Эллиптические кривые Лекция 10. Изогении

Семён Новосёлов

БФУ им. И. Канта

2023

Мотивация

Постквантовая криптография на изогениях.

- схемы CSIDH, SIKE, weakSIDH, SeaSign
- в 2022 году появилась полиномиальная атака
 Кастрика-Декру на схему SIDH/SIKE, перевернувшая данную область
- многие схемы стали неактуальными
- однако базовые задачи остались трудными

План

- Определение и примеры изогений
- 2 SIKE/SIDH
- 3 Атака Castryck-Decru (общая схема)
- 4 "Оставшиеся в живых" схемы (след. лекция)

Изогении

Пусть E_1, E_2 – эллиптические кривые.

- В общем случае абелевых многообразий, изогения гомоморфизм с конечным ядром, сюръективный над замыканием поля.
- Для эллиптических кривых определение упрощается:
 изогения ненулевой гомоморфизм.

В явном виде:

$$\varphi(x,y) = \left(\frac{f_1(x,y)}{f_2(x,y)}, \frac{g_1(x,y)}{g_2(x,y)}\right) = \left(\frac{p(x)}{q(x)}, y\frac{s(x)}{t(x)}\right)$$

Степень изогении: $\deg \varphi = \max\{\deg p(x), \deg q(x)\}.$

Изогения называется **сепарабельной**, если производная $\frac{p}{q}$ по x не равна 0, и **несепарабельной** в противном случае.

Для сепарабельных изогений $\deg \varphi = \# \ker \varphi$.

Если $E_1 = E_2$, то ϕ – эндоморфизм.

Пример 1: Умножение на \mathfrak{m}

$$[m] : E \rightarrow E,$$

 $P \mapsto m \cdot P.$

Задаётся многочленами деления.

$$\begin{split} E/\mathbb{Q}: y^2 &= x^3 + x \\ [2]P &= \left(\frac{(x^2-1)^2}{4(x^3+x)}, y\frac{x^6+5x^4-5x-1}{8(x^3+x)^2}\right) \\ \ker[2] &= \{\mathcal{O}; (x_P,0): x_P^3+x=0\} \\ \# ker[2] &= 4 = \deg[2], \end{split}$$

Для сепарабельных изогений степень совпадает с $\# \ker$.

Пример 2: Эндоморфизм Фробениуса

$$\phi: \mathsf{E} \to \mathsf{E},$$
 $(x,y) \mapsto (x^q,y^q),$ $\phi = (x^q,y(x^3+ax+b)^{\frac{q-1}{2}})$ $\ker \phi = \mathcal{O}_\mathsf{E}, \deg \phi = \mathsf{q}$ (изогения не сепарабельная)

Теорема Тейта о изогениях эллиптических кривых

Эллиптические кривые
$$E_1,E_2$$
 изогенны над $\mathbb{F}_q \iff \#E_1(\mathbb{F}_q)=\#E_2(\mathbb{F}_q)$

Следствие: проверка кривых на изогенность имеет сложность $O(\log^4 q)$ при использовании SEA.

Формулы Vélu

Пусть E/\mathbb{F}_q – эллиптическая кривая, G – подгруппа $E(\overline{\mathbb{F}}_q).$ Тогда:

- ① $\exists E'/\mathbb{F}_q$ и сепарабельная изогения $\varphi:E\to E'$ определённая над \mathbb{F}_q степени #G т.ч. $\ker \varphi=G$.
- 2 если $\psi: E \to E''$ другая сепарабельная изогения степени #G т.ч. $G = \ker \psi$, то j(E') = j(E'').

Обозначение: E/G := E' – фактор-кривая.

Важно! Не путать с фактор-группой.

