This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

JAPAN PATENT OFFICE (JP)
PATENT APPLICATION PUBLICATION
PATENT PUBLICATION OFFICIAL REPORT (A)
SHO61-141174

Int. Cl. 4 H 01 L 27/14, H 04 N 5/335

IDENTIFICATION NUMBER:

IN-OFFICE SERIAL NUMBER: 7525-5F, 8420-5C

PUBLICATION: June 28, 1986

SUBSTANTIVE EXAMINATION: NOT REQUESTED THE NUMBER OF INVENTION: 1 (total 4 pages)

1. Title of the Invention: Solid state image pickup device
Patent Application Sho 59-263366
Application December 13, 1984

2. Inventor(s)

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Tetsuyoshi TAKESHITA

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Hajime KURIHARA

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Hideaki OKA

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Kazumasa HASEGAWA

3. Applicant

Address: 2-4-1, nishi-shinjyuku, Shinjyuku-ku, Tokyo

Name: SEIKO EPSON CORPORATION

4. Attorney

Patent attorney: Tsutomu MOGAMI

SPECIFICATION

- 1. Title of the Invention

 Solid state image pickup device
- 2. Scope of Claim for Patent

5

- 1. A solid state image pickup device of a type of detecting an amount of stored/discharged charges by a light receptive element formed on an insulating substrate, characterized in that a capacitor is provided with an upper electrode in parallel with said light receptive element by oxidizing a portion of a lower electrode of the light receptive element.
- 2. The solid state image pickup device according to claim 1 characterized in that an amorphous silicon is used as the light receptive element, chromium or aluminum is used as the lower electrode and an additional capacitance of an oxide film is formed simultaneously with phothoetching the amorphous silicon film.
- 15 3. Detailed Description of the Invention

"Field of the Invention in Industry"

The present invention relates to a solid state image pickup device utilizing solid state image pickup elements.

"Prior art"

Conventionally, CCD type or MOS type is practicable as a solid state 20 image pickup element. In compared with an image pickup tube, the solid state image pickup element is proof against vibration and clash. The solid state image pickup element is characterized in very little power Further, MOS type has bigger consumption to be used for a long span. numerical aperture and has no limit of the amount of transfer charge 25 compared to CCD type, so that a lot of signal can be output. However, MOS type has a defect of occurring a great noise. Fig. 3 shows a drawing of Referring to the drawing, the cause of noise typical MOS type circuit. occurrence will be described. The noise is caused by horizontal MOS FET 30 switch which opens or closes a circuit. It is most serious problem, which causes in the case that a wiring capacitance on vertical lines V_1 to V_n is large and electrode- substrate capacitance of transistors formed on V₁ to V_n is large, so that noise charge which remains on the lines is read out. There is no comparison between the amount of noise and the capacitance of the receptive portion, so that the S/N ratio is considerably decreased. In addition to the above mentioned problem of noise, there is one more problem of smear for both CCD type and MOS type. One of reasons is due to occurrence charge caused by light, which is incident upon the other portion in addition to the receptive portion, is signal lines.

Therefore, elements in thin film form is formed by utilizing an insulator as a substrate, so that wiring capacitance is considerably reduced. Further, S/N ratio is increased by forming additional capacitor on the receptive element. For example, as the additional capacitor, a thin film 10 such as SiO₂ or Y₂O₃ is deposited in addition.

"Problem To Be Solved by The Invention"

However, in the above mentioned prior art, an additional thin film has to be formed in order to connect a receptive element with an additional capacitor. Therefore, process steps will increase to cause cost up. As a 15 result, noise will be caused because a thin film will not be formed uniformly.

Therefore, the present invention will solve the problem. An object of the present invention is to provide a solid state image pickup device having an additional capacitor with high evenness in parallel with the receptive element without increasing the process steps.

"Means To Solve The Problem"

The solid state image pickup device in the present invention is characterized in that the additional capacitor with high evenness can be easily formed in parallel with the receptive element by a method wherein a part of lower electrode of receptive element is oxidized by utilizing receptive element portion as a mask to provide a capacitor between upper and lower electrodes.

In particular, the present invention is utilized an oxidation film formed by a method wherein receptive element is performed photoetching by the technique of dry etching using Freon gas comprising oxygen. Moreover, the present invention utilizes an amorphous silicon for the portion of receptive element and a polycrystalline silicon for the drive portion, respectively. Through these procedures, the solid state image pickup device having small amount of smear can be formed increasing sensitivity and saturated light quantity.

