

Generative Information Retrieval

SIGIR 2024 tutorial - Section 2

Yubao Tang^a, Ruqing Zhang^a, **Zhaochun Ren**^b, Jiafeng Guo^a and **Maarten de Rijke**^c https://generative-ir.github.io/

July 14, 2024

 $^{^{\}it a}$ Institute of Computing Technology, Chinese Academy of Sciences & UCAS

^b Leiden University

^c University of Amsterdam

Definitions & Preliminaries

Section 2:

Generative retrieval: Definition

Generative retrieval (GR) aims to directly generate the identifiers of information resources (e.g., docids) that are relevant to an information need (e.g., an input query) in an autoregressive fashion

Autoregressive formulation

$$P(x_n|x_1,x_2,\ldots,x_{n-1})$$

Autoregressive models

Decoder-only

Autoregressive models

Decoder-only

Encoder-decoder

Autoregressive models

Generative retrieval: Definition

GR usually exploits a Seq2Seq encoder-decoder architecture to generate a ranked list of docids for an input query, in an autoregressive fashion

Revisit the key idea

Two basic operations in GR

• Indexing: To memorize information about each document, a GR model should learn to associate the content of each document with its corresponding docid

Two basic operations in GR

- Indexing: To memorize information about each document, a GR model should learn to associate the content of each document with its corresponding docid
- Retrieval: Given an input query, a GR model should return a ranked list of candidate docids by autoregressively generating the docid string

Indexing: Formulation

Given:

- A corpus of documents *D*;
- A corresponding docid set *I*_D;

Indexing: Formulation

Given:

- A corpus of documents D;
- A corresponding docid set I_D;

The indexing task directly takes each original document $d \in D$ as input and generates its docid $id \in I_D$ as output in a straightforward Seq2Seq fashion, i.e.,

$$\mathcal{L}_{\textit{Indexing}}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta),$$

where θ denotes the model parameters, and $P(id \mid d; \theta)$ is the likelihood of each docid id given the document d

7

Retrieval: Formulation

Given:

- A query set Q;
- A set of relevant docids I_Q ;

Retrieval: Formulation

Given:

- A query set Q;
- A set of relevant docids I_Q ;

The retrieval task aims to generate a ranked list of relevant docids $id^q \in I_Q$ in response to a query $q \in Q$ with the indexed information, i.e.,

$$\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta),$$

where $P(id^q \mid q; \theta)$ is the likelihood of each relevant docid id^q given the query q

8

Training

Following the above two basic operations, i.e., indexing and retrieval, a single model can be optimized directly in an end-to-end manner towards a global objective,

Training

Following the above two basic operations, i.e., indexing and retrieval, a single model can be optimized directly in an end-to-end manner towards a global objective,

$$\mathcal{L}_{\textit{Global}}(\textit{Q}, \textit{D}, \textit{I}_{\textit{D}}, \textit{I}_{\textit{Q}}; \theta) = \mathcal{L}_{\textit{Indexing}}(\textit{D}, \textit{I}_{\textit{D}}; \theta) + \mathcal{L}_{\textit{Retrieval}}(\textit{Q}, \textit{I}_{\textit{Q}}; \theta)$$

g

Training: An example

Joint learning the indexing and retrieval tasks

Inference

• Once such a GR model is learned, it can be used to generate candidate docids for a test query q_t , all within a single, unified model,

$$w_t = GR_{\theta}(q_t, w_0, w_1, \ldots, w_{t-1}),$$

where w_t is the t-th token in the docid string and the generation stops when decoding a special EOS token

Inference

 Once such a GR model is learned, it can be used to generate candidate docids for a test query q_t, all within a single, unified model,

$$w_t = GR_{\theta}(q_t, w_0, w_1, \ldots, w_{t-1}),$$

where w_t is the t-th token in the docid string and the generation stops when decoding a special EOS token

 The docids generated with the top-K highest likelihood (joint probability of generated tokens within a docid) form a ranking list in descending order

11

Unfortunately, there is no natural identifier for each document!

