Chapter 1

Newton-Okounkov Bodies

1.0.1 Theorem (Bernstein-Kushnirenko) Let $f_1 \cdots f_n = 0$ be Laurent polynomials in n variables. Read off the exponents of the monomials that show up for each f. This ignores the coefficients. Call these sets $A_i \subset \mathbb{Z}^n$ for each f_i . Let Δ_i be the convex hull thereof. Th number of solutions when the coefficients are generic is $n!V(\Delta_1 \cdots \Delta_n)$ is the Minkowski mixed volume. At an extreme, letting A_i all be equal then gives $n!V(\Delta)$ with usual Euclidean volume.

1.0.2 Definition (Mixed Volume)

$$V(\Delta_1 \cdots \Delta_n) = \frac{1}{n!} \frac{d^n}{d\lambda_1 \cdots d\lambda_n} Vol(\lambda_1 \Delta_1 + \cdots \lambda_n \Delta_n) \mid_{\lambda_1 \cdots \lambda_n \to +0}$$

 $where\ the+inside\ Vol\ indicates\ Minkowski\ sum.$

Chapter 2

Knapsack Polytope

2.1 Knapsack Problem

2.1.1 Definition (Knapsack Problem) Let $A_1 \cdots A_n$ be goods with values v_i and weights w_i . The knapsack can include any natural number of each good with the condition that the total weight should be less than W. Call the numbers of each as x_i .

$$V = \sum v_i x_i$$
$$\sum w_i x_i \leq W$$

The goal is to maximize V.

- **2.1.2 Definition (Decision Problem Formulation)** Given a V_0 , can we find a solution with $V \geq V_0$?
- **2.1.3 Lemma (NP-Complete)** This decision problem is NP-complete. The optimization problem is NP-hard.
- **2.1.4 Lemma (Augmented Form)** The weight inequality can be rephrased by introducing another natural number s to represent $W \sum w_i x_i$. The system then becomes solving the following system in \mathbb{N}^{n+2} .

$$\begin{pmatrix} 1 & -v_1 & \cdots & -v_n & 0 \\ 0 & w_1 & \cdots & w_n & 1 \end{pmatrix} \begin{pmatrix} V \\ x_1 \\ \cdots \\ x_n \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ W \end{pmatrix}$$

Another way is given by

$$\begin{pmatrix} v_1 & \cdots & v_n & 0 \\ w_1 & \cdots & w_n & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \cdots \\ x_n \\ s \end{pmatrix} = \begin{pmatrix} V \\ W \end{pmatrix}$$

The solution with largest V is sought.

2.1.5 Lemma (0-1 Algorithm) Let m[i,j] be the maximum value attained by using items $\leq i$ and weight $\leq j$. In particular i=0 is the case when no items are allowed to be used and so no value can be attained no matter the weight.

Listing 2.1: KnapsackDynamicProgramming

2.2 Ehrhart Polynomial

- **2.2.1 Definition (Ehrhart Polynomial)** For a polytope $\mathcal{P} \subset \mathbb{R}^d$ with integral vertices, the count of points in $t\mathcal{P} \cap \mathbb{Z}^d$ as a function of positive integer t denoted $L_{\mathcal{P}}(t)$.
- **2.2.2 Theorem (Ehrhart)** $L_{\mathcal{P}}(t)$ is a polynomial of degree d. The leading term is the relative volume. $L_{\mathcal{P}}(0) = \chi(\mathcal{P})$ and $L_{\mathcal{P}}(-t) = (-1)^d L_{\mathcal{P}^o}(t)$ where χ is Euler characteristic and \mathcal{P}^o denotes relative interior.

If the vertices are rational but not integral, we get a quasipolynomial instead.

2.2.3 Definition (Quasipolynomial) An expression of the form $c_d(t)t^d + \cdots + c_1(t)t + c_0(t)$ with the $c_i(t)$ periodic functions in t.

2.3 Ehrhart Polynomial of Linear Programs

2.3.1 Theorem Let \mathcal{P} be the polytope given by $x \in \mathbb{R}^d_{\geq 0}$ and constraint Ax = b where $A \in M_{m \times d}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$ are integral. \mathcal{P} has rational vertices, not necessarily integral. Then the Ehrhart quasipolynomial is given by

$$L_{\mathcal{P}}(t) = \frac{1}{(2\pi i)^m} \int_{|z_1|=\epsilon_1} \cdots \int_{|z_m|=\epsilon_m} \frac{z_1^{-tb_1-1} \cdots z_m^{-tb_m-1}}{(1-\mathbf{z}^{\mathbf{c_1}}) \cdots (1-\mathbf{z}^{\mathbf{c_d}})}$$

where \mathbf{z}^{c_j} stands for the product $z_1^{A_{1j}} \cdots z_m^{A_{mj}}$. That is \mathbf{z} stands for z_1 through z_m and $\mathbf{c_j}$ is the j'th column of A. Also $0 < \epsilon_1 \cdots \epsilon_m < 1$ are distinct real numbers.

Looking at the second linear program phrasing of the knapsack problem givs m = 2 and d = n+1 with $V = b_1$. $L_{\mathcal{P}}(1)$ counts the number of solutions and we wish to see how it depends on b_1 . For some critical value, V_{crit} , the point count will be 0 from then on. That means the optimal value that can be attained will be $V_{crit} - 1$. That is the last case when the polytope has integral points.

$$L_{\mathcal{P}}(t) = \frac{-1}{4\pi^2} \int_{|z_1|=\epsilon_1} \int_{|z_2|=\epsilon_2} \frac{z_1^{-tV-1} z_2^{-tW-1}}{(1-z_1^{v_1} z_2^{w_1}) \cdots (1-z_1^{v_n} z_2^{w_n})(1-z_2)}$$

- **2.3.2 Corollary** Expanding the term corresponding to the n'th good in a geometric series gives an expansion of $L_{\mathcal{P}}(t)$ for the first n-1 goods with total value $V-kv_n$ and total value $W-kw_n$ summed over k. This is obviously interpreted as deciding how many of good n to pack and packing the remaining knapsack with the other n-1 goods.
- **2.3.3 Lemma** The other values of t get interpreted as what happens if you are allowed to break each item into $\frac{1}{t}$ parts and then pack those into the knapsack. For large t, this tends to the continuous linear programming problem where one is allowed to use arbitrary fractions of the goods.

2.3.4 Example