Неравенства Чебышева. 1

Первое неравенство Чебышева. Пусть

1. X - случайная величина

2.
$$X \ge 0$$
 (m.e. $P\{X < 0\} = 0$)

 $3. \exists MX$

Тогда $\forall \varepsilon > 0 \quad P\{X \ge \varepsilon\} \le \frac{MX}{\varepsilon}$

Доказательство. Для случая непрерывной случайной величины Х(для случая дис-

кретной случайной величины X доказательство аналогично) $MX = \int_{-\infty}^{+\infty} x f(x) dx = |X \ge 0| = \int_{0}^{+\infty} x f(x) dx = \int_{0}^{\varepsilon} x f(x) dx + \int_{\varepsilon}^{+\infty} x f(x) dx \ge \int_{\varepsilon}^{+\infty} x f(x) dx \ge \int_{\varepsilon}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x f(x)$ $|x \in [\varepsilon, +\infty) \to x \ge \varepsilon| \ge \varepsilon \int_{\varepsilon}^{+\infty} f(x) dx \ge \varepsilon P\{X \ge \varepsilon\}$

$$\int_{\varepsilon}^{+\infty} f(x)dx = P\{X \ge \varepsilon\}$$

Таким образом,

$$MX \geq \varepsilon P\{X \geq \varepsilon\} \Longrightarrow P\{X \geq \varepsilon\} \leq \frac{MX}{\varepsilon}$$

Второе неравенство Чебышева. Пусть

1. X – случайная величина

2. $\exists MX$, $\exists DX$

 $Tor \partial a \quad \forall \varepsilon > 0 \quad P\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$

1. Рассмотрим случайную величину $Y = (X - MX)^2$ Доказательство.

- 2. Из первого неравенства Чебышева для Y следует, что $\forall \delta > 0 \ P\{Y \ge \delta\} \le \frac{MY}{\delta}$
- 3. Используем $P\{Y \geq \delta\} \leq \frac{MY}{\delta}$ для $\delta = \varepsilon^2$

$$DX = M[(X - MX)^2] \ge \delta P\{(X - MX)^2 \ge \delta\} = \varepsilon^2 P\{(X - MX)^2 \ge \varepsilon^2\} = \varepsilon^2 P\{|X - MX| \ge \varepsilon\}$$
 Таким образом,
$$DX \ge \varepsilon^2 P\{|X - MX| \ge \varepsilon\} \Longrightarrow P\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$

Сходимость. Закон больших чисел. 2

Сходимость по вероятности и слабая сходимость для последовательности случайных величин. Закон больших чисел. Пусть X_1, \ldots, X_n, \ldots – последовательность случайных величин.

Определение 2.1. Говорят, что последовательность случайных величин X_1, \ldots, X_n, \ldots сходится по вероятности к случайной величине Z, если

$$\forall \varepsilon > 0 \quad P\{|X_n - Z| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

$$X_n \xrightarrow[n \to \infty]{} Z$$

Определение 2.2. Говорят, что последовательность случайных величин X_1, \ldots, X_n, \ldots слабо сходится к случайной величине Z, если функциональная последовательность $F_{X_1}(x)$, $F_{X_2}(x), \ldots$ поточечно сходится к функции $F_Z(x)$ во всех точках непрерывности последней, т.е.

$$(\forall x_0 \in \mathbb{R})(F_Z(x))$$
 непрерывна в $x_0) \Longrightarrow F_{X_n}(x_0) \xrightarrow[n \to \infty]{} F_z(x_0)$

Закон больших чисел.

Определение 2.3. Говорят, что последовательность X_1, \ldots, X_n, \ldots удовлетворяет закону больших чисел, если

$$\forall \varepsilon > 0 \quad P\{|\frac{1}{n}\sum_{i=1}^{n} X_i - \frac{1}{n}\sum_{i=1}^{n} m_i| \geq \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

где $m_i = MX_i, \quad i \in N$

Закон больших чисел в форме Чебышева. Пусть

- 1. X_1, \ldots, X_n, \ldots последовательность независимых случайных величин
- 2. $\exists MX_i = m_i \quad \exists DX_i = \sigma_i^2, \quad i \in N$
- 3. Дисперсия случайных величин X_1, \ldots, X_n, \ldots ограничена в совокупности, то есть

$$\exists c > 0 \quad \sigma_i^2 \le c, \quad i \in N$$

Tогда последовательность X_1, \ldots, X_n, \ldots удовлетворяет закону больших чисел.

Доказательство. 1. Рассмотрим

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i, \quad n \in N$$

Тогда

$$M[\overline{X_n}] = \frac{1}{n} \sum_{i=1}^n m_i$$

$$D[\overline{X_n}] = D[\frac{1}{n} \sum_{i=1}^n X_i] = \frac{1}{n^2} D[\sum_{i=1}^n X_i] = \frac{1}{n^2} \sum_{i=1}^n DX_i = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2$$

2. Применим к случайной величине $\overline{X_n}$ второе неравенство Чебышева

$$P\{|\overline{X_n} - M\overline{X_n}| \ge \varepsilon\} \le \frac{D\overline{X_n}}{\varepsilon^2}$$

Таким образом,

$$P\{|\overline{X_n} - \frac{1}{n} \sum_{i=1}^n m_i| \ge \varepsilon\} \le \frac{1}{\varepsilon^2 n^2} \sum_{i=1}^n \sigma_i^2$$

$$\sum_{i=1}^n \sigma_i^2 \le \sum_{i=1}^n c = nc$$

$$0 \le P\{|\overline{X_n} - \frac{1}{n} \sum_{i=1}^n m_i| \ge \varepsilon\} \le \frac{c}{\varepsilon^2 n^2} \cdot n = \frac{c}{\varepsilon^2 n}$$

