

Christian "kiko" Reis < kiko+openstack@canonical.com>

Meetup OpenStack Parque Tecnológico UFRJ Agosto/2017

Canonical, a empresa responsável pelo Ubuntu

Plataforma Linux #1 (Desktop, Server, Cloud)

Desenvolve Distribui Comercializa

Ubuntu Advantage Implantação Consultoria

Desde 2004 Londres, Boston, Taipei, Beijing

Sobre mim

Christian "kiko" Reis, Canonical VP Field Engineering

- Responsável mundial por pré-vendas e implantação
 DTAG, AT&T, Etisalat, Comcast, Sky, Bell.ca, Tele2, Centurylink e mais
- Engenheiro na plataforma Ubuntu desde 2004
- \times \text{Lawrence of Arabia, Sisters of Mercy & CRPG Wasteland}
- Ciclista competitivo (e San Francisco -> Panama)

NFV: O Essencial

Aplicações	Gerencia
Infraestrutura NFV (NFVI)	

VMs	Gerencia
Virtualização	

Por que NFV?

Relatório ACG Research+DELL, MWC 2017

What We Found

- □ Significant Design + Architecture Differences
 - Significant VIM <-> NFVI integration
 - 2. Unified P+V network fabric
 - 3. Freedom to innovate on either side of platform interfaces
 - 4. Substantial workflow-oriented automation
- And pervasive software integration between elements and layers
- □ Profound Economic Advantages for the Open Architecture Platform vs. the Tightly Bundled Alternative
 - 5 Yr. Cumulative TCO 53% of TBP
 - Overall Capex 47% less than TBP
 - Overall Opex 57% of TBP
 - New Service Creation Agility 3x Faster & 3x Less Costly than TBP

#1 Agility & Economics

#2 Transição de ecossistema

#3 Complexidade de aplicação

Como era

Como ficou

Complexidade combinatorial

Custo operacional passa a dominar

Implementação NFV na Prática

1. Hardware

- Mínimo 3 Zonas
 - Failure domain
 - Tipicamente são racks
- Em cada rack
 - 2x switch ToR
 - 2x switch BoR
 - 1x Infra
 - Compute/Storage/ Network

	Infrastructure		Cloud	
	Recommended	Minimum	Recommended	Minimum
# Servers	3	3	9	9
CPUs (per server)	2x Intel Xeon E5-2680E5-2690 v4 (2.6GHz, 14-Core) or greater	12 cores	2x Intel Xeon E5-2680E5-2690 v4 (2.6GHz, 14-Core) or greater	12 cores
Memory	256Gb	128Gb	512Gb	256Gb
Spinning Disks	2x 4TB LFF 7.2K 6G SATA	2x 2TB LFF 7.2K 6G SATA	6x 4TB LFF 7.2K 6G SATA	4x 2TB LFF 7.2K 6G SATA
SSD	1x 1.2TB 800GB Intel SSD DC P3600+ Series	1x 400GB PCIe SSD	1x 1.2TB 800GB Intel SSD DC P3600+ Series	1x 400GB PCle SSD
Networking	2x 10GB 1 x BMC	2x 10GB 1 x BMC	4x 10G 1x BMC	4x 10G 1x BMC

(e blades não, por favor)

2. Plataforma

VMware

- Simples
- Robusto
- Licença cara
- Single-vendor
- Em declínio

OpenStack

- Flexível.. e complexo
- Robusto*
- Open Source
- Multiple vendors
- Evolução ativa

Usage				
Instance Name	VCPUs	Disk	RAM	Uptime
horizom	2	32	4GB	3 days, 12 hours
tiny-core-bla	1	8	1GB	4 hours, 50 minutes
horim2	1	8	1GB	4 hours, 48 minutes

Mínimo de 12
 máquinas para HA
 completo

infraestrutura

centralizada

completo

• Ideal para

• (E no edge?)

Opções de Arquitetura

Hiperconvergente

nova-compute

ceph-osd

Control Plane Collection #1

Storage+Compute Convergente

nova-compute

ceph-osd

Control Plane Collection #1

Dedicado

nova-compute

ceph-osd

Control Plane Collection #1

OpenStack

mysql/0				
rabbitmq-server/0				
keystone/0				
openstack-dashboard/0				
ceph/0				
cinder/0				
glance/0				
ceilometer/0				
cinder-ceph/0				
neutron-ovs				
ceph-osd				
nova-compute				

mysql/1		
rabbitmq-server/1		
keystone/1		
openstack-dashboard/1		
nova-cloud-controller/1		
cinder/1		
ceilometer/1		
mongodb/1		
ceph-radosgw/1		
neutron-ovs		
ceph-osd		
nova-compute		

mysql/2				
rabbitmq-server/2				
ceph/2				
openstack-dashboard/2				
nova-cloud-controller/2				
glance/2				
mongodb/2				
cinder-ceph/2				
ceph-radosgw/2				
neutron-ovs				
ceph-osd				
nova-compute				

