Laboratório de Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Uma aplicação de Redes Neurais Convolucionais Regionais para Detecção de Malária

Jesus Dourado de Albuquerque Orientadora: Prof. Dra. Elloá Barreto Guedes da Costa {jda.eng17, ebgcosta}@uea.edu.br Trabalho de Conclusão de Curso 2022

Agenda

- Introdução
- Pundamentação Teórica
- Metodologia
- Resultados
- Considerações Finai

Motivação e Contextualização

- A malária é uma doença causada pelo protozoário do gênero *Plasmodium*, transmitida pelo mosquito do gênero *Anopheles* [OMS 2019]
- A enfermidade é um problema grave de saúde, sendo uma das principais doenças letais em regiões tropicais [OMS 2019]
- Segundo a OMS, foram registrados 228 milhões de casos e 405 mil mortes em âmbito global, a grande maioria ocorreu na África
- O Brasil, no anos de 2020 e 2021, registrou 141 mil e 135 mil casos, respectivamente [BRASIL 2021]

Motivação e Contextualização

- O diagnóstico precoce é importante para o tratamento adequado [Berzosa et al. 2018]
- Existem 2 tipos de diagnósticos: [OMS 2019]
 - Análise microscópica de lâminas de sangue
 - Testes Rápidos de Diagnósticos (RDTs)

- Automatizar a análise das lâminas para o protozoário presentes no sangue
 - Diminuir a quantidade de especialistas necessários e acelerar o diagnóstico

Objetivos

Objetivo Geral

Avaliar modelos de Deep Learning para detecção de malária em imagens microscópicas

Objetivos Específicos

- Identificar e preparar uma base de dados da literatura no domínio da detecção de malária
- Elaborar e conduzir um estudo de caso experimental para treinamento e avaliação comparativa das arquiteturas de CNNs para detecção de objetos
- Avaliar e analisar os resultados obtidos dos modelos

Agenda

- Introdução
- 2 Fundamentação Teórica
- Metodologia
- Resultados
- Considerações Finais

Fundamentação Teórica

- Rede Neural Artificial (RNA): composta por neurônios conectados numa rede que realizando cálculos sobre entradas e emitindo saídas
- Rede Neural Convolucional (CNN): utilizam filtros convolucionais que trabalham com entradas multidimensionais
- Rede Neural Convolucional Regional (R-CNN): voltadas para detecção de objetos
 - Janelamento
 - Selective Search
 - Outras CNNs
- CNNs e R-CNNs estão em constante evolução

Fundamentação Teórica: YOLO

- You Only Look Once: abordagem single-shot [Redmon et al. 2016]
- O modelo mostrou-se mais rápido e eficiente que os vigentes até agora
- Aplicações em tempo real, até 120 FPS

Fundamentação Teórica: YOLO

YOLOv5 [Jocher et al. 2020]

- Melhora na acurácia, velocidade de treinamento e de inferência, além de uma redução na quantidade de pesos
- Desenvolvida nativamente com framework Pytorch, visando maior suporte e processo de deploy simplificado

YOLOv7 [Wang et al. 2022]

- Aprimoramento dos modelos ao incorporar um processo de reparametrização
- Estratégia de dimensionamento em escala para outras quantidades de parâmetros

Agenda

- Introdução
- Pundamentação Teórica
- Metodologia
- Resultados
- Considerações Finais

Metodologia – Dados Experimentais

- Base da dados: Imagens do exame microscópico de lâminas de sangue no Hospital Universitário Chittagong, Bangladesh.
- 1830 imagens de 150 pacientes
- Arquivo de rótulo por imagem
- Células brancas e protozoários (84509)
- Delimitação dos objetos em formato circular

Metodologia – Dados Experimentais

(b) Imagem rotulada

Figura 1: Exemplos de imagens originais e recortadas contendo os rótulos da classe protozoário.

Metodologia – Distribuição das caixas delimitadoras

Figura 2: Histograma do número de caixas delimitadoras por imagem.

Metodologia – Regiões das caixas delimitadoras

Figura 3: Mapa de calor da distribuição das caixas delimitadoras pela área da imagem.

