# **Device Modeling Report**

COMPONENTS: CMOS OPERATIONAL AMPLIFIER

PART NUMBER: NJU7036E

MANUFACTURER: NEW JAPAN RADIO



#### **Pin Configuration**



#### Spice Model (1/2)

```
*PART NUMBER: NJU7036E
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP
*All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
.SUBCKT NJU7036E 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X UA 67142
                        NJU7036E SUB
XUB 98141012
                        NJU7036E SUB
R<sup>-</sup>Rss1
           45
                        0.1u
R<sup>-</sup>Rss2
           10 11
                        0.1u
           1 14
                        0.1u
R Rdd
R ROUTA
           23
                        0.1u
R ROUTB
           12 13
                        0.1u
.ENDS
.SUBCKT NJU7036E SUB INPUT- INPUT+ VDD VSS OUTPUT
M M1
          3 INPUT- 2 VDD MbreakPD3
                                       L=6u W=8.5m
          4 INPUT+ 2 VDD MbreakPD2
M M2
                                       L=6u W=8.5m
M M3
          2 1 VDD VDD MbreakPD
          5 1 VDD VDD MbreakPD
M M4
M^{-}M5
          6 1 VDD VDD MbreakPD
M^{-}M6
          1 1 VDD VDD MbreakPD
          5 5 VSS VSS MbreakND
M M7
M M8
          5 4 VSS VSS MbreakND
          3 3 VSS VSS MbreakND1
                                       L=6u W=100m
M M9
          4 3 VSS VSS MbreakND1
                                       L=6u W=100m
M M10
           1688 MbreakND
M M11
M_M12
           6 6 VSS VSS MbreakND
M^-M13
           7 5 VSS VSS MbreakND1
           7 7 VDD VDD MbreakPD
M M14
M M15
           OUTPUT 7 10 10 MbreakPD1
                                       L=6u W=6
           9 4 VSS VSS MbreakND2
M M16
                                       L=6u W=15
V V1
          OUTPUT 9
                          0.1412
V_V2
                          0.0563
          VDD 10
R_R1
          8 VSS
                          10
R R2
          INPUT+ VSS
                          1E12
R R3
          INPUT- VSS
                          3E12
R R4
          VDD VSS
                          3.1976k
C_C1
          OUTPUT 4
                          525p
```

#### Spice Model (2/2)

```
.model MbreakND NMOS (LEVEL=3 L=6u W=5m VTO=0 RS=10.000E-3
```

- + RD=10.000E-3 RDS=1E6 TOX=2.0E-6 RG=5 RB=1.0000E-3
- + KP=5.1E-6)
- .model MbreakND1 NMOS (LEVEL=3 L=6u W=5m VTO=0 RS=10.000E-3
- + RD=10.000E-3 RDS=1.2E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakND2 NMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.000E-3
- + RDS=1.0000E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + CBD=50E-8 KP=10E-6)
- .model MbreakPD PMOS (LEVEL=3 L=6u W=5m VTO=0 RS=10.000E-3
- + RD=10.00E-3 RDS=1.00E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .MODEL MbreakPD1 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.000E-3
- + RDS=1.00E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3 KP=10E-6 )
- .MODEL MbreakPD2 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.00E-3
- + RDS=1.0E6 TOX=2.0000E-6 RG=5 RB=1.000E-3 KP=10E-6)
- .MODEL MbreakPD3 PMOS (LEVEL=3 VTO=-2.12m RS=10.000E-3 RD=10.00E-3
- + RDS=1.0E6 TOX=2.000E-6 RG=5 RB=1.000E-3 KP=10E-6 )
- .ENDS NJU7036E SUB
- \*\$

