

SAR TEST REPORT

FCC ID: 2ADINN5001TL

Product: LTE mobile phone

Model No.: N5001L

Additional Model: N5001TL, A4L, A3L

Trade Mark: NUU

Report No.: TCT171020E002

Issued Date: Oct. 23, 2017

Issued for:

Sun Cupid Technology (HK) Ltd. 16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Kowloon

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,
Shenzhen, Guangdong, China

TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab..

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification				
2.	Facilities and Accreditations	5			
	2.1.FACILITIES				
	2.2.LOCATION	5			
	2.3.Environment Condition	5			
3.	Test Result Summary	6			
4.	EUT Description	7			
5.	RF Exposure Limit				
6.	SAR Measurement System Configuration	10			
	6.1.SAR MEASUREMENT SET-UP	10			
	6.2.E-FIELD PROBE	11			
	6.3.PHANTOM				
	6.4. DEVICE HOLDER	12			
	6.5. DATA STORAGE AND EVALUATION	13			
	6.6. Position of the wireless device in relation to the Phantom 14				
	6.7. TISSUE DIELECTRIC PARAMETERS	17			
	6.8.TISSUE-EQUIVALENT LIQUID PROPERTIES				
	6.9.SYSTEM CHECK	20			
7.	Measurement Procedure	22			
8.	Conducted Output Power				
9.	Tune-up power olerance	42			
10.	. Exposure Position Consideration	43			
	10.1. EUT ANTENNA LOCATION	43			
11.	. SAR Test Results Summary	44			
	11.1. RESULTS OVERVIEW OF GSM850	44			
	11.2. RESULTS OVERVIEW OF GSM1900				
	11.3. RESULTS OVERVIEW OF UMTS BAND II	46			
	11.4. RESULTS OVERVIEW OF UMTS BAND IV				
	11.5. RESULTS OVERVIEW OF UMTS BAND V	48			
	11.6. RESULTS OVERVIEW OF LTE BAND II	49			

٦	CT	通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT171020E002	
	11.7.	RESULTS OVERVIEW OF LTE BAND IV)
	11.8.	RESULTS OVERVIEW OF LTE BAND V	
	11.9.	RESULTS OVERVIEW OF LTE BAND VII	>
	11.10.	RESULTS OVERVIEW OF LTE BAND XII	3
	11.11.	RESULTS OVERVIEW OF LTE BAND IV 54	Ļ
	11.12.	RESULTS OVERVIEW OF WIFI 2.4G 56	j
	11.13.	STAND-ALONE SAR TEST EXCLUSION 57	7
	11.14.	SIMULTANEOUS TRANSMISSION POSSIBILITIES	3
	11.15.	SAR SUMMATION SCENARIO	
	11.16.	MEASUREMENT UNCERTAINTY (450MHz-3GHz)65	5
	11.17.	TEST EQUIPMENT LIST 67	
4	Annex A:	System Check 68	
	Annex B:	Measurement results	
	nnex C:	Calibration reports 68	
		SAR SYSTEM VALIDATION	
	_	The Check Data of Impedance and Return Loss 68	
		Photo documentation69	

1. Test Certification

Report No.: TCT171020E002

Product:	LTE mobile phone
Model No.:	N5001L,
Additional Model No.	N5001TL, A4L, A3L
Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Kowloon
Manufacturer:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Kowloon
Date of Test:	May 24 – Sep. 19, 2017
Applicable Standards:	FCC 47 CFR §2.1093 ANSI Std C95.1-2005: Safety Level swith Respect to Human Exposure to Radio Frequency ElectromagneticFields,3kHz to 300GHz. IEEE1528-2013:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate in the Human Head from Wireless Communications Devices: Measurement Techniques RSS-102: Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands(Issue 5 March 2015) KDB447498 D01:General RF Exposure Guidance v06 KDB865664 D01:SAR measurement 100MHz to 6GHz v01r04 KDB865664 D02:RF Exposure Reporting v01r02. KDB648474D04: Head set SAR v01r03 KDB941225 D01:3G SAR Procedures v03r01 KDB248227 D01:802.11 wi-fi SAR v02r02 KDB941225 D05:SAR for LTE devices v02r05 KDB941225 D05: SAR for LTE Devices v02r05

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Aero Liu.	Date:	Sep. 19, 2017
	Aero Liu	_	(0)
Reviewed By:	Jon Ken	Date:	Oct. 23, 2017
	Joe Zhou		(0)
Approved By:	Tomsin	Date:	Oct. 23, 2017
	Tomsin		

2. Facilities and Accreditations

2.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen Tongce Testing Lab.. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

2.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China Environment Condition:

2.3. Environment Condition:

Temperature:	18°C ~25°C		
Humidity:	35%~75% RH		
Atmospheric Pressure:	1011 mbar	((0))	((0))

Page 5 of 70

3. Test Result Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows: <Highest Reported standalone SAR Summary>

Band	Position	MAX Reported SAR _{1g} (W/kg)
GSM850	Head	0.753
	Body&Hotspot 10mm	0.783
00044000	Head	0.673
GSM1900	Body&Hotspot 10mm	0.500
UMTS Band II	Head	0.709
UMI S Band II	Body&Hotspot 10mm	0.697
LIMTC Dand IV	Head	0.465
UMTS Band IV	Body&Hotspot 10mm	0.524
UMTS Band V	Head	0.710
	Body&Hotspot 10mm	0.477
LTE Band II	Head	0.469
	Body&Hotspot 10mm	0.797
LTE Dand IV	Head	0.726
LTE Band IV	Body&Hotspot 10mm	0.722
LTE Band V	Head	0.540
	Body&Hotspot 10mm	0.297
LTE Band VII	Head	0.649
LIE Dallu VII	Body&Hotspot 10mm	0.414
LTE Pand VII	Head	0.674
LTE Band XII	Body&Hotspot 10mm	0.658
LTE Band VVII	Head	0.541
LTE Band XVII	Body&Hotspot 10mm	0.510
Wi-Fi2.4G	Head	0.771
VVI-FIZ.4G	Body&Hotspot 10mm	0.528

Note:

- 1. The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCC KDB 690783 D01 v01r03, and scalar SAR summation of all possible simultaneous transmission scenarios are < 1.6W/kg.
- 2. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.
- 3. This EUT owns two SIM cards, after we perform the pretest for these two SIM card; we found the SIM 1 is the worst case, so its result is recorded in this report.

Page 6 of 70

4. EUT Description

Product Name:	LTE mobile phone			
Model:	N5001L,			
Additional Model:	N5001TL, A4L, A3L			
Hardware version:	110SFM788P0A2V0			
Software version :	N5001L-AM-01			
Trade Mark:		argachla Batt		
Power Supply:	3.8 VDC/2000mAh Rech	largeable ball	ery	
Device Operating Configuration Supporting Mode(s):	GSM850,PCS1900, UN IV ,UMTS Band V,LTE V ,LTE Band VII,,LTE BT	Band II, LTE Band XII,LTE	Band IV,LTE Band Band XVII Wi-Fi,	
Modulation:	GSM(GMSK),UMTS(QPSK/16QAM),LTE(QPSK/16QAM), WiFi(OFDM/CCK),BT(GFSK/π/4-DQPSK/ 8-DPSK)			
Device Class :	Class B, No DTM Mode			
	Band	TX(MHz)	RX(MHz)	
	GSM850	824~849	869~894	
	GSM1900	1850~1910	1930~1990	
	UMTS Band II	1850~1910	1930~1990	
	UMTS Band IV	1710~1755	2110~2155	
	UMTS Band V	824~849	869~894	
Operating Frequency	LTE Band II	1850~1910	1930~1990	
Range(s)	LTE Band IV	1710~1755	2110~2155	
	LTE Band V	824~849	869~894	
	LTE Band VII	2502~2568	2622~2688	
	LTE Band XII	698~716	728~746	
	LTE Band XVII	704~716	734~746	
	Wi-Fi (2.4G)	2412-2462		
	ВТ	24	102~2480	
GPRS class level:	128-190-251(GSM850) 512-661-810(GSM1900) 9262-9400-9538(UMTS Band II) 1312-1413-1513(UMTS Band IV)			
Test Channels (low-mid-high):				

	•
	20450-20525-20600(LTE Band V)
	20850-21100-21350(LTE Band VII)
	23060-23095-23130(LTE Band XII)
	23780-23790-23800(LTE Band XVII)
	1-6-11(Wi-Fi 2.4G)
	0-39-78(BT)
	0-19-39(BLE)
Power Source:	3.8 VDC/2000mAh Rechargeable Battery

Models difference:

N5001L, N5001TL, A4L, A3L Only the model name and color are different, the others are the same, so the test data is executed at N5001L

Note: The report LTE band2/4/5/7 data is used in 2ADINN5001L reported test data.

RF Exposure Limit

Type Exposure	SAR (W/kg)
Type =xpeedite	Uncontrolled Exposure Limit
Spatial Peak SAR (averaged over any 1 g of tissue)	1.60
Spatial Peak SAR (hands/wrists/feet/ankles averaged over 10g)	4.00
Spatial Peak SAR (averaged over the whole body)	0.08

Note:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

 The Spatial Average value of the SAR averaged over the whole body.

 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the
- 2.
- 3. shape of a cube) and over the appropriate averaging time.

6. SAR Measurement System Configuration

6.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System (VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch; it sends an "Emergency signal" to the robot controller that to stop robot's moves A computer operating Windows XP.

OPENSAR software Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles to validate the proper functioning of the system.

KUKA SAR Test Sysytem Configuration

6.2. E-field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by MVG).

The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

This probe has a built in optical surface detection system to prevent from collision with phantom.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE5		
Serial Number	SN 07/15 EP248		
Frequency Range of Probe	0.45 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1:R1=0.218M Ω Dipole 2:R3=0.217M Ω Dipole 3:R3=0.215M Ω		

Photo of E-Field Probe

6.3. Phantom

The SAM Phantom SAM120 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC IEC 62209-1, IEC 62209-2:2010.

The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections.

Body SAR testing also used the flat section between the head profiles.

Name: COMOSAR IEEE SAM PHANTOM

S/N: SN 19/15 SAM 120 Manufacture: MVG

Report No.: TCT171020E002

SAM Twin Phantom

6.4. Device Holder

In combination with the Generic Twin Phantom SAM120, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications.

The device holder can be locked at different phantom locations (left head, right head, flat phantom).

COMOSAR Mobile phone positioning system

6.5. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	0

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the millimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

```
With Vi = compensated signal of channel i (i = x, y, z)
Ui = input signal of channel i (i = x, y, z)
cf = crest factor of exciting field (MVG parameter)
dcpi = diode compression point (MVG parameter)
```

E-field probes: Ei = (Vi / Normi · ConvF)1/2

From the compensated input signals the primary field data for each channel can be evaluated:

Page 13 of 70

Report No.: TCT171020E002

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Etot = (Ex2+ EY2+ Ez2)1/2

The primary field data are used to calculate the derived field units.

SAR = (Etot) $2 \cdot \sigma / (\rho \cdot 1000)$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

6.6. Position of the wireless device in relation to the phantom

Handset Reference Points

Ppwe = Etot2 / 3770 or Ppwe = $Htot2 \cdot 37.7$

With Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Wt Width of the handset at the level of the acoustic

Wb Width of the bottom of the handset

A Midpoint of the width wt of the handset at the level of the acoustic output

B Midpoint of the width wb of the bottom of the handset

Positioning for Cheek / Touch

Positioning for Ear / 15° Tilt

Body Worn Accessory Configurations

To position the device parallel to the phantom surface with either keypad up or down.

To adjust the device parallel to the flat phantom.

To adjust the distance between the device surface and the flat phantom to 15mm or holster surface and the flat phantom to 0 mm.

Illustration for Body Worn Position

Ireless Router (Hotspot) Configurations

Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W >

9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Illustration for Hotspot Position

Limb-worn device

A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device. Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 9. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom.

If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

Test position for limb-worn devices

Page 16 of 70

6.7. Tissue Dielectric Parameters

Report No.: TCT171020E002

The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Table shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials

Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Liquid Type (σ)	± 5% Range	Permittivity (ε)	± 5% Range
300	Head	0.87	0.83~0.91	45.3	43.04~47.57
450	Head	0.87	0.83~0.91	43.5	41.33~45.68
835	Head	0.90	0.86~0.95	41.5	39.43~43.58
900	Head	0.97	0.92~1.02	41.5	39.43~43.58
1800-2000	Head	1.40	1.33~1.47	40.0	38.00~42.00
2450	Head	1.80	1.71~1.89	39.2	37.24~41.16
3000	Head	2.40	2.28~2.52	38.5	36.58~40.43
5800	Head	5.27	5.01~5.53	35.3	33.54~37.07
300	Body	0.92	0.87~0.97	58.2	55.29~61.11
450	Body	0.94	0.89~0.99	56.7	53.87~59.54
835	Body	0.97	0.92~1.02	55.2	52.44~57.96
900	Body	1.05	1.00~1.10	55.0	52.25~57.75
1800-2000	Body	1.52	1.44~1.60	53.3	50.64~55.97
2450	Body	1.95	1.85~2.05	52.7	50.07~55.34
3000	Body	2.73	2.60~2.87	52.0	49.40~54.60
5800	Body	6.00	5.70~6.30	48.2	45.79~50.61

(εr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

Page 17 of 70

6.8. Tissue-equivalent Liquid Properties

P							
Test Date yy/mm/dd	Temp ℃	Tissue Type	Measured Frequency (MHz)	εr	σ(s/m)	Range of εr ±	Range of σ ±5%
			725	41.59	0.86	39.81~44.00	0.85~0.93
2017-09-19	21.6°C	750H	735	41.57	0.87	39.81~44.00	0.85~0.93
			750	41.35	0.89	39.81~44.00	0.85~0.93
			725	53.89	1.00	52.73~58.28	0.91~1.01
2017-09-19	21.6°C	750B	735	53.70	1.00	52.73~58.28	0.91~1.01
			750	53.52	1.00	52.73~58.28	0.91~1.01
			825	40.34	0.91	39.52~43.68	0.86~0.95
2017-06-10	21.6°C	835H	835	40.33	0.92	39.43~43.58	0.86~0.95
			850	40.11	0.94	39.43~43.58	0.87~0.97
(.6)		(.c)	825	54.04	0.98	52.44~57.96	0.92~1.02
2017-06-10	21.6°C	835B	835	53.93	0.99	52.44~57.96	0.92~1.02
			850	53.69	1.01	52.44~57.96	0.94~1.04
			1710	39.95	1.34	38.10~42.10	1.28~1.42
	. (.c)		1730	39.87	1.36	38.10~42.10	1.29~1.43
2017-06-15	21.6°C	1800H	1750	39.69	1.39	38.10~42.10	1.30~1.44
			1800	39.48	1.44	38.00~42.00	1.33~1.47
			1710	53.24	1.45	50.83~56.18	1.39~1.53
			1730	53.39	1.47	50.83~56.18	1.41~1.55
2017-06-15	21.6°C	1800B	1750	53.19	1.49	50.73~56.07	1.42~1.56
			1800	52.97	1.54	50.64~55.97	1.44~1.60
			1850	39.93	1.37	38.00~42.00	1.33~1.47
			1880		1.40		1.33~1.47
2017-05-24	21.6°C	1900H		39.91 39.98		38.00~42.00	
			1900		1.41	38.00~42.00	1.33~1.47
			1910	39.97	1.42	38.00~42.00	1.33~1.47
			1850	53.23	1.49	50.64~55.97	1.44~1.60
2017-05-24	21.6°C	1900B	1880	53.36	1.53	50.64~55.97	1.44~1.60
			1900	53.37	1.56	50.64~55.97	1.44~1.60
			1910	53.37	1.57	50.64~55.97	1.44~1.60
			2410	39.22	1.78	37.34~41.26	1.67~1.85
2017-06-17	21.6°C	2450H	2435	39.25	1.77	37.24~41.16	1.70~1.88
			2450 2460	39.24	1.76	37.24~41.16	1.71~1.89
				39.20	1.76	37.24~41.16	1.72~1.90
			2410 2435	52.72	1.92	50.16~55.44 50.07~55.34	1.81~2.00
2017-06-17	21.6°C	2450B	2450	52.75	1.92	50.07~55.34	1.84~2.04 1.85~2.05
			2460	52.74 52.70	1.91 1.91	50.07~55.34	1.86~2.06
			2510	38.87	1.93	37.05~40.95	1.86~2.06
			2535	38.58	1.93	37.05~40.95	1.86~2.06
2017-06-08	21.6°C	2600H	2560	38.98	2.02	37.05~40.95	1.86~2.06
			2600	38.87	1.93	37.05~40.95	1.86~2.06

	9.90~55.11	2.05~2.27
2017-06-08 21.6°C 2600B 2560 52.01 2.09 49	9.90~55.11	2.05~2.27
2600 52.50 2.02 49	9.90~55.11	2.05~2.27

6.9. System Check

Report No.: TCT171020E002

The SAR system must be validated against its performance specifications before it is deployed. When SAR probe and system component or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissue-equivalent media for system validation.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the OPENSAR system.

System Check Set-up

				기 			''	_		
				Verif	ication Results					
	System		Target SAR (1	W) (+/-10%	6)	Measure (Norma 1V	lized to	Liquid	Took Date	
	Check	1-g (mW/g)			Range of ±10% 10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date	
	750H	8.52	7.67~9.37	5.67	5.10~6.24	7.840	5.370	21.6°C	2017/09/19	
	835H	9.82	8.84~10.80	6.35	5.72~6.99	9.700	6.150	21.6°C	2017/0919	
	1800H	37.09	33.38~40.80	19.77	17.93~21.75	39.980	20.600	21.6°C	2017/06/15	
	1900H	38.93	35.04~42.82	20.27	18.45~22.55	39.980	21.070	21.6°C	2017/05/24	
	2450H	53.41	48.07~58.75	23.95	21.56~26.35	53.930	24.530	21.6°C	2017/06/17	
	2600H	56.88	51.20~62.56	24.92	22.43~27.41	53.180	23.430	21.6°C	2017/06/08	
	750B	8.52	7.67~9.37	5.74	5.17~6.31	9.054	6.097	21.6°C	2017/06/18	
	835B	9.41	8.47~10.35	6.22	5.99~6.84	10.150	6.450	21.6°C	2017/06/10	
)	1800B	38.03	34.23~41.83	20.69	18.62~22.76	41.560	21.720	21.6°C	2017/06/15	

1900B	38.73	34.86~42.60	20.48	18.43~22.53	39.330	20.940	21.6°C	2017/05/24	
2450B	51.39	46.25~56.53	23.63	21.27~25.99	54.330	23.330	21.6°C	2017/06/17	
2600B	54.54	49.09~59.99	24.37	21.94~26.80	57.860	25.600	21.6°C	2017/06/08	
Note: All SAR values are normalized to 1W forward power.									

Comparing to the original SAR value provided by MVG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Section 10 of this report.

Page 21 of 70

7. Measurement Procedure

Conducted power measurement

For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Read the WWAN RF power level from the base station simulator.

For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. Connect EUT RF port through RF cable to the power meter or spectrum analyser, and measure WLAN/BT output power.

Conducted power measurement

Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.

Place the EUT in positions as Appendix B demonstrates.

Set scan area, grid size and other setting on the MVG software.

Measure SAR results for the highest power channel on each testing position.

Find out the largest SAR result on these testing positions of each band.

Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power reference measurement Area scan Zoom scan Power drift measurement

Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The MVG software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Extraction of the measured data (grid and values) from the Zoom Scan.

Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).

Generation of a high-resolution mesh within the measured volume.

Interpolation of all measured values form the measurement grid to the high-resolution grid

Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

Calculation of the averaged SAR within masses of 1g and 10g.

Page 22 of 70

Report No.: TCT171020E002

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties

Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r03 quoted below.

quoted below.						
			≤ 3 GHz	> 3 GHz		
Maximum distance fro (geometric center of pr			$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle surface normal at the n			30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan s	Maximum zoom scan spatial resolution: Δxzoom, Δyzoom			$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$		
	grid Δz _{Zoom} (n>1): between subsequer points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR.

Page 23 of 70

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

SAR Averaged Methods

In MVG, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In MVG measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for

Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100KHz to 6GHz ,when the highest measurement 1-g SAR within a frequency band is <1.5W/kg, the extensive SAR measurement uncertainty analysis described IEEE Std 1528-2013 is not required in SAR report submitted for equipment approval.

Page 24 of 70

Report No.: TCT171020E002

8. Conducted Output Power

GSM 850 (SIM1)		Averaged ower (dBr	•	Calaulatian	Source Based time Power(dBn		-
Channel	128	190	251	Calculation (dB)	128	190	251
Frequency	824.2	836.6	848.8		824.2	836.6	848.8
GSM (GMSK, Voice)	32.92	32.88	32.86	-9.03	23.89	23.85	23.83
GPRS (GMSK, 1-slot)	32.21	32.13	32.15	-9.03	23.18	23.10	23.12
GPRS (GMSK, 2-slot)	31.57	31.59	31.58	-6.02	25.55	25.57	25.56
GPRS (GMSK, 3-slot)	30.38	30.36	30.35	-4.26	26.12	26.10	26.09
GPRS (GMSK, 4-slot)	29.89	29.86	29.88	-3.01	26.88	26.85	26.87
EGPRS (GMSK, 1-slot)	29.05	29.02	29.03	-9.03	20.02	19.99	20.00
EGPRS (GMSK, 2-slot)	28.33	28.36	28.31	-6.02	22.31	22.34	22.29
EGPRS (GMSK, 3-slot)	27.26	27.22	27.23	-4.26	23.00	22.96	22.97
EGPRS (GMSK, 4-slot)	26.68	26.53	26.55	-3.01	23.67	23.52	23.54
I KO)	l .	(O)	•	((0)	l .	(,

GSM 850 (SIM2)		Averaged ower (dBn	•	Onlawlatia a	Source Based time Average Power(dBm)			
Channel	128	190	251	Calculation (dB)	128	190	251	
Frequency	824.2	836.6	848.8		824.2	836.6	848.8	
GSM (GMSK, Voice)	32.92	32.88	32.86	-9.03	23.89	23.85	23.83	
GPRS (GMSK, 1-slot)	32.21	32.13	32.15	-9.03	23.18	23.10	23.12	
GPRS (GMSK, 2-slot)	31.57	31.59	31.58	-6.02	25.55	25.57	25.56	
GPRS (GMSK, 3-slot)	30.38	30.36	30.35	-4.26	26.12	26.10	26.09	
GPRS (GMSK, 4-slot)	29.89	29.86	29.88	-3.01	26.88	26.85	26.87	
EGPRS (GMSK, 1-slot)	29.05	29.02	29.03	-9.03	20.02	19.99	20.00	
EGPRS (GMSK, 2-slot)	28.33	28.36	28.31	-6.02	22.31	22.34	22.29	
EGPRS (GMSK, 3-slot)	27.26	27.22	27.23	-4.26	23.00	22.96	22.97	
EGPRS (GMSK, 4-slot)	26.68	26.53	26.55	-3.01	23.67	23.52	23.54	

Note: 1) The conducted power of GSM850 is measured with RMS detector.

2) Frame-averaged output power was calculated from the measured burst-averaged output power byconverting the slot powers into linear units and calculating the energy over 8 timesolts.

3)The bolded GPRS 4Tx slots mode was selected for SAR testing according the highest Source Based time Average Power table.

Page 25 of 70

GSM 1900 (SIM1)	Burst-Ave	eraged outp (dBm)	out Power			Based time Power(dBm	
Channel	512	661	810	Calculation (dB)	512	661	810
Frequency	1850.2	1880.0	1909.8		1850.2	1880.0	1909.8
GSM (GMSK, Voice)	30.15	30.21	30.13	-9.03	21.12	21.18	21.10
GPRS (GMSK, 1-slot)	29.65	29.62	29.66	-9.03	20.62	20.59	20.63
GPRS (GMSK, 2-slot)	28.86	28.92	28.88	-6.02	22.84	22.90	22.86
GPRS (GMSK, 3-slot)	27.28	27.36	27.32	-4.26	23.02	23.10	23.06
GPRS (GMSK, 4-slot)	26.88	26.96	26.93	-3.01	23.87	23.95	23.92
EGPRS (GMSK, 1-slot)	27.95	27.98	27.96	-9.03	18.92	18.95	18.93
EGPRS (GMSK, 2-slot)	27.05	27.08	27.07	-6.02	21.03	21.06	21.05
EGPRS (GMSK, 3-slot)	26.10	26.12	26.11	-4.26	21.84	21.86	21.85
EGPRS (GMSK, 4-slot)	25.35	25.32	25.33	-3.01	22.34	22.31	22.32

GSM1900 (SIM2)	Burst-Ave	eraged outp (dBm)	out Power		Source Based time Average Power(dBm)			
Channel	128	190	251	Calculation (dB)	128	190	251	
Frequency	1850.2	1880.0	1909.8		1850.2	1880.0	1909.8	
GSM (GMSK, Voice)	29.83	29.98	29.97	-9.03	20.80	20.95	20.94	
GPRS (GMSK, 1-slot)	29.25	29.33	29.38	-9.03	20.22	20.30	20.35	
GPRS (GMSK, 2-slot)	28.66	28.62	28.68	-6.02	22.64	22.60	22.66	
GPRS (GMSK, 3-slot)	27.23	27.28	27.22	-4.26	22.97	23.02	22.96	
GPRS (GMSK, 4-slot)	26.62	26.73	26.52	-3.01	23.61	23.72	23.51	
EGPRS (GMSK, 1-slot)	27.35	27.37	27.39	-9.03	18.32	18.34	18.36	
EGPRS (GMSK, 2-slot)	26.85	26.88	26.87	-6.02	20.83	20.86	20.85	
EGPRS (GMSK, 3-slot)	26.02	26.03	26.09	-4.26	21.76	21.77	21.83	
EGPRS (GMSK, 4-slot)	25.23	25.28	25.25	-3.01	22.22	22.27	22.24	

Note: 1) The conducted power of GSM1900 is measured with RMS detector.

- 2) Frame-averaged output power was calculated from the measured burst-averaged output power byconverting the slot powers into linear units and calculating the energy over 8 timesolts.
- 3)The bolded GPRS 4Tx slots mode was selected for SAR testing according the highest Source Based time Average Power table.

Page 26 of 70

Band	W	CDMA Band	HII	V	/CDMA Band	d V
Channel	9262	9400	9538	4132	4182	4233
Frequency	1852.4	1880.0	1907.6	826.4	836.4	846.6
RMC 12.2Kbps	21.58	21.52	21.56	22.40	22.42	22.35
HSDPA Subtest-1	21.21	21.41	21.30	22.12	22.23	22.28
HSDPA Subtest-2	21.19	20.52	20.62	21.52	21.51	21.32
HSDPA Subtest-3	21.10	20.25	20.11	21.32	21.35	21.48
HSDPA Subtest-4	21.02	20.02	20.32	20.54	20.55	20.62
HSUPA Subtest-1	21.32	20.75	20.42	20.72	20.60	20.83
HSUPA Subtest-2	21.02	20.45	20.10	21.58	21.82	21.32
HSUPA Subtest-3	21.15	20.23	20.20	21.31	21.33	21.22
HSUPA Subtest-4	20.52	20.15	20.11	21.53	21.26	21.82
HSUPA Subtest-5	20.95	20.15	20.11	21.28	21.16	21.28

Band		WCDMA Band IV	
Channel	1312	1413	1513
Frequency	1712.4	1732.6	1752.6
RMC 12.2Kbps	22.02	22.12	22.16
HSDPA Subtest-1	21.51	21.52	21.55
HSDPA Subtest-2	21.82	21.71	21.43
HSDPA Subtest-3	21.72	21.51	21.43
HSDPA Subtest-4	21.61	21.72	21.58
HSUPA Subtest-1	21.46	21.38	21.31
HSUPA Subtest-2	21.51	21.61	21.42
HSUPA Subtest-3	21.48	21.32	21.33
HSUPA Subtest-4	21.32	21.44	22.38
HSUPA Subtest-5	21.36	21.43	21.31