Vélu описал явные формулы для E', ϕ .

$$E : y^2 = x^3 + ax + b$$

$$\varphi(P) = \left(x_P + \sum_{Q \in G \setminus \{\mathcal{O}\}} (x_{P+Q} - x_Q), y_P + \sum_{Q \in G \setminus \{\mathcal{O}\}} (y_{P+Q} - y_Q)\right).$$

А изогенная кривая определяется как:

$$E/G : y^2 = x^3 + a'x + b',$$

где

$$lpha' = lpha - 5 \sum_{Q \in G \setminus \{\mathcal{O}\}} \left(3x_Q^2 + lpha \right),$$

$$b' = b - 7 \sum_{Q \in G \setminus \{\mathcal{O}\}} \left(5x_Q^3 + 3\alpha x_Q + b \right).$$

Пример 3: Сепарабельная изогения

$$E/\mathbb{F}_7 : y^2 = x^3 + 2x + 4$$

 $P = (3,3), G = \langle P \rangle, \#G = 5$

$$\phi: (x,y) \mapsto \left(\frac{x^5 + 4x^4 + 4x^3 + 5x^2 + 2x + 3}{x^4 + 4x^3 + 2x^2 + 3x + 1}, y \frac{x^6 - x^5 + 3x^3 + 3x^2 + 2x}{x^6 - x^5 + 2x^4 + 3x^3 - 2x^2 - x - 1}\right)$$

 $E/G : y^2 = x^3 + 6x + 4$

Степень ϕ равна 5.

Ядра изогений

$$[\ell]$$
Р = Р + . . . + Р (ℓ -раз)

Группа-кручения

$$\mathsf{E}[\ell] = \{ \mathsf{P} \in \mathsf{E}(\overline{\mathbb{F}}) \mid [\ell] \mathsf{P} = \mathcal{O} \}$$

- все ядра изогений степени ℓ подгруппы $\mathsf{E}[\ell]$
- перебирая все подгруппы $G\subseteq E[\ell]$ можно построить с помощью формул Велу все изогении степени ℓ

Важно: ядра изогений не принадлежат базовому полю в общем случае.

Пример 4: Изогения с ядром над расширением

$$\begin{split} E/\mathbb{F}_7 : y^2 &= x^3 + 2x + 4 \\ \mathbb{F}_{7^4} &= \mathbb{F}_7/\left\langle \alpha^4 + 5\alpha^2 + 4\alpha + 3 \right\rangle \\ P &= (5\alpha^3 + \alpha^2 + 5\alpha + 2, 5\alpha^3 + 6\alpha^2 + 4\alpha + 2) \\ G &= \langle P \rangle \subset E[5], \#G = 5 \end{split}$$

$$\varphi: (x,y) \mapsto \left(\frac{x^5 - x^4 - 3x^3 - 3x^2 - x - 2}{x^4 - x^3 + x + 1}, y \frac{x^6 + 2x^5 - x^4 + x^3 - 2x^2 + 3x - 1}{x^6 + 2x^5 + 3x^4 + 2x^3 - 3x^2 + 2x - 1}\right)$$

$$E/G : y^2 = x^3 + 3x + 4$$

Степень ϕ равна 5. Изогения определена над \mathbb{F}_7 несмотря на то, что её ядро G определено над \mathbb{F}_{7^4} .

Сложность вычисления ϕ и E/G: O(|G|).

Оптимизации:

- Castryck-Decru-Vercauteren, "Radical isogenies"
- Bernstein-De Feo-Leroux-Smith: $O(\sqrt{|G|})$, velusqrt.isogeny.org

G – подгруппа большого порядка \implies вычисление E/G является трудной задачей.

Это делает невозможными вычисления с секретными изогениями "в лоб" в криптосистемах.

Выход: брать $|G| = \ell_1^{e_1} \cdot \ldots \cdot \ell_r^{e_r}$ для малых ℓ_i и вычислять изогению как композицию изогений малых степеней.

Проблема нахождения изогении

Общая задача нахождения изогении

Даны две изогенные кривые E_1 и E_2 . Известно, что степень изогении равна ℓ . Вычислить изогению между ними.

При известном ядре G задача решается за полиномиальное время (если #G – гладкое).

