# Hipótesis estadísticas

Un **test estadístico** es un procedimiento para, a partir de una muestra aleatoria y significativa, **extraer conclusiones** que permitan **aceptar o rechazar una hipótesis** previamente emitida sobre el valor de un parámetro desconocido de una población.

La hipótesis emitida se designa por  $\mathbf{H_0}$  y se llama hipótesis nula.

La hipótesis contraria se designa por  $\mathbf{H_1}$  y se llama hipótesis alternativa.

### Contrastes de hipótesis

 $\mathbf{1}$ . Enunciar la hipótesis nula  $H_0$  y la alternativa  $H_1$ .

| Bilateral  | H <sub>0</sub> = k | H₁ ≠ k             |
|------------|--------------------|--------------------|
| Unilateral | H₀≥ k              | H <sub>1</sub> < k |
|            | H <sub>0</sub> ≤k  | H <sub>1</sub> > k |

2. A partir de un nivel de confianza 1 – a o el de significación a. Determinar:

El valor  $z_{\alpha/2}$  (bilaterales), o bien  $z_{\alpha}$  (unilaterales)

La zona de aceptación del parámetro  $\mu$  o p.

- 3 Calcular: x o p', a partir de la muestra.
- 4. Si el valor del parámetro muestral está dentro de la zona de la aceptación, se acepta la hipótesis con un nivel de significación a. Si no, se rechaza.

Contraste bilateral: Se presenta cuando la hipótesis nula es del tipo  $H_0$ :  $\mu = k$  (o bien  $H_0$ : p = k) y la hipótesis alternativa, por tanto, es del tipo  $H_1$ :  $\mu \neq k$  (o bien  $H_1$ :  $p \neq k$ ).



El nivel de significación a se concentra en dos partes (o colas) simétricas respecto de la media. La región de aceptación en este caso no es más que el correspondiente intervalo de probabilidad para x o p', es decir:

$$\left(\bar{X}-Z_{\alpha/2}\bullet\frac{\sigma}{\sqrt{n}},\;\bar{X}+Z_{\alpha/2}\bullet\frac{\sigma}{\sqrt{n}}\right)$$

o bien:

$$\left(p - Z_{\alpha/2} \bullet \sqrt{\frac{pq}{n}}, p + Z_{\alpha/2} \bullet \sqrt{\frac{pq}{n}}\right)$$

Ejemplo Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es 2,4. Para una muestra de 36 estudiantes se obtuvo una nota media de 5,6. ¿Sirven estos datos para confirmar la hipótesis de que la nota media del examen fue de 6, con un nivel de confianza del 95%?

1. Enunciamos las hipótesis nula y alternativa:

 $H_0: \mu = 6$  La nota media no ha variado.

 $H_1: \mu \neq 6$  La nota media ha variado.

2 Zona de aceptación

Para  $\alpha = 0.05$ , le corresponde un valor crítico:  $z_{\alpha/2} = 1.96$ .

Determinamos el intervalo de confianza para la media:

$$(6-1,96\cdot 0,4;6+1,96\cdot 0,4)=(5,22;6,78)$$

3. Verificación.

Valor obtenido de la media de la muestra: 5,6.

4 Decisión

Aceptamos la hipótesis nula  $H_0$ , con un nivel de significación del 5%.

Contraste unilateral: Caso 1 La hipótesis nula es del tipo  $H_0$ :  $\mu \ge k$  (o bien  $H_0$ :  $p \ge k$ ). La hipótesis alternativa, por tanto, es del tipo  $H_1$ :  $\mu < k$  (o bien  $H_1$ : p < k).

## Valores críticos

| 1 - a | а    | Z a   |
|-------|------|-------|
| 0.90  | 0.10 | 1.28  |
| 0.95  | 0.05 | 1.645 |
| 0.99  | 0.01 | 2.33  |



El nivel de significación **a** se concentra en una parte o cola.

