LIMITES ET FONCTIONS CONTINUES

LIMITES

1 Limite finie en un point

On considère une fonction $f:I\to\mathbb{R}\ (I\subseteq\mathbb{R})$, et soit a un élément de I ou une extrémité de I.

Définition 1 Soit $\ell \in \mathbb{R}$. La fonction f a pour limite ℓ en a si et seulement si

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, (|x - a| < \eta \Rightarrow |f(x) - \ell| < \varepsilon).$$

On note alors

$$\lim_{x\to a} f(x) = \ell \ ou \ \lim_a f = \ell \ ou \ f(x) {\rightarrow}_{x\to a} \ell.$$

2 Limite finie en $\pm \infty$

On considère une fonction $f:I\to\mathbb{R}\ (I\subseteq\mathbb{R})$.

Définition 2 Soit $\ell \in \mathbb{R}$.

1. La fonction f a pour limite ℓ en $+\infty$ si et seulement si

$$\forall \varepsilon > 0, \ \exists A \in \mathbb{R} : \ \forall x \in I, \ (x > A \Rightarrow |f(x) - \ell| < \varepsilon).$$

On note alors

$$\lim_{x \to +\infty} f(x) = \ell \text{ ou } \lim_{t \to \infty} f = \ell \text{ ou } f(x) \to_{x \to +\infty} \ell.$$

2. La fonction f a pour limite ℓ en $-\infty$ si et seulement

$$\forall \varepsilon > 0, \ \exists A \in \mathbb{R} : \ \forall x \in I, \ (x < A \Rightarrow |f(x) - \ell| < \varepsilon).$$

On note alors

$$\lim_{x \to -\infty} f(x) = \ell \text{ ou } \lim_{-\infty} f = \ell \text{ ou } f(x) \to_{x \to -\infty} \ell.$$

3 Limite infinie en un point

On considère une fonction $f:I\to\mathbb{R}$ une fonction $(I\subseteq\mathbb{R})$, et soit a un élément de I ou une extrémité de I.

Définition 3 1. La fonction f a pour limite $+\infty$ en a ssi

$$\forall A \in \mathbb{R}, \ \exists \eta > 0 \ : \ \forall x \in I, \ (|x - a| < \eta \Rightarrow f(x) > A) \,.$$

On note alors

$$\lim_{x\to a} f(x) = +\infty \ ou \ \lim_a f = +\infty \ ou \ f(x) \to_{x\to a} +\infty.$$

LIMITES ET FONCTIONS CONTINUES

LIMITES

2. La fonction f a pour limite $-\infty$ en a ssi

$$\forall A \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ (|x - a| < \eta \Rightarrow f(x) < A).$$

On note alors

$$\lim_{x \to a} f(x) = -\infty \ ou \ \lim_{x \to a} f(x) = -\infty \ ou \ f(x) \to_{x \to a} -\infty.$$

4 Limite infinie en $\pm \infty$

On considère une fonction $f: I \to \mathbb{R}$ $(I \subseteq \mathbb{R})$.

Définition 4 Soit $\ell \in \mathbb{R}$.

1. La fonction f a pour limite $+\infty$ en $+\infty$ ssi

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} : \ \forall x \in I, \ (x > B \Rightarrow f(x) > A).$$

On note alors

$$\lim_{x\to +\infty} f(x) = +\infty \ ou \ \lim_{+\infty} f = +\infty \ ou \ f(x) \to_{x\to +\infty} +\infty.$$

2. La fonction f a pour limite $-\infty$ en $+\infty$ ssi

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} : \ \forall x \in I, \ (x > B \Rightarrow f(x) < A).$$

On note alors

$$\lim_{x \to +\infty} f(x) = -\infty \ ou \ \lim_{+\infty} f = -\infty \ ou \ f(x) \to_{x \to +\infty} -\infty.$$

