Lange Harden Ling.

NBS MONOGRAPH 25—SECTION 7

du, us

NBS PUBLICATIONS

Standard X-ray Diffraction **Powder Patterns**

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics ²—Radio Engineering ²—Time and Frequency ²—Astrophysics ²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information ³—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

1009 COZII

UNITED STATES DEPARTMENT OF COMMERCE

Maurice H. Stans, Secretary

National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

H. E. Swanson, H. F. McMurdie, M. C. Morris, and E. H. Evans

Nat. Bur. Stand. (U.S.), Monogr. 25 Section 7, 188 pages (Sept. 1969)

CODEN: NBSMA

Issued September 1969

Library of Congress Catalog Card Number: 53-61386

Contents

	Page		Page
ntroduction	1	Thallium Copper Sulfate Hexahydrate,	
Experimental patterns:		$Tl_2Cu(SO_4)_2 \cdot 6H_2O$	72
Ammonium Cadmium Sulfate,		Thallium Magnesium Sulfate Hexahydrate,	
$(NH_4)_2$ Cd ₂ $(SO_4)_3$	5	$Tl_2Mg(SO_4)_2 \cdot 6H_2O$	74
Ammonium Copper Chloride, NH ₄ CuCl ₃	7	Thallium Manganese Sulfate, Tl ₂ Mn ₂ (SO ₄) ₃	76
Ammonium Manganese Sulfate,		Thallium Nickel Sulfate Hexahydrate,	
$(NH_4)_2 Mn_2 (SO_4)_3 \dots$	8	$Tl_2Ni(SO_4)_2 \cdot 6H_2O$	78
Barium Borate, BaB ₈ O ₁₃	10	Thallium Zinc Sulfate Hexahydrate,	
Cesium Calcium Sulfate, Cs ₂ Ca ₂ (SO ₄) ₃	12	$Tl_2Zn(SO_4)_2 \cdot 6H_2O$	80
Cesium Copper Sulfate Hexahydrate,		Titanium Oxide (anatase), TiO ₂ (revised)	82
$Cs_2Cu(SO_4)_2 \cdot 6H_2O$	14	Titanium Oxide (rutile), TiO ₂ (revised)	83
Cesium Iron Sulfate Hexahydrate,		Calculated patterns:	00
$Cs_2Fe(SO_4)_2 \cdot 6H_2O$	16	Arsenic Acid, H ₅ As ₃ O ₁₀	84
Cesium Magnesium Sulfate Hexahydrate,	10	Azobenzene, C ₁₀ H ₁₂ N ₂	86
$Cs_2Mg(SO_4)_2 \cdot 6H_2O$	18	Beryllium Calcium Oxide, Be 17 Ca 12 O 29	89
	10	Beryllium Niobium, Be ₂ Nb	92
Cesium Manganese Sulfate Hexahydrate,	20	Cadmium Nitrate Tetrahydrate,	92
Cs ₂ Mn(SO ₄) ₂ • 6H ₂ O	22		93
Cesium Mercury Chloride, CsHgCl ₃	22	Cd(NO ₃) ₂ • 4H ₂ O	
Cesium Nickel Sulfate Hexahydrate,	0.0	Calcium Phosphate, beta-pyro-, Ca ₂ P ₂ O ₇	95
$Cs_2Ni(SO_4)_2 \cdot 6H_2O$	23	Cerium Copper, CeCu ₆	99
Cesium Zinc Sulfate Hexahydrate,	0.5	Cesium Cerium Chloride, Cs ₂ CeCl ₆	101
$Cs_2Zn(SO_4)_2 \cdot 6H_2O$	25	Cesium Iodine Bromide, CsI ₂ Br	103
Imidazole Nickel Nitrate,		Cesium Lithium Fluoride, CsLiF ₂	105
$(C_3H_4N_2)_6Ni(NO_3)_2$	27	Chromium Fluoride, Cr ₂ F ₅	108
Magnesium Molybdate, MgMoO ₄	28	Copper Glutamate Dihydrate,	
Magnesium Perchlorate Hexahydrate,		$CuC_5H_7NO_4 \cdot 2H_2O$	110
$Mg(ClO_4)_2 \cdot 6H_2O$	30	Copper Phosphate, alpha-pyro-, Cu ₂ P ₂ O ₇	113
Mercuric Iodide, HgI ₂ (tetragonal) (re-		Dibenzoylmethane, C ₁₅ H ₁₂ O ₂	115
vised)	32	Gadolinium Chloride Hexahydrate,	
Potassium Cadmium Sulfate, K ₂ Cd ₂ (SO ₄) ₃	34	GdCl ₃ • 6H ₂ O	118
Potassium Calcium Chloride (chlorocal-		Hexamethylenediammonium Adipate,	
cite), KCaCl ₃	36	$C_{12}H_{26}N_2O_4$	121
Potassium Calcium Magnesium Sulfate,		Imidazole Zinc Chloride, (C ₃ H ₄ N ₂) ₂ ZnCl ₂	123
K_2 CaMg (SO ₄) 3	37	Lithium Beryllium Fluoride, Li ₂ BeF ₄	126
Potassium Calcium Sulfate, K ₂ Ca ₂ (SO ₄) ₃	39	Lithium Rubidium Fluoride, LiRbF ₂	128
Potassium Copper Chloride, KCuCl ₃	41	Lithium Uranium Fluoride, LiUF ₅	131
Potassium Nickel Fluoride, KNiF ₃	42	Magnesium Chloride Dodecahydrate,	201
Potassium Zinc Sulfate Hexahydrate,		MgCl ₂ • 12H ₂ O	135
$K_2 Zn (SO_4)_2 \cdot 6H_2O$	43	Magnesium Hydrogen Phosphate Trihy-	200
Rubidium Cadmium Sulfate, Rb ₂ Cd ₂ (SO ₄) ₃	45	drate, newberyite, MgHPO ₄ • 3H ₂ O	139
Rubidium Calcium Chloride, RbCaCl ₃	47	Manganese, alpha, Mn	142
Publidium Calcium Culfora Ph. Co. (CO.)	48	bis-(N-isopropyl-3-ethylsalicylaldiminato)	144
Rubidium Calcium Sulfate, Rb ₂ Ca ₂ (SO ₄) ₃	40		1 4 4
Rubidium Magnesium Sulfate,	EO	Palladium, (C ₁₂ H ₁₆ NO) ₂ Pd	144
$Rb_2Mg_2(SO_4)_3$	50	N-methylphenazinium Tetracyanoquinodi-	1.46
Rubidium Manganese Sulfate,	F-0	methanide, C ₂₅ H ₁₅ N ₆	146
Rb ₂ Mn ₂ (SO ₄) ₃	52	Niobium Oxychloride, NbOCl ₃	148
Rubidium Strontium Chloride, RbSrCl ₃	54	Phosphorus Bromide, PBr ₇	150
Rubidium Zinc Sulfate Hexahydrate,		Pimelic Acid, C ₇ H ₁₂ O ₄	153
$Rb_2Zn(SO_4)_2 \cdot 6H_2O$	55	Silver Permanganate, AgMnO ₄	155
Rubidium Zinc Fluoride, RbZnF ₃	57	Sodium Aluminum Chloride Silicate, soda-	
Scandium Silicate (thortveitite), Sc ₂ Si ₂ O ₇	58	lite, Na ₈ Si ₆ Al ₆ O ₂₄ Cl ₂	158
Selenium Oxide (selenolite), SeO ₂ (re-		Sodium Borate, Na ₂ B ₈ O ₁₃	160
vised)	60	Sodium Hydrogen Silicate Tetrahydrate,	
Sodium Dichromate Dihydrate,		$Na_2H_2SiO_4 \cdot 4H_2O$	163
$Na_2Cr_2O_7 \cdot 2H_2O$	62	Sodium Tin Fluoride, NaSn ₂ F ₅	166
Sodium Lanthanum Fluosilicate,		d-Tartaric Acid, C ₄ H ₆ O ₆	168
Na_2La_8 (SiO ₄) ₆ F ₂	64	Zinc Glutamate Dihydrate,	
Sodium Neodymium Fluosilicate,		$ZnC_5H_7NO_4 \cdot 2H_2O$	170
Na, Nd ₈ (SiO ₄) ₆ F,	66	Zinc Molybdate, Zn ₂ Mo ₃ O ₈	173
Sodium Praseodymium Fluosilicate,		Cumulative index to Circular 539, Volumes 1	
Na ₂ Pr ₈ (SiO ₄) ₆ F ₂	68	through 10, and Monograph 25, Sections 1	
Thallium Cobalt Sulfate Hexahydrate,		through 7	177
$Tl_2Co(SO_4)_2 \cdot 6H_2O$	70	Cumulative mineral index	185

Errata

Monograph 25, Section 7

Monograph 25

- Sec. 4, p. 4, column 2; at line 4 in the table, for hkl (211), the 2θ value for Tungsten (W) should be 73.184
- Sec. 4, p. 23, hkl's for 2.036, 1.815, and 1.3505 should be 104, 221, and 401 respectively.
- Sec. 6, p. 4; in the 13th line from the end, the formula should be MgF₂
- Sec. 6, p. 22; the space group symbol should be $C_3^6 \nu$ R3c
- Sec. 6, p. 42; the error for the NBS lattice constant in the table should be $\pm .0001$
- Sec. 6, p. 63; the second word of the title should be Magnesium

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Information on ten volumes in this series listed as follows is available from Mr. Howard E. Swanson, Room A221, Materials Building, National Bureau of Standards, Washington, D. C., 20234:

- NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 substances). NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 substances). NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 substances). NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 substances).
- NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 53 substances).

- NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances).
- NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 40 substances).

The following five volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C., 20402, as follows:

- NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances)
- NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 37 substances)
- NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 51 substances) 40 cents.
- NBS Monograph 25, Section 4, Standard X-ray Diffraction Powder Patterns (Data for 103 substances) 55 cents.
- NBS Monograph 25, Section 5, Standard X-ray Diffraction Powder Patterns (Data for 60 substances)
- NBS Monograph 25, Section 6, Standard X-ray Diffraction Powder Patterns (Date for 60 substances) 60 cents.

Send orders with remittance for the above six Monographs to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.

Those wishing to be notified of future issues should send mailing address to the Government Printing Office.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 7.—Data for 81 substances

Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris, and Eloise H. Evans

Standard x-ray diffraction powder patterns are presented for 81 substances. Forty-five of these patterns represent experimental data and 36 are calculated. The experimental x-ray powder diffraction patterns were obtained with a Geiger or proportional counter x-ray diffractometer, using samples of high purity. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings and from consideration of space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; peak intensities; reference intensities;

lattice constants; powder patterns; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File [1968] is a compilation of diffraction patterns, gathered from many sources and produced under the auspices of the Joint Committee on Powder Diffraction Standards. 3 The File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the Joint Committee, our program at the National Bureau of Standards contributes new data for this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 81 compounds (45 experimental and 36 calculated patterns), and is the seventeenth of the series of "Standard X-ray Diffraction Powder Patterns."

EXPERIMENTAL POWDER PATTERNS

Sample. The samples used to make NBS patterns were special preparations of high purity obtained from a variety of sources or prepared in small quantities in our laboratory. Treating the sample by appropriate annealing, recrystallizing, or heating in hydrothermal bombs improved the definition of most of the patterns. A check of phase purity was usually provided by the x-ray pattern itself, when it was indexed by comparison with computed d-values.

Optical data, color. A microscopic inspection for phase purity was made on the nonopaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, with oils standardized in sodium light, in the range 1.40 to 2.1.

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Structure, lattice constants. The space groups are listed with short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography Vol. 1 [1952].

Orthorhombic cell dimensions are presented according to the Dana convention b>a>c [Palache et al., 1944].

A computer program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon 2θ values which could be indexed without ambiguity. The number of significant figures reported for d-values varies slightly with the symmetry and crystallinity of each sample. Unit cell constants and their standard errors are based on least squares refinement of the variance-covariance matrix derived from the unweighted $\Delta\theta$ residuals.

Published unit cell data in kX units and data given in angstrom units prior to 1947 were converted to angstrom units using the factor 1.00206 reported by Bearden [1964].

Density. The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are computed using the Avogadro number (6.02252×10^{23}) and using atomic weights based on carbon 12 [International Union, 1961].

Interplanar spacings. Specimens for the interplanar spacing patterns were prepared by packing into a shallow holder a sample containing approximately 5 wt. percent tungsten powder that served as an internal standard. When tungsten lines were found to interfere, 25 percent silver was used in

¹Research Associate, at the National Bureau of Standards, sponsored by the Joint Committee on Powder Diffraction Standards.

²Dates in brackets indicate the literature references at the end of each section of this paper.

³This committee is sponsored jointly by the American Society for Testing and Materials, the American Crystallographic Association, the (British) Institute of Physics, and The National Association of Corrosion Engineers.

⁴See previous page for listing of other published volumes.

place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid aberrations at the top of the peak, the reading for low values of 2θ was taken at a position about 25% of the way down from the top, and in the center of the peak width. For higher values of 2θ , where α_1 and α_2 peaks were resolved, the α_1 peak was measured in the same way. The internal standard correction appropriate to each region was then applied to the measurement of 2θ . The internal standard lattice constants used were 3.16516 Å for tungsten and 4.08641 Å for silver at 25 °C, as determined by Swanson, Morris, and Evans [1966] and modified to correspond with the Bearden [1964] wavelength. (Prior to this, the internal standard constants used were 3.1648 Å and 4.0861 Å, through June 1966, and then 3.16504 Å and 4.08625 Å until June 1968.) All of the NBS patterns, unless otherwise noted, were made on a diffractometer at 25 °C using copper radiation with a monochromator having a curved lithium fluoride crystal. The wavelength of CuKα, was assumed to be 1.54056 Å [Bearden, 1964].

Intensity measurements. At least three patterns for intensity measurements were prepared for each sample to check reproducibility. It was found that samples which gave satisfactory intensity patterns usually had an average particle size smaller than 10μ as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Fig. 1), and the powdered sample was drifted into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (as shown in Fig 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line.

Reference intensity. For reference intensity measurements, $\alpha \, \mathrm{Al_2O_3}$ (corundum) was chosen as an internal standard to be mixed 1:1 by weight with the sample. This mixture is mounted in our regular intensity sample holder (illust. pg. 3). Only the portion of the x-ray pattern that includes the strongest line of each component is run; for the standard, the (113) reflection with d=2.085 Å is used. The direct ratio of the heights of the two lines is then reported as $1/I_{\text{corundum}}$. In a few instances the strongest line of one of the materials may fall on a line of the other. In this case, the

second strongest line is measured, and based upon previous knowledge of the relative peak heights, a correction is made, thus enabling one to calculate the value for the strongest line.

CALCULATED POWDER PATTERNS

Since some substances are not readily available for experimental work, calculated powder patterns were made. These were based on published crystal structure data using a FORTRAN program developed by Smith [1967].

Lattice parameters. Before the computations of the patterns, corrections were made as necessary in the published lattice parameters so that they would correspond to the Bearden [1964] value of the copper wavelength; specifically, the published parameter in Å was multiplied by 1.00004. Both the altered parameter and the original published value are given.

Scattering factors. Whenever possible, the same scattering factors were used which the author of the reference article specified. Otherwise, they were used directly from the International Tables [1962]. We have referred to this source by table number 3.3.1A or 3.3.1B, and 3.3.2A or 3.3.2B; they are found respectively on pages 202, 210,213, and 214 of the International Tables, Vol. III [1962]. Corrections were made for dispersion if the authors had done so.

Thermal parameters. When these parameters were used directly as given by the authors, the reference is specified. When, for reasons necessitated by the computer program, the parameters were modified here, no reference is given.

Scale factors. For each compound, this conversion factor when multiplied by the scaled *integrated* intensities will reproduce the unscaled intensities derived from the structure factors for a single unit cell for the copper $K\alpha_1$ wavelength. The scale factors are not usable for comparisons between compounds since they have not been standardized for the effects of volume and absorption.

Integrated intensities. Intensity calculations were based on the copper $K\alpha_1$ wavelength, 1.54056 Å, determined by Bearden [1964]. The integrated intensities were computed from the formula:

$$l = F^2 (Lp) (FAC)$$

where F is the standard structure factor FAC is the powder multiplicity

and
$$Lp = \frac{1+2\cos^2 2\theta}{\sin^2 \theta \cos \theta}$$

The intensities are scaled to the strongest line as 100. Reflections with intensities equal to or less than 0.7 are not reported.

Peak intensities. In the Smith program, the integrated intensities can be assigned a Cauchy profile, and a half-width can be designated so as to simulate a trace from diffractometers in current use. The value of the half-width used here was 0.075° at 40° (20). The program then sums the intensities from the overlapping peak profiles and scales the resulting peak intensities to the strongest peak height. Reflections are not reported which had peak heights equal to or less than 0.7. When adjacent peaks have nearly equal 20 values, resolution of individual peaks in the powder pattern would be unlikely; therefore, one composite peak is given. The angle of this peak is assigned the hkl of the reflection with the greatest integrated intensity.

The authors are indebted to J. H. deGroot for the preparation of many samples used, and to S. J. Carmel for his assistance with the work, particularly in performing intensity measurements.

REFERENCES

Alexander, L., H. P. Klug, and E. Kummer (1948). Statistical factors affecting the intensity of x-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-753. Bearden, J. A. (1964). X-ray Wavelengths, U.S. At. Energy

Comm. NYO-10586.

Evans, H. T. Jr., D. E. Appleman, and D. S. Handwerker (1963). The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method, (abs.) Am. Crystal. Assoc. Annual Meeting, Cambridge, Mass. Program 42-43.

International Tables for X-ray Crystallography, I(1952). (The Kynoch Press, Birmingham, England.) Ibid. III (1962). Pgs. 202, 210, 213, 214.
International Union of Pure and Applied Chemistry, (1961). Chem. Eng. News. 39(4), Nov. 20, 42.
ISCC-NBS Centroid Color Charts, Standard Sample No. 2106,

obtained from the Office of Standard Reference Materials, Room B328, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234, \$3.00 per set.

Palache, C., H. Berman, and C. Frondel (1944). Dana's System of Mineralogy (John Wiley & Sons, New York, 7th

Ed.), I, 6.

Powder Diffraction File (1968). American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103. Smith, D. K. (1967). A revised program for calculating x-ray

powder diffraction patterns, UCRL 50264, University of California, Lawrence Radiation Laboratory, Livermore, Calif. 94551.

Swanson, H. E., M. C. Morris, and E. H. Evans (1966). Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Monograph 25, Sec. 4, 3.

Figure 1

Figure 2

The sample was prepared at NBS by partial evaporation at 90° C of a water solution of $(NH_4)_2SO_4$ and $CdSO_4$, in a 2:1 weight ratio. The resulting double salt was washed with water and alcohol.

Major impurities

0.001-0.01% each: Ca, Mg, and Mn

Color

Colorless

Optical data

Isotropic, N=1.603

Structure

Cubic, P2₁3 (198) Z=4, langbeinite type, [Gattow and Zemann, 1958].

Lattice constants

		a(Å)
Jona and Pepinsky	[1956]	10.35
		±.005
Gattow and Zemann	[1958]	10.350
		±.003
NBS, sample at 25	°C	10.3511
-		±.0001

Density

(calculated) 3.288 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

Polymorphism

Inverts below -186° C to a ferroelectric
form [Jona and Pepinsky, 1956].

References

Gattow, G.and J.Zemann(1958). Über Doppelsulfate vom Langbeinit-Typ, A⁺₂B²⁺₈ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240. Jona, F. and R. Pepinsky (1956). Ferroelectricity in the langbeinite system, Phy. Rev. 103, 1126.

	Internal standard W, a = 3.16516 Å						
	$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C						
ĺ	d (Å)	I	hkl	<i>2</i> θ(°)			
	5.973	50	111	14.82			
	4.628	63	210	19.16			
	4.225	11	211	21.01			
	3.449	20	221	25.81			
	3.271	100	310	27.24			
	3.121	11	311	28.58			
	2.870	9	320	31.14			
	2.765	65	321	32.35			
	2.587	1	400	34.65			
	2.511	9	410	35.73			
	2.441	1	411	36.79			
	2.375	5	331	37.85			
	2.259	6	421	39.88			
	2.207	1	332	40.86			
	2.113	20	422	42.76			
	2.071	10	430	43.68			
	2.030	20	510	44.59			
	1.993	13	511	45.48			
	1.922	18	520	47.26			
	1.890	1	521	48.10			
	1.831 1.801 1.774 1.750	1 10 6 1	440 522 530 531 610	49.77 50.64 51.46 52.22 53.80			
	1.6788	17	611	54.62			
	1.6364	7	620	56.16			
	1.6166	8	621	56.91			
	1.5974	6	541	57.66			
	1.5786	2	533	58.41			
	1.5606	1	622	59.15			
	1.5433	3	630	59.88			
	1.5260	7	631	60.63			
	1.4938	2	444	62.08			
	1.4784	5	632	62.80			
	1.4640	5	710	63.49			
	1.4497	3	711	64.19			
	1.4360	1	640	64.88			
	1.4219	5	720	65.60			
	1.4086	3	721	66.30			

				7				
Inte	rnal stai	ndard W, a = 3.1	6516 Å		Inte	rnal star	ndard W , $a = 3.16$	516 Å
1	$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C				$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C			
d (Å)	I	hkl	20(°)		d (Å)	I	hkl	2θ(°)
1.3832	2	642	67.68	1	.9654	<1	953	105.86
1.3709	2	722	68.37		.9611	1	10.4.0	106.54
1.3591	1	730	69.05		.9569	1	10 • 4 • 1	107.21
1.3478	1	731	69.71		.9528	1	10 • 3 • 3	107.88
1.3252	2	650	71.08		.9449	1	10 • 4 • 2	109.21
1.3144	2	732	71.75		.9410	1	962	109.89
1.2841	3	810	73.72		.9371	1	11.1.0.	110.57
1.2742	2	811	74.39		.9333	1	11.1.1	111.25
1.2649	1	733	75.03	1	.9257	2	11.2.0	112.63
1.2556	1	820	75.68		.9221	1	11.2.1	113.30
1.2463	1	821	76.35		.9150	<1	880	114.67
1.2374	1	653	77.00		.9113	2	11.2.2	115.40
1.2203	3	822	78.28		.9078	1	11.3.0	116.11
1.2114	1	830	78.96		.9042	1	11.3.1	116.83
1.2034	4	831	79.60		.9009	1	10 • 4 • 4	117.53
1.1952	3	751	80.25		.8976	1	964	118.23
1.1796	2	832	81.54		.8943	2	11.3.2.	118.94
1.1721	2	752	82.17		.8876	1	10.6.0	120.41
1.1573	1	840	83.45		.8844	1	11.4.0	121.14
1.1502	1	841	84.09	l	.8813	<1	11.4.1	121.14
			04.09			1		
1.1428	<1	910	84.76		.8780	1	11.3.3	122.64
1.1362	1	911	85.37		.8716	1	11.4.2	124.19
1.1294	1	842	86.00		. 8687	<1	965	124.92
1.1225	1	920	86.66		.8626	1	12.0.0	126.49
1.1160	3	921	87.29		.8596	2	12.1.0	127.29
1.1034	1	664	88.55		.8567	2	12.1.1	128.09
1.0971	4	922	89.19		.8538	2	11.5.1	128.90
1.0910	2	930	89.83		.8480	2	12 • 2 • 1	130.55
1.0849	1	931	90.47		.8451	1	11.5.2	131.41
1.0732	1	852	91.74		.8395	1	12.2.2	133.13
1.0676	1	932	92.36		.8369	2	12.3.0	133.97
1.0565	1	844	93.62		.8341	1	12.3.1	134.87
1.0509	<1	940	94.27		.8315	1	11.5.3	135.76
1.0455	2	941	94.91		.8261	1	12.3.2	137.64
1.0404	2	933	95.53		.8235	2	11.6.1	138.59
1.0298	3	10.1.0	96.83		.8183	1	12•4•0	140.53
1.0249	2	10 1 0	97°.45		.8158	2	12.4.1	141.54
1.0150	<1	10.2.0	98.73		.8133	1	12.3.3	142.58
1.0101	1	10 • 2 • 1	99.38		.8108	1	991	143.62
1.0054	1	950	100.02		.8083	<1	12 • 4 • 2	143.62
1.0006	1	951	100.67		.8059	<1	10.8.1	145.82
0.9915	<1	10.3.0	101.95		.8034	2	11.6.3	
.9869	1	10.3.1	102.61		.7986	1	10.8.2	146.98
.9739	1	10.3.2	104.55		.7963	1	12.5.0	149.38 150.65
9694	1	871	105.24		.7939	1	13.1.0	1
• > 0 > - 1	-	0,1	103.24	1	.1333		T3.T.0	152.00

Needle shaped crystals were obtained after partial evaporation of a solution of equimolar amounts NH₄Cl and CuCl₂ in anhydrous ethyl alcohol. X-ray patterns were produced from samples in a dry-air mounting to prevent hydration.

Major impurities

0.001-0.01% each: Ca, Cr, Fe, and Mg

0.1 -1.0 % each: Ni

Color

Moderate reddish brown

Optical data

Anisotropic, $N_{\alpha}=1.660$, $N_{\gamma}=1.850$. Strongly pleochroic. Crystals were very fine.

Structure

Monoclinic, $P2_1/c$ (14) Z=4.Structure was determined by Willett et al.,[1963]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Willett et al [1963] NBS	4.066 ±.005	14.189 ±.003	9.003 ±.004	97°30′ ± 5′
sample at 25 °C	4.030 ±.001	14.187 ±.002	8.978 ±.002	96°28′ ± 1′

Density

(calculated) 2.447 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.6$

References

Willett,R.D., C.Dwiggens Jr.,R.F. Kruh, and R. E. Rundle (1963). Crystal structures of KCuCl₃ and NH₄ CuCl₃, J.Chem. Phys.38, 2429-2436. Internal standard W, a = 3.16516 Å $CuK\alpha_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C

Cur	$a_1 \wedge -1$.54050 A, temp. 20	, ,
d (Å)	I	hkl	2θ(°)
7.54	88	011	11.73
7.08	100	020	12.50
5.552	58	021	15.95
4.462	17	002	19.88
4.257	10	012	20.85
4.178	18	031	21.25
3.688	47	111	24.11
3.546	10	040	25.09
3.244	17	032	27.47
3.161	52	102	28.21
3.088	35	112	28.89
2.967	10	131	30.09
2.888	49	122	30.94
2.818	25	131	31.73
2.777	58	042	32.21
2.743	18	023	32.62
2.704	22	051	33.10
2.656	12	140	33.72
2.626	28	Ī32,122	34.11
2.395	18	052	37.52
2.363	8	060	38.05
2.315	19	151	38.87
2.286	25	061	39.39
2.209	6	142	40.82
2.127	11	024	42.47
2.089	12	062	43.27
2.058	16	143	43.95
2.017	16	034	44.89
1.976	10	071	45.88
1.961	9	161	46.25
1.911	15	143	47.53
1.887	17	044, 153	48.17
1.846	13	114,072	49.32
1.808	19	170	50.42
1.791	11	171	50.94
1.7739	11	144,080	51.47
1.7549	11	171,202	52.07
1.6746	5	073	54.77

The material was crystallized at 100 $^{\circ}\mathrm{C}$ from an aqueous solution of stoichiometric amounts of (NH $_4$) $_2$ SO $_4$ and MnSO $_4$.

Color

Colorless

Optical data

Isotropic, N=1.602

Structure

Cubic, P2₁3 (198),Z=4, langbeinite type, [Gattow and Zemann,1958].The langbeinite structure was described by Zemann and Zemann [1957].

Lattice constants

	a(Å)
Gattow and Zemann [1958]	10.192 ±.003
NBS, sample at 25 °C	10.1892
	±.0001

Density

(calculated) 2.726 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.4$

References

Gattow,G. and J. Zemann (1958). Über Doppelsulfate vom Langbeinit-Typ, $A_2^+B_2^{2^+}-(SO_4^-)_3$, Z. Anorg. Allgem. Chem.293, 233-240.

Zemann, A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit, K₂Mg₂ (SO₄)₃ Acta Cryst. 10, 409-413.

Internal standard W, a = 3.16516 Å $\text{CuK}a_1 \ \lambda = 1.54056 \ \text{Å}; \text{ temp. 25 °C}$						
d (Å)	I	hkl	2⊕(°)			
5.87 4.55 4.156 3.600 3.396	33 23 25 5	111 210 211 220 221	15.07 19.49 21.36 24.71 26.22			
3.220	100	310	27.68			
3.071	13	311	29.05			
2.825	6	320	31.65			
2.722	55	321	32.88			
2.473	4	410	36.30			
2.402	2	411	37.41			
2.338	3	331	38.48			
2.223	4	421	40.54			
2.172	2	332	41.54			
2.080	13	422	43.48			
2.038	7	430	44.41			
1.999	9	510	45.34			
1.961	7	511	46.25			
1.892	17	520	48.05			
1.861	4	521	48.91			
1.774	14	522	51.47			
1.748	5	530	52.30			
1.722	<1	531	53.15			
1.699	<1	600	53.91			
1.6749	3	610	54.76			
1.6527	17	611	55.56			
1.6109	5	620	57.13			
1.5916	4	621	57.89			
1.5728	3	541	58.65			
1.5540	1	533	59.43			
1.5362	<1	622				

1.5193

1.5023

1.4711

1.4560

1.4413

1.4272

1.4128

1.3997

1.3866

7

7

2

5

4

2

2

5

4

630

631

444

632

710

711

640

720

721

60.93

61.69

63.15

63.88

64.61

65.33

66.08

66.78

Internal standard W, a = 3.16516 Å						
$CuKa_1 \lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$						
d (Å)	I	hkl	2θ(°)			
1.3617	3	642	68.90			
1.3498	2	722	69.59			
1.3378	1	730	70.31			
1.3266	4	731	70.99			
1.3047	2	650	72.37			
1.2942	2	732	73.05			
1.2733	<1	800	74.45			
1.2639	3	810	75.10			
1.2544	2	811	75.77			
1.2446	1	733	76.47			
1.2356	1	820	77.13			
1.2268	1	821	77.79			
1.2180	1	653	78.46			
1.2008	2	822	79.80			
1.1926	1	830	80.46			
1.1844	4	831	81.14			
1.1765	3	751	81.80			
1.1611	2	832	83.12			
1.1536	2	752	83.78			
1.1392	<1	840	85.09			
1.1321	1	841	85.75			
1.1250	<1	910	86.42			
1.1184	1	911	87.06			
1.1118	1	842	87.71			
1.1053	1	920	88.36			
1.0987	3	921	89.03			
1.0860	1	664	90.35			
1.0800	3	922	91.00			
1.0740	3	930	91.65			
1.0681	2	931	92.30			
1.0567	1	852	93.60			
1.0510	2	932	94.26			
1.0399	1	844	95.59			
1.0345	1	940	96.25			
1.0293	2	941	96.90			
1.0241	1	932	97.56			
1.0189	1	10.0.0	98.23			
1.0138	4	10 • 1 • 0	98.89			
1.0089	2	10.1.1	99.55			
0.9993	1	10.2.0	100.86			

Internal standard W, a = 3.16516 Å					
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C					
d (Å)	I	hkl	<i>2θ</i> (°)		
.9943 .9897 .9851 .9805	3 2 1 <1 2	10·2·1 950 951 10·2·2 10·3·0	101.55 102.21 102.87 103.55 104.23		
.9714 .9585 .9544 .9503 .9460	2 2 2 2 1	10·3·1 10·3·2 871 953 10·4·0	104.92 106.95 107.63 108.31 109.02		
.9420 .9380 .9302 .9264 .9224	2 1 1 1	960 10·3·3 10·4·2 962 11·1·0	109.72 110.41 111.80 112.50 113.25		
.9188 .9114 .9078 .9006	<1 1 1 1 2	11·1·1 11·2·0 11·2·1 880 11·2·2	113.93 115.38 116.10 117.59 118.32		
.8938 .8902 .8868 .8835 .8802	1 <1 1 2 3	11·3·0 11·3·1 10·4·4 964 11·3·2	119.05 119.82 120.59 121.35 122.11		
.8737 .8705 .8673 .8642 .8581	1 1 2 2 1	10.6.0 11.4.0 11.4.1 11.3.3 11.4.2	123.68 124.48 125.28 126.09 127.71		
.8550 .8491	1 1	965 12·0·0	128.55 130.24		

The sample was prepared at NBS by E. Levin. Stoichiometric amounts of barium nitrate and boric acid were ground together and heated near $800\,^{\circ}\text{C}$.

Color

Colorless

Optical data

Biaxial (-) $N_{\text{C}}\!=\!1.558,\ N_{\gamma}\!=\!1.590,$ 2V is small.

Structure

Orthorhombic, Z=8 [Krogh-Moe, 1960].

Lattice constants

	a(Å)	$b(\mathring{A})$	c(Å)
Krogh-Moe[1960]	8.56	17.38	13.20
sample at 25°C	8.550 ±.001	17.352 ±.002	13.211 ±.003

Density

(calculated) 2.927 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.4$

Polymorphism

A high temperature tetragonal form is being studied by Levin and Robbins [private communication]

Additional patterns

 PDF card 6-0277 [McMurdie and Levin, 1949].

Internal standard Ag, a = 4.0864	LÅ
$CuKa_1 \lambda = 1.54056 \text{ Å}; temp. 25$	°C

d (Å)	I	hkl	2θ(°)
7.25	10	021	12.20
6.09	55	120	14.54
5.24	100	102	16.92
4.35	6	032,040	20.42
4.277	5	200,013	20.75
4.120	13	041	21.55
4.068	8	201	21.83
3.916	6	103	22.69
3.872	13	132,140	22.95
3.836	6	220	23.17
3.714 3.682 3.625 3.590 3.572	13 5 7 9	141 221 042 202 123	23.94 24.15 24.54 24.78 24.91
3.515	2	212	25.32
3.337	95	142	26.69
3.316	100	222	26.86
3.124	3	151	28.55
3.081	14	104	28.96
3.047 2.965 2.904 2.895 2.826	30 2 } 80 { 4	232,240 241 124 060,223 061	29.29 30.12 30.77 30.86 31.64
2.740	25	160	32.65
2.709	25	233,320	33.04
2.683	11	161	33.37
2.650	16	321,062	33.80
2.617	25	302	34.24
2.531	5	162	35.43
2.524	6	105	35.54
2.510	7	144,331	35.75
2.502	9	243,224	35.86
2.418	5	063	37.15
2.393	4	303,054	37.56
2.380	3	234,170,+	37.76
2.346	3	341,171	38.34
2.326	4	163	38.68
2.306	4	323	39.02

Interna	l standard Ag, a = 4.0864	41 Å
CuKa ₁	$\lambda = 1.54056 \text{ Å}; \text{ temp. } 25$	5 °C

$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)	I	hkl .	2θ(°)	
2.251 2.241 2.238 2.169 2.138	30 } 50 { 14 20	262 342,172 244 080 400	40.02 40.20 40.27 41.60 42.23	
2.132	25	026,106	42.35	
2.122	8	410	42.56	
2.111	11	401,164	42.81	
2.105	17	263,180,+	42.93	
2.094	19	173,324,+	43.17	
2.076	7	181,420	43.57	
2.050	6	421	44.13	
2.033	3	402	44.52	
2.003	10	182,136	45.24	
1.980	12	422	45.79	
1.945	5	083,216	46.67	
1.938	6	264,305	46.83	
1.935	7	280	46.91	
1.922	5	403	47.25	
1.918	7	432,440	47.37	
1.913 1.907 1.898 1.878	11 13 6 2 3	281,146,+ 091 441,183 423,017 282	47.48 47.64 47.88 48.43 49.04	
1.841	2	442	49.46	
1.813	3	084	50.28	
1.794	4	404,037	50.85	
1.774	5	265,184	51.46	
1.769	5	345,175	51.61	
1.741 1.729 1.719 1.712 1.702	5 6 3 3	306,291 193,364 460,217 381 510,1·10·0	52.51 52.92 53.25 53.49 53.83	
1.687	5	511,1·10·1	54.34	
1.679	7	0·10·2,520	54.61	
1.670	6	382,284,+	54.95	
1.665	9	094,275,+	55.11	
1.657	7	502	55.42	

References

Krogh-Moe, J. (1960). A note on the structure of barium tetraborate, Acta Chem. Scand. 14, No. 5, 1229-1230.

Levin, E.M. and H.F. McMurdie (1949). The system BaO-B $_2$ O $_3$, J. Res. Natl. Bur. Std. 42, (RP1956) 131-138.

The sample was prepared by melting a stoichiometric mixture of Cs_8SO_4 and $CaSO_4$ followed by annealing for 18 hours at $700\,$ °C.

Color

Colorless

Optical data

Isotropic, N=1.549

Structure

Cubic, $P2_13$ (198), Z=4, langbeinite type [Gattow and Zemann,1958]. The langbeinite structure was determined by Zemann and Zemann [1957].

Lattice constants

		a(Å)
Gattow and Zemann NBS, sample at 25	-	10.724 ±.005 10.7213 ±.0001

Density

(calculated) 3.417 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.8$

References

Gattow, G. and J. Zemann (1958). Über Doppelsulfate vom Langbeinit-typ, $A_z^{\dagger}B_z^{2\dagger}-(SO_4)_3$, Z.Anorg. Allgem. Chem. 293, 233-240.

Zemann, A. and J. Zemann (1957). Die Kristallstructur vom Langbeinit, $K_2 \, \mathrm{Mg}_2 \, (\mathrm{SO}_4)_3$, Acta Cryst. 10, 409-413.

Internal standard Ag, a = 4.08641 Å					
CuK	α_1 $\lambda = 1$.54056 Å; temp.	25 °C		
d (Å)	I	hkl	2θ(°)		
6.18	16	111	14.32		
4.79	9	210	18.51		
4.373	7	211	20.29		
3.792	12	220	23.44		
3.574	8	221	24.89		
3.391	100	310	26.26		
3.234	18	311	27.56		
3.095	1	222	28.82		
2.973	21	320	30.03		
2.865	53	321	31.19		
2.599	23	410	34.48		
2.525	1	411	35.52		
2.460	8	331	36.50		
2.397	3	420	37.49		
2.339	7	421	38.45		
2.286	9	332	39.38		
2.188	16	422	41.22		
2.145	2	430	42.10		
2.102	30	510	43.00		
2.063	2	511	43.84		
1.991	8	520	45.52		
1.958	2	521	46.33		
1.897	<1	440	47.92		
1.866	4	522	48.75		
1.839	1	530	49.52		
1.812	2	531	50.30		
1.788	1	600	51.05		
1.762	4	610	51.84		

1.739

1.695

1.675

1.654

1.635

1.617

1.598

1.5806

1.5471

1.5318

1.5163

1.5010

1.4867

1.4723

1.4589

1.4328

1.4208

17

6

9

8

2

1

7

5

4

2

1

1

1

2

6

4

1

611

620

621

541

533

622

630

631

444

632

550

711

640

720

721

642

722

52.59

54.05

54.77

55.50

56.23

56.89

57.64

58.33

59.72

60.38

61.06

61.75

62.41

63.09

63.74

65.04

	Internal standard Ag, a = 4.08641 Å CuKa ₁ λ = 1.54056 Å ; temp. 25 °C					
d (Å)	I	hkl	2θ(°)			
1.4079	3	730	66.34			
1.3958	3	731	66.99			
1.3729	2	650	68.26			
1.3612	3	732	68.93			
1.3403	1	800	70.16			
1.3299	2	810	70.79			
1.3198	1	811	71.41			
1.3097	1	733	72.05			
1.3002	1	820	72.66			
1.2909	4	821	73.27			
1.2814	2	653	73.90			
1.2636	2	822	75.12			
1.2548	1	830	75.74			
1.2464	5	831	76.34			
1.2382	2	751	76.94			
1.2220	<1	832	78.15			
1.2139	2	752	78.77			
1.1913	1	841	80.57			
1.1838	1	910	81.19			
1.1767	2	911	81.78			
1.1696	1	842	82.38			
1.1628	1	920	82.97			
1.1560	3	921	83.57			
1.1431	1	664	84.73			
1.1365	3	922	85.34			
1.1302 1.1241 1.1119 1.1059 1.0886	3 <1 1 2	930 931 852 932 940	85.93 86.51 87.70 88.30 90.08			
1.0831 1.0778 1.0722 1.0668 1.0618	1 1 1 <1	941 933 10·0·0 10·1·0 10·1·1	90.66 91.23 91.85 92.45 93.01			
1.0514	1	10·2·0	94.21			
1.0464	2	10·2·1	94.81			
1.0415	2	950	95.39			
1.0365	1	951	96.00			
1.0317	1	10·2·2	96.59			
1.0270 1.0221 1.0086 1.0041 0.9998	1 2 1 <1 <1	10·3·0 10·3·1 10·3·2 871 953	97.19 97.81 99.59 100.19			

Internal standard Ag, a = 4.08641 Å					
CuK	a_1 $\lambda = 1$.54056 Å; temp.	25 °C		
d (Å)	I	hkl	<i>2</i> θ(°)		
.9955	1	10 • 4 • 0	101.39		
.9912	1	960	102.00		
.9871	1	10.3.3	102.59		
.9788	1	10.4.2	103.81		
.9746	1	962	104.44		
.9707	2	11.1.0	105.04		
.9669	1	11.1.1	105.63		
.9590	1	11.2.0	106.88		
.9551	2	11.2.1	107.51		
.9475	<1	880	108.78		
.9439	1	11.2.2	109.38		
.9368	1	11.3.1	110.62		
.9332	1	10.4.4	111.26		
.9296	<1	964	111.91		
.9262	2	11.3.2	112.54		
.9192	1	10.6.0	113.85		
.9159	1	11.4.0	114.49		
.9127	1	11.4.1	115.12		
.9029	1	11 • 4 • 2	117.11		
.8998	1	965	117.76		
.8934	<1	12.0.0	119.12		
.8904	1	12.1.0	119.79		
.8873	1	12 • 1 • 1	120.47		
.8844	1	11.5.1	121.15		
.8814	<1	12.2.0	121.84		
.8782	2	12.2.1	122.58		
.8754	2	11.5.2	123.27		
.8696	1	12.2.2	124.70		
.8668	1	12.3.0	125.41		
.8639	1	12.3.1	126.17		
.8612	1	11.5.3	126.86		
.8556	<1	12.3.2	128.40		
.8529	1	11.6.1	129.15		
.8475	1	12.4.0	130.70		
.8449	1	12.4.1	131.48		
.8423	1	12 • 3 • 3	132.25		
.8398	1	991	133.04		
.8371	1	12.4.2	133.89		
.8347	<1	10.8.1	134.70		
.8321	2	11.6.3	135.54		

The material was made by slow evaporation at room temperature of an equimolar solution of Cs_2 (SO_4) and $CuSO_4$.

Color

Unground: brilliant greenish blue Ground: very pale greenish blue

Optical data

Biaxial (+) $\rm N_{\rm C}\!=\!1.504$, $\rm N_{\beta}\!=\!1.506$, $\rm N_{\gamma}\!=\!1.514$ 2V is medium

Structure

Monoclinic, $P2_1/a$ (14), Z=2. $Cs_2Cu(SO_4)_2 \cdot 6H_2O$ is a "Tutton Salt" [Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_8 Mg(SO_4)_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.439 ±.001	12.762 ±.002	6.310 ±.001	106°11′ ±1′

Density

(calculated) 2.864 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.2$

CuK a_1 $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
7.37	11	110	11.98	
6.06	4	001	14.60	
5.47	4	111	16.18	
5.21	8	120	16.99	
4.54	6	200	19.55	
4.39	13	$ \begin{array}{c} 021 \\ \overline{1}21 \\ \overline{2}01,111 \\ \overline{2}11 \\ 130 \end{array} $	20.19	
4.31	40		20.61	
4.25	100		20.90	
4.026	14		22.06	
3.852	60		23.07	
3.696	5	220	24.06	
3.439	8	131	25.89	
3.227	25	201	27.62	
3.192	25	040	27.93	
3.126	16	211	28.53	
3.089	25	131	28.88	
3.030	25	112	29.16	
3.027	4	002	29.48	
2.984	12	311	29.92	
2.948	20	012	30.29	
2.939	20	310	30.39	
2.926	25	202	30.53	
2.878	15	221	31.05	
2.825	25	122,041	31.65	
2.799	9	141	31.95	
2.765	10	321	32.35	
2.732	9	320	32.75	
2.658	5	222	33.69	
2.609	3	240	34.35	
2.603	4	112,141	34.43	
2.569	6	231	34.90	
2.553	6	241	35.16	
2.531	10	132	35.43	
2.488	25	331	36.07	
2.456	13	150,122	36.56	
2.403	2	311	37.40	
2.348	17	401	38.30	
2.311	5	411	38.94	
2.284	12	321	39.41	

Internal standard Ag, a = 4.08641 A

2.266

20

241,400

Internal standard Ag, a = 4.08641Å CuKa ₁ $\lambda = 1.54056 \text{Å}$; temp. 25 °C							
d (Å)	I						
2.247	8	202	40.10				
2.225	8	250	40.54				
2.198	9	042	41.03				
2.187	12	251	41.25				
2.156	11	242	41.87				
2.135	10	420	42.30				
2.129	5	060	42.43				
2.092	5	412	43.21				
2.072	6	203,113,+	43.65				
2.055	4	431	44.02				
2.020	6	003	44.84				
2.014	3	422	44.97				
2.002	5	251,430	45.26				
1.996	6	013,123	45.39				
1.961	4	351	46.25				
1.951	12	401,350	46.50				
1.927	6	313,023,+	47.13				
1.898	4	432	47.89				
1.882	8	133	48.32				

312

 $\bar{3}23, \bar{2}33$

440

152

322

521

123,170

 $261,\overline{5}12$

Ī62

413

451,332

133,043

171

343

532

433

 $\bar{4}52$

 $143,\overline{2}53$

48.63

48.80

49.30

49.44

50.27

50.41

51.02

51.44

51.80

52.03

52.94

53.64

54.26

55.17

55.64

56.17

56.37

57.20

1.871

1.865

1.847

1.842

1.813

1.809

1.789

1.775

1.763

1.7562

1.7281

1.7072

1.6890

1.6634 1.6505

1.6362

1.6308

1.6090

5

7

9

5

3

6

10

5

5

5

9

6

9

5

4

3

4

6

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂·6H₂O, J. Chem. Soc. 63, 337-423.

The sample was made by slow evaporation at room temperature of an equimolar solution of $\rm Cs_2\,SO_4$ and $\rm FeSO_4$.

Color

Unground: very pale green
Ground: colorless

Optical data

Biaxia1(+) N_{\alpha}=1.501, N_{\beta}=1.504, N_{\gamma}=1.516. 2V is medium

Structure

Monoclinic, P2₁/a (14), Z=2, Isostructural with other "Tutton Salts" [Tutton, 1893]. The structure of a "Tutton Salt", (NH₄)₂ Mg(SO₄)₂ · 6H₂O, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.355 ±.001	12.893 ±.002	6.378 ±.001	106°53′ ±1′

Density

(calculated) 2.805 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.8$

Internal standard W, $a = 3.16516$ A $CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
7.34	12	110	12.04		
6.10	5	001	14.52		
5.518	3	011	16.05		
5.233	12	120	16.93		
4.478	5	200	19.81		
4.438 4.356 4.247 4.227 4.033	11 19 }100 {	021 121 201 210,111 211	19.99 20.37 20.90 21.00 22.02		
3.877	75	130	22.92		
3.681	4	220,121	24.16		
3.475	10	131	25.61		
3.221	30	040	27.67		
3.194	20	201	27.91		
3.101	} 70 { 2 25 19	211,230,+	28.77		
3.091		112	28.86		
3.033		140	29.43		
2.970		311,012	30.06		
2.954		202	30.23		
2.907 2.860 2.851 2.830 2.761	13 } 30 { 6 2	310 221 041 <u>1</u> 41 321,022	30.73 31.25 31.35 31.59 32.40		
2.707	6	320	33.07		
2.683	3	222	33.37		
2.614	6	240,141	34.27		
2.567	17	241	34.93		
2.557	17	132	35.06		
2.489	35	331,032	36.06		
2.461	9	122	36.48		
2.453	8	330	36.61		
2.374	12	051	37.87		
2.358	8	322	38.14		
2.330	2	401	38.61		
2.296	7	411	39.21		
2.267	20	241, 142	39.73		

321,132

250,151

39.79

40.32

Internal standard W a = 3 16516 A

2.264

Internal standard W, a = 3.16516 Å	
$CuKa_1 \lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	

CuK a_1 $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)	I hkl		2θ(°)	
2.215	5	341,042	40.69	
2.204	9	212,251,+	40.92	
2.176	13	242	41.47	
2.149	3	060	42.02	
2.114	8	420,222	42.74	
2.094	6	412, 113,+	43.16	
2.050	3	431	44.14	
2.035	7	003	44.48	
2.017	3	422, 123	44.91	
2.006	6	251	45.16	
1.992	2	223,342	45.50	
1.970	12	351,052	46.04	
1.946	6	313	46.64	
1.918	6	261	47.36	
1.903	8	432,133	47.75	
1.882	5	233,323	48.32	
1.853	3	152,511	49.14	
1.838	11	440,242	49.56	
1.803	5	170,322	50.57	
1.796	10	521,123	50.78	
1.785	4	403	51.13	
1.781	5	162	51.25	
1.773	6	510,442,+	51.50	
1.759	3	431,171	51.93	
1.725	5	520	53.05	
1.721	9	332,423,+	53.17	
1.703	8	270,171	53.78	
1.664	2	213	55.15	
1.650	7	532	55.65	
1.638	2	362,153	56.11	
1.626	2	253	56.56	
1.606		361	57.32	

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂·6H₂O, J.Chem. Soc. 63, 337-423.

The sample was made by slow evaporation at room temperature of an equimolar solution of Cs_2SO_4 and $MgSO_4$.

Color

Colorless

Optical data

Biaxial (+) N_{\alpha}=1.481, N_{\beta}=1.485, N_{\gamma}=1.492 2V is medium.

Structure

Monoclinic, P2 $_1$ /a (14), Z=2. Cs $_2$ Mg(SO $_4$) $_2$ ·6H $_2$ O is a "Tutton Salt"[Tutton, 1893]. The structure of a "Tutton Salt", (NH $_4$) $_2$ Mg(SO $_4$) $_2$ ·6H $_2$ O was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.330 ±.001	12.848 ±.003	6.360 ±.001	107°2′ ±1′

Density

(calculated) 2.689 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.8$

Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	<i>2θ</i> (°)	
7.31 6.42 6.08 5.50 5.21	45 5 15 6	110 020 001 011 120	12.09 13.78 14.55 16.11 16.99	
4.42	10	021	20.09	
4.34	31	121	20.44	
4.23	100	201	20.98	
4.026	8	211	22.06	
3.860	83	130	23.02	
3.537	4	221	25.16	
3.463	9	131	25.70	
3.210	46	040	27.77	
3.181	36	201	28.03	
3.087	97	131,211	28.90	
3.041	7	002	29.35	
3.010	5	231	29.65	
2.965	39	311	30.12	
2.948	38	202	30.29	
2.899	11	310	30.82	
2.846	38	122	31.41	
2.822	10	141	31.68	
2.753	3	321	32.50	
2.699	8	320	33.16	
2.607	6	240,141	34.37	
2.559	29	$ \begin{array}{r} 241 \\ 231 \\ 331, \overline{3}12 \\ 122 \\ 330 \end{array} $	35.03	
2.553	31		35.12	
2.485	33		36.12	
2.450	16		36.66	
2.443	18		36.75	
2.367	13	$ \begin{array}{c} 051,311 \\ \overline{3}22 \\ \overline{4}11 \\ 241,\overline{1}42 \end{array} $	37.98	
2.352	10		38.23	
2.289	9		39.33	
2.259	22		39.88	

2.230

2.197

2.172

2.107

2.092

2.086

17

11

13

6

6

7

400

410,251

 $\bar{2}42$

420

203,412

Ī13

40.42

41.04

41.55

42.88

43.22

Internal standard W, a = $3.16516 \mathring{A}$ CuK $\alpha_1 \lambda$ = $1.54056 \mathring{A}$; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
2.063	1	213	43.83		
2.046	5	142,431	44.24		
2.027	8	003	44.67		
1.998	7	152,251	45.35		
1.963	10	351,052	46.21		
1.943	6	350	46.71		
1.912	6	261	47.51		
1.879	5	233,323	48.39		
1.8326	12	033,440	49.71		
1.7918	12	521	50.92		
1.7886	11	123	51.02		
1.7847	11	333	51.14		
1.7689	7	442,510	51.63		
1.7382	2	360	52.61		
1.7203	6	520,522	53.20		
1.7143	7	043,332	53.40		
1.6970	6	270,171	53.99		
1.6480	8	441,530	55.73		
1.6354	3	452,362	56.20		
1.6213	3	253	56.73		

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂·6H₂O, J. Chem. Soc. 63, 337-423.

The sample was made by slow evaporation at room temperature of an equimolar solution of $\text{Cs}_2\,\text{SO}_4$ and MnSO_4 .

Color

Unground: purplish white Ground: colorless

Optical data

Biaxial (+) N $_{\alpha}=1.495$, N $_{\beta}=1.497$, N $_{\gamma}=1.502$ 2V is large

Structure

Monoclinic, P2 $_1$ /a (14), Z=2 Isostructural with other Tutton Salts [Tutton,1893] The structure of a "Tutton Salt", (NH $_4$) $_2$ -Mg(SO $_4$) $_2 \cdot 6$ H $_2$ O, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β (°)
NBS, sample at 25 °C	9.425 ±.001	12.976 ±.002	6.389 ±.001	107°10′ ±1′

Density

(calculated) 2.763 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.2$

Internal standard Ag, a = 4.08641 Å $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C

d (Å)	I	hkl	2θ(°)
7.41	17	110	11.94
6.11	7	001	14.48
5.524	4	011	16.03
5.273	15	120	16.80
4.510	5	200	19.67
4.442	11	021	19.97
4.384	22	121	20.24
4.281	100	201	20.73
4.261	59	210	20.83
4.241	61	111	20.93
4.064	5	211	21.85
3.899	76	130	22.79
3.693	3	220	24.08
3.497	10	131	25.45
3.244	33	040	27.47
3.201 3.111 3.103 3.049 2.993	23 } 72 { 3 20	201 131,211 112 002,140 311	27.85 28.67 28.75 29.27 29.83
2.965	29	202	30.12
2.927	15	310	30.52
2.894	1	212	30.87
2.869	42	221	31.15
2.861	11	041,122	31.24
2.778	2	321	32.19
2.723	6	320	32.86
2.699	5	222	33.17
2.632	7	240	34.04
2.624	3	141	34.14
2.583	15	241	34.70
2.568	17	132	34.91
2.507	41	331	35.79
2.501	30	312	35.88
2.464	14	330,122	36.44
2.388	12	051	37.63
2.374	9	322	37.87
2.349	2	401	38.28
2.311	11	411	38.94
2.277	22	241	39.54

Internal standard Ag, a = 4.08641 Å						
CuKa	CuK a_1 $\lambda = 1.54056$ A; temp. 25 °C					
d (Å)	I	hkl	2θ(°)			
2.271 2.250 2.239 2.232 2.218	20 12 11 3 13	321 400 202 341 410,251	39.65 40.04 40.25 40.38 40.64			
2.187 2.162 2.127 2.110 2.103	15 2 8 6 7	$ \begin{array}{r} $	41.24 41.74 42.47 42.82 42.98			
2.075 2.065 2.035 2.016 2.005	2 3 10 7 6	213 431 003 251 342	43.59 43.81 44.49 44.93 45.19			
1.984 1.977 1.953 1.929 1.907	6 12 8 7 10	351 052 313,252 261 133	45.69 45.86 46.45 47.08 47.66			
1.891 1.866 1.849 1.843	5 3 11 6 3	323,233 511 113,440 242,033 352	48.07 48.75 49.24 49.40 50.16			
1.810 1.796 1.783 1.771	8 11 8 3 2	521 123,403 512,510 351 451	50.37 50.78 51.19 51.57 52.55			
1.735	5	522 , 520	52.72			

1.730

1.725

1.712

5

6

9

 $\bar{4}23$

332,043

171

52.87

53.06

53.49

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A.E.(1893). Connection between the atomic weight of contained metals and the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂-6H₂O J. Chem. Soc. 63, 337-423.

The sample was prepared by mixing saturated solutions of ${\rm HgCl_2}$ and ${\rm CsCl}$ at room temperature.

Color

Colorless

Optical data

Very low birefringence, №1.790

Structure

CsHgCl $_3$ has been reported as cubic [Natta and Passerini, 1928]. Náray-Szabó [1947], found it to be monoclinic with a=b=c and $\beta \sim 90^{\circ}$. In this work it is considered as a distorted perovskite and has been tentatively indexed as orthorhombic, isostructural with NaMnF $_3$ and RbCaCl $_3$. Very weak lines at 26.82, 27.94 and 29.50 °(2 θ) suggest that a small amount of a second phase may be present, or that the material has a larger supercell. The assumed space group is Pnma (62) with Z equal to 4.

Lattice constants

	a(Å)	b(Å)	c(Å)
Natta and Passerini [1928] ¹ Náray-Szabó	5.45*		
[1947] ² NBS, sample	10.92*	10.92*	10.92*
at 25° C	7.688 ±.002	10.878 ±.002	7.669 ±.001

^{*}from kX

Density

(calculated) 4.555 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.0$

Interna	l standard Ag, a = 4.08641 Å	
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	

d (Å)	I	hkl	2θ(°)
5.42 3.834 3.132 2.715 2.428	15 100 1 45 11	101 002 022 202 301,222,+	16.34 23.18 28.47 32.96 37.00
2.217 1.920 1.894 1.810 1.717	45 25 1 5 25	042,123 242 250,410 303,143,+ 402,323,+	40.67 47.30 48.00 50.38
1.570 1.567 1.506 1.453 1.451	6 6 2 15 17	440 044 501,343 442,521,+ 244	58.75 58.90 61.51 64.03 64.14
1.357 1.319 1.317 1.279 1.214	3 2 · 2 5 6	404 460,181 064,424 325 444	69.16 71.45 71.59 74.05 78.74
1.187 1.184 1.159 1.157	1 1 2 2 3	381 226 640,561,+ 046 480,642	80.94 81.16 83.27 83.50 87.89
1.108 1.087 1.065 1.064 1.010	3 1 5 4	264 464 604 406 662,741,+	88.10 90.30 92.59 92.73 99.43
1.008 .9921 .9911	1 2 2	266 644,723 446	99.65 101.86 102.01

References

Natta, G. and L. Passerini (1928). Isomorfismo, polimorfismo e morfotropia I.Composti del tipo ABX3. Gazz.Chim.Ital. 58, 472-484.

Náray-Szabó, S. (1947). The perovskite structure family, Müegyetemi, Kozlemen. No. 1, 30-41.

¹ indexed as cubic

 $^{^{2}}$ indexed as monoclinic with $\beta \sim 90^{\circ}$.

The sample was prepared by slow evaporation at room temperature of an equimolar solution of $\text{Cs}_2\,\text{SO}_4$ and NiSO_4 .

Color

Unground: strong bluish green Ground: very pale green

Optical data

Biaxial (-) $\rm N_{\alpha}{=}1.507$, $\rm N_{\beta}{=}1.512$, $\rm N_{\gamma}{=}1.516$ 2V is very large

Structure

Monoclinic, $P2_1/a$ (14), Z=2. $Cs_2 Ni(SO_4)_2 \cdot 6H_2O$ is a "Tutton Salt" [Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.264 ±.001	12.773 ±.002	6.359 ±.001	106°59′ ±1′

Density

(calculated) 2.883 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 2.7$

Internal standard Ag, a = 4.08641 Å				
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C				
d (\mathring{A})	I	hkl	2θ(°)	
7.284 6.083 5.487 5.184 4.405	10 6 6 12 12	110 001 011 120 021	12.14 14.55 16.14 17.09 20.14	
4.327 4.215 4.201 4.001 3.837	18 } 100 { 6 70	121 201 111 211 130	20.51 21.06 21.13 22.20 23.16	
3.641 3.448 3.193 3.168 3.074	4 10 25 20 70	220 131 040 201 131,211,+	24.43 25.82 27.92 28.14 29.02	
3.005 2.961 2.943 2.877 2.839	2 12 30 14 30	140 012 311,202 310 221	29.71 30.16 30.35 31.06 31.49	
2.806 2.738 2.681 2.673 2.591	7 1 8 6 6	141 321 320 222 112,240,+	31.87 32.68 33.40 33.50 34.59	
2.545 2.468 2.447 2.428 2.354	25 30 11 4 12	\bar{1}32,\bar{2}41,+\\ \bar{3}12,\bar{3}31\\ 122\\ 330\\ 051,311\end{array}	35.24 36.37 36.69 37.00 38.20	
2.342 2.310 2.272 2.249 2.243	10 2 9 20 20	151,322 401 411 132,241 321	38.41 38.96 39.64 40.06 40.17	
2.222 2.213 2.201 2.184 2.163	7 13 5 9	202 151,250,+ 042 251,410 242	40.57 40.73 40.97 41.30 41.73	

Internal standard Ag, $a = 4.08641 \text{ Å}$ $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
	1 V = 1.3	54056 A; temp. 23	o °C	
d (Å)	I	hkl	2θ(°)	
2.130	2	060	42.41	
2.106	2	402	42.91	
2.093	9	420	43.19	
2.079	6	412	43.49	
2.070	4	160	43.69	
2.062	2	213	43.86	
2.029	10	431,003	44.63	
2.007	4	061,123	45.14	
2.001	6	161,422	45.29	
1.989	4	251	45.58	
1.977	3	342	45.87	
1.955	12	052	46.42	
1.952	12	351	46.49	
1.937	7	313	46.87	
1.916	2	341	47.40	
1.910	3	401	47.58	
1.898	8	261	47.89	
1.894	11	133	48.00	
1.873	6	323	48.56	
1.839	1	152	49.53	
1.830	4	033,421	49.79	
1.819	10	440	50.10	
1.787	12	170,123	51.07	
1.767	5	162,261	51.69	
1.755	6	510	52.08	
1.743	5	171,431,+ 360 043,423 520,332 171,270	52.47	
1.728	1		52.96	
1.710	6		53.53	
1.707	12		53.65	
1.688	8		54.31	
1.659	2	162	55.32	
1.654	2	213	55.50	
1.636	6	532,530	56.16	
1.625	3	362,452	56.58	
1.616	4	253	56.92	
1.591	4	361	57.92	
1.587	3	053,204	58.06	
1.582	3	172,271	58.27	
1.571	4	180,513,+	58.74	
1.563	3	371	59.04	

 $370,\overline{4}43$

1.552

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂.6H₂O, J. Chem. Soc. 63, 337-423.

The sample was prepared by slow evaporation at room temperature of an equimolar solution of $Cs_2\,SO_4$ and $ZnSO_4$.

Color

Colorless

Optical data

Biaxial (-) $\rm N_{\alpha}{=}1.594$, $\rm N_{\beta}{=}1.610$, $\rm N_{\gamma}{=}1.615$ 2V is large.

Structure

Monoclinic, P2 $_1$ /a (14), Z=2. Cs $_2$ Zn(SO $_4$) $_2 \cdot 6H_2O$ is a "Tutton Salt"[Tutton, 1893]. The structure of a "Tutton Salt", (NH $_4$) $_2$ Mg(SO $_4$) $_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.316 ±.001	12.815 ±002	6.373 ±.001	106°57′ ±1′

Density

(calculated) 2.881 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.3$

Internal standard Ag, a = 4.08641 Å CuK a_1 λ = 1.54056 Å ; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
7.31	8	110	12.10	
6.095	3	001	14.52	
5.504	3	011	16.09	
5.202	9	120	17.03	
4.451	7	200	19.93	
4.416	10	021	20.09	
4.337	16	121	20.46	
4.227	100	201	21.00	
4.019	5	211	22.10	
3.854	60	130	23.06	
3.660	4	121,220	24.30	
3.461	9	131	25.72	
3.204	25	040	27.82	
3.185	15	201	27.99	
3.087	65	131,112,+	28.90	
2.962	20	311	30.15	
2.951	20	202	30.26	
2.896	1:1	310	30.85	
2.850	30	122,221	31.36	
2.816	6	141	31.75	
2.749	2	321,022	32.54	
2.695	5	320	33.21	
2.678	4	222	33.43	
2.601	6	240,112,+	34.45	
2.552	18	231,132	35.13	
2.479 2.452 2.439 2.362 2.351	30 8 4 9	331,312 122 330 051 322,151	36.21 36.62 36.82 38.07 38.25	
2.321	2	401	38.76	
2.284	7	411	39.41	
2.256	19	132,142,+	39.92	
2.229	8	400	40.43	
2.222	9	151,250	40.56	
2.209	4	042	40.81	
2.194	7	410,251	41.11	
2.170	11	242	41.59	
2.135	2	060	42.30	

420

42.94

Intern	Internal standard Ag, a = 4.08641 Å				
CuKa	$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)		
2.092	4	113	43.22		
2.088	3	412	43.30		
2.040	3	431	44.37		
2.032	7	003	44.55		
2.009	3	422,161	45.09		
1.996	3	251, 152	45.39		
1.978	1	232	45.83		
1.962	8	052	46.24		
1.941	6	350	46.75		
1.907	5	261	47.64		
1.900	8	133,411	47.84		
1.878	4	323	48.42		
1.844	2	511,152	49.38		
1.839	2	421	49.53		
1.829	9	440	49.81		
1.792 1.773 1.765 1.755	9 2 5 3	123,170 162,261 512,413,+ 351 431	50.93 51.49 51.76 52.06 52.21		
1.7161	8	043,522,+	53.34		
1.6938	5	171,270	54.10		
1.6596	1	212	55.31		
1.6442	7	433,532,+	55.87		
1.6319	3	452,362	56.33		
1.6208	2	253	56.75		
1.6161	2	342	56.93		
1.5981	2	361	57.63		
1.5871	5	271,172	58.07		
1.5779	7	513,511	58.44		
1.5583	6	370,233	59.25		
1.5422	5	523,460,+	59.93		

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates $R_2 M(SO_4)_2.6H_2O$, J. Chem. Soc. 63, 337-423.

The sample was prepared at NBS by C. W. Reimann. It was precipitated from water solutions of imidazole and $Ni(NO_3)_2$.

Color

Unground - very purplish blue

Optical data

Uniaxial (-) $N_{e}=1.582$, $N_{o}=1.594$

Structure

Hexagonal, R3 (148), Z=3, structure determined by Santoro et al.,[1969].

Lattice constants

	a(Å)	c(Å)
NBS, sample at 25°C	12.353 ±.001	14.804 ±.002

Density

(calculated) 1.505 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.0$

References

Santoro, A., A.D. Mighell, M. Zocchi and C. W. Reimann (1969). The crystal and molecular structure of hexakis (imidazole) nickel(II) nitrate, (C₃H₄N₂)₆Ni(NO₃)₂, Acta Cryst. B25,842-847.

	Internal standard W, a = 3.16516 \mathring{A} CuK α_1 λ = 1.54056 \mathring{A} ; temp. 25 $^{\circ}$ C			
d (Å)			2θ(°)	
8.67 6.17 6.08 5.03 4.94	20 50 100 3 3	101 110 012 021 003	10.19 14.34 14.56 17.60	
4.333	6	202	20.48	
3.899	35	211	22.79	
3.854	40	113	23.06	
3.549	30	122	25.07	
3.497	25	104	25.45	
3.090	3	220	28.87	
3.047	2	024	29.29	
2.910	6	131	30.69	
2.892	8	303	30.89	
2.855	9	015	31.30	
2.754	5	312	32.48	
2.732	4	214	32.75	
2.619	8	223	34.21	
2.592	6	205	34.57	
2.514	1	042	35.68	
2.467	1	006	36.39	
2.422	3	321	37.08	
2.389	6	125	37.61	
2.330	8	232	38.60	
2.313	5	134	38.90	
2.168	2	404	41.63	
2.119	4	051	42.64	
2.111	5	413	42.80	
2.095	2	315	43.15	
2.046	2	324	44.23	
2.030	2	306	44.59	
2.003	3	241	45.24	
1.985	2	045	45.67	
1.967	1	027	46.11	
1.950	3	422	46.54	
1.900	3	333	47.83	
1.889	2	235	48.13	
1.874	1	217	48.54	
1.782	2	600	51.22	
1.774	2	244	51.46	
1.748	1	208,431	52.29	
1.734	2	505	52.75	
1.722	2	137	53.15	
1.713	2	520	53.45	
1.696	2	416	54.02	

The sample was prepared by W. S. Brower as a single crystal pulled from a melt. After grinding, the effect of very strong cleavage, {110}, was noted in some sample mountings.

Color

Colorless

Optical data

Biaxial (-) N_{\alpha}=1.82, N_{\beta}=1.83, N_{\gamma}=1.84 2V is medium large

Structure

Monoclinic, C2/m (12),Z=8, isostructural with $MnMoO_4$, structure of $MnMoO_4$ determined by Abrahams and Reddy [1965].

Density

(calculated) 3.809 g/cm³ at 25° C.

Reference intensity

 $I/I_{compdum} = 2.6$

Polymorphism

Another monoclinic form is described as the high pressure modification, (wolframite type), PDF card 16-308. [Young and Schwartz, 1963].

Internal standard Ag, a = 4.08641 Å $CuKa_1$ λ = 1.54056 Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
6.727	4	110,001	13.15
5.323	7	111	16.64
4.667	29	201	19.00
4.354	3	111	20.38
3.823	46	021	23.25
3.513	25	201	25.33
3.374	100	220	26.39
3.283	32	112	27.14
3.252	15	202	27.40
3.156	20	311	28.25
3.091	4	310	28.86
2.795	14	112, 131	31.99
2.724	6	022	32.85
2.669	13	312	33.55
2.663	10	222	33.62
2.623	3	131	34.16
2.556	<1	311	35.08
2.460	8	400	36.50
2.322	8	040, 132	38.74
2.275	2	331	39.58
2.252	10	330	40.00
2.176	9	222	41.47
2.128	4	132	42.44
2.112	4	313	42.79
2.100	3	240	43.04
2.086 2.080 2.068 2.018 2.011	8 10 8 5 8	422 241 223 312,331,+	43.35 43.48 43.73 44.88 45.05

Lattice constants

	$a(\stackrel{\circ}{A})$	b(Å)	c(Å)	β(°)	
Pakhomov and Medvedev [1968]NBS, sample at 25 °C	10.35 10.281 ±.001	9.23 9.291 ±.001	7.12 7.030 ±.001	106°30′ 106°54′ ±1′	

Internal standard Ag, a = 4.08641	À
$CuKa_1 \lambda = 1.54056 \text{ Å}; temp. 25 °C$	2

$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.966	5	403	46.14	
1.938	11	241	46.84	
1.928	12	421	47.09	
1.924	10	$510,\overline{5}12$	47.21	
1.911	4	042	47.53	
1.890	2	242	48.09	
1.867	2	Ī33	48.74	
1.848	2	203	49.27	
1.825	2	<u>1</u> 50	49.94	
1.787	2	Ī51	51.06	
1.755	10	204	52.07	
1.739	2	_ 151	52.58	
1.720	6	$\frac{1}{4}41,332$	53.21	
1.714	8	114,531	53.42	
1.689	10	242,440	54.28	
1.678	2	6 02	54.66	
1.660	4	530 , 5 32	55.31	
1.646	4	_ 42	55.79	
1.642	3	$\bar{1}52,\bar{2}24$	55.95	
1.638	3	243	56.09	
1.625	2	351,404	56.59	
1.616	4	313,350	56.94	
1.612	4	043	57.08	
1.607	2	621	57.30	
1.5811	6	024	58.31	
1.5696	2	152	58.78	
1.5602	2	114	59.17	
1.5457	6	352,620	59.78	
1.5341	6	424	60.28	
1.5092	4	061	61.38	
1.5006	4	443	61.77	
1.4960	4	601	61.98	
1.4767	6	260	62.88	
1.4661	2	204	63.39	
1.4505	4	333	64.15	
1.4457	6	243,711	64.39	

References

Abrahams, S.C. and J.M. Reddy(1965). Crystal structure of the transition-metal molybdates. I.paramagnetic alpha-MnMoO₄, J. Chem. Phys. 43, No.7, 2533-2543.

Pakhomov, V. I. and A. V. Medvedev (1968). Preliminary data on the crystal structure of magnesium molybdate, Soviet Phys. Cryst. (English Transl.) 12, No.6, 925.

Young, A.P. and C.M. Schwartz (1963).Highpressure synthesis of molybdates with the wolframite structure, Science 141, 348-349.

Crystals of the hexahydrate were formed very slowly when anhydrous magnesium perchlorate hydrated in a loosely stoppered bottle.

Major impurities

0.001-0.01% each: ca

Color

Colorless

Optical data

Uniaxial (-) $N_0 = 1.484$, $N_e = 1.468$

Structure

Hexagonal, P6/mmm (191), Z=4 or orthorhombic, $Pmn2_1$ (31), Z=2 Structure determined by West, [1935]

Lattice constants

	a(Å)	c(Å)
West [1935] NBS, sample at 25 °C	15.55 15.606 ±.001	

Density

(calculated) 1.976 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.7$

Additional patterns

1. PDF card 14-22 [Hanawalt et al., 1938]

$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
6.75	6	200	13.11
4.92	4	101	18.03
4.37	6	111	20.29
4.15	90	201	21.37
3.90	100	220	22.80
3.670	2	211	24.23
3.424	2	301	26.00
3.377	4	,400	26.37
3.054	1	311	29.22
2.843	85	401	31.44
2.671	<1	321	33.52
2.638	11	002	33.95
2.573	1	411	34.83
2.552	20	420	35.13
2.458	3	202	36.52
2.332	1	331	38.58
2.297	13	421	39.18
2.292	2	600	40.01
2.205	<1	511	40.90
2.1862	<1	222	41.26
2.0796 2.0715 2.0474 2.0023 1.9501	4 4 <1 1	402 601 431 521 440	43.48 43.66 44.20 45.25 46.53
1.9202	1	611	47.30
1.8740	2	620	48.54
1.8354	9	422	49.63
1.8135	<1	531	50.27
1.7872	<1	512	51.06
1.7660	11	621	51.72
1.7134	1	602	53.43
1.7025	2	203,630	53.80
1.6897	1	800	54.24
1.6440	<1	541	55.88
1.6208 1.6089 1.5931 1.5684 1.5609	<1 1 <1 <1 <1 3	631 801 313 442 403,550	56.75 57.21 57.83 58.83 59.14
1.5499	<1	640	59.60

Internal standard W, a = 3.16516 A

Internal standard W, $a = 3.16516 \text{ Å}$ $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C							
d (Å)							
1.5283	2	622	60.53				
1.4874	4	641	62.38				
1.4746	4	503,820	62.98				
1.4493	<1	423	64.21				
1.4451	<1	901	64.42				
1.4229 1.4200 1.3866 1.3686 1.3550	2 2 1 <1	802 821 603 651 741	65.55 65.70 67.49 68.50 69.29				
1.3517 1.3378 1.3005 1.2829 1.2503	1 <1 4 1	10.0.0 613 533,660 623,10.1.0 224	69.48 70.31 72.64 73.80 76.06				
1.2412	1	841	76.72				
1.2184	<1	803	78.43				
1.2161	<1	931	78.60				
1.2032	<1	10·0·2	79.61				
1.1829	2	10·2·1	81.26				
1.1665	1	662	82.65				
1.1634	1	643	82.92				
1.1496	<1	842	84.14				
1.1388	<1	604	85.13				
1.1263	<1	524,12·0·0	86.30				
1.1027	<1	10·2·2	88.62				
1.0931	<1	444	89.61				
1.0872	<1	861	90.22				
1.0820	1	833,10·4·0	90.78				

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.

