Lec 10/19

Wednesday, October 19, 2016 9:06 AM

2nd Derivative test

Suppose f'(c) = 0 and f'(c) is defined.

$$f(x) = x^{3} \quad f'(0) = f''(0) = 0 \qquad \text{Neither local min or must}$$

$$f(x) = x^{4} \quad f'(0) = f''(0) = 0 \qquad \text{local min}$$

$$f(x) = -x^{4} \quad f'(0) = f''(0) = 0 \qquad \text{local min}$$

Lemma (f g'(c) > 0, then there is an interval (a,b) containing a so that q(x) < q(c) < g(y) \ x < c < y \ (a, b).

Note: q not necessarily increasing on (a,b)

Proof of 2D test:

Suppose f''(c) > 0, Take q = f' in lemma. For some open interval (a,b) containing c, we have

(a)
$$f'(x) < f'(c) = 0$$
 for $x \in (a, c)$
(b) $f'(x) > f'(c) = 0$ for $x \in (c, b)$

$$\Rightarrow$$
 $f(x) > f(c) \forall x \in (a,c)$

$$\Rightarrow$$
 $f(x) > f(c)$ $\forall x \in (c,b)$

Page 1

Phrefore, f has a local win.

Case 2: by case 1, -f has local mil => f has local max.

(sollary (1) Suppose f''(c) > 0. Then for some open interval (a,b) > c, the graph of f lies above the tangent line at c except a+ c. f(x) > f'(c)(x-c) + f(c) $\forall x \in (a,b) \setminus \{c\}$.

(2) Similar but f"(c) < 0, fabore tangent line.

Proof: (et g(x) = f(x) - f'(c)(x-c) - f(c). Then g'(x) = f'(x) - f'(c)g''(c) = f''(c)

> (1) g'(c) = 0, $g''(c) > 0 \Rightarrow g \text{ has a local min a } + C$. $\Rightarrow g(x) > g(c) = 0 \text{ for } x \in (a,c) \cup (c,b) \quad \mathbb{D}^{?}$

Definition we say that f has an inflection point at c if

f has a tangent like at c which cuts through

the graph at c. More precisely, for some open interval

(a,b) > c, we have either

(1) f(x) > f'(c)(x-c) + f(c) $\forall x \in (c,c)$

(2) f(x) < f'(c)(x-c) + f(c) $\forall x \in (a,c)$

Corollary? I'f f has an inflection point at c + f''(c) is defined, then f''(c) = 0.

Remark: f''(c) = 0 does not imply that f has an inflection point at c. Consider $f(x) = x^4$. f''(0) = 0 but min at 0, not inf. pt.

Theorem if f'' is defined on an open interval $(a,b) \ni C$, and f''(C) = 0, and f''(CX) has opposite signs on (a,c) and (c,b), Then f has an inflection point at c.

Proof: Suppose f''(x) > 0 on (a,c) and f''(x) < 0 on (c,b). Let g(x) = f(x) - f'(c)(x - c) - f(c). Then g'(x) = f'(x) - f'(c) g''(x) = f''(x)

> g''(x) = f''(x) > 0 on $(a,c) \Rightarrow g'$ increasing on (a,c) $\Rightarrow g'(x) < g'(c) = 0 \ \forall \ \pi \in (a,c)$ $\Rightarrow g(x) \neq g(c) = 0 \ \forall x \in (a,c)$

> $f''(x) = f''(x) < 0 \quad \text{on } (c_1b) \implies g' \text{ Lecreasity on } (c_1b)$ $\implies g'(x) > g'(c) = 0 \quad \forall x \in (c_1b)$ $\implies g \text{ decreasity on } (c_1b)$ $\implies g(x) < g(c) = 0 \quad \forall x \in (c_1b)$

So tangent me passes tragh graph at c.

inverse functions

inverse functions

Definition We say that f'' is the inverse function of fif f'' = g(x,y): $(y,x) \in fg$ is a function.

- This is equivalent to saying that for any $x \in Jon(f^{-1})$ there is a unique y = s.t. f(y) = x.
- This is equivalent to saying $y_1 \neq y_2 \in Jom(f) \Rightarrow f(y_1) \neq f(y_2)$ $\iff y_1 < y_2 \in Jom(f) \Rightarrow f(y_1) \neq f(y_2)$

Definition f is 1-1 or injective is the above condition holds.

Decrem f is I-1, dom(f) is an interval I, f continuous on I

fis increasing on I or fis decreasing on I.

Part: it is obvious.