分组密码作业

- 1. 验证 DES 中 S 盒的非线性性质。即证明 $S_1(x_1) \oplus S_1(x_2) \neq S_1(x_1 \oplus x_2)$;
 - (1) $x_1 = 000000$, $x_2 = 000001$
 - (2) $x_1 = 1111111$, $x_2 = 100000$
 - (3) $x_1 = 101010$, $x_2 = 010101$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	C
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	31
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	

- 2. 给定不可约多项式 $P(x) = x^4 + x + 1$ 。在 $GF(2^4)$ 上计算 $A(x) + B(x) \mod P(x)$ 。
 - (1) $A(x) = x^2 + 1$, $B(x) = x^3 + x^2 + 1$
 - (2) $A(x) = x^2 + 1$, B(x) = x + 1
- 3. 给定不可约多项式 $P(x) = x^4 + x + 1$ 。在 $GF(2^4)$ 上计算 $A(x) \cdot B(x) \mod P(x)$ 。
 - (1) $A(x) = x^2 + 1$, $B(x) = x^3 + x^2 + 1$
 - (2) $A(x) = x^2 + 1$, B(x) = x + 1

 $W_0 = (0x2B7E1516);$ $W_1 = (0x28AED2A6);$ $W_2 = (0xABF71588)$

 $W_3 = (0x09CF4F3C);$ $W_4 = (0xA0FAFE17);$ $W_5 = (0x88542CB1)$

 $W_6 = (0x23A33939);$ $W_7 = (0x2A6C7605)$

- (1) 输入为 W, 子密钥为 W_0 , ..., W_7 。 计算 AES 的第一轮输出结果;
- (2) 输入和子密钥均为全 0 的情况下, 计算 AES 的第一轮输出结果;
- (3) 只考虑一轮的情况下, 在输出中有多少比特位发生了变化?
- 7. 如果在 OFB 模式下执行加密操作, 加密不同数据时使用相同的 IV, 那么可以如何进行攻击?