Ch. 8 Algorithm Efficiency & Sorting

- O(): Big-Oh
 - An algorithm is said to take O(f(n)) if
 - its running time is upper-bounded by cf(n)
 - e.g., O(n), $O(n \log n)$, $O(n^2)$, $O(2^n)$, ...
- Formal definition
 - $O(f(n)) = \{ g(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, cf(n) \ge g(n) \}$
 - $g(n) \subseteq O(f(n))$ 이 맞지만 관행적으로 g(n) = O(f(n))이라고 쓴다.
- 직관적 의미
 - $g(n) = O(f(n)) \Rightarrow g$ grows no faster than f

$\Omega(f(n))$

- 적어도 f(n)의 비율로 증가하는 함수
- *O*(*f*(*n*))과 대칭적

$\Theta(f(n))$

- f(n)의 비율로 증가하는 함수
- $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$

Time requirements as a function of the problem size *n*

A comparison of growth-rate functions

	n					
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	103	104	105	10 ⁶
n ∗log₂n	30	664	9,965	105	106	10 ⁷
n²	10 ²	104	10 ⁶	108	10 10	10 ¹²
n ³	10³	10 ⁶	10 ⁹	1012	10 15	10 18
2 ⁿ	10 ³	1030	1030	103,0	10 10 30,	103 10 301,030

A comparison of growth-rate functions

Types of Running-Time Analysis

- Worst-case analysis
 - Analysis for the worst-case input(s)
- Average-case analysis
 - Analysis for all inputs
 - More difficult to analyze
- Best-case analysis
 - Analysis for the best-case input(s)
 - Mostly not meaningful

Running Time for Search in an Array

- Sequential search
 - Worst case: $\Theta(n)$
 - Average case: $\Theta(n)$
- Binary search
 - Worst case: $\Theta(\log n)$
 - Average case: $\Theta(\log n)$ ← 각자 확인 요망!

Sorting Algorithms

- 대부분 $\Theta(n^2)$ 과 $\Theta(n\log n)$ 사이
- Input이 특수한 성질을 만족하는 경우에는 $\Theta(n)$ sorting도 가능
 - E.g., input이 -O(n)과 O(n) 사이의 정수

Selection Sort

- An iteration
 - Find the largest item
 - Swap it to the rightmost place
 - Exclude the rightmost item
- Repeat the above iteration until only one item remains

✓ Running time:
$$(n-1)+(n-2)+\cdots+2+1 = \Theta(n^2)$$
 Worst case Average case

```
selectionSort(theArray[], n)
          for (last = n-1; last >=1; last--) {
                   largest = indexOfLargest(theArray, last+1);
                   Swap the Array [largest] & the Array [last];
 indexOfLargest(theArray, size)
          largest = 0;
          for (i = 1; i < \text{size}; ++i) {
                  if (theArray[i] > theArray[largest]) largest = i;
        ✓ Running time: 두 함수의 for loop의 iteration 수의 합이 좌우
            — indexOfLargest가 n-1 번 call 되고,
               call 될 때마다 indexOfLargest의 수행시간은
                                      한 단계씩 가벼워진다.
\checkmark (n-1)+(n-2)+\cdots+2+1=\Theta(n^2)
```

Bubble Sort

✓ Running time:
$$(n-1)+(n-2)+\cdots+2+1 = \Theta(n^2)$$
 Worst case Average case

Insertion Sort

Insertion sort에서 중간의 한 시점

Mergesort

```
mergeSort(S)
        // Input: sequence S with n elements
        // Output: sorted sequence S
        if (S.size() > 1) {
            Let S_1, S_2 be the 1<sup>st</sup> half and 2<sup>nd</sup> half of S, respectively;
            mergeSort(S_1);
            mergeSort(S_2);
            S \leftarrow \text{merge}(S_1, S_2);
merge(S_1, S_2)
        sorting된 두 sequence S_1, S_2를 합쳐
        sorting 된 하나의 sequence를 만든다
```

Animation (Mergesort)

Animation (Mergesort)

1 2 3 4 6 7 8 9

✓ Running time: $\Theta(n \log n)$

Merge는 보조 array가 필요하다

Divide the array in half

Sort the halves

Merge the halves:

- a. 1 < 2, so move 1 from left half to tempArray
- b. 4 > 2, so move 2 from right half to tempArray
- c. 4 > 3, so move 3 from right half to tempArray
- d. Right half is finished, so move rest of left half to tempArray

Copy temporary array back into original array

A mergesort of an array of six integers

A worst-case instance of the merge step in mergesort

Merge the halves:

- a. 1 < 4, so move 1 from theArray[first..mid] to tempArray
- b. 2 < 4, so move 2 from theArray[first..mid] to tempArray
- c. 8 > 4, so move 4 from theArray[mid+1..last] to tempArray
- d. 8 > 5, so move 5 from theArray[mid+1..last] to tempArray
- e. 8 > 6, so move 6 from theArray[mid+1..last] to tempArray
- f. theArray[mid+1..last] is finished, so move 8 to tempArray

A best-case instance of the merge step in mergesort

Quicksort

```
quickSort(S)
       // Input: sequence S with n elements
       // Output: sorted sequence S
       if (S.size() > 1) {
           p \leftarrow \text{pivot of } S;
           (L, R) \leftarrow \text{partition}(S, p); // L: \text{ left partition}, R: \text{ right partition}
           quickSort(L);
           quickSort(R);
           return L \cdot p \cdot R; // concatenation
partition(S, p)
       sequence S에서 p보다 작은 item은 partition L로,
       p보다 크거나 같은 item은 partition R로 분리.
```

Animation (Quicksort)

12345689

- ✓ Average-case running time: $\Theta(n \log n)$
- ✓ Worst-case running time: $\Theta(n^2)$

A partition with a pivot

✔ Partitioning 방법은 다양하다

Partition의 예. 중간의 한 시점.

Radix Sort

```
radixSort(A[], d)

{      // Sort n d-digit integers in the array A[]

for (j = d \text{ downto } 1) {

Do a stable sort on A[] by j<sup>th</sup> digit;

}
```

✓ Stable sort

—같은 값을 가진 item들은 sorting 후에도 원래의 순서가 유지되는 성질을 가진 sorting

✓ Running time: $\Theta(n) \leftarrow d$: a constant

Comparison of Sorting Efficiency in $\theta()$

	Worst Case	Average Case
Selection Sort	n^2	n^2
Bubble Sort	n^2	n^2
Insertion Sort	n^2	n^2
Mergesort	nlogn	nlogn
Quicksort	n^2	nlogn
Radix Sort	n	n
Heapsort	nlogn	nlogn