Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 4

Methods for Solving Recurrences

Iteration method

Substitution method

Recursion tree method

Master method

The Iteration Method

$$T(n) = c + T(n/2)$$

 $T(n) = c + T(n/2)$
 $T(n/2) = c + T(n/4)$
 $= c + c + T(n/4)$
 $= c + c + c + T(n/8)$
Assume $n = 2^k$
 $T(n) = c + c + ... + c + T(1)$
 $k \text{ times}$
 $= c \cdot |gn| + T(1)$
 $= \Theta(|gn|)$

Iteration Method – Example

$$T(n) = n + 2T(n/2)$$
 Assume: $n = 2^k$
 $T(n) = n + 2T(n/2)$ $T(n/2) = n/2 + 2T(n/4)$
 $= n + 2(n/2 + 2T(n/4))$
 $= n + n + 4T(n/4)$
 $= n + n + 4(n/4 + 2T(n/8))$
 $= n + n + n + 8T(n/8)$
... $= in + 2^iT(n/2^i)$
 $= kn + 2^kT(1)$
 $= nlgn + nT(1) = \Theta(nlgn)$

Iteration Method – Example

$$T(n) = n + T(n-1)$$

$$T(n) = n + T(n-1)$$

= $n + (n-1) + T(n-2)$
= $n + (n-1) + (n-2) + T(n-3)$
... = $n + (n-1) + (n-2) + ... + 2 + T(1)$
= $n(n+1)/2 - 1 + T(1)$
= $n^2 + T(1) = \Theta(n^2)$

The substitution method

1. Guess a solution

2. Use induction to prove that the solution works

Substitution method

- Guess a solution
 - T(n) = O(g(n))
 - Induction goal: apply the definition of the asymptotic notation
 - $T(n) \le d g(n)$, for some d > 0 and $n \ge n_0$
 - Induction hypothesis: $T(k) \le d g(k)$ for all k < n
- Prove the induction goal
 - Use the **induction hypothesis** to find some values of the constants d and n_0 for which the **induction goal** holds

Example: Binary Search

$$T(n) = c + T(n/2)$$

- Guess: T(n) = O(lgn)
 - Induction goal: $T(n) \le d \lg n$, for some d and $n \ge n_0$
 - Induction hypothesis: T(n/2) ≤ d lg(n/2)
- Proof of induction goal:

$$T(n) = T(n/2) + c \le d \lg(n/2) + c$$

= $d \lg n - d + c \le d \lg n$
if: $-d + c \le 0, d \ge c$

Example: Binary Search

$$T(n) = c + T(n/2)$$

- Boundary conditions:
 - Base case: $n_0 = 1 \Rightarrow T(1) = c$ has to verify condition: $T(1) \le d \lg 1 \Rightarrow c \le d \lg 1 = 0$ contradiction
 - Choose $n_0 = 2 \Rightarrow T(2) = 2c$ has to verify condition: $T(2) \le d \lg 2 \Rightarrow 2c \le d \lg 2 = d \Rightarrow \text{ choose } d \ge 2c$
- We can similarly prove that $T(n) = \Omega(lgn)$ and therefore: $T(n) = \Theta(lgn)$

$$T(n) = T(n-1) + n$$

- Guess: $T(n) = O(n^2)$
 - Induction goal: $T(n) \le c n^2$, for some c and $n \ge n_0$
 - Induction hypothesis: T(n-1) ≤ c(n-1)²
- Proof of induction goal:

- For $n \ge 1 \Rightarrow 2 - 1/n \ge 1 \Rightarrow$ any $c \ge 1$ will work

$$T(n) = T(n-1) + n$$

- Boundary conditions:
 - Base case: $n_0 = 1 \Rightarrow T(1) = 1$ has to verify condition: $T(1) \le c \ (1)^2 \Rightarrow 1 \le c \Rightarrow OK!$
- We can similarly prove that $T(n) = \Omega(n^2)$ and therefore: $T(n) = \Theta(n^2)$

$$T(n) = 2T(n/2) + n$$

- Guess: T(n) = O(nlgn)
 - Induction goal: $T(n) \le cn \lg n$, for some c and $n \ge n_0$
 - Induction hypothesis: T(n/2) ≤ cn/2 lg(n/2)
- Proof of induction goal:

$$T(n) = 2T(n/2) + n \le 2c (n/2) \lg(n/2) + n$$

$$= cn \lg n - cn + n \le cn \lg n$$

$$if: -cn + n \le 0 \Rightarrow c \ge 1$$

$$T(n) = 2T(n/2) + n$$

- Boundary conditions:
 - Base case: $n_0 = 1 \Rightarrow T(1) = 1$ has to verify condition: $T(1) \le c n_0 |q n_0 \Rightarrow 1 \le c * 1 * |q 1 = 0 - contradiction$
 - Choose $n_0 = 2 \Rightarrow T(2) = 4$ has to verify condition: $T(2) \le c * 2 * lg2 \Rightarrow 4 \le 2c \Rightarrow \text{ choose } c = 2$
- We can similarly prove that $T(n) = \Omega(n \log n)$ and therefore: $T(n) = \Omega(n \log n)$

Readings

- For this lecture
 - Section 4.3
 - Coming next
 - Sections 4.4, 4.5