La región de aceptación en este caso será:

$$\left(\mu - Z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty\right)$$

o bien:

$$\left(p-Z_{\alpha}\bullet\sqrt{\frac{pq}{n}},\infty\right)$$

Ejemplo: Un sociólogo ha pronosticado, que en una determinada ciudad, el nivel de abstención en las próximas elecciones será del 40% como mínimo. Se elige al azar una muestra aleatoria de 200 individuos, con derecho a voto, 75 de los cuales estarían dispuestos a votar. Determinar con un nivel de significación del 1%, si se puede admitir el pronóstico.

1. Enunciamos las hipótesis nula y alternativa:

 $H_0: \mu \ge 0.40$  La abstención será como mínimo del 40%.

 $H_1: \mu < 0.40$  La abstención será como máximo del 40%;

2. Zona de aceptación

Para  $\alpha = 0.01$ , le corresponde un valor crítico:  $z_{\alpha} = 2.33$ .

Determinamos el intervalo de confianza para la media:

$$\left(0.4-2.33 \cdot \sqrt{\frac{0.4\cdot0.6}{200}}, \omega\right) = \left(0.3192^{\circ}, \omega\right)$$

3. Verificación.

$$p' = \frac{125}{200} = 0.625$$

4 Decisión

Aceptamos la hipótesis nula H<sub>0</sub>. Podemos afirmar, con un nivel de significación del 1%, que la La abstención será como mínimo del 40%.

Caso 2La hipótesis nula es del tipo  $H_0$ :  $\mu \le k$  (o bien  $H_0$ :  $p \le k$ ).

La hipótesis alternativa, por tanto, es del tipo  $H_1$ :  $\mu$  > k (o bien  $H_1$ : p > k).



El nivel de significación a se concentra en la otra parte o cola.

La región de aceptación en este caso será:

Unla Lic en Sistemas

$$\left(-\infty, \ \mu + Z_{\alpha} \bullet \frac{\sigma}{\sqrt{n}}\right)$$

o bien:

$$\left(-\infty, p+Z_{\alpha} \bullet \sqrt{\frac{pq}{n}}\right)$$

Ejemplo: Un informe indica que el precio medio del pasaje de avión entre Ushuaia y Córdoba es, como máximo, de 120 dólares con una desviación típica de 40 dólares. Se toma una muestra de 100 viajeros y se obtiene que la media de los precios de sus pasajes es de 128 dólares. ¿Se puede aceptar, con un nivel de significación igual a 0,1, la afirmación de partida?

1. Enunciamos las hipótesis nula y alternativa:

 $H_0: \mu \le 120$ 

 $H_1: \mu > 120$ 

2. Zona de aceptación

Para  $\mathbf{a}=\mathbf{0.1}$ , le corresponde un valor crítico:  $\mathbf{z}_{\alpha}=\mathbf{1.28}$  .

Determinamos el intervalo de confianza:

$$\left(-\infty; 120+1.28 \frac{40}{\sqrt{100}}\right) = \left(-\infty; 125.12\right)$$

3. Verificación.

Valor obtenido de la media de la muestra: 128 dólares .

4. Decisión

No aceptamos la hipótesis nula Ho. Con un nivel de

## Errores de tipo I y tipo II

Error de tipo I. Se comete cuando la hipótesis nula es verdadera y, como consecuencia del contraste, se rechaza.

Error de tipo II. Se comete cuando la hipótesis nula es falsa y, como consecuencia del contraste se acepta.

| H <sub>0</sub> | Verdadera                                 | Falsa                                    |
|----------------|-------------------------------------------|------------------------------------------|
| Aceptar        | Decisión correcta<br>Probabilidad = 1 - α | Decisión incorrecta:<br>ERROR DE TIPO II |

Rechazar

ERROR DE TIPO I

Decisión

Probabilidad = α

correcta

La probabilidad de cometer Error de tipo I es el nivel de significación a.

La probabilidad de cometer **Error de tipo II** depende del verdadero valor del parámetro. Se hace **tanto menor cuanto mayor sea n**.

