K-12200 Elementtimenetelmän jatkokurssi

Bonustehtävä 1 (0,5 p) Ratkaisujen palautus 20.09.2013

Kuvan vasemmasta päästään jäykästi tuetun aksiaalisen rakenteen $L_1 = 500$ mm, $L_2 = 400$ mm, $A_1 = 5000$ mm², $A_2 = 2000$ mm², ja $E_1 = E_2 = 200$ GPa. Muodosta kuvan elementtiverkon jäykkyysmatriisi sijoittelusummauksella. Kuormituksina ovat voimat $F^2 = 50$ kN ja $F^3 = -75$ kN. Kirjoita elementtiverkon perusyhtälö ja ratkaise siitä solmusiirtymät U^2 ja U^3 sekä tukireaktio F^1 .

Laske edellä ratkaistua tasapainotilaa vastaava rakenteen potentiaalienergia Π .

Laske potentiaalienergiat, joka vastaavat kinemaattisesti käypiä solmusiirtymiä

a)
$$U^1 = 0$$
, $U^2 = -0.015$ mm, $U^3 = -0.060$ mm

b)
$$U^1 = 0$$
, $U^2 = 0.1$ mm, $U^3 = -0.5$ mm

ja vertaa niitä tasapainotilaa vastaavaan arvoon.

Onko olemassa kinemaattisesti käypiä solmusiirtymiä, joita vastaava potentiaalienergia on tasapainotilaa pienempi?

Vast.
$$\begin{array}{ll} U^2 = -0,0125 \text{ mm} & U^3 = -0,0875 \text{ mm} & F^1 = 25 \text{ kN} \\ \Pi = -2,968750 \text{ J} & \end{array}$$