PRIMER PARCIAL 9/5/19

1	2	3	4	5	Calificación

Nombre y Apellido:

Número de libreta:

Ejercicio 1. Franco tiene diez cartas, numeradas del 1 al 10, las mezcla y elige una carta k al azar. Luego, tira k veces un dado. Si obtiene algún tres, Franco gana el juego y si no, pierde.

- (a) Si Franco ganó el juego, ¿cuál es la probabilidad de que haya sacado la carta 2?
- (b) Si Franco juega a este juego una vez por día durante una semana, ¿cuál es la probabilidad de que gane al menos tres veces?
- (c) Si Franco juega a este juego una vez por día comenzando hoy, calcular la probabilidad de que gane por primera vez el 13/5/19.

Ejercicio 2. Ana y Beto se enfrentan en un juego que se desarrolla en múltiples rondas. El ganador de cada ronda se lleva un punto, Ana lo hace con probabilidad p (0) y Beto con probabilidad <math>1 - p. El primero que le saque dos puntos de diferencia al adversario es declarado ganador del juego.

- (a) ¿Cuál es la probabilidad de que el juego termine?
- (b) ¿Cuál es la probabilidad de que gane Ana?
- (c) ¿Cuál es la probabilidad de que el juego dure más de 7 rondas?
- (d) Que gane Ana, ¿es independiente de que el juego dure más de 7 rondas?

Ejercicio 3. De una urna con 3 bolitas negras y 2 bolitas blancas se extraen, sin reposición, dos bolitas. Sean Y la cantidad de bolitas negras extraídas y $X \sim N(12, 5^2)$ independiente de Y. Calcular $\mathbb{P}(X^Y \leq 25)$.

Ejercicio 4. En un torneo de ingenio compiten cinco personas y la competencia consiste en resolver un problema. El torneo termina cuando alguien resuelve el problema y esa persona es la ganadora. El tiempo que tarda cada participante en resolver el problema son variables aleatorias T_i , $i=1,\ldots,5$, independientes e idénticamente distribuidas tales que $T_i \sim \frac{Y}{X}$, con $X \sim \mathcal{U}[2,4]$ e $Y \sim \mathcal{E}(0.5)$ independientes.

Calcular la función de distribución acumulada de D= "duración del torneo", verificar que F_D es continua y que $\lim_{t\to+\infty} F_D(t)=1$.

Ejercicio 5. Sean $\lambda > 0$ y X e Y variables aleatorias independientes, ambas con distribución $\mathcal{E}(\lambda)$.

- (a) Hallar la distribución de $U = \frac{X}{X+Y}$. ¿Son U y X+Y independientes?
- (b) Calcular $\mathbb{P}(U < X + Y \mid U > \frac{1}{2})$.