

QUÍMICA
NIVEL SUPERIOR
PRUEBA 2

Número del alumno						

Viernes 7 de noviembre de 2003 (tarde)

2 horas 15 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de alumno en la casilla de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste toda la sección A en los espacios provistos.
- Sección B: conteste dos preguntas de la sección B. Conteste a las preguntas en las hojas de respuestas. Escriba su número de alumno en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen los números de las preguntas que ha contestado y la cantidad de hojas que ha utilizado.

883-159 11 páginas

SECCIÓN A

Conteste todas las preguntas utilizando los espacios provistos.

1. (a) Dados los siguientes datos:

$$\Delta H_{\rm f}^{\circ}({\rm CF_4(g)}) = -680 \text{ kJ mol}^{-1}$$

Entalpía de enlace, ${\rm F_2(g)} = +158 \text{ kJ mol}^{-1}$
 ${\rm C(s)} \to {\rm C(g)}; \Delta H = +715 \text{ kJ mol}^{-1}$

alcule la entalpía de enlace media (expresada en kJ mol ⁻¹) del enlace C—F.						

(Esta pregunta continúa en la siguiente página)

(Pregunta 1: continuación)

(b) (i) Para e	el proceso
(b) (i) Para e	el proceso

$$C_6H_6(1) \rightarrow C_6H_6(s)$$

	el valor de $\Delta H^{\circ} = -9.83 \text{ kJ mol}^{-1}$ y el valor de $\Delta S^{\circ} = -35.2 \text{ J K}^{-1} \text{ mol}^{-1}$. Prediga y explique el efecto de un aumento de temperatura sobre la espontaneidad del proceso.	[3]
(ii)	Calcule la temperatura (expresada en °C) a la que $\Delta G = 0$ para el proceso indicado arriba y explique el significado de esa temperatura.	[3]
(ii)		[3]

883-159 Véase al dorso

2.	(a)		iones XO_4^{3-} acuosos forman un precipitado con los iones plata acuosos, Ag^+ . Escriba la ción ajustada que representa la reacción, incluyendo los símbolos de estado.	[2]
	(b)		ndo se añaden $41,18 \text{cm}^3$ de solución acuosa de iones plata de concentración 40mol dm^{-3} a una solución de iones XO_4^{3-} , se forman $1,172 \text{g}$ del precipitado.	
		(i)	Calcule la cantidad de iones Ag ⁺ (expresada en moles) usada en la reacción.	[1]
		(ii)	Calcule la cantidad de precipitado formado (expresada en moles).	[1]
		(iii)	Calcule la masa molar del precipitado.	[2]
		(iv)	Determine la masa atómica relativa de X e identifique el elemento.	[2]

3.	(a)	Indique una propiedad física que sea diferente para los isótopos de un elemento.	[1]
	(b)	El cloro existe en forma de dos isótopos, ³⁵ Cl y ³⁷ Cl. La masa atómica relativa del cloro es 35,45. Calcule la abundancia porcentual de cada isótopo.	[2]
	(c)	Indique la configuración electrónica completa del bromo, Br y del ion hierro(III), Fe ³⁺ .	[2]
		Br:	
		$\mathrm{Fe^{3+}}$	

883-159 Véase al dorso

1.	(a)	(i)	Calcule el valor de $K_{\rm a}$ del ácido metanoico, HCOOH, usando la tabla 16 del cuadernillo de datos.	[1]
		(ii)	Sobre la base de su valor de $K_{\rm a}$, indique y explique si el ácido metanoico es un ácido fuerte o débil.	[2]
		(iii)	Calcule la concentración de ion hidrógeno y el pH de una solución de ácido metanoico de concentración $0,010~\text{mol}~\text{dm}^{-3}$. Indique una suposición que haya tenido que hacer para llegar al resultado.	[4]
	(b)		lique cómo prepararía una solución tampón (buffer) de pH 3,75 partiendo de ácido noico.	[3]

5.	(a)		ndo se electroliza una solución acuosa concentrada de cloruro de sodio usando electrodos tes, se obtiene un gas diferente en cada electrodo.	
		(i)	Escriba las ecuaciones que representan las semirreacciones de oxidación y de reducción.	[2]
			Semirreacción de oxidación:	
			Semirreacción de reducción:	
		(ii)	Explique por qué no se forma sodio durante la electrólisis de solución acuosa de NaCl.	[1]
	(b)	de s	uzca qué productos se forman durante la electrólisis de una solución acuosa de fluoruro odio. Escriba una ecuación que represente la reacción que se produce en el electrodo tivo (ánodo) e indique su razonamiento.	[4]

SECCIÓN B

Conteste **dos** preguntas. Conteste a las preguntas en las hojas de respuestas provistas. Escriba su número de alumno en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.

6. Describa el carácter ácido-base de los óxidos de los elementos del periodo 3, desde el Na (a) hasta el Ar. Para el óxido de aluminio, escriba ecuaciones ajustadas que ilustren su carácter ácido-base. [4] Explique los siguientes enunciados desde el punto de vista de la configuración electrónica: (b) (i) La energía de primera ionización del Al es menor que la del Mg. [2] El ion V³⁺(aq) es coloreado y se comporta como agente reductor, mientras que el ion (ii) [6] Zn²⁺(aq) no es coloreado y no se comporta como agente reductor. (c) (i) Compare la energía de primera ionización del K con la del Na y la del Ar, y explique su [3] respuesta. Explique las diferencias entre los radios atómicos y las energías de primera ionización (ii) del Na y del Mg. [4] (iii) Explique la diferencia entre las energías de segunda ionización del Na y del Mg. [2] Defina el término ligando. El Cu²⁺(aq) reacciona con el amoníaco para formar el ion (d) complejo [Cu(NH₃)₄]²⁺. Explique esta reacción de acuerdo con una teoría ácido-base y resuma la explicación de los enlaces presentes en el ion complejo formado entre el Cu²⁺ y el [4] NH₃.

