Majorization and Triangular Matrix Polynomials with Prescribed Diagonal

Richard Hollister

Department of Mathematics University at Buffalo, SUNY

June 20, 2022

Definition

Given natural vectors **x** and **y** with non-increasing entries, we say that x majorizes y and write x > y if

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i \quad \text{ for } k = 1, 2, \dots, n$$

with equality when k = n.

- Think of x and y as permutation equivalence classes
- The set of all vectors majorized by x is the convex hull of all

Definition

Given natural vectors x and y with non-increasing entries, we say that x majorizes y and write x > y if

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i \quad \text{ for } k = 1, 2, \dots, n$$

with equality when k = n.

- Think of \mathbf{x} and \mathbf{y} as permutation equivalence classes.
- The set of all vectors majorized by x is the convex hull of all

Definition

Given natural vectors x and y with non-increasing entries, we say that x majorizes y and write x > y if

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i \quad \text{ for } k = 1, 2, \dots, n$$

with equality when k = n.

- Think of \mathbf{x} and \mathbf{y} as permutation equivalence classes.
- Extends to real vectors.
- The set of all vectors majorized by x is the convex hull of all

Definition

Given natural vectors **x** and **y** with non-increasing entries, we say that x majorizes y and write x > y if

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i \quad \text{ for } k = 1, 2, \dots, n$$

with equality when k = n.

- Think of x and y as permutation equivalence classes.
- Extends to real vectors.
- The set of all vectors majorized by \mathbf{x} is the convex hull of all $\sigma(\mathbf{x})$ for $\sigma \in S_n$.

Some applications taken from Marshall and Olkin.

$$\mathbf{x} \succeq \mathbf{y}$$
 iff $\exists D$ doubly stochastic s.t. $\mathbf{y} = D\mathbf{x}$.

Some applications taken from Marshall and Olkin.

Majorization of real vectors and doubly stochastic matrices:

$$\mathbf{x} \succeq \mathbf{y}$$
 iff $\exists D$ doubly stochastic s.t. $\mathbf{y} = D\mathbf{x}$.

Some applications taken from Marshall and Olkin.

Majorization of real vectors and doubly stochastic matrices:

$$\mathbf{x} \succeq \mathbf{y}$$
 iff $\exists D$ doubly stochastic s.t. $\mathbf{y} = D\mathbf{x}$.

- If *H* is Hermitian, then the vector of eigenvalues majorizes the vector of diagonal entries.

Some applications taken from Marshall and Olkin.

Majorization of real vectors and doubly stochastic matrices:

$$\mathbf{x} \succeq \mathbf{y}$$
 iff $\exists D$ doubly stochastic s.t. $\mathbf{y} = D\mathbf{x}$.

- If *H* is Hermitian, then the vector of eigenvalues majorizes the vector of diagonal entries.
- Flows in graphs and networks.

Some applications taken from Marshall and Olkin.

Majorization of real vectors and doubly stochastic matrices:

$$\mathbf{x} \succeq \mathbf{y}$$
 iff $\exists D$ doubly stochastic s.t. $\mathbf{y} = D\mathbf{x}$.

- If H is Hermitian, then the vector of eigenvalues majorizes the vector of diagonal entries.
- Flows in graphs and networks.
- Bounds on condition numbers, unitarily invariant norms and symmetric gauge functions.

Some applications taken from Marshall and Olkin.

Majorization of real vectors and doubly stochastic matrices:

$$\mathbf{x} \succeq \mathbf{y}$$
 iff $\exists D$ doubly stochastic s.t. $\mathbf{y} = D\mathbf{x}$.

- If H is Hermitian, then the vector of eigenvalues majorizes the vector of diagonal entries.
- Flows in graphs and networks.
- Bounds on condition numbers, unitarily invariant norms and symmetric gauge functions.
- Relationships between sampling without replacement and sampling with replacement.

Classically...

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, *Proc. Edinburgh Math. Soc.*)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011
- Paper by Arnold in Statistical Science surveys the cornucopia of applications, 2007.

In linear algebra...

