

Instituto Superior de Ciências de Saúde

Física das Radiações para o Curso de Licenciatura em Radiologia

2022-AP # 03- Radioactividade

- 1. Determine a actividade de 1 g de $^{226}\mathrm{Ra}$, sabendo que a sua meia-vida é $\mathrm{T}_{1/2}$ = 1600 anos.
- 2. Determine a quantidade de Polónio $^{210}_{84}$ Po cuja actividade é igual a 3.7×10^{10} desint/s.
- 3. Uma amostra radioactiva tem uma constante de desintegração $\lambda = 1.44 \times 10^{-3} \, h^{-1}$. Determine o tempo que leva para decair em 75% da sua quantidade inicial.
- 4. São dados os resultados experimentais (Tabela 1) da medição da actividade de um dado elemento radioactivo em função do tempo. Determine o período de semi-desintegração (meia-vida) desse elemento.

Tabela 1:							
A(μCi)	21.6	12.6	7.6	4.2	2.4	1.8	
t(h)	0	3	6	9	12	15	

- 5. Determine a taxa de decaimento de 14 C por grama de Carbono em uma pessoa, considerando que 14 C/ 12 C = 1.35 × 10 $^{-12}$. O tempo de meia-vida de 14 C é $T_{1/2}$ = 5730 anos
- 6. Dos seguintes núcleos ${}^{15}_6$ C, ${}^{15}_7$ N e ${}^{15}_8$ O, sabe-se que ${}^{15}_7$ N é estável. Como é que os outros, isto é, ${}^{15}_6$ C e ${}^{15}_8$ O, decaem?
- 7. Sabe-se que a maior parte dos raios X usados no âmbito do radiodiagnóstico, é de freamento. Explique como é que obtém e qual é a diferença entre os de alta energia e os de baixa energia quanto à sua geração.
- 8. O isótopo de Iodo $^{131}_{53}$ I é clinicamente usado para o diagnóstico das doenças da glândula tiroidal. Determine a actividade deste radioisótopo: (i) Imediatamente o paciente ter sido administrado 550 μ g; (ii) Após 1 hr, 2 hrs e 10 hrs, sabendo que $T_{1/2} = 8.02$ dias.
- 9. Suponhamos que no instante inicial (t=o), o Tecnécio ^{99m}Tc com uma actividade de 370 kBq entra na bexida de um paciente e fica duas horas (2 hrs) antes de totalmente o eliminar junto com a urina. Determine a actividade acumulada nessas duas horas, sabendo que o tempo de meia-vida é de 6 horas.
- 10. Determine a actividade específica da urina (em transformações por minuto por litro) relativo ao 40 K, sabendo que $T_{1/2} = 1.3 \times 10^9$ anos.