Software Project Management (4 - 20191016)

Mohammed Seyam, PhD

seyam@mans.edu.eg
http://people.cs.vt.edu/seyam

Project Initiation: Feasibility and Project Authorization

Initiating a project

Goals of this Unit

- Learning qualitative and quantitative techniques to select among different projects
- Learning qualitative and quantitative techniques to choose the best alternative among different implementations of the same project
- Understanding how to write a Feasibility Study
- Choosing between internal development or external development (make or buy)

How does a project start?

- Initiation by some stakeholder (a company, a potential customer, ...) driven by a need (market, social, legal, technological advance, ...)
- Boundaries and process not always clear or very formalized
- First activities performed to:
 - Agree on the goals (scope)
 - Understand value and risks (for the performing organization and for the other stakeholders)
 - Choose a project approach

Project Value and Risks

Project Value and Risks

- Two main characteristics determine whether a project is worth starting:
 - The value generated by the project
 - The risks associated to the project
- The meaning of value and risk depend upon many factors
- Value and risks can be assessed qualitatively or quantitatively
- Sound assessments are difficult, given the unpredictability of projects (and of the world)

Project Value and Risks

- Project Value:
 - Direct and indirect value generated by the project
 - Sustainability of the project outputs
 - Alignment with strategic objectives of an organization
- Project Risks
 - Resource availability
 - Timing
 - Technical difficulties and uncertainties

Value: Direct and Indirect Value

- Direct and Indirect Value measures the positive and negative outcomes of a project and its outputs
- Some metrics to consider include:
 - Revenues, both direct and indirect
 - Social and environmental impact
 - Image and publicity
 - Know-how acquired
- Direct and indirect value are strictly related to the business model.

Value: Sustainability

- Sustainability refers to the capacity of sustaining the project and its outputs after the project end
- Taking into account the operational costs of a project's outputs and the way in which the project outputs will survive after a project end is an important consideration to understand whether a project is worth starting.
- Often overlooked, especially when project execution generates revenues

Value: Alignment with the Strategic Objectives

- The alignment with the strategic objectives measures how important and relevant a project is for the performing organization
- Priority, resource assigned, internal support, opportunities for the project team after the project end are all affected by how strategic a project is for an organization

Risks: Resource Availability

- Projects require the availability of human, financial,
 and technical resources in specific time-frames
- Although it might be difficult to preempt the resources in advance, a check on the projects needs is a good sanity-check
- Some aspects to consider include:
 - the required resource,
 - current load and availability,
 - projections on future load and availability,
 - priority and importance of the project

Risks: Timing

- Many projects have specific time-windows for the delivery of their outputs
- Deliver too early or too late and the outputs of the project might be useless
- Consider, for instance, the race of competing firms in delivering similar products

Risks: Technical Difficulty and Uncertainty

- The success of many projects relies on the actual capability of solving various technical challenges, when the time comes
- Understanding what these challenges are is an important factor in determining the risks associated to a project

Techniques to Assess Value and Risks

Payback Period

The payback period is the time taken to gain a financial return equal to the original investments

- Measured in months or years
- When using the payback period the projects/options that minimize the payback period are chosen in favor of the others

Example

	Project A		I	Project B		Project C	
Year 0	€	(50,000.00)	€	(20,000.00)	€	(15,000.00)	
Year 1	€	30,000.00	€	(10,000.00)	€	15,000.00	
Year 2	€	30,000.00	€	10,000.00	€	1,000.00	
Year 3	€	1,000.00	€	60,000.00			
Year 4	€	1,000.00	€	50,000.00			
Expenses	€	(50,000.00)	€	(30,000.00)	€	(15,000.00)	
Gains	€	62,000.00	€	120,000.00	€	16,000.00	
Profit	€	12,000.00	€	90,000.00	€	1,000.00	
Payback	2 years		3 year	rs	1 yea	r	

Remark: accounting style notation.

