EP 1 364 960 A1 (11)

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 26.11.2003 Bulletin 2003/48

(21) Application number: 02711294.5

(22) Date of filing: 04.02.2002

(51) Int Cl.7: **C07K 5/062**, C07K 5/065, C07K 5/078, C07K 14/745, G01N 33/15, G01N 33/68, G06F 17/50

(86) International application number: PCT/JP02/00883

(87) International publication number: WO 02/062829 (15.08.2002 Gazette 2002/33)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR **Designated Extension States:**

AL LT LV MK RO SI

(30) Priority: 02.02.2001 JP 2001027474

(71) Applicant: CHUGAI SEIYAKU KABUSHIKI **KAISHA** Tokyo, 115-8543 (JP)

(72) Inventors:

- SHIRAISHI, Takuya, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)
- KADONO, Shojiro, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)

- HARAMURA, Masayuki, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)
- SATO, Haruhiko c/o Chugai Seiyaku Kabushiki Kaisha Gotenba-shi, Shizuoka 412-8513 (JP)
- KOZONO, Toshiro, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)
- KOGA, Takaki, c/o Chugai Seiyaku Kabushiki Kaisha Gotenba-shi, Shizuoka 412-8513 (JP)
- SAKAMOTO, Akihisa, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54)PEPTIDE DERIVATIVES

(57)A compound of Formula (1):

wherein

R₁ represents an amidinophenyl group, etc.;

R₂ represents a hydrogen atom, etc.;

R₃ represents a carbamoylalkyl group, etc.;

R₄ represents a hydrogen atom, etc.; R₅ represents a benzyl group, etc.;

Re represents a hydrogen atom, etc.; and

R₇ represents an alkylsulfonyl group, etc.

A crystal of a complex between factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor. A medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, obtainable by X-ray crystal structure analysis of the crystal. A method for computationally designing a low-molecular weight reversible factor VIIa inhibitor using the coordinate data.

Description

20

25

30

35

40

45

55

TECHNICAL FIELD

5 [0001] The present invention relates to peptide derivatives having an inhibitory activity against blood coagulation factor VIIa.

BACKGROUND ART

10 [0002] Blood coagulation is a host defense mechanism provoked in response to vascular injury and/or foreign stimulation. Blood coagulation involves 15 factors including 12 proteinaceous coagulation factors in plasma, along with calcium ion, tissue factor and phospholipid (platelet-derived). This reaction is mediated by a cascade mechanism, in which a series of protease activations occurs successively on the membrane of platelets aggregated at a site of injury or damaged endothelial cells.

[0003] The blood coagulation cascade is divided into intrinsic and extrinsic pathways. It is called extrinsic blood coagulation when it occurs with the aid of tissue factor present in tissues, while it is called intrinsic blood coagulation when it occurs without the aid of tissue factor.

[0004] Intrinsic blood coagulation is initiated by the contact of blood coagulation factor XII in plasma with the surface of a negatively-charged solid phase or the like. Upon adsorption onto the surface, factor XII is converted through limited hydrolysis into activated factor XII (XIIa), an active protease. In turn, factor XIIa causes the limited hydrolysis of factor XI into activated factor XI (XIa), an active protease. After such a cascade of protease activations, the final protease thrombin causes the limited hydrolysis of fibrinogen into fibrin, leading to the completion of blood coagulation. In downstream reactions after the activation of factor XI, a number of coagulation factors are assembled into complexes to facilitate coagulation factor localization at a site of hemostasis and to ensure efficient activation reactions. Namely, a tenase complex is assembled from phospholipids, factor VIIIa, factor IXa, factor X and Ca²⁺, while a prothrombinase complex is assembled from phospholipids, factor Va, factor Xa, prothrombin and Ca²⁺, resulting in significant promotion of prothrombin activation.

[0005] Extrinsic blood coagulation is initiated by the formation of a complex between factor VIIa and tissue factor. This complex between factor VIIa and tissue factor will join the intrinsic pathway at the stage of factor X and IX activation. [0006] In general, extrinsic blood coagulation is reported to be important for hypercoagulation and physiological coagulation under pathological conditions.

[0007] Examples of known anticoagulants include a thrombin inhibitor such as heparin, as well as warfarin. However, since a thrombin inhibitor acts on downstream reactions of the blood coagulation cascade and hence cannot control the consumption of coagulation factors that lead to thrombin generation upon excess inhibition of coagulation, such a thrombin inhibitor involves a problem of hemorrhage tendency in clinical use. Likewise, warfarin inhibits the production of many blood coagulation factors and also involves a problem of hemorrhage tendency in clinical use, as in the case of a thrombin inhibitor.

[0008] As mentioned above, factor VIIa is located upstream in the extrinsic pathway and hence an inhibitor against factor VIIa will not affect the intrinsic coagulation pathway. That is, such an inhibitor will be able to leave the resistance against hemorrhage. This suggests that a factor VIIa inhibitor is expected to reduce the hemorrhage tendency, a side effect of existing anticoagulants. Thus, a factor VIIa inhibitor is expected to be effective in preventing or treating pathological conditions associated with the extrinsic coagulation pathway, e.g., chronic thrombosis (more specifically, postoperative deep vein thrombosis, post-PTCA restenosis, DIC (disseminated intravascular coagulation), cardioembolic strokes, cardiac infarction and cerebral infarction).

[0009] To date, some compounds have been reported as factor VIIa inhibitors (see, e.g., WO00/41531, WO00/35886, WO99/41231, EP921116A, WO00/15658, WO00/30646, WO00/58346).

[0010] However, all of these compounds are insufficient to have an inhibitory activity against factor VIIa or a selective inhibitory activity against extrinsic blood coagulation; there is a need to develop an agent having an improved inhibitory activity or an improved selective inhibitory activity.

50 [0011] Recent studies on enzyme inhibitors have tended to employ computational procedures, in which a threedimensional enzyme model based on X-ray crystal structure analysis or the like is displayed on the screen of a computer to design a candidate compound which may have an inhibitory activity or to perform computer-aided virtual screening. Factor VIIa (hereinafter also referred to as "FVIIa") has also been studied by X-ray structure analysis to determine its three-dimensional structure in free form, in complex with soluble tissue factor (this complex being hereinafter also referred to as "factor VIIa/soluble tissue factor" or "FVIIa/sTF), and in complex with a protein inhibitor (Nature, 380, 41-46, 1996; J. Mol. Biol, 285, 2089-2104, 1999; Proc Natl Acad Sci U S A., 96, 8925-8930; J Struct Biol., 127, 213-223, 1999; Nature, 404, 465-470, 2000).

[0012] However, computational virtual docking techniques result in inaccurate estimation at present (Guidebook on

Molecular Modeling Drug Design, 129-133, 1996, ACADEMIC PRESS); on the other hand, an enzyme molecule frequently undergoes an inhibitor brinding-induced conformational change called induced fit (Guidebook on Molecular Modeling Drug Design, 133-134, 1996, ACADEMIC PRESS). For computer-aided design of inhibitors, it is therefore most desirable to perform X-ray structure analysis on each inhibitor or its structurally similar inhibitor in complex with an enzyme to clarify the details of the binding mode between inhibitor and enzyme at the atomic level. In all previously reported crystals containing factor VIIa, however, irreversible inhibitors or protein inhibitors occupy the active sites of factor VIIa, which may be used as inhibitor-binding sites. Such crystals cannot be used for X-ray crystal structure analysis of a complex between factor VIIa and a low-molecular weight reversible inhibitor (e.g., having a molecular weight less than 1000). Generally, protein crystallization usually requires high purity. A problem of protease cleavage often arises in purifying such high-purity proteins (Crystallization of Nucleic Acids and Proteins, A Practical Approach, 34, 1992, IRL PRESS). In particular, a problem of self-cleavage arises in purifying and crystallizing a protease such as factor VIIa. For this reason, an irreversible inhibitor is often used in purification and crystallization because once binding occurs, the irreversible inhibitor will not be released from the protease and allows complete prevention of selfcleavage during purification and crystallization. However, in the case of a complex with a low-molecular weight reversible inhibitor, it involves technical difficulties because there is no guarantee that self-cleavage is completely prevented during crystallization. Indeed, there has been no report showing the crystallization or three-dimensional structure of a complex between factor VIIa and a low-molecular weight reversible factor VIIa inhibitor.

DISCLOSURE OF THE INVENTION

[0013] An object of the present invention is to provide a peptide derivative useful as a medicament, which has an inhibitory activity against blood coagulation factor VIIa or which has an excellent selective inhibitory effect on extrinsic blood coagulation.

[0014] Another object of the present invention is to provide a crystal which can be used for X-ray crystal analysis to clarify the three-dimensional structure of a complex between factor VIIa/soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, as well as a method for preparing the crystal. Yet another object of the present invention is to provide a method for designing a novel low-molecular weight reversible factor VIIa inhibitor having an excellent specific or selective inhibitory activity for factor VIIa by using three-dimensional structure information of the complex crystal, as well as a low-molecular weight reversible factor VIIa inhibitor designed by the method.

[0015] As a result of extensive and intensive efforts, the inventors of the present invention found that a peptide derivative of Formula (1) had an inhibitory activity against factor VIIa or a selective inhibitory effect on extrinsic blood coagulation, which led to the completion of the invention.

[0016] Namely, the present invention provides a compound of Formula (1):

35

40

5

10

15

20

25

30

wherein

R₁ represents a group selected from the following formulae:

45

[wherein R₈ represents an amino group, an aminomethyl group or

10

5

15

20

25

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acyl group or an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety, R_{10} represents an amino group, one of X and Y represents =CH- and the other represents =N-)];

R₂ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

R₃ represents:

or

30

[wherein m represents an integer of 1 to 6, and R₁₁ represents:

35

40

45

(wherein R₁₂ represents a hydrogen atom or a linear or branched C₁-C₃ alkyl group) or

50

55

 $\rm R_4$ represents a hydrogen atom or a linear or branched $\rm C_1\text{-}C_6$ alkyl group;

 R_5 represents a linear or branched C_1 - C_6 -alkyl group or - CH_2 - R_{13} (wherein R_{13} represents an optionally substituted aryl group or an optionally substituted heterocyclic group);

 $\rm R_{6}$ represents a hydrogen atom or a linear or branched $\rm C_{1}\text{-}C_{6}$ alkyl group; and

 R_7 represents an optionally substituted linear or branched C_1 - C_6 alkyl group or -SO₂- R_{14} (wherein R_{14} represents an optionally substituted linear or branched C_1 - C_8 alkyl group)

or a tautomer or enantiomer of the compound, or a hydrate or pharmaceutically acceptable salt thereof.

[0017] The present invention also provides a pharmaceutical composition comprising a compound of Formula (1).

Further, the present invention provides an antithrombotic agent comprising the compound. Furthermore, the present invention provides a blood coagulation factor VIIa inhibitor comprising the compound.

[0018] In addition, the present invention provides a crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined above).

[0019] Further, the present invention provides a method for preparing a crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, which comprises the following steps (i) to (iii):

- (i) preparing human factor VIIa/human soluble tissue factor, which is co-crystallizable with the low-molecular weight reversible factor VIIa inhibitor:
- (ii) preparing a concentrated sample for crystallization to add the low-molecular weight reversible factor VIIa inhibitor, and
- (iii) obtaining the crystal of the complex between human factor VIIa/human soluble tissue factor and the low-molecular weight reversible factor VIIa inhibitor from the concentrated sample for crystallization prepared in (ii) to add a seed crystal of a complex between a low-molecular weight irreversible or reverdible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined above).
- [0020] In addition, the present invention provides a medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, wherein said data are obtainable by performing X-ray crystal structure analysis on the above crystal prepared for the complex between human factor VIIa/human soluble tissue factor and the low-molecular weight reversible factor VIIa inhibitor.
- [0021] Further, the present invention provides a method for computationally designing a low-molecular weight reversible factor VIIa inhibitor using the above coordinate data. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Asp60 side chain, Tyr94 side chain and Thr98 main chain of the human factor VIIa H chain. In another embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with Lys192 side chain of the human factor VIIa H chain. In yet another embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Val170E, Gly170F, Asp170G, Ser170H, Pro170I and Gln217 of the human factor VIIa H chain. In yet another embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with the S4 subsite of the human factor VIIa H chain through a hole extending from the S4 site to the S4 subsite.
- [0022] Furthermore, the present invention provides a low-molecular weight reversible factor VIIa inhibitor designed by the above method. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the following Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa:

Class [A-1]:

5

10

15

20

25

30

35

40

45

50

55

$$H_2N$$
 H_2N
 X_1
 X_2
 X_3
 X_4
 X_2
 X_3

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

(wherein R₂₃ represents a 6 or 5-membered aromatic ring containing a heteroatom(s)).

[0023] In another embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite of human factor VIIa:

Class [B-1]:

5

25 Class [B-2]:

Class [B-3]:

40

50

$$\xi - R_{25} - R_{24} \qquad \xi - R_{25}$$

(wherein R_{24} represents the same partial structures define as Class [B-2], and R_{25} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)) or Class [B-4]:

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]).

[0024] In vet another embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the following Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site of human factor VIIa:

Class [C-1]:

10

5

20

25

35

40

15

$$R_{28}$$
 X_3 $\begin{cases} R_{28}$ X_3

(wherein X_3 represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom (s)) or

Class [C-2]:

30 X₄ Z₇ Z₇

(wherein X₄ represents NH, S or O, and X₅, X₆, X₇, X₈, X₉ and X₁₀ each independently represent N or CH).

[0025] In yet another embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa, any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite, and any one of the partial structures shown in the above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site.

BRIEF DESCRIPTION OF DRAWINGS

⁴⁵ [0026]

Figure 1 shows the three-dimensional conformation of the binding sites between human factor VIIa and Compound (1).

Figure 2 shows a schematic view of the binding sites between human factor VIIa and Compound (1).

Figure 3 shows the S4 site of human factor VIIa upon binding to D-Phe-Phe-Arg-cmk (left) or Compound (1) (right)

BEST MODE FOR CARRYING OUT THE INVENTION

[0027] In the definition of a compound of Formula (1), the following group defined as R₁:

55

$$\mathbb{R}_{\mathsf{R}}$$

preferably has the following formula:

5

10

15

20

25

30

35

40

45

50

55

-R₈

wherein R₈ preferably represents the following formula:

N R₉

[0028] Examples of the acyl group defined as R₉ in the formula for R₈:

N N ---C-NH₂

include alkylcarbonyl groups such as a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, a pivaloyl group, a caproyl group and a phenylacetyl group; alkenylcarbonyl groups such as an acryloyl group, a propioloyl group, a methacryloyl group, a crotonoyl group and an isocrotonoyl group; and arylcarbonyl groups such as a benzoyl group. Preferred is an alkylcarbonyl group having a linear or branched C_1 - C_6 alkyl as its alkyl moiety. Particularly preferred are an acetyl group, a propionyl group, a butyryl group, an isobutyryl group and an isovaleryl group.

[0029] The alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety, defined as R_9 in the formula for R_8 :

is preferably an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_4 alkyl as its alkyl moiety (wherein examples of a substituent include a phenyl group). Particularly preferred are a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group and a benzyloxycarbonyl group.

[0030] In the present invention, when expressed as "optionally substituted" or when several substitutions are possible for a given group or moiety, it is meant that the group or moiety may be substituted with one or more substituents.

[0031] R_9 in the formula for R_8 :

R₉

is preferably a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isovaleryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group.

[0032] The following group defined as R₁:

preferably has the following formula:

$$R_{10}$$

[0033] The following group defined as R₁:

15

20

5

10

preferably has the following formula:

25

30

[0034] The following group defined as R₁:

35

40

preferably has the following formula:

45

[0035] The following group defined as R₁:

50

55

preferably has the following formula:

$$N$$
 NH_2
 NH_2

[0036] The following group defined as R₁:

10

15

5

n

preferably has the following formula:

20

[0037] The following group defined as R₁:

25

30

preferably has the following formula:

35

40

45

50

[0038] The linear or branched C_1 - C_6 alkyl group defined as R_2 is preferably a linear or branched C_1 - C_3 alkyl group, and particularly a methyl group.

[0039] The following group defined as R₃:

preferably has the following formula:

m in the group $-(CH_2)_m - R_{11}$ defined as R_3 is preferably an integer of 1 to 3, and particularly 2. **[0040]** R_{11} in the group $-(CH_2)_m - R_{11}$ defined as R_3 is preferably $-CONH_2$,

or

5

10

15

20

25

30

35

40

45

50

(wherein R_{12} preferably represents a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly represents a methyl group).

[0041] The linear or branched C_1 - C_6 alkyl group defined as R_4 is preferably a linear or branched C_1 - C_3 alkyl group, and particularly a methyl group.

[0042] The linear or branched C_1 - C_6 alkyl group defined as R_5 is preferably a linear or branched C_1 - C_4 alkyl group. [0043] The optionally substituted aryl group as R_{13} in the group - CH_2 - R_{13} defined as R_5 is preferably a group of the following formula:

[wherein R_{15} preferably represents a hydrogen atom, an optionally substituted aryl group (wherein examples of the aryl group include a phenyl group and a naphthyl group, with a phenyl group being preferred, and examples of a substitutent include a linear or branched C_1 - C_3 alkoxy group, a linear or branched C_1 - C_3 alkyl group which may be substituted with a halogen atom, a nitro group and an amino group), a C_1 - C_3 alkyl group which may be substituted with a halogen atom, a linear or branched C_1 - C_3 alkoxy group, a halogen atom, an arylcarbonyl group (wherein examples of the aryl group include a phenyl group and a naphthyl group, with a phenyl group being preferred), an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, a nitro group, or an amino group, and particularly represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or an amino group] or

(wherein R_{16} preferably represents a hydrogen atom or a linear or branched C_1 - C_6 alkyl group, and particularly represents a hydrogen atom).

[0044] The optionally substituted heterocyclic group as R_{13} in the group -CH $_2$ - R_{13} defined as R_5 contains a 5- to 10-membered monocyclic or condensed ring having at least one nitrogen atom, oxygen atom and/or sulfur atom as a ring member. Examples include furan, thiophene, pyran, pyrrole, pyridine, indole, benzofuran, benzothiophene, benzopyran and benzothiopyran. Examples of a substituent on the optionally substituted heterocyclic group include those listed below for R_{17} and R_{18} .

[0045] The optionally substituted heterocyclic group as R_{13} in the group -CH₂-R₁₃ defined as R_5 is preferably a group of the following formula:

In the above formula, R₁₇ preferably represents a hydrogen atom, a hydroxy group, a linear or branched C₁-C₆ alkyl group, a linear or branched C₁-C₆ alkoxy group, -O-(CH₂)_n-OH (wherein n represents an integer of 1 to 5), -O-(CH₂)_p-COOH (wherein p represents an integer of 1 to 5), -O-(CH₂)_p-NH₂ (wherein q represents an integer of 1 to 5),

(wherein R_{19} represents a hydrogen atom, a hydroxy group, a carboxyl group, a linear or branched C_1 - C_6 alkyl group, a halogen atom, a linear or branched C_1 - C_6 alkoxy group, or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety), or -OSO₂- R_{20} (wherein R_{20} represents a linear or branched C_1 - C_6 alkyl group or a benzyl group).

[0046] Above all, R_{17} is preferably a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C_1 - C_3 alkoxy group, -O-(CH_2) $_n$ -OH (wherein n represents an integer of 1 to 3), -O-(CH_2) $_n$ -COH (wherein p represents an integer of 1 to 3), -OSO $_2$ - R_{20} (wherein R_{20} particularly represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group, or a 3- or 4-carboxybenzyloxy group.

[0047] R₁₈ preferably represents a hydrogen atom, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkylsulfonyl group, or an optionally substituted arylsulfonyl group (wherein the aryl group is preferably a phenyl group, and examples of a substituent include a linear or branched C_1 - C_3 alkoxy group, a linear or branched C_1 - C_3 alkyl group which may be substituted with a halogen atom, a nitro group and an amino group), and particularly represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group.

[0048] The linear or branched C_1 - C_6 alkyl group defined as R_6 is preferably a linear or branched C_1 - C_3 alkyl group. [0049] Examples of a substituent on the optionally substituted linear or branched C_1 - C_6 alkyl group defined as R_7 include a carboxyl group, an amino group, a mono- or di-substituted alkylamino group having a C_1 - C_6 alkyl as its alkyl moiety, and an alkylcarbonylamino group having a C_1 - C_6 alkyl as its alkyl moiety.

[0050] The alkyl moiety of the optionally substituted linear or branched C_1 - C_6 alkyl group defined as R_7 is preferably a linear or branched C_1 - C_4 alkyl group.

[0051] The optionally substituted linear or branched C_1 - C_6 alkyl group defined as R_7 is preferably a linear or branched C_1 - C_4 alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 3, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a linear or branched C_1 - C_3 alkyl group or an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)].

[0052] Above all, in the formula:

5

15

20

25

30

40

45

50

55

k is particularly an integer of 0 to 2, and R_{21} is preferably a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group).

[0053] Examples of a substituent on the optionally substituted linear or branched C_1 - C_8 alkyl group defined as R_{14} in the group -SO₂- R_{14} defined as R_7 include (a) a carboxyl group, (b) an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, and (c) a phenyl group which may be substituted with a carboxyl group or the like.

[0054] The alkyl moiety of the optionally substituted linear or branched C_1 - C_8 alkyl group defined as R_{14} is preferably a linear or branched C_1 - C_6 alkyl group.

[0055] The optionally substituted linear or branched C_1 - C_8 alkyl group defined as R_{14} is preferably (a) an optionally substituted linear or branched C_1 - C_6 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety), or (b) - CH_2 - R_{23} (wherein R_{23} represents an optionally substituted phenyl group, which may be substituted with a carboxyl group or the like).

[0056] In particular, R_{14} is preferably a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C_1 - C_4 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety).

[0057] R₁ is preferably selected from the following formulae:

15

20

25

30

5

10

[wherein R₈ represents:

NH°

35

40

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acyl group, or an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety)].

[0058] Above all, R₁ is particularly selected from the following formulae:

45

50

55

[wherein R₈ represents:

R₉
N
C—NI

(wherein R₉ represents a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isobutyryl group, an isobutyryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group)].

[0059] R_2 is preferably a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly a hydrogen atom or a methyl group.

[0060] R₃ is preferably a group of the following formula:

or

5

30

40

45

50

[wherein m represents an integer of 1 to 3, and R_{11} represents:

CONH₂,

(wherein R₁₂ represents a hydrogen atom or a methyl group) or

[0061] Also preferred is a compound, in which R₃ represents a linear or branched C₁-C₆ alkyl group or -(CH₂)_m-R₁₁ (wherein m and R₁₁ are as defined above).

[0062] Also preferred is a compound, in which R₃ represents:

and R₇ represents -SO₂-R₁₄ (wherein R₁₄ is as defined above).

[0063] In particular, R_3 is preferably a group of the following formula:

-(CH2)2CONH2,

or

10

5

[0064] R_4 is preferably a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly a hydrogen atom or a methyl group.

[0065] R_5 is preferably a linear or branched C_1 - C_6 alkyl group or -CH₂-R₁₃ [wherein R₁₃ represents a group selected from the following formulae:

20

25

15

(wherein

 R_{15} represents a hydrogen atom, an optionally substituted aryl group, a C_1 - C_3 alkyl group which may be substituted with a halogen atom, a linear or branched C_1 - C_3 alkoxy group, a halogen atom, an arylcarbonyl group, an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, a nitro group, or an amino group;

R₁₆ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

 R_{17} represents a hydrogen atom, a hydroxy group, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkoxy group, -O-(CH_2)_n-OH (wherein n represents an integer of 1 to 5), -O-(CH_2)_p-COOH (wherein p represents an integer of 1 to 5), -O-(CH_2)_q-NH₂ (wherein q represents an integer of 1 to 5),

35

40

45

30

(wherein R_{19} represents a hydrogen atom, a hydroxy group, a carboxyl group, a linear or branched C_1 - C_6 alkyl group, a halogen atom, a linear or branched C_1 - C_6 alkoxy group, or an alkoxycarbonyl group having a linear or branched C_1 - C_6 alkyl as its alkyl moiety), or -OSO₂- R_{20} (wherein R_{20} represents a linear or branched C_1 - C_6 alkyl group or a benzyl group); and

 R_{18} represents a hydrogen atom, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkylsulfonyl group, or an optionally substituted arylsulfonyl group)].

[0066] In particular, R_5 is preferably a linear or branched C_1 - C_4 alkyl group or - CH_2 - R_{13} [wherein R_{13} represents a group selected from the following formulae:

50

55

(wherein

R₁₅ represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or

an amino group;

5

10

15

20

25

30

35

40

45

50

55

 R_{17} represents a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C_1 - C_3 alkoxy group, -O-(CH_2)_n-OH (wherein n represents an integer of 1 to 3), -O-(CH_2)_p-COOH (wherein p represents an integer of 1 to 3), -O-(CH_2)_q-NH₂ (wherein q represents an integer of 1 to 3), -OSO₂- R_{20} (wherein R_{20} represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group; and

R₁₈ represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group)].

[0067] R_6 is preferably a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly a hydrogen atom or a methyl group.

[0068] R_7 is preferably a linear or branched C_1 - C_6 alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 3, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a linear or branched C_1 - C_3 alkyl group or an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)] or

[wherein R₁₄ represents:

(i) an optionally substituted linear or branched C_1 - C_6 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety); or (ii) -CH₂-R₂₃ (wherein R₂₃ represents an optionally substituted phenyl group)].

[0069] Above all, R₇ is particularly a linear or branched C₁-C₄ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 2, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group)] or

[wherein R_{14} represents a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C_1 - C_4 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)].

[0070] Having the definition given above for each symbol, preferred is a compound of Formula (1) wherein R_1 is a group selected from the following formulae:

[wherein R₈ represents:

5

15

20

40

45

50

55

10 Rg

(wherein R_g represents a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isovaleryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group)];

R₂ is a hydrogen atom or a methyl group;

 R_3 is a group of the following formula:

- (CH₂)₂CONH₂,

or *35*

R₄ is a hydrogen atom or a methyl group;

 R_5 is a linear or branched C_1 - C_4 alkyl group or -CH₂-R₁₃ [wherein R₁₃ represents a group selected from the following formulae:

(wherein

R₁₅ represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or an amino group:

R₁₇ represents a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C₁-C₃ alkoxy group,

-O- $(CH_2)_n$ -OH (wherein n represents an integer of 1 to 3), -O- $(CH_2)_p$ -COOH (wherein p represents an integer of 1 to 3), -O- $(CH_2)_q$ -NH₂ (wherein q represents an integer of 1 to 3), -OSO₂-R₂₀ (wherein R₂₀ represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group; and 4-carboxybenzyloxy group; and

R₁₈ represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group)];

R₆ is a hydrogen atom or a methyl group; and

5

10

15

25

40

45

50

55

R₇ is a linear or branched C₁-C₄ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 2, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group)] or

[wherein R₁₄ represents a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C₁-C₄ alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C₁-C₃ alkyl as its alkyl moiety)].

Above all, particularly preferred is a compound selected from the following formulae:

[0071] Compounds of Formula (1) have enantiomers; all individual enantiomers and mixtures thereof are intended to be within the scope of the present invention. Above all, preferred are compounds having the S-configuration at the carbon atom attached to R_5 in Formula (1).

[0072] The compounds of the present invention may also be obtained as hydrates.

[0073] Examples of a salt-forming acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as acetic acid, oxalic acid, maleic acid, fumaric acid, citric acid, tartaric acid, methanesulfonic acid and trifluoroacetic acid.

[0074] Each compound of Formula (1) may be administered as a pharmaceutical composition in any dosage form suitable for the intended route of administration, in combination with one or more pharmaceutically acceptable diluents, wetting agents, emulsifiers, dispersants, auxiliary agents, preservatives, buffers, binders, stabilizers and the like. It may be administered parenterally or orally.

[0075] The dose of the compound can be determined as appropriate for the physique, age and physical condition of a patient, severity of the disease to be treated, elapsed time after onset of the disease, etc. For example, it is usually used at a dose of 1 to 1000 mg/day/person for oral administration and at a dose of 0.1 to 100 mg/day/person for parenteral administration (by intravenous, intramuscular or subcutaneous route).

[0076] The compounds of Formula (1) can be prepared as shown in the following Reaction Schemes 1 to 6.

50

45

15

20

25

30

35

40

Reaction Scheme 2

(23)

Reaction Scheme 3.

5

10

15

Reaction Scheme 5

20

25

50

55

Reaction Scheme 6

[0077]

30 35 40

(43)

Reaction Scheme 6

(44)

[0078] In Reaction Schemes 1 to 6, the substituents R_1 , R_2 , \cdots and R_n are each as defined above, and R_1 , R_2 , \cdots and R_n represent the respective corresponding protected forms of R_1 , R_2 , \cdots and R_n . Examples of protecting groups include those described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985) or PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC, 1991), e.g., a t-butoxycarbonyl (Boc) group, a benzyloxycarbonyl (Cbz) group, a 9-fluorenylmethoxycarbonyl (Fmoc) group.

[0079] Likewise, P represents a commonly-used protecting group, such as those described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985) or PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991).

[0080] X represents a halogen atom such as chloride, bromide or iodide.

[0081] Starting materials in the individual reaction steps are known per se or can be prepared in a known manner.

[0082] All reactions in the individual reaction steps can be performed in a known manner.

[0083] Likewise, other starting materials and individual reagents used here are also known per se or can be prepared in a known manner.

[0084] The preparation of the compounds according to the present invention will be illustrated in more detail, in line with the above-mentioned reaction schemes.

Reaction Scheme 1

5

10

15

20

25

30

40

45

50

55

[0085] Intermediate (3) may be obtained through condensation between Starting material (1) and Reagent 2 (listed in Table A-1 to Table A-34; this reagent being commercially available or easy to synthesize by known synthesis procedures).

[0086] The condensation used here may be accomplished as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985), for example, by commonly-used active ester method, acid anhydride method, azide method or acid chloride method, or using various condensing agents. Examples of a condensing agent available for use include commonly-used reagents such as those described in Peptide Synthesis Handbook (Novabiochem, 1998), e.g., N,N'-dicyclohexylcarbodiimide (DCC), water-soluble carbodiimide (WSCI), carbonyldiimidazole (CDI), diphenylphosphorylazide (DPPA), Bop reagent, Pybop reagent, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and 2-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dimethylformamide, dichloromethane) at room temperature or under cooling or heating conditions.

[0087] Intermediate (4) may be obtained from Intermediate (3) through appropriate amino deprotection, for example, as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985). The reaction may be carried out in a routine manner with or without an appropriate solvent (e.g., dichloromethane, dimethylformamide) at room temperature or under cooling or heating conditions.

[0088] Intermediate (6) may be obtained through condensation between Intermediate (4) and Reagent 5 (listed in Table A-1 to Table A-34; this reagent being commercially available or easy to synthesize by known synthesis procedures) in the same manner as described above.

[0089] Intermediate (7) may be obtained from Intermediate (6) through amino deprotection as described above. The reaction may be carried out in a routine manner with or without an appropriate solvent (e.g., dichloromethane, dimethylformamide) at room temperature or under cooling or heating conditions.

[0090] Intermediate (9) may be obtained from Intermediate (7) through commonly-used alkylation, acylation or sulfonylation with Reagent 8 (listed in Table A-1 to Table A-34; this reagent being commercially available or easy to synthesize by known synthesis procedures). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dimethylformamide, dichloromethane) at room temperature or under cooling or heating conditions.

[0091] Compound (10) and Intermediate (11) may be derived from Intermediate (9) in a known manner as described in JP 09-509937 A, the Chemistry of Amidines and Imidates (JOHN WILEY & SONS, INC, 1991), etc.

[0092] For example, Compound (10) may be obtained by treating Intermediate (9) with a strong acid and then reacting it with an ammonium salt or ammonia. The reaction may be carried out in a routine manner with an appropriate solvent (e.g., methanol, ethanol) at room temperature or under cooling or heating conditions.

[0093] Compound (10) may also be obtained from Intermediate (11) through appropriate deprotection, for example, as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985). The reaction may be carried out in a routine manner with or without an appropriate solvent (e.g., dichloromethane, dimethylformamide, water, ethanol) at room temperature or under cooling or heating conditions.

Reaction Scheme 2

[0094] Intermediate (14) may be obtained from Starting material (12) through commonly-used alkylation, acylation or sulfonylation with Reagent 13 (this reagent being an alkyl halide, an acyl chloride or sulfonyl chloride, which is commercially available or easy to synthesize by known synthesis procedures). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dimethylformamide, dichloromethane) at room temperature or under cooling or heating conditions.

[0095] Intermediate (16) may be obtained through condensation between Intermediate (14) and Reagent 15 (this

reagent being a naturally-occurring or modified amino acid, which is commercially available or easy to synthesize by known synthesis procedures) in the same manner as described above.

[0096] Intermediate (17) may be obtained from Intermediate (16) through appropriate deprotection. The reaction may be carried out in a routine manner with an appropriate solvent (e.g., water, methanol, ethanol) at room temperature or under cooling or heating conditions.

[0097] Intermediate (19) may be obtained through condensation between Intermediate (17) and Reagent 18 (listed in Table A-27; this reagent being commercially available or easy to synthesize by known synthesis procedures), while Compound (20) may be obtained through condensation between Intermediate (17) and Reagent 18 in the same manner as described above.

10 [0098] Compound (20) may also be obtained from Intermediate (19) through appropriate deprotection.

Reaction Scheme 3

15

25

40

50

[0099] Compound (21) may be obtained from Intermediate (9) through appropriate deprotection.

[0100] Compound (23) may be obtained through reaction between Intermediate (21) and Reagent 22 (listed in Tables A-28 to 29; this reagent being commercially available or easy to synthesize by known synthesis procedures). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dichloromethane, dimethylfonnamide, water, tetrahydrofuran) at room temperature or under cooling or heating conditions.

[0101] Intermediate (24) and Compound (25) may be obtained through amidination as described above.

20 [0102] Intermediate (25) may also be obtained from Intermediate (24) through appropriate deprotection.

Reaction Scheme 4

[0103] Intermediate (26) may be obtained from Intermediate (9) in a known manner, for example, according to the method of Lee, et al. (Bioorg. Med. Chem. Lett. 869-876, 6, 1998).

[0104] Intermediate (28) may be obtained from Intermediate (26) and Reagent 27 (this reagent being a compound of Formula: NH_2 - R_9 (wherein R_9 is as defined above), which is commercially available or easy to synthesize by known synthesis procedures) in a known manner, for example, according to the method of Lee, et al. (Bioorg. Med. Chem. Lett. 869-876, **6**, 1998).

[0105] Intermediate (30) may be obtined from Intermediate (9) and Reagent 29 (this reagent being a compound of Formula: NH₂-R₉ (wherein R₉ is as defined above), which is commercially available or easy to synthesize by known synthesis procedures) in a known manner, for example, according to the method of Trucker, et al. (Bioorg. Med. Chem. 601-616, 8, 2000).

[0106] Intermediate (32) may be obtained from Intermediate (11) and Reagent 31 (this reagent being an amine protecting group, such as a Boc group or a Cbz group), as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985) or PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991). Examples of Reagent (31) include a t-butyloxycarbonyl group, a benzyloxycarbonyl group, an acetyl group and a 9-fluorenylmethyloxycarbonyl group. The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dichloromethane, dimethylformamide) at room temperature or under cooling or heating conditions

[0107] Compound (33) may be obtained from Intermediate (28), (30) or (32) through appropriate deprotection.

Reaction Scheme 5

[0108] Intermediate (34) may be obtained in the same manner as described above for Intermediate (9).

[0109] Intermediate (36) may be obtained from Intermediate (34) and Reagent 35 (listed in Tables A-30 to 31; this reagent being commercially available or easy to synthesize by known synthesis procedures) through the Suzuki reaction in the presence of a palladium catalyst, for example, according to the method of Ellman, et al. (J. Am. Chem. Soc. 11171-11172, 161, 1994). This reaction may be carried out in a solvent commonly used for the Suzuki reaction, e.g., an ether solvent, an aromatic hydrocarbon solvent, acetonitrile, dimethylformamide, or a mixed solvent thereof with water, preferably in tetrahydrofuran, more preferably in a mixed solvent of tetrahydrofuran with water. Examples of a reagent available for use as a palladium catalyst include tetrakis(triphenylphosphine)palladium, palladium acetate, dichlorobis(benzonitrile)palladium and tris(dibenzylideneacetone)dipalladium, with tetrakis(triphenylphosphine)palladium and tris(dibenzylideneacetone)dipalladium being preferred.

55 [0110] Compound (37) may be obtained from Intermediate (36) through amidination as described above.

10

20

25

30

35

40

45

55

[0111] Intermediate (38) may be obtained according to the above Reaction Scheme 1.

[0112] Intermediate (40) may be obtained from Intermediate (38) through commonly-used alkylation with Reagent 39 (listed in Tables A-32 to 34). The reaction may be carried out in a routine manner in the presence of an appropriate base (e.g., sodium hydride, cesium carbonate, potassium carbonate, sodium hydroxide) using an appropriate solvent (e.g., dimethylformamide, tetrahydrofuran) at room temperature or under cooling or heating conditions.

[0113] Intermediate (41) may be obtained from Intermediate (40) through deprotection as described above.

[0114] Intermediate (42) may be obtained from Intermediate (41) through alkylation, acylation or sulfonylation with Reagent 8, as described above.

[0115] Intermediate (43) may be obtained from Intermediate (42) through amidination as described above.

[0116] Compound (44) may be obtained from Intermediate (43) through appropriate deprotection.

[0117] As used herein, the term "low-molecular weight factor VIIa inhibitor" refers to an agent having an inhibitory activity against factor VIIa. This term encompasses every compound having such a property, above all, synthetic or natural low-molecular weight compounds or peptide derivatives with a molecular weight less than 1000. The inhibitory activity against factor VIIa may be determined, for example, as described below in the Test Example.

[0118] The term "irreversible factor VIIa inhibitor" refers to a factor VIIa inhibitor having a group capable of reacting with factor VIIa, which makes covalent bond with the factor VIIa. In the case of a serine protease such as factor VIIa, a chloromethylketone group may be used as a group capable of reacting with the protease to form a covalent bond with the Ser residue at the active center of the enzyme, resulting in irreversible inhibition. The term "reversible factor VIIa inhibitor" refers to a factor VIIa inhibitor whose binding to factor VIIa is not irreversible. The term "low-molecular weight reversible factor VIIa inhibitor" refers to a low-molecular weight factor VIIa inhibitor whose binding to factor VIIa is not irreversible.

[0119] To overcome the problems, the inventors of the present invention have established a method for preparing a crystal of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. The resulting crystal can be used for X-ray crystal structure analysis to provide accurate three-dimensional structure information about the binding mode between the low-molecular weight reversible factor VIIa inhibitor and human factor VIIa. Upon processing by a computer, this three-dimensional structure information allows a visual and numerical representation of the binding mode between the low-molecular weight reversible inhibitor and factor VIIa. This is advantageous in evaluating interactions important for binding to factor VIIa.

[0120] Starting from the structure of the complex between the low-molecular weight reversible VIIa inhibitor and factor VIIa, which is determined by X-ray structure analysis, it is further possible to design a low-molecular weight reversible inhibitor highly specific to factor VIIa by making virtual modifications to the inhibitor molecule. Such computational virtual evaluation is advantageous in facilitating the molecular design of low-molecular weight reversible inhibitors because it requires much less time than actual compound synthesis.

[0121] It is also possible to identify accurate sites allowing interactions important for the improvement of specificity to factor VIIa, upon analyzing the relationship between factor VIIa-inhibiting activity or selectivity and the binding mode between a low-molecular weight reversible VIIa inhibitor and factor VIIa. Based on the thus confirmed information about interactions important for the specificity to factor VIIa, the low-molecular weight reversible inhibitor molecule can further be modified on a computer to have interactions important for the specificity to factor VIIa in a case where the binding mode between the inhibitor molecule and factor VIIa or its structurally similar serine protease (e.g., thrombin, trypsin, factor Xa) has been identified or estimated by X-ray crystal structure analysis and/or computer modeling. Although inhibitor-enzyme interactions are very complex processes and there is a limit to accuracy in now-available computational virtual evaluation alone, more efficient molecular design can be accomplished using such interactions whose effectiveness has been confirmed experimentally.

[Crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor]

[0122] This refers to a crystal composed of human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, which belongs to the orthorhombic system of space group $P2_12_12_1$ with unit cell parameters $a=71.4~\text{Å}\pm5\%$, $b=82.5~\text{Å}\pm5\%$, $c=123.3~\text{Å}\pm5\%$ and $\alpha=\beta=\gamma=90^\circ$ and which contains one complex between human factor VIIa/human soluble tissue factor and the reversible factor VIIa inhibitor in the asymmetric unit.

[0123] In such a complex crystal, the low-molecular weight reversible factor VIIa inhibitor is preferably a compound of Formula (1) (wherein each symbol is as defined above).

[Method for crystallizing a complex between human factor VIIa/human soluble tissue factor and a reversible factor VIIa inhibitor]

[0124] Human factor VIIa used for crystallization may be prepared as follows. Human factor VII is expressed in cells transformed with a vector encoding human factor VII, purified by column chromatography and then converted into the active form, factor VIIa, which is further purified by column chromatography. Instead of this recombinant factor VIIa, a human FVIIa formulation (NovoSeven, Novo Nordisk Pharma Ltd.) may also be used after purification by column chromatography.

[0125] Human soluble tissue factor used for crystallization may be prepared by expression in appropriate cells or microorganism cells (particularly, *E. coli* cells) transformed with a vector encoding the extracellular domain of human tissue factor, and subsequent purification by column chromatography.

[0126] The thus prepared human factor VIIa and human soluble tissue factor may be mixed in the presence of benzamidine at an excess ratio of human soluble tissue factor to human factor VIIa, and then purified by gel filtration column chromatography with a benzamidine-free buffer to give a human factor VIIa/human soluble tissue factor complex. To this complex, a low-molecular weight reversible factor VIIa inhibitor of interest for structure analysis may be added at a concentration of around 0.5 mM or at saturation concentration (if less soluble), followed by ultrafiltration to give a concentrated sample for crystallization.

[0127] To prepare a crystal, the concentrated sample for crystallization may be subjected to vapor diffusion methods at a temperature of 25°C in a solution of 100 mM sodium cacodylate buffer (pH 5.0), 6% to 7.5% PEG4000, 5 mM CaCl₂ and 5% glycerol (Crystallization of Nucleic Acids and Proteins: A practical Approach, 82-90, 1992, IRL PRESS). During crystallization, it is necessary to add a seed solution prepared by crushing and diluting a crystal of a complex between a low-molecular weight irreversible or reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor in 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG4000 and 5 mM CaCl₂ using a homogenizer. About a month later, long rod crystals (maximum size: about 1.0 mm long × 0.05 mm diameter) may be obtained for a complex between the low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. Crystallization procedures and solution conditions are not limited to those described above only. For example, crystallization may also be accomplished by static batch methods, free interface diffusion methods or dialysis methods, in addition to vapor diffusion methods.

[0128] In such a crystallization method, the low-molecular weight reversible factor VIIa inhibitor is preferably a compound of Formula (1) (wherein each symbol is as defined above).

[Medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor]

[0129] The coordinates of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor may be obtained by revealing the three-dimensional structure of this complex crystal using X-ray crystal structure analysis, one of the three-dimensional structure determination techniques. In this technique, a crystal is irradiated with monochromatized X-ray beams to collect the intensity data of diffraction spots, based on which the electron density in the crystal unit is calculated to determine the positions of individual atoms. The three-dimensional positions of individual atoms and a variable parameter representing atomic thermal vibration called the temperature factor are refined to minimize the difference between calculated (Fc) and observed (Fo) diffraction intensity data, thereby giving the final coordinate data of the crystal structure. By way of illustration, the above-mentioned procedures is applied to the following compounds disclosed herein as examples for a low-molecular weight reversible factor VIIa inhibitor to prepare crystals of their respective complexes with factor VIIa/human soluble tissue factor, followed by X-ray crystal structure analysis to clarify their binding modes with factor VIIa.

50

5

10

20

25

30

15

20

25

30

35

40

45

50

55

[0130] Table 36 shows the coordinate data of a complex between Compound (1) and human factor VIIa/human soluble tissue factor, given in PDB format commonly used in the art for recording three-dimensional coordinates of proteins. In Table 36, the first line denotes the lattice type and symmetry of the crystal. The second and subsequent lines contain the structure coordinate data, including, from the left, atomic number, atom name, amino acid residue name, chain ID, amino acid residue number, X, Y, Z, occupancy, temperature factor, segment ID (equal to chain ID in this case) and atom type. The unit of coordinates is in Å. Amino acid residues are numbered on the basis of the residue number of the corresponding chymotrypsin amino acid residue, as described in Nature, vol. 380, pages 41-46, 1996. Factor VIIa are composed of two polypeptide chains: the longer one is herein referred to as the H chain and the shorter one as the L chain. In Table 36, chain ID indicates the following: H: factor VIIa H chain; L: factor VIIa L chain; T: soluble

[0131] In the present invention, a part of coordinate data is intended to mean partial data of structure coordinates obtained by X-ray crystal structure analysis, particularly the coordinate data covering a low-molecular weight reversible factor VIIa inhibitor and its surrounding residues, expressed in three-dimensional form. Likewise, Table 37 shows the coordinate data of a complex between Compound (2) and human factor VIIa/human soluble tissue factor, obtained by X-ray crystal structure analysis. The coordinate data shown in Table 37 is given in PDB format for residues located exclusively within 10 Å of Compound (2).

tissue factor; C: calcium ion; W: water molecule or I: low-molecular weight reversible factor VIIa inhibitor.

[0132] A medium containing a part or all of coordinate data is intended to mean a computer memory or any disk device carrying a part or all of coordinate data in PDB format or equivalent information.

[Method for computationally designing a novel low-molecular weight reversible factor VIIa inhibitor using the analyzed coordinate data]

[0133] There are many computer programs for representing the three-dimensional structure of molecules such as proteins. When these software programs are combined with the structure coordinates obtained by X-ray crystal structure analysis, it is possible to make computer-aided visual representation of the structure of a complex between a lowmolecular weight reversible VIIa inhibitor and human factor VIIa/human soluble tissue factor, particularly the structure surrounding the low-molecular weight reversible factor VIIa inhibitor. This allows visual recognition of interactions between the low-molecular weight reversible factor VIIa inhibitor and human FVIIa. Figure 1 shows a three-dimensional view of Compound (1) bound to active site pockets of human factor VIIa. The peptide compound of the present invention including Compound (1) will bind to human factor VIIa at 4 sites, which are designated as S1 site, S2 site, S4 site and S1 subsite, respectively. Each active site pocket is composed of amino acid residues from the human factor VIIa H chain. Hereinafter, it is not specifically noted that amino acid residues constituting active sites are found in H chain. Figure 2 shows a schematic view of the binding mode, along with main amino acid residues of human factor VIIa used for constituting the individual sites. The peptide compound including Compound (1) will bind to these residues via hydrogen bonding, ionic bonding, as well as van der Waals interaction. As used herein, the term "hydrogen bonding" refers to an electric dipole-electric dipole interaction in the form of X-H...Y, established by sandwiching hydrogen between a X-H group (wherein X represents an electronegative group) and other electronegative group Y having an unshared electron pair. This term also encompasses an interaction between ion and dipole, one of which is positively or negatively charged at physiological pH. Typically, such an interaction occurs when X and Y are N or O. The term "ionic bonding" refers to an electrostatic interaction established between a group negatively charged at physiological pH (e.g., carboxylic acid) and a group positively charged at physiological pH (e.g., amidino or amine). The term "van der Waals interaction" refers to an interaction between any atoms, which serves as a weak attraction at an appropriate

distance apart, whereas it serves as a strong repulsion at a distance less than a threshold. Every atomic species has a value called the van der Waals radius. The strongest attraction is established when a distance between two atoms is the sum of their van der Waals radii.

[0134] In these software programs, it is also possible to make virtual modification of the structure of an inhibitor molecule and to make a rough energy estimation for the influence of the modified inhibitor molecule on its binding by calculating a value called the molecular force field energy. Starting from the structure coordinates determined by X-ray crystal structure analysis, it is further possible to design a novel inhibitor capable of establishing a stronger binding to human factor VIIa by making virtual modification of the inhibitor using such programs. Such strategy is advantageous in designing low-molecular weight reversible inhibitors specific to factor VIIa because it requires much less time for evaluation than actual compound synthesis. Examples of such computer programs include, but are not limited to, QUANTA, InsightII, CHARMM, Discover and Ludi (Accelrys Inc) as well as Sybyl (Tripos Inc).

10

15

20

25

30

35

40

45

50

55

[0135] In this way, virtual modifications and evaluations can be made on inhibitors using three-dimensional structure information. However, inhibitor-enzyme binding is a very complex process and there is a limit to accuracy in now-available virtual evaluation. For this reason, a plurality of low-molecular weight reversible factor VIIa inhibitors may be analyzed for the relationship between their factor VIIa-inhibiting activity or selectivity and their binding modes determined by X-ray crystal structure analysis in order to identify sites and interactions important for binding and specificity to human factor VIIa. The thus identified sites and interactions will in turn allow computer-aided design of a low-molecular weight reversible inhibitor specific to human factor VIIa. In this way, a problem of accuracy in computational virtual evaluation of the binding activity can be overcome using such experimentally confirmed information on binding modes.

[0136] Table 41 shows the hydrogen bonding between Compound (1) and S2 site of human factor VIIa. Compound (1) has an amide group at a position where it binds to the S2 site, through which hydrogen bonds are formed between its amino moiety and the side chain carboxylic acid of Asp60, the side chain hydroxy group of Tyr94 and the main chain carbonyl oxygen of Thr98. In addition, data in Table 38 indicate that the selectivity against thrombin is higher in low-molecular weight reversible factor VIIa inhibitors capable of hydrogen bonding with these amino acid residues at the S2 site than in factor VIIa inhibitors incapable of hydrogen bonding. These findings suggest that the establishment of such hydrogen bonding is advantageous in providing the specificity to human factor VIIa. Since Asp60 is negatively charged at physiological pH, the establishment of ionic bonding is also advantageous in providing the specificity to factor VIIa.

[0137] In view of the foregoing, efficient design can be achieved for an inhibitor highly specific to human factor VIIa by modifying the inhibitor structure to include a hydrogen-bearing nitrogen atom (e.g., an amide group, an amidino group, a guanidino group, aniline, amine) or a hydrogen-bearing oxygen atom (e.g., a hydroxy group) at a position capable of hydrogen bonding or ionic bonding with all or some of the side chain carboxylic acid of Asp60, the side chain hydroxy group of Tyr94 and the main chain carbonyl oxygen of Thr98, particularly with the side chain of Asp60. The molecular design may be accomplished such that a hydrogen-bondable atom of the introduced substituent is located at a distance of 2.5 to 3.5 Å from at least one of the side chain oxygen atom of Asp60, the side chain oxygen atom of Tyr94 and the main chain oxygen atom of Thr98. Likewise, an ionic bond may be introduced such that a positively-charged atom of the introduced substituent is located at a distance of 2.5 to 4.5 Å from the side chain oxygen atom of Asp60. Alternatively, after a structure coordinate of a complex between a molecule to be modified and factor VIIa or its structurally similar protease (e.g., thrombin, trypsin, factor Xa) by modeling or X-ray crystal structure analysis is fitted to the factor VIIa part of the structure coordinates of the complex between Compound (1) or (2) and human factor VIIa/human soluble tissue factor, it may allow to introduce a substituent, which has the atoms capable of hydrogen bonding at the overlap position of the amide group of Compound (1) or (2), into the molecule to be modified.

[0138] Tables 42 and 43 show the hydrogen and/or ionic bonding between Compound (1) or (2) and S1 subsite of human factor VIIa, respectively. Each of these inhibitors has a sulfonamide group and/or carboxylic acid at a position where it binds to the S1 subsite, through which a hydrogen or ionic bond is formed with the side chain amine group of Lys192. In addition, data in Table 39 indicate that higher selectivity against thrombin is given by factor VIIa inhibitors capable of hydrogen or ionic bonding with these amino acid residues at the S1 subsite, particularly by those having carboxylic acid. These findings suggest that the establishment of such hydrogen or ionic bonding is advantageous in providing the specificity to human factor VIIa.

[0139] In view of the foregoing, efficient design can be achieved for an inhibitor highly specific to human factor VIIa by modifying the inhibitor structure to include carboxylic acid or a biological equivalent thereof (e.g., sulfonic acid, sulfonamide, sulfonurea, tetrazole) at a position capable of hydrogen or ionic bonding with the side chain amino group of Lys192. The molecular design may be accomplished such that a hydrogen-bondable atom of the introduced substituent is located at a distance of 2.5 to 3.5 Å from the side chain nitrogen atom of Lys192. Likewise, an ionic bond may be introduced such that a negatively-charged atom of the introduced substituent is located at a distance of 2.5 to 4.5 Å from the side chain nitrogen atom of Lys192. Alternatively, after a structure coordinate of a complex between a molecule to be modified and factor VIIa or its structurally similar protease (e.g., thrombin, trypsin, factor Xa) by modeling

or X-ray crystal structure analysis is fitted to the factor VIIa part of the structure coordinates of the complex between Compound (1) or (2) and human factor VIIa/human soluble tissue factor, it may allow to introduce a substituent, which has the atoms capable of hydrogen or ionic bonding at the overlap position of the sulfonamide group of Compound (2) or the carboxylic acid moiety of Compound (1), into the molecule to be modified. Since the position of Lys192 will vary depending on the structure of a compound bound thereto, the molecule may also be modified to establish hydrogen or ionic bonding with each position of Lys 192 when the Compound (1) or the Compound (2) is bounded. Furthermore, taking into account the flexibility of Lys192, the above strategy may also be applied to the structure adjusted to ensure a stable position of the Lys192 side chain in light of molecular force field energy.

[0140] Tables 44 and 45 show the van der Waals interaction between Compound (1) or (2) and S4 site of human factor VIIa, respectively. These compounds establish van der Waals interactions and hydrophobic interactions with the Trp215 side chain, the Gly216 main chain, the Gln217 side chain, the Val170E side chain, the GlyI70F main chain, the Asp170G main chain, the Ser170H main and side chains, as well as the Pro170I side chain, among amino acid residues constituting the S4 site. In addition, data in Table 40 indicate that the selectivity against thrombin is higher in Compounds (1) and (2) than in compounds modified to have a smaller area for interactions with these amino acid residues. These findings suggest that the establishment of van der Waals and hydrophobic interactions with these amino acid residues, particularly with Val170E, Gly170F, Asp170G, Ser170H, Pro170I and Gln217, is advantageous in providing the specificity to human factor VIIa. As used herein, the term "hydrophobic interaction" refers to a phenomenon in which nonpolar groups (e.g., an alkyl group, a benzene ring) are associated in water. Water molecules surrounding such nonpolar groups are in low-entropy state and hence energetically unstable. For this reason, the nonpolar groups are associated and interacted with each other to give a smaller surface area in contact with water.

[0141] In view of the foregoing, efficient design can be achieved for an inhibitor highly specific to human factor VIIa by modifying the inhibitor structure to include a more hydrophobic group (e.g., a Bi-Phe group, a naphthyl group, an indole group) at a position capable of van der Waals and hydrophobic interactions with these amino acid residues. The molecular design may be accomplished such that atoms in the introduced substituent are located at a distance of 3.5 to 4.2 Å from atoms in these amino acid residues. Alternatively, after a structure coordinate of a complex between a molecule to be modified and factor VIIa or its structurally similar protease (e.g., thrombin, trypsin, factor Xa) by modeling or X-ray crystal structure analysis is fitted to the factor VIIa part of the structure coordinates of the complex between Compound (1) or (2) and human factor VIIa/human soluble tissue factor, it may allow to introduce a substituent, which has the hydrophobic atoms at the overlap position of the indole moiety of Compound (1) or the biphenyl moiety of Compound (2), into the molecule to be modified.

[0142] Figure 3 shows the molecular surface of the S4 site in factor VIIa upon binding to D-Phe-Phe-Arg chloromethylketone (Nature, 380, 41-46, 1996, PDB = 1DAN) or Compound (1). Upon binding to Compound (1), there appears a hole extendable to a space under the S4 site, which is not observed upon binding to D-Phe-Phe-Arg chloromethylketone. There has been no report showing such a hole or a compound resulting in such a hole. This behavior is caused by a change in the position of the Gln217 side chain when the indole ring of Compound (1) binds to a specific position in the S4 site. Under this hole, there is a space surrounded by the Cys168 side chain, the Ser170B side chain, the Ile176 side chain, the Cys182 side chain, the Trp 215 side chain, the Gly 216 main chain, the Gln 217 main and side chains, the His 224 main and side chains, the Phe225 main and side chains, the Gly 226 main chain, as well as the Val227 side chain. This space is hereinafter referred to as S4 subsite. By allowing a substituent to protrude through this hole, it is possible to establish hydrogen bonding, van der Waals interactions and hydrophobic interactions with these S4 subsite residues. When a comparison of three-dimensional structure is made with known blood coagulationrelated serine proteases including thrombin, none of these proteases has a space corresponding to the S4 subsite; the establishment of interactions with the S4 subsite is advantageous in providing the specificity to human factor VIIa. For example, in a case where Compound (1) is used as an initial model for molecular design, a substituent introduced at the 5-position of the indole moiety may be allowed to protrude through this hole toward the direction of the S4 subsite. [0143] In view of the foregoing, the compound structure can be modified to include a hydrophobic group (e.g., a benzene ring) at the position corresponding to the indole ring of Compound (1), thereby resulting in a hole extending to the S4 subsite. In addition, a substituent may be introduced in such a way as to protrude through this hole to establish hydrogen bonding, van der Waals interaction and hydrophobic interaction with the S4 subsite. These allow the design of an inhibitor highly specific to human factor VIIa.

[0144] In summary, a preferred low-molecular weight reversible factor VIIa inhibitor will interact with at least one of the S2 site, S1 subsite, S4 site and S4 subsite of human factor VIIa. More specifically, a preferred low-molecular weight reversible factor VIIa inhibitor comprises at least one of the partial structures shown in the following Class [A-1], [A-2], [B-1], [B-2], [B-3], [B-4], [C-1] or [C-2].

(A) The partial structures shown in the following Class [A-1] or [A-2] are preferred for interaction with the S2 site:

Class [A-1]:

10

20

25

30

35

45

$$H_2N$$
 H_2N X_1 H_2N X_1 X_2 X_3

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

$$\xi$$
 ——R₂₃—NH₂

(wherein R_{23} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)).

In Class [A-2], particularly preferred is a partial structure wherein R_{23} is a benzene ring, a pyridine ring or an imidazole ring.

(B) The partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] are preferred for interaction with the S1 subsite:

Class [B-1]:

5

10

15

20

25

30

35

40

45

50

55

Class [B-2]:

Class [B-3]:

5

10

15

20

25

30

35

40

45

50

55

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(wherein R₂₄ represents the same partial structures defined as Class [B-2], and R₂₅ represents a 6 or 5-membered aromatic ring containing a heteroatom(s), preferably represents a benzene ring) or Class [B-4]:

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]).

(C) The partial structures shown in the following Class [C-1] or [C-2] are preferred for interaction with the S4 site:

Class [C-1]:

$$R_{28}$$
 X_3 R_{28} X_3

(wherein X_3 represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom(s) Class [C-2]:

(wherein X_4 represents NH, S or O, and X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} each independently represent N or CH).

[0145] In Class [C-1], preferred are partial structures wherein R₂₈ is a benzene ring.

[0146] More specifically, a preferred low-molecular weight reversible factor VIIa inhibitor comprises: (1) any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site as well as any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite; (2) any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site as well as any one of the partial structures shown in the

above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site; or (3) any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite as well as any one of the partial structures shown in the above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site.

[0147] A particularly preferred low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site, any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite, and any one of the partial structures shown in the above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site.

10

15

20

EXAMPLES

[0148] The present invention will be further described in the following Examples, which are not intended to limit the scope of the invention. To explain the utility of the compounds according to the present invention, some representative compounds are tested for their biological activities including FVIIa-inhibiting activity in the Test Example.

[0149] In the following Examples, conventional abbreviations are used, as shown below:

DMF = N, N-dimethylformamide;

HOBt = 1-hydroxybenzotriazole;

EDC HCl = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride;

Boc = tertiary-butoxycarbonyl;

Ac = acetyl;

Fmoc = 9-fluorenylmethoxycarbonyl; and

HPLC = high performance liquid chromatography.

25

30

40

45

[0150] NMR found in the physical property data refers to a nuclear magnetic resonance spectrum. The results are expressed as δ (delta) values in units of ppm, which are commonly used to represent chemical shifts. The measurement was carried out in the presence or absence of an internal standard (TMS; tetramethylsilane). Numerals in parentheses found next to the δ values indicate the number of hydrogen atoms, followed by the symbols s, d, t, q, m and br which represent singlet, doublet, triplet, quartet, multiplet and a broad absorption peak, respectively. Likewise, J represents a coupling constant.

[0151] MS refers to mass spectrometry. FAB and ESI are abbreviations for ionization techniques, Fast-Atom Bombardment Ionization and ElectroSpray Ionization, respectively.

35 Example 1

N1-4-Cyanobenzyl-N2-t-butoxycarbonyl-L-glutamide

[0152] To a solution of 4-cyanobenzylamine (1.6 g, 12.2 mmol) in DMF (20 ml), *t*-butoxycarbonyl-L-glutamine (2.0 g, 8.1 mmol), HOBt (1.4 g, 8.9 mmol) and EDC HCl (1.7 g, 8.9 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, water was added to the reaction mixture, which was then extracted with ethyl acetate. The ethyl acetate layer was washed sequentially with 10% aqueous citric acid, saturated aqueous sodium bicarbonate and saturated brine, and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give N¹-4-cyanobenzyl-N²-*t*-butoxycarbonyl-L-glutamide (2.9 g, 8.1 mmol; yield 100%).

H-NMR (CDCl₃) δ : 1.42 (9H, s), 1.87-2.55 (4H, m), 4.14-4.27 (1H, m), 4.49 (2H, d, J=6 Hz), 5.47-6.02 (2H, m), 7.38 (2H, d, J=8 Hz), 7.60 (2H, d, J=8 Hz)

Example 2

50

55

N1- 4-Cyanobenzyl-L-glutamide

[0153] To N¹-4-cyanobenzyl-N²-t-butoxycarbonyl-L-glutamide (2.9 g, 8.1 mmol), a 4N hydrochloric acid/ethyl acetate solution (20 ml) was added and stirred at room temperature under a nitrogen stream. After 1 hour, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:1) to give N¹-4-cyanobenzyl-L-glutamide (2.1 g, 8.1 mmol; yield 100%). H-NMR (CD₃OD) δ : 1.77-2.12 (2H, m), 2.32 (3H, t, J=7 Hz), 3.29-3.45 (4H, m), 4.49 (2H, s), 7.50 (2H, d, J=8 Hz), 7.71 (2H, d, J=8 Hz)

Example 3

1-(t-Butoxycarbonyl)-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0154] To a solution of N¹-4-cyanobenzyl-L-glutamide (300 mg, 1.2 mmol) and N-(9-fluorenylmethoxycarbonyl)-1-(t-butoxycarbonyl)-D-tryptophan (606 mg, 1.2 mmol) in DMF (5 ml), HOBt (176 mg, 1.2 mmol) and EDC HCl (221 mg, 1.2 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, water was added to the reaction mixture to precipitate N-(9-fluorenylmethoxycarbonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide, which was then collected by filtration, washed with water and dried. The resulting N-(9-fluorenylmethoxycarbonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide was dissolved in dichloromethane (40 ml), to which piperidine (10 ml) was then added and stirred at room temperature under a nitrogen stream. After 5 minutes, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:0, 10:1) to give 1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (650 mg, 1.2 mmol; yield 100%).

H-NMR (CDCl₃) δ : 1.67 (9H, s), 1.80-2.49 (4H, m), 3.13-3.33 (2H, m), 3.70-3.79 (1H, dd, J=4, 9 Hz), 4.40 (2H, d, J=6 Hz), 4.39-4.55 (1H, m), 5.62 (1H, brs), 6.14 (1H, brs), 7.20-7.67 (9H, m), 8.07-5.17 (2H, m)

Example 4

20

25

30

N-(Ethylsulfonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0155] To a solution of 1-(*t*-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (300 mg, 0.55 mmol) in DMF (10 ml), triethylamine (162 mg, 1.6 mmol) and ethanesulfonyl chloride (206 mg, 1.6 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, the solvent was distilled off under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1) to give N-(ethylsulfonyl) 1-(*t*-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (135 mg, 0.21 mmol; yield 38%).

H-NMR (CD₃OD) δ : 1.08 (3H, t, J=7 Hz), 1.70 (9H, s), 1.60-2.12 (4H, m), 2.75-3.34 (4H, m), 4.13-4.55 (4H, m), 7.24-7.78 (9H, m)

Example 5

N-(Ethylsulfonyl)-D-tryptophyl-N1-(4-amidinobenzyl)-L-glutamide

35 **[0156]**

45

50

40

[0157] N-(Ethylsulfonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (135 mg, 0.21 mmol) was dissolved in saturated hydrogen chloride/ethanol solution (10 ml) and allowed to stand at room temperature for 20 hours. After the solvent was removed under reduced pressure, the resulting N-(ethylsulfonyl)-D-tryptophyl-N¹-(4-ethoxyimino-carbonylbenzyl)-L-glutamide was dissolved in ethanol (8 ml) and further dissolved in ammonium acetate (500 mg, 6.4 mmol) and saturated ammonia/ethanol solution (1.3 ml), followed by heating at reflux. After 1 hour, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:1) to give 4-amidino-[(S)-N-[(R)-N'-ethylsulfonyltryptophyl]glutaminyl]-aminomethylbenzene (94 mg, 0.17 mmol; yield 81%).

55 ESI+ 556 (M++1)

H-NMR (DMSO-d6) δ : 0.85 (3H, t, J=7 Hz), 1.65-2.03 (2H, m), 2.48-3.54 (6H, m), 4.12-4.43 (4H, m), 6.70-7.75 (9H, m), 7.95 (1H, brs), 8.43 (2H, brs)

Example 6

N-{[3-(Methoxycarbonyl)benzyl]sulfonyl}-1-(t-butoxycarbonyl)-D-tryptophyl-N1-(4-cyanobenzy)-L-glutamide

[0158] To a solution of 1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (350 mg, 0.64 mmol) in DMF (10 ml), triethylamine (194 mg, 1.9 mmol) and [3-(methoxycarbonyl)benzyl]sulfonyl chloride (477 mg, 1.9 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, the solvent was distilled off under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1) to give N-{[3-(methoxycarbonyl)benzyl]sulfonyl}-1-(t-butoxycarbonyl)-D-trypto-phyl-N¹-(4-cyanobenzyl)-L-glutamide (407 mg, 0.21 mmol; yield 84%).
H-NMR (CD₃OD) δ: 1.70 (9H, s), 1.75-2.15 (4H, m), 2.65-3.42 (2H, m), 3.92 (3H, s), 3.88-4.54 (6H, m), 7.23-8.21 (13H, m)

Example7

m)

15

20

25

30

35

40

45

50

55

N-[(3-(Carboxybenzyl)sulfonyl]-D-tryptophyl-N1-(4-amidinobenzyl)-L-glutamide

[0159]

H NH NH NH NH NH

[0160] N-{[3-(Methoxycarbonyl)benzyl]sulfonyl}-1-(*t*-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (407 mg, 0.21 mmol) was dissolved in saturated hydrogen chloride/ethanol solution (15 ml) and allowed to stand at room temperature for 20 hours. After the solvent was removed under reduced pressure, the resulting crude product was dissolved in ethanol (16 ml) and further dissolved in ammonium acetate (1 g, 12.8 mmol) and saturated ammonia/ ethanol solution (2.4 ml), followed by heating at reflux. After 1 hour, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane: methanol = 4:1, 1:1) to give a mixture of N-{[3-(methoxycarbonyl)benzyl]sulfonyl}-D-tryptophyl-N¹-(4-amidinobenzyl)-L-glutamide and N-{[3-(ethoxycarbonyl)-benzyl]sulfonyl}-D-tryptophyl-N¹-(4-amidinobenzyl)-L-glutamide. This mixture was dissolved in ethanol (2 ml), to which 2N aqueous sodium hydroxide (2 ml) was then added and stirred at room temperature. After 1 hour, the reaction mixture was adjusted to pH 6 with 1N aqueous hydrogen chloride and the precipitated product was collected by filtration. The resulting crude product was applied to preparative HPLC (YMC-pack ODS; gradient of 95% A/B to 45% A/B over 25 min, A = 0.1% TFA-H₂O, B = 0.1% TFA-CH₃CN) to give N-[(3-(carboxybenzyl)sulfonyl]-D-tryptophyl-N¹-(4-amidino-benzyl)-L-glutamide trifluoroacetate (68 mg, 0.088 mmol; yield 16%). ESI+ 662 (M++1)

H-NMR (DMSO-d6) δ: 1.64-2.02 (4H, m), 2.90-3.21 (2H, m), 3.89-4.41 (6H, m), 6.75-7.95 (13H, m)

Example 8

N-(Benzylsulfonyl)-D-isoleucine

[0161] To a solution of D-isoleucine (3 g, 22.9 mmol) in dioxane (184 ml), 1N aqueous sodium hydroxide (23 ml) and then benzylsulfonyl chloride (6 g, 34.4 mmol) were added and stirred at room temperature. After 3 hours, the reaction mixture was adjusted to pH 2 with 2N aqueous hydrogen chloride and then extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1, 4:1) to give N-(benzyl-sulfonyl)-D-isoleucine (6.3 g, 22.2 mmol; yield 97%).

H-NMR (CDCl₃) δ : 0.78-1.02 (6H, m), 1.05-1.60 (2H, m), 1.68-1.92 (1H, m), 3.85 (1H, dd, J=4, 7 Hz), 4.22-4.38 (2H, m), 5.17 (1H, d, J=9 Hz), 5.97 (1H, brs), 7.26-7.48 (5H, m)

Example 9

5

10

15

25

30

N-(Benzylsulfonyl)-D-isoleucyl-L-methionine methyl ester

[0162] To a solution of N-(benzylsulfonyl)-D-isoleucine (6.3 g, 22.2 mmol) and L-methionine methyl ester hydrochloride (6.7 g, 33.3 mmol) in dichloromethane (100 ml), HOBt (4.1 g, 26.6 mmol), EDC HCl (5.1 g, 1.2 mmol) and N-methylmorpholine (3.4 g, 33.3 mmol) were added and stirred at room temperature under a nitrogen stream After 12 hours, water was added to the reaction mixture, which was then extracted with ethyl acetate. The ethyl acetate layer was washed sequentially with 10% aqueous citric acid, saturated aqueous sodium bicarbonate and saturated brine, and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane) to give N-(benzylsulfonyl)-D-isoleucyl-L-methionine methyl ester (6.4 g, 14.9 mmol; yield 67%).

H-NMR (CD₃OD) δ : 0.92-1.02 (6H, m), 1.18-1.36 (1H, m), 1.62-1.88 (2H, m), 2.00-2.28 (2H, m), 2.12 (3H, s), 2.51-2.77 (2H, m), 3.71 (3H, s), 3.83 (1H, d, J=8 Hz), 4.32 (2H, q, J= 13 Hz), 4.68 (1H, dd, J=5, 9 Hz), 7.32-7.51 (5H, m)

20 Example 10

N-(Benzylsulfonyl)-D-tryptophyl-N1-(4-aminobenzyl)-L-methioninamide

[0163]

H NH O HN S

35

40

45

50

[0164] To a solution of N-(benzylsulfonyl)-D-isoleucyl-L-methionine methyl ester (6.4 g, 14.9 mmol) in ethanol (30 ml), 2N aqueous sodium hydroxide (30 ml) was added and stirred at room temperature. After 1 hour, the reaction mixture was adjusted to pH 2 with 2N aqueous hydrogen chloride and then extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give N- (benzylsulfonyl) -D-isoleucyl-L-methionine (6.2 g, 14.9 mmol; yield 100%).

[0165] To a solution of N-(benzylsulfonyl)-D-isoleucyl-L-methionine (100 mg, 0.24 mmol) and 4-aminobenzylamine (59 mg, 0.48 mmol) in dichloromethane (5 ml), HOBt (44 mg, 0.29 mmol) and EDC HCl (56 mg, 0.29 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, the reaction mixture was concentrated under reduced pressure and water was added to the residue. The precipitated product was collected by filtration, washed with water and then dried. The resulting crude product was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 10:1) to give N-(benzyl-sulfonyl)-D-tryptophyl-N¹-(4-aminobenzyl) -L-metholinamide (108 mg, 0.21 mmol; yield 86%).

ESI+ 521 (M++1)

H-NMR (CD₃OD) δ: 0.87-1.00 (6H, m), 1.09-1.28 (1H, m), 1.57-1.83 (2H, m), 1.86-2.26 (2H, m), 2.09 (3H, s), 2.43-2.69 (2H, m), 3.71 (3H, s), 4.13-4.32 (4H, m), 4.50-4.68 (2H, m), 6.64 (2H, d, *J*=8 Hz), 7.01 (2H, d, *J*=8 Hz), 7.32-7.49 (5H, m)

Example 11

55 N-(Propylsulfonyl) -D-isoleucyl-3-(methylamino-N¹-(4-cyanobenzyl)-L-alaninamide

[0166] To N-(propylsulfonyl)-D-isoleucyl-3-[(t-butoxycarbonyl)(methyl)amino]-N¹-(4-cyanobenzyl)-L-alaninamlde (1.6 g, 3 mmol), trifluoroacetic acid (10 ml) was added and stirred at room temperature under a nitrogen stream. After

1 hour, the reaction mixture was concentrated under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:0, 4:1) to give N-(propylsulfonyl) -D-isoleucyl-3-(methylamino)-N¹-(4-cyanobenzyl)-L-alaninamide (1.3 g, 2.9 mmol, yield 96%). ESI+ 452 (M+1)

5 H-NMR (CDCl₃) δ: 0.79-1.23 (10H, m), 1.46-1.95 (4H, m), 2.41 (3H, s), 2.52-3.81 (4H, m), 4.33-4.52 (4H, m), 7.36 (2H, d, J=8 Hz), 7.59 (2H, d, J=8 Hz)

Example 12

10 N-(Propylsulfonyl)-D-isoleucyl-3-[(aminocarbonyl)(methyl)-amino]-N¹-(4-amidinobenzyl)-L-alaninamide

[0167]

15

20

25

30

40

45

50

[0168] To a solution of N-(propylsulfonyl)-D-isoleucyl-3-(methylamino)-N¹-(4-cyanobenzyl)-L-alaninamide (500 mg, 1.0 mmol) in water (1.3 ml)/tetrahydrofuran (3 ml), potassium cyanate (243 mg, 3 mmol) was added under stirring at 50°C and then further stirred under the same conditions. After stirring for 3 hours, water was added to the reaction mixture, which was then extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give N-(propylsulfonyl)-D-isoleucyl-3-[(aminocarbonyl)(methyl)amino]-N¹-(4-cyanobenzyl)-L-alaninamide (430 mg, 0.87 mmol; yield 87%).

[0169] The resulting product was dissolved in saturated hydrogen chloride/ethanol solution (10 ml) and allowed to stand at room temperature for 20 hours. After the solvent was removed under reduced pressure, the resulting crude product was dissolved in saturated ammonia/ethanol solution (10 ml) and allowed to stand at room temperature for 20 hours. The solvent was distilled off under reduced pressure and the residue was applied to preparative HPLC (YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, A = 0.1% TFA-H₂O, B = 0.1% TFA-CH₃CN) to give N-(pro-pylsulfonyl)-D-isoleucyl-3-[(aminocarbonyl)-(methyl)amino]-N¹-(4-amidinobenzyl)-L-alaninamide trifluoroacetate (27 mg, 0.004 mmol; yield 5%).

ESI+ 512 (M++1)

H-NMR (CD3OD) δ: 0.87-1.10 (9H, m), 1.12-1.88 (5H, m), 2.92 (3H, s), 2.87-3.12 (2H, m), 3.52 (1H, dd, *J*=4, 15 Hz), 3.65 (1H, d, *J*=8 Hz), 3.82 (1H, dd, *J*=9, 14 Hz), 4.43-4.67 (3H, m), 7.54 (2H, d, *J*=8 Hz), 7.76 (2H, d, *J*=8 Hz)

Example 13

N-(Benzylsulfonyl)-D-isoleucyl-N¹-{4-[imino(methylthio)-methyl]benzyl}-L-methioninamide

[0170] N-(Benzylsulfonyl)-D-isoleucyl-N¹-(4-cyanobenzyl)-L-methioninamide (100 mg, 0.19 mmol) was dissolved in pyridine (5 ml) and triethylamine (0.5 ml), bubbled with a hydrogen sulfide gas for 5 minutes, and then stirred for 24 hours. After addition of ethyl acetate to the reaction mixture, the organic layer was washed sequentially with 0.5 N hydrochloric acid, saturated aqueous sodium bicarbonate and saturated brine, and then dried over sodium sulfate. The solvent was distilled off under reduced pressure and the residue was dissolved in acetonitrile, followed by addition of methyl iodide (0.14 ml, 0.94 mmol) and heating at reflux for 2 hours under a nitrogen atmosphere. The solvent was distilled off under reduced pressure and the residue was purified on a silica gel column (dichloromethane:methanol = 10:1) to give N-(benzyl-sulfonyl)-D-isoleucyl-N¹-{4-[imino(methylthio)methyl]benzyl}-L-methioninamide (109 mg, 0.19 mmol; yield 100%).

55 ESI+ 579 (M++1)

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 2.03 (3H, s), 2.40 (3H, s), 3.69 (1H, t, J=6 Hz), 4.50-4.60 (1H, m), 7.21-7.39 (8H, m), 7.60-7.64 (1H, m)

N-(Benzylsulfonyl)-D-isoleucyl-N1-{4-[hydrazino(imino)-methyl]benzyl}-L-methioninamide

[0171]

H₂N NH O HN SO NH₂N NH₂N

15

20

10

5

[0172] N-(Benzylsulfonyl)-D-isoleucyl-N¹-{4-[imino-(methylthio)methyl]benzyl}-L-methioninamide (49 mg, 0.084 mmol) was dissolved in dichloromethane (2 ml) and methanol (2 ml), to which hydrazine (0.020 ml, 0.624 mmol) was then added and stirred for 18 hours. The solvent was distilled off under reduced pressure and the residue was purified by preparative HPLC to give N-(benzylsulfonyl)-D-isoleucyl-N¹-{4-[hydrazino(imino)methyl]benzyl}-L-methioninamide (29 mg, 0.051 mmol; yield 61%).

ESI+ 563 (M++1)

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.58-1.78 (2H, m), 2.42-2.58 (2H, m), 3.63 (1H, d, J=7 Hz), 4.21 (2H, s), 4.53 (1H, brs), 7.25-7.57 (9H, m)

25

Example 15

N-(Benzylsulfonyl)-D-isoleucyl-N1-[4-(E)-amino-(hydroxyimino)methyl]benzyl]-L-methioninamide

30 [0173]

35

40

45

[0174] N-(Benzylsulfonyl)-D-isoleucyl-N1-(4-cyanobenzyl)-L-methioninamide (100 mg, 0.19 mmol) was dissolved in ethanol (6 ml) and pyridine (0.6 ml), to which hydroxyamine hydrochloride (120 mg) was then added and stirred for 16 hours. After the solvent was distilled off under reduced pressure, the residue was dissolved in ethanol, filtered and then purified by preparative HPLC to give N-(benzylsulfonyl)-D-isoleucyl-N1-[4-(E)-amino(hydroxyimino)methyl]benzyl]-L-methioninamide (1.6 mg, 0.00003 mmol; yield 1.5%).

ESI+ 564 (M++1)

H-NMR (\dot{CD}_3OD) δ : 0.85-0.90 (6H, m), 1.50-1.70 (2H, m), 2.05 (3H, s), 2.43-2.60 (2H, m), 3.60 (1H, d, J=8 Hz), 4.20 (1H, s), 7.25-7.45 (9H, m)

50

 $N-(Benzy|sulfony|)-D-isoleucy|-N^1-[4-((E)-amino{[(t-buty|oxy)carbony|]imino}methy|)benzy|]-L-methioninamide$

[0175]

10

5

20

25

30

15

[0176] N-(Benzylsulfonyl)-D-isoleucyl-N¹-{4-[amino(imino)-methyl]benzyl}-L-methioninamide (20 mg, 0.032 mmol) was dissolved in dimethylformamide (0.5 ml), to which triethylamine (0.018 ml, 0.13 mmol) and di-t-butyl carbonate (14 mg, 0.065 mmol) were then added and stirred for 16 hours. After addition of ethyl acetate to the reaction mixture, the organic layer was washed with water and dried over sodium sulfate. The solvent was distilled off under reduced pressure and the residue was purified by preparative TLC (dichloromethane:methanol = 10:1) to give N-(benzylsulfonyl) -D-isoleucyl-N¹-[4-((E)-amino-[[(t-butyloxy)carbonyl]imino]methyl)benzyl]-L-methioninaniide (16 mg, 0.024 mmol; yield 76%).

ESI+ 648 (M++1)

H-NMR (CD₃OD) δ: 0.85-0.90 (6H, m), 1.50 (9H, s), 2.03 (3H, s), 3.68 (1H, d, J=8 Hz), 4.20 (2H, s), 7.20-7.38 (7H, m), 7.64-7.70 (2H, m)

Example 17

N-(Ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N1-4-cyanobenzyl)-L-glutamide

35

40

[0177] 4-Bromo-N-(ethylsulfonyl)-D-phenylalanyl-N¹-(4-cyanobenzyl)-L-glutamide (30 mg, 0.052 mmol) was dissolved in tetrahydrofuran (4 ml) and water (0.4 ml). Subsequently, 3,5-bistrifluoromethylphenylboronic acid (40.2 mg, 0.156 mmol), sodium carbonate (50 mg) and tetrakis(triphenylphosphine)-palladium (30 mg, 0.026 mmol) were added to the solution, followed by heating at reflux for 2 hours under a nitrogen atmosphere. After addition of ethyl acetate to the reaction mixture, the organic layer was washed with water and dried over sodium sulfate. The solvent was distilled off under reduced pressure and the residue was purified by preparative TLC (dichloromethane:methanol = 10:1) and then preparative HPLC to give N-(ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N¹-(4-cyanobenzyl)-L-glutamide (24 mg, 0.034 mmol; yield 65%).

ESI+ 712 (M++1)

45 H-NMR (CD₃O) δ: 1.10 (3H, t, J=7 Hz), 1.75-1.87 (2H, m), 1.88-2.07 (2H, m), 2.82-3.10 (4H, m), 4.10-4.30 (2H, m), 4.40-4.50 (2H, m), 7.10-7.62 (9H, m), 8.10 [1H, s)

50

N-(Ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N1-{4-amidinobenzyl}-L-glutamide

5 [0178]

10 CONH₂ CF₃

HN NH CF₅

O HN S O CF₅

[0179] Starting with N-(ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N'-(4-cyanobenzyl)-L-glutamide, the same procedure as shown in Example 5 was repeated to give the compound of interest. ESI+ 729 (M+1)

20 H-NMR (CD₃OD) δ: 1.05 (3H, t, *J*=7 Hz), 1.75-1.85 (2H, m), 1.97-2.05 (2H, m), 2.82-3.10 (4H, m), 4.15-4.22 (2H, m), 4.45 (1H, s), 7.40-7.51 (4H, m), 7.62-7.70 (3H, m), 7.90 (1H, s), 8.13 (2H, s)

Example 19

25

30

40

45

50

N-(t-Butoxycarbonyl)-5-{[3-(methoxycarbonyl)-5-benzyl]oxy}-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0180] To a solution of N-(*t*-butoxycarbonyl)5-hydroxy-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (327 mg, 0.58 mmol) in acetone (4 ml), 3-(methoxycarbonyl)benzylbromide (267 mg, 1.2 mmol) and cesium carbonate (378 mg, 1.2 mmol) were added and stirred at reflux under a nitrogen stream. After 4 hours, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1) to give N-(*t*-butoxycarbonyl)-5-{[3-(methoxycarbonyl) benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (347 mg, 0.5 mmol; yield 84%).

H-NMR (CD₃OD) δ : 1.30 (9H, s), 1.50-2.08 (4H, m), 3.02-3.22 (2H, m), 3.93 (3H, s), 4.02-4.27 (2H, m), 4.39-4.55 (1H, m), 5.20 (2H, s), 6.88 (1H, dd, J=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, J=2 Hz), 7.26 (1H, d, J=9 Hz), 7.42 (2H, d, J=8 Hz), 7.51 (1H, t, J=7 Hz), 7.66 (2H, d, J=8 Hz), 7.75 (1H, d, J=6 Hz), 7.97 (1H, d, J=6 Hz), 8.17 (1H, s)

Example 20

5-{[3-(Methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0181] To a solution of N-(*t*-butoxycarbonyl)-5-{[3-(methoxycarbonyl)benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl) -L-glutamide (347 mg, 0.5 mmol) in dichloromethane (10 ml), trifluoroacetic acid (10 ml) was added and stirred at room temperature under a nitrogen stream. After 1 hour, the solvent was distilled off under reduced pressure. The residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:1) to give 5-{[3-(methoxycarbonyl)benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (277 mg, 0.45 mmol; yield 93%).

[0182] To a solution of 5-{[3-(methoxycarbonyl)benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (0.45 mmol) in DMF (10 ml), triethylamine (137 mg, 1.4 mmol) and ethanesulfonyl chloride (174 mg, 1.4 mmol) were added and stirred at room temperature under a nitrogen stream. After 2 hours, the solvent was distilled off under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol=8:1) to give 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (158 mg, 0.22 mmol; yield 50%). ESI+ 703 (M²+1)

55 H-NMR (CD₃OD) δ: 0.94 (3H, t, *J*=7 Hz), 1.60-2.08 (4H, m), 2.58-3.30 (4H, m), 3.91 (3H, s), 4.02-4.27 (2H, m), 4.35-4.48 (2H, m), 5.20 (2H, s), 6.89 (1H, dd, *J*=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, *J*=2 Hz), 7.27 (1H, d, *J*=9 Hz), 7.42-7.53 (3H, m), 7.65 (2H, d, *J*=8 Hz), 7.73 (1H, d, *J*=6 Hz), 7.98 (1H, d, *J*=6 Hz), 8.16 (1H, s)

5-{[3-(Methoxycarbonyl)benzyl]oxy}-N (ethylsulfonyl)-D-tryptophyl-N1-{4-[amino(imino)methyl]benzyl}-L-glutamide

[0183] A solution of 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (158 mg, 0.22 mmol) in pyridine (10 ml) and triethylamine (2 ml) was bubbled with a hydrogen sulfide gas. After bubbling for 30 minutes, the solution was allowed to stand. After 12 hours, water/ethyl acetate was added to the reaction mixture and the aqueous layer was adjusted to pH 4 with 2N aqueous hydrogen chloride, followed by extraction. The organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure.

[0184] The residue was dissolved in acetone (10 ml), to which methyl iodide (312 mg, 2.2 mmol) was then added and stirred at 50°C under a nitrogen stream. After 1 hour, the reaction mixture was concentrated under reduced pressure.

[0185] The residue was dissolved again in methanol (10 ml), followed by addition of ammonium acetate (170 mg, 2.2 mmol) and heating at reflux under a nitrogen stream. After 4 hours, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 4:1, 2:1) to give 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-{4-[amino(imino)methyl]benzyl}-L-glutamide (124 mg, 0.17 mmol; yield 78%).

20 H-NMR (CD₃OD) δ: 0.94 (3H, t, *J*=7 Hz), 1.64-2.10 (4H, m), 2.55-3.30 (4H, m), 3.89 (3H, s), 4.08-4.42 (4H, m), 5.18 (2H, s), 6.87 (1H, dd, *J*=2, 9 Hz), 7.15 (1H, s), 7.20-7.76 (8H, m), 7.95 (1H, d, *J*=6 Hz), 8.14 (1H, s)

Example 22

5-[(3-Carboxybenzyl)oxy]-N-(ethylsulfonyl)-D-tryptophyl-N1-{4-[amino(imino)methyl]benzyl}-L-glutamide

[0186]

CONH₂

H

NH

NH

O

HN

NH

O

HO₂C

40

50

55

25

30

35

[0187] To a solution of 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-{4-[amino(imino)methyl]-benzyl}-L-glutamide (124 mg, 0.17 mmol) in ethanol (3 ml), 1N aqueous sodium hydroxide (3 ml) was added and stirred at room temperature. After 2 hours, the reaction mixture was adjusted to pH 6 with 1N aqueous hydrogen chloride and then concentrated under reduced pressure. The residue was applied to preparative HPLC (YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, A = 0.1% TFA-H₂O, B = 0.1% TFA-CH₃CN) to give 5-[(3-carboxybenzyl)oxy]-N-(ethylsulfonyl)-D-tryptophyl-N¹-{4-[amino(imino)methyl]benzyl}-L-glutamide (85 mg, 0.1 mmol; yield 61%).

ESI+ 706 (M++1)

H-NMR (CD₃OD) δ: 0.97 (3H, t, J=7 Hz), 1.59-2.07 (4H, m), 2.55-3.28 (4H, m), 3.89 (3H, s), 4.10-4.54 (4H, m), 5.19 (2H, s), 6.90 (1H, dd, J=2, 9 Hz), 7.16 (1H, s), 7.23 (1H, d, J=2 Hz), 7.27 (1H, d, J=9 Hz), 7.50-8.00 (7H, m), 8.16 (1H, s)

Examples 23 to 182

[0188] The compounds of Examples 23 to 182 were prepared according to Examples 1 to 22 and the reaction schemes mentioned above. Tables 1 to 34 summarize the chemical structures and instrumental analysis data of these compounds. In the tables, Reagent 2, Reagent 5, Intermediate 9 and others are the same as the corresponding reagents and intermediates shown in the above reaction schemes.

Table 1

٤	5	

_	6		
9	5	,	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
23	HO₂C NHB∞c	HO ₂ C NHBoc		HN NH ₂ ESI+ 394 (M*+1)
24	CO₂EI HO₂C NHBoc	НО₂СЙНВос	ord cto	CO ₂ EI NH NH NH NH NH FAB+ 560 (M ⁺ +1)
25	OAc HO ₂ C NHBoc	HO₂C NHBoc	0000	OH NH-SO HN NH₂ FAB+ 532 (M ⁺ +1)
26	OAc HO ₂ C: NHBoc	но₂с≺мнвос	c _i § D	OH NH O HN-SO HN= NH₂ O ESI+ 504 (M*+1)
27	HO ₂ C NHBoc	HO ₂ C NHBoc	a à C	OH NH SO HN

Table 2

	5	i	
٠			

5					
	Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
10	28	но₂с∵ NНВос	HO₂C NHFmoc		HN NH ₂ FAB+ 364 (M ⁺ +1)
					1764 304 (W +1)
20	29	OH HO ₂ Cr. NHBoc	HO ₂ C NHBoc		OH H N H N H N H N H N H N H N H N H N H
25				•	ESI+ 398 (M ⁺)
30	30	HO₂C" NHBoc	HO ₂ C NHFmoc	CI-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	HN NH ₂
35					ESI+ 554 (M++1)
40	31	HO₂C·· NHBoc	HO ₂ C NHFmoc	Ci-ci-ci	HN NH OH O NH O S=0 HN NH ₂ Br E:SI+ 583 (M*+1)
•		·			1 1
	32	HO₂C. NHBoc	HO ₂ C NHFmoc	C.O.	HN: NH2 OH

55

ESI+ 518 (M++1)

Table 3

5	

Example	Reagent 2	Reagent 5	Reagent 6	Structure MS
33	HO2C. NHBoc	HO₂C NHFmoc	0.40 G'O	HN NH ₂ O'S'O HN NH ₂ (M ⁺ +1)
34	HO₂C NHBoc	HO ₂ C NHFmoc	0 0 0 0	HN NH ₂ O'S
35	HO ₂ C NHBoc	HO ₂ C NHFmoc	O-G CGO CGO CGO	NH OH NH2 OSTO HN NH2 ESSI+ 561 (M*+1)
36	HO ₂ CNHBoc	HO ₂ C NHFmoc	O-30 C O	HN NH ₂ OH 0°S=0 HN NH ₂ OFS=0 ESI+ 470 (M ⁺ +1)
37	HO₂C NHBoc	HO₂C NHFmoc	යාගූ ප්ර	NH OH NH O'S O ESI+ 456 (M*+1)

Table 4

_			
٠	•	1	
)		,	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
38	HO ₂ C' NHBoc	HO ₂ C NHFmoc	ੂਰ ਹੁੰ	H NH OH ONH OFFO ESI+ 442 (M*+1)
39	HO ₂ C ¹ NHBoc	HO ₂ C NHBoc	a D	H NH NH O'S O HN NH2 O'S O (M*+1)
40	HO ₂ CV NHBoc	HO ₂ C NHBoc		HN NH ₂ NH HN NH ₂ PAB+ 548 (M*+1)
41	S NHBoc	HO _Z C NHBoc		H NH ₂ HIN NH ₂ FAB+ 394 (M*+1)
42	O NH ₂ HO ₂ C NHBOC	HO ₂ C NHBoo		HIN NH ₂ FAB+ 391 (M ⁴ +1)

Table 5

5	

10	
15	

Example	Reagent 2	Reagent 5	Reagent 8	Structure
43	CONH₂ HO₂C NHB∞c	HO ₂ C NHBoc	C C C	MS CONH ₂ NH NH NH ₂ FAB+ 483 (M ⁺ +1)
44	HO ₂ C NHBoc	но₂с №нвос	C1-3. (C)	CONH ₂ NH NH NH ₂ FAB+ 531 (M*+1)
45	CONH₂ HO₂C'' NHBoc	HO ₂ C NHBoc		CONH ₂ NH NH ₂ HN NH ₂ ESI+ 377 (M ⁺ +1)
46	OH HO₂C NHBoc	HO ₂ C NHBoc		OH NH NH NH NH FAB+ 412 (M*+1)
47	CONH₂ HO₂C: NHBoc	HO ₂ C NHB ₀ C	्र ट (०	CONH ₂ NH NH O HN-SO HN NH ₂ FAB+ 497 (M ⁴ +1)

Table 6

5	

	Example	Reagent 2
10	48	CONH2 HO2C NHB∞C
20	49	OH HO ₂ C NHBoc
25		
30	50	OH HO₂C∵NHB∞
35		5
40	51	HO ₂ C. NHBoc
45	52	HO₂C NHBoo

			·	Structure
Example	Reagent 2	Reagent 5	Reagent 8	MS
48	CONH2 HO2C NHBoc	HO₂C NHBoc	Orgo O	CONH ₂ NH O HN SO HN NH ₂ FAB+ 526 (M*+1)
49	ОН НО₂С NНВос	но₂с ннвос	000 000 000	OH HN NH₂ HN NH₂ FAB+ 566 (M ⁺ +1)
50	ОН НО ₂ С. ИНВОС	но₂с инвос	C O	OH NH NH O HN NH ESI+ 518 (M*+1)
51	HO₂C . NHBoc	HO₂C NHBoc	CI-S O'S CO₂H	HN NF ₂ CO ₂ H
52	HO ₂ C: NHBoc	HO ₂ C NHBoc		NH NH ₂

55

50

FAB+ 428 (M++1)

Table 7

5	

10		
15		
20		
25		
30		
35		
40		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
53	HO ₂ C [™] NHBoc	HO₂C NHBoc	O-20 C-0	FAB+ 497 (M+1)
54	HO₂C. NHBoc	HO ₂ C NHBoc	C C	NH O HN NH2
				FAB+ 582 (M ⁺ +1)
55	HO₂C NHBoc	HO ₂ C NHBoc	CI-S	NH NH₂ O HN SO HN NH₂ FAB+ 534 (M*+1)
		<u>.</u>		
56	HO₂C· NHBoc	HO ₂ C NHBoc	СІ-О О-S СО ₂ Н	HN NH ₂ CO ₂ Et
				ESI+ 640 (M++1)
57	HO ₂ C NHBoc	HO ₂ C NHBoc	CI-S O'S CO₂H	ST NH NH CO ₂ H
			<u> </u>	ESI+ 612 (M++1)

Table 8

5	

3					
	Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
10	58	но ₂ с ^{, _} инвос	HO ₂ C NHFmoc	OO 00 H	S- NH OH O HN SO O CO₂EI ESI+ 594 (M*+1)
20	59	HO₂C: NHBoc	HO₂C NHFmoc	CI-SI O CO₂H	HN NH ₂ CO ₂ H
25					
30	60	HO₂C ^{, _} NHB∞	HO ₂ C NHFmoc	a o	HN NH 2 OH HN SO HN
35			~ ~		c-
40	61	но₂с ПНВос	HO ₂ C NHFmoc	CI O	HN NH OH O HN SO HN NH2 IESI+ 488 (M*+1)
45	62	O_NMe ₂	HO ₂ C NHFmoc	O CO CO	O NMe₂ NH OH
50			,		HN-1NH2 0

55

FAB+ 513 (M++1)

Table 9

٤	5	

•	0	

20	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
63	O NMe₂ HO₂C NHBoc	HO ₂ C NHFmac	Ord GO	O NMe ₂ IN NH OH O HN SO HN NH ₂ FAB+ 561 (M*+1)
64	HN O HO ₂ C NHBoc	HO ₂ C NHFmoc	C 00	HN OH
65	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	CI-00	CONH ₂ HN NH ₂ ESI+ 593 (M*+1)
66	CONH₂ HO₂C NHBoc	HO₂C NHBoc	·	CONH ₂ HN NH ₂ E:SI+ 501 (M ⁺ +1)
67	HO₂C NHBoc	HO ₂ C NHBoc	CI -S	HN NH ₂ O HN S O O O O O O O O O O O O O O O O O O

Table 10

	5	

10	
15	

,	ι	,	

55	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
68	HO2C NHBoc	HO ₂ C NHBoc	0:0 0:0	HN NH ₂ ESI+ 610 (M ⁺ +1)
69	S- HO₂C: NHBoc	HO ₂ C NBoc		NH OH NH NH ₂ ESI+ 438 (M+1)
70	CONH2 HO2C NHB∞	HO ₂ C NHBoc	0-70 Ci O	CONH ₂ HN NH O HN SO HN NH ₂ ESI+ 579 (M*+1)
71	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	Ci O	CONH ₂ N, NH NH NH NH SO O HN NH ₂ ESI+ 567 (M*+1)
72	CONH2 HO ₂ C NHBoc	HO₂C NHBoc	CI CO	CONH ₂ HN NH ESI+ 567 (M*+1)

Table 11

4	5		

10	
15	

5	5	
-	_	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
73	CONH₂ HO₂C: NHBoc	HO ₂ C NHBoc	C O C	CONH ₂ N. N. N. N. O O HN. SO HN N. H ₂ ESI+ 547 (M*+1)
74	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	G OS	CONH ₂ HN NH ESI+ 561 (M*+1)
75	CONH ₂ HO ₂ C NBoc	HO ₂ C NHFmoc	0.40 G	CONH ₂ H N O H N O H N O H N O H O H O H O H
76	CONH ₂ HO ₂ C:-NHBoc	HO₂C NHB∞c	CI O	CONH ₂ NH NH NH NH ESI+ 595 (M*+1)
77	CONH ₂ HO ₂ C NHBoc	но₂с №нВос	Cl ₂ S	CONH ₂ HN NH O HN NH ₂ ESI+ 483 (M*+1)

Table 12

!		
٦		

1	0	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
78	CONH ₂	HO₂C NHBoc	C C C C C C C C C C C C C C C C C C C	CONH ₂ NH O HN O HN NH ₂ ESI+ 573 (M ⁺ +1)
79	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	G O	CONH ₂ HN NH O HN SO HN NH ₂ ESI+ 531 (M ⁺ +1)
80	CONH₂ HO₂C [·] NHBoc	HO₂C NHBoc	CI O	CONH ₂ H N NH NH O O H N O O H N O O H N O O H O O H O O O H O O O
81	CONH ₂ HO ₂ C. NHBoc	HO ₂ C NHBoc	CO	CONH ₂ NH NH NH ₂ ESI+ 621 (M ⁺ +1)
82	CONH2 HO2C: NHBoc	NH HO₂C NHBoc	G S	CONH ₂ NH NH NH NH NH ₂ ESI+ 570 (M ⁺ +1)

Table 13

4	5		

1	0	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
83	CONH ₂	O NH HO ₂ C NHBoc	O C O	CONH ₂ HN NH NH O HN O O HN (M*+1)
84	CONH2 HO2C: NHBoc	N-S-C NHBoc	C C	CONH ₂ NH N-S-O HN NH ₂ ESI+ 696 (M*+1)
85	ÇO₂EI HO₂C NHBoc	но₂с≺мнВос	079	FAB+ 532 (M++1)
86	но₂с пнвос	HO ₂ C NHFmoc	CI-S CO ₂ H	NH OH O HN SO CO ₂ H FAB+ 548 (M*+1)
87	HO ₂ C. NHBoc	HO ₂ C NHFmoc	GI-9 O-S CO₂H	HN NH ₂ OH OH OCO ₂ b

Table 14

!		
٦		

-	_	
7		
	•	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
88	NBoc HO ₂ C NHFmoc	HO₂C NHFmoc	0 to 0	NH NH NH₂ O HN NH₂ O ESI+ 469 (M*+1)
89	BocN HO ₂ O NHFmoc	HO₂C NHFmoc	0-10 C 0	HN NH OH OH NH₂ O HN NH₂ O
90	HO ₂ C NHBoc	HO₂C NHFmoc	CO	HN NH ₂ OH HN NH ₂ OH ESI+ 550 (M ⁺ +1)
91	HO ₂ C NHBoc	HO₂C NHFm∞	org (S NH OH O HN O HN NH ₂ ESI+ 550 (M*+1)
92	HO ₂ C NHBoc	HO₂C NHFmoc	CI CO	HN NH OH O HN SO HN NH ₂ ESI+ 550 (M*+1)

Table 15

10	
15	
20	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
93	HO2C: NHBoc	YO O HO₂C NHFmoc	O. O	HN NH ₂ OH
94	S NHBoc	O HO₂C NHFmoc	CO ₂ Me	NH → OH NH → OH HN NH ₂ O CO ₂ Me E:Si+ 594 (M*+1)
95	но₂с ИНВос	HO ₂ C NHFmoc	CI CO₂Me	NH OH OHN SO HN NH ₂ CO ₂ H ESI+ 580 (M*+1)
96	S HO₂C NHB∞C	HO ₂ C NHFmoc	C O	NH OH O HN O HN NH ₂ ESI+ 502 (M ⁺ +1)
97	S HO₂C. NHBoc	HO₂C NHFmoc	CI-Q O CO ₂ Me	NH NH ₂ CO ₂ H ESI+ 592 (M ⁺ +1)

Table 16

1	0		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
98	HO ₂ C. CNH2	HO₂C [™] NHFmoc	CI-S CO₂Me	CONH ₂ NH OH O HN-SO CO ₂ H ESI+ 577 (M ⁺ +1)
99	CONH2 HO2C NHBoc	HO ₂ C NHBoc	Cl-Q O CO ₂ Me	CONH ₂ NH O HN SO CO ₂ H ESI+ 699 (M*+1)
100	CONH₂ HO₂C NHB∞C	HO ₂ C NHBoc	CO ₂ Me	CO ₂ H ESSI+ 673 (M*+1)
101	CONH2 HO2C - NHB0c	HO₂C NHBoc	СССЗ	CONH ₂ NH O HN 50 HN NH ₂ CO ₂ H ESI+ 673 (M++1)
102	CONH ₂ HO ₂ C. NHBoc	HO ₂ C NHBoc	CO ₂ Et	CONH ₂ NH NH CO ₂ HN NH ₂ CO ₂ H ESI+ 589 (M ⁺ +1)

Table 17

	ō		

10	

5()

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
103	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHFmoc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONH2 NH JOH O HN-80
104	CONH2 HO2C NHBoc	HO ₂ C NHBoc	Clos O Clos Co₂Et	ESI+ 471 (M ⁺ +1) CONH ₂ NH OHN NH ₂ HO ₂ C ESI+ 589 (M ⁺ +1)
105	S NHBoc	HO ₂ C NHBoc	CI-O CO₂Me	HN NH ₂ CO ₂ H ESI+ 702 (M*+1)
106	OS HO₂C NHBoc	HO₂C NHFm∞	CI-S OS CO₂Me	OS OH OH OH OH OH NH ₂ OCO ₂ H ESI+ 596 (M ⁴ +1)
107	O₂S HO₂C NHBoc	HO ₂ C NHFmoc	Clos CO ₂ Me	O ₂ S NH OH O HN-SO HN NH ₂ CO ₂ H ESI+ 612 (M*+1)

Table 18

5	5	

10	

	_	_
	9	7
		_

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
108	но₂с Инвос	HO ₂ C NHBoc	CI CO ₂ Me	HN NH ₂ CO ₂ H ESI+ 574 (M*+1)
109	CONH ⁵	HO ₂ C NHBoc	CI-S OCO2Me	CONH ₂ HN NH ₂ O HN O CO ₂ H ESI+ 589 (M ⁺ +1)
110	CONH2 HO2C NHBớc	HO ₂ C NHBoc	C C C C C C C C C C C C C C C C C C C	CONH ₂ HN - NH ₂ ESI+ 503 (M ⁺ +1)
111	CONH2 HO2C NHB0C	HO₂C NHBoc	CI-OS	CONH ₂ HN NH SO HN NH ₂ ESI+ 517 (M ⁺ +1)
112	CONH ₂	HO ₂ C NHBac	CI-S	NH ₂ OC NH

Table 19

5		

10	
15	
20	
25	
30	
35	
40	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
113	S HO₂C·—NHBoc	HO ₂ C ✓ NHBoc	C O	HN NH ₂ O HN 50 O HN 12 O O O O O O O O O O O O O O O O O O
114	HO ₂ C ⁻ NHBoc	HO ₂ C NHBoc	900	HN NH ₂
				ESI+ 548 (M++1)
115	HO₂C: NHBoc	HO ₂ C NHBoe	CI O	HN NH ₂
				ESI+ 658 (M++1)
116	HO ₂ C NHBoc	HO₂C NHBoc	G O	HN NH2 0 HN-50 ESI+ 472 (M++1)
117	но₂с NНВос	HO ₂ C NHBoc	G S	S NH NH S O HN S O HN NH₂ O ESI+ 486 (M+1)

Table 20

!	5	

1	0	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
113	HO₂C. NHBoc	HO ₂ C NHBoc	000	HN NH ₂ E:Si+ 520 (M*+1)
114	HO₂C: NHBoc	HO ₂ C NHBoc	000	S NH NH S O HN S O HN NH₂ ESI+ 548 (M*+1)
115	HO₂C'. NHBoc	HO ₂ C NHBoc	000	NH NH ₂ O HN SO HN NH ₂ O HN NH
116	HO ₂ C NHBoc	HO₂C NHBoc	G O	HN NH₂ O HN S O
117	S HO₂C ^{NHBoc}	но₂с МНВос	CI CO	HN NH₂ O HN SO HN SO HN NH₂ O HN NH2 O

Table 21

!	5	

10

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
123	HO ² C. NHBoc	HO₂C NHBoc	0-00 0-00	HN -NH ₂ ESI+ 486 (M*+1)
124	HO ₂ C ⁻ NHBoc	но₂с МНВос	C O	S NH NH NH₂ O NH NH₂ O NH2
125	HO ₂ C ⁻ NHBoc	HO₂C NHBoc	O C O	NH NH ₂ ESI+ 520 (M ⁺ +1)
126	HO ₂ C NHBoc	HO₂C NHBoc	C O	HN NH SO HN SO ESI+ 596 (M++1)
127	CONH₂ HO₂C NHBoc	НО₂ССССТИНВОС	CI-S	CONH ₂ NH NH O HN NH ₂ O ESI+ 503 (M*+1)

Table 22

10		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
128	CONH₂ HO ₂ C" NHBoc	HO ₂ C NHB∞c	C O	CONH ₂ NH NH O HN NH ₂ CONH ₂ NH NH O HN NH NH
				CONH₂
129	HO ₂ C NHBoc	но _г стинвос	orgo	HN NH₂ O HN gO
				ESI+ 531 (M++1)
130	CONH2 HO ₂ C NHBoc	HO ₂ C NHFmoc	0.00 0.00	CONH2 NH OH HN NH2
				ESI+ 593 (M++1)
131	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	CIO	CONH ₂ HN: NH ₂ NH O HN-SO HN: NH ₂
	<u>.</u> .			ESI+ 545 (M++1)
132	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	G O	CONH ₂ HN NH NH O HN NH ₂ E:SI+ 565 (M*+1)

Table 23

!		
٦		

10	
----	--

E	D	Decemb 5	Descent 9	· Structure
Example	Reagent 2	Reagent 5	Reagent 8	MS
133	CONH₂ HO₂C ⁻ NHBoc	HO ₂ C NHBoc	C.O.O.	CONH ₂ HN NH ₂ ESI+ 579 (M*+1)
134	CONH₂ HO₂C· NHBoc	HO ₂ C NHBoc	C O O O	CONH ₂ HN NH O HN SO
				ESI+ 655 (M++1)
135	HO ₂ C. NHBoc	HO ₂ C NHBoc	0.20	NH ₂ OC NH NH NH SO HN
				, ESI+ 600 (IVI +1)
136	CONH ₂	HO ₂ C NHBoc	C C C C C C C C C C C C C C C C C C C	CONH ₂ NH NH NH NH NH NH NH NH NH N
		·		ESI+ 455 (M++1)
137	CONH ₂ HO ₂ C. NHBoc	HO₂C NHBoc	CI-S	CONH ₂ H NH O O HN S O HN S ESI+ 469 (M ⁺ +1)

Table 24

5	5	

10	
15	

20	

50	

_	-	•	
•	а	۱	
-			

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
138	CONH2 HO2C NHBOC	HO ₂ C NHFmoc	O M C O	CONH2 H NH OH O HN O
	i			ESI+ 485 (M*+1)
139	CONH2 HO2C NHBoc	HO ₂ C NHBox	CL S	CONH ₂ HN NH NH NH ₂
				ESI+ 497 (M*+1)
140	CONH2 HO ₂ C NHBoc	HO₂C NHBoc	CIOS	CONH ₂ HN NH NH NH ₂
				ESI+ 531 (M*+1)
141	HO ₂ C NHBoc	HO ₂ C NHBoc	CI OS	CONH ₂ NH NH NH NH NH NH NH NH NH N
				ESI+ 607 (M+1)
142	CONH2 HO ₂ C ^V NHBoc	HO ₂ C NHBoc	O. S. C.	NH ₂ OC H N NH NH NH ₂
				ESI+ 607 (M+1)

Table 25

10	
15	

25	

50	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
143	CONH ₂ HO ₂ C····NHBoc	НО₂С №НВос	0-70 0-70	CONH ₂ NH O HN. O HN NH ₂ E:SI+ 455 (M ⁺ +1)
144	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	0.00 Ord	CONH ₂ NH NH NH ₂ ESI+ 469 (M*+1)
145	CONH₂ HO₂C NHBoc	NH HO₂C NHBoc	C O CO₂Me	CONH ₂ HN NH NH EIO ₂ C ESI+ 614 (M*+1)
146	CONH₂ HO₂C NHBoc	NH HO₂C NHBoc	O CI~S CO₂Me	CONH ₂ HN NH ₂ HN NH ₂ ESI+ 586 (M*+1)
147	HO ₂ C ^{n.} NHBoc	HO₂C NHBoc	CI-S CO ₂ Me	HN NH2 CO ₂ H ESil+ 588 (M*+1)

Table 26

5	

10	
15	
20	
25	
30	
35	
40	

45

_	-	
7		

Example	Reagent 2	Reagent 5	Reagent B	Structure MS
148	CONH₂ HO₂C NHBoc	NH HO₂C NHBoc	O-is CO	CONH ₂ NH NH NH NH ₂ ESI+ 586 (M*+1)
149	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	0-40 0-70 0-70	CONH ₂ NH NH NH NH ₂ NH SO (M ⁴ +1)
150	CONH ₂ HO ₂ C NHBoc	NH HO ₂ C NHBoc	Br~_ CO₂EI	CONH ₂ HN NH CO ₂ Et HN NH ₂ E:SI+ 550 (M ⁺ +1)
151	CONH₂ HO₂C NHBoc	NH HO ₂ C NHBoc	Br~_ CO₂Et	CONH ₂ NH NH NH CO ₂ H HN NH ₂ ESI+ 522 (M*+1)
152	CONH2 HO2C NHBoc	NH HO ₂ C NHBoc	O CI ^{-S} CO₂Me	HN NH ₂ MeO ₂ C ESI+ 600 (M ⁺ +1)

Table 27

Example	Intermediate 17	Reagent 18	Structure MS
153	HO DO DE LES	NH ₂ BocHN	H ₂ N
154	HO JOHN SO	NH ₂	S NH NH O NH S O
			·

Table 28

10	

É	5	0	,	

Example	Intermediate 9	Reagent 22	Structure MS
155	CN O HN A NHBoc	KNCO	O NH ₂ NH NH NH NH NH NH NH SO H ₂ N NH ESI+ 498 (M ⁺ +1)
156	NH NBoc NH NH NO CN	KNCO	NH2 NH NH H ₂ N NH ESI+ 608 (M ⁺ +1)
157	NBoc NH SO CN	снзсосі	H NH SO O HN-SO O O HN-SO O O O O O O O O O O O O O O O O O O
158	H NBOC Y NH O HN-SO	. KNCO	0 NH₂ H NH OH O HN. 50 H₂N NH ESI+ 500 (M*+1)
159	H NBoc V O HN. 50	KNCO	NH ₂ H N N N N N N N N N N N N N N N N N N

Table 29

!	5	

1	0		

Example	Intermediate 9	Reagent 22	Structure MS
160	Bock N H N O	KNCO	NH ₂ NH OH NH OH H ₂ N NH ESI+ 514 (M ⁺ +1)
161	NBoc NH SO ON	KNCO	O NH2 H NH NH SO H ₂ N NH ESI+ 498 (M*+1)
162	NBoc NH O	KNCO	O NH ₂ H NH NH O NH SO O NH ₂ N NH ESI+ 540 (M*+1)
163	NBoc NH NBoc	KNCO	O NH ₂ H ₂ N NH ESI+ 526 (M*+1)

Table 30

10	
15	
20	
25	
30	
35	
40	

Example	Intermediate 34	Reagent 35	Structure MS
164	S S S S S S S S S S S S S S S S S S S	(HO)₂B Q	CONH ₂ H ₂ N NH ESI+ 623 (M ⁺ +1)
165	CONH₂ C	(HO)₂B-Q	CONH ₂ H ₂ N NH ESI+ 623 (M*+1)
166	CONH2 H. NH Br O HN SO CN	(HO) ₂ B	CONH ₂ NH O HN-SO H ₂ N NH ESI+ 623 (M*+1)
167	CONH ₂ H NH NH O HN S O O O NH O O NH O NH O O NH NH	(HO) ₂ B	CONH ₂ NH ESI+ 593 (M ⁺ +1)
168	CONH2 CONH2 HN-50 CN CN	(HO) ₂ B NH ₂	CONH ₂ H ₂ H ₂ H ₂ H ₂ H ₃ H ₄ H ₂ H ₄ H ₅ H ₂ H ₄ H ₅ H ₇

Table 31

	Example	Intermediate 34	Reagent 35	Structure MS
10	169	CONH ₂ HN NH Br O HN SO	(HO) ₂ B NO ₂	CONH ₂ H NH NO ₂ HN ₂ O
15		ĊN C		Ö] H ₂ N NH ESI+ 638 (M ⁺ +1)
20				
25		·		
30				
35				·
40				
45				
50				

Table 32

10	

Example	Intermediate 38	Reagent 39	Reagent 8	Structure MS
170	CONH₂ NH NH NHBoc OH	ä	O O	CONH ₂ H NH NH NH NH S ESI+ 662 (M ⁺ +1)
171	CONH ₂ NH NHBoc OH		0-70 C 0	CONH ₂ H N NH NH O HN NH ₂ ESI+ 572 (M ⁺ +1)
172	CONH ₂ NHB 00 OH	Br	O SO	CONH ₂ HN NH NH NH NH NH NH NH NH NH
173	CONH2 NH NHBoc OH	·	C C C	CONH ₂ NH NH NH NH NH ESI+ 586 (M*+1)
174	CNH2 NH NH NHBac OH	Br OAc	CI O	CONH ₂ NH NH NH NH NH SO OH ESI+ 629 (M*+1)

Table 33

	Example	Intermediate 38	Reagent 39	Reagent 8	Structure MS
15	175	CONH₂ H NH NHBoc OH CN	Br } CO₂Et	O-S CO	CONH ₂ H NH NH NH CO₂H ESI+ 657 (M ⁴ +1)
20	176	CONH2 NH	Br AcO	COO	CONH ₂ H N N N N N N N N N N N N
<i>30</i>	177	CONH2 NH NH NHBoc OH	Br AcO	C C C C C C C C C C C C C C C C C C C	CONH ₂ NH NH NH NH NH SO HO ESI+ 615 (M*+1)
40	178	CONH2 NH NHBoc OH	Br CO₂Et	c c c	CONH ₂ NH NH NH SO CO ₂ H ESI+ 630 (M ⁺ +1)
50	179	CONH2 NH NHBoc OH	Br CO₂Et	CI OS	CONH2 NH NH NH SO CO2EI

55

ESI+ 658 (M++1)

Table 34

	,		

10	

Example	Intermediate 38	Reagent 39	Reagent 8	Structure MS
180	CN CONH2 NH	Br EiO ₂ C	CI CO	CONH ₂ NH NH NH NH O HN NH ₂ HO ₂ C ESI+ 671 (M*+1)
181	CONH2 NH NH NH NHBoc OH	Br	049 0	CONH ₂ NH NH NH NH NH ESI+ 678 (M*+1)
182	CONH ₂ NH NH NH NHBoc OH	Br OAc	Ci-S	CONH ₂ NH NH NH NH O HN NH NH
			·	

Example 183

[Expression and purification of human factor VIIa]

[0189] Human factor VII cDNA was obtained from a human liver cDNA library (CLONTECH) by PCR. The primer sequences used are as follows:

GTCTGGATCCACCATGGTCTCCCAGGCCCTCAG

10

15

20

25

30

5

TGTTGAATTCTACTAGGGAAATGGGGCTCGCA.

[0190] The human factor VII gene was integrated into a Double One expression vector (IDEC), subcloned and digested with the restriction enzyme Sspl. The linearized fragment was then introduced into the CHO cell line DG44 by electroporation to create human factor VII-expressing transformants. The transformants were then grown in the presence of 5 nM methotrexate (Sigma) for gene amplification. The resulting methotrexate-resistant human factor VII-expression transformants were further grown in a CHO-S-SFMII medium (GIBCO BRL) supplemented with 5 nmol/L methotrexate and 0.5 µg/ml vitamin K (Sigma) to express human factor VII.

[0191] The culture supernatant of human factor VII-expressing CHO transformants was concentrated through a hollow fiber dialyzer (PAN-130F, Asahi Medical Co., Ltd.) and supplemented with benzamidine at a final concentration of 5 mM for frozen storage. This frozen-stored culture supernatant was used, as appropriate, in purifying human factor VIIa. For purification, reference was made to Methods Enzymol., vol. 80, pages 228-237, 1981 and Biochemistry, vol. 27, pages 7785-7793, 1988. The concentrated culture supernatant was diluted 10-fold in 20 mM Tris-HCl buffer (pH 8.0) containing 5 mM benzamidine and 5 mM EDTA, and then applied to a Q Sepharose Fast Flow column equilibrated with the same buffer. Proteins adsorbed to the column were eluted with a stepwise gradient of NaCl (0.1, 0.2, 0.3 M) in the same buffer. The 0.3 M NaCl fractions containing human factor VII were concentrated by ultrafiltration, diluted 10-fold in 20 mM Tris-HCl buffer (pH 8.0) containing 5 mM benzamidine and 5 mM EDTA, and then applied to a Q Sepharose Fast Flow column equilibrated with the same buffer. After washing with the same buffer, human factor VII was eluted from the column with a linear CaCl2 gradient up to 50 mM. The resulting fractions were analyzed by SDS/ PAGE to collect human factor VII-containing fractions, which were then allowed to stand at room temperature for 2 days to facilitate self-digestion for activation into human factor VIIa. The reaction mixture was diluted 10-fold in 20 mM Tris-HCl buffer (pH 7.0) and then applied to a Q Sepharose Fast Flow column equilibrated with the same buffer. Human factor VIIa was eluted with a linear NaCI gradient of 150 to 350 mM in the same buffer. The resulting fractions were analyzed by SDS/PAGE to collect human factor VIIa-containing fractions, thus giving a purified human VIIa fraction.

Example 184

[Expression and purification of human soluble tissue factor]

40

45

55

35

[0192] A gene fragment encoding human soluble tissue factor (amino acids 1-218) was inserted downstream of the tac promoter and the M13 signal peptide sequence to create a secretory expression vector, which was then transformed into *E. coli* JM109 cells. The resulting transformants were grown to express human soluble tissue factor into the culture supernatant.

[0193] Purification was performed as described in Biochemistry, vol. 31, pages 3998-4003, 1992, with some modifications. The culture supernatant was concentrated by ultrafiltration and then treated with 65% saturated ammonium sulfate to precipitate the protein of interest. The precipitated product was collected by centrifugation (18000 g, 10 minutes), dissolved in PBS and then dialyzed against 25 mM acetate buffer (pH 5.2). The dialyzed solution was centrifuged (8000 g, 20 minutes) to remove insoluble products and the resulting supernatant was applied to an SP Sepharose Fast Flow column equilibrated with 25 mM acetate buffer (pH 5.2). Human soluble tissue factor was eluted from the column with a linear NaCl gradient up to 500 mM in the same buffer. The resulting fractions were analyzed by SDS/PAGE to collect fractions containing human soluble tissue factor, followed by dialysis against 25 mM Tris-HCl buffer (pH 7.5). The dialyzed fractions were applied to a Q Sepharose Fast Flow column equilibrated with 25 mM Tris-HCl buffer (pH 7.5) and human soluble tissue factor was eluted from the column with a linear NaCl gradient up to 500 mM in the same buffer, thus giving a purified human soluble tissue factor fraction.

Example 185

5

25

40

45

[Preparation of a human factor VIIa/human soluble tissue factor seed crystal]

[0194] As described in Proteins, vol. 22, pages 419-425, 1995, crystallization was performed on a complex between human factor VIIa and human soluble tissue factor, irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone. This crystal is necessary as a seed crystal for crystallization of a complex between reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. The purified human factor VIIa was mixed with a 10-fold molar excess of D-Phe-Phe-Arg chloromethylketone (BACHEM) and allowed to stand at 4°C for 3 hours. To this mixture, an excess amount 10 of the purified human soluble tissue factor was added and allowed to stand at 37°C for 30 minutes, followed by ultrafiltration for concentration. The concentrated fraction was applied to a gel filtration column (Superdex 75) equilibrated with 50 mM Tris-HCl buffer (pH 7.5) containing 5 mM CaCl2 and 100 mM NaCl, and then eluted with the same buffer to give a purified fraction of the human factor VIIa/human soluble tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone. This fraction was concentrated by ultrafiltration for crystallization to prepare a sample with a protein concentration of 10 mg/ml in 50 mM Tris-HCl buffer (pH 7.5), 100 mM NaCl and 5 mM CaCl₂. This sample was then allowed to stand at a temperature of 20°C using hanging drop vapor diffusion methods under reservoir conditions of 100 mM sodium cacodylate buffer (pH 5.0), 24% PEG40 and 5 mM CaCl₂, yielding a large amount of needle crvstal.

20 Example 186

[Preparation of a human factor VIIa/human soluble tissue factor sample for crystallization]

[0195] After addition of 1/10 volumes of 1M benzamidine, the purified human factor VIIa was mixed with a molar excess of the purified human soluble tissue factor. This mixture was concentrated by ultrafiltration and then applied to a gel filtration column (Superdex 75) equilibrated with 50 mM Tris-HCl buffer (pH 7.5) containing 5 mM CaCl₂ and 100 mM NaCl. A human factor VIIa/human soluble tissue factor complex was eluted from the column with the same buffer to give a purified fraction of the human factor VIIa/human soluble tissue factor complex.

Example 187 30

[Crystallization of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/ human soluble tissue factor]

35 [0196] The purified human factor VIIa/human soluble tissue factor complex was mixed with Compound (1) or (2) and then concentrated by ultrafiltration for crystallization to prepare a sample with a protein concentration of 12-13 mg/ml in 50 mM Tris-HCl buffer (pH 7.5), 100 mM NaCl and 5mM CaCl₂. Compounds (1) and (2) were used at the concentrations indicated in Table 35.

Table 35

	Compound (1)	Compound (2)
Concentration	0.5 mM	< 0.5 mM

[0197] Since spontaneous crystallization will not occur for a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor, it is necessary to add a seed crystal during crystallization. The seed crystal was prepared as follows. In a solution of 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG4000 and 5mM CaCl₂, the crystal of the human factor VIIa/human soluble tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone was crushed with a homogenizer and then diluted to prepare a series of 10-fold dilutions from 10⁻¹ to 10⁻⁶. Likewise, a crystal of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor was also available as a seed crystal.

[0198] Crystallization was performed by hanging drop vapor diffusion methods at a temperature of 25°C under reservoir conditions of 100 mM sodium cacodylate buffer (pH 5.0), 6% to 7.5% PEG4000, 5 mM CaCl₂ and 5% glycerol. The complex sample prepared from the low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/ human soluble tissue factor was mixed with the reservoir and the seed dilutions at a ratio of 1.5 µl: 1.5 µl: 0.5 µl (sample: reservoir:seed) to prepare a crystallization drop. About a month later, long rod crystals (maximum size: about 1.0 mm long imes 0.05 mm diameter) were obtained for the complex between the low-molecular weight reversible inhibitor and human factor VIIa/human soluble tissue factor.

Example 188

10

20

25

30

40

45

[Measurement of X-ray diffraction data]

5 (A) Crystal of the complex between Compound (1) and human factor VIIa/human soluble tissue factor

[0199] The crystal was soaked in 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG40 and 5mM CaCl₂ with a 5% stepwise gradient of glycerol from 10% up to 30%. This crystal together with its surrounding solution was picked by a nylon loop (cryo-loop, Hampton research) and frozen in a nitrogen stream at -170°C. The crystal was maintained in a nitrogen stream at -170°C during measurement. X-ray diffraction data were collected using an R-axis IV imaging plate detector (Rigaku) under CuKα radiation from a rotating anode X-ray generator with a fine focus filament (Ultrax18, Rigaku) at 44 kV \times 100 mA through OSMIC X-ray focusing mirrors (Rigaku). The DENZO/SCALEPACK program (Mac Science) was used for cell parameter and crystal orientation determination, diffraction spot indexing, as well as diffraction data processing, thereby obtaining diffraction intensity data up to 2.2 Å resolution. This crystal was found to be isomorphous to the Protein Data Bank complex of human factor VIIa/human soluble tissue factor, irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN). This crystal had space group P2₁2₁2₁ with unit cell parameters a = 71.40 Å, b = 82.22 Å, c = 123.47 Å, α = 90.0°, β = 90.0° and γ = 90.0°.

(B) Crystal of the complex between Compound (2) and human factor VIIa/human soluble tissue factor

[0200] The crystal was soaked in 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG4000 and 5mM CaCl $_2$ with a 5% stepwise gradient of glycerol from 10% up to 30%. This crystal together with its surrounding solution was picked by a nylon loop (cryo-loop, Hampton research) and frozen in a nitrogen stream at -170°C. The crystal was maintained in a nitrogen stream at -170°C during measurement. X-ray diffraction data were collected using an R-axis IV imaging plate detector (Rigaku) under CuK α radiation from a rotating anode X-ray generator with a fine focus filament (Ultrax18 Rigaku) at 40 kV \times 100 mA through Yale mirrors (Rigaku). The DENZO/SCALEPACK program (Mac Science) was used for cell parameter and crystal orientation determination, diffraction spot indexing, as well as diffraction data processing, thereby obtaining diffraction intensity data up to 2.2 Å resolution. This crystal was found to be isomorphous to the Protein Data Bank complex of human factor VIIa/human soluble tissue factor, irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN). This crystal had space group P2 $_1$ 2 $_1$ 2 $_1$ 2 with unit cell parameters a = 71.28 Å, b = 82.32 Å, c = 123.38 Å, α = 90.0°, β = 90.0° and γ = 90.0°.

Example 189

- 35 [Structure Analysis]
 - (A) Crystal of the complex between Compound (1) and human factor Ylla/human soluble tissue factor
 - [0201] Water molecules, and D-Phe-Phe-Arg chloromethylketone were removed from the coordinate data of the factor VIIa/tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN) in the Protein Data Bank to create an initial model, followed by structure refinement using the CNX2000.1 program (Accerlys Inc). After rigid body refinement and energy minimization refinement, a Fourier map was calculated using coefficients 2Fo-Fc and Fo-Fc, where Fo was the structure factor observed experimentally and Fc was the structure factor calculated from the refined model. The map was then displayed on QUANTA to give a continuous electron density peak around the catalytic active center of factor VIIa. An atomic model for Compound (1) was fitted to this electron density peak, followed by several rounds of refinement by simulated annealing and energy minimization. The locations of water molecules were then determined based on the Fourier map with coefficients 2Fo-Fc and Fo-Fc, followed by simulated annealing refinement and energy minimization refinement. This procedure was repeated to give the final structure coordinates. The refined parameters were xyz coordinates and an isotropic temperature factor for each atom. The occupancy was set to 1.0 for each atom. The final structure contains cordinates of 5142 atoms (including 4688 protein atoms, 9 ion atoms, 404 water atoms and 41 inhibitor atoms), giving a reduction of crystallographic R factor to 22.59% for the 30.0-2.2 Å resolution data (34775 reflections). Meanwhile, the Free R value was 26.72% for 2627 reflections.
- 55 (B) Crystal of the complex between Compound (2) and human factor VIIa/human soluble tissue factor

[0202] Water molecules and D-Phe-Phe-Arg chloromethylketone were removed from the coordinate data of the factor VIIa/tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN) in the

Protein Data Bank to create an initial model, followed by structure refinement using the CNX2000.1 program. After rigid body refinement and energy minimization refinement, a Fourier map was calculated using coefficients 2Fo-Fc and Fo-Fc, where Fo was the structure factor observed experimentally and Fc was the structure factor calculated from the refined model. The map was then displayed on QUANTA to give a continuous electron density peak around the catalytic active center of factor VIIa. An atomic model for Compound (2) was fitted to this electron density peak, followed by several rounds of refinement by simulated annealing and energy minimization. The locations of water molecules were then determined based on the Fourier map with coefficients 2Fo-Fc and Fo-Fc, followed by simulated annealing refinement and energy minimization refinement. This procedure was repeated to give the final structure coordinates. The refined parameters were xyz coordinates and an isotropic temperature factor for each atom. The occupancy was set to 1.0 for each atom. The final structure contains cordinates of 5193 atoms (including 4688 protein atoms, 9 ion atoms, 454 water atoms and 42 inhibitor atoms), giving a reduction of crystallographic R factor to 21.13% for the 30.0-2.2 Å resolution data (33708 reflections). Meanwhile, the Free R value was 25.08% for 2530 reflections.

Example 190

5

10

15

20

25

30

35

40

45

50

55

[Structure coordinates]

(A) Crystal structure coordinates of the complex between Compound (1) and human factor VIIa/human soluble tissue factor

[0203] The coordinates of all atoms were shown in PDB format in Table 36 (found at the end of the specification).

(B) Crystal structure coordinates of the complex between Compound (2) and human factor VIIa/human soluble tissue factor

[0204] The coordinates of Compound (2) and amino acid residues within 10 Å of Compound (2) were shown in PDB format in Table 37 (found at the end of the specification).

Table 38 Relationship between S2 site-binding moiety and human factor VIIa specificity

Compound	Example	IC50 Factor VIIa (nM)	IC50 Thrombin (nM)	Thrombin selectivity
(2)	65	93	9415	101
(3)	67	341	2275	7

Table 39 Relationship between S1 subsite-binding moiety and human factor VIIa specificity

O NH ₂ NH O HN O 2S	O NH ₂ HN NH ₂ HN NH ₂	
(2)	(4)	
Example 65	Example 66	
O _≫ NH ₂	O _≫ NH ₂	O _❤ NH ₂
HN NH ₂	HN NH ₂ COOH	HN NH ₂ COOH
(5)	(6)	(1)
Example 5	Example 7	Example 146

		IC50 Factor VIIa	IC50 Thrombin	Thrombin	
Compound	Example	(nM)	(nM)	selectivity	
(2)	65	93	9415	101	
(4)	66	2945	59051	20	
(5)	5	62	5880	95	
(6)	7 -	37	17870	483	
(1)	146	153	80175	524	

Table 40 Relationship between S4 site-binding moiety and human factor VIIa specificity

2	0	

Compound	Example	IC50 Factor VIIa (nM)	IC50 Thrombin (nM)	Thrombin selectivity
(2)	65	93	9415	101
(5)	5	62	5880	95
(7)	73	81	397	5

Table 41 Hydrogen bonding between Compound (1) and human factor VIIa S2 site

O5 O C15 NH₂ N6

C14

H

NH

O₂S

COOH

Hydrogen bonding

Inhibitor	Factor VIIa	Distance
N6	Asp60_OD2	3.0 Å
N6 .	Tyr94_OH	3.0 Å
N6	Thr98_0	2.8 Å
05	Asp60_OD2	3.2 Å

Table 42 Hydrogen and ionic bonding between Compound (1) and human factor VIIa S1 subsite

Hydrogen bonding

 Inhibitor
 Factor VIIa
 Distance

 N5
 Gly216_0
 2.9 Å

 O4
 Gly219_N
 2.8 Å

Ionic bonding

Inhibitor Factor VIIa Distance

O7 Lys192_NZ 4.2 Å

Table 43 Hydrogen bonding between Compound (2) and human factor VIIa S1 subsite

0 NH₂

HN NH₂

03 0 C30

Hydrogen bonding

 Inhibitor
 Factor VIIa
 Distance

 N5
 Gly216_O
 2.8 Å

 O3
 Gly219_N
 2.8 Å

 O4
 Lys192_NZ
 3.2 Å

Table 44 Van der Waals interaction between Compound (1) and human factor VIIa S4 site

Ligand	Factor	Minimum	Factor	Minimum	Factor	Minimum
atom	VIIa	distance	VIIa	distance	VIIa	distance
C16	Pro170I	3.9 Å				
C17	Pro170I	3.7 Å				
C18	Pro170I	3.4 Å				
C19	Pro170I	3.5 Å				
C20	Gln217	3.8 Å	Val170E	4.2 Å	Ser170H	4.1 Å
C20	Pro170I	4.0 Å				
C21	Val_170E	4.0 Å	Asp170G	4.2 Å	Ser170H	3.8 A
C22	Asp170G	3.5 Å	Ser170H	4.1 Å		
C23	Asp170G	3.8 Å	Pro170I	3.8 Å		
C24	Pro170I	4.1 Å				
N7	Asp170G	4.0 Å				

* The above table exclusively shows ligand atoms located within a minimum distance of 4.2 Å from amino acid residues in human factor VIIa.

Table 45 Van der Waals interaction between Compound (2) and human factor VIIa S4 site

Ligand atom	Factor VIIa	Minimum distance	Factor VIIa	Minimum distance	Factor VIIa	Minimum distance
C16	Trp215	3.9 Å	Gly216	4.2 Å	Pro170I	4.0 Å
C17	Pro170I	3.6 Å				
C18	Pro170I	3.6 Å	Trp215	4.2 Å	Gln217	4.2 Å
C19	Ser170H	3.8 Å	Pro170I	3.6 Å	Gln217	3.9 Å
C20	Ser170H	3.9 Å	Pro170I	3.7 Å		
C21	Pro170I	3.7 Å				·
C22	Pro170I	3.7 Å	,			
C23	Ser170H	3.7 Å				
C24	Ser170H	4.2 Å	Gln217	3.9 Å		
C25	Gln217	4.2 Å				
C26	Gly170F	4.2 Å				
C27	Asp170G	3.9 Å	Ser170H	3.9 Å		
C28	Asp170G	3.8 Å	Ser170H	3.6 Å		

* The above table exclusively shows ligand atoms located within a minimum distance of 4.2 Å from amino acid residues in human factor VIIa.

Test Example: Biological activity test

Method

.....

5

10

15

20

25

30

35

40

45

50

55

Assay for FVIIa-inhibiting activity

[0205] The assay was carried out with 96-well microplates (Falcon, No. 3072) at room temperature. [0206] A 10 vol% DMSO solution of a test compound (20 μ L) was mixed with 40 μ L Thromborel®S (50 mg/mL, Dade Behring, GTS-200A), 20 μ L Spectrozyme®fVIIa (5 mmol/L, American Diagnostica Inc., #217L), 20 μ L Tris buffer (500 mmol/L Tris/HCl, pH 7.5, 1500 mmol/L NaCl, 50 mmol/L CaCl₂) and 80 μ L distilled water, followed by stirring. The reaction was initiated by addition of 20 μ L FVIIa (20 nmol/L, Enzyme Research Laboratories, HF VIIa) and then monitored over time for absorbance at 405 nm using a microplate reader (Biorad, Model 3550) to determine the initial velocity of the reaction for each test compound. The initial reaction velocity was set to 100% in the case of adding 10 vol% DMSO alone, instead of a test compound. A concentration-reaction curve was prepared for FVIIa-inhibiting activity of each test compound to calculate a concentration at which the compound causes 50% inhibition of initial reaction velocity. This concentration was defined as an IC50 value.

2. Assay for thrombin-inhibiting activity

[0207] The assay was carried out with 96-well microplates (Falcon, No. 3072) at room temperature.
 [0208] A 10 vol% DMSO solution of a test compound (20 μL) was mixed with 40 μL Tris buffer (200 mmol/L Tris/HCl,

pH 8.0), 20 μL NaCl solution (1 mol/L), 20 μL FVR-pNa (2 mmol/L, SIGMA, B 7632) and 80 μL distilled water, followed by stirring. The reaction was initiated by addition of 20 μL human thrombin (5 U/mL, SIGMA, T 1063) and then monitored over time for absorbance at 405 nm using a microplate reader (Biorad, Model 3550) to determine the initial velocity of the reaction for each test compound. The same procedure as shown in assay for FVIIa-inhibiting activity was repeated to calculate an IC50 value for each test compound.

Result

[0209] The results obtained are shown in Table 46 below.

Table 46

Example No.	IC50 Factor VIIa (nM)	IC50 Thrombin (nM)
5	62	5880
7	37	17870
65	93	9415
81	177	5691
82	131	12544
170	37	9422
22	39	17544
146	153	80175
148	65	8325
83	55	14374

INDUSTRIAL APPLICABILITY

[0210] The compound of the present invention can have an excellent inhibitory activity against FVIIa or a selective inhibitory activity against extrinsic blood coagulation. This suggests that the compound of the present invention is expected to have pharmaceutical utility such as an antithrombotic agent with higher safety and fewer side effects (e. g., hemorrhage tendency). In particular, it is expected to have prophylactic or therapeutic utility for pathological conditions associated with the extrinsic coagulation pathway. More specifically, it is expected to be effective as a therapeutic or prophylactic agent for chronic thrombosis (e.g., postoperative deep vein thrombosis, post-PTCA restenosis, chronic DIC). cardioembolic strokes, cardiac infarction, cerebral infarction, etc.

[0211] In addition, it is not only possible to provide a crystal which can be used for X-ray crystal structure analysis with the aim of three-dimensional structure analysis of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, but it is also possible to computationally design a low-molecular weight reversible factor VIIa inhibitor using X-ray crystal structure analysis data. Therefore, such a design procedure enables the development of a low-molecular weight reversible factor VIIa inhibitor.

Table 36 Coordinate data of the complex between Compound
(1) and human factor VIIa/soluble tissue factor (all data)

10	CRYST1	71.4	ınn	82.220	123.	470	90.00	90.00	90 00	P212121		
	ATOM	1	N	ALA L	1	43.		30. 236		1.00 26.90	L	N
	ATOM	2		ALA L	í	44.		31. 220	87. 381	1.00 27.37	Ĺ	Ĉ
	MOTA	3		ALA L	i	44.		30. 945	88. 817	1.00 28.56	Ĺ	č
	ATOM	4		ALA L	Ì	43.		30. 238	89. 541	1.00 27.63	Ĺ	Õ
15	ATOM	5	CB	ALA L	l	43.		32. 638	87. 252	1.00 27.00	L	·C
	ATOM	6	N	ASN L	2	45.		31. 505	89. 233	1.00 29.16	L	N
	ATOM	7	CA	ASN L	2	46.		31. 273	90. 585	1.00 29.83	Ĺ	Č
	ATOM	8	C	ASN L	2	46.		32. 541	91.402	1.00 30.42	L	C
	ATOM	9	0	ASN L	2	46.		33. 456	91.018	1.00 30.42	Ĺ	Ö
20			CB	ASN L	2	47.		30. 533	90. 546	1.00 27.10	L	
20	ATOM ATOM	10 11	CG	ASN L	2	47.		29. 133	89. 989	1.00 27.10	L	C
	ATOM	12		ASN L	2	46.		28. 312	90. 519	1.00 26.29	L	0
	ATOM	13		ASN L	2	48.		28. 851	88. 917	1.00 27.22	Ĺ	
	ATOM	14	ND2	ALA L	3	45.		32. 592	92. 528	1.00 21.22	L	
05	ATOM	15	CA	ALA L	3	45.		33. 724	93. 438	1.00 31.30	Ĺ	
25	ATOM	16	C	ALA L	3	46.		33. 192	94.641	1.00 32.24	Ĺ	_
	ATOM	17	Ö	ALA L	3	46.		31. 980	94.764	1.00 32.24	L	
	ATOM	18	CB	ALA L	3	44.		34. 179	93. 853	1.00 31.40	L	Č
	ATOM	19		PHE L	4		864	34. 085	95. 524	1.00 32.19	Ĺ	
	ATOM	20	CA	PHE L	4		636	33. 676	96.697	1.00 31.55	Ĺ	
30	ATOM	21	C	PHE L	4		917	32.656	97. 574	1.00 29.19	L	
	ATOM	22	Õ	PHE L	4		798	32. 893	98.025	1.00 30.82	ĩ	
	ATOM	23	CB	PHE L	4		003	34.897	97.548	1.00 33.52	Ĺ	
	ATOM	24	CG	PHE L	4		900	34.574		1.00 35.99	L	
	ATOM	25	CD1	PHE L	4		180	34.067	98.506	1.00 36.15	L	
35	ATOM	26	CD2	PHE L	4	48.	464	34.768		1.00 36.15	L	
	ATOM	27		PHE L	4		012	33.759	99.580	1.00 38.17	L	
	ATOM	28	CE2	PHE L	4		289	34.464	101.103	1.00 38.45	L	
	ATOM	29	CZ	PHE L	4	50.	567	33.957	100.881	1.00 37.74	L	
	ATOM	30	N	LEU L	5	47.	569	31.519	97.796	1.00 27.82	L	N
40	ATOM	31	CA	LEU L	5 .	47.	044	30.442	98.640	1.00 26.01	L	C
	ATOM	32	C	LEU L	5	45.	864	29.624	98.122	1.00 26.56	L	
	ATOM	33	0	LEU L	5	45.	505	28.619	98.730	1.00 27.40	L	0
	ATOM	34	CB	LEU L	5	46.	682	30.985	100.027	1.00 24.14	. L	С
	MOTA	35	CG	LEU L	5		816	31.543		1.00 24.48	L	
45	ATOM	36	CD1	LEU L	5		248	31.998		1.00 22.64	Ł	С
	ATOM	37	CD2	LEU L	5		886	30.479		1.00 21.31	L	C
	MOTA	38	N	CGU L	6		252	30.027	97.016	1.00 26.55	L	N
	ATOM	39	CA	CGU L	6		120	29. 256	96.516	1.00 26.75	L	С
	MOTA	40	CB	CGU L	6		497	29. 921	95. 289	1.00 26.18	L	C
50	ATOM	41	CG	CGU L	6		283	29.117	94.819	1.00 25.49	L	C
	MOTA	42	CD1	CGU L	6		608	28.386	93.520	1.00 23.72	. L	С
	ATOM	43	CD2	CGU L	6	41.	068	30.027	94.667	1.00 26.90	L	С
	ATOM	44	0E1	CGU L	6		364	28. 939	92.739	1.00 19.08	L	0
	ATOM	45	0E2		6		108	27. 273	93. 323	1.00 22.25	L	0
55	ATOM	46	0E3	CGU L	6		524	30. 434	95.688	1.00 27.43	L	0
	MOTA	47	0E4	CGU L	6	40.	690	30. 308	93.557	1.00 26.50	Ĺ	0

	MOTA	48	С	CGU L	6	44.499	27.819	96.178	1.00 25.52	L	C
_	ATOM	49	0	CGU L	6	43.666	26.915	96.256	1.00 24.58	ī	0
5	MOTA	50	Ň	CGU L	7	45.760	27.607	95.813	1.00 24.67	Ĺ	Ň
	MOTA	51	CA	CGU L	7	46. 245	26. 273	95.478	1.00 24.21	ĭ	Ċ
	ATOM	52	CB	CGU L	7	47.622	26. 392	94.817	1.00 23.05	Ĺ	č
	ATOM	53	CG	CGU L	7	47. 330	27.007	93.446	1.00 25.83	Ĺ	č
	ATOM			CGU L	7	46.490	26. 029	92.643	1.00 25.89	Ĺ	C
10		54									
	MOTA	55		CGU L	7	48.590	27. 400	92.679	1.00 27.73	Ļ	C
	ATOM	56		CGU L	7	45.505	26. 442	92.115	1.00 24.48	L	0
	ATOM	57		CGU L	7	46.845	24.866	92.591	1.00 23.44	Ļ	0
	MOTA	58		CGU L	7	49.041	28. 527	92.846	1.00 28.58	Ĺ	0
45	MOTA	59		CGU L	7	49.090	26.585	91.922	1.00 28.37	L	0
15	ATOM	60	С	CGU L	7	46.249	25.303	96.672	1.00 23.79	L	C
	MOTA	61	0	CGU L	7	46.558	24.120	96.529	1.00 25.13	L	0
	ATOM	62	N	LEU L	8	45.896	25.811	97.848	1.00 24.29	L	N
	ATOM	63	CA	LEU L	8	45.789	24.983	99.049	1.00 24.16	L	C
	ATOM	64	С	LEU L	8	44. 458	24.235	98.963	1.00 25.54	L	C
20	ATOM	65	0	LEU L	8	44.285	23.180	99.565	1.00 26.65	L	0
	ATOM	66	CB	LEU L	8	45.790	25.851	100.311	1.00 23.41	L	C
	ATOM	67	CG	LEU L	8	47.117	26.250	100.968	1.00 24.22	L	C
	ATOM	68	CD1	LEU L	8	48.042	26.938	99.969	1.00 19.80	L	С
	ATOM	69		LEU L	8	46.817		102.148	1.00 23.24	L	C
25	ATOM	70	N	ARG L	9	43.520	24.798	98.203	1.00 27.13	· L	N
25	ATOM	71	CA	ARG L	9	42.198	24.213	98.027	1.00 27.75	L	C
	ATOM	72	C	ARG L	9	42.226	23.132	96.949	1.00 27.08	Ĺ	Č
	ATOM	73	Õ	ARG L	9	42.930	23. 255	95.948	1.00 27.06	Ĺ	Ŏ
	ATOM	74	СB	ARG L	9	41.192	25.300	97.625	1.00 29.68	Ĺ	Č
	ATOM	75	CG	ARG L	9	41.292	26. 593	98.427	1.00 33.48	ī	č
30	ATOM	76	CD	ARG L	9	40. 264	27.619	97.964	1.00 34.05	Ĺ	č
	ATOM	77	NE	ARG L	9	38.914	27. 246	98.370	1.00 37.69	Ĺ	N
	ATOM	78	CZ	ARG L	9	38. 254	27. 781	99.395	1.00 38.57	Ĺ	Ċ
	ATOM	79		ARG L	9	38.806		100.136	1.00 38.38	Ĺ	N
	ATOM	80		ARG L	9	37. 037	27. 349	99.689	1.00 40.53	Ĺ	N
35	ATOM	81	N	PRO L	10	41.465	22.050	97.144	1.00 27.28	Ĺ	N
	ATOM	82	CA	PRO L	10	41.446	20. 985	96. 137	1.00 27.55	Ĺ	Ĉ
	ATOM	83	C	PRO L	10	41.008	21.551	94. 780	1.00 27.58	Ĺ	č
	ATOM	84	ŏ	PRO L	10	40. 388	22.615	94.713	1.00 27.34	Ĺ	ŏ
	ATOM	85	CB	PRO L	10	40. 433	19.999	96. 708	1.00 29.14	Ĺ	Č
	ATOM	86	CG	PRO L	10	40.433	20. 160	98. 191	1.00 27.86	Ĺ	Č
40	ATOM	87	CD	PRO L	10	40.686	21.665	98. 333	1.00 28.70		
				GLY L				93. 702		L	C
	MOTA	88	N CA	GLY L	11 11	41.334	20. 848	92. 383	1.00 26.59	L	N
	MOTA	89		GLY L		40.950	21.321		1.00 28.67	L	C
	MOTA	90	C		11	39.445	21.370	92.164	1.00 29.12	L	C
45	ATOM	91	0	GLY L	11	38.709	20.499	92.628	1.00 30.35	L	0
	ATOM	92	N	SER L	12	38.985	22.398	91.459	1.00 29.23	ŗ	N
	ATOM	93	CA	SER L	12	37.567	22. 560	91.159	1.00 29.12	L	C
	MOTA	94	C	SER L	12	37. 393	23.085	89. 740	1.00 29.51	Ĺ	C
	ATOM	95	0	SER L	12	37. 797	24. 206	89. 425	1.00 28.38	L	0
50	ATOM	96	CB	SER L	12	36.916	23.531	92. 143	1.00 30.52	L	C
30	MOTA	97	0G	SER L	12	35. 555	23.749	91.803	1.00 31.56	L	0.
	ATOM	98	N	LEU L	13	36. 788	22. 271	88. 884	1.00 29.17	L	N
	ATOM	99	CA	LEU L	.13	36.575	22.660	87. 497	1.00 30.18	L	C
	ATOM	100	С	LEU L	13.	35. 779	23.953	87. 383	1.00 30.11	L	C
	MOTA	101	0	LEU L	13	36.128	24.844	86.611	1.00 32.23	L	0
55	MOTA	102	CB	LEU L	13	35.842	21.549	86. 745	1.00 30.30	L	C
	MOTA	103	CG	LEU L	13	35.630	21.832	85. 260	1.00 31.24	L	С
											-

5	ATOM ATOM ATOM ATOM ATOM ATOM	104 105 106 107 108 109	CD2 : N CA CB	LEU L LEU L CGU L CGU L CGU L CGU L	13 13 14 14 14	36. 982 34. 743 34. 703 33. 851 32. 668 31. 651	21.877 20.756 24.051 25.230 25.027 26.161	84. 558 84. 654 88. 153 88. 130 89. 072 89. 091	1.00 29.56 1.00 30.75 1.00 29.30 1.00 29.52 1.00 31.22 1.00 35.34	L L L L L	C C N C C
10	ATOM ATOM ATOM ATOM ATOM	110 111 112 113 114	CD2 OE1 OE2 OE3	CGU L CGU L CGU L CGU L	14 14 14 14	30. 495 31. 135 29. 836 30. 285 31. 048	25. 800 26. 407 26. 703 24. 609 27. 567	90. 019 87. 679 90. 495 90. 254 87. 288	1. 00 36. 63 1. 00 36. 12 1. 00 37. 62 1. 00 40. 38 1. 00 37. 34	L L L L	C O O
15	ATOM ATOM ATOM ATOM ATOM	115 116 117 118 119	C O N CA	CGU L CGU L ARG L ARG L	14 14 14 15	30. 838 34. 585 34. 616 35. 177 35. 894	25. 432 26. 515 27. 463 26. 540 27. 718 28. 064	86. 992 88. 502 87. 725 89. 691 90. 175 89. 356	1.00 37.27 1.00 28.40 1.00 28.45 1.00 27.46 1.00 27.51 1.00 27.23	L L L L L	0 0 N C C
20	ATOM ATOM ATOM ATOM ATOM ATOM	120 121 122 123 124 125	O CB CG CD	ARG L ARG L ARG L ARG L ARG L ARG L	15 15 15 15 15	37. 132 37. 465 36. 313 37. 003 37. 615 38. 708	29. 237 27. 508 28. 707 28. 338 27. 374	89. 182 91. 637 92. 288 93. 650 93. 512	1.00 27.23 1.00 25.95 1.00 27.70 1.00 28.99 1.00 27.72 1.00 23.84	L L L L	0 C C N
25	ATON ATON ATON ATON ATON	126 127 128 129 130	CZ NH1 NH2 N	ARG L ARG L ARG L CGU L	15 15 15 16 16	38. 726 37. 710 39. 759 37. 792 39. 032	26. 161 25. 737 25. 358 27. 036 27. 205	94.058 94.798 93.848 88.835 88.085	1. 00 24. 64 1. 00 25. 00 1. 00 23. 56 1. 00 27. 33 1. 00 27. 34	L L L L	C N N N C
30	ATOM ATOM ATOM ATOM ATOM	131 132 133 134 135	CB CG CD1 CD2	CGU L CGU L CGU L CGU L	16 16 16 16	39. 967 40. 198 40. 616 41. 304 41. 440	26. 045 25. 989 27. 379 24. 995 27. 927	88. 431 89. 937 90. 373 90. 253 89. 699	1.00 27.36 1.00 23.86 1.00 24.51 1.00 23.35 1.00 27.27	L L L L	0000
35	MOTA MOTA MOTA MOTA MOTA	136 137 138 139 140	0E3 0E4 C 0	CGU L CGU L CGU L CGU L	16 16 16 16	40.095 42.407 41.023 38.982 39.739	27. 883 25. 416 23. 818 27. 363 28. 159	91.340 90.385 90.349 86.574 86.011	1.00 24.69 1.00 20.19 1.00 22.98 1.00 29.25 1.00 29.12	L L L L	0 0 C 0
40	ATOM ATOM ATOM ATOM ATOM	141 142 143 144 145	CA C O CB	CYS L CYS L CYS L CYS L CYS L CYS L	17 17 17 17 17	38. 113 38. 020 36. 760 36. 767 38. 143 39. 683	26.607 26.672 27.339 27.841 25.268 24.375	85. 913 84. 460 83. 910 82. 789 83. 870 84. 273	1. 00 29. 27 1. 00 30. 58 1. 00 30. 90 1. 00 31. 41 1. 00 29. 03 1. 00 29. 62	L L L L	N C C O C S
45	MOTA MOTA MOTA MOTA MOTA	146 147 148 149 150	N CA C O	LYS L LYS L LYS L LYS L	18 18 18 18	35. 682 34. 428 34. 376 34. 202	27. 337 27. 953 29. 423 30. 299	84.686 84.254 84.649 83.804	1. 00 33. 15 1. 00 33. 15 1. 00 33. 16 1. 00 33. 01	L L L L	S N C C
50	MOTA MOTA MOTA MOTA MOTA	151 152 153 154 155	CG CD CE NZ	LYS L LYS L LYS L LYS L	18 18 18 18	33. 229 32. 773 33. 805 34. 139 32. 971	27. 210 25. 998 24. 888 24. 448 23. 879	84. 855 84. 049 84. 034 82. 610 81. 874	1.00 33.20 1.00 35.52 1.00 38.86 1.00 39.72 1.00 40.07	L L L	C C C N
55	MOTA MOTA MOTA MOTA	156 157 158 159	N CA CB CG	CGU L CGU L CGU L	19 19 19 19	34. 525 34. 510 34. 259 32. 874	29. 686 31. 048 31. 030 30. 589	85. 942 86. 459 87. 963 88. 419	1.00 33.87 1.00 33.17 1.00 34.83 1.00 37.03	L L L	N C C C

_	MOTA MOTA MOTA	160 161 162	CD2	CGU L CGU L	19 19 19	31.834 32.836 30.658	31.593 30.518 31.307	87. 934 89. 941 88. 057	1.00 37.84 1.00 39.06 1.00 36.43		L L L	C C 0
5	MOTA MOTA	163 164	0E2 0E3	CGU L	19 19	32.229 32.692	32.655 29.414	87. 435 90. 470	1.00 39.63 1.00 38.92		L L	0
10	MOTA MOTA MOTA	165 166 167	C C O	CGU L CGU L	19 19 19	32.955 35.826 35.934	31. 571 31. 771 32. 978	90. 570 86. 182 86. 388	1.00 41.50 1.00 32.60 1.00 33.89		L L L	0 C 0
	ATOM ATOM ATOM	168 169 170	N CA CB	CGU L CGU L	20 20 20	36. 824 38. 128 39. 045	31.030 31.607 31.487	85. 714 85. 422 86. 634	1.00 31.95 1.00 30.77 1.00 28.99		L L L	N C C
15	MOTA MOTA MOTA	171 172 173		CGU L CGU L	20 20 20	38.620 38.770 39.521	31. 952 33. 462 31. 281	88. 020 88. 131 89. 047	1.00 30.59 1.00 31.48 1.00 30.25		L L L	C C C
	ATOM ATOM MOTA	174 175 176	0E 1 0E 2	CGU L CGU L	20 20 20	38.025 39.634 39.282	34.061 34.004 31.444	88. 882 87. 461 90. 226	1.00 33.25 1.00 33.62 1.00 29.48		L L L	0 0 0
20	ATOM MOTA MOTA	177 178 179		CGU L CGU L CGU L	20 20 20	40. 453 38. 791 38. 328	30.598 30.857 29.796	88. 629 84. 283 83. 875	1.00 30.41 1.00 29.55 1.00 29.94		L L L	0
	ATOM ATOM ATOM	180 181 182	N CA C	GLN L GLN L GLN L	21 21 21	39. 891 40. 680 41. 690	31. 419 30. 808 29. 913	83. 795 82. 739 83. 454	1.00 30.03 1.00 30.36 1.00 29.74		Ĭ L L	N C
25	ATOM ATOM ATOM ATOM	183 184 185	O CB CG	GLN L GLN L GLN L	21 21 21 21	42. 484 41. 425 40. 535	30. 388 31. 879	84. 276 81. 944 81. 134	1.00 27.73 1.00 33.78		L L	C C C
	ATOM ATOM	186 187	CD OE 1	GLN L GLN L	21 21	39. 865 39. 029	32. 812 32. 115 31. 228	79. 966 80. 150	1.00 40.75 1.00 44.61 1.00 48.21		L L L	0
30	ATOM ATOM ATOM	188 189 190	N CA	GLN L CYS L CYS L	21 22 22	40. 235 41. 659 42. 584	32.510 28.621 27.704	78. 752 83. 159 83. 798	1.00 45.88 1.00 27.02 1.00 26.53		L L L	N N C
35	ATOM ATOM ATOM	191 192 193	C O CB	CYS L CYS L	22 22 22	43.607 43.285 41.824	27.197 26.959 26.529	82.795 81.630 84.417	1.00 28.06 1.00 29.00 1.00 26.03		L L L	C C C
	MOTA MOTA MOTA	194 195 196	SG N CA	CYS L SER L SER L	22 23 23	41.127 44.846 45.919	25. 347 27. 044 26. 564	83. 224 83. 251 82. 395	1.00 24.58 1.00 28.01 1.00 29.36		L L L	S N C
40	ATOM ATOM ATOM	197 198 199	C O CB	SER L SER L SER L	23 23 23	45.856 45.041 47.278	25.046 24.409 26.991	82.316 82.991 82.954	1.00 29.53 1.00 28.50 1.00 30.24		L L L	C 0 C
	ATOM ATOM ATOM	200 201 202	OG N CA	SER L PHE L PHE L	23 24 24	47.547 46.729 46.774	26. 328 24. 471 23. 030	84.176 81.496 81.325	1.00 32.90 1.00 28.75 1.00 28.22		L L L	O N C
45	MOTA MOTA	203 204	0 C	PHE L PHE L PHE L	24 24	47. 044 46. 373	22. 340 21. 370	82.659 83.019	1.00 28.31 1.00 26.88		L L	C 0
	ATOM ATOM ATOM	205 206 207		PHE L PHE L	24 24 24	47.871 47.906 47.014	22. 544 21. 179 20. 626	80.328 80.019 79.106	1.00 27.99 1.00 27.32 1.00 27.03		L L L	C C
50	ATOM ATOM ATOM	208 209 210	CE1	PHE L PHE L PHE L	24 24 24	48. 791 47. 000 48. 784	20. 338 19. 256 18. 964	80. 684 78. 864 80. 449	1.00 27.00 1.00 25.26 1.00 25.45	,	l L L	C C C
	ATOM ATOM ATOM	211 212 213	CZ N CA	PHE L CGU L CGU L	24 25 25	47.887 48.031 48.405	18. 423 22. 850 22. 282	79. 540 83. 388 84. 673	1.00 25.69 1.00 27.44 1.00 28.71		L L L	C N C
55	ATOM ATOM	214 215	CB CG	CGU L	25 25	49.570 50.357	23. 068 22. 364	85. 262 86. 358	1.00 33.43 1.00 38.45	1	L L	C

	1 TO 11	016	CD1	COLLI	0.5		E 1 701	11 000	00 240	1.00 40.65	1	C
	MOTA	216		CGU L	25		51. 791 50. 357	22.882	86.348		L	C C
	ATOM	217		CGU L	25			20. 859	86.100	1.00 40.80	L	
5	ATOM	218		CGU L	25		52. 101	23.772	87.138	1.00 41.24	L	-
	MOTA	219		CGU L	25		52.571	22.386	85.537	1.00 43.46	L	0
	ATOM	220		CGU L	25		50.854	20.453	85.053	1.00 41.65	L	0
	ATOM	221		CGU L	25		49.853	20.120	86.950	1.00 42.95	L	0
	MOTA	222	C	CGU L	25		47. 233	22.264	85.644	1.00 26.61	L	С
	ATOM	223	0	CGU L	25		46. 958	21.246	86. 271	1.00 25.98	L	0
10	ATOM	224	N	CGU L	26		46.541	23.391	85.765	1.00 25.93	L	
	MOTA	225	CA	CGU L	26		45.389	23.474	86.652	1.00 26.06	L	С
	ATOM	226	CB	CGU L	26		44.770	24.870	86.576	1.00 24.81	L	С
	ATOM	227	CG	CGU L	26		45.740	25.994	86.948	1.00 26.07	L	С
	ATOM	228	CD1	CGU L	26		46.302	25.752	88.351	1.00 26.84	L	С
15	ATOM	229		CGU L	26		45.038	27.349	86.880	1.00 26.66	L	
	ATOM	230		CGU L	26		45. 548	25. 374	89.218	1.00 24.86	Ĺ	Ō
	ATOM	231		CGU L	26		47. 480	25.942	88.538	1.00 26.84	Ĺ	Ö
	MOTA	232		CGU L	26		44.976	27. 925	85.801	1.00 28.65	Ĺ	
	ATOM	233		CGU L	26		44. 567	27. 805	87.890	1.00 26.86	Ĺ	
20	ATOM	234	C	CGU L	26		44.360	22.416	86. 254	1.00 26.09	Ĺ	Č
	MOTA	235	ŏ	CGU L	26		43.830	21.696	87.099	1.00 26.77	ĩ	
	ATOM	236	N	ALA L	27		44.090	22.319	84.957	1.00 26.92	Ĺ	
	ATOM	237	CA	ALA L	27		43.139	21.341	84. 449	1.00 26.84	Ĺ	
	ATOM	238	C	ALA L	27		43. 590	19.927	84. 797	1.00 26.93	L	
0.5	ATOM	239	Õ	ALA L	27		42.775	19.085	85.171	1.00 27.45	Ĺ	
25	ATOM	240	CB	ALA L	27		42. 773	21.486	82.938	1.00 24.94	L	
	ATOM		N N	ARG L	28		44.891	19.669	84.678	1.00 27.54	L	
	ATOM	241 242	CA	ARG L	28		45.434	18.347	84.977	1.00 27.34	Ĺ	
	ATOM	243	C	ARG L	28		45. 275	17. 976	86.451	1.00 29.86	L	
	ATOM		0	ARG L	28	•	45.145	16.804	86. 785	1.00 29.80	L	
30		244		ARG L				18.278	84.600	1.00 31.18		
	ATOM	245	CB	ARG L	28		46.911 47.457		84. 531	1.00 30.65	L	
	ATOM	246	CG		28			16.859			L	
	ATOM	247	CD	ARG L	28		48.977	16.856	84.601	1.00 36.00	L	
	ATOM	248	NE C2	ARG L	28		49.441	17.365	85.890	1.00 37.93	Ļ	• •
35	ATOM	249	CZ	ARG L	28		49.284	16.735	87.053	1.00 38.70	L	-
	ATOM	250		ARG L	28		48.682	15.552	87. 109	1.00 38.86	Ļ	
	ATOM	251		ARG L	28		49.706	17.308	88. 171	1.00 39.29	Ļ	
	ATOM	252	N	CGU L	29		45.302	18.969	87. 333	1.00 29.50	L	
	ATOM	253	CA	CGU L	29		45. 131	18.714	88.761	1.00 29.34	L	
40	MOTA	254	CB	CGU L	29		45. 529	19.947	89.559	1.00 28.96	L	
40	ATOM	255	CG	CGU L	29		47.033	20.154	89.530	1.00 30.94	L	
	ATOM	256	CD1		29		47. 709	19. 275	90.575	1.00 33.97	Ĺ	
	ATOM	257		CGU L	29		47. 360	21.610	89.778	1.00 29.62	L	•
	ATOM	258		CGU L	29		48. 900	19.048	90.442	1.00 37.46	L	
	ATOM	259		CGU L	29		47. 028	18.834	91.503	1.00 36.82	L	
45	ATOM	260		CGU L	29		48. 486	21.975	89.603	1.00 27.06	L	
	ATOM	261		CGU L	29		46.476	22. 332	90. 128	1.00 28.53	L	
	ATOM	262	С	CGU L	29		43.688	18.343	89.077	1.00 28.66	L	
	ATOM	263	0	CGU L	29		43.401	17.742	90.113	1.00 29.88	L	0
	MOTA	264	N	ILE L	30		42. 783	18.717	88. 181	1.00 27.56	L	
50	ATOM	265	CA	ILE L	30		41.371	18.408	88.340	1.00 27.41	L	С
	ATOM	266	С	ILE L	30		41.103	17.006	87. 791	1.00 28.29	L	
	ATOM	267	0	ILE L	30	,	40.605	16.138	88. 503	1.00 28.57	L	
	MOTA	268	CB	ILE L	30		40.492	19.428	87.570	1.00 26.20	L	
	ATOM	269	CG1	ILE L	30		40.685	20.830	88. 156	1.00 25.87	Ĺ	
55	ATOM	270		ILE L	30		39.035	19.014	87.626	1.00 23.37	Ĺ	
	ATOM	271		ILE L	30		39.890	21.910	87.444	1.00 25.78	Ĺ	
			_				=		_		_	-

	MOTA	272	N	PHE L	31	41.454	16.794	86.525	1.00 28.80	1	Ĺ	N
	ATOM	273	CA	PHE L	31	41.237	15.512	85.855	1.00 32.23	j	Ĺ	С
5	MOTA	274	С	PHE L	31	42.260	14.420	86.195	1.00 34.25	1	Ĺ	С
	MOTA	275	0	PHE L	31	41.958	13.230	86.097	1.00 34.78		Ĺ	0
	MOTA	276	CB	PHE L	31	41.188	15.739	84.341	1.00 30.23	1	Ĺ.	С
	ATOM	277	CG	PHE L	31	40.039	16.608	83.900	1.00 28.90	l	Ĺ	C
	MOTA	278	CD1	PHE L	31	38.737	16.111	83.893	1.00 29.15]	_	С
10	MOTA	279	CD2	PHE L	31	40.254	17.926	83.512	1.00 25.49]	Ĺ	С
	MOTA	280	CE1	PHE L	31	37.664	16.918	83.503	1.00 27.09	1	<u>.</u>	C
	ATOM	281	CE2	PHE L	31	39.194	18.740	83.123	1.00 25.64	1		С
	ATOM	282	CZ	PHE L	31	37.896	18.237	83.118	1.00 26.07	I		С
	ATOM	283	N	LYS L	32	43.463	14.832	86.586	1.00 36.51	1		N
15	ATOM	284	CA	LYS L	32	44.544	13.919	86.967	1.00 39.51	1		С
	ATOM	285	С	LYS L	32	45.132	13.120	85.800	1.00 40.53	· I		С
	MOTA	286	0	LYS L	32	46. 265	13.362	85.386	1.00 41.25	I		0
	ATOM	287	CB	LYS L	32	44.064	12.958	88.064	1.00 40.66	Ī		С
	ATOM	288	CG	LYS L	32	43.132	13.599	89.088	1.00 43.75	l		С
20	MOTA	289	CD	LYS L	32	43. 294	13.002	90.473	1.00 45.44			С
	MOTA	290	CE	LYS L	32	44.566	13.514	91.136	1.00 48.55			C
	MOTA	291	NZ	LYS L	32	44.556	15.002	91.284	1.00 49.03			N
	MOTA	292	N	ASP L	33	44. 366	12.167	85.278	1.00 41.87			N
	ATOM	293	CA	ASP L	33	44.811	11.343	84.161	1.00 43.56			C
25	ATOM	294	C	ASP L	33	45.103	12.193	82.922	1.00 44.09			C
	ATOM	295	0	ASP L	33	44. 322	13.073	82. 562	1.00 44.53		•	0
	ATOM	296	CB	ASP L	33	43. 747	10.290 9.458	83.849	1.00 45.31			C
	ATOM ATOM	297 298	CG	ASP L ASP L	33 33	44. 088 43. 843	9. 438	82.635 81.525	1.00 47.36 1.00 45.97			0
	ATOM	299		ASP L	33	44.606	8. 347	82. 809	1.00 49.11	I		0
30	ATOM	300	N N	ALA L	34	46. 235	11.920	82. 279	1.00 43.11			N
	ATOM	301	CA	ALA L	34	46.666	12.657	81.092	1.00 44.21			C
	ATOM	302	C	ALA L	34	45.679	12.572	79. 932	1.00 45.63		_	Č
	ATOM	303	ŏ	ALA L	34	45.350	13.583	79.309	1.00 46.43		_	Õ
	ATOM	304	CB	ALA L		48. 034	12.155	80.643	1.00 45.30		_	C
35	ATOM	305	N	CGU L	35	45. 225	11.360	79.637	1.00 45.00		Ĺ	Ň
	ATOM	306	CA	CGU L	35	44.274	11.132	78.559	1.00 44.45		_	C
	ATOM	307	CB	CGU L	35	43.892	9.646	78.502	1.00 47.50		_	Č
	ATOM	308	CG	CGU L	35	45.001	8.586	78.399	1.00 52.62		_	C
	ATOM	309	CDI	CGU L	35	46.080	9.012	77.405	1.00 54.39	I		С
40	ATOM	310	CD2	CGU L	35	45.632	8. 287	79.763	1.00 53.62	l		C
	ATOM	311		CGU L	35	47.263	8.886	77.743	1.00 55.86]		0
	ATOM	312		CGU L	35	45.722	9.460	76.313	1.00 56.24	1		0
	ATOM	313		CGU L	35	46.606	8. 955	80.122	1.00 53.37	_		0
	ATOM	314		CGU L	35	45.140	7. 379	80. 445	1.00 54.53			0
45	ATOM	315	С	CGU L	35	43.019	11.992	78.756	1.00 42.91	I		C
	ATOM	316	0	CGU L	35	42.540	12.632	77.819	1.00 42.37	I		0
	ATOM	317	N	ARG L	36	42.494	12.009	79. 978	1.00 40.60		_	N
	ATOM	318	CA	ARG L	36	41.304	12.795	80. 294	1.00 38.99		_	С
	ATOM	319	C	ARG L	36	41.572	14.296	80. 212	1.00 36.95			C
50	ATOM	320	0	ARG L	36	40.728	15.061	79.747	1.00 36.47			0
	ATOM	321	CB	ARG L	36	40.797	12.447	81.696	1.00 41.08			C
	ATOM	322	CG	ARG L	36	40. 298	11.017	81.844	1.00 43.46			C
	ATOM	323	CD	ARG L	36	39.891	10.718	83. 278	1.00 45.24			C.
	ATOM	324	NE C7	ARG L	36	39.441	9.337	83. 441	1.00 47.54			N
<i>55</i>	ATOM	325	CZ	ARG L	36	39.133	8.776	84.607	1.00 48.41	ļ		C
	ATOM	326		ARG L	36 36	39. 225	9.471	85.734	1.00 46.77			N
	ATOM	327	MUZ	ARG L	36	38. 728	7.512	84. 647	1.00 50.53	Ţ	_	N

	MOTA MOTA		N CA	THR L	37 37		42.747 43.109	14.716 16.126	80.669 80.640	1.00 34.62 1.00 32.74	L L	N C
5	ATOM		C	THR L	37		43. 201	16.637	79. 204	1.00 31.75	Ĺ	Č
	ATOM		0	THR L	37		42. 694	17.714	78. 891	1.00 30.68	Ĺ	Õ
	ATOM		CB	THR L	37		44. 455	16.369	81.351	1.00 32.46	Ĺ	Č
	ATOM			THR L	37		44. 393	15.839	82.681	1.00 32.40	Ĺ.	ŏ
	MOTA			THR L	37		44. 759	17.861	81.427	1.00 31.14	Ĺ	Č
10	MOTA			LYS L	38		43.844	15.860	78. 336	1.00 31.24	Ĺ	N
	MOTA			LYS L	38		43.989	16.239	76.934	1.00 32.20	Ĺ	Ċ
	ATOM		C	LYS L	38		42.630		76. 233	1.00 30.65	ī	č
	ATOM		0	LYS L	38		42.390	17. 231	75. 446	1.00 31.32	Ĺ	ŏ
	ATOM		ĊВ	LYS L	38		44. 891	15. 241	76. 197	1.00 34.59	Ĺ	č
15	ATOM		CG	LYS L	38		46.332	15.182	76. 711	1.00 37.74	Ĺ	Č
	ATOM		CD	LYS L	38		47.030	16.539	76.640	1.00 39.00	Ĺ	č
	MOTA		CE	LYS L	38		47. 216	17.009	75. 204	1.00 41.05	Ĺ	Č
	MOTA		NZ	LYS L	38		47.824	18.365	75.130	1.00 38.92	Ĺ	N
	ATOM		N	LEU L	39		41.749	15.362	76.519	1.00 28.80	Ĺ	N
20	ATOM			LEU L	39		40.417	15.345	75.919	1.00 28.45	Ĺ	Č
	ATOM		C	LEU L	39		39.665	16.624	76. 275	1.00 27.55	Ĺ	Č
	ATOM		Ō	LEU L	39		38.927	17.170	75.458	1.00 27.44	L	0
	ATOM	348	CB	LEU L	39		39.619	14.134	76.410	1.00 28.33	L	С
	ATOM	349	CG	LEU L	39		38.190	14.034	75.866	1.00 30.67	L	С
25	ATOM	350	CD1	LEU L	39		38.228	13.988	74.342	1.00 30.91	L	С
	ATOM	351	CD2	LEU L	39		37.504	12.791	76.422	1.00 30.33	L	С
	ATOM	352	N	PHE L	40		39.850	17.091	77.505	1.00 26.66	L	N
	ATOM	353	CA	PHE L	40		39.213	18.315	77.968	1.00 26.79	L	С
	ATOM	354	С	PHE L	40		39.869	19.531	77. 319	1.00 26.64	L	С
30	ATOM	355	0	PHE L	40		39.188	20.429	76.821	1.00 27.35	L	0
	ATOM	356	CB	PHE L	40		39.346	18. 438	79.491	1.00 25.08	Ĺ	C
	ATOM	357	CG	PHE L	40		39.028	19.810	80.020	1.00 25.21	L	C
	ATOM	358		PHE L	40		37.707	20. 208	80. 225	1.00 24.16	Ļ	C
	ATOM	359		PHE L	40		40.052	20.718	80. 291	1.00 24.18	L	C
35	ATOM	360		PHE L	40		37.411	21.488	80.692	1.00 25.10	L	C
55	ATOM	361		PHE L	40		39.767	22.003	80.758	1.00 24.75	L	C
	ATOM	362	CZ N	PHE L	40		38.444	22. 389 19. 539	80. 959 77. 324	1.00 25.22	L	C
	ATOM ATOM	363 364	CA	TRP L	41 41		41.199 41.990	20. 648	76. 795	1.00 25.96 1.00 26.28	Ļ	N
	ATOM	365	C	TRP L	41		41.866	20. 970	75. 301	1.00 27.29	L	C C
40	ATOM	366	Ö	TRP L	41		41.988	22. 131	74.906	1.00 26.04	Ĺ	Õ
40	ATOM	367	СВ	TRP L	41		43.464	20. 425	77.144	1.00 24.26	Ľ	C
	ATOM	368	CG	TRP L	41		44.306	21.652	77. 027	1.00 25.36	Ĺ	č
	ATOM	369	CD1	TRP L	41		45.257	21.906	76.086	1.00 25.02	ĩ	Č
	ATOM	370		TRP L	41		44.270	22.802	77.883	1.00 25.54	Ĺ	Č
15	ATOM	371		TRP L	41		45.819	23. 143	76. 299	1.00 27.28	Ĺ	, N
45	ATOM	372		TRP L	41		45.232	23.715	77.395	1.00 26.01	Ĺ	Ċ
	ATOM	373		TRP L	41		43.517	23.149	79.014	1.00 26.85	Ĺ	. Č
	ATOM	374		TRP L	41		45.464	24.954	78.000	1.00 24.01	Ĺ	Č
	MOTA	375		TRP L	41	•	43.747	24.383	79.616	1.00 25.86	Ĺ	C
	ATOM	376		TRP L	41		44.715	25.270	79.105	1.00 26.46	Ĺ	Č
50	ATOM	377	N	ILE L	42		41.629	19.968	74.463	1.00 28.66	L	N
	ATOM	378	CA	ILE L	42		41.523	20.237	73.033	1.00 30.71	L	C
	ATOM	379	С	ILE L	42		40.370	21.171	72.666	1.00 29.53	L	C
	MOTA	380	0	ILE L	42		40.469	21.936	71.705	1.00 30.98	L	0
	ATOM	381	CB	ILE L	42		41.429	18.925	72.209	1.00 32.87	L	С
55	MOTA	382		ILE L	42		40.350	18.004	72.771	1.00 33.91	L	С
	MOTA	383	CG2	ILE.L	42		42.769	18. 217	72.217	1.00 36.59	L	С

	ATOM	384	ומר	ILE L	42	38. 982	18.321	72. 269	1.00 36.99	L	С
	ATOM	385	N	SER L	43	39. 289	21.127	73.437	1.00 28.62	ĩ	N
-	ATOM	386	CA	SER L	43	38. 136	21. 985	73. 185	1.00 28.31	Ĺ	C
5	ATOM	387	C	SER L	43	38. 213	23. 262	74.009	1.00 27.84	Ĺ	Č
		388	0	SER L	43	37. 980	24. 356	73. 499	1.00 27.48		0
	ATOM									L	
	ATOM	389	CB	SER L	43	36.839	21. 247	73. 517	1.00 26.23	Ĺ	C
	ATOM	390	0G	SER L	43	36. 679	20.123	72.671	1.00 27.51	Ļ	0
10	ATOM	391	N	TYR L	44	38. 541	23.115	75. 289	1.00 27.54	L	N
	MOTA	392	CA	TYR L	44	38. 640	24. 257	76.188	1.00 27.08	L	C
	ATOM	393	C	TYR L	44	39. 581	25.329	75.650	1.00 27.23	L	С
	MOTA	394	0	TYR L	44	39. 241	26.510	75.650	1.00 27.59	L	0
	ATOM	395	CB	TYR L	44	39, 136	23.805	77.567	1.00 26.19	L	С
15	ATOM	396	CG	TYR L'	44	39. 140	24.898	78.614	1.00 24.94	L	C
	ATOM	397	CD1	TYR L	44	37.949	25.366	79.164	1.00 23.63	Ĺ	С
	ATOM	398	CD2	TYR L	44	40.337	25.457	79.064	1.00 26.53	L	С
	ATOM	399		TYR L	44	37. 949	26.362	80.142	1.00 26.54	L	Č
	ATOM	400		TYR L	44	40. 348	26.455	80.043	1.00 26.05	Ĺ	Č
	ATOM	401	CZ	TYR L	44	39. 151	26.899	80.577	1.00 26.97	Ĺ	Č
20	ATOM	402	OH	TYR L	44	39.150	27.865	81.560	1.00 28.80	Ĺ	Ö
	ATOM	403	N	SER L	45	40. 757	24.911	75.192	1.00 27.72	ĭ	N
	ATOM	404	CA	SER L	45	41. 768	25.839	74.686	1.00 30.15	L	C
	ATOM	405	C	SER L	45	41. 744	26.104	73. 182	1.00 30.62	Ĺ	Č
	ATOM	406	Õ	SER L	45	42.604	26.820	72.671	1.00 30.63		
25										L	0
20	ATOM	407	CB	SER L	45	43. 165	25.340	75.061	1.00 30.16 1.00 29.88	L	С
	ATOM	408	0G	SER L	45	43.497	24.166	74.339		Ļ	0
	ATOM	409	N	ASP L	46	40.771	25.543	72.472	1.00 31.14	L	N
	ATOM	410	CA	ASP L	46	40. 703	25.745	71.027	1.00 31.20	L	C
	ATOM	411	C	ASP L	46	40. 411	27.189	70.627	1.00 30.32	L	C
30	ATOM	412	0	ASP L	46	40. 884	27.650	69.594	1.00 32.57	L	0
	ATOM	413	CB	ASP L	46	39. 646	24.833	70.405	1.00 31.05	L	C
	ATOM	414	CG	ASP L	46	39. 742	24.784	68.892	1.00 32.56	L	С
	ATOM	415		ASP L	46	40.634	24.106	68.375	1.00 33.28	L	0
	MOTA	416		ASP L	46	38. 941	25.428	68.242	1.00 29.30	L	0
35	ATOM	417	N	GLY L	47	39.636	27.899	71.442	1.00 29.23	L	N
	MOTA	418	CA	GLY L	47	39. 299	29.276	71.131	1.00 28.60	L	С
	ATOM	419	С	GLY L	47	38. 1 00	29.318	70.202	1.00 31.30	L	С
	MOTA	420	0	GLY L	47	37.926	28.417	69.392	1.00 30.95	L	0
	ATOM	421	N	ASP L	48	37. 273	30.355	70.308	1.00 31.54	L	N
	ATOM	422	CA	ASP L	48	36.090	30.472	69.462	1.00 32.74	Ĺ	C
40	ATOM	423	C	ASP L	48	36.378	31.223	68.165	1.00 33.54	L	Ċ
	ATOM	424	0	ASP L	48	36.498	32.452	68.159	1.00 32.67	Ĺ	Ŏ
	MOTA	425	CB	ASP L	48	34.970	31.168	70, 240	1.00 34.96	Ĺ	Č
	ATOM	426	CG	ASP L	48	33.809	31.573	69.358	1.00 36.81	Ĺ	Č
	MOTA	427		ASP L	48	33. 501	30.848	68.425	1.00 36.52	Ĺ	Õ
45	ATOM	428		ASP L	48	33. 208	32.615	69.623	1.00 39.87	Ĺ	Õ
	MOTA	429	N	GLN L	49	36. 485	30.481	67.064	1.00 33.17		
	MOTA	430	CA	GLN L	49	36. 767	31.089		1.00 33.44	L	N
	ATOM							65.762		Ļ	C
		431	C	GLN L	49	35. 666	32.022	65. 259	1.00 33.32	L	C
	ATOM	432	0	GLN L	49	35. 871	32.774	64.305	1.00 34.51	L	0
50	ATOM	433	CB	GLN L	49	37. 046	30.009	64.713	1.00 32.45	L	. C
	ATOM	434	CG	GLN L	49	38. 448	29.410	64.780	1.00 31.73	L	С
	MOTA	435	CD	GLN L	49	38. 707	28.668	66.078	1.00 33.97	L	C
	MOTA	436		GLN L	49	37.915	27.822	66.477	1.00 32.13	L	0
	MOTA	437	NE2	GLN L	49	39.821	28.978	66.737	1.00 32.44	L	N
55	ATOM	438	N	CYS L	50	34. 500	31.973	65.895	1.00 32.75	L	N
	MOTA	439	CA	CYS L	50	33. 391	32.840	65.519	1.00 32.95	Ĺ	Ċ
					-					~	•

	MOTA MOTA	440 441	C 0	CYS L	50 50	33. 533 32. 803	34. 239 35. 154	66. 113 65. 733	1.00 34.35 1.00 33.23	L L	C 0
5	MOTA	442	CB	CYS L	50	32.062	32.249	65.988	1.00 31.79	Ĺ	C
	ATOM	443	SG	CYS L	50	31.419 34.466	30.890 34.398	64.967 67.049	1.00 30.41 1.00 36.39	L L	S N
	MOTA MOTA	444 445	N CA	ALA L	51 51	34. 698	35.681	67.712	1.00 38.60	Ĺ	C
	ATOM	446	C	ALA L	51	34. 967	36.818	66.727	1.00 39.03	Ĺ	Č
4.0	MOTA	447	ŏ	ALA L	51	34. 554	37.955	66.952	1.00 39.61	Ĺ	Õ
10	ATOM	448	CB	ALA L	51	35.861	35.554	68.695	1.00 37.84	Ĺ	Č
	MOTA	449	N.	GSERL	52	35.657	36.507	65.636	1.00 39.50	Ĺ	N
	ATOM	450	CA	GSERL	5 2	35.974	37.503	64.619	1.00 39.27	L	С
	MOTA	451	CB	GSERL	52	37. 114	36.982	63.737	1.00 40.23	L	C
15	MOTA	452	0G	GSERL	52	36. 756	36.974	62.365	1.00 45.10	L	0
	MOTA	453	C	GSERL	52	34. 756	37.859	63.760	1.00 38.60	ŗ	C
	ATOM	454	0	GSERL GSERL	52 52	34.854 37.197	38.667 35.776	62.835 61.707	1.00 38.29 1.00 45.99	L L	0 C
	ATOM ATOM	455 456	C1 C2	GSERL	52 52	38.111	36.101	60.515	1.00 45.11	L	C
	ATOM .	457	C3	GSERL	52	38. 477	34.801	59.788	1.00 46.60	Ĺ	Č
20	ATOM	458	C4	GSERL	52	39.100	33.808	60.777	1.00 46.16	Ĺ	č
	ATOM	459	C5	GSERL	52	38.180	33.615	62.004	1.00 46.88	Ĺ	Ċ
	ATOM	460	C6	GSERL	52	38.849	32.688	63.024	1.00 48.42	L	C
	ATOM	461	02	GSERL	52	37. 438	36.988	59.614	1.00 47.32	L	0
	ATOM	462	03	GSERL	52	39.406	35.079	58.734	1.00 46.42	L	0
25	ATOM	463	04	GSERL	52	39.302	32.549	60.123	1.00 46.46	L	0
	ATOM	464	05	GSERL	52	37. 851	34.874	62.616	1.00 47.23	Ļ	0
	ATOM	465	06 N	GSERL SER L	52 53	39. 251 33. 610	31. 462 37. 263	62. 431 64. 085	1.00 51.52 1.00 36.60	L L	0
	ATOM ATOM	466 467	N CA	SER L	53	32.367	37. 488	63.354	1.00 35.81	Ĺ	N C
30	ATOM	468	C	SER L	53	32.602	37.463	61.845	1.00 33.73	ĩ	Č
50	ATOM	469	Ō	SER L	53	32.395	38.460	61.162	1.00 33.37	ĩ	. 0
	ATOM	470	CB	SER L	53	31.765	38.831	63.764	1.00 37.62	L	C
	ATOM	471	0G	SER L	53	32.684	39.879	63.524	1.00 40.28	Ι.	0
	ATOM	472	N	PRO L	54	33.026	36.310	61.303	1.00 32.42	L	N
35	ATOM	473	CA	PRO L	54	33. 285	36. 192	59.865	1.00 31.65	ŗ	C
	ATOM	474 475	C	PRO L PRO L	54 54	32.069 32.156	36.078 36.424	58. 940 57. 761	1.00 30.67 1.00 30.19	Ł L	C
	ATOM ATOM	476	O CB	PRO L	54 54	34.172	34. 956	59. 788	1.00 30.19	L L	0
	MOTA	477	CG	PRO L	54	33.578	34. 084	60.841	1.00 30.71	Ĺ	Č
	ATOM	478	CD	PRO L	54	33.366	35.051	61.994	1.00 30.98	Ĺ	Č
40	ATOM	479	N	CYS L	55	30.946	35.594	59.461	1.00 29.86	Ĺ	N
	ATOM	480	CA	CYS L	55	29.752	35. 422	58.635	1.00 30.36	L	C
	ATOM	481	C	CYS L	55	29.033	36. 733	58. 343	1.00 31.54	L	C
	ATOM	482	0	CYS L	55	28. 455	37. 358	59. 230	1.00 32.38	L	0
45	ATOM	483	CB	CYS L	55	28.794	34. 430	59. 290	1.00 28.02	Ļ	C
43	ATOM	484	SG	CYS L	55 5.6	29.586	32.875	59.818	1.00 28.74	L	S
	ATOM ATOM	485 486	N CA	GLN L GLN L	56 56	29.060 28.456	37. 122 38. 365	57. 074 56. 607	1.00 31.32 1.00 30.45	L	N
	ATOM	487	C	GLN L	56	26. 983	38. 271	56. 217	1.00 29.58	L L	C
	ATOM	488	Ö	GLN L	56	26.387	37. 195	56. 205	1.00 30.14	Ĺ	0
50	ATOM	489	ČB	GLN L	56	29. 239	38. 873	55. 398	1.00 29.51	Ĺ.	Č
	ATOM	490	CG	GLN L	56	30.731	38.996	55.615	1.00 27.82	Ĺ	Č
	MOTA	491	CD	GLN L	56	31.463	39 . 252	54. 321	1.00 28.65	Ĺ	Č
	ATOM	492		GLN L	56	31.054	40.098	53. 526	1.00 31.65	L	0
	ATOM	493		GLN L	56	32.551	38. 526	54.098	1.00 29.31	L	N
55	MOTA	494	N	ASN L	57	26.415	39.429	55. 897	1.00 30.03	Ļ	N
	ATOM	495	CA	ASN L	57	25.030	39. 559	55. 453	1.00 29.58	L	C

	ATOM	496	С	ASN L	57	23.952	38. 887	56. 296	1.00 29.62	L	C
	MOTA	497		ASN L	57	23.024	38.276	55.764	1.00 29.77	L	0
	MOTA	498	CB	ASN L	57	24.921	39.085	53.999	1.00 29.04	L	C
5	MOTA	499	CG	ASN L	57	25.762	39.924	53.054	1.00 29.56	. L	С
	ATOM	500		ASN L	57	25.568	41.134	52.945	1.00 32.62	L	0
	ATOM	501	ND2	ASN L	57	26.702	39.287	52.367	1.00 29.28	L	N
	ATOM	502	N	GLY L	58	24.059	39.019	57.610	1.00 30.01	L	N
	ATOM	503	CA	GLY L	58	23.061	38.432	58. 485	1.00 30.78	L	C
10	MOTA	504	C	GLY L	58	23.145	36.931	58.670	1.00 30.82	L	C
	ATOM	505	0	GLY L	58	22.16 6	36.299	59.066	1.00 31.08	L	0
	MOTA	506	N	GLY L	59	24.305	36.351	58. 388	1.00 31.24	L	N
	ATOM	507	CA	GLY L	59	24.453	34.919	58. 557	1.00 31.81	L	C
	ATOM	508	C	GLY L	59	24.692	34.578	60.015	1.00 31.05	L	C
15	MOTA	509	0	GLY L	59	24.845	35.466	60.853	1.00 31.54	L	0
	MOTA	510	N	FSERL	60	24. 723	33. 289	60.326	1.00 30.80	Ļ	N
	MOTA	511		FSERL	60	24.959	32.852	61.690	1.00 30.86	L	C
	ATOM	512	CB	FSERL	60	23. 724	32.128	62. 227	1.00 31.58	Ļ	C
22	ATOM	513	0G	FSERL	60	22.643	33.041	62.308	1.00 32.58	L	0
20	ATOM	514	C	FSERL	60	26.184	31.953	61.743	1.00 30.82	L	C
	ATOM	515	0	FSERL FSERL	60	26. 297	30.990	60.984	1.00 29.56 1.00 35.22	L L	0
	ATOM	516	C1 C2	FSERL	60 60	21.375 20.246	32.378 33.387	62. 268 62. 560	1.00 35.22	L	C
	ATOM ATOM	517 518	C3	FSERL	60	20. 174	34.428	61.430	1.00 37.43	Ĺ	C
25	MOTA	519	C4	FSERL	60	20. 031	33.715	60.084	1.00 36.10	Ĺ	Č
25	ATOM	520	C5	FSERL	60	21.164	32.683	59.913	1.00 35.80	Ĺ	č
	ATOM	521	C6	FSERL	60	21.036	31.969	58.566	1.00 35.30	Ĺ	Č
	ATOM	522	02	FSERL	60	20.509	34.051	63.802	1.00 39.97	Ĺ	Ŏ
	ATOM	523	03	FSERL	60	19.049	35.291	61.638	1.00 39.35	L	0
30	ATOM	524	04	FSERL	60	18.764	33.048	60.034	1.00 38.01	L	0
	ATOM	525	05	FSERL	60	21.172	31.739	60.996	1.00 35.11	L	0
	ATOM	526	N	CYS L	61	27 . 103	32. 284	62.644	1.00 29.76	L	N
	ATOM	527	CA	CYS L	61	28.340	31.532	62.803	1.00 30.26	L	С
	ATOM	528	С	CYS L	61	28. 205	30.412	63.825	1.00 30.72	L	C
35	ATOM	529	0	CYS L	61	27.616	30.591	64.895	1.00 29.55	L	0
	ATOM	530	CB	CYS L	61	29. 468	32.474	63. 227	1.00 29.48	L	C
	ATOM	531	SG	CYS L	61	31.145	31.764	63.150	1.00 30.89	L	S
	ATOM	532	N CA	LYS L	62	28. 754	29. 254	63. 477	1.00 30.27 1.00 29.64	L	N
	ATOM ATOM	533 534	CA C	LYS L LYS L	62 62	28.729 30.183	28. 090 27. 688	64. 347 64. 543	1.00 29.04	L L	C C
40	ATOM	535	0	LYS L	62	30. 183	27. 312	63. 595	1.00 28.28	L	0
	ATOM	536	CB	LYS L	62	27.943	26.952	63.696	1.00 20.20	Ĺ	Č
	ATOM	537	CG	LYS L	62	27. 561	25.826	64.642	1.00 33.70	Ī.	Č
	ATOM	538	CD	LYS L	62	28. 780	25.112	65. 204	1.00 35.68	Ĺ	č
	ATOM	539	CE	LYS L	62	28. 392	23. 957	66.122	1.00 34.05	Ĺ	č
45	ATOM	540	NZ	LYS L	62	27.581	24.389	67.286	1.00 32.19	Ĺ	N
	ATOM	541	N	ASP L	63	30.645	27.781	65.782	1.00 29.03	Ĺ	N
	ATOM	542	CA	ASP L	63	32.018	27. 455	66.120	1.00 28.45	L	C
	ATOM	543	С	ASP L	63	32. 317	25.970	65.961	1.00 27.88	L	C
	MOTA	544	0	ASP L	63	31.489	25.120	66.286	1.00 26.64	L	0
50	ATOM	545	CB	ASP L	63	32.310	27.909	67.546	1.00 28.61	L	C
	ATOM	546	CG	ASP L	63	33.762	27.778	67.899	1.00 31.76	L	С
	MOTA	547		ASP L	63	34. 595	28. 171	67.072	1.00 29.78	L	0
	MOTA	548		ASP L	63	34. 057	27. 289	68. 989	1.00 31.88	L	0
	ATOM	549	N	GLN L	64	33. 511	25.670	65.463	1.00 27.71	Ļ	N
55	ATOM	550	CA	GLN L	64	33. 934	24. 296	65. 222	1.00 29.46	Ĺ	C
	MOTA	551	С	GLN L	64	35. 354	24. 115	65.751	1.00 29.86	L	C

