Computability via Recursive Functions

Justin Pumford

March 2020

1 Effective Calcubility and Computability

2 Primitive Recursive Functions

2.1 Functions

For this paper, \mathbb{N} refers to the set $\{0, 1, 2, 3, ...\}$

Definition. The following functions from $\mathbb{N} \oplus ... \oplus \mathbb{N}$ to \mathbb{N} are primitive recursive functions:

1. The unary constant function c:

$$c(x) = 0$$

2. The unary successor function s:

$$s(x) = x + 1$$

3. The n-ary projection function p:

$$1 \le i \le n$$
$$p_i(x_1, ..., x_n) = x_i$$

4. Function composition

Let f be an n-ary primitive recursive function and $g_1, g_2, ..., g_n$ all be m-ary primitive recursive functions. Then the m-ary composition h of f and $g_1, g_2, ..., g_n$ given by

$$h(x_1, x_2, ..., x_m) = f(g_1(x_1, x_2, ..., x_m), ..., g_n(x_1, x_2, ..., x_m))$$

is a primitive recursive function

5. Primitive recursion Let g be an n-ary primitive recursive function and f be an (n+2)-ary primitive recursive function. Then the (n+1)-ary primitive recursion h of f and g given by

$$h(0, x_1, ..., x_n) = g(x_1, ..., x_n)$$

$$h(s(x), x_1, ..., x_n) = f(x, h(x, x_1, ..., x_n), x_1, ..., x_n)$$

is a primitive recursive function

3 The Ackermann Function

Definition (The Ackermann Function). Let $n, m \in \mathbb{N}$. Then define A(n, m) as follows:

$$A(n,m) = \begin{cases} m+1 & n=0\\ A(n-1,1) & n>0 \land m=0\\ A(n-1,A(n,m-1)) & n>0 \land m>0 \end{cases}$$

Theorem 1. For any $n, m \in \mathbb{N}$, $A(n, m) \in \mathbb{N}$

Proof. We proceed by double induction.

Clearly $A(0,k) \in \mathbb{N}$ for every $k \in \mathbb{N}$ because $k+1 \in \mathbb{N}$. Now assume $A(k,m) \in \mathbb{N}$ for some $k \in \mathbb{N}$ for every $m \in \mathbb{N}$. Then $A(k+1,0) = A(k+1) = A(k,1) = A(k,1) \in \mathbb{N}$. Now assume $A(k+1,j) \in \mathbb{N}$ for some $j \in \mathbb{N}$. Then A(k+1,j+1) = A(k+1-1,A(k+1,j+1-1)) = A(k,A(k+1,j)). By our second hypothesis $A(k+1,j) \in \mathbb{N}$, so by our first hypothesis $A(k,A(k+1,j)) \in \mathbb{N}$. Therefore $A(k+1,j+1) \in \mathbb{N}$. Then $A(k+1,m) \in \mathbb{N}$ for every $m \in \mathbb{N}$, so $A(n,m) \in \mathbb{N}$ for all choices of $n,m \in \mathbb{N}$

Theorem 2. A is a total function

Proof. By Theorem 1, all n, m in the domain of A have an image $A(n, m) \in \mathbb{N}$. Therefore A is a total function.

Theorem 3. For any $x \in \mathbb{N}$, A(1,x) = x + 2

Proof. We proceed by induction.

$$A(1,0) = A(1-1,1) = A(0,1) = 2 = 0+2$$
. Now assume $A(1,k) = k+2$ for some $k \in \mathbb{N}$. Then $A(1,k+1) = A(1-1,A(1,k+1-1)) = A(0,A(1,k)) = A(0,k+2) = k+3 = (k+1)+2$.

Lemma 1. For every $n, m \in \mathbb{N}$, m < A(n, m)

Proof. We proceed by induction. Let $m \in \mathbb{N}$. A(0,m) = m+1 > m, so m < A(0,m). Now assume m < A(k,m) for some $k \in \mathbb{N}$. Then A(k+1,m) = N of done with this one yet

Theorem 4. For any $n, m, s \in \mathbb{N}$ where m < s, A(n, m) < A(n, s)

Proof. Let $m, s, n \in \mathbb{N}$ Since m < s and $m, s \in \mathbb{N}$, we have a d = s - m where $d \in \mathbb{Z}^+$. We will proceed by induction to first show A(n, m) < A(n, m + 1). A(0, m) = m + 1 < m + 1 + 1 = A(0, m + 1). Assume A(k, m) < A(k, m + 1) for some $k \in \mathbb{N}$. By Lemma 1, A(k+1, m) < A(k, A(k+1, m)) = A(k+1, m+1). So A(k+1, m) < A(k+1, m+1). Therefore A(n, m) < A(n, m + 1).

