This document contains my notes on Steve Brunton's Control Bootcamp video series. Each section corresponds to the video of the same title.

Contents

1	Overview	1
2	Linear Systems	2
3	Stability and Eigenvalues	4
4	Linearizing Around a Fixed Point	5

1 Overview

- Passive controls attempt to control a system passively, i.e. they are built into the system and don't vary based on observations of the system.
- Active controls attempt to control a system actively, i.e. they change their behaviour based on observations of the system.
- Open-loop controllers don't observe the output of the system their inputs are predetermined. One downside of this approach is that you may unnecessarily input energy into the system when it already has the desired output.
- Closed-loop controllers observe the output of the system to determine their inputs. They have several benefits over open-loop controllers:
 - They handle uncertainty in the system, e.g. if you don't always know how the system will respond, or if your model isn't completely accurate
 - They handle disturbances in the system, e.g. if someone pushes a self-balancing inverted pendulum. It may not be possible to account for these in the model.
 - They can be more energy efficient than open-loop controllers, i.e. they don't have the downside mentioned above.
- The mathematical model used in this course is a state-space based system of linear differential equations

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

where \mathbf{x} is the **state vector** — a vector containing all the system's values of interest — and $\dot{\mathbf{x}}$ are their rates of change at a time t.

• The solution to the above equation is

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

and the eigenvalues of A can be used to determine the stability of the system, e.g. if they all have negative real components the system is stable.

• Control is introduced to the system by modifying the equation to

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

where \mathbf{B} is a coefficient matrix and \mathbf{u} is the input to the system.

• If we make the input to the system

$$\mathbf{u} = -\mathbf{K}\mathbf{x}$$

then

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}\mathbf{x}$$
$$= (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}$$

and now it is the eigenvalues of $\mathbf{A} - \mathbf{B}\mathbf{K}$ that determine the stability of the system, i.e. we can make an unstable system stable by appropriate choice of inputs.

2 Linear Systems

• The solution to the linear system of differential equations

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

is

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0$$

where

$$e^{\mathbf{A}t} = \sum_{k=0}^{\infty} \frac{(\mathbf{A}t)^k}{k!}$$
$$= \mathbf{I} + \mathbf{A}t + \frac{\mathbf{A}^2t^2}{2!} + \frac{\mathbf{A}^3t^3}{3!} + \dots$$

• If a matrix **A** has eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\mathbf{k}_1, \ldots, \mathbf{k}_n$ then

$$AT = TD$$

or

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \mathbf{D}$$

where

$$\mathbf{T} = (\mathbf{k}_1 \quad \cdots \quad \mathbf{k}_n)$$

and

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

• Using the above gives

$$e^{\mathbf{A}t} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1}$$

which is simpler because $e^{\mathbf{D}t}$ is easy to calculate.

 \bullet If we define **z** to be **x** transformed to the eigenvector basis, i.e.

$$\mathbf{x} = \mathbf{T}\mathbf{z}$$

and

$$\dot{\mathbf{x}} = \mathbf{T}\dot{\mathbf{z}}$$

then

$$\begin{split} \mathbf{z} &= \mathbf{T}^{-1}\mathbf{x} \\ \dot{\mathbf{z}} &= \mathbf{T}^{-1}\dot{\mathbf{x}} \\ &= \mathbf{T}^{-1}\mathbf{A}\mathbf{x} \\ &= \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{z} \\ &= \mathbf{D}\mathbf{z} \end{split}$$

where \mathbf{D} is the diagonal matrix consisting of the eigenvalues of \mathbf{A} . The solution to this equation is

$$\mathbf{z}(t) = e^{\mathbf{D}t}\mathbf{z}_0$$

where

$$e^{\mathbf{D}t} = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n t} \end{pmatrix},$$

i.e. the equations are uncoupled such that

$$z_1(t) = z_{0,1}e^{\lambda_1 t}$$

$$\vdots$$

$$z_n(t) = z_{0,n} e^{\lambda_n t}.$$

• The equivalence between the original and eigenvector coordinates can be seen by manipulating the solution

$$\begin{split} \mathbf{x}(t) &= e^{\mathbf{A}t} \mathbf{x}_0 \\ &= \mathbf{T} e^{\mathbf{D}t} \mathbf{T}^{-1} \mathbf{x}_0 \\ &= \mathbf{T} e^{\mathbf{D}t} \mathbf{z}_0 \\ &= \mathbf{T} \mathbf{z}(t). \end{split}$$

