# Introduction to

# Information Retrieval and Text Mining

Maximum Entropy Classifier,
Feature Selection,
Vector Space Classification

#### Roman Klinger

Institute for Natural Language Processing, University of Stuttgart

2021-01-07

Klinger: ME, FS, VSC 1 / 62

### Overview

- 1 Recap
- Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 2 / 62

### Outline

- 1 Recap
- 2 Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 3 / 62

### Maximum a posteriori class

- Goal in Naive Bayes classification is to find the "best" class
- The best class is the most likely class "maximum a posteriori" (MAP) c<sub>map</sub>:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \hat{P}(c|d) = rg \max_{c \in \mathbb{C}} \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c)$$

Classification rule:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \left[ \log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c) \right]$$

Klinger: ME, FS, VSC

### To avoid zeros: Add-one smoothing

Before:

$$\hat{P}(t|c) = rac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

Now: Add one to each count to avoid zeros:

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

■ B is the number of bins – the number of different words or the size of the vocabulary |V| = M

Klinger: ME, FS, VSC 5 / 62

### Time complexity of Naive Bayes

| mode     | time complexity                                                 |
|----------|-----------------------------------------------------------------|
| training | $\Theta( \mathbb{D} L_{ave}+ \mathbb{C}  V )$                   |
| testing  | $\Theta(L_{a} +  \mathbb{C} M_{a}) = \Theta( \mathbb{C} M_{a})$ |

- $L_{\text{ave}}$ : average length of a training doc,  $L_{\text{a}}$ : length of the test doc,  $M_{\text{a}}$ : number of distinct terms in the test doc,  $\mathbb{D}$ : training set, V: vocabulary,  $\mathbb{C}$ : set of classes
- ullet  $\Theta(|\mathbb{D}|L_{ave})$  is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$  is the time it takes to compute the parameters from the counts.
- Generally:  $|\mathbb{C}||V| < |\mathbb{D}|L_{\mathsf{ave}}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

Klinger: ME, FS, VSC 6 / 62

### Violation of Naive Bayes independence assumptions

Conditional independence:

$$P(\langle t_1, \ldots, t_{n_d} \rangle | c) = \prod_{1 \leq k \leq n_d} P(X_k = t_k | c)$$

Positional independence:

$$\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$$

- The independence assumptions do not really hold!
- How can Naive Bayes work if it makes such inappropriate assumptions?

Klinger: ME, FS, VSC

### Naive Bayes is not so naive

- Naive Bayes models have won some shared tasks
- More robust to nonrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements

Klinger: ME, FS, VSC 8 / 62

## Evaluation of Classification: Macro and Micro Average

#### Calculate Micro and Macro F Measure

| Docld | True Class | Predicted Class |
|-------|------------|-----------------|
| 1     | Europe     | Europe          |
| 2     | Europe     | Europe          |
| 3     | Europe     | Asia            |
| 4     | Asia       | Europe          |
| 5     | Asia       | Asia            |
| 6     | Europe     | Europe          |
| 7     | Europe     | Europe          |

$$P = TP/(TP + FP)$$

$$\blacksquare R = TP/(TP + FN)$$

$$F = 2PR/(P+R)$$

|               | is Eur. | is not Eur. |
|---------------|---------|-------------|
| pred Eur.     | TP=4    | FP=1        |
| not pred Eur. | FN=1    | TN=1        |
|               | is Asia | is not Asia |
| pred Asia     | TP=1    | FP=1        |
| not pred Asia | FN=1    | TN=4        |

Hicro F= 0.7 Hacro F= 0.65

Klinger: ME, FS, VSC 9 / 62

### Take-away today

- The problem of overcounting in Naive Bayes
- Maximum Entropy Classifier
- Overfitting and the Bias-Variance Dilemma
- Feature Selection
- Vector space classification

Klinger: ME, FS, VSC 10 / 62

### Outline

- 1 Recap
- Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 11 / 62

# Problems with correlated features (I)

#### Document Classification Example

#### Europe

Monaco Monaco Monaco

Monaco Monaco Monaco Hong Kong Asia

Monaco

Hong

Kong

Monaco

Hong Kong

(example adapted from Chris Manning's slides)

Hong Kong

#### Model Parameters

- $p(Europe) = \frac{1}{2} ; p(Asia) = \frac{1}{2}$
- $p(Monaco \mid Europe) = \frac{6}{8}$ ;  $p(Hong \mid Europe) = \frac{1}{8}$ ;  $p(Kong \mid Europe) = \frac{1}{8}$
- $p(Monaco \mid Asia) = \frac{2}{8} = \frac{1}{4}$ ;  $p(Hong \mid Asia) = \frac{3}{8}$ ;  $p(Kong \mid Asia) = \frac{3}{8}$

#### Inference

Given a document with only the term "Monaco":

$$p(\mathsf{Europe}) \cdot p(\mathsf{Monaco} \mid \mathsf{Europe}) = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8}$$
  
 $p(\mathsf{Asia}) \cdot p(\mathsf{Monaco} \mid \mathsf{Asia}) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$ 

