

Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária

Ricardo de Aragão¹, Geizon R. de Santana¹, Clarissa E. F. F. da Costa¹, Marcus A. S. Cruz², Eduardo E. de Figueiredo³ & Vajapeyam S. Srinivasan⁴

RESUMO

A frequência de inundações tem crescido em diversas partes do Brasil e do mundo, como consequência de impactos antrópicos ou de mudanças climáticas. Para mitigar os efeitos das inundações, obras hidráulicas são projetadas com vazão de projeto que pode ser determinada através do emprego de estatística aplicada a séries históricas de vazão ou de precipitação, via equação de chuvas intensas (IDF). Para a determinação da IDF são utilizados dados pluviográficos ou dados pluviométricos diários desagregados. Dada à escassez, no Estado de Sergipe, de dados pluviográficos como também de equações IDF foram desenvolvidas, neste trabalho, as equações IDF para todo o Estado, utilizando-se dados de chuva diária de 48 postos, desagregados com base em fatores de proporcionalidade, além das distribuições de Weibull e Gumbel. Obtiveram-se os melhores resultados com a distribuição de Weibull. A espacialização dos parâmetros da função IDF evidenciou a grande variabilidade das precipitações no Estado de Sergipe.

Palavras-chave: enchentes, vazão de projeto, função IDF

Intense rainfall for the State of Sergipe based on disaggregated daily rainfall data

ABSTRACT

Floods have frequently been observed worldwide, particularly in urban and rural areas of Brazil as a consequence of antropic impacts and climate change. To cope with the problem hydraulic structures are designed based on the observed maximum flood, or statistically predicted through the rainfall-duration relationship established with recorded data, which are generally scarce. Due to the lack of such data, disaggregation of daily rainfall is generally utilized. In the State of Sergipe-Brazil, the rainfall-duration relationships were established utilizing disaggregated daily rainfalls, observed in 48 stations, and the probability distributions of Weibull and Gumbel. The best results were obtained with the Weibull distribution. The spatial distributions of the parameters of the rainfall-duration relationships demonstrated the high rainfall variability in the region.

Key words: flood, design discharge, IDF curves

DEC/UFS, Av. Marechal Rondon, s/n, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE. Fone: (79) 2105-6700. E-mail: ricardoaragao@yahoo.com, geizonpe@hotmail.com, clarissa@hotmail.com

² Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, Jardins, CEP 49025-040, Aracaju, SE. Fone: (79) 4009-1339. E-mail: marcus.cruz@embrapa.br

³ UAEC/UFCG, Av. Aprígio Veloso 882, Bodocongó, CEP 58429-140, Campina Grande, PB. Fone: (83) 2101-1156. E-mail: eneasef@yahoo.com

⁴ CAA/UFPE, Rodovia BR 104, km 59, s/n, Sítio Juriti, Zona Rural, CEP 55002-970, Caruaru, PE. Fone: (81) 2126-8000. E-mail: vajapeyam@yahoo.com

Introdução

A frequência de inundações nas áreas urbanas e rurais em diversas partes do Brasil e do mundo (Mendes & Mediondo, 2007; Grimm, 2011) tem aumentado devido às ações antrópicas e às mudanças climáticas que afetam a intensidade das chuvas (Lambert et al., 2008; Min et al., 2011) e aos escoamentos gerados. No meio rural as chuvas intensas e as inundações removem o solo superficial, reduzem sua produtividade, transportam os sedimentos para os corpos hídricos e comprometem sua qualidade e capacidade de armazenamento (Wei, 2007; Santos et al., 2010). No meio urbano levam à destruição de bens e perdas humanas (MCT/CGE, 2002).

Para mitigar os efeitos das inundações obras hidráulicas, como vertedores, canais, barragens e sistemas de drenagem, são projetadas com base na vazão máxima (Teixeira et al., 2011) seja observada estatísticamente ou com base no emprego de modelos chuva-vazão (Mello et al., 2003; Damé et al., 2010). Em pequenas bacias o método racional, que depende da intensidade máxima da chuva (Teixeira et al., 2011) é bastante utilizado. A intensidade máxima da chuva é obtida a partir da relação intensidade-duração-frequência - IDF (Aragão et al., 2000; Ben-Zvi, 2009; Overeem, 2008; Garcia et al., 2011) e sua determinação depende de registros de chuva cuja duração nem sempre é disponível (ANA, 2011) haja vista que precisam de análise cuidadosa (Svensson et al., 2007).

Alternativamente, dados diários podem ser desagregados a partir de fatores de proporcionalidade (CETESB, 1986; Garcia et al., 2011) ou utilizados via método de Bell (Mello, 2003) que se baseia na similaridade entre os mecanismos de tormenta cujos resultados podem ser generalizados. Segundo Mello et al. (2003), Oliveira et al. (2008) e Back (2009), os resultados com dados desagregados se ajustam melhor aos das relações IDF ajustadas com dados de pluviogramas do que as obtidas com o método de Bell. Porém as IDFs são desenvolvidas para um local e precisam de atualização com novos dados (Berne et al., 2004; Damé et al., 2010; Min et al., 2011).

Em Sergipe, no nordeste do Brasil, os dados de chuvas intensas são poucos e antigos (Aragão et al., 2011; SEMARH, 2011) uma vez que só existem para a cidade de Aracaju (CETESB, 1986), os quais foram coletados até 1956. Neste sentido o presente trabalho tem como objetivo o desenvolvimento de equações de chuvas intensas (curvas IDF) para os municípios do Estado de Sergipe através do emprego da metodologia de desagregação de chuvas diárias (CETESB, 1986; Garcia et al., 2011).

Material e Métodos

O estado de Sergipe, cuja área é cerca de 22.000 km², está localizado na região Nordeste do Brasil, entre os paralelos 9° 31' 54" e 11° 34' 12" de latitude Sul e os meridianos 36° 24' 27" e 38° 11' 20" de longitude a Oeste de Greenwich e tem, como limites, os estados da Bahia (ao sul e a oeste) e Alagoas e, a leste, o Oceano Atlântico. A população totaliza 2.068.017 habitantes distribuídos em 75 municípios (IBGE, 2011) dos quais 73,5% desta população residem na área urbana e 26,5% na área rural.

