

Barrare una sola risposta per ogni domanda

Il punteggio finale è $-1 \times$ (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

$\setminus x_1x$	0				
	00	01	11	10	Z
S_0	S_0	S_0	S_0	S_1	0
S_1	S_0		S_2	S_1	0
S_2	_	S ₃	S_2	S ₁	1
S_3	S_0	S_3	S_2	_	0

Sia Ta il tempo di attraversamento della RC1 della rete sequenziale asincrona la cui tabella di flusso è riportata sopra. Affinché il pilotaggio della RSA avvenga in modo corretto, il tempo di permanenza di uno stato di ingresso non può scendere sotto

Ta
2 Ta
3 Ta
5 Ta

Una rete combinatoria a due livelli di logica la cui uscita esce da una porta NOR è soggetta ad alee statiche del primo ordine:

Soltanto sul livello 1
Soltanto sul livello 0
Su entrambi i livelli
Nessuna delle precedenti

Sia dato un *divisore elementare per naturali in base due*, in cui il dividendo è un ingresso ad m+1 bit ed il divisore un ingresso a m bit. Le uscite sono:

Resto su m bit, quoziente su $m+1$ bit
Resto su <i>m</i> bit, quoziente su 1 bit, <i>no_div</i>
Resto su <i>m</i> +1 bit, quoziente su 1 bit, <i>no_div</i>
Nessuna delle precedenti

Sia dato un sommatore a una cifra per numeri in base dieci codificati BCD. Se lo stato di ingresso è: Cin=0, X=1001, Y=0001, lo stato di uscita sarà:

Cout =1, S=0000, Ow=0
Cout =0, S=1010, Ow=0
Cout =1, S=0000, Ow=1
Nessuna delle precedenti

La conversione tra rappresentazione in traslazione e in complemento alla radice (entrambe su *n* cifre):

plei	mento alla radice (entrambe su <i>n</i> cifro
	È sempre possibile
	È possibile solo in base 2
	È possibile solo per numeri positivi
	Nessuna delle precedenti

in toghto per appariti, se serve
Quali delle seguenti reti logiche sono <i>non</i> trasparenti? □ Le reti sequenziali sincronizzate di Moore, Mealy e Mealy Ritardato □ Il D-latch □ Le reti sequenziali di Mealy ritardato □ Nessuna delle precedenti
<pre>reg [3:0] WAIT; [] S0: begin WAIT<=???; STAR<=S1; end S1: begin WAIT<=WAIT-1;</pre>
Dato il pezzo di descrizione riportato sopra, quale valore va sostituito a ??? in S0 perché la rete resti in S1 per 9 cicli di clock?
Dato un sistema di elaborazione con un bus a 16 fili di indirizzo a15_a0 su cui si vuole montare una EPROM da 1Kbyte a partire dall'indirizzo 'H0800, la maschera che genera /s riceve in ingresso tutti e soli: a15_a0 a15_a10 a10 Nessuna delle precedenti

Per disabilitare una interfaccia ad inviare richieste di interruzione si deve:

Inviarle un segnale elettrico tramite una opportuna
variabile di collegamento con il Controllore
Azzerare un apposito bit di un apposito registro
dell'Interfaccia tramite una istruzione MOV
Azzerare un apposito bit di un apposito registro
Azzerare un apposito bit di un apposito registro dell'Interfaccia tramite una istruzione OUT

Con riferimento al processore visto a lezione, durante una lettura in memoria, il contenuto del registro DIR deve essere:

Sempre a 1
Sempre a 0
A volte ad 1 e a volte a 0
Nessuna delle precedenti

Do	mande di Reti Logiche	- compito del	09/09/2016	
Cognome e nor	ne:			
Cognome e nor	cola:			
Y	Consegna:	Sì	No	

Barrare una sola risposta per domanda

Il punteggio finale è $-1 \times$ (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

$\setminus x_1x$	0				
	00	01	11	10	z
S_0	S_0	S_0	\bigcirc	S_1	0
S_1	S_0		S_2	S_1	0
S_2	_	S_3	S_2	S_1	1
S_3	S_0	S_3	S_2	_	0

Sia Ta il tempo di attraversamento della RC1 della rete sequenziale asincrona la cui tabella di flusso è riportata sopra. Affinché il pilotaggio della RSA avvenga in modo corretto, il tempo di permanenza di uno stato di ingresso non può scendere sotto

Ta
2 Ta
3 Ta
5 Ta

Una rete combinatoria a due livelli di logica la cui uscita esce da una porta NOR è soggetta ad alee statiche del primo ordine:

Soltanto sul livello 1
Soltanto sul livello 0
Su entrambi i livelli
Nessuna delle precedenti

Sia dato un *divisore elementare per naturali in base due*, in cui il dividendo è un ingresso ad m+1 bit ed il divisore un ingresso a m bit. Le uscite sono:

Resto su m bit, quoziente su $m+1$ bit
Resto su <i>m</i> bit, quoziente su 1 bit, <i>no_div</i>
Resto su <i>m</i> +1 bit, quoziente su 1 bit, <i>no_div</i>
Nessuna delle precedenti

Sia dato un sommatore a una cifra per numeri in base dieci codificati BCD. Se lo stato di ingresso è: Cin=0, X=1001, Y=0001, lo stato di uscita sarà:

Cout =1, S=0000, Ow=0
Cout =0, S=1010, Ow=0
Cout =1, S=0000, Ow=1
Nessuna delle precedenti

La conversione tra rappresentazione in traslazione e in complemento alla radice (entrambe su *n* cifre):

È sempre possibile
È possibile solo in base 2
È possibile solo per numeri positivi
Nessuna delle precedenti

Quali delle seguenti reti logiche sono non trasparenti?

Le reti sequenziali sincronizzate di Moore, Mealy e Mealy Ritardato

Il D-latch

Le reti sequenziali di Mealy ritardato

Nessuna delle precedenti

reg [3:0] WAIT;
[...]

S0: begin WAIT<=???; STAR<=S1; end

S1: begin WAIT<=WAIT-1;

STAR<=(WAIT==0)?S2:S1; end

S2: [...]

Dato il pezzo di descrizione riportato sopra, quale valore va sostituito a ??? in S0 perché la rete resti in S1 per 9 cicli di clock?

8
9
10
Nessuna delle precedent

Dato un sistema di elaborazione con un bus a 16 fili di indirizzo a15_a0 su cui si vuole montare una EPROM da 1Kbyte a partire dall'indirizzo 'H0800, la maschera che genera /s riceve in ingresso tutti e soli:

a15_a0
a15_a10
a10
Nessuna delle precedenti

Per disabilitare una interfaccia ad inviare richieste di interruzione si deve:

Inviarle un segnale elettrico tramite una opportuna
variabile di collegamento con il Controllore
Azzerare un apposito bit di un apposito registro
dell'Interfaccia tramite una istruzione MOV
Azzerare un apposito bit di un apposito registro
dell'Interfaccia tramite una istruzione OUT
Usare l'istruzione CLI
Nessuna delle precedenti

Con riferimento al processore visto a lezione, durante una lettura in memoria, il contenuto del registro DIR deve essere:

Sempre a 1
Sempre a 0
A volte ad 1 e a volte a 0
Nessuna delle precedenti

Dor	mande di Reti Logiche	– compito del	09/09/2016	
Cognome e nor	me:			
Matri	cola:			
	Consegna:	Sì	No	

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

$\setminus x_1x$	0				
	00	01	11	10	Z
S_0	S_0	$\left(S_{0}\right)$	S_0	S_1	0
S_1	S_0	_	S_2	(S_1)	0
S_2	_	S_3	S_2	S_1	1
S_3	S_0	S_3	S_2	_	0

Sia Ta il tempo di attraversamento della RC1 della rete sequenziale asincrona la cui tabella di flusso è riportata sopra. Affinché il pilotaggio della RSA avvenga in modo corretto, il tempo di permanenza di uno stato di ingresso non può scendere sotto

Ta
2 Ta
3 Ta
5 Ta

Una rete combinatoria a due livelli di logica la cui uscita esce da una porta NOR è soggetta ad alee statiche del primo ordine:

Soltanto sul livello 1
Soltanto sul livello 0
Su entrambi i livelli
Nessuna delle precedenti

Sia dato un *divisore elementare per naturali in base due*, in cui il dividendo è un ingresso ad m+1 bit ed il divisore un ingresso a m bit. Le uscite sono:

Resto su m bit, quoziente su $m+1$ bit
Resto su <i>m</i> bit, quoziente su 1 bit, <i>no_div</i>
Resto su <i>m</i> +1 bit, quoziente su 1 bit, <i>no_div</i>
Nessuna delle precedenti

Sia dato un sommatore a una cifra per numeri in base dieci codificati BCD. Se lo stato di ingresso è: Cin=0, X=1001, Y=0001, lo stato di uscita sarà:

Cout =1, S=0000, Ow=0
Cout =0, S=1010, Ow=0
Cout =1, S=0000, Ow=1
Nessuna delle precedenti

La conversione tra rappresentazione in traslazione e in complemento alla radice (entrambe su *n* cifre):

È sempre possibile
È possibile solo in base 2
È possibile solo per numeri positivi
Nessuna delle precedenti

i logilo pel appullu, se serve
Quali delle seguenti reti logiche sono non trasparenti? □ Le reti sequenziali sincronizzate di Moore, Mealy e Mealy Ritardato □ Il D-latch □ Le reti sequenziali di Mealy ritardato □ Nessuna delle precedenti
<pre>reg [3:0] WAIT; [] S0: begin WAIT<=???; STAR<=S1; end S1: begin WAIT<=WAIT-1;</pre>
Dato il pezzo di descrizione riportato sopra, quale valore va sostituito a ??? in S0 perché la rete resti in S1 per 9 cicli di clock?
Dato un sistema di elaborazione con un bus a 16 fili di indirizzo a15_a0 su cui si vuole montare una EPROM da 1Kbyte a partire dall'indirizzo 'H0800, la maschera che genera /s riceve in ingresso tutti e soli: a15_a0 a15_a10 a10 Nessuna delle precedenti

