Requirement analysis and validation for a road sign and road state notification system

Reported by;

KANG JEVIS

EBANG BLESSING

FOUYOU CHINJEH BRAIN

VISEMIH JANICE

INSTRUCTOR: DR. NKEMENI VALERY

institution: Biaka University Institute Of Buea

Table of content

- 1) Review and analysei of the requirements gathered
 - Completeness
- 2) clarification of Requirment
 - Identify inconsistencies
 - ambiguities and missing information
- 3) Prioritizing requirements based on importance and feasibility in cameroon
- 4) Classify requirements functional and non-functional

1) Review and analyse the requirements gathered;

This step critically evaluates the data gathered during requirement elicitation to ensure that the foundation of the application is robust, well-understood, and feasible to implement, especially considering the Cameroonian context.

Overview of Spreadsheet Data

The spreadsheet contains raw survey responses primarily focused on:

- •Road condition challenges
- •App usage behaviour
- •Notification preferences
- •Willingness to report hazards
- •Privacy and technical concerns

Total usable responses: 45

Key Insights from Survey Data

A. Common Driving Issues

Issue% of Respondents Affected Bad roads78% Police stops62% Potholes59% Wrong signage 43%

Interpretation: The app should prioritize updates on potholes, poor roads, and police checkpoints. These are high-friction pain points.

B. Road App Usage

Use Google Maps/Waze25% Do not use navigation apps 75%

Implication: There is a gap in localized and accessible navigation solutions. The new app should offer a lightweight, offline-friendly alternative.

C. Notification Preferences

Notification Type % Preference Voice Alerts65% Pop-up Alerts48% Vibration8%

Design Implication: Voice alerts are essential and must support local languages (English,French, Pidgin). Vibration is least effective.

D. Desired Alerts

Accident Reports82% Potholes77% Police Checkpoints 64%

Prioritization: Accident, pothole, and police alerts are the most critical features to implement in the MVP.

E. Crowdsourcing Willingness

Will report hazards 72% Want anonymity 59%

Feature Design: Include a one-tap reporting interface and ensure anonymity to maximize adoption.

F. User Concerns

Privacy66% Data Usage 49% Battery Life 44%

Mitigation Strategy:

- Use anonymized GPS data.
- Implement offline caching and Wi-Fi syncing.
- Add a battery-saver mode.

A. Completeness of Requirements

The gathered requirements do cover **major features and needs of the system**. Here's what is included and what's missing:

Category	Included in Requirements	Remarks
Road Sign & State Alerts	Yes	Alerts based on user location and event severity
Real-Time Data	Yes	From traffic cameras, sensors, crowdsourced users
User Preferences	Yes	Users can customize notification type, area, and frequency
Navigation System Integration	Yes	Meant to allow in-app guidance or sync with existing apps

Analysis of Missing Requirements and Their Feasibility

Missing Requirement	Feasibility	Implementation Options
User Management (Login/Register)	Yes	Easily implemented using Firebase Auth, JWT (for REST APIs), or social login (Google, Facebook). Can be optional for guest access.
Moderation of Reports (spam/fake reports)	Yes	Build in a report flagging system + admin panel for reviewing reports. Add logic to limit abuse (e.g., max daily reports, CAPTCHA).
Admin Dashboard (for updating road sign DB, reviewing reports)	Yes	Can be built as a web app using React/Angular + backend APIs. Admin roles can control who sees/modifies road or report data.

Offline Support / Caching	Partially	Full offline maps/alerts may be heavy. But basic caching of recent signs, local hazards, and notifications is doable via SQLite or Room DB on Android.
In-App Map View of Signs	Yes	Use OpenStreetMap or Mapbox SDK to display road signs and hazard pins in-app. Allows full customization and works offline with preloaded tiles.
Notification Severity Filtering	Yes	Let users choose notification levels (e.g., "All alerts", "Critical only", "Road closures only"). Stored in user settings/preferences.
Feedback Mechanism (users report app issues)	Yes	Simple form or in-app feedback tool. Store in DB or send via email to dev/admin.
Localization (French/English)	Yes	Cameroon is bilingual. Android/iOS support multilanguage apps with string resource files.
Notification History / Log	Yes	Store past alerts locally. Use SQLite/Room on Android or CoreData on iOS. Useful when users miss a notification.

2. Clarity of Requirements;

we'll now examine the questions/issues that need clarification,in order to elimnate inconsistences and ambiguities, especially to tailor the app to **Cameroon-specific standards, traffic laws, and technical constraints**. Below is a detailed assessment with action-oriented questions and clarity refinements.

Clarity of Requirements — Assessment and Refinement

1. Supported Road Signs – What types? Cameroon-specific?

Issues:

- Cameroon follows a mix of Vienna Convention-style road signs but also includes local variations.
- No national public API or online catalog of official road signs.

Clarification Required:

 What categories of road signs will the app support? (Regulatory, Warning, Guide, Information, etc.) Will the signs include images and local descriptions in French and English?

Recommendation:

- Source road signs from **Cameroon's Ministry of Transport** or licensed driver manuals.
- Build a **local database of signs** (with icon, meaning, location, and usage context).

2. Integration with Navigation Systems – What method?

Issues:

- Google Maps and Apple Maps **do not allow direct overlay of persistent custom alerts** without their Enterprise APIs.
- **Cameroon map data** might not be as detailed as developed countries.

