```
In [32]: # Created by: Michael Cullen
         # 19/11/2024
         # https://zenodo.org/records/10457828
         # https://www.kaggle.com/datasets/syedanwarafridi/vehicle-sales-data/data
In [33]: import pandas as pd
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.model_selection import train_test_split
         import matplotlib.pyplot as plt
         from sklearn.metrics import mean_squared_error, r2_score
In [34]: # made by chatgpt to install csv as file is to big to commit to github
         import kagglehub
         import shutil
         import os
         # Define the current working directory
         current_directory = os.getcwd()
         # Check if the CSV file already exists in the current directory
         csv_exists = any(file.endswith(".csv") for file in os.listdir(current_directory))
         if not csv_exists:
             # Download the dataset using kagglehub
             default_path = kagglehub.dataset_download("syedanwarafridi/vehicle-sales-data")
             # Move all downloaded CSV files to the current directory
             for file_name in os.listdir(default_path):
                 if file_name.endswith(".csv"):
                     shutil.move(os.path.join(default_path, file_name), os.path.join(current
             # Delete the downloaded folder after moving the files
             shutil.rmtree(default_path)
             print("Dataset files moved to:", current_directory)
             print(f"Deleted temporary folder: {default_path}")
         else:
             print("CSV file already exists in the current directory.")
        CSV file already exists in the current directory.
In [35]: df = pd.read_csv('car_prices.csv')
         df.head()
```

Out[35]:		year	make	model	trim	body	transmission	vin	state	condition			
	0	2015	Kia	Sorento	LX	SUV	automatic	5xyktca69fg566472	са	5.0			
	1	2015	Kia	Sorento	LX	SUV	automatic	5xyktca69fg561319	ca	5.0			
	2	2014	BMW	3 Series	328i SULEV	Sedan	automatic	wba3c1c51ek116351	ca	45.0			
	3	2015	Volvo	S60	T5	Sedan	automatic	yv1612tb4f1310987	ca	41.0			
	4	2014	BMW	6 Series Gran Coupe	650i	Sedan	automatic	wba6b2c57ed129731	са	43.0			
In [36]:		<pre>print("Amount of columns: ", df.shape[0])</pre>											
	Amount of columns: 558837												
In [37]:													
Out[37]:	-	ar ke		0 10301									
	make model trim body transmission vin		10301										
			10651										
			13195										
			65352										
			4										
	state		0										
	condition		11820										
	odometer color		94 749										
	color interior		749 749										
	seller		749										
	mmr		38										
	sellingprice		12										
	saledate			12									
	dt	ype: i	int64										

```
In [38]: # Drop not needed columns
         df = df.drop(columns=['trim','vin','state','interior','seller','saledate','mmr'], e
         # Remove rows with missing data
         df = df.dropna()
         df.head(20)
```

Out	38]	:

Out[38]:		year	make	model	body	transmission	condition	odometer	color	selling
	0	2015	Kia	Sorento	SUV	automatic	5.0	16639.0	white	21
	1	2015	Kia	Sorento	SUV	automatic	5.0	9393.0	white	21
	2	2014	BMW	3 Series	Sedan	automatic	45.0	1331.0	gray	30
	3	2015	Volvo	S60	Sedan	automatic	41.0	14282.0	white	27
	4	2014	BMW	6 Series Gran Coupe	Sedan	automatic	43.0	2641.0	gray	67
	5	2015	Nissan	Altima	Sedan	automatic	1.0	5554.0	gray	10
	6	2014	BMW	M5	Sedan	automatic	34.0	14943.0	black	65
	7	2014	Chevrolet	Cruze	Sedan	automatic	2.0	28617.0	black	9
	8	2014	Audi	A4	Sedan	automatic	42.0	9557.0	white	32
	9	2014	Chevrolet	Camaro	Convertible	automatic	3.0	4809.0	red	17
	10	2014	Audi	A6	Sedan	automatic	48.0	14414.0	black	49
	11	2015	Kia	Optima	Sedan	automatic	48.0	2034.0	red	17
	12	2015	Ford	Fusion	Sedan	automatic	2.0	5559.0	white	12
	13	2015	Kia	Sorento	SUV	automatic	5.0	14634.0	silver	21
	15	2015	Nissan	Altima	Sedan	automatic	2.0	11398.0	black	14
	17	2014	Audi	Q5	SUV	automatic	49.0	7983.0	white	40
	18	2014	Chevrolet	Camaro	Coupe	automatic	17.0	13441.0	black	17
	19	2014	BMW	6 Series	Convertible	automatic	34.0	8819.0	black	67
	20	2015	Chevrolet	Impala	Sedan	automatic	19.0	14538.0	silver	7
	21	2014	BMW	5 Series	Sedan	automatic	29.0	25969.0	black	30

```
In [39]: print(df.isnull().sum())
         print("Amount of columns: ", df.shape[0])
```

