

MOBILE RADIO EQUIPMENT

JP-A-8-32507

Publication number: JP8032507

Publication date: 1996-02-02

Inventor: TAKAMI TADAO; CHIBA KOJI; KOBAYASHI KATSUMI

Applicant: NIPPON TELEGRAPH & TELEPHONE

Classification:

- international: H04L27/227; H04B1/10; H04B7/24; H04B7/26;
H04L27/227; H04B1/10; H04B7/24; H04B7/26; (IPC1-
7): H04B7/26; H04B1/10; H04B7/24; H04L27/227

- European:

Application number: JP19940164274 19940715

Priority number(s): JP19940164274 19940715

[Report a data error here](#)

Abstract of JP8032507

PURPOSE: To attain detection of a frequency error with high accuracy by controlling the operation and stop of frequency measurement based on a timing signal from a timing control circuit depending on a received time slot in the mobile radio equipment making the frequency stable according to a transmission wave from a base station. CONSTITUTION: The operation start and stop of a frequency counter 5 are controlled by a timing control signal from a timing control circuit 13 and a carrier signal frequency f_e outputted from a demodulator 4 is compared with a preset IF frequency f_c to detect a frequency error ϵ . Then a frequency error detection circuit 6 generates a frequency error compensation signal β based on the frequency error ϵ and provides an output of the signal β to a reference oscillator control circuit 7. The circuit 7 controls an oscillated frequency of a reference oscillator 8 based on a timing control signal from the timing control circuit 13 to compensate the frequency error of the oscillator 8 so that the detection result of the frequency error is a prescribed value or below. Thus, the frequency error is detected with high accuracy.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-32507

(43)公開日 平成8年(1996)2月2日

(51) Int.Cl. ⁶ H 04 B 7/26 1/10 7/24	識別記号 A G	庁内整理番号 F I 9297-5K	技術表示箇所 C B
審査請求 未請求 請求項の数 6 O L (全 15 頁) 最終頁に続く			

(21)出願番号 特願平6-164274

(22)出願日 平成6年(1994)7月15日

(71)出願人 392026693
エヌ・ティ・ティ移動通信網株式会社
東京都港区虎ノ門二丁目10番1号(72)発明者 鷹見 忠雄
東京都港区虎ノ門二丁目10番1号 エヌ・
ティ・ティ移動通信網株式会社内(72)発明者 千葉 耕司
東京都港区虎ノ門二丁目10番1号 エヌ・
ティ・ティ移動通信網株式会社内(72)発明者 小林 勝美
東京都港区虎ノ門二丁目10番1号 エヌ・
ティ・ティ移動通信網株式会社内

(74)代理人 弁理士 井出 直孝 (外1名)

(54)【発明の名称】 移動無線機

(57)【要約】

【目的】 角度変調されたデジタル信号の送信および受信を時分割で行う移動無線機において、局部発振周波数の基準となる信号を発生する基準発振器の誤差補正範囲を拡大し、基準発振器に要求される周波数安定度が緩和された移動無線機を提供する。

【構成】 復調データから検出された同期ワードにより得られた基準タイミング信号により、周波数誤差検出の動作と停止のタイミングおよび基準発振器の発振周波数制御のタイミングを制御する。

【効果】 復調器において搬送波再生動作が行われる受信タイムスロット部分のみを抽出でき、高精度の周波数誤差検出が可能である。

(2)

特開平8-32507

1

【特許請求の範囲】

【請求項1】 角度変調されたデジタル信号の送信および受信を時分割で行う送受信機と、この送受信機に送信周波数および受信周波数を定める局部発振周波数を供給する周波数シンセサイザと、この周波数シンセサイザの周波数基準となる信号を発生する基準発振器と、前記送受信機の受信出力である中間周波数信号から搬送波を再生し、その搬送波に位相が実質的に同期した信号を位相基準信号として受信信号の復調を行う復調器と、この復調器で再生された搬送波の周波数に関する情報から前記基準発振器の周波数誤差を検出する周波数誤差検出手段と、この周波数誤差検出手段の出力に基づいて前記基準発振器の発振周波数を制御する基準発振器制御手段と、前記復調器から出力される復調データから同期ワードを検出して基準タイミング信号を生成する同期ワード検出回路と、この基準タイミング信号を入力とし、前記送受信機の送信動作および受信動作のタイミングを制御するタイミング制御回路とを備えた移動無線機において、前記タイミング制御回路は、前記周波数誤差検出手段の動作と停止のタイミングおよび前記基準発振器制御手段による前記基準発振器の発振周波数制御のタイミングを制御する手段を含むことを特徴とする移動無線機。

【請求項2】 受信信号から無線回線の品質を検出する回線品質検出回路を備え、前記タイミングを制御する手段は、この回線品質検査回路が受信信号の品質低下を検出したとき、前記周波数誤差検出手段および前記基準発振器制御手段にタイミング信号を出力する手段を含む請求項1記載の移動無線機。

【請求項3】 前記復調器の出力する復調データの信頼性を監視し、復調データの信頼性の低下が検出されたときには前記基準発振器の発振周波数をオフセットする手段を備えた請求項1または2記載の移動無線機。

【請求項4】 前記オフセットする手段は、受信データフレームの同期ワードの検出率を監視する手段を含む請求項3記載の移動無線機。

【請求項5】 前記再生された搬送波の周波数に関する情報は前記復調器における搬送波再生のための制御データである請求項1または3記載の移動無線機。

【請求項6】 前記基準発振器制御手段は、前記同期ワード検出回路の出力信号に基づいて、前記復調器において受信信号を検波するときの位相基準となる基準信号の周波数をオフセットする手段を含む請求項3または5記載の移動無線機。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は時分割で無線通信信号の送信および受信を行う通信方式に利用する。特に、搬送

2

波ドリフトを小さく抑える必要のある通信方式に適した移動無線機に関する。本発明は特に、UHF帯のデジタル移動通信に利用するに適する。

【0002】

【従来の技術】 例えばUHF帯のデジタル移動通信のように、時分割で無線通信信号の送信および受信を行う無線通信方式では、搬送波周波数ドリフトにより伝送品質が著しく劣化する。通過帯域内伝送特性についてみると、伝送信号の歪み、周波数特性の劣化、誤り率の劣化などの特性劣化がおきる。また、帯域外特性では、隣接チャネルへの漏洩電力が増加する。これを防ぐためには、(1) 伝送帯域幅に比べて十分に広い間隔でチャネル配置を行う通信方式を構築する、(2) 搬送波ドリフトの原因となる局部発振器や変調器の安定度を高める、(3) 搬送波ドリフトを検出し、希望する搬送波周波数に自動調整するといった手段が必要であった。

【0003】 (1) については、今後の通信量の増大に対し、有効な無線周波数がますます限られてくることを鑑みると、特に1無線システムを1通話チャネルに割り当てる通信システムにおいては、広い伝送帯域を有する通信システムを構築するのは困難であることが自明である。また、多重通信などの広い伝送帯域幅を必要とする通信方式においても、昨今の無線周波数の逼迫から多値変調その他の技術による伝送帯域幅の狭小化が進められており、搬送波ドリフトの余裕を実現するために無線チャネル間隔を広くとったシステムを構築することは困難である。