При $n \to \infty$ $\frac{c}{\varepsilon^2 n} \to 0$. По теореме о двух милиционерах

$$P\{|\overline{X_n} - \frac{1}{n} \sum_{i=1}^n m_i| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

то есть последовательность X_1,\ldots,X_n,\ldots удовлетворяет закону больших чисел. \square

Следствие 1. Пусть

- 1. выполнены условия теоремы Чебышева
- 2. все случайные величины X_i одинаково распределены(обозначим $m_i \equiv m = MX_i)$

Tог ∂a

$$\forall \varepsilon > 0 \quad P\{|\frac{1}{n}\sum_{i=1}^{n}X_i - m| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

Доказательство. Так как $m_i \equiv m$, то $\frac{1}{n} \sum_{i=1}^n m_i = m$ и используем закон больших чисел в форме Чебышева.

Следствие 2. Закон больших чисел в форме Бернулли.

Пусть

- 1. проводится п испытаний по схеме Бернулли с вероятностью успеха р
- 2. $r_n = \frac{\kappa o \pi u v e c m so}{n} + a c m v m m e r c m n e$

Tог ∂a

$$r_n \xrightarrow[n \to \infty]{P} p$$

Доказательство. 1. Введем случайные величины X_i , $i = \overline{1, m}$,

$$X_i = \begin{cases} 1, & \text{если в i-м испытании произопіёл успех} \\ 0, & \text{иначе} \end{cases}$$

Тогла

• Закон распределения X_i

$$\begin{array}{c|cc} X_i & 0 & 1 \\ p & q & p \end{array}$$

Таким образом, все X_i одинаково распределены, $MX_i = p$, $DX_i = pq$

- $DX_i \equiv pq \Longrightarrow$ ограничены в совокупности
- X_i независимы, так как отдельные испытания в схеме испытаний Бернулли независимы
- 2. Таким образом, последовательность X_1, \ldots, X_n, \ldots удовлетворяет следствию 1 из теоремы Чебышева и для нее справедливо

$$\forall \varepsilon > 0 \quad P\{|\frac{1}{n}\sum_{i=1}^{n}X_i - m| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

$$\forall \varepsilon > 0 \quad P\{|r_n - p| \ge \varepsilon\} \xrightarrow[n \to \infty]{P} 0, \text{ то есть } r_n \xrightarrow[n \to \infty]{P} p$$

3 Центральная предельная теорема

Пусть выполнены следующие 3 условия:

- 1. X_1, \dots, X_n, \dots последовательность независимых случайных величин
- 2. все случайные величины $X_i, \quad i \in N$ одинаково распределены
- 3. $\exists MX_i = m, \quad \exists DX_i = \sigma^2, \quad i \in N$

Рассмотрим случайную величину

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i, \quad M\overline{X_n} = m, \quad D\overline{X_n} = \frac{\sigma^2}{n}, \quad n \in \mathbb{N}$$

Рассмотрим случайную величину

$$Y_n = \frac{\overline{X_n} - M\overline{X_n}}{\sqrt{D\overline{X_n}}} = \frac{\overline{X_n} - m}{\frac{\sigma}{\sqrt{n}}}$$

Центральная предельная теорема. Пусть выполнены условия 1-3. Тогда последовательность случайных величин Y_n при $n \to \infty$ слабо сходится к случайной величине Z, имеющей стандартное нормальное распределение, то есть

$$\forall x \in \mathbb{R} \quad F_{Y_n} \xrightarrow[n \to \infty]{} F_Z(x),$$

где

$$Z \sim N(0,1), \quad F_Z(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

Интегральная теорема Муавра-Лапласа. Пусть

- 1. проводится большое число испытаний по схеме Бернулли с вероятностью успеха p
- 2. k число успехов в этой серии

Тогда

$$P\{k_1 \le k \le k_2\} \approx \Phi(x_2) - \Phi(x_1), \quad x_i = \frac{k_i - np}{\sqrt{npq}}, \quad i = \overline{1,2}, \quad q = 1 - p, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{\frac{-t^2}{2}} dt$$

Доказательство. 1. Пусть X_i – случайная величина, принимающая значения 0 или 1 в соответствии с правилом

$$X_i = \begin{cases} 1, & \text{если в i-м испытании произопіёл успех} \\ 0, & \text{иначе} \end{cases}$$

Тогда

- Случайные величины X_1, \ldots, X_n, \ldots независимы
- $MX_i = p, DX_i = pq, i \in N$
- X_i одинаково распределены

2.
$$P\{k_1 \le k \le k_2\} = P\{k_1 \le \sum_{i=1}^n X_i \le k_2\} = P\{\frac{k_1}{n} - p \le \frac{1}{n} \sum_{i=1}^n X_i - p \le \frac{k_2}{n} - p\} = P\{\frac{k_1/n-p}{\sqrt{\frac{pq}{n}}} \le \frac{K_2/n-p}{\sqrt{\frac{pq}{n}}}\} \approx \Phi(x_2) - \Phi(x_1)$$

4 Математическая статистика

Определение 4.1. Множество возможных значений случайной величины X называют генеральной совокупностью.

Определение 4.2. Случайной выборкой из генеральной совокупности X называют случайный вектор $\vec{X} = (X_1, \dots, X_n)$, где X_1, \dots, X_n – независимые в совокупности случайные величины, каждая из которых имеет то же распределение, что и X. При этом п называется объёмом случайной выборки.

