CATALYST SYSTEM

LU-6036 BH

Patent number:

WO9961488

Publication date:

1999-12-02

Inventor:

BOHNEN HANS (DE); GOERES MARKUS (DE);

FRITZE CORNELIA (DE)

Applicant:

BOHNEN HANS (DE); GOERES MARKUS (DE);

TARGOR GMBH (DÉ); FRITZE CORNELIA (DÉ)

Classification:

- international:

C08F4/607; C08F10/00

- european:

C08F10/06

Application number: WO1999EP03415 19990518 Priority number(s): DE19981023168 19980523

Also published as:

EP1086146 (A1) DE19823168 (A1)

Cited documents:

EP0619326 EP0601830

Abstract of WO9961488

The application relates to a catalyst system containing a metallocene, a co-catalyst, a support material and optionally, other organometal compounds. The inventive catalyst system can be used advantageously for polymerising olefins without using aluminoxanes such as methylaluminoxane (MAO), which is usually used in considerable excess as a co-catalyst. A high level of catalyst activity and good polymer morphology are guaranteed nonetheless. The catalyst activity can be increased significantly by adding hydrogen during the polymerisation of the olefins.

Data supplied from the esp@cenet database - Worldwide

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: WO 99/61488 (11) Internationale Veröffentlichungsnummer: C08F 4/607, 10/00 A1 (43) Internationales Veröffentlichungsdatum: 2. Dezember 1999 (02.12.99) (21) Internationales Aktenzeichen: PCT/EP99/03415 (81) Bestimmungsstaaten: BR, CN, JP, KR, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, 18. Mai 1999 (18.05.99) (22) Internationales Anmeldedatum: IE, IT, LU, MC, NL, PT, SE). (30) Prioritätsdaten: Veröffentlicht 198 23 168.7 23. Mai 1998 (23.05.98) DE Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen (71) Anmelder (für alle Bestimmungsstaaten ausser US): TARGOR eintreffen. GMBH [DE/DE]; Rheinstrasse 4 G, D-55116 Mainz (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): BOHNEN, Hans [DE/DE]: Grenzstrasse 146, D-47441 Moers (DE). FRITZE, Comelia [DE/DE]; Geisenheimer Strasse 97, D-60529 Frankfurt am Main (DE). GÖRES, Markus [DE/DE]; Im Bubenhain 3, D-65760 Eschborn (DE). (74) Anwalt: ACKERMANN, Joachim; Aventis Research & Technologies GmbH & Co. KG, Patent- und Lizenzabteilung, Industriepark Höchst, Gebäude K 801, D-65926 Frankfurt am Main (DE).

(54) Title: CATALYST SYSTEM

(54) Bezeichnung: KATALYSATORSYSTEM

(57) Abstract

The application relates to a catalyst system containing a metallocene, a co-catalyst, a support material and optionally, other organometal compounds. The inventive catalyst system can be used advantageously for polymerising olefins without using aluminoxanes such as methylaluminoxane (MAO), which is usually used in considerable excess as a co-catalyst. A high level of catalyst activity and good polymer morphology are guaranteed nonetheless. The catalyst activity can be increased significantly by adding hydrogen during the polymerisation of the olefins.

(57) Zusammenfassung

Die vorliegende Anmeldung betrifft ein Katalysatorsystem enthaltend Metallocen, Co-Katalysator, Trägermaterial und gegebenenfalls weitere Organometallverbindungen. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden, wobei auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO), das üblicherweise in hohem Überschuß eingesetzt werden muß, als Co-Katalysator verzichtet werden kann und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt wird. Eine signifikante Steigerung der Katalysatoraktivität wird durch Zusatz von Wasserstoff während der Polymerisation der Olefine erzielt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vo
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung

15

25

30

35

Katalysatorsystem

Die vorliegende Erfindung beschreibt ein Katalysatorsystem enthaltend Metallocen, Co-Katalysator, Trägermaterial und gegebenenfalls weitere Organometallverbindungen. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden, wobei auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO), das üblicherweise in hohem Überschuß eingesetzt werden muß, als Cokatalysator verzichtet werden kann und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt wird.

Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Polymerisation mit Metallocenen ist allgemein anerkannt (H.H. Brintzinger, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283).

Die Darstellung kationischer Alkylkomplexe eröffnet die Möglichkeit MAO-freie Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezu stöchiometrisch eingesetzt werden kann, zu erhalten.

Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisationskatalysatoren, wird im J. Am. Chem. Soc. 1991, Band 113, Seite 3623 beschrieben.

Ein Verfahren zur Herstellung von Salzen der allgemeinen Form LMX+ XA- nach dem oben beschriebenen Prinzip wird in EP-A-0,520,732 beansprucht.

EP-A-0,558,158 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form $[R_3NH]^+$ $[B(C_6H_5)_4]^-$ dargestellt werden. Die Umsetzung eines solchen Salzes mit z.B. Cp_2ZrMe_2 liefert durch Protolyse unter Methanabspaltung intermediär ein Zirkonocenmethyl-Kation. Dieses reagiert über C-H-Aktivierung zum Zwitterion Cp_2Zr^+ - $(m-C_6H_4)$ -BPh $_3$ - ab. Das Zr-Atom ist dabei kovalent an ein Kohlenstoffatom des Phenylrings gebunden und wird über agostische Wasserstoffbindungen stabilisiert.US-A-5,348,299 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form $[R_3NH]^+$ $[B(C_6F_5)_4]^-$ durch Protolyse dargestellt werden. Die C-H-Aktivierung als Folgereaktion unterbleibt dabei.

zur Folge hat.

EP-A-0,426,637 nutzt ein Verfahren in dem das Lewis-saure CPh_3^+ Kation zur Abstraktion der Methylgruppe vom Metallzentrum eingesetzt wird. Als schwach koordinierendes Anion fungiert ebenfalls $B(C_6F_5)_4^-$.

5

10

15

20

25

30

Eine industrielle Nutzung von Metallocen-Katalysatoren fordert eine
Heterogenisierung des Katalysatorsystems, um eine entsprechende Morphologie
des resultierenden Polymers zu gewährleisten. Die Trägerung von kationischen
Metallocen-Katalysatoren auf Basis der oben genannten Borat-Anionen ist in WO91/09882 beschrieben. Dabei wird das Katalysatorsystem, durch Aufbringen einer
Dialkylmetallocen-Verbindung und einer Brönsted-sauren, quatären AmmoniumVerbindung, mit einem nichtkoordinierenden Anion wie Tetrakis-pentafluorphenylborat, auf einem anorganischen Träger, gebildet.
Das Trägermaterial wird zuvor mit einer Trialkylaluminium-Verbindung modifiziert.
Nachteil dieses Trägerungsverfahren ist, daß nur ein geringer Teil des eingesetzten
Metallocens Physisorbtion an dem Trägermaterial fixiert ist. Bei der Dosierung des
Katalysatorsystems in den Reaktor kann das Metallocen leicht von der
Trägeroberfläche abgelöst werden. Dies führt zu einer teilweisen homogen
verlaufenden Polymerisation, was eine unbefriedigende Morphologie des Polymers

In WO-96/04319 wird ein Katalysatorsystem beschrieben, in welchem der Cokatalysator kovalent an das Trägermaterial gebunden ist. Dieses Katalysatorsystem weist jedoch eine geringe Polymerisationsaktivität auf, zudem kann die hohe Empfindlichkeit der geträgerten kationischen Metallocen-Katalysatoren zu Problemen bei der Einschleusung in das Polymerisationssystem führen.

Es war daher wünschenswert ein Katalysatorsystem zu entwickeln, das wahlweise vor dem Einschleusen in den Reaktor bereits aktiviert ist oder erst im Polymerisationsautoklav aktiviert wird.

Die Aufgabe bestand darin ein Katalysatorsystem zur Verfügung zu stellen, welches die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymersationsaktivitäten und eine gute Polymermorphologie garantiert.

35 Zudem war ein Verfahren zur Herstellung dieses Katalysatorsystems zu entwickeln,

15

25

30

das es ermöglicht die Aktivierung des Katalysatorsystems wahlweise vor dem Einschleusen oder aber erst im Polymerisationsautoklav durchzuführen.

Die vorliegende Erfindung betrifft ein geträgertes Katalysatorsystem sowie dessen Verwendung bei der Polymerisation von Olefinen.

Das erfindungsgemäße Katalysatorsystem enthält

- a) mindestens ein Metallocen,
- b) mindestens eine Lewis-Base der Formel I.

 $M^2R^3R^4R^5$ (I)

worin

 R^3 , R^4 und R^5 gleich oder verschieden sind und für ein Wasserstoffatom, eine C_1 - C_{20} -Alkyl-, C_1 - C_{20} -Halogenalkyl-, C_6 - C_{40} -Aryl-, C_6 - C_{40} -Halogenaryl-, C_7 - C_{40} -Alkylaryl- oder C_7 - C_{40} -Arylalkyl-Gruppe stehen, wobei gegebenenfalls zwei Reste oder alle drei Reste R^3 , R^4 und R^5 über C_2 - C_{20} -Kohlenstoffeinheiten miteinander verbunden sein können und M^2 für ein Element der V. Hauptgruppe des Periodensystems der Elemente steht,

- c) einen Träger,
- 20 d) mindestens eine Organoboraluminium-Verbindung, die aus Einheiten der Formel II

$$R_i^1 M^3 - O - M^3 R_j^2$$
 (II)

worin

R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe, insbesondere C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C႗-C₄₀-Arylalkyl, C႗-C₄₀-Halogenarylalkyl, C႗-C₄₀-Alkylaryl, C႗-C₄₀-Halogenalkylaryl sind oder R¹ kann eine -OSiR₃-Gruppe sein, worin R gleich oder verschieden sind und die gleiche Bedeutung wie R¹ haben, M³ gleich oder verschieden ist und für ein Element der 3. Hauptgruppe des Periodensystems der Elemente steht und i und j jeweils eine ganze Zahl 0, 1 oder 2 steht, aufgebaut ist und die kovalent an den Träger gebunden ist, sowie gegebenenfalls

e) eine Organometallverbindung der Formel V [M⁴R⁶_n]_k

 $[R^6_p]_k$ (V)

worin

5

10

15

20

25

M⁴ ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist,

 R^6 gleich oder verschieden ist und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenstoffhaltige Gruppe, insbesondere C_1 - C_{20} - Alkyl-, C_6 - C_{40} -Aryl-, C_7 - C_{40} -Aryl-alkyl oder C_7 - C_{40} -Alkyl-aryl-Gruppe bedeutet, p eine ganze Zahl von 1 bis 3 und k ist eine ganze Zahl von 1 bis 4 ist.

