

Inteligência Artificial

Obtendo resultados, ontem, hoje e sempre

Professor

Gustavo Correa Mirapalheta

Eng.Eletrico (UFRGS), Doutor em Adm.de Empresas (FGV). Professor de Tecnologia e Ciência de Dados (FGV). Consultor em Aplicações de Inteligência Artificial. Foi gerente e diretor de vendas de software na IBM Brasil e Sun Microsystems. Seus interesses de pesquisa estão nas áreas de Deep Learning, Natural Language Processing e Quantum Computing.

gustavo.mirapalheta@gmail.com

+55 11 9 9204 1201

Bibliografia - Negócios e Python

PROVOST, Foster & FAWCETT, Tom Data Science para negócios: O que você precisa saber sobre mineração de dados e pensamento analítico de dados. Alta Books, 2016, 1ª edição.

CHOLLET, François *Deep Learning with Python*. Manning, 2022, 2nd ed.

Agenda

- Evolução Tecnológica
- Aprendizado de Máquina
- Ciclo de vida dos dados
- Modelos Preditivos
- O Dia-a-Dia

Evolução Tecnológica

Lei de Moore

O que nos reserva o futuro?

Cenário atual: O fim da Lei de Lei de Moore Moore (tal como a conhecemos) Cenário atual: Desafios sociais cuja solução irá requerer a gestão de Computação massas de dados cada vez maiores Quântica **FUSION ENERGY** Velocidade **Variedade** Programação Clássica **Big Data** Volume Data Output Computer Program Volume **Machine Learning** Data Computer Program Velocidade Output

Aprendizado de Máquina

Exemplos

- Oferta de crédito
- Prevenção de atrito com agência reguladora (Bacen)
- Recuperação de dívidas.

- Análise de sentimento
- Segmentação de perfis

- Precificação de produtos
- Identificação de Fraudes

- Atendimentos hospitalares
- Prevenção de doenças

- Seleção de currículos
- Custos trabalhistas

- *Churning* de contratos
- Compra de serviços
- Minimização de erros em call-center (com text mining)

Encontrar os Dados Relevantes

Seleção de Variáveis e Limpeza de Valores

Modelos Supervisionados

X ₁	X ₂	X ₃	Хp	Y	
				†	
			Here, the	target variable	Э

Here, the target variable Y can "supervise" how the algorithm builds the model

Modelos Não Supervisionados

A máquina irá gerar os valores de saída para nós

Marcações nas colunas

Machine Learning on Esteroids: Redes Neurais (a.k.a.Deep Learning)

Aplicações Recentes e Futuras (nem tanto...)

Reconhecimento de Imagens

Criação de Imagens

Veículos Autônomos

Logística: automação do *last*

mile de entregas

RH: Recrutamento e Seleção.

Educação: Correção automática de provas

Treinamento: Instrução automática e personalizada

Direito: Criação inicial de documentos

Suporte e Atendimento: Automatização do 1º Nível

Geração de Texto

Novas Soluções vs. Antigas Questões

Ele vai acabar passando no *Teste de Turing*. Ele estará *consciente*?

Mas como vamos diferenciar uma *máquina* que imita a consciência da *consciência* "real"?

Modelos Supervisionados - Desempenho

Modelos Supervisionados – Sobre ajuste

- O ajuste de um modelo aos dados pode ser visualizado de duas formas:
 - Na previsão de valor pela melhor linha que passa pelo meio dos dados
 - Na previsão de categoria pela linha que separa pontos de cores distintas de cada lado da mesma

	Underfitting	Just right	Overfitting
Symptoms	Previsor pouco flexível Baixa complexidade Alto viés, Baixa Variância	Previsor muito flexível Alta complexidade Baixo viés, Baixa Variância	Previsor muito flexível Alta complexidade Baixo viés, Alta Variância
Regression illustration			my
Classification illustration			

Modelos Supervisionados – Treino & Teste

Uso de todos os dados:
abordagem estatística, medida
de desempenho: p-valor

Dados usados para a calibração dos parâmetros do
modelo e mensuração de desempenho.

Divisão em grupo de
treino e grupo de teste:
MSE, Precisão

MSE, Precisão

MSE, Precisão

MSE, Precisão

Dados usados apenas para
mensuração de desempenho.

Amostragem
aleatória

- Com o aumento do volume de dados disponíveis para cálculo dos parâmetros de um modelo a partir do início do século XXI passou-se a adotar a técnica de dividir o conjunto em dois grupos treino e teste.
- Os parâmetros do modelo são calculados no grupo de treino. O modelo tem seu desempenho avaliado no conjunto de teste.
- Este tipo de técnica é utilizada para evitar um problema conhecido como sobreajuste (overfitting)

Modelos Preditivos

Levem em conta os possíveis usos da nova ferramenta...

Título

Subtítulo

Conteúdo