

Е. А. Широкова, Решение обратной задачи напорной фильтрации в неоднородном изотрошом грунте при задании распределения напоров как функции

параметра x, Tp. cem. по $\kappa paee$. задачам, 1992, выпуск 27, 140-147

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:25:29

ее обобщения и приложения: Сб.науч.тр. - Киев: Наукова думка, 1982. - C.116 - 126.

- 3. T a n D. On the dilatation estimates for Beurling Ahlfors quasiconformal extension // Proc. Amer. Math. Soc. 1987. V.100. N 4. P.655 660.
- 4. Стоилов С. Лекции о топологических принципах теории аналитических функций. М.: Наука, 1964. 227 с.
- 5. Аксентьев Л. А., Шабалин П. Л. Условия однолистности с квазиконформным продолжением и их применение // Изв. вузов. Мат. 1983. № 2. С.6 14.

Доложено на семинаре 25 января 1988 г.

Е.А.Широкова

РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ НАПОРНОЙ ФИЛЬТРАЦИИ В НЕОДНОРОДНОМ ИЗОТРОПНОМ ГРУНТЕ ПРИ ЗАДАНИИ РАСПРЕДЕЛЕНИЯ НАПОРОВ КАК ФУНКЦИИ ПАРАМЕТРА \boldsymbol{x}

Обратная задача напорной фильтрации в анизотропном неоднородном грунте в случае конечного фильтрующего слоя была поставлена в [І]. Там же указан метод решения этой задачи, основанный на результатах В.Н.Монахова и С.Н.Антонцева и связанний с отображением области, получаемой в плоскости обобщенного потенциала, на каноническую область с помощью функции, удовлетворяющей квазилинейному уравнению Бельтрами. Существование и единствен ность такого отображения доказаны [2], однако способ построения отображающей функции не указан. В случае, когда фильтрующий слой бесконечен по глубине, подобная задача не рассматривалась. В случае однородного грунта переход от конечного слоя к беско нечному связан с расширением множества решений - появлением в выражении иля функции, отображающей каноническую область на область фильтрации, слагаемого, умноженного на произвольную веще ственную константу A [3]. В нашем случае такое слагаемое также появится, однако призвол константы A ограничен.

 $\frac{\text{Постановка задачи.}}{L_{\mathcal{Z}}(\mathcal{BC})}$ подземной части непроницаемой плотины, если вдоль $L_{\mathcal{Z}}$ с концами в точках $\mathcal{B}(\mathcal{O},\mathcal{O})$ и $\mathcal{C}(\mathcal{C},\mathcal{O})$ задано распределе-

ние напоров h = f(x) , $x \in [0, \ell]$, со свойствами: f(0) = H , $f(\ell) = 0$, f'(x) < 0 при $x \in (0, \ell)$, $f'(0) = f'(\ell) = -\infty$, $f'(k) \in \mathcal{C}_{\alpha}$ [-H, 0]. Границы бьефов AB и CD прямолинейны и расположены на одном уровне. Коэффициент фильтрации k(x,y) таков, что k(x,y) = k, при $\sqrt{x^2 + y^2} > M$, и функция $\lambda(\mathcal{Z}) = (k_0 - k(x,y))(k_0 + k(x,y))^T$, $\mathcal{Z} = x + iy$, удовлетворяет условиям: $|\lambda(\mathcal{Z})| \le \lambda_0 < 1$ при $\Im m \mathcal{Z} < 0$ и $|\lambda(\mathcal{Z}_{\alpha}) - \lambda(\mathcal{Z}_{\alpha})| \le N |\mathcal{Z}_{\alpha} - \mathcal{Z}_{\alpha}|$, $\Im m \mathcal{Z}_{\alpha} < 0$, j = 1, 2.

Вектор скорости фильтрующейся жидкости $\vec{V}=(A(x,y),B(x,y))$ удовлетворяет уравнениям: $\vec{V}=-k(x,y)$ grad k и $div \vec{V}=0$, поэтому введем функции $\varphi=\int k[k(x,y)][Adx+Bdy], \psi=\int Bdx+Ady$ и обобщенный комплексный потенциал $w=\varphi+i\psi$, для которого в области фильтрации $\mathcal{D}_{\mathcal{Z}}$ справедливо уравнение: $w_{\vec{Z}}=\lambda(\mathcal{Z})\cdot\overline{w_{\vec{Z}}}$.

