What is Statistical Learning?

Intuition behind Statistical Learning

N	Weight	Height	Age
1	166	153	59
2	177	167	49
3	159	176	50
4	169	150	75
5	148	161	53
6	179	180	47
7	153	169	51
8	156	157	89
9	162	158	44

Blood Pressure
Ş
?
,
,
,
,
5
5
?

Traditional Approach

N	Weight	Height	Age	Y = (0.3 * Weight) + (0.25 * Height) + (0.5 * Age)	Blood Pressure
1	166	153	59		
2	177	167	49		
3	159	176	50		
4	169	150	75		
5	148	161	53		
6	179	180	47		
7	153	169	51		
8	156	157	89		
9	162	158	44		

Traditional Approach

N	Weight	Height	Age	Y = (0.3 * Weight) + (0.25 * Height) + (0.5 * Age)	Blood Pressure
1	166	153	59	>	117.55
2	177	167	49	>	119.35
3	159	176	50	>	116.7
4	169	150	75	→	125.7
5	148	161	53	>	111.15
6	179	180	47	>	122.2
7	153	169	51		113.65
8	156	157	89	>	130.55
9	162	158	44	>	110.1

Statistical Learning Approach

N	Weight	Height .	Age	Blood Pressure
1	166	153	59	117.55
2	177	167	49	119.35
3	159	176	50	116.7
4	169	150	75	125.7
5	148	161	53	111.15
6	179	180	47	122.2
7	153	169	51	113.65
8	156	157	89	130.55
9	162	158	44	110.1

Statistical Learning Approach

N	Weight	Height	Age		Blood Pressure
1	166	153	59		117.55
2	177	167	49		119.35
3	159	176	50		116.7
4	169	150	75		125.7
5	148	161	53	Y = f(x)	111.15
6	179	180	47		122.2
7	153	169	51		113.65
8	156	157	89		130.55
9	162	158	44	Y = (0.3 * Weight) + (0.25 * Height) + (0.5 * Age)	110.1

Intuition behind Statistical Learning

Intuition behind Statistical Learning

Why do we estimate f(x)?

Why do we use Statistical Learning?

Prediction

N	Weight	Height	Age		Blood Pressure
1	166	153	59		117.55
2	177	167	49		119.35
3	159	176	50		116.7
4	169	150	75		125.7
5	148	161	53	Y = f(x)	111.15
6	179	180	47		122.2
7	153	169	51		113.65
8	156	157	89		130.55
9	162	158	44	Y = (0.3 * Weight) + (0.25 * Height) + (0.5 * Age)	110.1

Why do we use Statistical Learning?

- Which *Predictors* are associated with the *response*?
 - Not all variables used in models are substantially associated to the response.
- What is the *relationship* between the response and each *predictor*?
 - Some predictors can have positive effects in the response. Other predictors may have opposite effects.
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?
 - Not always the nature of the relationship is linear.

Trade-Off Between Prediction Accuracy and Model Interpretability

- The more linear the model, the more explainable.
- The more non-linear (flexible) the more

Types of Machine Learning Problems

Supervised Learning

We know the input (*features/predictors*) and the response or *target*.

Unsupervised Learning

We do not have the answer (*Target*). However, we want to find structure in data (*clustering*).

Supervised Learning

Regression

Classification

We are trying to *predict* a value (*Sales, Blood pressure*)

We are trying to *predict* whether a specific point belongs to a *category*

Different types of Regression

Error vs. Flexibility

^{*} In the left chart we can find that we can adjust different types of curves to the same data. The nature of those curves can be either linear or non-linear

Different types of Classification

Classification

*In the left chart we can find that we can adjust different types of curves to the same data. The nature of those curves can be either linear or non-linear

Different types of Classification

Classification

The more specific (more flexible the model), the higher the expected error for the testing data (new data).

Bias

Bias can be understood as the behavior of always **underrepresenting** the data. **Bias** refers to the error of trying to explain an extremely complicated problem (**data**) with a much simpler model.

Variance

Variance can be understood as overrepresenting the training data. This means that the model is too specific to the data that the model has seen. However, it would not perform very well on new data.

Bias and Variance

Visual representation of **Bias** and **Variance**.

Bias-Variance Trade-off

The total error of the model is the sum of both the **Bias** and **Variance**. Thus we always want find the right balance between them.