West, C.D. (1935). Crystal structures of hydrated compounds. II structure type Mg(ClO₄)₂·6H₂O, Z.Krist. (A)91,480-493

The sample was obtained from Mallinc-krodt Chemical Works.

Major impurities

trace amounts of Fe, Ca, Cr, and Mg.

Color

Orange-red

Structure

Tetragonal, P42/nmc (137), Z=2,structure determined by Bijvoet et al.,[1926].

Lattice constants

	a(Å)	c(Å)
Havighurst* [1925]Bijvoet et al.* [1926] Huggins and Magill*[1927]- Swanson and Tatge [1953] Vlasse [1963] NBS, sample at 25 °C	4.357 4.34 4.390 4.361	12.34 12.36 12.34 12.38 12.450 12.4399 ±.0004

*values as published

Density

(calculated) 6.354 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

Polymorphism

Goya et al.[1962] reported a yellow, orthorhombic form stable above 127 $^{\circ}\text{C.}$ Vlasse [1963] also notes a metastable orange, cubic or pseudo cubic form.

Additional patterns

- 1. Havighurst [1925]
- 2. Hanawalt, Rinn, and Frevel [1938]
- 3. PDF card 4-454 [Swanson and Tatge, 1953]

Interna	al standard W, $a = 3.16516 \text{ Å}$	
$CuKa_1$	$\lambda = 1.54056$ Å; temp. 25 °C	

d (Å)	I	hkl	<i>2θ</i> (°)
6.223	55	002	14.22
4.122	70	101	21.54
3.577	100	102	24.87
3.113	3	004	28.65
3.092	2	110	28.85
3.009	40	103	29.66
2.768	30	112	32.32
2.534	7	104	35.39
2.192	60	114	41.14
2.186	55	200	41.27
2.163	17	105	41.73
2.074	14	006	43.60
2.062	6	202	43.87
1.931	9	211	47.02
1.874	15	106	48.55
1.865	14	212	48.79
1.789	1	204	51.02
1.768	6	213	51.65
1.722	1	116	53.14
1.6543	3	214	55.50
1.6464	5	107	55.79
1.5554	5	008	59.37
1.5450	4	220	59.81
1.5371	5	215	60.15
1.5039	6	206	61.62
1.4655	2	108	63.42
1.4469	2	301	64.33
1.4221	4	216	65.59
1.4181	5	302	65.80
1.3745	2	303	68.17
1.3490	2	312	69.64
1.3176	3	109	71.55
1.3144	4	217	71.75
1.2669	5	208	74.89
1.2629	7	314	75.17
1.2570 1.2389 1.2168 1.2061 1.1966	3 2 1 1	305 226 218 321 1.0.10	75.58 76.89 78.55 79.38 80.14

Internal standard W, a = 3.16516 Å					
	$CuKa_1 \lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$				
d (Å)	I	hkl	2θ(°)		
1.1917 1.1895 1.1631 1.1542 1.1285	2 2 1 3	3·0·6 322 323 1·1·10 219	80.54 80.72 82.95 83.73 86.09		
1.0958 1.0926 1.0893 1.0759 1.0630	2 2 1 1	228 400 325 402 308	89.33 89.66 90.00 91.44 92.88		
1.0559 1.0494 1.0462 1.0448 1.0266	1 1 2 1	411 2·1·10 326 412 413	93.69 94.45 94.83 95.00 97.24		
1.0160 1.0087 1.0027 0.9828 .9777	<1 1 <1 2 1	332 1·0·12 309 1·1·12 334	98.60 99.57 100.38 103.21 103.97		
.9770 .9664 .9435 .9244 .9157	2 1 1 2 2	319,420 406 416 3·1·10 2·1·12	104.08 105.70 109.45 112.87 114.54		
.9101 .8938 .8838 .8653 .8550	2 2 1 <1 1	417 408 426 432 433,511	115.63 119.03 121.27 125.79 128.56		
.8489 .8291 .8272 .8261 .8067	2 1 2 1 <1	512 3·1·12 428 514 4·1·10	130.29 136.56 137.25 137.63 145.44		
.8052 .8045 .7963 .7933 .7878	<1 <1 <1 1 2	436 522 523 3·3·10 3·2·12	146.12 146.43 150.63 152.32 155.82		

Bijvoet, J. M., A. Claassen, and A. Karssen (1926). The crystal structure of red mercuric iodide, Koninkl. Ned. Akad. Wetenschap. Proc. B 29, 529-546.

Goya H., J.L.T. Waugh and H. Zeitlin (1962) The color of mercuric iodide on alumina, J. Phys. Chem. 66, 1906-1907.

Hanawalt J.D., H.W. Rinn, and L. K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512.

Havighurst R.J. (1925). X-ray reflections from mercuric iodide, Am. J. Sci. 10, 556-558.

Huggins, M. L. and P. L. Magill(1927). The crystal structures of mercuric and mercurous iodides, J. Am. Chem. Soc. 49, 2357-2367.

Swanson, H.E. and E. Tatge (1953).Standard
x-ray diffraction powder patterns, Natl.
Bur. Std. U.S. Circ. 539, Vol. I, 74-76.

Vlasse, Marcus (1963) The structure of the crystalline phases in the mercuric iodide system, 21st Annual Pittsburgh Diffraction Conference, (Abstracts).

The sample was prepared at NBS by melting a stoichiometric mixture of $\rm K_2\,SO_4$ and $\rm CdSO_4$ and annealing for 18 hours at 300 °C and then for 3 days at 150 °C.

Major impurities

0.001-0.01% each: Na

0.01 -0.1 % each: Ca and Al

Color

Yellowish white

Optical data

Very low double refraction. $N_{\alpha}{=}1.588$ and $N_{\gamma}{=}1.592$ (data limited by small grain size of the sample).

Structure

Orthorhombic, probably $P2_1 2_1 2_1$ (19), Z=4 Distorted langbeinite-type. A cubic cell was reported by Gattow and Zemann [1958]

Lattice constants

	a(Å)	$b(\mathring{A})$	c(Å)
Gattow and Zemann [1958]	10.28 ±.05		
NBS, sample at 25 °C	10.212 ±.001	10.280 ±.001	10.171 ±.001

Density

(calculated) 3.677 g/cm³ at 25 °C.

Reference intensity

 $I/I_{corundum} = 2.7$

Polymorphism

DTA measurements show a reversible inversion at 166 °C. This is interpreted as a change to the undistorted langbeinite structure on heating.

34

Interna	al standard W, a = 3.16516 Å	
CuKa,	$\lambda = 1.54056 \text{ Å; temp. 25 °C}$	

d (Å)	I	hkl	2θ(°)
7.23 5.90 5.11 4.572 4.184	<1 33 3 35 22	110,011 . 111 200 210,201 121	12.23 15.00 17.34 19.40 21.22
3.607 3.413 3.245 3.227 3.216	4 27 80 }100 {	202 221,122 130,031 310,301 013,103	24.66 26.09 27.46 27.62 27.72
3.094 3.077 2.841 2.830 2.737 2.727	15 22 8 12 } 82 {	131 311 032,320 023,302 231,132,+ 312,123,+	28.83 28.99 31.46 31.59 32.69 32.81
2.568 2.551 2.483 2.475 2.468	4 <1 8 12 8	040 400 232 401,223 014,104	34.91 35.15 36.15 36.27 36.37
2.404 2.346 2.340 2.295 2.276	3 10 8 3 <1	303 133 313 240,042 024,204	37.38 38.33 38.44 39.22 39.57
2.237 2.231 2.226 2.176 2.092	11 } 8{ 12 15	241,142 421 412,124 323 242	40.28 40.40 40.49 41.46 43.21
2.084 2.081 2.051 2.039 2.016	<pre>5 11 10</pre>	422 224 340 403 150,051	43.38 43.46 44.12 44.39 44.92
2.009 2.001 1.977 1.966 1.959	28 32 6 } 8{	143,431 413 151 333,511 115	45.10 45.29 45.85 46.13 46.31
1.906 1.896 1.890 1.875 1.865	5 } 22 { 1 2	250,052 234,423,+ 025,205 251,152 521,512	47.68 47.93 48.09 48.52 48.79

Internal standard W, $a = 3.16516 \text{ Å}$ $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.802 1.783 1.778 1.775 1.760	1 } 8 { 8 4	404 441 522 414,225 350	50.62 51.20 51.33 51.45 51.91	
1.755	5	343,530	52.07	
1.749	5	503,035	52.26	
1.734	3	351,153	52.75	
1.729	2	531	52.90	
1.725	1	513,135	53.05	
1.706 1.690 1.678 1.666 1.663	1 2 3 9	442 160,061 610,601 161 352,253	53.67 54.24 54.65 55.06 55.20	
1.658	12	532,611	55.38	
1.650	13	116	55.64	
1.624	6	260,062	56.61	
1.614	<1	602	57.01	
1.609	6	026,206	57.20	
1.605	6	261,162	57.37	
1.597	6	443,344,+	57.69	
1.591	<1	405,126,+	57.93	
1.579	8	541,154	58.38	
1.575	8	145	58.55	
1.573	7	514,415	58.63	
1.558	3	533	59.26	
1.539	3	622	60.05	
1.535	2	226	60.23	
1.527	3	452	60.57	
1.524	3	630	60.71	
1.520	<1	425,036	60.91	
1.514	2	361	61.16	
1.508	2	631	61.45	
1.504	5	136	61.63	
1.475	5	444	62.95	
1.465	4	362,263	63.42	
1.459	<1	632,623	63.72	
1.455	4	326	63.92	
1.444	5	701,534,+	64.48	

Gattow, G. and J. Zemann (1958). Über Doppelsulphate vom Langbeinit-Typ, A₂+B₂+ (SO₄)₃ Z. Anorg. Allgem. Chem. 293, 233-240.

d (Å)

Sample

The sample was prepared by melting a mixture of KCl and anhydrous $CaCl_2$ at 750 °C. The material is hygroscopic and the patterns were made with the sample enclosed in a dry-mount.

Color

Colorless

Optical data

Very low birefringence, N=1.568, shows polysynthetic twinning.

Structure

Orthorhombic, Pnma (62), z=4, by analogy with ${\tt NaZnF_3}$ and similar distorted perovskites.

Lattice constants

	a(Å)	b(Å)	c(Å)
NBS, sample	7.551	10.442	7.251
at 25 °C	±.001	±.001	±.001

Density

(calculated) 2.155 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundu...} = 1.0$

Internal standard W, a = 3.16516 Å $\text{CuK} \alpha_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
d (\mathring{A}) I hkl 2θ (°)				
5.227	25	101,020	16.95	
4.679	6	111	18.95	
3.776	9	200	23.54	
3.697	30	121	24.05	
3.622	5	002	24.56	
3.348	7	201	26.60	
3.270	12	102	27.25	
3.188	14	211	27.96	
3.137	35	031	28.43	
3.119	30	112	28.60	
3.058	18	220	29.18	
2.978	12	022	29.98	
2.896	14	131	30.85	
2.819	13	221	31.72	
2.770	8	122	32.29	

и	(11)	1		()
2.	614 610 559 537 414	} 100 7 10 4	202 040 230 212 231	34.27 34.33 35.03 35.35 37.21
2. 2. 2.	377 338 318 248 163	15 13 13 4 8	301 222,141 311 113 321	37.82 38.48 38.81 40.07 41.72
2. 2. 2.	146 119 107 037 006	13 14 25 5	240 042 123 203 051	42.06 42.64 42.89 44.45 45.16
1. 1.	963 920 887 857 847	3 4 5 2 12	331 133 400 410 242	46.21 47.31 48.19 49.00 49.30
1. 1. 1.	827 812 778 772 758	6 1 7 10 10	250,401 004 332 251 341,233	49.87 50.31 51.35 51.52 51.97
1. 1.	744 740 720 674 670	1 <1 <1 <1 2	303 060 313 402 124	52.43 52.55 53.21 54.81 54.94
1. 1.	652 632 615 606 569	3 4 <1 <1 1	161 252 214 243 351,062	55.59 56.32 56.96 57.34 58.80
1. 1.	559 547 530 509 489	2 2 2 3 1	224,333 153 440 432 044	59.22 59.74 60.45 61.40 62.30
1. 1.	479 474 464 461 434	2 <1 1 1 <1	234,501 413 511 071,144 171	62.78 63.03 63.49 63.64 64.96
1.	4311 4164 4103 3998	1 <1 <1 <1	423 324 115 450	65.13 65.89 66.21 66.77

hkl

2θ(°)

The K_2 CaMg(SO₄)₃ was prepared by melting a stoichiometric mixture of K_2 SO₄, CaSO₄, and MgSO₄. The sample was annealed for 20 hours at 800°C and 17 hours at 400°C.

Major impurities

0.01 -0.1 % each: Cs, Cu, Na, and Rb

0.1 -1.0 % each: Fe

Color

Yellowish white

Optical data

Isotropic, N=1.525

Structure

Cubic, $P2_13$ (198), Z=4 by analogy with langbeinite, $K_2 Mg_2 (SO_4)_3$. The langbeinite structure was determined by Zemann and Zemann [1957].

Lattice constants

	a(Å)
NBS, sample at 25°C	10.1662 ±.0003

Density

(calculated) 2.723 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.6$

Internal standard W, a = 3.16516 Å CuK α_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	20(°)	
5.86	4	111	15.11	
4.544	1	210	19.52	
4.149	21	211	21.40	
3.596	<1	220	24.74	
3.388	2	221	26.28	
3.212	100	310	27.75	
3.066	9	311	29.10	
2.819	7	320	31.72	
2.717	34	321	32.94	
2.540	<1	400	35.30	
2.466	4	322	36.40	
2.333	2	331	38.56	
2.273	1	420	39.61	
2.219	2	421	40.63	
2.168	4	332	41.63	
2.075 2.033 1.994 1.957	7 1 10 1 4	422 430 510 511 520	43.59 44.54 45.45 46.35 48.16	
1.856	1	521	49.04	
1.769	3	522	51.61	
1.743	1	530	52.44	
1.718	<1	531	53.27	
1.695	<1	600	54.06	
1.671	1	610	54.90	
1.649	8	611	55.69	
1.608	2	620	57.26	
1.588	2	621	58.04	
1.569	2	541	58.82	

Internal standard W, a = 3.16516 Å				
$CuKa_1$ λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.550	<1	533	59.58	
1.532	<1	622	60.37	
1.5154	2	630	61.10	
1.4986	2	631	61.86	
1.4678	1	444	63.31	
1.4522	1	632	64.07	
1.4380	<1	550	64.78	
1.4096	1	640	66.25	
1.3967	1	720	66.94	
1.3834	2	721	67.67	
1.3586 1.3468 1.3348 1.3234 1.3014	1 <1 <1 1	642 722 730 731 650	69.08 69.77 70.49 71.19 72.58	
1.2909	1	732	73.27	
1.2612	1	810	75.29	
1.2517	<1	811	75.96	
1.2423	<1	733	76.64	
1.2328	<1	820	77.34	
1.2240	<1 <1 <1 <1 <1 <1 <1	821	78.00	
1.2154		653	78.66	
1.1985		822	79.99	
1.1817		831	81.36	
1.1740		751	82.01	
1.1513	<1	752	83.99	
1.1290	<1	841	86.04	
1.1223	<1	910	86.68	
1.1158	<1	911	87.31	
1.1090	<1	842	87.99	
1.0961	1	921	89.30	
1.0836	<1	664	90.61	
1.0774	<1	922	91.28	
1.0717	<1	930	91.90	
1.0545	<1	852	93.85	

Zemann, A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit, K₂ Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

The sample was prepared at NBS by melting a stoichiometric mixture of $K_{\rm c}\,{\rm SO}_4$ and CaSO₄. This was then annealed for 18 hours at 700 °C.

Major impurities

0.01 -0.1 % each: Ag and Cu.

0.1 -1.0 % each: Cs and Na.

Color

Colorless.

Optical data

Biaxia1(-) N $_{\alpha}$ =1.522, N $_{\beta}$ =1.526, N $_{\gamma}$ =1.527, 2V is small.

Structure

Orthorhombic, probably $P2_1 2_1 2_1 (19)$, Z=4. Distorted langbeinite type. $K_2 Ca_2 (SO_4)_3$ has been reported as cubic [Ramsdell, 1935].

Lattice constants

	a(Å)	b(Å)	c(Å)
Ramsdell [1935] NBS, sample at	10.35		
25° C	10.334 ±.001	10.501 ±.001	10.186 ±.001

Density

(calculated) 2.683 g/cm³ at 25 °C.

Reference intensity

 $I/I_{corundum} = 0.9$

Polymorphism

Inverts to a cubic langbeinite form at 200 °C [Morey et al.,1964]. An inversion at 940 °C has also been reported [Bell-anca,1942].

Internal standard W, a = 3.16516 Å $CuKa_1$ λ = 1.54056 Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
7.32	4	011	12.08
5.969	8	111	14.83
4.665	3	021	19.01
4.574	6	012,102	19.39
4.255	28	121	20.86
4.221 4.189 3.462 3.315 3.272 3.263	23 16 12 93 } 79 {	211 112 221 130,031 310 301	21.03 21.19 25.71 26.87 27.23 27.31
3.225	100	013,103	27.64
3.152	18	131	28.29
3.116	18	311	28.62
3.082	3	113	28.95
2.987	2	222	29.89
2.881 2.853 2.786 2.776 2.750 2.743	18 6 43 49 } 43 {	032,320 302,023 231 132 312,123 213	31.02 31.33 32.10 32.22 32.53 32.62
2.543	6	140,041	35.26
2.510	4	410,322	35.75
2.497	4	223	35.93
2.471	4	104,141	36.32
2.436	2	033,411	36.86
2.406	2	114	37.35
2.387	3	331	37.65
2.372	7	133	37.90
2.357	2	313	38.15
2.341	2	240	38.42
2.333	2	042	38.55
2.276	5	142	39.56
2.250	2	412	40.04
2.232	3	214	40.38
2.213	4	332	40.74
2.204	8	233	40.91
2.196	11	323	41.07
2.125	4	242	42.50
2.109	18	422	42.84

Internal standard W, a = 3.16516 Å
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C

$CuKa_1$ $\lambda = 1.54056$ A; temp. 25 °C			
đ (Å)	I	hkl	2θ(°)
2.093	22	224	43.18
2.058	8	150,051,+	43.97
2.044	6	341	44.27
2.037	14	431,143	44.44
2.018	19	413,151,+	44.88
2.010	14	314	45.06
1.990	4	333,511	45.55
1.941	2	052	46.75
1.932	5	342	47.00
1.924	6	432,520	47.21
1.914	6	502,423,+	47.46
1.908	4	152,324	47.62
1.891	3	521	48.08
1.884	1	512	48.26
1.818	2	252	50.14
1.811	6	441	50.33
1.799	2	144,522	50.71
1.793	3	350	50.88
1.786	4	414,053	51.09
1.780	4	530,343	51.27
1.765	2	503,035	51.75
1.753	2	305,531	52.13
1.730	2	315	52.89
1.725	2	160,061	53.04
1.700	6	161,610	53.87
1.697	6	601,006	53.98
1.692	8	352	54.17
1.688	8	253	54.30
1.675	5	016,106,+	54.74
1.664	4	325	55.16
1.654	5	062,116	55.51
1.635	2	162	56.22
1.631	2	602	56.35
1.610	7	434,045	57.15
1.604	6	504,541	57.40
1.600	4 2	154,405	57.55
1.594		216	57.78

Additional patterns

1.PDF card 17-0741 [Morey et al.,1964]

References

Bellanca, A. (1942) L'aftitalite nel sistema ternario K₂ SO₄ -Na₂ SO₄ -CaSO₄, Periodico Mineral. (Rome) 13, 21-85.

Morey, G.W., J.J. Rowe, and R.O. Fournier (1964). The system $K_2 \, \text{Mg}_2$ (SO₄)₃ (langbeinite) - $K_2 \, \text{Ca}_2$ (SO₄)₃ (calcium-langbeinite), J. Inorg. Nucl. Chem. 26, 53-58.

Ramsdell, L.S. (1935). An x-ray study of the system $K_2 SO_4$ -MgSO₄ -CaSO₄, Am. Mineralogist. 20, 569-574.

The sample was crystallized from a mixture of concentrated hydrochloric acid, KCl and $CuCl_2$ by dehydration in a desictator.

Major impurities

less than 0.001% each of Al, Ba, Ca, Mg,

and Si

Color

Strong brown

Optical data

Anisotropic, $N_{\alpha}=1.670$, $N_{\gamma}=1.890$.Crystals were very fine and needle shaped.

Structure

Monoclinic, $P2_1/c$ (14), Z=4, Structure determined by Willett et al. [1963]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Willett et al [1963] NBS	4.029 ±.005	13.785 ±.003	8.736 ±.004	97°20′ ± 5′
sample at 25 ℃	4.031 ±.001	13.788 ±.002	8.732 ±.001	97°10 ′ ± 1′

Density

(calculated) 2.883 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.0$

References

Willett, R. D., C. Dwiggins, Jr., R. F. Kruh and R. E. Rundle (1963). Crystal structures of KCuCl₃ and NH₄ CuCl₃. J. Chem. Phys. 38, 2429-2436.

Internal standard W, a = 3.16516	Å
$CuKa_1 \lambda = 1.54056 \text{ Å; temp. 25}$	°C

d (Å)	I	hkl	2θ(°)
7.33	65	011	12.06
6.89	100	020	12.84
5.40	55	021	16.41
4.33	14	002	20.47
4.13	30	012	21.48
4.06	40	031	21.87
3.67	75	022	24.20
3.45	8	040	25.81
3.366	15	111	26.46
3.342	12	121	26.65
3.178	80	102	28.42
3.061	95	112	29.15
2.937	15	131	30.41
2.856	90	122	31.29
2.772	40	102,131	32.27
2.714 2.698 2.665 2.629 2.572	90 75 40 60	112 042 023 051 122	32.98 33.18 33.60 34.07 34.85
2.454	6	113	36.58
2.374	25	132	37.87
2.346	30	123	38.34
2.326	17	052	38.67
2.271	45	150	39.66
2.222	45	061	40.57
2.215	45	043	40.69
2.186	11	113	41.26
2.158	13	142,151	41.83
2.142	4	014	42.16
2.110	12	123	42.83
2.066	20	024	43.77
2.020	17	143	44.83
2.001	40	200	45.29
1.959	25	034	46.30
1.932	12	124	46.99
1.921	20	071	47.28
1.863	30	143	48.84
1.850	17	153	49.22
1.844	16	134	49.38
1.792	18	072	50.90
1.767	17	170	51.69
1.750	19	171	52.21
1.703	9	054	53.78

The sample was prepared by adding hydrofluoric acid to a mixture of $K_2 \, \text{CO}_3$ and NiCO $_3$. The material was then heated to about 200 °C.

Color

Pale yellow green

Structure

Cubic, perovskite type, Pm3m (221) Z=1 [Rüdorff et al., 1958]. KNiF₃ was reported by Martin et al., [1956] as pseudocubic.

Lattice constants

	a(Å)
Martin et al.[1956]	4.01*
Rüdorff et al.[1959] Hirakawa et al.[1960]	4.009 4.015
Okazaki and Suemune[1961]	±.001 4.014
	±.001 4.012
Knox [1961]	4.0127
	±.0001

*pseudocubic

Density

(calculated) 3.978 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.0$

Additional patterns

1.PDF card 1-0985 Dow Chemical Co., Mid-land, Michigan.

Internal standard W, a = 3.16516 Å $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C

d (Å)	I	hkl	2θ(°)
4.02 2.84	30 100	100 110 111	22.12
2.317 2.006 1.795	12 65 11	200 210	38.83 45.15 50.83
1.639 1.418 1.3376 1.2686	30 25 4 10	211 220 300 310	56.07 65.80 70.32 74.77
1.2096	2	311	79.11
1.1581 1.1129 1.0726 1.0032	8 2 9 4 2	222 320 321 400 410	83.38 87.60 91.80 100.32 104.65
.9457 .9206 .8973 .8757	6 2 8 2 4	411 331 420 421 332	109.08 113.59 118.29 123.20 128.45
.8190 .7870	5 3	422 510	140.27 156.35

References

Hirakawa, K., K.Hirakawa and T. Hashimoto (1960). Magnetic properties of potassium iron group fluorides, KMF3, J.Phy. Soc. Japan 15, 2063-2068.

Knox, K.(1961). Perovskite-like fluorides, I. Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃, and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃, Acta Cryst. 14, 583-585.

Martin, R.L., R.S. Nyholm and N. C. Stephenson (1956). Antiferromagnetism in complex fluorides with perovskite structure Chem. Ind. (London) 1956, 83-85.

Okazaki,A. and Y. Suemune(1961). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures, J. Phys. Soc. Japan 16, 671-675.

Rüdorff, W., J. Kändler, G. Lincke and D. Babel (1959). Über Doppelfluoride von Nickel und Kobalt, Angew. Chem. 71, 672.

The sample was $% \left(1\right) =1$ prepared at NBS by slow evaporation of an equimolar solution of $K_{2}\,SO_{4}$ and $ZnSO_{4}$.

Major impurities

less than 0.001 % each: Ca, Cu, Li, Mg, Mn, Rb, and Si

Color

Colorless

Optical data

Biaxial(+) N_{\alpha}=1.478, N_{\beta}=1.481, N_{\gamma}=1.496 2V is large

Structure

Monoclinic, $P2_1/a$ (14), Z=2. Isostructural with other "Tutton's salts" [Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_2 Mg (SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Kohler, Franke* [1965] NBS, sample	9.04	12.20	6.15	104°48′
at 25 °C	9.041 ±.001	12.215 ±.001	6.156 ±.001	104°49′ ±1′

*PDF card 18-1074

Density

(calculated) 2.242 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.3$

Interna	l standard W, a = 3.16516 Å	
CuKa ₁	$\lambda = 1.54056$ Å; temp. 25 °C	

0		<u> </u>	<u> </u>
d (Å)	I	hkl	<i>2</i> θ(°)
6.12	14	020	14.46
5.96	6	001	14.86
5.35	12	011	16.57
5.13	12	111	17.28
5.00	4	120	17.72
4.38	25	200	20.27
4.265	28	021	20.81
4.154	87	111	21.37
4.051	82	201	21.92
3.845	4	211	23.11
3.691	100	130	24.09
3.581	10	121	24.84
3.552	10	220	25.05
3.374	4	221	26.39
3.362	12	031	26.49
3.303	25	131	26.97
3.159	18	201	28.23
3.058	41	211,040	29.18
2.975	64	002,112	30.01
2.872	4	231	31.11
2.846	8	311	31.40
2.832	17	310	31.56
2.806	29	221	31.86
2.742	21	122	32.63
2.684	7	141	33.35
2.640	7	321	33.93
2.557	6	222	35.06
2.513	5	141	35.70
2.502	10	240	35.86
2.495	13	231	35.97
2.448 2.406 2.401 2.380 2.260	<2 } 5 { 46 7	132 122 032 331 051	36.68 37.34 37.43 37.77 39.86
2.244	6	401,322,+	40.15
2.203	9	132	40.93
2.195	23	241	41.09
2.176	<2	212	41.46
2.150	3	410	41.98

Internal standard W, a = 3.16516 Å	
$CuKa_1 \lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	

$CuKa_1 \wedge = 1$.54056 A; temp. 25 °C		
d (\mathring{A})	I	hkl	2θ(°)	
2.137 2.131 2.114 2.107 2.093	16 { <2 4 3	$ \begin{array}{r} 151 \\ 250,042 \\ \hline 341 \\ 340,\overline{4}21 \\ \overline{2}51 \end{array} $	42.26 42.37 42.73 42.88 43.19	
2.071 2.058 2.037 2.024 2.010	12 14 } <2 {	242 331,420 060 402,113 203	43.66 43.95 44.44 44.74 45.07	
1.984	13	003,213	45.69	
1.945	<2	123,232	46.67	
1.932	2	251	47.00	
1.926	5	061,430	47.16	
1.910	<2	152,223	47.57	
1.893 1.889 1.876 1.871 1.856	6 8 8 8	342 052 411,351 350 313	48.03 48.14 48.49 48.61 49.03	
1.849	3	161	49.23	
1.831	6	133	49.75	
1.820	8	261	50.09	
1.815	4	113,421,+	50.23	
1.803	5	233	50.59	
1.783	7	033	51.18	
1.776	8	322,440	51.41	
1.758	2	123	51.96	
1.731	6	510	52.85	
1.722	<2	431	53.15	
1.707	3	351,333	53.66	
1.696	2	162	54.02	
1.691	4	332	54.21	
1.680	4	520,062,+	54.58	
1.674	4	071,133	54.79	
1.654	<2	203,451	55.51	
1.650	<2	262	55.66	
1.639	<2	213,423,+	56.07	
1.628	2	450	56.46	
1.623	4	171	56.68	

Interna	l sta	ndard	W	, a	= 3.10	5516	δÅ
CuKa,	λ =	1.5405	6.	ô A;	temp.	25	°C

d (Å)	I	hkl	2θ(°)
1.608 1.597	2 <2	162 223	57.23 57.68
1.577	3	532	58.47
1.566	<2	412	58.93
1.559	<2	452,511	59.20
1.555	<2	541	59.39
1.539	<2 2	053 204,233	60.05 60.32
1.522	<2	214,114	60.83
1.517	2	540,172	61.05
1.505	2	072, <u>1</u> 80	61.59
1.496	<2	<u>3</u> 70 , 611	62.00
1.486	2	124,443	62.46
1.474	<2	$\bar{1}81, \bar{5}23$	63.02
1.472	<2	432	63.09
1.467	<2	153,531	63.35
1.463	<2	313,621	63.52
1.452	< 2	551,172	64.06
1.445	<2	024,163,+	64.42

Additional patterns

- 1. PDF card 1-421, [Hanawalt et al., 1938]
- 2. PDF card 18-1074, [Kohler and Franke, 1965]

References

Hanawalt, J.D., H.D. Rinn, and L.K. Frevel (1938). Chemical analyses by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512.

Kohler, K. and W. Franke (1965). Mineralogisches Institut Freie Universität, Berlin, Germany.

Margulis, T. N. and D.H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 344-357.

Tutton, A. E.(1893).Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium, and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)·6H₂O, J. Chem. Soc. 63, 337-423.

The sample was prepared by melting a stoichiometric mixture of $Rb_2\,SO_4$ and $3CdSO_4\cdot 8H_2\,O$, which was then air quenched and annealed at 700 °C for 18 hours.

Color

Colorless

Optical data

Isotropic, N=1.590

Structure

Cubic, $P2_13$ (198), Z=4, langbeinite type [Gattow and Zemann,1958]. The langbeinite structure was determined by Zemann and Zemann, [1957].

Lattice constants

	a(Å)
Gattow and Zemann[1958] NBS, sample at 25 °C	10.382 10.3810 ±.0002

Density

(calculated) 4.060 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 5.3$

Internal standard Ag, a = 4.08641 Å CuK $a_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
$d(\mathring{A})$	I	hkl	2θ(°)	
5.98	4	111	14.80	
4.64	9	210	19.12	
4.23	15	211	20.96	
3.669	5	220	24.24	
3.460	2	221	25.73	
3.283	100	310	27.14	
3.130	11	311	28.50	
2.881	5	320	31.02	
2.773	65	321	32.25	
2.593	1	400	34.56	
2.517	3	410	35.64	
2.380	2	331	37.76	
2.321	1	420	38.77	
2.265	1	421	39.77	
2.214	4	332	40.72	
2.119	24	422	42.63	
2.076	3	430	43.57	
2.037	31	510	44.44	
1.997	4	511	45.38	
1.927	7	520	47.11	
1.895	1	521	47.97	
1.806	5	522	50.48	
1.779	3	530	51.30	
1.706	2	610	53.68	
1.6840	19	611	54.44	
1.6413	8	620	55.98	
1.6208	6	621	56.75	
1.6017	8	541	57.49	
1.5476	3	630	59.70	
1.5304	6	631	60.44	
1.4978 1.4829 1.4680 1.4538 1.4397	3 3 1 1	444 632 710 711 640	61.90 62.59 63.30 63.99 64.69	
1.4260	2	720	65.39	
1.4126	5	721	66.09	
1.3874	2	642	67.45	
1.3748	1	722	68.15	

68.82

730

1.3631

Internal standard Ag, a = 4.08641 Å					
CuK a_1 $\lambda = 1.54056$ Å; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
1.3514 1.3291 1.3182 1.2971 1.2877	2 1 3 1 2	731 650 732 800 810	69.50 70.84 71.51 72.86 73.48		
1.2779 1.2684 1.2598 1.2499 1.2409	1 2 <1 1	811 733 820 821 653	74.14 74.79 75.43 76.09 76.74		
1.2236 1.2148 1.2068 1.1990 1.1827	4 1 5 2 1	822 830 831 751 832	78.03 78.70 79.33 79.95 81.28		
1.1754 1.1534 1.1465 1.1395 1.1261	3 1 . <1 1	752 841 910 911 920	81.89 83.80 84.42 85.06 86.32		
1.1196 1.1068 1.1003 1.0943 1.0882	2 1 2 3 1	921 664 922 930 931	86.94 88.21 88.86 89.48 90.12		
1.0767 1.0706 1.0596 1.0541 1.0486	1 1 1 <1 1	852 932 844 940 941	91.35 92.02 93.26 93.90 94.54		
1.0434 1.0331 1.0278 1.0179 1.0130	1 2 1 1	933 10·1·0 10·1·1 10·2·0 10·2·1	95.16 96.42 97.09 98.35 99.00		
1.0083	1	950	99.62		

Gattow, G. and J. Zemann (1958). Über Doppelsulfate vom Langbeinit-typ, $A_2^+B_2^{2^+}$ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240.

Zemann, A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit, K₂ Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

The material was made by melting a stoichiometric mixture of RbCl and $CaCl_2$. The sample was very hygroscopic.

Color

Colorless

Optical data

Very low birefringence, № 1.576, polysynthetic twinning was noted.

Structure

Orthorhombic, distorted perovskite, Pnma (62), Z=4, by analogy with NaZnFa.

Lattice constants

	a(Å)	b(Å)	c(Å)
NBS,	7.541	10.667	7.469
sample at 25 °C	±.001	±.001	±.001

Density

(calculated) 2.564 g/cm³ at 25° C.

	Internal standard W, a = 3.16516 A						
	CuK α_1 $\lambda = 1.54056$ Å; temp. 25 °C						
	d (Å)	I	hkl	2θ(°)			
	4.751	5	111	18.66			
	3.765	85	200,121	23.61			
	3.740	25	002	23.77			
	3.557	3	210	25.01			
	3.366	6	201	26.46			
i							
	3.351	7	102	26.58			
	3.208	12	031,211	27.79			
1	3.194	11	112	27.91			
	3.077	45	220	28.99			
	3.059	45	022	29.17			
ı							
į	2.952	7	131	30.25			
ı	2.846	9	221	31.41			
	2.837	13	122	31.51			
	2.667	65	040	33.58			
	2.653	100	202	33.75			

Interna	al standard W, a = $3.16516 \stackrel{\circ}{A}$	
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	

Julie	-1	01000 11, temp. 20	
d (Å)	I	hkl	2θ(°)
2.588	5	230	34.63
2.577	7	212	34.79
2.443	5	231	36.76
2.438	4	132	36.84
2.382	3	141,301	37.73
2.326	9	311	38.68
2.307	3	113	39.01
2.174	30	321	41.50
2.163	45	123	41.73
2.086	3	142,302	43.34
2.078	3	203	43.52
2.052	3	051	44.10
2.039	2	033,213	44.39
1.978	4	151,331	45.83
1.882	35	242	48.33
1.866	8	004	48.75
1.827	1	401	49.86
1.812	2	104	50.32
1.800	4	152,332	50.68
1.745	1	313	52.40
1.730	2	421	52.88
1.686	8	161	54.38
1.683	7	402	54.47
1.663	2	252,412	55.20
1.615	2	134	56.98
1.605	4	062,422	57.38
1.585	4	153,333	58.16
1.539	3	440	60.05
1.529	3	044	60.50
1.521	4	432	60.86
1.465	2	511,171	63.45
1.447	2	423	64.31
1.4429	2	324	64.53
1.4235	4	442	65.52
1.4208	4	163	65.66
1.4133	6	270,125,+	66.05
1.3865	<1	172,512	67.50
1.3646	2	531	68.73
1.3333	2	080	70.58
1.2569	5	280,600	75.59
1.2539	5	363,523	75.80
1.2482	4	325,610	76.21
1.1917	3	282,602	80.54
1.1878	3	444	80.86
1.1310	2	290,165	85.85

The material was prepared by melting a 1:2 mixture of Rb_2SO_4 and $CaSO_4$. This was followed by quenching in air, grinding, and then annealing at 650 $^{\circ}C$ for several days.

Color

Colorless

Optical data

Isotropic, N=1.520

Structure

Cubic, $P2_13$ (198), Z=4, langbeinite type [Gattow and Zemann, 1958]. The langbeinite structure was described by Zemann and Zemann, [1957].

Lattice constants

		a(Å)
Gattow and Zemann NBS, sample at 25	[1958] °C	10.57 10.5687 ±.0002

Density

(calculated) 3.034 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.6$

References

Gattow, G. and J. Zemann (1958). Über Doppelsulfate vom Langbeinit-Typ, $A_2^{+}B_2^{2+}$ (SO₄)₃, Z.Anorg. Allgem. Chem. 293, 233-240.

Zemann, A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit, K₂ Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

Internal standard Ag, a = 4.08641 Å $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C

d (Å)	I	hkl	2θ(°)
6.09	4	111	14.54
4.726	2	210	18.76
4.312	6	211	20.58
3.734	5	220	23.81
3.519	3	221	25.29
3.340	100	310	26.67
3.185	11	311	27.99
2.928	12	320	30.50
2.821	45	321	31.69
2.641	2	400	33.91
2.564	12	410	34.97
2.424	4	331	37.05
2.364	1	420	38.03
2.306	3	421	39.03
2.252	7	332	40.00
2.157	12	422	41.85
2.113	2	430	42.75
2.073	20	510	43.63
2.033	1	511	44.52
1.963	5	520	46.22
1.929 1.840 1.813 1.787 1.760	1 3 1 1 1 2	521 522 530 531 600 610	47.06 49.51 50.28 51.06 51.90 52.63
 1.714	12	611	53.42
1.6710	5	620	54.90
1.6502	5	621	55.65
1.6311	4	541	56.36
1.6120	1	533	57.09
1.5931	1	622	57.83
1.5752	4	630	58.55
1.5580	4	631	59.26
1.5251	2	444	60.67
1.5096	2	632	61.36
1.4943 1.4799 1.4651 1.4516 1.4380	1 1 1 4	710 711 640 720 721	

	Internal standard Ag, a = 4.08641 Å			
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.4122 1.3997 1.3879 1.3755 1.3531	2 1 1 2 1	642 722 730 731 650	66.11 66.78 67.42 68.11 69.40	
1.3421 1.3211 1.3106 1.3010 1.2912	2 <1 1 1	732 800 810 811 733	70.05 71.35 71.99 72.61 73.25	
1.2820 1.2724 1.2633 1.2454 1.2370	1 2 1 1	820 821 653 822 830	73.86 74.51 75.14 76.41 77.03	
1.2288 1.2203 1.2047 1.1966 1.1741	2 1 1 1	831 751 832 752 663	77.64 78.28 79.49 80.14 82.00	
1.1601 1.1533 1.1465 1.1397 1.1270	1 1 1 1	911 842 920 921 664	83.21 83.81 84.42 85.04 86.23	
1.1202 1.1140 1.1080 1.0958 1.0900	2 2 1 1	922 930 931 852 932	86.89 87.49 88.09 89.33 89.93	
1.0732 1.0674 1.0624 1.0568 1.0516	1 1 1 1	940 941 933 10·0·0 10·0·1	91.74 92.38 92.94 93.58 94.19	
1.0466 1.0364 1.0316 1.0267	1 1 1	10·1·1 10·2·0 10·2·1 950	94.78 96.01 96.61 97.22	

The sample was prepared by melting a stoichiometric mixture of Rb_2SO_4 and $MgSO_4 \cdot 7H_2O$. The melt was cooled quickly and annealed at 800 °C for 18 hours.

Color

Colorless

Optical data

Isotropic, N=1.556

Structure

Cubic, $P2_13$ (198), Z=4, langbeinite type [Gattow and Zemann, 1958]. The langbeinite structure was determined by Zemann and Zemann, [1957].

Lattice constants

		a(Å)
Gattow and Zemann [NBS, sample at 25 °	[1958] °C	10.005 10.0051 ±.0003

Density

(calculated) 3.367 g/cm³ at 25° C.

Reference intensity

 $1/I_{corundum} = 3.3$

References

Gattow,G.and J.Zemann (1958). Über Doppelsulfate vom Langbeinit-typ, A₂⁺B₂²⁺(SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240. Zemann,A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit,K₂Mg₂(SO₄)₃, Acta Cryst. 10, 409-413.

Internal standard W, a = 3.16516 Å $CuKa_1$ λ = 1.54056 Å; temp. 25 °C

	-		
d (Å)	I	hkl	<i>2</i> θ(°)
5.76 4.47 4.086 3.537 3.336	6 7 6 5	111 210 211 220 221	15.36 19.86 21.73 25.16 26.70
3.162	100	310	28.20
3.015	22	311	29.60
2.890	3	222	30.92
2.772	25	320	32.27
2.673	41	321	33.50
2.500	2	400	35.89
2.424	24	410	37.05
2.356	2	411	38.15
2.294	10	331	39.24
2.237	4	420	40.29
2.184	8	421	41.31
2.133	9	332	42.33
2.043	10	422	44.30
2.001	2	430	45.27
1.961	19	510	46.25
1.926	2	511	47.15
1.857	7	520	49.00
1.827	2	521	49.88
1.741	6	522	52.52
1.716	2	530	53.34
1.691	2	531	54.18
1.668	2	600	55.01
1.645	6	610	55.84
1.623	15	611	56.66
1.582	4	620	58.26
1.563	10	621	59.06
1.544	7	541	59.86
1.526	3	533	60.62
1.508	2	622	61.40
1.492	8	630	62.17
1.475	5	631	62.96
1.444	4	444	64.50
1.429	3	632	65.24
1.415	2	710	65.97
1.400	2	711	66.74

Inter	Internal standard W, a = 3.16516 Å			
CuKa	$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)	
1.387	1	640	67.47	
1.374	2	720	68.21	
1.3613	6	721	68.92	
1.3366	3	642	70.38	
1.3250	2	722	71.09	
1.3136	3	730	71.80	
1.3025	4	731	72.51	
1.2807	3	650	73.95	
1.2705	4	732	74.64	
1.2413	3	810	76.71	
1.2313	2	811	77.45	
1.2224	1	733	78.12	
1.2137	2	820	78.79	
1.2049	3	821	79.48	
1.1956	2	653	80.22	
1.1790	3	822	81.59	
1.1709	1	830	82.26	
1.1630	4	831	82.95	
1.1551	3	751	83.65	
1.1473	1	662	84.33	
1.1327	2	752	85.69	
1.1117	2	841	87.72	
1.1049	1	910	88.40	
1.0982	2	911	89.08	
1.0915	2	842	89.77	
1.0853	1	920	90.43	
1.0788	2	921	91.13	
1.0666	2	664	92.47	
1.0606	3	922	93.15	
1.0548	2	930	93.82	
1.0491 1.0376 1.0321 1.0161 1.0108	1 2 2 3	931 852 932 940 941	94.49 95.87 96.55 98.59 99.29	
1.0057	1	933	99.98	

The sample was prepared at NBS by melting an equimolar mixture of ${\rm Rb_2\,SO_4}$ and ${\rm MnSO_4}$.

Major impurities

0.01 -0.1 % each: Ag, Al, Cu, Na, and Sr

0.1 -1.0 % each: Cs

Color

Colorless

Optical data

Isotropic, N=1.590

Structure

Cubic, $P2_13$ (198), Z=4, langbeinite-type [Gattow and Zemann,1958]. The langbeinite structure was determined by Zemann and Zemann [1957].

Lattice constants

	a(Å)
Gattow and Zemann [1958]	10.218 ±.004
NBS, sample at 25 °C	10.2147 ±.0001

Density

(calculated) 3.546 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.6$

References

Gattow,G. and J.Zemann(1958). Über Doppelsulfate vom Langbeinit-typ, $A_2^{+}B_2^{2+}$ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240.

Zemann, A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit, K₂ Mg₂ (SO₄)₃, Acta Cryst. 10, 409-413.

Internal standard W	$V_{\rm A}$, a = 3.16516 Å
$CuKa_1 \lambda = 1.54056$	Å; temp. 25 °C

d (\mathring{A})	I	hkl	<i>2</i> θ(°)
5.901	2	111	15.00
4.170	6	211	21.29
3.613	6	220	24.62
3.405	2	221	26.15
3.230	100	310	27.59
3.081	17	311	28.96
2.950	1	222	30.27
2.833	3	320	31.55
2.731	50	321	32.76
2.554	2	400	35.11
2.479	12	410	36.21
2.344	4	331	38.37
2.284	2	420	39.41
2.228	3	421	40.45
2.179	7	332	41.40
2.086	15	422	43.34
2.043	2	430	44.30
2.004	22	510	45.21
1.967	2	511	46.11
1.898	7	520	47.89
1.866 1.805 1.778 1.752	2 1 5 2 2	521 440 522 530 531	48.76 50.52 51.33 52.16 52.99
1.703	1	600	53.79
1.679	4	610	54.60
1.658	15	611	55.37
1.615	5	620	56.96
1.595	7	621	57.74
1.576	6	541	58.50
1.557	2	533	59.29
1.540	2	622	60.02
1.523	6	630	60.76
1.506	5	631	61.52
1.474	3	444	62.99
1.459	3	632	63.72
1.445	2	710	64.43
1.431	1	711	65.15
1.417	2	640	65.85
1.403	2	720	66.60
1.390	6	721	67.30
1.365	3	642	68.71
1.353	2	722	69.43
1.341	2	730	70.13

Internal standard W, a = 3.16516 Å			
	$\alpha_1 \lambda = 1.$	54056 Å; temp. 25	°C
d (Å)	I	hkl	2θ(°)
1.3297	3	731	70.80
1.3080	2	650	72.16
1.2973	2	732	72.85
1.2771	1	800	74.19
1.2670	2	810	74.88
1.2572	2	811	75.57
1.2477	2	733	76.25
1.2389	1	820	76.89
1.2297	2	821	77.57
1.2208	2	653	78.24
1.2040	2	822	79.55
1.1954	1	830	80.24
1.1875	4	831	80.88
1.1793	2	751	81.56
1.1642	1	832	82.85
1.1563	2	752	83.54
1.1352	2	841	85.46
1.1278	1	910	86.15
1.1211	2	911	86.80
1.1143	2	842	87.46
1.1081	2	920	88.08
1.1013	3	921	88.76
1.0891	4	664	90.03
1.0826	4	922	90.72
1.0766	2	930	91.36
1.0708	2	931	92.00
1.0592	1	852	93.31
1.0536	3	932	93.96
1.0374	2	940	95.89
1.0319	2	941	96.57
1.0267	1	933	97.22
1.0216	2	10·0·0	97.88
1.0166	2	10·1·0	98.53
1.0116	<1	10·1·1	99.19
1.0017	1	10·2·0	100.53
0.9969	2	10·2·1	101.19
.9923	3	950	101.84
.9873	1	951	102.55
.9784	2	10·3·0	103.87
.9738	2	10·3·1	104.54
.9608 .9568 .9525 .9485 .9445 Plus 15	1 2 1 2 3 lines	10·3·2 871 953 10·4·0 10·4·1 to 0.8369	106.58 107.23 107.93 108.61 109.28

The sample was prepared by fusion of RbCl and $SrCl_2$. The material was hygroscopic.

Color

Colorless

Optical data

Very low birefringence, N≅1.550; polysynthetic twinning.

Structure

Orthorhombic, Pnma (62), Z=4, distorted perovskite, by analogy with RbCaCl $_3$ and other ABX $_3$ compounds.

Lattice constants

	a(Å)	$b(\mathring{A})$	c(Å)
NBS, sample	7.924	10.973	7.631
at 25 °C	±.001	±.002	±.001

Density

(calculated) 2.797 g/cm³ at 25° C.

Internal standard Ag, a = 4.08641 ÅCuK α_1 λ = 1.54056 Å; temp. 25 °C

	1		
d (Å)	I	hkl	2θ(°)
5.49	11	101,020	16.14
4.91	10	111	18.06
3.962	30	200	22.42
3.885	100	121	22.87
3.818	35	002	23.28
3.521	4	201	25.27
3.435	6	102	25.92
3.350	8	211	26.59
3.296	10	031	27.03
3.282	12	112	27.15
3.211	7	220	27.76
3.134	6	022	28.46
3.043	12	131	29.33
2.960	11	221	30.17
2.910	9	122	30.70
2.744	80	040	32.60
2.686	10	230	33.33
2.666	10	212	33.59
2.534	4	231	35.40
2.497	11	301	35.94
2.455	12	222,141	36.57
2.435	15	311	36.89
2.273	20	321	39.62
2.256	20	240	39.92
2.227	25	042	40.48
2.217	40	123	40.67
2.141	4	203	42.17
2.109	3	051	42.84
2.062	6	331	43.88
1.980	9	400	45.78
1.941	20	242	46.75
1.907	11	004	47.65
1.863	6	420,251	48.85
1.848	7	233,341	49.28
1.758	4	402	51.96
1.737	12	323,412	52.65
1.715	5	252	53.37

The sample was prepared by slow evaporation at room temperature of an equimolar solution of $Rb_2\,SO_4$ and $Z\,nSO_4$.

Color

Colorless

Optical data

Biaxial (+) N $_{\alpha}$ =1.483, N $_{\beta}$ =1.489, N $_{\gamma}$ =1.497 $_{2V}$ is large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2. $Rb_2Zn(SO_4)_2 \cdot 6H_2O$ is a "Tutton Salt" [Tutton, 1893]. The structure of a "Tutton Salt", $(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS sample at 25°C	9.185 ±.001	12.450 ±.002	6.242 ±.001	105°54.6′ ±.5

Density

(calculated) 2.596 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.6$

Inter	nal stan	dard Ag, a = 4.086	641 Å
CuK	$\lambda = 1.$	54056 Å; temp. 2	25 °C
d (Å)	I	hkl	2θ(°)
7.20	6	110	12.28
6.23	3	020	14.20
6.00	2	001	14.74
5.23	5	111	16.94
5.084	4	120	17.43
4.416	11	200	20.09
4.318	20	021	20.55
4.176	90	111	21.26
4.139	100	201	21.45
3.754	95	130	23.68
3.607	8	121,220	24.66
3.411	3	031	26.10
3.367	17	131	26.45
3.170	20	201	28.13
3.114	25	040	28.64
3.070	25	211	29.06
3.021	55	112,230	29.54
2.933	5	231,140	30.45
2.905	10	311	30.75
2.876	20	202	31.07
2.868	20	310	31.16
2.822	20	221	31.68
2.801	8	212	31.93
2.785	15	122	32.11
2.763	4	041	32.38
2.738	7	141	32.68
2.694	3	321	33.23
2.662	2	320	33.64
2.611	4	222	34.31
2.546	7	141,240	35.22
2.518	5	231	35.63
2.491	9	132,241	36.03
2.424	40	331,122	37.05
2.400	4	330	37.44
2.300	10	051	39.14
2.293	10	$\frac{3}{4}$ 22	39.25
2.248	6		40.07

321

132,241

202

40.29

40.58

40.67

2.237

2.221

2.217

20

Interna	l standard Ag, a = 4.08641 Å	
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	

CuKa	$\lambda = 1.$	54056 Å; temp. 2	5 °C
d (Å)	I	hkl	2θ(°)
2.182	3	212	41.35
2.168	9	250	41.62
2.160	8	042	41.78
2.134	6	251	42.32
2.112	11	242	42.78
2.081	10	420 331,060 402 203 160,213	43.46
2.076	6		43.56
2.070	3		43.69
2.045	4		44.26
2.020	3		44.84
2.001	9	431,003	45.28
1.962	5	061	46.23
1.958	5	251	46.34
1.934	3	342	46.95
1.916	8	052	47.42
1.911 1.899 1.896 1.857	4 9 6 10 5	401 341 313 133 261	47.55 47.85 47.95 49.00 49.09
1.843	2	233	49.66
1.817	3	511	50.16
1.801	8	440	50.65
1.784	2	322	51.17
1.769	3	123	51.63
1.762	2	521	51.86
1.749	5	510	52.27
1.735	2	261,431	52.73
1.727	4	351, 1 62	52.98
1.710	2	243	53.56
1.699 1.686 1.682 1.675	5 5 3 3 6	171,332,+ 133 043,262,+ 423 171,270	53.93 54.37 54.50 54.77 55.66
1.633	1	343,271	56.28
1.625	2	530	56.60
1.6091	5	532	57.20
1.5979	2	342	57.64

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E. (1893). Connection between the atomic weight of contained metals and the magnitude of the angles of crystals of isomorphous series. A study of the potassium, rubidium and cesium salts of the monoclinic series of double sulphates R₂M(SO₄)₂·6H₂O, J. Chem. Soc. 63, 337-423.

The sample was prepared at NBS by adding a solution of ZnCl₂ to one of RbF in HF. The precipitate was washed in water and alcohol.

Major impurities

0.01 -0.1 % each: Al, Ca, Cr, Cu, Fe, and Pt

0.1 -1.0 % each: Ba and Mg

Color

Colorless

Optical data

Isotropic, N=1.508

Structure

Cubic, Pm3m (221), Z=1. Perovskite-type. Various distortions of the perovskite structure have been reported as shown in the lattice constant table. The NBS pattern was indexed with the smaller cubic cell; however diffraction peaks were not sharp which may indicate that there was a slight degree of distortion.

Internal standard W, a = 3.16516 \mathring{A} CuKa₁ λ = 1.54056 \mathring{A} ; temp. 25 °C

Curc	$a_1 \cdots a_n$.54050 A, temp. 2.	, ,
d (Å)	I	hkl	2θ(°)
4.13	<1	100	21.52
2.914	100	110	30.66
2.380	17	111	37.77
2.062	53	200	43.88
1.6829	38	211	54.48
1.4574	25	220	63.81
1.3033	13	310	72.46
1.2427	3	311	76.61
1.1899	6	222	80.68
1.1014	12	321	88.75
1.0307	2	400	96.76
0.9717	6	330	104.89
.9457	1	331	109.08
.9217	6	420	113.39
.8788	3	332	122.44
.8413	4	422	132.58
.8084	7	510	144.69

Lattice constants

		_
	a(Å)	c(Å)
Ludekens and Welch [1952]- Klasens et al. [1953] Schmitz-DuMont and Bornefeld [1956] Crocket and Haendler [1960] NBS, sample at 25 °C		8.03*
	±.0001	

^{*}from kX

Density

(calculated) 4.929 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 5.6$

Additional patterns

 PDF card 12-0039 [Schmitz-DuMont and Bornefeld]

References

Crocket, D.S. and H.M. Haendler (1960). Synthesis of fluorometallates in methanol. Some structure relationships, J.Am.Chem. Soc., 82,4158-4162.

Klasens, H. A., P. Zalm, and F. O. Huysman (1953). The manganese emission in ABF₃ compounds, Philips Res. Rept. 8,441-451.

Ludekens, W.L.W., and A.J.E. Welch (1952).
Reactions between metal oxides and fluorides: some new double-fluoride structures of type ABF3, Acta Cryst., 5, 841.

Schmitz-DuMont,O. and H. Bornefeld (1956). Die Systemreihe Alkalifluorid/Zinkfluorid, Z.Anorg.Allgem.Chem., 287, 120-137.

^{**}pseudocubic

The sample of chortveitite was synthesized hydrothermally by Jun Ito. A stoichiometric mixture of Sc_2O_3 and SiO_2 was heated to 700 °C at a pressure of 2 kilobars for 20 hours.

Color

Yellowish white

Optical data

Birefringent, $N_{\alpha}=1.745$, $N_{\gamma}=1.760$

Structure

Monoclinic, C2/m (12), Z=2 [Gossner and Mussgnug, 1929]. Structure determined by [Zachariasen, 1930].

Density

(calculated) 3.394 g/cm3 at 25° C.

Additional patterns

- 1. PDF card 15-383 [Sakurai et al. 1962]
- 2. PDF card 15-798 [Toporov et al. 1962]
- 3. PDF card 19-1125 [Horne, 1966]
- 4. Sabina and Traill, [1960]
- 5. Sakurai et al. [1962] 2nd pattern

References

Gossner,B. and F. Mussgnug (1929). Beitrag
zur Kenntnis des Thortveitites, Centr.
Mineral., Geol. A, 1-5.

Horne,J.E.T.(1966). X-ray diffraction data
for thortveitite, Bull. Geol. Surv. Gt.
Brit. No.25, 97-99.

Sabina, A.P.and R.J.Traill (1960). Catalog of X-ray Diffraction Patterns and Specimen Mounts on File at the Geol. Surv. of Canada, Geol. Surv. Paper 60-4, 104.

Sakurai, K., K. Nagashima, and A. Kato (1962). Thortveitite from Kobe, Omiya, Kyoto, Japan, Bull. Chem. Soc. Japan 35, 1776-1779.

Toporov, N. A. and V. A. Vasil'eva (1962). Equilibrium diagram of the scandium oxide-silica binary system, Russ.J.Inorg. Chem. 7, 1001-1005.

Zachariasen, W. H. (1930). The structure of thortveitite, Sc₂Si₂O₇, Z.Krist.73, 1-6.

Lattice constants

	$a(\stackrel{\circ}{A})$	b(Å)	$c(\stackrel{\circ}{A})$	β (°)
Gossner et al. [1929]** Horne [1966]** NBS, sample at 25 °C	*6.57 6.65 ±.01 6.508 ±.001	8.60 8.62 ±.01 8.506 ±.001		103° 8′ 102°12′ ± 30′ 102°43′ ±1′

^{*}as published

^{**}natural mineral

	Internal standard W, a = 3.16516 Å CuK a_1 λ = 1.54056 Å; temp. 25 °C		
d (Å)	I	hkl	2θ(°)
5.09 4.57 4.257 3.131 3.114	15 7 3 100 {	110 001 020 111 021	17.40 19.41 20.85 28.48 28.64
2.926	47	201	30.53
2.588	15	130	34.63
2.543	13	220	35.26
2.373	3	201	37.89
2.279	2	002	39.50
2.236	2	112	40.29
2.169	18	131	41.60
2.126	3	040	42.48
2.084	10	202	43.39
2.073	8	221	43.62
2.043	16	311	44.29
2.010	1	022	45.06
1.957	1	112	46.35
1.927	5	041	47.12
1.870	14	222	48.64
1.794	2	132	50.85
1.737	3	311	52.62
1.720	4	241,312	53.21
1.696	7	330	54.01
1.690	10	331	54.22
1.685	9	202	54.40
1.640	19	132	56.02
1.587	5	400	58.08
1.519	6	151	60.96
1.507	9	203	61.49
1.493	6	332	62.14
1.489	5	242	62.32
1.462	2	402	63.59
1.418	7	060	65.83
1.391	3	113	67.24
1.366	7	133	68.64
1.335	3	421	70.46
1.323	5	351	71.20

A sample of SeO $_{\rm 2}$ from the Mallinckrodt Chemical Works was dried at 220 $^{\circ}$ C. The material was hygroscopic and the patterns were made with the sample enclosed in a dry mount.

Color

Colorless

Structure

Tetragonal, P4/mbc (135), Z=8, structure determined by McCullough [1937].

Lattice constants

	a(Å)	c(Å)
McCullough [1937]Swanson and Tatge [1953]-NBS, sample at 25 °C		5.061 5.08 5.0635 ±.0002

Density

(calculated) 4.161 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.6$

Additional patterns

1. PDF card 4-429 [Swanson and Tatge, 1953]

References

McCullough, J.D. (1937). The crystal structure of selenium dioxide, J. Am. Chem. Soc. 59, 789-794.

Swanson, H.E. and E. Tatge (1953). Standard X-ray Diffraction Powder Patterns, Natl.Bur.Std.U.S. Circ.539.Vol.I, 53-54.

Interna	al standard W, a = 3.16516 Å
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$

d (\mathring{A})	I	hkl	2θ(°)
5.909	12	110	14.98
4.180	55	200	21.24
3.742	60	210	23.76
3.227	55	201	27.62
3.008	100	211	29.67
2.644 2.531 2.345 2.327 2.321	9 25 10 10	310 002 311 112 320	33.87 35.43 38.36 38.66 38.77
2.167	11	202	41.65
2.110	6	321	42.83
2.092	5	400	43.21
2.029	<1	410	44.63
1.972	2	330	45.98
1.933	18	401	46.98
1.883	14	411	48.30
1.870	5	420	48.65
1.829	14	312	49.82
1.754	10	421	52.09
1.710	11	322	53.53
1.673	1	430	54.83
1.640	2	510	56.03
1.589	1	431	58.00
1.566	5	203	58.94
1.5599	8	511	59.18
1.5528	8	520	59.48
1.5387	11	213	60.08
1.5041	3	422	61.61
1.4850	<1	521	62.49
1.4784 1.4340 1.4225 1.3956 1.3800	1 1 2 6	440 530 313 432 531	62.80 64.98 65.57 67.00 67.86
1.3748	9	610	68.15
1.3268	2	611	70.98
1.3237	5	522	71.17
1.3135	4	403	71.81
1.3064	1	540	72.26

Inter	Internal standard W, a = 3.16516 Å		
CuK	$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C		
_ d (Å)	I	hkl	2θ(°)
1.2974	2	413	72.84
1.2798	1	621	74.01
1.2768	3	442	74.21
1.2646	4	541	75.05
1.2528	2	423	75.88
1.2105	5	631	79.04
1.2083	7	612	79.21
1.1826	1	550	81.29
1.1760	2	513	81.84
1.1608	2	542	83.15
1.1516	1	711	83.96
1.1112	2	324	87.77
1.0982	1	730	89.08
1.0929	2	533	89.63
1.0732	3	731	91.74
1.0709	2	650	91.99
1.0651	1	334	92.64
1.0546	<1	642	93.84
1.0475	2	651	94.67
1.0375	1	740	95.88
1.0331	<1	543	96.42
1.0238	<1	801	97.59
1.0162	<1	741	98.58
1.0143	1	820	98.83
1.0027	2	633	100.38
.9945 .9862 .9687 .9611 .9598	1 1 1 1	821 652 713 831 742	101.52 102.72 105.35 106.54 106.75
.9550 .9457 .9415 .9351	<1 1 1 1 3	751 315 822 840 614	107.53 109.07 109.79 110.92 111.59

Internal standard W, $a = 3.16516 \text{ Å}$ CuK a_1 $\lambda = 1.54056 \text{ Å}$; temp. 25 °C				
CuK	$a_1 \lambda = 1.$	54056 A; temp. 25	S *C	
d (Å)	d (Å) I hkl 2θ (°)			
.9236 .9204 .9113 .9089	1 2 1 2 2	910 733 405 544 760	113.02 113.62 115.40 115.88 116.20	
.9041 .8930 .8815 .8772	1 1 1 1	653 921 930 842 851	116.85 119.22 121.82 122.83 123.81	
.8684 .8643 .8539 .8492	<1 <1 1 1 <1	931 554 762 940 833	124.99 126.06 128.85 130.20 130.95	
.8447 .8374 .8325 .8251	1 1 2 1	770 941 932 861 654	131.53 133.80 135.42 137.98 140.84	
.8095 .8051 .8024 .8021 .8011	2 1 2 2 2	10·2·1 942 744 951 10·3·0	144.17 146.18 147.45 147.60 148.10	
.7991	1	763	149.15	

The sample was recrystallized from a water solution of reagent grade material from J.T.Baker Chemical Co., Phillipsburg, N.J.

Color

Unground: deep orange Ground: vivid orange

Optical data

Biaxial (+) $N_{\alpha}=1.660$, $N_{\beta}=1.698$, $N_{\gamma}=1.743$ $2V \cong 90$

Structure

Monoclinic, $P2_1/m$ (11), Z=4, [Campbell, 1956]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Campbell [1956] NBS,	12.6	10.5	6.05	94°54′
sample at 25℃	12.740 ±.001	10.778 ±.001	6.132 ±.001	95° 7′ ±1′

Density

(calculated) 2.360 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.8$

Interna	al standard W, a = 3.16516 Å	
$CuKa_1$	$\lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	

d (Å)	I	hkl	2θ(°)
8.20	5	110	10.78
6.34	5	200	13.95
5.70	20	101	15.54
5.47	25	210	16.19
5.40	80	020	16.40
5.31	20	101,011	16.69
5.041	20	111	17.58
4.957	10	120	17.88
4.772	20	111	18.58
4.607	10	201	19.25
4.239	40	$ \begin{array}{r} \hline 211 \\ 220 \\ 021 \\ 211, \overline{1}21 \\ 121 \end{array} $	20.94
4.105	10		21.63
4.042	10		21.97
3.924	85		22.64
3.786	25		23.48
3.632	5	301	24.49
3.502	30	221	25.41
3.444	5	311	25.85
3.321	20	221	26.82
3.175	20	400	28.08
3.041	100	410, 131	29.35
3.013	15	321	29.62
2.976	10	131	30.00
2.937	5	012	30.41
2.927	10	401	30.52
2.911	25	102	30.69
2.852	10	202	31.34
2.834	40	231	31.54
2.821	30	411	31.69
2.812	40	112	31.80
2.760	10	212	32.41
2.735	25	231,420	32.72
2.716	10	401	32.95
2.696	20	040	33.20
2.642	3	122	33.90
2.635	5	140,411	34.00
2.589	10	302	34.62
2.582	10	212 ·	34.71
2.560	5	122	35.02
2.516	5	312	35.65

Internal standard W, a = 3.165	
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 2	5 °C

$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
2.471	5	510	36.32
2.447	3	331	36.69
2.438	5	141	36.84
2.428	5	421	37.00
2.403	5	141	37.39
2.384	5	222	37.70
2.362	5	511	38.07
2.332	3	322	38.57
2.320	2	312	38.78
2.305	2	402	39.05
2.271	10	340,241	39.66
2.263	5	132	39.80
2.233	3	232	40.35
2.223	3	511	40.55
2.209	3	521	40.81
2.168	2	431	41.63
2.115	5	600	42.72
2.100	5	332	43.04
2.095	5	521	43.14
2.074	<1	610,530	43.60
2.053 2.041 2.017 2.009 2.001	5 3 3 3	440 250 151 531,512 013	44.07 44.35 44.91 45.08 45.27
1.977	5	142	45.85
1.969	5	620	46.06
1.959	2	242,213	46.31
1.953	2	251	46.47
1.920	10	531,350,+	47.30
1.914	10	611,441	47.47
1.907	15	123	47.65
1.902	15	303	47.77
1.871	10	502	48.61
1.867	10	223,342	48.74
1.861	5	213,123	48.91
1.847	5	540	49.31
1.843	3	512	49.40
1.830	4	621	49.79
1.811	3	700,351	50.33

	Internal standard W, a = 3.16516 Å $\text{CuK}\alpha_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C				
d (Å) I hkl 2θ (°)					
1.800	5	541	50.66		
1.796	5	060	50.80		
1.783	5	3 42,7 01	51.20		
1.775	5	532	51.43		
1.763	3	4 13	51.82		
1.758	5	711, 152	51.96		

3

10

10

2

10

5

10

5

 $\frac{1}{4}42$

152

 $\overline{6}22,\overline{2}52$

721

261,233

 $640,\overline{5}03$

352

 $550,\overline{5}13$

52.15

52.81

53.22

54.17

54.83

55.20

55.41

55.94

Additional patterns

1.752

1.732

1.720

1.692

1.673 1.663

1.657

1.642

1. PDF card 1-0460 [Hanawalt et al.,1938].

References

Campbell, J.A. (1956). Note on the crystal structure of sodium dichromate dihydrate Acta Cryst. 9, 192.

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512.

J. Ito prepared the sample by heating lanthanum oxide and silicic acid with excess NaF. The crystals were removed from the molten NaF bath after several days.

*Exact analysis of percentages of Na and La is not known.

Color

Colorless

Optical data

Uniaxial (-) $N_0=1.838$, $N_e=1.816$

Structure

Hexagonal, P6₃ (173), Z=1, closely analogous to hydroxyapatite [Bowen and Dickens, 1968].

Lattice constants

	a(Å)	c(Å)
Bowen and Dickens [1968] Ito [1968]NBS, Sample at 25 °C	9.72 9.68 9.6890 ±.0002	7.16 7.19 7.1805 ±.0002

Density

(calculated) 4.971[†] g/cm³ at 25° C.

References

Bowen, J. S. and B. Dickens (1968). Private communication.

Ito, J. (1968). Private communication.

Internal standard W, a = 3.16516 Å $CuK\alpha_1$ $\lambda = 1.54056$ Å; temp. 25 °C

d (Å)	I	hkl	2θ(°)
4.195	24	200	21.16
4.013	25	111	22.13
3.622	4	201	24.56
3.594	32	002	24.75
3.300	41	102	27.00
3.172	31	210	28.11
2.901	100	211	30.80
2.883	70	112	30.99
2.798	28	300	31.96
2.727	3	202	32.81
2.378	2	212	37.80
2.328	9	310	38.64
2.296	3	221	39.20
2.207	4	302	40.85
2.146	15	113	42.08
2.098	7	400	43.08
2.080	3	203	43.47
2.009	21	222	45.10
1.953	16	312	46.45
1.926	6	320	47.16
1.910	36	213	47.56
1.860	17	321	48.93
1.831	17	410	49.76
1.811	22	402	50.33
1.795	19	004	50.82
1.774 1.697 1.683 1.679	2 1 1 1	411 322 114 500 313	51.47 53.98 54.48 54.63 55.01
1.651	3	204	55.62
1.6314	2	412	56.35
1.5858	5	420	58.12
1.5755	7	331	58.54
1.5626	10	214	59.07
1.5488	1	421	59.65
1.5206	8	502	60.87
1.5112	8	304	61.29
1.4997	8	323	61.81
1.4744	8	511	62.99

[†] assuming Na₂La₈ (SiO₄)₆F₂

Interna	al standard W, a = 3.16516 Å
CuKa ₁	$\lambda = 1.54056$ Å; temp. 25 °C

CuK a_1 $\lambda = 1.54056$ A; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
1.4728	9	332	63.07		
1.4213	1	314	65.64		
1.3896	1	512	67.33		
1.3768	2	115	68.04		
1.3732	2	601	68.25		
1.3638	3	404	68.78		
1.3546	1	431	69.31		
1.3431	2	520	69.99		
1.3389	3	333	70.24		
1.3207	5	521	71.36		
1.3128	3	324	71.85		
1.3081	9	215	72.15		
1.3031	6	602	72.47		
1.2874	3	432	73.49		
1.2817	10	414	73.88		
1.2755 1.2597 1.2582 1.2356 1.2261	5 8 9 1	513 611 522 225 504	74.30 75.39 75.50 77.13 77.84		
1.2112	4	440	78.98		
1.1985	1	530	79.99		
1.1967	2	006	80.13		
1.1954	3	433	80.24		
1.1888	3	424	80.77		
1.1853	4	405,106	81.06		
1.1824	1	531	81.30		
1.1718	2	523	82.20		
1.1635	1	620	82.91		
1.1620	4	116	83.04		
1.1541	2	514	83.74		
1.1509	5	325,206	84.02		
1.1473	2	442	84.35		
1.1369	4	532	85.30		
1.1286	2	613	86.08		

Interna	l standard W, a = 3.165	16 Å
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp. } 25$	5°C

d (Å) I hkl 1.1198 <1 216 1.1115 2 710 1.0758 1 524	2θ(°) 86.92 87.74 91.45 91.76
1.1115 2 710	87.74 91.45
	91.45
1 0750 1 1 504	91.45
1.0758 1 524	
1.0730 4 335,226	
1.0644 4 425,316	92.72
1.0619 2 712	93.00
1.0489 1 800	94.51
1.0460 2 631	94.85
1.0420 3 614	95.33
1.0393 6 515,406	95.66
1.0290 3 542	96.93
1.0250 1 720	97.44
1.0141 3 632	98.85
1.0068 3 802	99.83
1.0040 5 444	L00.21
	L01.20
	L01.47
	L03.47
	L04.24
.9743 3 506 1	L04.49
	L05.33
	105.61
	106.34
	106.50
.9551 2 615,426 1	107.51
.9539 1 641 1	L07.70
1 1 1	108.83
	109.26

Sample source

Ito prepared the sample by heating neodymium oxide and silicic acid with an excess of NaF. The crystals were removed from the molten NaF bath after several days.

*Exact analysis of percentages of Na and Nd is not known.

Color

Unground- moderate purplish blue
Ground- pale purplish blue

Optical data

Uniaxial (-) $N_0 = 1.884$, $N_e = 1.860$

Structure

Hexagonal, $P6_3$ (173), Z=1. Closely analogous to hydroxyapatite. [Bowen and Dickens, 1968]

Lattice constants

	a(Å)	$c(\mathring{A})$
Bowen and Dickens [1968] Ito [1968] NBS, sample at 25 °C	9.51 9.55 9.5411 ±.0001	7.02 7.03 7.0331 ±.0002

Density (calculated) 5.362[‡] g/cm³ at 25° C.

*assuming NagNdg (SiO4)6F2

Reference intensity

 $I/l_{corundum} = 3.2$

References

Bowen, J.S. and B. Dickens (1968). Private communication.

Ito, J. (1968). Private communication.