■ Taslaman, Tisseur, Zaballa link majorization to the diagonal of an upper triangular realization of a given Smith form, 2013

C Kwon 4/12

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, *Proc. Edinburgh Math. Soc.*)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011
- Paper by Arnold in Statistical Science surveys the cornucopia of applications, 2007.

In linear algebra..

■ Taslaman, Tisseur, Zaballa link majorization to the diagonal of an upper triangular realization of a given Smith form, 2013

C Kwon 4/12

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, *Proc. Edinburgh Math. Soc.*)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011
- Paper by Arnold in Statistical Science surveys the cornucopia of applications, 2007.

In linear algebra...

■ Taslaman, Tisseur, Zaballa link majorization to the diagonal of an upper triangular realization of a given Smith form, 201

C Kwon 4/12

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, Proc. Edinburgh Math. Soc.)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011.

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, Proc. Edinburgh Math. Soc.)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011.
- Paper by Arnold in Statistical Science surveys the cornucopia of applications, 2007.

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, Proc. Edinburgh Math. Soc.)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011.
- Paper by Arnold in Statistical Science surveys the cornucopia of applications, 2007.

In linear algebra...

Classically...

- Majorization appears in the literature as far back as 1903 (Muirhead, Proc. Edinburgh Math. Soc.)
- The term "majorization" was coined by Hardy, Littlewood, and Polya in 1934.

Contemporarily...

- The essential reference is the book by Marshall, Olkin, and Arnold from 2011.
- Paper by Arnold in Statistical Science surveys the cornucopia of applications, 2007.

In linear algebra...

 Taslaman, Tisseur, Zaballa link majorization to the diagonal of an upper triangular realization of a given Smith form, 2013.

Robin Hood transfers

Robin Hood transfer

Consider $\mathbf{x} \in \mathbb{N}^n$ and construct \mathbf{x}' by replacing x_i and x_j with x_i' and x_i' such that

$$x_i>x_i'\geq x_j'>x_j \text{ and } x_i'+x_j'=x_i+x_j.$$

- $\mathbf{x} \succ \mathbf{x}'$
- If x > y, then there is a finite sequence

$$\mathbf{x} = \mathbf{x}^{(0)} \succeq \mathbf{x}^{(1)} \succeq \mathbf{x}^{(m)} = \mathbf{y}$$

such that $\mathbf{x}^{(i+1)}$ is obtained from $\mathbf{x}^{(i)}$ by a single Robin Hood transfer.

Muirhead's theorem

Robin Hood transfers

Robin Hood transfer

Consider $\mathbf{x} \in \mathbb{N}^n$ and construct \mathbf{x}' by replacing x_i and x_i with x_i' and x'_i such that

$$x_i > x_i' \ge x_j' > x_j$$
 and $x_i' + x_j' = x_i + x_j$.

- $\mathbf{x} \succeq \mathbf{x}'$
- If x > y, then there is a finite sequence

$$\mathbf{x} = \mathbf{x}^{(0)} \succ \mathbf{x}^{(1)} \succ \mathbf{x}^{(m)} = \mathbf{y}$$

such that $\mathbf{x}^{(i+1)}$ is obtained from $\mathbf{x}^{(i)}$ by a single Robin Hood

University at Buffalo The State University of New York | Mathematics

Robin Hood transfers

Robin Hood transfer

Consider $\mathbf{x} \in \mathbb{N}^n$ and construct \mathbf{x}' by replacing x_i and x_i with x_i' and x'_i such that

$$x_i>x_i'\geq x_j'>x_j \text{ and } x_i'+x_j'=x_i+x_j.$$

- $\mathbf{x} \succ \mathbf{x}'$
- If $x \succeq y$, then there is a finite sequence

$$x = x^{(0)} \succ x^{(1)} \succ x^{(m)} = y$$

such that $\mathbf{x}^{(i+1)}$ is obtained from $\mathbf{x}^{(i)}$ by a single Robin Hood transfer.