Metodologia – Validação e Avaliação

• Validação Cruzada do tipo holdout

Treinamento: 70%Validação: 10%

• Teste: 20%

- Regularização com o uso de early stopping: 100 épocas na YOLOv5
- Métricas: Precisão, Revocação, F₁-Score e mAP@0.5

Metodologia – Parâmetros e Hiperparâmetros

- YOLOv5 Nano: 1,7 milhões
- YOLOv5 Small: 7 milhões
- YOLOv5 Medium: 20,8 milhões
- YOLOv7 Tiny: 6 milhões
- YOLOv7 Standard: 36.4 milhões
- YOLOv7 Large: 70,7 milhões
- Número de épocas: 300 e 500 épocas
- Taxa de aprendizado: 10^{-2}
- Tamanho do batch: 16. 8 e 4

Agenda

- Introdução
- Pundamentação Teórica
- Metodologia
- Resultados
- Considerações Finai

Tabela 1: Síntese dos resultados experimentais.

Modelo	Épocas	Precisão	Revocação	F-Score	mAP@0.5	Parâmetros	Tempo
YOLOv5 Medium	300/300	59,5 %	63,1 %	61,20 %	55,5 %	20.852.934	9 h7 min
YOLOv5 Medium	264/500	81,7 %	78,9 %	80,27 %	79,9 %	20.852.934	9 h58 min
YOLOv5 Small	173/300	81,5 %	79,7 %	80,58 %	80,7 %	7.012.822	7 h26 min
YOLOv5 Small	194/500	81,4 %	79,4 %	80,38 %	80,4 %	7.012.822	6 h
YOLOv5 Nano	293/300	79,5 %	77,5 %	78,48 %	78,3 %	1.760.518	10 h19 min
YOLOv5 Nano	340/500	79,9 %	78,2 %	79,04 %	79,0 %	1.760.518	12 h38 min
YOLOv7 Large	500/500	80,6 %	79,9 %	80,24 %	81,4 %	70.782.444	52 h5 min
YOLOv7 Standard	500/500	79,2 %	78,8 %	78,99%	79,8 %	36.481.772	26 h34 min
YOLOv7 Tiny	500/500	75,2 %	77,9 %	76,52 %	77,0 %	6.007.596	23 h1 min

Tabela 2: Modelo melhor avaliado.

Modelo	Épocas	Precisão	Revocação	F-Score	mAP@0.5	Parâmetros	Tempo
YOLOv5 Medium	300/300	59,5 %	63,1 %	61,20 %	55,5 %	20.852.934	9 h7 min
YOLOv5 Medium	264/500	81,7 %	78,9 %	80,27 %	79,9 %	20.852.934	9 h58 min
YOLOv5 Small	173/300	81,5 %	79,7 %	80,58 %	80,7 %	7.012.822	7 h26 min
YOLOv5 Small	194/500	81,4 %	79,4 %	80,38 %	80,4 %	7.012.822	6 h
YOLOv5 Nano	293/300	79,5 %	77,5 %	78,48 %	78,3 %	1.760.518	10 h19 min
YOLOv5 Nano	340/500	79,9 %	78,2 %	79,04 %	79,0 %	1.760.518	12 h38 min
YOLOv7 Large	500/500	80,6 %	79,9 %	80,24 %	81,4 %	70.782.444	52 h5 min
YOLOv7 Standard	500/500	79,2 %	78,8 %	78,99 %	79,8 %	36.481.772	26 h34 min
YOLOv7 Tiny	500/500	75,2 %	77,9 %	76,52 %	77,0 %	6.007.596	23 h1 min

Tabela 3: Modelo com as menores métricas de desempenho.

Modelo	Épocas	Precisão	Revocação	F-Score	mAP@0.5	Parâmetros	Tempo
YOLOv5 Medium	300/300	59,5 %	63,1 %	61,20 %	55,5 %	20.852.934	9 h7 min
YOLOv5 Medium	264/500	81,7 %	78,9 %	80,27 %	79,9 %	20.852.934	9 h58 min
YOLOv5 Small	173/300	81,5 %	79,7 %	80,58 %	80,7 %	7.012.822	7 h26 min
YOLOv5 Small	194/500	81,4 %	79,4 %	80,38 %	80,4 %	7.012.822	6 h
YOLOv5 Nano	293/300	79,5 %	77,5 %	78,48 %	78,3 %	1.760.518	10 h19 min
YOLOv5 Nano	340/500	79,9 %	78,2 %	79,04 %	79,0 %	1.760.518	12 h38 min
YOLOv7 Large	500/500	80,6 %	79,9 %	80,24 %	81,4 %	70.782.444	52 h5 min
YOLOv7 Standard	500/500	79,2 %	78,8 %	78,99%	79,8 %	36.481.772	26 h34 min
YOLOv7 Tiny	500/500	75,2 %	77,9 %	76,52 %	77,0 %	6.007.596	23 h1 min

Tabela 4: Modelo mais leve melhor avaliado.