Internal standard W, a = 3.16516 Å CuKa, λ = 1.54056 Å; temp. 25 °C

	- 1	,	
d (Å)	I	hkl	2θ(°)
4.769	3	110	18.59
4.130	26	200	21.50
3.948	24	111	22.50
3.513	22	002	25.33
3.235	42	102	27.55
3.122	33	210	28.57
2.855	100	211	31.30
2.831	52	112	31.58
2.754	29	300	32.48
2.677	2	202	33.45
2.336	2	212	38.51
2.293	8	310	39.26
2.258	5	221	39.89
2.180	2	311	41.39
2.169	4	302	41.60
2.105	12	113	42.94
2.067	6	400	43.77
2.039	2	203	44.40
1.974	23	222	45.93
1.921	16	312	47.28
1.896 1.875 1.831 1.803	6 31 16 20 23	320 213 321 410 402	47.94 48.52 49.77 50.59 51.26
1.757	14	004	51.99
1.6690	1	322	54.97
1.6500	1	114	55.66
1.6177	3	204	56.87
1.6048	1	412	57.37
1.5614	4	420	59.12
1.5511	8	331	59.55
1.5322	8	214	60.36
1.5240	2	421	60.72
1.4960	10	502	61.98
1.4820	7	304	62.63
1.4743	8	323	63.00
1.4518	6	511	64.09
1.4487	8	332	64.24
1.4291	2	413	65.23
1.3948	2	314	67.04
1.3674	1	512	68.57
1.3490	2	115	69.64
1.3389	3	404	70.24
1.3338	3	431	70.55

Internal standard W, a = 3.16516 Å CuK α_1 λ = 1.54056 Å ; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
1.3234	1	520	71.19
1.3162	3	333	71.64
1.3003	4	521,423	72.65
1.2893	2	324	73.37
1.2829	10	215,602	73.80
1.2673 1.2605 1.2586 1.2541 1.2401	2 } 12 { 6 6	432 610 414 513 611	74.86 75.34 75.47 75.79 76.80
1.2385	9	522	76.92
1.2117	1	225	78.94
1.2041	2	504	79.54
1.1991	1	315	79.94
1.1930	4	440	80.43
1.1862	2	612	80.99
1.1804	2	530	81.47
1.1756	2	441,433	81.87
1.1723	2	006	82.15
1.1676	3	424	82.56
1.1608	2	106	83.15
1.1522	3	523	83.91
1.1458	2	620	84.48
1.1381	4	116	85.19
1.1339	3	514	85.58
1.1307	4	621	85.88
1.1293	4	325,442	86.01
1.1190	4	532	87.00
1.1100	3	613	87.89
1.0974	1	216	89.16
1.0944	2	710	89.47
1.0894	1	622	89.99
1.0841	<1	604	90.56
1.0813	<1	711	90.86
1.0785	1	306	91.16
1.0751	1	434	91.53
1.0579	1	540	93.46
1.0543	3	533	93.87
1.0519	3	226	94.15
1.0453	3	425,712	94.94
1.0435	3	316	95.15
1.0409	1	630	95.47
1.0329	<1	800	96.45
1.0299	3	631	96.82
1.0244	4	614	97.52

Internal standard W, a = 3.16516 Å					
CuK	CuK α_1 λ = 1.54056 Å; temp. 25 °C				
d (Å)	I	hkl	2θ(°)		
1.0210 1.0195 1.0131 1.0095 0.9983	4 3 3 3 4	515 406 542 720 632	97.95 98.14 98.99 99.47 101.00		
.9910 .9871 .9830 .9701	4 5 4 1 2	802 444 117,416 722 810	102.03 102.59 103.19 105.12 105.58		
.9638 .9600 .9564 .9514	2 2 6 1	525 624 217 633 640	106.11 106.72 107.29 108.12 108.74		
.9437 .9394 .9387 .9325 .9297	1 1 3 2 2	307,336 641 615 812 730	109.42 110.16 110.29 111.39 111.89		
.9291 .9272 .9215 .9181 .9096	2 1 2 1	714 723 731 900 445	112.01 112.34 113.41 114.07 115.74		
.9065 .9042 .8958 .8942 .8926	1 1 <1 3 2	544 535 634 821 606	116.37 116.84 118.61 118.95 119.30		
.8905 .8877 .8838 .8792	1 3 <1 3	804 327 553 008 526	119.76 120.40 121.29 122.36 122.79		
.8733 .8662 .8641 .8597 .8550	2 1 2 2 1	822 650 733 651 903	123.78 125.57 126.11 127.27 128.57		
.8505 .8494	1	741 337	129.83 130.15		

Sample source

Ito prepared the sample by heating praseodymium oxide and silicic acid with an excess of NaF. The crystals were removed from the molten NaF bath after several days.

*Exact analysis of percentages of Na and Pr is not known.

Color

Unground- brilliant yellow green Ground- very light yellow green

Optical data

Uniaxial(-) $N_0=1.874$, $N_e=1.855$

Structure

Hexagonal, $P6_3$ (173) Z=1. Closely analogous to hydroxyapatite, [Bowen and Dickens, 1968].

Lattice constants

	a(Å)	c(Å)
Bowen and Dickens [1968] Ito [1968]NBS, sample at 25 °C	9.58 9.60 9.5828 ±.0002	7.05 7.09 7.0728 ±.0002

Density

(calculated) 5.207[‡] g/cm³ at 25° C.

*assuming Na₂Pr₈ (SiO₄)₆F₂

Reference intensity

 $I/I_{corundum} = 1.9$

Internal standard Ag, a = 4.08641 Å	
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C	

d (Å)	I	hkl	2θ(°)
4.80	3	110	18.48
4.149	19	200	21.40
3.969	20	111	22.38
3.531	14	002	25.20
3.252	29	102	27.40
3.136	27	210	28.44
2.866	100	211	31.18
2.846	46	112	31.41
2.764	26	300	32.36
2.693	3	202	33.24
2.395	2	220	37.52
2.302	8	310	39.09
2.268	3	221,103	39.70
2.188	4	311	41.23
2.179	4	302	41.41
2.115	14	113	42.71
2.075	6	400	43.59
2.051	2	203	44.12
1.983	28	222	45.72
1.929	17	312	47.08
1.904	7	320	47.73
1.885	40	213	48.25
1.838	20	321	49.54
1.811	20	410	50.34
1.789	32	402	51.00
1.768 1.680 1.677 1.660	14 1 2 2 3	004 223 322 500,114 204	51.65 54.57 54.70 55.30 56.55
1.613	2	412	57.06
1.5681	6	420	58.84
1.5575	9	331,403	59.28
1.5403	10	214	60.01
1.5315	6	421	60.39
1.5023	12	502	61.69
1.4895	11	510,304	62.28
1.4810	10	323	62.68
1.4581	11	511	63.78
1.4556	11	332	63.90

Internal standard Ag, a = 4.08641 Å $\text{CuK}_{\alpha_1} \lambda = 1.54056 \text{ Å}$; temp. 25 °C					
d (Å) I hkl 2θ(°)					
1.4366 1.4334 1.4026 1.3738 1.3643	2 2 1 1	413 422 314 512 430	64.85 65.01 66.62 68.21 68.75		
1.3574 1.3460 1.3399 1.3294	2 4 3 2 4	601,503,+ 404 431 520 333	69.15 69.82 70.18 70.82 71.25		
1.3059	7	521,423	72.29		
1.2956	4	324	72.96		
1.2894	13	215	73.37		
1.2729	2	432	74.48		
1.2655	18	610,414	74.99		
1.2600	6	513,305	75.37		
1.2460	14	611	76.37		
1.2439	8	522	76.52		
1.2185	1	225	78.42		
1.2105	2	504	79.04		
1.1975	5	440	80.07		
1.1913	2	612	80.57		
1.1851	1	530,334	81.08		
1.1809	3	441,433	81.43		
1.1788	4	006	81.60		
1.1735	5	424	82.05		
1.1687	3	405	82.46		
1.1671	2	106	82.60		
1.1576	5	523	83.43		
1.1508	3	620	84.03		
1.1446	5	116	84.59		
1.1397	4	514	85.04		
1.1354	8	325	85.44		
1.1240	7	532	86.52		
1.1151	6	613,415	87.38		
1.0995	4	710	88.95		
1.0944	1	622	89.47		
1.0864	1	711	90.31		
1.0765	1	505	91.37		
1.0625	2	540,524	92.93		

	Internal standard Ag, a = 4.08641 Å						
	$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C						
	d (Å)	d (Å) I hkl					
	1.0591	7	533,335	93.32			
	1.0575	6	226	93.51			
	1.0495	5	712,316	94.44			
	1.0375	2	800	95.88			
	1.0340	3	631,623	96.31			
	1.0290	5	614	96.93			
	1.0261	6	801,515	97.30			
	1.0250	6	406	97.44			
	1.0176	5	542	98.40			
	1.0139	1	720	98.88			
	1.0036	2	721	100.26			
	1.0036	3					
	0.9954	5 5	632	100.39			
	.9916	5 5	802	101.40			
	.9847	2	444	101.94			
	.9847	2	534	102.93			
	.9819	2	435,207	103.35			
	.9746	1	722	104.44			
	.9686	3	543,525	105.36			
	.9644	2	624	106.01			
	.9617	5	217	106.44			
	.9584	2	550	106.98			
	.9520	<1	640	108.02			
	.9485	3	336	108.61			
	.9432	3	615	109.51			
	.9365	3	812	110.67			
	0224	4	720 714	111 00			
	.9334	4	730,714	111.23			
	.9310	3	227	111.65			
	.9258	2	731	112.62			
	.9220	1	900	113.32			
	.9193	1	642	113.84			
	.9085	2	535,407	115.97			
	.8980	2	821,813	118.13			
١	.8971	2	606	118.32			
	.8947	3	804	118.84			
	.8925	5	327	119.32			

References

Bowen,J.S.and B.Dickens(1968) Private communication.

Ito, Jun (1968). Private communication

The sample was prepared by slow evaporation at room temperature of an aqueous solution of $Tl_2\,SO_4$ and $CoSO_4$ in a 1:8 molar proportion. The first crystals formed were used.

Color

Unground: dark yellowish pink. Ground: light pink

Optical data

Biaxial (-) N $_{\alpha}=1.599$, N $_{\beta}=1.613$, N $_{\gamma}=1.624$ 2V is medium large

Structure

Monoclinic, P2₁/a (14), Z=2. Isostructural with other "Tutton Salts" [Tutton, 1925]. The structure of a "Tutton Salt", $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25 °C	9.235 ±.001	12.442 ±.002	6.227 ±.001	106°24′ ±1′

Density

(calculated) 4.180 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.7$

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A.E. (1925). The monoclinic double sulphates containing thallium, thallium nickel and thallium cobalt sulphate, Proc.Roy.Soc. London, Ser. A 108, 240-261.

Interna	l standard A	g, a	a = 4.08	364	LĂ
CuKa.	$\lambda = 1.54056$	Å:	temp.	25	°C

d (Å)	I	hkl	2θ(°)
7.213	22	110	12.26
6.219	1	020	14.23
5.977	11	001	14.81
5.388	16	011	16.44
5.089	26	120	17.41
4.429	2	200	20.03
4.310	9	021	20.59
4.225	35	121	21.01
4.154	100	111	21.37
3.952	5	211	22.48
3.757	55	130	23.66
3.611	2	220	24.63
3.463	1	221	25.70
3.368	6	131	26.44
3.159	16	201	28.23
3.112	25	040	28.66
3.059	15	211	29.17
3.019	46	131,112	29.56
2.991	3	002	29.85
2.935	8	140	30.43
2.922	14	311	30.57
2.907	14	012	30.73
2.881	23	202	31.01
2.817	10	221	31.74
2.781	12	122	32.16
2.756	7	041	32.44
2.737	8	141	32.69
2.669	6	320	33.55
2.617	2	222	34.24
2.560	1	112	35.03
2.542	1	141	35.28
2.513	5	231	35.70
2.490	15	241, 132	36.04
2.433	27	331, 312	36.91
2.412	11	122	37.25
2.406	10	330	37.34
2.302	16	322	39.10
2.298	15	401,051	39.17
2.261	7	411	39.84
2.232	10	321	40.37

Internal standard Ag, a = 4.08641 Å						
1	CuK α_1 $\lambda = 1.54056$ Å; temp. 25 °C					
d (Å)	I	hkl	2θ(°)			
2.214	19	400,132	40.72			
2.170	8	212,250	41.58			
2.155	5	042,340	41.88			
2.136	5	251	42.27			
2.114	10	242	42.73			
2.086	5	420 060 412 113,203 160,213	43.34			
2.075	5		43.59			
2.053	5		44.07			
2.043	3		44.29			
2.019	5		44.86			
1.991 1.965 1.954 1.939	7 3 5 3 10	003 013, 123 251,430 342 052	45.52 46.14 46.43 46.81 47.52			
1.899	5	313	47.85			
1.886	3	411	48.21			
1.856	8	261	49.05			
1.853	8	133	49.13			
1.835	4	323,312	49.63			
1.804 1.776 1.771 1.759	7 3 5 4 4	440 322 521 123 333,170	50.54 51.38 51.56 51.93 52.44			
1.725	1	Ī62,351+ 520,071 332,522 133,043 270,171	53.03			
1.704	3		53.74			
1.692	5		54.16			
1.6772	4		54.68			
1.6489	5		55.70			
1.6290	3	530	56.44			
1.6179	4	532	56.86			
1.5969	2	452	57.68			
1.5801	3	143,253	58.35			
1.5660	3	412	58.93			
1.5554	3	080,053	59.37			
1.5422	5	214	59.93			
1.5299	4	371	60.46			

The sample was prepared by slow evaporation at room temperature of an aqueous solution of ${\rm Tl_2\,SO_4}$ and ${\rm CuSO_4}$ in a 1:8 molar proportion. The first crystals formed were used.

Color

Unground: brilliant greenish blue Ground: greenish white

Optical data

Biaxial, $N_{C}\!=\!1.600,~N_{\beta}\!=\!1.610,~N_{\gamma}\!=\!1.620$ 2V is very large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2. Isostructural..with other "Tutton" salts [Tutton, 1928]. The structure of a "Tutton" salt, $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2 O$ was determined by Margulis and Templeton, [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.268 ±.001	12.364 ±.001	6.216 ±.001	105°33.3′ ±.5′

Density

(calculated) 3.740 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.5$

Internal standard Ag, a = 4.08641 Å $CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25 °C

d (Å)	I	hkl	20(°)
7.22	26	110	12.24
5.98	13	001	14.79
5.394	20	011	16.42
5.084	22	120	17.43
4.467	4	200	19.86
4.302	10	021	20.63
4.197	100	111,210,+	21.15
4.153	70	201	21.38
3.940	13	211	22.55
3.742	64	130	23.76
3.623	3	220	24.55
3.450	1	221	25.80
3.399	2	031	26.20
3.350	8	131	26.59
3.195	28	201	27.90
3.091	38	$ 040,211 \\ 230,131 \\ \bar{1}12 \\ 140,\bar{3}11 \\ 012 $	28.86
3.024	36		29.51
3.008	37		29.67
2.920	22		30.59
2.910	19		30.70
2.894	13	310	30.87
2.868	26	202	31.16
2.837	11	221	31.51
2.795	3	212	32.00
2.773	16	122	32.25
2.746	7	041	32.58
2.721	9	141	32.89
2.682	10	320	33.38
2.603	4	222	34.43
2.523	4	231	35.55
2.477	18	241, 132	36.23
2.428	37	331	36.99
2.421	35	032, 312	37.11
2.412	15	330	37.24
2.375	2	311	37.85
2.304	7	401	39.06
2.291	16	322	39.29
2.286	17	051	39.39
2.265	8	411	39.77
2.254	11	321	39.96

Internal standard Ag, a = 4.0864	ı Å
$CuKa_1 \lambda = 1.54056 \text{ Å}$; temp. 25	°C

CuKa	$\lambda = 1.$	54056 Å; temp. 2	5 ℃
d (Å)	I	hkl	2θ(°)
2.232	8	400	40.38
2.221	23	241,132	40.58
2.191	2	212,142	41.17
2.162	9	250,151	41.74
2.154	5	341	41.91
2.124	8	251	42.53
2.117	6	332	42.67
2.102	16	242	43.00
2.061	4	060	43.89
2.047	6	412	44.20
2.041 2.009 2.005 1.996 1.964	6 6 10 2	Ī13 431,213,+ 142 003 Ī23,430	44.34 45.08 45.19 45.40 46.19
1.959	4	232	46.32
1.939	3	161	46.81
1.928	4	401,342	47.10
1.907	12	052,411	47.64
1.890	5	313	48.11
1.850	10	Ī33	49.21
1.846	9	441,261	49.33
1.827	5	323,233	49.86
1.809	10	440	50.40
1.794	2	322	50.86
1.775	6	521	51.45
1.769	10	123	51.64
1.766	6	510	51.71
1.747	2	431,352	52.33
1.737	4	403,512	52.65
1.733	5	170	52.79
1.715	4	162,520	53.38
1.705	7	332	53.70
1.687	4	171,522	54.34
1.684	6	451,133	54.43
1.674	4	262,423	54.80
1.649	2	213	55.71
1.644	4	270	55.89
1.641	6	171	56.00
1.638	6	530	56.10

Internal standard Ag, a = 4.08641	Å
$CuKa$, $\lambda = 1.54056$ A: temp 25 °	C

	d (Å)	I	hkl	2θ(°)
	(/			(/
	1.626	2	343,271	56.55
	1.614	4	_ 532	57.01
	1.590	3	452 , 541	57.95
	1.582	4	412,362	58.27
	1.5725	4	253	58.66
	1,5502	2	204	59.59
	1.5455	3	271,080,+	59.79
	1.5378	4	$\frac{2}{2}$ 14	60.12
	1.5338	6	172, 114	60.12
	1.5229	5	180,371	60.29
	1.3229	3	160,371	60.77
	1.5143	6	443,460	61.15
	1.4995	5	124,314	61.82
	1.4889	4	432,600	62.31
	1.4732	2	313	63.05
	1.4538	2	533	63.99
			_	
	1.4344	4	404,063	64.96
	1.4264	2 3	37 <u>1</u>	65.37
	1.4179		442,334	65.81
	1.4067	1	034,114	66.40
1				

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 334-357.

Tutton, A. E.(1928). The hexahydrated double sulphates containing thallium, Proc. Roy. Soc. London, Ser. A 118, 367-392.

The sample was prepared by slowly evaporating a 1:8 mixture of molar solutions of ${\rm Tl_2\,SO_4}$ and MgSO $_4$, and using the first crystals formed.

Color

Colorless

Optical data

Biaxial, $N_{\alpha}{=}1.570,~N_{\beta}{=}1.588,~N_{\gamma}{=}1.595,$ 2V is very large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2, isostructural with other "Tutton Salts" [Tutton, 1928]. The structure of a Tutton salt, $(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Hoffman [1932] NBS,	9.24	12.44	6.197	106° 30′
sample at 25°C	9.273 ±.001	12.472 ±.002	6.214 ±.001	106° 23′ ±1′

Density

(calculated) 3.532 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.6$

Interna	l sta	andard	Ag,	a = 4.0	8641	LÅ
CuKa ₁	λ =	1.5405	5 Å;	temp.	25	°C

d (Å)	I	hkl	2θ(°)
7.24	50	110	12.22
6.24	2	020	14.19
5.95	19	001	14.87
5.37	19	011	16.48
5.10	33	120	17.37
4.44	2	200	19.97
4.30	8	021	20.62
4.227	53	121	21.00
4.162	100	111	21.33
3.957	8	211	22.45
3.764	66	130	23.62
3.467	2	221	25.67
3.369	6	131	26.43
3.164	25	201	28.18
3.117	40	040	28.61
3.065	21	211	29.11
3.025	47	230,131	29.50
3.010	39	112	29.65
2.982	5	002	29.94
2.931	26	311	30.47
2.897	21	012	30.84
2.882	35	202,310	31.00
2.820	8	221	31.70
2.808	7	212	31.84
2.777	18	122	32.21
2.742	11	141	32.63
2.678	13	320	33.43
2.614	1	222	34.27
2.555	4	112,240	35.09
2.517	7	231	35.64
2.499	21	241	35.91
2.488	20	132	36.07
2.442	35	331	36.77
2.412	18	330,122	37.25
2.302	24	051	39.10
2.270 2.239 2.222 2.205 2.171 2.155	10 11 25 9 9	411 321 241 202 212,151 042	39.68 40.24 40.57 40.86 41.57 41.88

Internal standard Ag, a = 4.08641 Å					
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
2.141	8	251	42.18		
2.116	10	242	42.70		
2.096	3	420	43.12		
2.079	2	222,060	43.50		
2.058	5	412	43.97		
2.039	3	Ī13	44.39		
2.024	3	160	44.75		
2.018	4	431	44.89		
1.987	6	003	45.62		
1.960	7	251,430	46.29		
1.955	6	<u>1</u> 61	46.40		
1.942	3	$\frac{101}{342}$	46.74		
1.942	9	401,052	47.48		
1.898	4	313	47.90		
1.862	4	261	48.88		
1.802	4	201	40.00		
1.851	5	1 33	49.17		
1.835	5	323	49.63		
1.811	8	440	50.35		
1.801	2	242	50.64		
1.778	5	521	51.35		
1.760	5	<u>3</u> 52	51.91		
1.757	5	123	51.99		
1.746	7	403,170	52.35		
1.724	í	162	53.00		
1.711	1	$\overline{5}20,\overline{3}61$	53.52		
1.695	5	332,451	54.07		
1.676	3	133,043	54.72		
1.651	3 6	252,171	55.61		
1.635	4	213,343	56.20		
1.622	3	532	56.72		
1.022	7	332	30.72		

References

Hoffman, W. (1931). Die Struktur der Tuttonschen Salze, Z. Krist, 78, 279-333.

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium and ammonium suflate hexahydrate, Z. Krist, 117, 344-357.

hydrate, Z. Krist, 117, 344-357.

Tutton, A.E. (1928). The hexahydrated double sulphates containing thallium, Proc. Roy. Soc. London Ser. A 118 367-392.

The ${\rm Tl_2\,Mn_2}$ (SO₄)₃ was crystallized by evaporation at 90°C from a stoichiometric aqueous solution of ${\rm Tl_2\,SO_4}$ and ${\rm MnSO_4}$.

Major impurities

0.01 -0.1 % each: Al, Cu, and K

0.1 -1.0 % each: Mg

Color

Colorless

Optical data

Isotropic, N=1.722

Structure

Cubic, $P2_1/3$ (198), Z=4, langbeinite type, structure of langbeinite, $K_2 Mg_2$ (SO₄)₃, determined by Zemann and Zemann [1957].

Lattice constants

		a(Å)
Zemann and Zemann	[1957]	10.223 ±.006
Gattow and Zemann	[1958]	10.229 ±.004
NBS, sample at 25	°C	10.2236 ±.0002

Density

(calculated) 5.015 g/cm3 at 25° C.

Reference intensity

 $I/I_{corundum} = 4.3$

	al standard W, a = 3.16516 Å
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp. 25 °C}$

d (Å)	I	hkl	<i>2θ</i> (°)
5.90	27	111	15.01
5.110	2	200	17.34
4.574	12	210	19.39
4.172	18	211	21.28
3.613	22	220	24.62
3.407	12	221	26.13
3.232	100	310	27.58
3.082	18	311	28.95
2.951	1	222	30.26
2.834	22	320	31.54
2.731	58	321	32.76
2.479	24	410	36.20
2.409	1	411	37.29
2.356	7	331	38.34
2.286	2	420	39.38
2.231	8	421	40.39
2.180	8	332	41.39
2.087	17	422	43.31
2.045	3	430	44.26
2.005	33	510	45.18
1.968 1.899 1.867 1.807	2 9 3 1 4	511 520 521 440 522	46.09 47.87 48.74 50.46 51.31
1.754	1	530	52.10
1.729	1	531	52.92
1.704	1	600	53.76
1.681	4	610	54.56
1.659	17	611	55.34
1.617 1.596 1.577 1.559	5 12 9 3 <1	620 621 541 533 622	56.91 57.70 58.46 59.21 59.96
1.524	7	630	60.73
1.507	5	631	61.46
1.476	4	444	62.91
1.461	2	632	63.63
1.446	2	550	64.37

Internal standard W, a = 3.16516 A	1
$CuKa_1 \lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$	3

$CuKa_1$ $\lambda = 1.54056$ A; temp. 25 °C				
d (Å)	I	hkl	2θ(°)	
1.432	2	711	65.07	
1.4179	1	640	65.81	
1.4045	2	720	66.52	
1.3912	7	721	67.24	
1.3664	2	642	68.63	
1.3541	1	722	69.34	
1.3428	3	730	70.01	
1.3310	3	731	70.72	
1.3092	2	650	72.08	
1.2983	3	732	72.78	
1.2783	1	800	74.11	
1.2682	3	810	74.80	
1.2586	1	811	75.47	
1.2493	2	733	76.13	
1.2401	1	820	76.80	
1.2308	4	821	77.49	
1.2223	2	653	78.13	
1.2050	2	822	79.47	
1.1966	1	830	80.14	
1.1885	5	831	80.80	
1.1809 1.1729 1.1652 1.1576 1.1359	1 1 2 1	751 662 832 752 841	81.43 82.10 82.76 83.43 85.39	
1.1290	1	910	86.04	
1.1221	2	911	86.70	
1.1158	1	842	87.31	
1.1089	1	920	88.00	
1.1025	2	921	88.64	
1.0898	1	664	89.95	
1.0837	3	922	90.60	
1.0776	2	930	91.25	
1.0717	<1	931	91.90	
1.0601	1	852	93.21	
1.0545	2	932	93.85	
1.0381	1	940	95.80	
1.0326	1	941	96.48	
1.0275	1	933	97.12	
1.0223	<1	10•0•0	97.78	

Interna	l standard W, a = 3.16516 Å
CuKa	$\lambda = 1.54056 \text{ Å; temp. } 25 \text{ °C}$

$CuKa_1 = 1.54050 \text{ A}$; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
1.0172 1.0122 1.0025 0.9976 .9930	1 <1 1 1	10·1·0 10·1·1 10·2·0 10·2·1 950	98.45 99.11 100.42 101.09 101.74
.9884 .9838 .9792 .9747	<1 1 1	951 10·2·2 10·3·0 10·3·1	102.40 103.06 103.74 104.42
.9617 .9576 .9535 .9493 .9451	1 <1 1 1 <1	10·3·2 871 953 10·4·0 960 10·3·3	106.44 107.10 107.77 108.47 109.18 109.86
.9333 .9294 .9255 .9219	1 <1 2 1 1	10·4·2 962 11·1·0 11·1·1 11·2·0	111.25 111.95 112.67 113.34 114.77
.9108 .9036 .9001 .8932 .8898	2 <1 2 1	11·2·1 880 11·2·2 11·3·1 10·4·4	115.50 116.95 117.69 119.16 119.91
.8864 .8831 .8766 .8735	1 2 2 <1 1	964 11·3·2 10·6·0 11·4·0 11·4·1	120.69 121.44 122.98 123.74 124.54
.8671 .8609 .8580 .8520 .8490	1 1 1 1	11.3.3 11.4.2 965 12.0.0 12.1.0	125.32 126.94 127.74 129.41 130.26

References

Gattow,G. and J. Zemann (1958). Über Doppelsulfate vom Langbeinit-Typ, $A_2^+B_2^{2^+}-(SO_4)_3$, Z. Anorg. Allgem. Chem. 293, 233-240.

Zemann, A. and J. Zemann (1957). Die Kristallstruktur vom Langbeinit, K₂ Mg₂ (SO₄)₃ Acta Cryst. 10, 409-413.

The sample was prepared by slowly $\mbox{ evap-}$ orating an equimolar solution of $\mbox{Tl}_2\,\mbox{SO}_4$ and \mbox{NiSO}_4 .

Color

Unground: strong bluish green Ground: very pale green

Optical data

Biaxial (-) $\rm N_{\rm Q}\!=\!1.602$, $\rm N_{\rm \beta}\!=\!1.615$, $\rm N_{\rm \gamma}\!=\!1.620$ 2V is large

Structure

Monoclinic, $P2_1/a$ (14), Z=2, isostructural with other "Tutton's salts" [Tutton, 1925]. The structure of a Tutton salt, $(NH_4)_2 Mg (SO_4)_2 \cdot 6H_2 O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25 °C	9.166 ±.001	12.392 ±.002	6.216 ±.001	106°20' ±1'

Density

(calculated) 3.763 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

References

Margulis, T. N. and D.H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium ammonium sulfate hexahydrate, Z. Krist. 117, 344-357.

Tutton, A.E.H. (1925). The monoclinic double sulfates containing thallium - thallium nickel and thallium cobalt sulphates. Proc. Roy. Soc.London Ser.A 118, 240-261.

Internal standard Ag, a = 4.08641 ÅCuK a_1 $\lambda = 1.54056 \text{ Å}$; temp. 25 °C

d (Å)	I	hkl	2θ(°)
7.18	18	110	12.31
5.95	8	001	14.88
5.37	13	011	16.49
5.06	22	120	17.50
4.39	2	200	20.20
4.294	8	021	20.67
4.209	30	121	21.09
4.139	100	111,201,+	21.45
3.926	5	211	22.63
3.740	51	130	23.77
3.587	1	220,121	24.80
3.396	1	031	26.22
3.353	6	131	26.56
3.142	15	201	28.38
3.097	22	040	28.80
3.046	16	211	29.30
3.007	47	131, 112, +	29.68
2.982	5	002	29.94
2.923	6	231, 140	30.56
2.901	18	311, 012	30.80
2.872	16	202	31.11
2.853	11	310	31.33
2.802	9	221	31.91
2.774	10	122	32.24
2.749	6	041	32.54
2.727	7	141	32.81
2.651	5	320	33.78
2.607	2	222	34.37
2.554	1	112	35.11
2.534	2	240,141	35.40
2.501	5	231	35.87
2.480	16	132,241	36.19
2.421	24	331,312,+	37.11
2.406	12	122	37.35
2.391	6	330	37.58
2.290	16	322,051	39.31
2.244	6	411	40.15
2.221	8	321	40.59
2.205	15	132,241	40.90
2.199	14	400,202	41.00
2.160	8	250,151	41.79
2.148	6	341,042	42.02
2.126	4	251	42.48
2.106	8	242	42.91
2.071	5	420,222,+	43.66

Internal standard Ag, a = 4.08641 Å			
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C			
đ (Å)	I	hkl	2θ(°)
2.065	5	060	43.80
2.042	5	412,113,+	44.33
2.012	4	213,160	45.02
1.997	- 3	431,142	45.37
1.988	5	003	45.60
1.963	2	013, 123,+	46.22
1.945	5	251, 161	46.66
1.929	2	342	47.07
1.906	7	351,052	47.68
1.893	4	023,350	48.02
1.887	4	341	48.18
1.875	2	411,252	48.50
1.849	9	133,261	49.24
1.829	3	323,233	49.81
1.793	8	440,242,+	50.89
1.770	2	322	51.59
1.757	5	521,123	52.00
1.742	4	510	52.50
1.737	5	333,170	52.66
1.724	3	431	53.09
1.720	3	143,162	53.22
1.692	3	520,171	54.15
1.687	5	332	54.34
1.680	4	522,451	54.59
1.673	5	423,043,+	54.82
1.642	5	270,171	55.95
1.618	2	530,441	56.84
1.608	4	532	57.25
1.589	2	452,153	58.01
1.576	3	143,253	58.53
1.558	3	511,412	59.24
1.551	3	204,053	59.57
1.538	5	214,172	60.10
1.526	3	601,180	60.64
1.523	4	371,072,+	60.78
1.516	5	443,370,+	61.07
1.505	4	523,262,+	61.56

The sample was prepared by slowly evaporating a 1:8 mixture of molar solutions of ${\rm Tl_2SO_4}$ and ${\rm ZnSO_4}$, and using the first crystals formed.

Color

Colorless

Optical data

Biaxial (-) ${\rm N}_{\alpha}{=}1.592,~{\rm N}_{\beta}{=}1.610,~{\rm N}_{\gamma}{=}1.615$ 2V is large.

Structure

Monoclinic, $P2_1/a$ (14), Z=2, isostructural with other "Tutton's salts" [Tutton, 1910]. The structure of a Tutton salt, $(NH_4)_2 Mg(SO_4)_2 \cdot 6H_2O$, was determined by Margulis and Templeton [1962].

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
NBS, sample at 25°C	9.219 ±.001	12.433 ±.002	6.2317 ±.0005	106°17.6′ ±.4′

Density

(calculated) 3.763 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.8$

References

Margulis, T.N. and D. H. Templeton (1962). Crystal structure and hydrogen bonding of magnesium and ammonium sulfate hexahydrate, Z. Krist, 117, 344-357.

Tutton, A. E. H. (1910). The relation of thallium to the alkali metals: a study of thallium-zinc sulphate and selenate, Proc. Roy. Soc. London Ser.A 83 221-226.

Interna	l standard Ag, a = 4.08	3641	Å
CuKa ₁	$\lambda = 1.54056 \text{ Å; temp.}$	25	°C

d (Å)	I	hkl	<i>2θ</i> (°)
7.20	22	110	12.28
5.98	8	001	14.79
5.39	15	011	16.42
5.09	23	120	17.40
4.421	3	200	20.07
4.310	10	021	20.59
4.229	32	121	20.99
4.164	100	210,111,+	21.32
3.943	5	211	22.53
3.751	52	130	23.70
3.606	2	220,121	24.67
3.363	6	131	26.48
3.161	14	201	28.21
3.109	17	040	28.69
3.062	14	211	29.14
3.018	40	131, 112	29.57
2.991	3	002	29.85
2.932	6	231, 140	30.46
2.916	10	311	30.63
2.909	15	012	30.71
2.880	16	202	31.03
2.872	15	310	31.12
2.816	8	221	31.75
2.809	6	212	31.83
2.782	9	122	32.15
2.758	6	041	32.44
2.737	6	141	32.69
2.666	4	320	33.59
2.614	2	222	34.27
2.543	2	240,141	35.26
2.512 2.488 2.429 2.424 2.414	4 12 24 15	231 241, 132 331, 312 032 122	35.71 36.07 36.98 37.06 37.22
2.404	8	330	37.38
2.300	14	322	39.13
2.296	16	051,401	39.20
2.256	6	411	39.92
2.233	8	321	40.35

Internal standard Ag, a = 4.08641	À
$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C	2

$CuKa_1$ $\lambda = 1.54056$ Å; temp. 25 °C			
d (Å)	I	hkl	2θ(°)
2.215	18	241,132	40.70
2.208	14	202,400	40.83
2.179	2	410	41.41
2.173	4	212	41.53
2.168	7	250,151	41.62
2.155	4	$ \begin{array}{r} 042 \\ \hline 251 \\ \hline 242 \\ 420 \\ 222, \overline{4}02 \end{array} $	41.88
2.133	4		42.33
2.112	8		42.77
2.084	4		43.39
2.079	4		43.49
2.072	3	$ \begin{array}{r} 060,331 \\ \hline 412 \\ \hline 113,\overline{2}03 \\ \hline 213,160 \\ \hline 431 \end{array} $	43.64
2.050	4		44.13
2.046	4		44.23
2.018	4		44.88
2.007	3		45.14
2.003 1.994 1.967 1.954	4 5 2 4 4	142 003 123 251 430,161	45.23 45.46 46.12 46.43 46.53
1.937	2	342	46.87
1.912	6	052	47.52
1.908	5	401	47.62
1.897	4	341,313,+	47.92
1.885	2	411	48.23
1.854	8	261, 133	49.09
1.835	3	312, 323, +	49.65
1.802	6	152, 440	50.61
1.799	4	242	50.71
1.778	2	322	51.33
1.767	4	521	51.68
1.762	4	123	51.83
1.752	3	510	52.15
1.742	3	333,170	52.47
1.738	3	512	52.63
1.733	2	431,261	52.78
1.724	2	162,351,+	53.06
1.702	3	071,520	53.81
1.694	4	332	54.08
1.687	3	451	54.35

Internal standard Ag, a = 4.08	8641 Å
CuK_{α_1} $\lambda = 1.54056$ A: temp.	25 °C

ı	, , , , , , , , , , , , , , , , , , , ,				
	d (Å)	I	hkl	2θ(°)	
	1.733	2	431,261	52.78	
	1.724	2	162,351,+	53.06	
	1.702	3	071,520	53.81	
	1.694	4	332	54.08	
	1.687	3	451	54.35	
	1.679	4	423,043	54.63	
	1.648	4	270,171	55.74	
	1.638	2	213	56.12	
	1.633	2	343,271	56.28	
	1.627	2	530	56.50	
	1.615	3	532	56.98	
	1.595	2	452	57.74	
	1.593	1	342,153	57.85	
	1.586	2	541	58.13	
	1.580	2	253,402	58.37	
	1.567	2	412,361	58.90	
	1.554	2	204,080	59.41	
	1.546	2	513	59.78	
	1.542	4	214,172	59.92	
	1.535	2	601,233	60.26	
	1.528	2	371,542	60.54	
	1.521	4	443,353	60.86	
	1.511	2	523,262,+	61.29	
	1.500	3	181,602	61.79	
	1.490	1	621	62.24	
	1.477	2	531	62.88	
	1.473	2	324	63.04	
	1.464	1	610	63.48	
	1.461	2	313	63.65	
	1.458	2	533,622,+	63.76	
	1.441	1	404,631	64.65	
	1.433	1	552	65.02	
	1.424	2	334	65.50	

The sample was obtained from the National Lead Company, South Amboy, N.J.

Major impurities

No impurities greater than 0.001 percent

Color

Colorless

Structure

Tetragonal, $\mathrm{I4_1/amd}$ (141), Z=4 [Huggins, 1926]

Lattice constants

	a(Å)	c(Å)
Swanson and Tatge (1953), sample at 26-27°C NBS, sample at 25°C	3.783 3.7852 ±.0001	9.51 9.5139 ±.0004

Density

(calculated) 3.893 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.3$

Polymorphism

Anatase and another mineral form, brookite (orthorhombic), are converted to a third mineral form, rutile (tetragonal), by heating to temperatures above 700 °C.

References

Huggins, M. L. (1926). The crystal structure of anatase and rutile, the tetragonal forms of TiO₂, Phys. Rev. 27, 638.Swanson, H.E. and E. Tatge (1953) Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Circ. 539, Vol. I, 46-47.

Interna	l standard W, a = 3.16516	Å
CuKa,	$\lambda = 1.54056 \text{ Å; temp. 25}$,C

d (Å)	I	hkl	2θ(°)
3.515	100	101	25.32
2.431	9	103	36.95
2.378	22	004	37.80
2.332	9	112	38.57
1.892	33	200	48.05
1.6999 1.6665 1.4930 1.4808 1.3641	21 19 4 13	105 211 213 204 116	53.89 55.06 62.12 62.69 68.76
1.3378	5	220	70.31
1.2795	<1	107	74.03
1.2649	10	215	75.03
1.2509	3	301	76.02
1.1894	<1	008	80.72
1.1725	2	303	82.14
1.1664	5	224	82.66
1.1608	3	312	83.15
1.0600	1	217	93.22
1.0517	3	305	94.18
1.0436 1.0182 1.0070 .9967	3 2 2 1 4	321 109 208 323 316	95.14 98.32 99.80 101.22 107.45
.9464	3	400	108.96
.9246	<1	307	112.84
.9192	2	325	113.85
.9138	2	411	114.91
.8966	3	219,1·1·10	118.44
.8890	2	228	120.11
.8819	<1	413	121.73
.8793	2	404	122.34
.8464	2	420	131.02
.8308	<1	327	135.98
.8268	3	415	137.38
.8102	1	309	143.86
.7974	3	424	150.04
.7928	1	0•0•12	152.62

The sample was obtained from the National Lead Company, South Amboy, N.J.

Major impurities

No impurities greater than 0.001 percent

Color

Colorless

Structure

Tetragonal, $P4_2/mnm$ (136), Z=2 [Huggins, 1926]

Lattice constants

		a(Å)	c(Å)
Swanson and NBS, sample		4.594 4.5933 ±.0001	2.958 2.9592 ±.0001

Density

(calculated) 4.250 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.4$

Polymorphism

The two other mineral forms, anatase (tetragonal) and brookite (orthorhombic), are converted to rutile by heating to temperatures above 700 °C.

References

Huggins, M. L. (1926). The crystal structure of anatase and rutile, the tetragonal forms of TiO₂, Phys. Rev. **27**, 638.

Swanson, H.E. and E. Tatge (1953).Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Circ. 539, I, 44-46.

Internal standard W, a = 3.16516 Å						
CuK a_1 $\lambda = 1.54056$ Å; temp. 25 °C $d(\mathring{A})$ I hkl $2\theta(\circ)$						
d (A)	d (\mathring{A}) I hkl					
3.247	100	110	27.45			
2.487 2.297	51 7	101	36.09			
2.188	25	200 111	39.19 41.23			
2.054	9	210	44.06			
1.6874	60	211	54.32			
1.6237	20	220	56.64			
1.4797 1.4528	9	002 310	62.74 64.04			
1.4243	1	221	65.48			
1.3598	20	301	69.01			
1.3465 1.3041	11 1	112 311	69.79			
1.2441	3	202	72.41 76.51			
1.2006	2	212	79.82			
1.1702	5	321	82.33			
1.1483	3	400	84.26			
1.1143	2	410	87.46			
1.0936 1.0827	8 4	222 330	89.55 90.71			
1.0425	6	411	95.27			
1.0364 1.0271	6 3	312	96.01			
0.9703	1	420 421	97.17 105.09			
.9644	2	103	106.01			
.9438 .9072	1 4	113	109.40			
.9072	4	402 510	116.22 117.53			
.8892	8	212	120.06			
.8774	8	431	122.79			
.8738	8	332	123.66			
.8437	6	422	131.83			
.8292	8	303	136.55			
.8196	12	521	140.05			
.8120	2	440	143.09			
.7877	2	530	155.85			

Triclinic, PĪ (2), Z=1 [Jost et al., 1966]

Lattice parameters

a=7.25, b=5.70, c=4.67Å, α =99.8°, β =98.0°, γ =99.7° [ibid.]

Scattering factors

H°, O° [3.3.1A] As° [3.3.1B]

Thermal parameters

Isotropic [Jost et al., 1966]

Density

(calculated) 3.45 g/cm³ [ibid.]

Scale factor

 1.431×10^{4}

Reference

Jost, K.-H., H. Worzala, and E. Thilo (1966). Die Struktur des $As_2O_5 \cdot \frac{5}{3}H_2O$, Acta Cryst. 21, 808-813.

Calculated Pattern (Peak heights)					
đ (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \text{ Å}$		
7.05	24	1 0 0	12.54		
5.51	13	0 1 0	16.08		
4.85	100	-1 1 0	18.36		
4.53	4	0 0 1	19.58		
3.98	4	1 1 0	22.34		
3.54	40	1 0 1 +	25.10		
3.43	39	-1 -1 1 +	25.98		
3.28	2	-2 1 0	27.18		
3.20	13	0 1 1 +	27.84		
3.05	23	-2 0 1	29.24		
2.754	6	0 2 0 +	32.48		
2.736	5	2 1 0	32.70		
2.712	1	-2 1 1	33.00		
2.687	15	1 1 1	33.32		
2.629	3	-2 -1 1	34.08		
2.605	10	2 -1 1	34.40		
2.593	10	0 -2 1	34.56		
2.414	3	-2 2 6	37.22		
2.353	1	3 0 0	38.22		
2.336	2	-3 1 0	38.50		
2.275	2	-1 0 2	39.58		
2.266	2	0 0 2	39.70		
2.260	5	0 -1 2	39.86		
2.253	11	-3 0 1	39.98		
2.229	1	-1 2 1	40.44		

Ca	Calculated Pattern (Peak heights)			
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$	
2.170 2.154 2.082 2.057 2.024	1i 4 2 1 2	0 2 1 -5 1 1 -2 2 1 1 0 2 3 1 0	41.58 41.90 43.42 43.98 44.74	
2.009 1.9894 1.9545 1.9028 1.8747	3 1 3 6	-1 1 2 + 2 2 0 3 0 1 -2 1 2 1 -2 2	45.10 45.56 46.42 47.76 48.52	
1.8315 1.8225 1.7860 1.7782 1.7730	3 2 1 1	1 -3 1 + 3 -2 1 -4 1 0 -2 3 0 2 0 2	49.74 50.00 51.10 51.34 51.50	
1.7647 1.7275 1.7215 1.7131 1.7096	2 1 1 2 3	4 0 0 -4 1 1 -1 -3 1 -2 -2 2 -3 -1 2	51.76 52.96 53.16 53.44 53.56	
1.6996 1.6967 1.6397 1.6086	1 3 2 2 1	2 -2 2 1 3 0 -1 3 1 -3 3 0 + -2 3 1	53.90 54.00 56.04 57.22 57.60	
1.5750 1.5633 1.5594 1.5341 1.5258	3 2 1 1 2	2 1 2 -4 2 1 3 -1 2 -1 -3 2 -4 0 2	58.56 59.04 59.20 60.28 60.64	
1.5217 1.5079 1.4980 1.4809 1.4763	2 2 3 2	4 -2 1 -3 -2 2 + -3 2 2 1 2 2 2 -3 2 +	60.82 61.44 61.86 62.40 62.90	
1.4568 1.4395 1.4372 1.4340 1.4277	2 2 2 1	-4 -1 2 -1 -2 3 -5 1 0 3 2 1 1 0 3	63.84 64.70 64.82 64.98 65.30	
1.4231 1.4101 1.4034 1.3883 1.3847	1 1 1 1	-2 -3 2 1 -4 1 + -4 -2 1 0 1 3 -3 0 3	65.54 66.22 66.58 67.40 67.60	
1.3768 1.3704 1.3693 1.3644 1.3603	2 1 1 1	0 4 0 -5 2 0 2 -4 1 -3 -3 1 4 -3 1	68.04 68.40 68.46 68.74 68.98	
1.3507	1	2 -1 3	69.54	

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	
7.06	21	1 0 0	12.53	
5.51	18	0 1 0	16.08	
4.83	100	-1 1 0	18.36	
4.53	4	0 0 1	19.57	
3.98	4	1 1 0	22.33	
3.55	42	1 0 1	25.10	
3.53	4	2 0 0	25.21	
3.43	42	-1 -1 1	25.98	
3.40	2	1 -1 1	26.19	
3.28	2	-2 1 0	27.17	
3.22	1	-1 1 1	27.72	
3.20	14	0 1 1	27.84	
3.05	26	-2 0 1	29.24	
2.755	3	-1 2 6	32.47	
2.753	4	0 2 0	32.49	
2.737	5	2 1 0	32.70	
2.712	1	-2 1 1	33.00	
2.686	17	1 1 1	33.32	
2.629	4	-2 -1 1	34.08	
2.605	12	2 -1 1	34.40	
2.593	11	0 -2 1	34.57	
2.414	3	-2 2 0	37.22	
2.353	1	3 0 0	38.22	
2.336	3	-3 1 0	38.50	
2.275	2	-1 0 2	39.58	
2.266	1	0 0 2	39.74	
2.259	6	0 -1 2	39.86	
2.253	10	-3 0 1	39.98	
2.228	1	-1 2 1	40.44	
2.170	14	0 2 1	41.58	
2.155	5	-3 1 1	41.89	
2.083	2	-2 2 1	43.41	
2.057	1	1 0 2	43.99	
2.024	3	3 1 0	44.73	
2.009	3	-1 1 2	45.09	
2.008	1	-2 -2 1	45.11	
2.006	2	3 -1 1	45.15	
1.9892	3	2 2 0	45.57	
1.9546	1	3 0 1	46.42	
1.9025	4	-2 1 2	47.77	
1.8751 1.8326 1.8311 1.8226 1.7857	8 2 3 3	1 -2 2 0 -3 1 1 -3 1 3 -2 1 -4 1 0	48.51 49.71 49.75 50.00 51.11	
1.7781	1	-2 3 0	51.34	
1.7728	1	2 0 2	51.51	
1.7646	3	4 0 0	51.77	
1.7278	2	-4 1 1	52.95	
1.7215	1	-1 -3 1	53.16	

С	Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$		
1.7134	2	-2 -2 2	53.43		
1.7097	4	-3 -1 2	53.56		
1.7001	1	2 -2 2	53.86		
1.6970	4	1 3 0	53.99		
1.6395	3	-1 3 1	56.65		
1.6091	2	-3 3 0	57.20		
1.6080	1	-2 2 2	57.24		
1.5992	1	-2 3 1	57.59		
1.5748	4	2 1 2	58.57		
1.5632	2	-4 2 1	59.05		
1.5599	1	3 -1 2	59.18		
1.5340	1	-1 -3 2	60.28		
1.5260	2	-4 0 2	60.63		
1.5213	2	4 -2 1	60.84		
1.5081	1	-3 -2 2	61.43		
1.5073	1	3 0 2	61.47		
1.4987	2	-3 2 2	61.86		
1.4872	4	1 2 2	62.39		
1.4763	2	2 -3 2	62.90		
1.4759	1	-2 -1 3	62.92		
1.4554	1	1 -1 3	63.43		
1.4569	2	-4 -1 2	63.84		
1.4396	2	-1 -2 3	64.70		
1.4372	2	-5 1 0	64.82		
1.4341	2	3 2 1	64.98		
1.4278 1.4228 1.4107 1.4099 1.4033	2 1 1 1	1 0 3 -2 -3 2 4 1 1 1 -4 1 -4 -2 1	65.30 65.56 66.19 66.23 66.58		
1.3884 1.3848 1.3767 1.3705 1.3690	1 1 2 1	0 1 3 -3 0 3 0 4 0 -5 2 0 2 -4 1	67.39 67.59 68.04 68.39 68.48		
1.3643	1	-3 -3 1	66.75		
1.3601	1	4 -3 1	68.99		
1.3506	2	2 -1 3	69.54		
1.3413	1	2 3 1	70.10		
1.3328	1	4 -1 2	70.61		
1.3313	1	-5 -1 1	70.70		
1.3140	1	2 -2 3	71.78		
1.3054	1	0 3 2	72.33		
1.3036	1	-5 0 2	72.44		
1.2999	2	0 -3 3	72.68		

Structure				
Monoclinic,	P2, /a	(14),	z=4	[Brown, 1966]

Lattice parameters a=12.144, b=5.756, c=15.397Å, β=114°8' (published value: c=15.396) [ibid.]

Scattering factors H° , C° , N° [3.3.1A]

Thermal parameters Anisotropic for carbon and oxygen, isotropic for hydrogen [Brown, 1966]

Density (calculated) 1.230 g/cm³

Scale factor 1.478 × 10⁴

Additional patterns

1.PDF card 3-0172 [Socony-Vacuum, Paulsboro, N.J.]

Reference

Brown, C.J. (1966). A refinement of the crystal structure of azobenzene, Acta Cryst. 21, 146-152.

Calculated Pattern (Peak heights)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	
14.06 7.02 5.60 5.54 5.32	6 36 13 12	0 0 1 0 0 2 2 0 -2 2 0 0 0 1 1	6.28 12.60 15.80 15.98 16.64	
5.11 4.63 4.56 4.53 4.45	1 00 46 70 95 77	1 1 0 + 2 0 -3 2 0 1 + 1 1 1 3 1 2	17.34 19.16 19.46 19.56 19.92	
4.18 4.02 3.99 3.83 3.80	24 15 5 50 61	2 1 -1 2 1 -2 2 1 0 1 1 -3 1 1 2	21 • 26 22 • 1 2 22 • 2 4 23 • 2 0 23 • 3 6	
3.74 3.68 3.63 3.61 3.57	74 66 14 9	2 0 -4 2 0 2 0 1 3 2 1 -3 2 1 1	23.80 24.16 24.48 24.66 24.90	

Ca	Calculated Pattern (Peak heights)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$		
3.51	15	0 0 4	25 • 3 4		
3.292	11	3 1 -2	27 • 0 6		
3.285	8	3 1 -1	27 • 1 2		
3.188	32	1 1 -4	27 • 9 6		
3.168	7	1 1 3	28 • 1 4		
3.134	5	2 1 -4 +	28.46		
3.099	26	2 1 2	28.78		
3.062	17	2 0 -5	29.14		
3.035	4	4 0 -2	29.40		
3.019	8	2 0 3	29.56		
2.998	10	0 1 4	29 • 7 8		
2.978	2	4 0 -3	29 • 9 8		
2.870	3	3 1 -4	31 • 1 4		
2.819	1	0 2 1	31 • 7 2		
2.788	1	1 2 -1	32 • 0 8		
2.703	4	2 1 -5	33 • 1 2		
2.685	9	1 1 -5 +	33 • 3 4		
2.679	8	1 2 1	33 • 4 2		
2.674	8	2 1 3	33 • 4 8		
2.664	6	0 2 2	33 • 6 2		
2.644	2	4 1 -3	33 .8 8		
2.630	2	4 1 -1	34 .06		
2.600	3	2 2 -1	34 .46		
2.560	4	2 2 -2	35 .02		
2.538	2	3 1 2	35 .34		
2.503	3	1 2 2	35 .8 4		
2.497	3	4 1 0	35 .9 4		
2.452	1	0 2 3	36 .6 2		
2.444	1	2 2 -3	36 .7 4		
2.343	5	2 1 -6	38 .38		
2.336	5	3 2 -1 +	38.50		
2.316	3	4 0 -6	38.86		
2.279	2	4 0 2	39.50		
2.271	2	3 2 0	39.66		
2.267	1	2 2 2	39.72		
2.258 2.183 2.169 2.157 2.119	2 1 1 1	3 1 3 5 1 -4 0 1 6 3 2 1 4 1 2	39.90 41.32 41.60 41.84 42.64		
2.097	2 1 4	2 2 -5	43.10		
2.089		4 2 -2	43.28		
2.069		5 1 0	43.72		

44.22

44.48

44.90

45.06

45.40 46.12

46.46

0 3

2 0

1 -6

0 -5

4 +

1 -7

2 2

3

3

Calculated Pattern (Peak heights)

2.047

2.035

2.017

2.010

1.9960

1.9665

1.9529

1

1

4

2

3

Azobenzene, $\mathrm{C_{12}\!H_{10}\!N_2}$ (monoclinic) — continued

Calculated Pattern (Peak heights)			
d (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \text{ A}$
1.9364 1.9279 1.9095 1.9020 1.8908 1.8682 1.8682 1.8582 1.8469	1 1 2 3 2 2 1 1 2	6	46.88 47.10 47.58 47.78 48.08 48.26 48.70 48.98 49.30
1.8206 1.8018 1.7945 1.7775 1.77527 1.7465 1.7197 1.7066 1.6593	2 5 2 1 1 2	4 0 4 3 1 -8 + 2 1 6 1 3 2 4 1 -8 4 1 4 2 2 -7 3 2 4 2 3 -4 7 1 -4	50.06 50.62 50.84 51.36 52.14 52.34 53.22 53.66 55.32

C	Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}^{\circ}$		
14.05	5	0 0 1	5.28		
7.03	32	0 0 2	12.59		
5.61	12	2 0 -2	15.80		
5.54	11	2 0 0	15.98		
5.33	9	0 1 1	16.63		
5.12	2	1 1 -1	17.30		
5.11	100	1 1 0	17.35		
4.63	44	2 0 -3	19.15		
4.56	15	1 1 -2	19.45		
4.56	46	2 0 1	19.46		
4.53 4.45 4.18 4.02 3.99	82 78 25 15	1 1 1 0 1 2 2 1 -1 2 1 -2 2 1 0	19.56 19.92 21.25 22.12 22.25		
3.83	49	1 1 -3	23.20		
3.80	59	1 1 2	23.36		
3.74	81	2 0 -4	23.79		
3.68	70	2 0 2	24.16		
3.63	13	0 1 3	24.48		
3.61	7	2 1 -3	24.56		
3.57	3	2 1 1	24.90		
3.51	15	0 0 4	25.33		
3.293	11	3 1 -2	27.05		
3.283	2	3 1 -1	27.14		
3.189	35	1 1 -4	27.96		
3.168	6	1 1 3	28.15		
3.135	3	2 1 -4	28.45		
3.134	2	3 1 -3	28.45		
3.101	30	2 1 2	28.77		
3.062	19	2	29.14		
3.036	3		29.40		
3.020	8		29.56		
2.999	11		29.77		
2.977	1		29.99		
2.878	1	0 2 0	31.35		
2.869	4	3 1 -4	31.15		
2.819	1	0 2 1	31.71		
2.788	1	1 2 -1	32.38		
2.703	5	2 1 -5	33.11		
2.686	1	1 2 -2	33.33		
2.685	7	1 1 -5	33.34		
2.685	2	4 1 -2	33.34		
2.680	2	1 2 1	33.40		
2.674	6	2 1 3	33.48		
2.663 2.644 2.631 2.601 2.550	5 2 3 4	0 2 2 4 1 -3 4 1 -1 2 2 -1 2 2 -2	33.62 33.87 34.05 34.46 35.02		

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	
2.538 2.503 2.496 2.452 2.444	2 3 2 1	3 1 2 1 2 2 4 1 0 0 2 3 2 2 -3	35.33 35.85 35.94 36.62 36.74	
2.344 2.339 2.336 2.320 2.315	5 1 3 1	2 1 -6 3 2 -2 3 2 -1 2 1 4 4 0 -6	38.38 38.45 38.51 38.78 38.87	
2.279 2.270 2.267 2.257 2.184	1 1 2 2	4 0 2 3 2 0 2 2 2 3 1 3 5 1 -4	39.51 39.67 39.73 39.91 41.31	
2.159 2.158 2.119 2.097 2.089	1 1 2 2 1	0 1 6 3 2 1 4 1 2 2 2 -5 4 2 -2	41.60 41.83 42.53 43.10 43.28	
2.068 2.046 2.035 2.017 2.010	4 1 1 4	5 1 0 4 0. 3 3 1 -7 3 2 2 3 1 4	43.73 44.23 44.47 44.50 45.07	
2.008	1	6 0 -4	45.12	

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta (°)$ $\lambda = 1.54056 \text{ Å}$	
1.9960	3	4 2 0	45.40	
1.9667	4	5 1 -6	46.12	
1.9520	2	6 0 -5	46.16	
1.9365	1	6 0 -1	46.88	
1.9279	1	4 1 3	47.10	
1.9092	1	6 1 -3	47.59	
1.9023	2	2 2 4	47.77	
1.8908	3	1 2 -6	48.38	
1.8839	1	1 2 5	48.27	
1.8585 1.8685 1.8671 1.8584 1.8471	2 1 1 1	4 0 -8 6 0 -6 3 2 3 1 3 -2 6 0 0	48.59 48.59 48.73 48.97 49.29	
1.840:1	2	4	49.49	
1.8249	1		49.94	
1.8209	6		50.05	
1.8131	1		50.28	
1.8015	2		50.63	
1.7945 1.7773 1.7527 1.7462 1.7199	1 1 2 1	1 3 2 4 1 -8 4 1 4 2 2 -7 3 2 4	50.84 51.37 52.14 52.35 53.21	
1.7069	1	2 3 -4	53.65	
1.6594		7 1 -4	55.31	

Structure	C	alculated	Pattorn /Deah l	noighta)
Cubic, F43m (216), Z=4 [Harris and Yakel,				
1966].	7 (4)	I	hkl	2θ(°)
	d (A)	1	nrı	$\lambda = 1.54056$
Lattice parameters				1
a=14.024±0.005 Å	8.10	100	1 1 1	10.92
(published value, 14.023 Å [ibid.])	7.01	26	2 0 0	12.62
(published value, 14.025 x [ibid.])	4.96	34	2 2 0	17.88
	4.23	6	3 1 1	21.00
Atomic positions	4 • 05	3	2 2 2	21.94
The parameters used are those in table 2	i			
[ibid.]	3.51	40	4 0 0	25.38
(— · · · · · · · · · · · · · · · · · ·	3.218	13	3 3 1	27.70
	3.136	15	4 2 0	28.44
cattering factors	2.863	21	4 2 2	31.22
Be ²⁺ , Ca ²⁺ [Cromer and Waber, 1964]	2.699	19	3 3 3 +	33.16
0 [3.3.1A]				
(CVC)	2.479	39	4 4 0	36.20
	2.371	3	5 3 1	37.92
hermal parameters	2.338	38	4 4 2 +	38.48
Overall temperature factor=0.41679 [Har-	2.217	3	6 2 0	40.66
ris and Yakel, 1966]	2.139	1	5 3 3	42.22
ensity	2			
	2.114	4	6 2 2	42.74
(calculated) 2.64 g/cm³ [ibid.]	2.024	51	4 4 4 5 5 1 +	44.74
	1.9641	14		46.18
cale factor	1.8740	6	6 4 D 6 4 2	46.66
85.75×10^4	1.0140	6	0 4 2	48.54
	1.8261	9	7 3 1 +	49.90
	1.7527	17	8 0 0	52-14
	1.7131	7	7 3 3	53.44
	1.7008	7	8 2 0	53.86
	1.6527	18	8 2 2 +	55.56
		}		
	1.6195	4	5 5 5 +	56.80
	1.6086	3	6 6 2	57.22
	1.5681	6	8 4 D	58.84
	1.5392	1 1	9 1 1	60.06
	1.5299	1	8 4 2	60.46
	1.4951	1	6 6 4	62.02
eference	1.4313	û	8 4 4	65.12
romer, D.T. and J.T. Waber (1965). Scat-	1.4094	l i l	7 7 1 +	66.26
tering factors computed from relativis-	1.4023	3	8 6 D	66.64
tic Dirac-Slater wave functions, Acta	1.3750	2	8 6 2	68.14
Cryst. 18, 104-109.	1			
arris, L. A. and H. L. Yakel (1966). The	1.3558	6	9 5 1 +	69.24
crystal structure of calcium beryllate,	1.3493	2	6 6 6 +	69.62
Ca ₁₂ Be ₁₇ O ₂₈ , Acta Cryst. 20, 295-301.	1.3076	1	9 5 3	72.18
Calabel, O29, Acta Cryst. 20, 255-301.	1.3020	3	10 4 0	72.54
	1.2395	6	8 8 0	76.84
	1.2253	2	955+	77.90
	1.2206	4	8 8 2 +	78.28
	1.1895	1 1	9 7 3 +	80.72
	1.1853	6	10 6 2	81.06
	1.1687	1 1	12 0 0	82.46
	1.1568	1	7 7 7 +	83.50
	1.1376	2	12 2 2 +	85.24
			12 4 0	1 00 00
	1.1087	1	12 4 0	
	1.1087 1.0984 1.0951	1 1 5	9 9 1	88.02 89.06 89.40

Calculated Pattern (Peak heights)				
d (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \text{ Å}$	
1.0820 1.0724 1.0694 1.0570 1.0481	1 1 2 4 1	10 8 2 11 5 5 10 6 6 12 4 4 11 7 3	90.78 91.82 92.16 93.56 94.60	
1.0333 1.0255 1.0017 .9819 .9632	3 1 1 2 2	12 6 2 13 3 3 + 12 6 4 10 10 2 + 12 8 2 +	96.32 97.38 100.52 103.34 106.20	
.9542 .9477 .9308 .9286	1 1 1 1 4	10 10 4 + 11 7 7 + 13 7 3 + 14 4 4 10 10 6 +	107.66 108.74 111.70 112.10 115.08	
.8978 .8852 .8765 .8697	1 1 1 2	12 8 6 15 5 1 + 16 0 0 12 10 4 + 16 2 2 +	118.18 120.96 123.00 124.66 126.36	
.8566 .8503 .8457 .8264 .8207	1 1 2 2 2	14 6 6 16 4 0 15 5 5 + 16 4 4 + 12 12 2 +	128.10 129.88 131.24 137.54 139.62	
.8151 .8110 .8097 .8043 .8004	1 1 4 1	16 6 2 + 17 3 1 + 14 10 2 + 12 12 4 17 3 3 +	141.82 143.52 144.10 146.54 148.46	
• 7840 • 7791	2	16 8 0 16 8 2 +	158.56 162.74	

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$	
8.10 7.01 4.96 4.23 4.05	100 27 38 7 4	1 1 1 2 0 0 2 2 0 3 1 1 2 2 2	10.92 12.61 17.87 20.99 21.94	
3.51 3.217 3.136 2.863 2.699	51 17 19 29	4 0 0 3 3 1 4 2 0 4 2 2 5 1 1	25.38 27.70 28.44 31.22 33.17	
2.699 2.479 2.370 2.337 2.337	16 56 4 4 51	3 3 3 4 4 0 5 3 1 6 0 0 4 4 2	33.17 36.20 37.92 38.48 38.48	
2.217 2.139 2.114 2.024 1.9637	5 1 6 79 3	6 2 D 5 3 3 6 2 2 4 4 4 7 1 1	40.65 42.22 42.73 44.73 46.19	
1.9637 1.9448 1.8740 1.8258	21 5 10 11 4	5 5 1 6 4 0 6 4 2 7 3 1 5 5 3	46.19 46.67 48.54 49.91 49.91	
1.75 30 1.71 33 1.70 07 1.65 27 1.65 27	29 12 12 22 8	8 0 0 7 3 3 8 2 0 8 2 2 6 6 0	52.13 53.43 53.86 55.56 55.56	
1.6193 1.6193 1.6087 1.5679 1.5393	2 4 6 11	7 5 1 5 5 5 6 6 2 8 4 0 9 1 1	56.81 ,56.81 57.22 58.85 60.05	
1.4950 1.4313 1.4095 1.4095	2 3 8 1 1	8 4 2 6 6 4 8 4 4 7 7 1 7 5 5	60.45, 62.03 65.12 66.26 66.26	
1.4024 1.3752 1.3557 1.3557	5 3 7 4 2	8 6 0 8 6 2 9 5 1 7 7 3 10 2 2	66.63 68.13 69.24 69.24 69.61	
1.3495 1.3077 1.3021 1.2802 1.2645	2 2 6 1 1	6 6 6 9 5 3 10 4 0 10 4 2 7 7 5	69.61 72.17 72.54 73.98 75.06	

Ca	alculated	Pattern (Integra	nted)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$
1.2396	12	8 8 0	76.84
1.2253	1	11 3 1	77.90
1.2253	3	9 5 5	77.90
1.2206	6	8 8 2	78.26
1.2206	3	10 4 4	78.26
1.1895	1	11 3 3	80 - 72
1.1895	1	9 7 3	80 - 72
1.1852	12	10 6 2	81 - 07
1.1687	2	12 0 0	82 - 46
1.1567	1	11 5 1	83 - 51
1.1567	2	7 7 7	83.51
1.1375	4	12 2 2	85.25
1.1375	1	10 6 4	85.25
1.1087	2	12 4 0	88.02
1.0984	1	9 9 1	89.05
1.0951	7	12 4 2	89.40
1.0951	5	8 8 6	89.40
1.0820	2	10 8 2	90.78
1.0724	1	11 5 5	91.82
1.0693	4	10 6 6	92.17
1.0571	10	12 4 4	93.55
1.0482	2	11 7 3	94.59
1.0339	7	12 6 2	96.33
1.0255	2	13 3 3	97.37
1.0255	1	9 9 5	97.37
1.0121	1	8 8 8	99.12
1.0017	2	12 6 4	100.52
.9819	2	14 2 2	103.35
.9819	3	10 10 2	103.35
.9632	1	14 4 0	106.21
. 96 32	4	12 8 2	106.21
. 95 42	3	10 10 4	107.65
. 95 42	1	14 4 2	107.65
. 94 76	1	13 7 1	108.75
. 94 76	1	13 5 5	108.75
.9476 .9370 .9308 .9308	2 1 2 1 1	11 7 7 12 8 4 13 7 3 15 1 1 11 9 5	108.75 110.58 111.69 111.69
.9288	1	14 4 4	112.07
.9207	1	14 6 0	113.57
.9129	3	14 6 2	115.08
.9129	8	10 10 6	115.08
.8978	3	12 8 6	118.18
.8852 .8852 .8765 .8714	2 1 3 1 3	15 5 1 11 11 3 16 0 0 15 5 3 12 10 4	120.96 120.96 123.00 124.24 124.66

		1	
C	alculated	l Pattern (Integra	
d (Å)	I	hkl	2θ(°)
- (/			λ = 1.54056 Å
.8697	2	14 8 D	124.66
.86 31	3	16 2 2	126.36
.86 31	1	14 8 2	126.36
.8582	1	13 7 7	127.66
• 85 66	3	14 6 6	128.10
.8503	4	16 4 0	129.88
.8457		13 9 5	131-24
.8457	2	15 5 5	131.24
.8441	2	16 4 2	131.71
.8381	1	12 10 6	133.59
.8336	2	15 7 3	135.03
.8264	5	16 4 4	137.54
.8264	1	12 12 0	137.54
.8207	8	12 12 2	139.63
•8207	2	16 6 0	139.63
-8151	3	16 6 2	141-81
.8151	2	14 8 6	141.81
•8110	1	13 11 3	143.52 143.52
.8110	2	17 3 1 15 7 5	143.52
.8110	2	15 7 5	143.52
.8097	15	14 10 2	144.11
-8097	2	10 10 10	144.11
.8043	3	12 12 4	146.54
.8004	2	15 9 1 17 3 3	148.47 148.47
.8004	2	17 3 3	140.47
.7939	1	14 10 4	151.95
•7902	1	15 9 3	154.24
.7840	1 4	16 8 0	158.56
.7803	2	17 5 3	161-60
.7803	1	15 7 7	161.60
.7791	4	12 12 6	162.73
.7791	1	18 0 0	162.73
.7791	8	14 8 8	162.73 162.73
.7791	17	16 8 2	162.73
		L	L

Cubic, Fd3m(227), Z=8 [Sands et al., 1959]

Lattice parameters

a=6.535±0.002Å [ibid.]

Scattering factors

 Nb° [3.3.1B]

Be° [3.3.1A]

Thermal parameters

Isotropic [Sands et al., 1959]

Density

(calculated) 5.28 g/cm3 [ibid.]

Scale factor

 11.88×10^4

Additional patterns

 PDF 12-593 [Wright Air Development Center, Dayton, Ohio].

Reference

Sands. D.E.. A. Zalkin, and O.H. Krikorian (1959). The crystal structures of NbBe₂ and NbBe₃, Acta Cryst. 12, 461-464.

Calculated Pattern (Peak heights)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.5405 \text{ A}$		
3.773	100	1 1 1	23.56		
2.311	78	2 2 0	38.94		
1.9705	54	3 1 1	46.02		
1.6337	8	4 0 0	56.26		
1.4990	12	3 3 1	61.84		
1.3339	18	4 2 2	70.54		
1.2576	11	5 1 1+	75.54		
1.1552	6	4 4 0	83.64		
1.1046	7	5 3 1	88.42		
1.0332	7	6 2 0	96.40		
0.9966	3	5 3 3	101.22		
.9432	1	4 4 4	109.50		
.9151	4	7 1 1 +	114.64		
.8733	10	6 4 2	123.78		
.8508	9	7 3 1 +	129.74		
.8169	2 2	8 0 0	141.10		
.7984		7 3 3	149.50		

Calculated Pattern (Integrated)							
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.5405 \text{ Å}$				
3.773	100	1 1 1	23.56				
2.310	95	2 2 0	38.95				
1.9704	68	3 1 1	46.02				
1.6338	12	4 0 0	56.26				
1.4992	19	3 3 1	61.83				
1.3340	29	4 2 2	70.54				
1.2577	14	5 1 1	75.53				
1.2577	5	3 3 3	75.53				
1.1552	11	4 4 0	83.63				
1.1046	13	5 3 1	88.42				
1.0333	14	6 2 0	96.40				
0.9966	8	5 3 3	101.23				
.9432	3	4 4 4	109.49				
.9151	5	7 1 1	114.65				
.9151	5	5 5 1	114.65				
.8733	26	6 4 2	123.78				
.8508	17	7 3 1	129.74				
.8508	8	5 5 3	129.74				
.8169	6	8 0 0	141.10				
.7984	9	7 3 3	149.49				

Orthorhombic, Fdd2 (43), Z=8 [Matković et al., 1966]

Lattice parameters

 $a=5.828\pm0.005$, $b=25.86\pm0.03$, $c=11.002\pm$ 0.005Å [ibid.]

Scattering factors

O⁻¹, N° [3.3.1A]; Cd° [3.3.1B]

Thermal parameters

Isotropic.Cd(1) 2.2; O(2) 3.0; O(3) 5.5; O(4) 4.3; O(5) 4.7; O(6) 3.7; N(7) 3.1 Density

(calculated) 2.47 g/cm³ [Matković et al., 19661

Scale factor

 67.04×10^4

Additional patterns

1.PDF card 1-0242 [Hanawalt et al. 1938]

Reference

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.

Matković, B., B. Ribar, B.Zelenko, and S.W. Peterson (1966). Refinement of the structure of Cd(NO3)2.4H2O, Acta Crvst. 21, 719-725.