5	ATOM ATOM	552 553 554	CB CG	GLN L GLN L GLN L	64 64 64	35. 988 33. 894 33. 597	25. 076 24. 014 22. 576	66.145 63.715 63.346	1.00 29.22 1.00 30.77 1.00 33.56	L L L	0 C C
	ATOM ATOM ATOM ATOM	555 556 557 558	OE1 NE2	GLN L GLN L GLN L LEU L	64 64 64 65	32. 157 31. 840 31. 284 35. 862	22. 156 20. 973 23. 119 22. 891	63. 621 63. 568 63. 904 65. 740	1.00 33.54 1.00 36.28 1.00 31.18 1.00 32.40	L L L L	C O N N
10	ATOM ATOM ATOM	559 560 561	CA C O	LEU L LEU L LEU L	65 65 65	37. 206 38. 292 38. 688	22. 633 23. 203 22. 574	66. 242 65. 332 64. 349	1.00 33.87 1.00 35.15 1.00 36.47	. L L	C C O
15	ATOM ATOM ATOM	562 563 564	CG CD1	LEU L LEU L LEU L LEU L	65 65 65	37. 410 38. 554 38. 435 38. 503	21. 125 20. 679 21. 372	66. 422 67. 337 68. 687 67. 517	1.00 35.23 1.00 36.14 1.00 36.95 1.00 35.86	L L L L	CCC
	ATOM ATOM ATOM ATOM	565 566 567 568	N Ca	GLN L GLN L GLN L	66 66	38. 767 39. 820 39. 293	19. 172 24. 401 25. 072 25. 586	65.666 64.903 63.561	1.00 35.80 1.00 35.72 1.00 35.89 1.00 35.00	L L L	C N C C
20	MOTA MOTA MOTA	569 570 571	O CB CG	GLN L GLN L GLN L	66 66	39.998 40.986 42.288	25. 562 24. 101 24. 748	62.547 64.674 64.232	1.00 33.68 1.00 37.22 1.00 40.93	L L L	0 C C
25	ATOM ATOM ATOM ATOM	572 573 574 575	OE1 NE2	GLN L GLN L GLN L SER L	66 66 66	43.040 44.109 42.488 38.051	25. 456 26. 017 25. 431 26. 059	65.356 65.128 66.566 63.568	1.00 40.68 1.00 41.86 1.00 40.50 1.00 31.83	L L L	C O N N
	ATOM ATOM ATOM	576 577 578	CA C O	SER L SER L SER L	67 67 67	37. 412 35. 991 35. 613	26. 568 27. 036 27. 197	62.365 62.667 63.829	1.00 31.03 1.00 31.16 1.00 31.27	L L L	C C
30	ATOM ATOM ATOM ATOM	579 580 581 582	OG N	SER L SER L TYR L TYR L	67 67 68 68	37. 389 36. 946 35. 210 33. 835	25. 477 24. 239 27. 265 27. 707	61.288 61.817 61.618 61.785	1.00 30.23 1.00 30.96 1.00 29.96 1.00 28.95	L L L	C O N C
<i>35</i>	ATOM ATOM ATOM	583 584 585	C 0	TYR L TYR L TYR L	68 68 68	32. 987 33. 500 33. 769	27. 358 26. 977 29. 221	60. 573 59. 516 62. 024	1.00 28.08 1.00 27.87 1.00 30.00	L L L	C 0 C
33	ATOM ATOM ATOM	586 587 588	CG CD1 CD2	TYR L TYR L TYR L	68 68 68	34.288 35.650 33.417	30. 061 30. 332 30. 574	60.876 60.743 59.912	1.00 29.99 1.00 30.22 1.00 30.26	L L L	C C
40	ATOM ATOM ATOM ATOM	589 590 591 592	CE2 CZ	TYR L TYR L TYR L TYR L	68 68 68	36.135 33.892 35.251 35.733	31. 090 31. 331 31. 585 32. 320	59. 682 58. 844 58. 737 57. 683	1.00 29.23 1.00 29.58 1.00 29.30 1.00 28.26	L L L	C C C
	ATOM ATOM ATOM	593 594 595	N CA C	ILE L ILE L	69 69 69	31.680 30.720 29.732	27. 499 27. 220 28. 374	60. 743 59. 691 59. 657	1.00 25.46 1.00 24.21 1.00 23.58	L L L	N C C
45	ATOM ATOM ATOM	596 597 598		ILE L	69 69	29. 233 29. 947 30. 904	28.800 25.908 24.717	60.698 59.974 59.914	1.00 21.31 1.00 24.42 1.00 24.57	L L L	0 C C
50	ATOM ATOM ATOM ATOM	599 600 601 602	CD1 N	ILE L CYS L CYS L	69 69 70 70	28.818 30.243 29.466 28.517	25. 739 23. 389 28. 893 29. 985	58. 976 60. 201 58. 464 58. 323	1.00 23.61 1.00 23.77 1.00 23.37 1.00 23.29	L L L	C C N C
	ATOM ATOM ATOM	603 604 605	C O CB	CYS L CYS L CYS L	70 70 70	27. 195 27. 174 29. 084	29. 499 28. 777 31. 091	57.730 56.735 57.427	1.00 24.32 1.00 22.69 1.00 24.87	L L L	0 C
55	ATOM ATOM	606 607	SG N	CYS L PHE L	70 71	30.424 26.096	32.100 29.880	58. 136 58. 373	1.00 24.79 1.00 23.47	L L	S N

	ATOM	608	CA	PHE L	71	24.765	29.550	57.896	1.00 24.42	L	. с
	ATOM	609	C	PHE L	71	24.305	30.861	57. 285	1.00 25.98	L	
5	ATOM	610	0	PHE L	71	24. 271	31.884	57.961	1.00 26.06	L	
	ATOM	611	CB	PHE L	71	23.840	29.148	59.051	1.00 23.72	.L	
	ATOM	612	CG	PHE L	71	24.079	27. 753	59. 563	1.00 23.26	Ĺ	
	ATOM	613		PHE L	71	25. 220	27. 448	60.300	1.00 20.48	ĩ	
	ATOM	614		PHE L	71	23. 170	26. 737	59. 286	1.00 21.74	Ĺ	
	ATOM	615		PHE L	71	25.453	26. 157	60.751	1.00 19.84	Ĺ	
10	MOTA	616		PHE L	71	23. 395	25.440	59.733	1.00 13.64		
		617	CZ	PHE L	71	24. 537	25. 149	60.467	1.00 21.41	Ļ	
	ATOM							56.004	1.00 21.41	L	
	ATOM	618	N	CYS L	72	23.964	30.838			L	
	ATOM	619	CA	CYS L	72	23. 561	32.060	55. 322	1.00 28.04	Ļ	
15	ATOM	620	C	CYS L	72	22.067	32. 210	55. 147	1.00 29.09	L	
	ATOM	621	0	CYS L	72	21.315	31.236	55. 240	1.00 30.40	L	
	MOTA	622	CB	CYS L	72	24. 216	32. 125	53.941	1.00 27.64	L	
	ATOM	623	SG	CYS L	72	25.997	31.758	53.929	1.00 27.84	L	
	ATOM	624	N	LEU L	73	21.645	33.446	54.896	1.00 29.28	L	
20	ATOM	625	CA	LEU L	73	20. 243	33.736	54.640	1.00 29.11	L	
	ATOM .	626	С	LEU L	73	20.018	33.294	53. 201	1.00 29.05	L	
	ATOM	627	0	LEU L	73	20.964	33.228	52.419	1.00 29.21	L	. 0
	ATOM	628	CB	LEU L	73	19.963	35. 233	54.786	1.00 29.61	L	. С
	ATOM	629	CG	LEU L	73	19.999	35.764	56.221	1.00 31.06	L	
	ATOM	630		LEU L	73	19.802	37. 274	56. 220	1.00 32.08	L	
25	ATOM	631		LEU L	73	18.913	35.075	57.043	1.00 30.65	L	
	ATOM	632	N	PRO L	74	18.766	32.991	52.833	1.00 29.36	L	
	MOTA	633	CA	PRO L	74	18.384	32.543	51.492	1.00 29.38	L	
	ATOM	634	С	PRO L	74	19.120	33. 149	50.298	1.00 29.43	L	
	ATOM	635	0	PRO L	74	19.630	32.420	49.449	1.00 29.02	L	
30	ATOM	636	CB	PRO L	74	16.888	32.828	51.461	1.00 30.46	L	
	ATOM	637	CG	PRO L	74	16.486	32.477	52.854	1.00 29.08	L	. С
	ATOM	638	CD	PRO L	74	17.570	33. 151	53.682	1.00 29.95	L	
	MOTA	639	N	ALA L	75	19. 190	34.473	50. 229	1.00 28.84	L	N '
	ATOM	640	CA	ALA L	75		35.124	49.100	1.00 28.32	L	
35	ATOM	641	С	ALA L	75	21.368	35.226	49.194	1.00 27.93	L	
	MOTA	642	0	ALA L	75	21.978	36.020	48.481	1.00 29.61	Ĺ	
	ATOM	643	CB	ALA L	75	19. 257	36.508	48.893	1.00 27.56	L	
	ATOM	644	N	PHE L	76	21.987	34. 418	50.047	1.00 26.68	L	N
	MOTA	645	CA	PHE L	76	23.433	34.480	50. 205	1.00 25.92	L	. С
40	MOTA	646	С	PHE L	76	24.105	33.108	50.253	1.00 25.21	L	C
40	MOTA	647	0	PHE L	76	23.484	32.103	50.606	1.00 24.64	L	
	MOTA	648	CB	PHE L	76	23.770	35. 269	51.479	1.00 26.98	· L	
	MOTA	649	CG	PHE L	76	23.308	36.705	51.447	1.00 26.03	L	
	ATOM	650	CD1	PHE L	76	24.009	37.660	50.717	1.00 26.24	L	. C
	ATOM	651		PHE L	76	22. 161	37.094	52.128	1.00 25.56	L	C
45	ATOM	652		PHE L	76	23.570	38 . 986	50.665	1.00 27.46	L	C
	MOTA	653	CE2	PHE L	76	21.713	38. 416	52.083	1.00 28.29	L	C
	ATOM	654	CZ	PHE L	76	22, 420	39. 363	51.350	1.00 27.25	L	C
	ATOM	655	N	GLU L	77	25. 381	33.082	49.881	1.00 23.35	L	N
	ATOM	65 6	CA	GLU L	77	26.171	31.861	49.896	1.00 25.22	L	C
50	ATOM	657	C	GLU L	77	27.636	32.260	50.022	1.00 25.48	L	
	MOTA	658	0	GLU L	77	27.947	33.446	50.102	1.00 24.93	Ĺ	
	ATOM	659	CB	GLU L	77	25.931	31.027	48.624	1.00 24.76	L	
	MOTA	660	CG	GLU L	77	26.369	31.665	47.317	1.00 26.43	L	
	ATOM	661	CD	GLU L	77	25. 929	30.854	46.102	1.00 29.36	Ĺ	
<i>55</i>	ATOM	662	0E1	GLU L	77	26.332	29.708	45.975	1.00 26.59	L	
=	ATOM	663		GLU L	7 7	25. 177	31.379	45. 287	1.00 31.26	Ĺ	
									-	_	-

5	ATOM ATOM ATOM	664 665 666	N CA C	GLY L GLY L GLY L	78 78 78	28. 525 29. 944 30. 414	31. 273 31. 545 31. 145	50.045 50.191 51.585	1.00 24.82 1.00 24.72 1.00 26.41	L L L	N C C
	MOTA MOTA	667 668	0 N	GLY L ARG L	78 79	29.613 31.711	31. 056 30. 894 30. 507	52. 513 51. 731 53. 014	1.00 25.52 1.00 26.17	L L	0 N
10	ATOM ATOM ATOM	669 670 671	CA C O	ARG L ARG L ARG L	79 79 79	32. 299 31. 847 31. 503	31.428 30.972	54. 146 55. 236	1.00 27.39 1.00 27.00	L L	C C . 0
	ATOM ATOM ATOM	672 673 674	CB CG CD	ARG L ARG L ARG L	79 79 79	33.827 34.596 36.018	30. 532 30. 145 29. 745	52. 894 54. 138 53. 756	1. 00 25. 97 1. 00 25. 27 1. 00 27. 07	L L L	C C
15	ATOM ATOM ATOM	675 676 677	NE CZ NH1	ARG L ARG L ARG L	79 79 79	36. 352 37. 168 37. 754	28. 422 27. 553 27. 849	54. 279 53. 689 52. 536	1.00 29.92 1.00 31.71 1.00 34.10	L L L	N C N
	ATOM ATOM ATOM	678 - 679 680	NH2 N CA	ARG L ASN L ASN L	79 80 80	37. 394 31. 845 31. 440	26. 375 32. 728 33. 727	54. 254 53. 875 54. 858	1.00 34.56 1.00 28.14 1.00 27.10	L L L	N N C
20	ATOM ATOM ATOM	681 682 683	C O CB	ASN L ASN L ASN L	80 80 80	30. 171 29. 950 32. 561	34. 446 35. 598 34. 750	54. 415 54. 785 55. 038	1.00 27.35 1.00 27.84 1.00 27.74	L L L	0 C
	ATOM ATOM ATOM	684 685 686	CG OD1	ASN L ASN L ASN L	80 80 80	33. 868 33. 952 34. 897	34. 110 33. 449 34. 301	55. 442 56. 473 54. 629	1.00 29.02 1.00 31.37 1.00 31.80	L L	C 0
25	ATOM ATOM ATOM ATOM	687 688 689	N CA C	CYS L CYS L CYS L	81 81 81	29. 348 28. 103 28. 341	33. 771 34. 353 35. 691	53. 616 53. 113 52. 395	1.00 31.80 1.00 26.38 1.00 26.94 1.00 27.16	L L L	N N C C
30	ATOM ATOM	690 691	O CB	CYS L	81 81	27. 474 27. 115	36. 566 34. 563	52. 392 54. 263	1.00 26.50 1.00 26.45	L L	0 C
30	MOTA MOTA MOTA	692 693 694	SG N CA	CYS L GLU L GLU L	81 82 82	26. 764 29. 510 29. 875	33. 080 35. 834 37. 058	55. 267 51. 777 51. 077	1.00 28.68 1.00 26.64 1.00 27.18	. L L L	S N C
35	MOTA MOTA MOTA	695 696 697	C O CB	GLU L GLU L	82 82 82	29. 314 29. 364 31. 408	37. 153 38. 216 37. 199	49. 654 49. 031 51. 028	1.00 27.98 1.00 28.25 1.00 27.27	L L L	C 0 C
	MOTA MOTA MOTA	698 699 700	CG CD OE1	GLU L GLU L	82 82 82 .	32.116 32.435 31.618	36. 245 34. 881 34. 339	50.057 50.658 51.391	1.00 25.93 1.00 27.71 1.00 26.78	L L L	C C
40	MOTA MOTA MOTA	701 702 703	OE2 N CA	GLU L THR L THR L	82 83 83	33. 503 28. 776 28. 238	34.356 36.052 36.042	50. 371 49. 140 47. 784	1.00 29.60 1.00 28.28 1.00 28.62	L L L	O N C
	MOTA MOTA MOTA	704 705 706	C O CB	THR L THR L THR L	83 83 83	26.762 25.910 28.442	36.405 35.738 34.668	47.698 48.284 47.117	1.00 29.44 1.00 28.89 1.00 26.44	L L L	C 0 C
45	ATOM ATOM ATOM	707 708 709	0G1	THR L THR L HIS L	83 83 84	29.836 27.941 26.475	34. 341 34. 692 37. 472	47. 124 45. 675 46. 958	1.00 25.96 1.00 26.81 1.00 31.51	L L L	O C N
	MOTA MOTA	710 711	CA C	HIS L	84 84	25. 109 24. 514	37. 939 37. 169	46.759 45.588	1.00 34.54 1.00 35.95	L L	C.
50	ATOM ATOM ATOM	712 713 714	O CB CG	HIS L HIS L	84 84 84	24. 914 25. 085 25. 439	37. 372 39. 434 40. 328	44. 442 46. 424 47. 572	1.00 36.09 1.00 36.24 1.00 38.81	L L L	0 C C
	ATOM ATOM ATOM	715 716 717	CD2 CE1	HIS L HIS L	84 84 84	26.701 24.697 26.721	40.373 41.231 41.264	48. 126 48. 256 49. 100	1.00 39.64 1.00 39.06 1.00 39.38	L L L	N C C
55	ATOM ATOM	718 719	NE 2 N	HIS L LYS L	84 85	25. 518 23. 561	41.799 36.290	49. 200 45. 871	1.00 41.56 1.00 37.90	L L	N N

5	ATOM ATOM ATOM	720 721 722	C	LYS L LYS L LYS L	85 85 85	22. 931 22. 179 21. 997	35. 504 36. 379 35. 988	44.817 43.808 42.659	1.00 39.99 1.00 41.95 1.00 42.20	L L L	C C 0
	ATOM ATOM	723 724	CB	LYS L	85 85	21. 983 22. 673	34. 471 33. 492	45.432 46.380	1.00 40.09	Ľ L	C
	MOTA	725	CD	LYS L LYS L	85 85	21.699 21.202	32.493	46.987 45.958	1.00 40.74	L	C C
10	MOTA MOTA	726 727		LYS L	85	22. 296	31.494 30.609	45.462	1.00 42.61 1.00 43.27	L L	N
	ATOM	728	N	ASP L	86	21.758	37.567	44. 235	1.00 44.88	Ĺ	N
	ATOM	729	CA	ASP L	86	21.030	38. 487	43.361	1.00 47.56	Ĺ	Ċ
	ATOM	730	C	ASP L	86	21.941	39.324	42.455	1.00 47.92	L	Č
	ATOM	731	0	ASP L	86	21.456	40.131	41.663	1.00 48.41	L	0
15	ATOM	732	CB	ASP L	86	20.159	39. 433	44.196	1.00 49.53	L	С
	MOTA	733	CG	ASP L	86	19. 237	38.694	45.147	1.00 52.38	Ĺ	C
	ATOM	734		ASP L	86	18.537	37. 783	44.701	1.00 53.34	Ļ	0
	MOTA	735		ASP L	86	19.217	39.037	46.334	1.00 53.54	L	0
	MOTA MOTA	736 737	N CA	ASP L	87 87	23. 252 24. 213	39. 132 39. 883	42.568 41.762	1.00 48.29 1.00 48.43	· L	N C
20	ATOM	738	C	ASP L	87	24. 213	39.017	40.736	1.00 48.75	L L	Č
	MOTA	739	ŏ	ASP L	87	26.108	39. 250	40.431	1.00 48.28	Ĺ	ŏ
	ATOM	740	CB	ASP L	87	25. 244	40.550	42.673	1.00 49.27	Ĺ	Č
	ATOM	741	CG	ASP L	87	24.639	41.629	43.545	1.00 49.65	L	С
25	ATOM	742		ASP L	87	25. 271	41.998	44.528	1.00 50.02	L	0
25	ATOM	743		ASP L	87	23.541	42.101	43. 231	1.00 50.10	L	0
	ATOM ATOM	744	N	GLN L	88	24. 239	38.024	40.199	1.00 48.76	L	Й
	ATOM	745 746	CA C	GLN L GLN L	88 88	24.834 24.028	37. 130 37. 101	39. 216 37. 921	1.00 48.54 1.00 47.25	L L	C C
	ATOM	747	Ö	GLN L	88	23.989	36.081	37. 238	1.00 47.52	Ĺ	Ö
30	ATOM	748	CB	GLN L	88	24.925	35.716	39.796	1.00 50.51	Ĺ	č
	ATOM	749	CG	GLN L	88	25.663	35.632	41.129	1.00 53.34	L	Č
	ATOM	750	CD	GLN L	88	27.134	35.973	41.006	1.00 54.62	L	С
	MOTA	751		GLN L	88	27.499	37.016	40.461	1.00 55.79	L	0
	ATOM	752		GLN L	88	27.990	35.094	41.518	1.00 55.48	Ļ	N
35	ATOM ATOM	753 754	N CA	LEU L LEU L	89 89	23.399 22.587	38. 221 38. 294	37.575	1.00 45.19	L	N
	MOTA	755	C	LEU L	89	23. 431	38. 485	36.363 35.105	1.00 42.20 1.00 39.92	L L	C
	ATOM	756	0	LEU L	89	23.313	39.493	34.407	1.00 39.00	Ĺ	Ö
	ATOM	757	CB	LEU L	89	21.564	39.429	36.487	1.00 42.79	Ĺ	č
40	ATOM .	758	CG	LEU L	89	20.458	39.493	35.430°	1.00 43.04	L	C
40	ATOM	759		LEU L	89	19.678	38.187	35.421	1.00 43.31	L	C
	ATOM	760		LEU L	89	19.532	40.662	35.729	1.00 43.24	L	C
	MOTA	761	N	ILE L	90	24. 284	37.504	34.825	1.00 37.21	Ļ	N
	ATOM ATOM	762 763	CA C	ILE L	90 90	25.151 24.832	37. 532 36. 325	33.654	1.00 34.54	L	C
45	ATOM	764	ŏ	ILE L	90	24. 290	35. 327	32. 778 33. 253	1.00 33.42 1.00 34.00	L L	C 0
	ATOM	765	CB	ILE L	90	26.643	37. 503	34.057	1.00 34.63	Ĺ	C
	ATOM	766		ILE L	90	26. 934	36. 263	34.905	1.00 33.21	Ĺ	Č
	ATOM	767		ILE L	90	26.997	38.778	34.819	1.00 32.30	· L	č
	MOTA	768		ILE L	90	28.372	36.154	35.356	1.00 36.32	L	C
50	MOTA	769	N	CYS L	91	25.181	36.415	31.501	1.00 31.20	L	N
	ATOM	770	CA	CYS L	91	24. 885	35.350	30.556	1.00 30.45	L	C
	ATOM	771	C	CYS L	91	25. 471	33.971	30.833	1.00 30.35	ŗ	C
	ATOM	772	O CB	CYS L	91	24.778	32.967	30.671	1.00 29.92	L	0
55	ATOM ATOM	773 774	SG	CYS L	91 91	25. 261 24. 204	35.790 37.118	29. 143 28. 480	1.00 26.98 1.00 26.22	L	C
55	ATOM	775	N	VAL L	92	26. 732	33. 902	31.245	1.00 20.22	L L	S N
	III OIII	110	11	IND D	32	20.132	JU. 3U4	01.640	1.00 63.00	Ł	IN

	ATOM	776	CA	VAL I	92	27. 333	32.602	31.514	1.00 28.75	Ĺ	С
	ATOM	777	C	VAL I		26.693	31.897	32. 707	1.00 27.72	Ĺ	č
	ATOM	778	0	VAL I		26.940	30.712	32.937	1.00 28.52	Ĺ	0
5	ATOM	779	CB	VAL I		28.866	32.709	31.718	1.00 28.32	Ĺ	Č
	ATOM	780		VAL I		29.529	33.115	30.403	1.00 29.69	Ĺ	C
						29. 190	33.717	32.813	1.00 23.03		
	ATOM	781		VAL I						L	C
	ATOM	782	N	ASN I		25.865	32.622	33.457	1.00 25.61	L	N
10	MOTA	783	CA	ASN I		25.174	32.050	34.605	1.00 24.28	Ļ	C
, ,	ATOM	784	C	ASN I		23. 753	31.651	34.213	1.00 23.30	L	C
	MOTA	785	0	ASN I		22.850	32.487	34.183	1.00 22.74	L	0
	MOTA	786	CB	ASN I		25. 123	33.047	35.767	1.00 23.78	L	C
	ATOM	787	CG	ASN I		24. 294	32.533	36.930	1.00 25.91	L	C
	MOTA	788				24.175	31.326	37.128	1.00 28.42	L	0
15	ATOM	789		ASN I		23.725	33.442	37.710	1.00 24.92	L	N
	ATOM	790	N	GLU I	. 94	23.564	30.370	33.907	1.00 22.36	L	N
	MOTA	791	CA	GLU I	94	22.257	29.862	33.511	1.00 22.33	L	C
	ATOM	792	C	GLU I	94	21.654	30.701	32.383	1.00 20.87	L	C
	MOTA	793	0	GLU I	94	20.472	31.047	32.412	1.00 18.77	L	0
20	ATOM	794	CB	GLU I	94	21.302	29.856	34.711	1.00 24.83	L	С
	ATOM	795	CG	GLU I	. 94	21.714	28.934	35.863	1.00 27.12	L	С
	ATOM	796	CD	GLU I	. 94	21.684	27.462	35.488	1.00 30.61	Ĺ	С
	MOTA	797	0E1	GLU I	94	22.593	26.997	34.794	1.00 29.23	Ĺ	0
	ATOM -	798		GLU I		20.741	26.783	35.891	1.00 35.59	L	0
25	MOTA	799	N	ASN I	95	22.482	31.035	31.400	1.00 20.59	. L	N
	ATOM	800	CA	ASN I		22.054	31.810	30.240	1.00 21.27	Ĺ	Ċ
	ATOM	801	C	ASN I		21.375	33.134	30.603	1.00 22.32	Ĺ	č
	ATOM	802	0	ASN I		20.567	33.656	29.829	1.00 22.62	Ĺ	ŏ
	MOTA	803	CB	ASN I		21.108	30.963	29.381		Ĺ	č
30	MOTA	804	CG	ASN I		21.028	31.451	27.956	1.00 17.99	Ĺ	Č
00	ATOM	805		ASN I		22.040	31.546	27. 270	1.00 20.44	Ĺ	ŏ
	ATOM	806		ASN I		19.827	31.757	27.499	1.00 18.44	Ĺ	N
	ATOM	807	N	GLY I		21.716	33.674	31.773	1.00 23.58	Ĺ	N
	ATOM	808	CA	GLY I		21.140	34.928	32. 227	1.00 22.26	Ĺ	C
	ATOM	809	C	GLY I		19.645	34.875	32.494	1.00 22.45	Ĺ	Č
35	ATOM	810	Ŏ	GLY I		19.002	35. 911	32.650	1.00 24.38	Ĺ	Õ
	MOTA	811	N	GLY I		19.084	33.674	32.566	1.00 21.95	Ĺ	N
	ATOM	812	CA	GLY I		17.654	33.558	32. 789	1.00 20.54	Ĺ	C
	MOTA	813	C	GLY I		16.871	33.760	31.501	1.00 20.22	Ĺ	C
	ATOM	814	Ö	GLY I		15.645	33.740	31.510	1.00 22.61	Ĺ	Ö
40	ATOM	815	N	CYS I		17. 580	33. 959	30. 393	1.03 19.38	· L	N
	ATOM	816	CA	CYS I		16.956	34. 161	29.086	1.0) 20.02	L	C
	ATOM	817	C	CYS		16. 477	32.833		1.03 20.62	Ĺ	
	ATOM	818	Õ	CYS I		17. 165	31.818				C
	ATOM	819	CB	CYS		17. 165	34.764	28. 623 28. 105	1.00 20.27 1.00 19.41	L	0
45	ATOM	820	SG	CYS		18. 601				L	C
	ATOM						36.419	28. 485	1.00 22.10	Ļ	S
		821	N	GLU I		15.314	32.839	27. 867	1.00 20.33	Ļ	N
	ATOM	822	CA	GLU !		14.794	31.611	27. 277	1.00 20.72	Ĺ	C
	MOTA	823	C	GLU I		15.625	31.164	26.076	1.00 19.15	L	C
50	ATOM	824	0	GLU I		15.827	29.974	25.877	1.00 17.11	L	0
	ATOM	825	CB	GLU I		13. 336	31.779	26.850	1.00 22.59	L	C
	ATOM	826	CG	GLU		12.682	30.457	26.467	1.00 29.91	L	. C
	ATOM	827	CD	GLU I		11.178	30.564	26.302	1.00 32.54	L	С
	MOTA	828		GLU I		10.738	31.204	25.370	1.00 33.67	L	0
	ATOM	829		GLU !		10.458	29. 999	27.122	1.00 37.34	L	0
55	ATOM	830	N		100	16.101	32.114	25. 274	1.00 18.04	L	N
	ATOM	831	CA	GLN 1	. 100	16.911	31.763	24.112	1.00 18.31	L	C

	ATOM	832	C 0	GLN L		18. 281 19. 223	32. 459 31. 951	24. 118 24. 724		19. 20 19. 26	L L	C O
5	MOTA MOTA	833 834	CB	GLN L GLN L		16.145	32.056	22. 805		16.04	L	C
	ATOM	835	CG	GLN L		14.789	31.342	22.716		15.13	ĩ	č
	ATOM	836	CD	GLN L		14.182	31.366	21.321		16.10	· L	C
	MOTA	837		GLN L		14.478	32.245	20.520		16.54	L	0
	MOTA	838		GLN L		13.314	30.403	21.034		17.14	L	N
10	ATOM	839	N	TYR L		18.408	33.610	23.465		19.40	L	N
	ATOM	840	CA	TYR L		19.705	34. 282 35. 307	23.429		20.26 22.37	L	C C
	MOTA MOTA	841 842	C 0	TYR L TYR L		19.895 18.956	36.002	24. 540 24. 935		22.47	L L	0
	ATOM	843	СВ	TYR L		19. 934	34.955	22.071		18.52	Ĺ	C
15	ATOM	844	CG	TYR L		19.838	34.017	20.880		20.18	Ĺ	Č
	MOTA	845	CD1	TYR L		20.215	32.673	20.982		17.62	Ĺ	Ċ
	ATOM	846		TYR L		19.387	34.481	19.643		19.56	L	C
	ATOM	847		TYR L		20.140	31.822	19.884		19.81	L	C
	ATOM	848		TYR L		19.315	33.640	18.541		19.48	ŗ	C
20	ATOM	849	CZ	TYR L		19.693	32.313	18.666		18.80	L	C
	MOTA MOTA	850 851	OH N	TYR L CYS L		19.641 21.127	31.489 35.387	17. 564 25. 032		19.13 22.05	L L	0 N
	ATOM	852	CA	CYS L		21. 500	36.300	26. 102		23.17	Ĺ	C
	MOTA	853	Č	CYS L		22.680	37.168	25.657		24.83	Ĺ	Č
25	ATOM	854	0	CYS L	102	23.617	36.686	25.020	1.00	25.16	L	0
25	ATOM	855	CB	CYS L		21.897	35.494	27.343		22.80	L	C
	ATOM	856	SG	CYS L		22.308	36.468	28. 827		24. 11	L	S
	MOTA	857	N	SER L		22.628	38.451	25. 995 25. 650		26.62	L	N
	ATOM ATOM	858 859	CA C	SER L SER L		23.695 24.115	39.382 40.156	25. 650 26. 889		28. 86 29. 38	L L	C C
30	MOTA	860	Õ	SER L		23. 277	40.759	27. 558		31.61	L	0
	MOTA	861	CB	SER L		23. 225	40.377	24. 584		27. 37	Ĺ	Č
	MOTA	862	0G	SER L	103	22.975	39.733	23.350	1.00	29.37	L	0
	MOTA	863	N	ASP L		25.405	40.125	27. 205		30. 25	L	N
	MOTA	864	CA	ASP L		25.915	40.865	28. 352		31.60	Ļ	C
35	MOTA MOTA	865 866	C O	ASP L ASP L		26.112 26.323	42.304 42.562	27. 899 26. 714		33. 46 32. 44	L L	C 0
	MOTA	867	CB	ASP L		27. 258	40.303	28. 820		30. 24	L	C
	ATOM	868	CG	ASP L		27.124	38.978	29. 537		31.11	Ĺ	Č
	ATOM	869		ASP L		26.369	38.909	30. 503		30.36	Ĺ	ŏ
40	ATOM	870	OD2	ASP L		27.788	38.022	29. 129		31.46	L	0
	MOTA	871	N.	HIS L		26.045	43. 241	28. 835		37.03	L	N
	ATOM	872	CA	HIS L		26.226	44.642	28. 486		40. 26	ŗ.	C
	ATOM ATOM	873 874	C 0	HIS L		27.048 26.942	45. 418 45. 197	29. 505 30. 714		43.18 42.14	L	C
	ATOM	875	CB	HIS L		24.866	45. 317	28. 288		38. 90	L L	0 ·
45	ATOM	876	CG	HIS L		24.151	44.878	27. 048		38. 94	Ĺ	Č
	MOTA	877		HIS L		24.678	45.051	25. 786		38.12	Ĺ	Ň
	ATOM	878		HIS L		22.955	44.267	26.875		37.83	L	C
	ATOM	879		HIS L		23.838	44.565	24.890		38.48	L	С
50	ATOM	880		HIS L		22.785	44.083	25. 524		37. 45	L	N
30	ATOM	881	N	THR L		27.875	46.325	28. 993		46.90	ŗ	N
	ATOM	882	CA	THR L		28. 731	47.171	29.816		49.56 49.91	Ļ	C
	ATOM ATOM	883 884	C 0	THR L		27.995 27.876	48. 481 49. 319	30. 076 29. 182		49. 91 51. 77	L L	C 0
	ATOM	885	CB	THR L		30.061	47. 482	29. 093		50.44	L	C
55	ATOM	886		THR L		30.719	46. 256	28. 752		52.50	Ĺ	Ö
	ATOM	887		THR L		30.977	48.310	29.983		51.29	Ĺ	č

	ATOM	000	M	CLV 1 107		27.499	48.650	31.297	1.00 50.0	5 1	L	N .
	ATOM	888		GLY L 107								
-	ATOM	889		GLY L 107		26.772	49.862	31.637	1.00 50.2			С
5	ATOM	890	C	GLY L 107		25.265	49.664	31.683	1.00 50.9	1	Ĺ	С
	ATOM	891	0	GLY L 107		24.524	50.566	32.076	1.00 51.4	7	L	0
	ATOM	892		THR L 108		24.812	48.480	31.276	1.00 50.4			N
							48. 138	31.269	1.00 48.9			Č
	ATOM	893		THR L 108		23.394						
4.0	ATOM	894		THR L 108		23. 244	46.633	31.482	1.00 47.1			C
10	ATOM	895	0	THR L 108		24.024	45.847	30.948	1.00 47.6	4]		0
	ATOM	896	CB	THR L 108		22.733	48.524	29.929	1.00 50.4	0. 1	L	С
	ATOM	897	0G1	THR L 108		23.506	47.998	28.842	1.00 51.5	2	L	0
	MOTA	898		THR L 108		22.639	50.038	29.793	1.00 51.6			Č
								32.266	1.00 44.2			
	MOTA	899		LYS L 109		22.244	46.238					N
15	ATOM	900		LYS L 109		22.005	44.825	32.558	1.00 41.0			С
	ATOM	901		LYS L 109		21.909	43.997	31.280	1.00 37.6			C
	MOTA	902	0	LYS L 109		21.642	44.531	30.201	1.00 37.0	6	Ĺ	0
	ATOM	903		LYS L 109		20.716	44.663	33.367	1.00 42.0	2		С
	MOTA	904		LYS L 109		19.450	44.860	32.555	1.00 44.8		Ĺ	Č
	MOTA	905		LYS L 109		18.219	44. 906	33.444	1.00 47.5			Č
20												
	MOTA	906		LYS L 109		18.148	46. 209	34.230	1.00 49.0			C
	MOTA	907		LYS L 109		18.009	47.398	33. 338	1.00 48.8			N
	MOTA	908	N	ARG L 110		22.125.	42.691	31.409	1.00 33.8			N
	MOTA	909	CA	ARG L 110		22.063	41.786	30.264	1.00 31.4	4	L	С
	ATOM	910	С	ARG L 110		20.696	41.861	29.596	1.00 28.7	7		С
25	ATOM	911	Ō	ARG L 110		19.690	42.107	30. 253	1.00 28.4			Ō
	ATOM	912	CB	ARG L 110		22.334	40. 346	30.709	1.00 29.1			Č
	ATOM	913	CG	ARG L 110		21.206	39. 704	31.515	1.00 26.4			C
	ATOM	914	CD	ARG L 110		20.133	39.072	30.617	1.00 23.5			C
	ATOM	915	NE	ARG L 110		19.049	38.500	31.409	1.00 23.9	9		N
30	MOTA	916	CZ	ARG L 110		18.083	39. 206	31.993	1.00 26.9	0	L	C
	MOTA	917		ARG L 110		18.045	40.529	31.871	1.00 25.7	6	L	N
	MOTA	918		ARG L 110		17.163	38.592	32.726	1.00 23.9			N
	MOTA	919	N	SER L 111		20.666	41.652	28. 287	1.00 27.4			N
								27. 545				
	ATOM	920	CA	SER L 111		19.416	41.683		1.00 26.4			Č.
35	MOTA	921	C	SER L 111		19.173	40.310	26. 925	1.00 25.7			C
	ATOM	922	0	SER L 111		20.116	39.578	26.624	1.00 25.7			0
	ATOM	923	CB	SER L 111		19.484	42.732	26.442	1.00 23.7	8	L ·	С
	MOTA	924	0G	SER L 111		20.407	42.337	25.447	1.00 28.0	2	L	0
	ATOM	925	N	CYS L 112		17.906	39.962	26.745	1.00 24.3			N
40	ATOM	926	CA	CYS L 112		17.553	38. 682	26. 152	1.00 24.9			Ĉ
40	ATOM	927	C	CYS L 112		17.024	38. 891	24.742	1.00 24.9			Č
	ATOM	928	0	CYS L 112		16.341	39.879	24.470	1.00 26.5			0
	ATOM	929	CB	CYS L 112		16.480	37. 985	26.980	1.00 23.1			C
	ATOM	930	SG	CYS L 112		16.932	37. 554	28.686	1.00 25.6		L	S
45	ATOM	931	N	ARG L 113		17.341	37.961	23.846	1.00 24.5	2	L	N
45	ATOM	932	CA	ARG L 113		16.884	38.042	22.463	1.00 23.0			C
	ATOM	933	C	ARG L 113		16.292	36.709	22.021	1.00 22.4			č
	ATOM	934	ŏ	ARG L 113		16. 260	35.749	22. 791	1.00 20.2			Ö
	ATOM	935	CB	ARG L 113		18.038	38. 457	21.543	1.00 23.4			C
50	ATOM	936	CG	ARG L 113		18.470	39.912	21.739	1.00 25.7			С
50	ATOM	937	CD	ARG L 113	;	19.706	40. 286	20. 926	1.00 25.3	9	L	C
	ATOM	938	NE	ARG L 113		20.882	39.525	21.349	1.00 26.0	_		N
	ATOM	939	CZ	ARG L 113		21.361	38. 459	20.712	1.00 22.8			Ċ
	ATOM	940		ARG L 113		20.775	38.019	19.607	1.00 19.3			N
55	ATOM	941		ARG L 113		22. 421	37. 823	21.190	1.00 19.9			N
55	ATOM	942	N	CYS L 114		15.810	36.656	20. 783	1.00 21.9			N
	ATOM	943	CA	CYS L 114	:	15. 208	35. 439	20. 268	1.00 21.3	6	L	C

	ATOM	944	C	CYS L		15.653	35. 122	18.847	1.00 20.52		L	C
	ATOM	945	0	CYS L		16.153	35. 979	18.120	1.00 19.97		L	0
5	ATOM	946	CB	CYS L		13.677	35. 542	20. 296	1.00 20.90		L	C
	ATOM	947	SG	CYS L		12.941	36.040	21.885	1.00 22.52		L	S
	ATOM	948	N	HIS L		15.453	33.868	18.469	1.00 20.76		Ĺ	N
	ATOM	949	CA	HIS L		15.786	33. 367	17.147	1.00 20.81		L	С
	ATOM	950	C	HIS L		14.684	33.850	16.199	1.00 21.18		Ĺ	C
10	ATOM	951	0	HIS L		13.556	34.098	16.627	1.00 21.61	ì	L	0
	ATOM	952	CB	HIS L		15.827	31.832	17. 207	1.00 20.46		L	С
	ATOM	953	CG	HIS L		16.269	31.172	15.938	1.00 19.99		L	C
	ATOM	954	ND1	HIS L	115	15.455	31.057	14.832	1.00 19.51	l	Ĺ	N
	ATOM	955	CD2	HIS L	115	17.442	30.586	15.602	1.00 18.82	1	Ĺ	C
4.5	ATOM	956	CE 1	HIS L	115	16.107	30.432	13.870	1.00 17.84]	Ĺ	C
15	ATOM	957	NE2	HIS L	115	17.315	30.134	14.311	1.00 19.44]	Ĺ	N
	ATOM	958	N	GLU L	116	15.020	34.012	14.925	1.00 21.79		Ĺ	N
	ATOM	959	CA	GLU L	116	14.050	34.429	13.924	1.00 21.88	1	Ĺ	C
	ATOM	960	С	GLU L		12.845	33.503	14.053	1.00 20.86		Ĺ	Ċ
	ATOM	961	0	GLU L		13.002	32.306	14.288	1.00 20.19		L	Ŏ
20	ATOM	962	CB	GLU L		14.655	34.300	12.522	1.00 25.33	1	Ĺ	C
	ATOM	963	CG	GLU L		13.663	34.559	11.391	1.00 32.50		Ĺ	Č
	ATOM	964	CD	GLU L		14.201	34.154	10.027	1.00 36.87		Ĺ	Č
	ATOM	965		GLU L		13.412	34.107	9.075	1.00 39.33			Ō
	ATOM	966		GLU L		15.405	33.890	9.916	1.00 38.85		Ĺ	Ō
25	ATOM	967	N	GLY L		11.646		13.900	1.00 20.27		Ĺ	N.
	ATOM	968	CA	GLY L		10.451	33. 236	14.020	1.00 18.99		Ĺ	Ċ
	ATOM	969	С	GLY L		9.860	33. 299	15.417	1.00 19.27		Ĺ	Č
	ATOM	970	0	GLY L		8.820	32.694	15.688	1.00 19.43		Ĺ	0
	ATOM	971	N ·	TYR L		10.543	34.018	16.305	1.00 19.01		_ [.	N
30	ATOM	972	CA	TYR L		10.116	34.206	17.689	1.00 19.23		Ĺ	C
	ATOM	973	C	TYR L	118	10.278	35.692	18.018	1.00 20.14]	Ĺ	C
	ATOM	974	0	TYR L	118	11.012	36.409	17.344	1.00 19.66]	Į.	0
	ATOM	975	CB	TYR L	118	10.999	33.417	18.671	1.00 18.12]	Ĺ	С
	ATOM	976	CG	TYR L	118	10.916	31.905	18.602	1.00 15.33]	Ĺ	С
35	ATOM	977	CD1	TYR L	118	11.650	31.187	17.658	1.00 15.05	1	Ĺ	С
55	ATOM	978	CD2	TYR L	118	10.116	31.192	19.499	1.00 13.29	1	Ĺ	С
	ATOM	979	CE 1	TYR L	118	11.590	29.791	17.607	1.00 14.73		Ĺ	С
	MOTA	980	CE2	TYR L	118	10.049	29.803	19.457	1.00 14.27]	L	C
	ATOM	981	CZ	TYR L	118	10.790	29.109	18.507	1.00 15.35]	Ĺ	С
	ATOM	982	OH	TYR L	118	10.736	27.735	18.466	1.00 15.58]	Ĺ	0
40	ATOM	983	N	SER L		9.595	36.150	19.058	1.00 21.39	1		N
	ATOM	984	CĄ	SER L		9.710	37. 538	19.481	1.00 23.14	1	į	C
	ATOM	985	С	SER L		9.746	37. 524	21.002	1.00 21.88	1	[С
	ATOM	986		SER L	119	9.189	36.629	21.632	1.00 23.34]	Ĺ	0
	MOTA	987	CB	SER L	119	8.522	38.364	18.979	1.00 23.84]		C
45	ATOM	988	0G	SER L		7.312	37.905	19.556	1.00 31.34			0
	ATOM	989	N	LEU L	120	10.413	38.510	21.585	1.00 23.21	.]		N
	ATOM	990	CA	LEU L	120	10.544	38.606	23.036	1.00 24.38]		C
	MOTA	991	C	LEU L	120	9. 253	39.096	23.683	1.00 26.18	1		Ċ
	ATOM	992	0	LEU L	120	8.667	40.081	23. 236	1.00 27.69			0
50	ATOM	993		LEU L	120	11.683	39.565	23.389	1.00 23.36			Č
	ATOM	994	CG	LEU L	120	12.119	39.619	24.855	1.00 25.06			Č
	ATOM	995	CD1	LEU L	120	12.801	38.311	25. 230	1.00 24.68	Ī		Č
	ATOM	996		LEU L		13.080	40.789	25.063	1.00 24.21	i		Č
	ATOM	997	N	LEU L		8.817	38.410	24.736	1.00 26.79	Ī		Ň
55	ATOM	998	CA	LEU L	121	7.600	38.790	25.450	1.00 28.18	Ī		Ċ
	MOTA	999	·C	LEU L	121	7.885	39.949	26.402	1.00 29.35	Ī		č
										-		-

	ATOM	1000	0	LEU L 121	9.039	40.320	26.614	1.00 28.95	L	0
	ATOM	1001	CB	LEU L 121	7.042	37. 595	26. 235	1.00 26.70	L	C
5	ATOM	1002	CG	LEU L 121	6.491	36.417	25.418	1.00 27.20	L	С
	ATOM	1003		LEU L 121	6.025		26.348	1.00 27.89	L	С
	ATOM	1004	CD2	LEU L 121	5.335	36. 891	24.554	1.00 28.46	L	С
	ATOM	1005	N	ALA L 122	6.825	40.512	26.979	1.00 30.71	L	N
	ATOM	1006	CA	ALA L 122	6.948	41.638	27.903	1.00 30.91	L	Ċ
	ATOM	1007	C	ALA L 122	7. 865	41.379	29.097	1.00 30.79	Ĺ	č
10	ATOM	1008	ŏ	ALA L 122	8. 492	42. 307	29.607	1.00 32.36	Ĺ	
									_	0
	ATOM	1009	CB	ALA L 122	5.566	42.058	28.397	1.00 33.12	Ĺ	C
	ATOM	1010	N	ASP L 123	7. 953	40. 131	29.550	1.00 28.66	L	N
	ATOM	1011	CA	ASP L 123	8.811	39.826	30.687	1.00 27.44	L	С
15	ATOM	1012	C	ASP L 123	10.301	40.040	30.405	1.00 27.39	L	C
15	ATOM	1013	0	ASP L 123	11.123	39.955	31.314	1.00 28.38	L	0
	ATOM	1014	CB	ASP L 123	8.571	38. 392	31.189	1.00 27.26	Ĺ	Č
	ATOM	1015	CG	ASP L 123	8.951	37. 324	30.168	1.00 26.53	Ĺ	č
	ATOM	1016		ASP L 123	9.602	37. 634	29.173	1.00 25.66	Ĺ	Ö
20	ATOM	1017		ASP L 123	8. 595	36. 173	30.389	1.00 25.85	L	0
	MOTA	1018	N	GLY L 124	10.645	40.318	29.150	1.00 27.75	Ĺ	N
	ATOM	1019	CA	GLY L 124	12.033	40. 551	28. 789	1.00 27.23	. L	Ç
	ATOM	1020	C	GLY L 124	12.937	39. 329	28.721	1.00 28.17	L	С
	ATOM	1021	0	GLY L 124	14.135	39.465	28.460	1.00 27.43	L	0
	ATOM	1022	N	VAL L 125	12.389	38. 137	28.943	1.00 28.24	L	N
25	ATOM	1023	CA	VAL L 125	13.205	36.920	28.899	1.00 27.90	L	С
	ATOM	1024	C	VAL L 125	12.626	35.779	28.057	1.00 26.61	Ĺ	Č
	ATOM	1025	Ō	VAL L 125	13.373	34. 954	27. 533	1.00 25.92	Ĺ	Õ
	ATOM	1026	СB	VAL L 125	13.476	36. 367	30.326	1.00 28.91	Ĺ	- C
	ATOM	1027		VAL L 125	14. 182	37. 421	31.173	1.00 29.31	Ĺ	
		1028		VAL L 125					-	C
30	ATOM				12.173	35. 930	30.980	1.00 27.68	Ļ	C
	ATOM	1029	N	SER L 126	11.304	35. 734	27.927	1.00 25.52	L	N
	ATOM	1030	CA.	SER L 126	10.639	34.677	27.175	1.00 23.57	L	С
	ATOM	1031	C	SER L 126	10.475	34. 989	25.696	1.00 23.79	. L	· C
	ATOM	1032	0	SER L 126	10.427	36. 157	25. 294	1.00 21.55	L	0
35	MOTA	1033	CB	SER L 126	9.266	34.393	27.788	1.00 23.48	L	С
33	ATOM	1034	0G	SER L 126	9.396	34.047	29.157	1.00 24.08	L	0
	ATOM	1035	N	CYS L 127	10.391	33.932	24.890	1.00 21.77	Ĺ	N
	ATOM	1036	CA	CYS L 127	10.219	34.070	23. 451	1.00 22.08	Ĺ	Ĉ
	ATOM	1037	C	CYS L 127	8.966	33. 324	23.020	1.00 22.86	Ĺ	Č
	MOTA	1038	Ŏ	CYS L 127	8. 698	32. 214	23.482	1.00 23.36	Ĺ	
40	MOTA	1039	CB	CYS L 127	11. 431					0
	ATOM	1040	SG			33.516	22.700	1.00 21.97	Ļ	C
				CYS L 127	13.006	34.368	23.044	1.00 21.79	Ĺ	S
	ATOM	1041	N	THR L 128	8. 197	33. 947	22.136	1.00 21.95	L	N
	ATOM	1042	CA		6.967	33. 353		1.00 21.10	L	С
	ATOM	1043	С	THR L 128	7.041	3 3 . 249	20.126	1.00 20.42	L	С
45	MOTA	1044	0	THR L 128	7.593	34.126	19.458	1.00 18.28	Ţ	0
	MOTA	1045	CB	THR L 128	5. 735	34.210	22.063	1.00 21.74	L	С
	ATOM	1046	0G1	THR L 128	4.530	33.513	21.732	1.00 22.91	Ĺ	Ō
	ATOM	1047		THR L 128	5.743	35. 554	21.353	1.00 18.95	ī	Č
	ATOM	1048	N	PRO L 129	6. 497	32. 162	19.559	1.00 21.27		
50	ATOM	1049		PRO L 129	6.514				L	N
50						31.960	18.107	1.00 22.20	L	C
	ATOM	1050	C	PRO L 129	5. 713	33.026	17.363	1.00 23.45	L	C
	ATOM	1051	0	PRO L 129	4.621	33. 394	17. 786	1.00 25.63	L	0
	ATOM	1052		PRO L 129	5. 891	30. 572	17.943	1.00 22.20	L	С
	MOTA	1053	CG	PRO L 129	6.213	29.888	19.247	1.00 21.77	L	С
55	ATOM	1054	CD	PRO L 129	5.938	30. 984	20.243	1.00 20.67	L	Č
	ATOM	1055	N	THR L 130	6. 260	33. 528	16.262	1.00 23.88	Ĺ	Ň
										.,

5	ATOM ATOM ATOM ATOM ATOM ATOM	1056 1057 1058 1059 1060 1061		THR L THR L THR L THR L THR L THR L	130 130 130 130	5.556 5.164 4.762 6.411 7.591 6.789	34. 525 33. 923 34. 639 35. 774 35. 404 36. 443	15. 465 14. 122 13. 206 15. 205 14. 486 16. 513	1.00 25.00 1.00 26.32 1.00 27.47 1.00 25.51 1.00 27.07 1.00 27.60	L L L L	00000
10	MOTA MOTA MOTA MOTA MOTA	1062 1063 1064 1065 1066	N CA C O CB	VAL L VAL L VAL L VAL L VAL L	131 131 131 131	5. 299 4. 942 4. 271 4. 369 6. 178	32.601 31.870 30.565 30.139 31.541	14. 014 12. 807 13. 218 14. 372 11. 930	1.00 24.93 1.00 23.51 1.00 24.02 1.00 22.94 1.00 25.15	L L L L	N C C O C
15	ATOM ATOM ATOM ATOM ATOM	1067 1068 1069 1070 1071		VAL L VAL L GLU L GLU L GLU L	131 132 132	6.844 7.163 3.589 2.888 3.840	32. 831 30. 673 29. 937 28. 690 27. 537	11. 469 12. 705 12. 268 12. 518 12. 828	1.00 24.40 1.00 23.42 1.00 22.59 1.00 22.16 1.00 20.71	L L L L	C N C C
20	MOTA MOTA ATOM ATOM ATOM ATOM	1072 1073 1074 1075 1076	O CB CG CD OE1	GLU L GLU L GLU L GLU L	132 132 132 132	3.567 2.004 1.352	26. 720 28. 340 26. 972 26. 730 27. 265	13. 711 11. 308 11. 390 10. 286 9. 196	1.00 20.40 1.00 22.29 1.00 27.79 1.00 29.81 1.00 30.53	L L L L	0 C C C
25	ATOM ATOM ATOM ATOM ATOM	1077 1078 1079 1080 1081	N CA C O	GLU L TYR L TYR L TYR L TYR L	133 133 133 133	-0.636 4.955 5.930 7.320 8.236	25. 985 27. 473 26. 404 26. 925 26. 860	10. 526 12. 109 12. 317 12. 654 11. 834	1.00 30.39 1.00 19.60 1.00 17.97 1.00 16.71 1.00 16.11	L L L L	0 N C C
30	ATOM ATOM ATOM ATOM ATOM	1082 1083 1084 1085 1086	CD2 CE1	TYR L TYR L TYR L TYR L TYR L	133 133 133 133	5.998 4.737 4.412 3.833 3.220	25. 511 24. 717 23. 673 25. 049 22. 978	11. 077 10. 874 11. 735 9. 862 11. 602	1.00 17.19 1.00 19.02 1.00 16.92 1.00 19.13 1.00 18.85	ւ Լ Լ Լ	C C C C
35	ATOM ATOM ATOM ATOM ATOM	1087 1088 1089 1090 1091	CZ OH N CA	TYR L TYR L TYR L PRO L PRO L	133 133 134 134	2.632 2.335 1.159 7.499 8.804	24. 358 23. 327 22. 640 27. 440 27. 963	9. 719 10. 594 10. 467 13. 878 14. 291	1.00 18.71 1.00 19.77 1.00 20.62 1.00 15.85 1.00 15.14	L L L L	C C O N C
40	ATOM ATOM ATOM ATOM ATOM ATOM	1092 1093 1094 1095 1096 1097	C O CB CG CD N	PRO L PRO L PRO L PRO L PRO L CYS L	134 134 134 134	9.807 9.419 8.497 7.444 6.543 11.086	26. 814 25. 677 28. 623 27. 730 27. 455 27. 108	14. 412 14. 677 15. 630 16. 198 15. 002 14. 206	1.00 15.88 1.00 17.59 1.00 13.01 1.00 13.89 1.00 15.08 1.00 15.52	L · L L L	C O C C N
45	ATOM ATOM ATOM ATOM ATOM	1098 1099 1100 1101 1102	CA C O CB SG	CYS L CYS L CYS L CYS L	135 135 135 135	12.125 12.228 11.874 13.486 14.133	26. 084 25. 562 26. 263 26. 660 27. 949	14. 291 15. 714 16. 663 13. 875 14. 997	1.00 14.64 1.00 14.59 1.00 12.74 1.00 13.94 1.00 16.77	L L L L	C C O C S
50	ATOM ATOM ATOM ATOM ATOM	1103 1104 1105 1106 1107	N CA C O N	GLY L GLY L GLY L GLY L LYS L	136 136 136 137	12.709 12.902 11.682 11.810 10.501	24. 328 23. 737 23. 301 22. 917 23. 358	15. 852 17. 167 17. 957 19. 119 17. 352	1.00 14.02 1.00 14.41 1.00 15.69 1.00 16.17 1.00 15.50	L L L L	N C C O N
55	ATOM ATOM ATOM ATOM	1108 1109 1110 1111	CA C O CB	LYS L LYS L LYS L LYS L	137	9. 284 8. 701 8. 709 8. 248	22. 935 21. 730 21. 669 24. 063	18. 036 17. 309 16. 077 18. 058	1.00 17.12 1.00 17.03 1.00 17.59 1.00 16.09	L L L L	C 0 C

	ATOM ATOM	1112 1113		LYS L LYS L		8. 085 9. 354	24. 783 25. 441	19.382 19.855	1.00 20.53 1.00 23.98	L L	C C
5	ATOM	1114		LYS L		9.056	26.486	20.935	1.00 26.98	Ĺ	Ċ
	ATOM	1115		LYS L		8.408	25.912	22.147	1.00 27.12	Ĺ	N
	MOTA	1116		ILE L		8.191	20.780	18.082	1.00 16.47	L	N
	ATOM	1117		ILE L		7.598	19.568	17.536	1.00 16.51	L	C
10	ATOM	1118		ILE L		6.072	19.699	17.623	1.00 17.05	L	C
10	ATOM ATOM	1119 1120		ILE L		5. 479 8. 091	19. 442 18. 340	18.665 18.332	1.00 17.09 1.00 16.51	L L	0
	ATOM	1121		ILE L		9.630	18.329	18. 335	1.00 14.34	L	C
	ATOM	1122		ILE L		7.534	17.048	17.713	1.00 15.08	Ĺ	Č
	ATOM	1123		ILE L		10.268	17. 188	19.119	1.00 12.57	Ĺ	Č
15	ATOM	1124		PRO L		5.421	20.096	16.514	1.00 18.81	L	N
	ATOM	1125		PRO L		3.963	20. 284	16.436	1.00 19.59	L	С
	ATOM	1126		PRO L		3.016	19. 231	17.016	1.00 19.28	L	C
	ATOM	1127		PRO L		2.065	19.588	17. 708	1.00 20.94	L	0
	ATOM	1128		PRO L		3.718	20.548	14.943	1.00 19.14	L	C
20	ATOM ATOM	1129 1130		PRO L PRO L		4.902 6.034	19.948 20.304	14. 273 15. 195	1.00 22.59 1.00 18.46	L L	C C
	ATOM	1131		ILE L		3. 249	17.948	16.764	1.00 18.46	Ĺ	N
	ATOM	1132		ILE L		2. 334	16.952	17.317	1.00 19.99	Ĺ	C
	ATOM	1133	C	ILE L	140	2.398	16.843	18.844	1.00 21.32	L	C
25	ATOM	1134		ILE L		1.550	16.194	19.454	1.00 21.50	L	0
23	MOTA	1135		ILE L		2.549	15. 544	16.711	1.00 20.09	L	C
	ATOM	1136		ILE L		3.953	15.034	17.030	1.00 18.72	L	C
	ATOM ATOM	1137 1138		ILE L		2. 294 4. 178	15. 58 6 13. 59 6	15. 197 16. 611	1.00 21.80	L L	C C
	ATOM	1139		LEU L		3. 397	17. 475	19. 458	1.00 20.33	Ĺ	N
30	ATOM	1140		LEU L		3. 531	17. 458	20. 912	1.00 23.29	Ĺ	Ç
	MOTA	1141		LEU L		3.115	18.806	21.505	1.00 25.19	Ĺ	Č
	ATOM	1142		LEU L		2.965	18.942	22. 716°	1.00 25.84	Ľ	0
	ATOM	1143		LEU L		4.975	17.144	21.315	1.00 21.25	L	C
	ATOM	1144		LEU L		5.601	15. 886	20. 705	1.00 21.10	L	C
35	MOTA MOTA	1145 1146		LEU L		6.998 4.732	15.706 14.665	21. 268 20. 998	1.00 19.02 1.00 19.82	L L	C
	MOTA	1147		GLU L		2.936	19.804	20. 648	1.00 19.02	L	N
	ATOM	1148		GLU L		2.534	21.131	21.093	1.00 32.74	Ĺ	Ċ
	ATOM	1149		GLU L		1.011	21.223	21.174	1.00 35.09	Ĺ	Č
40	ATOM	1150		GLU L		0.514	21.605	22. 226	1.00 37.74	L	0
	ATOM	1151		GLU L		3.067	22.194	20.130	1.00 32.55	L	С
	ATOM	1152		GLU L		4.577	22.381	20.166	1.00 35.63	L	C
	ATOM ATOM	1153 1154	CD	GLU L GLU L		5.062 4.494	23.007 24.028	21.462 21.871	1.00 37.38	L	C
	ATOM	1155		GLU L		6.008	22.486	22.053	1.00 39.09 1.00 36.36	L L	0
45	ATOM	1156		GLU L		0.349	20.913	20. 180	1.00 36.04		0
	ATOM	1157	N	ILE H	16	21.992	3.783	14. 153	1.00 14.10	H	N
	MOTA	1158	CA	ILE H	16	21.860	4.032	15.614	1.00 13.89	H	C
	MOTA	1159	C	ILE H	16	21.875	2.706	16.373	1.00 14.85	H	C
50	MOTA	1160	0	ILE H	16	21.043	1.834	16.132	1.00 14.89	H	0
30	MOTA	1161	CB	ILE H	16	20. 534	4.767	15.944	1.00 13.63		C
	MOTA	1162		ILE H	16	20. 451	6.095	15.183	1.00 12.69	H	Ç
	ATOM ATOM	1163 1164		ILE H	16 16	20. 436 21. 567	4.989 7.092	17. 450 15. 493	1.00 11.22 1.00 10.60	H H	C C
	ATOM	1165		VAL H	17	22. 830	2.564	17. 285	1.00 16.00	n H	N
55	ATOM	1166	CA	VAL H	17	22.967	1.358	18.092	1.00 16.46	H .	C
	ATOM	1167	C	VAL H	17	22. 445	1.593	19.504	1.00 15.78	Н	Č

	MOTA	1168	0	VAL H	17	22.861	2.536	20.178	1.00 14.50	Н	0
	ATOM	1169	CB	VAL H	17	24. 451	0.918	18.195	1.00 17.79	H	C
5	ATOM	1170	CG1	VAL H	17	24.581	-0.259	19.145	1.00 19.06	H	C
	ATOM	1171	CG2	VAL H	17	24.977	0.529	16.826	1.00 19.20	H	C
	ATOM	1172	N	GLY H	18	21.532	0.735	19.950	1.00 15.38	H	N
	MOTA	1173	CA	GLY H	18	20.990	0.876	21.292	1.00 13.01	H	C
	ATOM	1174	С	GLY H	18	19.982	1.998	21.472	1.00 12.80	H	C
10	MOTA	1175	0	GLY H	18	19.768	2.468	22.583	1.00 11.44	Н	0
, 0	ATOM	1176	N	GLY H	19	19.365	2.436	20.384	1.00 11.70	H	N
	ATOM	1177		GLY H	19	18.368	3. 487	20.483	1.00 13.29	H	C
	MOTA	1178	С	GLY H	19	16.964	2.926	20.333	1.00 13.92	Н	C
	MOTA	1179	0	GLY H	19	16.731	1.736	20.540	1.00 13.45	H	0
15	ATOM	1180	N	LYS H	20		3.783	19.977	1.00 15.81	Н	N
	MOTA	1181		LYS H	20	14.644	3.341	19.788	1.00 17.79	Н	С
	ATOM	1182	C	LYS H	20	14.064	4.033	18.567	1.00 16.64	Н	С
	ATOM	1183	0	LYS H	20	14.683	4.935	18.009	1.00 13.94	H	0
	ATOM	1184	CB	LYS H	20	13.794	3.668	21.024	1.00 19.44	H	C
20	MOTA	1185	CG	LYS H	20	14. 312	3.043	22.317	1.00 26.17	H	C
	ATOM	1186	CD	LYS H	20	13.307	3.186	23.450	1.00 29.52	H	Ç
	MOTA	1187	CE	LYS H	20	13.918	2.824		1.00 32.88	H	C
	ATOM	1188	NZ	LYS H	20	14. 426	1.423	24.867	1.00 33.23 1.00 13.39	H .	N
	MOTA MOTA	1189 1190	N CA	VAL H	21 21	12.881 12.228	3.601 4.213	18.148 17.007	1.00 13.39	H	Ń C
25	ATOM	1191	C	VAL H	21	11.729	5.610	17. 393	1.00 14.10	H H	Č
	ATOM	1192	0	VAL H	21	11.125	5. 796	18. 459	1.00 15.28	Н	0
	ATOM	1193	CB	VAL H	21	11.022	3. 356	16.530	1.00 14.85	H	č
	ATOM	1194		VAL H	21	10. 233	4.104	15.446	1.00 15.73	H	č
	ATOM	1195		VAL H	21	11.517	2.018	15.982	1.00 13.11	H	č
30	ATOM -	1196	N	CYS H	22	11.992	6.595	16.542	1.00 14.61	H	Ň
	ATOM	1197	CA	CYS H	22	11.518	7.944	16.805	1.00 15.34	H	Ċ.
	ATOM	1198	C	CYS H	22	10.063	7, 948	16.362	1.00 15.49	H	C
	ATOM	1199	0	CYS H	22	9. 779	7.785	15.176	1.00 16.18	Н	0
	ATOM		. CB	CYS H	22	12.279	8.984	15.976	1.00 13.94	H	C
35	ATOM	1201	SG	CYS H	22	11.768	10.666	16.438	1.00 14.65	H	S
	ATOM	1202	N	PRO H	23	9. 120	8. 127	17.301	1.00 16.39	Н	N
	ATOM	1203	CA	PRO H	23	7.710	8. 134	16.898	1.00 16.45	H	C
	ATOM	1204	C	PRO H	23	7. 491	9.096	15. 733	1.00 16.91	H	C
	ATOM ATOM	1205 1206	O CB	PRO H	23 23	7. 995 6. 993	10.220	15.746	1.00 17.56 1.00 16.38	H	0
40	ATOM	1207	CG	PRO H	23	7. 863	8. 577 7. 993	18.171 19.250	1.00 16.66	H K	C
	MOTA	1208	CD	PRO H	23	9. 251	8. 348	18.753	1.00 15.94	n H	C
	ATOM	1209	N	LYS H	24	6. 746	8.647	14. 730	1.00 16.37	H	N
	ATON	1210	CA	LYS H	24	6.464	9.456	13.549	1.00 16.46	H	Č
	ATOM	1211	C.	LYS H	24	6.117	10. 895	13.915	1.00 15.64	H,	Č
45	ATOM	1212	Ŏ	LYS H	24	5. 211	11.145	14.707	1.00 17.81	H	ŏ
	ATOM	1213	ČB	LYS-H	24	5. 314	8. 836	12.757	1.00 17.93	H	Č
	ATOM	1214	ĊĠ	LYS H	24	5. 122	9. 431	11.369	1.00 19.08	Н.	Č
	ATOM	1215	CD	LYS H	24	3.979	8. 750	10.648	1.00 19.14	H	č
	MOTA	1216	CE	LYS H	24	4.144	8.839	9.143	1.00 23.91	H	Č
50	ATOM	1217	NZ	LYS H	24	4.196	10.230	8.631	1.00 20.21	Н	N
	ATOM	1218	N	GLY H	25	6.845	11.842	13.340	1.00 14.95	H	N
	MOTA	1219	CA	GLY H	25	6.586	13.239	13.638	1.00 14.04	H	C
	ATOM	1220	C	GLY H	25	7.403	13.847	14.769	1.00 13.80	H.	С
	ATOM	1221	0	GLY H	25	7. 427	15.068	14.909	1.00 13.20	H	0
55	ATOM	1222	N	GLU H	26	8.076	13.026	15.573	1.00 13.01	H	N
	ATOM	1223	CA	GLU H	26	8.874	13.560	1 6. 683	1.00 15.70	H	С

	ATOM	1224	С	GLU H	26	10.331	13.897	16.348	1.00 15.14	H	C
	ATOM	1225	0	GLU H	26	11.078	14.380	17.196	1.00 15.40	H	0
5	ATOM	1226	CB	GLU H	26	8.789	12.625	17.898	1.00 15.76	H	C
	ATOM	1227	CG	GLU H	26	7.483	12.816	18.668	1.00 19.10	H	C
	ATOM	1228	CD	GLU H	26	7.346	11.908	19.874	1.00 21.34	H	C
	ATOM	1229	0E1	GLU H	26	8.322	11.730	20.591	1.00 22.66	H	0
	ATOM	1230	0E2	GLU H	26	6.249	11.395	20.097	1.00 22.32	H	0
10	ATOM	1231	N	CYS H	27	10.716	13.641	15.103	1.00 15.31	H	N
	ATOM	1232	CA	CYS H	27	12.048	13.958	14.582	1.00 14.35	Н	C
	ATOM	1233	C	CYS H	27	11.749	14.611	13.217	1.00 14.44	H	C
	ATOM	1234	0	CYS H	27	12.256	14.170	12.188	1.00 15.00	Н	0
	ATOM	1235	CB	CYS H	27	12.873	12.663	14.404	1.00 16.45	Н	Č
15	ATOM	1236	SG	CYS H	27	13.342	11.868	15.982	1.00 16.62	Н	Š
15	ATOM	1237	N	PRO H	28	10.935	15.693	13. 204	1.00 12.78	Ĥ	Ň
	ATOM	1238	CA	PRO H	28	10.550	16.393	11.972	1.00 12.72	Ĥ	Ċ.
	ATOM	1239	C.	PRO H	28	11.596	17.135	11.142	1.00 13.51	Ĥ	č
	ATOM	1240	ŏ	PRO H	28	11.334	17.470	9.989	1.00 14.79	Ĥ	ŏ
	ATOM	1241	CB	PRO H	28	9.414	17.300	12.443	1.00 10.56	H	č
20	ATOM	1242	CG	PRO H	28	9.872	17. 708	13. 785	1.00 12.39	Ĥ	č
	ATOM	1243	CD	PRO H	28	10.409	16.411	14. 382	1.00 13.71	H	č
	ATOM	1244	N	TRP H	29	12.763		11.715	1.00 13.66	Ĥ	Ň
	ATOM	1245	CA	TRP H	29	13.837	18.072	10.981	1.00 12.45	Ĥ	Ċ
	ATOM	1246	C	TRP H	29	14.801	17.058	10.344	1.00 13.04	H	č
25	ATOM	1247	Ŏ	TRP H	29	15.741	17.447	9.651	1.00 12.14	Ĥ	Ŏ
	ATOM	1248	СВ	TRP H	29	14.622	19.019	11.905	1.00 10.27	H	Č
	ATOM	1249	CG	TRP H	29	14.719	18.544	13.333	1.00 10.51	H	č
	ATOM	1250	CD1	TRP H	29	15.510	17.540	13.818	1.00 9.50	Ĥ	č
	ATOM	1251	CD2	TRP H	29	13.935	19.009	14.441	1.00 9.92	H	Č
30	MOTA	1252	NE 1	TRP H	29	15.261	17.347	15. 159	1.00 9.49	H	N
	ATOM	1253	CE 2	TRP H	29	14.299	18. 235	15. 566	1.00 9.72	H	Ċ
	ATOM	1254		TRP H	29	12.961	20.004	14.590	1.00 8.87	H	C
	ATOM	1255		TRP H	29	13, 717	18.424	16.824	1.00 9.39	H	Ċ
	ATOM	1256	CZ3	TRP H	29	12.381	20.193	15.842	1.00 9.88	H	C
05	ATOM	1257		TRP H	29	12.763	19.404	16.944	1.00 9.90	H	C
35	ATOM	1258	N	GLN H	30	14.566	15.765	10.573	1.00 12.37	H	N
	ATOM	1259	CA	GLN H	30	15.427	14.723	10.011	1.00 11.48	H	C
	ATOM	1260	С	GLN H	30	15. 253	14.653	8.496	1.00 11.76	H	C
	ATOM	1261	0	GLN H	30	14.128	14.696	7.987	1.00 10.36	H	Õ
	ATOM	1262	CB	GLN H	30	15.090	13.363	10.622	1.00 12.28	H	C
40	ATOM	1263	CG	GLN H	30	15.832	12.180	9.982	1.00 13.59	. Н	C
	MOTA	1264	CD	GLN H	30	17. 291	12.090	10.401	1.00 11.47	H	C
	ATOM	1265	0E1	GLN H	30	18.171	11.810	9.587	1.00 15.48	H	0
	MOTA	1266	NE2	GLN H	30	17.548	12.306	11.675	1.00 9.74	H	N
	ATOM	1267	N	VAL H	31	16.372	14.542	7.785	1.00 10.70	H	N
45	ATOM	1268	CA	VAL H	31	16.369	14.468	6.327	1.00 7.92	H	C
	ATOM	1269	С	VAL H	31	16. 999	13.155	5.865	1.00 9.83	H	C
	ATOM	1270	0	VAL H	31	17.922	12.641	6.501	1.00 12.57	H	0
	ATOM	1271	CB	VAL H	31	17. 194	15.635	5.698	1.00 11.09	H	Ç
	MOTA	1272	CG1	VAL H	31	17. 177	15.534	4.167	1.00 9.42	H	Ċ
50	MOTA	1273		VAL H	31	16.641	16.996	6.142	1.00 7.29	H	Ċ
	MOTA	1274	N	LEU H	32	16.481	12.600	4:773	1.00 10.90	Н	N
	ATOM	1275	CA	LEU H	32	17.034	11.384	4.193	1.00 10.82	H	Ċ
	ATOM	1276	C.	LEU H	32	17.618	11.785	2.847	1.00 12.58	H	č
	ATOM	1277	0	LEU H	32	16. 902	12.294	1.984	1.00 13.53	H	ŏ
	ATOM	1278	CB	LEU H	32	15. 951	10.330	3.967	1.00 10.99	Ĥ	č
55	ATOM	1279	CG	LEU H	32	16.394	9. 157	3.082	1.00 12.15	H	č
						-			=		

	ATOM	1280	CD1	LEU H	32	17.496	8.366	3.774	1.00 10.81	Н	С
	ATOM	1281	CD2	LEU H	32	15.200	8.251	2.796	1.00 12.95	H	С
5	ATOM	1282	N	LEU H	33	18.916	11.575	2.669	1.00 11.95	Н	N
	ATOM	1283	CA	LEU H	33	19.566	11.921	1.411	1.00 13.59	Н	С
	ATOM	1284	С	LEU H	33	19.777	10.668	0.585	1.00 14.19	H	С
	MOTA	1285	0	LEU H	33	20.252	9.649	1.090	1.00 13.59	Н	0
	ATOM	1286		LEU H	33	20.915	12.611	1.663	1.00 13.43	Н	Č
10	ATOM	1287	CG	LEU H	33	20.843	13.953	2.401	1.00 13.16	Ĥ	Č
70	ATOM	1288		LEU H	33	22.246	14.429	2.718	1.00 11.72	H	Č
	ATOM	1289		LEU H	33	20.103	14.981	1.546	1.00 14.08	H	Č
	ATOM	1290	N	LEU H	34	19.423	10.757	-0.691	1.00 16.19	H	N
	ATOM	1291	CA	LEU H	34	19.553	9.636	-1.611	1.00 17.59	H	Č
	MOTA	1292	C	LEU H	34	20.384	10.026	-2.826	1.00 18.00	H	Ċ
15	ATOM	1293	0	LEU H	34	20.372	11.177	-3.261	1.00 18.90	Ĥ	Ö
	ATOM	1294	ČВ	LEU H	34	18. 165	9.184	-2.086	1.00 19.63	H	č
	ATOM	1295	CG	LEU H	34	17.092	8.859	-1.033	1.00 21.00	H	Č
	ATOM	1296		LEU H	34	15.741	8.708	-1.712	1.00 22.40	Ĥ	č
	ATOM	1297		LEU H	34	17.457	7.595	-0.288	1.00 21.37	H	Č
20	ATOM	1298	Ν .	VAL H	35	21.126	9.066	-3.357	1.00 19.10	H	Ň
	ATOM	1299	CA	VAL H	35	21.915	9.294	-4.553	1.00 20.91	H	Ċ
	ATOM	1300	С	VAL H	35	21.484	8.174	-5.494	1.00 21.66	Н	Č
	ATOM	1301	0	VAL H	35	21.512	7.004	-5.124	1.00 22.02	H	ō
	ATOM	1302	CB	VAL H	35	23.438	9.229	-4.275	1.00 21.22	H	Ċ
25	ATOM	1303	CG1	VAL H	35	23.846	7.837	-3.828	1.00 23.40	H	C
	ATOM	1304	CG2	VAL H	35	24.201	9.641	-5.516	1.00 23.57	H	Ċ
	ATOM	1305	N	ASN H	37	21.049	8.539	-6.694	1.00 22.76	H	N
	ATOM	1306	CA	ASN H	37	20.575	7.557	-7.668	1.00 24.27	H	C
	ATOM	1307	C	ASN H	37	19.473	6.695	-7.049	1.00 24.89	H	C
30	MOTA	1308	0	ASN H	37	19.385	5.502	-7.333	1.00 25.83	H	0
	MOTA	1309	CB	ASN H	37	21.721	6.650	-8.130	1.00 25.18	Н	C
	ATOM	1310	CG	ASN H	37	22.904	7.428	-8.674	1.00 27.92	Н	C
	MOTA	1311		ASN H	37	22.757	8.269	-9.563	1.00 26.24	H	0
	MOTA	1312		ASN H	37	24.090	7.144	-8.142	1.00 29.79	Н	N
35	ATOM	1313	N	GLY H	38	18.645	7.300	-6.198	1.00 25.00	H	N
55	MOTA	1314	CA	GLY H	38	17.568	6.575	-5.545	1.00 23.40	Н	C
	MOTA	1315	C	GLY H	38	17. 977	5.678	-4.386	1.00 23.72	H	C
	MOTA	1316	0	GLY H	38	17.126	5.033	-3.777	1.00 25.41	Н	0
	ATOM	1317	N	ALA H	39	19.268	5.630	-4.070	1.00 22.78	Н	N
	ATOM	1318	CA	ALA H	39	19.757	4.791	-2.981	1.00 22.39	H	C
40	ATOM	1319	C .	ALA H	39	20.050	5.607	-1.724	1.00 22.79	H	C
	ATOM	1320	0	ALA H	39	20.450	6.767	-1.807	1.00 23.53	Ħ	0
	ATOM	1321	CB	ALA H	39	21.014	4.056	-3.419	1.00 20.94	Н	C
	ATOM	1322	N	GLN H	40	19.848	4.993	-0.562	1.00 22.25	H	N
	ATOM	1323	CA	GLN H	40	20.098	5.658	0.714	1.00 22.90	H	C
45	MOTA	1324	C	GLN H	40	21.574	6.042	0.824	1.00 22.41	Н	C
	MOTA	1325	0	GLN H	40	22.456	5. 192	0.716	1.00 22.51	H	0
	ATOM	1326	CB	GLN H	40	19.720	4.730	1.871	1.00 22.59	H	C
	ATOM	1327	CG	GLN H	40	19.763	5.385	3. 247	1.00 25.18	Н	C
	ATOM	1328	CD	GLN H	40	19.409	4.415	4. 363	1.00 26.21	H	C
50	ATOM	1329		GLN H	40	18.430	3.676	4.270	1.00 26.38	H	0
	ATOM	1330		GLN H	40	20.198	4. 421	5.430	1.00 26.47	H	N
	ATOM	1331	N	LEU H	41	21.837	7. 324	1.052	1.00 21.11	H	N
	ATOM	1332	CA	LEU H	41	23. 206	7.816	1.164	1.00 19.35	H	C
	ATOM	1333	C	LEU H	41	23.585	8.285	2.570	1.00 18.35	Н	C
55	ATOM	1334	0	LEU H	41	24. 552	7.800	3. 152	1.00 18.12	Н	0
	MOTA	1335	CB	LEU H	41	23.419	8.978	0.184	1.00 19.30	Н	C

	MOTA	1335	CG	LEU H	41	24.745	9.744	0. 271	1.00 17.33	Н	C
	MOTA	1337	CDI	LEU H	41	25.890	8.880	-0.246	1.00 14.99	H	С
5	ATOM	1338	CD2	LEU H	41	24.641	11.016	-0.540	1.00 16.13	H	C
	ATOM	1339	N	CYS H	42	22.816	9. 226	3.110	1.00 16.56	Н	N
	ATOM	1340	CA	CYS H	42	23.108	9. 796	4.421	1.00 15.14	H	Ċ
	MOTA	1341	C	CYS H	42	21.907	10.492	5. 033	1.00 13.30	H	č
	ATOM	1.342	Õ	CYS H	42	20.851	10. 595	4.418	1.00 12.64	H	ŏ
							10. 844				
10	ATOM	1343	CB	CYS H	4.2	24. 226		4. 291	1.00 15.11	H	C
	ATOM	1344	SG	CYS H	42	25. 929	10. 216	4.342	1.00 18.96	H	S
	ATOM	1345	N	GLY H	43	22.101	10.988	6. 251	1.00 11.79	H	N
	ATOM	1346	CA	GLY H	43	21.064	11.728	6.932	1.00 9.99	H	С
	ATOM	1347	С	GLY H	43	21.362	13. 209	6.753	1.00 10.90	H	C
15	ATOM	1348	0	GLY H	43	22.362	13.580	6.138	1.00 12.00	H	0
	MOTA	1349	N	GLY H	44	20.491	14.058	7. 281	1.00 11.43	H	N
	ATOM	1350	CA	GLY H	44	20.690	15.493	7.183	1.00 9.27	H	Ċ
	ATOM	1351	C	GLY H	44	19.747	16.195	8. 143	1.00 9.66	H	č
	ATOM	1352	Ŏ	GLY H	44	18.884	15. 553	8. 741	1.00 8.35	H	Ö
	ATOM	1353	N	THR H	45	19.908	17.507	8. 293	1.00 10.40	H	. N
20	ATOM	1354	CA	THR H	45	19.062	18. 286	9.186	1.00 10.40	H	C
	ATOM	1355	C	THR H	45	18.500	19. 512	8. 470	1.00 10.32		
			_							H	C
	ATOM	1356	0	THR H	45	19.247	20. 315	7.914	1.00 12.61	H	0
	ATOM	1357	CB	THR H	45	19.856	18. 781	10.420	1.00 11.05	Н	C
25	ATOM	1358	0G1	THR H	45	20.468	17.667	11.084	1.00 11.48	Н	0
25	MOTA	1359	CG2		45	18.934	19.491	11.399	1.00 9.59	H	С
	ATOM	1360	N	LEU H	46	17.185	19.662	8.475	1.00 12.48	H	N .
	ATOM	1361	CA	LEU H	46	16.572	20.824	7.840	1.00 12.20	H	С
	ATOM	1362	С	LEU H	46	16.689	21.980	8.829	1.00 12.78	H	C
	ATOM	1363	0	LEU H	46	16.377	21.818	10.006	1.00 12.83	H	0
30	ATOM	1364	CB	LEU H	46	15.090	20.553	7.558	1.00 14.68	H	С
	ATOM	1365	CG	LEU H	46	14.273	21.611	6.805	1.00 13.62	H	С
	ATOM	1366	CD1	LEU H	46	14.639	21.570	5.321	1.00 12.45	H	C
	ATOM	1367		LEU H	46	12.783	21.326	6.973	1.00 12.25	Ĥ	č
	ATOM	1368	N	ILE H	47	17.163	23.135	8. 377	1.00 12.00	H	Ň
0.5	ATOM	1369	CA	ILE H	47	17. 252	24. 288	9. 275	1.00 13.26	H	Ĉ
35	ATOM	1370	C	ILE H	47	16.475	25. 470	8.686	1.00 15.67	H	č
	ATOM	1371	Õ	ILE H	47	16.356	26. 523	9.312	1.00 17.65	H	
	ATOM	1372	CB	ILE H	47	18.727	24. 714	9.552	1.00 11.03		0
	ATOM	1373	CG1	ILE H	47	19.427	25. 098	8. 249	1.00 11.94	H	Ç
										H	C
40	ATOM	1374			47	19.476	23. 575	10.248	1.00 10.11	H	C.
	ATOM	1375	CD1	ILE H	47	20.815	25. 683	8.455	1.00 13.22	H	C
	ATOM	1376	N	ASN H	48	15.944	25. 264	7. 481	1.00 17.72	H	N
	ATOM	1377	CA	ASN H	48	15. 158	26. 245	6. 738	1.00 21.07	. Н	C
	ATOM	1378	C	ASN H	48	14.312	25. 485	5.728	1.00 20.14	H	С
.=	ATOM	1379	0	ASN H	48	14.506	24. 288	5.536	1.00 20.62	H	0
45	ATOM	1380	CB	ASN H	48	16.071	27. 199	5.965	1.00 27.12	H	C
	ATOM	1381	CG	ASN H	48	16.437	28.416	6.759	1.00 32.69	H	С
	ATOM	1382	OD1	ASN H	48	15.566	29.193	7.156	1.00 37.95	Н.	0
	ATOM	1383	ND2	ASN H	48	17.729	28.600	6.998	1.00 33.59	H	N
	ATOM	1384	N	THR H	49	13.387	26.176	5.069	1.00 18.81	H	N
50	ATOM	1385	CA	THR H	49	12.562	25. 521	4.055	1.00 19.09	H	Č
	ATOM	1386	C	THR H	49	13.421	25. 187	2. 838	1.00 18.19	. Н	C
	ATOM	1387	ŏ	THR H	49	13.065	24. 315	2.044	1.00 19.04		
	ATOM	1388	CB	THR H	49	11.400	26. 419	3. 570	1.00 16.92	Н	0
	ATOM	1389		THR H	49					H	C
						11.932	27.615	2.989	1.00 18.22	H	0
55	ATOM	1390		THR H	49	10.485	26. 780	4.716	1.00 17.02	H	C
	MOTA	1391	N	ILE H	50	14.559	25. 871	2.707	1.00 18.59	H	N

	ATOM	1392	CA	ILE H	50		15.469	25.674	1.576	1.00 18.42	H	С
5	MOTA	1393	C	ILE H	50		16.841	25.067	1.907	1.00 18.14	H	Č
	ATOM	1394	Õ	ILE H	50		17.499	24.507	1.025	1.00 17.04	Н	Ö
	ATOM	1395	CB	ILE H	50		15.694	27.030	0.841	1.00 22.10	Η.	Ç
		1396		ILE H	50		14. 481	27.357	-0.030	1.00 21.65		Č
	ATOM										H	Ç
	ATOM	1397		ILE H	50		16.953	26. 987	-0.022	1.00 23.17	H	C
10	ATOM	1398		ILE H	50		14.338	26.454	-1.235	1.00 23.27	H	С
	ATOM	1399	N	TRP H	51		17.274	25.160	3. 161	1.00 16.05	H	N
	ATOM	1400	CA	TRP H	51		18.592	24.655	3. 528	1.00 15.56	H	С
	ATOM	1401	С	TRP H	51		18.659	23.436	4.438	1.00 15.82	Н	C
	ATOM	1402	0	TRP H	51		17.932	23.321	5.424	1.00 16.64	H	Ō
	ATOM	1403	ČB	TRP H	51		19.423	25.775	4.149	1.00 16.33	H	Č
15	ATOM	1404	ČĞ	TRP H	51		19. 593	26.967	3. 254	1.00 15.89	H	Č
				TRP H								0
	ATOM	1405			51		18.847	28. 111	3. 261	1.00 15.94	H	C
	ATOM	1406		TRP H	51		20. 576	27.134	2. 224	1.00 15.03	H	C
	MOTA	1407		TRP H	51		19.306	28.982	2.302	1.00 16.22	H	N
00	ATOM	1408		TRP H	51		20. 367	28. 409	1.651	1.00 16.38	H	С
20	ATOM	1409	CE3	TRP H	51		21.615	26.330	1.730	1.00 16.52	H	С
	MOTA	1410	CZ2	TRP H	51		21.163	28.904	0.606	1.00 16.04	H	С
	ATOM	1411		TRP H	51		22.405	26.822	0.690	1.00 16.73	H	C
	ATOM	1412		TRP H	51		22.173	28.100	0.142	1.00 16.02	H	Č
	ATOM	1413	N	VAL H	52		19.571	22.536	4.091	1.00 14.41	H	N
25		1414	CA	VAL H	52		19. 794	21.306	4. 831	1.00 12.34	H	C
23	ATOM	1415	C	VAL H	52		21. 270	21. 211	5. 218	1.00 12.34		~
			_								H	C
	ATOM	1416	0	VAL H	52		22. 136	21.461	4.391	1.00 9.66	H	0
	ATOM	1417	CB	VAL H	52		19.440	20.073	3.957	1.00 11.76	H	C
	ATOM	1418		VAL H	52		19.909	18.800	4.632	1.00 8.59	H	C
30	MOTA	1419		VAL H	52		17.935	20.022	3.700	1.00 12.24	H	C
	MOTA	1420	N	VAL H	53		21.549	20.869	6.474	1.00 11.58	H	N
	ATOM	1421	CA	VAL H	53		22.925	20.706	6.944	1.00 11.42	H	С
	ATOM	1422	C	VAL H	53		23.198	19.206	7.023	1.00 11.69	H	С
	MOTA	1423	0	VAL H	53		22.431	18.470	7.629	1.00 12.13	H	0
	ATOM	1424	CB	VAL H			23.141	21.326	8.357	1.00 11.61	H	C
35	ATOM	1425	CG1	VAL H	5 3		24.522	20.923	8.910	1.00 6.99	H	Č
	ATOM	1426		VAL H	53		23. 037	22.850	8. 284	1.00 9.62	H	č
	ATOM	1427	N	SER H	54		24. 280	18.757	6.397	1.00 11.72	H	N
	ATOM-	1428	CA	SER H	54		24.642	17. 343	6.414	1.00 10.64		
								17. 233			H	C
	MOTA	1429	C	SER H	54		26. 150		6.651	1.00 11.91	H	C
40	ATOM	1430	0	SER H	54		26.770	18.184	7.134	1.00 12.10	H	0
	ATOM	1431	CB	SER H	54		24. 256	16.687	5.082	1.00 10.42	H	C
	MOTA	1432	0G	SER H	54		24.369	15. 274	5. 154	1.00 11.65	H	0
	ATOM	1433	N	ALA H	55		26.740	16.085	6.321	1.00 12.45	H	N
	MOTA	1434	CA	ALA H.	55		28.178	15.888	6.507	1.00 12.19	H	С
15	ATOM	1435	С	ALA H	55		28.911	15.910	5.166	1.00 12.89	H	С
45	MOTA	1436	0	ALA H	55		28.422	15.377	4.169	1.00 12.34	H	0
	ATOM	1437	CB	ALA H	55		28.440	14.565	7. 219	1.00 10.54	H	Č
	ATOM	1438	N	ALA H	56		30. 087	16. 528	5. 146	1.00 11.36	H	N
	ATOM	1439		ALA H	56		30.880	16.606	3.925	1.00 12.72	H	L.
				ALA H								C
50	MOTA	1440	C		56		31.315	15. 244	3.387	1.00 13.03	H	C
	MOTA	1441	0	ALA H	56		31. 283	15. 021	2.172	1.00 13.79	H	0
	ATOM	1442	CB.	ALA H	56		32. 122	17.481	4. 156	1.00 12.20	H	C.
	MOTA	1443	N	HIS H	57		31.720	14. 327	4.266	1.00 12.47	H	N
	ATOM	1444	CA	HIS H	57		32.187	13.025	3.791	1.00 14.60	H	С
	ATOM	1445	C	HIS H	57		31.136	12.203	3.039	1.00 16.39	H	Ċ
55	ATOM	1446	0	HIS H	57		31.470	11.252	2. 332	1.00 16.35	H	Ö
	ATOM	1447	CB	HIS H	57	٠.	32. 798	12. 200	4. 937	1.00 13.36	H	č
	*** 014		U		• •		32. 130	14. 400	1. 501	10.00		U

	ATOM	1448	CG HIS H	57	31.807	11.425	5.749	1.00 11.86	Н	С
	MOTA	1449	ND1 HIS H	57	31.362	11.849	6.983	1.00 8.73	H	N
	ATOM	1450	CD2 HIS H	57	31.219	10.222	5.530	1.00 9.58	H	С
5	ATOM	1451	CE1 HIS H	57	30. 547	10.941	7.491	1.00 9.27	H	С
	ATOM	1452	NE2 HIS H	57	30.443	9.945	6.630	1.00 9.58	H	N
	ATOM	1453	N CYS H	58	29. 869	12.581	3. 175	1.00 16.13	H	N
	ATOM	1454	CA CYS H	58	28. 789	11.887	2. 485	1.00 16.63	H	Ċ
	ATOM	1455	C CYS H	58	28. 880	12.061	0.967	1.00 15.55	H	C
10	ATOM			58	28. 248	11.329	0. 208	1.00 13.33		
		1456							H	0
	ATOM	1457	CB CYS H	58	27. 443	12. 426	2.979	1.00 17.08	H	C
	ATOM	1458	SG CYS H	58	27. 023	11.898	4. 670	1.00 18.19	H	S
	ATOM	1459	N PHE H	59	29.675	13.030	0.532	1.00 15.81	H	N
15	ATOM	1460	CA PHE H	59	29. 826	13. 327	-0.883	1.00 14.61	Н	C
15	ATOM	1461	C PHE H	59	31.191	12.959	-1.475	1.00 14.54	H	С
	MOTA	1462	O PHE H	59	31.504	13.349	-2.602	1.00 13.82	H	0
	ATOM	1463	CB PHE H	59	29. 517	14.816	-1.094	1.00 14.40	H	С
	ATOM	1464	CG PHE H	59	28. 188	15. 231	-0.517	1.00 15.03	H	C
	ATOM	1465	CD1 PHE H	59	27.008	14.984	-1.210	1.00 14.65	H	C
20	ATOM	1466	CD2 PHE H	59	28.109	15. 765	0.770	1.00 14.34	H	С
	ATOM	1467	CE1 PHE H	59	25.768	15. 252	-0.629	1.00 15.30	H	С
	ATOM	1468	CE2 PHE H	59	26. 875	16.033	1.358	1.00 14.77	Ħ	С
	ATOM	1469	CZ PHE H	59	25. 703	15. 774	0.657	1.00 16.63	H	C
	ATOM	1470	N ASP H	60	31. 986	12.195	-0.727	1.00 14.66	Н	N
25	ATOM	1471	CA ASP H	60	33. 313	11.761	-1.179	1.00 16.60	H	C
	ATOM	1472	C ASP H	60	33.310	10.997	-2.509	1.00 18.45	H	€
	ATOM	1473	0 ASP H	60	34.172	11.216	-3.358	1.00 17.09	H.	0
	ATOM	1474	CB ASP H	60	33.979	10.872	-0.117	1.00 15.71	H	Ċ
	ATOM	1475	CG ASP H	60	34.633	11.668	0.998	1.00 15.52	H	C
20	ATOM	1476	OD1 ASP H	60	34. 520	12.897	1.005	1.00 13.68	H	0
30	ATOM	1477	OD2 ASP H	60	35. 262	11.049	1.855	1.00 15.21	H	Ö
	ATOM	1478	N LYS H	60A	32. 357	10.089	-2.687	1.00 21.04	H	N
	ATOM	1479	CA LYS H	60A	32.303	9.306	-3.918	1.00 23.97	H	Ċ
	ATOM	1480	C LYS H	60A	31.110	9.568	-4.830	1.00 24.27	H	Č
	ATOM	1481	O LYS H	60A	30.675	8. 678	-5.558	1.00 24.87	H	ŏ
35	ATOM	1482	CB LYS H	60A	32. 372	7. 813	-3.599	1.00 26.20	H	Č
	ATOM	1483	CG LYS H	60A	33. 775	7. 323	-3.279	1.00 32.13	H	Č
	ATOM	1484	CD LYS H	60A	34. 039	7. 276	-1.794	1.00 35.71	H	č
	ATOM	1485	CE LYS H	60A	33. 231	6.169	-1.128	1.00 38.10	H	č
	ATOM	1486	NZ LYS H	60A	33. 565	6.052	0.323	1.00 42.45	Н	N
40	ATOM	1487	N ILE H	60B	30.583	10. 785	-4.796	1.00 25.56	H	N
	ATOM	1488	CA ILE H	60B	29. 454	11.132	-5.642	1.00 25.53	н	Č
	ATOM	1489	C ILE H	60B	29. 979	11. 394	-7.049	1.00 28.48	Н	C
	ATOM	1490				12.168		1.00 28.70	H	ő
	ATOM	1491	CB ILE H	60B	28. 736	12. 409	-5.143	1.00 24.23		
15	MOTA	1492	CG1 ILE H	60B	28. 147	12. 180	-3.746	1.00 24.23	H	C
45	ATOM	1493	CG2 ILE H	60B	27. 647	12. 100	-6.132	1.00 22.19	H •. H	C
	ATOM	1494	CD1 ILE H	60B	27. 036			1.00 24.21		C
	ATOM					11.148	-3.688		· H	C
		1495		60C	29.378	10. 734	-8.034	1.00 29.76	H	N
	MOTA	1496	CA LYS H	60C	29. 764	10.902	-9.430	1.00 31.95	H	C
50	ATOM	1497	C LYS H	60C	28.665		-10.169	1.00 31.45	H	C
	ATOM	1498	O LYS H	60C	28. 942		-11.015	1.00 32.26	Н	. 0
	ATOM	1499	CB LYS H	60C	29.974		-10.091	1.00 35.12	H	C
	ATOM	1500	CG LYS H	60C	31.059	8.679	-9.440	1.00 38.59	H	C
	ATOM	1501	CD LYS H	60C	32.462	9. 191	-9.753	1.00 41.77	Н	C
55	ATOM	1502	CE LYS H	60C	33.034		-11.024	1.00 43.81	H	С
	ATOM	1503	NZ LYS H	60C	32. 241	8.847	-12.257	1.00 46.15	H	N

