Guillaume Raschia

université de Nantes

Last update: November 28, 2012

[Source: Tutorial Notes from Ralf H. Güting, Fernuniversität Hagen]

What is a Spatial Database System?

- Requirement: Manage data related to some space
- Spaces:
 - 2D [or "2.5D"] Geographic space (surface of the earth, at large or small scales): GIS, LIS, urban planning, . . .
 - 3D The universe: astronomy
 - 2D VLSI design
 - 3D Model of the brain (or someone's brain): medicine
 - 3D Molecule structure: biological research
- Characteristic for the supporting technology: capability of managing large collections of relatively simple geometric objects

- pictorial database system
- image db sys
- geometric db sys
- geographic db sys
- spatial db sys

A database may contain

- A collections of objects in some space with clear identity, location, extent
 Spatial database management system
- Raster images of some space

 Image database management system
- From I-DBMS to S-DBMS: Analysis, feature extraction

S-DBMS

A personal view from R.H. Güting:

- 1. A spatial database system is a database system
- 2. It offers **spatial data types** (SDT) in its data model and query language
- 3. It supports SDT in its implementation, providing at least spatial indexing and efficient algorithms for spatial join

Models

SDT & Algebras

Querying & Storage

Access Methods

Lecture based on article: R.H. Güting, **An Introduction to Spatial Database Systems** VLDB Journal 3(4), 1994, pp. 357-399.

Modeling

- 1. What needs to be represented?
- 2. Discrete Geometric Bases
- 3. Spatial Data Types / Algebras
- 4. Spatial Relations

What needs to be represented?

Two views:

- (i) Objects in space: Entity-based model
- (ii) Space itself: Field-based model

City Nantes

Models

0000000

• mayor: J.-M. Ayrault

• population: 283 025

• city area:

River Loire

length: 1 013km

route:

Field-based model

Statement about every point in space

Examples

- Partitions: Administrative boundaries, etc.
- Land use maps: Zoning, Utilization maps
- Continuous functions over space (climate, pollution, etc.)
- Digital Elevation Model (DEM)
 - Triangulated Irregular Network (TIN)

Two Special Cases

Duality of **Delaunay Triangulation** and **Voronoï Diagram**

We consider

- 1. Modeling **single** objects
- 2. Modeling spatially related collections of objects

Single Objects

Basic abstractions for modeling spatial objects

- OD Point: individual, building, city Geometric aspect of an object, for which only its **location** in space, but not the extent, is relevant
- 1D Line (polyline): river, cable, highway Moving through space, connections in space
- 2D Region: country, forest, lake, city, building Abstraction of an object **with extent**

Collections

Basic abstractions for spatially related collections of objects

- Partition
 - digital terrain models
 - land use
 - districts
 - land ownership
 - "environment" of points for Voronoï diagram
- Spatially embedded network (graph)
 - highways, streets
 - railways, public transport
 - rivers
 - electricity, phone
- Others: nested partitions...

Organizing the underlying space

- Is Euclidean geometry a suitable base for modeling?
- Problem:
 - Space is continuous

$$p = (x, y) \in \mathbb{R}^2$$

• Computer numbers are discrete

$$p = (x, y) \in \text{real} \times \text{real}$$

Models

Discrete Geometric Bases (cont'd)

- Is D on A?
- Is D properly contained in the area below

Discrete Geometric Bases (cont'd)

Goal

Avoid computation of any new intersection points within geometric operations

Definition of geometric types and operations

geometric basis

Treatment of numeric problems upon updates of the geometric basis

Two approaches:

- Simplicial complexes: Frank et al. (1986, 1989)
- Realms: Schneider et al. (1993, 1997)

Simplicial Complexes

d-simplex

(from combinatorial topology) Minimal object of dimension d

- d-simplex consists of d+1 simplices of dimension d-1
- Components of a simplex are called faces

Simplicial Complexes (cont'd)

Definition (Simplicial complex)

Finite set of simplices such that the intersection of any two simplices is a **face**

Realm

About **Realm**: comprehensive description of the geometry (all points and lines) of an application

Definition (Realm)

A finite set of points and line segments defined over a grid such that:

- (i) each point or end point of a segment is a grid point
- (ii) each end point of a segment is also a point of the realm
- (iii) no realm point lies within a segment
- (iv) any two distinct segments do neither intersect nor overlap

Realm update

Numerical problems are treated **below** the realm layer

- Data are sets of points and **intersecting** segments
- Problem: Need to insert a segment intersecting other segments
- Basic idea: slightly distort both segments!

