Зад. 1 Решете рекурентното уравнение

$$a_n = \begin{cases} 1, & \text{ako } n = 1, \\ 2, & \text{ako } n = 2, \\ 6, & \text{ako } n = 3, \\ (n^3 - 3n^2 + 2n)a_{n-3}, & \text{ako } n \ge 4 \end{cases}$$

Решение: Това уравнение не е с константни коефициенти и не подлежи на решаване чрез метода с характеристичното уравнение. Съгласно изучаваното на лекции, да решим рекурентно уравнение означава да намерим израз, еквивалентен да дадения, но без рекурсия в себе си. Да видим колко е \mathfrak{a}_n за $\mathfrak{n}=4,5,6$.

$$a_4 = (4^3 - 3 \cdot 4^2 + 2 \cdot 4)a_1 = (64 - 48 + 8) \cdot 1 = 24$$

$$a_5 = (5^3 - 3 \cdot 5^2 + 2 \cdot 5)a_2 = (125 - 75 + 10) \cdot 2 = 120$$

$$a_6 = (6^3 - 3 \cdot 6^2 + 2 \cdot 6)a_3 = (216 - 108 + 12) \cdot 6 = 720$$

Изглежда, че $a_n = n!$. Ще докажем това със силна индукция по n.

Твърдим, че за всяко цяло положително n, $a_n = n!$. Базата е за n = 1, 2, 3. Наистина, по определение $a_1 = 1!$, $a_2 = 2!$ и $a_3 = 3!$. Трите базови случаи са доказани.

Да допуснем, че за някое $n \ge 4$ е вярно, че за всяко $k \in \{1, \dots, n-1\}$ е в сила $a_k = k!$. Разглеждаме a_n . Тъй като $n \ge 4$, по определение:

$$a_n = (n^3 - 3n^2 + 2n)a_{n-3}$$

Но n-3 е в множеството $\{1,\ldots,n-1\}$, така че индуктивното предположение е в сила за \mathfrak{a}_{n-3} . Съгласно индуктивното предположение, $\mathfrak{a}_{n-3} = (n-3)!$. Заместваме и получаваме

$$a_n = (n^3 - 3n^2 + 2n)(n - 3)!$$

Ho
$$n^3 - 3n^2 + 2n = n(n^2 - 3n + 2) = n(n - 1)(n - 2)$$
. Toraba

$$a_n = n(n-1)(n-2)(n-3)!$$

Но $\mathfrak{n}(\mathfrak{n}-1)(\mathfrak{n}-2)(\mathfrak{n}-3)!=\mathfrak{n}!$. Тогава $\mathfrak{a}_{\mathfrak{n}}=\mathfrak{n}!$. Доказахме по индукция, че $\mathfrak{a}_{\mathfrak{n}}=\mathfrak{n}!$ за всяко цяло положително \mathfrak{n} .

- ${\bf 3ад.}\ {\bf 2}\ {\bf 3}$ а всяко цяло положително k, нека ${\bf D}_{\bf k}$ е безкрайното множество от графи, дефинирани чрез следната индуктивна дефиниция.
 - База: всяка (k + 1)-клика принадлежи на D_k.
 - Индуктивна стъпка: ако G = (V, E) приналежи на D_k и U е k-клика в G и w е връх, който не е в G, то $G' = (V \cup \{w\}, E \cup E')$ е в D_k , където $E' = \bigcup_{\alpha \in U} \{(\alpha, w)\}.$

Ето задачата.