【0004】 (2) については、固定無線通信方式のように高安定の基準発振器を比較的容易に用いることのできる通信方式では問題とはならないが、移動通信方式のように簡便で小型な移動無線機をシステム内に有する場合には大きな問題となる。移動無線機においては、一般に、比較的低周波で安定に発振する水晶発振器を基準発振器として用い、搬送波帯域周波数の信号を得るために電圧制御発振器に位相同期をかけるか、あるいはデジタル回路で基準発振器に位相同期のとれた搬送波を直接に発生するデジタルシンセサイザを用いることにより、一つあるいは複数の局部発振器となる周波数シンセサイザが構成される。このような構成において、温度変化に起因する搬送波ドリフトを補正するためには、例えばTCXO (Temperature Compensated Crystal Oscillator: 温度補償水晶発振器) が用いられる。しかし、移動通信機に装備するという制約条件下で大量生産を考慮した場合、温度変化に対する現実的な安定度の限界は0.5~1 ppmと考えられる。水晶の発振周波数の温度変化をメモリに記憶させておき、温度検出素子からの温度情報をもとに容量アレーを制御して周波数制御を行うDTCXO (Digitally Temperature Compensated Crystal Oscillator) の場合には、温度変化に対する補償精度を0.5 ppm以下とすることが可能である。しか

(3)

特開平8-32507

3

し、どちらの場合にも経年変化に対する発振周波数の補償を行うことはできない。

【0005】(3)としては、高い周波数精度を有する受信波に局部発振器を周波数同期させる方法が一般的である。アナログ角度変調方式を用いた移動通信の場合には、中間周波信号の周波数を周波数カウンタにより測定することで搬送波周波数誤差を検出し、その誤差が所定の値以下となるように局部発振周波数を制御する。しかし、デジタル角度変調方式の場合には、伝送するデータのパターンによってシンボルごとの位相偏移が偏るため搬送波周波数が偏移し、カウンタでの測定では誤差が生じる場合がある。これを解決するため本願発明者らは、復調器で再生された搬送波の周波数を周波数カウンタにより計数して中間周波信号の周波数ドリフトを正確に測定する技術を発明し、既に特許出願した(特願平5-63762、本願出願時未公開、以下「先の出願」という)。この技術について以下に説明する。

【0006】図16は先の出願に示された移動無線機の一例を示すブロック構成図である。この移動無線機には、デジタル角度変調を用いた移動通信で用いるための周波数安定化機能が設けられている。

【0007】周波数が安定な基地局送信波をアンテナ1で受信し、送受分波器2を経由して受信機3により中間周波信号に周波数変換し、この中間周波信号を同期検波形あるいは適応同期検波形の復調器4により復調する。このとき、復調器4の再生搬送波は周波数誤差が重複した中間周波信号の周波数に追従する。そこで、復調器4の再生搬送波周波数を周波数カウンタ5により測定する。復調器4内の搬送波再生回路は、中間周波信号の周波数ドリフトに追従するとともに、一種の狭帯域フィルタとして機能し、変調成分による瞬時周波数変動を平均化する。このため、周波数カウンタ5の計数値から、中間周波信号の周波数ドリフトを正確に測定することができる。周波数カウンタ5の動作クロックとしては、例えば復調器4内に設けられた固定発振器の出力を用いる。この固定発振器は復調器4内での搬送波の再生およびその搬送波に位相がほぼ同期した復調の位相基準となる信号を生成するためのものであり、周波数がそれほど高くないので比較的安価なものでも十分な精度および安定性が得られる。

【0008】周波数カウンタ5による計数値は周波数誤差検出回路6に入力される。周波数誤差検出回路6は、この計数値をあらかじめ設定された中間周波信号周波数と比較し、周波数誤差を検出する。検出された周波数誤差は、基準発振器制御回路7に入力される。基準発振器制御回路7は、周波数誤差を補償するための周波数誤差補償信号を生成し、これを基準発振器8に入力して、周波数誤差があらかじめ定められた値以下となるまで基準発振器8の発振周波数を制御する。

【0009】このようにして安定化された基準発振器8

4

の出力信号は、一つあるいは複数設けられた周波数シンセサイザ9に供給される。周波数シンセサイザ9の出力は、受信機3において受信波の周波数変換を行うための局部発振信号として用いられるとともに、変調回路10において送信信号を無線周波数に周波数変換するための局部発振信号としても用いられる。変調回路10の出力は、電力増幅器11を介して無線区間に送出される。周波数シンセサイザ9を変調回路10の局部発振器として共用することにより、移動無線機の送信周波数についても、安定な基地局送信周波数精度と同じ程度に安定化することができる。

【0010】図17は変調回路10の構成例を示す。変調入力端子101にはベースバンド帯域のデジタル信号が入力され、角度変調機102はこの信号により角度変調信号を生成する。局部発振信号入力端子103には周波数シンセサイザ9からの局部発振信号が入力され、ミクサ104は角度変調器102の出力を所望の搬送波周波数に周波数変換し、変調出力端子105に出力する。ここでは局部発振信号入力端子103およびミクサ104さらには周波数シンセサイザ9が一段構成の場合を示したが、これらを多段構成とし、順次周波数変換を行って所望の搬送波周波数を得ることもできる。また、所望の搬送波周波数の局部発振信号を直接変調することもできる。

【0011】図18は、基地局送信信号をTDM(時分割多重)信号、移動局送信信号をTDMA(時分割多元接続)信号とするデジタル移動通信システムの送受信タイミングスロットおよびスロット配置の一例を示す。通信中の移動局はTDM信号のうち自局タイムスロットのみを受信するとともに、周期的にバースト信号を基地局に向けて送信する。図18の例では、移動局は送信、受信およびアイドルのサイクルを繰り返す。このようにすると、送信と受信とのタイミングが重ならないので、移動局において送受分波器の構成を簡略化できる。また、アイドルタイムスロットを周辺の基地局からの受信レベル測定に利用できる。

【0012】無線通信信号の品質確保および他チャネルへの干渉防止のため、移動無線機では、まず受信状態で発振周波数精度を比較的安定な基地局送信波に追従させ、その後に送信を開始して通信状態に移行させる必要がある。このとき、周波数安定化に要する時間を短縮して速やかに通信可能状態に移行するために、まず図18に示すような基地局送信波を連続的に受信して周波数誤差を検出し、基準発振器の発振周波数を補正した後に送信を開始する。

【0013】

【発明が解決しようとする課題】移動無線機に用いられる送信回路は、比較的高効率ではあるが動作中はある程度の発熱があるため、送信を開始すると移動無線機内部の温度上昇が起こる。この温度上昇により搬送波周波数

(4)

特開平8-32507

5

の基準となる水晶発振器の発振周波数がドリフトし、通信時間の経過と共に周波数精度が低下することが考えられる。このため、温度特性に十分な余裕をもたせた比較的高価な高安定度の水晶発振器を用いることが必要となるとともに、移動無線機内部の熱設計において放熱や部品配置に十分に留意する必要があり、回路基板の面積および重量の増加の原因となっていた。

【0014】このような通信中の周波数ドリフトを補償するために、上述したように、周波数誤差検出回路を利用して通信中に搬送波周波数誤差を検出し、その値が所定の周波数精度を越えた場合に基準発振器制御回路により発振周波数誤差を補正することも考えられる。しかし、特に時分割で無線通信信号の送受信を行う移動無線機においては、通信中の送信タイムスロットでは変調および送信処理を行い、アイドルタイムロットでは周波数基地局からの受信レベルの測定の処理を行うので、受信タイムスロット以外では復調器における搬送波再生が行わらない場合がある。このため、再生搬送波出力信号をそのまま周波数誤差検出回路の周波数カウンタで計数すると、測定誤差が大きくなり通信中の高精度の周波数安定化は困難であった。