... (min x9)

Infra

MAAS

Juju/0

ELK/0

MAAS
Juju/1
ELK/0

MAAS	
Juju/2	
ELK/0	

Baremetal

Virtual Machine

Linux Container (LXC)

Estudo de caso Telco NFV

Componentes

- Canonical Ubuntu, OpenStack, MAAS, Juju, Ceph, KVM
- Cisco SDN (ACI) Spine/Leaf, conectividade 25Gb
- Huawei Hardware Compute/Storage
- Dell Hardware Compute/Storage

Arquitetura

- Hiperconvergente
- Use cases de VNF e TI na mesma infra
- Rede multi-região/país
- Minimum Compute Flavours
- Storage Ceph Block & Swift Object

Serviços Gerenciados Canonical

- Carrier Grade Bootstack
- Add-on Telco SLA

Use Cases

- Nokia vEPC
- vIMS

Canonical BootStack

Destaques da Arquitetura

- OpenStack Mitaka
 - Juju, MAAS, Canonical OpenStack Charms
- Ubuntu 16.04 LTS
- Arquitetura padrão Foundation, mais:
 - Funcionalidade requerida pelas VNFs
 - SR-IOV, NUMA & CPU Pinning, explicit Huge Pages
 - Integração Keystone e Active Directory
 - Replicação de imagens entre sites
- DPDK na próxima iteração

Configuração do hardware

Туре	CPU	Метогу	Disk	# of NICs
Compute	2*14 согеѕ	512GB	1*800GB PCIe SSD, 8*4TB Sata	1*BMC, 4*25GB (bonded x2)
Management	1*8 cores	128GB	2*4TB SATA	1*BMC 4*25GB (bonded x2)

Obrigado!

Para perguntas e discussão posterior:

kiko+openstack@canonical.com

CANONICAL

Horizontal NFVI

An NFVI must be able to run multiple use cases

with VNFs from multiple vendors

Vertical NFVI

One NFVI, one vendor

Vertical NFVI

(bigger, more expensive, PNF)

V CT CTCCT T TT

	Horizontal	Vertical
Design & Architecture	Customer- defined	Vendor- supplied
SLA model	Multi-vendor	Single-vendor
Software	Multiple VNFs, multiple vendors	Single VNF vendor
Hardware	Commodity can source from any certified vendor	Who knows?

Horizontal

Design & CustomerArchitecture defined

SLA model Multi-vendor

Upshot:

With Horizontal NFVI, you own the design — and the SLA

Intermission: Geology of VNFs

Yesterday: Lift and Shift

Tomorrow: Virtualized

The future: Cloud Native

We are mostly here □

Yesterday: Lift and Shift

Tomorrow: Virtualized

The future: Cloud Native

RTOS, homegrown Linux

Legacy automation

Customized hypervisor

Partially scale-out

Mostly commodity Linux

Some common automation

Customized hypervisor

Fully scale-out

Commodity Linux

Standardized automation

Standard hypervisor

Scale-up

RTOS, homegrown Linux

Legacy automation

Customized hypervisor

Partially scale-out

Mostly commodity Linux

Some common automation

Customized hypervisor

Fully scale-out

Commodity Linux

Standardized automation

Standard hypervisor

2 pairs of HA VMs

VxWorks

Virtual SD card mounts

Custom hypervisor & NIC tuning, 24 vCPU

Up to 8 VMs

Linux

Vendor-provided VNF manager

Custom hypervisor kernel, also tuning

Fully scale-out

Ubuntu Linux

Generic VNFM

Standard hypervisor

Canonical OpenStack: Infrastructure

Role	Component	Details
Physical Provisioning	MAAS	Provides DHCP & PXE Automated hardware inventory & config
Service Modeling	Juju	Installation, config, upgrade and management of infra & control plane components
Systems Management	Landscape	Managed upgrades & compliance reporting
Log Aggregation	ELK	Centralizes logs, provides structured searching and dashboards for analysis
Monitoring & Alerting	Nagios	Tracks service availability and key metrics into SPOG with flexible, built-in alert integration
Capacity Planning	Prometheus	Tracking & forecasting of available capacity

Canonical OpenStack: Core Components

Role	Component	Details
Instance Storage	bcache-backed DAS & Ceph options	bcache-backed local storage for high-IOPS service with best economics; Ceph available for use by legacy workloads
Core Block Storage	Ceph with bcache	Always deployed and made available as default Cinder backend. Additional storage backends available as options.
Object Storage	Swift	For use cases where first-class Object Storage is required, Swift is always deployed.
Networking	OVS or vendor SDN	OpenVSwitch as default SDN, with additional SDN options for telco requirements
Hypervisor	KVM & LXD	Dual hypervisor options ensure maximum compatibility for legacy applications, and maximum density for cloud-native

