Optmization Methods for Machine Learning Gradient method for multilayer perceptron

Laura Palagi

http://www.dis.uniroma1.it/~palagi

Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti Sapienza Università di Roma

Via Ariosto 25

Unconstrained problem

$$\min_{w,b} E(w,b)$$

- Existence of a global solution
- Optimality conditions (for a point to be a local solution)
- Definition of an iterative algorithm

$$\begin{pmatrix} w^{k+1} \\ b^{k+1} \end{pmatrix} = \begin{pmatrix} w^k \\ b^k \end{pmatrix} + \alpha^k d^k$$

Convergence

BP Gradient method

$$\min_{w} E(w)$$

- BP batch, when the parameter are updated using all the samples in the training set T_t ;

$$w^{k+1} = w^k - \eta \nabla E(w^k),$$

- BP *on-line*, when the parameters are updated using one sample of T_t at the time.

$$w^{k+1} = w^k - \eta \nabla E_{\rho(k)}(w^k).$$

We assume that $g_j^{(\ell)}(\cdot) = g(\cdot)$ for all j, ℓ .

$$E(w) = \frac{1}{2} \sum_{p=1}^{P} E_p(w^k) = \frac{1}{2} \sum_{p=1}^{P} \|e^p(w^k)\|^2$$

where $e^p(w^k) = y(w^k; x^p) - y^p \in \mathbb{R}^K$

Forward computation

$$\frac{\partial E_{p}}{\partial \mathbf{w}_{ji}^{\ell}} = \frac{\partial E_{p}}{\partial a_{i}^{(\ell)}} \cdot \frac{\partial a_{j}^{(\ell)}}{\partial \mathbf{w}_{ji}^{\ell}} = \frac{\partial E_{p}}{\partial a_{j}^{(\ell)}} \cdot z_{i}^{(\ell-1)}$$

Forward computation

$$\frac{\partial E_{p}}{\partial w_{ji}^{\ell}} = \frac{\partial E_{p}}{\partial a_{j}^{(\ell)}} \cdot \frac{\partial a_{j}^{(\ell)}}{\partial w_{ji}^{\ell}} = \underbrace{\frac{\partial E_{p}}{\partial a_{j}^{(\ell)}}}_{\delta_{i}^{(\ell)}} \cdot z_{i}^{(\ell-1)}$$

$$x_1 = z_1^{(0)}$$

$$x_2 = z_2^{(0)}$$

Input nodes

Back computation of errors $\delta_j^{(\ell)} = \frac{\partial E_p}{\partial a_i^{(\ell)}}$

Consider the case of the output layer $\ell = L$

$$\delta_j^L = \frac{\partial E_p}{\partial a_j^{(L)}} = \frac{\partial E_p}{\partial y_j} \cdot \frac{\partial y_j}{\partial a_j^{(L)}} = \frac{\partial E_p}{\partial y_j} \cdot \dot{g}(a_j^{(L)})$$

Hidden layer: $\frac{\partial E_p(w^k)}{\partial a_i^{(\ell)}}$

Back computation of errors hidden layer

$$a_k^{(\ell+1)} = \cdots + w_{ki}g(a_i(\ell)) + \cdots$$
 for all k in layer $\ell + 1$

$$\delta_{j}^{\ell} = \frac{\partial E_{p}}{\partial \mathbf{a}_{j}^{(\ell)}} = \sum_{k=1}^{N^{(\ell+1)}} \frac{\partial E_{p}}{\partial \mathbf{a}_{k}^{\ell+1}} \cdot \frac{\partial \mathbf{a}_{k}^{\ell+1}}{\partial \mathbf{a}_{j}^{\ell}} = \sum_{k=1}^{N^{(\ell+1)}} \delta_{k}^{(\ell+1)} \cdot \frac{\partial \mathbf{a}_{k}^{(\ell+1)}}{\partial \mathbf{a}_{j}^{(\ell)}}$$

Backpropagation gradient evaluation

$$\frac{\partial E_p}{\partial w_{ji}^{\ell}} = \delta_j^{\ell} \cdot z_i^{\ell-1} \qquad \ell = 1, \dots, L$$

1. Compute FORWARD

$$z_i^\ell$$
 $\ell=1,\ldots,L$

2. Compute BACKWARD For k = 1, ..., K set

$$\delta_k^{(L)} = \frac{\partial E_p}{\partial a_k^{(L)}} = e_k^p \cdot \dot{g}(a_k^{(L)})$$

$$\delta_j^\ell = \sum_{k=1}^{N^{\ell+1}} \delta_k^{\ell+1} \cdot w_{kj}^{\ell+1} \dot{g}(a_j^\ell) \qquad \ell = L-1, \dots, 1$$

Convergence

Theorem

Assume that a scalar L > 0 exists such that for each $w, u \in R^m$ we have:

$$\|\nabla E(w) - \nabla E(u)\| \le L\|w - u\|$$

(Lipschtizt continuity of the gradient). Let $\{w^k\}$ be the sequence generated by

$$w^{k+1} = w^k - \eta \nabla E(w^k)$$

with $\varepsilon \leq \eta \leq \bar{\eta}_L - \varepsilon$, and $\varepsilon > 0$, Assume $\nabla E(w^k) \neq 0$ for all k, then every accumulation point of $\{w^k\}$ is a stationary point for SAPIENZ E. (If the level set \mathscr{L}^0 is compact, there exists accumulation point of $\{w^k\}$).

Momentum modification

$$w^{k+1} = w^k - \eta \nabla E(w^k) + \beta (w^k - w^{k-1}),$$

where $\beta > 0$ is a given scalar with (typical values = 0.8 \pm 0.9).

