A JOURNEY

IN

PURE MATHEMATICS

A JOURNEY

IN

PURE MATHEMATICS

MAT3006 & 3040 & 4002 Notebook

Prof. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	i۶
Notat	tions	X
1	Week1	. 1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	. 1
1.1.2	Vector Spaces	. 2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	. 5
1.2.2	Introduction to MAT3006	. 6
1.2.3	Metric Spaces	. 7
1.3	Monday for MAT4002	10
1.3.1	Introduction to Topology	. 10
1.3.2	Metric Spaces	. 11
1.4	Wednesday for MAT3040	14
1.4.1	Review	. 14
1.4.2	Spanning Set	. 14
1.4.3	Linear Independence and Basis	. 16
1.5	Wednesday for MAT3006	20
1.5.1	Convergence of Sequences	. 20
1.5.2	Continuity	. 24
1.5.3	Open and Closed Sets	. 25
1.6	Wednesday for MAT4002	27
1.6.1	Forget about metric	. 27
1.6.2	Topological Spaces	. 30

1.6.3	Closed Subsets	31
2	Week2	33
2.1	Monday for MAT3040	33
2.1.1	Basis and Dimension	33
2.1.2	Operations on a vector space	36
2.2	Monday for MAT3006	39
2.2.1	Remark on Open and Closed Set	39
2.2.2	Boundary, Closure, and Interior	43
2.3	Monday for MAT4002	46
2.3.1	Convergence in topological space	46
2.3.2	Interior, Closure, Boundary	48
2.4	Wednesday for MAT3040	52
2.4.1	Remark on Direct Sum	52
2.4.2	Linear Transformation	53
2.5	Wednesday for MAT3006	60
2.5.1	Compactness	60
2.5.2	Completeness	65
2.6	Wednesday for MAT4002	67
2.6.1	Remark on Closure	67
2.6.2	Functions on Topological Space	69
2.6.3	Subspace Topology	71
2.6.4	Basis (Base) of a topology	73
3	Week3	7 5
3.1	Monday for MAT3040	75
3.1.1	Remarks on Isomorphism	75
312	Change of Basis and Matrix Representation	76

3.2	Monday for MAT3006	83
3.2.1	Remarks on Completeness	83
3.2.2	Contraction Mapping Theorem	84
3.2.3	Picard Lindelof Theorem	87
3.3	Monday for MAT4002	89
3.3.1	Remarks on Basis and Homeomorphism	89
3.3.2	Product Space	92
3.4	Wednesday for MAT3040	94
3.4.1	Remarks for the Change of Basis	94
3.5	Wednesday for MAT3006	100
3.5.1	Remarks on Contraction	100
3.5.2	Picard-Lindelof Theorem	101
3.6	Wednesday for MAT4002	105
3.6.1	Remarks on product space	105
3.6.2	Properties of Topological Spaces	108
4	Week4	111
4.1	Monday for MAT3040	111
4.1.1	Quotient Spaces	111
4.1.2	First Isomorphism Theorem	114
4.2	Monday for MAT3006	117
4.2.1	Generalization into System of ODEs	117
4.2.2	Stone-Weierstrass Theorem	119
4.3	Monday for MAT4002	123
4.3.1	Hausdorffness	123
4.3.2	Connectedness	124
4.4	Wednesday for MAT3040	128
441	Dual Space	133

4.5	Wednesday for MAT3006	136
4.5.1	Stone-Weierstrass Theorem	. 137
4.6	Wednesday for MAT4002	142
4.6.1	Remark on Connectedness	. 142
4.6.2	Completeness	. 144
5	Week5	147
5.1	Monday for MAT3040	147
5.1.1	Remarks on Dual Space	. 148
5.1.2	Annihilators	. 150
5.2	Monday for MAT3006	154
5.2 5.2.1	Monday for MAT3006 Baire Category Theorem	
	•	

Acknowledgments

This book is from the MAT3006, MAT3040, MAT4002 in spring semester, 2018-2019.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

4.4. Wednesday for MAT3040

Reviewing.

• Quotient Space:

$$V/W = \{ \boldsymbol{v} + W \mid \boldsymbol{v} \in V \}$$

The elements in V/W are cosets. Note that V/W does not mean a subset of V.

• Define the canonical projection mapping

$$\pi_W: V o V/W,$$
 with $oldsymbol{v} \mapsto oldsymbol{v} + W,$

then we imply π_W is a surjective linear transformation with $\ker(\pi_W) = W$.

