

Protokoll Analytik

Versuch 3.3

Molekülspektroskopie/UV-VIS-Bereich/Photometrie

Mehrkomponentenanalytik: Simultanbestimmung von M
n und Cr ${\it Gruppe~2.4~(BCUC4)}$

Teilnehmer:

Willy Messerschmidt Roman-Luca Zank

Datum der Versuchsdurchführung: 29. Juni 2020

Abgabedatum: 3. Juli 2020

Inhaltsverzeichnis

Ar	nhang	11
6	Diskussion	10
	5.3 Analyse der Proben	8
	5.2 Validierung	7
5	Ergebnisse und Berechnungen 5.1 Kalibrierung	5 5
4	Durchführung	4
3	Geräte und Chemikalien	3
2	Theorie	2
1	Einleitung	2

1 Einleitung

Im Praktikumsversuch 3.3 "Simultanbestimmung von Mn und Cr" wird mittels simultaner Mehrkomponentenanalyse im UV-VIS-Bereich, die Konzentration von Mangan und Chrom mithilfe der Photometrie bestimmt.

2 Theorie

Lambert-Beer'sches Gesetz

Die Grundlage für die photometrische Bestimmung von Konzentrationen stellt das LAMBERT-BEER'sche Gesetz dar. Dieses beschreibt den proportionalen Zusammenhang zwischen der Absorbanz A und den Variablen in Form von der Küvettenschichtdicke d und der Stoffmengenkonzentration c. Die Proportionalitätskonstante wird in diesem Fall mit dem Absorptionskoeffizienten α beschrieben.

$$A = \alpha \cdot c \cdot d \tag{1}$$

Die Absorbanz definiert sich hierbei ebenfalls durch den negativen dekadischen Logarithmus des Transmissionsgrades T bzw. dem Verhältnis der gemessenen Intensität I zur Ausgangsintensität I_0 . Die Lichtquelle sendet hierbei Licht eines breiten Spektrums aus, welches über ein Gitter oder ein Prisma monochromiert wird.

Beschrieben werden diese Zusammenhänge in den Gleichungen Gl.(1) und Gl.(2).

$$T = \frac{I}{I_0} = 10^{-A} \tag{2}$$

Lineare Kalibrierung

Um eine lineare Kalibrierung mit dem LAMBERT-BEER'schen Gesetz aufstellen zu können, ist es nötig die Grundgleichung (Gl.(1)) dementsprechend anzupassen. Hierfür werden weitere Größen eingeführt bzw. das LAMBERT-BEER'sche Gesetz umgeformt. Die Signalgröße Y entspricht dabei dem Verhältnis zwischen Absorbanz A und der Schichtdicke der Küvette d. Die Proportionalitätskonstante entspricht nun der Empfindlichkeit der Methode a.

$$A = \alpha \cdot c \cdot d \qquad |: d$$

$$Y = \frac{A}{d} = a \cdot c \tag{3}$$

Zusätzlich wird die Fehlergröße E additiv hinzugefügt.

$$Y = a \cdot c + E \tag{4}$$

Diese Fehlergröße E unterliegt der Annahme, dass durch eine weitere Komponente mit einer Konzentration X_2 ebenfalls monochromatisches Licht der Wellenlänge λ_1 der Komponente 1 absorbiert. Für die Signalgröße $Y\lambda_1$ ergibt sich daraus:

$$Y(\lambda_1) = a_1(\lambda_1) \cdot X_1 + a_2(\lambda_2) \cdot X_2 \tag{5}$$

Um die nötigen Empfindlichkeiten a_1 und a_2 zu bestimmen, sind weitere Messschritte erforderlich. So müssen die Wellenlängen $\lambda_{1,\text{max}}$ und $\lambda_{2,\text{max}}$ bestimmt werden, bei welchen die einzelnen Komponenten die maximale Absorbanz aufzeigen. Dies erfolgt mittels Spektroskopie. Infolgedessen lässt ein Gleichungssystem für bis zu zwei Komponenten oder eine Matrix für mehr als zwei Komponenten aufstellen, welche es mathematisch zu lösen gilt. Für die Wellenlängen λ_1 und λ_2 ergibt sich daraus ein lineares Gleichungssystem der Form:

$$Y_1(\lambda_1) = a_{11} \cdot X_1 + a_{12} \cdot X_2 \tag{6}$$

$$Y_2(\lambda_2) = a_{21} \cdot X_1 + a_{22} \cdot X_2 \tag{7}$$

Zur Vereinfachung der Kalibration werden die Empfindlichkeiten für den Einkomponentenfall mit den Empfindlichkeiten im Zweikomponentenfall gleichgesetzt. Im weiteren Vorgehen werden die Kalibriergeraden mit Hilfe von Validierlösungen überprüft. Diese beinhalten bekannte Konzentrationen an Kaliumpermanganat und Kaliumdichromat. Nach erfolgreicher Validierung der Kalibrierkurven, kann mit der photometrischen Bestimmung der Probenkonzentrationen X_1 und X_2 begonnen werden. Für die Umrechnung der jeweiligen Absorbanz in die Konzentration ist die Lösung des Gleichungssystems aus Gl. (6) und Gl.(7) nötig.

