AB Geometrie & Topologie

Prof. Bernhard Leeb, Ph.D.

Dr. Stephan Stadler

Analysis I

Klausur: Lösungen

1. Wir beweisen die Behauptung mit vollständiger Induktion über n.

Induktionsanfang: Die Behauptung gilt für n = 1, denn 3 = 2 + 1.

Induktionsschritt: Wir nehmen an, die Behauptung gelte für ein $n \in \mathbb{N}$. Dann

$$\sum_{i=1}^{n+1} (4i-1) = \underbrace{\left(\sum_{i=1}^{n} (4i-1)\right)}_{2n^2+n} + \underbrace{\left(4(n+1)-1\right)}_{4n+3} = 2n^2 + 5n + 3 = 2(n+1)^2 + (n+1),$$

also gilt die Behauptung auch für n+1.

Mit vollständiger Induktion folgt die Behauptung für alle $n \in \mathbb{N}$.

2. Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge. Wir betrachten die Menge von Indizes

$$M := \{ n \in \mathbb{N} \mid a_{n'} \le a_n \,\forall \, n' > n \}.$$

Ist M unendlich, so existiert eine streng monoton wachsende Folge $(n_k)_{k\in\mathbb{N}}$ natürlicher Zahlen, die in M liegen. Die Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ ist dann monoton fallend.

Ist andererseits M endlich, so existiert eine strikte obere Schranke $n_0 \in \mathbb{N}$ für M, dh $n < n_0$ für alle $n \in M$. Weiter existiert nach Definition von M eine Funktion $\phi : \{n \in \mathbb{N} \mid n \geq n_0\} \to \mathbb{N}$, so daß $\phi(n) > n$ und $a_{\phi(n)} > a_n$ für alle $n \geq n_0$. Die Teilfolge $(a_{\phi^k(n_0)})_{k \in \mathbb{N}}$ ist dann (sogar streng) monoton wachsend.

3. (a) Es gilt

$$\lim_{x \to +\infty} \frac{x^3 - x + 1}{2x^3 + x^2 - 4} = \lim_{x \to +\infty} \frac{1 - \frac{1}{x^2} + \frac{1}{x^3}}{2 + \frac{1}{x} - \frac{4}{x^3}} = \frac{\lim_{x \to +\infty} (1 - \frac{1}{x^2} + \frac{1}{x^3})}{\lim_{x \to +\infty} (2 + \frac{1}{x} - \frac{4}{x^3})} = \frac{1}{2}.$$

(b) Es gilt

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{\lim_{x \to +\infty} (1 - e^{-2x})}{\lim_{x \to +\infty} (1 + e^{-2x})} = 1$$

und analog

$$\lim_{x \to -\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to -\infty} \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{\lim_{x \to -\infty} (e^{2x} - 1)}{\lim_{x \to -\infty} (e^{2x} + 1)} = 1$$

(c) Wegen e < 3 gilt $3^x > e^x > \frac{x^4}{4!}$ für x > 0, und damit

$$0 < \frac{x^3}{3^x} < \frac{x^3}{x^4/4!} = \frac{4!}{x}.$$

Aus $\lim_{x\to\infty}\frac{4!}{x}=0$ folgt mit dem Einschnürungsprinzip, daß $\lim_{x\to\infty}\frac{x^3}{e^x}=0$.

(d) Mit der Substitution $t = x - \frac{\pi}{2}$ bzw $x = t + \frac{\pi}{2}$ wird

$$\left(x - \frac{\pi}{2}\right) \cdot \tan x = t \cdot \frac{\sin(t + \frac{\pi}{2})}{\cos(t + \frac{\pi}{2})} = t \cdot \frac{\cos t}{-\sin t} = -\frac{t}{\sin t} \cdot \cos t.$$

Es gilt

$$\lim_{t \to 0} \frac{\sin t}{t} = \lim_{t \to 0} \frac{\sin t - \sin 0}{t - 0} = \sin'(0) = \cos 0 = 1 \tag{1}$$

wegen der Differenzierbarkeit des Sinus und $\sin' = \cos$, also

$$\lim_{t \to 0} \frac{t}{\sin t} = \left(\lim_{t \to 0} \frac{\sin t}{t}\right)^{-1} = 1$$

wegen der Stetigkeit der Funktion $u\mapsto \frac{1}{u}$ an der Stelle u=1. Weiter gilt

$$\lim_{t \to 0} \cos t = \cos 0 = 1$$

wegen der Stetigkeit des Kosinus. Es folgt

$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2}\right) \cdot \tan x = \lim_{t \to 0} \left(-\frac{t}{\sin t} \cdot \cos t\right) = -\left(\lim_{t \to 0} \frac{t}{\sin t}\right) \cdot \left(\lim_{t \to 0} \cos t\right) = 1.$$

Bemerkung: Man kann für Schritt (1) auch die Regel von de L'Hôpital benutzen: Da $\lim_{t\to 0} \sin t = 0$ und $\lim_{t\to 0} t = 0$, sowie $(t)' = 1 \neq 0$ für alle t, erhält man

$$\lim_{t \to 0} \frac{\sin t}{t} = \lim_{t \to 0} \frac{\cos t}{1} = \cos 0 = 1.$$

4. (a) Für $|a| \ge 1$ gilt $|a^n| = |a|^n \ge 1$. Damit ist $(a_n)_{n \in \mathbb{N}}$ keine Nullfolge und die unendliche Reihe $\sum_{n=0}^{\infty} a^n$ divergiert.