Определение 4.3. Любую возможную реализацию $\vec{x} = (x_1, \dots, x_n)$ случайной выборки \vec{X} называют выборкой из генеральной совокупности X. При этом число x_k называется k-м элементом выборки \vec{x} .

Определение 4.4. Вариационным рядом, построенным по выборке \vec{x} , называется кортеж $(x_{(1)},\ldots,x_{(n)})$, где $x_{(1)},\ldots,x_{(n)}$ – элементы выборки \vec{x} , расположенные в порядке неубывания.

Определение 4.5. Пусть F(x) – функция распределения случайной величины X. Тогда функция распределения случайной выборки \vec{X} объема n из совокупности X:

$$F_{\vec{X}}(t_1, \dots, t_n) = F(t_1) \cdot \dots \cdot F(t_n)$$

$$P\{X_1 < t_1, \dots, X_n < t_n\} = P\{X_1 < t_1\} \cdot \dots \cdot P\{X_n < t_n\} = F(t_1) \cdot \dots \cdot F(t_n)$$

$$F_{x_{(n)}}(x) = P\{x_{(n)} < x\} = P\{X_1 < x, \dots, X_n < x\} = P\{X_1 < x\} \cdot \dots \cdot P\{X_n < x\} = F(x) \cdot \dots \cdot F(x) = [F(x)]^n$$

$$F_{x_{(1)}}(x) = P\{x_{(1)} < x\} = 1 - P\{X_1 \ge x\} = 1 - P\{X_1 \ge x\} = 1 - P\{X_1 \ge x\} = 1 - (1 - P\{X_1 < x\}) \cdot \cdots \cdot (1 - P\{X_n < x\}) = 1 - (1 - F(x))^n$$

Определение 4.6. Любую функцию $g(\vec{X})$ случайной выборки \vec{X} называют статистикой.

Определение 4.7. Выборочным начальным моментом порядка k называют статистику:

$$\hat{m_k}(\vec{X}) = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Определение 4.8. Центральным выборочным моментом порядка k называют статистику

$$\hat{\nu_k}(\vec{X}) = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$

Определение 4.9. Выборочным средним (выборочным математическим ожиданием) называют статистику

$$\hat{m}(\vec{X}) = \overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Определение 4.10. Выборочной дисперсией называют статистику

$$\hat{\sigma^2}(\vec{X}) = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Замечание. Выборочное среднее является несмещённой оценкой своего теоретического аналога, а выборочная дисперсия – нет.

Доказательство.
$$\hat{m}(\vec{X}) = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $M[\hat{m}(\vec{X})] = M[\frac{1}{n} \sum_{i=1}^{n} X_i] = \frac{1}{n} M[\sum_{i=1}^{n} X_i] = \frac{1}{n} \sum_{i=1}^{n} MX_i = |X_i| \sim |X| = \frac{1}{n} \sum_{i=1}^{n} m_i = m$

Определение 4.11. Эмпирической функцией распределения, отвечающей выборке \vec{x} называют функцию

$$F_n \colon \mathbb{R} \to \mathbb{R}, \quad F_n(x) = \frac{n(x, \vec{x})}{n},$$

где

- $\vec{x} = (x_1, \dots, x_n)$ выборка из генеральной совокупности \vec{X}_n ;
- $n(x, \vec{x})$ количество элементов выборки \vec{x} , которые меньше x.

Определение 4.12. Выборочной функцией распределения, отвечающей случайной выборке \vec{X} , называется функция:

$$\hat{F}_n(x) = \frac{n(x, \vec{X})}{n},$$

где $n(x, \vec{X})$ — случайная величина, которая для каждой реализации \vec{x} случайной выборки \vec{X} принимает значение, равное $n(x, \vec{x})$.

Теорема о сходимости выборочной функции распределения.. Для любого фиксированного $x \in \mathbb{R}$ $\hat{F}_n(x)$ сходится по вероятности к значению F(x) теоретической функции распределения случайной величины X:

$$\forall x \in \mathbb{R} \qquad \hat{F}_n(x) \xrightarrow[n \to \infty]{P} F(x)$$

Доказательство. $\hat{F}_n(x)$ — относительная частота успеха в серии из n испытаний по схеме Бернулли с вероятностью успеха p.

В соответствии с законом больших чисел в форме Бернулли

$$\hat{F}_n(x) \xrightarrow[n \to \infty]{P} p$$
, но $p = P\{X < x\} = F(x)$

Определение 4.13. Интервальным статистическим рядом называют таблицу:

$$\begin{array}{c|cccc} J_1 & \dots & J_m \\ \hline n_1 & \dots & n_m \end{array}$$

Здесь n_i – количество элементов выборки \vec{x} , принадлежащих J_i .

Определение 4.14. Эмпирической плотностью распределения случайной выборки $ec{X}_n$ называют функцию

$$f_n(x) = \begin{cases} \frac{n_i}{n\Delta}, & x \in J_i, \ i = \overline{1, m}; \\ 0, & \text{иначе.} \end{cases}$$
, где

ullet $J_i,\ i=\overline{1;m},$ — полуинтервал из $J=[x_{(1)},x_{(n)}],$ где

$$x_{(1)} = \min\{x_1, \dots, x_n\}, \qquad x_{(n)} = \max\{x_1, \dots, x_n\};$$
 (1)

при этом все полуинтервалы, кроме последнего, не содержат правую границу т.е.

$$J_i = [x_{(1)} + (i-1)\Delta, x_{(1)} + i\Delta), \quad i = \overline{1, m-1};$$
 (2)

$$J_m = [x_{(1)} + (m-1)\Delta, x_{(1)} + m\Delta]; \tag{3}$$

- m количество полуинтервалов интервала $J = [x_{(1)}, x_{(n)}];$
- Δ длина полуинтервала $J_i, i = \overline{1,m}$ равная

$$\Delta = \frac{x_{(n)} - x_{(1)}}{m} = \frac{|J|}{m};$$

- n_i количество элементов выборки в полуинтервале $J_i, i = \overline{1, m};$
- n количество элементов в выборке.

