Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Análisis del Modo de falla y sus Efectos - FMEA

Failure Mode And Effects Analysis

- En este método se analizan los posible modos en que puede fallar el dispositivo y cual será el impacto en el circuito.
- Podemos usar MIL-HDBK-338.

Modos de falla Ejemplo

- Ejemplo transistor bipolar
 - MIL-HDBK-1629A
 - Transistor OPEN → 0.27
 - Transistor SHORT → 0.73

DEVICE TYPE	FAILURE MODE	MODE PROBABILITY (α)
Transducer	Out of Tolerance	.68
	False Response	.15
	Open	.12
	Short	.05
Transformer	Open	.42
	Short	.42
	Parameter Change	.16
Transistor, Bipolar	Short	.73
	Open	.27
Transistor, FET	Short	.51
	Output Low	.22
	Parameter Change	.17
	Open	0.5

Modos de falla Ejemplo

- Ejemplo transistor bipolar
 - Transistor OPEN → 0.27
 - Transistor SHORT → 0.73
 - Y el factor de tiempo de falla antes calculado

$$\lambda_{Po} = 0.147 * 0.27 = 0.03969 \left[Fallas / 10^6 \text{ horas} \right]$$

$$\lambda_{PS} = 0.147 * 0.73 = 0.10731 [Fallas / 10^6 \text{ horas}]$$

- Se observa que la probabilidad de falla disminuye
- Se debe analizar el circuito para determinar los efectos ante algunas de las dos posibles fallas.

Falla y Avería - Árbol de Análisis

- Se analiza el circuito para conocer los caminos de Falla y Avería
 - Del análisis del circuito tendremos dos posibles caminos
 - Falla → El transistor no fue excitado
 - Avería → Se daño el componente

- Ejemplo Control Inyector Electrónico Automóvil
- VALVULA ABIERTA

AVERIA del transistor - corto circuito 0,10731

FALLA del circuito de control en desenergizar el transistor

AVERIA del circuito integrado de excitación

FALLA de componentes enviando una señal errónea al circuito

- Ejemplo Control Inyector Electrónico Automóvil
- VALVULA CERRADA

Modos de falla y Análisis crítico (FMECA)

- En este análisis se pretende determinar si un componente puede provocar una falla que sea catastrófica, la probabilidad de esa falla y la tolerancia a las mismas.
- La realización de un estudio FMECA permite identificar aquellos componentes críticos en los que debe enfatizarse el mantenimiento, o que deben ser objeto de rediseño.

Modos de falla y Análisis crítico (FMECA)

- En este análisis se realizan:
 - Evaluación de los Modos de Fallo del sistema
 - Evaluación de las Causas de Fallo
 - Análisis de los Efectos de la aparición de los Modos de Fallo, en distintos niveles:
 - Sistema
 - Subsistema
 - Componente.
 - Asignación de la Severidad de cada uno de los Modos de Fallo
 - Asignación de Parámetros de Riesgo asociados al fallo
 - Asignación de la Probabilidad de Ocurrencia del fallo
 - Cálculo de la Criticidad del fallo
 - Determinación de los componentes críticos del sistema.

FMECA - Failure mode, effects, and criticality analysis

- Este método se basa en fallas que en principio podrían ser las siguientes:
 - Operación Anticipada
 - Falla a operar en determinado tiempo
 - Operación intermitente
 - Falla en cesar una función en tiempo determinado
 - Pérdida o degradación durante la operación.

Propagación de una falla

- Cuando se evalúa un sistema podemos dividir al mismo en niveles.
- Esta división nos permitiría clasificar el efecto de una falla sobre un determinado sistema.
- En base a esto existirán
 - Efectos Locales o Primarios
 - Nivel Superior Siguiente o Efectos Secundarios
 - Función del Sistema o Efectos Finales

Clasificación de Falla

- Se pueden analizar las fallas desde dos puntos de vista:
- Severidad
 - Se evalúa teniendo en cuenta las peores consecuencias que se pueden dar ante una falla.
- Probabilidad de Aparición
 - Es el análisis en base a la probabilidad de su ocurrencia. Tiene como base el análisis MTBF y FMEA.

