

Figure 2

3.2 Translation d'une source par rapport à l'axe optique

Pareil, le schémas était au tableau, je le mets ici. On translate un point perpendiculairement à l'axe optique d'une distance X_s (voir figure 2), on obtient une différence de marche δ_0 qui s'ajoute à la différence de marche entre les deux rayons sortant des fentes, par relation de Chasles :

$$\delta(M) = (SS_2M) - (SS_1M) = (SS_2) - (SS_1) + \frac{nax}{D}$$
(8)

On obtient alors en notant identifiant $\delta_0 = (SS_2) - (SS_1) = \frac{naX_s}{l}$ avec l la distance entre les fentes et le plan de la source. On a en fait la même figure d'interférences translatée d'une distance $x_0 = \frac{-DX_s}{nl}$ qui est la nouvelle position de la frange centrale (définie pour une différence de marche nulle).

On a alors tous les outils : on sait qu'il faut sommer les éclairements de deux sources ponctuelles non cohérentes, et on connaît l'expression de l'éclairement dû à un point n'importe où dans le plan de la source. On va alors appliquer cela à l'étude d'un système binaire.

3.3 Somme incohérente des éclairements

figure 2

Considérons un système d'étoiles binaires proches l'une de l'autre : une sur l'axe optique notée P_0 (que l'on vise) située à la distance l de la Terre, l'autre perpendiculaire à l'axe optique notée P_1 , distante de X_s de P_0 . On utilise un système de fentes d'Young pour évaluer la distance qui les sépare : on vient de voir qu'il faut sommer les deux éclairements, donc on aura en supposant qu'elles émettent des ondes planes avec la même intensité

$$\mathcal{E}(M) = 2\mathcal{E}_1(1 + \cos(\frac{2\pi}{\lambda} \frac{nax}{D})) + 2\mathcal{E}_1(1 + \cos(\frac{2\pi}{\lambda} (\frac{nax}{D} + \frac{naX_s}{L})))$$
(9)

Pour obtenir:

$$\mathcal{E}(M) = 4\mathcal{E}_1(1 + \cos(\frac{\pi}{\lambda} \frac{naX_s}{l})\cos(\frac{2\pi}{\lambda} \frac{nax}{D} + \frac{\pi naX_s}{l\lambda}))$$
 (10)

Ce qui est important est le terme en $cos(\frac{\pi}{\lambda}\frac{naX_s}{l})$: on qualifie ce terme de contraste. Il affecte l'amplitude de l'éclairement dans les interférences. Donc pour des valeurs particulières de a, cette