### **Equivalent Circuit**



## **MOSFET MODEL**

| PSpice model parameter | Model description                                  |
|------------------------|----------------------------------------------------|
| LEVEL                  |                                                    |
| L                      | Channel Length                                     |
| W                      | Channel Width                                      |
| KP                     | Transconductance                                   |
| RS                     | Source Ohmic Resistance                            |
| RD                     | Ohmic Drain Resistance                             |
| VTO                    | Zero-bias Threshold Voltage                        |
| RDS                    | Drain-Source Shunt Resistance                      |
| TOX                    | Gate Oxide Thickness                               |
| CGSO                   | Zero-bias Gate-Source Capacitance                  |
| CGDO                   | Zero-bias Gate-Drain Capacitance                   |
| CBD                    | Zero-bias Bulk-Drain Junction Capacitance          |
| MJ                     | Bulk Junction Grading Coefficient                  |
| PB                     | Bulk Junction Potential                            |
| FC                     | Bulk Junction Forward-bias Capacitance Coefficient |
| RG                     | Gate Ohmic Resistance                              |
| IS                     | Bulk Junction Saturation Current                   |
| N                      | Bulk Junction Emission Coefficient                 |
| RB                     | Bulk Series Resistance                             |
| PHI                    | Surface Inversion Potential                        |
| GAMMA                  | Body-effect Parameter                              |
| DELTA                  | Width effect on Threshold Voltage                  |
| ETA                    | Static Feedback on Threshold Voltage               |
| THETA                  | Mobility Modulation                                |
| KAPPA                  | Saturation Field Factor                            |
| VMAX                   | Maximum Drift Velocity of Carriers                 |
| XJ                     | Metallurgical Junction Depth                       |
| UO                     | Surface Mobility                                   |

## Maximum Output Voltage – Vон

## Simulation result



### Evaluation circuit



## Comparison table

(Condition: Isource=250mA)

| Parameter              | Measurement | Simulation | %Error |
|------------------------|-------------|------------|--------|
| <b>V</b> он <b>[V]</b> | 2.850       | 2.846      | -0.14  |

## Maximum Output Voltage - Vol

## Simulation result



### Evaluation circuit



## Comparison table

(Condition: Isink=250mA)

| Parameter | Measurement | Simulation | %Error |
|-----------|-------------|------------|--------|
| Vol[V]    | 0.150       | 0.150      | 0.00   |

## Input Offset Voltage - Vio

## Simulation result



## Evaluation circuit



### Comparison table

| Parameter | Measurement | Simulation | %Error |
|-----------|-------------|------------|--------|
| Vıo [mV]  | 2.000       | 2.001      | 0.05   |

## Input Current - Ib, Ibos

## Simulation result



### Evaluation circuit



### Comparison table

| Parameter           | Measurement | Simulation | %Error |
|---------------------|-------------|------------|--------|
| I <sub>b</sub> [pA] | 1.000       | 1.000      | 0      |
| Ibos[pA]            | 1.000       | 1.000      | 0      |

### Slew Rate - SR

## Simulation result



### **Evaluation** circuit



### Comparison table

(Condition: Gv=0dB, CL=10pF, RL=8 $\Omega$ , Vin=0.5Vpp)

| Parameter | Measurement | Simulation | %Error |
|-----------|-------------|------------|--------|
| SR[V/us]  | 0.500       | 0.496      | -0.80  |

## Large Signal Voltage Gain - Av

## Simulation result



### **Evaluation Circuit**



### Comparison Table

(Condition: RL=8Ω, VO=VDD/2)

| Parameter | Measurement | Simulation | %Error |
|-----------|-------------|------------|--------|
| Av[dB]    | 90.000      | 93.847     | 4.27   |

## Unity Gain Bandwidth - fT

### Simulation result



### **Evaluation Circuit**



### Comparison Table

(Condition: CL=10pF, RL=8 $\Omega$ )

| Gv=6[dB] | Measurement | Simulation | %Error |
|----------|-------------|------------|--------|
| f⊤ [MHz] | 0.400       | 0.404      | 1.00   |

## **Common Mode Rejection Ratio – CMR**

#### Simulation result



### Evaluation circuit



### Comparison Table

(Condition: Vicm=0V to 1.8V)

| Parameter | Measurement | Simulation | %Error |
|-----------|-------------|------------|--------|
| CMR[dB]   | 80.000      | 81.50      | 1.88   |

\* Common Mode Rejection Ratio =20\*log(Av/Avcm) =20\*log(49243.62/4.148) =81.5dB