Bevorzugt handelt es sich bei den Lewis-Basen der Formel (I) um solche bei denen M² für Stickstoff oder Phosphor steht. Beispiele für derartige Verbindungen sind Triethylamin, Triisopropylamin, Triisobutylamin, Tri(n-butyl)amin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-2,4,6-Pentamethylanilin, Dicyclohexylamin, Pyridin, Pyrazin, Triphenylphosphin, Tri(methylphenyl)phosphin und Tri(dimethylphenyl)phosphin.

Der Träger ist ein poröser anorganischer oder organischer Feststoff. Bevorzugt enthält der Träger mindestens ein anorganisches Oxid, wie Siliziumoxid, Aluminiumoxid, Alumosilicate, Zeolithe, MgO, ZrO₂, TiO₂, B₂O₃, CaO, ZnO, ThO₂, Na₂CO₃, K₂CO₃, CaCO₃, MgCO₃, Na₂SO₄, Al₂(SO₄)₃, BaSO₄, KNO₃, Mg(NO₃)₂, Al(NO₃)₃, Na₂O, K₂O, oder Li₂O, insbesondere Siliziumoxid und/oder Aluminiumoxid.

Der Träger kann auch mindestens ein Polymer enthalten, z.B. ein Homo- oder Copolymer, ein vernetztes Polymer oder Polymerblends. Beispiele für Polymere sind Polyethylen, Polypropylen, Polybuten, Polystyrol, mit Divinylbenzol vernetztes Polystyrol, Polyvinylchlorid, Acryl-Butadien-Styrol-Copolymer, Polyamid, Polymethacrylat, Polycarbonat, Polyester, Polyacetal oder Polyvinylalkohol.

Der Träger weist eine spezifische Oberfläche im Bereich von 10 bis 1000 m²/g, bevorzugt von 150 bis 500 m²/g auf. Die mittlere Partikelgröße des Trägers beträgt 1 bis 500 mm, bevorzugt 5 bis 350 mm, besonders bevorzugt 10 bis 200 mm.

Bevorzugt ist der Träger porös mit einem Porenvolumen des Trägers von 0,5 bis 4,0

10

15

20

ml/g, bevorzugt 1,0 bis 3,5 ml/g. Ein poröser Träger weist einen gewissen Anteil an Hohlräumen (Porenvolumen) auf. Die Form der Poren ist meist unregelmäßig, häufig sphärisch ausgebildet. Die Poren können durch kleine Porenöffnungen miteinander verbunden sein. Der Porendurchmesser beträgt vorzugsweise etwa 2 bis 50 nm. Die Partikelform des porösen Trägers ist abhängig von der Nachbehandlung und kann irregulär oder sphärisch sein. Die Teilchengröße des Trägers kann z. B. durch kryogene Mahlung und/oder Siebung beliebig eingestellt werden.

Das erfindungsgemäße Katalysatorsystem enthält als cokatalytisch wirkende chemische Verbindung mindestens eine Organoboraluminiumverbindung, die Einheiten der Formel (II) enthält. Bevorzugt sind solche Verbindungen der Formel (II), bei denen M³ für Bor oder Aluminium steht.

Die Einheiten der Formel (II)enthaltende Verbindung kann als Monomer oder als lineares, cyclisches oder käfigartiges Oligomer vorliegen. Es können auch zwei oder mehr chemische Verbindungen, welche Einheiten der Formel (II) enthalten durch Lewis-Säure-Base Wechselwirkungen oder Kondensationsreaktionen untereinander Dimere, Trimere oder höhere Assoziate bilden.

Bevorzugte cokatalytisch wirkende Organoboraluminium-Verbindungen gemäß d) entsprechen den Formeln (III) und (IV),

worin R¹ und R² die gleiche Bedeutung wie unter Formel (II) haben.

25 Beispiele für die cokatalytisch wirkenden Verbindungen der Formeln (III) und (IV) sind

5

10

15

20

25

30

Bei den Organometallverbindungen der Formel (V) handelt es sich vorzugsweise um neutrale Lewissäuren worin M⁴ für Lithium, Magnesium und/oder Aluminium, insbesondere Aluminium, steht. Beispiele für die bevorzugten Organometall-Verbindungen der Formel (V) sind Trimethylaluminium, Triethylaluminium, Triisopropylaluminium, Trihexylaluminium, Trioctylaluminium, Tri-n-butylaluminium, Trin-propylaluminium, Triisoprenaluminium, Dimethylaluminiummonochlorid, Diethylaluminiummonochlorid, Diisobutylaluminiummonochlorid, Methylaluminiumsesquichlorid, Ethylaluminiumsesquichlorid, Dimethylaluminiumhydrid, Diethylaluminiumhydrid, Dimethylaluminium(trimethylsiloxid), Dimethylaluminium(trimethylsiloxid), Phenylalan, Pentafluorphenylalan und o-Tolylalan

Die im erfindungsgemäßen Katalysatorsystem enthaltenen Metallocenverbindungen können z.B. verbrückte oder unverbrückte Biscyclopentadienylkomplexe sein, wie sie beispielsweise in EP-A-0,129,368, EP-A-0,561,479, EP-A-0,545,304 und EP-A-0,576,970 beschrieben sind, Monocyclopentadienylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe die beispielsweise in EP-A-0,416,815 beschrieben sind, mehrkernige Cyclopentadienylkomplexe wie beispielsweise in EP-A-0,632,063 beschrieben, p-Ligand substituierte Tetrahydropentalene wie beispielsweise in EP-A-0,659,758 beschrieben oder p-Ligand substituierte Tetrahydroindene wie beispielsweise in EP-A-0,661,300 beschrieben.

Außerdem können Organometallverbindungen eingesetzt werden in denen der komplexierende Ligand kein Cyclopentadienyl-Liganden enthält. Beispiele hierfür sind Diamin-Komplexe der III. und IV. Nebengruppe des Periodensystems der Elemente, wie sie z.B. bei D.H. McConville, et al, Macromolecules, 1996, 29, 5241 und D.H. McConville, et al, J. Am. Chem. Soc., 1996, 118, 10008 beschrieben werden. Außerdem können Diimin-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Ni²+ oder Pd²+ Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc., 1995, 117, 6414 und , Brookhart et al, J. Am. Chem. Soc.,

1996, 118, 267 beschrieben werden, eingesetzt werden. Ferner lassen sich 2,6-bis(imino)pyridyl-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Co²+ oder Fe²+ Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1998, 120, 4049 und Gibson et al, Chem. Commun. 1998, 849 beschrieben werden, einsetzen. Weiterhin können Metallocenverbindungen eingesetzt werden, deren komplexierender Ligand Heterocyclen enthält. Beispiele hierfür sind in WO 98/22486 beschrieben.

Bevorzugte Metallocenverbindungen sind unverbrückte oder verbrückte Verbindungen der Formel VI,

worin

5

10

15

20

25

M¹ ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf.

gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin R¹² gleich oder verschieden ein Wasserstoffatom oder eine C₁-C₄₀-kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Arylalkyl oder C₈-C₄₀-Arylalkenyl sind, oder R⁷ sind eine C₁-C₃₀- kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl, C₅-C₂₄-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl, C₇-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R⁷ können so miteinander verbunden sein, daß die Reste R⁷ und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C₄-C₂₄-Ringsystem bilden, welches seinerseits

10

15

substituiert sein kann,

- gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin R8 R¹² gleich oder verschieden ein Wasserstoffatom oder eine C₁-C₄₀kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, C₆-C₁₄-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R8 sind eine C1-C₃₀ - kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylaikenyl, C6-C24-Aryl, C₅-C₂₄-Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl, $\label{eq:c7-C30-Alkylaryl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C6-C$ fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl oder C1-C12-Alkoxy ist, oder zwei oder mehrere Reste R8 können so miteinander verbunden sein, daß die Reste R8 und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C₄-C₂₄-Ringsystem bilden, welches seinerseits substituiert sein kann.
- gleich 5 für v = 0, und I gleich 4 für v = 1 ist, m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,
- L¹ gleich oder verschieden sein können und ein Wasserstoffatom, eine C₁-C₁0
 Kohlenwasserstoffgruppe wie C₁-C₁0-Alkyl oder C₀-C₁0-Aryl, ein

 Halogenatom, oder OR9, SR9, OSiR₃9, SiR₃9, PR₂9 oder NR₂9 bedeuten,

 worin R9 ein Halogenatom, eine C₁-C₁0 Alkylgruppe, eine halogenierte C₁
 C₁0 Alkylgruppe, eine C₀-C₂0 Arylgruppe oder eine halogenierte C₀-C₂0

 Arylgruppe sind, oder L¹ sind eine Toluolsulfonyl-, Trifluoracetyl-,

 Trifluoracetoxyl-, Trifluor-methansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2
 Trifluorethansulfonyl-Gruppe,
 - o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
 - Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und v ist 0 oder 1.
- Beispiele für Z sind Gruppen MR¹⁰R¹¹, worin M Kohlenstoff, Silizium, Germanium oder Zinn ist und R¹⁰ und R¹¹ gleich oder verschieden eine C₁-C₂₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₁₀-Alkyl, C₆-C₁₄-Aryl oder Trimethylsilyl

bedeuten. Bevorzugt ist Z gleich CH_2 , CH_2CH_2 , $CH(CH_3)CH_2$, $CH(C_4H_9)C(CH_3)_2$, $C(CH_3)_2$, $(CH_3)_2$ Si, $(CH_3)_$

Bevorzugt sind chirale verbrückte Metallocenverbindungen der Formel (VI), insbesondere solche in denen v gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring, einen Schwefel, Stickstoff oder Sauerstoff enthaltenden Indenyl-analogen Heterocyclus oder einen Schwefel, Stickstoff oder Sauerstoff enthaltenden Pentalen-analogen Heterocyclus darstellen.

