SC 624, Spring 2018 *Quiz 6*

Date: 11 April 2018 Time: 90 min

Throughout the paper, X is an open subset of \mathbb{R}^n , and f, g denote vector fields on X, and γ_t^f and γ_t^g denote their respective flows.

- 1. (10 points) Let $\phi: X \mapsto X$ be a diffeomorphism, and f a vector field on X. We define $Ad_{\phi}(f)$ to be the vector field such that $Ad_{\phi}(f)(p) = D\phi(\phi^{-1}(p))f(\phi^{-1}(p))$. Let σ_t denote the flow of $Ad_{\phi}(f)$. Show that $\sigma_t = \phi \circ \gamma_t^f \circ \phi^{-1}$.
- 2. (5 points) Show that

$$Ad_{\gamma_t^f}f = f.$$

3. (5 points) Show that

$$[Ad_{\phi}f, Ad_{\phi}g] = Ad_{\phi}[f, g]$$

4. (5 points) Show that

$$\left. \frac{\partial}{\partial t} A d_{\gamma_t^f} g \right|_{t=s} = -[f, A d_{\gamma_s^f} g] = -A d_{\gamma_s^f} [f, g]$$

(Hint : Use the fact that $[f,g]=\left.\frac{\partial}{\partial t}Ad_{\gamma_t^f}g\right|_{t=0}$ and the results from Q2 and Q3.)

5. (10 points) Use the above results to show that if [f,g] = 0, then $\gamma_t^f \circ \gamma_s^g = \gamma_s^g \circ \gamma_t^f$, $\forall s,t \in \mathbb{R}$. (Hint: Rewrite the above relation as $\gamma_{-s}^g \circ \gamma_t^f \circ \gamma_s^g = \gamma_t^f$. Does the expression on the LHS look familiar?)