O estado tem, como característica climática, a irregularidade espacial e temporal com secas (47,26% de seu território estão dentro do polígono das secas) severas em alguns anos e enchentes em outros anos. Esta condição permite classificar o clima (Figura 1) em semiárido (precipitação média de ~ 700 mm ano-1), agreste (região tropical sub-úmida ou intermediária mais seca; precipitação média de ~ 1.000 mm ano-1) e litoral úmido (precipitações médias superiores a ~1.355 mm ano⁻¹; umidade relativa do ar com média anual de 80%). Nessas regiões a precipitação é concentrada em determinada época do ano definindo uma estação seca e uma chuvosa. O período chuvoso é de abril a agosto, com máximas se concentrando em maio, junho e julho. A temperatura média anual do ar varia de 22,7 a 26,5 °C. A umidade relativa média anual varia de 80% no Litoral Sudeste a 65% no noroeste do estado. O mês com menor umidade relativa é o mês de fevereiro (entre 60 a 70%) e o mês com maior valor é maio (entre 75 a 85%) (Aragão et al., 2011; SEMARH, 2011).

Figura 1. Localização dos postos pluviométricos e divisão climática do estado de Sergipe

Metodologia e dados utilizados na sua aplicação

A intensidade de uma precipitação qualquer é a relação entre a altura precipitada e sua duração. Para fins de estimativa da vazão máxima a intensidade máxima da precipitação é a variável de interesse sendo esta referida ao tempo de concentração da bacia e associada a um período de retorno. Pode ser obtida mediante as relações intensidade-duração-frequência (IDF), (Eq. 1) estabelecidas a partir de registros de chuva e duração advindos de dados pluviógraficos (Silva et al., 2002).

$$i = \frac{K \cdot T_r^a}{\left(t + B\right)^c} \tag{1}$$

em que:

i - intensidade máxima, mm h-1

T_. - período de retorno, anos

t - duração da chuva, min

a, B, c, K - parâmetros a determinar

Para determinado local a determinação dos parâmetros da equação requer informações de intensidade de chuvas, geralmente escassas. Na ausência desses dados foi sugerido o método da desagregação de chuva diária (Damé et al., 2010) que relaciona a chuva de 1 dia (observada em pluviômetro) com a chuva de 24 h (obtida no pluviógrafo) e desta para tempos menores através do emprego de coeficientes (Tabela 1). Também foi considerado, para cada duração citada, um valor limite mínimo de total precipitado a partir do qual a chuva pode ser considerada intensa (Tabela 2), Silva (2009).

Tabela 1. Coeficientes de desagregação para diferentes durações de chuva

Relação entre alturas pluviométricas	Coeficiente de desagregação
5 min para 30 min	0,34
10 min para 30 min	0,54
15 min para 30 min	0,70
20 min para 30 min	0,81
25 min para 30 min	0,91
30 min para 1 h	0,74
1 h para 24 h	0,42
2 h para 24 h	0,48
3 h para 24 h	0,54
6 h para 24 h	0,72
8 h para 24 h	0,78
10 h para 24 h	0,82
12 h para 24 h	0,85
24 h para 1 dia	1,14

Fonte: CETESB (1986)

Para o emprego do método da desagregação de chuva fazse necessário separar, inicialmente, os valores máximos de precipitação para cada ano do posto em questão; em seguida foram aplicados, a cada valor de precipitação, os coeficientes listados na Tabela 1 gerando, assim, séries de precipitação para diferentes durações. Com base nos valores da Tabela 2 foram eliminados da série os valores de precipitação abaixo de 8 mm com duração de 5 min.

Para as séries com outras durações (Tabela 2) foi considerado o mesmo número de anos (elementos da série) previamente escolhidos, para 5 min de duração garantindo, então, que os valores da série de precipitação fossem, no mínimo, iguais aos valores listados na Tabela 2.

De acordo com CETESB (1986) nos estudos hidroclimatológicos poderão ser utilizadas séries anuais (que incluem a altura pluviométrica máxima de cada ano), bem como séries parciais (constituídas pelos n maiores totais precipitados, sendo n o número de anos ou o número de elementos da série, independente do ano em que possam ocorrer). A escolha do tipo da série depende do seu tamanho e do objetivo do estudo. As séries parciais fornecem resultados mais consistentes para

número de anos de dados menores que 12 anos. Além disto, praticamente as duas séries contemplam os mesmos resultados para períodos de retorno superiores a 10 anos (Teixeira et al., 2011).

Neste trabalho foram aplicados, utilizando-se planilha eletrônica, os coeficientes listados nas Tabelas 1 e 2 aos dados de séries anuais. Nos casos em que, após o processo de desagregação e aplicação dos coeficientes da Tabela 2 as séries ficaram com menos de 10 anos, séries parciais foram estabelecidas com os n maiores valores de precipitação máxima e novamente o processo de desagregação foi aplicado.

Para Naghettini & Pinto (2007) nos trabalhos hidrológicos, além da determinação das máximas precipitações observadas nas séries históricas, faz-se necessário também prever, com o auxílio de probabilidades, a frequência associada a essas precipitações. Neste sentido, a distribuição de Gumbel e a distribuição de Weibull, além da log-Pearson III, se ajustam satisfatoriamente às distribuições de valores extremos de grandezas hidrológicas, tais como totais precipitados e vazões observadas sendo, assim, empregadas neste trabalho (Naghettini & Pinto, 2007; Sansigolo, 2008).

A distribuição de Gumbel apresenta a seguinte função cumulativa de probabilidade:

$$FCP: P[Y \le y] = e^{-e^{-\alpha(y-\mu)}}$$
 (2)

em que:

P - probabilidade de não excedência;

 α , μ - parâmetros da distribuição

v - variável reduzida

O parâmetro α é o de escala e o parâmetro μ de locação. Por meio do método dos momentos e com as estimativas amostrais x (média aritmética) e S (desvio padrão), tem-se, como resultado:

$$z = \alpha (y - \mu) \tag{3}$$

$$\alpha = \frac{1,2826}{S} \tag{4}$$

$$\mu = \overline{x} - 0.451S \tag{5}$$

$$y = \left[x - \overline{x} + S\left(\frac{\overline{yn}}{Sn}\right)\right] \frac{Sn}{S}$$
 (6)

Substituindo os coeficientes α e μ na Eq. 3, tem-se a Eq. 7:

$$x = \overline{x} + KS \tag{7}$$

$$K = 0,7797z \times 0,45 \tag{8}$$

Tabela 2. Valores mínimos de precipitação, adotados

Duração (min)	5	10	15	20	30	45	60	120	180	240	360	480	720	1440
Precipitação adotada (mm)	8	10	15	15	20	23	25	30	33	35	40	40	47	55

