

Group Sense Mobile-Tech Limited

For

WiFi PDA

Model Name : DT4005

Trade Name : Group Sense Mobile-Tech Limited

Brand Name : Xplore FCC ID : VRI-B202

Standard : 47CFR 2.1093

IEEE 1528-2013

MAX SAR : Body: 0.481W/Kg

Test date : 2014-4-2 to 2014-6-6

Issue date : 2014-6-9

by

Shenzhen Morlab Communications Technology Co., Ltd.

FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong & Ovince P. 18, China 518101

Tested by Zou Jian

(Test Engineer)

2014 . 6 . 9

Approved

Date

CARTICATION

«Zeng Dexin

(Chier Engineer)

Reviewed by

Zhu Zhan

Date 2

2014.6.9

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified-copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate

Web site: http://www.morlab.cn/

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

DIRECTORY

<u>1. TESTING LABORATORY</u>	<u>4</u>
1.1 IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	4
1.2 ACCREDITATION CERTIFICATE	4
1.3 LIST OF TEST EQUIPMENTS	4
2. TECHNICAL INFORMATION	5
2.1 IDENTIFICATION OF APPLICANT	5
2.2 IDENTIFICATION OF MANUFACTURER	5
2.3 EQUIPMENT UNDER TEST (EUT)	5
2.3.1 PHOTOGRAPHS OF THE EUT	5
2.3.2 IDENTIFICATION OF ALL USED EUT	6
2.4 APPLIED REFERENCE DOCUMENTS	
2.5 DEVICE CATEGORY AND SAR LIMITS	6
3. SPECIFIC ABSORPTION RATE (SAR)	7
3.1 Introduction	7
3.2 SAR DEFINITION	7
4. SAR MEASUREMENT SETUP	8
4.1 THE MEASUREMENT SYSTEM	8
4.2 PROBE	
4.3 PROBE CALIBRATION PROCESS	
4.3.1 DOSIMETRIC ASSESSMENT PROCEDURE	
4.3.2 FREE SPACE ASSESSMENT PROCEDURE	
4.3.3 TEMPERATURE ASSESSMENT PROCEDURE	
4.4 PHANTOM	
4.5 DEVICE HOLDER	11
5. TISSUE SIMULATING LIQUIDS	<u>12</u>
6. UNCERTAINTY ASSESSMENT	13
6.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST (APPLICABLE FOR FREQUENCE	IES 3GHz)13

Page 2 of 76

Report No	o.: SZ1403	30082S01A
-----------	------------	-----------

6.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK (APPLICABLE FOR FREQUENCE	es 3GHz)14
6.3 UNCERTAINTY EVALUATION FOR EUT SAR TEST (APPLICABLE FOR FREQUENCIES 3-60	энz) 15
6.4 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK (APPLICABLE FOR FREQUENCE	es 3-6GHz)17
7. SAR MEASUREMENT EVALUATION	19
7.1 SYSTEM SETUP	10
7.1 SYSTEM SETUP	
7.2 VALIDATION RESULTS	20
8. OPERATIONAL CONDITIONS DURING TEST	21
8.1 BODY-WORN CONFIGURATIONS	21
8.2 MEASUREMENT PROCEDURE	21
8.3 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME	21
9. MEASUREMENT OF CONDUCTED OUTPUT POWER	23
9.1 WIFI (2.4GHz BAND)	23
9.2 WIFI (5G BANDS)	
9.3 BLUETOOTH	
10. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	27
11. TEST RESULTS LIST	20
II. ILOI KESULIS LISI	
ANNEX A GRAPH TEST RESULTS	34

Change History			
Issue Date Reason for change			
1.0	June 9, 2014	First edition	

Web site: http://www.morlab.cn/

Email: Service@morlab.cn

1. TESTING LABORATORY

1.1 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.	
	Morlab Laboratory	
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China 518101	

1.2 Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572

1.3 List of Test Equipments

Web site: http://www.morlab.cn/

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Aglient (8960, SN:10752)	2014-2-21	1year
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2013-9-26	1year
4	Voltmeter	Keithley (2000, SN:1000572)	2013-9-24	1year
5	Signal Generator	Rohde&Schwarz (SMP_02)	2013-9-24	1year
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2013-9-24	1year
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2013-5-07	1year
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2013-5-07	1year
9	Directional coupler	Giga-tronics(SN:1829112)	2013-9-24	1year
10	Probe	Satimo (SN:SN 37/08 EP80)	2013-9-25	1year
11	Probe 5-6GHz	Satimo (SN:SN 27/13 EPG193)	2013-9-25	1year
12	Dielectric Probe Kit	Agilent (85033E)	2013-9-24	1year
13	Phantom	Satimo (SN:SN_36_08_SAM62)	2013-9-24	1year
14	Liquid	Satimo(Last Calibration: 2014-4-2 to 2014-6-6)	N/A	N/A
15	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2013-9-25	1year
16	Waveguide 5-6GHz	Satimo (SN 41/12 WGA21)	2013-9-25	1year

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Email: Service@morlab.cn Page 4 of 76

Fax: +86 (0) 755 36698525

2. TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

2.1 Identification of Applicant

Company Name:	Group Sense Mobile-Tech Limited	
Address:	6/F, Enterprise Place, No. 5 Science Park West Avenue, HK Science	
	Park, Shatin, N.T., H K	

2.2 Identification of Manufacturer

Company Name:	Group Sense Mobile-Tech Limited	
Address:	6/F, Enterprise Place, No. 5 Science Park West Avenue, HK Science	
	Park, Shatin, N.T., H K	

2.3 Equipment Under Test (EUT)

Model Name:	DT4005
Trade Name:	Group Sense Mobile-Tech Limited
Brand Name:	Xplore
Hardware Version:	QA1
Software Version:	B202-V1.01.0044
Tx Frequency Bands:	802.11 b/g/n20: 2412-2462 MHz;
	802.11a/n20: 5.180-5.320GHz,5.500-5.700GHz,5.745-5.825GHz;
	Bluetooth;
Uplink Modulations:	WiFi 802.11b: DSSS; WiFi 802.11a/g/n: OFDM;
	Bluetooth: GFSK/π/4-DQPSK/8-DPSK;
DTM:	Not support
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype
Hotspot function:	Not support
Voice mode:	Not support