If $\dim(V) < \infty$, then by Rank-Nullity Theorem (2.3), we imply that

$$\dim(V) = \dim(W) + \dim(V/W),$$

i.e.,
$$\dim(V/W) = \dim(V) - \dim(W)$$
.

• (Universal Property I) Every linear transformation $T: V \to W$ with $V' \le \ker(T)$ can be descended to the composition of the canonical projection mapping $\pi_{V'}$ and the mapping

$$\tilde{T}: V/V' \to W$$

with
$$\boldsymbol{v} + V' \mapsto T(\boldsymbol{v})$$
.

In other words, the diagram (2.1) commutes:

Diagram (2.1)

In other words, the mapping starting from either the black or red line gives the same result, i.e., $T(\mathbf{v}) = \tilde{T} \circ \pi_{V'}(\mathbf{v}) = \tilde{T}(\mathbf{v} + V')$ for any $\mathbf{v} \in V$.

- (First Isomorphism Theorem) Under the setting of Universal Property I (UPI), if T is a surjective linear transformation with $V' = \ker(T)$, then the \tilde{T} is an isomorphism.
- Example 4.2 Suppose that $U,W \le V$ with $U \cap W = \{0\}$, then define the mapping

$$\phi:U\oplus W o U$$
 with $\phi(\pmb{u}+\pmb{w})=\pmb{u}$

R Exercise: if $U, W \leq V$ but $U \cap W \neq \{0\}$, then the mapping

$$\begin{split} \phi: U + W \to U \\ \text{with} \quad \pmb{u} + \pmb{w} \mapsto \pmb{u} \end{split}$$
 is not well-defined:

Suppose that $\mathbf{0} \neq \mathbf{v} \in U \cap W$ and for any $\mathbf{u} \in U, \mathbf{w} \in W$, we construct

$$u' = u - v \in U$$
, $w' = w + v \in V \implies \phi(u' + w') = u - v$

Therefore we get $\mathbf{u} + \mathbf{w} = \mathbf{u}' + \mathbf{w}'$ but $\phi(\mathbf{u} + \mathbf{w}) \neq \phi(\mathbf{u}' + \mathbf{w}')$.

Back to the situation $U \cap W = \{\mathbf{0}\}$, then it's clear that $\phi: U \oplus W \to U$ is surjective linear transformation with $\ker(\phi) = W$. Therefore, construct the new mapping

$$ilde{\phi}:U\oplus W/W o U$$
 with $extbf{ extit{u}}+ extbf{ extit{w}}+W\mapsto \phi(extbf{ extit{u}}+ extbf{ extit{w}})$

We imply $\tilde{\phi}$ is an isomorphism by First Isomorphism Theorem.

Now we study the generalized quotients, which is defined to satisfy the generalized version of universal property I.

Definition 4.7 [Universal Property for Quotients] Let V be a vector space and $V' \leq V$. Consider the collection of linear transformations

$$\mathsf{Obj} = \left\{ T: V \to W \middle| \begin{matrix} T \text{ is a linear transformation} \\ V' \leq \ker(T) \end{matrix} \right\}$$

(For example, $\pi_{V'}:V \to V/V'$ is an element from the set Obj.)

An element $(\phi: V \to U) \in \mathsf{Obj}$ is said to satisfy the **universal property** if it satisfies the following:

Given any element $(T: V \to W) \in \mathsf{Obj}$, we can extend the transformation ϕ with a uniquely existing $\tilde{T}: U \to W$ so that the diagram (2.2) commutes:

Or equivalently, for given $(T:V\to W)\in \mathsf{Obj}$, there exists the unique mapping $\tilde{T}:U\to W$ such that $T=\tilde{T}\circ\phi$.

Theorem 4.3 — **Universal Property II.** 1. The mapping $(\pi_{V'}: V \to V/V') \in \text{Obj}$ is a universal object, i.e., it satisfies the universal property.

- 2. If $(\phi: V \to U)$ is a universal object, then $U \cong V/V'$, i.e., there is intrinsically "one" element in the set of universal objects.
- *Proof.* 1. Consider any linear transformation $T: V \to W$ such that $V' \leq \ker(T)$, then define (construct) the same $\tilde{T}: V/V' \to W$ as that in UPI. Therefore, for given T, applying the result of UPI, we imply $T = \tilde{T} \circ \pi_{V'}$, i.e., $\pi_{V'}$ satisfies the

diagram (2.2).

To show the uniqueness of \tilde{T} , suppose there exists $\tilde{S}: V/V' \to W$ such that the diagram (2.3) commutes.

It suffices to show the mapping $\tilde{S} = \tilde{T}$: for any $v + V' \in V/V'$, we have

$$\tilde{S}(\boldsymbol{v}+V'):=\tilde{S}\circ\pi_{V'}(\boldsymbol{v})=T(\boldsymbol{v}),$$

where the first equality is due to the surjectivity of $\pi_{V'}$. By the result of UPI, $T(\boldsymbol{v}) = \tilde{T}(\boldsymbol{v} + V')$. Therefore $\tilde{T}(\boldsymbol{v} + V') = \tilde{S}(\boldsymbol{v} + V')$ for all $\boldsymbol{v} + V' \in V/V'$. The proof is complete.

2. Suppose that $(\phi: V \to U)$ satisfies the universal property. In particular, the following two diagrams hold:

Since $(\pi_{V'})$ satisfies the universal property, in particular, the following two diagrams hold:

Then we claim that: Combining Diagram (2.5) and (2.6), we imply the diagram (2.8):

Diagram (2.8)

Graph Description: Note that this diagram commutes, i.e., the mapping starting from either the red line or the dash line gives the same result, i.e., $\pi_{V'} = \tilde{\pi}_{V'} \circ \tilde{\phi} \circ \pi_{V'}$, i.e., $\tilde{\pi}_{V'} \circ \tilde{\phi} = id$

Therefore, $\tilde{\pi}_{V'} \circ \tilde{\phi} = id$ implies $\tilde{\pi}_{V'}$ is surjective and $\tilde{\phi}$ is injective.

Also, combining Diagram (2.6) an (2.5), we imply diagram (2.9):

Diagram (2.9)

Graph Description: Note that this diagram commutes, i.e., the mapping starting from either the red line or the dash line gives the same result, i.e., $\phi = \tilde{\phi} \circ \tilde{\pi}_{V'} \circ \phi$, i.e., $\tilde{\phi} \circ \tilde{\pi}_{V'} = id$

Therefore, $\tilde{\phi} \circ \tilde{\pi}_{V'} = id$ implies $\tilde{\phi}$ is surjective and $\tilde{\pi}_{V'}$ is injective.

Therefore, both $\tilde{\phi}: U \to V/V'$ and $\tilde{\pi}_{V'}: V/V' \to U$ are bijective, i.e., $U \cong V/V'$.

The proof is complete.

4.4.1. Dual Space

Definition 4.8 Let V be a vector space over a field $\mathbb F$. The **dual vector space** V^* is defined as

$$V^* = \mathrm{Hom}_{\mathbb{F}}(V,\mathbb{F})$$

$$= \{f: V \to \mathbb{F} \mid f \text{ is a linear transformation}\}$$

133

1. Consider $V=\mathbb{R}^n$ and define $\phi_i:V\to\mathbb{R}$ as the *i*-th component of ■ Example 4.3 input:

$$\phi_i \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_i,$$

Then we imply $\phi_i \in V^*$. On the contrary, $\phi_i^2 \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_i^2$ is not in V^*

2. Consider $V = \mathbb{F}[x]$ and define $\phi: V \to \mathbb{F}$ as:

$$\phi(p(x)) = p(1),$$

It's clear that $\phi \in V^*$:

$$\phi(ap(x) + bq(x)) = ap(1) + bq(1)$$
$$= a\phi(p(x)) + b\phi(q(x))$$

- 3. Also, $\psi: V \to \mathbb{F}$ by $\psi(p(x)) = \int_0^1 p(x) \, \mathrm{d}x$ is in V^* . 4. Also, for $V = M_{n \times n}(\mathbb{F})$, the mapping $\mathrm{tr}: V \to \mathbb{F}$ by $\mathrm{tr}(M) = \sum_{i=1}^n M_{ii}$ is in V^* . However, the $\det:V\to\mathbb{F}$ is not in V^*

Let V be a vector space, with basis $B = \{v_i \mid i \in I\}$ (I can be finite or countable, or uncountable). Define

$$B^* = \{ f_i : V \to \mathbb{F} \mid i \in I \},$$

where f_i 's are defined on the basis B:

$$f_i(v_j) = \delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Then we extend f_i 's linearly, i.e., for $\sum_{j=1}^N \alpha_j v_j \in V$,

$$f_i(\sum_{j=1}^N \alpha_j v_j) = \sum_{i=1}^N \alpha_j f_i(v_j).$$

It's clear that $f_i \in V^*$ is well-defined.

Our question is that whether the B^* can be the basis of V^* ?