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1504 1505 1506 1507 1508 1509 1510	N ASN H CA ASN H C ASN H O ASN H CB ASN H CG ASN H OD1 ASN H	60D 60D 60D 60D 60D 60D	27. 415 26. 272 25. 675 24. 678 25. 203 25. 726 26. 355	11.360 -9.834 12.005 -10.464 13.073 -9.549 12.833 -8.858 10.963 -10.803 9.853 -11.700 10.111 -12.727	1.00 30.75 1.00 29.53 1.00 28.25 1.00 26.07 1.00 32.77 1.00 35.73 1.00 37.75	Н Н Н Н Н	N C C O C C
10	ATOM MOTA MOTA MOTA MOTA	1511 1512 1513 1514 1515	ND2 ASN H N TRP H CA TRP H C TRP H O TRP H	60D 61 61 61	25. 454 26. 279 25. 834 24. 422 23. 849	8.609 -11.320 14.256 -9.567 15.365 -8.734 15.863 -9.016 16.582 -8.203	1.00 37.39 1.00 25.37 1.00 25.31 1.00 26.09 1.00 25.00	H H H H	N C C
15	MOTA MOTA ATOM ATOM MOTA	1516 1517 1518 1519 1520	CB TRP H CG TRP H CD1 TRP H CD2 TRP H NE1 TRP H	61 61 61 61	26. 822 28. 179 29. 211 28. 615 30. 262	16. 532 -8. 839 16. 178 -8. 321 15. 634 -9. 027 16. 247 -6. 961 15. 355 -8. 189	1.00 24.50 1.00 21.92 1.00 21.98 1.00 20.82 1.00 22.70	H H H H	C C C C N
20	ATOM ATOM ATOM ATOM ATOM ATOM	1521 1522 1523 1524 1525	CE2 TRP H CE3 TRP H CZ2 TRP H CZ3 TRP H CH2 TRP H	61 61 61 61	29. 921 28. 025 30. 651 28. 749 30. 050	15. 722 -6. 912 16. 703 -5. 772 15. 634 -5. 724 16. 616 -4. 593 16. 084 -4. 579	1.00 20.71 1.00 19.10 1.00 17.70 1.00 17.89 1.00 17.22	H H H H	0 0 0 0
25	ATOM ATOM ATOM ATOM ATOM	1526 1527 1528 1529 1530	N ARG H CA ARG H C ARG H O ARG H CB ARG H	62 62 62 62	23. 858 22. 503 21. 432 20. 240 22. 365	15. 492 -10. 160 15. 919 -10. 494 14. 938 -10. 009 15. 216 -10. 125 16. 136 -12. 007	1.00 26.23 1.00 28.01 1.00 26.66 1.00 25.99 1.00 31.33	H H H H	N C C O C
30	ATOM ATOM ATOM ATOM ATOM	1531 1532 1533 1534 1535	CG ARG H CD ARG H NE ARG H CZ ARG H NH1 ARG H	62 62 62 62	22. 965 22. 697 23. 530 24. 787 25. 374	17. 448 -12. 509 17. 657 -13. 997 16. 804 -14. 844 17. 078 -15. 190 18. 192 -14. 770	1.00 36.27 1.00 40.57 1.00 44.43 1.00 46.30 1.00 46.47	H H H	C C N C N
35	ATOM ATOM ATOM ATOM ATOM	1536 1537 1538 1539 1540	NH2 ARG H N ASN H CA ASN H C ASN H O ASN H	62 63 63 63	25. 462 21. 854 20. 917 20. 829 20. 573		1.00 45.81 1.00 25.42 1.00 25.01 1.00 24.39 1.00 24.25	H H H H	N N C C
40	MOTA MOTA MOTA MOTA MOTA ATOM ATOM ATOM	1541 1542 1543 1544 1545 1546	CB ASN H CG ASN H OD1 ASN H ND2 ASN H N LEU H CA LEU H	63 63 63 64 64	21. 296 21. 396 20. 715 22. 238 21. 047 20. 966	11. 404 -9. 468 11. 341 -10. 976 12. 078 -11. 686 10. 442 -11. 476 13. 875 -6. 767 13. 910 -5. 309	1.00 27.47 1.00 31.32 1.00 31.92 1.00 32.46 1.00 21.76 1.00 20.28	H H H H H	C C O N N C
45	ATOM ATOM ATOM ATOM ATOM ATOM	1547 1548 1549 1550 1551 1552	C LEU H O LEU H CB LEU H CG LEU H CD1 LEU H CD2 LEU H	64 64 64 64 64	19.568 19.071 22.018 23.464 24.424 23.654	14. 341 -4. 862 15. 395 -5. 268 14. 855 -4. 744 14. 353 -4. 771 15. 537 -4. 548 13. 282 -3. 702	1.00 19.50 1.00 18.78 1.00 19.05 1.00 20.72 1.00 20.72 1.00 18.65	Н Н Н Н Н	000000
50	ATOM ATOM ATOM ATOM ATOM	1553 1554 1555 1556 1557	N ILE H CA ILE H O ILE H CB ILE H	65 65 65	18. 938 17. 589 17. 541 18. 200 16. 592	13.520 -4.027 13.810 -3.539 13.931 -2.015 13.172 -1.303 12.692 -3.980	1.00 17.67 1.00 18.01 1.00 16.76 1.00 14.51 1.00 18.70	H H H H	N C C C O C
55	ATOM ATOM	1558 1559	CG1 ILE H CG2 ILE H	65 65	16.468 15.215	12.671 -5.508 12.918 -3.352	1.00 19.21 1.00 19.44	H H	C C

	ATOM ATOM	1560 1561	CD1 N	ILE H ALA H	65 66	15.788 16.774	13.897 14.903	-6.089 -1.527	1.00 17.74 1.00 15.47	H H	. N
5	ATOM	1562		ALA H	66	16.603	15.111	-0.097	1.00 15.47	H	Ċ
3	ATOM	1563		ALA H	66	15.125	14.876	0.196	1.00 16.47	H	č
	ATOM	1564		ALA H	66	14. 254	15. 513	-0.405	1.00 16.85	H	ő
	MOTA	1565		ALA H	66	16.995	16.531	0.290	1.00 12.74	H	C
	ATOM	1566	N	VAL H	67	14.844	13.954	1.108	1.00 12.74	H	N
	ATOM	1567		VAL H	67	13.469	13. 643	1.459	1.00 14.80	н Н	
10											C
	ATOM	1568	C	VAL H	67	13.169	14.082	2.894	1.00 16.69 1.00 14.62	H	C
	ATOM	1569	0	VAL H	67	13.895	13.732	3.832	1.00 14.02	H	0
	ATOM	1570		VAL H	67	13.184	12.123	1.323		H	C
	ATOM	1571		VAL H	67	11.695	11.856	1.492	1.00 18.41	H	C
15	ATOM	1572		VAL H	67	13.652	11.616	-0.045	1.00 15.42	Н	C
	ATOM	1573	N	LEU H	68	12.111	14.875	3.042	1.00 14.71	H	N
	ATOM	1574		LEU H	68	11.662	15.368	4. 341	1.00 14.94	H	C
	ATOM	1575		LEU H	68	10.368	14.648		1.00 14.41	H	C
	ATOM	1576	0	LEU H	68	9.639	14. 144	3.888	1.00 15.50	H	0
20	ATOM	1577		LEU H	68	11.409	16.881	4. 282	1.00 11.00	Н	· C
	ATOM	1578		LEU H	68	12.589	17.836	4.542	1.00 14.28	H	C
	ATOM	1579		LEU H	68	13. 204	17.495	5.901	1.00 14.52	H	C
	ATOM	1580		LEU H	68	13.645	17.729	3.445	1.00 12.56	Н	С
	ATOM	1581	N	GLY H	69	10.098	14.593	6.047	1.00 13.97	Н	N
05	ATOM	1582	CA	GLY H	69	8.890	13.951	6.547	1.00 13.77	Н	C
25	ATOM	1583	C	GLY H	69	8.913	12.438	6.465	1.00 17.11	H	C
	ATOM	1584	0	GLY H	69	7.886	11.774	6.637	1.00 17.76	Н.	. 0
	ATOM	1585	N	GLU H	70	10.096	11.889	6.211	1.00 16.90	H	N
	ATOM	1586		GLU H	70	10.275	10.454	6.101	1.00 16.57	Н	C
	ATOM	1587	C	GLU H	70	10.245	9.800	7.491	1.00 16.50	Н	C
30	ATOM	1588	O CB	GLU H	70	10.567	10.437	8.494	1.00 15.98	H	0
	ATOM ATOM	1589 1590	CG	GLU H	70 70	11.602 11.865	10. 174 8. 726	5.387 5.080	1.00 19.03	H	C
	ATOM	1591	CD	GLU H	70	10.684	8.066	4.398	1.00 22.67 1.00 25.35	H H	C
	ATOM	1592		GLU H	70	10.563	8. 141	3.189	1.00 23.33	л Н	C
	ATOM	1593		GLU H	70	9.892	7.495	5.098	1.00 23.25	н	0
35	ATOM	1594	N	HIS H	71	9.813	8. 544	7.546	1.00 12.74	H	N
	ATOM	1595	CA	HIS H	71	9. 761	7. 801	8.799	1.00 13.45	H	C
	ATOM	1596	Č	HIS H	71.	10.080	6.321	8.586	1.00 12.69	H	Č
	ATOM	1597	ŏ	HIS H	71	11.080	5.815	9.091	1.00 11.97	Н	0
	ATOM	1598		HIS H		8.380	7.919	9.455	1.00 12.65	H	Č
40	ATOM	1599	CG	HIS H	71	8. 219	7.045	10.659	1.00 14.72	H	Č
	ATOM	1600		HIS H	71	8.933	7. 245	11.821	1.00 15.86	H	N
	ATOM	1601		HIS H	71	7.488	5.922	10.857	1.00 15.60	H	Č
	ATOM	1602		HIS H		8,652			1.00 15.50	H	č
	ATOM	1603		HIS H	71	7.778	5.465	12.119	1.00 16.25	Ĥ	Ň
45	ATOM	1604	N	ASP H	72	9.214	5.642	7.836	1.00 12.78	H	N
	ATOM	1605		ASP H	72	9.340	4. 213	7.543	1.00 14.80	H	Ĉ
	MOTA	1606	C	ASP H	72	9.726	4.058	6.078	1.00 14.88	H	Č
	ATOM	1607	0	ASP H	72	8.931	4. 350	5. 200	1.00 14.21	H	ŏ
	ATOM	1608	CB	ASP H	72	7.988	3.539	7.798	1.00 17.28	H	Č
50	ATOM	1609		ASP H	72	8.012	2.046	7.555	1.00 20.88	H	Č
	ATOM	1610		ASP H	72	8.887	1.559	6.837	1.00 18.95	H	ŏ
	ATOM	1611		ASP H	72	7. 134	1.377	8. 082	1.00 22.75	H	ŏ
	MOTA	1612	N	LEU H	73	10.936	3.587	5.805	1.00 16.56	H	N
	ATOM	1613	CA	LEU H	73	11.385	3.443	4. 423	1.00 16.35	Ĥ	Ċ
55	ATOM	1614	С	LEU H	73	10.650	2.377	3.596	1.00 18.34	H	č
	ATOM	1615	0	LEU H		10.858	2.282	2.385	1.00 19.52	H	ŏ
											-

	ATOM	1616		LEU H	73		2.895	3. 171	4.397	1.00 16.7		i C
5	ATOM	1617		LEU H	73		3.769	4.110	5.247	1.00 17.8		
	ATOM	1618		LEU H	73		5. 230	3.720	5.100	1.00 15.7		
	ATOM	1619		LEU H	73		3. 555	5. 549	4.823	1.00 16.1		1. C
	MOTA	1620	N	SER H	74		9.790	1.590	4.234	1.00 19.1		i N
	MOTA	1621	CA	SER H	74	ć	0.043	0.548	3.531	1.00 21.6	2 F	i C
	ATOM	1622	C	SER H	74	7	7.575	0.880	3.242	1.00 23.3	3 F	ł C
10	ATOM	1623	0	SER H	74	6	3.867	0.078	2.625	1.00 22.3	3 F	1 O
	MOTA	1624	CB	SER H	74	ć	3.114	-0.769	4.308	1.00 20.4	5 F	i c
	ATOM	1625	0G	SER H	74		3.439	-0.675	5.547	1.00 22.8		
	ATOM	1626	N	GLU H	75		7.117	2.053	3.677	1.00 22.5		
	ATOM	1627	CA	GLU H	75		5.732	2.466	3.449	1.00 24.7		
15	MOTA	1628	C	GLU H	75		5.688	3.934	3.040	1.00 25.1		
	ATOM	1629	Ŏ	GLU H	75		5. 318	4.749	3.678	1.00 25.8		
	ATOM	1630	СВ	GLU H	75		4.911	2.301	4. 730	1.00 26.5		
	ATOM	1631	CG	GLU H	75		1.714	0.873	5. 205	1.00 31.8		
	ATOM	1632	CD	GLU H	75		3. 839	0.065	4.270	1.00 33.6		
20	ATOM	1633		GLU H	75		2.831	0.603	3.814	1.00 35.9		
20	ATOM	1634		GLU H	75		1.162	-1.102	4.013	1.00 36.0		
	ATOM	1635	N	HIS H	76		4. 934	4. 275	2.000	1.00 24.9		
	ATOM	1636		HIS H	76		4.830	5.668	1.558	1.00 24.2		
	ATOM	1637	C.	HIS H	76		3. 569	6.338	2.106	1.00 23.3		
	ATOM	1638	ŏ	HIS H	76		2.514	5.706	2.166	1.00 23.3		
25	ATOM	1639	CB	HIS H	76		1.760	5.749	0.026	1.00 25.8		
	ATOM	1640	CG	HIS H	76		5.056	5.469	-0.671	1.00 29.2		
	MOTA	1641		HIS H	76		7.159	6.288	-0.554	1.00 28.5		
	ATOM	1642		HIS H	76		6.408	4.488	-1.538	1.00 28.8		
	ATOM	1643		HIS H	76		3. 132	5.827	-1.321	1.00 29.5		
30	ATOM	1644		HIS H	76		7.701 .		-1.929	1.00 28.1		
	ATOM	1645	N	ASP H	77		3.677	7.607	2.510	1.00 20.7		
	ATOM	1646		ASP H	77		2. 509	8.359	2.973	1.00 19.3		
	MOTA	1647	C	ASP H	77		2.621	9.817	2.533	1.00 18.6		
	ATOM	1648	Ö	ASP H	77		3.651	10.230	2.004	1.00 21.6		
0.5	ATOM	1649	CB	ASP H	77		2. 299	8. 257	4.499	1.00 18.1		
35	ATOM	1650	CG	ASP H	77		3.384	8.946	5.308	1.00 19.2		
	ATOM	1651		ASP H	77		3. 954	9.946	4.848	1.00 19.0		
	ATOM	1652		ASP H	77		3. 635	8.490	6.418	1.00 17.0		
	ATOM	1653	N N	GLY H	78		1.566	10.592	2.755	1.00 18.1		
	ATOM	1654	CA	GLY H	78		1.545	11.980	2. 326	1.00 18.1		
40	MOTA	1655	C	GLY H	78		2.371	13.025	3.054	1.00 18.1		
	ATOM	1656	Ö	GLY H	78		2.352	14.197	2.675	1.00 16.0		
	ATOM	1657	N	ASP H	79		3.095	12.625	4.091	1.00 10.0		
	ATOM	1658	CA	ASP H	79		3.910	13.580		1.00 18.7		
	MOTA			ASP H	79		5. 297	13. 730	4. 227			
45	ATOM	1660	,C 0	ASP H	79		5. 29 i	14.676		1.00 18.3		
	ATOM	1661	CB	ASP H					4.543	1.00 18.6		
					79		1.034	13.164	6.295	1.00 19.5		
	ATOM	1662	CG	ASP H	79 70		2.696	13.111	6.996	1.00 21.1		
	MOTA	1663		ASP H	79 70		1.909	14.047	6.832	1.00 22.8		
	ATOM	1664		ASP H	79		2.450	12.148	7.704	1.00 20.2		
50	ATOM	1665	N	GLU H	80		5.685	12.799	3.364	1.00 19.1		
	MOTA	1666	CA	GLU H	80		7.003	12.873	2.758	1.00 20.2		
	ATOM	1667	C	GLU H	80		7.062	13.811	1.563	1.00 19.6		
	ATOM	1668	0	GLU H	80		5.185	13.815	0.699	1.00 19.1	_	
	ATOM	1669	CB	GLU H	80		7. 491	11.472	2. 380	1.00 22.0		
55	ATOM	1670	CG	GLU H	80		5.528	10.659	1.571	1.00 29.3		
	ATOM	1671	CD	GLU H	80	ŧ	6.895	9.188	1.567	1.00 29.9	0 F	C C

	MOTA MOTA	1672 1673	0E2	GLU H		6.763 7.315	8. 547 8. 707	2. 597 0. 544	1.00 27.84 1.00 32.19	Н Н	0
5	ATOM	1674	N CA	GLN H		8.110	14.625	1.541	1.00 18.82	H	N.
	ATOM ATOM	1675 1676	CA C	GLN H		8. 324 9. 723	15. 592 15. 373	0. 482 -0. 065	1.00 17.15 1.00 18.57	Н	C C
	ATOM	1677	Õ	GLN H		10.689	15.277	0.691	1.00 18.31	H	Ö
	ATOM	1678		GLN H		8. 202	17.004	1.037	1.00 16.07	H	Č
10	ATOM	1679		GLN H		6.873	17.277	1.709	1.00 15.69	H	č
70	MOTA	1680	CD	GLN H		6.792	18.684		1.00 13.45	H	C
	ATOM	1581		GLN H		6.982	19.630	1.493	1.00 12.22	H	0
	ATOM	1682		GLN H		6.516	18.828	3.530	1.00 12.50	Н	N
	MOTA	1683	N	SER H		9.829	15.313	-1.384	1.00 17.31	H	N
15	ATOM ATOM	1684 1685	CA	SER H		11.105 11.576	15.072 16.299	-2.029 -2.799	1.00 18.12 1.00 17.87	H	Ç
	MOTA	1686	C 0	SER H		10.778	16.299	-2.199	1.00 17.57	H H	C
	ATOM	1687	CB	SER H		10. 118	13.867	-2.960	1.00 16.29	H	C
	ATOM	1688	0G	SER H		12. 222	13.446	-3.436	1.00 28.10	H	ŏ
	ATOM	1689	N	ARG H		12.878	16.563	-2.750	1.00 18.40	H	N
20	ATOM	1690	CA	ARG H		13.447	17.717	-3.443	1.00 18.45	Н	C
	ATOM	1691	C	ARG H		14.830	17.401	-3.998	1.00 20.13	H	C
	ATOM	1692	0	ARG H		15.629	16.715	-3.354	1.00 21.06	H	0
	ATOM ATOM	1693 1694	CB	ARG H		13.572 12.253	18.906 19.439	-2.486	1.00 18.69 1.00 19.20	H	C
25	ATOM	1695	CG CD	ARG H			20. 319	-1.927 -2.947	1.00 19.20	H H	C C
	ATOM	1696	NE	ARG H		10.393	21.010	-2.378	1.00 14.15	H	N.
	ATOM	1697	CZ	ARG H		9.214	20.444	-2.131	1.00 16.58	H	Ċ
	ATOM	1698	NH1	ARG H	83	9.004	19.159	-2.401	1.00 13.28	H	N
	ATOM	1699		ARG H		8. 241	21.170	-1.603	1.00 16.69	H	N
30	ATOM	1700	N	ARG H			17. 902	-5.194	1.00 19.27	H	N
	ATOM ATOM	1701	CA C	ARG H		16.426	17.697	-5.788	1.00 20.61	H	C
	ATOM	1702 1703	0	ARG H			18.641 19.746	-5.075 -4.689	1.00 18.87 1.00 16.00	H H	. C
	ATOM	1704	СВ	ARG H			18.037	-7. 283	1.00 23.54	H	C 0
35	ATOM	1705	CG	ARG H			17.186	-8.127	1.00 29.19	H	č
33	ATOM	1706	CD	ARG H			17.288	-9.604	1.00 34.52	H	Č
	ATOM	1707	NE	ARG H				-10.451	1.00 40.99	H	N
	ATOM	1708	CZ	ARG H				-11.733	1.00 44.71	H	C
	MOTA	1709		ARG H				-12.337	1.00 46.58	H	N
40	ATOM ATOM	1710 1711	Nn Z	ARG H			18. 203	-12.417 -4.888	1.00 46.99 1.00 17.74	· H	N
	ATOM	1712	CA	VAL H			19.049	-4.243	1.00 16.85	H	N C
	ATOM	1713	C	VAL H		20. 229	19.920	-5.341	1.00 17.99	H	č
	ATOM	1714	0	VAL H					1.00 17.19	H	Ō.
	ATOM	1715		VAL H		20.732	18.207	-3.557	1.00 16.36	H	С
45	MOTA	1716		VAL H			19.123	-2.907	1.00 14.96	Н	C
	ATOM	1717		VAL H			17. 289	-2.507	1.00 13.28	Н	C
	ATOM	1718	N	ALA H			21.227	-5. 251	1.00 18.63	H	N
	MOTA MOTA	1719 1720	CA	ALA H			22.181	-6. 231	1.00 18.54	H	C
50	ATOM	1721	C 0	ALA H			22. 513 22. 847	-6.000 -6.942	1.00 19.52	H	C
	ATOM	1722	CB	ALA H			23.471	-6. 193	1.00 20.09 1.00 16.39	H H	0 C
	MOTA	1723	N	GLN F			22. 426	-4.752	1.00 18.48	H	N
	ATOM	1724	CA	GLN H			22. 739	-4.443	1.00 19.14	H	Ċ
	ATOM	1725	C	GLN F	87	24.330	22.107	-3.149	1.00 17.00	H	Č
55	MOTA	1726	0	GLN H			22.030	-2.149	1.00 17.11	Н	0
	ATOM	1727	CB	GLN H	87	23.986	24. 259	-4.376	1.00 20.74	Н	C

5	ATOM ATOM ATOM ATOM ATOM ATOM	1728 1729 1730 1731 1732 1733	CD OE1 NE2 N CA	GLN H GLN H GLN H GLN H VAL H VAL H	87 87 87 87 88 88	25. 425 25. 587 25. 068 26. 305 25. 574 26. 239	24. 729 26. 134 27. 099 26. 250 21. 645 21. 047	-4.330 -4.886 -4.328 -5.999 -3.196 -2.047	1.00 23.25 1.00 28.67 1.00 31.99 1.00 30.93 1.00 14.74 1.00 14.64	Н Н Н Н Н	C C O N N C
10	ATOM ATOM ATOM ATOM ATOM	1734 1735 1736 1737 1738	O CB CG1 CG2	VAL H VAL H VAL H VAL H	88 88 88 88	27. 465 28. 404 26. 705 27. 474 25. 506	19.606 19.046 18.726	-1.772 -2.562 -2.347 -1.155 -2.680	1.00 15.48 1.00 17.00 1.00 14.89 1.00 14.11 1.00 14.41	H H H H	00000;
15	ATOM ATOM ATOM ATOM ATOM ATOM	1739 1740 1741 1742 1743 1744	N CA C O CB	ILE H ILE H ILE H ILE H ILE H ILE H	89 89 89 89 89	27. 443 28. 545 29. 390 28. 897 28. 030 27. 072	22. 646 23. 523 22. 884 22. 549 24. 884 25. 485	-0.662 -0.300 0.794 1.876 0.190 -0.847	1.00 15.46 1.00 14.42 1.00 15.81 1.00 16.16 1.00 13.77 1.00 14.85	Н Н Н Н Н	N C C O C C
20	ATOM ATOM ATOM ATOM ATOM	1745 1746 1747 1748 1749	CG2	ILE H ILE H ILE H ILE H ILE H	89 89 90 90	29. 209 26. 360 30. 674 31. 619 32. 777	25. 829 26. 755 22. 724 22. 110 23. 066	0. 413 -0. 384 0. 500 1. 421 1. 691	1.00 14.01 1.00 13.34 1.00 15.61 1.00 15.21 1.00 15.60	н Н Н Н Н	000000
25	ATOM ATOM ATOM ATOM ATOM	1750 1751 1752 1753 1754	O CB CG1 CG2	ILE H ILE H ILE H ILE H	90 90 90 90 90	33. 197 32. 151 31. 018 33. 339 31. 365	23. 804 20. 789 19. 759 20. 254 18. 486	0.802 0.802 0.760 1.590 0.005	1.00 16.74 1.00 15.99 1.00 15.68 1.00 17.02 1.00 19.51	н н н н	000000
30	ATOM ATOM ATOM ATOM ATOM	1755 1756 1757 1758 1759	N CA C O CB	PRO H PRO H PRO H PRO H PRO H	91 91 91 91 91	33. 297 34. 415 35. 627 35. 917 34. 692	23. 081 23. 971 23. 649 22. 480 23. 657	2. 931 3. 259 2. 384 2. 120 4. 728	1.00 16.87 1.00 14.80 1.00 15.40 1.00 12.85 1.00 15.20	. Н Н Н Н Н	N C C C C C C
35	ATOM ATOM ATOM ATOM	1760 1761 1762 1763 1764	CG	PRO H PRO H SER H SER H SER H	91 91 92 92 92	33. 360 32. 867 36. 336 37. 521 38. 598	23. 185 22. 319 24. 681 24. 471 23. 704	5. 241 4. 118 1. 939 1. 114 1. 888	1.00 16.50 1.00 15.23 1.00 14.94 1.00 15.06 1.00 14.20	H H H H H	C C N C C
40	MOTA MOTA MOTA MOTA	1765 1766 1767 1768 1769	O CB OG N CA	SER H SER H SER H THR H	92 92 92 93 93	39. 489 38. 084 37. 144 38. 497 39. 461	23. 117 25. 813 26. 502 23. 701 23. 020	1. 289 0. 643 -0. 166 3. 214 4. 072	1.00 15.42 1.00 14.89 1.00 15.02 1.00 12.98 1.00 13.34	н Н Н Н	0 C 0 N C
45	MOTA MOTA MOTA MOTA MOTA	1770 1771 1772 1773 1774	C O CB OG1	THR H THR H THR H THR H THR H	93 93 93 93 93	39. 182 39. 994 39. 556 38. 249 40. 133	21. 531 20. 840 23. 716 23. 788 25. 140	4. 309 4. 916 5. 448 6. 033 5. 302	1.00 14.82 1.00 15.40 1.00 14.87 1.00 11.15 1.00 11.43	н н н н	0 0 0
50	ATOM ATOM ATOM ATOM ATOM	1775 1776 1777 1778 1779	N CA C O CB	TYR H TYR H TYR H TYR H TYR H	94 94 94 94 94	38. 040 37. 724 38. 482 38. 558 36. 220	21. 033 19. 618 18. 783 19. 151 19. 366	3. 847 4. 024 2. 989 1. 822 3. 862	1.00 14.91 1.00 14.16 1.00 14.17 1.00 14.26 1.00 12.83	Н Н Н Н	N C C O C
55	MOTA MOTA MOTA MOTA	1780 1781 1782 1783	CG CD1 CD2	TYR H TYR H TYR H TYR H	94 94 94 94	35. 874 35. 851 35. 656 35. 629	17. 888 17. 101 17. 264 15. 728	3. 785 4. 931 2. 552 4. 858	1.00 11.02 1.00 9.72 1.00 11.67 1.00 8.62	H H H H	C C C

	MOTA	1784	CE2	TYR H	94	35. 433	15.888	2.467	1.00 8.29	Н	Ċ
	MOTA	1785	CZ	TYR H	94	35.424	15.130	3.631	1.00 9.43	H	C
5	MOTA	1786	ОН	TYR H	94	35. 222	13.773	3.574	1.00 11.83	H	0
	MOTA	1787	N	VAL H	95	39.048	17.664	3.423	1.00 13.98	H	N
	MOTA	1788	CA	VAL H	95		.16.775	2.519	1.00 13.14	Н	C
	MOTA	1789	C	VAL H	95 05	39.041	15.431	2.436	1.00 12.82	H	C
	MOTA Mota	1790 1791	O CB	VAL H	95 95	38. 845 41. 219	14.761 16.517	3. 444 3. 006	1.00 13.46 1.00 11.88	H H	C 0
10	MOTA	1792		VAL H	95	41.922	15:540	2.062	1.00 10.92	H	Č
	MOTA	1793.		VAL H	95	41.992	17.826	3.065	1.00 11.07	H	č
	MOTA	1794	N	PRO H	96	38.624	15.025	1.229	1.00 12.92	Н	N
	ATOM	1795	CA	PRO H	96	37.922	13.749	1.062	1.00 11.72	H	С
15	MOTA	1796	С	PRO H	96.	38.730	12.604	1.675	1.00 13.96	H	C
	MOTA	1797	0	PRO H	96	39.957	12.548	1.525	1.00 15.05	H	0
	MOTA	1798	CB	PRO H	96	37.809	13.620	-0.453	1.00 9.89	H	C
	ATOM	1799	CG	PRO H	96	37.671	15.048	-0.885	1.00 12.78	H	C
	MOTA	1800	CD	PRO H	96 07	38.742	15.730	-0.060	1.00 12.59	H	C
20	MOTA MOTA	1801 1802	N CA	GLY H	97 97	38. 038 38. 698	11.697 10.574	2.354 2.986	1.00 12.86 1.00 13.45	H H	N C
	MOTA	1803	C	GLY H	97	39.107	10.871	4.418	1.00 15.49	H	Ĉ
	ATOM	1804	ŏ	GLY H	97	39.539	9.967	5. 131	1.00 15.13	Н	ő
	ATOM	1805	N	THR H	98		12.127	4.846	1.00 15.09	H	N
	ATOM	1806	CA	THR H	98		12.509	6.202	1.00 15.44	H	С
25	ATOM	1807	С	THR H	98	38. 173	12.924	7.082	1.00 15.39	H	С
	ATOM	1808	0_	THR H	98	37.014	12.798	6.679	1.00 15.40	H	0
	MOTA	1809	CB	THR H	98	40.417	13.631	6.185	1.00 16.79	H	C
	MOTA	1810	OG1	THR H	98	39.864	14.813	5.605	1.00 16.68	H	. 0
30	ATOM ATOM	1811 1812	N N	THR H	98 99	41.631 38.469	13. 193 13. 433	5. 375 8. 275	1.00 17.03 1.00 14.02	H	C N
30	ATOM	1813	CA	THR H	99	37. 429	13. 783	9. 236	1.00 14.02	H	C
	ATOM	1814	C	THR H	99	37. 206	15. 251	9.633	1.00 14.00	H	Č
	ATOM	1815	Ŏ	THR H	99	36. 111	15.605	10.086	1.00 11.58	H	ŏ
	ATOM	1816	СВ	THR H	99	37.643	12.963	10.532	1.00 16.74		č
35	MOTA	1817	0G1	THR H	99	38.973	13.187	11.022	1.00 17.73	H	0
	MOTA	1818		THR H	99	37.468	11.465	10.265	1.00 15.58	H	C
	ATOM	1819	N	ASN H		38. 219	16.102	9.473	1.00 11.56	H	N
	ATOM	1820	CA	ASN H		38.097	17.512	9.859	1.00 11.57	H	C
	MOTA MOTA	1821 1822	C 0	ASN H		37. 189 37. 165	18.315 18.086	8.927 7.719	1.00 9.66 1.00 11.07	H H	C 0
40	ATOM	1823	СВ	ASN H		39. 485	18. 181	9. 911	1.00 11.01	H	C
	ATOM	1824	CG	ASN H		39. 576	19. 288	10.966	1.00 12.61	H	č
	ATOM	1825	ODI	ASN H		40.498	20.112	10.939	1.00 15.96	H	Ö
	ATOM	1826	ND2	ASN H	100	38. 633	19.300	11.908	1.00 7.34	H	N
4.5	ATOM	1827	N	HIS H		36. 455	19.264	9.500	1.00 9.02	H	N
45	ATOM	1828	CA	HIS H		35. 552	20.124	8.738	1.00 10.03	H	C
	ATOM	1829	C	HIS H		34.503	19. 292	8.017	1.00 9.38	H	C
	ATOM	1830	0	HIS H		34. 188	19.544	6.857	1.00 8.47	H	0
	ATOM	1831	CB	HIS H		36.347	20.953	7.724	1.00 11.39	H	C
50	ATOM ATOM	1832 1833		HIS H		37. 353 36. 997	21.868 22.895	8.352 9.200	1.00 16.40 1.00 18.05	H H	C
-	ATOM	1834		HIS H		38. 705	21.882	8. 293 ·		н Н	N C
	ATOM	1835		HIS H		38. 086	23.501	9.639	1.00 11.22	H	Č
	ATOM	1836		HIS H		39. 137	22.906	9.103	1.00 17.47	H	N
	ATOM	1837	N	ASP H		33.958	18.305	8.720	1.00 8.97	Н	N
55	ATOM	1838	CA	ASP H	102	32.967	17.407	8.148	1.00 10.95	H	C
	ATOM	1839	C	ASP H	102	31.567	18.022	8.153	1.00 10.99	H	C

	ATOM	1840	0	ASP H	102	30. 699	17.621	8.935	1.00 10.41	. Н	0
	ATOM	1841		ASP H		32.971	16.092	8.928	1.00 9.16	·H	C
5	ATOM	1842		ASP H		32.360	14.959	8.147	1.00 12.94	H	Č
	ATOM	1843		ASP H		32.039	15.173	6.976	1.00 11.04	H	Ō
	ATOM	1844		ASP H		32. 216	13.870	8.703	1.00 12.25	H	ŏ
	ATOM	1845	N	ILE H		31. 351	18.993	7. 271	1.00 10.37	H	N
	ATOM	1846		ILE H		30.061	19.672	7. 192	1.00 8.57	H	Č
											C
10	ATOM	1847	C	ILE H		29. 730	20.071	5.760	1.00 9.30	H	
	ATOM	1848	0	ILE H		30. 621	20.374	4.962	1.00 8.92	H	0
	ATOM	1849		ILE H		30.058	20.941	8.084	1.00 10.09	H	C ·
	MOTA	1850		ILE H		28. 677	21.607	8.072	1.00 7.85	H	C
	MOTA	1851		ILE H		31.120	21.923	7.591	1.00 9.32	H	C
15	ATOM	1852		ILE H		28. 502	22.665	9.152	1.00 11.15	H	C
	ATOM.	1853	N	ALA H		28. 442	20.055	5.437	1.00 9.70	. Н	N
	MOTA	1854		ALA H		27.970	20.445	4.114	1.00 10.78	H	C
	ATOM	1855	C	ALA H		26.639	21.173	4.248	1.00 12.66	H	C
	ATOM	1856	0	ALA H		25. 789	20.804	5. 063	1.00 11.86	H	0
20	MOTA	1857		ALA H		27.807	19.217	3.216	1.00 7.13	H	С
20	ATOM	1858		LEU H		26.482	22.226	3.454	1.00 14.56	H	N
	ATOM	1859		LEU H		25. 258	23.016	3.426	1.00 12.91	H	C
	MOTA	1860	С	LEU H	105	24.640	22.753	2.057	1.00 12.76	H	C
	ATOM	1861 -	0	LEU H	105	25. 243	23.065	1.029	1.00 12.63	H	0
	ATOM	1862	CB	LEU H	105	25. 580	24.504	3.576	1.00 12.35	H	С
25	MOTA	1863	CG	LEU H	105	24.389	25.466	3.494	1.00 12.09	H	С
	ATOM	1864	CD1	LEU H	105	23.413	25.197	4.641	1.00 9.27	H	С
	MOTA	1865		LEU H		24.903	26.892	3.560	1.00 9.24	H	C
	ATOM	1866	N	LEU H		23. 445	22.172	2.046	1.00 12.35	H	N
	ATOM	1867		LEU H		22. 758	21.837	0.803	1.00 11.43	H	C
30	MOTA	1868	С	LEU H		21.564	22.748	0.515	1.00 12.98	H.	C
	ATOM	1869	0	LEU H		20. 726	22.978	1.384	1.00 12.54	H	0
	MOTA	1870	CB	LEU H		22. 285	20.380	0.859	1.00 12.53	H	C
	MOTA	1871	CG	LEU H		23. 263	19.202	0.659	1.00 14.01	H	Č
	ATOM	1872		LEU H		24.503	19.322	1.539	1.00 12.26	H	Č
0-	MOTA	1873		LEU H		22.519	17.906	0.983	1.00 12.82	H	Č
35	ATOM	1874	N	ARG H		21.492	23. 278	-0.703	1.00 14.02	H	N
	ATOM	1875	CA	ARG H		20. 370	24. 128	-1.077	1.00 16.64	H	Ĉ
	ATOM	1876	C	ARG H		19.397	23. 266	-1.873	1.00 16.72	Ħ	Č
	ATOM	1877	ŏ	ARG H		19. 791	22. 591	-2.819	1.00 18.56	H	ŏ
	ATOM	1878	ČB	ARG H		20. 822	25.313	-1.942	1.00 18.34	H	č
40	ATOM .	1879	CG	ARG H		19.754	26.410	-2.081	1.00 20.80	H	č
	ATOM	1880	CD	ARG H		19.992	27. 301	-3.302	1.00 26.37	H	č
	ATOM	1881	NE	ARG H		21. 234	28.069	-3. 224	1.00 29.38	H	N
	ATOM	1882	CZ	ARG H		21.321	29. 337	-2.827	1.00 30.69	Ĥ	Ċ
	ATOM	1883		ARG H			30.007	-2.463	1.00 31.39	Ĥ.	Ŋ
45	ATOM	1884		ARG H		22. 503	29.940	-2.798	1.00 29.68	H	N
	ATOM	1885	N	LEU H		18. 131	23. 280	-1.480	1.00 16.62	H	N
	ATOM	1886	CA	LEU H		17.114	22.500	-2.170	1.00 17.28	H	Ċ
	ATOM	1887	C	LEU H		16.608	23. 281	-3.385	1.00 11.23		
	ATOM	1888		LEU H						H	C
50	ATOM	1889	O CB	LEU H		16.532 15.962	24.510 22.188	-3.349 -1.208	1.00 18.26 1.00 15.65	H	0
50	ATOM	1890	CG	LEU H		16.352	21.391			H	C
	ATOM			LEU H				0.050	1.00 14.18	H	C
		1891				15. 134	21. 191	0.953	1.00 10.37	H	C
	ATOM	1892		LEU H		16.942	20.041	-0.361	1.00 11.86	H	C
	ATOM	1893	N	HIS H		16.273	22.568	-4.457	1.00 20.64	H	N
55	ATOM	1894	CA	HIS H		15.790	23. 205	-5.683	1.00 22.07	H	C
	ATOM	1895	С	HIS H	109	14.546	24.054	-5.430	1.00 21.71	Н	С

5	ATOM ATOM ATOM ATOM ATOM ATOM	1896 1897 1898 1899 1900 1901	CD2 CE1	HIS H HIS H HIS H HIS H HIS H	109 109 109 109 109	14. 3 15. 4 15. 0 13. 9 15. 5	67 22.1 22 22.7 21 22.2 25 23.7 66 22.9	55 -6.74 42 -8.04 79 -8.73 62 -8.78 89 -9.84	6 1.00 8 1.00 8 1.00 4 1.00 2 1.00	21.72 24.90 28.69 31.80 30.89 31.18	-	H H H H H	O C C N C C
10	ATOM ATOM ATOM ATOM ATOM	1902 1903 1904 1905 1906	NE2 N CA C	HIS H GLN H GLN H GLN H GLN H	110 110 110 110	14. 7. 13. 6. 12. 4. 12. 2 12. 5.	47 23.5 30 24.2 19 24.0 66 23.0	41 -4.60 52 -4.25 59 -2.76 14 -2.21	3 1.00 8 1.00 6 1.00 0 1.00	30.63 19.28 21.37 19.91 19.14]]]	H H H H	N N C C O
15	ATOM ATOM ATOM ATOM ATOM	1907 1908 1909 1910 1911		GLN H GLN H GLN H GLN H	110 110 110	11. 2 11. 3 11. 1 11. 4 10. 7	40 23.8 88 25.2 34 25.5	14 -6.55 45 -7.07 05 -8.25	1 1.00 5 1.00 4 1.00	24. 70 33. 11 37. 50 42. 27 40. 37	1 1 1	H H H H	CCCON
20	MOTA MOTA MOTA MOTA MOTA	1912 1913 1914 1915 1916	N CA C O CB	PRO H PRO H PRO H PRO H PRO H	111 111 111	11. 64 11. 44 10. 44 9. 44 10. 83	06 24.9 09 23.8 72 23.6	59 -0.65 69 -0.30 15 -1.05	7 1.00 6 1.00 6 1.00	17.61 18.39 18.13 18.29 18.48]]]	H H H H H	N C C C C C C
25	MOTA MOTA MOTA MOTA MOTA	1917 1918 1919 1920 1921	CG CD N CA C	PRO H PRO H VAL H VAL H VAL H	111 112 112 112	10. 1: 11. 0: 10. 6: 9. 7: 8. 5:	91 26.3 24 23.2 00 22.1 73 22.9	19 -2.63 15 0.83 89 1.28 15 2.01	2 1.00 1 1.00 6 1.00 3 1.00	17. 21 15. 77 17. 13 17. 69 16. 47]]]	H H H H	C N C C
30	MOTA MOTA MOTA MOTA MOTA	1922 1923 1924 1925 1926		VAL H VAL H VAL H VAL H	112 112 112 113	8. 70 10. 3 11. 4 10. 99 7. 4	71 21.1 12 20.3 96 21.9 53 22.2	95 2. 26 74 1. 52 45 3. 41 22 2. 22	1 1.00 6 1.00 9 1.00 8 1.00	15.80 17.46 19.26 15.83 15.47]]]	H H H H H	0 C C N
35	MOTA MOTA MOTA MOTA MOTA	1927 1928 1929 1930 1931		VAL H VAL H VAL H VAL H	113 113 113 113	6. 3 6. 3 6. 5 4. 9 3. 8	95 22.4 42 21.2 83 22.2	59 4.39 90 4.75 47 2.35	4 1.00 9 1.00 3 1.00	13. 75 14. 36 12. 82 13. 88 10. 56]]]	H H H H	CCOCC
40	MOTA MOTA MOTA MOTA	1932 1933 1934 1935 1936	CG2 N CA C	VAL H LEU H LEU H LEU H	114 114 114	4, 99 6, 30 6, 30 5, 00 3, 90	05 23.4 63 23.1 17 22.6	67 5.25 99 6.67 32 7.12	3 1.00 9 1.00 2 1.00	12.19 13.94 15.06 15.96 15.97]]]	H H H H	CNCCO
45	MOTA MOTA MOTA MOTA MOTA	1937 1938 1939 1940 1941	CD1	LEU H LEU H LEU H LEU H THR H	114 114 114 114	6. 7 8. 0 8. 4 9. 1 5. 0	10 24.4 90 25.0 06 26.1 73 23.9	75 7.45 81 7.13 94 8.12 99 7.19	4 1.00 5 1.00 9 1.00 4 1.00	13.15]]]	H H H	C C C C
50	MOTA MOTA MOTA MOTA MOTA	1942 1943 1944 1945 1946	CA C O CB	THR H THR H THR H THR H THR H	115 115 115 115	3. 84 4. 03 5. 13 3. 44 4. 43	46 20.7 87 20.2 58 20.4 52 19.6	91 8.19 19 9.59 04 10.16 27 7.26	7 1.00 1 1.00 8 1.00 8 1.00	15. 14 14. 81 15. 34 14. 99 15. 74	1 1 1	H H H H H	N C C O C O
55	ATOM ATOM ATOM ATOM ATOM	1947 1948 1949 1950 1951		THR H ASP H ASP H ASP H	115 116 116 116	3. 4 3. 0 3. 2 4. 3 4. 9	19 20.0 94 19.5 44 18.9 59 17.8	84 5.80 23 10.13 04 11.43 49 11.41	5 1.00 0 1.00 7 1.00 6 1.00	13. 98 15. 45 16. 55 17. 00 16. 90		ł ł ł	C N C C

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1952 1953 1954 1955 1956 1957 1958 1959	CG AS. OD1 AS OD2 AS N HI CA HI C HI	P H 116 P H 116 P H 116 P H 116 S H 117 S H 117 S H 117 S H 117	-	1. 934 0. 866 1. 166 -0. 270 4. 687 5. 733 7. 041 8. 001	18. 244 19. 254 20. 431 18. 844 17. 326 16. 307 16. 802 16. 040	11. 883 12. 283 12. 388 12. 496 10. 233 10. 105 9. 492 9. 372	1.00 18.41 1.00 20.47 1.00 20.75 1.00 23.70 1.00 15.90 1.00 16.55 1.00 16.30 1.00 15.70	H H H H H	C C C C
10	ATOM ATOM ATOM ATOM MOTA	1960 1961 1962 1963 1964	CB HI CG HI ND1 HI CD2 HI CE1 HI	S H 117 S H 117 S H 117 S H 117 S H 117		5. 217 4. 102 2. 808 4. 103 2. 059	15. 115 14. 384 14. 857 13. 259 14. 056	9. 297 9. 970 9. 986 10. 723 10. 723	1.00 16.16 1.00 19.31 1.00 18.50 1.00 17.50 1.00 21.07	H H H H	C C C C
15	ATOM ATOM ATOM ATOM ATOM	1965 1966 1967 1968 1969	N VA CA VA C VA O VA	S H 117 L H 118 L H 118 L H 118 L H 118		2. 821 7. 078 8. 276 8. 493 7. 784	13.080 18.072 18.655 20.041 20.984	11.182 9.103 8.511 9.095 8.762	1.00 20.92 1.00 15.64 1.00 14.14 1.00 14.78 1.00 14.27	H H H H	N C C C C C
20	ATOM MOTA MOTA MOTA MOTA ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975	CG1 VA CG2 VA N VA CA VA	L H 118 L H 118 L H 118 L H 119 L H 119 L H 119	ļ	8. 148 9. 381 7. 983 9. 486 9. 808 11. 329	18. 761 19. 463 17. 367 20. 147 21. 394 21. 501	6. 990 6. 413 6. 393 9. 970 10. 653 10. 766	1.00 14.64 1.00 12.73 1.00 12.56 1.00 15.25 1.00 13.86 1.00 14.17	H H H H H	C C N
25	ATOM ATOM ATOM ATOM ATOM	1976 1977 1978 1979 1980	O VA CB VA CG1 VA CG2 VA	L H 119 L H 119 L H 119 L H 119 O H 120	1	12. 017 9. 177 9. 570 7. 656 11. 875	20. 499 21. 390 22. 641 21. 285 22. 718	10.956 12.081 12.856 11.974 10.644	1.00 13.56 1.00 15.77 1.00 16.33 1.00 16.16 1.00 13.65	H H H H	0 C C C
30	ATOM ATOM ATOM ATOM ATOM	1981 1982 1983 1984 1985	C PR O PR CB PR CG PR	O H 120 O H 120 O H 120 O H 120 O H 120	1	13. 325 13. 817 13. 085 13. 573 12. 355	22. 881 22. 966 23. 398 24. 172 24. 978	10.746 12.189 13.086 9.981 10.315	1.00 12.56 1.00 13.87 1.00 11.70 1.00 12.13 1.00 15.18	H H H H	0 1 0 1 0
35	ATOM ATOM ATOM ATOM ATOM	1986 1987 1988 1989 1990	N LE CA LE C LE O LE	O H 120 U H 121 U H 121 U H 121 U H 121		11.230 15.054 15.688 16.359 16.826	23. 971 22. 521 22. 577 23. 944 24. 394	10. 203 12. 403 13. 713 13. 719 12. 676	1.00 14.55 1.00 12.25 1.00 11.41 1.00 12.91 1.00 12.87	H H H H	N C C C C C
40	ATOM ATOM ATOM ATOM ATOM	1991 1992 1993 1994 1995	CG LE CD1 LE CD2 LE N CY	U H 121 U H 121 U H 121 U H 121 S H 122		16. 747 17. 592 16. 692 18. 640 16. 409	21. 472 21. 380 21. 104 20. 259 24. 610	13.838 15.124 16.320 14.978 14.867	1.00 10.88 1.00 9.26 1.00 7.01 1.00 7.10 1.00 13.27	H H H H	C C C
45	ATOM ATOM ATOM ATOM ATOM	1996 1997 1998 1999 2000	C CY CB CY	S H 122 S H 122 S H 122 S H 122 S H 122		17. 034 18. 556 19. 202 16. 657 14. 893	25. 932 25. 919 25. 139 26. 684 26. 918	14. 925 14. 874 15. 571 16. 205 16. 573	1.00 15.06 1.00 15.31 1.00 16.54 1.00 15.03 1.00 16.60	H H H	C C C C C C C C C C C C C C C C C C C
50	ATOM ATOM ATOM ATOM ATOM	2001 2002 2003 2004 2005	CA LE C LE O LE CB LE	OU H 123 OU H 123 OU H 123 OU H 123 OU H 123		19. 119 20. 560 20. 747 20. 207 20. 991	26. 793 26. 955 28. 048 29. 149 27. 466	14.046 13.970 15.018 14.876 12.590	1.00 14.53 1.00 12.48 1.00 12.30 1.00 13.28 1.00 11.93	H H H H	N C C O C
55	MOTA MOTA	2006 2007		U H 123 U H 123		22. 513 23. 142	27.606 26.211	12.445 12.479	1.00 12.58 1.00 9.53	H	C

	ATOM	2008	CD2	LEU H		22.865	28.312	11.147	1.00 10.47	H	C
	ATOM	2009	N	PRO H		21.497	27.762	16.093	1.00 12.74	H	N
5	ATOM	2010	CA	PRO H		21.708	28.760	17.149	1.00 12.16	H	C
	ATOM	2011	C	PRO H	124	22.827	29.747	16.881	1.00 13.37	Н	. C
	ATOM	2012	0	PRO H		23. 639	29.535	15.984	1.00 13.97	H	0
	ATOM	2013	CB	PRO H	124	22.031	27.897	18.356	1.00 10.72	Н	C
	ATOM	2014	CG	PRO H		22.924	26.839	17.730	1.00 12.77	H	C
10	ATOM	2015	CD	PRO H		22, 205	26.505	16.408	1.00 10.59	H	C
	MOTA	2016	N	GLU H		22.860	30 . 831	17.657	1.00 13.81	Н	N
	ATOM.	2017	CA	GLU H		23.947	31.800	17.533	1.00 14.83	H	C
	ATOM	2018	С	GLU H		25. 145	31.082	18.149	1.00 14.18	H	C
	ATOM	2019	0	GLU H		24. 975	30. 182	18.972	1.00 13.59	H	0
15	ATOM	2020	CB	GLU H		23. 656	33. 085	18.319	1.00 15.94	H	C
	ATOM	2021	CG	GLU H		22. 528	33.918	17.745	1.00 20.23	H	С
	ATOM	2022	CD	GLU H		22. 427	35. 292	18.380	1.00 23.56	H	C
	ATOM	2023	0E1			22.850	35. 449	19.526	1.00 21.49	\mathbf{H}_{\cdot}	0
	ATOM	2024		GLU H		21.912	36. 198	17.728	1.00 25.49	H	0
20	ATOM	2025	N	ARG H		26.350	31.477	17.759	1.00 15.26	H	N
	MOTA	2026	CA	ARG H		27.557	30.836	18.258	1.00 16.72	H	C
	ATOM	2027	Ç	ARG H		27. 793	30.894	19.772	1.00 16.72	H	C
	ATOM	2028	0	ARG H		28.012	29.854	20.397	1.00 15.77	H	0
	MOTA	2029	CB	ARG H		28.787	31. 399	17.550	1.00 18.05	H	C
25	ATOM	2030	CG	ARG H		30.075	30. 784	18.054	1.00 23.13	H	C
	ATOM	2031	CD	ARG H		31.236	31. 724	17.874	1.00 28.03	H	C
	ATOM	2032	NE	ARG H		31.769	31.681	16.524	1.00 30.56	H	N
	ATOM	2033	CZ	ARG H		32.772	30. 897 30. 081	16.141	1.00 33.42	H	C
	ATOM	2034 2035		ARG H ARG H		33. 356 33. 199	30. 945	17.011	1.00 33.03 1.00 33.65	H	N
30	ATOM ATOM	2035	Nn2	THR H		33. 133 27. 764	32. 086	14.886 20.365	1.00 33.03	H H	N
	ATOM	2037	CA	THR H		28. 020	32. 191	21.803	1.00 16.74	H	N C
	MOTA	2038	C	THR H		26. 976	31. 448	22.634	1.00 15.14	Н	Č
	MOTA	2039	ŏ	THR H		27. 320	30. 816	23.630	1.00 15.65	Н	Õ
	ATOM	2040	CB	THR H		28. 124	33.669	22. 277	1.00 19.12	H	Č
35	ATOM	2041		THR H		26.860	34. 323	22.127	1.00 23.54	H	ŏ
55	MOTA	2042		THR H		29.175	34. 413	21.461	1.00 18.93	H	Č.
	ATOM	2043	N	PHE H		25.710	31. 522	22.234	1.00 12.93	H	N.
	ATOM	2044	CA	PHE H		24.650	30.798	22.938	1.00 12.70	H	Ċ
	ATOM	2045	C	PHE H		25.006	29.307	22.929	1.00 11.77	H	Č
10	ATOM	2046	Ō	PHE H		24.971	28.643	23.963	1.00 11.84	H	Õ
40	ATOM	2047	CB	PHE H		23.300	31.019	22.232	1.00 11.78	Н	Č
	ATOM	2048	CG	PHE H	128	22.186	30.092	22.694	1.00 11.98	H	Ċ
	ATOM	2049	CD1	PHE H	128	21.783	30.057	24.026	1.00 13.78	Н	С
	ATOM	2050	CD2	PHE H	128	21.498	29.306	21.773	1.00 9.96	H	C
	ATOM	2051	CEI	PHE H	128	20.704	29.256	24.437	1.00 12.05	H	С
45	ATOM	2052	CE2	PHE H	128	20.423	28.504	22.163	1.00 10.60	H	C
	MOTA	2053	CZ	PHE H	128	20. 021	28.480	23.503	1.00 12.84	H	С
	MOTA	2054	N	SER H	129	25.364	28.792	21.757	1.00 11.50	H	N
	MOTA	2055	CA	SER H		25.712	27.383	21.622	1.00 12.61	H	C
	MOTA	2056	С	SER H	129	26.962	26.998	22.417	1.00 12.76	H.	С
50	MOTA	2057	0	SER H		27. 008	25.929	23.023	1.00 12.80	Н	0
	MOTA	2058	CB	SER H		25.908	27.029	20. 145	1.00 12.21	H	С
	ATOM	2059	0G	SER H		26.052	25.624	19.977	1.00 17.13	H	0
	MOTA	2060	N	GLU H		27.969	27.868	22. 420	1.00 13.31	H	N
	ATOM	2061	CA	GLU H		29. 217	27.603	23. 136	1.00 14.09	H	Ç
55	ATOM	2062	C	GLU H		29. 128	27. 730	24.657	1.00 14.85	H	С
	ATOM	2063	0	GLU H	129A	29. 707	26. 921	25. 382	1.00 14.98	Н	0

5	ATOM ATOM ATOM	2064 Ci 2065 Ci 2066 Ci	G GLU F	I 129A I 129A I 129A	30. 328 30. 715 31. 780	28. 542 28. 369 29. 367	22. 639 21. 172 20. 745	1.00 14.74 1.00 14.19 1.00 16.54	Н Н Н	C C
J	ATOM ATOM ATOM ATOM				31.941 32.431 28.410 28.310	30. 368 29. 146 28. 739 28. 957	21.432 19.728 25.145 26.589	1.00 16.37 1.00 17.94 1.00 15.04 1.00 16.21	Н Н Н Н	0 0 N C
10	ATOM ATOM ATOM	2071 C 2072 O	ARG I	I 129B I 129B	27. 114 27. 124	28. 309 28. 110	27. 267 28. 479	1.00 14.62 1.00 14.82	H H	C O
	MOTA MOTA	2073 CI 2074 CI	3 ARG I	1 129B 1 129B	28. 296 27. 031	30. 460 31. 161	26. 904 26. 451	1.00 19.47 1.00 28.02	H H	C C
	ATOM ATOM	2075 CI 2076 NI	ARG I	I 129B I 129B	26. 919 27. 978	32. 605 33. 478	26. 946 26. 447	1.00 33.00 1.00 36.47	H H	C N
15	ATOM ATOM	2077 C	Z ARG F	1 129B 1 129B	27. 822 26. 645	34. 777 35. 360	26. 197 26. 391	1.00 38.35 1.00 38.64	H H	C N
	MOTA MOTA		12 ARG I		28. 845 26. 079	35. 500 27. 984	25. 757 26. 503	1.00 36.71 1.00 13.48	н н	N N
20	ATOM ATOM	2081 C. 2082 C	A THR I	H 129C H 129C	24. 897 24. 611	27. 378 25. 974	27. 094 26. 574	1.00 12.08 1.00 12.22	H H	CCC
	ATOM MOTA	2083 O 2084 C	THR I	1 129C 1 129C	24. 631 23. 643	25. 021 28. 263	27.344 26.872	1.00 12.56 1.00 13.41	H H	. Ö
	ATOM ATOM	2085 0	G1 THR I	H 129C H 129C	23. 841 22. 411	29. 541 27. 604	27. 496 27. 472	1.00 12.83 1.00 13.85	H H	O C
25	ATOM ATOM	2087 N 2088 C	LEU I	f 129D f 129D	24. 358 24. 043	25. 839 24. 533	25. 273 24. 706	1.00 9.80 1.00 9.83	H H	N C
	ATOM ATOM	2089 C 2090 O	LEU I	H 129D H 129D	25. 121 24. 802	23. 466 22. 292	24.903 25.092	1.00 10.51 1.00 9.04	H H	C 0
30	MOTA MOTA	2091 C 2092 C	G LEU I	H 129D H 129D	· 23.717 22.473	24.661 25.482	23. 215 22. 856	1.00 9.11 1.00 10.83	H H	C
	ATOM ATOM	2094 C	DI LEU I D2 LEU I	1 129D	22. 268 21. 249	25. 452 24. 927	21.349 23.580	1.00 7.76 1.00 8.60	H H	C C
	ATOM ATOM	2095 N 2096 C	A ALA I	H 129E H 129E	26. 388 27. 495	23.871	24. 874 25. 038	1.00 9.50	H H	N C
35	ATOM ATOM ATOM	2097 C 2098 O 2099 C	ALA 1	H 129E H 129E H 129E	27. 527 28. 209 28. 828	22. 284 21. 277 23. 627	26. 417 26. 614 24. 768	1.00 12.05 1.00 14.06 1.00 8.33	H H H	0
	ATOM ATOM ATOM	2100 N 2101 C	PHE 1	H 129F H 129F	26. 794 26. 793	22. 848	27. 372 28. 714	1.00 8.33 1.00 11.37 1.00 11.44	n H H	C N C
40	ATOM ATOM	2102 C 2103 O	PHE 1	H 129F H 129F	25. 513 25. 328	21.561	29. 108 30. 260	1.00 11.62 1.00 10.42	H H	C O
	ATOM ATOM	2104 C 2105 C	B PHE	H 129F H 129F	27. 180 28. 562	23. 386 23. 937	29.714 29.469	1.00 13.71 1.00 12.82	H H	Ċ C
	ATOM ATOM		D1 PHE 1 D2 PHE 1		29.669 28.749	23.090 25.275	29. 491 29. 148	1.00 13.92 1.00 13.07	H H	C
45	ATOM ATOM	2109 C	E1 PHE 1 E2 PHE 1	H 129F	30. 944 30. 017	23. 567 25. 765	29. 190 28. 844	1.00 15.14 1.00 13.32	H H	C C
	MOTA MOTA	2110 C 2111 N	VAL	H 129F H 129G	31.118 24.633	24. 911 21. 380	28. 863 28. 132	1.00 14.84 1.00 11.71	H H	C N
50	ATOM ATOM	2112 C 2113 C	VAL 1	H 129G H 129G	23. 418 23. 969	20. 617 19. 201	28. 339 28. 125	1.00 10.87 1.00 12.85	H	C .
	ATOM ATOM	2114 0 2115 C	B VAL	H 129G H 129G	24.514 22.344	18.886 20.956	27. 062 27. 271	1.00 12.09 1.00 10.74	H H	O C
	MOTA MOTA	2117 C	GI VAL I	H 129G	21. 203 21. 806	19.946 22.372	27. 329 27. 510	1.00 8.96 1.00 9.81	H H	C
55	MOTA MOTA	2118 N 2119 C		H 134 H 134	23. 847 24. 368	18.367 17.008	29. 147 29. 114	1.00 12.84 1.00 14.10	H H	N C

				•							
		0100		100 11		00 077	10 140	07 000		**	_
	ATOM	2120	C	ARG H			16.147	27. 909	1.00 14.87	Н	С
	MOTA	2121	0	ARG H		24. 831	15.767	27. 104	1.00 14.59	H	0
5	ATOM	2122	CB	ARG H		23.960	16. 281	30.400	1.00 14.36	H	C
	ATOM	2123	CG	ARG H		24. 450	14.840	30.485	1.00 17.60	H	C
	MOTA	2124	CD	ARG H		25.916	14.769	30.854	1.00 20.10	H	C
	ATOM	2125	NE	ARG H		26.154	15.328	32. 182	1.00 21.14	Н	N
	ATOM	2126	CZ	ARG H		27.311	15.262	32.832	1.00 19.89	Н	С
10	MOTA	2127		ARG H		28.356	14.659	32. 287	1.00 20.58	H	N
	ATOM	2128	NH2	ARG H		27.419	15.795	34.035	1.00 20.22	H	N
	ATOM	2129	N	PHE H		22.687	15.844	27.801	1.00 12.87	\cdot H	N
	ATOM	2130	CA	PHE H		22.164	14.986	26.745	1.00 12.91	H	С
	ATOM	2131	С	PHE H	135	21.591	15.697	25. 521	1.00 13,23	H	С
45	ATOM	2132	0	PHE H	135	21.053	16.799	25.609	1.00 15.91	H	0
15	ATOM	2133	CB	PHE H		21.089	14.054	27.340	1.00 11.61	H	С
	ATOM	2134	CG	PHE H		21.640	12.996	28. 259	1.00 11.27	Н	Č
	ATOM	2135		PHE H		22.119	11.794	27. 752	1.00 12.29	H	Č
	ATOM	2136		PHE H		21.694	13.205	29.631	1.00 12.45	H	Č
	ATOM	2137		PHE H		22.648	10.812	28.602	1.00 11.52	H	Č
20	ATOM	2138		PHE H		22. 219	12.235	30.485	1.00 13.43	H	Č
	ATOM	2139	CZ	PHE H		22.699	11.035	29.966	1.00 10.85	H	č
	ATOM	2140	N	SER H		21.718	15.030	24. 378	1.00 13.39	H	N
	ATOM	2141	CA	SER H			15.499	23. 095	1.00 13.57	H	C
	ATOM	2142	C	SER H		20.797	14.259	22.305	1.00 13.37	H	Č
25	ATOM	2143	ŏ	SER H		21. 293	13.160	22. 559	1.00 11.08	H	ŏ
20	ATOM	2144	CB	SER H		22. 285	16.249	22. 307	1.00 13.40	H	C
	ATOM	2145	OG	SER H		22. 576	17.513	22. 881	1.00 14.55	H	0
	ATOM	2146	N	LEU H		19.903	14.441	21.341	1.00 14.33	H	N
	MOTA	2147	CA	LEU H		19.429	13.331	20.519	1.00 12.22	H	
	ATOM	2148	C	LEU H		20. 157	13. 217	19. 187	1.00 13.34		C
30	ATOM	2149	Õ	LEU H		20. 137	14.216	18.509		H	C
	ATOM	2143	CB	LEU H		17. 938	13.486	20. 228	1.00 12.33	H	0
	ATOM	2151	CG	LEU H		16.941		21.385	1.00 13.15	Н.	C
	ATOM	2151	-	LEU H			13.480	•	1.00 15.66	H	C
						15.532 17.026	13.692	20.815	1.00 14.08	H	C
35	ATOM ATOM	2153 2154	N N	LEU H		20. 524	12.158	22.157	1.00 14.11	H	C
							11.991	18.827	1.00 12.73	H	N
	ATOM	2155	CA	VAL H		21.170	11.715	17.550	1.00 12.09	H .	C
	ATOM	2156	C	VAL H		20. 216	10.733	16.870	1.00 12.01	H	C
	ATOM	2157	0	VAL H		19.675	9.836	17.513	1.00 12.12	H	0
40	ATOM	2158	CB	VAL H		22.585	11.077	17.720	1.00 13.28	Н	Ċ
40	ATOM	2159		VAL H		23.551	12.094	18.330	1.00 8.61	H	C
	ATOM	2160		VAL H		22.506	9.842	18.600	1.00 11.66	Н	C
	ATOM	2161		SER H			10.897		1.00 12.22	Н	N
	ATOM	2162	CA	SER H		19.061	10.041	14.869	1.00 11.00	H	C
	ATOM	2163	C	SER H		19.462	9.715	13.437	1.00 10.54	H	C
45	ATOM	2164	0	SER H		20. 324	10.378	12.856	1.00 11.74	Н	0
	ATOM	2165	CB	SER H		17.693	10.722	14.870	1.00 11.90	H	С
	ATOM	2166	0G	SER H		17.823	12.060	14.405	1.00 9.32	H	0
	ATOM	2167	N	GLY H		18.818	8.690	12.881	1.00 9.70	H	N
	ATOM	2168	CA	GLY H		19.084	8.269	11.516	1.00 9.30	H	C
50	ATOM	2169	С	GLY H		18.579	6.864	11.200	1.00 9.94	Н	C
	ATOM	2170	0	GLY H		18.082	6.147	12.076	1.00 9.85	H	0
	ATOM	2171	N	TRP H		18.698	6.479	9. 935	1.00 10.84	H	N
	ATOM	2172	CA	TRP H		18. 299	5.149	9.471	1.00 13.57	H	C
	ATOM	2173	C	TRP H		19.547	4.284	9.307	1.00 14.42	H	Č
<i>EE</i>	ATOM	2174	0	TRP H		19.559	3. 338	8.518	1.00 14.11	H	ő
55	ATOM	2175	СB	TRP H		17.585	5. 251	8.119	1.00 11.62	H	Č
											•

	ATOM	2176	CG TRP I	1 141	16	213	5.852	8. 198	1.00	9.53	H	I C
	MOTA	2177	CD1 TRP I			042	5. 194	8.451	1.00	7.95	H	
5	MOTA	2178	CD2 TRP I			868	7. 227	7. 992	1.00	9.12	ŀ	
	ATOM	2179	NEI TRP I			987	6.076	8.407		0.35	ŀ	
	ATOM	2180	CE2 TRP			465	7. 330	8. 131	1.00	9.30	H	
	MOTA	2181	CE3 TRP I			609	8. 381	7. 700	1.00	6.96	H	
							8. 547	7.992	1.00	9.43	H	
10	ATOM	2182	CZ2 TRP I			784		7.559	1.00	8.75	H	
	ATOM	2183	CZ3 TRP I			934	9.590			9.90		
	MOTA	2184	CH2 TRP I			. 531	9.662	7.707	1.00		H	
	ATOM	2185		H 142		591	4.623	10.059	1.00		H	
	ATOM	2186		H 142		848	3.898	9. 988	1.00		H	
	ATOM	2187		H 142		825	2.514	10.589	1.00		H	
15	ATOM	2188		H 142		767	2.010	10.972	1.00		I	
	MOTA	2189		H 143		006	1.904	10.672	1.00		F	
	ATOM	2190		H 143		162	0.556	11.212	1.00		H	
	MOTA	2191		H 143		665	0.409	12.640	1.00		F	
	MOTA	2192		H 143		. 882	1.278	13.489	1.00		H	
20	MOTA	2193		H 143		. 628	0.110	11.167	1.00		F	
	MOTA	2194		H 143		. 228	-0.100	9.770	1.00		ŀ	
	MOTA	2195		H 143		. 525	1.199	9.043	1.00		F	
	ATOM	2196		H 143		714	2.242	9.669	1.00		F	
	ATOM	2197	NE2 GLN 1			. 588	1.137	7.712	1.00		H	
25	ATOM	2198		H 144		. 003	-0.714	12.898		21.01	ŀ	I N
20	ATOM	2199		H 144		. 481	-1.012	14.221	1.00	23.46	F	f C
	ATOM	2200		H 144		. 573	-1.658	15.069	1.00		F	
	MOTA	2201		H 144		. 507	-1.642	16.298	1.00	25.66	ł	0
	ATOM	2202	CB LEU I	H 144	20.	. 269	-1.944	14.101	1.00	21.41	ŀ	I C
	ATOM	2203	CG LEU	H 144	19.	. 080	-1.313	13.367	1.00	19.40	H	I C
30	ATOM	2204	CD1 LEU			. 980	-2.352	13.121	1.00	21.44	F	I C
	ATOM	2205	CD2 LEU			. 551	-0.157	14.199	1.00	14.43	F	I C
	ATOM	2206	N LEU	H 145	23.	. 574	-2.226	14.400	1.00	27.35	F	I N
	ATOM	2207		H 145		. 700	-2.875	15.067	1.00		F	
	ATOM	2208		H 145		. 976	-2.620	14.267	1.00	32.79	F	H C
35	ATOM	2209		H ·145		. 916	-2.351	13.067	1.00	33.17	I	1 0
	ATOM	2210		H 145		. 470	-4.391	15.18 6	1.00	33.26	ŀ	f C
	MOTA	2211		H 145	23.	. 588	-4.949	16.311	1.00		F	I C
	ATOM	2212	CD1 LEU			. 133	-4.554	16.123	1.00		ŀ	I C
	ATOM	2213	CD2 LEU	H 145		. 704	-6.456	16.313	1.00	36.17	ŀ	I C
40	ATOM	2214		H 146		. 124	-2.694	14.934	1.00	33.83	. 1	I N
	ATOM	2215		H 146		. 404	-2.483	14.266	1.00		ŀ	H C
	ATOM	2216	C ASP	H 146		. 493	-3.449	13.091	1.00	36.95	H	I C
	ATOM	2217	O ASP	H 146	28	. 380	-4.661	13.268	1.00	36.80	ŀ	0 I
	MOTA	2218	CB ASP	H 146	29	. 562	-2.750	15.232	1.00	35.30	ŀ	i C
	ATOM	2219		H 146	30	. 922	-2.459	14.612	1.00		1	I C
45	ATOM	2220	OD1 ASP	H 146	31	. 245	-1.297	14.431	1.00	33.00	ł	
	ATOM	2221	OD2 ASP	H 146	31	. 652	-3.406	14.310	1.00	36.91	ŀ	
	ATOM	2222		H 147		. 679	-2.906	11.893	1.00		ŀ	
	ATOM	2223		H 147		. 782	-3.719	10.686			1	
	ATOM	2224		H 147		. 507	-4.535	10.434	1.00		ŀ	
50	ATOM	2225		H 147		. 550	-5.613	9.842	1.00		Ī	
	ATOM	2226		H 147		. 995	-4.651	10.797	1.00		Ī	
	ATOM	2227		H 147		. 348	-5.385	9.516	1.00		i	
	ATOM	2228		H 147		. 593	-6. 237	9. 598	1.00		j	
	ATOM	2229		H 147		. 930	-6.977	8. 484	1.00		ŀ	
55	ATOM	2230		H 147		. 980	-7. 784	8. 361	1.00		ŀ	
55	ATOM	2231	NH1 ARG			. 811	-7. 965	9. 381	1.00		I	
	AIUM	2201	MIL ANU	44 1 1 (U	. 011	1. 200	J. 001		vu. VI	r	r 14

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2232 2233 2234 2235 2236 2237 2238	NH2 N CA C O N CA	ARG H 147 GLY H 149 GLY H 149 GLY H 149 GLY H 149 ALA H 150 ALA H 150	26.37 25.10 24.27 24.78 22.99	2 -4.009 9 -4.696 7 -4.049 2 -3.246 7 -4.398	7. 215 10. 883 10. 697 9. 610 8. 826 9. 562 8. 561	1.00 58.04 1.00 36.85 1.00 33.07 1.00 30.33 1.00 29.52 1.00 28.41 1.00 26.03	н н н н н н	N C C O N C
10	ATOM ATOM ATOM ATOM	2239 2240 2241 2242	C C C C B N	ALA H 150 ALA H 150 ALA H 150 THR H 151	21.46 21.41 21.00	8 -2.542 5 -2.283 5 -4.850	9. 048 10. 249 8. 248 8. 112	1.00 23.50 1.00 21.67 1.00 27.18 1.00 22.99	H H H H	C O C N
15	MOTA MOTA MOTA MOTA MOTA	2243 2244 2245 2246 2247	CA C O CB OG1	THR H 151 THR H 151 THR H 151 THR H 151 THR H 151	20.37 18.92 18.30 20.45 19.82	4 -0.455 3 -0.593 2 -1.651 0 0.538 2 -0.027	8. 458 8. 925 8. 783 7. 278 6. 122	1.00 22.82 1.00 22.79 1.00 21.21 1.00 23.93 1.00 22.56	H H H H H	C C C C
20	MOTA MOTA MOTA MOTA MOTA	2248 2249 2250 2251 2252	N CA C O	THR H 151 ALA H 152 ALA H 152 ALA H 152 ALA H 152	18.38 17.02 15.97 16.21	9 0.484 5 0.474 9 0.962 8 1.883	6. 956 9. 493 10. 005 9. 011 8. 237	1.00 22.44 1.00 20.52 1.00 18.60 1.00 16.25 1.00 16.12	H H H H	C N C C
25	ATOM ATOM ATOM ATOM ATOM	2253 2254 2255 2256 2257	CB N CA C	ALA H 152 LEU H 153 LEU H 153 LEU H 153 LEU H 153	14.81 13.71 12.95 12.44	1 0. 332 3 0. 707 4 1. 881 3 2. 720	9. 045 8. 169 8. 754 8. 021	1.00 18.25 1.00 15.23 1.00 15.57 1.00 14.76 1.00 17.16	Н Н Н Н	C N C C
30	ATOM ATOM ATOM ATOM ATOM	2258 2259 2260 2261 2262 2263		LEU H 153 LEU H 153 LEU H 153 LEU H 153 GLU H 154 GLU H 154	13.34 12.57 13.30 12.87	9 -1.531 5 -2.847 2 -0.978 1 1.933	7. 962 7. 015 7. 125 5. 602 10. 079 10. 755	1.00 15.57 1.00 16.60 1.00 16.63 1.00 15.24 1.00 15.00	H H H K H	C C C N
35	ATOM ATOM ATOM ATOM ATOM ATOM	2264 2265 2266 2267 2268	C O CB CG	GLU H 154 GLU H 154 GLU H 154 GLU H 154 GLU H 154	13. 19 14. 14 11. 20 9. 87	3. 936 3. 465 1 2. 482 7 2. 027	11. 431 12. 070 11. 789 11. 206 12. 274	1.00 15.61 1.00 14.97 1.00 15.21 1.00 14.17 1.00 20.51 1.00 23.96	Н Н Н Н Н Н	. C C C C C
40	ATOM ATOM ATOM ATOM ATOM	2269 2270 2271 2272 2273	0E1	GLU H 154 GLU H 154 LEU H 155 LEU H 155 LEU H 155	9. 16 7. 91 13. 00 13. 90	0.504 9 2.249 0 5.241 0 6.234	12.851 12.535 11.279 11.864 13.336	1.00 23.53 1.00 27.22 1.00 14.72 1.00 13.82 1.00 12.35	H H H H H	0 0 N C
45	MOTA MOTA MOTA MOTA MOTA	2274 2275 2276 2277 2278		LEU H 155 LEU H 155 LEU H 155 LEU H 155 LEU H 155	13. 30 14. 14 15. 46 13. 38	7. 635 4 8. 775 4 8. 868 10. 088	11.725 12.315 11.565 12.210	1.00 13.95 1.00 14.43 1.00 13.63 1.00 13.84 1.00 13.06	H H H H	0 C C C
50	MOTA MOTA MOTA MOTA MOTA	2279 2280 2281 2282 2283	N CA C O CB	MET H 156 MET H 156 MET H 156 MET H 156	15. 79 16. 36 16. 87 16. 84	5. 542 6. 812 7. 700 1 4. 421	15. 087 15. 739 15. 054 15. 150	1.00 12.83 1.00 12.93 1.00 12.73 1.00 13.04 1.00 12.00	H H H H	N C C O C
55	MOTA MOTA MOTA	2284 2285 2286 2287	CG SD CE N	MET H 156 MET H 156 MET H 156 VAL H 157	5 15.05 5 15.76	3.125 4 2.200 6 1.648	14. 429 15. 133 16. 690	1.00 12.49 1.00 13.73 1.00 12.82 1.00 12.85	Н Н Н	C S C N

5	MOTA MOTA MOTA	2288 2289 2290	CA C O	VAL H VAL H VAL H	157 157	16.779 17.463 17.127	8.037 7.558 6.499	17.813 19.098 19.642	1.00 11.88 1.00 13.44 1.00 12.26	H H H	C C 0
	MOTA MOTA MOTA	2291 2292 2293		VAL H VAL H VAL H	157 157	15.606 14.621 16.142	9. 020 8. 382 10. 337	18. 126 19. 074 18. 685	1.00 9.61 1.00 9.52 1.00 11.73	Н Н Н	C C
10	ATOM ATOM ATOM	2294 2295 2296	C	LEU H LEU H	158 158	18. 425 19. 202 19. 660	8. 343 7. 999 9. 223	19. 574 20. 758 21. 545	1.00 12.79 1.00 11.41 1.00 13.56	H H H	N C C
	ATOM ATOM ATOM	2297 2298 2299	CG	LEU H LEU H	158 158	20. 119 20. 444 21. 465	10. 215 7. 215 6. 879	20. 963 20. 331 21. 414	1.00 10.13 1.00 12.58 1.00 11.97	H H H	C C
15	MOTA MOTA MOTA MOTA	2300 2301 2302 2303	CD2 N	LEU H LEU H ASN H ASN H	158 159	20. 871 22. 740 19. 547 19. 973	5.843 6.350 9.138 10.216	22. 360 20. 770 22. 869 23. 749	1.00 11.50 1.00 11.54 1.00 11.48 1.00 13.66	H H H	. C . N
20	ATOM ATOM ATOM	2303 - 2304 2305 2306	C O CB	ASN H ASN H ASN H	159 159	21. 419 21. 701 19. 092	9. 908 8. 835 10. 254	24. 142 24. 673 25. 004	1.00 13.00 1.00 12.37 1.00 13.12 1.00 15.32	Н - Н Н Н	C C C
	MOTA MOTA MOTA	2307 2308 2309	CG OD1	ASN H ASN H	159 159	19. 000 18. 609 19. 341	11.643 11.791 12.668	25. 621 26. 783 24. 843	1.00 18.58 1.00 19.52 1.00 17.35	Н . Н . Н	C 0 N
25	MOTA MOTA MOTA	2310 2311 2312	N CA C	VAL H VAL H	160 160	22. 331 23. 741 24. 309	10.835 10.644 11.844	23. 867 24. 196 24. 952	1.00 11.23 1.00 10.26 1.00 11.62	H H H	N C C
	MOTA MOTA MOTA	2313 2314 2315	O CB CG1	VAL H VAL H	160 160	23. 965 24. 608 24. 175	12.989 10.425 9.147	24.658 22.926 22.200	1.00 11.36 1.00 11.37 1.00 9.21	Н Н - Н	0 C C
30	MOTA MOTA ATOM	2316 2317 2318	N CA	VAL H PRO H PRO H	161 161	24. 506 25. 183 25. 804	11.650 11.590 12.652	21. 989 25. 947 26. 746	1.00 7.47 1.00 10.82 1.00 11.11	Н Н Н	C N C
35	ATOM ATOM ATOM ATOM	2319 2320 2321 2322	C O CB CG	PRO H PRO H PRO H	161 161	27. 055 27. 822 26. 129 26. 562	13.199 12.458 11.944 10.594	26.058 25.445 28.058 27.575	1.00 10.16 1.00 9.67 1.00 10.26 1.00 10.20	H H H	C C
	ATOM ATOM ATOM ATOM	2323 2324 2325	CD N CA	PRO H ARG H ARG H	161 162	25. 505 27. 268 28. 411	10. 264 14. 499 15. 145	26. 511 26. 185 25. 560	1.00 10.20 1.00 11.31 1.00 10.55 1.00 10.54	H H H H	C C N C
40	ATOM ATOM ATOM	2326 2327 2328	C O CB	ARG H ARG H ARG H	162 162	29. 639 29. 515 28. 004	15. 171 15. 158 16. 564	26.474 27.701 25.152	1.00 11.25 1.00 13.29 1.00 11.25	H -	C
	ATOM ATOM ATOM	2329 2330 2331	CG CD NE	ARG H ARG H ARG H	162 162	29. 082 28. 483 29. 498	17. 391 18. 669 19. 534	24. 464 23. 889 23. 303	1.00 12.83 1.00 9.42 1.00 9.59	н Н Н	C C N
45	ATOM ATOM ATOM	2332 2333 2334	CZ NH1	ARG H ARG H ARG H	162 162	29. 236 27. 979 30. 232	20.576 20.886 21.318	22.520 22.217 22.047	1.00 11.68 1.00 11.81 1.00 12.43	H H H	C N N
50	ATOM ATOM ATOM	2335 2336 2337	N CA C	LEU H LEU H	163 163	30.825 32.062 32.991	15. 178 15. 230 16. 323	25.872 26.636 26.127	1.00 9.08 1.00 10.57 1.00 11.95	Н Н Н	N C C
	ATOM ATOM ATOM	2338 2339 2340	O CB CG	LEU H LEU H	163 163	33.074 32.835 32.369	16.570 13.907 12.650	24. 923 26. 548 27. 278	1.00 10.27 1.00 12.13 1.00 12.88	Н Н Н	0 C
55	ATOM ATOM ATOM	2341 2342 2343		LEU H LEU H MET H	163	31.177 33.540 33.677	12.034 11.658 16.990	26. 547 27. 336 27. 047	1.00 12.78 1.00 14.29 1.00 11.82	H H H	C C N

										•			
	ATOM	2344	CA	MET H	164	34. 68	4 17.	980	26.633	1.00 12.	80	H	С
	ATOM	2345	С	MET H		35.78	32 17.	109	26.081	1.00 12.	63	H	C
5	ATOM	2346	0	MET H		35.98			26.532	1.00 10.		H	Ō
	ATOM	2347	ČB	MET H		35.10		825	27. 822	1.00 14.		H	Č
	ATOM	2348	CG	MET H		34.0		805	28. 259	1.00 18.		H	Č
	MOTA	2349	SD	MET H		34.50		069	29. 400	1.00 22.		H	S
	ATOM	2350	CE	MET H		35.40		150	28. 252	1.00 19.		H	Č
10	ATOM	2351	N	THR H		36.50			25. 095	1.00 13.		H .	N
	ATOM	2352	CA	THR H		37.58		849	24. 451	1.00 12.		H	
													Ç
	ATOM	2353	C	THR H		38.62		275	25. 375	1.00 16.		H	C
	ATOM	2354	0	THR H		39.00		143	25. 186	1.00 15.		H	0
	ATOM	2355	CB	THR H		38.1		679	23. 320	1.00 17.		H	C
15	MOTA	2356	0G1			37.11		103	22.452	1.00 17.		H	0
	MOTA	2357		THR H		39.11		855	22.510	1.00 14.		H	C
	MOTA	2358	N	GLN H		39.04		036	26.378	1.00 16.		H	N
	MOTA	2359	CA	GLN H		40.0		541	27.310	1.00 17.	06	H	С
	ATOM	2360	C	GLN H	166	39.54	19 15.	231	27.923	1.00 17.	05	H	С
20	MOTA	2361	0	GLN H	166	40.28	34 14.	250	28.008	1.00 16.	97	H	0
	MOTA	2362	CB	GLN H	166	40.3	6 17.	585	28.400	1.00 16.	34	H	€
	MOTA	2363	CG	GLN H	166	41.30	17.	196	29.432	1.00 18.	36	H	С
	ATOM	2364	CD	GLN H		41.68		350	30.373	1.00 18.	67	H	Ċ
	MOTA	2365		GLN H		42.3		329	29.973	1.00 22.		H	Õ
	ATOM	2366		GLN H		41.23		249	31.618	1.00 14.			N
25	MOTA	2367	N	ASP H		38. 29		217	28.347	1.00 17.		H	N
	MOTA	2368	CA	ASP H		37.70		010	28.916	1.00 17.		H	Ċ
	ATOM	2369	C	ASP H		37.65		893	27.876	1.00 17.		H .	Č
	ATOM	2370	ŏ	ASP H		37. 9		739		1.00 18.		H	ŏ
	MOTA	2371	CB	ASP H		36.30		282	29.456	1.00 18.		H	Č
30	ATOM	2372	CG	ASP H		36.3		086	30.729	1.00 18.		H	Č
	ATOM	2373		ASP H		37.0		726	31.625	1.00 19.		H	
	ATOM	2374		ASP H		35.5		071	30.818	1.00 20.		H	0
			N	CYS H									0
	ATOM	2375				37. 2		227	26.651	1.00 17.		H	N
	ATOM	2376	CA	CYS H		37.1		210	25.608	1.00 18.		H	C
35	ATOM	2377	C	CYS H		38.44		496	25.398	1.00 18.		H	C
	ATOM	2378	0	CYS H		38.50		270	25. 404	1.00 17.		H	0
	ATOM	2379	CB	CYS H		36.6		829	24. 281	1.00 17.		H	C
	ATOM	2380	SG	CYS H		36. 2		592	23.003	1.00 18.		H	S
	ATOM	2381	N	LEU H		39.5		271	25.202	1.00 18.		H	N
40	ATOM	2382	CA	LEU H		40.8		711	24.990	1.00 22.		H	С
	ATOM	2383	C	LEU H		41.2		864	26.175	1.00 23.		H	C
	ATOM	2384	0	LEU H		41.7		757	25.995	1.00 23.		H	0
	ATOM	2385	CB	LEU H		41.8		830	24. 748	1.00 22.		H	C
	ATOM	2386		LEU H		41.6	55 13.	649	23.471	1.00 24.	49	H	С
	MOTA	2387		LEU H		42.7	05 14.	766	23.403	1.00 24.	94	H	C
45	ATOM	2388	CD2	LEU H	169	41.7	79 12.	733	22.260	1.00 23.	4.1	H	С
	ATOM	2389	N	GLN H		41.1	3 11.	377	27.386	1.00 22.	94	H	N
	ATOM	2390	CA	GLN H		41.5		651	28.584	1.00 24.		H	C
	ATOM	2391	C	GLN H		40.7		350	28.756	1.00 26.		H	Č
	ATOM	2392	Ō	GLN H		41.2		337	29.161	1.00 26.		H	Õ
50	ATOM	2393	СB	GLN H		41.3		532	29.837	1.00 21.		H	C
	ATOM	2394	CG	GLN H		42.1		840	29. 793	1.00 20.		H	Č
	ATOM	2395	CD	GLN H		42.1		623	31.103	1.00 20.			C
	ATOM	2396		GLN H								H	C
						41.1		560	31.874	1.00 19.		H	0
	ATOM	2397		GLN H		43.1		382	31. 348	1.00 16.		H	N
55	ATOM	2398	N		170A	39. 4		379	28. 432	1.00 26.		H	N
	ATOM	2399	CA	GLW H	170A	38.5	10 B.	210	28.572	1.00 26.	. 34	H	C

	MOTA MOTA	2400 2401	C 0	GLN H		38.536 37.795	7.266 6.288	27. 371 27. 386	1.00 26.09 1.00 26.50	H H	C 0
5	MOTA	2402	CB	GLN H		37.146	8.655	28.884	1.00 28.29	H	C
	MOTA	2403	CG	GLN H	170A	36.957	9.298	30.236	1.00 30.52	H	C
	MOTA	2404	CD	GLN H		35.513	9.682	30.478	1.00 34.79	Н	C
	MOTA	2405		GLN H		34.602	8.867	30. 290	1.00 37.17	Н	0
	MOTA	2406		GLN H		35. 290	10.921	30.904	1.00 34.78	H	N
10	MOTA	2407	N	SER H		39.317	7.549	26. 336	1.00 26.18	H	N
	MOTA	2408	CA	SER H		39. 317	6.696	25. 159	1.00 28.66	H	C
	ATOM	2409	C	SER H		40.585	5.848	25.055	1.00 31.18	H	C
	ATOM	2410	0	SER H		41.643	6.231	25. 552	1.00 29.81	H	0
	MOTA	2411	CB	SER H		39. 153	7.544 8.239	23. 890 23. 886	1.00 27.91 1.00 24.13	H H	C 0
15	ATOM	2412	OG	SER H ARG H		37. 912 40. 459	4.688	24.417	1.00 24.13	п Н	N
	MOTA MOTA	2413 2414	N CA	ARG H		40.459	3.777	24. 211	1.00 35.34	n H	C
	ATOM	2414	C	ARG H		42.471	4.323	23. 102	1.00 38.48	H	č
	ATOM	2416	ŏ	ARG H		42.078	4.341	21.939	1.00 39.23	H	Õ
	MOTA	2417	CB	ARG H		41.059	2.395	23. 805	1.00 37.94	H	Č
20	MOTA	2418	ĊĠ	ARG H		40.558	1.530	24.947	1.00 38.36	H	Č
	MOTA	2419	CD	ARG H		41.710	0.756	25. 572	1.00 39.49	H	Č
	MOTA	2420	NE	ARG H		42.369	-0.108	24.592	1.00 39.64	H	N
	ATOM	2421	CZ	ARG H		41.864	-1.246	24.122	1.00 40.03	H	C
	MOTA	2422	NH 1	ARG H	170C	40.684	-1.686	24.540	1.00 41.69	H	N
25	ATOM	2423	NH2	ARG H		42.540	-1.941	23. 217	1.00 41.52	Н	N
	MOTA	2424	N	LYS H		43.670	4.765	23. 459	1.00 41.25	H	N
	MOTA	2425	CA	LYS H		44.605	5.306	22.472	1.00 43.27	H	C
	MOTA	2426	C.	LYS H		44.971	4. 266	21.415	1.00 44.63	H	C
	MOTA	2427	0	LYS H		45.314	3.137	21.752	1.00 45.60	H	0
30	ATOM	2428	CB	LYS H		45.876	5. 790	23.170	1.00 44.06	H	C
	ATOM	2429	CG	LYS H		45.660	6.974	24.098	1.00 43.63	H	C
	MOTA MOTA	2430 2431	CD CE	LYS H		45.336 44.179	8. 243 8. 998	23. 320 23. 957	1.00 43.73 1.00 42.88	H H	C
	ATOM	2431	NZ	LYS H		42.919	8. 196	23. 891	1.00 44.55	H	N
	ATOM	2433	N	VAL H		44. 897	4.647	20. 141	1.00 45.92	H	N
35	ATOM	2434	CA	VAL H		45. 229	3. 737	19. 050	1.00 47.38	H	Ċ
	ATOM	2435	C	YAL H		46.174	4.403	18.038	1.00 48.37	H	Č
	ATOM	2436	Ō	VAL H		46.307	5.628	18.008	1.00 48.59	Н	0
	ATOM	2437	CB	YAL H		43.955	3. 237	18.317	1.00 48.27	Н	C
	ATOM	2438	CG1	VAL H	170E	43.053	2.478	19. 283	1.00 48.47	H	C
40	MOTA	2439	CG2	YAL H		43.195	4. 398	17. 721	1.00 50.40	H	С
	ATOM	2440	N	GLY H		46.828	3.580	17. 220	1.00 49.26	H	N
	ATOM	2441	CA	GLY H		47. 778	4.055	16. 227	1.00 49.68	H	C
	ATOM	2442	C	GLY H		47.456	5. 293	15. 409	1.00 49.19	H	Č
15	ATOM	2443	0	GLY H		47.643	6. 420	15.869	1.00 49.83	H	0
45	ATOM	2444	N	ASP H		46.988	5.081	14. 181	1.00 49.23	H	N
	ATOM ATOM	2445	CA C	ASP H		46.666	6. 176 6. 803	13. 262	1.00 48.00	H	C
	ATOM	2446		ASP H		45. 293		13.484	1.00 44.35	H	C
	ATOM	2447 2448	O CB	ASP H		44.613 46.771	7.177	12.527	1.00 44.23 1.00 52.87	H	0
50	ATOM	2449	CG	ASP H		48. 206	5. 684 5. 571	11. 815 11. 341	1.00 56.13	H H	C
50	ATOM	2450		ASP H		48. 987	4. 862	11. 981	1.00 59.14	n H	0
	ATOM	2451		ASP H		48. 545	6. 193	10. 325	1.00 58.70	H	0
	ATOM	2452	N	SER H		44. 899	6. 933	14. 745	1.00 39.99	H	N
	ATOM	2453	CA	SER H		43.613	7. 524	15. 084	1.00 36.53	H	C
55	ATOM	2454	C	SER H		43. 583	9. 003	14. 727	1.00 32.15	H	č
55	ATOM	2455	Ŏ	SER H		44. 501	9. 747	15. 056	1.00 31.87	H	Õ
			•	**			9.141			31	v

	ATOM	2456	CB	SER H	170H	43.337	7.364	16.579	1.00 37.95	H	С
	ATOM	2457 -	0G	SER H		42.120	7.987	16.949	1.00 42.60	H	Ö
5	MOTA	2458	N	PRO H		42. 529	9.442	14.026	1.00 28.54	H	Ň
	ATOM	2459	CA	PRO H		42. 433	10.856	13.660	1.00 26.44	H	C
			_								
	ATOM	2460	C	PRO H		42.405	11.701	14. 931	1.00 25.04	H	C
	ATOM	2461	0	PRO H		41.964	11.239	15.981	1.00 24.79	H	0
	ATOM	2462	CB	PRO H	1701	41.112	10.921	12.900	1.00 24.88	H	С
10	ATOM	2463	CG	PRO H	170I	41.032	9. 575	12. 255	1.00 26.28	H	C
	ATOM	2464	CD	PRO H	170I	41.466	8.658	13.376	1.00 26.49	H	С
	MOTA	2465	N	ASN H		42.890	12.930	14.842	1.00 24.55	H	N
	ATOM	2466	CA	ASN H		42.884	13.820	15.994	1.00 24.55	H	Ċ
	ATOM	2467	C	ASN H		41.484	14. 376	16.174	1.00 21.18	H	č
4.5		2468	_			40. 733		15. 211		H	
15	MOTA		0	ASN H			14.509		1.00 19.35		0
	ATOM	2469	CB	ASN H		43.839	15.004	15. 788	1.00 26.79	H	C
	ATOM	2470	CG	ASN H		45. 269	14.576	15. 576	1.00 30.83	H	C
	ATOM	2471		ASN H		45.829	13.823	16.370	1.00 32.43	. Н	0
	ATOM	2472	ND2	ASN H	175	45.876	15.064	14. 499	1.00 33.68	H	N
20	MOTA	2473	N	ILE H	176	41.140	14.695	17.414	1.00 18.30	H	N
	MOTA	2474	CA	ILE H	176	39.852	15. 290	17.716	1.00 17.01	H	С
	ATOM	2475	C	ILE H		40.181	16.773	17.786	1.00 17.25	H	Ċ
	ATOM	2476	Ŏ	ILE H		40.800	17. 232	18.740	1.00 18.43	H	Õ
	ATOM	2477	ČB	ILE H		39. 306	14. 807	19.077	1.00 16.65	H	Č.
	ATOM	2478		ILE H		39. 186	13. 277	19.073	1.00 15.60	H	Č.
25		2479		ILE H		37. 935					
	MOTA					38. 827	15.437	19.343	1.00 13.67	H	C
	ATOM	2480		ILE H			12.685	20.411	1.00 17.27	H	C
	ATOM	2481	N	THR H		39. 784	17. 521	16.764	1.00 16.30	H	Ŋ
•	MOTA	2482	CA	THR H		40.094	18.945	16.712	1.00 15.04	H	С
	ATOM	2483	С	THR H		39.060	19.829	17.400	1.00 14.07	H	C
30	MOTA	2484	0	THR H	177	38. 107	19. 344	18.006	1.00 13.41	H	0
	MOTA	2485	CB	THR H	177	40. 227	19.419	15. 258	1.00 16.10	H	C
	ATOM	2486	0G1	THR H	177	38.926	19.445	14.655	1.00 16.94	H	0
	ATOM	2487	CG2	THR H	177	41.149	18.479	14.460	1.00 12.71	H	. С
	ATOM	2488	N	GLU H		39. 266	21.138	17.305	1.00 13.19	H	N.
35	ATOM	2489	CA	GLU H		38. 351	22.106	17.893	1.00 14.78	H	Ċ
55	ATOM	2490	C	GLU H		37.062	22. 188	17.074	1.00 13.86	H	č
	MOTA	2491	ŏ	GLU H		36. 104	22. 847	17. 478	1.00 12.84	H	Õ
	ATOM	2492	CB	GLU H		39.009	23. 490	17. 955	1.00 18.37	H	
		2493	CG	GLU H		39. 254					C
	ATOM			GLU H			24. 129	16.596	1.00 20.75	H.	C
40	MOTA	2494	CD			40.674	23. 943	16.096	1.00 27.62	H	C
	ATOM	2495		GLU H		41.148	22.778	16.008	1.00 27.54	H	. 0
	ATOM	2496		GLU H		41.317	24.969	15. 785	1.00 30.43	• Н	0
	ATOM	2497	N	TYR H		37.044	21.524	15. 921	1.00 12.57	H	N
	ATOM	2498	CA	TYR H		35. 868	21.517	15.056	1.00 11.69	H	С
	ATOM	2499	С	TYR H		35.042	20. 248	15. 265	1.00 11.04	H	C
45	ATOM	2500	0	TYR H	1 179	34. 189	19.910	14.444	1.00 11.12	H	0
	ATOM	2501	CB	TYR H	179	36.317	21.637	13.594	1.00 12.21	H	C
	ATOM	2502	CG	TYR F	I 179	37.076	22.924	13.342	1.00 15.01	H	C
	ATOM	2503	CD1	TYR H		36.406	24. 148	13.311	1.00 13.28	H	Č
	ATOM	2504		TYR E		38.466	22. 927	13. 211	1.00 13.16	H	č
50	ATOM	2505		TYR F		37. 090	25. 344	13. 163	1.00 15.33	H .	
	ATOM	2506		TYR H					1.00 16.25		C
						39. 169	24. 124	13.062		H	C
	ATOM	2507	CZ	TYR F		38.468	25. 329	13.043	1.00 17.14	H	C
	ATOM	2508	OH	TYR H		39. 134	26.519	12. 935	1.00 17.38	H	0
	MOTA	2509	Ŋ	MET H		35. 289	19.567	16. 383	1.00 11.28	Н	N
55	MOTA	2510	CA	MET H		34.607	18.319	16.711	1.00 10.08	H	C
	ATOM	2511	С	MET H	180	34. 345	18.230	18. 210	1.00 10.42	H	С
											-

