

<u>Course</u> > <u>Modul</u>... > <u>Graded</u>... > Graded...

Graded Review Questions

Graded Review Questions Instructions

- 1. Time allowed: Unlimited
 - We encourage you to go back and review the materials to find the right answer
 - Please remember that the Review Questions are worth 50% of your final mark.
- 2. Attempts per question:
 - One attempt For True/False questions
 - Two attempts For any question other than True/False
- 3. Clicking the "**Final Check**" button when it appears, means your submission is **FINAL**. You will **NOT** be able to resubmit your answer for that question ever again
- 4. Check your grades in the course at any time by clicking on the "Progress" ta

Question 1

1/1 point (graded)

Let x be a dataframe with 100 rows and 5 columns. Let y be the target with 100 samples. Assuming all the relevant libraries and data have been imported, the following line of code has been executed:

<pre>LR = LinearRegression()</pre>
LR.fit(X, y)
<pre>yhat = LR.predict(X)</pre>
How many samples does ghat contain?
<u> </u>
<u></u>
1 00
O 0

Question 4

1/1 point (graded)

The larger the mean squared error, the better your model performs:

False
○ True
Submit You have used 1 of 1 attempt
✓ Correct (1/1 point)
Question 5
1/1 point (graded) Assume all the libraries are imported. y is the target and X is the features or dependent variables. Consider the following lines of code:
Input=[('scale',StandardScaler()),('model',LinearRegression())]
pipe=Pipeline(Input)
pipe.fit(X,y)
ypipe=pipe.predict(X) What is the result of ypipe?
Polynomial transform, standardize the data, then perform a prediction using a linear regression model.
Standardize the data, then perform prediction using a linear regression model.
O Polynomial transform, then standardize the data.
✓
Submit You have used 1 of 2 attempts
✓ Correct (1/1 point)