Towards regular separability of Petri net languages

L. Clemente, W. Czerwiński, S. Lasota (University of Warsaw) Ch. Paperman (University of Bordeaux)

Reykjavík, June 2017

At a glance

Problem: Regular separability.

Model: Languages recognised by Petri nets

and related formalisms.

Results: Decidability for restricted subclasses.

Open for Petri nets.

Main technical ideas

Our results on regular separability are based on the following techniques:

- Deterministic = nondeterministic.
- 2. Reduce to separability of bounded languages.

The following problems are inter-reducible:

- Separability of bounded languages.
- Separability of commutative languages.
- Separability of sets of vectors.
- 3. Regular partitioning.

A = Heimaey

A = Heimaey

B = lava from the volcano Eldfell winter 1973

A = Heimaey Eldfell 4

R = Sea water

B = lava from the volcano Eldfell winter 1973

Regular separability

Regular separability

Motivation

- Separability gives a certificate of disjointness.
 - Verifying that R is a separator is decidable*.
 - The separator yields a "simple reason" for disjointness.

*Under the assumption that the class of languages is closed under intersection with regular languages and has a decidable emptiness problem.

Motivation

- Separability gives a certificate of disjointness.
 - Verifying that R is a separator is decidable*.
 - The separator yields a "simple reason" for disjointness.
- Separability can be used to circumvent undecidability of disjointness:
 - Disjointness of two CFLs is undecidable.
 - Separability by piecewise-testable languages of CFLs is decidable
 [Czerwiński, Martens, van Rooijen, Zeitoun '15].

*Under the assumption that the class of languages is closed under intersection with regular languages and has a decidable emptiness problem.

Motivation

- Separability gives a certificate of disjointness.
 - Verifying that R is a separator is decidable*.
 - The separator yields a "simple reason" for disjointness.
- Separability can be used to circumvent undecidability of disjointness:
 - Disjointness of two CFLs is undecidable.
 - Separability by piecewise-testable languages of CFLs is decidable
 [Czerwiński, Martens, van Rooijen, Zeitoun '15].
- For classes closed under complement, regular separability generalises the *regularity problem*.

^{*}Under the assumption that the class of languages is closed under intersection with regular languages and has a decidable emptiness problem.

Regularity

Regularity

Regularity vs. Separability

A is regular

iff

A is regular separable from its complement

Regularity vs. Separability

• For classes closed under complement, regular separability generalises the *regularity problem*.

Regularity vs. Separability

- For classes closed under complement, regular separability generalises the *regularity problem*.
- For classes not closed under complement, the two problems behave rather differently:
 - Regularity is very sensitive to determinism (decidable) vs. nondeterminism (undecidable).
 - Separability is insensitive in this respect:
 it always reduces to the deterministic case.

Regularity w.r.t. nondeterminism

Deterministic

DCFL [Stearns '67]

Petri nets [Valk, Vidal-Niquet '81]

decidable

Regularity w.r.t. nondeterminism

Deterministic

DCFL [Stearns '67]

Petri nets [Valk, Vidal-Niquet '81]

decidable

Nondeterministic

1-counter nets (no zero test), even reversal bounded

undecidable

(reduction from universality)

Separability is *insensitive* to nondeterminism:

$$p \xrightarrow{p \xrightarrow{a} q} q$$

$$r \xrightarrow{p \xrightarrow{a} q} s$$

Separability is *insensitive* to nondeterminism:

$$p \xrightarrow{p \xrightarrow{a} q} q$$

$$r \xrightarrow{p \xrightarrow{a} q} s$$

Separability is *insensitive* to nondeterminism:

$$p \xrightarrow{p \xrightarrow{a} q} q$$

$$r \xrightarrow{p \xrightarrow{a} q} s$$

Separability is *insensitive* to nondeterminism:

Separability is *insensitive* to nondeterminism:

Separability is *insensitive* to nondeterminism:

Separability is *insensitive* to nondeterminism: It reduces to the deterministic case [C., Czerwiński, Lasota, Paperman ICALP'17].

Ingredients:

- A is the homomorphic image of a *deterministic* Â. (The same for B.)
- Separability is invariant w.r.t. inverse homomorphic images.
- Regular languages are closed under inverse homomorphic images.
- A, B belong to a class closed under inverse homomorphic images.