Clarification Required:

- Do we aim to:
 - Overlay alerts/signs within external navigation apps (e.g., Waze)?
 - Or embed a **custom map view inside the app** with OpenStreetMap/Mapbox?

Recommendation:

- Use **OpenStreetMap or Mapbox SDK** to build an **in-app navigation/map** system with full control.
- Consider **linking to external apps** (Google Maps/Waze) when giving directions, but not for alert overlays.

3. Crowdsourced Reports – What kind of reports? What validation?

Issues:

- Without moderation, users could spam or misuse the reporting tool.
- Users may not know how to classify hazards accurately.

Clarification Required:

- What types of hazards can users report? (e.g., potholes, accidents, roadblocks, floods, missing signs)
- Should users attach photos, location, and category?
- Will there be a **moderation or reputation system**?

Recommendation:

- Limit initial report types to 4–5 categories.
- Require GPS location + optional photo upload.
- Use a **flag/report abuse** system for spam detection.
- Build a **lightweight admin panel** for manual moderation.

4. Data Sources – Traffic, Weather, Road States

Issues:

- Cameroon lacks a central open traffic API like Google's Waze feed.
- Weather APIs (like OpenWeatherMap) have low-resolution local data.

Clarification Required:

- What is the intended data source for:
 - Traffic congestion
 - Weather and road hazards
 - Roadworks/closures

Recommendation:

Use:

- **Crowdsourced data** from users for road hazards.
- **OpenWeatherMap API** for weather alerts.
- Partner with **local road authorities** for traffic updates, if possible.
- Integrate **SMS-based alerts** from road authorities as a backup.

5. User Preferences – How granular should filtering be?

Issues:

• "Customizable notifications" is vague.

Clarification Required:

- Should users filter:
 - By region/route?
 - By **type of alert** (e.g., weather only)?
 - By **time of day** (e.g., only during commute)?

Recommendation:

- Implement basic preferences first:
 - Alert types (Road sign info, Hazards, Closures, Weather)
 - Geographical filtering (e.g., within 50km radius)

6. Language and Localization – Is bilingual support required?

Issues:

- Cameroon is officially bilingual (French and English), but local dialects exist.
- Legal/official road data might only be in French.

Clarification Required:

• Should the app support both English and French UIs and notifications?

Recommendation:

- Implement full bilingual support.
- Store road sign descriptions and messages in both languages.
- Allow language switching in settings.

3) Prioritizing requirements based on importance and feasibility in cameroon

Module	Feasibility	Notes
GPS Tracking	✓ High	Fully supported on devices
Road Sign Database	1 Medium	Needs manual or sourced dataset
Real-Time Traffic/Hazards	Moderate	Crowdsource or partner with agencies
Weather Data	✓ High	OpenWeatherMap API sufficient
Crowdsourced Reporting	High	Simple and scalable
Push Notifications	✓ High	Use Firebase
Voice Alerts	✓ High	Android/iOS native TTS
Navigation Integration	Moderate	Use custom maps like OSM/Mapbox
User Preferences	High	Local/backend settings possible
French/English Language	High	Use i18n for full bilingual UX
Backend Data Storage	High	Firebase or cloud backend

4. Classify Requirements;

for the Road Sign and Road State Mobile Notification Application, specifically organizing them into:

- Functional Requirements: What the system should do
- Non-Functional Requirements: How the system should behave

This classification will help guide architecture, development, and testing strategies.

REQUIREMENT CLASSIFICATION

Functional Requirements (FR)

These define the **core functionality** of the system — what features it must provide:

ID	Functional Requirement	Description
FR1	User registration and login (optional)	Allow users to create accounts (optional if anonymous usage is allowed).
FR2	GPS-based location tracking	App tracks user location to determine proximity to road signs or hazards.
FR3	Road sign identification and display	Based on location, the app displays road signs with their meanings.
FR4	Real-time road condition alerts	Show updates on traffic, accidents, weather hazards, and roadblocks.
FR5	Crowdsourced reporting module	Users can report hazards, accidents, or missing signs.
FR6	Notification system	Push or in-app alerts for road signs and hazards.
FR7	Customizable alerts	Users choose which types of signs or hazards to be notified about.
FR8	Offline access to road sign database	Cached signs can be viewed when offline.
FR9	Multilingual support	Provide content in both English and French.
FR10	Integration with navigation systems	overlay information onto existing apps (like Waze).
FR11	Admin backend (moderation)	Allow moderators/admins to manage user reports and content.
FR12	User feedback system	Let users report inaccurate data or rate the app.

Non-Functional Requirements (NFR)

These define **system qualities** — performance, usability, security, etc.

ID	Non-Functional Requirement	Description
NFR1	Performance	App should respond to user actions within 2 seconds.
NFR2	Availability	System must be available 24/7, with minimal downtime.
NFR3	Scalability	System must support scaling to thousands of users across regions.
NFR4	Security	GPS data and user reports must be protected; implement basic encryption and secure APIs.
NFR5	Privacy compliance	App must comply with local data protection regulations in Cameroon (if any) and best practices.
NFR6	Maintainability	Modular code design for easy updates and future feature additions.
NFR7	Accessibility	App should be usable by visually impaired users (voice support, large text options).
NFR8	Localization	App must support text and audio in both French and English.
NFR9	Low bandwidth optimization	App should function efficiently on slow or intermittent internet connections.
NFR10	Battery efficiency	GPS and background processes must be optimized to preserve battery.

After this assessment we proceed to developing the Software Requirements Specification (SRS). And then validation