Quadratic reciprocity

We will prove the two lemmas needed in order to prove quadratic reciprocity.

We want to prove

Theorem 1 (Quadratic reciprocity). Let p and q be primes with $p \neq q$, then

• if
$$p \equiv 1 \pmod{4}$$
 or $q \equiv 1 \pmod{4}$, then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$.

• if
$$p \equiv q \equiv 3 \pmod{4}$$
, then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$.

Let's try some examples:

Question 1
$$\left(\frac{11}{47}\right) = \boxed{-1} * \left(\frac{47}{11}\right)$$
. We can reduce $47 \equiv \boxed{3} \pmod{11}$, which

Multiple Choice:

- (a) is ✓
- (b) is not

a quadratic residue modulo 11. Thus,
$$\left(\frac{11}{47}\right) = \boxed{-1}$$
 and $\left(\frac{47}{11}\right) = \boxed{1}$.

Question 2
$$\left(\frac{3}{107}\right) = \boxed{-1} * \left(\frac{107}{3}\right)$$
. We can reduce $107 \equiv \boxed{2} \pmod{3}$, which

Multiple Choice:

- (a) is
- (b) is not \checkmark

a quadratic residue modulo 3. Thus,
$$\left(\frac{107}{3}\right) = \boxed{-1}$$
 and $\left(\frac{3}{107}\right) = \boxed{1}$.

We are going to restate quadratic reciprocity as

Theorem 2 (Restatement of quadratic reciprocity). Let p and a be odd primes with $p \neq q$. Then

 $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$

Theorem 3. The restatement of quadratic reciprocity implies quadratic reciprocity.

Proof Let p and q be odd primes with $p \neq q$. We assume that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$ is true. Then we have two cases:

• $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$ [To show $\left(\frac{p}{q}\right) = \boxed{1} * \left(\frac{q}{p}\right)$.] Without loss of generality, we assume $p \equiv 1 \pmod{4}$. Then there exists

a $k \in \mathbb{Z}$ such that p = 4k + 1. This implies that $\frac{p-1}{2} = 2k$. Thus,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} = 1^{\frac{q-1}{2}} = 1.$$

Thus, we have that $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$ must either both be +1 or both be -1.

• $p \equiv q \equiv 3 \pmod 4$ [To show $\left(\frac{p}{q}\right) = \boxed{-1} * \left(\frac{q}{p}\right)$.] There exists $k, m \in \mathbb{Z}$ such that p = 4k + 3 and q = 4m + 3. This implies that $\frac{p-1}{2} = 2k + 1$ and $\frac{q-1}{2} = 2k + 1$. Thus,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} = (-1)^{\frac{q-1}{2}} = -1.$$

Thus, we have that exactly one of $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$ is +1 and the other is -1.

In order to prove this, we first need to prove two rather technical lemmas. Then we will use a geometric proof to finish.

Theorem 4 (Gauss's lemma). Let p be an odd prime number and let $a \in \mathbb{Z}$ with $p \nmid a$. Let n be the number of least positive residues of the integers $a, 2a, \ldots, \frac{p-1}{2}a$ that are greater than $\frac{p}{2}$. Then

$$\left(\frac{a}{p}\right) = (-1)^n.$$

Question 3 Use Gauss's lemma to find $\left(\frac{6}{11}\right)$. We need to find n, the number of least nonnegative positive residues of the integers 6,2*6,3*6,4*6,5*6 greater that $\boxed{5.5}$ We have

$$6 \equiv \boxed{6} \pmod{11}$$

$$2 * 6 \equiv \boxed{1} \pmod{11}$$

$$3 * 6 \equiv \boxed{7} \pmod{11}$$

$$4 * 6 \equiv \boxed{2} \pmod{11}$$

$$5 * 6 \equiv \boxed{8} \pmod{11}$$

Thus,
$$n = 3$$
 and $(-1)^n = -1$

We now prove Gauss's lemma.

Proof Let $r_1, r_2, \ldots r_n$ be the least nonnegative residues of the integers $a, 2a, \ldots, \frac{p-1}{2}a$ that are greater than $\frac{p}{2}$ and s_1, s_2, \ldots, s_m be the least nonnegative residues that are less that $\frac{p}{2}$. Note that no r_i or s_j is 0, since p does not divide any of $a, 2a, \ldots, \frac{p-1}{2}$. Consider the $\frac{p-1}{2}$ integers given by

$$p-r_1, p-r_2, \ldots, p-r_n, s_1, s_2, \ldots, s_m.$$

We want to show that these integers are the integers from 1 to $\frac{p-1}{2}$ inclusive in some order. Since each integer is less than or equal to $\frac{p-1}{2}$, it suffices to show that no two of these integers are congruent modulo p.

If $p-r_i \equiv p-r_j \pmod p$ for some $i \neq j$, then $r_i \equiv r_j \pmod p$, but this implies that there exists some $k_i, k_j \in \mathbb{Z}$ such that $r_i = k_i a \equiv k_j a = r_j \pmod p$ with $k_i \neq k_j$ and $1 \leq k_i, k_j \leq \boxed{\frac{p-1}{2}}$. Since

Multiple Choice:

- (a) $p \nmid a \checkmark$
- (b) $p \mid a$

we know that the multiplicative inverse of a modulo p

Multiple Choice:

- (a) exists ✓
- (b) does not exist

and thus $k_i \equiv k_j \pmod{p}$, a contradiction. Thus, no two of the first n integers are congruent modulo p.

Similarly, no two of the second m integers are congruent. Now, if $p-r_i\equiv s_j\pmod p$, for some i and j, then $-r_i\equiv s_j\pmod p$. Thus, there exists $k_i,k_j\in\mathbb Z$ such that $-r_i=-k_ia\equiv k_ja=s_j\pmod p$ with $k_i\neq k_j$ and $1\leq k_i,k_j\leq \frac{p-1}{2}$. Since $p\nmid a$, we know that the multiplicative inverse of a modulo p exists, and thus $-k_i\equiv k_j\pmod p$, a contradiction. Thus, the $\frac{p-1}{2}$ integers $p-r_1,p-r_2,\ldots,p-r_n,s_1,s_2,\ldots,s_m$ are the integers $1,2,\ldots,\frac{p-1}{2}$ in some order.

Then,

$$(p-r_1)(p-r_2)\cdots(p-r_n)s_1s_2\cdots s_m \equiv \frac{p-1}{2}! \pmod{p}$$

implies that

$$(-1)^n r_1 r_2 \cdots r_n s - 1 s_2 \cdots s_m \equiv \frac{p-1}{2}! \pmod{p}.$$

By the definition of r_i and s_j , we have

$$(-1)^n a(2a)(3a) \cdots (\frac{p-1}{2}a) \equiv \frac{p-1}{2}! \pmod{p}.$$

By reordering, we have

$$(-1)^n a^{\frac{p-1}{2}} \frac{p-1}{2}! \equiv \frac{p-1}{2}! \pmod{p}.$$

Thus, $(-1)^n a^{\frac{p-1}{2}} \equiv 1 \pmod p$, and $a^{\frac{p-1}{2}} \equiv (-1)^n \pmod p$. By Euler's criterion, we get that $\left(\frac{a}{p}\right) \equiv (-1)^n \pmod p$. Since both sides of the congruence must be ± 1 , we have $\left(\frac{a}{p}\right) = (-1)^n$.

We are going to prove a result about $\left(\frac{2}{p}\right)$ before our next technical lemma.

Theorem 5. Let p be an odd prime. Then

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} = \begin{cases} 1 & if \ p \equiv 1, 7 \pmod{8} \\ -1 & if \ p \equiv 3, 5 \pmod{8}. \end{cases}$$

Proof By Gauss's Lemma, we have that $\left(\frac{2}{p}\right) = (-1)^n$, where n is the number of least positive residues of the integers $2, 2*2, 2*3, \ldots, \frac{p-1}{2}$ that are greater than $\frac{p}{2}$. Let $k \in \mathbb{Z}$ with $1 \le k \le \frac{p-1}{2}$. Then $2k < \left[\frac{p}{2}\right]$ if and only if $k < \frac{p}{4}$; so $\left[\frac{p}{4}\right]$ of the integers $2, 2*2, 2*3, \ldots, \frac{p-1}{2}$ that are less than $\frac{p}{2}$, where $\lfloor \cdot \rfloor$ is the greatest integer (or floor) function. So, $\frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor$ of these integers are greater than $\frac{p}{2}$, from which

