Resistors Identification

Resistance is measured in units of ohms (Ω). Resistors come in several sizes and shapes. Each one with its color code or value printed on it.

Common unit: $M\Omega$, $k\Omega$ and Ω . (M=10⁶, k=10³)

The standard color code is as follows:

Color	Resistor's value (1st and 2nd band)	Multiplier (3rd band)	Tolerance (4th band)
Black	0	×10 ⁰	_
Brown	1	×10 ¹	±1%
Red	2	×10 ²	±2%
Orange	3	×10 ³	_
Yellow	4	×10 ⁴	_
Green	5	×10 ⁵	_
Blue	6	×10 ⁶	_
Violet	7	×10 ⁷	_
Gray	8	×10 ⁸	_
White	9	×10 ⁹	_
Gold	_	×10 ⁻¹	±5%
Silver		×10 ⁻²	±10%
None	_	_	±20%

<u>Carbon composition resistor</u> <u>construction</u>

Film resistor construction

Carbon, metal or metal oxide film

Ceramic or glass
rod substrate

Leads and caps

Spiral incised through
film into substrate to
increase and adjust
resistance
molded case

Wirewound resistor construction

Capacitors Identification

Capacitance is measured in units of farads (F). Capacitors come in many sizes and types. Here shows you how to read the code number printed on some capacitors.

Common unit: μ F, nF and pF μ =10⁻⁶, n=10⁻⁹, p=10⁻¹²

Ceramic capacitors (Non-polarised)

They are always count in pF.

Non-polarised capacitor

The first two digits are capacitor's value in pF The third digit is the multiplier [No. of zeros (10*)] The last character is the tolerance

e.g.

Printed code: 102k

The first two digits are capacitor's value: 10The third digit is the multiplier: two zeros (10^2) The last character (k) is the tolerance: $\pm 10\%$

Capacitance:

 $10x10^2 = 1000 \text{ pF } (\pm 10\%) = 1 \text{nF or 1n in short-hand}$

Tolerance of capacitor:

Code	Tolerance	
А	±0.05%	
В	±0.1%	
С	±0.25%	
D	±0.5%	
F	±1%	
G	±2%	
J	±5%	
K	±10%	
M or NONE	±20%	
N	±30%	
Q	-10%, +30%	
S	-20%, +50%	
Т	-10%, +50%	
Z	-20%, +80%	

Electrolytic Capacitors (Polarised)

The capacitance and working voltage are always printed on the case in units of μF and V (Volt).

Capacitance = 4700 μ F Max. Working Voltage = 25 V

Polarised capacitor