Probably approximately correct learning

Maximilian Kasy

February 2021

These slides summarize Chapter 2-6 of the following textbook:

Shalev-Shwartz, S. and Ben-David, S. (2014).

Understanding machine learning: From theory to algorithms. Cambridge University Press.

Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

Setup and notation

- Features (predictive covariates): x
- Labels (outcomes): $y \in \{0, 1\}$
- Training data (sample): $S = \{(x_i, y_i)\}_{i=1}^n$
- Data generating process: (x_i, y_i) are i.i.d. draws from a distribution \mathcal{D}
- Prediction rules (hypotheses): $h: x \to \{0,1\}$

Learning algorithms

Risk (generalization error): Probability of misclassification

$$L_{\mathcal{D}}(h) = E_{(x,y)\sim\mathcal{D}} \left[\mathbf{1}(h(x) \neq y) \right].$$

• Empirical risk: Sample analog of risk,

$$L_{\mathcal{S}}(h) = \frac{1}{n} \sum_{i} \mathbf{1}(h(x) \neq y).$$

• Learning algorithms map samples $S = \{(x_i, y_i)\}_{i=1}^n$ into predictors h_S .

Empirical risk minimization

Optimal predictor:

$$h_{\mathcal{D}}^* = \underset{h}{\operatorname{argmin}} \ L_{\mathcal{D}}(h) = \mathbf{1}(E_{(x,y)\sim \mathcal{D}}[y|x] \geq 1/2).$$

- Hypothesis class for h: \mathcal{H} .
- Empirical risk minimization:

$$h_{\mathcal{S}}^{ERM} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \ L_{\mathcal{S}}(h).$$

Special cases (for more general loss functions):
 Ordinary least squares, maximum likelihood,
 minimizing empirical risk over model parameters.

(Agnostic) PAC learnability

Definition 3.3

A hypothesis class ${\cal H}$ is agnostic probably approximately correct (PAC) learnable if

- ullet there exists a learning algorithm $h_{\mathcal{S}}$
- such that for all $\epsilon, \delta \in (0,1)$ there exists an $n < \infty$
- ullet such that for all distributions ${\cal D}$

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

- ullet with probability of at least $1-\delta$
- over the draws of training samples

$$\mathcal{S} = \{(x_i, y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}.$$

Discussion

- Definition is not specific to 0/1 prediction error loss.
- Worst case over all possible distributions \mathcal{D} .
- Requires small regret:
 The oracle-best predictor in H doesn't do much better.
- Comparison to the best predictor in the **hypothesis class** \mathcal{H} rather than to the unconditional best predictor $h_{\mathcal{D}}^*$.
- ⇒ The smaller the hypothesis class H the easier it is to fulfill this definition.
- Definition requires small (relative) loss with high probability, not just in expectation.

Question: How does this relate to alternative performance criteria?

ϵ -representative samples

• Definition 4.1 A training set S is called ϵ -representative if

$$\sup_{h\in\mathcal{H}}|L_{\mathcal{S}}(h)-L_{\mathcal{D}}(h)|\leq\epsilon.$$

• Lemma 4.2 Suppose that $\mathcal S$ is $\epsilon/2$ -representative. Then the empirical risk minimization predictor $h^{ERM}_{\mathcal S}$ satisfies

$$L_{\mathcal{D}}(h_{\mathcal{S}}^{ERM}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon.$$

• *Proof:* if S is $\epsilon/2$ -representative, then for all $h \in \mathcal{H}$

$$L_{\mathcal{D}}(h_{\mathcal{S}}^{ERM}) \le L_{\mathcal{S}}(h_{\mathcal{S}}^{ERM}) + \epsilon/2 \le L_{\mathcal{S}}(h) + \epsilon/2 \le L_{\mathcal{D}}(h) + \epsilon.$$

Uniform convergence

Definition 4.3

 ${\cal H}$ has the uniform convergence property if

- for all $\epsilon, \delta \in (0,1)$ there exists an $n < \infty$
- ullet such that for all distributions ${\cal D}$
- with probability of at least 1δ over draws of training samples $\mathcal{S} = \{(x_i, y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}$
- it holds that S is ϵ -representative.
- Corollary 4.4

If ${\cal H}$ has the uniform convergence property, then

- 1. the class is agnostically PAC learnable, and
- 2. h_S^{ERM} is a successful agnostic PAC learner for \mathcal{H} .
- Proof: From the definitions and Lemma 4.2.

Finite hypothesis classes

• Corollary 4.6 Let $\mathcal H$ be a finite hypothesis class, and assume that loss is in [0,1]. Then $\mathcal H$ enjoys the uniform convergence property, where we set

$$n = \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right\rceil$$

The class \mathcal{H} is therefore agnostically PAC learnable.

