Assignment 7.1

- 1. Histogram for all variables in a dataset mtcars. Write a program to create histograms for all columns.
- 2. Check the probability distribution of all variables in mtcars
- 3. Write a program to create boxplot for all variables.
- 1. Histogram for all variables in a dataset mtcars. Write a program to create histograms for all columns.

```
library(tidyr)
library(ggplot2)
ggplot(gather(mtcars), aes(value)) + geom_histogram(bins = 10) +
facet_wrap(~key, scales = 'free_x')
```


2. Check the probability distribution of all variables in mtcars.

```
```{r}
library(readr)
mtcars <- read_csv("C:/Sourav/R/mtcars.csv")</pre>
cars <- mtcars
print(head(cars))
 # Get the means of each column
column_means <- colMeans(cars)
print(column_means)
 # Check means
center_matrix <- matrix(rep(column_means, nrow(cars)), # Repeat the column means</pre>
nrow=nrow(cars),
ncol=ncol(cars),
byrow = TRUE)
Construct row by row
centered <- cars - center matrix # Subtract column means
print(head(centered))
 # Check the new data set
print(colMeans(centered))
 # Check the new column means to confirm they are 0
sd(centered$mpg)
column_sds <- apply(centered,</pre>
 # A matrix or data frame
MARGIN = 2, # Operate on rows(1) or columns(2)
FUN = sd) # Function to apply
print(column_sds)
 # Check standard deviations
scale_matrix <- matrix(rep(column_sds, nrow(cars)), # Repeat the column sds
nrow=nrow(cars),
ncol=ncol(cars),
byrow = TRUE)
centered_scaled <- centered/scale_matrix # Divide by column sds to scale the data
summary(centered_scaled) # Confirm that variables are on similar scales
```

```
auto scaled <- scale(cars,
 # Numeric data object
center=TRUE,
 # Center the data?
scale=TRUE)
 # Scale the data?
summary(auto scaled)
 # Check the auto scaled data
normally_distributed <- rnorm(10000) # Generate normally distributed data
hist(normally distributed, breaks=30) # Create a histogram of the distribution
skewed_right <- rexp(10000, 0.5)
 # Generate skewed data
hist(skewed right, breaks=50) # Create a histogram of the distribution
log_transformed <- log(skewed_right+1)</pre>
hist(log_transformed, breaks=50)
cor(cars[,1:6])
 # Check the pairwise correlations of 6 variables
pairs(cars[,1:6])
```