29/11/2024, 21:52 3 of 8

year

```
make
        model
        body
        transmission 0
        condition 0
        odometer
        color
        sellingprice 0
        dtype: int64
        Amount of columns: 472325
In [40]: from sklearn.preprocessing import LabelEncoder
         # Convert odometer and year to numeric
         df['odometer'] = pd.to_numeric(df['odometer'], errors='coerce')
         df['year'] = pd.to_numeric(df['year'], errors='coerce')
         # Define the function to categorise odometer values
         def categorise_odometer(odometer): #1 = 0-20k, 2 = 20-50k, 3 = 50-100k, 4 = 100-1
             if odometer <= 20000:</pre>
                 return 1 # 0-20k
             elif odometer <= 50000:</pre>
                 return 2 # 20-50k
             elif odometer <= 100000:
                 return 3 # 50-100k
             elif odometer <= 150000:
                 return 4 # 100-150k
             elif odometer <= 200000:
                 return 5 # 150-200k
             else:
                 return 6 # 200k+
         # Define function to categorise year
         def categorise_year(year): # 1 = very old, 2 = old, 3 = modern, 4 = new
             if year < 1990:
                 return 1 # Very old
             elif year < 2005:</pre>
                 return 2 # Old
             elif year < 2015:</pre>
                 return 3 # Modern
             else:
                 return 4 # New
         # Define function to categorise price
         def categorise_price(price): # 1 = Low, 2 = medium, 3 = high, 4 = premium
             if price < 5000:
                 return 1 # Low
             elif price < 20000:
                 return 2 # Medium
             elif price < 40000:</pre>
                 return 3 # High
             else:
                 return 4 # Premium
```

```
# Apply categorisation functions
df['odometer_group'] = df['odometer'].apply(categorise_odometer)
df['year_group'] = df['year'].apply(categorise_year)
df['price_group'] = df['sellingprice'].apply(categorise_price)
# Group rare colors into 'Other' to reduce noise
if 'color' in df.columns:
    color_counts = df['color'].value_counts()
    rare_colors = color_counts[color_counts < 50].index # Adjust threshold as need</pre>
    df['color'] = df['color'].replace(rare_colors, 'Other')
# Handle categorical features using LabelEncoder
categorical_columns = ['make', 'model', 'body', 'cylinders', 'drive', 'condition',
# Encode all categorical columns
for col in categorical_columns:
    if col in df.columns: # Ensure the column exists in the dataset
        df[col] = LabelEncoder().fit_transform(df[col].astype(str))
# Drop the original columns
df = df.drop(columns=['odometer', 'year', 'sellingprice'], errors='ignore')
# Show the first 10 rows of the processed DataFrame
df.head(10)
```

Out[40]: make model body transmission condition color odometer group year group price

```
In [41]: # Define features (X) and target (y)
    X = df.drop(columns='price_group')
    y = df['price_group']

# Train/test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta)

In []: from sklearn.model_selection import GridSearchCV
    #https://www.kaggle.com/code/syedanwarafridi/eda-visualizaton-random-forest-on-vehi
```

```
# code to find out best parameters sourced from kaggle forum
         # Random Forest hyperparameter tuning using GridSearchCV
         rf_param_grid = {
             'n_estimators': [50, 100],
             'max_depth': [30, 40, 50],
             'min_samples_split': [8, 12],
             'min_samples_leaf': [4, 5]
         }
         # Instantiate the model using the best parameters
         rf_model = RandomForestRegressor( )
         rf_best = GridSearchCV(rf_model, rf_param_grid, cv=5, scoring='neg_mean_squared_err
         # Fit the model to the training data
         rf_best.fit(X_train, y_train)
        Fitting 5 folds for each of 24 candidates, totalling 120 fits
        c:\Users\mjcul\OneDrive\Documents\GitHub\DataScience\venv\lib\site-packages\numpy\ma
        \core.py:2881: RuntimeWarning: invalid value encountered in cast
          _data = np.array(data, dtype=dtype, copy=copy,
 Out[ ]:
                        GridSearchCV
          ▶ best_estimator_: RandomForestRegressor
                  RandomForestRegressor ?
In [43]: # Make predictions
         y_pred = rf_best.predict(X_test)
         # Evaluate the model
         mse = mean_squared_error(y_test, y_pred)
         print(f'Mean Squared Error: {mse:.2f}')
         r2 = r2_score(y_test, y_pred)
         print(f'R-squared: {r2:.2f}')
        Mean Squared Error: 0.10
        R-squared: 0.77
In [44]: importances = rf_best.best_estimator_.feature_importances_
         plt.barh(X.columns, importances)
         plt.xlabel("Feature Importance")
         plt.title("Random Forest Feature Importances")
         plt.show()
```



```
In [45]: # Scatter plot for actual vs predicted values
plt.figure(figsize=(10, 6))

plt.scatter(y_test, y_pred, alpha=0.5)
plt.title('Actual vs Predicted Values')
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.grid(True)
plt.show()
```


8 of 8