Crystal Bases for Quantum Generalized Kac-Moody Algebras

Seok-Jin Kang

Department of Mathematical Sciences Seoul National University

20 June 2006

•00

1. Monstrous Moonshine

M: Monster simple group

= largest sporadic simple group

M: Monster simple group

= largest sporadic simple group

$$|M| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$$

$$\simeq 8.08 \times 10^{53}$$

000

1. Monstrous Moonshine

M: Monster simple group

= largest sporadic simple group

$$|M| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$$

$$\simeq 8.08 \times 10^{53}$$

Moonshine Conjecture (Conway-Norton 1979)

000

Moonshine Conjecture (Conway-Norton 1979)

• a \mathbb{Z} -graded representation $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ of M s.t. $dimV_n^{\natural} = c(n)$, where $i(\tau) - 744 = \sum_{n=-1}^{\infty} c(n)q^n, q = e^{2\pi i \tau}, Im\tau > 0$

Moonshine Conjecture (Conway-Norton 1979)

• a \mathbb{Z} -graded representation $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ of M s.t. $dimV_n^{\sharp} = c(n)$, where $j(\tau) - 744 = \sum_{n=-1}^{\infty} c(n)q^n, q = e^{2\pi i \tau}, Im\tau > 0$

Crystal Bases

 $\Longrightarrow T_{g}(\tau)$ is the Hauptmodul for some discrete genus 0 subgroup Γ_{σ} of $PSL_{2}(\mathbb{R})$

That is.

- i) $\widehat{\mathcal{H}}/\Gamma_{\sigma} \simeq S^2$
- ii) Every modular function of weight 0 w.r.t Γ_g is a rational function in $T_{\varrho}(\tau)$

Proof of Moonshine Conjecture

Borcherds, Frenkel-Lepowsky-Meurman (1985): introduced vertex(operator) algebras 000

Monstrous Moonshine

Proof of Moonshine Conjecture

- Borcherds, Frenkel-Lepowsky-Meurman (1985) : introduced vertex(operator) algebras
- Frenkel-Lepowsky-Meurman(1988) : constructed the Moonshine module V^{\natural}

- Borcherds, Frenkel-Lepowsky-Meurman (1985): introduced vertex(operator) algebras
- ② Frenkel-Lepowsky-Meurman(1988) : constructed the Moonshine module V^{\natural}
- Borcherds(1992): completed the proof
 key ingredient: Monster Lie algebra
 an example of generalized Kac-Moody algebra

2.Quantum GKM Algebra

Borcherds-Cartan matrix Definition

Let I be a finite or countably infinite index set.

A real matrix $A = (a_{ii})_{i,i \in I}$ is called a *Borcherds-Cartan matrix* if it satisfies the following conditions:

- i) $a_{ii} = 2$ or $a_{ii} < 0$ for all $i \in I$,
- ii) $a_{ii} < 0$ if $i \neq j$,
- iii) $a_{ii} \in \mathbb{Z}$ if $a_{ii} = 2$,
- iv) $a_{ii} = 0$ if and only if $a_{ii} = 0$.

Assume that A is even, integral and symmetrizable. That is,

- i) a_{ii} is even, $\forall i \in I$
- ii) $a_{ii} \in \mathbf{Z}, \forall i, j \in I$
- iii) \exists diagonal matrix $D = diag(s_i \in \mathbf{Z}_{>0} | i \in I)$ s.t. DA :symmetric

Borcherds-Cartan datum

- $(A, P, P^{\vee}, \Pi, \Pi^{\vee})$ consists of
 - i) $A = (a_{ii})_{i,i \in I}$, a Borcherds-Cartan matrix,
 - ii) a free abelian group P, the weight lattice,
 - iii) $P^{\vee} = Hom(P, \mathbb{Z})$, the dual weight lattice,
 - iv) $\Pi = \{\alpha_i \in P | i \in I\}$, the set of *simple roots*,
 - v) $\Pi^{\vee} = \{h_i | i \in I\} \subset P^{\vee}$, the set of *simple coroots*,

satisfying the properties:

- a) $\langle h_i, \alpha_i \rangle = a_{ii}$ for all $i, j \in I$,
- b) $\forall i \in I$, there exists $\Lambda_i \in P$ s.t. $\langle h_i, \Lambda_i \rangle = \delta_{ii} \quad \forall j \in I$,
- c) Π is linearly independent.

Definition Quantum GKM Algebra

Quantum GKM Algebra $U_q(\mathfrak{g})$ associated with $(A, P, P^{\vee}, \Pi, \Pi^{\vee})$

- = the associative algebra over $\mathbf{Q}(\mathfrak{g})$ with 1 generated by the elements e_i , f_i $(i \in I)$, g^h $(h \in P^{\vee})$ with
- i) $q^0 = 1$, $q^h q^{h'} = q^{h+h'}$ for $h, h' \in P^{\vee}$
- ii) $q^h e_i q^{-h} = q^{\alpha_i(h)} e_i$, $q^h f_i q^{-h} = q^{-\alpha_i(h)} f_i$, for $h \in P^{\vee}$ $i \in I$
- iii) $e_i f_j f_j e_i = \delta_{ij} \frac{K_i K_i^{-1}}{a_i a_i^{-1}}$ for $i, j \in I$, where $K_i = q^{s_i h_i}$