CFL [Szymanski, Williams '76]

CFL [Szymanski, Williams '76]

VPL [Kopczyński LICS'16]

- CFLs are the homomorphic images of deterministic CFLs.
- CFLs are closed under inverse homomorphic images.

CFL [Szymanski, Williams '76]

VPL [Kopczyński LICS'16]

- CFLs are the homomorphic images of deterministic CFLs.
- CFLs are closed under inverse homomorphic images.

VPL [Kopczyński LICS'16]

CFL [Szymanski, Williams '76]

1CA
[Czerwiński, Lasota LICS'17]

- CFLs are the homomorphic images of deterministic CFLs.
- CFLs are closed under inverse homomorphic images.

VPL [Kopczyński LICS'16]

- 1CAs are the homomorphic images of deterministic 1CAs.
- 1CAs are closed under inverse homomorphic images.

CFL [Szymanski, Williams '76]

1CA
[Czerwiński, Lasota LICS'17]

Deterministic 1CA
[C., Czerwiński, Lasota,
Paperman ICALP'17]

1. 1CN [Czerwiński, Lasota LICS'17].

Via the Regular Overapproximation technique

→ Wojtek Czerwiński's talk on Tue 4A 2:05pm.

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

2. PN(Z) [C., Czerwiński, Lasota, Paperman ICALP'17].

Decidable separability

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

- 2. PN(Z) [C., Czerwiński, Lasota, Paperman ICALP'17].
- 3. ©(PN): commutative closure of PN languages [C., Czerwiński, Lasota, Paperman STACS'17].

Decidable separability

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

- 2. PN(Z) [C., Czerwiński, Lasota, Paperman ICALP'17].
- 3. ©(PN): commutative closure of PN languages [C., Czerwiński, Lasota, Paperman STACS'17].

Reduction to the case of bounded languages $L \subseteq a*b*$.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

Regular languages vs. Unary sets

Unary sets correspond to finite-memory counting separately in each coordinate.

- Let $i \in \mathbb{N}$. Vectors $u, v \in \mathbb{N}^d$ are *i-unary equivalent* $u \equiv_i v$ if $\forall 1 \le k \le d$,
 - Equivalent modulo i: $u[k] \equiv v[k]$ mod i.
 - Either both big, or both small: $u[k] \ge i$ iff $v[k] \ge i$.
- A subset of \mathbb{N}^d is unary if it is the union of i-unary classes, for some $i \in \mathbb{N}$.

Regular languages vs. Unary sets

Unary sets correspond to finite-memory counting separately in each coordinate.

- Let $i \in \mathbb{N}$. Vectors $u, v \in \mathbb{N}^d$ are *i-unary equivalent* $u \equiv_i v$ if $\forall 1 \le k \le d$,
 - Equivalent modulo i: $u[k] \equiv v[k]$ mod i.
 - Either both big, or both small: $u[k] \ge i$ iff $v[k] \ge i$.
- A subset of \mathbb{N}^d is unary if it is the union of i-unary classes, for some $i \in \mathbb{N}$.

Connections between unary sets and commutative/bounded regular languages:

- The Parikh image of a commutative regular language is unary.
- The Parikh image of a bounded regular language \subseteq a*b* is unary.
- The inverse Parikh image of a unary set is a commutative regular language.

Unary sets correspond to commutative/bounded regular languages

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2:

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2:

Let A, B commutative.

Define:

$$A' = A \cap a*b*$$

$$B' = B \cap a*b*$$
.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2:

Let A, B commutative.

Define:

$$A' = A \cap a*b*$$

$$B' = B \cap a*b*$$
.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2:

Let A, B commutative.

$$A' = A \cap a*b*, B' = B \cap a*b*.$$

(\Rightarrow) If R separates A, B, then R ∩ a*b* separates A', B'.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2:

Let A, B commutative.

$$A' = A \cap a*b*, B' = B \cap a*b*.$$

(⇐) Let R separate A', B'.

The following problems are mutually inter-reducible:

1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.

a*b*

2. Regular separability of *bounded* languages \subseteq a*b*.

3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$. $\mathbb{C}(R \cap a^*b^*)$

1→2:

Let A, B commutative.

$$A' = A \cap a*b*, B' = B \cap a*b*.$$

 (\Leftarrow) Let R separate A', B'.

Then the commutative closure of $R \cap a^*b^*$ separates A, B.

Hint: A equals the commutative closure of A'.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2 ✓□.