Realm update (cont'd)

Models

Realm update (cont'd)

Segments can move! Point x is now on the wrong side of A!

Realm update (cont'd)

Solution

- Concept of Greene & Yao (1986): **Redraw** segments within their **envelope**
- Segments are "captured" within their envelope; can never cross a grid point

Overview

Models

SDT & Algebras

Querying & Storage

Access Methods

- 1. Requirements
- 2. Infinite Point Set Model
- 3. Finite Point Set Model
- 4. Topological Model

- 1. **Closure** under set operations over the underlying point sets
- 2. Formal definition of SDT values and functions
- 3. Definition in terms of **finite precision** arithmetics
- Support for geometric consistency of spatially related objects
- Independent of particular DBMS data model, but cooperating with any

Closure Property and Geometric Consistency

- Complex geometries in real-life application
- Formal requirement

 Constraints over spatially related objects adjacent regions

meeting lines

Geo-Relational Algebra, Güting (1988)

- Point set theory: spatial object is an—infinite—set of points
- Relational algebra viewed as a many-sorted algebra
- Relations + (Atomic) Data Types
- Sorts: Rel, Num, String, Bool, Geo (Point, Ext (Line, Reg (Pgon, Area)))
- Area for partitions
- Example: City(cname:String, cextent:Area, cpop:Num)

- Geometric **predicate**: =, \neq , intersects?, inside?, neighbor?
- Geometric **set-oriented op.**: intersection, overlay, vertices, voronoi
- Spatial object constructor: convex hull, center
- Scalar operation: distance, diameter, length, area

- general structure, closed under point set ops
- + formal definition
- finite precision arithmetics
- (-) support for geometric consistency
 - data model independent

• Pros:

- conceptually simple geometric object
- clear formal definitions
- implementation: basic data structures + algorithms

Cons:

- Simple polygons only
- No set difference of regions (otherwise, polygon with holes)
- Intersection op. is embedded into set-oriented op.
- Numerically critical operations are not managed

Linear Constraint Approach

Point set theoretic: satisfaction of FO formulas

Definition (Convex polygon)

Intersection of a finite set of half planes

$$\{(x, y) \mid x \le 1 \land x \ge -1 \\ \land y \le 1 \land y \ge -1\}$$

$$\{(x, y) \mid x \ge -1 \land y \ge -1 \land x + y - 2 \le 0\}$$

Linear Constraint Approach (cont'd)

Definition (Disjunctive Normal Form)

A non-convex polygon is the union of a finite set of convex polygons

Example

DNF representation: $p_1 \vee p_2$

Convex with Holes Normal Form (CHNF)

Generalization of DNF

Example

DNF representation: $p_1 \lor p_2 \lor p_3 \lor p_4$

CHNF representation: $q_1 - q_2$

Compared to Requirements

- + general structure, closed under point set ops
- + formal definition
- (+) finite precision arithmetics
 - + support for geometric consistency
 - data model independent

ROSE Algebra

- A system of realm-based spatial data types
- Objects composed from realm elements
- Types: Geo (Points, Ext (Lines, Regions))

a lines value

a regions value

ROSE

Complex structure of objects must be handled in definitions

Example

Definition of a **Regions** object c_2 is \ldots c_1

- (area-)inside (i) (ii) (iii)
- edge-inside (ii) (iii)
- vertex-inside (iii)

 c_2 an c_1 are ___

- area-disjoint (iv) (v) (vi)
- edge-disjoint (v) (vi)
- (vertex-)disjoint (vi)

Definition (R-face)

An R-face f is a pair (c, H) where c is an R-cycle and $H = \{h_1, \ldots, h_m\}$ is a—possibly empty—set of R-cycles such that:

