

SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 2016

KTH Teknikvetenskap

1. Låt

$$A = \begin{bmatrix} 4 & -2 & 7 \\ 8 & -3 & 10 \end{bmatrix}.$$

(a) Bestäm alla lösningar till det homogena systemet $Ax = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ (3 p)

(b) Bestäm alla lösningar till $Ax = \begin{bmatrix} -5 & -3 \end{bmatrix}^T$. (3 p)

Lösningsförslag.

a) Vi ställer upp systemets utvidgade matris och för den till trappstegsform:

$$\left(\begin{array}{cc|c} 4 & -2 & 7 & 0 \\ 8 & -3 & 10 & 0 \end{array}\right)_{R_2 - 2R_1} \sim \left(\begin{array}{cc|c} 4 & -2 & 7 & 0 \\ 0 & 1 & -4 & 0 \end{array}\right).$$

Vi ser att sista kolumnen visar att x_3 är en fri variabel och inför parametern $t=x_3$ som ger att $x_2=4t$ och $4x_1=2x_2-7t$, dvs. $x_1=\frac{1}{4}(2\cdot 4t-7t)=\frac{1}{4}t$.

Alla lösningar ges alltsÅ av

$$\begin{cases} x_1 = \frac{1}{4}t, \\ x_2 = 4t, & \text{där } t \in \mathbf{R}. \\ x_3 = t \end{cases}$$

b) På motsvarande sätt som i deluppgift a får vi här

$$\left(\begin{array}{cc|c} 4 & -2 & 7 & -5 \\ 8 & -3 & 10 & -3 \end{array}\right)_{R_2-2R_1} \sim \left(\begin{array}{cc|c} 4 & -2 & 7 & -5 \\ 0 & 1 & -4 & 7 \end{array}\right).$$

Inför vi även här $t=x_3$ som parameter får vi att $x_2=7+4t$ och $4x_1=-5+2x_2-7t$, dvs. $x_1=\frac{1}{4}(9+t)$. Alla lösningar ges alltså av

$$\begin{cases} x_1 = \frac{9}{4} + \frac{1}{4}t, \\ x_2 = 7 + 4t, & \text{där } t \in \mathbf{R}. \\ x_3 = t \end{cases}$$

2. Låt V vara skärningen mellan de två hyperplan i \mathbb{R}^4 som ges av

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ x_1 - x_2 - x_3 - x_4 &= 0. \end{cases}$$

(a) Bestäm en bas för delrummet V.

(3 p)

(b) Hitta ett ekvationssystem vars lösningar utgör delrummet $W = V^{\perp}$. (3 p)

Lösningsförslag.

(a) Skärningen mellan de två hyperplanen består av alla punkter (x_1, x_2, x_3, x_4) som tillhör båda planen, dvs. uppfyller planens ekvationer

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 - x_2 - x_3 - x_4 = 0. \end{cases}$$

Detta är ett linjärt ekvationssystem som vi kan lösa med gausseliminering,

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & -1 & 0 \end{array} \right)_{R_2 - R_1} \sim$$

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & -2 & -2 & 0 \end{array} \right)_{-\frac{1}{2}R_2} \sim$$

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array} \right)_{R_1 - R_2} \sim$$

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array} \right)_{C} .$$

Från slutschemat ser vi att vi kan införa exempelvis $s=x_3$ och $t=x_4$ som parametrar och hela lösningsmängden kan då uttryckas som

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ -s - t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \quad (s, t \text{ parametrar}).$$

Från detta kan vi avläsa att alla lösningar (vektorerna i V) kan skrivas som linjärkombinationer av vektorerna $u_1 = (0, -1, 1, 0)$ och $u_2 = (0, -1, 0, 1)$, dvs. en bas för V är

$$\{(0,-1,1,0),(0,-1,0,1)\}.$$

(b) I deluppgift (a) konstaterade vi att vektorerna i delrummet V alla kan skrivas som linjärkombinationer av $\mathbf{u}_1 = (0, -1, 1, 0)$ och $\mathbf{u}_2 = (0, -1, 0, 1)$, dvs. $s\mathbf{u}_1 + t\mathbf{u}_2$ där s och t är skalärer.

Om en vektor w är ortogonal mot u_1 och u_2 , dvs. $w \cdot u_1 = w \cdot u_2 = 0$, så är w även vinkelrät mot alla vektorer i V eftersom

$$\boldsymbol{w} \cdot (s\boldsymbol{u}_1 + t\boldsymbol{u}_2) = s\,\boldsymbol{w} \cdot \boldsymbol{u}_1 + t\,\boldsymbol{w} \cdot \boldsymbol{u}_2 = s \cdot 0 + t \cdot 0 = 0.$$

Detta gör att delrummet W består av alla vektorer $\boldsymbol{w}=(x_1,x_2,x_3,x_4)$ som uppfyller

$$\begin{cases} \boldsymbol{w} \cdot \boldsymbol{u}_1 = (x_1, x_2, x_3, x_4) \cdot (0, -1, 1, 0) = -x_2 + x_3 = 0, \\ \boldsymbol{w} \cdot \boldsymbol{u}_2 = (x_1, x_2, x_3, x_4) \cdot (0, -1, 0, 1) = -x_2 + x_4 = 0. \end{cases}$$

3. Låt

$$A = \begin{bmatrix} 3 & a & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix},$$

där a är en reell parameter.

- (a) Bestäm egenvärdena till A och egenrum till varje egenvärde. (3 p)
- (b) För vilka val av a är A diagonaliserbar? (2 p)
- (c) Bestäm för a=0 en inverterbar matris P och en diagonal matris D sådana att $A=PDP^{-1}$.

Lösningsförslag. (a) Egenvärdena får vi genom att lösa den karakteristiska ekvationen:

$$\det(A - \lambda I) = 0 \Rightarrow \begin{vmatrix} (3 - \lambda) & a & 0 \\ 0 & (4 - \lambda) & 1 \\ 0 & 2 & (5 - \lambda) \end{vmatrix} = 0$$

$$\Rightarrow (3 - \lambda)(\lambda^2 - 9\lambda + 18) = 0 \Rightarrow (3 - \lambda)(\lambda - 3)(\lambda - 6) = 0$$

Alltså har matrisen A två egenvärden, $\lambda_1=6$ och $\lambda_2=3$ (dubbelrot till ekvationen). Låt E_λ beteckna egenrummet som hör till egenvärdet λ . Egenrummet som hör till $\lambda_1=6$ dvs E_6 bestämmer vi genom att lösa $(A-6I)\vec{u}=\vec{0}$ dvs.

$$\begin{bmatrix} -3 & a & 0 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Detta ger systemet

$$\begin{cases}
-3x + ay &= 0 \\
-2y + z &= 0 \\
2y - z &= 0
\end{cases} \Leftrightarrow \begin{cases}
-3x + ay &= 0 \\
-2y + z &= 0 \\
0 &= 0
\end{cases}.$$

Härav

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = t \left[\begin{array}{c} a \\ 3 \\ 6 \end{array}\right].$$

Därmed

$$E_{\lambda_1} = \operatorname{span}\left(\left[\begin{array}{c} a\\3\\6 \end{array}\right]\right)$$

Egenrummet som hör till $\lambda_2=3$ dvs E_3 bestämmer vi genom att lösa $(A-3I)\vec{u}=\vec{0}$ dvs.

$$\begin{bmatrix} 0 & a & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Detta gör systemet

$$\begin{cases} ay = 0 \\ y+z = 0 \\ 2y+2z = 0 \end{cases} \Leftrightarrow \begin{cases} z+y = 0 \\ ay = 0 \\ 0 = 0 \end{cases}.$$

Två fall: $a \neq 0$ och a = 0.

Om
$$a \neq 0$$
 får vi $y = 0$, $z = 0$ och $x = t$. Härav $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Därmed $E_{\lambda_2} = \operatorname{span}(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix})$ om $a \neq 0$. Notera att $dim(E_{\lambda_2}) = 1$ i det här fallet.

Om
$$a=0$$
 har vi systemet
$$\begin{cases} z+y&=0\\ 0&=0\\ 0&=0 \end{cases}$$
. Härav $x=t,\,y=-s$ och $z=s$ dvs
$$\begin{pmatrix} x\\y\\z \end{pmatrix}=t \begin{bmatrix} 1\\0\\0 \end{bmatrix}+s \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \text{ om } a=0.$$

Därmed
$$E_{\lambda_2} = \operatorname{span}\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix}\right)$$
 om $a=0$. Notera att $dim(E_{\lambda_2})=2$ i det här fallet.

(b) En matrisen av typen $n \times n$ är diagonaliserbar om och endast om $\sum_k dim(E_{\lambda_k}) = n$. I vårt fall är $dim(E_{\lambda_1}) + dim(E_{\lambda_2}) = 3$ endast om a = 0. Enligt a-delen är matrisen diagonaliserbar endast om a = 0.

(c) Matrisen P består av tre linjärt oberoende egenvektorer; D har på diagonalen motsvarande egenvärden.

Exempelvis
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & -1 \\ 6 & 0 & 1 \end{bmatrix}$$
 och $D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

4. Låt

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

vara en 3×3 -matris. Skriv A_{ij} för determinanten av den 2×2 -delmatrisen där man har strukit rad i och kolonn j. Visa att följande formel alltid gäller:

$$a_{33} \det(A) = A_{11}A_{22} - A_{12}A_{21}.$$
 (6 p)

Lösningsförslag. Utveckling av höger led ger

$$\begin{split} A_{11}A_{22} - A_{12}A_{21} &= \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \\ &= \left(a_{22}a_{33} - a_{23}a_{32}\right) \left(a_{11}a_{33} - a_{13}a_{31}\right) - \left(a_{21}a_{33} - a_{23}a_{31}\right) \left(a_{12}a_{33} - a_{13}a_{32}\right) \\ &= a_{11}a_{22}a_{33}^2 + a_{13}a_{23}a_{31}a_{32} - a_{11}a_{23}a_{32}a_{33} - a_{13}a_{22}a_{31}a_{33} \\ &- a_{12}a_{21}a_{33}^2 - a_{13}a_{23}a_{31}a_{32} + a_{12}a_{23}a_{31}a_{33} + a_{13}a_{21}a_{32}a_{33} \\ &= a_{33} \left(a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}\right) \\ &= a_{33} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}. \end{split}$$

Den sista likheten följer av definitionen av en 3×3 determinant.