The following problems are mutually inter-reducible:

- Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- Regular separability of bounded languages \subseteq a*b*.
- *Unary* separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1 \rightarrow 2 \checkmark \square$$
. $2 \rightarrow 3$:
Let A. B \subseteq a*b* bounded.

Let A, B \subseteq a*b* bounded.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1\rightarrow 2 \checkmark \square$$
. $2\rightarrow 3$:

Let A, B \subseteq a*b* bounded.

Consider their Parikh images $\Pi(A)$, $\Pi(B)$.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

 $1 \rightarrow 2 \checkmark \square$, $2 \rightarrow 3$:

Let A, B \subseteq a*b* bounded.

Consider their Parikh images $\Pi(A)$, $\Pi(B)$.

 (\Rightarrow) If R separates A, B

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$,

 $1 \rightarrow 2 \checkmark \square$, $2 \rightarrow 3$:

Let A, B \subseteq a*b* bounded.

Consider their Parikh images $\Pi(A)$, $\Pi(B)$.

(⇒) If R ⊆ a*b* separates A, B, then $\Pi(R)$ is unary and separates $\Pi(A)$, $\Pi(B)$.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

 $1 \rightarrow 2 \checkmark \square$. $2 \rightarrow 3$:

Let A, B \subseteq a*b* bounded.

Consider their Parikh images $\Pi(A)$, $\Pi(B)$.

 (\Leftarrow) If U unary separates $\Pi(A)$, $\Pi(B)$

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1 \rightarrow 2 \checkmark \square$$
. $2 \rightarrow 3$:

Let A, B \subseteq a*b* bounded.

Consider their Parikh images $\Pi(A)$, $\Pi(B)$.

(⇐) If U unary separates $\Pi(A)$, $\Pi(B)$, then $\Pi^{-1}(U)$ is regular and separates A, B.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1\rightarrow 2 \checkmark \square$$
, $2\rightarrow 3 \checkmark \square$.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1 \rightarrow 2 \checkmark \square$$
. $2 \rightarrow 3 \checkmark \square$. $3 \rightarrow 1$:
Let X, Y $\subseteq \mathbb{N}^2$

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

1→2
$$\checkmark$$
□. 2→3 \checkmark □. 3→1:
Let X, Y \subseteq \mathbb{N}^2

Consider $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1 \rightarrow 2 \checkmark \square$$
. $2 \rightarrow 3 \checkmark \square$. $3 \rightarrow 1$:
Let X, Y $\subseteq \mathbb{N}^2$

Consider $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

(⇒) If U unary separates X, Y

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1\rightarrow 2$$
 \checkmark \square . $2\rightarrow 3$ \checkmark \square . $3\rightarrow 1$:
Let X, Y $\subseteq \mathbb{N}^2$

Consider $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

(⇒) If U unary separates X, Y, then $\Pi^{-1}(U)$ is regular and separates $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*) $x \cdot y^{\wedge} \omega \cdot z \in R$ iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*)
$$x \cdot y^{\wedge} \omega \cdot z \in R$$
 iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

(\Leftarrow) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$. Then $\Pi(R)$ is unary and separates X, Y. Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e., $(*) \times y^{\circ} \omega \cdot z \in R$ iff $x \cdot y^{\circ} 2\omega \cdot z \in R$

(\Leftarrow) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$. Then $\Pi(R)$ is unary and separates X, Y. Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e., $(*) \times y^{\wedge} \omega \cdot z \in R$ iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*) $x \cdot y^{\wedge} \omega \cdot z \in R$ iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

(\Leftarrow) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$. Then $\Pi(R)$ is unary and separates X, Y. Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e., $(*) \times y^* \omega \cdot z \in R$ iff $x \cdot y^* 2\omega \cdot z \in R$

Then, $U := \{ u \in \mathbb{N}^d \mid \exists x \in X . u \equiv \omega x \}$ is unary and separates X, Y.

• $X \subseteq U$ is obvious.

(\Leftarrow) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$. Then $\Pi(R)$ is unary and separates X, Y. Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e., (*) $x \cdot y^{\wedge} \omega \cdot z \in R$ iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

- $X \subseteq U$ is obvious.
- U is disjoint with Y: If there was a vector y in U and in Y, then there would be a vector x in X s.t. $x \equiv \omega$ y.