Now we use this result to construct a chain of d inequalities A(n,m) < A(n,m+1) < A(n,m+1+1) < ... < A(n,m+1+1+...+1) = A(n,m+d) = A(n,s).

Theorem 5. For any $n, m, s \in \mathbb{N}$ where n < s, A(n, m) < A(s, m)

Proof.

Theorem 6. For any $n, m \in \mathbb{N}$, $A(1, m) \leq A(n, m + 1)$

Proof. We proceed by induction. A(1,m)=m+2 by Theorem 3. m+2=A(0,m+1). Now assume $A(1,m) \leq A(k,m+1)$. Then since A(k,m+1) < A(k+1,m+1) by Theorem 5, $A(1,m) \leq A(k,m+1) < A(k+1,m+1)$, so A(1,m) < A(k+1,m+1).

Theorem 7. For any $n, m \in \mathbb{N}$, $A(n, m + 1) \leq A(n + 1, m)$

Proof. We proceed by induction. A(n, 0+1) = A(n, 1) = A(n+1, 0) by the definition of the Ackermann function. Now assume $A(n, k+1) \leq A(n+1, k)$ for some $k \in \mathbb{N}$. Note that k+2 = A(1,k) by Theorem 3. Then A(n, k+1+1) = A(n, k+2) = A(n, A(1,k)). By Theorem 6, $A(1,k) \leq A(n, k+1)$. By Theorem 4, $A(n, A(1,k)) \leq A(n, A(n,k+1))$. By our inductive hypothesis and Theorem 4, $A(n, A(n, k+1)) \leq A(n, A(n+1,k))$. And finally by the definition of the Ackermann function, A(n, A(n+1,k)) = A(n+1,k+1). So $A(n, k+1+1) \leq A(n+1, k+1)$.

Theorem 8. For any $n, m, s \in \mathbb{N}$, A(n, A(s, m)) < A(n + s + 2, m)

Proof. A(n, A(s, m)) < A(n+s, A(s, m)) by Theorem 5. A(n+s, A(s, m)) < A(n+s, A(s+n+1, m)) by Theorem 4 since, by Theorem 5, A(s, m) < A(s+n+1, m). A(n+s, A(s+n+1, m)) = A(n+s, A(n+s+1, m)) = A(n+s+1, m+1) by the definition of the Ackermann function. Finally, $A(n+s+1, m+1) \le A(n+s+1+1, m) = A(n+s+2, m)$ by Theorem 7.

Definition. Let P be a set all primitive recursive functions f so that if $f \in P$, there is a $t \in \mathbb{N}$ such that for any $x_1, ..., x_n \in \mathbb{N}$, $f(x_1, ..., x_n) < A(t, max\{x_1, ..., x_n\})$.

Theorem 9. c(x), s(x), $p_i(x_1, x_2, ..., x_n) \in P$

Proof. Let $m = max\{x_1, ..., x_n\}$. Then

$$c(x) = 0 < x + 1 = A(0, x)$$

$$s(x) = x + 1 < x + 2 = A(1, x)$$

$$p_i(x_1, x_2, ..., x_n) = x_i \le m < m + 1 = A(0, m)$$

Theorem 10. P is closed under composition

Proof. Let $f, g_1, g_2, ..., g_k \in P$, where f is k-ary and each g_i is j-ary. Let $x_1, x_2, ..., x_j \in \mathbb{N}$. Let $m = max\{x_1, x_2, ..., x_j\}$. Let h be the j-ary primitive recursive function that results from function composition of f with $g_1, g_2, ..., g_k$. Let g_{max} be the g_i giving the maximum value in $max\{g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)\}$. Let $m_g = g_{max}(x_1, ..., x_j)$ Since $g_{max} \in P$, there exists some $t_g \in \mathbb{N}$ so that $m_g < A(t_g, m)$. Similarly since $f \in P$, there exists some $t_f \in \mathbb{N}$ so that $h(x_1, ..., x_j) = f(g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)) < A(t_f, m_g)$. But since $m_g < A(t_g, m)$, by Theorem ?? $A(t_f, m_g) < A(t_f, A(t_g, m))$. By Theorem 8, $A(t_f, A(t_g, m)) < A(t_f + t_g + 2, m)$. Let $t = t_f + t_g + 2 \in \mathbb{N}$. Then $h(x_1, ..., x_j) < A(t, m)$. So $h \in P$.