【0015】また、通信中に基準発振器の周波数誤差を補償する場合、送信あるいは受信タイムスロット内において基準発振器の発振周波数が変化すると、基準発振器の出力信号に同期している周波数シンセサイザの位相同期ループが安定化するまでの間、送受信機に供給される局部発振信号の位相雑音が増加し、送信波の変調精度の劣化や受信信号の符号誤り率の劣化が生じたり、局部発振信号に大きな周波数変化が生じて送信あるいは受信信号周波数が変動したりする。このため、基地局あるいは移動無線機の復調器での周波数追従が困難となり、通信品質が劣化する場合があった。

【0016】先の出願に開示した技術では、復調器から出力される再生搬送波を周波数カウンタで計数することで、ある限られた範囲の周波数誤差に対しては高精度の周波数安定化が可能であった。移動無線機に装備できるTCXOに対しては部品コストやサイズその他の制約が大きく、周波数安定度の向上には限界がある。局部発振器としての周波数シンセサイザは、TCXOに同期して発振するため、搬送波周波数が高くなるにつれて周波数誤差が大きくなる。このため、これによる受信変調波の位相回転が本来の変調位相偏移と区別できない程度まで達すると、復調器が追従可能な周波数ドリフトの範囲を越えてしまい、データの復調が正常に行われなくなってしまう。すなわち、搬送波周波数が高くなるにつれて、所定の周波数安定度が得られなくなってしまう。

【0017】例えば、ビットレート f_b のQPSK変調の場合、1シンボル時間内の位相回転が $\pm \pi / 4$ ラジアン、すなわち $f_b / 16$ [Hz] を越える周波数ドリフトに追従することはできない。この値は、 f_b が 40 k

50

6

bit/sec 程度のQPSK伝送システムでは、約 2.5 kHz となる。これは、例えば 1.5 GHz 帯で使用される移動無線機の基準発振器に要求される周波数安定度に換算すると、1.7 ppm に相当する。

【0018】基準発振器に用いられるTCXO は、温度特性、電源電圧特性、および経時変化による長期安定度を考慮すると、1.7 ppm 以下の周波数安定度を確保しつつ、移動無線器として要求される低コスト、小型軽量、低消費電力といった特性をすべて満足することは困難である。このため、基準発振器に対する周波数安定度の許容値を緩和できるように、周波数誤差補償範囲を拡大することが望まれていた。

【0019】例えば、復調器および固定発振器を複数用い、個々の復調器を異なる位相基準信号周波数で動作させ、それぞれに周波数安定化機能を付加すれば、全体として広範囲にわたり周波数誤差検出範囲を拡大できる。しかし、移動無線機での使用を考慮すると、回路規模および消費電力の面から実用的ではない。

【0020】本発明は、以上の課題を解決し、基準発振器の誤差補正範囲を拡大し、基準発振器に要求される周波数安定度が緩和された移動無線機を提供すること目的とする。

【0021】

【課題を解決するための手段】本発明の移動無線機は、角度変調されたデジタル信号の送信および受信を時分割で行う送受信機と、この送受信機に送信周波数および受信周波数を定める局部発振周波数を供給する周波数シンセサイザと、この周波数シンセサイザの周波数基準となる信号を発生する基準発振器と、送受信機の受信出力である中間周波数信号から搬送波を再生し、その搬送波に位相が実質的に同期した信号を位相基準信号として受信信号の復調を行う復調器と、この復調器で再生された搬送波の周波数に関する情報から前記基準発振器の周波数誤差を検出する周波数誤差検出手段と、この周波数誤差検出手段の出力に基づいて基準発振器の発振周波数を制御する基準発振器制御手段と、復調器から出力される復調データから同期ワードを検出して基準タイミング信号を生成する同期ワード検出回路と、この基準タイミング信号を入力とし、送受信器の送信動作および受信動作のタイミングを制御するタイミング制御回路とを備えた移動無線機において、タイミング制御回路は、周波数誤差検出手段の動作と停止のタイミングおよび基準発振器制御手段による基準発振器の発振周波数制御のタイミングを制御する手段を含むことを特徴とする。

【0022】受信信号から無線回線の品質を検出する回線品質検出回路を備え、タイミングを制御する手段は、この回線品質検査回路が受信信号の品質低下を検出したとき、周波数誤差検出手段および基準発振器制御手段にタイミング信号を出力する手段を含むことができる。

【0023】復調器の出力する復調データの信頼性を監

(5)

特開平8-32507

7

視し、復調データの信頼性の低下が検出されたときには基準発振器の発振周波数をオフセットする手段をさらに備えることもできる。この場合、オフセットする手段は、受信データフレームの同期ワードの検出率を監視する手段を含むことがよい。

【0024】再生された搬送波の周波数に関する情報としては、その周波数を計数した情報でもよく、復調器における搬送波再生のための制御データを用いてもよい。

【0025】周波数シンセサイダの周波数基準にオフセットを加える代わりに、復調器の位相基準となる基準信号の周波数にオフセットを加えることもできる。

【0026】

【作用】本発明は、時分割で無線通信信号の送受信を行うデジタル通信方式に用いられ、基地局送信波を基準に周波数安定化を行う構成の移動無線機において、周波数誤差検出回路が常時中間周波信号周波数を測定するのではなく、受信タイムスロットに応じてタイミング制御回路から出力されるタイミング信号に基づいて周波数測定の動作および停止の制御を行う。これにより、復調器において搬送波再生動作が行われる受信タイムスロット部分のみを抽出でき、高精度な周波数誤差検出が可能となる。

【0027】また、同じタイミング信号に基づいて、基準発振器制御手段において送受信タイムスロットの間に基準発振器の発振周波数制御を行うので、通信品質を劣化させることなく周波数誤差補償を行うことができる。

【0028】時分割で無線通信信号の送受信を行う無線通信システムにおいて、通信品質を劣化させることなく、通信中の温度変化あるいは基準発振器の経年変化による周波数精度の低下を高精度に補償することを可能とし、基準発振器に要求される周波数安定度の緩和を可能とし、基準発振器の低コスト化、小型化、低消費電力化を図るとともに、移動無線機回路の熱設計を容易にして、移動無線機の小型化、軽量化を図ることができる。

【0029】周波数ドリフトによる回線品質劣化を検出して周波数安定化制御を起動するので、通信中の周波数変動が小さいときには不必要に周波数安定化をすることなくなるとともに、周波数誤差補償に要する時間に生じる周波数ドリフトが十分に小さいので、周波数誤差が復調器の追従範囲を越えることはなく、通信中に継続して周波数誤差の補償が可能となる。さらに、受信電界強度信号を利用することにより、受信電界が著しく低下している場合には周波数安定化制御を起動しないようにすることができる。

【0030】周波数シンセサイザの周波数基準である基準発振器に周波数オフセットを加えることにより、受信波の中間周波信号周波数を変化させることができる。このオフセット量を復調データの信頼性に基づいて時系列に切り換え、適切な周波数オフセットが加えられた時点で、復調器の出力から基準発振器の発振周波数誤差を検