5. En reflektionen i \mathbb{R}^3 är en linjär avbildning

$$r_{\vec{u}}(\vec{x}) = \vec{x} - 2(\vec{u} \cdot \vec{x})\vec{u},$$

där \vec{u} är en normalvektor av längd 1 till reflektionsplanet. Låt $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$.

- (a) Bestäm en vektor \vec{u} av längd 1 sådan att $r_{\vec{u}}(\vec{x})$ är en positiv multippel av $\vec{e}_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$.
- (b) Visa att standardmatrisen till en reflektion alltid är en ortogonal matris. (2 p)

Lösningsförslag.

a) Eftersom reflektioner bevarar längder av vektorer så ser vi att den sökta reflektionen måste avbilda \vec{x} på $\|\vec{x}\|\vec{e}_1 = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}^T$. Vi inser geometriskt att reflektionen vi söker är reflektionen genom planet som halverar vinkeln mellan \vec{x} och \vec{e}_1 och har normalvektor $\vec{x} - \|x\|\vec{e}_1$:

Detta ger normalvektorn

$$\begin{bmatrix} 1\\2\\-2 \end{bmatrix} - \begin{bmatrix} 3\\0\\0 \end{bmatrix} = \begin{bmatrix} -2\\2\\-2 \end{bmatrix}$$

Vi delar vektorn genom dess längd och får normalvektorn $\vec{u} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$.

Vi verifierar att vi har räknat rätt:

$$r_{\vec{u}}(\begin{bmatrix}1\\2\\-2\end{bmatrix}) = \begin{bmatrix}1\\2\\-2\end{bmatrix} - \frac{2}{3}\left(\begin{bmatrix}-1\\1\\-1\end{bmatrix} \cdot \begin{bmatrix}1\\2\\-2\end{bmatrix}\right) \begin{bmatrix}-1\\1\\-1\end{bmatrix} = \begin{bmatrix}1\\2\\-2\end{bmatrix} - 2\begin{bmatrix}-1\\1\\-1\end{bmatrix} = \begin{bmatrix}3\\0\\0\end{bmatrix}.$$

b) Vi kan skriva

$$r_{\vec{u}}(\vec{x}) = I\vec{x} - 2(\vec{u})(\vec{u} \cdot \vec{x}) = I\vec{x} - 2(\vec{u}\vec{u}^T)\vec{x} = (I - 2\vec{u}\vec{u}^T)\vec{x}.$$

Därav ges standardmatrisen till $r_{\vec{u}}$ som $I-2\vec{u}\vec{u}^T$, en symmetrisk matris. Dessutom gäller för alla reflektioner $f_{\vec{u}}(f_{\vec{u}}(\vec{x}))=\vec{x}$. Alltså har vi att $MM^T=MM=I$, vilket innebär att M är ortogonal.

6. En matris A kallas för *skevsymmetrisk* om $A^T = -A$. Antag att A är en skevsymmetrisk $n \times n$ -matris. Bestäm alla vektorer \vec{v} i \mathbb{R}^n så att $(A\vec{v}) \cdot \vec{v} = 0$. (6 **p**)

Lösningsförslag. Om vi betraktar vektorn v som en kolumnvektor så kan skalärprodukterna $(Av) \cdot v$ och $v \cdot (Av)$ skrivas i matrisform som

$$(A\mathbf{v}) \cdot \mathbf{v} = (A\mathbf{v})^T \mathbf{v} = \mathbf{v}^T A^T \mathbf{v},$$

$$\mathbf{v} \cdot (A\mathbf{v}) = \mathbf{v}^T A \mathbf{v},$$

för alla vektorer v.

Använder vi att A är skevsymmetrisk, dvs. $A^T = -A$, så har vi att

$$(A\boldsymbol{v})\cdot\boldsymbol{v}=\boldsymbol{v}^TA^T\boldsymbol{v}=\boldsymbol{v}^T(-A)\boldsymbol{v}=-\boldsymbol{v}^TA\boldsymbol{v}=-\boldsymbol{v}\cdot(A\boldsymbol{v})=-(A\boldsymbol{v})\cdot\boldsymbol{v}$$

där vi använt att skalärprodukten är kommutativ, dvs. $u \cdot v = v \cdot u$, i den sista likheten.

Adderar vi $(A\boldsymbol{v})\cdot\boldsymbol{v}$ till båda led i sambandet $(A\boldsymbol{v})\cdot\boldsymbol{v}=-(A\boldsymbol{v})\cdot\boldsymbol{v}$ får vi att $2(A\boldsymbol{v})\cdot\boldsymbol{v}=0$ och detta visar att vi har att $(A\boldsymbol{v})\cdot\boldsymbol{v}=0$ för alla vektorer \boldsymbol{v} .