3 Geräte und Chemikalien

Geräte:

- \bullet UV-VIS-Spektrophotometer GENESYS 180^{TM} von Fa. ThermoFisher SCIENTIFIC
- Computer mit Software Visonlite
- Mikroliterspritze
- Bechergläser
- Maßkolben mit $V = 100 \,\mathrm{mL}$

Proben/Chemikalien:

- Standardlösung Kaliumdichromat
- Standardlösung Kaliumpermanganat
- destilliertes Wasser
- Analyseproben 1 und 2

4 Durchführung

Im ersten Teil der Versuchsdurchführung werden aus den Standardlösungen für Kaliumdichromat $\left(c_{\mathrm{KMnO_4}} = 0.02 \, \frac{\mathrm{mol}}{\mathrm{L}}\right)$ und Kaliumpermanganat $\left(c_{\mathrm{K_2Cr_2O_7}} = 0.0015 \, \frac{\mathrm{mol}}{\mathrm{L}}\right)$ jeweils drei Kalibrierlösungen hergestellt. Es werden jeweils $100 \, \mathrm{mL}$ Kalibrierlösung, in verschiedenen Maßkolben, hergestellt. Zusätzlich werden, für die Überprüfung der Kalibrierkurven, drei verschiedene Validierlösungen angemischt. Sowohl die Konzentrationen der Validierlösungen, als auch die der Kalibrierlösungen, finden sich im Protokolldeckblatt oder in der Praktikumsanleitung zu diesem Versuch wieder.

Im zweiten Versuchsteil wird mit der Aufnahme von Spektren begonnen. Nach der Bestimmung der Basislinie mit einer Küvette, welche lediglich destilliertes Wasser enthält, wird diese vom Messsystem automatisch gespeichert. Von allen folgenden Messungen wird das Spektrum der Basisllinie subtrahiert, um den Einfluss der Matrix herauszurechnen. Um die charakteristischen Wellenlängen des Permanganat-Ions ($\lambda_{1,\text{max}}$) und des Dichromat-Ions ($\lambda_{2,\text{max}}$) zu bestimmen, werden jeweils die Kalibrierlösungen mittlerer Konzentration (K2) im Spektrometer untersucht und am PC ausgewertet. Für die folgende photometrische Bestimmung wird sich auf diese bestimmten Wellenlängen bezogen.

Im dritten Versuchsteil werden nun mit Hilfe der bestimmten Absorptionsspektren $(\lambda_{1,\max})$ und $(\lambda_{2,\max})$ die Kalibriergeraden aus den sechs Kalibrierlösungen bestimmt. Es wird hierbei eine Dreifachbestimmung durchgeführt. Die Überprüfung der Kalibriergeraden erfolgt im Anschluss mit den zuvor hergestellten Validierlösungen.

Im letzten Versuchsteil werden die Kalibrierkurven genutzt, um aus den Messergebnissen der Probe 1 und 2 die Konzentrationen an Permanganat- und Dichromat-Ionen zu erhalten. Auch an dieser Stelle werden die Messwerte für die Absorbanz in Dreifachbestimmung ausgeführt.

5 Ergebnisse und Berechnungen

5.1 Kalibrierung

Beginnend mit dem ersten Versuchsteil wurden die charakteristischen Absorptionsmaxima $\lambda_{1,\text{max}}$ und $\lambda_{2,\text{max}}$ bestimmt (siehe Tab. 1).

Tab. 1: Absorptionsmaxima vom Permanganat-Ion $\lambda_{1,\text{max}}$ und vom Dichromat-Ion $\lambda_{2,\text{max}}$

Ion	$\mathbf{MnO_4}^- \ (\lambda_{1,\mathbf{max}})$	$\mathbf{Cr_2O_7}^{2-}(\lambda_{2,\mathbf{max}})$
Wellenlänge	$525\mathrm{nm}$	$352\mathrm{nm}$

Für die Bestimmung der jeweiligen Konzentrationen in den Probelösungen, mittels linearer Kalibrierung, ist das Aufstellen der Kalibriergeraden aus den Absorptionsspektren der Kalibrierlösungen notwendig. Die Messwerte lassen sich im Protokolldeckblatt finden und sind in den Abbildungen 1 und 2 grafisch dargestellt.

