

PREDICTION OF DAILY MAXIMUM OZONE THRESHOLD EXCEEDANCES BY ARTIFICIAL INTELLIGENCE TECHNIQUES IN GERMANY

April 8, 2019 | Bing Gong, Felix Kleinert, Martin Schultz | Jülich Supercomputing Center

Overview

1. Background

- 1.1 Motivation
- 1.2 Research Questions and Objectives
- 1.3 Ground-level ozone

2. Methodology

- 2.1 Data selection and preparation
- 2.2 Machine learning mechanism
- 2.3 Imbalanced data solution
- 2.4 Evaluation metrics

3. Results

- 3.1 Orig VS. SMOTE
- 3.2 ML VS. CNN
- 3.3 Prediction accuracy on 4 leading days
- 3.4 Deep learning improvement

4. Conclusions and Future studies

4.1 Conclusions and Future studies

Motivation

- Social Impact

Introduction2.pdf

Motivation

- Regulation and Standard

Normativity of O₃ in United State, European Union, Mainland China, and Hong Kong

Research Questions and Objectives

- Predict the exceedances of the maximum 8h ozone concentrations in Germany

Research Questions:

- Can machine learning enhance the prediction accuracy for the air quality warning system?
- How do different machine learning methods perform in the classification task of predicting threshold exceedances?
- How far in the future can make ozone prediction by machine learning/deep learning?

BW_locations.jpg

Map of the study region Baden-Württemberg in Germany (Source:onTheWorldMap.com)

Ground-level ozone

- Factors controlling ozone level

OzoneFormation4.pdf

JÜLICH Forschungszentrum

Ground-level ozone

- Key variables

Table: Pollution variables as inputs for modelling

Variable	Description	Unit
o3_dma8eu	Daily maximum 8-hour average ozone	ppb
no_dma8eu	Daily maximum 8-hour nitrogen monoxide	ppb
no2_dma8eu	Daily maximum 8-hour nitrogen dioxide	ppb

Table: Meteorological variables as inputs for modelling

Variable	Description	Unit
pblheight_max	Maximum height of planetary boundary layer	m
relhum_max	Daily maximum relative humidity	%
temp_max	Daily maximum temperature	° C
u₋mean	Daily mean u-component (zonal) of wind	m/s
v_mean	Daily mean v-component (meridional) of wind	m/s
cloudcover_mean	Daily mean total cloud cover	%

pollu_corr.png

meteo_corr.png

Moving average values of O₃, no_dma8eu and no2_dma8eu from 2012 to 2014 at Station DEBW010

Moving average values of O₃, cloudcover_mean, pblheight_max, relhum_max, and temp_max from 2012 to 2014 at Station DEBW010

Data selection and preparation

- Tropospheric Ozone Assessment Report (TOAR) Database for variable selection

25 variables, more than 10,000 measurement sites from over 30 different sources around the world

TOAR2.png		

Data selection and preparation

DataStructure1.pdf

Data selection and preparation

DataStructure2.pdf

Machine learning mechanism

- Random Forest, Support Vector Machine, and Convolutional Neural Network

RF.png

Random Forest

Support Vector Machine

DL.png

Slide 10

Imbalanced data solution

- Imbalanced data issue

imbalanceDataIssue.png

ImbalancAccuracy.png

	Observed		
	Minority	Majority	
Minority	TD	ED	

Predicted Minority TP FP Majority FN TN

ExceedanceRate2.pdf

Exceedance frequency ($\frac{No.of\ Exceedances}{No.of\ samples}$) for all the monitoring stations in BW state

Observed

Imbalanced data solution

- Imbalanced data solution: Modifying class distribution

oversampling.png

SMOTE.png

DEBW048X_train_pca2.pdf

Scatter plot of raw data in 2 Dimensions

DEBW048X_res_pca2.pdf

Scatter plot of SMOTE data in 2 Dimensions

Evaluation metrics

- Classification evaluation metrics

Generic evaluation metric

	Observed			
		Positive	Negative	Total
Predicted	Positive	а	b	a+b
	Negative	С	d	c + d
	Total	a + c	b+d	N

Accuracy =
$$\frac{a+d}{a+b+c+d}$$

Precision =
$$\frac{a}{a+b}$$

Recall =
$$\frac{a}{a+c}$$

Evaluation metric for imbalanced data

■ F1 - Score =
$$\frac{2 \cdot Recall \cdot Precison}{Recall + Precison}$$

■ G-means =
$$\frac{a \cdot d}{(d+c) \cdot (a+c)}$$

 y_i are the prediction values, and \hat{y}_i are the observed values.

Skill score

Use the skill score for comparing the target model t and reference model ref based on measurement m.

$$\blacksquare$$
 skill_m = $(m - m_{ref})/m_{ref}$

Orig VS. SMOTE

- Does the SMOTE improve the model performance?

SVM_RF_DL_SMOTE_V4.png

Skill scores ($skill_{SMOTE} = (m_{SMOTE} - m_{orig})/m_{orig}$) corresponding to different evaluation metrics for comparing on raw data and SMOTE data from all the monitoring stations

Slide 14

ML VS. CNN

- Does CNN improves the prediction accuracy?

SVM_RF_DL_SMOTE_AbsValues3.png

Evaluation metrics for SVM, RF, and CNN models on SMOTE dataset for all the monitoring stations

Prediction accuracy on 4 leading days

- Forecasting 4 leading days

Evaluation metrics of CNN model on SMOTE to predict 4 days ahead for all the monitoring stations

Deep learning improvement

- Deep Learning diagnosis

Conclusions and Future studies

- Preliminary conclusions and Future studies

Preliminary conclusions:

- SMOTE can improve the classification performance for model SVM and RF.
- With current set-up CNN is not better than traditional ML techniques; RF wins.
- The prediction accuracy decrease significantly from 1 leading day to 2 day prediction.

Future studies:

- Deep learning structure
 - Cost-sensitive CNN for imbalanced data
 - Universal network for all the stations
 - LSTM
- Data Level
 - Size of variables (Feature engineering, spatial factors etc.)
 - Heterogeneous data sources

Acknowledgement

http://www.IntelliAQ.eu

Funding is provided through ERC Advanced grant ERC-2017-ADG #787576 by Martin Schultz

Thank You!

contact me: b.gong@fz-juelich.de

References I

- References:

Fowler, D., Amann, M., Anderson, F., Ashmore, M., Cox, P., Depledge, M., ... others (2008). Ground-level ozone in the 21st century: future trends, impacts and policy implications. Royal Society Science Policy Report, 15(08).