Klinger: ME, FS, VSC

# Problems with correlated features (II)

#### Document Classification Example

#### Europe

Monaco Monaco Monaco

Monaco Monaco Monaco Hong Kong Asia

Monaco

Hong

Kong

Monaco

Hong Kong

(example adapted from Chris Manning's slides)

Hong Kong

#### **Model Parameters**

- $p(Europe) = \frac{1}{2} ; p(Asia) = \frac{1}{2}$
- $p(Monaco \mid Europe) = \frac{3}{4}$ ;  $p(Hong \mid Europe) = \frac{1}{8}$ ;  $p(Kong \mid Europe) = \frac{1}{8}$
- $p(Monaco \mid Asia) = \frac{2}{8} = \frac{1}{4}$ ;  $p(Hong \mid Asia) = \frac{3}{8}$ ;  $p(Kong \mid Asia) = \frac{3}{8}$

#### Inference

Given a document with terms "Hong" and "Kong":

$$p(\mathsf{Europe}) \cdot p(\mathsf{Hong} \mid \mathsf{Europe}) \cdot p(\mathsf{Kong} \mid \mathsf{Europe}) = \frac{1}{2} \cdot \frac{1}{8} \cdot \frac{1}{8} = \frac{1}{128}$$
  
 $p(\mathsf{Asia}) \cdot p(\mathsf{Hong} \mid \mathsf{Asia}) \cdot p(\mathsf{Kong} \mid \mathsf{Asia}) = \frac{1}{2} \cdot \frac{3}{8} \cdot \frac{3}{8} = \frac{9}{128}$ 

Klinger: ME, FS, VSC 13 / 62

# Problems with correlated features (III)

#### Document Classification Example

#### Europe

Monaco Monaco Monaco

Monaco Monaco Monaco Hong Kong

Asia Monaco Hong Kong

Monaco

Hong Kong

(example adapted from Chris Manning's slides)

Hong Kong

#### Inference

Given a document with terms "Hong" and "Kong":  $p(\mathsf{Europe}) \cdot p(\mathsf{Hong} \mid \mathsf{Europe}) \cdot p(\mathsf{Kong} \mid \mathsf{Europe}) = \frac{1}{2} \cdot \frac{1}{8} \cdot \frac{1}{8} = \frac{1}{128}$  $p(\mathsf{Asia}) \cdot p(\mathsf{Hong} \mid \mathsf{Asia}) \cdot p(\mathsf{Kong} \mid \mathsf{Asia}) = \frac{1}{2} \cdot \frac{3}{8} \cdot \frac{3}{8} = \frac{9}{128}$ 

- Given Hong and Kong, Asia is 9 times more probably than Europe!
- This is overcounting and can lead to wrong predictions
- What about a document d with Monaco, Hong, and Kong?
- $p(\text{Europe}|d) \propto \frac{1}{2} \frac{3}{4} \frac{1}{8} \frac{1}{8} = \frac{3}{512} \text{ vs. } p(\text{Asia}|d) \propto \frac{1}{2} \frac{1}{4} \frac{3}{8} \frac{3}{8} = \frac{9}{512}$

Klinger: ME, FS, VSC 14 / 62

### Outline

- 1 Recap
- 2 Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 15 / 62

#### Generative vs. Discriminative Model

Idea: A simple classifier which does not have such problems.

- Naïve Bayes:  $p(y, x_1, ..., x_n)$  (joint probability)
- Maximum Entropy Classifier:  $p(y \mid x_1, ... x_n)$  (conditional probability)

#### Joint

Weights: just count

#### Conditional

- Maximize conditional likelihood
- Optimization process!

Klinger: ME, FS, VSC 16 / 62

## Maximum Entropy Classifier

 $p_{\lambda}(y \mid \mathbf{x}) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})}{\exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})}$ 

Lanouser, wond, so of (P/M)

Lanouser, wond, so of (P/M)

Lanouser, wond, so of (P/M)

Klinger: ME, FS, VSC 17 / 62

### Maximum Entropy Classifier

Klinger: ME, FS, VSC 17 / 62

## Maximum Entropy Classifier

$$p_{\lambda}(y \mid \mathbf{x}) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y', \mathbf{x})}$$
$$= \frac{1}{Z(\mathbf{x})} \exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})$$

where 
$$Z(\mathbf{x}) = \sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y', \mathbf{x})$$

- **x**: Evidence, given data
- y: Class variable to be predicted
- $f_i(y, \mathbf{x})$  Features (here: words with class)
- $\lambda_i$  Parameters to be learned
- Z(x) normalization, partition function

Klinger: ME, FS, VSC 17 /

## Feature Extraction example (I)

#### Example texts

- Europe: "Monaco"
- Asia "Hong Kong"
- Europe "Monaco Hong Kong"
- Asia "Hong Kong Monaco"
- Features: Occurrence of words "Monaco", "Hong", "Kong"
- Remember:

$$\frac{p_{\lambda}(y \mid \mathbf{x}) =}{\frac{1}{Z(\mathbf{x})}} \exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})$$

Features in model:

Remember: 
$$f_1(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Monaco}] \quad \lambda_1 = 7.44$$

$$p_{\lambda}(y \mid \mathbf{x}) = 1$$

$$\frac{1}{Z(\mathbf{x})} \exp \sum_{i} \lambda_i f_i(y, \mathbf{x})$$

$$f_2(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Monaco}] \quad \lambda_2 = -7.44$$

$$f_3(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Hong}] \quad \lambda_3 = -3.72$$

$$f_4(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Hong}] \quad \lambda_4 = 3.72$$

$$f_5(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Kong}] \quad \lambda_5 = -3.72$$

$$f_6(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Kong}] \quad \lambda_6 = 3.72$$

Klinger: ME, FS, VSC 18 / 62

## Feature Extraction example (II)

■ Features in model:

$$\begin{array}{lll} & & f_1(y,\mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Monaco}] & \lambda_1 = 7.44 \\ & \frac{1}{Z(\mathbf{x})} \exp \sum_{i} \lambda_i f_i(y,\mathbf{x}) & f_2(y,\mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Monaco}] & \lambda_2 = -7.44 \\ & & f_3(y,\mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Hong}] & \lambda_3 = -3.72 \\ & & f_4(y,\mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Hong}] & \lambda_4 = 3.72 \\ & & f_5(y,\mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Kong}] & \lambda_5 = -3.72 \\ & & f_6(y,\mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Kong}] & \lambda_6 = 3.72 \end{array}$$

- Predict class for:  $\mathbf{x} = \text{``Let's make a boat trip in Hong Kong.''}$
- Sum up relevant features, assuming it is **Europe**:

$$\sum_{i} \lambda_{i} f_{i}(\text{Europe}, \mathbf{x}) = \lambda_{1} f_{1} + \lambda_{2} f_{2} + \lambda_{3} f_{3} + \lambda_{4} f_{4} + \lambda_{5} f_{5} + \lambda_{6} f_{6}$$

$$= 7.44 \cdot 0 + 7.44 \cdot 0 - 3.72 \cdot 1 + 3.72 \cdot 0 - 3.72 \cdot 1 + 3.72 \cdot 0$$

$$= -3.72 - 3.72$$

$$= -7.44$$

Klinger: ME, FS, VSC 19 / 62

## Feature Extraction example (III)

Features in model:

$$\begin{array}{ll}
 & P_{\lambda}(y \mid \mathbf{x}) = \\
 & \frac{1}{Z(\mathbf{x})} \exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})
\end{array}$$

$$\begin{array}{ll}
 & f_{1}(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Monaco}] & \lambda_{1} = 7.44 \\
 & f_{2}(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Monaco}] & \lambda_{2} = -7.44 \\
 & f_{3}(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Hong}] & \lambda_{3} = -3.72 \\
 & f_{4}(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Hong}] & \lambda_{4} = 3.72 \\
 & f_{5}(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Kong}] & \lambda_{5} = -3.72 \\
 & f_{6}(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Kong}] & \lambda_{6} = 3.72
\end{array}$$

- $\blacksquare$  Predict class for:  $\mathbf{x} = \text{``Let's make a boat trip in Hong Kong.''}$
- Sum up relevant features, assuming it is Europe:

$$\sum_{i} \lambda_{i} f_{i}(\mathsf{Europe}, \mathbf{x}) = -7.44$$

Assume it is Asia.

$$\sum_{i} \lambda_{i} f_{i}(Asia, \mathbf{x}) = \lambda_{1} f_{1} + \lambda_{2} f_{2} + \lambda_{3} f_{3} + \lambda_{4} f_{4} + \lambda_{5} f_{5} + \lambda_{6} f_{6}$$

$$= 7.44 \cdot 0 + 7.44 \cdot 0 - 3.72 \cdot 0 + 3.72 \cdot 1 - 3.72 \cdot 0 + 3.72 \cdot 1$$

$$= 7.44$$

Klinger: ME, FS, VSC 20 / 62

# Feature Extraction example (IV)

$$p_{\lambda}(y \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})$$

$$Z(\mathbf{x}) = \sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y', \mathbf{x})$$

$$\sum_{i} \lambda_{i} f_{i}(\mathsf{Europe}, \mathbf{x}) = -7.44$$

$$\sum_{i} \lambda_{i} f_{i}(\mathsf{Asia}, \mathbf{x}) = 7.44$$

$$= \exp \sum_{i} \lambda_{i} f_{i}(\mathsf{Europe}, \mathbf{x}) \approx 0.0005872852$$

$$=$$
 exp  $\sum_{i} \lambda_{i} f_{i}(Asia, \mathbf{x}) \approx 1702.75$ 

■ 
$$p_{\lambda}(\text{Europe} \mid \mathbf{x}) \approx \frac{0.00059}{0.00059 + 1702.75} = \frac{0.00059}{1702.75059} \approx 0$$
■  $p_{\lambda}(\text{Asia} \mid \mathbf{x}) \approx \frac{1702.75}{0.00059 + 1702.75} = \frac{1702.75}{1702.75059} \approx 1$ 

