Learning a Probabilistic Latent Space via 3D Generative-Adversarial Modeling

Jiajun Wu Chenkai Zhang
Tianfan Xue William t. Freeman Joshua B. Tenenbaum
MIT CSAIL

Presented by Brady Zhou

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

Task

- 3D Object Representation
 - o Input: 3D object
 - Mesh
 - Point cloud
 - Multiple views
 - Implicit surface
 - Output: Feature vector
- Applications
 - Classification
 - Generation
 - Retrieval

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

3D ShapeNets

- Zhirong Wu, Shuran Song from Princeton
- Deep belief network
- Voxel representation (30x30x30)
- ModelNet10/ModelNet40
- 80.35%/77% classification

Figure 5: **ModelNet Dataset.** Left: word cloud visualization of the ModelNet dataset based on the number of 3D models in each category. Larger font size indicates more instances in the category. Right: Examples of 3D chair models.

(a) Architecture of our 3D ShapeNets model. For illustration purpose, we only draw one filter for each convolutional layer.

[Z. Wu, S. Song]

- MVCNN for 3D Shape Recognition
 - Hang Su, Subhransu Maji from UMass
 - 80 viewpoints
 - 2D representation
 - 90.1% classification on ModelNet40 (ImageNet pretrained)

- Generative and Discriminative Voxel Modeling with CNNs
 - Andrew Brock, Theodore Lim from Heriot-Watt University
 - Variational Autoencoder (VAE) Network
 - Voxel Representation (32x32x32)
 - State of the art
 - 97.14% on ModelNet10 classification
 - 95.54% on ModelNet40 classification

Figure 3: Voxception and Voxception-Resnet Blocks.

[A. Brock, T. Lim]

- Generative Adversarial Networks
 - Ian Goodfellow, '14 NIPS
 - Generator/Discriminator
- Example:
 - Black underlying data distribution
 - Green generated data distribution
 - Blue discriminator (separates true/generated)

Training Data

Samples

[I. Goodfellow]

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

- 3D Convolution
 - Input: feature map (I x w x h x c), d filters of size (P x Q x R x c)
 - Output: feature map (I x w x h x d)
 - For the ith layer, the feature map position (x, y, z) from the jth filter

[S. Ji, W. Xu 3D CNN for Human Action Recognition]

• 3D Convolution

[S. Ji, W. Xu 3D CNN for Human Action Recognition]

- Generative Adversarial Network
 - Generator:
 - Input: latent variable (noise)
 - Output: reconstructed object
 - Discriminator:
 - Input: real or fake image
 - Output: probability of real

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}(oldsymbol{x})} [\log D(oldsymbol{x})] + \mathbb{E}_{oldsymbol{z} \sim p_{oldsymbol{z}}(oldsymbol{z})} [\log (1 - D(G(oldsymbol{z})))].$$

[Goodfellow '16 NIPS]

- Autoencoder
 - Input: real image
 - Output: generated image
 - Loss: I2 difference
- Variational Autoencoder
 - Input: real image
 - Output: generated image
 - Loss: I2 difference + latent loss

latent vector / variables

[http://kvfrans.com/variational-autoencoders-explained/]

- KL Divergence
 - Difference between probability distributions
 - Used as a latent loss

The KL divergence $D_{KL}(P_{fair} || P_{loaded})$ is just the difference between the cross-entropy $H(P_{fair}, P_{loaded})$ and the entropy of P_{fair} :

$$D_{KL}(P_{fair} || P_{loaded}) = H(P_{fair}, P_{loaded}) - H(P_{fair}) \approx 2.15.$$
 (6)

In other words, the KL divergence $D_{KL}(P_{fair} || P_{loaded})$ measures "how much more surprised I expect you to be if I roll the fair dice but you mistakenly believe I'm rolling the loaded dice than if I roll the fair dice and you correctly believe I'm doing so."

[https://www.quora.com/What-is-a-good-laymans-explanation-for-the-Kullback-Leibler-Divergence]

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

• 3D-GAN

3D-VAE-GAN

Datasets

- ModelNet10, ModelNet40
 - 3D model, class label pairs
 - 4941 3D models in ModelNet10
- IKEA (J. Lim '13 ICCV)
 - Image, 3D model pairs
 - 759 images, 219 3D models
 - Real photos
 - Occlusion

[Z. Wu, J. Lim]