В плоскости W получим полуполосу $\mathcal{D}_W: \mathcal{U} < \mathcal{O}$, $-k_o H < < \mathcal{G} < \mathcal{O}$, причем $\mathcal{G}|_{\mathcal{Z} \in L_g} = -k_o \cdot f(x)$, $x \in [0, \ell]$.

Продолжим $W(\mathcal{Z})$ из области фильтрации $\mathcal{Q}_{\mathcal{Z}}$, расположен — ной в нижней подуплоскости, в область $\mathcal{Q}_{\mathcal{Z}}(A'B'C\mathcal{Q})$, симме— тричную $\mathcal{Q}_{\mathcal{Z}}$ относительно $C\mathcal{Q}$, по формуле: $\widetilde{W}(\mathcal{Z}) = -\overline{W(\mathcal{Z})}$, $\mathcal{I}_{\mathcal{M}} \mathcal{Z} > 0$.

Тогда
$$\widetilde{W}_{\underline{\mathcal{A}}}'(\underline{\mathcal{Z}}) = \overline{W}_{\underline{\mathcal{A}}}'(\overline{\mathcal{Z}})$$
, $\widetilde{W}_{\underline{\mathcal{Z}}}'(\underline{\mathcal{Z}}) = \overline{W}_{\underline{\mathcal{Z}}}'(\overline{\mathcal{Z}})$, $\widetilde{W}_{\underline{\mathcal{Z}}}' = \overline{W}_{\underline{\mathcal{Z}}}'(\overline{\mathcal{Z}})$, $\widetilde{W}_{\underline{\mathcal{Z}}}' = \overline{W}_{\underline{\mathcal{Z}}}'(\overline{\mathcal{Z}})$, $\widetilde{W}_{\underline{\mathcal{Z}}}' = \overline{W}_{\underline{\mathcal{Z}}}'(\overline{\mathcal{Z}})$, $\widetilde{W}_{\underline{\mathcal{Z}}}' = \overline{W}_{\underline{\mathcal{Z}}}'(\overline{\mathcal{Z}})$, $\mathcal{Z} = \mathcal{Z} =$

$$\operatorname{Re} W \mid_{\mathcal{Z} \in \mathcal{B}'\mathcal{C}'} = \mathscr{K}_{o} \cdot f(x)$$
 $\operatorname{mpw} x \in [\mathcal{O}, \ell]$.

Как и в [3], перейдем к вспомогательной плоскости, отобра— зив круг $|z| \le 1$ на удвоенную полуполосу $\widehat{\mathcal{D}}_{W}$ $U\widehat{\widehat{\mathcal{D}}}_{W}$ с помощью функции $W = -k_{0} \cdot H \cdot (\mathcal{R} \cdot i)^{-1} \ln z$. Из соответствия точек плоскостей z и z имеем: функция $z = z \cdot (z, \overline{z})$ взаимнооднозначно отображает

 $\mathcal{Q}_{\mathcal{Z}}$ $\mathcal{U}\mathcal{Q}_{\mathcal{Z}}^ \mathcal{U}AB$ на внутренность единичного круга с соответствием $\infty \longrightarrow \mathcal{O}$ и удовлетворяет в $\mathcal{Q}_{\mathcal{Z}}$ уравнению $\mathcal{E}_{\overline{\mathcal{Z}}}^{'} = -\widetilde{\lambda}(\mathcal{Z}) \cdot e^{2i \arg \xi} \overline{\mathcal{E}_{\mathcal{Z}}^{'}}$. Тогда для обратной функции $\mathcal{Z} = \mathcal{Z}(\mathcal{E}, \overline{\mathcal{E}})$ справедливо уравнение

$$\mathcal{Z}_{\bar{\varepsilon}}' = \hat{\lambda}(z) \cdot e^{2i \arg z} \cdot \mathcal{Z}_{\varepsilon}', |z| < 1$$
 (I)

Из сравнения граничных данных найдем

$$\operatorname{Re} \left. \mathcal{Z} \right|_{\mathcal{S} = e^{i\theta}} = \int_{-\infty}^{-\infty} \left(\frac{\mathcal{H} \cdot \theta}{\mathcal{R}_{o} \cdot \mathcal{I}} \right) = \rho(\theta) , \ \theta \in [-\pi, \pi] \ . \tag{2}$$

Благодаря условию $\widetilde{\lambda}(\mathcal{Z}) \equiv \mathcal{O}$, $|\mathcal{Z}| > \mathcal{M}$, получим представ – ление $\mathcal{Z}(\mathcal{Z})$ волизи $\mathcal{Z} = \mathcal{O}: \mathcal{Z}(\mathcal{Z}) = A \cdot \mathcal{Z} + \mathcal{F}(\mathcal{Z}, \bar{\mathcal{Z}})$, где $\mathcal{F}(\mathcal{Z}, \bar{\mathcal{Z}})$ ограничена при $\mathcal{Z} \to \mathcal{O}$, \mathcal{A} – положительная константа.

