Linear time selection to select the 1th smallest from N num	bers.
1. Cut the array into NS groups, so each group has 5 2. Sort each group 3. Each group has a median so NS medians. 4. Recursively run linear time selection on the NS medians, Selecting the NIO Smallest.	numbers.
Mote: 3. n Numbers = N X X X X X X X X X X X X X X X X X X	elow the 165 1655 1655 1655 1675 1675
5. Swap MM with the first element of the original are 6. Run partition on the input array.	of.
LOW HIGH T-1 A N-T Ret match i & T=i > A[i] i <t> linear time selection on LOW</t>	
1217 linear time selection on HIGH	

Linear time selection Proof	Note: So, if we recursively run
Step 1. Write a formula	linear time selection on Low:
$T_{\omega}(n) = T_{\omega} \left(\frac{2n}{10}\right) + T_{\omega}\left(\frac{n}{5}\right) + O(n)$ $\uparrow \qquad \qquad \uparrow \qquad \qquad 5 \text{ tep } \# 6$ Notes Step #4	Using symmetry (oughly HIGH Z 3. 11 Which makes LOW + HIGH 27
Step 2. Guess.	So, our upperbounds will be:
$T_{\omega}(n) = O(n) = C \cdot n$ Meed CDO	LOW = 7.10 HI6H = 7.10
$\forall n T_{\omega}(n) \leq C \cdot O(n)$	1
Step 3. Check	Therefore, A Upperbounded by max { Low HIGH } = 7.17
$T_{\omega}(n) = T_{\omega} \left(\frac{2n}{10}\right) + T_{\omega}\left(\frac{n}{5}\right) + O(n)$	
$= C \cdot \left(\frac{2n}{5}\right) + C \cdot \left(\frac{n}{5}\right) + \alpha \cdot n$	
$= C \cdot n \left(\frac{3}{10} + \frac{1}{5}\right) + \alpha \cdot n$	
= <u>d</u> c·n + o·n	
€ C·N When (>>o.	