Fonte: CETESB (1986)

em que:

 y_n e S_n - respectivamente, a média e o desvio padrão da variável reduzida

 T_r - período de retorno = $1/(1-P(Y \le y))$

Segundo Naghettini & Pinto (2007) e Murthy et al. (2004) a distribuição de Weibull é da mesma família da distribuição de Gumbel porém é chamada distribuição de extremos do tipo III; com larga aplicação em diversas áreas do conhecimento, ajusta-se bem à distribuição de vazões anuais e de precipitação, sendo representada pela seguinte função cumulativa de probabilidade:

$$FCP: P[X \ge x] = e^{-\left[\frac{(x-\gamma)}{(\mu-\gamma)}\right]^{\lambda}}$$
(9)

$$\frac{1}{\lambda} = 0,27777579 + 0,313261774g(x) + (10)
+ 0,057567091g(x)^{2} - 0,0013038566g(x)^{3} -
- 0,0081523408g(x)^{4}$$

$$g(x) = \left[\frac{\left[\sum (x - \overline{x})^3\right]}{N}\right] S^3$$
 (11)

$$\mu = \overline{x} + s \left[1 - \Gamma \left(1 + \frac{1}{\lambda} \right) \right] \sqrt{\Gamma \Gamma \left(+ \frac{2}{\lambda} \right) - \Gamma^2 \left(1 + \frac{1}{\lambda} \right)}$$
 (12)

$$\gamma = \mu - s \sqrt{\left[\Gamma\Gamma\left(+\frac{2}{\lambda}\right) - \Gamma^2\left(1 + \frac{1}{\lambda}\right)\right]}$$
 (13)

em que:

 Γ - logaritmo neperiano (natural) da função gama (lngama)

P(X < x) - probabilidade de não excedência

x - média da amostra S - desvio padrão da amostra

T_r - período de retorno

g(x) - estimativa amostral de assimetria

A aderência das séries de máximas às distribuições testadas foi verificada através das seguintes ferramentas estatísticas (Naghetinni & Pinto, 2007): pelo teste de aderência de Kolmogorov-Sminorv (K-S) a nível de significância de 5%, pelo coeficiente de determinação (R²), pelo coeficiente de ajuste (CA) e pelo coeficiente de massa residual (CMR).

$$D_{N} = \sup_{-\infty < i < \infty} \left| F_{N} \left(Ti \right) - Mi \right| \tag{14}$$

em que:

 $F_N(T_i)=i/N$ e $1 \le i \le N$; KS = $|F_i - M_i|$; onde

$$Fi = \frac{m_i}{n+1} \tag{15}$$

$$R^{2} = \frac{\left[n\left(\sum M_{i} \cdot T_{i}\right)\right]^{2}}{\left[n\sum T_{i}^{2} - \left(\sum T_{i}\right)^{2}\right] \cdot \left[n\sum M_{i}^{2} - \left(\sum M_{i}\right)^{2}\right]}$$
(16)

$$CA = \frac{\sum (M_i - \overline{M})^2}{\sum (T_i - \overline{M})^2}$$
 (17)

$$CMR = \left\lceil \frac{\sum M_i - \sum T_i}{\sum M_i} \right\rceil$$
 (18)

em que:

M, - valores calculados pelos modelos

T_i - valores observados das séries históricas

Empregaram-se os quatro critérios com o objetivo de uma definição melhor da distribuição mais adequada para a série e reduzir, assim, as incertezas inerentes às análises desta espécie.

O teste K-S avalia a distância máxima entre os resultados de uma distribuição a ser testada e os valores associados à distribuição hipoteticamente verdadeira. O coeficiente CA descreve a razão entre a dispersão dos valores observados e os calculados teoricamente e deverá tender a um. O coeficiente CMR tende a zero na ausência de desvios sistemáticos entre os valores observados e os calculados podendo indicar a superestimação (CMR > 0) ou a subestimação (CMR < 0) dos valores estimados pelas distribuições teóricas de probabilidade.

Visto que as distribuições de probabilidade foram ajustadas às séries desagregadas, calcularam-se então os valores de precipitação para os períodos de retorno utilizados em projetos de obras hidráulicas (CETESB, 1986): 2, 5, 10, 25, 50, 100 anos. Para cada período de retorno e com as durações da Tabela 2 foram determinadas as intensidades máximas médias. De posse das séries de intensidades foram calculados os parâmetros da Eq.1, via método de regressão linear, logaritmizando a Eq.1, e não-linear via softwares de ajustes de curva, lembrando que o numerador da Eq.1 é não linear, sendo prudente testar a melhor regressão. Para o emprego dos dois métodos foi utilizado o software Lab-fit ajuste de curvas V7.2.19 (Silva et al., 2004). Neste software o critério mais utilizado para definir o melhor ajuste se baseia no menor qui-quadrado reduzido para a função ajustada. Foi testado, via R² e erro padrão da Estimativa (EPE) (Eq.19), qual dos dois métodos leva aos melhores resultados e também ao grau de precisão dos modelos utilizados para determinação da equação de chuvas intensas.

$$EPE = \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{Ic - Io}{Io}\right)^{2}}{N}}$$
 (19)

em que:

Ic - intensidade (mm h-1) calculada por meio da equação IDF

Io $\,$ - intensidade (mm $\,h^{\text{-1}}$) extraída do melhor ajuste de distribuição

N - número de durações

Utilizaram-se dados de postos pluviométricos no estado de Sergipe e disponíveis na Hidroweb - Sistema de Informações Hidrológicas (ANA, 2011). Dos 129 postos existentes (ativos ou inativos) 71 foram selecionados (Figura 1) distribuídos pelo território sergipano, com séries mais longas e contínuas possíveis; para tanto, eliminaram-se das séries os anos nos quais havia falhas diárias em virtude da dificuldade de preenchê-las; devido ao grande número de postos não foi possível listar os intervalos em que a falha diária foi encontrada. Também foram utilizados, no presente estudo, os dados dos postos Aracaju, Itabaianinha e Própria, monitorados pelo Instituto Nacional de Meteorologia (INMET) nas respectivas cidades.

RESULTADOS E DISCUSSÃO

Foram geradas, a partir dos dados dos 74 postos selecionados, as séries históricas de precipitação máxima diária e aplicada a metodologia de desagregação de chuva a partir dos coeficientes listados nas Tabelas 1 e 2. Para 26 postos e mesmo se considerando séries parciais, as séries históricas ficaram com um número bem inferior a cinco anos de dados após o processo de desagregação, tendo sido descartados do estudo.

