- MARKOV'S INEQUALITY =

X - non-negative nandom variable with finite mean /

$$P(x \geq c) \leq \mu$$

= CHEBYSHEN'S INEQUALITY =

X - mendom voriable w/ finite μ and σ^2 with

Markor's inequality applied to (x- µ)2

Handard wits: No. I clardered deviations that a particular value of a grandom variable is away from the mean $\frac{1}{2}$. Determined by $\frac{1}{2}$. $\frac{1}{2}$

or with any distribution • $\mu - k\sigma \leq x \leq \mu + k\sigma$

Other forms

 $P(|x-\mu| \ge c) \le \frac{D^{-2}}{C^{2}}$ $k = \frac{c}{O}$

(2) $P((X-\mu)^2 \geq k^2 \overline{D}) \leq \frac{1}{k^2}$

3 $P(\mu-k\sigma < x < \mu+k\sigma) \ge 1 - \frac{1}{k^2}$ complement of oxiginal statement 2 cases

 $P\left(X \geq H + KO\right) \leq \frac{1}{K^2}$

 $p(x = \mu - k\sigma) \leq \frac{1}{k^2}$

- PROBLEMS -

(1) $\mu = 50 \, \text{mm}$ $\hat{\sigma} = 0.45 \, \text{mm}$ is larger value for probability that the lungth of the rivet is outside the interval 49.1-50.9 mm?

$$P(|x-\mu| \ge k \sigma) = \frac{1}{k^2}$$

 $P(|x-50| \ge 0.9)$ \Rightarrow $0.9 = k \overline{D}, k = \frac{0.9}{0.45} = 2$

Substituting k as 2,

P(x < 41.1 on x ≥ 50.9) ≤ 1 K2

 $e\left(x \leq 49.1 \text{ on } X \geq 50.9\right) \leq \frac{1}{4}$

2) Assume the pdf for x above is:

$$f_{x}(x) = \int \frac{477 - 471 (x - 50)^{2}}{640}$$
 $f_{x}(x) = \int \frac{477 - 471 (x - 50)^{2}}{640}$
 $f_{x}(x) = \int \frac{477 - 471 (x - 50)^{2}}{640}$
 $f_{x}(x) = \int \frac{477 - 471 (x - 50)^{2}}{640}$

$$\mu_{x} = 50$$
, $D = 045$

Compule P(X) where X is ontside 49.1-50.9 mm. How close is this probability to Chebyshev's bowed?

$$P(|x-50| \ge 0.9) = 1 - P(|x-50| \le 0.9)$$

$$= 1 - \int_{49.1}^{50.9} f(x) dx = 1 - 0.9838$$

$$= 0.016$$

3 µ = 3 years = 36 months

What percent of computers last blue 31 months to 41 months?

$$P(|X-\mu| \leq \kappa \sigma) \geq 1 - \frac{1}{\kappa^2}$$

$$\Rightarrow k = \frac{5}{2} = 2.25$$

$$P(|x-36| \le 10) \ge 1 - \frac{1}{(2\cdot 2s)^2}$$

$$P(1x-36) \le 10) \ge 0.84$$

- QUA	NTILE -	QUANTILE	PLO	5				anna alla	distributed	population
Checking	whether	given	data	values	cane	from	a	VOXIV	distributed	1
•		•		1 1/4	1 0.	l.m	a	normal	distribution	L

	Indesc (i)		Quantiles for normal histribulian	Guantily Jan dola Z = X-11	Theoretical values (experted) z = x-1/2
3-01		0 - (-1.28	-0.995	x = \mu + Z5 5+ (-1:28)2 = 2.1
	2		- 0.27	-0.825	5-1(-0.52)2 = 3.91
	3		0	-0-105	5+ (0)2 = 5
	4		0.52	0.48	5+(0.52)2 = 6
	5	0.9	1.28	1.45	5+ (1.28)2 = 7:8

Conclusion:

9-9 plot is somewhat linear

Data taken from normal distribution

Check whether 43, 23, 33, 25, 28, 38 came from a normal distribution

23, 25, 28, 33, 38, 4); H = 31-667 T = [E(X*)-E(X)] = 1053. 33-1002-77

	Index (i)	Quantiles Hogen: (1-0:5)	guantiles for normal destribution	Guantily for dela- Z= <u>x-p</u>	Theoretical values (expected) $z = \frac{x-\mu}{x}$
23					× = µ + Z5

6	Figure	ont	low	Kris	works
5					
4					
3					
2					