



# Theory of Computation CS F351

### Vishal Gupta

Department of Computer Science and Information Systems
Birla Institute of Technology and Science
Pilani Campus, Pilani





### Agenda:

- 1. Reducibility
- 2. Undecidability

- A function  $f: \Sigma^* \to \Sigma^*$  is a computable function if some Turing Machine M, on every input w, halts with just f(w) on its tape.
  - For example, all arithmetic operations on integers are computable functions.
- Computable function may be transformations of machine descriptions.



### Reducibility

• Language A is reducible to language B, written as  $A \leq_m B$ , if there is a computable function  $f: \Sigma^* \to \Sigma^*$ , where for every w,  $w \in A \longleftrightarrow f(w) \in B$ .

The function f is called the *reduction* of A to B.

 Being able to reduce problem A to problem B means that a computable function exists that convert instances of A to instances of B.

#### Reduction

"If A ≤<sub>m</sub> B and B is decidable, then A is <u>decidable</u>"

#### **Proof:**

Let M be a TM which decides B and f be the reduction from A to B. We describe a TM N to decide A as follows:

- **N** = "On input w":
- 1. Compute f(w)
- 2. Run M on input f(w) and output whatever M outputs.

[NOTE: If w belongs to A then f(w) belongs to B. Thus M accepts f(w) whenever w belongs to A.]



### Reduction: Proving Un-decidability

To prove that certain problems are undecidable, we use the following corollary of previous theorem:

"If A ≤<sub>m</sub> B and A is known to be un-decidable, then B is un-decidable too"

### Example 1

**Problem A:**  $A_{TM} = \{ "M" "w" | M \text{ is a TM and M accepts w} \}$ 

**Problem B:** HALT<sub>TM</sub> = {"M" "w" | M is a TM and M halts on w}

**<u>Proof</u>**: Assume that TM R decides  $HALT_{TM}$ . Below is the construction of TM S which decides  $A_{TM}$ .

**S = On input "M" "w":** 

- 1. Run TM R on input "M" "w"
- 2. If R rejects, Reject
- 3. If R accepts, simulate M on w until it halts.
- 4. If M has accepted, <u>Accept</u>; if M has rejected, <u>Reject</u>



### Example 1

**Problem A:**  $A_{TM} = \{ "M" "w" | M is a TM and M accepts w \}$ 

**Problem B:** HALT<sub>TM</sub> = {"M" "w" | M is a TM and M halts on w}

So, what is the computable function f here that takes the input of the form "M" "w" and returns output of the form " $M_1$ " " $w_1$ " where:

"M" "w"  $\in A_{TM}$  if and only if "M<sub>1</sub>" "w<sub>1</sub>"  $\in HALT_{TM}$ 

#### The following machine F computes a reduction f.

F = On input "M" "w"

- 1. Construct the following machine M₁:
  - $M_1$  = On input x:
  - 1. Run M on x.
  - 2. If M accepts, accept.
  - 3. If M rejects, enter a loop.
- 2. Output "M1" "w".

### Example 4

**Problem A:**  $E_{TM} = \{ \text{"M"} \mid M \text{ is a TM and L(M) is } \phi \}$ 

**Problem B:**  $EQ_{TM} = \{ "M_1" "M_2" | M_1 \text{ and } M_2 \text{ are TM's and } L(M_1) = L(M_2) \}$ 

**<u>Proof</u>**: Suppose  $EQ_{TM}$  is decidable and TM R decides it. We can construct another TM S which decides  $E_{TM}$  as follows:

S = "On input "M":

- 1. Run R on input "M" " $M_1$ ", where  $M_1$  is a TM that rejects all inputs.
- 2. If R accepts, accept; If R rejects, reject.



innovate

achieve

lead

#### **BITS** Pilani

Plani | Dubai | Goa | Hyderabad

# Thank You