7. (a) Los puntos de ebullición de los hidruros de los elementos del grupo 6 aumentan en el siguiente orden

$$H_2S < H_2Se < H_2Te < H_2O$$
.

Explique la tendencia de los puntos de ebullición en función de los enlaces presentes. [3]

- (b) Entre los compuestos butano, cloroetano, propanona y 1-propanol, identifique cuáles son:
 - (i) insolubles en agua e indique su razonamiento. [2]
 - (ii) solubles en agua e indique su razonamiento. [2]
- (c) (i) Dibuje las estructuras de Lewis del monóxido de carbono, el dióxido de carbono y el ion carbonato. [3]
 - (ii) Identifique qué especie química presenta mayor longitud de enlace carbono-oxígeno y explique su respuesta. [3]
 - (iii) Dibuje la estructura de Lewis del CIF₃ y prediga su forma. [2]
- (d) Un ácido hidrazoico, N₃H, se puede representar por medio de dos estructuras de Lewis posibles en las que la disposición de los átomos es NNNH.
 - (i) Dibuje las **dos** estructuras de Lewis posibles del N_3H . [2]
 - (ii) Prediga los ángulos de enlace N—N—N y H—N—N en cada caso, e indique su razonamiento. [6]
 - (iii) Prediga la hibridación del átomo de N unido al átomo de hidrógeno en cada caso. [2]

883-159 Véase al dorso

[5]

[2]

[2]

[3]

[7]

[3]

8. (a) Para la reacción entre monóxido de nitrógeno gaseoso, NO(g), con oxígeno gaseoso para formar dióxido de nitrógeno gaseoso, NO₂(g), a 25 °C, se obtuvieron los siguientes datos:

Experimento	[NO] / mol dm ⁻³	[O ₂]/ mol dm ⁻³	Velocidad inicial / mol dm ⁻³ s ⁻¹
1	0,50	0,20	$3,0\times10^{-3}$
2	0,50	0,40	6.0×10^{-3}
3	1,00	0,80	4.8×10^{-2}

- (i) Calcule el orden con respecto a los dos reactivos y escriba la expresión de velocidad para la reacción. Indique su razonamiento.
- (ii) Explique por qué el siguiente mecanismo **no** es consistente con la expresión de velocidad.

$$NO(g) + O_2(g) \rightarrow NO_2(g) + O(g)$$
; etapa lenta
 $NO(g) + O(g) \rightarrow NO_2(g)$; etapa rápida

(iii) Explique por qué el siguiente mecanismo es consistente con la expresión de velocidad, **pero** es improbable.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

(iv) Explique por qué el siguiente mecanismo es consistente con la expresión de velocidad.

$$NO(g) + O_2(g) \rightarrow NO_3(g)$$
; rápida
 $NO_3(g) + NO(g) \rightarrow 2NO_2(g)$; lenta

- (v) Sugiera **un** mecanismo distinto que sea consistente con la expresión de velocidad.

 Justifique su respuesta.

 [3]
- (b) A 1700°C se establece el siguiente equilibrio.

$$CO_{\gamma}(g) + H_{\gamma}(g) \rightleftharpoons H_{\gamma}O(g) + CO(g)$$

Si inicialmente sólo se encuentran presentes dióxido de carbono e hidrógeno, dibuje en un gráfico una línea que represente velocidad en función del tiempo para

- la reacción directa
- la reacción inversa hasta un instante después de alcanzado el equilibrio.

En cada caso, explique la forma de cada línea.

(c) Se determina el valor de K_c para la reacción de equilibrio a dos temperaturas diferentes. A 850°C, $K_c = 1,1$ mientras que para 1700°C, $K_c = 4,9$.

Sobre la base de esos valores de K_c , explique si la reacción es exotérmica o endotérmica.

9.	(a)	(i)	Enumere tres características de una serie homóloga y explique la expresión <i>grupo funcional</i> .	[3]
		(ii)	El etanol y el ácido etanoico se pueden diferenciar por medio de sus puntos de fusión. Indique y explique cuál de los dos compuestos tendrá mayor punto de fusión.	[2]
		(iii)	Dibuje las cuatro estructuras de los alcoholes de fórmula C_4H_9OH . Identifique qué estructura presenta isómeros ópticos y justifique su respuesta.	[4]
	(b)	(i)	El ácido etanoico reacciona con etanol en presencia de ácido sulfúrico concentrado y calor. Identifique qué tipo de reacción se produce. Escriba una ecuación que represente la reacción, nombre el producto orgánico y dibuje su estructura.	[4]
		(ii)	Indique y explique la función del ácido sulfúrico en dicha reacción.	[2]
		(iii)	Explique qué sucede si el producto orgánico del apartado (b) (i) se calienta con agua y ácido sulfúrico.	[1]
		(iv)	Explique por qué la reacción se completa cuando el producto orgánico se calienta con solución acuosa de hidróxido de sodio. Escriba una ecuación ajustada para representar esta reacción.	[2]
	(c)	Para	los compuestos $HCOOCH_2CH_3$ y $HCOOCHCH_2$ II	
		(i)	indique y explique cuál de los dos compuestos reacciona más rápidamente con bromo.	[2]
		(ii)	sugiera de qué forma se diferenciarían los espectros infrarrojo y de RMN de los dos compuestos.	[3]
		(iii)	el compuesto II forma polímeros. Indique qué tipo de polimerización sufre el compuesto II y dibuje la estructura de la unidad del polímero que se repite	[2