Exercise 9.5

1. Find each of the following products by using appropriate identities:

(i)
$$(x-y-1)(x^2+y^2+xy+x+y+1)$$

(i)
$$(x-y-1)(x+y+3y-2x)$$

(ii) $(2x-3y+1)(4x^2+9y^2+1+6xy+3y-2x)$

(ii)
$$(2x - 3y + 1)(4x + 6y + 1)(2a + b + 1)(4a^2 + b^2 + 1 - 2ab - b - 2a)$$

(iii) $(2a + b + 1)(4a^2 + b^2 + 1 - 2ab - b - 2a)$

(iii)
$$(2a+b+1)(4a^2+b^2+1)(2a+b+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+1)(4a^2+b^2+b^2+1)(4a^2+b^2+$$

(iv)
$$(3x-2y-2)$$
 (ix) $(3x-2y-2)$ (iii) $(x-y+2)(x^2+y^2+4+xy+2y-2x)$

(vi)
$$\left(x + \frac{1}{x} - 1\right)\left(x^2 + \frac{1}{x^2} + x + \frac{1}{x}\right)$$

(vii)
$$\left(x - \frac{1}{x} - 3\right) \left(x^2 + \frac{1}{x^2} + 10 - \frac{3}{x} + 3x\right)$$

Teach san ban

If l+m+n=0, then prove that $\frac{l^2}{mn}+\frac{m^2}{nl}+\frac{n^2}{lm}=3$.

Divide $27x^3 - 8y^3 - z^3 - 18xyz$ by 3x - 2y - z in any manner you like.

(i) If $x^2 + y^2 + z^2 = 40$ and xy + yz + zx = 12, then find the value of $x^3 + v^3 + z^3 - 3xyz$.

(ii) If x = 5, y = 7 and z = 15, find the value of $\frac{x^3 + y^3 + z^3 - 3xyz}{xy + yz + zx - x^2 - y^2 - z^2}$

Answers

1. (i)
$$x^3 - y^3 - 3xy - 1$$

(iii)
$$8a^3 + b^3 - 6ab + 1$$

(v)
$$x^3 - y^3 + 6xy + 8$$

(vii)
$$x^3 - \frac{1}{x^3} - 36$$

(ii)
$$8x^3 - 27y^3 + 1 + 18xy$$

(iv)
$$27x^3 - 8y^3 - z^3 - 18xyz$$

$$(vi) \ x^3 + \frac{1}{x^3} + 2$$

$$3. 9x^2 + 4y^2 + z^2 + 6xy + 3xz - 2yz$$

(ii)
$$-27$$