Лабораторная работа №3. (часть 1) Решение интегралов. Адаптивный метод трапеций

Задача. Реализовать метод трапеций и его модификацию. Проверить его работу на функциях с разными свойствами. Построить графики. Выполнить отчет

Варианты								
вариант	для каждого ва отрезок	Іля каждого варианта даны отрез отрезок вариант о		ия (одна на два варианта) функция				
1.	[-2.0,-0.3]	17.	[-0.5, 2.1]	$f(x) = x^5 - 2.2x^3 + 0.5x^2 - 7x - 3.4$				
2.	[-2.3,-0.5]	18.	[-0.7, 2.2]	$f(x) = x^5 - 3.2x^3 + 1.5x^2 - 7x - 5.4$				
3.	[-2.7,-0.2]	19.	[-0.4, 2.4]	$f(x) = x^5 - 5.2x^3 + 2.5x^2 - 7x - 2.4$				
4.	[-2.6,-0.6]	20.	[-0.8, 2.2]	$f(x) = x^5 - 4.2x^3 + 3.5x^2 - 7x - 7.4$				
5.	[-2.6,-0.3]	21.	[-0.5, 1.5]	$f(x) = x^5 - 2.2x^3 + 7.5x^2 - 7x - 3.9$				
6.	[-2.6,-0.4]	22.	[-0.6, 1.8]	$f(x) = x^5 - 2.9x^3 + 6.5x^2 - 7x - 5.4$				
7.	[-2.8,-0.5]	23.	[-0.7, 1.6]	$f(x) = x^5 - 3.2x^3 + 9.5x^2 - 7x - 7.5$				
8.	[-2.4,-0.5]	24.	[-0.7, 2.2]	$f(x) = x^5 - 3.5x^3 + 2.5x^2 - 7x - 6.4$				
9.	[-3.5, 0.3]	25.	[0.1, 2.9]	$f(x) = x^5 - 9.2x^3 + 2.5x^2 - 7x + 1.4$				
10.	[-3.3, 0.9]	26.	[0.7, 2.8]	$f(x) = x^5 - 8.2x^3 + 4.5x^2 - 7x + 6.5$				
11.	[-2.5, 0.3]	27.	[0.1, 2.0]	$f(x) = x^5 - 3.2x^3 + 2.5x^2 - 7x + 1.5$				
12.	[-3.4, 0.8]	28.	[0.6, 2.1]	$f(x) = x^5 - 7.2x^3 + 9.5x^2 - 7x + 2.5$				
13.	[-3.0, 0.7]	29.	[0.5, 2.0]	$f(x) = x^5 - 5.2x^3 + 5.5x^2 - 7x - 3.5$				
14.	[-3.4, 1.1]	30.	[0.9, 2.1]	$f(x) = x^5 - 7.2x^3 + 8.5x^2 - 7x - 4.5$				
15.	[-2.5, 1.3]	31.	[1.1, 1.8]	$f(x) = x^5 - 3.2x^3 + 1.5x^2 - 7x - 9.5$				
16.	[-2.9, 0.4]	32.	[0.2, 2.5]	$f(x) = x^5 - 6.2x^3 + 3.5x^2 - 7x - 2.1$				

БАЗА (0) С заданным числом разбиений

- Запрограммировать вычисление интеграла по составной формуле трапеций с заданным числом разбиений
- Построить график (№1) зависимости фактической ошибки (далее ошибки) от количества итераций

МИНИМУМ (+1) С заданной точностью

- Применив правило Рунге для окончания итерационного процесса вычислить интеграл с заданной точностью
- Построить графики и зависимости ошибки (№2) числа итераций (№3) от заданной точности. На график №1 дорисовать зависимость ошибки от числа итераций

ДОСТАТОЧНО (+1) Адаптивный метод с заданной точностью

- Модифицировать метод, разбивая только те отрезки, точность вычисления интеграла на которых меньше ϵh_i
- Дополнить все графики (№1-№3) новыми зависимостями

МАКСИМУМ (+1) Проверка работы метода на быстро осциллирующей функции

- Применить два последних метода для функции $g(x) = f(x)*sin((x-a)^4)$, где a - левая граница интервала. Результаты отобразить графически