

From Data to Insights: Cosmos DB in IoT workload

Divakar Kumar https://iamdivakarkumar.com

in https://www.linkedin.com/in/divakar-kumar/

https://github.com/Divakar-kumar

Get familiar with IoT concepts

Azure Cosmos DB & Partition key

Agenda

Azure Synapse link

Visualize data in Power Bl

Demo

What is IoT?

Physical world

What IoT is really about:

Enabling a digital feedback loop

Innovations enabling new opportunities

AQMD

Problem Statement

- Health impacts due to increase in Air pollution
- An ambient monitoring station can represent an area covering 2 km radius, which translates to 15 sq.km (rounded off)

Audio

Solution

- Make use of BOV Garbage Collector, food delivery partners/ Cabs (Ola, Uber, Swiggy, Zomato ...etc.) to mount the air quality sensor that detects PM 2.5, 10 concentrations in the air and visualize it as a live heat map.
- It will be an effective solution than ambient monitoring station as it shows us exactly where the intensity of air pollution is higher on street basis

Air Quality Monitoring Delivery- AQMD

Get familiar with IoT concepts

Azure Cosmos DB & Partition key

Agenda

Azure Synapse link

Visualize data in PowerBI

Demo

Microsoft's NoSQL database on Azure

Non-relational and horizontally scalable

Utilimiteelstehage.rgbasity

non-relational

non-relational and horizontally scalable

What is partitioning?

Logical Partitions

What if partition key is guid?

Choose deviceId as PartitionKey

Limits

Hot Partition

Hot Partition

Synthetic Partition Key

SELECT * FROM c WHERE c.synthetic_key = 'Bov-2023-05'

Partition Key Choices

DEVICE ID (e.g. Device123)

Each device would have a unique device ID. This creates a large number of partition key values and would have a significant amount of granularity.

Depending on how many transactions occur per vehicle, it is possible to a specific partition key that reaches the storage limit per partition key

Storage Distribution

C49E27EB
FE53547A
E84906BE
4376B4BC

Throughput Distribution

C49E27EB
FE53547A
E84906BE
4376B4BC

SYNTHETIC KEY (Device ID + yyyy-mm)

This composite option increases the granularity of partition key values by combining the current month and a device ID. Specific partition key values have less of a risk of hitting storage limitations as they only relate to a single month of data for a specific vehicle.

Throughput in this example would be distributed more to logical partition key values for the current month.

Storage Distribution

C49E27EB-2018-C49E27EB-2018-4376B4BC-2018-4376B4BC-2018-06

Throughput Distribution

Get familiar with IoT concepts

Azure Cosmos DB & Partition key

Agenda

Azure Synapse link

Visualize data in PowerBI

Demo

Azure Synapse Link for Azure Cosmos DB

Azure Synapse Link for Azure Cosmos DB

HTAP = Breaking down the barrier between OLTP & OLAP

- Near real-time data analytics
- No performance impact on transactional workloads
- Costs reduction for BI and Analytics workloads
- Simplified management

Azure Cosmos DB Analytics Before Synapse Link

- Performance impact on both workloads at scale
- Data archiving is delayed to meet analytics demands
- Costs and latency increase as the data volume grows

- Ingest data periodically from Azure Cosmos DB to Data Lake
- Delayed insights and reports
- Management complexity: data formats, ETL jobs, and storage

Azure Cosmos DB Analytics Before Synapse Link

Change Feed and materialized views would also be used for reporting. But..

