

Jorge da Silva

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MATO GROSSO – Campus Cel. Octayde Jorge da Silva

Engenharia da Computação: Comunicações de Dados

Simulação Completa de Transmissão de Dados

Cuiabá-MT - Brasil

Metas

- Projeto: Transmissão de Dados
- Conceitos envolvidos
 - Texto para binário
 - Codificação em linha
 - Unipolar NRZ
 - Polar NRZ
 - Modulação/Demodulação
 - BASK
 - BFSK
 - BPSK
- Simulação
- Conclusão

Uma Simulação Completa de Transmissão de Dados

Implementar "API Matlab"

Receber no simulink palavra, exemplo: Olá!

Transformar palavra para bits

Exemplo: Olá transformado em bits: 10101111

Codificação em Linha

Dado digital (bits) para Sinal Digital (Exemplo Unipolar, Polar, Bipolar com RZ e NRZ).

Modulação

Modulação, sinal digital para sinal analógico (implementar três técnicas, BASK, BPSK e BFSK).

Implementar "API Matlab"

Enviar a palavra. Exemplo:

Transformar dado digital (bits)

Dado digital (bits) para palavra.

Codificação em Linha

Sinal Digital para Dado Digital (bits), (Exemplo Unipolar, Polar, Bipolar com RZ e NRZ), Exemplo bits recebidos: 10101111

Demodulação

Demodulação, sinal analógico para sinal digital (implementar três técnicas, BASK, BPSK e BFSK).

Campus Cuiabá Cel. Octayde Jorge da Silva

Texto para Binário

ASCII caractere						
de controle						
00	NULL	(Null character)				
01	SOH	(Start of Header)				
02	STX	(Start of Text)				
03	ETX	(End of Text)				
04	EOT	(End of Trans.)				
05	ENQ	(Enquiry)				
06	ACK	(Acknowledgement)				
07	BEL	(Bell)				
08	BS	(Backspace)				
09	HT	(Horizontal Tab)				
10	LF	(Line feed)				
11	VT	(Vertical Lab)				
12	FF	(Form feed)				
13	CR	(Carriage return)				
14	SO	(Shift Out)				
15	SI	(Shift In)				
16	DLE	(Data link espace)				
17	DC1	(Device control 1)				
18	DC2	(Device control 2)				
19	DC3	(Device control 3)				
20	DC4	(Device control 4)				
21	NAK	(Negative acknowl.)				
22	SYN	(Synchronous idle)				
23	ETB	(End of trans. block)				
24	CAN	(Cancel)				
25	EM	(End of medium)				
26	SUB	(Substitute)				
27	ESC	(Escape)				
28	FS	(File separator)				
29	GS	(Group separator)				
30	RS	(Record separator)				
31	US	(Unit separator)				
127	DEL	(Delete)				

ASCII caracteres								
imprimíveis								
32	space	64	@	96	*			
33	1	65	A	97	a			
34	66	66	В	98	b			
35	#	67	C	99	С			
36	\$	68	D	100	d			
37	96	69	E	101	e			
38	&	70	F	102	f			
39	•	71	G	103	g			
40	(72	H	104	h			
41)	73	I	105	i			
42	*	74	J	106	j			
43	+	75	K	107	k			
44	,	76	L	108	1			
45	-	77	M	109	m			
46		78	N	110	n			
47	1	79	0	111	0			
48	0	80	P	112	р			
49	1	81	Q	113	q			
50	2	82	R	114	r			
51	3	83	S	115	S			
52	4	84	T	116	t			
53	5	85	U	117	u			
54	6	86	V	118	v			
55	7	87	W	119	w			
56	8	88	X	120	x			
57	9	89	Y	121	y			
58		90	Z	122	Z			
59	;	91	[123	{			
60	<	92	Ň	124	i			
61	=:	93]	125	}			
62	>	94	۸	126	~			
63	?	95						
			-					

Codificação em Linha - Unipolar NRZ

Método Unipolar

Em um método unipolar, todos os níveis de sinal se encontram em um dos lados do eixo do tempo, acima ou abaixo dele.

NRZ (Non-Return-to-Zero, ou seja, Sem Retorno a Zero)

Codificação em Linha - Polar NRZ

Métodos Polares

Em métodos polares, as voltagens se encontram em ambos os lados do eixo de tempo. Por exemplo, o nível de voltagem para 0 pode ser positivo e o nível de voltagem para 1 pode ser negativo.

NRZ (Sem Retorno a Zero)

Modulação/Demodulação - BASK

ASK (Amplitude-shift keying) - Tipo de modulação de amplitude que representa os dados binários na forma de variações na amplitude de um sinal.

- Modulador ASK
- Demodulador ASK

Modulação/Demodulação - BFSK

Frequency Shift Keying (FSK) - Uma técnica de modulação digital em que a frequência do sinal da portadora varia de acordo com as mudanças do sinal digital.

- Modulador FSK
- Demodulador FSK

Modulação/Demodulação - BPSK

Phase Shift Keying (PSK) - Técnica de modulação digital na qual a fase do sinal da portadora é alterada pela variação das entradas de seno e cosseno em um determinado momento.

- Modulador PSK
- Demodulador PSK

Campus Cuiabá Cel. Octayde Jorge da Silva

Simulação

Conclusão

Ao longo deste projeto foi tratado sobre o processo de codificação dos símbolos, com o intuito de visualizar e compreender os conceitos envolvidos nesta transmissão de dados. Neste caso é trabalhada a implementação em uma API (Interface de Programação de Aplicações), codificando em linhas e realizando a conversão de sinal digital para sinal analógico (modulação), como também o processo reverso (demodulação). Para citar-se como um exemplo simples do processo de transmissão de informação tem-se a comunicação de uma pessoa para outra. Em resumo a transmissão de informação passará por processos de modulação e demodulação e através da simulação foi possível visualizar o funcionamento deste sistema. Desta forma, conclui-se o propósito deste projeto.

Referência

ALTUWAIRGI, Khaled. **ASK Modulation and Demodulation**: MATLAB simulink. [S. I.], 2 dez. 2020. Disponível em: https://www.youtube.com/watch?v=QvST_TFwJbU&ab_channel=KhaledAltuwairgi. Acesso em: 6 dez. 2021.

ALTUWAIRGI, Khaled. **FSK Modulation and Demodulation**: MATLAB simulink. [S. I.], 30 nov. 2020. Disponível em: https://www.youtube.com/watch?v=qLsAZrh-VIY&ab_channel=KhaledAltuwairgi. Acesso em: 6 dez. 2021.

Belattar, Mounir. **Chapter III**: BPSK and QPSK modulation and demodulation with Simulink. fev. 2018. Disponível em:

https://www.researchgate.net/publication/322926899_chapter_III_BPSK_and_QPSK_modulation_and_demodulation_with_Simulink. Acesso em: 6 dez. 2021.

FOROUZAN, B. A. Comunicação de Dados e Redes de Computadores. 3a ed. Porto Alegre: Bookman, 2006.

WSCUBE, Tech. **ASK Modulation and Demodulation using Matlab in Hindi (Project)**. Índia, 16 maio 2021. Disponível em: https://www.youtube.com/watch?v=SR0r_2uKZU8&ab_channel=WsCubeTech. Acesso em: 3 dez. 2021.

Obrigada!