Para os 48 postos restantes foram formadas séries anuais em 39 postos e parciais em 9 postos, com as quais foi possível efetuar a análise de frequência e a previsão de valores extremos a partir das distribuições investigadas, tal como a determinação dos parâmetros da Eq.1 (Figuras 2 e 3; Tabela 3). Devido à eliminação dos anos com falhas o número de anos utilizados para o estudo é, em alguns casos, bem menor que o período listado na Tabela 3.

Após a aplicação das distribuições de Gumbel e Weibull e se considerando o coeficiente de determinação (R²), o teste K-S, o coeficiente de ajuste (CA) e o coeficiente de massa residual (CMR) verificou-se que houve tendência em 44 postos de

Figura 2. Espacialização dos valores do coeficiente K

Figura 3. Espacialização dos valores do coeficiente "a"

melhor aderência dos dados à distribuição de Weibull (Tabela 4). A distribuição de Weibull também foi a que melhor se adequou aos dados de chuvas intensas nas estações no estado de Pernambuco (Silva, 2009) geradas com a mesma metodologia aqui empregada (desagregação de chuva de 1 dia). Pelos mesmos critérios a distribuição de Gumbel se adequou melhor aos dados dos postos Aracaju, Itaporanga d'Ajuda, Siriri e Tomar do Geru.

Os resultados obtidos foram diferentes do que a literatura comenta sobre as distribuições de probabilidades aplicadas a valores extremos máximos, em que a distribuição de Gumbel (Naghettine & Pinto, 2007; Ben-Zvi, 2009) surge como a mais indicada e melhor ajustada. Overeem et al. (2008) alertam para o fato de que, apesar de bastante utilizada, a distribuição de Gumbel pode subestimar as quantidades para longos períodos de retorno. No entanto, é de se esperar que a distribuição de Weibull se adapte bem, tanto às frequências com valores máximos quanto mínimos, fato que foi comprovado através do presente estudo e no trabalho de Silva (2009) e Murthy et al. (2004); assim e com base nos resultados obtidos, a distribuição de Weibull poderá também ser aplicada aos estudos de chuvas intensas.

Após a determinação dos parâmetros da Eq.1 via método de regressão linear e não-linear, verificou-se aderência entre os dados gerados pelas equações ajustadas e as séries de intensidades provenientes das distribuições de probabilidade para os dois métodos.

Devido ao volume de dados não é possível a apresentação de todos os valores dos parâmetros para as duas regressões (linear e não linear) porém é possível resumir os resultados da seguinte maneira: o valor do coeficiente de determinação R² permaneceu constante e igual a 0,99; os valores da EPE (erro padrão da estimativa) ficaram entre 1 e 3, tendo sido sempre menores para a regressão não-linear; os valores do CMR (coeficiente de massa residual) tenderam a zero para a regressão

Tabela 3. Postos pluviométricos selecionados no Estado de Sergipe, SE

ld	Cód.	Long.	Lat.	Alt.(m)	Posto	Município	Período	N*
1	1037003	-37:02	-10:16	217	Aquidabã	Aquidabã	1913-1991	58
2	1037004	-37:03	-10:55	472	Aracaju	Aracaju	1963-2009	43
3	1137011	-37:51	-11:03	230	Bomfim	Riachão do Dantas	1913-1986	70
4	1037008	-37:30	-10:45	180	Campo do Brito	Campo do Brito	1953-2000	30
5	1037078	-37:04	-10:29	139	Capela	Capela	1983-2007	22
6	1037010	-37:42	-10:21	351	Carira	Carira	1964-1984	20
7	1137014	-37:46	-11:29	173	Cristinápoles	Cristinápoles	1964-1984	13
8	1037013	-37:14	-10:21	180	Cumbe	Cumbe	1964-1987	23
9	1036033	-36:55	-10:43	30	Curral do Meio	Sto. Amaro das Brotas	1964-1984	18
10	937029	-37:40	-9:42	80	Curralinho	Poco Redondo	1938-1984	38
11	1137015	-37:27	-11:16	53	Estância	Estancia	1944-2006	43
12	1037007	-37:20	-10:56	19	Faz Belém	Itaporanga D'ajuda	1949-2007	49
13	1036063	-36:54	-10:34	10	Faz. Cajueiro	Japaratuba	1993-2004	11
14	1137012	-37:30	-11:08	150	Faz. Camboatã	Estância	1963-1984	18
15	1037014	-37:32	-10:33	272	Frei Paulo	Frei Paulo	1913-1980	62
16	1137018	-37:31	-11:31	21	Indiaroba	Indiaroba	1964-1999	23
17	1037021	-37:06	-10:07	187	Itabi	Itabi	1964-1998	22
18	1137021	-37:49	-11:16	208	Itabaianinha	Itabaianinha	1963-2009	46
19	1037022	-37:18	-10:58	10	Itaporanga d'ajuda	Itaporanga D'ajuda	1914-1975	57
20	1036014	-36:57	-10:36	79	Japaratuba	Japaratuba	1918-1985	61
21	1036018	-36:48	-10:21	89	Japoatã	Japoatã	1964-1997	21
22	1037024	-37:29	-10:52	100	Jenipapo	Lagarto	1963-1981	16
23	1037061	-37:40	-10:55	183	Lagarto	Lagarto	1921-1996	58
24	1037030	-37:18	-10:40	224	Malhador	Malhador	1964-1984	15
25	1037031	-37:18	-10:40	250	Maniçoba	N. Sra. Aparecida	1964-1999	21
26	1037031	-37:38	-10:33	204	Mocambo	Frei Paulo	1913-1978	61
27	1037033	-37:33	-10:02	230	Monte Alegre	Monte Alegre	1964-1997	15
28	1037034	-37:25	-10:13	290	N. Sra. da Glória	N. Sra. da Glória	1913-1997	71
29	1037034	-37:23 -37:13	-10:13	200	N. Sra. das Dores	N. Sra. da Gloria N. Sra. das Dores	1914-1999	74
30	1037030	-36:39	-10:30	200	Pacatuba	Pacatuba	1921-1984	60
31	1137035	-37:40	-10.27	170	Pedrinhas	Pedrinhas	1944-1960	16
32	1038000	-37:40 -38:10	-11.12 -10:42	300	Poço verde	Poço Verde	1938-1984	35
33	937026	-36.10 -37:16	-10.42 - 9:55	45	Porto da Folha	Porto da Folha	1914-1999	61
34	1036025	-37:10 -36:52	-9.33 -10:12	20			1963-2009	43
3 4 35	1036023	-30.32 -37:11	-10.12 -10:44	30	Propria Riachuelo	Propria Riachuelo	1963-2009	43 22
36		-37:11 -37:26		350				23
	1037044		-10:32 -11:01		Ribeirópolis	Ribeirópolis	1964-1997	23 39
37	1137001	-37:28		92	Salgado	Salgado Tabias Barreto	1948-2006	
38	1038001	-38:03	-10:55	250	Samanbaia	Tobias Barreto	1963-1997	20
39	1137002	-37:27	-11:21	50	Sta. Luzia do Itanhy	Sta. Luzia do Itanhy	1964-1986	19
40	1037049	-37:11	-10:39	47	Sta Rosa de Lima	Sta Rosa de Lima	1957-2006	27
41	1037050	-37:03	-10:47	9	Sto. Amaro das Brotas	Sto. Amaro das Brotas	1964-1998	23
42	1137007	-37:12	-11:01	20	São Cristóvão	São Cristóvão	1964-2000	22
43	1037045	-37:48	-10:44	283	Simão Dias	Simão Dias	1913-1987	69
44	1037047	-37:08	-10:36	90	Siriri	Siriri	1963-1998	24
45	1138000	-38:00	-11:11	157	Tobias Barreto	Tobias Barreto	1914-1981	62
46	1137003	-37:51	-11:22	120	Tomar do Geru	Tomar do Geru	1964-1998	15
47	1137004	-37:40	-11:22	109	Umbauba	Umbauba	1964-1999	21
48	1036020	-36:58	-10:38	80	Usina Oiterinhos	Japaratuba	1965-1991	19

