Série 2016

Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Dossier des expertes et experts

Temps: 30 minutes

Règle, équerre, chablon, calculatrice de poche sans transmission de Auxiliaires:

données et recueil de formules sans exemple de calcul.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

> - Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Nombres de points maximum: Barème: 19,0

18,5	-	19,0	Points = Note	6,0
16,5	-	18,0	Points = Note	5,5
14,5	-	16,0	Points = Note	5,0
12,5	-	14,0	Points = Note	4,5
10,5	-	12,0	Points = Note	4,0
9,0	-	10,0	Points = Note	3,5
7,0	-	8,5	Points = Note	3,0
5,0	-	6,5	Points = Note	2,5
3,0	-	4,5	Points = Note	2,0
1,0	-	2,5	Points = Note	1,5
0,0	-	0,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente:	Cette épreuve d'examen ne peut pas être utilisée librement comme
	exercice avant le 1er septembre 2017.

Groupe de travail EFA de l'USIE pour la profession de Créé par:

planificatrice-électricienne CFC / planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

	rcices		Nombre maximal	obtenus
1.	3.2.1 Une électrode de terre en acier galvanisé a une de 100 mm ² .	longueur de 80 m et une section	2	Obtenus
	Calculez:			
	a) son volume en dm³		1	
	b) sa masse en kg		1	
	$\rho_{Acier/fer} = 7.8 \frac{kg}{dm^3}$			
	Solution:			
	a) $V = A \cdot l = 0,01 \text{ dm}^2 \cdot 800 \text{ dm} = 8 \text{ dm}^3$			
	b) $m = \rho \cdot V = \frac{7,8 \text{ kg} \cdot 8 \text{ dm}^3}{\text{dm}^3} = \underline{\frac{62,4 \text{ kg}}{\text{mg}}}$			
2.	3.2.2 Les illustrations ci-dessous montrent deux différ d'énergie électrique. Nommez et décrivez chacun de ces types de pro	·	2	
	Solution:			
	Type de pr	oduction: n par induction magnétique	0,5	
	bobine ou	n: ent d'un aimant dans une mouvement d'une bobine dans magnétique.	0,5	
	b)			
	Electrode de carbone d	oduction: n par électrochimie	0,5	
	Description Electrolyte Deux maté		0,5	

Exer	cices	Nombre maximal	de points obtenus
3.	3.2.3 Calculez dans le circuit suivant:	3	
	a) le courant total I	1	
	b) la tension aux bornes de R ₃	1	
	c) la résistance R₁	1	
	$0,8 \text{ A}$ R_1 R_2 R_3 R_2 R_3		
	Solution:		
	a) $I = I_1 + I_2 = 0.8 A + 1.2 A = \underline{2 A}$		
	$\mathbf{b}) \mathbf{U}_3 = \mathbf{R}_3 \cdot \mathbf{I} = 4 \Omega \cdot 2 \mathbf{A} = 8 \mathbf{V}$		
	c) $R_1 = \frac{U - U_3}{I_1} = \frac{40 V - 8 V}{0.8 A} = \frac{40 \Omega}{0.8 A}$		
	3.2.4		
4.	A l'aide d'un ohmmètre, un installateur-électricien mesure la résistance de boucle d'un câble dont les conducteurs en cuivre ont une section de 1,5 mm². L'ohmmètre indique 1,2 Ω entre L et N. $ (\rho = 0.0175 \ \frac{\Omega \cdot mm^2}{m}) $	2	
	Calculez:		
	a) la longueur du câble	1	
	b) la chute de tension en volts lorsqu'un courant de 8,5 A circule dans le câble	1	
	Solution:		
	a) $L = \frac{A \cdot R_L}{\rho \cdot 2} = \frac{1,5 \text{ mm}^2 \cdot 1,2 \Omega}{0,0175 \frac{\Omega \cdot \text{mm}^2}{\text{m}} \cdot 2} = \frac{51 \text{ m}}{}$		
	b) $U_v = I \cdot R_L = 8,5 \text{ A} \cdot 1,2 \Omega = 10,2 \text{ V}$		

Exer	cices			maximal	obtenus
5.	3.3.1 Le graphique ci-dessous montre la caractéristique d Quelle affirmation est correcte?	'une résista	ance non-linéaire.	1	
	Graphique R/Ω 10^{5} R_{E} R_{E} R_{A}				
	Affirmations	juste			
	Caractéristique d'une thermistance NTC				
	Caractéristique d'une thermistance PTC				
	Solution:		_		
	Affirmations	juste			
	Caractéristique d'une thermistance NTC				
	Caractéristique d'une thermistance PTC	\boxtimes			
6.	3.5.5 Sur une batterie de piles 4,5 V, la tension aux borne batterie débite un courant de 0,6 A. Calculez: a) la chute de tension aux bornes de la résistance in		1,3 V lorsque la	2	
	b) la résistance interne R _i			1	
	Solution:				
	a) $U_{Ri} = E - U = 4,5 V - 4,3 V = 0,2 V$				
	b) $R_i = \frac{U_{Ri}}{I} = \frac{0.2 \text{ V}}{0.6 \text{ A}} = \underline{0.333 \Omega = 333 \text{ m}\Omega}$				