(\Leftarrow) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$. Then $\Pi(R)$ is unary and separates X, Y. Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e., (*) $x \cdot y^{\wedge} \omega \cdot z \in R$ iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

- X ⊆ U is obvious.
- U is disjoint with Y: If there was a vector y in U and in Y, then there would be a vector x in X s.t. $x \equiv \omega$ y.

(←) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*)
$$x \cdot y^{\wedge} \omega \cdot z \in R$$
 iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

- $X \subseteq U$ is obvious.
- U is disjoint with Y: If there was a vector y in U and in Y, then there would be a vector x in X s.t. $x \equiv \omega$ y. Consider the words

$$\alpha = a^x[0] b^x[1] \in \Pi^{-1}(X)$$
 and $\beta = a^y[0] b^y[1] \in \Pi^{-1}(Y)$.

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*)
$$x \cdot y^{\wedge} \omega \cdot z \in R$$
 iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

Then, $U := \{ u \in \mathbb{N}^d \mid \exists x \in X : u \equiv \omega x \}$ is unary and separates X, Y.

- $X \subseteq U$ is obvious.
- U is disjoint with Y: If there was a vector y in U and in Y, then there would be a vector x in X s.t. $x \equiv \omega$ y. Consider the words

$$\alpha = a^x[0] b^x[1] \in \Pi^{-1}(X)$$
 and $\beta = a^y[0] b^y[1] \in \Pi^{-1}(Y)$.

By (*), $\alpha \in R$ iff $\beta \in R$.

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*)
$$x \cdot y^{\wedge} \omega \cdot z \in R$$
 iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

Then, $U := \{ u \in \mathbb{N}^d \mid \exists x \in X . u \equiv \omega x \}$ is unary and separates X, Y.

- $X \subseteq U$ is obvious.
- U is disjoint with Y: If there was a vector y in U and in Y, then there would be a vector x in X s.t. $x \equiv \omega$ y. Consider the words

$$\alpha = a^x[0] b^x[1] \in \Pi^{-1}(X)$$
 and $\beta = a^y[0] b^y[1] \in \Pi^{-1}(Y)$.

By (*), $\alpha \in \mathbb{R}$ iff $\beta \in \mathbb{R}$. Since $\alpha \in \mathbb{R}$, we get $\beta \in \mathbb{R}$. Contradiction!

(⇐) Let R be a regular separator of $\Pi^{-1}(X)$, $\Pi^{-1}(Y)$.

Then $\Pi(R)$ is unary and separates X, Y.

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*)
$$x \cdot y^{\wedge} \omega \cdot z \in R$$
 iff $x \cdot y^{\wedge} 2\omega \cdot z \in R$

Then, $U := \{ u \in \mathbb{N}^d \mid \exists x \in X : u \equiv \omega x \}$ is unary and separates X, Y.

- $X \subseteq U$ is obvious.
- U is disjoint with Y: If there was a vector y in U and in Y, then there would be a vector x in X s.t. $x \equiv \omega$ y. Consider the words

$$\alpha = a^x[0] b^x[1] \in \Pi^{-1}(X)$$
 and $\beta = a^y[0] b^y[1] \in \Pi^{-1}(Y)$.

By (*), $\alpha \in \mathbb{R}$ iff $\beta \in \mathbb{R}$. Since $\alpha \in \mathbb{R}$, we get $\beta \in \mathbb{R}$. Contradiction!

The following problems are mutually inter-reducible:

- 1. Regular separability of *commutative* languages $\subseteq \{a, b\}^*$.
- 2. Regular separability of *bounded* languages \subseteq a*b*.
- 3. Unary separability of sets of vectors $\subseteq \mathbb{N}^2$.

$$1 \rightarrow 2 \checkmark \square$$
. $2 \rightarrow 3 \checkmark \square$. $3 \rightarrow 1 \checkmark \square$.

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

- 2. ©(PN): commutative closure of PN languages [C., Czerwiński, Lasota, Paperman STACS'17].
- 3. PN(Z) [C., Czerwiński, Lasota, Paperman ICALP'17].

Regular separability of ©(PN)

Let A, B $\subseteq \Sigma^*$ be PN languages (acceptance by final configuration). By the previous reduction:

regular separability of the commutative closures
$$\mathbb{G}$$
 unary separability of the Parikh images Π (A), $\mathbb{G}(B) \subseteq \Sigma^*$ (A), $\Pi(B) \subseteq \mathbb{N}^d$

Regular separability of ©(PN)

Let A, B $\subseteq \Sigma^*$ be PN languages (acceptance by final configuration). By the previous reduction:

(projections of) PN reachability sets

- Add d extra components.
- Increment i-th extra component when reading a_i.
- Project away the other components.