Fonte: ANA (2011)

não-linear; o CA (coeficiente de ajuste) para a regressão nãolinear ficou sempre abaixo dos seus respectivos valores para a regressão linear, levando a crer que este método conduz ao melhor conjunto dos valores dos parâmetros a, B, c, K.

Os parâmetros da Eq. 1 também foram calculados para a distribuição de Gumbel, visando às futuras comparações com valores desenvolvidos para postos nas fronteiras do Estado de Sergipe. Observa-se, na Tabela 4, que o coeficiente a variou de 0,061 (Ribeirópolis) a 0,239 (Japoatã) e o coeficiente K variou de 778,4 (Bomfim) a 1357,3 (Japoatã). Por outro lado, o erro padrão da estimativa variou entre 1,15 e 3,014 sendo, em média, 4% menor para os postos cujos parâmetros foram gerados a partir da distribuição de Weibull. Nota-se, assim, uma

grande variabilidade dos parâmetros K e a para as estações, o que denota larga variabilidade de intensidade entre as estações, mesmo entre as mais próximas, fato constatado também por Silva et al. (2002), Aragão et al. (2000) confirmando a alta variabilidade da precipitação e a necessidade de estudos sobre o tema para abranger uma área o maior possível do Estado. O valor de R² ficou sempre acima de 0,99 sinalizando que este índice pode ser tendencioso e não adequado para avaliar o ajustamento da Eq. 1 aos dados observados.

Por sua vez, a regressão não-linear forneceu valores constantes para os parâmetros B e c (10,52 e 0,753, respectivamente) para todos os postos e para as duas distribuições. Esta tendência, também observada por Oliveira et

^{*} Número de anos de observação usados no trabalho

Tabela 4. Valores dos parâmetros para a equação IDF

Posto	Distribuição		EPE	R ²			
	Weibull	K	a	b	C 0.752		
Aquidabã		961,10	0,153	10,52	0,753	1,646	0,99
	Gumbel	957,79	0,168	10,52	0,753	1,724	0,99
Aracaju	Gumbel	1250,88	0,188	10,52	0,753	2,374	0,99
Bomfim	Weibull	778,40	0,160	10,52	0,753	1,361	0,99
	Gumbel	815,87	0,154	10,52	0,753	1,402	
Campo do Brito	Weibull	868,30	0,204	10,52	0,753	1,731	0,99
	Gumbel	953,39	0,183	10,52	0,753	1,786	
Capela	Weibull	1004,50	0,182	10,52	0,753	1,875	0,99
	Gumbel	1027,08	0,189	10,52	0,753	1,952	
Carira	Weibull	1002,80	0,173	10,52	0,753	1,822	0,99
	Gumbel	1030,08	0,177	10,52	0,753	1,898	
Cristinápoles	Weibull	1040,70	0,205	10,52	0,753	2,082	0,99
	Gumbel	1104,92	0,198	10,52	0,753	2,166	
Cumbe	Weibull	926,60	0,079	10,52	0,753	1,280	0,99
	Gumbel	886,80	0,110	10,52	0,753	1,342	
Curral do Meio	Weibull	1206,60	0,125	10,52	0,753	1,902	0,99
	Gumbel	1129,53	0,174	10,52	0,753	2,061	-,
Curralinho	Weibull	920,00	0,090	10,52	0,753	1,310	0,99
Sarramino	Gumbel	899,94	0,109	10,52	0,753	1,358	0,00
Estancia	Weibull	1047,50	0,166	10,52	0,753	1,868	0,99
_0.011010	Gumbel	1069,36	0,100	10,52	0,753	1,944	0,98
az. Belém	Weibull	1209,20		10,52	0,753	2,023	0,99
az. Deletti	Gumbel		0,145	10,52			0,98
Columbia		1188,81	0,168		0,753	2,129	0.00
az. Cajueiro	Weibull	1078,00	0,110	10,52	0,753	1,627	0,99
- 0 1 1.	Gumbel	1066,84	0,125	10,52	0,753	1,685	0.00
Faz. Camboatã	Weibull	963,80	0,097	10,52	0,753	1,400	0,99
	Gumbel	934,83	0,121	10,52	0,753	1,416	
Frei Paulo	Weibull	795,30	0,135	10,52	0,753	1,294	0,99
	Gumbel	837,91	0,125	10,52	0,753	1,322	
ndiaroba	Weibull	1254,60	0,158	10,52	0,753	2,176	0,99
tabaianinha	Gumbel	1203,73	0,195	10,52	0,753	2,304	
	Weibull	923,95	0,108	10,52	0,753	1,380	0,99
	Gumbel	912,61	0,125	10,52	0,753	1,439	
tabi	Weibull	853,30	0,071	10,52	0,753	1,150	0,99
	Gumbel	856,92	0,075	10,52	0,753	1,170	
taporanga D'ajuda	Gumbel	1021,80	0,168	10,52	0,753	1,831	0,99
Japaratuba	Weibull	1027,80	0,153	10,52	0,753	1,760	0,99
	Gumbel	1025,00	0,169	10,52	0,753	1,844	0,00
Japoatã	Weibull	1332,90	0,225	10,52	0,753	2,827	0,99
σαροαία	Gumbel	1357,30	0,239	10,52	0,753	3,014	0,50
Jenipapo	Weibull	891,90	0,233	10,52	0,753	1,321	0,99
Jenipapo	Gumbel	887.86	0,103	10,52	0,753	1,362	0,98
							0.00
_agarto	Weibull	851,60	0,134	10,52	0,753	1,420	0,99
Anlhodou	Gumbel	876,21	0,134	10,52	0,753	1,422	0,99
Malhador	Weibull	960,70	0,164	10,52	0,753	1,701	0,99
	Gumbel	1020,11	0,153	10,52	0,753	1,745	
Maniçoba	Weibull	809,70	0,156	10,52	0,753	1,390	0,99
	Gumbel	866,13	0,140	10,52	0,753	1,431	0,99
Mocambo	Weibull	913,60	0,131	10,52	0,753	1,456	0,99
	Gumbel	900,41	0,150	10,52	0,753	1,532	
Monte Alegre	Weibull	873,89	0,149	10,52	0,753	1,480	0,99
	Gumbel	899,17	0,151	10,52	0,753	1,528	
N. Sra da Glória	Weibull	905,20	0,118	10,52	0,753	1,398	0,99
	Gumbel	896,37	0,134	10,52	0,753	1,453	
N. Sra das Dores	Weibull	838,70	0,161	10,52	0,753	1,472	0,99
	Gumbel	881,71	0,154	10,52	0,753	1,516	5,50
Pacatuba	Weibull	893,60	0,149	10,52	0,753	1,513	0,99
acatusu	Gumbel	914,00	0,143	10,52	0,753	1,566	5,55
Pedrinhas	Weibull	858,50	0,133	10,52	0,753	1,184	0,99
ourimas	Gumbel	839,90	0,078	10,52	0,753	1,104	0,98
Paga Varda							0.00
Poço Verde	Weibull	949,60	0,109	10,52	0,753	1,429	0,99
Danta da Fall	Gumbel	941,69	0,124	10,52	0,753	1,479	0.00
Porto da Folha	Weibull	873,70	0,125	10,52	0,753	1,429	0,99
- ·	Gumbel	858,91	0,145	10,52	0,753	1,444	4
Propria	Weibull	984,38	0,140	10,52	0,753	1,429	0,99
	Gumbel	975,25	0,158	10,52	0,753	1,699	