15

20

25

5

10

Die genannten Ringe sind bevorzugt substituiert, insbesondere (gemäß der Nomenklatur in Formel (VII)) in 2-, 4-, 2,4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2,4,5,6-Stellung, mit C_1 - C_{20} -kohlenstoffhaltigen Gruppen, wie C_1 - C_{10} -Alkyl oder C_6 - C_{20} -Aryl, wobei auch zwei oder mehrere Substituenten der genannten Ringe zusammen ein Ringsystem bilden können.

Chirale verbrückte Metallocenverbindungen der Formel (VI) können als reine racemische oder reine meso Verbindungen eingesetzt werden. Es können aber auch Gemische aus einer racemischen Verbindung und einer meso Verbindung verwendet werden.

Beispiele für Metallocenverbindungen sind:
Dimethylsilandiylbis(indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 25 Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid 30 Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid 1.2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid

1.4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid

35

- 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
- 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
- 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
- 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid
- $\label{eq:continuous} \begin{tabular}{l} 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid\\ [4-(η^5-Cyclopentadienyl)-4,6,6-trimethyl-(η^5-4,5-tetrahydropentalen)]-dichlorozirconium\\ \end{tabular}$
 - [4-(η^5 -3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(η^5 -4,5-tetrahydropentalen)]-dichlorozirconium
- 10 [4- $(\eta^5$ -3'-lsopropyl-cyclopentadienyl)-4,6,6-trimethyl- $(\eta^5$ -4,5-tetrahydropentalen)]-dichlorozirconium
 - [4-(η^5 -Cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorotitan [4-(η^5 -Cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium
- 15 [4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorohafnium
 - [4- $(\eta^5$ -3´-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
 - $\textbf{4-}(\eta^5\textbf{-3'-lsopropylcyclopentadienyl})\textbf{-4,7,7-trimethyl-}(\eta^5\textbf{-4,5,6,7-tetrahydroindenyl})]\textbf{-}$
- 20 dichlorotitan
 - 4- $(\eta^5$ -3´-Methylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
 - 4- $(\eta^5$ -3´-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
- 4- $(\eta^5$ -3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium
 - (Tertbutylamido)-(tetramethyl- η^5 -cyclopentadienyl)-dimethylsilyl-dichlorotitan (Tertbutylamido)-(tetramethyl- η^5 -cyclopentadienyl)-1,2-ethandiyl-dichlorotitan-dichlorotitan
- (Methylamido)-(tetramethyl-η⁵-cyclopentadienyl)-dimethylsilyl-dichlorotitan (Methylamido)-(tetramethyl-η⁵-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan (Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan Bis-(cyclopentadienyl)-zirkoniumdichlorid
 Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid

Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid Tetrachloro-[1-[bis(η^5 -1H-inden-1-yliden)methylsilyl]-3- η^5 -cyclopenta-2,4-dien-1yliden)-3-n5-9H-fluoren-9-yliden)butan]di-zirkonium Tetrachloro-[2-[bis(n^5 -2-methyl-1H-inden-1-yliden)methoxysilyl]-5-(n^5 -2,3,4,5tetramethylcyclopenta-2,4-dien-1-yliden)-5-(η⁵-9H-fluoren-9-yliden)hexan]di-5 zirkonium Tetrachloro-[1-[bis(η⁵-1H-inden-1-yliden)methylsilyl]-6-(η⁵-cyclopenta-2,4-dien-1vliden)-6-(n5-9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl 20 Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl 25 Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid 35

Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4´-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-n-propyl-4-(4´-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4´-hexyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid 35

10

15

Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-hexyl-4-(4'-eyclohexyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl
Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl
Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl
Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl
Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid
Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylgermandiylbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlo Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-propyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Ethylidenbis(2-n-butyl-4-(4´-tert.-butyl-phenyl)-indenyl)titandichlorid
Ethylidenbis(2-hexyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl
Ethylidenbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl
Ethylidenbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)titandibenzyl
Ethylidenbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdimethyl
Ethylidenbis(2-n-propyl-4--phenyl)-indenyl)titandimethyl
Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid)
Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid)
Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid)

Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid
Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid
Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)

- 5 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)
- 15 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-methylphenyl-
- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-
- 35 indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- 5 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)
- 10 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-ethylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-ethylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-ethylphenyl-

- 5 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)
- 15 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 25 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 35 indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- 5 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 10 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-

- 5 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-
- indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)
- 35 zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- 5 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-
- 20 indenyl)zirkoniumdichlorid

 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)
- 30 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-s-butylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)

- 5 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-

15 indenyl)zirkoniumdichlorid

indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-
- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- 30 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)
- 35 zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)

5 zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl)
- 15 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-
- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
- 30 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-
- 35 indenyl)zirkoniumdichlorid

10

15

20

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-

- indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenylindenvl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-nhexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-

indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-n-hexylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-

5 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-hexylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)

15 zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-

cyclohexylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-

cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-

cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-

25 indenvl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-

cyclohexylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-

cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-

35 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-

10 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-

20 indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-

trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-

30 indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-

WO 99/61488

trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-

- 5 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-
- 15 indenyl)zirkoniumdichlorid

 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)
- 25 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-
- 35 indenvl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-
- indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
- 25 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-
- 30 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-
 - tris(trifluomethyl)methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-
 - tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-

zirkoniumdichlorid

35

tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-10 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid 15 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandivl(2-methyl-6-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-20 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2.5-dimethyl-6-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid 25 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-30 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-indenyl)

Dimethylsilandiyl(2-methyl-5,6-di-hydro-4-azapentalen)(2-ethyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-tetrahydroindenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-n-butyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Ethyliden(2-methyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-trimethylsilyl-4-azapentalen)(2-methyl-4-(4´-tert-
- butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-tolyl-5-azapentalen)(2-n-propyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylgermyldiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 15 Methylethyliden(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-di-iso-propyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2,6-dimethyl-4-(4´-tert-
- 20 butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylnaphthyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylanthracenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2-methyl-4-phosphapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Diphenylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - $\label{lem:methyl-6-thiapentalen} \textbf{Methyl-phenyl-independentalen} (2-methyl-4-(4\'-tert-butylphenyl-4-(4'-tert-butylphenyl-4-(4'-tert-b$
- 30 indenyl)zirkoniumdichlorid
 - Methyliden(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylmethyliden(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 35 Diphenylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-

indenyl) zirkoniumdichlorid

Diphenylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methylindenyl)

10 zirkoniumdichlorid

5

20

25

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methylindenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-6-azapentalen)(indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(indenyl) zirkoniumdichlorid

zirkoniumdichlorid

35

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(indenyl)zirkoniumdichlorid 5 Dimethylsilandiyl(2-methyl-6-thiapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(indenyl)zirkoniumdichlorid 10 Dimethylsilandiyl(2-methyl-6-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) 20 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid 25 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) 30 zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl)

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-phenyl-

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid 5 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid 10 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-phenyl-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) 20 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) 25 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid 30 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4,5-benzo-

5 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4,5-benzo-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4,5-benzo-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4,5-benzo-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4,5-benzo-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4,5-benzo-

15 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4,5-benzo-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4,5-benzo-

indenyl)zirkoniumdichlorid

20 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4,5-benzo-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4,5-benzo-indenyl)

zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-azapentalen)zirkoniumdichlorid

25 Dimethylsilandiylbis(2-methyl-5-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-6-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-N-phenyl-4-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-N-phenyl-5-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-N-phenyl-6-azapentalen) zirkoniumdichlorid

30 Dimethylsilandiylbis(2,5-dimethyl-4-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2,5-dimethyl-6-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-4-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-6-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-thiapentalen)zirkoniumdichlorid

35 Dimethylsilandiylbis(2-methyl-5-thiapentalen)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-6-thiapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-4-thiapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-6-thiapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-6-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-6-oxapentalen)zirkoniumdichlorid

- Des weiteren sind die Metallocene, bei denen das Zirkoniumfragment "-zirkoniumdichlorid, die Bedeutungen
 - Zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 - Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-phenolat)
 - Zirkonium-monochloro-mono-(3,5-di-tert.-butyl-phenolat)
- 2 Zirkonium-monochloro-mono-(2,6-di-sec.-butyl-phenolat)
 - Zirkonium-monochloro-mono-(2,4-di-methylphenolat)
 - Zirkonium-monochloro-mono-(2,3-di-methylphenolat)
 - Zirkonium-monochloro-mono-(2,5-di-methylphenolat)
 - Zirkonium-monochloro-mono-(2,6-di-methylphenolat)
- 20 Zirkonium-monochloro-mono-(3,4-di-methylphenolat)
 - Zirkonium-monochloro-mono-(3,5-di-methylphenolat)
 - Zirkonium-monochloro-monophenolat
 - Zirkonium-monochloro-mono-(2-methylphenolat)
 - Zirkonium-monochloro-mono-(3-methylphenolat)
- 25 Zirkonium-monochloro-mono-(4-methylphenolat)
 - Zirkonium-monochloro-mono-(2-ethylphenolat)