- 3D-GAN
 - Generator
 - Input: 200-d vector
 - Output: 64x64x64 grid
 - Kernel size {4, 4, 4, 4, 4}
 - Kernel stride {2, 2, 2, 2, 2}
 - Kernel # {512, 256, 128, 64, 1}
 - Relu, sigmoid at end
 - Batch normalization
 - Discriminator
 - Input: 64x64x64 grid
 - Output: probability of "real"
 - Mirrors discriminator
 - Leaky relu instead of relu

$$L_{\text{3D-GAN}} = \log D(x) + \log(1 - D(G(z))),$$

- 3D-GAN-VAE
 - Encoder
 - Input: image
 - Output: 200-d latent vector
 - Kernel size {11, 5, 5, 8}
 - Kernel stride {4, 2, 2, 1}
 - Notation
 - Image y
 - Latent vector z
 - "Real" 3D shape x
 - Losses
 - \blacksquare 3D-GAN (x or z)
 - KL (y, compared to z)
 - Recon (x, y) pairs

$$L = L_{ ext{3D-GAN}} + lpha_1 L_{ ext{KL}} + lpha_2 L_{ ext{recon}},$$
 $L_{ ext{3D-GAN}} = \log D(x) + \log(1 - D(G(z))),$ $L_{ ext{KL}} = D_{ ext{KL}}(q(z|y) \mid\mid p(z)),$ $L_{ ext{recon}} = ||G(E(y)) - x||_2,$

3D-GAN-VAE

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3D\text{-}GAN} + \alpha_1 L_{KL} + \alpha_2 L_{recon},$$

$$egin{aligned} L_{ ext{3D-GAN}} &= \log D(x) + \log (1 - D(G(z))), \ L_{ ext{KL}} &= D_{ ext{KL}}(q(z|y) \mid\mid p(z)), \ L_{ ext{recon}} &= ||G(E(y)) - x||_2, \end{aligned}$$

3D-GAN-VAE

Notation

- Image y
- Latent vector z (Gaussian)
- "Real" 3D shape x

$$L = L_{ ext{3D-GAN}} + lpha_1 L_{ ext{KL}} + lpha_2 L_{ ext{recon}},$$
 $L_{ ext{3D-GAN}} = \log D(x) + \log(1 - D(G(z))),$
 $L_{ ext{KL}} = D_{ ext{KL}}(q(z|y) \mid\mid p(z)),$
 $L_{ ext{recon}} = ||G(E(y)) - x||_2,$

3D-GAN-VAE

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3D\text{-GAN}} + \alpha_1 L_{KL} + \alpha_2 L_{recon},$$

$$egin{aligned} L_{ ext{3D-GAN}} = & \log D(x) + \log (1 - D(G(z))), \ L_{ ext{KL}} = & D_{ ext{KL}}(q(z|y) \mid\mid p(z)), \ L_{ ext{recon}} = & ||G(E(y)) - x||_2, \end{aligned}$$

Training D with real samples

$$\circ$$
 D(x) = 0.9, log(0.9) = -0.045

$$\circ$$
 D(x) = 0.1, log(0.1) = -0.1

Maximize loss

$$W \leftarrow W + h * dLoss$$

3D-GAN-VAE

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3 ext{D-GAN}} + lpha_1 L_{ ext{KL}} + lpha_2 L_{ ext{recon}},$$
 $L_{3 ext{D-GAN}} = \log D(x) + \log(1 - D(G(z))),$
 $L_{ ext{KL}} = D_{ ext{KL}}(q(z|y) \mid\mid p(z)),$
 $L_{ ext{recon}} = ||G(E(y)) - x||_2,$

3D-GAN-VAE

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3D\text{-GAN}} + \alpha_1 L_{KL} + \alpha_2 L_{recon},$$

$$egin{aligned} L_{ ext{3D-GAN}} &= \log D(x) + \log (1 - D(G(z))), \ L_{ ext{KL}} &= D_{ ext{KL}}(q(z|y) \mid\mid p(z)), \ L_{ ext{recon}} &= ||G(E(y)) - x||_2, \end{aligned}$$

Training D with G samples

$$\circ$$
 D(G(z)) = 0.9, log(1-0.9) = -1

$$\circ$$
 D(G(z)) = 0.1, log(1-0.1) = -0.045

Maximize loss

W <- W + h * dLoss

3D-GAN-VAE

 $W \leftarrow W + -h * dLoss$

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3D\text{-GAN}} + \alpha_1 L_{KL} + \alpha_2 L_{recon},$$

$$egin{aligned} L_{ ext{3D-GAN}} &= \log D(x) + \log (1 - D(G(z))), \ L_{ ext{KL}} &= D_{ ext{KL}}(q(z|y) \mid\mid p(z)), \ L_{ ext{recon}} &= ||G(E(y)) - x||_2, \end{aligned}$$

Training G

$$\circ$$
 D(G(z)) = 0.9, log(1-0.9) = -1

$$\circ$$
 D(G(z)) = 0.1, log(1-0.1) = -0.045

Minimize loss

3D-GAN-VAE

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3D\text{-GAN}} + \alpha_1 L_{KL} + \alpha_2 L_{recon},$$

$$L_{ ext{3D-GAN}} = \log D(x) + \log(1 - D(G(z))),$$
 $L_{ ext{KL}} = D_{ ext{KL}}(q(z|y) \mid\mid p(z)),$
 $L_{ ext{recon}} = ||G(E(y)) - x||_2,$

- Training E
 - VAE outputs mean, std vectors
 - Compare to Gaussian

 $W \leftarrow W + -h * dLoss$

3D-GAN-VAE

- Notation
 - Image y
 - Latent vector z (Gaussian)
 - "Real" 3D shape x

$$L = L_{3D\text{-GAN}} + \alpha_1 L_{KL} + \alpha_2 L_{recon},$$

$$egin{aligned} L_{ ext{3D-GAN}} &= \log D(x) + \log (1 - D(G(z))), \ L_{ ext{KL}} &= D_{ ext{KL}}(q(z|y) \mid\mid p(z)), \ L_{ ext{recon}} &= ||G(E(y)) - x||_2, \end{aligned}$$

- Training E
 - VAE outputs reconstructed
 - Compare to actual

 $W \leftarrow W + -h * dLoss$

- 3D-GAN Training
 - Update discriminator if last batch accuracy < 80%
 - Generator learning rate 0.0025
 - Discriminator learning rate 1e-5
 - Batch size 100
 - ADAM with beta 0.5

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

Classification

- Concatenate conv layers 2, 3, 4
- Max pool with stride 8, 4, 2
- Linear SVM

Figure 4: ModelNet40 classification with limited training data

Supervision	Pretraining	Method	Classification (Accuracy)		
Super vision			ModelNet40	ModelNet10	
Category labels	ImageNet	MVCNN [Su et al., 2015a] MVCNN-MultiRes [Qi et al., 2016]	90.1% 91.4 %	-	
	None	3D ShapeNets [Wu et al., 2015] DeepPano [Shi et al., 2015] VoxNet [Maturana and Scherer, 2015] ORION [Sedaghat et al., 2016]	77.3% 77.6% 83.0%	83.5% 85.5% 92.0% 93.8 %	
Unsupervised	-	SPH [Kazhdan et al., 2003] LFD [Chen et al., 2003] T-L Network [Girdhar et al., 2016] VConv-DAE [Sharma et al., 2016] 3D-GAN (ours)	68.2% 75.5% 74.4% 75.5% 83.3 %	79.8% 79.9% - 80.5% 91.0 %	

Table 1: Classification results on the ModelNet dataset. Our 3D-GAN outperforms other unsupervised learning methods by a large margin, and is comparable to some recent supervised learning frameworks.

- Generation
 - G(z), randomly sampled 200-d z
 - Render largest connect component
 - Retrieve nearest neighbors
 - Use last conv layer

Single Image 3D Reconstruction

Input: image

Output: 3D model

Method	Bed	Bookcase	Chair	Desk	Sofa	Table	Mean
AlexNet-fc8 [Girdhar et al., 2016]	29.5	17.3	20.4	19.7	38.8	16.0	23.6
AlexNet-conv4 [Girdhar et al., 2016]	38.2	26.6	31.4	26.6	69.3	19.1	35.2
T-L Network [Girdhar et al., 2016]	56.3	30.2	32.9	25.8	71.7	23.3	40.0
3D-VAE-GAN (jointly trained)	49.1	31.9	42.6	34.8	79.8 78.8	33.1	45.2
3D-VAE-GAN (separately trained)	63.2	46.3	47.2	40.7		42.3	53.1

Table 2: Average precision for voxel prediction on the IKEA dataset.[†]

Figure 7: Qualitative results of single image 3D reconstruction on the IKEA dataset

- Latent Space Interpolation
 - o Input:
 - "Start" latent vector, u
 - "End" latent vector, v
 - z = (1 h) v + h v

Interpolation in Latent Space

Interpolation in Latent Space

- Latent Space Arithmetic
 - Word2Vec
 - King man + woman = queen

Outline

- Task
- Related Work
- Background
- Technical Details
- Experiments
- Discussion

Discussion

- The Good
 - Simple pipeline
 - Unsupervised
- The Bad
 - Upper bound due to voxel representation

Thanks!

Questions?