# Cálculo I

Pedro H A Konzen

20 de março de 2019

# Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite <a href="http://creativecommons.org/licenses/by-sa/4.0/deed.pt\_BR">http://creativecommons.org/licenses/by-sa/4.0/deed.pt\_BR</a> ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

## Prefácio

Nestas notas de aula são abordados temas introdutórios sobre cálculo de funções de uma variável.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

# Sumário

| Capa     |         |        |                                                             |              |  |  |  |  |  |  |  |
|----------|---------|--------|-------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Li       | Licença |        |                                                             |              |  |  |  |  |  |  |  |
| Prefácio |         |        |                                                             |              |  |  |  |  |  |  |  |
| Sτ       | ımár    | io     |                                                             | $\mathbf{v}$ |  |  |  |  |  |  |  |
| 1        | Fun     | damen  | ntos sobre funções                                          | 1            |  |  |  |  |  |  |  |
|          | 1.1     | Defini | ção e gráfico                                               | 1            |  |  |  |  |  |  |  |
|          | 1.2     | Tipos  | de funções                                                  | 4            |  |  |  |  |  |  |  |
|          |         | 1.2.1  | Funções lineares                                            | 4            |  |  |  |  |  |  |  |
|          |         | 1.2.2  | Funções potência                                            | 5            |  |  |  |  |  |  |  |
|          |         | 1.2.3  | Funções polinomiais                                         | 8            |  |  |  |  |  |  |  |
|          |         | 1.2.4  | Funções racionais                                           | 9            |  |  |  |  |  |  |  |
|          |         | 1.2.5  | Funções algébricas                                          | 9            |  |  |  |  |  |  |  |
|          |         | 1.2.6  | Funções transcendentes                                      | 10           |  |  |  |  |  |  |  |
|          |         | 1.2.7  | Funções definidas por partes                                | 10           |  |  |  |  |  |  |  |
|          | 1.3     | Funçõ  | es trigonométricas                                          | 11           |  |  |  |  |  |  |  |
|          |         | 1.3.1  | Seno e cosseno                                              | 11           |  |  |  |  |  |  |  |
|          |         | 1.3.2  | Tangente, cotangente, secante e cossecante                  | 14           |  |  |  |  |  |  |  |
|          |         | 1.3.3  | Identidades trigonométricas                                 |              |  |  |  |  |  |  |  |
|          | 1.4     | Opera  | ções com funções                                            | 17           |  |  |  |  |  |  |  |
|          |         | 1.4.1  | Somas, diferenças, produtos e quocientes                    | 17           |  |  |  |  |  |  |  |
|          |         | 1.4.2  | Funções compostas                                           | 17           |  |  |  |  |  |  |  |
|          |         | 1.4.3  | Translações, contrações, dilatações e reflexões de gráficos | 18           |  |  |  |  |  |  |  |
|          |         | 1.4.4  | Translações                                                 |              |  |  |  |  |  |  |  |
|          |         | 1.4.5  | Dilatações e contrações                                     | 18           |  |  |  |  |  |  |  |
|          |         |        |                                                             |              |  |  |  |  |  |  |  |

|                            | 1.4.6  | Reflexões                          |  |  | 18 |  |  |  |  |
|----------------------------|--------|------------------------------------|--|--|----|--|--|--|--|
| 1.5                        | Propri | iedades de funções                 |  |  | 19 |  |  |  |  |
|                            | 1.5.1  | Funções crescentes ou decrescentes |  |  | 19 |  |  |  |  |
|                            | 1.5.2  | Funções pares ou ímpares           |  |  | 19 |  |  |  |  |
|                            | 1.5.3  | Funções injetoras                  |  |  | 20 |  |  |  |  |
| 1.6                        | Funçõ  | ões exponenciais                   |  |  | 21 |  |  |  |  |
| 1.7                        | Funçõ  | ões logarítmicas                   |  |  | 22 |  |  |  |  |
| Respostas dos Exercícios   |        |                                    |  |  |    |  |  |  |  |
| Referências Bibliográficas |        |                                    |  |  |    |  |  |  |  |
| Índice Remissivo           |        |                                    |  |  |    |  |  |  |  |

