MATH 222 Assignment 2

Sterling Laird - V00834995January 24, 2019 1. Consider a tree T with some vertex v of degree 4.

Since a tree cannot have any cycles, every path from v taking a unique edge incident to v must eventually terminate in at least one leaf.

Therefore T must have at least 4 leaves.

Now lets consider if T has another vertex u of degree 3.

Since T is a tree, there must be a single v-u path in T.

And since there must be a single u-v path and there can be no cycles, exactly one of the edges incident to v must yield a v-u path and exactly one of the edges incident to u must yield a u-v path.

So there are exactly 3 paths from v taking a unique edge incident to v that terminate in at least one leaf, and similarly there are exactly 2 paths from u taking a unique edge incident to u that terminate in at least one leaf.

- \therefore T contains at least 5 leaves.
- 2. For a tree T = (V, E), there must have a single u-v path in $T \forall u, v \in V$ Therefore

3.

Example of a 4-regular plane graph with 6 vertices.

Since $|V| - |E| + R = 2 \iff 6 - 12 + 8 = 2$ holds, we can verify that this example holds.

4. We can use the theorem that $|E| \leq 3|V| - 6$ for any planar graph G with $|V| \geq 3$.

Assume that both G and \overline{G} are planar.

Therefore for G:

$$|E| \le 3|V| - 6$$

 $|E| \le 3|11| - 6$
 $|E| \le 27$

And therefore for \overline{G} , since the maximum number of edges in \overline{G} is the difference between the number of edges in K_11 and the maximum number of edges in G:

$$|E| \le 3|V| - 6$$

$$\frac{11(11-1)}{2} - 27 \le 3|11| - 6$$

$$28 < 27$$

Which is a contradiction.

 \therefore either G or \overline{G} must be non-planar.

5. First we prove that if deg(v) < k and G is k-colorable then G - v is k-colorable.

We know that k must be larger than the maximum degree vertex in G.

Since G is k-colorable using Brooks' theorem, we know that the maximum degree of a vertex in G must be k-1.

Since the maximum degree of G - v is less or equal the maximum degree of G because some edges in G may have been removed, therefore the maximum degree of G - v must be k - 1.

 \therefore if G is k-colorable, G - v must be k-colorable.

Now we prove that if G - v is k-colorable then G is k-colorable.

Using Brooks's theorem the maximum degree of G - v is k - 1.

And since v < k, G will have a maximum degree of k since each of the vertices in G - v will have at most one more edge in G.

Since G has a maximum degree of k, using Brooks' theorem again we can easily see that G will be k-colorable.

- 6. a) As a counter-example, consider C_5 in which $\chi(C_5) = 3$ yet contains no subgraph isomorphic to K_3 .
 - b) Consider the Wheel graph W_6 with $\chi(G) = 4$.

While W_6 has a subraph homeomorphic to K_4 , it has no subgraph isomorphic to K_4 .

 \therefore the statement is false.

c) Since a $\chi(G) = 2$, G must be bipartite.

Since for G to be planar, using kuratowskis' theorem, G must have no subgraph that is homeomorphic to K_5 or $K_{3,3}$, but K_5 is not bipartite, so we only consider $K_{3,3}$.

Now consider if $G = K_{6,6}$

We know a bipartite graph $K_{m,n}$ has a Hamiltonian cycle iff m = n so G has a Hamiltonian cycle.

We know that a graph with at least 2 vertices has an Eulerian circuit iff it is connected and every vertex is of even degree, so clearly G has a Eulerian circuit.

Clearly $K_{3,3}$ is an isomorphic subgraph of $K_{6,6}$ so $K_{3,3}$ is a homeomorphic subgraph to $K_{6,6}$.

- $\therefore G = K_{6,6}$ is not planar.
- \therefore the statement is false