BANK LOAN CASE STUDY

Data Analytics Project by Soumya Singhal

PROJECT DESCRIPTION

- In this project, the goal is to analyze loan application data to identify patterns that predict the likelihood of loan default.
- The project involves Exploratory Data Analysis (EDA) to explore how different customer attributes and loan characteristics influence the probability of defaulting on a loan.
- The key business objectives are to reduce risk by identifying potentially problematic applicants and improving the loan approval process.

APPROACH

To achieve the project objectives, a systematic and structured approach was followed, leveraging Excel's advanced features and statistical techniques to derive meaningful insights.

I.Data Preparation:

- Analyzed missing data using functions like COUNTBLANK and IF.
- •Filled missing values with median or mode where applicable, and removed columns with over 40% missing data.

2. Outlier Detection:

- •Used statistical measures like IQR to identify and visualize outliers.
- •Created box plots to display the data distribution and pinpoint anomalies.

3. Data Imbalance Analysis:

- •Evaluated the distribution of the target variable using COUNTIF.
- •Visualized the class imbalance through pie charts and bar charts to highlight potential issues.

4. Exploratory Data Analysis:

- •Performed **Univariate Analysis** to examine individual variable distributions using histograms and bar charts.
- •Conducted **Segmented Univariate Analysis** by comparing variable distributions for defaulters and non-defaulters.
- •Executed **Bivariate Analysis** to study relationships between variables, employing scatter plots and heatmaps for insights.

5.Correlation Analysis:

- •Generated correlation matrices for the overall dataset, defaulters, and non-defaulters separately.
- •Highlighted strong correlations (>0.5) using color coding for easy interpretation.
- •Identified key correlated variables and summarized them in a table for further analysis.

This comprehensive approach ensured a deep understanding of the dataset and provided actionable insights into loan default patterns.

TECH-STACK USED

- MS Excel
- MS PowerPoint

TASK A: IDENTIFY AND HANDLE MISSING DATA

- Counted the number of blank rows in each column using the COUNTBLANK function and calculated the percentage of missing values.
- Created a bar chart and column chart to visualise the proportion of missing values for each variable.
- Removed columns(49) that contained more than 40% blank cells.
- Filled missing values in the `NAME_TYPE_SUITE` column using the mode i.e. Unaccompanied.
- Filled missing values in other columns, where less than 40% of the data was missing, using the median or mode.

TASK B: IDENTIFY OUTLIERS

- Detect outliers using statistical methods such as QUARTILE.EXC and IQR in Excel.
- Visualize outliers using box plots or scatter plots.

TASK C: ANALYZE DATA IMBALANCE

- Determine if data imbalance exists using COUNTIF and SUM functions in Excel.
- Visualize the distribution of the target variable with pie charts or bar charts.
- The data is significantly imbalanced for nondefaulters(Target = 0).
- I have created a bar chart to clearly illustrate this imbalance.

TARGET	COUNT_TARGET	PERCENT_TARGET
0	45973	91.94783896
I	4026	8.052161043

TASK D: UNIVARIATE AND BIVARIATE ANALYSIS

- Perform univariate analysis to understand individual variable distributions.
- Conduct bivariate analysis to explore relationships between variables and the target variable.
- Visualize the relationships using histograms, bar charts, scatter plots, and heatmaps.

Coloumns	AVERAGE	MEDIAN	STD DV	MINIMUM	MAXIMUM
CNT_CHILDREN	0.419848397	0	0.724031307	0	11
AMT_INCOME_TOTAL	170767.5905	145800	531813.7768	25650	117000000
AMT_CREDIT	599700.5815	514777.5	402411.4096	45000	4050000
AMT_ANNUITY	27107.33399	24939	14562.6564	2052	258025.5
AMT_GOODS_PRICE	538992.3491	450000	369717.1252	45000	4050000
REGION_RATING_CLIE NT	2.051661033	2	0.507972786	I	3
YEAR_BIRTH	43.8960057	43.09863014	11.94892234	21.04109589	68.99726027

Most people who take out loans have either no children or just one child.

Most people require loans ranging from 250,000 to 300,000 rupees.

Individuals with incomes between 70k and 2.5 lakh tend to take out more loans, whereas those with higher incomes may require fewer loans.

People aged 31 to 41, along with those in middle age, are more likely to take out loans.

TASK E: IDENTIFY TOP CORRELATIONS

- Created correlation matrices for the entire dataset, as well as for defaulters and non-defaulters.
- Organized the data into tables for improved clarity.
- Used deep red to highlight correlations greater than 0.5 and light red for correlations between 0 and 0.5.
- Summarized the highest correlations in a table of key insights.
- Separated the analysis for defaulters and non-defaulters to identify specific patterns within each group.

COMBINED CORRELATION

Variable I	Variable 2	CORRELATION	
OBS_60_CNT_SOCIAL_CIRCLE	OBS_30_CNT_SOCIAL_CIRCLE	0.998332863	
AMT_GOODS_PRICE	AMT_CREDIT	0.986704386	
REGION_RATING_CLIENT_W_CITY	REGION_RATING_CLIENT	0.950710179	
CNT_FAM_MEMBERS	CNT_CHILDREN	0.880453292	
REG_REGION_NOT_WORK_REGION	LIVE_REGION_NOT_WORK_REGION	0.857141677	
DEF_30_CNT_SOCIAL_CIRCLE	DEF_60_CNT_SOCIAL_CIRCLE	0.856262392	
LIVE_CITY_NOT_WORK_CITY	REG_CITY_NOT_WORK_CITY	0.821583789	
AMT_GOODS_PRICE	AMT_ANNUITY	0.774134041	
FLAG_EMP_PHONE	DAYS_BIRTH	0.617702887	
DAYS_EMPLOYED	FLAG_DOCUMENT_6	0.591672763	

INSIGHTS AND RESULTS

- The dataset needed to be cleaned for empty cells, but it was free of duplicate rows.
- Many important columns contained outliers, which significantly affected the average.
- The data was highly imbalanced with respect to non-defaulters.
- During the univariate and bivariate analysis, we created numerous graphs that provided valuable insights into how individuals' loan-seeking behavior depended on age, gender, occupation, income, and education.
- We also discovered the correlation between many variables.

LINKS

- Excel
- Video Presentaion