2.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/

Email: Service@morlab.cn Page 5 of 65

2.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	QA1	B202-V1.01.0044

2.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title		
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable		
		Devices		
2	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak		
		Spatial-Average Specific Absorption Rate (SAR) in the		
		Human Head from Wireless Communications Devices:		
		Measurement Techniques		
3	KDB 447498 D01v05r01	General RF Exposure Guidance		
4	KDB 248227 D01v01r02	SAR Measurement Procedures for 802.11 a/b/g		
		Transmitters		
5	KDB 865664 D01v01r02	SAR Measurement 100 MHz to 6 GHz		
6	KDB 865664 D02v01r01	SAR Reporting		

2.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/
Fax: +86 (0) 755 36698525
Email: Service@morlab.cn
Page 6 of 76

3. SPECIFIC ABSORPTION RATE (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/
Fax: +86 (0) 755 36698525

Email: Service@morlab.cn

4. SAR MEASUREMENT SETUP

4.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

- Distance between sensor center and the inner phantom surface: 4 mm

Shenzhen Morlab Communications Technology Co., Ltd

Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/

Fax: +86 (0) 755 36698525

Email: Service@morlab.cn Page 8 of 76

(repeat ability better than +/- 1mm)

- Probe linearity: <0.25 dB

- Axial Isotropy: <0.25 dB

- Spherical Isotropy: <0.25 dB

- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

i = Skin depthKeithley configuration:

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: Service@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 9 of 76

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

Where DCP is the diode compression point in mV.

4.3 Probe Calibration Process

4.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

4.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm²

4.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: Service@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 10 of 76

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

4.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 11 of 76

5. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	2450	5200-5800
Tissue Type	Body	Body
Ingredients (% by weight)		
Deionised Water	73.20	78.60
Salt(NaCl)	0.10	0.00
Sugar	0.00	0.00
Tween 20	0.00	0.00
HEC	0.00	0.00
Bactericide	0.00	0.00
Triton X-100	0.00	10.70
DGBE	26.70	0.00
Diethylenglycol monohexylether	0.00	10.70
Measured dielectric parameters		
Dielectric Constant	52.70	Note
Conductivity (S/m)	1.95	NOLE

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer

Table 1: Dielectric Performance of Tissue Simulating Liquid (for Body)

Temperatur	e: 22.0~23.8°0	C, humidity: 54~60%.				
Date	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)
2014/4/2	Pody 2450	Relative Permittivity(er):	52.46	52.7	-0.46	5
2014/4/2	Body 2450	Conductivity(σ):	1.92	1.95	-1.54	5
2014/6/6	Body 5600	Relative Permittivity(er):	48.36	48.5	-0.29	5
2014/0/0	Бойу 5000	Conductivity(σ):	5.73	5.77	-0.69	5
2014/6/6	Pody 5900	Relative Permittivity(er):	48.11	48.2	-0.19	5
2014/0/0	Body 5800	Conductivity(σ):	5.93	6.00	-1.17	5

Shenzhen Morlab Communications Technology Co., Ltd

Fax: +86 (0) 755 36698525 Web site: http://www.morlab.cn/ Email: Service@morlab.cn

Page 12 of 76

Phone: +86 (0) 755 36698555

6. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

UNCERTAINTY EVALUATION FOR EUT SAR TEST (Applicable for 6.1 frequencies 3GHz)

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1 5	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8 9	8
Test sample Related		•	•		•	•	•	•	
Test sample positioning	E.4.2.	0.03	N	1	1	1	0.03	0.0	N- 1
Device Holder Uncertainty	E.4.1.	5.00	N	1	1	1	5.00	5.0 0	N- 1
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	8

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/ Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 13 of 76

SAR drift measurement								3	
Phantom and Tissue Para	meters								
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1		0.0	∞
(Shape and thickness							0.03	3	
tolerances)								3	
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
deviation from target value								3	
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.1	М
measurement uncertainty								5	
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
deviation from target value								4	
Liquid permittivity -	E.3.3	10.0	N	1	0.6	0.49	6.00	4.9	М
measurement uncertainty		0						0	
Combined Standard			RSS				11.55	10.	
Uncertainty				_				67	
Expanded Uncertainty			K=2				23.11	21.	
(95% Confidence interval)								33	

6.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK (Applicable for frequencies 3GHz)

а	b	С	d	e=	f	g	h=	i=	k
				f(d,k)			c*f/e	c*g/	
								е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-	-		(1g)	(10g)	(+-%)	Ui	
		%)	Dist.					(+-	
								%)	
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 14 of 76

RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Probe positioner	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
Mechanical Tolerance								5	
Probe positioning with	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	∞
respect to Phantom Shell								3	
Extrapolation,	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
interpolation and								9	
integration Algoritms for									
Max. SAR Evaluation									
Dipole		•	•				•	•	•
Dipole axis to liquid	8,E.4.	1.00	N	$\sqrt{3}$	1	1	0.58	0.5	8
Distance	2							8	
Input power and SAR drift	8,6.6.	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	∞
measurement	2							3	
Phantom and Tissue Para	meters								
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
(Shape and thickness								3	
tolerances)									
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
deviation from target value								3	
Liquid conductivity -	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
measurement uncertainty								4	
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
deviation from target value								4	
Liquid permittivity -	E.3.3	10.0	N	$\sqrt{3}$	0.6	0.49	3.46	2.8	М
measurement uncertainty		0						3	
Combined Standard			RSS				8.83	8.3	
Uncertainty								7	
Expanded Uncertainty			K=2				17.66	16.	
(95% Confidence interval)								73	
<u> </u>	1	1					1		

6.3 UNCERTAINTY EVALUATION FOR EUT SAR TEST (Applicable for frequencies 3-6GHz)

а	b	С	d	e=	f	g	h=	i=	k
				f(d,k)			c*f/e	c*g/	
								е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-			(1g)	(10g)	(+-%)	Ui	
		%)	Dist.					(+-	