Negative numbers in red and in parentheses

Discussion

Advantages

- Simple, readily available data
- It reduces exposure to risk
- Particularly effective in high-technology/fashion projects
- It favors shorter term benefits

Disadvantages

- Difficult to use on longer term projects
- Based only on cash flows
- Does not quantify exposure to risk
- Does not look at total gains

Payback Weaknesses

- Different projects might have the same the same payback period, but different profiles in returning of the investments
- These profiles are not taken into account by the technique but could make the different between two projects

Payback Weaknesses

Same payback period, but Project A gets more money first (and reduces risks)

Year	Pro	ject A	Project B		
Year 0	€	(10,000.00)	€	(10,000.00)	
Year 1	€	(5,000.00)	€	(5,000.00)	
Year 2	€	10,000.00	€	5,000.00	
Year 3	€	5,000.00	€	10,000.00	

Payback Weaknesses

Different payback periods, Project A earlier but gets less money

Year	Pro	ject A	Pro	ject B
Year 0	€	(10,000.00)	€	(10,000.00)
Year 1	€	(5,000.00)	€	(5,000.00)
Year 2	€	5,000.00	€	5,000.00
Year 3	€	5,000.00	€	11,000.00
Year 4	€	20,000.00		

Return on Investment (ROI)

ROI calculates the average annual profit and transforms it into a percentage of the total investments

Profit = Returns - Investments

Annual Profit = Profit / Duration

ROI = Annual Profit / Investments

 When using ROI, choose the project with the highest ROI

Example

Suppose we have the following projections for a project we need to decide whether to start or not

	Project A			Project B		Project C	
Year 0	€	(50,000.00)	€	(20,000.00)	€	(15,000.00)	
Year 1	€	30,000.00	€	(10,000.00)	€	15,000.00	
Year 2	€	30,000.00	€	10,000.00	€	1,000.00	
Year 3	€	1,000.00	€	60,000.00			
Year 4	€	1,000.00	€	50,000.00			

Example

Project A

- Profit = 62000 50000 = 12000
- Annual Profit = 12000 / 4 = 3000
- -ROI = 3000 / 50000 = 6%

Project B

- Profit = 120000 30000 = 90000
- Annual Profit = 90000 / 4 = 22500
- -ROI = 22500 / 30000 = 75%

Project C

- Profit = 16000 15000 = 1000
- Annual Profit = 1000 / 2 = 500
- ROI = 500 / 15000 = 3%

SOLUTION: Project B (highest ROI)

Net Present Value

Net Present Value discounts sums in the future in order to provide a more realistic comparison between presents investments and future gains

Discounted Cash Flows/Inflation

 The value of money decreases over the years (inflation!) according to the inverse compound interests formula

Discount Factor =
$$\frac{1}{(1 + i)^n}$$

- Thus, giving it the money we invest now the same weight of money we will get in five year is over optimistic
- DCF (Discounted Cash Flows) are techniques that take into account inflation

Curiosity: where does inflation comes from?
 A nice reference:
 http://en.wikipedia.org/wiki/Inflation

Net Present Value Example

Hypothesis
Discount Rate: 10%

(this is "*i*")

Discount Factor =
$$\frac{1}{(1 + i)^n}$$

Year (n)		Cash Flow	Discount Factor		Present Value
0	€	(35,000.00)	1.00	€	(35,000.00)
1	€	10,000.00	0.91	€	9,090.91
2	€	15,000.00	0.83	€	12,396.69
3	€	20,000.00	0.75	€	15,026.30
Expenditure	€	(35,000.00)		€	(35,000.00)
Gains	€	45,000.00		€	36,513.90
Profit	€	10,000.00		€	1,513.90

Net Present Value: Discussion

Advantages

More accurate profit-loss data

Disadvantages

- It uses a fixed discount rate (may be unrealistic)
- It favors shorter terms projects

Questions

