

(30) Priority Data:

9801923-5

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
A61K 39/385

(11) International Publication Number: WO 99/61054

(43) International Publication Date: 2 December 1999 (02.12.99)

SE

- (21) International Application Number: PCT/SE99/00920
- (22) International Filing Date: 28 May 1999 (28.05.99)
- (71) Applicant (for all designated States except US): INDEPEN-

29 May 1998 (29.05.98)

- (71) Applicant (for all designated States except US): INDEPENDENT PHARMACEUTICA AB [SE/SE]; Birger Jarlsgatan 14, S-114 34 Stockholm (SE).
- (72) Inventors; and
 (75) Inventors/Applicants (for US only): SVENSSON, Torgny [SE/SE]; Ringvägen 9, S-181 33 Lidingö (SE). JOHANSSON, Anette [SE/SE]; Lillberga, S-740 21 Järlåsa (SE).
- (74) Agents: NILSSON, Brita et al.; AB Stockholms Patentbyrå, Zacco & Bruhn, P.O. Box 23101, S-104 35 Stockholm (SE).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NICOTINE IMMUNOGEN

(57) Abstract

A 5- or 6-nicotinyl-linker-carrier protein compound and immunogen having formula (a) wherein X is -NH-CO- or NH- or $-C \equiv C$ - or -C = C- or -C = C-, X is -C = C- or -C = C- or -C = C-, when Y is -C = C- or -C = C-, when Y is -C = C- or -C = C-, when Y is -C = C- or -C = C-, when Y is -C = C- or -C = C-, and X is -C = C- or -C = C-, Z is -C = C-, when Y is -C = C- is disclosed. The compound may be used as a medicament, suitably in the form of a pharmaceutical composition. Additionally, a method of prophylactic and/or therapeutic immunological treatment of nicotine dependence from tobacco products to achieve harm reduction is described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey .
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal	•	
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
				_			

10

15

20

25

30

NICOTINE IMMUNOGEN

The present invention relates to a nicotine immunogen, to a 5- or 6-nicotinyl - linker -protein and its use as a medicament and a pharmaceutical composition comprising the 5- or 6-nicotinyl - linker -protein, and to a method of prophylactic and/or therapeutic immunological treatment of nicotine dependence from tobacco products to achieve harm reduction.

Background of the invention

Due to the vast number of tobacco users/smokers in the world who want to get rid of their dependence, there is a large market for products helping them to reach their goal or at least result in harm reduction.

One approach is to develop a vaccine/immunogen that in an individual can elicit antibodies which strongly bind to administered/inhaled nicotine and block its effect before it reaches their central nervous system. The idea is that if the individual does not experience the expected stimulating effect of nicotine administration/smoking, the interest in administering a tobacco product, such as moist snuff, or lighting a cigarette will cease (extinction/prevention).

A complementary approach is to develop an immunogen that in an individual can elicit antibodies which moderately or weakly bind to administered/inhaled nicotine and enhance/prolong its effect in their central nervous system. The idea is that if the individual experiences the expected stimulating effect of nicotine administration/smoking during a prolonged period of time, the interest in a renewed administration of a tobacco product, such as moist snuff, or lighting a cigarette will be postponed and the medical consequences of the tobacco product consumption will be reduced.

Both of the above mentioned approaches use immunogens which in an individual induces an immunological response which leads to harm reduction.

In the prior art there are papers describing immunoassays using antibodies directed to nicotine, but such antibodies have not been suggested for any medical use (See e.g. Castro A. and Monji N. Res. Comm. Chem. Path. Pharmacol. 1986,51, 393-404.)

The idea of treating nicotine dependence with a vaccine is not new, since it is comprised by earlier general disclosures of manufacturing vaccines against drugs which may cause a dependence (see e.g. EP- B1- 0 496 839, exemplified by morphine; and WO 96/30049, exemplified by cocaine).

10

A paper disclosing active immunization to alter nicotine distribution was recently published (Hieda Y. et al, J. Pharmacol. and Exp. Therap. 1997,283, 1076-1081). The immunogen used in the experiments was (±)-6-(carboxymethyl-ureido)-nicotine linked to keyhole limpet hemocyanin.

Recently, the international patent application WO 98/14216 was published (09.04.98). This application claims a large number of hapten-carrier conjugates based on the nicotine molecule and the common structural feature of the compounds seems to be that all of the hapten molecules contain a terminal carboxylic acid group which is then conjugated to the carrier. No *in vivo* testing has been disclosed for the alleged drug abuse treatment.

Description of the invention

The present invention is directed to a nicotine immunogen comprising a 5or 6-nicotinyl- linker - carrier protein having the formula

$$\stackrel{N}{C}H_3$$
 $\stackrel{5}{|V|}_{6}X-Y-Z-carrier protein$

15 wherein

X is -NH-CO- or -NH- or -C \equiv C- or -C=C- or -CH₂-; Y is -(CH₂)_k- or -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein k = 0-20, m = 0 - 6, and n = 0 - 6, when Z is -NH-,

with the provisio that X is not -NH-CO- when Y is $(CH_2)_5$ and Z is -NH-,

and

20

25

X is -NH-CO- or -C=C- or -C=C- or -CH₂-, Y is -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein m = 0 - 6, and n = 0 - 6, when Z is -CO-,

and

X is -C = C- or -C = C-, Z is -CO-, when Y is $-(CH_2)_k$ - wherein k = 0 - 20.

In a preferred embodiment of the invention the 5- or 6-nicotinyl - linker - carrier proteins are selected from compounds wherein k=1-8, m=0-3 and n=0-3.

Other names for the 5- or 6-nicotinyl - linker - carrier protein are

5-(1-methyl-2-pyrrolidinyl)-2- or 3-pyridinyl - linker - carrier protein and 5-(N-methyl-2-pyrrolidinyl)-2- or 3-pyridinyl - linker - carrier protein.

The carrier protein of the 5- or 6-nicotinyl - linker - carrier protein of the invention may be selected from pharmaceutically acceptable proteins which coupled to a hapten are suitable for eliciting antibodies in humans, and is for example selected from the group consisting of keyhole limpet hemocyanin (KLH), tetanus toxoid, diphtheria toxoid, non-toxic mutant diphtheria toxoid CRM₁₉₇, outer membrane protein complex (OMPC) from Neisseria meningitidis, the B subunit of heat-labile Escherichia coli, and recombinant exoprotein A from Pseudomonas aeruginosa (rEPA).

The present invention is further directed to a 5- or 6 - nicotinyl -linker - carrier protein having the formula

wherein

10

15

X is -NH-CO- or -NH- or -C=C- or -CH2-:

Y is $-(CH_2)_k$ - or $-(CH_2)_m$ - C_6H_{10} - $(CH_2)_n$ - or $-(CH_2)_m$ - C_6H_4 - $(CH_2)_n$ wherein k = 0-20, m = 0-6, and n = 0-6, when
Z is -NH-,

with the provisio that X is not -NH-CO- when Y is $(CH_2)_5$ and Z is -NH-,

and

25 X is -NH-CO- or -C=C- or -C=C- or -CH₂-, Y is -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein m = 0 - 6, and n = 0 - 6, when Z is -CO-, and

30 X is -C≡C- or -C=C-,

10

15

20

25

30

Z is -CO-, when Y is -(CH₂)_kwherein k = 0 - 20.

Also in this aspect of the invention the carrier protein may be selected from the group consisting of keyhole limpet hemocyanin (KLH), tetanus toxoid, diphtheria toxoid, non-toxic mutant diphtheria toxoid CRM₁₉₇, outer membrane protein complex (OMPC) from Neisseria meningitidis, the B subunit of heat-labile Escherichia coli, and recombinant exoprotein A from Pseudomonas aeruginosa (rEPA).

Further, the invention is directed to the new 5- or 6 - nicotinyl -linker - carrier proteins according to the invention for use as a medicament, such as the immunizing component in a vaccine.

One compound excluded from the compounds of the above formula of the invention has been previously disclosed by Castro A. and Monji N. (ibid.), namely the 6-nicotinyl-linker - carrier protein wherein the carrier protein is bovine serum albumin and the linker is - NH-CO-(CH₂)₅-NH-. However, this compound has not been suggested for medical use.

The invention is additionally directed to a pharmaceutical composition comprising a 5- or 6 - nicotinyl -linker - carrier protein according to the invention and a pharmaceutically acceptable vehicle.

The vehicle in the pharmaceutical composition needed for administration of the immunogenic compound of the invention may be selected from known pharmaceutically acceptable vehicles, such as physiological saline solution or other suitable vehicle e.g. disclosed in the European or US Pharmacopoeia.

The pharmaceutical composition according to the invention may further comprise an adjuvant, which naturally must be pharmaceutically acceptable for human use, such as aluminum phosphate and aluminum hydroxide.

The invention is furthermore directed to a method of prophylactic and/or therapeutic immunological treatment of nicotine dependence from tobacco products to achieve harm reduction in an individual comprising administration of a 5- or 6 - nicotinyl -linker - carrier protein having the formula

wherein

Z is -NH-,

X is -NH-CO- or -NH- or -C \equiv C- or -C=C- or -CH₂-; Y is -(CH₂)_k- or -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein k = 0-20, m = 0 - 6, and n = 0 - 6, when

with the provisio that X is not -NH-CO- when Y is (CH₂)₅ and Z is -NH-,

and

X is -NH-CO- or -C \equiv C- or -CH₂-.

10 Y is $-(CH_2)_m-C_6H_{10}-(CH_2)_n$ - or $-(CH_2)_m-C_6H_4-(CH_2)_n$ wherein m = 0 - 6, and n = 0 - 6, when
Z is -CO-,

and

25

X is -C = C - or -C = C -,

15 Z is -CO-, when

Y is $-(CH_2)_{k}$

wherein k = 0 - 20,

to said individual in antibody-eliciting amounts for eliciting antibodies binding to nicotine molecules.

For a specific individual the antibody-eliciting amount will be found empirically by subjective experience of the stimulating effect in error and trial tests, or will be suggested by the manufacturer or physician.

In a preferred embodiment of this aspect of the invention the administration is repeated at intervals to enhance the titre of antibodies binding to nicotine molecules in said individual.

10

15

20

25

30

The individual is preferably a human even though the invention would function if another mammal should be treated. This could of course be the case if laboratory animals were used for testing purposes.

The present invention will now be further illustrated by reference to the following description of drawings, synthesis of compounds and immunogens and experiments which describe specific embodiments of the invention. However, these are not to be considered as limitations to the scope of the invention defined in the claims.

Description of the drawings

Figure 1. Elisa measurements on serum from immunized rats collected 7 or 9 days after the first bolus immunization with GK5-KLH.

Figure 2. Elisa measurements on serum from immunized rats collected 1-4 days after booster immunization with GK5-KLH.

Figure 3. Elisa titre measurements of serum from immunized rats. The titre of specific antibodies from GK60-KLH immunized rats is 1:4000. Immunization using other immunogens gave similar results.

Figure 4. Competitive Elisa. Immunogen GK-84-KLH immunized using protocol 2 gave rise to antibodies that were about 100 times more specific to nicotine and nomicotine than to the other competitors used.

Figure 5. Electrophysiological single-cell recordings from VTA DA neurones in control rats. The DA cells responded with an increase in firing rate and burst firing after nicotine administration.

Figure 6. Electrophysiological single-cell recordings from VTA DA neurones in immunized rats. The DA cells appear less sensitive to the activating effects of nicotine after immunization.

Figure 7a. Active immunization using immunogen GK84-KLH essentially completely suppresses nicotine-induced dopamine release in nucleus accumbens shell compared to controls.

Figure 7b. Active immunization using immunogen GK80-KLH results in a marked increase on the dopamine overflow in nucleus accumbens shell after nicotine administration compared to controls.

Figure 7c. The effect of the immunization with immunogen YH6-KLH on nicotine-induced dopamine output is stable over a three week period. * p=0.05; ** p=0.01; *** p=0.001.