 Sketch of proof: Union bound over h ∈ H, plus Hoeffding's inequality,

$$P(|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| > \epsilon) \le 2 \exp(-2n\epsilon^2).$$

No free lunch

Theorem 5.1

- Consider any learning algorithm $h_{\mathcal{S}}$ for binary classification with 0/1 loss on some domain \mathcal{X} .
- Let $n < |\mathcal{X}|/2$ be the training set size.
- Then there exists a \mathcal{D} on $\mathcal{X} \times \{0,1\}$, such that y = f(x) for some f with probability 1, and
- with probability of at least 1/7 over the distribution of S,

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \geq 1/8.$$

- Intuition of proof:
 - Fix some set $\mathcal{C} \subset \mathcal{X}$ with $|\mathcal{C}| = 2n$,
 - consider \mathcal{D} uniform on \mathcal{C} , and corresponding to arbitrary mappings y = f(x).
 - Lower-bound worst case $L_{\mathcal{D}}(h_{\mathcal{S}})$ by the average of $L_{\mathcal{D}}(h_{\mathcal{S}})$ over all possible choices of f.
- Corollary 5.2 Let $\mathcal X$ be an infinite domain set and let $\mathcal H$ be the set of all functions from $\mathcal X$ to $\{0,1\}$. Then $\mathcal H$ is not PAC learnable.

Error decomposition

$$egin{aligned} L_{\mathcal{D}}(h_{\mathcal{S}}) &= \epsilon_{app} + \epsilon_{est} \ \epsilon_{app} &= \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \ \epsilon_{est} &= L_{\mathcal{D}}(h_{\mathcal{S}}) - \min_{h \in \mathcal{H}}. \end{aligned}$$

- Approximation error: ϵ_{app} .
- Estimation error: ϵ_{est} .
- Bias-complexity tradeoff: Increasing \mathcal{H} increases ϵ_{est} , but decreases ϵ_{app} .
- Learning theory provides bounds on $\epsilon_{\it est}$.

Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

Shattering

From now on, restrict to $y \in \{0, 1\}$.

Definition 6.3

- ullet A hypothesis class ${\cal H}$
- shatters a finite set $C \subset \mathcal{X}$
- if the restriction of \mathcal{H} to \mathcal{C} (denoted $\mathcal{H}_{\mathcal{C}}$)
- is the set of all functions from C to $\{0,1\}$.
- In this case: $|\mathcal{H}_C| = 2^{|C|}$.

VC dimension

Definition 6.5

- The VC-dimension of a hypothesis class \mathcal{H} , $VCdim(\mathcal{H})$,
- is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .
- ullet If ${\mathcal H}$ can shatter sets of arbitrarily large size
- ullet we say that ${\cal H}$ has infinite VC-dimension.

Corollary of the no free lunch theorem:

- Let \mathcal{H} be a class of infinite VC-dimension.
- Then \mathcal{H} is not PAC learnable.

Examples

- Threshold functions: $h(x) = \mathbf{1}(x \le c)$. VCdim = 1
- Intervals: $h(x) = \mathbf{1}(x \in [a, b])$. VCdim = 2
- Finite classes: $h \in \mathcal{H} = \{h_1, \dots, h_n\}$. $VCdim \leq \log_2(n)$
- *VCdim* is not always # of parameters: $h_{\theta}(x) = \lceil .5sin(\theta x) \rceil$, $\theta \in \mathbb{R}$. $VCdim = \infty$.

The Fundamental Theorem of Statistical learning

Theorem 6.7

- ullet Let ${\mathcal H}$ be a hypothesis class of functions
- from a domain \mathcal{X} to $\{0,1\}$,
- and let the loss function be the 0-1 loss.

Then, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. \mathcal{H} has a finite VC-dimension.

Proof

- 1. \rightarrow 2.: Shown above (Corollary 4.4).
- 2. \rightarrow 3.: Immediate.
- 3. \rightarrow 4.: By the no free lunch theorem.
- 4. \rightarrow 1.: That's the tricky part.
 - Sauer-Shelah-Perles's Lemma.
 - Uniform convergence for classes of small effective size.

Growth function

ullet The growth function of ${\cal H}$ is defined as

$$\tau_{\mathcal{H}}(n) := \max_{C \subset \mathcal{X}: |C| = n} |\mathcal{H}_C|.$$

• Suppose that $d = VCdim(\mathcal{H}) \leq \infty$. Then for $n \leq d$, $\tau_{\mathcal{H}}(n) = 2^n$ by definition.

Sauer-Shelah-Perles's Lemma

Lemma 6.10 For
$$d = VCdim(\mathcal{H}) \le \infty$$
,
$$\tau_{\mathcal{H}}(b) \le \max_{C \subset \mathcal{X}: |C| = n} |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$$
$$\le \sum_{i=0}^d \binom{n}{i} \le \left(\frac{en}{d}\right)^d.$$

- First inequality is the interesting / difficult one.
- Proof by induction.

Uniform convergence for classes of small effective size

Theorem 6.11

- ullet For all distributions ${\mathcal D}$ and every $\delta \in (0,1)$
- with probability of at least 1δ over draws of training samples $S = \{(x_i, y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}$,
- we have

$$\sup_{h\in\mathcal{H}}|L_{\mathcal{S}}(h)-L_{\mathcal{D}}(h)|\leq \frac{4+\sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}}.$$

Remark

- We already saw that uniform convergence holds for finite classes.
- This shows that uniform convergence holds for classes with polynomial growth of

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C|.$$

• These are exactly the classes with finite VC dimension, by the preceding lemma.