Sei nun |a| < 1. Dann gilt für die Partialsummen

$$\sum_{n=0}^{N} a^n = \frac{1 - a^{N+1}}{1 - a} \to \frac{1}{1 - a}$$

für $N\to\infty$, denn $a^{N+1}\to 0$. Daher konvergiert die unendliche Reihe $\sum_{n=0}^\infty a^n$ in diesem Fall und hat die Summe

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}.$$

Die Konvergenz ist absolut, denn gleichermaßen konvergiert $\sum_{n=0}^{\infty} |a|^n$.

- (b) Für $|a| \geq 1$ gilt $|a^{n^2}| = |a|^{n^2} \geq 1$. Damit ist $(a^{n^2})_{n \in \mathbb{N}}$ keine Nullfolge und die unendliche Reihe $\sum_{n=0}^{\infty} a^{n^2}$ divergiert. Falls |a| < 1, so $|a|^{n^2} \leq |a|^n$ für alle $n \in \mathbb{N}_0$ und die geometrische Reihe $\sum_{n=0}^{\infty} |a|^n$ ist eine konvergente Majorante für die Reihe $\sum_{n=0}^{\infty} a^{n^2}$, die daher in diesem Fall absolut konvergiert.
- (c) Für $n \geq 2$ gilt $n^2 + 1 \leq 2n^3$, also $\frac{\ln n}{\sqrt[3]{n^2+1}} \geq \frac{\ln 2}{\sqrt[3]{2}} \cdot \frac{1}{n}$. Daher können wir die Partialsummen von unten durch die Partialsummen der harmonischen Reihe abschätzen,

$$\sum_{n=1}^{N} \frac{\ln n}{\sqrt[3]{n^2 + 1}} \ge \frac{\ln 2}{\sqrt[3]{2}} \cdot \sum_{n=1}^{N} \frac{1}{n}.$$

Also divergiert die Reihe, weil die harmonische Reihe divergiert.

- (d) Die Folge $(\frac{1}{\sqrt{n}})_{n\in\mathbb{N}}$ ist eine monoton fallende Nullfolge. Daher impliziert das Leibnizkriterium, daß die Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ konvergiert. Sie konvergiert jedoch nicht absolut, dh die Reihe $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ konvergiert nicht, denn sie majorisiert die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$, die ja divergiert.
- 5. (a) Sei zunächst f L-Lipschitz stetig. Dann gilt für $x_0, x \in (a, b)$ mit $x \neq x_0$, daß $|f(x) f(x_0)| \leq L \cdot |x x_0|$, also $|\frac{f(x) f(x_0)}{x x_0}| \leq L$. Es folgt

$$|f'(x_0)| = \Big|\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}\Big| = \lim_{x \to x_0} \Big|\frac{f(x) - f(x_0)}{x - x_0}\Big| \le L.$$

Jetzt nehmen wir umgekehrt an, daß $|f'| \le L$ auf (a,b). Für $a \le x_1 < x_2 \le b$ liefert der Mittelwertsatz dann ein $\xi \in (x_1,x_2)$ mit $f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Es folgt

$$|f(x_2) - f(x_1)| = |f'(\xi)| \cdot |x_2 - x_1| \le L \cdot |x_2 - x_1|.$$

Also ist f L-Lipschitz-stetig.

(b) Auf kompakten Intervallen definierte stetige Funktionen sind gleichmäßig stetig. Also ist die Einschränkung $g|_{[a,c]}$ gleichmäßig stetig. Daraus und aus der gleichmäßigen Stetigkeit von $g|_{[c,+\infty)}$ folgt, daß zu jedem $\epsilon>0$ ein $\delta>0$ existiert mit der Eigenschaft: Falls $x_1,x_2\in[a,c]$ oder $x_1,x_2\in[c,+\infty)$, und falls außerdem $|x_1-x_2|<\delta$, so $|g(x_1)-g(x_2)|<\frac{\epsilon}{2}$. Es folgt dann für $x_1,x_2\in[a,+\infty)$ mit $|x_1-x_2|<\delta$, daß $|g(x_1)-g(x_2)|<\epsilon$. Denn oBdA sei $x_1\leq x_2$. Zu betrachten bleibt nur der Fall, daß $x_1\leq c\leq x_2$ und hier gilt

$$|g(x_1) - g(x_2)| \le \underbrace{|g(x_1) - g(c)|}_{<\frac{\epsilon}{2}} + \underbrace{|g(c) - g(x_2)|}_{<\frac{\epsilon}{2}} < \epsilon.$$

Also ist g gleichmäßig stetig.