10

20

20

30

30

40

50

8

出し、この発振周波数誤差が減少するように基準発振器の発振周波数を制御する。これにより、回路規模や消費電力を増大させることなく、周波数誤差検出範囲および周波数誤差補償範囲を拡大でき、基準発振器への要求精度が大幅に緩和でき、一層の低コスト化、小型化、低消費電力化が図れるとともに、高精度の周波数安定性をもつ移動無線機を実現できる。

【0031】復調器の追従範囲を越えるほど基準発振器の周波数誤差が大きいときには、復調データに著しい誤りが生じる。そこで、受信データフレームの同期ワード検出率を監視することで、復調データの信頼性を監視することができる。復調データの信頼性の監視をデジタル通信用無線機に一般的に用いられている同期ワード検出回路で実現できるので、回路構成を簡略化できる。この場合、同期ワードの検出率が大きく低下したことで、復調データの信頼性が低下していることを検出する。

【0032】再生された搬送波の周波数に関する情報として、搬送波再生のための制御データを復調器から取り出し、あらかじめ定められた周波数に対する中間周波信号の周波数ドリフトを検出することができる。この場合には、再生搬送波周波数を測定する周波数カウンタは不要となる。周波数誤差検出回路では、この周波数データに基づいて、あらかじめ定められた中間周波信号周波数に対する周波数誤差を検出する。基準発振器制御回路は、周波数誤差があらかじめ定められた値以下となるまで、基準発振器の発振周波数を制御し、これを安定化する。

【0033】再生搬送波周波数を周波数カウンタを用いて測定する必要がないため、高速な周波数安定化動作が可能となる。さらに、周波数カウンタが不要であることから、回路規模を小さくできる利点がある。

【0034】復調器の位相基準信号の周波数にオフセットを加えることにより、周波数誤差検出範囲が変化する。したがって、一つの復調器が等価的に周波数誤差検出範囲の異なる複数の復調器として動作する。また、そのオフセット量を復調データの信頼性に基づいて時系列に切り換え、適切な周波数オフセットが加えられた時点で、復調器から出力される再生搬送波信号周波数を測定して基準発振器の発振周波数誤差を検出し、この発振周波数誤差が減少するように発振周波数を制御する。これにより、回路規模や消費電力を増大させることなく、周波数誤差検出範囲および周波数補償範囲を拡大でき、基準発振器への要求精度を大幅に緩和でき、一層の低コスト化、小型化、低消費電力化が図れるとともに、高精度の周波数安定性をもつ移動無線機を実現できる。

【0035】

【実施例】図1は本発明第一実施例の移動無線機を示すブロック構成図である。この移動無線機は、角度変調されたデジタル信号をアンテナ1および送受分波器2を経由して受信し、中間周波信号を出力する受信機3と、

(6)

特開平8-32507

9

この受信機3に局部発振周波数を供給する周波数シンセサイザ9と、この周波数シンセサイザ9の周波数基準となる信号を発生する基準発振器8と、受信機2の出力する中間周波信号から搬送波を再生し、その搬送波に位相が実質的に同期した信号を位相基準信号として受信信号の復調を行う復調器4と、この復調器4の出力する受信タイムスロットの復調ビット列内の同期ワードを検出してタイムスロット内の基準タイミングを出力する同期ワード検出回路12とを備え、復調器4で再生された搬送波の周波数に関する情報から基準発振器8の周波数誤差を検出するための周波数カウンタ5および周波数誤差検出回路6を備え、周波数誤差検出回路6の出力に基づいて基準発振器8の発振周波数を制御する基準発振器制御回路7を備える。この移動無線通信機はまた、周波数シンセサイザ9の出力を搬送波として変調を行う変調回路10と、変調波を電力増幅する電力増幅器11とを備える。

【0036】ここで本実施例の特徴とするところは、タイミング制御回路13が、同期ワード検出回路12から出力された基準タイミングから、規定されたビット数だけ時間差をもつ信号を発生し、周波数カウンタ5および周波数誤差検出回路6の動作を制御することにある。

【0037】復調器4は、従来例と同様に、位相基準信号の位相を基準として中間周波数信号を復調するとともに、位相基準信号の中間周波数信号に対する周波数誤差を検波位相データに基づいて補償する帰還ループを備える。この位相基準信号に再生搬送波信号成分が含まれており、これを外部に出力する。

【0038】以下、本実施例の移動無線機の動作について説明する。

【0039】アンテナ1で受信された受信波は、受信機3により中間周波数信号に周波数変換され、復調器4に入力される。ここで、複数のアンテナを備え、それぞれの受信電界強度に応じてアンテナ出力信号を切り換える方法、あるいは複数のアンテナ、受信機、復調器を備え、復調出力を受信電界強度あるいは検波位相尤度により切り換える方法、あるいは複数の受信機の出力信号の位相を調整して合成する方法により、ダイバーシチ受信機を構成してもよい。復調器4に入力される中間周波信号には、基準発振器8の発振周波数誤差に基づく周波数誤差が重畠されている。この周波数誤差が復調器4の追従範囲内であれば、再生搬送波の周波数は周波数誤差が重畠されている中間周波信号に追従する。

【0040】図2は復調器4、周波数カウンタ5および周波数誤差検出回路6による周波数誤差検出動作を説明する図である。周波数カウンタ5は、タイミング制御回路13からのタイミング制御信号により動作開始および停止が制御され、復調器4から出力された搬送波信号周波数 f_e を計数する。周波数誤差検出回路6では、この計数値 f_e をあらかじめ設定された中間周波信号周波数

10

f_c と比較し、周波数誤差 ϵ を検出する。十分な測定精度を得るために、複数の受信タイムスロットを測定して周波数誤差 ϵ を算出するとよい。連続した複数の測定結果の平均値を周波数誤差 ϵ とすることもできる。周波数誤差検出回路6はさらに、周波数誤差 ϵ から周波数誤差補償信号 β を生成し、基準発振器制御回路7へ出力する。

【0041】再び図1を参照して説明すると、基準発振器制御回路7は、周波数誤差補償信号 β に基づき、タイミング制御回路13からのタイミング制御信号により基準発振器8の発振周波数を制御し、周波数誤差の検出結果が所定の値以下となるように基準発振器8の周波数誤差を補償する。この結果、基準発振器8の出力信号を基準として周波数シンセサイザ9を基地局と同等の周波数安定度とることができ、従来と同様に送受信機における局部発振器の周波数安定度を高めることができる。

【0042】図3は通信中の周波数測定と基準発振器制御のタイミングの一例を示す図であり、図4は通信中の周波数安定化動作の一例を示すフローチャートである。これら2つの図を参照して本実施例の特徴であるタイミング制御回路13の動作および通信中の周波数測定および基準発振器制御のタイミングの例について説明する。

【0043】図3は、従来例と同様に図18に示した時分割でディジタル信号の送受信を行うものとし、通信中の送受信タイミング、周波数測定タイミングおよび基準発振器制御タイミングを横軸に時間をとって示す。周波数安定化動作は、(A) 周波数安定化制御の起動、(B) 誤差測定、(C) 基準発振器制御、(D) 確認測定、(E) 安定化終了の順に進行する。図4の対応する制御にも同じ記号を付す。

