Zadanie 6. (1 pkt)

Funkcja liniowa $f(x) = (m^2 - 4)x + 2$ jest malejąca, gdy

A.
$$m \in \{-2, 2\}$$

B.
$$m \in (-2, 2)$$

A.
$$m \in \{-2, 2\}$$
 B. $m \in (-2, 2)$ **C.** $m \in (-\infty, -2)$ **D.** $m \in (2, +\infty)$

D.
$$m \in (2, +\infty)$$

Zadanie 7. (1 pkt)

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f.

Funkcja f jest określona wzorem

A.
$$f(x) = \frac{1}{2}(x+3)(x-1)$$

B.
$$f(x) = \frac{1}{2}(x-3)(x+1)$$

C.
$$f(x) = -\frac{1}{2}(x+3)(x-1)$$

D.
$$f(x) = -\frac{1}{2}(x-3)(x+1)$$

Zadanie 8. (1 pkt)

Punkt C = (0,2) jest wierzchołkiem trapezu ABCD, którego podstawa AB jest zawarta w prostej o równaniu y = 2x - 4. Wskaż równanie prostej zawierającej podstawę CD.

A.
$$y = \frac{1}{2}x + 2$$

B.
$$y = -2x + 2$$

A.
$$y = \frac{1}{2}x + 2$$
 B. $y = -2x + 2$ **C.** $y = -\frac{1}{2}x + 2$ **D.** $y = 2x + 2$

D.
$$y = 2x + 2$$

Zadanie 9. (1 pkt)

Dla każdej liczby x, spełniającej warunek -3 < x < 0, wyrażenie $\frac{|x+3|-x+3}{x}$ jest równe

C.
$$-\frac{6}{x}$$

$$\mathbf{D.} \quad \frac{6}{x}$$

Zadanie 10. *(1 pkt)*

Pierwiastki x_1 , x_2 równania 2(x+2)(x-2) = 0 spełniają warunek

A.
$$\frac{1}{x_1} + \frac{1}{x_2} = -1$$

B.
$$\frac{1}{x_1} + \frac{1}{x_2} = 0$$

A.
$$\frac{1}{x_1} + \frac{1}{x_2} = -1$$
 B. $\frac{1}{x_1} + \frac{1}{x_2} = 0$ **C.** $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{4}$ **D.** $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2}$

D.
$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2}$$

Zadanie 11. *(1 pkt)*

Liczby 2,-1,-4 są trzema początkowymi wyrazami ciągu arytmetycznego (a_n) , określonego dla liczb naturalnych $n \ge 1$. Wzór ogólny tego ciągu ma postać

A.
$$a_n = -3n + 5$$

B.
$$a_n = n - 3$$

B.
$$a_n = n-3$$
 C. $a_n = -n+3$ **D.** $a_n = 3n-5$

D.
$$a_n = 3n - 3n$$