Examenul de bacalaureat național 2020 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Test 11

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte) Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	а	3р
2.	b	3р
3.	b	3р
4.	C	3p
5.	d	3р
TOTAL Subject I		15p

A. Subiectul al II-lea

II.a.	Pentru:		3р
	reprezentarea corectă a greutății, reacțiunii normale și a forței de frecare	3р	
b.	Pentru:		4p
	$G_n = m_1 g \cos \alpha$	1p	
	$G_p = m_1 g \sin \alpha$	1p	
	rezultat final: $G_n \cong 3,46 \text{ N}$; $G_p = 2 \text{ N}$	2p	
C.	Pentru:		4p
	$G_{\rho} - F_{f} = m_{l}a$	1p	
	$F_f = \mu N$	1p	
	$a = g(\sin \alpha - \mu \cos \alpha)$	1p	
	rezultat final: $a = 2.5 \text{ m/s}^2$	1p	
d.	Pentru:		4p
	$T = m_1 g \sin \alpha - \mu_1 m_1 g \cos \alpha - m_1 a'$	1p	
	$T = m_2 a' - m_2 g \sin \alpha + \mu_2 m_2 g \cos \alpha$	1p	
	$T = g \frac{\mu_2 - \mu_1}{m_1 + m_2} m_1 m_2 \cos \alpha$	1p	
	rezultat final: $T = 0.2 \text{ N}$	1p	
OTAL	pentru Subiectul al II-lea		15p

A. Subiectul al III-lea

III.a.	Pentru:	4p
	$E_c = \frac{mv^2}{2} \Rightarrow v = \sqrt{\frac{2E_c}{m}}$	
	$p = m \cdot v$	
	rezultat final: $p = 40 \text{ kg} \cdot \text{m/s}$	
b.	Pentru:	4p
	$\Delta E_c = L_{F_f}$ 3p	
	rezultat final: $L_{F_7} = -80 \text{ J}$	
C.	Pentru:	4p
	$L_{F_f} = -F_f \cdot d \Rightarrow F_f = -L_{F_f}/d$	
	rezultat final: $F_f = 4 \mathrm{N}$	

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

d.	Pentru:	3p
	$-F_f = ma$	
	$\Delta t = \frac{\Delta v}{a} \Rightarrow \Delta t = \frac{mv}{F_f}$	
	rezultat final $\Delta t = 10 \text{ s}$	
TOTAL	pentru Subiectul al III-lea	15p

B. ELEMENTE DE TERMODINAMICĂ		(45 de puncte)
Subiectu	H	
Nr.Item	Soluţie, rezolvare	Punctaj
I . 1.	d	3p
2.	C	3p
3.	a	3p
4.	b	3p
5.	d	3p

15p

B. Subiectul al II-lea

TOTAL Subject I

II.a.	Pentru:	3p
	$v = \frac{m_1}{m_2}$	
	$\mu_{ m l}$ rezultat final $ u$ = 2 mol 1p	
b.	Pentru:	4p
	$\rho = \frac{vRT}{V}$	
	rezultat final $p = 1.5 \cdot 10^5$ Pa	
c.	Pentru:	4p
	$\mu = \frac{m_1 + m_2}{\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}}$ 3p	
	rezultat final $\mu = 10 \cdot 10^{-3} \frac{\text{kg}}{\text{mol}}$	
d.	Pentru:	4p
	$U = U_1 + U_2 $ 1p	
	$U_1 = v_1 C_{v_1} T $	
	$U = U_1 + U_2$ $U_1 = v_1 C_{v_1} T$ $1p$ $U_2 = v_2 (C_{p2} - R) T$ 1p	
	rezultat final $U \cong 35 \text{ kJ}$	
TOTAL	pentru Subiectul al II-lea	15p

