& Ber. Examen Mercredi, juin 23, 2021 Para la demostración tenences $V(7) = (\frac{2H}{2x})^2 \delta^2 \times + (\frac{2H}{2y})^2 \delta^2 Y$ en el punto (4x, uzy) con una serie de Taylor en el punto (4x, uzy) con una y dos terminos. $Y = H(M) + (X - M) H'(M) + \frac{(X - M)^2 H''(M)}{2} + R1$ donde: Ry es un vesto. Allera, descartames el termina resto les, entonces, tomanda el valor esperada en ambos miembros, tenemos. E(Y) = H(M) + H"(M) or Puesto que $\mathcal{E}(\chi - \mu) = 0$ Taylor en pero para X = 4 con un termina Y = H (M) + (X-M) H'(M) + Rz. Destructiones el resto Rr y tomanos la varianza en ambos lados, tenemos: S(Y) = [H(4)]202

El sesultado anterior puede extenderse a una junción de n variables alectorios indepen dientes, esto es: $\overline{\lambda} = \mu(\chi_1, \ldots, \chi_r)$ Di $E(X_i) = \mathcal{U}_i$, tenemos las signientes aproximaciones que toi aproximaciones, superiende que todos las derivadas existam E(Z)~H(Mig.o., Mn)+ 1 2 2 H. O. $V(7) \simeq \sum_{i=1}^{\infty} \left(\frac{2H}{2x_i}\right)^2 S_i^2$ Donde, los derivados parciales son evaluadas en el punto (11, ..., 11.). Nor último, des arnollamos la expresión: $v(\chi) = \left[\frac{2H}{2\chi}\right]^2 \sigma_{\chi}^2 + \left[\frac{2H}{2y}\right]^2 \sigma_{\chi}^2 /$

(2) - Definimas a: P = utilidad neta de jabricante par artículo Tenemos que aplicar $J(x; \lambda) = \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $P = \{ -2, 2i \ x \le 0.9 \}, fd\rho = f(x) = e, x > 0$ Para la cual $E(P) = (-2) \cdot P(\chi \leq 0.9) + (3) \cdot P(\chi > 0.9)$ $= (-2) \int_{-\infty}^{\infty} e^{-x} dx + 3 \int_{-\infty}^{\infty} e^{-x} dx$ $= (-2)(-e^{-x})|_{0}^{0.9} + 3(-e^{-x})|_{0.9}^{\infty}$ = -2 (1-e-0.9) + 3 e-0.9 --2+5e-0.9 = -2 + 5(0.40653)= 0.03285

a= número de artículos defectuosas seleccionados.

kx = {0,1,2,...,103

a) de tiene una distribución binamial con

$$p = 0.2$$
 $n = 10$

 $P(\chi \leq 1) = P(\chi = 0) + P(\chi = 1)$ $= P(\%)(0.2)^{\circ}(0.8)^{10} + (\%)(0.2)(0.8)^{\circ}$ = 0.268 + 0.107 = 0.3758

b) aproximando la distribución kironial de X por ma distribución de Pousson con parametro:

$$\lambda = (0.2) \cdot 10 = 2$$

Tenemas le signiente $P(\chi_o = \chi) = P(\chi_p = \chi)$

 $=\frac{2^{x} \cdot e^{-2}}{x!}, x=0,1,2,.$

y luiego: P(Xp ×1)=1-P(Xp 7,2) x! Tabla anexa

A=9-0.59399 = 0.406 x

		X	1	2 ×	e-2							
	Decord	7715 0		X	1 001	1000				1		
91		2		27								
		34	0.	09	020	dist	B					
		6 7	0.	01	202							
		8	0.	00	083	5						
		10		00			1					
	A ON S		60	PCX	p 7/	2)=	0.5	939	3=	7 V		
			0 = 1		6 +			-		7		
b)	Refinim	102			state							
	T es	N(50,4)								
Ca	lculamo	OS:										
	PLAS) < T <	53) = 1	0 (48	-50	< -	T-	4	< 2	3-	50)
				= 1	0(-;	ノくス	×	1.5)		2	- 1
						.5)-		(4)				
).7		\/					
				= ().	1,19	A					

Extenses:

G(y) =
$$P(Y = y) = P(1x| < y| = P(-y < x < y)$$

Por le tanto, $2u \neq d$, $P(-y) = 2 \Rightarrow (y) = 1$, $y > 0$

Por le tanto, $2u \neq d$, $P(-y) = 2 \Rightarrow (y) = 1$, $y > 0$
 $P(y) = P(-y) = 2 \Rightarrow (y) = 1$, $P(-y) = 2 \Rightarrow (y) = 1$, $P(-y) = 2 \Rightarrow (y) = 1$
 $P(y) = P(-y) = 2 \Rightarrow (y) = 1$
 $P(y) = P(-y) = 2 \Rightarrow (y) = 1$
 $P(y) = P(-y) = 2 \Rightarrow (y) = 1$
 $P(y) = P(-y) = 2 \Rightarrow (y) = 1$
 $P(y) = P(-y) = 2 \Rightarrow (y) = 2 \Rightarrow (y) = 2 \Rightarrow (y)$
 $P(y) = P(y) = P(y) = 2 \Rightarrow (y) =$

Macienda un cambia de naviable $u = y \qquad dv = y e^{\frac{\pi}{2}} dy$ $du = dy \qquad v = -e^{-\frac{\pi}{2}/2}$ E(Y²)=√1 lin (-y e²) + ∫ e-² dy $= \sqrt{\frac{2}{\pi}} (-0+0) + \sqrt{\frac{2}{\pi}} \cdot 2^{-\frac{y^2}{2}} dy = 1$ 2003) V(Y) = E(Y2) - [E(Y)]2

