Correction TD (TC7) Réactions d'oxydoréduction

5. Stabilisation du cuivre (I) par précipitation

 $\boxed{\mathbf{1}}$ Couple $\mathrm{Cu}^+/\mathrm{Cu}:\mathrm{Cu}^++e^-=\mathrm{Cu}$ donc

$$E = E_1^{\circ} + 0,059 \log[\text{Cu}^+]$$
 d'où $E_{\text{fr}} = E_1^{\circ} + 0,059 \log 1 = 0,52 \,\text{V}$.

Couple $\mathrm{Cu}^{2+}/\mathrm{Cu}^{+}:\mathrm{Cu}^{2+}+e^{-}=\mathrm{Cu}^{+}$ donc

$$E = E_2^\circ + 0.059 \log \frac{[\mathrm{Cu}^{2+}]}{[\mathrm{Cu}^+]} \qquad \text{d'où} \qquad E_{\mathrm{fr}} = E_2^\circ + 0.059 \log 1 = 0.16 \, \mathrm{V} \, .$$

On en déduit les diagrammes de prédominance :

On observe que Cu⁺ possède deux domaines disjoints : il est donc instable.

$$CuI + e^{-} = Cu + I^{-}$$
 et $Cu^{2+} + I^{-} + e^{-} = CuI$.

3 Pour les couples impliquant le précipité, la loi de Nernst s'écrit

$$E = E_3^{\circ} + 0.059 \log \frac{1}{[I^{-}]}$$
 et $E = E_4^{\circ} + 0.059 \log \frac{[Cu^{2+}][I^{-}]}{1}$

Comme le précipité CuI est par hypothèse présent (sinon écrire les demi-équations n'aurait aucun sens!), la concentration $[I^-]$ peut être reliée au produit de solubilité,

$$[\mathrm{Cu}^+][\mathrm{I}^-] = K_\mathrm{s} \qquad \mathrm{donc} \qquad [\mathrm{I}^-] = \frac{K_\mathrm{s}}{[\mathrm{Cu}^+]} \,.$$

Pour relier les potentiels standard les uns aux autres, utilisons l'unicité du potentiel en solution. D'abord,

$$E = E_1^{\circ} + 0.059 \log[\text{Cu}^+] = E_3^{\circ} + 0.059 \log \frac{1}{[\text{I}^-]}$$

et en introduisant le produit de solubilité

$$E_1^{\circ} + 0.059 \log[\text{Cu}^+] = E_3^{\circ} + 0.059 \log\frac{[\text{Cu}^+]}{K_s}$$

ce qui permet d'identifier

$$E_3^{\circ} = E_1^{\circ} - 0.059 \,\mathrm{p} K_{\mathrm{s}} = -0.14 \,\mathrm{V} \,.$$

De même,

$$E_2^{\circ} + 0.059 \log \frac{[\mathrm{Cu}^{2+}]}{[\mathrm{Cu}^{+}]} = E_4^{\circ} + 0.059 \log \left([\mathrm{Cu}^{2+}] \, [\mathrm{I}^{-}]\right) = E_4^{\circ} + 0.059 \log \frac{[\mathrm{Cu}^{2+}] K_\mathrm{s}}{[\mathrm{Cu}^{+}]}$$

d'où par identification

$$E_4^{\circ} = E_2^{\circ} + 0.059 \mathrm{p} K_{\mathrm{s}} = 0.82 \, \mathrm{V} \, .$$

4 Traçons les diagrammes de prédominance pour les couples impliquant le précipité.

Les deux domaines de stabilité du cuivre au NO +I, ceux du précipité, sont maintenant superposés. Le précipité est donc stable, ou en d'autres termes le cuivre (I) a été stabilisé par précipitation.