Calculated Pattern (Peak heights)							
d (Å)	I	,	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
6 • 46 5 • 06 4 • 42 3 • 65 3 • 393	28 100 46 24 3	0 1 1 2	4 0 2 2 3 1 5 1 6 2	+	13.70 17.52 20.08 24.38 26.24		
3 · 23 2 3 · 08 3 3 · 00 2 2 · 92 1 2 · 84 3	5 8 13 15	0 1 1 1 2	8 0 1 3 7 1 3 3 2 0		27 .5 8 28 .9 4 29 .7 4 30 .5 8 31 .4 4		
2.751 2.662 2.574 2.531 2.525	16 8 2 3	0 1 2 0 2	0 4 5 3 0 2 4 4 2 2	+	32.52 33.64 34.82 35.44 35.52		
2.509 2.414	4 6	1 2	9 1 6 0		35 • 7 6 37 • 2 2		

Ca	Calculated Pattern (Peak heights)						
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$				
2.393	8	2 4 2	37.56				
2.377	3	1 7 3	37.62				
2.340	9	8 10 2	38.44				
2.211	1	2 6 2	43.78				
2.155	1	3 12 0	41.88				
2.139	7	1 11 1	42.22				
2.108	5	1 9 3	42.86				
2.095	5	0 8 4	43.14				
2.052	2	1 1 5	44.10				
2.014	9	2 8 2	44.98				
2.002	5	1 3 5	45.26				
1.9763	7	2 2 4	45.88				
1.9341	3	2 10 8	46.94				
1.9126	2	1 5 5	47.50				
1.9080	3	3 1 1	47.62				
1.8740	3	1 11 3	48.54				
1.8675	4	3 3 1	48.72				
1.8553	2	1 13 1	49.06				
1.8145	6	2 6 4 +	50.24				
1.7984	3	1 7 5	50.72				
1.7938	3	3 5 1	50.86				
1.7509	1	0 14 2	52.20				
1.7131	2	3 1 3	53.44				
1.6961	2	0 12 4	54 .0 2				
1.6874	1	0 5 6	54 .3 2				
1.6834	2	3 3 3	54 .4 6				
1.6749	2	1 13 3 +	54 .7 6				
1.6527	1	2 12 2	55 .5 6				
1.6348 1.6295 1.5824 1.5599 1.5566	1 2 1 1	1 15 1 3 5 3 2 10 4 2 14 0 3 7 3	56 . 2 2 56 . 4 2 58 . 2 6 59 . 1 8 59 . 3 2				
1.5523 1.5485 1.5092 1.5070 1.4947	1 1 1 1	2 U 6 1 11 5 2 4 6 1 15 3 1 3 7 +	59.50 59.66 61.38 61.48 62.04				
1.4848	1	3 11 1	62.54				
1.4568	1	1 5 7	63.88				
1.4548	1	3 1 5	63.98				
1.4305	1	1 13 5	65.16				
1.3993	2	2 8 6 +	66.80				
1.3934 1.3901 1.3690 1.3386 1.2993	1 1 1 1	0 16 4 0 18 2 2 16 2 4 6 2 3 9 5 +	67.12 67.30 68.48 70.26 72.72				
1.2376	1	4 10 2 +	76.98				
1.1951		4 8 4 +	80.26				

Calculated Pattern (Integrated) Calculated Pattern (Integrated) d (Å) I hkl $2\theta(°)$ $\lambda = 1.54056 Å$ d (Å) I hkl <th>20(°) 20(°) 20(°) 56.22 56.43 57.86 58.27 59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99 62.05</th>	20(°) 20(°) 20(°) 56.22 56.43 57.86 58.27 59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99 62.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\lambda = 1.54056 \stackrel{?}{A}$ $56 \cdot 22$ $56 \cdot 43$ $57 \cdot 86$ $58 \cdot 27$ $59 \cdot 17$ $59 \cdot 31$ $59 \cdot 51$ $59 \cdot 65$ $61 \cdot 12$ $61 \cdot 38$ $61 \cdot 47$ $61 \cdot 99$
5.06 100 0 2 2 17.51 1.62.93 2 3 5 3 5.05 43 1 1 1 17.54 1.59.24 1 3 9 1 4.42 60 1 3 1 20.07 1.58.22 2 2 10 4 3.65 33 1 5 1 24.37 1.5601 2 210 4 3.393 5 0 6 2 26.25 1.55601 2 214 0 3.393 7 0 8 0 27.57 1.55601 2 214 0 3.082 12 1 1 3 2 2 0 6 3.002 18 1 7 1 29.74 1.5149 1 1 1 7 2.920 23 1 3 3 30.59 1.5091 2 4 6 2.843 2 2 2 0 31.44 1.5071 1	56.43 57.86 58.27 59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99
5.06 100 0 2 2 17.51 1.62.93 2 3 5 3 1 1.7.54 1.59.24 1 3 9 1 1.59.24 1 3 9 1 1.59.24 1 3 9 1 1.59.24 1 3 9 1 1.59.24 1 3 9 1 1 1.59.24 1 3 9 1 1 1.59.24 1 3 9 1 1 1.59.24 1 3 9 1 1 1 1.59.24 1 3 9 1 </td <td>57.86 58.27 59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99</td>	57.86 58.27 59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99
5.05 43 1 1 1 17.54 1.5924 1 3 9 1 4.42 60 1 3 1 20.07 1.5822 2 2 10 4 3.65 33 1 5 1 20.07 1.55601 2 210 4 3.393 5 0 6 2 26.25 1.5568 1 3 7 3 3.233 7 0 8 0 27.57 1.5568 1 2 0 6 3.082 12 1 1 3 2 2 0 6 3.002 18 1 7 1 29.74 1.5149 1 1 1 7 2.920 23 1 3 30.59 1.5091 2 2 4 6 2.843 2 2 2 31.44 1.5071 1 1.15 3 2.750 7 0 4 32.53 1.4956 2 0 1 3 7 2.661 23 1 5 3 33.65 1.4945 2 3 1 1	58.27 59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99
3.65 33 1 5 1 24.37 1.5601 2 2 14 0 3.393 5 0 6 2 2 26.25 1.5568 1 3 7 3 3.233 7 0 8 0 27.57 1.5520 1 2 0 6 3.082 12 1 1 3 28.95 1.5487 1 1 11 5 3.002 18 1 7 1 29.74 1.5149 1 1 1 7 2.920 23 1 3 3 30.59 1.5091 2 2 4 6 2.843 2 2 2 0 31.44 1.5071 1 1 15 3 2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 4 0 33.71 1.4836 2 3 11 1	59.17 59.31 59.51 59.65 61.12 61.38 61.47 61.99
3.393 5 0 6 2 26.25 1.5568 1 3 7 3 3.233 7 0 8 0 27.57 1.5520 1 2 0 6 3.082 12 1 1 3 28.95 1.5487 1 1 1 5 3.002 18 1 7 1 29.74 1.5149 1 1 1 7 2.920 23 1 3 3 30.59 1.5091 2 2 4 6 2.843 2 2 2 0 31.44 1.5071 1 15 3 2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 2 4 0 33.71 1.4836 2 3 11 1	59.31 59.51 59.65 61.12 61.38 61.47 61.99
3.233 7 0 8 0 27.57 1.5520 1 2 0 6 3.082 12 1 1 3 28.95 1.5487 1 1 1 5 1	59.51 59.65 61.12 61.38 61.47 61.99
3.082 12 1 1 3 28.95 1.5487 1 1 1 5 3.002 18 1 7 1 29.74 1.5149 1 1 1 7 2.920 23 1 3 3 30.59 1.5091 2 2 4 6 2.843 2 2 2 0 31.44 1.5071 1 1 15 3 2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 2 4 0 33.71 1.4836 2 3 11 1	59.65 61.12 61.38 61.47 61.99
3.002 18 1 7 1 29.74 1.5149 1 1 7 2.920 23 1 3 3 30.59 1.5091 2 2 4 6 2.843 2 2 2 0 31.44 1.5071 1 15 3 2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 2 4 0 33.71 1.4836 2 3 11 1	61.12 61.38 61.47 61.99
2.920 23 1 3 3 30.59 1.5091 2 2 4 6 2.843 2 2 2 0 31.44 1.5071 1 15 3 2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 2 4 0 33.71 1.4836 2 3 11 1	61.47 61.99
2.843 2 2 2 0 31.44 1.5071 1 1 15 3 2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 2 4 0 33.71 1.4836 2 3 11 1	61.47 61.99
2.750 7 0 0 4 32.53 1.4956 2 0 10 6 2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 2 4 0 33.71 1.4836 2 3 11 1	61.99
2.661 23 1 5 3 33.65 1.4945 2 1 3 7 2.657 2 4 0 33.71 1.4836 2 3 11 1	
2.657 2 2 4 0 33.71 1.4836 2 3 11 1	
	62.55
	63.88
2.531 2 0 4 4 35.44 1.4540 1 3 1 5	63.98
2.525 3 2 2 2 35.52 1.4360 1 3 3 5 2.509 6 1 9 1 35.75 1.4305 2 1 13 5	64 •8 8 65 • 1 6
	65.63
2.414 9 2.60 37.22 1.4213 1 4.40 2.392 13 2.42 37.57 1.4037 1 1.77	66.56
2.376 4 1 7 3 37.83 1.4018 1 3 5 5	66.66
2.340	66.75 66.81
	67.12
2.155	67.30
	67.92
20103	68.48
2.095 8 0 8 4 43.15 1.3689 3 2.16 2 2.052 3 1 1 5 44.09 1.3570 1 2.14 4	69.17
2.014	70.25
2.002 7 1 3 5 45.25 1.3283 1 4 8 0	70.89
1.9767 12 2 2 4 45.87 1.3159 1 1.19 1	71.66
1.9342 5 2 10 0 46.94 1.2996 1 3 13 3	72.70
1.9126 3 1 5 5 47.50 1.2990 1 3 9 5	72.74
1.9079 3 3 1 1 47.62 1.2886 1 2 18 0	73 - 42
1.8748 5 1 11 3 48.54 1.2807 1 3 15 1	73.95
1.8676 5 3 3 1 48.72 1.2655 1 0 8 8	74.99
1.8556 3 1 13 1 49.05 1.2627 1 4 4 4	75 - 18
1.8155 4 0 2 6 50.21 1.2594 1 2 12 6	75.42
1.8143 8 2 6 4 50.24 1.2380 1 3 11 5	76.95
1.7982 4 1 7 5 50.73 1.2380 1 2 2 8	76.95
1.7943 3 3 5 1 50.85 1.2369 1 4 10 2	77.04
1.7511 2 0 14 2 52.19 1.2234 1 1 17 5 1.7129 4 3 1 3 53.45 1.1961 1 4 8 4	78.04 80.18
1.7129 4 3 1 3 1 3.45 1.1961 1 4 8 4 1.6988 2 3 7 1 53.93 1.1949 1 2 6 8	80.18
1.6963 3 0 12 4 54.01 1.1751 1 3 13 5	81.92
1.6873 2 0 6 6 54.32 1.1669 1 2 18 4	82.62
1.6836 3 3 3 3 54.45 1.1363 1 4 2 6	85.36
1.6748 3 1 13 3 54.76 1.1200 1 4 14 2	86.90
1.6734 1 1 9 5 54.81 1.1194 1 2 16 6	86.96
1.6526 2 2 12 2 55.56	

Tetragonal, P4, (76), Z=8 [Webb, 1966]

Lattice parameters

a=6.684±0.006, c=24.145±0.015 Å [ibid.] (published value, c=24.144 \pm 0.015 Å)

Scattering factors
Ca⁺², P⁰ [3.3.1A]

O, an average of 0° and 0^{-} [3.3.1A]

Thermal parameters

Isotropic [Webb, 1966]

Density

(calculated) 3.128 g/cm³ [ibid.]

Scale factor

8.642 × 104

Additional patterns

1. PDF card 11-177 [St. Pierre, Dept. of Mines, Canada, Tech. paper No. 2, p. 105, 1953]

Reference

Webb, N.C. (1966). The crystal structure of β-Ca₂P₂O₇, Acta Cryst. 21, 942-948.

Calculated Pattern (Peak heights)							
đ (Å)	I	7	ıkl	λ	2θ(°) = 1.54056 Å		
6.037 5.847 4.726 4.480 4.401	9 4 16 2 13	0 0 1 0	0 4 1 2 1 0 1 4 1 2		14.66 15.14 18.76 19.80 20.16		
4.074 3.720 3.448 3.378 3.341	5 3 2 12 42	1 1 0 1 0	1 3 1 4 1 6 1 5 2 0		21.80 23.90 25.82 26.36 26.66		
3.309 3.220 3.087 3.064 3.017	36 56 54 7 100	0 0 0 1 0	2 1 2 2 2 3 1 6 0 8	+	26.92 27.68 28.90 29.12 29.58		
2.990 2.966 2.923 2.901 2.801	23 37 18 35 27	2 2 0 2 1	1 1 · 2 · 4 · 1 · 2 ·	+	29.86 30.10 30.56 30.80 31.92		

Ca	Calculated Pattern (Peak heights)						
d (\mathring{A})	I	hkl	2θ (°) $\lambda = 1.54056 \stackrel{\circ}{A}$				
2.786	31	1 1 7	32.10				
2.748	54	0 2 5	32.56				
2.679	18	1 2 4 +	33.42				
2.572	7	0 2 6	34.86				
2.542	23	1 2 5 +	35.28				
2.490	1	0 1 9	36.04				
2.400	11	0 2 7 +	37.44				
2.352	6	2 2 1	38.24				
2.333	20	1 1 9	38.56				
2.319	4	2 2 2	38.80				
2.267	9	2 2 3 +	39.72				
2.260	7	2 1 7	39.86				
2.240	14	0 2 8	40.22				
2.228	8	0 3 0	40.46				
2.218	11	0 3 1	40.64				
2.201	4	2 2 4	40.98				
2.147	9	0 3 3 +	42.04				
2.123	11	2 1 8 +	42.54				
2.114	4	3 1 0 +	42.74				
2.105	9	1 3 1 +	42.92				
2.092	14	0 2 9 +	43.22				
2.086	10	0 1 11	43.34				
2.082	8	1 3 2 +	43.42				
2.044	5	1 3 3 +	44.28				
2.038	7	2 2 6	44.42				
2.023	5	0 3 5	44.76				
2.012	3	0 0 12	45.02				
1.9960	18	1 2 9 +	45.40				
1.9910	20	1 1 11	45.52				
1.9569	9	0 2 10	46.36				
1.9498	17	2 2 7	46.54				
1.9364	5	1 3 5 +	46.88				
1.8784	5	2 1 10	48.42				
1.8711	6	3 1 6 +	48.62				
1.8603	2	2 2 8	48.92				
1.8539	13	3 2 0 + 3 2 1 0 2 11 2 3 2 + 2 3 3	49.10				
1.8490	11		49.24				
1.8343	12		49.66				
1.8322	12		49.72				
1.8064	2		50.48				
1.8024	3	1 3 7 +	50.60				
1.7925	2	0 3 8	50.90				
1.7692	14	1 2 11 +	51.62				
1.7312	5	2 3 5 +	52.84				
1.7137	4	0 3 9	53.42				
1.6886 1.6840 1.6693 1.6671 1.6604	4 8 3 4	2 2 10 3 2 6 + 0 1 14 + 0 4 1 1 3 9 +	54.28 54.44 54.96 55.04 55.28				
1.6327	7	3 2 7 +	56.30				
1.6232	6	0 2 13	56.66				

				1			
Ca	lculated	Pattern (Peak he	· ·	C	Calculated	l Pattern (Integr	
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.6200	7	1 1 14 +	56.78	6.036	7	0 0 4	14.66
1.6174	8	4 1 1 +	56.88	5 • 848	4	0 1 2	15.14
1.6066	6	4 1 2 +	57.30	4.726	14	1 1 0	18.76
1.5893	6	1 4 3 +	57.98	4.480	11	0 1 4 1 1 2	19.80 20.16
1.5794	7		58.38	7.401	""	1 1 2	20.10
1.5754	6	3 2 8 + 3 3 0 3 3 1	58.54	4.076	5	1 1 3	21.79
1.5720	4	3 3 1	58.68	3.721	3	1 1 4	23.89
1.5623	6	3 3 2 +	59.08	3 • 448	2	0 1 6	25.82
1.5434			F0 00	3.378	10	1 1 5	26.36
1.5368	2 7	0 4 6	59.88 60.16	3.342	41	0 2 0	26.65
1.5322	6	1 4 5 + 2 2 12 + 3 3 4 +	60.36	3.310	34	0 2 1	26.91
1.5240	8	3 3 4 +	60.72	3.221	55	0 2 2	27.67
1.5092	1	0 0 16	61.38	3.086	54		28.90
4 5070				3.065	1	0 1 7	29.11
1.5039	6	4 1 6 + 0 3 12 +	61.62	3.064	2	1 1 6	29.12
1.4831	1	0 3 12 + 2	62.10 62.58	3.018	100	0 0 8	29.57
1.4671	5	4 1 7 +	63.34	2.989	19	2 1 0	29.87
1.4601	2	2 2 13	63.68	2.989	1	1 2 0	29.87
4 45=0				2.967	20	2 1 1	30.10
1.4572	4	3 1 12 +	63.82	2.967	15	1 2 1	30.10
1.4328	3	2 4 4 + 3 3 7	64.14 65.04	2.924	17	0 2 4	30.55
1.4281	3	1 4 8 +	65.28	2.902	29	2 1 2	30.79
1.4162	4	2 3 11 +	65.90	2.902	7	1 2 2	30.79
			,	2.802	1	2 1 3	31.91
1.4011	1	4 2 6	66.70	2.802	26	1 2 3	31.91
1.3963	2 2 2	3 3 8	66.96	2 706	00	1 1 7	70.10
1.3930	2	1 3 13 2 2 14	67.02 67.14	2•786 2•748	28 54	1 1 7 0 2 5	32.10 32.56
1.3875	3	4 1 9 +	67.44	2.679	4	2 1 4	33.42
4 7770				2.679	14	1 2 4	33.42
1.3750 1.3743	1	0 2 16	68.14	2.571	8	0 2 6	34.87
1.3715	2	0 4 10 2 4 7	68.18 68.34	0.540	_	0 1 5	75.00
1.3634	2	2 4 7 3 2 12	68.80	2.542 2.542	7 16	2 1 5 1 2 5	35.28 35.28
1.3599	3	1 1 17 +	69.00	2.490	1	1 2 5 0 1 9	36.04
4 70.40	_			2.400	5	0 2 7	37.44
1.3460	3	4 1 10 +	69.82	2.400	3	2 1 6	37.45
1.3366	1 2	4 2 8 3 4 0 +	70.22 70.38	2 "00	,,	1 0 6	77 hE
1.3304	3	2 2 15	70.38 70.76	2 • 400 2 • 352	6	1 2 6 2 2 1	37•45 38•24
1.3287	4	4 3 2 +	70.86	2.333	21	1 1 9	38.56
4 7400	_			2.319	3	2 2 2	38.80
1.3194 1.3155	3	3 3 10	71.44	2.271	2	0 1 10	39.66
1.3117	2 2	0 1 18 1 5 0 +	71.68 71.92	2 267		2 2 7	70.70
1.3042	8	1 4 11 +	72.40	2 • 267 2 • 259	8 5	2 2 3 2 1 7	39.72 39.87
1.2904	1	1 1 18	73.30	2.240	16	0 2 8	40.23
1 2007			,	2 • 228	7	0 3 0	40.45
1.2883	2	4 3 5 +	73.44	2.219	11	0 3 1	40.63
1.2685	2 2 3	1 3 15 + 4 3 6 +	73.96 74.78	2 004	, ,	2 2 "	4.0.00
1.2653	2	1 5 5	75.00	2.201 2.150	4 2	2 2 4 1 1 10	40.98 41.98
1.2627	2	2 3 14 +	75.18	2.147	9	0 3 3	42.04
1 2005				2.124	7	2 1 8	42.53
1.2495	2	0 3 16	76.12	2.124	4	1 2 8	42.53
1.2404	1	4 3 7 + 3 3 12	76.34 76.78	2.123	1	2 2 5	42.56
1.2347	2	5 2 2	77.20	2.114	2	3 1 0	42.74
					, - 1	-	

Ca	Calculated Pattern (Integrated)			Calculated Pattern (Integrated)			
d (Å)	I	hkl	$\lambda = 1.54056 \stackrel{\circ}{A}$	d (Å)	I	hkl	$\lambda = 1.54056 \text{ Å}$
2.114	1 3	1 3 0 3 1 1	42.74 42.92	1.6670	2	0 4 1	55.04
2.106	6	1 3 1	42.92	1.6603	4	1 3 9	55.28
				1.6603	1	3 1 9	55.28
2.092 2.090	10 8	0 2 9 0 3 4	43.21 43.25	1.6329	6 2	3 2 7 2 3 7 0 2 13	56.29 56.29
2.085	1	0 1 11	43.35	1.6234	6	0 2 13	56.65
2.082	2	3 1 2	43.43	4 (044	•		
2.082	4	1 3 2	43.43	1.6211	2 4	1 4 0 1 1 14	56.74 56.78
2.044	1	3 1 3	44.27	1.6175	5	4 1 1	56.88
2.044	4	1 3 3	44.27	1.6175	2	1 4 1	56.88
2.038	6	2 2 6 0 3 5	44.42	1.6083	3	2 2 11	57.23
2.023 2.012	5 3	0 0 12	44.76 45.02	1.6067	6	4 1 2	57.30
20022				1.5904	1	1 3 10	57.94
1.9966	10	1 2 9	45.39	1.5892	2	4 1 3	57.99
1.9966 1.9949	8 3	2 1 9 1 3 4	45.39 45.43	1.5892 1.5796	5 6	1 4 3 3 2 8	57.99 58.37
1.9908	12	1 1 11	45.53	103770		3 2 0	30.37
1.9571	9	0 2 10	46.35	1.5791	1	0 4 5	58.39
1 0005	1.0	2 2 7	46.55	1.5776	3 3	1 2 13 3 3 0	58.45
1.9495 1.9363	18 2	2 2 7 3 1 5	46.88	1.5721	2	3 3 0 3 3 1	58.54 58.68
1.9363	3	1 3 5	46.88	1.5636	3	0 3 11	59.03
1.8783	5	2 1 10 3 1 6	48.42	4 5600	_		50.00
1.8712	3	3 1 6	48.62	1.5622 1.5432	7	3 3 2 0 4 6	59.09 59.89
1.8712	2	1 3 6	48.62	1.5368	2	4 1 5	60.16
1.8606	1	2 2 8	48.91	1.5368	7	1 4 5	60.16
1.8538	9 5	3 2 0 2 3 0	49.10 49.10	1.5326	1	0 2 14	60.34
1.8538 1.8513	2	1 1 12	49.17	1.5320	3	2 2 12	60.37
				1.5251	1	2 3 9	60.67
1.8484	5	3 2 1 0 2 11	49•26 49•65	1.5244 1.5237	6 4	3 3 4 1 1 15	60.70
1.8347 1.8323	11	3 2 2	49.72	1.5225	1	1 3 11	60.79
1.8323	6	2 3 2	49.72				
1.8065	1	2 3 3	50.48	1.5225	1 1	3 1 11 0 0 16	60.79
1.8022	1	3 1 7	50.61	1.5038	2	0 4 7	61.62
1.8022	2	1 3 7	50.61	1.5037	4	4 1 6	61.63
1.7925	2	0 3 8	50.90	1.5037	2	1 4 6	61.63
1.7733 1.7721	1 2	2 2 9 3 2 4	51.49 51.53	1.4938	1	1 2 14	62.08
1.1151	_			1.4933	6	0 3 12	62.11
1.7721	3	2 3 4	51.53	1.4917	1	4 2 1	62.18
1.7692 1.7692	6 8	2 1 11 1 2 11	51.62 51.62	1.4833 1.4671	1 4	2 4 2 4 1 7	62.57
1.7313	1	3 1 8	52.84				
1.7313	2	1 3 8	52.84	1.4671	2	1 4 7	63.34
1.7307	2	3 2 5	52.86	1.4670 1.4603	2 1	3 3 6 2 2 13	63.35
1.7307	2	2 3 5	52.86	1.4573	4	3 1 12	63.82
1.7238	1	0 2 12	53.08	1.4573	1	1 3 12	63.82
1.6990	5 4	0 3 9 2 2 10	53.41 54.27	1.4508	2	2 4 4	64.14
1.6889				1.4502	2	0 2 15	64.17
1.6837 1.6837	5	3 2 6 2 3 6	54 • 45 54 • 45	1.4330	1	3 3 7	65.03
1.6699	4 2	0 1 14	54.94	1.4281	2 1	1 4 8 4 2 5	65.28 65.30
1.6692	1	1 2 12	54.96	1 - 12.0	•	' - '	1

C	alculated	l Pattern (Integra	ıted)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.4134	2	0 4 9	65.79
	2	3 2 11	65.90
1.4163	3	2 3 11	65•90
1.4011	1	4 2 6	66•70
1.3966	1	3 3 8	66•94
1.3952	1	1 3 13	67.02
1.3931	1	2 2 14	67.14
1.3893	1	0 1 17	67.35
1.3875	3	4 1 9	67.44
1.3875	1	1 4 9	67.44
1.3753	2	0 2 16	68.12
1.3740	1	0 4 10	68.19
1.3714	1	2 4 7	68.34
1.3634	2	3 2 12	68.80
1.3602	2	1 1 17	68.98
1.3585	2	3 3 9	69.08
1.3471	1	2 1 16	69.75
1.3459	3	4 1 10	69.82
1.3394	1	4 2 8	70.21
1.3368	2	3 4 0	70.37
1.3363	1	1 3 14	70.40
1.3304	3	2 2 15	70.76
1.3287	4	4 3 2	70.86
1.3287	1	3 4 2	70.86
1.3194	4	3 3 10	71.44
1.3152 1.3121 1.3108 1.3056 1.3056	1 1 2 1	0 1 18 3 2 13 1 5 0 4 2 9 2 4 9	71.70 71.90 71.98 72.31 72.31
1.3052	2	4 3 4	72.34
1.3048	1	0 3 15	72.36
1.3040	2	4 1 11	72.41
1.3040	8	1 4 11	72.41
1.2904	1	1 1 18	73.30
1.2833 1.2833 1.2806 1.2806 1.2686	1 1 1 2	4 3 5 0 5 5 1 3 15 3 1 15 4 3 6	73.44 73.44 73.95 73.95 74.77
1.2686	1	3 4 6	74.77
1.2651	1	1 5 5	75.02
1.2627	2	2 3 14	75.18
1.2627	1	3 2 14	75.18
1.2494	3	0 3 16	76.12
1.2465 1.2465 1.2404 1.2347 1.2282	1 1 2 2	4 3 7 0 5 7 3 3 12 5 2 2 3 1 16	76.34 76.34 76.77 77.20 77.68
1.2272	1	1 1 19	77.76

Orthorhombic, Pnma(62), Z=4 [Cromer et al., 1960]

Lattice parameters

a=8.112±0.001, b=5.102±0.001, c=10.162±0.005Å [ibid.]

Scattering factors

Ce°, Cu° [3.3.1B]

Thermal parameters

Isotropic [Cromer et al., 1960]

Density

(calculated) 8.23 g/cm3 [ibid.]

Scale factor

 13.17×10^4

Atomic positions

The positions used in these calculations are those in table 5 in the given reference.

Reference

Cromer, D.T., A.C. Larson, and R.B. Roof, Jr. (1960). The crystal structure of CeCu_e, Acta Cryst. 13, 913-918.

Calculated Pattern (Peak heights)							
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.5405 \text{ A}$				
6.338	3	1 0 1 1 2 0 1	13.96				
4.304	7		20.62				
4.055	3		21.90				
3.973	9		22.36				
3.767	1		23.60				
3.171	12	2 0 2 +	28.12				
3.031	9	2 1 1	29.44				
2.822	29	0 1 3	31.68				
2.693	1	2 1 2	33.24				
2.665	8	1 1 3	33.60				
2.614	2	3 0 1	34.28				
2.552	35	0 2 0	35.14				
2.425	50	1 0 4	37.04				
2.386	15	3 0 2	37.66				
2.367	9	1 2 1	37.98				
2.326	100	3 1 1	38.68				
2.317	97	2 1 3	38.84				

Calculated Pattern (Peak heights)						
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.5405 \text{ Å}$			
2.279	27	0 2 2	39.50			
2.194	15	1 2 2	41.10			
2.159	34	2 2 0 +	41.80			
2.112	29	2 2 1 +	42.78			
1.9885	27	4 0 1 +	45.58			
1.9835	47	2 1 4	45.70			
1.9762	44	1 2 3	45.88			
1.9713	42	1 0 5	46.00			
1.9521	4	3 1 3	46.48			
1.8841	4	4 1 0 +	48.26			
1.8517	1	3 0 4	49.16			
1.8391	2	1 1 5	49.52			
1.8205	6	2 2 3	50.06			
1.7672	1	4 1 2	51.68			
1.7571	11	1 2 4	52.00			
1.7403	3	4 0 3	52.54			
1.7119	3	2 1 5	53.48			
1.6581	2	1 0 6	55.36			
1.6466	5	4 1 3 +	55.78			
1.6428	4	1 3 1	55.92			
1.6019	2	5 0 1	57.48			
1.5628	5	2 0 6	59.06			
1.5499	2	2 3 1	59.60			
1.5480	2	3 1 5	59.68			
1.5456	4	5 0 2	59.78			
1.5285	4	5 1 1	60.52			
1.5199	4	0 3 3	60.90			
1.5154	3	4 2 2	61.10			
1.4986	10	3 2 4	61.86			
1.4942	6	1 3 3	62.06			
1.4355	3	3 0 6	64.90			
1.4254	15	3 3 1	65.42			
1.4230	14	2 3 3	65.54			
1.4108	5	0 2 6	66.18			
1.3963	2	0 1 7	66.96			
1.3900	6	1 2 6	67.30			
1.3853	3	3 3 2	67.56			
1.3817	9	4 1 5	67.76			
1.3760	9	1 1 7	68.08			
1.3672	6	5 0 4	68.58			
1.3568	1	5 2 1	69.18			
1.3520	2	6 0 0	69.46			
1.3402	1	6 0 1	70.16			
1.3346	6	2 3 4 +	70.50			
1.3219	14	5 2 2	71.28			
1.3067	2	6 0 2	72.24			
1.3032	2	4 3 0	72.46			
1.2998	3	4 0 6	72.68			

Calculated Pattern (Integrated)							
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.5405 \mathring{A}$				
6.340	2	1 0 1	13.96				
4.306	6	1 0 2	20.61				
4.056	3	2 0 0	21.89				
3.975	9	1 1 1	22.35				
3.767	1	2 0 1	23.60				
3.175	1	2 1 0	28.08				
3.170	11	2 0 2	28.13				
3.030	9	2 1 1	29.45				
2.822	28	0 1 3	31.68				
2.693	1	2 1 2	33.25				
2.665	9	1 1 3	33.60				
2.613	2	3 0 1	34.29				
2.551	37	0 2 0	35.15				
2.424	55	1 0 4	37.05				
2.387	16	3 0 2	37.65				
2.367	9	1 2 1	37.99				
2.326	100	3 1 1	38.68				
2.316	84	2 1 3	38.84				
2.280	29	0 2 2	39.49				
2.195	17	1 2 2	41.09				
2.162	13	3 1 2	41.74				
2.159	31	2 2 0	41.80				
2.113	6	3 0 3	42.75				
2.112	28	2 2 1	42.77				
1.9888	25	4 0 1	45.57				
1.9874	3	2 2 2	45.61				
1.9836	35	2 1 4	45.70				
1.9764	40	1 2 3	45.88				
1.9715	24	1 0 5	46.00				
1.9524	4	3 1 3	46.47				
1.8846	3	4 1 0	48.25				
1.8835	2	4 0 2	48.28				
1.8515	1	3 0 4	49.17				
1.8390	2	1 1 5	49.52				
1.8209	7	2 2 3	50.05				
1.7670	1	4 1 2	51.69				
1.7574	14	1 2 4	51.99				
1.7400	2	4 0 3	52.55				
1.7117	4	2 1 5	53.48				
1.6579	2	1 0 6	55.37				
1.6469 1.6453 1.6426 1.6021 1.5629	6 1 2 6	4 1 3 2 2 4 1 3 1 5 0 1 2 0 6	55.77 55.83 55.93 57.47 59.06				
1.5500	1	2 3 1	59.59				
1.5481	2	3 1 5	59.68				
1.5455	4	5 0 2	59.78				
1.5285	5	5 1 1	60.52				
1.5199	4	0 3 3	60.90				

Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.5405 \text{ Å}$
1.5152	1	4 2 2	61.11
1.4984	13	3 2 4	61.87
1.4939	1	1 3 3	62.08
1.4354	4	3 0 6	64.91
1.4254	17	3 3 1	65.42
1.4232	15	2 3 3	65.53
1.4110	6	0 2 6	66.17
1.3963	2	0 1 7	66.96
1.3901	7	1 2 6	67.30
1.3851	2	3 3 2	67.57
1.3819	11	4 1 5	67.75
1.3761	12	1 1 7	68.08
1.3674	8	5 0 4	68.57
1.3567	1	5 2 1	69.18
1.3520	3	6 0 0	69.46
1.3402 1.3345 1.3327 1.3249 1.3219	2 8 1 1	6 0 1 2 3 4 2 2 6 3 3 3 5 2 2	70.16 70.50 70.62 71.09 71.28
1.3065	2	6 0 2	72.25
1.3031	1	4 3 0	72.47
1.3000	3	4 0 6	72.67
1.2755	13	0 4 0	74.30
1.2693	3	5 2 3	74.72
1.2680	1	5 0 5	74.81
1.2597	7	4 1 6	75.39
1.2557	1	6 0 3	75.67
1.2467	2	1 2 7	76.31
1.2417	1	2 3 5	76.68
1.2406	2	3 1 7	76.76
1.2186	2	1 1 8	78.40
1.2162	2	4 3 3	78.59
1.2048	2	2 2 7	79.48
1.1833	1	2 4 2	81.22
1.1748	1	3 3 5	81.94
1.1661	2	5 3 1	82.68
1.1629	11	6 2 2	82.96
1.1582	4	4 2 6	83.37
1.1371	1	0 2 8	85.28

-				
Str	116	111	170	_

Hexagonal, P3ml (164), Z=1 [Kaatz and Marcovich, 1966]

Lattice parameters

 $a=7.476\pm0.002$, $c=6.039\pm0.002$ Å, [ibid.]

Scattering factors

 Cl^{-} [Dawson, 1960] Cs^{+} , Ce^{4+} [Thomas and Umeda, 1957]

All factors were corrected for anomalous dispersion using values given by Cromer [1965].

Thermal parameters

Isotropic [Kaatz and Marcovitch, 1966]

Density

(calculated)

 3.52 g/cm^3 [Kaatz and Marcovich, 1966]

Scale factor

 10.44×10^4

Reference

Cromer, D.T. (1965). Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions, Acta Cryst. 18, 17-23.

Dawson, B. (1960). Atomic scattering factors from wave functions calculated by the poly-detor method:Cl,Cl,S and S, Acta Cryst. 13, 403-408.

Kaatz, T. and M. Marcovich (1966). The crystal structure of the compound Cs2 CeCl6, Acta Cryst. 21, 1011.

Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J. Chem. Phys. 26,293-303.

Calculated Pattern (Peak heights)			
d (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \text{ Å}$
6.468	68	1 0 0	13.68
6.037	22	0 0 1	14.66
4.414	100	0 1 1 +	20.10
3.739	29	1 1 0	23.78
3.236	1	2 0 0	27.54
3.177	24	1 1 1	28.06
2.854	20	0 2 1 +	31.32
2.736	20	1 0 2 +	32.70
2.447	9	2 1 0	36.70
2.349	5	1 1 2	38.28
2.267	22	1 2 1 +	39.72
2.208	20	2 0 2 +	40.84
2.158	5	3 0 0	41.82
2.033	5	3 0 1 +	44.54
2.013	1	0 0 3	45.00
1.9225	6	1 0 3	47.24
1.9013	9	2 1 2 +	47.80
1.8689	10	2 2 0	48.68
1.7956	2	3 1 0	50.80
1.7853	3	2 2 1	51.12
1.7724	3	1 1 3 0 3 2 + 3 1 1 2 0 3 + 4 0 1 +	51.52
1.7559	2		52.04
1.7209	7		53.18
1.7096	2		53.56
1.5633	2		59.04
1.5547 1.5434 1.5096 1.4852 1.4721	4 4 1 1	2 1 3 1 3 2 + 0 0 4 3 2 0 0 3 3 +	59.40 59.88 61.36 62.48 63.10
1.4705	1	0 1 4	63.18
1.4423	3	2 3 1	64.56
1.4266	3	0 4 2 +	65.30
1.4128	2	4 1 0	66.08
1.4000	1	1 1 4	66.76
1.3757	2	1 4 1 +	68.10
1.3697	1	2 2 3	68.44
1.3399	2	1 3 3	70.18
1.3327	2	3 2 2 +	70.62
1.2850	1	1 2 4	73.66
1.2662 1.1991 1.1951 1.1873 1.1743	1 1 1 2	5 0 1 2 4 1 3 2 3 0 1 5 2 2 4	74.94 79.94 80.20 80.90 81.98
1.1419	1	1 5 1 +	84.84
1.1339	2	4 2 2 +	85.58
1.0829	1	1 2 5	90.68

Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$
6.474 6.039 4.416 4.416 3.738	64 20 2 100 31	1 0 0 0 0 1 1 0 1 0 1 1 1 1 0	13.67 14.66 20.09 20.09 23.78
3.237 3.178 2.853 2.853 2.737	1 28 5 19	2 0 0 1 1 1 2 0 1 0 2 1 0 1 2	27.53 28.05 31.33 31.33 32.70
2.737 2.447 2.349 2.268 2.268	13 11 6 1 27	1 0 2 2 1 0 1 1 2 2 1 1 1 2 1	32.70 36.69 38.29 39.71 39.71
2.208 2.208 2.158 2.032 2.032	13 12 6 4 3	2 0 2 0 2 2 3 0 0 3 0 1 0 3 1	40.83 40.83 41.82 44.55 44.55
2.013 1.9222 1.9011 1.9011 1.8690	2 8 7 6 13	0 0 3 1 0 3 2 1 2 1 2 2 2 2 0	45.00 47.25 47.80 47.80 48.68
1.7957 1.7854 1.7723 1.7558 1.7558	3 4 4 1	3 1 0 2 2 1 1 1 3 0 3 2 3 0 2	50.80 51.12 51.52 52.04 52.04
1.7212 1.7094 1.7094 1.5634 1.5634	10 2 1 2 1	3 1 1 2 0 3 0 2 3 4 0 1 0 4 1	53.17 53.56 53.56 59.03
1.5546 1.5434 1.5434 1.5097 1.4853	6 3 2 1	2 1 3 3 1 2 1 3 2 0 0 4 3 2 0	59.40 59.88 59.88 61.35 62.48
1.4720 1.4720 1.4703 1.4423 1.4266	1 1 1 5 2	3 0 3 0 3 0 1 4 2 3 1 0 4 2	63.10 63.10 63.19 64.56 65.36

Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.4266	2	4 0 2	65.36
1.4128	2	4 1 0	66.08
1.3999	2	1 1 4	60.77
1.3757	1	4 1 1	68.10
1.3757	2	1 4 1	68.10
1.3697	2	2 2 3	68.44
1.3400	3	1 3 3	70.18
1.3328	2	3 2 2	70.61
1.3328	2	2 3 2	70.61
1.2849	1	1 2 4	73.67
1.2661	1	5 0 1	74.95
1.2460	1	3 3 0	76.37
1.2203	1	3 3 1	78.28
1.1992	1	2 4 1	79.93
1.1952	2	3 2 3	80.25
1.1873	1	0 1 5	80.90
1.1744	3	2 2 4	81.97
1.1564	1	4 1 3	83.53
1.1419	2	1 5 1	84.84
1.1340	2	4 2 2	85.57
1.1340 1.0831 1.0791 1.0482 1.0069	1 1 1 1	2 4 2 1 2 5 6 0 0 3 4 1 5 1 3	85.57 90.67 91.10 94.59 99.81
1.0022 .9744 .9409 .9371 .9345	1 1 1 1	3 1 5 6 1 1 4 3 3 2 3 5 4 4 0	100.46 104.47 109.89 110.57 111.03
•9142 •8864 •8606 •8404 •8377	1 1 1 1	5 3 1 1 6 3 2 6 2 3 5 3 1 5 5	114.81 120.67 127.03 132.84 133.71
.8213	1	4 5 1	139.41
.8136	1	2 1 7	142.42
.7985	1	3 4 5	149.42
.7946	2	4 4 4	151.58
.7843	1	7 2 1	158.32

Orthorhombic, Pmcn (62), Z=4 [Carpenter, 1966].

Lattice parameters

a=6.634, b=9.567, c=10.958Å [ibid.]

Scattering factors

Cs°, I°, Br° [3.3.1B]

Thermal parameters

Isotropic: Cs 3.22; Br 2.31; I(2) 2.08;
I(3) 2.80

Density

(calculated) 4.456 g/cm³ [Carpenter, 1966]

Scale factor

 40.80×10^4

Reference

Carpenter, G.B. (1966). The crystal structure of CsI₂Br, Acta Cryst. 20, 330-334.

Calculated Pattern (Peak heights)						
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$			
5. 45	10	1 1 0	16 . 2 4			
4. 88	2	1 1 1	18 . 1 6			
4. 78	6	0 2 0	18 . 5 4			
4. 76	4	0 1 2	10 . 6 4			
4. 38	2	9 2 1	20 . 2 4			
4.22	6	1 0 2	21.02			
3.86	31	1 1 2	23.00			
3.66	44	1 2 1	24.32			
3.60	12	0 2 2	24.68			
3.411	6	0 1 3	25.10			
3.316	69	2 0 0	26 .8 6			
3.166	1 00	1 2 2	28 .1 6			
3.033	5	1 1 3	29 .4 2			
2.873	11	1 3 0	31 .1 0			
2.779	2	1 3 1	32 .1 8			
2.756 2.740 2.731 2.659 2.633	8 14 9 25	0 3 2 0 0 4 2 2 0 1 2 3 0 1 4	32.46 32.66 32.76 33.68			
2.532	7	1 0 4	35 • 4 2			
2.440	7	2 2 2	36 • 6 0			
2.391	2	5 4 0	37 • 5 8			
2.378	7	2 1 3 +	37 • 8 0			
2.336	10	0 4 1	38 • 5 0			
2.259	3	1 3 3	39.88			
2.204	3	1 4 1	40.92			
2.192	1	0 4 2	41.14			
2.136	4	0 1 5	42.28			
2.120	7	2 3 2	42.52			

Calculated Pattern (Peak heights)						
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
2.112	11	2 0 4	42.78			
2.078	4	0 3 4	43.52			
2.062	5	2 1 4	43.86			
2.005	3	3 1 2	45.18			
2.005	4	0 4 3	45.28			
1.9746	5	3 2 1	45.92			
1.9403	2	2 4 0	46.78			
1.9325	3	2 2 4	46.98			
1.9156	8	1 4 3	47.42			
1.9103	12	2 4 1	47.56			
1.8849	15	3 2 2	48.24			
1.8560	1	3 1 3	49.04			
1.8385	2	1 5 0	49.54			
1.8286	1	2 4 2	49.82			
1.8172	2	3 3 0	50.16			
1.8131	2	1 5 1	50.28			
1.8064	1	0 5 2	50.48			
1.7958	4	2 1 5 +	50.89			
1.7597	7	3 2 3 +	51.92			
1.7428	3	1 3 5 +	52.46			
1.7385 1.7318 1.7209 1.7131 1.7360	6 6 2 3 3	1 4 4 1 1 6 3 C 4 2 4 3 0 2 6	52.60 52.82 53.18 53.44 53.58			
1.6587 1.6386 1.6159 1.6360 1.5863	5 1 1 1	4 0 0 2 5 1 0 4 5 3 4 1 2 5 2	55.34 56.08 56.94 57.32 58.10			
1.5779 1.5350 1.5267 1.5172 1.5065	3 2 1 2	0 6 1 + 1 6 1 1 5 4 2 2 6 4 2 2	58.44 60.24 60.60 61.02 61.50			
1.5048	1	1 1 7	61.58			
1.4835	2	3 4 3	62.56			
1.4524	2	2 4 5 +	64.06			
1.4479	1	3 5 0	64.28			
1.4250	2	2 6 1	65.44			
1.4212	2	4 3 2	65.64			
1.4185	2	4 C 4	65.78			
1.4082	1	3 G 6	66.32			
1.4034	1	4 1 4	66.58			
1.3967	2	5 4 4	66.94			
1.3934	2	3 1 6	67 · 1 2			
1.3746	1	1 3 7	68 · 1 6			
1.3603	1	4 2 4	68 · 9 8			
1.3524	2	4 4 1	69 · 4 4			
1.3493	2	1 6 4	69 · 6 2			
1.3297	1	2 4 6	70.60			

C	alculated	l Pattern (Integr	ated)	C	alculated	l Pattern <i>(Integr</i> e	ated)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	d (Å)	I	hkl	$\lambda = 1.54056 \mathring{A}$
5.45 4.88 4.78 4.75 4.38	9 1 5 3 2	1 1 0 1 1 1 0 2 0 0 1 2 0 2 1	16.25 18.10 18.53 18.65 20.24	1.8064 1.7960 1.7939 1.7610	1 5 1 4	0 5 2 2 1 5 0 1 6 2 3 4 1 0 6	50.48 50.79 50.86 51.88 51.68
4.22 3.36 3.66 3.60 3.412	6 29 42 12 6	1 0 2 1 1 2 1 2 1 0 2 2 0 1 3	21.01 22.99 24.32 24.69 26.09	1.7591 1.7429 1.7427 1.7387 1.7317	6 1 2 6 6	3 2 3 1 5 2 1 3 5 1 4 4 1 1 6	51.94 52.45 52.46 52.59 52.62
3.317 3.166 3.034 2.874 2.780	68 100 5 12	2 0 0 1 2 2 1 1 3 1 3 0 1 3 1	26 .86 28 .16 29 .41 31 .09 32 .17	1.7207 1.7133 1.7062 1.6585 1.6380	2 3 3 6 1	3 0 4 2 4 3 0 2 6 4 0 0 2 5 1	53.19 53.43 53.67 55.35 56.07
2.756 2.740 2.726 2.720 2.660	8 14 2 1 27	S 3 2 C 0 4 2 2 C 2 1 2 1 2 3	32 • 4 6 32 • 6 6 32 • 8 3 32 • 9 0 33 • 6 7	1.6270 1.6156 1.6061 1.5864 1.5779	1 1 1 1	3 3 3 0 4 5 3 4 1 2 5 2 2 1 6	56.52 56.94 57.32 58.10 58.44
2.645 2.634 2.532 2.440 2.392	1 6 7 7 2	2	33 . 8 6 34 . 0 1 35 . 4 2 36 . 8 0 37 . 5 7	1.5775 1.5351 1.5266 1.5172 1.5056	2 3 1 3	S 6 1 1 6 1 1 5 4 2 2 6 4 2 2	58.44 60.24 60.61 61.02 61.50
2.378 2.377 2.337 2.259 2.204	4 4 11 3 3	2 1 3 0 2 4 0 4 1 1 3 3 1 4 1	37.79 37.81 38.49 39.68 40.91	1.5046 1.4837 1.4526 1.4517 1.4469	2 3 2 1 1	1 1 7 3 4 3 2 4 5 1 2 7 3 5 0	61.59 62.55 64.05 64.09 64.33
2.192 2.136 2.120 2.112 2.081	1 5 7 12 1	0 4 2 9 1 5 2 3 2 2 0 4 1 4 2	41.15 42.27 42.61 42.77 43.44	1.4271 1.4249 1.4211 1.4188 1.4082	1 3 1 2	1 6 3 2 6 1 4 3 2 4 0 4 3 0 6	65 • 3 3 65 • 4 5 65 • 6 5 65 • 7 7 66 • 3 2
2.078 2.063 2.005 2.001 1.9744	4 5 4 3 6	G 3 4 2 1 4 3 1 2 0 4 3 3 2 1	43.51 43.86 45.18 45.28 45.93	1.40 34 1.3966 1.3931 1.3747 1.3602	1 2 2 1	4 1 4 3 4 4 3 1 6 1 3 7 4 2 4	66.58 66.94 67.13 68.15 68.99
1.9400 1.9322 1.9157 1.9103 1.8847	1 4 9 11 18	2 4 0 2 2 4 1 4 3 2 4 1 3 2 2	46.79 46.99 47.42 47.56 48.25	1.35 25 1.34 93 1.32 98 1.31 00 1.29 63	2 1 1 1	4 4 1 1 6 4 2 4 6 4 1 5 4 3 4	69.44 69.62 70.80 72.03 72.92
1.8557 1.8385 1.8288 1.8172 1.8131	1 3 1 2	3 1 3 1 5 0 2 4 2 3 3 0 1 5 1	49.05 49.54 49.82 50.16 50.23	1.2957 1.2894 1.2850 1.2844 1.2769	1 2 1 1	1 5 6 0 6 5 1 4 7 3 6 1 4 4 3	72.95 73.37 73.66 73.70 74.20

Monoclinic, C2/c (15), Z=8 [Burns and Busing, 1965].

Lattice parameters

a=6.01 \pm 0.02, b=11.64 \pm 0.02, c=8.18 \pm 0.02 \mathring{A} , β =90°45' \pm 5' [ibid.]

Scattering factors

Li⁺¹ [3.3.1A]; Cs°,F⁻¹ [3.3.1A],corrected for real and imaginary dispersion [3.3.2B]

Thermal parameters

Isotropic: Cs 1.96; Li 2.50; F(1) 2.20; F(2) 2.40; F(3) 3.00.

Density

(calculated) 4.130 g/cm3

Scale factor

10.28 × 104

Reference

Burns, J.H. and W.R. Busing (1965). Crystal structures of rubidium lithium fluoride, RbLiF₂, and cesium lithium fluoride, CsLiF₂, Inorg. Chem. 4, 1510-1512.

Calculated Pattern (Peak heights)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$		
5.82	28	0 2 0	15.22		
4.74	42	C 2 1	18.70		
4.49	47	-1 1 1	19.74		
4.45	42	1 1 1	19.94		
4.09	42	C 0 2	21.72		
3. 35	16	0 2 2	26 .6 2		
3. 26	51	-1 1 2	27 .3 0		
3. 23	51	1 1 2	27 .6 0		
3. 04	91	-1 3 1	29 .4 0		
3. 02	100	1 3 1	29 .5 4		
3.01	74	2 0 G	29.70		
2.910	44	0 4 0	30.70		
2.741	17	0 4 1	32.64		
2.670	13	2 2 0	33.54		
2.547	21	-2 2 1	35.20		
2.529	29	2 2 1	35 • 4 6		
2.469	86	0 2 3	36 • 3 6		
2.436	25	-2 0 2 +	36 • 8 6		
2.416	3	1 1 3	37 • 1 8		
2.406	19	2 0 2	37 • 3 4		
2.371	8	0 4 2	37.92		
2.248	2	-2 2 2	40.08		
2.223	1	2 2 2	40.54		
2.100	7	-1 5 1 +	43.04		
2.095	9	1 5 1	43.14		
2.091	18	2 4 0	43.24		
2.084	10	1 3 3	43.38		
2.030	1	-2 4 1	44.60		
2.021	2	2 4 1	44.82		
1.9894	9	0 4 3	45.56		
1.9403	7	0 6 0	46.78		
1.9187	32	-2 2 3 +	47.34		
1.9141	31	1 5 2 +	47.46		
1.9020	15	1 1 4	47.78		
1.8968	24	2 2 3	47.92		
1.8682 1.8546 1.7866 1.7692 1.7527	8 6 7 7	-2 4 2 2 4 2 -3 1 2 3 1 2 0 6 2	48.70 49.08 51.08 51.62 52.14		
1.7434	13	-3 3 1	52.44		
1.7348	11	3 3 1	52.72		
1.7008	1	-2 0 4	53.86		
1.6803	2	2 0 4	54.58		
1.6665	7	-2 4 3	55.06		
1.6516	8	2 4 3	55.60		
1.6390	11	2 6 0	56.40		
1.5964	1	2 6 1	57.70		
1.5809	2	0 6 3	58.32		
1.5740	8	0 2 5 +	58.60		

Ca	lculated	Pattern (Peak he	ights)	(Calculate	d Pattern (Integr	rated)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.5715 1.5590 1.5177 1.5105 1.5026	8 1 2 2 6	1 7 1 + 1 1 5 -2 6 2 2 6 2 4 0 0	58.70 59.22 61.00 61.32 61.68	5.82 4.74 4.50 4.45 4.09	25 40 45 41 42	0 2 0 0 2 1 -1 1 1 1 1 1 0 0 2	15.21 18.70 19.73 19.95 21.71
1.4917 1.4904 1.4848 1.4663 1.4581	9 9 7 3 3	-1 5 4 1 7 2 + 1 5 4 -1 3 5 1 3 5	62.18 62.24 62.50 63.38 63.78	3 · 35 3 · 27 3 · 23 3 · 04 3 · 02	16 56 55 92 96	0 2 2 -1 1 2 1 1 2 -1 3 1 1 3 1	26.62 27.29 27.60 29.40 29.55
1.4544 1.4324 1.4293 1.4258 1.4189	2 2 6 5 4	4 2 0 + 0 8 1 -3 1 4 + 0 4 5 3 5 2	63.96 65.06 65.22 65.40 65.76	3.00 2.910 2.742 2.670 2.547	70 48 19 15 25	2 0 0 0 4 0 0 4 1 2 2 0 -2 2 1	29.71 30.70 32.63 33.54 35.21
1.4154 1.4113 1.4075 1.4023 1.3945	3 3 2 5	-4 0 2 3 1 4 0 6 4 -2 2 5 + 2 6 3	65 • 9 4 66 • 1 6 66 • 3 6 66 • 6 4 67 • 0 6	2.529 2.469 2.440 2.437 2.417	32 100 1 27 1	2 2 1 G 2 3 -1 1 3 -2 0 2 1 1 3	35.46 36.36 36.61 36.86 37.17
1.3875 1.3631 1.3350 1.3200 1.3152	4 3 3 1	2 2 5 0 0 6 4 4 0 -4 4 1 4 4 1	67.44 68.82 70.48 71.40 71.70	2.436 2.371 2.248 2.224 2.131	22 9 2 1 5	2 0 2 0 4 2 -2 2 2 2 2 2 -1 5 1	37.34 37.92 40.08 40.53 43.02
1.2941 1.2904 1.2835 1.2767	1 4 2 4 3	-2 4 5 -4 2 3 G 8 3 + 4 2 3 -4 4 2	73.06 73.30 73.76 74.22 74.44	2.099 2.096 2.090 2.084 2.045	2 5 19 1	-1 3 3 1 2 4 0 1 3 3 0 0 4	43.07 43.13 43.24 43.38 44.26
1.2656 1.2627 1.2593 1.2500 1.2492	2 3 3 4	-3 7 1 -1 7 4 + 1 7 4 -1 9 1	74.98 75.18 75.42 76.08 76.14	2.030 2.021 1.9896 1.9400 1.9247	2 2 12 9 4	-2 4 1 2 4 1 0 4 3 0 6 0 -3 1 1	44.61 44.81 45.55 46.79 47.18
1 • 24 72 1 • 23 47 1 • 22 48 1 • 21 82 1 • 21 33	3 ? 3 1 2	-2 0 6 0 4 6 + -3 5 4 + 3 7 2 3 5 4	76 • 28 77 • 20 77 • 9 4 78 • 4 4 78 • 8 2	1.9212 1.9188 1.9171 1.9137 1.9134	15 24 16 14 4	-1 5 2 -2 2 3 -1 1 4 1 5 2 3 1 1	47.27 47.34 47.38 47.47 47.48
1.2115 1.2044 1.1976 1.1936 1.1877	1 1 1 2	-3 3 5 + -4 4 3 3 3 5 4 4 3 4 6 0	78.96 79.52 ,80.06 80.38 80.86	1.8966 1.8876 1.8876 1.8682 1.8545	16 24 1 10 8	1 1 4 2 2 3 0 6 1 -2 4 2 2 4 2	47.77 47.93 48.17 48.70 49.08
1.1831 1.1779 1.1516 1.1467 1.1439	2 2 1 2 3	-2 8 3 2 8 3 -5 1 2 -2 4 6 + -4 6 2 +	81.24 81.68 83.96 84.40 84.56	1.7869 1.7685 1.7528 1.7434 1.7350	8 9 9 17 14	-3 1 2 3 1 2 0 6 2 -3 3 1 3 3 1	51.07 51.63 52.14 52.44 52.71

Calculated Pattern (Integrated)						
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$			
1.70 09 1.68 03 1.66 62 1.65 16 1.62 98	2 2 11 11 16	-2 0 4 2 0 4 -2 4 3 2 4 3 2 6 0	53.86 54.57 55.07 55.60 56.41			
1.6006 1.5962 1.5807 1.5748 1.5736	1 1 3 7 6	-2 6 1 2 6 1 8 6 3 9 2 5 -1 7 1	57.53 57.71 58.33 58.57 58.61			
1.5717 1.5692 1.5590 1.5177 1.5103	7 1 1 2 2	1 7 1 -1 1 5 1 1 5 -2 6 2 2 6 2	58.69 58.79 59.22 61.00 61.33			
1.5024 1.4956 1.4939 1.4920 1.4904	9 1 4 9 5	4 0 0 -3 5 1 -1 7 2 -1 5 4 1 7 2	61.69 62.00 62.03 62.17 62.24			
1.4903 1.4849 1.4662 1.4579 1.4551	1 10 4 4 1	3 5 1 1 5 4 -1 3 5 1 3 5 2 4 4	62.25 62.49 63.38 63.79 63.92			
1.4547 1.4325 1.4295 1.4291 1.4281	1 2 5 2 4	4 2 0 9 8 1 -3 1 4 4 2 1 -3 5 2	63.95 65.06 65.21 65.23 65.28			
1.4260 1.4189 1.4162 1.4112 1.4074	3 5 2 5	0 4 5 3 5 2 -4 0 2 3 1 4 0 6 4	65.39 65.76 65.90 66.16 66.37			
1.4043 1.4033 1.4021 1.3946 1.3877	1 7 1 6	4 0 2 -2 6 3 -2 2 5 2 6 3 2 2 5	66.53 66.58 66.65 67.06 67.43			
1.3761 1.3632 1.3350 1.3273 1.3245	1 5 5 1	-4 2 2 0 0 6 4 4 0 0 2 6 -1 1 6	68.08 68.81 70.48 70.95 71.12			
1.3200 1.3151 1.2943 1.2902 1.2836	1 1 7 3	-4 4 1 4 4 1 -2 4 5 -4 2 3 0 8 3	71.40 71.71 73.06 73.31 73.75			

0		l Pattern (Inte	
d (A)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.2826	1	2 4 5	73 . 8 2
1.2767	7	4 2 3	74 . 2 2
1.2734	1	-4 4 2	74 . 4 4
1.2657	3	-3 7 1	74 . 9 7
1.2635	3	-1 7 4	75 . 1 3
1.2625	2	3 7 1	75.20
1.2592	3	1 7 4	75.42
1.2501	4	-1 9 1	76.08
1.2490	4	1 9 1	76.15
1.2476	2	-2 0 6	76.26
1.2354	2	2 0 6	77.15
1.2345	3	0 4 6	77.21
1.2249	4	-3 5 4	77.93
1.2240	2	-3 7 2	78.00
1.2199	1	-2 2 6	78.31
1.2182	2	3 7 2	76.44
1.2133	4	3 5 4	78.82
1.2115	1	-3 3 5	78.96
1.2084	1	2 2 6	79.20
1.2045	2	-4 4 3	79.51
1.1975 1.1935 1.1878 1.1831 1.1778	2 2 3 4	3 3 5 4 4 3 4 6 0 -2 8 3 2 8 3	80.07 8u.39 80.65 81.25 81.69
1.1640 1.1569 1.1516 1.1468 1.1466	1 1 1 1	0 10 0 -1 5 6 -5 1 2 -1 7 5 -2 4 6	82.67 83.49 83.96 84.39 84.41
1.1442	1	-1 1 7	84 .6 3
1.1439	2	-4 6 2	84 .6 6
1.1435	2	5 1 2	84 .6 9
1.1428	1	1 7 5	84 .7 6
1.1389	3	-5 3 1	85 .1 2
1.1387	1	1 1 7	85 • 1 3
1.1375	1	4 6 2	85 • 2 4
1.1371	1	2 4 6	85 • 2 8
1.1350	2	5 3 1	85 • 4 8
1.1195	1	0 10 2	86 • 9 5
1.1154	2	0 6 6	87.36
1.1024	3	-1 3 7	88.65
1.0975	3	1 3 7	89.15
1.0940	2	-4 2 5	89.52

Monoclinic, C2/c(15), Z=4 [Steinfink and Burns, 1964]

Lattice parameters

 $a=7.773\pm.005$, $b=7.540\pm.005$, $c=7.440\pm.005$ Å, $\beta=124.25\pm0.1$ °[ibid.]

Scattering factors

F⁻¹ [3.3.1A]; Cr⁺², Cr⁺³ [3.3.1B]

Thermal parameters

Isotropic:Cr⁺³ 0.49;Cr⁺² 0.77;F⁻(1) 1.41 F⁻(2) 1.19; F⁻(3) 1.64

Density

(calculated) 3.667 g/cm³

Scale factor

3.008 × 10⁴

Reference

Steinfink,H. and J.H.Burns(1964).The crystal structure of Cr_2F_5 , Acta Cryst. 17, 823-826.

Ca	Calculated Pattern (Peak heights)						
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$				
4.89	2	1 1 0	18 • 1 2				
3.77	1 00	0 2 0	23 • 5 8				
3.358	68	-2 0 2	26 • 5 2				
3.321	5	-1 1 2	26 • 8 2				
3.213	70	2 0 0	27 • 7 4				
3.074	35	0 0 2	29.02				
2.704	1	-2 2 1	33.10				
2.507	14	-2 2 2	35.78				
2.445	9	2 2 0	36.72				
2.423	11	-3 1 2	37.08				
2 · 38 3	3	3 2 2 +	37.72				
2 · 35 4	4	-1 3 1	38.20				
2 · 26 8	3	-1 1 3	39.70				
2 · 21 1	4	1 1 2	40.78				
2 · 14 6	2	-3 1 3	42.38				
2.079	1	-1 3 2	43.50				
2.060	4	3 1 0	43.92				
1.9411	12	-4 0 2	46.76				
1.8849	22	0 4 0	48.24				
1.8504	18	-2 0 4	49.20				
1.7925 1.7769 1.7257 1.7019 1.6961	2 14 7 1	-3 3 2 2 0 2 + -4 2 2 1 3 2 -2 4 1	50.90 51.38 53.02 53.82 54.02				

1 (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
d (Å)	I		hk	:1	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	
1.6789 1.6609 1.6434 1.6258 1.6066	13 12 11 20	-4 -2 -2 2 4	0 2 4 4	4 4 2 0 0 +	54.62 55.26 55.90 56.56 57.30	
1.5373 1.5336 1.5181 1.4776 1.4235	5 6 1 5 3	-4 -5 4	0 2 1 2 2	4 4 3 0 4	60 • 1 4 60 • 3 0 60 • 9 8 62 • 8 4 65 • 5 2	
1.35 24 1.32 06 1.31 46 1.29 31 1.27 87	5 6 1 6 3	-4 -2 1 2 -6	4 1 4 0	2 4 4 2 4	69.44 71.36 71.74 73.12 74.08	
1.2737 1.2568 1.2537 1.2349 1.2227	1 1 3 1 4	-1 0 -4 -4 -4	5 6 4 0 4	3 0 4 + 6	74 • 4 2 75 • 6 0 75 • 8 2 77 • 1 8 78 • 1 0	
1.2110 1.1914 1.1897 1.1769 1.1736	4 3 2 2 3	-6 0 -6 -2 -4	2 4 2 6 2	4 4 2 + 2 + 6	79.00 80.56 80.70 81.76 82.04	
1.1703 1.1632 1.1563 1.1055 1.0728	2 1 1 1 1	2 2 2 -6	6 0 2 2	0 2 4 4 6	82.32 82.94 83.54 88.34 91.78	
1.0708 1.0582 1.0549 1.0441 1.0396	1 2 1 1	6 -6 -4 -6 -2	04646	0 4 2 2 4	92 • 0 0 93 • 4 2 93 • 8 0 95 • 0 8 95 • 6 2	
1.0329 1.0302 1.0261 1.0250 1.0360	1 2 1 1	-4 6 2 0 -2	4 2 6 0 4	6 0 2 6 6 +	96 • 4 4 96 • 7 8 97 • 3 0 97 • 4 4 99 • 9 4	
• 99 87 • 98 91 • 98 57 • 97 05 • 93 99	1 1 1 1	4 0 2 -8 -8	4 2 4 0 2	2 6 + 4 4	100.94 102.30 102.78 105.06 110.08	
.9311 .9109 .9074 .9044 .9011	1 1 1 1	6 -8 -2 2	4 2 8 8	0 6 2 0 2	111.64 115.48 116.18 116.80 117.48	
• 90 05	1	3	4	6	117.60	

Calculated Pattern (Peak heights)

C	Calculated Pattern (Integrated)		(Calculated	d Pattern (Integr	rated)	
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	d (Å)	I	hkl	$\lambda = 1.54056 \mathring{A}$
4.89 3.77 3.357 3.322 3.213	2 100 73 4 77	1 1 0 0 2 0 -2 0 2 -1 1 2 2 0 0	18.12 23.58 26.53 26.81 -27.75	1.2349 1.2226 1.2111 1.1914 1.1899	2 7 6 5	-4 0 6 4 4 0 -6 2 4 0 4 4 -6 2 2	77.18 78.11 78.99 80.56 80.69
3.075	37	0 0 2	29.01	1.1894	1 1 2 4 1	-2 0 6	80 • 7 3
2.704	1	-2 2 1	33.10	1.1775		4 0 2	81 • 7 1
2.507	16	-2 2 2	35.78	1.1769		-2 6 2	81 • 7 6
2.445	11	2 2 0	36.72	1.1735		-4 2 6	82 • 0 5
2.422	13	-3 1 2	37.09	1.1703		2 6 0	82 • 3 2
2.383	3	0 2 2	37.72	1.16 33	2	0 6 2	82.93
2.380	2	-3 1 1	37.77	1.15 64	2	2 0 4	83.54
2.354	5	-1 3 1	38.20	1.13 43	1	-2 2 6	85.55
2.269	4	-1 1 3	39.70	1.11 92	1	-6 0 6	86.99
2.211	5	1 1 2	40.78	1.10 55	2	2 2 4	88.33
2.146	3	-3 1 3	42.07	1.0729	2 2 4 2 2	-6 2 6	91.77
2.079	1	-1 3 2	43.49	1.0708		6 0 0	92.00
2.060	5	3 1 0	43.91	1.0583		-6 4 4	93.41
1.9973	1	2 2 1	45.37	1.0549		-4 6 2	93.61
1.9409	16	-4 0 2	46.76	1.0440		-6 4 2	95.09
1.8850	28	0 4 0	48.24	1.0396	2	-2 6 4	95.62
1.8504	23	-2 0 4	49.20	1.0330	3	-4 4 6	96.44
1.7927	3	-3 3 2	50.89	1.0301	2	6 2 0	96.80
1.7772	17	2 0 2	51.37	1.0261	2	2 6 2	97.30
1.7766	2	-3 1 4	51.39	1.0253	2	0 0 6	97.44
1.7257	10	-4 2 2	53.02	1.0060	1	-4 6 4	99.93
1.7018	1	1 3 2	53.82	1.0059	1	-2 4 6	99.95
1.6956	1	-2 4 1	54.04	.9987	2	4 4 2	100.54
1.6787	5	-4 0 4	54.63	.9898	2	4 6 0	102.20
1.6611	18	-2 2 4	55.25	.9891	2	0 2 6	102.30
1.6437 1.6301 1.6258 1.6075	17 1 14 8 12	-2 4 2 3 3 0 2 4 0 2 2 2 0 4 2	55.89 56.40 56.56 57.26 57.28	. 98 57 . 97 30 . 97 05 . 96 23 . 94 25	3 1 1 1	2 4 4 0 6 4 -8 0 4 -6 4 6 0 8 0	102.79 104.68 105.07 106.34 109.63
1.6063	13	4 0 0	57.31	.9398	2	-8 2 4	110.09
1.5375	7	0 0 4	60.13	.9311	3	6 4 0	111.64
1.5336	5	-4 2 4	60.30	.9252	1	-4 0 8	112.72
1.5182	1	-5 1 3	60.98	.9128	1	-8 0 2	115.11
1.4777	8	4 2 0	62.83	.9109	2	-8 2 6	115.48
1.4236	5	0 2 4	65.51	9074	3	-2 8 2	116 · 18
1.3522	8	-4 4 2	69.45	9044	2	2 8 0	116 · 80
1.3205	3	-2 4 4	71.37	9011	3	0 8 2	117 · 48
1.3144	1	1 1 4	71.75	9005	3	0 4 6	117 · 61
1.2931	9	2 4 2	73.12	8985	3	-4 2 8	118 · 02
1.2789	4	-6 0 4	74.07	. 89 63	2	-6 6 4	118.49
1.2736	1	-1 5 3	74.43	. 88 86	2	4 0 4	120.19
1.2567	2	0 6 0	75.61	. 88 83	2	-6 2 8	120.25
1.2539	1	-6 0 2	75.80	. 88 76	1	-6 6 2	120.41
1.2536	3	-4 4 4	75.82	. 88 71	2	-8 2 2	120.52

Orthorhombic, $P2_1 2_1 2_1$ (19), Z=4 [Gramaccioli and Marsh, 1966]

Lattice parameters

a=11.084, b=10.350, c=7.238Å [ibid.]

Scattering factors

H°, C°, N°, O° [3.3.1A]. Cu°[3.3.1A]corrected for the real part of the anomalous dispersion effect [3.3.2B]

Thermal parameters

Isotropic:Cu 1.71; C(1) 1.74; C(2) 1.70; C(3) 1.96; C(4) 2.19; C(5) 1.96; N 1.95; O(1) 2.18; O(2) 2.31; O(3) 2.09; O(4) 2.50; O(5) 2.71; O(6) 2.39; H(1) to H(11) inclusive, as given in Gramaccioli and Marsh [1966]

Density

(calculated) 1.957 g/cm³ [Gramaccioli and Marsh, 1966]

Scale factor

 4.281×10^4

Reference

Gramaccioli, C.M. and R.E.Marsh (1966). The crystal structure of copper glutamate dihydrate, Acta Cryst. 21 594-600.