Regular separability of ©(PN)

Let A, B $\subseteq \Sigma^*$ be PN languages (acceptance by final configuration). By the previous reduction:

- Add d extra components.
- Increment i-th extra component when reading a_i.
- Project away the other components.

unary separability of PN reachability sets

Positive separability witness: Unary separator.

Positive separability witness: Unary separator.

Negative separability witness:

Non-separable *linear* subsets $X \subseteq A$, $Y \subseteq B$.

(Linear set: b + P*, for a base b and a finite set of periods P.)

Positive separability witness: Unary separator.

Negative separability witness:

Non-separable *linear* subsets $X \subseteq A$, $Y \subseteq B$.

(Linear set: b + P*, for a base b and a finite set of periods P.)

Positive separability witness: Unary separator.

Negative separability witness:

Non-separable *linear* subsets $X \subseteq A$, $Y \subseteq B$.

- Checking unary separability of linear sets is decidable [Choffrut, Grigorieff IPL'06].
- Checking inclusion of a linear set into a PN reachability set is decidable [Leroux LICS'13].

(Linear set: $b + P^*$, for a base b and a finite set of periods P.)

Characterisation:

Two sets A, B $\subseteq \mathbb{N}^d$ are *not* unary separable iff there exists an infinite sequence of pairs (u_i, v_i) s.t. $u \equiv_i v$.

Negative separability witness:

Non-separable *linear* subsets $X \subseteq A$, $Y \subseteq B$.

(Linear set: b + P*, for a base b and a finite set of periods P.)

Characterisation:

Two sets A, B $\subseteq \mathbb{N}^d$ are *not* unary separable iff there exists an infinite sequence of pairs (u_i, v_i) s.t. $u \equiv_i v$.

Negative separability witness:

Non-separable *linear* subsets $X \subseteq A$, $Y \subseteq B$.

• X is obtained by "folding" the infinite sequence u_i into a linear set.

 Tool: wqo on PN runs to extract base + finitely many periods.

(Linear set: $b + P^*$, for a base b and a finite set of periods P.)

Theorem. Unary separability of PN reachability sets is decidable [C., Czerwiński, Lasota, Paperman STACS'17].

Theorem. Unary separability of PN reachability sets is decidable

[C., Czerwiński, Lasota, Paperman STACS'17].

Theorem. Regular separability of commutative closures of PN languages

is decidable

[C., Czerwiński, Lasota, Paperman STACS'17].

Theorem. Commutative regular separability of PN languages is decidable

[C., Czerwiński, Lasota, Paperman STACS'17].

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

- 2. ©(PN): commutative closure of PN languages [C., Czerwiński, Lasota, Paperman STACS'17]. ✓□
- 3. PN(Z) [C., Czerwiński, Lasota, Paperman ICALP'17].

Regular separability of PN(Z)

Regular separability of PN(図)

Parikh automaton (PA) [Klaedke, Rueß ICALP'03]: NFA A = $(\Sigma, \mathbb{Q}, \mathbb{I}, \mathbb{F}, \Delta)$ + semilinear acceptance condition $\mathbb{S} \subseteq \mathbb{N}^{\wedge} |\Delta|$ on transitions.

• L(A, S) = $\pi(\text{Runs}(A) \cap \Pi^{-1}(S))$. (π returns the word labelling a run.)

Parikh automaton (PA) [Klaedke, Rueß ICALP'03]: NFA A = $(\Sigma, \mathbb{Q}, \mathbb{I}, \mathbb{F}, \Delta)$ + semilinear acceptance condition $\mathbb{S} \subseteq \mathbb{N}^{\wedge} |\Delta|$ on transitions.

- L(A, S) = $\pi(\text{Runs}(A) \cap \Pi^{-1}(S))$. (π returns the word labelling a run.) Since *separability is insensitive to nondeterminism*, we can assume DFA.
- $L(A, S) = Runs(A) \cap \Pi^{-1}(S) = Regular \cap Commutative.$

Parikh automaton (PA) [Klaedke, Rueß ICALP'03]: NFA A = $(\Sigma, Q, I, F, \Delta)$ + semilinear acceptance condition $S \subseteq \mathbb{N}^{\wedge}|\Delta|$ on transitions.