Per disabilitare una interfaccia ad inviare richieste di interruzione si deve:

variabile di collegamento con il Controllore
Azzerare un apposito bit di un apposito registro
dell'Interfaccia tramite una istruzione MOV
Azzerare un apposito bit di un apposito registro
dell'Interfaccia tramite una istruzione OUT
Usare l'istruzione CLI
Nessuna delle precedenti

☐ Inviarle un segnale elettrico tramite una opportuna

Con riferimento al processore visto a lezione, durante una lettura in memoria, il contenuto del registro DIR deve essere:

Sempre a 1
Sempre a 0
A volte ad 1 e a volte a 0
Nessuna delle precedenti

_	one and a state of the	11 1.15	0/00/2046	
	mande di Reti Logiche			
Cognome e no	me:			
Matr	icola:			
	Consegna:	Sì	No	

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

$\setminus x_1x$	0				
	00	01	11	10	Z
S_0	S_0	S_0	S_0	S_1	0
S_1	S_0		S_2	S_1	0
S_2	_	S_3	S_2	S_1	1
S_3	S_0	(S_3)	S_2	_	0
po di attraversamento della RC1					

Sia Ta il tempo di attraversamento della RC1 della rete sequenziale asincrona la cui tabella di flusso è riportata sopra. Affinché il pilotaggio della RSA avvenga in modo corretto, il tempo di permanenza di uno stato di ingresso non può scendere sotto

Ta
2 Ta
3 Ta
5 Ta

Una rete combinatoria a due livelli di logica la cui uscita esce da una porta NOR è soggetta ad alee statiche del primo ordine:

Soltanto sul livello 1
Soltanto sul livello 0
Su entrambi i livelli
Nessuna delle precedenti

Sia dato un *divisore elementare per naturali in base due*, in cui il dividendo è un ingresso ad m+1 bit ed il divisore un ingresso a m bit. Le uscite sono:

Resto su <i>m</i> bit, quoziente su <i>m</i> +1 bit
Resto su <i>m</i> bit, quoziente su 1 bit, <i>no_div</i>
Resto su <i>m</i> +1 bit, quoziente su 1 bit, <i>no_div</i>
Nessuna delle precedenti

Sia dato un sommatore a una cifra per numeri in base dieci codificati BCD. Se lo stato di ingresso è: Cin=0, X=1001, Y=0001, lo stato di uscita sarà:

Cout =1, S=0000, Ow=0
Cout =0, S=1010, Ow=0
Cout =1, S=0000, Ow=1
Nessuna delle precedenti

La conversione tra rappresentazione in traslazione e in complemento alla radice (entrambe su n cifre):

piei	mento alla radice (entrambe su <i>n</i> citre
	È sempre possibile
	È possibile solo in base 2
	È possibile solo per numeri positivi
	Nessuna delle precedenti

Togho per appariti, se serve						
Quali delle seguenti reti logiche sono non trasparenti? □ Le reti sequenziali sincronizzate di Moore, Mealy e Mealy Ritardato □ Il D-latch □ Le reti sequenziali di Mealy ritardato □ Nessuna delle precedenti						
<pre>reg [3:0] WAIT; [] S0: begin WAIT<=???; STAR<=S1; end S1: begin WAIT<=WAIT-1;</pre>						
Dato il pezzo di descrizione riportato sopra, quale valore va sostituito a ??? in S0 perché la rete resti in S1 per 9 cicli di clock? 8 9 10 Nessuna delle precedenti						
Dato un sistema di elaborazione con un bus a 16 fili di indirizzo a15_a0 su cui si vuole montare una EPROM da 1Kbyte a partire dall'indirizzo 'H0800, la maschera che genera/s riceve in ingresso tutti e soli: a15_a0 a15_a10 a10 Nessuna delle precedenti						
Per disabilitare una interfaccia ad inviare richieste di interruzione si deve: Inviarle un segnale elettrico tramite una opportuna variabile di collegamento con il Controllore Azzerare un apposito bit di un apposito registro dell'Interfaccia tramite una istruzione MOV Azzerare un apposito bit di un apposito registro dell'Interfaccia tramite una istruzione OUT Usare l'istruzione CLI Nessuna delle precedenti						
Con riferimento al processore visto a lezione, durante una lettura in memoria, il contenuto del registro DIR deve essere:						

☐ Sempre a 1

 \Box Sempre a 0

A volte ad 1 e a volte a 0 Nessuna delle precedenti

		Domande di Reti Logiche	– compito del C	09/09/2016	
	Cognome	<u></u>			
		Matricola:			
		Consegna:	Sì	No	
-					