Robin Hood transfers

Robin Hood transfer

Consider $\mathbf{x} \in \mathbb{N}^n$ and construct \mathbf{x}' by replacing x_i and x_i with x_i' and x'_i such that

$$x_i>x_i'\geq x_j'>x_j \text{ and } x_i'+x_j'=x_i+x_j.$$

- $\mathbf{x} \succeq \mathbf{x}'$
- If $x \succeq y$, then there is a finite sequence

$$\mathbf{x} = \mathbf{x}^{(0)} \succeq \mathbf{x}^{(1)} \succeq \mathbf{x}^{(m)} = \mathbf{y}$$

such that $\mathbf{x}^{(i+1)}$ is obtained from $\mathbf{x}^{(i)}$ by a single Robin Hood transfer.

Muirhead's theorem.

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

- A set of conditions was given by Marques de Sá in his 1979 Householder Prize winning dissertation.

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

- A set of conditions was given by Marques de Sá in his 1979 Householder Prize winning dissertation.
 - Involves GCDs of products of polynomials.

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

- A set of conditions was given by Marques de Sá in his 1979 Householder Prize winning dissertation.
 - Involves GCDs of products of polynomials.
 - Checking takes roughly $\mathcal{O}(2^n)$ time.

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

- A set of conditions was given by Marques de Sá in his 1979 Householder Prize winning dissertation.
 - Involves GCDs of products of polynomials.
 - Checking takes roughly $\mathcal{O}(2^n)$ time.
- We present a simpler set of conditions based on majorization.

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

- A set of conditions was given by Marques de Sá in his 1979 Householder Prize winning dissertation.
 - Involves GCDs of products of polynomials.
 - Checking takes roughly $\mathcal{O}(2^n)$ time.
- We present a simpler set of conditions based on majorization.
 - Checking takes roughly $\mathcal{O}(qn^2)$.

Consider the following

Inverse problem

Given a Smith form $S(\lambda)$ and a list of polynomials $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$, does there exist a triangular matrix polynomial $T(\lambda)$ with $S \sim T$ and diagonal entries given by \mathcal{D} ?

- A set of conditions was given by Marques de Sá in his 1979 Householder Prize winning dissertation.
 - Involves GCDs of products of polynomials.
 - Checking takes roughly $\mathcal{O}(2^n)$ time.
- We present a simpler set of conditions based on majorization.
 - Checking takes roughly $\mathcal{O}(qn^2)$.
 - Implementable construction.

Background

Definition

Let $\chi(\lambda)$ be an irreducible polynomial. The factor count of a polynomial $p(\lambda)$ for χ is the number of times χ appears as a factor of $p(\lambda)$, denoted

$$|p(\lambda)|_{\chi}$$
.

$$|\mathcal{P}|_{V} := (|p_1|_{V}, |p_2|_{V}, \dots, |p_n|_{V})$$

Background

Definition

Let $\chi(\lambda)$ be an irreducible polynomial. The factor count of a polynomial $p(\lambda)$ for χ is the number of times χ appears as a factor of $p(\lambda)$, denoted

$$|p(\lambda)|_{\chi}$$
.

Definition

The factor counting vector of a set $\mathcal{P} = \{p_1(\lambda), p_2(\lambda), \dots, p_n(\lambda)\}\$ is the vector

$$|\mathcal{P}|_{\chi} := (|p_1|_{\chi}, |p_2|_{\chi}, \dots, |p_n|_{\chi}).$$

Background

Definition

Let $\chi(\lambda)$ be an irreducible polynomial. The factor count of a polynomial $p(\lambda)$ for χ is the number of times χ appears as a factor of $p(\lambda)$, denoted

$$|p(\lambda)|_{\chi}$$
.

Definition

The factor counting vector of a set $\mathcal{P} = \{p_1(\lambda), p_2(\lambda), \dots, p_n(\lambda)\}\$ is the vector

$$|\mathcal{P}|_{\chi} := (|p_1|_{\chi}, |p_2|_{\chi}, \ldots, |p_n|_{\chi}).$$

Straightforward to extend to a collection of irreducible polynomials $\mathcal{F} = \{ \chi_1, \chi_2, \dots, \chi_k \}$.

