

CDECIFICATION	Model
SPECIFICATION	Dat
Communication	Vei
Protocol	Pac

CRT-310
2010/6/29
4.0
1/77

COMMUNICATION PROTOCOL

CRT-310 V4.0 USB Interface

Motorized card reader

CREATOR (CHINA) TECH CO., LTD.

ADD: 2F, M-10 building Centre area Hi-tech industrial park Shenzhen China

TEL: +86 755 26710691 FAX: +86 755 26710105 EMAIL:Sales@china-creator.com

Http://www.china-creator.com

Communication Protocol

 Model No.
 CRT-310

 Date
 2010/6/29

 Ver.
 4.0

 Page
 2/77

Contents

1.	Communication Specification	6
	1.1 Communication Interface Specification	6
	1.2 Communication Control	6
	1.3 Transmission package format and characters	7
	1.4 Successful responsive package format and character	8
	1.5 Failed responsive package format and character	9
	1.6 Normal Communication Procedure	10
	1.7 Abnormal Communication Procedure(Command and Respond	10
2. (CRT-310 Card Reader Operation Command	12
	2.1 Operation Command List	12
	2.2 Status Code st0, st1	15
	2.3 Error code e0, e1	15
3. (Command Specification	17
	3.1 Reset (Initialization)	17
	3.2 Status Request Command	18
	3.3 Move Card Command	19
	3.4 Entry Command	20
	3.5 Magnetic Card Operation	21
	3.5.1 Magnetic register Read Operation Command	21
	3.5.2 Multi-MAG-Track read command	23
	3.6 Auto-Check IC Card	26
	3.7 Auto-Check RFID Card Type	27
	3.8 CPU Card Operations	28
	3.8.1 CPU Card Reset	28
	3.8.2 Deactivate CPU Command	29
	3.8.3 Inquire CPU Card Status	29
	3.8.4 CPU Card Communication T=0	30
	3.8.5 CPU Card Communication T=1	31
	3.8.6 CPU Warm Reset	32
	3.8.7 T=1, T=0 CPU Card Protocol Automatic Communication	32
	3.9 SAM (Secure Application Module) Control Command	33
	3.9.1 Active SAM Command	33

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	3/77

3.9.2 Deactivate SAM Command	34
3.9.3 Inquire SAM Status Command	35
3.9.4 CPU T=0 Communication APDU	36
3.9.5 CPU T=1 Communication APDU	37
3.9.6 SAM Warm Reset	38
3.9.7 Auto-Check SAM Card T=0/T=1 Protocol	38
3.9.8 Select SAM	39
3.10 SLE4442/4428 Control	40
3.10.1 SLE4442/4428 Reset	40
3.10.2 Deactivate SLE4442/4428	40
3.10.3 Inquire status of SLE4442/4428	41
3.10.4 SLE4442 Control	42
3.10.5 Data read from main memory on SLE4442	?4 2
3.10.6 Read protection bits on SLE4442	43
3.10.7 Data read from security memory on SLE4442	44
3.10.8 Data write to main memory on SEE4442	44
3.10.9 Data write with protection bit on SLE4442	45
3.10.10 Data write to security memory on SLE4442 (Modify password)	46
3.10.11 Verification data present to SE4442	47
3.10.12 SLE4428 Control	48
3.10.13 Data Reading of main-memory of SLE4428	48
3.10.14 Reading of protection bit of SLE4428	49
3.10.15 Data writing to main-memory of SLE4428	50
3.10.16 Written with protection pit	51
3.10.17 Verification of passwers present to SLE4428	51
3.10.18 Modify Password of SLE4428	52
3.11 I2C Memory Card Control Command	53
3.11.1 Activate I2C memory card	53
3.11.2 Deactivate I2C memory card	54
3.11.3 Inquire Status of I2C memory card	55
3.11.4 I2C Control	56
3.11.5 Read data from I2C	57
3.11.6 Write data to I2C	57
3.12 Contactless IC card Operation	58

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	4/77

3.12.1 Activated contactless IC card	58
3.12.2 Deactivate RFID card	60
3.12.3 Inquire status of RFID card	60
3.12.4 Mifare card control	61
3.12.5 Key verification	61
3.12.6 Verify key from EEPROM	62
3.12.7 Modify sector key (KEY A)	63
3.12.8 Download password to EEPROM	64
3.12.9 Read sector data	65
3.12.10 Write sector data	66
3.12.11 Initialization	67
3.12.12 Read value	68
3.12.13 Increment	<u>?</u> 69
3.12.14 Decrement	70
3.12.15 Type A RFID card communication	71
3.12.16 Type B RFID card communication	71
3.13 Shutter related operation	72
3.13.1 LED setting	72
3.14 Easy-damage Part Counter	73
3.14.1 Read Counter	73
3.14.2 Initialization Counter	73
3.15 Read Serial Number of CRT-310	74
3.15.1 Read serial number	74
3.16 Read CRT-310 configuration.	
3.17 Read CRT-310 version information	76
3.18 Capture Card Counter Control	77
3.18.1 Read Capture Card counter	
3.18.2 Set initial value of capture card counter	77

SPECIFICATION
Communication
Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	5/77

REVISION

Version	Date	Contents
4.0-USB	2010.6.29	First Release

SPECIFICATION	Model No.	CRT-310
	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	6/77

1. Communication Specification

1.1 Communication Interface Specification

USB Version: USB 2.0 Full Speed: 12Mbps

End Point: EPO Control transfer 32byte

EP1: Interrupt out 64byte EP2: Interrupt in 64byte

Vendor Identifier: 8848 (hex)
Product Identifier: 0310 (hex)

Manufacture String: "CREATOR (CHINA) TECH. CO., LTD"

Product String: "CRT-310"

Device Class: HID (Human Interface Device) 1.11

1.2 Communication Control

The machine is a driven part, operation after receive a legal command.

STX (F2H)	Start character of data package
ETX (03H)	End character of data package
ACK (06H)	Positive character(reader-host)
NAK (15H)	Negative character(reader-host)
EOT (04H)	Cancel character

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	7/77

1.3 Transmission package format and characters

Code	Meaning
STX (F2H)	Representing the start of text in a command or a response
LENH(1 byte)	Length of high byte of TEXT package
LENL(1 byte)	Length of low byte of TEXT package
CMT	Transmission Command Head ('C', 43H)
СМ	Transmission Command Character
PM	Transmission Command Parameter
DATA	Transmission command Data N byte, N=0~512)
ETX (03H)	End of text
BCC(1byte)	CRG Rarity

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	8/77

1.4 Successful responsive package format and character

Code	Meaning
STX (F2H)	Representing the start of text in a command or a response.
LENH(1 byte)	Length of high byte of return text
LENL(1 byte)	Length of low byte of teturn text
PMT	Return command head (P', 50H)
СМ	Return command character
PM	Return command parameter
st0,st1	Return command status code
DATA	Return command data (N byte, N=0-512)
ETX (03H)	End of text
BCC (1 byte)	CRC Parity

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	9/77

1.5 Failed responsive package format and character

Code	Meaning
STX (F2H)	Representing the start of text in a command or a response.
LENH(1 byte)	Length of high byte of return text
LENL(1 byte)	Length of low byte of return text
EMT	Return command head ('N', AEH)
CM	Return eemmand character
e1,e0	Return command error status code
PM	Return command parameter
DATA	Return command data (N byte N=0~512)
ETX (03H)	End of text
BCC (1 byte)	CRC Parity

CDECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	10/77	

1.6 Normal Communication Procedure

1.7 Abnormal Communication Procedure (Command and Respond)

Case 4

CDECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	11/77	

Case 5

SPECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	12/77	

2. CRT-310 Card Reader Operation Command

2.1 Operation Command List

CHAPTER	COMMAND	FUNCTION	СМ	PM	DESCRIPTION
				30H	If card is inside, move card to card
					holding position
				31H	If card is inside, capture card to
					rear side without card holding
					position.
				32H	If card is inside, capture card to
					front side without card holding
				6	position.
3.1	INITIALIZE	Initialize CRT-310	30H	33H	It card is inside, does not move the
3.1	INITIALIZE	Initialize CR1-310	30П		card.
				BAH	Same as 30H and capture card
				> //	counter will work:
				35H	Same as \$1H and capture card
					counter will work.
				36H	Same as 32H and capture card
				Ì	counter will work.
		5/ /	\mathbb{W}	37H	Same as 33H and capture card
				<i>\\</i>	counter will work.
			1/2	^{>} 30H	Report CRT-310 status
	STATUS			31H	Report CRT-310status
3.2	REQUEST	Inquire status	31H		(With sensor status)
				32H	Report CRT-310 status
					(With sensor status)
				30H	Move card to front side without card
					holding
				31H	Move card to rear side holding card
					position
				32H	Move card to RFID card operation
3.3	CARD MOVE	Card movement	32H		position
				33H	Move card to IC card operation
					position
				34H	Move card rear side holding card
					position
				35H	Move card to rear side without

CDECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	13/77	

					holding card position.
				30H	Prohibit entry from front
				31H	Enable entry by switch
3.4	CARD ENTRY		33H	32H	Enable entry by magnetic signal
				40H	Prohibit entry from rear
				41H	Enable entry from rear
				31H	Only upload ISO-1 track data
				32H	Only upload ISO-2 track data
				33H	Only upload ISO-3 track data
				36H	Clear the data in the magnetic
				4	register without moving the card.
3.5.1	Magnetic card	Magnetic card		37H_	Only check the data status of
0.0.1	operation	register operation	35H		magnetic register
				\$}H	Read ISO-1 track data by binary
				. //	mode
		``	1) /	52H	Read ISO 2 track data by binary
					mode
				53H\\	Read ISO-3 track data by binary
					mode
				314	Only-read ISO-1 track
			1/1	32H	Only-read ISO-2 track
	Combine the	Combination of		33H	Only-read ISO-3 track
3.5.2	magnetic card	magnetic card	36H	34H	Only-read ISO-1, ISO-2 track data
	operation	operation		35H	Only-read ISO-1, ISO-3 track data
				36H	Only-read ISO-2, ISO-3 track data
				37H	Only-read ISO-1, ISO-2, ISO-3
					track data
3.6	IC card Type		50H	30H	Auto check IC Card Type
3.7	RFID card Type		50H	31H	Auto check RFID Card Type
3.8	CPU CARD CONTROL	CPU Card	51H	30H	CPU Card cold reset
		Application		31H	CPU Card power down
		Operation		32H	CPU Card status check
				33H	T=0 CPU Card APDU data
					exchange
				34H	T=1 CPU Card APDU data
					exchange
				38H	CPU Card hot reset

SPECIFICATION Model No. CRT-310 Date 2010/6/29 Communication Protocol Ver. 4.0 Page 14/77

	3312313 031	11010001		rage	1 17 7 7
				39H	Auto distinguish T=0/ T=1 CPU
					Card APDU data exchange
				30H	SAM Card cold reset
				31H	SAM Card power off
				32H	SAM Card status check
				33H	T=0 SAM Card APDU data
		SAM Card			exchange
3.9	SAM CARD CONTROL	Application	52H	34H	T=1 SAM Card APDU data
		Operation			exchange
				38H	SAM Card warm reset
				39H 🏑	Auto distinguish T=0/T=1 SAM
					Card APDU data exchange
				({ 0H	Select SAM Card stand
				30⊢	SLE4442/4428 Card reset
	SLE4442/4428C			31H	SLE4442/4428 Card power down
3.10	ARD CONTROL		53H	32H	Browse SLE4442/4428 Card status
	ARD CONTROL			33H	Operate SLE4442 Card
				34H	Operate SLE4428 Card
				30H	2C Card reset
	I2C	24C01 24C256	\mathbb{X}	31H>	I2C Card power-off
3.11	MEMORYCARD	Card Operation	54H	32H	Check I2C Card status
	MEMORTORING	Card Operation		33H	Read I2C Card
				34H	Write I2C Card
				30H	RFID Card startup
				31H	RFID Card down power
		Mifare standard		32H	RFID Card operation status check
3.12	RFID CARD	card Type A & B		33H	Mifare standard Card read/write
5.12	CONTROL	T=CL protocol	60H	34H	Type A standard T=CL Card APDU
	(13.56 MHZ)	operation			data exchange
		operation		35H	Type B standard T=CL Card APDU
					data exchange
	LED Indicator		0011	30H	Red LED Operation
3. 13	operation		80H	31H	Green LED Operation
3.14	Easily damaged		A1H	30H	Read counter of gate opening times
	part lifetime			31H	Read counter of Magnetic head
	1		1		reading times

SPECIFICATION Model No. CRT-310 Date 2010/6/29 Communication Protocol Ver. 4.0 Page 15/77

			32H	Read counter of IC contact using
				times
3.15	Machine SERIAL NUMBER	A2H	30H	Read Machine Serial number
3.16	Read Machine	АЗЫ	30H	Read Machine configuration
3.10	CONFIG	A3H		information
3.17	READ CRT-310	A4H	30H	Read Card software version
3.17	VERSION	А4П		information
3.18	RECYCLEBIN	A5H	30H	Read card retreat counter
3.18	COUNTER	АЭП	31H /	Initiate card retreat counter

2.2 Status Code st0, st1

st0&st1	Content
"00"	No Card in CRT-310 (Including gate)
"01"	One Card in gate
"02"	One Card on RFID/IC Card Operation Position

2.3 Error code e0, e1

e0&e1	Content
"00"	Command Character Error
"01"	Command Parameter Error
"02"	Command Can Not Be Executed
"03"	Out of Hardware Support Command
"04"	Command Data Error
"05""09"	
"10"	Card Jan
"11"	Shutter error
"12"	
"13"	Too Long-Card in the machine
"14"	Too Short-Card in the machine
"15"	EEPROM Error
"16"	Card is pulled out by force
"17"	Card jam when insert
"18"	
"19"	Card not insert from rear
"20"	Read error (CRC error)

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	16/77

	1 age
"21"	Read error
"22"	
"23"	Read Error (Only SS-ES-LRC)
"24"	Read Error (No data/blank)
"25"	
"26"	Read error (No SS)
"27"	Read error (No ES)
"28"	Read error (LRC error)
"29"	
"30"	Power Down
"31"	
"32"	Voltage is too high, more than 14.5V
"33"	Voltage is too low, more than 10.5V
"34-39"	
"40"	Card pulled out when retreating the card
"41"	Operation of IC Card Enfor
"42"	
"43"	Disable To Move Card To IC Gard Position
"44"	
"45"	Card withdraw error
"46""49"	
"50"	Received Card Counter Overflow
"51"—"59"	
"60"	Abnormal condition was found on the power-line (Vcc) of IC card
"61"	ATR error
"62"	IC card type error
"63"	IC card does not respond
"64"	Other than "63"
"65"	Send CPU command by HOST before reception of ATR
"66"	Command Out Of IC Current Card Support
"67"—"68"	
"69"	IC card Non-Compliance To EMV Standard
"80"	
"81"	
"90"	Unknown card type
"B0"	Not Receive reset command

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	17/77

3. Command Specification

3.1 Reset (Initialization)

Command (TXET):

"C" 30H Pm Pd

Positive response (TXET):

"P" 30H Pm st0 st1 Rev_type

Negative response (TEXT):

"N" 30H Pm e0 e1

This should be the first command after power on, otherwise other command can not be executed, and then this command can be executed multiple times.

Once execute this command, the error status before will be cleaned, return software version information and machine will be in prohibit card-in status.

If no card in machine, the motor will rotate slightly (to adjust card position in the machine). If there is a card, the disposal is shown as below

Pm: Command parameter

30H: Move the card to front side holding card position

31H: Move the card to the rear side without holding card position (Retreat card)

32H: Move the card to the front side without holding card position.

33H: Without moving card-

34H: Same as pm=30H, and Capture card counter will work.

35H: Same as pro=31H, and Capture card counter will work

36H: Same as pm=32H, and Capture card counter will work

37H: Same as pm+33H, and Capture card counter will work

Pd: Reject card when power off setting (Option parameter)

The operation will occur when the machine suddenly power-off, the card will be rejected

=30H when power-off suddenly, do not reject card

=31H when power-off suddenly, move the card to front side holding card position. (Base on the premise that the machine need to have stand-by power)

=32H when power-off, move the card to rear side holding card position. (Base on the premise that the machine need to have stand-by power)

Notes: Default setting Pd=30H, if no Pd parameter in reset command

Rev_type: software version, "CRT-310-U4.0"

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	18/77

3.2 Status Request Command

Command

"C" 31H Pm

Positive response

"P"	31H	Pm	st0	st1	Sensor(8 byte)
-----	-----	----	-----	-----	----------------

Negative response

"N" 31H Pm e0 e1

Pm=30H: Report current status of st0, st1 (See 2.2)

Pm=31H: Report current status of st0 and st1 and status of sensor (8 byte)

Pm=32H, Error on machine, return current status of st0 and st1 and status of sensor (8byte)

The status of sensor is referred to appearance drawing.

Sensor	Status
DSS1	30H DSS1 No card
Gate sensor	31H DSS1 Have card
_	337 No Shutter
DSS2	30H Shutter close
(Shutter sensor)	31H Shutter spen
	33H No shutter
PSSQ	30H PSSO No card
(F3300)	31H PSS0 Have card
PSS1	30H PSS1 No card
7551	31H PSS1 Have card
PSS2	30H PSS2 No card
	31H PSS2 Have card
PSS3	30H PSS3 No card
	31H PSS3 Have card
PSS4	30H PSS4 No card
	31H PSS4 Have card
PSS5	30H PSS5 No card
	31H PSS5 Have card

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	19/77

3.3 Move Card Command

Command

"C" 32H Pm	"C"	1 3211	Pm
------------	-----	--------	----

Positive response

"P" 32H	Pm	st0	st1
---------	----	-----	-----

Negative response

"N" 32H	Pm	e0	e1
---------	----	----	----

Carry the card to the different positions by command operation

Pm=30H Move card to front side without holding card position

Pm=31H Move card to front side holding card position

Pm=32H Move card to RFID card operation position

Pm=33H Capture card to IC card operation 1 position

Pm=34H Move card to rear side holding card position.