Description of synthesis of compounds and immunogens

The nicotine immunogens were prepared in three steps according to Scheme 1:

- I. preparation of 6-aminonicotine (1) from (S)-nicotine,
- II. preparation of various nicotine-linker molecules,
- 5 III. preparation of various nicotine immunogens (nicotine-linker-carrier protein). Experimental details of the three steps follow below:

I. Preparation of 6-aminonicotine (1).

6-Aminonicotine (1) was synthesized from (S)-nicotine according to the procedure reported by Tschitschibabin and Kirssanow Chem. Ber. 1924, 57B, 1163-1168.

- II. Preparation of various nicotine-linker molecules (Schemes 2-8)

 General procedure for coupling of 6- or 5-aminonicotine with amine derivatives as linkers (Schemes 2-3): N-Ethyldiisopropylamine (DIEA, 3.0 equiv) was added to a mixture of 6-aminonicotine (1.0 equiv), an amino protected amino acid [7-(tert-butyloxycarbonylamino)-heptanoic acid or trans-4-(benzyl-oxycarbonylaminomethyl)cyclohexanecarboxylic acid¹]
- 15 (1.0 equiv) and tripyrrolidinobromo-phosphonium hexafluorophosphate (PyBrOP, 1.0 equiv) in CH₂Cl₂ (1-2 mL/mmol). The reaction mixture was stirred at ambient temperature for 20-24 h. The mixture was concentrated and the residue was chromatographed to give the 6-acylated 6-aminonicotine derivatives 2 and 3 in 32-38% yield.
- ¹Okano, A.; Inaoka, M.; Funabashi, S.; Iwamoto, M.; Isoda, S.; Moroi, R.; Abiko, Y.; Hivata, 20 M. J. Med. Chem. 1972, 15, 247-255.
 - 7-(tert-Butyloxycarbonylamino)-N-[5-(1-methyl-2-pyrrolidinyl)-2-pyridinyl]heptan-amide (2). The residue was chromatographed [silica gel, CHCl₃/MeOH (30:1)] to give 2 (32%). An analytical sample was obtained by crystallization from iso-hexane/EtOH: mp 92-93 °C; ¹H-NMR (CDCl₃, 270 MHz) δ 9.34, (br s, 1H), 8.16-8.11 (m, 2H), 7.63, (dd, J=8.5, 2.5
- 25 Hz, 1H), 4.68 (br s, 1H), 3.20-3.10 (m, 1H), 3.08-2.90 (m, 3H), 2.32 (t, *J*=7.5 Hz, 2H), 2.30-2.15 (m, 1H), 2.15-2.00 (m, 1H), 2.07 (s, 3H), 1.96-1.55 (m, 5H), 1.45-1.20 (m, 6H), 1.36 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ171.9, 155.8, 150.9, 146.5, 137.5, 134.3, 114.2, 78.7, 68.4; 56.7, 40.3, 40.1, 37.2, 35.0, 28.7, 28.3, 26.3, 25.1, 22.3.
 - $trans\hbox{-}4\hbox{-}(Benzyloxy carbonylaminomethyl)-N\hbox{-}[5\hbox{-}(1\hbox{-}methyl\hbox{-}2\hbox{-}pyrrolidinyl)-2\hbox{-}2\hbox{-}2]$
- pyridinyl]cyclohexanecarboxamide (3). The residue was chromatographed [silica gel, EtOAc/MeOH (20:1)] to afford 3 (38%). An analytical sample was obtained by crystallization from iso-hexane/EtOH: mp 173-174 °C; ¹H-NMR (CD₃OD, 400 MHz) δ8.76 (s, 1H), 8.22-8.18 (m, 2H), 7.70 (dd, J=2, 8.5 Hz, 1H), 7.40-7.30 (m, 5H), 5.10 (s, 2H), 4.94-4.90 (m, 1H),

- 3.27-3.18 (m, 1H), 3.09-2.99 (m, 3H), 2.35-2.10 (m, 3H), 2.15 (s, 3H), 2.06-1.4 (m, 10H), 1.07-0.88 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ174.4, 156.5, 150.8, 146.7, 137.6, 136.5, 134.6, 128.4 (2C's), 128.0 (3C's), 114.1, 68.5, 66.6, 56.9, 47.0, 46.1, 40.3, 37.5, 35.1, 29.6 (2C's), 28.8 (2C's), 22.4;
- 7-Amino-N-[5-(1-methyl-2-pyrrolidinyl)-2-pyridinyl]heptanamide (4:YH15). TFA (5 mL) was added to a solution of 2 (0.10 g, 0.25 mmol) in CH₂Cl₂ (20 mL) and the mixture was stirred at ambient temperature for 2h. The solution was neutralized with saturated aqueous K₂CO₃ and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic phases was washed with water, dried (K₂CO₃), filtered and concentrated. The crude product was purified by preparative TLC [silica gel, CHCl₃/MeOH/NH₄OH (50:50:1)] to afford 0.06 g (74%) of 4 as an oil; ¹H NMR (CD₃OD, 400 MHz) δ8.21 (d, J=2 Hz, 1H), 8.07, (d, J=8.5 Hz, 1H), 7.74 (dd,
- J=8.5, 2.5 Hz, 1H), 3.23-3.17 (m, 1H), 3.13-3.08 (m, 1H), 2.65-2.60 (m, 2H), 2.42 (t, J=7.5 Hz, 2H), 2.36-2.28 (m, 1H), 2.23-2.16 (m, 1H), 2.14 (s, 3H), 2.00-1.66 (m, 5H), 1.52-1.33 (m, 6H); ¹³H NMR (CD₃OD, 100 MHz) δ174.8, 152.5, 148.5, 138.5, 134.7, 115.5, 69.8, 57.8, 42.4, 40.5, 37.8, 35.3, 33.4, 30.1, 27.7, 26.6, 23.1;
- trans-4-(Aminomethyl)-N-[5-(1-methyl-2-pyrrolidinyl)-2
 - pyridinyl]cyclohexanecarboxamide (5:YH6). A mixture of 3 (0.14 g, 0.3 mmol), Me₃SiCl (0.24 g, 2.25 mmol) and NaI (4.5 mg, 2.7 mmol) in dry acetonitrile (10 mL) was stirred at ambient temperature for 3h under nitrogen. The volatiles were evaporated and MeOH (5 mL)
- and a saturated solution of HCl in ether (1 mL) were added. The mixture was stirred for 15 min and then concentrated. The residue was diluted with water (5 mL) and extracted with EtOAc (3 x 7 mL). The combined organic phases was dried (K₂CO₃), filtered and concentrated. The crude product was purified by preparative TLC [silica gel, CHCl₃/MeOH/NH₄OH (50:50:1)] to afford 0.03 g (28%) of 5; ¹H-NMR (CDCl₃, 270 MHz) δ
- 8.83 (br s, 1H), 8.17-8.09 (m, 2H), 7.64 (dd, *J*=2, 8.5 Hz, 1H), 3.20-3.10 (m, 1H), 2.96 (t, *J*=8 Hz, 1H), 2.49 (br s, 2H), 2.08 (s, 3H), 2.28-1.18 (m, 15H), 0.94-0.84 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) δ174.6, 150.9, 146.6, 137.6, 134.5, 114.1, 68.4, 56.8, 48.3, 46.3, 40.2, 35.1, 29.7 (2C's), 29.6, 28.9 (2C's), 22.4;
- 6-[5-(1-methyl-2-pyrrolidinyl)-2-pyridinyl]hexanenitrile (6). A stirred mixture of 630 aminonicotine (0.62 g, 3.5 mmol) and NaH (80% in mineral oil, 0.16 g, 5.25 mmol) in dry toluene (20 mL) was refluxed for 2h and then cooled to room temperature. 6-Bromohexanenitrile (0.65 g, 3.7 mmol) was added and the reaction was left at ambient temperature over night. The solvent was evaporated and the residue was chromatographed [silica gel, CHCl₃/MeOH/NH₄OH (18:3:0.1)] to afford 0.40 g (41%) of 6; IR (film): 2270 cm⁻¹ (CN); ¹H-

NMR (CDCl₃, 270 MHz) δ 7.95 (d, J=2.5 Hz, 1H), 7.47 (dd, J=2.5, 8.5 Hz, 1H), 6.39 (d, J=8.5 Hz, 1H), 4.49 (m, 1H), 3.36-3.16 (m, 3H), 2.90 (t, J=9 Hz, 1H), 2.36 (t, J=7 Hz, 2H), 2.29-2.19 (m, 1H), 2.19-2.06 (m, 1H), 2.14 (s, 3H), 2.00-1.50 (m, 9H); 13 C NMR (CDCl₃, 68 MHz) δ 158.2, 147.4, 136.5, 126.4, 119.4, 106.9, 68.5, 56.7, 41.7, 40.0, 34.3, 28.7, 26.0, 25.0, 22.1, 16.7;

- 6-[5-(1-methyl-2-pyrrolidinyl)-2-pyridinyl]hexanamine (7:YH7) Compound 6 (0.23 g, 0.83 mmol) was added to a suspension of LiAlH₄ (0.07 g, 2.5 mmol) in dry ether (8 mL) under nitrogen. The mixture was stirred at room temperature for 5h, then heated under reflux for 20h. Saturated aqueous Na_2SO_4 (2 mL) was added and the solid aluminium complex was
- filtered and washed with ether. The organic layer was dried (K₂CO₃), filtered and concentrated. The crude residue was purified by preparative TLC [silica gel, CHCl₃/MeOH/NH₄OH (35:35:2)] to afford 0.13 g (55%) of 7; ¹H-NMR (CD₃OD, 400 MHz) δ 7.83 (d, J=2 Hz, 1H), 7.47 (dd, J=2, 9 Hz, 1H), 6.55, (d, J=9 Hz, 1H), 3.27 (t, J=7 Hz, 2H), 3.25-3.15 (m, 1H), 3.00-2.90 (m, 1H), 2.70 (br s, 2H), 2.35-2.26 (m, 1H) 2.21-2.09 (m, 1H),
- 2.16 (s, 3H), 2.10-1.74 (m, 3H), 1.69-1.35 (m, 8H); ¹³C NMR (CD₃OD, 100 MHz) δ160.3, 147.8, 138.0, 125.5, 110.1, 70.2, 57.8, 42.8, 42.3, 40.5, 34.6, 33.0, 30.5, 28.2, 27.8, 22.9; trans-Benzyl 4-[5-(1-methyl-2-pyrrolidinyl)-2-pyridinylcarbamoyl]cyclohexane-carboxylate (8). DIEA (0.51 ml, 3 mmol) was added to a mixture of 6-aminonicotine (0.27 g, 1.5 mmol), 4-(benzyloxycarbonyl)cyclohexancarboxylic acid² (0.43 g, 1.6 mmol), and
- PyBrOP (0.77 g, 1.6 mmol) in CHCl₃ (20 ml). The reaction mixture was stirred at ambient temperature for 5 min and then heated under reflux for 24 h. Chloroform was evaporated in vacuo and the residue was extracted with ether. The combined ether extracts was washed with water followed by brine and then dried (MgSO₄), filtered and concentrated in vacuo. The residue was chromatographed [silica gel, CH₂Cl₂/MeOH (95:5)], to give 8 (0.44 g, 70%). An analytical sample was obtained by crystallization from iso-hexane; mp 116-118 °C; MS (EI, 20 eV) m/e 422 (M⁺ + 1), 421 (M⁺), 420 (M⁺ H); ¹H NMR (CDCl₃, 270 MHz) δ8.61 (br s, 1H), 8.20-8.15 (m, 2H), 7.70 (dd, J=8.5, 2.5 Hz, 1H), 7.34 (m, 5H), 5.12 (s, 2H), 3.22 (m,
- 1H), 6.20-8.13 (III, 2H), 7.70 (dd, 3-8.3, 2.5 Hz, 1H), 7.34 (m, 5H), 5.12 (s, 2H), 3.22 (m, 1H), 3.03 (app t, 1H), 2.45 1.40 (m, 15H), 2.16 (s, 3H); ¹³C NMR (CDCl₃, 68 MHz): δ175.1, 174.1, 150.8, 146.8, 137.7, 136.0, 134.8, 128.5 (2C's), 128.1, 128.0 (2C's), 114.2, 68.5, 66.1, 30 56.9, 45.4, 42.3, 40.3, 35.1, 28.4 (2C's), 27.9 (2C's), 22.4; ²Wellmar, U. et al. *Nucleosides Nucleotides*, 1996, 15, 1059-1076.
 - trans-4-[5-(1-Methyl-2-pyrrolidinyl)-2-pyridinylcarbamoyl]cyclohexanecarboxylic acid (9:GK5): Palladium on carbon (10 %, 0.04 g) was added to a mixture of 8 (0.15 g, 0.35

