Practical -1 Breadth First Search & Search & Depth First Search

Code:

```
print("VINAY PANCHAL/27/TYCSB")
from collections import deque, default dict
class Graph:
  def __init__(self):
    self.graph=defaultdict(list)
  def add_edge(self,u,v):
    #For undirected graph
    self.graph[u].append(v)
    self.graph[v].append(u)
  def bfs(self,start):
    visited=set()
    queue=deque([start])
    traversal=[]
    while queue:
      node=queue.popleft()
      if node not in visited:
       visited.add(node)
        traversal.append(node)
        for neighbor in self.graph[node]:
            queue.append(neighbor)
    return traversal
  def dfs_iterative(self,start):
    visited=set()
    stack=[start]
    traversal=[]
    while stack:
      node=stack.pop()
      if node not in visited:
        visited.add(node)
        traversal.append(node)
        for neighbor in reversed(self.graph[node]):
            stack.append(neighbor)
    return traversal
g=Graph()
edges=[
 ('A','B'),('A','C'),
  ('B','D'),('B','E'),
  ('C','F'),('E','G'),
  ('F','H')
#ADDing edges
for u,v in edges:
 g.add_edge(u,v)
start_node='A'
print("DFS Traversal: ",g.dfs_iterative(start_node))
print("BFS Traversal: ",g.bfs(start_node))
Output:
           VINAY PANCHAL/27/TYCSB
           DFS Traversal: ['A', 'B', 'D', 'E', 'G', 'C', 'F', 'H']
           BFS Traversal: ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
```

Practical -2 A* Search and Recursive Best-First Search

Code:

```
print("VINAY PANCHAL/27/TYCSB")
     import heapq
     def a_star(graph,h,start,goal):
       open_list=[]
       heapq.heappush(open_list,(h[start],0,start,[start]))
       visited=set()
       while open_list:
         f,g,node,path=heapq.heappop(open_list)
         if node==goal:
           return path,g
         visited.add(node)
         for neighbor, cost in graph[node]:
           if neighbor not in visited:
              g_new=g+cost
              f_new=g_new+h[neighbor]
              heapq.heappush(open_list,(f_new,g_new,neighbor,path+[neighbor]))
       return None, float ('inf')
     def rbfs(graph,h,start,goal):
       def rbfs_helper(node,path,g,f_limit):
         if node==goal:
           return path,g
          successors=[]
         for neighbor, cost in graph[node]:
           if neighbor not in path:
              g new=g+cost
              f=max(g_new+h[neighbor],f_limit)
              successors.append((f,neighbor,g_new,path+[neighbor]))
         if not successors:
           return None,float('inf')
         successors.sort()
         while successors:
           best=successors[0]
           alternative=successors[1][0] if len(successors)>1 else float('inf')
            result,f_new=rbfs_helper(best[1],best[3],best[2],min(f_limit,alternative))
           if result is not None:
              return result,f new
           successors[0]=(f_new,best[1],best[2],best[3])
           successors.sort()
         return None, float ('inf')
       return rbfs_helper(start,[start],0,float('inf'))
     graph={
       'A':[('B',5),('C',10)],
       'B':[('A',5),('D',4),('E',3)],
        'C':[('A',10),('G',2)],
       'D':[('B',4),('E',6)],
       'E':[('B',3,),('D',6),('G',2)],
        'G':[('C',2),('E',2)]
     heuristic={
       'A':7.
       'B':6,
       'C':4,
       'D':3,
       'E':2,
       'G':0
     start='A'
     goal='G'
     a_path,a_cost=a_star(graph,heuristic,start,goal)
     print("A*Path:",a_path,"Cost",a_cost)
     #Run RBFS
     rbfs_path,rbfs_cost=rbfs(graph,heuristic,start,goal)
     print("RBFS Path:",rbfs_path,"Cost:",rbfs_cost)
Output:
               VINAY PANCHAL/27/TYCSB
              A* Path: ['A', 'B', 'E', 'G'] Cost: 10
              RBFS Path: ['A', 'B', 'D', 'E', 'G'] Cost: 17
```