Calculated Pattern (Peak heights)						
d (Å)	I		hkl		2θ(°) λ = 1.54056 Å	
7.56 5.93 5.54 5.23 5.18	72 17 52 100 23	1 0 2 1 0	1 1 0 1 2	0 1 0 1	11.70 14.92 15.98 16.94	
4.89 4.69 4.40 4.21 4.05	38 2 1 42 63	2 1 2 9 2	1 2 0 2 1	0 0 1 1	18 • 1 4 18 • 9 2 20 • 1 6 21 • 0 8 21 • 9 4	
3.93 3.78 3.62 3.440 3.351	63 3 6 18 3	1 2 0 1 2	2 0 0 2	1 0 2 2 1	22 • 5 8 23 • 5 0 , 24 • 5 8 25 • 8 8 26 • 5 8	
3.290 3.264 3.136 3.114 3.029	12 12 11 5	3 1 3 0 2	0 1 1 3 0	1 + 2 1 1 2	27.08 27.30 28.44 28.64 29.46	
3 - 006	15	3	2	n	29.70	

Calculated Pattern (Peak heights)						
đ (Å)	I	hi	\$l	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$		
2.998	26	1 3	1	29.78		
2.966	7	3 2	2	30.10		
2.928	4	2 3	0	30.50		
2.908	1	2 1	2	30.72		
2.864	14	1 2	2	31.20		
2.771	4	4 0	0 +	32.28		
2.715	1	2 3	1	32.96		
2.676	4	4 1	0	33.46		
2.615	2	2 2	2	34.26		
2.586 2.509 2.497 2.443 2.436	11 7 5 1 3	3 D 3 1 0 3 4 2 0 4	2 + 2 2 0	34.66 35.76 35.94 36.76 36.86		
2.379	12	1 4	1 + 3 2 + 3 2	37.78		
2.349	7	0 1		38.28		
2.313	18	3 2		38.90		
2.299	8	1 1		39.16		
2.276	12	2 3		39.56		
2.231 2.212 2.186 2.163 2.152	6 2 1 9	2 4 2 0 0 2 2 1 4 1	1 3 3 3 2	40.40 40.76 41.26 41.72 41.94		
2.146	8	1 2	3	42.08		
2.120	3	5 0	1	42.62		
2.195	1	0 4	2	42.94		
2.077	9	5 1	1	43.54		
2.070	7	3 3	2 +	43.70		
2.069	7	1 4	2 + 2 1 3	43.72		
2.034	9	1 5		44.50		
2.025	3	4 2		44.72		
1.9902	2	9 5		45.54		
1.9828	2	3 1		45.72		
1.9673	2	2 4	2	46.10		
1.9593	1	1 5	1	46.30		
1.8901	3	5 0	2	48.10		
1.8820	2	3 2	3	48.32		
1.8733	3	2 5	1	48.56		
1.8596 1.8553 1.8476 1.8295 1.8192	9 6 1 2 7	5 1 4 3 6 0 4 4 4 0	2 + 2 0 1 3 +	48.94 49.06 49.28 49.80 50.10		
1.8058	4	5 3	1 + 2 3 2 + 1	50.50		
1.7971	4	0 5		50.76		
1.7925	4	4 1		50.90		
1.7737	5	1 5		51.48		
1.7641	3	6 1		51.78		
1.7597 1.7521	2 2	1 1 3 5	4	51.92 52.16		

Calculated Pattern (Peak heights)

Ca	Calculated Pattern (Peak heights)					
đ (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$			
1.7428	3	1 4 3 +	52.46			
1.7251	1	0 6 0	53.04			
1.7203	1	2 0 4	53.20			
1.7167	1	4 2 3	53.32			
1.7090	3	2 5 2 +	53.58			
1.6967	1	2 1 4	54.00			
1.6915	1	6 2 1	54.18			
1.6880	2	1 2 4	54.30			
1.6817	1	2 4 3	54 ° 5 2			
1.6760	2	4 4 2 +	54 ° 7 2			
1.6587	2	1 6 1	55 ° 3 4			
1.6472	2	2 6 0	55 ° 7 6			
1.6322	3	2 2 4	56 ° 3 2			
1.6164	1	4 5 1	56.92			
1.6096	1	4 3 3	57.18			
1.6055	1	3 1 4	57.34			
1.5923	3	3 4 3	57.86			
1.5883	4	6 3 1	58.02			
1.5858	5	1 3 4	58 • 1 2			
1.5681	2	6 2 2	58 • 8 4			
1.5566	1	5 2 3	59 • 3 2			
1.5504	1	3 2 4	59 • 5 8			
1.5466	2	7 0 1	59 • 7 4			
1.5424 1.5392 1.5276 1.5127 1.5079	2 2 1 1	1 6 2 2 3 4 3 6 1 5 5 0 4 5 2	59.92 60.06 60.56 61.22 61.44			
1.4991	2	4 1 4 +	61.84			
1.4818	2	7 2 1 +	62.64			
1.4700	2	3 3 4	63.20			
1.4646	1	4 6 0	63.46			
1.4540	1	4 2 4	63.98			
1.4364	3	1 7 1 + 6 2 3 5 5 2 6 4 2 + 3 4 4	64.86			
1.4113	1		66.16			
1.3960	1		66.98			
1.3883	2		67.40			
1.3761	1		68.08			
1.3732	1	8 1 0	68.24			
1.3575	1	4 6 2	69.14			
1.3538	1	6 5 1	69.36			
1.3521	2	2 2 5	69.46			
1.3507	2	7 4 0	69.54			
1.3490 1.3379 1.3366 1.3045	2 1 1 1	8 1 1 + 5 6 1 3 1 5 4 7 0 5 5 3	69.64 70.30 70.38 72.38 73.86			
1.2784	1	3 5 4	74.10			
1.2607	1	0 7 3	75.32			
1.2453	1	4 2 5	76.42			

Ca	Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
7.56	66	1 1 0	11.69			
5.93	17	0 1 1	14.92			
5.54	51	2 0 0	15.93			
5.23	100	1 1 1	16.94			
5.17	19	0 2 0	17.12			
4.89	40	2 1 0	18.14			
4.69	2	1 2 0	18.91			
4.40	1	2 0 1	20.16			
4.21	47	0 2 1	21.09			
4.05	69	2 1 1	21.93			
3 • 94 3 • 78 3 • 62 3 • 44 0 3 • 35 2	69 7 21 4	1 2 1 2 2 0 0 0 2 1 0 2 2 2 1	22.57 23.50 24.58 25.88 26.57			
3.294	2	1 3 0	27.05			
3.291	13	3 0 1	27.07			
3.265	13	1 1 2	27.29			
3.136	13	3 1 1	28.44			
3.114	5	0 3 1	28.64			
3.030	1	2 0 2	29.45			
3.007	14	3 2 0	29.69			
2.998	24	1 3 1	29.77			
2.966	8	0 2 2	30.11			
2.929	5	2 3 0	30.50			
2.908	1	2 1 2	30.72			
2.865	17	1 2 2	31.19			
2.777	1	3 2 1	32.21			
2.771	4	4 0 0	32.28			
2.715	1	2 3 1	32.96			
2.677 2.615 2.588 2.587 2.585	5 2 5 1	4 1 0 2 2 2 4 0 1 0 4 0 3 0 2	33 • 4 5 34 • 2 6 34 • 6 3 34 • 6 4 34 • 6 7			
2.508	9	3 1 2	35.77			
2.497	6	0 3 2	35.93			
2.443	1	4 2 0	36.76			
2.436	3	0 4 1	36.86			
2.381	3	3 3 1	37.75			
2.380	13	1 4 1	37.77			
2.357	1	1 0 3	38.14			
2.350	8	0 1 3	38.27			
2.315	4	4 2 1	38.88			
2.313	21	3 2 2	36.91			
2. 29 9	9	1 1 3	39.16			
2. 27 7	15	2 3 2	39.55			
2. 23 0	8	2 4 1	40.41			
2. 21 2	3	2 0 3	40.76			
2. 18 7	1	0 2 3	41.25			

C	alculated	l Pattern (Integr	ated)	Ca	lculated	Pattern (Integr	ated)
d (Å)	I	hkl	$\lambda = 1.54056 \stackrel{\circ}{A}$	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
2.163	11	2 1 3	41.72	1.6471	3	2 6 0	55.77
2.152	3	4 1 2	41.95	1.6323	3		56.31
2.145	10	1 2 3	42.08	1.6165	2	2 2 4 4 5 1	56.92
2.120	4	5 0 1	42.62	1.6095	1	4 3 3	57.19
2-105	1	0 4 2	42.93	1.6054	1	3 1 4	57.35
2.077	12	5 1 1	43.55	1.5923	5	3 4 3	57.86
2.070	1	4 3 1	43.69	1.5888	2	6 3 1	58.00
2.069	3	3 3 2	43.72	1.5860	6	1 3 4	58.11
2.068	4	1 4 2	43.74	1.5680	2	6 2 2	58.84
2.035	7	1 5 0	44.49	1.5568	1	5 2 3	59.31
2 • 03 4	1	2 2 3	44.50	1.5504	2	3 2 4	59.58
2 - 03 4	4	3 4 1	44 -51	1.5468	3	7 0 1	59.73
2.025	3	4 2 2	44.72	1.5420	2	1 6 2	59.94
1.9902	3	0 5 1	45.54	1.5394	2	2 3 4	60.05
1.9827	2	3 1 3	45.72	1.5278	1	3 6 1	60.55
1.9677	2	2 4 2	46.09	1.5129	1	5 5 0	61.21
1.9589	1	1 5 1	46.31	1.5076	1	4 5 2	61.45
1.8903	4	5 0 2	48.09	1.4991	1	2 6 2	61.84
1.8818	3	3 2 3	48.33	1.4991	2	4 1 4	61.84
1 . 87 31	4	2 5 1	48.56	1.4820	2	7 2 1	62.63
1 - 86 22	3	2 3 3	48.87	1.4809	1	5 5 1	62.68
1.8596	11	5 1 2	48.94	1.4701	3	3 3 4	63.20
1.8550	2	4 3 2	49.07	1.4644	1	4 6 0	63.47
1.8473	1	6 0 0	49.29	1.4540	1	4 2 4	63.98
1.8298	2	4 4 1	49.79	1.4457	1	3 5 3	64.39
1.8196	5	4 0 3	\$0.09	1.4366	2	7 1 2	64.85
1.8185	5	6 1 0	50.12	1.4364	3	1 7 1	64.86
1.8060	3	5 3 1	50.49	1.4353	1	4 6 1	64.91
1.8059	2	3 5 0	50.50	1.4349	1	3 6 2	64.93
1.7968	5	0 5 2	50.77	1.4112	1	6 2 3	66.17
1.7921	3	4 1 3	50.91	1.3959	1	5 5 2	66.98
1.7756	1	5 2 2	51.42	1.3884	3	6 4 2	67.39
1.7737	6	1 5 2	51.48	1.3872	2	4 3 4	67.46
1.7638	4	6 1 1	51.79	1.3762	1	3 4 4	68.07
1.7598	1	1 1 4	51.91	1.3732	2	8 1 0	68.24
1.75 22	3	3 5 1	52.16	1.3575	1	4 6 2	69.14
1.7432	2	3 3 3	52 • 4 5	1.3540	1	6 5 1	69.35
1.7426	3	1 4 3	52.47	1.3523	2	2 2 5	69.47
1.7250	1	0 6 0	53 . 0 4	1.3506	1	7 4 0	69.55
1.7201	1	2 0 4	53.21	1 . 34 92	1	8 1 1	69.63
1.7166	1	4 2 3	53.32	1.3487	1	3 7 1	69.66
1.7092	4	2 5 2	53.57	1.3379	2	5 6 1	70.30
1.7081	1	0 2 4	, 53.61	1.3365	1	3 1 5	70.38
1.6969	1 1	2 1 4 6 2 1	53.99	1.3045	1 1	4 7 0 5 5 3	72.38 73.88
1.6882	2	1 2 4 2 4 3	54.29 54.53	1.2782	1 1	3 5 4	74 • 1 1 75 • 3 2
1.6780	1 1	0 6 1	54.65	1.2454	1	4 2 5	76.42
1.6761	2	4 4 2	54.72	1.2421	1	6 6 1	76.65
1.6591	2	1 6 1	55.33	1.2359	1	7 3 3	77.11
	_	- 0 1	33433		-		

Monoclinic, C2/c (15),Z=4 [Robertson and Calvo, 1967]

Lattice parameters

a=6.876, b=8.113, c=9.162 \mathring{A} , β =109.54 $^{\circ}$ [ibid.]

Polymorphism

The polymorph β-Cu₂ P₂O₇ occurs at temperatures higher than about 66°C [ibid.]

Scattering factors

P°, O⁻¹ [3.3.1A]
Cu⁺² [3.3.1A] corrected for anomalous dispersion [3.3.2B]

Thermal parameters

Isotropic: Cu 0.94; P 0.75; O(1) 2.21; O(2) 1.29; O(3) 0.95; O(4) 1.36

Density

(calculated) 4.151 g/cm³

Scale factor

6.635 × 104

Reference

Robertson, B.E. and C. Calvo (1967). The crystal structure and phase transformation of α -Cu₂ P₂O₇, Acta Cryst.22,665-72.

Note:

Using the structure data of Robertson and Calvo [1967], we were unable to duplicate their calculated structure factors, but the scaled integrated intensities agreed within 2%.

Calculated Pattern (Peak heights)					
d (Å)	I		hki	!	2θ (°) $\lambda = 1.54056 \stackrel{\circ}{A}$
5.06 4.97 4.32 3.94 3.81	6 6 11 1 6	1 -1 0 1 -1	1 1 0 1	0 1 2 1 2	17.50 17.84 20.56 22.54 23.30
3.67 3.241 3.144 2.957 2.928	2 2 100 79 46	0 2 -2 6 1	2 0 0 2 1	1 0 2 2 2	24 • 2 2 27 • 5 0 28 • 3 6 30 • 2 0 30 • 5 0
2.841 2.621 2.532 2.495 2.489	4 2 18 18-	-1 -2 2 1 -1	1 2 2 3 3	3 1 0 0	31 • 4 6 34 • 1 8 35 • 4 2 35 • 9 6 36 • 0 6

Ca	Calculated Pattern (Peak heights)				
d (Å)	I		hkl		$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
2.293 2.274 2.254 2.205 2.175	2 1 2 3 7	-1 2 2 -1 -3	3 2 0 1	2 1 2 4 2	39.26 39.60 39.96 40.90 41.48
2.16 0 2.08 7 2.04 9 2.03 0 1.97 06	9 7 17 3 7	-2 3 1 -3 2	0 1 3 1 2	4 + 0 2 3 + 2	41.78 43.32 44.16 44.60 46.02
1.9065 1.8357 1.7478 1.7330 1.7043	16 3 6 8	-2 0 -1 -3 -2	2 4 3 3 4	4 + 2 4 2 2	47.66 49.62 52.30 52.78 53.74
1.6874 1.6200 1.6107 1.5814 1.5725	6 3 2 4 7	3 4 -3 -4 -4	3 0 1 2 0	0 0 5 2 4 +	54 • 3 2 56 • 7 8 57 • 1 4 58 • 3 0 58 • 6 6
1.5701 1.5667 1.5448 1.5378 1.5190	9 5 1 13 3	2 -4 -4 1 -1	0 2 2 3 5	4 1 3 4 + 2	58.76 58.90 59.82 60.12 60.94
1.5168 1.5043 1.4784 1.4646 1.4487	2 2 2 1 5	-2 4 -2 2 3	0 2 4 2 3	6 0 4 4 2	61.04 61.50 62.80 63.46 64.24
1 • 44 15 1 • 43 83 1 • 42 08 1 • 37 32 1 • 35 51	4 3 1 2 2	1 0 -2 4 -5	5 0 2 0 1	2 6 6 2 2 +	64 • 6 0 64 • 7 6 65 • 6 6 68 • 2 4 69 • 2 8
1 • 35 21 1 • 34 60 1 • 33 13 1 • 32 26 1 • 31 78	4 1 1 6 2	0 -5 -5 -1 -3	6 1 1 3 5	0 3 1 6 + 2	69.46 69.82 70.70 71.24 71.54
1.3045 1.3008 1.2974 1.2895 1.2539	1 1 4 1 1 1	-3 -4 -3	1 2 5 4	4 2 0 + 3 7	72 • 3 8 72 • 5 2 72 • 8 4 73 • 3 6 75 • 8 0
1.2523 1.2423 1.2258 1.1887 1.1687	2 4 1 1 1 1	-4 -2 -3 -5 5	2 6 5 3	6 2 + 4 0	75.92 76.64 77.86 80.78 82.46
1.1305	1	2	2	6	85.90

C	alculated	Pattern (Integra	ated)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
5.06	5	1 1 0	17.50
4.97	5	-1 1 1	17.83
4.32	10	0 0 2	20.56
3.94	1	1 1 1	22.54
3.81	6	-1 1 2	23.30
3.67 3.240 3.145 2.956 2.929	2 100 62 44	0 2 1 2 0 0 -2 0 2 0 2 2 1 1 2	24.22 27.51 28.35 30.21 30.50
2.841	4	-1 1 3	31.46
2.621	2	-2 2 1	34.18
2.532	20	2 2 0	35.43
2.496	19	1 3 0	35.95
2.484	1	-1 3 1	36.12
2.292	2	-1 3 2	39.27
2.274	1	2 2 1	39.60
2.255	2	2 0 2	39.96
2.204	3	-1 1 4	40.91
2.175	8	-3 1 2	41.49
2.161	9	-2 0 4	41.77
2.159	3	0 0 4	41.81
2.087	8	3 1 0	43.31
2.049	20	1 3 2	44.16
2.030	3	-3 1 3	44.60
2.028	1	S 4 0	44.64
1.9706	7	2 2 2	46.02
1.9069	18	-2 2 4	47.65
1.9056	2	0 2 4	47.68
1.8357	3	4 2	49.62
1.7478	6	-1 3 4	52.30
1.7329	10	-3 3 2	52.78
1.7045	2	-2 4 2	53.73
1.6877	8	3 3 0	54.31
1.6579	1	0 4 3	55.37
1.6200	3	4 0 0	56 • 7 8
1.6105	2	-3 1 5	57 • 1 5
1.5815	5	-4 2 2	58 • 2 9
1.5740	4	1 5 0	58 • 6 0
1.5726	6	-4 0 4	58 • 6 6
1.5703	7	2 0 4	58.75
1.5667	2	-4 2 1	58.90
1.5448	1	-4 2 3	59.82
1.5390	2	-3 3 4	60.07
1.5376	17	1 3 4	60.13
1.5190	4	-1 5 2	60 • 9 4
1.5168	1	-2 0 6	61 • 0 4
1.5045	2	4 2 0	61 • 5 9
1.4787	3	-2 4 4	62 • 7 9
1.4644	1	2 2 4	63 • 4 7

	Calculated Pattern (Integrated)				
đ (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \stackrel{\circ}{A}$		
1.4487	7	3 3 2	64.24		
1.4416	6	1 5 2	64.60		
1.4391	1	0 0 6	64.72		
1.4207	1	-2 2 6	65.66		
1.3732	3	4 0 2	68.24		
1.36 33 1.35 62 1.35 50 1.35 22 1.34 60	1 1 2 5	-4 2 5 0 2 6 -5 1 2 0 6 0 -5 1 3	68 •8 1 69 • 2 1 69 • 2 9 69 • 4 5 69 • 8 2		
1 • 33 13	1	-5 1 1	70.70		
1 • 32 40	3	-1 5 4	71.15		
1 • 32 26	8	-1 3 6	71.24		
1 • 31 75	2	-3 5 2	71.55		
1 • 30 45	1	3 1 4	72.38		
1.3007	1	4 2 2	72.63		
1.2979	2	1 1 6	72.81		
1.2973	4	3 5 0	72.85		
1.2898	2	-4 4 3	73.36		
1.2798	1	5 1 0	74.01		
1.2542 1.2522 1.2428 1.2422 1.2260	1 4 1 5	-3 1 7 -4 2 6 -4 4 4 -2 6 2 -3 5 4	75.78 75.92 76.60 76.64 77.85		
1.2033	1	5 1 1	79.13		
1.1888	2	-5 3 4	80.78		
1.1772	1	2 0 6	81.74		
1.1687	2	5 3 0	82.46		
1.1305	2	2 2 6	85.90		
1.1295 1.1168 1.1043 1.0988 1.0861	1 1 1 1	5 1 2 -1 1 8 -4 4 6 -6 2 2 4 2 4	85.99 87.22 88.46 89.02 90.34		
1.0850 1.0803 1.0800 1.0793 1.0772	1 1 1 1	-5 1 7 -4 0 8 6 0 0 0 0 8 -3 5 6	90 • 4 5 90 • 9 7 91 • 0 0 91 • 0 7 91 • 3 0		
1.0487	1	-5 5 2	94 • 5 3		
1.0430	1	0 2 8	95 • 2 1		
1.0411	2	-3 3 8	95 • 4 4		
1.0253	1	-4 6 4	97 • 4 0		
1.0246	2	3 5 4	97 • 4 7		
1.0246	1	2 6 4 1 5 6	97 • 4 8		
1.0215	2		97 • 8		

Structure Orthorhombic, Pbca (61), Z=8 [Williams,	C	alculated	Pattern (Peak h	eights)
1966]	d (Å)	I	hkl	$\lambda = 1.54056 \text{ A}$
attice parameters				X = 1.54036 A
a=10.857±0.002, b=24.447±0.005, c=8.756±	12.20	36	0 2 3	7.24
0.002Å (published value, b=24.446±0.005Å)	7.11	3	0 2 1	12.44
[ibid.]	6.56	2	1 1 1	13.48
, = ,	6.11 5.35	4 4	0 4 0	14.48
Scattering factors	2.35	4	1 2 1	14.88
H°, O°, C° [Hanson et al., 1964]	5.43	73	2 0 0	16.32
n, o, c [nanson et al., 1964]	5.30	15	2 1 0	16.72
	5. 23	99	1 3 1	16.94
hermal parameters	5.01	3	5 4 1	17.68
Isotropic	4 • 53	50	2 1 1	19.56
C(1) 4.04; C(2) 5.17; C(3) 5.47;	4.52	46	2 3 0	10.63
C(4) 5.56; C(5) 5.44; C(6) 4.75;	4.38	5	2 3 0	19.62
C(7) 4.22; C(8) 5.18; C(9) 6.12;	4.32	21	2 2 1	20.56
0(10) 6.06; 0(11) 5.71; 0(12) 4.87;	4.12	37	3 2 2	21.54
0(13) 4.22; 0(14) 4.15; 0(15) 4.37;	4.07	3	0 6 0	21.80
O(16) 5.71; O(17) 5.86; H(18) through	7 07			
H(29) as given by Williams [1966]	3.97	29	1 5 1	22.36
	3.69	21	1 2 2	23.06
ensity	3.68	7	7 6 1 2 4 1	24.08
(calculated) 1.281 g/cm ³ [Williams, 1966]	3.63	130	1 3 2	24.48
colo foctor	3.56	10	0 4 2	25.00
cale factor	3.486	3	2 0 2	26 .14
13.32×10^4	3 - 38 1	15	1 4 2	26.34
	3.376 3.356	14	2 1 2	26 . 3 8
	2.320	'	2 5 1	26.54
	3.283	5	2 2 2	27.14
	3.259	2	2 6 0	27.34
	3.227	3 42	3 2 1 2 3 2	27.62
	3.125	8	2 3 2	28.36
eference				
anson, H.P., F. Herman, J.D. Lea, and S.	3.093 2.976	5 17	3 3 1 2 +	28 . 8 4
Skillman (1964). HFS atomic scattering	2.934	4	3 4 1	30.00
factors, Acta Cryst. 17, 1040-1044.	2.884	3	0 8 1	30.98
illiams, D.E. (1966). Crystal structure	2.877	2	1 6 2	31.06
of dibenzoylmethane, Acta Cryst.21,340-9.	2.840	3	0 2 3	31.48
	2.830	1	1 1 3	31.94
ote:	2.789	2	3 0 2	32.06
There has been a correction in this last	2.714	2	4 0 0	32.98
reference. The \underline{x} parameter for C(3)	2.664	1	2 8 0	33.62
should be -0.07535.	2.639	1 1	3 3 2 2 6 2	33.94
	2.584	2	2 6 2 3 6 1	34.58
	2.579	2	4 1 1	34.76
	2. 55 7	2	2 1 3 +	35.36
	2.547	3	2 8 1	35 . 2 0
	2 5 3 8	5	3 4 2 +	35 • 3 4
	2 • 52 4	2	1 9 1	35.54
	2.442	5	1 5 3 +	35.78

DibenzoyImethane, $C_{15}H_{12}O_2$ (orthorhombic) — continued

Ca	Calculated Pattern (Peak heights)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
2.219 2.193 2.188 2.180 2.160	1 1 2 1 3	4 3 2 1 7 3 3 3 3 3 7 2 2 10 1	40.62 41.12 41.22 41.38 41.78			
2.134 2.129 2.124 2.138 2.094	1 2 1 2	0 10 2 3 4 3 2 9 2 3 9 1 1 10 2	42.32 42.42 42.52 42.86 43.16			
2.071 2.025 2.033 1.9844 1.9673	1 1 2 2	1 8 3 1 4 4 2 11 1 0 12 1 2 8 3	43.66 44.72 45.24 45.68 46.10			
1.9286 1.9043 1.8923 1.8747 1.8233	1 2 1 1	0 6 4 3 7 3 5 3 2 2 5 4 3 8 3	47.08 47.72 48.04 48.52 49.98			
1.8172 1.8125 1.8091 1.8051 1.7866	1 1 1 1 1 1	2 6 4 1 13 1 6 0 0 6 1 0 4 6 3	50.16 50.30 50.40 50.52 51.08			
1.7788 1.7553 1.7490 1.7019	1 2 2 2	4 10 1 2 7 4 3 5 4 3 6 4	51.32 52.06 52.26 53.82			

Cal	Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 A$		
12.22	27	0 2 0	7 • 2 3		
7.12	3	0 2 1	12 • 4 2		
6.57	1	1 1 1	13 • 4 8		
6.11	3	0 4 0	14 • 4 8		
5.95	3	1 2 1	14 • 8 7		
5 • 43	62	2 0 0	16.32		
5 • 30	11	2 1 0	16.72		
5 • 23	92	1 3 1	16.94		
5 • 01	3	0 4 1	17.68		
4 • 55	1	1 4 1	19.49		
4.53	44	2 1 1	19.56		
4.52	17	2 3 0	19.63		
4.38	4	0 0 2	20.27		
4.32	20	2 2 1	20.56		
4.12	36	0 2 2	21.54		
4.07	2	0 6 0	21.79		
3.97	28	1 5 1	22.36		
3.85	20	1 2 2	23.06		
3.69	5	0 6 1	24.07		
3.68	3	2 4 1	24.15		
3.63	100	1 3 2	24.47		
3.56	10	0 4 2	25.00		
3.408	2	2 0 2	26.13		
3.382	14	1 4 2	26.33		
3.375	4	2 1 2	26.38		
3.356	2	2 5 1	26 • 5 4		
3.283	5	2 2 2	27 • 1 4		
3.259	1	2 6 0	27 • 3 5		
3.226	3	3 2 1	27 • 6 3		
3.144	44	2 3 2	28 • 3 6		
3.124	5	1 5 2	28.55		
3.094	4	3 3 1	28.83		
2.983	3	0 6 2	29.93		
2.976	16	2 4 2	30.00		
2.934	3	3 4 1	30.44		
2.885	3	0 8 1	30.97		
2.876	1	1 6 2	31.07		
2.839	4	0 2 3	31.49		
2.800	1	1 1 3	31.94		
2.789	2	3 0 2	32.06		
2.714	2	4 0 0	32.97		
2.663	2	2 8 0	33.63		
2.639	1	3 3 2	33.94		
2.614	1	2 6 2	34.28		
2.585	2	3 6 1	34.67		
2.578	1	4 1 1	34 • 7 7		
2.560	1	1 4 3	35 • 0 3		
2.557	1	2 1 3	35 • 0 7		
2.548	2	2 8 1	35 • 2 0		
2.538	4	3 4 2	35 • 3 4		

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	
2.536 2.523 2.445 2.442 2.442	1 1 2 3 2	4 2 1 1 9 1 0 10 0 1 5 3 1 8 2	35 • 3 6 35 • 5 5 36 • 7 3 36 • 7 8 36 • 7 8	
2.318 2.220 2.193 2.188 2.180	7 1 1 2 1	1 6 3 4 3 2 1 7 3 3 3 3 3 7 2	38.82 40.61 41.12 41.22 41.39	
2.160 2.134 2.130 2.124 2.109	3 1 1 1 2	2 10 1 0 10 2 3 4 3 2 9 2 3 9 1	41.78 42.31 42.41 42.52 42.85	
2.094 2.072 2.025 2.022 1.9842	1 1 2 2	1 10 2 1 8 3 1 4 4 2 11 1 9 12 1	43.16 43.65 44.72 45.25 45.68	
1.9672 1.9283 1.9044 1.8921 1.8750	1 1 3 1	2 8 3 0 6 4 3 7 3 5 3 2 2 5 4	46.10 47.09 47.72 48.05 48.51	
1.8232 1.8171 1.8128 1.8095 1.8046	1 1 1 1	3 8 3 2 6 4 1 13 1 6 0 0 6 1 0	49.98 50.16 50.29 50.39 50.54	
1.7864 1.7786 1.7552 1.7491 1.7016	2 1 2 2 3	4 6 3 4 10 1 2 7 4 3 5 4 3 6 4	51.09 51.33 52.06 52.26 53.82	

Monoclinic, Pn(7) or P2/n(13), Z=2 [Marezio et al., 1961].

Lattice parameters

a=9.651±0.001, b=6.525±0.001, c=7.923±0.001Å, β=93.65±0.02°[ibid.]

Scattering factors

 Gd° [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955] H° , O^{-1} , $C1^{-1}$ [3.3.1A]

Thermal parameters

Isotropic [Marezio et al., 1961]

Density

(calculated) 2.478 g/cm³ [Marezio et al., 1961]

Scale factor

 2.514×10^{4}

Additional patterns

 P.D.F. card 3-0392 [Dow Chemical Co., Midland, Mich.]

Reference

Dauben, C.H. and D.H. Templeton (1955). A table of dispersion corrections for x-ray scattering of atoms, Acta Cryst. 8, 841-842.

Marezio, M.,H.A. Plettinger, and W.H.Zachariasen (1961). The crystal structure of gadolinium trichloride hexahydrate, Acta Cryst. 14, 234-236.

Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J. Chem. Phys. 26, 293-303.

Ca	Calculated Pattern (Peak heights)					
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$			
6.525	41	0 1 0	13.56			
6.312	100	-1 0 1	14.02			
5.925	100	1 0 1	14.94			
5.401	71	1 1 0	16.40			
5.029	66	0 1 1	17.62			
4.813	49	2 0 0	18.42			
4.535	36	-1 1 1	19.56			
4.388	43	1 1 1	20.22			
3.952	59	0 0 2	22.48			
3.874	11	2 1 0	22.94			

Ca	Calculated Pattern (Peak heights)					
d (Å)	I		hk	ı	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	
3.550	71	-2	1	1	25.06	
3.411	63	2	1	1	26.10	
3.381	16	0	1	2	26.34	
3.262	3	0	2	0	27.32	
3.252	2	-1	1	2	27.40	
3.155 3.138 3.089 3.044 2.965	7 7 27 4 7	-2 1 1 -3 2	0 1 2 0 0	2 0 1 2	28.26 28.42 28.88 29.32 30.12	
2.910 2.881 2.859 2.841 2.758	5 17 17 3 5	3 1 -2 -3	0 1 2 1	1 0 1 2	30.70 31.02 31.26 31.46 32.44	
2.699	3	2	2 2 2 2	0 +	33.16	
2.659	7	3		1	33.68	
2.584	23	-2		1 +	34.68	
2.528	18	2		1	35.48	
2.517	11	0		2	35.64	
2.502	10	1	0	3	35.86	
2.460	16	-1	2	2	36.50	
2.444	2	0	1	3	36.74	
2.407	22	1	2	2 +	37.32	
2.403	31	-1	1	3	37.40	
2.395	25	-3	1	2	37.52	
2.336	20	1	1	3	38.50	
2.288	40	3	2	0	39.34	
2.267	11	3	1	2	39.72	
2.260	9	4	1	0	39.86	
2.233	23	-2	1	3	40.36	
2.207	13	-4	1	1	40.86	
2.194	4	2	2	2	41.10	
2.175	5	0	3	0 +	41.48	
2.139	5	4	1	1	42.22	
2.129	20	2	1	3	42.42	
2.123	12	1	3	0	42.54	
2.118	11	-4	0	2	42.66	
2.104	3	-3	0	3	42.96	
2.098	3	0	3	1	43.08	
2.056	16	-1	3	1	44.00	
2.051	12	0	2	3	44.12	
2.042	12	1	3	1	44.32	
2.021	10	-3	2	2	44.82	
2.001	4	4	0	2 +	45.28	
1.9820	3	2	3	0 +	45.74	
1.9771	9	0	0	4 +	45.86	
1.9427	17	3	2	2	46.72	
1.9372	11	-2	3	1 +	46.86	
1.9209	7	-2	2	3	47.28	
1.9156 1.9058	5 13	4 0	1 3	2 +	47.42 47.68	

Ca	Calculated Pattern (Peak heights)					
d (Å)	I	h	kl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$		
1.8998 1.8916 1.8784	11 7 2	-5 0 0 1 -1 1	1 4 + 4	47.84 48.06 48.42		
1.8711 1.8596 1.8539 1.8483 1.8448	3 4 6 4 3	-2 0 4 2 2 2 5 1 5 0	4 1 3 0 1	48.62 48.94 49.10 49.26 49.36		
1.8357 1.8240 1.7984 1.7892 1.7756	1 7 1 4	1 1 -5 1 -2 1 2 0 5 1	4 1 4 4 + 1 +	49.62 49.96 50.72 51.00 51.42		
1.7685 1.7534 1.7422 1.6903 1.6806	6 1 3 1 6	-4 1 2 3 3 3 0 2 -1 2	3 + 2 1 4	51.64 52.12 52.48 54.22 54.56		
1.6755 1.6665 1.6643 1.6593 1.6499	65644	-3 1 4 1 -1 3 5 2 1 2	4 + 3 3 0 4	54.74 55.06 55.14 55.32 55.66		
1.6413 1.6311 1.6138 1.6050 1.5883	6 2 2 7 4	1 3 0 4 4 3 6 0 3 1	3 + 0 0 0 + 4 +	55.98 56.36 57.02 57.36 58.02		
1.5779 1.5735 1.5585 1.5476 1.5448	4 3 3 2 3	-4 0 1 4 -5 1 -6 1 2 4	4 + 1 3 + 1 0	58.44 58.62 59.24 59.70 59.82		

С	alculated	l Pattern (Integr	ated)
d (Å)	I	hkl	$\begin{array}{c c} 2\theta(^{\circ}) \\ \lambda = 1.54056 \stackrel{\circ}{A} \end{array}$
6.525	39	$\begin{array}{ccccc} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}$	13.56
6.312	97		14.02
5.929	100		14.93
5.402	72		16.40
5.033	70		17.61
4.816	53	2 0 0	18.41
4.537	38	-1 1 1	19.55
4.388	46	1 1 1	20.22
3.953	68	0 0 2	22.47
3.875	12	2 1 0	22.93
3.552	86	-2 1 1 2 0 1 2 0 -1 1 2	25.05
3.411	73		26.10
3.381	16		26.34
3.263	3		27.31
3.246	1		27.45
3.156	7	-2 0 2	28.26
3.137	8	1 1 2	28.42
3.090	34	1 2 0	28.87
3.043	4	-3 0 1	29.33
2.965	8	2 0 2	30.12
2.911	6	3 0 1	30.69
2.881	20	3 1 0	31.02
2.858	21	1 2 1	31.27
2.841	3	-2 1 2	31.46
2.758	6	-3 1 1	32.44
2.701	2	2 2 0	33.14
2.699	2	2 1 2	33.16
2.658	10	3 1 1	33.69
2.584	5	-1 0 3	34.68
2.584	24	-2 2 1	34.68
2.529	23	2 2 1	35.47
2.516	12	0 2 2	35.65
2.502	11	1 0 3	35.86
2.459	22	-1 2 2	36.51
2.444	2	0 1 3	36.75
2.411	15	1 2 2	37.27
2.408	14	4 0 0	37.31
2.403	25	-1 1 3	37.40
2.394	25	-3 1 2	37.54
2.336	27	1 1 3	38.50
2.288	52	3 2 0	39.34
2.267	12	3 1 2	39.72
2.259	9	4 1 0	39.87
2.233	30	-2 1 3	40.36
2.207	18	-4 1 1	40.85
2.194	5	2 2 2	41.11
2.175	6	0 3 0	41.48
2.172	1	3 2 1	41.54
2.139	6	4 1 1	42.22
2.129	25	2 1 3	42.42

Ca	alculated	Pattern (Integra	nted)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
2.122	2	1 3 0	42.58
2.117	13	-4 0 2	42.67
2.104	3	-3 0 3	42.95
2.097	2	0 3 1	43.10
2.056	22	-1 3 1	44.00
2.050	5	0 2 3	44.14
2.042	15	1 3 1	44.32
2.021	13	-3 2 2	44.82
2.002	2	-3 1 3	45.25
2.001	5	4 0 2	45.29
1.9854	2	1 2 3	45.66
1.9822	2	2 3 0	45.73
1.9767	10	0 0 4	45.87
1.9763	3	3 0 3	45.88
1.9426	24	3 2 2	46.72
1.9373	1	4 2 0	46.86
1.9347	6	-2 3 1	46.92
1.9210	10	-2 2 3	47.28
1.9128	1	4 1 2	47.49
1.9056	16	0 3 2	47.68
1.9044	3	-4 2 1	47.72
1.8996	7	-5 0 1	47.85
1.8918	6	0 1 4	46.05
1.8915	3	3 1 3	48.06
1.8781	3	-1 1 4	48.43
1.8710	4	-2 0 4	48.62
1.8598	5	4 2 1	48.93
1.8536	7	2 2 3	49.11
1.8475	1	5 1 0	49.28
1.8447	4	5 0 1	49.36
1.8353	1	1 1 4	49.63
1.8238	10	-5 1 1	49.96
1.7985	1	-2 1 4	50.72
1.7909	3	-2 3 2	50.95
1.7891	4	2 0 4	51.00
1.7760	2	-4 2 2 5 1 1 -3 3 1 -4 1 3 2 3 2	51.41
1.7751	4		51.43
1.7695	3		51.61
1.7681	6		51.65
1.7536	1		52.11
1.7423	5	3 3 1	52.48
1.6906	1	0 2 4	54.21
1.6808	9	-1 2 4	.54.55
1.6775	1	0 3 3	54.67
1.6751	6	-3 1 4	54.75
1.6667	6	4 1 3	55.05
1.6641	7	-1 3 3	55.15
1.6587	4	5 2 0	55.34
1.6499	5	1 2 4	55.66
1.6416	2	-5 2 1	55.97

_							
	Calculated Pattern (Integrated)						
	d (Å)	I		hkl		$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	
:	1.6415 1.6312 1.6140 1.6033 1.6058	7 3 2 1 3	1 0 4 1 5	3 4 3 4 2	3 0 0 0 1	55.97 56.35 57.01 57.23 57.33	
	1.6052 1.6046 1.6045 1.6006 1.5881	5 3 1 1 7	6 -5 -2 -4	0 0 3 2	0 3 3 3 4	57.35 57.38 57.38 57.53 58.03	
	1.5793 1.5779 1.5766 1.5728 1.5604	2 5 1 2 2	-1 -4 -1 1 -5	4 0 0 4 2	1 4 5 1 2	58.38 58.44 58.49 58.65 59.16	
	1.5588 1.5582 1.5476 1.5450	2 3 2 2	6 -5 -6 2	1 1 1 4	0 3 1 0	59.23 59.25 59.70 59.81	

Hexamethylenediammonium Adipate, $C_{12}H_{26}N_2O_4$ (monoclinic)

Structure

Monoclinic, P2₁/à (14), Z=2 [Brown, 1966]

Lattice parameters

a=8.489, b=15.581, c=5.598 \mathring{A} , β =102.9° (published value: b=15.580 \mathring{A}) [ibid.

Scattering factors

 H° , C° , N° , O° [3.3.1A]

Thermal parameters

Anisotropic for carbon, nitrogen, and oxygen, isotropic for hydrogen [Brown, 1966] Density

(calculated) 1.207 g/cm3

Scale factor

1.235 × 104

Reference

Brown, C.J. (1966). Further refinement of the crystal structure of hexamethylenediammonium adipate, Acta Cryst. 21, 185-190

Ca	Calculated Pattern (Peak heights)						
d (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \text{ Å}$				
7.78	37	0 2 0	11.36				
7.31	11	1 1 0	12.10				
5.67	2	1 2 0	15.62				
5.45	1	0 0 1	16.24				
4.85	8	1 1 -1	18.26				
4.40	17	1 3 0	20 • 1 8				
4.27	93	1 2 -1	20 • 7 8				
4.01	99	1 1 1	22 • 1 6				
4.00	96	2 1 0	22 • 20				
3.72	2	2 0 -1	23 • 9 0				
3.65	72	2 2 0	24 • 3 4				
3.64	100	1 3 -1	24 • 4 2				
3.52	10	1 4 0	25 • 26				
3.358	3	2 2 -1	26 • 5 2				
3.236	20	2 3 0 +	27 • 5 4				
3.097	2	1 4 -1	28 • 8 0				
2.992	1	2 0 1	29 • 8 4				
2.938	6	2 1 1	30 • 4 0				

Ca	lculated	Pattern (Peak he	ights)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
2 • 91 5.	1	2 5 0	30 • 6 4
2 • 73 8		1 1 -2	32 • 6 8
2.728	4	0 0 2	32 • 8 0
2.720	2	3 1 0	32 • 9 0
2.706	3	0 5 1	33 • 0 8
2.687	7	0 1 2 +	33 • 3 2
2.660	14	1 5 -1	33 • 6 6
2.596	7	0 6 0 +	34.52
2.566	2	3 2 -1	34.94
2.555	2	2 0 -2	35.10
2.521	5	2 1 -2	35.58
2.489	9	2 5 0 +	36.06
2.482 2.428 2.405 2.389 2.324	5 2 1 1	1 6 0 2 2 -2 1 1 2 2 5 -1 1 2 2	36 • 1 6 37 • 0 0 37 • 3 6 37 • 6 2 38 • 7 2
2.314	2	1 6 -1	38 • 8 8
2.293	9	2 3 -2	39 • 2 6
2.264	1	1 4 -2	39 • 7 8
2.242	2	3 1 1	40 • 1 8
2.229	9	3 4 -1	40 • 4 4
2.199 2.129 2.064 2.060 2.056	1 2 3 3	2 6 0 2 6 -1 1 4 2 + 0 7 1 2 1 2	41.00 42.42 43.82 43.92 44.00
2.051	4	4 1 0 +	44 • 1 2
2.005	2	2 2 2 +	45 • 1 8
1.9754	1	2 5 -2	45 • 9 D
1.9593	2	3 4 1 +	46 • 3 D
1.8476	3	4 1 -2	49 • 28
1.8329	1	3 5 1	49.70
1.8267	3	4 4 0	49.88
1.8064	2	0 1 3 +	50.48
1.7628	3	1 8 1	51.82
1.7251	1	2 8 -1	53.04
1.7215 1.7072 1.6829 1.6637 1.6380	1 2 1 1	3 7 -1 3 6 1 1 4 -3 3 2 -3 4 4 1 +	53.16 53.64 54.48 55.16 56.10
1.6009	1	1 5 -3	57.52

C	alculated	l Pattern (Integra	ated)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
7.79	34	0 2 0	11.35
7.31	10	1 1 0	12.10
5.67	2	1 2 0	15.61
5.46	1	0 0 1	16.23
4.86	8	1 1 -1	18.26
4.40	16	1 3 0	20.17
4.27	100	1 2 -1	20.77
4.01	98	1 1 1	22.15
4.08	41	2 1 0	22.21
3.72	2	2 0 -1	23.89
3.65 3.64 3.52 3.358 3.242	67 80 12 4	2 2 0 1 3 -1 1 4 0 2 2 -1 1 3 1	24.34 24.42 25.25 26.53 27.49
3.236 3.098 2.931 2.937 2.916	21 3 1 7	2 3 0 1 4 -1 2 0 1 2 1 1 1 5 0	27.54 28.80 29.85 30.41 30.63
2.739	1	1 1 -2	32.67
2.728	4	0 0 2	32.80
2.716	1	3 1 0	32.95
2.706	3	0 5 1	33.08
2.691	1	2 4 -1	33.27
2.687	8	0 1 2	33.31
2.650	17	1 5 -1	33.66
2.600	3	3 2 0	34.47
2.597	7	0 6 0	34.51
2.566	2	3 2 -1	34.93
2.555	2	2 0 -2	35.39
2.521	5	2 1 -2	35.68
2.492	1	1 5 1	36.01
2.489	11	2 5 0	36.05
2.478	2	1 6 0	36.23
2.428	2	2 2 -2	37.00
2.405	1	1 1 2	37.35
2.389	1	2 5 -1	37.62
2.324	1	1 2 2	38.72
2.315	2	1 6 -1	38.87

Calculated Pattern (Integrated)							
$\lambda = 1.54056 \text{ A}$							
39.27 39.78 43.17 43.43 41.30							
41.40 42.00 42.41 43.80 43.82							
43.90 43.99 44.08 44.13 44.18							
44.36 44.68 45.19 45.89 46.25							
46.31 46.70 47.57 47.95 49.29							
49.70 49.87 50.47 50.51 51.81							
53.03 53.14 53.63 54.48 55.15							
56.34 56.10 57.52							

Monoclinic, $P2_1/c$ (14), Z=4 [Lundberg, 1966]

Lattice parameters

a=7.956, b=11.856, c=12.078 Å, β=113°58' ±.005 ±.005 ±.005 ±2' [ibid.]

Scattering factors

Zn° [Thomas, and Umeda, 1957], corrected for the real part of the dispersion correction, [Dauben and Templeton, 1955].

N°, C°, Cl⁻ [Berghuis et al., 1955]

Thermal parameters

Isotropic [Lundberg, 1966]

Density

(calculated) 1.73 g/cm³ [Lundberg, 1966] Scale factor 7.339 × 10⁴

Reference

Berghuis,J.,IJ.M.Haanappel,M.Potters, B.O.
Loopstra,C.H.MacGillavry,and A.L.Veenendaal (1955). New calculations of atomic scattering factors,Acta Cryst.8,478-483.

Dauben,C.H.and D.H.Templeton (1955). A table of dispersion corrections for x-ray scattering of atoms,Acta Cryst.8,841-842

Lundberg,B.K.S.(1966). The crystal structure of Di-imidazole-zinc(II) Dichloride Acta Cryst. 21, 901-909.

Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J.Chem. Phys. 26, 293-303.

Ca	lculated	Pattern (Peak her	ights)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$
7.261	2	1 0 0	12.18
6.440	13	-1 1 1	13.74
6.197	100	1 1 0	14.28
5.925	5	0 2 0	14.94
5.514	11	0 0 2	16.06
5.224	48	0 2 1	16.96
5.087	92	-1 1 2	17.42
4.746	2	1 1 1	18.68
4.691	1	-1 2 1	18.90
4.081	2	-1 2 2	21.76
4.037	21	0 2 2	22.00
3.900	12	1 2 1	22.78
3.792	2	-1 1 3	23.44
3.760	10	-2 1 1	23.64
3.720	50	0 3 1 +	23.90
3.648	15	-2 1 2 2 2 0 0 1 1 2 2 -1 3 1 + 2 1 0	24.38
3.636	28		24.46
3.553	29		25.04
3.512	16		25.34
3.474	7		25.62
3.316 3.220 3.142 3.125 2.998	17 15 1 5	-1 2 3 -2 2 2 + 1 3 1 0 2 3 2 1 1	26.86 27.68 28.36 28.54 29.78
2.965	16	0 4 0	30.12
2.925	2	-1 1 4	30.54
2.863	8	0 4 1	31.22
2.817	4	-2 0 4	31.74
2.800	1	-2 3 1	31.94
2.769	3	1 1 3	32.30
2.759	4	0 0 4	32.42
2.753	5	-2 3 2	32.50
2.744	4	1 4 0	32.60
2.741	5	-2 1 4	32.64
2.693	4	0 3 3	33.24
2.676	2	2 3 0	33.46
2.650	3	-3 0 2	33.80
2.611	1	0 4 2	34.32
2.586	11	-3 1 2 +	34.66
2.545	2	-2 2 4	35.24
2.531	4	2 1 2	35.44
2.501	2	0 2 4	35.88
2.399	2	-1 3 4	37.46
2.379	4	-3 2 1 +	37.78
2.374	8	3 1 0 +	37.86
2.319	4	1 4 2	38.80
2.311	12	-3 1 4 +	38.94
2.294	2	-2 3 4	39.24
2.290	2	1 0 4	39.32

Ca	lculated	Pattern (Peak he	righte)	1	C	alculate	i Pattern (Integra	nted)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$		d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
2.265	3	-1 5 1	39.76		7.270	2	1 0 0	12.16
2.254	2	1 5 0	39.96		6.439	13	-1 1 1	13.74
2.248	4	1 1 4	40.08		6.198	100	1 1 0	14.28
2.221	3	-2 4 3 +	40.58		5.928	5	0 2 0	14.93
2.192	3	-2 2 5	41.14		5.518	11	0 0 2	16.05
2.186	4	-1 5 2	41.26		5.222	51	0 2 1	16.96
2.170	2	0 1 5 +	41.58		5.088	97	-1 1 2	17.41
2.156	2	1 5 1	41.86		4.747	2	1 1 1	18.68
2.146	3	-3 3 3	42.06		4.690	1	-1 2 1	18.91
2.142	3	2 4 1	42.16		4.084	2	-1 2 2	21.74
2.052	2	-1 3 5	44.10		4.039	25	0 2 2	21.99
2.047	3	2 2 3	44.22		3.901	13	1 2 1	22.78
2.040	4	-1 5 3	44.36		3.792	2	-1 1 3	23.44
2.017	1	-2 5 2	44.90		3.759	11	-2 1 1	23.65
2.001	3	1 5 2 +	45.28		3.726	18	1 0 2	23.86
1.9919	1	-3 2 5	45.50		3.721	44	0 3 1	23.90
1.9820	2	-4 0 2	45.74		3.648	12	-2 1 2	24.38
1.9763	4	0 6 0 +	45.88		3.635	29	2 0 0	24.47
1.9209	. 1	3 1 2	47.28		3.555	35	1 1 2	25.03
1.9171	3	-4 0 4 +	47.38		3.514	8	0 1 3	25.33
1.8827 1.8798 1.8646 1.8603 1.8553	1 2 3 3 3	1 1 5 -4 2 2 -3 3 5 0 6 2 -3 1 6	48.30 48.38 48.80 48.92 49.06		3.513 3.475 3.317 3.295 3.229	11 7 20 1	-1 3 1 2 1 0 -1 2 3 -2 2 1 -2 1 3	25.33 25.61 26.86 27.04 27.60
1.8462	2	-2 4 5	49.32		3.220	18	-2 2 2	27.68
1.8413	2	2 1 4	49.46		3.142	1	1 3 1	28.38
1.8288	2	-4 2 1	49.82		3.126	6	0 2 3	28.53
1.8233	2	1 5 3	49.98		2.998	1	2 1 1	29.78
1.8172	4	4 0 0	50.16		2.964	20	0 4 0	30.13
1.8131 1.7775 1.7679 1.7565 1.7490	3 1 4 2 2	-2 5 4 2 2 4 -2 6 1 + 2 4 3 + 2 5 2 +	50.28 51.36 51.66 52.02 52.26		2.925 2.863 2.817 2.799 2.770	2 10 5 1 4	-1 1 4 0 4 1 -2 0 4 -2 3 1 1 1 3	30.54 31.22 31.74 31.95 32.29
1.7379	2	-3 5 3 +	52.62		2.759	3	0 0 4	32.42
1.7306	1	-4 2 5	52.86		2.752	4	-2 3 2	32.51
1.7179	4	1 3 5	53.28		2.745	1	1 4 0	32.60
1.7025	1	-2 6 3	53.80		2.741	4	-2 1 4	32.65
1.6715	2	-3 5 4 +	54.88		2.693	5	0 3 3	33.24
1.6665	2	2 6 1	55.06		2.675	2	2 3 0	33.47
1.6560	1	-2 2 7	55.44		2.650	3	-3 0 2	33.79
1.6505	3	-3 1 7	, 55.64		2.611	1	0 4 2	34.31
1.6467	3	-4 4 2 +	55.78		2.590	2	2 0 2	34.60
1.6221	1	-1 7 2	56.70		2.586	14	-3 1 2	34.65
1.6174 1.6081 1.5710 1.5585 1.5495	2 1 1 1	1 1 6 + 3 5 1 2 6 2 -5 1 2 + 4 4 0	56.88 57.24 58.72 59.24 59.62		2.544 2.531 2.501 2.399 2.382	2 5 3 3 2	-2 2 4 2 1 2 0 2 4 -1 3 4 -1 4 3	35.25 35.44 35.87 37.46 37.74

Ca	lculated	Pattern (Integra	ted)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
2.380	3	-3 2 1	37.77
2.374	5	3 1 0	37.86
2.374	2	2 2 2	37.87
2.320	4	1 4 2	38.79
2.311	7	1 3 3	38.94
2.311	8	-3 1 4	38.94
2.308	3	0 4 3	38.99
2.294	1	-2 3 4	39.24
2.239	2	1 0 4	39.32
2.265	3	-1 5 1	39.76
2.254	2 5 2 3 4	1 5 0	39.96
2.248		1 1 4	40.08
2.225		-1 2 5	40.51
2.221		-2 4 3	40.58
2.192		-2 2 5	41.15
2.186	4	-1 5 2	41.27
2.171	1	-3 3 1	41.56
2.170	2	0 1 5	41.58
2.156	2	1 5 1	41.86
2.146	3	-3 3 3	42.06
2.142	3	2 4 1	42.15
2.069	1	0 2 5	43.72
2.052	2	-1 3 5	44.10
2.046	3	2 2 3	44.22
2.040	4	-1 5 3	44.37
2.017	1	-2 5 2	44.91
2.001	1	-2 0 6	45.28
2.001	3	1 5 2	45.29
1.9917	1	-3 2 5	45.50
1.9820	2	-4 0 2	45.74
1.9760 1.9757 1.9209 1.9172 1.9142	3 2 1 3	0 6 0 -3 4 2 3 1 2 -4 0 4 3 3 1	45.89 45.89 47.28 47.38 47.46
1.8834	1	1 1 5	48.28
1.8797	2	-4 2 2	48.38
1.8645	3	-3 3 5	48.80
1.8603	2	0 6 2	48.92
1.8548	3	-3 1 6	49.08
1.8459	3	-2 4 5	49.33
1.8406	1	2 1 4	49.48

C	Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$		
1.8291	2	-4 2 1	49.81		
1.8226	1	1 5 3	50.00		
1.8175	4	4 0 0	50.15		
1.8140	1	-2 5 4	50.25		
1.7887	1	-4 1 5	51.02		
1.7775	1	2 2 4	51.36		
1.7718	1	-1 6 3	51.54		
1.7703	2	0 4 5	51.58		
1.7685	3	-2 6 1	51.64		
1.7671	2	-3 5 2	51.68		
1.7565	1	-2 6 2	52.02		
1.7564	1	2 4 3	52.02		
1.7515	1	-3 5 1	52.18		
1.7490	2	2 5 2	52 • 26		
1.7384	1	-3 5 3	52 • 60		
1.7376	1	4 2 0	52 • 63		
1.7306	2	-4 2 5	52 • 86		
1.7179	6	1 3 5	53 • 28		
1.7027	2	-2 6 3	53.79		
1.6870	1	-1 5 5	54.34		
1.6741	1	0 7 1	54.79		
1.6714	2	-3 5 4	54.89		
1.6661	1	2 6 1	55.08		
1.6560	2	-2 2 7	55.44		
1.6506	2	-3 1 7	55.64		
1.6476	1	-4 4 2	55.75		
1.6470	1	1 5 4	55.77		
1.6464	1	-4 4 3	55.79		
1.6451 1.6220 1.6177 1.6172 1.6030	1 1 1 1	-4 3 5 -1 7 2 -2 6 4 1 1 6 3 5 1	55.84 56.71 56.87 56.89 57.24		
1.5711	1	2 6 2	58.72		
1.5605	1	2 2 5	59.16		
1.5585	2	-5 1 2	59.24		
1.5494	1	4 4 0	59.62		
1.5444	1	-4 4 5	59.84		
1.5358	2	-3 3 7	60.20		
1.5237	1	0 2 7	60.74		
1.4770	1	-1 7 4	62.87		

Hexagonal, $R\overline{3}$ (148),Z=18 [Burns and Gordon,1966]

Lattice parameters

 $a=13.29\pm0.01$, $c=8.91\pm0.01$ Å [ibid.]

Scattering factors

Li⁺, Be⁺², F⁻ [3.3.1A]

Thermal parameters

Anisotropic [Burns and Gordon, 1966]

Density

(calculated) 2.169 g/cm³

Scale factor

 9.496×10^{4}

Additional patterns

1.PDF card 6-0557 [Thilo and Lehmann, 1949]

Reference

Burns, J.H. and E.K.Gordon (1966). Refinement of the crystal structure of Li₂BeF₄ Acta Cryst. 20, 135-138.

Thilo, E. and H.-A. Lehmann (1949). Über das System LiF-BeF2 und seine Beziehungen zum System MgO-SiO2, Z. Anorg. Chem., 258, 332-355.

Ca	Calculated Pattern (Peak heights)				
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$		
6.64	38	1 1 0	13.32		
4.15	9	0 1 2	21.38		
3.91	23	2 1 1 +	22.74		
3.84	20	3 0 0	23.16		
3.52	2	2 0 2	25.26		
3.321	56	2 2 0	26 .8 2		
3.112	4	1 2 2 +	28 .6 6		
3.006	1	3 1 -1	29 .7 0		
2.738	2	4 0 1	32 .6 8		
2.712	31	1 1 -3 +	33 .0 0		
2.512	23	4 1 0 +	35.72		
2.348	100	0 3 3 +	38.30		
2.272	1	3 2 -2	39.64		
2.215	95	3 3 0 +	40.70		
2.187	3	1 0 4	41.24		
2.045	2	5 0 2	44.26		
1.9545	2	4 2 2	46.42		
1.9179	15	1 4 -3 +	47.36		
1.8427	8	2 5 0 +	49.42		
1.8267	1	3 1 -4	49.88		
1.7756	2	3 3 3 +	51 • 4 2		
1.7416	2	4 3 -2 +	52 • 5 0		
1.7221	1	6 1 -1	53 • 1 4		
1.7025	2	2 0 5 +	53 • 8 0		
1.6489	2	1 2 5 +	55 • 7 0		
1.6112	15	6 0 3 +	57.12		
1.5710	2	6 2 1	58.72		
1.5561	4	2 4 4 +	59.34		
1.5245	5	1 7 0 +	60.70		
1.5150	2	1 5 -4 +	61.12		
1.5026	1	2 6 2	61 .68		
1.4848	7	0 0 6	62 .50		
1.4540	2	4 5 -1 +	63 .98		
1.3562	14	7 1 -3 +	69 .22		
1.3500	2	5 1 -5	69 .58		
1.3030	6	3 6 3 +	72.48		
1.2787	4	9 0 0	74.08		
1.2333	4	3 3 6 +	77.30		
1.2130	3	5 5 -3 +	78.84		

$\textbf{Lithium Beryllium Fluoride, Li}_2 \textbf{BeF}_4 \ \ (\text{hexagonal}) - \textbf{continued}$

Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$		
6.64	34	1 1 0	13.31		
4.15	10	0 1 2	21.37		
3.91	15	2 1 1	22.73		
3.91	11	1 2 -1	22.73		
3.84	21	3 0 0	23.16		
3.52	2	2 0 2	25.26		
3.322	64	2 2 0	26.81		
3.112	2	1 2 2	28.56		
3.112	2	2 1 -2	28.56		
3.005	1	3 1 -1	29.70		
2.738 2.711 2.711 2.512 2.512	1 18 19 17	4 0 1 1 1 3 1 1 -3 4 1 0 1 4 0	32.58 33.01 33.01 35.72 35.72		
2.349 2.349 2.271 2.229 2.215	58 67 1 1	3 0 3 0 3 3 3 2 -2 0 5 1 3 3 0	38.29 38.29 39.55 40.44 40.70		
2.214	11	2 2 3	40-71		
2.214	9	2 2 -3	40-71		
2.187	2	1 0 4	41-25		
2.045	3	5 0 2	44-25		
1.9546	3	4 2 2	46-42		
1.9178	9	1 4 3	47.36		
1.9178	9	1 4 -3	47.36		
1.8430	8	5 2 0	49.41		
1.8430	4	2 5 0	49.41		
1.8267	1	3 1 -4	49.88		
1.7756	2	3 3 3	51.42		
1.7756	1	3 3 -3	51.42		
1.7614	1	4 0 4	51.87		
1.7416	1	3 4 2	52.50		
1.7416	2	4 3 -2	52.50		
1.7221	2	6 1 -1	53.14		

	1 1	1.0				
	Calculated Pattern (Integrated)					
đ (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$			
1.7025 1.7023 1.6490 1.6490	1 2 1	2 3 -4 2 0 5 1 2 5 2 1 -5	53.80 53.81 55.69 55.69			
1.6114 1.6114 1.5711 1.5562 1.5562	12 10 3 3	6	57.11 57.11 58.72 59.34 59.34			
1.5560 1.5560 1.5245 1.5245 1.5152	1 2 5 3 1	1 3 -5 3 1 5 1 7 0 7 1 0 1 5 -4	59.35 59.35 60.70 60.70 61.11			
1.5150 1.5026 1.4850 1.4539 1.4539	1 1 11 2 1	0 4 5 2 6 2 0 0 6 4 5 -1 5 4 1	61.12 61.68 62.49 63.98 63.98			
1.3562 1.3562 1.3562 1.3562 1.3557	3 7 3 8 2	1 7 -3 7 1 3 1 7 3 7 1 -3 2 2 6	69.22 69.22 69.22 69.22 69.24			
1.3557 1.3497 1.3030 1.3030 1.3030	2 1 1 4 3	2 2 -6 5 1 -5 6 3 3 3 6 3 3 6 -3	69.24 69.60 72.48 72.48			
1.3030 1.2788 1.2558 1.2334 1.2334	2 6 1 4	6 3 -3 9 0 0 2 8 0 3 3 6 3 3 -6	72.48 74.07 75.67 77.29 77.29			
1.2131	3 3	5 5 -3 5 5 3	78.84 78.84			

Monoclinic, C2/c (15), Z=8 [Burns and Busing, 1965]

Lattice parameters

a=5.83±0.01, b=11.16±0.02, c=7.86±0.02 $\mathring{\text{A}}$, β =94 $^{\circ}$ 55 $^{\prime}$ [ibid.]

Scattering factors

Li⁺¹[3.3.1A]; Rb°,F⁻¹[3.3.1A], corrected for real and imaginary dispersion, [3.3.2B]

Thermal parameters

Isotropic: Rb 1.73; Li 2.50; F(1) 1.40; F(2) 1.80; F(3) 2.10

Density

(calculated) 3.40 g/cm³

Scale factor

 4.815×10^{4}

Reference

Burns,J.H. and W.R. Busing (1965). Crystal structures of rubidium lithium fluoride, RbLiF2, and cesium lithium fluoride, CsLiF2, Inorg. Chem. 4, 1510-1512.

Ca	Calculated Pattern (Peak heights)				
đ (Å)	I		hk	ı	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
5.58 5.15 4.54 4.46 4.16	29 6 31 39 22	0 1 9 -1 1	2 1 2 1	0 0 1 1	15.88 17.20 19.52 19.88 21.34
3.91 3.24 3.20 3.01 2.955	32 50 18 36 55	0 -1 -3 -1	1 2 1 3	2 2 2 2 1	22.70 27.52 27.82 29.66 30.22
2.904 2.863 2.789 2.629 2.576	53 90 52 16	2 1 0 0 2	0 3 4 4 2	0 1 0 1	30 • 7 6 31 • 2 2 32 • 0 6 34 • 0 8 34 • 8 0
2.505 2.435 2.394 2.365 2.272	15 45 51 100 7	-2 -2 2 0	2 2 4	1 2 1 3 2	35 • 8 2 36 • 8 8 37 • 5 4 38 • 0 2 39 • 6 4
2.261 2.242 2.232 2.083 2.053	3 12 3 3 5	1 2 -2 1 -1	1 2 5 3	3 2 2 0 + 3	39 • 8 4 40 • 1 8 40 • 3 8 43 • 40 44 • 0 8
2.029 2.012 1.9985 1.9217 1.9073	9 15 7 4 23	-1 2 1 2 -2	5 4 5 4 2	1 0 1 1 3 +	44 • 6 2 45 • 0 2 45 • 3 4 47 • 2 6 47 • 6 4
1.8908 1.8784 1.8632 1.8596 1.8343	2 10 14 12 13	-3 -1 -1 0 -2	1 5 6 4	1 4 2 0 2	48.08 48.42 48.84 48.94 49.66
1.8165 1.8111 1.7853 1.7749 1.7679	6 3 9 4 15	1 1 -3 2	5 6 1 1 2	2 + 1 4 2 3	50.18 50.34 51.12 51.44 51.66
1.7478 1.7049 1.6920 1.6800 1.6604	15 1 6 6	2 -3 -2 0 3	4 3 0 6 1	2 1 4 2 2	52 • 3 0 53 • 7 2 54 • 1 6 54 • 5 8 55 • 2 8
1.6516 1.6413 1.5662 1.5623 1.5495	5 8 8 8 6	3 -2 2 2 2	3 4 6 0 4	1 3 0 4 3	55.60 55.98 58.92 59.08 59.62

Cal	culated	Pattern (Peak he	ights)
d (Å)	I	hkl	2θ(°) λ = 1.54056 Å
1.5222	1	2 6 1	60.80
1.5150	4	-1 7 1 +	61.12
1.5079	4	0 2 5	61.44
1.5021	6	1 7 1	61.70
1.4878	1	-3 3 3	62.36
1.4780	3	-2 6 2	62 •8 2
1.4548	3	-3 5 1	63 •9 4
1.4520	7	4 0 0	64 •0 8
1.4487	7	-1 5 4	64 •2 4
1.4423	3	-1 7 2	64 •5 6
1.4316	2	2 6 2	65 • 1 0
1.4277	6	-3 1 4 +	65 • 3 0
1.4200	5	1 7 2 +	65 • 7 0
1.4052	7	1 5 4	66 • 4 8
1.4015	6	-4 0 2	66 • 6 8
1.3857	7	-2 2 5	67.54
1.3757	1	1 3 5	66.10
1.3715	1	-2 6 3 +	68.34
1.3655	2	0 4 5	68.68
1.3634	4	4 2 1 +	68.80
1.35 99	2	-4 2 2	69.00
1.34 19	4	3 5 2	70.06
1.33 83	3	-1 7 3	70.28
1.31 21	2	3 1 4	71.90
1.30 51	3	0 0 6	72.34
1.2953 1.2883 1.2826 1.2732 1.2559	3 3 4 1	2 2 5 4 4 5 + -4 2 3 -2 4 5 4 4 1	72.98 73.44 73.82 74.46 75.66
1.2523	2 1 4 3 3 3	-4 4 2	75.92
1.2341		2 8 1	77.24
1.2304		0 8 3 +	77.52
1.2261		-3 7 1	77.64
1.2229		-1 7, 4	78.08
1.2100	3	-3 5 4	75.08
1.2016	4	-1 3 1	79.74
1.1966	5	4 2 3 +	80.14
1.1934	3	-3 7 2	80.40
1.1822	2	0 4 6	81.32
1.1561	2	3 7 2	83.56
1.1541	2	2 0 6	83.74
1.1496	1	-2 8 3	84.14
1.1445	1	4 6 0	84.60
1.1369	1	3 5 4	85.30
1.1259	1	-2 4 6	86 • 3 4
1.1217	2	-1 5 6 +	86 • 7 4
1.1190	2	-4 6 2	87 • 0 0
1.1161	3	2 8 3 +	87 • 2 8
1.1107	2	-5 3 1 +	87 • 8 2
1.0920	1	-4 2 5	89.72

d (Å)	alculated I		hkl		2θ(°)
	-				$\lambda = 1.54056 A$
5.58 5.15	22 4	0	2	0	15.67 17.20
4.54	24	0	2	1	19.52
4.46 4.16	31 18	- 1 1	1	1 1	19.8 8 21.3 3
3.92	28	0	0	2	22.59
3.24 3.21	16	-1 J	1 2	2	27.52
3.01 2.956	32 53	1 -1	1	2	29.66 30.21
2.904	56	2	8	0	30.7 ö
2 • 86 3 2 • 79 8	54 49	1	3 4	1 0	31 • 2 1 32 • 9 5
2.628	15	0	4	1	34.89
2.576	13	2	2	0	34 • 7 9
2.504	15 46	-2 -2	2	1 2	35 . 8 3 36 . 8 9
2.403	1	-1	1	3	37.39
2.394	100	J 2	2	1 3	37 • 5 4 38 • 0 3
2.272	7	0 1	4 1	2	39.63
2.242	2 12	2	0	2	39.65 40.18
2 • 23 1 2 • 08 3	3	-2 1	2 5	2	40.39
2.081	1	2	2	2	43.46
2 • 05 3 2 • 02 9	5 9	-1 -1	3 5	3	44 • 0 8 44 • 6 2
2.012 1.9982	16 7	2	4 5	0 1	45.02 45.35
1.9214	4	, _	4	1	47.27
1.9375	18	-2	2	3	47.63
1.9061 1.8906	10 2	ე -3	1	3 1	47.57 48.09
1.8781	11	-1	1	4	48.43
1.8632	14 7	-1 0	5 6	2	48.84
1.8344	14	-2	4	2	49.66
1.8185 1.8163	5	3	1 5	2	50.12 50.19
1.8097	1	0	6 1	1 4	50.38
1.785 ₀ 1.7750	11 3	-3	1	2	51 • 1 1 51 • 4 4
1.7676 1.7479	17 4	2	2	3	51.67 52.30
1.7049	18	-3	3	1	53.72
1.6925	1 6	-2 3	0 6	2	54 •1 6 54 •5 8
1.66 06 1.65 15	7	3	1 3	2	55 • 27

С	Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$		
1.6414	9	-2 4 3	55 • 9 8		
1.5663	9	2 6 0	58 • 9 2		
1.5625	4	2 0 4	59 • 0 7		
1.5497	7	2 4 3	59 • 6 1		
1.5224	2	2 6 1	60 • 7 9		
1.5151	2	-1 7 1	61.11		
1.5148	2	0 6 3	61.13		
1.5079	5	0 2 5	61.44		
1.5022	6	1 7 1	61.70		
1.4876	1	-3 3 3	62.37		
1.4780	4	-2 6 2	62 .8 2		
1.4548	3	-3 5 1	63 .9 4		
1.4521	8	4 0 0	64 .0 7		
1.4491	5	+1 5 4	64 .2 2		
1.4422	3	-1 7 2	64 .5 6		
1.4316	1	2 6 2	65 • 1 0		
1.4279	5	-3 1 4	65 • 2 9		
1.4275	3	-1 3 5	65 • 3 1		
1.4212	1	3 5 1	65 • 6 4		
1.4201	6	1 7 2	65 • 6 9		
1.4053	8	1 5 4	66.48		
1.4012	3	-4 0 2	66.69		
1.3859	10	-2 2 5	67.53		
1.3757	2	1 3 5	68.10		
1.3734	1	0 8 1	68.23		
1.3713	1	-2 6 3	68.35		
1.3657	2	8 4 5	68.67		
1.3637	3	4 2 1	68.78		
1.3633	2	2 4 4	68.81		
1.3590	1	-4 2 2	69.05		
1.3419	5	3 5 2	70.06		
1.3381	1	-1 7 3	70.29		
1.3120	2	3 1 4	71.90		
1.3052	4	0 0 6	72.34		
1.2953	3	2 2 5	72.98		
1. 28 88	1	-1 1 6	73 • 4 1		
1. 28 81	3	4 4 0	73 • 4 5		
1. 28 26	5	-4 2 3	73 • 8 2		
1. 27 31	1	-2 4 5	74 • 4 6		
1. 25 58	2	4 4 1	75 • 6 7		
1. 25 22	2	-4 4 2	75 • 9 3		
1. 23 44	1	2 3 1	77 • 2 2		
1. 23 05	1	-2 0 6	77 • 5 0		
1. 23 03	3	0 8 3	77 • 5 2		
1. 22 61	3	-3 7 1	77 • 8 4		
1.2227	3	-1 7 4	78.10		
1.2099	4	-3 5 4	79.09		
1.2016	5	-1 9 1	79.74		
1.1967	5	4 2 3	30.13		
1.1960	2	1 7 4	80.13		

Ca	Calculated Pattern (Integrated)					
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$			
1.1952 1.1928 1.1916 1.1822 1.1562	3 1 1 3 2	1 9 1 -3 7 2 -4 4 3 0 4 6 3 7 2	80 • 2 6 80 • 4 4 80 • 5 4 81 • 3 2 83 • 5 5			
1.15 41 1.14 97 1.14 46 1.13 69 1.12 59	1 2 2 2 1	2	83 • 7 4 84 • 1 3 84 • 5 9 85 • 3 0 86 • 3 3			
1.1218 1.1217 1.1132 1.1168 1.1160	1 1 2 2	4 4 3 -1 5 6 -4 6 2 2 8 3 G 10 0	86 • 7 3 86 • 7 4 85 • 9 8 87 • 2 2 87 • 2 9			
1.1158 1.1106 1.1098 1.0929	2 2 1 2	3 3 5 -5 3 1 +1 7 5 -4 2 5	87.31 87.82 87.90 89.72			

CU	-4
Stru	cture

Tetragonal, I41/a (88), Z=16[Brunton, 1966]

Lattice parameters

a=14.885±0.002, c=6.547±0.001Å (published value: a=14.884Å) [ibid.]

Scattering factors

Li⁺¹, and F⁻¹ [3.3.1A] U^{+4} [Cromer and Waber,1965], corrected for dispersion using $\Delta f' = -4$ and $\Delta f'' = 16$

Thermal parameters

Anisotropic for uranium, isotropic for fluorine and lithium [Brunton, 1966]

Density

(calculated) 6.23 g/cm³ [ibid.]

Scale factor

205.3 × 104

Additional patterns

1. PDF card 10-121 [Insley et al.,1956]. This card represents data for ${\rm Li}_7\,{\rm U}_6\,{\rm F}_{3\,1}$ which is very close in composition.

Reference

Brunton,G. (1966). The crystal structure of LiUF₅, Acta Cryst. 21, 814-817.

Cromer, D.T. and J.T. Waber (1965). Scattering factors computed from relativistic Dirac-Slater wave functions, Acta Cryst. 18, 104-109.

Insley, H., T.N. McVay, R.E. Thoma and G.
D. White (1956). Optical properties and
x-ray diffraction data for some inorganic fluoride and chloride compounds,ORNL2192, pg.30, Oak Ridge National Laboratory, Tennessee.

	1 .	-			
	alculated	l Patteri	n (Pea	k he	ights)
d (Å)	I		hkl		$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
7.44 5.99 5.26 4.67 3.96	1 24 88 100 50	0 0 2 2 0	2 0 1 1 2 0 1 1 3 1	+	11.88 14.78 16.84 19.00 22.46
3.493 3.329 3.162 2.996 2.779	49 64 46 52 18	2 4 1 0 2	3 1 2 0 4 1 2 2 2 2	* *	25 • 4 8 26 • 7 6 28 • 2 0 29 • 8 0 32 • 1 8
2.711 2.546 2.481 2.354 2.334	20 11 1 8 2	0 5 0 6 4	5 1 2 1 6 0 2 0 2 2	+ + +	33 • 0 2 35 • 2 2 36 • 1 8 38 • 2 0 38 • 5 4
2.292 2.179 2.102 2.073 2.064	9 1 16 10 29	1 5 3 2 6	6 1 1 2 6 1 1 3 4 0	* * *	39.28 41.40 43.00 43.62 43.82
2.051 2.022 1.9977 1.9771 1.9513	47 2 10 13 11	4 0 0 0 7	4 2 7 1 3 3 6 2 2 1		44 • 1 2 44 • 7 8 45 • 3 6 45 • 8 6 46 • 5 0
1.9294 1.9110 1.8675 1.8610 1.8302	8 18 15 20 7	2 6 4 0 6	3 3 2 2 1 3 8 0 5 1	* * *	47.06 47.54 48.72 48.90 49.78
1.7769 1.7603 1.7553 1.7125 1.6834	11 11 7 5 8	4 0 6 5 8	7 1 5 3 6 0 2 3 3 1	÷ •	51.38 51.90 52.06 53.46 54.46
1.6370 1.6290 1.5809 1.5676 1.5633	4 4 13 7 7	0 1 2 6 2	0 4 6 3 8 2 7 1 2 4	÷ +	56 • 1 4 56 • 4 4 58 • 3 2 58 • 8 6 59 • 0 4
1.5561 1.5462 1.5341 1.5231 1.4921	3 6 6 1 4	3 6 5 9 7	6 3 6 2 8 1 7 3 2 3	+	59.34 59.76 60.28 60.76 62.16
1.4835 1.4725 1.4688 1.4597 1.4447	1 6 11 5 2	8 4 10 10	4 2 9 1 2 4 2 0 1 1	+ + + + + + + + + + + + + + + + + + + +	62.56 63.08 63.26 63.70 64.44

2θ(°)

 $\lambda = 1.54056 \text{ A}^{\circ}$

11.88

14.77 16.83

19.30

19.00

22.47

25.49

25.49

26.76

26.76 28.20

28.20

29.79

32.18

33.33

33.03

33.03

35.21 35.21

36.18

38.21

38.21

38.54

39.27

39.27

41.41

43.00

43.00 43.51

43.61

43.82

43.82 44.12

44.78

45.36

45.85

46.49

47.06

C	alculated	Pattern (Peak he	eights)	C	Calculate	d Pattern (Integra	ated)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{A}{A}$	d (Å)	I	hkl	λ =
1.4356 1.4094 1.3930 1.3821 1.3693	2 3 2 3 1	6 5 3 + 4 7 3 + 10 3 1 4 10 0 + 7 8 1 +	64.90 66.26 67.14 67.74 68.46	7.44 5.93 5.26 4.67 4.67	27 100 91 25	0 2 0 0 1 1 2 2 0 2 1 1 1 2 1	1 1 1 1
1.3617 1.3551 1.3466 1.3436 1.3330	4 10 2 4 2	8 3 3 + 0 10 2 + 6 9 1 + 2 6 4 + 10 2 2 +	68.90 69.28 69.78 69.96 70.60	3.95 3.492 3.492 3.328 3.328	63 3 62 46 37	0 3 1 3 2 1 2 3 1 4 2 0 2 4 0	2 2 2 2 2 2
1.3252 1.3155 1.3045 1.2980 1.2847	1 3 3 3 2	0 11 1 8 8 0 2 11 1 + 6 7 3 + 2 1 5	71 • 0 8 71 • 6 8 72 • 3 8 72 • 8 0 73 • 6 8	3.161 3.161 2.996 2.780 2.710	31 31 71 25 3	4 1 1 1 4 1 0 2 2 2 2 2 4 3 1	2 2 2 3 3
1.2826 1.2787 1.2764 1.2732 1.2662	6 5 3 2	6 4 4 + 8 5 3 + 10 6 0 + 4 10 2 0 3 5	73 •8 2 74 •0 8 74 •2 4 74 •4 6 74 •9 4	2.710 2.710 2.546 2.546 2.481	3 23 11 4 2	3 4 1 0 5 1 5 2 1 2 5 1 0 6 0	3 3 3 3 3
1 • 24 84 1 • 24 26 1 • 23 09 1 • 22 90 1 • 22 56	3 3 4 6	2 3 5 + 4 9 3 + 1 4 5 + 0 8 4 10 1 3	76 • 20 76 • 62 77 • 48 77 • 62 77 • 88	2.354 2.354 2.334 2.292 2.292	7 6 3 3	6 2 0 2 6 0 4 2 2 6 1 1 1 6 1	3 8 3 8 3 8
1.2235 1.2146 1.1986 1.1959 1.1936	3 2 3 2 2	12 2 0 + 12 1 1 + 7 10 1 + 6 6 4 10 3 3	78 • 0 4 78 • 7 2 79 • 9 8 80 • 2 0 80 • 3 8	2.179 2.102 2.102 2.074 2.074	2 1 23 1 13	5 1 2 6 3 1 3 6 1 1 2 3 2 1 3	4 ; 4 ; 4 ;
1.1892 1.1834 1.1786 1.1689 1.1641	2 2 1 1	6 10 2 + 5 2 5 + 7 8 3 11 6 1 9 6 3 +	80 • 7 4 81 • 2 2 81 • 6 2 82 • 4 4 82 • 8 6	2.064 2.064 2.051 2.022 1.9976	22 21 70 2 15	6 4 0 4 6 0 4 4 2 0 7 1 0 3 3	4 5 4 5 4 5
1.1545 1.1365 1.1276 1.1151 1.1095	1 2 2 2 2 3	1 6 5 2 11 3 + 3 6 5 + 2 13 1 + 6 12 0 +	83.70 85.34 86.16 87.38 87.94	1.9772 1.9516 1.9293 1.9293	19 17 1 11 15	0 6 2 7 2 1 3 2 3 2 3 3 6 2 2	45 46 47 47
1.1075 1.1027 1.0988 1.0953 1.0909	7 1 2 5 1	4 12 2 + 7 2 5 11 4 3 + 10 8 2 + 10 9 1 +	88 • 1 4 88 • 6 2 89 • 0 2 89 • 3 8 89 • 8 4	1.9109 1.8575 1.8675 1.8505 1.8299	13 12 10 29 10	2 6 2 4 1 3 1 4 3 0 8 0 6 5 1	47 48 48 49
1.0893 1.0794 1.0757 1.0681 1.0646	3 3 2 2 1	2 10 4 + 0 2 6 + 1 12 3 + 2 2 6 + 7 10 3	90.00 91.06 91.46 92.30 92.70	1.8299 1.7769 1.7769 1.7769 1.7769	1 1 7 8 2	5 6 1 8 1 1 7 4 1 4 7 1 1 8 1	4 9 5 1 5 1 5 1

Ca	alculated	Pattern (Integra	ated)	С	alculated	l Pattern (Integr	rated)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$	d (Å)	I	hkl	$\lambda = 1.54056 \stackrel{\circ}{A}$
1.7601 1.7601 1.7601 1.7542	3 4 13	4 3 3 3 4 3 0 5 3 6 6 0	51.91 51.91 51.91 52.39	1.3331 1.3331 1.3252 1.3157	2 1 2 7	10 2 2 2 10 2 0 11 1 8 8 0	70.59 70.59 71.08 71.67
1.7128	5	5 2 3	53.45	1.3046	1	10 5 1	72.37
1.7128 1.6536 1.6836 1.6367 1.6287	3 7 6 7 2	2 5 3 8 3 1 3 8 1 0 0 4 6 1 3	53.45 54.46 54.46 56.15 56.45	1.3045 1.3046 1.2979 1.2979 1.2979	2 4 1 3 2	5 10 1 2 11 1 9 2 3 6 7 3 2 9 3	72.37 72.37 72.81 72.81 72.81
1.6287 1.5807 1.5807 1.5675 1.5675	5 8 16 3 6	1 6 3 8 2 2 2 8 2 9 2 1 6 7 1	56.45 58.33 58.33 58.86 58.86	1.2848 1.2825 1.2825 1.2786 1.2786	2 7 4 4 3	2 1 5 6 4 4 4 6 4 8 5 3 5 8 3	73.67 73.83 73.83 74.09 74.09
1.5675 1.5629 1.5559 1.5462 1.5339	2 6 5 10 5	2 9 1 2 2 4 3 6 3 6 6 2 8 5 1	58.86 59.36 59.35 59.76 60.29	1.2764 1.2764 1.2732 1.2560 1.2484	2 1 1 2 1	10 6 0 6 10 0 4 10 2 0 3 5 11 4 1	74.24 74.24 74.46 74.95 76.20
1.5339 1.5230 1.4921 1.4835 1.4726	6 1 5 1 4	5 8 1 0 7 3 7 2 3 8 4 2 9 4 1	60.29 60.76 62.16 62.56 63.08	1 • 24 84 1 • 24 81 1 • 24 25 1 • 24 25 1 • 23 09	1 3 3 3 3	4 11 1 2 3 5 9 4 3 4 9 3 4 1 5	76.20 76.22 76.63 76.53 77.48
1.4725 1.4688 1.4688 1.4596 1.4596	5 6 9 5 4	4 9 1 2 4 4 4 2 4 10 2 0 2 10 0	63.08 63.26 63.26 63.71 63.71	1.2309 1.2289 1.2255 1.2235 1.2235	3 11 3 3	1 4 5 0 8 4 10 1 3 12 2 0 2 12 0	77.48 77.63 77.88 78.33 78.33
1.4445 1.4445 1.4355 1.4355 1.4095	4 1 2 2 3	10 1 1 1 10 1 6 5 3 5 6 3 7 4 3	64.45 64.45 64.90 64.90 66.25	1.2147 1.2147 1.1988 1.1986 1.1967	3 2 3 2 1	12 1 1 1 12 1 7 10 1 0 5 5 6 6 4	78.71 78.71 79.96 79.98 80.13
1.4095 1.3931 1.3820 1.3820 1.3693	3 4 2 3 1	4 7 3 10 3 1 10 4 0 4 10 0 8 7 1	66.25 67.14 67.75 67.75 68.46	1.1936 1.1892 1.1892 1.1835 1.1833	2 1 3 1 1	10 3 3 10 6 2 6 10 2 12 3 1 2 5 5	80.38 80.74 80.74 81.21 81.22
1.3693 1.3615 1.3615 1.3550 1.3550	1 3 3 7 4	7 8 1 8 3 3 3 8 3 8 6 2 6 8 2	68.46 68.91 68.91 69.29 69.29	1.1833 1.1785 1.1689 1.1640 1.1640	2 1 3 1	5 2 5 7 8 3 11 6 1 9 6 3 6 9 3	81.22 81.53 82.45 82.87 82.87
1.3550 1.3467 1.3467 1.3438 1.3438	1 0 1 2 3	0 10 2 9 6 1 6 9 1 6 2 4 2 6 4	69.29 69.78 69.78 69.95 69.95	1.1546 1.1500 1.1365 1.1365	1 1 1 1 2	1 6 5 0 11 3 10 5 3 5 10 3 2 11 3	83.70 84.10 85.33 85.33

Calculated Pattern (Integrated)						
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$			
1.1279	2	0 13 1	86.15			
1.1277	2	3 6 5	86.17			
1.1151	1	2 13 1	87.38			
1.1150	1	0 7 5	87.40			
1.1095	2	12 6 0	87.94			
1.1095	3	6 12 0	87.94			
1.1074	8	12 4 2	88.15			
1.1074	8	4 12 2	88.15			
1.1027	2	7 2 5	88.62			
1.0988	1	11 4 3	89.32			
1.0988 1.0953 1.0953 1.0909 1.0909	1 7 4 1	4 11 3 10 8 2 8 10 2 10 9 1 9 10 1	89.32 89.38 89.38 89.83			
1.0894	2	10 2 4	90.00			
1.0894	3	2 10 4	90.00			
1.0795	3	0 2 6	91.04			
1.0794	1	11 8 1	91.06			
1.0794	1	8 11 1	91.06			
1.0792	2	6 5 5	91.08			
1.0756	1	12 1 3	91.48			
1.0756	2	1 12 3	91.48			
1.0684	2	2 2 6	92.26			
1.0681	1	4 7 5	92.31			
1.0581	1	7 4 5	92.31			
1.0545	3	7 10 3	92.70			
1.0574	1	12 7 1	93.52			
1.0574	2	7 12 1	93.52			
1.0559	2	10 4 4	93.68			
1.0559 1.0526 1.0469 1.0467 1.0467	3 2 1 1	4 10 4 10 10 0 1 14 1 3 8 5 8 3 5	93.68 94.08 94.75 94.77			
1.0434	2	11 6 3	95.17			
1.0267	1	13 6 1	97.22			
1.0267	1	6 13 1	97.22			
1.0267	2	3 14 1	97.22			

Monoclinic, P2 $_1/c$ (14), Z=2 [Sasvari and Jeffrey, 1966]

Lattice parameters

a=8.59±0.05, b=14.40±0.03, c=8.75±0.05Å β =129.6°±0.2° [ibid.]

Scattering factors

 Mg^{+2} , $C1^{-}$, 0° [3.3.1A]

Thermal parameters

Isotropic: Mg 0.86; C1 1.74; O(1) 2.12 O(2) 2.42; O(3) 1.81; O(4) 2.42; O(5) 2.03; O(6) 2.32

Density

(calculated) 1.241 g/cm³

Scale factor

1.198 × 10⁴

Reference

Sasvari, K. and G.A. Jeffrey (1966). The crystal structure of magnesium chloride dodecahydrate, MgCl₂·l2H₂O, Acta Cryst. 20, 875-881.

Calculated Pattern (Peak heights)						
d (Å)	I	hkl		2θ(°) 。		
7.20 6.89 6.61 6.10 6.01	5 23 20 47 34	0 -1 1 3	2 0 1 1 0 0 1 1 1 0		12.28 12.84 13.38 14.50 14.72	
5.30	2	-1	2 1		16.70	
4.92	17	0	2 1		18.02	
4.87	28	1	2 0		18.20	
4.32	26	-1	0 2		20.56	
4.09	100	-1	3 1		21.70	
4.05	25	-2	1 1	+	21.94	
3.92	61	-2	0 2		22.66	
3.89	17	1	3 0		22.86	
3.78	4	-2	1 2		23.50	
3.70	17	-1	2 2		24.02	
3.64	33	-2	2 1		24 • 4 4	
3.60	8	0	4 0		24 • 7 2	
3.58	50	1	1 1		24 • 6 8	
3.44	46	-2	2 2		25 • 8 6	
3.37	30	0	0 2		26 • 4 2	
3.31 3.28 3.27 3.22 3.21	18 51 52 4	2 1 -1 2 -1	0 0 2 1 4 1 1 0 3 2	+	26.92 27.14 27.22 27.64 27.78	
3.17	42	-2	3 1	+	28 · 1 4	
3.05	31	0	2 2		29 · 22	
3.04	21	-2	3 2		29 · 3 2	
2.927	14	1	3 1		30 · 5 2	
2.855	10	-2	1 3		31 · 3 0	
2.808	6	-3	1 2	+	31.84	
2.764	9	-1	4 2		32.36	
2.738	4	-2	4 1		32.58	
2.725	3	2	3 0		32.84	
2.703	10	-1	5 1		33.12	
2.673 2.660 2.653 2.612 2.577	2 9 6 1	-1 -3 0 +3	1 3 2 2 5 1 1 1 4 1		33.50 33.66 33.76 34.30 34.78	
2.545	6	-1	2 3	+	35 • 2 4	
2.491	1	-3	2 1		36 • 0 2	
2.458	28	-3	3 2		36 • 5 2	
2.400	13	0	6 0		37 • 4 4	
2.395	16	-1	5 2		37 • 5 2	
2.367 2.324 2.295 2.271 2.261	5 21 48 23 29	-1 -3 -3 1	3 3 1 3 3 5 1 6 1	+ + +	37.98 36.72 39.22 39.66 35.84	

Ca	lculated	Pattern (Peak her	ights)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
2.22G 2.207 2.180 2.175 2.162	18 2 17 30 8	0 1 3 3 0 0 3 1 0 1 3 2 + 2 3 1	40.86 41.38 41.48 41.74
2.158	15	-2 0 4 + 0 2 3 -3 4 1 + -3 4 3 3 2 0 +	41.82
2.146	11		42.08
2.138	15		42.24
2.115	4		42.72
2.110	5		42.82
2.037	6	-1 6 2	43.10
2.087	12	-4 1 2 +	43.32
2.067	19	-2 2 4 +	43.76
2.047	8	-2 6 2 +	44.20
2.042	7	-4 2 3	44.32
2.036 2.025 2.020 2.020 2.004 1.9779	4 9 7 2 4	0 3 3 -4 2 2 1 4 2 3 3 0 -1 5 3	44 • 46 44 • 72 44 • 8 4 45 • 20 45 • 8 4
1.9641	3	1 7 0	46.18
1.9601	4	-4 0 4	46.28
1.9529	7	-3 5 1 +	46.46
1.9474	6	-4 3 3	46.60
1.9419	4	-1 1 4	46.74
1.9317	3	-4 3 2	47.00
1.8975	1	-4 1 1	47.90
1.8901	1	-1 2 4	48.10
1.8813	1	3 4 0	46.34
1.8617	3	1 5 2	48.88
1.8518 1.8469 1.8309 1.6206 1.7971	19 13 3 4	-2 6 3 + 2 U 2 2 1 2 -4 4 2 + 1 7 1	49.16 49.30 49.76 50.06 50.76
1.7879	1	2 2 2	51.04
1.7717	5	0 5 3 +	51.54
1.7546	1	-1 8 1	52.08
1.7391	2	0 8 1	52.58
1.7367	2	1 8 0	52.66
1.7209	5	-1 4 4 +	53.18
1.7025	2	-5 1 3	53.80
1.6903	6	1 3 3 +	54.22
1.6863	5	-5 0 4 +	54.36
1.6806	2	-2 7 3	54.56
1.6755	5	-5 1 4 +	54.74
1.6710	4	-3 7 2	54.90
1.6615	7	-1 8 2	55.24
1.6549	3	4 0 0	55.48
1.6429	5	-5 2 4 +	55.92

Calculated Pattern (Peak heights)						
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
1.64 G2	4	0 6 3	56.02			
1.6359	3	-2 8 2	56.18			
1.6269	3	-5 1 2	56.52			
1.6232	2	3 6 0	55.66			
1.6164	2	-3 7 3 +	55.92			
1.6071	1	-4 3 5 0 8 2 2 6 0 -3 4 5 2 7 1 +	57.28			
1.5878	3		58.04			
1.5814	7		58.30			
1.5730	2		58.54			
1.5681	3		58.84			
1.5594	1	-5 1 5	59.20			
1.5552	2	1 9 0	59.38			
1.5410	2	-4 4 5	59.98			
1.5299	2	1 5 3	60.46			
1.5276	2	-5 4 4 +	60.56			
1.5186	4	-4 6 4 +	60.96			
1.5343	2	3 7 0	61.60			
1.5304	2	-1 9 2	61.78			
1.4951	3	-3 5 5 +	62.02			
1.4912	5	-5 3 5 +	62.20			
1.4831	2	-5 1 1	62.58			
1.4797	2	-4 7 3	62.74			
1.4734	4	-5 5 3	63.04			
1.4680	3	1 9 1 +	63.30			
1.4634	?	2 6 2	63.52			
1.4593	2	3 1 2	63 • 7 2			
1.4536	5	-1 3 5	64 • 0 0			
1.4435	1	2 2 3	64 • 5 0			
1.4379	1	-5 4 5	64 • 7 8			
1.4274	2	-4 2 6	65 • 3 2			
1.4231 1.4189 1.4105 1.4052 1.4015	4 3 1 4	1 1 4 + -1 7 4 -3 2 6 4 1 1 -4 7 1 +	65 • 5 4 65 • 7 6 66 • 20 66 • 4 8 66 • 6 8			
1.3967	2	-3 9 2	66 . 9 4			
1.3949	2	3 8 0	67 . 0 4			
1.3857	1	4 2 1	67 . 5 4			
1.3821	3	-2 8 4	67 . 7 4			
1.3786	2	-5 5 5 +	67 . 9 4			
1.3746	2	-2 6 5	68.16			
1.3693	2	-4 8 2	68.45			
1.3655	1	-3 9 3	68.58			

C	alculated	Pattern (Integr	ated)	C	alculated	l Pattern (Integr	rated)
d (Å)	I	hkl	$\lambda = 1.54056 \text{ A}$	d (Å)	I	hkl	$\lambda = 1.54056 \text{ Å}$
7.20	4	0 2 0	12.28	2.459	24	-3 3 2	36 •5 2
6.89	20	-1 1 1	12.84	2.457	9	-3 2 3	36 •5 4
6.62	17	1 0 0	13.37	2.406	4	1 1 2	37 • 3 5
6.11	40	0 1 1	14.49	2.400	10	0 6 0	37 • 4 4
6.01	28	1 1 0	14.72	2.396	12	-1 5 2	37 • 5 1
5.30	2	-1 2 1	16.70	2.367	6	-1 3 3	37.99
4.92	15	0 2 1	18.01	2.324	24	-3 3 1	38.71
4.87	26	1 2 0	18.19	2.321	1	-2 5 2	38.76
4.32	25	-1 0 2	20.56	2.296	43	-3 3 3	39.21
4.13	2	-1 1 2	21.48	2.296	10	2 2 1	39.21
4.09	1 00	-1 3 1	21.69	2.295	6	-1 6 1	39.22
4.05	22	-2 1 1	21.93	2.271	25	1 5 1	39.66
3.92	56	-2 0 2	22.66	2.264	2	-2 4 3	39.78
3.91	11	0 3 1	22.72	2.261	29	0 6 1	39.84
3.89	14	1 3 0	22.87	2.220	21	0 1 3	40.60
3.78 3.70 3.64 3.60 3.58	3 17 33 5	-2 1 2 -1 2 2 -2 2 1 0 4 0 1 1 1	23.49 24.02 24.43 24.71 24.88	2.206 2.190 2.181 2.175 2.173	1 1 17 25 3	3 0 0 0 5 2 3 1 0 1 3 2 2 5 0	40.67 41.19 41.37 41.48 41.53
3.44	49	-2 2 2 2 0 0 2 2 0 0 1 2 1 0 1 2	25 .8 5	2.162	5	2 3 1	41.73
3.37	30		26 .4 2	2.159	2	-3 0 4	41.81
3.31	16		26 .9 2	2.158	13	-2 0 4	41.83
3.28	44		27 .1 3	2.145	11	0 2 3	42.09
3.28	8		27 .1 5	2.137	15	-3 4 1	42.25
3.27	36	-1 4 1	27.23	2.135	2	-3 1 4	42.30
3.23	2	2 1 0	27.63	2.115	4	-3 4 3	42.71
3.21	8	-1 3 2	27.77	2.110	1	-4 0 2	42.83
3.18	19	0 4 1	28.08	2.109	2	3 2 0	42.83
3.17	26	-2 3 1	28.13	2.107	1	-4 1 3	42.83
3.16 3.05 3.04 2.926 2.863	18 34 3 16	1 4 0 0 2 2 -2 3 2 1 3 1 -3 0 2	28 • 1 9 29 • 2 3 29 • 3 9 30 • 5 3 31 • 2 2	2.097 2.087 2.086 2.068 2.067	7 11 3 7 17	-1 6 2 -4 1 2 -2 6 1 -3 2 4 -2 2 4	43.09 43.31 43.34 43.74 43.76
2.855	10	-2 1 3	31.31	2.048	3	-2 5 3	44.19
2.808	6	-3 1 2	31.85	2.047	6	-2 6 2	44.21
2.764	9	-1 4 2	32.36	2.043	4	-4 2 3	44.31
2.739	4	-2 4 1	32.67	2.035	3	0 3 3	44.48
2.725	3	2 3 0	32.84	2.025	11	-4 2 2	44.73
2.703	9	-1 5 1	33 • 1 1	2.020	2	1 4 2	44.84
2.700	3	-2 2 3	33 • 1 5	2.012	1	1 6 1	45.02
2.673	1	-1 1 3	33 • 4 9	2.035	1	3 3 0	45.19
2.660	10	-3 2 2	33 • 6 6	1.9776	5	-1 5 3	45.85
2.648	2	0 5 1	33 • 8 2	1.9644	2	1 7 0	46.17
2.612 2.577 2.545 2.492 2.461	2 1 7 1	-3 1 1 1 4 1 -1 2 3 -3 2 1 0 4 2	34.30 34.78 35.24 36.01 36.49	1.96 07 1.95 51 1.95 25 1.94 63 1.94 12	3 1 7 3 2	-4 0 4 0 6 2 -3 5 1 -4 3 3 -1 1 4	46.27 46.41 46.47 46.61 46.76

Calculated Pattern (Integrated)							
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$				
1.9314	3	-4 3 2	47.01				
1.8973	1	-4 1 1	47.90				
1.8904	2	-1 2 4	48.09				
1.8811	1	3 4 0	48.35				
1.8617	3	1 5 2	48.88				
1.8521	19	-2 6 3	49.15				
1.8513	1	-3 4 4	49.17				
1.8508	5	-2 4 4	49.19				
1.8498	1	-4 2 1	49.22				
1.8491	4	-2 7 1	49.24				
1.8456 1.8306 1.8217 1.8202 1.7963	3 2 4 3	2 0 2 2 1 2 -2 7 2 -4 4 2 1 7 1	49.34 49.77 50.03 50.07 50.77				
1.7878	1	2 2 2	51.04				
1.7734	1	3 1 1	51.49				
1.7717	6	0 5 3	51.54				
1.7544	2	-1 8 1	52.09				
1.7391	2	0 8 1	52.58				
1.7369	2	1 8 0	52.65				
1.7219	1	-4 4 4	53.15				
1.7208	5	-1 4 4	53.18				
1.7026	3	-5 1 3	53.80				
1.6905	6	1 3 3	54.22				
1.6900	2	-4 4 1	54 · 2 3				
1.6872	2	-5 0 4	54 · 3 3				
1.6855	2	0 0 4	54 · 3 9				
1.6803	1	-2 7 3	54 · 5 7				
1.6757	5	-5 1 4	54 · 7 3				
1.6747	3	3 3 1	54.77				
1.6705	2	-3 7 2	54.92				
1.6613	2	-1 8 2	55.25				
1.6547	3	4 0 0	55.49				
1.6439	2	4 1 0	55.88				
1.6433 1.6427 1.6423 1.6404 1.6359	1 4 1 2	-3 3 5 -5 2 4 2 4 2 0 6 3 -2 8 2	55.91 55.93 55.94 56.01 56.18				
1.6269 1.6242 1.6166 1.6144 1.6069	4 1 2 1	-5 1 2 3 6 0 -3 7 3 1 4 3 -4 3 5	56.52 56.62 56.91 57.00 57.29				
1.5878	4	0 8 2	58.04				
1.5812	10	2 8 0	58.31				
1.5732	1	-3 4 5	58.63				
1.5680	2	2 7 1	58.85				
1.5677	1	-1 9 1	58.86				

C	Calculated Pattern (Integrated)						
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$				
1.55 93	1	-5 1 5	59.21				
1.55 52	2	1 9 0	59.38				
1.54 12	3	-4 4 5	59.97				
1.53 02	2	1 5 3	60.45				
1.52 77	2	-5 4 4	60.56				
1.5265	1	0 4 4	60.61				
1.5201	3	-2 4 5	60.89				
1.5184	2	3 5 1	60.97				
1.5164	3	-4 6 4	60.97				
1.5046	2	3 7 0	61.59				
1.5002	1	-1 9 2	61.79				
1.4964	1	-4 6 1	61.96				
1.4960	1	-2 9 1	61.98				
1.4949	2	-3 5 5	62.03				
1.4919	2	-1 2 5	62.17				
1.4909	4	-5 3 5	62.21				
1.4892	2	-3 7 4	62.30				
1.4831	2	-5 1 1	62.58				
1.4797	1	-4 7 3	62.74				
1.4733	5	-5 5 3	63.04				
1.4680	2	1 9 1	63.30				
1.4674	2	-4 5 5	63.33				
1.4630	2	2 6 2	63.54				
1.4591	2	3 1 2	63.73				
1.4534	7	-1 3 5	64.01				
1.4433	1	2 2 3	64.51				
1.4380	2	-5 4 5	64.78				
1.4273	2	-4 2 6	65.32				
1.4243	1	-6 1 4	65.48				
1.4239	1	-5 3 1	65.50				
1.4234	1	-5 5 2	65.52				
1.4229	3	1 1 4	65.55				
1.4187	2	-1 7 4	65.77				
1.4107	1	-3 2 6	66.19				
1.4082	1	0 10 1	66.32				
1.4053	4	4 1 1	66.47				
1.4023	1	-2 9 3	66.64				
1.4013	2	-4 7 1	66.69				
1.3966	2	-3 9 2	66.94				
1.3947	2	3 8 0	67.05				
1.3857	1	4 2 1	67.54				
1.3822	3	-2 8 4	67.73				
1.3775	1	-5 4 1	68.00				
1.3775	1	-5 5 5	68.00				
1.3746	2	-2 6 5	68.16				
1 • 36 93	2	-4 8 2	68.46				
1 • 36 47	1	-3 9 3	68.73				

Orthorhombic, Pbca (61), Z=8 [Sutor, 1967]

Lattice parameters

a=10.215±0.002, b=10.681±0.002, c=10.014±0.002Å [ibid.]

Scattering factors

 Mg° , P° , O^{-1} [3.3.1A]

Thermal parameters

Isotropic [Sutor, 1967]

Density

(calculated) 2.119 g/cm3 [ibid.]

Scale factor

 4.210×10^4

Additional patterns

- 1. PDF card 19-762 [Cohen and Ribbe, 1966]
- PDF card 19-763[Rassonskaya and Novikova,1965]

References

Cohen, L.H. and P.H. Ribbe (1966). Magnesium phosphate mineral replacement at Mono Lake, California, Am. Mineralogist 51, 1755-1765.

Rassonskaya, N.S. and O.S. Novikova(1965).

Dehydration of magnesium hydrogen phosphate crystal hydrates, Russ. J. Inorg.

Chem. 10, 774-776.

Sutor, D.J. (1967). The crystal and molecular structure of newberyite, MgHPO₄ · 3H₂O Acta Cryst. 23, 418-422.

Ca	lculated	Pattern (Peak her	ights)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
5.941	100	1 1 1	14.90
5.336	60	0 2 0	16.60
5.104	9	2 0 0	17.36
4.711	95	0 2 1	18.82
4.609	28	2 1 0	19.24
4.494	37	1 0 2	19.74
4.145	35	1 1 2	21.42
3.690	12	2 2 0	24.10
3.654	14	0 2 2	24.34
3.576	13	2 0 2	24.88
3.463	81	2 2 1	25.70
3.440	22	1 2 2	25.88
3.391	2	2 1 2	26.26
3.186	15	1 3 1	27.98
3.087	55	3 1 1	28.90
3.042	66	1 1 3	29.34
2.970	3	2 2 2	30.06
2.829	2	0 2 3	31.60
2.815	18	3 0 2	31.76
2.806	12	2 3 1	31.86
2.791	26	1 3 2	32.04
2.722	30	3 1 2	32.88
2.703	9	2 1 3	33.12
2.670	5	0 4 0	33.54
2.580	35	0 4 1	34.74
2.553	3	4 0 0	35.12
2.523	11	2 3 2	35.56
2.502	5	1 4 1	35.86
2.483	4	4 1 0	36.14
2.431	7	1 0 4	36.94
2.411	10	4 1 1	37.26
2.390	12	3 3 1	37.60
2.371	12	1 1 4 +	37.92
2.366	13	2 4 0	38.00
2.326	1	3 1 3	38.68
2.304	2	4 2 0	39.06
2.296	2	1 4 2	39.20
2.275	3	4 0 2	39.58
2.240	1	4 2 1	40.12
2.224	1	4 1 2	40.52
2.213	3	1 2 4	40.74
2.203	5	3 3 2	40.84
2.199	9	2 1 4 +	41.00
2.176	7	3 2 3	41.46
2.140	6	2 4 2	42.20
2.093	8	4 2 2	43.18
2.071	6	2 2 4	43.66
2.056	4	3 4 1	44.00
2.043	11	1 4 3	44.30
2.033	2	4 3 1	44.54

Ca	Calculated Pattern (Peak heights)				
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$		
1.9812	6	3 1 4 +	45.76		
1.9706	3	2 5 0	46.02		
1.9673	2	5 1 1	46.10		
1.9294	15	1 5 2 +	47.06		
1.9171	1	4 3 2	47.38		
1.9005	1	2 3 4	47.82		
1.8960	4	4 2 3	47.94		
1.8871	7	3 2 4	48.18		
1.8747	8	5 2 1 +	48.52		
1.8625	1	5 1 2	48.86		
1.7978	10	1 4 4	50.74		
1.7879	4	4 0 4	51.04		
1.7717	1	1 5 3	51.54		
1.7628	5	4 1 4	51.82		
1.7603	5	2 2 5	51.90		
1.7553	8 2 6 2 2	3 3 4 +	52.06		
1.7318		4 4 2	52.82		
1.7197		2 4 4 +	53.22		
1.7025		6 0 0 +	53.80		
1.6973		2 5 3	53.98		
1.6812	12	2 6 0 +	54.54		
1.6704	7	5 3 2 +	54.92		
1.6570	6	2 6 1 +	55.38		
1.6549	5	1 6 2 +	55.46		
1.6386	6	4 5 0	56.08		
1.6169	1	4 5 1	56.90		
1.6122	1	6 0 2	57.08		
1.6050	3	1 5 4	57.36		
1.6009	5	6 2 1 +	57.52		
1.5974	5	4 3 4	57.66		
1.5935	5	0 2 6 + 2 0 6 5 0 4 2 1 6 5 1 4 +	57.82		
1.5863	6		58.10		
1.5820	5		58.24		
1.5691	2		58.80		
1.5657	6		58.94		
1.5571	2	4 5 2	59.30		

Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$
5.942	99	1 1 1	14.90
5.341	65	0 2 0	16.59
5.107	10	2 0 0	17.35
4.712	100	0 2 1	18.82
4.608	31	2 1 0	19.25
4.496	41	1 0 2	19.73
4.144	40	1 1 2	21.43
3.691	13	2 2 0	24.09
3.653	16	0 2 2	24.35
3.575	15	2 0 2	24.88
3.403	94	2 2 1	25.70
3.439	20	1 2 2	25.88
3.391	2	2 1 2	26.26
3.187	18	1 3 1	27.97
3.086	68	3 1 1	28.91
3.042	79	1 1 3	29.34
2.971	4	2 2 2	30.05
2.651	2	0 2 3	31.58
2.816	21	3 0 2	31.75
2.804	4	2 3 1	31.89
2.791	32	1 3 2	32.04
2.723	39	3 1 2	32.87
2.703	9	2 1 3	33.11
2.670	6	0 4 0	33.53
2.580	45	0 4 1	34.74
2.554	4	4 0 0	35.11
2.523	14	2 3 2	35.55
2.502	6	1 4 1	35.87
2.484	5	4 1 0	36.13
2.432	9	1 0 4	36.94
2.411	14	4 1 1	37.27
2.390	16	3 3 1	37.61
2.371	14	1 1 4	37.92
2.369	1	1 3 3	37.95
2.366	8	2 4 0	37.99
2.326	1	3 1 3	38.67
2.304	3	4 2 0	39.06
2.296	2	1 4 2	39.21
2.275	4	4 0 2	39.58
2.245	1	4 2 1	40.13
2.225	1	4 1 2	40.51
2.213	3	1 2 4	40.74
2.208	4	3 3 2	40.83
2.200	8	2 1 4	40.99
2.198	6	2 3 3	41.03
2.177	9	3 2 3	41.45
2.139	8	2 4 2	42.20
2.093	11	4 2 2	43.19
2.072	9	2 2 4	43.65
2.056	5	3 4 1	44.00

Calculated Pattern (Integrated)				
d (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \text{ Å}$	
2.043 2.032 1.9820 1.9807 1.9708	16 2 6 3	1 4 3 4 3 1 3 1 4 3 3 3 2 5 0	44.30 44.55 45.74 45.77 46.02	
1.9675	1	5 1 1	46.10	
1.9375	2	3 4 2	46.85	
1.9337	2	2 5 1	46.95	
1.9329	4	1 1 5	46.97	
1.9305	1	2 4 3	47.03	
1.9295	18	1 5 2	47.06	
1.9170	1	4 3 2	47.38	
1.9008	1	2 3 4	47.81	
1.8961	4	4 2 3	47.94	
1.8869	10	3 2 4	48.19	
1.8753	3	0 2 5	48.50	
1.8744	10	5 2 1	48.53	
1.8626	1	5 1 2	48.86	
1.7978	15	1 4 4	50.74	
1.7877	5	4 0 4	51.05	
1.7720	1	1 5 3	51.53	
1.7632	6	4 1 4	51.81	
1.7604	5	2 2 5	51.90	
1.7549	10	3 3 4	52.07	
1.7527	1	0 6 1	52.14	
1.7317	2	4 4 2	52.82	
1.7198	4	5 1 3	53.22	
1.7197	5	2 4 4	53.22	

Ca	Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$		
1.7042	1 2	3 1 5	53.74		
1.7025		6 0 0	53.80		
1.6971 1.6813 1.6810 1.6705 1.6690	1 6 12 9	2 5 3 6 1 0 2 6 0 5 3 2 0 0 6	53.99 54.54 54.55 54.92 54.97		
1.6581 1.6578 1.6566 1.6551 1.6518	4 4 1 5	6 1 1 2 6 1 5 2 3 1 6 2 2 3 5	55.36 55.37 55.42 55.47 55.59		
1.6385	9	4 5 0	56.08		
1.6170	2	4 5 1	56.90		
1.6119	1	6 0 2	57.09		
1.6048	3	1 5 4	57.37		
1.6022	1	0 4 5	57.47		
1.6012	6	6 2 1	57.51		
1.5976	3	4 3 4	57.65		
1.5938	1	6 1 2	57.80		
1.5930	6	0 2 6	57.83		
1.5864	8	2 0 6	58.10		
1.5828	3	5 0 4	58.24		
1.5692	2	2 1 6	58.79		
1.5657	8	5 1 4	58.94		
1.5651	1	5 3 3	58.96		
1.5573	2	4 5 2	59.29		

Cubic, I43m (217), Z=58 [Gazzara et al., 1967]

Lattice parameters

 $a=8.9129 \mbox{\normalfont\AA}$ (published value: $a=8.9125 \mbox{\normalfont\AA}$) [ibid.]

Scattering factors

 ${\rm Mn}^{\circ}$ [Freeman and Watson,1961], corrected for dispersion [Dauben and Templeton, 1955]

Thermal parameters

Isotropic [Gazzara et al., 1967]

Density

(calculated) 7.472 g/cm³

Scale factor

 62.21×10^{4}

Additional patterns

1. PDF 1-1237 [Hanawalt et al., 1938]

Reference

Dauben, C.H. and D.H. Templeton (1955). A table of dispersion corrections for x-ray scattering of atoms, Acta Cryst. 8, 841-842.

Freeman, A.J. and R.E. Watson (1961). Hartree-Fock atomic scattering factors for the neutral atom iron transition series, Acta Cryst. 14, 231-234.

Gazzara, C.P., R.M. Middleton, R.J. Weiss, and E.O.Hall (1967). A refinement of the parameters of α manganese, Acta Cryst.22, 859-862.

Hanawalt, J.D., H.W. Rinn, and L.K. Frevel
 (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10,
457-513.

Calculated Pattern (Peak heights)				
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	
3.639	1	2 1 1	24.44	
3.151	1	2 2 0	28.30	
2.573	1	2 2 2	34.84	
2.382	1	3 2 1	37.74	
2.229	4	4 0 0	40.44	
2.101	100	4 1 1 +	43.02	
1.9005	21	3 3 2	47.82	
1.8192	8	4 2 2	50.10	
1.7478	12	4 3 1 +	52.30	
1.6274	1	5 2 1	56.50	
1.4857	1	4 4 2	62.46	
1.4459	1	5 3 2	64.38	
1.3436	1	6 2 2	69.96	
1.2865	3	4 4 4	73.56	
1.2604	4	5 5 0	75.34	
1.2128 1.1909 1.1703 1.1320 1.0809	14 2 1 2	7 2 1 + 6 4 2 7 3 0 6 5 1 + 8 2 0	78.86 80.60 82.32 85.76 90.90	
1.0653 1.0503 .9842 .9611 .9501	1 4 1 1	6 5 3 8 2 2 + 8 3 3 7 6 1 + 6 6 4	92.62 94.34 103.00 106.54 108.34	
.9395	3	7 5 4 +	110.14	
.9003	1	8 5 3 +	117.64	
.8498	1	9 5 2 +	130.02	
.8348	2	7 7 4 +	134.66	
.8205	3	9 6 1 +	139.70	
.8136	2	10 4 2	142.42	
.8069	3	11 1 0 +	145.32	
.7940	3	10 5 1 +	151.90	

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$	
3.639	1	2 1 1	24.44	
3.151	1	2 2 0	28.30	
2.573	1	2 2 2	34.84	
2.382	1	3 2 1	37.73	
2.228	6	4 0 0	40.45	
2.101	49	3 3 0	43.02	
2.101	100	4 1 1	43.02	
1.9002	35	3 3 2	47.83	
1.8193	13	4 2 2	50.10	
1.7480	16	4 3 1	52.29	
1.7480 1.6273 1.5285 1.4855 1.4459	4 1 1 1	5 1 0 5 2 1 4 3 3 4 4 2 5 3 2	52.29 56.51 60.52 62.47 64.38	
1.3437	3	6 2 2	69.96	
1.3141	1	6 3 1	71.77	
1.2865	7	4 4 4	73.56	
1.2605	9	5 5 0	75.34	
1.2129	19	7 2 1	78.85	
1.2129	6	5 5 2	78.85	
1.2129	6	6 3 3	78.85	
1.1910	5	6 4 2	80.59	
1.1703	3	7 3 0	82.32	
1.1319	3	6 5 1	85.76	
1.1319	2	7 3 2	85.76	
1.0971	1	7 4 1	89.19	
1.0808	2	8 2 0	90.90	
1.0653	2	6 5 3	92.62	
1.0504	6	8 2 2	94.33	
1.0504	4	6 6 0	94.33	
	1	8 3 1	96.05	

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	
1.0224	1	6 6 2	97.77	
1.0092	1	7 5 2	99.51	
.9843	3	8 3 3	103.00	
.9725	1	8 4 2	104.76	
.9611	1	9 2 1	106.54	
.9611	2	7 6 1	106.54	
.9611	1	6 5 5	106.54	
.9501	2	6 6 4	106.33	
.9395	3	8 5 1	110.15	
.9395	1	9 3 0	110.15	
.9395	4	7 5 4	110.15	
.9193	1	7 6 3	113.84	
.9003	3	8 5 3	117.64	
•9003 •8825 •8740 •8657 •8576	1 1 1 1	9 4 1 10 1 1 8 6 2 9 4 3 10 2 2	117.64 121.58 123.61 125.69 127.83	
.8498	1	10 3 1	130.03	
.8498	3	9 5 2	130.03	
.8348	5	7 7 4	134.66	
.8348	3	8 5 5	134.66	
.8205	12	9 6 1	139.70	
.8205 .8136 .8069 .8069	1 9 2 3 6	10 3 3 10 4 2 9 5 4 8 7 3 11 1 0	139.70 142.42 145.33 145.33	
•7940	5	11 2 1	151.91	
•7940	7	9 6 3	151.91	
•7940	7	10 5 1	151.91	

Monoclinic, $P2_1/a$ (14), Z=2 [Braun and Lingafelter,1967]

Lattice parameters

a=10.672 \pm 0.002, b=13.064 \pm 0.002, c=7.998 \pm 0.001 $\mathring{\text{A}}$, β =98.09 \pm 0.01 $^{\circ}$ (published value, b=13.063) [ibid.]

Scattering factors

 N°, O^{-1} [3.3.1A]; Pd°, C° [Berghuis et al., 1955]; H° [Stewart et al., 1965]

Thermal parameters

_			
Ts	otr	opic	: :

	Pd	2.71	0	3.34	N	2.87
	C(1)	3.11	C(2)	2.97	C(3)	3.48
	C(4)	4.28	C(5)	4.56	C(6)	3.91
	C(7)	3.21	C(8)	3.79	C(9)	5.39
	C(10)	6.01	C(11)	4.29	C(12)	6.31
н ((4) thr	cough	H(123)	as give	n by	Braun
ar	nd Lingt	felter	[1967]			

Density

(calculated) 1.465 g/cm³ [ibid.]

Scale factor

 21.84×10^{4}

Reference

Berghuis, J., IJ. M. Haanapel, M. Potters, B.O. Loopstra, C.H. MacGillavry, and A. L. Veenendaal (1955). New calculations of atomic scattering factors, Acta Cryst. 8, 478-483.

Braun, R.L. and E.C.Lingafelter (1967). The crystal structure of bis-(N-isopropyl-3-ethylsalicylaldiminato) palladium, Acta Cryst. 22, 787-792.

Stewart, R.F., E.R.Davidson, and W.T.Simpson (1965). Coherent x-ray scattering for the hydrogen atom in the hydrogen molecule, J. Chem. Phys. 42, 3175-3187.

Calculated Pattern (Peak heights)			
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
8 • 22	180	1 1 0	10.76
7 • 91	9	9 0 1	11.18
6 • 77	4	0 1 1	13.06
6 • 52	14	0 2 0	13.56
6 • 04	4	1 1 -1	14.66
5.41 5.28 5.03 4.71 4.43	16 4 2 2	1 1 1 2 0 0 0 2 1 2 0 -1 + 2 1 -1	16.36 16.78 17.60 18.82 20.02
4.40	8	1 2 1	20.18
4.11	3	2 2 0	21.62
3.96	5	0 0 2	22.44
3.94	6	2 1 1	22.54
3.82	10	2 2 -1 +	23.26
3.79	2	0 1 2	23.46
3.73	7	1 1 -2	23.84
3.67	?	1 3 -1	24.24
3.51	18	1 3 1	25.34
3.493	18	2 2 1	25.48
3.422 5.401 3.361 3.290 3.266	1 2 1 2	1 1 2 3 1 0 2 3 0 3 1 -1 0 4 0	26.02 26.18 26.50 27.08 27.28
3.019	2	0 4 1 + 2 3 1 3 1 4 0 2 1 3 -2	29.56
2.998	1		29.78
2.982	4		29.94
2.974	3		30.02
2.902	2		30.78
2.773	3	2 4 0 +	32.26
2.749	1	1 3 2	32.54
2.706	1	2 2 2	33.08
2.684	1	2 4 -1	33.36
2.639	1	0 0 3	33.94
2.598	1	1 1 -3	34 •5 0
2.563	2	2 4 1	34 •9 8
2.536	2	1 5 0	35 • 36
2.520	1	0 4 2	35 •6 0
2.505	4	3 3 1	35 •8 2
2.448	1	0 2 3	36 .6 8
2.431	1	4 2 -1	36 .9 4
2.423	1	3 1 2	37 .0 8
2.393	1	1 5 1	37 .5 6
2.356	2	4 0 -2	38 .1 6
2.340	2	2 2 -3	38.44
2.258	1	4 2 1	39.90
2.237	2	3 1 -3	40.28
2.216	1	4 2 -2	40.68
2.198	1	2 4 2	41.32

Ca	Calculated Pattern (Peak heights)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
2.177 2.155 2.146 2.118 2.104 2.099 2.014 1.9746 1.9706 1.9609	1 1 1 1 1 2 2 1 1	0 6 0 1 3 3 3 3 2 2 2 3 1 5 2 0 6 1 + 3 3 -3 + 1 1 -4 4 2 2 5 1 -2	41.44 41.88 42.08 42.66 42.36 43.06 44.98 45.32 46.02 46.26			
1.9248 1.9043 1.8646 1.7998 1.7932	1 1 1 1 1	4 2 -3 5 3 -1 2 2 -4 1 7 -1 3 5 2 4 4 2	47.18 47.72 48.80 50.68 50.88			

Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$		
8 • 22	100	1 1 0	10.76		
7 • 92	9	0 0 1	11.16		
6 • 77	5	6 1 1	13.06		
6 • 53	15	0 2 0	13.54		
6 • 04	4	1 1 -1	14.65		
5.41	19	1 1 1	16.36		
5.28	5	2 J D	16.77		
5.04	3	0 2 1	17.59		
4.72	1	1 2 -1	18.80		
4.71	2	2 D -1	18.82		
4.43	1	2 1 -1	20.02		
4.40	9	1 2 1	20.18		
4.11	3	2 2 0	21.62		
3.96	6	0 0 2	22.44		
3.94	5	2 1 1	22.54		
3.82	11	2 2 -1	23.26		
3.82	1	0 3 1	23.29		
3.75	1	5 1 2	23.40		
3.73	9	1 1 -2	23.84		
3.67	2	1 3 -1	24.24		
3.51 3.493 3.423 3.401 3.360	23 20 1 3	1 3 1 2 2 1 1 1 2 3 1 0 2 3 0	25.33 25.48 26.01 26.18 26.50		
3.291	2	3 1 -1	27.87		
3.266		3 4 0	27.28		

	Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$			
3.021 3.019 2.998	1 1 1	2 2 -2 0 4 1 2 3 1	29.55 29.56 29.77			
2.981 2.974 2.902 2.778 2.773	5 1 3 2 2	3 1 1 2 G 2 1 3 -2 2 4 0 3 1 -2	29.95 30.02 30.79 32.20 32.26			
2.772 2.750 2.706 4.684 2.635	1 2 2 1 2	3 2 1 1 3 2 2 4 2 2 4 -1 0 0 3	32.26 32.53 33.07 33.35 33.94			
2.597 2.563 2.536 2.519 2.505	2 ? 2 1 5	1 1 -3 2 4 1 1 5 0 0 4 2 3 3 1	34.51 34.98 35.36 35.61 35.82			
2.447 2.431 2.422 2.392 2.377	1 1 2 1	G 2 3 4 2 -1 3 1 2 1 5 1 3 3 -2	36.69 36.95 37.09 37.57 37.61			
2.356 2.340 2.258 2.238 2.216	2 2 1 3 1	4 0 -2 2 2 -3 4 2 1 3 1 -3 4 2 -2	38.17 38.44 39.90 40.27 40.66			
2.199 2.177 2.155 2.145 2.115	2 7 1 1	2 4 2 0 6 0 1 3 3 3 3 2 2 2 3	41.44 41.49 41.39 42.09 42.66			
2.104 2.099 2.098 2.014 2.013	1 2 1 1	1 5 2 0 6 1 3 5 0 3 3 -3 2 6 0	42.96 43.05 43.07 44.98 44.99			
1.9743 1.9708 1.9613 1.9374 1.9247	1 1 1 1	1 1 -4 4 2 2 5 1 -2 4 4 1 4 2 -3	45.93 46.01 46.25 46.86 47.18			
1.9041 1.8649 1.8000 1.7929 1.7807	1 1 1 1	5 3 -1 2 2 -4 1 7 -1 3 5 2 1 7 1	47.72 46.79 50.67 50.89 51.26			
1.7457 1.6717	1	4 4 2 2 4 -4	52.34 54.83			

Triclinic, PĪ (2), Z=1 [Fritchie, 1966]

Lattice parameters

a= $3.8684\pm0.0004\text{\AA}$, $\alpha=91.67^{\circ}\pm0.01^{\circ}$ b= 7.7810 ± 0.0008 , $\beta=92.67^{\circ}\pm0.01^{\circ}$ c=15.736 ±0.002 , $\gamma=95.38^{\circ}\pm0.01^{\circ}$ at 23°C (published values: a=3.8682, b=7.7807, c=15.735Å) [ibid.]

Scattering factors

 H° , C° , N° [3.3.1A]

Thermal parameters

Anisotropic for carbon and nitrogen, isotropic for hydrogen [Fritchie, 1966]

Density

(calculated) 1.4090 g/cm3 [ibid.]

Scale factor

 0.9160×10^{4}

Reference

Fritchie, C.J.Jr.(1966). The crystal structure of N-methylphenazinium tetracyanoquinodimethanide, Acta Cryst. 20 892-898.

Calculated Pattern (Peak heights)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$		
7.85 7.74 7.03 6.85 5.60	16 13 33 100	0 0 2 0 1 0 0 -1 1 0 1 1 0 -1 2	11.26 11.42 12.58 12.92 15.80		
5.42 4.41 3.87 3.85 3.78	5 1 2 3 9	0 1 2 0 -1 3 0 2 0 1 0 0 -1 0 1	16.34 20.14 22.96 23.10 23.52		
3.73 3.69 3.55 3.52 3.471	2 2 6 7 8	0 2 1 1 0 1 0 -1 4 -1 0 2 + 1 -1 1	23 · 8 4 24 · 0 8 25 · 0 6 25 · 3 0 25 · 6 4		
3.427 3.297 3.288 3.222 3.213	2 7 6 5	0 2 2 -1 1 2 -1 -1 1 1 -1 2 1 1 1	25 • 9 8 27 • 0 2 27 • 1 0 27 • 6 6 27 • 7 4		
3.175 3.142 3.123 3.064 3.029	61 8 43 2 1	-1 0 3 0 5 -1 -1 2 0 2 3 1 0 3	28 . 0 8 28 . 3 8 28 . 5 6 29 . 1 2 29 . 4 6		
2.945 2.827 2.820 2.805 2.735	3 3 3 1 2	0 -1 5 -1 2 1 -1 0 4 0 -2 4 1 1 3	30 • 3 2 31 • 6 2 31 • 7 0 31 • 8 8 32 • 7 2		
2.608 2.560 2.534 2.503 2.477	2 5 1 1	1 -1 4 0 -3 1 3 3 1 1 -2 3 0 -3 2	34 • 3 6 35 • 0 2 35 • 4 0 35 • 8 4 36 • 2 4		
2.468 2.377 2.204 2.157 2.136	3 1 1 2 2	1 1 4 1 0 5 0 -2 6 -1 3 2 0 1 7 +	36.38 37.82 40.92 41.84 42.28		
2.106 1.9529 1.7853 1.7622 1.6179	1 1 1 2	1 -2 5 1 2 5 -1 4 1 -2 0 4 -2 -1 5	42.90 46.46 51.12 51.84 56.86		

Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$		
7.85 7.74 7.04 6.85 5.61	14 11 32 100	0 0 2 0 1 3 0 -1 1 0 1 1 0 -1 2	11.26 11.42 12.56 12.91 15.79		
5.42	6	0 1 2	16.33		
4.41	1	0 -1 3	20.13		
3.87	2	0 2 0	22.95		
3.85	3	1 0 0	23.10		
3.78	10	-1 0 1	23.52		
3.73	3	0 2 1	23.84		
3.69	2	1 0 1	24.37		
3.55	6	0 -1 4	25.05		
3.52	4	-1 0 2	25.25		
3.52	2	0 -2 2	25.28		
3.52	3	-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.30		
3.471	9		25.54		
3.456	2		25.76		
3.427	2		25.98		
3.299	8		27.31		
3.288	3	-1 -1 1	27.10		
3.223	5	1 -1 2	27.55		
3.212	2	1 1 1	27.75		
3.176	76	-1 0 3	28.07		
3.142	6	0 0 5	28.38		
3.124	53	-1 -1 2	28.55		

Ca	Calculated Pattern (Integrated)						
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$				
3.064 3.029 2.946 2.828	2 1 3 4	0 2 3 1 0 3 0 -1 5 -1 2 1	29.12 29.46 30.31 31.61				
2.819 2.805 2.735 2.608 2.560	1 1 3 2 7	-1 0 4 0 -2 4 1 1 3 1 -1 4 0 -3 1	31.72 31.68 32.72 34.36 35.32				
2.533 2.593 2.477 2.457 2.376	1 1 1 4	3 3 1 1 -2 3 0 -3 2 1 1 4 1 0 5	35.41 35.84 36.24 36.38 37.83				
2.204 2.158 2.136 2.136 2.136	2 3 3 1 1	0 -2 6 -1 3 2 0 1 7 0 2 6 1 -2 5	43.92 41.83 42.27 42.28 42.91				
2.084 1.9531 1.9355 1.8617 1.7859	1 1 1 1	1 -1 6 1 2 5 0 4 0 -1 -3 4 -1 4 1	43.38 46.45 46.90 48.88 51-10				
1.7521	1 3	-2 0 4 -2 -1 5	51.84 56.85				

Tetragonal, $P4_2/mnm(136)$, Z=4, [Sands, et al., 1959]

Lattice parameters

a=10.87±0.01Å, c=3.96±0.01Å [ibid.]

Scattering factors

 Cl^{-1} , O^{-1} [3.3.1A] Nb° [3.3.1B]

Thermal parameters

Isotropic [Sands et al., 1959]

Density

(calculated) 3.04 g/cm³ [ibid.]

Scale factor

 7.198×10^{4}

Reference

Sands, D.E., A. Zalkin, and R.E. Elson (1959). The crystal structure of NbOCl₃, Acta Cryst. 12, 21-23.

Ca	lculated	Pattern (Peak he	ights)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
7.69	80	1 1 0	11.50
4.86	100	2 1 0	18.24
3.72	83	1 0 1	23.90
3.52	36	1 1 1	25.28
3.44	7	3 1 0	25.90
3.07 3.02 2.758 2.717 2.673	2 1 1 59	2 1 1 3 2 0 2 2 1 4 0 0 3 0 1	29.06 29.60 32.44 32.94 33.50
2.636	2	4 1 0	33.98
2.590	11	3 1 1	34.52
2.562	2	3 3 0	35.00
2.399	1	3 2 1	37.46
2.194	17	4 1 1	41.10
2.132	3	5 1 0	42.36
2.019	9	5 2 0	44.86
1.9803	10	0 0 2	45.78
1.9217	11	4 4 0	47.26
1.9171	5	1 1 2	47.38
1.9050	15	5 0 1 + 5 1 1 5 3 0 2 1 2 6 1 0	47.68
1.8769	6		48.46
1.8639	1		48.82
1.8336	6		49.68
1.7873	4		51.06
1.7155	1	3 1 2	53.36
1.6809	3	5 3 1	54.34
1.6200	1	6 3 0	56.76
1.6004	11	4 0 2	57.54
1.5764	1	6 2 1	58.50
1.5604	7	5 4 1	59.16
1.5373	2	5 5 0 +	60.14
1.4507	2	5 1 2	64.14
1.4467	1	7 0 1	64.34
1.4332	1	5 5 1	65.02
1.4274 1.4135 1.3919 1.3739 1.3536	1 3 1 4	7 3 0 5 2 2 6 5 0 4 4 2 8 0 0 +	65.32 66.04 67.20 67.92 69.08
1.3265 1.3105 1.2764 1.2151 1.2143	2 1 1 2	6 1 2 1 0 3 7 4 1 + 8 4 0 5 5 2	71.00 72.00 74.24 78.68 78.74
1.1803 1.1791 1.1552 1.1386 1.1234	1 1 1 1	4 1 3 9 2 0 9 0 1 6 5 2 5 0 3	81.48 81.58 83.64 85.14 86.10

-	Calculated Pattern (Integrated)					
	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$		
	7.69	79	1 1 0	11.50		
	4.86	100	2 1 0	18.23		
	3.72	90	1 0 1	23.90		
	3.52	39	1 1 1	25.28		
	3.44	7	3 1 0	25.90		
	3.07	3	2 1 1	29.06		
	3.02	1	3 2 0	29.61		
	2.758	1	2 2 1	32.44		
	2.717	72	4 0 0	32.93		
	2.673	10	3 0 1	33.49		
	2.636	2	4 1 0	33.98		
	2.596	13	3 1 1	34.52		
	2.562	2	3 3 0	34.99		
	2.399	1	3 2 1	37.46		
	2.195	22	4 1 1	41.10		
	2.132	11	5 1 0	42.36		
	2.019	13	5 2 0	44.87		
	1.9800	14	0 0 2	45.79		
	1.9216	14	4 4 0	47.26		
	1.9174	3	1 1 2	47.37		
	1.9057	19	5 0 1	47.68		
	1.9057	5	4 3 1	47.68		
	1.8771	9	5 1 1	48.46		
	1.8642	2	5 3 0	48.81		
	1.8337	9	2 1 2	49.68		
	1.7870	6	6 1 0	51.07		
	1.7157	2	3 1 2	53.35		
	1.6066	5	5 3 1	54.35		
	1.6288	1	6 1 1	56.45		
	1.6204	2	6 3 0	56.77		
	1.6003	16	4 0 2	57.55		
	1.5766	2	6 2 1	58.49		
	1.5603	11	5 4 1	59.17		
	1.5372	1	7 1 0	60.14		
	1.5372	3	5 5 0	60.14		
	1.4997 1.4508 1.4457 1.4331 1.4273	1 4 1 1	6 3 1 5 1 2 7 0 1 5 5 1 7 3 0	61.81 64.14 64.39 65.03 65.32		

Calculated Pattern (Integrated)				
d (Å)	I	hkl	2θ(°) λ = 1.54056 Å	
1.4135 1.3918 1.3789 1.3587 1.3573	5 2 6 2 1	5 2 2 6 5 0 4 4 2 8 0 0 5 3 2	66.04 67.21 67.92 69.07 69.15	
1.3266 1.3104 1.3009 1.2763 1.2763	3 2 1 1	6 1 2 1 0 3 1 1 3 8 1 1 7 4 1	70.99 72.01 72.61 74.24 74.24	
1.2540 1.2188 1.2153 1.2142 1.2038	1 1 2 2 1	6 3 2 6 6 1 8 4 0 5 5 2 7 5 1	75.80 78.39 78.66 78.75 79.56	
1.2004 1.1803 1.1790 1.1552 1.1386	1 1 1 2 2	9 1 0 4 1 3 9 2 0 9 0 1 6 5 2	79.84 81.48 81.59 83.64 85.14	
1.1283 1.1223 1.1203 1.0632 1.0558	2 1 1 2 1	5 0 3 5 1 3 8 0 2 9 4 1 9 5 0	86.68 86.68 86.87 92.86 93.70	
1.0420 1.0358 1.0293 1.0265 1.0130	2 1 1 1	5 4 3 8 4 2 10 2 1 9 1 2 9 2 2	95.33 96.09 96.90 97.25 99.00	
.9492 .9316 .9302 .9073	1 1 1 1	10 1 2 9 5 2 4 0 4 10 6 1 9 0 3	108.48 111.55 111.80 110.20 119.64	
.8801 .8467 .7842 .7834	1 1 1	4 4 4 9 4 3 9 9 2 11 8 1	122.15 130.94 158.38 159.01	

 $d(\tilde{A})$

Structure

Orthorhombic, Pnma(62),Z=4 [Breneman and Willett, 1967]

Lattice parameters

 $a=9.35\pm0.02$, $b=7.94\pm0.01$, $c=14.69\pm0.02$ Å [ibid.]

Scattering factors

P°, Br° [3.3.1A]

Thermal parameters

Isotropic: P .90; Br(1) 2.01;Br(2) 2.71;
Br(3) 2.73; Br(4) 2.57; Br(5) 1.90;
Br(6) 3.58

Density

(calculated) 3.60 g/cm³ [Breneman and Willett, 1967]

Scale factor

 37.67×10^4

Reference

Breneman, G.L. and R.D.Willett (1967). The crystal structure of phosphorus heptabromide, PBr₂, Acta Cryst. 23, 467-471.

Calculated Pattern (Peak heights)					
d (\mathring{A})	I		hk	ı	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
6.99 5.77 5.60 4.67 4.45	3 4 2 15 3	0 1 1 1 2	1 0 1 1	1 2 1 2 +	12.66 15.34 15.82 18.98 19.92
4.34 4.17 4.03 3.97 3.88	7 2 17 51 6	1 0 2 0 2	0 1 1 2 1	3 3 0 0	20.46 21.30 22.04 22.38 22.88
3.80 3.67 3.53 3.49 3.42	37 10 18 2 7	1 0 2 0 1	1 0 1 2 0	3 4 2 2 4	23.36 24.22 25.20 25.48 26.04
3.27 3.14 3.03 2.928 2.888	100 48 33 3	1 1 2 1 2	2 1 2 2	2 4 0 3	27.24 28.40 29.50 30.50 30.94

2.870 2.847 2.803 2.714 2.698	26 27 6 23 15	3 1 2 3	0 1 0 1 1	2 1 5 4 2 +	31.14 31.40 31.90 32.98 33.18
2.644 2.605 2.574 2.509 2.495	4 1 2 4 5	1 0 2 1 3	1 3 2 3 1	5 1 3 1 3	33.88 34.40 34.82 35.76 35.96
2.487 2.417 2.406 2.368 2.326	7 1 1 5	2 3 1 1 3	0 2 3 0 2	5 1 2 6 2 +	36.08 37.16 37.34 37.96 38.68
2.309 2.303 2.290 2.275 2.270	2 3 3 7 10	4 2 1 2 1	0 3 2 3 1	1 0 5 1 6	38.98 39.08 39.32 39.58 39.68
2.260 2.242 2.197 2.169 2.145	3 9 4 2 1	1 4 2 2 4	3 1 3 0 1	3 0 2 6 2	39.86 40.18 41.04 41.60 42.10
2.108 2.092 2.086 2.047 2.039	10 19 12 2 6	4 1 2 1 3	0 3 3 0 2	3 + 4 + 3 + 7	42.86 43.20 43.34 44.20 44.40
2.034 2.015 1.9985 1.9853 1.9722	6 15 2 16 3	1 4 3 0 4	2 2 3 4 0	6 0 1 0 + 4	44.50 44.96 45.34 45.66 45.98
1.9513 1.9458 1.9141 1.9035 1.8820	8 5 2 1 3	2 3 2 2 3	3 0 2 2	4 2 7 + 6 5	46.50 46.64 47.46 47.74 48.32
1.8711 1.8653 1.8199 1.8125 1.8064	2 4 2 2 2	3 3 1 5	1 3 2 0 1	6 3 + 7 2 1 +	48.62 48.78 50.08 50.30 50.48
1.7654 1.7571	3	1	2	4 + 8	51.74 52.00

0 3 + 2 6

52.32

Calculated Pattern (Peak heights)

I

hkl

2θ(°)

 $\lambda = 1.54056 \ A$

1.7521

1.7324

Calculated Pattern (Peak heights)				Calculated Pattern (Integrated)			
đ (Å)	I	hkl	2θ(°) λ = 1.54056 Å	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$
1.7167 1.7090 1.6909 1.6806 1.6777	1 2 1 2 4	1 4 4 2 D 8 4 D 6 5 2 1 2 3 6	53.32 53.58 54.20 54.56 54.66	6.98 5.78 5.60 4.68 4.67	2 3 1 3	0 1 1 1 0 2 1 1 1 2 0 0 1 1 2	12.66 15.33 15.82 18.97 18.98
1.6665	2	5 0 4	55.06	4.45	2	2 0 1	19.91
1.6626	2	3 3 5	55.20	4.34	7	1 0 3	20.46
1.6538	2	4 1 6	55.52	4.17	1	0 1 3	21.30
1.6489	4	5 2 2 +	55.70	4.03	15	2 1 0	22.05
1.6407	7	1 2 8	56.00	3.97	47	0 2 0	22.38
1.6359	7	2 4 4	56 •18	3.94	2	2 0 2	22 · 5 3
1.6316	7	3 4 2 +	56 •34	3.89	6	2 1 1	22 · 8 7
1.6200	2	1 4 5	56 •78	3.81	37	1 1 3	23 · 3 5
1.5989	4	5 2 3 +	57 •60	3.67	10	0 0 4	24 · 2 1
1.5819	5	3 0 8	58 •28	3.55	2	1 2 1	25 · 0 9
1.5580	3	6 0 0 +	59.26	3.53	17	2 1 2	25 · 1 9
1.5514	4	2 3 7 +	59.54	3.49	2	0 2 2	25 · 4 8
1.5208	2	6 1 1 +	60.86	3.42	7	1 0 4	26 · 0 5
1.5190	3	5 3 1	60.94	3.27	160	1 2 2	27 · 2 3
1.5039	1	2 5 0	61.62	3.14	49	1 1 4	28 · 4 0
1.4908 1.4861 1.4692 1.4659	3 2 3 4	1 5 3 + 5 0 6 0 0 10 + 5 2 5 6 1 3	62 • 2 2 62 • 4 4 63 • 2 4 63 • 4 0 63 • 7 0	3.03 2.929 2.888 2.869 2.846	34 3 31 26 27	2 2 0 1 2 3 2 0 4 3 0 2 3 1 1	29.49 30.50 30.94 31.15 31.40
1.4455	2	4 4 3 +	64 • 4 0	2.803	5	1 0 5	31.90
1.4403	2	1 5 4	64 • 5 6	2.714	24	2 1 4	32.98
1.4250	1	4 3 6	65 • 4 4	2.698	9	3 1 2	33.17
1.4212	1	3 1 9	65 • 6 4	2.696	8	0 2 4	33.20
1.4101	2	5 3 4	66 • 2 2	2.643	5	1 1 5	33.89
1.4082	3	3 5 1	65 • 3 2	2.605	1	0 3 1	34 • 4 0
1.3916	1	2 5 4	67 • 2 2	2.574	2	2 2 3	34 • 8 2
1.3894	2	3 5 2	67 • 3 4	2.509	4	1 3 1	35 • 7 6
1.3816	2	1 5 5	67 • 7 6	2.496	4	3 1 3	35 • 9 5
1.3490	3	6 2 4	69 • 6 4	2.488	7	2 0 5	36 • 0 8
1 • 34 53	2	4 3 7	69.86	2.418	2	3 2 1	37.15
1 • 32 32	1	0 6 0	71.20	2.406	1	1 3 2	37.34
1 • 32 16	2	2 2 10	71.30	2.368	5	1 0 6	37.96
1 • 31 84	1	1 5 6	71.50	2.328	1	0 3 3	38.64
1 • 31 71	1	0 1 11	71.58	2.325	2	3 2 2	38.69
1.2953 1.2925 1.2898 1.2814 1.2602	1 1 1 1	2 4 8 5 1 8 1 6 2 2 5 6 3 2 10	72.98 73.16 73.34 73.90 75.36	2.308 2.303 2.290 2.275 2.270	2 2 3 7 7	4 0 1 2 3 0 1 2 5 2 3 1 1 1 6	36 • 9 8 39 • 0 8 39 • 3 2 39 • 5 7 39 • 6 8
1.2442 1.2398 1.2371 1.2256	1 1 3 2	5 2 8 7 1 4 3 4 8 + 6 4 0	76.50 76.82 77.02 77.88	2.259 2.242 2.198 2.169 2.145	3 10 4 2 2	1 3 3 4 1 0 2 3 2 2 0 6 4 1 2	39.87 40.18 41.04 41.60 42.10

Ca	alculated	Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$				
2.109	7	4 0 3	42.83				
2.108	6	2 2 5	42.87				
2.093	12	1 3 4	43.19				
2.092	10	2 1 6	43.20				
2.084	5	2 3 3	43.38				
2.084	2	B 2 6	43.39				
2.048	2	1 0 7	44.19				
2.039	6	3 2 4	44.39				
2.034	4	1 2 6	44.51				
2.014	18	4 2 0	44.97				
1.9986	2	3 3 1	45.34				
1.9850	19	0 4 0	45.67				
1.9828	1	1 1 7	45.72				
1.9719	3	4 0 4	45.99				
1.9512	9	2 3 4	46.50				
1.9453	1	3 3 2	46.65				
1.9145	1	2 0 7	47.45				
1.9138	1	4 1 4	47.47				
1.9034	1	2 2 6	47.74				
1.8823	3	3 2 5	46.31				
1.8711	2	3 1 6	48.62				
1.8653	4	3 3 3	48.78				
1.8628	2	4 2 3	48.85				
1.8198	2	1 2 7	50.08				
1.8122	2	5 0 2	50.31				
1.8064	2	5 1 1	50.48				
1.8050	1	1 4 3	50.52				
1.7661	2	4 2 4	51.72				
1.7649	2	1 3 6	51.75				
1.7571	2	1 1 8	52.00				
1.7528	5	4 3 0	52 · 1 6				
1.7469	1	5 0 3	52 · 3 3				
1.7462	1	0 4 4	52 · 3 5				
1.7323	12	3 2 6	52 · 8 0				
1.7166	1	1 4 4	53 · 3 2				
1.7091 1.6907 1.6806 1.6776 J.6664	3 1 2 5	2 0 8 4 0 6 5 2 1 2 3 6 5 0 4	53.58 54.21 54.56 54.67 55.06				
1.6631	1	3 3 5	55.18				
1.6536	2	4 1 6	,55.53				
1.6496	2	4 3 3	,55.67				
1.6486	3	5 2 2	,55.71				
1.6407	8	1 2 8	,56.00				
1.6358	5	2 4 4	56 • 1 8				
1.6324	4	3 4 2	56 • 3 1				
1.6309	4	5 1 4	56 • 3 7				
1.6199	1	1 4 5	56 • 7 8				
1.5990	3	5 2 3 ·	57 • 6 0				

	Calculated Pattern (Integrated)			
d (Å)	I	hkl	$\lambda = 1.54056 \stackrel{\circ}{A}$	
1.5988	1	0 1 9	57.60	
1.5821	7	3 0 8	58.27	
1.5583	4	6 0 0	59.25	
1.5568	1	1 5 1	59.31	
1.5516	2	2 4 5	59.53	
1.5512	3	2 3 7	59.55	
1.5496	1	6 0 1	59.61	
1.5213	1	1 4 6	60.84	
1.5209	1	6 1 1	60.86	
1.5191	3	5 3 1	60.94	
1.5036	1	2 5 0	61.63	
1.4912	3	1 5 3	62.20	
1.4903	2	1 2 9	62.24	
1.4894	1	1 3 8	62.28	
1.4861	1	5 0 6	62.44	
1.46 97	1	3 2 8	63 • 2 2	
1.46 90	2	0 0 10	63 • 2 5	
1.46 60	4	5 2 5	63 • 3 9	
1.45 96	1	5 1 3	63 • 7 0	
1.44 56	3	4 4 3	64 • 4 0	
1.4440	1	4 0 8	64 • 4 8	
1.4402	3	1 5 4	64 • 6 7	
1.4248	1	4 3 6	65 • 4 5	
1.4225	1	3 1 9	65 • 5 7	
1.4102	3	5 3 4	66 • 2 2	
1.4084	4	3 5 1	66 • 31	
1.3990	1	4 4 4	66 • 8 2	
1.3915	1	2 5 4	67 • 2 2	
1.3894	1	3 5 2	67 • 3 4	
1.3817	2	1 5 5	67 • 7 7	
1.34 91	4	5 2 4	69.63	
1.34 49	1	4 3 7	69.88	
1.32 33	1	0 6 0	71.19	
1.32 15	2	2 2 10	71.31	
1.31 90	1	1 5 6	71.46	
1.3170 1.2952 1.2927 1.2899 1.2813	1 1 1 1	0 1 11 2 4 8 5 1 8 1 6 2 2 5 6	71.59 72.99 73.15 73.33 73.91	
1.26 01	2	3 2 10	75.37	
1.24 42	1	5 2 8	76.50	
1.23 99	1	7 1 4	76.82	
1.23 72	4	3 4 8	77.01	
1.23 59	1	6 1 7	77.11	
1 • 22 57	2	6 4 0	77.87	

Monoclinic, $P2_1/c$ (14), Z=4 [Housty and Hospital, 1966]

Lattice parameters

a=5.65±0.01, b=9.68±0.02, c=22.33±0.05Å β=137° [ibid.]

Scattering factors

 H° , C° , O° [3.3.LA]

Atomic positions

Table 1 [Housty and Hospital, 1966]

Thermal parameters

Isotropic: B=4.0Å² for carbon and oxygen
B=3.0Å² for hydrogen

Density

(calculated) 1.275 g/cm³ [ibid.]

Scale factor

2.867 × . 104

Polymorphism

The existence of a second polymorph has been reported by Dupré la Tour [1935].

Additional patterns

PDF card 9-721[Whitney and Corvin,1949]
 It may represent a different polymorph.

Reference

Dupré la Tour, F. (1935). Polymorphisme dans la série des diacides gras normaux, Compt. Rend. 201, 479-481.

Housty, J. and M. Hospital (1966). Localisation des atomes d'hydrogène dans l'acide pimélique, COOH-[CH₂]₅-COOH, Acta Cryst. 21, 29-34.

Whitney, J. and I. Corvin (1949). Pimelic acid, Anal. Chem. 21, 191-192.

Calculated Pattern (Peak heights)			
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
7.61	36	0 0 2	11.62
5.98	2	0 1 2	14.80
5.22	1	-1 0 4	16.96
4.84	28	0 2 0	18.32
4.69	2	-1 1 2	18.90
4.61	74	0 2 1	19.22
4.08	1	0 2 2	21.74
3.85	100	1 0 0	23.06
3.70	5	-1 0 6	24.02
3.67	8	-1 2 3	24.20
3.59	4	-1 2 2 3 -1 2 1 -1 2 5 0 3 1	24 • 7 6
3.50	1		25 • 4 0
3.343	62		26 • 6 4
3.276	3		27 • 2 0
3.157	2		28 • 2 4
3.054	12	1 1 1	29 • 2 2
3.015	4	1 2 0	29 • 6 0
2.992	2	0 2 4	29 • 8 4
2.940	5	-1 2 6	30 • 3 8
2.822	3	-2 0 6	31 • 6 8
2.801	2	-1 3 3	31 • 9 2
2.764	5	-1 3 2	32 • 3 6
2.744	3	-1 3 4	32 • 6 0
2.711	1	-2 1 6	33 • 0 2
2.647	2	-1 3 1	33 • 8 4
2.612 2.438 2.431 2.420 2.353	7 1 2 1	-2 Q 8 + -2 2 6 -1 3 6 0 4 0 -2 1 9	34 . 3 D 36 . 8 4 36 . 9 4 37 . 1 2 38 . 2 2
2.314 2.299 2.285 2.248 2.224	8 10 2 1	-1 2 8 + -2 2 8 1 1 3 0 2 6 -2 0 10	38 •8 8 39 •1 6 39 •4 0 40 •0 8 40 •5 2
2.219	2	-1 1 9	40.62
2.206	1	-1 4 2	40.88
2.168	1	-2 2 9	41.62
2.113	1	-2 3 5	42.76
2.063	2	-1 2 9 +	43.84
2.042	1	. 0 4 4	44.32
2.021	1	-2 2 10	44.80
1.9372	3	-2 2 1	46.86
1.9263	1	2 0 0	47.14
1.8511	1	-1 2 10	49.18
1.8111	1	-3 1 7	50 • 3 4
1.7827	1	-1 4 8	51 • 2 0
1.7293	2	2 1 1	52 • 9 0
1.7131	2	-2 4 9	53 • 4 4
1.6671	1	0 1 9	55 • 0 4
1.6598	1	-1 4 9	55.30

Pimelic Acid, $\mathrm{C_7H_{12}O_4}$ (monoclinic) — continued

Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$
7.61 5.98 5.22 4.84 4.69	29 2 1 26	0 0 2 0 1 2 -1 0 4 0 2 0 -1 1 2	11.51 14.79 16.96 18.31 18.90
4.61	73	0 2 1	19.23
4.08	1	0 2 2	21.74
3.85	100	1 0 0	23.06
3.70	5	-1 0 6	24.33
3.67	7	-1 2 3	24.20
3.59	4	-1 2 2	24.75
3.50	1	0 2 3	25.41
3.344	65	-1 2 1	26.63
3.276	3	-1 2 5	27.20
3.157	2	0 3 1	28.25
3.053	13	1 1 1	29.22
3.015	4	1 2 0	29.61
2.992	2	0 2 4	29.83
2.940	6	-1 2 6	30.38
2.823	3	-2 0 6	31.67
2.801	2	-1 3 3	31.92
2.765	6	-1 3 2	32.35
2.745	3	-1 3 4	32.59
2.710	1	-2 1 6	33.03
2.646	2	-1 3 1	33.84
2.612	7	-2 U B	34.30
2.610	1	-1 2 7	34.33
2.438	2	-2 2 6	36.83

Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
2.432 2.420	1	-1 3 6 0 4 0	36 • 9 3 37 • 1 2
2.353 2.315 2.313 2.299 2.285	1 9 1 11 2	-2 1 9 -1 2 8 -2 0 2 -2 2 8 1 1 3	38.22 38.87 38.91 39.15 39.11
2.248 2.225 2.220 2.206 2.168	1 1 1 1	0 2 6 -2 0 10 -1 1 9 -1 4 2 -2 2 9	43.38 43.52 43.61 43.87 41.61
2.113 2.065 2.063 2.042 2.021	1 1 2 1	-2 3 5 -2 1 1 -1 2 9 0 4 4 -2 2 10	42.76 43.81 43.85 44.32
1.9369 1.9265 1.8507 1.8117 1.7968	3 1 1 1	-2 2 1 2 0 0 -1 2 10 -3 1 7 -2 4 4	46.87 47.13 49.19 50.32 50.77
1.7827 1.7297 1.7131 1.6568 1.6597	1 2 2 1	-1 4 8 2 1 1 -2 4 9 0 1 9 -1 4 9	51.20 52.89 53.44 55.05 55.30

Structure Monoclinic, P2 ₁ /n(14), Z=4, [Boonstra, 1968]
Lattice parameters

Lattice parameters a=5.64, b=8.33, $c=7.12 \pm 0.02$ Å $\beta=92.25\pm 0.25$ ° [ibid.]

