

SEQUENCE LISTING

<110> Donoho, Gregory
 Turner, C. Alexander Jr.
 Wattler, Frank
 Nehls, Michael
 Friedrich, Glenn
 Zambrowicz, Brian
 Sands, Arthur T.

<120> Novel Human Protease Inhibitor-Like
 Proteins and Polynucleotides Encoding the Same

<130> LEX-0042-USA

<150> US 60/156,101
 <151> 1999-09-24

<160> 3

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 1491
 <212> DNA
 <213> homo sapiens

<400> 1		
atgagactgcg tcctgggtgg tgcatacccc ttggggctgc tgccctggc ctgcggatcc	60	
caaggctacc tcctgccaa cgtcaacttc tttagaggagc tgctcagcaa ataccagcac	120	
aacgagtctc actccgggt ccgcagagcc atccccaggg aggacaagga ggagatcctc	180	
atgctgcaca acaagctcg gggccaggtg cagcctcagg cctccaacat ggagtacatg	240	
acctggatg acgaactgga gaagtctgct gcagcgtggg ccagtcagtg catctggag	300	
cacggggcca ccagtcgtt ggtgtccatc gggcagaacc tggcgctca ctggggcagg	360	
tatcgcttc cggggttcca tgcgcgttcc tggatgacg aggtgaagga ctacacctac	420	
ccctaccgaa gcgagtgcaa cccctgggtt ccagagaggt gctcggggcc tatgtcactg	480	
cactacacac agatagttt ggccaccacc aacaagatcg gttgtctgt gaacacctgc	540	
cggaaagatga ctgtctgggg agaagtttg gagaacgcgg tctactttgt ctgcaattat	600	
tctccaaagg ggaactggat tggagaagcc ccctacaaga atggccggcc ctgctctgag	660	
tgcccaccca gctatggagg cagctgcagg aacaacttgt gttaccgaga agaaacctac	720	
actccaaaac ctgaaaacgga cgagatgaat gaggtggaaa cggctcccat tcctgaagaa	780	
aaccatgtt ggctccaacc gagggtgtat agacccacca agcccaagaa aacctctgcg	840	
gtcaactaca tgacccaagt cgtcagatgt gacaccaaga tgaaggacag gtgcaaagg	900	
tccacgtgt aacaggtacca gtgcggcagca ggctgcctga accacaaggc gaagatctt	960	
ggaagtctgt tctatgaaag ctcgtctagc atatgcgcg cggccatcca ctacggatc	1020	
ctggatgaca agggaggcct ggtggatate accaggaacg ggaaggccc cttcttcgtg	1080	
aagtctgaga gacacggcgt gcagtcctc agcaaataca aacttccag ctcattcatg	1140	
gtgtcaaaaag tgaaagtgca ggatggac tgctacacga ccgttgctca gctgtgcccg	1200	
tttggaaaagc cagcaactca ctgcccagaat atccattgtc cggcacactg caaagacgaa	1260	
ccttcctact gggtccgggt gtttggaaacc aacatctatg cagatacctc aagcatctgc	1320	
aagacagctg tgcaacgcggg agtcatcagc aacgagagtg ggggtgacgt ggacgtatg	1380	
cccgtggata aaaagaagac ctacgtgggc tcgctcaggaa atggagttca gtctgaaagc	1440	
ctggggactc ctcggatgg aaaggccttc cggatcttg ctgtcaggca g	1491	

<210> 2
 <211> 497
 <212> PRT
 <213> homo sapiens

<400> 2
 Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe Leu

1	5	10	15
Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu Leu Glu			
20	25	30	
Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser Arg Val Arg			
35	40	45	
Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu Met Leu His Asn			
50	55	60	
Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser Asn Met Glu Tyr Met			
65	70	75	80
Thr Trp Asp Asp Glu Leu Glu Lys Ser Ala Ala Ala Trp Ala Ser Gln			
85	90	95	
Cys Ile Trp Glu His Gly Pro Thr Ser Leu Leu Val Ser Ile Gly Gln			
100	105	110	
Asn Leu Gly Ala His Trp Gly Arg Tyr Arg Ser Pro Gly Phe His Val			
115	120	125	
Gln Ser Trp Tyr Asp Glu Val Lys Asp Tyr Thr Tyr Pro Tyr Pro Ser			
130	135	140	
Glu Cys Asn Pro Trp Cys Pro Glu Arg Cys Ser Gly Pro Met Cys Thr			
145	150	155	160
His Tyr Thr Gln Ile Val Trp Ala Thr Thr Asn Lys Ile Gly Cys Ala			
165	170	175	
Val Asn Thr Cys Arg Lys Met Thr Val Trp Gly Glu Val Trp Glu Asn			
180	185	190	
Ala Val Tyr Phe Val Cys Asn Tyr Ser Pro Lys Gly Asn Trp Ile Gly			
195	200	205	
Glu Ala Pro Tyr Lys Asn Gly Arg Pro Cys Ser Glu Cys Pro Pro Ser			
210	215	220	
Tyr Gly Gly Ser Cys Arg Asn Asn Leu Cys Tyr Arg Glu Glu Thr Tyr			
225	230	235	240
Thr Pro Lys Pro Glu Thr Asp Glu Met Asn Glu Val Glu Thr Ala Pro			
245	250	255	
Ile Pro Glu Glu Asn His Val Trp Leu Gln Pro Arg Val Met Arg Pro			
260	265	270	
Thr Lys Pro Lys Lys Thr Ser Ala Val Asn Tyr Met Thr Gln Val Val			
275	280	285	
Arg Cys Asp Thr Lys Met Lys Asp Arg Cys Lys Gly Ser Thr Cys Asn			
290	295	300	
Arg Tyr Gln Cys Pro Ala Gly Cys Leu Asn His Lys Ala Lys Ile Phe			
305	310	315	320
Gly Ser Leu Phe Tyr Glu Ser Ser Ser Ser Ile Cys Arg Ala Ala Ile			
325	330	335	
His Tyr Gly Ile Leu Asp Asp Lys Gly Gly Leu Val Asp Ile Thr Arg			
340	345	350	
Asn Gly Lys Val Pro Phe Phe Val Lys Ser Glu Arg His Gly Val Gln			
355	360	365	
Ser Leu Ser Lys Tyr Lys Pro Ser Ser Ser Phe Met Val Ser Lys Val			
370	375	380	
Lys Val Gln Asp Leu Asp Cys Tyr Thr Thr Val Ala Gln Leu Cys Pro			
385	390	395	400
Phe Glu Lys Pro Ala Thr His Cys Pro Arg Ile His Cys Pro Ala His			
405	410	415	
Cys Lys Asp Glu Pro Ser Tyr Trp Ala Pro Val Phe Gly Thr Asn Ile			
420	425	430	
Tyr Ala Asp Thr Ser Ser Ile Cys Lys Thr Ala Val His Ala Gly Val			
435	440	445	
Ile Ser Asn Glu Ser Gly Gly Asp Val Asp Val Met Pro Val Asp Lys			
450	455	460	
Lys Lys Thr Tyr Val Gly Ser Leu Arg Asn Gly Val Gln Ser Glu Ser			
465	470	475	480
Leu Gly Thr Pro Arg Asp Gly Lys Ala Phe Arg Ile Phe Ala Val Arg			
485	490	495	
Gln			