Code:

<u>Practical – 3 Decision Tree Learning</u>

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,plot_tree

 $from \ sklearn.metrics \ import \ accuracy_score, classification_report$

import matplotlib.pyplot as plt

#load the iris dataset

iris = load_iris()

X = iris.data

y = iris.target

feature_names = iris.feature_names

target_names = iris.target_names

#split into train and test sets

. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#craete and train the decision tree classifier

elf = DecisionTreeClassifier(criterion='entropy', random_state=42)

elf.fit(X_train,y_train)

#make predictions

y_pred = elf.predict(X_test)

#evaluate accuracy

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy",accuracy)

print("\nClassification Report",classification_report(y_test, y_pred, target_names=target_names))

#Plot the decision tree

plt.figure(figsize=(12,8))

 $plot_tree(elf,feature_names=feature_names,class_names=target_names,filled=True)$

plt.title('Decision Tree for Classifier')

plt.show()

Output:

₹ Accuracy: 0.97777777777777

Classification	Report:			
	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	19
versicolor	0.93	1.00	0.96	13
virginica	1.00	0.92	0.96	13
accuracy			0.98	45
macro avg	0.98	0.97	0.97	45
weighted avg	0.98	0.98	0.98	45

Decision Tree for Iris Dataset

Practical - 4 Support Vector Machines (SVM)

Code:

```
from \ sklearn. datasets \ import \ load\_breast\_cancer
from sklearn.model selection import train test split, GridSearchCV
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from \ sklearn.metrics \ import \ classification\_report, accuracy\_score, confusion\_matrix
#load binary classification dataset
data=load_breast_cancer()
X=data.data
y=data.target#Labels:0=Malignant,1=Benign
#Normalized features
scalar=StandardScaler()
X_scaled=scalar.fit_transform(X)
#Split into training and testing data
X\_train, X\_test, y\_train, y\_test=train\_test\_split (X\_scaled, y, test\_size=0.2, random\_state=42)
svm_model=SVC(kernel='rbf',C=1.0, gamma='scale')
svm_model.fit(X_train,y_train)
#MAke Prediction
y\_pred = svm\_model.predict(X\_test)
#Evaluate Performance
print("Accuracy:",accuracy_score(y_test,y_pred)*100)
print("\nClassifcation Report:\n",classification_report(y_test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
#Hyperparameter tuning using GridSearchCV
param_grid={
  'C':[0.1,1,10],
  'gamma':['scale',0.1,1],
  'kernel':['rbf']
grid=GridSearchCV(SVC(),param_grid,cv=5)
grid.fit(X_train,y_train)
print("\nBest Parameters:",grid.best_params_)
print("Best Cross-validation score:",grid.best_score_)
```

Output:

Accuracy: 97.36842105263158

Classification Report:

		precision	recall	f1-score	support
	0	0.98	0.95	0.96	43
	1	0.97	0.99	0.98	71
accur	racy			0.97	114
macro	avg	0.97	0.97	0.97	114
weighted	avg	0.97	0.97	0.97	114

```
Confusion Matrix:
[[41 2]
[ 1 70]]
```

Practical - 5 Adaboost Ensemble Learning

Code:

from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier $from \ sklearn.metrics \ import \ accuracy_score, classification_report$ #Load dataset data=load_breast_cancer() X=data.data y=data.target #Train-test split $X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42)$ #weak classifier: Decision stump(1-level decision tree) weak_classifier=DecisionTreeClassifier(max_depth=5) #Train Adaboost model with 50 weak classifiers $adaboost_model = AdaBoostClassifier (estimator = weak_classifier, n_estimators = 50, random_state = 42)$ $adaboost_model.fit(X_train,y_train)$ #Predict and evaluate y_pred=adaboost_model.predict(X_test) accuracy_ada=accuracy_score(y_test,y_pred) print(f"AdaBoost Accuracy: {accuracy_ada*100:.2f}%") print("\nClassification_report(AdaBoost):\n ",classification_report(y_test,y_pred)) #compare with a single weak classifier weak_classifier.fit(X_train,y_train) y_pred_weak=weak_classifier.predict(X_test) $accuracy_weak = accuracy_score(y_test, y_pred_weak)$ print(f"\nSingle weak classifier Accuracy: {accuracy weak*100:.2f}%")

