Linear Equation

$$a(x)y'+b(x)=c(x)$$
 standard linear form $y'+\underbrace{p(x)y}_{a(x)}=\underbrace{q(x)}_{c(x)}$

Integrity Factor

to solve
$$y' + p(x)y = q(x)$$

set integrity factor $u(x)$, multiply $u(x)$ by both sides $u(x)y' + u(x)p(x)y = u(x)q(x)$
seek left side as a derivatives and solve $u(x)$

$$u(x)y' + u(x)p(x)y \Rightarrow (u(x)y)' = u(x)q(x)$$

$$\Rightarrow p(x)u(x) = u'(x)$$

$$\Rightarrow \frac{du}{dx} = p(x)u(x) \Rightarrow \frac{du}{u(x)} = p(x)dx$$

$$\Rightarrow \int \frac{du}{u(x)} = \int p(x)dx$$

$$\Rightarrow \ln u(x) = \int p(x)dx$$

$$\Rightarrow \ln u(x) = e^{\int p(x)dx}$$

then integrate both sides to get γ

Constant Linear Equation

for
$$y' + p(x)y = q(x)$$
, $p(x)$ and $q(x)$ can be constant

Temperature-concentration model

$$\begin{split} \frac{dT}{dt} &= k(T_e - T) \Rightarrow \frac{dT}{dt} + kT = kT_e \\ u(x) &= e^{\int kdt} = e^{kt} \\ \text{multiply } u(x) \text{ by both sides} \\ &\Rightarrow e^{kt} \frac{dT}{dt} + e^{kt}kT = e^{kt}kT_e \\ &\Rightarrow \left(e^{kt}T\right)' = e^{kt}kT_e \\ &\Rightarrow \int \left(e^{kt}T\right)' = \int e^{kt}kT_e \\ &\Rightarrow e^{kt}T = \int e^{kt}kT_e + C \\ &\Rightarrow T = e^{-kt} \int e^{kt}kT_e + Ce^{-kt} \end{split}$$