Move card to rear side without holding band position Capture Pm=35H

If card can not move to specified position, CRT-310 will return Card jam error

Note:

- 1. Pm=35H, move card to rear side without holding card position, the retreat counter will work after initialization command which drive retreat eard counter working.
- 2. Execute card move sommand when card is on 10 card operation position and power on, the machine will power of the Coard first and execute move card operation.

	Madal Na	CRT-310
SPECIFICATION	Model No.	CR1-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	20/77

3.4 Entry Command

Command

"C"	33H	Pm
-----	-----	----

Positive response

"P" 33H	Pm st0	st1
---------	--------	-----

Negative response

"N" 33H	Pm	e0	e1
---------	----	----	----

After set card input from rear/front be available, if insert card from the gate, CRT-310 will carry the card to RFID card operation position. The end of the insertion can be detected by status inquiry command.

Pm=30H Disable card input from gate

Pm=31H Enable card input from gate by switch mode

Pm=32H

Pm=40H

Pm=41H

CDECIFICATION	Model No.
SPECIFICATION	Date
Communication	Ver.
Protocol	Page

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	21/77

3.5 Magnetic Card Operation

3.5.1 Magnetic register Read Operation Command

HOST Command:

"C"	35H	Pm
-----	-----	----

Positive return:

"P"	35H	Pm	st0	st1	Mag_Data (n byte)

Negative return:

"N"	35H	Pm	e0	e1
-----	-----	----	----	----

PM=31H: Read data on ISO Track #1

PM=32H: Read data on ISO Track #2

PM=33H: Read data on ISO Track #3

Upload data of register by ASCII mode to HOST, if the reading data is incorrect, it upload error

status e0 and e1.

Data format of ISO ASCII code:

-Track#1(IATA): 79 characters max. (60ts 1 parity) e.g. 00, b1, b2, b3, b4, b5, P

-Track#2(ABA): 40 characters max. (4bits+1 parity) e.g. b0, b1, b2 b3, P

-Track#3(MINTS): 107 characters max (4bits A parity) e.g., b0, b1, b2 b3, P

For examples:

	ISO Track #1		ISO Tra	ck #2, #3	
bit	543210		bit	3 2 1 0	
data=0	010000	30H, V	data=0	0000	30H
data=A	100001	41H	data=9	1001	39H

PM=36H: Clear the data of register (cleaning magnetic card memory)

PM=37H: Check if there are any data in the magnetic register.

Transmission Mag_Data data format:

Sn1	Sn2	Sn3
-----	-----	-----

Snx = 30H No data (The track is blank) (x=1, 2, 3)

Snx =31H Have data

Once execute magnetic register clean command"C56", Sn1=30H, Sn2=30H, Sn3=30H

PM=51H: Upload data on ISO Track #1 by binary without moving the card

PM=52H: Upload data on ISO Track #2 by binary without moving the card

PM=53H: Upload data on ISO Track #3 by binary without moving the card

CDECIFICATION	Model
SPECIFICATION	Date
Communication	Ver
Protocol	Page

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	22/77
9	

Binary read card differs from other register; the data of register is not checked and decode by ASCII code. The data is original data.

The binary read card command ignores error or right, and which is transmitted in the form of converted ASCII code.

Every 4 bit as a group and transmit as ASCII Code

There are plenty of pre-load and suffix-load zeros in these sent data, so CRT-310 will ignores these zeros during sending data

For example: data in a track:

Data packet sent to HOST: 0x33 0x37 0x46 0x30 0x30 0x33 0x37 0X46

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	23/77

3.5.2 Multi-MAG-Track read command

HOST Command:

"С" 36Н	Pm	Mode
---------	----	------

Positive Return:

- 1							4
							0
	"D"	36H	Dana	a+0	a + 1	Mag Data(n hysta)	3
	r	зоп	PIII	st0	Sti	Mag Data(n byte)	
						U= \ , ,	-

Negative Return:

						-
						-
		_	-			-
"",	36U	Dm	(۱ م	1 م	Mag Data(n byte)	_
1.4	3011	1111			Mag Datat II byte	
· ·				_		-

Mode=30H ASCII Mode

PM=31H: Read data on ISO Track #1

PM=32H: Read data on ISO Track #2

PM=33H: Read data on ISO Track #3

PM=34H: read data on ISO Track #1, ISO Track #2

PM=35H: read data on ISO Track #1, ISO Track #3

PM=36H: read data on ISO Track #2 ISO Track #3

PM=37H: read data on ISO Track #1\\SO Track #2, \SQ Track #3

CRT-310 sends negative response and error code is 21. In case of card carrying, CRT-310 sends negative response too.

Data format of ISO ASCH code:

-Track#1(IATA): 79 characters max. (6bits+1parity) e.g. b0, b1, b2, b3, b4, b5, P

-Track#2(ABA) 40 characters max. (4bits+4 parity) e.g. b0, b1, b2 b3, P

-Track#3(MINTS): 107 characters max. (4pits+1parity) e.g. b0, b1, b2 b3, P

For example

	ISO Track #1		ISO Tra	ack #2, #3	
bit	5 4 3 2 1 0		bit	3 2 1 0	
data=0	010000	30H	data=0	0000	30H
data=A	100001	41H	data=9	1001	39H

Response data format: ISO#1 data+7EH+ ISO#2 data+7EH+ ISO#3 data

ISO# n data (N=1, 2, and 3):

Positive read: "P"+ track data (ASCII code excludes SS-ES-LRC)

Negative read: "N2X", "2X" error code ("20""23""24""26""27""28")

Positive response:

PM=31H: "P" + ISO #1 data

SPECIFICATION	Model No.	CRT-310
	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	24/77

PM=32H: "P" + ISO #2 data

PM=33H: "P" + ISO #3 data

PM=34H: "P" + ISO #1 data + 7EH + "P" + ISO #2 data

PM=35H: "P" + ISO #1 data + 7EH + "P" + ISO #3 data

PM=36H: "P" + ISO #2 data + 7EH + "P" + ISO #3 data

PM=37H: "P" + ISO #1 data + 7EH + "P" + ISO #2 data + 7EH + "P" + ISO #3 data

All negative response and Mag_Data will be:

E1, E0: "21"

E3, E2: error code of ISO#1

E5, E4: error code of ISO#2

E7, E6: error code of ISO#3

PM=31H: "N "+ E3, E2

PM=32H: "N" + E5, E4

PM=33H: "N" + E7, E6

PM=34H: "N"+ E3, E2 + 7EH + "N"\ E5, E4

PM=35H: "N"+ E3, E2 + 7EH="N" + E7, E6

PM=36H: "N"+ E5, E4 + 4+ "N"+ E7, E6

PM=37H: "N"+ E3, E2+ 7EH+ "N"+ E5, E4+ 7EH+ "N" + E7, E6

Mode=31H: Binary Mode

Read binary data from magnetic register, return Mag_Data format is following:

BIN#1data + 7EH+ BIN#2 data +XEH + BIN#3 data

PM=31H BIN#1data

PM=32H BIN#2data

PM=33H BIN#3data

PM=34H BIN#1data + 7EH + BIN#2 data

PM=35H BIN#1data + 7EH + BIN#3 data

PM=36H BIN#2data + 7EH + BIN#3 data

PM=37H BIN#1data + 7EH + BIN#2 data +7EH + BIN#3 data

The binary read card command ignores error or right, and which is transmitted in the form of converted ASCII code.

SPECIFICATION	Model No.	CRT-310
	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	25/77

Every 4 bit as a group and transmit as ASCII Code

There are plenty of pre-load and suffix-load zeros in these sent data, so CRT-310 will ignores these zeros during sending data

For example: data in a track:

Data packet sent to HOST: ISO#N data (N=1, 2, 3) 0x33 0x37 0x46 0x30 0x30 0x33 0x37 0X46

If there is no data in a track, then the length of ISO#N data is 0

SPECIFICATION	Model No.	CRT-310
	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	26/77

3.6 Auto-Check IC Card

Command

"C" 50H 30H

Positive response

"P" 50H 30H st0 st1 Card_type

Negative response

"N" 50H 30H e0 e1

Auto-Check type of IC Card, and carry card to IC Card operation position, Auto Check IC Card Type,

Return Card_type information.