3 Stability and Eigenvalues

• A system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ is stable if and only if all of the eigenvalues of \mathbf{A} have negative real parts. This is because the solution is of the form¹

$$\mathbf{x} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1}\mathbf{x}_0$$

where

$$e^{\mathbf{D}t} = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n t} \end{pmatrix}$$

and

$$e^{\lambda_1 t} = e^{(a+ib)t} = e^{at}e^{ibt}$$

which is only stable if a < 0.

- Sometimes you can make a system stable (i.e. make all the eigenvalues have negative real parts) via the control term **Bu**.
- In a real-world system, control signals will be sent and observations received in discrete steps rather than continuously. A variation of the equation that captures this is

$$\mathbf{x}_{k+1} = \tilde{\mathbf{A}}\mathbf{x}_k$$

where

$$\tilde{\mathbf{A}} = e^{\mathbf{A}\Delta t}$$
.

In other words,

$$\mathbf{x}_k = \tilde{\mathbf{A}}^k \mathbf{x}_0$$

$$= (\tilde{\mathbf{T}} \tilde{\mathbf{D}} \tilde{\mathbf{T}}^{-1})^k \mathbf{x}_0$$

$$= \tilde{\mathbf{T}} \tilde{\mathbf{D}}^k \tilde{\mathbf{T}}^{-1} \mathbf{x}_0$$

where

$$\tilde{\mathbf{D}}^k = \begin{pmatrix} \tilde{\lambda}_1^k & & 0 \\ & \ddots & \\ 0 & & \tilde{\lambda}_n^k \end{pmatrix}$$

¹See here for a proof of why $e^{\mathbf{A}t} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1}$.

so the discrete system is stable if the moduli of all the eigenvalues of $\tilde{\mathbf{A}}$ are less than or equal to 1.

• Note that the stability criteria of a discrete system (the moduli of all eigenvalues must be less than 1) differs from that of a continuous system (the real parts of all eigenvalues must be negative) because we're raising $\tilde{\mathbf{A}} = e^{\mathbf{A}\Delta t}$ to a power directly rather than exponentiating it so both the real and imaginary components of its eigenvalues contribute to the "radius"

$$\begin{split} \lambda_n^k &= (a+ib)^k \\ &= (\sqrt{a^2 + b^2} e^{i \arctan \frac{b}{a}})^k \\ &= \sqrt{a^2 + b^2}^k e^{ik \arctan \frac{b}{a}}. \end{split}$$

4 Linearizing Around a Fixed Point

• The **Jacobian matrix** of a vector-valued function of several variables $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is defined as

$$D\mathbf{f} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}.$$

• If \mathbf{x} is a point and $\Delta \mathbf{x}$ is a displacement, both in \mathbb{R}^n , the Jacobian matrix can be used to linearize \mathbf{f} around \mathbf{x}

$$\mathbf{f}(\mathbf{x} + \Delta \mathbf{x}) \approx \mathbf{f}(\mathbf{x}) + D\mathbf{f}|_{\mathbf{x}} \Delta \mathbf{x}.$$

- To convert a nonlinear system $\dot{\mathbf{x}} = f(\mathbf{x})$ to a linear system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$:
 - 1. Find fixed points $\overline{\mathbf{x}}$ such that $f(\overline{\mathbf{x}}) = \mathbf{0}$.
 - 2. Use the Jacobian matrix to linearize $f(\mathbf{x})$ about $\overline{\mathbf{x}}$, i.e.

$$\dot{\mathbf{x}} = f(\mathbf{x})$$

is approximated by

$$\begin{split} \dot{\mathbf{x}} &= f(\overline{\mathbf{x}}) + Df|_{\overline{\mathbf{x}}} \Delta \mathbf{x} \\ &= Df|_{\overline{\mathbf{x}}} \Delta \mathbf{x} \\ &= \mathbf{A} \Delta \mathbf{x} \end{split}$$

where $\mathbf{A} = Df|_{\overline{\mathbf{x}}}$. However this is only valid if all eigenvalues of \mathbf{A} have a nonzero real part.