MATH 217 W24 - LINEAR ALGEBRA, Section 001 (Dr. Paul Kessenich) Homework Set Part B due SUNDAY, April 21 at 11:59pm Zhengyu James Pan (jzpan@umich.edu)

1. (a) Let E_0 denote the 0-eigenspace of T. Explicitly describe E_0 (as a set).

Solution:

$$E_0 = \{(x_1, 0, x_2, 0, x_3, 0, \dots) \mid x_i \in \mathbb{R}\}\$$

(b) Prove that every real number λ is an eigenvalue of T. (Hint: explicitly construct an eigenvector $(x_1, x_2, x_3, ...) \in V$. First consider x_i when i is a power of 2.)

Solution: Let $\lambda \in \mathbb{R}$. Then let

be an infinite sequence such that each consecutive power λ^n is repeated n times in the sequence, starting from n = 0. Then

So any real number is an eigenvalue of T.

2. (a) Let \mathscr{D} be a diagonal $n \times n$ matrix with distinct entries along the diagonal, and let \mathscr{D} be the subset of $\mathbb{R}^{n \times n}$ consisting of all diagonal matrices. Prove $\mathscr{C}(D) = \mathscr{D}$.

Solution: Let the diagonal entries of D be $d_1, ..., d_n$. Let $A \in \mathcal{D}$, with diagonal entries $a_1, ... a_n$. Then the product

$$AD = \begin{bmatrix} a_1d_1 & 0 & \dots & 0 \\ 0 & a_2d_2 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & a_nd_n \end{bmatrix} = \begin{bmatrix} d_1a_1 & 0 & \dots & 0 \\ 0 & d_2a_2 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & d_na_n \end{bmatrix} = DA.$$

So $\mathscr{D} \subset \mathscr{C}(D)$.

Let $B \in \mathcal{C}(D)$ with columns $\vec{b}_1, ..., \vec{b}_n$, rows $\vec{c}_1, ..., \vec{c}_n$, and element of ith row and

MATH 217 Homework Set Part B 2

jth column b_{ij} . Then

$$BD = \begin{bmatrix} | & & | \\ B(d_1\vec{e}_1) & \cdots & B(d_n\vec{e}_n) \\ | & & | \end{bmatrix}$$
$$= \begin{bmatrix} | & & | \\ d_1\vec{b}_1 & \cdots & d_n\vec{b}_n \\ | & & | \end{bmatrix}$$

$$DB = ((DB)^{\top})^{\top}$$

$$= (B^{\top}D)^{\top}$$

$$= \begin{bmatrix} | & | & | \\ d_1 \vec{c_1}^{\top} & \cdots & d_n \vec{c_n}^{\top} \\ | & | & \end{bmatrix}^{\top}$$

$$= \begin{bmatrix} - & d_1 \vec{c_1} & - \\ \vdots & & \\ - & d_n \vec{c_n} & - \end{bmatrix}$$

where $\vec{e_i}$ is the *i*th standard basis vector. Since $B \in \mathcal{C}(D)$, BD = DB. Considering arbitrary b_{ij} , this means that $d_i b_{ij} = d_j b_{ij}$.

When i = j, then $d_i = d_j$, so b_{ij} , a diagonal element of B, can be anything.

When $i \neq j$, then $d_i \neq d_j$ since D has distinct diagonal elements. But $d_i b_{ij} = d_j b_{ij}$. So $b_i j = 0$. Note that in this case, $b_i j$ is any non-diagonal element. Since only diagonal elements of B can be nonzero, B is diagonal, and $B \in \mathcal{D}$. So $\mathcal{C}(D) \subset \mathcal{D}$. Thus $\mathcal{D} = \mathcal{C}(D)$.

(b) Prove that if A and B are simultaneously diagonalizable $n \times n$ matrices, then $B \in \mathcal{C}(A)$.

Solution: We know that $\mathscr{D} \subset \mathscr{C}(D)$ for any diagonal matrix D by part (a). (The $\mathscr{D} \subset \mathscr{C}(D)$ direction did not depend on the fact that D had distinct diagonal elements.) So then

$$S^{-1}BSS^{-1}AS = S^{-1}ASS^{-1}BS$$
$$S^{-1}BAS = S^{-1}ABS$$
$$BA = AB$$

Thus $B \in \mathscr{C}(A)$.

(c) Prove that if A and B are $n \times n$ matrices such that A has n distinct eigenvalues and $B \in \mathcal{C}(A)$, then A and B are simultaneously diagonalizable.

Solution: Let S be an eigenbasis of A. Then $S^{-1}AS$, the diagonalized matrix of A, has distinct diagonal elements. We know that

$$BA = AB$$

$$S^{-1}BAS = S^{-1}ABS$$

$$S^{-1}BSS^{-1}AS = S^{-1}ASS^{-1}BS$$

So $S^{-1}BS \in \mathcal{C}(S^{-1}AS)$. Then by part (a), since $S^{-1}AS$ is diagonal with distinct entries, $S^{-1}BS$ is diagonal. So S diagonalizes both B and A. So A and B are simultaneously diagonalizable.

3. (a) Suppose that A has eigenvalue 0 but is not diagonalizable. Prove that $im(A) = E_0$, and conclude from this that $A^2 = 0$.

Solution: The givens imply that $\det(A - 0I_1) = 0$. So $\det(A) = 0$. But since it is not diagonalizable, there must be one eigenvalue λ of A which does not satisfy $\operatorname{almu}(\lambda) = \operatorname{gemu}(\lambda)$. Since both almu and gemu are always at least 1, $\operatorname{almu} \geq \operatorname{gemu}$, and the sum of $\operatorname{almus} = n$; we know $\operatorname{almu}(0) = 2$, and $\operatorname{gemu}(0) = 1$. So $\operatorname{nullity}(A - 0I_2) = \operatorname{nullity}(A) = 1$.