B. Subiectul al III-lea

III.a.	Pentru:	4p
	reprezentare grafică corectă 4p	
b.	Pentru:	3p
	$U = \frac{5}{2} vRT$	
	rezultat final $U = 125 \text{ J}$	
C.	Pentru:	4p
	$L = L_{12} + L_{23}$ 1p	
	$L_{12} = p_1(V_2 - V_1)$ 1p	
	$L_{12} = p_1(V_2 - V_1)$ $L_{23} = p_1V_2 \ln \frac{V_3}{V_2}$ 1p	
	rezultat final $L \cong 160 \text{ J}$	
d.	Pentru:	4p
	$Q = Q_{12} + Q_{23}$ 1p	
	$Q_{12} = \frac{7}{2} \rho_1 (V_2 - V_1) $ 1p	
	$Q_{12} = \frac{7}{2} \rho_1 (V_2 - V_1)$ $Q_{23} = L_{23} = \rho_1 V_2 \ln \frac{V_3}{V_2}$ 1p	
	rezultat final $Q \cong 285 \text{ J}$ 1p	
TOTAL	pentru Subiectul al III-lea	15p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU Subiectul I Nr.ltem | Soluție, rezolvare | Punctaj

Nr.Item	Soluţie, rezolvare	Punctaj
I . 1.	C	3p
2.	d	3p
3.	a	3p
4.	b	3p
5.	C	3p
TOTAL Subject I		15p

C. Subiectul al II-lea

II.a.	Pentru:		4p
	$I_1 + I_2 = I_3 $	2p	-
	două dintre următoarele trei relaţii:		
	$E_1 = I_1(r_1 + R_1) + I_3R_3$		
		<u>2</u> p	
	$E_1 - E_2 = I_1(r_1 + R_1) - I_2(r_2 + R_2)$		
b.	Pentru:		3p
	rezultat final $I_2 = 1,6 \text{ A}$	3p	
C.	Pentru:		4p
	$U_3 = I_3 R_3$	3p	
	rezultat final $U_3 = 10.8 \text{ V}$	р	
d.	Pentru:		4p
	$U_{v} = E_{1} - I_{1}r_{1} $	3p	
	rezultat final $U_v = 15,6 \text{ V}$	р	
TOTAL pentru Subiectul al II-lea			15p

C. Subiectul al III-lea

III.a.	Pentru:	3р
	$\eta_2 = \frac{R_2}{R_2 + r} \Rightarrow r = \frac{R_2 \left(1 - \eta_2\right)}{\eta_2}$	
	rezultat final $r = 4 \Omega$	
b.	Pentru:	4p
	$\eta_1 = \frac{R_1}{R_1 + r} \Rightarrow R_1 = \frac{\eta_1 r}{1 - \eta_1}$	
	$E = I_1(r + R_1) $ 1p	
	rezultat final $E = 24 \text{ V}$	
C.	Pentru:	4p
	$P_2 = I_2^2 R_2 $ 2p	
	$I_2 = \frac{E}{r + R_2}$ 1p	
	rezultat final $P_2 = 32 \text{ W}$	
d.	Pentru:	4p
	$Q = I_p^2 R_p \Delta t $ 1p	
	$R_p = \frac{R_1 R_2}{R_1 + R_2} $ 1p	
	$I_{p} = \frac{E}{r + R_{p}}$	
	rezultat final Q = 1620 J 1p	
TOTAL	pentru Subiectul al III-lea	15p