- L(A, S) = $\pi(\text{Runs}(A) \cap \Pi^{-1}(S))$. (π returns the word labelling a run.)
- Since separability is insensitive to nondeterminism, we can assume DFA.
- $L(A, S) = Runs(A) \cap \Pi^{-1}(S) = Regular \cap Commutative.$

Critical difference w.r.t. regularity:

- Regularity is undecidable for PA.
- Regularity is decidable for deterministic PA [Cadilhac, Finkel, McKenzie DLT'12].

Parikh automaton (PA) [Klaedke, Rueß ICALP'03]: NFA A = $(\Sigma, Q, I, F, \Delta)$ + semilinear acceptance condition $S \subseteq \mathbb{N}^{\wedge}|\Delta|$ on transitions.

• L(A, S) = $\pi(\text{Runs}(A) \cap \Pi^{-1}(S))$. (π returns the word labelling a run.)

Since separability is insensitive to nondeterminism, we can assume DFA.

• L(A, S) = Runs(A) $\cap \Pi^{-1}(S)$ = Regular \cap Commutative.

Critical difference w.r.t. regularity:

- Regularity is undecidable for PA.
- Regularity is decidable for deterministic PA [Cadilhac, Finkel, McKenzie DLT'12].

Theorem. Regular separability is decidable for $PA/PN(\mathbb{Z})$.

A, B separable iff, for every i, A \cap Ri, B \cap Ri separable

We can assume the same underlying DFA for the two PAs.

Basic idea: Count simple cycles instead of transitions.

- Once enough states have been visited, cycles can be rearranged in fixed order.
- This gives a bounded language of cycles.

Regular separability of Parikh autom.

Basic idea: Count simple cycles instead of transitions.

- Once enough states have been visited, cycles can be rearranged in fixed order.
- This gives a bounded language of cycles.

```
regular separability of of PA languages reduces to bounded PA languages
```

Regular separability of Parikh autom.

Basic idea: Count simple cycles instead of transitions.

- Once enough states have been visited, cycles can be rearranged in fixed order.
- This gives a bounded language of cycles.

unary separability of semilinear sets [Choffrut, Grigorieff ILP'06]

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$p{\rightarrow} q{\rightarrow} r{\rightarrow} s{\rightarrow} r{\rightarrow} q{\rightarrow} r{\rightarrow} s{\rightarrow} r{\rightarrow} t$$

Skeleton run: ε

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} {\rightarrow} q {\rightarrow} r {\rightarrow} s {\rightarrow} r {\rightarrow} q {\rightarrow} r {\rightarrow} s {\rightarrow} r {\rightarrow} t$$

Skeleton run: p

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p}\underline{\longrightarrow}\underline{q} {\rightarrow} r {\rightarrow} s {\rightarrow} r {\rightarrow} q {\rightarrow} r {\rightarrow} s {\rightarrow} r {\rightarrow} t$$

Skeleton run: p→q

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p}\underline{\rightarrow}\underline{q}\underline{\rightarrow}\underline{r}\underline{\rightarrow}\underline{s}\underline{\rightarrow}r\underline{\rightarrow}\underline{q}\underline{\rightarrow}r\underline{\rightarrow}\underline{s}\underline{\rightarrow}r\underline{\rightarrow}\underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\rightarrow} \underline{q} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{s} \underline{\rightarrow} \underline{r} \underline{\rightarrow} q \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{s} \underline{\rightarrow} \underline{r}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run: $\underline{p} \rightarrow \underline{q} \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r} \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow t$

Skeleton run: $p \rightarrow q \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r}$ (cannot remove since it changes the support)

Cycles count: $\#[q \rightarrow r \rightarrow q] = 0$ $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\longrightarrow} \underline{q} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{s} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{q} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{s} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow q$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run: $\underline{p} \rightarrow \underline{q} \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r} \rightarrow \underline{q} \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r} \rightarrow \underline{t}$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow q$ (cannot remove since it changes the support)

Cycles count: $\#[q \rightarrow r \rightarrow q] = 0$ $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run: $\underline{p} \rightarrow \underline{q} \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r} \rightarrow \underline{t}$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow q \rightarrow r$

