

Documento de Arquitetura

Unidade de Operações Aritméticas

Universidade Estadual de Feira de Santana

Compilação 1.0

Histórico de Revisões

Date	Descrição	Autor(s)	
25/06/2014	Concepção do documento	joaocarlos	
15/10/2014	Adição da subseção de acesso à memória	Weverson Gomes	

SUMÁRIO

ı	intro	odução	4
	1	Propósito do Documento	4
	2	Stakeholders	4
	3	Visão Geral do Documento	4
	4	Definições	5
	5	Acrônimos e Abreviações	5
2	Visã	o Geral da Arquitetura	6
	1	Restrições	6
	2	Codificação das instruções	6
	3	Descrição dos Componentes	6
	4	Diagrama de Classe (Interface)	6
	5	Definições de Entrada e Saída	6
	6	Datapath Interno	7
3	Desc	rição da Arquitetura	8
	1	Unidade de Processamento	8
		1.1 Diagrama de Classe	8
		1.2 Definições de Entrada e Saída	8
		1.3 Datapath Interno	9
	2	Acesso à memória	0
		2.1 Diagrama de Classe	0
		2.2 Definições de entrada e saída	0
	3	Interface de Comunicação	1
		3.1 Diagrama de Classe	1

3.2	Definições de Entrada e Saída	11
3.3	Máquina de Estados	12
3.4	Diagrama de Temporização	13

1 Introdução

1. Propósito do Documento

Este documento descreve a arquitetura do projeto Unidade de Operações Aritméticas, incluindo especificações do circuitos internos de cada componente. Ele também apresenta diagramas de classe, definições de entrada e saída. O principal objetivo deste documento é definir as especificações do projeto Unidade de Operações Aritméticase prover uma visão geral completa do mesmo.

2. Stakeholders

Nome	Papel/Responsabilidades
Manuelle Macedo	Gerência
Patrick	Análise
Dilan Nery, Lucas Almeida, Mirela Rios, Cabele e Vinícius Santana	Desenvolvimento
Antônio Gabriel e Weverson Go- mes	Testes
Tarles Walker e Anderson Queiroz	Implementação

3. Visão Geral do Documento

O presente documento é apresentado como segue:

- Capítulo 2 Este capítulo apresenta uma visão geral da arquitetura, com foco em entrada e saída do sistema e arquitetura geral do mesmo;
- Capítulo 3 Este capítulo descreve a arquitetura interna do IP a partir do detalhamento dos seus componentes, definição de portas de entrada e saída e especificação de caminho de dados.

4. Definições

Termo	Descrição	
RS232	Protocolo de comunicação serial utilizado em aplicações que requerem transmissão de dados entre elementos conectados à um mesmo canal.	

5. Acrônimos e Abreviações

Sigla	Descrição
TBD	To be defined (A ser definido)

2 | Visão Geral da Arquitetura

1. Restrições

· Restrições -

2. Codificação das instruções

A codificação das instruções é de fundamental importância para o processamento das operações.

3. Descrição dos Componentes

A unidade de processamento a ser desenvolvida é composta a partir dos seguintes componentes:

- Serial Controller Controlador para comunicação com módulo de transmissão serial através do protocolo RS232.
- Interface Control Interface de controle, responsável por fazer a leitura correta das informações da serial e transmiti-las para a unidade de processamento.
- Processing Unit Unidade responsável pela realização das operações e armazenamento do resultado.

4. Diagrama de Classe (Interface)

5. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
rx_in	1	entrada	Dado serial da RS232.
result_data_out	8	saída	Representação do resultado da operação.
overflow_out	1	saída	Sinal indicador de overflow aritmético.

6. Datapath Interno

3 | Descrição da Arquitetura

1. Unidade de Processamento

1.1. Diagrama de Classe

1.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição	
clock_in	1	entrada	Clock principal do sistema.	
reset_in	1	entrada	Sinal de reset geral do sistema.	
data_a_in	8	entrada	Dado do primeiro operando.	
data_b_in	8	entrada	Dado do segundo operando.	
operation_in	TBD	entrada	Código da operação.	
result_data_out	8	saída	Representação do resultado da operação.	
continua na próxima página				

continuação da página anterior					
Nome	Tamanho	Direção	Descrição		
overflow_out	1	saída	Sinal indicador de overflow aritmético.		

1.3. Datapath Interno

2. Acesso à memória

2.1. Diagrama de Classe

Memory Execute

+ zero : input bit

+ address : input bit

+ writeData : input bit[TBD]

+ memRead : input bit

+ memWrite : input bit

+ readData()

+ writeToRegister()

2.2. Definições de entrada e saída

Nome	Tamanho	Direção	Descrição
zero	1	entrada	Executa branch quando é zero.
address	TBD	entrada	Endereço no qual o dado deve ser escrito.
memRead	1	entrada	Sinal proveniente da UC que abilita leitura.
memWrite	1	entrada	Sinal proveniente da UC que abilita escrita.
writeData	1	entrada	O dado a ser escrito na memória.
readData	TBD	saída	Dado a ser utilizado pelo MUX do "Write Back".
writeToRegister	TBD	saída	Dado do segundo operando.

3. Interface de Comunicação

3.1. Diagrama de Classe

3.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
rx_data_ready_in	1	entrada	Indica que o dado foi recebido pelo controle RS232.
rx_data_in	8	entrada	Dado proveniente da transmissão.
data_a_out	8	saída	Dado do primeiro operando.
data_b_out	8	saída	Dado do segundo operando.
operation_out	TBD	saída	Código da operação.

3.3. Máquina de Estados

IPPR@CESS

3.4. Diagrama de Temporização

