In particular, Theorem 3.23 shows a finite-dimensional vector space and its dual E^* have the same dimension.

We explained just after Definition 3.26 that if the space E is finite-dimensional and has a finite basis (u_1, \ldots, u_n) , then a linear form $f^* \colon E \to K$ is represented by the row vector of coefficients

$$(f^*(u_1) \cdots f^*(u_n)). \tag{1}$$

The proof of Theorem 3.23 shows that over the dual basis (u_1^*, \ldots, u_n^*) of E^* , the linear form f^* is represented by the same coefficients, but as the *column vector*

$$\begin{pmatrix} f^*(u_1) \\ \vdots \\ f^*(u_n) \end{pmatrix}, \tag{2}$$

which is the transpose of the row vector in (1).

3.10 Summary

The main concepts and results of this chapter are listed below:

- The notion of a vector space.
- Families of vectors.
- Linear combinations of vectors; linear dependence and linear independence of a family of vectors.
- Linear subspaces.
- Spanning (or generating) family; generators, finitely generated subspace; basis of a subspace.
- Every linearly independent family can be extended to a basis (Theorem 3.7).
- A family B of vectors is a basis iff it is a maximal linearly independent family iff it is a minimal generating family (Proposition 3.8).
- The replacement lemma (Proposition 3.10).
- Any two bases in a finitely generated vector space E have the *same number of elements*; this is the *dimension* of E (Theorem 3.11).
- Hyperplanes.
- Every vector has a unique representation over a basis (in terms of its coordinates).