Cycles count: $\#[q \rightarrow r \rightarrow q] = 0$ $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\rightarrow} \underline{q} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{s} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{q} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{s} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow \underline{r} \rightarrow q \rightarrow r$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 0$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\longrightarrow} \underline{q} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{s} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{r}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 1$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\longrightarrow} \underline{q} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{s} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{s} \underline{\longrightarrow} r \underline{\longrightarrow} \underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow s$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 1$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p}\underline{\longrightarrow}\underline{q}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{s}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow s \rightarrow r$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 1$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\longrightarrow} \underline{q} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{s} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{r} \underline{\longrightarrow} \underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow \underline{r} \rightarrow \underline{s} \rightarrow \underline{r}$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 1$$

 $\#[r \rightarrow s \rightarrow r] = 0$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p}\underline{\longrightarrow}\underline{q}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{s}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{r}\underline{\longrightarrow}\underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 1$$

 $\#[r \rightarrow s \rightarrow r] = 1$

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.

Run:

$$\underline{p} \underline{\rightarrow} \underline{q} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{s} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{q} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{s} \underline{\rightarrow} \underline{r} \underline{\rightarrow} \underline{t}$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow t$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = 1$$

 $\#[r \rightarrow s \rightarrow r] = 1$

$$\alpha(\rho) := (\rho 0, (i, j))$$

Canonical run (cycles appear in a fixed order): $p \rightarrow q(\rightarrow r \rightarrow q)^i \rightarrow r \rightarrow s \rightarrow r(\rightarrow s \rightarrow r)^j \rightarrow t$

Run:
$$p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow ... \rightarrow t =: \rho$$

Skeleton run: $p \rightarrow q \rightarrow r \rightarrow s \rightarrow r \rightarrow t =: \rho 0$

Cycles count:
$$\#[q \rightarrow r \rightarrow q] = i$$

 $\#[r \rightarrow s \rightarrow r] = j$

Fix a skeleton run $\rho 0$. Restrict to canonical runs $C := p \rightarrow c0^* \rightarrow r \rightarrow s \rightarrow c1^* \rightarrow t$. A, B $\subseteq \Sigma^*$ are regular separable iff A \cap C, B \cap C $\subseteq \Sigma^*$ are regular separable

Fix a skeleton run $\rho 0$. Restrict to canonical runs $C := p \rightarrow c0^* \rightarrow r \rightarrow s \rightarrow c1^* \rightarrow t$.

A, B $\subseteq \Sigma^*$ are regular separable iff A \cap C, B \cap C $\subseteq \Sigma^*$ are regular separable

→ Reduction to regular separability of bounded PA languages.

(→ Unary separability of semilinear sets.)

Decidable separability

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

- 2. ©(PN): commutative closure of PN languages [C., Czerwiński, Lasota, Paperman STACS'17]. ✓□
- 3. PA/PN(ℤ) [C., Czerwiński, Lasota, Paperman ICALP'17]. ✓□

Decidable separability

1. 1CN [Czerwiński, Lasota LICS'17].

Via the *Regular Overapproximation* technique → **Wojtek Czerwiński's talk** on Tue 4A 2:05pm.

- 2. ©(PN): commutative closure of PN languages [C., Czerwiński, Lasota, Paperman STACS'17]. ✓□
- 3. PA/PN(ℤ) [C., Czerwiński, Lasota, Paperman ICALP'17]. ✓□
- 4. [Conjecture] Separability of PN languages is decidable.

Towards separability of Petri nets

Possible techniques:

- Regular over-approximations of Petri net languages?
- Reduction to bounded Petri net languages?

Towards separability of Petri nets

Possible techniques:

- Regular over-approximations of Petri net languages?
- Reduction to bounded Petri net languages?

Other interesting directions

- Promise problems:
 - Given two CFGs for L and its complement, decide whether L is regular.
 - Cf. undecidability of regularity for CFLs.

DISCARDED SLIDES

Undecidable separability for 1CA

Technique: (polynomial) reduction from every decidable problem.

- Decidable problem (up to computable encoding): $L \subseteq \mathbb{N}$ recognised by deterministic, total 2CA (2 counters with zero test).
- If regular separability has time complexity f(n),
 then every decidable problem has time complexity f(p(n)).
- This contradicts the time hierarchy theorem.

Reduction: From a 2CA and input k build two 1CA A, B s.t.

2CA accepts k iff A, B are regular separable.

