(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-289929

(43)公開日 平成6年(1994)10月18日

(51)Int.Cl. ⁵ C 0 5 D B 6 5 C C 0 1 C G 0 5 B C 0 6 F	43/00 21/00 13/02	H Z Z J	庁内整理番号 9323-314 9131-314 8724-51.	FI	技術表示簡新
0001	15/20		0/21 31.	審查請求	未請求 請求項の数1 OL (全 8 頁)
(21)出顯番号		特颐平5—77244	a re anne i e managambananan din arandah	(71)出版人	000002059 神卿電機株式会社
(22)出航日		平成 5 年(1993) 4 月	i 2 🖯	(72)発明者	東京都中央区日本橋 3 丁目12番 2 号 江川 [
				(74)代理人	弁理士 志賀 正武 (外2名)

(54) 【発明の名称 】 最適経路決定装置

(57)【要約】

【目的】 規則的な走行路に対しても、簡単に唯一つの 最適経路を決定する。

【構成】 静的グラフ生成部10により、走行路の各ノード間の距離または移動時間に基づいて、走行可能なノード間を結ぶ各アーク毎に第1のコストが算出される。また、目標ノードが指示されると、角度ポテンシャル計算部11により、目標ノードから見た各アークを構成する各ノードの方向に基づく第2のコストが算出される。これらのコストは各アーク毎に加算される。最適経路生成器9は、出発ノードから目標ノードに至る最適経路として、各アークの加算コストの積算値が最小になる場合を選択する。

【特許請求の範囲】

【請求項1】 走行路上に点在する複数のノードに対し、隣接する走行可能な第1および第2のノードを結ぶアークの集合について、前記各ノード間の距離または移動時間に基づいて各アーク毎に第1のコストを算出する第1のコスト算出手段と、

目標ノードが指示されると、目標ノードから見た前記第 1ノードの方向と所定方向との角度差と、目標ノードから見た前記第2ノードの方向と該所定方向との角度差を 算出し、両角度差の差に基づいて、各アーク毎に第2の コストを算出する第2のコスト算出手段と、

前記第1および第2のコスト算出手段によるコスト算出 結果を、前記各アーク毎に加算する加算手段と、

前記加算手段により算出された加算コストに基づき、出発ノードから目標ノードに至る最適経路として、各アークの加算コストの積算値が最小になる場合を選択する経路生成手段とを具備することを特徴とする最適経路決定装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、工場等の無人搬送システムにおいて、出発点と目標点とを結ぶ最適な経路を決定する最適経路決定装置に関する。

[0002]

【従来の技術】無人搬送システムにおいて、データ設定が少なくて済む最適経路決定装置として、本願発明者は、先に、図9に示す構成を用いた方法を提案している(特願平3-141373)。図9は、無人搬送車の構成を示しており、16は走行路の地図データが記憶された地図データメモリであり、走行路上において無人搬送車が停止可能なノードの座標や、その接続関係が記憶さ

れている。また、17は無人搬送車の速度等のデータが 記憶された無人搬送車データメモリである。

【 **0 0 0 3**】また、 1 8 はグラフ生成器であり、以下に 示すグラ **G** 0 を作成する。

 $G0 = (N, A, C0) \cdots$

【0004】19は最適経路生成器であり、図示しない制御局からこの無人搬送車に搬送指示が送られると、与えられた搬送指示から出発ノードと目標ノードを求める。そして、これとグラフ生成器18において求められたグラフG0、地図データおよび無人搬送車データに基づいて、積算コストが最小となるような最適経路を生成する。

【0005】ここで、各アーク $ak=\{ni,nj\}$ についてのコスト計算の指標としては、(a) ノード間の距離、

(b) ノード間の移動時間、に加え、(c) 経路の方向性を考慮することも可能である。

【0006】(a) の場合、ノードiからノードjへのアークのコストBijは下式(1) により求められる。Bij=dij ……(1)

dijは、始点ノードiと終点ノードjとの直線距離 (mm) であり、

$dij = ((xj - xi)2 + (yj - yi)2)1/2 \cdots (2)$

と表される。ここで、xi, yiはノードiのx, y座標 (mm)、xj, yjはノードjのx, y座標 (mm) である。

【0007】(b) の場合、ノード i からノード j へのアークのコストBijは下式(3) により求められる。Bij=dij/vij ……(3)