- 3 т. **а)** D₁ кой клас графи е?
- 6 т. **б**) Колко ребра има всеки граф $G \in D_2$ като функция на броя на върховете?
- 10 т. в) Докажете, че всеки $G ∈ D_2$ е планарен.
- 6 т. г) Колко ребра има всеки граф $G \in D_3$ като функция на броя на върховете?
- 15 т. д) Опровергайте, че всеки G ∈ D₃ е планарен.
- 10 т. е) За всяко цяло положително k, намерете $\min \{ \chi(G) \mid G \in D_k \}$ и $\max \{ \chi(G) \mid G \in D_k \}$.
 - **Решение:** а): D_1 са дърветата без тривиалния граф. Посочената индуктивна дефиниция е почти същата като изучаваната на лекции индуктивна дефиниция на дърво, с малката разлика, че в горната дефиниция базата е (1+1)-клика, тоест 2-клика, тоест ребро, докато в дефиницията от лекции базата е връх. Изключвайки тази дребна разлика, индуктивната стъпка е същата и в двете дефиниции: добавя се нов връх w и w се прави съсед на точно един връх от графа, за който сме допуснали, че е в множеството. Забележете, че k-клика при k = 1 е един единствен връх.
 - **б**): Всеки граф от D_2 има точно 2n-3 ребра, където n е броят на върховете му. Доказателството е със структурна индукция по индуктивната дефиниция за k=2. В базовия случай имаме (2+1)-клика, което е K_3 , граф с точно 3 ребра. Наистина, $2\cdot 3-3=3$. С което базата е доказана. Да допуснем, че графът G в индуктивната стъпка има точно 2n-3 ребра. Очевидно ребрата на новопостроения G' са с 2 повече от ребрата на G, понеже новодобавеният връх става съсед на точно два върха от G. Тогава броят на ребрата на G' е 2n-3+2=2n-1. Но 2n-1 може да се представи като 2(n+1)-3. Но n+1 е броят на върховете на G'. Тогава броят на ребрата на G' е два пъти броят на върховете на G' минус три. С което доказахме желаното твърдение.
 - в): Ще докажем, че всеки граф $G \in D_2$ е планарен със структурна индукция. По-точно, ще докажем, че всеки $G \in D_2$ има планарно вписване. Очевидно графът K_3 от базата има планарно вписване. Допускаме, че графът G от индуктивната стъпка има планарно вписване. Както знаем от лекции, планарно вписване се дефинира чрез лицата си. Очевидно всяко планарно ребро е в точно две лица на планарното вписване. 2-кликата U е едно ребро в G. Съответното му планарно ребро е в точно две лица на вписването. Можем да добавим нов планарен връх, съответен на w, и да го сложим във вътрешността на кое да е от тези две лица и после да го свържем чрез две нови планарни ребра с планарните върхове, съответни на върховете от U по такъв начин, че тези две нови планарни ребра да лежат изцяло във вътрешността на въпросното лице, с изключение на крайните си точки. Конструирахме планарно вписване на G'.
 - г): Всеки граф от D_3 има точно 3n-6 ребра, където n е броят на върховете му. Доказателството е със структурна индукция по индуктивната дефиниция за k=3. В базовия случай имаме (3+1)-клика, което е K_4 , граф с точно 6 ребра. Наистина, $3 \cdot 4-6=6$. С което базата е доказана. Да допуснем, че графът G в индуктивната стъпка има точно 3n-6 ребра. Очевидно ребрата на новопостроения G' са с 3 повече от ребрата на G, понеже новодобавеният връх става съсед на точно три върха от G. Тогава броят на ребрата на G' е 3n-6+3=3n-3. Но 3n-3 може да се представи като 3(n+1)-6. Но n+1 е броят на върховете на G'. Тогава броят на ребрата на G' е три пъти броят на върховете на G' минус шест. С което доказахме желаното твърдение.
 - д): Ще покажем, че в D_3 има граф, който не е планарен. Да разгледаме следния граф:

Този граф може да бъде генериран от индуктивната дефиниция: примерно, K_4 в базовия случай е подграфът, индуциран от $\{a,b,c,d\}$, след което в индукнтивната стъпка се добавя нов връх х и се прави съсед на върховете от 3-кликата $\{a,b,c\}$ и се добавя нов връх у и се прави съсед на върховете от 3-кликата $\{a,b,c\}$. Ще покажем, че този граф съдържа подграф, изоморфен на $K_{3,3}$. Забелязваме, че всеки от върховете a,b,c се явява съсед на всеки от върховете a,b,c

Ако изтрием ребрата между върховете a, b, c, подграфът $K_{3,3}$ със своите девет ребра се вижда ясно:

Щом граф съдържа подграф, изоморфен на $K_{3,3}$, той не е планарен съгласно изучаваното на лекции.