	ATOM	2512	0	MET H	190	34.873	19.014	18.992	1.00 11.63	Н	.0	
						35.498	17. 122	16.359	1.00 10.13	H		
5	ATOM	2513	CB	MET H							Ç	
J	ATOM	2514	CG	MET H		36. 249	17. 191	15.046	1.00 11.90	H	C	
	ATOM	2515	SD	MET H		37.417	15.806	14.948	1.00 13.02	Н	S	
	ATOM	2516	CE	MET H	180	38.056	16.055	13.327	1.00 10.31	Н	C	
	MOTA	2517	N	PHE H	181	33.544	17.246	18.603	1.00 10.40	H	N .	
	ATOM	2518	CA	PHE H		33.276	16.987	20.012	1.00 10.41	H	C	
10	ATOM	2519	Č	PHE H		32.745	15.564	20.107	1.00 11.92	H	Č	
	ATOM	2520	ŏ	PHE H		32.119	15.070	19.167	1.00 11.21	H	Ŏ	
	ATOM	2521	CB	PHE H		32. 293	18.010	20.600	1.00 10.04	Н	č	
	ATOM	2522	CG	PHE H		30.857	17.822	20.179	1.00 11.23	H	C	
	ATOM	2523		PHE H		30.057	16.852	20.784	1.00 9.00	H	C	
15	ATOM	2524		PHE H		30.292	18.650	19.210	1.00 10.30	H	C	
	ATOM	2525	CE I	PHE H	181	28.712	16.711	20.434	1.00 10.61	. Н	С	
	ATOM	2526	CE2	PHE H	181	28.941	18.518	18.848	1.00 9.40	Н	С	
	ATOM	2527	CZ	PHE H	181	28.152	17.548	19.464	1.00 9.56	Н	C	
	ATOM	2528	N	CYS H		33.030	14.892	21.217	1.00 11.17	H	N	
00	ATOM	2529	CA	CYS H		32.576	13.525	21.408	1.00 13.43	H	C	
20	ATOM	2530	Ċ.	CYS H		31.306	13.494	22.220	1.00 12.56	H	č	
	ATOM	2531	Õ	CYS H		31.047	14.379	23.040	1.00 13.75	H	ŏ	
	ATOM	2532	CB	CYS H		33.605	12.685	22.166	1.00 14.35	Н	Č	
						35.315						
	ATOM	2533	SG	CYS H			12.691	21.563	1.00 16.95	H	S	
25	ATOM	2534	N	ALA H		30.530	12.445	22.005	1.00 10.97	H	N	
	ATOM	2535	CA	ALA H		29.290	12.254	22.731	1.00 12.15	H	C	
	ATOM	2536	С	ALA H		28.980	10.769	22.670	1.00 11.48	H _.	С	
	ATOM	2537	0	ALA H		29.325	10.102	21.696	1.00 13.04	H	0	
	ATOM	2538	CB	ALA H		28.166	13.066	22.088	1.00 10.31	Н	C	
	ATOM	2539	N	GLY H	184A	28.352	10.244	23.714	1.00 11.66	H	N	
30	ATOM	2540	CA	GLY H	184A	28.016	8.835	23.712	1.00 12.33	H	C	
	ATOM	2541	С	GLY H	184A	28.474	8.038	24.916	1.00 13.73	H	C	
	ATOM	2542	0	GLY H		28.543	8.545	26.041	1.00 13.45	H	0	
	ATOM	2543	N	TYR H		28.793	6.773	24.667	1.00 14.73	H	N	
	ATOM	2544	CA	TYR H		29.217	5.864	25.720	1.00 14.94	H	Ĉ	
25	ATOM	2545	C	TYR H		30.395	5.029	25. 250	1.00 15.46	H	č	
35	MOTA	2546	ŏ	TYR H		30.509	4.702	24.070	1.00 16.06	H	ŏ	
	MOTA	2547	CB	TYR H		28.065	4.935	26.112	1.00 16.53			
										. Н	C	
	ATOM	2548	CG	TYR H		26.792	5.637	26.533	1.00 18.74	H	C	
	ATOM	2549		TYR H		25. 937	6. 206	25.589	1.00 18.37	H	C	
40	ATOM	2550		TYR H		26.443	5. 731	27.878	1.00 20.30	Н	C	
	ATOM	2551		TYR H		24.772	6.847	25.973	1.00 19.02	. Н	C	
	ATOM	2552		TYR H		25. 277	6.371	28. 273	1.00 19.18	H	С	
	MOTA	2553	CZ	TYR H	184	24. 448	6.925	27.317	1.00 19.19	H	C	
	MOTA	2554	OH	TYR H	184	23. 285	7.542	27.699	1.00 21.68	H	0	
	ATOM	2555	N	SER H		31.267	4.681	26.185	1.00 15.70	H	N	
45	ATOM	2556	CA	SER H		32.450	3.891	25.882	1.00 15.49	H	C	
	MOTA	2557	C	SER H		32.314	2.426	26.309	1.00 16.42	H	č	
	ATOM	2558	Ŏ	SER H		33. 294	1.680	26. 293	1.00 16.49	H	Ŏ	
	ATOM	2559	CB	SER H		33. 655	4.506	26.579	1.00 15.34	H	Č	
	ATOM	2560	OG	SER H		33. 478	4. 459	27. 984				
50									1.00 15.56	H	0	
50	ATOM	2561	N	ASP H		31.110	2.013	26.691	1.00 17.79	H	N	
	ATOM	2562	CA	ASP H		30. 898	0.633	27.116	1.00 20.64	H	C	
	ATOM	2563	C	ASP H		30. 358	-0.274	26.006	1.00 20.60	Н	C	
	ATOM	2564	0	ASP H		29. 934	-1.397	26. 268	1.00 20.87	H	0	
	ATOM	2565	CB	ASP H		29. 962	0.589	28.330	1.00 20.43	. Н	C	
55	ATOM	2566	CG	ASP H		28.576	1.098	28.019	1.00 21.02	H	C	
	ATOM	2567		ASP H		28.330	1.483	26.884	1.00 21.60	Н	0	

	ATOM	2568	0D2	ASP H	186	27.750	1.103	28.921	1.00 21.42	H	0
	ATOM	2569	N	GLY H		30.373	0.230	24.773	1.00 21.14	Н	N
	ATOM	2570	CA	GLY H		29.914	-0.531	23.625	1.00 20.04	H	C
5											
	ATOM	2571	C	GLY H		28. 424	-0.780	23.493	1.00 21.04	H	C
	ATOM	2572	0	GLY H		28.022	-1.702	22.789	1.00 22.73	H	0
	MOTA	2573	N	SER H	188A	27. 597	0.046	24.126	1.00 20.16	_H	N
	ATOM	2574	CA	SER H	188A	26.153	-0.151	24.068	1.00 18.78	™H	С
	ATOM	2575	C	SER H	188A	25.337	0.830	23.225	1.00 17.55	H	C
10	MOTA	2576	0		188A -	24. 298	0.457	22.686	1.00 18.92	H	Ō
	ATOM	2577	ČB	SER H		25. 582	-0.127	25.482	1.00 18.59	H	Č
	ATOM	2578	0G	SER H		25.675	1.186	26.011	1.00 20.17	H	Õ
	ATOM	2579	N	LYS H		25.786	2.076	23.118	1.00 17.33	H	N
15	ATOM	2580	CA	LYS H		25.020	3.091	22.390	1.00 15.93	H	С
15	ATOM	2581	С	LYS H		25.889	4.084	21.610	1.00 15.78	H	С
	ATOM	2582	0	LYS H	188	26.883	4.596	22.133	1.00 14.09	H	0
	ATOM	2583	CB	LYS H	188	24.140	3.847	23.388	1.00 15.97	H	С
	ATOM	2584	CG	LYS H		23.127	2.967	24.114	1.00 17.40	H	C
	ATOM	2585	CD	LYS H		22.386	3.732	25. 199	1.00 18.22	H	Č
20	ATOM	2586	CE	LYS H		23. 253	3.944	26.424	1.00 19.93	H	č
	ATOM	2587	NZ	LYS H		23. 548	2.666	27.142	1.00 23.44	. Н	N
		2588		ASP H		25. 487	4. 381	20. 375			
	ATOM		N						1.00 14.78	H.	N
	ATOM	2589	CA	ASP H		26. 254	5. 283	19.517	1.00 14.89	H	C
	MOTA	2590	C	ASP H		25.516	5.427	18.179	1.00 15.27	H	С
25	ATOM	2591	0	ASP H		24.557	4.698	17.911	1.00 12.95	H	0
	ATOM	2592	CB	ASP H		27.639	4.640	19.305	1.00 15.17	H	С
	MOTA	2593	CG	ASP H	189	28.650	5.548	18.606	1.00 14.51	H	С
	ATOM	2594	0D1	ASP H	189	28.434	6.75 0	18.465	1.00 13.62	H	0
	ATOM	2595	OD2	ASP H		29.685	5.019	18.219	1.00 13.36	H	0
20	ATOM	2596	N	SER H		25.930	6.393	17.363	1.00 12.60	H	N
30	ATOM	2597	CA	SER H		25. 358	6.542	16.036	1.00 12.63	H	Ĉ
	ATOM	2598	C	SER H		26.323	5. 715	15.176	1.00 14.47	H	Č
		2599				27.309					
	ATOM		0	SER H			5. 184	15.697	1.00 14.59	H	0
	ATOM	2600	CB	SER H		25. 337	8.012	15.595	1.00 12.32	. Н	C
35	ATOM	2601	0G	SER H		26.590	8.641	15.775	1.00 16.00	H	0
	ATOM	2602	N	CYS H		26.063	5.592	13.879	1.00 16.70	H	N
	ATOM	2603	CA	CYS H		26. 932	4.786	13.023	1.00 18.01	H	С
	ATOM	2604	С	CYS H	191	27.094	5.424	11.651	1.00 18.15	H	C
	ATOM	2605	0	CYS H	191	26.502	6.469	11.374	1.00 18.84	H	0
	ATOM	2606	CB	CYS H		26.336	3.376	12.898	1.00 21.90	H	Č
40	ATOM	2607	SG	CYS H		27.470	2.046	12.380	1.00 30.15	H	Š
	ATOM	2608	N	LYS H		27.898	4. 791	10.800	1.00 16.09	H	N
	ATON	2609	CA	LYS H		28. 172	5. 271	9.446	1.00 17.53	H	Č
	ATON			LYS H							_
		2610	C			26. 934	5.717	8.668	1.00 15.62	H	Č
45	ATON	2611	0	LYS H		26.914	6.803	8.097	1.00 13.65	H	0
45	ATON	2612	CB	LYS H		28.898	4.186	8.638	1.00 21.05	H	C
	ATOM	2613	CG	LYS H		30. 199	3.698	9.262	1.00 26.03	H	С
	ATOM	2614	CD	LYS H	192	30.964	2.766	8.330	1.00 30.74	H	С
	ATON	2615	CE	LYS H	192	30.199	1.481	8.048	1.00 35.28	H	€
	ATOM	2616	NZ	LYS H	192	30.941	0.599	7.093	1.00 36.87	H	N
50	ATOM	2617	N	GLY H		25. 910	4.872	8.635	1.00 15.41	H	N
	ATOM	2518	CA	GLY H		24.698	5. 207	7.912	1.00 14.29	H	C
	ATOM	2619	C	GLY H		23. 928					
							6.392	8.471	1.00 14.66	H	C
	ATOM	2620	0	GLY H		23. 014	6.898	7.822	1.00 13.96	Н	0
	ATOM	2621	N	ASP H		24. 287	6.836	9.673	1.00 13.02	Н	N
55	ATOM	2622	CA	ASP H		23.627	7.976	10.304	1.00 11.92	H	С
	ATOM	2623	C	ASP H	194	24. 319	9. 299	9.972	1.00 11.87	H	С

	ATOM	2624	0	ASP H I	04	23. 795	10.379	10. 273	1 00	10.97	H	0
	ATOM	2625	CB	ASP H I		23.585	7.780	11.821	1.00		H	Č
5	ATOM	2626	CG	ASP H 1		22. 824	6.530	12. 223		12.55	H	č
3	ATOM	2627		ASP H 1		21.676	6.411	11. 836		11.16	H	Ö
	ATOM	2628		ASP H 1		23. 389	5.684	12. 923		10.92	H	0
	ATOM	2629	N N	SER H		25. 492	9. 201	9. 348	1.00		H	N
	ATOM	2630	CA	SER H 1		26. 290	10.359	8. 945		11.04	H	C
	ATOM	2631	C	SER H 1		25. 454	11.500	8. 379	1.00		H	C
10	ATOM							7.545		10.28	:: H	0
		2632	0 CP	SER H 1		24. 571 27. 316	11.285 9.943	7. 890	1.00	9. 93	n H	Č
	ATOM	2633	CB	SER H 1				8. 425			n H	0
	ATOM	2634	0G			28. 260	9.039		1.00			
	ATOM	2635	N	GLY H		25. 753	12.717	8.824		12.35	H	N
15	ATOM	2636	CA	GLY H		25.028	13.884	8.348		12. 23	H	C
	ATOM	2637	C	GLY H		23.805	14.182	9.189	1.00		H	Ç
	ATOM	2638	0	GLY H		23. 259	15. 286	9.146		13.77	H	0
	ATOM	2639	N	GLY H		23.383	13. 187	9.962		13.04	H	N
	ATOM	2640	CA	GLY H		22. 222	13.334	10.807		13.77	H	C
20	ATOM	2641	C	GLY H		22.427	14.322	11.934		14.43	H	C
	ATOM	2642	0	GLY H		23.558	14.645	12.302	1.00		H	0
	ATOM	2643	N .	PRO H		21.327	14.806	12.516		13.56	H	N
	ATOM	2644	CA	PRO H		21.315	15. 772	13.615		13.40	H	C
	ATOM	2645	C	PRO H		21.761	15. 263	14.981		11.88	H	C
25	ATOM	2646	0_	PRO H		21.559	14.102	15.330		11.73	H	0
25	ATOM	2647	CB	PRO H		19.847	16.220	13.688		12.32	H	C
	ATOM	2648	CG	PRO H		19.183	15.624	12.464		16.84	H	C
	ATOM	2649	CD	PRO H		19.960	14.396	12.164		14.30	H	Ç
	ATOM	2650	N	HIS H		22.378	16.166	15.730		10.39	H	N
	ATOM	2651	CA	HIS H		22.775	15.954	17.116		10.13	H	C
30	ATOM	2652	C	HIS H		22.028	17. 189	17. 599		10.86	H	C
	ATOM	2653	0	HIS H		22.509	18. 312	17. 426		10.19	H	0
	ATOM	2654	CB	HIS H		24. 284	16. 121	17. 322		11.26	H	C
	ATOM	2655	CG	HIS H		24.698	16. 134	18. 765	1.00	9.49	H	C
	ATOM	2656		HIS H		24.605	17. 258	19.556	1.00	7.80	H	N
35	ATOM	2657		HIS H		25.174	15. 151	19.567	1.00	9.62	H	C
	ATOM	2658		HIS H		25.006	16.970	20. 782	1.00	9.46	H	C
	ATOM	2659		HIS H		25.356	15.698	20.816		10.16	H	N
	ATOM	2660	N	ALA H		20.826	16.979	18. 140		11.28	H	N
	ATOM	2661	CA	ALA H		19.964	18.076	18.578		11.42	H	Č
40	ATOM	2662	C	ALA H		19.879	18. 243	20.085		10.13	H	Ç
	ATOM	2663	0	ALA H		19.714	17. 281	20.819	1.00	8.59	H	0
	ATOM	2664	CB	ALA H		18.567	17.893	17.991	1.00	8.70	H	C
	ATOM		N	THR H			19. 488	20. 531		10.27		N
	MOTA	2666	CA	THR H		19.943	19.795	21.950		11.65	H	Č
45	ATOM	2667	C	THR H		18.690	20. 573	22. 350		12.35	H	C
10	MOTA	2668	0	THR H		18.358	21.590	21.753		12.80	H	0
	ATOM	2669	CB	THR H		21.189	20.616	22.322		10.77	H	C
	MOTA	2670		THR H		22.354	19.955	21.814	1.00	9.62	H	0
	MOTA	2671		THR H		21.307	20.769	23.823	1.00	5.98	H	C
50	ATOM	2672	N	HIS H		18.012	20.084	23.379		12.93	H	N
50	ATOM	2673	CA	HIS H		16.799	20. 709	23.889		14.16	H	C
	ATOM	2674	C	HIS H		17. 182	21. 718	24.972		13.17	H	C
	ATOM	2675	0	HIS H		17. 953	21.406	25. 877		11.26	H	0
	ATOM	2676	CB	HIS H		15. 883	19.630	24.487		15.77	H	C
	ATOM	2677	CG	HIS H		14. 461	20.062	24.661		19.01	H	C
55	ATOM	2678		HIS H		13. 551	19.330	25.399		20.89	H	N
	ATOM	2679	CD2	HIS H	202	13.778	21.124	24. 172	1.00	17.67	H	С

	ATOM ATOM	2680 2681		HIS H			374 484	19.925 21.016	25.356 24.617		18.13 20.03	H H	C N
5	ATOM	2682	N	TYR H			654	22.932	24. 878		13.14	H	N
3	ATOM	2683	CA	TYR H			949	23.947	25. 882		14.38	H	C
	ATOM	2684	C	TYR H			762	24.872	26. 070		15.63	H	Č
	ATOM	2685	ŏ	TYR H			399	25.617	25. 160		17.55	H	ŏ
	ATOM	2686	CB	TYR H			170	24.788	25. 495		11.34	H	Č
10	ATOM	2687	CG	TYR H			555	25.767	26. 587		13.03	H	Č
10	ATOM	2688		TYR H			202	25. 328	27. 741		11.89	H	Č
	ATOM	2689		TYR H			224	27.118	26. 494		11.33	H	C
	ATOM	2690		TYR H			510	26.208	28. 775		15.40	H	Č
	ATOM	2691		TYR H			520	28.006	27. 523		13.47	H	Č
	ATOM	2692	CZ	TYR H			163	27.544	28.660		15. 28	H	Č
15	ATOM	2693	OH	TYR H			449	28.406	29.689		17.54	H	Ö
	ATOM	2694	N	ARG H			162	24.817	27. 254		17.36	H	N
	ATOM	2695	CA .	ARG H			019	25.654	27. 590		16.44	H	Č
	ATOM	2696	C	ARG H			928	25.702	26. 523		18.12	H	Č
	ATOM	2697	ŏ	ARG H			544	26.774	26.054		19.33	H	Õ
20	ATOM	2698	CB	ARG H			507	27.068	27. 931		18.74	H	č
	ATOM	2699	CG	ARG H			268	27.102	29. 256		21.03	H	Č
	ATOM	2700	CD	ARG H			852	28.461	29.633		23.39	H	Č
	ATOM	2701	NE	ARG H			460	28.378	30. 965		29.04	H	N
	ATOM	2702	CZ	ARG H			208	29.320	31.536		29.55	H	C
25	ATOM	2703		ARG H			473	30.455	30.906	1.00	29.68	H	N
	MOTA	2704		ARG H			698	29.120	32.753		30.72	H	N
	MOTA	2705	N	GLY H	205		437	24.528	26.135	1.00	18.15	H	N
	ATOM	2706	CA	GLY H	205	11.	366	24.455	25.158	1.00	18.43	H	C
	ATOM	2707	C	GLY H	205	11.	688	24.465	23.672	1.00	17.94	H	C
30	MOTA	2708	0	GLY H			773	24.325	22.859	1.00	20.84	H	0
	ATOM	2709	N	THR H	206		957	24.613	23.302	1.00	17.15	H	N
	MOTA	2710	CA	THR H			334	24.651	21.889	1.00	16.34	H	C
	MOTA	2711	C	THR H			556	23.786	21.587		15.73	H	C
	ATOM	2712	0	THR H			485	23.715	22. 389		16.49	H	0
35	MOTA	2713	CB	THR H			608	26.111	21.451		16.85	H	C
	ATOM	2714		THR H			396	26.859	21.558		20.04	H	0
	MOTA	2715		THR H			112	26.181	20.008		15.79	H	C
	ATOM	2716	N	TRP H			544	23.136	20. 424		14.13	H	. N
	ATOM	2717	CA	TRP H			639	22. 270	19.995		11.73	H	C
40	ATOM	2718	C	TRP H			582	23.008	19.051		11.84	H	C
	ATOM	2719 2720	O · CB	TRP H			138	23.745 21.025	18. 174 19. 297		10.36	H	0
	MOTA MOTA	2721	CG	TRP H			089 342	20.115	20. 205		10.05 12.23	H H	C
	ATOM	2722		TRP H			032		20. 573			H	č
	ATOM	2723		TRP H			871	18.974	20. 891		12.27	H	C
45	ATOM	2724		TRP H			711	19.197	21. 446		10.79	H	N
	ATOM	2725		TRP H			821	18. 425	21. 659		11.69	H	C
	ATOM	2726		TRP H			130	18.362	20. 927		10.32	H	C
	MOTA	2727		TRP H			994	17. 292	22.460		12.43	H	Č
	MOTA	2728		TRP H			303	17. 233	21.722		13.70	H	Č
50	MOTA	2729		TRP H			239	16.710	22. 478		12.06	H	č
	ATOM	2730	N	TYR H			881	22.785	19. 226		11.22	H	N
	ATOM	2731	ĊA	TYR H			909	23.446	18. 421		12.37	H	Č
	ATOM	2732	C	TYR H			912	22.457	17.832		12.09	H	č
	ATOM	2733	Ö	TYR H			175	21.413	18.422		11.35	H	ŏ
55	ATOM	2734	CB	TYR H			679	24.457	19. 281		10.64	H	Č
	ATOM	2735	CG.	TYR H			818	25.521	19.927		11.14	H	č
							5.0				4.6	41	v

5	MOTA MOTA MOTA MOTA MOTA MOTA	2736 2737 2738 2739 2740 2741	CD2 CE1	TYR H TYR H TYR H TYR H TYR H TYR H	208 208 208 208	18. 192 18. 622 17. 391 17. 823 17. 211 16. 417	25. 297 26. 756 26. 279 27. 739 27. 496 28. 471	21. 155 19. 302 21. 746 19. 881 21. 102 21. 667	1.00 10.27 1.00 9.96 1.00 9.89 1.00 11.17 1.00 11.59 1.00 14.79	H H H H H	000000
10	ATOM ATOM ATOM ATOM ATOM	2742 2743 2744 2745 2746	N CA C	LEU H LEU H LEU H LEU H	209 209 209 209	20. 479 21. 473 22. 838 23. 372 21. 538	22.803 21.956 22.217 23.328 22.275	16.676 16.019 16.655 16.572 14.519	1.00 11.60 1.00 10.61 1.00 11.52 1.00 9.17 1.00 11.62	H H H H	N C C O C
15	MOTA MOTA MOTA MOTA	2747 2748 2749 2750	CG CD1 CD2 N	LEU H LEU H LEU H THR H	209 209 209 210	22.533 22.154 22.530 23.401	21.438 19.964 21.888 21.203	13. 703 13. 799 12. 253 17. 301	1.00 10.56 1.00 9.75 1.00 11.64 1.00 11.36	Н Н Н Н	C C N
20	MOTA MOTA MOTA MOTA MOTA	2751 2752 2753 2754 2755	CA C O CB OG1	THR H THR H THR H THR H THR H	210 210 210 210	24.703 25.788 26.970 24.631 23.797 24.069	21. 362 20. 487 20. 801 21. 051 19. 907	17. 945 17. 322 17. 411 19. 464 19. 681 20. 227	1.00 12.32 1.00 11.28 1.00 11.33 1.00 11.07 1.00 12.24 1.00 11.51	H H H H	00000
25	MOTA MOTA MOTA MOTA MOTA	2756 2757 2758 2759 2760 2761	N CA C O N	THR H GLY H GLY H GLY H GLY H ILE H	211 211 211 211	25. 392 26. 385 25. 899 24. 709 26. 842	22. 232 19. 396 18. 527 17. 781 17. 781 17. 147	16. 685 16. 085 14. 861 14. 540 14. 174	1.00 11.31 1.00 11.49 1.00 12.62 1.00 12.53 1.00 10.55 1.00 12.70	Н Н Н Н Н	C N C C O N
30	ATOM ATOM ATOM ATOM ATOM	2762 2763 2764 2765 2766	CA C O CB	ILE H ILE H ILE H ILE H ILE H	212 212 212 212	26. 545 27. 240 28. 424 27. 094 26. 527	16. 371 15. 016 14. 961 17. 076 18. 498	12. 976 13. 116 13. 451 11. 716 11. 619	1.00 11.37 1.00 12.64 1.00 11.86 1.00 10.36 1.00 9.87	Н Н Н Н	00000
35	ATOM ATOM ATOM ATOM ATOM	2767 2768 2769 2770 2771	CG2	ILE H ILE H VAL H VAL H VAL H	212 212 213 213	26. 758 27. 194 26. 503 27. 086 28. 248	16. 270 19. 343 13. 930 12. 591 12. 608	10. 485 10. 538 12. 890 12. 969 11. 976	1.00 7.55 1.00 10.68 1.00 11.61 1.00 10.63 1.00 10.32	н н н н	CCNCC
40	MOTA MOTA MOTA MOTA	2772 2773 2774 2775	O CB CG1 CG2	VAL H VAL H VAL H	213 213 213 213	28.032 26.054 26.686 24.850	12.764 11.512 10.123 11.575	10. 773 12. 562 12. 627 13. 486	1.00 10.80 1.00 8.77 1.00 7.54 1.00 9.35	Н Н Н	0 C C C
45	ATOM ATOM ATOM ATOM ATOM	2776 2777 2778 2779 2780	N CA C O CB	SER H SER H SER H SER H	214 214 214 214	29. 476 30. 654 31. 527 31. 662 31. 525	12. 465 12. 533 11. 288 10. 694 13. 725	12. 473 11. 601 11. 510 10. 436 12. 015	1.00 10.48 1.00 10.02 1.00 10.29 1.00 10.45 1.00 10.33	H H H H	N C C O C
50	MOTA ATOM ATOM ATOM ATOM MOTA	2781 2782 2783 2784 2785	OG N CA C	SER H TRP H TRP H TRP H	215 215 215	32. 650 32. 144 32. 996 33. 186 32. 595	13. 856 10. 894 9. 715 9. 044 9. 440	11. 166 12. 616 12. 571 13. 919 14. 925	1.00 14.56 1.00 9.38 1.00 9.84 1.00 11.40 1.00 10.83	Н Н Н Н	0 N C C
55	MOTA MOTA MOTA MOTA MOTA MOTA	2786 2787 2788 2789 2790	CD2 NE1	TRP H TRP H TRP H TRP H TRP H	215 215 215 215	34. 372 35. 189 35. 054 36. 286 36. 002	10. 077 11. 045 12. 405 10. 720 12. 949	11. 979 12. 802 12. 851 13. 670 13. 690	1.00 11.73 1.00 11.23 1.00 12.73 1.00 12.20 1.00 12.73	H H H H	C C C N
	MOTA	2791	CEZ	TRP H	215	36.770	11.937	14. 206	1.00 13.66	Н	С

5	ATOM ATOM ATOM	2792 2793 2794	CZ2 CZ3	TRP H	215 215	36. 907 37. 852 37. 986	9. 520 11. 986 9. 569	14. 044 15. 100 14. 936	1.00 11.80 1.00 11.52 1.00 11.59	Н Н Н	C C C
	ATOM ATOM ATOM ATOM	2795 2796 2797 2798	CH2 N CA C	TRP H GLY H GLY H GLY H	216 216	38. 445 34. 029 34. 308 34. 988	10.796 8.020 7.298 6.002	15. 451 13. 928 15. 151 14. 792	1.00 12.21 1.00 12.15 1.00 14.20 1.00 15.78	Н Н Н Н	C N C C
10	ATOM ATOM ATOM ATOM	2799 2800 2801 2802	O N CA C	GLY H GLN H GLN H	217 217	35. 124 35. 435 36. 081 34. 986	5.684 5.255 3.982 2.937	13.611 15.792 15.521 15.544	1.00 17.05 1.00 17.07 1.00 19.04 1.00 17.72	Н Н Н Н	0 N C C
15	ATOM ATOM ATOM ATOM	2803 2804 2805 2806	O CB CG CD	GLN H GLN H GLN H GLN H	217 217 217	34. 486 37. 136 37. 813 39. 254	2. 579 3. 683 2. 342 2. 360	16.606 16.579 16.395 16.845	1.00 19.73 1.00 22.69 1.00 27.55 1.00 33.39	H H H	0 C C
20	ATOM ATOM ATOM	2807 2808 2809	OE1 NE2 N	GLN H GLN H GLY H	217 217 219	39.613 40.092 34.606	3.063 1.576 2.458	17. 791 16. 173 14. 364	1.00 34.21 1.00 37.35 1.00 18.12	H H H	C O N N
	ATOM ATOM ATOM	2810 2811 2812 2813	CA C O N	GLY H GLY H GLY H CYS H	219 219 220	33. 539 32. 283 32. 135 31. 381	1. 482 2. 125 3. 347 1. 311	14. 279 14. 835 14. 788 15. 372	1.00 17.60 1.00 20.54 1.00 20.64 1.00 21.24	H H H H	C C O N
25	ATOM ATOM ATOM ATOM	2814 2815 2816 2817	CA C O CB	CYS H CYS H CYS H CYS H	220 220 220	30. 145 29. 893 29. 765 28. 981	1. 824 1. 193 -0. 028 1. 549	15. 943 17. 310 17. 432 14. 983	1.00 23.06 1.00 22.01 1.00 22.87 1.00 23.60	H H H H	C 0 C
30	ATOM ATOM ATOM ATOM	2818 2819 2820 2821	SG N CA C	CYS H ALA H ALA H ALA H	221A 221A	29. 194 29. 830 29. 613 30. 719	2. 422 2. 039 1. 586 0. 615	13.398 18.333 19.704 20.102	1.00 28.32 1.00 21.07 1.00 21.19 1.00 20.46	H H H H	S N C C
25	ATOM ATOM ATOM ATOM	2822 2823 2824 2825	O CB N CA	ALA H ALA H THR H THR H	221A 221A 221	30.463 28.245 31.953 33.109	-0.454 0.916 0.992 0.173	20.660 19.833 19.797 20.121	1.00 21.19 1.00 20.8 1.00 20.10 1.00 19.79	H H H H	O C N
35	ATOM ATOM ATOM	2826 2827 2828	C O CB	THR H THR H THR H	221 221 221	33.530 33.610 34.273	0. 484 1. 647 0. 467	21.551 21.943 19.151	1.00 18.64 1.00 17.97 1.00 20.35	Н Н , Н	C C O C
40	ATOM ATOM ATOM	2829 2830 2831 2832	OG1 CG2 N CA	THR H THR H VAL H VAL H	221 222 222	33. 854 35. 492 33. 776 34. 186	0.169 -0.386 -0.560 -0.402	17.815 19.485 22.332 23.721	1.00 22.66 1.00 22.20 1.00 16.93 1.00 16.22	H H H H	0 C N C
45	ATOM ATOM ATOM ATOM	2833 2834 2835 2836	C O CB CG1	VAL H VAL H VAL H	222 222	35. 458 36. 424 34. 444 34. 994	0. 437 0. 173 -1. 783 -1. 596	23. 788 23. 077 24. 388 25. 802	1.00 16.60 1.00 16.78 1.00 15.57 1.00 15.54	H H H H	C C C
	ATOM ATOM ATOM ATOM	2837 2838 2839 2840		YAL H GLY H GLY H GLY H	222 223 223	33. 147 35. 444 36. 603	-2. 589 1. 458 2. 322	.24. 433 24. 639 24. 785	1.00 12.31 1.00 18.10 1.00 17.10	Н Н Н	C N C
50	MOTA MOTA MOTA	2841 2842 2843	O N CA	GLY H HIS H HIS H	223 224 224	36.607 37.602 35.501 35.418	3. 503 4. 221 3. 716 4. 817	23. 834 23. 749 23. 122 22. 172	1.00 16.65 1.00 16.09 1.00 14.21 1.00 14.13	Н Н Н Н	C O N C
55	MOTA ATOM ATOM ATOM	2844 2845 2846 2847	C O CB CG	HIS H HIS H HIS H	224 224	34. 054 33. 043 35. 772 37. 163	5. 490 4. 883 4. 324 3. 786	22. 169 22. 523 20. 768 20. 665	1.00 13.03 1.00 12.79 1.00 14.15 1.00 18.68	Н Н Н Н	C C C

	ATOM	2848	NDI	HIS H	221	38. 273	4.602	20.632	1.00 22.89	Н	N
	ATOM	2849		HIS H		37.630	2. 516	20.690	1.00 18.87	H	Č
	ATOM	2850		HIS H		39.365	3.859	20.645	1.00 20.95	H	Č
5	ATOM	2851	NED	HIS H	224	39.002	2. 590	20.682	1.00 24.07	н	N
	ATOM	2852	N	PHE H		34.059	6. 758	21.772	1.00 12.58	H	N
	ATOM	2853	CA	PHE H		32.870	7. 597	21.709	1.00 12.30	H	Č
	ATOM	2854	C	PHE H		32.638	8. 059	20. 270	1.00 13.20	H	Č
				PHE H		33. 567	8. 102	19.459		H	
10	MOTA	2855	() ()	PHE H					1.00 13.13		0
	ATOM	2856	CB			33.070	8.857	22.566 24.041	1.00 12.36 1.00 13.26	H	. C
	ATOM ATOM	2857 2858	CG	PHE H		33.176 32.034	8. 599 8. 486	24. 041	1.00 13.26	H H	C
		2859		PHE H		34. 422				Н	C
	ATOM			PHE H			8. 496	24.655	1.00 12.18		C
15	ATOM	2860				32.132	8. 275	26. 197	1.00 11.54	H	C
	ATOM	2861		PHE H		34.528	8. 284	26.024	1.00 11.28	H	C
	MOTA	2862	CZ	PHE H		33.383	8. 173	26.797	1.00 11.86	H	C
	MOTA	2863	N	GLY H		31.401	8. 423	19.954	1.00 11.84	H	N
	ATOM	2864	CA	GLY H		31.141	8. 930	18.622	1.00 11.14	H	C
20	MOTA	2865	C	GLY H		31.706 31.783	10.345 11.018	18.564 19.593	1.00 11.37 1.00 9.76	H	C
20	ATOM	2866	0 N	VAL H		32.124	10. 789	17. 383	1.00 9.76 1.00 10.30	H	0
	MOTA	2867	N Ca	VAL H		32.124	12. 137		1.00 10.30	Н	N
	ATOM ATOM	2868 2869	C	VAL H		31.711	12. 137	17. 217 16. 279	1.00 11.39	. Н	. C
	ATOM	2870	Ö	VAL H		31.308	12. 376	15. 236	1.00 12.30	H	C
0.5	ATOM	2871	_	VAL H		34.096	12. 119	16. 597	1.00 11.88	H	. C
25	ATOM	2872		VAL H		34.725	13. 503	16.711	1.00 10.66	n H	C
	ATOM	2873		VAL H		34. 977	11.081	17. 304	1.00 11.39	H	Č
	ATOM	2874	N	TYR H		31.360	14. 117	16.651	1.00 11.76	H	·N
	ATOM	2875	ČA	TYR H		30. 424	14. 913	15.868	1.00 11.60	H	C
	ATOM	2876	C	TYR H		31.040	16. 251	15.458	1.00 11.78	H	č
30	ATOM	2877	ŏ	TYR H		31.870	16. 798	16.176	1.00 12.87	H	ŏ
	ATOM	2878	ČВ	TYR H		29.147	15. 158	16.692	1.00 12.02	H	č
	ATOM	2879	CG.	TYR H		28.446	13.883	17.159	1.00 13.58	H	Č.
	ATOM	2880		TYR H		28.956	13. 112	18. 211	1.00 15.38	H	č
	ATOM	2881		TYR H		27.302	13.425	16.515	1.00 12.87	H	Č
35	ATOM	2882		TYR H			11.908	18. 599	1.00 13.68	H	č
	MOTA	2883		TYR H		26.680	12.235	16.894	1.00 11.86	H	č
	ATOM	2884	CZ	TYR H		27.198	11.484	17.931	1.00 13.33	H	Č
	ATOM	2885	0H	TYR H	228	26.570	10.310	18.293	1.00 13.39	Ħ	0
	ATOM	2886	N	THR H	229	30.649	16.767	14.296	1.00 10.21	H	N
40	ATOM	2887	CA	THR H	229	31.158	18.056	13.840	1.00 9.23	H	С
	ATOM	2888	C	THR H	229	30.612	19.105	14.817	1.00 9.22	H	С
	ATOM	2889	0	THR H	229	29.422	19.093	15.133	1.00 9.33	H	0
	MOTA	2890	CB	THR H	229	30,656	18.383	12.420	1.00 11.04	H	С
	ATOM	2891	0G1	THR H	229	31.037	17.334	11.519	1.00 10.26	H	0
45	ATOM	2892	CG2	THR H	229	31.246	19.712	11.935	1.00 8.87	H	С
	ATOM	2893	N	ARG H	230	31.473	19.993	15.309	1.00 7.76	H	N
	MOTA	2894	CA	ARG H	230	31.051	21.026	16.257	1.00 7.07	Ħ	C
	ATOM	2895	C	ARG H	230	30.444	22.197	15.487	1.00 7.98	H	C
	ATOM	2896	0	ARG H		31.150	23.158	15.134	1.00 6.49	H	0
50	ATOM	2897	CB	ARG H	230	32. 251	21.505	17.093	1.00 8.54	H	C
	ATOM	2898	CG	ARG H		31.885	22.461	18.238	1.00 11.66	H	C
	ATOM	2899	CD	ARG H		33.104	22.903	19.054	1.00 14.39	H	C
	ATOM	2900	NE	ARG H		33.846	21.777	19.631	1.00 14.90	H	N
	ATOM	2901	CZ	ARG H		33.986	21.545	20.937	1.00 19.51	H	C
55	ATOM	2902		ARG H		33.434	22.355	21.835	1.00 18.42	Н	N
	MOTA	2903	NH2	ARG H	230	34.694	20.503	21.356	1.00 18.54	H	N

	ATOM	2904	N	VAL H	231	29.134	22.115	15. 243	1.00 7.40	H	N
	ATOM	2905	CA	VAL H		28.396	23.132	14.485	1.00 8.02	H	С
_	ATOM	2906	C	VAL H		28. 582	24.590	14.906	1.00 8.03	H	Č
5	ATOM	2907	Õ	VAL H		28.522	25.478	14.063	1.00 11.15	H	ŏ
	ATOM	2908	CB	VAL H		26.869	22.813	14. 453	1.00 8.34	H	Č
				VAL H		26.091	23.963	13. 789	1.00 6.76	H	Č
	ATOM	2909				26.631	21.536				
	ATOM	2910		VAL H				13.663	1.00 6.77	H	C
10	ATOM	2911	N	SER H		28.812	24.846	16. 191	1.00 9.98	H	N
	MOTA	2912	CA	SER H		28.999	26.216	16.665	1.00 10.61	H	C
	ATOM	2913	C	SER H		30. 141	26.942	15. 951	1.00 11.51	Н	C
	MOTA	2914	0 .	SER H		30.116	28.162	15.815	1.00 13.83	Н	0
	ATOM	2915	CB	SER H		29. 253	26. 225	18. 172	1.00 9.74	Н	С
15	ATOM	2916	0G	SER H	232	30.328	25.366	18.508	1.00 9.99	H	0
,0	ATOM	2917	N	GLN H	233	31.138	26.192	15.500	1.00 10.91	H	N
	ATOM	2918	CA	GLN H	233	32.282	26.758	14.790	1.00 12.68	Н	С
	ATOM	2919	С	GLN H		31.957	27.212	13.365	1.00 12.56	H	С
	ATOM	2920	0	GLN H		32.715	27.973	12.755	1.00 10.39	H	0
	ATOM	2921	CB	GLN H		33.410	25.725	14.738	1.00 14.26	Н	C
20	ATOM	2922	ĊĠ	GLN H		33.859	25. 290	16.109	1.00 17.78	H	Č
	ATOM	2923	CD	GLN H		34.180	26.481	16.983	1.00 23.92	H	č
	ATOM	2924		GLN H		35.120	27. 221	16.702	1.00 22.25	H	ŏ
	ATOM	2925		GLN H		33.383	26.687	18.045	1.00 25.97	H	Ň
	ATOM	2926	N	TYR H		30.815	26.765	12.851	1.00 10.53	H	N
25	ATOM	2927	CA	TYR H		30.401	27.072	11. 485	1.00 10.91	H	Ċ
	ATOM	2928	C	TYR H		29.164	27.970	11.338	1.00 11.10	H	č
	ATOM	2929		TYR H		28.663	28. 137	10. 232	1.00 12.26	H	ŏ
			0	TYR H		30.145	25.748	10. 752	1.00 12.20	H	
	ATOM	2930	CB			31.359		10. 717	1.00 11.31		C
	ATOM	2931	CG	TYR H			24.833			H	C
30	ATOM	2932		TYR H		32.363	25.018	9. 765	1.00 9.58	Н	C .
	ATOM	2933		TYR H		31.526	23.826	11.661	1.00 8.26	H	C
	ATOM	2934		TYR H		33.501	24. 231	9. 756	1.00 10.13	Н	C
	ATOM .	2935		TYR H		32.673	23.022	11.665	1.00 10.83	H	C
	ATOM	2936	CZ	TYR H		33.653	23. 236	10.707	1.00 10.93	Н	C
35	ATOM	2937	OH	TYR H		34.782	22.464	10.691	1.00 11.60	H	0
	ATOM	2938	Ŋ	ILE H		28.670	28.549	12.428	1.00 10.49	H	N
	ATOM	2939	CA	ILE H		27.473	29.389	12.341	1.00 12.21	H	С
	ATOM	2940	C	ILE H		27.624	30.539	11.343	1.00 13.01	H	C
	ATOM	2941	0	ILE H		26.790	30.710	10.455	1.00 13.67	H	0
40	ATOM	2942	CB	ILE H		27.076	29. 971	13.725	1.00 12.39	H	C
40	ATOM	2943		ILE H		26.910	28.842	14.746	1.00 13.92	H	C
	ATOM	2944		ILE H		25.759	30.764	13.601	1.00 14.14	H	C
	ATOM	2945	CD1	ILE H	235	25.923	27.750	14.319	1.00 11.48	H	C
	MOTA	2946	N	GLU H	236	28.680	31.331	11.493	1.00 15.53	H	N
	ATOM	2947		GLU H	236	28.931	32.449		1.00 16.27	·H	C
45	ATOM	2948	C	GLU H	236	29.116	31.967	9.143	1.00 15.01	H	C
	MOTA	2949	0	GLU H		28.608	32.575	8.199	1.00 15.26	H	Ö
	ATOM	2950	CB	GLU H		30.178	33. 222	11.023	1.00 20.86	H	Č
	ATOM	2951	CG	GLU H		30.002	34.066	12. 278	1.00 28.52	H	č
	ATOM	2952	CD	GLU H		29. 769	33. 243	13. 535	1.00 35.96	H	Č
50	ATOM	2953		GLU H		30.614	32, 384	13.848	1.00 39.48	H	
	ATOM	2954		GLU H		28. 742	33. 466	14. 205	1.00 39.32	H	0
				TRP H							0
	MOTA	2955	N			29.848	30.873	8.979	1.00 13.41	H	N
	ATOM	2956	CA	TRP H		30.098	30. 298	7.660	1.00 12.55	H	C
	ATOM	2957	C	TRP H		28.759	29.950	7.000	1.00 13.34	H	C
55	ATOM	2958	0	TRP H		28. 524		5. 828	1.00 12.48	Н	0
	ATOM	2959	CB	TRP H	237	30.950	29.023	7.807	1.00 12.29	H	С
										-	

	ATOM	2960	CG	TRP 1	H 237	3	1.424	28.400	6.509	1.00 10.83]	H	C
	ATOM	2961		TRP			2.421	28.860	5.690	1.00 11.49		H	Č
	ATOM	2962			1 237		0.927	27. 196	5. 897	1.00 11.56		H	Č
5	ATOM	2963			H 237		2.577	28. 019	4. 612	1.00 11.23		Ĥ	Ň
		2964		TRP			1.675	26. 993	4. 711	1.00 10.61		H	Ċ
	ATOM							26. 276	6. 232	1.00 10.01		H	C
	ATOM	2965		TRP 1			9.922		3. 856				
	MOTA	2966			H 237		1.448	25. 903		1.00 10.86		H	C
10	ATOM	2967			H 237		9.695	25. 186	5. 379	1.00 13.69		H	C
	ATOM	2968			H 237		0.459	25.013	4. 202	1.00 11.69		4	C
	ATOM	2969	N		H 238		7.890	29. 289	7. 762	1.00 11.93		H	N
	ATOM	2970	CA		H 238		6.577	28. 876	7. 272	1.00 13.74		H	C
	ATOM	2971	C		H 238		5.660	30.054	6.976	1.00 14.26		Ħ	С
	ATOM	2972	0	LEU !	H 238	2	5.006	30.106	5. 937	1.00 15.47]	H	0
15	ATOM	2973	CB	LEU	H 238	2	5.906	27.948	8.296	1.00 11.48	l	H	С
	ATOM	2974	CG	LEU I	H 238	2	6.619	26.607	8.530	1.00 12.33]	H	C
	ATOM	2975	CD1		H 238		6.127	25.955	9.816	1.00 9.88]	H	С
	ATOM	2976			H 238		6.393	25.696	7.330	1.00 11.54]	H	С
	ATOM	2977	N		H 239		5.614	31.029	7.887	1.00 16.12		H	N
20	ATOM	2978	ĊA		H 239		4.761	32. 202	7.696	1.00 18.31		H	C
	ATOM	2979	C		H 239		5. 149	33. 011	6.463	1.00 17.63		Ĥ	Č
	ATOM	2980	Õ		H 239		4. 289	33. 448	5. 705	1.00 17.31		H	Õ
	ATOM	2981	CB		H 239		4. 809	33. 099	8.930	1.00 16.56		H	č
	ATOM	2982	CG		H 239		4. 263	32.442	10.176	1.00 22.50		H	Č
25	ATOM	2983	CD		H 239		4. 217	33. 393	11.348	1.00 24.81		H	Č
	ATOM	2984			H 239		5. 143	34. 179	11.563	1.00 28.05		H	Ö
	ATOM	2985			H 239		3. 144	33. 321	12. 124	1.00 28.34		H	Ň
	ATOM	2986	N		H 240		6.446	33. 205	6. 268	1.00 19.23		H	N
	ATOM	2987	CA		H 240		6.944	33. 958		1.00 20.75		H	C
	ATOM	2988	C		H 240		6.544	33. 269	3. 816	1.00 20.15		H.	C
30									2.884	1.00 20.33		n. H	
	ATOM	2989	0 CD		H 240		6.068	33.915					0
	ATOM	2990	CB		H 240		8. 467	34. 072	5.218	1.00 23.48		H	C
	ATOM	2991	CG		H 240		9.082	35. 190	4. 391	1.00 30.47		H	C
	ATOM	2992	CD		H 240		9.016	34.913	2.900	1.00 34.65		H	Č
35	ATOM	2993	CE		H 240		9.606	36.071	2. 101	1.00 38.36		H	C
	ATOM	2994	ΝZ		H 240		1.028	36. 326	2.469	1.00 39.99		HŢ.	N
	ATOM	2995	N		H 241		6. 733	31.954	3.754	1.00 20.03		H	N
	ATOM	2996	CA	LEU	H 241		6.398	31.187	2.560	1.00 19.49		H	C
	ATOM	2997	C		H 241		4.900	31.140	2.256	1.00 19.86		H	C
40	ATOM	2998	0		H 241		4.508	31.126	1.094	1.00 18.70		H	0
	ATOM	2999	CB		H 241		6. 948	29. 763	2.680	1.00 19.02		H	C
	ATOM	3000	CG		H 241		8.473	29.630	2.647	1.00 19.62		H	С
	MOTA	3001			H 241		8.870	28. 191	2.990	1.00 18.89		H	С
	MOTA	3002	CD2		H 241		9.001	30.032	1.273	1.00 14.59		H	C
45	ATOM	3003	N		H 242		4. 058	31.106	3. 287	1.00 21.92		H	N
45	ATOM	3004	CA	MET	H 242	2	2.615	31.081	3. 051	1.00 24.59		H	С
	MOTA	3005	С	MET	H 242	2	2.142	32.421	2.477	1.00 27.60		H	C
	ATOM	3006	0	MET	H 242	2	1.097	32.497	1.834	1.00 27.62		H	0
	MOTA	3007	CB	MET	H 242	2	1.854	30.746	4.341	1.00 21.21		H	C
	ATOM	3008	CG	MET	H 242	2	2.003	29. 283	4.768	1.00 20.37		H	С
50	ATOM	3009	SD		H 242		1.011	28.815	6.206	1.00 18.95		H	S
	MOTA	3010	CE		H 242		1.948	29.603	7.540	1.00 14.65		H	Č
	ATOM	3011	N		H 243		2. 924	33.472	2.703	1.00 30.45		H	Ň
	ATOM	3012	CA		H 243		2. 595	34. 795	2. 187	1.00 34.75		H .	Ċ
	ATOM	3013	C		H 243		3. 270	35.048	0.840	1.00 37.34		H	C
55	ATOM	3014	ŏ		H 243		3. 277	36.176	0.351	1.00 39.24		H	0
	ATOM	3015	CB		H 243		3.048	35.868	3. 170	1.00 35.66		n H	C
	WI OW	0010	CD	MU	11 443	4	J. 040	20.000	3.110	1.00 00.00		п	U

5	ATOM ATOM ATOM ATOM ATOM ATOM	3016 3017 3018 3019 3020 3021		ARG H 243 ARG H 243 ARG H 243 ARG H 243 ARG H 243	2: 2: 2: 2:	2. 216 3. 094 4. 090 5. 137 5. 335 5. 997	35.976 36.381 37.380 37.722 37.148 38.631	4. 429 5. 600 5. 218 5. 965 7. 147 5. 519	1.00 3 1.00 4 1.00 4 1.00 4 1.00 4	2. 39 5. 18 6. 96 5. 77]]]	H H	C C N C N
10	ATOM ATOM ATOM ATOM	3022 3023 3024 3025	N CA C	SER H 244 SER H 244 SER H 244 SER H 244	2: 2: 2: 2:	3.836 4.522 3.684 2.743	34.002 34.130 33.644 32.867	0. 245 -1. 034 -2. 208 -2. 042	1.00 3 1.00 4 1.00 4 1.00 4	9.09 0.99 2.62 1.83]]]	H H H H	N C C O
15	ATOM ATOM ATOM ATOM ATOM	3026 3027 3028 3029 3030	CB OG N CA C	SER H 244 SER H 244 GLU H 245 GLU H 245 GLU H 245	20 24 23 23	5.845 6.705 4.038 3.330 3.882	33. 363 33. 895 34. 113 33. 737 32. 431	-0.994 -0.001 -3.400 -4.615 -5.165	1.00 4 1.00 4 1.00 4 1.00 4 1.00 4	3. 40 4. 75 6. 58 6. 31]]]	H H H H	CONCC
20	ATOM ATOM ATOM ATOM ATOM	3031 3032 3033 3034 3035		GLU H 245 GLU H 245 GLU H 245 GLU H 245 GLU H 245	2: 2: 2: 2:	5.076 3.470 2.851 2.994 2.529	32.157 34.833 36.164 37.212 38.339	-5.057 -5.672 -5.282 -6.369 -6.166 -7.417	1.00 4 1.00 4 1.00 5 1.00 5	9. 32 3. 68 6. 49 8. 31]]]	H H H H	0 0 0 0
25	ATOM ATOM ATOM ATOM ATOM ATOM	3036 3037 3038 3039 3040 3041	N CA C O CB	GLU H 245 PRO H 246 PRO H 246 PRO H 246 PRO H 246 PRO H 246	2: 2: 2: 2:	3.571 3.013 3.430 4.612 4.884 2.174	36.900 31.605 30.323 30.488 31.588 29.846	-7. 417 -5. 765 -6. 334 -7. 287 -7. 770 -7. 055	1.00 5 1.00 4 1.00 4 1.00 4 1.00 4	6.06 6.49 6.82 7.98]]]	H H H H	0 N C C O C
30	ATOM ATOM ATOM ATOM ATOM	3042 3043 3044 3045 3046	CG CD N CA	PRO H 246 PRO H 246 ARG H 247 ARG H 247 ARG H 247	2 2 2: 2:	1.081 1.563 5.316 6.455 6.391	30. 401 31. 803 29. 393 29. 420 28. 204	-6. 206 -5. 932 -7. 545 -8. 449 -9. 360	1.00 4 1.00 4 1.00 4 1.00 4 1.00 4	6. 59 5. 49 5. 68 5. 13]]]	H H H H	CCNCC
35	ATOM ATOM ATOM ATOM ATOM	3047 3048 3049 3050 3051	O CB CG CD NE	ARG H 247 ARG H 247 ARG H 247 ARG H 247 ARG H 247	2: 2: 2: 2:	6. 01 2 7. 772 7. 999 9. 351 9. 547	27.114 29.416 30.655 30.585 31.650	-8.930 -7.665 -6.806 -6.107 -5.121	1.00 4 1.00 4 1.00 4 1.00 5	3. 91 6. 78 8. 61 0. 94]]]	H H H	0 C C C N
40	ATOM ATOM ATOM ATOM	3052 3053 3054 3055	CZ NH1 NH2 N	ARG H 247 ARG H 247 ARG H 247 PRO H 248	2: 2: 2: 2:	8.897 7.988 9.164 6.754	31.748 30.846 32.756 28.378	-3.962 -3.611 -3.142 -10.639	1.00 5 1.00 5 1.00 5 1.00 4	3.90 3.30 4.90 2.02]]]	H H H H	C N N
45	MOTA MOTA MOTA MOTA MOTA	3056 3057 3058 3059 3060	CA C O CB	PRO H 248 PRO H 248 PRO H 248 PRO H 248 PRO H 248	2 2 2 2	7. 495 7. 146	26.040 26.168 27.826 29.282	-12.786 -12.741	1.00 4 1.00 3 1.00 3 1.00 4	6.76 37.56 40.63 3.23]]]	H H H H	C C C C
50	MOTA MOTA MOTA MOTA MOTA	3061 3062 3063 3064 3065	CD N CA C	PRO H 248 GLY H 249 GLY H 249 GLY H 249 GLY H 249	2 2 · 2	7. 282 6. 897 7. 483 7. 004 6. 983	24.858	-11.269 -11.341 -10.818 -9.416 -8.536	1.00 4 1.00 3 1.00 3 1.00 2	3.94 30.93 37.97]] !	H H H	C N C C O
55	MOTA MOTA MOTA MOTA MOTA	3066 3067 3068 3069 3070	N CA C O CB	VAL H 250 VAL H 250 VAL H 250 VAL H 250 VAL H 250	2 2 2 2	6.627 6.137 7.154 6.866 5.708	22.047 21.584 21.751 22.406 20.091	-9.210 -7.916 -6.785 -5.783 -7.989	1.00 2 1.00 2 1.00 2 1.00 1 1.00 2	25.90 22.51 30.73 9.56]]]	H H H H	N C C O C
	MOTA	3071		VAL H 250		5. 243	19.603	-6.616	1.00 2				C

	ATOM ATOM	3072 3073 3074	N	VAL H LEU H LEU H	251	24.588 28.337 29.380	21.165	-9.000 -6.950 -5.929	1.00 22.82 1.00 18.48 1.00 18.83	Н Н Н	C N C
5	MOTA MOTA MOTA	3075 3076	C	LEU H	251	30.070 30.520	22.588	-5.808 -6.790	1.00 18.83 1.00 19.13 1.00 18.06	H H	0
	ATOM ATOM	3077 3078	CB	LEU H	251	30. 431 31. 581	20.146	-6.192 -5.186	1.00 16.90 1.00 17.64	H H	Ċ
10	MOTA MOTA	3079 3080	CD1	LEU H	251	31.029 32.504	19.732	-3.787 -5.628	1.00 15.90 1.00 16.46	н Н	Ċ
	MOTA	3081	N	LEU H	252	30.151	23.096	-4.586	1.00 19.09	H	N
	ATOM ATOM	3082 3083	C	LEU H	252	30.808 31.699	24. 284	-4. 342 -3. 109	1.00 18.91	H H	C
15	MOTA MOTA	3084 3085	CB	LEU H	252	31.261 29.777	25.476	-2.054 -4.129	1.00 20.23 1.00 19.71	H H	0. C
	MOTA MOTA	3086 3087	CD1	LEU H	252	30.362 31.252	27. 360	-3. 726 -4. 845	1.00 21.00 1.00 21.46	H H	C C
	MOTA MOTA	3088 3089	CD2 N	LEU H		29. 237 32. 951		-3. 431 -3. 247	1.00 21.39 1.00 17.62	H H	C N
20	MOTA MOTA	3090 3091	CA C	ARG H		33.869 34.015		-2.119 -1.688	1.00 17.97 1.00 17.05	H H	C
	ATOM ATOM	3092 3093	O CB	ARG H		34.559 35.230		-2.426 -2.511	1.00 15.25 1.00 18.44	H H	0 C
25	MOTA MOTA	3094 3095	CG CD	ARG H	253	35.358 34.282	21.846	-2.232 -2.952	1.00 20.42 1.00 21.21	H H	C C
	MOTA MOTA	3096 3097	NE CZ	ARG H	253	34.476 35.307	21.047	-4.397 -5.047	1.00 21.18 1.00 22.46	. Н	N C
	MOTA MOTA	3098 3099	NH2	ARG H	253	36.028 35.414	21.126	-4.380 -6.367	1.00 23.51 1.00 19.08	H H	N N
30	ATOM ATOM	3100 3101	N Ca	ALA H	254	33.499 33.542	27.815	-0.501 0.028	1.00 16.11 1.00 15.47	H . H	N C
	ATOM ATOM	3102 3103	C 0	ALA H	254	34.658 34.879	27.003	1. 047 1. 843	1.00 16.28 1.00 15.62	H H	C 0
35	ATOM ATOM	3104 3105	CB N	ALA H	255	32.205 35.381	29.044	0.664 1.039	1.00 13.69 1.00 15.40	H	C N
	ATOM ATOM	3106 3107	CA C	PRO H	255	36.475 36.048	3 29.162	1.994 3.445	1.00 14.78 1.00 14.38	H H	C
	ATOM	3108 3109	O CB	PRO H	255	34.935 37.116	30. 526	3. 798 1. 594	1.00 13.71 1.00 15.88	H H	0 C
40	ATOM ATOM	3110	CG CD	PRO H	255	35. 987 35. 233	30. 249	0. 995 0. 200	1.00 15.99 1.00 16.40	H H	C
	ATOM ATOM	3112	N CA	PHE F	256	36.943 36.701	28.616	4. 281 5. 706	1.00 13.80 1.00 16.87	H H	N C
45	ATOM ATOM	3114 3115	0	PHE H	256	38.005 39.049	28.394	6. 408 6. 067	1.00 17.50 1.00 18.45	H H	0. C
+3	MOTA MOTA MOTA	3116 3117	CB CG	PHE I	256	36. 243 35. 955	27. 201	7.641	1.00 14.38 1.00 16.91	H H	C
	ATOM	3118 3119	CD2	PHE I	256	34.773 36.909	26.729	8. 141 8. 538	1.00 16.40 1.00 16.52	H H	C
50	MOTA MOTA MOTA	3120 3121 3122		PHE I	256	34.546 36.692	26.809	9. 509 9. 911	1.00 17.72 1.00 17.93	H H	C
	ATOM	3123	N	PRO F	257	35. 51 (37. 96 (29.830	10.398	1.00 18.72 1.00 18.95	H H	C N
	MOTA MOTA	3124 3125	CA C	PRO F	257	36.765 36.095	31.426	7. 921 6. 893	1.00 20.37 1.00 22.86	H H	C
55	ATOM ATOM	3126 3127	O CB	PRO I		34.888 37.299		7. 011 9. 136	1.00 23.60 1.00 20.14	H H	C

5	ATOM ATOM ATOM ATOM ATOM	3128 3129 3130 3131 3132	CG PRO H CO PRO THE T	257 257 6 6	38.684 39.167 36.786 48.678 47.791 47.976	31.608 30.315 31.886 29.980 29.559 28.083	8.721 8.104 6.001 30.872 31.995 32.299	1.00 20.11 1.00 18.62 1.00 26.65 1.00 39.18 1.00 38.59 1.00 36.71	H H H T T	C C O N C C
10	ATOM ATOM ATOM ATOM ATOM	3133 3134 3135 3136 3137	C THR T O THR T CB THR T OG1 THR T CG2 THR T	6 6 6 6	48. 275 46. 308 45. 930 46. 064	27. 290 29. 771 28. 877 31. 202	31.410 31.656 30.600 31.212	1.00 37.09 1.00 40.14 1.00 41.93 1.00 42.09	T T T	0 C 0
15	MOTA MOTA MOTA MOTA MOTA	3138 3139 3140 3141 3142	N VAL T CA VAL T C VAL T O VAL T CB VAL T	7 7 7 7 7	47. 790 47. 919 46. 611 45. 876 49. 054	27. 721 26. 335 25. 871 26. 663 26. 155	33.562 33.987 34.613 35.211 35.019	1.00 35.02 1.00 33.21 1.00 31.57 1.00 31.61 1.00 32.59	T T T T	N C C O C
20	MOTA MOTA MOTA MOTA MOTA	3143 3144 3145 3146 3147	CG1 VAL T CG2 VAL T N ALA T CA ALA T C ALA T	7 7 8 8	50. 380 48. 731 46. 320 45. 101 45. 239	26. 620 26. 920 24. 587 24. 023 23. 892	34. 422 36. 288 34. 468 35. 023 36. 531	1.00 31.03 1.00 31.27 1.00 29.98 1.00 29.21 1.00 28.58	T T T T	C
25	MOTA MOTA MOTA MOTA	3148 3149 3150 3151	O ALA T CB ALA T N ALA T CA ALA T	8 8 9 9	46.342 44.828 44.115 44.121	23. 743 22. 660 23. 964 23. 828	37.055 34.402 37.230 38.673	1.00 28.70 1.00 28.98 1.00 25.62 1.00 25.80	T T T	0 C N C
30	ATOM ATOM ATOM ATOM ATOM	3152 3153 3154 3155 3156	C ALA T O ALA T CB ALA T N TYR T CA TYR T	9 9 9 10 10	44. 490 44. 425 42. 744 44. 886 45. 240	22. 387 21. 501 24. 162 22. 157 20. 815	39.016 38.161 39.233 40.263 40.701	1.00 26.18 1.00 25.07 1.00 22.93 1.00 24.93 1.00 25.50	T T T T	C O C N C
35	ATOM ATOM ATOM ATOM ATOM	3157 3158 3159 3160 3161	C TYR T O TYR T CB TYR T CG TYR T CD1 TYR T	10 10 10 10 10	44. 978 44. 754 46. 706 47. 724 48. 245	20.661 21.641 20.493 21.429 21.199	42.186 42.896 40.367 40.975 42.248	1.00 25.20 1.00 23.18 1.00 27.61 1.00 27.41 1.00 28.54	T T T T	0 0 0 0
33	MOTA MOTA MOTA MOTA	3162 3163 3164 3165	CD2 TYR T CE1 TYR T CE2 TYR T CZ TYR T	10 10 10 10	48.160 49.183 49.090 49.595	22.554 22.072 23.429 23.184	40. 277 42. 810 40. 827 42. 088	1.00 28.91 1.00 28.45 1.00 29.62 1.00 29.24	T T T	C C C
40	MOTA MOTA MOTA MOTA MOTA	3166 3167 3168 3169 3170	OH TYR T N ASN T CA ASN T C ASN T O ASN T	10 11 11 11	50.506 44.992 44.729 43.354 43.197	24.061 - 19.418 19.119 19.624 20.179	42.626 42.647 44.045 44.466 45.553	1.00 33.96 1.00 25.50 1.00 25.22 1.00 23.78 1.00 20.92	T T T T	0 N C C
45	MOTA MOTA ATOM MOTA	3171 3172 3173 3174	CB ASN T CG ASN T OD1 ASN T ND2 ASN T	11 11 11 11	45. 812 47. 105 48. 090 47. 105	19.735 18.924 19.321 17.784	44. 944 44. 954 45. 578 44. 270	1.00 29.09 1.00 31.48 1.00 34.70 1.00 32.60	T T T	C C O N
50	ATOM ATOM ATOM ATOM ATOM	3175 3176 3177 3178 3179	N LEU T CA LEU T C LEU T O LEU T CB LEU T	12 12 12 12 12	42. 356 41. 003 40. 594 40. 726 40. 043	19. 441 19. 868 19. 011 17. 792 19. 652	43.602 43.939 45.126 45.084 42.763	1.00 23.43 1.00 22.96 1.00 22.88 1.00 24.43 1.00 21.46	T T T T	N C C O C
55	ATOM ATOM ATOM ATOM	3180 3181 3182 3183	CG LEU T CD1 LEU T CD2 LEU T N THR T	12 12 12 13	40. 003 41. 321 38. 859 40. 097	20. 731 20. 784 20. 437 19. 651	41.671 40.921 40.712 46.178	1.00 20.61 1.00 19.28 1.00 17.88 1.00 22.51	T T T T	C C C N

	MOTA	3184	CA	THR T	13	39.719	18.946	47.394	1.00 22.60	T	С
	ATOM	3185	C	THR T	13	38. 387	19.434	47.936	1.00 21.35	Ť	Č
5	ATOM	3186	ŏ	THR T	13	38. 106	20.622	47. 904	1.00 22.14	Ť	ů.
J	MOTA	3187	CB	THR T	13	40. 786	19.172	48.494	1.00 24.31	T	C
			OGI	THR T		42. 087		47.965		T	
	MOTA	3188			13		18.887		1.00 28.20		0
	ATOM	3189	CG2		13	40.524	18. 276	49.695	1.00 25.13	Ţ	C
	MOTA	3190	N	TRP T	14	37.570	18.517	48. 442	1.00 20.93	Ţ	N
10	MOTA	3191	CA	TRP T	14	36. 290	18.896	49.022	1.00 21.26	Ţ	C
	MOTA	3192	С	TRP T	14	36.445	19.101	50.527	1.00 21.82	T	С
	ATOM	3193	0	TRP T	14	37.003	18.250		1.00 22.88	T	0
	MOTA	3194	CB	TRP T	14	35. 233	17.816	48.775	1.00 21.62	T	С
	MOTA	3195	CG	TRP T	14	34.895	17.603	47.331	1.00 20.57	T	C
15	MOTA	3196	CD1	TRP T	14	35. 525	16.769	46.450	1.00 19.07	T	С
	MOTA	3197	CD2	TRP T	14	33.843	18. 238	46.602	1.00 18.11	T	C
	MOTA	3198	NE I	TRP T	14	34.925	16.845	45.215	1.00 19.68	T	N
	ATOM	3199	CE 2		14	33.889	17.741	45.281	1.00 20.45	T	C
	ATOM	3200		TRP T	14	32.863	19.180	46.936	1.00 20.85	T	Č
22	MOTA	3201		TRP T	14	32.989	18.155	44.292	1.00 20.30	Ť	Č
20	MOTA	3202		TRP T	14	31.964	19.592	45.953	1.00 20.57	Ť	Č
	MOTA	3203		TRP T	14	32.037	19.077	44.646	1.00 20.36	· Ť	Č
	ATOM	3204	N	LYS T	15	35.968	20. 240	51.016	1.00 21.08	ŕ	N
	MOTA	3205	CA	LYS T	15	36.005	20.568	52.439	1.00 20.11	Ť	Č
	ATOM	3206	C	LYS T	15	34.534	20.651	52.818	1.00 19.45	Ť	Č
25	MOTA	3207	Ö	LYS T	15	33.862	21.632	52.510	1.00 20.83	Ť	Ö
	MOTA	3208	СB	LYS T	15	36.700	21.918	52.663	1.00 21.44	Ť	C
	ATOM	3209	CG	LYS T	15	38.162	21.933	52. 228	1.00 21.44	Ť	
	ATOM	3210	CD	LYS T	15	38.990	20.995	53.097	1.00 28.61		C
		3211	CE	LYS T	15	40. 296	20. 589	52. 427		Ť	C
30	MOTA			LYS T					1.00 31.74	Ţ	C
	MOTA	3212	NZ		15	41.190	21.741	52. 152	1.00 36.85	Ţ	N
	ATOM	3213	N	SER T	16	34.035	19.613	53.478	1.00 17.55	T	N
	ATOM	3214	CA	SER T	16	32.628	19.556	53.832	1.00 17.18	T	C
	ATOM	3215	C	SER T		32.363	19.073	55. 255	1.00 18.04	T	, Č
	ATOM	3216	0	SER T	16	32.859	18.021	55.671	1.00 16.19	Ţ	. 0
35	ATOM	3217	CB	SER T	16	31.906	18.639	52.831	1.00 17.42	T	C
	ATOM	3218	0G	SER T	16	30.500	18.633	53.032	1.00 16.16	Ţ	0
	ATOM	3219	N	THR T	17	31.572	19.851	55.988	1.00 17.33	Ţ	Ņ
	ATOM	3220	CA	THR T	17	31.199	19.523	57.360	1.00 17.85	T	С
	ATOM	3221	C	THR T	17	29.735	19.890	57.527	1.00 17.66	T	С
40	ATOM	3222	0	THR T	17	29.345	21.033	57.293	1.00 17.63	Ţ	0
	ATOM	3223	CB	THR T	17	32.031	20.322	58.385	1.00 16.36	T	Ç
	ATOM	3224		THR T	17	33.414	19.996	58. 231	1.00 18.91	T	0
	ATOM	3225		THR T	17	31.596	19.990	59.799	1.00 17.35	T	С
	ATOM	3226		ASN T			18.922		1.00 18.02	T	N
45	ATOM	3227	CA	ASN T	18	27. 493	19.160	58.103	1.00 19.26	T	С
40	ATOM	3228	C	ASN T	18	26.901	19.764	56.837	1.00 18.10	T	C
	ATOM	3229	0	ASN T	18	26.039	20.643	56.886	1.00 18.37	T	0
	ATOM	3230	CB	ASN T	18	27. 238	20.073	59.301	1.00 20.54	T	C
	ATOM	3231	CG	ASN T	18	27. 792	19.494	60.579	1.00 23.12	T	Ċ
	ATOM	3232		ASN T	18	27. 706	18.288	60.804	1.00 22.01	Ť	ŏ
50	ATOM	3233		ASN T	18	28.368	20.346	61.423	1.00 26.13	Ť	Ŋ
	ATOM	3234	N	PHE T	19	27.394	19.269	55.706	1.00 18.27	Ť	N
	ATOM	3235	ĊA	PHE T	19	26.959	19.672	54. 383	1.00 19.15	Ť	Č
	ATOM	3236	c	PHE T	19	27.453	21.022	53.869	1.00 20.26	Ť	Č
	ATOM	3237	ŏ	PHE T	19	27. 200	21.369	52.715	1.00 20.20	T	
55	ATOM	3238	CB	PHE T	19	25.441	19.539	54. 305	1.00 20.39	_	0
	ATOM	3239	CG	PHE T	19					Ţ	C
	VION	0405	CG	rne i	13	24.965	18.124	54.530	1.00 21.59	T	С

	MOTA	3240	CD1		19	25. 184	17.144	53.565	1.00 21.66	Ţ	C
5	ATOM	3241	CD2		19	24. 371	17. 755	55. 731	1.00 22.37	T	C
	ATOM	3242		PHE T	19	24. 823	15.819	53.790	1.00 21.75	Ţ	C
	ATOM	3243	CE2		19	24.003	16.425	55. 970	1.00 24.36	Ţ	C
	ATOM	3244	CZ	PHE T	19	24. 232	15.456	54. 995	1.00 22.96	Ţ	C
	ATOM	3245	N	LYS T	20	28. 162	21.779	54. 706	1.00 19.77	Ţ	N
10	ATOM	3246		LYS T	20	28.737	23.044	54. 252	1.00 18.78	Ţ	C
	ATOM	3247	C	LYS T	20	29.855	22.526	53. 362	1.00 18.12	Ţ	C
	ATOM	3248	0.	LYS T	20	30.848	21.993	53. 853	1.00 19.69	Ţ	0
	ATOM	3249	CB	LYS T	20	29. 326	23.831	55. 414	1.00 20.11	Ţ	C
	MOTA	3250		LYS T	20	28. 777	25. 232	55. 535	1.00 22.19	T	C
15	MOTA	3251	CD		20	29.115	26.090	54. 338	1.00 21.31	T	C
	ATOM	3252	CE	LYS T	20	28. 434	27. 437	54. 474	1.00 21.39	Ţ	C
	ATOM	3253	NZ	LYS T	20	28.973	28.453	53. 548	1.00 23.07	Ĩ	N
	ATOM	3254	N	THR T	21	29. 692	22.684	52.056	1.00 16.64	Ţ	N
	MOTA	3255	CA	THR T	21	30.643	22.143	51.100	1.00 16.45	T	C
20	ATOM	3256	C	THR T	21 21	31. 364 30. 749	23. 167 23. 879	50. 243	1.00 18.19	T	C
20	ATOM	3257 3258	O CB	THR T	21	29. 911	21.151	49. 453 50. 192	1.00 17.44 1.00 15.26	T	0
	ATOM ATOM	3259	-	THR T	21	29. 179	20. 236	51.016	1.00 15.26	T T	C 0
	ATOM	3260		THR T	21	30. 885	20. 380	49. 320	1.00 16.11	Ť	C
	ATOM	3261	N N	ILE T	22	32.682	23. 215	50. 394	1.00 19.00	Ť	N
	ATOM	3262	·CA	ILE T	22	33. 511	24. 146	49.648	1.00 19.12	Ť	Č
25	ATOM	3263	C	ILE T	22	34.603	23.396	48. 896	1.00 13.12	Ť	č
	ATOM	3264	Ö	ILE T	22	35. 326	22.588	49.477	1.00 18.08	Ť	ŏ
	ATOM	3265	CB	ILE T	22	34.180	25.169	50.597	1.00 20.41	Ť	č
	ATOM	3266	CG1		22	33.108	25.959	51.353	1.00 21.22	Ť	č
	ATOM	3267		ILE T	22	35.075	26.121	49.804	1.00 19.95	Ť	č
30	MOTA	3268		ILE T	22	33.673	26.948	52.352	1.00 21.24	Ť	Č
	ATOM	3269	N	LEU T	23	34.711	23.658	47.599	1.00 17.48	Ť	N
	MOTA	3270	CA	LEU T	23	35.738	23.029	46.783	1.00 18.70	T	C
	MOTA	3271	\mathbf{C}	LEU T	23	36.967	23.925	46.847	1.00 17.63	T	C
	MOTA	3272	0	LEU T	23	36.859	25.141	46.691	1.00 18.23	T	0
35	MOTA	3273	CB	LEU T	23	35.275	22.905	45.329	1.00 19.42	T	C
	ATOM	3274	CG	LEU T	23	36.258	22.183	44. 399	1.00 21.43	T	С
	ATOM	3275		LEU T	23	36.325	20.714	44. 790	1.00 19.69	T	С
	ATOM	3276		LEU T	23	35.820	22. 334	42.944	1.00 17.72	T	C
	ATOM	3277	N	GLU T	24	38. 129	23.334	47.093	1.00 16.78	T	N
40	ATOM	3278	CA	GLU T	24	39. 367	24.102	47.165	1.00 18.87	T	C
	MOTA	3279	C	GLU T	24	40.354	23.566	46.146	1.00 20.20	Ţ	Ç
	ATOM	3280	0	GLU T	24	40. 262	22.411	45. 735	1.00 20.83	Ţ	0 -
	ATOM	3281	CB	GLU T	24	39.968	24.025	48. 575	1.00 18.72	Ţ	C
	ATOM	3282	CG	GLU T	24	39.349	25.019	49.553	1.00 21.33	T	C
45	ATOM	3283	CD	GLU T	24	39.777	24.789	50. 988	1.00 23.65	T	C
	ATOM	3284		GLU T	24	40.878	24. 291	51. 202	1.00 25.81	Ţ	0
	ATOM	3285		GLU T	24	39.008	25. 125	51.887	1.00 26.26	Ţ	0
	ATOM	3286	N	TRP T	25	41.300	24.401	45. 735 44. 759	1.00 19.89	Ţ	Ŋ
	ATOM .	3287	CA	TRP T	25	42.280	23.965		1.00 20.95	T	C
50	ATOM ATOM	3288 3289	C 0	TRP T TRP T	25 25	43. 524 43. 635	24.843 25.829	44. 721 45. 451	1.00 22.24 1.00 23.01	T	C
	ATOM	3299	CB	TRP T	25 25	43.635	23. 912	43. 366	1.00 23.01	Ţ, T	0
	ATOM	3290 3291	CG	TRP T	25 25	41.029	25. 252	43. 300	1.00 18.38	Τ τ	C
	ATOM	3292		TRP T	25	41. 213	26. 133	42. 115	1.00 16.25	T T	C
	ATOM	3293		TRP T	25	39. 917	25.856	42. 911	1.00 14.79	Ť	C
55	ATOM	3294		TRP T	25	41. 260	27. 246	41.765	1.00 13.11	T	N
	ATOM	3295		TRP T	25	39. 984		42. 242	1.00 14.48	T	C
	מוע זונ	0230	UL 1	11/1 1	50	00. JUT	ν·· ΙΟ <i>υ</i>	10. 676	1.00 17.70	1	·

	ATOM	3296	CE3	TRP T	25	38.704	25.466	43.498	1.00 15.24	T	C
5	MOTA	3297	CZZ		25	38. 882	27.960	42.141	1.00 14.18	T	C
	ATOM	3298		TRP T	25	37.606	26.320	43.399	1.00 14.21	T	C
	ATOM	3299		TRP T	25	37.705	27.554	42.725	1.00 15.19	T	C
	ATOM	3300	N	GLU T	26	44.455	24.449	43.862	1.00 24.44	T	N
	ATOM	3301		GLU T	26	45. 713	25.148	43.644	1.00 27.06	T	C
10	ATOM	3302	Č	GLU T	26	45. 713	25.499	42.159	1.00 28.34	T	Č
10	ATOM	3303	Ö	GLU T	26	44. 953	24.918	41.384	1.00 26.89	Ť	ō
	ATOM	3304		GLU T	26	46.889	24. 214	43. 939	1.00 28.64	Ť	č
	ATOM	3305		GLU T	26	46.993	23.741	45.376	1.00 34.94	Ť	Č
	ATOM	3306	ĆD	GLU T	26	47.761	24.705	46.253	1.00 39.39	T	Č
	ATOM	3307		GLU T	26	47.870	24.444	47.440	1.00 42.73	Ť	Ŏ
15	ATOM	3308		GLU T	26	48. 255	25.713	45.739	1.00 42.24	T	Ö
	ATOM	3309	N	PRO T	27	46.567	26. 445	41.737	1.00 30.61	Ť	Ň
	ATOM	3310	CA	PRO T	27	47.516	27. 202	42.550	1.00 33.08	Ť	Ċ
	ATOM	3311	C	PRO T	27	47.039	28. 646	42.694	1.00 36.39	Ī	č
	ATOM	3312	Ô	PRO T	27	45.969	29.008	42.204	1.00 37.38	T	Õ
20	ATOM	3313	CB	PRO T	27	48. 781	27. 116	41.722	1.00 31.05	Ť	Č
	ATOM	3314	ĊĠ	PRO T	27	48. 232	27. 369	40.350	1.00 29.94	Ţ	č
	ATOM	3315	CD	PRO T	27	46.943	26.535	40.312	1.00 29.62	Ť	č
	ATOM	3316	N	LYS T	28	47.844	29.469	43.354	1.00 40.49	Ť	Ñ
	ATOM	3317		LYS T	28	47.509	30.874	43.534	1.00 44.79	Ť	Ċ
25	ATOM	3318	C	LYS T	28	47.525	31.555	42.169	1.00 46.88	Ť	Č
20	ATOM	3319	0	LYS T	28	48.585	31.737	41.566	1.00 47.96	T	Ô
	ATOM	3320	CB	LYS T	28	48.518	31.537	44.472	1.00 45.11	T	Č
	ATOM	3321	CG	LYS T	28	48.533	30.923	45.859	1.00 46.65	T	Č
	ATOM	3322	CD	LYS T	28	47.146	30.969	46.483	1.00 47.76	T	C
	ATOM	3323	CE	LYS T	28	47.120	30. 295	47.843	1.00 49.21	T	C
30	ATOM	3324	NZ	LYS T	28	45.769	30.375	48.468	1.00 50.84	T	N
	ATOM	3325	N	PRO T	29	46.342	31.942	41.667	1.00 47.94	T	· N
	ATOM	3326	CA	PRO T	29	46.170	32.602	40.371	1.00 48.83	T	С
	ATOM	3327	С	PRO T	29	47. 026	33.841	40.130	1.00 49.78	T	С
	ATOM	3328	0	PRO T	29	46.997	34.802	40.899	1.00 49.58	T	0
35	MOTA	3329	CB	PRO T	29	44.677	32.914	40.339	1.00 48.24	T	C
	ATOM	3330	CG	PRO T	29	44. 346	33. 102	41.778	1.00 47.36	T	С
	ATOM	3331	CD	PRO T	29	45.074	31.952	42.417	1.00 48.57	T	C
	MOTA	3332	N.	VAL T	30	47. 790	33. 795	39.044	1.00 50.46	T	N
	MOTA	3333	CA	VAL T	30	48.656	34. 894	38.640	1.00 51.62	T	С
40	ATOM	3334	C	VAL T	30	48. 245	35. 208	37.210	1.00 51.40	T	С
	MOTA	3335	0	VAL T	30	48.602	34. 479	36.283	1.00 51.31	Ţ	0
	ATOM	3336	CB	VAL T	30	50.138	34. 482	38.664	1.00 51.98	Ţ	C
	ATOM	3337		VAL T	30	51.002	35.657	38.258	1.00 52.42	Ţ	C
	MOTA	3338		VAL T	30	50. 523	33. 993	40.055	1.00 51.87	Ţ	C
45	ATOM	3339	N	ASN T	31	47. 491	36. 291	37.033	1.00 50.80	Ţ	Ŋ
10	MOTA	3340	CA	ASN T	31	46.994	36.652	35.709	1.00 49.64	Ţ	C
	ATOM	3341	C	ASN T	31	46.213	35. 437	35. 222	1.00 46.82	Ţ	C
	ATOM	3342	0	ASN T	31	46.349	35.007	34.077	1.00 46.96	Ţ	0
	ATOM	3343	CB	ASN T	31	48.155	36. 952	34.760	1.00 52.08	T	C
	ATOM	3344	CG	ASN T	31	48.857	38. 249	35.095	1.00 54.19	T	Č
50	ATOM	3345		ASN T	31	48. 257	39. 322	35.032	1.00 56.94	Ţ	0
	ATOM	3346		ASN T	31	50.131	38. 160	35. 457	1.00 54.94	<u>T</u>	N
	ATOM	3347	N	GLN T	32	45.392	34. 897	36.118	1.00 44.02	Ţ	Й
	ATOM	3348	CA	GLN T		44.597	33. 711	35.845	1.00 39.84	Ţ	C
	ATOM	3349	C	GLN T	32	43.356	33. 696	36.732	1.00 36.22	Ţ	Č
55	ATOM	3350	0	GLN T		43.450	33. 789	37. 956	1.00 36.42	Ţ	0
	MOTA	3351	CB	GLN T	32	45.457	32. 474	36.107	1.00 40.02	T	С

5	ATOM ATOM ATOM ATOM ATOM ATOM	3352 3353 3354 3355 3356 3357	CG GLM CD GLM OE1 GLM NE2 GLM N VAI CA VAI	T T T T	32 32 32 32 33 33	44. 756 45. 743 46. 616 45. 614 42. 192 40. 930	31. 141 29. 991 29. 880 29. 136 33. 578 33. 555	35. 996 36. 046 35. 189 37. 053 36. 104 36. 824	1.00 38.97 1.00 37.53 1.00 36.12 1.00 35.32 1.00 31.20 1.00 26.24	T T T T T	C C O N N C
10	ATOM ATOM ATOM ATOM ATOM	3358 3359 3360 3361 3362	C VAI O VAI CB VAI CG1 VAI CG2 VAI	T T T T	33 33 33 33	40. 280 40. 698 39. 986 40. 676 39. 603	32. 178 31. 375 34. 658 36. 014 34. 385	36. 683 35. 851 36. 296 36. 410 34. 854	1.00 24.67 1.00 23.37 1.00 25.12 1.00 23.86 1.00 26.27	T T T T	0000
15	ATOM ATOM ATOM ATOM ATOM ATOM	3363 3364 3365 3366 3367 3368	N TYPE CA TYPE C TYPE C TYPE CB TYPE CG TYPE	T	34 34 34 34 34 34	39. 260 38. 589 37. 070 36. 454 38. 947 40. 416	31. 911 30. 615 30. 677 31. 670 29. 816 29. 582	37. 493 37. 473 37. 428 37. 801 38. 728 38. 957	1.00 21.25 1.00 19.35 1.00 18.92 1.00 18.57 1.00 18.40 1.00 20.44	T T T T	и С С О С С
20	MOTA MOTA MOTA MOTA MOTA	3369 3370 3371 3372 3373	CD1 TYI CD2 TYI CE1 TYI CE2 TYI	7 7 8 T 8 T 8 T 8 T 8 T 8 T 8 T	34 34 34 34 34	41.125 41.096 42.475 42.447 43.126	28. 667 30. 259 28. 424 30. 021 29. 102	38. 182 39. 971 38. 412 40. 207 39. 426	1.00 18.46 1.00 19.10 1.00 19.96 1.00 20.05 1.00 20.10	T T T	000000
25	MOTA MOTA MOTA MOTA MOTA	3374 3375 3376 3377 3378	OH TYIN THE CA THE C THE O THE	T	34 35 35 35 35	44. 454 36. 478 35. 034 34. 831 35. 490	28. 848 29. 581 29. 429 27. 950 27. 103	39. 669 36. 974 36. 956 37. 233 36. 634	1.00 24.65 1.00 16.56 1.00 16.37 1.00 15.30 1.00 18.13	T T T T	0 N C C O
30	ATOM ATOM ATOM ATOM ATOM	3379 3380 3381 3382 3383	CB THI OG1 THI CG2 THI N VAI CA VAI	RT RT LT	35 35 35 36 36	34. 390 34. 409 32. 941 33. 940 33. 669	29. 799 31. 222 29. 336 27. 647 26. 271	35. 438 35. 581 38. 163 38. 543	1.00 15.23 1.00 15.18 1.00 16.79 1.00 15.22 1.00 14.65	T T T T	0 0 N 0
35	ATOM ATOM ATOM ATOM ATOM	3384 3385 3386 3387 3388	C VAI O VAI CB VAI CG1 VAI CG2 VAI	L T L T L T	36 36 36 36 36	32.340 31.405 33.638 33.230 35.019	25. 787 26. 568 26. 153 24. 751 26. 496	37. 974 37. 816 40. 086 40. 517 40. 652	1.00 12.56 1.00 14.14 1.00 13.80	T T T T	0 0 0 0
40	ATOM ATOM ATOM ATOM ATOM ATOM	3389 3390 3391 3392 3393 3394	CA GLI C GLI O GLI	T V T V	37 37 37 37 37 37	32.278 31.045 30.796 31.733 31.152 31.085	24. 507 23. 903 22. 668 21. 976 23. 468 24. 583	37. 624 37. 136 37. 990 38. 381 35. 671 34. 637	1.00 14.43 1.00 14.45 1.00 14.47 1.00 14.12 1.00 14.86 1.00 14.48	T T T T T	N C C O C C
45	ATOM ATOM ATOM ATOM ATOM	3395 3396 3397 3398 3399	CD GLI OE1 GLI NE2 GLI N ILI	T V	37 37 37 38 38	30. 857 31. 300 30. 175 29. 533 29. 176	24. 037 22. 940 24. 807 22. 399 21. 231	33. 234 32. 912 32. 393 38. 287 39. 070	1.00 13.74 1.00 13.95 1.00 10.80 1.00 14.90 1.00 14.60	T T T T	C O N N C
50	ATON ATON ATON ATON ATON	3400 3401 3402 3403 3404	C ILI	E T E T E T	38 38 38 38 38	27. 965 27. 150 28. 829 28. 607 27. 601	20. 576 21. 252 21. 617 20. 351 22. 530	38. 417 37. 788 40. 521 41. 358 40. 539	1.00 16.38 1.00 17.10 1.00 15.19 1.00 14.88 1.00 10.78	T T T T	000000
55	ATOM ATOM ATOM	3405 3406 3407	CD1 IL		38 39 39	28. 402 27. 857 26. 737	20. 620 19. 260 18. 529	42. 845 38. 557 37. 989	1. 00 14. 77 1. 00 16. 00 1. 00 15. 27	T T T	C N C

	ATOM ATOM	3408 3409		SER T SER T	39 39		26.642 27.511	17.157 16.748	38.622 39.382	1.00 15.45 1.00 16.91	1		C 0
	ATOM	3410	СВ	SER T	39		26.948	18. 327	36.491	1.00 12.90	j		Č
5	ATOM	3411		SER T	39		27. 999	17. 389	36. 285	1.00 12.71	1		Ö
	ATOM	3412	N	THR T	40		25. 569	16.453	38. 295	1.00 17.91	j		N
	ATOM	3413		THR T	40		25. 381	15.088	38.745	1.00 18.74	Í		C
	ATOM	3414	C	THR T	40		25. 637	14. 283	37. 480	1.00 21.10	i		č
	ATOM	3415	ŏ	THR T	40		25.606	14.839	36.378	1.00 20.86	i		Õ
10	ATOM	3416	CB	THR T	40		23.947	14.834	39.245	1.00 19.11	1		Č
	ATOM	3417		THR T	40		23. 002	15.399	38. 325	1.00 17.75	1		Ö
	ATOM	3418		THR T	40		23. 755	15.448	40.620	1.00 17.44	1		Č
	ATOM	3419		LYS T	41		25. 896	12.989	37.639	1.00 24.75	1		Ň
	ATOM	3420		LYS T	41		26. 183	12.079	36.527	1.00 26.61	1		Ċ
15	MOTA	3421		LYS T	41		25.427	12.345	35.224	1.00 26.89	1		Č
	ATOM	3422	Ŏ	LYS T	41		26.032	12.422	34. 154	1.00 27.99	j		:0
	ATOM	3423		LYS T	41		25.922	10.637	36.970	1.00 31.82	1		Č
	ATOM	3424		LYS T	41		26.089	9.598	35.873		า		C
	ATOM	3425		LYS T	41		25.717	8.204	36.371	1.00 39.57		r	С
20	ATOM	3426	CE	LYS T	41		25.812	7.175	35.253	1.00 40.27	1	[C
	ATOM	3427	NZ	LYS T	41		25.454	5.808	35.729	1.00 43.52	1	ſ	N
	ATOM	3428	N	SER T	42		24.108	12.473	35.303	1.00 24.42	1	ľ	N
	ATOM	3429	CA	SER T	42		23.324	12.711	34.105	1.00 24.61	1	[С
	ATOM	3430	С	SER T	42		22.618	14.066	34.081	1.00 22.94		Γ	С
25	MOTA	3431	0	SER T	42		21.641	14.244	33.360	1.00 25.38		Γ	0
	MOTA	3432	CB	SER T	42		22.299	11.588	33.926	1.00 26.04		ľ	C
	MOTA	3433	0G	SER T	42		21.442	11.505	35.048	1.00 31.07		<u> </u>	0
	ATOM	3434	N	GLY T	43		23.114	15.017	34.866	1.00 19.49		Γ	N
	MOTA	3435	CA	GLY T	43		22.513	16.338	34.898	1.00 18.07		Ī	C
30	ATOM	3436	C	GLY T	43		23. 352	17.340	34.125	1.00 15.78		Γ	C
	ATOM	3437	0	GLY T	43		24. 494	17.058	33.774	1.00 15.61		Γ	0
	ATOM	3438	N	ASP T	44		22. 787	18.508	33.852	1.00 15.33		<u>r</u>	N
	ATOM	3439	CA	ASP T			23.500	19.543	33.119	1.00 15.18		[r	C
	MOTA	3440	C	ASP T			24. 586	20.168 20.085	33.991 35.220	1.00 15.75 1.00 14.67		Γ Γ	0
35	ATOM ATOM	3441 3442	O CB	ASP T	44 44		24.536 22.532	20.645	32.664	1.00 14.01		Ī	C
	ATOM	3443	CG	ASP T			21.512	20.163	31.635	1.00 15.31		Γ	C
	ATOM	3444		ASP T			21.724	19.121	31.012	1.00 11.39		ľ	0
	MOTA	3445		ASP T			20.500	20.857	31.448	1.00 16.14		Ī	0
	MOTA	3446	N	TRP T			25. 570	20.794	33. 356	1.00 15.26		Ī	N
40	ATOM	3447	CA	TRP T			26.632	21.449	34.104	1.00 16.12		Ī	Ċ
	ATOM	3448	C	TRP T			26. 155	22.832	34.532	1.00 16.65		Ī	Č
	ATOM	3449	Õ	TRP T			25. 592	23.575	33.738	1.00 17.64		Ī	0
	MOTA	3450	CB	TRP T	45		27.895	21.576	33.259	1.00 14.65	•	Ţ	C
	ATOM	3451	CG	TRP T			28.542	20.254	32.967	1.00 16.11		T	C
45	ATOM	3452		TRP T		•	28.359	19.476	31.859	1.00 14.82		T	Ċ
	ATOM	3453		TRP T			29.469	19.550	33.804	1.00 15.28		T	С
	MOTA	3454	NE 1	TRP T			29.119	18.332	31.951	1.00 14.03	•	T	N
	MOTA	3455	CE 2	TRP T	45		29.812	18.352	33. 135	1.00 15.34	•	T	C
	MOTA	3456	CE3	TRP T	45		30.044	19.814	35.056	1.00 17.68	•	T	C
50	MOTA	3457	CZ2	TRP T	45		30.708	17.420	33.672	1.00 14.08	•	T	C
	MOTA	3458		TRP T			30.938	18.884	35.595	1.00 15.15		T	C
	ATOM	3459		TRP T			31.260	17.703	34.899	1.00 15.49		T	C
	ATOM	3460	N	LYS T			26.374	23. 165	35. 795	1.00 16.58		T	N
	MOTA	3461	CA	LYS T			25.960	24.455	36.323	1.00 17.49		T	C
55	MOTA	3462	C	LYS T			27.218	25.240	36.702	1.00 16.41		T	C
	ATOM	3463	0	LYS T	46		28. 109	24.704	37. 358	1.00 17.90	•	T	0

5	ATOM ATOM ATOM	3464 3465 3466	CG CD	LYS T LYS T LYS T	46 46 46	25. 070 24. 011 24. 421	24. 223 25. 285 26. 245	37. 545 37. 794 38. 886	1.00 18.63 1.00 25.36 1.00 27.44	T T T	CCC
	ATOM ATOM ATOM ATOM	3467 3468 3469 3470		LYS T LYS T SER T SER T	46 46 47 47	23. 245 22. 215 27. 299 28. 460	27. 096 26. 308 26. 499 27. 334	39. 336 40. 063 36. 276 36. 582	1.00 30.02 1.00 30.73 1.00 16.11 1.00 14.72	T T T	C N N C
10	MOTA MOTA MOTA	3471 3472 3473	C O CB	SER T SER T SER T	47 47 47	28. 330 27. 244 28. 678 29. 306	28. 031 28. 454 28. 386 27. 819	37. 928 38. 319 35. 488 34. 350	1.00 13.96 1.00 13.03 1.00 11.64 1.00 15.92	T T T	C 0 C 0
15	MOTA MOTA MOTA MOTA	3474 3475 3476 3477	CA	SER T LYS T LYS T LYS T	47 48 48 48	29. 456 29. 503 30. 801	28. 163 28. 794 29. 581	38. 619 39. 935 40. 095	1.00 13.74 1.00 15.63 1.00 15.18	T T T	N C C
	ATOM ATOM ATOM ATOM	3478 3479 3480 3481		LYS T LYS T LYS T LYS T	48 48 48 48	31,774 29,447 28,293 27,363	29. 346 27. 724 26. 747 26. 832	39.376 41.033 40.906 42.093	1.00 14.77 1.00 13.97 1.00 15.98 1.00 19.94	T T T	0 C C
20	MOTA MOTA MOTA	3482 3483 3484	CE NZ N	LYS T LYS T CYS T	48 48 49	26.789 25.892 30.806	28. 221 28. 306 30. 508	42. 253 43. 425 41. 046	1.00 19.83 1.00 18.63 1.00 16.26	T T T	C N N
25	ATOM ATOM ATOM ATOM	3485 3486 3487 3488	CA C O CB	CYS T CYS T CYS T CYS T	49 49 49 49	31.993 32.635 33.815 32.975	31. 308 31. 844 31. 627 30. 448	41.339 40.058 39.784 42.144	1.00 17.07 1.00 17.80 1.00 17.68 1.00 15.94	T T T T	C 0 C
	MOTA MOTA MOTA MOTA	3489 3490 3491 3492	SG N CA C	CYS T PHE T PHE T PHE T	49 50 50 50	32. 249 31. 826 32. 208 33. 438	29. 824 32. 568 33. 145 34. 046	43. 705 39. 293 38. 006 38. 020	1.00 18.32 1.00 19.09 1.00 19.69 1.00 18.93	T T T	S N C C
30	MOTA MOTA MOTA	3493 3494 3495	O CB CG	PHE T PHE T PHE T	50 50 50	33.462 31.018 29.705	35. 073 33. 925 33. 212	38.687 37.437 37.598	1.00 19.65 1.00 21.03 1.00 22.82	T T T	0 C C
35	ATOM ATOM ATOM ATOM	3496 3497 3498 3499	CD2 CE1	PHE T PHE T PHE T PHE T	50 50 50 50	29. 410 28. 791 28. 225 27. 604	32. 090 33. 626 31. 388 32. 929	36. 834 38. 562 37. 031 38. 768	1.00 23.21 1.00 24.00 1.00 22.86 1.00 24.77	T T T	0000
40	ATOM ATOM ATOM	3500 3501 3502	CZ N CA	PHE T TYR T TYR T	50 51 51	27. 324 34. 454 35. 694	31.808 33.646 34.404	38. 000 37. 264 37. 135	1.00 24.10 1.00 19.61 1.00 19.80	T T T	C N C
T V	ATOM ATOM ATOM ATOM	3503 3504 3505 3506	C O CB CG	TYR T TYR T TYR T TYR T	51 51 51 51	36. 262 36. 662 35. 470 34. 778	34. 886 36. 043 35. 601 35. 245	38. 459 38. 590 36. 212 34. 915	1.00 20.72 1.00 20.88 1.00 20.21 1.00 21.19	. T T T	0 0 0
45	ATOM ATOM ATOM	3507 3508 3509	CD1 CD2 CE1	TYR T TYR T TYR T	51 51 51	35.358 33.536 34.717	34. 354 35. 795 34. 021	34. 011 34. 596 32. 820	1.00 20.94 1.00 22.01 1.00 23.56	T T T	CCC
50	ATOM ATOM ATOM ATOM	3510 3511 3512 3513	CE2 CZ OH N	TYR T TYR T TYR T THR T	51 51 51 52	32. 888 33. 481 32. 835 36. 300	35. 471 34. 586 34. 271 33. 989	33. 409 32. 527 31. 353 39. 436	1.00 23.16 1.00 25.31 1.00 29.02 1.00 20.20	T T T T	C C O N
	MOTA MOTA MOTA	3514 3515 3516	CA C O	THR T THR T THR T	52 52 52	36.828 38.348 38.916	34. 301 34. 188 33. 409	40. 754 40. 741 39. 970	1.00 20.20 1.00 19.96 1.00 20.71 1.00 19.97	T T T	C C O
55	ATOM ATOM ATOM	3517 3518 3519	CB OG1 CG2	THR T THR T THR T	52 52 52	36. 283 36. 848 36. 651	33. 317 33. 631 31. 878	41.816 43.094 41.452	1.00 19.38 1.00 18.27 1.00 20.27	T T T	C O C