Abb. 1: Kalibrierkurven für das Permanganat-Ion der Wellenlängen $\lambda_1=\lambda_{1,\max}$ und $\lambda_2=\lambda_{2,\max}$

In Abbildung Abb. 1 sind die gemessenen Absorbanzen von λ_1 und λ_2 über die Konzentration an Permanganat-Ionen aufgetragen. Für die Kalibrierpunkte der Messreihen ist jeweils eine lineare Regression durchgeführt worden, welche anhand des Bestimmtheitsmaßes in beiden Fällen als sehr genau eingestuft werden kann. Aufgrund der höheren Steigung lässt sich für die Wellenlänge λ_1 eine höhere Empfindlichkeit auf die Konzentration an Permanganat-Ionen feststellen als für die Wellenlänge λ_2 . Daraus ergibt sich, dass bei gleicher Konzentration an Permanganat-Ionen fast doppelt so hohe

Absorbanz für die Wellenlänge λ_1 als für die Wellenlänge λ_2 erreicht wird. Die Leerwerte a_0 entsprechen in dieser Darstellung den Achsenabschnitten. Zwischen beiden Messreihen ist hierfür ein geringer Unterschied von $\approx 0,003$.

Abb. 2: Kalibrierkurven für das Dichromat-Ion der Wellenlängen $\lambda_1=\lambda_{1,\max}$ und $\lambda_2=\lambda_{2,\max}$

In Abbildung Abb. 2 sind die gemessenen Absorbanzen von λ_1 und λ_2 über die Konzentration an Dichromat-Ionen aufgetragen. Ebenfalls wurde für diese Darstellung eine lineare Regression durch die Kalibrierpunkte der Messreihen bestimmt. Auch an dieser Stelle kann das Bestimmtheitsmaß für die Behauptung herangezogen werden, dass die Linearität sehr genau gegeben ist. Auffällig ist, dass der Anstieg für die Wellenlänge λ_1 sehr gering ist im Vergleich zu λ_2 . Somit absorbieren Dichromat-Ionen hauptsächlich Licht der Wellenlänge $\lambda_2 = 352$ nm. Somit hängt die Absorbanz für die Wellenlänge von $\lambda_1 = 525$ nm nicht maßgeblich von der Konzentration an Dichromat-Ionen ab. Die Leerwerte beider Regressionsgeraden unterscheiden sich gravierend.

Im Vergleich der Abbildungen Abb. 1 und Abb. 2 zeigt sich, dass für die Wellenlänge λ_1 mit 525 nm die Empfindlichkeit zwischen Absorbanz und Konzentration für Permanganat-Ionen deutlich höher ist als für Dichromat-Ionen. Für $\lambda_2 = 352$ nm ist diese Aussage genau umgekehrt zu treffen. Der hohe Leerwert der Regressionsgerade für λ_2 in Abb. 2 sollte auf mögliche Fehlerquellen untersucht werden.

Es folgt die Beispielrechnung für die Empfindlichkeitsparameter a_{11} und $a_{1}2$:

$$a_{11}(c_1) = \frac{Y_1(\lambda_1)}{X_1} = \frac{A_{\text{MnO}_4}^-}{c_{1,\text{MnO}_4}^-}$$

$$= \frac{0,186}{0,08 \frac{\text{mmol}}{\text{L}}}$$

$$= 2,30$$
(8)

$$a_{12}(c_1) = \frac{Y_2(\lambda_1)}{X_2} = \frac{A_{\text{Cr}_2\text{O}_7^{2-}}}{c_{1,\text{Cr}_2\text{O}_7^{2-}}}$$

$$= \frac{0,0023}{0,15 \frac{\text{mmol}}{\text{L}}}$$

$$= 0,0153 \tag{9}$$

$$a_{21} = \frac{\sum_{n=1}^{N} a_{11}(c_n)}{N}$$

$$= \frac{(1,243+1,153+1,141)}{3}$$

$$= \underline{1,179}$$
(10)

Für die folgenden Berechnungen der Validierung und der Analyse der Proben, wurden jeweils die Mittelwerte der Parameter a_{11} , a_{12} , a_{21} , und a_{22} gewählt. Diese berechneten Mittelwerte finden sich auf dem Deckblatt des Protokolls. Die Berechnungen der Parameter a_{11} und a_{12} finden sich in den Gleichungen Gl.(8) und Gl.(9). Die Berechnung des Mittelwertes in Gleichung Gl.(10) nachzuvollziehen.