Исследуем возможность построения методом итерации функции $\mathcal{Z}(\mathcal{Z})$, $|\mathcal{Z}| < I$, удовлетворяющей уравнению (I) с краевым усло—влем (2) и с заданным поведением вблизи $\mathcal{Z} = \mathcal{O}$.

Пусть сначала $\widetilde{\mathcal{X}}\left(\mathcal{Z}\right)\equiv\mathcal{O}$. Тогда

$$\mathcal{Z}_{o}(\mathcal{E}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} p(q) \frac{e^{iq} + \mathcal{E}}{e^{iq} - \mathcal{E}} dq + A \cdot (\mathcal{E}^{-1} \mathcal{E}) = g(\mathcal{E}) + A(\mathcal{E}^{-1} \mathcal{E}) . \quad (3)$$

Положим теперь $\widetilde{\lambda}(\mathcal{Z}) = \widetilde{\lambda}(\mathcal{Z}_o(\mathcal{Z}))$. Требуется найти следующую итерацию $\mathcal{Z}_1(\mathcal{Z})$, $|\mathcal{Z}| < 1$, если $\mathcal{Z}_1(\mathcal{Z})$ удовлетворяет уравнению $\mathcal{Z}_{1\mathcal{Z}}' = \widetilde{\lambda}(\mathcal{Z}_o(\mathcal{Z})) \cdot e^{2i\arg\mathcal{Z}_{1\mathcal{Z}}'}$ и граничному условию (2). Согласно [4] $\mathcal{Z}_1(\mathcal{Z}) = \mathcal{Z}_0(\mathcal{Z}) + \mathcal{T}_1[\omega](\mathcal{Z})$, где

$$T_{\underline{I}}[\omega](z) = \frac{1}{\pi} \left\{ \iint_{|t| \le 1} \left[\frac{\omega(t)}{t - z} + \frac{z \cdot \bar{\omega}(t)}{1 - z \cdot \bar{t}} - \frac{\omega(t)}{t - 1} - \frac{\bar{\omega}(t)}{1 - \bar{t}} \right] d\delta_{t} \right\},$$

а $\omega_{i}(c)$ находится из уравнения

$$\omega_{l}(\xi) = \widetilde{\lambda}(\mathcal{Z}_{0}(\xi)) \cdot e^{2i \operatorname{arg} \xi} \circ \mathcal{S}_{1}[\omega_{l}(\xi)] + \widetilde{\lambda}(\mathcal{Z}_{0}(\xi)) \cdot e^{2i \operatorname{arg} \xi} \circ \mathcal{Z}_{0}(\xi) . \tag{4}$$

Здесь оператор

$$S_{1}[\omega](z) = \frac{1}{\pi} \iint_{|t| \le 1} \left[\frac{\omega(t)}{(t-z)^{2}} + \frac{\omega(t)}{(1-z\bar{t})^{2}} \right] d\theta_{t}$$

получен из оператора $\mathcal{T}_{\mathbf{I}}$ [ω] дифференцированием по \mathfrak{S} . Урав — нение (4) в некотором пространстве \mathcal{L}_{ρ} , ρ > \mathcal{I} , разрешимо, что следует из свойств оператора $\mathcal{S}_{\mathbf{I}}$ [4] и ограниченности последнего слагаемого в правой части (4) (так как $\widetilde{\mathcal{X}}(\mathcal{Z}_{\rho}(\mathcal{O})) = \mathcal{O}$), если $\mathcal{X}_{\rho} \cdot \| \mathcal{S}_{\mathbf{I}} \|_{\mathcal{L}_{\rho}} < \mathcal{I}$.

