实验一 基尔霍夫定律的验证

姓名: 夏卓 学号: 2020303245

一、实验任务

- (1) 利用色环法读取各电阻值,并测量各电阻阻值,计算真实值与标定值之间的误差。记录在实验报告中。
 - (2) 正确搭接电源进行供电. 正确搭接电路。
 - (3) 正确使用测量仪器。
 - (4) 记录测量结果。

二、实验原理

基尔霍夫定律包含两个定律: 其一是研究电路中各支路电流间联系的规律, 称为基尔霍夫电流定律, 简称为 KCL; 其二是研究电路中各支路电压间联系的规律, 称为基尔霍夫电压定律, 简称为 KVL。

KCL 是指任意集中参数电路中,在任意时刻,流出或流入任一节点的电流代数和为零、即 $\Sigma I = 0$;

KVL 是指任意集中参数电路中,在任意时刻,沿任意一回路,各支路电压的代数和为零,即 Σ U=0。

三、实验电路方案

四、测试与分析

1. 测试用仪器

(由于没有 200 欧姆的电阻, 故使用了两个 100 欧姆的电阻串联等效)

仪器名称	数量
直流稳压电源	1
面包板	1
万用表	1
100Ω电阻	4
240Ω电阻	1
510Ω电阻	1
导线	若干

2. 测试步骤

首先通过色环法读取各电阻的阻值并记录,之后再用万用表测得实际阻值并记录,计算真实值与标定值之间的误差。接着对照电路原理图正确搭接电路,测量某个节点各支路的电流值来验证基尔霍夫电流定律,测量某个回路的各支路电压来验证基尔霍夫电压定律

3. 数据记录

序号	标定值/Ω	真实值/Ω	相对误差
R_1	$510 \times 10^{0} \pm 1\%$	507. 2	0. 55%
R_2	$240 \times 10^{0} \pm 1\%$	238. 9	0. 46%
R_3	$100 \times 10^{0} \pm 1\%$	100. 95	0. 95%
R_4	$100 \times 10^{0} \pm 1\%$	100. 37	0. 37%
R_5	$100 \times 10^{0} \pm 1\%$	99. 8	0. 2%
R_6	100×10 ⁰ ±1%	100. 63	0. 63%

	R_1	R_2	R_3	
电流/mA	9. 63	24. 07	33. 75	

	R_1	R_3	R_4	
电压/V	4. 962	3. 345	1. 950	

4. 计算结果与结论

由图可知, I_1 与 I_2 为流入节点的电流, I_3 为流出节点的电流,取流入方向为正,流出为负,则有 9.63 + 24.07 - 33.75 = -0.05 mA \approx 0,

即∑I=0, 因此有结论: 在任意时刻, 流出或流入任一节点的电流代数和为零, 故基尔霍夫电流定律得证。

同时, 若规定电位升为正号, 电位降为负号, 在回路中沿顺时针方向, 则有 $10-4.962-3.345-1.950=-0.257V\approx 0$,

即 $\Sigma U = 0$, 因此有结论: 在任意时刻, 沿任意一回路, 各支路电压的代数和为零, 故基尔霍夫电压定律得证。

五、分析与结论

(1)实验中遇到的问题

在验证基尔霍夫电流定律时出现了某条支路电流为零的情况,猜测 是出现了断路故障,排查过程中发现是与直流恒压源相连的导线的问题, 更换导线之后问题得以解决。

- (2) 实际测得的电流/电压的代数和不严格等于零的原因:
 - 1. 读数时存在误差;
 - 2. 导线连接不紧密产生的接触误差;
 - 3. 仪表的基本误差。

线性电路线性特性实验预习报告

一、实验原理

LM317 芯片单列直插式有三个引脚,第一个引脚(ADJ)的作用是调节,第二个引脚(Vout)的作用是电压输出,第三个引脚(Vin)的作用是电压输入。

二、实验电路图

三、仿真电路图

电流大小为 25.1mA 的恒流源:

电流大小为 12.6mA 的恒流源:

四、设计表格

为验证线性电路的线性特性实验设计的记录数据的表格如下:

	I1	12	13	14	15	U1	U2	U3	U4	U5
V ₃ 单独作用										
I_1 单独作用										
二者单独作用后的代 数和										
V_3 和 I_1 同时作用										
V_3 和 I_1 同时减小一半										

第一次仿真作业

(由于第一次仿真电路与实际操作的电路不一样,故在此单独列出) 第一题

1. 电路原理图

2. 仿真电路图

3. 仿真步骤

首先按照电路原理图进行仿真电路的搭建,然后选中一个节点,在支路上添加三个电流探针,以此验证基尔霍夫电流定律,接着点击仿真按钮,记录数据,计算电流代数和是否为零,注意电流参考方向的选取;选中一个回路,在各支路

上并联上一个电压表(这里用万用表替代了电压表),点击仿真按钮,记录数据, 计算电压代数和是否为零,同样需要注意电压的参考方向。

4. 仿真数据

	I_1	I_2	I_3	
电流/mA	-2. 76	5. 84	3. 08	

表 1

	V_1	R_1	R_3	R_5
电压/V	-10	1. 406	2. 757	5. 838

表 2

5. 分析与结论

由图可知, I_1 与 I_3 为流入节点的电流, I_2 为流出节点的电流,取流入方向为正,流出为负,则有: $\sum i_k = I_1 - I_2 + I_3 = -2.76 - 3.08 + 5.84 = 0$ mA,基尔霍夫电流定律得证;

同时,若规定电位升为正号,电位降为负号,在回路中沿顺时针方向,则有 $\sum u_k = U_1 + U_2 + U_3 + U_4 = -10 + 1.406 + 5.838 + 2.757 \approx 0 \text{ V},基尔霍夫电压定律得证。}$

第二题

1. 实验原理

基尔霍夫电流定律:在任一瞬时,流向某一节点的电流之和等于由该节点流出的电流之和,即在任一瞬间,一个节点上电流的代数和恒等于零。

2. 电路原理图:

3. 仿真电路图:

4. 仿真步骤

首先按照电路原理图进行仿真电路的搭建,然后在 A、B 节点连接的支路上添加五个电流探针,以此验证基尔霍夫电流定律,接着点击仿真按钮,记录数据,计算电流代数和是否为零,注意电流参考方向的选取。

5. 仿真数据

	I_1	I_2	I_3	I_4	I_5
电流/mA	-3. 00	1. 00	2. 00	-2. 00	4. 00

6. 结果分析:

由图可知,对于节点 A, 电流的参考方向均是流出,有: $\sum i_k = -I_1 - I_2 - I_4 - I_5$

$$= 3 - 1 + 2 - 4 = 0 \text{ mA};$$

对于节点 B,所有电流方向均是流入,有: $\sum i_k = I_1 + I_2 + I_3 = -3 + 1 + 2$

= 0 mA;

即证明了对于节点A和B来说,各支路电流代数和等于零