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Centrul Național de Politici și Evaluare în Educație				
N.Hem Soluţie, rezolvare Puncaj 1.1. b 3.9.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Dunctai	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
II.a. Pentru: $C = \frac{1}{l}$ rezultat final $C = 5 \mathrm{m}^{-1}$ 1p b. Pentru: $\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{l}$ 1p $\frac{l}{x_2} - \frac{1}{x_1} = \frac{1}{l}$ 1p $\frac{l}{x_1} = \frac{1}{l}$ 1s 1s 1s 1s 1s 1s 1s 1				15p	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4n	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii.a.		3р	۹۳	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C = \frac{1}{f}$	·		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		rezultat final $C = 5 \text{ m}^{-1}$	1p		
$\beta = \frac{x_2}{x_i} \qquad 1p$ $\beta = -5$ $rezultat final -x_i = 24 \text{ cm} c. \text{Pentru:} d = x_2 - x_1 = (\beta - 1)x_1 rezultat final d = 144 \text{ cm} d. \text{Pentru:} \text{construcție corectă a imaginii} TOTAL pentru Subiectul al II-lea D. \text{Subiectul al III-lea} III.a. \text{Pentru:} i = \frac{\lambda D}{2I} rezultat final i = 1,0 \text{ mm} 1p b. \text{Pentru:} \begin{cases} x_{\text{max}} = \frac{k\lambda D}{2I} \\ x_{\text{max}} = \frac{k(\lambda - 1)D}{2I} \\ x_{\text{max}} = \frac{k(\lambda - 2)D}{2I} \\ x_{m$	b.		<u> </u>	4p	
$\beta = \frac{x_2}{x_i} \qquad 1p$ $\beta = -5$ $rezultat final -x_i = 24 \text{ cm} c. \text{Pentru:} d = x_2 - x_1 = (\beta - 1)x_1 rezultat final d = 144 \text{ cm} d. \text{Pentru:} \text{construcție corectă a imaginii} TOTAL pentru Subiectul al II-lea D. \text{Subiectul al III-lea} III.a. \text{Pentru:} i = \frac{\lambda D}{2I} rezultat final i = 1,0 \text{ mm} 1p b. \text{Pentru:} \begin{cases} x_{\text{max}} = \frac{k\lambda D}{2I} \\ x_{\text{max}} = \frac{k(\lambda - 1)D}{2I} \\ x_{\text{max}} = \frac{k(\lambda - 2)D}{2I} \\ x_{m$		1 1 1		-	
$\beta = \frac{x_2}{x_i} \qquad 1p$ $\beta = -5$ $rezultat final -x_i = 24 \text{ cm} c. \text{Pentru:} d = x_2 - x_1 = (\beta - 1)x_1 rezultat final d = 144 \text{ cm} d. \text{Pentru:} \text{construcție corectă a imaginii} TOTAL pentru Subiectul al II-lea D. \text{Subiectul al III-lea} III.a. \text{Pentru:} i = \frac{\lambda D}{2I} rezultat final i = 1,0 \text{ mm} 1p b. \text{Pentru:} \begin{cases} x_{\text{max}} = \frac{k\lambda D}{2I} \\ x_{\text{max}} = \frac{k(\lambda - 1)D}{2I} \\ x_{\text{max}} = \frac{k(\lambda - 2)D}{2I} \\ x_{m$		$\frac{1}{X_2} - \frac{1}{X_1} = \frac{1}{f}$	1p		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\beta = \frac{2}{x}$	1р		
rezultat final $-x_1$ =24 cm 1p c. Pentru:			1 n		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		·	1р	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C.		0	ЗР	
d.Pentru: construcţie corectă a imaginii4p4pTOTAL pentru Subiectul al III-lea15pD. Subiectul al III-leaIII.a.Pentru: $i = \frac{\lambda D}{2I}$ rezultat final $i = 1,0$ mm1pb.Pentru: $x_{maxk} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I}$ $\lambda x = \frac{d(n-1)D}{2I}$ 2p $\Delta x = \frac{d(n-1)D}{2I}$ rezultat final $\Delta x = 3,0$ cm1pc.Pentru: $\Delta X_{max} = X_{max2} - X_{max1}$ $\Delta X_{max} = X_{max2} - X_{max1}$ rezultat final $\Delta x = 0,8$ mm1pd.Pentru: $\frac{k\lambda D}{2I} = x$ rezultat final $\Delta x_{max} = 0,8$ mm1pd.Pentru: $\frac{k\lambda D}{2I} = x$ $\frac{\lambda D}{2I} = x$ $\frac{\lambda D}{2I} = x$ rezultat final $\frac{\lambda D}{\lambda D} = x$ $\frac{\lambda D}{\lambda D} = x$ rezultat final $\frac{\lambda D}{\lambda D} = x$ $\frac{\lambda D}{\lambda D} = x$ rezultat final $\frac{\lambda D}{\lambda D} = x$ $\frac{\lambda D}{\lambda D} = x$ rezultat final $\frac{\lambda D}{\lambda D} = x$ $\frac{\lambda D}{\lambda D} = x$ $\frac{\lambda D}{\lambda D} = x$ rezultat final $\frac{\lambda D}{\lambda D} = x$ $\frac{\lambda D}{\lambda D} = x$ <td></td> <td></td> <td></td> <td></td>					