Definition Quantum GKM Algebra

iv)
$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \\ k \end{bmatrix}_i e_i^{1-a_{ij}-k} e_j e_i^k = 0$$
 if $i \in I^{re}$ and $i \neq j$
v) $\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \\ k \end{bmatrix}_i f_i^{1-a_{ij}-k} f_j f_i^k = 0$ if $i \in I^{re}$ and $i \neq j$
vi) $e_i e_i - e_i e_i = f_i f_i - f_i f_i = 0$ if $a_{ij} = 0$

Crystal Bases

3.Crystal Bases

Definition Category O_{int}

the abelian category O_{int} of $U_g(\mathfrak{g})$ -module M satisfying the following properties:

i)
$$M = \bigoplus_{\lambda \in P} M_{\lambda}$$
, where

$$M_{\lambda} := \left\{ u \in M \, ; \, q^h u = q^{\lambda(h)} u \quad \text{for any } h \in P^{\vee} \, \right\}$$

- ii) dim $U_q^+(\mathfrak{g})u<\infty$ for any $u\in M$
- iii) $\operatorname{wt}(M) := \{\lambda \in P \; ; \; M_{\lambda} \neq 0 \} \subset \{\lambda \in P \; ; \; \langle h_i, \lambda \rangle \geq 0, \; \forall i \in I^{\operatorname{im}} \}$
- iv) $f_i M_\lambda = 0$, $\forall i \in I^{\mathrm{im}}$ and $\lambda \in P$ s.t. $\langle h_i, \lambda \rangle = 0$
- v) $e_i M_{\lambda} = 0$, $\forall i \in I^{\text{im}}$ and $\lambda \in P$ s.t. $\langle h_i, \lambda \rangle \leq -a_{ii}$

Crystal Bases

Proposition (Jeong-Kashiwara-K 2005)

Crystal Bases

Proposition (Jeong-Kashiwara-K 2005)

1 The abelian category O_{int} is semisimple

Proposition (Jeong-Kashiwara-K 2005)

- The abelian category O_{int} is semisimple
- ② { irreducible objects in O_{int} } = { $V(\lambda)|\lambda \in P^+$ }, where

Crystal Bases 0000000

$$P^+ = \{\lambda \in P | \langle h_i, \lambda \rangle \ge 0 \text{ for all } i \in I\}$$

Proposition (Jeong-Kashiwara-K 2005)

- The abelian category O_{int} is semisimple
- ② { irreducible objects in O_{int} } = { $V(\lambda)|\lambda \in P^+$ }, where

Crystal Bases

$$P^+ = \{\lambda \in P | \langle h_i, \lambda \rangle \ge 0 \text{ for all } i \in I \}$$

- $(\lambda) = U_{\alpha}(\mathfrak{g})u_{\lambda}, \text{ where }$
 - i) u_{λ} has weight λ
 - ii) $e_i u_{\lambda} = 0$ for all $i \in I$
 - iii) $f_i^{\langle h_i, \lambda \rangle + 1} u_\lambda = 0$ for any $i \in I^{\text{re}}$
 - vi) $f_i u_{\lambda} = 0$ if $i \in I^{\text{im}}$ and $\langle h_i, \lambda \rangle = 0$

Kashiwara operators

Let M be a $U_a(\mathfrak{g})$ -module in \mathcal{O}_{int} .

The Kashiwara operators \tilde{e}_i , \tilde{f}_i $(i \in I)$ are defined by

$$\tilde{e}_i u = \sum_{k \ge 1} f_i^{(k-1)} u_k$$
 $\tilde{f}_i u = \sum_{k \ge 0} f_i^{(k+1)} u_k$

where

$$u=\sum_{k\geq 0}f_i^{(k)}u_k$$
 with $u_k\in M_{\mu+nlpha_i}$ s.t. $e_iu_k=0$, $^{orall}u\in M_{\mu}$ and

$$f_i^{(k)} = \begin{cases} f_i^k / [k]_i! & \text{if } i \in I^{\text{re}} \\ f_i^k & \text{if } i \in I^{\text{im}} \end{cases}$$

Definition Crystal Bases

Let
$$\mathbf{A}_0 = \{f/g \in \mathbf{Q}(q); f,g \in \mathbf{Q}[q], g(0) \neq 0\}$$
 and $M \in O_{int}$.

A Crystal Basis of M is a pair (L, B), where

- i) L is a free \mathbf{A}_0 -submodule L of M s.t. $M \simeq \mathbf{Q}(q) \bigotimes_{\mathbf{A}_0} L$
- ii) B is a **Q**-basis of L/gL
- iii) $\tilde{f}_i L \subset L$ and $\tilde{e}_i L \subset L$ $\forall i \in I$
- iv) $\tilde{f}_i B \subset B \cup \{0\}$ and $\tilde{e}_i B \subset B \cup \{0\}$ $\forall i \in I$
- v) $\tilde{f}_i b = b' \iff b = \tilde{e}_i b'$, for $b, b' \in B$ and $i \in I$

Theorem (Jeong-Kashiwara-K 2005)

For
$$\lambda \in P^+$$
, let

$$L(\lambda) = \mathbf{A}_0$$
-submodule of $V(\lambda)$ generated by $\left\{ ilde{f}_{i_1} \cdots ilde{f}_{i_r} u_{\lambda} \, ; \; r \geq 0, i_k \in I \,
ight\}$

$$B(\lambda) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\lambda} + qL(\lambda); \ r \geq 0, i_k \in I \right\} \setminus \{0\}$$

Theorem (Jeong-Kashiwara-K 2005)