```
: 1.1899
 : 1.7789
 Max.
Max.
 Max.
 : 3.2117
 cy1
 disp
 hn
 :-1.6079
 Min.
 Min.
 Min.
 Min.
 :-1.225
 :-1.2879
 :-1.3810
 1st Qu.:-0.7741
 1st Qu.:-1.225
 1st Qu.:-0.8867
 1st Qu.:-0.7320
 Median :-0.1478
 Median :-0.105
 Median :-0.2777
 Median :-0.3455
 Mean
 Mean
 : 0.0000
 : 0.000
 Mean
 : 0.0000
 Mean
 : 0.0000
 3rd Qu.: 0.4495
 3rd Qu.: 1.015
 3rd Qu.: 0.7688
 3rd Qu.: 0.4859
 : 2.2913
 1.015
 : 1.9468
 : 2.7466
 Max.
 Max.
 Max.
 Max.
 drat
 qsec
 :-1.5646
 :-1.7418
 Min.
 Min.
 Min.
 :-1.87401
 :-0.868
 Min.
 1st Qu.:-0.9661
 1st Qu.:-0.6500
 1st Qu.:-0.53513
 1st Qu.:-0.868
 Median : 0.1841
 Median : 0.1101
 Median :-0.07765
 Median :-0.868
 : 0.0000
 : 0.0000
 : 0.00000
 : 0.000
 Mean
 Mean
 Mean
 Mean
 3rd Qu.: 0.6049
 3rd Qu.: 0.4014
 3rd Qu.: 0.58830
 3rd Qu.: 1.116
 2.4939
 2.2553
 : 2.82675
 Max.
 Max.
 Max.
 Max.
 : 1.116
 carb
 am
 gear
 Min.
 Min.
 :-0.8141
 Min.
 :-0.9318
 :-1.1222
 1st Qu.:-0.8141
 1st Qu.:-0.9318
 1st Qu.:-0.5030
 Median :-0.<u>5030</u>
 Median :-0.8141
 Median: 0.4236
 : 0.0000
 : 0.0000
 : 0.0000
 Mean
 Mean
 Mean
 3rd Qu.: 1.1899
 3rd Qu.: 0.4236
 3rd Qu.: 0.7352
 1.1899
 1.7789
 3.2117
 Max.
 Max.
 Max.
 disp
 hp
 drat
 mpg
 1.0000000 -0.8521620 -0.8475514 -0.7761684
 0.6811719 -0.8676594
 0.8324475 -0.6999381
cy1
 -0.8521620
 1.0000000
 0.9020329
 0.7824958
 0.9020329
 1.0000000
 0.7909486 -0.7102139
disp -0.8475514
 0.8879799
 -0.7761684
 0.8324475
 0.7909486
 1.0000000 -0.4487591
 -0.6999381 -0.7102139 -0.4487591
drat 0.6811719
 1.0000000 -0.7124406
 0.7824958 0.8879799 0.6587479 -0.7124406
 -0.8676594
 1.000000
```

mpg <dbl></dbl>	<b>cyl</b> <int></int>	disp <dbl></dbl>	hp <int></int>	drat <dbl></dbl>	wt <dbl></dbl>	qsec <dbl></dbl>	VS <int></int>	am <int></int>	gear <int></int>
21.0	6	160	110	3.90	2.620	16.46	0	1	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4
21.4	6	258	110	3.08	3.215	19.44	1	0	3
18.7	8	360	175	3.15	3.440	17.02	0	0	3
18.1	6	225	105	2.76	3.460	20.22	1	0	3
6 rows   1-10 of 11 columns									

mpg <dbl></dbl>	<b>cyl</b> <dbl></dbl>	disp <dbl></dbl>	<b>hp</b> <dbl></dbl>	<b>drat</b> <dbl></dbl>	<b>wt</b> <dbl></dbl>	qsec <dbl></dbl>	
1	0.909375	-0.1875	-70.721875	-36.6875	0.3034375	-0.59725	-1.38875
2	0.909375	-0.1875	-70.721875	-36.6875	0.3034375	-0.34225	-0.82875
3	2.709375	-2.1875	-122.721875	-53.6875	0.2534375	-0.89725	0.76125
4	1.309375	-0.1875	27.278125	-36.6875	-0.5165625	-0.00225	1.59125
5	-1.390625	1.8125	129.278125	28.3125	-0.4465625	0.22275	-0.82875
6	-1.990625	-0.1875	-5.721875	-41.6875	-0.8365625	0.24275	2.37125
6 rows	1-8 of 11 colu	mns					

# Histogram of normally\_distributed



## Histogram of skewed\_right



# Histogram of log\_transformed





```
generate subset: automatic and manual cars
cars_auto = subset(mtcars, am == 0)
cars_manu = subset(mtcars, am == 1)
dimensions
dim(mtcars)
dim(cars_auto); dim(cars_manu)
mean(cars_auto$mpg); mean(cars_manu$mpg)
sd(cars_auto$mpg); sd(cars_manu$mpg)
(mean(cars_manu$mpg) - mean(cars_auto$mpg))/mean(cars_auto$mpg)
mpg plots
par(mfrow = c(2, 1))
hist(cars_auto$mpg, main = "Distribution mpg - automatic transmission", xlab = "mpg")
abline(v = mean(cars_auto$mpg), col = "red")
hist(cars_manu$mpg, main = "Distribution mpg - manual transmission", xlab = "mpg")
abline(v = mean(cars_manu$mpg), col = "red")
t.test(cars_manu$mpg, cars_auto$mpg, paired = F, var.equal = F)
Permutation test
what if I shuffle the am groups and calculate the mean?
get target variable and group vectors
y = mtcars$mpg
group = mtcars$am
y; group
baseline group means and difference
baselineMeans = tapply(mtcars$mpg, mtcars$am, mean)
baselineMeansDiff = baselineMeans[2] - baselineMeans[1]
```

```
tStat = function(w, g) mean(w[g == 1]) - mean(w[g == 0])
observedDiff = tStat(y, group)
check if function works - should be 0:
baselineMeansDiff - observedDiff
execute shuffle:
permutations = sapply(1:100000, function(i) tStat(y, sample(group)))
shuffle experiment results plots:
par(mfrow = c(2, 1), mar = c(4, 4, 2, 2))
hist(permutations, main = "Distribution of shuffled group mean differences") # distribution
of difference of averages of permuted groups
plot(permutations, type = "b", main = "Shuffled group mean trials", xlab = "trial", ylab =
"shuffled group mean differences", ylim = c(-14, 14))
abline(h = observedDiff, col = "red", lwd = 3)
mean(permutations > observedDiff)
generate subset: automatic and manual cars
cars_auto = subset(mtcars, am == 0)
cars_manu = subset(mtcars, am == 1)
Visual inspection of all covariates
pairs(mtcars)
4 bivariate analysis: hp / wt / drat / disp
par(mfrow = c(2, 2), mar = c(2, 3, 2, 3))
plot1
with(mtcars, plot(hp, mpg, type = "n", main = "mpg vs. hp - by transmission type")) # no
data
with(cars auto, points(hp, mpg, col = "red", pch = 20))
```