$ \begin{array}{ c c c } \hline \text{TOTAL pentru Subiectul al II-lea} & 15p \\ \hline \textbf{D. Subiectul al III-lea} & 3p \\ \hline \textbf{D. Subiectul al III-lea} & 3p \\ \hline \hline \textbf{III.a.} & \text{Pentru:} & 2p \\ \hline \textbf{rezultat final } i = 1,0\text{mm} & 1p \\ \hline \textbf{b.} & \text{Pentru:} & 4p \\ \hline \begin{cases} x_{\text{max}k} = \frac{k\lambda D}{2I} \\ x_{\text{max}k} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \\ x_{\text{max}k} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \\ x_{\text{max}k} = \frac{k(\lambda_D - 1)D}{2I} & 1p \\ \hline \textbf{rezultat final } \Delta x = 3,0\text{ cm} & 1p \\ \hline \textbf{C.} & \text{Pentru:} & 4p \\ \hline \Delta x_{\text{max}} = \frac{k(\lambda_D - \lambda_1)D}{2I} & 2p \\ \hline \textbf{rezultat final } \Delta x_{\text{max}} = 0,8\text{mm} & 1p \\ \hline \textbf{d.} & \text{Pentru:} & 4p \\ \hline \textbf{d.} & \text{Pentru:} & 4p \\ \hline \textbf{d.} & \text{Pentru:} & 4p \\ \hline k \geq \frac{2l\kappa}{\lambda_D} = 3 & 1p \\ k \leq \frac{2l\kappa}{\lambda_D} = 3 & 1p \\ \hline \textbf{rezultat final } k = 3 \text{ şi } k = 4 \text{, formează maxime două radiații} & 1p \\ \hline \end{array}$			1p	4	
	a.		4n	4р	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TOTAL		4-p	15p	
$i = \frac{\lambda D}{2l}$ rezultat final $i = 1,0 \text{mm}$ 1p b. Pentru: $\begin{cases} X_{\text{max}k} = \frac{k\lambda D}{2l} \\ x_{\text{max}k} = \frac{k\lambda D}{2l} + \frac{d(n-1)D}{2l} \end{cases}$ $\Delta x = \frac{d(n-1)D}{2l}$ 1p rezultat final $\Delta x = 3,0 \text{ cm}$ 1p c. Pentru: $\Delta X_{\text{max}} = x_{\text{max}2} - x_{\text{max}1}$ 1p $\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ 2p rezultat final $\Delta x = 0,8 \text{mm}$ 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ 1p $k \ge \frac{2lx}{\lambda_2 D} = 3$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4,5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiații				1.00	
rezultat final $i=1,0$ mm 1p b. Pentru: $\begin{cases} X_{\max k} = \frac{k\lambda D}{2I} \\ x_{\max k}' = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \end{cases}$ $\Delta x = \frac{d(n-1)D}{2I}$ rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta X_{\max} = x_{\max 2} - x_{\max 1}$ $\Delta X_{\max} = \frac{k(\lambda_2 - \lambda_1)D}{2I}$ rezultat final $\Delta X_{\max} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2I} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p	III.a.	Pentru:		3р	
rezultat final $i=1,0$ mm 1p b. Pentru: $\begin{cases} X_{\max k} = \frac{k\lambda D}{2I} \\ x_{\max k}' = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \end{cases}$ $\Delta x = \frac{d(n-1)D}{2I}$ rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta X_{\max} = x_{\max 2} - x_{\max 1}$ $\Delta X_{\max} = \frac{k(\lambda_2 - \lambda_1)D}{2I}$ rezultat final $\Delta X_{\max} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2I} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		$_{i}$ $_{\lambda}$ D	2n		
