Hiveboard.ca

DroneBoard Version 1.0

Contents

DroneBoard Layout	2
DroneBoard Wiring	
HiveBoard Connector	
I ² C Connectors	
Drone Outputs	
Isolated EZO™ Sensor Connector	
Non-Isolated EZO™ Connector	
JST-SH Connector	1
Isolated EZO™ Sensor Connector	2
Non-Isolated EZO™ Connector	2
DroneBoard Basic Layout	3
DroneBoard Basic Wiring	
HiveBoard Connector	
I2C Connector	3
Drone Outputs	

DroneBoard Layout

- 1. HiveBoard Connection
- 2-3. I²C Connection
- 4-7. Drone Outputs
- 8. Isolated EZO™ Sensor Connector

- 9. Non isolated EZO™ Probe Connector
- 10. JST-SH Connector
- 11. Isolated EZO™ Sensor Connector
- 12. Non-isolated EZO Sensor™ Connector

The DroneBoard is designed to be connected to the HiveBoard through the DroneBoard connectors. It can also be used as a mini EZO^{TM} sensor holder. To do this one needs to provide power through the I^2C connections.

DroneBoard Wiring

HiveBoard Connector

Labelled as #1 on the DroneBoard Layout diagram

One can use a standard ethernet cable to connect the DroneBoard to the HiveBoard. If one is making their own breakout board, the wiring of the Drone connectors is as below. All outputs run at \sim 9.5V when connected to the HiveBoard

1. SCL	5. 5V
2. Output 4	6. Output2
3. SDA	7. GND
4. Output3	8. Output 1

I²C Connectors

Labelled as #2-#3 on the DroneBoard Layout diagram

Drone Outputs

Labelled as #4-#7 on the DroneBoard Layout diagram

Wired as (VDD/GND)

Each output has a LED that activates when turned on

Isolated EZO™ Sensor Connector

Labelled as #8 on the DroneBoard Layout diagram

Standard SMA connector

Non-Isolated EZO™ Connector

Labelled as #9 on the DroneBoard Layout diagram

Wired as (VDD/GND)

JST-SH Connector

Labelled as #10 on the DroneBoard Layout diagram

Wired as (SDA/SCL/5V/GND)

Isolated EZO™ Sensor Connector

Labelled as #11 on the DroneBoard Layout diagram

Runs at 5v Designed For:

Atlas Scientific EZO™ pH Sensor

Atlas Scientific EZO™ ORP Sensor

Atlas Scientific EZO™ Electrical Conductivity Sensor

Atlas Scientific EZO™ Dissolved Oxygen Sensor

Atlas Scientific EZO™ Temperature Sensor

Atlas Scientific EZO™ Flow Totalizer

Non-Isolated EZO™ Connector

Labelled as #12 on the DroneBoard Layout diagram

Runs at 5v Designed For:

Atlas Scientific EZO™ Temperature Probe

Atlas Scientific EZO™ Flow Totalizer

DroneBoard Basic Layout

1. Connection from HiveBoard

2-4. I2C Connection

5-8. Drone Outputs

DroneBoard Basic Wiring

HiveBoard Connector

Labelled as #1 on the DroneBoard Basic Layout diagram

One can use a standard ethernet cable to connect the DroneBoard to the HiveBoard. If they are making their own breakout board, the wiring of the Drone connectors is as below. All outputs run at \sim 9.5V when connected to the HiveBoard

1. SCL	5. 5V
2. Output 4	6. Output2
3. SDA	7. GND
4. Output3	8. Output 1

I2C Connector

Labelled as #2-#4 on the DroneBoard Basic Layout diagram

Wired as 5V/GND/SCL/SDA

Drone Outputs

Labelled as #5-#8 on the DroneBoard Basic Layout diagram

Wired as (VDD/GND)