Homework 1 Solutions

February 8, 2017

1 Problem 1

Composites material properties are usually calibrated in the material coordinate system, with the base vectors denoted as a_i . To carry out analysis, we usually have to set up problem coordinate system denoted as e_i . In the most general case, the material coordinate system can be obtained through three consecutive rotations from the problem coordinate system. Let us assume we rotate e_i about e_1 by θ_1 to become e_i' . This is followed by a rotation of e_i' about e_2' by θ_2 to become e_i'' . Finally, we rotate rotate e_i'' about e_3'' by θ_3 to give a_i . Find the direction cosine matrix β_{ij} such that $e_i = \beta_{ij}a_j$.

1.1 Solution

With the convention that

$$Q_{ij} = \cos(x_i', x_j)$$

We know that

$$e_i' = Q_{ij}e_j$$

We can denote the rotation matrix, Q_{ij} for each successive transformation with a superscript, giving the following equations

$$e'_{i} = Q_{ij}e_{j}$$
 $e''_{i} = Q_{ij}^{2}e'_{j}$ $a_{i} = Q_{ij}^{3}e''_{j}$

We desire to relate a_i to e_i directly, with one effective rotation, β_{ij} . We can do this by substituting the three equations

$$a_i = Q_{ij}^3 Q_{jk}^2 Q_{kl}^3 e_l = [Q^3][Q^2][Q^1]e$$

In this problem, however, we are tasked with finding the inverse relationship, $e_i = \beta_{ij}a_j$, left multiply by Q^{3T} , Q^{2T} , Q^{1T} in that order.

$$Q_{ii}^1 Q_{ki}^2 Q_{lk}^3 a_l = e_l = [Q^{1T}][Q^{2T}][Q^{3T}]$$

to find $\beta_{ij} = Q_{ji}^1 Q_{kj}^2 Q_{lk}^3$

We can expand this symbolically

Out [15]:

```
\begin{bmatrix} \cos(\theta_2)\cos(\theta_3) & -\sin(\theta_3)\cos(\theta_2) & \sin(\theta_2) \\ \sin(\theta_1)\sin(\theta_2)\cos(\theta_3) + \sin(\theta_3)\cos(\theta_1) & -\sin(\theta_1)\sin(\theta_2)\sin(\theta_3) + \cos(\theta_1)\cos(\theta_3) & -\sin(\theta_1)\cos(\theta_2) \\ \sin(\theta_1)\sin(\theta_3) - \sin(\theta_2)\cos(\theta_1)\cos(\theta_3) & \sin(\theta_1)\cos(\theta_3) + \sin(\theta_2)\sin(\theta_3)\cos(\theta_1) & \cos(\theta_1)\cos(\theta_2) \end{bmatrix}
```

1.2 Problem 2

Consider a unidirectional fiber-reinforced composite as linearly elastic, orthotropic materials with

Property	Value
$\overline{E_1}$	20 Mpsi
E_2	1.4 Mpsi
E_3	2.5 Mpsi
G_{12}	0.8 Mpsi
G_{13}	2.0 Mpsi
G_{23}	1.5 Mpsi
ν_{12}	0.2
ν_{13}	0.3
ν_{23}	0.25

Where the 1-direction is in the fiber direction, the 2-direction is normal to the fibers in the plane, and the 3-direction is normal to the plane. Four 45° laminae are used to make a box beam (45° refers to the rotation about the outward normal at each wall). Compute the 6x6 stiffness matrix for each wall of the box beam in the global coordinate system.

1.3 Solution

First, we calculate the orthotropic stiffness matrix for uni-directional fibers.

```
[-v13/E1, -v23/E2, 1/E3, 0, 0, 0],
                      [0,0,0,1/G23,0,0],
                      [0,0,0,0,1/G13,0],
                      [0,0,0,0,0,1/G12]])
        C = np.linalg.inv(S)
        np.round(C*1e-6, decimals=2) #in Mpsi
                                    1.01,
Out [5]: array([[ 20.41,
                           0.54,
                                            0.
                                                     0.
                                                                  1,
                                                             0.
                [0.54,
                           1.59,
                                    0.73,
                                            0.,
                                                     0.,
                                                              0.
                                                                  1,
                   1.01,
                           0.73,
                                    2.86,
                                            0.
                                                     0.
                                                              0.
                                                                  1,
                   0.,
                           0. ,
                                    0.,
                                            1.5 ,
                                                     0.,
                                                              0.
                           0.,
                                            0.,
                                                     2.
                Γ
                   0.
                                    0.
                                                             0.
                                                                  1,
                Γ
                   0.
                           0.
                                    0.
                                            0.
                                                     0.
                                                              0.8]])
```