Суперсингулярные кривые:

- наилучший алгоритм поиск на основе парадокса дней рождений
- сложность: $\mathcal{O}(\mathfrak{p}^6)$ (квант. алг.) и $\mathcal{O}(\mathfrak{p}^4)$ (класс. алг.)

Обычные кривые:

• квантовый субэкспоненциальный алгоритм

SIKE/SIDH

- Был одним из кандидатов на стандартизацию NIST
- Microsoft объявляла награду за взлом на \$50,000 USD
- Для оптимизации в схему добавили дополнительную информацию об изогениях – значения секретной изогении в точках кручения.
- Что и привело в итоге к взлому данной системы.

"Стандартный" протокол DH в абстрактной группе

G – группа, $\langle g \rangle = G$, $\phi_A(x) = [A] \cdot x$ – гомоморфизм групп.

$$\phi_A(\phi_B(g)) = \phi_B(\phi_A(g)) = [AB] \cdot g$$

 изогении суперсингулярных кривых в качестве гомоморфизмов ⇒ протокол SIDH (de Feo & Jao 2011)

SIDH (Supersingular Isogeny Diffie-Hellman)

Краткое описание:

- Публичные параметры: Е суперсингулярная кривая.
- 2 $\overline{\mathbf{m}}$ выбирает секретное ядро $\langle P \rangle$, строит изогению и отсылает \mathbf{k}^{μ} кривую $E/\langle P \rangle$
- **3** 🕌 выбирает своё секретное ядро $\langle Q \rangle$, строит изогению и отсылает 🏗 кривую $E/\langle Q \rangle$
- 0 Общий секретный ключ: $E/\left\langle P+Q\right\rangle =(E/\left\langle P\right\rangle)/\varphi _{A}(Q)=(E/\left\langle Q\right\rangle)/\varphi _{B}(P)$

Проблема: как посчитать $\phi_A(Q)$ и $\phi_B(P)$?

В SIDH для обхода данной проблемы публикуются значения секретных изогений в образующих групп кручения.

Детальное описание

Публичные параметры:

- $oldsymbol{0}$ простое $p=\ell_A^{e_A}\ell_B^{e_B}\cdot c\pm 1$, где ℓ_A,ℓ_B малые простые
- $m{2}$ E суперсингулярная кривая над \mathbb{F}_{p^2} т.ч. $\#\mathsf{E}(\mathbb{F}_{p^2})=(\ell_A^{e_A}\ell_B^{e_B}c)^2$
- $oldsymbol{3}$ $\langle P_A,Q_A
 angle$ базис $E[\ell_A^{e_A}]$, $\langle P_B,Q_B
 angle$ базис $E[\ell_B^{e_B}]$

Секретные параметры:

- $m_A,n_A\in \mathbb{Z}/\ell_A^{e_A}\mathbb{Z}$, изогения φ_A с ядром $\langle [m_A]P_A+[n_A]Q_A
 angle$
- $ot\hspace{-.1cm}
 ot\hspace{-.1cm}\not= m_B, n_B \in \mathbb{Z}/\ell_B^{e_B}\mathbb{Z}$, изогения φ_B с ядром $\langle [m_B]P_B + [n_B]Q_B \rangle$

Выработка общего ключа:

- 3 $E_{AB} := E_B / \langle [m_A] \phi_B(P_A) + [n_A] \phi_B(Q_A) \rangle$
- **6** Общий секретный ключ: $j(E_{AB}) = j(E_{BA})$

Замечания

- сложность атаки (MITM): $O(\sqrt[4]{p})$ на классическом компьютере и $O(\sqrt[6]{p})$ для квантового компьютера
- гладкое число точек необходимо для быстрого вычисления изогений в точке

SIKE. Параметры

- $1 E: y^2 = x^3 + 6x^2 + x$
- 2 $p = 2^{e_A}3^{e_B} + 1$
- $3 \# E(\mathbb{F}_{p^2}) = 2^{e_A} 3^{e_B}$
- $4 2^{e_A} \approx 3^{e_B}$

Атака Кастрика-Декру

- Castryck, Decru An efficient key recovery attack on SIDH. 2022
- Maino, Martindale An attack on SIDH with arbitrary starting curve. 2022
- 📜 Robert Breaking SIDH in polynomial time. 2022

Выступление Castryck на ANTS XV:

https://www.youtube.com/watch?v=_eNv7An3Qj0

Восстановление ключа

Пусть $G_B = \langle [m_B]P_B + [n_B]Q_B \rangle$ – секретное ядро 🕍.

