Introduction to Electrical Engineering

Aakash Jog

2014-15

Contents

1	Lecturer Information					
2	Rec	quired	Reading	3		
Ι	Ba	asic D	Definitions and Laws	4		
1	Bas	ic Defi	initions	4		
2	Kirchoff's Laws					
	2.1	Kirch	off's Current Law	4		
	2.2	Kircho	off's Voltage Law	5		
3	Components					
	3.1	Resist	ors	6		
		3.1.1	Linear Time Independent Resistor	6		
		3.1.2	Non-linear Resistors (Diodes)	7		
	3.2	Indep	endent Sources	8		
		3.2.1	Voltage Sources	8		
		3.2.2	Current Sources	9		
		3.2.3	Real Batteries	10		
	3.3	Capac	citor	10		
		3.3.1	Linear Capacitors	10		
	3.4	Induc	tor	11		

4	Waveforms					
	4.1	DC (Constant Function)	12			
	4.2	Sinusoidal Wave	12			
	4.3	Step Function	13			
	4.4	Rectangular Pulse	13			
	4.5	Dirac δ function	14			
	4.6	Ramp Function	15			
	4.7	Doublet Function	15			
	4.8	Relation Between Standard Waveforms	15			
5	Power and Energy					
	5.1	Energy Stored in a Capacitor	17			
	5.2	Energy Stored in an Inductor	17			
II	Si	imple Circuits	17			
1	1 Equivalent Circuits					

1 Lecturer Information

Prof. Moshe Tur

Office: Wolfson 413 Telephone: 03-640-8125 E-mail: tur@post.tau.ac.il

2 Required Reading

C.A. Desoer and E.S. Kuh: $Basic\ Circuit\ Theory,\ Mc-Graw-Hill,\ International\ Edition.$

Part I

Basic Definitions and Laws

1 Basic Definitions

Definition 1 (Electrical circuit). A collection of interconnected components.

Definition 2 (Lumped component). An electrical component whose dimensions are very very small compared to the wavelength of the electromagnetic waves passing through it is called a lumped component.

Definition 3 (One port device). An electrical component with two terminals is called a one port device.

Definition 4 (Nodes and branches). In the figure, all the black dots are called nodes. The parts of the circuit between two nodes are called branches.

2 Kirchoff's Laws

2.1 Kirchoff's Current Law

The sum of all currents entering or exiting a node is zero.

$$i_1 + i_3 - i_4 = 0$$

2.2 Kirchoff's Voltage Law

The sum of all branch voltages along a closed loop is zero.

$$v_1 - v_4 - v_5 = 0$$
$$v_2 + v_3 + v_4 = 0$$
$$v_1 + v_2 + v_3 - v_5 = 0$$

3 Components

3.1 Resistors

Definition 5 (Resistor). A two terminal component is called a resistor if the voltage across it at any given time t is a function of the current at the same time t.

3.1.1 Linear Time Independent Resistor

$$v(t) = R \cdot i(t)$$

$$i(t) = G \cdot v(t)$$

R is called the resistance and G is called the conductance.

3.1.2 Non-linear Resistors (Diodes)

$$i(t) = I_s \left(e^{\frac{q \cdot v(t)}{kT}} - 1 \right)$$

 I_s = reverse current

k = Boltzman constant

T = absolute temperature

q =electronic change

$$\frac{kT}{q} = 0.026$$
(at 300K)

3.2 Independent Sources

3.2.1 Voltage Sources

Definition 6 (Voltage source). A two terminal component is called a voltage source if the voltage on its terminals is independent of the current through it.

3.2.2 Current Sources

Definition 7 (Current source). A two terminal component is called a current source if it can supply a current $i_s(t)$ independent of the voltage across its terminals.

3.2.3 Real Batteries

$$0 = -V_0 + v_R + v$$
$$v = V_0 - v_R$$
$$\therefore v = V_0 - R_s i$$

3.3 Capacitor

Definition 8 (Capacitor). A capacitor is a two terminal device where V is a function of q.

3.3.1 Linear Capacitors

If the charges on the terminals of a capacitor are +q and -q, and the potential difference across it is v, the ratio between q and v is said to be the capacitance.

