

Laser Technology – Exercise Sheet 1

Prof. Dr. Christian Jirauschek and Mark Schmidt, M.Sc.

Summer semester 2020

1 Photons in a laser cavity

From an optical laser resonator (depicted in Fig. 1) of length L, light is outcoupled through the right mirror with a power reflection coefficient R. The outcoupled light has a power P_{out} and a wavelength λ . The gain medium inside the cavity has a refractive index n. The reflection coefficient R is formed by the interface between the semiconductor and air (n = 1), and thus obtained as $R = (n-1)^2 / (n+1)^2$.

Figure 1 Schematic representation of the laser cavity.

- a) How many photons per second are outcoupled from the cavity? The number of emitted light quanta (photons) in a second is the fraction of optical power and photon energy $\dot{N}_{ph} = P_{\rm out} \lambda/hc$.
- b) How many photons are in the cavity? Assume for the calculation that $(1-R)\ll 1$, and thus the power within the cavity can be assumed to be constant at different positions in the cavity.
 - The power inside the cavity is $P = P_{\rm out}/(1-R)$. The calculation of the photon number is based on the calculation of the energy, which is $E = P \cdot T_r = P \cdot 2Ln/c$. The number of photons is then $N = E/\left(hf\right) = E\lambda/\left(hc\right) = 2Ln\lambda P_{\rm out}/\left[(1-R)hc^2\right]$.
- c) Calculate these quantities for typical values of a semiconductor laser, L = 1 mm, λ = 670 nm, $P_{\rm out}$ = 5 mW, n = 3.3.

$$\dot{N} = 1.68 \times 10^{16} \, \mathrm{s}^{-1}$$
, $N = 519350$ for R = 0.2861 ($N = 37.1 \times 10^6$ for R = 0.99)

2 Gain saturation

The power dependent roundtrip gain is often modeled by $G = G_0/(1 + P/P_{\rm sat})$, where G_0 is the small signal gain, P is the intracavity power and $P_{\rm sat}$ is the saturation power. The laser setup is as shown in

Fig. 1, i.e., with outcoupling at the right side with a reflection coefficient R, and given G_0 and $P_{\rm sat}$. The outcoupled power is $P_{\rm out}$.

a) How big is P and P_{out} as a function of R? What is the maximum obtainable P_{out} , and for which R is it obtained? What is the maximum obtainable P, and for which R is it obtained?

The internal cavity power from the above formula $P=P_{\rm sat}\left(\frac{G_0}{G}-1\right)$. We consider a lossless waveguide, therefore G=1/R and $P=P_{sat}\left(RG_0-1\right)$. The outcoupled power $P_{out}=(1-R)P=(1-R)\times(RG_0-1)P_{sat}$.

The internal cavity power is maximized if R = 1. In this case, substitution yields $P = P_{sat} (G_0 - 1)$. The R with the maximum power is obtained from the root of the derivative of P_{out}

$$\partial_R P_{\text{out}} = -(RG_0 - 1) P_{\text{sat}} + (1 - R) G_0 P_{\text{out}} = 0 \Rightarrow R = (1 + G_0)/2G_0.$$
 (1)

By substitution, the maximum output power is $P_{out} = (G_0 - 1)^2 P_{sat}/4G_0$.

b) Plot P_{out} as a function of R for typical values of a semiconductor laser, G_0 = 100, P_{sat} = 2 mW.

