Ejercicios Teoría de los Conjuntos

<u>Ej</u>	ercicio I: Completar las siguientes oraciones:
1.	Dos conjuntos A y B son si y sólo si A \cap B = \emptyset .
2.	Si A es un conjunto definido por una proposición lógica P: $A = \{x/P(x)\}$, entonces se dice que A es
	definido por
3.	A es un de B si y sólo si $A \subset B$.
4.	$\{x \mid x \in A \land x \in B\}$ es lade A y B y se escribe
5.	Sea U el conjunto universal, la definición por comprensión del complemento de A se puede escribir de la manera siguiente: A ^c =
6.	Una relación R es un orden total si R es
7.	Sea R una relación de equivalencia sobre U, la clase de equivalencia de x se escribe por comprensión de la manera siguiente: $\{y \in U / \dots \dots \dots \dots \}$.
8.	Si existe una biyección $f: \mathbb{N} \to A$, entonces se dice que A es
	Card $\mathcal{P}(A) = \dots$
10	Sea $f: A \to B$ una función que verifica: $(\forall b \in B, \exists a \in A, f(a) = b)$, entonces f es
<u>Ej</u>	ercicio II: Rodear V si la afirmación es verdadera, y F si la afirmación es falsa.
\mathbf{V}	F 1/ Si Card (A) = 4 y Card (B) = 5 entonces Card (AxB) = 9
	$\mathbf{F} 2/ \ \mathbf{A} \ \Delta \ \mathbf{B} = \{ \mathbf{x} \in \mathbf{U} \ / \ \mathbf{x} \in \mathbf{A} \ \forall \ \mathbf{x} \in \mathbf{B} \}$
	F 3/ Si A = $\{x / P(x)\}\ y B = \{x / Q(x)\}\$, entonces A - B = $\{x \in U / P(x) \land \neg Q(x)\}\$
	F 4/ Una relación de equivalencia es siempre conexa.
	F 5/ $\{x \in \mathbb{R} \mid x \ge -4\} = [-4, +\infty[$
	F 6/ Si f es una función biyectiva entonces f es inyectiva.
	F 7/ Si $A \subseteq B$ y $B \subseteq A$ entonces $A = B$.
	F 8/ Sea A un conjunto, entonces $\emptyset \in A$.
	F 9/ $(1, 5, -6) \in \mathbb{Z}^4$
•	$(1, 3, -0) \in \mathbb{Z}^2$
F:	ercicio III: Sean U, A y B los conjuntos definidos de la manera siguiente:
	$= \{ n \in \mathbb{N} / 0 < n \le 9 \}, \qquad A = \{ n \in U / n \text{ par } \}, \qquad B = \{ n \in U / n \ge 5 \}$
	Escribir por extensión los conjuntos U, A y B:
	=
	=
	Completar con el símbolo adecuado (\in , \notin , \subset , \notin , etc.), las proposiciones siguientes:
	$ \dots A $
	B Ø A {3} B A ∩ B U
	Escribir por comprensión los conjuntos siguientes:
	$J B = \{ n \in U / \dots \dots$
	\cdot B = { $n \in U/$ }
	$= \{ n \in U / \dots \dots$
4/	Dibujar el diagrama de Venn representando A, B y U.
5/	Escribir por extensión los conjuntos siguientes:

A U B =
B - A =
$A^{c} \cap (B-\{8\}) = \dots$
$A^{c} \Delta B = \dots$
6/ Escribir el conjunto potencia de $C = \{1, 5, 7, 9\}$:
$\mathcal{F}(\mathbf{C}) = \dots$
Ejercicio IV: Sean $W = \{0, 1, 2\}$ y $U = W^2$, y sean A y B los subconjuntos de U definidos por comprensión d
la manera siguiente:
$A = \{ (x, y) \in U / x = 0 \}, $ $B = \{ (x, y) \in U / x + y = 2 \}$
Escribir por extensión los conjuntos U, A y B:
U =
A =
$\mathbf{B} = \dots$
Ejercicio V: Sean $U = \{a, b, c, d, e\}$, $A = \{a, b, c\}$ y $B = \{d, e\}$ y sea R la relación definida por:
$R = \{ (a, a), (b, b), (c, c), (d, e), (e, d), (a, b), (b, c), (a, c) \}.$
1/ Dibujar el gráfico de R.
2/ Tachar las palabras que son falsas:
Sobre U, R es: reflexiva, antireflexiva, simétrica, antisimétrica, transitiva, conexa.
Sobre A, R es: reflexiva, antireflexiva, simétrica, antisimétrica, transitiva, conexa.
Sobre B, R es: reflexiva, antireflexiva, simétrica, antisimétrica, transitiva, conexa.
3/ Completar lo siguiente para que T sea una relación de equivalencia sobre U:
T = R U {
4/ ¿Cuál es la clase de equivalencia de a con esta relación T?
5/ ¿Cuál es el cardinalidad de la clase de equivalencia de <i>e</i> con esta relación T?

Ejercicio VI: Sean f y g dos funciones definidas gráficamente de las maneras siguientes. Tachar a la derecha las palabras que son falsas y subrayar las que son verdaderas.

f es inyectiva, sobreyectiva, biyectiva

g es inyectiva, sobreyectiva, biyectiva

h es inyectiva, sobreyectiva, biyectiva

Ejercicio VII: Sea $U = \mathbb{R}$, y sean A y B dos subconjuntos de \mathbb{R} definidos por comprensión de la manera siguiente: $A = \{ x \in U / x > 1 \}$ y $B = \{ x \in U / -6 < x \le 4 \}$ 1/ Escribir A y B por extensión:
$A = $ $B = $ 2 / Hallar $A \cap B$ y $A \cup B$ por comprensión:
A ∩ B = =
A U B = =
3 / Hallar A - B y A ∪ B por extensión: A - B =
4/ Hallar A' por comprensión y por extensión:
A' =
Ejercicio VIII: Sean f y g las dos funciones definidas de la manera siguiente: $f: \mathbb{R} \to \mathbb{R}$ y $g: \mathbb{R} \to \mathbb{R}^+$
$x \to f(x) = 2x + 3 \qquad \qquad x \to g(x) = x^2$
1/¿Se pueden definir fog y gof? Justificar su respuesta
2/ Si se puede, hallar $(f \circ g)(x)$ y/o $(g \circ f)(x)$.
2 / Demostrar que f es biyectiva y hallar su función inversa f^{-1} .
3/ ¿Es g inyectiva? sobreyectiva? biyectiva? Justificar sus respuestas.
Ejercicio IX: Demostrar que el subconjunto de ℕ constituido de todos los múltiplos de 5 es numerable.