WO 99/61054

5

mmol) and cyclohexene (0.15 mL) in EtOH (7 mL). The stirred reaction mixture was heated under reflux for 15 min, filtered and concentrated. The residue was purified by preparative TLC (silica gel, MeOH), dissolved in CH₂Cl₂/EtOH (95:5), filtered and concentrated to yield 9 (0.09 g, 75%); MS (EI, 20 eV) m/e 332 (M⁺ + 1), 331 (M⁺), 330 (M⁺ - H); ¹H NMR (CDCl₃, 270 MHz): δ 10.8 (br s, 1H), 8.34 (d, J=8.5 Hz, 1H), 8.06 (s, 1H), 7.79 (d, J=8.5 Hz, 1H), 3.23 (app t, 1H), 3.05 (app t, 1H), 2.60 - 1.50 (m, 15H), 2.12 (s, 3H); ¹³C NMR (CDCl₃+CD₃OD, 68 MHz): δ 179.6, 175.2, 151.0, 146.2, 138.1, 132.2, 114.4, 68.4, 56.3, 44.9, 42.7, 39.5, 33.7, 28.2, 28.0, 21.8;

7-(tert-Butyloxycarbonylamino)-N-[5-(1-methyl-2-pyrrolidinyl)-3-pyridinyl]heptan-

- amide (SG17). PyBrOP (0.9 g, 1.9 mmol) and DIEA (0.6 ml) was added to a stirred solution of 5-aminonicotine³ (0.3 g, 1.7 mmol) and 7-(tert-butyloxycarbonylamino)heptanoic acid (0.5 g, 2.0 mmol) in dry CH₂Cl₂(5 ml) at 0 °C. The mixture was stirred at 0 °C for 30 min and then at room temperature for 2 h. The solvent was evaporated and EtOAc was added to the residue. The mixture was washed with aqueous saturated NaHCO₃ and brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was chromatographed (SiO. CHCI (MeOH (4:1)) to
 - and concentrated *in vacuo*. The residue was chromatographed [SiO₂, CHCl₃/MeOH (4:1)], to afford 0.59 g (87%) of SG17 as a light yellow oil; 1 H-NMR (270 MHz, CDCl₃) δ 8.83 (br s, 1H), 8.59 (d, J=2 Hz, 1H), 8.27 (br s, 1H), 8.15 (br s, 1H), 4.75 (br s, 1H), 3.21 (ddd, J=9.5, 9.5, 2 Hz, 1H), 3.15-3.04 (m, 3H), 2.39-2.13 (m, 7H), 1.95-1.65 (m, 5H), 1.50-1.31 (m, 15H); 13 C-NMR (68 MHz, CDCl₃) δ 172.5, 156.4, 144.4, 140.3, 139.2, 135.7, 126.4, 79.4, 68.9,
- 20 57.1, 40.5, 37.2, 35.2, 30.1, 28.6 (3 Cs), 26.3, 25.5, 22.8;
 - ³L. Röndahl. Acta Pharm. Suec. 1977, 14, 113-118.
 - 7-Amino-N-[5-(1-methyl-2-pyrrolidinyl)-3-pyridinyl]heptanamide (SG18). TFA (2.0 ml, 26.0 mmol) was added to a stirred solution of SG17 (0.48 g, 1.2 mmol) in dry CH₂Cl₂ (35 ml) at 0 °C. The stirred solution was allowed to reach room temperature and after 6 h the solution
- was brought to pH~8 by addition of aqueous saturated K₂CO₃. The mixture was evaporated to complete dryness under reduced pressure. The residue was chromatographed [SiO₂, CHCl₃/MeOH/NH₄OH (4:1:0.5] to afford 0.25 g (69%) of SG18 as a yellow oil; ¹H-NMR (270 MHz, CDCl₃) δ9.30 (br s, 1H), 8.59 (br s, 1H), 8.22-8.13 (m, 2H), 3.88 (br s, 2H), 3.16-3.12 (m, 1H), 3.08-3.02 (m, 1H), 2.71 (br s, 2H), 2.39-2.12 (m, 7H), 1.87-1.64 (m,
- 30 5H), 1.47-1.31 (m, 6H); ¹³C-NMR (68 MHz, CDCl₃) δ172.7, 144.1, 140.0, 139.7, 135.9, 126.6, 68.8, 57.1, 41.5, 40.6, 37.1, 35.3, 31.9, 28.8, 26.4, 25.4, 22.8;

Preparation of some linkers (Scheme 4)

trans-(4-Prop-2-ynylcyclohexyl)methanol (GK91). Lithium acetylide ethylenediamine complex (7.4 g, 72.5 mmol) was suspended in 40 ml of dry DMSO and a solution of trans-4-

WO 99/61054

5

10

(hydroxymethyl)cyclohexylmethyl toluene-4-sulfonate (8.0 g, 26.8 mmol) in DMSO (30 ml) was added at 5 °C. The mixture was stirred for 2 h at ambient temperature, quenched with cold H₂O (200 ml) and filtered through a pad of celite. The resulting solution was extracted with ether (4 x 50 ml). The combined organic layers was washed with water and brine, dried over MgSO₄, filtered and concentrated in vacuo yielding 3.5 g (86 %) of GK91 which was used in the next step without further purification; ¹H NMR (CDCl₃, 270 MHz) &3.44 (d, J=6 Hz, 2H), 2.10 (dd, J=6.5, 2.5 Hz, 2H) 1.97 (t, J=2.5 Hz, 1H), 1.86 (m, 4H), 1.72 (br s, 1H), 1.43 (m, 2H), 1.01 (m, 4H); 13 C NMR (CDCl₃, 68 MHz) δ 83.3, 69.0, 68.4, 40.1, 37.1, 31.8, 29.1, 26.0. A portion of this material was converted to the 3,5-dinitrobenzoate. mp 106-108 °C (from iso-hexane); ¹H NMR (CDCl₃, 270 MHz) δ 9.23 (t, J=2 Hz, 1H), 9.15 (d, J=2 Hz, 2H), 4.29 (d, J=6.5 Hz, 2H), 2.15 (dd, J=6.5, 2.5 Hz, 2H), 1.98 (t, J=2.5 Hz, 1H), 1.92 (m, 4H), 1.85 (m, 1H), 1.52 (m, 1H), 1.14 (m, 4H); 13 C NMR (CDCl₃, 68 MHz) δ 162.5, 148.7, 134.1, 129.3, 122.3, 82.9, 71.7, 69.3, 36.9, 36.8, 31.4, 29.2, 25.9; trans-4-Prop-2-ynylcyclohexanecarboxylic acid. (GK68). A solution of chromium trioxide 15 (1.18 g, 11.8 mmol) in 2M H₂SO₄ (10 ml, 20 mmol) was maintained at 0 °C while 0.9 g (~5.9 mmol) of GK91 in acetone (20 ml) was added. The reaction mixture was stirred for 1 h at 0 °C and for 2 h at room temperature. The excess of oxidizing agent was destroyed with solid Na,SO₃ (0.8 g, 6.3 mmol). Ether (~100 ml) was added and the mixture was extracted with brine (3 × 50 ml). The organic phase was dried (Na₂SO₄), filtered and concentrated. The 20 residue was crystallized from iso-hexane to give 0.74 g (75%) of GK68 as colorless crystals. mp 84-86 °C (iso-hexane); 'H NMR (CDCl₃, 270 MHz) δ10.4 (br s, 1H), 2.27 (app tt, 1H), 2.12 (dd, J=6.5, 2.5 Hz, 2H), 1.98 (t, J=2.5 Hz, 1H), 2.15-1.87 (m, 4H), 1.6-1.35 (m, 3H), 1.09 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) & 182.4, 82.8, 69.4, 42.8, 36.2, 31.3, 28.4, 25.8; trans-4-Prop-2-ynylcyclohexanecarboxylic acid methyl ester. (GK70). GK68 (0.7 g, 4.2 mmol) was dissolved in a mixture of MeOH (5 mL) and trimethyl orthoformate (1 mL). 25 Dowex 50W X2 (0.2 g) was added and the reaction mixture was stirred overnight at ambient temperature. The resin was filtered off and the solvents were evaporated in vacuo. The residue was purified by bulb to bulb distillation (175 °C, 13 mm) to give 0.71 g (93 %) of GK70 as an oil; 'H NMR (CDCl₃, 270 MHz) δ 3.66 (s, 3H), 2.24 (app tt, 1H), 2.11 (dd, J=6.5, 2.5 Hz, 30 2H), 2.07-1.85 (m, 4H), 1.97 (t, J=2.5 Hz, 1H), 1.6-1.35 (m, 3H), 1.06 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) δ176.3, 82.8, 69.3, 51.5, 43.0, 36.2, 31.4, 28.7, 25.8; trans-(4-Prop-2-ynylcyclohexyl)methyl toluene-4-sulfonate(GK87). A solution of GK91

(3.04 g, 20 mmol) in pyridine (30 ml) was cooled to 0 °C and p-toluenesulfonyl chloride (4 g,

10

15

20

25

30

84.6, 68.3, 42.2, 33.7, 28.6, 28.5, 26.4, 18.4;