Аналогичным способом ищутся все последующие итерации:

$$\mathcal{Z}_n(\mathcal{E}) = \mathcal{Z}_o(\mathcal{E}) + \mathcal{T}_s[\omega_n](\mathcal{E}) ,$$

где

$$\omega_{n}(\mathcal{E}) = \left[\mathcal{I} - \tilde{\lambda}(\mathcal{Z}_{n-1}(\mathcal{E})) \cdot e^{2i \operatorname{arg} \mathcal{E}} \cdot \mathcal{S}_{i} \right] \circ \left[\tilde{\lambda}(\mathcal{Z}_{n-1}(\mathcal{E})) e^{2i \operatorname{arg} \mathcal{E}} \cdot \mathcal{Z}_{o}(\mathcal{E}) \right] . \tag{5}$$

Для того, чтобы оценить $\|\widetilde{\lambda}(\mathcal{Z}_{n-1}(\mathcal{Z}))e^{2i\arg\xi}\|_{\mathcal{L}_{\rho}}$, найдем $\widehat{\rho}$ такое, что $\|\mathcal{Z}_{n}(\mathcal{Z})\| > \mathcal{M}$ при $\|\mathcal{Z}\| < \widehat{\rho}$. Пусть ρ_{n} таково, что $\|\mathcal{Z}_{n}(\mathcal{Z})\| > \mathcal{M}$ при $\|\mathcal{Z}\| < \rho_{n}$

во, что $|\mathcal{Z}_{n}(\mathcal{Z})| > M$ при $|\mathcal{Z}_{n}| < \rho_{n}$.

Имеем $||\mathcal{Z}_{n} - \mathcal{Z}_{0}||_{\mathcal{Z}} = ||\mathcal{T}_{1}[\omega_{n}]||_{\mathcal{Z}} \le ||\mathcal{T}_{1}||_{\mathcal{Z}} \cdot ||\omega_{n}||_{\mathcal{L}_{\rho}}$ [5], где $||\mathcal{T}_{1}||_{\mathcal{Z}} \le 8/(2\pi)^{2/\rho} \cdot [(\rho-2)^{\frac{1}{\rho-1}} + 3,3]$, и из (5)

$$\begin{split} &\|\omega_{n}\|_{L_{\rho}} \leq \lambda_{o} \cdot \left[\|g'\|_{c} + A \cdot (\rho_{n-1}^{-2} + 1)\right] \mathcal{R}^{\frac{1}{\rho}} \cdot (1 - \rho_{n-1}^{2})^{\frac{1}{\rho}} (1 - \lambda_{o} \cdot \|S_{1}\|_{L_{\rho}})^{-1} \\ &< \lambda_{o} \cdot \left[\|g'(\varepsilon_{o})\|_{c} + A \cdot (\rho_{n-1}^{-2} + 1)\right] \mathcal{R}^{\frac{1}{\rho}} (1 - \lambda_{o} \|S_{1}\|_{L_{\rho}})^{-1}, \end{split}$$

где $\|g'(z)\|_{C} = \sup_{|z| \le 1} |g(z)|$.

Оценка $\|S_{I}\|_{L_{\rho}}$ также получена в [5]: $\|S_{I}\|_{L_{\rho}} \leqslant \begin{cases} C & (\rho-2)/\rho \\ C & , & 2 \le \rho \le \rho_{o} \end{cases},$

где $\psi(\rho) = \pi^2 2^{\frac{1}{\rho-1}} \left[\left\{ p/(\rho-1) \right\}^{\frac{2}{\rho}-1} \right]^{-1}, \rho \approx 5,5$ — единственный на интервале (2, + ∞) корень уравнения $p(\rho-2)$ $\psi'(\rho) = 2\psi(\rho)$ · $\ln \psi(\rho)$, $C = \psi(\rho_0)^{\rho_0/(\rho_0-2)}$.

Для определения ρ_n потребуем, чтобы выполнялось неравенство $A \cdot (\rho_n^{-1} - \rho_n) - \|g\|_{\mathcal{C}} - \|f\|_{\mathcal{L}} \|\omega_n\|_{L_D} > M$, то есть

$$\int_{n} \sqrt{M+\|g\|_{c} + \|T_{A}\|_{c} \cdot \|\omega_{n}\|_{L_{p}}^{2}} (4A^{2})^{\frac{1}{2}} - (M+\|g\|_{c} + \|T_{A}\|_{c} \cdot \|\omega_{n}\|_{L_{p}}^{2}) \cdot (2A)^{\frac{1}{2}}, (6)$$

$$\|g\|_{c} = \sup_{|g| \leq 1} |g(g)|.$$

С учетом оценки норми $\|\omega_n\|_{L_0}$ заметим, что неравенство (6) будет выполняться, если $\rho_n = \sqrt{(\gamma + \beta) \rho_{n-1}^{-2})^2 + 1} - (\gamma + \beta) \rho_{n-1}^{-2} = 0$ $= \varepsilon(\rho_{n-1})$, где