- 1.-Un criador de pollos sabe por experiencia que el peso de los pollos de cinco meses es 4,35 libras. Los pesos siguen una distribución normal. Para tratar de aumentar el peso de dichas aves se le agrega un aditivo al alimento. En una muestra de pollos de cinco meses se obtuvieron los siguientes pesos ( en libras).
- 2.-Una empresa que se dedica a hacer en cuestas se queja de que un agente realiza en promedio 53 encuestas por semana. Se ha introducido una forma más moderna de realizar las encuetas y la empresa quiere evaluar su efectividad. Los números de encuestas realizadas en una semana por una muestra aleatoria de agentes son:53 57 55 50 58 54 60 52 59 62 60 60 51 59 56 . En el nivel de significancia 0,05, puede concluirse que la cantidad media de entrevistas realizadas por los agentes es superior a 53 por semana? Evalúe el valor p.

Soluciones

1

| n = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peso librasX            | X-Xmed        | (X-Xmed)^2  | X^2      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|-------------|----------|
| u = 4,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,41                    | 0,042         | 0,001764    | 19,4481  |
| Xmed = 43,68/10 = 4,368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,37                    | 0,002         | 4E-06       | 19,0969  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,33                    | -0,038        | 0,001444    | 18,7489  |
| $s = \sqrt{\frac{\sum (X - \bar{X})^2}{n - 1}} = \sqrt{\frac{0.01036}{10 - 1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,35                    | -0,018        | 0,000324    | 18,9225  |
| $S = \sqrt{\frac{n-1}{n-1}} = \sqrt{\frac{10-1}{10-1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,3                     | -0,068        | 0,004624    | 18,49    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,39                    | 0,022         | 0,000484    | 19,2721  |
| $s = \sqrt{0.00115} = 0.0339$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,36                    | -0,008        | 6,4E-05     | 19,0096  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,38                    | 0,012         | 0,000144    | 19,1844  |
| Planteamiento de hipótesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,4                     | 0,032         | 0,001024    | 19,36    |
| $H_a: u \leq 4.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,39                    | 0,022         | 0,000484    | 19,2721  |
| 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43,68                   | 1             | 0,01036     | 190,8046 |
| $H_1: u > 4.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X med =                 | 4,368         |             |          |
| a) Prueba de una cola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |               |             |          |
| b) nivel de significancia 0,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |               |             |          |
| c) Estadístico de prueba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |             |          |
| X-u 4.368-4.35 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970000                  | Area = 0,453: | 5           | Ĭ.       |
| $t = \frac{X - u}{s / \sqrt{n}} = \frac{4.368 - 4.35}{0.0339 / \sqrt{10}} = \frac{0.018}{0.0107}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1.68}{5} = 1.68$ | 1             | [1]         | 1        |
| The process of the pr |                         |               |             |          |
| d) Plantear la regla de desición:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               |             |          |
| alfa = 0,01 y gl = n - 1 =10 -1 = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |               |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |             |          |
| Sit > 2,821 Se rechaza Hoy se acept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a H1                    |               |             |          |
| Tomar la decisión:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |               |             |          |
| Como t (1,68) < 2,821se acepta la hipo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ítacie nula v ca        | rechaza H1 v  | se concluve | nuo ol   |
| aditivo no aumenta el peso medio de lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |               | se concluye | que ei   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |             | Į.       |
| Valor p = 1,68 es 0,4535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               |             |          |
| p = 0.50 - 0.4535 = 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |               |             |          |