The unit of capacitance is farad or F.

$$q = Cv$$

$$\therefore i = C \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$\therefore v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(t) \, \mathrm{d}t$$

3.4 Inductor

Definition 9 (Inductor).

$$v(t) = \frac{d\varphi}{dt}$$

$$\therefore v(t) = L \frac{di}{dt}$$

$$\therefore i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^{t} v(t) dt$$

4 Waveforms

4.1 DC (Constant Function)

4.2 Sinusoidal Wave

4.3 Step Function

$$u(t) = \begin{cases} 0 & ; & t < 0 \\ \frac{1}{2} & ; & t = \tau \\ 1 & ; & t > \tau \end{cases}$$

4.4 Rectangular Pulse

$$P_{\Delta}(t) = \frac{u(t) - u(t - \Delta)}{\Delta}$$

$$P_{\Delta}(t) = \begin{cases} 0 & ; \quad t < 0 \\ \frac{1}{\Delta} & ; \quad t = 0 \\ 1 & ; \quad t > 0 \end{cases}$$

4.5 Dirac δ function

$$\delta(t) = \lim_{\Delta \to 0} P_{\Delta}(t)$$

$$S(\Delta) = \int_{-\infty}^{\infty} P_{\Delta}(t) f(t) dt$$

As $\Delta \to 0$,

$$S(\Delta) = \int_{-\infty}^{\infty} P_{\Delta}(t) f(0) dt$$
$$= f(0) \int_{-\infty}^{\infty} P_{0}(t) dt$$
$$= f(0)$$

$$\delta(t) = \begin{cases} 0 & ; \quad t \neq 0 \\ \infty & ; \quad t = 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t)f(t) dt = f(0)$$

$$\int_{-\infty}^{\infty} \delta(t - \tau)f(t) dt = f(\tau)$$

$$\int_{-\infty}^{\infty} \delta(at)f(t) dt = \frac{1}{|a|}\delta(t)$$

4.6 Ramp Function

$$r(t) = tu(t)$$

4.7 Doublet Function

$$\delta'(t) = \frac{\mathrm{d}\delta(t)}{\mathrm{d}t}$$

4.8 Relation Between Standard Waveforms

$$r(t) \stackrel{\frac{\mathrm{d}}{\mathrm{d}t}}{\stackrel{f}{\smile}} u(t) \stackrel{\frac{\mathrm{d}}{\mathrm{d}t}}{\stackrel{f}{\smile}} \delta(t) \stackrel{\frac{\mathrm{d}}{\mathrm{d}t}}{\stackrel{f}{\smile}} \delta'(t)$$

Exercise 1.

Express the following wave as a sum of standard waveforms.

Solution 1.

$$f(t) = u(t-1) + u(t-2)$$

Exercise 2.

Express the following wave as a sum of standard waveforms.

Solution 2.

$$f(t) = r(t) + r(t-1)$$

5 Power and Energy

The instantaneous power supplied to a load is

$$P(t) = v(t) \cdot i(t)$$

where v(t) and i(t) are in matched directions.

The energy supplied to a load from time t_0 to time t is

$$W(t_0, t) = \int_{t_0}^t P(t) dt$$
$$= \int_{t_0}^t v(t) \cdot i(t) dt$$

5.1 Energy Stored in a Capacitor

$$W(t_0, t) = \int_{t_0}^t v(t)i(t) dt$$

As $i(t) = \frac{dq}{dt}$, dq = i(t) dt. Therefore,

$$W(t_0, t) = \int_{q(t_0)}^{q(t)} v(q) dq$$
$$= \int_{q(t_0)}^{q(t)} \frac{q}{C} dq$$
$$= \frac{q^2}{2c}$$
$$= \frac{1}{2}cv^2$$

5.2 Energy Stored in an Inductor

$$W(t_0, t) = \int_{t_0}^t v(t)i(t) dt$$

As $v(t) = \frac{\mathrm{d}\varphi}{\mathrm{d}t}$, $\mathrm{d}\varphi = v(t)\,\mathrm{d}t$. Therefore,

$$W(t_0, t) = \int_{\varphi(t_0)}^{\varphi(t)} i(\varphi) \, d\varphi$$
$$= \frac{\varphi^2}{2L}$$
$$= \frac{1}{2}Li^2$$

Part II

Simple Circuits

1 Equivalent Circuits

Definition 10. Two circuits are said to be equivalent if they have the same v(t)-i(t) relationships.

Let the voltage across R_1 be v_1 and across R_2 be v_2 . Let the current through R_1 be i_1 and through R_2 be i_2 . Therefore,

$$v_1 = f_1(i_1)$$

 $v_2 = f_2(i_2)$

Therefore,

$$v = v_1 + v_2$$

$$= f_1(i_1) + f_2(i_2)$$

$$= f_1(i) + f_2(i)$$

$$= f_3(i)$$

Therefore, the system of resistors is equivalent to a single resistor R_3 .