(c) Die Wurzelfunktion ist auf $(0, \infty)$ differenzierbar mit Ableitung $w'(x) = \frac{1}{2\sqrt{x}}$. Die Ableitung w' nimmt auf dem Intervall (0, 1) beliebig große Werte an, da $w'(x) \to +\infty$ für $x \searrow 0$. Andererseits ist w' auf $(1, +\infty)$ beschränkt, denn dort gilt $0 < w' < \frac{1}{2}$. Nach (a) ist w also $\frac{1}{2}$ -Lipschitz-stetig auf $[1, +\infty)$, jedoch nicht Lipschitz-stetig auf [0, 1].

Letzteres impliziert, daß w auch auf ganz $[0, +\infty)$ nicht Lipschitz-stetig ist. Die Lipschitz-Stetigkeit von w auf $[1, +\infty)$ liefert, daß w dort gleichmäßig stetig ist. Mit (b) folgt weiter, daß w auf ganz $[0, +\infty)$ gleichmäßig stetig ist.

6. Falls $f \equiv 0$, so gilt die Behauptung trivialerweise. Andernfalls existiert $x_0 \in \mathbb{R}$ mit $f(x_0) = y_0 > 0$. Es sei $0 < \epsilon < y_0$. Weil nach Annahme $\lim_{x \to +\infty} f(x) = 0 = \lim_{x \to -\infty} f(x)$, existiert r > 0, so daß $f(x) < \epsilon$ für |x| > r. Insbesondere $|x_0| \le r$.

Die stetige Funktion f nimmt auf dem kompakten Intervall [-r, r] ein Maximum f(m) an. Sein Wert sei M. Dann $M \geq y_0 > \epsilon$. Also ist das Maximum von f auf [-r, r] auch ein globales Maximum für f auf \mathbb{R} .

7. Wir setzen $f(x) = x^5 + 4x$ und zeigen, daß die Abbildung $f: \mathbb{R} \to \mathbb{R}$ bijektiv ist.

Als Polynom ist f stetig und differenzierbar. In Anbetracht von $f(x) = (x^4 + 4)x$ und $x^4 + 4 \ge 4$ gilt für beliebiges r > 0, daß f(-r) < -r < r < f(r). Mit dem Zwischenwertsatz folgt, daß f alle Werte in [-r, r] annimmt. Also ist f surjektiv.

Für die Ableitung von f gilt $f'(x) = 5x^4 + 4 > 0$. Also ist f streng monoton steigend und damit auch injektiv.

8. (a) Die Funktion

$$f(x) = x^{\frac{1}{x}} = e^{\frac{\ln x}{x}}$$

auf \mathbb{R}^+ ist als Komposition differenzierbarer Funktionen differenzierbar. Ihre Ableitung ergibt sich mit Ketten- und Quotientenregel als

$$f'(x) = e^{\frac{\ln x}{x}} \cdot \left(\frac{\ln x}{x}\right)' = x^{\frac{1}{x}} \cdot \left(\frac{1 - \ln x}{x^2}\right)$$

Das Vorzeichen von f'(x) wird also vom Vorzeichen von $1 - \ln x$ bestimmt. Es gilt

$$f'(x) \begin{cases} > 0 \text{ für } 0 < x < e, \\ = 0 \text{ für } x = e, \\ < 0 \text{ für } x > e. \end{cases}$$

Also steigt f streng monoton auf (0, e] und fällt streng monoton auf $[e, +\infty)$. Insbesondere hat f ein globales Maximum bei e mit $f(e) = e^{1/e}$.

Wegen $\lim_{x\searrow 0} \frac{\ln x}{x} = -\infty$ und $\lim_{t\to -\infty} e^t = 0$ gilt $\lim_{x\searrow 0} f(x) = 0$, also $f((0,e]) = (0,e^{1/e}]$. Weiter gilt wegen $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ und der Stetigkeit der Exponentialfunktion, daß $\lim_{x\to +\infty} f(x) = e^0 = 1$, also $f([e,+\infty)) = (1,e^{1/e}]$. Insgesamt erhalten wir, daß $f((0,+\infty)) = (0,e^{\frac{1}{e}}]$.

- (b) Die Ungleichung $2^x \ge x^2$ ist äquivalent zu $2^{1/2} \ge x^{1/x}$ bzw $4^{1/4} \ge x^{1/x}$. Letztere Ungleichung gilt für $x \ge 4$, weil f auf $[4, +\infty) \subset [e, +\infty)$ monoton fällt, siehe (a).
- 9. Siehe Vorlesung.