コンパクト距離空間の特徴付け||(重要だか証明をすべて理解するのは大変)

定理 Xは距離空間であるとする、このとき、以下の3条件は至いに同値である、

- (a) Xはコンパクトである。(Xの任意の開被覆は有限部分被覆を持つ。)
- (b) X内の任意の点列は収率する部分列を持つ、
- (c) X は全有界かつ 完備である。

|応用例| Rnの部分集合Aについて

- ① A は有界 ⇔ A は全有界 (⇔ は自明, ⇒ は A C R"を使う、)
- ② R"は完備なので, AはR"の閉集合 ← Aは完備 ゆえに、
- (3) Aはコソパックト ← Aは有界閉算合、(ACB とい前捏が重要)

準備

(相対位担について)

定理(易い)コンパクト位相空間×の閉び合下もコンパクトである。

証明 Vi (ieI)は相対位相に関するFの開被覆であると仮定する、

期均位期の定義より、各以は以 $=U_{i}$ nF(U_{i} はXの開拿会)と書ける、 $U_{in}=F^{c}=X\setminus F$ はXの開拿会である

X=UnUUT, zuiXの開報覆が得られる、 ie1

Xはコンパクトなので、ある有限個のin,…,ineIかなるして、X=UnUUtx となる。

このとき、F=XnF= UVix となる、

これでドかコンパクトであることでませた。

(a) コンパクト (b) 任意の点到は収束する部分列を持つ

補題。コンパクト位和空間人の無限部分集合は集電点を持つ、

証明 ACXかのAは集積点を持たないと仮定し、Aか有限集合になることを示せは"よい、

任意のxeX\AはAの集積点でないのでり、 Xのある開集合ひで xeVかつ UnA+ゆきみたすものから在する。 bえに、AはXの閉集合である。 AのX 以び 以外の また3

エは Aの集積点ではない。

前ページの結果より、Aはコンパクトになる、

任意の $\alpha \in A$ は Aの X にかける集積点でないので、Xのある開集合ひ α で $\alpha \in U_{\alpha}$ かっ U_{α} の $A = \{\alpha\}$ をみたすものか存在する。 $(U_{\alpha}$ の $A = \{\alpha\}$ は A の 開集合の $A = \{\alpha\}$ は A の 開催をついます。 $A = \{\alpha\}$ は A の 開催をついます。 $A = \{\alpha\}$ は A の 開催をついます。A は A の A は A の A に A の A に A の A に A の A に A の A に A の A に A の A に A の A に A に A の A に A の A に A の A に A の A に A

(a) 戸(b)の記明 (a) と仮定する (X はコンパかと仮定する)、 「エルルニ は X内の任意の点到であると仮定する。

 $A = \{x_n|_{n=1,2,...}\}$ とおく、 Aがもしも有限事合ならに、 あるde Xが存在して、 無限個の $n_1 < n_2 < n_3 < ...$ について、 $x_n = d$ (k=1,2,...) をみたすものか存在する. そのとき、部分到 $\{x_n\}_{k=1}^M$ は dに収集する.

以下, Aは無限集合だと仮定する。そのとき、先の補題より、 Aの集積点 $d \in X$ か存在する。 $N_1 < n_2 < \dots$ で、 $\chi_{n_k} \in U_{1/k}(d)$ $(k=1,2,\dots)$ をみたすものを帰納的に作るう、 d は Aの集積点なので、 $U_{1/1}(d)$ は ある χ_{n_k} と含む、

 $n_1 < \dots < n_k$ で $\chi_{n_j} \in U_{l,j}(d)$ $(j=1,\dots,k)$ をHをすものをすて に作れていると仮定する もしも、 n_k よりも大きいすべてのいについて $\chi_n \in U_{\frac{1}{k+1}}(d)$ $\chi_{n_j} < \chi_{n_j} < \chi_{n_j} < \chi_{n_j} < \chi_{n_j} < \chi_{n_k} < \chi_{n_k}$

ゆえにある $n_{k+1} > n_k$ で $\chi_{n_{k+1}} \in U_{\frac{1}{k+1}}(d)$ をHたすものか存在する. これで $n_1 < n_2 < \cdots$ で $\chi_{n_k} \in U_{1/k}(d)$ (k=1,2,...) をHたすものを作れた. このとき、部分列 $\{\chi_{n_k}\}_{k=1}^{20}$ は メロル東している.