Spectral techniques & Multicommodity Flows

• First lecture - we explicitly worked out a simple 2-state example -
$$P = \begin{pmatrix} 1-a & a \\ B & 1-B \end{pmatrix}$$
, $T = \begin{pmatrix} 3 & a \\ a+B & a+B \end{pmatrix}$ Garage

· Thm (Person-Frobenius)

(equiv to irreducible + aperiedic)

i.e., Ak > O for some k integer

For any non-negative, Primitive nxn ie, A; > 0 tij ratrix A, I a real eigenvalue 7: (with

algebraic and geometric multiplicity 1) such that

- i) $\lambda, > 0$, $\lambda, > |\lambda_i|$ for any other e-value λ_i
- ii) can choose left e-vector us, right e-vector of situro=1
- iii) If A is stochastic, then 2=1, 0=1, u,=TT
- iv) If A is not irreducible, then multiplicity of e-value 1 is equal to # of communicating classes

 v) If A has period d, then there are de-values with modulus=1

Corollary - For any aperialic, irreducible MC (Ω , P) $P^{k} = 11^{T}TT + O(k^{m_2-1}|\Omega_2|^k)$ SLEM- Second largest e-value modulus - Dj, j>2 may be complex for general MC...

· E-values of Reversible Allabracións MCs.

- Reversible (TT(i) P(j,i) + i,jest

- Given (IZ, P, TT), define vector space l2(TT) as the space IR^n endowed with inner product $\langle f,g \rangle_T = \sum_{\alpha \in \Omega} f(\alpha)g(\alpha)TI(\alpha)$

- Lemma - (P, Π) is reversible iff P is self-adjoint in $l^2(\Pi)$. i.e., $\langle Pf, g \rangle_{\Pi} = \langle f, P_g \rangle_{\Pi} \quad \forall \quad f, g$.

 $Pf - \langle Pf, g \rangle_{\pi} = \sum_{x \in \Omega} \left(\sum_{y \in \Omega} P(x, y) f(y) \right) \pi(x) g(x)$

 $= \sum_{n,y \in \Omega^2} P(ny) T(n) g(n) f(y) = \sum_{n,y \in \Omega^2} P(y,n) T(y) g(n) f(y)$ $= \sum_{n,y \in \Omega^2} P(y) T(y) \left(\sum_{n \in \Omega} p(n) P(y,n) \right) = \langle f, P_g \rangle_T$ $= \int_{\partial B} e^{nx} f(y) T(y) \left(\sum_{n \in \Omega} p(n) P(y,n) \right) = \langle f, P_g \rangle_T$

- For only if, choose flow) = ex, g() = ey to get TT(x)P(xy) = TT(y)P(y)

· Consider $P^* = D^{1/2} P D^{1/2}$, D = dig(TT)- Preversible >> P* symmetric - Also P, P* have same e-values = A, Az, ..., In are real (Recall by PFthm, Pinnedwible =) $\lambda_1=1$, max $\{|\lambda_2|, |\lambda_n|\} < 1$) - Let $W_1, W_2, ..., W_n = Onthonormal basis for P* <math>U = D^{1/2}W$, $U = D^{1/2}W$ (spectral than for symmetric nation)

=) $U_1, ..., U_n$ and $U_1, ..., U_n$ are left and right e-vectors of Pard $\langle u_i, u_j \rangle_{\pi} = \langle o_i, v_j \rangle_{\pi} = S_{ij} \left(\begin{array}{c} \text{orthonormal} \\ \text{in } \ell^2(\Pi) \end{array} \right)$ - Thus, any $z \in \mathbb{R}^n = z = \sum_{j=1}^n \langle z, y \rangle_n U_j$ $\Rightarrow P^{k}f = \sum_{j=1}^{n} \lambda_{j}^{k} \langle f, \sigma_{j} \rangle_{n} \sigma_{j}^{n} = \langle f, 1 \rangle_{n} 1 + \sum_{j=2}^{n} \lambda_{j}^{k} \rangle_{n}^{n}$ Choose f(a) = Sy to get $P^k(2,y) = TT(y) + \sum_{i=1}^k T(y) J_i(a) J_i(y)$ · J* = 1- nox {121,121} (ishere 1=2,>22,-22) (SLEM or absolute spectral gap) Thm. (SZ,P,TT) ineducible MC, TImin = min TI(n), 8* = SLEM $t_{\text{mix}}(\varepsilon) \leq \frac{1}{\gamma^*} \log \ln \left(\frac{1}{\varepsilon \pi_{\text{min}}}\right)$

