Name:
Student University Roll No.:
Pages: 0
School of Engineering
First Sessional Examination, Odd Semester (AS: 2023-24)
B.Tech: CSE/AI/CCML Year: III Semester: V
Course Title: Automata Theory M.M.: 30

Course Code: BCS3504

Time: 1 hr

	SECTION 'A' N.1. Attempt all parts of the	Course Objective	Marks
a)	Define the terms alphabet, string, prefix, suffix, language and give examples to each.	CO4	1
b)	Differentiate L* and L+,	CO5	1
	What are some real-world applications for finite state machines?	CO5	1
d)	Obtain a regular expression to accept strings of a's and b's where number of a's and b's are odd.	CO1	1
e)	Write Transition function of DFA & NDFA.	CO2	1
100	SECTION 'B' N.2. Attempt any two parts of the lowing:	Course Objective	Marks
a)	Explain Myhill-Nerode Theorem using suitable example.	CO2	7.5
.b)	Consider the following regular expression and construct the finite automaton. 1) a+b 2) (a + b)* 3) a(a + b)* 4) a(a + b)*b	CO1	7.5
c)	Give the resultant FA on Removal of E- transition from the given FA.	CO1	7.5

d)	State & Prove Arden's Theorem	CO3	7.5
D. 1200	SECTION 'C' N.3. Attempt any one part of the lowing	Course Objective	Marks
a)	Define Grammar? Explain Chomsky Hierarchy? Give an example	CO4	10
b)	Construct a NDFA for the Regular expression 10+(0+11)0*1.	CO1	10
c)	Construct DFA accepting set of all strings containing even no. of a's and even no. of b's over input alphabet {a,b}.	CO1	10

Table 1: Mapping between COs and questions
(Number of COs may vary from course to course)

COs	Questions Numbers	Total Marks
CO1	1(d),2(b), 2(c), 3(b),3(c)	36
CO2	1(e),2(a)	8.5
CO3	2(d)	7.5
CO4	1(a),3(a)	11
CO5	1(b),1(c)	2