Для того, чтобы итерационный процесс получения $ho_{\!\scriptscriptstyle \mathcal{R}}$ по формуле $\rho_n = \mathcal{T}(\rho_{n-1})$, n = 1,2, сходился, но не к $\rho = 0$, потребуем, чтобы существовало значение $\rho^* \in (0,1)$ такое, что $\mathcal{T}(\rho^*) > \rho^*$ и $\rho_0 > \rho^*$. Тогда сходимость итерационного процесса на интервале $(\rho^*,1)$ следует из того, что $\mathcal{T}(\rho) > 0, \mathcal{T}(0) = 0, \mathcal{T}(0) = 0, \mathcal{T}(1) < 1$, причем $\lim_{n\to\infty} \rho_n > \rho^*$.

Условие $\mathcal{Z}(\rho^*) > \rho^*$ выполняется, например, при 16 B (7 + 4B) < 1 (8)

И

$$\rho^* = \left\{ (1 - 8\gamma \cdot \beta) - \left[(1 - 8\gamma \cdot \beta)^2 - 64\beta^2 (\gamma^2 + 1) \right]^{4/\rho} \right\}^{4/\rho} \cdot 4^{-1} \cdot (\gamma^2 + 1)^{-1/2}. \tag{9}$$

Очевидно, что $\rho_o > \rho^*$ при достаточно малых значениях β , то есть малых значениях λ_o или достаточно большом значении A . Так как $\lim_{n\to\infty} \rho_n > \rho^*$, имеем: $|\mathcal{Z}_n(\mathbf{z})| > \mathcal{M}$ при $|\mathbf{z}| < \rho^*$,

Тепе́рь оценим сходимость итерационного процесса получения $\mathcal{Z}_n(\mathcal{C})$ в пространстве непрерывных при $\rho^* < |\mathcal{C}| < 1$ функций. Имеем

$$\| \mathcal{Z}_{n+1} - \mathcal{Z}_n \|_{\mathcal{C}} \le \| \mathcal{T}_1 \|_{\mathcal{C}} \cdot \| \omega_{n+1} - \omega_n \|_{L_{\rho}} , \qquad (10)$$

где $\|\omega_{n+1} - \omega_n\| = \|[\mathcal{I} - \widehat{\mathcal{S}}_n]^{-1} \circ (\mu_n \cdot \mathcal{Z}_o') - [\mathcal{I} - \widehat{\mathcal{S}}_{n-1}]^{-1} \circ (\mu_{n-1} \cdot \mathcal{Z}_o')\|_{L_0}$

Здесь введены обозначения: $\mathcal{M}_n(\mathcal{E}) = \widehat{\lambda}(\mathcal{Z}_n(\mathcal{E}))$. e^{2i} arg \mathcal{E} , $\widehat{\mathcal{S}}_n(\omega) = \mathcal{M}_n \cdot \mathcal{S}_1(\omega)$.

Запишем выражение, норма которого оценивается, в виде ряда:

$$\begin{split} \|\omega_{n+1} - \omega_{n}\|_{L_{\rho}} &= \|(\mu_{n} - \mu_{n-1}) \cdot \mathcal{Z}_{0}^{+} + \sum_{k=1}^{\infty} \left[\hat{S}_{n}^{\kappa} (\mu_{n} \cdot \mathcal{Z}_{0}^{+}) - \hat{S}_{n-1}^{\kappa} (\mu_{n-1} \cdot \mathcal{Z}_{0}^{+}) \right] \|_{L_{\rho}} \\ &= \text{ Tak ran } \|\hat{S}_{n}^{\kappa} (\mu_{n} \cdot \mathcal{Z}_{0}^{+}) - \hat{S}_{n-1}^{\kappa} (\mu_{n-1} \cdot \mathcal{Z}_{0}^{+}) \|_{L_{\rho}} \leq \|\hat{S}_{n}^{\kappa} [(\mu_{n} - \mu_{n-1}) \cdot \mathcal{Z}_{0}^{+}) \|_{L_{\rho}} \\ &+ \|(\hat{S}_{n}^{\kappa} - \hat{S}_{n-1}^{\kappa}) (\mu_{n-1} \cdot \mathcal{Z}_{0}^{+}) \|_{L_{\rho}} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \|S_{1}\|_{L_{\rho}}^{\kappa} \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C} \leq \left[\|g'\|_{C} + A \cdot (\rho^{*-2} + 1) \right] \cdot \mathcal{I}^{\frac{1}{2}} \cdot \lambda_{0}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|\mu_{n} - \mu_{n-1}\|_{C}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times \\ &\times (1 + \kappa) \cdot \|h_{n} - \mu_{n-1}\|_{C}^{\kappa} \cdot \|S_{1}\|_{L_{\rho}}^{\kappa} \times (1 + \kappa) \times (1 + \kappa$$