Continua na próxima página...

Continuação da Tabela 4

Posto	Dietribuição	F	EPE	R ²			
FUSIU	Distribuição	K	а	b	С	EFE	n-
Riachuelo	Weibull	944,20	0,110	10,52	0,753	1,426	0,998
	Gumbel	928,89	0,129	10,52	0,753	1,482	
Ribeirópolies	Weibull	1080,50	0,061	10,52	0,753	1,417	0,997
	Gumbel	1000,23	0,113	10,52	0,753	1,525	
Salgado	Weibull	1053,30	0,173	10,52	0,753	1,915	0,997
	Gumbel	1074,77	0,181	10,52	0,753	2,000	
Samanbaia	Weibull	821,80	0,097	10,52	0,753	1,194	0,999
	Gumbel	813,96	0,110	10,52	0,753	1,231	
Sta luzia do Itanhy	Weibull	1047,30	0,089	10,52	0,753	1,491	0,998
	Gumbel	995,89	0,126	10,52	0,753	1,574	
Sta Rosa de Lima	Weibull	1022,90	0,088	10,52	0,753	1,450	0,998
	Gumbel	980,31	0,119	10,52	0,753	1,522	
Santo Amaro das Brotas	Weibull	1259,90	0,165	10,52	0,753	2,234	0,995
	Gumbel	1219,96	0,198	10,52	0,753	2,390	
São Cristóvão	Weibull	1143,70	0,187	10,52	0,753	2,166	0,996
	Gumbel	1167,15	0,196	10,52	0,753	2,272	
Simão Dias	Weibull	862,50	0,117	10,52	0,753	1,330	0,998
	Gumbel	862,95	0,128	10,52	0,753	1,375	
Siriri	Gumbel	1004,28	0,161	10,52	0,753	1,758	
Tobias Barreto	Weibull	862,90	0,131	10,52	0,753	1,380	0,998
	Gumbel	872,87	0,137	10,52	0,753	1,428	
Tomar do geru	Gumbel	1253,01	0,178	10,52	0,753	2,380	
Umbauba	Weibull	994,50	0,088	10,52	0,753	1,409	0,999
	Gumbel	968,45	0,110	10,52	0,753	1,409	
Usina Oiterinhos	Weibull	1182,90	0,117	10,52	0,753	1,821	0,996
	Gumbel	1096,63	0,171	10,52	0,753	1,982	

al. (2008) e Silva (2009) leva a crer ser isto uma consequência da desagregação de chuvas diárias, da forma da aplicação da Tabela 2 ou da forma de determinação dos parâmetros da Eq. 1, uma vez que, para dados de pluviógrafos, a mesma tendência não foi observada (Aragão et al., 2000; Cecílio & Pruski, 2003; Silva, 2009).

Para esclarecer o motivo dos valores constantes de B e c, foram selecionados dados de seis postos localizados nas regiões do litoral úmido (Aracaju, Estância, Siriri), agreste (Carira, Japoatã, Tobias Barreto) e semiárido (Curalinho, Aquidabã, Samambaia) para a determinação dos parâmetros da Eq. 1 considerando-se a distribuição de Gumbel e os seguintes dados: a) utilização de toda a série histórica, desconsiderando-se a Tabela 2; b) aplicação na integra dos valores limites da Tabela 2; como resultado, têm-se os coeficientes da Tabela 5 obtidos com a série definida em (a), em todas as regiões climáticas, com os valores de B e c permanecendo os mesmos da Tabela 4. Por outro lado, para alternativa b os parâmetros variaram de posto a posto.

Considerando o posto Aracaju e os coeficientes listados nas Tabelas 4 e 5, para T_r=10 anos e t =15 min (comuns em obras hidráulicas – CETESB (1986)) tem-se, como intensidade, respectivamente, 168,20, 160,25 e 163,77 mm h⁻¹, ou seja, um erro de ~5% entre o menor e o maior valor. Este erro pode ser considerado desprezível em face das incertezas no processo de determinação dos parâmetros e da própria série. Assim, é possível inferir que as metodologias acima citadas para obtenção dos parâmetros da Eq. 1 levam a valores com mesma ordem de grandeza.