```
with(cars_manu, points(hp, mpg, col = "blue", pch = 20))
legend("topright", pch = 20, col = c("red", "blue"), legend = c("auto", "manu")) # add legend
model1 auto = lm(mpg \sim hp, data = cars auto)
model1_manu = lm(mpg \sim hp, data = cars_manu)
abline(model1_auto, col = "red", lwd = 2)
abline(model1 manu, col = "blue", lwd = 2)
abline(v = 175, lty = 2)
plot2
with(mtcars, plot(wt, mpg, type = "n", main = "mpg vs. weight - by transmission type")) #
no data
with(cars_auto, points(wt, mpg, col = "red", pch = 20))
with(cars_manu, points(wt, mpg, col = "blue", pch = 20))
legend("topright", pch = 20, col = c("red", "blue"), legend = c("auto", "manu")) # add legend
abline(v = 3.2, lty = 2)
plot 3
with(mtcars, plot(drat, mpg, type = "n", main = "mpg vs. drat - by transmission type")) # no
data
with(cars_auto, points(drat, mpg, col = "red", pch = 20))
with(cars_manu, points(drat, mpg, col = "blue", pch = 20))
legend("topright", pch = 20, col = c("red", "blue"), legend = c("auto", "manu")) # add legend
model2 auto = lm(mpg \sim drat, data = cars auto)
model2_manu = lm(mpg \sim drat, data = cars_manu)
abline(model2_auto, col = "red", lwd = 2)
abline(model2 manu, col = "blue", lwd = 2)
abline(v = 175, lty = 2)
```

```
plot 4
with(mtcars, plot(disp, mpg, type = "n", main = "mpg vs. disp - by transmission type")) # no
data
with(cars_auto, points(disp, mpg, col = "red", pch = 20))
with(cars manu, points(disp, mpg, col = "blue", pch = 20))
legend("topright", pch = 20, col = c("red", "blue"), legend = c("auto", "manu")) # add legend
labels = with(mtcars, paste(as.character(disp), as.character(mpg), sep = ",")) # generate
point labels
with (mtcars, text(disp, mpg, labels = labels, cex = 0.7, pos = 2))
abline(v = 167.6, lty = 2)
analyse covariance matrix for regressor selection:
z <- cor(mtcars)</pre>
require(lattice)
only am
data = mtcars
data$am = as.factor(data$am)
model2 = lm(mpg \sim am, data = data)
get results
summary(model2)
model selection using leaps
library(leaps)
data = mtcars
data$log_mpg = log(data$mpg) # add log of y
method 1. best fit
regfit.full = regsubsets(log_mpg \sim ..., data = data, nvmax = 10)
reg.summary = summary(regfit.full)
reg.summary
```

```
how I select the optimal number of variables?
plot(reg.summary$cp, xlab = "Number of variables", ylab = "cp", type = "b")
regfit.fwd = regsubsets(log_mpg ~ ., data = data, nvmax = 10, method = "forward")
summary(regfit.fwd)
plot(regfit.fwd, scale = "Cp")
lm with all variables / no split
prepare data
data = mtcars
data$am = as.factor(data$am)
model1 = lm(mpg \sim ., data = data)
get results
summary(model1)
plot residual analysis
par(mfrow = c(2, 2))
plot(model1)
plot hist
par(mfrow = c(1, 1))
hist(model1$residuals)# normality test on residuals
shapiro.test(model1$residuals)
```

```
-0.02148
 0.02177
 -0.987
 0.3350
hp
drat
 0.481
 0.78711
 1.63537
 0.6353
 0.0633 .
 -3.71530
 1.89441
 -1.961
wt
 0.82104
 0.73084
 1.123
 0.2739
qsec
 0.31776
 2.10451
 0.151
 0.8814
vs
 2.52023
 2.05665
 1.225
 0.2340
am1
gear
 0.65541
 1.49326
 0.439
 0.6652
carb
 -0.19942
 0.82875 -0.241
 0.8122
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.65 on 21 degrees of freedom
Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
 Shapiro-Wilk normality test
data: model1$residuals
W = 0.95694, p-value = 0.2261
```

Given: as.factor(cyl)



## Distribution mpg - automatic transmission



## Distribution mpg - manual transmission



## Distribution of shuffled group mean differences











## Histogram of model1\$residuals



#### 3. Write a program to create boxplot for all variables