Traditional information retrieval

Generative retrieval

Traditional information retrieval

Brutus → 1 2 4 11 31 45 173 174 Caesar → 1 2 4 5 6 16 57 132 ... Calpurnia → 2 31 54 101 Document features As an entry

Generative retrieval

How to design docids for documents?

• Possible design choices

• Shall we use randomized numbers or codes as docids?

- Shall we use randomized numbers or codes as docids?
- If not, how to obtain proper identifiers for documents?
 - Titles, URLs or ?

- Shall we use randomized numbers or codes as docids?
- If not, how to obtain proper identifiers for documents?
 - Titles, URLs or ?
- Would the choices of different docids affect the model performance (e.g., effectiveness, capacity, etc.)?
 - Long (e.g., 728 hash code) vs. Short docids (e.g., n-grams)
 - Single (e.g., title or URL) vs. Multiple docids (e.g., multiple keywords)

- Shall we use randomized numbers or codes as docids?
- If not, how to obtain proper identifiers for documents?
 - Titles, URLs or ?
- Would the choices of different docids affect the model performance (e.g., effectiveness, capacity, etc.)?
 - Long (e.g., 728 hash code) vs. Short docids (e.g., n-grams)
 - Single (e.g., title or URL) vs. Multiple docids (e.g., multiple keywords)

We will tackle these questions in Section 3!

Research questions (2): Training approaches

Joint learning process of the indexing and retrieval tasks

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data
- How to learn heterogeneous tasks well within a single model?
 - Different data distributions
 - Different optimization objectives

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data
- How to learn heterogeneous tasks well within a single model?
 - Different data distributions
 - Different optimization objectives
- How to handle a dynamically evolving document collection?
 - Internal index: model parameters
 - High computational costs: re-training from scratch every time the underlying corpus is updated

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data
- How to learn heterogeneous tasks well within a single model?
 - Different data distributions
 - Different optimization objectives
- How to handle a dynamically evolving document collection?
 - Internal index: model parameters
 - High computational costs: re-training from scratch every time the underlying corpus is updated

We will tackle these questions in Section 4!

Research questions (3): Inference strategies

The generation process is different from general language generation

- How to generate valid docids?
 - Limited docids vs. free generation

- How to generate valid docids?
 - Limited docids vs. free generation
- How to organize the docids for large scale corpus?
 - Data structure for docids over millions of documents

- How to generate valid docids?
 - Limited docids vs. free generation
- How to organize the docids for large scale corpus?
 - Data structure for docids over millions of documents
- How to generate a ranked list of docids for a query?
 - One-by-one generation: likelihood probabilities
 - One-time generation: directly decoding a sequence of docids

- How to generate valid docids?
 - Limited docids vs. free generation
- How to organize the docids for large scale corpus?
 - Data structure for docids over millions of documents
- How to generate a ranked list of docids for a query?
 - One-by-one generation: likelihood probabilities
 - One-time generation: directly decoding a sequence of docids

We will tackle these questions in Section 5!

Research questions (4): Applications

How to employ generative retrieval models in different downstream tasks?

Research questions (4): Applications

How to employ generative retrieval models in different downstream tasks?

We will tackle this question in Section 6!

References i

- N. De Cao, G. Izacard, S. Riedel, and F. Petroni. Autoregressive entity retrieval. In *International Conference on Learning Representations*, 2021.
- L. Heck and S. Heck. Zero-shot visual slot filling as question answering. *arXiv* preprint *arXiv*:2011.12340, 2020.
- J. D. M.-W. C. Kenton and L. K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of NAACL-HLT*, pages 4171–4186, 2019.
- T. Murayama. Dataset of fake news detection and fact verification: a survey. arXiv preprint arXiv:2111.03299, 2021.
- Y. Tay, V. Q. Tran, M. Dehghani, J. Ni, D. Bahri, H. Mehta, Z. Qin, K. Hui, Z. Zhao, J. Gupta, T. Schuster, W. W. Cohen, and D. Metzler. Transformer memory as a differentiable search index. In *Advances in Neural Information Processing Systems*, volume 35, pages 21831–21843, 2022.