 - Zirkonium-monochloro-mono-(3-ethylphenolat)
 - Zirkonium-monochloro-mono-(4-ethylphenolat)
 Zirkonium-monochloro-mono-(2-sec.-butylphenolat)
- 30 Zirkonium-monochloro-mono-(2-tert.-butylphenolat)
 - Zirkonium-monochloro-mono-(3-tert.-butylphenolat)
 - Zirkonium-monochloro-mono-(4-sec.-butylphenolat)
 - Zirkonium-monochloro-mono-(4-tert.-butylphenolat)
 - Zirkonium-monochloro-mono-(2-isopropyl-5-methylphenolat)
- 35 Zirkonium-monochloro-mono-(4-isopropyl-3-methylphenolat)

Zirkonium-monochloro-mono-(5-isopropyl-2-methylphenolat)

Zirkonium-monochloro-mono-(5-isopropyl-3-methylphenolat)

Zirkonium-monochloro-mono-(2,4-bis-(2-methyl-2-butyl)-phenolat)

Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-4-methyl-phenolat)

5 Zirkonium-monochloro-mono-(4-nonylphenolat)

Zirkonium-monochloro-mono-(1-naphtholat)

Zirkonium-monochloro-mono-(2-naphtholat)

Zirkonium-monochloro-mono-(2-phenylphenolat)

Zirkonium-monochloro-mono-(tert. butoxid)

10 Zirkonium-monochloro-mono-(N-methylanilid)

Zirkonium-monochloro-mono-(2-tert.-butylanilid)

Zirkonium-monochloro-mono-(tert.-butylamid)

Zirkonium-monochloro-mono-(di-iso.-propylamid)

Zirkonium-monochloro-mono-methyl

15 Zirkonium-monochloro-mono-benzyl

Zirkonium-monochloro-mono-neopentyl, hat, Beispiele für die erfindungsgemäßen Metallocene.

Das erfindungsgemäße Katalysatorsystem ist erhältlich durch Umsetzung einer
Lewis-Base der Formel (I) und einer Organoboraluminium-Verbindung, die aus
Einheiten der Formel (II) aufgebaut ist, mit einem Träger. Anschließend erfolgt die
Umsetzung mit einer Lösung oder Suspension aus einem oder mehreren
Metallocenverbindungen der Formel (VI) und optional einer oder mehrerer
Organometallverbindungen der Formel (V).

25

30

35

Die Aktivierung des Katalysatorsystems kann dadurch wahlweise vor dem Einschleusen in den Reaktor vorgenommen werden oder aber erst im Reaktor durchgeführt werden. Ferner wird ein Verfahren zur Herstellung von Polyolefinen beschrieben. Die Zugabe einer weiteren chemischen Verbindung, die als Additiv vor der Polymerisation zudosiert wird, kann zusätzlich von Vorteil sein.

Zur Herstellung des erfindungsgemäßen Katalysatorsystems wird das Trägermeterial in einem organischen Lösemittel suspendiert. Geeignete Lösemittel sind aromatische oder aliphatische Lösemittel, wie beispielsweise Hexan, Heptan, Toluol oder Xylol oder halogenierte Kohlenwasserstoffe, wie Methylenchlorid oder halogenierte

10

15

20

25

30

35

aromatische Kohlenwasserstoffe wie o-Dichlorbenzol. Der Träger kann zuvor mit einer Verbindung der Formel (V) vorbehandelt werden. Anschließend wird eine oder mehrere Verbindungen der Formel (I) zu dieser Suspension gegeben, wobei die Reaktionszeit zwischen 1 Minute und 48 Stunden liegen kann, bevorzugt ist eine Reaktionszeit zwischen 10 Minuten und 2 Stunden. Die Reaktionslösung kann isoliert und anschließend resuspendiert werden oder aber auch direkt mit einer cokatalytisch wirkenden Organoboraluminimverbindung, die aus Einheiten gemäß der Formel (II) aufgebaut ist, umgesetzt werden. Die Reaktionszeit liegt dabei zwischen 1 Minute und 48 Stunden, wobei eine Reaktionszeit von zwischen 10 Minuten und 2 Stunden bevorzugt ist. Bevorzugt ist die Menge von 1 bis 4 Äquivalenten einer Lewis-Base der Formel (I) mit einem Äquivalent einer cokatalytisch wirksamen Verbindung die gemäß der Formel (II) aufgebaut ist. Besonders bevorzugt ist die Menge von einem Äquivalent einer Lewis-Base der Formel (I) mit einem Äguivalent einer cokatalytisch wirksamen Verbindung die gemäß der Formel (II) aufgebaut ist. Das Reaktionsprodukt dieser Umsetzung ist eine metalloceniumbildende Verbindung, die kovalent an das Trägermaterial fixiert ist. Es wird nachfolgend als modifiziertes Trägermaterial bezeichnet. Die Reaktionslösung wird anschließend filtriert und mit einem der oben genannten Lösemittel gewaschen. Danach wird das modifizierte Trägermaterial im Hochvakuum getrocknet. Das modifizierte Trägermaterial kann nach dem Trocknen wieder resuspendiert werden und mit einer Verbindung der Formel (V) nachbehandelt werden. Die Verbindung der Formel (V) kann aber auch vor der Filtration und Trocknung des modifizierten Trägermaterials zugegeben werden. Das Aufbringen einer oder mehrerer Metallocenverbindungen vorzugsweise der Formel (VI) und einer oder mehrerer Organometallverbindungen der Formel (V) auf das modifizierte Trägermaterial geht vorzugsweise so vonstatten, daß eine oder mehrere Metallocenverbindungen der Formel (VI) in einem oben beschriebenen Lösemittel gelöst bzw. suspendiert wird und anschließend eine oder mehrere Verbindungen der Formel (V), die vorzugsweise ebenfalls gelöst bzw. suspendiert ist, umgesetzt werden. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel (VI) und einer Organometallverbindung der (V) beträgt 100 : 1 bis 10-4 : 1. Vorzugsweise beträgt das Verhältnis 1:1 bis 10-2:1. Das modifizierte Trägermaterial kann entweder direkt im Polymerisationsreaktor oder in einem Reaktionskolben in einem oben genannten Lösemittel vorgelegt werden. Anschließend erfolgt die Zugabe der Mischung aus einer Metallocenverbindung der

Formel (VI) und einer Organometallverbindung der Formel (V). Optional kann aber auch eine oder mehrere Metallocenverbindungen der Formel (VI) ohne vorherige Zugabe einer Organometallverbindung der Formel (V) zu dem modifizieten Trägermaterial gegeben werden.

- Die Menge an modifizierten Träger zu einer Metallocenverbindung der Formel (VI) beträgt vorzugsweise 10g: 1:mol bis 10⁻²g: 1:mol. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel (VI) zu der geträgerten cokatalytisch wirkenden Organobor-aluminiumverbindung, bestehend aus Einheiten der Formel (II). beträgt 100: 1 bis 10⁻⁴: 1, vorzugsweise 1: 1 bis 10⁻²: 1.
- Das geträgerte Katalysatorsystem kann direkt zur Polymerisation eingesetzt werden. Es kann aber auch nach Entfernen des Lösemittels resuspendiert zur Polymerisation eingesetzt werden. Der Vorteil dieser Aktivierungsmethode liegt darin, daß es die Option bietet das polymerisationsaktive Katalysatorsystem erst im Reaktor entstehen zu lassen. Dadurch wird verhindert, daß beim Einschleusen des luftempfindlichen Katalysators zum Teil Zersetzung eintritt.

Weiterhin wird ein Verfahren zur Herstellung eines Olefinpolymers in Gegenwart des erfindungsgemäßen Katalysatorsystems beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.

20

25

30

35

Bevorzugt werden Olefine der Formel Rα-CH=CH-Rβ polymerisiert, worin Rα und Rβ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonsäure- oder Carbonsäureestergruppe substituiert sein kann, oder Rα und Rβ mit den sie verbindenden Atomen einen oder mehrere Ringe bilden. Beispiele für solche Olefine sind 1-Olefine wie Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Styrol, cyclische Olefine wie Norbornen, Vinylnorbornen, Tetracyclododecen, Ethylidennorbornen, Diene wie 1,3-Butadien oder 1,4-Hexadien, Biscyclopentadien oder Methacrylsäuremethylester.

Insbesondere werden Propylen oder Ethylen homopolymerisiert, Ethylen mit einem oder mehreren C₃-C₂₀-1-Olefinen, insbesondere Propylen, und /oder einem oder

10

15

20

25

30

35

mehreren C_4 - C_{20} -Diene, insbesondere 1,3-Butadien, copolymerisiert oder Norbornen und Ethylen copolymerisiert.

Die Polymerisation wird bevorzugt bei einer Temperatur von - 60 bis 300 °C, besonders bevorzugt 30 bis 250 °C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Die Polymerisation kann kontinuierlich oder diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.

Das geträgerte Katalysatorsystem kann entweder direkt im Polymerisationssystem gebildet werden oder es kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das Polymerisationssystem eindosiert werden.

Mit Hilfe des erfindungsgemäßen Katalysatorsystems kann eine Vorpolymerisation erfolgen. Zur Vorpolymerisation wird bevorzugt das (oder eines der) in der Polymerisation eingesetzte(n) Olefin(e) verwendet.

Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Übergangsmetallverbindungen, z. B. Metallocene enthalten.

Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der Al-Verbindung in Kontakt gebracht und anschließend wieder getrennt.