2.-

| u = 53                                                                                                      | # encuestas             | X-Xmed        | (X-Xmed)^2        | X^2   |
|-------------------------------------------------------------------------------------------------------------|-------------------------|---------------|-------------------|-------|
| n = 15                                                                                                      | 53                      | -3,4          | 11,56             | 2809  |
| Xmed = 56,4                                                                                                 | 57                      | 0,6           | 0,36              | 3249  |
|                                                                                                             | 50                      | -6,4          | 40,96             | 2500  |
| TYV 1/2 (1056                                                                                               | 55                      | -1,4          | 1,96              | 3025  |
| $s = \sqrt{\frac{\Sigma(X - X)^2}{n - 1}} = \sqrt{\frac{1956}{15 - 1}} = \sqrt{13971} = 3.73$               | 58                      | 1,6           | 2,56              | 3364  |
| V n−1 V15−1                                                                                                 | 54                      | -2,4          | 5,76              | 2916  |
|                                                                                                             | 60                      | 3,6           | 12,96             | 3600  |
| Planteamiento de hipótesis                                                                                  | 52                      | -4,4          | 19,36             | 2704  |
| [77 < 52]                                                                                                   | 59                      | 2,6           | 6,76              | 3481  |
| $H_o: u \leq 53$                                                                                            | 62                      | 5,6           | 31,36             | 3844  |
| $H_1: u > 53$                                                                                               | 60                      | 3,6           | 12,96             | 3600  |
|                                                                                                             | 60                      | 3,6           | 12,96             | 3600  |
| a) Prueba de una cola                                                                                       | 51                      | -5,4          | 29,16             | 2601  |
| o) nivel de significancia 0,05                                                                              | 59                      | 2,6           | 6,76              | 3481  |
| c) Estadístico de prueba                                                                                    | 56                      | -0,4          | 0,16              | 3136  |
|                                                                                                             | 846                     |               | 195,6             | 47910 |
| $t = \frac{\overline{X} - u}{s / \sqrt{n}} = \frac{56.4 - 53}{3.73 / \sqrt{15}} = \frac{3.4}{0.963} = 3.53$ | Xmed =<br>Area = 0,4989 | 846/15 =<br>I | 56,4              |       |
| d) Plantear la regla de desición:                                                                           |                         |               |                   |       |
| alfa = 0,05 y gl = n - 1 =15 -1 = 14                                                                        |                         |               | ()                |       |
| Sit < 1,761 Se rechaza Hoyse acepta                                                                         | H1                      |               |                   |       |
| Tomar la decisión:                                                                                          |                         |               |                   |       |
| <br>Como t (3,53) > 1,761 se rechaza la hip<br>cantidad media de entrevistas realizadas                     |                         |               |                   |       |
| cantidad media de entrevistas feditadas                                                                     | por los agente          | o co mayor    | a co poi scillali | u.    |
| Valor p = 1,761 es 0,4989                                                                                   |                         |               |                   |       |
| p = 0,50 - 0,4989 = 0,0011                                                                                  |                         | <u></u>       |                   |       |

3.- Lisa Mendez es directora de presupuesto en la empresa New Process Company, desea comparar los gastos diarios de transporte del equipo de ventas y del personal de cobranza. Recopiló la siguiente información muestral (importe en dólares).

Ventas (\$) 131 135 146 165 136 142 Cobranza (\$) 130 102 129 143 149 120 139 Al nivel de significancia de 0,10, puede concluirse que los gastos medios diarios del equipo de ventas son mayores? cuál es el valor p?

