Benson Probst CS 312

1)

```
a) f = \Theta(g) c*f(n) can be >=/<= c*g(n)
```

- b) $f = O(g) n^2/3$ will always be larger eventually, no matter what C*f(n) equals
- c) $f = \Theta(g)n > \log(n)^x$, which results in just c*n
- d) $f = \Theta(g)$ just constants result in c*n
- e) $f = \Theta(g)$ just constants result in c*log(n), for both f(n) and g(n)
- f) $f = \Theta(g) \log(n^2) = 2\log(n)$, which results in both being $c^*\log(n)$, and thus being theta.

2)

- a) if c < 1, then $\lim g(n) = 1$, resulting in $g(n) = \Theta(1)$. Any constant applied can result in an upper or lower bound.
- b) if c = 1, then $\lim of g(n) = \infty$, and $\lim of (n) = \infty$. This results in any constant can be applied to (n) to upper or lower bound g(n)
- c) if c > 1, then the lim of (g)n = c^n , which is the same as c^n . Any constant can be applied to uppoer or lower bound g(n) in that case.

3.a)

```
def fibExp(n):
    if n == 0:
        return 1
    if n == 1:
        return 1
    if n == 2:
        return 1
    return 1
    return (fibExp(n-1) + fibExp(n-2) * fibExp(n-3))
```

f^n due to the function being ran to the power of n. The more N exists, the more it recurses down, exponentially.

b)

```
def fabLinear(n):
    if n == 0:
        return 1
    if n == 1:
        return 1
    if n == 2:
        return 1
    array = [1,1,1]
    for x in range(3, n + 1):
        array.append(x)
    for x in range(3,n + 1):
```

Benson Probst CS 312

```
array[x] = array[x-1] + array[x-2] * array[x-3]
add = (len(array) - 3) *2
mult = (len(array) - 3)
return array[n],add, mult
```

add and mult returns the number of additions and multiplications, respectively