Als Molmassenregler und/oder zur Steigerung der Aktivität wird vorzugsweise Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar.

Dabei wird die erfindungsgemäße Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10-3 bis 10-8, vorzugsweise 10-4 bis 10-7 mol Übergangsmetall pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen angewendet. Geeignete Lösemittel zur Darstellung sowohl der erfindungsgemäßen geträgerten chemischen Verbindung als auch des erfindungsgemäßen Katalysatorsystems sind aliphatische oder aromatische Lösemittel, wie beispielsweise Hexan oder Toluol,

10

15

20

etherische Lösemittel, wie beispielsweise Tetrahydrofuran oder Diethylether oder halogenierte Kohlenwasserstoffe, wie beispielsweise Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie beispielsweise o-Dichlorbenzol. Vor Zugabe des erfindungsgemäßen Katalysatorsystems bzw. vor Aktivierung des erfindungsgemäßen Katalysatorsystems im Polymerisationssystem kann zusätzlich eine Alkylalumiuniumverbindung wie beispielsweise Trimethylaluminium. Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 200 bis 0,001 mmol Al pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt. Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 10 bis 0,01 mmol Al pro kg Reaktorinhalt eingesetzt, dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M¹-Verhältnis klein gewählt werden. Weiterhin kann bei dem erfindungsgemäßen Verfahren ein Additiv wie ein Antistatikum verwendet werden z.B. zur Verbesserung der Kornmorphologie des Olefinpolymers. Generell können alle Antistatika, die für die Polymerisation geeignet sind, verwendet werden. Beispiele hierfür sind Salzgemische aus Calciumsalzen der Medialansäure und Chromsalze der N-Stearylanthranilsäure, die in DE-A-3,543,360 beschreiben werden. Weitere geeignete Antistatika sind z.B. C₁₂- bis C₂₂-Fettsäureseifen von Alkali- oder Erdalkalimetallen, Salze von Sulfonsäureestern, Ester von Polyethylenglycolen mit Fettsäuren, Polyoxyethylenalkylether usw. Eine

Außerdem kann als Antistatikum eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt werden, wie in EP-A-0,636,636 beschrieben.

Übersicht über Antistatika wird in EP-A-0,107,127 angegeben.

Kommerziell erhältliche Produkte wie Stadis® 450 der Fa. DuPont, eine Mischung aus Toluol, Isopropanol, Dodecylbenzolsulfonsäure, einem Polyamin, einem Copolymer aus Dec-1-en und SO₂ sowie Dec-1-en oder ASA®-3 der Fa. Shell und ARU5R® 163 der Firma ICI können ebenfalls verwendet werden.

Vorzugsweise wird das Antistatikum als Lösung eingesetzt, im bevorzugten Fall von Stadis® 450 werden bevorzugt 1 bis 50 Gew.-% dieser Lösung, vorzugsweise 5 bis 25 Gew.-%, bezogen auf die Masse des eingesetzten Trägerkatalysators (Träger mit

kovalent fixierter metalloceniumbildende Verbindung und eine oder mehrere Metallocenverbindungen z.B. der Formel IV) eingesetzt. Die benötigten Mengen an Antistatikum können jedoch, je nach Art des eingesetzten Antistatikums, in weiten Bereichen schwanken.

Die eigentliche Polymerisation wird vorzugsweise in flüssigen Monomer (bulk) oder in der Gasphase durchgeführt.

Das Antistatikum kann zu jedem beliebigen Zeitpunkt zur Polymerisation zudosiert werden. Zum Beispiel ist eine bevorzugte Verfahrensweise die, daß das geträgerte Katalysatorsystem in einem organischen Lösemittel, bevorzugt Alkane wie Heptan oder Isododekan, resuspendiert wird. Anschließend wird es unter Rühren in den Polymerisationsautoklav zugegeben. Danach wird das Antistatikum zudosiert. Die Polymerisation wird bei Temperaturen im Bereich von 0 bis 100°C durchgeführt. Eine weitere bevorzugte Verfahrensweise ist, daß das Antistatikum vor Zugabe des geträgerten katalysatorsystems in den Polymerisationsautoklav zudosiert wird. Anschließend wird das resuspendierte geträgerte Katalysatorsystem unter Rühren bei Temperaturen im Bereich von 0 bis 100°C zudosiert. Die Polymerisationszeit kann im Bereich von 0,1 bis 24 Stunden. Bevorzugt ist eine Polymerisationszeit im Bereich von 0,1 bis 5 Stunden.

20

15

10

Bei dem vorstehend beschriebenen Verfahren treten keine Reaktorbeläge auf, es bilden sich keine Agglomerate und die Produktivität des eingesetzten Katalysatorsystems ist hoch. Die mit dem erfindungsgemäßen Verfahren hergestellten Polymere zeichnen sich durch eine enge Molekulargewichtsverteilung und gute Kornmorphologie aus.

25

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung Allgemeine Angaben: Herstellung und Handhabung der Verbindungen erfolgten unter Ausschluß von Luft und Feuchtigkeit unter Argonschutz (Schlenk-Technik). Alle benötigten Lösemittel wurden vor Gebrauch durch mehrsthndiges Sieden über geeignete Trockenmittel und anschließende Destillation unter Argon absolutiert.

30

35

Beispiel 1: Synthese von Bis(dimethylalumoxy)pentafluorphenylboran 10ml Trimethylaluminium (2M in Toluol, 20mmol) werden in 40ml Toluol vorgelegt. Bei 40°C werden zu dieser Lösung 2,1g Pentafluorboronsäure (10mmol) in 50ml

10

15

20

25

30

35

Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur (RT). Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1M bezogen auf Bor) von Bis(dimethylalumoxy)pentafluorphenylboran in Toluol.

Beispiel 2: Synthese von Bis(pentafluorphenylboroxy)methylalan 5ml Trimethylaluminium (2M in Toluol, 10 mmol) werden in 45ml Toluol vorgelegt. Bei -40°C werden zu dieser Lösung 6.92g Bis(pentafluorphenyl)borinsäure (20mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1M bezogen auf Al) von Bis(pentafluorphenylboroxy)methylalan in Toluol.

Beispiel 3: Synthese von Bis(phenylboroxy)methylalan 5ml Trimethylaluminium (2M in Toluol, 10 mmol) werden in 45ml Toluol vorgelegt. Bei -40°C werden zu dieser Lösung 3,32g Bis(phenyl)borinsäure (20mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, farblose Lösung (0.1M bezogen auf Al) von Bis(phenylboroxy)methylalan in Toluol.

Beispiel 4: Synthese von Bis(pentafluorphenylboroxy)isobutylalan 10ml Triisobutylaluminium (1M in Toluol, 10 mmol) werden in 40ml Toluol vorgelegt. Bei -40°C werden zu dieser Lösung 6,92g Bis(pentafluorphenyl)borinsäure (20mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1M bezogen auf Al) von Bis(pentafluorphenylboroxy)isobutylalan in Toluol.

Beispiel 5: Trägerung von Bis(dimethylalumoxy)pentafluorphenylboran 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml Toluol suspendiert und bei Raumtemperatur 0,63 ml N,N-Dimethylanilin zugegeben. Es wird auf 0°C gekühlt und über einen Tropftrichter 50ml der im Beispiel 1 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und rührt

3 Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren 3,03g eines schwach blau gefärbten Trägermaterials.

5

Beispiel 6: Trägerung von Bis(pentafluorphenylboroxy)methylalan 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml Toluol suspendiert und bei Raumtemperatur 0,5 ml N,N-Dimethylanilin zugegeben. Es wird auf 0°C gekühlt und über einen Tropftrichter 40ml der im Beispiel 2 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und rührt 3 Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren 4,01g eines hellila gefärbten Trägermaterials.

15

20

10

Beispiel 7: Trägerung von Bis(phenylboroxy)methylalan 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml Toluol suspendiert und bei RT 0.63 ml N,N-Dimethylanilin zugegeben. Es wird auf 0°C gekühlt und über einen Tropftrichter 50ml der im Beispiel 3 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und rührt 3 Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren 3,17g eines schwach gelb gefärbten Trägermaterials.

25

30

Beispiel 8: Trägerung von Bis(pentafluorphenylboroxy)isobutylalan 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml Toluol suspendiert und bei Raumtemperatur 0,63 ml N,N-Dimethylanilin zugegeben. Es wird auf 0°C gekühlt und über einen Tropftrichter 50ml der im Beispiel 3 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur kommen und rührt 3 Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren 4,22g eines schwach blau gefärbten Trägermaterials.

45

Beispiel 9: Herstellung des Katalysatorsystems 1

Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μ mol) in 3 ml Toluol werden bei Raumtemperatur 0,5g des im Beispiel 5 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml Trimethylaluminium (TMA) (2M in Toluol, 20 :mol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

- Beispiel 10: Polymerisation mit dem Katalysatorsystem 1
 Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3ml
 Triisobutylaluminium (TIBA) (20% ig in Varsol) zugegeben und 15 Minuten gerührt.
 Anschließend wird das im Beispiel 9 hergestellte Katalysatorsystem 1 in 20ml
 Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das
 Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und
 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des
 restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es
 resultieren 151g Polypropylen-Pulver (PP). Der Reaktor zeigte keine Beläge an der
 Innenwand oder Rührer. Die Katalysatoraktivität beträgt 26 kg PP/g Metallocen x h.
- Beispiel 11: Herstellung des Katalysatorsystems 2
 Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μ mol) in 3 ml Toluol werden bei Raumtemperatur 0,43 g des im Beispiel 6
 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml TMA (2M in Toluol, 20 :mol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.
- Beispiel 12: Polymerisation mit dem Katalysatorsystem 2
 Ein trockener 2l-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 l flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 11 hergestellte Katalysatorsystem 2 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die

35

Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 272 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 47 kg PP/g Metallocen x h.

