1.
$$(r, \theta) = (-\sqrt{2}, 5\pi/4) = (\sqrt{2}, \pi/4)$$

2. For a paner series $\sum_{n=0}^{\infty} c_n (x-a)^n$ one of the following is time:

- . The seies converges for |x-a| < R 4 diverges for |x-a| > R, for some R>0.
- . The series conveyes when x=a & diverges when $x \neq a$.
- · the seies conveyes for all x.

So the impossible result is [D]

$$\sum_{n=1}^{\infty} n! \left(3x-1\right)^n$$

Ratio test.
$$\lim_{N\to\infty} \left| \frac{a_{N+1}}{a_N} \right| = \lim_{N\to\infty} \left| \frac{(n+1)!}{n!} \left(\frac{(3x-1)^{N+1}}{(3x-1)^{N+1}} \right| = \lim_{N\to\infty} \left| \frac{(n+1)!}{(3x-1)^{N+1}} \right| = \lim_{N\to\infty} \left| \frac{(n+1$$

So, the series converges for 3x-1=0, i.e., $x=\frac{1}{3}$ 4 diverges for x = 1/3.

I terral of converge ce = {1/3} IDI.

4.
$$x = 5 \sin t$$
 $y = 2 \cos t$.

=>
$$\left(\frac{x}{5}\right)^2 + \left(\frac{9}{2}\right)^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = 1$$
.

Equation
$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$
. B

$$x = r(000)$$
, $y = rsin0$ W) $3x + 4y = 1$.

$$3x + 4y = 1$$
.

6. a
$$\left(x^2 \sin(x^3) dx\right)$$

6. a
$$\left(x^2 \sin(x^3) dx \right) = \left(\frac{1}{3} \sin(x^3) \cdot 3x^2 dx \right) = \left(\frac{1}{3} \sin u du \right)$$

$$u = x^3 \quad du = 3x^2 dx = -$$

$$u = x^3$$
 $du = 3x^2 dx$ = $-\frac{1}{3} \cos u + c$ = $-\frac{1}{3} \cos (x^2) + c$.

b.
$$\sin(x) = \sum_{\Lambda=0}^{\infty} (-1)^{\Lambda} \cdot \frac{\chi^{2\Lambda+1}}{(2\Lambda+1)!}$$

$$= \frac{1}{100} + \frac{1}{100} = \frac{$$

$$= \sum_{\Lambda=0}^{\infty} \frac{(-1)^{\Lambda} \cdot 2^{2\Lambda+2}}{(2\Lambda+1)!} \frac{7^{2\Lambda+1}}{(2\Lambda+1)!} \cdot \chi^{4\Lambda+5}$$

$$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{(Sx-3)^n}{3n+2}$$

Ratro test:
$$\left| \frac{a_{\Lambda+1}}{a_{\Lambda}} \right| = \left| \frac{15x-3}{3} \right|^{\Lambda+1} \cdot \frac{3\Lambda+2}{(5x-3)^{\Lambda}} \left| \frac{3\Lambda+2}{(5x-3)^{\Lambda}} \right|$$

$$=\lim_{N\to\infty}\frac{3_{N+2}}{3_{N+5}}\cdot |S_{N-3}|=\lim_{N\to\infty}\frac{3+\frac{2}{N}}{3+5/N}\cdot |S_{N-3}|=|S_{N-3}|.$$

So, aboduldy converge for
$$15x-31 < 1$$
 i.e. $-1 < 5x-3 < 1$
 $+2 < 5x < 4$
 $7 < x < 4/5$

(4 divergent for
$$x < {}^{2}/{5}$$
, $x > {}^{4}/{5}$)

$$(5\times -3) = -1:$$
 $\sum_{\Lambda=0}^{\infty} (-1)^{\Lambda} = \sum_{\Lambda=0}^{\infty} \frac{1}{3\Lambda+2}$

limit comparison test:
$$\lim_{N\to\infty} \frac{1}{3M2} / \frac{1}{N} = \lim_{N\to\infty} \frac{\Lambda}{3M2}$$

$$=\lim_{N\to\infty}\frac{1}{34^2N}=\frac{1}{3}\neq 0$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverget } (p-\text{pries}, p=1 \leq 1) = 7 \sum_{n=0}^{\infty} \frac{1}{3n+2} \text{ diverget}.$$

$$(5\times -3) = +1:$$
 $\sum_{\Lambda=0}^{\infty} (-1)^{\Lambda}. \frac{1}{3\Lambda+2}$ by positive, decreasing, $\sum_{\Lambda=0}^{\infty} (-1)^{\Lambda}. \frac{1}{3\Lambda+2}$ lin $b_{\Lambda}=0.$

=> converget by alternating series test.

So, interval of converge
$$e: 2/5 < x \le 4/5$$
, i.e. $(2/5, 4/5)$.

$$\frac{d(x) = \frac{x^{6}}{(1-4x)^{2}} = \frac{x^{6}}{(1$$

This series is obtained by $=\sum_{\Lambda=0}^{\infty}(\Lambda+1)\cdot 4^{\Lambda}\cdot \chi^{\Lambda+6}$ differentiating the against xeries

valid for 14x1<1 i.e. |x| < 1/4.