5.2 Validierung

Mittels der Validierung durch entsprechende Validierlösungen, werden nun die Differenzen zwischen den vorliegenden Konzentrationen der Validierlösungen und den berechneten Konzentrationen aus den Kalibriergeraden bestimmt. Aufgrund des Einflusses der Empfindlichkeiten werden für die Permanganat-Ionen und die Dichromat-Ionen jeweils die stärker absorbierende Wellenlänge für die Kalibriergleichung verwendet. In den Gleichungen Gl. (11) und Gl. (12) ist eine Beispielrechnung für die Validierlösung 1 dargestellt:

$$Y = a \cdot X + E$$

$$X = \frac{Y - E}{a}$$

$$= \frac{Y - 0,0197}{3,038}$$

$$= \frac{0,3598 - 0,0197}{3,038}$$

$$= 0.112 \frac{\text{mmod}}{L}$$
(11)

$$\Delta X = |X_{\text{Soll}} - X|$$

$$= \left| 0.075 \frac{\text{mmol}}{\text{L}} - 0.112 \frac{\text{mmol}}{\text{L}} \right|$$

$$= 0.037 \frac{\text{mmol}}{\text{L}}$$
(12)

Alle weiteren geforderten Differenzen sind dem Deckblatt des Protokolls zu entnehmen. Für alle Validierlösungen ist festzustellen, dass die Differenzen zwischen realen und gemessenen Konzentrationen für die Permanganat-Ionen kleiner ausfallen, als die Konzentrationsdifferenzen der Dichromat-Ionen. Zu erklären sind diese Unterschiede anhand der Abbildungen 1 und 2. Diese zeigen auf, dass für die Wellenlänge $\lambda_1 = 525$ nm lediglich eine sehr geringe Empfindlichkeit in Bezug auf Dichromat-Ionen besteht, jedoch eine hohe Empfindlichkeit für Permanganat-Ionen. Es ergeben sich geringe Differenzen zu den realen Konzentrationswerten. Für die Wellenlänge $\lambda_2 = 352$ nm ist diese geringe Querempfindlichkeit nicht gegeben. Permanganat-Ionen weisen ebenfalls eine vergleichsweise starke Absorbanz gegenüber dieser Wellenlänge auf und verfälschen somit das dennoch dominierende Messsignal der betrachteten Dichromat-Ionen. Somit ergeben sich für die Dichromat-Konzentrationen deutlich höhere Abweichungen zum Sollwert, da eine höhere Querempfindlichkeit bei dieser Wellenlänge gegenüber Permanganat-Ionen vorherrscht.

Es zeigt sich somit schon in der Überprüfung der Validierlösungen, dass die Querempfindlichkeiten einer solchen Analysemethode nicht außer Acht gelassen werden sollten, da sonst keine richtigen Ergebnisse verzeichnet werden können.

5.3 Analyse der Proben

Für die statistischen Berechnungen des Mittelwertes, der Standardabweichung und des Konfidenzintervalls werden Gl.(10), Gl.(13) und Gl.(14) genutzt.

Standardabweichung:

$$s = \frac{\sqrt{\sum_{n=1}^{N} (X_n - \bar{X})^2}}{N - 1}$$

$$s = \frac{\sqrt{(0, 2234 - 0, 2234)^2 + (0, 2235 - 0, 2234)^2 + (0, 2234 - 0, 2234)^2 \cdot \frac{\text{mmol}}{L}}}{3 - 1}$$

$$= 9,22 \cdot 10^{-5} \frac{\text{mmol}}{L}$$
(13)

Konfidenzintervall:

$$\operatorname{conf}(\bar{X}) = \bar{X} \pm \frac{k}{\sqrt{N}} \cdot s$$

$$= 0.2234 \frac{\text{mmol}}{L} \pm \frac{4.3}{\sqrt{3}} \cdot 9.22 \cdot 10^{-5} \frac{\text{mmol}}{L}$$

$$= 0.2234 \frac{\text{mmol}}{L} \pm 2.29 \cdot 10^{-4} \frac{\text{mmol}}{L}$$
(14)

Ohne Berücksichtigung der Querempfindlichkeit

Ignoriert man die Querempfindlichkeiten bei der Berechnung der Konzentrationen, so ergeben sich die entsprechenden Messwerte auf dem Deckblatt des Protokolls. Sie sind ebenfalls im Abschnitt 6 in Tab. 2 und Tab. 3 aufgeführt. Die Standardabweichungen sind für alle Messwerte als sehr gering einzuschätzen, was für die Präzision der Messmethode spricht. Jedoch wird durch Betrachtung des Fehlers gegenüber dem Sollwert deutlich, dass die Messwerte nicht mit ihrer Richtigkeit überzeugen. Gerade die Fehlerquote für die Dichromat-Konzentration der Probe A1 ohne Einbeziehung der Querempfindlichkeit, fällt mit rund 92 % unter die vorangegangene Aussage. Eine weitere Prüfung dieser Messwerte folgt nun unter Einbeziehung der Querempfindlichkeit.

