Graph Algorithm

(Chapter 4.2, 5.3)

Graph Algorithm

- Topological Sorting
 - Using DFS
 - Decrease by one
- Binary Tree Traversal
 - Preorder
 - Inorder
 - Postorder

Directed Acyclic Graphs (DAG's)

• recall that a <u>directed graph</u> is a graph that uses arrows to show direction. For example:

a directed acyclic graph, aka DAG, is a directed graph that contains no cycles

Topological Sort

• **Problem:** We have a set of tasks and a set of dependencies (precedence constraints) of form "task A must be done before task B"

• Goal: Find a linear ordering that satisfies all dependencies

Topological Sort

Input might look like this

- a must be done before b, e, f
- b must be done before c
- d must be done before b and c
- e must be done before d
- f must be done before c and e

one possible solution (topologically sorted order):

• afedbc

Topological Sort Algorithm 1: DFS

To obtain a topological sort order for a set of items:

- 1. represent the items as a directed graph G such that:
 - a) vertices are the items that are tasks
 - b) edges are the dependencies (constraints) between tasks
 - an edge from v to w (eg: v→w) means that v is dependent on w ... ie ... v must be done before w
- 2. apply the DFS algorithm to G
- 3. the order in which vertices become dead ends gives the reverse topological sort order Note: Topological Sort produces no solution if the graph contains a cycle

Topological Sort Algorithm (DFS)

Recall:

- the DFS implementation is recursive
- each time a recursive call is made is equivalent to "pushing a vertex on a stack"
- the "order in which vertices become dead ends" is given by the "order in which vertices are popped off the stack"

Example 1: Work Tasks

- Assume you have a set of 6 tasks (a, b, c, d, e, f) with the following dependencies:
 - a must be done before b, e, f
 - b must be done before c
 - d must be done before b and c
 - e must be done before d
 - f must be done before c and e

▶ <u>Step 1:</u> Draw a directed graph to represent these dependencies.

Example 1 (cont)

• Step 2: Apply DFS

Order vertices become dead ends: c b d e f a

• <u>Step 3:</u>

Reverse this order for the solution: a f e d b c

Example 2: Work Tasks

```
21 \leftarrow (2 \text{ before } 1) \ 43 \leftarrow (4 \text{ before } 3)

14 \leftarrow (1 \text{ before } 4) \ 52 \leftarrow (5 \text{ before } 2)

23 \leftarrow (2 \text{ before } 3) \ 51 \leftarrow (5 \text{ before } 1)

56 \leftarrow (5 \text{ before } 6) \ 63 \leftarrow (6 \text{ before } 3)

24 \leftarrow (2 \text{ before } 4) \ 62 \leftarrow (6 \text{ before } 2)
```


- Step 1: draw the graph (and verify it is a DAG)
- Step 2: apply DFS
- Step 3: find the order vertices were removed from stack, and reverse this order to get topological sort order

Topo Sort Algo 2: Decrease by One

• Observe:

- if a vertex v in the dependency graph G has no incoming arrows (ie: in-degree(v) == 0), then v does not have any dependencies
- it follows that any v that does not have dependencies is a candidate to be visited next in topographical order
- A Decrease-by-One approach:
 - identify a $v \in V$ that has in-degree = 0
 - delete v and all of its edges
 - when all vertices have been deleted, the topo sort order is given by the order of deletion
 - if there are $v \in V$, but no v has in-degree = 0, the graph G is not a DAG (no feasible solution exists)

Topo Sort Algo 2: Decrease by One

- More detailed algorithm:
 - need a set to store the candidate v's (in-degree = 0)
 - I will use a TreeSet. Any ordered set will do.
 - need an ordered list to store the delete order
 - I will use an ArrayList. Any ordered list will do.
- Then the algorithm is:

Topo Sort Algo 2: Decrease by One

Whiteboard

```
topo(G)
   create an empty ArrayList Soln
   create an empty TreeSet Candidates
   add all v with inDegree=0 to Candidates
   while Candidates is not empty
      v ← Candidates.first()
      add v to Soln
      for each vertex w adjacent to v
         remove edge (v,w) from G
         if w has inDegree=0
            add w to Candidates
      remove vertex v from G
   if there are vertices remaining in G
      no feasible solution exists
  else
      solution is in Soln
```

Graph Algorithm

- Topological Sorting
 - Using DFS
 - Decrease by one
- Binary Tree Traversal
 - Preorder
 - Inorder
 - Postorder

a b c

Preorder: A B D E C F G

public void preorderPrint(Node N) {

Create Pseudo Code


```
public void preorderPrint(Node N) {
    Base
    Visit Node
    Visit Left
    Visit Right
}
```



```
public void preorderPrint(Node N) {
    if (N == null) return;
        System.out.println(N.value);
        preorderPrint(N.leftChild);
        preorderPrint(N.rightChild);
}
```

Application of Preorder

• Directory Trees

bac

Inorder: DBEAFCG

Inorder: DBEAFCG

Inorder: DBEAFCG

public void inorderPrint(Node N) {

Create Pseudo Code

28

Inorder: DBEAFCG

```
public void inorderPrint(Node N) {
   base
   visit left
   visit node
   visit right
}
```


Inorder: DBEAFCG

```
public void inorderPrint(Node N) {
    if (N == null) return;
    inorderPrint(N.leftChild);
    System.out.println(N.value);
    inorderPrint(N.rightChild);
}
```

Example of Inorder

• Returns the ordered list of a Binary Search Tree

Postorder

bca

postorder: DEBFGCA

Postorder: DEBFGCA

Post-order

Postorder: DEBFGCA

public void postorderPrint(Node N) {

Create Pseudo Code

35

Post-order

Postorder: DEBFGCA

```
public void postorderPrint(Node N) {
    base
    Visit Left
    Visit Right
    Visit Node
}
```

Post-order

Postorder: DEBFGCA

```
public void postorderPrint(Node N) {
   if (N == null) return;
   postorderPrint(N.leftChild);
   postorderPrint(N.rightChild);
   System.out.println(N.value);
}
```

For this graph, what is the:

- Pre-order
- In-order
- Post-order

Try it/ homework

- 1. Chapter 4.2, page 142, question 1
- 2. Chapter 5.3, page 185, questions 5,6