Day 1: Introduction to Bayesian Inference

Exercise 1 (Gibbs Sampler for the Normal Distribution)

Assume the following Bayesian model for i = 1, ..., n:

$$y_i \stackrel{iid}{\sim} N(\mu, \sigma^2) \qquad \mu \sim N(m, s^2) \qquad \sigma^2 \sim IG(a, b)$$

The probability density function of an IG(a, b) distribution is

$$f(\sigma^2) = \frac{b}{\Gamma(a)} \left(\frac{1}{\sigma^2}\right)^{a+1} \exp\left(-\frac{b}{\sigma^2}\right).$$

- Identify the individual model parts: i) observation model, ii) priors, iii) parameters, iv) hyperparameters.
- Sketch the generic approach for Gibbs sampling from the joint posterior distribution of μ and σ^2 .
- Derive the full conditional for μ .
- Derive the full conditional for σ .

Exercise 2 (Metropolis-Hastings with Random Walk Proposals)

Let y_1, \ldots, y_n be a sample from a normal distribution such that $y_i \stackrel{ind.}{\sim} N(\mu_i, \sigma^2)$. Given covariate observations x_1, \ldots, x_n , assume the following linear regression model for the mean:

$$\mu_i = \beta_0 + \beta_1 x_i,$$

Assume a constant prior for β_0 and a normal prior with mean b and variance s^2 for β_1 . The regression coefficients can be collected in a vector $\boldsymbol{\beta} = (\beta_0, \beta_1)'$.

- Derive the natural logarithm of the acceptance probability for a proposal $\boldsymbol{\beta}^*$ in a Metropolis-Hastings step, using a general proposal density $h(\boldsymbol{\beta}^*|\boldsymbol{\beta}^{[t-1]})$, where $t=1,\ldots,T$ indicates the MCMC iteration.
- Implement the log posterior for β in R and set up a Metropolis-Hastings-Algorithm to sample from the posterior distribution of β .
- The file linreg.dat contains observations of the response and the covariate. Apply your implemented sampler for these data with the following settings:
 - Use b = 0 and $s^2 = 100$ for the prior of β_1 .
 - Use a random walk proposal $\boldsymbol{\beta}^* \sim N(\boldsymbol{\beta}^{[t-1]}, 1)$.
 - Use T = 1,000, T = 10,000, and T = 100,000 posterior samples.
 - Use a starting value of $\boldsymbol{\beta}^{[0]} = \mathbf{0}$.
 - Assume $\sigma^2 = 3$ to be known.
- Use plot() or matplot(..., type = "l") to plot trace plots of your samples and acf() to plot the autocorrelation.

• Discard burn in samples and apply thinning, then compute the posterior mean parameter estimates and the posterior standard deviations for β .

Exercise 3 (Hamiltonian Monte Carlo)

We are assuming the same setting as in the previous exercise but now consider Hamiltonian Monte Carlo.

- Sketch a Hamiltonian Monte Carlo algorithm for drawing samples from the posterior of β .
- Find the derivative of the log posterior with respect to β . You can assume a prior mean of b = 0 for β_1 .
- Implement HMC for β in R.
- Apply your sample to the data in linreg.dat with the following settings:
 - Use b = 0 and $s^2 = 100$ for the prior of β_1 .
 - Use the identity matrix of appropriate dimensions as the mass matrix.
 - Use a step size of $\epsilon = 0.1$.
 - Use L = 10 leapfrog steps, such that $\epsilon L = 1$.
 - Use T = 1,000 posterior samples.
 - Use a starting value of $\boldsymbol{\beta}^{[0]} = \mathbf{0}$.
 - Assume $\sigma^2 = 3$ to be known.
- Use plot() or matplot(..., type = "1") to plot a trace plot of your samples and acf() to plot the autocorrelation.
- Compute the posterior mean parameter estimates and the posterior standard deviations.

Exercise 4 (IWLS)

The iteratively weighted least squares (IWLS) sampler can be seen as a variant of Metropolis-Hastings using the proposal density

$$\boldsymbol{\vartheta}_{s}^{*} \sim \mathrm{N}(\boldsymbol{m}_{s}, \boldsymbol{F}_{s}^{*-1}),$$

for a proposal ϑ_s^* with mean

$$oldsymbol{m}_s = oldsymbol{artheta}_s^{[t-1]} + oldsymbol{F}_s^{*-1} oldsymbol{s}_s,$$

expected Fisher information

$$\boldsymbol{F}_{s}^{*} = \mathbb{E}\bigg(-\frac{\partial^{2}}{\partial\boldsymbol{\vartheta}_{s}\partial\boldsymbol{\vartheta}_{s}^{\prime}}\log f(\boldsymbol{\vartheta}_{s}^{[t-1]}|\boldsymbol{\vartheta}_{-s}^{[t]},\boldsymbol{y})\bigg)$$

and score function

$$\boldsymbol{s}_s = \frac{\partial}{\partial \boldsymbol{\vartheta}_s} \log f(\boldsymbol{\vartheta}_s^{[t-1]} | \boldsymbol{\vartheta}_{-s}^{[t]}, \boldsymbol{y})$$

In this formulation, t = 1, ..., T indicates the MCMC iteration, \mathbf{y} is a vector of response observations (the data), $\mathbf{\vartheta}_s$ is a parameter block and $f(\mathbf{\vartheta}_s|\mathbf{\vartheta}_{-s},\mathbf{y})$ is the full conditional of the parameter block.

- Derive the quantities F_s^* and s_s for β using the model from the previous exercises.
- Implement an IWLS sampler for β using this model in R.
- The file linreg.csv contains observations of the response and the covariate. Apply your implemented sampler for these data. Use the following settings:

- Use b = 0 and $s^2 = 100$ for the prior of β_1 .
- Use T = 1,000 posterior samples.
- Use a starting value of $\boldsymbol{\beta}^{[0]} = \mathbf{0}$.
- Assume $\sigma^2 = 3$ to be known.
- Use plot() or matplot(..., type = "l") to plot a trace plot of your samples and acf() to plot the autocorrelation.
- Compute the posterior mean parameter estimates and the posterior standard deviations.