Main result

Theorem

Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of invariant polynomials from the Smith form $S(\lambda)$, and let $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$ be a list of polynomials. The desired realization exists if and only if

$$|\mathcal{S}|_{\chi} \succeq |\mathcal{D}|_{\chi}$$
 for all irreducible $\chi \mid \prod_{i=1}^{n} s_{i}$.

Main result

Theorem

Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of invariant polynomials from the Smith form $S(\lambda)$, and let $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$ be a list of polynomials. The desired realization exists if and only if

$$|\mathcal{S}|_{\chi} \succeq |\mathcal{D}|_{\chi}$$
 for all irreducible $\chi \mid \prod_{i=1}^{n} s_{i}$.

- Forward implication: directly show inequalities hold.

Main result

Theorem

Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of invariant polynomials from the Smith form $S(\lambda)$, and let $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$ be a list of polynomials. The desired realization exists if and only if

$$|\mathcal{S}|_{\chi} \succeq |\mathcal{D}|_{\chi}$$
 for all irreducible $\chi \mid \prod_{i=1}^{n} s_{i}$.

- Forward implication: directly show inequalities hold.
- Reverse implication: several steps.

Main result

Theorem

Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of invariant polynomials from the Smith form $S(\lambda)$, and let $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$ be a list of polynomials. The desired realization exists if and only if

$$|\mathcal{S}|_{\chi} \succeq |\mathcal{D}|_{\chi}$$
 for all irreducible $\chi \mid \prod_{i=1}^{n} s_{i}$.

- Forward implication: directly show inequalities hold.
- Reverse implication: several steps.
 - Muirhead's theorem applied to each factor counting vector.

Main result

Theorem

Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of invariant polynomials from the Smith form $S(\lambda)$, and let $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$ be a list of polynomials. The desired realization exists if and only if

$$|\mathcal{S}|_{\chi} \succeq |\mathcal{D}|_{\chi}$$
 for all irreducible $\chi \mid \prod_{i=1}^{n} s_{i}$.

- Forward implication: directly show inequalities hold.
- Reverse implication: several steps.
 - Muirhead's theorem applied to each factor counting vector.
 - Each Robin Hood transfer can be accomplished by a unimodular transformation that preserves triangularity.

Let
$$\mathcal{S} = \{s_1, s_2, \dots, s_n\}$$
 and $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$.

$$\prod_{i=1}^k s_i \mid \prod_{i=1}^k d_i.$$

$$\sum_{i=1}^k |s_i|_{\chi} \le \sum_{i=1}^k |d_i|_{\chi}$$

Let
$$S = \{s_1, s_2, \dots, s_n\}$$
 and $D = \{d_1, d_2, \dots, d_n\}$.

- **1** Assume $|\mathcal{S}|_{\mathcal{X}}$ and $|\mathcal{D}|_{\mathcal{X}}$ are in non-decreasing order.

$$\prod_{i=1}^k s_i \mid \prod_{i=1}^k d_i.$$

$$\sum_{i=1}^k |s_i|_{\chi} \le \sum_{i=1}^k |d_i|_{\chi}$$

Let
$$S = \{s_1, s_2, \dots, s_n\}$$
 and $D = \{d_1, d_2, \dots, d_n\}$.

- **1** Assume $|\mathcal{S}|_{\mathcal{X}}$ and $|\mathcal{D}|_{\mathcal{X}}$ are in non-decreasing order.
- By Smith's theorem

$$\prod_{i=1}^k s_i \mid \prod_{i=1}^k d_i.$$

$$\sum_{i=1}^k |s_i|_{\chi} \leq \sum_{i=1}^k |d_i|$$

Let
$$S = \{s_1, s_2, \dots, s_n\}$$
 and $D = \{d_1, d_2, \dots, d_n\}$.

- **1** Assume $|S|_{\gamma}$ and $|D|_{\gamma}$ are in non-decreasing order.
- By Smith's theorem

$$\prod_{i=1}^k s_i \mid \prod_{i=1}^k d_i.$$

Since $|p(\lambda)q(\lambda)|_{\chi} = |p(\lambda)|_{\chi} + |q(\lambda)|_{\chi}$ and $r(\lambda) |p(\lambda)$ implies $|r(\lambda)|_{\gamma} \leq |p(\lambda)|_{\gamma}$

$$\sum_{i=1}^k |s_i|_{\chi} \leq \sum_{i=1}^k |d_i|_{\chi}.$$

Let
$$S = \{s_1, s_2, \dots, s_n\}$$
 and $D = \{d_1, d_2, \dots, d_n\}$.