								04 050	41 505						
	ATOM	3520		THR T	53		0.007		41.585		20.41	1		N	
	ATOM	3521		THR T	53). 460	34.911	41.688		22. 43	1		C	
5	ATOM	3522		THR T	53). 862	34.112	42.934		23. 31	1		C	
-	ATOM	3523		THR T	53		2.042	33.872	43.178		24.50	1		0 C	
	ATOM	3524	CB	THR T	53		1.094).475	36.318 37.077	41. 751 42. 793		21.43 23.60	1		0	
	ATOM	3525		THR T	53 53). 919	37.039	40. 423		20.43	1		C	
	ATOM ATOM	3526 3527	N N	ASP T	54		9. 878	33.701	43.727		24.66	1		N	
10	ATOM	3528		ASP T	54). 170	32.907	44. 910		24.86			Č	
	ATOM	3529	CA	ASP T	54		0. 341	31.467	44. 447		24.57			Č	
	ATOM	3530	Õ	ASP T	54		9. 991	31.124	43. 311		23. 26	1		Õ	
	ATOM	3531	CB	ASP T	54		9.027	32.991	45. 920		28. 59		ŗ	Č	
	ATOM	3532	CG	ASP T	54		3.695	34.418	46.307		31.77			č	
15	ATOM	3533		ASP T	54		9.607	35.179	46.642		35.02			Õ	
	ATOM	3534		ASP T	54		7. 529	34.759	46.279		36.17	1		ŏ	
	ATOM	3535	N	THR T	55		0.888	30.625	45.316		20.61			Ň	
	ATOM	3536		THR T	55		1.088	29. 230	44.969		18.26			C	
	ATOM	3537	C .	THR T	55		0.114	28.339	45.741		18.54		ŗ	Č	
20	ATOM	3538	ŏ	THR T	55		0.483	27.264	46.222		16.66		r	Ō	
	MOTA	3539	ČВ	THR T	55		2.526	28.806	45.266		17.06		r	Č	
	ATOM	3540		THR T	55		2.852	29.159	46.612		17. 45		ľ	0	
	ATOM	3541		THR T	55		3. 488	29.500	44.321	1.00	19.50	1	[С	
	ATOM	3542	N	GLU T	56	38	8.871	28.804	45.857	1.00	15.86		Γ	N	
25	MOTA	3543	CA	GLU T	56	3,	7.822	28.072	46.553		17.50		ľ	C	
	ATOM	3544	С	GLU T	56		6.462	28.477	45.999		16.59		Γ	C	
	MOTA	3545	0	GLU T	56		6. 294	29.576	45.475		15.56		ſ	0	
	ATOM	3546	CB	GLU T	5 6		7.837	28.387	48.053		17.92		ſ	C	
	MOTA	3547	CG	GLU T	5 6		7. 396	29.809	48. 374		20.51		[C	
30	MOTA	3548	CD	GLU T	56		7. 265	30.061	49.859		24.03		ŗ	C	
	ATOM.	3549		GLU T	56		8. 221	29.802	50.582		26. 81		ŗ.	0	
	ATOM	3550		GLU T	56		6. 205	30.518	50. 287		26. 27		[0	
	ATOM	3551	N	CYS T	57		5. 490	27.586	46.129		16.04		[N	
	ATOM	3552	CA	CYS T	57		4. 147	27.870	45.665		16.17		ľ	C .	
35	MOTA	3553	C.	CYS T	57		3.140	27.164	46.552		15. 98 14. 72		r r	0	
	ATOM ATOM	3554 3555	0 CB	CYS T	57 57		3. 225 3. 963	25.954 27.403	46.754 44.219		17. 24		I .	C	
	MOTA	3556	CB SG	CYS T	57		2.314	27.793	43.557		17.97		ľ	S	
	ATOM	3557	N	ASP T	58		2. 187	27. 918	47.084		14.99		r	N	
	MOTA	3558	CA	ASP T	58		1.172	27.326	47.934		15.94		r.	. C	
40	MOTA	3559	C	ASP T	58		0. 115	26.677	47.061		16.95		r	Č	
	MOTA	3560	ŏ	ASP T			9.477		46.244		17.86		r	Ö	
	ATOM	3561		ASP T			0. 526	28.385	48.829		16.18		r	Č	
	ATOM	3562	CG	ASP T	58		9.436	27.806	49.715		17.55		Ī	Č	
	ATOM	3563		ASP T	58		9.529	26.636	50.053		15.23		Ī	Ö	
45	ATOM	3564		ASP T	58		8.502	28.531	50.073	1.00	18.41		Ţ	0	
	ATOM	3565	N	LEU T	59		9.939	25.373	47. 227		16.87		r	N	
	ATOM	3566	CA	LEU T	59		8.951	24.643	46.449		16.97		ľ	C	
	ATOM	3567	С	LEU T	59		7.832	24.092	47.331	1.00	17.59		T	C	
	ATOM	3568	0	LEU T	59		7.077	23.218	46.916	1.00	19.55		Γ	0	
50	ATOM	3569	CB	LEU T			9.638	23.513	45.682		14.54		T	C	
	ATOM	3570	CG	LEU T	59		0.694	24.010	44.686	1.00	16.18		T	С	
	ATOM	3571	CD1	LEU T		3	1.435	22.828	44.072		13.02.		T	C	
	ATOM	3572		LEU T	59		0.019	24.850	43.606		14.07	1	T	C	
	ATOM	3573	N	THR T			7. 718	24.630			18.48		T	N	
55	ATOM	3574	CA	THR T	60		6.701	24. 199			20.05		T	C	
	ATOM	3575	C	THR T	60	2	5. 274	24. 228	48.952	1.00	20.61	,	T	C	

EP 1 364 960 A1

	MOTA	3576	0	THR T	60	24.558	23.230	49.030	1.00 20.04	T	0
	MOTA	3577	ČB	THR T			25.062	50.779	1.00 20.92	T	C
5	ATOM	3578	OG1	THR T			24. 909	51.415	1.00 21.02	Ť	Õ
3								51.747	1.00 19.78	Ť	
	ATOM	3579		THR T			24.647				C
	MOTA	3580	N	ASP T			25. 368	48.405	1.00 20.95	Ţ	N
	MOTA	3581	CA	ASP T			25. 507	47. 884	1.00 22.33	T	C
	ATOM	3582	С	ASP T	61	23.142	24.529	46.778	1.00 21.88	T	C
10	ATOM	3583	0	ASP T			24.220	46.574	1.00 23.89	T	0
	MOTA	3584	CB	ASP T			26.934	47.391	1.00 23.16	T	С
	ATOM	3585	CG	ASP T			27.947	48.507	1.00 26.60	Ť	Č
	ATOM	3586		ASP T	61		27.550	49.659	1.00 28.12	Ť	ŏ
									1.00 31.54		
	ATOM	3587		ASP T			29.127	48. 221		T	0
15	ATOM	3588	N	GLU T			24.042	46.060	1.00 20.11	T	N
	ATOM	3589	CA	GLU T			23.102	44.986	1.00 21.57	T	C
	ATOM	3590	С	GLU T	62	23.774	21.671	45.504	1.00 21.37	T	С
	ATOM	3591	0	GLU T	62	22.848	20.950	45.130	1.00 22.03	T	0
	ATOM	3592	CB	GLU T			23.179	43.925	1.00 20.82	. T	C
	MOTA	3593	CG	GLU T			24.565	43.313	1.00 22.54	T	Č
20	ATOM	3594	CD	GLU T			25.198	42.794	1.00 26.23	Ť	Č
		3595		GLU T			24.492	42.164	1.00 25.97	Ť	Õ
	MOTA										
	ATOM	3596		GLU I			26.403	43.012	1.00 24.60	Ţ	0
	ATOM	3597	N	ILE T			21.257	46.375	1.00 19.96	T	N
	ATOM	3598	CA	ILE T			19.887	46.878	1.00 20.43	T	С
25	ATOM	3599	C	ILE T		23.529	19.576	47.870	1.00 20.80	T	С
	ATOM	3600	0	ILE T			18.434	47.951	1.00 19.50	T	0
	ATOM	3601	CB	ILE 1	63	26.035	19.460	47.477	1.00 20.40	T	C
	ATOM	3602	CG1	ILE T	63	26.424	20.356	48.654	1.00 19.56	Ţ	C
	ATOM	3603		ILE 1			19.513	46.398	1.00 18.09	Ť	Č
30	ATOM	3604		ILE 1			19.894	49.986	1.00 19.85	Ť	Č
50	ATOM	3605	N	VAL 1			20.576	48. 603	1.00 20.09	Ť	N
								49.558	1.00 20.03		
	ATOM	3606	CA	VAL 1			20.334			T	C
	ATOM	3607	C	VAL 1			20.092	48. 875	1.00 23.72	T	. C
	ATOM	3608	0	VAL 1			19.736	49.537	1.00 21.27	T	0
35	ATOM	3609	CB	VAL 1			21.501	50.568	1.00 20.02	T	С
	ATOM	3610	CG1	VAL 1	64	23.093	21.690	51.358	1.00 20.46	T	C
	ATOM	3611	CG2	VAL 1	64	21, 405	22.775	49.842	1.00 20.60	T	С
	ATOM	3612	N	LYS 7			20.294	47.559	1.00 25.22	T	N
	ATOM	3613	CA	LYS 7			20.065	46.809	1.00 28.22	Ť	C
	ATOM	3614	C	LYS 1			18.574	46.822	1.00 27.03	Ť.	Ċ
40	ATOM	3615	ŏ	LYS 1			18.194	46.764	1.00 28.54	Ť	Õ
	ATOM	3616	CB	LYS 1			20.565	45. 366	1.00 30.57	Ť	
											C
	ATOM	3617	CG	LYS 1			22.081	45. 256	1.00 32.86	Ţ	C
	MOTA	3618	CD	LYS 7			22.544	43.811	1.00 35.41	Ţ	C
	ATOM	3619	CE	LYS 1			24.064	43. 735	1.00 37.84	Ţ	С
45	ATOM	3620	NZ	LYS 7		19.813	24.564	42.334	1.00 39.60	T	N
	ATOM	3621	N	ASP 1	66	20.014	17.742	46.879	1.00 26.86	T	N
	ATOM	3622	CA	ASP 7			16.291	46.956	1.00 24.78	T	С
	ATOM	3623	C	ASP 1			15.780	47.494	1.00 23.00	Ť	Č
	ATOM	3624	ŏ	ASP 1			15.490	46.734	1.00 21.38	Ť	0
50	ATOM	3625	CB	ASP 1							Ü
50							15.669	45.586	1.00 26.36	Ĩ	C
	ATOM	3626	CG	ASP 1			14. 188	45.680	1.00 29.40	T	C
	MOTA	3627		ASP 1			13.568		-1.00 28.55	Ţ	0
	MOTA	3628		ASP 1			13.648	44.717	1.00 31.14	T	0
	ATOM	3629	N	VAL 1			15.672	48.814	1.00 22.91	Ţ	N
55	ATOM	3630	CA	VAL 1	67		15.221	49.452	1.00 22.94	T	С
	ATOM	3631	C	YAL 1	67		13.783	49.125	1.00 24.63	T	C
											-

	ATOM	3632	0	VAL		67		24.071	13.390	49.356	1.00 24.10		T	0
_	ATOM	3633	CB	VAL		67		22. 449	15. 384	50.992	1.00 22.47		T	C
5	ATOM	3634		YAL		67		22.180	16.846	51.350	1.00 17.69		T	€
	ATOM	3635	CG2	VAL		67		21.364	14.488	51.563	1.00 19.93		T	C
	ATOM	3636	N	LYS	T	68		21.998	13.003	48.578	1.00 26.06		T	N
	ATOM	3637	CA	LYS	T	68		22. 284	11.608	48.239	1.00 27.04		T	C
	ATOM	3638	С	LYS	T	68		22.873	11.395	46.850	1.00 26.31		T	Č
10	ATOM	3639	0	LYS	T	68		23.342	10.304	46.531	1.00 24.28		T	Ō
	ATOM	3640	CB	LYS	T	68		21.024	10.759	48.401	1.00 28.46		T	Č
	ATOM	3641	CG	LYS	Τ	68		20.634		49.850	1.00 30.19		T	Ċ
	ATOM	3642	CD	LYS	T	68		19.389	9.699	49.975			Ť	č
	ATOM	3643	CE	LYS	T	68		19.115	9.356	51.425	1.00 34.80		T	Č
15	ATOM	3644	NZ	LYS	T	68		20. 235	8.569	52.002	1.00 38.91		Ť	N
	ATOM	3645	N	GLN	T	69		22.848	12.436	46.025	1.00 26.68		Ť	N
	ATOM	3646	CA	GLN		69		23.404	12.351	44.681	1.00 24.77		Ť	Č
	ATOM	3647	С	GLN		69		24.924	12.389	44.739	1.00 23.29		Ī	Č
	ATOM	3648	0	GLN		69		25.501	12.750	45.762	1.00 22.51		Ť	ŏ
20	ATOM ·	3649	CB	GLN '		69	•	22.901	13. 519	43. 829	1.00 27.54		Ť	Č
	ATOM	3650	CG	GLN '		69		21.556	13.274	43.173	1.00 32.96		Ť	Č
	ATOM	3651	CD	GLN '		69		21.628	12. 171	42. 135	1.00 35.85		Ť	č
	ATOM	3652		GLN '		69		22.338	12.292	41.138	1.00 37.60		Ť	ŏ
	ATOM	3653	NE 2	GLN '		69		20.901	11.084	42.369	1.00.39.16		Ť	N
05	MOTA	3654	N	THR '		70		25.562	11.995	43.640	1.00 21.11		Ť	N
25	ATOM	3655	CA	THR '		70		27.013	12.016	43.531	1.00 20.59		Ť	Ĉ
	ATOM	3656	С	THR '		70		27.345	13.152	42.570	1.00 20.22		T	Č
	ATOM	3657	0	THR '		70		26.917	13.149	41.414	1.00 19.62		Ť	Õ
	ATOM	3658	CB	THR '		70		27.570	10.687	42.978	1.00 19.99		T	č
	ATOM	3659	0G1	THR '		70		27.344	9.643	43.931	1.00 21.36		Ť	Õ
30	ATOM	3660	CG2	THR 1		70		29.067	10.802	42.728	1.00 18.95		Ť	č
	MOTA	3661	N	TYR '		71		28.102	14.127	43.061	1.00 18.76		Ť	N
	MOTA	3662	CA	TYR	T	71		28.462	15.292	42.271	1.00 17.58		Ť	Ċ
	ATOM	3663	С	TYR 1		71		29.885	15.284	41.752	1.00 17.20		T	Č
	MOTA	3664	0	TYR :	T	71		30.786	14.721	42.366	1.00 17.10		Ť	Ŏ
35	MOTA	3665	CB	TYR ?	T	71		28.263	16.572	43.095	1.00 15.82	•	Ť	Č
	MOTA	3666	CG	TYR 1	T	71		26.852	16.779	43.587	1.00 15.19	-	Ť	Č
	MOTA	3667	CD1	TYR '	T	71		26.381	16.119	44.729	1.00 15.57	,	Ť	Č
	MOTA	3668	CD2	TYR :	T	71		25.967	17.598	42.887	1.00 14.29		T	Č
	ATOM	3669		TYR ?		71		25.065	16.268	45.155	1.00 14.24		Ť	Č
40	ATOM	3670		TYR :	ľ	7 i		24.649	17.752	43.302	1.00 14.12		Ī	Č
	MOTA	3671	CZ	TYR :	ľ	71		24.205	17.083	44.435	1.00 15.17		Ť	Č
	MOTA	3672	0H	TYR :	Γ	71		22.901	17.226	44.844	1.00 13.94		T	Õ
	MOTA	3673	N	LEU 7	Γ	72		30.077	15.926	40.609	1.00 17.96		T	N
	MOTA	3674	CA	LEU '		72		31.397	16.052	40.017	1.00 18.23		Ť	Ċ
15	ATOM	3675	С	LEU ?		72		31.517	17.536	39.729	1.00 17.51		T	Č
45	ATOM	3676	0	LEU '	r	72		30.556	18.179	39.300	1.00 17.06		T	0
	MOTA	3677	CB	LEU 3		72		31.500	15.256	38.712	1.00 22.12		Ť	Č
	MOTA	3678	CG	LEU 7	Γ	72		32.895	14.972	38.119	1.00 26.17		T	Č
	MOTA	3679	CD1	LEU 7	T	72		33.519	16.243	37.563	1.00 28.99		T	Č
	MOTA	3680	CD2	LEU 1	•	72		33.792	14.356	39.182	1.00 25.19		T	Č
50	MOTA	3681	N	ALA 1	Γ	73		32.686	18.089	40.003	1.00 17.91		Ť	N
	MOTA	3682	CA	ALA 7		73		32.928	19.496	39.751	1.00 16.95		T	Ċ
	MOTA	3683	C	ALA 1		73		34.197	19.592	38.922	1.00 16.12		Ť	Č
	ATOM	3684	0	ALA 7		73		34.947	18.624	38.809	1.00 18.51		T	ŏ
	MOTA	3685	CB	ALA 1		73		33.092	20. 240	41.065	1.00 15.74		Ť	Č
55	MOTA	3686	N	ARG 1		74		34.415	20.746	38.312	1.00 15.02		Ť	N
	MOTA	3687	CA	ARG 1		74		35.613	20.966	37.524	1.00 14.43		Ť	Ċ
										• • •			•	~

	ATOM	3688	С	ARG T	74	35.926	22.453	37.535	1.00 14.10	1	C
-	ATOM	3689	0	ARG T	74	35.024	23.293	37.512	1.00 13.27	1	
5	ATOM	3690	CB	ARG T	74	35.444	20.438	36.090	1.00 13.57	1	
	ATOM	3691	CG	ARG T	74	34. 246	20.959	35.312	1.00 15.95	· Т	
	ATOM	3692	CD	ARG T	74	34.070	20. 161	34.015	1.00 15.26	Ţ	
	ATOM	3693	NE	ARG T	74	32. 983	20.658	33.173	1.00 11.15	Ī	
	ATOM	3694	CZ	ARG T	74	32.545	20.051	32.071	1.00 13.10	Ī	
10	ATOM	3695	NH1		74	33.093	18.910	31.661	1.00 9.53	Ţ	
	ATOM	3696		ARG T	74	31.562	20. 594	31.364	1.00 10.82	Ī	
	ATOM	3697	N	VAL T	75	37. 211	22. 767	37. 599	1.00 10.32	Ī	
	ATOM	3698	CA	VAL T	75	37. 672	24. 147	37.643	1.00 15.10	T	
		3699		VAL T		38. 307	24. 141	36.333	1.00 16.01	T	
15	ATOM		C	VAL T	75						
	ATOM	3700 -			75 75	39. 301	24.016	35.896	1.00 14.34	T	
	ATOM	3701	CB	VAL T	75	38.708	24. 336	38.773	1.00 15.28	I	
	ATOM	3702		VAL T	75	39.280	25.747	38.731	1.00 13.98	Ţ	
	ATOM	3703		VAL T	75	38.058	24.065	40.122	1.00 14.39	Ţ	
	ATOM	3704	N	PHE T	76	37.722	25.604	35. 708	1.00 18.72	T	
20	ATOM	3705	CA	PHE T	76	38. 247	26.140	34.450	1.00 21.14	Ţ	
	ATOM	3706	C	PHE T	76	39.211	27. 272	34.780	1.00 22.66	T	
	ATOM	3707	0	PHE T	76	38. 992	28.035	35.723	1.00 23.68	Ţ	
	ATOM	3708	CB	PHE T	76	37.112	26.668	33.583		T	
	ATOM	3709	CG	PHE T	76	36.199	25.596	33.062	1.00 28.84	Т	
25	ATOM	3710		PHE T	76	36.660	24.654		1.00 31.44	T	
	ATOM	3711		PHE T	76	34.880	25.521	33.486	1.00 31.69	T	
	ATOM	3712		PHE T	76	35.818	23.652	31.671	1.00 33.34		-
	ATOM	3713		PHE T	76	34.034	24.522	33.008	1.00 34.41	T	
	ATOM	3714	CZ	PHE T	76	34.505	23.589	32.101	1.00 30.45	T	
20	MOTA	3715	N	SER T	77	40. 282	27.369		1.00 24.37	· T	
30	ATOM	3716	CA	SER T	77	41.287	28.410	34.182	1.00 25.59	T	C
	ATOM	3717	С	SER T	77	41.337	29.303	32.953	1.00 27.03	. Т	C
	ATOM	3718	0	SER T	77	41.322	28.817	31.823	1.00 25.41	T	
	ATOM	3719	CB	SER T	77	42.668	27.793	34.401	1.00 26.08	T	
	ATOM	3720	0G	SER T	77	42.714	27.056	3 5.6 04	1.00 28.24	T	0
35	ATOM	3721	N	TYR T	78	41.398	30.610	33.188	1.00 29.89	T	N
	ATOM	3722	CA	TYR T	78	41.465	31.601	32.119	1.00 31.65	T	. C
	ATOM	3723	С	TYR T	78	42.636	32.537	32.414	1.00 33.58	T	C
	ATOM	3724	0	TYR T	78	43.009	32.726	33.572	1.00 34.76	T	0
	MOTA	3725	CB	TYR T	78	40.173	32.413	32.073	1.00 31.59	T	C
40	ATON	3726	CG	TYR T	78	38.919	31.579	31.943	1.00 31.52	T	C
	ATOM	3727	CDI		78	38. 505	31.093	30.706	1.00 29.66	T	С
	ATOM	3728		TYR T	78	38.147	31.274	33.062	1.00 30.05	T	
	ATOM	3729		TYR T	78	37.352	30.331	30.587	1.00 30.62	T	
	ATOM	3730	CE2	TYR T	78	36.998	30.512	32.955	1.00 30.31	T	С
.=	ATOM	3731	CZ	TYR T	78	36.604	30.044	31.716	1.00 30.37	T	
45	ATOM	3732	OH	TYR T	78	35. 458	29.296	31.607	1.00 31.28	T	
	ATOM	3733	N	PRO T	79	43.236	33.132	31.372	1.00 35.05	T	
	ATOM	3734	CA	PRO T	79	44.365	34.047	31.573	1.00 35.74	T	
	MOTA	3735	C	PRO T	79	43.914	35.395	32.139	1.00 36.81	T	
	ATOM	3736	0	PRO T	79	43.932	35.611	33.352	1.00 37.66	T	
50	ATOM	3737	CB	PRO T	79	44.949	34.178	30.173	1.00 35.23	Ť	
	ATOM	3738	CG	PRO T	79	43.723	34. 105	29.313	1.00 35.61	Ť	Č
	ATOM	3739	CD	PRO T	79	42.960	32. 951	29.935	1.00 35.09	Ť	C
	ATOM	3740	N	GLU T	91	38. 161	24.891	23.662	1.00 26.53	Ť	N
	ATOM	3741	CA	GLU T	91	37. 694	24.757	25.073	1.00 26.00	T	C
55	ATOM	3742	C	GLU T	91	38.810	25. 160	26.043	1.00 26.45	T	
55	ATOM	3743	ŏ	GLU T	91	39. 991	24. 986	25.748	1.00 24.05	· T	
	ATOM	0170	J	ODO 1	JI	03. 331	47. 300	40.140	1.00 24.00	1	U

	1 TOU	2711	CD	CIII T	0.1	37. 238	23.315	25.331	1.00 24.69		ſ	С
	ATOM	3744		GLU T	91	36.117	22.857	24.384	1.00 22.94		[C
	ATOM	3745			91	35.711	21. 405	24.588	1.00 20.53		[Č
5	ATOM	3746		GLU T	91	36.581	20.582	24.780	1.00 20.33		[Ö
5	MOTA	3747		GLU T	91			24. 538	1.00 21.45		ľ	0
	ATOM	3748		GLU T	91	34. 525	21.111		1.00 27.49		ι Γ	
	ATOM	3749		PRO T	92	38. 443	25. 714	27.212				N
	ATOM	3750		PRO T	92	39. 402	26.153	28. 232	1.00 28.13		[C
	ATOM	3751		PRO T	92	40.087	25.028	28.998	1.00 27.90		[C
10	MOTA	3752		PRO T	92	39.618	23.893	29.012	1.00 28.67		[0
	MOTA	3753		PRO T	92	38. 545	27.016	29.148	1.00 29.05		[C
	ATOM	3754		PRO T	92	37. 243	26 . 282	29.135	1.00 30.13		Γ	C
	MOTA	3755		PRO T	92	37.063	25.993	27.6 50	1.00 28.84		r	С
	MOTA	3756	N	LEU T	93	41.199	25.361	29.642	1.00 28.40		1	N
15	MOTA	3757	CA	LEU T	93	41.944	24.392	30.435	1.00 27.14		Γ	С
	ATOM	3758	C	LEU T	93	41.152	24.159	31.710	1.00 24.86		Γ	С
	ATOM	3759	0	LEU T	93	40.576	25.094	32.268	1.00 23.66		ľ	0
	ATOM	3760	CB	LEU T	93	43.327	24.936	30.797	1.00 29.29	•	Γ	С
	ATOM	3761		LEU T	93	44.208	25.476	29.665	1.00 33.20		Γ	C
20	ATOM	3762	CD1	LEU T	93	45.541	25.928	30.247	1.00 34.70	,	Γ	C
	ATOM	3763	CD2	LEU T	93	44.426	24.412	28.604	1.00 34.85	•	Γ	С
	ATOM	3764	N	TYR T	94	41.108	22.912	32.162	1.00 23.07		r	N
	ATOM	3765	CA	TYR T	94	40.379	22.584	33.379	1.00 20.97		r	C
	ATOM	3766	C	TYR T	94	40.878	21.296	34.007	1.00 19.78		ŕ	С
25	ATOM	3767	0	TYR T	94	41.676	20.562	33.422	1.00 18.62		Γ	0
23	ATOM	3768	CB	TYR T	94	38.875	22.454	33.104	1.00 20.47	•	Τ	C
	ATOM	3769	CG	TYR T	94	38.496	21.246	32.272	1.00 21.39	•	Γ	С
	ATOM	3770		TYR T	94	38.595	21.268	30.877	1.00 20.22	•	T	С
	ATOM	3771	CD2	TYR T	94	38.054	20.071	32.883	1.00 19.95	•	T	С
	ATOM	3772		TYR T	94	38.266	20.149	30.113	1.00 20.60	•	T	С
30	ATOM	3773		TYR T	94	37.719	18.947	32.128	1.00 20.65		T	С
	ATOM	3774	CZ	TYR T	94	37.828	18.993	30.747	1.00 21.30	•	T	С
	MOTA	3775	OH	TYR T	94	37.508	17.881	30.004	1.00 21.41		T	0
	ATOM	3776	N	GLU T	95	40.380	21.035	35. 207	1.00 18.35		T	N
	ATOM	3777	CA	GLU T	95	40.733	19.857	35.976	1.00 19.30	,	T	С
35	ATOM	3778	C	GLU T	95	39.452	19.393	36.660	1.00 18.34		T	С
	ATOM	3779	0	GLU T	95	38.667	20.216	37.133	1.00 17.95		T	0
	ATOM	3780	CB	GLU T	95	41.782	20.231	37.028	1.00 22.02		T	С
	ATOM	3781	CG	GLU T	95	42.241	19.097	37.936	1.00 28.22		T	C
	ATOM	3782	CD	GLU T	95	43.004	18.024	37.189	1.00 30.84		T	С
40	ATOM	3783	0E1	GLU T	95	43.404	18.269	36.044	1.00 34.07		T	0
	MOTA	3784	OE2	GLU T	95	43.205	16.957	37.753	1.00 31.49		T	0
	ATOM	3785	N	ASN T	96	39. 233	18.084	36.697	1.00 15.73		T	N
	ATOM	3786	CA	ASN T	96	38.052	17.537	37.348	1.00 16.84		T	С
	ATOM	3787	C	ASN T		38.375	17.281	38.815	1.00 16.63		T	С
45	MOTA	3788	0	ASN T	96	39.526	17.045	39.172	1.00 17.38		Ŧ	0
	ATOM	3789	CB	ASN T		37.623	16.211	36.703	1.00 15.17		T	C
	ATOM	3790	CG	ASN T		37.110	16.381	35. 279	1.00 18.47		T	C
	ATOM	3791		ASN T		36.458	17.371	34.957	1.00 16.54		T	0
	ATOM	3792		ASN T		37.384	15.394	34. 425	1.00 16.63		T	Ň
50	MOTA	3793	N	SER T		37. 355	17. 335	39.660	1.00 15.24		T	N
	ATOM	3794	CA	SER T		37.523	17.068	41.082	1.00 17.45		Ť	Ċ
	MOTA	3795	C	SER T		37. 125	15.613	41.313	1.00 18.06		Ť	Č
	ATOM	3796	Ŏ	SER T		36.594	14.958	40.419	1.00 18.60		Ť	Ŏ
	ATOM	3797	ČВ	SER T		36.575	17. 935	41.893	1.00 16.21		Ť	Č
55	MOTA	3798	OG	SER T		35. 238	17.519	41.660	1.00 15.25		Ť	ŏ
55	MOTA	3799	N	PRO T		37.402	15.076	42.508	1.00 19.40		Ť	N
												-

	MOTA	3800	CA-	PRO 1	98	3	6. 991	13.686	42.710	1.00 19.93	T	С
	ATOM	3801	C	PRO '			5. 478	13.714	42. 878	1.00 19.53	Ť	č
5	ATOM	3802	0	PRO '			4.907	14.767	43.139	1.00 20.13	T	0
	ATOM	3803	CB	PRO '			7.716	13.289	43.997	1.00 22.25	T	С
	MOTA	3804	CG	PRO '			7.885	14.595	44.720	1.00 22.51	T	C
	ATOM	3805	CD	PRO '			8.269	15.537	43.606	1.00 21.78	T	C
	MOTA	3806	N	GLU '			4.819	12.579	42.708	1.00 19.80	T	N
10	ATOM	3807	CA	GLU '			3.378	12.555	42.872	1.00 20.54	T	C
	ATOM	3808	C	GLU '			3.076	12.827	44.334	1.00 20.49	T	C
	ATOM	3809	0	GLU '			3.882	12.511	45. 210	1.00 20.7%	T	0
	ATOM	3810	CB	GLU '		3	2.819	11.198	42.464	1.00 23.90	T	C
	ATOM	3811	CG	GLU '			3.062	10.850	41.009	1.00 30.24	T	С
15	ATOM	3812	CD	GLU '	r 99	3	2.382	9.561	40.609	1.00 34.08	T	С
13	ATOM	3813		GLU '			2.625	8.547	41.256	1.00 39.49	T	0
	ATOM	3814		GLU '			1.619	9.578	39.661	1.00 37.57	T	Ō
	MOTA	3815	N	PHE '			1.921	13.422	44.603	1.00 19.39	Ť	Ň
	ATOM	3816	CA	PHE '			1.552	13.723	45.974	1.00 20.04	T	C
	ATOM	3817	C	PHE			0.099	13.404	46.279	1.00 19.86	T	Č
20	ATOM	3818	0	PHE			9.195	13.977	45.684	1.00 22.07	T	0
	ATOM	3819	CB	PHE			1.810	15.202	46.285	1.00 18.94	T	C
	ATOM	3820	CG	PHE			1.554	15.570	47.721	1.00 17.26	T	C
	ATOM	3821		PHE			2.348	15.051	48.734	1.00 17.16	T.	C
	ATOM	3822		PHE			0.506	16.417	48.063	1.00 17.80	T	С
25	ATOM	3823		PHE			2.102	15.369	50.072	1.00 18.82	T	C
	ATOM	3824		PHE			0.252	16.739		1.00 18.00	T	Č
	ATOM	3825	CZ	PHE			1.053	16.212		1.00 14.11	T	С
	ATOM	3826	N		F 101		9.880	12.486	47.213	1.00 19.96	T	N
	ATOM	3827	CA	THR			8. 529	12.125	47.618	1.00 19.19	T	C
30	ATOM	3828	C		Γ 101		8. 359	12.669	49.032	1.00 19.73	T .	C
	ATOM	3829	0	THR	Γ 101	2	8.774	12.041	50.005	1.00 19.00	T	0
	ATOM	3830	CB	THR	T 101	2	8.339	10.602	47.616	1.00 19.88	T	C
	ATOM	3831	0G1	THR	I 101	2	8.767	10.075	46.353	1.00 19.78	T	0
	ATOM	3832	CG2	THR	T 101	2	6.869	10.252	47.842	1.00 16.06	T	C
35	ATOM	3833	N		Γ 102		7.740	13.851	49.159	1.00 20.90	T	N
	ATOM	3834	CA	PRO 1			7.512	14.514	50.450	1.00 20.65	T	C
	ATOM	3835	С		T 102		7.112	13.595	51.599	1.00 21.85	T	C
	ATOM	3836	0		T 102		7.826	13.483	52.594	1.00 22.55	T	0
	ATOM	3837	CB	PRO			6.426	15.539	50.126	1.00 20.56	T	C
40	ATOM	3838	CG		Γ. 102		6,710	15.892	48.691	1.00 19.84	T	C
40	ATOM	3839	CD		T 102		7.008	14.540	48.079	1.00 20.33	T	C
	MOTA	3840	Ņ		T 103		5.964	12.946	51.458	1.00 21.87	T	N
	ATOM	3841			T 103			12.050		1.00 22.45	T	C
	ATOM	3842	Ç		T 103		6.464	11.034	53.003	1.00 22.95	T	C
	ATOM	3843			T 103		6.534	10.774	54.200	1.00 23.24	Τ.	0
45	ATOM	3844	CB		T 103		4.222	11.308	51.936	1.00 23.18	T	C
	ATOM	3845	CG		T 103		3.404	10.588	52.983	1.00 23.57	T	С
	ATOM	3846		TYR			2.458	11.272	53.747	1.00 23.47	T	C
	MOTA	3847		TYR			3.559	9.220	53.197	1.00 22.61	T	C
	ATOM	3848		TYR			1.684	10.612	54.693	1.00 23.51	T	С
50	ATOM	3849		TYR			2. 785	8. 548	54. 145	1.00 23.64	T	C
	ATOM	3850	CZ		T 103		1.852	9. 251	54.885	1.00 23.20	T	С
	MOTA	3851	OH		T 103		1.089	8.602	55.824	1.00 24.87	T	0
	ATOM	3852	N		T 104		7.256	10.465	52. 101	1.00 23.67	T	N
	MOTA	3853	CA	LEU			8.250	9.468	52.474	1.00 22.89	T	C
55	ATOM	3854	C		T 104		9.579	10.006	53.000	1.00 23.88	T	C
	MOTA	3855	0	LEU	T 104	3	0.272	9. 307	53.743	1.00 23.44	T	0

	ATOM ATOM	3856 3857		LEU T LEU T		28.546 27.414	8.550 7.715	51.285 50.680	1.00 22.13 1.00 23.01	T T	C C
5	ATOM	3858			104	27.973	6.885	49.531	1.00 20.25	T	С
3	ATOM	3859		LEU T		26.797	6.808	51.747	1.00 20.91	T	C
	ATOM	3860	N	GLU T		29.957	11.225	52.627	1.00 23.91	Ţ	N
	ATOM	3861		GLU T		31.243	11.733	53.092	1.00 25.61	Ţ	C.
	ATOM	3862	C O	GLU T		31.364 32.473	13.110 13.529	53. 752 54. 080	1.00 24.53 1.00 24.54	T T	C 0
10	ATOM ATOM	3863 3864		GLU T		32. 473	11.599	51.967	1.00 24.34	T	Č
	ATOM	3865		GLU T		31.867	12.121	50.611	1.00 28.41	T	Č
	ATOM	3866	CD	GLU T		32.602	11.421	49. 471	1.00 27.99	Ť	č
	ATOM	3867		GLU T		33.821	11.326	49.516	1.00 27.95	Ť	Ō
	ATOM	3868		GLU T		31.950	10.979	48.543	1.00 27.09	T	0
15	ATOM	3869	N	THR T	106	30.258	13.813	53.973	1.00 23.46	T	N
	ATOM	3870	CA	THR T		30.367	15.112	54.632	1.00 22.92	T	С
	ATOM	3871	C	THR T		30.738	14.856	56.091	1.00 24.04	T	C
	ATOM	3872	0	THR T		30.143	14.002	56.752	1.00 22.58	T	0
20	ATOM	3873	CB OG1	THR T		29.052 29.308	15.919 17.265	54.586 55.010	1.00 21.63 1.00 21.19	T T	C 0
	ATOM ATOM	3874 3875		THR T		28.009	15.312	55.506	1.00 21.13	· T	C
	ATOM	3876	N	ASN T		31.728	15.587	56.588	1.00 22.90	Ť	Ň
	ATOM	3877	CA	ASN T		32.171	15.417	57.965	1.00 24.07	Ť	Ĉ
	ATOM	3878	C	ASN T		31.108	15.795	58.978	1.00 24.33	T	С
25	ATOM	3879	0	ASN T		30.380	16.773	58.799	1.00 24.71	T	0
	ATOM	3880	CB	ASN T		33.424	16. 252	58. 232	1.00 24.30	· T	C
	ATOM	3881	CG.	ASN T		34.633	15.725	57.507	1.00 25.25	T	C
	ATOM	3882 3883		ASN T		35. 037 35. 223	14. 582 16. 553	57. 707 56. 657	1.00 29.4E 1.00 28.39	· T	O N
	ATOM ATOM	3884	ND Z	LEU T		31.017	15.006	60.041	1.00 24.30	T	N
30	ATOM	3885		LEU T		30.068	15. 279	61.110	1.00 24.22	Ť	Ĉ
	ATOM	3886	Ċ	LEU T		30.744	16.309	62.007	1.00 22.82	Ť	č
	ATOM	3887	0	LEU T		31.870	16.105	62.452	1.00 21.51	T	0
	MOTA	3888	CB	LEU T		29.772	13.998	61.890	1.00 25.35	T	С
35	ATOM	3889	CG	LEU T		29.094	12.904	61.062	1.00 27.74	T	C
	ATOM	3890		LEU T		29.156	11.562	61.786	1.00 27.60	T	C
	MOTA	3891 3892		LEU T GLY T		27.659 30.066	13.318 17.425	60.786 62.252	1.00 28.49 1.00 23.68	T T	C N
	MOTA MOTA	3893	N CA	GLY T		30.648	18.461	63. 084	1.00 22.92	T	Č
	ATOM	3894	C	GLY T		30.829	18.004	64. 520	1.00 23.12	Ť	č
40	MOTA	3895	Õ	GLY T		30. 240	17.003	64.927	1.00 21.62	Ť	Ŏ
	ATOM	3896	N	GLN T		31.656	18.718	65.281	1.00 21.54	T	N
	MOTA	3897	CA	GLN T		31.869	18.378	66.683	1.00 21.94	T	С
	ATOM	3898	C	GLN T		30.527	18.570	67. 381	1.00 21.65	Ţ	C
45	ATOM	3899	0	GLN T		29.916	19.630	67. 276	1.00 21.94	Ţ	0
	MOTA	3900	CB	GLN T		32.919	19.304	67. 313 68. 802	1.00 21.36 1.00 21.01	T	C C
	ATOM ATOM	3901 3902	CG CD	GLN T GLN T		33.166 34.203	19.045 19.979	69.398	1.00 21.01	T T	C.
	ATOM	3903		GLN T		34. 139	21.189	69. 207	1.00 24.10	Ť	0
	ATOM	3904		GLN T		35.162	19.419	70. 132	1.00 21.56	Ť	N
50	ATOM	3905	N	PRO T		30.045	17.542	68.094	1.00 23.09	Ť	N
	ATOM	3906	CA	PRO T		28.762	17.651	68.790	1.00 22.88	T	C
	ATOM	3907	C	PRO T		28.920	18.496	70.043	1.00 24.37	T	C
	ATOM	3908	0	PRO T		30.032	18.876	70.408	1.00 24.44	T	0
	ATOM	3909	CB	PRO T		28.418	16. 198	69.141	1.00 23.56	T	C
55	ATOM	3910	CG	PRO T		29.425	15. 358	68.352	1.00 23.39	T	C
	ATOM	3911	CD	PRO T	111	30.641	16.217	68.322	1.00 22.94	T	C

	ATOM	3912	N	THR T	112	27.797	18.769	70.697	1.00 25.07	T	N
	ATOM	3913	CA	THR T		27.762	19.552	71.918	1.00 25.43	Ť	Ċ
5	ATON	3914	C	THR T		26.764	18.915	72.880	1.00 26.70	Ť	č
	ATOM	3915	Õ	THR T		25.616	18.681	72.512	1.00 26.69	Ť	ŏ
	ATOM	3916	CB	THR T		27. 295	21.001	71.645	1.00 27.11	Ť	Č
	ATOM	3917		THR T		28. 261	21.673	70.830	1.00 29.22	Ť	ŏ
		3918		THR T		27. 114	21.765	72.955	1.00 26.39	T	
10	ATOM										C
10	ATOM	3919	N	ILE T		27. 202	18.626	74.102	1.00 26.55	Ţ	N
	ATOM	3920	CA	ILE T		26. 314	18.057	75.111	1.00 27.02	Ţ	C
	ATOM	3921	C	ILE T	113	25. 371	19.181	75.536	1.00 28.66	Ţ	C
	ATOM	3922	0	ILE T			20.228	76.010	1.00 29.26	Ţ	0
	ATOM	3923	CB	ILE T		27.117	17.541	76. 337	1.00 26.73	T	С
15	ATOM	3924		ILE T		27.926	16.305	75.935	1.00 24.38	T	C
	ATOM	3925		ILE T		26.179	17.208	77.490	1.00 25.10	T	С
	ATOM	3926	CD1	ILE T		28.821	15.766	77.021	1.00 27.02	T	С
	ATOM	3927	N	GLN T		24.073	18.967	75.347	1.00 30.54	T	N
	ATOM	3928	CA	GLN T	114	23.069	19.967	75.690	1.00 31.98	T	С
20	ATOM	3929	С	GLN T	114	22.772	20.033	77.185	1.00 33.02	T	С
	ATOM	3930	0	GLN T	114	22.588	21.119	77.739	1.00 33.20	Ţ	0
	ATOM	3931	CB	GLN T	114	21.773	19.688	74.926	1.00 32.72	T	С
	ATOM	3932	CG	GLN T		20.714	20.773	75.070	1.00 34.48	T	Ċ
	ATOM	3933	CD	GLN T		19.499	20.516	74.199	1.00 36.97	Ţ	Ċ
-	ATOM	3934		GLN T		18.648	19.686	74.523	1.00 39.79	Ť	ō
25	ATOM	3935		GLN T		19.421	21.218	73.077	1.00 37.84	Ť	N
	ATOM	3936	N	SER T		22.721	18.873	77.833	1.00 34.02	Ť	N
	ATOM	3937	CA	SER T		22.442	18.810	79.262	1.00 34.71	Ť	Ċ
	ATOM	3938	C	SER T		22.528	17.392	79.811	1.00 36.31	Ť	. č
	ATOM	3939	Ŏ	SER T		22.729	16.429	79.072	1.00 34.54	Ť	ŏ
30	ATOM	3940	СB	SER T		21.041	19.350	79.544	1.00 34.16	Ť	Č
	ATOM	3941	0G	SER T		20.056	18.493	78. 989	1.00 34.47	Ť	ŏ
	MOTA	3942	N	PHE T		22.384	17.286	81.126	1.00 39.39	Ť	Ņ
	ATOM	3943	CA	PHE T		22. 391	16.006	81.814	1.00 43.50	Ť	č
	ATOM	3944	C	PHE T		21.700	16.155	83.160	1.00 45.33	Ť	.Č
35	ATOM	3945	ŏ	PHE T	116	22.130	16.930	84.013	1:00 46.10	Ť	Ö
33	ATOM	3946	CB	PHE T		23.816	15.449	81.990	1.00 43.81	Ť	Č
	ATOM	3947	CG	PHE T		24.829	16.456	82.449	1.00 44.31	Ť	Č
	ATOM	3948			116	25.669	17.079	81.532	1.00 44.31	T	Č
	ATOM	3949		PHE T		24.976	16.753	83. 797	1.00 45.66	T	Ċ
	ATOM	3950		PHE T		26.643	17.977	81.949	1.00 45.84	T	
40	ATOM	3951		PHE T		25. 946	17.651	84. 227	1.00 45.84	Ť	C
	ATOM	3952	CZ	PHE T		26.783	18.264	83. 299	1.00 40.21	T	C C
	ATOM	3953	N	GLU T		20. 609	15. 416	83. 331	1.00 47.33	T	
	ATOM	3954	CA	GLU T		19.832	15.416				Ŋ
									1.00 50.33	T	C
45	ATOM	3955	C	GLU T		19.909	14.160	85.340	1.00 51.09	· T	C
	MOTA	3956	0	GLU T		19.858	13.073	84.765	1.00 50.21	. <u>T</u>	0
	ATOM	3957	CB	GLU T		18.368	15.770	84. 239	1.00 52.68	Ţ	C
	ATOM	3958	CG	GLU T		17.499	16.012	85.462	1.00 54.67	T	Ç
	ATOM	3959	CD	GLU T		16.035	16.159	85.114	1.00 56.19	Ţ	C
50	ATOM	3960		GLU T		15. 263	16.548	85. 987	1.00 58.48	Ţ	0
30	MOTA	3961		GLU T		15.671	15.878	83.971	1.00 57.72	T	0
	ATOM	3962	N	GLN T		20.026	14. 278	86.657	1.00 52.53	T	N
	ATOM	3963	CA	GLN T	118	20.091	13.113	87.524	1.00 53.52	T	С
	MOTA	3964	C	GLN T		18.790	12.987	88.307	1.00 53.74	T	C
	MOTA	3965	0	GLN T		18.292	13.967	88.863	1.00 52.43	T	0
55	MOTA	3966	CB	GLN T		21. 268		88.495	1.00 55.69	T	С
•	MOTA	3967	CG	GLN T	118	21.248	14.505	89.345	1.00 58.28	Ţ	C

	ATOM	3968	CD	GLN T	118	22.398	14.581	90.341	1.00 59.93	T	. C
	MOTA	3969	0E1	GLN T	118	22.559	15.585	91.038	1.00 60.49	T	0
5	ATOM	3970	NE 2	GLN T	118	23.198	13.520	90.417	1.00 59.89	T	N
3	ATOM	3971	N	VAL T	119	18.236	11.780	88.336	1.00 54.32	T	N
	ATOM	3972	CA	VAL T		16.999	11.527	89.064	1.00 55.20	T	C
	ATOM	3973	С	VAL T	119	17.342	10.874	90.400	1.00 55.28	T	С
	ATOM	3974	0	VAL T	119	17.050	11.421	91.465	1.00 55.61	Ţ	0
40	ATOM	3975	CB	VAL T	119	16.056	10.592	88.270	1.00 55.27	T	С
10	ATOM	3976	CG1	VAL T	119	14.808	10.294	89.089	1.00 55.95	T	С
	ATOM	3977	CG2	VAL T	119	15.675	11.239	86.948	1.00 55.25	T	С
	ATOM	3978	N	GLY T	120	17.968	9.705	90.330	1.00 54.96	T	N
	ATOM	3979	CA	GLY T	120	18.357	8.992	91.531	1.00 55.01	T	С
	ATOM	3980	С	GLY T	120	19.681	8.294	91.305	1.00 55.06	T	С
15	ATOM	3981	0	GLY T	120	20.739	8.802	91.681	1.00 54.95	T	0
	ATOM	3982	N	THR T		19.622	7.124	90.680	1.00 54.66	T	N
	ATOM	3983	CA	THR T		20.824	6.356	90.388	1.00 54.74	T	C
	ATOM	3984	С	THR T		21.039	6.232	88.876	1.00 53.59	T	Ċ
	MOTA	3985	0	THR T		21.706	5.311	88.406	1.00 53.56	T	0
20	ATOM-	3986	CB	THR T	121	20.743	4.945	91.010	1.00 55.32	T	С
	ATOM	3987	0G1	THR T	121	21.985	4.259	90.805	1.00 56.26	T	0
	ATOM	3988	CG2	THR T	121	19.607	4. 145	90.379	1.00 55.25	Т	Ċ
	ATOM	3989	N	LYS T	122	20.474	7.171	88.122	1.00 52.48	T	N
	MOTA	3 990	CA	LYS T	122	20.599	7.178	86.669	1.00 51.79	T	С
25	ATOM	3991	С	LYS T	122	20.720	8.611	86.155	1.00 50.74	T	C
	ATOM	3992	0	LYS T		20.121	9.532	86.713	1.00 50.69	T	0
	ATOM	3993	CB	LYS T	122	19.385	6.493	86.038	1.00 52.21	T	С
	ATOM	3994	CG	LYS T		19.206	5.042	86.475	1.00 53.53	T	С
	ATOM	3995	CD	LYS T		17.813	4.797	87.036	1.00 55.85	. T	С
30	ATOM	3996	CE	LYS T		17.508	5.721	88.216	1.00 57.36	T	C.
	ATOM	3997	NZ	LYS T		16.108	5.599	88.713	1.00 55.80	T	N
	ATOM	3998	Ŋ.	VAL T		21.498	8.792	85.091	1.00 48.62	T	N
	ATOM	3999	CA	VAL T		21.712	10.111	84.504	1.00 46.58	T	С
	ATOM	4000	С	VAL T		21.280	10.170	83.040	1.00 44.65	T	C
35	ATOM	4001	0	YAL T		21.533	9. 248	82.267	1.00 45.12	T	0
	ATOM	4002	CB	VAL T		23. 207	10.519	84.597	1.00 46.69	T	C
	ATOM	4003		VAL T		23. 439	11.859	83.907	1.00 46.11	T	С
	ATOM	4004		YAL T		23.630	10.599	86.055	1.00 46.67	T	С
	ATOM	4005	N	ASN T		20.622	11.261	82.670	1.00 42.65	T	N
40	ATOM	4006	CA	ASN T		20. 171	11.456	81.301	1.00 41.30	T	C
70	ATOM	4007	C	ASN T		21.069	12.470	80.604	1.00 38.83	T	С
	ATOM	4008	0	ASN T		21.026	13.655	80.915	1.00 38.66	T	0
	ATOM	4009	CB	ASN T		18.725	11.957	81. 282	1.00 42.92	T	C
	ATOM	4010	CG	ASN T		18. 287	12.420	79.904	1.00 45.20	T	С
45	ATOM	4011		ASN T		18.444	11.703	78.917	1.00 47.86	Ţ	0
45	ATOM	4012		ASN T		17. 728	13.623	79.833	1.00 46.71	Ţ	N
	MOTA	4013	N	VAL T		21.892	11.999	79.674	1.00 35.58	T	N
	ATOM	4014	CA	VAL T		22.779	12.890	78. 934	1.00 34.22	T	С
	ATOM	4015	C	VAL T		22. 150	13.178	77.576	1.00 32.94	T	C
	MOTA	4016	0	VAL T		21.938	12.273	76.776	1.00 32.50	T	0
50	ATOM	4017	CB	VAL T		24. 180	12. 264	78.723	1.00 33.64	Ţ	C
	ATOM	4018		VAL T		25. 051	13. 205	77.897	1.00 33.24	Ţ	C
	ATOM	4019		VAL T		24.840	11.994	80.069	1.00 31.46	T	C
	ATOM	4020	Ŋ	THR T		21.835	14.442	77.332	1.00 31.93	T	N
	ATOM	4021	CA	THR T		21.225	14.847	76.078	1.00 31.44	T	С
55	ATOM	4022	C	THR T		22. 246	15.541	75. 181	1.00 30.53	Ţ	C
	MOTA	4023	0	THR T	126	22. 995	16.406	75. 631	1.00 30.92	T	0

	ATOM	4024	CB	THR T	126	20.035	15.801	76.333	1.00 32.80	T	С
	ATOM	4025		THR T		19.046	15.126	77.123	1.00 34.45	Ť	0
5	ATOM	4026	CG2	THR T		19.404	16. 248	75.018	1.00 33.11	ŕ	Č
						22. 273	15. 144	73. 915	1.00 28.54	Ť	N
	ATOM	4027	N.	VAL T							
	ATOM	4028	CA	VAL T		23. 181	15.720	72. 931	1.00 28.68	T	C
	ATOM	4029	С	VAL T		22.381	16.700	72.074	1.00 29.29	T	C
	MOTA	4030	0	VAL T	127	21.293	16.376	71.596	1.00 28.57	T	0
10	ATOM	4031	CB	VAL T	127	23.776	14.631	72.009	1.00 27.25	T	С
	ATOM	4032	CG1	VAL T		24.740	15.260	71.013	1.00 28.11	. T	С
	ATOM	4033		VAL T		24.478	13.567	72.837	1.00 26.10	T	С
	ATOM	4034	N	GLU T		22. 923	17. 896	71.880	1.00 30.12	Ť	Ň
						22. 248	18. 920	71.094	1.00 32.79	Ť	
45	ATOM	4035	CA	GLU T							C
15	ATOM	4036	C	GLU T		22.060	18.489	69.642	1.00 33.25	Ţ	C
	ATOM	4037	0	GLU T		23.005	18.051	68.987	1.00 32.52	T	0
	ATOM	4038	CB	GLU T		23.049	20. 222	71.146	1.00 35.07	T	С
	ATOM	4039	CG	GLU T	128	22. 327	21.419	70.558	1.00 39.25	T	С
	ATOM	4040	CD	GLU T	128	23.162	22.681	70.624	1.00 42.60	T	С
20	ATOM	4041		GLU T		24.132	22.785	69.872	1.00 42.38	T	0
	ATOM	4042		GLU T		22. 842	23.549	71.436	1.00 44.49	Ţ	0
	ATOM	4043	N	ASP T		20. 834	18.602	69.146	1.00 34.87	Ť	Ň
	ATOM	4044	CA	ASP T		20. 543	18. 234	67.765	1.00 38.67	Ť	· Ĉ
				ASP T			19.404	66. 908	1.00 39.15	T	C
	ATOM	4045	Ç			21.016					
25	ATOM	4046	0	ASP T		20. 271	20.355	66.684	1.00 40.95	. T	0
	ATOM	4047	CB	ASP T		19.038	18.020	67.571	1.00 41.05	Ţ	C
	MOTA	4048	CG	ASP T		18.721	17.167	66.354	1.00 44.26	T	C
	MOTA	4049		ASP T		19.421	17.291	65.355	1.00 45.06	T	0
	ATOM	4050	0D2	ASP T	129	17.768	16.387	66.411	1.00 46.55	T	0
	MOTA ·	4051	N	GLU T	130	22.259	19.328	66.442	1.00 39.21	T.	N
30	ATOM	4052	CA	GLU T	130	22.859	20.388	65.639	1.00 39.23	T	С
	ATOM	4053	C	GLU T		22. 242	20.531	64.257	1.00 37.36	T	C
	ATOM	4054	Ö	GLU T		21.867	19.548	63.627	1.00 35.82	Ť	Ō
	ATOM	4055	ČВ	GLU T		24.362	20.145	65.485	1.00 43.16	Ť	č
	MOTA	4056	CG	GLU T		25. 175	21.419	65. 294	1.00 46.75	Ť	Č
										Ť	Č
35	MOTA	4057	CD	GLU T		26.607	.21.139	64.891	1.00 48.44		
	MOTA	4058		GLU T		26.819	20.722	63.766	1.00 52.82	. T	0
	ATOM	4059		GLU T		27.496	21.331	65.701	1.00 49.66	T	0
	MOTA	4060	N	ARG T		22. 151	21.768	63, 785	1.00 36.07	T	N
	MOTA	4061	CA	ARG T		21.590	22.024	62.473	1.00 34.72	T	С
40	ATOM	4062	C	ARG T	131	22.631	21.836	61.377	1.00 32.32	T	C
40	MOTA	4063	0	ARG T	131	23.838	21.925	61.612	1.00 30.97	T	0
	ATOM	4064	CB	ARG T		21.000	23.436	62.402	1.00 37.34	T	C
	MOTA	4065	CG	ARG T		21.948	24.547	62.807	1.00 41.83	T	Č
	MOTA	4066	CD	ARG T		21.330	25. 901	62.509	1.00 43.91	Ţ	č
	MOTA	4067	NE	ARG T		22.022	26. 999	63.178	1.00 45.56	Ť	
45							28. 280				N
	MOTA	4068	CZ	ARG T		21.691		63.048	1.00 45.22	Ţ	C
	ATOM .	4069		ARG T		20.679	28.634	62.265	1.00 44.75	Ţ	N
	ATOM	4070		ARG T		22.362	29. 208	63.715	1.00 46.22	Ţ	N
	MOTA	4071	N	THR T		22.141	21.556	60.177	1.00 29.36	, T	N
	ATOM	4072	CA	THR T	132	22.989	21.343	59.013	1.00 25.98	T	C
50	ATOM	4073	C	THR T	132	22.664	22.438	58. DO8	1.00 26.04	T	C
	ATOM	4074	0	THR T		21.750	23. 236	58.220	1.00 25.67	T	0
	ATOM	4075	СB	THR T		22.689	19. 986	58. 351	1.00 24.12	Ť	č
	MOTA	4076		THR T		21.425	20.061	57.680	1.00 19.80	Ť	ŏ
	ATOM	4077		THR T		22. 621	18.874	59.403	1.00 19.80	Ť	Č
55	ATOM	4078	N	LEU T		23. 410	22. 471	56.912	1.00 26.23	T	N
	MOTA	4079	CA	LEU T	133	23. 181	23.459	55.867	1.00 28.66	T	С

EP 1 364 960 A1

	MOTA	4080	С	LEU T	133	22.060	23.029	54.922	1.00 31.07	T	C
	MOTA	4081		LEU T		21.664	23.788	54.038	1.00 31.66	Ţ	0
5	ATOM	4082		LEU T		24.466	23.700	55.069	1.00 25.94	Ť	Č
3	ATOM	4083		LEU T		25.457	24.719	55.645	1.00 24.82	Ť	Č
		4084		LEU T		24.818	26.095	55.618	1.00 23.33	Ť	Č
	ATOM	4085		LEU T		25. 873	24. 336	57.068	1.00 23.50	Ť	C
	ATOM										
	ATOM	4086		YAL T		21.553	21.812	55.104	1.00 32.72	Ţ	N
10	MOTA	4087		YAL T		20. 475	21.309	54. 260	1.00 35.27	T	C
	ATOM	4088		VAL T		19. 203	22. 086	54.557	1.00 37.69	T	C
	MOTA	4089		YAL T		18. 691	22.045	55.671	1.00 37.30	T	0
	ATOM	4090		VAL T		20. 207	19.803	54.508	1.00 33.94	Ţ	C
	ATOM	4091		VAL T		19.038	19. 335	53.652	1.00 31.92	T	C
15	ATOM	4092	CG2	YAL T	134	21.453	18.992	54.189	1.00 30.88	T	С
	ATOM	4093	N	ARG T	135	18.702	22.803	53.558	1.00 42.86	T	N
	ATOM	4094		ARG T	135	17. 485	23.587	53.720	1.00 48.17	T	C
	ATOM	4095	С	ARG T		16.268	22.895	53.123	1.00 51.28	T	C
	ATOM	4096	0.	ARG T		16.332	22.333	52.031	1.00 52.30	T	0
	MOTA	4097	CB	ARG T		17.636	24.960	53.063	1.00 48.77	T	C
20	ATOM	4098	CG	ARG T		17.844	26.107	54.032	1.00 51.28	T	С
	ATOM	4099	CD	ARG T		17. 150	27.366	53.522	1.00 53.42	T	C
	ATOM	4100	NE	ARG T		17.342	28. 513	54.408	1.00 54.39	T	Ň
	ATOM	4101	CZ	ARG T		18.442	29. 260	54.454	1.00 54.74	Ť	Ċ
	ATOM	4102		ARG T		19.473	28. 995	53.659	1.00 53.86	Ť	Ň
25	ATOM	4102		ARG T		18.512	30. 276	55.303	1.00 55.25	Ť	N
		4103	N	ARG T		15. 161	22. 938	53.855	1.00 55.32	Ť	N
	ATOM	4104	CA	ARG T		13. 101	22. 355	53.401	1.00 59.86	Ť	Ċ
	ATOM	4105	CA	ARG T		12.764	23. 218	53.912	1.00 60.84	Ť	č
	MOTA					12.685	23. 514	55.105	1.00 60.73	Ť	ő
22	ATOM	4107	0	ARG T				53.903	1.00 62.06	T	Č
30	ATOM	4108	CB	ARG T		13.740	20.917			T	
	MOTA	4109	CG	ARG T		14.704	19.926	53. 266	1.00 65.96	T	Ç
	ATOM	4110	CD	ARG T		14.066	18.552	53.079	1.00 68.51		C
	ATOM	4111	NE	ARG T		13.514	18.011	54.320	1.00 71.12	T	N
	ATOM	4112	CZ	ARG T		13.019	16. 784	54.453	1.00 72.57	T	C
35	ATOM	4113		ARG T		12.999	15.951	53.420	1.00 73.26	T	N
	ATOM	4114	NH2	ARG T		12.542	16.387		1.00 73.03	T	N
	ATOM	4115	N	ASN T		11.888	23.623	52.998	1.00 62.35	T	N
	ATOM	4116	CA	ASN T		10.751	24. 473	53.330	1.00 63.21	Ţ	C
	ATOM	4117	С	asn t		11.254	25.891	53.602	1.00 62.33	T	C
40	ATOM	4118	0	asn t	137	11.409	26.685	52.674	1.00 63.22	T	0
40	ATOM	4119	CB	ASN T		10.001	23.924	54.552	1.00 65.32	T	C
	ATOM	4120	CG	ASN T	137	9.422	22.542	54.311	1.00 67.61	T	C
	ATOM	4121	OD1	ASN T	137	10.147	21.596	54.002	1.00 69.63	T	0
	MOTA	4122	ND2	ASN T	137	8.108	22.419	54.456	1.00 69.48	T	N
	ATOM	4123	N	ASN T	138	11.518	26.205	54.867	1.00 60.71	T	N
45	MOTA	4124	CA	ASN T		12.003	27.531	55. 234	1.00 58.80	Ţ	C
	ATOM	4125	C	ASN T		12.940	27.486	56.445	1.00 56.17	T	C
	ATOM	4126	Õ	ASN T		13.061	28.467	57.179	1.00 56.57	Ť	Ó
	MOTA	4127	ČB	ASN T		10.823	28.464	55.542	1.00 60.66	Ť	Č
	ATOM	4128	CG	ASN T		9.842	28. 582	54. 381	1.00 62.38	Ť	Č
50	ATOM	4129		ASN T		9.132	27. 631	54. 049	1.00 62.68	Ť	ŏ
-	ATOM	4130		ASN T		9.801	29. 756	53. 760	1.00 63.11	Ť	N
			N N	THR T		13.606	26. 352	56. 649	1.00 52.17	Ť	N
	ATOM	4131	CA				26. 197	57.777	1.00 48.11	Ť	C
	MOTA	4132		THR T		14.520			1.00 43.77	T	
	ATOM	4133	C	THR T		15.641	25. 203	57. 483			C
55	ATOM	4134	0	THR T		15.649	24. 548	56. 442	1.00 43.95	T	0
	ATOM	4135	CB	THR T	139	13.772	25.709	59.040	1.00 49.28	Ţ	C

	ATOM	4136		THR T		13.08		24. 486	58. 745	1.00			T	0
	ATOM	4137		THR T		12.77		26.755	59.516	1.00			T	C
5	ATOM	4138		PHE T		16.58		25. 102	58.412	1.00		*		N
	ATOM	4139		PHE T		17.71		24. 184	58. 284	1.00			T	С
	ATOM	4140		PHE T		17. 36		22.876	58.987	1.00			T	С
	ATOM	4141		PHE T		16.85		22.884	60.107	1.00			T	0
	ATOM	4142		PHE T		18.96		24. 782	58.924	1.00			T	C
10	ATOM	4143		PHE T		19.53		25. 956	58. 177	1.00			T	С
	ATOM	4144		PHE T		20. 22		25. 772	56.980	1.00			T	С
	ATOM	4145		PHE T		19.40		27. 247	58.679	1.00			T	C
	ATOM	4146		PHE T		20.77		26.856	56.293	1.00			T.	С
	ATOM	4147		PHE T		19.94		28. 341	57.999	1.00			T	C
15	ATOM	4148		PHE T		20.63		28. 142	56.803	1.00 2			T	С
	ATOM	4149		LEU T		17.64		21.758	58. 325	1.00 3			T	N
	ATOM	4150		LEU T		17. 37		20. 446	58.890	1.00			T	C
	ATOM	4151		LEU T		18.48		20.056	59.849	1.00			Τ	C
	ATOM	4152		LEU T		19.65		20.369	59.623	1.00			T	0
20	ATOM	4153		LEU T		17. 28		19.389	57.788	1.00			T	C
	ATOM	4154		LEU T		16. 22		19. 545	56.706	1.00 2			T	C
	ATON	4155		LEU T		16.30		18.356	55.761	1.00			Ţ	C
	ATOM	4156		LEU T		14.83		19.634	57.340	1.00 2			Ī	C
	ATOM	4157	N	SER T		18.11		19.359	60.916	1.00 2			Ţ	N
25	ATOM ATOM	4158		SER T		19.09		18.930	61.900	1.00 2			<u>F</u>	C
23	ATOM	4159 4160		SER T		19.81 19.42		17. 689 17. 099	61.389	1.00 2			Ī	Ç
	ATOM	4161		SER T		18.40		18.617	60.380 63.225	1.00 2			Γ.	0
	ATOM	4162		SER T		17.69		17. 393	63. 142	1.00 2			r r	C
	ATOM	4163		LEU T		20.86		17. 287	62.095	1.00 2			1 [0
20	ATOM	4164		LEU T		21.63		6.117	61.700	1.00 2			r L	N
30	ATOM	4165		LEU T		20. 76		14.862	61.714	1.00 2			ľ	Ç.
	ATOM	4166		LEU T		20. 93		13.973	60. 875	1.00 2			r	. C .
	ATOM	4167		LEU T		22. 83		15.936	62.630	1.00 2			ŗ	Č
	ATOM	4168		LEU T		23.97		15.082	62.080	1.00 2			r	Č
	MOTA	4169		LEU T		24.57		5. 759	60.854	1.00 3			r	Č
35	ATOM	4170		LEU T		25.04		4.903	63. 153	1.00			r	Č
	ATOM	4171		ARG T		19.83		4.778	62.662	1.00 2			r	N
	ATOM	4172		ARG T		18.97		3.609	62.721	1.00 2			Γ	Ċ
	ATOM	4173		ARG T		17.85		3.700	61.687	1.00 2			r	č
	ATOM	4174		ARG T		17.33		12.676	61.244	1.00 3			r	Õ
40	ATOM	4175	CB	ARG T	144	18.40		13.411	64.127	1.00 2			Γ	Č
	ATOM	4176	CG	ARG T	144.	17.72	7	2.059	64.285	1.00 2	29.87		Γ	C
	ATOM	4177	CD	ARG T	144	17.59	4	11.638	65.736	1.00 2	29.47		Γ	С
	MOTA	4178	NE	ARG T	144	18.86	1	11.246	66.358	1.00 2	29.59		Γ	N
	ATOM	4179		ARG T		19.58	7	10. 183	66.017	1.00 2	28.70		ľ	С
45	ATOM	4180	NH1	ARG T	144	19.19	15	9.378	65.039	1.00 2	28.08		Γ	N
	ATOM	4181		ARG T		20.69	9	9.904	66.682	1.00 2	27.54	1	ľ	N
	ATOM	4182		ASP T		17.46		14.918	61.301	1.00 2	29.5i		Γ	N
	MOTA	4183		ASP T		16.43		15.093	60.275	1.00 3	30.78		ľ	С
	ATON	4184		ASP T		16.94	0	14. 472	58.970	1.00 2	29.67	,	Γ	С
50	ATOM	4185		ASP T		16.19		13. 793	58.263	1.00 3	30.38	,	ľ	0
	ATOM	4186		ASP T		16.14		16. 578	60.007	1.00 3			ľ	C
	ATOM	4187		ASP T		15. 23		7. 204	61.048	1.00 3			r	С
	ATOM	4188		ASP T		14. 32		16.520	61.530	1.00 3			Γ	0
	AŤOM	4189		ASP T		15.43		18. 385	61.356	1.00 3			Γ	0
55	ATOM	4190		VAL T		18. 21		14. 719	58.670	1.00 2			ľ	N
	ATOM	4191	CA	VAL T	146	18.87	1	14. 231	57.459	1.00 2	25.95	,	Γ	С

	ATOM	4192	С	VAL T 146	19. 245	12.750	57.474	1.00 26.46	T	С
	MOTA	4193		VAL T 146	18.922	12.024	56.541	1.00 27.73	T	0
5	ATOM	4194	ČB	VAL T 146	20.168	15.048	57.164	1.00 24.95	Ţ	Č
_	MOTA	4195		YAL T 146	20.901	14.461	55.960	1.00 20.92	Ť	Č
	MOTA	4196		VAL, T 146	19.823	16.519	56.916	1.00 20.74	Ť.	
	ATOM	4197		PHE T 147	19. 929	12.305	58. 524	1.00 26.36	T	N
				PHE T 147	20. 369	10.912	58.619	1.00 25.98	Ť	Č
	MOTA	4198								
10	ATOM	4199		PHE T 147	19.379	9.919	59. 236	1.00 27.12	Ţ	C
	MOTA	4200		PHE T 147	19.536	8.708	59.084	1.00 25.23	Ţ	0
	MOTA	4201		PHE T 147	21.689	10.844	59.389	1.00 24.48	Ţ	C
	MOTA	4202		PHE T 147	22. 844	11.465	58.662	1.00 25.86	· <u>T</u>	C
	MOTA	4203		PHE T 147	23.388	10.848	57.546	1.00 25.81	Ţ	C
15	MOTA	4204		PHE T 147	23. 377	12.681	59.082	1.00 26.68	T	C
	ATOM	4205		PHE T 147	24.450	11.429	56.852	1.00 27.09	T	С
	MOTA	4206	CE2	PHE T 147	24.435	13.267	58.398	1.00 26.05	Ţ	C
	MOTA	4207	CZ	PHE T 147	24.972	12.639	57. 280	1.00 25.43	T	С
	ATOM	4208	N	GLY T 148	18.368	10.421	59.930	1.00 27.07		N
00	MOTA	4209	CA	GLY T 148	17.406	9.526	60.542	1.00 30.74	T	С
20	ATOM	4210	С	GLY T 148	18.079	8.427	61.347	1.00 31.33	T	С
	ATOM	4211	0	GLY T 148	18.894	8.710	62.227	1.00 31.75	T	0
	ATOM	4212	N	LYS T 149	17.757	7.174	61.033	1.00 31.90	Ţ	N
	ATOM	4213		LYS T 149	18.319	6.024	61.745	1.00 30.48	T	С
	ATOM	4214		LYS T 149	19.784	5.707	61.448	1.00 29.20	T	С
25	ATOM	4215	Ō	LYS T 149	20.391	4.894	62.143	1.00 28.53	T	0
	ATOM	4216		LYS T 149	17.480	4.771	61.475	1.00 32.10	T	C
	ATOM	4217		LYS T 149	17.526	4. 284	60.036	1.00 34.68	Ť	Č
	ATOM	4218		LYS T 149	16.654	3.045	59.849	1.00 38.94	Ť	Č
	ATOM	4219	CE	LYS T 149	16.596	2.617	58.390	1.00 39.85	Ť	č
30	MOTA	4220		LYS T 149	17.943	2. 260	57.865	1.00 42.88	Ť	Ň
00	ATOM	4221	N	ASP T 150		6.318	60.416	1.00 28.28	Ť	N
	ATOM	4222		ASP T 150		6.060	60.103	1.00 27.67	Ť	C
	ATOM	4223	C	ASP T 150		6.678	61.142	1.00 26.20	Ť	č
	ATOM	4224	Ö	ASP T 150		6. 283	61.257	1.00 26.29	Ť	Õ
		4225	CB	ASP T 150		6.620	58. 727	1.00 28.41	Ť	č
35	ATOM ATOM	4225	CG	ASP T 150		5.765	57.592	1.00 30.84	T	č
						4. 547	57. 765	1.00 30.37	T	Õ
	ATOM	4227		ASP T 150				1.00 30.31	T	
	ATOM	4228		ASP T 150		6.319	56.530			. 0
	ATOM	4229	N	LEU T 151			61.897	1.00 24.20	Ţ	N
40	ATOM	4230		LEU T 151	22.978	8. 342	62.901	1.00 24.32	T	C
	ATOM	4231	Ç	LEU T 151	22.800	7.847	64.333	1.00 23.19	Ţ	C
	ATOM	4232	0	LEU T 151		7.654	64.805	1.00 23.35	T	0
	ATOM	4233		LEU T 151	22.651	9. 839	62.858	1.00 23.48	T	C
	ATOM	4234	CG	LEU T 151	23. 299	10.741	63.916	1.00 24.55	Ţ	C
45	ATOM	4235		LEU T 151	24. 791	10.863	63.649	1.00 21.55	T	C
45	ATOM	4236		LEU T 151	22.638	12.117	63.885	1.00 24.04	T	C
	ATOM	4237	N	ILE T 152		7.639	65.020	1.00 23.69	Ţ	N
	ATOM	4238	CA	ILE T 152		7. 235	66.419	1.00 23.13	T	C
	ATOM	4239	C	ILE T 152		8. 111	67.154	1.00 23.28	T	С
	ATOM	4240	0	ILE T 152		8.752	66.537	1.00 24.54	T	0
50	ATOM	4241	CB	ILE T 152		5.747	66.643	1.00 22.81	T	С
	ATOM	4242	CG1	ILE T 152		5. 584	66.493	1.00 22.58	T	С
	ATOM	4243		ILE T 152		4.839	65.672	1.00 23.41	T	С
	MOTA	4244		ILE T 152		4.228	66.945	1.00 22.76	T	С
	ATOM	4245	N	TYR T 153		8.150	68.472	1.00 23.49	T	N
55	ATOM	4246	CA	TYR T 153		8. 920	69.271	1.00 24.51	Ť	C
	ATOM	4247	C	TYR T 153		7. 984	70.274	1.00 24.18	Ť	č
	U i Aug	7671	•		20.007					Ü

	1701	1040	Λ	ጥህክ ጥ	159	25.	715	7.078	70.802	1 00	94 71		T	0
	ATOM	4248	-	TYR T							24. 71			
	MOTA	4249		TYR T		24.		0.067	69.984		23.63		Ţ	C
5	MOTA	4250				24.		1.256	69.081		23.64		Ţ	C
	ATOM	4251		TYR T		25.		12.036	68. 6 23		23. 71		T	C
	MOTA	4252	CD2	TYR T	153	23.		11.597	68.677	1.00	22.84	,	T	C
	ATOM	4253	CE 1	TYR T	153	25.	590	13. 130	67.786	1.00	21.55	· · · · · ·	Γ	С
	ATOM	4254	CE 2	TYR T	153	23.	226	12.690	67.839	1.00	22.98		T	C
10	ATOM	4255		TYR T		24.		13.450	67.399	1.00	22.00	•	T	C
, 0	ATOM	4256		TYR T		24.		14. 527	66.575		21.50		Ī	Ō
	ATOM	4257		THR T		27.		8. 193	70.506		23.44		T	N
	ATOM	4258		THR T		28.		7.381	71.438		23. 84		T T	Ċ
									72.615					
	ATOM	4259		THR T		28.		8. 250			25.48		Ţ	C
15	ATOM	4260		THR T		29.		9. 387	72. 431		25. 59		Ţ	0
	ATOM	4261		THR T		29.		6. 783	70. 741		24.28		Т	C
	ATOM	4262		THR T		29.		5.846	69.742	1.00	24.66		Γ	0
	ATOM	4263	CG2	THR T	154	30.	540	6.081	71.740	1.00	27.90	•	Τ	С
	ATOM	4264	N	LEU T	155	28.	685	7.715	73.822	1.00	26.46	,	Т	N
	ATOM	4265		LEU T		29.		8.428	75.036	1.00	29.00		Τ	C
20	ATOM	4266		LEU T		30.		7.788	75.670		31.35	,	Ţ	Ċ
	ATOM	4267		LEU T		30.		6.570	75. 831		33.70		Ī	ŏ
	ATOM	4268		LEU T		27.		8.416	76.039		26.23		Ť	Č
	ATOM	4269		LEU T		28.		9.127	77. 381		26.86		r	č
						28.		10.620			25. 42		T	C
25	ATOM	4270		LEU T					77. 155					
	ATOM	4271		LEU T		26.		8.851	78.307		24.97		T	C
	ATOM	4272		TYR T		31.		8.625	76.014		33.72		Ţ	N
	ATOM	4273		TYR T		32.		8.198	76.649		36.80		Ţ	C
	MOTA	4274	С	TYR T		32.		8.870	78.016		37.49		T	С
	ATOM	4275	0	TYR T	156	32.		10.061	78.125		37.28		T	0
30	ATOM	4276	CB	TYR T	156		690	8.703	75.835	1.00	39.78	,	T	C
	ATOM	4277	CG	TYR T	156	35.	056	8.392	76.413	1.00	44. 27		T	C
	ATOM	4278	CD1	TYR T	156	35.	633	7.130	76.262	1.00	45.90	'	T	С
	ATOM	4279	CD2	TYR T	156	35.	787	9.374	77.085	1.00	46.33		T	С
	ATOM	4280		TYR T			908	6.856	76.762	1.00	46.82		T	C
35	ATOM	4281		TYR T			060	9.110	77.590	1.00	46.50		T	Ċ
33	MOTA	4282	CZ	TYR T			614	7.851	77.424		47.92		T	Č
	ATOM	4283	OH	TYR T			875	7. 593	77.914		48. 85		T	Õ
	MOTA	4284	N	TYR T			098	8.113	79.047		38. 10		Ť	N
		4285	CA	TYR T			017	8.650	80.404		39. 51		T	C
	MOTA			TYR T			911	7. 927	81.407		41.43		T ·	C
40	ATOM	4286	C											
	MOTA	4287	0	TYR T			153	6.729	81.286		41.55		T	0
	ATOM	4288	CB	TYR I			566	8.627	80.905		37. 07		T	Č
	ATOM	4289	CG	TYR. 1			924	7. 255	81.019		36.59		Τ.	Č.
	MOTA	4290		TYR I			578	6.520			36.61		Ţ	C
45	ATOM	4291		TYR I			622	6.712	82.269		36.44		T	C
45	ATOM	4292	CE1	TYR I	157		942	5.282	79.990	1.00	36, 96		T	C
	ATOM	4293	CE2	TYR I	157	28.	989	5.478	82.388	1.00	36. 19		T	C
	ATOM	4294	CZ	TYR I	157	28.	649	4.768	81.247	1.00	37.43		T	C
	MOTA	4295	OH	TYR I			011	3.554	81.362	1.00	35.29		T	0
	ATOM	4296	N	TRP 1			393	8.666	82.402		44.59		T	N
50	ATOM	4297	CA	TRP 1			266	8. 101	83. 423		48. 36		Ť	C
	MOTA	4298	C	TRP 1			941	8.612	84.822		50.71		Ť	C
		4299	_	TRP T			389	9.700	84. 989		50.01		Ť	
	ATOM		()										Ť	0
	MOTA	4300	CB	TRP 1			727	8.414	83.092		48.77			C
	ATOM	4301	CG	TRP 1			071	9.873	83. 156		50.02		T	C
55	ATOM	4302		TRP 1				10.631	84. 281		50.16		T	C
	ATOM	4303	CDZ	TRP 1	158	36.	291	10.752	82.045	1.00	50.25		T	C
							-							

	ATOM	4304	NE1	TRP T	158	36.557	11.924	83.940	1.00 50.45	T	N
	ATOM	4305	CE2		158	36.595	12.027	82.574	1.00 49.97	Ť	Ċ
5	ATOM	4306		TRP T		36. 262	10.585	80.653	1.00 50.09	Ť	č
3	ATOM	4307		TRP T		36.869	13.131	81.760	1.00 49.43	Ī	č
	ATOM	4308		TRP T		36.534	11.685	79.843	1.00 50.00	Ť	Č
		4309		TRP T		36.834	12.941	80.402	1.00 50.53	Ť	Č
	ATOM										
	ATOM	4310	N	LYS T		34. 295	7.815	85. 826	1.00 54.36	Ţ	N
10	ATOM	4311		LYS T		34.053	8.167	87. 220	1.00 57.78	T	C
	ATOM	4312	C	LYS T		35. 218	9.024	87. 735	1.00 58.65	Ţ	C
	ATOM	4313	0	LYS T		35. 371	10. 173	87. 325	1.00 60.01	T	0
	MOTA	4314		LYS T		33.911	6.887	88.053	1.00 59.26	Ţ	C
	MOTA	4315	CG	LYS T		33. 266	7.081	89.416	1.00 61.42	Ţ	C
15	ATOM	4316	CD	LYS T		33.503	5.877	90. 322	1.00 63.98	T	С
	MOTA	4317	CE	LYS T		32.979	4. 584	89.712	1.00 65.42	T	C
	MOTA	4318	NZ	LYS T	159	31.501	4. 599	89. 542	1.00 67.11	T	N
	ATOM	4319	N	SER T	160	36.035	8.460	88.622	1.00 60.77	T	N
	MOTA	4320	CA	SER T	160	37.188	9.152	89.198	1.00 62.01	T	C
	ATOM	4321	С	SER T		37.933	8. 228	90.157	1.00 62.68	· T	С
20	ATOM	4322	0	SER T		37.520	8.043	91.303	1.00 63.75	T	0
	ATOM	4323	CB	SER T		36.751	10.413	89.952	1.00 62.64	T	C .
	ATOM	4324	0G	SER T		36.348	11.441	89.063	1.00 63.25	T	Ō
	ATOM	4325	N	GLY T		39. 552	4.169	84.389	1.00 46.65	T	N
	ATOM	4326	CA	GLY T		38. 188	3.681	84.302	1.00 46.62	T	C
25	MOTA	4327	C	GLY T		37.414	4.314	83.161	1.00 45.68	Ť	Č
	ATOM	4328	Õ	GLY T		36. 884	5. 415	83. 296	1.00 45.48	Ť	Õ
	MOTA	4329	N	LYS T		37. 347	3.611	82.036	1.00 45.62	Ť	N
	ATOM	4330	CA	LYS T		36. 635	4.100	80.859	1.00 44.77	Ť	Ĉ
	ATOM	4331	C	LYS T		35. 296	3.385	80.697	1.00 42.99	Ť	Č
30	ATOM	4332	Ö	LYS T		35. 198	2.178	80.921	1.00 43.15	Ť	0
30		4333	CB	LYS T		37. 480	3. 885	79. 593	1.00 47.71	Ť	C
	ATOM	4333	CG	LYS T		38.658	4.851	79. 404	1.00 51.07	Ť	Ç .
	ATOM	4335	CD	LYS T		39.777	4. 652	80. 424	1.00 53.07	Ť	Č
	ATOM					40.370	3. 252	80. 348	1.00 55.53	Ť	C
	ATOM	4336	CE	LYS T						T	N
35	ATOM	4337	NZ	LYS T		40.940	2.954	79.005	1.00 58.19		
	ATOM	4338	N	LYS T		34.269	4.135	80.309	1.00 40.32	T	N C
	ATOM	4339	CA	LYS T		32. 937	3.573	80. 103	1.00 38.29	T.	C
	ATOM	4340	C	LYS T		32.325	4.137	78. 818	1.00 36.09	Ţ	C
	ATOM	4341	0	LYS T		32.609	5. 268	78. 427	1.00 32.41	T	0
40	ATOM	4342	CB	LYS T		32.032	3.892	81. 297	1.00 40.50	Ţ	C
	ATOM	4343	CG	LYS T		32.510	3.306	82.617	1.00 43.96	Ţ	C .
	ATOM	4344	CD		166	31.622	3.752	83. 767	1.00 45.60	Ţ	C
	ATOM	4345	CE	LYS T		32. 151	3. 265	85. 107	1.00 47.87	Ţ	C
	ATOM			LYS T		31.334	3. 791		1.00 49.02	Ţ	N
4.5	ATOM		N	THR T		31.475	3.347	78. 172	1.00 33.24	T	N
45	ATOM	4348		THR T		30.851	3.771	76.926	1.00 32.13	T	C
	ATOM	4349	С	THR T		29.386	3.355	76. 799	1.00 30.44	T	C
	ATOM	4350	0	THR 1	167	28.969	2.318	77.316	1.00 29.24	Ŧ	0
	ATOM	4351	CB	THR T	167	·31.623	3. 205	75.719	1.00 33.05	T	С
	ATOM	4352		THR 1		31.000	3.632	74.502	1.00 34.90	T	0
50	MOTA	4353	CG2	THR 1	167	31.633	1.686	75.767	1.00 34.83	T	C
	ATOM	4354	N	ALA 1		28.616	4.184	76.102	1.00 27.66	T	N -
	ATOM	4355	CA	ALA 1		27. 201	3.934	75.866	1.00 27.24	Ť	Ċ
	ATOM	4356	C	ALA 1		26.887	4.359	74. 434	1.00 26.54	Ť	Č
	ATOM	4357	ŏ	ALA 1		27.614	5. 159	73.853	1.00 26.79	Ť	Ŏ
55	ATOM	4358	СB	ALA 1		26.356	4. 738	76.847	1.00 25.11	Ť	Č
	ATOM	4359	N	LYS 1		25.815	3.818	73.864	1.00 25.71	Ť	N
	A i Olu	7003	11		100	20.010	0.010	, 0. 001	50.11		**

	ATOM	4360	CA	LYS 1	169	25. 421	4.174	72.503	1.00 24.30	T	C
5	ATOM	4361	С	LYS 1		23.912	4.341	72.416	1.00 23.34	T	C
	ATOM	4362	Ö	LYS 1		23. 165	3.613	73.056	1.00 25.30	Ţ	ŏ
		4363	СB	LYS 1		25. 898	3. 108	71.519	1.00 25.23	Ť	Č
	ATOM										
	ATOM	4364	CG	LYS 1		27.401	2.925	71.531	1.00 24.44	Ţ	Ç
	ATOM	4365	CD	LYS		27.864	1. 937	70. 489	1.00 25.08	Ţ	C
10	ATOM	4366	CE	LYS 7		29.368	1.780	70.552	1.00 22.30	T	C
	MOTA	4367	NZ	LYS 7	169	29.879	1.009.	69.398	1.00 25.32	T	N
	ATOM	4368	N	THR 7	170	23.467	5.309	71.625	1.00 24.63	T	N
	ATOM	4369 ·	CA	THR 7		22.040	5.574	71.475	1.00 24.26	T	C
	ATOM	4370	C	THR 3		21.680	5. 871	70.023	1.00 26.19	Ť	č
	ATOM	4371	ŏ		170	22.491	6.408	69.269	1.00 26.16	Ť	ŏ
15			-							-	
	ATOM	4372	CB	THR 7		21.607	6.783	72.335	1.00 22.44	Ţ	C
	ATOM	4373		THR T		20.202	7.008	72.178	1.00 21.98	T	0
	ATOM	4374	CG2	THR 1		22.361	8.040	71.907	1.00 20.38	T	С
	ATOM	4375	N	ASN 3		20.463	5.518	69.631	1.00 27.31	T	N
	MOTA	4376	CA	ASN 3	171	20.018	5.777	68.272	1.00 29.89	Ţ	C
20	MOTA	4377	С	ASN T		19.207	7.071	68.202	1.00 28.8€	T	C
	ATOM	4378	Ō	ASN 3		18.659	7.416	67.158	1.00 30.77	Ť	Ŏ
	ATOM	4379	ČВ	ASN 3		19. 201	4.596	67.744	1.00 34.19	Ť	č
	MOTA	4380	CG	ASN 3		17.917	4. 401	68.497	1.00 38.11	Ť	Č
				ASN :		17. 919	4. 219	69.714	1.00 43.07	Ť	
	ATOM	4381									0
25	ATOM	4382		ASN :		16.803	4.433	67.778	1.00 42.28	Ţ	N
	MOTA	4383	N		172	19.129	7. 781	69.324	1.00 27.79	Ţ	N
	MOTA	4384	CA		172	18.432	9.063	69.385	1.00 27.05	Τ	С
	MOTA	4385	С	THR 7	172	19.487	10.072	69.863	1.00 26.35	T	C
	ATOM	4386	0	THR	172	20.678	9.898	69.593	1.00 24.98	Ţ	0
	MOTA	4387	CB	THR T	172	. 17.242	9.030	70.381	1.00 26.35	Ţ	C
30	ATOM	4388	0G1			17.732	8.790	71.704	1.00 29.03	T	0
	ATOM	4389		THR		16.258	7.930	70.009	1.00 26.97	T	Č
	MOTA	4390	N		173	19.065	11.119	70.559	1.00 24.76	Ť	N
	ATOM	4391	CA		173	20.008	12.112	71.061	1.00 26.67	Ť.	Č
			C.				12. 074	72.578	1.00 26.96	Ť	
	ATOM	4392	_		173	20.147					C
35	MOTA	4393	0		173	20.741	12.974	73.167	1.00 26.63	T	0
	ATOM	4394	CB		T 173	19.583	13.517	70.632	1.00 27.09	T	C
	ATOM	4395	CG	ASN '	T 173	19.974	13.829	69. 206	1.00 27.88	T	С
	ATOM	4396	0D1	ASN '	T 173	19.682	13.064	68. 291	1.00 28.96	T	0
	ATOM	4397	ND2	ASN	T 173	20.642	14.960	69.009	1.00 29.78	T	N
10	ATOM	4398	N	GLU '	T 174	19.617	11.028	73.206	1.00 26.96	T	N
40	ATOM	4399	CA		T 174	19.680	10.906	74.659	1.00 28.12	T	C
	ATOM	4400	C		T 174		9.619	75.143	1.00 26.22	T	Č
	ATOM	4401	ŏ		T 174		8.569	74. 523	1.00 26.38	Ť	ŏ
	ATOM	4402	ČB		T 174		11.012	75. 241	1.00 32.01	Ť	. Ç.
45	ATOM	4403	CG		T 174		12.365	74.996	1.00 39.60	Ţ	Č
45	ATOM	4404	CD		T 174		12.313	75.150	1.00 45.20	Ţ	Ç
	MOTA	4405	0E 1	GLU	T 174		11.627	74.350	1.00 47.98	T	0
	ATOM	4406	0E 2	GLU	T 174	15.575	12.951	76.068	1.00 49.78	Ţ	0
	ATOM	4407	N	PHE	T 175	21.047	9.722	76.262	1.00 26.73	T	N
	ATOM	4408	CA		T 175		8.591	76.877	1.00 26.52	T	C
50	ATOM	4409	C		T 175		8.402	78. 280	1.00 29.29	Ť	č
50	ATOM	4410	ŏ		T 175		9.367	79.037	1.00 29.51	Ť	ő
	ATOM	4411	CB		T 175		8.873	77.012	1.00 23.85	T	C
	ATOM	4412	CG		T 175		8.919	75. 710	1.00 23.33	Ţ	C
	ATOM	4413		PHE			7.743	75.051	1.00 22.59	T	С
55	MOTA	4414		PHE			10.139	75.154	1.00 21.95	T	С
33	ATOM	4415	CE 1	PHE	T 175	25.034	7.780	73.851	1.00 24.26	T	С
											-

	ATOM	4416	CE2	PHE T	175	25.063	10.189	73.956	1.00 23.03		T	С
	ATOM	4417	CZ	PHE T		25.408	9.006	73.304	1.00 22.27		Ť	Č
5	ATOM	4418	N	LEU T		20. 791	7. 171	78.622	1.00 31.93		Ť	Ň
5												
	ATOM	4419	CA	LEU T		20. 276	6.873	79.959	1.00 34.35		Ţ	C
	MOTA	4420	C	LEU T		21.250	5.879	80.574	1.00 35.33		T	C
	ATOM	4421	0	LEU T	176	21. 255	4.705	80.211	1.00 36.35		Ţ	0
	ATOM	4422	ÇB	LEU T	176	18.875	6.254	79.890	1.00 34.93		T	C
10	ATOM	4423	ĊĠ	LEU T		18. 220	5.937	81.243	1.00 36.34		Ť	Č
70				LEU T		18. 025	7. 218	82.039	1.00 36.74			
	ATOM	4424									T	C
	ATOM	4425		LEU T		16.876	5. 250	81.022	1.00 37.90		T٠	С
	ATOM	4426	N	ILE T		22.083	6.355	81.494	1.00 36.14		T	N
	ATOM	4427	ÇA	ILE T	177	23.080	5.500	82.125	1.00 38.18		T	С
45	ATOM	4428	C	ILE T		22.968	5.430	83.643	1.00 39.89		T	C
15	ATOM	4429	Õ	ILE T		22. 350	6. 284	84. 274	1.00 38.85		Ť	Ö
	ATOM	4430	CB	ILE T		24.510	5.974	81.795	1.00 38.42		Ţ	C
	ATOM	4431		ILE T		24.750	7.358	82.407	1.00 38.45		T	C
	ATOM	4432	CG2	ILE T	177	24.712	6.009	80.288	1.00 38.52		T ·	C
00	ATOM	4433	CD1	ILE T	177	26.208	7.791	82.420	1.00 39.58		T	С
20	ATOM	4434	N	ASP T		23. 589	4.403	84.215	1.00 42.03		T	N
	ATOM	4435	CA	ASP T		23.602	4. 192	85.657	1.00 45.50		T	Ċ
										-		
	MOTA	4436	C		178	24.802	4.914	86. 259	1.00 47.95		T	Ç
	ATOM	4437	0	ASP T		25.866	4. 984	85.645	1.00 48.69		T	0
0.5	ATOM	4438	CB	ASP T		23. 704	2.699	85.969	1.00 45.09		T	С
25	MOTA	4439	CG	ASP T	178	22.462	1.935	85.572	1.00 45.52		T	С
	ATOM	4440	0D1	ASP T	178	22.561	0.737	85.367	1.00 46.53		T	0
	ATOM	4441		ASP T		21.402	2.543	85.480	1.00 47.77		T	0
	ATOM	4442	N	VAL T		24.630	5. 447	87.463	1.00 51.00		Ť	N
											T	
00	ATOM	4443	CA	VAL T		25.709	6.158	88. 138	1.00 54.37			C
30	ATOM	4444	C.	VAL T		25.697	5.894	89.638	1.00 57.41		T.	C
	ATOM	4445	0	VAL T		24.634	5.808	90. 257	1.00 58.33		T	0
	ATOM	4446	CB	VAL T	179	25.610	7.684	87.912	1.00 53.68		T	С
	ATOM	4447	CG1	VAL T	179	25.755	8.002	86.434	1.00 54.55		T	C
	ATOM	4448		VAL T		24. 285	8. 206	88. 445	1.00 53.15		T	Č
0.5	ATOM	4449	N	ASP T		26.884	5.760	90. 218	1.00 60.20		Ť	Ň
35												
	ATOM	4450	CA		180	27.008	5. 526	91.649	1.00 63.22		T	C
	MOTA	4451	С	ASP T		26.787	6.854	92.363	1.00 64.55		T	C
	ATOM	4452	0	ASP T	180	27. 554	7.800	92.178	1.00 64.55		T	0
	ATOM	4453	CB	ASP T	180	28.398	4.974	91.981	1.00 65.14		T	С
40	MOTA	4454	CG		180	28.659	3.620	91.339	1.00 67.56		T	C
40	MOTA	4455			180	28.706	3.545	90.113	1.00 69.02		Ť	Ō
	ATOM	4456		ASP T		28. 812	2.641	92.072	1.00 69.35		Ť	ŏ
	ATOM	4457	N	LYS T		25. 730	6. 924	93.169	1.00 66.14		T	N
	ATOM	4458	CA	LYS T		25.400	8. 145	93. 900	1.00 66.70		T	C
15	MOTA	4459	С	LYS T	181	26.589	8.693	94.679	1.00 66.19		T	C
45	ATOM	4460	0	LYS T	181	27.464	7.941	95.110	1.00 66.44		T	0
	MOTA	4461	CB	LYS T		24.230	7.895	94.858	1.00 68.20		T	C
	· ATOM	4462	CG	LYS T		22.910	7.573	94.166	1.00 70.66		Ť	č
	ATOM	4463	CD	LYS T		21.747	7.534	95. 154	1.00 71.98		T	C
50	MOTA	4464	CE	LYS T		21.915	6. 434	96.194	1.00 73.05		T	C
50	ATOM	4465	NZ	LYS T		21.906	5.071	95. 589	1.00 74.30		T	N
	MOTA	4466	N	GLY T		26.613	10.011	94.851	1.00 65.88		T	N
	MOTA	4467	CA	GLY T		27.698	10.647	95. 578	1.00 65.07		T	Ĉ
	ATOM	4468	C	GLY T		29.030	10.580	94. 856	1.00.64.52		Ť	Č
	ATOM	4469	0	GLY T		30.085	10.552	95. 488	1.00 64.76		T	0
55	ATOM	4470	N	GLU T		28.985	10.558	93. 528	1.00 63.96		T	N
	MOTA	4471	CA	GLU T	183	30.197	10.496	92.722	1.00 63.00		T	C