Klinger: ME, FS, VSC 21 / 62

#### Short Exercise

Recap

$$f_1(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Monaco}]$$
  
 $f_2(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Monaco}]$   
 $f_3(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Hong}]$   
 $f_4(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Hong}]$   
 $f_5(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Kong}]$   
 $f_6(y, \mathbf{x}) = [y = \text{Asia} \land \mathbf{x} \ni \text{Kong}]$ 

$$\lambda_1 = 7.44$$

$$\lambda_2 = -7.44$$

$$\lambda_3 = -3.72$$

$$\lambda_4 = 3.72$$

$$\lambda_5 = -3.72$$

$$\lambda_6 = 3.72$$

#### Training instances

- Europe: "Monaco"
- Asia "Hong Kong"
- Europe "Monaco Hong Kong"
- Asia "Hong Kong Monaco"
- $\blacksquare$  Predict class for:  $\mathbf{x} = \text{``Monaco Hong Kong.''}$  with ME and NB (without smoothing)

Klinger: ME, FS, VSC 22 / 62

## Short Exercise: Solution for Maximum Entropy

$$f_1(y, \mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Monaco}]$$
  $\lambda_1 = 7.44$   
 $f_2(y, \mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Monaco}]$   $\lambda_2 = -7.44$   
 $f_3(y, \mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Hong}]$   $\lambda_3 = -3.72$   
 $f_4(y, \mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Hong}]$   $\lambda_4 = 3.72$   
 $f_5(y, \mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Kong}]$   $\lambda_5 = -3.72$   
 $f_6(y, \mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Kong}]$   $\lambda_6 = 3.72$ 

- **Europe**:  $\exp(7.44 3.72 3.72) = \exp(0) = 1$
- Asia:  $\exp(7.44 3.72 3.72) = \exp(0) = 1$
- **p**(Europe | x) =  $\frac{1}{2}$
- $p(Asia | x) = \frac{1}{2}$

Klinger: ME, FS, VSC 23 / 62

### Short Exercise: Solution for Naive Bayes

#### Example texts

- Europe: "Monaco"
- Asia "Hong Kong"
- Europe "Monaco Hong Kong"
- Asia "Hong Kong Monaco"
- Priors: p(Europe) = p(Asia) = 0.5
- Term propabilities:
  - $p(Monaco|Europe) = \frac{1}{2} p(Hong|Europe) = p(Kong|Europe) = \frac{1}{4}$
  - $p(\mathsf{Monaco}|\mathsf{Asia}) = \frac{1}{5} \ \bar{p(\mathsf{Hong}|\mathsf{Asia})} = p(\mathsf{Kong}|\mathsf{Asia}) = \frac{2}{5}$
- Prediction for "Monaco Hong Kong":
  - **p**(Europe|x) =  $\frac{1}{2}\frac{1}{2}\frac{1}{4}\frac{1}{4} = \frac{1}{64} = 0.015625$
  - $p(Asia|\mathbf{x}) = \frac{1}{2} \frac{1}{5} \frac{2}{5} \frac{2}{5} = \frac{4}{250} = 0.016$
- $\Rightarrow$  Asia is more likely due to overcounting w/ NB, but not w/ ME!

Klinger: ME, FS, VSC 24 / 62

#### **Features**

0000000 0000

Recap

- Features are typically  $f: Y \times X \to \mathbb{R}^{>0}$  or  $f: Y \times X \to \{0,1\}$
- Weights represent the importance of a class-feature combination
- Measure compatibility!
- Weights for correlated features are lower than for independent features (of same importance)
- When designing features, you can make use of correlations!

Klinger: ME, FS, VSC 25 / 62

#### Features in text classification

- Words
- Occurrence of words in a dictionary
- Number of specific word class
- Bigrams, trigrams,...
- Number of sentences
- Meta data
- . . . .
- $\blacksquare$   $\Rightarrow$  Good choice is application/data specific.

Klinger: ME, FS, VSC 26 / 62

### Outline

- 1 Recap
- 2 Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 27 / 62

## Iterative Optimization (very briefly)



Klinger: ME, FS, VSC 28 / 62

## Iterative Optimization (very briefly)

We need an iterative optimization method: gradient descent

- Initialize parameters  $\lambda$ randomly.
- Iterate:
  - Test how good performance is on training set.
    - If satisfied (e.g. improvement between iterations smaller than a predefined threshold): exit
  - Improve each parameter:  $\lambda_i^{t+1} = \lambda_i^t - \nabla F(\lambda_i^t)$ with  $\nabla F(\lambda_i^t)$  being the derivative of the objective Fat  $\lambda_i^t$ .