Modelo	Épocas	Precisão	Revocação	F-Score	mAP@0.5	Parâmetros	Tempo
YOLOv5 Medium	300/300	59,5 %	63,1 %	61,20 %	55,5 %	20.852.934	9 h7 min
YOLOv5 Medium	264/500	81,7 %	78,9 %	80,27 %	79,9 %	20.852.934	9 h58 min
YOLOv5 Small	173/300	81,5 %	79,7 %	80,58 %	80,7 %	7.012.822	7 h26 min
YOLOv5 Small	194/500	81,4 %	79,4 %	80,38 %	80,4 %	7.012.822	6 h
YOLOv5 Nano	293/300	79,5 %	77,5 %	78,48 %	78,3 %	1.760.518	10 h19 min
YOLOv5 Nano	340/500	79,9 %	78,2 %	79,04 %	79,0 %	1.760.518	12 h38 min
YOLOv7 Large YOLOv7 Standard YOLOv7 Tiny	500/500 500/500 500/500	80,6 % 79,2 % 75,2 %	79,9 % 78,8 % 77,9 %	80,24 % 78,99 % 76,52 %	81,4 % 79,8 % 77,0 %	70.782.444 36.481.772 6.007.596	52 h5 min 26 h34 min 23 h1 min

Figura 4: Resultados desejados e inferidos pelo modelo YOLOv5.

Figura 5: Predição ideal da imagem.

Figura 6: Detecção pelo modelo YOLOv7.

Figura 7: Comparação entre o resultado ideal e o detectado do modelo YOLOv7.

Agenda

- Introdução
- Pundamentação Teórica
- Metodologia
- Resultados
- Considerações Finais

Considerações Finais

- A solução baseada em YOLO e desenvolvida neste trabalho é um modelo satisfatório para a tarefa de detecção de protozoários responsáveis pela malária
- Identificação de configuração da YOLOv7 com melhor desempenho
 - Large para 500 épocas
 - mAP@0.5 = 81,4%

 As entradas para o modelo foram imagens microscópicas originais, sem processamento prévio das mesmas

Considerações Finais: Próximos Passos

- Melhorar o desempenho da solução, buscando explorar também as novas arquiteturas, suas configurações e ajuste fino de parâmetros
- As imagens poderão ser divididas e as caixas delimitadoras alteradas, focando melhorar o desempenho dos treinos e testes com as novas versões.

Referências I

Berzosa, P., de Lucio, A., Romay-Barja, M., Herrador, Z., González, V., García, L., Fernández-Martínez, A., Santana-Morales, M., Ncogo, P., Valladares, B., Riloha, M., and Benito, A. (2018).

Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from equatorial guinea. $Malar.\ J.,\ 17(1):333.$

BRASIL (2021).

Boletim Epidemiológico 2021.

Ministério da Saúde do Brasil, Brasil, 17 edition.

Disponível em https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/boletins-epidemiologicos/edicoes/2022/boletim-epidemiologico-vol-53-no17.pdf. Acesso em 5 de abril de 2023.

Referências II

Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, tkianai, Hogan, A., Iorenzomammana, yxNONG, AlexWang1900, Diaconu, L., Marc, wanghaoyang0106, ml5ah, Doug, Ingham, F., Frederik, Guilhen, Hatovix, Poznanski, J., Fang, J., Yu, L., changyu98, Wang, M., Gupta, N., Akhtar, O., PetrDvoracek, and Rai, P. (2020). ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements. Disponível em https://doi.org/10.5281/zenodo.4154370. Acesso em 5 de abril de 2023.

OMS (2019).

World malaria report 2019.

Organização Mundial de Saúde, França, 1 edition.

Disponível em https://www.who.int/publications/i/item/9789241565721.

Acesso em 5 de abril de 2023.

Referências III

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Estados Unidos. IEEE.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022).

Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

Disponível em https://arxiv.org/abs/2207.02696. Acesso em 5 de abril de 2023

Laboratório de Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Uma aplicação de Redes Neurais Convolucionais Regionais para Detecção de Malária

Jesus Dourado de Albuquerque Orientadora: Prof. Dra. Elloá Barreto Guedes da Costa {jda.eng17, ebgcosta}@uea.edu.br Trabalho de Conclusão de Curso 2022