ECE 2504: Introduction to Computer Engineering

Homework Assignment 2 (40 points)

Make a reasonable effort to show your work. Clearly indicate your answers.

Problem 1 (12 points)

Even though we aren't trying to prove any of our axioms, a truth table is a useful means for justifying the truth of many axioms. If we can demonstrate that two seemingly distinct expressions give the same value for all combinations of a set of inputs, then the two expressions are actually the same.

For example, demonstrating that the AND function is associative amounts to showing that (AB)C = A(BC):

Α	В	С	AB	С	(AB)C	Α	ВС	A(BC)
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	0	1	0
1	0	0	0	0	0	1	0	0
1	0	1	0	1	0	1	0	0
1	1	0	1	0	0	1	0	0
1	1	1	1	1	1	1	1	1

(AB)C = A(BC) for all combinations of A, B, and C. Thus, the AND function exhibits associativity. Using a truth table in the fashion shown above, demonstrate each of the following:

a. The distributive property A(B + C) = AB + AC

Α	В	С	B+C	A(B+C)	AB	AC	AB+AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Thus A(B+C) = AB+AC

b. The distributive property A + BC = (A + B)(A + C)

Α	В	С	ВС	A+BC	A+B	A+C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Thus A+BC = (A+B)(A+C)

Problem 1 (continued)

c. The NAND form of DeMorgan's Theorem for three variables – that is, show that (ABC)' = A' + B' + C'.

Α	В	С	(ABC)	(ABC)'	A'	B'	C'	(A'+B'+C')
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

Thus (ABC)' = A' + B' + C'.

d. The NOR form of DeMorgan's Theorem for three variables – that is, show that (A + B + C)' = A'B'C'.

Α	В	С	A'	B'	C'	(A+B+C)	(A+B+C)'	(A'B'C')
0	0	0	1	1	1	0	1	1
0	0	1	1	1	0	1	0	0
0	1	0	1	0	1	1	0	0
0	1	1	1	0	0	1	0	0
1	0	0	0	1	1	1	0	0
1	0	1	0	1	0	1	0	0
1	1	0	0	0	1	1	0	0
1	1	1	0	0	0	1	0	0

e. The three-input XOR function gives true output if and only if an odd number of its inputs are true. (Try "building" the three-input XOR from two-input XORs.)

f. The XOR function is associative – that is, show that $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

Α	В	С	A+B	(A⊕B)	(A⊕B) ⊕C	(B ⊕ C)	A ⊕ (B ⊕ C)
0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	0	0	0
1	0	0	1	1	1	0	1
1	0	1	1	1	0	1	0
1	1	0	1	0	0	1	0
1	1	1	1	0	1	0	1

Problem 2 (12 points)

Using Boolean algebra manipulation, simplify the following expressions to their simplest terms:

a. A + AB (This is a Boolean algebra theorem called an absorption theorem.)

b. CD + CD' (This is an important Boolean algebra theorem; it forms the basis of most logic minimization.)

c.
$$BC + ABC' + A'BC'$$

Problem 2 (continued)

d. BD + B'C'DBD+B'C'D

```
=D(B+B'C') == x(y+z) xy+xz

=D(B+(B+C)') == (x+y)' = x'y'

=D(B(1+(1+C)')

=D(B(1+(1)') == x+1 =1

=D(B+B') == x(y+z) = xy+xz

=D(1) == x+x' = 1

=D == x*1 = x
```

e. AB'D + AC'D + BD

f. (BC + A'D)(AB' + C'D') (Hint: You can apply an approach similar to the multiplication of polynomials to expand this expression before you begin simplifying it.)

```
(BC + A'D)(AB' + C'D')
= BCAB'+BCC'D'+A'DAB'+A'DC'D' ==x(y+z)=xy+xz
= 0 + 0+0+0 == x*x'=0
=0 == x+0=x
```

Problem 3 (8 points)

Consider the three-variable function F(A,B,C) = AC' + A'BC:

- a. Using DeMorgan's Theorem, express F'. (I recommend that you express F' in SOP form.)
- b. Using Boolean algebra and the function that you derived in part (a), show that $F \bullet F' = 0$ and that F + F' = 1.

```
(Hint: Remember the hint from Problem 2(f).)
```

```
a)
(A+C)*(A+B'+C')
= (A'A + A'B' + A'C' + CA + CB' + CC')
b)
F*F'=0
(AC'+A'BC)*(A'A + A'B' + A'C' + CA + CB' + CC')
A'A = 0 == x*x' = 0
CC' == x*x'=0
=(AC'+A'BC)*(A'B'+A'C'+CA+CB'+0+0)
=0 == x*0 = 0
Outputs 0 if any are 0 thus F*F'=0
b)
F+F'=1
(AC'+A'BC)+(A'A+A'B'+A'C'+CA+CB'+CC')
=AC'+A'BC+A'(B'+C')+C(A+B')
=AC'+A'(B'+C'+BC)+C(A+B')
=AC'+A'((B'+B)(B'+C)+C')+C(A+B')
=AC'+A'((1)(B'+C)+C'))+C(A+B')
=AC'+A'((C'+C)+B')+C(A+B')
=AC'+A'((1)+B')+C(A+B')
=AC' + A' + B' + C(A + B')
=(A'+A)(A'+C') + B' + C(A+B')
=(1)(A'+C')+B'+C(A+B')
=A'+C'+B'+CA+CB'
=(C'+C)(C'+C')+A'+B'+CA
=(1)(A'+B'+CA+C'+B')
=A'+B'+(C'+A)(C'+C)+B'
=A'+B'+(C'+A)(1)+B'
=A'+C'+A+B'
=1+C'+B'
1+x = 1 thus F+F' = 1 as there needs to result in just at least one 1 for an output of 1 to happen.
```

Problem 4 (8 points)

Consider the three-variable function F(A,B,C) = A'BC + ABC + ABC'.

- a. Show the truth table for the function.
- b. Using Boolean algebra, simplify the function to its simplest terms.
- c. Show a truth table for the simplified function, and use it to demonstrate that the simplified function is equivalent to the original function.

(Hint: Sometimes, simplifying a function using Boolean algebra can involve making an expression less simple before making it simpler.)

a)

Α	В	С	A'	B'	C'	A'BC	ABC	ABC'	A'BC + ABC + ABC'
0	0	0	1	1	1	0	0	0	0
0	0	1	1	1	0	0	0	0	0
0	1	0	1	0	1	0	0	0	0
0	1	1	1	0	0	1	0	0	1
1	0	0	0	1	1	0	0	0	0
1	0	1	0	1	0	0	0	0	0
1	1	0	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	1

b)

A'BC+ABC+ABC'

```
=B(A'B+AC+AC') == x(y+z) xy+xz

= B( A'C+ AC + AC') == x(y+z)=xy+xz

=B(C (A'+A) +AC') == x(y+z)=xy+xz

=B( C (1) +AC') == x+x'=1

=B (C +AC')

= B( (C+A) (C+C')) == x+yz = (x+y)(x+z)

=B(C+A)

C)
```

Α	В	С	A'	B'	C'	A'BC	ABC	ABC'	A'BC + ABC + ABC'	C+A	B(C+A)
0	0	0	1	1	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	1	0
0	1	0	1	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	0	0	0	1	0
1	0	1	0	1	0	0	0	0	0	1	0
1	1	0	0	0	1	0	0	1	1	1	1
1	1	1	0	0	0	0	1	0	1	1	1