ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 \vec{DE} KIỂM TRA GIỮA KỲ Môn: Toán rời rạc (MAT3500, Hè 2023-2024)

 $(D\grave{e}\ g\grave{o}m\ 4\ c\^{a}u/4\ trang)$ Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- \bullet Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học.

Họ và Tên:			
Mã Sinh Viên:	Lớn:		

Câu:	1	2	3	4	Tổng
Điểm tối đa:	3	2	3	2	10
Điểm:					

- 1. Cho các mệnh đề p, q, r,và s.
 - (a) (1 điểm) Chứng minh rằng các mệnh đề $(p \to q) \land (p \to r)$ và $p \to (q \land r)$ là tương đương lôgic.
 - (b) (1 điểm) Chứng minh rằng mệnh đề $(p \to q) \land (q \to r) \to (p \to r)$ là một hằng đúng.
 - (c) (1 điểm) Chứng minh rằng các mệnh đề $(p \to q) \to (r \to s)$ và $(p \to r) \to (q \to s)$ không tương đương lôgic.

Lời giải:

(a) Ta có

$$(p \to q) \land (p \to r) \equiv (\neg p \lor q) \land (\neg p \lor r) \qquad p \to q \equiv \neg p \lor q$$

$$\equiv ((\neg p \lor q) \land \neg p) \lor ((\neg p \lor q) \land r) \qquad \text{Luật phân phối}$$

$$\equiv \neg p \lor ((\neg p \lor q) \land r) \qquad \text{Luật phân phối}$$

$$\equiv (\neg p \lor (\neg p \lor q)) \land (\neg p \lor r) \qquad \text{Luật kết hợp}$$

$$\equiv ((\neg p \lor \neg p) \lor q) \land (\neg p \lor r) \qquad \text{Luật luỹ đẳng}$$

$$\equiv (\neg p \lor q) \land (\neg p \lor r) \qquad \text{Luật phân phối}$$

$$\equiv \neg p \lor (q \land r) \qquad \text{Luật phân phối}$$

$$\equiv p \to (q \land r) \qquad p \to q \equiv \neg p \lor q$$

(b) Ta xây dựng bảng chân trị cho mệnh đề $(p \to q) \land (q \to r) \to (p \to r)$ như sau.

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$(p \to q) \land (q \to r)$	$(p \to q) \land (q \to r) \to (p \to r)$
Т	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т Т	Т
F	F	F	Т	Т	Т	Т	Т

Từ bảng chân trị, mệnh đề $(p \to q) \land (q \to r) \to (p \to r)$ là một hằng đúng.

- (c) Ngoài cách lập bảng chân trị, có thể lý luận như sau. Chú ý là mệnh đề $p \to q$ chỉ sai khi $p = \mathsf{T}$ và $q = \mathsf{F}$. Để chứng minh hai mệnh đề $(p \to q) \to (r \to s)$ và $(p \to r) \to (q \to s)$ không tương đương lôgic, ta cần chọn các giá trị chân lý cho p,q,r,s sao cho một mệnh đề đúng và mệnh đề kia sai.
 - Để một trong hai mệnh đề đã cho là sai, ta có thể chọn sao cho $p \to q = p \to r = \mathsf{T}$ và sau đó chọn sao cho $q \to s$ và $r \to s$ có giá trị chân lý khác nhau. Đơn giản nhất là chọn $p = \mathsf{F}$.
 - Tiếp theo, ta muốn chọn sao cho $q \to s$ và $r \to s$ có giá trị chân lý khác nhau. Như vây, giá trị của q và r phải khác nhau. Nghĩa là nếu $q = \mathsf{T}$ thì $r = \mathsf{F}$ và nếu $q = \mathsf{F}$ thì $r = \mathsf{T}$.
 - Thêm vào đó, do ít nhất một trong hai mệnh đề $q \to s$ và $r \to s$ phải có giá trị chân lý là F, bắt buộc ta phải chọn s = F.

