Therefore the total amount of mass at t=0 is: $Q(0) = U_1 \cdot 1 + U_1 \cdot X$ D the total amount of mass at t=T is: $Q(T) = U_1 \cdot (1+sT) + U_1 \cdot (X-sT)$ ② $Q(T) - Q(0) = sT(U_1-U_1)$.

(C) $Q(T)-Q(0)=\int_{0}^{T}\frac{u_{1}^{2}-u_{r}^{2}}{2}dt$ $=\int_{0}^{T}(u_{1}-u_{r})\frac{u_{1}+u_{r}}{2}dt$ $=\frac{1}{2}(u_{1}-u_{r})\frac{u_{1}+u_{r}}{2}dt$ $=\frac{1}{2}(u_{1}-u_{r})\frac{u_{1}+u_{r}}{2}$