Now we need to calculate the rotations for each wall. First I will define some common rotation functions to build R_{σ} consistently for each wall.

```
In [17]: def qij_x(theta):
             rotation tensor about x-axis by some theta
             input: theta (angle in radians)
             output: qij (3x3 rotation tensor)
             qij = np.array([[1,0,0],
                             [0, np.cos(theta), np.sin(theta)],
                             [0,-np.sin(theta),np.cos(theta)]])
             return qij
         def qij_y(theta):
              11 11 11
             rotation tensor abolut y-axis by some theta
             input: theta (angle in radians)
             output: qij (3x3 rotation tensor)
             qij = np.array([[np.cos(theta), 0, -np.sin(theta)],
                             [0,1,0],
                             [np.sin(theta), 0, np.cos(theta)]])
             return qij
         def qij_z(theta):
             n n n
             rotation tensor about z-axis by some theta
             input: theta (angle in radians)
             output: qij (3x3 rotation tensor)
             qij = np.array([[np.cos(theta), np.sin(theta), 0],
                             [-np.sin(theta), np.cos(theta), 0],
                             [0,0,1]
```

We will start by considering the face that intersects the positive x_2 axis. Since the lamina is orthotropic, there are multiple local coordinate systems that would give the same properties.

Recall that, as defined in Problem 1, we have $e_i = \beta_{ij}a_j$, so we can use β_{ij} from Problem 1 to directly relate the local coordinate system (fiber direction with the fibers pointing along x'_1 and the outward normal being x'_3) to the global coordinate system.

We can use the β defined in Problem 1 by first rotating about x_1 until x_3 is the normal, then rotating by 45° about the normal (x_3') .

Starting at the right wall, we have $\theta_1 = 270$ (or -90) and $\theta_3 = 45$ (with $\theta_2 = 0$).

We can check this rotation by multiplying β by (1,0,0), (0,1,0) and (0,0,1) (the unit vectors in the prime coordinates), this should give back global coordinates of (1,0,-1)/ $\sqrt{2}$, (-1,0,-1)/ $\sqrt{2}$, and (0,1,0) respectively.

Now we need to be careful about the R_{σ} as defined. The convention used for this R_{σ} is that R_{σ} is a function of Q_{ij} , and gives the relationship