		WLAN 2.4	G				
Mode		802.11b		802.11g			
Channel	1	6	11	1	6	11	
Frequency	2412	2437	2462	2412	2437	2462	
Average Power (dBm)	14.22	14.33	14.31	13.34	13.64	13.92	
Mode	(0)	302.11n(HT20	0)	802.11n(HT40)			
Channel	1	6	11	3	6	9	
Frequency	2412	2437	2462	2422	2437	2452	
Average Power (dBm)	13.43	13.52	13.64	12.08	12.05	12.34	

Bluetooth									
Mode		1Mbps		2Mbps					
Channel	0	39	78	0	39	78			
Frequency	2402	2441	2480	2402	2441	2480			
Average Power (dBm)	3.50	3.39	2.88	2.33	2.16	1.76			
Mode		3Mbps			BLE				
Channel	0	39	78	0	20	39			
Frequency	2402	2441	2480	2402	2440	2480			
Average Power (dBm)	2.34	2.16	1.75	/	1	1			

LTE Band 2 part

Conducted Power of LTE Band II										
Dan derilde	Madulatian	DD -i	RB	Channel	Channel	Channel				
Bandwidth	Modulation	RB size	offset	18607	18900	19193				
	(.c.)	0	20.67	21.40	21.09					
		1	3	20.94	20.81	20.68				
	o Dou		5	20.86	21.56	21.60				
	QPSK		0	21.20	21.47	21.34				
	(c)	3	2	20.99	21.28	20.73				
			3	21.29	20.94	21.38				
		6	0	21.19	21.28 21.17	21.30				
1.4MHz			0	21.57	21.17	21.08				
		10)	3	21.07	21.29	21.41				
			5	21.18	20.74	21.55				
16QAM	16QAM		0	21.38	20.73	20.77				
	(6)	3	2	20.61	21.32	21.10				
			3	20.99	20.79	21.47				
		6	0	21.30	21.14	21.25				
Donduidth	Madulation	DD oizo	RB	Channel	Channel	Channel				
Bandwidth	Modulation	RB size	offset	18615	18900	19185				
			0	20.84	21.08	21.45				
		1	7	21.44	21.54	20.73				
			14	21.45	21.09	21.00				
	QPSK		0	21.12	20.89	21.49				
		8	4	20.77	21.34	21.20				
			7	20.79	21.19	20.86				
OML!-		15	0	21.16	20.75	20.87				
3MHz			0	21.41	21.30	21.58				
		1	7	21.47	21.53	20.62				
			14	21.47	21.17	20.93				
	16QAM		0	21.38	20.76	21.26				
		8	4	21.45	20.62	21.33				
			7	20.86	21.28	21.26				
		15	0	21.10	21.39	21.02				

Conducted Power of LTE Band II									
Dan dool dab	Madulatian	DD sins	RB	Channel	Channel	Channel			
Bandwidth	Modulation	RB size	offset	18625	18900 21.18	19175			
			0	20.85	21.18	20.61			
		1	13	21.00	20.72	21.49			
		((0))	24	21.25	20.88	20.64			
	QPSK		0	20.99	20.92	21.42			
		12	6	21.28	21.17	21.57			
			13	20.76	21.58	20.81			
EMILL-		25	0	20.91	20.99	21.55			
5MHz			0	21.32	21.17	20.68			
		1	13	20.84	21.18	21.48			
		((0))	24	21.31	20.68	21.50			
	16QAM		0	21.42	21.02	20.94			
		12	6	21.55	21.43	21.09			
			13	20.68	21.45	20.73			
	(60)	25	0	21.24	20.70	21.21			
Bandwidth	Modulation	DD size	RB	Channel	Channel	Channel			
Danuwium	Modulation	RB size	offset	18650	18900	19150			
			0	20.79	20.70	20.87			
		1	25	21.44	20.65	21.10			
			49	21.24	21.26	21.04			
	QPSK		0	20.75	20.86	21.48			
	(,0)	25	13	20.99	20.73	20.75			
			25	20.74	21.35	21.35			
40MU=		50	0	20.93	20.84	20.75			
10MHz			0	21.24	21.03	21.58			
			25	21.17	20.83	21.06			
			49	21.09	21.36	20.73			
	16QAM		0	20.68	21.56	21.41			
		25	13	20.87	21.58	20.84			
			25	20.74	20.72	21.06			
		50	0	21.14	20.68	21.12			

			RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	18675	18900	19125
			0	20.82	21.29	20.81
		1.0	38	20.82	21.52	21.55
			74	20.72	20.88	21.37
	QPSK		0	20.87	21.17	20.74
		36	18	21.27	20.62	21.13
	(60)		39	21.12	21.11	21.34
458811-		75	0	20.92	20.94	21.53
15MHz			0	21.31	20.64	21.29
		1	38	20.91	21.36	20.69
			74	20.83	20.98	21.57
	16QAM		0	21.01	20.75	21.24
		36	18	21.54	21.31	21.53
	$(C_{\mathcal{C}})$		39	21.24	20.66	21.28
		75	0	20.89	20.66	20.90
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel
Danuwium	Modulation	KD SIZE	offset	18700	18900	19100
		10	0	21.29	21.57	20.85
		1	50	20.84	20.86	21.19
			99	21.05	21.58	21.16
	QPSK		0	21.35	20.61	20.76
		50	25	21.51	21.56	21.53
			50	20.94	21.31	20.82
20MU=		100	0	21.07	21.08	20.72
20MHz		(,0)	0	20.70	21.26	21.23
		1	50	21.18	21.36	20.82
			99	21.43	20.73	21.13
	16QAM		0	21.05	20.95	20.66
	(6)	50	25	21.02	21.04	21.53
			50	20.66	21.00	21.04

LTE Band 4 part

Conducted Power of LTE Band IV									
D I. 2.101	Maril Ladia	DD d	RB	Channel	Channel	Channel			
Bandwidth	Modulation	RB size	offset	19957 2039	20393	20175			
		0	20.66	20.76	20.80				
	1	3	20.95	21.23	21.03				
			5	20.47	21.12	20.55			
	QPSK		0	20.66	20.56	21.13			
	((C))	3	2	20.80	21.12	20.82			
			3	21.19	20.94	20.66			
4 48811-		6	0	20.52	20393 20.76 21.23 21.12 20.56 21.12 20.94 20.65 21.15 20.85 20.44 20.68 20.98 21.07 21.26 Channel 20175 21.24 20.69 20.34 20.80 20.94 20.45 20.83 21.25 21.16 20.33 20.67	20.80			
1.4MHz			0	20.42	21.15	20.65			
		(10)	3	20.38	20.85	20.66			
			5	20.82	20.44	20.62			
16QAM	16QAM		0	20.47	20.68	21.25			
	(6)	3	2	20.47	20.98	21.21			
			3	20.42	21.07	20.51			
		6	0	20.84	21.26	21.14			
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel			
Danuwium	Modulation	RD SIZE	offset	19965	20175	20385			
			0	20.35	21.24	21.12			
		1	7	20.65	20.69	20.35			
			14	20.95	20.34	20.66			
	QPSK		0	21.18	20.80	20.30			
		8	4	21.21	20.94	20.83			
			7	20.30	20.45	20.83			
2MU~		15	0	20.85	20.83	21.26			
3MHz			0	21.19	21.25	20.44			
		1	7	20.95	21.07	21.15			
16QAM		14	20.45	21.25	20.69				
	16QAM		0	20.79	21.16	20.79			
		8	4	21.16	20.33	20.46			
			7	20.54	20.67	20.31			
		15	0	20.49	20.83	20.81			

Conducted Power of LTE Band IV									
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel			
Bandwidth	Modulation	RB SIZE	offset	19975 20175	20375				
			0	21.08	20.48	20.92			
		(10)	13	21.10	20.70	20.58			
			24	21.16	20.89	20.58			
	QPSK		0	20.50	20.50	21.02			
		12	6	21.20	21.23	20.55			
	(20)		13	20.36	21.19	20.79			
EML!-		25	0	21.13	21.19	20.55			
5MHz			0	21.08	20.59	21.07			
		1	13	20.89	20.58	20.83			
			24	20.80	20.60	20.89			
	16QAM		0	20.36	20.46	20.46			
		12	6	20.44	20.36	21.08			
	(C_{i})		13	20.35	21.17	20.64			
		25	0	20.58	20.67	21.15			
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel			
Danuwium	Modulation	ND SIZE	offset	20000	20175	20350			
			0	20.31	20.32	21.27			
		1	25	20.45	20.92	20.33			
			49	21.11	20.33	20.99			
	QPSK		0	20.59	21.03	20.41			
		25	13	20.34	21.08	20.45			
			25	21.26	20.91	20.56			
10MHz		50	0	20.52	21.09	20.32			
IUIVITZ		((0,)	0	20.87	21.18	20.32			
		1	25	20.74	20.96	21.05			
1			49	21.16	21.19	21.14			
	16QAM		0	20.70	20.89	21.24			
	(0)	25	13	20.70	20.60	20.38			
			25	21.03	20.58	20.51			
		50	0	20.69	20.60	20.36			