<210> 3
<211> 2272
<212> DNA
<213> homo sapiens

<400> 3
cccagggcgt ctccggctgc tcccattgag ctgtctgctc gctgtgcccg ctgtgcctgc
tgtcccccg cgctgcgccg tgctaccgcg tctgctggac gccccggagac ccagcgact
ggtgatttga gcctgcggg gagctcaagc gcccagctc gcccsaggag cccaggctgc
cccgtgagtc ccatagtttgc tgcaaggatg gagccatgag ctggtctcg ggtgtgtca
tccccttggg gctgctgttc ctggctcg gatccaagg ctactctcg ccaacgtca
ctctcttaga ggagctgtcc agcaaatacc agcacaacga gtctcaactcc cgggtccgca
gagccatccc cagggaggac aaggaggaga tcctcatgt gcacaacaag ctccgggccc
agggtgcagcc tcaggcctcc aacatgggt acatgacccg ggatgacgaa ctggagaagt
ctgctgcagc gtggggcaggat cagtgcatct gggagcacgg gcccaccagg ctgctgggt
ccatcgggca gaacctgggg gctcaactggg gcaggtatcg ctctccgggg ttccatgtgc
agtctcttggta tgacgagggt aaggactaca cctaccctta cccgagcgg 600
ggtgtccaga gaggtgctcg gggcttatgt gcacgcacta cacacagata gtttggcca
ccaccaacaa gatcggttgc gctgtaaaca cctgcccggaa gatgactgtc tggggagaag
tttggggagaa cgcggcttac tttgtctgca attattctcc aaaggggaaac tggattggag
aagcccccta caagaatggc cggccctgct ctgagtgccc acccagctat ggaggcagct
gcaggaacaa cttgtgttac cgagaagaaa cctacactcc aaaacctgaa acggacgaga
tgaatgaggt gaaaaacggct cccattcctg aagaaaaacca tgggtggctc 1020
tcatgagacc caccaagccc aagaaaaaccc ctgcggtcaa ctacatgacc caagtcgtca
gatgtgacac caagatgaag gacaggtgca aagggtccac gtgtAACAGG
cagcaggctg cctgaaccac aaggcgaaga tctttggaaag tctgttctat taccagtgcc
ctagcatatg cccgcggcc atccactacg ggatcctgga tgacaaggga
atatcaccag gaacgggaag gtcccccttc tctgtgaagtc tgagagacac
ccctcagcaa atacaaaccc tccagctcat tcatgtgtc aaaagtggaaa
tggactgtctt caccggccgt gtcagctgt gcccgttga aaagccagca
caagaatcca ttgtccggca cactgcaaaag tccacactcc ctactgggt
gaaccaacat ctatcgagat acctcaagca tctgcaagac agctgtgcac
tcagcaacga gagtgggggt gacgtggacg tgatgcccgt ggataaaaag
tgggtcgctt caccggatggaa gttcagttcgaa aaaggcttgg gactcctcgg
ccttccggat cttgtctgtc aggcaagtaa ttccacggac caggggagaa
caggagggtc tcgggggttt gcttttattt ttatTTTGTc attgggggt
tcaggaaaact tccttgcact gatgttcagt gtccatcaact ttgtggctcg
gacatctcat cccctcaactg aagcaacagc atcccaaggt gtcagccgg
gcctgatctt gctggggcct gggggctcc atctggacgt cctctcttct
gagctgtctt taaaaggggaa cagttgccc aatgttctc tgctatgtgt
gtggagggaaat ttgatttcaa cccccctgccc aaaagaacaa accatttggaa
gtgaagcattt caccggctcg gaagaggcct tttgagcaag cgccaatgg
gaagtagaaat gtagttattt aaaaataaaaa aacacagtcc gtccttacca
atggttttaa tgtttgcgg tcagacagac aaatgggtca gagtaagaag
gc