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 15 of 76

						Корон	NO.: 3212	-00000	200
								%)	
Measurement System									
Probe calibration	E.2.1	6.55	N	1	1	1	6.6	6.6	8
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	E.2.2	1.3	N	1	1	1	1.3	1.3	∞
Boundary effect	E.2.3	0.4	N	1	1	1	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞
System detection limits	E.2.5	5.1	N	1	1	1	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1	1	1.0	1.0	∞
Reponse Time	E.2.7	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning with respect to Phantom Shell	E.6.3	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Test sample Related									
Test sample positioning	E.4.2	6.0	N	1	1	1	6.0	6.0	28 7
Device Holder Uncertainty	E.4.1	3.32	R	$\sqrt{3}$	1	1	1.9	1.9	∞
Output power Power drift - SAR drift measurement	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Phantom and Tissue Para	meters	II.		ı		•	1		ı
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity - deviation from target value	E.3.2	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
Liquid conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.5	6
Liquid permittivity - deviation from target value	E.3.2	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
Liquid permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.6	0.49	2.7	2.2	6

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 16 of 76

Combined Standard		RSS		12.4		29
Uncertainty					12	9
Expanded Uncertainty		K=2		24.7	24	
(95% Confidence interval)				24.7	24	

6.4 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK (Applicable for frequencies 3-6GHz)

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi
Measurement System									
Probe calibration	E.2.1	6.55	N	1	1	1	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	E.2.2	1.3	N	1	1	1	1.3	1.3	∞
Boundary effect	E.2.3	0.4	N	1	1	1	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞
System detection limits	E.2.5	5.1	N	1	1	1	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1	1	1.0	1.0	∞
Reponse Time	E.2.7	8.0	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning with respect to Phantom Shell	E.6.3	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Dipole	•						1		
Dipole axis to liquid Distance	E.4.2	1.9	N	1	1	1	1.9	1.9	28 7
Input power and SAR drift	6.6.2	4.0	R	$\sqrt{3}$	1	1	2.9	2.3	8

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 17 of 76

measurement									
Phantom and Tissue Para	meters								
Phantom Uncertainty	E.3.1	4.0	R	$\sqrt{3}$	1	1			8
(Shape and thickness							2.3	2.3	
tolerances)									
Liquid conductivity -	E.3.2	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
deviation from target value									
Liquid conductivity -	E.3.3	3.8	N	1	0.64	0.43	2.4	1.5	6
measurement uncertainty									
Liquid permittivity -	E.3.2	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
deviation from target value									
Liquid permittivity -	E.3.3	4.5	N	1	0.6	0.49	2.7	2.2	6
measurement uncertainty									
Combined Standard			RSS				9.36		29
Uncertainty								9.2	9
Expanded Uncertainty			K=2				18.72	18.	
(95% Confidence interval)								4	

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 18 of 76

7. SAR MEASUREMENT EVALUATION

7.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/ Email: Service@morlab.cn

Fax: +86 (0) 755 36698525

Phone: +86 (0) 755 36698555

Page 19 of 76

7.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	2450MHz
Target value 1W (1g)	56.09 W/Kg
Test value 1g	12.908 W/Kg
(250 mW input power)	(4.2)
Normalized to 1W value(1g)	51.632 W/Kg

Frequency	5600MHz(B)	5800MHz	
Target value 1W (1g)	189.290 W/Kg	201.620 W/Kg	
Test value 1g	18.785 W/Kg	21.426 W/Kg	
(100 mW input power)	(6.6)	(6.6)	
Normalized to 1W value(1g)	187.850 W/Kg	214.260 W/Kg	

Note: System checks the specific test data please see page 71~76.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 20 of 76

8. OPERATIONAL CONDITIONS DURING TEST

8.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

8.2 Measurement procedure

The Following steps are used for each test position

- 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

8.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors,

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Report No.: SZ14030082S01A

Page 21 of 76

but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

Web site: http://www.morlab.cn/

Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 22 of 76

9. MEASUREMENT OF CONDUCTED OUTPUT POWER

9.1 WIFI (2.4GHz BAND)

Required Test Channels per KDB 248227 D01

Mode	Band	GHz	Channel	"Default Test Channels"			
	Dallu		Chamilei	802.11b	802.11g		
802.11b/g	2.4GHz	2.412	1#	\checkmark	*		
		2.437	6	\checkmark	*		
		2.462	11#	√	*		

Notes:

Measured Results

Band (GHz)	Mode	Channel	Frequency (MHz)	Output Power(dBm)
	802.11b	1	2412	15.75
	(DSSS)	6	2437	15.77
		11	2462	15.30
2.4	802.11g	1	2412	14.73
	(OFDM)	6	2437	14.79
		11	2462	14.48
	802.11n20	1	2412	13.55
		6	2437	13.60
	(OFDM)	11	2462	13.25

Note: Per KDB 248227, SAR is not required for 802.11g/ HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/ Fax: +86 (0) 755 36698525 Page 23 of 76

Email: Service@morlab.cn

 $[\]sqrt{}$ = "default test channels"

^{*=} possible 802.11a channels with maximum average output > the "default test channels"

^{# =} when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

9.2 WIFI (5G BANDS)

Required Test Channels per KDB 248227 D01

	- de	Donal		Oh ann al	"Default Test Cha	annels"
IVI	ode	Band	GHz	Channel	802.11	1
			5.18	36	√	
		5.2GHz	5.20	40		*
		3.2GHZ	5.22	44		*
			5.24	48	\checkmark	
			5.26	52	\checkmark	
		5.3GHz	5.28	56		*
		3.3GHZ	5.30	60		*
			5.32	64	√	
	UNII		5.500	100		*
	802.11a (15.407)	5.5GHz	5.520	104	\checkmark	
802.11a			5.540	108		*
			5.560	112		*
			5.580	116	\checkmark	
			5.600	120		*
			5.620	124	\checkmark	
			5.640	128		*
			5.66	132		*
			5.680	136	$\sqrt{}$	
			5.700	140		*
			5.745	149	\checkmark	
	DTS		5.765	153		*
	(15.247)	5.8GHz	5.785	157	\checkmark	
			5.805	161		*
			5.825	165	\checkmark	