"Performance"

35

According to the above mentioned structure in the present invention, an oxidation film formed on lower electrode of a receptive element will be

an additional capacitor between lower electrode and upper electrode. As a result, the solid state image pickup element having small noise will be formed increasing saturated light quantity and S/N ratio.

"Example"

Fig. 1 shows a configuration drawing in accordance with the present 5 example of the present invention. Any receptive element or switching element can be used for a semiconductor substrate. In the present invention, an amorphous silicon photodiode is used as a receptive element, and poly-silicon TFT is used as a switching element, respectively. Fig. 2 10 shows an equivalent circuit of Fig. 1. In Fig. 1, (a) shows a cross sectional view and (b) shows a plan view. Process steps will be described as follows. A non-doped polycrystalline silicon layer 102 is formed on an insulating substrate 101 such as quartz glass and after forming a gate insulating film by thermal oxidation, a second polycrystalline silicon 103 to be a gate electrode is formed to be also a gate line. Subsequently, ion is implanted to 15 provide a source and drain electrode. Then, after forming SiO₂ or the like as an interlayer insulating film 104, a contact hole is formed and a vertical line 105 is formed with a conductive material such as Al, upon which a polyimide resin or the like 106 is formed for leveling as an interlayer Usually, poly-silicon TFTs are formed by the above insulating film. mentioned method. Significant process steps according to the present invention will be described as follows. After forming a contact hole on the interlayer insulating film, a conductive thin film 107 is formed by using such as Cr or Al as lower electrode of pixel. This conductive thin film 107 should be easily oxidized and the oxide film should be high resistivity and dense since it is oxidized after the formation of the receptive film 108 using the receptive film(a photo resist may be disposed thereon) as a mask in order to form an additional capacitor. As an oxidation method, it can be considered various kinds of method, however, in case that a receptive film 30 108 is etched by plasma using oxygen and Freon, an oxidation film 109 is formed as a necessary result, so that there is no need to add oxidation After oxidation by the method, oxide plasma treatment may be further conducted, or oxidation with thermal nitric acid or steam oxidation may be conducted. Table 1 shows a characteristic example of forming a 35 lower electrode 107 by using oxidation of Cr and Al-Si and in accordance with the present example. Here, the receptive film thin 108 is an amorphous silicon (referred to a-Si, hereinafter) formed by GD plasma CVD,

and 110 may be any transparent conductive electrode (upper electrode), here, ITO.

Table 1

CONDITION	ELEMENT CAPACITY (pF/100 μ m ²)	INSULATION PROPERTY
(1) a-Si is etched by using CF ₄ +O ₂	0.2	good
(2) O ₂ plasma treatment in addition to (1)	0.5	best
(3) thermal nitrate treatment in addition to (1)	0.5	good
(4) using Al-Si as electrode with condition (2)	0.2	regular
(5) oxidation by steam using Al-Si as electrode	0.3	good

Note) An electrode used in conditions (1) to (3) is Cr.

In the table 1, an amount of the element capacity is calculated by adding capacitance of a-Si to additional capacitor of an oxidation film. The capacitance of a-Si is approximately $0.01 \text{pF}/100 \,\mu$ m². Regarding to the uniformity, the condition (3) is best of all. Under the condition (3), dispersion of all elements is within a range of $\pm 1\%$, and under the other conditions, it is within a range of $\pm 2.5\%$. In any way, it is easier than the case of forming SiO₂ or dielectric thin film in additional process and probability of dispersion is small. (in case of SiO₂, the dispersion is within a range of $\pm 5\%$)

Referring to the equivalent circuit in Fig. 2, through the above 15 mentioned process, the circuit is provided with an additional capacitor Ca in parallel with the receptive element Dil.

Moreover, metal is used as a lower electrode in the above mentioned example. Instead of using the metal, by using low resistance amorphous silicon which is doped impurities, an oxidation may be performed to form $20 \, \mathrm{SiO}_2$ in order to use the SiO_2 as an additional capacitor.

"The effect of the Invention"

As mentioned above, according to the present invention, since the additional capacitor having a high uniformity can be formed extremely

easily and inexpensively without increasing the process steps by using the pattern of a thin film receptive element as a mask, it is possible to easily obtain excellent solid image pickup devices with low cost having a large S/N ratio and a large saturated light quantity.

4. Brief Explanation of The Drawings

Fig. 1 is example of a solid state image pickup device in the present invention wherein (a) is a cross sectional view and (b) is a plan view.