Klinger: ME, FS, VSC 28 / 62

# Parameter Estimation (I)

- How to learn the parameters  $\lambda_i$ ?
- What is the objective function to optimize?
- ⇒ Maximize the conditional log likelihood of the data, given the model.

$$\max_{\lambda} \log p_{\lambda}(Y \mid X) = \sum_{(y,\mathbf{x}) \in (Y,X)} \log p_{\lambda}(y \mid \mathbf{x})$$

$$= \sum_{(y,\mathbf{x}) \in (Y,X)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(y,\mathbf{x})}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y',\mathbf{x})}$$

Klinger: ME, FS, VSC 29 / 62

## Parameter Estimation (II)

Reformulate a bit...

$$\sum_{(y,x)\in(Y,X)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(y,\mathbf{x})}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y',\mathbf{x})}$$

$$= \sum_{(y,x)\in(Y,X)} \left[ \log \exp \sum_{i} \lambda_{i} f_{i}(y,\mathbf{x}) - \log \sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y',\mathbf{x}) \right]$$

$$= \sum_{(y,x)\in(Y,X)} \log \exp \sum_{i} \lambda_{i} f_{i}(y,\mathbf{x}) - \sum_{(y,x)\in(Y,X)} \log \sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(y',\mathbf{x})$$

$$= \mathcal{A}_{\lambda} - \mathcal{B}_{\lambda}$$

Klinger: ME, FS, VSC 30 / 62

#### Derivative

Recap

$$\underbrace{\sum_{(y,x)\in(Y,X)}\log\exp\sum_{i}\lambda_{i}f_{i}(y,\mathbf{x})}_{\mathcal{A}_{\lambda}} - \underbrace{\sum_{(y,x)\in(Y,X)}\log\sum_{y'}\exp\sum_{i}\lambda_{i}f_{i}(y',\mathbf{x})}_{\mathcal{B}_{\lambda}}$$

Derivatives:

$$\frac{\partial \mathcal{A}_{\lambda}}{\partial \lambda_{i}} = \sum_{(y,x) \in (Y,X)} f_{i}(y,x)$$

$$\frac{\partial \mathcal{B}_{\lambda}}{\partial \lambda_{i}} = \sum_{(y,x) \in (Y,X)} \sum_{y'} p_{\lambda}(y' \mid \mathbf{x}) f_{i}(y',x)$$

- "Empirical feature count" "Predicted feature count"
- Optimal: Both values are the same for all features!

Klinger: ME, FS, VSC 31 / 62

## Derivative Example (I)

Empirical feature count:

$$\sum_{(y,\mathbf{x})\in(Y,X)} f_i(y,\mathbf{x}) = \frac{\partial \mathcal{A}}{\partial \lambda_i}$$

Calculate the derivative  $\frac{\partial \mathcal{A}}{\partial \lambda_i} - \frac{\partial \mathcal{B}}{\partial \lambda_i}$ 

$$f_4(y, \mathbf{x}) = [y = \mathsf{Asia} \land \mathbf{x} \ni \mathsf{Hong}]$$
  
 $\lambda_4 = 1.5$ 

$$\frac{\partial \mathcal{A}}{\partial \lambda_4} = 0 + 1 + 0 + 1 = 2$$

Predicted feature count:

$$\sum_{(y,\mathbf{x})\in(Y,X)}\sum_{y'}p_{\lambda}(y'\mid\mathbf{x})f_i(y',\mathbf{x})=rac{\partial\mathcal{B}}{\partial\lambda_i}$$

#### Instances

- Europe: "Monaco"
- Asia "Hong Kong"
- Europe "Monaco Hong Kong"
- Asia "Hong Kong Monaco"

 $\frac{\partial \mathcal{B}}{\partial \lambda_4} = p_{\lambda}(\mathsf{Europe} \mid \mathbf{x}_1) f_4(\mathsf{Europe}, \mathbf{x}_1) + p_{\lambda}(\mathsf{Asia} \mid \mathbf{x}_1) f_4(\mathsf{Asia}, \mathbf{x}_1) +$  $p_{\lambda}(\mathsf{Europe} \mid \mathbf{x}_2) f_4(\mathsf{Europe}, \mathbf{x}_2) + p_{\lambda}(\mathsf{Asia} \mid \mathbf{x}_2) f_4(\mathsf{Asia}, \mathbf{x}_2) +$  $p_{\lambda}(\text{Europe} \mid \mathbf{x}_3) f_4(\text{Europe}, \mathbf{x}_3) + p_{\lambda}(\text{Asia} \mid \mathbf{x}_3) f_4(\text{Asia}, \mathbf{x}_3) +$  $p_{\lambda}(\text{Europe} \mid \mathbf{x}_4) f_4(\text{Europe}, \mathbf{x}_4) + p_{\lambda}(\text{Asia} \mid \mathbf{x}_4) f_4(\text{Asia}, \mathbf{x}_4)$  $= p_{\lambda}(Asia \mid \mathbf{x}_2)f_4(Asia, \mathbf{x}_2) + p_{\lambda}(Asia \mid \mathbf{x}_3)f_4(Asia, \mathbf{x}_3) + p_{\lambda}(Asia \mid \mathbf{x}_4)f_4(Asia, \mathbf{x}_4) + p_{\lambda}(Asia, \mathbf{x}_4) + p_{\lambda}(Asia,$  $= p_{\lambda}(Asia \mid \mathbf{x}_2) + p_{\lambda}(Asia \mid \mathbf{x}_3) + p_{\lambda}(Asia \mid \mathbf{x}_4)$ 