Considerando os dados da Tabela 4, a divisão climática do Estado e a localização dos postos (Figura 1) observa-se que os valores de K para o Litoral úmido foram acima de 1000 em 24

Tabela 5. Parâmetros da equação IDF (chuvas intensas e curvas) conforme a série histórica utilizada

	as) Comonne	2. 2 2. 10 1110								
Região	Posto	Alternativa	Parâmetros							
climática	1 0010	Altornativa	K	а	В	C				
Litoral	Aracaju	a	1117,33	0,212	10,52	0,753				
	Aracaju	b	1092,22	0,196	9,32	0,736				
	Estância	a	862,60	0,230	10,52	0,753				
	Estância	b	927,32	0,184	9,37	0,735				
	Siriri	a	857,23	0,218	10,52	0,753				
	Siriri	b	972,77	0,163	10,28	0,749				
Agreste	Carira	a	703,11	0,251	10,52	0,753				
	Carira	b	875,58	0,187	9,14	0,731				
	Japoatã	a	1018,12	0,271	10,52	0,753				
	Japoatã	b	852,47	0,247	5,88	0,683				
	Tobias Barreto	a	630,09	0,191	10,52	0,731				
	Tobias Barreto	b	437,92	0,139	3,82	0,645				
Semiárido	Samambaia	a	709,15	0,144	10,52	0,753				
	Samambaia	b	664,46	0,119	8,69	0,723				
	Curralinho	a	587,54	0,193	10,52	0,753				
	Curralinho	b	725,11	0,137	9,29	0,734				
	Aquidabã	a	949,19	0,168	13,32	0,791				
	Aquidabã	b	622,19	0,153	7,02	0,701				

postos (50% do total) porém o maior valor deste coeficiente foi encontrado para a região do agreste (K =1357,30; Japoatã) mesmo que, para esta região, apenas em 16 postos (33% do total) o valor de K ficou acima de 1000. Para o semiárido o valor de K foi sempre abaixo de 980. Por outro lado, para o coeficiente a o maior valor foi também para a região do agreste (a = 0,24; Japoatã) muito embora na média os maiores valores de a tenham sido para o litoral úmido.

Esses dados se traduzem em chuvas muito intensas no litoral úmido, visto que, considerando a duração da chuva t = 5 min e para diversos períodos de retorno, a máxima de 274,07 mm h-1 foi para o posto Santo Amaro das Brotas e uma mínima

Região/Duração (min)	5	10	20	30	60	120	180	360	720	1440
Litoral úmido										
Máx. Int (mm h ⁻¹)	274,07	222,09	164,71	133,05	87,66	55,14	41,48	25,14	15,08	8,99
Mín. Int (mm h ⁻¹)	167,13	135,43	100,44	81,14	53,46	33,63	25,29	15,33	9,19	5,48
Agreste										
Máx. Int (mm h ⁻¹)	345,42	279,91	207,59	167,69	110,49	69,50	52,27	31,68	19,00	11,34
Mín. Int (mm h ⁻¹)	140,14	113,56	84,22	68,03	44,83	28,20	21,21	12,85	7,71	4,60
Semiárido										
Máx. Int (mm h ⁻¹)	196,67	159,37	118,19	95,48	62,91	39,57	29,76	18,04	10,82	6,45
Mín. Int (mm h ⁻¹)	134,15	108,71	80,62	65,13	42,91	26,99	20,30	12,30	7,38	4,40

Tabela 6. Valores de intensidade média para diversos períodos de retorno (T)

das máximas foi de 167,13 mm h⁻¹ para a Fazenda Camboatá; entretanto, as maiores intensidades máximas foram para o posto de Japoatã (Agreste) e variaram de 345,42 mm h⁻¹ (t = 5 min; Japoatã) a 11,34 mm h⁻¹ (t = 24 h; Japoatã). Por outro lado, entre os valores máximos as menores intensidades ocorrem para o semiárido (de 196,67 mm h⁻¹ (t = 5 min; Aquidabã) a 6,45 mm h⁻¹ (t = 24 h; Aquidabã) (Tabela 6). Nesta tabela também se nota um decréscimo de intensidade com a duração sendo maior para o litoral. O resultado reflete o fato de que, quanto mais próximo do litoral maiores a intensidade e o total precipitado para dada duração.

Considerando que somente para a cidade de Aracaju existe um trabalho prévio sobre chuvas intensas (CETESB, 1986) esses dados foram utilizados para validar a equação de Aracaju, desenvolvida no presente trabalho; como resultado tem-se, como valores médios para todos os períodos de retorno, R^2 = 0,996, EPE = 4,610. Ainda para T_r =10 anos, muito utilizado em projetos hidroagrícolas e de obras de microdrenagem urbana (Cecílio & Pruski, 2003) os valores acima citados foram R^2 = 0,996, EPE = 1,24, os quais podem ser considerados bons.

Visto que não foi possível desenvolver as equações IDF para a maioria dos municípios e se considerando a variabilidade entre os parâmetros e o fato de que os dados de uma região só poderão ser utilizados para aquela região (Berne et al., 2004), efetuou-se a regionalização dos parâmetros K e a (obtidos da distribuição de Gumbel), via método do inverso do quadrado da distância (Cecílio & Pruski, 2003) seguida da sua espacialização (Figuras 2 e 3).

Ao comparar os valores espacializados de K e a (Figuras 2 e 3) e o mapa das regiões climáticas do estado de Sergipe (Figura 1) percebe-se que a região do agreste sergipano e o semiárido são aquelas nas quais ocorrem os menores valores dos citados parâmetros evidenciando uma quantidade menor de precipitação, diferente do que ocorre no litoral úmido.

Conclusões

- 1. Considerando os resultados com as distribuições, houve tendência, em 44 postos, de melhor aderência das frequências dos dados à distribuição de Weibull, podendo esta ser utilizada para estudos de chuvas intensas.
- 2. Os parâmetros da equação IDF se correlacionaram melhor ao método de regressão não-linear.
- 3. A utilização da série completa levou a valores de intensidade muito próximos daqueles calculados considerandose a série limitada por valores mínimos de precipitação.
- 4. Os maiores valores de K e a foram encontrados para o litoral úmido seguido da região do Agreste.

5. Uma vez espacializados os parâmetros podem ser empregados em obras hidráulicas em locais em que não existem dados disponíveis.

AGRADECIMENTOS

À Agência Nacional das Águas e ao Instituto Nacional de Meteorologia (INMET), pelos dados de precipitação; à Secretaria de Recursos Hídricos do Estado de Sergipe; à Universidade Federal de Sergipe; à Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA); à Universidade Federal de Campina Grande e à Universidade Federal de Pernambuco; à Profa. Dra. Suzana M.G. Montenegro e ao Eng. Bruno Marcionilo Silva.