# Capítulo 1

# Fundamentos sobre funções

Ao longo deste capítulo, contaremos com o suporte de alguns códigos Python com o seguinte preâmbulo:

```
from sympy import *
init_session()
```

### 1.1 Definição e gráfico

Uma **função** de um conjunto D em um conjunto Y é uma regra que associa um único elemento  $y \in Y^1$  a cada elemento  $x \in D$ . Costumeiramente, identificamos uma função por uma letra, por exemplo, f e escrevemos f:  $D \to Y$ , y = f(x), para denotar que a função f toma valores de entrada em D e de saída em Y.

O conjunto D de todos os possíveis valores de entrada da função é chamado de **domínio**. O conjunto de todos os valores f(x) tal que  $x \in D$  é chamado de **imagem** da função.

Ao longo do curso de cálculo, as funções serão definidas apenas por expressões matemáticas. Nestes casos, salvo explicitado o contrário, suporemos que a função tem números reais como valores de entrada e de saída. O domínio e a imagem deverão ser inferidos da regra algébrica da função ou da aplicação de interesse.

Exemplo 1.1.1. Determinemos o domínio e a imagem de cada uma das seguintes funções:

 $y \in Y$  denota que y é um elemento do conjunto Y.

- $y = x^2$ :
  - Para qualquer número real x, temos que  $x^2$  também é um número real. Então, dizemos que seu domínio (natural)<sup>2</sup> é o conjunto  $\mathbb{R} = (-\infty, \infty)$ .
  - Para cada número real x, temos  $y=x^2 \geq 0$ . Além disso, para cada número real não negativo y, temos que  $x=\sqrt{y}$  é tal que  $y=x^2$ . Assim sendo, concluímos que a imagem da função é o conjunto de todos os números reais não negativos, i.e.  $[0,\infty)$ .
- y = 1/x:
  - Lembremos que divisão por zeros não está definida. Logo, o domínio desta função é o conjunto dos números reais não nulos, i.e.  $(-\infty,0) \cup (0,\infty)$ .
  - Primeiramente, observemos que se y=0, então não existe número real tal que 0=1/x. Ou seja, 0 não pertence a imagem desta função. Por outro lado, dado qualquer número  $y \neq 0$ , temos que x=1/y é tal que y=1/x. Logo, concluímos que a imagem desta função é o conjunto de todos os números reais não nulos, i.e.  $(-\infty,0) \cup (0,\infty)$ .
- $y = \sqrt{1 x^2}$ :
  - Lembremos que a raiz quadrada de números negativos não está definida. Portanto, precisamos que:

$$1 - x^2 \ge 0 \Rightarrow x^2 \le 1 \tag{1.1}$$

$$\Rightarrow -1 \le x \le 1. \tag{1.2}$$

Donde concluímos que o domínio desta função é o conjunto de todos os números x tal que  $-1 \le x \le 1$  (ou, equivalentemente, o intervalo [-1,1]).

Com o SymPy, podemos usar o comando

reduce inequalities(1-x\*\*2>=0,[x])

para resolvermos a inequação  $1 - x^2 \ge 0$ .

 $<sup>^2</sup>$ O **domínio natural** é o conjunto de todos os números reais tais que a expressão matemática que define a função seja possível.

– Uma vez que  $-1 \le x \le 1$ , temos que  $0 \le 1 - x^2 \le 1$  e, portanto,  $0 \le \sqrt{1 - x^2} \le 1$ . Ou seja, a imagem desta função é o intervalo [0,1].

O **gráfico** de uma função é o conjunto dos pares ordenados (x, f(x)) tal que x pertence ao domínio da função. Mais especificamente, para uma função  $f: D \to \mathbb{R}$ , o gráfico é o conjunto

$$\{(x, f(x))|x \in D\}.$$
 (1.3)

O **esboço do gráfico** de uma função é, costumeiramente, uma representação geométrica dos pontos de seu gráfico em um plano cartesiano.

**Exemplo 1.1.2.** A Figura 1.1 mostra os esboços dos gráficos das funções  $f(x) = x^2$ , g(x) = 1/x e  $h(x) = \sqrt{1-x^2}$ .



Figura 1.1: Esboço dos gráficos das funções  $f(x) = x^2$ , g(x) = 1/x e  $h(x) = \sqrt{1-x^2}$  dadas no Exemplo 1.1.2.

Para plotarmos os gráficos destas funções usando SymPy podemos usar os seguintes comandos:

#### Exercícios

Em construção ...

## 1.2 Tipos de funções

Nesta seção, vamos ressaltar alguns tipos de funções que aparecerem com frequência nos estudos de cálculo.

#### 1.2.1 Funções lineares

Uma **função linear** é uma função da forma f(x) = mx + b, sendo m e b parâmetros<sup>3</sup> dados. Recebe este nome, pois seu gráfico é uma linha (uma reta)<sup>4</sup>.

Quando m=0, temos uma **função constante** f(x)=b. Esta tem domínio  $(-\infty,\infty)$  e imagem  $\{b\}$ . Por outro lado, toda função linear com  $m\neq 0$  tem  $(-\infty,\infty)$  como domínio e imagem.

**Exemplo 1.2.1.** A Figura 1.2 mostra esboços dos gráficos das funções lineares f(x) = -5/2, f(x) = 2 e f(x) = 2x - 1.



Figura 1.2: Esboços dos gráficos das funções lineares y=-5/2, y=2 e y=2x-1 discutidas no Exemplo 1.2.1.

 $<sup>^3 {\</sup>rm n\'umeros}$  reais.

<sup>&</sup>lt;sup>4</sup>Não confundir com o conceito de linearidade de operadores.

**Observação 1.2.1.** O lugar geométrico do gráfico de uma função linear é uma reta (ou linha). O parâmetro m controla a inclinação da reta em relação ao eixo  $x^5$ . Quando m = 0, temos uma reta horizontal. Quando m > 0 temos uma reta com inclinação positiva (crescente) e, quando m < 0 temos uma reta com inclinação negativa. Verifique!

Quaisquer dois pontos  $(x_0, y_0)$  e  $(x_1, y_1)$ , com  $x_0 \neq x_1$ , determinam uma única função linear (reta) que passa por estes pontos. Para encontrar a expressão desta função, basta resolver o seguinte sistema linear

$$mx_0 + b = y_0 \tag{1.4}$$

$$mx_1 + b = y_1 \tag{1.5}$$

Subtraindo a primeira equação da segunda, obtemos

$$m(x_0 - x_1) = y_0 - y_1 \Rightarrow m = \frac{y_0 - y_1}{x_0 - x_1}.$$
 (1.6)

Daí, substituindo o valor de m na primeira equação do sistema, obtemos

$$\frac{y_0 - y_1}{x_0 - x_1} x_0 + b = y_0 \Rightarrow b = -\frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0. \tag{1.7}$$

Ou seja, a expressão da função linear (equação da reta) que passa pelos pontos  $(x_0, y_0)$  e  $(x_1, y_1)$  é

$$y = \underbrace{\frac{y_0 - y_1}{x_0 - x_1}}(x - x_0) + y_0. \tag{1.8}$$

#### 1.2.2 Funções potência

Uma função da forma  $f(x) = x^n$ , onde  $n \neq 0$  é uma constante, é chamada de **função potência**.

Funções potências têm comportamentos característicos, conforme o valor de n. Quando n é um inteiro positivo ímpar, seu domínio e sua imagem são  $(-\infty,\infty)$ . Veja a Figura 1.3.

<sup>&</sup>lt;sup>5</sup>eixo das abscissas



Figura 1.3: Esboços dos gráficos das funções potências  $y=x,\ y=x^3$  e  $y=x^5.$ 

Funções potências com n positivo par estão definidas em toda parte e têm imagem  $[0,\infty)$ . Veja a Figura 1.4.



Figura 1.4: Esboços dos gráficos das funções potências  $y=x^2,\ y=x^4$  e  $y=x^6.$ 

Funções potências com n inteiro negativo ímpar não são definidas em x=0, tendo domínio e imagem igual a  $(-\infty,0)\cup(0,\infty)$ . Também, quando n inteiro negativo par, a função potência não está definida em x=0, tem domínio  $(-\infty,0)\cup(0,\infty)$ , mas imagem  $(0,\infty)$ . Veja a Figura 1.5.



Figura 1.5: Esboços dos gráficos das funções potências y=1/x (esquerda),  $y=1/x^2$  (direita).

Há, ainda, comportamentos característicos quando  $n=1/2,\,1/3,\,3/2$  e 2/3. Veja a Figura 1.6.



Figura 1.6: Esboços dos gráficos das funções potências. Esquerda  $y=\sqrt{x}$  e  $y=\sqrt{x^3}$ . Direita:  $y=\sqrt[3]{x}$  e  $y=\sqrt[3]{x^2}$ .

#### 1.2.3 Funções polinomiais

Uma função polinomial (polinômio) tem a forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \tag{1.9}$$

onde  $a_i$  são coeficientes reais,  $a_n \neq 0$  e n é inteiro não negativo, este chamado de **grau do polinômio**.

Polinômios são definidos em toda parte<sup>6</sup>. Polinômios de grau ímpar tem imagem  $(-\infty, \infty)$ . Entretanto, a imagem polinômios de grau par dependem de cada caso. Iremos estudar mais propriedades de polinômios ao longo do curso de cálculo. Veja a Figura 1.7.



Figura 1.7: Esboços dos gráficos das funções polinomiais. Esquerda  $p(x) = x^3 - 2.5x^2 - 1.0x + 2.5$ . Direita:  $q(x) = x^4 - 3.5x^3 + 1.5x^2 + 3.5x - 2.5$ .

Quando n=0, temos um polinômio de grau 0 (ou uma função constante). Quando n=1, temos um polinômio de grau 1 (ou, uma função linear). Ainda, quando n=2 temos uma função quadrática (ou polinômio quadrático) e, quando n=3, temos uma função cúbica (ou polinômio cúbico).

 $<sup>^6</sup>$ Uma função é dita ser definida em toda parte quando seu domínio é  $(\infty, \infty)$ 

#### 1.2.4 Funções racionais

Uma função racional tem a forma

$$f(x) = \frac{p(x)}{q(x)},\tag{1.10}$$

onde p(x) e  $q(x) \not\equiv 0$  são polinômios.

Função racionais não estão definidas nos zeros de q(x). Além disso, suas imagens dependem de cada caso. Estudaremos o comportamento de funções racionais ao longo do curso de cálculo. Veja a Figura 1.8.



Figura 1.8: Esboço do gráfico da função racional  $f(x) = \frac{x^2 - x - 2}{x^3 - x^2 + x - 1}$ .

## 1.2.5 Funções algébricas

Funções algébricas são funções definidas a partir de somas, subtrações, multiplicações, divisões ou extração de raízes de funções polinomiais. Estudaremos estas funções ao longo do curso de cálculo.

#### 1.2.6 Funções transcendentes

Funções transcendentes são funções que não são algébricas. Como exemplos, temos as funções trigonométricas, exponencial e logarítmica, as quais introduziremos nas próximas seções.

#### 1.2.7 Funções definidas por partes

Funções definidas por partes são funções definidas por diferentes expressões matemáticas em diferentes partes de seu domínio.

Exemplo 1.2.2. Consideremos a seguinte função definida por partes:

$$f(x) = \begin{cases} -x & , x < 0, \\ x^2 & , x \ge 0 \end{cases}$$
 (1.11)

Observemos que tanto o domínio como a imagem desta função são  $(-\infty, \infty)$ . A Figura 1.9 mostra o esboço do gráfico desta função.



Figura 1.9: Esboço do gráfico da função definida por partes f(x) dada no Exemplo 1.2.2.

Um exemplo de função definida por partes fundamental é a **função valor absoluto**<sup>7</sup>

$$|x| = \begin{cases} x & , x \le 0 \\ -x & , x < 0 \end{cases} \tag{1.12}$$

Vejamos o esboço do seu gráfico dado na Figura 1.10.



Figura 1.10: Esboço do gráfico da função valor absoluto y = |x|.

#### Exercícios

Em construção ...

### 1.3 Funções trigonométricas

#### 1.3.1 Seno e cosseno

As funções trigonométricas seno y = sen(x) e cosseno y = cos(x) podem ser definidas a a partir do círculo trigonométrico (veja a Figura 1.11). Seja x o ângulo<sup>8</sup> de declividade da reta que passa pela origem do plano cartesiano

<sup>&</sup>lt;sup>7</sup>Esta função também pode ser definida por  $|x| = \sqrt{x^2}$ .

<sup>&</sup>lt;sup>8</sup>Em geral utilizaremos a medida em radianos para ângulos.

(reta r na Figura 1.11). Seja, então, (a,b) o ponto de interseção desta reta com a circunferência unitária<sup>9</sup>. Então, definimos:

$$\operatorname{sen}(x) = a, \qquad \cos(x) = b. \tag{1.13}$$

A partir da definição, notemos que ambas funções têm domínio  $(-\infty,\infty)$  e imagem [-1,1].



Figura 1.11: Funções seno e cosseno no círculo trigonométrico.

Na Figura 1.12 podemos extrair os valores das funções seno e cosseno para

<sup>&</sup>lt;sup>9</sup>Circunferência do círculo de raio 1.

os ângulos fundamentais. Por exemplo, temos

$$\operatorname{sen}\left(\frac{\pi}{6}\right) = \frac{1}{2}, \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2},\tag{1.14}$$

$$\operatorname{sen}\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}, \qquad \cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \tag{1.15}$$

$$\operatorname{sen}\left(\frac{8\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \qquad \cos\left(\frac{8\pi}{6}\right) = -\frac{1}{2}, \tag{1.16}$$

$$\operatorname{sen}\left(\frac{11\pi}{6}\right) = -\frac{1}{2}, \qquad \cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}, \tag{1.17}$$

As funções seno e cosseno estão definidas no SymPy como sin e cos, respectivamente. Por exemplo, para computar o seno de  $\pi/6$ , digitamos:  $\sin(pi/6)$ 



Figura 1.12: Funções seno e cosseno no círculo trigonométrico.

Uma função f(x) é dita **periódica** quando existe um número p, chamado de período da função, tal que

$$f(x+p) = f(x) \tag{1.19}$$

para qualquer valor de x no domínio da função. Da definição das funções seno e cosseno, notemos que ambas são periódicas com período  $2\pi$ , i.e.

$$sen(x + 2\pi) = sen(x), cos(x + 2\pi) = cos(x), (1.20)$$

para qualquer valor de x.

Na Figura 1.13, temos os esboços dos gráficos das funções seno e cosseno.



Figura 1.13: Esboços dos gráficos das funções seno (esquerda) e cosseno (direita).

#### 1.3.2 Tangente, cotangente, secante e cossecante

Das funções seno e cosseno, definimos as funções tangente, cotangente, secante e cossecante como seguem:

$$tg(x) := \frac{\operatorname{sen}(x)}{\cos(x)}, \qquad \cot g(x) := \frac{\cos(x)}{\sin(x)}, \qquad (1.21)$$

$$\sec(x) := \frac{1}{\cos(x)}, \qquad \csc(x) := \frac{1}{\sin(x)}. \qquad (1.22)$$

$$\sec(x) := \frac{1}{\cos(x)}, \qquad \csc(x) := \frac{1}{\sin(x)}. \tag{1.22}$$

No SymPy, as funções tangente, cotangente, secante e cossecante podem ser computadas com as funções tan, cot, sec e csc, respectivamente. Por exemplo, podemos computar o valor de  $\csc(\pi/4)$  com o comando

csc(pi/4)

Na Figura 1.15, temos os esboços dos gráficos das funções tangente e cotangente. Observemos que a função tangente não está definida nos pontos  $(2k+1)\pi/2$ , para todo k inteiro. Já, a função cotangente não está definida nos pontos  $k\pi$ , para todo k inteiro. Ambas estas funções têm imagem  $(-\infty,\infty)$  e período  $\pi$ .



Figura 1.14: Esboços dos gráficos das funções tangente (esquerda) e cotangente (direita).

Na Figura ??, temos os esboços dos gráficos das funções secante e cossecante. Observemos que a função secante não está definida nos pontos  $(2k+1)\pi/2$ , para todo k inteiro. Já, a função cossecante não está definida nos pontos  $k\pi$ , para todo k inteiro. Ambas estas funções têm imagem  $(-infty, 1] \cup [1, \infty)$  e período  $\pi$ .



Figura 1.15: Esboços dos gráficos das funções tangente (esquerda) e cotangente(direita).

#### 1.3.3 Identidades trigonométricas

Aqui, vamos apresentar algumas identidades trigonométricas que serão utilizadas ao longo do curso de cálculo. Comecemos pela identidade fundamental

$$sen^2 x + cos^2 x = 1. (1.23)$$

Desta decorrem as identidades

$$tg^2(x) + 1 = sec^2 x,$$
 (1.24)

$$1 + \cot^2(x) = \csc^2(x).$$
 (1.25)

Das seguintes fórmulas para adição/subtração de ângulos

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y), \tag{1.26}$$

$$sen(x \pm y) = sen(x)cos(y) \pm cos(x)sen(y), \tag{1.27}$$

seguem as fórmulas para ângulo duplo

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{1.28}$$

$$\operatorname{sen}(2x) = 2\operatorname{sen} x \cos x. \tag{1.29}$$

Também, temos as fórmulas para o ângulo metade

$$\cos^2 x = \frac{1 + \cos 2x}{2},\tag{1.30}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}.\tag{1.31}$$

#### Exercícios

Em construção ...

### 1.4 Operações com funções

#### 1.4.1 Somas, diferenças, produtos e quocientes

Sejam dadas as funções f e g com domínio em comum D. Então, definimos as funções

- $(f \pm g)(x) := f(x) \pm g(x)$  para todo  $x \in D$ ;
- (fg)(x) := f(x)g(x) para todo  $x \in D$ ;
- $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$  para todo  $x \in D$  tal que  $g(x) \neq 0$ .

**Exemplo 1.4.1.** Sejam  $f(x) = x^2 e g(x) = x$ . Temos:

- $(f+g)(x) = x^2 + x$  e está definida em toda parte.
- $(g-f)(x) = x x^2$  e está definida em toda parte.
- $(fg)(x) = x^3$  e está definida em toda parte.
- $\left(\frac{f}{a}\right)(x) = \frac{x^2}{x}$  e tem domínio  $(-\infty, \infty) \setminus \{0\}^{10}$ .

#### 1.4.2 Funções compostas

Sejam dadas as funções f e g. Definimos a **função composta** de f com g por

$$(f \circ g)(x) := f(g(x)). \tag{1.32}$$

Seu domínio consiste dos valores de x que pertençam ao domínio da g e tal que g(x) pertença ao domínio da f.

**Exemplo 1.4.2.** Sejam  $f(x) = x^2$  e g(x) = x + 1. A função composta  $(f \circ g)(x) = f(g(x)) = f(x + 1) = (x + 1)^2$ .

The structure of the s

# 1.4.3 Translações, contrações, dilatações e reflexões de gráficos

Algumas operações com funções produzem resultados bastante característico no gráfico de funções. Com isso, podemos usar estas operações para construir gráficos de funções mais complicadas a partir de funções básicas.

#### 1.4.4 Translações

Dada uma função f e uma constante  $k \neq 0$ , temos que a o gráfico de y = f(x) + k é uma translação vertical do gráfico de f. Se k > 0, observamos uma translação vertical para cima. Se k < 0, observamos uma translação vertical para baixo.

Translações horizontais de gráficos podem ser produzidas pela soma de uma constante não nula ao argumento da função. Mais precisamente, dada uma função f e uma constante  $k \neq 0$ , temos que o gráfico de y = f(x+k) é uma translação horizontal do gráfico de f em k unidades. Se k>0, observamos uma translação horizontal para a esquerda. Se k<0, observamos uma translação horizontal para a direita.

#### 1.4.5 Dilatações e contrações

Sejam dados uma função f e uma constante  $\alpha$ . Então, o gráfico de:

- $y = \alpha f(x)$  é uma dilatação vertical do gráfico de f, quando  $\alpha > 1$ ;
- $y = \alpha f(x)$  é uma contração vertical do gráfico de f, quando  $0 < \alpha < 1$ ;
- $y = f(\alpha x)$  é uma contração horizontal do gráfico de f, quando  $\alpha > 1$ ;
- $y = f(\alpha x)$  é uma dilatação horizontal do gráfico de f, quando  $\alpha < 1$ .

#### 1.4.6 Reflexões

Seja dada uma função f. O gráfico da função y = -f(x) é uma reflexão em torno do eixo x do gráfico da função f. Já, o gráfico da função y = f(-x) é uma reflexão em torno do eixo y do gráfico da função f.

#### Exercícios

Em construção ...

## 1.5 Propriedades de funções

#### 1.5.1 Funções crescentes ou decrescentes

Uma da função f é dita crescente quando  $f(x_1) < f(x_2)$  para todos  $x_1 < x_2$  no seu domínio. É dita não decrescente quando  $f(x_1) \le f(x_2)$  para todos os  $x_1 < x_2$  no seu domínio. Analogamente, é dita decrescente quando  $f(x_1) > f(x_2)$  para todos  $x_1 < x_2$ . E, por fim, é dita não crescente quando  $f(x_1) \ge f(x_2)$  para todos  $x_1 < x_2$ , sempre no seu domínio.

#### Exemplo 1.5.1. Vejamos os seguintes casos:

- A função identidade f(x) = x é crescente.
- A função exponencial  $f(x) = e^{-x}$  é decrescente.
- A seguinte função definida por partes

$$f(x) = \begin{cases} x+1 & ,x \le 0, \\ 2 & ,0 < x \le 1, \\ (x-1)^2 + 2 & ,x > 1 \end{cases}$$
 (1.33)

é não decrescente.

#### 1.5.2 Funções pares ou ímpares

Uma dada **função** f é dita **par** quando f(x) = f(-x) para todo x no seu domínio. Ainda, é dita **ímpar** quando f(x) = -f(-x) para todo x no seu domínio.

#### Exemplo 1.5.2. Vejamos os seguintes casos:

- $f(x) = x^2$  é uma função par.
- $f(x) = x^3$  é uma função par.

- $f(x) = \operatorname{sen} x$  é uma função ímpar.
- $f(x) = \cos x$  é uma função par.
- f(x) = x + 1 não é par nem ímpar.

#### 1.5.3 Funções injetoras

Uma dada **função** f é dita **injetora** quando  $f(x_1) \neq f(x_2)$  para todos  $x_1 \neq x_2$  no seu domínio.

Exemplo 1.5.3. Vejamos os seguintes casos:

- $f(x) = x^2$  não é uma função injetora.
- $f(x) = x^3$  é uma função injetora.
- $f(x) = e^x$  é uma função injetora.

Função injetoras são funções invertíveis. Mais precisamente, dada uma função injetora y = f(x), existe uma única função g tal que

$$g(f(x)) = x, (1.34)$$

para todo x no domínio da f. Tal função g é chamada de **função inversa** de f é comumente denotada por  $f^{-1}$ . 11

**Exemplo 1.5.4.** Vamos calcular a função a função inversa de  $f(x) = x^3 + 1$ . Para tando, escrevemos

$$y = x^3 + 1. (1.35)$$

Então, isolando x, temos

$$x = \sqrt[3]{y - 1}. (1.36)$$

Desta forma, concluímos que  $f^{-1}(x) = \sqrt[3]{x-1}$ . Verifique que  $f^{-1}(f(x)) = x$  para todo x no domínio de f!

**Observação 1.5.1.** Os gráficos de uma dada função injetora f e de sua inversa  $f^{-1}$  são simétricos em relação a **reta identidade** y=x.

<sup>&</sup>lt;sup>11</sup>Observe que, em geral,  $f^{-1} \neq \frac{1}{f}$ .

#### Exercícios

## 1.6 Funções exponenciais

Uma função exponencial tem a forma

$$f(x) = a^x, (1.37)$$

onde  $a \neq 1$  é uma constante positiva e é chamada de **base** da função exponencial.

Funções exponenciais estão definidas em toda parte e têm imagem  $(0, \infty)$ . O gráfico de uma função exponencial sempre contém os pontos (-1,1/a), (0,1) e (1,a). Veja a Figura 1.17.



Figura 1.16: Esboços dos gráficos de funções exponenciais: (esquerda)  $f(x) = a^x$ , a > 1; (direita)  $g(x) = a^x$ , 0 < a < 1.

**Observação 1.6.1.** Quando a base é o número de Euler  $e\approx 2,718281828459045$ , chamamos  $f(x)=e^x$  de função exponencial natural.

No  ${\tt SymPy},$  o número de Euler é obtido com a constante  ${\tt E}{:}$ 

>>> float(E)

2.718281828459045

#### Exercícios

Em construção ...

### 1.7 Funções logarítmicas

A função logarítmica  $y = \log_a x$ , a > 0 e  $a \neq 1$ , é a função inversa da função exponencial  $y = a^x$ . Veja a Figura ??. O domínio da função logarítmica é  $(0,\infty)$  e a imagem  $(-\infty,\infty)$ .



Figura 1.17: Esboços dos gráficos de funções logarítmicas: (esquerda)  $y = \log_a x, \, a > 1$ ; (direita)  $y = \log_a x, \, 0 < a < 1$ .

**Observação 1.7.1.** Quando a base é o número de Euler  $e\approx 2,718281828459045$ , chamamos  $y=\log_e x$  de função exponencial natural e denotamo-la por  $y=\ln x$ .

No SymPy, podemos computar  $\log_a x$  com a função  $\log(x,a)$ . O  $\ln x$  é computado com  $\log(x)$ .

Observação 1.7.2. Vejamos algumas propriedades dos logaritmos:

- $\log_a x = y \Leftrightarrow a^y = x;$
- $\log_a 1 = 0;$
- $\log_a a = 1$ ;
- $\log_a a^x = x$ ;
- $a^{\log_a^x} = x$ :
- $\log_a xy = \log_a x + \log_a y;$

- $\log_a \frac{x}{y} = \log_a x \log_a y;$
- $\log_a x^r = r \cdot \log_a x$ .

## Exercícios

Em construção ...

# Resposta dos Exercícios

# Referências Bibliográficas

[1] George Thomas. Cálculo, volume 1. Addison-Wesley, 12. edition, 2012.

# Índice Remissivo

| base, 21                                                                                                                                                                                                                                                          | grau do polinômio, 8                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| base, 21  domínio, 1 natural, 2  função, 1 ímpar, 19 algébrica, 9 cúbica, 8 composta, 17 constante, 4 cossecante, 14 definida por partes, 10 exponencial, 21 identidade, 19 inversa, 20 linear, 4 logarítmica, 22 par, 19 periódica, 13 potência, 5 quadrática, 8 | grau do polinômio, 8 imagem, 1 polinômio, 8 quadrático, 8 polinômio cúbico, 8 reta identidade, 20 |
| racional, 9<br>secante, 14                                                                                                                                                                                                                                        |                                                                                                   |
| tangente, 14<br>transcendente, 10<br>valor absoluto, 11<br>função polinomial, 8                                                                                                                                                                                   |                                                                                                   |
| gráfico, 3                                                                                                                                                                                                                                                        |                                                                                                   |