Tóm lại, có thể chọn $p = s = \mathsf{F}$ và sau đó chọn $q = \mathsf{T}, \, r = \mathsf{F}$ hoặc $q = \mathsf{F}$ và $r = \mathsf{T}.$

2. (2 điểm) Sử dụng phương pháp quy nạp, hãy chứng minh rằng $2^{3n}-1$ chia hết cho 7 với mọi $n\in\mathbb{N}$.

Lời giải: Gọi P(n) là vị từ " $2^{3n} - 1$ chia hết cho 7". Ta chứng minh $\forall n P(n)$ bằng phương pháp quy nạp.

- Bước cơ sở: Ta chứng minh P(0) đúng. Thật vậy, với n=0, ta có $2^{3n}-1=2^0-1=0$ chia hết cho 7.
- Bước quy nạp: Giả sử P(k) đúng với $k \in \mathbb{N}$ nào đó, nghĩa là $2^{3k} 1$ chia hết cho 7. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $2^{3(k+1)} 1$ chia hết cho 7. Thật vậy, theo giả thiết quy nạp, $2^{3k} 1$ chia hết cho 7. Do đó, $2^{3(k+1)} 1 = 2^3(2^{3k} 1) + 7$ cũng chia hết cho 7.

Bằng phương pháp quy nạp, ta đã chứng minh $2^{3n}-1$ chia hết cho 7 với mọi $n \in \mathbb{N}$.

3. (3 điểm) Sử dụng phương pháp quy nạp yếu, hãy chứng minh rằng với mọi số nguyên $n \ge 14$, tồn tại $a,b \in \mathbb{N}$ sao cho n=3a+8b. (Chú ý: Chứng minh bằng quy nạp mạnh cũng được chấp nhận, nhưng sẽ chỉ được tính tối đa 2 điểm.)

Lời giải: Ta chứng minh phát biểu P(n) := "tồn tại $a, b \in \mathbb{N}$ sao cho n = 3a + 8b" bằng quy nạp mạnh.

- Bước cơ sở: Ta chứng minh P(14) đúng. Thật vậy, $14 = 3 \cdot 2 + 8 \cdot 1$.
- **Bước quy nạp:** Giả sử với số nguyên $k \ge 14$ nào đó, P(k) đúng, nghĩa là tồn tại $a, b \in \mathbb{N}$ sao cho k = 3a + 8b. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh tồn tại $c, d \in \mathbb{N}$ sao cho k+1=3c+8d.

Từ giả thiết quy nạp, ta có k + 1 = 3a + 8b + 1 = 3(a + 3) + 8(b - 1).

Với $b \ge 1$, P(k+1) đúng, do ta có thể chọn $c = a+3 \in \mathbb{N}$ và $d = b-1 \in \mathbb{N}$.

Với b=0, do $14 \le k=3a+8b=3a$ và $a \in \mathbb{N}$, ta có $a \ge 5$. Ta cũng có $k+1=3a+1=3(a-5)+8\cdot 2$. Suy ra P(k+1) đúng, do ta có thể chọn $c=a-5\in \mathbb{N}$ và $d=2\in \mathbb{N}$.

Theo nguyên lý quy nạp yếu, với mọi số nguyên $n \ge 14$, tồn tại $a, b \in \mathbb{N}$ sao cho n = 3a + 8b.

Chú ý: Một phương án khác để chứng minh $P(k) \rightarrow P(k+1)$ là như sau:

Từ giả thiết quy nạp, ta có k + 1 = 3a + 8b + 1 = 3(a - 5) + 8(b + 2).

Với $a \geq 5$, P(k+1) đúng, do ta có thể chọn $c = a - 5 \in \mathbb{N}$ và $d = b + 2 \in \mathbb{N}$.

Với $0 \le a \le 4$, do $14 \le k = 3a + 8b \le 12 + 8b$ và $b \in \mathbb{N}$, ta có $b \ge 1$, hay $b - 1 \in \mathbb{N}$. Ta cũng có k + 1 = 3a + 8b + 1 = 3(a + 3) + 8(b - 1). Suy ra P(k + 1) đúng, do ta có thể chọn $c = a + 3 \in \mathbb{N}$ và $d = b - 1 \in \mathbb{N}$.