Fig. 2 is a equivalent circuit drawing of the example.

Fig. 3 is a usual circuit drawing of MOS type solid state image pickup 10 device.

101---substrate

5

103---gate electrode

105---vertical line

107---lower electrode

15 108---receptive thin film

109---oxidation film

110---upper electrode

Applicant Suwa seiko-sha Attorney Tsutomu Mogami ⑩日本国特許庁(JP)

鱼特許出額公開

[®]公開特許公報(A)

昭61-141174

(i) Int Cl. 4

The state of the s

識別記号

厅内望理话号

每公開 昭和61年(1986) 6月25日

H 01 L 27/14 H 04 N 5/335

7525-5F 8420-5C

審査請求 未請求 発明の数 1 (全+頁)

9発明の名称 固体提像装置

> 创符 題 昭59-263366

色出 題 昭59(1984)12月13日

母発 明 者 竹 下 菱 母発 明 宏 栗 原 砂発 明 者 秀

明

伊辛 明 考 長 谷 川 和正 创出 頸

セイコーエプソン株式 会社

諏訪市大和3丁目3番5号 株式会社諏訪精工舎内 諏訪市大和3丁目3番5号 株式会社諏訪精工舎内 諏訪市大和3丁目3番5号 株式会社諏訪精工舎内 諏訪市大和3丁目3番5号 株式会社諏訪精工舎内 東京都新宿区西新宿2丁目4番1号

弁理士 最上 務

固体操律禁量

「2. 存許請求の超過水。

邳代 理 人

色級性等度上に無成した受光電子の書程改 まる所属を申出する形式の固体通信装置にかいて 算受元素子の下部 電気の 一部を浸化 十ることで上 部電響との間に数使光度子と並列に容量を設けた ことを特徴とする固体準律接受。

(2) 受売ま子として非品質シリコン、そして下 部業額にクロムもしくはアルミニクムを用いた受 元果子で、非品質シリコンのフォトニャナングと 同時に微化質の付加容量或分を形式することを考 改とする英許将求の過避等に項記載の団体接に 英 # .

名明の移程なり世 (度度上の利用を整)

本名明は、固体接受素子を担いた固体接換装置 に其するものである。

(従来の技術)

従来、固体通信者子としてCCD型やMCSだ が専用化されている。周本遺像男子は遠く音に比 べて援助や演算に強く、消費度力が少なく、長寿 分であるなどの英重がある。さらに、100歩と M O S 豊を比べると、M O S 豊は C C D 豊よりも 第四名が大きくできて、結送電荷産の制度がない ので大きな信号量が取り出せる。しかし、wos 要は複章が大きいという欠点を有する。男子写に 代表的なwosdの回路様式調をのせる。この3 を申って組合の発生集団をのべると、最大の問題 な水平408をできまれていたの無関にとらなり米 までもり、これは原道ラインで ← Vit の配換にQ がさきく、さらたり ~ 5g たついているトニシン 不平均實施一有股際層的大声の元的にデインに興 っている雑日業所を見み出してしまりことによる。 これらは、や土部の容量で出べてけた違いでもと いたので 3/8 出の大きな盛下れつながら。政治の

打開昭 51-141174 (2)

種目のかに解決しなければならない問題にスミアがある。これはのこのがあるいいののがにも明われるので図の一つに受光器以外に入材した光による 空生度帯が体展さインに個人であことによる。

さこで、本文に動植物を明いて東子を薄線化することで記録不要を大きく疾援はせ、さらに受力 東子にサガル要を取けて S/N 出を上げる方法が考えられる。こともは、サガル最として Si Ozや Yz Os などの薄質を新たに取ける方法がある。

(宮岬が単決しようとする問題点)

しかし前述の従来技術ではさたま子に可加容差を展代するのに断たに摩婆を成けてやらればならないために製造工具が増えてしまいコストが増加するとともに、摩摩がオーに形成されたくいために複音に解びつくことになる。

さこで本名明はこのような問項点を解決するもので、その目的とするところは、異選工程を増やすことなくカーなけがお産を受力ま子に並列に並けた関体機像要を提供するところにある。