^{√ = &}quot;default test channels"

Web site: http://www.morlab.cn/

Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 24 of 76

^{*=} possible 802.11a channels with maximum average output > the "default test channels"

^{# =} when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

Band (GHz)	Measured Re	esults				Roport No.: 021
(GHz) 802.11a			Mada	Ch l	Frequency	Output
Solution		(GHz)	Mode	Cnannei	(MHz)	Power(dBm)
5.2 (UNII) 802.11n20				36	5180	7.12
5.2 (UNII) 802.11n20 802.11n20			802 110	40	5200	7.04
(UNII) 802.11n20 40 5200 7.65 44 5220 7.49 48 5240 7.23 52 5260 6.18 56 5280 5.84 60 5300 5.63 64 5320 5.67 (UNII) 802.11n20 100 5500 8.98 104 5520 8.88 108 5540 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 108 108 108 108 108 108 108 108 108 1			002.11a	44	5220	6.84
802.11n20		5.2		48	5240	6.55
802.11n20		(UNII)		36	5180	7.77
802.11a			902 11,20	40	5200	7.65
802.11a Solution			802.111120	44	5220	7.49
Solution				48	5240	7.23
5.3 (UNII) 802.11a 60 5300 64 5320 5.67 60 5280 6.47 60 5300 6.28 64 5320 6.33 100 5500 8.08 104 5520 7.96 108 5540 7.82 112 5560 7.93 116 5580 8.14 132 5660 7.24 136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 104 5520 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 104 5520 8.78 106 107 107 108 108 108 108 109 109 109 109				52	5260	6.18
5.3 (UNII) 802.11n20 802.11n20 802.11n20 60 5300 5.67 52 5260 6.78 56 5280 6.47 60 5300 6.28 64 5320 6.33 100 5500 8.08 104 5520 7.96 108 5540 7.82 112 5560 7.93 116 5580 8.14 802.11a 132 5660 7.24 136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.98 104 5520 8.88 104 5520 8.88 105 106 5580 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.79 119 110 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43			902 110	56	5280	5.84
(UNII)			802.11a	60	5300	5.63
802.11n20		5.3		64	5320	5.67
802.11n20 60 5300 6.28 64 5320 6.33 100 5500 8.08 104 5520 7.96 108 5540 7.82 112 5560 7.93 116 5580 8.14 802.11a 132 5660 7.24 136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 108 5540 8.72 112 5560 8.78 802.11n20 116 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 140 5700 7.93 140 5700 7.93	((UNII)		52	5260	6.78
60 5300 6.28 64 5320 6.33 100 5500 8.08 104 5520 7.96 108 5540 7.82 112 5560 7.93 116 5580 8.14 132 5660 7.24 136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 104 5520 8.88 104 5520 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5540 8.79 112 5560 8.78 112 5560 8.78 1136 5680 7.98 1140 5700 7.93 1140 5700 7.93			902 11-20	56	5280	6.47
100 5500 8.08			802.11n20	60	5300	6.28
5.5 (UNII) 104 5520 7.96 108 5540 7.82 112 5560 7.93 116 5580 8.14 132 5660 7.24 136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 104 5520 8.88 108 5540 8.72 112 5560 8.78 108 5540 8.72 112 5560 8.78 108 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43			64	5320	6.33	
802.11a			100	5500	8.08	
802.11a				104	5520	7.96
802.11a				108	5540	7.82
5.5 (UNII) 132 5660 7.24 136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 108 5540 8.72 112 5560 8.78 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43				112	5560	7.93
136 5680 7.13 140 5700 7.19 100 5500 8.98 104 5520 8.88 108 5540 8.72 112 5560 8.78 112 5560 8.78 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43				116	5580	8.14
5.5 (UNII) 802.11n20 140 5700 7.19 100 5500 8.98 104 5520 8.88 108 5540 8.72 112 5560 8.78 116 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43			802.11a	132	5660	7.24
5.5 (UNII) 802.11n20 100 5500 8.98 104 5520 8.88 108 5540 8.72 112 5560 8.78 116 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43				136	5680	7.13
5.5 (UNII) 802.11n20 100 5500 8.98 104 5520 8.88 108 5540 8.72 112 5560 8.78 116 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43				140	5700	7.19
5.5 (UNII) 802.11n20 108 5540 8.72 112 5560 8.78 116 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43				100	5500	
(UNII) 802.11n20 112 5560 8.78 116 5580 9.07 132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43				104	5520	8.88
802.11n20				108	5540	8.72
132 5660 8.13 136 5680 7.98 140 5700 7.93 149 5745 8.43		(UNII)		112	5560	8.78
136 5680 7.98 140 5700 7.93 149 5745 8.43			802.11n20	116	5580	9.07
140 5700 7.93 149 5745 8.43		5.8		132	5660	8.13
149 5745 8.43				136	5680	7.98
				140	5700	7.93
				149	5745	8.43
153 5765 8.04				153	5765	8.04
			802.11a			
(UNII) 161 5805 7.55		(UNII)				
165 5825 7.80						

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 25 of 76

		149	5745	9.40
		153	5765	9.07
	802.11n20	157	5785	8.73
		161	5805	8.67
	Ì	165	5825	8.81

Note:

Per KDB 248227, SAR is required for 802.11n HT20 channels when the maximum average output power is more than 1/4 dB higher than that measured on the corresponding 802.11a channels.

9.3 Bluetooth

Band	Channal	Frequency	Output Power(dBm)					
	Channel	(MHz)	GFSK	π/4-DQPSK	8-DPSK			
	0	2402	10.53	10.17	10.55			
BT 39 78	39	2441	10.88	10.86	10.84			
	78	2480	10.53	10.46	10.46			

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 26 of 76

10. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

1. EUT antenna position

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 27 of 76

2. Antennas < 50mm to adjacent edges

Band	Frequency		tput tune-up)	Min.	Test Se	paratio	on Dist	ances	(mm)		Calcula	ted Th	reshol	d Value	•
	(MHz)	dBm	mW	Rear	Front	Edge	Edge	Edge	Edge	Rear	Front	Edge	Edge	Edge	Edge
		ubili	IIIVV	Real	FIOIL	Α	В	С	D	Real	FIOIIL	A	В	С	D
802.11b	2437	16.0	20.00	5	13	7	14	>50	>50	12.4	4.8	8.9	4.4	>50	>50
002.110	2437	10.0	39.80	5	13	,	17	/30	>50	Υ	Y	Υ	Υ	/50	/50
802.11a		7.5	5.62	5	13	7	14	>50	>50	2.6	1.0	1.8	0.9	>50	>50
002.11a		7.5	5.02	5	13	,	14	150	/50	N	N	N	N	150	> 50
802.11n20	5180	8.0	6.31	5	13	7	14	>50	>50	2.9	1.1	2.1	1.0	>50	>50
002.111120		0.0	0.51	5	13	,	14	150	/50	N	N	N	N	150	<i>></i> 50
802.11a		6.5	4.47	5	13	7	14	>50	>50	2.1	0.8	1.8	0.7	>50	>50
002.11a		0.5	4.47	5	13	,	14	150	/50	N	N	N	N	150	> 50
802.11n20	5260	7.0	5.01	5	13	7	14	>50	>50	2.3	0.9	1.6	8.0	>50	>50
802.111120		7.0	5.01	5	13	,	14	750	/50	N	N	N	N	100	/50
802.11a		8.5	7.08	5	13	7	14	>50	>50	3.4	1.3	2.4	1.2	>50	>50
002.11a		0.0	7.00	5	13	,	14	/50	/50	Υ	N	N	N	150	/50
802.11n20	5580	9.5	8.91	5	13	7	14	>50	>50	4.3	1.6	3.1	1.5	>50	>50
002.111120		9.5	0.91	5	13	,	17	750	750	Υ	N	Υ	N	750	>30
802.11a		8.5	7.08	5	13	7	14	>50	>50	3.4	1.3	2.4	1.2	>50	>50
002.11a		0.0	7.00	5	13	,	14	750	/50	Υ	N	Y	N	100	/50
802.11n20	5745	9.5	8.91	5	13	7	14	>50	>50	4.3	1.6	3.1	1.5	>50	>50
002.111120		9.0	0.81	<u> </u>	13	′	14	/50	/50	Υ	N	Υ	N	/50	/50
Bluetooth	2441	11	12.59	5	13	7	14	>50	>50	3.9	1.5	2.8	1.4	>50	>50
DIUCIOUII	2 44 I	11	12.08	5	13	,	14	/50	/50	Y	N	N	N	/50	/50

Note:

- 1. Y=Testing is required; N=Testing is not required.
- 2. According to KDB 447498D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] · [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR,

if the Calculated Threshold Value is <3, then SAR testing is not required.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 28 of 76

3. Antennas > 50mm to adjacent edges

Band	Frequency	Outp Power(tu		Min.	Test Se	parati	on Dist	ances	(mm)		Calcu	lated T	hresho	old Value	е	
	(MHz)	dBm	mW	Rear	Front	Edge	Edge	Edge	Edge	Rear	Front	Edge	Edge	Edge	Edge	
		аын	mvv	Rear	Front	Α	В	С	D	Rear	Front	Α	В	С	D	
802.11b	2437	16.0	39.80	<50	<50	<50	<50	58	110	<50	<50	<50	<50	119.8	639.8	
002.110	2437	16.0	39.00	\ 50	\ 50	\ 50	\ 50	56	110	\ 50	\5 0	\ 50	\ 50	N	N	
000 44-		7.5	F 60	-50	4 F0	-50	4 50	50	110	-50	4 F0	4 50	4 50	85.62	6.536	
802.11a	5180	7.5	5.62	<50	<50	<50	<50	58	110	<50	<50	<50	<50	N	N	
000 44-00		0.0	0.04	-50	-50	150	150	50	440	-50	1 50	150	150	86.31	606.3	
802.11n20		8.0	6.31	<50	<50	<50	<50	58	110	<50	<50	<50	<50	<50	N	N
000 44 -		0.5	4.47	-50	-50	150	150	50	440	-50	1 50	150	150	84.47	604.5	
802.11a 52	5260	6.5	4.47	<50	<50	<50	<50	58	110	<50	<50	<50	<50	N	N	
000 44-00		7.0	5.04	-50	-50	150	150	50	440	-50	1 50	150	150	85.01	605.0	
802.11n20		7.0	5.01	<50	<50	<50	<50	58	110	<50	<50	<50	<50	N	N	
000 44-		0.5	7.00	<50	4 F0	-50	<50	50	110	<50	<50	<50	<50	87.08	607.1	
802.11a	5580	8.5	7.08	<50	<50	<50	<50	58	110	<50	<50	<50	<50	N	N	
000 44=00		0.5	0.04	-50	4 F0	4 50	4 50	50	110	-50	4 F0	4 50	4 50	88.91	608.9	
802.11n20		9.5	8.91	<50	<50	<50	<50	58	110	<50	<50	<50	<50	N	N	
000 44-		0.5	7.00	<50	<50	<50	<50	58	110	<50	<50	<50	<50	87.08	607.1	
802.11a	5745	8.5	7.08	<50	<50	<50	<50	56	110	<50	<50	<50	<50	N	N	
000 11500	20	0.5	0.01	∠E0	∠ E0	∠ E0	∠ E0	50	110	∠E0	-E0	<50	<50	88.91	608.9	
002.111120	802.11n20	9.5	9.5	8.91	1 <50	50 <50	0 <50	<50	50 58	58 110	<50	<50	\5 0	\5 0	N	N
Divistant		44	40.50		-50	150	150	50	50 445		150	150	150	92.59	612.6	
Bluetooth	2441	11	12.59	<50	<50	<50	<50	58	110	<50	<50	<50	<50	N	N	

Note:

- 1. Y=Testing is required; N=Testing is not required.
- 2. According to KDB 447498D01, if the calculated Power threshold is less than the output power then SAR testing is required.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 29 of 76

11. TEST RESULTS LIST

Summary of Measurement Results (WLAN 802.11b Band)

Temperature: 21	Temperature: 21.0~23.8°C, humidity: 54~60%.									
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g					
Dody	Back upward		0.456		0.481					
Body (5mm Separation)	Front upward	6	0.021	1.054	0.022					
	Edge A	O	0.030	1.054	0.032					
	Edge B		0.063		0.066					

Summary of Measurement Results (Bluetooth)

Temperature: 21	Temperature: 21.0~23.8°C, humidity: 54~60%.									
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g					
Body (5mm	Back upward	39	0.218	1.028	0.224					
Separation)	Edge A	GFSK	0.066	1.020	0.068					

Summary of Measurement Results (WLAN 802.11a-5.5GHz Band)

Temperature: 21	.0~23.8°C, humic	dity: 54~60%.			
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body (5mm Separation)		104	0.106	1.132	0.120
	Back upward	116	0.138	1.086	0.150
		136	0.089	1.371	0.122
	Edge A	116	0.055	116	0.060

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555

Page 30 of 76

Summary of Measurement Results (WLAN 802.11n-5.5GHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body (5mm	Back upward	116	0.154	1.104	0.170
Separation)	Edge A	110	0.061	1.104	0.067

Summary of Measurement Results (WLAN 802.11a-5.8GHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
		149	0.180	1.016	0.183
Body	Back upward	157	0.092	1.200	0.110
(5mm		165	0.100	1.175	0.118
Separation)	Edge A	149	0.076	149	0.077

Summary of Measurement Results (WLAN 802.11n-5.8GHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body (5mm	Back upward	149	0.210	1.023	0.215
Separation)	Edge A	149	0.096	1.023	0.098

Note:

Email: Service@morlab.cn

1. When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r01)

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/
Fax: +86 (0) 755 36698525

Page 31 of 76

Phone: +86 (0) 755 36698555

- ≤ 0.8 W/kg and transmission band ≤ 100 MHz
- ≤ 0.6 W/kg and, 100 MHz < transmission bandwidth ≤ 200 MHz
- ≤ 0.4 W/kg and transmission band > 200 MHz
- 2. BT & WiFi SAR test is conducted according to section 10 stand-alone SAR evaluation of this report.
- 3. During 802.11 testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal. The RF signal utilized in SAR measurement has almost 100% duty cycle, and its crest factor is 1.
- 4. IEEE Std 1528-2013 requires the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 5. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.

Scaling Factor calculation

Dand	Tune up newer telerence (dDm)	SAR test channel	Scaling
Band	Tune-up power tolerance(dBm)	Power (dBm)	Factor
802.11b	Max output power =15.5+-0.5	15.77	1.054
Bluetooth	Max output power =10.5+-0.5	10.88	1.028
		7.96	1.132
802.11a(5.5G)	Max output power =8+-0.5	8.14	1.086
		7.13	1.371
		8.43	1.016
802.11a(5.8G)	Max output power =8+-0.5	7.71	1.200
		7.80	1.175
802.11n(5.5G)	Max output power =9+-0.5	9.07	1.104
802.11n(5.8G)	Max output power =9+-0.5	9.40	1.023

7. The NFC function operates at 13.56MHz, the power threshold of SAR evaluation is 474mW(Per KDB 447498 D01v05r02 Appendix C), the NFC operates at relatively much lower power; The NFC function is not active when carrying on the body. So SAR evaluation is not need for NFC function.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Fax: +86 (0) 755 36698525
Email: Service@morlab.cn
Page 32 of 76

8. Simultaneous SAR

	Simultaneous transmission conditions				
#	802.11a/n	802.11b/g/n	BT	Sum of WiFi&BT	
1	×		×	×	
2		×	×	Note 1	
3	×	×		Note 2	

Note: 1. Simultaneous Transmission SAR evaluation is not required for BT and WiFi802.11b/g/n, because the software mechanism have been incorporated to guarantee that the WiFi802.11b/g/n and Bluetooth transmitters would not simultaneously operate.

2. Simultaneous Transmission SAR evaluation is not required for WiFi802.11a/n (5GHz) and WiFi802.11b/g/n (2.4GHz), because the software mechanism have been incorporated to guarantee that the WiFi802.11a/n (5GHz) and WiFi802.11b/g/n (2.4GHz) transmitters would not simultaneously operate.

Applicable Multiple Scenario Evaluation

Test Position	Bluetooth SAR(W/Kg)	WiFi 802.11a/n SARMax(W/Kg)	Σ1-g SARMax(W/Kg)
Body SAR	0.224	0.215	0.439

Simultaneous Transmission SAR evaluation is not required for Wifi802.11a/n and BT, because the sum of 1g SARMax is **0.439**W/Kg < 1.6W/Kg for Wifi802.11a/n and BT.

(According to KDB 447498D01v05r01, the sum of the Highest *reported* SAR of each antenna does not exceed the limit, simultaneous transmission SAR evaluation is not required.)

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 33 of 76

ANNEX A GRAPH TEST RESULTS

BAND	PARAMETERS
Me	easurement 1: Flat Plane with Body device position on Middle
Ch	annel in DSSS mode
<u>Me</u>	easurement 2: Flat Plane with Body device position on Middle
802.11b Ch	annel in DSSS mode
	easurement 3: Flat Plane with Body device position on Middle
Ch	annel in DSSS mode
·	easurement 4: Flat Plane with Body device position on Middle
Ch	annel in DSSS mode.
	easurement 5: Flat Plane with Body device position on Middle
Bluetooth	annel in GFSK mode
Me	easurement 6: Flat Plane with Body device position on Middle
	annel in GFSK mode
	easurement 7: Flat Plane with Body device position on Low
	annel in OFDM mode
	easurement 8: Flat Plane with Body device position on Middle
	annel in OFDM mode
	easurement 9: Flat Plane with Body device position on High
	annel in OFDM mode
	easurement 10: Flat Plane with Body device position on Middle
	annel in OFDM mode
	easurement 11: Flat Plane with Body device position on Low
	annel in OFDM mode
	easurement 12: Flat Plane with Body device position on Middle
	annel in OFDM mode
	easurement 13: Flat Plane with Body device position on High annel in OFDM mode
	easurement 14: Flat Plane with Body device position on Low
	annel in OFDM mode.
 	easurement 15: Flat Plane with Body device position on Middle
	annel in OFDM mode
	easurement 16: Flat Plane with Body device position on Middle
	annel in OFDM mode
	easurement 17: Flat Plane with Body device position on Low
	annel in OFDM mode
	easurement 18: Flat Plane with Body device position on Low

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2014.4.2

Measurement duration: 9 minutes 43 seconds

A. Experimental conditions.

<u> </u>	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.462734
Conductivity (S/m)	1.924067
Power drift (%)	-1.850000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 35 of 76

Maximum location: X=-22.00, Y=11.00 SAR Peak: 0.84 W/kg

SAR 10g (W/Kg)	0.181844	
SAR 1g (W/Kg)	0.455569	

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2014.4.2

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

or initial containing	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.462734
Conductivity (S/m)	1.924067
Power drift (%)	-1.640000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 37 of 76

Maximum location: X=-9.00, Y=8.00 SAR Peak: 0.06 W/kg

SAR 10g (W/Kg)	0.006850
SAR 1g (W/Kg)	0.021478

Email: Service@morlab.cn

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2014.4.2

Measurement duration: 9 minutes 41 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.462734
Conductivity (S/m)	1.924067
Power drift (%)	1.190000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 39 of 76

Maximum location: X=23.00, Y=31.00 SAR Peak: 0.06 W/kg

SAR 10g (W/Kg)	0.011266
SAR 1g (W/Kg)	0.029777

Email: Service@morlab.cn

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2014.4.2

Measurement duration: 9 minutes 38 seconds

A. Experimental conditions.

<u> </u>	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.462734
Conductivity (S/m)	1.924067
Power drift (%)	-3.150000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 41 of 76

Maximum location: X=24.00, Y=8.00 SAR Peak: 0.17 W/kg

SAR 10g (W/Kg)	0.021936
SAR 1g (W/Kg)	0.062788

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

MEASUREMENT 5

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.4.2

Measurement duration: 8 minutes 15 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	Bluetooth
Channels	Middle
Signal	GFSK

B. SAR Measurement Results

Middle Band SAR (Channel 39):

Frequency (MHz)	2441.000000
Relative permittivity (real part)	52.462734
Conductivity (S/m)	1.924067
Power drift (%)	-2.770000
Ambient Temperature:	22.3°C
Liquid Temperature:	21.5°C
ConvF:	4.96
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 43 of 76

Maximum location: X=-7.00, Y=-14.00 SAR Peak: 0.40 W/kg

SAR 10g (W/Kg)	0.109352
SAR 1g (W/Kg)	0.217539

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

MEASUREMENT 6

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.4.2

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	Bluetooth
Channels	Middle
Signal	GFSK

B. SAR Measurement Results

Middle Band SAR (Channel 39)

Frequency (MHz)	2441.000000
Relative permittivity (real part)	52.462734
Conductivity (S/m)	1.924067
Power drift (%)	-1.460000
Ambient Temperature:	22.3°C
Liquid Temperature:	21.5°C
ConvF:	4.96
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 45 of 76

Maximum location: X=0.00, Y=-15.00 SAR Peak: 0.25 W/kg

SAR 10g (W/Kg)	0.048498
SAR 1g (W/Kg)	0.066049

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 46 of 76

MEASUREMENT 7

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 34 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 104)

Frequency (MHz)	5520.000000
Relative permittivity (real part)	48.362715
Conductivity (S/m)	5.728342
Power drift (%)	2.390000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.30
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 47 of 76

Maximum location: X=-10.00, Y=-22.00 SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.055493
SAR 1g (W/Kg)	0.106063

Email: Service@morlab.cn

MEASUREMENT 8

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 116)

Frequency (MHz)	5580.000000
Relative permittivity (real part)	48.362715
Conductivity (S/m)	5.728342
Power drift (%)	-1.520000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.30
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 49 of 76

Maximum location: X=5.00, Y=-17.00 SAR Peak: 0.22 W/kg

SAR 10g (W/Kg)	0.076945
SAR 1g (W/Kg)	0.138167

MEASUREMENT 9

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 37 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	High
Signal	OFDM

B. SAR Measurement Results

High Band SAR (Channel 136)

Frequency (MHz)	5680.000000
Relative permittivity (real part)	48.362715
Conductivity (S/m)	5.728342
Power drift (%)	-3.630000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.30
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 51 of 76

Maximum location: X=16.00, Y=-22.00 SAR Peak: 0.16 W/kg

SAR 10g (W/Kg)	0.049065
SAR 1g (W/Kg)	0.089352

MEASUREMENT 10

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 28 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 116)

Frequency (MHz)	5580.000000
Relative permittivity (real part)	48.362715
Conductivity (S/m)	5.728342
Power drift (%)	2.340000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.30
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 53 of 76

Maximum location: X=0.00, Y=-16.00 SAR Peak: 0.18 W/kg

SAR 10g (W/Kg)	0.034759
SAR 1g (W/Kg)	0.055014

MEASUREMENT 11

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 149)

Frequency (MHz)	5745.000000
Relative permittivity (real part)	48.108624
Conductivity (S/m)	5.931825
Power drift (%)	1.730000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.47
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 55 of 76

Maximum location: X=0.00, Y=-9.00 SAR Peak: 0.38 W/kg

SAR 10g (W/Kg)	0.088586
SAR 1g (W/Kg)	0.180392

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

MEASUREMENT 12

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 35 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 157)

Frequency (MHz)	5785.000000
Relative permittivity (real part)	48.108624
Conductivity (S/m)	5.931825
Power drift (%)	-0.480000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.47
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 57 of 76

Maximum location: X=-3.00, Y=23.00 SAR Peak: 0.13 W/kg

SAR 10g (W/Kg)	0.076964
SAR 1g (W/Kg)	0.092223

MEASUREMENT 13

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 33 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	High
Signal	OFDM

B. SAR Measurement Results

High Band SAR (Channel 165)

ila of it (onamici 100)	
Frequency (MHz)	5825.000000
Relative permittivity (real part)	48.108624
Conductivity (S/m)	5.931825
Power drift (%)	0.630000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.47
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 59 of 76

Maximum location: X=-1.00, Y=24.00 SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.091696
SAR 1g (W/Kg)	0.100324

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 60 of 76

MEASUREMENT 14

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 10 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 149)

a of the Containing 140)	
Frequency (MHz)	5745.000000
Relative permittivity (real part)	48.108624
Conductivity (S/m)	5.931825
Power drift (%)	-1.520000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.47
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 61 of 76

Maximum location: X=-57.00, Y=-72.00 SAR Peak: 0.14 W/kg

SAR 10g (W/Kg)	0.040024
SAR 1g (W/Kg)	0.075552

MEASUREMENT 15

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11n
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 116)

Frequency (MHz)	5580.000000
Relative permittivity (real part)	48.362715
Conductivity (S/m)	5.728342
Power drift (%)	-3.340000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.30
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 63 of 76

Maximum location: X=0.00, Y=-17.00 SAR Peak: 0.33 W/kg

SAR 10g (W/Kg)	0.079478
SAR 1g (W/Kg)	0.153941

MEASUREMENT 16

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11n
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 116)

Frequency (MHz)	5580.000000
Relative permittivity (real part)	48.362715
Conductivity (S/m)	5.728342
Power drift (%)	2.540000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.30
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 65 of 76

Maximum location: X=0.00, Y=-17.00 SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.040992
SAR 1g (W/Kg)	0.061115

MEASUREMENT 17

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 28 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11n
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 149)

Frequency (MHz)	5745.000000
Relative permittivity (real part)	48.108624
Conductivity (S/m)	5.931825
Power drift (%)	-2.450000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	26.47
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 67 of 76

Maximum location: X=3.00, Y=-18.00 SAR Peak: 0.39 W/kg

SAR 10g (W/Kg)	0.107134
SAR 1g (W/Kg)	0.210270

MEASUREMENT 18

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	802.11n	
Channels	Low	
Signal	OFDM	

B. SAR Measurement Results

Low Band SAR (Channel 149)

Frequency (MHz)	5745.000000		
Relative permittivity (real part)	48.108624		
Conductivity (S/m)	5.931825		
Power drift (%)	1.540000		
Ambient Temperature:	22.0°C		
Liquid Temperature:	21.8°C		
ConvF:	26.47		
Crest factor:	1:1		

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 69 of 76

Maximum location: X=7.00, Y=-18.00 SAR Peak: 0.27 W/kg

SAR 10g (W/Kg)	0.053464	
SAR 1g (W/Kg)	0.096391	

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2014.4.2

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

<u> </u>		
Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position		
Band	2450MHz	
Channels		
Signal	CW	

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000		
Relative permittivity (real part)	52.462734		
Conductivity (S/m)	1.924067		
Power Drift (%)	-1.380000		
Ambient Temperature:	22.9°C		
Liquid Temperature:	22.1°C		
ConvF:	4.96		
Crest factor:	1:1		

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 71 of 76

Maximum location: X=-1.00, Y=-50.00

SAR 10g (W/Kg)	7. 826317
SAR 1g (W/Kg)	12.908315

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR	0.0000	13.1279	6.8312	3. 5991	1.3473
(W/Kg)					
	CAR 7	Axis Scan	(V1	v 50)	
		AXIS SCAIL	(A - 1,	1 – 30)	
	13.06				
	10.00-				
9	8.00-				
SAR (W/kg)	7.00		\Box		
SAR	6.00				
	5.00-				
	3. 79				
	0.02.55	.0 7.510.0 15		5.0 30.0 3	5. 0
	Z (mm)				

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 72 of 76

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position			
Band	5600MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5600.000000		
Relative permittivity (real part)	48.362715		
Conductivity (S/m)	5.728342		
Power Drift (%)	-1.080000		
Ambient Temperature:	22.9°C		
Liquid Temperature:	22.1°C		
ConvF:	26.30		
Crest factor:	1:1		

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 73 of 76

Maximum location: X=-1.00, Y=-5.00

SAR 10g (W/Kg)	6.481069
SAR 1g (W/Kg)	18.784912

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR	0.0000	19.7251	6.4281	1.6274	0.7624
(W/Kg)					
	a. n		/22 - 4		
	SAK,	Z Axis Sc	an (X =-1,	Y =-5)	
	19. 26 -				
	14.00	$\overline{}$			-
7	10.00				
(W/)ter)	6.00-				
34	0.00-				
67	2.00-				
	1.00-	\perp			
	0.66-			Ţ -	_
	0.02.55.	0 7.510.0 1	5.0 20.0 2 7.(mm)	5.0 30.0 3	s. o
			Z (MM)		

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 74 of 76

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2014.6.6

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5800.000000
Relative permittivity (real part)	48.108624
Conductivity (S/m)	5.931825
Power Drift (%)	-0.850000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	26.47
Crest factor:	1:1

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 75 of 76

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	6.742542
SAR 1g (W/Kg)	21.426011

Z Axis Scan

Z (mm)	0.00	4.00	8.00	13.00	21.00
SAR (W/Kg)	0.0000	22.6127	6.8974	4.0518	0.9571
		Z Axis Sca	n (X = 6,	Y = 1)	
	21. 96 -				
	15. 00 –	$\overline{}$			-
(W/kg)	10, 00	$\overline{}$			-
	6.00-	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			- 1
SAR	4. 00 -	+			-
	2.00-				
	0.66-		1 1		
	0.02.55.	0 7.510.0 15.	.0 201.0 25 Z(mm)	5.0 30.0 35	5.0

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: Service@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 76 of 76