е): Ще докажем, че за всяко $k \in \mathbb{N}^+$, $\min \{\chi(G) \mid G \in D_k\} = \max \{\chi(G) \mid G \in D_k\} = k+1$. Ще докажем дори нещо по-силно: за фиксирано k, за всеки $k \in D_k$ е вярно, че $k \in D_k$ е вярно, че $k \in D_k$ е със структурна индукция. В базовия случай графът е $k \in D_k$, който очевидно има хроматично число k+1. Да допустнем, че графът $k \in D_k$ от индуктивната стъпка има хроматично число k+1. Нека функцията $k \in D_k$ е $k \in D_k$ реализира върхово оцветяване на $k \in D_k$ и дветове. Да разгледаме множеството $k \in D_k$ като $k \in D_k$ по принципа на Дирихле съществува поне един цвят $k \in D_k$ такъв че

никой връх на U не е оцветен в j. Сега да разгледаме функцията $g:V(G') \to \{1,\ldots,k+1\}$, дефинирана така:

$$\forall z \in V(G')$$
: ако $z \in V$, то $g(z) = f(z)$, в противен случай $g(z) = \mathfrak{j}$

Лесно се вижда, че z да не е от V е същото като z=w. Но g реализира върхово оцветяване на G' в k+1 цветове, защото

- за всяко ребро, инцидентно с w е вярно, че двата края са в различни цветове, понеже g(w) = j, а никой връх от U не е в цвят j;
- за останалите ребра е вярно, че двата края са в различни цветове от индуктивното допускане.

Тогава
$$\chi(G') \le k+1$$
. Но тъй като $\chi(G) = k+1$ и G е подграф на G' , вярно е, че $\chi(G') = k+1$.

Зад. 3 Докажете с комбинаторни разсъждения, че за всички $\mathfrak{m},\mathfrak{n},\mathfrak{r}\in\mathbb{N}^+$, такива че $\mathfrak{r}\leq\min\{\mathfrak{m},\mathfrak{n}\}$ е вярно, че

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

Решение: Нека S е множество с m+n елементи, m от които са червени, а останалите са зелени. Нека C е множеството

$$C = \{X \subset S : |X| = r\}$$

Съгласно изучаваното на лекции, $|C| = {m+n \choose r}$. За $k \in \{0, \dots, r\}$, нека D_k е множеството

$$D_k = \{ Y \in C \mid Y \text{ съдържа точно } k \text{ червени елементи} \}$$

Забелязваме, че $|D_k| = \binom{\mathfrak{m}}{k} \binom{\mathfrak{n}}{\mathfrak{r}-k}$, защото можем да подберем по $\binom{\mathfrak{m}}{k}$ червените в D_k от общо \mathfrak{m} червени, зелените в D_k трябва да са $\mathfrak{r}-k$ и тях можем да подберем по $\binom{\mathfrak{n}}{\mathfrak{r}-k}$ от общо \mathfrak{n} зелени, и всяка подборка на \mathfrak{k} червени може да се комбинира с всяка подборка на $\mathfrak{r}-k$ зелени.

След това забелязваме, че $\{D_1, D_2, \ldots, D_k\}$ е разбиване на C, така че

$$|C| = \sum_{k=0}^{r} |D_k|$$

което можем да запишем като

$$|C| = \sum_{k=0}^{r} {m \choose k} {n \choose r-k}$$

И тъй като $|C| = {m+n \choose r}$, сила е

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

Зад. 4 Нека $(a_1, a_2, \ldots, a_{100})$ е редица от сто числа. Известно е, че $\forall i \in \{1, \ldots, 100\}$: $a_i \in \{1, 2\}$. Известно е освен това, че $\forall i \in \{1, \ldots, 91\}$: $\sum_{j=0}^{9} a_{i+j} \le 16$. Докажете, че съществуват р и q, такива че $1 \le p < q \le 100$ и $\sum_{i=p}^{q} a_i = 39$.

