2. Sea $J = \{s_1, \dots, \widehat{s_k}, \dots, s_{n-1}\}$. Veamos como son los elementos de W^J .

Hecho: Sea $w = i_1 i_2 \cdots i_k i_{k+1} \cdots i_n$. w esta en W^J si y solo si $\{i_1 < \dots < i_k\}$ e $\{i_{k+1} < \dots i_n\}$.

Prueba: Si $\{i_1 < \cdots < i_k\}$ y $\{ik+1 < \cdots i_n\}$ es claro que ws > w, pues s me va a cambiar de lugar dos elementos de (a) o dos de (b), en cualquiera de los dos casos, voy a cambiar el orden de dos i_j haciendo que uno mayor quede a la izquierda de uno menor, aumentando la longitud de w. Por lo tanto, $w \in W$.

Ahora, supongamos que w no satisface (a) (o (b)), podemos suponer que existen $i,i'\in\{i_1,\cdots,i_k\}$ tales que i>i' y $w=i_1\cdots ii_{m+1}\cdots i'$, y el resto de los i estan ordenados. Como $w\in W^J$ entonces para todo $j\in J$ wj>w, pero $ws_{m-1}< w$, lo cual es una contradiccion.

Ahora, por medio de esta descripcion podemos concluir que la proyección esta dada por: Sea $w=i_1i_2\cdots i_ki_{k+1}\cdots i_n$, entonces ordenamos de forma creciente el conjunto $\{i_1,i_2,\cdots,i_k\}$ y concatenamos obteniendo la palabra u. De la misma forma ordenamos el conjunto $\{i_{k+1},\cdots,i_n\}$ concatenamos y obtenemos la palabra v. Ahora, haciendo $w^J=uv$ tenemos que efectivamente $w^J\in W^J$. Ahora, para obtener w apartir de w^J lo que tenemos que hacer es ir intercambiando de lugar las letras en u y en v, por medio de los elementos de J, notando que a medida que lo hacemos aumenta la longitud de w, por la forma en que estan ordenadas las letras en w^J , hasta obtener w. Es claro que para lelgar de w^J a w, solo requerimos de los elementos de J, con lo cual w^J es la proyección deseada.