- 1. $\forall i \in \{1..m\}$, h_i edge-inside c
- 2. $\forall i, j \in \{1..m\}, i \neq j, h_i \text{ and } h_i \text{ are edge-disjoint}$
- 3. "no other cycle can be formed from the segments of f"

ROSE Example (cont'd)

Definition (R-face area-inside predicate)

Let $f=(f_0,F)$ and $g=(g_0,G)$ be two R-faces; f (area-)inside g iff f_0 area-inside g_0 and for each $x\in G$, x area-disjoint f_0 or there exists $y\in F$ such that x area-inside y

ROSE Example (cont'd)

Definition (Regions value)

A regions value F is a set of edge-disjoint R-faces What about operations on Regions?

Definition (Regions inside predicate)

Let F, G be two regions values; F (area-)inside G iff for each $f \in F$, there exists $g \in G$ such that f area-inside g

A collection of well-defined operators on **Geo** objects

- Contains numerically critical operations
 - on_border_of: Points × Ext → Bool
 - border_in_common: Ext × Regions → Bool
- \bullet $\cup \cap$ could be performed due to general structure of values

Compared to Requirements

- + general structure, closed under point set ops
- + formal definition
- + finite precision arithmetics
- + support for geometric consistency
- + data model independent

Nice theoretical Model...

ROSE Cons

- No way to create new geometries (leave the realm closure),
 e.g. voronoï, center, convex hull, etc.
- Integrating realms into database systems somewhat difficult.
 Updates of the realm must be propagated to realm-based attribute values in objects
- ... Practically not so satisfying

General Issues with SDT and Algebras

- Soundness and Completeness
- Extensibility
- One or more types (base type "geometry")?
- Operations on sets of DB objects

Spatial Relations

Boolean predicates are the most important operations of spatial algebra

Find all objects that satisfy a given relation with a query object

The Three Categories:

- Topological: inside, intersect, adjacent, ...
 invariant under rotation, translation, scaling
- **Directional**: above, below, north_of, . . .
- Metric: distance-based predicate

- At the heart of any algebra
- Completeness criteria?
 - Yes! Egenhofer (1989) and subsequent work
 - Originally for two simple regions only (no holes, connected)

Four intersection sets for two objects A and B

The 4-intersection Model

$\partial A \cap \partial B$	∂A ∩ B°	$A^{\circ} \cap \partial B$	A° ∩ B°	relationship name
Ø	Ø	Ø	Ø	A and B are disjoint
Ø	ø	Ø	<i>≠</i> Ø	Trana Baro diojoint
Ø	Ø	≠Ø	Ø	
Ø	Ø	≠Ø	≠Ø	A contains B / B inside A
Ø	≠Ø	Ø	Ø	
Ø	≠Ø	Ø	≠Ø	A inside B / B contains A
Ø	≠Ø	≠Ø	Ø	
Ø	≠Ø	≠Ø	≠Ø	
≠Ø	Ø	Ø	Ø	A and B meet
≠Ø	Ø	Ø	≠Ø	A and B are equal
≠Ø	Ø	≠Ø	Ø	
≠Ø	Ø	≠Ø	≠Ø	A covers B / B covered_by A
≠Ø	≠Ø	Ø	Ø	
≠Ø	≠Ø	Ø	≠Ø	A covered_by B / B covers A
≠Ø	≠Ø	≠Ø	Ø	
≠Ø	≠Ø	≠Ø	≠Ø	A and B overlap

Extensions of the 4-intersection Model

- The **9-intersection Model**, Egenhofer (1991):
 - Consider also intersections of δA and $\overset{\circ}{\rm A}$ with the exterior/complement $\bar A$
 - $9^2 = 81$ combinations
 - 8 are valid under the co-dimension constraint (region-region)
 - Many others are valid within line-region
- Dimension extended method, Clementini et al. (1993): Consider dimension of the intersection (∅, 0D, 1D, 2D in 2D space)
 - $4^4 = 256$ combinations
 - 52 are valid

