

与代做 CS编程辅导 Information Technology

FIT1006 Business mation Analysis

Assignment Project Exam Help

Lecture 12 The Normal Distribution

Email: tutorcs@163.com

Topics covered: 代写代做 CS编程辅导

Characteristics of

dard Normal

- Standardising vari
- Mean and variance WeChat: cstutorcs
- Calculating Normal probabilities using tables and Excel Assignment Project Exam Help
- The Normal approximation to the Binomial & Poisson Distributions

 Email: tutorcs@163.com

QQ: 749389476

Motivating problem代做 CS编程辅导

- To reduce the region line in a reorder political in the level of stock, retailers set a reorder political in the level of stock at which an order is raised, to arrive after a certain lead time.

 WeChat: cstutorcs
- If a product's demanded of the set to so that there is only a 2% chance of running out of stock? If a product's demanded of the reorder point be set to so that there is only a 2% chance of running out of stock?

The Normal distribution CS编程辅导

- The most important tribution in statistics.
- Arises when we is the large number of nearly identical objects subject to random fluctuations we chat: cstutorcs height, weight, response time. (Used a lot in biometrics). Assignment Project Exam Help
- The Normal Distribution self-when we take the sum or average of a large incumber of observations from any probability distribution and thus provides the basis for sampling theory.

The Bell Curke^{序代写代做 CS}编程辅导

- The shape of the little list is listribution can be seen below. The shape is often it is to as the bell curve.
- The distribution below has a mean of 0 and a standard deviation of 1 and Watablet the total and Normal. Note: continuous distribution.

15

https://flux.qa程序eeacode:多线像CV)

Question 1

Using the approximately areas for the Standard Normal distribution, P(Z > 1) =

WeChat: cstutorcs

A. 0.14 Assignment Project Exam Help

-3.0

-4.0

✓ B. 0.16

C. 0.34

D. 0.84

E. None of these.

Email: tutorcs@163

-2.0

QQ: 749389476

https://tutorcs.com

-1.0

0.34

0.0

 0.14 ± 0.02

https://flux.qa 存色语句的图:多好像GV)

Question 2

Using the appro回流 areas for the Standard

Normal distribution below, P(-2 < Z < 2) =

WeChat: cstutorcs

A. 0.14

B. 0.48

✓ C. 0.96

D. 0.98

E. None of these.

-4.0

Assignment Project Exam Help
0.5-0.02+0.34+0.14

Email: tutorcs@163.com Or: 1 - (0.2+0.2)

QQ: 749389476

-3.0

https://tutorcs.com

-2.0

0.50

0.0

-1.0

0.34

1.0

0.14

2.0 3.0

4.0

https://flux.qa程序经看它的ES编码V)

Question 3

Using the approximation areas for the Standard Normal distribution below, P(Z > -2) =

WeChat: cstutorcs

-3.0

-2.0

-4.0

General Properties代做 CS编程辅导

■ The total area uncertain The total area unc

95% of the area is within 2 standard deviations of the mean.
 WeChat: cstutorcs

• 99.7% of the area Assignment standard deviations of the

mean.

Email: tutorcs@163.com

QQ: 74<mark>9389476</mark>

Calculating Normal 中的語時情報

- The Normal probabilities directly.
- By Hand: use the table of Standard Normal cumulative probabilities, CD to Chat: cstutorcs
- Excel: use the built in Excel functions (which are good approximations of the exact values).
- Excel: Normal CDF: =normdist(z,mean,stdev,true).
- Inverse Normal CDF: 749389476v(prob, mean, stdev).
- Your calculator show dependent calculate Normal probabilities using similar commands.

Standard Noffat 它的學 fs衛陽輔导

Cumulative Probabilities for the Line I Distribution												
Table gives $P(Z for Z=N(0,1)$												
	,		領域	Tutor CS								
Z	0.00	0.01			0.04	0.05	0.06	0.07	0.08	0.09		
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359		
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753		
0.2	0.5793	0.5832	0881	Inati	CStut	10G 887	0.6026	0.6064	0.6103	0.6141		
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517		
0.4	0.6554	0.6591	0,6628	0.6664	0.67 0 0	0.6736	0.6772	0.6808	0.6844	0.6879		
0.5	0.6915	0.6950	6.6985	817019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224		
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549		
0.7	0.7580	0.7611	(F.7642)	0.7673	1017704	@0.1784	0,7764	0.7794	0.7823	0.7852		
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133		
0.9	0.8159	0.8186	0.8212	0.8238		0.8289	0.8315	0.8340	0.8365	0.8389		
1.0	0.8413	0.8438	(1.8461	Ø.8485	6 3 3 4 8 /	0.8531	0.8554	0.8577	0.8599	0.8621		
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830		
1.2	0.8849	0.8869	0.8888	0,8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015		
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177		
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319		
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441		

Table continues...