Mit Berücksichtigung der Querempfindlichkeit

Für die Berechnung der Konzentrationen von Dichromat- und Permanganat-Ionen ist das Aufstellen und Lösen eines linearen Gleichungssystem mit den Gleichungen Gl. (6) und Gl.(7) nötig. Die dazu erforderlichen Rechenschritte sind in den Gleichungen Gl.(15) bis Gl.(16) dargestellt. Des weiteren ist eine Beispielrechnung für die Probe A1 der Dichromat-Ionen Konzentration aufgeführt.

$$Y_1(\lambda_1) = a_{11} \cdot X_1 + a_{12} \cdot X_2$$

$$X_1 = \frac{Y_1(\lambda_1) - a_{12} \cdot X_2}{a_{11}}$$
(15)

Einsetzen von X_1 in $Y_2(\lambda_2)$:

$$Y_{2}(\lambda_{2}) = a_{21} \cdot X_{1} + a_{22} \cdot X_{2}$$

$$= a_{21} \cdot \frac{Y_{1}(\lambda_{1}) - a_{12} \cdot X_{2}}{a_{11}} + a_{22} \cdot X_{2}$$

$$Y_{2}(\lambda_{2}) - \frac{a_{21} \cdot Y_{1}(\lambda_{1})}{a_{11}} = X_{2} \cdot \left(\frac{-a_{21} \cdot a_{12}}{a_{11}} + a_{22}\right)$$

$$X_{2} = \frac{Y_{2}(\lambda_{2}) - \frac{a_{21} \cdot Y_{1}(\lambda_{1})}{a_{11}}}{-\frac{a_{21} \cdot a_{12}}{a_{11}} + a_{22}}$$

$$(16)$$

Beispielrechnung der Dichromat-Konzentration für Probe A1:

$$X_{2} = \frac{0,6023 - \frac{1,1785 \cdot 0,5103}{2,3010}}{-\frac{1,1785 \cdot 0,0272}{2,3010} + 3,1176}$$
$$= 0,1101 \frac{\text{mmol}}{\text{L}}$$
(17)

$$X_{1} = \frac{Y_{1}(\lambda_{1}) - a_{12} \cdot X_{2}}{a_{1}1}$$

$$= \frac{0,5103 - 0,0272}{2,3010}$$

$$= 0,2205 \frac{\text{mmol}}{\text{L}}$$
(18)

Die restlichen Berechnungsergebnisse, sowie statistische Auswertungen sind im Anhang den Protokolls in den Tabellen 4 und 5 oder im Protokolldeckblatt zu finden. Die Standardabweichungen fallen mit Einbeziehung der Querempfindlichkeiten ebenfalls gering aus, was für die Präzision der Methode spricht. Jedoch sind auch nach Korrektur durch die Querempfindlichkeiten Fehlerquoten von bis zu 10 % berechnet worden. Das lässt darauf schließen, dass zwar präzise Ergebnisse aufgenommen wurden jedoch diese nicht vollkommen richtig sind. Dieser Tatbestand könnte sich auf eine fehlerhafte Arbeitsweise zurückführen lassen, wie beispielsweise der nicht sachgerechte Umgang mit den Küvetten.

6 Diskussion

Es stellt sich heraus, dass die Einbeziehung von Querempfindlichkeiten in die Auswertung der Messungen ein sinnvoller Schritt ist. Durch Querempfindlichkeiten können, je nach Matrix der Lösung, entscheidende Fehler in der Bewertung von Messungen erzeugt werden. Für die gemessene Konzentration an Permanganat-Ionen ist dieser Einfluss etwas geringer als für die Dichromat-Ionen. In beiden Fällen sollte jedoch eine Korrektur mittels Einbeziehung der Querempfindlichkeit durchgeführt werden. Für die Permanganat-Ionen-Konzentration ergeben sich sonst Fehler bis zu 57% vom Sollwert, statt 10%. Gravierender sind diese Unterschiede in der Dichromat-Ionen-Konzentration. auch mit Korrektur empfiehlt es sich eine weitere Messung der Proben durchzuführen. Da in diesem Versuch zwei Komponenten mit gegenseitigen Querempfindlichkeiten getestet wurden, ist es nötig aufgrund der beschriebenen Abweichungen in der Fehlerrate, diese Querempfindlichkeiten mit einzuberechnen. So ergibt es sich, dass für die Methode der simultanen Mehrkomponentenphotometrie Kalibriergeraden der untereinander querempfindlichen Komponenten aufzunehmen und rechnerisch einzubeziehen.

In diesem Versuch zeigte sich die Mehrkomponentenphotometrie als eine präzise Messmethode, jedoch mit starker Anfälligkeit für eine ungenaue Arbeitsweise unter der die Richtigkeit der Messwerte leiden kann. Somit eignet sich diese Methode für multiple Bestimmung von Komponenten einer Lösung, erfordert jedoch einige Erfahrung in der Versuchsdurchführung.