Conducted Power of LTE Band IV									
Donalus alth	Modulation	DD size	RB	Channel	Channel	Channel			
Bandwidth	Modulation	RB size RB offset	offset	20025	20175	20325			
			0	20.93	20.82	20.30			
		1	38	20.84	20.61	20.32			
			74	21.17	21.24	21.12			
	QPSK		0	21.13	21.14	20.58			
		36	18	21.14	20.50	21.07			
			39	21.10	20.43	20.89			
15MHz		75	0	20.46	20.43	21.13			
ISIVITZ			0	20.87	21.13	20.55			
		1	38	20.31	20.58	20.38			
			74	20.37	21.23	21.19			
	16QAM		0	21.11	21.05	20.87			
		36	18	20.63	20.44	20.73			
			39	20.83	20.78	21.20			
		75	0	20.74	20.63	21.05			
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel			
Danuwium	Modulation	KD SIZE	offset	20050	20175	20300			
		(.c)	0	20.83	21.22	21.20			
		1	50	20.82	20.90	21.22			
			99	21.34	21.37	21.35			
	QPSK		0	21.23	20.31	20.80			
	(C_{i})	50	25	21.25	21.26	21.17			
			50	21.22	20.72	20.93			
20MHz		100	0	20.52	20.92	20.51			
ZUIVITZ			0	21.17	20.66	20.81			
		10	50	20.38	20.45	20.35			
			99	20.42	20.41	20.83			
	16QAM		0	20.60	21.15	20.96			
	(.ci)	50	25	21.02	20.42	21.27			
			50	21.23	21.10	20.43			
		100	0	20.75	20.88	20.54			

LTE Band 5 part

Conducted Power of LTE Band V									
Dan desidile	Madulatian	DD sins	RB	Channel	Channel	Channel			
Bandwidth Modulation	RB size	offset	20470	20525	20643				
		(.c.)	0	20.85	21.32	21.31			
		1	3	21.65	21.59	21.51			
			5	21.53	20.92	21.43			
	QPSK		0	21.62	21.37	21.35			
	(c)	3	2	21.46	21.54	21.77			
			3	21.77	21.54	21.59			
4 48411		6	0	21.43	20.81	21.17			
1.4MHz			0	20.85	21.38	20.93			
		(10)	3	21.55	21.71	21.17			
			5	20.92	21.56	20.99			
	16QAM	3	0	21.63	21.28	20.86			
	(.c.)		2	20.84	21.52	21.68			
			3	20.94	21.78	21.38			
		6	0	21.22	21.09	21.03			
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel			
Sandwidth	Modulation	RD SIZE	offset	20415	20525	20635			
			0	21.29	21.42	21.77			
		1	7	20.93	21.65	21.69			
			14	21.08	21.09	21.32			
	QPSK		0	21.46	21.78	21.26			
		8	4	21.63	21.50	20.91			
			7	20.94	21.64	21.03			
2MU-		15	0	20.84	21.33	20.87			
3MHz			0	21.14	21.74	21.27			
		1	7	21.52	21.51	21.56			
			14	21.20	21.17	21.75			
	16QAM		0	21.44	20.96	21.36			
		8	4	21.34	21.19	21.74			
			7	20.84	21.69	20.95			
		15	0	20.97	21.05	21.40			

Conducted Power of LTE Band V								
Dan desil dib	Madulatian	DD sins	RB	Channel	Channel	Channel		
Bandwidth	Modulation	RB size	offset	20425	20525	20625		
			0	21.74	21.23	21.36		
		1	13	21.12	21.75	21.02		
			24	20.95	21.16	21.78		
	QPSK		0	21.49	21.71	21.02		
		12	6	21.27	21.32	21.56		
			13	20.81	21.00	21.25		
ENALL-		25	0	21.31	20.90	20.95		
5MHz			0	21.05	21.32	21.28		
		1	13	20.81	21.04	20.97		
		$(C_{\mathcal{O}})$	24	20.96	21.27	21.36		
	16QAM		0	20.90	21.35	20.98		
		12	6	21.48	21.53	21.18		
			13	21.41	21.31	21.51		
		25	0	21.05	21.48	21.71		

Conducted Power of LTE Band V

Danaduui altka	altha Madulation	DD oi=o	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	20450	20525	20600
			0	21.08	20.98	21.56
		1	25	21.43	21.58	20.84
	(C)		49	21.06	21.41	20.87
	QPSK		0	21.03	21.56	21.29
		25	13	21.36	20.82	21.23
			25	21.59	21.66	21.56
40МП-		50	0	20.90	21.65	20.94
10MHz			0	20.88	21.68	21.66
		1	25	21.38	20.90	21.09
	(.c.)		49	21.61	21.78	21.42
	16QAM		0	21.56	21.01	21.61
		25	13	21.78	21.64	20.87
			25	21.02	21.80	21.35
		50	0	20.85	21.63	21.67

Page 36 of 70

LTE Band 7 part

Report No.: TCT171020E002

	T	Jonado	- Tower or	ı		
Bandwidth	Modulation	RB size	RB _			Channel
				20775	21100	21425
				21.36	20.97	21.00
		(10)	13	21.43	20.92	21.03
			24	21.25	20.93	21.33
	QPSK		0	21.32	20.68	21.06
		12	6	21.38	20.57	20.90
			13	offset 20775 21100 0 21.36 20.97 13 21.43 20.92 24 21.25 20.93 0 21.32 20.68 6 21.38 20.57 13 20.79 20.87 0 20.77 21.40 0 21.48 21.48 13 21.09 21.09 24 20.73 20.73 0 20.87 20.87 6 20.93 20.93 13 21.10 21.10 0 21.02 21.02 RB Channel Channel offset 20800 21100 0 21.41 21.42 25 20.79 20.81 49 20.69 21.42 0 21.35 21.18 13 21.50 20.56 25 21.40 20.74 0 20.65 21.37	20.62	
5MHz		25	0	20.77	21.40	21.02
JIIII IZ			0	21.48	21.48	21.48
		(1,0)	13	21.09	21.09	21.09
			24	20.73	20.73	20.73
	16QAM		0	20.87	20.87	20.87
		12	6	20.93	20.93	20.93
	(YO,)		13	21.10	21.10	21.10
		25	0	21.02	21.02	21.02
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channe
Sanuwium	Modulation	KD SIZE	offset	20800	21100	21400
			0	21.41	21.42	21.24
		1	25	20.79	20.81	20.72
			49	20.69	21.42	20.92
	QPSK		0	21.35	21.18	20.93
		25	13	21.50	20.56	21.11
			25	21.40	20.73 2 20.87 2 20.93 2 21.10 2 21.02 2 Channel Ch 21100 2 21.42 2 20.81 2 21.48 2 21.18 2 20.56 2 20.74 2 21.37 2 20.62 2 21.19 2	20.85
10MU-		50	0	20.65	21.37	20.99
10MHz		('C')	0	20.77	20.62	21.14
		1	25	20.95	21.19	21.46
		Ī	49	20.92	20.94	21.25
	16QAM		0	21.35	20.92	20.56
		25	13	20.57	20.57	21.17
			25	21.50	20.73	21.22
		50	0	20.79	20.96	21.10

		Conduct	ted Power	of LTE Band VII			
Damaluui altib	Madulation	DD ains	RB	Channel	Channel	Channel	
Bandwidth	Modulation	RB size	offset	20825	21100	21375	
			0	21.43	20.57	20.60	
		1.0	38	21.02	21.34	21.04	
			74	20.69	20.97	20.80	
	QPSK		0	21.15	21.48	21.09	
		36	18	21.09	21.28	21.31	
	(40)		39	20.67	21.42	21.25	
4EMU=		75	0	20.90	20.98	21.41	
15MHz			0	21.01	20.99	20.75	
		1	38	20.97	20.71	20.83	
			74	20.93	21.50	20.84	
	16QAM		0	20.57	20.70	21.39	
		36	18	20.57	20.80	20.92	
	(,0')		39	20.58	21.06	20.93	
		75	0	20.92	21.39	21.22	
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel	
anuwium	Wodulation	KD SIZE	offset	20850	21100	21350	
		100	0	21.36	21.08	20.94	
		1	50	21.41	20.78	21.42	
			99	21.15	21.49	21.10	
	QPSK		0	20.78	20.65	21.22	
		50	25	20.85	21.29	20.81	
			50	20.92	20.91	20.89	
20MHz		100	0	20.80	21.02	21.22	
ZUIVITIZ		(,0)	0	20.98	21.52	21.14	
		1	50	20.59	20.63	20.78	
			99	21.39	20.78	21.26	
	16QAM		0	20.91	20.72	20.65	
	(0)	50	25	21.25	20.64	20.86	
			50	20.93	20.56	20.68	
		100	0	21.05	20.57	21.03	

LTE Band 12 part

Report No.: TCT171020E002

		Conduct	ed Power of	LTE Band XII		
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channel
Sandwidth	Modulation	KD SIZE	offset	23017	23095	23173
			0	21.97	21.81	21.81
		(10)	3	21.09	21.63	21.86
			5	21.73	21.53	21.62
	QPSK		0	21.11	21.56	21.70
		3	2	21.10	21.81	21.77
			3	21.08	21.55	21.23
4 4MH-		6	0	21.29	21.89	21.85
1.4MHz			0	21.51	21.86	21.58
		10	3	21.73	21.93	21.50
			5	21.96	21.97	21.30
	16QAM		0	20.99	21.50	20.61
		3	2	21.20	21.41	20.76
	(C_{i})		3	21.34	21.40	21.60
		6	0	21.95	21.93	21.91
Dan duui déb	Madulation	DD size	RB	Channel	Channel	Channe
Bandwidth	Modulation	RB size	offset	23025	23095	23165
		(0)	0	21.65	21.71	21.87
		1	7	21.83	21.59	21.94
			14	21.94	21.86	21.61
	QPSK		0	21.57	20.84	21.01
		8	4	21.64	21.00	21.63
			7	21.43	21.32	21.82
08411-		15	0	21.61	21.45	21.89
3MHz		('C')	0	21.85	21.29	21.96
		1	7	21.67	21.58	21.85
			14	21.59	21.61	21.77
	16QAM		0	21.52	21.84	21.50
	(0)	8	4	21.71	21.59	21.14
			7	21.67	21.86	21.17
		15	0	21.80	21.67	21.66

