

NEW TECHNOLOGIES & NEW CHALLENGES

Next Generation SCADA/Distribution Management Systems

Soumen Ghosh, PhD

November 8, 2019

Thanks to ISGF

Soumen Ghosh, PhD

November 8, 2019

Introduction

Distribution Management System (DMS):

"Automatic Monitoring and control of Distribution level assets for better reliability, flexibility and agility of the system that uses a network of sensors and control devices"

Early to late years of 20th Century:

- Electric grid was overbuilt in developed countries. DMS was considered a luxury for already 'gold-plated' grid.
- Adding more control systems were thought to be adding risk to the reliability of the grid
- Moreover, DMS was not incentivized by the traditional regulatory structures and rates
- Automation of the grid was mostly limited to Supervisory Control and Data Acquisition (SCADA) at Transmission and Sub-Transmission Substations
- Limited Feeder Automation (Primary side Capacitor Control: preprogrammed)

Challenges in 21st Centuries

- Capital expenditures have been continuously being threated to get axed resulting 'aging assets'
- Ever increasing load demand and variety of load
- Customer-cited Distributed Generation Variability and Intermittency
- New Smart <u>Stand-Alone</u> Technologies started pouring in. Ex:
 - Pass data collected by smart sensors to substation controller
 - Applications are running in the controller to make intelligent decisions
 - Intelligent Decisions are conveyed to Distribution Management System
 - Locate Faults to accurately roll trucks Crew Management
 - Achieve Distribution System Resiliency Outage Management System
 - Prevent, Recover and Survive any type of outage
 - Increase Energy Efficiencies Distribution Management
 - CVR/VVO
 - Power Quality SCADA
 - Unplanned Outages Outage Management System
 - Customer Service Trouble Calls, IVR system

Challenges in 21st Centuries

- All these smart stand-alone technologies making marginal improvement individually, with lots of duplicate and manual activities.
- Interoperability with standard protocol was sought to integrate standalone technologies
 - Integration of disparate applications
 - Make them as a single system to achieve larger improvement
- Cybersecurity, network management, device management, and firmware upgrades – all managed by IT, but these are essential for smooth operations of OT.
- Absence of Common tools, operating principals, and siloed areas of responsibility posed challenges
- Managing Big Data Volume generated from AMI, Connected Field Devices

New Generation Distribution Management System

Overcoming these challenges, A New Generation Distribution Management System is needed that would break down silos between IT & OT and support an integrated SCADA, DMS, OMS and Edge Systems architecture to provide

- reliable,
- resilient,
- efficient and
- secure electric delivery system

with the ability to

- withstand outages,
- maintain high quality electric service,
- recover from extreme weather events, and
- save energy.
- provide real-time analytics on-premise or cloud based data

A schematic Architecture of a New Generation DMS

The OSB enables integration of disparate applications using a common set of synchronous and asynchronous services defined as Common Service Definitions.

Systems and Data Flow for ADMS System

Outage Management System

Thank You Q & A