【0044】図3(a)に示すように、通信中の移動無線機は、送信T、受信RおよびアイドルIの各タイミングを繰り返しながら動作する。ここでは、説明をわかりやすくするために図18に示したレベル測定タイミングLMを省略したが、実際の動作上何ら問題を生じるものではない。

【0045】まず、(A)の時点で周波数安定化制御が起動すると、図3(b)に示すように、N個の受信タイムスロットRに同期したタイミング信号がタイミング制御回路から出力され、周波数カウンタに入力される。このタイミング制御信号は、受信タイムスロットRのときだけ再生搬送波信号周波数を計数するように周波数カウンタを制御し、受信タイムスロットRが終了するごとに測定周波数を周波数誤差検出回路に出力する。周波数誤差検出回路は、既知の中間周波数に対する測定周波数の誤差 ϵ を検出する。N個の受信タイムスロットにわたって周波数カウンタで計数して周波数を測定することにより周波数誤差 ϵ を得るか、あるいはN個の受信タイムスロットそれぞれの周波数測定値 $f_{e1}, f_{e2}, \dots, f_{eN}$ の平均値から周波数誤差 ϵ を得てもよい。ここで、周波数測

(7)

特開平8-32507

11

定を行う受信タイムスロット数Nは、十分な測定精度を得られる値とすることが望ましい。

【0046】図4に示すように、(B)の誤差測定で得た周波数誤差 ε が所定値よりも大きい場合は、周波数誤差補償信号 β を生成して基準発振器を制御し、発振周波数誤差を補償する。周波数誤差 ε が所定値よりも小さい場合には、そのまま周波数安定化を終了することができる。

【0047】一般に基準発振器の周波数安定度は、基準発振器の発振周波数誤差と正規の発振周波数との比(p pm)で表される。前記の測定で得られた周波数誤差 ε

[Hz]を同様に周波数安定度に換算すると、周波数誤差 ε を局部発振器の正規の出力周波数で除した値となる。これを ε^* p pmとし、また、基準発振器に用いられている電圧制御形温度補償水晶発振器(VC-TCXO)における入力制御電圧に対する発振周波数の変化を電圧-周波数変換係数 α [ppm/V]で表すと、基準発振器の誤差を補償するために必要な周波数誤差補償信号 β は $\beta = -\varepsilon^*/\alpha$ [V]に相当する値となり、この β が基準発振器制御回路へ出力される。

【0048】次に、図3(C)の時点で基準発振器の制御が行われる。図3(c)に示すように、基準発振器の制御をアイドルスロットの間に行なうようにすることで、送信信号および受信信号に影響を与えることなく、周波数誤差を補正が可能となる。

【0049】図5は基準発振器制御の一例を説明する図であり、基準発振器制御回路7、基準発振器8および周波数シンセサイザ9を示す。この例では、周波数誤差補償信号 β がデジタル信号で基準発振器制御回路7に与えられ、基準発振器制御回路7は、タイミング信号にしたがってD/A変換器により電圧に変換し、基準発振器8(VC-TCXO)の発振周波数を制御する。基準発振器制御回路7は、基準発振器8への制御電圧を保持する構成とすることができます。また、周波数測定終了から基準発振器8の制御までの時間間隔は短いほうがよいが、一般に周波数ドリフトはフレーム周期に対して緩やかに変化するため、必ずしも測定直後に制御を行う必要はない。

【0050】続いて、周波数誤差の補正が完了したかどうかを確認するため、図3の(D)に示すように周波数測定を行う。測定動作は前述の(B)の誤差測定と同様であり、検出された周波数誤差を ε' とする。(E)の時点で周波数誤差 ε' が所定値以下の場合に、周波数安定化制御を終了する。周波数誤差 ε' が所定値以下とならない場合には、再度(A)に戻って安定化制御を継続する。

【0051】また、周波数安定化制御に要する時間の周波数ドリフトが十分に小さければ、常時周波数安定化制御を起動していくともよい。周波数安定化制御の起動間隔は、移動無線機に実装された基準発振器の温度変動

12

に見合う時間とすることが望ましい。例えば、回路基板や基準発振器等の部品の熱伝導率などから決定することができる。この起動間隔は一定値としてもよいし、通信開始直後は回路の放熱による温度上昇が大きいことを考慮して連続的あるいは短い時間間隔とし、通信の継続とともに温度変化が定常化することを考慮して起動間隔を長くすることもできる。さらに、サーミスタあるいは熱電対などの温度検出素子を備え、基準発振器の発振周波数変動の温度係数が大きい温度領域にあるときに起動間隔を短縮したり、温度係数が小さい温度領域にあるときに起動間隔を延長することもできる。

【0052】以上の説明では図18に示したタイムスロット構造の時分割デジタル無線通信方式を例としたが、本実施例は、これとは異なるフレーム構造の時分割のデジタル無線通信方式でも同様に実施できる。

【0053】本実施例は、通信品質を劣化させることなく、通信中の温度変化あるいは基準発振器の経年変化による周波数精度低下を高精度に補償することを可能とし、基準発振器に要求される周波数安定度の緩和を可能とし、使用する基準発振器の低コスト化、小型化および低消費電力化を図ると共に、移動無線機回路の熱設計を容易にして、移動無線機の小型化および軽量化を図ることができる。

【0054】また、復調器4および周波数安定化機能を実現するための回路、すなわち周波数カウンタ5、周波数誤差検出回路6および基準発振器制御回路7はすべて論理回路で構成でき、LSI化が容易であるため、小型化、低消費電力化および無調整化が可能であり、移動無線機に適している。

【0055】図6は復調器4の構成例を示す。この構成例は特開平2-205940号公報および特開平2-219747号公報にそれぞれ開示されたものと同等の回路であり、直接位相量子化回路41、適応キャリア同期データ生成回路42、周波数ドリフト検出回路43、デジタル発振器44、固定発振器45、識別回路46およびクロック再生回路47を備える。固定発振器45として図1に示した基準発振器8の出力を用いることもできる。

【0056】デジタル発振器44は固定発振器45の出力信号を分周し、それを位相基準信号として直接位相量子化回路41に供給する。この位相基準信号は再生搬送波成分を含んでいる。直接位相量子化回路41は、復調器4に入力された受信角度変調信号をデジタル発振器44からの位相基準信号により量子化する。識別回路46は、量子化された位相データから受信データの復調を行う。

【0057】この復調器はまた、高精度の位相基準信号を得るために、二つの帰還ループを含んでいる。第一の帰還ループは直接位相量子化回路41、周波数ドリフト検出回路43およびデジタル発振器44で構成され

(8)

特開平8-32507

13

る。第二の帰還ループは直接位相量子化回路41、適応キャリア同期データ生成回路42およびディジタル発振器44で構成される。

【0058】第一の帰還ループは、角度変調波の搬送波周波数と位相基準信号周波数との間で周波数誤差が生じる場合に機能する系である。その動作をQPSK変調の場合を例に図7ないし図10を参照して説明する。受信波を周波数変換して得られた中間周波信号を直接位相量子化した信号は、識別タイミングにおける信号空間上において、図7に示したような4つの位相点で示される。位相基準信号と角度変調波の搬送波との間に周波数誤差が存在する場合には、図8に示すように、角度変調波の位相が常に一方向に回転して検出される。この回転角度 θ は周波数誤差に比例するので、直接位相量子化回路41により回転角度 θ を数値化し、周波数ドリフト検出回路43およびディジタル発振器44により、求めた θ 値を一定時間積分してその平均量だけ位相基準信号の周波数を制御する。この周波数ドリフト検出回路43およびディジタル発振器44からなる搬送波再生回路は、中間周波信号の周波数ドリフトに追従するとともに、一種の狭帯域フィルタとして機能し、変調成分による瞬時周波数変動を平均化する。このため、再生搬送波周波数を測定すれば、所定の周波数に対する中間周波信号の周波数ドリフトを正確に検出することができる。

