Biological Data Analysis

Carl Herrmann IPMB - Universität Heidelberg

8. Power of a test

Reliability of statistical test

- A reliable test should have a small number of false-positives and false-negatives
- Increasing significance level leads to ???? false-positives and ??? false-negatives

	H ₀ is valid	H ₀ is NOT valid	
H ₀ rejected (p < α)	False-positive (type 1 error)	True positive	test positive
H ₀ not rejected (p > α)	True negative	False-negative (type 2 error)	test negative
	negative	positive	

Reliability of statistical test

	H ₀ is valid	H₀ is NOT valid	
H ₀ rejected (p < α)	FP	TP	test positive
H ₀ not rejected (p > α)	TN	FN	test negative
	negative	positive	

false-negative rate (FNR) =
$$\frac{FN}{\text{positives}} = \frac{FN}{FN + TP}$$

false-positive rate (FPR) =
$$\frac{FP}{\text{negatives}} = \frac{FP}{FP + TN}$$

false-discovery rate (FDR) =
$$\frac{FP}{\text{test positives}} = \frac{FP}{FP + TP}$$

$$precision = \frac{TP}{test positives} = \frac{TP}{FP + TP}$$

$$|recall| = \frac{TP}{positives} = \frac{TP}{FN + TP}$$

P-value distribution under H₀

- What are typical p-values under H₀?
- Experiment: draw 2 sets (S₁ & S₂) of 50 random numbers each from the same distribution
- H₀: the expectation of both distributions are equal (TRUE!)
- Compute t-test between S₁ and S₂, and determine P-value
- Repeat this experiment 1000 times, and plot the distribution of the 1000 p-values

Distribution of p-values under H₀ = uniform distribution

Type 1 errors

Red area:

with $\alpha = 5\%$, we would have wrongly rejected H0

→ FALSE POSITIVE

• How often would that occur?

→ red area compared to the total area = 5% because uniform distribution

Distribution of p-values under H₀

α is the FALSE-POSITIVE RATE (FPR)

P-value distribution under H₁

- Experiment: draw 2 sets (S₁ & S₂) of 50 random numbers each from two distributions with different expectation
- H₀: the expectation of both distributions are equal (FALSE!)
- compute p-value using a 2 sample t-test
- Repeat 1000 times and plot distribution of p-values

Many small p-values

→ H₀ would have been rejected

Some large p-values

→ H₀ would have NOT been rejected

Type 2 errors

- Occur when a false H₀ hypothesis is NOT rejected by the test
 - → False-negative (Type 2 errors)
- Probability of a type 2 error:
 β value
- Probability for a type 2 error NOT to occur
 → power of a test = 1- β

This area represents the cases for which H0 will not be rejected

→ false-negatives

Power of a test

- Generate 2 datasets of length n
 - one from a normal distribution with mean 0
 - one from a normal distribution with mean 0.2
- H₀: expectation of both underlying distributions is identical (False!)
- perform t-test, compute p-values for various values of n

$$\beta \stackrel{n \to \infty}{\longrightarrow} 0$$

Power of a test

- The power depends on:
 - Significance level α
 - Sample size n
 - Effect-size: how strong is the observed effect?

9. Correction for Multiple Testing

Gene expression data

- Finding differentially expressed genes between healthy and disease patients
- t-test with $\alpha = 5\%$
- H₀: non-significant expression difference between the two groups

Fake news ...

This dataset contains only random numbers

- → H₀ holds for all 10.000 "genes"
- → all the 445 genes are false-positives

X <- matrix(rnorm(n=100000,sd=3),nrow=10000)</pre>

Pitfalls of multiple testing

- We have repeated 10.000 independent tests
- the p-value indicates the probability to obtain a more extreme test statistics if H₀ holds true
- α is the risk to call a positive event ("reject H_0 ") even if H_0 is true
- Probability of calling at least one false-positive across all tests:
 - 2 tests: $1-(1-\alpha)^2$
 - k tests: 1-(1-α)^k
 - 10.000 tests: $1-(1-\alpha)^{10000} \sim 1$

Beware of confusions!

- 1-(1-α)^k is the probability to have at least one false-positive across all the tests
 = family-wise error rate (FWER)
- a is the **False Positive Rate (FPR)** i.e. the proportion of false positives if H₀ holds true

FWER = Probability to obtain at least one point below this threshold = $1-(1-\alpha)^k$

FPR = Proportions of tests below the threshold $= \alpha$

Type I errors

- Total number of tests
 - = "Family" (m tests)
- Probability of a type I error over all tests
 - = Family wise error rate (FWER)

$$FWER = P(V > 0)$$

- Proportion of false positive reported to all negatives
 - = False positive rate (FPR)

$$FPR = V / m0$$

- Proportion of false positives reported to all significant ones
 - = False discovery rate (FDR)

$$FDR = V/R$$

	H₀ is valid	H₀ is NOT valid	
H ₀ rejected (p < α)	V	S	R
H ₀ not rejected (p > α)	U	T	m-R
	m_0	m-m ₀	m

Control of the FWER

- Bonferroni correction
- adapt the significance level α to the number of tests
- when n tests are performed
 - \bullet $a \rightarrow a/n$
 - $p \rightarrow p_{adj} = min(np, 1)$
- Probability of having a type I error remains constant at α
- Very stringent correction!
 - → increased type II error rate (false negatives)
- Example gene expression:
 - n = 10.000 tests
 - $\alpha = 0.05 \rightarrow \alpha / n = 5e-6$

Effekt des multiple Testens

Control of false-discovery rate (FDR)

- When a large number of tests is performed (typically for genomics data), Bonferroni correction is too stringent (too many Type II errors!)
- We can live with some false positives, as long as we can control their proportions within the significant test = false discovery rate (FDR)
- FDR = proportion of false-positives within the significant results
- FDR = 10% : 10% of the test which I consider to be significant (p < α) are false positives