Scattering factors

O° [3.3.1A]

Ag°, Mn° [3.3.1B]

Thermal parameters
Anisotropic, Table 4 [Boonstra, 1968]

Atomic positions
Table 3 [ibid.]

Density (calculated) 4.507 g/cm³

Scale factor 3.101 × 10⁴

Reference
Boonstra, E.G. (1968). The crystal structure of silver permanganate, Acta Cryst. B24, 1053-1062.

Calculated Pattern (Peak heights)			
đ (Å)	I	hkl	2θ(°) λ = 1.54056 Å
5.41	63	0 1 1	16 .38
4.50	13	-1 0 1	19 .70
4.33	10	1 0 1	20 .48
4.16	24	0 2 0	21 .32
3.96	10	-1 1 1	22 .42
3.84	10	1 1 1	23 •1 2
3.56	31	0 0 2	25 •0 2
3.348	79	1 2 0	26 •6 0
3.271	50	0 1 2	27 •2 4
3.058	100	-1 2 1	29 •18
3.004	97	1 2 1	29.72
2.875	62	-1 1 2	31.08
2.819	64	2 0 0	31.72
2.786	50	1 1 2	32.10
2.670	5	2 1 0	33.54
2.586	9	0 3 1	34 .6 6
2.531	1	-2 1 1	35 .4 4
2.468	14	-1 2 2 +	36 .3 8
2.334	26	2 2 0 +	38 .5 4
2.281	32	0 1 3	39 .4 8
2.252	2	-2 0 2 2 2 1 0 3 2 -2 1 2 2 0 2	40.00
2.196	2		41.06
2.189	2		41.20
2.174	10		41.50
2.168	8		41.62
2.156 2.098 2.087 2.082 2.057	1 7 4 5	1 0 3 2 1 2 1 1 3 0 4 0 -1 3 2	41.86 43.08 43.32 43.42 43.98
2.024	4	1 3 2	44 • 7 4
1.9985	21	0 4 1	45 • 3 4
1.9812	3	-2 2 2	45 • 7 6
1.9537	3	1 4 0	46 • 4 4
1.9194	7	-2 3 1	47 • 3 2
1.8908	9	-1 4 1 + 1 -3 0 1 -2 1 3 0 3 3	48.08
1.8769	7		48.46
1.8343	3		49.66
1.8064	11		50.48
1.8031	23		50.58
1.7984	14	0 4 2 +	50.72
1.7918	3	-3 1 1	50.92
1.7788	4	0 0 4	51.32
1.7490	2	-2 3 2	52.26
1.7410	11	2 1 3 +	52.52
1.7324 1.7125 1.7084 1.7031 1.6789	8 7 6 9	-1 3 3 3 3 2 0 2 3 2 1 3 3 3 -3 2 1 +	52 •8 0 53 •4 6 53 •6 0 53 •7 8 54 •6 2

Calculated Pattern (Peak heights)			
d (Å)	I	hkl	2θ (°) $\lambda = 1.54056 \stackrel{\circ}{A}$
1.6749 1.6549 1.6516 1.6445 1.6391	11 14 17 10	2 4 0 -3 1 2 3 2 1 1 1 4 -2 4 1	54 • 7 6 55 • 4 8 55 • 6 0 55 • 8 6 56 • 0 6
1.6216 1.6040 1.5863 1.5623 1.5556	7 9 1 3 .	2 4 1 3 1 2 -1 2 4 -1 5 1 1 2 4 +	56.72 57.40 58.10 59.08 59.36
1.5401 1.5313 1.5087 1.5061 1.4986	12 2 2 2 8	-2 3 3 -2 0 4 + 0 5 2 -2 1 4 2 3 3	60.02 60.40 61.40 61.52 61.86
1.4780 1.4634 1.4552 1.4515 1.4090	3 2 5 5	2 0 4 + -1 5 2 2 1 4 1 5 2 4 0 0	62 .8 2 63 .5 2 63 .9 2 64 .1 0 66 .2 8
1.3927 1.3883 1.3764 1.3624 1.3613	1 1 1 1	-1 0 5 0 6 0 -3 4 1 0 6 1 3 4 1	67.16 67.40 68.06 68.86 68.92
1.3480 1.3393 1.3346 1.3320 1.3281	5 1 1 4 2	1 6 0 -2 5 2 4 2 0 -1 5 3 -4 0 2	69.70 70.22 70.50 70.66 70.90
1.3206 1.3206 1.3181 1.3114 1.3048	6 6 1	-1 2 5 + -3 3 3 1 5 3 -4 1 2 2 3 4	71.36 71.36 71.52 71.94 72.36
1.3014 1.2986 1.2928 1.2820 1.2773	3 5 1 1	-3 1 4 1 2 5 4 0 2 3 3 3 4 1 2	72.58 72.76 73.14 73.86 74.18
1 • 26 62 1 • 25 65 1 • 25 25 1 • 24 50 1 • 23 36	1 1 2 2 1	0 3 5 1 6 2 + 3 1 4 -4 3 1 + -2 4 4	74.94 75.62 75.90 76.44 77.28
1.2301 1.2195 1.2161	2 1 1	4 3 1 + -4 1 3 0 5 4	77 •5 4 78 •3 4 78 •6 D

Calculated Pattern (Integrated)			
đ (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$
5.41	54	0 1 1	16.37
4.50	11	-1 0 1	19.69
4.34	9	1 0 1	20.47
4.17	22	0 2 0	21.32
3.96	10	-1 1 1	22.42
3.85	10	1 1 1	23.11
3.56	31	0 0 2	25.01
3.350	80	1 2 0	26.59
3.271	49	0 1 2	27.24
3.058	100	-1 2 1	29.18
3.004	98	1 2 1	29.72
2.875	64	-1 1 2	31.38
2.818	70	2 0 0	31.73
2.786	51	1 1 2	32.10
2.669	5	2 1 0	33.55
2.587	10	0 3 1	34.65
2.530	2	-2 1 1	35.45
2.469	4	2 1 1	36.36
2.468	12	-1 2 2	36.38
2.338	9	1 3 1	38.47
2.334	24	2 2 0	38.54
2.281	35	0 1 3	39.48
2.252	2	-2 0 2	40.30
2.197	2	2 2 1	41.36
2.189	1	0 3 2	41.21
2.174	10	-2 1 2 2 2 0 2 1 9 3 2 1 2 1 3	41.50
2.168	3		41.63
2.156	1		41.87
2.098	8		43.08
2.087	4		43.32
2.083	3	0 4 0	43.42
2.057	4	-1 3 2	43.98
2.024	4	1 3 2	44.74
1.9385	25	0 4 1	45.34
1.9811	3	-2 2 2	45.76
1.9534	3	1 4 D	46.45
1.9229	1	2 2 2	47.23
1.9192	8	-2 3 1	47.33
1.8921	6	2 3 1	48.05
1.8903	8	-1 4 1	48.10
1.8772	9	1 4 1	48.45
1.8342	4	-3 0 1	49.56
1.8065	10	-2 1 3	50.48
1.8033	24	0 3 3	50.57
1.7989	1	3 0 1	50.70
1.7972	2	0 4 2	50.76
1.7912	2	-3 1 1	50.94
1.7786	5	0 0 4	51.33
1.7492	2	-2 3 2	52.25
1.7410	12	2 1 3	52.52

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda \approx 1.54056 \mathring{A}$	
1.7394	3	0 1 4	52.57	
1.7326	10	-1 3 3	52.79	
1.7124	9	3 2 0	53.46	
1.7087	2	2 3 2	53.59	
1.7028	11	1 3 3	53.79	
1.6803	10	-1 1 4	54.57	
1.6785	13	-3 2 1	54.53	
1.6748	4	2 4 3	54.77	
1.6551	16	-3 1 2	55.47	
1.6515	15	3 2 1	55.60	
1.6444 1.6388 1.6218 1.6042 1.5863	11 11 9 13	1 1 4 -2 4 1 2 4 1 3 1 2 - 2 4	55.87 56.37 56.71 57.39 58.10	
1.5525	4	-1 5 1	59.07	
1.5559	1	1 2 4	59.35	
1.5551	1	1 5 1	59.38	
1.5399	16	-2 3 3	60.03	
1.5314	2	-2 0 4	60.39	
1.5304	1	-3 3 1	60.44	
1.5087	2	0 5 2	61.40	
1.5062	1	-2 1 4	61.51	
1.4987	11	2 3 3	61.86	
1.4781	3	2 0 4	62.82	
1.4777	1	-3 1 3	62.84	
1.4635	4	-1 5 2	63.51	
1.4554	2	2 1 4	63.91	
1.4514	6	1 5 2	64.11	
1.4089	7	4 0 0	66.28	
1.3925 1.3883 1.3764 1.3625 1.3513	1 1 1 1	-1 0 5 0 6 0 -3 4 1 0 6 1 3 4 1	67.16 67.40 68.36 68.84 68.92	
1.3480 1.3394 1.3346 1.3319 1.3279	8 1 1 5	1 6 0 -2 5 2 4 2 0 -1 5 3 -4 0 2	69.70 70.21 70.50 70.67 70.91	
1.3210	1	2 5 2	71.34	
1.3208	4	-1 2 5	71.35	
1.3208	3	-3 3 3	71.35	
1.3182	6	1 5 3	71.51	
1.3113	2	-4 1 2	71.95	
1.3047	1	2 3 4	72.37	
1.3015	4	-3 1 4	72.58	
1.2988	6	1 2 5	72.75	
1.2925	1	4 0 2	73.15	
1.2819	2	3 3 3	73.66	

Calculated Pattern (Integrated)				
d (Å)	I	hki	!	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.2774 1.2563 1.2566 1.2563 1.2526	1 1 1 1 3	4 1 0 3 1 6 -3 2 3 1	5	74.17 74.93 75.51 75.53 75.90
1.2454 1.2448 1.2338 1.2304 1.2293	1 2 1 1 2	2 6 -4 3 -2 4 -2 6 4 3	0 1 4 1	76.41 76.46 77.27 77.52 77.55
1.2194 1.2159	2	-4 1 0 5	3 4	78.35 78.52

Sodium Aluminum Chloride Silicate, sodalite, $Na_8Si_6Al_6O_{24}Cl_2$ (cubic)

Structure

Cubic, $P\overline{4}3n$ (218), Z=1 [Löns and Schulz, 1967]

Lattice parameters

 $a=8.870 \pm .004 \text{ Å [ibid.]}$

Scattering factors

Na⁺¹,Al^o,Si^o,Cl⁻¹,O⁻¹ [3.3.1A]

Thermal parameters

Isotropic [Löns and Schulz, 1967]

Density

(calculated) 2.306 g/cm³

Scale factor

 11.30×10^4

Additional patterns

 PDF card 3-0338 [Dow Chemical Co., Midland, Michigan]

Reference

Löns,J. and H. Schulz (1967). Strukturver-feinerung von Sodalith, $Na_8Si_6Al_6O_{24}Cl_2$, Acta Cryst. 24, 434-436.

Calculated Pattern (Peak heights)			
đ (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
6.267	40	1 1 0	14.12
4.436	7	2 0 0	20.00
3.966	1	2 1 0	22.40
3.622	100	2 1 1	24.56
2.805	8	3 1 0	31.88
2.560	16	2 2 2	35.02
2.371	18	3 2 1	37.92
2.217	1	4 0 0	40.66
2.091	26	4 1 1 +	43.24
1.9836	4	4 2 0	45.70
1.8908	3	3 3 2	48.08
1.8104	3	4 2 2	50.36
1.7397	2	4 3 1	52.56
1.6195	2	5 2 1	56.80
1.5681	7	4 4 0	58.84
1.5213	4	5 3 0 +	60.84
1.4784	6	4 4 2 +	62.80
1.4387	6	5 3 2	64.74
1.3686	2	5 4 1	68.50
1.3373	2	6 2 2	70.34
1.3076	2	6 3 1	72.18
1.2802	2	4 4 4	73.98
1.2071	5	7 2 1 +	79.30
1.1648	1	7 3 0	82.80
1.1265	2	6 5 1 +	86.28
1.0918	1	7 4 1 +	89.74
1.0757	1	8 2 0	91.46
1.0174	1	6 6 2	98.42
.9917	2	8 4 0	101.92
.9565	1	9 2 1 +	107.28
.9052 .8457 .8308 .8235 .7902	1 2 1 1	8 4 4 9 5 2 + 8 7 1 + 8 6 4 + 9 6 3 +	116.62 131.24 136.00 138.56 154.22

Calculated Pattern (Integrated)				
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	
6.272	34	1 1 0	14.11	
4.435	7	2 0 0	20.00	
3.967	1	2 1 0	22.39	
3.621	100	2 1 1	24.56	
2.805	8	3 1 0	31.88	
2.561	18	2 2 2	35.01	
2.371	20	3 2 1	37.92	
2.217	1	4 0 0	40.65	
2.091	13	3 3 0	43.24	
2.091	18	4 1 1	43.24	
1.9834	5	4 2 0	45.71	
1.8911	3	3 3 2	48.07	
1.8106	3	4 2 2	50.36	
1.7395	3	4 3 1	52.57	
1.6194	3	5 2 1	56.80	
1.5680	10	4 4 0	58.85	
1.5212	3	5 3 0	60.84	
1.5212	2	4 3 3	60.84	
1.4783	3	6 0 0	62.80	
1.4783	6	4 4 2	62.80	
1.4389	9	5 3 2	64.73	
1.3687	4	5 4 1,	68.50	
1.3372	3	6 2 2	70.34	
1.3078	4	6 3 1	72.17	
1.2803	3	4 4 4	73.98	
1.2070	4	7 2 1	79.31	
1.2070	1	5 5 2	79.31	
1.2070	3	6 3 3	79.31	
1.1647	2	7 3 0	82.81	

C	Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
1.1265	3	6 5 1	86 • 28			
1.1265 1.0918 1.0918 1.0756 1.0175	1 1 1 2 2	7 3 2 7 4 1 8 1 1 8 2 0 6 6 2	86.28 89.74 89.74 91.47 98.41			
1.0043 .9917 .9795 .9565	1 4 1 1	7 5 2 8 4 0 8 3 3 9 2 1 6 5 5	100.16 101.92 103.70 107.28 107.28			
.9149 .9053 .8783 .8783	1 2 1 1	7 6 3 8 4 4 7 7 2 10 1 1 10 2 2	114.69 116.61 122.58 122.58 128.97			
.8457 .8457 .8457 .8307 .8307	3 1 1 1	9 5 2 10 3 1 7 6 5 7 7 4 8 7 1	131.23 131.23 131.23 136.01 136.01			
.8236 .8236 .8165 .7902	2 3 2 1 2	10 4 0 8 6 4 9 6 1 11 2 1 9 6 3	138.56 138.56 141.24 154.21 154.21			
•7902	1	10 5 1	154.21			

Standard				
Structure Monoclinic, $P2_1/c$ (14), $Z=4$ [Hyman et al.	Ca	lculated	Pattern (Peak he	<u> </u>
1967].	d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \mathring{A}$
Lattice parameters	8.89	6	0 2 0	9.94
a= 6.507±0.001 Å,	8.32	13	0 0 1	10.62
b=17.797±0.002, (published value, 17.796)	7.53	4	0 1 1	11.74
c= 8.377±0.001	6.08	4	0 2 1 1 2 0	14.56
$\beta=96^{\circ}$ 34'±2' [ibid.]	5.23	1	1 2 0	16.94
	4.62	38	1 2 -1	19.18
Scattering factors	4.37	3	1 3 0	20.30
B°, Na ⁺ , O ⁻ [3.3.1A]	4.25	14	1 2 1	20.86
B, Nd, O [3.3.1A]	4.16 4.05	30 21	0 0 2	21.34 21.92
Thermal nevertage	1005			21.32
Thermal parameters	4.00	5	1 3 -1	22.22
Isotropic [Hyman et al., 1967]	3.77	41	0 2 2	23.58
75. 11	3.75	33	1 3 1	23.68
Density	3.67	3	1 4 0	24.26
(calculated) 2.346 g/cm ³	3.406	63	0 3 2 +	26 • 1 4
Socia forten	3.273	15	1 1 2 +	27.22
Scale factor	3.232	100	2 0 0	27.58
3.040 ×10 ⁴	3.180	30	2 1 0	28.04
	3.136	19	2 0 -1	28.44
Additional patterns	3.119	9	1 2 2	28.60
1. PDF card 16-199. [Bouaziz, 1962]	3.038	78	0 4 2 +	29.38
	2.974	11	1 5 -1	30.02
	2.966	13	0 6 0	30.10
	2.959	26	2 2 -1	30.18
	2.902	12	2 0 1 +	30.78
	2.864	8	2 1 1	31.20
	2.795	5	0 6 1	32.00
	2.773	6	2 3 -1	32.26
	2.759	18	2 2 1	32.42
	2.704	23	0 5 2 +	33.10
	2.696	15	1 6 0	33.20
Reference	2.676	2	2 1 -2	33.46
	2 • 64 8	1	0 2 3	33.82
Bouaziz, R. (1962). Contribution à l'étude	2.633	1	1 1 -3 2 4 0	34.02
radiocrystallographique de quelques bor-	2.615	3	2 4 0	34.26
ates de lithium et de sodium, Bull. Soc.	2.608	3	2 3 1	34.36
Chim. France 1962, 1451.	2.590	1	2 2 -2	34.60
Hyman, A., A.Perloff, F.Mauer, and S.Block	2.563	2	1 5 -2	34.98
(1967). The crystal structure of sodium	2.550	11	1 2 -3	35.16
tetraborate, Acta Cryst. 22, 815-821.	2.529	4	161	35.46
	2.426	6	1 1 3 +	37.02
	2.421	5	2 0 2	37.10
	2.415	5	0 6 2	37.20
,	2.361	11	1 2 3 +	38.08
	2 • 35 4	9	0 4 3 +	38.20
	2.313	10	1 6 -2 +	38.90
	2.264	2	1 3 3	39.78
	2.251	5	1 7 1	40.02
	2.215	11	1 6 2 + 0 7 2	40.70
	2.169	11	0 / 2	41.60

Ca	alculated	Pattern (Peak he	ights)	C	alculated	Pattern (Integra	ted)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$	đ (Å)	I	hkl	2θ(°) λ = 1.54056 Å
2.154 2.149 2.139 2.103 2.094	6 5 14 1 12	2 5 -2 + 0 8 1 3 1 0 1 8 0 3 2 0 +	41.90 42.00 42.22 42.98 43.16	8.90 8.32 7.54 6.08 5.23	5 10 3 3	0 2 0 0 0 1 0 1 1 0 2 1 1 2 0	9.93 10.62 11.73 14.56 16.94
2.081	8	0 0 4	43.46	4.63	34	1 2 -1	19.17
2.075	6	2 6 1	43.58	4.37	2	1 3 0	20.30
2.066	15	0 1 4	43.78	4.25	12	1 2 1	20.86
2.036	2	1 1 -4	44.46	4.16	28	0 0 2	21.34
2.021	25	1 7 2 +	44.82	4.05	19	0 1 2	21.92
1.9994	10	2 6 -2 +	45.32	4.00	4	1 3 -1	22.21
1.9828	3	2 1 3	45.72	3.77	38	0 2 2	23.58
1.9617	8	0 8 2 +	46.24	3.75	23	1 3 1	23.69
1.9466	2	2 2 3	46.62	3.67	3	1 4 0	24.26
1.9395	4	3 4 0 +	46.80	3.414	12	1 2 -2	26.08
1.9240 1.9126 1.9058 1.8923 1.8747	5 2 9 5 6	0 9 1 2 7 1 1 8 -2 + 2 5 -3 + 1 2 4 +	47.20 47.50 47.68 48.04 48.52	3.407 3.277 3.273 3.273 3.232	54 2 9 3	0 3 2 1 4 1 1 1 2 0 5 1 2 0 0	26.14 27.19 27.22 27.23 27.57
1.8532	9	2 7 -2 +	49.12	3.180	29	2 1 0	28.03
1.8497	10	1 8 2 +	49.22	3.136	18	2 0 -1	28.43
1.8448	5	3 5 0	49.36	3.119	6	1 2 2	28.60
1.8385	18	2 1 -4 +	49.54	3.039	45	0 4 2	29.36
1.8329	13	3 4 -2 +	49.70	3.038	39	2 2 0	29.38
1.8267	6	1 3 4	49.88	2.974	9	1 5 -1	30.02
1.8206	4	3 1 2	50.06	2.966	3	0 6 0	30.10
1.8098	1	2 2 -4	50.38	2.958	25	2 2 -1	30.19
1.7958	3	0 5 4	50.80	2.904	3	1 3 2	30.77
1.7925	7	3 2 2	50.90	2.903	9	2 0 1	30.77
1.7641	5	2 3 -4 +	51.78	2.865	8	2 1 1	31.19
1.7609	6	1 4 4	51.88	2.794	5	0 6 1	32.01
1.7534	6	2 7 2	52.12	2.773	5	2 3 -1	32.26
1.7496	9	3 5 -2 +	52.24	2.760	18	2 2 1	32.41
1.7354	2	U 8 3	52.70	2.707	1	2 0 -2	33.06
1.7161	2	1 10 0	53.34	2.705	25	0 5 2	33.09
1.7031	2	0 6 4	53.78	2.696	1	1 6 0	33.20
1.6869	3	2 9 0 +	54.34	2.676	1	2 1 -2	33.46
1.6727	2	2 9 -1	54.84	2.648	1	0 2 3	33.82
1.6637	6	3 6 -2 +	55.16	2.633	1	1 1 -3	34.03
1.6593	4	2 1 4	55.32	2.615	3	2 4 0	34.26
1.6440	1	3 7 0	55.88	2.607	1	2 3 1	34.36
1.6364	1	2 2 4	56.16	2.590	1	2 2 -2	34.61
1.6216	3	4 0 -1	56.72	2.564	1	1 5 -2	34.97
1.6148	1	4 1 -1	56.98	2.550	1	1 2 -3	35.16
1.6102 1.5964 1.5878 1.5838 1.5764	2 3 2 2 1	0 7 4 2 9 -2 + 1 9 -3 + 3 1 -4 3 7 -2	57.16 57.70 58.04 58.20 58.50	2.530 2.431 2.431 2.427 2.422	4 2 1 4	1 6 1 0 7 1 2 4 1 1 1 3 2 0 2	35.46 36.94 36.94 37.01 37.09

Calcu	lated Patter	n (Integra	ted)	Ca	alculated	l Pattern (Integra	ated)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$	d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$
2.415 2.366 2.362 2.354 2.353	4 0 2 1 11 1 3 0 3 2	6 2 7 0 2 3 4 3 5 -1	37.19 38.00 38.07 38.20 38.21	1.8745 1.8574 1.8532 1.8498 1.8483	7 1 9 7 2	1 2 4 1 9 -1 2 7 -2 1 8 2 2 0 -4	48.53 49.00 49.12 49.22 49.26
2.313 2.313 2.301 2.264 2.251	7 1 5 2 1 1 2 1 6 1	6 -2 4 -2 7 -1 3 3 7 1	38.90 38.91 39.11 39.78 40.02	1.8433 1.8366 1.3384 1.8325 1.8314	1 2 18 4 6	3 5 0 1 7 -3 2 1 -4 2 8 0 3 4 -2	49.40 49.54 49.54 49.71 49.74
2.218 2.215 2.169 2.155 2.155	1 2 5 1 12 0 3 2 4 2	1 -3 6 2 7 2 6 -1 5 -2	40.65 40.70 41.59 41.88 41.89	1.8246 1.8263 1.8096 1.7962 1.7924	2 3 1 3 7	1 3 4 3 1 2 2 2 -4 0 5 4 3 2 2	49.94 50.07 50.38 50.79 50.90
2.127	1 0 16 3 1 2 1 1 1 2 3	3 1 1 0 4 2 8 0 2 0	42.01 42.21 42.46 42.96 43.16	1.7646 1.7641 1.7610 1.7536 1.7499	3 1 5 5	2 3 -4 1 7 3 1 4 4 2 7 2 3 5 -2	51.76 51.78 51.88 52.11 52.23
2.092 2.087 2.081 2.075 2.066	6 2 1 3 8 0 1 2 7 0	3 -3 2 -1 0 4 6 1 1 4	43.22 43.33 43.46 43.59 43.77	1.7486 1.7355 1.7159 1.7033 1.6882	1 2 2 2 1	3 3 2 0 8 3 1 10 0 0 6 4 1 5 4	52.27 52.70 53.35 53.77 54.30
2.026 2.022 2.021 2	1 1 1 2 4 1 5 1	1 -4 6 3 8 1 7 2 5 3	44.45 44.69 44.73 44.81 44.88	1.6868 1.6727 1.6649 1.6637 1.6577	3 2 2 6 1	2 9 0 2 9 -1 2 0 4 3 6 -2 2 1 4	54.34 54.84 55.12 55.16 55.38
2.002 1.9995 1.9973	1 3 2 8 2 1 2 1 3	1 1 5 2 6 -2 4 -3 1 -2	44.89 45.25 45.32 45.37 45.38	1.6436 1.6365 1.6215 1.6148 1.6101	1 1 3 1 2	3 7 0 2 2 4 4 0 -1 4 1 -1 0 7 4	55.89 56.16 56.72 56.98 57.16
1 • 96 02	4 2 2 0 8 0 1 3 2 2	1 3 4 8 2 2 -2 2 3	45.72 46.20 46.24 46.28 46.61	1.5968 1.5952 1.5882 1.5874 1.5840	2 2 1 1 1	2 9 -2 4 2 -1 0 11 1 1 9 -3 3 1 -4	57.68 57.74 58.03 58.06 58.19
1.9376 1.9239 1.9126	4 3 1 1 5 0 2 2 2 1	4 0 3 -4 9 1 7 1 1 4	46.81 46.85 47.20 47.50 47.66	1.5766 1.5695 1.5641 1.5590 1.5574	1 2 1 1 4	3 7 -2 1 11 0 4 3 -1 2 10 0 3 6 2	58.50 58.78 59.00 59.22 59.29
1.9033 1.8929 1.8909	8 1 2 3 5 2 3 1 1 2	8 -2 3 -2 5 -3 9 0 6 2	47.67 47.74 48.02 48.08 48.49	1.5535 1.5477 1.5307 1.5304 1.5195	1 3 1 1	4 0 1 4 1 1 2 2 -5 4 2 1 0 8 4	59.45 59.70 60.43 60.44 60.92

Structure Triclinic, PĪ (2), Z=2 [Jost and Hilmer,	Calculated Pattern (Peak heights)				
1966]	d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	
Lattice parameters		+			
a=7.96, b=9.61, c=6.67 Å	7.54	2	0 1 0	11.26	
$\alpha = 70.1^{\circ}$, $\beta = 104.3^{\circ}$, $\gamma = 122.5^{\circ}$ [ibid.]	7.13	10	-1 1 0	12.40	
	6.69	39	1 0 0	13.22	
Scattering factors	6.25	100	0 0 1	14.16 15.60	
Na^{+1} , Si° , O^{-1} [3.3.1A]	5.68	41	-1 1 1	13.00	
Na -, SI , O - [3.3.1A]	5.63	25	0 1 1	15.72	
	4.76	4	-1 0 1	18.62	
Thermal parameters	4.49	20	-1 2 0	19.74	
Isotropic [Jost and Hilmer, 1966]	4.45	17	-1 2 1	19.94	
	4.17	20	1 1 0	21.30	
Density					
(calculated) 1.747 g/cm ³	4.10	53	1 -1 1	21.66	
, , , , , , , , , , , , , , , , , , , ,	3.92	39	0 2 0	22.68	
Scale factor	3.84	14	-2 1 0	23.12	
	3.78	29	0 2 1	23.52	
0.3695 × 10 ⁴	3.53	20	- 2 2 1	24.46	
	3.35	٥3	2 0 0 +	26.62	
Additional patterns	3.27	50	- 1 1 2	27.26	
	3.17	53	1 -2 1	28.16	
1. PDF card 2-0465 [Michigan Alkali Co.,	3.12	3	-1 3 1	28.56	
Wyandotte, Michigan]	3.12	3	-1 2 2 +	28.56	
2. PDF card 3-0432 [Dow Chemical Co., Mid-	0 1 1 2				
land, Michigan]	3.05	5	- 2 0 1	29.22	
3. PDF card 19-1241 [Jamieson and Dent	3.03	30	- 2 3 1	29.44	
Glasser, 1966]	2.990	28	0 -2 1 +	29.80	
	2.055	9	2 0 1 +	31.30	
	2.840	13	- 2 2 2	31.48	
	0.017	32	0 2 2 +	31.74	
	2.817	30	2 -2 1	32.58	
	2.731	54	1 2 1 +	32.76	
	2.679	4	0 -1 2	33.42	
	2.664	19	0 3 1	33.62	
	2.639	10	2 1 0	33.94	
	2.621	7	- 3 2 1	34.16	
	2.609	9	1 1 2 +	34.34	
	2.577	2	1 -1 2	34.78	
	2.563	1	- 3 2 0	34.98	
	2.502	2	-3 5 1	35.86	
Reference	2.469	24	-3 1 1	30.30	
Jamieson, P.B. and L.S. Dent Glasser (1966)	2.452	1	2 1 1	36.62	
Sodium silicate hydrates. I. Crystallo-	2.407	5	1 -3 1	37.32	
graphic data, Acta Cryst. 20, 373-376.	2.405	б	-1 -1 2	37.36	
Jost, KH. and W. Hilmer (1966). Die Struk-					
tur von Na ₂ H ₂ SiO ₄ ·4H ₂ O, Acta Cryst. 21,	2.316	3	2 -3 1	38.86	
583-589.	2.294	9	-3 2 2	39.24	
	2.272	3	- 3 3 2	39.64	
	2.230	12	1 - 2 2 -2 4 2	40.42	
	2.225	11	-2 4 2	70.50	
	2.202	11	-3 4 1 +	40.96	
			202+	41.04	
	2.197	15			
	2.197 2.181 2.155	7	3 -2 1	41.36 41.86	

Ca	Calculated Pattern (Peak heights)		С	Calculated Pattern (Integrated)			
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$	d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 ^{\circ}$
2.115 2.084 2.071 2.055 2.052	3 7 2 გ	-2 2 3 + 2 2 0 + 0 2 3 -1 3 3 + 2 -2 2	42.72 43.36 43.66 44.08 44.10	7.84 7.14 6.69 6.25 5.58	2 16 39 100 42	0 1 0 -1 1 0 1 0 0 0 0 1 -1 1 1	11.28 12.39 13.22 14.16 15.59
2.037	6	-1 0 3 +	44.44	5.64	22	0 1 1	15.71
2.020	14	3 -3 1 +	44.84	4.76	5	-1 0 1	18.61
1.9952	1	-2 -1 2	45.42	4.49	22	-1 2 0	19.73
1.9601	9	0 4 0	46.28	4.45	18	-1 2 1	19.93
1.9553	7	-1 -2 2	46.40	4.17	22	1 1 0	21.30
1.9302 1.9225 1.9141 1.9095 1.8975	3 2 5 7 1 8	1 1 3 + -4 2 0 2 -4 1 3 1 0 + 0 -1 3 +	47.04 47.24 47.46 47.58 47.90	4.10 3.92 3.34 3.78 5.65	61 48 15 35	1 -1 1 0 2 0 -2 1 0 0 2 1 -2 1 1	21.65 22.67 23.12 23.51 24.38
1.8931	13	-3 3 3	48.02	3.64	24	-2 2 1	24.47
1.8879	11	-2 4 3 +	48.16	3.61	3	1 1 1	24.63
1.8798	9	-4 4 1 +	48.38	3.35	74	2 0 0	26.62
1.8718	10	-4 3 2 +	48.60	3.34	6	-1 -1 1	26.67
1.8463	5	1 -1 3	49.26	3.27	70	-1 1 2	27.25
1.8364	1	-2 0 3	49.60	3.17	79	1 -2 1	28.15
1.6288	2	-3 5 2	49.82	3.12	1	-1 3 1	28.56
1.8226	19	-1 4 3 +	50.00	3.12	1	-1 2 2	28.57
1.8058	24	-2 5 0 +	50.50	3.05	5	-2 0 1	29.21
1.7932	3	0 -3 2	50.88	3.03	38	-2 3 1	29.43
1.7504 1.7502 1.7293 1.7076 1.6984	3 4 5 2	-3 5 0 5 0 2 -1 5 0 2 0 3 1 4 1	51.96 52.22 52.90 53.62 53.94	2.997 2.996 2.303 2.855 2.840	17 18 2 9 15	2 -1 1 0 -2 1 -2 3 0 2 0 1 -2 2 2	29.79 29.80 31.22 31.30 31.47
1.6944	5	-4 1 2	54.08	2.824	1	1 2 0	31.65
1.6857	5	2 3 1 +	54.38	2.818	41	0 2 2	31.73
1.6710	5	-2 5 3 +	54.90	2.746	35	2 -2 1	32.58
1.6665	3	-1 2 4	55.06	2.733	13	-2 1 2	32.73
1.6567	2	-3 5 3	55.34	2.731	57	1 2 1	32.76
1.6560	3	3 -3 2	55.44	2.679	4	0 -1 2	33.43
1.6499	7	-4 0 1 +	55.66	2.604	24	0 3 1	33.62
1.6391	2	-1 1 4	56.06	2.639	12	2 1 0	33.94
1.6348	7	-3 -1 2 +	56.22	2.621	7	-3 2 1	34.18
1.6311	4	-2 3 4	56.36	2.613	1	0 3 0	34.29
1.6242	1 4 5 5	3 1 2	56.62	2.611	5	-2 3 2	34.32
1.6185		-2 -1 3 +	56.84	2.609	6	1 1 2	34.35
1.6133		0 1 4 +	'57.04	2.578	2	1 -1 2	34.77
1.5898		-5 3 1	57.96	2.552	1	-3 2 0	34.99
1.5863		-1 5 3 +	58.10	2.503	2	-3 3 1	35.85
1.5838 1.5809 1.5710 1.5618 1.5550	7 2 2 1	4 0 1 + -3 6 2 2 3 2 + -2 6 2 -4 5 3	58.20 58.32 58.72 59.10 59.36	2.469 2.451 2.408 2.405 2.316	32 1 7 5 4	-3 1 1 2 1 1 1 -3 1 -1 -1 2 2 -3 1	36.35 36.64 37.31 37.37 38.85

Ca	Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$			
2.294 2.272 2.230 2.225 2.202	13 3 15 6	-3 2 2 -3 3 2 1 -2 2 -2 4 2 2 -1 2	39.24 39.63 40.41 40.50 40.95			
2.202	10	-3 4 1	40.96			
2.199	5	-1 4 0	41.01			
2.197	9	2 0 2	41.05			
2.197	3	-1 1 3	41.06			
2.188	1	0 -2 2	41.23			
2.181	7	3 -2 1	41.36			
2.157	9	-3 0 1	41.85			
2.138	16	-3 1 2	42.24			
2.115	3	-2 2 3	42.71			
2.113	2	1 3 1	42.77			
2.105	1	1 3 0	42.93			
2.035	3	-3 4 2	43.36			
2.034	4	2 2 0	43.39			
2.034	4	0 0 3	43.39			
2.071	1	0 2 3	43.67			
2.053	10	-1 3 3 2 -2 2 2 1 2 -1 0 3 -2 1 3	44.07			
2.050	2		44.13			
2.039	3		44.40			
2.037	6		44.44			
2.026	3		44.70			
2.022 2.020 1.9953 1.9597 1.9556	18 1 13 3	0 4 1 3 -3 1 -2 -1 2 0 4 0 -1 -2 2	44.77 44.83 45.42 46.29 46.39			
1.9303	4	1 1 3	47.04			
1.9284	1	-2 -2 1	47.08			
1.9220	2	-4 2 0	47.25			
1.9146	4	2 -4 1	47.45			
1.9119	3	1 3 2	47.52			
1.9098	7	3 1 0	47.57			
1.8976	19	0 -1 3	47.90			
1.8973	5	1 -4 1	47.91			
1.8948	6	-1 -3 1	47.97			
1.8933	9	-3 3 3	48.01			
1.8392	4	-3 0 2	48•12			
1.8876	6	-2 4 3	46•17			
1.8801	10	-4 4 1	48•37			
1.8783	3	0 3 3	48•42			
1.8718	10	-4 3 2	48•60			
1.8716	2	-3 5 1	48.61			
1.8495	8	1 -1 3	49.25			
1.8366	1	-2 0 3	49.59			
1.8294	1	-3 5 2	49.80			
1.8227	1	3 1 1	50.00			

C	alculated	l Pattern (Integra	ited)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
1.8224	18	-1 4 3	50.01
1.8131	1	-1 5 1	50.28
1.8111	2	-3 4 3	50.34
1.8062	19	-2 5 0	50.49
1.8059	15	2 2 2	50.50
1.8058	3	3 -1 2	50.50
1.7930	3	0 -3 2	50.88
1.7586	4	-3 5 0	51.95
1.7499	4	3 0 2	52.23
1.7294	6	-1 5 0	52.90
1.7079	8	2 0 3	53.62
1.6987	3	1 4 1	53.93
1.6941	6	-4 1 2	54.09
1.6860	3	2 3 1	54.37
1.6848	1	2 -1 3	54.41
1.6722	1	0 -2 3	54.86
1.6711	4	-2 5 3	54.89
1.6697	4	-2 -2 2	54.94
1.6655	1	-1 2 4	55.10
1.6590	2	-3 5 3	55.33
1.6562	3	3 -3 2	55.43
1.6511	4	-4 3 3	55.62
1.6496	9	-4 0 1	55.67
1.6393	2	-1 1 4	50.06
1.6357	1	-4 4 3	56.19
1.6350 1.6349 1.6307 1.6244 1.6192	8 1 1 1	-3 -1 2 -2 2 4 -2 3 4 3 1 2 -1 3 4	56.21 56.22 56.38 56.61 56.31
1.6134 1.6132 1.6119 1.5902 1.5834	4 3 3 1	-2 -1 3 0 1 4 -4 5 0 -5 3 1 3 2 1	56.34 57.04 57.09 57.95 58.02
1.5375	1	4 -4 1	58.05
1.5866	2	-3 6 1	58.09
1.5861	3	-1 5 3	58.11
1.5843	3	4 0 1	58.16
1.5840	2	-2 -3 1	58.19
1.5836	2	2 -4 2	58.21
1.5808	8	-3 6 2	58.32
1.5719	1	-2 1 4	5d.69
1.5710	1	2 3 2	5b.72
1.5017	2	-2 6 2	59.11
1.5556	1	-4 5 3	59.36
1.5530	2	-3 -2 1	59.47
1.5498	1	-1 0 4	59.60
1.5428	5	-5 4 2	59.91
1.5424	2	-5 3 0	59.92

Tetragonal, $P4_2/nbc$ (133), Z=8 [McDonald et al., 1964]

Lattice parameters

 $a=9.020\pm0.003$, $c=13.686\pm0.003$ Å [ibid.]

Scattering factors

Sn° [3.3.1B];

 Na° , F^{-1} [Berghuis et al., 1955]

Thermal parameters

Isotropic: Sn 1.70; F(1) 2.29; F(2)1.91; F(3) 2.71; Na(1) 1.92; Na(2) 1.97

Density

(calculated) 4.24g/cm³ [McDonald et al., 1964]

Scale factor

 125.3×10^4

Additional patterns

- 2.PDF card 16-796[Donaldson and O'Donoghue 1964]

Reference

Berghuis, J., IJ. M. Haanapel, M. Potters, B.O. Loopstra, C.H. MacGillavry, and A. L. Veenendahl (1955). New calculations of atomic scattering factors, Acta Cryst. 8, 478-483.

Donaldson, J.D. and J.D. O'Donaghue(1964). Complex tin fluorides, J. Chem.Soc.1964, 271-280.

Kriegsman, H. and G. Kessler (1962).Fluor-komplexverbindungen des zwei- und vierwertigen Zinns und die partielle Hydrolyse des SnClF, Z. Anorg. Allgem. Chem. 318, 266-276.

McDonald,R.R., A.C. Larson, and D.T.Cromer (1964). The crystal structure of sodium pentafluorodistannate(II), NaSn₂ F_5 , Acta Cryst. 17, 1104-1108.

Ca	lculated	Pattern (Peak he	ights)
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$
6.84	2	0 0 2	12.94
4.51	42	2 0 0	19.68
4.28	1	2 0 1	20.72
3.474	100	2 1 2	25.52
3.422	23	0 0 4	26.02
3.188	9	2 2 0	27.96
3.015	5	1 1 4 +	29.60
2.852	10	3 1 0	31.34
2.725	15	2 0 4	32.84
2.265	4	2 1 5	39.76
2.255	3	4 0 0	35.94
2.224	1	4 0 1	40.52
2.191	5	3 1 4	41.16
2.160	1	4 1 1	41.78
2.126	5	3 3 0	42.48
2.084	30	4 1 2	43.33
2.035	1	- 0 6	44.43
2.017	2	4 2 0	44.90
1.9853	17	2 1 6	45.66
1.8827	4	4 3 4	48.30
1.8058	14	3 3 4	50.50
1.7108	3	0 0 8	53.52
1.6269	4	5 2 2	56.52
1.5994	1	2 0 8	57.58
1.5789	8	4 1 6	58.40
1.5750 1.5715 1.5471 1.5074 1.5034	5 3 1 3	2 1 8 5 1 4 5 3 0 2 2 8 6 0 0	58.56 58.70 59.72 61.46 61.64
1.4671	2	3 1 8	63.34
1.4262	1	6 2 0	65.38
1.4094	3	5 3 4	66.26
1.3796	4	5 4 2	67.88
1.3764	4	6 0 4	68.06
1.3500	1	5 2 6	09.58
1.3327	2	3 3 8	70.62
1.3165	2	6 2 4	71.62
1.2959	2	2 1 10	72.94
1.2193	2	7 2 2	78.36
1.1986	1	5 4 6	79.96
1.1602	2	4 1 10	83.20
1.1474	1	5 3 8	84.34
1.1292	1	6 0 8	86.02
1.1041	2	7 4 2 +	88.48
1.0888	1 2	7 2 6 7 4 6 +	90.05 100.14

	Calculated Pattern (Integrated)					
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 ^{\circ}$			
6.84	1	0 0 2	12.93			
4.51	40	2 0 0	19.67			
4.28	1	2 0 1	20.72			
3.475	100	2 1 2	25.61			
3.422	22	0 0 4	26.02			
3. 18 9	9	2 2 0	27.95			
3. 02 2	1	2 1 3	29.53			
3. 01 5	5	1 1 4	29.60			
2. 85 2	10	3 1 0	31.33			
2. 72 6	18	2 0 4	32.83			
2.265	5	2 1 5	39.76			
2.255	2	4 5 0	39.95			
2.225	2	4 0 1	40.51			
2.191	6	3 1 4	41.17			
2.160	1	4 1 1	41.78			
2.126	5	3 3 0	42.48			
2.084	37	4 1 2	43.39			
2.035	1	2 0 6	44.47			
2.017	3	4 2 0	44.90			
1.3853	21	2 1 6	45.65			
1.8828	5	4 0 4	48.30			
1.8358	17	3 3 4	50.50			
1.7107	4	0 0 8	53.52			
1.6269	6	5 2 2	56.52			
1.5995	2	2 0 8	57.58			
1.5789	11	4 1 6	58.40			
1.5750	1	2 1 8	58.56			
1.5714	3	5 1 4	58.71			
1.5469	4	5 3 0	59.73			
1.5075	1	2 2 8	61.45			
1.5033	4	6 U U G 3 1 8 6 1 2 6 2 U 5 3 4	61.65			
1.4671	3		63.34			
1.4492	1		64.21			
1.4262	1		65.38			
1.4095	4		66.25			
1.3798	5	5 4 2	67.87			
1.3763	3	6 0 4	68.06			
1.3501	2	5 2 6	69.53			
1.3328	3	3 3 8	70.61			
1.3164	2	6 2 4	71.63			
1.2960	3	2 1 10	72.53			
1.2192	3	7 2 2	78.37			
1.1985	2	5 4 6	79.98			
1.1748	1	6 4 4	81.94			
1.1603	3	4 1 10	83.19			
1.14 74	2	5 3 8	84.34			
1.12 93	2	6 0 8	86.02			
1.10 41	1	8 1 2	88.47			
1.10 41	2	7 4 2	86.47			
1.08 87	2	7 2 6	90.06			

Calculated Pattern (Integrated)					
d (Å)	I	hkl	$\lambda = 1.54056 \mathring{A}$		
1.07 08 1.05 98 1.00 50 1.00 45 1.00 45	1 1 1 2 1	8 0 4 5 2 10 3 3 12 7 4 6 6 1 6	92.00 93.24 100.07 100.14 100.14		

Monoclinic, $P2_1$ (4), Z=2, [Okaya and Stemple, 1966]

Lattice parameters

 $a=7.715\pm0.003$, $b=6.004\pm0.003$, $c=6.231\pm0.003$ Å, $\beta=100.1\pm0.1$ ° [ibid.]

Scattering factors

 H° , C° , O° [3.3.1A]

Thermal parameters

Anisotropic for oxygen and carbon, isotropic for hydrogen, Table 1(b)[Okaya and Stemple, 1966]

Atomic positions

Table 1(a)[ibid.]

Density

(calculated) 1.754 g/cm³

Scale factor

 0.4175×10^4

Additional patterns

PDF card 4-0333 [Inst. Phys. Univ. College, Cardiff, Wales]. This card may represent a different polymorph.

Reference

Okaya, H. and N.R. Stemple (1966). Refinement of the structure of d-tartaric acid by x-ray and neutron diffraction, Acta Cryst. 21, 237-243.

Ca	Calculated Pattern (Peak heights)						
d (Å)	I		hkl	!	$\lambda = 1.54056 \text{ A}$		
7.63 5.24 4.71 4.41 4.29	13 7 20 18 100	· 1 -1 1 1 0	0 0 1 0	0 1 0 1	11.64 16.90 18.82 20.12 20.68		
3.95 3.80 3.55 3.209 3.066	18 4 26 5 15	-1 2 1 2	1 0 1 1 0	1 0 1 0 2	22 • 5 0 23 • 4 0 25 • 0 4 27 • 7 8 29 • 1 0		
3.033 3.002 .2.791	5 36 24	-2 0 1	1 2 2	1 + 0 + 0	29 • 4 2 29 • 7 4 32 • 0 4		

		T dttCI	- 1-		
d (Å)	I		hkl		$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
2.731 2.709	2	0 -1	1	2 2	32 • 7 6 33 • 0 4
2.696 2.685 2.605 2.532 2.499	1 7 2 8 24	0 1 -1 3 -3	2 0 2 0	1 2 + 1 0 1	33 • 2 0 33 • 3 4 34 • 4 0 35 • 4 2 35 • 9 0
2.482 2.451 2.403 2.355 2.333	11 21 17 1 2	1 1 -2 2 3	2 1 1 2 1	1 2 2 0 0	36 • 1 6 36 • 6 4 37 • 4 D 38 • 1 8 38 • 5 6
2.308 2.283 2.146 2.122 2.068	7 1 1 4 2	-3 -2 -3 2 -1	1 2 0 2 0	1 1 2 1 3 +	39.00 39.44 42.08 42.56 43.74
2.021 1.9746 1.9490 1.9356 1.9209	3 2 2 5 5	-3 -2 -2 3 -3	1 2 0 2 2	2 2 3 0 +	44 .8 2 45 .9 2 46 .5 6 46 .9 D 47 .2 8
1.9028 1.8696 1.8532 1.8213 1.8058	3 1 3 2 1	0 -1 -2 -4 1	3 3 1 1 1	1 1 3 1 +	47.76 48.66 49.12 50.04 50.50
1.7769 1.7705 1.7584 1.7269 1.6897	1 2 1 1	2 2 -4 3 0	2 3 0 1 2	2 0 2 2 3	51.38 51.58 51.96 52.98 54.24
1.6626 1.6045 1.6009 1.5908 1.5701	4 1 1 1	4 4 1 -2 3	1 2 2 3 3	1 0 3 2 0	55 • 2 0 57 • 3 8 57 • 5 2 57 • 9 2 58 • 7 6
1 5623 1.5457 1.5336 1.5008 1.4827	1 1 1 1	-3 3 0 0	3 2 9 4 3	1 + 2 4 0	59.08 59.78 60.30 61.76 62.60
1.4725 1.3821 1.3803 1.3102 1.3048	1 1 1 1	1 -1 -2 2 -5	4 2 4 1	0 4 1 4 3	63.08 67.74 67.84 72.02 72.36
1 • 2874 1 • 2853	1	-6	3 0	3	73.50 73.64

Calculated Pattern (Peak heights)

Calculated Pattern (Integrated)							
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$				
7.60	11	1 0 0	11.54				
5.24	6	-1 0 1	16.90				
4.71	20	1 1 0	18.82				
4.41	17	1 0 1	20.12				
4.29	100	0 1 1	20.58				
3.95	18	-1 1 1 2 0 3 1 1 1 2 1 0 0 0 2	22.50				
3.80	4		23.40				
3.55	27		25.04				
3.210	6		27.77				
3.067	17		29.09				
3.035 3.035 3.002 3.002 2.792	1 35 4 28	-1 0 2 -2 1 1 0 2 0 2 0 1 1 2 0	29.41 29.41 29.74 23.74 32.03				
2.731	3	0 1 2	32.76				
2.709	1	-1 1 2	33.05				
2.696	1	0 2 1	33.20				
2.685	5	1 0 2	33.34				
2.685	2	2 1 1	33.34				
2.605	2	-1 2 1	34.40				
2.532	9	3 0 0	35.42				
2.500	23	-3 0 1	35.89				
2.481	12	1 2 1	36.17				
2.451	26	1 1 2	36.53				
2.402	20	-2 1 2	37.40!				
2.355	1	2 2 3	38.18				
2.333	2	3 1 3	38.56				
2.308	8	-3 1 1	38.99				
2.283	1	-2 2 1	39.43				
2.146 2.123 2.070 2.058 2.021	1 6 1 2	-3 0 2 2 2 1 2 1 2 -1 0 3 -3 1 2	42.07 42.55 43.70 43.75 44.81				
1.9745	2	-2 2 2	45.92				
1.9487	2	-2 0 3	46.57				
1.9355	3	0 1 3	%6.90				
1.9354	3	3 2 0	46.91				
1.9211	6	-3 2 1	47.28				
1.9025	3	0 3 1	47.76				
1.8697	1	-1 3 1	48.66				
1.8535	4	-2 1 3	49.11				
1.8224	1	1 3 1	50.01				
1.8211	2	-4 1 1	50.05				
1.8053	1	1 1 3	50.51				
1.7769	1	2 2 2	51.38				
1.7705	3	2 3 0	51.58				
1.7584	1	-4 0 2	51.96				
1.7272	1	3 1 2	52.97				

Calculated Pattern (Integrated)							
d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$				
1.6900 1.6525 1.6345 1.6048 1.6012	1 5 1 1	0 2 3 4 1 1 -2 2 3 4 2 0 1 2 3	54 • 2 3 55 • 2 0 56 • 2 3 57 • 3 7 57 • 5 1				
1.5907 1.5700 1.5624 1.5572 1.5459	1 1 1 1	-2 3 2 3 3 0 -3 3 1 -1 0 4 3 2 2	57.92 58.76 59.08 59.29 59.77				
1.5335 1.5073 1.5010 1.4828 1.4725	1 1 1 1	0 0 4 -1 1 4 0 4 3 3 3 1 1 4 0	60.30 61.46 61.75 62.60 63.38				
1.4635 1.4209 1.3823 1.3805 1.3103	1 1 1 1	-3 3 2 1 4 1 -1 2 4 -2 4 1 2 1 4	63.51 65.65 67.73 67.83 72.31				
1.3048 1.2874 1.2852	1 1 1	-5 1 3 2 3 3 -6 0 1	72.36 73.50 73.55				

Orthorhombic, $P2_1 2_1 2_1$ (19), Z=4, [Gramaccioli, 1966]

Lattice parameters

a=11.190, b=10.463, c=7.220Å [ibid.]

Scattering factors

C°, N°, H°, [3.3.1A];
Zn° [3.3.1A], corrected for the real part of the dispersion effect [3.3.2B]

Thermal parameters

Isotropic: Zn 1.93; C(1) 1.94; C(2)1.95; C(3) 2.19; C(4) 2.68; C(5) 2.35; N 2.20; O(1) 2.33; O(2) 2.25; O(3) 2.61; O(4) 2.88; O(5) 3.08; O(6) 2.86; H(1) through H(11) as given by Gramaccioli [1966].

Density

(calculated) 1.937 g/cm³ [Gramaccioli, 1966]

Scale factor

 3.869×10^4

Reference

Gramaccioli, C.M. (1966). The crystal structure of zinc glutamate dihydrate, Acta Cryst. 21, 600-605.

Calculated Pattern (Peak heights)								
d (Å)	I		hk	l	$2\theta(°)$ $\lambda = 1.54056 \text{ A}$			
7.64 5.94 5.59 5.25 4.93	55 32 45 100 51	1 0 2 1 2	1 1 0 1	0 1 8 1 +	11.58 14.90 15.84 15.88 17.96			
4.23	48	0	2	1	20.96			
4.07	74	2	1	1	21.80			
3.96	87	1	2	1	22.42			
3.82	2	2	2	0	23.26			
3.61	2	0,	0	2	24.54			
3.435	21	1	0	2	25 • 9 2			
3.378	2	2	2	1	26 • 3 6			
3.329	4	1	3	5	26 • 7 6			
3.314	16	3	0	1	26 • 8 8			
3.264	7	1	1	2	27 • 3 0			
3.160	6	3	1	1	26 • 2 2			
3.140	7	0	3	1	26 • 4 0			
3.038	18	3	2	0	29 • 3 8			
3.023	23	1	3	1	29 • 5 2			
2.970	10	0	2	2	30 • 36			
2.963 2.914 2.872 2.798 2.738	7 1 12 4 2	2 2 1 4 2	3 1 2 0 3	0 2 2 0 +	3U • 1 4 30 • 6 6 31 • 1 2 31 • 9 6 32 • 6 8			
2.703	8	4 20 4 3	1	0	33 • 1 2			
2.624	4		2	2	34 • 1 4			
2.617	4		4	0	34 • 2 4			
2.608	9		0	1	34 • 3 6			
2.595	7		3	2	34 • 5 4			
2.517	6	3	1	2	35 • 6 4			
2.509	10	0	3	2	35 • 7 6			
2.466	1	4	2	3	36 • 4 0			
2.460	3	3	4	1	36 • 5 0			
2.448	1	1	3	2	36 • 6 8			
2.403 2.370 2.346 2.334 2.324	15 1 3 3 11	1 2 9 4 3	4 4 1 2	1 + 0 3 1 2	37.40 37.94 38.34 38.54 38.72			
2.295	17	1	1	3	39.22			
2.290	22	2	3	2	39.32			
2.251	6	2	4	1	40.02			
2.211	2	2	5	3	40.78			
2.163	8	4	1	2 +	41.72			
2.146 2.138 2.118 2.094 2.089	9 8 2 6 5	1 5 0 5 4	2 3 4 1 3	3 1 2 1	42.38 42.24 42.66 43.16 43.28			

 $2\theta(^{\circ})$ $\lambda = 1.54056 \text{ Å}$

11.57 14.90 15.83 16.88 16.93

17.96 20.95 21.80 22.42 23.26 24.64 25.91 26.37 26.75 26.83 27.30 28.22 28.40 29.38 23.52 33.05 30.17 30.6 ö 31.12 31.94 31.97 32.57 33.12 34.14 34.25 34 . 3 5 34 .5 5 35.63 35.77 36.39 36.51 36.69 37.40 37.41 37.94 38.35 38.53 38.71 39.21 39.33 43.01 40.78 41.71 41.72 42.07

Ca	lculated	Pattern (Peak he		Ca	alculated	Pattern (Integra	ited)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$	d (Å)	I	hkl	λ =
2.081 2.057 2.053 2.037 2.022	7 8 7 8 2	1 4 2 + 1 5 0 + 3 4 1 4 2 2 + 3 0 3	43.44 43.98 44.98 44.44 44.78	7.64 5.94 5.59 5.25 5.23	91 32 50 100 22	1 1 0 0 1 1 2 0 0 1 1 1 0 2 0	1 1 1 1 1
2.009 1.9853 1.9803 1.9020 1.8916	3 4 7 1 5	0 5 1 3 1 3 2 4 2 + 5 0 2 4 5 1	45.08 45.66 45.78 47.78 46.06	4.93 4.24 4.07 3.96 3.82	36 54 34 100 2	2 1 0 0 2 1 2 1 1 1 2 1 2 2 0	1 2 2 2 2
1.8864 1.8711 1.8668 1.8469 1.8420	6 10 7 1 2	3 2 3 5 1 2 4 3 2 + 4 4 1 3 4 2	48.20 48.52 48.74 49.30 49.44	3.61 3.436 3.377 3.330 3.314	2 25 3 3 18	0 U 2 1 0 2 2 2 1 1 3 0 3 0 1	2 2 2 2 2 2
1.8364 1.8233 1.8104 1.8058 1.7971	6 7 5 4 2	6 1 0 5 3 1 + 0 5 2 6 0 1 + 4 1 3	49.60 49.98 50.36 50.50 50.76	3. 264 3. 159 3. 140 3. 037 3. 024	8 7 8 ≥1 ≥5	1 1 2 3 1 1 0 3 1 3 2 0 1 3 1	2 2 2 2 2
1.7873 1.7795 1.7692 1.7565 1.7496	3 3 1 3	1 5 2 6 1 1 3 5 1 + 1 1 4 3 3 3 +	51.36 51.30 51.62 52.02 52.24	2.971 2.960 2.913 2.872 2.799	12 4 1 15 2	0 2 2 2 3 0 2 1 2 1 2 2 3 2 1	3 3 3 3
1.7440 1.7227 1.7179 1.7066 1.7008	2 3 3 2 2	0 6 0 2 5 2 + 2 0 4 0 2 4 + 5 4 0	52.42 53.12 53.28 53.66 53.86	2.797 2.733 2.733 2.624 2.616	3 2 10 5 1	4	3 3 3 3
1.6949 1.5886 1.6760 1.6648 1.6391	2 4 7 2 2	2 1 4 4 4 2 + 1 6 1 + 2 6 0 5 0 3	54.06 54.26 54.72 55.12 56.06	2.639 2.594 2.518 2.538 2.467	11 8 7 12 1	4	3 3 3 3 3
1.63 22 1.62 85 1.6164 1.60 35 1.59 99	4 3 2 2 3	2 2 4 + 3 5 2 4 3 3 6 3 1 3 4 3	56.32 56.46 56.92 57.42 57.56	2.448 2.448 2.402 2.402 2.370	4 1 4 16 1	0 4 1 1 3 2 3 3 1 1 4 1 2 4 0	3 3 3 3
1.5868 1.5794 1.5638 1.5604 1.5552	5 3 2 2 2	1 3 4 6 2 2 5 2 3 + 7 0 1 1 6 2	58.08 58.38 59.02 59.16 59.38	2.345 2.334 2.324 2.296 2.289	4 3 15 21 20	0 1 3 4 2 1 3 2 2 1 1 3 2 3 2	3 3 3 3
1.5514 1.5434 1.5286 1.5119 1.5008	2 1 1 1 2	3 2 4 3 6 1 5 5 0 2 6 2 4 1 4	59.54 59.88 60.52 61.26 61.76	2.251 2.211 2.163 2.163 2.146	8 3 6 5 12	2 4 1 2 G 3 4 1 2 2 1 3 1 2 3	4 4

C	alculated	Pattern (Integr	ated)	C	alculate	d Pattern (Integr	ated)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}^{\circ}$	d (Å)	I	hkl	$2\theta(°)$ $\lambda = 1.54056 \text{ Å}$
2.138	8	5	42.24	1.6885	2	2 4 3	54.28
2.118	2		42.65	1.6868	1	1 2 4	54.34
2.094	8		43.16	1.6760	2	1 6 1	54.72
2.089	2		43.28	1.6757	1	4 5 0	54.73
2.081	2		43.44	1.6648	3	2 6 0	55.12
2. 08 1 2. 05 8 2. 05 7 2. 05 3 2. 03 7	8 2 8 5	1 4 2 5 2 0 1 5 0 3 4 1 4 2 2	43.45 43.37 43.38 44.07 44.4	1.6389 1.6323 1.6321 1.6287 1.6166	2 ? 4 1 3	5 Q 3 4 5 1 2 2 4 3 5 2 4 3 3	56 • 8 7 56 • 3 2 56 • 3 2 50 • 4 5 56 • 9 1
2.036	1	2 2 3	44 .45	1 • 60 35	3	6 3 1	57.42
2.022	2	3 0 3	44 .78	1 • 59 99	3	3 4 3	57.56
2.010	5	0 5 1	45 .07	1 • 58 68	8	± 3 4	58.06
1.9855	5	3 1 3	45 .65	1 • 57 96	4	6 2 2	58.37
1.9805	5	2 4 2	45 .77	1 • 56 39	1	5 2 3	53.01
1.9808	1	0 3 3	45.77	1.5636	1	1 5 3	59.03
1.9788	2	5 2 1	45.82	1.5608	3	7 0 1	59.15
1.9782	3	1 5 1	45.83	1.5550	3	1 6 2	59.39
1.9021	2	5 0 2	47.78	1.5516	2	3 2 4	59.53
1.8915	6	2 5 1	48.06	1.5432	2	3 6 1	59.89
1.8862 1.8715 1.8675 1.8673 1.8471	5 15 2 1	3 2 3 5 1 2 4 3 2 2 3 3 4 4 1	48.23 48.61 48.72 48.73 49.29	1.5285 1.5118 1.5010 1.4956 1.4954	1 1 3 1 2	5 5 0 2 6 2 4 1 4 7 2 1 5 5 1	60.52 61.26 61.75 62.00 62.01
1.8419	5.85	3 4 2	49.44	1.48 33	1	5 3 3	62.57
1.8361		6 1 0	49.61	1.47 93	1	4 6 5	62.73
1.8250		3 5 0	49.93	1.47 26	3	3 3 4	63.07
1.8244		4 0 3	49.35	1.45 42	2	3 5 3	63.97
1.8226		5 3 1	50.00	1.45 13	3	1 7 1	64.11
1.8104 1.8057 1.8050 1.7973 1.7872	7 1 1 2	0 5 2 6 0 1 0 0 4 4 1 3 1 5 2	50.36 50.50 50.52 53.75 51.06	1.4497 1.4476 1.4472 1.4384 1.4246	1 2 1 1	4 6 1 7 1 2 3 6 2 3 1 5 7 3 1	64.19 64.30 64.31 65.16 65.46
1.7794	3	6 1 1	51.30	1.4189	1	5 2 3	65.76
1.7711	1	G 4 3	51.56	1.4160	1	2 7 1	65.91
1.7694	4	3 5 1	51.61	1.4075	2	5 5 2	66.36
1.7567	1	1 1 4	52.01	1.3997	4	6 4 2	66.76
1.7494	2	3 3 3	52.25	1.3864	1	8 1 0	67.50
1.74 93 1.74 38 1.72 27 1.72 25 1.71 78	2 2 1 4 2	1 4 3 0 6 0 4 2 3 2 5 2 2 0 4	52 • 25 52 • 4 3 53,•1 2 53 • 1 3 53 • 28	1.38 02 1.36 92 1.36 71 1.36 40 1.35 73	2 1 1 2	3 4 4 2 6 3 6 5 1 7 4 0 6 3 3	67.85 63.47 68.59 68.76 59.12
1.7069	1	6 2 1	53 • 6 5	1.3569	1	5 2 4	69.18
1.7063	2	9 2 4	53 • 6 7	1.3512	2	5 6 1	69.51
1.7005	2	5 4 0	53 • 8 7	1.3508	2	2 2 5	69.54
1.6951	2	2 1 4	54 • 0 5	1.3356	1	3 1 5	70.44
1.6887	4	4 4 2	54 • 2 8	1.3316	1	7 0 3	70.69

- 5	tri	110	ı'n	ır	۵

Hexagonal, $P6_3 mc$ (186), Z=2 [Ansell and Katz,1966]

Lattice parameters

 $a=5.759\pm0.004$, $c=9.903\pm0.005$ Å [ibid.]

Scattering factors

O⁻¹ [3.3.1A]; Zn⁺² and Mo⁺⁴ [Thomas and Umeda 1957], corrected for the real part of the anomalous dispersion [Dauben and Templeton, 1955]

Thermal parameters

Isotropic [Ansell and Katz, 1966]

Density

(calculated) 6.381 g/cm3

Scale factor

 4.920×10^4

Additional patterns

1. PDF card 16-663 [Donohue and Katz, 1964]

Reference

Ansell,G.B. and L. Katz (1966). A refinement of the crystal structure of zinc molybdenum(IV) oxide, Zn₂Mo₃O₈, Acta Cryst. 21, 482-485.

Dauben, C.H. and D.H. Templeton (1955). A table of dispersion corrections for x-ray scattering of atoms, Acta Cryst. 8, 841-842.

Donohue, P.C. and L. Katz (1964). A lith-ium-scandium-molybdenum(IV) oxide, Nature 201, 180-181.

Thomas, L. H. and K. Umeda (1957). Atomic scattering factors calculated from the TFD atomic model, J. Chem. Phys. 26, 293-303.