【0059】しかし、周波数誤差によって生じる回転角度 θ が $\pi/4$ [rad] を越えた場合には、図9に示すように、異なる象限の位相に回転角度 θ^* が加わっていると認識されるため、正しい周波数誤差検出は不可能となる。

【0060】第二の帰還ループは、フェージングその他により中間周波信号の搬送波位相が瞬時変動する場合に、ディジタル発振器44において位相基準信号の位相を瞬時に制御するループである。図10に示すように、その動作は、識別タイミングごとに検出した相対位相データを第一象限に縮退させ、伝送された変調信号がいずれの領域に位置するかにより、瞬時位相変動角度 ϕ が検出される。検出された瞬時位相変動角度 ϕ から、その変動角度 ϕ だけ位相基準信号の位相をシフトさせる動作を直接位相量子化回路41、適応キャリア同期データ生成回路42およびディジタル発振器44により実現する。これにより、フェージングによる受信搬送波のランダムな瞬時位相変動に位相基準信号の位相を追従させることができる。

【0061】この実施例では復調器4として適応同期検波形復調器を用いた例を説明したが、同期検波形復調器を用いても本発明を同様に実施できる。

【0062】このほか、遅延検波形復調器においても識別シンボル別の検波位相誤差を検出することが可能であり、また、直交検波形の復調器においても、復調信号のIチャネル信号とQチャネル信号とのアーカンション

10

ト値からシンボルごとの検波位相誤差を検出できる。この位相誤差を時間積分することで、周波数誤差検出を行うことができる。さらに、周波数検波形復調器についても、識別シンボルごとの周波数偏差が検出できる。このように、シンボル識別タイミング時点での検波位相誤差あるいは検波周波数誤差が検出できる復調方式であれば、本発明を同様に実施できる。

【0063】図11は本発明第二実施例の移動無線機を示すブロック構成図である。この実施例は、受信信号から無線回線の品質を検出する回線品質検出回路14を備え、この回線品質検出回路14が基準発振器8の周波数ドリフトにより生じた受信信号の品質低下を検出したとき、周波数安定化制御を起動させる信号をタイミング制御回路13へ出力することが第一実施例と異なる。

【0064】回線品質検出回路14では、復調器4から出力される検波位相誤差から、周波数ドリフトにより生じた回線品質の劣化を検出する。検波位相誤差は図9に示した復調器の識別タイミングにおける位相回転量 θ として与えられ、周波数ドリフトに応じて θ が大きくなることを利用する。

【0065】このようにして通信中の周波数ドリフトが検出されると、タイミング制御回路13は、周波数カウンタ5による再生搬送波の周波数測定、周波数誤差検出回路6による誤差検出、および基準発振器制御回路7の動作を起動し、周波数誤差の補償が行われる。この場合、周波数測定に要する時間に生じる周波数ドリフトは十分に小さいので、復調器4の追従範囲を越えることはなく、通信を継続しながら周波数誤差の補償が可能となる。また、受信機3から出力される受信電界強度信号を検出することにより、受信電界が低下した場合には周波数安定化制御を行わないようにすることもできる。

【0066】周波数ドリフトによる回線品質劣化を検出して周波数安定化制御を起動するようにしたので、通信中の周波数変動が小さいときには不必要に周波数安定化をすることがない。また、受信電界強度信号を利用することにより、受信電界が著しく低下している場合に、周波数安定化制御を起動しないようにすることができる。

【0067】このように、基準発振器8に要求される周波数安定度の緩和が可能となり、使用する基準発振器の低コスト化、小型化および低消費電力化を図ると共に、移動無線機回路の熱設計を容易にして、移動無線機の小型化および軽量化を図ることができる。

【0068】また、復調器4および周波数安定化機能を実現するための回路、すなわち周波数カウンタ5、周波数誤差検出回路6および基準発振器制御回路7はすべて論理回路で構成でき、LSI化が容易であるため、小型化、低消費電力化および無調整化が可能であり、移動無線機に適している。

【0069】図12は本発明第三実施例の移動無線機を示すブロック構成図である。この実施例は、復調データ

30

40

50

(9)

特開平8-32507

15

監視回路15が、復調器4の出力する復調データの信頼性を監視することにより、復調データの信頼性の低下を検出したときに周波数シンセサイザ9の周波数基準にオフセットを加えることが第一実施例と異なる。

【0070】基準発振器制御回路7は、初期値として、あらかじめ定められた中間周波信号に対応した基準発振器制御信号を基準発振器8へ入力する。復調器4から出力された復調データは、同期ワード検出回路12と復調データ監視回路15とに入力される。

【0071】復調器4内の搬送波再生回路が追従できないほど基準発振器8の周波数誤差が大きいときには、復調データには著しい誤りを生じるため、復調データの信頼性が極めて低下する。復調データ監視回路15においては、復調器から出力された受信フレーム信号中に含まれるブリーランブルビットあるいは同期ワードあるいは特定の信号ビットなどのパターンが既知であるデータビット列と受信データビット列とのビットパターンの照合あるいは既知の信号と受信信号との相互相関値の算出を行うか、あるいはBCH符号化あるいは重複符号化などの誤り訂正符号化された情報ビット列を利用して誤り検出復号あるいは誤り訂正復号処理を行い、受信情報ビット列に含まれるデータ誤り率を得ることにより復調データの信頼性を判定することができる。

【0072】復調データの信頼性が高いこと、つまり復調器4の追従範囲内で搬送波再生が行われていることが確認された後、復調器4から出力される再生搬送波の周波数を周波数カウンタ5により測定する。復調データに信頼性がない場合には、基準発振器制御回路7が発振周波数にオフセットを加えるための信号を基準発振器8に出力し、復調器4に入力される中間周波信号をオフセットさせ、復調データ監視回路15において再度復調データの信頼性の判定を行う。

【0073】図13は第三実施例の修正例を示す。この例は、同期ワード検出回路12を復調データ監視回路15として用いる。図では、これを同期ワード検出／復調データ監視回路16として示す。

【0074】ディジタル通信用無線機において、同期ワード検出回路はデータフレームの同期タイミング検出に一般的に用いられている。復調器4内の搬送波再生回路が追従できないほど基準発振器8の周波数誤差が大きいときには、復調データには著しい誤りを生じるため、同期ワードの検出率が極めて低下する。したがって、同期ワード検出回路を用いることで、復調データの信頼性を判断できる。このとき、複数のフレームにわたる同期ワード検出率を算出し、復調データの信頼性の低下を判定してもよい。

【0075】同期ワード検出／復調データ監視回路13において復調データからの同期ワード検出が可能であるとき、すなわち復調データの信頼性が高く、かつ復調器4の追従範囲内で搬送波再生が行われていることが確認