Lemma 2. Let h be the primitive recursion of two functions $f, g \in P$. Let $x_1, ..., x_n \in \mathbb{N}$. Let $m = max\{x_1, ..., x_n\}$. Then there exists a $t \in \mathbb{N}$ such that for every $x \in \mathbb{N}h(x, x_1, ..., x_n) < A(t, x + m)$.

Proof. Since $f,g \in P$, there exist t_f and t_g so that for every $x \in \mathbb{N}$, $f(x, h(x, x_1, ..., x_n), x_1, ..., x_n) < A(t_f, max\{x, h(x, x_1, ..., x_n), x_1, ..., x_n\})$ and $g(x_1, ..., x_n) < A(t_g, max\{x_1, ..., x_n\})$. Choose t = We proceed by induction. oh man I have no idea where to continue on this one $h(0, x_1, ..., x_n) = g(x_1, ..., x_n) < \square$

Theorem 11. P is closed under primitive recursion

Proof. Let $f,g \in P$ and h be the primitive recursion of f and g. Let $x, x_1, ..., x_n \in \mathbb{N}$. Let $m = max\{x_1, ..., x_n\}$. Then by Lemma 2, there is a $t \in \mathbb{N}$ so that $h(x, x_1, ..., x_n) < A(t, x + m)$. Let $m' = max\{x, x_1, ..., x_n\} = max\{x, m\}$. Since $x + m \le m'$, $A(t, x + m) \le A(t, 2m')$ by Lemma ??. Since 2m' < 2m' + 3, A(t, 2m') < A(t, 2m' + 3) also by Lemma ??.

By Lemma ?, 2m' + 3 = A(2, m'), so A(t, 2m' + 3) = A(t, A(2, m')). By Theorem 8, A(t, A(2, m')) = A(t+2+2, m') = A(t+4, m'). So $h(x, x_1, ..., x_n) < A(t+4, m')$.

Therefore $h \in P$.

Theorem 12. P is precisely the primitive recursive functions

Proof. All $f \in P$ are primitive recursive by the definition of P. So it remains to show all primitive recursive functions are in P. Let f be a primitive recursive function. Then f can be created by applying function composition and primitive recursion to the constant, successor, and projection functions. The constant, successor, and projection functions are all in P, and P is closed under function composition and primitive recursion. Therefore $f \in P$. \square

Theorem 13. A(m,n) is not a primitive recursive function

Proof. Suppose that A is a primitive recursive function. Then $A \in P$. Then there exists a $t \in \mathbb{N}$ so that for any $m, n \in \mathbb{N}$, $A(m, n) < A(t, max\{m, n\})$. Set m = n = t. Then $max\{m, n\} = m = n = t$. So A(m, n) = A(t, t) < A(t, t) which is a contradition. Therefore A is not primitive recursive. \square

4 General Recursive Functions

4.1 Partial Functions

4.2 Definition of General Recursive Functions

Definition (Minimization). Let $f: \mathbb{N}^n \to \mathbb{N}$ be an n-ary partial function. Then the minimization operator μ creates a (n-1)-ary function $\mu(f)$ given by

$$\mu(f)(x_1,...,x_n) = \begin{cases} z & f(z,x_1,...,x_n) = 0 \land f(i,x_1,...,x_n) > 0 \forall i \in \mathbb{N} \cap [0,z) \\ undefined & f(i,x_1,...,x_n) \neq 0 \forall i \in \mathbb{N} \end{cases}$$

Definition. A function f is a general recursive function if it is either:

- 1. A primitive recursive function
- $2.\ A\ general\ recursive\ function\ under\ the\ minimization\ operator$