Programowanie funkcyjne - laboratoria

Wojciech Typer

zadanie 1 power x y = power y^x

$$p2 = power 4 \rightarrow power 4 y = y^4$$

p3 = power 3

$$(p2 \cdot p3) \ 2 = p2(p32) = p \ 2 \ 8 = 8^4 = 4096$$

p2 :: Int -> Int

p3 :: Int -> Int

(p2 . p3) :: Int -> Int

Wyrażenia lambda:

power =
$$/x \rightarrow /y \rightarrow y^x$$

p2 = $/y \rightarrow y^4$

$$p2 = /y \rightarrow y^4$$

$$p3 = /y \rightarrow y^3$$

zadanie 4

plus =
$$\lambda$$
 xy -> x + y
multi = λ xy -> x * y

zadanie 5

haskell:

$$\lambda x \to 1 + x * (x+1)$$

f = lambda x: 1 + x * (x + 1)

zadanie 6

Ustalmy zbiory A, B, C. Niech

curry :
$$C^{B \times A} \to (C^B)^A$$

będzie funkcją zadaną wzorem:

$$\operatorname{curry}(\varphi) = \lambda a \in A \to (\lambda b \in B \to \varphi(b, a)).$$

oraz niech

uncurry:
$$(C^B)^A \to C^{B \times A}$$

będzie zadana wzorem:

$$\operatorname{uncurry}(\psi)(b, a) = (\psi(a))(b).$$

- 1. Pokaż, że curry \circ uncurry $= id_{(C^B)^A}$ oraz uncurry \circ curry $= id_{C^{B \times A}}$.
- 2. Wywnioskuj z tego, że $|(C^B)^A| = |C^{B \times A}|$. Przypomnij sobie dowód tego twierdzenia, który poznałeś na pierwszym semestrze studiów.
- 3. Spróbuj zdefiniować w języku Haskell odpowiedniki funkcji curry i uncurry.
- 1. Pokażemy, że curry \circ uncurry $= id_{(C^B)^A}$ oraz uncurry \circ curry $= id_{C^{B \times A}}$.
 - curry o uncurry

$$(\text{curry} \circ \text{uncurry})(\psi) = \text{curry}(\text{uncurry}(\psi))$$

$$= \text{curry}(\lambda a \in A \to (\lambda b \in B \to \psi(a)(b))) \qquad (1)$$

$$= \lambda a \in A \to (\lambda b \in B \to \psi(a)(b)).$$

• uncurry o curry

$$(\text{uncurry} \circ \text{curry})(\varphi) = \text{uncurry}(\text{curry}(\varphi))$$

$$= \text{uncurry}(\lambda a \in A \to (\lambda b \in B \to \varphi(b, a))) \qquad (2)$$

$$= \lambda b \in B \to (\lambda a \in A \to \varphi(b, a)).$$

Z powyższych równań wynika, że curry o uncurry = $\mathrm{id}_{(C^B)^A}$ oraz uncurry o curry = $\mathrm{id}_{C^{B\times A}}$.

- 2. Możemy pokazać że curry i uncurry są iniekcjami niewprost, nakładając odpowiednio przeciwne funkcje na obie strony równości:
 - Załóżmy, że curry $(\varphi_1) = \text{curry}(\varphi_2)$. Wtedy:

$$\operatorname{curry}(\varphi_1)(a)(b) = \operatorname{curry}(\varphi_2)(a)(b)$$

$$\varphi_1(b, a) = \varphi_2(b, a)$$

$$\varphi_1 = \varphi_2.$$
(3)

• Załóżmy, że uncurry (ψ_1) = uncurry (ψ_2) . Wtedy:

uncurry
$$(\psi_1)(b, a) = \text{uncurry}(\psi_2)(b, a)$$

$$\psi_1(a)(b) = \psi_2(a)(b)$$

$$\psi_1 = \psi_2.$$
(4)

A więc istnieje biekcja między $(C^B)^A$ i $C^{B\times A},$ co oznacza, że te zbiory mają taką samą moc. $\hfill\Box$

3. W języku Haskell funkcje curry i uncurry można zdefiniować następująco: