A 1.29GHz 251.16fJ 6-bit Absolute-Value Detector

Dennis Zang
August Greer
Grant Roberts

Design Summary

- Circuit topology: (Multiplexors/Invertors) followed by a Carry-Propagate Comparator
- Circuit Style: all static CMOS
- ◆ C) WHY:
 - -use of carry-propagate as comparator reduces the total number of gates and transistors, making better use of area and using less power (compared to the normal comparator)
 - -carry-propagate comparator allows for regular design (repeated use of NAND gates)

Delay	Layout size	Energy	Verification
Sch. t _p = 772.95ps	X= 15.815μm, Y= 26.965μm	Sch. E = 187.22fJ	Func: Y
Lay. t _p = 749.95ps	A = 426.45μm ²	Lay. E = 251.16fJ	DRC: Y
Critical Input = X ₀	AR = 1.7	Lay. V _{DD} = 0.69V	LVS: Y

^{*(}assuming Vdd is fully optimized for a delay of ~775ps)

Critical Path Analysis

$$T_{crit} = T_{INV} + T_{MUX} + T_{OR} + 10T_{NAND}$$

ECE115C - Winter 2020

Design Optimization

- Gate level critical path:
 - -propagation from X₀ (if it changes) to C₅ (out)
 - -majority of delay come from the chain of NAND gates
- MOS detail of gates, sizing, and optimization strategy:
 - -mainly used standard cells from gsclib090
 - -optimization strategies:
 - -use of NANDs over NORs

(however, standard cells have same logical effort)

(lower TLH than THL, and less energy in testbench)

-buffering electrical fanout over last few gates

(experimented and found it best to size last 2 NANDs x2 and x4)

-note: if threshold were to change frequently, then power consumption would increase due to unconditional inversion of the threshold

Functionality Check

Functionality (testbench)

(T = 000000)

(delay = 418ns)

◆ Worst-Case Delays (V_{dd} = 1)

(X: 111111→000000) (T = 000000)

(delay = 458ns)

(Note: because of the use of NAND gates, TLH is less than THL)

Absolute-Value Detector Layout

Size: $X = 26.965 \mu m$

 $Y = 15.815 \mu m$

Area: 426.45μm²

Aspect Ratio: 1.7

Density: 60%

Discussion

Most Important Features of Our Design:

- Sizing of last few logic gates to better buffer the electrical fanout
- Highly regular use of NAND gates in comparator
- Minimal use of non-(invertor/NAND/NOR) logic gates to minimize number of transistors, power, and area in layout

Potential Improvements:

- Resizing gates
 (just halving the gate sizes cut down the energy by ~20fJ)
- Redo the layout of the comparator (much wasted space)
- Try to redesign the logic so that we can remove the invertors in the first stage
 (not much energy consumption since threshold has low switching frequency)
 (NOR-implemented comparator has higher energy consumption in current testbench)
 (would save some area for the layout by removing invertor logic gates)