		Conduc	ted Power of	LTE Band XII		
Daw dowielth	Madulatian	DD -:	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	23035	23095	23155
			0	21.09	21.58	21.13
		1	13	21.96	21.31	21.01
		$(C_{\mathcal{O}})$	24	21.84	21.02	21.52
	QPSK		0	21.28	20.73	21.60
		12	6	21.45	20.51	21.15
			13	20.92	21.10	20.84
CA411-		25	13 20.92 21.10 0 21.22 21.31	21.24		
5MHz			0	21.40	21.80	21.58
		1	13	21.35	21.75	21.71
		(C)	24	21.52	22.00	21.25
	16QAM		0	21.56	21.12	20.68
		12	6	21.44	21.04	20.75
			13	20.75	21.59	21.17
	(0)	25	0	21.60	21.79	21.08

Conducted Power of LTE Band XII

Dan duvidtle	Madulation	DD ains	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	23060	23095	23130
			0	21.76	21.66	21.74
		1	25	21.63	21.69	21.71
	(C)		49	21.75	21.81	21.61
	QPSK		0	21.22	20.98	21.15
		25	13	21.14	20.64	20.99
			25	21.10	21.57	21.03
40MH-		50	0	21.28	21.68	21.34
10MHz			0	21.42	21.29	21.09
		1	25	21.13	21.32	21.34
	(G)		49	21.81	21.15	21.64
	16QAM		0	21.64	21.63	21.34
		25	13	21.39	21.55	21.52
			25	21.01	21.28	20.67
		50	0	21.26	21.98	21.75

LTE Band 17 part

Report No.: TCT171020E002

		Conducte	ed Power of	LTE Band XVII		
Bandwidth	Madulation	DD size	RB	Channel	Channel	Channel
Danuwium	Modulation	RB size	offset	23755	23790	23825
			0	21.23	21.99	21.73
		(10)	13	21.10	21.72	21.61
			24	21.23	21.19	21.03
	QPSK		0	20.62	21.14	21.20
		12	6	20.59	20.92	21.75
	(60)		13	20.81	21.27	21.35
EMU-		25	0	21.07	21.09	20.99
5MHz	_		0	20.45	21.05	20.70
		(10)	13	20.80	21.00	20.83
			24	20.64	21.29	21.04
	16QAM		0	20.61	21.37	20.92
		12	6	20.59	21.29	21.27
	('C')		13	20.67	20.74	21.09
		25	0	21.00	21.05	21.21

Conducted Power of LTE Band XVII

Dan duvi dila	Madulation	DD ai=a	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	23780	23790	23800
			0	21.41	21.68	21.36
	(.c.)	1	25	21.35	21.25	21.12
			49	20.70	21.96	21.40
	QPSK		0	20.62	20.73	21.24
		25	13	21.60	21.68	21.58
		(C_{i})	25	20.92	21.71	20.81
40001-		50	0	20.28	21.06	20.93
10MHz			0	20.99	21.09	21.18
		1	25	20.85	21.58	20.36
			49	20.70	20.60	20.88
	16QAM		0	20.62	20.82	20.66
		25	13	20.70	20.71	20.53
			25	20.90	20.03	20.28
		50	0	21.16	21.31	21.74

9. Tune-up power Tolerance

Band	(%0.)	Tune-up po	wer tolerance(dBm)
		GSM	Max output power =32.5dBm±0.5dBm
	OOM/ODDO	1TXslots	Max output power =32.0dBm±0.5dBm
GSM850	GSM/GPRS	2TXslots	Max output power =31.5dBm±0.5dBm
(,G)	(GMSK)	3TXslots	Max output power =30.0dBm±0.5dBm
		4TXslots	Max output power =29.5dBm±0.5dBm
		1TXslots	Max output power =29.0dBm±0.5dBm
CCMOTO	EGPRS	2TXslots	Max output power =28.0dBm±0.5dBm
GSM850	(8-PSK)	3TXslots	Max output power =27.0dBm±0.5dBm
		4TXslots	Max output power =26.5dBm±0.5dBm
		GSM	Max output power =30.0dBm±0.5dBm
	CCM/CDDC	1TXslots	Max output power =29.5dBm±0.5dBm
GSM1900	GSM/GPRS	2TXslots	Max output power =28.5dBm±0.5dBm
	(GMSK)	3TXslots	Max output power =27.0dBm±0.5dBm
		4TXslots	Max output power =26.5dBm±0.5dBm
GSM1900		1TXslots	Max output power =27.5dBm±0.5dBm
	EGPRS	2TXslots	Max output power =27.0dBm±0.5dBm
	(8-PSK)	3TXslots	Max output power =26.0dBm±0.5dBm
		4TXslots	Max output power =25.0dBm±0.5dBm
WCDMA 2		Max output po	wer =21.0dbm±1.0dbm
WCDMA 4			wer =21.5dbm±1.0dbm
WCDMA 5			wer =21.5dbm±1.0dbm
LTE B2			wer =21.0dbm±1.0dbm
LTE B4			wer =21.0dbm±1.0dbm
LTE B7			wer =20.5dbm±1.0dbm
LTE B12		Max output po	wer =21.0dbm±1.0dbm
LTE B17			wer =21.0dbm±1.0dbm
<u> </u>	802	11b	Max output power =13.5±1dbm
2.4G Wi-Fi	802	11g	Max output power =13.0±1dbm
2.4G WI-FI	802.11r	n (HT20)	Max output power =13.0±1dbm
	802.11r	n (HT40)	Max output power =11.5±1dbm
<i></i>	1Mbps	Power	Max output power =3.0dBm±0.5dbm
ВТ	2Mbps	Power	Max output power =2.0dBm±0.5dbm
	3Mbps	Power	Max output power =2.0dBm±0.5dbm

Page 42 of 70

10. Exposure Position Consideration

10.1. EUT Antenna Location

< Rear Side>

			Troui Ciaos			
Mode	Front side	Rear side	Left side	Right side	Top side	Bottom side
2G/3G/4G Antenna	Yes	Yes	Yes	Yes	Yes	No
Wi-Fi/BT Antenna	Yes	Yes	No	Yes	Yes	No

¹⁾ Per KDB941225 D06v01r01, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

11. SAR Test Results Summary

Report No.: TCT171020E002

11.1. Results overview of GSM850

TestPosition	Test channel	Test	_	Value /kg)	Power Drift	Condu cted	Tune-up Limit(dB	Scaled SAR _{1-q}	Scaling
of Head	/Freq.(MHz)	Mode	1-g	10-g	(%)	Power (dBm)	m)	(W/kg)	Factor
Left Head Touched	128/824.2	GPRS 4TS	0.660	0.344	-0.040	29.890	30.000	0.677	1.026
Left Head Tilted 15°	128/824.2	GPRS 4TS	0.618	0.328	1.480	29.890	30.000	0.634	1.026
Right Head Touched	128/824.2	GPRS 4TS	0.734	0.429	4.610	29.890	30.000	0.753	1.026
Right Head Tilted 15°	128/824.2	GPRS 4TS	0.392	0.241	-1.530	29.890	30.000	0.402	1.026
Test Position of Body with	Test channel	Test	_	Value /kg)	Power Drift	Condu cted	Tune-up Limit(dB	Scaled SAR _{1-q}	Scaling
10mm	/Freq.(MHz)	Mode	1-g	10-g	(%)	Power (dBm)	m)	(W/kg)	Factor
		SAR Res	sults for	Hotspot	Exposure	Conditio			1
Front side	128/824.2	GPRS 4TS	0.717	0.407	1.040	29.890	30.000	0.735	1.026
Rear side	128/824.2	GPRS 4TS	0.763	0.433	2.350	29.890	30.000	0.783	1.026
Top side	128/824.2	GPRS 4TS	0.436	0.268	1.920	29.890	30.000	0.447	1.026
Left side	128/824.2	GPRS 4TS	0.440	0.299	-2.700	29.890	30.000	0.451	1.026
Right side	128/824.2	GPRS 4TS	0.140	0.099	-0.320	29.890	30.000	0.144	1.026
							•		

11.2. Results overview of GSM1900

TestPosition	Test channel	Test		Value /kg)	Power Drift	Conducted Power	Tune-up Limit(dB	Scaled SAR _{1-a}	Scalig
of Head	/Freq.(MH z)	Mode	1-g	10-g	(%)	(dBm)	m)	(W/kg)	Factor
Left Head Touched	661/1880	GPRS 4TS	0.522	0.438	0.880	26.960	27.000	0.527	1.009
Left Head Tilted 15°	661/1880	GPRS 4TS	0.425	0.293	4.950	26.960	27.000	0.429	1.009
Right Head Touched	661/1880	GPRS 4TS	0.667	0.585	0.290	26.960	27.000	0.673	1.009
Right Head Tilted 15°	661/1880	GPRS 4TS	0.365	0.248	2.290	26.960	27.000	0.368	1.009
Test Position	Test channel	Test	SAR Value (W/kg)		Power Drift	Conducted	Tune-up	Scaled	Scalig
of Body with 10mm	/Freq.(MH z)	Mode	1-g	10-g	(%)	Power (dBm)	Limit(dB m)	SAR _{1-g} (W/kg)	Factor
		SAR	Results	for Hots	oot Expos	ure Condition			C
Front side	661/1880	GPRS 4TS	0.431	0.328	1.120	26.960	27.000	0.435	1.009
Rear side	661/1880	GPRS 4TS	0.495	0.379	3.280	26.960	27.000	0.500	1.009
Top side	661/1880	GPRS 4TS	0.202	0.138	0.360	26.960	27.000	0.204	1.009
Left side	661/1880	GPRS 4TS	0.128	0.092	1.300	26.960	27.000	0.129	1.009
		GPRS			-11				

