Correction Série 4 : Caractéristiques de position & de dispersion

Exercice 1.

Âge	Ci	ni	Nicc	Nicd
[5; 10[7,5	7,632	7,632	70,332
[10; 15[12,5	12,316	19,948	62,7
[15; 20[17,5	26,192	46,14	50,384
[20; 25[22,5	24,192	70,332	24,192
TOTAL		70,332		

Les coordonnées des points pour tracer le polygone des effectifs cumulés croissant et décroissant

Age	N _i cc	N _i cd
5	0,000	70,332
10	7,632	62,7
15	19,948	50,384
20	46,140	24,192
25	70,332	-

2. a) Calcul du mode de la série :

On applique la formule : Mo = $x_1 + \frac{k_1}{k_1 + k_2} \times (x_2 - x_1)$

- $[x_1; x_2[=[15,20[$ « La classe ayant l'effectif le plus élevé » C'est la classe modale.
- k_1 = l'effectif de la classe modale l'effectif de la classe [10 ; 15[= 26,192 12,316 = 13,876]
- k_2 = l'effectif de la classe modale l'effectif de la classe [20 ; 25 = 26,192 24,631 = **1.561**
- L'amplitude $x_2 x_1 = 20 15 = 5$

Si on remplace ces quantités dans l'expression de "Mo", on trouve :

$$M_0 = 15 + \frac{13,876}{13,876+2} \times 5 \approx 19,37$$

L'âge modal de la population étudiée est 19,37 ans, soit 19 ans et 4 mois

2. b) Les quartiles:

On applique la formule :
$$Q_j = x_i + \frac{N \times j - N_{\{i-1,cc\}}}{n_i} (x_{i+1} - x_i)$$

✓ Le premier quartile:
$$j=1/4 = 0.25$$
 et $\frac{n}{4} = \frac{70,332}{4} \approx 17,58$

Donc la classe du premier quartile c'est [10,15[

$$Q_1 = 10 + \frac{70,332 \times 0.25 - 7,632}{12,316} (15 - 10) \approx 13,98$$

Un quart de la population étudiée a moins de 13,98 ans, soit environ 14 ans

✓ Le deuxième quartile = La médiane : j=1/2 = 0.75 et N/2 = 35,166 Donc la classe du deuxième quartile c'est [15 ; 20[

$$Q_2 = Me = 15 + \frac{35,166 - 19,948}{26,192} \times 5 \cong 17,90$$

La moitié de la population étudiée a moins de 17,90 ans, soit 17 ans et 11 mois

✓ <u>Le troisième quartile</u>: j=3/4 = 0.75 et $3N/4 = 3 \times 17.583 = 52,759$ Donc la classe du troisième quartile c'est [20 ; 25[

$$Q_3 = 20 + \frac{53,759 - 46,140}{24,631} \times 5 \cong 21,54$$

Les trois quart de la population étudiée a moins de 21,54 ans, soit environ 21 ans et 3 mois

2. c) Calcul de la moyenne de la série :
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{4} n_i c_i = \frac{1213,87}{70,771} = 17,25$$

L'âge moyen de la population étudiée est 17,25 ans, soit environ 17 ans et 3 mois

3) Calcul de la variance : On applique la formule $V = \frac{1}{\pi} \sum_{i=1}^{4} n_i x_i^2 - \bar{x}^2$

Âge	C_{i}	n_i	$n_i c_i$	$n_i c_i^2$
[5; 10[7,5	7,632	57,24	429,3
[10; 15[12,5	12,316	153,95	1924,375
[15; 20[17,5	26,192	458,36	8021,3
[20; 25[22,5	24,192	544,32	12247,2
TOTAL		70,332	1213,87	22622,175

$$V = \frac{^{22622,175}}{^{70,332}} - 17,25^{2} \approx 20,90$$
 L'écart type : σ =4.90

4) Les déciles:

On applique la formule :
$$D_j = x_i + \frac{n \times j - N_{\{i-1,cc\}}}{n_i} (x_{i+1} - x_i)$$

✓ Le premier décile : j=1/10 = 0.01 et N/10 = 70,332 = 7,0332 Donc la classe du premier décile c'est [5 ; 10]

$$D_1 = 5 + \frac{7,0332 - 0}{7,632} (10 - 5) \approx 9,60$$

10% de la population étudiée a moins de 9,60 ans, soit environ 9 ans et 7 mois

✓ <u>Le troisième décile</u>: j=9/10 = 0.09 et $7,0332 \times 9 = 63,2988$ Donc la classe du troisième décile c'est [20; 25]

$$D_9 = 20 + \frac{63,2988 - 46,140}{24,631} \times 5 \cong 23,48$$

90% de la population étudiée a moins de 23,56 ans, soit environ 23 ans et 6 mois.