6. Pile alcaline

1 - Pour le couple ZnO/Zn, la demi-équation associée est :

$$ZnO + 2e^- + 2H^+ = Zn + H_2O$$

Le potentiel de Nernst vaut alors :

$$E_{(ZnO/Zn)} = E^{\circ}(ZnO/Zn) + 0.03 \log[H^{+}]^{2} = E^{\circ}(ZnO/Zn) - 0.06 pH$$

Application numérique : $E_{(ZnO/Zn)} = -2,72 \text{ V}$

$$E_{\rm (ZnO/Zn)} = -2,72 \text{ V}$$

Pour le couple $\rm MnO_2/Mn_2O_3$, la demi-équation associée est :

$$2\text{MnO}_2 + 2\text{e}^- + 2\text{H}^+ = \text{Mn}_2\text{O}_3 + \text{H}_2\text{O}$$

Le potentiel de Nernst vaut alors :

$$E_{(MnO_2/Mn_2O_3)} = E^{\circ}(MnO_2/Mn_2O_3) + 0,03\log[H^+]^2$$

soit

$$E_{(MnO_2/Mn_2O_3)} = E^{\circ}(MnO_2/Mn_2O_3) - 0,06pH$$

Application numérique:

$$E_{(MnO_2/Mn_2O_3)} = -1,22 \text{ V}$$

Les demi-équations ont été équilibrées en milieu acide (H+) bien que le milieu soit basique car les potentiels standards sont données avec cette convention.

2 - L'anode est alors l'électrode de zinc et la cathode l'électrode de Mn₂O₃. La f.e.m de la pile vaut

$$\boxed{E = E_{(MnO_2/Mn_2O_3)} - E_{(ZnO/Zn)} = 1,5 \text{ V}}$$

L'équation de fonctionnement correspond à l'oxydation du zinc et à la réduction de MnO₂, en simplifiant les électrons, il vient :

$$\boxed{\mathrm{Zn} + 2\mathrm{MnO}_2 = \mathrm{ZnO} + \mathrm{Mn}_2\mathrm{O}_3}$$

3 - D'après la relation $i=rac{\mathrm{d}q}{\mathrm{d}t}$, en $\Delta t=1$ h, la pile a échangé une charge :

$$Q = i\Delta t$$

Le quantité d'électrons échangés vaut donc :

$$n_{\mathrm{e}^{-}} = \frac{\mathrm{Q}}{e \mathrm{Na}}$$

d'où

$$n_{\rm e^-} = \frac{i\Delta t}{e{\rm Na}} = \frac{16,5\times3600}{1,6.10^{-19}\times6,02.10^{23}} = 0,62~{\rm mol}$$

Or d'après la première demi-équation électronique, cette quantité correspond à la moitié de celle de zinc. De même, d'après la seconde demi-équation, il s'agit de la même quantité de d'oxyde de magnésium.

Ainsi,

$$n_{\mathrm{Zn}}=0,31\ \mathrm{mol}$$
 et $n_{\mathrm{Mn}}=0,62\ \mathrm{mol}$

Le poids minimal de la pile est donc de

$$m_{mini} = n_{\mathrm{Z}n} \mathbf{M}_{\mathrm{Z}n} + n_{\mathrm{M}n\mathrm{O}_2} + \mathbf{M}_{\mathrm{M}n\mathrm{O}_2}$$

d'où

$$m_{mini} = 74 \text{ g}$$

En réalité ce type de pile pèse 300 g. Une grande partie de la masse est constituée d'un gel dans lequel est dispersé l'oxyde de Magnésium.

7. Pile de concentration

1. a) À l'électrode notée (1) le potentiel de Nernst vaut
$$E_1 = E^{\circ} + \frac{0.06}{2} \log([\text{Fe}^{2+}]_1)$$

AN
$$\overline{E_1 = -0.47 \text{ V}}$$
. Pour le deuxième compartiment l'application numérique donne $\overline{E_2 = -0.50 \text{ V}}$.

- **b)** L'électrode dont le potentiel le plus élevé correspond au pôle + de la pile, donc à la cathode il s'agit donc de l'électrode du premier compartiment. On observe donc :
- dans le compartiment 1 (cathode) : $Fe_{(1)}^{2+} + 2e^- = Fe_{(1)}$;
- dans le compartiment 2 (anode) : $Fe_{(2)} = Fe_{(2)}^{2+} + 2e^{-}$.