and $\lim_{x \to \infty} (\xi) > (\frac{1}{\eta^*} - 1) \ln (\frac{1}{2\xi})$

< \(\frac{1}{\pi} \) \[\sum_{j=2}^2 \(\frac{3}{3} \tau_j^2(2) \) \[\sum_{j=2}^2 \(\text{U}_j^2(y) \) \]^2 (Sauchy) Recall J; = D1/2 W; , W; orthonormal =) \(\sum_{i=1}^{2} \sum_{i=1}^{2} \) (Alt, $\pi(n) = \langle \delta_n, \delta_2 \rangle_{\pi} = \langle \sum_{j=1}^{n} U_j(n) \pi(n) U_j, \sum_{j=1}^{n} U_j(n) \pi(n) U_j \rangle_{\pi}$ $= \sum_{j=1}^{n} \sigma_{j}^{2}(n) \left(\Pi(n) \right)^{2}, \sigma(n) \left(\sigma_{j}, \sigma_{j} \right)_{n} = S_{ij}$ Also, $\|P^k(x, 1-1)\|_{TV} \leq \max_{y} \left[1 - \frac{pk_{n,y}}{T(y)}\right]$ (check) =) $Q(k) \leq \frac{\gamma_k}{T(n)} \leq \frac{e^{-\delta t_k}}{T(n)}$ - For lower bond, consider vi st Pvi= Aivi, i>1 Also $\langle 1, \sigma_i \rangle_{\pi} = 0$ (orthogonality of σ_i in $l^2(\pi)$) =) | \(\tag{P}(\gamma y) \(\lambda \) = | \(\begin{array}{c} | \P(\gamma y) \(\gamma \) - \(\gamma \) \($\leq \|\phi\|_{\infty} \cdot 2d(k)$ Now we can choose $x \in A$ $||v||_{\infty} = v(x) = |x| \leq 2dA$ =) 12* time(E) < 200/(0)00000 2E =) time(E) h(1/2*) 7,2E · Corollary - (P,T) reversible, ineducible =) lin (d(+)) = 1*

Note- For lazy chain, $\lambda i > 0 \ \forall i \Rightarrow \lambda^* = \lambda_2$ (ie, $\hat{P} = \frac{1}{2}(I+P) = psd!$)

• Eg - For RW on n-cycle, $\lambda_{j+} = \cos\left(\frac{2\pi i}{n}\right)$. Assume n=old

=) $\lambda^{+} = \cos\left(\frac{2\pi i}{n}\right) = 1 - \frac{4\pi^{2}}{2n^{2}} + O(n^{-4})$, $\delta^{+} = \Theta(n^{-2})$ Note - if n = even, then -1 is an e-value. A peniodic

- For lazy RM on hypercube, $\lambda_{j+} = \frac{n-\text{lod}}{n}j$, $\lambda^{+} = 1-\frac{1}{n}$, $\delta^{+} = \frac{1}{n}$ (with multiplicities)