21 mmol) was added. The reaction mixture was stirred for 2 h at 0 °C and overnight at ambient temperature. The pyridine was evaporated in vacuo and the residue was dissolved in ether, washed with 1M HCl, H2O, NaHCO3 and brine, dried over MgSO4, filtered and evaporated. The solid residue was recrystallized from iso-hexane to give 5.57 g (91%) of GK87: mp 59-60 °C; 'H NMR (CDCl₃, 270 MHz) δ 7.78 (m, 2H), 7.34 (m, 2H), 3.82 (d, J=6.5 Hz, 2H), 2.45 (s, 3H), 2.07 (dd, J=6.5, 2.5 Hz, 2H), 1.95 (t, J=2.5 Hz, 1H), 1.80 (m, 4H), 1.60 (m, 1H), 1.41 (m, 1H), 0.97 (m, 4H); 13 C NMR (CDCl₁, 68 MHz) δ 144.6, 133.1, 129.8, 127.8, 82.9, 75,1, 69.2, 37.0, 36.7, 31.3, 28.7, 25.8, 21.6; trans-(4-Prop-2-ynylcyclohexyl)methylamine (GK88). A solution of GK87 (1.53 g, 5 mmol) in MeOH (50 ml) was saturated with NH, at -15 °C and then heated in a sealed vessel at 100 °C for 3 h. The MeOH was evaporated in vacuo. The residue was dissolved in 1M HCl (50 ml) and extracted with CH₂Cl₂ (3 × 20 ml) to remove bis(trans-(4-prop-2-ynylcyclohexylmethyl)amine hydrochloride. The water phase was alkalinized with solid NaOH to pH12 and extracted with ether (3 × 20 ml). The combined organic extracts were dried over KOH, filtered and concentrated in vacuo to give 0.4 g (53%) of GK88; ¹H NMR (CDCl₃, 270 MHz) δ 2.51 (br d, 2H), 2.07 (m, 2H), 1.94 (m, 1H), 1.83 (m, 4H), 1.42 (m, 1H), 1.3–0.8 (m, 7H); ¹³C NMR (CDCl₃, 68 MHz) &83.3, 68.9, 48.6, 41.0, 37.2, 32.0, 30.3, 26.0; 6-Bromohexylammonium bromide4 (SG20). A mixture of 6-amino-1-hexanol (4.3 g, 37.0 mmol) in HBr 48% (105 ml) was stirred at 95 °C for 11h. The solution was concentrated in vacuo to afford 8.5 g (89%) of SG20 as a brownish hygroscopic powder (mp of crude SG20: 128-132 °C); ¹H-NMR (270 MHz, CD₃COCD₃) &8.30 (br s, 2H), 3.53 (t, *J*=7 Hz, 1H), 3.52 (t, J=7 Hz, 1H), 3.13-3.06 (m, 2H), 1.91-1.87 (m, 4H), 1.54-1.46 (m, 4H); 13C-NMR (68 MHz, CD₃COCD₃) δ40.5, 34.8, 33.4, 28.3, 27.7, 26.4; ⁴Dumont, J.L.; Chodkiewicz, W.; Cadiot, P. Bull. Soc. Chim. Fr. 1967, 2, 558-596. 7-Octynamine⁵ (SG26). A solution of SG20 (3.0 g, 11.5 mmol) in dry DMSO (2 ml) was added dropwise over a period of 45 min to a stirred slurry of lithium acetylide, ethylendiamine complex (7.0 g, 76.0 mmol) in dry DMSO (36 ml) at 8 °C. After 3 h at 8 °C the slurry was slowly poured into a cooled solution of brine (ca 300 ml). The solution was extracted with hexane (3x150 ml) and the combined organic phases was dried over Na₂SO₄, filtered and concentrated in vacuo at room temperature to afford 1.0g (69%) of SG26 as a light yellow oil; IR (film) v_{max} 2114, 3296 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.63 (t; J=7 Hz, 2H), 2.14 (dt; J=7, 2.5 Hz, 2H), 1.88 (t; J=2.5 Hz, 1H), 1.39-1.31 (m, 10H); 13 C NMR (68 MHz, CDCl₃) δ

⁵Novis Smith, W. and Beumel, O.F. Synthesis, 1974, 441-442.

General procedure for coupling of 6-bromonicotine and 5-bromonicotine with terminal alkynes. (Scheme 5) A mixture of 6-bromonicotine⁶ (or 5-bromonicotine⁷) (0.24 g, 1 mmol), bis(triphenyl-phosphine)palladium dichloride (0.014 g, 0.02mmol) and CuI (0.004 g,

- 5 0.02mmol) in 5 ml of Et₃N was deoxygenated with N₂. The acetylenic compound (1.1 mmol) was added and the reaction mixture was heated at 120 °C for 40 min (4 h for 5-bromonicotine) in a sealed vessel. The Et₃N was evaporated *in vacuo* and the residue was dissolved in EtOAc, washed with saturated aqueous NaHCO₃ and extracted with 20 ml of 2N HCl. The acidic aqueous phase was extracted with EtOAc (4×20 ml). The aqueous layer was saturated with
- solid NaHCO₃ and extracted with EtOAc (3×30 ml). The organic phase was washed with brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by column chromatography.
 - ⁶M. Dukat, W. Fiedler, D. Dumas, I. Damaj, B.R. Martin, J.A. Rosecrans, J.R. James, R.A. Glennon. *Eur. J. Med. Chem.* 1996, 31, 875-888. ⁷ L.S. Bleicher, N.D.P. Cosford, A. Herbaut, J.S. McCallum and I.A. McDonald. *J.Org. Chem.* 1998, 63, 1109-1118.
 - Methyl 4-[(5-(1-methyl-2-pyrrolidinyl)-2-pyridinyl)ethynyl]benzoate (GK47). Methyl 4-ethynylbenzoate was prepared according to ref 8. Purification: column chromatography [silica, acetone/iso-hexane (1:2)]; yield 78%; mp 102-104 °C (iso-hexane); ¹H NMR (CDCl₃, 270 MHz) δ8.56 (br s, 1H), 8.03 (dd, *J*=8.5, 1.5 Hz, 2H), 7.72 (app dt, 1H), 7.63 (dd, *J*=8.5,
- 20 1.5 Hz, 2H), 7.52 (d, *J*=8 Hz, 1H), 3.92 (s, 3H), 3.25 (m, 1H), 3.13 (t, *J*=8 Hz, 1H), 2.4-2.1 (m, 5H), 2.1-1.6 (m, 3H); ¹³C NMR (CDCl₃, 68 MHz) δ166.3, 149.9, 141.6, 138.9, 135.1, 131.8, 130.0, 129.4, 127.2, 127.0, 91.3, 87.7, 68.6, 56.9, 52.2, 40.3, 35.3, 22.6; ⁸S.J. Havens and P.M. Hergenrother. *J. Org. Chem.* 1985, 50, 1763-1765.
- Methyl 7-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)hept-6-ynoate. (GK79). Methyl 6heptynoate was prepared according to ref 9. Purification: column chromatography [silica,
- acetone/iso-hexane (1:2)]; yield 73%; ¹H NMR (CDCl₃, 270 MHz) δ8.45 (d, *J*=2 Hz, 1H), 7.63 (dd, *J*=8, 2 Hz, 1H), 7.33 (d, *J*=8 Hz, 1H), 3.67 (s, 3H), 3.23 (m, 1H), 3.08 (app t, 1H), 2.47 (t, *J*=7 Hz, 2H), 2.37 (t, *J*=7 Hz, 2H), 2.31 (m, 1H), 2.18 (m, 1H), 2.16 (s, 3H), 2.05–1.6 (m, 7H); ¹³C NMR (CDCl₃, 68 MHz) δ173.7, 149.5, 142.5, 137.7, 134.9, 126.6, 89.6, 80.7,
- 30 68.6, 56.9, 51.4, 40.3, 35.1, 33.5, 27.7, 24.1, 22.5, 19.0;
 ⁹E.C. Taylor et al. *J. Org. Chem.* 1991, 56, 1807-1812.
 - Methyl 7-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)hept-6-ynoate. (GK77).). Methyl 6-heptynoate was prepared according to ref 9. Purification: column chromatography [silica,

20

WO 99/61054 PCT/SE99/00920

14

acetone/iso-hexane (1:2)]; yield 60%; ¹H NMR (CDCl₃, 270 MHz) \$8.51 (br s, 1H), 8.42 (br s, 1H), 7.71 (br s, 1H), 3.68 (s, 3H), 3.24 (m, 1H), 3.08 (app t, 1H), 2.46 (t, *J*=7 Hz, 2H), 2.38 (t, *J*=7 Hz, 2H), 2.31 (m, 1H), 2.20 (m, 1H), 2.17 (s, 3H), 2.1–1.55 (m, 7H); ¹³C NMR (CDCl₃, 68 MHz) \$173.8, 151.0, 147.8, 138.2, 137.3, 120.8, 92.9, 77.9, 68.5, 56.9, 51.5, 40.3, 35.1, 33.5, 27.9, 24.1, 22.6, 19.1;

trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)prop-2-ynyl]cyclohexanecarboxylic acid methyl ester (GK78). Purification: column chromatography [silica, acetone/iso-hexane (1:2)]; yield 87%; ¹H NMR (CDCl₃, 270 MHz) δ 8.46 (d, J=2 Hz, 1H), 7.63 (dd, J=8, 2 Hz, 1H), 7.34 (d, J=8 Hz, 1H), 3.66 (s, 3H), 3.24 (m, 1H), 3.08 (app t, 1H), 2.4–2.1 (m, 8H), 2.1–

10 1.3 (m, 10H), 1.15 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) δ176.3, 149.5, 142.6, 137.7, 134.9, 126.7, 88.7, 81.5, 68.6, 56.9, 51.5, 43.0, 40.3, 36.4, 35.1, 31.6, 28.7, 26.8, 22.6;

trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)prop-2-ynyl]cyclohexanecarboxylic acid methyl ester (GK75). Purification: column chromatography [silica, acetone/iso-hexane (1:2)]; yield 58%; ¹H NMR (CDCl₃, 270 MHz) δ 8.50 (d, J=2 Hz, 1H), 8.41 (d, J=2 Hz, 1H),

7.71 (d, *J*=2 Hz, 1H), 3.67 (s, 3H), 3.25 (m, 1H), 3.08 (app t, 1H), 2.4–2.1 (m, 8H), 2.1–1.3 (m, 10H), 1.14 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) δ176.3, 151.1, 147.8, 138.1, 137.2, 120.8, 91.9, 78.6, 68.5, 56.9, 51.5, 43.0, 40.3, 36.5, 35.1, 31.6, 28.7, 26.9, 22.6; 2-(3-Hydroxy-3-methylbut-1-ynyl)-5-(1-methyl-2-pyrrolidinyl)pyridine (GK55).

Purification: column chromatography [silica, acetone/iso-hexane (1:1)]; yield 90%; ¹H NMR (CDCl₃, 270 MHz) δ 8.47 (d, J=2 Hz, 1H); 7.67 (dd, J=8, 2 Hz, 1H), 7.37 (d, J=8 Hz, 1H), 3.50 (br s, 1H) 3.23 (m, 1H), 3.08 (app t, 1H), 2.30 (m, 1H), 2.19 (m, 1H), 2.15 (s, 3H), 2.05–1.55 (m, 3H), 1.64 (s, 6H); ¹³C NMR (CDCl₃, 68 MHz) δ 149.4, 141.7, 138.3, 135.1, 127.0, 94.0, 81.2, 68.6, 65.0, 56.9, 40.3, 35.1, 31.2, 22.6;

trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)-prop-2-ynyl]cyclohexylmethylamine (GK89). Purification: column chromatography [silica, CHCl₃: MeOH saturated with NH₃ (15:1)]; yield 90%; ¹H NMR (CDCl₃, 270 MHz) δ8.50 (d, *J*=2 Hz, 1H), 8.40 (d, *J*=2 Hz, 1H), 7.70 (t, *J*=2 Hz, 1H), 3.24 (m, 1H), 3.07 (app t, 1H), 2.55 (d, *J*=6.5 Hz, 2H), 2.33 (d, *J*=6.5 Hz, 2H), 2.17 (s, 3H), 2.4-2.1 (m, 2H), 2.1-1.4 (m, 10H), 1.26 (m, 1H), 1.2-0.85 (m, 4H); ¹³C NMR (CDCl₃, 68 MHz) δ151.0, 147.7, 138.2, 137.2, 120.9, 92.4, 78.4, 68.4, 56.9, 48.5, 40.9, 40.3, 37.4, 35.1, 32.2, 30.3, 27.0, 22.6;

8-[5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl]oct-7-ynamine (SG29). The reaction mixture was heated for 6h. Purification: column chromatography [SiO₂, CHCl₃/MeOH/NH₄OH, (5:1:0.1)]; yield 0.36g (86%) (based on recovered 5-bromonicotine); IR (film) v_{max} 2232 cm⁻¹;