Categorías de Gravedad

- Categoría I

 Catastrófico
 - Una falla que puede causar la pérdida total del sistema.
- Categoría II → Importante
 - Una falla que puede causar lesiones graves, importantes daños materiales o daños en el sistema principal que traduzca en la pérdida de la misión.
- Categoría III -> Marginal
 - Puede causar lesiones leves, de menor importancia, daños materiales, que se traducirían en un retraso o pérdida de disponibilidad del sistema.
- Categoría IV → Menor
 - Falla mínima que solo provocaría la necesidad de un mantenimiento o reparación programada.

Categorías de Gravedad

- La determinación de la categoría será en base a lo que se desea proteger:
 - Personas, ambiente, producción.
 - Por lo tanto el rango que define cada intervalo será propio del sistema evaluado.

Probabilidad de Ocurrencia

- Podemos establecer cinco categorías cualitativas:
- Nivel A → Frecuente
 - Probabilidad Superior a 0,20
- Nivel B → Razonablemente Probable
 - Probabilidad Mayor a 0,10 y menor a 0,20
- Nivel C → Ocasional
 - Probabilidad Mayor a 0,01 y menor a 0,10
- Nivel D → Remota
 - Probabilidad Mayor a 0,001 y menor a 0,01
- Nivel E → Improbable
 - Probabilidad menor a 0,001

Número crítico del modo de falla

• El numero crítico de falla determina por si mismo la peligrosidad de un modo de falla determinado

$$Cm = \alpha * \beta * \lambda_p$$

- Donde
 - α = probabilidad de modo de falla.
 - (Open-Short)
 - B = probabilidad de pérdida de función
 - Tabla adjunta
 - λ = probabilidad de falla total MBTF
 - T = puede incluir el tiempo

B = probabilidad de pérdida de función

EFECTO DE FALLA	VALOR de B		
PERDIDA SEGURA	1.00		
PROBABLE PERDIDA	>0.10 a <1.00		
POSIBLE PERDIDA	>0 a < 0.10		
SIN EFECTO	0		

Relación entre categoría y nivel de una falla

- La matriz de criticidad proporciona un medio para identificar y comparar todos los modos de falla con respecto a la categoría de gravedad de los mismos.
- Se utiliza una matriz de criticidad para relacionar ocurrencia y severidad y tener una herramienta para hacer los ajustes correspondientes.
 - De este análisis surgen los rediseños del sistema.
 - Al momento de definir prioridades ante un requerimiento de intervención correctiva.
 - Cuanto mas lejos del origen mayor es su criticidad.

Matriz Crítica

INCREASING CRITICALITY

* NOTE: BOTH CRITICALITY NUMBER (Cr) AND PROBABILITY OF OCCURRENCE LEVEL ARE SHOWN FOR CONVENIENCE.

Ejemplo Matriz

• TIP41

Modo Falla	α	λ_{P}	λ _{Pi}	B Probabilidad	Severidad
Cortocircuit o	0.73	0.023159	0.01690	C 0.01 <pi< 0.1<="" td=""><td>II</td></pi<>	II
Circuito Abierto	0.27	0.023159	0.00625	D 0.001 <pi< 0.01<="" td=""><td>IV</td></pi<>	IV

Ejemplo Matriz

• Resistencia Bobinada

Modo Falla	α	λ_{P}	λ _{Pi}	B Probabilidad	Severidad
Cortocircuit o	0.09	1.8	0.162	B 0.1 <pi< 0.2<="" td=""><td>II</td></pi<>	II
Circuito Abierto	0.65	1.8	1.17	A Pi> 0.2	IV
Cambio Parámetro	0.26	1.8	0.468	A Pi> 0.2	III

Ejemplo Matriz

• Matriz Crítica

		SEVERIDAD			
		IV	III	II	1
OCURRENCIA	A	R4	R4		
	В			R4	
	С			TIP41	
	D	TIP41		R3	
	Е	1N4148	LED's		