$$C' = R_{\sigma} C R_{\sigma}^T$$

However, we already know C' and desire to find C in the global reference. We can acheive this by either re-writing our equation, or calculating R_{σ} with $Q^{-1}=Q^T=\beta$

```
In [70]: #convert beta to numeric python library
        B = np.array(beta_rightwall.tolist()).astype(np.float64)
        R = R_sigma(B)
        print np.round(np.dot(R,np.dot(C,R.T))*1e-6,decimals=2)
[[ 6.57 0.87
             4.97 0.
                         -4.7
                               0.
 [ 0.87
        2.86 0.87 0.
                         -0.14
                               0. 1
 [ 4.97 0.87
              6.57 0.
                        -4.7
                               0. ]
        0.
                    1.75 0. -0.251
 0.
              0.
```

```
[-4.7 \quad -0.14 \quad -4.7 \quad 0.
                               5.23
                                      0. 1
          0.
                 0.
                      -0.25 0.
 [ 0.
                                      1.75]]
  We can now look at the top wall, where x_3 is already normal, so we simply set \theta_3 = 45^{\circ} with
\theta_1 = \theta_2 = 0
In [71]: beta_topwall = beta.subs([(t1,0),(t2,0),(t3,sm.pi/4)])
          #print beta_topwall*sm.Matrix([0,0,1]) #check rotations
          B = np.array(beta_topwall.tolist()).astype(np.float64)
          R = R_sigma(B)
          print np.round(np.dot(R, np.dot(C, R.T)) *1e-6, decimals=2)
[[ 6.57
          4.97
                 0.87
                        0.
                               0.
                                      4.7 ]
 [ 4.97
          6.57
                 0.87
                        0.
                               0.
                                      4.7 ]
                 2.86 0.
 [ 0.87
          0.87
                               0.
                                      0.141
 [ 0.
          0.
                 0.
                        1.75 0.25
                                      0. ]
          0.
                        0.25
                               1.75
                                      0. 1
 [ 0.
                 0.
          4.7
 [ 4.7
                 0.14
                        0.
                               0.
                                      5.2311
  And for the left wall we set \theta_1 = 90 with \theta_2 = 0 and \theta_3 = 45
In [72]: beta_leftwall = beta.subs([(t1,sm.pi/2),(t2,0),(t3,sm.pi/4)])
          #beta_leftwall*sm.Matrix([0,1,0]) #check rotations
          B = np.array(beta_leftwall.tolist()).astype(np.float64)
          R = R_sigma(B)
          C_left = np.dot(R,np.dot(C,R.T)) #save for problem 3
          print np.round(C_left*1e-6, decimals=2)
                        0.
                               4.7
[[ 6.57
          0.87
                 4.97
                                      0.
 [ 0.87
          2.86 0.87
                               0.14
                        0.
                                      0.
                                         1
                               4.7
 [ 4.97
          0.87
                 6.57
                        0.
                                      0. 1
                                      0.251
                              0.
 [ 0.
          0.
                 0.
                        1.75
 [ 4.7
          0.14
                 4.7
                        0.
                               5.23
                                      0. 1
 [ 0.
          0.
                 0.
                        0.25
                               0.
                                      1.75]]
  Finally for the bottom wall we have \theta_1 = 180, \theta_2 = 0 and \theta_3 = 45
```

```
In [73]: beta_bottomwall = beta.subs([(t1,sm.pi),(t2,0),(t3,sm.pi/4)])
         #beta_bottomwall*sm.Matrix([0,1,0]) #check rotations
         B = np.array(beta_bottomwall.tolist()).astype(np.float64)
         R = R_sigma(B)
         print np.round(np.dot(R, np.dot(C, R.T)) *1e-6, decimals=2)
                            0.
[[ 6.57 4.97
               0.87 0.
                                 -4.7 ]
 [ 4.97
         6.57
               0.87 0.
                            0.
                                 -4.7]
         0.87
               2.86 0.
 [ 0.87
                            0.
                                 -0.141
 [ 0.
         0.
               0.
                     1.75 -0.25 0. ]
                    -0.25 1.75
 [ 0.
         0.
               0.
                                  0. ]
 [-4.7 \quad -4.7 \quad -0.14 \quad 0.
                            0.
                                  5.23]]
```

2 Problem 3

Out [75]:

To find R_{σ} and R_{ϵ} we start by multiplying out the transformation relationship.

```
In [74]: #define symbols for stress tensor
         s1, s2, s3, s4, s5, s6 = sm.symbols('\sigma_1 \sigma_2 \sigma_3 \sigma_4 \
         s = sm.Matrix([[s1, s6, s5],
                       [s6, s2, s4],
                         [s5,s4,s3]]) #symmetric stress tensor in engineering notati
         Q = sm.Matrix(3, 3, lambda i, j:sm.symbols('Q_{8d}' % (i+1, j+1))) #symbol
         sp = Q * s * Q . T
         sp = sp.expand() #multiply out terms
         #write matrix in vector form in correct order
         spe = sm.Matrix([[sp[0,0]],
                          [sp[0,1]],
                          [sp[1,1]],
                          [sp[0,2]],
                          [sp[1,2]],
                          [sp[2,2]]]) #reshape to vector for engineering notation
         spe #notice that terms are not necessarily sorted, nor are they combined
Out[74]:
```

```
\begin{bmatrix}Q_{11}^2\sigma_1 + 2Q_{11}Q_{12}\sigma_6 + 2Q_{11}Q_{13}\sigma_5 + Q_{12}^2\sigma_2 + 2Q_{12}Q_{13}\sigma_4 + Q_{13}^2\sigma_3\\Q_{11}Q_{21}\sigma_1 + Q_{11}Q_{22}\sigma_6 + Q_{11}Q_{23}\sigma_5 + Q_{12}Q_{21}\sigma_6 + Q_{12}Q_{22}\sigma_2 + Q_{12}Q_{23}\sigma_4 + Q_{13}Q_{21}\sigma_5 + Q_{13}Q_{22}\sigma_4 + Q_{13}Q_{23}\sigma_3\\Q_{21}^2\sigma_1 + 2Q_{21}Q_{22}\sigma_6 + 2Q_{21}Q_{23}\sigma_5 + Q_{22}^2\sigma_2 + 2Q_{22}Q_{23}\sigma_4 + Q_{23}^2\sigma_3\\Q_{11}Q_{31}\sigma_1 + Q_{11}Q_{32}\sigma_6 + Q_{11}Q_{33}\sigma_5 + Q_{12}Q_{31}\sigma_6 + Q_{12}Q_{32}\sigma_2 + Q_{12}Q_{33}\sigma_4 + Q_{13}Q_{31}\sigma_5 + Q_{13}Q_{32}\sigma_4 + Q_{13}Q_{33}\sigma_3\\Q_{21}Q_{31}\sigma_1 + Q_{21}Q_{32}\sigma_6 + Q_{21}Q_{33}\sigma_5 + Q_{22}Q_{31}\sigma_6 + Q_{22}Q_{32}\sigma_2 + Q_{22}Q_{33}\sigma_4 + Q_{23}Q_{31}\sigma_5 + Q_{23}Q_{32}\sigma_4 +
```

Now we need to write this as a matrix equation by factoring out like terms.

```
In [75]: #here we will sort and combine terms
    R_s = sm.zeros(6) #first fill with zeros
    cols = [s1,s6,s2,s5,s4,s3] #define term order
    #loop through all values of R_s
    for i in range(6):
        row = spe[i] #find row of matrix to work with
        for j in range(6):
            col = cols[j]
            temp = sm.collect(row,col,evaluate=False) #collect terms in row with
            R_s[i,j] = temp[col] #factor out term from col, and insert it into
            R_s
```

$$\begin{bmatrix} Q_{11}^2 & 2Q_{11}Q_{12} & Q_{12}^2 & 2Q_{11}Q_{13} & 2Q_{12}Q_{13} & Q_{13}^2 \\ Q_{11}Q_{21} & Q_{11}Q_{22} + Q_{12}Q_{21} & Q_{12}Q_{22} & Q_{11}Q_{23} + Q_{13}Q_{21} & Q_{12}Q_{23} + Q_{13}Q_{22} & Q_{13}Q_{23} \\ Q_{21}^2 & 2Q_{21}Q_{22} & Q_{22}^2 & 2Q_{21}Q_{23} & 2Q_{22}Q_{23} & Q_{23}^2 \\ Q_{11}Q_{31} & Q_{11}Q_{32} + Q_{12}Q_{31} & Q_{12}Q_{32} & Q_{11}Q_{33} + Q_{13}Q_{31} & Q_{12}Q_{33} + Q_{13}Q_{32} \\ Q_{21}Q_{31} & Q_{21}Q_{32} + Q_{22}Q_{31} & Q_{22}Q_{32} & Q_{21}Q_{33} + Q_{23}Q_{31} & Q_{22}Q_{33} + Q_{23}Q_{32} \\ Q_{31}^2 & 2Q_{31}Q_{32} & Q_{32}^2 & 2Q_{31}Q_{33} & 2Q_{32}Q_{33} & Q_{33}^2 \end{bmatrix}$$

We can find the transformation for engineering strain by expanding the transformation for strain, but replacing the shear strain terms ϵ_{12} with engineering strain divided by $2 \gamma_{12}/2$. We can then multiply both sides of the shear strain equations by two to find the transformation in terms of the engineering strain.

$$\begin{bmatrix}Q_{11}^{2}\epsilon_{1}+Q_{11}Q_{12}\gamma_{12}+Q_{11}Q_{13}\gamma_{13}+Q_{12}^{2}\epsilon_{2}+Q_{12}Q_{13}\gamma_{23}+Q_{13}^{2}\epsilon_{3}&Q_{12}Q_{11}Q_{12}Q_{12}Q_{13}Q_{13}Q_{13}+Q_{12}Q_{12$$