¹H-NMR (270 MHz, CDCl₃) δ 8.47 (d, J=2 Hz, 1H), 8.38 (d, J=2 Hz, 1H), 7.68 (dd, J=2, 2 Hz, 1H), 3.21 (ddd, J=9.5, 9.5, 2 Hz 1H), 3.08-3.01 (m, 1H), 2.71-2.66 (m, 2H), 2.40 (t, J=7 Hz, 2H), 2.34-2.11 (m, 5H), 1.98-1.31 (m, 13H); ¹³C-NMR (68 MHz, CDCl₃) δ147.2, 143.9, 134.5, 133.5, 117.1, 89.7, 64.7, 53.1, 37.8, 36.6, 31.3, 28.7, 24.8, 24.6, 22.5, 18.8, 15.5; 5 trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)-prop-2-ynyl]-cyclohexylmethylamine (GK90). A mixture of 6-bromonicotine (0.47g, 2 mmol), tris(dibenzylideneacetone)dipalladium [(dba)₃Pd₂] (0.018g, 0.02 mmol), 1,3-bis(diphenylphosphino)propane (dppp) (0.032 g, 0.08 mmol) and CuI (0.008g, 0.04mmol) in 15 ml of Et₃N was deoxygenated with N₂ and then GK88 (0.326g, 2.16 mmol) was added. The reaction mixture was heated at 120 10 °C for 6 h in a sealed vessel. The Et₃N was evaporated in vacuo. The residue was dissolved in EtOAc, washed with diluted NaOH solution and extracted with 40 ml of 2N HCl. The acidic aqueous phase was extracted with EtOAc (4x20 ml). The aqueous layer was alkalinized with solid NaOH to pH12 and extracted with EtOAc (5x30 ml). The combined organic phases was washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was 15 purified by column chromatography [silica, CHCl₃/MeOH saturated with NH₃, (15:1)] yielding 0.43 g (71%) of **GK90**; ¹H NMR (CDCl₃, 270 MHz) δ 8.46 (d, J=2 Hz, 1H), 7.62 (dd, J=8, 2 Hz, 1H), 7.34 (d, J=8 Hz, 1H), 3.23 (m, 1H), 3.07 (app t, 1H), 2.53 (d, J=6.5 Hz, 1H), 3.23 (m, 1H), 3.07 (app t, 1H), 2.53 (d, J=6.5 Hz, 1H), 3.23 (m, 1H), 3.07 (app t, 1H), 3.02H), 2.34 (d, J=6.5 Hz, 2H), 2.30 (app q, 1H), 2.18 (m, 1H), 2.15 (s, 3H), 2.05-1.45 (m, 8H), 1.35-0.85 (m, 7H); ¹³C NMR (CDCl₃, 68 MHz) δ149.5, 142.7, 137.6, 134.8, 126.7, 89.3, 81.3, 20 68.6, 56.9, 48.7, 41.0, 40.3, 37.4, 35.1, 32.3, 30.3, 26.9, 22.6; trans-3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)acrylic acid methyl ester (GK59). A mixture of 5-bromonicotine (0.241g, 1 mmol), Pd(OAc)₂ (0.011g, 0.05 mmol), tri-otolylphosphine (0.060 g, 0.2 mmol) and Et₃N (0.17 ml, 1.25 mmol) in 5 ml of MeCN was deoxygenated with N2 and methyl acrylate (0.112 ml, 1.25 mmol) was added. The reaction mixture was heated in a sealed vessel at 110 °C overnight. MeCN was evaporated in vacuo 25 and the residue was dissolved in EtOAc, washed with saturated NaHCO3 solution and extracted with 20 ml of 2N HCl. The acidic aqueous phase was extracted with EtOAc (4x20 ml). The aqueous layer was saturated with solid NaHCO3 and extracted with EtOAc (3x30 ml). The organic phase was washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by column chromatography [silica, CHCl₃/MeOH, (40:1)]; 30 yield 0.2 g (80 %); mp 42-44 °C; ¹H NMR (CDCl₃, 270 MHz) δ 8.62 (d, J=2 Hz, 1H), 8.53 (d, J=2 Hz, 1H), 7.87 (t, J=2 Hz, 1H), 7.69 (d, J=16.0 Hz, 1H), 6.55 (d, J=16.0 Hz, 1H), 3.82 (s, 3H), 3.26 (m, 1H), 3.15 (app t, 1H), 2.34 (app q, 1H), 2.22 (m, 1H), 2.18 (s, 3H), 2.1-1.6 (m,

10

30

22.1, 19.1;

3H); ¹³C NMR (CDCl₃, 68 MHz) δ166.7, 150.9, 148.6, 141.2, 139.3, 132.8, 130.1, 119.9, 68.4, 56.9, 51.8, 40.4, 35.3, 22.6;

Methyl 4-[(5-(1-methyl-2-pyrrolidinyl)-3-pyridinyl)ethynyl]benzoate (YH19). A mixture of 5-bromonicotine (0.44 g, 1.82 mmol), Pd(OAc)₂ (60 mg, 0.34 mmol), Ph₃P (0.19 g, 0.72 mmol), CuI (30 mg) and Et₃N (30 mL) was stirred at room temperature for 30 min. Methyl 4-ethynylbenzoate⁸ (0.32 g, 2 mmol) was added and the mixture was refluxed over night. The reaction mixture was allowed to reach room temperature, diluted with CH₂Cl₂ (120 mL) and washed with H₂O. The organic phase was dried (MgSO₄), filtered and concentrated. The residue was chromatographed [SiO₂, CHCl₃/MeOH (50:1)] to give 0.37 g (64%) of YH19. An analytical sample was recrystallized from EtOH/*iso*-hexane; mp: 97-98 °C; ¹H NMR (270 MHz, CDCl₃) δ8.65 (br s, 1H), 8.49 (br s, 1H), 8.03-7.97 (m, 2H), 7.85 (br s, 1H), 7.59-7.53 (m, 2H), 3.89 (s, 3H), 3.27-3.19 (m, 1H), 3.10 (t, *J*=8.5 Hz, 1H), 2.36-2.13 (m, 2H), 2.17 (s, 3H), 2.04-1.62 (m, 3H); ¹³C NMR (270 MHz, CDCl₃) δ166.3, 150.9, 148.8, 138.6, 137.4, 131.5, 129.8, 129.5, 127.2, 119.7, 91.5, 89.0, 68.3, 56.9, 52.2, 40.3, 35.2, 22.7;

- 15 General procedure for the hydrolysis of esters (Scheme 6).
 - 4-[(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)ethynyl]benzoic acid (GK49). A mixture of GK47 (0.185 g, 0.58 mmol) and KOH (0.097 g, 1.73 mmol) in 50 % aqueous MeOH (10 ml) was heated under reflux for 30 min. The reaction mixture was acidified with HOAc to pH 8 and the solvents were evaporated *in vacuo*. The crude product was purified by column
- chromatography (silica gel, CHCl₃/MeOH, gradient of MeOH 10% to 50%). The solvents were evaporated *in vacuo*. The residue was dissolved in CH₂Cl₂/EtOH, (95:5), filtered and evaporated *in vacuo* to give 0.17 g (96%) of **GK49**; ¹H NMR (CD₃OD, 270 MHz) δ8.54 (br s, 1H), 8.04 (d, *J*=8.5 Hz, 2H), 7.91 (dd, *J*=8, 2 Hz, 2H), 7.64 (d, *J*=8 Hz, 1H), 7.60 (d, *J*=8.5 Hz, 2H), 3.46 (app t, 1H), 3.36 (m, 1H), 2.55 (app q, 1H), 2.40–2.20 (m, 4H), 2.10–1.80 (m,
- 25 3H); ¹³C NMR (CD₃OD, 68 MHz) δ174.1, 150.8, 143.5, 138.4, 138.2, 137.9, 132.6, 130.8, 128.9, 125.6, 90.7, 90.2, 70.1, 57.9, 40.5, 35.2, 23.4;
 - 7-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)hept-6-ynoic acid (GK81). The compound was purified by preparative TLC [silica, CHCl₃/MeOH, (5:1)]; yield 93%; ¹H NMR (CDCl₃, 270 MHz) δ 11.49 (br s, 1H), 8.40 (br s, 1H), 8.68 (dd, J=8, 2 Hz, 1H), 7.31 (d, J=8 Hz, 1H), 3.32 (m, 1H), 3.22 (app t, 1H), 2.5-2.1 (m, 9H), 2.1-1.5 (m, 7H); ¹³C NMR (CDCl₃, 68 MHz) δ 177.1, 149.3, 142.8, 135.6, 135.3, 126.9, 91.1, 80.0, 68.7, 56.3, 39.6, 34.2, 33.9, 27.8, 24.4,
 - 7-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)hept-6-ynoic acid (GK80). The compound was purified by preparative TLC [silica, CHCl₃/MeOH, (5:1)]; yield 79%; ¹H NMR (CDCl₃, 270

138.2, 136.5, 121.3, 93.9, 77.3, 68.5, 56.3, 39.7, 34.1 (2 C's), 28.0, 24.4, 22.2, 19.2; trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)prop-2-ynyl]cyclohexanecarboxylic acid (GK83). The compound was purified by column chromatography [silica, CHCl₃/MeOH, (10:1)]; yield 80%; ¹H NMR (CDCl₃, 270 MHz) δ10.2 (br s, 1H), 8.59 (s, 1H), 7.81 (d, J=8 Hz, 1H), 7.38 (d, J=8 Hz, 1H), 3.33 (m, 1H), 3.23 (m, 1H), 2.5-1.2 (m, 20H); ¹³C NMR (CDCl₃, 68 MHz) δ179.4, 148.7, 141.9, 136.9 (br), 136.0, 127.0, 90.6, 80.6, 68.6, 56.7, 43.1, 40.0, 36.2, 34.6, 31.1, 29.1, 26.7, 22.5;

17

- trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)prop-2-ynyl]cyclohexanecarboxylic acid (GK82). The compound was purified by preparative TLC [silica, CHCl₃/MeOH, (10:1)]; yield 85%; ¹H NMR (CD₃OD, 270 MHz) δ8.48 (br s, 1H), 8.44 (br s, 1H), 7.90 (s, 1H), 3.50 (app t, 1H), 3.40 (m, 1H), 2.60 (app q, 1H), 2.4-1.8 (m, 14H), 1.65-1.35 (m, 3H), 1.18 (m, 2H); ¹³C NMR (CD₃OD, 68 MHz) δ181.1, 152.2, 148.7, 139.7, 137.7, 123.2, 94.5, 79.0, 70.1, 57.8, 45.3, 40.3, 38.3, 35.0, 33.1, 30.5, 27.7, 23.3;
- trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)propyl]cyclohexanecarboxylic acid (GK95). The compound was purified by preparative TLC [silica, CHCl₃/MeOH, (10:1)]; yield 93%; ¹H NMR (CDCl₃+C₆D₆, 270 MHz) δ 11.89 (br s, 1H), 8.34 (d, *J*=2 Hz, 1H), 8.32 (d, *J*=2 Hz, 1H), 7.63 (app t, 1H), 3.28 (m, 1H), 2.97 (m, 1H), 2.44 (t, *J*=8 Hz, 2H), 2.35-1.35 (m, 14H), 2.05 (s, 3H), 1.15 (m, 3H), 0.85 (m, 2H); ¹³C NMR (CDCl₃+C₆D₆, 68 MHz) δ179.3, 148.5, 146.5, 138.3, 136.6, 135.0, 68.6, 56.2, 43.9, 39.5, 37.0, 36.8, 34.1, 33.2, 32.4, 32.3, 29.2, 28.3, 22.0;
 - trans-3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)acrylic acid (GK62). The compound was purified by column chromatography [silica, CHCl₃/EtOH, (1:1)]; yield 82%; ¹H NMR (CDCl₃, 270 MHz) δ 13.48 (br s, 1H), 8.73 (s, 1H), 8.47 (s, 1H), 8.40 (s, 1H), 7.64 (d, J=16 Hz, 1H), 6.76 (d, J=16 Hz, 1H), 3.83 (m, 1H), 3.55 (m, 1H), 2.62 (m, 1H), 2.5-2.0 (m, 7H); ¹³C NMR (CDCl₃, 68 MHz) δ 169.9, 149.8, 148.8, 138.1, 134.4, 134.0, 131.7, 125.3, 69.0, 55.6, 38.9, 33.4, 21.9;
- 4-[(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)ethynyl]benzoic acid (YH20). KOH (168 mg, 3 mmol) was added to YH19 (0.32 g, 1 mmol) in MeOH (5 mL). The stirred mixture was refluxed for 2h and then cooled to room temperature. HOAc was added to pH8 and the volatiles were evaporated. The residue was chromatographed [SiO₂, CHCl₃/MeOH (5:1)] to give 0.19 g (62%) of YH20; ¹H NMR (270MHz, CDCl₃) δ11.00 (br s, OH), 8.75 (br s, 1H), 8.44 (m, 2H), 8.10 (d, *J*=8 Hz, 2H), 7.42 (d, *J*=8.5 Hz, 2H), 3.94-3.84 (m, 1H), 3.63-3.52 (m,

- 1H), 2.69-2.58 (m, 1H), 2.42 (s, 3H), 2.42-1.98 (m, 4H); ¹³C NMR (270 MHz, CDCl₃) δ 169.5, 151.6, 148.9, 139.0, 133.8, 132.9, 131.5, 129.6, 125.3, 120.8, 93.0, 87.4, 69.0, 55.5, 38.8, 33.2, 21.7;
- 4-(3-(N-Methylpyrrolidin-2-yl)pyridin-5-ylethyl)benzoic acid (YH24). KOH (130 mg,
- 2.32 mmol) was added to a solution of YH22 (0.12 g, 0.37mmol), H₂O (3 mL) and 1,4-dioxane (3 mL). After reflux for 2h the pH of the mixture was adjusted to 8 by addition of HOAc. Volatiles were evaporated and the residue was chromatographed [SiO₂, CHCl₃/MeOH (2:1)] to give 70 mg (61%) of YH24; ¹H NMR (400 MHz, CDCl₃) δ8.44 (br s, 2H), 7.92 (s, 1H), 7.88 (d, J=8 Hz, 2H), 7.12 (d, J=8 Hz, 2H), 3.98-3.91 (m, 1H), 3.75-3.66 (m, 1H), 2.99-
- 2.85 (m, 5H), 2.50 (s, 3H), 2.43-2.31 (m, 1H), 2.27-2.06 (m, 3H); ¹³C NMR (400 MHz, CDCl₃) δ172.9, 151.0, 148.4, 145.9, 139.6, 137.9, 134.1, 130.8 (2C's), 129.5 (3C's), 70.6, 57.2, 39.5, 38.2, 35.4, 33.7, 22.9;
 - General procedure for hydrogenation of triple bonds (Scheme 7).
- trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)propyl]cyclohexanecarboxylic acid
- 15 (GK84). GK83 (0.153 g, 0.47 mmol) in 40 ml of EtOH was hydrogenated at room temperature and atmospheric pressure over 0.1g of 10% palladium on carbon for 1 h. The catalyst was filtered off and washed with EtOH. The solvent was evaporated *in vacuo* and the residue was purified by preparative TLC [silica, CHCl₃/MeOH, (10:1)] to give 0.07 g (45%) of GK84; ¹H NMR (CD₃OD, 270 MHz) δ8.55 (d, J=2 Hz, 1H), 7.96 (dd, J=8, 2 Hz, 1H), 7.42
- 20 (d, *J*=8 Hz, 1H), 4.14 (m, 1H), 3.69 (m, 1H), 3.08 (m, 1H), 2.81 (t, *J*=7.5 Hz, 2H), 2.61 (s, 3H), 2.47 (m, 1H), 2.21 (m, 4H), 2.0-1.6 (m, 6H), 1.5-1.1 (m, 5H), 0.96 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) δ180.0, 163.3, 148.8, 136.8, 128.6, 123.7, 69.5, 55.8, 43.6, 38.4, 37.6, 32.3, 32.2, 29.1, 27.0, 21.5;
 - trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)-propyl]cyclohexylmethylamine
- 25 (GK93). Purification: column chromatography [alumina, CHCl₃/MeOH, gradient of methanol 10-50 %]; yield 78%; ¹H NMR (270 MHz, CDCl₃) δ8.34 (d, *J*=2 Hz, 1H), 8.32 (d, *J*=2 Hz, 1H), 7.50 (t, *J*=2 Hz, 1H), 3.25 (m, 1H), 3.06 (app t, 1H), 2.58 (t, *J*=7.5 Hz, 2H), 2.51 (d, *J*=6.5 Hz, 2H), 2.30 (app q, 1H), 2.19 (m, 1H), 2.17 (s, 3H), 2.05-1.55 (m, 9H), 1.32 (br s, 2H), 1.22 (m, 4H), 0.88 (m, 4H); ¹³C NMR (CDCl₃, 68 MHz) δ148.8, 147.0, 138.0, 137.8,
- 30 134.3, 68.8, 56.9, 48.8, 41.3, 40.3, 37.6, 36.9, 35.1, 33.2, 32.7, 30.6, 28.5, 22.5; trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl)propyl]cyclohexanecarboxylic acid methyl ester (GK94). Purification: column chromatography [silica, acetone/iso-hexane (1:2)]; yield 79%; ¹H NMR (CDCl₃, 270 MHz) δ8.34 (d, J=2 Hz, 1H), 8.31 (d, J=2 Hz, 1H), 7.50 (d, J=2 Hz, 1H), 3.65 (s, 3H), 3.25 (m, 1H), 3.06 (app t, 1H), 2.58 (t, J=8 Hz, 2H), 2.4-

2.1 (m, 3H), 2.17 (s, 3H), 2.05-1.55 (m, 9H), 1.40 (m, 2H), 1.24 (m, 3H), 0.91 (m, 2H); ¹³C NMR (CDCl₃, 68 MHz) \$176.5, 148.8, 147.1, 138.1, 137.7, 134.3, 68.8, 57.0, 51.4, 43.3, 40.4, 36.7, 35.1, 33.2, 32.2, 28.9, 28.4, 22.5;

trans-4-[3-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)-propyl]cyclohexylmethylamine 5 (GK96). Purification: preparative TLC [silica, CHCl₃/MeOH saturated with NH₃ (15:1)]; yield 81%; ¹H NMR (CDCl₃, 270 MHz) δ8.41 (d, J=2 Hz, 1H), 7.60 (dd, J=8, 2 Hz, 1H), 7.11 (d, J=2 Hz, 1H), 3.23 (m, 1H), 3.04 (app t, 1H), 2.74 (t, J=8 Hz, 2H), 2.51 (d, J=6.5 Hz, 2H), 2.29 (app q, 1H), 2.19 (m, 1H), 2.16 (s, 3H), 2.05-1.65 (m, 9H), 1.49 (br s, 2H), 1.35-1.10 (m, 4H), 0.88 (m, 4H); ¹³C NMR (CDCl₃, 68 MHz) δ161.4, 148.8, 135.5, 135.1, 122.5, 68.6, 57.0,

48.8, 41.4, 40.3, 38.4, 37.8, 37.1, 35.0, 32.8, 30.6, 27.4, 22.5;

10

25

- 8-[5-(1-Methyl-2-pyrrolidinyl)-3-pyridinyl]octanamine (SG30). A solution of SG29 (0.2 g, 0.7 mmol) in MeOH (20 ml) was hydrogenated at room temperature and at atmospheric pressure over 10% Pd/C (0.1 g). After 15 min the catalyst was filtered off and washed with MeOH. The volatiles was evaporated under reduced pressure and the residue was
- 15 chromatographed [SiO₂, CHCl₃/MeOH/NH₄OH, (5:1:0.1)] to afford 0.16 g (76%) of SG30 as a colorless oil. ¹H NMR (270 MHz, CDCl₃) δ8.30 (d, J=2 Hz, 1H), 8.28 (d, J=2 Hz, 1H), 7.47 (brs, 1H), 3.21 (ddd, J=9.5, 9.5, 1.5 Hz, 1H), 2.99-3.05 (m, 1H), 2.64 (t, J=7 Hz, 2H), 2.56 (br t, J=8 Hz, 2H), 2.27 (dd, J=17.5, 9 Hz, 1H), 2.09-2.18 (m, 4H), 1.55-1.94 (m, 7H), 1.27-1.42 (m, 10H); 13 C-NMR (68 MHz, CDCl₃) δ 149.0, 147.1, 138.2, 138.1, 134.6, 69.0, 57.2, 42.3, 20 40.6, 35.3, 33.8, 33.1, 31.3, 29.5, 29.3, 27.0, 22.7;
 - 4-[2-(5-(1-Methyl-2-pyrrolidinyl)-2-pyridinyl)ethyl]benzoic acid (GK54). GK49 (0.09g, 0.29 mmol) in 20 ml of MeOH was hydrogenated at room temperature and atmospheric pressure over 0.03g of 10% palladium on carbon for 6 h. The catalyst was filtered off and washed with MeOH. The solvent was evaporated in vacuo and the residue was purified by
- silica gel chromatography [CHCl₃/MeOH, (5:1)] to give 0.052 g (57%) of GK54; ¹H NMR (CD₂OD, 270 MHz) δ 8.52 (d, J=2 Hz, 1H), 7.88 (d, J=8.5 Hz, 2H), 7.83 (dd, J=8, 2 Hz, 1H), 7.25 (d, J=8 Hz, 1H), 7.19 (d, J=8.5 Hz, 2H), 3.74 (m, 1H), 3.51 (m, 1H), 3.08 (m, 4H), 2.76 (m, 1H), 2.41 (s, 3H), 2.36 (m, 1H), 2.07 (m, 3H); 13 C NMR (CD₃OD, 68 MHz) δ 174.2, 162.7, 150.0, 146.1, 138.2, 134.5, 133.1, 130.8, 129.3, 125.1, 70.4, 57.5, 40.2, 39.8, 37.0, 30 33.9, 23.0;
 - Methyl 4-(3-(N-methylpyrrolidin-2-yl)pyridin-5-ylethyl)benzoate (YH22). A mixture of YH19 (0.15 g, 0.468 mmol) and Pd(C) (10%, 20 mg) in MeOH (10 mL) was hydrogenated at atmospheric pressure and room temperature for one day. The catalyst was removed by filtration through Celite and the filtrate was concentrated. The residue was chromatographed

[SiO₂, CHCl₃/MeOH (60:1)] to give 0.15 g (95%) of YH22; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (br s, 2H), 7.91-7.80 (m, 2H), 7.40 (s, 1H), 7.16-7.14 (m, 2H), 3.85 (s, 3H), 3.23-3.16 (m, 1H), 3.05-2.87 (m, 5H), 2.30-2.22 (m, 1H), 2.18-2.08 (m, 1H), 2.09 (s, 3H), 1.92-1.84 (m, 1H), 1.81-1.72 (m, 1H), 1.67-1.57 (m, 1H); ¹³C NMR (400 MHz, CDCl₃) δ166.9, 148.6, 147.3, 146.2, 138.3, 136.5, 134.5, 129.7, 128.0, 68.6, 56.9, 51.9, 40.2, 37.4, 35.0, 34.4, 22.4; **2-Ethynyl-5-(1-methyl-2-pyrrolidinyl)pyridine (GK58)**. **GK55** (0.3 g, 1.23 mmol) and NaH as a 60 % dispersion in mineral oil (0.01 g, 0.17 mmol) were dissolved in dry toluene (50 ml). The stirred solution was slowly distilled until the boiling point of the distillate reached 110 °C (approx. 25 ml of distillate collected). The rest of the toluene was evaporated *in vacuo*. The residue was chromatographed [SiO₂, CHCl₃/MeOH, (10:1)] to give 0.2 g, (87%) of **GK58** as a brown oil; ¹H NMR (CDCl₃, 270 MHz) δ8.51 (d, *J*=2 Hz, 1H), 7.68 (dd, *J*=8, 2 Hz, 1H), 7.45 (d, *J*=8 Hz, 1H), 3.24 (m, 1H), 3.14 (s, 1H), 3.11 (app t, 1H), 2.32 (app q, 1H), 2.20 (m, 1H), 2.16 (s, 3H), 2.05-1.62 (m, 3H); ¹³C NMR (CDCl₃, 68 MHz) δ149.7, 141.0, 139.1, 135.0, 127.3, 82.8, 76.6, 68.5, 56.9, 40.3, 35.2, 22.6:

15 Synthesis of GK56 and GK60 (Scheme 8).

5

10

20

5-(1-Methyl-2-pyrrolidinyl)-2-pyridinylpropiolic acid (GK60). A solution of GK58 (0.175 g, 0.94 mmol) in THF (20 ml) was cooled to -78 °C and BuLi (1.6M solution in hexane, 0.62 ml, 0.99 mmol) was added. The reaction mixture was stirred for 0.5 h at -78 °C and then CO₂ gas was added. After an additional 1 h at -78 °C the reaction mixture was allowed to warm to room temperature. THF was evaporated *in vacuo* and the residue was purified by preparative TLC [silica gel, CHCl₃/MeOH, (1:1)]; yield 0.20 g, (90%); ¹H NMR (CD₃OD, 270 MHz) δ 8.49 (dd, *J*=2, 0.5 Hz, 1H), 7.85 (dd, *J*=8, 2 Hz, 1H), 7.59 (dd, *J*=8, 0.5 Hz, 1H), 3.34-3.21 (m, 2H), 2.42 (app q, 1H), 2.29 (m, 1H), 2.20 (s, 3H), 2.05-1.70 (m, 3H); ¹³C NMR (CD₃OD, 68 MHz) δ 160.4, 150.6, 142.5, 139.8, 137.7, 129.2, 87.4, 78.0, 70.0, 58.0, 40.7, 35.7, 23.5;

5-(1-Methyl-2-pyrrolidinyl)-3-pyridinylpropiolic acid (GK56) The compound was synthesized from 3-ethynyl-5-(1-methyl-2-pyrrolidinyl)pyridine⁷ following the method described for the synthesis of GK60 to give GK56 in a 80% yield after purification by preparative TLC [silica gel, CHCl₃/MeOH, (1:1)]; ¹H NMR (CD₃OD, 270 MHz) δ8.56 (br s, 1H), 8.50 (br s, 1H), 7.93 (t, *J*=2 Hz, 1H), 3.22 (m, 2H), 2.38 (app q, 1H), 2.26 (m, 1H), 2.18
(s, 3H), 2.10–1.6 (m, 3H); ¹³C NMR (CD₃OD, 68 MHz) δ160.7, 152.1, 149.7, 140.4, 140.2, 121.2, 91.0, 75.9, 69.7, 58.0, 40.7, 36.0, 23.6;

WO 99/61054 PCT/SE99/00920 21

III. Preparation of various nicotine immunogens (nicotine-linker-carrier protein) (Scheme 9).

General procedure for the coupling of carboxylic acids to Keyhole Limpet Hemocyanin (KLH).

A solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (9 equiv) and distilled H₂O (500 μL) was added to a mixture of the acid (1 equiv) in distilled H₂O (500 μL) at 0 °C. After 10 min a mixture of KLH (the same amount (mg) as of the acid) in distilled H₂O (1 mL) was added. The reaction mixture was kept at 0 °C for 10 min and then at ambient temperature over night. The pH of the reaction mixture was maintained at pH 4.5-6 during the reaction. The protein conjugate was purified by column chromatography [Sephadex G-25M, (PD-10 column), eluted with distilled H₂O] and then freeze-dried.

General procedure for the coupling of amines to KLH.

15

20

A mixture of KLH (the same amount (mg) as of the amine) and H_2O (1 mL) was added to a mixture of the amine (10 mg) in H_2O (500 μ L) at 0 °C. A solution of EDC (9 equiv) in H_2O (500 μ L) was added to the reaction mixture and the mixture was kept at 0 °C for 10 min and at ambient temperature over night. The pH of the reaction mixture was maintained at pH 4.5-6 during the reaction. The protein conjugate was purified by column chromatography [Sephadex G-25M, (PD-10 column), eluted with distilled H,O] and then freeze-dried.

Scheme 1. Preparation of nicotine immunogens

Scheme 2. Synthesis of 6-aminonicotine-linker molecules.

Schem 3. Synthesis of a 5-aminonicotine derivative.

Scheme 4. Synthesis of some linkers

Scheme 5. Palladium catalyzed coupling reactions of unsaturated derivatives to 5- or 6-bromonicotine.

Sch me 6. Hydrolysis of esters.

Scheme 7. Hydrogenation of triple bond.

Scheme 8. Synthesis of GK56 and GK60.

Scheme 9. Synthesis of nicotine-linker-KLH derivatives (nicotine immunogens).

Description of experiments

MATERIALS AND METHODS Animals

Male Wistar rats were housed in groups of 2-3 under standard laboratory conditions and maintained under a 12 hr light and dark cycle (lights on at 0600 hr) with unlimited access to food and water.

Immunization procedures

Three immunization protocols were used:

- Animals were immunized daily for five days, then rested for two days, and again immunized daily for five days. Each immunization injection contained 10 μg antigen (nicotine-linker-KLH conjugate) in 0.1 ml saline and was administered subcutaneously (s.c.) in the posterior neck region of the body. Controls were injected with either 10 μg KLH in 0.1 ml saline or 0.1 ml saline alone.
- Animals were immunized using 100 μg antigen (nicotine-linker-KLH conjugate) and
 Freund's complete adjuvant in a bolus injection and then given a booster injection on day
 11 or 14, containing 100 μg antigen (nicotine-linker-KLH conjugate) and Freund's incomplete adjuvant; these injections were given i.p in 0.4 ml. Controls were injected with either 100 μg KLH in Freund's complete adjuvant or Freund's complete adjuvant alone.
 In the booster injections Freund's incomplete adjuvant was used in stead of Freund's complete adjuvant.
 - 3. Nicotine self-administering animals were immunized using 100 µg antigen (nicotine-linker-KLH conjugate) and Freund's complete adjuvant in a bolus injection and then given a booster injection on day 7 or 8, containing 100 µg antigen (nicotine-linker-KLH conjugate) and Freund's incomplete adjuvant; these injections were given i.p in 0.4 ml.

25 Elisa

30

10

Elisa-plates (Sigma or Labsystems) were coated with a nicotine-linker-BSA conjugate. When required the plates were blocked using a solution of 3% BSA in PBS. After extensive wash, serum was added in various dilutions (1:1 to 1:390625) and the plates incubated at 37°C. The plates were washed again and after adding the secondary antibody, an alkaline phosphatase conjugated goat anti-rat IgG (Sigma), they were further incubated at 37°C. The enzyme substrate *p*-nitrophenyl phosphate (*p*-NPP) (Sigma) produces a coloured end product that can be read spectro-photometrically at 405 nm.

Competitive Elisa

10

15

20

25

30

The competitive Elisa was performed as the ordinary Elisa with the exception that only a single dilution (1:3125) of serum was used. Nicotine, cotinine, nornicotine, nicotine-N-oxide and niacin respectively were used as competitors.

5 Electrophysiological single-cell recording of dopamine neurons in the VTA

Rats were anaesthetised using chloral hydrate (400 mg/kg, i.p.) with additional doses given when needed to maintain surgical anaesthesia throughout the experiment. Body temperature was maintained at 37°C using a thermostatically controlled heating pad. A tracheal cannula and a jugular vein catheter were inserted before the animal was mounted in a David Kopf stereotaxic instrument. A hole was drilled above the recording area, i.e., AP +3.0, measured from lambda, and ML ± 0.7 mm (Paxinos and Watson, 1986). Electrodes were pulled from Omegadot glass capillaries and filled with Pontamine Sky Blue (2%) in 2 M sodium acetate. The tips were broken under microscope, yielding an impedance of approximately 2.0 MΩ measured at 135 Hz. Presumed DA neurones were found 7.5-8.5 mm from brain surface with characteristics of previously histochemically identified DA neurones (Grace and Bunney, 1983; Wang, 1981), i.e., typical triphasic spike waveforms of more than 2.0 ms duration and basal firing rates of 1-10 Hz. Extracellular action potentials were amplified, discriminated and monitored on an oscilloscope and an audiomonitor. Discriminated spikes were fed, via a Cambridge Electronics design 1401 interface, into an AST Bravo LC 4/66d computer with Spike 2 software. Analysis of the temporal pattern of firing of the DA neurones was performed off-line with a custom analysis script developed in our laboratory. Burst firing, firing rate, and variation coefficient were calculated over a period of 250 consecutive inter-spike time intervals. The onset of a burst was defined as an interval shorter than 80 ms and burst termination at the next interval exceeding 160 ms (Grace and Bunney, 1984). Burst firing was quantified as the percentage ratio between spikes in bursts and the total number of spikes. Variation coefficient was defined as the percentage ratio between the standard deviation and the mean value of the inter-spike intervals (Werner and Mountcastle, 1963).

Nicotine was administered i.v. in the dose range 3-100 μ g/kg, cumulative dose, with doubling of the dose for each step. Nicotine injections were given every 3-5 min. At the end of each experiment a negative current of 5 μ A was passed for 10 min through the electrode to mark the recording site (Lodge et al., 1974). The animals were killed by an overdose of chloral hydrate and the brains were preserved in 5% formaldehyde in 25%

sucrose and later sliced on a microtome in 50 µm thick sections and stained with neutral red for histological verification of recording sites. Only recording sites located within the VTA were accepted in this protocol.

30

Voltammetry

Voltammetric measurements of dopamine were performed in rats pre-treated with pargyline and kept under chloral hydrate anaesthesia. The active part of the carbon fibre electrode was 12 μm thick and 500 μm long. Electrodes were prepared and treated as described by Gonon (1988). Electrodes were positioned at the coordinates: AP= +1.6 and ML= ±0.8 for the NAC_{shell} (Paxinos and Watson, 1986). The tip of the electrode was placed 6.5-7.0 mm below cortical surface and differential normal pulse voltammetry was used to record voltammograms every min with parameters described previously (Gonon et al., 1984 and Gonon, 1988). When a stable baseline was observed the animal was injected iv. with saline and thereafter nicotine in increasing doses (6, 12, 24 and 48 μg/kg) administered at 10 min intervals.

15 Examples

At present, 16 different nicotine immunogens have been tested for immunogenicity using both *in vitro* and *in vivo* methods.

Example 1

Elisa

20 Rats immunized with GK5-KLH conjugate according to protocol 2 were used. Blood samples for Elisa experiments were collected 7 or 9 days after the first bolus immunization. The Elisa antibody titers ranged between 1:100 and 1:15000, see Figure 1.

Blood samples were again collected on day 1-4 post-booster immunization. This second immunisation gave titers between 1:3000 to 1:15 500, see Figure 2.

25 Example 2

Elisa

30

After immunization with GK5-KLH using immunization protocol 1, serum from experimental animals were collected and the specific antibody titres were typically 1:500-1:3000 measured with Elisa technique. Immunization protocol 2, which included an adjuvant, resulted in a higher titre of specific antibodies, typically 1:3000-1:15 000, see figure 3.. All tested nicotine immunogens, e.g. GK5-KLH, GK60-KLH, YH6-KLH, GK84-KLH and GK80-KLH, were immunized using protocol 2. The titres were stable for at least one month.

Example 3

5

10

15

20

25

30

Competitive Elisa

Competitive Elisa was performed on the serum samples from immunized rats. Nicotine, the metabolites cotinine, nornicotine, nicotine-N-oxide and niacin (not metabolite) were used as competitors. The competitor concentration ranged from $6x10^{-10}$ to $6x10^{-6}$ M. After immunization using protocol 2 immunogens gave rise to antibodies that were more specific to nicotine than to cotinine, nicotine-N-oxide and niacin, see figure 4. In most cases the specificity for nicotine and nornicotine were similar. Cotinine is the major nicotinic metabolite (80%) (Benowitz *et al.* 1994) therefor it is important that the nicotinic antibodies have a greater specificity towards nicotine than cotinine, on the other hand only 0.4 % of the nicotine is metabolised into nornicotine (Benowitz *et al.* 1994) whereas the similarity in specificity towards nicotine and nornicotine should not play a significant role.

