אוניברסיטה ©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

חבורות

המקבלת זוג איברים G ופעולה בינארית * המקבלת זוג איברים (G,*) של קבוצה G ופעולה בינארית היא זוג איברים (חבורה): חבורה היא זוג G המקיימת:

- $(\forall a,b \in G: a*b \in G)$ א. סגירות (G סגורה תחת א, כלומר,
- (a*b)*c = a*(b*c) מתקיים $a,b,c \in G$ ב. * אסוציאטיבית: לכל
- .ea = ae = a מתקיים $a \in G$ כך שלכל $e \in G$: פיים איבר ניטרלי
- $a*a^{-1}=a^{-1}*a=e$ שנסמנו a^{-1} , כך ש $a\in G$ קיים איבר ב-a שנסמנו $a\in G$ ד. ד. קיום הופכי:

(Z,+) : דוגמה

בדיקה:

- $a+b\in Z$ אכן $a,b\in Z$ א. סגירות- לכל
- (a+b)+c=a+(b+c) מתקיים $a,b,c\in Z$ ב. אסוציאטיביות: לכל
 - a+0=0+a=a , $a\in Z$ מקיים לכל $0\in Z$:ג. קיום ניטרלי
- a+(-a)=(-a)+a=0 שכן $a+(-a)=a\in Z$ ההופכי שלו בחבורה הוא $a\in Z$

שאלות:

- . האם (N, +) היא חבורה? לא, כי אין ניטרלי והופכי.
- . האם (Z,\cdot) היא חבורה? לא, כי אמנם יש ניטרלי אבל אין הופכי.
 - . האם (Q,\cdot) היא חבורה? לא, כי לאיבר (Q,\cdot) אין הופכי.
- $\frac{b}{a}$ האיבר $Q\setminus\{0\}$, היא חבורה? כן (ניטרלי 1, לכל $Q\setminus\{0\}$ קיים ב- $\frac{a}{b}\in Q\setminus\{0\}$ האיבר 4. $\frac{a}{b}\cdot\frac{b}{a}=1$ ומתקיים
 - 5. תנו דוגמה נוספת לחבורה.

. היא חבורה (S_n , מתקיים מתקיים לכל 13 לכל מתקיים מענה 13 לכל

<u>הוכחה</u>:

א. סגירות: ראינו כי לכל $\sigma, \tau \in S_n$ מתקיים $\sigma, \tau \in S_n$ מתקיים הייע ועל היא סגירות: ראינו כי לכל פונקציה חח"ע ועל

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

ב. אסוציאטיביות: לכל $\sigma, \tau, \alpha \in S_n$ מתקיים

$$(\sigma \circ \tau) \circ \alpha = \sigma \circ (\tau \circ \alpha)$$

 $1 \le i \le n$ כי לכל

$$(\sigma \circ \tau) \circ \alpha(i) = (\sigma \circ \tau) \big(\alpha(i) \big) = \sigma \big(\tau \big(\alpha(i) \big) \big)$$

$$\sigma\circ(\tau\circ\alpha)(i)=\sigma\bigl((\tau\circ\alpha)(i)\bigr)=\sigma\bigl(\tau\bigl(\alpha(i)\bigr)\bigr)$$

ג. קיום ניטרלי: ראינו כי לכל $\sigma \in S_n$ מתקיים כי הפרמוטציה $\sigma \in S_n$ מקיימת ג. קיום ניטרלי: ראינו כי לכל $1_{S_n} \circ \sigma = \sigma \circ 1_{S_n} = \sigma$

 $\sigma \circ \sigma^{-1} = \sigma^{-1}\sigma = 1_{S_n}$ כך ש $\sigma^{-1} \in S_n$ קיימת $\sigma \in S_n$ ד. קיום הופכי: ראינו כי לכל

ונסמן n ונסמן: נאמר כי השלמים מתחלקים למחלקות שקילות מודולו

$$Z_n = \{[0]_n, [1]_n \dots [n-1]_n\}$$

כעת נראה שתי דוגמות חשובות במיוחד לחבורות הקשורות לחשבון המודולורי:

- $(Z_n, +)$. החבורה החיבורית
 - (Z_n^*,\cdot) החבורה הכפלית.
- .($[n-k]_n$ ההופכי הוא $[k]_n$ לכל ($[0]_n$ ליכל החבורה החבורה החבורה (איבר ניטרלי).

 $k + (n - k) = n \equiv 0 \pmod{n}$ מדוע זה ההופכי? כי

 $[-k]_n$ יש לשים לב כי בחבורה חיבורית ההופכי הוא הנגדי, ולפעמים נסמנו

אין עבור (Z_n,\cdot) חבורה? אמנם יש ניטרלי $[1]_n$ אך מה לגבי הופכי? לדוגמה, עבור (Z_n,\cdot) אף איבר שבו נכפיל ונקבל את $[1]_n$ למדנו שלשקילות $a\cdot x\equiv 1\ (mod\ n)$ קיים פתרון אף איבר שבו נכפיל ונקבל את להגדרת החבורה הכפלית (Z_n^*,\cdot) .

 $Z_n^* = \{[a]_n \in Z_n \mid (a,n) = 1\}$ כאשר (Z_n^*, \cdot) כאשר 2.

לדוגמה:

$$Z_6^* = \{[1]_6, [5]_6\}$$

a,(a,6)=1 שכן שאר האיברים 0,2,3,4 אינם מקיימים

?מיהו האיבר הניטרלי? $[1]_6$. מיהו האיבר ההופכי

$$1 \cdot 1 = 1$$
, $5 \cdot 5 = 25 = 24 + 1 \equiv [1]_6$

ולכן כל איבר הוא ההופכי של עצמו.

נוודא שזוהי חבורה:

 $[ab]_n\in [ab]_n$, ולכן גם (a,n)=(b,n)=1, א. סגירות: אם מאי הירות: אם $[a],[b]\in Z_n^*$ אזי בירות: אם Z_n^*

ב. אסוציאטיביות: נובע מאסוציאטיביות של כפל מודולרי.

. איבר ניטרלי: $Z_n^* \in \mathbb{Z}_n^*$ איבר ניטרלי

ד. קיום הופכי: לכל $[a]\in Z_n^*$ מתקיים $[a]\in a$, ולכן (כפי שלמדנו בהרצאת "הופכי ,(a',n)=1 מודולרי") ל-a' יש איבר הופכי a' מודולו a' כך ש[a] מודולרי" ל-a' יש איבר הופכי [a] מודולו [a'] מודולרי", ומתקיים [a'] ומתקיים [a']

?חבורה (N,*) האם $n*m=n^m$ ע"י $*:NXN\to N$ חבורה:

<u>פתרון</u>: נבדוק לפי ההגדרות.

 $a^b \in N$ א. סגירות: עבור $a,b \in N$ א. סגירות:

 $(2*3)*2=^{?}2*(3*2)$ ב. אסוציאטיביות: יהיו $2,3,2 \in \mathbb{N}$ ב.

$$(2^3)^2 = 8^2 = 64$$
, $2^{(3^2)} = 2^9 = 512$

. מצאנו דוגמה נגדית ולכן (N,*) אינה מקיימת אסוציאטיביות. לכן לא חבורה מצאנו דוגמה מדית ולכן