Notice that the shear equations show the transformation for ϵ'_{12} , or $\gamma'_{12}/2$. Since we want a transformation for γ'_{12} , we will multiply both sides of those equations by 2.

```
[2*ep[0,2]],
      [2*ep[1,2]],
      [ep[2,2]]]) #reshape to vector for engineering notation
epe #notice that terms are not necessarily sorted, nor are they combined
```

Out [78]:

```
\begin{bmatrix}Q_{11}^2\epsilon_1 + Q_{11}Q_{12}\gamma_{12} + Q_{11}Q_{13}\gamma_{13} + Q_{12}^2\epsilon_2 + Q_{12}Q_{13}\gamma_{23} + Q_{13}^2\epsilon_3\\2Q_{11}Q_{21}\epsilon_1 + Q_{11}Q_{22}\gamma_{12} + Q_{11}Q_{23}\gamma_{13} + Q_{12}Q_{21}\gamma_{12} + 2Q_{12}Q_{22}\epsilon_2 + Q_{12}Q_{23}\gamma_{23} + Q_{13}Q_{21}\gamma_{13} + Q_{13}Q_{22}\gamma_{23} + 2Q_{13}Q_{22}\gamma_{23} + Q_{21}Q_{22}\gamma_{12} + Q_{21}Q_{23}\gamma_{13} + Q_{22}^2\epsilon_2 + Q_{22}Q_{23}\gamma_{23} + Q_{23}^2\epsilon_3\\2Q_{11}Q_{31}\epsilon_1 + Q_{11}Q_{32}\gamma_{12} + Q_{11}Q_{33}\gamma_{13} + Q_{12}Q_{31}\gamma_{12} + 2Q_{12}Q_{32}\epsilon_2 + Q_{12}Q_{33}\gamma_{23} + Q_{13}Q_{31}\gamma_{13} + Q_{13}Q_{32}\gamma_{23} + 2Q_{13}Q_{22}Q_{21}Q_{31}\epsilon_1 + Q_{21}Q_{32}\gamma_{12} + Q_{21}Q_{33}\gamma_{13} + Q_{22}Q_{31}\gamma_{12} + 2Q_{22}Q_{32}\epsilon_2 + Q_{22}Q_{33}\gamma_{23} + Q_{23}Q_{31}\gamma_{13} + Q_{23}Q_{32}\gamma_{23} + 2Q_{23}Q_{32}\epsilon_2 + Q_{22}Q_{33}\gamma_{23} + Q_{23}Q_{33}\gamma_{23} + Q_{23}Q_{32}\gamma_{23} + Q_{23}Q_{3
```

Now we can sort terms and factor into a matrix equation

Out [79]:

$$\begin{bmatrix} Q_{11}^2 & Q_{11}Q_{12} & Q_{12}^2 & Q_{11}Q_{13} & Q_{12}Q_{13} & Q_{13}^2 \\ 2Q_{11}Q_{21} & Q_{11}Q_{22} + Q_{12}Q_{21} & 2Q_{12}Q_{22} & Q_{11}Q_{23} + Q_{13}Q_{21} & Q_{12}Q_{23} + Q_{13}Q_{22} \\ Q_{21}^2 & Q_{21}Q_{22} & Q_{22}^2 & Q_{21}Q_{23} & Q_{22}Q_{23} & Q_{23}^2 \\ 2Q_{11}Q_{31} & Q_{11}Q_{32} + Q_{12}Q_{31} & 2Q_{12}Q_{32} & Q_{11}Q_{33} + Q_{13}Q_{31} & Q_{12}Q_{33} + Q_{13}Q_{32} \\ 2Q_{21}Q_{31} & Q_{21}Q_{32} + Q_{22}Q_{31} & 2Q_{22}Q_{32} & Q_{21}Q_{33} + Q_{23}Q_{31} & Q_{22}Q_{33} + Q_{23}Q_{32} \\ Q_{31}^2 & Q_{31}Q_{32} & Q_{32}^2 & Q_{31}Q_{33} & Q_{32}Q_{33} & Q_{33}^2 \end{bmatrix}$$