Example 4

Electrophysiology

Electrophysiological single-cell recordings from rat ventral tegmental area dopamine neurones revealed that when nicotine was administered intravenously (3-48 μ g/kg), dopamine cells in control (KLH immunized) rats generally responded with an increase in average firing rate and burst firing (see figure 5), as well as a deregularization of the firing pattern, as assessed by the variation coefficient. Five out of six rats tested responded to nicotine. The changes were already evident in doses of nicotine as low as 6 μ g/kg. In three out of six rats, the activation was accompanied by a transient (i.e. <1 min) but pronounced increase in neuronal activity immediately following drug administration. Out of these, two cells which did not display bursts before nicotine were converted to a bursty pattern after nicotine administration (6 μ g/kg).

In contrast, only one out of four rats immunized with GK5-KLH using immunization protocol 1 responded to nicotine with an increase in dopamine neuronal activity. In addition, transient increases in neuronal activity were not observed, neither was conversion of a non-bursty firing pattern to a bursty one, even when very high doses of nicotine were administered (see figure 6).

Generally, immunized rats thus appear less sensitive to the activating effects of nicotine on ventral tegmental area dopamine neuronal activity. Specifically, immunized rats were not activated by low doses (i.e. $< 12 \mu g/kg$) of nicotine like non-immunized rats, and

cells did not either respond with an immediate activation in response to systemic injections of nicotine, as was generally seen in control animals.

In conclusion, these experiments demonstrate that the immunogen used is effective in largely preventing the acute stimulation of burst firing in the mesolimbic dopamine neurons after administration of small nicotine doses equivalent to those ingested by smoking one or two cigarettes. Since the acute effect of e.g. a puff on the brain's reward systems in all probability represents the reinforcing unit in tobacco smoking, this compound looks indeed promising.

Example 5

10 Voltammetry

5

15

20

In the controls nicotine administration gives rise to a dose dependent increase of DA-output in the nucleus accumbens shell. In contrast active immunization alters the nicotinic effect on the DA-overflow, see figures 7 a, b and c. Depending on the properties of the immunogen, i.e. the nicotinic hapten, the effect of nicotine on the dopamine output can be suppressed to baseline levels (figure 7a) or instead even paradoxically increased (figure 7b). In studies (figure 7c) where the immunization occurred already 3 weeks before the actual experiment with nicotine, animals still displayed a marked reduction in the central effect of nicotine even in high doses on the mesolimbic dopamine system, i.e. the primary reward pathway in the brain, which has proven critical for self administration of nicotine and its dependence liability.

References in the description of experiments

Benowitz N. L., Jacob P., Fong I., and Gupta S.: Nicotine maetabolic profile in man: Comparison of cigarette smoking and transdermal nicotine. . J. Pharmacol. Exp. Ther. 268: 296-303, 1994.

- Gonon F., Buda M. and Pujol J. F.: Treated carbonfiber electrodes for measuring cathchols and ascorbic acid. In Marsden CA (ed) Measurement of neurotransmittor release in vivo. Wiley, Chichester, pp 153-171, 1984.
 - Gonon F. G.: Non-linear relationship between impulse flow and dopamine release by rat midbrain dopaminergic neurones as studied by in vivo electrochemistry. Neuroscience 24:19-28, 1988.
 - Grace A. A. and Bunney B. S.: Intracellular and extracellular electrophysiology of nigral dopaminergic neurones. I. Identification and characterization. Neuroscience 10:301-315, 1983.
 - Grace A. A. and Bunney B. S.: The control of firing pattern in nigral dopamine neurones: burst firing. J Neurosci 4:2877-2890, 1984.
 - Lodge D., Caddy K. W. T., Headley P. M., and Biscoe T. J.: The locations of neurones with pontamine sky blue. Neuropharmacology 13:481-485, 1974.
 - Paxinos G. and Watson C.: The rat brain in stereotaxic coordinates, 2nd ed. Academic Press, London, 1986.
- Wang R. Y.: Dopaminergic neurones in the rat ventral tegmental area. I. Identification and characterization. Brain Res Rev 3:123-140, 1981.
 - Werner G. and Mountcastle V. B.: The variability of central neuronal activity in a sensory system, and its implications for the central reflection of sensory events. J Neurophysiol 26:958-977, 1963.

10

15

29773/BN

Claims

1. A nicotine immunogen comprising a 5- or 6-nicotinyl- linker - carrier protein having the formula

wherein

X is -NH-CO- or -NH- or -C \equiv C- or -C=C- or -CH₂-;

Y is $-(CH_2)_k$ - or $-(CH_2)_m$ - C_6H_{10} - $(CH_2)_n$ - or $-(CH_2)_m$ - C_6H_4 - $(CH_2)_n$ -

10 wherein k = 0-20, m = 0 - 6, and n = 0 - 6, when

Z is -NH-,

with the provisio that X is not -NH-CO- when Y is (CH₂)₅ and Z is -NH-,

and

X is -NH-CO- or -C=C- or -CH₂-,

15 Y is $-(CH_2)_m - C_6H_{10} - (CH_2)_n - or -(CH_2)_m - C_6H_4 - (CH_2)_n$

wherein m = 0 - 6, and n = 0 - 6, when

Z is -CO-,

and

X is -C = C - or -C = C -,

20 Z is -CO-, when

Y is $-(CH_2)_{k}$ -

wherein k = 0 - 20.

2. The nicotine immunogen according to claim 1, wherein the carrier protein is selected from the group consisting of keyhole limpet hemocyanin (KLH), tetanus toxoid, diphtheria toxoid, non-toxic mutant diphtheria toxoid CRM₁₉₇, outer membrane protein complex (OMPC) from Neisseria meningitidis, the B subunit of heat-labile Escherichia coli, and recombinant exoprotein A from Pseudomonas aeruginosa (rEPA).

3. A 5- or 6 - nicotinyl -linker - carrier protein having the formula

wherein

5 X is -NH-CO- or -NH- or -C \equiv C- or -C=C- or -CH₂-; Y is -(CH₂)_k- or -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein k = 0-20, m = 0 - 6, and n = 0 - 6, when Z is -NH-,

with the provisio that X is not -NH-CO- when Y is (CH₂)₅ and Z is -NH-,

10 and

X is -NH-CO- or -C=C- or -C=C- or -CH₂-, Y is -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein m = 0 - 6, and n = 0 - 6, when Z is -CO-,

15 and

X is -C=C- or -C=C-, Z is -CO-, when Y is -(CH₂)_kwherein k = 0 - 20.

20

- 4. A 5- or 6 nicotinyl -linker carrier protein according to claim 3, wherein the carrier protein is selected from the group consisting of keyhole limpet hemocyanin (KLH), tetanus toxoid, diphtheria toxoid, non-toxic mutant diphtheria toxoid CRM₁₉₇, outer membrane protein complex (OMPC) from Neisseria meningitidis, the B subunit of heat-labile
- 25 Escherichia coli, and recombinant exoprotein A from Pseudomonas aeruginosa (rEPA).
 - 5. A 5- or 6 nicotinyl -linker carrier protein according to claim 3 or 4 for use as a medicament.

- 6. Pharmaceutical composition comprising a 5- or 6 nicotinyl -linker carrier protein according to claim 4 or 5 and a pharmaceutically acceptable vehicle.
- 7. Pharmaceutical composition according to claim 6 further comprising an adjuvant.
- 8. A method of prophylactic and/or therapeutic immunological treatment of nicotine dependence from tobacco products to achieve harm reduction in an individual comprising administration of a 5- or 6 nicotinyl -linker carrier protein having the formula

10

5

wherein

X is -NH-CO- or -NH- or -C \equiv C- or -CH₂-; Y is -(CH₂)_k- or -(CH₂)_m-C₆H₁₀-(CH₂)_n- or -(CH₂)_m-C₆H₄-(CH₂)_n-wherein k = 0-20, m = 0 - 6, and n = 0 - 6, when

15 Z is -NH-,

with the provisio that X is not -NH-CO- when Y is (CH₂)₅ and Z is -NH-,

and

X is -NH-CO- or -C \equiv C- or -C=C- or -CH₂-,

Y is $-(CH_2)_m - C_6H_{10} - (CH_2)_n - or -(CH_2)_m - C_6H_4 - (CH_2)_n$

wherein m = 0 - 6, and n = 0 - 6, when

Z is -CO-,

and

X is -C = C - or -C = C -,

Z is -CO-, when

25 Y is $-(CH_2)_k$ -

wherein k = 0 - 20,

to said individual in antibody-eliciting amounts for eliciting antibodies binding to nicotine molecules.

9. The method of treating nicotine dependence according to claim 8, wherein the administration is repeated at intervals to enhance the titre of antibodies binding to nicotine molecules in said individual.

5

Fig. 1

Fig. 2

ELISA TITRE MEASUREMENTS OF SERUM FROM IMMUNIZED MALE WISTAR RATS

COMPETITIVE ELISA ON SERA FROM GK84-KLH IMMUNIZED ANIMALS

Fig. 4

International application No.

PCT/SE 99/00920 A. CLASSIFICATION OF SUBJECT MATTER IPC6: A61K 39/385 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC6: A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х WO 9814216 A2 (IMMULOGIC PHARMACEUTICAL 1-9 CORPORATION), 9 April 1998 (09.04.98), page 5 - page 9; page 27 - page 33, figures 7-10. claim 1, examples 1-3 X The Journal of Pharmacology and Experimental 1-9 Therapeutics, Volume 283, No 3, 1997, Yoko Hieda et al, "Active Immunization Alters the Plasma Nicotine Concentration in Rats1", page 1076 - page 1081, See especially fig 1 WO 9630049 A2 (IMMULOGIC PHARMACEUTICAL Α 1-9 CORPORATION), 3 October 1996 (03.10.96) Further documents are listed in the continuation of Box C. Х See patent family annex. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" erlier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance: the claimed invention cannot be document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 9 -09- 1999 14 Sept 1999 Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Carl-Olof Gustafsson/Els Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

International application No.

PCT/SE 99/00920

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	Research Communication in Chemical Pathology and Pharmacology, Volume 51, No 3, 1986, A. Castro et al, "Nicotine Enzyme Immunoassay" page 393 - page 404	1-9
A	WO 9203163 A1 (CERNY, ERICH, HUGO), 5 March 1992 (05.03.92)	1-9

International application No. PCT/SE 99/00920

Claims 8-9 relate to methods of treatment of the human or animal body by surgery or by therapy/diagnostic methods practised on the human or animal body/Rule 39.1.(iv). Nevertheless, a search has been executed for these claims. The search has been based on the alleged effects of the compounds/compositions.

Form PCT/ISA/210 (extra sheet) (July1992)

International application No. PCT/SE 99/00920

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:							
1. 🔀	Claims Nos.: 8-9 because they relate to subject matter not required to be searched by this Authority, namely: see next page						
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:						
n							
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
	mational Searching Authority found multiple inventions in this international application, as follows:						
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.						
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:						
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:						
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

Information on patent family members

International application No. PCT/SE 99/00920

	atent document I in search report	Publication date		Patent family member(s)	-	Publication date
WO	9814216 A2	09/04/98	AU US	6483498 5876727		24/04/98 02/03/99
 WO	9630049 A2	03/10/96	AU CA EP US US US	5374996 2216658 0814843 5760184 5773003 5840307 5876727	A A A A	16/10/96 03/10/96 07/01/98 02/06/98 30/06/98 24/11/98 02/03/99
WO	9203163 A1	05/03/92	AT AU CA CH DE EP JP	137977 7050091 2067205 678394 59107814 0496839 5502871	A A A D	15/06/96 17/03/92 23/02/92 13/09/91 00/00/00 05/08/92 20/05/93

Form PCT/ISA/210 (patent family annex) (July 1992)