Exercice 2.

Classe	[1;1,25[[1,25; 1,5[[1,5;1,75[[1,75;2[[2;2,25[[2,25; 2,5[[2,5 ; 2,75[[2,75 ; 3[Σ
Ci	1,125	1,375	1,625	1,875	2,125	2,375	2,625	2,875	
n _i h	12	21	17	10	4	3	2	1	70
n _i f	18	22	13	4	2	1	0	0	60
$n_i c_i(h)$	13,5	28,875	27,625	18,75	8,5	7,125	5,25	2,875	112,5
n _i c _i (f)	20,25	30,25	21,125	7,5	4,25	2,375	0	0	85,75
n _{ih} ci ²	15,1875	39,703125	44,89063	35,15625	18,0625	16,92188	13,78125	8,265625	191,96875
n _{if} c _i ²	22,78125	41,59375	34,328125	14,0625	9,03125	5,640625	0	0	127,4375
fih	0,17142857	0,3	0,242857	0,142857	0,057143	0,042857	0,028571	0,014286	
Fih	0,17142857	0,47142857	0,714286	0,857143	0,914286	0,957143	0,985714	1	
f _{if}	0,3	0,36666667	0,216667	0,066667	0,033333	0,016667	0	0	
Fif	0,3	0,66666667	0,883333	0,95	0,983333	1	1	1	

May HONANE -	1,60714286
Moy HOMME =	1,00/14280
Moy FEMME =	1,42916667
VAR h =	0,545196006
VAR f =	0,15950255
ECART TYPE1 =	0,3993777
ECART TYPE2 =	0,28537865
CV h=	0,24850168
CV f=	0,1996818

Sachant que la variance se calcule à partir de $V = \frac{1}{n} \sum_{i=1}^{n} n_i \ c_i^2 - \bar{x}^2$ L'écart type c'est $\sigma = \sqrt{V}$ et la moyenne arithmétique c'est $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} n_i \ c_i$ Le coefficient de variation c'est $CV = \frac{\sigma}{\bar{x}}$

- 3) La deuxième série « Femmes » est plus dispersée que la première série.
- 4) La moyenne totale = $\frac{1}{N_H + N_F} \sum_i (n_{Hi} c_i + n_{Fi} c_i)$ par définition de la moyenne = $\frac{N_H}{N_H + N_F} \times \frac{1}{N_H} \sum_i n_{Hi} c_i + \frac{N_F}{N_H + N_F} \times \frac{1}{N_F} \sum_i n_{Fi} c_i$

La moyenne totale =
$$\frac{N_H}{N_H + N_F} \times m_H + \frac{N_F}{N_H + N_F} \times m_F$$

Avec N_H c'est l'effectif total des hommes ;

 N_F C'est l'effectif total des femmes ;

 m_H et m_F C'est le salaire moyen des hommes et des femmes respectivement.

Exercice 3.

Xi	n _i	n _i x _i	n _i x _i ²
0	6	0	0
1	4	4	4
2	9	18	36
3	7	21	63
4	3	12	48
5	2	10	50
Somme	31	65	201

1) Calcul de la moyenne du nombre de films vus au cinéma :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{6} x_i = \frac{65}{31} \cong 2,10$$

2) Calcul de la variance du nombre de films vus au cinéma :

On applique la formule

$$V = \frac{1}{n} \sum_{i=1}^{6} x_i^2 - \bar{x}^2$$

$$V = \frac{201}{31} - 2.1^2 = 6.49 - 4.41 = 2.08$$

L'écart type :
$$\sigma = \sqrt{V} = \sqrt{2.08} = 1.44$$

Exercice 4.

Importations		
Année	Xi	x _i ²
1990	57 023	3251622529
1991	59 730	3567672900
1992	62 805	3944468025
1993	61 908	3832600464
1994	65 963	4351117369
TOTAL	307 429	18947481287

Exportations	
Xi	X _i ²
34 858	1215080164
37 283	1390022089
33 959	1153213681
34 366	1181021956
36 546	1335610116
177 012	6274948006

$\bar{x_1} =$	61485,8
$\frac{1}{307\ 429} \sum_{i} x_i^2 =$	
307 429 🚣 '	3789496257
$\bar{x}_1^2 =$	3780503602
Var 1 =	8992655,76
Ecart type 1=	2998,77571

Ecart type 2 =	1288,283913
Var 2	1659675,44
moy au carré	1253329926
moy des carrés	1254989601
Moy 2 =	35402,4

CV1= 0,048771842

CV2= 0,036	389734
UVZ= U.U3F	389734

On s'aperçoit que le coefficient de variation (CV) des importations est plus élevé que celui des exportations. Donc, la dispersion pour les importations est plus élevée que les exportations.