 $Bij = (dij/vij) \times (1-pij)$

距離dij、速度vijは上記と同様に求められ、pijは経路の方向性による「好ましさ」を表すペナルティ係数である。例えば、ノードiからノードjへの方向が「好ましくない」方向(逆方向)ならばpijを負数にしてコストを上げ、一方「好ましい」方向(正方向)ならばpijを正数にしてコストを下げることが可能である。係数pijの絶対値は好ましさの程度に応じて「0~1」の範囲で設定される。全てのアークについて適切なペナルティ係数が設定されれば、任意の2点(出発点と目標点)を結ぶ場合の積算コストが最小になる経路(以後、最短経路という)は唯一つ求まる。

距離dijは上記と同様に求められ、vijはノードiから ノードjへの移動速度(m/sec)であるので、Bij はノード間の移動時間に対応した量となっている。

【0008】(c)の場合、ノードiからノードjへのアークのコストBijは下式(4)により求められる。

..... (4)

[0009]

【発明が解決しようとする課題】しかし、全てのアークについて、ペナルティ係数を適切に設定するには、ペナルティ係数が経路探索に及ぼす影響を慎重に考慮しなければならず、非常に煩雑であった。ところが、ペナルティ係数を考慮しない式(1)または(3)によりコストを計算すると、以下のような問題が起こる。

【0010】通常、走行路としては、図2に示す梯子型、あるいは図3に示す正方格子型のように、かなりの規則性を有する場合がほとんどである。図2の梯子型走行路は、「28」のノードより構成されている。図6

(A) は、各ノードの(x, y) 座標データである。図6(B) は、この梯子型走行路において、隣接移動可能な全シーンについて、始点および終点のノード番号、方向、速度データをまとめたものである。ここでは、経路の方向性は考慮されておらず、方向データは全て「0」となっている。

【0011】また、水平方向と垂直方向とでは移動速度 が異なるので、コストについては移動速度を考慮する

(3) 式で計算を行う。図7(A)は計算結果を各アークの脇に記したものである。ここでは、始点と終点とが互いに逆になるアークのコストは等しく、例えば、ノード1.2に関するアークのコストは、

B12=d12/v12=((4000 -1000)2 + (0 -0)2)1/2/(1000/1000)

より、「3000」と算出される。ここで、速度を「1000」で除算しているのは、(3)式の単位と合わせるためである。他のアークについても、同様に計算される。

【0012】このデータに基づいてノード1からノード

28への最短経路を決定するには、走行する各アークについてのコストを積算したトータルコストが最小となるような経路を選べば良い。しかし、ここでは、図7

(B) に示すように、トータルコストの等しい8通りの 最短経路が存在する。

【0013】また、図3の格子型走行路は「100」の ノードより構成されている。図8は、各ノードの(x, y) 座標データである。ここでは、ノード間の移動速度 は全て同一(1000mm/sec) とし、シーンデー タは省略する。更に、隣接するノード間の距離は全て1 mなので、(1)または(3)式により算出される各ア ークのコストは全て同一(1000)になる。

【0014】一般に、縦p本、横g本の格子型走行路において、左下のノードから右上のノードへ至る最短経路数は、

N(p, q) = p+q-2Cp-1 …… (5) により求められる。これにより図3の走行路におけるノード1からノード100への最短経路を計算すると、

【数1】

[0016]

【課題を解決するための手段】上記課題を解決するため に、本発明にあっては、走行路上に点在する複数のノー ドに対し、隣接する走行可能な第1および第2のノード を結ぶアークの集合について、前記各ノード間の距離ま たは移動時間に基づいて各アーク毎に第1のコストを算 出する第1のコスト算出手段と、目標ノードが指示され ると、目標ノードから見た前記第1ノードの方向と所定 方向との角度差と、目標ノードから見た前記第2ノード の方向と該所定方向との角度差を算出し、両角度差の差 に基づいて、各アーク毎に第2のコストを算出する第2 のコスト算出手段と、前記第1および第2のコスト算出 手段によるコスト算出結果を、前記各アーク毎に加算す る加算手段と、前記加算手段により算出された加算コス トに基づき、出発ノードから目標ノードに至る最適経路 として、各アークの加算コストの積算値が最小になる場 合を選択する経路生成手段とを具備することを特徴とす