Output:

AdaBoost Accuracy: 96.49%

Classification Report (Adaboost): precision recall f1-score support 0.98 0.93 0.95 43 0 0.96 0.99 0.97 71 0.96 114 accuracy macro avg 0.97 ighted avg 0.97 0.96 0.96 114 weighted avg 0.96 0.96 114

Single Weak Classifier Accuracy:89.47%

from sklearn.datasets import load_iris

Practical - 6 Naive Bayes 'Classifier

Code:

```
from sklearn.model_selection import train_test_split
from sklearn.naive bayes import GaussianNB
from \ sklearn.metrics \ import \ accuracy\_score, classification\_report, confusion\_matrix
import numpy as np
#load output
data=load iris()
X=data.data
y=data.target
class_names=data.target_names
#Split into train test
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
#train NaiveBayes classifier
model=GaussianNB()
model.fit(X_train,y_train)
#predict
y_pred=model.predict(X_test)
#Evaluate Accuracy
accuracy=accuracy_score(y_test,y_pred)
print(f"Accuracy: \{accuracy*100:.2f\}\%\n")
#class probabilities
probs=model.predict_proba(X_test)
print("Sample class probabilities(first 5test samples):")
print(np.round(probs[:5],3))
#detailed evaluation
print("\nClassifier Report:\n",classification_report(y_test,y_pred,target_names=class_names))
```

Output:

Accuracy:100.00%

print("Confusion matrix:\n",confusion_matrix(y_test,y_pred))

Classification Report:

	precision	recall	†1-score	support
setosa versicolor virginica	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	. 10 9 11
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	30 30 30

Confusion Matrix:

```
[[10 0 0]
[ 0 9 0]
[ 0 0 11]]
```

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

Practical – 7 K-Nearest Neighbors (K-NN)

Code:

```
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
#load dataset
data = load_iris()
X = data.data
y = data.target
class_names = data.target_names
#Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
#intialize KNN classifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
#predict
y_pred = knn.predict(X_test)
#evaluate
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy*100:.2f}%")
print("\nClassification Report:\n", classification_report(y_test, y_pred, target_names=class_names))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
```

Output:

Accuracy: 100.00%

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

Confusion Matrix: [[10 0 0]

[0 9 0] [0 0 11]]

Practical - 8 Association Rule Mining

Code:

```
from mlxtend.frequent_patterns import apriori, association_rules
#sample market basket dataset
dataset=[
  ['milk','bread','butter'],
  ['bread','butter'],
  ['milk','bread'],
  ['milk','butter'],
  ['bread'],
  ['milk','bread','butter'],
  ['butter']
]
#Convert to one-hot encoded DataFrame
from mlxtend.preprocessing import TransactionEncoder
te=TransactionEncoder()
te_ary=te.fit(dataset).transform(dataset)
df = p.DataFrame(te_ary, columns=te.columns_)
#1. Find frequent itemsets wih min support of 0.3
frequent_itemsets=apriori(df,min_support=0.3,use_colnames=True)
#2.generate rule with min confidence of 0.7
rules = association\_rules (frequent\_itemsets, metric = "confidence", min\_threshold = 0.7)
#display results
print("Frequency Itemsets:\n",frequent_itemsets)
print("\nAssociation Rules:\n",rules[['antecedents','consequents','support','confidence','lift']])
```

Output:

```
Frequent Itemsets:
```

```
support itemsets
0 0.714286 (bread)
1 0.714286 (butter)
2 0.571429 (milk)
3 0.428571 (butter, bread)
4 0.428571 (milk, bread)
5 0.428571 (milk, butter)
```

Association Rules:

```
antecedents consequents support confidence lift 0 (milk) (bread) 0.428571 0.75 1.05 1 (milk) (butter) 0.428571 0.75 1.05
```