 $\times N \cdot \|\mathcal{Z}_n - \mathcal{Z}_{n-1}\|_{\mathcal{C}}$, where

$$\|\omega_{n+1}^{-}\omega_{n}\|_{L_{\rho}} \leq N \cdot \left[\|g'\|_{C} + A \cdot (\rho^{*} + 1)\right] \mathcal{Z}^{\frac{1}{p}} \left\{1 + \sum_{\kappa=1}^{\infty} (\lambda_{\kappa} \cdot \|S_{k}\|_{L_{\rho}})^{\kappa} \cdot (1 + \kappa)\right\} \cdot \|\mathcal{Z}_{n}^{-2}\mathcal{Z}_{n-1}\|_{C} \cdot (11)$$
С помощью (10) получим оценку для $\|\mathcal{Z}_{n+1}^{-1} - \mathcal{Z}_{n}\|_{C}$:

$$\begin{split} &\|\mathcal{Z}_{n+1} - \mathcal{Z}_{n}\|_{C} \leq \|T_{1}\|_{C} \cdot N \cdot \left[\|g'\|_{C} + A(\rho^{*+1})\right] \mathcal{R}^{\frac{1}{\rho}} \times \\ &\times \left\{1 + \lambda_{0} \cdot \|S_{1}\|_{L_{0}} \cdot (1 - \lambda_{0} \cdot \|S_{1}\|_{L_{0}})^{-2} \cdot (2 - \lambda_{0} \cdot \|S_{1}\|_{L_{0}})\right\} \cdot \|\mathcal{Z}_{n} - \mathcal{Z}_{n-1}\|_{C} \end{split}$$

В результате, если Λ_o $\parallel S_1 \parallel_{L_\rho} < 1$, значение ρ^* получено по формуле (9), где для β и γ из (7) справедливо (8) и для ρ_o из (7) справедливо $\rho^*_1 < \rho_o$, то при

 $\delta = \| T_{\underline{I}} \|_{\mathcal{C}} \cdot N \cdot \left[\| g' \|_{\mathcal{C}} + A(\rho^* + I) \right] \mathcal{R}^{\frac{1}{\rho}} \cdot \left\{ 1 + \lambda_o \cdot \| S_{\underline{I}} \|_{L_{\rho}} \cdot (1 - \lambda_o \cdot \| S_{\underline{I}} \|_{L_{\rho}})^{-2} (2 - \lambda_o \cdot \| S_{\underline{I}} \|_{L_{\rho}}) \right\} \cdot I(I2)$ итерационный процесс сходится в пространстве \mathcal{C} , то есть существует $\lim_{N \to \infty} \mathcal{Z}_{R}(\mathcal{C}) = \mathcal{Z}(\mathcal{C}) \in \mathcal{C}$. В оценку (I2) входит еще $\| g' \|_{\mathcal{C}}$,

где $g(\mathcal{E})$ — интеграл Шварца из (3). Из предположений относи — тельно $f^{-1}(h)$ следует, что $p'(\theta) \in \mathcal{C}_{\mathcal{L}}[-\mathcal{H},\mathcal{H}]$, и следовательно,

входящий в выражение для $g'(e^{i\theta})$ интеграл Гильберта ограничен. Поэтому оценка $\|g'\|_{\mathcal{C}}$ может быть получена из [6].