- For partitions:
 - Scholl & Voisard (1983)
 - Erwig & Schneider (1997)
- Simplex-based model: Frank et al. (1986)
- Logic—axiomatic—model: Cui, Cohn & Randell (1993)

Overview

Models

SDT & Algebras

Querying & Storage

Access Methods

Connect operations of a spatial algebra to the facilities of a DBMS query language

Issues

- Fundamental operations (algebra) for manipulating sets of database objects
- 2. Graphical input and output
- 3. Extending query languages

Four classes of operations

- Spatial selection
- Spatial **join**
- Spatial function
- Set-oriented operation

Selection based on a spatial predicate

Find all cities in Loire Atlantique

```
SELECT cname FROM Cities
WHERE area inside Loire Atlantique
```

Find all rivers intersecting a query window

```
SELECT rname FROM Rivers
WHERE route intersects Window
```

Find all big cities no more than 100 km from Nantes

```
SELECT cname FROM Cities
WHERE dist(center, Nantes) <= 100
AND cpop > 500 000
```

Spatial join

Join based on a predicate matching spatial attribute values

Combine cities with their states

SELECT C.cname, S.sname FROM Cities C JOIN States S USING C.carea inside S.sarea

For each river, find all cities within less than 50 kms

SELECT R.rname, C.cname FROM Rivers R JOIN Cities C USING dist(C.center, R.route) < 50

- How can we use operations of a spatial algebra computing new SDT values?
 - E.g. intersection: regions × lines → lines
 - In the SELECT clause
- For each river going through Loire Atlantique, return the name, the part inside LA and the length of that part

```
SELECT R.rname,
       intersection(R.route, LA) AS part,
       length(part) AS length
FROM Rivers
WHERE R.route intersects LA
```

Set-oriented operation

Manipulate whole sets of spatial objects in a dedicated way

- Operation is a conceptual unit
- Separation of DBMS set-based engine from SDT set-oriented operations of spatial algebra is—most often—not possible
- For example: overlay, fusion, voronoi
- Here, interfacing the spatial algebra with the DBMS is a mess

Geometry into declarative query language

Three facets

- 1. Denoting SDT values / input for "constant" values
- 2. Expressing the four classes of fundamental operations
- 3. Describing the presentation of query results

Denoting SDT values

Raw geometric description:

```
SELECT cname FROM Cities
WHERE carea intersects 'POLYGON((0,0), (1,0), (1,1), (0,1))'
```

Interactive query:

SELECT cname FROM Cities WHERE carea intersects #PICK

Variables and named entities:

```
Nantes := 'POLYGON((0,0), (1,0), (1,1), (0,1))'
Loire-Atlantique := #PICK
PdL := SELECT R.area FROM Regions R
WHERE R.rname='Pays de Loire'
```

The four classes of operations

Straightforward translation

- Spatial Selection
- Spatial Join

Possible translation

Spatial Function

Do not fit in S-F-W statement

• Set-oriented Operation

Also require to mix spatial and theme content in the gueries

Presentation of query results

Main issues:

- Render spatial attributes within themes
- Combination—overlay—of query results

Other directions

- Deductive database approach, e.g. Abdelmoty, Williams & Paton (1993)
- Visual querying: draw a sketch of spatial configurations of interest in a query, e.g. Maingenaud & Portier (1990), Meyer (1992)
- Virtual reality exploration: fast navigation through large topographic scenes, e.g. Pajarola et al. (1998)
- Query by **spatial structure**: find all *n*-tuples of objects fulfilling a set of specified relations. Can be viewed as a generalization of spatial join, e.g. Papadias, Mamoulis & Delis (1998)

SDT implementation

SDT with algebra requires DB query engine compliance for

- data structures and
- standalone operations, i.e. do two regions overlap?