- Customers still have to deal with a partition key
- Customers still have to use RUs and transactional store
- Different aggregations demand new Azure Functions programing
- Azure Functions is billed by execution, possible cost issue for big data volume
- Doesn't address analytics: full scans, joins, complex queries, etc

Azure Synapse Link Under the hood

Azure Synapse Link for Cosmos DB

Generate near real-time insights on your operational data

Analytical store | Enabling No-ETL HTAP

- "Auto-Sync": Your transactional data is automatically synced to analytical store within 2 mins
- Self-managed compute, throughput, and storage, without any downtime
- No performance or costs impact on your transactional workloads
- Automatic schema inference
- Native integration with Synapse to analyze the data directly with SQL & Spark runtimes
- Cosmos DB data is available for analytics in any global region where the Cosmos DB account is replicated

Analytical Time-To-Live (TTL)

- You can choose how long data should be retained in your analytical store (like transactional TTL for transactional store)
- Analytical TTL set on a container:

Value	Analytical data retention	When to use?		
0 or null	No data replicated from transactional store	Use the container only for transactional workloads Default, when analytical store is turned off		
-1	Infinite retention of analytical data in your container	Retain all historical data for analysis		
'n'	Items will expire from the analytical store "n" seconds after their last modified time in the transactional store.	Expire items in analytical store independent of transactional data Cost-effective for storage		

Seamless data tiering using Analytical & Transactional TTL

You can specify analytical TTL and transactional TTL on a container independently

Value	When to use?
Analytical TTL > Transactional TTL	Retain your data longer in analytical store
Analytical TTL same as Transactional TTL	Mirror data in transactional store
Analytical TTL < Transactional TTL	Expire items in analytical store earlier than in transactional store

Cosmos DB Synapse Link | TCO comparison

Cosmos DB

User Applications

Azure Synapse Link

Provisioned RU/s

1000000

Cost of Cosmos DB RU/s for 9.5 hours (ingestion)	\$800.000
Cost of Cosmos DB Transactional Storage	\$483.63
Cost of Cosmos DB Analytical Storage	\$28.82
Cost of Cosmos DB Analytical Store Write Operations	\$26.85
Cost of Analytical Store Partitioning execution (take out for base case)	\$23.09
Total	\$1,339.29

Inserts/Updates using CDC directly on OLTP store					
	$\rightarrow S$		→ spark	\rightarrow	
User Applications	Azure Cosmos DB	Raw data (Bronze)		Deduped da (Silver)	
Provisioned I	RU/s		1250000		
	ost of Cosmos DB RU/s for 9.5 hours ngestion + change feed)				
Cost of Cosmo	Cost of Cosmos DB Transactional Storage Cost of Spark compute to Stream to Bronze Delta Lake Cost of Spark compute to Stream to Silver Delta Lake				
Cost of Spark					
Cost of Spark					
Cost of Delta	Cost of Delta Lake storage				
Total				\$3,583.33	

63% cost reduction with Synapse Link

Visualization in Power BI

SQL script

```
. .
Create view aggregatetelemetry as
SELECT avg(pm_25) as pm_25,avg(pm_10) as pm_10,ROUND(lat,3) as lat,ROUND(lng,3) as lng
FROM OPENROWSET(
      'CosmosDB',
      'Account=cosmos-raspberrypi;Database=airqualitymonitoringdelivery;Key=YOUR_KEY',telemetry)
WITH (
              float '$.Body.pm_25',
       pm_25
       varchar(100) '$.Body.lat',
       lat
       lng
                  varchar(100) '$.Body.lng'
) AS docs Group by lat, lng;
```

Heat Map

Demonstration

Air quality monitoring

Link

Dr. Sarath Guttikunda study on Ambient monitoring system

Experts say five air quality monitoring stations not enough, seek 3 more

Interview with Dr. Sarath Guttikunda who wins AGU Award

Live Air Quality monitoring stations

Chennai Metropolitan Area to be trifurcated, will cover 5,904 sqkm

PM2.5, PM10 safe levels breached in Delhi throughout summer

Raspberry Pi

Insights

Link

Setting up your Raspberry Pi

Ευχαριστώ

Grazie

Спасибо

唔該

Merci

Obrigado

感謝你

Takk

ありがとう

Thank you!

Kiitos

Dzięki

Teşekkürler

धन्यवाद

شکر

Gracias

감사합니다

Danke

مرسي