For any $f: \Omega \rightarrow \mathbb{R}$ - $Var_{\Pi}(f) = \sum_{z} \Pi(z) \left(f(x) - \sum_{y} \pi(y)f(y)\right)^2 = \sum_{z} \left(\pi(x)f(x) \sum_{z} \pi(y) - \pi(y) \sum_{z} \pi(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(y) \left(f(x)^2 - f(x)f(y)\right)^2 = \sum_{z,y} \pi(z) \pi(y) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - f(y)\right)^2 = \sum_{z,y} \pi(z) \pi(y) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z) \pi(y)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z) \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z) \left(f(x) - \sum_{z,y} \pi(z)\right) \left(f(x) - f(y)\right)^2$ $= \sum_{z,y} \pi(z) \pi(z)$ $= \sum_{z,y} \pi(z)$ $= \sum_{z,y} \pi$

Then. For inreducible, reversible (P, TT), we have Regleigh's Thin $B_2 = \inf \left\{ \frac{\mathcal{E}_{TI}(f,f)}{Var_{TI}(f)}; f \text{ non-constant} \right\}$ in $\ell^2(TT)$

Note - En (f+cl), f+cl) = En(f,f). Thus, this
is some of as f st < f, 11 > + 0, ie, En[f] +0

Now	we can use these to get geometric bounds
* Mu	ulticommodity Flow method (for general MC)
_	Iveversible aperiodic MC (Ω , P), stat dist TT For $e = (\alpha, y)$, $((e) = TT(\alpha) P(\alpha, y)$ (capacity)
-	
	For any $x,y \in \mathbb{Z}^2$, $D(ab) = TT(x)TT(y)$ (demand)
-	Flow $f = Routes D(x,y)$ for all x, y $f: \mathcal{D} \to \mathbb{R}^+ \cup \{0\}$, $\mathcal{B} = U_{x,y} \mathcal{P}_{xy} = U_{x,y} \mathcal{P}_{xh}$ aths from $x \to y$
	$\sum_{p \in \mathcal{P}_{x,y}} f(p) = D(x,y)$
_	$f(e) = \sum_{p:e \in p} f(p)$ - total flow on e, $f(f) = \max_{e \in C(e)} f(e)$ - cos
	length of longest = ((f) = max /p/ flow carrying path P:f(P)>0
Thm	For any lazy the engodic MCP, flow f $t_{mix}(\varepsilon) \leq O\left(f(f) l(f) \ln(\frac{1}{\varepsilon \pi_{min}})\right)$

- Any flow given an upper bound - Lower bounds can be derived from spainse cuts. * Conductance Bound's (for reversible MC)

For Evgodic MC (Ω, β, π) define $\pi(A) = \sum_{x \in A} \pi(x)$ and evgodic flow $C(A) = \sum_{x \in A, y \notin A} \pi(x) P(x,y)$ (Note-05C(A) $\leq \pi(A) \leq 1$)

- The Conductance $\Phi(A) \stackrel{\triangle}{=} \frac{C(A)}{\pi(A)}$ the conductance of $P: \Phi_*^* \stackrel{\triangle}{=} \min_{A \mid \pi(A) \leq 1/2} \Phi(A)$

Thm (Jerum-Sinclain 89). For neversible MC $\frac{\Phi_{\star}^2}{2} \leq 1 - \lambda_2 \leq 2 \, \Phi_{\star}$

This is sometimes referred to as Cheegen's luquality.

Eg-LRW on hypercube- Consider $S = \{x \mid x! = 0\}$ $\Rightarrow \Phi(s) = \sum_{x \in s, y \in s} 2^{-n} P(ny) = 2^{-n+1} 2^{n-1} \cdot 2^{n} = \frac{1}{2}n$ $\Rightarrow 2 \Phi_* = \frac{1}{2}n = \frac{1}{2}n$ Eg-LRW on $2n - cycle - \Phi(s) = \frac{1}{2}s \cdot \frac{1}{2}(x) \cdot \frac{1}{2}n = \frac{1}{2}n$ $\Rightarrow \Phi_*^2 = \frac{1}{8n^2}$ which is the cornect order of M^* .