8.
$$x = e^{\sin t}$$
, $y = \cos t + t - \pi$, $0 \le t \le 2\pi$

a) P = (1, -1).

1-y = \(\sum_{1=0}^{\infty} y^{\gamma}, \) valid for \(|-y| < | \)

First, find corresponding value of parameter t:-

$$x = e^{sint} = 1$$
 = 1 sint = 0 => += 0, T or 2T

$$y = cost + t - \pi = -1$$
: $cos 0 + 0 - \pi = 1 - \pi \times$

$$\cos 7 + 7 - 71 = -1$$
 so $f = T1$.

COSZTI +2TI-TI = 1+TI X

Slope of tangent line
$$M = \frac{dy}{dx} \Big|_{x=0}^{x=0} = \frac{dy}{dx} \Big|_{x=0}^{x=0}$$

$$= \frac{\left(-\sin t + 1 - 0\right)}{\cos t \cdot e^{\sin t}} = \frac{1}{-1 \cdot e^0} = -1.$$
C.R.

Eq. of tangent line: $(y - (-1)) = (-1) \cdot (x-1)$, y = -x(eq. of line thru (a,b) w/ slope m is (y-b)=m. (x-a)).

b. Vertical tangent line:
$$\frac{dx}{dt} = 0$$
.

$$\frac{dx}{dt} = 0$$
.

$$cost = 0$$

cost = 0 (e sint
$$\neq 0$$
 because $e^{u} \neq 0$ for all u)
$$t = T_{21} 3T_{2} \qquad (0 \leq t \leq 2T_{1}. \qquad u = u > t)$$

$$(x,y) = (e^{\sin t} + \cos t + t - \pi) = ((e^{1}, 0 + \frac{\pi}{2} - \pi)) = (e^{-\frac{\pi}{2}})$$

$$(e^{1}, 0 + \frac{3\pi}{2} - \pi) = (e^{1}, \frac{\pi}{2}).$$

The right hand loop convergends to -T4 < 0 < T4

So, area of RH lap =
$$\begin{cases} T_{/4} & \frac{1}{2}r^2 d\theta \\ -T_{/} & \end{cases}$$

$$= \frac{1}{2} \int_{-\pi/4}^{\pi/4} (\cos 20)^2 d0$$

$$cos(2t) = 2(cos t)^2 - 1$$

=>
$$(\omega + 1)^2 = \frac{1 + (\omega + 1)^2}{2}$$

$$= (\cos 20)^2 = \frac{1 + (\cos 140)}{2}$$

$$\cos(2t) = 2(\cos t)^{2} - 1 = \frac{1}{2} \left(\frac{1 + \cos(40)}{2} \right) d0$$

$$= (\cos t)^{2} = \frac{1 + \cos(2t)}{2} = \frac{1}{4} \left(\frac{\pi}{4} \right) + \cos(40) d0$$

$$= \frac{1}{4} \left[0 + \frac{1}{4} \sin 40 \right] \frac{\pi}{4}$$

$$= \frac{1}{4} \left[0 + \frac{1}{4} \sin 40 \right] \frac{\pi}{4}$$

$$= \frac{1}{4} \left(\left(\frac{\pi_{4}}{4} + 0 \right) - \left(-\frac{\pi_{4}}{4} + 0 \right) \right) = \frac{1}{4} \cdot \frac{\pi_{2}}{2} = \frac{\pi_{1}}{8}.$$

6.

" area of all
$$|ceps = 4.71/8 = |71/2|$$

(Note that each loop has the same over because of the symmetry
$$0 \text{ No } 0 + \overline{11}_2$$
, $\Gamma \text{ No } - \Gamma$: $\cos (210 + \overline{11}_2)) = \cos 20 \cdot \cos \overline{1} - \sin 0 \cdot \sin \overline{1} = -\cos 20.$

$$= \frac{dy}{dx} = \frac{\frac{dy}{d0}}{\frac{dx}{d0}} = \frac{\frac{dr}{d0} \sin 0 + r \cos 0}{\frac{dr}{d0} \cos 0 - r \sin 0} = \frac{-2 \sin 20 \cdot \sin 0 + \cos 20 \cos 0}{-2 \sin 20 \cdot \cos 0 - \cos 20 \sin 0}$$

$$r = \cos 20$$

$$M = \frac{dy}{dx} \Big|_{\theta = \pi/4} = \frac{-2 \cdot 1 \cdot 1/\sqrt{2} + 0 \cdot 1/\sqrt{2}}{-2 \cdot 1 \cdot 1/\sqrt{2} - 0 \cdot 1/\sqrt{2}} = 1.$$

$$L = \int_{0}^{7} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} \cdot d\theta = \int_{0}^{2} \sqrt{e^{60} + \left(3e^{30}\right)^{2}} d\theta$$

$$= \int_{0}^{2} \sqrt{10 \cdot e^{60}} d0 = \sqrt{10} \cdot \int_{0}^{2} e^{30} d0$$

$$= \sqrt{10} \cdot \left[\frac{1}{3}e^{30} \right]^{2} = \sqrt{\frac{10}{3}} \cdot \left(e^{6} - e^{0} \right) = \frac{\sqrt{10}}{3} \left(e^{6} - 1 \right).$$