Решение: На прост български, дадена е редица от единици и двойки, сто на брой, така че във всяка подредица с дължина десет, сумата от елементите не надхвърля шестнадесет. От това следва, че е невъзможно, примерно, да има десет двойки една след друга, защото сумата им би била двадесет, и така нататък.

Разглеждаме сумите S_i , за $1 \le i \le 100$, като S_i е сумата от първите і числа. Очевидно $S_1 = a_1$, а $S_{100} = a_1 + \cdots + a_{100}$. Забелязваме, че

$$S_1 < S_2 < S_3 < \dots < S_{99} < S_{100}$$

понеже елементите са положителни, така че $S_{\mathfrak{i}} < S_{\mathfrak{i}+1}$ за $1 \leq \mathfrak{i} \leq 99$. Ключово наблюдение е, че $S_{100} \leq 160$, понеже

$$S_{100} = \underbrace{\alpha_1 + \dots + \alpha_{10}}_{\leq 16} + \underbrace{\alpha_{11} + \dots + \alpha_{20}}_{\leq 16} + \dots + \underbrace{\alpha_{99} + \dots + \alpha_{100}}_{\leq 16} \leq 160$$

В условието се говори за 39: иска се да се покаже, че има подредица със сума 39. Ако добавим 39 към всяко от числата S_1, \ldots, S_{100} , максималното получено число ще е $S_{100}+39$ и то не може да е по-голямо от 199, щом $S_{100} \le 160$. И така, всяко от числата $S_1, \ldots, S_{100}, S_1+39, \ldots, S_{100}+39$ е цяло, положително и не по-голямо от 199. Но тези числа са 200 на брой. По принципа на Дирихле, поне две от тях са равни.

Но числата S_1,\ldots,S_{100} са две по две различни, както вече отбелязахме. Веднага следва, че $S_1+39,\ldots,S_{100}+39$ са две по две различни. Щом има две еднакви числа измежду $S_1,\ldots,S_{100},S_1+39,\ldots,S_{100}+39$, трябва едно от тях да е някое S_q за някое $q\in\{1,\ldots,100\}$, а другото да е някое S_p+39 за някое $p\in\{1,\ldots,100\}$. И така, има такива p и q, че

$$S_q = S_p + 39 \leftrightarrow S_q - S_p = 39$$

Очевидно q > p, защото сумите S_i нарастват строго с нарастването на i. Тогава

$$S_q = a_1 + \dots + a_{p-1} + a_p + a_{p+1} + \dots + a_q$$

 $S_p = a_1 + \dots + a_{p-1} + a_p$

Изваждаме второто от първото и получаваме

$$S_q - S_p = a_{p+1} + \cdots + a_q$$

Но вече знаем, че $S_q - S_p = 39$. Заключаваме, че в редицата (a_1, \dots, a_{100}) има подредица със сума точно 39. Което трябваше да докажем.

Зад. 5 Напишете в явен вид всички булеви функции на три променливи f(x, y, z), в които втората променлива у е фиктивна.

Решение: По определение, у е фиктивна тстк f(x,0,z) = f(x,1,z) за стойности—а те са четири на брой—на булевия вектор xz. По-подробно казано, иска се

$$f(0,0,0) = f(0,1,0)$$

$$f(0,0,1) = f(0,1,1)$$

$$f(1,0,0) = f(1,1,0)$$

$$f(1,0,1) = f(1,1,1)$$

Очевидно има точно $2^4 = 16$ такива булеви функции и те са следните.

χ	y	z	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f ₈	f ₉	f ₁₀	f ₁₁	f ₁₂	f_{13}	f ₁₄	f ₁₅
0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Това са точно тези булеви вектори с държина 8, в които на всяка двойка позиции измежду тези:

- първата и третата,
- втората и четвъртата,
- петата и седмата,
- шестата и осмата

има една и съща стойност.