Определение 4.15. График функции $f_n(x)$ называют гистограммой.

Определение 4.16. Полигоном частот для выборки \vec{x} называется ломанная, звенья которой соединяют середины верхних сторон прямоугольников гистограммы.

5 Точечные оценки.

Пусть X — случайная величина, общий закон распределения которой известен, но неизвестны значения одного или нескольких параметров этого закона. Пусть θ — неизвестный параметр закона распределения случайной величины X.

Определение 5.1. Точечной оценкой параметра θ называется статистика $\hat{\theta}(\vec{X})$, выборочное значение которой принимается в качестве значения параметра θ : $\theta := \hat{\theta}(\vec{X})$.

Качество используемой точечной оценки $\hat{\theta}(\vec{X})$ параметра θ характеризуют следующие свойства:

- 1. несмещенность
- 2. состоятельность
- 3. эффективность

Определение 5.2. Точечная оценка $\hat{\theta}(\vec{X})$ параметра θ называется несмещенной, если

$$\exists M[\hat{\theta}(\vec{X})] = \theta$$

Доказать, что выборочная дисперсия является смещённой оценкой дисперсии.

Доказательство. • X – случайная величина

- \bullet $\sigma^2 = DX$

Определение 5.3. Статистику $S^2(\vec{X})$ называется исправленной выборочной дисперсией и равна

$$S^{2}(\vec{X}) = \frac{n}{n-1}\hat{\sigma^{2}}(\vec{X}) = M[S^{2}] = M[\frac{n}{n-1}\sigma^{2}] = \frac{1}{n}\sum_{i=1}^{n}(X_{i} - \overline{X})^{2} = \frac{n}{n-1}M[\hat{\sigma^{2}}] = \frac{n}{n-1} \cdot \frac{n-1}{n} \cdot \sigma^{2} = \sigma^{2},$$

то есть $S^2(\vec{X})$ является несмещённой оценкой дисперсии.

Определение 5.4. Оценка $\hat{\theta}$ называется состоятельной оценкой, если

$$\hat{\theta}(\vec{X}) \xrightarrow[n \to \infty]{P} \theta,$$

где n – объем выборки.

Замечание. Условие из определения можно записать в виде:

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} P\{|\hat{\theta}(\vec{X}) - \theta| < \varepsilon\} = 1$$

Пример 1. Пусть X – случайная величина, $\exists MX = m$.

- ullet последовательность X_1, \dots, X_n, \dots независима и одинаково распределена
- $\exists MX_i = m, \quad \exists DX_i = \sigma^2$
- из предыдущих пунктов следует, что X_1, \ldots, X_n, \ldots удовлетворяет закону больших чисел в форме Чебышева

$$\forall \varepsilon > 0 \quad P\{|\overline{X} - m| < \varepsilon\} \xrightarrow[n \to \infty]{} 1$$

$$\overline{X} \xrightarrow[n \to \infty]{} m$$

Пример 2. Пусть

- 1. $X \sim N(m, \sigma^2)$, т и σ^2 неизвестны
- 2. $\hat{m}(\vec{X}) = X_1$ результат первого наблюдения точечная оценка для т

Покажем, что \hat{m} – несостоятельная оценка.

 $3a\phi u\kappa cupye M \varepsilon > 0$

$$P\{|\hat{m}(\vec{X}) - m| < \varepsilon\} = P\{|X_1 - m| < \varepsilon\} = |X_1 \sim X \sim N(m, \sigma^2)| = P\{m - \varepsilon < X_1 < m + \varepsilon\} = \Phi_0(\frac{m + \varepsilon - m}{\sigma}) - \Phi_0(\frac{m - \varepsilon - m}{\sigma}) = 2\Phi_0(\frac{\varepsilon}{\sigma}) \neq 1, \ ecnu \ \frac{\varepsilon}{\sigma} \neq +\infty.$$

$$Tor\partial a \ P\{|\hat{m}(\vec{X}) - m| < \varepsilon\} \xrightarrow[n \to \infty]{} 1.$$

Определение 5.5. Оценка $\hat{\theta}$ называется эффективной оценкой для параметра θ , если:

- 1. $\hat{\theta}$ несмещенная оценка для θ
- 2. $\hat{\theta}$ обладает наименьшей дисперсией среди всех несмещенных оценок θ

Замечание. Иногда говорят об эффективной оценке в классе оценок Θ .

Если Θ – некоторое множество несмещенных оценок для θ , то оценка $\hat{\theta} \in \Theta$ называется эффективной оценкой для θ в классе Θ , если $\hat{\theta}$ обладает наименьшей дисперсией среди всех оценок класса Θ .

$$\forall \tilde{\theta} \in \Theta \quad D\hat{\theta} \leq D\tilde{\theta}$$

Доказать, что выборочное среднее является эффективной оценкой для m в классе линейных оценок. Пусть X – случайная величина, $\exists MX = m, \quad \exists DX = \sigma^2, \ mak$ что выборочное среднее \overline{X} является эффективной оценкой для m в классе линейных оценок.

Доказательство. 1. Линейная оценка имеет вид:

$$\hat{m}(\vec{X}) = \lambda_1 X_1 + \dots + \lambda_n X_n, \quad \lambda_i \in \mathbb{R}$$

2. Так как оценка должна быть несмещенной

$$M[\hat{m}(\vec{X})] = M[\sum_{i=1}^{n} \lambda_i X_i] = \sum_{i=1}^{n} \lambda_i M X_i = \sum_{i=1}^{m} \lambda_i m = m \sum_{i=1}^{n} \lambda_i$$

Требуется $M[\hat{m}(\vec{X})] = m \Longrightarrow \sum_{i=1}^n \lambda_i = 1$. Подберем в линейной оценке $\hat{m}(\vec{X}) = \sum_{i=1}^n \lambda_i x_i$ параметр λ_i так, чтобы $D[\hat{m}(\vec{X})]$ было минимальным среди значений дисперсии всевозможных линейных оценок.

$$D[\hat{m}] = D[\sum_{i=1}^{n} \lambda_i X_i] = |X_i| = \sum_{i=1}^{n} \lambda_i^2 DX_i = \sigma_i^2 \sum_{i=1}^{n} \lambda_i^2$$

Поиск условий экстремума.

$$\begin{cases} f(\lambda_1 \dots, \lambda_n) = \sum_{i=1}^n \lambda_i^2 \longrightarrow min \\ \vdots \\ \sum_{i=1}^n \lambda_i = 1 \end{cases}$$

Составим функцию Лагранжа

$$L(\lambda_1,\ldots,\lambda_n,\mu)=f(\lambda_1,\ldots,\lambda_n)\cdot\mu(\sum_{i=1}^n\lambda_i-1)$$

Необходимое условие экстремума

Пеооходимое условие экстремума
$$\begin{cases} \frac{\partial L}{\partial \lambda_1} = 2\lambda_1 - \mu = 0 \\ \vdots \\ \frac{\partial L}{\partial \lambda_n} = 2\lambda_n - \mu = 0 \\ \frac{\partial L}{\partial \mu} = -(\sum_{i=1}^n \lambda_i - 1) = 0 \end{cases}$$

$$\lambda_i = \frac{\mu}{2}, \quad i = \overline{1, n}.$$

$$\sum_{i=1}^n \frac{\mu}{2} = 1, \quad \frac{\mu n}{2} = 1 \Longrightarrow \mu = \frac{2}{n} \Longrightarrow \quad \lambda_i = \frac{1}{n}.$$

Можно, проверив достаточное условие экстремума, показать, что $(\frac{1}{n}, \dots, \frac{1}{n})$ является условным минимумом $f(\lambda_1, \dots, \lambda_n)$ таким образом, линейная оценка с наименьшей дисперсией

$$\hat{m}(\vec{X}) = \sum_{i=1}^{n} \frac{1}{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

Соответствующее значение дисперсии

$$D[\hat{m}(\vec{X})]|_{(\lambda_1, \dots, \lambda_n) = (\frac{1}{n}, \dots, \frac{1}{n})} = \sigma^2(\sum_{i=1}^n \lambda_i^2)|_{(\lambda_i = \frac{1}{n})} = \frac{\sigma^2}{n^2}$$

Единственность эффективной оценки. Пусть $\hat{\theta_1}(\vec{X})$ и $\hat{\theta_2}(\vec{X})$ – две эффективные оценки θ . Тогда

$$\hat{\theta_1}(\vec{X}) = \hat{\theta_2}(\vec{X})$$

Доказательство. Рассмотрим оценку

$$\hat{\theta} = \frac{1}{2}[\hat{\theta_1} + \hat{\theta_2}]$$

 $M\hat{\theta} = M[\frac{1}{2}(\hat{\theta_1} + \hat{\theta_2})] = \frac{1}{2}[M\hat{\theta_1} + M\hat{\theta_2}] = |\hat{\theta_1}$ и $\hat{\theta_2}$ эффективные, а следовательно несмещенные $|\hat{\theta_2}| = \frac{1}{2}[\theta + \theta] = \theta$, то есть $\hat{\theta}$ так же является несмещенной оценкой для θ .

$$D\hat{\theta} = \frac{1}{4}D[\hat{\theta_1} + \hat{\theta_2}] = \frac{1}{4}[D\hat{\theta_1} + D\hat{\theta_2} + 2cov(\hat{\theta_1}, \hat{\theta_2})] = |\text{обозначим } D\hat{\theta_1} = a^2 = D\hat{\theta_2}|$$
 $= \frac{1}{2}[a^2 + cov(\hat{\theta_1}, \hat{\theta_2})]$ (*)

$$|cov(\hat{\theta_1}, \hat{\theta_2})| \le \sqrt{D\hat{\theta_1}D\hat{\theta_2}} = a^2$$

Таким образом, $D\hat{\theta} \leq |\text{cm.}(*)| \leq \frac{1}{2}[a^2 + a^2] = a^2.(**)$

 $\hat{\theta}$ – несмещенная оценка для θ , а $\hat{\theta_1}, \hat{\theta_2}$ эффективные оценки $\Longrightarrow D\hat{\theta_1} = D\hat{\theta_2} \leq D\hat{\theta}$. С учетом (**) $D\hat{\theta} = a^2$.

Из (*) вытекает, что $a^2=\frac{1}{2}[a^2+cov(\hat{\theta_1},\hat{\theta_2})]\Longrightarrow cov(\hat{\theta_1},\hat{\theta_2})=a^2$, т.е. $cov(\hat{\theta_1},\hat{\theta_2})=\sqrt{D\hat{\theta_1}D\hat{\theta_2}}\Longrightarrow$ |по свойству ковариации| $\Longrightarrow\hat{\theta_1}$ и $\hat{\theta_2}$ связаны положительной линейной зависимостью, то есть $\hat{\theta_1}=k\hat{\theta_2}+b(k>0)(***)$ Из (***) следует, что $D\hat{\theta_1}=k^2D\hat{\theta_2}\Longrightarrow k^2=1\Longrightarrow k=1$. Тогда $\hat{\theta_1}=\hat{\theta_2}+b\Longrightarrow M\hat{\theta_1}=M\hat{\theta_2}+b\Longrightarrow b=0$. Таким образом, $\hat{\theta_1}=\hat{\theta_2}$.

Пусть

- X непрерывная случайная величина
- $f(t,\theta)$ функция плотности распределения вероятностей случайной величины X

Тогда функция плотности распределения случайного вектора \vec{X} :

$$f_{\vec{X}}(t_1,\ldots,t_n,\theta) = f(t_1,\theta) \cdot \cdots \cdot f(t_n,\theta)$$

Обозначим $(t_1,\ldots,t_n)=\vec{T}$.

Определение 5.6. Величина $I(\theta) = M\{ [\frac{\partial lnf(\vec{T},\theta)}{\partial \theta}]^2 \}$ называется количеством информации по Фишеру(в серии из n наблюдений).

Замечание. Ниже иногда будет нужно дифференцировать по параметру под знаком интеграла:

$$\frac{\partial}{\partial \theta} \int_{C} \phi(\vec{T}, \theta) d\vec{T} = \int_{C} \frac{\partial \phi(\vec{T}, \theta)}{\partial \theta} d\vec{T}$$

Параметрические модели, для которых справедлив такой переход, будем называть регулярными.

Неравенство Рао-Крамера. Пусть

- 1. рассматривается регулярная модель
- 2. $\hat{\theta}(\vec{X})$ несмещенная точечная оценка параметра θ закона распределения случайной величины X

Tог ∂a

$$D\hat{\theta}(\vec{X}) \ge \frac{1}{I(\theta)},$$

 $\mathit{rde}\ I(\theta)$ – количество информации по Фишеру.

Доказательство. 1. Обозначим: $G=\{t\in\mathbb{R}:f(t,\theta)>0\}$ Тогда

$$\int_{\mathbb{R}^n} f_{\vec{X}}(\vec{T},\theta) d\vec{T} = \int_{G^n} f_{\vec{X}}(\vec{T},\theta) d\vec{T} = 1$$

2. Продифференцируем подчеркнутое равенство по θ : Правая часть: $\frac{\partial 1}{\partial \theta} = 0$

Линейная часть: $\frac{\partial}{\partial \theta} \int_G f_{\vec{X}}(\vec{T},\theta) d\vec{T} = |\text{модель является регулярной}| = \int_G \frac{\partial f_{\vec{X}}(\vec{T},\theta)}{\partial \theta} d\vec{T} = |\vec{T}| \frac{\partial lny}{\partial \theta} = \frac{1}{y} \frac{\partial y}{\partial \theta} \Longrightarrow \frac{\partial y}{\partial \theta} = y \frac{\partial lny}{\partial \theta}| = \int_G \frac{\partial lnf_{\vec{X}}(\vec{T},\theta)}{\partial \theta} = f_{\vec{X}}(\vec{T},\theta) d\vec{T} = M[\frac{\partial lnf_{\vec{X}}(\vec{T},\theta)}{\partial \theta}] = 0(*)$

3. Так как $\hat{\theta}(\vec{X})$ - несмещенная оценка для θ , то $\theta = M[\hat{\theta}(\vec{X})] = \int_G \hat{\theta}(\vec{T}) f_{\vec{X}}(\vec{T},\theta) d\vec{T}$ Продифференцируем полученное равенство по θ : Левая часть: $\frac{\partial \theta}{\partial \theta} = 1$ Правая часть: $\frac{\partial}{\partial \theta} \int_G \hat{\theta}(\vec{T}) f(\vec{T},\theta) d\vec{T} = |\text{модель является регулярной}|\int_{G^n} \hat{\theta}(\vec{T}) \frac{\partial f_{\vec{X}}(\vec{T},\theta)}{\partial \theta} d\vec{T} = |\frac{\partial y}{\partial \theta} = y \frac{\partial lny}{\partial \theta}| = \int_G \hat{\theta}(\vec{T}) \frac{\partial lnf_{\vec{X}}(\vec{T},\theta)}{\partial \theta} f_{\vec{X}}(\vec{T},\theta) d\vec{T} = M[\hat{\theta}(\vec{X}) \cdot \frac{\partial lnf_{\vec{X}}(\vec{X},\theta)}{\partial \theta}].$ Таким образом,

$$M[\hat{\theta}(\vec{X}) \frac{\partial lnf_{\vec{X}}(\vec{X}, \theta)}{\partial \theta}] = 1 \quad (**)$$

4. Умножим обе части (*) на θ :

$$M[\frac{\partial lnf_{\vec{X}}(\vec{X},\theta)}{\partial \theta}] = 0 \quad (***)$$

Вычтем из (**) равенство (***):

$$M\left[\frac{\partial lnf_{\vec{X}}(\vec{X}, \theta)}{\partial \theta}(\hat{\theta}(\vec{X}) - \theta)\right] = 1$$

Возведем обе части равенства в квадрат:

 $1 = \{M[\frac{\partial lnf_{\vec{X}}(\vec{X}), \theta}{\partial \theta}(\hat{\theta}(\vec{X}) - \theta)]\}^2 = \{\int_{G^n} \frac{\partial lnf_{\vec{X}}(\vec{T}, \theta)}{\partial \theta}(\hat{\theta}(\vec{T}) - \theta)f_X(\vec{T}, \theta)dT\}^2 = \{(a(\vec{T}), b(\vec{T}))\}^2 \le (a(\vec{T}), a(\vec{T})) \cdot (b(\vec{T}), b(\vec{T})) = \int_{G^n} [\frac{\partial lnf_{\vec{X}}(\vec{T}, \theta)}{\partial \theta}]^2 f_{\vec{X}}(\vec{T}, \theta)d\vec{T} \cdot \int_{G^n} (\hat{\theta} - \theta)^2 f_X(\vec{T}, \theta)d\vec{T} = M[(\frac{\partial lnf_{\vec{X}}(\vec{X}, \theta)}{\partial \theta})^2] \cdot M[(\hat{\theta}(\vec{X}) - \theta)^2] = I(\theta) \cdot D[\hat{\theta}]$ Таким образом,

$$1 \le I(\theta)D(\hat{\theta}) \Longrightarrow D(\hat{\theta}) \ge \frac{1}{I(\theta)}$$

Показать, что выборочное среднее является эффективной оценкой нормальной случайной величины при известной дисперсии. Пусть $X \sim N(\theta, \sigma^2)$, где θ неизвестно, σ^2 – известно. Показать, что $\hat{\theta}(\vec{X}) = \overline{X}$ является эффективной оценкой по Рао-Крамеру.

Доказательство.

$$D\hat{\theta}(\vec{X}) = \frac{1}{I(\theta)}$$

$$D\hat{\theta} = D\overline{X} = D\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}DX_{i} = |X_{i} \sim X| = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma_{i}^{2} = \frac{\sigma^{2}}{n}$$

$$I(\theta) = M\left[\left(\frac{\partial lnf_{\vec{X}}(\vec{X}, \theta)}{\partial \theta}\right)^{2}\right]$$

$$f_{\vec{X}}(\vec{X},\theta) = f(X_1,\theta) \cdot \cdots \cdot f(X_n,\theta)$$

$$f(X_i,\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(X-\theta)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

$$f_{\vec{X}}(\vec{X},\theta) = \frac{1}{(2\pi)^{\frac{n}{2}}\sigma^n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i-\theta)^2}$$

$$\ln f_{\vec{X}}(\vec{X},\theta) = \ln(\frac{1}{(2\pi)^{\frac{n}{2}}\sigma^n}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i-\theta)^2$$

$$(\frac{\partial \ln f_{\vec{X}}}{\partial \theta})^2 = \frac{1}{\sigma^4} (\sum_{i=1}^n (X_i-\theta) + 2\sum_{i=1}^n (X_i-\theta)(X_j-\theta))$$

$$I(\theta) = \frac{1}{\sigma^4} [M[\sum_{i=1}^n (X_i-\theta)^2]] + 2\sum_{i=1}^n M[(X_i-\theta)(X_j-\theta)] = \frac{n}{\sigma^2}$$

$$D(\hat{\theta}) * I(\theta) = \frac{\sigma^2}{n} \cdot \frac{n}{\sigma^2} = 1$$

6 Методы построения точечных оценок

6.1 Метод моментов

Пусть

- 1. X случайная величина, закон распределения которой известен с точностью до вектора $\vec{\theta} = (\theta_1, \dots, \theta_r)$ неизвестных параметров
- 2. У случайной величины X $\exists r$ первых моментов

Для построения точечных оценок параметров $\theta_1, \dots, \theta_r$ с использованием метода моментов необходимо сделать следующее:

1. найти выражения для г первых моментов теоретических моментов случайной величины X (так как функция распределения случайной величины X зависит от параметров $\theta_1, \ldots, \theta_r$, то и теоретические моменты также будут зависеть от этих параметров):

$$m_1(\theta_1, \dots, \theta_r) = M[X]$$

$$\vdots$$

 $m_n(\theta_1, \dots, \theta_r) = M[X^r]$

2. Нужно приравнять выражения для теоретических моментов к их выборочным аналогам:

$$\begin{cases}
m_1(\theta_1, \dots, \theta_r) &= \hat{m}(\vec{X}) \\
\vdots \\
m_r(\theta_1, \dots, \theta_r) &= \hat{m_r}(\vec{X})
\end{cases}$$

Решаем полученную систему относительно неизвестных параметров:

$$\begin{cases} \theta_1 &=& \hat{\theta}(\vec{X}) \\ \vdots && \\ \theta_r &=& \hat{\theta_r}(\vec{X}) \end{cases}$$

Пример 3.
$$X \sim Exp(\lambda, \alpha)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda(x-\alpha)} & ecnu \ x > \alpha \\ 0 & uhave \end{cases}$$

Найдем точечные моменты.

$$m_1 = MX = \alpha + \frac{1}{\lambda}, \quad m_2 = M[X^2] = DX = \frac{1}{\lambda^2}$$

Система:
$$\begin{cases} m_1 &= \alpha + \frac{1}{\lambda} = \hat{m}_1(\vec{X}) = \overline{X} \\ m_2 &= \frac{1}{\lambda^2} = S^2(\vec{X}) = \hat{\nu}_2(\vec{X}) \\ \hat{\lambda}(\vec{X}) &= \frac{1}{S} = \frac{\sqrt{n-1}}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}} \\ \hat{\alpha}(\vec{X}) &= \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{\sqrt{n-1}} \sqrt{\sum_{i=1}^n (X_i - \overline{X})^2} \end{cases}$$

6.2 Метод максимального правдоподобия

Пусть X — случайная величина, закон распределения которой известен с точностью до вектора $\hat{\theta} = (\theta_1, \dots, \theta_r)$ неизвестных параметров.

Требуется оценить (найти) значение вектора θ .

Определение 6.1. Функцией правдоподобия, отвечающей случайной выборке $\hat{X}(X_1,\ldots,X_n)$, называется функция

$$L(\hat{X}, \hat{\theta}) = p(X_1, \hat{\theta}) \cdot \cdots \cdot p(X_n, \theta),$$

где

- $p(X_i, \vec{\theta}) = P\{X = X_i\}$, если X дискретная случайная величина
- $p(X_i, \vec{\theta}) = f(X_i, \vec{\theta})$, где f плотность распределения непрерывной случайной величины X

В методе максимального правдоподобия в качестве точечной оценки вектора параметров $\hat{\theta}$ используют то значение, которое доставляет функции правдоподобия максимальное значение. Таким образом, оценка максимального правдоподобия $\forall x \in \chi_n \ L(\vec{X}, \hat{\theta}) \geq L(\vec{X}, \vec{\theta}), \quad \vec{\theta} \in \Theta.$

$$\hat{\vec{\theta}} = argmax_{\hat{\theta}}L(\vec{X}, \vec{\theta})$$

Для построения точечной оценки необходимо решить задачу

$$L(\vec{X}, \vec{\theta} \longrightarrow max_{\vec{\theta}) \in \Theta},$$

вместо которой чаще решают задачу:

$$lnL(\vec{X}, \vec{\theta}) \longrightarrow max_{\vec{\theta} \in \Theta}$$

Если для функции lnL выполнены соответствующие условия, то для нахождения значения $\vec{\theta}$ можно использовать систему уравнений:

$$\begin{cases} \frac{\partial lnL(\vec{X}, \vec{\theta})}{\partial \theta_1} = 0\\ \vdots\\ \frac{\partial lnL(\vec{X}, \vec{\theta})}{\partial \theta_r} = 0 \end{cases}$$

7 Доверительные интервалы

Определение 7.1. γ — доверительным интервалом(доверительным интервалом уровня γ) для параметра θ называется пара статистик

$$\frac{\theta(\vec{X}),\overline{\theta(\vec{X})},\,\text{таких, что}}{P\{\theta\in(\theta(\vec{X}),\overline{\theta(\vec{X})})\}=\gamma}$$

Пусть

- 1. θ неизвестный параметр закона распределения случайной величины X
- 2. $g(\vec{X}, \theta)$ некоторая статистика

Определение 7.2. Статистику $g(\vec{X}, \theta)$ будем называть центральной, если закон ее распределения не зависит от θ , то есть

$$F_g(X,\theta) \equiv F_g(X),$$
где F_g – функция распределения случайной величины g

Общий алгоритм. Пусть

- 1. X случайная величина, закон распределения которой зависит от неизвестного параметра θ
- 2. $g(\vec{X}, \theta)$ центральная статистика
- 3. $g(X,\theta)$ является монотонно возрастающей с увеличением параметра θ
- 4. $F_{q}(X, \theta)$ также монотонно возрастает с увеличением θ
- 5. $\alpha_1 > 0, \alpha_2 > 0$ и таковы, что $\alpha_1 + \alpha_2 = 1 \gamma$

$$\gamma = P\{q_{\alpha_1} < g(\vec{X}, \theta) < q_{1-\alpha_2}\} = |g$$
 монотонно возрастает с ростом $\theta| = P\{g^{-1}(\vec{X}, q_{\alpha_1}) < \theta < g^{-1}(\vec{X}, q_{1-\alpha_2})\}.$

Частные случаи. $X \sim N(m, \sigma^2)$, $\epsilon \partial e$

- т неизвестно
- σ^2 u3eecm+o

$$g(\vec{X},m) = \frac{m-\overline{X}}{\sigma}\sqrt{n} \sim N(0,1), \ mo \ ecmb \ g(\vec{X},m)$$
 — центральная статистика. $\alpha_1 = \alpha_2 = \frac{1-\gamma}{2} = |1-\gamma = \alpha| = \frac{\alpha}{2}$ $\gamma = P\{-q_{1-\frac{\alpha}{2}} < g(\vec{X},m) < q_{1-\frac{\alpha}{2}}\} = P\{-q_{1-\frac{\alpha}{2}} < \frac{m-\overline{X}}{\sigma}\sqrt{n} < q_{1-\frac{\alpha}{2}}\} = P\{\overline{X} - \frac{\sigma q_{1-\frac{\alpha}{2}}}{\sqrt{n}} < m < \overline{X} + \frac{\sigma q_{1-\frac{\alpha}{2}}}{\sqrt{n}}\}$

Если неизвестны оба параметра т и σ^2 , то при построении доверительных интервалов для этих параметров:

$$g(\vec{X}, m) = \frac{m - \overline{X}}{S(\vec{X})} \sqrt{n} \sim St(n - 1)$$
$$g(\vec{X}, m) = \frac{S(\vec{X})^2}{\sigma^2} (n - 1) \sim \chi^2(n - 1)$$