4. (2 điểm) Tìm công thức tường minh của tổng sau cho mọi số nguyên $n \ge 1$.

$$T_n = \sum_{i=1}^n \frac{i}{2^i}. (1)$$

Lời giải:

Cách 1: Với mọi $n \ge 1$, ta có

76i mọi
$$n \ge 1$$
, ta có

$$T_n = \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n}$$
(2)
$$\frac{1}{2}T_n = \frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{n-1}{2^n} + \frac{n}{2^{n+1}}$$
Nhân hai vế của (2) với 1/2 (3)
$$\frac{1}{2}T_n = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} - \frac{n}{2^{n+1}}$$

$$\frac{1}{4}T_n = \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} - \frac{n}{2^{n+2}}$$
Nhân hai vế của (4) với 1/2 (5)
$$\frac{1}{4}T_n = \frac{1}{2^1} - \frac{n}{2^{n+1}} - \frac{1}{2^{n+1}} + \frac{n}{2^{n+2}}$$

$$= \frac{1}{2} - \frac{2n+2-n}{2^{n+2}}$$

$$= \frac{1}{2} - \frac{n+2}{2^{n+2}}$$
(8)
$$T_n = 2 - \frac{n+2}{2^n}.$$
Nhân hai vế của (8) với 4 (9)

Cách 2: Dãy $\{T_n\}$ được xác định bởi hệ thức truy hổi $T_n = T_{n-1} + \frac{n}{2^n} \ (n \ge 2)$ và điều kiện ban đầu $T_1 = 1/2$.

> Hệ thức $T_n = T_{n-1} + \frac{n}{2^n} \ (n \ge 2) \ (\star)$ là một hệ thức truy hồi tuyến tính không thuần nhất bậc một với hệ số hằng và có hệ thức thuần nhất tương ứng là $T_n = T_{n-1} \ (\star\star)$. Hệ thức thuần nhất $(\star\star)$ có đa thức đặc trung là r-1. Đa thức này có nghiệm duy nhất r=1. Do đó, nghiệm của $(\star\star)$ có dạng $T_n^{(h)}=c\cdot 1^n=c$, với c là hằng số nào

> Ta có $n/(2^n) = (1 \cdot n + 0) \cdot (1/2)^n$. Do 1/2 không là nghiệm đặc trung của $(\star\star)$, một nghiệm riêng $T_n^{(p)}$ của (\star) có dạng $T_n^{(p)} = (p_0 n + p_1)(1/2)^n \ (n \ge 1)$. Do $T_n^{(p)}$ là nghiệm của (⋆), ta có

$$\begin{split} \frac{p_0n+p_1}{2^n} &= \frac{p_0(n-1)+p_1}{2^{n-1}} + \frac{n}{2^n} \\ \Leftrightarrow \frac{p_0n+p_1}{2^n} &= \frac{2(p_0(n-1)+p_1)+n}{2^n} \\ \Leftrightarrow p_0n+p_1 &= 2p_0n-2p_0+2p_1+n \\ \Leftrightarrow (p_0+1)n+(p_1-2p_0) &= 0. \end{split}$$

Suy ra $p_0+1=0$ và $p_1-2p_0=0$, nghĩa là $p_0=-1$ và $p_1=-2$. Do đó, $T_n^{(p)}=\frac{-n-2}{2^n}$. Mọi nghiệm của (\star) có dạng $T_n=T_n^{(h)}+T_n^{(p)}=c+\frac{-n-2}{2^n}$ $(n\geq 1).$ Ta cũng có $T_1=c+\frac{-1-2}{2^1}=\frac{1}{2}.$ Suy ra c=2. Do đó, $T_n=2-\frac{n+2}{2^n}$ với mọi $n\geq 1.$