The Normale Distribution in Practice

- The Standard distribution has mean = 0 and standard applications of the applications of the area o
- However, as the Normal distribution is completely defined by the mean and variance (or standard deviation) we Earnia ply the Standard normal to any problem by standardising the variable of interest.

Standardising Variables Standardising Variables \$ \$\\ \text{Variables}\$ \$ \$\ \text{Variables}\$ \$ \$\\ \text{Variables}\$ \$ \$\\

use of the formulae Chat: x Cstutorand $Z \approx N(0,1)$. In this way we can apply the Standard Normal probabilities to any problem. Email: tutorcs@163.com

QQ: 749389476

https://flux.qa程序eeacodes/多线像V)

Question 4

If X is Normally that ted with mean 200 and standard deviated. Using the approximate areas for the standard normal P(X < 150) =

https://flux.qa程序eeacodes多线像V)

Question 5

If X is Normally (with mean 200 and standard deviation) standard deviation standard normal if P(X) = 0.98, then

B.
$$B = 250$$

✓ C. B = 300

D. B = 350

E. None of these.

B= 300

-3.0

-4.0

nttps://tutorcs.com

-2.0

0.50

-1.0

Example

0.9332 程序代写代做 C8编程辅导

> 40 43 Z=1.5

A machine manufactured by the machine has a length of which have a length of 40mm with a variable with machine has a length greater than 43 mm?

WeChat: cstutorcs

From the problem X_{ign} ign Y_{ign} $Y_{$

using the formula $Email: tutor, cth (as B) Xom (3) becomes <math>\sigma$

$$P(Z > \frac{43-40}{2})$$
 QQ: 749389476 and $Z \approx N(0,1)$. https://tutorcs.com

Thus we calculate P(Z > 1.5) = 1 - 0.9332 = 0.0668

From CDF table in <u>slide 11</u>

Example

程序代写代做CS编程辅导

The number of cut z = -1.36 = The number of cut z = -1.36 = entering a shop is known from historical information is normally distributed with a mean of 365 and a standard deviation of 33. What is the probability that on any gate he state of customers will be less than 320? ignment Project Exam Help

From the problem, X = 1633339, thus P(X < 320)

becomes
$$P(Z < \frac{320 \text{ QG65}}{33})^{49389476}$$
 and $Z \approx N(0,1)$.
Thus we calculate $P(Z < -1.36) = 1 - 0.9131 = 0.0869$

	.01	0.02	0.03	0.04	0.05	0.06	0.
4	40	0.5080	0.5120	0.5160	0.5199	0.5239	0.52
	.38	0.5478	0.5517	0.5557	0.5596	0.5636	0.56
	32	0.5871	0.5910	0.5948	0.5987	0.6026	0.60
	做	0.6255	异 0. 4	辅.6	0.6368	0.6406	0.64
	91	0.6628	0.6664	0.6700	0.6736	0.6772	0.68
	50	0.6985	0.7019	0.7054	0.7088	0.7123	0.71
	91	0.7324	0.7357	0.7389	0.7422	0.7454	0.74
	11	0.7642	0.7673	0.7704	0.7734	0.7764	0.77
	10	0.7939	0.796	0.7995	0.8023	0.8051	0.80
•	86	0.8212	0.8238	0.826	0.8289	0.8315	0.83

The proprietor of described in the previous question wants to set her staffing levels. She wants to be 80% sure of being able to meet customer demand. What number of customers per day rehould she plan for?

From the problem X_{1} is N(U_{1} = 365,63 2 com²). We want to find α such that (2.493894)6 = 0.8. From the tables, (2.493894)6 = 0.8. From the tables, approximately 393 customers per day.

Motivating problem代做 CS编程辅导

- To reduce the region line in a reorder political in the level of stock, retailers set a reorder political in the level of stock at which an order is raised, to arrive after a certain lead time.

 WeChat: cstutorcs
- If demand during the read time to sworth and distributed with an mean ω 20 β and standard deviation of 50 what should the reorder point be set to so that there is only a 2% chance of running out of stock?

Question: Wat should the reorder point be set to so that there is only a chack?

Solving...

