Final Project Report

Wide-Band Transimpedance Amplifier

Parnika Gupta, Ziqiong Wei, Navin Nadar

Navin: Test Bed Simulations, Circuit Design, Circuit Simulation for Every Stage, Report Parnika: Test Bed Analysis, Differential Stage Simulation, Noise Simulation and Analysis, Report Ziqiong: Literature Review and Research, Power, Gain, Bandwidth, Swing Theoretical Calculations, Report All of us: Gain, Bandwidth and Differential Swing Analysis

8th December 2024

Circuit Schematic and Performance Summary

Schematic

Performance	Target	Simulated	Calculated	Error (%)
Power	<50mW	65mW	117.4mW	- 80%
Gain	>74dB	77dB at 5GHz (<1dB variation)	~ 70dB	+ 10%
Bandwidth	> 5GHz	5.011 GHz	~ 5.4 GHz	- 6%
Differential Swing	>100mV	404mV (for 10uA input)	800mV (max)	-
Input Referred Noise	<50pA/sqrt(Hz)	3.72 e-11 V/sqrt(Hz) (at 5GHz)	1.28 e-8 V/sqrt(Hz)	-

Setting up a testbed in Cadence and plot the gm-Vgs, and Id-Vgs curves for various transistor width from 10um to 60um with a step size of 10um.

- Observation: As width increases gm also increase as seen in the formula.
- Analysis: We can increase the width to increase the gain.

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} \Big|_{VDS, \text{const.}}$$

$$= \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L}} I_{D}$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

Conducting a DC analysis in Cadence and extract the values of Cgs, Cgd, Cds, Cdb, and Csb for a current density of 0.3mA/um. Considering the absolute value.

• Observation: The parasitic capacitance generally increases as the width of the transistor

increases. Cgs and Cgd are more dominant)

1. OP("/W/NM0" "cgs"): -6.55146×10^-15 F

2. OP("/W/NM0" "cds"): 1.20794×10^-18 F

3. OP("/W/NM0" "cgd"): -1.46636×10^-15 F

4. OP("/W/NM0" "cdb"): -233.123×10^-21 F

5. OP("/W/NM0" "csb"): -394.876×10^-18 F

 Analysis: In general, we observed that the width for the NMOS is set to a workable minimum like 200 nm, that depends on the process. As PMOS transistors are intrinsically weaker they need wider width compared to the NMOS. Usually, 2x wider is a good start so 400 nm for example, but we changed it according to the need for bandwidth and gain.

Outputs						? 🗗
Na	me/Signal/Expr		Value	Plot	Save	Save Options
1 OP("/NM0" "cgs")			-6.55146f	~		
2 OP("/NM0" "cds")			1.20794a	✓		
3 OP("/NM0" "cgd")			-1.46636f	✓		
4 OP("/NM0" "cdb")			-233.123z	✓		
5 OP("/NM0" "csb")			-394.876a	✓		
		Parasitic Ca	pacitanc	es		

Setting up a testbed for Ft calculation of a transistor with the width of 10um under various levels of current densities: 0.3mA/um, 0.5mA/um, 1mA/um. Comparing it against our analytical results based on the parasitic extraction from last section and explaining if the results match or not.

- Definition: The frequency at which the current gain becomes unity. Ft Is typically used as an
 indicator to evaluate the high-frequency capability. Smaller parasitic capacitances Cgs and
 Cgd are desirable for higher unity-gain frequency
- Observation: Increasing Vgs (for increasing current density), decreases the Ft.
- Analysis: Therefore, if we require more Ft, we should take lower Vgs.

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

$$g_m = rac{2I_D}{V_{GS} - V_{TH}}$$

$$f_T \propto rac{g_m}{C_{gs}} = rac{2I_D/(V_{GS}-V_{TH})}{C_{gs}} \quad ext{and} \quad J = rac{I_D}{W imes L}$$

Setting up a testbed for Ft calculation of a transistor with the width of 10um under various levels of current densities: 0.3mA/um, 0.5mA/um, 1mA/um. Comparing it against our analytical results based on the parasitic extraction from last section and explaining if the results match or not.

Name	Value
vgs	958m
w_var	10u

Outputs					
Name/Signal/Expr	Value	Plot	Save	Save Options	
1 ids			✓	yes	
2 (mag(i("/NM0/D" ?result "ac")) / 0.001)	wave	<u>~</u>			
3 unityGainFreq((mag(i("/NM0/D" ?result "ac")) / 0.001))	199.627G	✓			

J=0.3mA/um, Vgs=958mV

Setting up a testbed for Ft calculation of a transistor with the width of 10um under various levels of current densities: 0.3mA/um, 0.5mA/um, 1mA/um. Comparing it against our analytical results based on the parasitic extraction from last section and explaining if the results match or not.