# Solución

| ventas                     | cobranzas                                   | 8                    | Prueba de hipótesis                                                                                     |
|----------------------------|---------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|
| 131                        | 130                                         |                      | 7712                                                                                                    |
| 135                        | 102                                         |                      | $H_o: u1 \leq u2$                                                                                       |
| 146                        | 129                                         |                      | $H_1: u1 > u2$                                                                                          |
| 165                        | 143                                         |                      |                                                                                                         |
| 136                        | 149                                         |                      | a) Es esta una prueba de una o de dos colas                                                             |
| 142                        | 120                                         |                      | Esta es una prueba a una sola cola                                                                      |
|                            | 139                                         |                      |                                                                                                         |
| 142.5                      | 130,285714                                  | promedio             |                                                                                                         |
|                            |                                             | desviación st        |                                                                                                         |
| n = 6                      | n = 7                                       |                      |                                                                                                         |
| alfa = 0,10                |                                             |                      |                                                                                                         |
| -1                         |                                             |                      |                                                                                                         |
| b) Establezca              | la regla de d                               | esición              |                                                                                                         |
|                            |                                             |                      |                                                                                                         |
| Si Z > que el              | valor crítico, s                            | e rechaza la l       | hipótesis nula y se acepta H1                                                                           |
| c) Calcule el v            | valor del estad                             | l<br>lístico de prue | eha .                                                                                                   |
| Datos:                     | raior acr cotac                             | notice de pide       |                                                                                                         |
| n1 = 6                     | 7                                           | n2 = 7               |                                                                                                         |
| Prom 1 = 142               | 5                                           | Prom 2 = 130         | 13                                                                                                      |
| s1 = 12,2                  | ,J                                          | s2 = 15,8            | ۵٫۰                                                                                                     |
| Alfa = 0.10                |                                             | 52 - 15,0            |                                                                                                         |
|                            | ertad = 6+7 -                               | 7 –11                | =1,363 de la tabla con 0,10                                                                             |
| Orados de IID              | entau – OT7 -                               | 2 -11                | -1,505 de la tabla collo,10                                                                             |
| (n, -                      | $1)s_{1}^{2} + (n_{0} - 1)$                 | 52                   |                                                                                                         |
| $z^2 = \frac{\sqrt{1}}{2}$ | $\frac{1)s_1^2 + (n_2 - 1)}{n_1 + n_2 - 2}$ | <del>/-2</del>       |                                                                                                         |
|                            | 1100 2100                                   | 11 12                |                                                                                                         |
| 2 (6                       | -11/1488                                    | 4+(7-1)              | 24964 7442+149784                                                                                       |
| $- s_n ^2 = \frac{10}{2}$  | 1)1+0.0                                     | T 1 (7 1)2           | $=\frac{743.04}{1497.04}=203.82$                                                                        |
| - P                        | 6-                                          | +7-2                 | $\frac{249.64}{11} = \frac{744.2 + 1497.84}{11} = 203.82$                                               |
|                            |                                             |                      | $\frac{142.5 - 130.3}{\sqrt{203.82\left(\frac{1}{6} + \frac{1}{7}\right)}} - \frac{12.2}{7.819} - 1.56$ |
|                            | $\frac{x_1 - x_2}{x_1 + x_2}$               | <del></del>          | $\frac{142.5 - 130.5}{\sqrt{1 - 1}} - \frac{12.2}{7.819} - 1.56$                                        |
|                            | ( + -                                       | <u>-</u> 774 ~       | $\sqrt{\frac{203.82}{6} + \frac{1}{7}}$                                                                 |
| 1005                       | 10<br>10                                    | 200                  |                                                                                                         |
| ما ممالک (۱                | da siaidu vaan                              | la binde             | la sia mula                                                                                             |
| u) Cuai es ia              | aesicion respi                              | ecto a la hipót      | lesis nuia                                                                                              |
| l l l . 4                  | EC as weeken                                | 1 202                |                                                                                                         |
|                            |                                             |                      | hazo la hipóteis nula                                                                                   |
|                            |                                             |                      | concluyo que los gastos medios diarios de las                                                           |
|                            | das son mayı                                | ores,                | 1,56                                                                                                    |
| e) Cual es su              |                                             |                      | 1,36                                                                                                    |
| ⊏l valor se en             | cuentra entre                               | 0,10 y 0,5 <u> </u>  |                                                                                                         |
|                            |                                             |                      |                                                                                                         |

4.-De una población se toma una muestra de 40 observaciones. La media muestral es de 102 y la desviación estándar 5. De otra población se toma una muestra de 50 observaciones. La media mustral es ahora 99 y la desviación estándar es 6. Realice la siguiente prueba de hipótesis usando como nivel de significancia 0,04.

Ho: u1 = u2

Ho: u1 ≠ u2

a) Es esta una prueba de una o de dos colas?