Klinger: ME, FS, VSC 32 / 62

# Derivative Example (II)

#### Calculate

Recap

- $\mathbf{p}_{\lambda}(\mathsf{Asia} \mid \mathbf{x}_2)$
- $p_{\lambda}(Asia \mid \mathbf{x}_3)$
- $p_{\lambda}(Asia \mid x_4)$

$$p_{\lambda}(y \mid \mathbf{x}) = rac{1}{Z(\mathbf{x})} \exp \sum_{i} \lambda_{i} f_{i}(y, \mathbf{x})$$

#### **Features**

- $f_1(y, \mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Monaco}]$
- $f_2(y, \mathbf{x}) = [y = Asia \land \mathbf{x} \ni Monaco]$
- $f_3(y, \mathbf{x}) = [y = \text{Europe} \land \mathbf{x} \ni \text{Hong}]$   $\lambda_3 = -0.5$
- $f_4(y, \mathbf{x}) = [y = Asia \land \mathbf{x} \ni Hong]$
- $f_5(y, \mathbf{x}) = [y = \mathsf{Europe} \land \mathbf{x} \ni \mathsf{Kong}]$   $\lambda_5 = -0.5$
- $f_6(y, \mathbf{x}) = [y = Asia \land \mathbf{x} \ni Kong]$

- $\lambda_1 = 2.5$
- $\lambda_2 = 0.3$
- $\lambda_4=1.5$ 

  - $\lambda_6=1.5$

#### Example texts

Europe: "Monaco"

Asia "Hong Kong"

Europe "Monaco Hong Kong"

Asia "Hong Kong Monaco"

- $p_{\lambda}(\mathsf{Asia} \mid \mathbf{x}_2) = \frac{\mathsf{exp}(3)}{\mathsf{exp}(3) + \mathsf{exp}(-1)} \approx \frac{20.01}{20.45} \approx 0.98$
- $p_{\lambda}(\text{Asia} \mid \mathbf{x}_3) = \frac{\exp(0.3+1.5+1.5)}{\exp(0.3+1.5+1.5)+\exp(2.5-0.5-0.5)} \approx \frac{27.1}{31.59} \approx 0.86$
- $p_{\lambda}(Asia \mid \mathbf{x}_4) = \frac{\exp(0.3+1.5+1.5)}{\exp(0.3+1.5+1.5)+\exp(2.5-0.5-0.5)} \approx \frac{27.1}{31.59} \approx 0.86$
- $\frac{\partial A}{\partial \lambda_4} \frac{\partial B}{\partial \lambda_4} = 2 (0.98 + 0.86 + 0.86) = -0.7$

#### Parameter Estimation

- We know now how to calculate the model's value.
- We know how to calculate the gradients.
- Convex optimization function
- Optimize actual feature weights:
  - Apply parameter optimization package
  - Gradient descend methods
  - Generalized Iterative Scaling

Klinger: ME, FS, VSC 34 / 62

# Demo (I)

```
Example Text 1

1    Europe Monaco
2    Asia    Hong
3    Europe Monaco Hong
4    Asia    Hong Monaco
```

#### Package maxent in R

```
library(maxent)
data <- read.delim("ex1.data",header=FALSE)
corpus <- Corpus(VectorSource(data$V3))
matrix <- DocumentTermMatrix(corpus)
sparse <- as.compressed.matrix(matrix)
model <- maxent(sparse,data$V2)
#results <- predict(model,sparse[3,])</pre>
```

#### Model

Klinger: ME, FS, VSC 35 / 62

MaxEnt Classifier ME: Learning Feature Selection Intro VSC kNN

# Demo (II)

0000000 0000

```
Example Text 2

1 Europe Monaco
2 Asia Hong Kong
3 Europe Monaco Hong Kong
4 Asia Hong Kong Monaco
```

#### Package maxent in R

Overcounting

```
library(maxent)
data <- read.delim("ex2.data",header=FALSE)
corpus <- Corpus(VectorSource(data$V3))
matrix <- DocumentTermMatrix(corpus)
sparse <- as.compressed.matrix(matrix)
model <- maxent(sparse,data$V2)
#results <- predict(model,sparse[3,])</pre>
```

```
Model
```

```
Slot "weights":
                  Label Feature
      Weight
       -3.72 Europe
1
                                1
        3.72 Asia
2
                                1
3
       -3.72 Europe
4
        3.72 Asia
                                2
5
        7.44 Europe
                                3
6
       -7.44 Asia
                                3
```

Klinger: ME, FS, VSC 36 / 62

## Outline

- 1 Recap
- 2 Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 37 / 62

## Feature Selection: Motivation

- We have seen that there exist models which can deal with many features
- Features can be correlated
  - Maximum Entropy Classifier can deal with that
  - Naive Bayes is more confused by that
  - Other models...
- Features might be misleading
- Features might lead to overfitting
- ⇒ Feature selection can help
  - Recall: We want to get a good performance on an independent test set!