Um die Betrachtung von Querempfindlichkeiten zu umgehen, wäre es möglich die bekannten Komponenten zuvor voneinander zu trennen um diese separat analysieren zu können. Dieser Schritt kann, neben dem erhöhten Arbeitsaufwand, auch ungewollte Fehlerquellen und Ungenauigkeiten zur Folge haben.

Anhang

Tab. 2: Analyt
daten bei λ_1 für Permanganat-Ionen ohne Querempfindlichkeiten

525 nm	$c_1 \left[\frac{\text{mmol}}{\mathbf{L}} \right]$	$c_2 \left[\frac{\text{mmol}}{\text{L}} \right]$	$c_3 \left[\frac{\text{mmol}}{\text{L}} \right]$	MW $\left[\frac{mmol}{L}\right]$	Wahrer W. $\left[\frac{\text{mmol}}{\text{L}}\right]$	Fehler [%]	$s \left[\frac{\text{mmol}}{\text{L}} \right]$	N	$\mathbf{conf}\left[\pm \frac{\mathrm{mmol}}{\mathrm{L}}\right]$
A1	0,2234	0,2235	0,2234	0,2234	0,2130	4,9	$9,22 \cdot 10^{-5}$	3	$2,29 \cdot 10^{-4}$
A2	0,1517	0,1517	$0,\!1517$	0,1517	0,20	-24,1	$3,80 \cdot 10^{-5}$	3	$9,44 \cdot 10^{-5}$

Tab. 3: Analyt
daten bei λ_2 für Dichromat-Ionen ohne Querempfindlichkeiten

352 nm	$c_1 \left[\frac{\mathbf{m}\mathbf{m}\mathbf{o}\mathbf{l}}{\mathbf{L}} \right]$	$c_2 \left[\frac{\text{mmol}}{\text{L}} \right]$	$c_3 \left[\frac{\text{mmol}}{\text{L}} \right]$	MW $\left[\frac{mmol}{L}\right]$	Wahrer W. $\left[\frac{\text{mmol}}{\text{L}}\right]$	Fehler [%]	$s\left[\frac{\text{mmol}}{\text{L}}\right]$	N	$\mathbf{conf}\left[\pm \frac{\mathrm{mmol}}{\mathrm{L}}\right]$
A1	0,1918	0,1919	0,1922	0,1920	0,10	92,0	$2,16 \cdot 10^{-4}$	3	$5,36 \cdot 10^{-4}$
A2	0,2358	0,2358	0,2358	0,2358	0,15	57,2	$1,90 \cdot 10^{-5}$	3	$4,72 \cdot 10^{-5}$

Tab. 4: Analyt
daten bei λ_1 für Permanganat-Ionen mit Querempfindlichkeiten

525 nm	$c_1 \left[\frac{\mathbf{m}\mathbf{m}\mathbf{o}\mathbf{l}}{\mathbf{L}} \right]$	$c_2 \left[\frac{\text{mmol}}{\text{L}} \right]$	$c_3 \left[\frac{\text{mmol}}{\text{L}} \right]$	MW $\left[\frac{mmol}{L}\right]$	Wahrer W. $\left[\frac{\text{mmol}}{\text{L}}\right]$	Fehler [%]	$s\left[\frac{\text{mmol}}{\text{L}}\right]$	N	$\mathbf{conf}\left[\pm \frac{\mathrm{mmol}}{\mathrm{L}}\right]$
A1	0,2205	0,2207	0,2205	0,2205	0,213	3,5	$9,04 \cdot 10^{-5}$	3	$2,24 \cdot 10^{-4}$
A2	0,2070	0,2070	0,2069	0,2070	0,20	3,5	$5,02 \cdot 10^{-5}$	3	$1,25 \cdot 10^{-4}$

Tab. 5: Analyt
daten bei λ_2 für Dichromat-Ionen mit Querempfindlichkeiten

$352\mathrm{nm}$	$c_1 \left[\frac{\mathbf{m}\mathbf{m}\mathbf{o}\mathbf{l}}{\mathbf{L}} \right]$	$c_2 \left[\frac{\mathbf{m}\mathbf{m}\mathbf{o}\mathbf{l}}{\mathbf{L}} \right]$	$c_3 \left[\frac{\text{mmol}}{\text{L}} \right]$	MW $\left[\frac{mmol}{L}\right]$	Wahrer W. $\left[\frac{\text{mmol}}{\text{L}}\right]$	Fehler [%]	$s \left[\frac{\text{mmol}}{\text{L}} \right]$	N	$\mathbf{conf}\left[\pm \frac{\mathrm{mmol}}{\mathrm{L}}\right]$
A1	0,1099	0,1099	0,1103	0,1100	0,10	10,0	$2,10 \cdot 10^{-4}$	3	$5,22 \cdot 10^{-4}$
A2	0,1579	0,1579	$0,\!1579$	0,1579	0,15	5,3	$5,77 \cdot 10^{-7}$	3	$1,43 \cdot 10^{-6}$