									•		
	ATOM	4472	С	GLU T	183	30.012	11.349	91.471	1.00 60.60	T	С
	ATOM	4473	Ö	GLU T		28. 948	11.336	90. 854	1.00 60.74	Î	ŏ
5							9. 047				
	ATOM	4474	CB	GLU T		30. 493		92. 333	1.00 65.51	Ţ	-
	MOTA	4475	CG	GLU T		31.877	8.829	91.749	1.00 69.10	T	
	ATOM	4476	CD	GLU T	183	32.986	9.080	92.755	1.00 70.99	T	С
	ATOM	4477	OE I	GLU T	183	33.103	10.209	93. 234	1.00 72.19	T	0
	ATOM	4478		GLU T		33.730	8.143	93.056	1.00 71.72	T	
10	ATOM	4479	N	ASN T		31.052	12.089	91.100	1.00 57.69	Ţ	
	MOTA	4480	CA	ASN T		30.987	12.959	89. 933	1.00 54.65	Ţ	
	ATOM	4481	C	ASN T		31.475	12.282	88.654	1.00 51.10	T	
	ATOM	4482	0	ASN T	184	32.494	11.589	88.647	1.00 49.50	T	0
	ATOM	4483	CB	ASN T		31.797	14.236	90.185	1.00 57.28	T	С
15	ATOM	4484	CG	ASN T		31.324	14.996	91.415	1.00 59.82	Ť	
			0D1	ASN T		31.448	14.517	92. 545	1.00 62.30	T	
	ATOM	4485									
	ATOM	4486		ASN T		30.775	16.187	91. 200	1.00 60.42	Ţ	
	ATOM	4487	N	TYR T		30. 733	12.492	87. 572	1.00 46.87	T	
	ATOM	4488	CA	TYR T	185	31.072	11.919	86. 276	1.00 43.13	T	C
20	ATOM	4489	С	TYR T	185	31.282	13.009	85. 232	1.00 40.25	T	С
	ATOM	4490	Ŏ	TYR T		30.614	14.042	85.257	1.00 38.63	T	
	ATOM	4491	CB	TYR T		29.955	10.999	85. 772	1.00 42.93	Ť	
	ATOM	4492	CG	TYR T		29.806	9.679	86. 491	1.00 43.09	Ţ	
	ATOM	4493		TYR T		29.313	9.618	87. 794	1.00 43.56	Т	
25	ATOM	4494	CD2	TYR T	185	30.126	8.483	85.852	1.00 42.77	T	
	ATOM	4495	CE1	TYR T	185	29.137	8.400	88. 441	1.00 44.38	T	С
	ATOM	4496	CE2	TYR T		29.955	7.260	86.489	1.00 44.41	T	
	ATOM	4497	CZ	TYR T		29.459	7. 225	87. 784	1.00 44.61	T	
			OH	TYR T		29. 273	6.016	88. 413	1.00 46.20	T	
	ATOM	4498									
30	ATOM	4499	Ŋ	CYS 1		32.215	12.773	84. 318	1.00 37.22	Ţ	
00	MOTA	4500	CA	CYS T		32.469	13.711	83. 233	1.00 35.28	T	
	ATOM	4501	С	CYS T	186	32.033	12.986	81.964	1.00 33.69	T	C
	ATOM	4502	0	CYS 7	186	32.113	11.757	81.884	1.00 33.01	T	0
	MOTA	4503	CB	CYS 1		33.948	14.084	83.145	1.00 34.62	T	С
	ATOM	4504	SG	CYS 1		34.609	15.088	84. 517	1.00 35.26	T	
35			N	PHE 1		31.579	13.745	80. 974	1.00 31.82	Ţ	
33	ATOM	4505									
	ATOM	4506	CA		187	31.085	13.164	79. 737	1.00 29.80	Ţ	-
	ATOM	4507	C	PHE 7		31.657	13.778	78.465	1.00 28.26	T	
	MOTA	4508	0		187	32.121	14.918	78. 451	1.00 25.87	T	
	ATOM	4509	CB	PHE J	187	29.559	13.280	79. 711	1.00 31.70	T	C
40	ATOM	4510	CG	PHE 1	187	28.892	12.750	80.950	1.00 32.92	· · T	
40	MOTA	4511		PHE 1		28.783	11.381	81.167	1.00 32.88	Ī	
	ATOM	4512			187	28. 401	13.623	81.919	1.00 34.37	Ī	
	ATOM	4513		PHE 1		28. 196	10.887	82. 330	1.00 32.44	Ţ	-
	ATOM	4514		PHE 1		27.812	13.137	83.088	1.00 33.58	T	
45	ATOM	4515	CZ	PHE 1	187	27.711	11.767	83. 292	1.00 33.15	T	C
45	MOTA	4516	N	SER 7	188	31.612	12.992	77.397	1.00 27.99	T	
	ATOM	4517	CA	SER 7		32.079	13.406	76.083	1.00 26.65	T	
	ATOM	4518	C		188		12.557	75.071	1.00 26.06	Ī	
	ATOM	4519	0		188	31.268	11.335	75. 203	1.00 25.10	1	
50	ATOM	4520	CB		188	33.580	13. 165	75.941	1.00 27.85	1	
50	ATOM	4521	0G	SER '	188	34.034	13.597	74.670	1.00 28.63	ī	. 0
	ATOM	4522	N		r 189	30.737	13.200	74.068	1.00 25.94	T	
	ATOM	4523	CA	YAL '		29.977	12.476	73.056	1.00 25.53	Ī	
	ATOM	4524	C		r 189	30. 585	12. 579	71.667	1.00 26.44	i	
	ATOM	4525	0		189	31.397	13.462	71.381	1.00 27.25	Ţ	-
55	ATOM	4526	CB		189	28. 510	12.967	72.986	1.00 26.62	. 1	
	MOTA	4527	CG I	VAL	T 189	27.850	12.822	74.353	1.00 23.61	1	C

	ATOM	4528	CG2	VAL T	189	28.459	14.412	72.503	1.00 25.43	T	C
	ATOM	4529	N	GLN T		30. 160	11.677	70.794	1.00 26.03	T	N
_	ATOM	4530		GLN T		30. 670	11.627	69.438	1.00 25.75	Ť	Č
5	ATOM	4531		GLN T				68.495	1.00 23.13		
						29.562	11.173			T	C
	ATOM	4532		GLN T		28. 825	10. 238	68.803	1.00 24.21	T	0
	MOTA	4533		GLN T		31.845	10.651	69.415	1.00 27.57	Ţ	C
	ATOM	4534		GLN T		32.563	10.466	68.103	1.00 29.40	Ţ	C
10	ATOM	4535		GLN T		. 33.803	9. 605	68.276	1.00 31.44	Ţ	C
	ATOM	4536		GLN T		33. 738	8. 525	68.864	1.00 32.92	T	0
	ATOM	4537		GLN T		34.937	10.079	67.770	1.00 29.76	T	N
	ATOM	4538	N	ALA T		29.428	11.854	67.361	1.00 23.85	T	N
	ATOM	4539		ALA T		28.415	11.496	66.374	1.00 22.47	T	C
15	ATOM	4540		ALA T		29.016	10.401	65.504	1.00 22.81	T	С
	ATOM	4541	0	ALA T	191	30.212	10.424	65.214	1.00 22.19	T	0
	ATOM	4542	CB	ALA T	191	28. 0 51	12.702	65.529	1.00 20.37	T	C
	ATOM	4543	N	YAL T	192	28.195	9. 438	65.099	1.00 22.73	T	N
	ATOM	4544	CA	VAL T	192	28.684	8. 332	64.286	1.00 23.06	T	С
20	ATOM	4545	C	VAL T	192	27.636	7.854	63.285	1.00 25.12	T	C
20	ATOM	4546	0	VAL T	192	26.435	7. 911	63.549	1.00 25.90	T	0
	ATOM	4547	CB	YAL T	192	29.080	7.124	65.182	1.00 24.31	T	C
	ATOM	4548	CG1	YAL T	192	29.694	6.023	64.347	1.00 23.66	T	С
	MOTA	4549		VAL T		30.051	7.564	66.272	1.00 23.45	T	C
	ATOM	4550	N	ILE T	193	28.102	7.409	62.125	1.00 25.32	T	N
25	MOTA	4551	CA	ILE T	193	27.233	6.856	61.098	1.00 27.61	T	. С
	ATOM	4552	C	ILE T	193	27.881	5.519	60.772	1.00 29.11	T	С
	MOTA	4553	0	ILE T	193	28.734	5.429	59.887	1.00 31.53	T	0
	ATOM	4554	CB	ILE T	193	27.188	7.746	59.845	1.00 28.13	T	С
	ATOM	4555	CG1	ILE T	193	26.516		60.190	1.00 27.35	T	С
30	ATOM	4556	CG2	ILE T	193	26.420	7.039	58.734	1.00 26.33	T	С
	MOTA	4557	CD1	ILE T	193	26.511	10.072	59.058	1.00 31.00	T	C
	MOTA	4558	N	PRO T	194	27.496	4.462	61.506	1.00 29.13	T	N
	MOTA	4559	CA	PRO T	194	28.006	3.091	61.360	1.00 30.19	T	С
	MOTA	4560	C	PRO T	194	28.153	2.557	59.940	1.00 29.63	T	C
35	MOTA	4561	0	PRO T	194	29.168	1.954	59.605	1.00 30.22	T	0
	ATOM	4562	CB	PRO T	194	27.020	2.268	62.187	1.00 29.86	T	С
	ATOM	4563	CG	PRO T	194	26.631	3. 224	63. 273	1.00 30.63	T	С
	ATOM	4564	CD	PRO T	194	26.402	4.501	62.493	1.00 28.23	T	С
	ATOM	4565	N	SER T	195	27.142	2.773	59.109	1.00 31.11	T	N
40	MOTA	4566	CA	SER T	195	27.172	2.294	57.732	1.00 33.61	T	С
70	MOTA	4567	С	SER T	195	28.304	2.882	56.894	1.00 36.37	T	C
	ATOM	4568	0	SER T	195	28.653	2.331	55.848	1.00 37.68	T	0
	ATOM	4569	CB	SER T	195	25.841	2.594	57.049	1.00 33.34	T	С
	MOTA	4570	0G	SER T	195	25.592	3.987	57.025	1.00 33.89	T	0
4.	ATOM	4571	N	ARG T		28.876	3.994	57.350	1.00 37.43	T	N
45	ATOM	4572	CA	ARG T	196	29.956	4.654	56.626	1.00 38.17	T	С
	ATOM	4573	С	ARG T	196	31.279	3.915	56.617	1.00 40.14	T	С
	ATOM	4574	0	ARG T	196	31.567	3.104	57.497	1.00 39.73	Ŧ	0
	ATOM	4575	CB	ARG T	196	30.201	6.055	57. 181	1.00 36.13	T	C
	ATOM	4576	CG	ARG T		29.241	7.107	56.686	1.00 34.25	T	Ċ
50	ATOM	4577	CD	ARG T		29.764	8.479	57.042	1.00 33.30	T	Ċ
	ATOM	4578	NE	ARG T		28.936	9.540	56.486	1.00 32.53	Ť	N
	ATOM	4579	CZ	ARG T		29.210	10.835	56.592	1.00 33.06	Ť	Ċ
	ATOM	4580		ARG T		30. 299	11. 234	57. 238	1.00 30.86	Ť	Ň
	ATOM	4581		ARG T		28.397	11.730	56.048	1.00 29.51	Ť	N
55	ATOM	4582	N	THR T		32.082	4. 227	55.604	1.00 42.50	Ť	N
	ATOM	4583	CA	THR T		33. 405	3. 645	55. 435	1.00 43.94	Ť	Ċ
										•	•

ATOM 4586 CB THR T 197 33.623 3.181 53.975 1.00 45.61 T C ATOM 4587 COZ THR T 197 33.623 3.181 53.975 1.00 45.03 T C ATOM 4588 CCZ THR T 197 32.618 2.094 53.608 1.00 46.03 T C ATOM 4589 C VAL T 198 35.149 7.039 55.545 1.00 44.57 T C ATOM 4590 C VAL T 198 33.159 8.109 56.308 1.00 38.93 T C ATOM 4591 C VAL T 198 33.159 8.109 56.308 1.00 38.93 T C ATOM 4593 C VAL T 198 33.159 8.109 56.308 1.00 38.93 T C ATOM 4594 CG1 VAL T 198 33.159 8.109 56.308 1.00 38.93 T C ATOM 4595 CG2 VAL T 198 33.159 8.109 55.309 1.00 43.81 T C ATOM 4595 C C VAL T 198 34.461 8.318 53.490 1.00 43.81 T C ATOM 4595 C ASN T 199 34.483 8.989 57.985 1.00 36.55 T N ATOM 4599 C ASN T 199 34.483 8.989 57.985 1.00 34.68 T C ATOM 4599 C ASN T 199 32.201 9.884 58.732 1.00 33.51 T C ATOM 4590 C ASN T 199 32.201 9.884 58.732 1.00 33.51 T C ATOM 4509 C ASN T 199 32.201 9.884 58.732 1.00 33.45 T C ATOM 4600 CB ASN T 199 34.221 1.17.22 56.352 1.00 33.25 T C ATOM 4600 CB ASN T 199 34.221 1.17.22 56.352 1.00 33.25 T C ATOM 4600 CB ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 CB ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 CB ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 C ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 CB ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 CB ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 CB ASN T 199 34.871 1.2012 55.083 1.00 38.82 T O ATOM 4600 CB ASR T 199 34.871 1.2012 55.083 1.00 3	5	MOTA MOTA	4584 4585	C 0	THR T		34. 437 35. 368	4.714 4.458	55.802 56.567	1.00 43.45 1.00 43.73	T T	C 0
ATOM 4588 CG THR T 197 32.618 2.094 53.608 1.00 46.08 T C ATOM 4589 N VAL T 198 34.254 5.917 55.263 1.00 42.96 T N ATOM 4591 C VAL T 198 35.149 7.039 55.546 1.00 41.57 T C ATOM 4591 C VAL T 198 33.159 8.109 56.308 1.00 38.54 T C ATOM 4592 O VAL T 198 33.159 8.109 56.308 1.00 38.54 T C ATOM 4593 CB VAL T 198 33.5641 7.720 54.250 1.00 41.57 T C C ATOM 4593 CB VAL T 198 35.641 7.720 54.250 1.00 42.24 T C ATOM 4593 CB VAL T 198 35.641 7.720 54.250 1.00 42.24 T C C ATOM 4593 CB VAL T 198 34.461 8.318 53.490 1.00 41.75 T C C ATOM 4595 CGZ VAL T 198 34.461 8.318 53.490 1.00 41.75 T C C ATOM 4595 CGZ VAL T 198 34.461 8.318 53.490 1.00 41.75 T C C ATOM 4596 N ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4598 C ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4600 CB ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4601 CG ASN T 199 34.016 11.092 57.147 1.00 36.34 T C C ATOM 4601 CG ASN T 199 34.016 11.092 57.147 1.00 36.34 T C ATOM 4602 ODI ASN T 199 34.016 11.092 57.147 1.00 32.52 T C ATOM 4603 NDZ ASN T 199 34.016 11.092 57.147 1.00 32.52 T C ATOM 4602 ODI ASN T 199 34.271 1.00 32.00 S.34 T C C ATOM 4603 NDZ ASN T 199 34.271 1.00 2.01 1.00 32.28 T N ATOM 4602 ODI ASN T 199 36.227 11.962 56.872 1.00 39.82 T O ATOM 4606 C AK T 200 32.427 7.528 61.371 1.00 32.10 T C ATOM 4606 C AK T 200 32.427 7.528 61.371 1.00 32.10 T C ATOM 4606 C AK T 200 32.427 7.528 61.371 1.00 32.10 T C ATOM 4606 C AK T 200 32.448 8.727 61.968 1.00 29.26 T O ATOM 4601 CD AK T 200 33.497 8.183 59.404 1.00 32.10 T C ATOM 4606 C AK T 200 32.448 8.802 61.655 1.00 46.03 T N ATOM 4606 C AK T 200 33.484 3.493 4.361 61.385 1.00 29.26 T O ATOM 4611 NE AKC T 200 33.874 5.832 61.294 1.00 46.10 T C ATOM 4616 C AK T 200 33.974 5.832 61.451 1.00 32.10 T C ATOM 4616 C AK T 200 33.974 5.832 61.451 1.00 32.10 T C ATOM 4616 C AK T 200 33.484 3.438 6.565 61.037 1.00 32.86 T N ATOM 4616 C AK T 200 33.484 3.532 61.434 1.00 36.67 T C ATOM 4616 C AK T 200 33.484 3.532 61.434 1.00 36.67 T C ATOM 4620 CC AKC T 200 33.484 3.532 61.434 1.00 36.68 T N ATOM 4621 C C AKC	3	MOTA	4586	CB	THR T	197	33.623	3.181	53.976	1.00 45.61	T	С
ATOM 4589 N VAL T 198 34.254 5.917 55.263 1.00 42.96 T N ATOM 4590 CA VAL T 198 33.149 T.039 55.546 1.00 41.57 T C ATOM 4591 C VAL T 198 33.135 8.109 56.308 1.00 41.57 T C ATOM 4592 O VAL T 198 33.159 8.109 56.308 1.00 48.54 T C ATOM 4593 CB VAL T 198 34.383 8.062 56.371 1.00 38.54 T C ATOM 4594 CGI VAL T 198 36.548 6.712 53.390 1.00 42.24 T C ATOM 4594 CGI VAL T 198 36.388 6.712 53.390 1.00 42.24 T C ATOM 4595 CG2 VAL T 198 34.461 8.318 53.490 1.00 41.78 T C C ATOM 4596 N ASN T 199 35.104 8.882 57.133 1.00 36.55 T N ATOM 4596 N ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4598 O ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4590 O ASN T 199 34.483 9.898 57.985 1.00 34.68 T C C ATOM 4590 C B ASN T 199 34.016 11.092 57.147 1.00 36.34 T C C ATOM 4601 CG ASN T 199 34.016 11.092 57.147 1.00 36.34 T C C ATOM 4601 CG ASN T 199 34.016 11.092 57.147 1.00 38.25 T C ATOM 4601 CG ASN T 199 34.3871 11.202 55.083 1.00 34.82 T C ATOM 4603 NDZ ASN T 199 34.3871 12.012 55.083 1.00 34.82 T C ATOM 4604 N ARG 1200 33.497 8.183 59.404 1.00 32.21 T C ATOM 4606 C ARG 1200 32.422 7.528 60.137 1.00 32.10 T C ATOM 4606 C ARG 1200 32.492 7.528 60.137 1.00 32.10 T C ATOM 4607 C C ARG 1200 32.492 7.528 60.137 1.00 32.10 T C ATOM 4607 C C ARG 1200 32.492 7.528 60.137 1.00 32.10 T C ATOM 4601 C C ARG 1200 32.492 7.528 60.137 1.00 32.10 T C ATOM 4601 C C ARG 1200 32.492 7.528 60.137 1.00 32.10 T C ATOM 4601 C C ARG 1200 32.492 7.528 60.137 1.00 32.10 T C ATOM 4601 C C ARG 1200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4610 C D ARG 1200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4610 C D ARG 1200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4610 C D ARG 1200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4610 C D ARG 1200 33.497 8.183 59.404 1.00 32.26 T C ATOM 4611 NE ARG 1200 33.497 8.183 59.404 1.00 32.10 T C C ATOM 4611 NE ARG 1200 33.497 8.183 59.404 1.00 40.10 T C C ATOM 4620 C D ARG 1200 33.497 8.183 59.404 1.00 40.10 T C C ATOM 4621 N S R T S T 201 33.497 8.183 59.404 1.00 40.10 T T C ATOM 4621 C D ARG 1200 33.497 8.183 59.404 1.00 40.10 T T		MOTA	4587	0G1	THR T	197	33.452	4. 291	53.086	1.00 48.03	T	
ATOM 4591 C VAL T 198 35,149 7.039 55,546 1.00 41,57 T C		MOTA	4588	CG2	THR T	197	32.618	2.094	53.608	1.00 46.03	T	С
ATOM 4591 C VAL T 198 34.383 8.062 56.371 1.00 38.54 T C ATOM 4592 O VAL T 198 33.159 8.109 56.308 1.00 38.93 T O ATOM 4593 CB VAL T 198 35.641 7.720 54.250 1.00 42.24 T C ATOM 4595 CC2 VAL T 198 36.388 6.713 53.390 1.00 43.81 T C ATOM 4595 CC2 VAL T 198 34.461 8.318 53.490 1.00 41.75 T C T C T T C T T T		MOTA	4589	N	YAL T	198	34. 254	5.917	55.263	1.00 42.98	T	N
ATOM 4591 C VAL T 198 34,383 8.062 56.371 1.00 38.54 T C ATOM 4592 O VAL T 198 33.159 8.109 56.308 1.00 38.98 T C O ATOM 4593 CB VAL T 198 35.641 7.720 54.250 1.00 42.24 T C ATOM 4595 CG2 VAL T 198 36.388 6.713 53.390 1.00 43.81 T C ATOM 4595 CG2 VAL T 198 36.388 6.713 53.390 1.00 41.75 T C ATOM 4595 CG2 VAL T 198 34.461 8.318 53.390 1.00 41.75 T C ATOM 4596 N ASN T 199 35.104 8.882 57.133 1.00 36.52 T N ATOM 4597 CA ASN T 199 34.483 9.898 57.585 1.00 34.66 T C ATOM 4597 CA ASN T 199 32.201 9.884 58.732 1.00 31.11 T C ATOM 4599 O ASN T 199 32.201 9.884 58.732 1.00 31.11 T C ATOM 4599 O ASN T 199 32.201 9.884 58.732 1.00 31.11 T C ATOM 4600 CB ASN T 199 34.416 11.992 57.147 1.00 32.52 T C ATOM 4601 CG ASN T 199 35.137 11.723 56.352 1.00 38.27 T C ATOM 4602 ODI ASN T 199 36.227 11.962 56.872 1.00 38.27 T C ATOM 4602 ODI ASN T 199 34.411 1.962 56.782 1.00 38.27 T C ATOM 4604 N ARC T 200 32.492 8.825 60.137 1.00 32.16 T C ATOM 4604 N ARC T 200 32.492 8.835 60.137 1.00 32.16 T C ATOM 4606 CB ARC T 200 32.492 8.805 61.459 1.00 29.78 T N ATOM 4608 CB ARC T 200 32.492 8.805 61.459 1.00 29.78 T C ATOM 4609 CC ARC T 200 32.498 8.205 61.459 1.00 29.78 T C ATOM 4609 CC ARC T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4609 CC ARC T 200 32.988 8.077 61.968 1.00 29.78 T C ATOM 4609 CC ARC T 200 32.492 8.805 61.459 1.00 29.78 T C ATOM 4610 CD ARC T 200 33.974 6.832 61.499 1.00 29.78 T C ATOM 4610 CD ARC T 200 33.974 6.832 61.499 1.00 29.78 T C ATOM 4610 CD ARC T 200 33.974 6.832 61.499 1.00 34.20 T C ATOM 4610 CD ARC T 200 33.497 8.326 61.459 1.00 29.78 T C ATOM 4611 NE ARC T 200 33.974 6.832 61.499 1.00 34.20 T C ATOM 4611 NE ARC T 200 33.974 6.832 61.499 1.00 34.20 T C ATOM 4611 NE ARC T 200 33.974 6.832 61.499 1.00 34.20 T C ATOM 4611 NE ARC T 200 33.974 6.832 61.499 1.00 46.10 T C ATOM 4611 NE ARC T 200 33.974 6.832 61.499 1.00 46.65 T N ATOM 4611 NE ARC T 200 33.974 6.832 61.499 1.00 46.65 T N ATOM 4618 D LYS T 201 33.576 6.582 60.655 1.00 48.90 7 T N ATOM 4620 C C LYS T 201 33.576 6.582 60.655 1.00 48.90 7 T C ATOM 4631		MOTA	4590	CA	YAL T	198	35.149	7.039	55.546	1.00 41.57	T	С
ATOM 4593 C 0 VAL T 198 33.159 8.109 56.308 1.00 38.93 T 0 0 ATOM 4594 CG1 VAL T 198 35.641 7.720 54.250 1.00 42.24 T C C ATOM 4594 CG1 VAL T 198 36.388 6.713 55.399 1.00 42.24 T C C ATOM 4595 CC2 VAL T 198 34.461 8.318 53.490 1.00 41.73 T C ATOM 4596 N ASN T 199 35.104 8.882 57.383 1.00 36.55 T N ATOM 4598 C ASN T 199 34.483 9.898 57.985 1.00 34.68 T C ATOM 4598 C ASN T 199 32.201 9.844 58.732 1.00 31.11 T C ATOM 4598 C ASN T 199 32.201 9.845 58.741 1.00 32.52 T C ATOM 4599 O ASN T 199 32.201 9.845 58.741 1.00 32.52 T C ATOM 4599 O ASN T 199 32.201 9.845 58.741 1.00 32.52 T C ATOM 4590 O ASN T 199 34.616 11.092 57.147 1.00 36.34 T C ATOM 4590 O ASN T 199 34.616 11.092 57.147 1.00 36.34 T C ATOM 4601 CG ASN T 199 36.227 11.962 56.872 1.00 38.20 T C ATOM 4601 CG ASN T 199 36.277 11.962 56.872 1.00 38.20 T C ATOM 4603 ND2 ASN T 199 36.277 11.962 56.872 1.00 39.82 T C ATOM 4603 ND2 ASN T 199 36.277 11.962 56.872 1.00 39.82 T C ATOM 4605 ATOM 4605 ND2 ASN T 199 32.498 8.805 61.489 1.00 32.25 T N ATOM 4605 ATOM 4605 ATOM 4606 C ARG T 200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4605 C ARG T 200 32.998 8.205 61.499 1.00 29.76 T C ATOM 4605 C ARG T 200 32.998 8.307 61.968 1.00 29.26 T O ATOM 4608 CB ARG T 200 32.988 8.077 61.968 1.00 29.26 T O ATOM 4608 CB ARG T 200 33.948 38.077 61.968 1.00 29.26 T O ATOM 4610 CD ARG T 200 33.944 5.832 61.294 1.00 40.10 T C ATOM 4610 CD ARG T 200 33.948 3.805 61.695 1.00 46.92 T C ATOM 4611 NE ARG T 200 33.484 3.524 62.159 1.00 46.35 T N ATOM 4616 CA LYS T 201 33.874 5.832 61.294 1.00 40.10 T C ATOM 4618 O LYS T 201 33.874 5.832 61.294 1.00 40.10 T C ATOM 4618 O LYS T 201 33.876 8.814 3.524 62.159 1.00 46.35 T N ATOM 4616 CA LYS T 201 33.876 8.814 64.384 1.00 36.67 T C ATOM 4616 CA LYS T 201 33.876 8.814 64.384 1.00 36.67 T C ATOM 4620 CG LYS T 201 33.876 8.814 64.384 1.00 36.67 T C ATOM 4620 CG LYS T 201 33.493 8.364 62.208 1.00 28.86 T C ATOM 4620 CG LYS T 201 33.494 6.826 6.836 6.805 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.494 6.836 6.850 66.500 1.00 42.37 T C ATOM 4620 CG ERR T 2	10	MOTA	4591	С	VAL T	198	34.383	8.062	56.371	1.00 38.54	T	
ATOM 4593 CB VAL T 198 35.641 7.720 54.250 1.00 42.24 T C C ATOM 4594 CG1 VAL T 198 36.388 6.713 53.390 1.00 43.81 T C C ATOM 4595 CG2 VAL T 198 34.461 8.318 53.490 1.00 41.75 T C C ATOM 4596 N ASN T 199 35.104 8.882 57.133 1.00 36.55 T N ATOM 4597 CA ASN T 199 35.104 8.882 57.133 1.00 36.55 T N ATOM 4598 C ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4599 O ASN T 199 33.289 9.315 58.741 1.00 32.52 T C ATOM 4699 CB ASN T 199 33.2809 9.315 58.741 1.00 32.52 T C ATOM 4600 CB ASN T 199 33.201 9.884 58.732 1.00 31.11 T C O ATOM 4600 CB ASN T 199 34.483 9.895 57.133 1.00 36.34 T C C ATOM 4601 CG ASN T 199 35.137 11.723 56.352 1.00 38.20 T C ATOM 4602 001 ASN T 199 34.817 11.2012 55.083 1.00 38.20 T C ATOM 4602 001 ASN T 199 34.871 12.012 55.083 1.00 38.20 T C ATOM 4603 ND2 ASN T 199 34.871 12.012 55.083 1.00 38.20 T C ATOM 4603 ND2 ASN T 199 34.871 12.012 55.083 1.00 38.20 T C ATOM 4605 C ARG T 200 32.498 8.205 61.439 1.00 32.16 T C ATOM 4605 C ARG T 200 32.498 8.205 61.439 1.00 32.16 T C ATOM 4605 C ARG T 200 32.498 8.205 61.439 1.00 29.26 T C ATOM 4600 CC ARG T 200 32.498 8.205 61.439 1.00 32.16 T C ATOM 4600 CC ARG T 200 33.947 65.832 61.934 1.00 34.20 T C ATOM 4610 C ARG T 200 33.947 65.832 61.934 1.00 34.10 T C ATOM 4610 C ARG T 200 33.947 65.832 61.934 1.00 34.10 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 29.26 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.20 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.20 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.20 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.20 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.20 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.20 T C ATOM 4611 NE ARG T 200 33.948 8.075 61.839 1.00 34.70 T C ATOM 4620 CC EXTS T 201 33.974 65.832 61.939 1.00 34.71 T C ATOM 4620 CC EXTS T 201 33.974 65.832 61.939 1.00 34.71 T C ATOM 4620 CC EXTS T 201 33.948 6.555 66.055 1.00 38.71 T C ATOM 4620 CC EXTS T 201 33.948 6.555 66.055 1.00 38.71 T C ATOM 4620 CC EXTS T 201 33.443 1.446 6.850 66.550		MOTA	4592	0	VAL T	198	33.159	8.109	56.308	1.00 38.93	T	
ATOM 4596 CG1 VAL T 198		MOTA	4593	CB	VAL T	198	35.641	7.720	54.250	1.00 42.24	T	
ATOM				CG1	VAL T	198				1.00 43.81	T	
ATOM		MOTA	4595	CG2	VAL T	198	34.461	8.318	53.490	1.00 41.73	T	С
ATOM 4599 CA ASN T 199 33. 289 9.315 58. 741 1.00 34. 68 T C ATOM 4599 O ASN T 199 32. 201 9. 884 58. 732 1.00 31. 11 T O ATOM 4500 CB ASN T 199 32. 201 9. 884 58. 732 1.00 31. 11 T O ATOM 4600 CG ASN T 199 34. 016 11.092 57. 147 1.00 36. 34 T C C ATOM 4601 CG ASN T 199 35. 137 11. 723 56. 352 1.00 38. 20 T C ATOM 4602 ODI ASN T 199 36. 227 11. 962 56. 872 1.00 38. 20 T C ATOM 4603 ND2 ASN T 199 34. 871 11. 12. 012 56. 872 1.00 39. 82 T O ATOM 4604 N ARG T 200 33. 497 8. 183 59. 404 1.00 32. 25 T N ATOM 4604 N ARG T 200 33. 497 8. 183 59. 404 1.00 32. 25 T N ATOM 4606 CA ARG T 200 32. 498 8. 205 61. 459 1.00 32. 25 T N ATOM 4606 CA ARG T 200 32. 988 8. 205 61. 459 1.00 32. 25 T N ATOM 4608 CB ARG T 200 32. 988 8. 205 61. 459 1.00 32. 26 T C ATOM 4609 CG ARG T 200 33. 974 5. 832 61. 294 1.00 32. 26 T C ATOM 4601 CD ARG T 200 33. 974 5. 832 61. 294 1.00 40. 10 T C ATOM 4611 NE ARG T 200 33. 4403 4. 35 524 62. 159 1.00 46. 39 T N ATOM 4612 CZ ARG T 200 32. 149 2. 896 61. 655 1.00 44. 11 T C ATOM 4613 NHI ARG T 200 32. 149 2. 896 61. 655 1.00 46. 39 T N ATOM 4612 CZ ARG T 200 32. 133 2. 992 60. 378 1.00 46. 68 T N ATOM 4616 CD ARG T 200 32. 133 2. 992 60. 378 1.00 46. 68 T N ATOM 4616 CD ATOM 4617 CZ ARG T 200 32. 149 2. 896 61. 665 1.00 46. 92 T C ATOM 4618 NHI ARG T 200 32. 133 2. 892 60. 378 1.00 46. 68 T N ATOM 4616 CD LYS T 201 33. 277 11. 042 63. 325 1.00 46. 10 T C ATOM 4616 CD LYS T 201 33. 277 11. 042 63. 325 1.00 46. 39 T N ATOM 4617 C LYS T 201 33. 277 11. 042 63. 325 1.00 46. 30 T N ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 384 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 384 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 838 1.00 33. 65 T C C ATOM 4620 CG LYS T 201 33. 577 11. 042 63. 325 1.00 42. 37 T C ATOM 4620 CG LYS T 201 33. 576 6. 816 6. 656 1.00 47. 08 T N ATOM 4620 CG LYS T 201 33. 576 6. 816 6. 656 1.00 47. 08 T N ATOM 4620 CG LYS T 201 33. 576 6. 656 6. 656 1.00 47. 08 T N ATOM 4620 CG LYS T 201 33. 576 6. 616 65 1.00 45. 63 T N ATOM 4620 CG LYS T 201 33. 576 6. 616 6	15	MOTA	4596	N	ASN T	199	35.104	8. 882	57.133	1.00 36.53	T	
ATOM 4599 C ASN T 199 33. 289 9.315 58.741 1.00 32.52 T C ATOM 4600 CB ASN T 199 32. 201 9. 884 58. 732 1.00 31.11 T C C ATOM 4601 CG ASN T 199 34.016 11.092 57.147 1.00 36. 34 T C ATOM 4601 CG ASN T 199 35. 137 11.723 56. 352 1.00 38. 20 T C ATOM 4601 A602 ODI ASN T 199 35. 137 11.723 56. 352 1.00 38. 20 T C ATOM 4603 ND2 ASN T 199 36. 272 11.962 56. 872 1.00 38. 20 T C ATOM 4603 ND2 ASN T 199 34. 871 12. 012 55. 083 1.00 38. 88 T N ATOM 4604 N ARG T 200 33. 497 8. 183 59. 404 1.00 32. 25 T N ATOM 4605 C ARG T 200 32. 422 7. 528 60. 137 1.00 32. 10 T C ATOM 4606 C ARG T 200 32. 422 7. 528 60. 137 1.00 32. 10 T C ATOM 4608 CB ARG T 200 32. 988 8. 205 61. 459 1.00 29. 78 T C C ATOM 4608 CB ARG T 200 32. 988 8. 205 61. 459 1.00 29. 78 T C C ATOM 4608 CB ARG T 200 32. 769 6. 055 60. 390 1.00 34. 20 T C ATOM 4601 CD ARG T 200 33. 497 8. 832 61. 294 1.00 40.10 T C ATOM 4611 NE ARG T 200 33. 494 4. 3. 524 62. 159 1.00 44. 10 T C ATOM 4611 NE ARG T 200 33. 449 4. 3. 524 62. 159 1.00 44. 11 T C C ATOM 4613 NH ARG T 200 32. 419 2. 896 61. 655 1.00 44. 20 T N ATOM 4615 N LYS T 201 33. 633 8. 942 62. 06. 378 1.00 46. 68 T N ATOM 4616 C ALYS T 201 33. 633 8. 942 62. 06. 378 1.00 46. 68 T N ATOM 4618 NH ARG T 200 32. 113 2. 992 60. 378 1.00 46. 68 T N ATOM 4619 CB LYS T 201 33. 536 8. 942 62. 06. 378 1.00 28. 86 T C ATOM 4619 CB LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 484 6. 6. 850 66. 550 1.00 26. 641 T C ATOM 4625 CA SER T 202 34. 438 6. 565 65. 065 1.00 26. 641 T C ATOM 4626 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 64. 884 1.00 30. 67 T C ATOM 4630 C C C C C C C C C C C C C C C C C C C		MOTA	4597	CA	ASN T	199	34.483	9.898	57.985	1.00 34.68	T	
ATOM 4600 CB ASN T 199 32. 201 9. 884 58. 732 1.00 31. 11 T 0 ATOM 4601 CG ASN T 199 34. 016 11. 092 57. 147 1.00 36. 34 T C ATOM 4602 ODI ASN T 199 35. 137 11. 723 56. 552 1.00 38. 20 T C ATOM 4603 NDZ ASN T 199 36. 227 11. 962 56. 872 1.00 38. 22 T 0 ATOM 4604 N ARG T 200 33. 497 8. 183 59. 404 1.00 32. 29 T N ATOM 4606 CA ARG T 200 32. 098 8. 205 56. 832 1.00 22. 10 T C ATOM 4606 CA ARG T 200 32. 098 8. 205 61. 459 1.00 29. 76 T C ATOM 4606 CA ARG T 200 32. 098 8. 205 61. 459 1.00 29. 76 T C ATOM 4606 CA ARG T 200 32. 098 8. 205 61. 459 1.00 29. 76 T C ATOM 4609 CG ARG T 200 32. 988 8. 205 60. 390 1.00 34. 20 T C ATOM 4609 CG ARG T 200 33. 974 5. 832 61. 294 1.00 40. 10 T C ATOM 4610 CD ARG T 200 33. 403 4. 361 61. 385 1.00 44. 11 T C ATOM 4610 CD ARG T 200 33. 4403 4. 361 61. 385 1.00 44. 11 T C ATOM 4611 NE ARG T 200 32. 199 6. 0.55 60. 390 1.00 34. 20 T C ATOM 4611 NE ARG T 200 33. 4403 4. 351 61. 385 1.00 44. 11 T C ATOM 4614 NHZ ARG T 200 32. 11 2. 896 61. 655 1.00 46. 92 T C ATOM 4615 N LYS T 201 33. 613 9. 589 63. 992 04. 40. 46. 92 T C ATOM 4616 C LYS T 201 33. 613 9. 589 63. 992 10.00 47. 08 T N ATOM 4616 C LYS T 201 33. 613 9. 589 63. 992 10.00 48. 92 T C ATOM 4617 C LYS T 201 33. 576 8. 814 62. 481 10. 00 47. 08 T N ATOM 4616 C LYS T 201 33. 576 8. 814 62. 481 10. 00 47. 08 T N ATOM 4616 C LYS T 201 33. 576 8. 814 62. 835 1.00 28. 86 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4621 CD LYS T 201 33. 576 8. 814 62. 881 1.00 30. 67 T C ATOM 4622 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4620 CG LYS T 201 33. 576 8. 814 62. 838 1.00 33. 65 T C ATOM 4630 C THR T 203 33. 542 14. 441 62. 611 1.00 2										1.00 32.52		C
ATOM 4600 CB ASN T 199 34.016 11.092 57.147 1.00 36.34 T C C ATOM 4601 CG ASN T 199 35.137 11.723 56.352 1.00 38.20 T C ATOM 4602 0D1 ASN T 199 36.227 11.962 56.872 1.00 39.82 T O ATOM 4603 ND2 ASN T 199 34.871 12.012 55.083 1.00 38.85 T N ATOM 4604 ND2 ASN T 199 34.871 12.012 55.083 1.00 38.25 T N ATOM 4605 CA ARG T 200 32.497 8.183 59.404 1.00 32.25 T N ATOM 4606 C ARG T 200 32.988 8.205 61.459 1.00 29.25 T N ATOM 4606 C ARG T 200 32.988 8.205 61.459 1.00 29.25 T C ATOM 4606 C ARG T 200 32.988 8.205 61.459 1.00 29.25 T C ATOM 4606 C ARG T 200 32.988 8.077 61.968 1.00 29.25 T C ATOM 4607 CD ARG T 200 33.948 8.205 61.294 1.00 34.20 T C ATOM 4601 CD ARG T 200 33.948 8.205 61.294 1.00 40.10 T C ATOM 4611 NE ARG T 200 33.944 403 4.361 61.385 1.00 44.11 T C ATOM 4611 NE ARG T 200 33.4403 4.361 61.385 1.00 44.11 T C ATOM 4611 NE ARG T 200 32.419 2.896 61.665 1.00 44.11 T C ATOM 4613 NH1 ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4616 CA LYS T 201 33.877 11.042 62.05 1.00 28.96 T N ATOM 4618 C LYS T 201 33.877 11.042 63.325 1.00 28.86 T C ATOM 4618 C LYS T 201 33.877 11.042 63.325 1.00 28.96 T N ATOM 4618 C LYS T 201 33.877 11.042 63.325 1.00 26.67 T C ATOM 4620 CG LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4621 CD LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4624 N SER T 202 33.4438 6.565 65.655 1.00 38.71 T C ATOM 4624 N SER T 202 32.917 33.277 11.042 63.385 1.00 26.57 T C ATOM 4627 CO SER T 202 31.438 64.656 65.550 1.00 38.71 T C ATOM 4628 CB SER T 202 31.438 64.638 1.00 38.66 T C ATOM 4628 CB SER T 202 31.434 486 6.565 65.655 1.00 38.71 T C ATOM 4628 CB SER T 202 31.439 13.699 66.145 1.00 25.64 T N ATOM 4638 CC A SER T 202 31.434 14.575 68.817 1.00 25.64 T N ATOM 4638 CC A SER T 202 31.434 14.575 68.817 1.00 25.64 T N ATOM 4638 CC A SER T 202 31.434 14.575 68.817 1.00 25.64 T N ATOM 4638 CC A SER T 202 31.434 14.575 68.817 1.00 25.67 T C C ATOM 4638 CC THR T 203 35.547 14.890 68											T	
20 ATOM 4601 CG ASN T 199 35.137 11.723 56.352 1.00 39.82 T C ATOM 4603 ND2 ASN T 199 36.277 11.962 56.872 1.00 39.82 T O ATOM 4604 N ARG T 200 33.4871 12.012 55.083 1.00 38.88 T N ATOM 4605 CA ARG T 200 32.492 7.528 60.137 1.00 32.25 T N ATOM 4606 C ARG T 200 32.493 8.205 61.459 1.00 29.76 T C ATOM 4607 O ARG T 200 32.998 8.207 61.459 1.00 29.76 T C ATOM 4607 O ARG T 200 32.998 8.207 61.459 1.00 29.76 T C ATOM 4608 CG ARG T 200 32.998 8.207 61.459 1.00 29.76 T C ATOM 4608 CG ARG T 200 32.998 8.207 61.459 1.00 29.76 T C ATOM 4609 CG ARG T 200 33.974 5.832 61.294 1.00 40.16 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.16 T C C ATOM 4610 CD ARG T 200 33.449 4.361 61.385 1.00 44.11 T C C ATOM 4611 NE ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4613 NHI ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4614 NHI ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4616 CA LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4618 D LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 26.41 T O ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 26.41 T O ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 26.41 T O ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 26.41 T O ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 26.41 T O ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 25.68 T N ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 25.68 T N ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 25.66 T N ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 25.64 T N ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 25.64 T N ATOM 4620 CG LYS T 201 33.497 11.441 62.611 1.00 25.66 T C ATOM 4623 NZ LYS T 201 33.497 11.441 62.611 1.00 25.66 T C ATOM 4623 NZ LYS T 201 33.497 11.441 62.611 1.00 25.66 T N ATOM 4636 CC ATOM 4633 0 THR T 203 34.434 14.575 68.416 1.00 25.64 T N ATOM 4636 CC ATOM 4633 0 THR T 203 34.434 14.575 68.150 1.00 25.74 T C ATOM 4637 N ASP T 202 34.				CB	ASN T	199	34.016				T	
ATOM 4602 ODI ASN T 199 36.227 11.962 56.872 1.00 38.85 T O ATOM 4604 N ARC T 200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4606 CA ARC T 200 32.422 7.528 60.137 1.00 32.25 T N ATOM 4606 CA ARC T 200 32.498 8.205 61.459 1.00 29.75 T C ATOM 4607 O ARC T 200 32.988 8.205 61.459 1.00 29.75 T C ATOM 4608 CB ARC T 200 32.988 8.205 61.459 1.00 29.25 T O ATOM 4608 CB ARC T 200 32.974 5.832 61.294 1.00 40.10 T C ATOM 4609 CC ARC T 200 32.974 5.832 61.294 1.00 40.10 T C ATOM 4609 CC ARC T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4610 CD ARC T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4611 NE ARC T 200 33.4403 4.361 61.385 1.00 44.11 T C ATOM 4611 NE ARC T 200 33.4403 4.361 61.385 1.00 44.11 T C ATOM 4613 NHI ARC T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NHI ARC T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NHI ARC T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4614 NH2 ARC T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4618 O LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4618 O LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4623 NZ LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 C LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 C LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4620 C C LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4622 CE LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 26.01 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.438 6.565 65.065 1.00 42.37 T C ATOM 4633 O THR T 203 33.434 444 12.212 65.929 1.00 25.64 T N ATOM 4633 O THR T 203 34.434 14.575 68.89 1.00 25.64 T N ATOM 4638 C	20			CG								
ATOM 4604 N ARG T 200 33.497 8.183 59.404 1.00 32.29 T N ATOM 4605 CA ARG T 200 32.422 7.528 60.137 1.00 32.10 T C ATOM 4606 C ARG T 200 32.498 8.205 61.459 1.00 29.78 T C ATOM 4607 O ARG T 200 30.988 8.077 61.968 1.00 29.28 T O ATOM 4608 CB ARG T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4608 CB ARG T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4610 CD ARG T 200 33.974 5.382 61.294 1.00 40.10 T C ATOM 4611 NE ARG T 200 33.4403 4.361 61.385 1.00 44.11 T C ATOM 4611 NE ARG T 200 33.484 3.524 62.159 1.00 46.39 T N ATOM 4611 NE ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4613 NH1 ARG T 200 32.419 2.896 61.665 1.00 44.92 T C ATOM 4614 NH2 ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4615 N LYS T 201 33.053 8.942 62.088 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.088 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 O LYS T 201 33.377 11.042 63.325 1.00 26.57 T C ATOM 4620 CG LYS T 201 33.576 8.814 64.884 1.00 38.67 T C ATOM 4620 CG LYS T 201 33.576 8.814 64.884 1.00 38.67 T C ATOM 4622 CD LYS T 201 33.3576 8.814 64.884 1.00 38.67 T C ATOM 4622 CD LYS T 201 33.487 6.371 1.00 26.41 T O ATOM 4623 NZ LYS T 201 33.487 6.371 1.00 25.68 T N ATOM 4626 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 34.038 13.257 65.455 1.00 25.68 T N ATOM 4626 C SER T 202 34.038 13.257 65.455 1.00 25.68 T N ATOM 4626 C SER T 202 34.038 13.257 65.455 1.00 25.68 T N ATOM 4626 C SER T 202 34.038 13.257 65.455 1.00 25.68 T N ATOM 4626 C SER T 202 34.038 13.257 65.455 1.00 25.68 T N ATOM 4630 N THR T 203 34.523 14.44 12.212 65.929 1.00 25.68 T N ATOM 4630 N THR T 203 34.523 14.44 12.212 65.929 1.00 25.68 T N ATOM 4636 C SER T 202 34.424 12.212 65.929 1.00 25.66 T C ATOM 4636 C SER T 202 34.424 12.212 65.929 1.00 25.67 T C ATOM 4636 C SER T 203 33.554 14.41 1.00 36.810 1.00 25.64 T C ATOM 4636 C SER T 203 33.544 14.575 68.150 1.00 25.64 T C C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4636 C				OD1					56.872		T	
ATOM 4605 CA ARG T 200 33.497 8.183 59.404 1.00 32.25 T N ATOM 4605 CA ARG T 200 32.422 7.528 60.137 1.00 32.10 T C ATOM 4606 C ARG T 200 32.988 8.205 61.459 1.00 29.78 T C ATOM 4607 0 ARG T 200 32.988 8.205 61.459 1.00 29.28 T C ATOM 4608 CB ARG T 200 32.988 8.207 61.968 1.00 29.28 T C ATOM 4608 CB ARG T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4611 NE ARG T 200 33.4403 4.361 61.385 1.00 44.11 T C C ATOM 4611 NE ARG T 200 32.419 2.886 61.665 1.00 46.39 T N ATOM 4611 NE ARG T 200 32.113 2.992 60.378 1.00 46.39 T N ATOM 4614 NH2 ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.088 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.088 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.277 11.042 63.325 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 28.86 T C ATOM 4618 O LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.3576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.488 6.565 65.065 1.00 42.37 T C ATOM 4622 CE LYS T 201 33.487 6.371 64.358 1.00 33.67 T C ATOM 4622 CC ELYS T 201 33.487 6.371 67.184 1.00 45.63 T N ATOM 4620 CG LYS T 201 34.488 6.565 65.065 1.00 38.71 T C ATOM 4622 CC LYS T 201 34.486 6.565 65.065 1.00 38.71 T C ATOM 4623 N TIR T 201 33.487 6.371 67.184 1.00 45.63 T N ATOM 4620 CG LYS T 201 34.488 6.565 65.065 1.00 38.71 T C ATOM 4622 CC LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4623 N TIR T 203 33.576 8.814 64.384 1.00 30.67 T C ATOM 4623 CC SER T 202 34.438 6.565 65.065 1.00 25.68 T N ATOM 4623 CC SER T 202 34.438 1.557 65.415 1.00 25.68 T N ATOM 4626 CG SER T 202 34.438 1.557 65.415 1.00 25.68 T N ATOM 4626 CG SER T 202 34.438 1.557 65.415 1.00 25.68 T N ATOM 4626 CG SER T 202 34.438 1.557 65.415 1.00 25.68 T N ATOM 4630 N TIR T 203 33.542 14.830 68.170 1.00 25.66 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.56 T C ATOM 4636 CG THR T 203 33.5427 16.964 66.6678 1.00 25.67 T C ATOM 4637 N				ND2	ASN T	199					T	N
ATOM 4605 CA ARG T 200 32.422 7.528 60.137 1.00 32.10 T C ATOM 4607 O ARG T 200 32.988 8.205 61.459 1.00 29.26 T O ATOM 4607 O ARG T 200 32.988 8.077 61.968 1.00 29.26 T O ATOM 4608 CB ARG T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4601 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4611 NE ARG T 200 33.4403 4.361 61.385 1.00 44.11 T C ATOM 4611 NE ARG T 200 32.419 2.896 61.655 1.00 46.39 T N ATOM 4612 CZ ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4613 NHI ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4614 NH2 ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.2831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4620 CG LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.494 11.441 62.611 1.00 26.41 T O ATOM 4620 CG LYS T 201 33.488 6.565 65.065 1.00 33.65 T C ATOM 4621 CD LYS T 201 33.488 6.565 65.065 1.00 33.65 T C ATOM 4622 CE LYS T 201 33.488 6.565 65.065 1.00 33.65 T C ATOM 4622 CE LYS T 201 33.488 6.565 65.065 1.00 33.65 T C ATOM 4622 CE LYS T 201 33.488 6.565 65.065 1.00 33.67 T C ATOM 4623 NZ LYS T 201 33.488 6.565 65.065 1.00 26.41 T O ATOM 4624 N SER T 202 32.444 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.444 12.212 65.929 1.00 28.96 T N ATOM 4626 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4629 CG SER T 202 34.444 12.212 65.929 1.00 25.64 T C ATOM 4629 CG SER T 202 34.444 12.212 65.929 1.00 25.67 T C ATOM 4623 CA SER T 202 34.445 1.2212 65.929 1.00 25.68 T N ATOM 4624 N SER T 202 34.446 1.444 65.764 1.00 25.68 T N ATOM 4625 CA SER T 202 34.447 1.2212 65.929 1.00 25.67 T C ATOM 4630 N THR T 203 33.557 85.457 1.00 25.67 T C ATOM 4633 CA THR T 203 33.557 85.457 1.00 25.67 T C ATOM 4633 CA THR T 203 33.557 85.447 1.00 26.47 T C ATOM 4635 CA SER T 202 34.444 12.212 65.929 1.00 25.67 T C ATOM 4635 CA SER T 202 33.4547 16.964 66.678 1.00 25.67 T C C ATOM 4635 CA SER T 202		MOTA	4604	N	ARG T	200	33.497	8.183	59.404	1.00 32.29	T	
ATOM 4606 C ARG T 200 32.988 8.205 61.459 1.00 29.78 T C ATOM 4607 O ARG T 200 30.988 8.077 61.968 1.00 29.26 T O ATOM 4608 CB ARG T 200 32.769 6.055 60.390 1.00 34.20 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4610 CD ARG T 200 33.4403 4.361 61.385 1.00 44.11 T C C ATOM 4611 CD ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4612 CZ ARG T 200 32.419 2.896 61.665 1.00 46.39 T N ATOM 4613 NHI ARG T 200 32.419 2.896 61.665 1.00 46.89 T N ATOM 4613 NHI ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.2831 9.589 63.292 1.00 28.86 T C ATOM 4619 CB LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4619 CB LYS T 201 33.376 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.3576 8.814 64.384 1.00 30.67 T C ATOM 4621 CD LYS T 201 33.486 6.556 65.055 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.487 63.371 67.184 1.00 25.641 T C ATOM 4623 NZ LYS T 201 33.486 6.556 65.055 1.00 38.71 T C ATOM 4623 NZ LYS T 201 33.486 6.556 65.055 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.486 6.556 65.055 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.486 6.556 65.055 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.486 6.556 65.055 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.486 6.556 65.055 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.187 6.371 67.184 1.00 25.68 T N ATOM 4620 CG LYS T 201 33.486 6.556 65.055 1.00 42.37 T C ATOM 4620 CG LYS T 201 33.486 6.556 65.055 1.00 25.74 T C ATOM 4620 CG LYS T 201 33.496 6.356 65.055 1.00 25.64 T N ATOM 4620 CG LYS T 201 33.496 6.376 68.89 1.00 25.69 T C ATOM 4620 CG LYS T 201 33.187 6.371 67.184 1.00 25.69 T N ATOM 4620 CG LYS T 201 33.496 68.60 66.550 1.00 25.64 T N ATOM 4620 CG LYS T 201 33.496 68.60 66.550 1.00 25.64 T N ATOM 4620 CG LYS T 201 33.494 68.60 66.550 66.550 1.00 25.64 T N ATOM 4630 N THR T 203 33.547 67.44 4.00 25.67 T D 25.65 T D 20.00 25.67 T D 20.00 25.07 T D 20.00 25.07 T D 20.00 25.07		ATOM	4605	CA	ARG T	200	32.422	7.528	60.137	1.00 32.10	T-	
ATOM 4608 CB ARG T 200 33.988 8.077 61.998 1.00 28.26 T C ATOM 4609 CG ARG T 200 32.769 6.053 60.390 1.00 34.20 T C ATOM 4610 CD ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4610 NE ARG T 200 33.44.03 4.361 61.385 1.00 44.11 T C C ATOM 4611 NE ARG T 200 33.484 3.524 62.159 1.00 46.39 T N ATOM 4612 CZ ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 31.656 2.161 62.465 1.00 46.92 T C ATOM 4618 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.2831 9.589 63.292 1.00 28.86 T C ATOM 4618 D LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.3576 8.814 64.384 1.00 30.67 T C ATOM 4621 CD LYS T 201 33.3576 8.814 64.384 1.00 33.65 T C ATOM 4621 CD LYS T 201 33.3187 6.371 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 33.3187 6.371 64.358 1.00 33.65 T C ATOM 4622 CE LYS T 201 33.187 6.371 67.184 1.00 26.57 T C ATOM 4622 CE LYS T 201 33.187 6.371 67.184 1.00 26.09 T C ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.967 13.233 64.326 1.00 25.97 T O ATOM 4628 CB SER T 202 34.438 13.257 65.415 1.00 25.74 T C ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.74 T C ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.64 T C ATOM 4630 N THR T 203 33.5507 14.545 66.829 1.00 25.77 T C ATOM 4631 CA THR T 203 33.5507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 33.547 14.545 66.829 1.00 26.70 T C ATOM 4637 N ASP T 204 33.554 14.890 68.679 1.00 25.64 T N ATOM 4636 CC THR T 203 33.5447 16.964 66.678 1.00 25.64 T N ATOM 4637 N ASP T 204 33.5544 14.890 68.170 1.00 25.74 T C ATOM 4637 N ASP T 203 33.5447 16.964 66.678 1.00 25.67 T C ATOM 4638 CC THR T 203 33.5447 16.964 66.678 1.00 25.07 T C ATOM 4638 CC THR T 203 33.5447 16.964 66.678 1.00 26	0.5	MOTA	4606	С	ARG T	200	32.098	8. 205	61.459	1.00 29.78	T	
ATOM 4609 CG ARG T 200 33.974 5.832 61.294 1.00 40.10 T C ATOM 4610 CD ARG T 200 34.403 4.361 61.385 1.00 44.11 T C C ATOM 4611 NE ARG T 200 32.419 2.896 61.605 1.00 46.39 T N ATOM 4613 NH1 ARG T 200 32.419 2.896 61.605 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 32.419 2.896 61.605 1.00 46.92 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.253 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 O LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 O LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4619 CB LYS T 201 33.3576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.3283 7.319 64.358 1.00 33.65 T C ATOM 4620 CG LYS T 201 33.3187 6.371 64.358 1.00 33.65 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4486 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4446 6.850 66.550 1.00 38.71 T C ATOM 4620 CG LYS T 201 33.4446 6.850 66.550 1.00 25.68 T N ATOM 4620 CG LYS T 201 33.4446 6.850 66.550 1.00 25.68 T N ATOM 4620 CG SER T 202 32.967 13.233 64.326 1.00 25.74 T C ATOM 4620 CG SER T 202 32.967 13.236 64.161 1.00 25.68 T N ATOM 4620 CG SER T 202 34.438 13.257 65.415 1.00 25.74 T C ATOM 4620 CG SER T 202 34.438 13.257 65.415 1.00 25.67 T C ATOM 4630 N THR T 203 35.507 14.545 66.829 1.00 25.74 T C ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 25.64 T C ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 25.64 T N ATOM 4633 CC THR T 203 35.547 14.545 66.829 1.00 25.67 T C ATOM 4634 CB THR T 203 35.547 14.545 66.829 1.00 25.67 T C ATOM 4637 N ASP T 204 33.544 14.595 68.170 1.00 25	25	MOTA	4607	0	ARG T	200	30.988	8.077	61.968	1.00 29.26	T	0
ATOM 4610 CD ARG T 200 34.403 4.361 61.385 1.00 44.11 T C C ATOM 4611 NE ARG T 200 32.449 2.896 61.665 1.00 46.35 T N ATOM 4612 CZ ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 32.419 2.896 63.78 1.00 46.68 T N ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 32.831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 O LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.3576 8.814 64.384 1.00 30.67 T C ATOM 4621 CD LYS T 201 33.4446 6.850 66.550 1.00 42.37 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4627 O SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4629 CG SER T 202 34.424 12.212 65.929 1.00 25.74 T C ATOM 4629 CG SER T 202 34.424 12.212 65.929 1.00 25.74 T C ATOM 4623 C C THR T 203 35.507 14.545 66.899 1.00 25.77 T C ATOM 4623 C C THR T 203 35.507 14.545 66.899 1.00 25.64 T N ATOM 4623 C C THR T 203 35.507 14.545 66.899 1.00 25.64 T N ATOM 4633 C THR T 203 35.507 14.545 66.899 1.00 25.64 T N ATOM 4633 C THR T 203 35.507 14.545 66.899 1.00 25.64 T N ATOM 4633 C THR T 203 35.507 14.545 66.899 1.00 25.64 T N ATOM 4633 C THR T 203 35.507 14.545 66.899 1.00 25.64 T N ATOM 4633 C THR T 203 35.507 14.545 66.899 1.00 25.67 T C ATOM 4633 C THR T 203 35.542 14.890 68.170 1.00 25.67 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 25.07 T C			4608							1.00 34.20	T	C
ATOM 4611 NE ARG T 200 33.484 3.524 62.159 1.00 46.38 T N ATOM 4612 CZ ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 33.2831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 O LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.328 7.319 64.384 1.00 30.67 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 42.37 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4624 N SER T 202 34.446 6.850 66.550 1.00 42.37 T C ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4629 OG SER T 202 34.424 12.212 65.929 1.00 25.44 T C ATOM 4630 N THR T 203 34.439 13.699 66.145 1.00 25.44 T C ATOM 4630 N THR T 203 34.550 14.441 65.764 1.00 25.64 T N ATOM 4630 C THR T 203 35.507 14.545 66.809 1.00 27.27 T C ATOM 4631 CA THR T 203 35.507 14.545 66.809 1.00 27.27 T C ATOM 4633 O THR T 203 35.507 14.545 66.809 1.00 27.27 T C ATOM 4633 O THR T 203 35.507 14.545 66.809 1.00 27.27 T C ATOM 4633 O THR T 203 35.507 14.545 66.809 1.00 27.27 T C ATOM 4637 N ASP T 204 34.775 14.245 70.561 1.00 25.07 T C			4609								T	С
ATOM 4612 CZ ARG T 200 32.419 2.896 61.665 1.00 46.92 T C ATOM 4613 NH1 ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 32.831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4619 CD LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 33.448 6.565 65.065 1.00 33.67 T C ATOM 4621 CD LYS T 201 33.448 6.565 65.065 1.00 33.67 T C ATOM 4622 CE LYS T 201 33.448 6.565 65.065 1.00 42.37 T C ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4627 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4627 C SER T 202 32.403 13.257 65.415 1.00 25.74 T C ATOM 4628 CB SER T 202 34.424 12.212 65.929 1.00 25.97 T C ATOM 4629 CG SER T 202 34.424 12.212 65.929 1.00 25.97 T C ATOM 4623 C THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4623 C THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 33.542 14.575 68.899 1.00 25.670 T C ATOM 4634 CB THR T 203 33.542 14.575 68.899 1.00 25.670 T C ATOM 4634 CB THR T 203 33.542 14.575 68.899 1.00 25.670 T C ATOM 4634 CB THR T 203 33.542 14.575 68.899 1.00 25.670 T C ATOM 4634 CB THR T 203 33.542 14.575 68.899 1.00 25.670 T C ATOM 4635 CG THR T 203 33.542 14.575 68.899 1.00 25.670 T C ATOM 4637 N ASP T 204 33.542 14.595 66.678 1.00 29.25 T O ATOM 4637 N ASP T 204 33.542 14.424 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 33.5407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4613 NH1 ARG T 200 32.113 2.992 60.378 1.00 46.68 T N ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 32.831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 0 LYS T 201 34.194 11.441 62.611 1.00 26.41 T O ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4627 O SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4628 CB SER T 202 31.439 13.699 66.145 1.00 25.74 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 25.74 T C ATOM 4630 N THR T 203 35.507 14.545 66.829 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 33.547 14.545 66.829 1.00 26.70 T C ATOM 4634 CB THR T 203 33.547 16.964 66.678 1.00 26.70 T C ATOM 4635 CG THR T 203 33.547 16.964 66.679 1.00 26.72 T C ATOM 4637 N ASP T 204 35.407 14.246 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.246 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.246 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.246 69.247 1.00 26.74 T C ATOM 4638 CA ASP T 204 35.407 14.246 69.247 1.00 26.74 T C			4611								T	
ATOM 4614 NH2 ARG T 200 31.656 2.161 62.465 1.00 47.08 T N ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 32.831 9.589 1.00 28.86 T C ATOM 4617 C LYS T 201 32.831 9.589 1.00 28.86 T C ATOM 4618 0 LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 0 LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4621 CD LYS T 201 33.4194 11.441 62.611 1.00 26.41 T O ATOM 4622 CE LYS T 201 34.438 6.565 66.550 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.438 6.565 66.550 1.00 42.37 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4627 O SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.74 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 25.74 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.67 T C ATOM 4632 C THR T 203 34.523 14.491 65.764 1.00 26.70 T C ATOM 4634 CB THR T 203 34.734 14.575 68.150 1.00 26.72 T C ATOM 4634 CB THR T 203 33.547 14.545 66.829 1.00 26.70 T C ATOM 4635 CG THR T 203 35.407 14.545 66.829 1.00 26.72 T C ATOM 4636 CG THR T 203 35.507 14.545 66.829 1.00 26.72 T C ATOM 4637 N ASP T 204 35.407 14.245 70.561 1.00 25.07 T C ATOM 4637 N ASP T 204 35.407 14.245 70.561 1.00 25.07 T C ATOM 4637 N ASP T 204 35.407 14.245 70.561 1.00 25.07 T C	30											
ATOM 4615 N LYS T 201 33.053 8.942 62.008 1.00 28.96 T N ATOM 4616 CA LYS T 201 32.831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.577 T C ATOM 4618 0 LYS T 201 34.194 11.441 62.611 1.00 26.41 T O ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.677 T C ATOM 4620 CG LYS T 201 33.576 8.814 64.384 1.00 30.677 T C ATOM 4621 CD LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4622 CE LYS T 201 34.448 6.565 65.065 1.00 42.377 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.377 T C ATOM 4624 N SER T 202 34.446 6.850 66.550 1.00 42.377 T C ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.688 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.688 T N ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.977 T O ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.74 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 25.64 T N ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.66 T C ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.66 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.66 T C ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.66 T C ATOM 4634 CB THR T 203 35.542 14.890 68.170 1.00 25.66 T C ATOM 4634 CB THR T 203 35.547 14.545 66.829 1.00 25.670 T C ATOM 4635 CG1 THR T 203 35.447 16.964 66.679 1.00 27.277 T C ATOM 4635 CG2 THR T 203 37.178 15.821 65.441 1.00 26.727 T C ATOM 4637 N ASP T 204 34.775 14.245 70.561 1.00 26.24 T N ATOM 4637 N ASP T 204 34.775 14.245 70.561 1.00 26.24 T N ATOM 4637 N ASP T 204 34.775 14.245 70.561 1.00 26.24 T N												
ATOM 4616 CA LYS T 201 32.831 9.589 63.292 1.00 28.86 T C ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 0 LYS T 201 34.194 11.441 62.611 1.00 26.41 T O ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.74 T C ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4630 CA THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 26.56 T C ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 26.56 T C ATOM 4635 OG1 THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 34.775 14.245 70.561 1.00 25.07 T C				NH2								
ATOM 4617 C LYS T 201 33.277 11.042 63.325 1.00 26.57 T C ATOM 4618 0 LYS T 201 34.194 11.441 62.611 1.00 26.41 T 0 ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.438 6.565 65.065 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4627 O SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4628 CB SER T 202 31.444 12.212 65.929 1.00 25.97 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4634 CB THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4634 CB THR T 203 35.547 14.545 66.829 1.00 26.70 T C ATOM 4634 CB THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4635 CGI THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4635 CGI THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N												
ATOM 4618 O LYS T 201 34.194 11.441 62.611 1.00 26.41 T O ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4628 CB SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4632 C THR T 203 34.523 14.441 65.764 1.00 25.65 T C ATOM 4632 C THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 26.56 T C ATOM 4635 CG1 THR T 203 35.547 16.964 66.678 1.00 26.72 T C ATOM 4635 CG2 THR T 203 35.547 16.964 66.678 1.00 27.27 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4619 CB LYS T 201 33.576 8.814 64.384 1.00 30.67 T C ATOM 4620 CG LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.038 13.257 65.415 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.97 T O ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4632 C THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4633 C THR T 203 33.542 14.541 65.764 1.00 25.63 T C ATOM 4633 C THR T 203 33.542 14.590 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4635 CG1 THR T 203 35.407 14.545 66.8150 1.00 29.25 T O ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07	35											
ATOM 4620 CG LYS T 201 33.328 7.319 64.358 1.00 33.65 T C ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 24.76 T O ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.66 T C ATOM 4632 C THR T 203 34.523 14.441 65.764 1.00 26.70 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4621 CD LYS T 201 34.438 6.565 65.065 1.00 38.71 T C ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 25.44 T C ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4632 C THR T 203 34.523 14.441 65.764 1.00 25.67 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.70 T C ATOM 4634 CB THR T 203 33.542 14.890 68.170 1.00 25.57 T C ATOM 4634 CB THR T 203 35.407 14.545 66.829 1.00 26.70 T C ATOM 4634 CB THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4622 CE LYS T 201 34.446 6.850 66.550 1.00 42.37 T C ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												C
ATOM 4623 NZ LYS T 201 33.187 6.371 67.184 1.00 45.63 T N ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O 45 ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 33.542 14.890 68.170 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												C
ATOM 4624 N SER T 202 32.614 11.830 64.161 1.00 25.68 T N ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 35.447 16.964 66.678 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C	40											
ATOM 4625 CA SER T 202 32.967 13.233 64.326 1.00 26.09 T C ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4626 C SER T 202 34.038 13.257 65.415 1.00 25.74 T C ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4627 O SER T 202 34.424 12.212 65.929 1.00 25.97 T O ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
45 ATOM 4628 CB SER T 202 31.754 14.033 64.803 1.00 25.44 T C ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C											-	
ATOM 4629 OG SER T 202 31.439 13.699 66.145 1.00 24.76 T O ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C	45											
ATOM 4630 N THR T 203 34.523 14.441 65.764 1.00 25.64 T N ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C	45											
ATOM 4631 CA THR T 203 35.507 14.545 66.829 1.00 26.70 T C ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4632 C THR T 203 34.734 14.575 68.150 1.00 26.56 T C ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												N
50 ATOM 4633 O THR T 203 33.542 14.890 68.170 1.00 26.32 T O ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												Ü
ATOM 4634 CB THR T 203 36.333 15.839 66.709 1.00 27.27 T C ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T O ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4635 OG1 THR T 203 35.447 16.964 66.678 1.00 29.25 T 0 ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C	50											Ü
ATOM 4636 CG2 THR T 203 37.178 15.821 65.441 1.00 26.74 T C ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
ATOM 4637 N ASP T 204 35.407 14.244 69.247 1.00 26.24 T N ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												Ü
ATOM 4638 CA ASP T 204 34.775 14.245 70.561 1.00 25.07 T C												
AIUM 4639 C AST 1 204 34.287 15.648 70.904 1.00 23.20 T C	55											Č
		AIUM	4639	U	ASP 1	ı 204	34. 287	15.648	70.904	1.00 23.20	T	C

	ATOM ATOM	4640 4641	O CB	ASP T	204 204	34. 926 35. 774	16.638 13.781	70. 557 71. 629	1.00 22.85 1.00 26.47	. T	0
5	ATOM	4642	CG	ASP T		36. 322	12.384	71. 360	1.00 28.96	T T	C
	ATOM	4643		ASP T		35. 559	11.414	71. 438	1.00 28.17		, C
	MOTA	4644		ASP T		37.515	12.269	71. 436	1.00 28.17	Ţ	0
	ATOM	4645	N	SER T		33. 147	15.728	71. 580	1.00 22.21	T T	0 N
	ATOM	4646	CA	SER T		32. 580	17.009	71. 994	1.00 22.21	T	
10	ATOM	4647	C	SER T		33. 383	17.532	73. 179	1.00 21.13		C
	ATOM	4648	0	SER T		34. 233	16.828	73. 720	1.00 20.33	T	C
	ATOM	4649	CB	SER T		31.136	16.818	72. 458	1.00 21.01	T	0 0
	ATOM	4650	OG	SER T		31.130	16.109	73.694	1.00 24.13	T	
	ATOM	4651	N	PRO T		33.141	18.786	73. 583		T	0
15	ATOM	4652	CA	PRO T		33. 893			1.00 20.24 1.00 21.58	T	N
				PRO T			19.294	74. 733		T	C
	ATOM	4653	C			33.465	18.464	75.947	1.00 23.90	T	C
	ATOM	4654	0	PRO T		32.334	17.971	75. 998	1.00 23.99	T	0
	ATOM	4655	CB	PRO T		33. 426	20.740	74.840	1.00 19.27	Ţ	C.
20	ATOM	4656	CC	PRO T		33.146	21.107	73. 403	1.00 20.23	T	C
20	ATOM	4657	CD			32.434	19.875	72.884	1.00 18.56	T	C
	ATOM	4658	N	VAL T		34.360	18.302	76. 912	1.00 24.52	T	N
	ATOM	4659	CA	VAL T		34. 052 33. 169	17.528	78. 109 79. 072	1.00 26.63	T	C
	ATOM	4660 4661	C 0	VAL T		33. 402	18.319 19.499	79. 320	1.00 28.46 1.00 29.61	T	C
_	MOTA		CB	VAL T		35. 402 35. 348					0
25	MOTA MOTA	4662 4663		VAL T		35. 004	17.108 16.306	78. 851 80. 105	1.00 25.30	T	C
	ATOM	4664		VAL T		36.235	16.283	77. 930	1.00 25.46 1.00 23.54	T T	C
	ATOM	4665	N N	GLU T		32.144	17.660	79. 598	1.00 23.34	T	N
	MOTA	4666	CA	GLU T		31. 231	18.269	80. 556	1.00 32.65	T	Č
	ATOM	4667	C	GLU T		31. 231	17.371	81.785	1.00 34.52	Ť	C
30	ATOM	4668	Ŏ	GLU T		31.032	16.161	81.662	1.00 33.84	Ť	Õ
	ATOM	4669	CB	GLU T		29.832	18.407	79.953	1.00 33.49	T	C
	ATOM	4670	CG	GLU T		29.728	19.482	78. 893	1.00 37.75	T	Č
	ATOM	4671	CD	GLU T		30.128	20.844	79. 422	1.00 40.23	Ť	č
	ATOM	4672	0E1	GLU T		29.501	21.309	80. 373	1.00 42.72	Ť	Õ
35	ATOM	4673		GLU T		31.067	21.435	78. 887	1.00 42.16	Ť	Ö
	ATOM	4674	N	CYS T		31. 296	17.957	82.970	1.00 36.17	Ť	N
	ATOM	4675	CA	CYS T		31.252	17.170	84.196	1.00 38.20	Ť	Ċ
	ATOM	4676	C	CYS T		30.084	17.610	85.068	1.00 39.82	Ť	č
	ATOM	4677	Ŏ	CYS T		29.734	18.790	85.110	1.00 39.53	Ť	ŏ
40	ATOM	4678	CB	CYS T		32.555	17.323	84.984	1.00 37.29	Ť	Č
40	ATOM	4679	SG	CYS T		34.098	17.006	84.069	1.00 36.13	Ť	Š
	ATOM	4680	N		210	29.481	16.656	85.767	1.00 42.37	Ť	N
	ATOM	4681	CA	MET T		28.354	16.964	86.635	1.00 44.92	Ť	Ċ
	MOTA	4682	C	MET T		28.859	17.451	87.987	1.00 46.67	Ī	č
	ATOM	4683	Ō	MET T		28.359	18.480	88.460	1.00 48.11	T	ŏ
45	ATOM	4684	CB	MET T		27.463	15.730	86.805	1.00 46.14	Ţ	č
	ATOM	4685	CG	MET T		28.119	14.558	87. 511	1.00 48.33	Ť	č
	ATOM	4686	SD	MET T		27.134	13.050	87.366	1.00 51.31	Ť	Š
	ATOM	4687	CE	MET T		25.678	13.526	88. 260	1.00 50.81	Ť	Č
	ATOM	4688	TO	MET T		29.743	16.798	88.541	1.00 47.67	Ť	Õ
50	ATOM	4689	CA	CA C		8.112	6.415	3.761	1.00 33.85	ć	č
	ATOM	4690	CA	CA C		36.518	26.475	68. 287	1.00 30.83	. Č	Č
	ATOM	4691	CA	CA C		48.458	24. 377	90.635	1.00 32.15	Č	č
	ATOM	4692	CA	CA C		44.635	23.829	91.244	1.00 29.14	Č	Č
	ATOM	4693	CA	CA C		43.916	27.507	90.375	1.00 26.33	č	Č
55	ATOM	4694	CA	CA C		41.663	30. 293	91.119	1.00 31.82	Č	Č
	ATOM	4695	CA	CA C		29.812	29.126	89.307	1.00 52.40	Č	č
	010	1000			•	20.012	20.140	55.501	1.03 02,10	C	u

	ATOM	4696	CA	CA	С	8	37.684	33.223	91.461	1.00 43.18	. с	C
5	ATOM	4697	CA	CA	Č	9	50.866	20.912	89.468	1.00 40.17	Č	č
3	ATOM	4698	C11	267		1	35.873	7.021	10.051	1.00 13.34	Ī	Č
	ATOM	4699	02	267	I	1	35.030	7.274	10.906	1.00 12.12	I	0
	ATOM	4700	N4	267	I	1	35.755	7.412	8.778	1.00 14.34	I	N
	ATOM	4701	C10	267	I	1	34.583	8.190	8.382	1.00 15.61	I	С
10	ATOM	4702		267		1	34.631	8.529	6.895	1.00 13.61	I	C
70	MOTA	4703	C14			1	35.845	9.376	6.522	1.00 13.67	I	C
	ATOM	4704	C9	267		1	33.296	7.419	8.715	1.00 14.50	I	C
	ATOM	4705	01	267		1	33.219	6.200	8.578	1.00 14.69	I	0
	ATOM	4706	N3	267		1	32.293	8. 206	9.171	1.00 12.44	Ī	Ŋ
15	ATOM	4707	C8	267		1	31.028	7.571	9.430	1.00 10.00	I	C
, 0	ATOM	4708	C6	267		l	31.561	6.344	11.579	1.00 10.55	I	Ç
	ATOM	4709	C7	267		1	31.365	6.163	12.955	1.00 12.08	I	C
	ATOM ATOM	4710	C2 C3	267 267		1	30.416 29.621	6.941 7.867	13.646 12.916	1.00 12.47 1.00 12.14	I	C
	ATOM	4711 4712	C4	267		1 1	29.820	8.053	11.556	1.00 12.14	I I	C
20	ATOM	4713	C5	267		1	30.798	7.306	10.882	1.00 10.90	I	Ċ
20	ATOM	4714	CI	267		1	30. 133	6.805	15.109	1.00 12.03	I	Č
	ATOM	4715	NI	267		î	30.857	5.861	15.820	1.00 11.13	Ī	N
	ATOM	4716	C15			i	35.718	9.758	5.051	1.00 12.95	Ī	Ĉ
	ATOM	4717	05	267		i	35.473	8.916	4. 192	1.00 17.02	Ī	ŏ
25	ATOM	4718	N6	267		1	35.851	11.064	4.801	1.00 14.07	Ī	N
25	ATOM	4719	C16			1	38.333	7.104	10.843	1.00 14.85	I	C
	ATOM	4720	N5	267		. 1	36.894	5.189	11.391	1.00 13.27	I	N
	ATOM	4721	C12			1	37.171	6.192	10.381	1.00 15.61	I	C
	ATOM	4722	SI	267		1	36.148	3.708	10.947	1.00 18.24	I	S
30	MOTA	4723	04	267		1	36. 273	2.919	12.112	1.00 17.08	I	0
30	ATOM	4724	03	267		1	36.874	3.315	9.787	1.00 17.15	I	0
	ATOM	4725		267		1	34.411	3.917	10.599	1.00 17.32	I	. С
	ATOM	4726	C26			1	33.721	2.520	10.336	1.00 16.35	I	C
	ATOM	4727	N2	267		1	29.433	7.615	15.770	1.00 11.70	I	N
25	ATOM	4728	06	267		1	32.719	2.228	10.988	0.00 16.69	I	0
35	ATOM	4729 4730	07 C21	267		1	34. 205	1.773 4.359	9. 486 13. 982	0.00 16.69	I	0
	ATOM ATOM	4731		267 267		1 1	41.910 42.331	4. 560	12.625	0.00 15.00 0.00 14.96	I I	C
	ATOM	4732		267		1	41.530	5. 218	11.673	0.00 14.93	I	Č
	ATOM	4733		267		ì	40. 239	5.718	12.078	0.00 14.95	I	Č
10	ATOM	4734		267		i	39.817	5. 521	13.406	0.00 14.96	i	č
40	ATOM	4735		267		ī	40.627	4.846	14. 378	0.00 14.99	Î	č
	ATOM	.4736	N7	267		1	41.683	5.545	10.332	0.00 14.91	Ī	Ň
	ATOM	4737	C24			1	40.585	6.212	9.888	0.00 14.90	Ī	Ċ
	ATOM	4738	C17	267	I	1	39.655	6.359	10.924	0.00 15.02	I	Ċ
	ATOM	4739	0H2	WAT	W	1	9.820	12.056	12.743	1.00 14.47	W	0
45	ATOM	4740		WAT		2	21.093	10.398	10.275	1.00 7.31	₩	0
	ATOM	4741		WAT		3	32.300	19.309	24. 267	1.00 9.92	₩	0
	ATOM	4742		WAT		4	24.662	17.645	24.602	1.00 12.63	¥	0
	MOTA	4743	0H2	TAW	W	5	10.321	9.426	13.052	1.00 13.81	¥	0
	ATOM	4744		WAT		6	12.733	19.635	-6.440	1.00 7.53	₩	0
50	ATOM	4745		WAT		7	33.048	14.954	0.011	1.00 12.00	W	0
	ATOM	4746		TAW		8	27.807	23.167	18.401	1.00 6.67	₩	0
	ATOM	4747		WAT		9	29. 296	10.590	15. 340	1.00 10.47	W	0
	ATOM _	4748		TAW		10	6.543	11.732	8. 949	1.00 8.19	₩	0
	ATOM	4749		WAT		11	34. 705	16.831	33. 297	1.00 18.07	W	0
55	ATOM	4750		WAT		12	27. 522	23.545	21.120	1.00 12.95	₩	0
	ATOM	4751	UHZ	WAT	W	13	41.017	11.884	9. 347	1.00 16.81	¥	0

	ATOM	4752	OH2 WAT	₹ 14	29.276	13.613	29.743	1.00 19.27	¥	0
5	ATOM	4753	OH2 WAT	W 15	40.567	16.246	35.000	1.00 18.02	W	0
5	ATOM	4754	OH2 WAT		25.516	15.164	23.686	1.00 10.81	V	0
	ATOM	4755	OH2 WAT		41.029	15.604	9.020	1.00 16.62	¥	0
	ATOM	4756	OH2 WAT		8. 271	20. 932	21.125	1.00 20.96	Ÿ	ŏ
					34. 181	16. 292	63.608	1.00 25.92		ő
	ATOM	4757	OH2 WAT						77	
10	ATOM	4758	OH2 WAT		34.774	18.566	11.988	1.00 9.54	. 🏋	0
	ATOM	4759	OH2 WAT		14.232	27. 939	10.813	1.00 20.22	W	0
	ATOM	4760	OH2 WAT		25.655	24.820	17.299	1.00 8.83	₩	0
	ATOM	4761	OH2 WAT		33.138	16.360	29.823	1.00 14.28	W	0
	ATOM	4762	OH2 WAT	₩ 24	7. 284	23.996	14.905	1.00 15.88	W	0
	ATOM	4763	OH2 WAT	W 25	22.950	17.820	10.222	1.00 11.07	W	0
15	ATOM	4764	OH2 WAT		6.303	9.578	6.184	1.00 13.56	W	0
	ATOM	4765	OH2 WAT		20.934	2.177	72.570	1.00 20.66	W	0
	ATOM	4766	OH2 WAT		5. 602	17.093	14.953	1.00 13.98	W	ŏ
	ATOM	4767	OH2 WAT		25. 530	19.981	23.409	1.00 11.61	· W	ŏ
	ATOM	4768	OH2 WAT		36.724	8. 439	21.083	1.00 16.21	77	ŏ
00										
20	ATOM	4769	OH2 WAT		5. 701	26.405	4.405	1.00 23.01	W	0
	ATOM	4770	OH2 WAT		6. 195	19.147	-1.275	1.00 25.93	W	0
	MOTA	4771	OH2 WAT		27. 238	18.873	27.707	1.00 12.95	77	0
	ATOM	4772	OH2 WAT		10.019	19.300	22.404	1.00 20.89	₩	0
	ATOM	4773		W 35	18.660	17.642	24.646	1.00 12.31	₩	0
25	ATOM	4774	OH2 WAT		27.000	8.766	-7.917	1.00 12.95	W	0
	ATOM	4775	OH2 WAT	₩ 37	20. 499	17.083	29.622	1.00 11.97	W	0
	ATOM	4776	OH2 WAT	W 38	37.642	19.584	20.497	1.00 7.27	A	0
	MOTA	4777	OH2 WAT	W 39	28. 905	6.346	21.635	1.00 15.10	· ₩	0
	ATOM	4778	OH2 WAT	₩ 40	19.368	3.656	12.781	1.00 8.09	W	0
	MOTA	4779	OH2 WAT	W 41	29.481	7.328	6.028	1.00 18.76	W	• 0
30	ATOM	4780	OH2 WAT		31.853	30.028	11.019	1.00 11.55	₩	0
	ATOM	4781	OH2 WAT		30.815	5.845	28.771	1.00 18.94	W	0
	ATOM	4782	OH2 WAT		7.816	13.593	10.596	1.00 12.04	¥	Ö
	ATOM	4783	OH2 WAT		20. 264	8. 396	8. 487	1.00 14.53	₩	Ö
	MOTA	4784	OH2 WAT		12.987	12.795	6. 319	1.00 13.34	W	ŏ
35	ATOM	4785	OH2 WAT		23.619	18.649	37. 291	1.00 20.21	₩ .	- 0
00	MOTA	4786	OH2 WAT		18. 254	6.979	24. 266	1.00 20.22	W	Ö
			OH2 WAT		25. 729	5. 521	54. 904	1.00 20.22	W W	
	ATOM	4787								0
	ATOM	4788	OH2 WAT		33.846	31.445	49.694	1.00 24.01	W	0
	MOTA	4789	OH2 WAT		1. 203	22.687	6.517	1.00 15.75	¥	0
40	MOTA	4790	OH2 WAT		18.931	1.545	17. 773	1.00 11.88	¥	0
	MOTA	4791	OH2 WAT		39. 260	17.313	6. 209	1.00 11.31	₩	0
	ATOM	4792	OH2 WAT		11.858	29.857	13. 454	1.00 17.79	₩	0
	ATOM	4793	OH2 WAT		39.076	22.410	-1.485	1.00 9.18	₩	0
	ATOM	4794	OH2 WAT		26. 485		15. 886	1.00 19.67	₩	0
15	ATOM	4795	OH2 WAT	₩ 57	37.050	20.790	0. 260	1.00 15.14	¥	0
45	MOTA	4796	OH2 WAT	W 58	27.797	26.672	32. 268	1.00 28.03	W	0
:	ATOM	4797	OH2 WAT		18.324	13.670	16.592	1.00 14.91	W	0
	ATOM	4798	OH2 WAT		17.408	28.124	11.960	1.00 22.12	₩	0
	ATOM	4799	OH2 WAT		30.927	20.411	26. 562	1.00 11.62	₩	0
	ATOM	4800	OH2 WAT		9. 546	29.554	23. 251	1.00 25.92	W	ŏ
50	ATOM	4801	OH2 WAT		19.679	15.880	80. 100	1.00 32.98	₩	0
	ATOM	4802	OH2 WAT		32. 325	25. 087	22. 495	1.00 35.63	W	0
	ATOM	4803	OH2 WAT		30. 276	24. 296	21.082	1.00 13.13	W	0
	ATOM	4804	OH2 WAT		13.503	-0.011	12. 178	1.00 16.78	₩	0
	ATOM	4805	OH2 WAT		32. 301	3.759	18. 886	1.00 15.31	W	0
55	ATOM	4806	OH2 WAT		17. 841	15.087	24. 535	1.00 17.04	₩	0
	ATOM	4807	OH2 WAT	₩ 69	32.212	-1.864	17. 231	1.00 33.57	₩	0

	MOTA MOTA	4808 4809	OH2 WA		70 71	31.942 41.741	25.422 24.676	24. 949 35. 656	1.00 14.32 1.00 25.77	W W	0
5	MOTA	4810	OH2 WA	T W	72	7.065	7.005	6.381	1.00 22.12	W	0
5	MOTA	4811	OH2 WA	W	73	30.082	19.209	75.060	1.00 21.78	W	0
	ATOM	4812	OH2 WA	[W	74	4.031	12.254	-0.177	1.00 19.44	W	0
	MOTA	4813	OH2 WA	T	75	35.845	17.333	53.696	1.00 21.03	. ₩	0
	MOTA	4814	OH2 WA	W 1	76	36.526	20.255	76.854	1.00 17.50	W	0
4.0	ATOM	4815	OH2 WA	T T	77	31.251	2.379	23.047	1.00 17.45	W.	0
10	ATOM	4816	OH2 WA	P 1	78	21.143	15.514	65.628	1.00 35.20	W	0
	MOTA	4817	OH2 WA	r W	79	25.623	18.283	68.925	1.00 23.69	. W	0
	MOTA	4818	OH2 WA	7	80	31.465	30.948	-2.078	1.00 41.37	W	0
	MOTA	4819	OH2 WA	W 1	81	24.891	29.425	38. 535	1.00 32.19	W	0
	ATOM	4820	OH2 WA	7	82	26.966	27.373	47.300	1.00 31.18	¥	0
15	MOTA	4821	OH2 WA	W 7	83	29.620	34.079	-0.291	1.00 38.61	W	0
	ATOM	4822	OH2 WA	r W	84	33.991	16.748	-1.768	1.00 21.41	77	0
	ATOM	4823	OH2 WA		85	36.100	19.081	-1.640	1.00 18.06	₩	0
	MOTA	4824	OH2 WA		86	37.135	37.881	40.383	1.00 20.11	W	0
	ATOM	4825	OH2 WA		87	11.337	15.166	8.469	1.00 15.10	W	0
20	MOTA	4826	OH2 WA		88	38.668	19.971	26.489	1.00 15.24	₩	0
	ATOM	4827	OH2 WA		89	34.405	15.814	12.156	1.00 10.82	W	0.
	ATOM	4828	OH2 WA	ry	90	27. 246	34.729	18.461	1.00 22.71	₩	0
	ATOM	4829	OH2 WA	Γ ₩	91	27.552	8.778	20.143	1.00 13.91	₩	0
	ATOM	4830	OH2 WA	r W	92	18.593	17.220	27.671	1.00 20.14	₩	0
25	ATOM	4831	OH2 WA	rW	93	36.799	17.534	73.777	1.00 30.67	₩	0
	ATOM	4832	OH2 WA	r W	94	9.790	29.242	2.101	1.00 22.36	W	0
	ATOM	4833	OH2 WA	r W	95	24.239	29.551	51.184	1.00 26.73	₩	0
	ATOM	4834	OH2 WA		96	29.035	29.710	45. 452	1.00 17.18	W	0
	ATOM	4835	OH2 WA	r w	97	34.661	16.311	23.110	1.00 15.24	W	0
30	ATOM	4836	OH2 WA	r W	98	21.314	17.064	-7.614	1.00 27.82	₩	0
00	MOTA	4837	OH2 WA	r A	99	30.880	19.181	28.970	1.00 18.73	M.	0
	ATOM	4838	OH2 WA	r w	100	28.850	17.366	29.169	1.00 18.53	¥	0
	ATOM	4839	OH2 WA			42.030	21.777	13.248	1.00 26.15	₩	0
	ATOM	4840	OH2 WA	r W	102	3.956	12.762	-2.958	1.00 27.96	W	0
05	ATOM	4841	OH2 WA			16.051	15.146	16.848	1.00 14.41	77	0
35	MOTA	4842 -				27.365	17.435	64.773	1.00 38.96	₩	0
	ATOM	4843	OH2 WA			17.747	1.507	5.871	1.00 23.60	W	0
	ATOM	4844	OH2 WA			37.627	37.114	42.976	1.00 24.96	W	0
	MOTA	4845	OH2 WA			24.719	4.196	59.681	1.00 32.55	W	0
	ATOM	4846	OH2 WA			17.686	33.626	13.933	1.00 20.39	W	0
40	ATOM	4847	OH2 WA			-0.184	23.823	13.296	1.00 46.49	₩	0
	ATOM	4848	OH2 WA			15. 373	35.019	25.333	1.00 21.46	W	0
	ATOM	4849	OH2 WA			30.768	14.093	34.177	1.00 33.90	₩	0
	MOTA		OH2 WA			25.218			1.00 33.99	A	0
	ATOM	4851	OH2 WA			7. 403	26.902	1.736	1.00 32.04	₩	0
45	MOTA	4852	OH2 WA			20.038	32.869	15. 272	1.00 23.28	A	0
	MOTA	4853	OH2 WA			15.360	28.092	24.066	1.00 16.94	W	0
	MOTA	4854	OH2 WA			19.926	37.657	60.577	1.00 40.46	₩	0
	MOTA	4855	OH2 WA			32.502	22.719	25.889	1.00 19.53	₩	. 0
	MOTA	4856	OH2 WA			30.616	31.722	4. 387	1.00 18.60	A	0
50	MOTA	4857	OH2 WA			26.479	8.176	55.645	1.00 36.63	₩	0
	MOTA	4858	OH2 WA			22.372	22. 465	40.919	1.00 40.52	¥	0
	MOTA	4859	OH2 WA			39.623	15.685	32. 220	1.00 28.34	W	0
	MOTA	4860	OH2 WA			48.066	29.461	95.001	1.00 27.75	W	0
	MOTA	4861	OH2 WA			31.897	32.419	0.487	1.00 30.32	₩	0
55	MOTA	4862	OH2 WA			20. 734	-1.804	18.413	1.00 26.72	₩	0
	MOTA	4863	OH2 ₩A	TW	125	31.094	6.561	53.456	1.00 25.11	W	0

	ATOM	4864	OH2 WAT	₩ :	126	45.312	37.218	40.612	1.00 33.55	Ÿ	Ţ	0
5	ATOM	4865	OH2 WAT			1.538	17.016	8.474	1.00 19.86	F		0
	ATOM	4866	OH2 WAT	₩ :	128	29.731	9.406	-1.174	1.00 20.25	7	Ÿ	0
	ATOM	4867	OH2 WAT			27. 305	38. 491	25.414	1.00 28.22	7	¥	0
	ATOM	4868	OH2 WAT			28.077	29. 238	30.743	1.00 23.73	Ţ		0
	ATOM	4869	OH2 WAT			26.574	28.140	51.775	1.00 15.37	1		0
10	ATOM	4870	OH2 WAT			19.946	5.062	76.332	1.00 36.71	Ţ		0
	ATOM	4871	OH2 WAT			10.627		10.004	1.00 22.21	Y		0
	ATOM	4872	OH2 WAT			11.190	-1.258	13.067	1.00 23.85	Ĭ		0
	MOTA	4873	OH2 WAT			3. 651	9.620	16.508	1.00 29.13	}		0
	MOTA	4874	OH2 WAT			24.584		21.191	1.00 23.76	7		0
15	ATOM	4875	OH2 WAT			24. 301	30. 242	41.148	1.00 33.00	Ĭ		0
	MOTA	4876	OH2 WAT			19.879	15.502	31.848	1.00 24.77 1.00 20.53	7		0
	MOTA	4877	OH2 WAT			31.486	28. 385 41. 487	56.405 27.914	1.00 20.33	1		0
	MOTA	4878	OH2 WAT			15. 743 35. 109	22. 703	77. 680	1.00 23.33	,		0
	MOTA MOTA	4879 4880	OH2 WAT			22. 799	24. 131	34.328	1.00 24.16	,		0
20	ATOM	4881	OH2 WAT			19.856	25. 294	47. 782	1.00 24.13	,		0
	ATOM	4882	OH2 WAT			7. 019		5.810	1.00 26.6	ï		ŏ
	ATOM	4883	OH2 WAT				19.657	90.022	1.00 34.12		P	ŏ
	MOTA	4884	OH2 WAT			29. 118		28. 737	1.00 16.55	Ţ		Ö
	ATOM	4885	OH2 WAT			25.461		29.528	1.00 31.87		N	0
25	ATOM	4886	OH2 WAT			29.591	2.587	66.923	1.00 38.76	7	R/	0
	ATOM	4887	OH2 WAT			38. 299		93.878	1.00 37.57		7	0
	ATOM	4888	OH2 WAT	₩.	150	16.338		29. 568	1.00 28.12		7	0
	ATOM	4889	OH2 WAT			50.138		96.866	1.00 27.78	1		0
	ATOM	4890	OH2 WAT			22.910		38. 404	1.00 25.84		7	0
30	MOTA	4891	OH2 WAT			21.563		13.807	1.00 35.9i		7	0
	ATOM	4892	OH2 WAT			47. 345		87.047	1.00 33.44		77	0
	MOTA	4893	OH2 WAT			33.641		-3.898	1.00 34.95 1.00 32.96		7	0
	MOTA MOTA	489 4 4895	OH2 WAT			21.869 31.608		43. 965 30. 918	1.00 32.90		¥7 ₹7	0
	ATOM	4896	OH2 WAT			22. 471		5. 325	1.00 25.62		r! }	0
35	ATOM	4897	OH2 WAT			8.576		0. 289	1.00 33.92		¥	0
	ATOM	4898	OH2 WAT			40.895		12.622	1.00 23.15		W	ŏ
	ATOM	4899	OH2 WAT			29.005		68. 038	1.00 30.48		₩	ŏ
	ATOM	4900	OH2 WAT			22.507		76.352	1.00 33.53		₩	Ŏ
	ATOM	4901	OH2 WAT			44.106		35. 688	1.00 48.32		W	0
40	ATOM	4902	OH2 WAT			26.450	3.355	5.768	1.00 28.13	1	₩	0
	ATOM	4903	OH2 WAT		165	4. 723		5. 955	1.00 44.11		W	0
	ATOM	4904	OH2 WA		166	35. 185		-4.961	1.00 27.15		W	0
	ATOM	4905	OH2 WAT			18. 473		-5.754	1.00 31.75		₩.	0
	ATOM	4906	OH2 WA			31.008		21.032	1.00 44.53	. '		0
45	ATOM	4907	OH2 WA			38. 894		48. 372	1.00 38.35		W	0
	ATOM	4908	OH2 WA					20. 938	1.00 21.61		W	0
	ATOM	4909	OH2 WA			49.199			1.00 30.58		W	0
	MOTA	4910	OH2 WA			5. 127			1.00 34.66		₩	0
	ATOM	4911	OH2 WA			-0.373			1.00 34.97		W	0
50	MOTA	4912	OH2 WA			16.470		3.800	1.00 32.29		<i>™</i>	0
	MOTA	4913	OH2 WA			18, 074 38, 094			1.00 34.23 1.00 29.70		₩	0
	ATOM ATOM	4914 4915	OH2 WA			40. 881			1.00 38.43		π Ψ	0
	ATOM	4915	OH2 WA			33.053			1.00 38.43		п \	0
	ATOM	4917	OH2 WA			5. 567			1.00 30.86		Y	0
55	MOTA	4918	OH2 WA			31.429			1.00 34.20		'' 'Y	0
	ATOM	4919	OH2 WA			11.917			1.00 16.99		W.	0
	'V 1 OM	7313	OHE BY	. 17	101	11, 311	20.000	0.000	1.00 10.55		"	v