Esta es una prueba de hipótesis de dos colas

b ) Establezca la regla de decisión

Si Z > que le valor crítico, se rechaza la hipótesis nula y se acepta la hipótesis alternativa

- c) Calcule el valor del estadístico de prueba
- Si Z > que el valor crítico, se rechaza la hipótesis nula y se acepta H1

| $z = \frac{X_1^7 - X_2^7}{\sqrt{\frac{S_1^7}{P_1} + 1}}$ | $z = \frac{102}{\sqrt{\frac{(5)^2}{2}}}$ | $\frac{-99}{+\frac{(6)^2}{50}}$ | $\frac{3}{\sqrt{0.625+0.7}}$ | $\frac{3}{72} - \frac{3}{\sqrt{1,345}} - 2$ | ,59 |
|----------------------------------------------------------|------------------------------------------|---------------------------------|------------------------------|---------------------------------------------|-----|
| s1 = 5                                                   | s2 = 6                                   |                                 | j'                           | i li                                        |     |
| Prom 1 = 102                                             | Prom 2 = 99                              |                                 |                              |                                             |     |
| n1 = 40                                                  | n2 = 50                                  |                                 |                              |                                             |     |
| Datos:                                                   |                                          |                                 |                              |                                             |     |

Como su valor calculado Z (2,59) > 2,05; se rechaza la hipótesis nula y se acepta la hipótesis alternativa

Si Z tabulada es 0.5 - 0.02 = 0.48 este valor en la tabla es 2.05



## Cuál es el valor p?

Z = 2,59 Area 0,4952

0.5 - 0.4952 = 0.0048 \* 2 = 0.0096

## Prueba de Hipótesis para Medias con Distribución T de Student

La Prueba de Hipótesis para medias usando Distribución t de Student se usa cuando se cumplen las siguientes dos condiciones:

Es posible calcular las media y la desviación estándar a partir de la muestra. El tamaño de la muestra es menor a 30.

## El procedimiento obedece a los 5 pasos esenciales:

#### Paso 1:

Plantear Hipótesis Nula (Ho) e Hipótesis Alternativa (Hi).

La Hipótesis alternativa plantea matemáticamente lo que gueremos demostrar.

La Hipótesis nula plantea exactamente lo contrario.

#### Paso 2:

Determinar Nivel de Significancia. (Rango de aceptación de hipótesis alternativa)



Casi siempre lo proporciona el problema, y normalmente se considera:

- 0.05 para proyectos de investigación
- 0.01 para aseguramiento de calidad
- -0.10 para encuestas de mercadotecnia y políticas.

#### Paso 3:

Evidencia de la Muestra. Se calcula la media y la desviación estándar a partir de la muestra.

#### Paso 4

Se aplica la Distribución t de Student:

$$t^*=rac{ar{X}-\mu}{rac{S_x}{\sqrt{n}}}$$
 $Grados\,de\,Libertad=\,df=\,n-1$ 
Sabiendo que:
 $ar{X}=Media$ 
 $\mu=Valor\,a\,\,analizar$ 
 $S_x=Desviación\,Estándar$ 
 $ar{X}=Media$ 
 $n=Tamaño\,de\,muestra$ 

#### Paso 5:

En base a la evidencia disponible se buscan las regiones de aceptación o rechazo.

#### Conclusión:

Se acepta o rechaza la Hipótesis Nula.

Se concluye de acuerdo ala información de la Hipótesis Alternativa.

#### **Ejemplo:**

Se aplica una prueba de autoestima a 25 personas quienes obtienen una calificación promedio de 62.1 con una desviación estándar de 5.83 Se sabe que el valor correcto de la prueba debe ser mayor a 60. ¿Existe suficiente evidencia para comprobar que no hay problemas de autoestima en el grupo seleccionado?

Considera un nivel de significancia de 0.05

#### Paso 1:

#### Hipótesis Alternativa (Hi):

Lo que se quiere comprobar

El grupo no tiene problemas de autoestima.

Valor de autoestima mayor a 60.

Valor de Autoestima > 60

#### Hipótesis Nula (Ho):

Lo contrario a la Hipótesis Alternativa

El grupo tiene problemas de autoestima.

Valor de autoestima < = 60.