For $\lambda \in P^+$. let

$$L(\lambda) = \mathbf{A}_0$$
-submodule of $V(\lambda)$ generated by $\left\{ ilde{f}_{i_1} \cdots ilde{f}_{i_r} u_{\lambda} \, ; \; r \geq 0, i_k \in I \,
ight\}$

$$B(\lambda) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\lambda} + qL(\lambda); \ r \geq 0, i_k \in I \right\} \setminus \{0\}$$

 $\Longrightarrow (L(\lambda), B(\lambda))$ is a unique crystal basis of $V(\lambda)$

Crystal basis for $U_a^-(\mathfrak{g})$

Fix $i \in I$. For any $u \in U_{\sigma}^{-}(\mathfrak{g})$, \exists unique $v, w \in U_{\sigma}^{-}(\mathfrak{g})$ s.t.

$$e_i u - u e_i = \frac{K_i v - K_i^{-1} w}{q_i - q_i^{-1}}$$

We define the endomorphism $e'_i: U_a^-(\mathfrak{g}) \to U_a^-(\mathfrak{g})$ by $e'_i(u) = w$. Then every $u \in U_a^-(\mathfrak{g})$ has a unique *i*-string decomposition

$$u = \sum_{k \ge 0} f_i^{(k)} u_k$$
, where $e_i' u_k = 0$ for all $k \ge 0$,

and the Kashiwara operators \tilde{e}_i , \tilde{f}_i $(i \in I)$ are defined by

$$\tilde{e}_i u = \sum_{k>1} f_i^{(k-1)} u_k, \qquad \tilde{f}_i u = \sum_{k>0} f_i^{(k+1)} u_k.$$

Definition

A Crystal Basis of $U_q^-(\mathfrak{g})$ is a pair (L,B), where

- i) L is a free \mathbf{A}_0 -submodule L of $U_q^-(\mathfrak{g})$ s.t. $U_q^-(\mathfrak{g}) \simeq \mathbf{Q}(q) \bigotimes_{\mathbf{A}_0} L$
- ii) B is a **Q**-basis of L/gL
- iii) $\tilde{f}_i L \subset L$ and $\tilde{e}_i L \subset L$ $\forall i \in I$
- iv) $\tilde{f}_i B \subset B$ and $\tilde{e}_i B \subset B \cup \{0\}$
- v) $\tilde{f}_i b = b' \iff b = \tilde{e}_i b'$, for $b, b' \in B$ and $i \in I$

Theorem (Jeong-Kashiwara-K 2005)

$$L(\infty)=\mathbf{A}_0$$
-submodule of $U_q^-(\mathfrak{g})$ generated by $\left\{ ilde{f}_{i_1}\cdots ilde{f}_{i_r}\mathbf{1}\,;\,r\geq0,i_k\in I\,
ight\}$

$$B(\infty) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} \mathbf{1} + qL(\infty) \, ; \, r \geq 0, i_k \in I \, \right\} \setminus \{0\}$$

Theorem (Jeong-Kashiwara-K 2005)

$$L(\infty)=\mathbf{A}_0$$
-submodule of $U_q^-(\mathfrak{g})$ generated by $\left\{ ilde{f}_{i_1}\cdots ilde{f}_{i_r}\mathbf{1}\,;\;r\geq 0,i_k\in I\,
ight\}$

$$B(\infty) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} \mathbf{1} + qL(\infty); \ r \geq 0, i_k \in I \right\} \setminus \{0\}$$

$$\Longrightarrow (L(\infty),B(\infty))$$
 is a unique crystal basis of $U_q^-(\mathfrak{g})$

Theorem (Jeong-Kashiwara-K 2005)

$$L(\infty)=$$
 A₀-submodule of $U_q^-(\mathfrak{g})$ generated by $\left\{ ilde{f}_{i_1}\cdots ilde{f}_{i_r}\mathbf{1}\,;\;r\geq0,i_k\in I\right\}$

$$B(\infty) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} \mathbf{1} + qL(\infty) ; r \geq 0, i_k \in I \right\} \setminus \{0\}$$

Crystal Bases

$$\Longrightarrow (L(\infty),B(\infty))$$
 is a unique crystal basis of $U_q^-(\mathfrak{g})$

Problem How to realize $B(\lambda)$ and $B(\infty)$?

4. Abstract Crystals

Definition Abstract Crystals

A set B with the maps wt: $B \to P$, \tilde{e}_i , \tilde{f}_i : $B \to B \sqcup \{0\}$ and $\varepsilon_i, \varphi_i : B \to \mathbf{Z} \sqcup \{-\infty\} \ (i \in I) \text{ where }$

i)
$$\operatorname{wt}(\tilde{e}_i b) = \operatorname{wt} b + \alpha_i$$
 if $i \in I$ and $\tilde{e}_i b \neq 0$,

ii)
$$\operatorname{wt}(\tilde{f}_ib) = \operatorname{wt} b - \alpha_i$$
 if $i \in I$ and $\tilde{f}_ib \neq 0$,

iii)
$$\forall i \in I$$
 and $b \in B$, $\varphi_i(b) = \varepsilon_i(b) + \langle h_i, \text{wt } b \rangle$,

iv)
$$\forall i \in I$$
 and $b, b' \in B$, $\tilde{f}_i b = b' \iff b = \tilde{e}_i b'$,

Notation $\operatorname{wt}_i(b) = \langle h_i, \operatorname{wt} b \rangle$ for $i \in I$ and $b \in B$