Calculated Pattern (Peak heights)							
d (Å)	I		hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$			
4.95 4.45 3.51 2.879 2.753	78 18 100 3 37	0 1 1 1	0 2 0 1 0 2 1 0 0 3	17.90 19.92 25.32 31.04 32.50			
2.489 2.475 2.419 2.228 2.220	85 24 75 16	1 0 2 2 1	1 2 0 4 0 1 0 2 0 4	36 . 06 36 . 26 37 . 14 40 . 46 40 . 60			
1.9894 1.8849 1.8776 1.8518 1.8406	39 7 3 12 2	2 2 1 2	0 3 1 0 1 4 1 1 0 5	45.56 48.24 48.44 49.16 49.48			
1.7571	21	2	0 4	52.30			
1.6505	4	0	0 6	55.64			
1.6370	33	2	1 3	56.14			
1.5759	17	3	0 2	58.52			
1.5672	5	1	0 6	58.88			
1.5509	41	2	0 5	59.56			
1.4999	3	2	1 4	61.80			
1.4848	5	3	0 3	62.50			
1.4399	23	2	2 0	64.68			
1.4320	3	1	1 6	65.08			
1.3825	5	2	2 2	67.72			
1.3793	3	3	0 4	67.90			
1.3764	5	2	0 6	62.06			
1.3655	3	2	1 5	68.68			
1.3618	4	1	0 7	68.94			
1.3323 1.2758 1.2732 1.2467 1.2445	4 2 3 2 7	3 3 4 2	1 2 1 3 0 5 0 0 2 4	70 .6 4 74 .2 8 74 .4 6 76 .3 2 76 .4 8			
1.2371	5	4	0 1 · · · · · · · · · · · · · · · · · ·	77.02			
1.2304	4	2		77.52			
1.2092	1	4		79.14			
1.2013	1	1		79.76			
1.1713	2	3		82.24			
1.1664	3	4	0 3	82 • 66			
1.1441	2	3	2 0	84 • 64			
1.1371	1	1	1 8	85 • 28			
1.1341	2	3	1 5	85 • 56			
1.1316	7	2	1 7	85 • 8 0			
1.1147	10	3	2 2	+ 87.42			
1.1089	1	2	J 8	88.00			
1.0850	3	2	2 6	90.46			
1.0820	3	4	1 1	+ 90.78			
1.0774	2	3	G 7	91.28			

Cal	lculated	Patter	n (Peak he	ights)		Ca	lculated	Patteri
đ (Å)	I		hkl	$2\theta(°)$ $\lambda = 1.54056 \mathring{A}$		d (Å)	I	
1.0746	1	1	0 9	91.58		4.99	4	1
1.0630	£ţ.	4	1 2	92 . 8 8		4.95		Ô
1.0603	3	3	1 6	93 - 18	1 1	4.45	68	1 1
1.0551	6	4	0 5	93.78	1 1		17	
1.0386	4	3	2 4	95 - 7 4		3.51 2.880	100	1
1.0336	2	4	1 3	96.36		0.753		
1.0067	4	2	0 9	99.84	1 1	2.753	39	1
. 99 75	1	5	0 0	101.10	1 1	2.494	27	2
.9950	1	4	0 6	101.46	ΙI	2.489	78	1
•9926	3	5	0 1 +	101.80	1 1	2.476 2.418	19	0 2
.9903	3		0.10	102 12		2.410	86	· ·
-9891	2	0 3	0 10 + 1 7	102.12		2.227	19	2
.9548	4	5	0 3	107.56		2.213	5	1
9539	2			107.70		1.9898	47	2
95 03		4	1 5			1.8851	8	2
• 95 03	2	2	1 9	108.30		1.8773	2	1
- 94 24	1	4	2 0	109.64		1.8518	15	2
.9403	6	3	2 6	110.00		1.8408	2	1
· 9385	7	2	2 8 +	110.32	li	1.7569	27	2
-9361	4	4	0 7 +	110.74		1.6505	5	ō
• 92 52	1	5	0 4	112.72		1.6395	12	3
9228	1	3	1 8	113.18		1.6370	7.0	2
. 92 03	1	2	0 10	113.64			38	
. 91 76	1	3	0 9	114.16	1 1	1.5760	22	3
-9063	2	4	2 3	116.40		1.5669	7	1
-8909	2	5	0 5	119.68		1.5508	56 4	2
.8896	1	3	2 7	119.96		20120		
.8809	1	4	2 7	121.96	1 1	1.4848	7	3
.8785	i	4	2 4	122.52		1.4397	34	2
8645	1		0 8			1.4319	24	1
		5	1 3	126.00	1	1.3825	6	2
.8626	2	4	1 7	126.50		1.3802	1	3
-8611	1	3	1 9	1 26 •9 0		1.3763	6	2
- 85 11	7	4	2 5 +	129.66		1.3655	4	2
.8468	3	2	0 11	130.92		1.3610	6	1
.8423	1	5	1 4	132.26		1.3323		3
. 84 03	5	3	2 8	132.90		1.2758	6 2	3
.8312	2	6	0 0	135.84			_	_
- 8250	2	4	0 9 +	138.02		1.2734	4	3
-8199	2	4	3 0	139.92		1.2469	2	4
. 81 85	1	4	2 6	140.48		1.2445	10	2
. 81 71	3	4	3 1 +	141.00		1.2376	4	0
		7	3 1 4	141.00		1.2371	6	4
.8159 .8152	5	2	2 10 +	141.50		1.2305	6	2
_		5	0 7	141.78		1.2091	1	4
-8139	3	1	0 12	142.30		1.2014	2	1
- 81 24	3	2	1 11	1'42 • 9 4		1.1713	3	3
. 7960	8	5	2 1 +	150.80		1.1664	4	4
.7916	1	3	0 11	153.32		1.1442	3	3
	5	6	0 4 +	155.38		1.1372		i
.7884		_		156.12		101316	1	1
.7873	1	5	1 6	130 • 12		1.1701	2	7
.7873 .7844	1 1	5 4	1 6 2 7	158.24		1.1341	2	3
.7873						1.1341 1.1315 1.1149	2 11 18	3 2 3

Calculated Pattern (Integrated)						
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda \approx 1.54056 \mathring{A}$			
4.99	4	1 0 0	17.77			
4.95	68	0 0 2	17.90			
4.45	17	1 0 1	19.92			
3.51	100	1 0 2	25.33			
2.880	3	1 1 3	31.03			
2.753	39	1 0 3	32.50			
2.494	27	2 0 0	35.98			
2.489	78	1 1 2	36.05			
2.476	19	0 0 4	36.25			
2.418	86	2 0 1	37.15			
2.227	19	2	40.47			
2.213	5		40.65			
1.9898	47		45.55			
1.8851	8		48.24			
1.8773	2		48.45			
1.8518	15	2 1 1	49.16			
1.8408	2	1 0 5	49.47			
1.7569	27	2 0 4	52.31			
1.6505	5	0 0 6	55.54			
1.6395	12	3 0 1	56.34			
1.6370	38	2 1 3	56.14			
1.5760	22	3 0 2	58.52			
1.5669	7	1 0 6	58.89			
1.5509	56	2 0 5	59.56			
1.4998	4	2 1 4	61.81			
1.4848 1.4397 1.4319 1.3825 1.3802	7 34 4 6	3 0 3 2 2 0 1 1 6 2 2 2 3 0 4	62.50 64.69 65.08 67.72 67.85			
1.3763	6 4 6 6 2	2 0 6	68.36			
1.3655		2 1 5	68.58			
1.3610		1 0 7	68.94			
1.3323		3 1 2	73.54			
1.2758		3 1 3	74.28			
1.2734	4	3 0 5	74.45			
1.2469	2	4 0 0	76.31			
1.2445	10	2 2 4	76.47			
1.2376	4	0 0 8	76.96			
1.2371	6	4 0 1	77.02			
1.2305	6	2 0 7	77.51			
1.2091	1	4 0 2	79.15			
1.2014	2	1 0 8	79.75			
1.1713	3	3 0 6	82.24			
1.1664	4	4 0 3	82.56			
1.1442	3	3 2 0	84.53			
1.1372	1	1 1 8	85.27			
1.1341	2	3 1 5	85.57			
1.1315	11	2 1 7	85.81			
1.1148	18	3 2 2	87.41			

Calculated Pattern (Integrated)								
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \stackrel{\circ}{A}$					
1.1135 1.1088 1.0850 1.0818 1.0811	4 2 5 4	4 0 4 2 0 8 2 2 6 4 1 1 3 2 3	87.53 88.31 93.46 93.80 90.88					
1.0774 1.0745 1.0630 1.0602 1.0552	3 1 6 2 10	3 0 7 1 0 9 4 1 2 3 1 6 4 0 5	91.28 91.59 92.88 93.20 93.77					
1.0386 1.0336 1.0067 .9975	7 3 7 2 2	3 2 4 4 1 3 2 0 9 5 0 0 4 0 6	95.74 96.36 99.84 101.11 101.37					
.9929 .9925 .9907 .9903	2 4 2 2 2	3 0 8 5 0 1 3 2 5 0 0 10 3 1 7	101.76 101.81 102.05 102.12 102.30					
.9598 .9546 .9538 .9503	1 9 3 3	3 3 0 5 0 3 4 1 5 2 1 9 4 2 0	106.74 107.55 107.72 108.30 109.62					
.9403 .9386 .9383 .9365	11 9 5 1 2	3 2 6 2 2 8 4 2 1 1 1 10 4 0 7	110.06 110.36 110.68 110.87					
.9252 .9224 .9204 .9175 .9086	2 1 3 3	5 0 4 3 1 8 2 0 10 3 0 9 4 1 6	112.72 113.24 113.53 114.17 115.94					
.9063 .8958 .8949	4 1 1	4 2 3 5 1 0 3 3 4	116.40 118.61 118.79					

C	alculated	l Pattern (Integra	ted)
d (Å)	I	hkl	$2\theta(^{\circ})$ $\lambda = 1.54056 \text{ A}$
.8909 .8896	4 2	5 0 5 3 2 7	119.58 119.96
.8859 .8809 .8785 .8767	1 3 1 1 2	1 0 11 4 2 4 4 0 8 2 1 10 5 1 3	120.79 121.96 122.53 122.95 126.00
.8625 .8611 .8537 .8510	4 2 1 17	4 1 7 3 1 9 5 0 6 4 2 5 3 0 10	126.49 126.89 128.92 129.56 129.75
.8468 .8423 .8402 .8312 .8252	8 3 12 7	2 0 11 5 1 4 3 2 8 6 0 0 0 0 12	13D.92 132.26 132.91 135.84 137.94
.8250 .8199 .8185 .8174	6 4 2 2 6	4 0 9 4 3 0 4 2 6 4 1 8 4 3 1	138.02 139.92 140.48 140.92 141.01
.8162 .8159 .8152 .8142 .8124	1 14 12 2 9	5 1 5 2 2 10 5 0 7 1 0 12 2 1 11	141.39 141.49 141.77 142.20 142.95
.8089 .7960 .7957 .7933 .7931	2 24 21 2 3	4 3 2 5 2 1 4 3 3 1 1 12 3 2 9	144.44 150.77 150.93 152.32 152.44
.7915 .7884 .7880 .7973	5 24 5 1 6	3 0 11 5 2 2 6 0 4 5 1 6 4 2 7	153.31 155.36 155.65 156.13 156.23
.7835	7	2 0 12	158.95

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, 4, 5, 6, and 7^5

Vol. or

	sec.	Page		sec.	Page
Aluminum, Al	1	11	Ammonium iron sulfate dodecahydrate,		
Aluminum antimony, AlSb	4	72	$NH_4Fe(SO_4)_2 \cdot 12H_2O$	6	10
Aluminum calcium sulfate hydrate (ettring-			Ammonium manganese sulfate, (NH ₄), Mn ₂ (SO ₄),	7m	8
ite), Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O	8	3	Ammonium manganese(II) trifluoride, NH,MnF,	5m	8
Aluminum chloride hexahydrate (chlor-			Ammonium mercury(II) trichloride, NH4HgCl3	5m	9
aluminite), AlCl, 6H,O	7	3	Ammonium metavanadate, NH, VO,	8	9
Aluminum fluosilicate, topaz Al,SiO ₄ (F,OH),	1m	4	Ammonium nickel (II) trichloride, NH, NiCl,	6m	6
Aluminum metaphosphate, Al(PO ₃) ₃	2m	3	Ammonium nitrate (ammonia-niter), NH ₄ NO ₃	7	4
Aluminum nickel, AlNi	6m	82	Ammonium oxalate monohydrate (oxammite),	·	-
Aluminum orthophosphate (berlinite), AlPO	0	02	(NH ₄) ₂ C ₂ O ₄ ·H ₂ O	7	5
(trigonal)	10	3			U
Aluminum orthophosphate, AlPO ₄ (ortho-	10	J	Ammonium perchlorate, NH ₄ ClO ₄ (ortho-	7	c
rhombic)	10	4	rhombic)	7	6
Aluminum oxide, (corundum), alpha Al ₂ O ₃	9	4 3	Ammonium perrhenate, NH ₄ ReO ₄	9	7
Aluminum oxide monohydrate (böhmite), alpha	9	3	Ammonium phosphomolybdate tetrahydrate,		1.0
	0	00	$(NH_4)_3PO_4(MoO_3)_{12} \cdot 4H_2O \cdot$	8	10
Al ₂ O ₃ ·H ₂ O	3	38	Ammonium sulfate (mascagnite), (NH ₄) ₂ SO ₄		
Aluminum oxide monohydrate, diaspore, beta			(revised)	9	8
Al ₂ O ₃ ·H ₂ O	3	41	Ammonium zirconium fluoride, (NH ₄) ₃ ZrF ₇	6	14
Aluminum silicate (mullite) $3A1_2O_3 \cdot 2SiO_2 \cdot \cdot \cdot$	3m	3	Antimony, Sb	3	14
Ammonium aluminum sulfate dodecahydrate			Antimony(III) fluoride, SbF ₃	2m	4
(teschermigite), NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3	Antimony(III) iodide, SbI ₃	6	16
Ammonium azide, NH ₄ N ₃	9	4	Antimony(III) oxide (senarmontite), Sb ₂ O ₃		
Ammonium bicarbonate (teschemacherite),			(cubic)	3	31
(NH ₄)HCO ₃	9	5	Antimony(III) oxide, valentinite, Sb ₂ O ₃		
Ammonium bromide, NH ₄ Br	2	49	(orthorhombic)	10	6
Ammonium bromoosmate, (NH ₄) ₂ OsBr ₆	3	71	Antimony(IV) oxide (cervantite), Sb ₂ O ₄	10	8
Ammonium bromoplatinate, (NH ₄) ₂ PtBr ₅	9	6	Antimony(V) oxide, Sb ₂ O ₅	10	10
Ammonium bromoselenate, (NH ₄) ₂ SeBr ₅	8	4	Antimony scandium, SbSc	4m	44
Ammonium bromotellurate, (NH ₄) ₂ TeBr ₅	8	5	Antimony selenide, Sb, Se,	3m	7
Ammonium cadmium sulfate, (NH ₄) ₂ Cd ₂ (SO ₄) ₃	7m	5	Antimony (III) sulfide (stibnite), Sb ₂ S ₃	5	6
Ammonium cadmium trichloride, NH ₄ CdCl ₃	5m	6	Antimony telluride, Sb, Te,	3m	8
· ·		59	Antimony terbium, SbTb	5m	61
Ammonium chloride (sal-ammoniac), NH ₄ Cl	1		Antimony therium, SbTh	4m	44
Ammonium chloroiridate, (NH ₄) ₂ IrCl ₆	8	6	Antimony thorium, SbTm	4m	45
Ammonium chloroosmate, (NH ₄) ₂ OsCl ₆	1m	6		4m	45
Ammonium chloropalladate, (NH ₄) ₂ PdCl ₆	8	7	Antimony ytterbium, SbYb	4m	46
Ammonium chloropalladite, (NH ₄) ₂ PdCl ₄	6	6	Antimony yttrium, SbY		
Ammonium chloroplatinate, (NH ₄) ₂ PtCl ₆	5	3	Arsenic acid, H ₅ AS ₃ O ₁₀	7m	84
Ammonium chlorostannate (NH ₄) ₂ SnCl ₆	5	4	Arsenic, As	3	6
Ammonium chlorotellurate, (NH ₄) ₂ TeCl ₆	8	8	Arsenic(III) iodide, AsI ₃	6	17
Ammonium chromium sulfate dodecahydrate,	_	_	Arsenic trioxide (arsenolite), As ₂ O ₃ (cubic)	1	51
NH ₄ Cr(SO ₄) ₂ ·12H ₂ O	6	7	Arsenic trioxide, claudetite, As ₂ O ₃ (mono-	2	0
Ammonium cobalt (II) trichloride, NH ₄ CoCl ₃	6m	5	clinic)	3m	9
Ammonium copper chloride, NH ₄ CuCl ₃	7m	7	Azobenzene, C ₁₀ H ₁₂ N ₂	7m	86
Ammonium dihydrogen phosphate, NH ₄ H ₂ PO ₄	4	64	Barium, Ba	4	7
Ammonium fluoberyllate, $(NH_4)_2BeF_4$	3m	5	Barium aluminum oxide, BaAl ₂ O ₄	5m	11
Ammonium fluoborate, NH ₄ BF ₄	3m	6	Barium arsenate, $Ba_3(AsO_4)_2$	2m	6
Ammonium fluogermanate, $(NH_4)_2GeF_6$	6	8	Barium borate, BaB ₈ O ₁₃	7m	10
Ammonium fluosilicate (cryptohalite),			Barium boron oxide, high form, BaB ₂ O ₄	4m	4
(NH ₄) ₂ SiF ₆	5	5	Barium boron oxide, BaB ₄ O ₇	4m	6
Ammonium gallium sulfate dodecahydrate,			Barium bromide monohydrate, BaBr ₂ ·H ₂ O	3m	10
NH ₄ Ga(SO ₄) ₂ ·12H ₂ O	6	9	Barium carbonate (witherite), BaCO ₃ (ortho-		
Ammonium iodide, NH ₄ I	4	56	rhombic)	2	54
			Barium carbonate, BaCO ₃ (cubic) at 1075 °C	10	11
Further work on this program is in progress, and	it is ant	ic-	Barium fluoride, BaF ₂	1	70
ipated that additional sections will be issued. Then			Barium fluosilicate, BaSiF ₆	4m	7
cumulative index here is not necessarily the conclud			Barium molybdate, BaMoO,	7	7
the project.			Barium nitrate (nitrobarite), $Ba(NO_3)_2$	1	81
m_Monograph 25.			Barium perchlorate trihydrate, Ba(ClO ₄) ₂ ·3H ₂ O	2m	7
A mineral name in () indicates a synthetic sample			Barium peroxide, BaO ₂	6	18
()					

	7ol. or		•	Vol. er	
	sec.	Page		sec.	Page
Barium selenide, BaSe	5m	61	Cadmium sulfate monohydrate, CdSO ₄ ·H ₂ O	6m	10
Barium stannate, BaSnO ₃	3m	11	Cadmium sulfide (greenockite), CdS	4	15
Barium sulfate (barite), BaSO ₄	3	65	Cadmium telluride, CdTe	3m	21
Barium sulfide, BaS	7	8	Cadmium tungstate, CdWO ₄	2m	8
Barium titanate, BaTiO,	3	45	tri-Calcium aluminate, 3CaO·Al ₂ O ₃	5	10
Barium tungstate, BaWO,	7	9	Calcium aluminate, 12CaO·7A1 ₂ O ₃	9	20
Barium zirconate, BaZrO ₃	5	8	Calcium aluminum germanate, Ca ₃ Al ₂ (GeO ₄) ₃	10	15
Beryllium aluminum oxide (chrysoberyl),			Calcium bromide hexahydrate, CaBr ₂ ·6H ₂ O	8	15
BeAl ₂ O ₄	9	10	Calcium carbonate (aragonite), CaCO, (or-		
Beryllium aluminum silicate, beryl,			thorhombic)	3	53
$\operatorname{Be}_{\mathfrak{z}}\operatorname{Al}_{2}(\operatorname{SiO}_{\mathfrak{z}})_{6}$	9	13	Calcium carbonate (calcite) CaCO, (hexagonal)		51
Beryllium calcium oxide, Be,,Ca,,O,,	7m	89	Calcium chromate, CaCrO ₄	7	13
Beryllium chromium oxide, BeCr ₂ O ₄	10	12	Calcium chromium germanate, Ca ₃ Cr ₂ (GeO ₄) ₃	10	16
Beryllium cobalt, BeCo	5m	62	Calcium chromium silicate (uvarovite),	10	
Beryllium germanate, Be ₂ GeO ₄	10	13	Ca ₃ Cr ₂ (SiO ₄) ₃	10	17
Beryllium niobium, Be,Nb	7m	92	Calcium fluoride (fluorite), CaF ₂	1	69
Beryllium orthosilicate, phenacite, BeSi ₂ O ₄	8	11	Calcium fluoride phosphate (fluorapatite),	0	00
Beryllium oxide (bromellite), BeO	1	.36	Ca _s F(PO ₄) ₃	3m	22
Beryllium palladium, BePd	5m	62	Calcium formate, Ca(HCO ₂) ₂	8	16
Bis (o-dodecacarborane), $C_4B_{20}H_{22}$	6m	7	Calcium gallium germanate, Ca ₃ Ga ₂ (GeO ₄) ₃	10	18
Bismuth, Bi	3 4 m	20	Calcium hydroxide (portlandite), Ca(OH) ₂	1	58
Bismuth dyapprosium, BiDy	4m	46	Calcium iron germanate, Ca ₃ Fe ₂ (GeO ₄) ₃	10	19
Bismuth dysprosium, BiDy	4m	47	Calcium iron silicate (andradite),	0	00
Bismuth erbium, BiEr	4m	47 7	Ca ₃ Fe ₂ Si ₃ Q ₂	9	22
Bismuth holmium, BiHo	1m 4m	48	Camg(SiO ₃),	5 m	17
Bismuth(III) iodide, BiI.	6	20	Calcium molybdate (powellite), CaMoO ₄	5m 6	17 22
Bismuth lanthanum, BiLa	4m	48	Calcium nitrate, Ca (NO ₃) ₂	7	14
Bismuth neodymium, BiNd	4m	49	Calcium oxide, CaO	1	43
Bismuth orthophosphate, BiPO ₄ (monoclinic)	3m	11	Calcium phosphate, beta-pyro-, Ca,P,O,	7m	95
Bismuth orthophosphate, BiPO ₄ (monochine)	3m	13	Calcium selenide, Case	5m	64
Bismuth orthovanadate, low form, BiVO ₄	om	*0	Calcium sulfate (anhydrite), CaSO4	4	65
(tetragonal)	3m	14	Calcium sulfide (oldhamite), CaS	7	15
Bismuth orthovanadate, high form, BiVO ₄	,om		Calcium telluride, CaTe	4m	50
(monoclinic)	3m	14	Calcium tungstate, scheelite, CaWO	6	23
Bismuth oxybromide, BiOBr	8	14	Carbon, diamond, C	2	5
Bismuth oxychloride (bismoclite), BiOCl	4	54	Cerium, antimony CeSb	4m	40
Bismuth oxyiodide, BiOI	9	16	Cerium arsenate, CeAsO4	4m	8
Bismuth praseodymium, BiPr	4 m	49	Cerium arsenide, CeAs	4m	51
Bismuth sulfide (bismuthinite), Bi ₂ S ₃ (revised)	5m	13	Cerium(III) chloride, CeCl,	1m	8
Bismuth telluride, BiTe	4m	50	Cerium copper, CeCu	7m	99
Bismuth telluride (tellurobismuthite), Bi ₂ Te ₃	3m	16	Cerium(III) fluoride, CeF,	8	17
Bismuth trioxide (bismite), alpha Bi ₂ O ₃	3	16	Cerium magnesium, CeMg	5m	65
Cadmium, Cd	3	10	Cerium magnesium nitrate 24-hydrate,		
Cadmium bromide, CdBr ₂	9	17	$\operatorname{Ce_2Mg_3(NO_3)_{12}} \cdot 24 \operatorname{H_2O} \cdot \dots$	10	20
Cadmium carbonate (otavite), CdCO ₃	7	11	Cerium niobium titanium oxide (eschynite),		
Cadmium cerium, CdCe	5m	63	CeNbTiO ₆	3m	24
Cadmium chloride, CdCl ₂	9	18	Cerium nitride, CeN	4 m	51
Cadmium chromite, CdCr ₂ O ₄	5m	16	Cerium(IV) oxide (cerianite), CeO ₂	1	56
Cadmium cyanide, Cd(CN) ₂	2m	8	Cerium phosphide, CeP	4m	52
Cadmium lanthanum, CdLa	5m	63	Cerium(III) vanadate, CeVO ₄	1m	9
Cadmium molybdate, CdMoO ₄	6	21	Cerium zinc, CeZn	5m	65
Cadmium nitrate tetrahydrate,			Cesium aluminum sulfate dodecahydrate,		
$Cd(NO_3)_2 \cdot 4H_2O$	7m	93	$CsAl(SO_4)_2 \cdot 12H_2O$	6	25
Cadmium oxide, CdO	2	27	Cesium bromate, CsBrO,	8	18
Cadmium oxide, CdO (ref. standard)	4m	4	Cesium bromide, CsBr	3	49
Cadmium perchlorate hexahydrate,			Cesium bromoosmate(IV), Cs ₂ OsBr ₆	2m	10
Cd(ClO ₄) ₂ ·6H ₂ O	3m	19	Cesium bromoplatinate, Cs ₂ PtBr ₆	8	19
Cadmium praseodymium, CdPr	5m	64	Cesium bromoselenate, Cs ₂ SeBr ₆	8	20
Cadmium selenide, CdSe (hexagonal)	7 2m	12	Cesium bromotellurate, Cs ₂ TeBr ₆	9	24
Cadmium sulfate, CdSO ₄	3m	20	Cesium cadmium trichloride, CsCdCl ₃	5	10
Caumium Surrate nyurate, 3CuSO ₄ ·8H ₂ O · · · · ·	6m	8	(hexagonal)	5m	19
				7m 5m	12 21
m-Monograph 25.			Cesium calcium trichloride, CsCaCl ₃ Cesium cerium chloride, Cs ₂ CeCl ₅	5m	
A mineral name in () indicates a synthetic sample			Sesium certum curoriue, Cs2CeC16	7m	101
maneral maine in () muncates a synthetic sample	•				

•	Vol. or			Vol. or	
Grain Alleria Grain	sec.	Page		sec.	Page
Cesium chlorate, CsClO ₃	8	20	Cobalt diarsenide, CoAs ₂ (revised)	4m	10
Cesium chloride, CsCl	2	44	Cobalt fluosilicate hexahydrate,		
Cesium chloroosmate(IV), Cs ₂ OsCl ₆	2 m	11	CoSiF ₆ ·6H ₂ O	3m	27
Cesium chloroplatinate, Cs ₂ PtCl ₆	5	14	Cobalt gallate, CoGa ₂ O ₄	10	27
Cesium chlorostannate, Cs ₂ SnCl ₆	5	16	Cobalt germanate, Co ₂ GeO ₄	. 10	27
Cesium chromate, Cs ₂ CrO ₄	3m	25	Cobalt iodide, Col	4m	52
Cesium chromium sulfate dodecahydrate,			Cobalt iron arsenide (safflorite), CoFeAs,	. 10	28
$\mathbf{C}_{\mathbf{S}}\mathbf{Cr}(\mathbf{SO}_{4})_{2} \cdot 12\mathbf{H}_{2}\mathbf{O} \dots$	8	21	Cobalt mercury thiocyanate, Co[Hg(CNS)]		13
Cesium cobalt (II) trichloride, CsCoCl3	6m	11	Cobalt(II) oxide, CoO	9	28
Cesium copper sulfate hexahydrate,			Cobalt(II, III) oxide, Co,O,		29
$Cs_2Cu(SO_4)_2 \cdot 6H_2O \cdot \cdot \cdot \cdot$	7m	14	Cobalt perchlorate hexahydrate,		
Cesium copper(II) trichloride, CsCuCl ₃	5m	22	Co(ClO ₄) ₂ ·6H ₂ O	3m	28
Cesium dichloroiodide, CsICl ₂	3	50	Cobalt silicate, Co ₂ SiO ₄ (orthorhombic)		11
Cesium fluoantimonate, CsSbF ₆	4m	9	Cobalt sulfate, beta, CoSO ₄	2m	14
Cesium fluoborate, CsBF ₄	8	22	Cobalt titanate, CoTiO,		13
Cesium fluogermanate, Cs, GeF,	5	17	Cobalt tungstate, CoWO ₄		13
Cesium fluoplatinate, Cs ₂ PtF ₆	6	27	Copper, Cu		15
Cesium fluoride, CsF	3m	26	Copper antimony oxide, CuSb ₂ O ₆	5m	27
Cesium fluosilicate, Cs ₂ SiF ₆	5	19	Copper(I) bromide, CuBr		36
Cesium gallium sulfate dodecahydrate,			Copper carbonate, basic, azurite,	_	
CsGa(SO ₄) ₂ ·12H ₂ O	8	23	$CU_3(OH)_2(CO_3)_2$	10	30
Cesium iodine bromide, CsI ₂ Br	7m	103	Copper carbonate, basic, (malachite),		
Cesium iodide, CsI	4	47	CU ₂ (OH) ₂ CO ₃	10	31
Cesium iron sulfate dodecahydrate,			Copper (I) chloride (nantokite), CuC1	4	35
CsFe(SO ₄) ₂ ·12H ₂ O	6	28	Copper glutamate dihydrate,	•	00
Cesium iron sulfate hexahydrate.			CuC ₅ H ₇ NO ₄ ·2H ₂ O · · · · · · · · · · · · · · · · · · ·	7m	110
Cs ₂ Fe(SO ₄) ₂ ·6H ₂ O	7m	16	Copper(I) iodide (marchite), CuI		38
Cesium lead(II) trichloride, CsPbCl,	-		Copper (I) oxide (cuprite), Cu ₂ O		23
(tetragonal)	5m	24	Copper(II) oxide (tenorite), CuO		49
Cesium lithium fluoride, CsLiF ₂	7m	105	Copper phosphate, alpha-pyro-, Cu ₂ P ₂ O ₇	7m	113
Cesium magnesium sulfate hexahydrate,			Copper sulfate (chalcocyanite), CuSO,		29
$Cs_2Mg(SO_4)_2 \cdot 6H_2O$	7m	18	Copper(II) sulfide (covellite), CuS	4	13
Cesium manganese sulfate hexahydrate,			Dibenzoylmethane, C ₁₅ H ₁₂ O ₂	7m	115
$Cs_2Mn(SO_4)_2 \cdot 6H_2O \cdot \dots $	7m	20	Dysprosium antimony, DySb	4m	41
Cesium mercury chloride, CsHgC1,	7m	22	Dysprosium arsenate, DyAsO ₄	3m	30
Cesium nickel sulfate hexahydrate,			Dysprosium arsenide, DyAs	4m	53
$Cs_2Ni(SO_4)_2 \cdot 6H_2O \dots$	7m	23	Dysprosium gallium oxide, Dy ₃ Ga ₂ (GaO ₄) ₃		15
Cesium nickel (II) trichloride, CsNiCl ₃	6m	12	Dysprosium nitride, DyN		53
Cesium nitrate, CsNO,	9	25	Dysprosium sesquioxide, Dy ₂ O ₃	9	30
Cesium perchlorate, CsClO ₄ , (orthorhombic)	1m	10	Dysprosium telluride, DyTe		54
Cesium strontium trichloride, CsSrCl ₃	6m	1,3	Dysprosium vanadate, DyVO ₄		15
Cesium sulfate Cs ₂ SO ₄	7	17	Erbium antimony, ErSb		41
Cesium vanadium sulfate dodecahydrate,			Erbium arsenate, ErAsO ₄		31
$CsV(SO_4)_2 \cdot 12H_2O \dots$	1m	11	Erbium arsenide, ErAs		54
Cesium zinc sulfate hexahydrate,			Erbium gallium oxide, Er, Ga2(GaO4),		12
$Cs_2Zn(SO_2)_2 \cdot 6H_2O \dots$	7m	25	Erbium manganite, ErMnO ₃	2m	16
Chromium, Cr	5	20	Erbium nitride, ErN		55
Chromium fluoride, Cr ₂ F ₅	7m	108	Erbium phosphate, ErPO ₄		31
Chromium(III) fluoride trihydrate, CrF ₃ ·3H ₂ O	5m	25	Erbium sesquioxide, Er ₂ O ₃		25
Chromium iridium 3:1, Cr ₃ Ir	6m	14	Erbium telluride, ErTe		55
Chromium orthophosphate, alpha, CrPO,	2m	12	Erbium vanadate, ErVO ₄		29
Chromium orthophosphate, beta, CrPO ₄	9	26	Europium arsenate, EuAsO4		32
Chromium(III) oxide, Cr_2O_3	5	22	Europium(III) chloride, EuCl,		13
Chromium rhodium 3:1, Cr ₃ Rh	6m	15	Europium gallium oxide, Eu ₃ Ga ₂ (GaO ₄) ₃	2m	17
Chromium silicide, Cr ₃ Si	6	29	Europium nitride, EuN		56
Cobalt, Co (cubic)	4m	10	Europium oxide, EuO		56
Cobalt aluminum oxide, CoAl ₂ O ₄	9	27	Europium oxychloride, EuOCl		13
Cobalt antimony oxide, CoSb ₂ O ₆	5m	26	Europium(III) vanadate, EuVO ₄		16
Cobalt arsenide (skutterudite), CoAs,	10	21	Gadolinium antimony, GdSb		42
Cobalt(II) carbonate (spherocobaltite),	10	0.4	Gadolinium arsenate, GdAsO ₄		17
Co C O ₃	10	24	Gadolinium arsenide, GdAs	4m	57
			Gadolinium chloride hexahydrate,	7m	118
			GdC1,·6H ₂ O	1m	14
m-Monograph 25.			Gadolinium gallium oxide, Gd ₃ Ga ₂ (GaO ₄) ₃	2m	18
A mineral name in () indicates a synthetic sample			Gadolinium indium, GdIn	5m	67
/ nicicales a synthetic sample					

V	ol. or			Vol. or	
	sec.	Page		sec.	Page
Gadolinium nitride, GdN	4m	57	Lanthanum magnesium, LaMg	5m	69
Gadolinium oxide, Gd ₂ O ₃	1m	16	Lanthanum magnesium nitrate 24-hydrate,		
Gadolinium oxychloride, GdOCl	1m	17	$\text{La}_{2}\text{Mg}_{3}(\text{NO}_{3})_{12} \cdot 24\text{H}_{2}\text{O} \dots \dots \dots \dots \dots$	1m	22
Gadolinium vanadate, GdVO ₄	5m	30	Lanthanum niobium titanium oxide, LaNbTiO	3m	37
Gallium, Ga	2	9	Lanthanum nitride, LaN	4m	61
Gallium arsenide, GaAs	3m	33	Lanthanum oxide, La ₂ O ₃	3	33
Gallium antimonide, GaSb	6	30	Lanthanum oxychloride, LaOCl	7	22
Gallium oxide, alpha, Ga ₂ O ₃	4	25	Lanthanum phosphide, LaP	5m	69
Gallium phosphate (∝-quartz type), GaPO ₄	8	27	Lanthanum selenide, LaSe	4m	61
Germanium, Ge	1	18	Lanthanum zinc, LaZn	5m	70
Germanium dioxide, GeO ₂ (hexagonal)	1	E 1	Lead, Pb	1	34
(low form)Germanium dioxide, GeO_2 (tetragonal)	1	51	Lead boron oxide, PbB ₄ O ₇	- 4m	19
(high form)	8	28	Lead bromide, PbBr ₂	2 2	47 56
Germanium iodide, GeI ₂	4m	58	Lead carbonate (cerrussite), PbCO ₃		45
Germanium(IV) iodide, GeI ₄	5	25	Lead chloride (cotunnite), PbCl ₂ Lead formate, Pb(HCO ₂) ₂	2 8	30
Gold, Au	1	33	Lead fluochloride (matlockite), PbFCl	1	76
Gold antimony 1:2 (aurostibite), AuSb,	7	18	Lead fluoride, alpha PbF ₂ (orthorhombic)	5	31
Gold dysprosium, AuDy	5m	66		5	33
Gold(I) cyanide, AuCN	10	33	Lead fluoride, beta PbF ₂ (cubic) Lead(II) iodide, PbI ₂	5	34
Gold holmium, AuHo	5m	68	Lead molybdate (wulfenite), PbMoO ₄	5 7	23
Gold magnesium, AuMg	6m	83	Lead monoxide (litharge), PbO (red) tetrag-	•	20
Gold niobium 1:3, AuNb ₃	6m	16	onal	2	30
Gold tin, 1:1 AuSn	7	19	Lead monoxide (massicot), PbO (yellow)	2	30
Gold titanium 1:3, AuTi,	6m	17	(orthorhombic)	2	32
Gold vanadium 1:3, AuV ₃	6m	18	Lead nitrate, Pb(NO ₃) ₂	5	36
Hafnium, Hf	3	18	Lead(II, III) oxide (minium), Pb ₃ O ₄	8	32
Hexamethylenediammonium adipate.			Lead oxybromide, Pb ₂ O ₂ Br ₂	5m	32
C ₁₂ H ₂₆ N ₂ O ₄	7m	121	Lead phosphate hydrate, Pb ₅ (PO ₄) ₃ OH	8	33
Holmium arsenate, HoAsO ₄	3m	34	Lead selenide (clausthalite), PbSe	5	38
Holmium ethylsulfate nonahydrate,			Lead sulfate (anglesite), PbSO ₄	3	67
$Ho[(C_2H_5)SO_4]_3 \cdot 9H_2O \dots$	1m	18	Lead sulfide (galena), PbS	2	18
Holmium nitride, HoN	4m	58	Lead titanate, PbTiO ₃	5	39
Holmium selenide, HoSe	4m	5 9	Lead tungstate (stolzite), PbWO ₄ (tetragonal)		
Holmium sesquioxide, Ho ₂ O ₃	9	32	(revised)	5m	34
Holmium vanadate, HoVO ₄	4m	18	Lithium arsenate, Li ₃ AsO ₄	2m	19
Imidazole nickel nitrate, $(C_3H_4N_2)_6Ni(NO_3)_2$	7m	27	Lithium barium trifluoride, LiBaF ₃	5m	35
Imidazole zinc chloride, $(C_3H_4N_2)_2$ Zn $C1_2$	7m	123	Lithium beryllium fluoride, Li, BeF	7m	126
Indium, In	3	12	Lithium bromide, LiBr	.4	.30
Indium antimony, InSb	4	73	Lithium chloride, LiCl	1	62
Indium arsenide, InAs	3m	35	Lithium fluoride, Li F	1	61
Indium oxide, In ₂ O ₃	5	26	Lithium iodate, LiIO ₃	7	26
Indium phosphate, InPO ₄	8	29	Lithium molybdate, Li ₂ MoO ₄ (trigonal)	1m	23
Iodic acid, HIO ₃	5	28	Lithium niobate, LiNbO ₃	6m	22
Iodine, I ₂	.3	16 9	Lithium nitrate, LiNO ₃	7	27
Iridium, Ir Iridium dioxide, IrO ₂	4 4m	19	Lithium oxide, Li ₂ O	1m	25
Iridium niobium 1:3, IrNb ₃	4m 6m	19	Lithium perchlorate trihydrate, LiC1O ₄ ·3H ₂ O	8	34
Iridium titanium 1:3, IrTi ₃	6m	20	Lithium phosphate, low form (lithiophos-		
Iridium vanadium 1:3, IrV ₃	6m	21	phate), Li ₃ PO ₄ (orthorhombic) revised	4m	21
Iron, alpha Fe	4	3	Lithium phosphate, high form, Li ₃ PO ₄	3m	39
Iron arsenide, FeAs	1m	19	Lithium rubidium fluoride, LiRbF ₂	7m	128
Iron arsenide (loellingite), FeAs,	10	34	Lithium sodium sulfate, LiNaSO ₄	6m	24
Iron bromide, FeBr ₂	4m	5 9	Lithium sulfate, Li ₂ SO ₄	6m	26
Iron iodide, FeI,	4m	60	Lithium sulfate monohydrate, Li ₂ SO ₄ ·H ₂ O	4m	22
Iron(II,III) oxide (magnetite), Fe ₃ O ₄	5m	31	Lithium trimetaphosphate trihydrate, Li ₃ P ₃ O ₄ :3H ₂ O	2m	20
Iron sulfide (pyrite), FeS ₂	5	29	Lithium tungstate, Li ₂ WO ₄ (trigonal)	1m	25
Lanthanum antimony, LaSb	4m	42	Lithium tungstate hemihydrate, Li, WO ₄ ·½H,O	2m	20
Lanthanum arsenate, LaAsO ₄	3m	36	Lithium uranium fluoride, LiUF,	7m	131
Lanthanum arsenide, LaAs	4m	60	Lutetium arsenate, LuAsO.	5m	36
Lanthanum borate, LaBO ₃	1m	20	Lutetium gallium oxide, Lu ₃ Ga ₂ (GaO ₄) ₃	2m	22
Lanthanum chloride, LaCl ₃	1m	20	Lutetium manganite, LuMnO ₃	2m	23
Lanthanum fluoride, LaF ₃	7	21	Lutetium nitride, LuN	4m	62
W 1.05			Lutetium oxide, Lu ₂ O ₃	1m	27
m_Monograph 25.			Lutetium vanadate, LuVO ₄	5m	37
A mineral name in () indicates a synthetic sample.	•		Magnesium, Mg	1	10

v	ol. or			Vol. or	
	sec.	Page		sec.	Page
Magnesium aluminate (spinel), MgAl ₂ O ₄ Magnesium aluminum silicate (pyrope),	2	35	Mercury(II) sulfide (cinnabar), HgS (hexagonal)	4	17
$Mg_3Al_2(SiO_4)_3$	4m	24	Mercury(II) sulfide (metacinnabar), HgS		
Magnesium aluminum silicate (low cordi-			(cubic)	4	21
erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic) Magnesium aluminum silicate (high cordi-	1m	28	Metaboric acid, HBO ₂ (cubic)	4m 1	27 20
erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (hexagonal)	1m	29	Molybdenum disulfide (molybdenite), MoS,	5	47
Magnesium ammonium phosphate hexahy-	1111	49	Molybdenum osmium 3:1, Mo ₃ Os		28
drate (struvite), MgNH ₄ PO ₄ ·6H ₂ O	3m	41	Molybdenum trioxide (molybdite), MoO ₃	3	30
Magnesium boron oxide, Mg ₂ B ₂ O ₅ (triclinic).	4m	25	2-Naphthylamine, n-phenyl-, $C_{16}H_{13}N$	6m	29
Magnesium bromide, MgBr ₂	4m	62	Neodymium antimony, NdSb	4m	43
Magnesium carbonate (magnesite), MgCO ₃	7	28	Neodynium arsenate, NdAsO ₄	4m	28
Magnesium chloride dodecahydrate,			Neodymium borate, NdBO,	4m 1m	64 32
MgC1,·12H,OMagnesium chromite (picrochromite),	7m	135	Neodymium chloride, NdCl	1m	33
MgCr ₂ O ₄	9	34	Neodymium ethylsulfate nonahydrate,		
Magnesium fluoride (sellaite), MgF ₂	4	33	$Nd[(C_2H_5)SO_4]_3 \cdot 9H_2O \dots$	9	41
Magnesium gallate, MgGa ₂ O ₄	10	36	Neodymium fluoride, NdF,	8	36
Magnesium germanate, Mg2GeO4 (cubic)	10	37	Neodymium gallium oxide, Nd ₃ Ga ₂ (GaO ₄) ₃	1m	34
Magnesium germanate, Mg ₂ GeO ₄ (ortho-			Neodymium oxide, Nd ₂ O ₃	4 8	26 37
rhombic)	10	38	Neodymium selenide, NdSe	5m	71
Magnesium hydrogen phosphate trihydrate,	F2	100	Neodymium vanadate, NdVO4	4m	30
newberyite, $MgHPO_4 \cdot 3H_2O$ Magnesium hydroxide (brucite), $Mg(OH)_2$	7m 6	$\frac{139}{30}$	Neptunium nitride, NpN	4m	64
Magnesium molybdate, MgMoO ₄	7m	28	Nickel, Ni	1	13
Magnesium oxide (periclase), MgO	1	37	Nickel aluminate, NiAl ₂ O ₄	9	42
Magnesium perchlorate hexahydrate,			Nickel arsenic 1:2 (rammelsbergite), NiAs ₂ Nickel arsenic sulfide (gersdorffite), NiAsS	10 1m	42 35
Mg(C1O ₄) ₂ ·6H ₂ O	7m	30	Nickel(II) carbonate, NiCO, (trigonal)	1m	36
Magnesium selenide, MgSe	5m	70	Nickel ferrite (trevorite), NiFe ₂ O ₄	10	44
Magnesium silicate, enstatite, MgSiO ₃	6	32	Nickel fluosilicate hexahydrate, NiSiF ₆ ·6H ₂ O	8	38
Magnesium silicate (forsterite), Mg ₂ SiO ₄	1	83	Nickel gallate, NiGa ₂ O ₄	10	45
Magnesium silicate fluoride (norbergite), Mg,SiO₄.MgF,	10	39	Nickel germanate, Ni ₂ GeO ₄	9	43
Magnesium silicate fluoride (humite),	10	99	Nickel(II) oxide (bunsenite), NiO	1 2m	47 26
3Mg ₂ SiO ₄ ·MgF ₂	1m	30	Nickel sulfate hexahydrate (retgersite),	4	20
Magnesium sulfate heptahydrate (epsomite),			Niso ₄ ·6H ₂ O	7	36
MgSO ₄ ·7H ₂ O	7	30	Nickel sulfide, millerite, NiS	1m	37
Magnesium sulfide, MgS	7 5	31 41	Nickel tungstate, NiWO	2m	27
Magnesium tin, Mg ₂ Sn	5	43	Niobium osmium 3:1, Nb ₃ Os	6m 7m	30 148
Magnesium tungstate, MgWO ₄	1	84	Niobium platinum 3:1, Nb ₃ Pt	6m	31
Manganese, alpha, Mn	7m	142	Niobium silicide, NbSi ₂	8	39
Manganese aluminate (galaxite), MnAl ₂ O ₄	9	35	bis-(N-isopropyl-3-ethylsalicylaldiminato)		
Manganese bromide, MnBr ₂	4m	63	palladium, $(C_{12}H_{16}NO)_2Pd$	7m	144
Manganese(II) carbonate (rhodochrosite),	7	20	N-methylphenazinium tetracyanoquinodi-	7	140
MnCO ₃ Manganese ferrite (jacobsite), MnFe ₂ O ₄	7 9	32 36	methanide, C ₂₅ H ₁₅ N ₆	7m 4	146 8
Manganese iodide, MnI,	4m	63	Osmium titanium, OsTi		85
Manganese(II) oxide (manganosite), MnO	5	45	Palladium, Pd	1	21
Manganese(III) oxide (partridgeite), Mn ₂ O ₃	9	37	Palladium hydride, PdH _{0.706}	5m	72
Manganese selenide, MnSe	10	41	Palladium oxide, PdO	4	27 32
Manganese sulfide (alabandite), alpha MnS	4	11	Palladium vanadium 1:3, PdV ₃	6m 7m	150
Manganese(II) tungstate (huebnerite), MnWO ₄	2m	24	Phosphorus bromide, PBr ₇ Pimelic acid, C ₇ H ₁₂ O ₄	7m	153
Mercuric iodide, HgI ₂ (tetragonal) (revised)	7m 6m	32 84	Platinum, Pt	1	31
Mercury magnesium, HgMg Mercury(I) bromide, Hg ₂ Br ₂	7	33	Platinum titanium 1:3, PtTi ₃	6m	33
Mercury(I) chloride (calomel), Hg,Cl,	1	72	Platinum vanadium 1:3, PtV ₃	6m	34
Mercury(II) chloride, HgCl ₂	1	73	Plutonium arsenide, PuAs	4m	65 65
Mercury(II) cyanide, $Hg(CN)_2$	6	35	Plutonium phosphide, PuP	4m 4m	65 66
Mercury(II) fluoride, HgF ₂	2m	25	Potassium acid phthalate,	7111	00
Mercury(I) iodide, HgI	$\frac{4}{9}$	49 39	C ₄ H ₄ (COOH)(COOK)	4m	30
Mercury(II) selenide (tiemannite), HgSe	7	35	Potassium aluminum sulfate dodecahydrate,		
-			(alum), KAl(SO ₄) ₂ ·12H ₂ O	6 9	36 44
m-Monograph 25.			Potassium borohydride, KBH ₄ Potassium bromate, KBrO ₃	9 7	38
A mineral name in () indicates a synthetic sample	•				

V	ol. or			Vol. or	
	sec.	Page		sec.	Page
Potassium bromide, KBr	1	66	Potassium zinc decavanadate 16 hydrate,		
Potassium bromoplatinate, K ₂ PtBr ₆	8	40	$K_2Zn_2V_{10}O_{28}\cdot 16H_2O$	3m	45
Potassium bromoselenate, K ₂ SeBr ₆	- 8	41	Potassium zinc fluoride, KZnF ₃	5	51
Potassium cadmium sulfate, K ₂ Cd ₂ (SO ₄) ₃	7m	3 4	Potassium zinc sulfate hexahydrate,		
Potassium cadmium trichloride, KCdCl ₃	5m	38	$K_2Zn(SO_4)_2 \cdot 6H_2O$	7m	43
Potassium calcium chloride (chlorocalcite), KCaCl	7m	36	Potassium zinc sulfate, K ₂ Zn ₂ (SO ₄) ₃	6m	54
Potassium calcium magnesium sulfate,	* 111	36	Praseodymium antimony, PrSb	4m 4m	43 32
K,CaMg(SO ₄)	7m	37	Praseodymium arsenide, PrAs	4m	67
Potassium calcium sulfate, K,Ca,(SO,)	7m	39	Praseodymium chloride, PrCl ₃	1m	39
Potassium chlorate, KClO ₃	3m	42	Praseodymium fluoride, PrF ₃	5	52
Potassium chloride (sylvite), KCl	1	6 5	Praseodymium oxychloride, PrOCl	9	47
Potassium chloroplatinate, K ₂ PtCl ₆	5	49	Praseodymium sulfide, PrS	4m	67
Potassium chlororhenate, K ₂ ReCl ₆	2m	28	Praseodymium vanadate, PrVO	5m	40
Potassium chlororuthenate(IV), K ₂ RuCl ₆	10	4 6	Praseodymium zinc, PrZn	5m	72
Potassium chlorostannate, K ₂ SnCl ₆	6	3 8	Rhenium, Re	2	13
Potassium chromium sulfate dodecahydrate,	6	39	Rhodium, Rh	3	9
$KCr(SO_4)_2 \cdot 12H_2O$ Potassium cobalt (II) sulfate, $K_2Co_2(SO_4)_3$	6m	3 5	Rhodium vanadium 1:3, RhV ₃	6m	56
Potassium cobalt (II) trifluoride, KCoF ₃	6m	37	Rubidium aluminum sulfate dodecahydrate,		
Potassium cobaltinitrite, $K_3Co(NO_2)_6$	9	45	RbAl(SO ₄) ₂ ·12H ₂ O	- 6	44
Potassium copper chloride, KCuCl	7m	41	Rubidium amide, RbNH ₂	5m	73
Potassium copper (II) trifluoride, KCuF ₃	6m	38	Rubidium bromate, RbBrO ₃	8 7	45
Potassium cyanate, KCNO	7	39	Rubidium bromide, RbBr	8	43 46
Potassium cyanide, KCN	1	77	Rubidium cadmium sulfate, $Rb_2 TeBl_6$ Rubidium cadmium sulfate, $Rb_2 Cd_3(SO_4)_3$	7m	15
Potassium dihydrogen arsenate, KH ₂ AsO ₄	1m	38	Rubidium cadmium trichloride, high form,	****	10
Potassium dihydrogen phosphate, KH ₂ PO ₄	3	69	RbCdCl ₃ (tetragonal)	5m	43
Potassium fluogermanate, K ₂ GeF ₆	6	41	Rubidium cadmium trichloride, low form,		-
Potassium fluoplatinate, K ₂ PtF ₆	6	42	RbCdCl ₃ (orthorhombic)	5m	41
Potassium fluoride, KF K SiF	1	64	Rubidium calcium chloride, RbCaCl ₃	7m	47
Potassium fluosilicate (hieratite), K ₂ SiF ₆	5 7	50	Rubidium calcium sulfate, Rb ₂ Ca ₂ (SO ₄) ₃	7m	48
Potassium fluotitanate, K ₂ TiF ₆ Potassium heptafluozirconate, K ₃ ZrF ₇	9	40	Rubidium chlorate, RbClO ₃	8	47
Potassium hydroxide, KOH at 300 °C	4m	4 6 66	Rubidium chloride, RbCl	4	41
Potassium hydroxy-chlororuthenate,	2111	00	Rubidium chloroplatinate, Rb ₂ PtCl ₆	5	53
K ₄ Ru ₂ Cl ₁₀ O·H ₂ O·	10	47	Rubidium chlorostannate, Rb ₂ SnCl ₆	6	46
Potassium iodide, KI	1	68	Rubidium chlorotellurate, Rb ₂ TeCl ₆	8	48
Potassium iron (II) trifluoride, KFeF ₃	6m	39	Rubidium chromate, Rb ₂ CrO ₄	3m	46
Potassium lithium sulfate, KLiSO4	3m	43	Rubidium chromium sulfate dodecahydrate, RbCr(SO ₄) ₂ ·12H ₂ O	6	47
Potassium magnesium sulfate (langbeinite),			Rubidium cobalt (II) trichloride, RbCoC1 ₃	6m	57
K_2Mg_2 (SO ₄) ₃	6m	40	Rubidium fluoplatinate, Rb ₂ PtF ₆	6	48
Potassium magnesium trifluoride, KMgF ₃	6m	42	Rubidum fluosilicate, Rb ₂ SiF ₆	6	49
Potassium manganese (II) sulfate	Cm	42	Rubidium iodide, RbI	4	43
(manganolangbeinite), K ₂ Mn ₂ (SO ₄) ₃ Potassium manganese (II) trifluoride, KMnF ₃	6m 6m	43 45	Rubidium magnesium sulfate, Rb, Mg, (SO,)	7m	50
Potassium nickel fluoride, KNiF ₃	7m	4 2	Rubidium manganese sulfate, Rb ₂ Mn ₂ (SO ₄) ₃	7m	52
Potassium nickel (II) sulfate, $K_2Ni_2(SO_4)_3$	6m	46	Rubidium manganese(II) trifluoride, RbMnF ₃	5m	44
Potassium nitrate (niter), KNO,	3	5 8	Rubidium nickel (II) trichloride, RbNiCl ₃	6m	58
Potassium nitroso chlororuthenate,			Rubidium nitrate, RbNO ₃ (trigonal)	5m	45
K ₂ RuC1 ₅ NO	2m	29	Rubidium perchlorate, RbClO ₄	2m	30
Potassium perchlorate, KClO ₄	6	43	Rubidium periodate, RbIO ₄	2m	31
Potassium perchromate, K ₃ CrO ₈	.3m	44	Rubidium strontium chloride, RbSrC1,	7m	54
Potassium periodate, KIO	7	41	Rubidium sulfate, Rb ₂ SO ₄	8	48
Potassium permanganate, KMnO ₄	7	42	Rubidium zinc sulfate hexahydrate,	7 m	55
Potassium perrhenate, KReO ₄	8	41	Rb ₂ Zn(SO ₄) ₂ ·6H ₂ O Rubidium zinc fluoride, RbZnF ₁	7m 7m	55 57
Potassium phosphomolybdate tetrahydrate, K ₂ PC ₄ (MoO ₃) ₁₂ .4H ₂ O	8	43	Ruthenium, Ru	4	5
Potassium sodium sulfate, K 67Na 135 SO	6m	48	Ruthenium titanium, RuTi	6m	86
Potassium sodium sulfate, KNaSO ₄	6m	50	Samarium arsenate, SmAsO ₄	4m	33
Potassium sodium sulfate (aphthitalite),			Samarium arsenide, SmAs	4m	68
K ₃ Na(SO ₄) ₂	6m	52	Samarium chloride, SmCl ₃	1m	40
Potassium sulfate (arcanite), K ₂ SO ₄	.3	62	Samarium fluoride, SmF ₃	1m	41
Potassium thiocyanate, KCNS	8	44	Samarium gallium oxide, Sm ₃ Ga ₂ (GaO ₄) ₃	1m	42
			Samarium oxide, Sm ₂ O ₃ (cubic)	4m	34
W			Samarium oxychloride, SmOCl	Im 5m	43 47
m-Monograph 25.			Samarium vanadate, SmVO ₄	5m 4m	35
A mineral name in () indicates a synthetic sample	•		Sometime discitate, Someo,	1111	50

v	ol. or			Vol. or	
	sec.	Page		sec.	Page
Scandium arsenide, ScAs	4m	68	Sodium chloride (halite), NaCl	2	41
Scandium oxide, Sc ₂ O ₃	3	27	Sodium cobalt (II) sulfate tetrahydrate,		
Scandium phosphate, ScPO ₄	8	50	$Na_2Co(SO_4)_2 \cdot 4H_2O$	6m	61
Scandium silicate (thortveitite), $Sc_2Si_2O_7$	7m	58	Sodium cyanate, NaCNO	2m	33
Selenium oxide (selenolite), SeO ₂ (revised).	7m	60	Sodium cyanide, NaCN (cubic)		78
Selenium, Se	5	54	Sodium cyanide, NaCN (orthorhombic) at 6 ° C	1	79
Silicon, Si	2	6	Sodium dichromate dihydrate, Na ₂ Cr ₂ O ₇ ·2H ₂ O	7m	62
Silicon dioxide, alpha or low quartz, SiO ₂			Sodium fluoride (villiaumite), NaF	1	63
(hexagonal)	3	24	Sodium hexametaphosphate hexahydrate,		00
Silicon dioxide (alpha or low cristobalite),			Na ₆ P ₆ O ₁₈ ·6H ₂ O	5m	5.4
SiO ₂ (tetragonal) (revised)	10	48	Sodium hydrogen silicate tetrahydrate,	5m	54
Silicon dioxide (beta or high cristobalite),					
SiO ₂ (cubic)	1	42	Na ₂ H ₂ SiO ₄ ·4H ₂ O	7m	163
Silver, Ag	1	23	Sodium hydroxide, NaOH at 300 ° C	4m	69
Silver, Ag (reference standard)	4m	4	Sodium iodate, NaIO ₃	7	47
Silver antimony sulfide, AgSbS ₂ (cubic)	5m	48	Sodium iodide, NaI	4	31
Silver antimony sulfide (miargyrite),			Sodium lanthanum fluosilicate,		
AgSbS ₂ (monoclinic)	5m	49	(Na_2La_3) $(SiO_4)_6F_2$	7m	64
Silver antimony sulfide (pyrargyrite), Ag, SbS,	0	10	Sodium magnesium aluminum boron hydroxy		
(trigonal)	5m	51	silicate, dravite, NaMg, Al ₆ B ₃ Si ₆ O ₂₇ (OH) ₄	3m	47
Silver antimony telluride, AgSbTe ₂	3m	47	Sodium magnesium sulfate tetrahydrate,		
Silver arsenate, Ag, AsO,	5	56	bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63
Silver bromate, AgBrO ₃	5	57	Sodium manganese (II) trifluoride, NaMnF3	6m	65
Silver bromide (bromyrite), AgBr	4	46	Sodium mercury (II) trichloride dihydrate,		
	1m	44	NaHgCl ₃ ·2H ₂ O	6m	66
Silver carbonate, Ag ₂ CO ₃			Sodium molybdate, Na ₂ MoO ₄	1m	46
Silver chlorate, AgClO ₃	7	44	Sodium neodymium fluosilicate,		
Silver chloride, (cerargyrite), AgCl	4	44	(Na_2Nd_8) $(SiO_4)_6F_2$	7m	66
Silver dysprosium, AgDy	5m	66	Sodium nickel (II) sulfate tetrahydrate,		
Silver erbium, AgEr	5m	67	$Na_2Ni(SO_4)_2 \cdot 4H_2O \cdot \cdot \cdot \cdot$	6m	68
Silver gadolinium, AgGd	6m	87	Sodium nitrate (soda-niter), NaNO ₃	6	50
Silver holmium, AgHo	5m	68	Sodium nitrite, NaNO ₂	4	62
Silver iodide (iodyrite), AgI (hexagonal)	. 8	51	Sodium orthotungstate(IV) dihydrate,	1	02
Silver iodide, gamma, AgI (cubic)	9	48	Na ₂ WO ₄ ·2H ₂ O	2m	22
Silver molybdate, Ag ₂ MoO ₄	7	.45			33
Silver neodymium, AgNd	5m	71	Sodium oxalate, Na ₂ C ₂ O ₄	6m	70
Silver nitrate, AgNO,	5	59	Sodium perchlorate, NaClO ₄ (orthorhombic)	7	49
Silver nitrite, AgNO ₂	5	60	Sodium periodate, NaIO ₄	7	48
Silver oxide, Ag ₂ O	1m	45	Sodium praseodymium fluosilicate,		
Silver(II) o xynitrate, Ag,O ₈ NO ₃	4	61	$(Na_2 Pr_8) (SiO_4)_6 F_2 \dots$	7m	68
Silver periodate, AgIO ₄	9	49	Sodium sulfate (thenardite), Na ₂ SO ₄	2	59
Silver permanganate, AgMnO ₄	7m	155	Sodium sulfite, Na ₂ SO ₃	3	60
	8	53	Sodium tetrametaphosphate tetrahydrate,		
Silver phosphoto Ag RO			alpha, Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic)	10	52
Silver phosphate, Ag ₃ PO ₄	5	62	Sodium tetrametaphosphate tetrahydrate, beta,		
Silver samarium, AgSm	5m	73	Na ₄ P ₄ O ₁₂ ·4H ₂ O (triclinic)	2m	35
Silver selenate, Ag ₂ SeO ₄	2m	32	Sodium tin fluoride, NaSn ₂ F ₅	7m	166
Silver subfluoride, Ag ₂ F	5m	53	Sodium trimetaphosphate, Na ₃ P ₃ O ₉	3m	49
Silver sulfate, Ag ₂ SO ₄	7	46	Sodium trimetaphosphate monohydrate,		
Silver sulfide (argentite), Ag ₂ S	10	51	Na ₃ P ₃ O ₄ ·H ₂ O	3m	50
Silver terbium, AgTb	5m	74	Sodium tungstate, Na ₂ WO ₄	1m	47
Silver thulium, AgTm	5m	74	Sodium zinc sulfate tetrahydrate,		
Silver yttrium, AgY	5m	75	$Na_2Zn(SO_4)_2\cdot 4H_2O$	6m	72
Sodium acid fluoride, NaHF ₂	5	63		6m	74
Sodium aluminum chloride silicate, sodalite,			Sodium zinc trifluoride, NaZnF ₃		
$Na_8Si_6A1_6O_{24}C1_2$	7m	158	Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36
Sodium borate, Na ₂ B ₈ O ₁₃	7m	160	Strontium boron oxide, SrB ₂ O ₄	3m	53
Sodium borohydride, NaBH,	9	51	Strontium boron oxide, SrB ₄ O ₇	4m	36
Sodium bromate, NaBrO ₃	5	65	Strontium bromide hexahydrate, SrBr ₂ ·6H ₂ O	4	60
Sodium bromide, NaBr	3	47	Strontium carbonate (strontianite), SrCO ₃	3	56
Sodium calcium sulfate (glauberite),			Strontium chloride, SrCl ₂	4	40
Na ₂ Ca(SO ₄) ₂	6m	59	Strontium chloride hexahydrate, SrCl ₂ ·6H ₂ O	4	58
Sodium carbonate monohydrate (thermonatrite),	0		Strontium fluoride, SrF ₂	5	67
Na ₂ CO ₃ ·H ₂ O	8	54	Strontium formate, Sr (CHO ₂) ₂	8	55
Sodium chlorate, NaClO ₃	3	51	Strontium formate dihydrate, $Sr(CHO_2)_2 \cdot 2H_2O$		
boutum cirrorate, macro ₃	U	01	(orthorhombic)	8	56
m Managraph 25			Strontium indium hydroxide, $Sr_3In_2(OH)_{12}$	6m	76
m-Monograph 25.			Strontium iodide hexahydrate, SrI ₂ ·6H ₂ O	8	58
A mineral name in () indicates a synthetic sample	•		Strontium molybdate, SrMoO ₄	7	50

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Strontium nitrate, Sr(NO ₃) ₂	1	80	Thallium(I) thiocyanate, TlCNS	8	63
Strontium oxide, SrO	5	68	Thallium(I) tungstate, Tl ₂ WO ₄	1m	48
Strontium peroxide, SrO ₂	6	52	Thallium zinc sulfate hexahydrate,		
Strontium scandium oxide hexahydrate,			$T1_2Zn(SO_4)_2.6H_2O$	7m	80
$Sr_3Sc_2O_6 \cdot 6H_2O \dots$	6m	78	Thorium arsenide, ThAs	4 m	70
Strontium sulfate (celestite), SrSO ₄	2	61	Thorium oxide (thorianite), ThO ₂	1	57
Strontium sulfide, SrS	7	52	Thulium arsenate, TmAsO ₄	3m	56
Strontium telluride, SrTe	4m	69	Thulium arsenide, TmAs	4m	71
Strontium titanate, SrTiO,	3	44	Thulium nitride, TmN	4m	71
Strontium tungstate, SrWO ₄	7	53	Thulium sesquioxide, Tm ₂ O ₃	9	58
Strontium zirconate, SrZrO,	9	51	Thulium telluride, TmTe	4m	72
Sulfamic acid, NH ₃ SO ₃	7	54	Thulium vanadate, TmVO	5m	57
Sulfur, S (orthorhombic)	9	54	Tin, alpha, Sn (cubic)	2	12
Tantalum, Ta	1	29	Tin, beta, Sn (tetragonal)	1	24
Tantalum Silicide, TaSi,	8	59	Tin arsenide, SnAs	4m	37
d-Tartaric Acid, C ₄ H ₆ O ₆	7m	168	Tin(II) fluoride, SnF ₂	3m	51
Tellurium, Te	1	26	Tin(IV) iodide, SnI ₄	5	71
Tellurium(IV) oxide (paratellurite), TeO ₂	_		Tin(II) oxide, SnO	4	28
(tetragonal)	7	56	Tin(IV) oxide (cassiterite), SnO ₂	1 7	54
Tellurium(IV) oxide, paratellurite, TeO ₂	10		Tin(II) telluride, SnTe	3	61 1
(tetragonal)	10	55	Titanium, Ti	•)	1
Tellurium(IV) oxide, tellurite, TeO ₂ (ortho-			Titanium dioxide, brookite, TiO ₂ (ortho-	3m	57
rhombic)	9	57	rhombic)	3m	
Terbium arsenate, TbAsO ₄	3m	54	Titanium oxide (anatase), TiO ₂ (revised)	7m	82
Terbium arsenide, TbAs	5m	75	Titanium oxide (rutile), TiO ₂ (revised)	7m 9	83 59
Terbium phagphide ThD	4m	70	Titanium(III) oxide, TiO _{1.515}	8	64
Terbium phosphide, TbP Terbium selenide, TbSe	5m	76	Titanium silicide, Ti ₅ Si ₃	4m	72
Terbium sulfide, TbS	5m	76	Titanium sulfide, TiS ₂	1	28
Terbium telluride, TbTe	5m	77	Tungsten, W. (reference standard)	4m	4
Terbium vanadate, TbVO.	5m	77 56	Tungsten, W (reference standard)	8	65
Thallium aluminum sulfate dodecahydrate,	5m	56	Tungsten sulfide (tungstenite), WS ₂	2	33
TlAl(SO ₄) ₂ ·12H ₂ O	6	5 2	Uranium oxide, UO	5m	78
Thallium(I) arsenate, Tl ₃ AsO ₄	2m	5 <u>.</u> 3 37	Uranium selenide, USe	5m	78
Thallium(I) bromate, TlBrO,	8	60	Uranium telluride, UTe	4m	73
Thallium bromide, TIBr	7	57	Urea, CO(NH ₂),	7	61
Thallium(I) chlorate, TlClO,	8	61	Vanadium(V) oxide, V_2O_5	8	66
Thallium(I) chloride, TlCl	4	51	Ytterbium arsenate, YbAsO ₄	4m	38
Thallium chloroplatinate, Tl ₂ PtCl ₆	5	70	Ytterbium arsenide, YbAs	#IU	73
Thallium chlorostannate, Tl, SnCl,	6	54	Ytterbium gallium oxide, Yb, Ga, (GaO,),	1m	49
Thallium chromate, Tl ₂ CrO ₄	3m	54	Ytterbium nitride, YbN	4m	74
Thallium chromium sulfate dodecahydrate,			Ytterbium oxide, Yb ₂ O ₃	6m	80
TlCr(SO ₄) ₂ ·12H ₂ O	6	55	Ytterbium selenide, YbSe	5m	79
Thallium cobalt sulfate hexahydrate,	•	-	Ytterbium telluride, YbTe	5m	79
$T1_2Co(SO_4)_2 \cdot 6H_2O$	7m	70	Ytterbium(III) vanadate, YbVO	5m	58
Thallium copper sulfate hexahydrate,	•	••	Yttrium arsenate, YAsO ₄	2m	39
$T1_2 Cu(SO_4)_2 \cdot 6H_2O$	7m	72	Yttrium arsenide, YAs	4m	74
Thallium fluosilicate, Tl ₂ SiF ₆	6	56	Yttrium gallium oxide, Y, Ga2(GaO4),	1m	50
Thallium gallium sulfate dodecahydrate,			Yttrium oxide, Y ₂ O ₃	3	28
$TlGa(SO_4)_2 \cdot 12H_2O$	6	57	Yttrium oxychloride, YOCl	1m	51
Thallium(I) iodate, TlIO ₃	8	62	Yttrium phosphate (xenotime), YPO ₄	8	67
Thallium(I) iodide, TlI (orthorhombic)	4	53	Yttrium sulfide, YS	5m	80
Thallium magnesium sulfate hexahydrate,			Yttrium telluride, YTe	4m	75
$T1_2Mg(SO_4)_2 \cdot 6H_2O \dots$	7m	74	Yttrium vanadate, YVO.	5m	59
Thallium manganese sulfate, $T1_2Mn_2(SO_4)_3$	7m	76	Zinc, Zn	1	16
Thallium nickel sulfate hexahydrate,			Zinc aluminate (gahnite), ZnAl ₂ O ₄	. 2	38
$T1_2Ni(SO_4)_2 \cdot 6H_2O$	7m	78	Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Thallium(I) nitrate, TlNO,	6	58	Zinc borate, ZnB ₂ O ₄	1	83
Thallium(III) oxide, Tl ₂ O ₃	2	28	Zinc carbonate, smithsonite, ZnCO,	8	69
Thallium(I) percholorate, TlClO ₄	2m	38	Zinc cyanide, Zn(CN) ₂	5	73
Thallium(I) phosphate, Tl ₃ PO ₄	7	58	Zinc fluoride, ZnF ₂	6	60
Thallium(III) phosphate, TIPO.	7	59	Zinc fluosilicate hexahydrate, ZnSiF ₆ ·6H ₂ O	8	70 56
Thallium(I) sulfate, Tl ₂ SO ₄	6	59	Zinc germanate, Zn ₂ GeO ₄	10	56
			Zinc glutamate dihydrate, ZnC _s H ₂ NO ₄ ·2H ₂ O	7m 9	170 60
m-Monograph 25.			Zinc iodide, ZnI ₂	7m	173
A mineral name in () indicates a synthetic sample.			Zinc molybdate, Zn ₂ Mo ₃ O ₆	7	62
, marcates a synthetic sample.			Zamo ormioritionio (milicinio), zarozo4		

,	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Zinc oxide (zincite), ZnO	2	25	Zinc sulfide (sphalerite), beta ZnS (cubic)		16
Zinc pyrosilicate hydrate, hemimorphite,			Zinc telluride, ZnTe		58
$\operatorname{Zn}_{4}(\operatorname{OH})_{2}\operatorname{Si}_{2}\operatorname{O}_{7}\cdot\operatorname{H}_{2}\operatorname{O}\dots$	2	62	Zinc tungstate (sanmartinite), ZnWO,	2m	40
Zinc selenide, ZnSe	3	23	Zirconium, alpha, Zr	2	11
Zinc sulfate (zinkosite), ZnSO ₄	7	64	Zirconium dihydride, ZrH ₂	5m	60
Zinc sulfate heptahydrate (goslarite),			Zirconium iodate, Zr(IO ₃) ₄	1m	51
ZnSO ₄ ·7H ₂ O	8	71	Zirconium nitride, ZrN	5m	80
Zinc sulfide (wurtzite), alpha ZnS (hexag-			Zirconium oxide, ZrO	5m	81
onal)	2	14	Zirconium phosphide, ZrP		75
			Zirconium silicate, zircon, ZrSiO4		68
m_Monograph 25.			Zirconium sulfate tetrahydrate, Zr(SO ₄) ₂ ·4H ₂ O	7	66
A mineral name in () indicates a synthetic sample			· · · · · · · · · · · · · · · · · · ·		

CUMULATIVE MINERAL INDEX

	Vol. or			Vol. or	
	sec	Page		sec.	Page
Alabandite, MnS	4	11	Cordierite, Mg ₂ A1 ₄ Si ₅ O ₁₈ (orthorhombic)	1m	28
Alum, $KAl(SO_4)_2 \cdot 12H_2O \cdot \cdot \cdot \cdot$	6	36	Cordiente, Mg ₂ A1 ₄ Si ₅ O ₁₈ ·(hexagonal)	1m	29
Ammonia-niter, NH ₄ NO ₃	7	4	Corundum, Al ₂ O ₃	9	3
Anatase, TiO ₂ (revised)	7m	82	Cotunnite, PbCl ₂		45
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Covellite, CuS	4	13
Anglesite, PbSO ₄	3	67	Cristobalite, (alpha or low) SiO ₂ (revised)	10	48
Anhydrite, CaSO ₄	4	65	Cristobalite, (beta or high) SiO ₂	1	42
Aphthitalite, $K_3Na(SO_4)_2$	6m	52	Cryptohalite, (NH ₄) ₂ SiF ₆	5	5
Aragonite, CaCO ₃	3	53	Cuprite, Cu ₂ O	2	23
Argentite, Ag ₂ S	10	51	*Diamond, C	2	5
Arcanite, K ₂ SO ₄	3	62	*Diaspore, Al ₂ O ₃ ·H ₂ O	3	41
Arsenolite, As ₂ O ₃	1	51	Diopside, CaMg(SiO ₃) ₂		17
Aurostibite, AuSb ₂	7	18	*Dravite, NaMg ₃ Al ₆ B ₃ Si ₆ O ₂₇ (OH) ₄	3m	47
*Azurite, Cu ₃ (OH) ₂ (CO ₃) ₂	10	30	*Enstatite, MgSiO ₃		32
Barite, BaSO ₄	3	65	Epsomite, MgSO ₄ ·7H ₂ O		30
Berlinite, AlPO ₄	10	3	Eschynite, CeNbTiO ₆		24
*Beryl, Be ₃ Al ₂ (SiO ₃) ₆	9	13	Ettringite, Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O		3
Bismite, (alpha) Bi ₂ O ₃	3m	17	Fluorapatite, Ca ₅ F(PO ₄) ₃		22
Bismoclite, BiOCl	4	54	Fluorite, CaF ₂		69
Bismuthinite, Bi ₂ S ₃ (revised)	5m	13	Forsterite, Mg ₂ SiO ₄		83
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63	Galaxite, MnAl ₂ O ₄	9	35
Böhmite, Al ₂ O ₃ ·H ₂ O	3	38	Galena, PbS		18
Bromellite, BeO	1	36	Gahnite, ZnAl ₂ O ₄		38
Bromyrite, AgBr	4	46	Geikielite, MgTiO ₃	5	43
*Brookite, TiO,	3m	57	Gersdorffite, NiAsS		35
Brucite, Mg(OH) ₂	6	30	Glauberite, $Na_2Ca(SO_4)_2$		59
Bunsenite, NiO	1	47	Goslarite, ZnSO ₄ ·7H ₂ O	8	71
Calcite, CaCO,	2	51	Greenockite, CdS		15
Calomel, Hg,Cl,	1	72	Halite, NaCl		41
Cassiterite, SnO ₂	1	54	*Hemimorphite, $Zn_4(OH)_2Si_2O_7 \cdot H_2O \dots$		62
Celestite, SrSO ₄	2	61	Hieratite, K_2SiF_6		50
Cerargyrite, AgCl	4	44	Huebnerite, MnWO4		24
Cerianite, CeO ₂	1	56	Humite, 3Mg ₂ SiO ₄ ·MgF ₂		30
Cerussite, PbCO ₃	2	56	Iodyrite, AgI		51
Cervantite, Sb ₂ O ₄	10	8	Jacobsite, MnFe ₂ O ₄		36
Chalcocyanite, CuSO4	3m	29	Langbeinite, $K_2Mg_2(SO_4)_3$		40
Chloraluminite, AlCl ₃ ·6H ₂ O	7	3	Litharge, PbO (red)	. 2	30
Chlorocalcite, KCaCl ₃	7m	36	Lithiphosphate, Li ₃ PO ₄		21
Chrysoberyl, BeAl,O.	9	10	Loellingite, FeAs ₂		34
Cinnabar, HgS	4	17	Magnesite, MgCO ₃	7	28
*Claudetite, As ₂ O ₃	3m	9	Magnetite, Fe ₃ O ₄	5m	31
Clausthalite, PbSe	5	38	Malachite, $Cu_2(OH)_2CO_3$	10	31
			Manganolangbeinite, $K_2Mn_2(SO_4)_3$	6m	43
* Natural mineral.			Manganosite, MnO	5	45
m-Monograph 25.			Marshite, CuI	4	38

CUMULATIVE MINERAL INDEX-Continued

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Mascagnite, (NH ₄) ₂ SO ₄ (revised)	9	8	Sellaite, MgF ₂	4	.33
Massicot, PbO (yellow)	2	32	Senarmontite, Sb ₂ O ₃	3	31
Matlockite, PbFCl	1	76	Skutterudite, CoAs,	10	21
Metacinnabar, HgS	4	21	*Smithsonite, ZnCO,	8	69
Miargyrite, AgSbS ₂	5m	49	*Sodalite, Na ₃ Si ₆ A1 ₆ O ₂₄ C1 ₂	7m	158
*Millerite, NiS	1m	37	Soda-niter, NaNO ₃	6	50
Minium, Pb ₃ O ₄	8	32	Sphalerite, ZnS	2	16
Molybdenite, MoS,	5	47	Spherocobaltite, CoCO ₃	10	24
Molybdite, MoO,	3	30	Spinel, MgAl ₂ O ₄	2	35
Montroydite, HgO (revised)	9	39	Stibnite, Sb ₂ S ₃	5	6
Mullite, 3Al ₂ O ₃ ·2SiO ₂	3m	3	Stolzite, PbWO ₄ (revised)	5m	.34
Nantokite, CuCl	4	35	Strontianite, SrCO ₃	.3	56
*Newberyite, MgHPO4.3H2O	7m	139	Struvite, MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Niter, KNO,	3	58	Sylvite, KCl	1	65
Nitrobarite, Ba(NO ₃) ₂	1	81	*Tellurite, TeO ₂	9	57
Norbergite, Mg ₂ SiO ₄ ·MgF ₂	10	39	Tellurobismuthite, Bi ₂ Te ₃	3m	16
Oldhamite, CaS	7	15	Tenorite, CuO	1	.49
Otavite, CdCO ₃	7	11	Teschemacherite, NH ₄ HCO ₃	9	5
Oxammite, $(NH_4)_2C_2O_4\cdot H_2O$		5	Teschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
*Paratellurite, TeO ₂	10	55	Thenardite, Na, SO ₄	2	59
Paratellurite, TeO ₂		56	Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
Partridgeite, Mn ₂ O ₃		37	Thorianite, ThO ₂	1	57
Periclase, MgO	1	37	Thortveitite, Sc ₂ Si ₂ O ₇	7m	58
*Phenacite, Be ₂ SiO ₄	8	11	Tiemannite, HgSe	7	35
Picrochromite, MgCr ₂ O ₄	9	34	*Topaz, Al,SiO ₄ (F,OH),	1m	4
Portlandite, Ca(OH) ₂	1	58	Trevorite, NiFe,O,	10	44
Powellite, CaMoO ₄		22	Tungstenite, WS,	8	65
Pyrite, FeS ₂	5	29	Uraninite, UO ₂	2	33
Pyrope, Mg ₃ Al ₂ (SiO ₄) ₃	4m	24	Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃	10	17
*Quartz, SiO, (alpha or low)	3	24	*Valentinite, Sb ₂ O ₃	10	6
Rammelsbergite, NiAs ₂	10	42	Villiaumite, NaF	1	63
Retgersite, NiSO ₄ ·6H ₂ O	7	36	Willemite, Zn ₂ SiO ₄	7	62
Rhodochrosite, MnCO ₃	7	32	Witherite, BaCO,	2	54
Rutile, TiO, (revised)	7m	83	Wulfenite, PbMoO ₄	7	23
Safflorite, CoFeAs,	10	28	Wurtzite, ZnS	2	14
Sal-ammoniac, NH ₄ Cl	1	5 9	Xenotime, YPO ₄	8	67
Sanmartinite, ZnWO ₄		40	Zincite, ZnO	2	25
*Scheelite, CaWO4		23	Zinkosite, ZnSO ₄	7	64
Selenolite, SeO ₂ (revised)	7m	60	*Zircon, ZrSiO ₄	4	6 8

^{*}Natural mineral. M-Monagraph 25.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE