STATS 260 Class 11

Gavin Jaeger-Freeborn

1. Set 12

2. Poisson Experiment

An experiment having the following properties.

- 1. The number of successes that occur in any interval is independent of the number of successes occurring in any other interval. *non-overlapping interval*
- 2. The probability of success in an interval is proportional to the size of the interval. *Larger the interval larger the probability*
- 3. If two intervals have the same size, then the probability of a success is the same for both intervals.

3. Poisson Random Variable

If in a Poisson experiment, X counts the number of successes that occur in one interval of time/space, then X is a Poisson random variable. We write $X \sim Poisson(\lambda)$.

Where λ is the average number of successes per region/interval.

NOTE: Some books will use μ rather than λ for the parameter of the Poisson random variable.

At a bank, customers use the bank machine at <u>an average rate of 40 customers per hour.</u> Let X count the number of customers that use the machine in a 30-minute interval.

40 customers per hour

$$\lambda = 40$$
 per hour

we use 20 for a 30 minute interval

$$X \sim Poisson(\lambda = 20)$$

Example

At a busy intersection, it is noted that on average 5 cars pass through the intersection per minute. Let X count the number of cars which pass through the intersection in an hour.

$$X \sim Poisson(\lambda = 300)$$

Example

Suppose that a typist makes on average 10 errors while typing 300 pages of text. Let X count the number of errors on one page of text.

Errors per page

$$X \sim Poisson(\lambda = \frac{10}{300})$$

We examine <u>ten</u> pages of text. Let Y count the number of pages with at least one error. The random variable Y is **not** Poisson. Why?

Assume pages are independent

n = 10, p = P(at least one error per page)

Binary

 $y \sim Bin(10, p)$

Poisson

$$X \sim Poisson(\lambda = \frac{1}{30})$$

The difference is that y counts the # of pages out of the 10 pages

4. Poisson Probability Distribution

$$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Remember

Binomial has a set endpoint eg 1, 2,..., n

Poisson has no fixed end eg 1, 2, ...

Example

Suppose a machine makes defective items at an average rate of 5 defective items per hour. What is the probability that the machine will make exactly 4 defective items in an hour?

X = # of defective items per hour

$$X \sim Poisson(\lambda = 3)$$

$$P(X=4) = \frac{e^{-5} \cdot 5^4}{4!}$$

$$= 0.1755$$

4.1. Expected Value and Variance

if $X \sim Poisson(\lambda)$

$$E(X) = \lambda$$
 and $V(X) = \lambda$

Example

What is the expected number of defective items made by the machine in an hour? What is the variance?

$$\lambda = \mu = E(X) = 5$$
 defective items (per hour)
$$\sigma^2 = V(X) = 5 \text{ item } ^2$$

$$\sigma = \sqrt{5} \text{ defective items}$$

4.2. Cumulative Distribution Tables

These tables give P ($X \le x$) for "nice" values of λ

Example

Suppose the machine is watched for three hours. What is the probability that it will make no more than 12 defective items?

$$\lambda = 5$$
 per hour

$$X \sim Poisson(\lambda = 15)$$

(Recall that the machine makes on average 5 defective items per hour)

From table

$$P(X \le 12) = 0.2676$$

What is the probability that at least 6 defective items will be made?

$$P(X \ge 6) = 1 - P(X \le 5)$$
$$= 1 - 0.0028$$
$$= 0.9972$$

Example

What is the probability that exactly 13 defective items will be made?

$$P(X = 13) = \frac{e^{-15} \cdot 15^{13}}{13!}$$
$$= P(X \le 13) - P(X \le 12)$$
$$= 0.3632 - 0.2676$$
$$= 0.0956$$

Suppose that a typist makes on <u>average of 2 errors per page</u>. [Poisson] Suppose the typist is creating a ten-page document. What is the probability that <u>exactly three of the pages</u> do not contain any errors?

let X be the number of errors per page

$$X \sim Poisson(\lambda = 2 perpage)$$

let y be a number of pages that contain no errors (success)

Assuming they are independent

$$y \sim Bin(n = 10, p = P(X = 0)) = 0.1353$$

$$P(y=3) = {10 \choose 3} 0.1353^3 (1 - 0.1353)^7$$
$$= 0.1074$$

5. Poisson approximation to Binomial

If X is a binomial random variable where \underline{n} is very large and \underline{p} is very small then X can be approximated with a Poisson distribution with $\lambda = np$.

NOTE: Provided $n \ge 100$ and $np \le 10$, the approximation will be quite good. It will still be reasonably good when $n \ge 20$, as long as $p \le 0.05$.

Example

Brugada syndrome is a rare disease which afflicts 0.02% of the population. Suppose 10,000 people are selected at random and tested for Brugada syndrome. What is the probability that no more than 3 of the tested people will have Brugada syndrome?

$$X \sim Bin(n = 10000, p = 0.0002)$$

No table to look up

$$P(X \le 3)$$

$$= P(X \le 3)$$

$$X \sim Poisson(\lambda = 10000 \times 0.0002 = 2)$$

$$= 0.8571$$

6. Sets 13 and 14

7. Continuous Random Variable

A random variable which can assume an uncountable number of values (i.e. some interval of real numbers).

For a random variable, the **probability distribution** or **probability density function** (pdf) is a function f (x) satisfying

NOTE: Discrete random variable support is countable a.k.a finite number of outcomes or countably infinite [Poisson]

$$P(a \le X \le b) \int_{a}^{b} f(x) dx$$

For any two numbers a and b with $a \le b$

Some immediate consequences

1.
$$f(x) \ge 0$$
 for all x

$$2. \int_{-\infty}^{\infty} f(x) dx = 1$$