```
library(psych)
describe(mtcars)
boxplot(mtcars$mpg,mtcars$cyl,mtcars$disp,mtcars$hp,mtcars$drat,mtcars$wt,mtc
ars$qsec,mtcars$vs,mtcars$am,mtcars$gear,mtcars$carb,col = "red")
library(ggplot2)
library(car)
library(corrgram)
data=mtcars
name=mtcars
mtcars$am <- as.factor(mtcars$am)</pre>
levels(mtcars$am) <- c("Automatic", "Manual")</pre>
head(mtcars)
summary(mtcars)
describe(mtcars)
boxplot(mtcars$mpg,mtcars$cyl,mtcars$disp,mtcars$hp,mtcars$drat,mtcars$wt,mtc
ars$qsec,mtcars$vs,mtcars$am,mtcars$gear,mtcars$carb,col = "red")
plot1 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom_boxplot(notch=F)+facet_grid(.~cyl)+scale_x_discrete("Transmission")+
scale_y_continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Cylinder")
plot1 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom_boxplot(notch=F)+facet_grid(.~cyl)+scale_x_discrete("Transmission")+
scale y continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Cylinder")
plot2 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom boxplot(notch=F)+facet grid(.~vs)+scale x discrete("Transmission")+
scale y continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
VS")
plot3 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom boxplot(notch=F)+facet grid(.~gear)+scale x discrete("Transmission")+
scale_y_continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Gears")
plot4 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom_boxplot(notch=F)+facet_grid(.~carb)+scale_x_discrete("Transmission")+
scale_y_continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
```





#### R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmarkdown.rstudio.com">http://rmarkdown.rstudio.com</a>.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
library(psych)
describe(mtcars)
boxplot(mtcars$mpg,mtcars$cyl,mtcars$disp,mtcars$hp,mtcars$drat,mtcars$wt,mtc
ars$qsec,mtcars$vs,mtcars$am,mtcars$gear,mtcars$carb,col = "red")
library(ggplot2)
library(car)
library(corrgram)
library(reshape)
library(dplyr)
library(gridExtra)
data=mtcars
name=mtcars
mtcars$am <- as.factor(mtcars$am)</pre>
levels(mtcars$am) <- c("Automatic", "Manual")</pre>
head(mtcars)
summary(mtcars)
plot1 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom boxplot(notch=F)+facet grid(.~cyl)+scale x discrete("Transmission")+
scale y continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Cylinder")
plot1 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom_boxplot(notch=F)+facet_grid(.~cyl)+scale_x_discrete("Transmission")+
scale y continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Cylinder")
plot2 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+</pre>
geom_boxplot(notch=F)+facet_grid(.~vs)+scale_x_discrete("Transmission")+
scale_y_continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
VS")
plot3 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+
geom boxplot(notch=F)+facet grid(.~gear)+scale x discrete("Transmission")+
```

```
scale_y_continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Gears")

plot4 <- ggplot(mtcars, aes(x=factor(am),y=mpg,fill=factor(am)))+
geom_boxplot(notch=F)+facet_grid(.~carb)+scale_x_discrete("Transmission")+
scale_y_continuous("Miles per Gallon")+ggtitle("MPG by Transmission Type &
Carburetors")
grid.arrange(plot1, plot2, plot3, plot3, nrow=2, ncol=2)
summary(cars)</pre>
```

dbl>	n <dbl></dbl>	mean <dbl></dbl>	<b>sd</b> <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>	<b>min</b> <dbl></dbl>	max <dbl></dbl>	
mpg	1	32	20.09	6.03	19.20	19.70	5.41	10.40	33.90
cyl*	2	32	2.09	0.89	2.00	2.12	1.48	1.00	3.00
disp	3	32	230.72	123.94	196.30	222.52	140.48	71.10	472.00
hp	4	32	146.69	68.56	123.00	141.19	77.10	52.00	335.00
drat	5	32	3.60	0.53	3.70	3.58	0.70	2.76	4.93
wt	6	32	3.22	0.98	3.33	3.15	0.77	1.51	5.42
qsec	7	32	17.85	1.79	17.71	17.83	1.42	14.50	22.90
VS	8	32	0.44	0.50	0.00	0.42	0.00	0.00	1.00
am*	9	32	1.41	0.50	1.00	1.38	0.00	1.00	2.00
gear*	10	32	1.69	0.74	2.00	1.62	1.48	1.00	3.00

```
Next
12
Previous
1-10 of 11 rows | 1-10 of 13 columns
```

```
##
 speed
 dist
 Min. : 2.00
Min. : 4.0
1st Qu.:12.0
 1st Qu.: 26.00
Median :15.0
 Median : 36.00
Mean
 :15.4
 Mean : 42.98
3rd Qu.:19.0
 3rd Qu.: 56.00
 Max. :120.00
Max. :25.0
```

#### **Including Plots**

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.