Bilan:
$$Fe_{(1)}^{2+} + Fe_{(2)} = Fe_{(1)} + Fe_{(2)}^{2+}$$

c) La pile débite jusqu'à ce que les potentiels de la cathode et de l'anode soit égaux, ce qui se traduit par l'égalité des concentrations en Fe^{2+} dans chaque compartiment. À l'équilibre $[Fe^{2+}]_{1,\text{éq}} = [Fe^{2+}]_{2,\text{éq}} \Leftrightarrow [Fe^{2+}]_1 - x = [Fe^{2+}]_2 + x$ en notant x l'avancement de la transformation

à l'équilibre, d'où
$$x = \frac{[Fe^{2+}]_1 - [Fe^{2+}]_2}{2}$$
 et $[Fe^{2+}]_{1,\text{éq}} = [Fe^{2+}]_{2,\text{éq}} = \frac{[Fe^{2+}]_1 + [Fe^{2+}]_2}{2}$.
AN $[Fe^{2+}]_{1,\text{éq}} = [Fe^{2+}]_{2,\text{éq}} = 5,5 \cdot 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$.

8. Titrage potentiométrique

1. Pour le fer, la demi-équation redox est : $Fe^{2+} = Fe^{3+} + e^{-}$. Le potentiel du couple est :

$$E_{\text{Fe}^{3+}/\text{Fe}^{2+}} = E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} + \frac{0.059}{1} \log \frac{[\text{Fe}^{3+}]}{[\text{Fe}^{2+}]}$$

Pour le cérium, la demi-équation redox est : $Ce^{4+} + e^{-} = Ce^{3+}$. Le potentiel du couple est :

$$E_{\text{Ce}^{4+}/\text{Ce}^{3+}} = E_{\text{Ce}^{4+}/\text{Ce}^{3+}}^{\circ} + \frac{0,059}{1} \log \frac{[\text{Ce}^{4+}]}{[\text{Ce}^{3+}]}$$

2. La réaction du dosage est $\mathrm{Fe}^{2+} + \mathrm{Ce}^{4+} = \mathrm{Fe}^{3+} + \mathrm{Ce}^{3+}$. Pour obtenir sa constante d'équilibre, on écrit l'égalité des potentiels : $E_{\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}} = E_{\mathrm{Ce}^{4+}/\mathrm{Ce}^{3+}}$. On obtient après calcul :

$$\frac{[\mathrm{Fe^{3+}}][\mathrm{Ce^{3+}}]}{[\mathrm{Fe^{2+}}][\mathrm{Ce^{4+}}]} = 10^{\frac{E^{\circ}_{\mathrm{Ce^{4+}/Ce^{3+}}} - E^{\circ}_{\mathrm{Fe^{3+}/Fe^{2+}}}}{0.059}} = 10^{13}$$

La constante est extrêmement grande; la réaction du dosage est donc quantitative. Lorsque Ce⁴⁺ est en défaut (avant l'équivalence), l'avancement (en mol) est égal à la quantité de Ce⁴⁺ versé.

- 3. Le potentiel de l'électrode de platine est $E = E_{\text{Fe}^{3+}/\text{Fe}^{2+}} = E_{\text{Ce}^{4+}/\text{Ce}^{3+}}$. À chaque équilibre avant l'équivalence, la concentration [Fe²⁺] diminue alors que [Fe³⁺] augmente, ce qui fait un peu augmenter le potentiel. À l'équivalence, Fe²⁺ disparaît complètement et [Ce⁴⁺] augmente fortement, ce qui a pour conséquence une forte augmentation du potentiel.
- 4. On relève sur la courbe $v_{2,eq} = 19,5\,\mathrm{mL}$. D'après l'équation de la réaction du dosage, la quantité de Ce^{4+} apportée à l'équivalence est égale à la quantité de Fe^{2+} initialement présente dans le volume v_1 de la solution de sulfate de fer. On a donc $c_1v_1 = c_2v_{2,eq}$. La concentration de la solution de sulfate de cérium est $c_2 = 1,011/409,29 \times 4 = 1,000 \cdot 10^{-2}\,\mathrm{mol} \cdot \mathrm{L}^{-1}$. On en déduit la concentration de la solution de sulfate de fer $c_1 = 9,75 \cdot 10^{-3}\,\mathrm{mol} \cdot \mathrm{L}^{-1}$.
- 5. On fait un tableau d'avancement, en reportant les nombres de moles :