 3.5.1 Une grue soulève une charge de 120 kg en 6 secondes à une hauteur de en g = 9,81 m/s²; g = 9,81 N/kg Calculez: a) la puissance utile (puissance mécanique) b) la puissance absorbée sur le réseau électrique, sachant que le système levage a un rendement de 71 % et le moteur a un rendement de 81 %. Solution: a) P_{utile} = m·h·g/t = 120 kg·8 m·9,81 N/kg/6 s b) P_{abs} = P_{ab/ηG·ηM} = 1570 W/0,71·0,81 = 2730 W/0,71·0,81 = 2730 W/0,71·0,81 8. Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 la balogiène à bases tonsion quent chaques les expactéristiques quiventes: 	2	obtenus
 a) la puissance utile (puissance mécanique) b) la puissance absorbée sur le réseau électrique, sachant que le système levage a un rendement de 71 % et le moteur a un rendement de 81 %. Solution: a) P_{utile} = m · h · g / t = 120 kg · 8 m · 9,81 N/kg / 6 s b) P_{abs} = P_{ab / 0,71 · 0,81} = 2730 W/0,71 · 0,81 = 2730 W/0,10 / 10 / 10 / 10 / 10 / 10 / 10 / 10		
 b) la puissance absorbée sur le réseau électrique, sachant que le système levage a un rendement de 71 % et le moteur a un rendement de 81 %. Solution: a) P_{utile} = m · h · g / t = 120 kg · 8 m · 9,81 N/kg / kg = 1570 W b) P_{abs} = P_{ab} / η_G.η_M = 1570 W / 0,71 · 0,81 = 2730 W 3.5.6 Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 la 		
levage a un rendement de 71 % et le moteur a un rendement de 81 %. Solution: a) $P_{utile} = \frac{m \cdot h \cdot g}{t} = \frac{120 \text{ kg} \cdot 8 \text{ m} \cdot 9,81 \frac{N}{\text{kg}}}{6 \text{ s}} = \underline{1570 \text{ W}}$ b) $P_{abs} = \frac{P_{ab}}{\eta_G \cdot \eta_M} = \frac{1570 \text{ W}}{0,71 \cdot 0,81} = \underline{2730 \text{ W}}$ 3.5.6 Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 la	e de 1	
a) $P_{utile} = \frac{m \cdot h \cdot g}{t} = \frac{120 \text{ kg} \cdot 8 \text{ m} \cdot 9,81 \frac{N}{\text{kg}}}{6 \text{ s}} = \underline{1570 \text{ W}}$ b) $P_{abs} = \frac{P_{ab}}{\eta_{G} \cdot \eta_{M}} = \frac{1570 \text{ W}}{0,71 \cdot 0,81} = \underline{2730 \text{ W}}$ 3.5.6 Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 la		
3.5.6 3. Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 la		Ī
8. Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 la		
halogène à basse tension ayant chacune les caractéristiques suivantes: $P = 50 \text{ W}, \Phi = 950 \text{ Im}$	ampes 2	
Le rendement de l'éclairage est de 45 %.		
Calculez l'éclairement moyen E _M .		
Solution:		
$\Phi_{N,1 \; lampe} = \eta_B \cdot \; \Phi = 0,45 \cdot 950 \; lm = \underline{427,5 \; lm}$	0,5	
$\Phi_{N,total} = 3 \cdot \Phi_{N,1 \ lampe} = 3 \cdot 427, 5 \ lm = 1282, 5 \ lm$	0,5	
$E_{M} = \frac{\Phi_{N,total}}{A} = \frac{1282,5 \text{ lm}}{18 \text{ m}^{2}} = \frac{71,25 \frac{\text{lm}}{\text{m}^{2}} = 71,25 \text{ lx}}{100 \text{ lm}}$	1	

			Nombre of maximal	de point obtenu
3.2.5 Une boucle conductrice est déplacée dans le cham Cochez la bonne réponse pour chacune des affirma		que.	2	
N Sens of	du déplaceme	ent		
Déclarations / Affirmations	juste	faux		
L'aiguille de l'appareil ne bouge pas lorsque la boucle est déplacée horizontalement			0,5	
L'aiguille de l'appareil bouge lorsque la boucle est déplacée verticalement			0,5	
Un déplacement horizontal provoque l'apparition d'une tension			0,5	
La tension augmente lorsque la vitesse de déplacement augmente			0,5	
Solution:				
Déclarations / Affirmations	juste	faux		
L'aiguille de l'appareil ne bouge pas lorsque la boucle est déplacée horizontalement				
L'aiguille de l'appareil bouge lorsque la				
boucle est déplacée verticalement				
	\boxtimes	1		Ì
boucle est déplacée verticalement Un déplacement horizontal provoque	\boxtimes			
boucle est déplacée verticalement Un déplacement horizontal provoque l'apparition d'une tension La tension augmente lorsque la vitesse de				