1. Following *RLC* circuit is described by the differential equation (1). Use Matlab built-in differential equation solver dsolve() to derive the impulse response h(t) for this circuit when $R=2 \Omega$, C=1F, L=0.5 H. Plot the impulse response h(t) from a range $-10 \le t \le 30$.

$$RC \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} + \frac{R}{L} y(t) = \frac{dx(t)}{dt} \qquad \dots (1)$$

2. Consider the following input signal

$$x_{1}(t) = \begin{cases} 5, & 0 \le t < 10 \\ 0, & \text{elsewhere} \end{cases}$$

$$x_{2}(t) = 2x_{1}(t - 10)$$

$$x_{\text{linear comb}}(t) = x_{1}(t) + 2x_{1}(t - 10)$$

Using the example Matlab file simplified_convolution_runtime.m, plot the output signals in three separate figure windows:

(a)
$$y_1(t) = x_1(t) * h(t)$$

(b)
$$y_2(t) = x_2(t) * h(t)$$

(c)
$$y_{linear_comb} = x_{linear_comb}(t) * h(t)$$
.

Use the ranges of ' τ ' and 't' as $-10 \le \tau \le 40$ and $-10 \le t \le 40$. Also plot $y_3(t) = y_1(t) + y_2(t)$ and comment on similarity of $y_3(t)$ and $y_{1inear_comb}(t)$.

3. A single-tone signal $w(t) = \sin(400\pi t)$ is transmitted to an audio amplifier and speaker to produce a high-temperature warning for a silicon crystal-growing factory. A filter having impulse response $h(t) = 400e^{-200t}\cos(400\pi t)u(t)$ has been designed to reduce additive interference in the received signal. Using Matlab in-built convolution function: $\operatorname{conv}()$, find the filter output signal y(t), when the received signal is $x(t) = [\cos(100\pi t) + \sin(400\pi t) - \cos(800\pi t)]u(t)$ (signal w(t) was corrupted by interference and resulted in an input signal x(t)). Plot the output signal, the input signal, and w(t) for the range of $-0.1 \le t \le 0.1$. Comment on the effect of the filter on the signal. While solving this problem, pay attention to the time resolution/step (dT) you need to use.

4. System response for an Industrial Shock Absorber (figure below) can be modeled with the following differential equation:

$$M \frac{d^2 y(t)}{dt^2} + b \frac{dy(t)}{dt} + ky(t) = r(t)$$
 ...(2)

Let's assume the mass of the damper M is 100 kg, the spring constant k is 1 kgs⁻², and the friction coefficient b is 20 kgs⁻¹. Using Matlab built-in differential equation solver dsolve() to derive the impulse response $h_1(t)$ for this Industrial Shock Absorber and the impulse response $h_1(t)$ from a range $-10s \le t \le 300s$. Overtime the oil inside the shock absorber degrades and the friction coefficient b becomes 0.2 kgs^{-1} . Derive the new impulse response $h_2(t)$ for this Industrial Shock Absorber and plot $h_2(t)$ from a range $-10s \le t \le 300s$.