Заметим, что, зная δ (I2), легко оценить расстояние между n-й итерацией и предельной функцией:

$$\| z(z) - z_n(z) \|_{\mathcal{C}} \leq \frac{\delta^n}{1 - \delta} \| z - z_0 \|_{\mathcal{C}} \leq \frac{\delta^n}{1 - \delta} \| z \|_{\mathcal{C}} ||z||_{\mathcal{C}} ||z||_{\mathcal{C}} + A \cdot (\rho^{\frac{s-2}{2}}) \cdot \pi^{\frac{s/p}{2}}.$$

Из (I0) и (II) при условии (I2) следует, что последовательность $\{\omega_n(\zeta)\}$ сходится в пространстве L_ρ к функции $\omega(\zeta)\in$ \in L_ρ , так что $\mathcal{Z}(\zeta)=\mathcal{Z}_{\delta}(\zeta)+\mathcal{T}_{\delta}[\omega](\zeta)$. Благодаря свойствам оператора \mathcal{T}_{δ} [4] $\mathcal{Z}(\zeta)$ имеет обобщенные производные по \mathcal{Z} и $\mathcal{Z}(\zeta)$ и причем $\mathcal{Z}(\zeta)=\mathcal{Z}$

(сходимость по норме пространства $\angle \rho$).

При $|\mathcal{L}| < \rho^*$, согласно (5), $\mathcal{L}_{\Xi} = 0$ и $\widehat{\lambda}(\mathcal{L}(\mathcal{L})) = 0$. Зна-

чит, уравнение (I) для $\mathcal{Z}(\mathcal{E})$ в области $|\mathcal{E}| < \rho^*$ справедливо. Рассмотрим в кольце $\rho^* \le |\mathcal{E}| \le 1$ выражение $\mathcal{Z}_{-}' - \widehat{\lambda}(\mathcal{Z}) * e^{2i}$ алу \mathcal{E}_{+} $\times \mathcal{Z}_{\pm}' = \mathcal{Z}_{n}' - \widehat{\lambda}_{n}' = -\widehat{\lambda}(\mathcal{Z}_{n-1}) e^{2i}$ алу $\mathcal{E}_{n}' + \widehat{\lambda}(\mathcal{Z}_{n-1}) e^{2i}$ алу $\mathcal{E}_{n}' - \widehat{\lambda}(\mathcal{Z}_{n-1}) e^{2i}$

$$\begin{split} & \text{Заметим, что } \| \mathcal{Z}_{\Xi}^{'} - \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\to 0}, \| \mathcal{Z}_{G}^{'} - \mathcal{Z}_{n \, G}^{'} \|_{L_{p}}^{\to 0} \to 0 \quad \text{при } n \to \infty \quad , \\ \mathcal{Z}_{n \, \Xi}^{'} - \widetilde{\lambda}(\mathcal{Z}_{n-1}) e^{2iarg} \mathcal{E}_{\mathcal{Z}_{n \, \Xi}^{'}} = 0 \quad \forall n \in \mathbb{N}, \quad \| \widetilde{\lambda}(\mathcal{Z}_{n-1}) \cdot e^{2iarg} \mathcal{E}_{\mathcal{Z}_{n \, \Xi}^{'}} - \widetilde{\lambda}(\mathcal{Z}) \times \\ & \times e^{2iarg} \mathcal{E}_{\mathcal{Z}_{n \, \Xi}^{'}} \|_{L_{p}}^{\downarrow} \| \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \| \widetilde{\lambda}(\mathcal{Z}_{n-1}) - \widetilde{\lambda}(\mathcal{Z}) \|_{L_{p}}^{\downarrow} + \| \widetilde{\lambda}(\mathcal{Z}) \cdot (\mathcal{Z}_{n \, \Xi}^{'} - \mathcal{Z}_{\mathcal{Z}}^{'}) \|_{L_{p}}^{\downarrow} \| \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \times \\ & \times N \cdot \| \mathcal{Z}_{n-1}^{-} - \mathcal{Z}\|_{C}^{+} \lambda_{o} \| \mathcal{Z}_{n \, \Xi}^{'} - \mathcal{Z}_{\Xi}^{'} \|_{L_{p}}^{\downarrow} \leq \left[\| g' \|_{C}^{+} A \cdot (\rho^{*} + 1) \right] \cdot \mathcal{I}^{2/p} \cdot \left[1 + \| \mathcal{I}_{1} \|_{C} \cdot \frac{\delta^{n}}{1 - \delta} \times \lambda_{o} \cdot (1 - \lambda_{o} \cdot \| \mathcal{Z}_{1} \|_{L_{p}}^{\downarrow}) \right] \cdot N \cdot \frac{\delta^{n-1}}{1 - \delta} \cdot \| \mathcal{I}_{1} \|_{C} \cdot \lambda_{o} \cdot \left[\| g' \|_{C}^{+} A \cdot (\rho^{*} + 1) \right] \cdot \mathcal{I}^{2/p} + \\ & + \lambda_{o} \cdot \| \mathcal{Z}_{\Xi}^{'} - \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \cdot \mathcal{I}^{-1} \right] \cdot \mathcal{I}^{2/p} + \\ & + \lambda_{o} \cdot \| \mathcal{Z}_{\Xi}^{'} - \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \cdot \mathcal{I}^{-1} \right] \cdot \mathcal{I}^{2/p} + \\ & + \lambda_{o} \cdot \| \mathcal{Z}_{2}^{'} - \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \cdot \mathcal{I}^{-1} \right] \cdot \mathcal{I}^{2/p} + \\ & + \lambda_{o} \cdot \| \mathcal{Z}_{2}^{'} - \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \cdot \mathcal{I}^{-1} \right) \cdot \mathcal{I}^{2/p} + \\ & + \lambda_{o} \cdot \| \mathcal{Z}_{2}^{'} - \mathcal{Z}_{n \, \Xi}^{'} \|_{L_{p}}^{\downarrow} \cdot \mathcal{I}^{-1} \right) \cdot \mathcal{I}^{2/p} \cdot \mathcal$$