Definition Abstract Crystals

v)
$$\forall i \in I$$
 and $b \in B$ s.t. $\tilde{e}_i b \neq 0$, we have $\varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b) - 1$, $\varphi_i(\tilde{e}_i b) = \varphi_i(b) + 1$ if $i \in I^{\mathrm{re}}$, $\varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b)$ and $\varphi_i(\tilde{e}_i b) = \varphi_i(b) + a_{ii}$ if $i \in I^{\mathrm{im}}$, vi) $\forall i \in I$ and $b \in B$ s.t. $\tilde{f}_i b \neq 0$, we have $\varepsilon_i(\tilde{f}_i b) = \varepsilon_i(b) + 1$ and $\varphi_i(\tilde{f}_i b) = \varphi_i(b) - 1$ if $i \in I^{\mathrm{re}}$, $\varepsilon_i(\tilde{f}_i b) = \varepsilon_i(b)$ and $\varphi_i(\tilde{f}_i b) = \varphi_i(b) - a_{ii}$ if $i \in I^{\mathrm{im}}$, vii) $\forall i \in I$ and $b \in B$ s.t. $\varphi_i(b) = -\infty$, we have $\tilde{e}_i b = \tilde{f}_i b = 0$.

Definition Morphism of Crystals

Let B_1 and B_2 be crystals. A morphism of crystals $\psi \colon B_1 \to B_2$ is a map $\psi: B_1 \to B_2$ s.t.

Crystal Bases

- i) for $b \in B_1$ we have $\operatorname{wt}(\psi(b)) = \operatorname{wt}(b)$ and $\varepsilon_i(\psi(b)) = \varepsilon_i(b)$, $\varphi_i(\psi(b)) = \varphi_i(b)$ for all $i \in I$
- ii) if $b \in B_1$ and $i \in I$ satisfy $\tilde{f}_i b \in B_1$, then

$$\psi(\tilde{f}_ib) = \tilde{f}_i\psi(b)$$

Definition Morphism of Crystals

Let $\psi \colon B_1 \to B_2$ be a morphism of crystals

i) ψ is called a *strict morphism* if

$$\psi(\tilde{\mathbf{e}}_ib) = \tilde{\mathbf{e}}_i\psi(b), \ \psi(\tilde{f}_ib) = \tilde{f}_i\psi(b) \quad \text{for all } i \in I \text{ and } b \in B_1$$

Crystal Bases

where
$$\psi(0) = 0$$

ii) ψ is called an *embedding* if the underlying map $\psi: B_1 \to B_2$ is injective. we say that B_1 is a *subcrystal* of B_2 . If ψ is a strict embedding, we say that B_1 is a full subcrystal of B_2 .

Monstrous Moonshine

Example

$$wt(b) \stackrel{\mathrm{def}}{=} \lambda - (\alpha_{i_1} + \cdots + \alpha_{i_r})$$

$$\left\{ \max \left\{ k \geq 0 \right\} \right\} = 0$$
 for

$$arepsilon_i(b) = egin{cases} \maxig\{k\geq 0\,;\; ilde{e}_i^k b
eq 0 ig\} & ext{for } i\in I^{ ext{re}}, \ 0 & ext{for } i\in I^{ ext{im}}, \ arphi_i(b) = igg\{ \maxigg\{k\geq 0\,;\; ilde{f}_i^k b
eq 0 igg\} & ext{for } i\in I^{ ext{re}}, \ ext{wt}_i(b) & ext{for } i\in I^{ ext{im}}, \end{cases}$$

Crystal Bases

Example

$$\mathbf{O} B = B(\infty) \text{ and } b = \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} \mathbf{1} + qL(\infty)$$

$$egin{aligned} \operatorname{wt}(b) &= -(lpha_{i_1} + \dots + lpha_{i_r}) \ &arepsilon_i(b) &= egin{cases} \max\left\{k \geq 0 \, ; \; ilde{\mathbf{e}}_i^k b \neq 0 \,
ight\} & ext{for } i \in I^{ ext{re}}, \ & ext{for } i \in I^{ ext{im}}, \ & arphi_i(b) &= arepsilon_i(b) + \operatorname{wt}_i(b) & (i \in I). \end{cases} \end{aligned}$$

Crystal Bases

Definition Tensor Product of Crystals

Let $B_1 \bigotimes B_2 = \{b_1 \bigotimes b_2 | b_1 \in B_1, b_2 \in B_2\}$, and define the maps wt, ε_i , φ_i as follows.

$$\begin{aligned} \mathsf{wt}(b \otimes b') &= \mathsf{wt}(b) + \mathsf{wt}(b'), \\ \varepsilon_i(b \otimes b') &= \mathsf{max}(\varepsilon_i(b), \varepsilon_i(b') - \mathsf{wt}_i(b)), \\ \varphi_i(b \otimes b') &= \mathsf{max}(\varphi_i(b) + \mathsf{wt}_i(b'), \varphi_i(b')). \end{aligned}$$

For $i \in I$, we define

$$\widetilde{f}_i(b \otimes b') = \begin{cases}
\widetilde{f}_i b \otimes b' & \text{if } \varphi_i(b) > \varepsilon_i(b'), \\
b \otimes \widetilde{f}_i b' & \text{if } \varphi_i(b) \leq \varepsilon_i(b'),
\end{cases}$$

Definition Tensor Product of Crystals

For $i \in I^{re}$, we define

$$ilde{\mathsf{e}}_i(b\otimes b') \;\;=\;\; egin{cases} ilde{\mathsf{e}}_ib\otimes b' & ext{ if } arphi_i(b)\geq arepsilon_i(b'), \ b\otimes ilde{\mathsf{e}}_ib' & ext{ if } arphi_i(b)$$

