Module MAIAD – année 2008–2009

TD-Perceptron

Exercice 1 – Perceptron linéaire à seuil

Q 1.1 Un classifieur à deux classes, C1, C2, opère sur des objets de dimension $d=2:X=\begin{bmatrix}x_{11} & x_{12}\\ \mathbf{x}_i & \\x_{N1} & x_{N2}\end{bmatrix}$, avec $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^2$ et utilise la fonction discriminante g:

$$\mathbf{x}_i \mapsto g(\mathbf{x}_i) = w_1 x_{i1} + w_2 x_{i2} - \theta, \ \theta \text{ est donn\'e}$$

 \mathbf{x}_i est mis dans la classe C_1 si $g(\mathbf{x}_i) > 0$ et dans la classe C_2 si $g(\mathbf{x}_i) < 0$.

linéaire à seuil, sans couche cachée, à une cellule de sortie.

- 1. Quelle est l'équation de la frontière de décision?
- 2. On peut mettre en bijection les points $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \in \mathbb{R}^2$ et $\mathbf{x}' = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}^T \in \mathbb{R}^3$. On construit

un classifieur g' de paramètres $w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$ pour traiter les points de $\mathbb{R}^3 : g'(\mathbf{x}') = \mathbf{x}'w$. Quelle

valeur faut-il donner à w pour que les deux classifeurs soient équivalents?

NB : dans l'ensemble du TD, on considère \mathbf{x}_i comme un vecteur ligne et w comme un vecteur colonne.

3. On veut coder +1 les objets attribués à la classe C₁ et −1 les objets attribués à la classe C₂; quelle fonction F faut-il utiliser pour que la composée F ∘ g réalise ce codage?
N.B. dans la terminologie des réseaux de neurones, x est une entrée, g le potentiel de x, θ le seuil, F la fonction d'activation et {−1, +1} les sorties; le classifieur précédent est un perceptron

Q 1.2

On veut utiliser le perceptron précédent pour implémenter le ET logique à deux arguments; pour cela : on identifie Vrai:+1 et Faux:-1; une entrée est un couple $x1,x2 \in \{-1,+1\}$ et une sortie un élément de $\{-1,+1\}$.

- 1. Que vaut ici \mathcal{X} ? Montrer qu'un perceptron implémente le ET logique si et seulement si $w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$ vérifie un certain système d'inéquations.
- 2. Trouver une solution du système précédent. Est-elle unique? Démontrer votre résultat à l'aide d'un schéma en 2D puis en 3D (dans \mathbb{R}^2 puis dans \mathbb{R}^3).
- 3. Mêmes questions pour le OU logique.
- 4. Montrer que le OU Exclusif ne peut pas être implémenté par un perceptron linéaire à seuil.

Module MAIAD – page 2

Exercice 2 – Apprentissage du perceptron

N.B. Les notations sont les mêmes que dans l'exercice précédent.

On dispose d'une base de N exemples (observations), $\{\mathbf{x}_i\}_{i=1,\dots,N}$, dont les classes sont connues; la classe de \mathbf{x}_i est notée $d(\mathbf{x}_i)$. On utilise l'algorithme suivant (une des variantes de l'algorithme du perceptron) pour apprendre automatiquement la valeur des paramètres, c-à-d du vecteur $w:(\varepsilon)$ est un nombre positif; \mathbf{x}^T est le transposé de \mathbf{x}

Algorithme 1 : Algorithme d'apprentissage du perceptron

```
Entrée : \{\mathbf{x}_i, d(\mathbf{x}_i)\}_{i=1,\dots,N} ;
Initialisation de w: w(1);
t=1;
repeat

| Tirer aléatoirement un exemple : \mathbf{x}_i ;
| if d(\mathbf{x}_i) \times \mathbf{x}_i w(t) \ge 0 then
| w(t+1) \leftarrow w(t)
| else
| w(t+1) \leftarrow w(t) + \varepsilon d(\mathbf{x}_i) \mathbf{x}_i^T
| t=t+1;
| until (crit\`{e}re\ d'arr\^{e}t\ satisfait) ;
```

Le critère d'arrêt peut être, par exemple qu'il n'y a pas eu d'erreur de classification pendant un certain nombre d'itérations successives.

- **Q 2.1** Que signifie la condition $d(\mathbf{x}_i) \times \mathbf{x}_i w(t) \geq 0$? Expliquez le principe de l'algorithme.
- \mathbf{Q} 2.2 Faites tourner l'algorithme sur le problème du OU logique en itérant sur la base d'apprentissage constituée des 4 exemples distincts possibles, avec successivement pour valeur initiale $\mathbf{w}(0)$:

```
1. w(0) = (0; 0; 0);
2. w(0) = (1; 1; 1);
3. w(0) = (1; -1; 1).
```

itération.

(Prendre $\varepsilon=1$) Représenter graphiquement l'évolution de la frontière de décision d'itération en

- **Q 2.3** Dérouler l'algorithme sur le problème du ET logique avec w(0) = (2, 2, 2).
- **Q 2.4** On suppose qu'il existe w^* classant parfaitement tous les exemples (séparabilité linéaire). On considère une itération de l'algorithme où l'exemple courant, x[=x(t)], vérifie $x \in C_1$ mais est mal classé par le vecteur w[=w(t)] courant, qui est alors modifié pour devenir $w^{\dagger}[=w(t+1)]$.
 - 1. Vérifier qu'alors : $w^* \cdot \mathbf{x} > 0$; $w \cdot \mathbf{x} < 0$; $w^{\dagger} = w + \varepsilon \mathbf{x}$
 - 2. Montrer que : $\|w^{\dagger} w^{\star}\|^2 \le \|w w^{\star}\|^2 + \varepsilon[\varepsilon \|\mathbf{x}\|^2 2w^{\star} \cdot \mathbf{x}]$
 - 3. On pose $m = \min_{i=1,\dots,N} w^* \cdot \mathbf{x}_i$ et $M = \max_{i=1,\dots,N} \|\mathbf{x}_i\|^2$. Montrer qu'en prenant $\varepsilon = \frac{m}{M}$, on obtient l'inégalité $\|w^{\dagger} w^*\|^2 \le \|w w^*\|^2 \frac{m^2}{M}$.
 - 4. Admettant que l'inégalité précédente est aussi valable dans le cas symétrique ($\mathbf{x} \in C_2$ et mal classé), montrer qu'il y a un nombre fini d'itérations où w est modifié; en déduire que l'algorithme peut être arrêté au bout d'un nombre fini d'itérations.

Module MAIAD – page 3

Exercice 3 – Alternative algorithmique pour apprendre le perceptron

Nous présentons ici l'algorithme ADALINE (suivant la règle dite de Widrow-Hoff)

Algorithme 2: Algorithme ADALINE

- **Q 3.1** Repérer quelles sont les dimensions des différentes matrices/vecteurs de l'algorithme. Quelles sont les différences entre les deux algorithmes vus dans ce TD?
- **Q 3.2** Montrer que cet algorithme correspond à une descente de gradient. Quelle est la fonction coût minimisée?
- Q 3.3 Imaginer au moins trois critères distincts pour sortir des boucles while de ces deux algorithmes.