Le potentiel est donc :

$$E = E_{\text{Fe}^{3+}/\text{Fe}^{2+}} = E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} + 0.059 \log \left(\frac{c_2 v_2}{c_1 v_1 - c_2 v_2} \right) = E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} + 0.059 \log \left(\frac{v_2}{v_{2,eq} - v_2} \right)$$

Pour $v_2 = v_{2,eq}/2$, on a $E = E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = 0.68 \,\text{V}$. Ce qui est en accord avec la courbe de dosage.

9. Nombres d'oxydation du soufre

- 1 Le soufre étant moins électronégatif que l'oxygène, raisonnons en attribuant un NO de -II à chaque oxygène présent dans l'édifice.
- $\begin{array}{l} {\color{red}\triangleright} \ \ \text{Pour SO}_2: \text{NO(S)} + 2 \, \text{NO(O)} = \text{NO(S)} 4 = 0 \ \text{d'où NO(S)} = + \text{IV} \,; \\ {\color{red}\triangleright} \ \ \text{Pour SO}_4^{2-}: \text{NO(S)} + 4 \, \text{NO(O)} = \text{NO(S)} 8 = -2 \ \text{d'où NO(S)} = + \text{VI} \,; \end{array}$
- \triangleright Pour SO₃: NO(S) + 3 NO(O) = NO(S) 6 = 0 d'où NO(S) = +VI.
- réagir ... mais vous avez beau vérifier votre calcul (si si vous l'avez fait), il semble juste.

$\boxed{3}$ Thiosulfate $S_2O_3^{2-}$:

- ▶ Décompte des électrons de valence :
 - \rightarrow O: $1s^2 2s^2 2p^4$ donc 6 électrons de valence;
 - \rightarrow S : même famille donc 6 électrons de valence également avec possibilité d'hypervalence;
 - \rightarrow on n'oublie pas la charge;
 - \rightarrow Total : $2 \times 6 + 3 \times 6 + 2 = 32$ électrons soit 16 doublets.
- ▶ Méthode simple :

Tétrathionate $S_4O_6^{2-}$: immédiat par rapport au schéma de Lewis précédent.

4 L'écriture des schémas de Lewis montre qu'il existe des liaisons S=S, donc symétriques, pour lesquelles le NO se calcule en attribuant la moitié des électrons de la liaison à chaque atome de soufre. On en déduit que le soufre est présent à des nombres d'oxydation différents dans ces édifices : les atomes de soufre centraux ont un NO de +IV alors que les atomes de soufre périphériques ont un NO de 0. Le NO calculé à la question 2 correspond au NO moyen des atomes de soufre dans l'édifice.

10. Domaines de prédominance

1. 1,80 Ce⁴⁺ Ce³⁺

Co³⁺ Co²⁺ 1,74 E(V)

Ce³⁺ + Co³⁺ = Ce⁴⁺ + Co²⁺

$$K^0 = 10$$

2) a) Concentrations apportées:

[Ce³⁺] = 0,100 mol.L⁻¹; [Co³⁺] = 0,200 mol.L⁻¹.

À l'équilibre: [Ce⁴⁺] = [Co²⁺] = 0,092 mol.L⁻¹;

[Ce³⁺] = 7,9.10⁻³ mol.L⁻¹; [Co³⁺] = 0,108 mol.L⁻¹;

 $E(Co^{3+}/Co^{2+}) = E(Ce^{4+}/Ce^{3+}) = 1,80 \text{ V}.$