Beispiel 13: Herstellung des Katalysatorsystems 3

Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μ mol) in 3 ml Toluol werden bei Raumtemperatur 0,43 g des im Beispiel 6 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und 10 danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver. Beispiel 14: Polymerisation mit dem Katalysatorsystem 3 Ein trockener 21-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 l flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in 15 Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 13 hergestellte Katalysatorsystem 3 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die 20 Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 214 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 37 kg PP/g Metallocen x h.

Beispiel 15: Herstellung des Katalysatorsystems 4
Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μ mol) in 3 ml Toluol werden bei Raumtemperatur 0,91 g des im Beispiel 7 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml TMA (2M in Toluol, 20 :mol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 16: Polymerisation mit dem Katalysatorsystem 4
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in

10

15

20

25

Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 15 hergestellte Katalysatorsystem 4 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 166 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 29 kg PP/g Metallocen x h. Beispiel 17: Herstellung des Katalysatorsystems 5

Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 :mol) in 3 ml Toluol werden bei Raumtemperatur 0,44 g des im Beispiel 8 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml TMA (2M in Toluol, 20 :mol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 18: Polymerisation mit dem Katalysatorsystem 5
Ein trockener 2l-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 17 hergestellte Katalysatorsystem 5 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 258 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 45 kg PP/g Metallocen x h.

Beispiel 19: Herstellung des Katalysatorsystems 6

Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 µ mol) in 3 ml Toluol werden bei Raumtemperatur 0,44 g des im Beispiel 8 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

10

15

20

25

30

35

Beispiel 20: Polymerisation mit dem Katalysatorsystem 6
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 19 hergestellte Katalysatorsystem 6 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 198 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 34 kg PP/g Metallocen x h.

Beispiel 21: Herstellung des Katalysatorsystems 7 Zu 6,3 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdichlorid (10 μ mol) in 3 ml Toluol werden 10 Minuten mit 0,02 ml TMA (2M in Toluol, 40 :mol) gerührt. Anschließend werden bei Raumtemperatur 0,44 g des im Beispiel 6 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 22: Polymerisation mit dem Katalysatorsystem 7
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 21 hergestellte Katalysatorsystem 7 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 600 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 95 kg PP/g Metallocen x h.

Beispiel 23: Trägerung von Bis(pentafluorphenylboroxy)methylalan 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml Toluol suspendiert und bei Raumtemperatur 0,5 ml N,N-Dimethylanilin zugegeben.

10

15

20

25

30

35

Es wird auf 0°C gekühlt und über einen Tropftrichter 40ml der im Beispiel 2 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und tropft anschließend 4 ml TIBA (1M in Toluol) zu. Nachfolgend wird noch 1 Stunde bei Raumtemperatur gerührt. Die Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren 4,14g eines weißen Trägermaterials.

Beispiel 24: Herstellung des Katalysatorsystems 8 Zu 6,3 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdichlorid (10 μ mol) in 3 ml Toluol werden 10 Minuten mit 0,02 ml TMA (2M in Toluol, 40 :mol) gerührt. Anschließend werden bei Raumtemperatur 0,48 g des im Beispiel 23 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 25: Polymerisation mit dem Katalysatorsystem 8
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 24 hergestellte Katalysatorsystem 8 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 640 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 102 kg PP/g Metallocen x h.

Beispiel 26:

Polymerisation mit dem Katalysatorsystem 8 in Gegenwart von Wasserstoff Ein trockener 2l-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült. Anschließend werden 0,3 bar Wasserstoff auf den Reaktor gegeben. Der Reaktor wird dann mit 1,5l flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20%ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird 1/4 des nach Beispiel 24 hergestellten Katalysatorsystems (1,56mg Dimethylsilandiylbis(2-methyl-4-(phenyl)-indenyl)zirkoniumdichlorid, 2,58 mmol) in 20 ml Heptan

resuspendiert, eingespritzt und mit 15 ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und eine Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 480 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 308 kg PP/g Metallocen x h.

Vergleichsbeispiele:

Beispiel 27: Herstellung des Katalysatorsystems 9

10 100 mg (0,165 mmol) Dimethylsilandiylbis-(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid werden in 7,5 ml 30%-iger MAO-Lösung in Toluol (Al/Zr=225) und weiteren 7,5 ml Toluol vermischt und 30 Minuten bei Raumtemperatur gerührt. Anschließend werden 10 g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) dazugegeben und weitere 10 Minuten gerührt. Das Lösemittel wird im Ölpumpenvakuum entfernt.

Beispiel 28 Polymerisation mit dem Katalysatorsystem 9
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird 0,753 g (5,97 mg Dimethylsilandiylbis-(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid) des im Beispiel 26 hergestellten Katalysatorsystems 9 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisations-temperatur von 60°C aufgeheizt und 1 Stunde polymerisiert.

25 Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 316 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 53 kg PP/g Metallocen x h.

Patentansprüche:

- 1. Katalysatorsystem enthaltend
- a) mindestens ein Metallocen,
- b) mindestens eine Lewis-Base der Formel I.

(l)

worin

 R^3 , R^4 und R^5 gleich oder verschieden sind und für ein Wasserstoffatom, eine C_1 - C_{20} -Alkyl-, C_1 - C_{20} -Halogenalkyl-, C_6 - C_{40} -Aryl-, C_6 - C_{40} -Halogenaryl-, C_7 - C_{40} -Alkylaryl- oder C_7 - C_{40} -Arylalkyl-Gruppe stehen, wobei gegebenenfalls zwei Reste oder alle drei Reste R^3 , R^4 und R^5 über C_2 - C_{20} -Kohlenstoffeinheiten miteinander verbunden sein können und M^2 für ein ein Element der V. Hauptgruppe des Periodensystems der Elemente steht.

15 c) einen Träger,

10

d) mindestens eine Organoboraluminium-Verbindung, die aus Einheiten der Formel II

$$R_i^1 M^3 - O - M^3 R_i^2$$
 (II)

worin

R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe, insbesondere C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, Cȝ-C₄₀-Arylalkyl, Cȝ-C₄₀-Halogenarylalkyl, Cȝ-C₄₀-Alkylaryl, Cȝ-C₄₀-Halogenalkylaryl sind oder R¹ kann eine -OSiR₃-Gruppe sein, worin R gleich oder verschieden sind und und die gleiche Bedeutung wie R¹ haben, M³ gleich oder verschieden ist und für ein Element der 3. Hauptgruppe des Periodensystems der Elemente steht und i und j jeweis eine ganze Zahl 0, 1 oder 2 steht, aufgebaut ist und die kovalent an den Träger gebunden ist,

sowie gegebenenfalls

e) eine Organometallverbindung der Formel V

$$[\mathsf{M}^4\mathsf{R}^6_\mathsf{p}]_\mathsf{k} \tag{V}$$

worin

M⁴ ein Element der I., II. und III. Hauptgruppe des Periodensystems der

Elemente ist,

 R^6 gleich oder verschieden ist und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenstoffhaltige Gruppe, insbesondere C_1 - C_{20} - Alkyl-, C_6 - C_{40} -Aryl-, C_7 - C_{40} -Aryl-alkyl oder C_7 - C_{40} -Alkyl-aryl-Gruppe bedeutet, p eine ganze Zahl von 1 bis 3 und k ist eine ganze Zahl von 1 bis 4 ist.

- 2. Katalysatorsystem gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich bei den Lewis-Basen der Formel (I) um solche handelt, bei denen M² für Stickstoff oder Phosphor steht.
- 3. Katalysatorsystem gemäß Anspruch 2, dadurch gekennzeichnet, daß es sich bei den Lewis-Basen der Formel (I) um Triethylamin, Triisopropylamin, Triisobutylamin, Tri(n-butyl)amin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-2,4,6-Pentamethylanilin, Dicyclohexylamin, Pyridin, Pyrazin, Triphenylphosphin, Tri(methylphenyl)phosphin und Tri(dimethylphenyl)phosphin handelt.
- 4. Katalysatorsystem gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Träger ist ein poröser anorganischer oder organischer Feststoff ist.
- 5. Katalysatorsystem gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es sich um Organoboraluminiumverbindung handelt, bei der in der Formel (II) M³ für Bor oder Aluminium steht.
- 6. Katalysatorsystem gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es bei den Organoboraluminiumverbindung um Verbindungen der Formeln (III) und (IV),

worin R¹ und R² die gleiche Bedeutung wie unter Formel (II) haben, handelt.

25

30

5

10

15

20

7. Katalysatorsystem gemäß Anspruch 6, dadurch gekennzeichnet, daß es sich bei den Organoboraluminiumverbindung der Formeln (III) und (IV) um

5

handelt.

10

15

8. Katalysatorsystem gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es sich bei Organometallverbindungen der Formel (V) um Trimethylaluminium, Triethylaluminium, Tri-isopropylaluminium, Trihexylaluminium, Trioctylaluminium, Tri-n-butylaluminium, Tri-n-propylaluminium, Triisoprenaluminium, Dimethylaluminiummonochlorid, Diethyl-aluminiummonochlorid, Diisobutylaluminiummonochlorid, Methylaluminiumsesqui-chlorid, Ethylaluminiumsesquichlorid, Dimethylaluminiumhydrid, Diethylaluminium-hydrid, Diisopropylaluminiumhydrid, Dimethylaluminium(trimethylsiloxid), Dimethylaluminium(trimethylsiloxid), Dimethylaluminium(triethylsiloxid), Phenylalan, Pentafluorphenylalan und o-Tolylalan, handelt.