Design Variables			
Name		Value	^
1 vgs	1.15		
2 w_var	10u		

Outputs				? # ×
Name/Signal/Expr	Value	Plot	Save	Save Options
1 ids			✓	yes
2 (mag(i("/NM0/D" ?result "ac")) / 0.001)	wave	V		
3 unityGainFreq((mag(i("/NM0/D" ?result "ac")) / 0.001))	190.103G	V		

J=0.5mA/um, Vgs=1.15V

Setting up a testbed for Ft calculation of a transistor with the width of 10um under various levels of current densities: 0.3mA/um, 0.5mA/um, 1mA/um. Comparing it against our analytical results based on the parasitic extraction from last section and explaining if the results match or not.

Design Variables			
Name		Value	^
1 vgs	1.75		
2 w_var	10u		
	1.55		

Outputs				? 🗗 >
Name/Signal/Expr	Value	Plot	Save	Save Options
1 ids			~	yes
2 (mag(i("/NM0/D" ?result "ac")) / 0.001)	wave	~		
unityGainFreq((mag(i("/NM0/D" ?result "ac")) / 0.001))	132.951G	V		

J=1mA/um, Vgs=1.75V

Performance Evaluation: Gain

Gain Contributions of Each Stage

Stage	Simulated (dB)	Calculated (dB)	Error (%)
1	43.372	48	- 8.91
2	10.895	13	- 16
3	7.822	11	- 28.8
4	18.111	11	+ 64
5	5.911	9	- 34

Stages: 5

Techniques:

- Feedback (provided gain)
- Differential TIAs (made the bandwidth flat at high frequency)
- Capacitor at negative differential W/L maintained by increasing fingers (increased gain)

Explored Techniques:

- Inductive ladder (reduced bandwidth)
- Common source and common gate for differential (did not increase gain much)

Simulation: AC and DC

Performance Evaluation: Bandwidth

Simulation: AC and XF

Result: Bandwidth: 5.01 GHZ

Final Gain and Bandwidth

Performance Evaluation: Differential Swing

Simulation: Transient Analysis

Output: Sine Wave

Amplitude: 404mV, Frequency: 1GHz

Input Signal: Sine Wave

Amplitude: 10uA, Frequency: 1GHz

Differential Swing

Swing	Simulated (mV)	Simulated Amplitude (mV)	Gain
Max Output	824.76	824.76 - 420.66	= 404.1/1.97
Min Output	420.66	= 404.1	= 205.12
Max Input	507.61	507.61 - 505.64	
Min Input	505.64	= 1.97	

Differential Swing Performance Evaluation Table

Comment:

1. Phase Delay: Due use of multiple stages

2. Calculation: Vout,max = VDD-VDS,sat

Vout,min = VDS,sat

Vout, max = 1.2V - 0.2V = 1V

Vout,min = 0.2V

Voltage Swing = Vout,max - Vout,min

= 1V - 0.2V = 0.8V

(Max swing can be achieved at ~22uA input)

Performance Evaluation: Noise

Simulation: Transient Analysis

Input amplitude: Iu A to 20u A

Frequency: 1 GHz

Output Coupled Capacitor: 1p F

Resistance: 50 Ohms.

$$\frac{\overline{V_n^2out}(total)}{Av^2} = \overline{V_n^2 in}$$

$$\overline{V_{n,out}^2} = \frac{kT}{C_{PD}},$$

Noise	Simulated	Calculated
Referred	1.39 e-21	1.65 e-16

Noise

Noise Performance Evaluation Table

Device	Param	Noise Contribution	% Of Total				
/PM15/xrg/r1	thermal_noise	5.74477e-14	63.54				
/NM21	id	1.5219e-14	16.83				
/PM15	id	9.25493e-15	10.24				
		t 5G Hz Sorted By Nois	e Contributors				
Total Summarize	Total Summarized Noise = 9.04083e-14						
Total Input Ref	erred Noise = 1.3	9093e-21					

Total Input Referred Noise

References

- [1] Huang, Yipeng, and Jun Yin. "Design of a three-stage high-bandwidth CMOs transimpedance amplifier." *Columbia University, no date*: 1-5. (For TIA)
- [2] Wu, Chia-Hsin, et al. "CMOS wideband amplifiers using multiple inductive-series peaking technique." *IEEE journal of solid-state Circuits* 40.2 (2005): 548-552.
- [3] Network Theory Broadband Circuit Design, Fall 2024, Texas A&M University
- [4] Analui, Behnam, and Ali Hajimiri. "Bandwidth enhancement for transimpedance amplifiers." *IEEE Journal of Solid-State Circuits* 39.8 (2004): 1263-1270. (For Differential)