Hochschule Merseburg (FH)

Fachbereich Ingenieur- und Naturwissenschaften

Lehrgebiet Analytik

Praktikum:

O BAC/2.Sem.: "Analytik"
BCUC/4.Sem.: "Analytik"
O BCUU/4.Sem.: "Analytik"
O BWIWU/4.Sem.: "Analytik"

Datum: 29.06.2070 Gruppe: 2.4...... Namen: Loman Zand

Roman Zank Willy Konsumille

O Protokoll genehmigt
O Protokoll korrigieren

O Rücksprache erbeten
O Protokoll registriert

Protokoll

Versuch:

Molekülspektroskopie/UV-VIS-Bereich/Photometrie

3.3

Mehrkomponentenanalytik: Simultanbestimmung von Mn und Cr

1 Probenvorbereitung:

Herstellen von je (N_C=) 3 Einkomponenten-Kalibrierlösungen K für Mn und Cr (Konz. s.u.)

Herstellen von (N_V=) 3 Zweikomponenten-Validierlösungen (Konz. s.u.)

Empfangen von (N_A =) 2 Analysenlösungen (A1 und A2)

2 Auswahl der empfindlichsten Mess-Stellen (Wellenlängen):

2.1 Nehmen Sie die Absorptionsspektren des Permanganat- und des Dichromat-Anions auf. (jeweils mittlere Konzentration, Ausdrucken als Anlage 1)

Wählen Sie die jeweils beste Messwellenlänge für die Photometrie aus: Komponente 1 (Analyt Permanganat) $\lambda_{1,MAX} = 5.5$

Komponente 2 (Analyt Dichromat)

 $\lambda_{2,MAX} = nm 352$

3.3 Diskutieren Sie die Chance, die einzelnen Komponenten in *Gemischen* störungsfrei bei dem jeweiligen λ_{MAX} photometrisch bestimmen zu können.

3 Kalibrierung:

- 3.1 Ignorieren der Querempfindlichkeit (traditionelle Kalibrierung)
- 3.1.1 Vermessen Sie beide Kalibrierserien (je dreimal) bei jeweils beiden λ_{MAX} .

Mess-Ergebnisse der Kalibrierlösungen

Komponente:

Ka Permanganat

Wellenlänge : $\lambda_{1, \text{max}} = 5.25$

Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	Mittelwert
K1: 0,08 mmol l ⁻¹	0,4860	0,1853	0,1860	0,1860
K2: 0,16 mmol l ⁻¹	013686	0,3685	0,3684	0,3685
K3: 0,32 mmol l ⁻¹	0,7282	0,7279	0,7279	0,7280

Komponente:

Permanganat

Wellenlänge: $\lambda_{2, \text{max}} = 3.5.2...$

Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	Mittelwert
K1: 0,08 mmol 1 ⁻¹	0,0388	0,0997	0,0998	0,0994
K2: 0,16 mmol l ⁻¹	0,1847	0,1843	0,1841	0,1844
K3: 0,32 mmol 1 ⁻¹	0,3647	0,3651	0,3653	0,3650

Komponente:

Dichromat

Wellenlänge : $\lambda_{1, \text{max}} = 5.25...$

Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	Mittelwert
K1: 0,15 mmol l ⁻¹	0,0023	0,0023	0,0022	0,0023
K2: 0,30 mmol l ⁻¹	0,0140	0,0140	0,0140	010140
K3: 0,45 mmol l ⁻¹	6,0088	0,0088	0,0088	010088

Komponente	•		Dichromat
Wallanlänge		•	352

Wellenlänge : λ 2, max =	= 50.2	T	Absorbanz 3	Mittelwert
Kalibrierlösung	Absorbanz 1	Absorbanz 2	Absorbanz 3	0,4744
K1: 0,15 mmol l ⁻¹	0,4744	0,4744	6,4743	0, 9332
K2: 0,30 mmol 1 ⁻¹	019332	10/70/	0,9333	1.3858
K3: 0.45 mmol 1 ⁻¹	1,3858	113858	1,3859	111000

3.1.2 Stellen Sie die Kalibrierkurven für Mn (bei λ_{1,MAX} und bei λ_{2,MAX}) in einem Diagramm dar. Stellen Sie die Kalibrierkurven für Cr (bei λ_{1,MAX} und bei λ_{2,MAX}) in einem Diagramm dar. (Abgeben als Anlage 2)

Diskutieren und vergleichen Sie die Empfindlichkeit der Kalibrierungen.

