Radioactivity in North Atlantic deep water corals

Dana Ransby $^{1/2}$, Patric Lindahl 3 , Jixin Qiao 4 , Gerd Marissens 5 , Mikael Hult 5

¹Institute of Environmental Physics, University of Bremen, Bremen, Germany, ²Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
³Swedish Radiation Safety Authority, Stockholm, Sweden, ⁴Technical University of Denmark, Roskilde, Denmark

⁵Joint Research Centre – JRC, Geel, Belgium

Deep water corals as natural archives

Advantages and limitations of different natural archives for reconstructing ocean changes in the Anthropocene:

Natural archives	Advantages	Limitations
Sediment cores	No restrictions on samples due to protection of species	Typically lower resolution (low sedimentation rates) in deeper ocean
	Usually better availability of samples (core archives)	Post-depositional effects (physical, chemical)
	Sample sizes usually higher (easier analytical detection)	Sediment focusing
		Sampling of "the entire water column"
Tropical corals (e.g., <i>Porites</i>)	Excellent (sub-seasonal) resolution	Only surface ocean (photic zone) information
	Well resolved yearly increments (precise dating possible)	Only information from tropical $/$ subtropical regions
Deep water corals (e.g., Lophelia	a) Information on deeper ocean processes	
	Information also from temperate to high latitude regions	Not well resolved yearly increments (difficult dating)

Lophelia pertusa

- a cosmopolitan deep water coral species in the Atlantic Ocean
- occurring in wide range of depths
- forms bush-like colonies that may grow several metres across
- dead basal framework starts generally after 17-20 live polyp generations
- growth rates were estimated 5–34 mm·yr⁻¹ (Roberts et al. 2009 and references therein)

Sampling

Area 2

Species: Lophelia pertusa

Sampling: RRS James Cook 073 cruise (2012)

Location: Outer Hebrides, NE Atlantic, Mingulay

Reef, 120 m water depth

Samples provided: Prof J Murray Roberts,

University of Edinburgh, UK

Area 1

Species: Lophelia pertusa

Sampling: RV Poseidon POS400 cruise (2010)

Location: SW off Ireland, NE Atlantic, Pollux

Mound, 940 m water depth

Samples provided: Prof André Freiwald, Senckenberg am Meer, Wilhelmshaven, Germany

Gamma spectrometry: HADES underground laboratory, JRC-Geel

- Underground HADES (well detector Ge14): 2.57 kg and 120% rel. eff.
- Above ground LMS at IUP (low level coaxial detector 3): 1.0 kg and 50% rel. eff.

• Coral spectrum @HADES: 1.192 g coral measured over 14 days

Outlook

- \bullet Coral chronology using $^{210}{\rm Pb}$ and $^{226}{\rm Ra}$ data from HADES
- Artificial isotopes radiochemical analysis, mass spectrometry: U & Pu isotopes
- Are radioactive tracers in deep water corals suitable proxies for deeper water masses circulation in NE Atlantic Ocean?

References

Roberts, J. M., et al. (2009). Cold-Water Corals: The Biology and Geology of Deep-Sea Coral Habitats, Cambridge University Press