[0017]

48620通り (6) 【作用】上記構成において、第1のコスト算出手段により、各ノード間の距離または移動時間に基づいて各アーク毎に第1のコストが算出される。また、目標ノードが指示されると、第2のコスト算出手段により、目標ノードがら見た第1ノードの方向と所定方向との角度差と、目標ノードから見た第2ノードの方向と該所定方向との角度差を算出し、両角度差の差に基づいて、各アーク毎に第2のコストが各アーク毎に加算される。経路生成手段は、出発ノードから目標ノードに至る最適経路として、各アークの加算コストの積算値が最小になる場合を選択する。

[0018]

【実施例】以下、図面を参照して、本発明の一実施例について説明する。図1は本実施例に関する最適経路決定装置のブロック図であり、図9と共通する部分については同一符号を付し、その説明を省略する。

【0019】図において、グラフ生成器8は、以下に示すグラフGを作成する。

 $G = (N, A, C) \cdots$

ここで、 $N=\{n1,n2,\cdots,nm\}$ および $A=\{a1,a2,\cdots,an\}$ は、前述したグラフG0 の各要素と同一であり、説明を省略する。C は、前述したノード間の距離または移動時間に加えて、以下に説明する角度ポテンシャルを加味したコスト計算の指標に基づき、各アーク $ak=\{ni,ni\}$ について計算したコストの集合である。

【0020】静的グラフ生成部10は、地図データメモリ16が更新された場合に、式(1), (3) または(4) により各アークのコストBijを計算する。

【0021】角度ポテンシャル計算部11は、目標ノードgが指示された場合に、各アークに対して下式

 $Tij(g) = (K/2\pi) \Delta \theta (g, i, j) \cdot Bij \qquad \cdots (7)$ $\Delta \theta (g, i, j) = Mod (| \theta (g, j) - \theta (g, i) |, \pi) \qquad \cdots (8)$

を算出する

ここで、Kは所定の係数、 θ (g, i)はノードgから見たノードiの方向をx軸から反時計回りに測った角度であり、g=iの場合は「0」とする。また、(8) 式は、 $\mid \theta$ (g, i) $\mid \theta$ (g, g) $\mid \theta$ (g, g) $\mid \theta$ (g) $\mid \theta$

【0022】すなわち、各アークを構成するノードi,jについて、目標ノードgから見たノードiの方向とx軸方向との角度差と、目標ノードgから見たノードjの方向とx軸方向との角度差が算出される。そして、両角度差の差に基づいて設定された係数がコストBijに乗ぜられ、新たなコストTij(g)が算出される。

【0023】そして、以下に示されるコストCij(g)(=C)が、探索グラフデータメモリ12に記憶される。

【0024】最適経路生成器9は、制御局からの搬送指示を受け、従来と同様に出発ノードと目標ノードを求める。そして、これとグラフ生成器8において求められた上記グラフG、地図データおよび無人搬送車データに基づいて、積算コストが最小となるような最適経路を生成する。

【0025】図2の梯子型走行路において、目標ノードが「28」に設定された場合を考える。まず、静的グラフ生成部10により、図7(A)に示されるコストBij(従来コスト)が作成される。次いで、角度ポテンシャル計算部11により、図4(A)に示される角度ポテンシャルコストTij(28)が計算される。ここでは、係数Kは「1」としている。そして、各アークについて、コストBijと角度ポテンシャルコストTij(28)が加算され、コストCij(28)として探索グラフデータメモリ12に格納される。図4(B)に、コストCij(28)の算出結果を示す。

【0026】これにより、従来の方法では「8」通り存在したノード1からノード28への最短経路は、「1→15→16→17→18→19→20→21→22→23→24→25→26→27→28」の唯一通りに絞られる。

【0027】また、図3の格子型走行路において、目標ノードが「100」に設定された場合を考える。この場合も、上記と同様にコストBijおよび角度ポテンシャルコストTij(100)が算出され、両者が加算されたコストCij(100)が探索グラフデータメモリ12に格納される。図5に、コストCij(100)の算出結果を示す。