20

9. Katalysatorsystem gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es sich bei dem Metallocen um ein unverbrücktes oder verbrücktes Metallocen der Formel (VI),

25

(VI)

worin

- M¹ ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf.
- gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin

 R¹² gleich oder verschieden ein Wasserstoffatom oder eine C₁-C₄₀kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy,
 C₆-C₂₀-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl sind, oder R⁷ sind eine C₁C₃₀ kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-

25

30

Butyl, Cyclohexyl oder Octyl, C_2 - C_{25} -Alkenyl, C_3 - C_{15} -Alkylalkenyl, C_6 - C_{24} -Aryl, C_5 - C_{24} -Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C_7 - C_{30} -Arylalkyl, C_7 - C_{30} -Alkylaryl, fluorhaltiges C_1 - C_{25} -Alkyl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C_7 - C_{30} -Alkylaryl oder C_1 - C_{12} -Alkoxy ist, oder zwei oder mehrere Reste R^7 können so miteinander verbunden sein, daß die Reste R^7 und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C_4 - C_{24} -Ringsystem bilden, welches seinerseits substituiert sein kann,

R8 gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin 10 R¹² gleich oder verschieden ein Wasserstoffatom oder eine C₁-C₄₀kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, C₆-C₁₄-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R8 sind eine C1-C₃₀ - kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-15 Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C₅-C₂₄-Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl. C₇-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl oder C1-C12-Alkoxy ist, oder zwei oder mehrere Reste R8 können so miteinander 20 verbunden sein, daß die Reste R8 und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C₄-C₂₄-Ringsystem bilden, welches seinerseits substituiert sein kann.

I gleich 5 für v = 0, und I gleich 4 für v = 1 ist, m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,

L¹ gleich oder verschieden sein können und ein Wasserstoffatom, eine C_1 - C_{10} -Kohlenwasserstoffgruppe wie C_1 - C_{10} -Alkyl oder C_6 - C_{10} -Aryl, ein Halogenatom, oder OR^9 , SR^9 , $OSiR_3^9$, SiR_3^9 , PR_2^9 oder NR_2^9 bedeuten, worin R^9 ein Halogenatom, eine C_1 - C_{10} Alkylgruppe, eine halogenierte C_1 - C_{10} Alkylgruppe, eine C_6 - C_{20} Arylgruppe oder eine halogenierte C_6 - C_{20} Arylgruppe sind, oder L^1 sind eine Toluolsulfonyl-, Trifluoracetyl-,

10

Trifluoracetoxyl-, Trifluor-methansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-Gruppe,

- o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
- Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und v ist 0 oder 1, bedeutet, handelt.
- 10. Katalysatorsystem gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es sich bei dem Metallocen der Formel (VI) worin Z für eine Gruppe MR¹⁰R¹¹ steht, worin M Kohlenstoff, Silizium, Germanium oder Zinn ist und R¹⁰ und R¹¹ gleich oder verschieden eine C₁-C₂₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₁₀-Alkyl, C₆-C₁₄-Aryl oder Trimethylsilyl bedeutet.
- 11. Katalysatorsystem gemäß Anspruch 9, dadurch gekennzeichnet, daß es sich bei dem Metallocen der Formel (VI) worin Z für CH_2 , CH_2CH_2 , $CH(CH_3)CH_2$, $CH(C_4H_9)C(CH_3)_2$, $C(CH_3)_2$, $C(CH_3)_2$ Si, $C(CH_3)_2$ Si, C(CH
- 12. Katalysatorsystem gemäß Anspruch 11, dadurch gekennzeichnet, daß als Metallocen Dimethylsilandiylbis(indenyl)zirkoniumdichlorid Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid
 25 Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid
- 35 Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid
Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid

- Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirk-
- oniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid
 - ${\it 1,2-Ethan diylbis} (2-methyl-4-phenyl-indenyl) zirkonium dichlorid$
- 20 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
 - 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
 - 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
- 25 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid
 - 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid
 - [4- $(\eta^5$ -Cyclopentadienyl)-4,6,6-trimethyl- $(\eta^5$ -4,5-tetrahydropentalen)]-dichlorozirconium
- [4-(η⁵ -3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(η⁵ -4,5-tetrahydropentalen)]-dichlorozirconium
 [4-(η⁵-3'-Isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(η⁵-4,5-tetrahydropentalen)]-dichlorozirconium
 - [4-(η ⁵-Cyclopentadienyl)-4,7,7-trimethyl-(η ⁵-4,5,6,7-tetrahydroindenyl)]-dichlorotitan
- [4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-

dichlorozirkonium

[4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorohafnium

[4- $(\eta^5$ -3´-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

- 4- $(\eta^5$ -3´-lsopropylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
- 4- $(\eta^5$ -3´-Methylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
- 4- $(\eta^5$ -3'-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
 - 4- $(\eta^5-3'$ -tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5-4,5,6,7$ -tetrahydroindenyl)]-dichlorozirkonium
 - $(Tertbutylamido) (tetramethyl-\eta^5 cyclopentadienyl) dimethylsilyl-dichlorotitan$
- (Tertbutylamido)-(tetramethyl- η^5 -cyclopentadienyl)-1,2-ethandiyl-dichlorotitan-dichlorotitan
 - $\label{eq:continuous} \begin{tabular}{ll} $$(Methylamido)-(tetramethyl-η^5-cyclopentadienyl)-dimethylsilyl-dichlorotitan \\ $$(Methylamido)-(tetramethyl-η^5-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan \\ $$(Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan \\ \end{tabular}$
- Bis-(cyclopentadienyl)-zirkoniumdichlorid
 Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid
 Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid
 Tetrachloro-[1-[bis(η⁵-1H-inden-1-yliden)methylsilyl]-3-η⁵-cyclopenta-2,4-dien-1-yliden)-3-η⁵-9H-fluoren-9-yliden)butan]di-zirkonium
- Tetrachloro-[2-[bis(η^5 -2-methyl-1H-inden-1-yliden)methoxysilyl]-5-(η^5 -2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yliden)-5-(η^5 -9H-fluoren-9-yliden)hexan]dizirkonium
 - Tetrachloro-[1-[bis(η^5 -1H-inden-1-yliden)methylsilyl]-6-(η^5 -cyclopenta-2,4-dien-1-yliden)-6-(η^5 -9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium
- Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkonjumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl 10 Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandivlbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkonjumdimethyl 15 Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkonjumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkonjumdichlorid Dimethylsilandivlbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid 20 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandivlbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 35

ű

Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkonjumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)indenyl)zirkoniumbis(dimethylamid) Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl Dimethylgermandiylbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 35

Dimethylgermandiylbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Dimethylgermandiylbis(2-propyl-4-(4´-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylgermandiylbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid

- Ethylidenbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-propyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-butyl-4-(4´-tert.-butyl-phenyl)-indenyl)titandichlorid Ethylidenbis(2-hexyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Ethylidenbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl
- Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandibenzyl
 Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
 Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdimethyl
 Ethylidenbis(2-n-propyl-4--phenyl)-indenyl)titandimethyl
 Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid)
- Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid)
 Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid)
 Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
 Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid
 Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
- Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-methylphenyl-indenyl)
- 25 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)
- 35 zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-

- methylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-methylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2.5 dimethyl 4.4 thiapentalen)
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-methylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)
- zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)
 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)

- 5 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-ethylphenyl-
- 15 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-ethylphenyl-
- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)
- 35 zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
- 5 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 10 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)

- 5 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 15 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 35 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)
- 10 zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-
- 20 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)

zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-

- 5 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)
- 15 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-
- 25 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-
- 35 indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid

- 5 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-
- 10 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tert-

butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
- zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-

35 indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-n-pentylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
- 25 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)
- 30 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-

- 5 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-

hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-

- 15 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl)zirkoniumdichlorid
- 20 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-

- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)

35 zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-phenyl-giphenyl-foxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-foxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-foxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-foxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-foxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-foxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-foxapentalen)(2-methyl-foxap
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-

indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-

- 5 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- 20 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-
- 25 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-
- 35 indenyl)zirkoniumdichlorid

73

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)

10 zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
- 35 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-

5

10

indenyl)zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid

- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-
- tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
- 35 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-
- tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-
- tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-indenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5,6-di-hydro-4-azapentalen)(2-ethyl-4-(4´-tert
 - butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-tetrahydroindenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-n-butyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Ethyliden(2-methyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)
- zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-trimethylsilyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-tolyl-5-azapentalen)(2-n-propyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylgermyldiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-

5

butylphenyl-indenyl) zirkoniumdichlorid

Methylethyliden(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)
zirkoniumdichlorid

Dimethylsilandiyl(2,5-di-iso-propyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)
zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2,6-dimethyl-4-(4'-tert-butylphenyl-indenyl)
zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylnaphthyl-indenyl)
zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylanthracenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-phosphapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

 Diphenylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- indenyl)zirkoniumdichlorid

 Methylphenylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Methyliden(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylmethyliden(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Diphenylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Diphenyl silandiyl (2,5-dimethyl-6-oxapentalen) (2-methyl-4-(4`-tert-butyl phenyl-6-oxapentalen) (2-methyl-4-(4`-tert-butyl phenyl-6-oxapentalen) (2-methyl-6-oxapentalen) (2-methyl-6-oxapentalen
- indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methylindenyl)
- zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methylindenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methylindenyl)
 zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methylindenyl)

5 zirkoniumdichlorid

10

15

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methylindenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-thiapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) 5 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) 10 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid 20 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-phenyl-25 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid 30 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-phenyl-

35

zirkoniumdichlorid

35

indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-phenyl-indenyl) 5 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) 10 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid 15 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) 20 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid 25 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4,5-benzo-30 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4,5-benzo-indenyl)

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4,5-benzo-5 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid 10 Dimethylsilandiylbis(2-methyl-4-azapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-6-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-N-phenyl-4-azapentalen) zirkoniumdichlorid 15 Dimethylsilandiylbis(2-methyl-N-phenyl-5-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-N-phenyl-6-azapentalen) zirkoniumdichlorid Dimethylsilandivlbis(2,5-dimethyl-4-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2.5-dimethyl-6-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-4-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-6-azapentalen) zirkoniumdichlorid 20 Dimethylsilandiylbis(2-methyl-4-thiapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-thiapentalen)zirkonjumdichlorid Dimethylsilandiylbis(2-methyl-6-thiapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-4-thiapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-6-thiapentalen) zirkoniumdichlorid 25 Dimethylsilandiylbis(2-methyl-4-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-6-oxapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlorid 30 Dimethylsilandiylbis(2,5-dimethyl-6-oxapentalen)zirkoniumdichlorid oder ein Gemisch derselben, eingesetzt wird.

