Problem A. Connected Components

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

No legend. Just pure mathematics =)

Given an undirected graph G = (V, E). |V| = N, |E| = M.

$$V = \{0, 1, ..., N - 1\}$$

Find all connected components of this graph.

Input

First line contains two integer numbers divided by space character: $0 < N \le 100000$, $0 < M \le 100000$ — number of vertices and edges respectively.

Each of next M lines contains two integer numbers v_i, u_i — vertices connected by *i*-th edge: $0 \le v_i, u_i < N$. (Actually, it is just an edge list, described in the lecture).

Output

On first line print only integer number — number of connected components in the graph.

Then, for each connected component print two lines:

- 1. Number of vertices in the component.
- 2. Numbers of vertices which construct this component divided by space character.

You are free to print components and vertices inside components in any order.

Examples

standard input	standard output
3 2	1
0 1	3
1 2	0 1 2
3 0	3
	1
	0
	1
	1
	1
	2
3 3	1
0 1	3
1 2	0 1 2
2 1	
3 1	2
0 1	2
	0 1
	1
	2
6 4	3
2 0	3
0 1	0 1 2
4 3	2
1 2	3 4
	1
	5

Problem B. Park

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

You're in a hurry, because webinar on Algorithms and Data structures is about to start. On your way home there is a park and you decided to go this park through. And you want to find the shortest way from the enter (your current position) to the exit.

Fortunately, you've found a map of the park. This may help.

Map of the park is square array of the following characters:

. – empty space (you can go through it)

- barrier, e.g. a tree (you can't go through it)

E – your current position (Enter)

X – your destination (eXit)

From position (i, j) you can move to one of the (i - 1, j), (i, j - 1), (i + 1, j) or (i, j + 1) only if there's no barrier in target position.

Input

The first line contains two integer numbers: $0 < N \le 500, 0 < M \le 500$ — number of rows and columns in the map respectively.

Each of the next N lines contains M characters each (terminated with line break character) and denote a map of the park.

It is guaranteed that there are exactly one E and exactly one X characters in the map.

Output

Print one integer number — minimum number of steps you need to get from the current position to the exit. If it is impossible, print -1.

Examples

standard input	standard output
2 2	2
E.	
. X	
4 5	7
E	
.###.	
.#	
#X	
3 5	-1
E	
#####	
X	