【0028】これにより、従来の方法では「48620」通り存在したノード1からノード100への最短経路は、「 $1 \rightarrow 11 \rightarrow 21 \rightarrow 31 \rightarrow 41 \rightarrow 51 \rightarrow 61 \rightarrow 71 \rightarrow 81 \rightarrow 91 \rightarrow 92 \rightarrow 93 \rightarrow 94 \rightarrow 95 \rightarrow 96 \rightarrow 97 \rightarrow 98 \rightarrow 99 \rightarrow 100」の唯一通りに絞られる。$

(7), (8) により角度ポテンシャルコストTij(g)

【0029】ところで、梯子型走行路では、無人搬送車は主に水平方向に移動し、また、ワークの積み下ろし用ステーションは、走行路の上下方向に設置される。また、このような細長い走行路において多数の無人搬送車が走行する場合、なるべく外側を走行させる方が互にに干渉する危険が少ない。また、超音波により上下方向に壁との距離を測定しながら走行する無人搬送車の場合との距離を測定しながら走行する無人搬送車の場合との上述した実施例において決定された最短経路は、いずれも、水平または上下方向のアークが継続する傾にある。加えて、走行路の外側に沿う経路が選択されやすい。これは角度ポテンシャルコストを加味した結果であり、よって、上記のような作業環境に対する要望をも満足する最短経路の決定を可能としている。

[0030]

【発明の効果】以上説明したように、この発明によれば、各ノード間の距離または移動時間に基づいて算出される各アーク毎の第1のコストに加えて、目標ノードから見た各アークを構成する各ノードの方向に基づく第2のコストが算出されるから、規則的な走行路に対しても、簡単に最適経路を決定することが可能となる。

【図面の簡単な説明】

【図1】本発明の一実施例における最適経路決定装置の ブロック図である。

【図2】本発明に関する梯子型走行路の構成を示す図である。

【図3】本発明に関する格子型走行路の構成を示す図である。

【図4】本発明の一実施例におけるコストの計算結果を 示す図である。

【図5】本発明の一実施例におけるコストの計算結果を 示す図である。

【図6】本発明に関する梯子型走行路の座標等のデータ を示す図である。

【図7】従来のコスト計算および最短経路選択結果を示す図である。

【図8】本発明に関する格子型走行路の座標データを示す図である。

【図9】従来の最適経路決定装置のブロック図である。 【符号の説明】 9 最適経路生成器(経路生成手段)

10 静的グラフ生成部 (第1のコスト算出手段)

【図5】 **௸௷௸௷௸௷௸௷௸௷௸௷௸௷௸** @ron@ron@ron@ron@ron@ron@ PARTICIPACION ௸௭௸௷௸௷௸௷௸௷௸௷௸௷௸ **ூர்க்கு வர்ஷின் அன்று வர்வு வர்வு முற்று வர்வு** 1000⁽(0) 1023 1024 1021 1018 **௰௷௰௷௰௷௰௵௸௵௸௵** 1021 102: 1020 1019 1017 :014 1010 1005 tope **மாட்டும். முற்று மாடும். முற்று மாடும். முற்று மாடும். முற்று** 1018 1018 1017 1016 1014 1011 1008 1004 1000 (1) 1018 (1) 1029 (1)

. .

No.	戦 塩 旺 路 (ナータルコストナ37833)
ı	1-2-3-4-6-6-7-8-9-10-11-12-13-14-28
2	1-2-5-4-5-6-7-8-9-10-11-12-26-27-28
3	1-2-8-4-6-6-7-8-9-10-24-25-28-27-28
4	1-2-3-4-5-6-7-8-32-28-74-26-26-27-28
5	1-2-8-4-6-6-20-21-22-23-24-25-26-27-38
6	1-2-2-4-18-19-20-21-23-28-24-25-25-27-28
7	1-2-8-18-17-16-19-20-21-72-28-24-25-25-25-25
9	1-15-16-17-18-18-20-21-22-28-24-28-26-27-25

(8)