る。受性男子及びスイッチング素子は半導体需要 ならばいかなるものでも利用は可能であるが、こ こでは受力者子として非典質シリコンのフェトイ イオード、スイッチング業子として多時品シリコ <u>システスを用いて代表させる</u>。年を別は末り図の 3毎回答である。 無門 隣にかいて何は新選頭。(6) は平面図であり、製造工具としては以下に示十度 になる。 石英ガラスなどの色級 岩根 101 上にノン ドープの多種品シリコン質 102 全分式、熱使化生 でソート簡単軍を移送後にソート関係となる第2 の多時品シリコン等 105 を製設する。これは生土 ピート・ラインともなる。そのほに<u>イオン打込み</u> 缶によりソースとドレイン電圧を吹ける。 久に苦 間色典理 194 として 8iのなどを形成した後、コン * 1トホールを形成し角直サイン 105 を止などの 運業性物質で形成し、その上で共間絶破壊を乗り て平田化のためにポリイミド樹類 事を 106 として <u>性限する</u>。以上は一般的な事務品ポリンクコンで アでの外級方法であり、これから後がよる国に海 して変更な発音工具である。 海間絶滅軍にコント

(間用はを写施するための手段)

(作用)

本角明の上記の展送によれば、受売集子の下記 電信に移成される使化等が下部電弧と上部電泳の 間で乗子の付加容量となり、前和売号を増すとと もに第3/8 比の低減音圏体機像集子となる。

〔 祭 惠 例 〕

(お:図は、本発明の実施例にかける時途図でか

プトホールを形成した後に演集の下品書座として OF 中 A4 などで温度性薄質 107 至形成するが、こ こでこの薄理は 108 の受光理を発収技術にの受土 雄(ホトレジストがついている場合もあるりもり スクトして 107 の装置性準備を放化して付加点を 部 109 とするため、現化が容易で硬化物が有效区 て重要でなくてはならない。最化方法としてはほ ゃの方法が考えられるが、 108 の受光確実を検え とフレオンのブラズマでエッチングする母台はり 然的に硬化器 109 が形成され、なんら微化工學を 押やす必要はない。この方法で悪化した後にエス で使まプラスマ処理したり、希腊療などで表化し てもよく、水蒸気液化などもよい。本央波虫でご たらの最化方法で Cr と A2 - Si を下部電気 107 と した場合の特性例をは:長化示す。ここで、 179 の党元降権は00万方式マロマコ出て形成した。 指質ンリコン(以下、 a - Bi と終十)、 tiO はき 羽 軍権(上部電視)ならばいかなるものでもよい べ、ここではITOを用いている。

對開昭 61-141174 (3)

てもこれらは Si Oi や設置準備を別途に形式する場合につりましくで易であり、バラッチも少ない(Si Oi の場合は 5 5 6 日間)。

第2回の書面回答でみると、以下の工界により 受力男子 Did に何知音量 Odが並列についた回答となる。

また上配例では下部電源として会局をおけたが 不規物ドーピングされた低級抗非森首シリコンを 用いて、最化を行ない Si Ozを形成して付加を乗ら して用いることもできる。

(発明の効果)

以上述べたように本発明によれば、建模受たま子のバターンをマスクとすることで設定工程を押やすことなく、暑しく在果に为一性の高い付加を責を形成できるために S/N 比が大きく、数和元量の大きいすぐれた固体強便模量を低コストで容易に集ることができる。

4 図面の簡単な視器

第1週は本名明の原体機像装置の実施器であり

東子を乗しま/100 um 본목별 (1) CP. - O, T a - Sig 0. 2 エッチング (2) (1)にかもての。プニズツ 25 **2** 9 包用 (3) (1)に加えて a 5 9 新砂原 铅度 (4) 電気に AL - Si を用い a 7 7 (2)の条件 (5) 電源に A4 - 8iチ 0.3 良 用いて水蒸気で産化

生) (1)~(3)の下部電気は 57 である。

第 1 表

第 1 表で男子容量は a - si の容量と変化度の対 勿容量との 和であるが、 a - si の容量は a 0 1 m/ 100 am² 程度である。 均一性に関しては、 (3) の条件がもっとも良く全男子での パラツキは こ 1 も以 内であり、他は こ 2 5 も以内である。 いずれにし

似は馬面図で、幼は平面図である。

第2回は実施卵の共毎回路図である。

第 5 図は一般的な M 0 8 型固体機像装置の回路図である。

101 ----- 事疫

103 …… ゲート電源

105 …… 当家テモン

107 …… 下肠度瘤()

108 …… 受光母存

109 蒙化算

1:0 …… 上部電腦

4 1

出意人 法式会社 舞坊 带工会

优度人 步骤士 最上

新 1 図

38 2 🖾 .