Следовательно, $\|\mathcal{Z}_{\Xi}^{\prime} - \widetilde{\lambda}(\mathcal{Z}) \cdot e^{2iatg \mathcal{Z}_{\Xi}^{\prime}}\|_{L_{D}}$ может быть сделана сколь угодно малой при большом n. Таким образом, уравнение (I) выполняется для $\mathcal{Z}(\mathcal{Z})$ в области $\rho^{*} \leq |\mathcal{Z}| \leq 1$ в том смысле, что $\|\mathcal{Z}_{\Xi}^{\prime} - \widetilde{\lambda}(\mathcal{Z}) \cdot e^{2iatg \mathcal{Z}_{\Xi}^{\prime}}\|_{L_{D}} = 0$.

В соответствии с приведенными рассуждениями и оценками может бить сформулирована

ТЕОРЕМА. При достаточно малых значениях констант \mathcal{A}_o и \mathcal{N}_o введенных при постановке задачи, и достаточно большом значении параметра \mathcal{A}_o решение задачи может быть получено методом итераций $\mathcal{A}_n(\mathcal{C}) = \mathcal{A}_o(\mathcal{C}) + \mathcal{I}_o[\omega_n](\mathcal{C})$, где функция ω_n определена в (5).

Для того, чтобы решение было физически реализуемым, то есть контур \mathcal{BC} (кроме своих крайних точек) лежал ниже вещественной оси, следует выбрать константу \mathcal{A} достаточно большой.

Выражаю благодарность С.Р.Насирову за внимание к работе и замечания, способствовавшие ее удучшению.

Литература

І.И льинский Н.Б. Обратная задача напорной фильт — рации в неоднородном анизотропном грунте под водопроницаемым подземным контуром // Тр. семин. по кр. задачам. — Казань: Изд-во Казанск. ун-та, 1968. — Вып. 5. — С.43 — 50.

- 2. Монаков В. Н. Краевые задачи со свободными границами для эллиптических систем уравнений. Новосибирск : Наука, 1977. 424 с.
- 3. Нужин М. Т., Ильинский Н. Б. Методы пост роения подземного контура гидротехнических сооружений. Казань: Изд-во Казанск. ун-та, 1963. 140 с.
- 4. Боярский Б. В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами // Матем. сб. 1957. Т.43(85).— № 4. С.451 503.
- 5. Насыров Р. М., Насыров С. Р. Сходимость приближенного метода С.А.Христиановича решения задачи Дирихле для эллиптического уравнения // Изв. вузов. Матем. 1987.— № 3.— С.60 67.
- 6. Авхадиев Ф. Г., Аксентьев Л. А. Доста точные условия однолистности аналитических функций. ДАН СССР. 1971.-198:4.-0.743-746.

Доложено на семинаре 23.01.1989 г.