【図6】

	ノードデータ(28ノード)										
No	座標[mm]	No	座標(mm)	No	座標[mm]	No	坐標[mm]	No	延標[mm]		
1	(1000,1000)	2	(4000,1600)	3	(5500,1000)	4	(8500,1000)	5	(10000,1000)		
6	(14500,1000)	7	(16000,1000)	8	(20500,1000)	9	(22000,1000)	10	(26500,1000)		
11	(28000,1000)	12	(32500,1000)	13	(34000,1000)	14	(35500,1000)	15	(1000,2000)		
16	(5500,2000)	17	(7000,2000)	18	(8500,2000)	19	(13000,2000)	20	(14500,2000)		
21	(19000,2000)	22	(31000,2000)	23	(25000,2000)	24	(26500,2000)	25	(31000,2000)		
26	(32500,2000)	27	(34000,2000)	28	(35500,2000)						

(A)

	シーンアータ(34シーン)													
No	始点 ノード	発点 ノード	方向	速度 (mm/sec)	No	統裁	が点 ノ…ド	方向	速度 (new/sec)	No	始点 ノード	映点 ノード	方向	速度 (enm/sec)
1	1	2	0	1000	2	2	3	0	1000	3	3	4	0	1000
4	4	5	0	1000	5	5	6	0	1000	5	6	7	0	1000
7	7	8	0	1000	8	8	9	0	1000	9	9	10	0	1000
1C	10	11	0	1000	11	11	12	0	1000	12	12	13	0	1000
13	13	14	0	1000	14	15	16	0	1000	15	16	17	0	1000
16	17	18	0	1000	17	18	19	0	1000	18	19	20	0	1000
19	20	21	0	1000	20	21	22	0	1000	21	22	23	0	1000
22	23	24	0	1000	23	24	25	0	1000	24	25	26	0	1000
25	26	27	0	1000	26	27	28	0	1000	27	l	15	0	30G
28	3	16	0	300	29	4	18	0	300	30	6	20	0	300
31	8	22	0	300	32	10	24	0	300	33	12	26	0	30G
34	14	28	0	300										

ノードデータ(28ノード)													
No	蹇葆[m]	No	经律(m)	No	座[[m]	No	座標[m]	No	座標(m)	No	空保[m]	No	座標[m]
1	(0,0)	2	(0,1)	3	(0,2)	4	(0.3)	5	(0,4)	5	(0,5)	7	(0.6)
8	(0,7)	9	(0.8)	10	(0.9)	11	(1,0)	12	(1,1)	13	(1,2)	14	(1,3)
15	(1,4)	16	(1,5)	17	(1.6)	18	(1.7)	19	(1.8)	20	(1,9)	21	(2.0)
22	(2,1)	23	(2,2)	24	(2,3)	25	(2,4)	26	(2.5)	27	(2,6)	28	(2,7)
29	(2,8)	30	(2,9)	31	(3,0)	32	(3,1)	33	(3.2)	34	(3,3)	35	(3,4)
36	(3,5)	37	(3,6)	38	(3,7)	39	(3,8)	40	(3,9)	41	(4,0)	42	(4,1)
43	(4,2)	44	(4,3)	45	(4,4)	46	(4,5)	47	(4,6)	48	(4,7)	49	(4,8)
50	(4.9)	51	(5,0)	52	(5,1)	53	(5,2)	54	(5,3)	55	(5,4)	56	(5.5)
57	(5,6)	58	(5,7)	59	(5.8)	60	(5,9)	61	(6,0)	62	(6,1)	63	(6,2)
64	(6,3)	65	(6.4)	66	(6,5)	67	(6,6)	68	(6.7)	69	(6,8)	70	(6,9)
71	(7.0)	72	(7,1)	73	(7,2)	74	(7,3)	75	(7,4)	76	(7,5)	77	(7.6)
78	(7,7)	79	(7,8)	80	(7.9)	81	(8,0)	82	(8,1)	83	(8,2)	84	(8,3)
85	(8.4)	86	(2,8)	87	(8,6)	88	(8.7)	80	(8,8)	90	(8,9)	91	(9,0)
92	(9,1)	93	(9,2)	94	(9.3)	95	(9.4)	96	(9,5)	97	(9,6)	98	(9.7)
òà	(9,3)	100	(9,9)										