- **1** Assume $|S|_{\gamma}$ and $|D|_{\gamma}$ are in non-decreasing order.
- By Smith's theorem

$$\prod_{i=1}^k s_i \mid \prod_{i=1}^k d_i.$$

Since $|p(\lambda)q(\lambda)|_{\chi} = |p(\lambda)|_{\chi} + |q(\lambda)|_{\chi}$ and $r(\lambda) |p(\lambda)$ implies $|r(\lambda)|_{\gamma} \leq |p(\lambda)|_{\gamma}$

$$\sum_{i=1}^k |s_i|_{\chi} \leq \sum_{i=1}^k |d_i|_{\chi}.$$

Equality of determinants gives equality when k = n.

Unimodular transfer lemma

Lemma

Consider

$$T(\lambda) = \begin{bmatrix} p(\lambda)\chi(\lambda)^{a} & r(\lambda) \\ 0 & q(\lambda)\chi(\lambda)^{b} \end{bmatrix}$$

with $GCD(\chi, pq) = 1$. Then $T(\lambda)$ is equivalent to

$$T(\lambda)' = \begin{bmatrix} p(\lambda)\chi(\lambda)^{\alpha} & r(\lambda)' \\ 0 & q(\lambda)\chi(\lambda)^{\beta} \end{bmatrix}$$

where $a > \alpha > \beta > b$ and $\alpha + \beta = a + b$.

Unimodular transfer lemma

Lemma

Consider

$$T(\lambda) = \begin{bmatrix} p(\lambda)\chi(\lambda)^{a} & r(\lambda) \\ 0 & q(\lambda)\chi(\lambda)^{b} \end{bmatrix}$$

with $GCD(\chi, pq) = 1$. Then $T(\lambda)$ is equivalent to

$$T(\lambda)' = \begin{bmatrix} p(\lambda)\chi(\lambda)^{\alpha} & r(\lambda)' \\ 0 & q(\lambda)\chi(\lambda)^{\beta} \end{bmatrix}$$

where $a > \alpha > \beta > b$ and $\alpha + \beta = a + b$.

- lacksquare Moves factors of χ along the diagonal to accomplish a Robin Hood transfer.
- Applied to adjacent diagonal entries in a larger triangular matrix

C Kwon 10/12

Unimodular transfer lemma

Lemma

Consider

$$T(\lambda) = \begin{bmatrix} p(\lambda)\chi(\lambda)^{a} & r(\lambda) \\ 0 & q(\lambda)\chi(\lambda)^{b} \end{bmatrix}$$

with $GCD(\chi, pq) = 1$. Then $T(\lambda)$ is equivalent to

$$T(\lambda)' = \begin{bmatrix} p(\lambda)\chi(\lambda)^{\alpha} & r(\lambda)' \\ 0 & q(\lambda)\chi(\lambda)^{\beta} \end{bmatrix}$$

where $a > \alpha > \beta > b$ and $\alpha + \beta = a + b$.

- lacksquare Moves factors of χ along the diagonal to accomplish a Robin Hood transfer.
- Applied to adjacent diagonal entries in a larger triangular matrix.

C Kwon 10/12

Computational implementation

- Most steps can be implemented without the need for numerical computation.

Computational implementation

- Most steps can be implemented without the need for numerical computation.
- Unimodular transfer lemma requires the computation of 2×2 unimodular transformations that take a 2×2 upper triangular matrix to Smith form.

Computational implementation

- Most steps can be implemented without the need for numerical computation.
- Unimodular transfer lemma requires the computation of 2×2 unimodular transformations that take a 2×2 upper triangular matrix to Smith form.
- Two such computations for each Robin Hood transfer.

Questions???

Richard Hollister rahollis@buffalo.edu

12/12 C Kwon