Claim Amendments

Claims 1-60 (Cancelled).

61. (Currently Amended) A surgical implant, comprising:

a sensor for measuring intra-body diagnostic data;

a controller configured for generating an electrical communication signal containing the diagnostic data;

one or more acoustic transducers;

circuitry for collectively configuring the one or more acoustic transducers to convert acoustic energy received from a location external to the implant into electrical energy used to support operation of the implant, and convert the electrical communication signal received by the controller into an acoustical communication signal for transmission to a location external to the implant; and

an energy storage device configured for storing the electrical energy converted by the one or more transducers, wherein the energy storage device comprises a first relatively fast-charging capacitor and a second relatively slow-charging capacitor, the first and second capacitors being coupled to the one or more acoustic transducers such that the first capacitor is charged first and the second capacitor is charged only upon substantially charging of the first capacitor.

262. (Previously Added) The implant of claim 61, wherein the one or more acoustic transducers are configured by the circuitry in a full-duplex mode, such that the one or more acoustic transducers can simultaneously convert the acoustic energy into electrical energy and convert the electrical communication signal into the acoustical comunication signal.

3 63. (Previously Added) The implant of claim 62, wherein the one or more transducers comprise at least one receive only transducer for converting the acoustic energy into electrical

D

energy, and at least one transmit only transducer for converting the electrical communication signal into the acoustical communication signal.

64. (Previously Added) The implant of claim 62, wherein the one or more transducers comprises at least one transducer, each of which is configured by the circuitry for converting the acoustic energy into electrical energy and for converting the electrical communication signal into the acoustic communication signal.

(Previously Added) The implant of claim 61, wherein the one or more acoustic transducers are configured by the circuitry in a half-duplex mode, such that the one or more acoustic transducers can alternately convert the acoustic energy into electrical energy and convert the electrical communication signal into the acoustic communication signal.

66. (Previously Added) The implant of claim 67, wherein the one or more transducers are collectively configured by the circuitry for converting an acoustic communication signal transmitted from a location external to the implant to another electrical communication signal, the controller configured for detecting the other electrical communication signal.

67. (Previously Added) The implant of claim 61, wherein the one or more acoustic transducers comprise:

a substrate comprising a cavity; and

a substantially flexible piezoelectric layer attached to the substrate across the cavity.

68. (Previously Added) The implant of claim 67, further comprising a first electrode attached to an external surface of the piezoelectric layer and a second electrode attached to an internal surface of the piezoelectric layer.

69. (Previously Added) The implant of claim 67, wherein the substrate comprises an array of cavities, and wherein the piezoelectric layer is bonded to the substrate over the cavities.

203620_1/2024750-7031053001

5

13

76. (Previously Added) The implant of claim 67, wherein the piezoelectric layer comprises poly vinylidene fluoride.

77. (Previously Added) The implant of claim 61, wherein the energy storage device is rechargeable.

72. (Cancelled)

73. (Previously Added) The implant of claim 61, wherein the diagnostic data is pressure data.

7A. (Previously Added) The implant of claim 61, wherein the electrical energy is alternating current electrical energy, and wherein the controller is configured for converting alternating current electrical energy into direct current electrical energy for storage in the energy storage device.

75. (Previously Added) The implant of claim 61, wherein the controller is configured to reset the implant when the energy storage device is being charged by the electrical energy.

18 76. (Previously Added) The implant of claim 61, wherein the controller is configured for automatically switching the implant off when the electrical energy available from the energy storage device falls below a predetermined threshold.

77. (Previously Added) The implant of claim 66, wherein the controller is configured for extracting one or more commands from the other electrical communication signal and controlling the implant in response to the one or more commands.

7.8. (Previously Added) The implant of claim 7.7, wherein the controller is configured for activating or deactivating the energy storage device in response to the one or more commands.

79. (Previously Added) The implant of claim 71, wherein the controller is configured for monitoring when the one or more acoustic transducers stop converting electrical energy, and for activating the implant when electrical energy is no longer being converted by the one or more acoustic transducers.