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor}$$

by Gauss's Lemma. For the first equality, it suffices to show that

$$\left[\frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor \equiv \frac{p^2 - 1}{8} \pmod{2}.\right]$$

If $p \equiv 1 \pmod{8}$, the p = 8k + 1 for some $k \in \mathbb{Z}$. That gives us

$$\left| \frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor \right| = \frac{(8k+1)-1}{2} - \left| \frac{8k+1}{4} \right| = 4k - 2k = 2k \equiv 0 \pmod{2}$$

and

$$\frac{p^2 - 1}{8} = \frac{8k + 1)^2 - 1}{8} = 8k^2 + 2k \equiv 0 \pmod{2}.$$

Thus, holds when $p \equiv 1 \pmod 8$. The rest of the cases are part of homework 9.

Theorem 6 (Rephrased textbook Theorem 3.3). Let p be an odd prime number and let $a \in \mathbb{Z}$ with $p \nmid a$ and a odd. If

$$N = \sum_{j=1}^{\frac{p-1}{2}} \left\lfloor \frac{ja}{p} \right\rfloor,$$

then

$$\left(\frac{a}{p}\right) = (-1)^N.$$

Where $\lfloor \cdot \rfloor$ is the greatest integer (or floor) function. This gives us another way of computing Legendre symbols. Let's look at an example before diving into the technical proof.

Question 4 Use this lemma to find $\left(\frac{7}{11}\right)$. We have

$$N = \sum_{j=1}^{5} \left\lfloor \frac{j7}{11} \right\rfloor = \left\lfloor \frac{7}{11} \right\rfloor + \left\lfloor \frac{14}{11} \right\rfloor + \left\lfloor \frac{21}{11} \right\rfloor + \left\lfloor \frac{28}{11} \right\rfloor + \left\lfloor \frac{35}{11} \right\rfloor$$
$$= \boxed{0} + \boxed{1} + \boxed{1} + \boxed{2} + \boxed{3}$$
$$= \boxed{7}$$

$$So\left(\frac{7}{11}\right) = (-1)^{\boxed{7}} = \boxed{-1}.$$

Proof Let r_1, r_2, \ldots, r_n are the least nonnegative representatives of $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ modulo p which are greater than $\frac{p}{2}$ and s_1, s_2, \ldots, s_m be the least nonnegative representatives of $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ modulo p which are less than $\frac{p}{2}$. Then for each $j = 1, 2, \ldots, \frac{p-1}{2}$ we have that

$$ja = p \left\lfloor \frac{ja}{p} \right\rfloor + \text{(remainder depending on } j\text{)}$$

where each of $r_1, r_2, \ldots, r_n, s_1, s_2, \ldots, s_m$ appears exactly once as a remainder. By adding the $\frac{p-1}{2}$ equations above, we get

$$\sum_{j=1}^{\frac{p-1}{2}} ja = \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor + \sum_{j=1}^{n} r_j + \sum_{j=1}^{m} s_j \tag{1}$$

The integers $p-r_1, p-r_2, \ldots, p-r_n, s_1, s_2, \ldots, s_m$ are precisely the integers from 1 to $\frac{p-1}{2}$ in some order, so we have

$$\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{n} (p - r_j) + \sum_{j=1}^{m} s_j = pn - \sum_{j=1}^{n} r_j + \sum_{j=1}^{m} s_j$$
 (2)

We subtract (2) from (1) to get

$$\sum_{j=1}^{\frac{p-1}{2}} ja - \sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor + \sum_{j=1}^{n} r_j + \sum_{j=1}^{m} s_j - \left(pn - \sum_{j=1}^{n} r_j + \sum_{j=1}^{m} s_j \right)$$

$$= \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor - pn + 2 \sum_{j=1}^{n} r_j.$$

Now, we can factor the left hand side to get

$$(a-1)$$
 $\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor - pn + 2 \sum_{j=1}^{n} r_j.$

Reducing both sides of the equation modulo 2 gives

$$0 \equiv \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor - n \pmod{2}$$

since
$$p \equiv \boxed{1} \pmod{2}$$
. Equivalently $n \equiv \sum_{j=1}^{\frac{p-1}{2}} p \left\lfloor \frac{ja}{p} \right\rfloor \pmod{2}$.

Thus,
$$n \equiv N \pmod{2}$$
, thus $\left(\frac{a}{p}\right) = (-1)^n = (-1)^N$.