Other hot topics

- Use of predicates in—set-based—query processing
 - spatial selection
 - spatial join
- Algorithms for set-oriented operations of spatial algebra

SDT values under the DBMS view

Paged data structure

Example: Polygon data structure as a pair (i, g) of references to

- Info part: small, constant size
 bbox: rectangle, perimeter: real, no_vertices: int >
- Exact geometry part: large, varying size
 \(\text{vertices: array} [1..1,000,000] \) of points \(\text{\} \)

Implementation of SDT operations

2+1 steps process

- 1. Filter: Pre-checking on approximations
- 2. Looking up stored function values
- 3. Refinement: Use plane sweep

Plane sweep

- Family of sweep line—or plane sweep—algorithms
- Key technique from Computational Geometry

Basic idea

A conceptual line is swept across the plane and geometric operations are restricted to local objects to a finite set of *stop points*

Plane sweep example

Given a set of rectangles S; find all pairwise intersections

- Example of the active list at ℓ_1 : $S_{\ell_1} = \{ACE\}$
- Key observations:
 - Overlap of y-axis projections suffices
 - $2 \cdot |S|$ stop points as left/right vert. edges of rectangles in S
- $O(n \cdot \log n + k)$, k being the number of intersections

SDT support for operations

Internal representation of SDT values contains:

1. Approximation

- 2. Stored unary function values area, length, etc. computed at compile-time or runtime
- 3. Plane sweep sequence

Realm-based SDT

intersection: lines \times lines \longrightarrow points

• Parallel scan of 2 SDT values—half-segments—in O(n+k)

- ...vs. Usual plane sweep
- Plane sweep also simplified
 - Only static sweep-event structure needed
 - Güting, de Ridder & Schneider (1995)

Definition (Spatial index)

External data structure that area

External data structure that organizes space and/or spatial objects to support

- spatial selection
- spatial join
- other spatial operations

Two flavors

- 1. Dedicated external data structures
- 2. Map spatial objects into 1D space and use a standard access method (*B*-tree)

Spatial indexing (cont'd)

Stored objects

- a set of points—Point Access Methods (PAM)
- a set of rectangles—Spatial Access Methods (SAM)

Operations

insert, delete, member + following query operations

- point query: $x \ni point$
- range query: $x \cap \text{range } \neq \emptyset$
- nearest neighbor: argmin dist(x, obj)
- overlap query: $x \cap y \neq \emptyset$
- containment query: x ⊆ y

Spatial indexing (cont'd)

Prerequisite

Use of approximations in the Filter step

- Continuous approximation
- Grid approximation

Key feature

Space decomposed into buckets with associated bucket regions

Hundreds of proposals in the literature!

Fractal decomposition of the space

Basic idea

- Linear order for the cells of the grid preserving proximity
- Define this order recursively for a grid corresponding to a hierarchical subdivision of space

Example: Z-order

- Morton code (1966), bit interleaving
- Lexicographical order of the bit strings

Z-order

Indexing

- 1. Represent any shape by a set of bit strings, called z-elements
- 2. Put z-elements as spatial keys into a B-tree

Containment query with rectangular window r

- 1. Determine Z-elements for r
- 2. For each Z-element e scan a part of the leaf sequence of the B-tree having e as a **prefix**
- Check theses candidates for actual containment, avoid duplicate reports

Peano curve (1890)

Hilbert curve (1891)

Point Access Methods

- Long tradition as structures for multi-criteria retrieval
- Tuple $t = (x_1, ..., x_k)$ is a point in k-dimensional space

The three categories with—so few—instances:

- Main memory structures kd-tree, quadtree, multidim. hashing, BD-tree, BSP tree
- Grid-based paged structures Fixed grid, Grid file, EXCELL, BANG file
- Tree-based paged structures kd-B-tree, LSD-tree, hB-tree, BV-tree

- Basically a binary search tree in k-dimensional space
- Recursive splitting into two regions by means of hyperplanes
- O(n) space and $O(n \cdot \log n)$ time for construction

Operations within kd-tree

• Insertion and search made easy, deletion is not

- Extension to adaptive kd-tree from Gaede & Günter (1998)
 - Split lines are not required to contain data points and
 - They may have non alternating directions

- Closely related to the kd-tree
- Subdivision into 2^k regions
- Large **branching factor** in high dimensional space
- Four quadrants in 2D space: NW, NE, SW, SE

Point-Region quadtree —Samet (1984)