- 3.1.3 Berechnen Sie für Mn (nur bei $\lambda_{1,MAX}$) und für Cr (nur bei $\lambda_{2,MAX}$) die Geradenparameter und bewerten Sie die (Einkomponenten-)Kalibriergeraden hinsichtlich
 - Leerwert an
 - Empfindlichkeit a₁
 - Bestimmtheitsmaß B = r (vermerken auf **Anlage 2**)
- 3.2 Berücksichtigen der Querempfindlichkeiten (ohne Analytwechselwirkung) (Simultane Kalibrierung, beruhend auf *Einkomponenten*-Kalibrierlösungen)
- 3.2.1 Berechnen Sie die partiellen Empfindlichkeiten. (siehe Versuchsanleitung Gl. 2; abgeben als Anlage 3)

 $a_{11} = \frac{2}{3}010$

 $a_{12} = 0.0272$

 $a_{22} = 31.11.76$

a 21 = 11785

4 Überprüfen Sie die beiden Einkomponenten-Kalibriergeraden anhand ausgewählter Zweikomponenten-Validierlösungen.

	KMnO ₄	K ₂ Cr ₂ O ₇	KMnO ₄	K ₂ Cr ₂ O ₇	Absorbanz bei	Absorbanz bei λ _{2,MAX}
	Teile	Teile	mmol/l	mmol/l	- λ1,MAX	₹2,MAX
V1	1 x K2	1 x K1	0,08	0,075	0,1810	0,3598
V2	1 x K1	2 x K3	0,026	0,3	0,0638	0,3786
V3	1 x K3	2 x K1	0,106	011	0,2345	0,4479

Ergebnisse der Validierung

Validierlösung	V1	V2	V3
Soll-Konzentration Mn =	0,08	0,026	0,106
gefunden (bei $\lambda_{I,MAX}$) =	0,077	0,0255	0,101
Differenz, absolut	0,003	0,0005	0,005
Soll-Konzentration Cr =	0,075	0,3	011
gefunden (bei $\lambda_{2,MAX}$) =	0,112	0,32	0,14
Differenz, absolut	0,037	0,02	0,04

Lance to Land to the same of t	1		TO SECURE A
Analyse	Mh (mnsll)	Cr (must/1)	Se zesen
1	6,213	011	blerrem
2	0,2	, 0,15	Zellel

Vermessen Sie die Analysenlösungen je dreimal und, berechnen Sie die Konzentrationen *ohne* und *mit* Berücksichtigung der Querempfindlichkeiten.

Wellenlänge: $\lambda_{1, \text{max}} = .525$...

Analyse

Wellchange:	Absorbanz 1	Absorbanz 2	Absorbanz 3	
Probe A1	0,5103	0,5107	0,5104	
Probe A2	6,4807	014807	0,4805	

Wellenlänge: $\lambda_{2, \text{max}} = .352$

Wellelliange .	70 Z, max	7 2, max					
	Absorbanz 1	Absorbanz 2	Absorbanz 3				
Probe A1	0,6023	0,6028	0,6036				
Probe A2	0,7362	0,7362	0,7361				

Analysen-Ergebnisse (ohne Berücksichtigung Querempfindlichkeit)

Probe	Komponente	N _A	\overline{x}_A	$\operatorname{cnf}(\overline{x}_A)$	"wahrer x _A "	Fehler (%)
Al	Mn	3	0,2234	±2,29.10-4	-0,213	4,90
	Cr	3	0,1920	±5,36.10-4	0,1	91,96
A2	Mn	3	0,1517	±9,44.10-5	0,2	24,14
	Cr	3	0,2358	±4,72.105	0,15	57,22

Analysen-Ergebnisse (mit Berücksichtigung Querempfindlichkeit, Berechnung Anlage 4)

Probe	Komponente	N _A	\overline{x}_A	$\operatorname{cnf}(\overline{x}_A)$	"wahrer x _A "	Fehler (%)
A1	Mn	3	0,2206	± 2,24·10-4	0,213	3,54
	Cr	3	1 -	±5,22.104	011	10,02
A2	Mn	3	1	±1,25.10-4	0,2	3,51
	Cr	3	0,1579	+1,43.10-6	0,15	5,25

Gegenüberstellung der Analysen-Ergebnisse (\overline{x}_{A})

für die o.a. Kalibriermodelle

Probe	Komponente	ohne	mit	"wahrer x _A "
		Querempfindlichkeit	Querempfindlichkeit	
A1	Mn	0,2234	0,2206	0,213
	Cr	0,1920	011101	0,1
A2	Mn	0,1517	0,2070	0,2
	Cr	0,2358	0,1579	0,15