11.3. Results overview of UMTS Band II

TestPosition	Test channel	Test	_	Value /kg)	Power Drift	Conducted Power	Tune-u	Scaled SAR _{1-a}	Scalig
of Head	/Freq.(MHz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
Left Head Touched	9262/1852. 4	RMC	0.569	0.328	1.290	21.580	22.000	0.627	1.102
Left Head Tilted 15°	9262/1852. 4	RMC	0.526	0.307	-0.070	21.580	22.000	0.579	1.102
Right Head Touched	9262/1852. 4	RMC	0.382	0.219	-0.400	21.580	22.000	0.421	1.102
Right Head Tilted 15°	9262/1852. 4	RMC	0.644	0.404	3.910	21.580	22.000	0.709	1.102
Test Position of Body with	Test channel	Test	SAR Value (W/kg)		Power Drift		Tune-u	Scaled SAR _{1-q}	Scalig
10mm	/Freq.(MHz	Mode	1-g	10-g	(%)) (dBm)	Limit(d Bm)	(W/kg)	Factor
3		SAR F	Results fo	or Hotspo	t Exposu	re Condition			
Front side	9262/1852. 4	RMC	0.483	0.170	3.230	21.580	22.000	0.601	1.102
Rear side	9262/1852. 4	RMC	0.546	0.264	1.340	21.580	22.000	0.601	1.102
Top side	9262/1852. 4	RMC	0.633	0.308	0.170	21.580	22.000	0.697	1.102
						04.500	22.000	0.004	4 400
Left side	9262/1852. 4	RMC	0.483	0.170	3.230	21.580	22.000	0.601	1.102

11.4. Results overview of UMTS Band IV

TestPosition	Test channel	Test	_	Value /kg)	Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig
of Head	/Freq.(MHz	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
Left Head Touched	1513/1752. 6	RMC	0.430	0.298	1.300	22.160	22.500	0.465	1.081
Left Head Tilted 15°	1513/1752. 6	RMC	0.198	0.116	1.500	22.160	22.500	0.214	1.081
Right Head Touched	1513/1752. 6	RMC	0.276	0.156	-0.440	22.160	22.500	0.298	1.081
Right Head Tilted 15°	1513/1752. 6	RMC	0.196	0.105	-1.250	22.160	22.500	0.212	1.081
Test Position of Body with	Test channel /Freq.(MHz)	Test	SAR Value (W/kg)		Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig
10mm		Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
	Si	AR Result	s for Hot	spot Exp	osure Co	nditionwith 10	mm		
Front side	1513/1752. 6	RMC	0.466	0.321	0.250	22.160	22.500	0.504	1.081
Rear side	1513/1752. 6	RMC	0.485	0.337	-0.630	22.160	22.500	0.524	1.081
Top side	1513/1752. 6	RMC	0.275	0.167	-0.280	22.160	22.500	0.297	1.081
Left side	1513/1752. 6	RMC	0.275	0.177	-1.480	22.160	22.500	0.297	1.081
	•								

11.5. Results overview of UMTS Band V

TestPosition	Test channel	Test		Value /kg)	Power Drift (%)	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig Factor	
of Head	/Freq.(MH z)	Mode	1-g	10-g		(dBm)	Limit(d Bm)	(W/kg)		
Left Head Touched	4182/836. 4	RMC	0.697	0.447	0.860	22.420	22.500	0.710	1.019	
Left Head Tilted 15°	4182/836. 4	RMC	0.631	0.387	1.240	22.420	22.500	0.643	1.019	
Right Head Touched	4182/836. 4	RMC	0.650	0.442	0.100	22.420	22.500	0.662	1.019	
Right Head Tilted 15°	4182/836. 4	RMC	0.315	0.215	-2.180	22.420	22.500	0.321	1.019	
Test Position of	Test channel /Freq.(MH z)	nnel Test q.(MH Mode	SAR Value (W/kg)		Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig	
Body with 10mm			1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor	
		SARI	Results fo	or Hotspo	ot Exposu	re Condition				
Front side	4182/836. 4	RMC	0.444	0.321	1.020	22.420	22.500	0.452	1.019	
Rear side	4182/836. 4	RMC	0.468	0.337	2.400	22.420	22.500	0.477	1.019	
Top side	4182/836. 4	RMC	0.270	0.167	-0.280	22.420	22.500	0.275	1.019	
Left side	4182/836. 4	RMC	0.260	0.177	-3.480	22.420	22.500	0.265	1.019	
Right side	4182/836. 4	RMC	0.152	0.107	-0.180	22.420	22.500	0.155	1.019	

11.6. Results overview of LTE Band II

TestPosition	Test channel	Test		Value 'kg)	Power Drift	Conducted Power	Tune-u p	SAR _{1-q}	Scalig Factor
of Head	/Freq.(MH z)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
Left Head Touched	19100/190 0	20M QPSK 1RB#99	0.355	0.206	-0.520	21.580	22.000	0.391	1.102
Left Head Tilted 15°	19100/190 0	20M QPSK 1RB#99	0.277	0.163	-1.880	21.580	22.000	0.305	1.102
Right Head Touched	19100/190 0	20M QPSK 1RB#99	0.426	0.223	-0.430	21.580	22.000	0.469	1.102
Right Head Tilted 15°	19100/190 0	20M QPSK 1RB#99	0.203	0.121	-1.660	21.580	22.000	0.224	1.102
Left Head Touched	19100/190 0	20M QPSK 50RB#25	0.390	0.226	0.850	21.560	22.000	0.432	1.107
Left Head Tilted 15°	19100/190 0	20M QPSK 50RB#25	0.311	0.183	0.230	21.560	22.000	0.344	1.107
Right Head Touched	19100/190 0	20M QPSK 50RB#25	0.370	0.210	-1.150	21.560	22.000	0.409	1.107
Right Head Tilted 15°	19100/190 0	20M QPSK 50RB#25	0.228	0.136	0.520	21.560	22.000	0.252	1.107
Test	Test		SAR	Value	Power	Conducted	Tune-u	Cooled	
Position of Body with	channel /Freq.(MH	Test Mode	(W/ 1-g	kg) 10-g	Drift (%)	Power (dBm)	p Limit(d	Scaled SAR _{1-g} (W/kg)	Scalig Factor
10mm	z)	CAD D				re Condition	Bm)	(' 3)	
(G_{i})		20M	esuits it	or notspo	t Exposu	re Condition	\cdot C \cdot 1		(,G)
Front side		//////			/				
	19100/190 0	QPSK 1RB#99	0.536	0.378	-1.940	21.580	22.000	0.590	1.102
Rear side		QPSK	0.536	0.378	-1.940	21.580	22.000	0.590	1.102
Rear side Top side	0 19100/190	QPSK 1RB#99 20M QPSK							
	0 19100/190 0 19100/190	QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK	0.699	0.414	-1.840	21.580	22.000	0.770	1.102
Top side	0 19100/190 0 19100/190 0	QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK	0.699	0.414	-1.840	21.580 21.580	22.000	0.770	1.102
Top side Left side	0 19100/190 0 19100/190 0 19100/190	QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK	0.699 0.687 0.120	0.414 0.421 0.068	-1.840 -0.680 -1.720	21.580 21.580 21.580	22.000 22.000 22.000	0.770 0.757 0.132	1.102 1.102 1.102
Top side Left side Right side	0 19100/190 0 19100/190 0 19100/190 0	QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK 1RB#99 20M QPSK 1RB#99	0.699 0.687 0.120 0.082	0.414 0.421 0.068 0.048	-1.840 -0.680 -1.720 -0.210	21.580 21.580 21.580 21.580	22.000 22.000 22.000 22.000	0.770 0.757 0.132 0.090	1.102 1.102 1.102 1.102

Page 49 of 70

		50RB#25							
Left side	19100/190 0	20M QPSK 50RB#25	0.135	0.081	-2.340	21.560	22.000	0.149	1.107
Right side	19100/190 0	20M QPSK 50RB#25	0.085	0.050	-1.220	21.560	22.000	0.094	1.107