- Regular subdivision into 4 equal-sized squares
- Unbalanced structure

Results

- Depth d at most $\log \frac{\ell}{a} + \frac{3}{2}$, where
 - ullet ℓ is the side length of initial square
 - a is the smallest distance between any two points
- $O((d+1) \cdot n)$ nodes and $O((d+1) \cdot n)$ construction time

operations on a quadtree

- Insertion is trivial, deletion is easy
- No sub-linear bound on range searching but performs well
- Specific operation: **Neighbor retrieval** in O(d+1) time
 - Given a node x and a direction δ ;
 - Find the node y such that (i) $y\delta x$ and (ii) d(y)=d(x) or y is the deepest δ -neighbor node of x
- Balanced quadtree: any two leaves whose squares are neighbors can differ at most by 1 in depth
- Packaging of a quadtree into a B-tree b.t.w. of Z-order

Nievergelt, Hinterberger & Sevcik (1984)

- Requirements: Directory and dimensional scales
- Paged structure: Capacity of cells are bounded by page size

- Fixed grid improvement: Cell splitting whenever page overflow
- Insert brings three cases:
 - no cell split
 - cell split and no directory split
 - · cell split and directory split
- Point query in O(1) and window query in $O(B_w)$, number of overlapping pages

Robinson (1981)

- Combines adaptive kd-tree within B-tree features
- Space subdivision as an adaptive kd-tree
- Nodes fit disk pages
 - Inner nodes store index entries (dr, pid), with dr a directory rectangle
 - Leaf nodes store data points
- Perfectly balanced structure
- No minimum filling rate for disk pages

kd-B-tree (cont'd)

Results

- kd-B-tree can be constructed in $O(n/B \log_B n)$ I/Os
- Queries:
 - $O(\sqrt{n/B} + k/B)$ I/Os, a paged version of kd-tree algorithm
- Insertions in $O(\log_B^2 n)$ I/Os
 - First, perform point search to locate matching partition
 - If not full, insert
 - Otherwise split and move half of the entries to a new node
 - Split can propagate up to root
- Deletions are straightforward but may require merging of sibling nodes

- Rectangles more difficult than points
- Do not fall into a single cell of a bucket partition
- Three strategies:
 - 1. Transformation approach
 - 2. Overlapping bucket regions
 - 3. Clipping

Transformation approach

Hinrichs (1985), Seeger & Kriegel (1988)

- Rectangle (x_l, x_r, y_b, y_t) viewed as a 4D point
- Queries map to regions of 4D space

• Skewed distributions of points

- LSD-tree designed to adapt to such skewed distributions
 - A paged kd-tree variant
 - Abandon strict cycling through dimensions
 - Clever paging algorithm keeps external path length balanced

Center representation

• Rectangle represented by (x, y, x-ext, y-ext)

- For intervals: (x, x-ext)
- Cone-shaped query regions

- Prime example: the R-tree, Guttmann (1984)
- Main extension: R*-tree, Beckmann et al. (1990)

Insertion

- Node selection: minimal directory rectangle enlargment
- Node overflow: binary splitting
 - m+i entries in one node and M+1-m-i in the other node, with $0 \le i \le M-2m+1$, is acceptable
- Worst case: propagation up to the root

Splitting strategy

- Requirements:
 - Minimize the total area of the two nodes
 - Minimize the overlapping of the two nodes

- Algorithms
 - Two seeds + assignment of remaining entries
 - Quadratic splitting maximizes the difference of dead space in both groups
 - Linear splitting minimizes group enlargment

The *R*-tree (cont'd)

R*-tree extension

- Splitting performed along an axis
- Forced reinsertion
 - Prevent from splitting
 - Reinsert rectangles with the largest dead space in the node

The *R*-tree (cont'd)

- Pros: Spatial object—or key—in a single bucket
- Cons: Multiple search paths due to overlapping bucket regions

Clipping

The R^+ -tree —Sellis, Rossopoulos & Faloutsos (1987)

- Bucket regions are disjoint
- Data rectangles cut into several pieces, when needed

The R⁺-tree

- Pros: less branching in search
- **Cons**: multiple entries for a single spatial object (not good as a clustering index)