

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Projeto Integrador de Engenharias

Balão Cativo de Monitoramento

Autor: Grupo 1

Orientador: Prof. Dr. Daniel Muñoz

Brasília, DF

2015

Grupo 1

Balão Cativo de Monitoramento

Projeto realizado durante a disciplina de Projeto Integrador 1 dos cursos de Engenharias da Universidade de Brasília.

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Orientador: Prof. Dr. Daniel Muñoz

Brasília, DF 2015

Balão Cativo de Monitoramento/ Grupo 1. – Brasília, DF, 2015-Grupo 1 11 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Daniel Muñoz

Projeto Integrador 1 de Engenharias – Universidade de Brasília - UnB

Faculdade UnB Gama - FGA , 2015. 1. Monitoramento. 2. Balão. I. Prof. Dr. Daniel Muñoz. II. Universidade de Brasília. III. Faculdade UnB Gama. IV. Balão Cativo de Monitoramento

CDU 02:141:005.6

Lista de ilustrações

Fig	ura 1	. –	Local	da	Estação Solo	Ο.																									7
-----	-------	-----	-------	----	--------------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Lista de tabelas

Tabela 1 – Identificação dos Critérios de Risco			8
---	--	--	---

Sumário

1	INTRODUÇÃO	6
1.1	Detalhamento do Problema	6
1.2	Justificativa	6
1.3	Objetivos	6
1.3.1	Objetivos Gerais	6
1.3.2	Objetivos Específicos	6
1.4	Detalhamento do Problema	6
1.5	Definição do Escopo	6
1.6	Metodologia de Gerenciamento de Projeto	6
1.7	Organização do Documento	6
2	DESENVOLVIMENTO	7
2.1	Proposta da Solução/Funcionamento do Sistema	7
2.2	Subprojeto de Estrutura e Sistema Aéreo	7
2.3	Subprojeto da Estação de Solo	7
2.3.1	Estrutura	7
2.3.2	Identificação de Risco	7
2.3.2.1	Quantificação do Risco	8
2.4	Subprojeto da Eletrônica Embarcada	ç
2.5	Consumo Energético	ç
2.6	Integração da Solução	Ğ
3	CONCLUSÕES	10
	Potovôncias	11

1 Introdução

- 1.1 Detalhamento do Problema
- 1.2 Justificativa
- 1.3 Objetivos
- 1.3.1 Objetivos Gerais
- 1.3.2 Objetivos Específicos
- 1.4 Detalhamento do Problema
- 1.5 Definição do Escopo
- 1.6 Metodologia de Gerenciamento de Projeto
- 1.7 Organização do Documento

2 Desenvolvimento

- 2.1 Proposta da Solução/Funcionamento do Sistema
- 2.2 Subprojeto de Estrutura e Sistema Aéreo
- 2.3 Subprojeto da Estação de Solo

2.3.1 Estrutura

Algum texto, não sei qual ainda.. E a imagem do local da estação:

Figura 1 – Local da Estação Solo

2.3.2 Identificação de Risco

O sistema SUM, como sabemos, será operado por um operador que terá como responsabilidade observar possíveis casos de roubos a carros. A decisão final sobre a possibilidade de ser um roubo real ou não, cabe ao operador, que terá apoio do sistema para chegar a conclusão final.

Como o estacionamento da Universidade de Brasília - Campus Gama recebe um número muito grande de carros, é impossível responsabilizar apenas um operador para observar todos os carros ao mesmo tempo, verificando as possibilidades de possíveis roubos ocorrendo, inclusive, em paralelo.

Para solucionar este problema, o sistema SUM apoiará o operador na escolha de casos suspeitos a serem observados. Ou seja, o sistema apresentará ao operador todos os casos de possíveis roubos ocorrendo no momento, especificando os casos mais importantes e menos importantes.

Utilizando o sistema, o operador saberá exatamente quais imagens merecem atenção e até quais imagens merecem mais atenção que outras imagens, dependendo da quantificação do risco, que é feita pelo sistema. Esta quantificação é feita a partir da observação de critérios que identifiquem um possível caso de roubo a carro.

2.3.2.1 Quantificação do Risco

Com o objetivo de selecionar as imagens mais importantes a serem analisadas pelo operador, o sistema SUM deverá realizar uma quantificação de critérios que levem a definição de um possível caso de roubo a carro. Estes critérios foram obtidos após a análise de inúmeras imagens que registraram casos de roubo a carros em estacionamentos universitários.

Os critérios possuem pesos para quantificação, dependendo do quão crítico é o critério analisado. A ponderação dos critérios pode ser observada na tabela a seguir:

Critérios	Descrição	Peso					
	Distância de 2m, ou menos,						
Proximidade	entre um suspeito e o carro						
	analisado.						
Dormanância právima	Tempo em que o suspeito						
Permanência próximo	permanece ao lado do carro	2					
ao carro.	analisado ultrapassa os 30 segundos.						
Contato físico com a	O suspeito mantem contato físico com	3					
porta.	a porta por mais de 10 segundos.	3					
Contato físico com o	O suspeito mantem contato físico com o						
Porta-Malas	porta-malas do carro analisado por mais de						
i orta-Maias	20 segundos.						
Alarme	O alarme do carro analisado está disparando.	5					

Tabela 1 – Identificação dos Critérios de Risco

Em momento algum o sistema chegará a conclusão de que é um roubo em execução ou não, ele apenas apontará imagens que se enquadram em um possível caso de roubo a carros. A identificação das imagens mais importantes será feita a partir da geração de um Ranking de possíveis casos. Este Ranking será gerado a partir da somatória dos critérios identificados em cada caso.

O Ranking de imagens será apresentado ao operador na forma de um "mosaico" de imagens, que receberão tons de amarelo a vermelho, dependendo de sua importância no momento. O operador poderá selecionar a imagem para poder controlar a câmera e

visualizar a imagem da forma que desejar, verificando se o caso se refere a um caso de roubo ou apenas um engano.

Para captação destes critérios, o sistema deverá possuir sensores de calor e proximidade, alem das imagens obtidas pelas câmeras.

- 2.4 Subprojeto da Eletrônica Embarcada
- 2.5 Consumo Energético
- 2.6 Integração da Solução

3 Conclusões

Referências