Crystal Bases

and, for $i \in I^{im}$, we define

$$\tilde{e}_{i}(b \otimes b') = \begin{cases}
\tilde{e}_{i}b \otimes b' & \text{if } \varphi_{i}(b) > \varepsilon_{i}(b') - a_{ii}, \\
0 & \text{if } \varepsilon_{i}(b') < \varphi_{i}(b) \leq \varepsilon_{i}(b') - a_{ii}, \\
b \otimes \tilde{e}_{i}b' & \text{if } \varphi_{i}(b) \leq \varepsilon_{i}(b').
\end{cases}$$

Abstract Crystals

Proposition

Proposition

Crystal Bases

Monstrous Moonshine

Proposition

 \bullet $B_1 \otimes B_2$ is a crystal.

Proposition

 \bullet $B_1 \otimes B_2$ is a crystal.

Remark Hence the category of crystals forms a tensor category.

Crystal Bases

Example

• For $\lambda \in P$, let $T_{\lambda} = \{t_{\lambda}\}$ and define

$$\begin{split} \operatorname{wt}(t_\lambda) &= \lambda, \quad \tilde{\mathbf{e}}_i t_\lambda = \tilde{f}_i t_\lambda = 0 \quad \text{for all} \quad i \in I, \\ \varepsilon_i(t_\lambda) &= \varphi_i(t_\lambda) = -\infty \quad \text{for all} \quad i \in I. \end{split}$$

Crystal Bases

 $\Longrightarrow T_{\lambda}$ is a crystal.

Example

• For $\lambda \in P$, let $T_{\lambda} = \{t_{\lambda}\}$ and define

$$\begin{split} \operatorname{wt}(t_\lambda) &= \lambda, \quad \tilde{e}_i t_\lambda = \tilde{f}_i t_\lambda = 0 \quad \text{for all} \quad i \in I, \\ \varepsilon_i(t_\lambda) &= \varphi_i(t_\lambda) = -\infty \quad \text{for all} \quad i \in I. \end{split}$$

Crystal Bases

 $\Longrightarrow T_{\lambda}$ is a crystal.

2 Let $C = \{c\}$ with

$$\operatorname{wt}(c) = 0$$
 and $\varepsilon_i(c) = \varphi_i(c) = 0$, $\tilde{f}_i c = \tilde{e}_i c = 0$, $\forall i \in I$

 \implies C is a crystal.

Abstract Crystals

Example

3 For each $i \in I$, let $B_i = \{b_i(-n) : n > 0\}$ with

$$\begin{split} &\text{wt } b_i(-n) = -n\alpha_i, \\ &\tilde{e}_ib_i(-n) = b_i(-n+1), \quad \tilde{f}_ib_i(-n) = b_i(-n-1), \\ &\tilde{e}_jb_i(-n) = \tilde{f}_jb_i(-n) = 0 \quad \text{if } j \neq i, \\ &\varepsilon_i(b_i(-n)) = n, \quad \varphi_i(b_i(-n)) = -n \quad \text{if } i \in I^{\text{re}}, \\ &\varepsilon_i(b_i(-n)) = 0, \quad \varphi_i(b_i(-n)) = \text{wt}_i(b_i(-n)) = -na_{ii} \quad \text{if } i \in I^{\text{im}}, \\ &\varepsilon_j(b_i(-n)) = \varphi_j(b_i(-n)) = -\infty \quad \text{if } j \neq i. \end{split}$$

 \implies B_i is a crystal. The crystal B_i is called an *elementary* crystal.

Crystal Bases

Monstrous Moonshine

Example

 B_1, B_2 : crystals for $U_q(\mathfrak{g})$ -modules in O_{int}

i)
$$a_{ii} = 2$$

ii)
$$a_{ii} \leq 0$$

Abstract Crystals

Crystal Bases

Monstrous Moonshine

$$T_{\lambda} \bigotimes T_{\mu} \simeq T_{\lambda+\mu}$$

$$B(\lambda) \hookrightarrow B(\infty) \bigotimes T_{\lambda}$$

$$T_{\lambda} \bigotimes T_{\mu} \simeq T_{\lambda+\mu}$$

$$B(\lambda) \hookrightarrow B(\infty) \bigotimes T_{\lambda}$$

$$T_{\lambda} \bigotimes T_{\mu} \simeq T_{\lambda+\mu}$$

$$B(\lambda) \hookrightarrow B(\infty) \bigotimes T_{\lambda}$$

$$\bullet$$
 $B \otimes C \ncong B$

Example

 $\mathbf{i} = (i_1, i_2, \cdots)$, $i_k \in I$ s.t. every $i \in I$ appear infinitely many times in i

$$B(\mathbf{i}) \stackrel{\text{def}}{=} \{ \cdots \otimes b_{i_k}(-x_k) \otimes \cdots \otimes b_{i_1}(-x_1) \\ \in \cdots \otimes B_{i_k} \otimes \cdots \otimes B_{i_1}; \ x_k \in \mathbf{Z}_{\geq 0}, \ \text{and} \ x_k = 0 \ \text{for} \ k \gg 0 \}.$$