b. Pentru: $\begin{cases} x_{\max k} = \frac{k\lambda D}{2I} \\ x_{\max k} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \end{cases} & 2p \\ x_{\max k} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} & 1p \\ x_{\max k} = \frac{d(n-1)D}{2I} & 1p \\ x_{\max k} = \frac{d(n-1)D}{2I} & 1p \\ x_{\max k} = x_{\max k} - x_{\max k} & 1p \\ x_{\max k} = x_{\max k} - x_{\max k} & 1p \\ x_{\max k} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ x_{\max k} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ x_{\max k} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ x_{\max k} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ x_{\max k} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ x_{\max k} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ x_{\min k} = 0.8 \text{mm} & 1p \\ x_{\min k} = \frac{k\lambda D}{2I} = x & 1p \\ x_{\min k} = \frac{k\lambda D}{\lambda_2 D} = 3 & 1p \\ x_{\min k} \leq \frac{2lx}{\lambda_1 D} = 4.5 & 1p \\ x_{\min k} \leq \frac{2lx}{\lambda_1 D} = 4.5 & 1p \\ x_{\min k} = 3 \text{ si } k = 4 \text{, formează maxime două radiații} & 1p \\ x_{\min k} = \frac{k\lambda D}{2I} & 1p \\ x_{\min k} = \frac{k\lambda D}{2I} = 4.5 & 1p \\ x_{\min k} = \frac{k\lambda D}{2I} = $		$I - \frac{1}{2I}$	2ρ		
$\begin{cases} x_{\text{max}k} = \frac{k\lambda D}{2I} \\ x_{\text{max}k} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \end{cases} & 2p \\ \lambda x = \frac{d(n-1)D}{2I} & 1p \\ \text{rezultat final } \Delta x = 3,0 \text{ cm} & 1p \\ \textbf{C.} & \text{Pentru:} & 4p \\ \Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1} & 1p \\ \Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ \text{rezultat final } \Delta x_{\text{max}} = 0,8 \text{mm} & 1p \\ \textbf{d.} & \text{Pentru:} & 4p \\ \frac{k\lambda D}{2I} = x & 1p \\ k \geq \frac{2lx}{\lambda_2 D} = 3 & 1p \\ k \leq \frac{2lx}{\lambda_1 D} = 4,5 & 1p \\ \text{rezultat final } k = 3 \text{ şi } k = 4 \text{, formează maxime două radiații} & 1p \end{cases}$		rezultat final $i = 1,0$ mm	1p		
$\begin{cases} \lambda_{\text{max}k} = \frac{1}{2I} \\ \lambda_{\text{max}k} = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \end{cases} & 2p \\ \lambda x = \frac{d(n-1)D}{2I} & 1p \\ \text{rezultat final } \Delta x = 3,0 \text{ cm} & 1p \\ \text{C.} & \text{Pentru:} & 4p \\ \Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1} & 1p \\ \Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2I} & 2p \\ \text{rezultat final } \Delta x_{\text{max}} = 0,8 \text{mm} & 1p \\ \text{d.} & \text{Pentru:} & 4p \\ \frac{k\lambda D}{2I} = x & 1p \\ k \ge \frac{2lx}{\lambda_2 D} = 3 & 1p \\ k \le \frac{2lx}{\lambda_1 D} = 4,5 & 1p \\ \text{rezultat final } k = 3 \text{ şi } k = 4, \text{ formează maxime două radiații} & 1p \\ \end{cases}$	b.			4p	
rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1}$ $\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ rezultat final $\Delta x_{\text{max}} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		$\int_{\mathbf{Y}} -\frac{k\lambda D}{k}$			
rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1}$ $\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ rezultat final $\Delta x_{\text{max}} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		\(\shappa \text{max}_k - 2l \)	2n		
rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1}$ $\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ rezultat final $\Delta x_{\text{max}} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		$\mathbf{x}' = \frac{k\lambda D}{k} + \frac{d(n-1)D}{k}$	2 ρ		
rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1}$ $\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ rezultat final $\Delta x_{\text{max}} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		21 21			
rezultat final $\Delta x = 3,0$ cm 1p c. Pentru: $\Delta x_{\text{max}} = x_{\text{max}2} - x_{\text{max}1}$ $\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ rezultat final $\Delta x_{\text{max}} = 0,8$ mm 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		$\Delta \mathbf{x} = \frac{d(n-1)D}{dn}$	1n		
c.Pentru:4p $\Delta X_{\text{max}} = X_{\text{max}2} - X_{\text{max}1}$ 1p $\Delta X_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ 2prezultat final $\Delta X_{\text{max}} = 0.8 \text{mm}$ 1pd.Pentru:4p $\frac{k\lambda D}{2l} = x$ 1p $k \ge \frac{2lx}{\lambda_2 D} = 3$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4.5$ 1prezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii1p		 ·			
$\Delta X_{\text{max}} = X_{\text{max}2} - X_{\text{max}1} \qquad 1p$ $\Delta X_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l} \qquad 2p$ $\text{rezultat final } \Delta X_{\text{max}} = 0,8\text{mm} \qquad 1p$ $\mathbf{d.} \qquad \text{Pentru:} \qquad \mathbf{4p}$ $\frac{k\lambda D}{2l} = x \qquad 1p$ $k \ge \frac{2lx}{\lambda_2 D} = 3 \qquad 1p$ $k \le \frac{2lx}{\lambda_1 D} = 4,5 \qquad 1p$ $\text{rezultat final } k = 3 \text{ şi } k = 4 \text{, formează maxime două radiații}} \qquad 1p$			1p		
$\Delta x_{\text{max}} = \frac{k(\lambda_2 - \lambda_1)D}{2l}$ rezultat final $\Delta x_{\text{max}} = 0.8 \text{mm}$ 1p d. Pentru: $\frac{k\lambda D}{2l} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4.5$ rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p	C.			4p	
rezultat final $\Delta x_{\text{max}} = 0.8 \text{mm}$ 1p d. Pentru: $\frac{k\lambda D}{2I} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4.5$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4.5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii			1p		
rezultat final $\Delta x_{\text{max}} = 0.8 \text{mm}$ 1p d. Pentru: $\frac{k\lambda D}{2I} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4.5$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4.5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii		$\int_{\Delta \mathbf{v}} -\frac{k(\lambda_2 - \lambda_1)D}{\lambda_1 + \lambda_2}$	2n		
d. Pentru: $\frac{k\lambda D}{2I} = x$ 1p $k \ge \frac{2lx}{\lambda_2 D} = 3$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4,5$ 1p $rezultat final \ k = 3 \ \text{şi} \ k = 4 \ \text{formează maxime două radiaţii}}$ 1p		<i>L</i> 1	2p		
$\frac{k\lambda D}{2I} = x$ $k \ge \frac{2lx}{\lambda_2 D} = 3$ $k \le \frac{2lx}{\lambda_1 D} = 4,5$ $rezultat final k = 3 şi k = 4, formează maxime două radiaţii$			1p		
$k \ge \frac{2lx}{\lambda_2 D} = 3$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4,5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p	d.			4p	
$k \ge \frac{2lx}{\lambda_2 D} = 3$ 1p $k \le \frac{2lx}{\lambda_1 D} = 4,5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		$\frac{k\lambda D}{k} = x$	1 p		
$k \le \frac{2lx}{\lambda_1 D} = 4,5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p			- 1-		
$k \le \frac{2lx}{\lambda_1 D} = 4,5$ 1p rezultat final $k = 3$ şi $k = 4$, formează maxime două radiaţii 1p		$k \ge \frac{2lx}{l} = 3$	1n		
rezultat final $k=3$ şi $k=4$, formează maxime două radiaţii			ıρ		
rezultat final $k=3$ şi $k=4$, formează maxime două radiaţii		$k < \frac{2lx}{l} - 4.5$	4		
		$\lambda_1 D^{-\frac{1}{2}}$	ТР		
		rezultat final $k=3$ şi $k=4$, formează maxime două radiaţii	1p		
	TOTAL		,	15p	