Cart_type(2 byte	e)	Specification
'0'	'0'	Unknown IC Card Type
'1'	'0'	T=0 CPU Gard
	'1'	T=1 CPU Card
'2'	'0'	SLE4442 Card
	'1'	SLE4428 Card
'3'	·0'	AT24C01 Card
	'1'	AT24C02 Card
	2	AV24C0M Card
	3,	AT24C08 Card
	*	AT24C16 Card
//	·5'	AT24C32 Card
	·6'	AT24C64 Card
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AV24C128 Card
	(8)	AT24C256 Card

SPECIFICATION
Communication
Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	27/77

3.7 Auto-Check RFID Card Type

Command

"C" 50H 31H

Positive response

"P" 50H 31H	st0	st1	Card_type
-------------	-----	-----	-----------

Negative response

"N"	50H	31H	e0	e1
-----	-----	-----	----	----

Auto-Check type of RFID card, carry card to RFID card operation position. Auto-Check RFID Card

Type, Return Card_type information

Cart_type(2 byte	e)	Specification
'0'	'0'	Unknown RFID Card Type
'1'	'0'	Mifare one \$50Card
	'1'	Mifare one S70Card
	'2'	Mifare one UL Card
'2'	·0·	Type A CPU Cerd
'3'	'0'	Type B CPU Card

SPECIFICATION
Communication

Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	28/77

3.8 CPU Card Operations

3.8.1 CPU Card Reset

Command

"C" 51H 30H Vcc

Positive response

"P" 51H 30H st0 st1 Type ATR

Negative response

"N" 51H 30H e0 e1 Type ATR

To cold reset IC card. The CRT-310 supplies power (VCC) and & CK (CLK), return ATR.

Vcc=30H: CRT-310 supplies with +5V to VCC and activates in time with the EMV2000 ver4.0.

Vcc=33H: CRT-310 supplies with +5V to VCC and activates in line with the ISO/IEC7816.

Vcc=35H: CRT-310 supplies with +3V to VCC and activates in line with the ISO/IEC7816.

Vcc is optional parameter and If there is no Vcc in command, default Vcc=301

If ATR is not compliance to EMV, return e 1, e0="69"

If IC card power is detected as error, return e0, e1="60"

Type: CPU Card protocol Type

=30H T=0 protocol CPU Sard

=31H T=1 protocol CPU Card

Format of ATR

TS TO TA1 TB1 ... TCK

CDECIEICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	29/77

3.8.2 Deactivate CPU Command

Command

"C" 51H 31H

Positive response

"P" 51H 31H st0 st1

Negative response

"N" 51H 31H e0 e1

This deactivates CPU card.

The machine tells the status of IC card with sti.

St i=30H Card not activated

=31H Card have activated, current CPU Card working frequency is 3.57 MHZ

=32H Card have activated, current CPU Card working frequency is 7.16 MHZ

If IC Card power error, return e1,e0= "60".

Communication **Protocol**

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	30/77

3.8.4 CPU Card Communication T=0

Command

"C"	51H	33H	C-APDU
-----	-----	-----	--------

Positive response

"P" 51H 33H st0	st1 R-APDU
-----------------	------------

Negative response

"N" 51H	33H	e0	e1
---------	-----	----	----

This exchanges data between CPU card by protocol T=0

C-APDU from HOST is range from 4 byte to 261 byte

R-APDU to HOST is range from 2 byte to 258 byte

An e0, e1= "60" is returned when a power failure is detected.

If protocol type of IC bard is not T=0) e0, e1=

If ICC does not respond within working Wait Time, CRT-310 deactivates an IC card and e0, e1 = "63" is sent.

If any other protocol error occurs, QRT-310 deactivates an IC card and e0, e1= "64" is sent.

If HOST tries to communicate before an IC card activation, e0, e1= "65" is sent.

Note: Please refer to ISO/IEC7816 about T=0 APDU format and specific C-APDU pleas refer to the COS of the card

SPECIFICATION Communication

Protocol

CRT-310 Model No. Date 2010/6/29 Ver. 4.0 31/77 Page

3.8.5 CPU Card Communication T=1

Command

"C" 51H	34H	C-APDU
---------	-----	--------

Positive response

"P" 51	H 34H	st0	st1	R-APDU
--------	-------	-----	-----	--------

Negative response

R-APDU

"N" 51H 34H e0 e1	e1
-------------------	----

This exchanges data between CPU card by protocol T=1

CRT-310 should follow T=1 protocol to combination C-APDU as T-block and send it to CPU card. CPU

card should return R-APDU (extracted from I-block) to AOST.

A: Send C-APDU (Add block head, block end and C-APDU as I-block)

An e0, e1= "60" is returned when a power failure is detected.

If protocol type of IC card is not T=0, e0, e1= "62" is sent.

If ICC does not respond within Working Wait Time, CRT-310 deactivates an IC card and e0, e1= "63" is sent.

If any other protocol error occurs, CRT-310 deactivates an IC card and e0, e1= "64" is sent.

If HOST tries to communicate before an IC card activation, e0, e1= "65" is sent.

INS

P1

P2

Lc

Data1

Data(Lc)

Le

Note: If you want to more about T=0 APDU format. Please refer to ISO/IEC7816 and COS command

CDECIEICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	32/77	

3.8.6 CPU Warm Reset

Command

"C" 51H 38H

Positive response

"P"	51H	38H	st0	st1	Type	ATR

Negative response

"N"	51H	38H	e0	e1
-----	-----	-----	----	----

Keeping the status of the IC contact activated, and then returns response upon receiving "ATR" again.

Type: CPU Card communication protocol

=30H

T=0 Protocol

=31H

T=1 Protocol

Protocol is recognized automatically. Set data to "C-APDU". CRT-310 returns "R-APDU" data to HOST.

An e0, e1= "60" is returned when a power failure is detected.

If protocol type of IC card is not T=0, e0, e1= "62" is sent.

If ICC does not respond within Working Wait Time, CRT-310 deactivates an IC card and e0, e1= "63" is sent.

If any other protocol error occurs, CRT-310 deactivates an IC card and e0, e1= "64" is sent.

If HOST tries to communicate before an IC card activation, e0, e1= "65" is sent.

SPECIFICATION Model No Date

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	33/77

Communication Protocol

3.9 SAM (Secure Application Module) Control Command

3.9.1 Active SAM Command

Command

"C" 52H 30H Vcc

Positive response

"P"	52H	30H	st0	st1	Туре	ATR
					, , ,	

Negative response

"N"	52H	30H	e0	e1	Туре	ATR	

The CRT-310 supplies power (VCC) and clock (CLK), and then reset (RST) release.

Type: SAM protocol type

=30H T=0 protocol

=31H T=1 protocol

ATR (Answer to Reset) format:

Vcc=30H: CRT-310 supplies with +5 Vtc VCC and activates in line with the EMV2000 ver4.0.

Vcc=33H: CRT-310 supplies with +5V to VCC and activates in line with the ISO/IEC7816.

Vcc=35H: CRT-310 supplies with +3V to VCC and activates in line with the ISO/IEC7816.

Vcc is optional parameter, In case there is no vcc parameter, it will have 30H as default value

(Vcc = 30H)

If ATR is not compliance to EMV, return e1,e0= "69"

CDECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	34/77	

3.9.2 Deactivate SAM Command

Command

"C" 52H 31H

Positive response

"P" 52H 31H st0 st1

Negative response

"N" 52H 31H e0 e1

This deactivates SAM

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	35/77

3.9.3 Inquire SAM Status Command

Command

"C" 52H 32H

Positive response

"P"	52H	32H	st0	st1	Sti	Stj

Negative response

"N"	52H	32H	e0	e1	

CRT-310 returns the status of SAM with sti. stj

Sti =30H SAM is deactivated

Sti =31H SAM is activated, working frequency is 3.57 MHZ

Sti =32H SAM is activated, working frequency is 7.16 MHZ

Stj =30H First SAM card connector

Stj =31H Second SAM card connector (Optional)

Stj =32H Third SAM card connector (Optional)

Stj =33H Fourth SAM card connector (Optional)

Stj =34H Fifth SAM card connector (Optional)

e0, e1="60" is returned when a power failure is detected

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	36/77

3.9.4 CPU T=0 Communication APDU

Command

"C" 52H	33H	C-APDU
---------	-----	--------

Positive response

"P"	52H	33H	st0	st1	R-APDU
-----	-----	-----	-----	-----	--------

Negative response

"N" 52	H 33H	e0	e1
--------	-------	----	----

This exchanges data between SAM by protocol T=0

If power supply of IC card is fail, e0, e1= "60" is return.

If protocol type of IC card is not T=0, e0, e1= "62" is return,

If ICC does not respond within Working Wait Time, CRT-310 deactivates an IC card and e0, e1= "63" is sent.

If any other protocol error occurs, CRT-310 deactivates an IC card and e0, e1= "64" is sent.

If HOST tries to communicate before an IC card activation, eQ, e1= "65" is sent.

Note: Please refer to ISO/IEC7816 about T=0 APDU format and specific C-APDU pleas refer to the COS of

the card

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	37/77

3.9.5 CPU T=1 Communication APDU

Command

"C"	52H	34H	C-APDU

Positive response

"P" 52H 34H st0 st1 R-APD	U
---------------------------	---

Negative response

	"N"	52H	44H	e0	e1	_
--	-----	-----	-----	----	----	---

This exchange data between SAM by protocol T=1

If power supply of IC is fail, e0, e1= "60" is return.

If protocol type of IC card is not T=0, e0, e1= "62" is return.

If ICC does not respond within Working Wait Time, CRT-310 deactivates an IC card and e0, e1= "63" is sent.

If any other protocol error occurs, CRT-310 deactivates an IC card and e0, e = "64" is sent.

If HOST tries to communicate before an IC card activation, e0, e1= "65" is sent

Note: Please refer to ISO/IEC7816 about T=0 APDU format and specific C-APDU pleas refer to the COS of

the card

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	38/77

3.9.6 SAM Warm Reset

Command

"C"	52H	38H

Positive response

"P	" 52	:H	38H	st0	st1	Туре	ATR
----	------	----	-----	-----	-----	------	-----

Negative response

	"N"	52H	38H	e0	e1	
--	-----	-----	-----	----	----	--

Keeping the status of the SAM activated, and then returns response upon receiving.

Type: SAM protocol type

=30H T=0 Protocol

=31H T=1 Protocol

3.9.7 Auto-Check SAM Card T=0/T=1 Protocol

Command

R-APDU

Negative response

If power supply of IC cand is fail, e0,\e1="60" is return.

If protocol type of IC card is not 1=0, e0, e1= "62" is return.

If ICC does not respond within Working Wait Time, CRT-310 deactivates an IC card and e0, e1= "63" is sent.

If any other protocol error occurs, CRT-310 deactivates an IC card and e0, e1= "64" is sent.

If HOST tries to communicate before IC card activation, e0, e1= "65" is sent.

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	39/77

3.9.8 Select SAM

Command

1				
	"C"	52H	40H	SAMn

Positive response

"P" 5	2H 40H	st0	st1
-------	--------	-----	-----

Negative response

"N"	52H	40H	e0	e1	

HOST can select SAM stand.

SAMn = 30H: SAM 1.

SAMn = 31H: SAM 2. (Option)

SAMn = 32H: SAM 3. (Option)

SAMn = 33H: SAM 4. (Option)

SAMn = 34H: SAM 5. (Option)

SAM command is effective only in the module selection.

When Initialize command is executed, SAM will be selected.

SPECIFICATION Moo

Protocol

Model No.	CRT-310			
Date	2010/6/29			
Ver.	4.0			
Page	40/77			

3.10 SLE4442/4428 Control 3.10.1 SLE4442/4428 Reset

Command

"C" 53H 30H

Positive response

"P" 53I	30H	st0	st1	ATR(4 byte)
---------	-----	-----	-----	-------------

Negative response

"N"	54H	30H	e0	e1
-----	-----	-----	----	----

The CRT-310 stop supplying power (VCC) and clock (CLK) then reset (RST) release.

CDECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	41/77	

3.10.3 Inquire status of SLE4442/4428

Command

"C"	53H	32H

Positive response

"P"	53H	32H	st0	st1	Sti
-----	-----	-----	-----	-----	-----

Negative response

"N"	54H	32H	e0	e1
-----	-----	-----	----	----

CRT-310 tells the status of SLE4442/4428 with Sti after the command successfully execute.

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	42/77

3.10.4 SLE4442 Control

These functions are specified by a command data form like C-APDU which format is based on T=0 standard.

In this case, CRT-310 recognizes the meaning of the command data, and executes the treatment related to the card by controlling hardware.

After the command was executed properly, CRT-310 returns a positive response with response data 9000H like from the IC card. When an error occurs during the communication with SLE4442, CRT-310 returns a positive response with status information in response data "sw1+sw2" which is base on ISO/IEC 7816-3

Sw1	Sw2	Specification
90H	00H	Success
6FH	00H	Falt
6FH	01H	Key Validation error
6FH	02H	Kex Validation error and Lock
67H	00Н	Address overflow
6BH	// H00	Operation length overflow

Notes: ab H: the start address to read data in the main memory

cd H: the length of bytes of data to read

CRT-310 reads data from the main memory of SLE4442, and transmits data on cdH bytes from the address abH.

The capacity of the main memory is 256 bytes.

All the contents of the main memory can be read with the following command.

Ex). "CS3"+00B0000000

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	43/77

3.10.6 Read protection bits on SLE4442

Command

"C"	53H	33H	00H	В0Н	01H	abH	cdH
-----	-----	-----	-----	-----	-----	-----	-----

Positive response

"P" 53H 33H	st0 st1	Data(n byte)
-------------	---------	--------------

Negative response

"N"	53H	33H	e0	e1
-----	-----	-----	----	----

Notes: ab H: the start address (00H—03H)

cd H: the length of bytes of data to read (01H—04H)

SLE 4442 have 32 bit protection address (00H-1FH), the address and length of protection bit is appoint by parameters. CRT-310 handle 8 bit of protection as a byte Every protection bit corresponds to a byte of SLE4442.

Protection bit=0, already protected and gan not write data any more

Protection bit=1, have no protection and can write data again

The contents (32bit) of the protection memory can be read with the following command.

Communication Protocol

Model No.	CRT-310		
Date	2010/6/29		
Ver.	4.0		
Page	44/77		

3.10.7 Data read from security memory on SLE4442

Command

"C" 53H 33H 00H B0H 02H abH cdH efH	
-------------------------------------	--

Positive response

"P" 53H 33H st0	st1 data
-----------------	----------

Negative response

"N" 53H 33H 6	e0 e1
---------------	-------

Notes: ab H: the start address of security area.

cd H: the length of bytes of data to read

CRT-310 handles the data of all 32bits in the security memory as the data on 4bytes.

1 of 4byte is data of error counter + 3 of 4 byte are kex data

The contents (32bit) of the security memory can be read with the following command.

Ex). "CS3"+00B0020004

3.10.8 Data write to main memory on SLEN442

Notes: ab H: the start address to write data in the main memory

cd H: the length of bytes of data to write

ef H: the data to write first (cd H bytes)

Write data to main memory on SLE4442 and return result.

Before write to main memory, the validation of key is must.

The capacity of the main memory is 256 bytes. When cd=00H, the whole 256byte can be written.

The example that data are written in the whole area of the main memory is shown in the following.

Ex). "CS3"+ 00D0000000 + Write Data (256byte)

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	45/77

3.10.9 Data write with protection bit on SLE4442

Command

"C" 53H 33H 00H D0F	01H abH cdH efH
---------------------	-----------------

Positive response

"P" 53H 33H	st0	st1	data
-------------	-----	-----	------

Negative response

	"N"	53H	33H	e0	e1	
--	-----	-----	-----	----	----	--

Notes: ab H: the start address to write data in the main memory

cd H: the length of bytes of data to write

ef H: the data to write first (cd H bytes)

Before write to the memory, the validation of key is must.

The address of the protection memory is 00-1FH The data of 00H 1FH is controlled by 32 bit of protection status bit. For example, if bit0=1 in byte0, data on the address 00H protected.

The content of protect status can not be change once setting protection.

For example: write 20H data to 10H address and set up protection

Ex). "CS3"+00D001100120

After command execution, CRT-310 returns with 9000H (Successful) or sw1+sw2 (Fail) as the result. CRT-310 reads data first from the main memory, and it is compared with the value that it was received. When they are different, writing protection isn't begun.

Protection condition can be set only one time in the main memory.

SPECIFICATION Communication

Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	46/77

3.10.10 Data write to security memory on SLE4442 (Modify password)

Command

"C" 53H 33H 00H D0H 02H abH cdH	efH
---------------------------------	-----

Positive response

"P"	53H	33H	st0	st1	data
-----	-----	-----	-----	-----	------

Negative response

"N"	53H	33H	e0	e1
-----	-----	-----	----	----

Notes: ab H: the start address to write data in the main memory

cd H: the length of bytes of data to write

ef H: the data to write first (cd H bytes)

After a password check is finished normally, 3byte of password in security memory can be changed.

All 32bits are handled as 4bytes. How to change the password is as the following. (Change password as 123456H)

Ex). "CS3"+ 00D0020103123456

After command execution, CRT-310 returns response with 9000H Successful) or sw1+sw2 (Fail) in the result.

Notes: Better not to write, because the Error-counter is always allowed to write and easily make a failure. Error-Counter is controlled when password is checked.

SPECIFICATION

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	47/77

3.10.11 Verification data present to SLE4442

Command

"C"	53H	33H	00H	20H	03H	01H	03H	efH
-----	-----	-----	-----	-----	-----	-----	-----	-----

Positive response

"P" 53H 33H st0 st1 data	"P"	53H 33H	st0	st1	data
--------------------------	-----	---------	-----	-----	------

Negative response

					-
"N"	53H	33H	e0	e1	

Notes: ef H: the data to compare (3bytes)

Before changing data, password must be check

Because this function should be made effective, the issue of the next command is necessary.

Ex). "CS3"+0020030103xxxxxx

(xxxxxx: security code 3bytes)

Card will verify password between card and password in the command.

A user must know password at least when a user wants to rewrite the data on SLE4442 card. Error-Counter can be reset in the zero if password is given to SLE4442 card properly. If the password is given to wrong, the counter will reduce from 2 or less to 0 and when the error-counter reduce to 0,

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	48/77

3.10.12 SLE4428 Control

These functions are specified by a command data form like C-APDU which format is based on T=0 standard

In this case, CRT-310 recognizes the meaning of the command data, and executes the treatment related to the card by controlling hardware.

After the command was executed properly, CRT-310 returns a positive response with response data 9000H like from the IC card. When an error occurs during the communication with SLE4442, CRT-310 returns a positive response with status information in response data "sw1+sw2" which is base on ISO/IEC 7816-3

Sw1	Sw2	Specification
90H	00H	Succes
6FH	00H	Falt
6FH	01H	Key Validation error
6FH	02H	Kex Validation error and Lock
6BH	00Н	Address overflow
67H	00H/	Operation length overflow

Notes: abc H: the start address to read data in the main memory

de H: the number of bytes of data to read

CRT-310 read data from main memory of SLE4428 through abcH and deH

The capacity of the main memory is 1024bytes.

When De="00" Data to read means 256bytes.

The data of SLE4428 can be read with the following command.

ex). "CS4"+00B0000000

Communication **Protocol**

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	49/77

3.10.14 Reading of protection-bit of SLE4428

Command

"C'	53H	34H	00H	ВОН	1aH	bcH	deH
-----	-----	-----	-----	-----	-----	-----	-----

Positive response

"P" 53H 34H st0	st1 data
-----------------	----------

Negative response

"N" 53H 34H e0	e1
----------------	----

Notes: abc H: the start address (0000H-007FH)

de H: the length of data to read (01H-80H)

SLE4428 have 1024byte in main memory and correspondingly have 1024bit of protection bit. The machine will read handle 8 bit as byte. Every protection bit present corresponding protects status for

each byte on SLE4428.

Bit=0 have already protect, can not write anything

Bit=1 not yet protect, can write data

The command to read all protection bit of SLE4428 is

Ex). "CS4"+00B0100080

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	50/77

3.10.15 Data writing to main-memory of SLE4428

Command

"C" 53H 34H 00H	D0H	0aH	bcH	deH	fgH
-----------------	-----	-----	-----	-----	-----

Positive response

"P"	53H	34H	st0	st1	data
-----	-----	-----	-----	-----	------

Negative response

"N"	53H	34H	e0	e1	
IN	5511	3411	60	CI	

Notes: abc H: the start address to write data in the main memory

de H: the number of bytes of data to write

fg H: the data to write first (de H bytes)

Writes data in the main memory and returns a result after written data are checked

Before doing this operation, password check must be done

The capacity of the main memory is 1024 bytes.

The example command that data are written is shown in the following.

Ex). "CS4"+ 00D0000000 + Write Data (256b) te)

After command execution, CRT-310 returns response with 9000H or \$w1+sw2 as the result.

If the addressed data on main memory is to protected status, the write operation is not available.

Notes: Last three units (abc=0x03Fb, 0x03FE, 0x03FF) of SLE=4428 is password verification error

counter, password1 and password2. Please don't write any data to these units, otherwise the card will

be scraped.

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	51/77

3.10.16 Written with protection-bit

Command

"C"	53H	34H	00H	D0	2aH	bcH	deH	fgH
				Н				

Positive response

"P"	53H	34H	st0	st1	data

Negative response

"N"	53H	34H	e0	e1	

Notes: abc H: the start address to write data in the main memory

de H: the number of bytes of data to write

fg H: the data to write first (de H bytes)

Before doing this operation that writing data with protection bit, password check must be done

After command execution, CRT-310 returns response with 9000H Successful or sw1+sw2 (Fail) as

the result.

CRT-310 reads data first from the main memory, and it is compared with the value that it was received.

When this is wrong, writing operation isn't begun. The protection only available when the data of written and data in the card is the same.

Notes: Last three units (abc=0x03FD, 0x03FE, 0x03FF) of SLE=4428 is password verification error counter, password1 and password2. Please don't write any data to these units, otherwise the card will be scraped.

3.10.17 Verification of password present to SLE4428

Negative response

"N"	53H	34H	e0	e1
-----	-----	-----	----	----

Notes: ef H: the data to compare (2bytes)

Before changing data, Password must be checked properly with SLE4428.

Because this function should be made effective, the issue of the next command is necessary.

Ex). "CR4"+ 0020000002xxxx (xxxx: security code 2bytes)

The presented data are compared with internal data in SLE4428 card itself.

User should know the password of card if they want to modify data in SLE4442, Error-Counter can be reduce from 7 or less. When error-counter reduces to zero, the card will lock and scrap.

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	52/77

3.10.18 Modify Password of SLE4428

HOST Command:

"C" 53H 34H 00H 24H 00H 00H 02H	efH
---------------------------------	-----

Positive Response:

"P"	53H	34H	st0	st1	data
-----	-----	-----	-----	-----	------

Negative Response:

"N"	53H	34H	e0	e1
-----	-----	-----	----	----

Modify password of SLE4428

Notes ef: Password data that need to change(2 byte)

data: =9000H Modify successfully

data: =6F00H Fail to modify

Modify SLE4428 password as 55H, AAH

The command format is

SPECIFICATION
Communication

nm	unica	ation	
Pro	otoco	l	

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	53/77

3.11 I2C Memory Card Control Command

3.11.1 Activate I2C memory card

Command

"C"	54H	30H	Wrd	Vcc	

Positive response

"P" 54H	30H	st0	st1	Sti
---------	-----	-----	-----	-----

Negative response

"N"	54H	30H	e0	e1
-----	-----	-----	----	----

To activate (24C01, 24C02, 24C04, 24C08, 24C16, 24C32, 24C64, 24C128, 24C256) card

CRT-310 supplies a power supply (Vcc), Clock (CLK), Reset (R87).

Including:

Wrd set I2C type

Wrd =30 H To activate(24C01,24C02,24C04,24C08,24C 24C32,24064,24C128,24C256) card

Vcc choose voltage to card

Vcc=30H 5V

Vcc=31H 3V

Sti return I2C card type when operation successive

Sti =31 H To activate 24C01card

Sti =32 H To activate 24C02 card

To activate 24C04 card Sti =33 H

To activate 24008 card Sti =34 H

Sti =35 H To activate 24C16 card

Sti =36 H To activate 24C32 card

To activate 24C64 card Sti =37 H

Sti =38 H To activate 24C128_card

Sti =39 H To activate 24C256 card

Vcc is optional parameter, no Set parameter in command is equal to Set=30H

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	54/77

3.11.2 Deactivate I2C memory card

Command

"C"	54H	31H

Positive response

I	"P"	54H	31H	st0	st1
ı					

Negative response

"N"	54H	31H	e0	e1	_
	_	-		_	

CRT-310 stops supplying a power supply (Vcc), Clock (CLK), Reset (RST).

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	55/77

3.11.3 Inquire Status of I2C memory card

Command

"C" 54H 32H

Positive response

"P" 54H 32H st0 st1	Sti
---------------------	-----

Negative response

"N"	54H	32H	e0	e1
-----	-----	-----	----	----

This command is used to inquire status of I2C card and return status by Sti.

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	56/77

3.11.4 I2C Control

These functions are specified by a command data form like C-APDU which format is based on T=0 standard

In this case, CRT-310 recognizes the meaning of the command data, and execute the treatment related to the card by controlling hardware.

After the command was executed properly, CRT-310 returns a positive response with response data 9000H like from the IC card. When an error occurs during the communication with I2C, CRT-310 returns a positive response with status information in response data "sw1+sw2" which is base on ISO/IEC 7816-3

SO/IEC 7816-3				
	Sw1	Sw2	Specification	
	90H	00H	Success	
	6FH	00H	Fail	
	6BH	00H	Address overflow	
	67H	00H	Operation length overflow	
Write/Read I2	2C and A	Address	scope is showed below	v:\
	Card_ty	ре	ab,cd	
	24C01		0000H 807FH	
	24C02	<	0000H ~ 00FFH	
	24C04		0000H - 01FEN	
	24C08/		0000H~03FFH	>
	24016		0000H ~ 07FPH	`
	24C32		0000H OFFFH	
	24064		0000H~ 1FFFH	
	24C128		0000H~3FFFH	
	24C256		0000H ~ 7FFFH	

Communication **Protocol**

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	57/77

3.11.5 Read data from I2C

Command

"C"	54H	33H	00H	В0Н	abH	cdH	efH
-----	-----	-----	-----	-----	-----	-----	-----

Positive response

"P"	54H	33H	st0	st1	Data
-----	-----	-----	-----	-----	------

Negative response

	"N"	54H	33H	e0	e1
--	-----	-----	-----	----	----

Value:

ab H: The upper address of head address which begins to read data

cd H: The lower address of head address which begins to read data

ef H: The number of bytes of data to read

CRT-310 read efH length and return to HOST according to address specified by abH, cdH. The length

of efH can not be surpassing the length of I2C address up limit.

When the following command is transmitted, data can be read from the I2C memory card.

Ex). "CU3"+00B000000

This command is recognized as follows.

ab H: The upper address of head address which begins to write data

cd H: The lower address of head address which begins to write data

ef H: The number of bytes of data to write

gh H: the data to write first (the head data of the data on ef H bytes)

CRT-310 read efH length and return to HOST according to address specified by abH, cdH. The Length of efH can not be surpassing the length of I2C address up limit.

The example which data on 8bytes are written into I2C

ex). "CU3"+ 00D0000008 + Write Data (8bytes)

After command execution, CRT-310 returns response with 9000H or sw1+sw2 as the result.

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	58/77

3.12 Contactless IC card Operation

3.12.1 Activated contactless IC card

Command

1			
	"C"	60H	30H Set1 Set2
			-

(1) Mifare One Card Positive Response

"P"	60H	30H	st0	st1	Rtype ATQA UID_len UID_data S	SAK :

Mifare One Dard Negative Response

"N"	60H	30H	e1	e0 : Rtype : ATQA : UID_len : UID_data : S	ΑK

Activate RFID card

CRT-310 support activated IEC/ISQ14443 Type A and IEC/ISO 14443 Type B

The process is show as below:

- 1).Mifare one card:
- Request A (REQ A) / Answer Request A (ATQ A).

ATS

- 2. Anti-collision
- 3. Select (SEL) / Unique Identifier (UID) & Select Acknowledge (SAK)

When Mifare card successfully activate, CRT-310return:

ATQA(2 byte), UID_data (4—10 byte) and SAK(1 byte).

- 2).ISO/IEC 14443 Type A:
- 1. Request A(REQ A) / Answer Request A (ATQ A).
- 2. Anti-collision
- 3. Select (SEL) / Unique Identifier (UID) & Select Acknowledge (SAK)
- 4. Request for answer to select (RATS) / Answer to

Communication Protocol

Model No.	CRT-310	
Date	2010/6/29	
Ver.	4.0	
Page	59/77	

Select (ATS)

Protocol and parameter selection request (PPSR) / PPS start (PPSS)

When ISO/IEC 14443 Type A card successfully activated, CRT-310 return:

Mifare card return value increase (ATS (1-254 byte) and protocol parameter (1 byte))

3).ISO/IEC 14443 Type B:

1. Request B(REQB) / Answer Request B (ATQB).

2. Attribute (A TTRIB) / Answer to ATTRIB

When ISO/IEC 14443 Type B card successfully activated, CRT-310 return ATQB 12 byte (including following information):

50H, PUPI (4 byte), App. data (4 byte), Protocol info (3 byte)

Notes:

Set1, Set2 set sequence of operation for different type of protocol

Valid value: 41H ('A'= Type A), 42H('B'= Type B), 30H('0'= Do not use)

Ex1: Set1= 'A', Set2 = 'B' (default)

Activate sequence: Type A protocol (first sequence), Type B protocol (sedond sequence)

Ex2: Set1= 'B', Set2 = 'A'

Activate sequence: Type B protocol (first sequence), Type A protocol (second sequence)

Ex3: Set1= 'A', Set2 = ' \emptyset '

Activate sequence: Type A protocol (first sequence), Type B protocol (Deactivated)

Ex4: Set1= 'B', Set2= '0

Activate sequence. Type & protocol (first sequence), Type A protocol (Deactivated)

Rtype: Protocol

= 41H ('A')\ In line with ISQNEC 14443 Type A protocol

= 42H ('B') \Inline with \SO/KEC 14443 Type B protocol

= 4DH ('M') In line with hilps Mifare one card protocol

When Rtype=4DH ('M')

ATQA= 0044H Mifare Ultralight Card

ATQA= 0004H Mifare S50 1K Card

ATQA= 0002H Mifare S70 4K Card

Mifare one, ISO/IEC 14443 Type A return UID (The length of UID_data)

UID_len=4 the length of UID_data is 4 byte

UID_len=7 the length of UID_data is 7 byte

UID_len=10 the length of UID_data is10 byte

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	60/77

3.12.2 Deactivate RFID card

Command

"C" 60H 31H

Positive response

"P" 60H 31H st0 st1

Negative response

"N" 60H 31H e0 e1

Deactivate RFID card and Output signal to antenna is closed.

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	61/77

3.12.4 Mifare card control

These functions are specified by a command data form like C-APDU which format is based on T=0 standard

In this case, CRT-310 recognizes the meaning of the command data, and executes the treatment related to the card by controlling hardware.

After the command was executed properly, CRT-310 returns a positive response with response data 9000H like from the IC card. When an error occurs during the communication with Mifare 1 card CRT-310 returns a positive response with status information in response data "sw1+sw2" which is base on ISO/IEC 7816-3.

Download key to ort 1-3 to alka very the key directly

ks(1byte): key select (Key A=00H, Key B=01H)

sn(1byte): sector number (S50 card sn=00H-0FH, S70 card sn=00H-27H)

lc(1byte): password length lc=06H

pdata(6 byte): password data

rdata(2 byte): return data(positive response with data 9000H, and negtive response with

" sw1+sw2")

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	62/77

(Key/A=00H

(sn≠00H\0FH)

KeVB/=QTH)

3.12.6 Verify key from EEPROM

Command

"C"	60H	33H	00H	21H	ks	sn
-----	-----	-----	-----	-----	----	----

Positive response

Negative response

	"N"	60H	33H	e0	e1	
--	-----	-----	-----	----	----	--

Read key from EEPROM of RFID module and verify the sector key

Download key via command mentioned in 9.13.4.4

EEPROM can preserve 32 groups of key data

ks(1byte): key type select

sn(1byte): sector number

rdata(2 byte): return data (positive response with 9000H

	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	63/77

3.12.7 Modify sector key (KEY A)

Command

"C"	60H	33H	00H	D5H	00H	sn	lc	pdata

Positive response

Negative response

"N"	60H	33H	e0	e1

Modify sector key (key A)

This command only can modify KEY A, and modify KEY B as "0xFF, 0xFF, 0xF

Use block command to modify Key A, Key B control word

sn(1byte): sector number (S50 card sn=00H-QFH, S79 card sn=00H-27H)

lc(1byte): password length lc=06H

pdata: password data 6 byte.

rdata(2 byte): return data

(Positive response with data 9000H, and negatives response with "sw1+sw2")

Communication **Protocol**

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	64/77

<u>K</u>ey B≥0

3.12.8 Download password to EEPROM

Command

"C"	60H	33H	00H	D0H	ks	sn	lc	pdata
-----	-----	-----	-----	-----	----	----	----	-------

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N"	60H	33H	e0	e1
-----	-----	-----	----	----

Read key from EEPROM of RFID module and verify the sector key

EEPROM can preserve 32 groups of key data

key select (Key A=00H, ks(1byte):

(sn=00H-0FH) sn (1byte): sector number

Ic(1byte): password length

pdata(6 byte): password data rdata(2 byte): return data

Positive response

€w1+sw2=9000H.

Ic=06H

Negative response sw2=6F00I

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	65/77

3.12.9 Read sector data

Command

"C"	60H	33H	00H	ВОН	sn	bn	le
-----	-----	-----	-----	-----	----	----	----

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N"	60H	33H	e0	e1
-----	-----	-----	----	----

Read block and sequence blocks from RFID card

sn(1 byte): sector number

bn(1 byte): block number

le(1 byte): block number (le=01H read one block, le=03H read three blocks)

rdata(2 byte):return data

(Positive response with data 9000H, and negative response with "sw1+sw2")

Notes:

1.Ultralight Card only have one block in each sector, every block have 4 byte data. S50,S70 have16 byte data in each block.

2. Ultralight Card, Mifare 1k (\$50), Mifare 4k (\$70) gard range of capacity is shown as below:

Ultralight Card: sn=00H-0FH, bn=00H-le=01H-0FH

Mifare 1k (S50): sn=00H-0FH,bn=00H-03H,Ie=01H=04H

Mifare 4k (\$70) sn=00H-20H, bn=00H-03H, le=01H-04H

sn=21H-27H, on=00H-0FH, le=01H-10H (S70) eard the last 8 sector have 16 blocks each)

SPECIFICATION | Model No. | Date | Communication | Ver. |

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	66/77

3.12.10 Write sector data

Command

"C" 60H 33H 00H D1H sn bn lc wda

Protocol

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N"	60H	33H	e0	e1
-----	-----	-----	----	----

Read block and sequence blocks from RFID card

sn(1 byte): sector number

bn(1 byte): block number

le(1 byte): block number

wdata: block to write (n byte)

rdata(2 byte): return data

(Positive response with data 9000H, and negative response with "sw1+sw2"

Notes:

1. Ultralight Card only have one block in each sector, every block have 4 byte data. S50,S70 have16 byte data in each block

2. Ultralight Card, Mifare 1k(\$50), Wifare 1k(\$70) card card range of capacity is shown as below:

Ultralight Card: \$\(\frac{1}{2}\)(00H-0\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(00H-0\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(00H-0\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(00H-0\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(00H-0\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}

Mifare 1k (S50) sn=00H-0FH, bn=00H-03H, c=01H-03H

Mifare 4k (S/0): sn=00H-20H, bn=00H-03H,lc=01H-03H

\\ sn=21H-27H, bn=90H-0FH, lc=01H-0FH

\$70 card the last 8 sector has 16 blocks each)

3. S50, S70 card last block of each sector is control sector to preserve Key A, read/write control words, Key B.

Cautions: Do note write last block and CRT-310 also will prohibit writing last block.

CDECIFICATION	Model No
SPECIFICATION	Date
Communication	Ver.

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	67/77

3.12.11 Initialization

Command

Protocol

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N"	60H	33H	e0	e1	_

Initialization operation to RFID card

sn(1 byte): sector number

bn(1 byte): block number

Ic(1byte): length of initialized data Ic=04H

wdata: data of initialize (4 byte)

rdata(2 byte): return data

(Positive response with data 9000H, and negative response with "sw1+sw2"

Notes: Mifare 1k (S50), Mifare 4k (S70) card operation sector (Sector can not be out of range and last block can not be operated)

Mifare 1k (S50): sn=00H-07H, bn=00H-03H

Mifare 4k (S70): sn=00H-20H, bn=00H-03H,

80=20H-27H, 80=00H-0EH

(S70 card the last & sector have 16 blocks each)

Communication Protocol

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	68/77

3.12.12 Read value

Command

"C" 60H 33H 00H B1H sn b

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N" 60H 33H e0 e1

Read value operations to RFID card

sn(1 byte): sector number

bn(1 byte): block number

rdata(2 byte): return data

(Positive response with data 9000H, and negatives response with "swx+sw2"

Notes: Mifare 1k (S50), Mifare 4k (S70) card operation sector

(Sector can not be out of range and last block can not be operated)

Mifare 1k (S50): sn=00H-0FH, bq=00H-03H

Mifare 4k (\$70): sn=00H-2QH, bn=00H-03H,

sn≠20H-27H, bn=00H-0€H,

(S70 card last 8 sector have) 6 blocks

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	69/77

3.12.13 Increment

Command

"C"	60H	33H	00H	D3	sn	bn	lc	wdata
				Н				

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N"	60H	33H	e0	e1
-----	-----	-----	----	----

Increment operation to RFID card

sn(1 byte): sector number

bn(1 byte): block number
lc(1byte): increment data length lc=04H

wdata: increment data (4 byte)

rdata(2 byte): return data

(Positive response with data 9000 H and negative response with "sw1 + sw2"

Notes: Mifare 1k (S50), Mifare 4k (S70) card operation sector

(Sector can not be out of range and last block can not be operated)

Mifare 1k (S50): sn≠00H-0FH

bn**≥**00⊬∕03Pk

Mifare 4k (S70): sn=00H-20H,

、bn=00H,03H,`

sn=20H-27₩;

bn=00\H-0\€\+,

(SZO card last 8 sector have 16 blocks)

SPECIFICATION	Model N
SPECIFICATION	Date
Communication	Ver.

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	70/77

3.12.14 Decrement

Command

Protocol

Positive response

"P"	60H	33H	st0	st1	rdata
-----	-----	-----	-----	-----	-------

Negative response

"N" 60H 33H	e0 e1
-------------	-------

Decrement operation to RFID sector

sn(1 byte): sector number bn(1 byte): block number

lc(1byte): Decrement data length lc=04H

wdata: Decrement data(4 byte)

rdata(2 byte): return data

(Positive response with data 9000 H and negative response with "sw1 + sw2"

Notes: Mifare 1k (S50), Mifare 4k (S70) card operation sector

(Sector can not be out of range and last block can not be operated

Mifare 1k (S50): sn=00H-0FH, bn=00H-03H,

Mifare 4k (S70): sn=00H-20H, bn=00H-03H,

S11=20H-2XH, D11=00H-0EF

(S70 card last 8 sector have 16 blocks)

SPECIFICATION	Model No.	
SPECIFICATION	Date	
Communication	Ver.	
Protocol	Page	

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	71/77

3.12.15 Type A RFID card communication

Command

"C"	60H	34H	C-APDU

Positive response

"P" 60H 3	34H st0	st1	R-APDU
-----------	---------	-----	--------

Negative response

"N"	60H	34H	e0	e1
-----	-----	-----	----	----

This exchanges data between RFID card by protocol RFID Type A T=CL according to ISO/IEC 14443-4

Notes: The max. Length of C-APDU is 261 byte, the max. Length of R-APDU is 258 byte.

3.12.16 Type B RFID card communication

Command

"C'	60H	35H	C-APDU
-----	-----	-----	--------

Positive response

"P"	60H	35H	st0	st1	R-APBU
-----	-----	-----	-----	-----	--------

Negative response

"N" 60H 35H e0					
	"N"	60H	35H	e0	él

This exchanges data between RFND card by protocol RFND Type B T=CL according to ISO/IEC 14443-4

Notes: The max. Length of C-APDU is 261 byte, the max. Length of R-APDU is 258 byte.

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	72/77

3.13 Shutter related operation **3.13.1** LED setting

HOST Command:

"C"	80H	Pm	LED

Positive Return:

"P" 80H Pm st0 st1

Negative Return:

This is to control the lights (red and green) in entry to on or off

PM=31H: Red light control

PM=32H: Green light control

LED=30H: On

LED=31H: Off

LED=32H: glitter (cycle is 2sec. on for sec., off for 1sec.)

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	73/77

3.14 Easy-damage Part Counter

3.14.1 Read Counter

Command

	"C"	A1H	30H	Sc
--	-----	-----	-----	----

Positive response

"P"	A1H	30H	st0	st1	ICRW_CNT(8 byte)

Negative response

Read easy-damage part counter

Sc=30H Shutter open times

Sc=31H Magnetic head pass times

Sc=32H IC contact use times

ICRW_CNT (8 Byte), the time is presented by ASCII.

EX). 1000. ICRW_CNT="30 30,30 30 31 30,30 36

3.14.2 Initialization Counter

Read easy-damage part counter

Sc=30H Shutter open times

Sc=31H Magnetic head pass times

Sc=32H IC contact use times

ICRW_CNT (8 Byte), the time is presented by ASCII

EX). 1000. ICRW_CNT="30 30 30 30 31 30 30 30"

SPECIFICATION	Model No.	CRT-310	
SPECIFICATION	Date	2010/6/29	
Communication	Ver.	4.0	
Protocol	Page	74/77	

3.15 Read Serial Number of CRT-310

3.15.1 Read serial number

Command

"C"	A2H	30H
-----	-----	-----

Positive response

"P"	A2H	30H	st0	st1	ICRW_SN
-----	-----	-----	-----	-----	---------

SPECIFICATION Model No. CRT-310 Date 2010/6/29 Communication Protocol Ver. 4.0 Page 75/77

3.16 Read CRT-310 configuration

Command

"C" A3H 30H

Positive response

"P" A3H 30H st0 st1 ICRW_Config

Negative response

"N" A3H 30H e0 e1

CRT-310 configuration specification: ICRW Config: Read machine configuration information

Address	Name	Value	Description
00H	S1		CRT Reader Type option
		"1"	S1 ="1"
01H~03H	S2/S3		User Code option
	/S4	"V40"	CRT version
	(3		
	Byte)		
04H	S5		Card r/w type option
		"1"	ic card v/w
		"C"	RAND card r/w
		"M"	Mag card r/w
		"P"	Mag card r/w
		/E	C + RFID card r/w
		⟨"F" ⟨	Mag 4 RRID card r/w
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mag + IC cand //w
			Mag + C + RFID card r/w
05H	,se		Interface type option
)"R"	RS-232Interface type
		\ <u>`</u> \"\"\	USB Interface type
06H	\\S7		Mag card write type
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mag card read only
		\\\L"\\	Low-Co mag card write
		"卅"	High-Co mag card write
07H	S8		Shutter type option
		"0"	Not Shutter
		"D"	"D" type Shutter
		"E"	"E" type Shutter
		"F"	"F" type Shutter
08H	S9		SAM option
		"0"	Not SAM
		"1"	SAM 1
		"2"	SAM 2
		"3"	SAM 3
		"4"	SAM 4
		"5"	SAM 5

CDECIFICATION	Model No.	CRT-310
SPECIFICATION	Date	2010/6/29
Communication	Ver.	4.0
Protocol	Page	76/77

3.17 Read CRT-310 version information

HOST Command

"C"	A4H	30H
-----	-----	-----

Positive response

"P"	A4H	30H	st0	st1	Rev
-----	-----	-----	-----	-----	-----

Negative response

"N"	A4H	30H	e0	e1
-----	-----	-----	----	----

Read CRT-310 version information.

CDECIFICATION	Model No.
SPECIFICATION	Date
Communication	Ver.
Protocol	Page

Model No.	CRT-310
Date	2010/6/29
Ver.	4.0
Page	77/77

3.18 Capture Card Counter Control

3.18.1 Read Capture Card counter

Command

"C" A5H 30H	1
-------------	---

Positive response

"P" A5H 30H st0 st1 Count(2 byte)

Negative response

"N" A5H 30H e0 e1	"N"	A5H	30H	e0	e1
-------------------	-----	-----	-----	----	----

After reset capture card counter with initialization command, every time capture one card, counter plus

one

Count= "00" ~ "99"

Counter overflow will return machine status (e1,e0= Counter overflow error)

3.18.2 Set initial value of card counter

Command

	"C"	A5H	31H	Count(2 byte)
--	-----	-----	-----	---------------

Positive response

Set initial value of capture sard counter.

Count= "00" ~ "99"

Count value range (0-99)

Maximum is 99 pieces of card