LITERATURA CITADA

- ANA Agência Nacional das Águas. Hidro Web: sistemas de informações hidrológicas. http://hidroweb.ana.gov.br. 10 Mar. 2011.
- Aragão, R.; Almeida, J. A. P.; Figueiredo, E. E.; Srinivasan, V. S. Mapeamento do potencial de erosão laminar na Bacia do Rio Japaratuba, SE, via SIG. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.731-740, 2011.
- Aragão, R.; Figueiredo, E. E.; Srinivasan, V. S.; Gois, R. S. S. Chuvas intensas no Estado da Paraíba. In: V Simpósio de Recursos Hídricos do Nordeste, 2000, Natal. Anais.. Natal: ABRH, 2000. p.74-85.
- Back, A. J. Relações entre precipitações intensas de diferentes durações ocorridas no município de Urussanga, SC. Revista Brasileira de Engenharia Agrícola e Ambiental. v.13, p.170–175, 2009.
- Ben-Zvi, A. Rainfall intensity–duration–frequency relationships derived from large partial duration series. Journal of Hydrology, v.367, p.104–114, 2009.
- Berne, A.; Delrieu, G.; Creutin, J. D.; Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology. Journal of Hydrology, v.299, p.166-179, 2004
- Cecílio, R. A.; Pruski, F. F. Interpolação dos parâmetros da equação de chuvas intensas com uso do inverso de potências da distância. Revista Brasileira de Engenharia Agrícola e Ambiental, v.7, p.501-504, 2003.
- CETESB Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana: manual de projeto. 1.ed. São Paulo: DAEE/CETESB, 1986. 466p.

- Damé, R. C. F.; Teixeira, C. F. A.; Terra, V. S. S.; Rosskoff, J.L.C. Hidrograma de projeto em função da metodologia utilizada na obtenção da precipitação. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.46-54, 2010.
- Garcia, S. S.; Amorim, R. S. S.; Couto, E. G.; Stopa, W. H. Determinação da equação intensidade-duração-frequência para três estações meteorológicas do Estado de Mato Grosso. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.575-581, 2011.
- Grimm. A. M. Interannual climate variability in South America: Impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Reserch Risk Assess, v.25, p.537–554, 2011.
- IBGE Instituto Brasileiro de Geografia e Estatística. Sinopse do censo demográfico 2010. Estimativas/Contagem da População, Rio de Janeiro: IBGE, 2011. 261p.
- Lambert, F. H.; Stine, A. R.; Krakauer, N. Y.; Chiang, J. C. H. How much will precipitation increase with global warming? EOS, Transactions American Geophysical Union, v.89, p.193-200. 2008.
- MCT/CGE Ministério de Ciência e Tecnologia/Centro de Estudos e Gestão Estratégica. Diretrizes estratégicas para o Fundo de Recursos Hídricos de Desenvolvimento Científico e Tecnológico. Brasília, 2002. http://www.ana.gov.br, 11 Out. 2011.
- Mello, C. R.; Silva, A. M.; Lima, J. M.; Ferreira, D. F.; Oliveira, M. S. Modelos matemáticos para predição da chuva de projeto para regiões do Estado de Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, v.7, p.121-128, 2003.
- Mendes, H. C.; Mendiondo, E. M. Histórico da expansão urbana e Incidência de Inundações: O Caso da Bacia do Gregório, São Carlos – SP. Revista Brasileira de Recursos Hídricos. v.12, p.17-27, 2007.
- Min, S.; Zhang, X.; Zwiers; F. W.; Heger, G. C. Human contribution to more-intense precipitation extremes. Nature. Letter. v.470, p.378, 2011.
- Murthy, D. N. P, Xie, M. Jiang, R. Weibull models, Wiley series in probability and statistics, New Jersey: John Wiley & Sons, 2004. 396p.
- Naghettini, M.; Pinto, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM. 2007. 552p.

- Oliveira, L. F. C.; Antonini, J. C. A.; Fioreze, A. P.; Silva, M. A. S. Métodos de estimativa de precipitação máxima para o Estado de Goiás. Revista Brasileira de Engenharia Agrícola e Ambiental v.12, p.620-625, 2008.
- Overeem, A.; Buishand, A.; Holleman, I. Rainfall depth-duration-frequency curves and their uncertainties. Journal of Hydrology, v.348, p.124-134, 2008.
- Sansigolo, C. A. Distribuições de extremos de precipitação diária, temperatura máxima e mínima e velocidade do vento em piracicaba, SP (1917-2006). Revista Brasileira de Meteorologia, v.23, p.341-346, 2008.
- Santos, G. S.; Nori, P. G. Oliveira, L. F. C. Chuvas intensas relacionadas à erosão hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.115-123, 2010.
- SEMARH Secretaria de Meio Ambiente e Recursos Hídricos de Sergipe. Atlas digital de recursos hídricos do Estado de Sergipe. Aracaju: SEMARH, 2011. CD Rom
- Silva, B. M. Chuvas intensas em localidades do estado de Pernambuco. Recife: UFPE, 2009. 100p. Dissertação Mestrado
- Silva, D. D.; Gomes Filho, R. R.; Pruski, F. F.; Pereira, S. B.; Novaes, L. F. Chuvas intensas no Estado da Bahia. Revista Brasileira de Engenharia Agrícola e Ambiental, v.6, p.362-367, 2002.
- Silva, W. P. da; Silva, C. M. D. P. S. e; Cavalcanti, C. G. B.; Diogo D. P. S. e; Silva, I. B. S. Lab-fit ajuste de curvas: Um software em português para tratamento de dados experimentais. Revista Brasileira de Ensino de Física, v.26, p.419-427, 2004.
- Svensson, C.; Clarke, R. T.; Jones, D. A. An experimental comparison of methods for estimating rainfall intensity-duration-frequency relations from fragmentary records. Journal of Hydrology, v.341, p.79-89, 2007.
- Teixeira, C. F. A.; Damé, R. de C. F.; Siqueira, G. do A.; Bacelar, L. C. S. D. Vazão máxima de projeto: Metodologia para dimensionamento de bueiros em áreas agrícolas. Teoria e Prática na Engenharia Civil, n.17, p.49-56, 2011.
- Wei, W.; Chen, L.; Fu, B.; Huang, Z.; Wu, D.; Gui, L. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, v.335, p.247-258, 2007.