Basic Electronic Circuits Lab (IEC-103)

Experiment-05

Objective

To build a square wave generator and triangular wave generator.

Components

- Op-amp ICS (741)
- Resistances ($10K\Omega$, $12K\Omega$, $20K\Omega$, and $47K\Omega$)
- Capacitors (0.1 μF and 0.01 μF)
- Breadboard
- Connecting wires

Equipment

• Regulated Power supplies (\pm 12 V) to power up op-amp.

CRO for voltage measurements.

741 Op Amp IC

741 Op Amp IC (Pin Diagram)

Power Supply (Fixed)

Oscilloscope

 $R_1 = R_2 = 10 \text{ k}\Omega$ and $R = 10 \text{ k}\Omega$ and $20 \text{ k}\Omega$, $C = 0.1 \text{ }\mu\text{F}$ and $0.01 \text{ }\mu\text{F}$

Time period of the oscillations

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

where

$$\beta = \frac{R_1}{R_1 + R_2}$$

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

where

$$\beta = \frac{R_1}{R_1 + R_2}$$

If $R_1 = R_2$ then $\beta = 0.5$.

Observations

T (theoretical) =
$$2RC ln \left(\frac{1+0.5}{1-0.5} \right) = 2RC ln (3) = 2.197RC$$

Sr. No.	R ₁	R_2	β	R	С	T (theoretical)	T (measured)
1	10 K	10 K	0.5	10 K	0.1 μF		
2	10 K	10 K	0.5	10 K	0.01 μF		
3	10 K	10 K	0.5	20 K	0.1 μF		

 $R_1 = R_2 = R_3 = 10 \text{ k}\Omega$ and $R_4 = 10 \text{ k}\Omega$, $12 \text{ k}\Omega$ and $20 \text{ k}\Omega$, $R_5 = 47 \text{ k}\Omega$,

$$C_1 = C_2 = 0.1 \mu F$$

Time period of the oscillations

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

where

$$\beta = \frac{R_3}{R_2 + R_3}$$

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

where

$$\beta = \frac{R_3}{R_2 + R_3}$$

If $R_2 = R_3$ then $\beta = 0.5$.

Time period of the oscillations

$$T = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

where

$$\beta = \frac{R_3}{R_2 + R_3}$$

If $R_2 = R_3$ then $\beta = 0.5$.

$$slope = \pm \frac{V_{sat}}{R_4 C_2}$$

Observations

slope (theoretical) =
$$\pm \frac{V_{sat}}{R_4 C_2}$$

Sr. No.	R ₁	R_2	R_3	R_4	R_5	C_1	C_2	Slope (Theoretical)	Slope (Measured)	T (The.)	T (Meas.)
1	10 K	10 K	10 K	10 K	47 K	0.1 μF	0.1 μF				
2	10 K		10 K	12 K	47 K	0.1 μF	0.1 μF				
3	10 K	10 K	10 K	20 K	47 K	0.1 μF	0.1 μF				