Example

 $\mathbf{i} = (i_1, i_2, \cdots)$, $i_k \in I$ s.t. every $i \in I$ appear infinitely many times in i

$$B(\mathbf{i}) \stackrel{\text{def}}{=} \{ \cdots \otimes b_{i_k}(-x_k) \otimes \cdots \otimes b_{i_1}(-x_1) \\ \in \cdots \otimes B_{i_k} \otimes \cdots \otimes B_{i_1}; x_k \in \mathbf{Z}_{\geq 0}, \text{ and } x_k = 0 \text{ for } k \gg 0 \}.$$

 \implies B(i) becomes a crystal:

$$\begin{array}{l} b = \cdots \otimes b_{i_k}(-x_k) \otimes \cdots \otimes b_{i_1}(-x_1) \in B(\mathbf{i}) \\ \mathrm{wt}(b) = -\sum_k x_k \alpha_{i_k} \\ \mathrm{for} \ i \in I^\mathrm{re}, \ \varepsilon_i(b) = \max\Bigl\{x_k + \sum_{l > k} \langle h_i, \alpha_{i_l} \rangle x_l \, ; \ 1 \leq k, \ i = i_k\Bigr\} \\ \varphi_i(b) = \max\Bigl\{-x_k - \sum_{1 \leq l < k} \langle h_i, \alpha_{i_l} \rangle x_l \, ; \ 1 \leq k, \ i = i_k\Bigr\} \\ \mathrm{for} \ i \in I^\mathrm{im}, \quad \varepsilon_i(b) = 0 \quad \mathrm{and} \quad \varphi_i(b) = \mathrm{wt}_i(b) \end{array}$$

Example

For $i \in I^{re}$, we have

$$ilde{\mathbf{e}}_i b = egin{cases} \cdots \otimes b_{i_{n_e}}(-x_{n_e}+1) \otimes \cdots \otimes b_{i_1}(-x_1) & ext{if } arepsilon_i(b) > 0, \ 0 & ext{if } arepsilon_i(b) \leq 0, \end{cases}$$
 $ilde{f}_i b = \cdots \otimes b_{i_{n_e}}(-x_{n_f}-1) \otimes \cdots \otimes b_{i_1}(-x_1),$

where n_e (resp. n_f) is the largest (resp. smallest) $k \ge 1$ such that $i_k = i$ and $x_k + \sum_{l > k} \langle h_l, \alpha_{ll} \rangle x_l = \varepsilon_i(b)$.

such an n_e exists if $\varepsilon_i(b) > 0$. Note

Example

When
$$i \in I^{\text{im}}$$
, let $n_f = \min\{k | i_k = i \text{ and } \sum_{l>k} \langle h_i, \alpha_{i_l} \rangle x_l = 0\}$

Then

$$\tilde{f}_i b = \cdots \otimes b_{i_{n_f}}(-x_{n_f}-1) \otimes \cdots \otimes b_{i_1}(-x_1)$$

and

and
$$\tilde{e}_i b = \left\{ \begin{array}{l} \cdots \otimes b_{i_{n_f}}(-x_{n_f}+1) \otimes \cdots \otimes b_{i_1}(-x_1) \\ & \text{if } x_{n_f} > 0 \text{ and } \sum_{k < l \leq n_f} \langle h_i, \alpha_{i_l} \rangle x_l < a_{ii} \text{ for any } \\ & k \text{ such that } 1 \leq k < n_f \text{ and } i_k = i, \\ 0 & \text{otherwise.} \end{array} \right.$$

5.Crystal Embedding Theorem

Theorem (Jeong-Kashiwara-K-Shin 2006)

For all $i \in I$, $\exists!$ strict embedding

$$\begin{array}{ccc} \Psi_i \colon B(\infty) & \longrightarrow & B(\infty) \otimes B_i \\ \mathbf{1} & \longmapsto & \mathbf{1} \bigotimes b_i(0) \end{array}$$

Crystal Embedding Theorem

Let
$$\mathbf{i} = (i_1, i_2, \cdots) \in I^{\infty}$$

Observe:
$$B(\infty) \hookrightarrow B(\infty) \bigotimes B_{i_1} \hookrightarrow B(\infty) \bigotimes B_{i_2} \bigotimes B_{i_1} \hookrightarrow \cdots$$

Crystal Embedding Theorem

Let
$$\mathbf{i} = (i_1, i_2, \cdots) \in I^{\infty}$$

Observe:
$$B(\infty) \hookrightarrow B(\infty) \bigotimes B_{i_1} \hookrightarrow B(\infty) \bigotimes B_{i_2} \bigotimes B_{i_1} \hookrightarrow \cdots$$

Proposition

$$B(\infty) \hookrightarrow B(\mathbf{i}) = \{ \cdots \bigotimes b_{i_k}(-x_k) \bigotimes \cdots b_{i_1}(-x_1) \}$$

Let
$$\mathbf{i} = (i_1, i_2, \cdots) \in I^{\infty}$$

Observe :
$$B(\infty) \hookrightarrow B(\infty) \bigotimes B_{i_1} \hookrightarrow B(\infty) \bigotimes B_{i_2} \bigotimes B_{i_1} \hookrightarrow \cdots$$

Proposition

$$B(\infty) \hookrightarrow B(\mathbf{i}) = \{ \cdots \bigotimes b_{i_k}(-x_k) \bigotimes \cdots b_{i_1}(-x_1) \}$$

Corollary

$$B(\infty) \simeq \text{connected component of } B(\mathbf{i})$$

containing $\cdots \bigotimes b_{i_k}(0) \bigotimes \cdots b_{i_k}(0)$

Crystal Embedding Theorem

Theorem (Jeong-Kashiwara-K-Shin 2006)

(Jeong-Kashiwara-K-Shin 2006) Theorem

- Let B be a crystal s.t.
 - i) wt(B) $\subset -Q_+$,
 - ii) $\exists b_0 \in B \text{ s.t. } wt(b_0) = 0$,
 - iii) for any $b \in B$ s.t. $b \neq b_0$, \exists some $i \in I$ s.t. $\tilde{e}_i b \neq 0$,
 - iv) for all i, \exists a strict embedding $\Psi_i : B \to B \otimes B_i$.