203620_1/2024750-7031053001

P

PATENT 2024750-7031053001 (258/301)

80. (Currently Amended) A surgical implant, comprising:

a controller configured for controlling the operation of the implant and for generating an electrical communication signal;

one or more acoustic transducers;

circuitry for collectively configuring the one or more acoustic transducers to convert the electrical communication signal into an acoustical communication signal for transmission to a location external to the implant, and to convert acoustic energy received from a location external to the implant into electrical energy used to support operation of the implant; and

an energy storage device configured for storing the electrical energy, wherein the energy storage device comprises a first relatively fast-charging capacitor and a second relatively slow-charging capacitor, the first and second capacitors being coupled to the one or more acoustic transducers such that the first capacitor is charged first and the second capacitor is charged only upon substantially charging of the first capacitor.

81. (Previously Added) The implant of claim 80, wherein the one or more acoustic transducers are configured by the circuitry in a full-duplex mode, such that the one or more acoustic transducers can simultaneously convert the acoustic energy into electrical energy and convert the electrical communication signal into the acoustical comunication signal.

82. (Previously Added) The implant of claim 81, wherein the one or more transducers comprise at least one receive only transducer for converting the acoustic energy into electrical energy, and at least one transmit only transducer for converting the electrical communication signal into the acoustical communication signal.

83. (Previously Added) The implant of claim 81, wherein the one or more transducers comprises at least one transducer, each of which is configured by the circuitry for converting the

 \emptyset

acoustic energy into electrical energy and for converting the electrical communication signal into the acoustic communication signal.

84. (Previously Added) The implant of claim 80, wherein the one or more acoustic transducers are configured by the circuitry in a half-duplex mode, such that the one or more acoustic transducers can alternately convert the acoustic energy into electrical energy and convert the electrical communication signal into the acoustic communication signal.

85. (Previously Added) The implant of claim 80, wherein the one or more transducers are collectively configured by the circuitry for converting an acoustic communication signal transmitted from a location external to the implant to another electrical communication signal, the controller configured for detecting the other electrical communication signal.

86. (Previously Added) The implant of claim 80, wherein the one or more acoustic transducers comprise:

a substrate comprising a cavity; and

a substantially flexible piezoelectric layer attached to the substrate across the cavity.

87. (Previously Added) The implant of claim 86, further comprising a first electrode attached to an external surface of the piezoelectric layer and a second electrode attached to an internal surface of the piezoelectric layer.

39 88. (Previously Added) The implant of claim 86, wherein the substrate comprises an array of cavities, and wherein the piezoelectric layer is bonded to the substrate over the cavities.

31 89. (Previously Added) The implant of claim 86, wherein the piezoelectric layer comprises poly vinylidene fluoride.

32 96. (Previously Added) The implant of claim 86, wherein the energy storage device is rechargeable.

203620_1/2024750-7031053001

D

91. (Cancelled)

92. (Previously Added) The implant of claim 80, further comprising a sensor for acquiring diagnostic data, wherein the electrical communication signal generated by the transmission circuit contains the diagnostic data.

93. (Previously Added) The implant of claim 80, wherein the electrical energy is alternating current electrical energy, and wherein the controller is configured for converting alternating current electrical energy into direct current electrical energy for storage in the energy storage device.

94. (Previously Added) The implant of claim 80, wherein the controller is configured to reset the implant when the energy storage device is being charged by the electrical energy.

96. (Previously Added) The implant of claim 86, wherein the controller is configured for automatically switching the implant off when the electrical energy available from the energy storage device falls below a predetermined threshold.

96. (Previously Added) The implant of claim 86, wherein the controller is configured for extracting one or more commands from the other electrical communication signal and controlling the implant in response to the one or more commands.

97. (Previously Added) The implant of claim 96, wherein the controller is configured for activating or deactivating the energy storage device in response to the one or more commands.

98. (Previously Added) The implant of claim 96, wherein the controller is configured for monitoring when the one or more acoustic transducers stop converting electrical energy, and for activating the implant when electrical energy is no longer being converted by the one or more acoustic transducers.

99-103. (Cancelled)