Klinger: ME, FS, VSC 38 / 62

#### Bias Variance Dilemma

- Bias:
  Error based on wrong assumptions in the learning algorithm
- Variance: Too sensitive to training data



Klinger: ME, FS, VSC 39 / 62

## Filter vs. Wrapper

#### Wrapper

- Use the learning procedure
- Change feature sets
- Evaluate model using development set/cross validation

#### Filter

- Estimate impact of each feature
- Select feature set (based on threshold)

Klinger: ME, FS, VSC 40 / 62

#### Filter: Measures

- Mutual Information (in more detail next slide)
- $\equiv \Xi^2$  (Chi<sup>2</sup>) Based on a statistical test that two events are independent.
- Frequency-basedSelect features that are most frequent in a class.

. . .

Klinger: ME, FS, VSC 41 / 62

## Mutual Information

Overcounting

0000000 0000



- Entropy H(X) = E(I(X)) Expectation of Information
- Mutual Information
   Shared Expectation of Information between two variables

Klinger: ME, FS, VSC 42 / 62

## Mutual Information

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left( \frac{p(x,y)}{p(x) p(y)} \right)$$

X: Feature values; Y: Classes

# Toy example $Y \quad X_1 \quad X_2 \\ A \quad 1 \quad 1 \\ B \quad 2 \quad 1 \\ A \quad 1 \quad 2 \\ B \quad 2 \quad 2$

Klinger: ME, FS, VSC 43 / 62

Recap

43 / 62

## Mutual Information

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left( \frac{p(x,y)}{p(x) p(y)} \right)$$

X: Feature values; Y: Classes

#### Toy example

 $Y X_1 X_2$ 

MI

$$I(X_1; Y) = p(1, A) \log \left(\frac{p(1, A)}{p(1) p(A)}\right)$$

$$+ p(1, B) \log \left(\frac{p(1, B)}{p(1) p(B)}\right)$$

$$+ p(2, A) \log \left(\frac{p(2, A)}{p(2) p(A)}\right)$$

$$+ p(2, B) \log \left(\frac{p(2, B)}{p(2) p(B)}\right)$$

$$= \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{2} \frac{1}{2}} + 0 + 0 + \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{2} \frac{1}{2}} = 1$$

Klinger: ME, FS, VSC

Recap

## Mutual Information

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left( \frac{p(x,y)}{p(x) p(y)} \right)$$

X: Feature values; Y: Classes

#### Toy example

$$Y = X_1 = X_2$$
 $A = 1 = 1$ 
 $B = 2 = 1$ 
 $A = 1 = 2$ 

MI

$$I(X_1; Y) = \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{2} \frac{1}{2}} + 0 + 0 + \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{2} \frac{1}{2}} = 1$$

$$I(X_2; Y) = p(1, A) \log \left( \frac{p(1, A)}{p(1) p(A)} \right) + p(1, B) \log \left( \frac{p(1, B)}{p(1) p(B)} \right)$$

$$+ p(2, A) \log \left( \frac{p(2, A)}{p(2) p(A)} \right) + p(2, B) \log \left( \frac{p(2, B)}{p(2) p(B)} \right)$$

$$= \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2} \frac{1}{2}} + \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2} \frac{1}{2}} + \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2} \frac{1}{2}} = 0$$

Klinger: ME, FS, VSC 44 / 62

# Pointwise mutual information (PMI) on Reuters

| UK      |        |  |
|---------|--------|--|
| london  | 0.1925 |  |
| uk      | 0.0755 |  |
| british | 0.0596 |  |
| stg     | 0.0555 |  |
| britain | 0.0469 |  |
| plc     | 0.0357 |  |
| england | 0.0238 |  |
| pence   | 0.0212 |  |
| pounds  | 0.0149 |  |
| english | 0.0126 |  |

| china     | 0.0997 |  |
|-----------|--------|--|
| chinese   | 0.0523 |  |
| beijing   | 0.0444 |  |
| yuan      | 0.0344 |  |
| shanghai  | 0.0292 |  |
| hong      | 0.0198 |  |
| kong      | 0.0195 |  |
| xinhua    | 0.0155 |  |
| province  | 0.0117 |  |
| taiwan    | 0.0108 |  |
| elections |        |  |

China

| poultry     |        |  |
|-------------|--------|--|
| poultry     | 0.0013 |  |
| meat        | 0.0008 |  |
| chicken     | 0.0006 |  |
| agriculture | 0.0005 |  |
| avian       | 0.0004 |  |
| broiler     | 0.0003 |  |
| veterinary  | 0.0003 |  |
| birds       | 0.0003 |  |
| inspection  | 0.0003 |  |
| pathogenic  | 0.0003 |  |
| sports      |        |  |

| coffee    |        |  |
|-----------|--------|--|
| coffee    | 0.0111 |  |
| bags      | 0.0042 |  |
| growers   | 0.0025 |  |
| kg        | 0.0019 |  |
| colombia  | 0.0018 |  |
| brazil    | 0.0016 |  |
| export    | 0.0014 |  |
| exporters | 0.0013 |  |
| exports   | 0.0013 |  |
| crop      | 0.0012 |  |
| crop      | 0.0012 |  |