Des weiteren sind die Metallocene, bei denen das Zirkoniumfragment "-zirkonium-dichlorid" die Bedeutungen

35 Zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-phenolat)

Zirkonium-monochloro-mono-(3,5-di-tert.-butyl-phenolat)

Zirkonium-monochloro-mono-(2,6-di-sec.-butyl-phenolat)

Zirkonium-monochloro-mono-(2,4-di-methylphenolat)

5 Zirkonium-monochloro-mono-(2,3-di-methylphenolat)

Zirkonium-monochloro-mono-(2,5-di-methylphenolat)

Zirkonium-monochloro-mono-(2,6-di-methylphenolat)

Zirkonium-monochloro-mono-(3,4-di-methylphenolat)

Zirkonium-monochloro-mono-(3,5-di-methylphenolat)

10 Zirkonium-monochloro-monophenolat

Zirkonium-monochloro-mono-(2-methylphenolat)

Zirkonium-monochloro-mono-(3-methylphenolat)

Zirkonium-monochloro-mono-(4-methylphenolat)

Zirkonium-monochloro-mono-(2-ethylphenolat)

2irkonium-monochloro-mono-(3-ethylphenolat)

Zirkonium-monochloro-mono-(4-ethylphenolat)

Zirkonium-monochloro-mono-(2-sec.-butylphenolat)

Zirkonium-monochloro-mono-(2-tert.-butylphenolat)

Zirkonium-monochloro-mono-(3-tert.-butylphenolat)

20 Zirkonium-monochloro-mono-(4-sec.-butylphenolat)

Zirkonium-monochloro-mono-(4-tert.-butylphenolat)

Zirkonium-monochloro-mono-(2-isopropyl-5-methylphenolat)

Zirkonium-monochloro-mono-(4-isopropyl-3-methylphenolat)

Zirkonium-monochloro-mono-(5-isopropyl-2-methylphenolat)

25 Zirkonium-monochloro-mono-(5-isopropyl-3-methylphenolat)

Zirkonium-monochloro-mono-(2,4-bis-(2-methyl-2-butyl)-phenolat)

Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-4-methyl-phenolat)

Zirkonium-monochloro-mono-(4-nonylphenolat)

Zirkonium-monochloro-mono-(1-naphtholat)

30 Zirkonium-monochloro-mono-(2-naphtholat)

Zirkonium-monochloro-mono-(2-phenylphenolat)

Zirkonium-monochloro-mono-(tert. butoxid)

Zirkonium-monochloro-mono-(N-methylanilid)

Zirkonium-monochloro-mono-(2-tert.-butylanilid)

35 Zirkonium-monochloro-mono-(tert.-butylamid)

Zirkonium-monochloro-mono-(di-iso.-propylamid)
Zirkonium-monochloro-mono-methyl
Zirkonium-monochloro-mono-benzyl
Zirkonium-monochloro-mono-neopentyl, hat, Beispiele für die erfindungsgemäßen Metallocene.

13. Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines oder mehrerer Olefine in Gegenwart eines Katalysatorsystems nach einem der Ansprüche 1 bis 12.

10

5

- 14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart von Wasserstoff durchgeführt wird.
- 15. Verwendung eines Katalysatorsystems gemäß einem der Ansprüche 1 bis 12 zur Herstellung eines Polyolefins.

International Application No PCT/EP 59/03415

I A. CLASS	ification of subject matter C08F4/607 C08F10/00							
According to	According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SEARCHED								
	ocumentation searched (classification system followed by classification	on symbols)	····					
IPC 6	C08F							
Documenta	tion searched other than minimum documentation to the extent that s	such documents are included in the fields so	earched					
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)					
i								
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.					
	<u> </u>							
Υ	EP 0 619 326 A (TOSOH CORP)		6,8-15					
	12 October 1994 (1994-10-12)							
	page 3, line 29 -page 3, line 34 page 4, line 41 -page 5, line 44							
	page 8, line 7 -page 9, line 10		•					
	claims 10,12							
.,								
Υ	EP 0 601 830 A (MITSUBISHI PETROC CO) 15 June 1994 (1994-06-15)	CHEMICAL	6,8-15					
	page 3, line 6 -page 3, line 47							
	page 10, line 49 -page 10, line 5	50						
Further documents are listed in the continuation of box C. X Patent family members are listed in annex.								
' Special categories of cited documents : "T" later document published after the international filling date								
"A" document defining the general state of the art which is not considered to be of particular relevance or priority date and not in conflict with the application but cited to understand the principle or theory underlying the								
"E" earlier document but published on or after the international "V" document of particular relevance the element invention								
"L" document which may throw doubts on priority claim(s) or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone								
which is cited to establish the publication date of another citation or other special reason (as specified). "Y" document of particular relevance; the claimed invention								
"O" docume	"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such document							
. other means ments, such combination being obvious to a person skilled in the art.								
later th	nan the priority date claimed	"&" document member of the same patent	·					
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report					
1	4 October 1999	2 9. 10. 99						
Name and mailing address of the ISA Authorized officer								
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk							
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Van Golde, L	-					

International application No.
PCT/ EP 99/03415

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. X	Claims Nos.: 1-5, 7				
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
	See supplemental sheet ADDITIONAL MATTER PCT/ISA/210				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:				
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark	on Protest				
	No protest accompanied the payment of additional search fees.				

Continued from field I.2

Claim nos.: 1-5, 7

- 1. Claim no. 1d) relates to an organoboron aluminium compound of formula (II). According to Claim no. 5, the compounds of formula (II) are organoaluminium compounds or organoboron compounds and not organoboron aluminium compounds as specified according to Claim no. 1d).
- 2. Claim nos. 2-4 are dependent on Claim no. 1.
- 3. Claim no. 7 is incomprehensibly formulated.

The applicant is advised that claims or parts of claims relating to inventions in respect of which no international search report has been established cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). As a general rule, the EPO in its capacity as the authority entrusted with the task of carrying out an international preliminary examination will not conduct a preliminary examination for subjects in respect of which no search has been provided. This also applies to cases where the patent claims were amended after receipt of the international search report (PCT Article 19) or to cases where the applicant presents new patent claims in keeping with the procedure mentioned in PCT Chapter II.

PCT/EP 99/03415

Infort. In on patent family members

Patent document cited in search report	τ	Publication date		Patent family member(s)	Publication date
EP 0619326	A	12-10-1994	JP DE DE JP	7118319 A 69403928 D 69403928 T 7196722 A	09-05-1995 31-07-1997 18-12-1997 01-08-1995
EP 0601830	Α	15-06-1994	JP JP DE US US	6172438 A 6172439 A 69325782 D 5449650 A 5648440 A	21-06-1994 21-06-1994 02-09-1999 12-09-1995 15-07-1997

International - Aktenzeichen

PCT/EP 99/03415 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES A. KLASS IPK 6 C08F4/607 C08F10/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C08F Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Y EP 0 619 326 A (TOSOH CORP) 6,8 - 1512. Oktober 1994 (1994-10-12) Seite 3, Zeile 29 -Seite 3, Zeile 34 Seite 4, Zeile 41 -Seite 5, Zeile 44 Seite 8, Zeile 7 -Seite 9, Zeile 10 Ansprüche 10,12 Y EP 0 601 830 A (MITSUBISHI PETROCHEMICAL 6,8-15CO) 15. Juni 1994 (1994-06-15) Seite 3, Zeile 6 -Seite 3, Zeile 47 Seite 10, Zeile 49 -Seite 10, Zeile 50 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie IX I Besondere Kategorien von angegebenen Veröffentlichungen "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffertlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geergnet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werder soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erlinderischer Täligkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategonde in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausceführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussteilung oder andere Maßnahmen bezieht
"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 2 9. 10. 99 14. Oktober 1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Van Golde, L

ø.,

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 99/03415

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2. Ansprüche Nr. 1-5,7 weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 99 \(\Delta 3415 \)

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 1-5,7

- 1. Anspruch 1 d) betrifft eine Organoboraluminium-Verbindung der Formel (II). Die Verbindungen der Formel (II) sind laut Anspruch 5 Organoaluminium-Verbindungen oder Organobor-Verbindungen und keine Organoboraluminium-Verbindungen wie laut Anspruch 1 d) vorgeschrieben.
- 2. Die Ansprüche 2 bis 4 sind abhängig von Anspruch 1.
- 3. Anspruch 7 ist unverständlich formuliert.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentanprüche vorlegt.

PCT/EP > 3/03415

.....

Im Recherchenbericht angeführtes Patentdokument Mitglied(er) der Patentfamilie Datum der Datum der Veröffentlichung Veröffentlichung EP 0619326 12-10-1994 Α JP 7118319 A 09-05-1995 DE 69403928 D 31-07-1997 DE 69403928 T 18-12-1997 JP 7196722 A 01-08-1995 EP 0601830 15-06-1994 JΡ 6172438 A 21-06-1994 JΡ 6172439 A 21-06-1994 DE 69325782 D 02-09-1999 5449650 A US 12-09-1995 US 5648440 A 15-07-1997