Given: $\mu = 200$, $\sigma = 50$

In groups: Find

l 빌드빌리) then)	X≈	$N(200,50^2)$
----------------	----	---------------

					36.		Y: ≒ ↓					
Z	0.00	0.01	0.02	0.03	1	Tutor CS	0.06	0.07	0.08	0.09		
0.0	0.5000	0.5040	0.5080	0.5120	<u> 16515</u>	4	.5239	0.5279	0.5319	0.5359	> =	. –
0.1	0.5398	0.5438	0.5478	0.5517			.5636	0.5675	0.5714	0.5753	X= 2.00 = 3	·
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141		
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	2.00	6 X
0.4	0.6554	0.6591	0.6628	0.6664	0.6700			0.6808	0.6844	0.6879		
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.1088	0.7423	647457	9.7190	0.7224	= 3	103
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	-	,0
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	•	4
0.8	0.7881	0.7910	0.7939	0.7967	Ø 7 995	103023	ന്നുള്ളൂ:	0.8078	10:3706	9.8133	ım He	ln
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389		- P
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621		
1.1	0.8643	0.8665	0.8686	0.8708	0.8729				0.8810	0.8830	m \	
1.2	0.8849	0.8869	0.8888	0.8907	b.8925	0.8944	0.8962	0.8980	0.8997	.0903	\mathbf{H}	
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.916	0.9177		i i
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	\	
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	• 0.9 <mark>894</mark>	O 0.9426	Ø.9418	0.9429	0.9441	•	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545		$\mathbf{\Lambda}$
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633		
1.8	0.9641	0.9649	0.9656	0.9664	0.9671					0.9706		
1.9	0.9713	0.9719	0.9726	0.9732	09788	3.9/14/4	hozed	C057/6	Ud 9761	0.9767		
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.979	0.9803	9808	0.9812	0.9817		
												4

$$X = z\sigma + \mu$$
2.06 x 50 + 200
= 303

0.98

Z = 2.06

Normal Appf的於所被的希腊inomial

- When *n* is large (small, we can use the Normal distribution to ap the Binomial distribution.
- We use the mean riance of the Binomial Distribution to give us the parameters of the Normal Distribution and proceed: as the fire.
- Because a point probability Poinca Exatinuous distribution, (e.g. P(X=7) = 0) we make a continuity correction that assumics when we approximate a discrete distribution with a continuous one.
- If we wanted to determine (**X ← ** **4.5) for a binomial problem, we would use P(3.5 < X < 4.5) as the required interval using a Normal approximation.

Continuity Cerrection CS编程辅导

■ $P(X = 4), X \approx B$

3.5 < X < 4.5), X ≈ Normal

程序代写代做 CS编程辅导

1-0.9912 = 0.0088

Example

 $20\ 29.5 \rightarrow Z > 2.375$

• Students attem will liple choice test consisting of 100 question with 5 possible responses. What is the property that a student will score 30 or more just by guessing?

WeChat: cstutorcs

 $n = 100_{2} p = 0.2$

Let X be the student's score: X= Bi(100,0.2)

We can approximate the wah & ≤ N(20, 16)

$$P(X>29.5), X=N(20.746)89476$$
 $\mu = \mu = 100 \times 0.2 = 20$

= P(Z>2.375), Z_{th}
$$O(0)$$
 tiltores.com $\sigma^2 = np(1-p) = 20 \times 0.8 = 16$

$$=1-0.9912=0.0088$$

$$P(Z > \frac{X - \mu}{\sigma}) = P(Z > \frac{29.5 - 20}{4})$$

Normal Approximation of Poisson

- When μ ≥ 5, v use the Normal distribution to its imate the Poisson distribution.
 WeChat: cstutores
- We use the mean and variance of the Poisson Assignment Project Exam Help Distribution to give us the parameters of the Normal Distribution takes proceed as before, using a continuity representation.

Example

程序代写代做CS编程辅导

1-0.8682 0.1318

- Z = -1.118■ I have a 100 man a light of carpet, with a 0.05 chance of a different any metre.
- What is the probability that the roll will contain two or fewer defects?

Assignment Project Exam $\mathbf{Help}^{100 \times 0.05} = 5$

Let X be the runniber to refer before Poi(5)

$$P(X \le 2), X = Poi(5) = P(Z \le 2.5), X = N(5, 5)$$

$$= P(Z < (2.5 - 5)/sqrt(5), Z=N(0,1)$$

= 0.1318 (exact is 0.1247)

 $P(Z < \frac{X - \mu}{L}) = P(Z < \frac{2.5 - 5}{L})$

P(Z < -1.118)

25

Using Excel: =NORM.DIST(2.5,5,SQRT(5),TRUE)

Reading/Questions代做 CS编程辅导

- Reading:
 - 7th Ed. Section
- Questions:

WeChat: cstutorcs

Tth Ed. Questions 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.16, 8.19, 8.31, 8.32 ignment Project Exam Help

Email: tutorcs@163.com

Also file: Probability Distributions.xls