	MOTA	4920	0H2 ₩.	AT W	182	36.688	10.228	42.234	1.00 32.93	W	0
	ATOM	4921	0H2 ₩			3.251	31.546	9.757	1.00 29.65	Ÿ	Ö
5	MOTA	4922	OH2 W		184	18. 321	2.574	-0.484	1.00 32.80	W	ő
	MOTA	4923	0H2 W			5. 637	5.762	14. 955	1.00 32.54		
	ATOM	4924	0H2 W							¥	0
						15.673	14.210	25.757	1.00 34.67	W	0
	MOTA	4925	OH2 W			40.626	21.784	27.626	$1.00 \cdot 32.36$	₩	0
	ATOM	4926	0H2 ₩.			42.987	22.261	89.602	1.00 27.87	₩	0
10	MOTA	4927	OH2 W			14.638	39.203	19.516	1.00 32.86	A	0
	MOTA	4928	0H2 W	AT W	190	11.036	30.934	11.072	1.00 31.17	₩	0
	ATOM	4929	OH2 W	AT W	191	33.710	31.642	9.747	1.00 31.14	W	ō
	MOTA	4930	0H2 W			20.870	6.918	26.506	1.00 33.93	₩	ŏ
	MOTA	4931	OH2 W			28.954	1.020	74.566	1.00 34.78	. 📅	0
15	MOTA	4932	0H2 W			37.700	14.002	57.999	1.00 52.48		
13										¥	0
	ATOM	4933	0H2 W			2.310	11.077	13. 236	1.00 36.20	₩	0
	ATOM	4934	OH2 W			29.084	-0.199	11.021	1.00 39.14	₩	0
	ATOM	4935		AT W		41.032	19.200	6.700	1.00 29.69	₩	0
	ATOM	4936	OH2 W	AT W	198	12.343	28.516	23.498	1.00 25.52	₩	0
20	MOTA	4937	OH2 W	AT W	199	28. 735	31.233	43.028	1.00 25.67	₩	0
	ATOM	4938	0H2 W	AT W	200	44.326	3.129	25.867	1.00 53.33	₩	0
	ATOM	4939	OH2 W	AT W	201	28.603	7.431	-2.611	1.00 30.53	W	ŏ
	ATOM	4940	OH2 W			33.156	26.217	56.692	1.00 26.43	₩	ő
	MOTA	4941	OH2 W			36. 278	15.450	-4.311	1.00 26.09	₩	
	MOTA	4942	OH2 W			38. 154	8.018	19.062			0
25			OH2 W						1.00 37.43	W	0
	MOTA	4943				9.837	28.610	10.272	1.00 31.67	₩	0
	ATOM	4944	OH2 W			14.373	16.403	26.718	1.00 36.07	. W	0
	ATOM	4945	OH2 W		207	37. 593	16.593	70.391	1.00 29.23	. 🛦	0
	ATOM	4946	OH2 W			0.132	11.716	9. 251	1.00 33.00	₩	0
	ATOM	4947	OH2 W	AT W	209	25.144	28.339	31.889	1.00 49.28	W	0
30	MOTA	4948	OH2 W.	AT W	210	7.440	16.389	-2.874	1.00 20.15	W	0
	ATOM	4949	OH2 W	AT W	211	7.530	29.833	8.482	1.00 30.21	₩	0
	ATOM	4950	OH2 W.	AT W	212	21.589	17.888	38.999	1.00 33.73	W	0
	MOTA	4951	OH2 W			42.227	19.920	8.912	1.00 24.14	W	ŏ
	ATOM	4952	OH2 W		214	18.081	13.134	53. 952	1.00 46.05	17	ŏ
35	ATOM	4953	OH2 W			28.604	36.515	31. 266	1.00 35.94	. W	Ô
33	MOTA	4954	OH2 W			21.979	38.636	47. 184	1.00 45.57	. 17	
	MOTA										0
		4955	OH2 W			37.628	28. 720	13.544	1.00 35.13	W	0
	ATOM	4956	OH2 W			13.553	15. 154	18. 167	1.00 30.54	₩	0
	ATOM	4957	OH2 W			32.654	30.845	47.076	1.00 25.26	₩	0
40	ATOM	4958	OH2 W			-2.842	14.831	8.115	1.00 33.07	A	0
	MOTA	4959	OH2 W		221	18.483	15.571	-7.984	1.00 30.86	W	0
	ATOM	4960	OH2 W	AT W	222	3.270	25.714	5.665	1.00 26.54	₩	0
	ATOM	4961	0H2 W	W TA	223	50.144	24.757	82.596	1.00 34.50	- W	0
	ATOM	4962	OH2 W.	AT W	224	26. 242	11.203	31.526	1.00 30.44	₩	Ō
	ATOM	4963	0H2 W			18.073	-1.159	18.149	1.00 34.58	W	Ŏ
45	ATOM	4964	OH2 W			47.321	29.376	85.710	1.00 34.51	¥	
	ATOM	4965	OH2 W				20.381				0.
						22.195		42.496	1.00 30.12	₩	0
	ATOM	4966	0H2 W			3.659	2.259	0.190	1.00 34.67	₩	0
	ATOM	4967	0H2 W			40.557	0.237	20.769	1.00 28.72	W	0
	ATOM	4968	0H2 W			21.900	26.386	53.079	1.00 26.13	W	0
50	ATOM	4969	OH2 W.			7.647	31.085	26.330	1.00 35.78	¥	0
	MOTA	4970	0H2 W	AT W	232	13.007	21.995	27.742	1.00 38.60	W	Ö
	MOTA	4971	0H2 W			45.245	0.872	24.555	1.00 46.33	W	Ŏ
	ATOM	4972	OH2 W			18.696	16.785	50.319	1.00 37.87	₩	0
	ATOM	4973	0H2 W			31.471	4.379	68.498	1.00 43.22	W	0
55	MOTA	4974	OH2 W			44.018	19.076	33. 450	1.00 32.66		
55	ATOM	4975	OH2 W							₩	0
	VION	4719	0112 II	or L	201	23.071	24.930	30.360	1.00 23.93	W	0

	ATOM	4976	OH2	TAW	W	238	35.628	33.217	93.628	1.00 33.30)	W	0
	ATOM	4977		WAT			35.847	25.095	70.900	1.00 44.01		W	0
5	ATOM	4978		WAT			22.701	20.328	82.692	1.00 39.98			0
	ATOM	4979		WAT			7.838	12.303	-1.787	1.00 34.86		W	Ō
	ATOM	4980		WAT			28. 268	21.326	68.248	1.00 31.80		¥	0
	ATOM	4981		WAT			-0.770	24.146	8.061	1.00 34.90			Ō
	ATOM	4982		WAT			38.119	6.075	7.064	1.00 31.00			Ō
10	ATOM	4983		WAT			23. 502	28.608	54.003	1.00 28.10		W	Ö
	ATOM	4984		TAW			34.476	12.129	8.573	1.00-22.78		Ÿ	Ŏ
	ATOM	4985		WAT			11.730	40.646	20.091	1.00 43.62		¥	Ō
	ATOM	4986		TAW			20.358	23.090	67.179	1.00 43.0		¥	Ō
	ATOM	4987		TAW			33. 233	30.859	32.765	1.00 29.5			Ō
15	ATOM	4988		WAT			34.971	29.300	13. 451	1.00 24.9			0
15	ATOM	4989		WAT			21.456	30.121	50. 897	1.00 51.79		W	Ö
	ATOM	4990		WAT			38. 432	11.736	55. 327	1.00 41.69			Ö
	MOTA	4991		WAT			42.192	23.969	9.558	1.00 58.78		W	Ō
	ATOM	4992		WAT			45. 254	27.469	47.916	1.00 33.8			Ō
	ATOM	4993		WAT			34.867	39.746	60.424	1.00 51.8		W	Ō
20	ATOM	4994		WAT			7.714	11.590	23. 225	1.00 47.38			Ō
	ATOM	4995		WAT			11.234	37.040	13.444	1.00 45.19			0
	ATOM	4996		WAT			5. 250	24.259	16.611	1.00 35.13			0
	ATOM	4997		WAT			30. 634	7. 333	46.566	1.00 64.60		W	0
	ATOM	4998		WAT			41.043	28.449	49.954	1.00 34.29		W	0
25	MOTA	4999		WAT			27.833	42.178	56.031	1.00 38.43	3	W	0
	ATOM	5000	OH 2	WAT	₩	262	36.007	23.861	20.102	1.00 26.5	1	¥	0
	MOTA	5001	OH2	WAT	W	263	47.752	24.361	74.233	1.00 52.9	7	W	0
	MOTA	5002	OH2	WAT	W	264	20.405	19.480	-9.352	1.00 39.5	3	W	0
	MOTA	5003	OH2	WAT	W	265	27.553	31.025	88.317	1.00 52.1	4	W	0
30	ATOM	5004	OH2	WAT	W	266	27.439	6.871	2.671	1.00 33.4	9	W	0
	MOTA	5005		WAT			28.522	39.164	45.564	1.00 34.6			0
	MOTA	5006		WAT			43.870	22.301	47.233	1.00 40.7			0
	MOTA	5007		WAT			35.079	36.340	52.168	1.00 44.8			0
	MOTA	5008		WAT			23.451	34.163	23.718	1.00 27.0			0
35	MOTA	5009		WAT			30.957	22.554	71.076	1.00 42.9			0
	MOTA	5010		WAT			38. 744	7.564	80.920	1.00 40.9			0
	ATOM	5011		WAT			13.936	30.988	30.446	1.00 41.0		W	0
	ATOM	5012		WAT			23.419	17.708	86. 267	1.00 59.8			0
	ATOM.	5013		WAT			21.017	0. 277	3. 695	1.00 50.0		W	0
40	ATOM	5014		WAT			21.549	22.757	36.427	1.00 45.1		₩	0
	ATOM	5015		WAT			37.355	12.567	39.061	1.00 34.7		₩ ₩	0
	MOTA	5016		WAT			2.783	23.907	15.169	1.00 48.0		777 TV	0
	MOTA	5017		WAT			32.292 24.285	35.378	41.347	1.00 45.5		W W	0
	MOTA	5018		WAT				8. 129	48.241	1.00 36.5		W	0
45	MOTA	5019		WAT			9.135	10.036	-0.985	1.00 36.7		17 17	0
	MOTA	5020		WAT			9.648	4.536	20.435	1.00 35.2		107 107	0
	MOTA	5021		TAW			37.143	14.114	86.099	1.00 40.9		W	0
	MOTA	5022		TAW			9.020	35. 287	33.571	1.00 41.5		W.	0
	ATOM	5023		TAW			-1.612	10.514	3.421	1.00 51.7		₩	0
50	MOTA	5024		TAW			42.982	17.337	41.377	1.00 38.6		₩	0
	MOTA	5025		TAW			34.957	31.854	45.389	1.00 25.7		W	0
	ATOM	5026		TAW			3.170	28. 704 26. 437	16.548	1.00 47.3		₩ ₩	0
	ATOM ATOM	5027		WAT			4.236 11.780	0.909	18. 194 19. 173	1.00 40.6 1.00 31.1		W W	0
	ATOM	5028		WAT			35.076	18.990	60.316	1.00 31.1		W.	0
55	ATOM	5029 5030				291	-0.662	15. 295	21.926	1.00 52.4		M.	
55									69.467	1.00 52.4		W	0
	MOTA	5031	UΠZ	nnı	π	293	42.355	22. 441	UJ. 401	1.00 43.0	1/	ıτ	0

EP 1 364 960 A1

	MOTA	5032	OH2	WAT Y	294		36.115	8.550	0.838	1.00 34.86	₩	0
	ATOM	5033		WAT V			5. 539	38.578	29.277	1.00 41.01	Ÿ	Ō
5	ATOM	5034		WAT F			-0.774	16.342	12.374	1.00 44.15	Ÿ	ŏ
J	MOTA	5035		WAT Y			20. 248	19.074	34.881	1.00 32.03	Ψ̈́	ŏ
	MOTA	5036		TAW			22. 485	11.810	37.890	1.00 32.03	₩	0
	ATOM	5037		WAT V			42.707	16.687	11.459	1.00 42.38	W	0
	ATOM	5038		TAW			40.839	15.634	41.011	1.00 38.21	¥	0
10 .	ATOM	5039		WAT Y			20.094	24.068	71.878	1.00 70.09	₩ .	0
	ATOM	5040		7 TAW			31.865	-0.414.		1.00 41.10	₩	0
	ATOM	5041		WAT Y			20,743	26.537	50.189	1.00 45.73	W	0
	ATOM	5042			7 304			13.662	12.378	1.00 40.41	W	0
	ATOM	5043	OH2	TAW	7 305		40.498	25.176	54.332	1.00 46.48	W	0
15	ATOM	5044	OH2	WAT V	7 306		35.746	6.890	18.386	1.00 32.88	W	0
75	ATOM	5045	OH2	WAT V	307		14.855	41.757		1.00 44.75	W	0
	ATOM	5046		WAT V				-0.909	20.903	1.00 45.80	W	Ŏ
	ATOM	5047			7 309		27.593	7.517	-5.357	1.00 51.75	₩	ŏ
	ATOM	5048		WAT Y			29.441	20.038	-9.566	1.00 48.48	₩	ŏ
	ATOM	5049		WAT Y			33.031	8:376	2.930	1.00 37.72	W.	Ö
20	ATOM	5050			7 312			12.995	39. 392	1.00 28.46	₩.	Ö
					7 313		19.453	26. 455	33.576	1.00 28.40	₩	
	ATOM	5051										0
	ATOM	5052			7 314		32.900	12.710	60.296	1.00 43.04	W	0
	ATOM	5053			7 315		35. 171	34.093	47.106	1.00 46.97	W	0
25	ATOM	5054			7 316		42.577	27.086	48. 235	1.00 40.03	W	0
23	ATOM	5055			7 317	,	8.900	30.335	4.530	1.00 36.15	₩	0
	MOTA	5056			318		30.817	33.985	69.076	1.00 46.39	W	0
	ATOM	5057		WAT Y			19.929	3. 244	55.862	1.00 64.48	₩	0
	MOTA	5058			₹ 320		23.376	1.981	90. 249	1.00 39.53	₩	0
	ATOM	5059		WAT Y			40.437	5.728	17.654	1.00 39.03	A	0
30	ATOM	5060			7 322		9.640	35.993	11.234	1.00 42.43	W	0
	ATOM	5061	OH2	WAT Y	¥ 323		16.153	42.346	23.466	1.00 34.97	W	0
	ATOM	5062	OH2	WAT 1	7 324		35.436 ·	19.673	64.215	1.00 57.86	W	0
	ATOM	5063	OH2	WAT '	¥ 325		4.918	16.942	5. 288	1.00 10.46	W	0
	ATOM	5064			7 326		18.390	21.278	-9. 254	1.00 31.50	W	0
35	ATOM	5065			₹ 327		1.490	16.464	5.809	1.00 20.84	W	0
35	MOTA	5066			7 328		2.997	16.779	3.328	1.00 19.39	W	Ŏ
	ATOM	5067			7 329		6.139		-0.292	1.00 48.96	W	ŏ
	ATOM	5068		WAT '			35.510	12.689	47.619	1.00 31.05	W.	ŏ
	ATOM	5069			W 331		27. 536	5.618	-0.676	1.00 54.07	₩	ŏ
	ATOM	5070			7 332		43.643	19.826	17.185	1.00 59.51	W	ŏ
40	ATOM	5071			W 333		19.184	30.073	10.467	1.00 46.29	W	0
		5072			W 334		31.305	28.910	32.552	1.00 37.09	W	
	ATOM											0
	ATOM	5073			335		9.970	0.903	-1.332	1.00 48.94	₩	0
	ATOM	5074			336		42.603		5.443	1.00 46.05	₩ .	0
45	ATOM	5075			₩ 337		25.589	37.355	19.101	1.00 50.70	₩	0
43	ATOM	5 076		TAW			16.211	15.273	77. 481	1.00 45.46	W	0
	MOTA	5077			W 339		4.566	4.778	9. 222	1.00 38.03	W	0
	ATOM	5078			₩ 340		24.583		-12.370	1.00 38.31	W	0
	MOTA	5079	OH2	TAW	₩ 341		41.377	15.443	47. 138	1.00 42.95	W	0
	ATOM	5080			₩ 342		46.584	22.712	72.438	1.00 50.39	· W	0
50	ATOM	5081			W 343		37.742	-1.808	21.784	1.00 43.11	W	0
	ATOM	5082			W 344		19.595	0.633	24.707	1.00 42.68	W	Ŏ
	ATOM	5083			₩ 345		20.648	23.506	31.934	1.00 41.44	w	ŏ
	MOTA	5084			W 346		5. 215	28.843	9. 509	1.00 27.51	'' 17	Ö
	ATOM	5085			¥ 347		-1.391	17.437	9.148	1.00 44.39	W	Ö
<i></i>	ATOM	5086			7 348		37.699		32. 487	1.00 31.25	1 7 7	
55								11.902				0
	ATOM	5087	UHZ	MAI	₩ 349		21.639	34.577	35. 581	1.00 39.86	₩	0

	ATOM	5088	OH2 WAT	W 350	19.819	24.919	38.691	1.00 51.89	¥	0
	MOTA	5089	OH2 WAT		34. 940	35. 726	43. 895	1.00 60.97	77	ŏ
	ATOM	5090	OH2 WAT		37. 201	17.622	58. 850	1.00 43.91	77	ŏ
5	ATOM	5091	OH2 WAT		29. 384	35.815	62.018	1.00 33.90	17	Ö
	MOTA	5092	OH2 WAT		34. 042	37. 937	56. 652	1.00 31.53	77	ő
					. 18.864	-1.487	3. 101	1.00 49.21	ri Pr	Ö
	MOTA	5093	OH2 WAT							
	ATOM	5094	OH2 WAT		45.897	16.661	41.685	1.00 45.52	77	0
10	MOTA	5095	OH2 WAT		46.644	36.386	90. 281	1.00 51.76	₩	0
	MOTA	5096	OH2 WAT		25.350	25.538	31.973	1.00 43.63	77	0
	MOTA	5097	OH2 WAT		34.925	5.802	29.713	1.00 38.77	¥	0
	MOTA	5098	OH2 WAT		33.389	12.245	-5.833	1.00 38.52	W	0
	ATOM	5099	OH2 WAT		13.401	36 . 615	6. 96 6	1.00 60.27	W	0
	MOTA	5100	OH2 WAT	₩ 362	29.038	14.217	36.874	1.00 43.15	A	0
15	MOTA	5101	OH2 WAT	₩ 363	43.754	18.992	93.095	1.00 43.98	₩	0
	ATOM	5102	OH2 WAT	₩ 364	24.549	4.764	4.197	1.00 50.16	A	0
	MOTA	5103		₩ 365	43.227	13.919	19.497	1.00 58.10	W	0
	ATOM	5104		W 366	10.214	33.407	9.945	1.00 50.53	W	0
	ATOM	5105	OH2 WAT		17.413	19.604	27.704	1.00 31.46	W	0
20	ATOM	5106	OH2 WAT		28.562	31.651	91.027	1.00 58.48	Ÿ	Ŏ
	ATOM	5107	OH2 WAT		39.915	9. 085	8. 229	1.00 51.34	W	ŏ
	ATOM	5108	OH2 WAT		37.715	6. 403	1.728	1.00 49.76	₩	ŏ
	ATOM	5109	OH2 WAT		45.177	11.389	17.053	1.00 38.62	₩	ŏ
	ATOM	5110	OH2 WAT		-1.495	16. 407	5. 919	1.00 24.58	. 77	ŏ
05	ATOM	5111	OH2 WAT		17.928	10. 777	-8.990	1.00 48.78	. W	Ö
25			OH2 WAT		49.671	41.399	35. 418	1.00 48.78	''	ő
	ATOM	5112	OH2 WAT		-2.896	22.960	9.444	1.00 64.43	W	0
	ATOM	5113				20.119		1.00 43.91	W	_
	ATOM	5114	OH2 WAT		44.242		13.114	•	W	0
	ATOM	5115	OH2 WAT		45.998	27.498	65.911	1.00 52.62		0
30	ATOM	5116	OH2 WAT		54.712	25. 922	87. 283	1.00 44.48	W	0
	ATOM	5117	OH2 WAT		9. 336	21. 221	24.256	1.00 39.28	₩.	0
	ATOM	5118	OH2 WAT		5. 711	10.622	25. 188	1.00 45.01	· ₩	0
	ATOM	5119	OH2 WAT		22.065	36.408	12.747	1.00 59.06	W	0
	ATOM	5120	OH2 WAT			10.821		1.00 40.75	W	0
35	ATOM	5121	OH2 ₩AT		39. 595	1.633	12.436	1.00 49.31	. <u>W</u>	0
	ATOM	5122	OH2 WAT		11.084	30.834	0.209	1.00 39.09	₩	0
	ATOM	5123	OH2 WAT		16.720	27. 264	-4.002	1.00 41.06	W.	0
	MOTA	5124		₩ 386	31.056	0. 281	79.010	1.00 38.99	W	0
	ATOM	5125	OH2 WAT		19. 887	9. 930	45.039	1.00 49.86	W	0
40	ATOM	5126	OH2 WAT		36.655	37.162	45.509	1.00 47.87	A	0
40	ATOM	5127	OH2 WAT		27.630	7. 903	30.948	1.00 41.08	W	0
	MOTA	5128	OH2 WAT	W 390	22.128	23.087	-9.666	1.00 41.60	W	0
	ATOM	5129	OH2 WAT	₩ 391	-16.596	34.405	7.509	1.00 52.09	₩	0
	ATOM	5130	OH2 WAT	₩ 392	18.187	37.051	16.426	1.00 58.25	₩	0
	ATOM	5131	OH2 WAT		20.557	35.471	15.670	1.00 30.35	W	0
45	MOTA	5132	OH2 WAT		38.852	10.942	68.815	1.00 56.37	W	0
	ATOM	5133	OH2 WAT		14.789	20.103	63.603	1.00 69.08	₩	0
	MOTA	5134	OH2 WAT		35.781	9.917	61.122	1.00 45.92	W	Ō
	ATOM	5135	OH2 WAT		32.425	7.986	44.362	1.00 50.04	W	Ŏ
	MOTA	5136	OH2 WAT		39.173	29. 239	58. 940	1.00 46.65	Ϋ́	ŏ
50	ATOM	5137	OH2 WAT	M 300	33.925	28. 356	71.709	1.00 46.27	w	ő
			OH2 WAT		26. 195	11.085	39. 837	1.00 37.48	W	0
	MOTA	5138						1.00 44.75	₩	
	MOTA	5139	OH2 WAT		40.425	2.450	9.983			0
	ATOM	5140	OH2 WAT		28.452	1. 394	7.667	1.00 56.86	W	0
	ATOM	5141	OH2 WAT		22.460	2.393	0.537	1.00 46.38	W	0
55	ATOM	5142	OH2 WAT	W 4U4	20.613	0.672	-0.814	1.00 61.12	₩	0
	END									

EP 1 364 960 A1

Table 37 Coordinate data of the complex between Compound
(2) and human factor VIIa/soluble tissue factor (around the inhibitor)

10	CRYST1	71	.28	0 82	.320	123.380	90.00	90.00	90.0	0 P21	2121	
	ATOM	1	N	ILE H	16	22.059	3.893	14.020	1.00	5.70	Н	N
	ATOM	2	CA	ILE H	16	21.957	4.124	15.491	1.00	6.52	H	Ċ
	MOTA	3	С	ILE H	16	22.005	2.782	16.220	1.00	7.66	H	č
	ATOM	4	0	ILE H	16	21.209	1.883	15.942	1.00	8.62	H	Ö
15	ATOM	5	CB	ILE H	16	20.628	4.834	15.856	1.00	7.20	H	Č
15	ATOM	6	CG1	ILE H	16	20.515	6.174	15. 119	1.00	6.97	H	Č
	ATOM	7		ILE H	16	20.545	5.036	17.365	1.00	7.03	Ĥ	č
	ATOM	8		ILE H	16	21.554	7. 217	15.521	1.00	6.54	H	č
	ATOM	9	N	VAL H	17	22.947	2.646	17.144	1.00	8.63	H	Ň
	ATOM	10	CA	VAL H	17	23.087	1.417	17.916	1.00	9.50	H .	Ċ
20	ATOM	11	C	VAL H	17	22.570	1.634	19.338	1.00	9.85	H	. Č
	ATOM	12	0	VAL H	17	23.002	2.553	20.026		10.72	H	0
	ATOM	13	CB	VAL H	17	24.566	0.964	18.008	1.00	9.85	H	Č
	MOTA	14	CG1	VAL H	17	24.659	-0.327	18.813	1.00	10.27	H	Č
	ATOM .	15	CG2	VAL H	17	25.148	0.754	16.613	1.00	9.47	H	Č
25	ATOM '	16	N	LEU H	4 1	22.072	7.406	1.097	1.00	11.66	Н	N
	ATOM	17	CA	LEU H	41	23.440	7.899	1.213	1.00	11.08	H	C
	ATOM	18	C	LEU H	41	23.808	8.366	2.624		10.34	H	C
	ATOM	19	0	LEU H	41	24. 765	7.871	3.224	1.00	10.61	H	0
	ATOM	20	CB	LEU H	41	23.657	9.058	0.226		10.87	H	C
30		21	CG	LEU H	41	25.000	9.801	0.273		11.44	Н	C
	MOTA	22		LEU H	41	26.115	8.893	-0.221	1.00	11.67	H	C
	MOTA	23		LEU H	41	24.921	11.048	-0.582		11.04	H	С
	MOTA	24	N	CYS H	42	23.032	9.307	3 . 15 3	1.00	8.47	H	N
	ATOM	25	CA	CYS H	42	23. 314	9.885	4.457	1.00	6.60	H	C
35	ATOM	26	C	CYS H	42	22.102	10.577	5.061	1.00	6.35	H	С
	ATOM	27	0	CYS H	42	21.038	10.660	4.448	1.00	8.53	Ή	0
	ATOM	28	CB	CYS H	42	24. 421	10.935	4.309	1.00	6.00	H	C
	MOTA	29	SG	CYS H	42	26. 138	10.338	4. 348	1.00	7.26	Н	S
	ATOM	30	N	GLY H	43	22. 291	11.087	6.272	1.00	4.57	H	N
40	ATOM	31	CA	GLY H	43	21. 248	11.827	6.949	1.00	3.67	H	C
	ATOM	32	C	GLY H	43	21.549	13. 308	6.764	1.00	3.83	H	C
	ATOM	33	0	GLY H	43	22. 525	13.686	6. 104	1.00	3.23	H	0
	ATOM	34	N	ALA H	55	26.992	16.158	6.411	1.00	5.39	H	N
	ATOM	35	CA	ALA H	55	28. 424	15. 958	6.611	1.00	5.45	Н.	C
45	ATOM	36	C	ALA H	55	29.160	15. 980	5. 277	1.00	6.95	H	C.
	MOTA	37	0.	ALA H	55	28.674	15. 441	4. 279	1.00	6.34	H	0
	ATOM	38	CB	ALA H	55 5.0	28. 681	14.624	7. 326	1.00	4.19	H	C
	MOTA	39	N	ALA H	5 6	30.333	16.606	5. 265	1.00	6.14	H	N
	ATOM ATOM	40	CA	H AJA	56 5 C	31.142	16.694	4.053	1.00	7.74	H	C
50		41	C	ALA H	56	31.552	15. 332	3.488	1.00	6.96	H	C
30	ATOM	42	0	ALA H	56	31.487	15. 118	2. 276	1.00	8.41	H	0
	ATOM ATOM	43	CB	ALA H	56 57	32. 399	17. 532	4.319	1.00	6.48	H	C
	ATOM	44 45	N CA	HIS H	57 57	31.971	14.412	4.355	1.00	5.95	H	N
	ATOM		CA	HIS H		32.419	13. 103	3.889	1.00	6.77	H	C
55	ATOM	46 47	C 0	HIS H	57 57	31.358	12. 282	3. 151	1.00	8.28	H	C
55	ATOM	48	CB	HIS H	57	31.685	11.304	2.476	1.00	8.26	H	0
	111 UII	UF	ŲΒ	пто п	0 (33.021	12. 288	5.046	1.00	5.22	Н	C

						• • •								
	MOTA	49	CG	HIS H	57			11.512	5.846	1.00	4.67		H	С
	MOTA	50		HIS H	57			11.936	7.074	1.00	2.15		H	N
5	ATOM	51	CD2	HIS H	57	31.	432	10.314	5.613	1.00	3.66		H	C
	ATOM	52	CE1	HIS H	57			11.032	7.564	1.00	2.30		H	C
	ATOM	53		HIS H	57	30.		10.038	6.698	1.00	3.94		H	N
	ATOM			CYS H	58									
		54	И					12.686	3. 267	1.00	7.28		H	N
	ATOM	55	CA	CYS H	58	29.		11.999	2.584	1.00	8.91		H	C
10	ATOM	56	С	CYS H	58	29.	128	12.140	1.069	1.00	9.73		H	С
	ATOM	57	0	CYS H	58	28.	496	11.407	0.317	1.00	7.76		H	0
	ATOM	58	CB	CYS H	58	27.		12.578	3.035	1.00	7.86		H	Č
	ATOM	59	SG	CYS H	58	27.		12.043	4. 706	1.00	6.38		H	Š
				PHE H										
	ATOM	60	N		59	29.		13.074	0.628		10.76		H	N
15	ATOM	61	CA	PHE H	59	30.		13.347	-0.790	1.00	9.91		H	C
	ATOM	62	C	PHE H	59	31.	481	12.971	-1.364	1.00	9.71		H	С
	ATOM	63	0	PHE H	59	31.	804	13.337	-2.496	1.00	8.14		H	0
	ATOM	64	CB	PHE H	59	29.		14.832	-1.020	1.00	9.77		H	Č
	ATOM	65	CG	PHE H	59	28.		15. 267	-0.422		10.32		H	Ç.
	ATOM			PHE H	59	27.								
20		66						15.011	-1.083	1.00	7.39		H	C
	ATOM	67		PHE H	59	28.		15.845	0.846		11.05		H	С
	ATOM	68		PHE H	59	26.		15.314	-0.493	1.00	9.49		H	С
	ATOM	69	CE2	PHE H	59	27.	214	16.151	1.447	1.00	11.89		H	С
	ATOM	70	CZ	PHE H	59	26.	023	15.884	0.776	1.00	10.25		H	С
	ATOM	71	N	ASP H	60	32.		12.230	-0.591	1.00	8.71		H	Ň
25	ATOM	72	ĊA	ASP H	60	33.		11.796	-1.041		11.41		H	Ċ
								11.036						
	MOTA	73	C	ASP H	60	33.			-2.370		13.85		H	C
	MOTA	74	0	ASP H	60	34.		11.286	-3.250		13.33		H	0
	MOTA	75		ASP H	60	34.		10.904	0.016	1.00	9.72		H	С
	ATOM	76	CG	ASP H	60	34.	855	11.694	1.157	1.00	10.46		H	С
30	ATOM	77	0D1	ASP H	60	34.	672	12.930	1.191	1.00	8.35		H	0
	ATOM	78		ASP H	60	35.		11.074	2.020	1.00	9.24		H	0
	ATOM	79	N	LYS H		32.		10. 105	-2.522		15.64		H	N
	ATOM	80		LYS H		32.		9. 330	-3. 755		19.34			
													H	C
	MOTA	81	C	LYS H		31.		9.614	-4.690		19.44		H	C
35	MOTA	82	0	LYS H		30.		8.728	-5.420		19.48		H	0
	ATOM	83	CB	LYS H		32.		7. 830	-3.441	1.00	21.25		H	С
	ATOM	84	CG	LYS H	60A	34.	024	7. 315	-3.136	1.00	25.19		H	C
	ATOM	85	CD	LYS H	60A	34.	292	7.216	-1.650	1.00	28.66		H	Ċ
	ATOM	86	CE	LYS H		33.		6.006	-1.041		31.51		Н	Č
	ATOM	87	NZ	LYS H		33.		5.848	0.412		35.53		H	N
40	MOTA	88	N	ILE H	90	30.		22.763	0.695	1.00				
											7.99		H	N
	ATOM	89	CA	ILE H	90	31.		22. 141	1.623	1.00	7.65		H	C
	ATOM	90	C	ILE H	90	33.		23.074	1.866	1.00	7. 29		H	C
	ATOM	91	0	ILE H	90	33.	544	23.761	0.953	1.00	9.45		H	0
	ATOM	92	CB	ILE H	90	32.	422	20.804	1.016	1.00	7.65		H	C
45	ATOM	93	CG1	ILE H	90	31.		19.767	1.061	1.00	8.19		H	C
	ATOM	94		ILE H	90	33.		20.313	1.732	1.00	8. 25		H	č
	ATOM	95		ILE H	90									
								18. 477	0.319	1.00	9.60		H	C
	MOTA	96	N	TYR H	94	38.		21.049	3.982	1.00	8.73		H	N
	MOTA	97	CA	TYR H	94	37.		19.637	4.148	1.00	7.55		H	С
50	ATOM	98	С	TYR H	94	38.	721	18.785	3.130	1.00	7.25	j	H	C
	MOTA	99	0	TYR H		38.		19.138	1.959	1.00	6.40		H	0
	ATOM	100	ČB	TYR H	94			19.404	3.969	1.00	5.85		H.	Č
	ATOM	101	CG	TYR H	94	36.			3. 920	1.00				
				TYR H				17. 927			4.59		H	C
	MOTA	102			94			17. 157	5.082	1.00	4.45		H	C
55	ATOM	103		TYR H				17. 281	2.700	1.00	4.26		H	C
	ATOM	104	CEI	TYR H	94	35.	859	15. 780	5.035	1.00	2.80	i	H	C

5	ATOM ATOM ATOM ATOM	105 106 107 108	CE 2 CZ OH N	TYR H TYR H TYR H VAL H	94 94 94 95	35.653 35.646 35.462 39.254	15. 907 15. 163 13. 796 17. 656	2.642 3.814 3.767 3.584	1.00 1.00 1.00 1.00	3. 12 1. 93 5. 06 8. 23	н Н Н	C C O N
40	ATOM ATOM ATOM ATOM	109 110 111 112	CA C O	YAL H YAL H YAL H YAL H	95 95 95 95	39. 989 39. 293 39. 141 41. 428	16. 748 15. 393 14. 692 16. 523	2.713 2.622 3.625 3.225	1.00 1.00 1.00 1.00	8. 13 9. 13 8. 17 8. 63	H H H	C C O C
10	ATOM ATOM ATOM ATOM	113 114 115 116	CG2 N CA	VAL H VAL H PRO H PRO H	95 95 96 96	42.160 42.173 38.863 38.187	15. 530 17. 848 15. 005 13. 716	2.315 3.271 1.410 1.237		10.07	Н Н Н Н	C N C
15	ATOM ATOM ATOM ATOM	117 118 119 120	O CB CG	PRO H PRO H PRO H	96 95 96 96	38. 988 40. 221 38. 171 38. 070	12. 623 12. 655 13. 536 14. 949	1.928 1.917 -0.279 -0.776	1.00 1.00	9.71 10.21 9.81 9.61	Н Н Н	0 C C
20	ATOM ATOM ATOM ATOM ATOM	121 122 123 124 125	N	PRO H GLY H GLY H GLY H GLY H	96 97 97 97 97	39.062 38.280 38.928 39.292 39.656	15. 673 11. 675 10. 571 10. 853 9. 934	0.110 2.534 3.222 4.670 5.404	1.00 1.00 1.00 1.00	8. 77 7. 35 7. 72 8. 31 5. 90	Н Н Н Н	C N C C
25	ATOM ATOM ATOM ATOM	126 127 128 129	N CA C	THR H THR H THR H THR H	98 98 98 98	39. 187 39. 543 38. 347 37. 197	12. 112 12. 474 12. 901 12. 726	5. 404 5. 091 6. 456 7. 301 6. 888	1.00 1.00 1.00 1.00	8. 38 8. 75 9. 32 9. 82	H H H H	. 0 N C C
30	ATOM ATOM ATOM ATOM	130 131 132 133	CB OG1	THR H THR H THR H THR H	98 98 98 99	40. 639 40. 118 41. 841 38. 622	13. 572 14. 798 13. 123 13. 478	6. 474 5. 939 5. 636 8. 470		10. 03 9. 30 7. 92 6. 94	Н Н Н	C 0 C N
	ATOM ATOM ATOM ATOM	134 135 136 137	CA C O CB	THR H THR H THR H THR H	99 99 99 99	37.576 37.371 36.267 37.761	13. 853 15. 330 15. 704 13. 028	9. 411 9. 811 10. 221 10. 697	1.00 1.00 1.00 1.00	7. 19 7. 60 4. 56 9. 01	Н Н Н	C C O C
35	ATOM ATOM ATOM ATOM	138 139 140 141		THR H THR H ASN H ASN H	99 99 100	39.126 37.434 38.405 38.280	13. 133 11. 556 16. 163 17. 573	11.128 10.444 9.703 10.093	1.00 1.00 1.00 1.00	8. 28 8. 22 4. 83 6. 56	H H H	O C N C
40	ATOM ATOM ATOM ATOM	142 143 144 145	C O CB CG	ASN H ASN H ASN H	100 100 100	37.359 37.299 39.669 39.760	18. 369 18. 109 18. 244 19. 337	9. 157 7. 957 10. 151 11. 227	1.00 1.00 1.00 1.00	6. 18 6. 48 3. 59 7. 18	н н н н	C O C C
45	ATOM ATOM ATOM ATOM	146 147 148 149		ASN H ASN H HIS H HIS H	100 100 101	40.685 38.809 36.638 35.725	20. 162 19. 340 19. 338 20. 178	11. 222 12. 156 9. 718 8. 940	1.00 1.00 1.00 1.00	9. 38 1. 98 6. 06 6. 01	H H H H	0
	ATOM ATOM ATOM	150 151 152	C O CB	HIS H HIS H HIS H	101 101 101	34.705 34.433 36.510	19.325 19.562 21.018	8. 198 7. 017 7. 927	1.00 1.00 1.00	6.65 6.05 6.13	Н • Н Н	C 0 C
50	ATOM ATOM ATOM	153 154 155 156	CD2 CE1	HIS H HIS H HIS H	101 101 101	37. 589 37. 331 38. 935 38. 470	21.853 22.852 21.824 23.401	8. 541 9. 456 8. 387 9. 839	1.00 1.00	9. 14 10. 10 8. 84 9. 36	H H H	C N C C
55	ATOM ATOM ATOM ATOM	157 158 159 160	NE2 N CA C	ASP H ASP H ASP H	102 102	39. 458 34. 136 33. 170 31. 773	22. 795 18. 341 17. 436 18. 055	9. 206 8. 891 8. 279 8. 310	1.00 1.00 1.00 1.00	5. 86 4. 35 4. 62 5. 36	н Н Н Н	N N C C

	MOTA	161	0	ASP H 102	30.936	17.713	9.154	1.00 5.27	Н	0
	ATOM	162	СB	ASP H 102	33.188	16.095	9.016	1.00 1.00	H	Č
5	ATOM	163	CG	ASP H 102	32.509	14.992	8. 238	1.00 3.93	H	Č
5	ATOM	164		ASP H 102	32.142	15. 219	7.067	1.00 5.39	H	ŏ
	ATOM	165		ASP H 102	32. 352	13.889	8. 794	1.00 2.41	H	Õ
	ATOM	166	N	ILE H 103	31.529	18.972	7. 381	1.00 5.02	H	N
	ATOM	167	CA	ILE H 103	30. 248	19.659	7. 309	1.00 3.02	Н	C
	ATOM			ILE H 103	29. 945		5. 874			
10		168	C			20.059		1.00 4.55	H	C
	ATOM	169	0	ILE H 103	30.851	20.349	5.094	1.00 4.54	H	0
	ATOM	170	CB	ILE H 103	30. 266	20.931	8. 201	1.00 4.83	H	C
	ATOM	171		ILE H 103	28.873	21.570	8. 259	1.00 2.69	H	C
	ATOM	172		ILE H 103	31.288	21.931	7.664	1.00 2.18	H	C
15	ATOM	173		ILE H 103	28.770	22.730	9. 246	1.00 1.00	H	C
	ATOM	174	N	VAL H 138	20.653	12.090	18. 785	1.00 5.55	H	N
	ATOM	175	CA	VAL H 138	21.298	11.812	17. 509	1.00 6.30	H	C
	ATOM	176	C	VAL H 138	20. 336	10.842	16.823	1.00 6.5€	H	С
	ATOM	177	0	VAL H 138	19.741	9.990	17.479	1.00 7.54	H	0
	ATOM	178	CB	VAL H 138	22.704	11.165	17. 677	1.00 6.77	H	C
20	ATOM	179	CG1	VAL H 138	23.664	12.166	18.324	1.00 3.97	H	C
	ATOM	180		VAL H 138	22.614	9.906	18.515	1.00 5.04	H	C
	ATOM	181	N	SER H 139	20.172	10.967	15.512	1.00 6.69	Н	N
	ATOM	182	CA	SER H 139		. 10.114	14.805		H	C
	ATOM	183	C	SER H 139	19.611	9.790	13.370	1.00 6.17	H	Č
25	ATOM	184	Õ	SER H 139	20.485	10.431	12.787	1.00 5.98	H	Ŏ
	ATOM	185	CB	SER H 139	17.850	10.786	14.815	1.00 6.76	H	Č
	MOTA	186	ŌĞ	SER H 139	17.944	12.120	14.327	1.00 4.59	H	Ŏ
	ATOM	187	N	GLY H 142	20.741	4.754	9.987	1.00 8.09	H	Ň
	ATOM	188	CA	GLY H 142	21.997	4. 032	9. 902	1.00 6.84	H	Ĉ
30	ATOM	189	C	GLY H 142	21.957	2.626	10.456	1.00 7.70	H	č
30	ATOM	190	0	GLY H 142	20. 900	2.125	10.850	1.00 7.86	H	ŏ
	ATOM	191	N	GLN H 143	23.126	1.993	10.480	1.00 9.91	H	N
	ATOM	192	CA	GLN H 143	23. 278	0.628	10.976	1.00 11.50	H	Č
	ATOM	193	C	GLN H 143	22.843		12.425	1.00 11.62	H	Č
	ATOM	194	Ö	GLN H 143	23. 133	1.360	13. 255	1.00 10.73	H	Ö
35	ATOM	195	CB	GLN H 143	23. 133	0.158	10.868	1.00 10.78	H	C
	ATOM	196	CG	GLN H 143	25. 309	0.056	9. 452	1.00 13.60	Н	Č
	ATOM				25.651		8. 850	1.00 15.00		
		197	CD	GLN H 143 GLN H 143	25.652	1.411			H	C
	ATOM	198				2. 430	9. 542	1.00 13.61	H	0
40	ATOM	199		GLN H 143	25. 952		7. 555	1.00 15.87	H	N
	ATOM	200	И	LEU H 145	23.813	-2.024	14. 132	1.00 17.85	H	Ŋ
	ATOM	201	CA	LEU H 145	24.999	-2.630	14.718	1.00 21.26	H	C
	ATOM	202	C	LEU H 145	26.174	-2.317	13.805	1.00 22.23	H	C
	ATOM	203	0	LEU H 145	25.998			1.00 20.28	H	0
4.5	ATOM	204		LEU H 145	24.848	-4. 149	14.816	1.00 21.41	H	C
45	ATOM	205	CG	LEU H 145	23.756	-4.748	15.699	1.00 24.05	Н	C
	MOTA	206		LEU H 145	23.709	-6.251	15.465	1.00 22.91	H	C
	ATOM	207	CD2	LEU H 145	24.029	-4.437	17.166	1.00 24.83	H	С
	ATOM	208	N	ASP H 146	27.371	-2 . 314	14.374	1.00 24.68	H	N
	ATOM	209	CA	ASP H 146	28.569	-2.054	13.600	1.00 28.79	Н	C
50	ATOM	210	C	ASP H 146	28.701	-3.221	12.634	1.00 30.65	H	C
	ATOM	211	0	ASP H 146	28.649	-4.379	13.046	1.00 29.72	H	0
	ATOM	212	CB	ASP H 146	29.781	-1.974	14.534	1.00 30.17	Н	Ċ
	ATOM	213	CG	ASP H 146	31.076	-1.707	13.795	1.00 31.88	H	Č
	ATOM	214		ASP H 146	31.050	-0.995	12.767	1.00 32.57	H	ŏ
55	ATOM	215		ASP H 146	32.128	-2.199	14. 257	1.00 35.02	H	ŏ
- -	ATOM	216	N	ARG H 147	28.838	-2.918	11.348	1.00 34.10	H	N
			- •	• • •		J. J			••	

5	ATOM ATOM ATOM	217 218 219	CA C O	ARG H 147 ARG H 147 ARG H 147	28.968 27.620 27.580	-3. 964 -4. 672 -5. 856	10.338 10.137 9.805	1.00 37.74 1.00 36.36 1.00 38.70	Н Н Н	C C
	ATOM ATOM ATOM ATOM	220 221 222 223	CB CG CD NE	ARG H 147 ARG H 147 ARG H 147 ARG H 147	30.023 30.984 32.085 33.126	-4. 977 -5. 462 -6. 279 -6. 706	10. 794 9. 731 10. 395 9. 465	1.00 41.63 1.00 48.94 1.00 55.34 1.00 60.79	Н Н Н Н	C C C N
10	ATOM ATOM ATOM	224 225 226	CZ NH1 NH2	ARG H 147 ARG H 147 ARG H 147	34. 228 34. 439 35. 122	-7. 360 -7. 667 -7. 708	9.826 11.100 8.912	1.00 63.32 1.00 64.90 1.00 64.23	Н Н Н	C N N
15	ATOM ATOM ATOM ATOM	227 228 229 230	N CA C	LEU H 158 LEU H 158 LEU H 158 LEU H 158	18.599 19.340 19.751 20.116	8. 382 8. 024 9. 261 10. 290	19.520 20.727 21.527 20.953	1.00 8.74 1.00 7.23 1.00 8.93 1.00 8.07	H H H H	N C C O
	ATOM ATOM ATOM ATOM	231 232 233 234		LEU H 158 LEU H 158 LEU H 158 LEU H 158	20.603 21.572 20.931 22.886	7. 253 6. 875 5. 804 6. 374	20.336 21.454 22.334 20.853	1.00 6.49 1.00 6.44 1.00 7.20	H H H	C C
20	ATOM ATOM ATOM	235 236 237	N CA C	VAL H 160 VAL H 160 VAL H 160	22. 840 23. 841 24. 363	10. 884 10. 699 11. 899	23. 870 24. 231 25. 015	1.00 6.24 1.00 6.69 1.00 5.16 1.00 6.46	H H H H	C N C C
25	ATOM ATOM ATOM ATOM	238 239 240 241		VAL H 160 VAL H 160 VAL H 160 VAL H 160	23.972 24.748 24.364 24.636	13.038 10.493 9.202 11.690	24.761 22.977 22.248 22.033	1.00 6.24 1.00 4.79 1.00 2.87 1.00 4.14	H H H H	0 C C
30	ATOM ATOM ATOM ATOM	242 243 244 245	N CA C	ARG H170C ARG H170C ARG H170C ARG H170C	40.277 41.408 42.455 42.180	4. 649 3. 742 4. 322 4. 560	25. 092 25. 040 24. 096 22. 920	1.00 26.96 1.00 30.88 1.00 33.02 1.00 32.09	Н Н Н Н	N C C
30	ATOM ATOM ATOM	246 247 248	CB CG CD	ARG H170C ARG H170C ARG H170C	40.952 42.066 41.510	2. 368 1. 343 -0. 012	24.546 24.417 24.014	1.00 32.33 1.00 36.16 1.00 39.39	H H H	C C C
35	ATOM ATOM ATOM ATOM	249 250 251 252	NE CZ NH1	ARG H170C ARG H170C ARG H170C	42.563 42.345 41.105 43.370	-0. 955 -2. 177 -2. 617 -2. 959	23.649 23.169 22.992 22.859	1.00 41.61 1.00 44.13 1.00 45.02 1.00 45.11	H H H H	N C N N
40	ATOM ATOM ATOM	253 254 255	N CA C	LYS H170D LYS H170D LYS H170D	43.650 44.737 45.045	4. 565 5. 114 4. 165	24.622 23.820 22.667	1.00 36.30 1.00 39.96 1.00 39.79	H H H	N C C
	ATOM ATOM ATOM ATOM	256 257 258 259	O CB CG CD	LYS H170D LYS H170D LYS H170D LYS H170D	45. 328 45. 986 47. 201 48. 433	2. 986 5. 302 5. 802 5. 842	22. 881 24. 685 23. 921 24. 812	1.00 39.51 1.00 43.00 1.00 47.37 1.00 51.67	H · H . H H	0 C C
45	MOTA MOTA MOTA	260 261 262	CE NZ N	LYS H170D LYS H170D VAL H170E	49.673 49.975 44.983	6. 249 5. 293 4. 679	24.028 22.924 21.445	1.00 54.05 1.00 55.60 1.00 39.89	H H H	C N N
50	ATOM ATOM ATOM ATOM	263 264 265 266	CA C O CB	VAL H170E VAL H170E VAL H170E VAL H170E	45. 250 46. 447 47. 128 44. 015	3. 860 4. 372 5. 312 3. 799	20. 269 19. 472 19. 888 19. 340	1.00 40.30 1.00 41.06 1.00 41.71 1.00 40.64	Н Н Н Н	C 0 0
	MOTA MOTA MOTA	267 268 269	CG1	VAL H170E VAL H170E GLY H170F	42. 876 43. 582 46. 700	3. 065 5. 199 3. 741	20. 034 18. 958 18. 330	1.00 40.84 1.00 40.47 1.00 40.92 1.00 40.52	H H H	C C C N
55	MOTA MOTA MOTA	270 271 272	CA C O	GLY H170F GLY H170F GLY H170F	47.814 47.649 47.270	4. 140 5. 534 6. 468	17. 492 16. 920 17. 630	1.00 39.24 1.00 38.47 1.00 38.87	H H H	C 0

	MOTA	273	N	ASP H170G	•	47.932	5.672	15.629	1.00	36. 20	Н	N
	ATOM	274	CA	ASP H170G		47.823	6.955	14.951	1.00	34.41	H	С
5	ATOM	275	С	ASP H170G		46.433	7. 192	14.370	1.00	31.26	H	C
	ATOM	276	0	ASP H170G		46.265	7. 306	13.155	1.00	30. 19	H	0
	MOTA	277	CB	ASP H170G		48.869	7.049	13.839	1.00	38. 35	H	C
	ATOM	278	CG	ASP H170G		50.282	7.112	14.377	1.00	42.44	H	C
	ATOM	279	OD1	ASP H170G		50.595	8.077	15.111	1.00	43.77	H	0
10	ATOM	280	OD2	ASP H170G	•	51.080	6.200	14.069	1.00	44.37	H	0
10	ATOM	281	N	SER H170H		45.438	7.265	15. 245	1.00	27. 38	Н	N
	ATOM	282	CA	SER H170H		44.066	7.501	14.822	1.00	23.64	H	C
	ATOM	283	С	SER H170H		43.830	9.008	14.677	1.00		H	Č
	ATOM	284	0	SER H170H		44.628	9.817	15.149	1.00	19.96	H	0
45	ATOM	285	CB	SER H170H		43.096	6.902	15.846	1.00	24.30	Н	С
15	ATOM	286	0G	SER H170H		43.323	7.430	17.142	1.00	24.12	H	0
	ATOM	287	N	PRO H170I		42.733	9.403	14.013	1.00		H	N
	ATOM	288	CA	PRO H170I		42.432	10.826	13.826	1.00		Н	C
	ATOM	289	С	PRO H170I		42.402	11.597	15.146	1.00		H	Č
	ATOM	290	0	PRO H170I		41.933	11.090	16.162	1.00		H	Ō
20	ATOM	291	CB	PRO H1701		41.066	10.798	13.142	1.00	14.13	H	С
	ATOM	292	CG	PRO H170I		41.112	9.519	12.359	1.00	15.60	H	С
	ATOM	293	CD	PRO H170I		41.716	8.562	13.358	1.00	16.03	H	C
	MOTA	294	N	ASN H 175		42.918	12.819	15.137	1.00	13.26	H	N
	ATOM	295	CA	ASN H 175		42.911	13.627	16.347	1.00	15. 22	H	С
25	ATOM	296	С	ASN H 175 :		41.540	14.261	16.497	1.00	12.70	H	C
	ATOM	297	0	ASN H 175		40.813	14.420	15.520	1.00	9.75	H	0
	ATOM	298	CB	ASN H 175		43.964	14.744	16.280	1.00		Η .	C
	ATOM	299	CG	ASN H 175		45.367	14.217	16.081	1.00		H	С
	ATOM	300		ASN H 175		45.726	13.159	16.597	1.00	28.33	H	0
30	ATOM	301		ASN H 175		46.178	14.963	15.338	1.00		H	N
	ATOM	302	N	ILE H 176		41.190	14.609	17. 729	1.00		H	N
	ATOM	303	CA	ILE H 176		39.922	15. 270	18.015	1.00		H	C
	ATOM	304	C	ILE H 176		40. 253	16.759	18.040	1.00	9.92	H	С
	ATOM	305	0	ILE H 176		40.856	17. 248	18. 992	1.00	8.73	Н	0
35	ATOM	306	CB	ILE H 176		39. 373	14.856	19. 391	1.00		H	C
	ATOM	307		ILE H 176		39. 207	13. 335	19.451	1.00		H	C
	ATOM	308		ILE H 176		38.032	15. 533	19.636	1.00	7.09	H	C
	ATOM	309		ILE H 176		38.867	12.816	20.830	1.00		H	C
	ATOM	310	N	MET H 180		35. 459	19.555	16.502	1.00	3.00	H	N
40	ATOM	311	CA	MET H 180		34.757	18.321	16.843	1.00	3. 79	H	C
	MOTA	312	C	MET H 180 MET H 180		34. 487	18. 263	18. 344	1.00	4.77	H	C
	ATOM ATOM	313 314	O CB	MET H 180		35.007 35.625	19.075	19.114	1.00	6.30	H	0
							17. 105	16.499	1.00	3.93	H	C
	ATOM		CG	MET H 180				15.169			H	Ç
45	ATOM ATOM	316 317	SD	MET H 180		37.565	15.805	15.057	1.00	6.35	H	S
	MOTA	318	CE N	MET H 180 PHE H 181		38. 175 33. 677	16. 035 17. 288	13.399	1.00	4.33	H	C
	MOTA	319	CA	PHE H 181		33. 379	17. 034	18.745	1.00	3.48	H	N
	MOTA	320	C	PHE H 181		32. 851	15. 608	20.151	1.00	3.80	H	C
	MOTA	321	Ö	PHE H 181		32. 219	15. 111	20. 242 19. 304	1.00	4.05	H H	C
50	MOTA	322	CB	PHE H 181		32. 371	18.051	20.719	1.00 1.00	3. 48 4. 63	n H	0
30	MOTA	323	CG	PHE H 181		30. 939	17. 853	20. 273				C
	ATOM	324		PHE H 181		30. 134	16.881	20. 273	1.00 1.00	6.12	H	C
	ATOM	325		PHE H 181		30. 134	18. 706	19. 323	1.00	3.60 4.58	H H	C
	ATOM ·	326		PHE H 181		28.777	16. 767	20. 519	1.00	4.70	n H	6
	MOTA	327		PHE H 181		29. 018	18. 601	18. 973	1.00	2.41	n H	C
55	MOTA	328	CZ	PHE H 181		28. 220	17. 634	19. 572	1.00	4.05	n H	C
	VIOM	040	UE	1110 11 101		40.440	11.034	13.014	1.00	7.00	П	U

5	ATOM ATOM	330	N CA	CYS H 182 CYS H 182 CYS H 182	33.142 32.684 31.373	14. 938 13. 571 13. 550	21. 349 21. 539 22. 298	1.00 3.27 1.00 4.42 1.00 3.93	Н Н Н	N C C
J	ATOM ATOM ATOM	332	C O CB	CYS H 182 CYS H 182	31.061 33.685	14. 473 12. 758	23. 047 22. 352	1.00 3.93 1.00 4.77 1.00 5.96	п Н Н	0 C
	ATOM ATOM	334	SG N	CYS H 182 ALA H 183	35. 402 30. 619	12. 734 12. 476	21. 771 22. 112	1.00 5.85 1.00 3.91	н Н	S N
10	ATOM ATOM	337	C	ALA H 183 ALA H 183	29.356 29.000	12. 290 10. 813	22. 810 22. 723	1.00 5.23 1.00 5.27	H H	C
	ATOM ATOM ATOM	339	O CB N	ALA H 183 ALA H 183 GLY H184A	29.318 28.254 28.361	10. 150 13. 152 10. 289	21. 740 22. 178 23. 760	1.00 7.26 1.00 2.74 1.00 7.33	H H H	0 C N
15	ATOM ATOM	341	CA C	GLY H184A GLY H184A	27. 986 28. 482	8. 890 8. 101	23. 741 24. 936	1.00 6.69 1.00 8.17	H H	C
	ATOM ATOM	343 344	O N	GLY H184A TYR H 184	28.615 28.771	8. 634 6. 825	26. 042 24. 699	1.00 6.87 1.00 7.70	H H	O N
20	ATOM ATOM ATOM	346	CA · C O	TYR H 184 TYR H 184 TYR H 184	29. 224 30. 406 30. 506	5. 921 5. 068 4. 712	25. 750 25. 288 24. 114	1.00 8.19 1.00 7.75 1.00 6.46	H H H.	C C 0
	ATOM ATOM	348		TYR H 184 TYR H 184	28. 074 26. 813	5.004 5.725	26. 176 26. 615	1.00 8.95 1.00 10.41	H H	C C
25	ATOM ATOM	351	CD2	TYR H 184 TYR H 184	25. 924 26. 515	6. 256 5. 881	25. 681 27. 967	1.00 10.78 1.00 10.54	H H	C
	ATOM ATOM ATOM	353		TYR H 184 TYR H 184 TYR H 184	24.771 25.369 24.500	6. 923 6. 542 7. 061	26. 080 28. 378 27. 429	1.00 12.32 1.00 12.03 1.00 13.74	H H H	. C C C
	MOTA MOTA	355 356	OH N	TYR H 184 LYS H 188	23. 357 25. 832	7. 705 2. 110	27. 829 23. 136	1.00 15.66 1.00 8.03	H H	O N
30	MOTA MOTA MOTA	358	CA C O	LYS H 188 LYS H 188 LYS H 188	25.079 25.957 26.946	3. 077 4. 081 4. 585	22. 349 21. 605 22. 147	1.00 7.40 1.00 9.19 1.00 7.00	Н Н Н	C C 0
	ATOM ATOM ATOM	360	CB CG	LYS H 188 LYS H 188	24. 123 23. 123	3. 820 2. 911	23. 283 24. 006	1.00 8.96 1.00 9.81	H H	C C
35	MOTA MOTA	362 363	CD CE	LYS H 188 LYS H 188	22. 325 23. 157	3. 672 3. 965	25. 051 26. 292	1.00 11.33 1.00 14.58	H H	C
	ATOM ATOM ATOM	365	NZ N Ca	ASP H 189 -ASP H 189	23. 504 25. 570 26. 350	2. 721 4. 397 5. 319	27. 048 20. 373 19. 560	1.00 14.57 1.00 6.80 1.00 8.44	H H H	N N C
40	MOTA MOTA	367	C O	ASP H 189 ASP H 189	25. 650 24. 752	5. 465 4. 686	18. 209 17. 886	1.00 8.51 1.00 7.47	H H	Č O
	ATOM ATOM	370	CB CG	ASP H 189 ASP H 189	27. 755 28. 738	4. 705 5. 610	19.393	1.00 9.61 1.00 8.64	H H	C
45	ATOM ATOM ATOM	372		ASP H 189 ASP H 189 SER H 190	28. 457 29. 819 26. 013	6.811 5.098 6.486	18. 489 18. 313 17. 441	1.00 9.82 1.00 6.31 1.00 6.24	Н Н Н	0 0 N
	ATOM ATOM	374	CA C	SER H 190 SER H 190	25. 450 26. 395	6. 628 5. 773	16.106 15.249	1.00 6.22 1.00 7.07	H H	C C
	ATOM ATOM	377	O CB	SER H 190 SER H 190	27. 367 25. 450	5. 221 8. 101	15. 775 15. 658	1.00 5.91 1.00 4.21	Н Н	0 C
50	ATOM ATOM ATOM		OG N CA	SER H 190 CYS H 191 CYS H 191	26. 703 26. 128 26. 992	8. 733 5. 641 4. 823	15. 861 13. 953 13. 099	1.00 4.59 1.00 8.36 1.00 7.99	H H H	0 N C
	ATOM ATOM	381	C.	CYS H 191 CYS H 191	27. 131 26. 507	5. 428 6. 442	11.698	1.00 8.96 1.00 8.95	H H	C O
55	MOTA MOTA	383 384	CB SG	CYS H 191 CYS H 191	26. 446 27. 624	3. 384 2. 081	13.036 12.512	1.00 8.01 1.00 11.48	H	C S

	MOTA	385	N	LYS	Н	192		27.955	4.804	10.861	1.00	9.23	H	N
-	ATOM	386	CA	LYS				28. 232	5. 291	9.508		10.49	H	Ċ
5	ATOM	387	C	LYS				27.042	5. 787	8.691	1.00	9.74	H	Č
	ATOM	388	ŏ	LYS				27.089	6.885	8. 131	1.00	9.42	H	Ö
	ATOM		CB	LYS				28.996	4. 221	8. 720		12.99		
		389											H	Č
	ATOM	390	CG	LYS				30,288	3.788	9.406		17.47	H	Č
10	ATOM	391	CD	LYS				31.180	2.948	8.509		21.20	H	C
	ATOM	392	CE	LYS				32.448	2.535	9.258		25.68	H	С
	ATOM	393	NZ	LYS				33.427	1.809	8.395		28.01	H	N
	MOTA	394	N	GLY				25.983	4.989	8.623	1.00	9.29	H	N
	ATOM	395	CA	GLY				24.806	5. 380	7.863	1.00	9.11	H	С
	MOTA	396	С	GLY				24.059	6.573	8.433	1.00	10.62	H	С
15	ATOM	397	0	GLY	H	193		23.188	7.141	7.774	1.00	12.70	H	0
	MOTA	398	N	ASP	H	194		24.386	6.959	9.662	1.00	8.84	H	N
	ATOM	399	CA	ASP				23.744	8.108	10.289	1.00	7.33	H	Ċ
	ATOM	400	C	ASP				24.475	9.412	9.972	1.00	7.03	H	Č
	ATOM	401	Ŏ	ASP				23.989	10.492	10.312	1.00	7.04	H .	Õ
20	ATOM	402	СB	ASP				23.688	7.917	11.802	1.00	5.37	H	Č
	ATOM	403	CG	ASP				22.927	6.671	12.195	1.00	7.85	H	C
	ATOM	404		ASP				21.737	6. 572	11.833	1.00	6.73	H	ŏ
	ATOM	405		ASP				23. 519	5. 794	12.857	1.00	4.09	H	Ö
	ATOM	406	N	SER				25.634	9. 301	9. 324	1.00	5.06	H	
	ATOM	407	CA	SER				26.449	10.454	8.960	1.00	5.57		N
25		408		SER				25.629		8.387			H	C
	ATOM		C						11.601		1.00	6.98	H	C
	ATOM	409	0	SER				24.730	11.391	7.573	1.00	4.66	H	0
	MOTA	410	CB	SER				27.521	10.050	7.939	1.00	4.83	H	C
	MOTA	411	0G	SER				28.461	9. 156	8.509	1.00	2.83	H.	0
30	ATOM	412	N	GLY				25.958	12.817	8.816	1.00	7.56	H	N
	MOTA	413	CA	GLY				25. 253	13.994	8.337	1.00	7.44	H	С
	ATOM	414	C	GLY			-	24.032	14. 324	9.174	1.00	7.23	H	С
	ATOM	415	0	GLY				23.564	15. 460	9.178	1.00	7.34	H	0
	MOTA	416	N	GLY				23.520	13.325	9.888	1.00	7.25	H	N
	ATOM	417	CA	GLY				22.351	13.517	10.721	1.00	5.90	Н	С
35	ATOM	418	C	GLY				22.572	14.494	11.858	1.00	6.34	H	С
	ATOM	419	0	GLY	Н	197		23.707	14.824	12.195	1.00	7.23	H	0
	ATOM	420	N .	HIS				22.592	16.228	15.752	1.00	4.65	H	N
	ATOM	421	CA	HIS				22.920	16.007	17.151	1.00	2.63	H	С
	ATOM	422	С	HIS				22.168	17.243	17.628	1.00	3.93	H	С
40	ATOM	423	0	HIS	H	199		22.668	18.366	17.497	1.00	4.27	H	0
	ATOM	424	CB	HIS	H	199		24.424	16.155	17.391	1.00	4.75	H	С
	ATOM	425	CG	HIS	H	199		24.812	16.159	18.838	1.00	3.77	H	С
	ATOM	426	ND1	HIS	Н	199		24.693	17.275	19.636	1.00	1.00	H	N
	MOTA	427		HIS				25.308	15.179	19.633	1.00	4.02	H	C
	ATOM	428		HIS				25.103	16.987	20.858	1.00	2.26	H	Č
45	ATON	429		HIS				25. 481	15.721	20.883	1.00	2.92	H	Ň
	ATOM	430	N	ILE				26.974	17. 242	14. 214	1.00	5.45	H	N
	ATOM	431	CA	ILE				26.692	16.454	13. 021	1.00	5.68	H .	C
	MOTA	432	C	ILE				27.372	15.092	13. 160	1.00	6.39	H	
	MOTA	433	Õ	ILE				28.561	15.032	13. 458		7. 22		C
50											1.00		H	0
	ATOM	434	CB	ILE				27. 265	17. 133	11.753	1.00	5.98	H	C
	ATOM	435		ILE				26.699	18.545	11.606	1.00	4. 14	H	C
	ATOM	436		ILE				26.943	16. 296	10.522	1.00	5.31	H	C
	MOTA	437		ILE				27.426	19.368	10.561	1.00	3.83	H	C
	MOTA	438	N	VAL				26.620	14.010	12.962	1.00	6.29	H	N
55	ATOM	439	CA	VAL				27.187	12.661	13.039	1.00	3.02	H	С
	MOTA	440	С	YAL	H	213		28.340	12.692	12.046	1.00	3.61	H	С

	MOTA MOTA	441 442	O CB	VAL H 213 VAL H 213	28.130 26.149	12.905 11.581	10.846 12.617	1.00 3.84 1.00 1.61	H H	0 C
5	ATOM	443		VAL H 213	26. 792	10.194	12.636	1.00 1.00	H	Č
5	ATOM	444		VAL H 213	24.959	11.599	13.578	1.00 1.00	H	Č
	ATOM	445	N	SER H 214	29. 557	12.491	12.540	1.00 4.04	H	N
	ATOM	446	CA	SER H 214	30.728	12.582	11.675	1.00 5.26	H	Ċ
	ATOM	447	C.	SER H 214	31.619	11.349	11.577	1.00 3.67	H	Č
	MOTA	448	ŏ	SER H 214	31.766	10.778	10.497	1.00 3.00	H	ŏ
10	ATOM	449	ČВ	SER H 214	31.561	13.794	12.101	1.00 4.06	H	Č
	ATOM	450	0G	SER H 214	32.746	13.898	11.343	1.00 7.47	H	Ŏ
	ATOM	451	N	TRP H 215	32. 225	10.946	12.689	1.00 2.06	H	N
	ATOM	452	CA	TRP H 215	33.094	9.779	12.667	1.00 4.11	H	Ċ
	ATOM	453	C	TRP H 215	33. 247	9.099	14.018	1.00 5.89	H	Č
15	ATOM	454	Ō	TRP H 215	32.628	9.491	15.007	1.00 5.44	H	0
	ATOM	455	СB	TRP H 215	34.489	10.148	12.120	1.00 5.71	H	Č
	ATOM	456	CG	TRP H 215	35. 298	11.099	12.983	1.00 6.60	H	Ċ
	ATOM	457		TRP H 215	35.174	12.459	13.046	1.00 8.26	H	Č
	ATOM	458		TRP H 215	36.374	10.755	13.870	1.00 7.17	H	C
20	ATOM	459	NE 1	TRP H 215	36.106	12.985	13.910	1.00 6.83	H	N
	ATOM	460	CE2	TRP H 215	36.855	11.962	14.433	1.00 7.22	H	С
	ATOM	461	CE3	TRP H 215	36.979	9.546	14.244	1.00 6.60	H	С
	ATOM	462	CZ2	TRP H 215	37. 912	11.996	15.351	1.00 4.55	H	С
	ATOM	463	CZ3		38. 035	9.578	15.161	1.00 7.36	H	C.
25	MOTA	464	CH2	TRP H 215	38. 488	10.799	15.703	1.00 6.87	H	C
	ATOM	465	N	GLY H 216	34.086	8.070	14.043	1.00 6.33	H	N
	MOTA	466	CA	GLY H 216	34. 336	7.332	15.265	1.00 8.66	H	С
	MOTA	467	C	GLY H 216	35.004	6.017	14. 932	1.00 9.66	H	С
	ATOM	468	0	GLY H 216	34. 914	5.543	13.795	1.00 9.71	H	0
30	ATOM	469	N	GLN H 217	35.684	5.422	15.906	1.00 10.43	H	N
	ATOM	470	CA	GLN H 217	36.346	4.148	15.669	1.00 10.60	H	Ç
	ATOM	471	C	GLN H 217	35. 284	3.065	15. 765	1.00 10.61	H	C
	ATOM	472	0	GLN H 217	34.858	2.695	16.858	1.00 13.71	H	0
	MOTA	473	CB	GLN H 217 GLN H 217	37. 449 38. 205	3.919 2.612	16.701 16.498	1.00 12.43	H	C
35	ATOM ATOM	474 475	CG CD	GLN H 217	39. 564	2.605	17.171	1.00 14.99 1.00 18.06	H H	
	ATOM	476		GLN H 217	40. 134	1.540	17. 427	1.00 19.54	Н	C 0
	ATOM	477		GLN H 217	40. 103	3. 794	17.443	1.00 13.50	H	N
	ATOM	478	N	GLY H 219	34. 854	2.563	14.612	1.00 10.68	H	N
	ATOM	479	CA	GLY H 219	33, 803	1.563	14. 596	1.00 11.37	H	C
40	ATOM	480	č	GLY H 219	32. 536	2. 218	15.126	1.00 11.52	H	Č
	ATOM	481	Ö	GLY H 219	32. 436	3.446	15. 163	1.00 11.41	H	Õ
	MOTA	482	N	CYS H 220	31, 569	1.410	15.542	1.00 11.97	H	N
	MOTA	483	CA	CYS H 220	30. 317	1.934	16.077	1.00 11.90	H	C
	ATOM	484	C	CYS H 220	30.052	1.266	17.420	1.00 11.82	H	Ċ
45	ATOM	485	0	CYS H 220	29. 975	0.037	17.508	1.00 12.68	Н	0
	MOTA	486	CB.	CYS H 220	29. 170	1.658	15.099	1.00 11.56	H	C
	ATOM	487	SG	CYS H 220	29. 346	2.521	13.505	1.00 8.67	Н	S
	ATOM	488	N	ALA H221A	29. 916	2.084	18.462	1.00 10.74	Н	N
	MOTA	489	CA	ALA H221A	29. 691	1.588	19.817	1.00 10.47	Н	С
50	ATOM	490	C	ALA H221A	30. 806	0.616	20.198	1.00 10.93	H	С
	ATOM	491	0	ALA H221A	30. 547	-0.493	20.677	1.00 11.08	Н	0
	ATOM	492	CB	ALA H221A	28. 336	0.901	19.914	1.00 11.15	H	C
	ATOM	493	N	THR H 221	32.046	1.045	19.968	1.00 9.44	Н.	N
	ATOM	494	CA	THR H 221	33. 237	0.249	20. 274	1.00 8.66	Н.	С
55	ATOM	495	C	THR H 221	33. 708	0.543	21.695	1.00 8.04	Н	С
	ATOM	496	0	THR H 221	33. 859	1.706	22.075	1.00 7.03	Н	0

	ATOM	497	CB	THR H	221	34.391	0.578	19.289	1.00	8.20	Н	C
5	ATOM	498	0G1	THR H		33. 983	0. 265	17. 951	1.00		H	
5	ATOM	499		THR H			-0. 225					0
						35.634		19.623		11.22	H	C
	MOTA	500	N	VAL H		33.926	-0.508	22. 480	1.00	7.75	H	N
	ATOM:	501	CA	VAL H		34.386	-0.361	23.862	1.00	7.14	H	C
	ATOM	502	C	VAL H		35.637	0.508	23.904	1.00	7.56	Н	C
10	ATOM	503	0	VAL H	222	36.567	0.304	23.132	1.00	7.65	H	0
, 0	ATOM	504	CB	VAL H		34.705	-1.745	24.507	1.00	6.51	H	Č
	ATOM	505		VAL H		35.329	-1.558	25.893	1.00	6.03	H	Č
	ATOM	506		VAL H		33.426	-2.564	24.629	1.00	4.73	H	C
	ATOM			HIS H								
		507	N			35.632	3.718	23. 234	1.00	6.63	.Н	N
15	ATOM	508	CA	HIS H		35.512	4.808	22. 269	1.00	7.22	H	C
	ATOM	509	C	HIS H		34. 148	5.500	22. 271	1.00	7.59	H	С
	ATOM	510	0	HIS H	224	33.127	4.906	22.618	1.00	8.49	H	0
	ATOM	511	CB	HIS H	224	35.840	4.300	20.862	1.00.	8.3i	H	С
	ATOM	512	CG	HIS H	224	37.279	3.936	20.682	1.00		H	C
	ATOM	513		HIS H		38.276	4.881	20.572	1.00		. Н	Ň
20	ATOM	514		HIS H		37.899	2. 731	20.668	1.00		Н	Ĉ
	ATOM	515		HIS H		39.448	4. 277	20.501	1.00		H	Č
	ATOM						2. 973					
		516		HIS H		39. 247	2.913	20.557	1.00		H	N
	ATOM	517	N	PHE H		34. 157	6.770	21.881	1.00	7.18	H	N
	MOTA	518	CA	PHE H		32.960	7.596	21.822	1.00	6.04	H	С
25	ATOM	519	C	PHE H		32.725	8. 038	20.381	1.00	7.09	H	С
	ATOM	520	0	PHE H		33.657	8. 075	19.573	1.00	9.02	H	0
	ATOM	521	СB	PHE H	225	33.151	8. 870	22.659	1.00	5.47	H	С
	ATOM	5 22	CG	PHE H	225	33.293	8.634	24.136	1.00	6.44	H	C
	ATOM	523		PHE H	225	32.171	8. 572	24.954	1.00	2.41	H	Č
	ATOM	524		PHE H		34.554	8.511	24.716	1.00	4.55	H	Č
30	ATOM	525		PHE H		32.303	8. 397	26.333	1.00	5.42	Ĥ	Č
	ATOM	526		PHE H		34.694	8. 335	26.089	1.00	5. 19	H	Č
	ATOM	527	CZ	PHE H		33.565	8. 280	26.900	1.00	3.44		C
											H	
	ATOM	528	N	GLY H		31.485	8. 392	20.065	1.00	5.55	H	N
35	ATOM	529	CA	GLY H		31.197	8. 893	18.734	1.00	5.43	H	C
00	MOTA	530	C	GLY H		31.753	10.313	18.667	1.00	5.81	Н	C
	ATOM	531	0	GLY H		31.837	10.990	19.695	1.00	4.00	H	0
	ATOM	532	N	VAL H	227	32.151	10.760	17.479	1.00	3.76	H	N
	MOTA	533	CA	YAL H	227	32.693	12.107	17.312	1.00	5.52	H	C
	ATOM	534	C	VAL H	227	31.800	12.883	16.347	1.00	5.53	H	C
40	ATOM	535	0	YAL H		31.436	12.389	15.277	1.00	3.89	H	0
	ATOM	536	CB	YAL H		34.142	12.088	16.764	1.00	5.30	H	Č
	ATOM	537		VAL H		34.725	13.500	16.812	1.00	3. 32	H	č
	ATOM	538		VAL H		35.000	11.126	17.576	1.00	1.00	H	Č
	ATOM	539	N	TYR H		31.467	14. 108	16.734	1.00	5.76		
											H	N
45	ATOM	540	CA	TYR H		30.566	14.947	15.959	1.00	5. 23	Н	C
	ATOM	541	C	TYR H		31.190	16.277	15.556	1.00	4.97	H	С
	ATOM	542	0	TYR H		32.007	16.833	16.282	1.00	4.90	H	0
	ATOM	543	CB	TYR H		29. 291	15. 203	16.781	1.00	6.43	H	C
	ATOM	544	CG	TYR H	228	28.564	13.935	17.216	1.00	7.32	H	C
	ATOM	545	CD1	TYR H	228	29.046	13.138	18.264	1.00	8.15	H	C
50	ATOM	546		TYR H		27.432	13.500	16.531	1.00	6.35	H	č
	ATOM	547		TYR H		28.408	11.929	18.603	1.00	9.05	H	
	ATOM	548		TYR H		26.801	12. 316	16.857	1.00			C
										7.95	H	
	ATOM	549	CZ	TYR H		27. 287	11.532	17.885	1.00	8.70	H	C
	ATOM	550	OH	TYR H		26.647	10.347	18. 158	1.00	8.64	H	0
<i>55</i>	ATOM	551	N	THR H		30.807	16.784	14. 389	1.00	4.04	H	N
	MOTA	552	CA	THR H	229	31.329	18.067	13.929	1.00	4.70	Н	C

	ATOM	553	C THR H 2	29	30.782	19.121	14.900	1.00 3.38	H	С
	MOTA	554	O THR H 2		29.590	19.133	15. 181	1.00 3.30	H	Ō
5	MOTA	555		229	30.836	18. 381	12.504	1.00 5.34	H	Č
	MOTA	556	OG1 THR H 2		31.188	17. 301	11.627	1.00 6.83	H	0
	MOTA	557	CG2 THR H 2	29	31.461	19.668	11.998	1.00 2.01	Н	С
	ATOM	558	C11 142 I	1	35.781	7.018	10.285	1.00 12.37	I	С
	MOTA	559	02 142 I	1	34.889	7.239	11.100	1.00 10.13	I	0
10	ATOM	560	N4 142 I	1	35.803	7.455	9.001	1.00 10.92	Ī	N
	MOTA	561	C10 142 I	i	34.710	8. 250	8. 481	1.00 9.56	Ī	Ĉ
		562	C13 142 I	i	34.848	8. 535	6. 994		_	
	ATOM			-				1.00 8.40	Ī	C
	MOTA	563	C14 142 I	1	36.165	9. 222	6.602	1.00 6.40	I	C
	MOTA	564	C9 142 I	1	3 3 . 397	7. 494	8. 773	1.00 10.00	I	С
15	MOTA	565	01 142 I	1	33 . 289	6. 279	8.607	1.00 8.42	I	0
	ATOM	566	N3 142 I	1	32.427	8. 295	9.230	1.00 8.14	I	N
	MOTA	567	C8 142 I	i	31.166	7.668	9.494	1.00 7.12	i	Ĉ
	ATOM	568	C6 142 I	1	31.799	6. 529	11.670	1.00 3.93	Ī	Č
	MOTA	569	C7 142 I	1	31.539	6. 286	13.035	1.00 6.62	I	C
20	MOTA	570	C2 142 I	1	30.475	6.947	13.697	1.00 4.23	I	C
	MOTA	571	C3 142 I	1	29.626	7. 773	12.954	1.00 3.55	I	C
	MOTA	572	C4 142 I	1	29.868	7. 994	11.603	1.00 5.96	I	С
	ATOM	573	C5 142 I	1	30.952	7.384	10.951	1.00 6.87	Ĭ	С
	ATOM	574	C1 142 I	1	30.247	6.782	15. 131	1.00 4.86	i	Č
	ATOM	575	N1 142 I	i	30.808	5. 783	15. 789	1.00 2.27	İ	Ň
25		576	C15 142 I	-	36.036	9. 591	5. 142		-	
	ATOM			i					Ī	Ç
	MOTA	577	05 142 I	1	35. 840	8.729	4.291	1.00 11.38	I	0
	ATOM	578	N6 142 I	1	36.066	10.898	4.897	1.00 6.65	I	N.
	MOTA	579	C16 142 I	1	37.992	7.122	11.404	1.00 12.61	I	C
	ATOM	580	N5 142 I	1	36.563	5. 104	11.541	1.00 16.04	I	N
30	ATOM	581	C12 142 I	1	37.009	6.187	10.696	1.00 13.72	I	C
	ATOM	582	S1 142 I	ī	36.372	3. 520	10.904	1.00 19.57	Ī	Š
	ATOM	583	04 142 I	i	35.680	3. 703	9.668	1.00 20.77	i	Ö
	ATOM	584	03 142 I	1	35. 734	2.849	11.987	1.00 18.06	I	ő
				-					=	
	ATOM	585	C29 142 I	1	37.958	2.804	10.578	1.00 19.56	Ī	C
<i>35</i>	ATOM	586	C30 142 I	1	38.640	3.369	9.320	1.00 26.52	I	C
	ATOM	587	N2 142 I	1	29.435	7.589	15.802	1.00 2.52	, I	N
	ATOM	588	C22 -142 I	1	40. 253	6.007	11.120	1.00 13.78	I	С
	ATOM	589	C17 142 I	1	39.172	6.378	11.945	1.00 12.60	I	С
	ATOM	590	C18 142 I	1	39. 260	5.996	13.297	1.00 13.94	I	C
	ATOM	591	C19 142 I	i	40.362	5. 257	13. 785	1.00 14.86	Ī	č
40	ATOM	592	C20 142 I	i	41.430	4. 868	12.954	1.00 14.31	Ĭ	č
				_					=	
	ATOM	593	C21 142 I	1	41.350	5. 273	11.615	1.00 12.85	I	C
	ATOM	594	C27 142 I	1	45.001	3.681	13.710	1.00 18.09	1	Ç
	ATOM	595	C28 142 I	1	43.904	4.357	13. 114	1.00 16.71	I	С
	ATOM	596	C23 142 I	1	42.573	4.077	13.477	1.00 15.00	I	C
45	ATOM	597	C24 142 I	1	42.385	3.038	14.411	1.00 17.61	I	С.
	ATOM	598	C25 142 I	1	43.473	2.352	15.002	1.00 18.20	Ī	· Č
	ATOM	599	C26 142 I	i	44. 803	2.684	14.686	1.00 18.30	Ī	č
									_	
	ATOM	600	OH2 WAT W	2	21.173	10.598	10. 229	1.00 2.46	<u>77</u>	0
50	ATOM	601	OH2 WAT W	3	41.236	15.367	9. 038	1.00 9.89	W	0
50	MOTA	602	W TAW SHO	11	39. 351	17.218	6. 324	1.00 2.98	W	0
	MOTA	603	OH2 WAT W	16	28.951	6.415	21.747	1.00 8.07	₩	0.
	ATOM	604	OH2 WAT W	17	36.844	8.297	21.377	1.00 8.16	₩	0
	ATOM	605	OH2 WAT W	19	29.393	7.360	5. 894	1.00 10.69	₩	ŏ
	ATOM	606	OH2 WAT W	22	40.618	0.517	20.963	1.00 12.88	W.	Ő
<i>55</i>			OH2 WAT W							
33	ATOM	607		41	20.474	8.594	8.383	1.00 2.92	W	0
	ATOM	608	OH2 WAT W	43	33. 354	15.140	0.160	1.00 4.35	W	0

	ATOM	609	OH2	WAT	W	52	41.064	11.721	9. 444	1.00 11.25	W	0
	ATOM	610		WAT		55	31.078	4.628	20.839	1.00 19.21	W	0
_	MOTA	611		WAT		73	31.424	2.387	23.087	1.00 16.83	₩	0
5	MOTA	612		WAT		90	34. 297	16.904	-1.657	1.00 8.85	¥	0
	MOTA	613		WAT		92	34. 705	15.756	12.306	1.00 4.39	W	0
	ATOM	614		WAT		97	32.609	3.792	18.618	1.00 10.06	W	Ō
	ATOM	615		WAT		113	29.869	9.653	-1.073	1.00 13.89	W	Ō
	ATOM	616		WAT		115	27.599	8.830	20.107	1.00 6.50	Ÿ	Õ
10	ATOM	617		WAT			35.741	6.643	18.640	1.00 13.65	Ϋ́	Õ
	ATOM	618		WAT		132	38. 202	7.871	19.316	1.00 21.67	Ÿ	Ö
	ATOM	619		WAT			39.823	6.712	17.466	1.00 16.74	W	ŏ
	ATOM .	620		WAT		167	45.149	0.561	24.578	1.00 31.52	 W	Ŏ
	ATOM	621		WAT		169	26.773	3.657	5.750	1.00 20.71	Ÿ	Ŏ
15	ATOM	622		WAT			33.910	15.111	-3.886	1.00 26.31	₩	Õ
	ATOM	623	OH2				22.630	6.394	5. 218	1.00 17.19	 \	ŏ
	ATOM	624		WAT			41.408	8.993	17.609	1.00 38.16	¥	Ŏ
	ATOM	625		WAT		208	28.879	7.652	-2.728	1.00 25.34	¥	Ō
	ATOM	626		WAT		211	40.187	8.447	20.906	1.00 29.06	W	Ö
20	MOTA	627	OH2	WAT	¥	223	41.040	14.573	12.781	1.00 21.90	W	0
	ATOM	628	OH2	WAT	¥	279	28.609	-2.348	19.633	1.00 16.06	W	0
	ATOM	629	OH2	WAT	₩	287	27.925	-2.786	17.100	1.00 28.20	₩	0
	ATOM	630		WAT		292	29. 248	10.608	15.460	1.00 4.55	W	0
	ATOM	631		WAT		294	34.711	11.933	8.259	1.00 18.60	. W	0
25	ATOM	632		WAT			36.499	8.641	1.251	1.00 16.68	W	0
	ATOM	633		WAT		302	33.346	8.640	3.104	1.00 31.25	¥	0
	ATOM	634		WAT			38.929	-1.342	19.839	1.00 27.36	¥	0
	MOTA	635		WAT		319	24.988	4.849	4.100	1.00 39.67	W	0
	ATOM	636		WAT			38.601	-1.114	16.775	1.00 24.51	W	0
30	ATOM	637		WAT			39.896	8. 788	8. 314	1.00 40.66	W	0
	ATOM	638		WAT		335	44.187	13.742	12.663	1.00 29.57	W	0
	ATOM	639		WAT			27. 275	6.739	2.616	1.00 23.30	₩	0
		640		WAT		343	34.463	4.647	6.797	1.00 34.65	₩	0
	ATOM	641		WAT			35.750	-0.120	8.819	1.00 35.63	W	0
35	ATOM	642_		WAT WAT		370 388	38. 235	6.328	7. 390	1.00 28.92	W	0
	MOTA	643 644		WAT			42.864	7.185	8.805	1.00 39.53	W	0
	ATOM ATOM	645		WAT			31.573 41.353	8. 191 4. 533	0.869 8.074	1.00 38.78 1.00 36.07	W	0
	ATOM	646	กบา	WAT	H W	401	29.643	-0.022	10. 304	1.00 38.02	W W	0
40	ATOM	647		WAT		433	44. 330	8. 280	11. 373	1.00 43.93	W	0
40	ATOM	648		WAT			29.301	-0.100	7. 598	1.00 43.24	W.	0
	ATOM	649		WAT			38.570	9.454	-0.831	1.00 41.14	W.	Ö
	ATOM	650		WAT		447	42.864	11.302	1.981	1.00 29.17	₩.	0
	ATOM	651		WAT			44.322	12.556	8.806	1.00 50.64	W.	Ö
45	ATOM	652		WAT			41.748	10.947	19.697	1.00 41.61	Ϋ́	Ö
45	ATOM	653		WAT			38. 170	6.670	2. 158	1.00 38.30	Ÿ	0
	END	V 0 0	0	****	"			0.0.0	5. 100	1.00 00.00	ı	J
	a 7 4-5											

Claims

1. A compound of Formula (1):

wherein

5

10

35

40

45

50

55

R₁ represents a group selected from the following formulae:

[wherein R_8 represents an amino group, an aminomethyl group or

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acyl group or an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety, R_{10} represents an amino group, one of X and Y represents =CH- and the other represents =N-)];

 $\rm R_2$ represents a hydrogen atom or a linear or branched $\rm C_1\text{-}C_6$ alkyl group;

R₃ represents:

or

$$-(CH_2)_m-R_{11}$$

[wherein m represents an integer of 1 to 6, and R_{11} represents:

-CONH₂,

Fl₁₂ ---N---CONH₂

(wherein R₁₂ represents a hydrogen atom or a linear or branched C₁-C₃ alkyl group) or

R₄ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

R₅ represents a linear or branched C₁-C₆ alkyl group or -CH₂-R₁₃ (wherein R₁₃ represents an optionally substituted aryl group or an optionally substituted heterocyclic group);

R₆ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group; and

 R_7 represents an optionally substituted linear or branched C_1 - C_6 alkyl group or -SO₂- R_{14} (wherein R_{14} represents an optionally substituted linear or branched C_1 - C_8 alkyl group) or a tautomer or enantiomer of the compound, or a hydrate or pharmaceutically acceptable salt thereof.

2. The compound according to claim 1, wherein. R_5 in Formula (1) is a linear or branched C_1 - C_6 alkyl group or- CH_2 - R_{13} , in which R_{13} represents a group selected from the following formulae:

R₁₅ R₁₆ R₁₇

[wherein

5

10

15

20

25

30

35

40

45

50

 R_{15} represents a hydrogen atom, an optionally substituted aryl group, a C_1 - C_3 alkyl group which may be substituted with a halogen atom, a linear or branched C_1 - C_3 alkoxy group, a halogen atom, an arylcarbonyl group, an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, a nitro group, or an amino group;

 R_{16} represents a hydrogen atom or a linear or branched C_1 - C_6 alkyl group;

 R_{17} represents a hydrogen atom, a hydroxy group, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkoxy group, -O-(CH_2)_n-OH (wherein n represents an integer of 1 to 5), -O-(CH_2)_p-COOH (wherein p represents an integer of 1 to 5), -O-(CH_2)_q-NH₂ (wherein q represents an integer of 1 to 5),

(wherein R_{19} represents a hydrogen atom, a hydroxy group, a carboxyl group, a linear or branched C_1 - C_6 alkoxy group, or an alkoxycarbonyl group having a linear or branched C_1 - C_6 alkoxy group, or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety), or -OSO₂- R_{20} (wherein R_{20} represents a linear or branched C_1 - C_6 alkyl group or a benzyl group); and

 R_{18} represents a hydrogen atom, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkyl-sulfonyl group, or an optionally substituted arylsulfonyl group].

55 3. The compound according to claim 1 or 2, wherein R₇ in Formula (1) is a linear or branched C₁-C₆ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 3, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a linear or branched C_1 - C_3 alkyl group or an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)] or

15 [wherein R₁₄ represents:

5

20

45

- (i) an optionally substituted linear or branched C_1 - C_6 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety); or (ii) - CH_2 - R_{23} (wherein R_{23} represents an optionally substituted phenyl group)].
- 4. The compound according to any one of claims 1 to 3, wherein R₃ in Formula (1) is a group of the following formula:

or

[wherein m represents an integer of 1 to 3, and R₁₁ represents:

(wherein R₁₂ represents a hydrogen atom or a methyl group) or

50 5. The compound according to any one of claims 1 to 4, wherein R₁ in Formula (1) is a group selected from the following formulae:

$$- R_8 \qquad - N_{H_2} \qquad N_{H$$

[wherein R₈ represents:

5

20

35

40

45

- (wherein R₉ represents a hydrogen atom, an amino group, a hydroxy group, an acyl group, or an alkoxycarbonyl group having an optionally substituted linear or branched C₁-C₆ alkyl as its alkyl moiety)].
 - **6.** The compound according to any one of claims 1 to 5, wherein R₂ in Formula (1) is a hydrogen atom or a linear or branched C₁-C₃ alkyl group.
 - 7. The compound according to any one of claims 1 to 6, wherein R₄ in Formula (1) is a hydrogen atom or a linear or branched C₁-C₃ alkyl group.
- 8. The compound according to any one of claims 1 to 6, wherein R₆ in Formula (1) is a hydrogen atom or a linear or branched C₁-C₃ alkyl group.
 - 9. The compound according to claim 1, wherein R₃ in Formula (1) is -(CH₂)_m-R₁₁ (wherein m and R₁₁ are as defined in claim 1).
- 30 10. The compound according to claim 1, wherein in Formula (1), R₃ is a group of the following formula:

and R₇ is -SO₂-R₁₄ (wherein R₁₄ is as defined in claim 1).

11. The compound according to claim 1, wherein in Formula (1), R₁ is a group selected from the following formulae:

$$R_8$$
 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2

[wherein R₈ represents:

55

10

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isobutyryl group, an isobutyryl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group)];

R₂ is a hydrogen atom or a methyl group;

R₃ is a group of the following formula:

15

20

25 0

35

40

50

55

R₄ is a hydrogen atom or a methyl group;

 R_5 is a linear or branched C_1 - C_4 alkyl group or -CH $_2$ - R_{13} [wherein R_{13} represents a group selected from the following formulae:

45 (wherein

 R_{15} represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or an amino group;

 R_{17} represents a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C_1 - C_3 alkoxy group, -O-(CH_2) $_n$ -OH (wherein n represents an integer of 1 to 3), -O-(CH_2) $_p$ -COH (wherein p represents an integer of 1 to 3), -OSO $_2$ - R_{20} (wherein R_{20} represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group, or a 3- or 4-carboxybenzyloxy group; and

 R_{18} represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group)]; R_6 is a hydrogen atom or a methyl group; and

 $\rm R_7$ is a linear or branched $\rm C_1\text{-}C_4$ alkyl group or a group of the following formula:

EP 1 364 960 A1

[wherein k represents an integer of 0 to 2, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group)] or

-SO₂-R₁₄

[wherein R_{14} represents a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C_1 - C_4 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)].

12. The compound according to claim 1. which is selected from the following formulae:

- 15 13. A pharmaceutical composition comprising the compound according to claim 1.
 - 14. An antithrombotic agent comprising the compound according to claim 1.

25

30

35

45

- 15. A blood coagulation factor VIIa inhibitor comprising the compound according to claim 1.
- 16. A crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor.
- 17. The crystal according to claim 16, wherein the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined in claim 1).
- **18.** A method for preparing a crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, which comprises the following steps (i) to (iii):
 - (i) preparing human factor VIIa/human soluble tissue factor, which is co-crystallizable with the low-molecular weight reversible factor VIIa inhibitor;
 - (ii) preparing a concentrated sample for crystallization to add the low-molecular weight reversible factor VIIa inhibitor; and
 - (iii) obtaining the crystal of the complex: between human factor VIIa/human soluble tissue factor and the low-molecular weight reversible factor VIIa inhibitor from the concentrated sample for crystallization prepared in (ii) to add a seed crystal of a complex between a low-molecular weight irreversible or reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor.
- 19. The method according to claim 18, wherein the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined in claim 1).
 - 20. A medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, wherein said data are obtainable by X-ray crystal structure analysis of the crystal according to claim 16 or 17.
 - 21. A method for computationally designing a low-molecular weight reversible factor VIIa inhibitor using the coordinate data according to claim 20.
- 22. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Asp60 side chain, Tyr94 side chain and Thr98 main chain of the human factor VIIa H chain.
 - 23. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with Lys192 side chain of the human factor VIIa H chain.
 - 24. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Val170E, Gly170F, Asp170G, Ser170H, Pro17I and Gln217 of the human factor VIIa H chain.

- 25. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with the S4 subsite of the human factor VIIa H chain through a hole extending from the S4 site to the S4 subsite.
- 26. A low-molecular weight reversible factor VIIa inhibitor designed by the method according to any one of claims 21 to 25.
 - 27. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa:

Class [A-1]:

10

15

20

25

30

35

40

45

50

 H_2N H_2N X_1 X_2 X_3 X_4 X_2 X_3

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

(wherein R₂₃ represents a 6 or 5-membered aromatic ring containing a heteroatom(s)).

28. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite of human factor VIIa:

Class IB-1]:

The state of the s

ST N S N ST N S N ST

Class [B-2]:

Class [B-3]:

5

10

15

25

30

40

45

$$\begin{cases} ---R_{25}-R_{24} & \begin{cases} ----R_{25} & \\ -----R_{25} & \end{cases} \end{cases}$$

(wherein R₂₄ represents the same partial structures defined as Class [B-2], and R₂₅ represents a 6 or 5-membered aromatic ring containing a heteroatom(s))
Class [B-4]:

$$\begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{$$

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]).

29. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site of human factor VIIa:

Class [C-1]:

$$R_{28}$$
 R_{28} R_{28} R_{28}

$$A_{28}$$
 A_{3} A_{28} A_{28} A_{3}

(wherein X₃ represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom(s))
 Class [C-2]:

(wherein X_4 represents NH, S or O, and X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} each independently represent N or CH).

30. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa, any one of the partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite, and any one of the partial structures shown in the following Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site:

Class [A-1]:

$$H_2N$$
 H_2N X_1 H_2N X_1 X_2 X_3

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \end{array} = \begin{array}{c} \\$$

(wherein R_{23} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)); Class [B-1]:

Class [B-2]:

EP 1 364 960 A1

Class [B-3]:

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(wherein R_{24} represents the same partial structures defined as Class [B-2], and R_{25} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)) Class [B-4]:

$$S = \frac{1}{N} =$$

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]); and Class [C-1]:

$$R_{28}$$
 R_{28}
 R_{28}
 R_{28}

$$R_{28}$$
 X_3 B_{28} X_3

(wherein X_3 represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom(s)) Class [C-2]:

(wherein X_4 represents NH, S or O, and X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} each independently represent N or CH).

Fig. 1

Fig. 2

Fig. 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/00883

	, ,				
	IFICATION OF SUBJECT MATTER	: : / !			
Int.C	C1 ⁷ C07K5/062, C07K5/065, C07K	65/078, C07K14/745, G01	N33/15,		
	G01N33/68, G06F17/50				
According to	International Patent Classification (IPC) or to both na	tional classification and IPC			
	B. FIELDS SEARCHED				
Minimum do	cumentation searched (classification system followed	by classification symbols)			
Int.C	Cl ⁷ C07K5/062, C07K5/065, C07K	5/078, CO7K14/745, GO1	133/15,		
	G01N33/68, G06F17/50				
Documentation	on searched other than minimum documentation to the	extent that such documents are included	in the fields searched		
	ata base consulted during the international search (nam				
REGIS	STRY(STN), CA(STN), MEDLINE(ST	N), WPI(DIALOG), BIOSIS	(DIALOG)		
	The containing of the containi				
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
A	WO 00/75172 A2 (Aventis Phar		1-30		
	14 December, 2000 (14.12.00),				
		200053976 A 200106005 A			
		1189929 A2			
A	WO 00/58346 Al (Sanofi-Synth	elabo),	1-30		
	05 October, 2000 (05.10.00), & FR 2791683 A1 & AU	200033017 A			
	G EN 2,51005 AI & AU	20000001 A			
A	WO 00/41531 A2 (Genentech),		1-30		
	20 July, 2000 (20.07.00),	200022451 7			
	& EP 1144373 A2	200033451 A 200102508 A3			
	2 10 200100402 A 00	_00108000 NO			
× Further	r documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "T" later document published after the international filing date of					
consider	considered to be of particular relevance understand the principle or theory underlying the invention				
"E" earlier document but published on or after the international filing "X" document of particular relevance; the claimed invention cannot be					
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone					
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is					
	O' document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such				
"P" document published prior to the international filing date but later "&" document member of the same patent family					
than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report					
10 May, 2002 (10.05.02) 21 May, 2002 (21.05.02)					
	·	·			
Name and mailing address of the ISA/ Au		Authorized officer			
Japanese Patent Office					
Facsimile No	,	Telephone No.	ĺ		
- 0001111111111111111111111111111111111	/·				

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/00883

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00/15658 A1 (Aventis Pharma Deut GmbH.), 23 March, 2000 (23.03.00), & EP 987274 A1 & AU 9959723 A & NO 200101293 A & BR 9913742 A & CZ 200100914 A3 & EP 1114061 A1 & US 6287794 B1 & KR 2001075130 A & ZA 200101861 A	1-30
A	DENNIS, M. S. et al., Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000, Vol.404, No.6777, pages 465 to 470	1-30
A	PIKE, A. C. et al., Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA. 1999, Vol.96, No.16, pages 8925 to 8930	1-30

Form PCT/ISA/210 (continuation of second sheet) (July 1998)