PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1. (a)	$s = ut + \frac{1}{2}at^2$: $50 = 5 \times 4 + \frac{1}{2} \times a \times 4^2$	M1 A1
	$\Rightarrow 30 = 8a \Rightarrow a = 3.75 \text{ m s}^{-1}$	A1 (3)
(b)	$30^2 = 5^2 + 2 \times 3.75 \times s$	M1 A1 ft
	$\Rightarrow s = 116 \frac{2}{3} \mathrm{m}$	A1 (3)
		(6 marks)
2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 A1 (3) M1 A1 (one) M1 A1 (both) (4) (7 marks)
3. (a)		(7 marks)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$M(C)$: $16 \times 30 = w \times 20 + 5 \times 70$ (3 terms)	M1 A1
(b)	$\Rightarrow w = 6.5 \text{ N}$ $\longleftrightarrow d \longrightarrow D$ $\downarrow \qquad \qquad \downarrow$ $3.5 \qquad 6.5 \qquad 5$	A1 (3)
	M(D): $3.5d + 6.5(d - 50) = 5(100 - d)$	M1 A2ft (-1 eeoo)
	$\Rightarrow d = 55 \text{ cm}$	A1 (4)
(c)	Tension equal along string, i.e. tensions = weights throughout <i>or</i> no contributions from strings in moments equation	B1 (1)
	or no controlled from sumper in moments equation	(8 marks)

(ft = follow through mark; -1eeoo = minus one mark for each error or omission)

PROVISIONAL MARK SCHEME

	estion mber		Scheme	Mark	S
4.	(a)	R	$F = \frac{2}{5}R$	B1	
		\longrightarrow^P	$R(\uparrow): R\cos 30^{\circ} - F\cos 60^{\circ} = 6g$	M1 A1	
			$R\frac{\sqrt{3}}{2} - \frac{2}{5}R - \frac{1}{2} = 6g$		
		F V 6g	$\Rightarrow R = 88.3 \text{ N (or } 88 \text{ N)}$	A1	(4)
	(<i>b</i>)		$R(\leftarrow)$: $P = R \cos 60^{\circ} + F \cos 30^{\circ}$	M1 A1	
			= 74.7 N (or 75 N)	A1	(3)
	(c)	R^{\prime}	Component of weight $(\checkmark) = 6g \cos 60^{\circ}$		
		F'	= 29.4 N	B1	
			$R' = 6g \cos 30^{\circ} = 50.9 \text{ N}$	M1 A1	
			$F_{\text{max}} = 0.4 R' = 20.36 N$	M1	
		V 6g	Since $29.4 > 20.36$, the box moves	A1 cso	(5)
				(12 ma	arks)
5.	(a)	$\tan \theta = \frac{1}{2} \Rightarrow \theta = 2$	26.6°	M1 A1	
		θ 2 angle required = 1	53.4°	A1	(3)
	(<i>b</i>)	$\mathbf{a} = \frac{1}{3} [(\mathbf{i} - 2\mathbf{j}) - (-5\mathbf{i} + 7\mathbf{j})]$		M1	
		$= (2\mathbf{i} - 3\mathbf{j}) \text{ m s}^{-2}$		A1	(2)
	(c)	$\mathbf{F} = m\mathbf{a} = 4\mathbf{i} - 6\mathbf{j}$		M1	
		$ \mathbf{F} = \sqrt{(16 + 36)} = 7.21 \text{ N}$		M1 A1	(3)
	(<i>d</i>)	$\mathbf{v} = (-5 + 2t)\mathbf{i} + (7 - 3t)\mathbf{j}$		M1 A1ft	(2)
	(e)	v parallel to $\mathbf{i} + \mathbf{j} \Rightarrow \frac{-5 + 2t}{7 - 3t} = 1$		M1	
		$\Rightarrow t = 2.4 \text{ s}$		M1 A1	(3)
				(13 ma	ırks)

(cso = correct solution only)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
6. (a)	v		
	3 shape	B1	
	(3, 2.5)	B1 (2))
	$ \begin{array}{c cccc} \hline & & & \\ \hline & & & $		
(<i>b</i>)	Area = $27 = \frac{1}{2} \times 1.5 \times 3 + 3T + \frac{1}{2} \times 2.5 \times 3$	M1 A1	
	$\Rightarrow T = 7 \text{ s}$	A1 (3)
(c)	shape $0 \le t \le 8.5$	B1	
	shape $t > 8.5$	B1	
	$(-1.2) \xrightarrow{7} \qquad 2.5 \Rightarrow t \qquad (2, 7 \text{ (ft)}, 2.5)$	B1 (3))
(<i>d</i>)	ΛT (System)		
	$T - 200g = 200 \times 2$	M1 A1	
	$\Rightarrow T = 2360 \text{ N}$	A1 (3)
(e)	(Man)		
		M1 A1	
	$\Rightarrow R = 688 \text{ N}$	A1 (3)
		(14 marks	3)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
7. (a)	$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $	
	$R = 2mg \implies F = 2\mu mg$	B1
	$A: T - 2\mu mg = 2ma$	M1 A1
	$B: mg \times \frac{1}{2} - T = ma$	M1 A1
	Eliminating T: $3ma = \frac{1}{2}mg - 2\mu mg$	M1
	$a = \frac{1}{6}(1 - 4\mu)g(\clubsuit)$	A1 (7)
(b)	$\mu = 0.2 \implies a = \frac{1}{30} g$	B1
	when string breaks: $v^2 = 2 \times \frac{1}{30} g \times h = \frac{1}{15} gh$	M1 A1
	A decelerating with deceleration $f \Rightarrow 2mf = 2\mu mg$	
	$f = \mu g = \frac{1}{5}g$	B1
	Hence distance travelled during deceleration is given by $\frac{1}{15}gh = 2 \times \frac{1}{5}gd$	M1
	$\Rightarrow d = \frac{1}{6}h$	
	$\therefore \text{ Total distance} = \frac{7}{6}h$	A1 cso (6)
(c)	Any two from: weight of pulley; friction at pulley; friction on slope; weight of string; string extensible; 'spin' of particle	B1 B1 (2)
		(15 marks

((*) indicates final line is given on the paper; cso = correct solution only)