Then
$$B \xrightarrow{\sim} B(\infty)$$

Theorem (Jeong-Kashiwara-K-Shin 2006)

- lacktriangle Let B be a crystal s.t.
 - i) $wt(B) \subset -Q_+$,
 - ii) $\exists b_0 \in B \text{ s.t. } wt(b_0) = 0$,
 - iii) for any $b \in B$ s.t. $b \neq b_0$, \exists some $i \in I$ s.t. $\tilde{e}_i b \neq 0$,
 - iv) for all i, \exists a strict embedding $\Psi_i : B \to B \otimes B_i$.

Then
$$B \xrightarrow{\sim} B(\infty)$$

2 Let $\lambda \in P^+$. Then

$$B(\lambda) \xrightarrow{\sim}$$
 connected component of $B(\infty) \otimes T_{\lambda} \otimes C$ containing $\mathbf{1} \otimes t_{\lambda} \otimes c$

Let
$$I=\{1,2\}$$
 and $\mathbf{i}=(1,2,1,2,\dots)$ and $A=\begin{pmatrix}2&-a\\-b&-c\end{pmatrix}$ for some $a,b\in\mathbf{Z}_{\geq0}$ and $c\in2\mathbf{Z}_{\geq0}$.

$$B\stackrel{\mathrm{def}}{=} \{\cdots\otimes b_2(-x_{2k})\otimes b_1(-x_{2k-1})\otimes\cdots\otimes b_2(-x_2)\otimes b_1(-x_1)|$$

i)
$$ax_{2k} - x_{2k+1} \ge 0$$
 for all $k \ge 1$,

ii)
$$\forall k \geq 2$$
 with $x_{2k} > 0$, we have $x_{2k-1} > 0$ and $ax_{2k} - x_{2k+1} > 0$.

Let
$$I=\{1,2\}$$
 and $\mathbf{i}=(1,2,1,2,\dots)$ and $A=\begin{pmatrix}2&-a\\-b&-c\end{pmatrix}$ for some $a,b\in\mathbf{Z}_{>0}$ and $c\in2\mathbf{Z}_{\geq0}$.

$$B \stackrel{\text{def}}{=} \{ \cdots \otimes b_2(-x_{2k}) \otimes b_1(-x_{2k-1}) \otimes \cdots \otimes b_2(-x_2) \otimes b_1(-x_1) |$$

i)
$$ax_{2k} - x_{2k+1} \ge 0$$
 for all $k \ge 1$,

ii)
$$^{\forall}k \geq 2$$
 with $x_{2k} > 0$, we have $x_{2k-1} > 0$ and $ax_{2k} - x_{2k+1} > 0$.}

$$\implies B \simeq B(\infty)$$

$$B^{\lambda} \stackrel{\text{def}}{=} \{ \cdots \otimes b_2(-x_{2k}) \otimes b_1(-x_{2k-1}) \otimes \cdots \otimes b_2(-x_2) \otimes b_1(-x_1) \otimes t_{\lambda} \otimes c |$$

i)
$$ax_{2k} - x_{2k+1} \ge 0$$
 for all $k \ge 1$,

ii)
$$^{\forall}k \geq 2$$
 with $x_{2k} > 0$, we have $x_{2k-1} > 0$ and $ax_{2k} - x_{2k+1} > 0$,

iii)
$$0 \le x_1 \le \langle h_1, \lambda \rangle$$
,

iv) if
$$x_2 > 0$$
 and $\langle h_2, \lambda \rangle = 0$, then $x_1 > 0$.

$$B^{\lambda} \stackrel{\text{def}}{=} \{ \cdots \otimes b_2(-x_{2k}) \otimes b_1(-x_{2k-1}) \otimes \cdots \otimes b_2(-x_2) \otimes b_1(-x_1) \otimes t_{\lambda} \otimes c |$$

i)
$$ax_{2k} - x_{2k+1} \ge 0$$
 for all $k \ge 1$,

ii)
$$^{\forall}k \geq 2$$
 with $x_{2k} > 0$, we have $x_{2k-1} > 0$ and $ax_{2k} - x_{2k+1} > 0$,

iii)
$$0 \le x_1 \le \langle h_1, \lambda \rangle$$
,

iv) if
$$x_2 > 0$$
 and $\langle h_2, \lambda \rangle = 0$, then $x_1 > 0$.

$$\implies B^{\lambda} \simeq B(\lambda)$$

Example Quantum Monster Algebra

$$I = \{(i,t)|i = -1, 1, 2, \dots 1 \le t \le c(i)\}$$

$$A = (-(i+j))_{(i,t),(j,s)\in I}$$

Example

$$\mathbf{i} = (\mathbf{i}(k))_{k=1}^{\infty} = ((-1,1), (1,1), \dots, (1,c(1)); (-1,1), (1,1), \dots, (1,c(1)), (2,1), \dots, (2,c(2)); (-1,1), (1,1), \dots, (1,c(1)), (2,1), \dots, (2,c(2)), (3,1), \dots, (3,c(3)); (-1,1), \dots)$$