- Each 1CA simulates 1 counter.
- If 2CA rejects, let n be the length of the rejecting computation.
- We can separate A, B by looking only at prefixes of length n:

$$L(A) \cap \Sigma(\langle n) \cup \{ xy \mid x \in Prefix(L(A), n), y \in \Sigma^* \}$$

Separability for ©(PN)

By reduction to (1) unary separability in \mathbb{N}^d of reachability sets of PNs

$$\mathbb{G}(A)$$
, $\mathbb{G}(B) \subseteq \Sigma^*$ are separable by a regular language (2) iff $\mathbb{G}(A)$, $\mathbb{G}(B) \subseteq \Sigma^*$ are separable by a *commutative* regular language (3) iff

 $\Pi(A)$, $\Pi(B) \subseteq \mathbb{N}^d$ are separable by a *unary set*

Vectors $u, v \in \mathbb{N}^d$ are *i-unary equivalent* $u \equiv_i v$ if $\forall 1 \le k \le d$,

- Equivalent modulo n: $u[k] \equiv v[k] \mod i$.
- Either both big, or both small: $u[k] \ge i$ iff $v[k] \ge i$.

For two words $u, v \in \Sigma^*$, let $u \equiv_i v$ if $\Pi(u) \equiv_i \Pi(v)$.

union of i-unary equivalence classes

Separability for ©(PN) - Step (2)

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e.,

(*) $\forall x, y, z \in \Sigma^* \cdot x \cdot y^* \omega \cdot z \in R \text{ iff } x \cdot y^* 2\omega \cdot z \in R$

• $S := \{ u \in \Sigma^* | \exists v \in G(A) : u \equiv w v \} \text{ separates } G(A), G(B): u \equiv w v \}$

Separability for ©(PN) - Step (2)

Let $\omega \in \mathbb{N}$ be the idempotent power of the syntactic monoid of R, i.e., (*) $\forall x, y, z \in \Sigma^*$. $x \cdot y \cdot \omega \cdot z \in R$ iff $x \cdot y \cdot 2\omega \cdot z \in R$

- $S := \{ u \in \Sigma^* | \exists v \in G(A) : u \equiv w v \} \text{ separates } G(A), G(B).$
- S is commutative regular since $\Pi(S)$ is ω -unary.

Separability for ©(PN) - Step (3)

 $\mathbb{G}(A)$, $\mathbb{G}(B) \subseteq \Sigma^*$ are separable by a *commutative* regular language S (3) iff $\Pi(A)$, $\Pi(B) \subseteq \mathbb{N}^d$ are separable by a *unary set* $U = \Pi(S)$

Separability for ©(PN) - Step (3)

 $\mathbb{G}(A)$, $\mathbb{G}(B) \subseteq \Sigma^*$ are separable by a *commutative* regular language S (3) iff $\Pi(A)$, $\Pi(B) \subseteq \mathbb{N}^d$ are separable by a *unary set* $U = \Pi(S)$

Separability for ©(PN) - Step (1)

(projections of) PN reachability sets

- Add d extra components.
- Increment i-th extra component when reading a_i.
- Project away the other components.
- (1) Reduction to unary separability in \mathbb{N}^d of projections of PN reachability sets

Regular separability of Parikh autom.

NFA with transitions labelled by vectors in \mathbb{Z}^d . Acceptance by reaching a final state with value $0 \in \mathbb{Z}^d$.

Since separability is insensitive to nondeterminism, we can assume DFA. A deterministic $PN(\mathbb{Z})$ language is the intersection of:

- A regular language (the one recognised by the underlying DFA),
- The inverse Parikh image of a semilinear set.

Critical difference w.r.t. regularity:

- Regularity is undecidable for $PN(\mathbb{Z})$.
- Regularity is decidable for deterministic PN(Z) [Cadilhac, Finkel, McKenzie DLT'12].

Theorem. Regular separability is decidable for $PN(\mathbb{Z})$.

Counting cycles

- Simple cycle: sequence transitions starting and ending in the same state, where no other state repeats.
- Two cycles are equivalent if one is a cyclic permutation of the other.
- Fix an enumeration of equivalence classes of simple cycles [c_1], ..., [c_d].
- In order to freely reorder simple cycles, adding or removing a cycle must not change the set of visited states → need to visit enough states before cycles can be reordered independently.

IDEA

Read a run from left to right removing simple cycles visiting only states which appeared so far.