#### Paso 2:

Determinar nivel de significancia:

$$\alpha = 0.05$$

#### Paso 3:

Evidencia Muestral

$$\bar{X} = 62.1$$
 y  $S_x = 5.83$ 

#### Paso 4:

Aplicando la Distribución de Probabilidad

#### Calculando t\*:

$$t^* = \frac{\overline{X} - \mu}{\frac{S_x}{\sqrt{n}}}$$

$$t^* = \frac{62.1 - 60}{\frac{5.83}{\sqrt{25}}} = \frac{2.1}{1.166} = 1.8$$

$$df = n - 1 = 25 - 1 = 24$$

#### Paso 5: Toma de Decisión.

Se buscan las regiones de aceptación o rechazo.

Buscando en la Tabla t:

Nivel de significancia 0.05

Grados de Libertad: 25 -1 = 24

| abla de va            | lores critic |        |        |         |     |
|-----------------------|--------------|--------|--------|---------|-----|
| Grados de<br>Libertad | 0.25         | 0.10   | 0.05   | 0.025   |     |
| 1                     | 1.0000       | 3.0777 |        | 12.7062 | 31  |
| 2                     | 0.8165       | 1.8856 |        | 4.3027  | 6.  |
| 3                     | 0.7649       | 1.6377 |        | 3.1824  | 4.  |
| 4                     | 0.7407       | 1.5332 |        | 2.7764  | 3.  |
| 5                     | 0.7267       | 1.4759 |        | 2.5706  | 3.  |
| 6                     | 0.7176       | 1.4398 |        | 2.4469  | 3.  |
| 7                     | 0.7111       | 1.4149 |        | 2.3646  | 2.  |
| 8                     | 0.7064       | 1.3968 |        | 2.3060  | 2.  |
| 9                     | 0.7027       | 1.3830 |        | 2.2622  | 2.  |
| 10                    | 0.6998       | 1.3722 |        | 2.2281  | 2.  |
| 11                    | 0.6974       | 1.3634 | 3      | 2.2010  | 2.  |
| 12                    | 0.6955       | 1.3562 | 1      | 2.1788  | 2.  |
| 13                    | 0.6938       | 1.3502 |        | 2.1604  | 2.0 |
| 14                    | 0.6924       | 1.3450 |        | 2.1448  | 2.  |
| 15                    | 0.6912       | 1.3406 |        | 2.1315  | 2.1 |
| 16                    | 0.6901       | 1.3368 |        | 2.1199  | 2.5 |
| 17                    | 0.6892       | 1.3334 |        | 2.1098  | 2.  |
| 18                    | 0.6884       | 1.3304 |        | 2.1009  | 2.  |
| 19                    | 0.6876       | 1.3277 |        | 2.0930  | 2.  |
| 20                    | 0.6870       | 1.3253 |        | 2.0860  | 2.  |
| 21                    | 0.6864       | 1.3232 |        | 2.0796  | 2.  |
| 22                    | 0.6858       | 1.3212 |        | 2.0739  | 2.  |
| 23                    | 0.6853       | 1.3195 |        | 2.0687  | 2.  |
| 24                    |              |        | 1.7109 | 2.0639  | 2.  |
| 25                    | 0.6844       | 1.3163 | 1.7081 | 2.0595  | 2.4 |

Valor crítico de t = 1.7109

## (Para ver la tabla de valores críticos de t)

Colocando en la campana el valor crítico de t y el valor de t calculado en el paso 4 (t=1.8)



Se trata de un problema de una cola, por lo que únicamente tenemos una región de rechazo.

| Unla Lic en Sistemas Pro | babilidad y estadísticas | Prof Edgardo Di Dic |
|--------------------------|--------------------------|---------------------|
|--------------------------|--------------------------|---------------------|

La región de rechazo se ubica de acuerdo al signo de la Hipótesis Alternativa. (>)

El valor de t calculado se encuentra en la Región de Rechazo.

#### CONCLUSIÓN

SE RECHAZA HIPÓTESIS NULA

SE ACEPTA HIPÓTESIS ALTERNATIVA

De acuerdo a la muestra, existe suficiente evidencia para demostrar que el grupo no tiene problemas de autoestima con un nivel de significancia de 0.05.