3. La fonction f a pour limite $+\infty$ en $-\infty$ ssi

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R} : \forall x \in I, (x < B \Rightarrow f(x) > A).$$

On note alors

$$\lim_{x\to -\infty} f(x) = +\infty \ ou \ \lim_{-\infty} f = +\infty \ ou \ f(x) \to_{x\to -\infty} +\infty.$$

4. La fonction f a pour limite $-\infty$ en $-\infty$ ssi

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} : \ \forall x \in I, \ (x < B \Rightarrow f(x) < A).$$

On note alors

$$\lim_{x \to -\infty} f(x) = -\infty \ ou \ \lim_{-\infty} f = -\infty \ ou \ f(x) \to_{x \to -\infty} -\infty.$$

LIMITES ET FONCTIONS CONTINUES

LIMITES

5 Limites à gauche et à droite

On considère une fonction $f:I\to\mathbb{R}$ (I est supposé de la forme $I=]\alpha,a[\cup]a,\beta[$).

Définition 5 Soit $\ell \in \mathbb{R}$.

1. On dit que la fonction f a pour **limite à gauche** ℓ en a si

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, (a - \eta < x < a \Rightarrow |f(x) - \ell| < \varepsilon).$$

On note alors

$$\lim_{x \to a^{-}} f(x) = \ell \text{ ou } \lim_{a^{-}} f = \ell \text{ ou } f(x) \to_{x \to a^{-}} \ell \text{ ou } \lim_{x \to a, \ x < a} f = \ell.$$

2. On dit que la fonction f a pour **limite à droite** ℓ en a si

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, (a < x < a + \eta \Rightarrow |f(x) - \ell| < \varepsilon).$$

On note alors

$$\lim_{x\to a^+} f(x) = \ell \ ou \ \lim_{a^+} f = \ell \ ou \ f(x) \to_{x\to a^+} \ell \ ou \ \lim_{x\to a, \ x>a} f = \ell.$$

Proposition 1
$$\lim_{x \to a} f(x) = \ell \Leftrightarrow \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \ell$$
.

6 Propriétés des limites

Proposition 2 (unicité de la limite) Si une fonction f admet limite, alors cette limite est unique.

Proposition 3 (opérations sur les limites) Soient $a \in \overline{\mathbb{R}}$, f et g deux fonctions définies au voisinage de a. On suppose que $\ell = \lim_{x \to a} f(x)$ et $\ell' = \lim_{x \to a} g(x)$, alors

- 1. $\ell + \ell' = \lim_{x \to a} (f(x) + g(x)).$
- 2. $\lambda \ell = \lim_{x \to a} \lambda f(x)$, où $\lambda \in \mathbb{R}$.
- 3. $\ell\ell' = \lim_{x \to a} (f(x)g(x)).$

4. Si
$$\ell \neq 0$$
 $\frac{1}{\ell} = \lim_{x \to a} \frac{1}{f(x)}$ (si $\lim_{x \to a} f(x) = \pm \infty$, alors $\lim_{x \to a} \frac{1}{f(x)} = 0$).

Proposition 5 1. Si $f(x) \leq g(x)$ et si $\lim_{x \to a} f(x) = \ell \in \mathbb{R}$ et $\lim_{x \to a} g(x) = \ell' \in \mathbb{R}$, alors

$$\ell < \ell'$$

2. Si
$$f(x) \leq g(x)$$
 et si $\lim_{x \to a} f(x) = +\infty$, alors $\lim_{x \to a} g(x) = +\infty \in \mathbb{R}$.

Théorème 1 (théorème des gendarmes) Soient f, g et h des fonctions définies de $I \subseteq \mathbb{R}$ dans \mathbb{R} , et soit a un élement de I ou une extrémité de I. On suppose que

- 1. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \ell \in \mathbb{R}$.
- 2. Au voisinage de a, $f(x) \le h(x) \le g(x)$.

Alors
$$\lim_{x \to a} h(x) = \ell$$