Math 260 HW # 8

Mario L. Gutierrez Abed

(Problem 1) Suppose $T \in \mathcal{L}(V)$ is invertible and λ is a nonzero scalar. Prove that λ is an eigenvalue of T iff $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

Proof:

 (\Rightarrow)

Suppose that λ is an eigenvalue of T. Then $\exists x \in V$ such that $T = \lambda x$, $x \neq 0$. But then since T is invertible we have that $T^{-1} T x = T^{-1} \lambda x \Longrightarrow x = T^{-1} \lambda x$. Dividing this last equation by λ we get $\frac{1}{\lambda} x = T^{-1} x$. This in turn implies that $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} . (\Leftarrow)

To prove in the other direction we simply go backwards. That is, suppose that $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} , then it is true that $\frac{1}{\lambda}x = T^{-1}x$. Multiplying this last equation by λ we get $x = T^{-1}\lambda x$. Then since T is invertible we have that $T = T T^{-1}\lambda x \implies T = \lambda x$. This in turn implies that λ is an eigenvalue of T.

Section 5.1

(4) For the following linear operator T on V, find the eigenvalues of T and an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

e)
$$V = P_2(\mathbb{R})$$
 and $T(f(x)) = x f'(x) + f(2) x + f(3)$

Solution:

Let γ be the standard basis for $P_2(\mathbb{R})$, i.e. $\gamma = \{1, x, x^2\}$.

Now we want to compute $[T]_{\gamma}$:

$$\longrightarrow T(1) = x(0) + 1 x + 1 = x + 1$$

$$\rightarrow T(x) = x(1) + 2x + 3 = 3x + 3$$

$$\rightarrow T(x^2) = x(2x) + 4x + 9 = 2x^2 + 4x + 9$$

Hence
$$[T]_{\gamma} = \begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$
.

$$\operatorname{char}(A) = \det(A - t I) = \det\begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t \end{pmatrix} = 0$$

$$= \det\begin{pmatrix} 1 - t & 3 & 9 \\ 1 & 3 - t & 4 \\ 0 & 0 & 2 - t \end{pmatrix} = (2 - t)[(1 - t)(3 - t) - 3] = (2 - t)(3 - t - 3t + t^2 - 3) = 0$$

$$= (2 - t)(t^2 - 4t) = t(2 - t)(t - 4) = 0$$

Hence $\lambda = 0$, 2, 4 are the eigenvalues of T.

Now we want to find the eigenbasis β that makes $[T]_{\beta}$ a diagonal matrix with the three computed eigenvalues as the diagonal entries. In order to find this basis we must find the eigenvectors associated with these eigenvalues:

 \rightarrow For $\lambda = 0$:

$$(A - (0) I) x = 0 \implies \begin{pmatrix} \begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\implies \begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

From here we have $x_3 = 0$, $x_1 = -3x_2$. Letting $x_2 = \alpha \in \mathbb{R}$, we our solution set is

$$\begin{pmatrix} -3 & \alpha \\ \alpha \\ 0 \end{pmatrix} = \alpha \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}. \text{ Hence } \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} (\{-3+x\}) \text{ is an eigenvector corresponding to } \lambda = 0. \quad \checkmark$$

 \rightarrow For $\lambda = 2$:

$$(A - (2) I) x = 0 \implies \begin{pmatrix} \begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\implies \begin{pmatrix} -1 & 3 & 9 \\ 1 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} -1 & 3 & 9 \\ 0 & 4 & 13 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

From here we have $4x_2 = -13x_3 \Longrightarrow x_2 = -\frac{13}{4}x_3$ and $x_1 - 3\left(-\frac{13}{4}x_3\right) - 9x_3 = 0 \Longrightarrow x_1 = -\frac{3}{4}x_3$ Letting $x_3 = \zeta \in \mathbb{R}$, we our solution set is \rightarrow For $\lambda = 4$:

$$(A - (4) I) x = 0 \implies \begin{pmatrix} \begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\implies \begin{pmatrix} -3 & 3 & 9 \\ 1 & -1 & 4 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

From here we have $x_3 = 0$, $x_1 = x_2$. Letting $x_1, x_2 = \xi \in \mathbb{R}$, we our solution set is

$$\begin{pmatrix} \xi \\ \xi \\ 0 \end{pmatrix} = \xi \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}. \text{ Hence } \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} (\{1 + x\}) \text{ is an eigenvector corresponding to } \lambda = 4.$$

The eigenvectors we just computed are linearly independent by a previous lemma. Hence we have the eigenbasis

$$\beta = \{-3 + x, -3 - 13x + 4x^2, 1 + x\}.$$

Now we want to compute $[T]_{\beta}$:

** Recall from above that T(f(x)) = x f'(x) + f(2) x + f(3) **

Hence, FINALLY we have
$$[T]_{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Section 5.2

(8) Suppose that $A \in M_{n \times n}(\mathbb{F})$ has two distinct eigenvalues λ_1 and λ_2 , and that dim $(E_{\lambda_1}) = n - 1$. Prove that A is diagonalizable.

Proof:

Suppose that $A \in M_{n \times n}(\mathbb{F})$, then by a previous theorem we know that A has at most n eigenvalues. We are given that A actually has two distinct eigenvalues λ_1 and λ_2 . We are also given that $\dim(E_{\lambda_1}) = n - 1$ and this in turn implies that $\dim(E_{\lambda_2}) = 1$. We know that $\dim(E_{\lambda_1})$ is also the multiplicity of λ_1 , i.e. $\operatorname{mult}(\lambda_1) = \dim(E_{\lambda_1}) = n - 1$. This means that λ_1 appears n - 1 times on the diagonal and this in turn implies that λ_2 appears only once, therefore it must have multiplicity 1. Thus we have that multiplicity $(\lambda_i) = \dim(E_{\lambda_i})$ for i = 1, 2. We also know that $\operatorname{char}(A)$ splits over \mathbb{F} , since both eigenvalues are unique and that allows us to write $\operatorname{char}(A)$ as a multiplication of linear terms. Hence we have proven that A is diagonalizable.