| elections  |        |  |
|------------|--------|--|
| election   | 0.0519 |  |
| elections  | 0.0342 |  |
| polls      | 0.0339 |  |
| voters     | 0.0315 |  |
| party      | 0.0303 |  |
| vote       | 0.0299 |  |
| poll       | 0.0225 |  |
| candidate  | 0.0202 |  |
| campaign   | 0.0202 |  |
| democratic | 0.0198 |  |
|            |        |  |

| CO1 |
|-----|
| 681 |
| 515 |
| 441 |
| 408 |
| 388 |
| 386 |
| 301 |
| 299 |
| 284 |
| 264 |
|     |

Klinger: ME, FS, VSC 45 / 62

## Filter vs. Wrapper

- Filter:
  - Pro: Preprocessing, efficient
  - Con: Not necessarily the best result as classifier-agnostic
- Wrapper:
  - Pro: Can lead to very good results
  - Con: Slow, depending on feature space not feasible, might lead to overfitting
- Combinations are possible! (forward search, backward search)

Klinger: ME, FS, VSC 46 / 62

## Outline

- 1 Recap
- 2 Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 47 / 62

## Recall vector space representation

- Each document is a vector, one component for each term.
- Terms (features, in general) are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length
- How can we do classification in this space?

Klinger: ME, FS, VSC 48 / 62

## Vector space classification

- As before, training set is set of documents, each labeled with its class.
- In vector space classification, set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1:Documents in the same class form a contiguous region.
- Premise 2:Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Klinger: ME, FS, VSC 49 / 62

## Classes in the vector space



Should the document  $\star$  be assigned to *China*, *UK* or *Kenya*?

Klinger: ME, FS, VSC 50 / 62

Recap Overcounting

MaxEnt Classifier

ME: Learning

Feature Selection

Intro VSC ○○○● 

# Classes in the vector space



Find separators between the classes

Klinger: ME, FS, VSC 50 / 62

## Classes in the vector space



How do we find separators that do a good job at classifying new documents like  $\star$ ? – Main topic of today

Klinger: ME, FS, VSC 50 / 62

## Outline

- 1 Recap
- 2 Overcounting in Naïve Bayes
- 3 Maximum Entropy Classifier
- 4 ME: Learning
- **5** Feature Selection
- 6 Intro vector space classification
- 7 kNN

Klinger: ME, FS, VSC 51 / 62

## kNN classification

- kNN classification is a lazy approach to vector space classification
  - Lazy: Generalization during prediction
  - Eager: Generalization during learning
- It is very simple and easy to implement.
- kNN is often more accurate than Naive Bayes
- If you need to get a pretty accurate classifier up and running in a short time . . .
  - ...and you don't care about runtime that much ...
  - ... use kNN.

Klinger: ME, FS, VSC 52 / 62

## kNN classification

- $\blacksquare$  kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
  - 1NN is not very robust: one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis
  - We expect a test document d to have the same label as the training documents located in the local region surrounding d.

Klinger: ME, FS, VSC 53 / 62

## Probabilistic kNN

- Probabilistic interpretation of kNN: P(c|d) = fraction of k neighbors of d that are in c
- kNN classification rule for probabilistic kNN: Assign d to class c with highest P(c|d)

Klinger: ME, FS, VSC 54 / 62

## Exercise



Klinger: ME, FS, VSC 55 / 62

## Exercise

How is star classified by:

(i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN?



Klinger: ME, FS, VSC 55 / 62

Recap Overcounting

MaxEnt Classifier

ME: Learning 000000000

Feature Selection

Intro VSC

## Influence of k in kNN





#### K=15



Klinger: ME, FS, VSC 57 / 62

## Distance Weighted kNN

- Use all instances instead of just k
- Weight distance to the query instance
- "Shepard's Method"
- Metric:
  - Euclidean
  - Manhatten
  - . . .
- Active research area:
   Learn that metric such that prediction error is minimized

Klinger: ME, FS, VSC 58 / 62

## Time complexity of kNN

## kNN with preprocessing of training set

```
training \Theta(|\mathbb{D}|L_{\text{ave}})
testing \Theta(L_{\text{a}} + |\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}})
```

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.

Klinger: ME, FS, VSC 59 / 62

## kNN with inverted index

Naive: find nearest neighbors requires a linear search through all documents

Any idea how to make use of our inverted index?



Klinger: ME, FS, VSC 60 / 62

## kNN with inverted index

- Naive: find nearest neighbors requires a linear search through all documents Any idea how to make use of our inverted index?
- Use test document as query: finding *k* nearest neighbors is the same as determining the *k* best retrievals
- Use standard vector space inverted index methods to find the k nearest neighbors.

Klinger: ME, FS, VSC 60 / 62

#### kNN: Discussion

- No training necessary
  - But linear preprocessing of documents is as expensive as training Naive Bayes.
  - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- kNN can be very inaccurate if training set is small.
- Test time proportional to training set size

Klinger: ME, FS, VSC 61/62

## Take-away today

- The problem of overcounting in Naive Bayes
- Maximum Entropy Classifier
- Overfitting and the Bias-Variance Dilemma
- Feature Selection
- Vector space classification

Klinger: ME, FS, VSC 62 / 62