To verify that $(R_{\epsilon})^{-1} = R_{\sigma}^T$ for $\theta_1 = 20$, $\theta_2 = 45$ and $\theta_3 = 60$ we can substitute into the beta we found previously, calculate $Q = \beta^T$, then substitute values for both R_{ϵ} and R_{σ} .

```
In [80]: b3 = beta.subs([(t1,sm.pi/9.),(t2,sm.pi/4),(t3,sm.pi/3)])
    q = np.array(b3.tolist()).astype(np.float64)
    q = q.T
    #add new matrix to store values for numeric R_e and R_s
    R_s_vals = R_s
    R_e_vals = R_e
    #substitute into R_s and R_e
    for i in range(3):
        for j in range(3):
```

To transform the stiffness in this new notation, we first need to build the uni-directional stiffness matrix in this notation

```
In [81]: E1, E2, E3, G12, G13, G23, v12, v13, v23 = 20e6, 1.4e6, 2.5e6, 0.8e6, 2.0e6
        S_{new} = np.array([[1/E1, 0, -v12/E1, 0, 0, -v13/E1],
                    [0,1/G12,0,0,0,0]
                    [-v12/E1, 0, 1/E2, 0, 0, -v23/E2],
                    [0,0,0,1/G13,0,0],
                    [0,0,0,0,1/G23,0],
                    [-v13/E1, 0, -v23/E2, 0, 0, 1/E3]])
        C_new = np.linalq.inv(S_new)
        np.round(C_new*1e-6, decimals=2) #in Mpsi
Out[81]: array([[ 20.41,  0. ,  0.54,  0. ,  0. ,  1.01],
              [ 0. , 0.8 , 0. , 0. , 0. ,
                                                      0.],
              [ 0.54, 0. , 1.59, 0. , 0. ,
                                                      0.731,
              [ 0. , 0. , 0. , 2. , 0. ,
                                                      0. 1,
                                     0.,
              [ 0. , 0. , 0. ,
                                              1.5 ,
                                                      0. 1,
              [ 1.01, 0. , 0.73,
                                      0.,
                                               0.,
                                                      2.8611)
```

Now we perform the rotation using the β and Q we assembled for the left wall

```
In [82]: b3 = beta.subs([(t1,sm.pi/2),(t2,0),(t3,sm.pi/4)])
    q = np.array(b3.tolist()).astype(np.float64)
    #add new matrix to store values for numeric R_e and R_s
    R_s_vals = R_s
    R_e_vals = R_e
    #substitute into R_s and R_e
    for i in range(3):
        for j in range(3):
            R_s_vals = R_s_vals.subs(Q[i,j],q[i,j])
        R_s_vals = np.array(R_s_vals.tolist()).astype(np.float64)

C_left_new = np.dot(R_s_vals,np.dot(C_new,R_s_vals.T))
    print np.round(C_left_new*1e-6,decimals=2)
```

```
[[ 6.57 0.
            0.87 4.7
                       0. 4.97]
[ 0.
       1.75 0.
                  0.
                       0.25
                             0. ]
[ 0.87 0.
             2.86 0.14
                       0.
                             0.87]
[ 4.7
       0.
             0.14
                  5.23
                       0.
                             4.7 ]
       0.25
[ 0.
             0.
                  0.
                       1.75
                             0. ]
[ 4.97 0.
             0.87 4.7
                       0.
                             6.57]]
```

Now we can confirm that $C' = BCB^T$

```
In [83]: B = np.array([[1,0,0,0,0,0],
                    [0,0,0,0,0,1],
                    [0,1,0,0,0,0]
                    [0,0,0,0,1,0],
                    [0,0,0,1,0,0],
                    [0,0,1,0,0,0]])
        np.round(np.dot(B, np.dot(C_left, B.T)) *1e-6, decimals=2)
Out[83]: array([[ 6.57, 0. , 0.87, 4.7 , 0. ,
               [ 0. , 1.75, 0. , 0. , 0.25,
                                                 0.],
               [ 0.87,
                      0. , 2.86,
                                   0.14,
                                          0.,
                                                 0.87],
               [ 4.7 , 0. , 0.14, 5.23, 0. ,
                                                 4.7],
               [ 0. , 0.25, 0. , 0. ,
                                          1.75,
                                                 0.],
               [ 4.97, 0. , 0.87, 4.7 , 0. ,
                                                 6.57]])
```