Note

- i) every $(i, t) \in I$ appears infinitely times in **i**
- ii) (-1,1) appears at the b(n)-th position for $n \geq 0$, where

$$b(n) = nc(1) + (n-1)c(2) + \cdots + c(n) + n + 1.$$

Example

For $k \in \mathbf{Z}_{>0}$, $k^{(-)} = \text{the largest integer } l < k \text{ s.t. } \mathbf{i}(l) = \mathbf{i}(k)$.

$$B\stackrel{\mathrm{def}}{=} \{\cdots \otimes b_{\mathbf{i}(k)}(-x_k) \otimes \cdots \otimes b_{\mathbf{i}(1)}(-x_1) \in B(\mathbf{i})|$$

i)
$$x_{b(1)} = 0$$
,

ii)
$$\forall n \geq 1$$
, $\sum_{b(n) < l < b(n+1)} \langle h_{(-1,1)}, \alpha_{\mathbf{i}(l)} \rangle x_l \geq x_{b(n+1)}$,

iii) if
$$\mathbf{i}(k) \neq (-1,1)$$
, $x_k > 0$ and $k^{(-)} > 0$, then
$$\sum_{k^{(-)} < l < k} \langle h_{\mathbf{i}(k)}, \alpha_{\mathbf{i}(l)} \rangle x_l < 0.$$

If
$$x_l = 0$$
 for all $k^{(-)} < l < k$ s.t. $i(l) \neq (-1, 1)$, then

$$\sum_{b(n) < l < b(n+1)} \langle h_{(-1,1)}, \alpha_{\mathbf{i}(l)} \rangle x_l > x_{b(n+1)} \text{ s.t. } k^{(-)} < b(n) < k. \}$$

Example

For $k \in \mathbf{Z}_{>0}$, $k^{(-)} = \text{the largest integer } l < k \text{ s.t. } \mathbf{i}(l) = \mathbf{i}(k)$.

$$B\stackrel{\mathrm{def}}{=} \{\cdots \otimes b_{\mathbf{i}(k)}(-x_k) \otimes \cdots \otimes b_{\mathbf{i}(1)}(-x_1) \in B(\mathbf{i})|$$

i)
$$x_{b(1)} = 0$$
,

ii)
$$\forall n \geq 1$$
, $\sum_{b(n) < l < b(n+1)} \langle h_{(-1,1)}, \alpha_{\mathbf{i}(l)} \rangle x_l \geq x_{b(n+1)}$,

iii) if
$$\mathbf{i}(k) \neq (-1,1)$$
, $x_k > 0$ and $k^{(-)} > 0$, then
$$\sum_{k^{(-)} < l < k} \langle h_{\mathbf{i}(k)}, \alpha_{\mathbf{i}(l)} \rangle x_l < 0.$$

If
$$x_l = 0$$
 for all $k^{(-)} < l < k$ s.t. $\mathbf{i}(l) \neq (-1, 1)$, then
$$\sum_{b(n) < l < b(n+1)} \langle h_{(-1,1)}, \alpha_{\mathbf{i}(l)} \rangle x_l > x_{b(n+1)} \text{ s.t. } k^{(-)} < b(n) < k. \}$$

$$\Longrightarrow B \simeq B(\infty)$$

$$\begin{split} B^{\lambda} &\stackrel{\mathrm{def}}{=} \{ \cdots \otimes b_{\mathbf{i}(k)}(-x_k) \otimes \cdots \otimes b_{\mathbf{i}(1)}(-x_1) \otimes t_{\lambda} \otimes c | \\ & \text{(i)-(iii) in the previous example,} \\ & \text{iv) } 0 \leq x_1 \leq \langle h_{(-1,1)}, \lambda \rangle, \\ & \text{v) if } \mathbf{i}(k) \neq (-1,1), \ \langle h_{\mathbf{i}(k)}, \lambda \rangle = 0, \ x_k > 0 \ \text{and} \ k^{(-)} = 0, \\ & \text{then} \ ^{\exists} I \text{ s.t. } 1 \leq I < k, \ \langle h_{\mathbf{i}(k)}, \alpha_{\mathbf{i}(I)} \rangle < 0 \ \text{and} \ x_I > 0. \ \} \end{split}$$

$$\begin{split} B^{\lambda} &\stackrel{\mathrm{def}}{=} \left\{ \cdots \otimes b_{\mathbf{i}(k)}(-x_k) \otimes \cdots \otimes b_{\mathbf{i}(1)}(-x_1) \otimes t_{\lambda} \otimes c \right| \\ & \text{(i)-(iii) in the previous example,} \\ & \text{iv) } 0 \leq x_1 \leq \langle h_{(-1,1)}, \lambda \rangle, \\ & \text{v) if } \mathbf{i}(k) \neq (-1,1), \ \langle h_{\mathbf{i}(k)}, \lambda \rangle = 0, \ x_k > 0 \ \text{and} \ k^{(-)} = 0, \\ & \text{then} \ ^{\exists} I \text{ s.t. } 1 \leq I < k, \ \langle h_{\mathbf{i}(k)}, \alpha_{\mathbf{i}(I)} \rangle < 0 \ \text{and} \ x_I > 0. \ \end{cases} \end{split}$$

$$\implies B^{\lambda} \simeq B(\lambda)$$

Crystal Embedding Theorem

THANK YOU