

N		i	1024_exc	1024_inc	32_exc	32_inc
	10	1024	0.03904	0.500416	0.0608	0.844864
	11	2048	0.039968	0.514848	0.041216	0.509312
	12	4096	0.04064	0.53376	0.04048	0.544416
	13	8192	0.03984	0.5776	0.039392	0.587296
	14	16384	0.042144	0.687232	0.04096	0.68112
	15	32768	0.04256	0.89632	0.042752	0.897408
	16	65536	0.04416	1.31507	0.044736	1.31021
	17	131072	0.051936	2.42218	0.05296	2.42192
	18	262144	0.069024	4.00182	0.070944	4.07162
	19	524288	0.103424	7.51139	0.102144	7.49501
	20	1048576	0.15184	12.2358	0.155488	12.8412

The scaling analysis showed almost the same performance both for 1024 width blocks and 32 width blocks. To generate this data I used euler01 and 2 gpu units. Looking at the forum this is consistent to what other people have been seeing. I would expect 1024 size blocks to perform better when there is less executions to run and 32 width blocks if there are many different operations due to different FUs being required to perform different things. Doesn't look like that is the case here however.