Задача восстановления ключа:

$$E, E/G_B, \varphi_B(P_A), \varphi_B(Q_A) \Longrightarrow \varphi_B$$

Более того: $\varphi_B = \varphi_{e_B} \circ \ldots \circ \varphi_2 \circ \varphi_1$, где $\deg \varphi_i = \ell_B$.

$$E \xrightarrow{\phi_1} E_1 \xrightarrow{\phi_2} E_2 \xrightarrow{\phi_3} \dots \xrightarrow{\phi_{e_B}} E/G_B$$

- в схемах на изогениях предполагается, что нельзя восстановить сначала ϕ_1 , затем ϕ_2 и т.д.
- всего существует ℓ_B^2 вариантов выбора φ_i и перебор "в лоб" неэффективен.
- Кастрик и Декру предложили эффективный критерий для определения правильного варианта для ф_і.

Склейка эллиптических кривых

Пусть E и F – две (суперсингулярные) эллиптические кривые. Тогда:

- $E \times F$ абелева поверхность ($\dim = 2$)
- для подгруппы H ⊆ E × F можно определить фактор-поверхность A' = (E × F)/H по аналогам формул Велу.

Может быть два случая:

- $\mathbf{1}$ $\mathbf{A}' \simeq \operatorname{Jac}_{\mathbb{C}}$ с вероятностью $\approx 1-1/\mathfrak{p}$ (H неразложимая)
- $\mathbf{Q} \ \mathbf{A}' \simeq \mathbf{E}' \times \mathbf{F}'$ с вероятностью $\approx 1/\mathbf{p}$ (H разложимая)

Атака

Рассмотрим процесс восстановления ϕ_1 .

- $oldsymbol{0}$ Выбрать $\varphi_1^?: E o E_1^?$ один из ℓ_B^2 вариантов для φ_1
- ② Построить (любую) вспомогательную изогению $\gamma: \mathsf{E}_1^? o C$ степени $\ell_A^{e_A} \ell_B^{e_B-1}$
- **3** $P_C = \gamma(\phi_1^?(P_A)), Q_C = \gamma(\phi_1^?(Q_A))$
- **4** Если подгруппа $H = \langle (P_C, \varphi_B(P_A)), (Q_C, \varphi_B(Q_A)) \rangle \subseteq C \times E/G_B$ разложима, то $\varphi_1^? = \varphi_1, E_1^? = E_1$
- **5** В противном случае выбрать другую ϕ_1^2

Атака

Рассмотрим процесс восстановления ϕ_1 .

Откуда это взялось?

- Подгонка под условия теоремы Кани'97 с классификацией разложимых подгрупп.
- При $\varphi_1^? = \varphi_1$ всегда выполняется теорема Кани и группа H разложима
- При $\varphi_1^? \neq \varphi_1$ группа будет неразложима с вероятностью pprox (1-1/p)

Схемы стойкие к атаке

Замечание: если $\phi_B(P_A)$ и $\phi_B(Q_A)$ неизвестны (общая задача поиска изогении), то атака не работает.

Схемы не использующие точки кручения:

CSIDH, OSIDH, weakSIDH PoK, SeaSign, SQISign, CSI-FiSh

issikebrokenyet.github.io

Литература

- Castryck W., Decru T. An efficient key recovery attack on SIDH. 2022.
- SIKE Supersingular Isogeny Key Encapsulation. 2020. https://sike.org/
- Выступление Castryck на ANTS XV: https://www.youtube.com/watch?v=_eNv7An3Qj0

Контакты snovoselov@kantiana.ru