où

$$A^{n} = P \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} P^{-1}$$

$$A^{n} = -\frac{(-1)^{n}}{3} \begin{pmatrix} -2 & a & a^{2} \\ \frac{1}{a} & -2 & a \\ \frac{1}{a^{2}} & \frac{1}{a} & -2 \end{pmatrix} + \frac{2^{n}}{3} \begin{pmatrix} 1 & a & a^{2} \\ \frac{1}{q} & 1 & a \\ \frac{1}{a^{2}} & \frac{1}{a} & 1 \end{pmatrix}$$

4. Soit la matrice de $\mathcal{M}_n(\mathbb{R})$

$$A = \begin{pmatrix} 0 & -1 & 0 & \cdots & 0 \\ -1 & 0 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 0 & -1 \\ 0 & \cdots & 0 & -1 & 0 \end{pmatrix}$$

- (a) Montrer que A est diagonalisable.

 A réelle symétrique donc diagonalisable.
- (b) Montrer que si λ est une valeur propre de A alors $-2 \le \lambda \le 2$. On pourra utiliser le théorème d'Hadamart :

$$\lambda \text{ est une valeur propre de } A \Longrightarrow \lambda \in \bigcup_{i=1}^n \left\{ z \in \mathbb{C}, |z-a_{i,i}| \leq \sum_{j \neq i} |a_{i,j}| \right\}$$

On a $\lambda \in \{z \in \mathbb{C}; |z| \le 1 \text{ ou } |z| \le 2\} \cap \mathbb{R} = \{z \in \mathbb{R}; |z| \le 2\} \text{ donc } -2 \le \lambda \le 2.$

(c) On pose $\lambda = 2\cos\theta$ où $\theta \in [0,\pi]$. Soit le determinant $D_n = \det(\lambda I_n - A)$. Montrer que

$$\begin{cases} D_n = 2\cos\theta D_{n-1} - D_{n-2}, & \forall n \ge 2 \\ D_0 = 1, & D_1 = 2\cos\theta \end{cases}$$

On a

$$D_n = \det(2\cos\theta I - A) = egin{bmatrix} 2\cos\theta & 1 & 0 & \cdots & 0 \\ 1 & 2\cos\theta & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 2\cos\theta & 1 \\ 0 & \cdots & 0 & 1 & 2\cos\theta \end{bmatrix}$$

En développant D_n par rapport à la première colonne on a $D_n = 2\cos\theta D_{n-1} - D_{n-2}$. $D_0 = 1$ est une conversion pour tout determinant d'ordre 0. A l'ordre 1 le determinant D_1 se réduit à son unique coefficient $2\cos\theta$.

(d) Calculer D_n en fonction de n. En déduire les valeurs propres de A.

L'équation caractéristique s'écrit : $r^2 - 2\cos\theta r + 1 = 0$ dont les racines sont $e^{i\theta}$ et $e^{-i\theta}$ et donc $D_n = a\cos n\theta + b\sin n\theta$ où a et b solution de

$$\begin{cases} 1 = a\cos 0 + b\sin 0 \\ 2\cos \theta = a\cos \theta + b\sin \theta \end{cases}$$

on a alors a=1 et $b=\frac{\cos\theta}{\sin\theta}$. Donc $D_n=\cos n\theta+\frac{\cos\theta}{\sin\theta}\sin n\theta=\frac{\sin\theta\cos n\theta+\cos\theta\sin n\theta}{\sin\theta}$ Donc

$$D_n = \frac{\sin(n+1)\theta}{\sin\theta}$$

On a $D_n=0\Longrightarrow (n+1)\theta=k\pi$ où k=1,2,...,n. D'où les valeurs propres

$$\lambda = 2\cos\frac{k\pi}{n+1} \qquad k = 1, 2, ..., n$$