10

16

された後に、復調器4から出力される再生搬送波の周波数を周波数カウンタ5により測定する。同期ワードが検出されない場合には、基準発振器制御回路7が発振周波数にオフセットを加えるための信号を基準発振器8に出力し、復調器4に入力される中間周波信号をオフセットさせ、同期ワード検出／復調データ監視回路13において再度同期ワードの検出を行う。

【0076】図12および図13にそれぞれ示した構成では、基準発振器制御回路7による周波数オフセット量を復調器4における周波数誤差検出範囲よりも小さくし、オフセット前とオフセット後との周波数誤差検出範囲の一部が重複する値とすることがよい。すなわち、両者の周波数誤差検出範囲を連続とすることにより、復調器4の追従範囲の限界値での搬送波再生動作の不安定性を除去できる。

【0077】周波数誤差検出回路6では、周波数カウンタ5の出力から、あらかじめ定められた中間周波信号周波数との比較を行って周波数誤差を検出する。この検出出力は基準発振器制御回路7に入力される。基準発振器制御回路7では、周波数誤差を補償するために、オフセット周波数と周波数誤差との和の周波数に相当する周波数誤差補償信号を生成し、これを基準発振器8に入力し、周波数誤差があらかじめ定められた値以下となるまでその発振周波数を制御する。

【0078】基準発振器8として用いられるVC-TCXOの発振周波数の経年変動の傾向および実際に移動無線機が使用される環境における発振周波数誤差の傾向は、VC-TCXOの特性表その他からあらかじめ知ることができる。そこで、それにあわせて、周波数オフセット量を初期値に対して発振周波数を増加させるかあるいは減少させるかを基準発振器制御回路7により制御する。これにより、周波数安定化に要する時間を短縮することができる。さらに、基準発振器8に与えられている発振周波数誤差の補償信号を記憶しておき、次回からの周波数安定化動作時の初期値として用いることもできる。さらに、周波数安定化に要する時間を短縮するため、過去の周波数安定化動作において基準発振器8に与えた誤差補償信号を記憶しておき、それらの平均値または最も頻度の高い値を周波数安定化動作時の初期値あるいはオフセット量の設定値として用いることもできる。

【0079】このようにして、基準発振器8に適切な周波数オフセットが加えられた時点で、復調器4から出力される信号を周波数カウンタ5へ入力し、その計数値により周波数誤差検出回路6で周波数誤差を検出し、基準発振器制御回路7により周波数誤差が減少するように発振周波数を制御する。これにより、より広い周波数範囲にわたる周波数誤差の検出および補償が可能となる。

【0080】移動無線機が電源投入等により動作を開始したときの基準発振器の周波数安定度は、使用される温度や基準発振器の経年変化の影響で低下している場合が

(10)

特開平8-32507

17

ある。本実施例では、この周波数安定度の低下による周波数誤差が復調器4の追従範囲を越えていても、基準発振器8の発振周波数にオフセットを加えることにより復調器4での搬送波再生を可能とし、周波数カウンタ5で測定した搬送波周波数誤差とオフセット量とから基準発振器8の発振周波数誤差を検出して誤差を補正できるようになるとともに、通信中の温度変化による周波数ドリフトも補償できる。したがって、移動無線機の使用温度範囲を拡大するとともに、基準発振器8の製造時の初期周波数偏差の微調整や経年変化に伴う周波数偏差の再調整等を不要とし、無調整化を図ることができる。

【0081】さらに、第二実施例と同様に回線品質検出回路を設け、回線品質の劣化を検出したときに周波数安定化を行わせることもできる。

【0082】このように本実施例では、基準発振器の要求精度を大幅に緩和でき、基準発振器の低コスト化、小型化および低消費電力化を図ると共に、移動無線機回路の熱設計が容易になり、無線機の小型化および軽量化を図ることができる。

【0083】また、復調器および周波数安定化機能を実現するための回路、すなわち周波数カウンタ5、周波数誤差検出回路6および基準発振器制御回路7はすべて論理回路で構成でき、LSI化が容易であるため、小型化、低消費電力化および無調整化が可能であり、移動無線機に適している。

【0084】図14は本発明第四実施例の移動無線機を示すブロック構成図である。この実施例は、再生された搬送波の周波数に関する情報として、搬送波再生のための制御データを利用するところが第一実施例と異なる。

【0085】すなわち、復調器4内の搬送波再生回路において、論理回路で構成された可変分周器の分周比を変化させることにより再生搬送波周波数を変化させる場合には、その分周比を設定するための制御データに対して出力周波数が一意に定まるので、その制御データを周波数データとして取り出し、あらかじめ定められた周波数に対する中間周波数信号の周波数ドリフトを検出することができる。具体的には、図6に示した復調器のデジタル発振器44に入力される周波数データ、すなわち適応キャリヤ同期データ生成回路42の出力と周波数ドリフト検出回路43の出力を用いる。

【0086】この場合には、第一実施例ないし第三実施例における周波数カウンタ5は不要となり、復調器4の出力する周波数データは直接に周波数誤差検出回路6に供給される。周波数誤差検出回路6は、この周波数データに基づいて、あらかじめ定められた中間周波信号周波数に対する周波数誤差を検出する。周波数誤差検出回路6の検出した周波数誤差は基準発振器制御回路7に入力される。基準発振器制御回路7は、周波数誤差を補償するための周波数誤差信号を生成して基準発振器8に入力し、周波数誤差があらかじめ定められた値以下となるま

10

で基準発振器8の発振周波数を制御して安定化する。

【0087】また、第二実施例と同様に回線品質検出回路を備え、回線品質の劣化を検出したときに周波数安定化を行わせることができる。さらに、第三実施例と同様にデータ監視回路を備え、復調データの信頼性の低下を検出したときに、基準発振器の発振周波数にオフセットを加えることができる。

【0088】本実施例は、再生搬送波周波数を周波数カウンタを用いて測定する必要がないため、高速な周波数安定化動作が可能となる。さらに、周波数カウンタが必要であることから、回路規模を小さくできる利点がある。

【0089】図15は本発明第五実施例の移動無線器を示すブロック構成図である。この実施例は、周波数シンセサイザの周波数基準にオフセットを加えるのではなく、復調器内の位相基準信号周波数にオフセットを加えることが上述の実施例と異なる。すなわち、同期ワード検出回路13が復調データの信頼性の低下を検出したときに復調器4内の位相基準信号の周波数にオフセットを加えるための基準信号制御回路14を備えることが第三実施例と異なる。

【0090】基準信号制御回路14は、復調器4に基準信号制御データを入力し、初期状態として、復調器4における位相基準信号があらかじめ定められた中間周波信号の周波数に対応するように設定する。復調器4から出力された復調データは同期ワード検出回路13に入力される。

【0091】同期ワード検出により、復調データに信頼性があり、かつ復調器4の追従範囲内で搬送波再生が行われていることが確認された後、復調器4の出力である再生搬送波の周波数を周波数カウンタ5により測定する、同期ワード検出が行われない場合には、復調器4の位相基準信号周波数をオフセットさせるため、基準信号制御回路14は基準信号制御データを復調器4に入力し、再度、同期ワードの検出を行う。

【0092】ここで、位相基準信号周波数をオフセットさせるために基準信号制御回路14が出力するデータは、初期値を入力している場合の復調器4における周波数誤差追従範囲とオフセット後の周波数誤差追従範囲の一部とを重複させた値とすることがよい。すなわち、両者の周波数誤差検出範囲が連続となるように周波数をオフセットすることにより、復調器4の追従範囲の限界周波数での搬送波再生動作の不安定を除去できる。

【0093】周波数誤差検出回路6では、周波数カウンタ5の出力から、あらかじめ定められた中間周波信号周波数との比較を行って周波数誤差を検出する。検出出力は基準発振器制御回路7に供給される。基準発振器制御回路7は、周波数誤差を補償するために周波数誤差補償信号を生成し、これを基準発振器8に入力して周波数誤差があらかじめ定められた値以下となるまで周波数基準

50

(11)

特開平8-32507

19

信号の発振周波数を制御し、安定化動作を行う。

【0094】基準発振器8として用いられるVC-TCXOの発振周波数の経年変動の傾向、および実際に移動無線機が使用される環境における発振周波数誤差の傾向については、VC-TCXOの特性表その他からあらかじめ知ることができる。そこで、これにあわせて基準信号制御回路14による周波数オフセット量を設定し、初期値に対して発振周波数を増加させるかあるいは減少させるかを制御することにより、周波数安定化に要する時間を短縮することができる。さらに基準発振器8に与えられている発振周波数誤差の補償信号を記憶しておき、次回からの周波数安定化動作時の初期値として用いることもできる。さらに周波数安定化に要する時間を短縮させるために、過去の周波数安定化動作において基準発振器8に与えた誤差補償信号を記憶しておき、そこらの平均値または最も頻度の高い順の値を周波数安定化動作時の初期値あるいはオフセット量の設定値として用いることもできる。

【0095】本実施例は、復調のための位相基準信号を異なる周波数にオフセットすることにより、復調器4の復調のための位相基準を時系列に変更し、等価的に周波数検出範囲の異なる複数の復調器を実現している。このため、より広い周波数範囲にわたり周波数誤差の検出および補償が可能である。

【0096】以上の説明では再生搬送波を想定して周波数誤差を検出する構成について説明したが、第四実施例と同様に、搬送波の周波数に関する情報として搬送波再生のための制御データを用いることができる。

【0097】また、復調器および周波数安定化機能を実現するための回路、すなわち周波数カウンタ5、周波数誤差検出回路6および基準発振器制御回路7、さらには同期ワード検出回路13および基準信号制御回路14はすべて論理回路で構成でき、LSI化が容易であるため、小型化、低消費電力化および無調整化が可能であり、移動無線機に適している。

【0098】

【発明の効果】以上説明したように、本発明の移動無線機は、時分割で無線通信信号の送受信を行う無線通信システムにおいて、通信品質を劣化させることなく、通信中の温度変化あるいは基準発振器の経年変化による周波数精度の低下を高精度に検出および補償することを可能とし、基準発振器に要求される周波数安定度の緩和を可能とし、基準発振器の低コスト化、小型化、低消費電力化を図るとともに、移動無線機回路の熱設計を容易にして、移動無線機の小型化、軽量化を図ることができる。

【0099】周波数ドリフトによる回線品質劣化を検出して周波数安定化制御を起動することより、通信中の周波数変動が小さいときには不必要に周波数安定化をすることがない。さらに、受信電界強度信号を利用することにより、受信電界が著しく低下している場合には周波数

10

20

安定化制御を起動しないようにすることができる。

【0100】移動無線機が電源投入等により動作を開始したときの基準発振器の周波数誤差が復調器の追従範囲を越えていても、基準発振器の発振周波数にオフセットを加えることにより、復調器での搬送波再生を可能とし、周波数カウンタで測定した搬送波周波数誤差とオフセット量とから基準発振器の発振周波数誤差を検出して補正できるとともに、通信中の温度変化による周波数ドリフトも補償できる。したがって、移動無線機の使用温度範囲を拡大するとともに、基準発振器の製造時の初期周波数偏差の微調整や経年変化に伴う周波数偏差の再調整等を不要とし、無調整化を図ることができる。

【0101】再生された搬送波の周波数に関する情報として搬送波再生のための制御データを用いる場合には、周波数カウンタが不要となり、高速な周波数安定化動作が可能となる。さらに、周波数カウンタが不要であることから、回路規模を小さくできる利点がある。

【0102】復調のための位相基準信号を異なる周波数にオフセットすることで、一つの復調器の復調のための位相基準を時系列に変更し、等価的に周波数検出範囲の異なる複数の復調器を実現することもできる。このため、より広い周波数範囲にわたり周波数誤差の検出および補償が可能である。

【0103】復調器および周波数安定化機能を実現するための回路をすべて論理回路で構成でき、LSI化が容易であるため、小型化、低消費電力化および無調整化が可能であり、移動無線機に適している。

【図面の簡単な説明】

【図1】本発明第一実施例の移動無線機を示すブロック構成図。

【図2】復調器、周波数カウンタおよび周波数誤差検出回路による周波数誤差検出動作を説明する図。

【図3】通信中の周波数測定と基準発振器制御とのタイミングの一例を示す図。

【図4】通信中の周波数安定化動作の一例を示すフローチャート。

【図5】基準発振器制御の一例を説明する図。

【図6】復調器の一例を示すブロック構成図。

【図7】識別タイミングにおけるシンボル位相を示す図。

【図8】位相基準信号と角度変調波の搬送波との間に周波数誤差が存在する場合の位相回転を示す図。

【図9】周波数誤差によって生じる位相回転角度θがπ/4を越えた場合を示す図。

【図10】識別タイミング毎に検出した相対位相データを第一象限に縮退させた状態を示す図。

【図11】本発明第二実施例の移動無線機を示すブロック構成図。

【図12】本発明第三実施例の移動無線機を示すブロック構成図。

40

50

(12)

特開平8-32507

21

22

【図13】復調データ監視回路の構成例を示すブロック構成図。

【図14】本発明第四実施例の移動無線機を示すブロック構成図。

【図15】本発明第五実施例の移動無線機を示すブロック構成図。

【図16】従来例の移動無線機を示すブロック構成図。

【図17】変調回路の構成例を示す図。

【図18】時分割で無線通信信号の送信および受信を行

うデジタル移動通信システムの送信タイミングの例を 10
示す図。

【符号の説明】

- 1 アンテナ
- 2 送受分波器
- 3 受信機
- 4 復調器
- 5 周波数カウンタ
- 6 周波数誤差検出回路
- 7 基準発振器制御回路
- 8 基準発振器

9 周波数シンセサイザ

10 変調回路

11 電力増幅器

12 同期ワード検出回路

13 タイミング制御回路

14 回線品質検出回路

15 復調データ監視回路

16 同期ワード検出/復調データ監視回路

41 直接位相量子化回路

42 適応キャリア同期データ生成回路

43 周波数ドリフト検出回路

44 デジタル発振器

45 固定発振器

46 識別回路

101 変調入力端子

102 角度変調器

103 局部発振信号入力端子

104 ミクサ

105 変調出力端子

20

【図1】

【図3】

【図7】

【図17】

(13)

特開平8-32507

【図4】

【図6】

【図5】

【図9】

【図10】

(14)

特開平8-32507

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

(15)

特開平8-32507

【図18】

フロントページの続き

(51) Int.Cl. 6

識別記号

庁内整理番号

F I

技術表示箇所

H 0 4 L 27/227