11.7. Results overview of LTE Band IV

TestPosition	Test channel	Test		Value /kg)	Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig Factor
of Head	/Freq.(MH z)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	
Left Head Touched	20300/174	20M QPSK 1RB#99	0.532	0.308	-0.210	21.370	21.500	0.548	1.030
Left Head Tilted 15°	20300/174 5	20M QPSK 1RB#99	0.590	0.347	1.770	21.370	21.500	0.608	1.030
Right Head Touched	20300/174 5	20M QPSK 1RB#99	0.705	0.470	0.360	21.370	21.500	0.726	1.030
Right Head Tilted 15°	20300/174 5	20M QPSK 1RB#99	0.608	0.344	1.010	21.370	21.500	0.626	1.030
Left Head Touched	20300/174 5	20M QPSK 50RB#25	0.573	0.332	-0.850	21.260	21.500	0.606	1.057
Left Head Tilted 15°	20300/174 5	20M QPSK 50RB#25	0.303	0.178	2.230	21.260	21.500	0.320	1.057
Right Head Touched	20300/174 5	20M QPSK 50RB#25	0.280	0.167	-1.070	21.260	21.500	0.296	1.057
Right Head Tilted 15°	20300/174 5	20M QPSK 50RB#25	0.521	0.296	0.160	21.260	21.500	0.551	1.057
Test Position of Body with 10mm	Test channel /Freq.(MH z)	Test Mode		Value /kg) 10-g	Power Drift (%)	Conducted Power (dBm)	Tune-u p Limit(d Bm)	Scaled SAR _{1-g} (W/kg)	Scalig Factor
		SAR R	esults fo	r Hotspo	t Exposu	re Condition			
Front side	20300/174	20M QPSK 1RB#99	0.686	0.107	-1.480	21.370	21.500	0.707	1.030
Rear side	20300/174 5	20M QPSK 1RB#99	0.701	0.523	-1.770	21.370	21.500	0.722	1.030
Top side	20300/174 5	20M QPSK 1RB#99	0.098	0.052	-0.840	21.370	21.500	0.101	1.030
Left side	20300/174 5	20M QPSK 1RB#99	0.149	0.088	4.830	21.370	21.500	0.154	1.030
Right side	20300/174 5	20M QPSK 1RB#99	0.089	0.068	1.800	21.370	21.500	0.092	1.030

Page 50 of 70

TC	道测 TESTING CENT	RE TECHNOLOGY					Report No.:	TCT171020	DE002
Front side	20300/174 5	20M QPSK 50RB#25	0.182	0.106	-1.050	21.260	21.500	0.192	1.057
Rear side	20300/174 5	20M QPSK 50RB#25	0.680	0.515	1.800	21.260	21.500	0.719	1.057
Top side	20300/174 5	20M QPSK 50RB#25	0.109	0.059	-1.590	21.260	21.500	0.115	1.057
Left side	20300/174 5	20M QPSK 50RB#25	0.250	0.145	2.870	21.260	21.500	0.264	1.057
Right side	20300/174	20M QPSK	0.150	0.105	2.100	21.260	21.500	0.159	1.057

11.8. Results overview of LTE Band V

TestPosition	Test channel	Test		Value /kg)	Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig
of Head	/Freq.(M Hz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
Left Head Touched	20600/84	10M QPSK 1RB#25	0.393	0.258	1.590	21.580	22.000	0.433	1.102
Left Head Tilted 15°	20600/84 4	10M QPSK 1RB#25	0.382	0.283	-0.060	21.580	22.000	0.421	1.102
Right Head Touched	20600/84 4	10M QPSK 1RB#25	0.437	0.283	0.930	21.580	22.000	0.481	1.102
Right Head Tilted 15°	20600/84 4	10M QPSK 1RB#25	0.342	0.204	-0.290	21.580	22.000	0.377	1.102
Left Head Touched	20600/84 4	10M QPSK 25RB#25	0.499	0.317	-0.910	21.660	22.000	0.540	1.081
Left Head Tilted 15°	20600/84 4	10M QPSK 25RB#25	0.338	0.174	-1.050	21.660	22.000	0.366	1.081
Right Head Touched	20600/84 4	10M QPSK 25RB#25	0.444	0.288	0.300	21.660	22.000	0.480	1.081
Right Head Tilted 15°	20600/84	10M QPSK 25RB#25	0.345	0.206	2.330	21.660	22.000	0.373	1.081
Test Position	Test channel	Test		Value /kg)	Power	Conducted	Tune-u p	Scaled	Scalig
of Body with 10mm	/Freq.(M Hz)	Mode	1-g	10-g	Drift (%)	Power (dBm)	Limit(d Bm)	SAR _{1-g} (W/kg)	Factor
		SAR R	esults fo	r Hotspo	t Exposu	re Condition	, ,		
Front side	20600/84	10M QPSK 1RB#25	0.145	0.104	-0.740	21.580	22.000	0.160	1.102
Rear side	20600/84	10M QPSK 1RB#25	0.256	0.192	-1.090	21.580	22.000	0.282	1.102

Page 51 of 70

TCT	通测检测
	TESTING CENTRE TECHNOLOGY

Top side	20600/84 4	10M QPSK 1RB#25	0.051	0.031	-2.560	21.580	22.000	0.056	1.102
Left side	20600/84 4	10M QPSK 1RB#25	0.034	0.023	-1.350	21.580	22.000	0.037	1.102
Right side	20600/84 4	10M QPSK 1RB#25	0.014	0.008	-0.320	21.580	22.000	0.015	1.102
Front side	20600/84 4	10M QPSK 25RB#25	0.143	0.105	-1.200	21.660	22.000	0.155	1.081
Rear side	20600/84	10M QPSK 25RB#25	0.275	0.192	-1.490	21.660	22.000	0.297	1.081
Top side	20600/84 4	10M QPSK 25RB#25	0.021	0.011	2.250	21.660	22.000	0.023	1.081
Left side	20600/84 4	10M QPSK 25RB#25	0.033	0.022	-0.850	21.660	22.000	0.036	1.081
Right side	20600/84 4	10M QPSK 25RB#25	0.013	0.072	-0.620	21.660	22.000	0.014	1.081

11.9. Results overview of LTE Band VII

TestPosition	Test channel	Test	_	Value 'kg)	Power Drift	Conducted Power	Tune-u p	Scaled	Scalig
of Head	/Freq.(M Hz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	SAR _{1-g} (W/kg)	Factor
Left Head Touched	20850/25 10	20M QPSK -1RB#99	0.648	0.405	-0.510	21.490	21.500	0.649	1.002
Left Head Tilted 15°	20850/25 10	20M QPSK 1RB#99	0.499	0.269	0.120	21.490	21.500	0.500	1.002
Right Head Touched	20850/25 10	20M QPSK 1RB#99	0.599	0.382	3.810	21.490	21.500	0.600	1.002
Right Head Tilted 15°	20850/25 10	20M QPSK 1RB#99	0.492	0.338	1.780	21.490	21.500	0.493	1.002
Left Head Touched	20850/25 10	20M QPSK 50RB#25	0.447	0.321	1.050	21.290	21.500	0.469	1.050
Left Head Tilted 15°	20850/25 10	20M QPSK 50RB#25	0.469	0.211	0.100	21.290	21.500	0.492	1.050
Right Head Touched	20850/25 10	20M QPSK 50RB#25	0.401	0.297	-0.400	21.290	21.500	0.421	1.050
Right Head Tilted 15°	20850/25 10	20M QPSK 50RB#25	0.610	0.269	1.390	21.290	21.500	0.640	1.050
Test Position of Body with	Test channel	Test	_	Value 'kg)	Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig
10mm	/Freq.(M Hz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor

Page 52 of 70

		SAR R	esults fo	r Hotspo	t Exposu	re Condition			
Front side	20850/25 10	20M QPSK 1RB#99	0.400	0.148	3.310	21.490	21.500	0.401	1.002
Rear side	20850/25 10	20M QPSK 1RB#99	0.405	0.043	-4.230	21.490	21.500	0.406	1.002
Top side	20850/25 10	20M QPSK 1RB#99	0.413	0.186	-1.530	21.490	21.500	0.414	1.002
Left side	20850/25 10	20M QPSK 1RB#99	0.172	0.087	-0.340	21.490	21.500	0.172	1.002
Right side	20850/25 10	20M QPSK 1RB#99	0.072	0.037	-0.210	21.490	21.500	0.072	1.002
Front side	20850/25 10	20M QPSK 50RB#25	0.339	0.113	-1.550	21.290	21.500	0.356	1.050
Rear side	20850/25 10	20M QPSK 50RB#25	0.350	0.111	2.310	21.290	21.500	0.367	1.050
Top side	20850/25 10	20M QPSK 50RB#25	0.290	0.140	-1.840	21.290	21.500	0.304	1.050
Left side	20850/25 10	20M QPSK 50RB#25	0.132	0.067	0.270	21.290	21.500	0.139	1.050
Right side	20850/25 10	20M QPSK 50RB#25	0.092	0.037	0.270	21.290	21.500	0.097	1.050

11.10. Results overview of LTE Band XII

TestPosition	Test channel /Freq.(M Hz)	Test		Value 'kg)	Power Drift	Conducted Power (dBm)	Tune-u p	Scaled SAR _{1-q}	Scalig Factor
of Head		Mode	1-g	10-g	(%)		Limit(d Bm)	(W/kg)	
Left Head Touched	23095/70 7.5	10M QPSK 1RB#49	0.645	0.449	0.180	21.810	22.000	0.674	1.045
Left Head Tilted 15°	23095/70 7.5	10M QPSK _1RB#49	0.335	0.237	-0.310	21.810	22.000	0.350	1.045
Right Head Touched	23095/70 7.5	10M QPSK 1RB#49	0.558	0.369	0.070	21.810	22.000	0.583	1.045
Right Head Tilted 15°	23095/70 7.5	10M QPSK 1RB#49	0.281	0.200	1.290	21.810	22.000	0.294	1.045
Left Head Touched	23095/70 7.5	10M QPSK 25RB#25	0.563	0.403	0.280	21.570	22.000	0.622	1.104
Left Head Tilted 15°	23095/70 7.5	10M QPSK 25RB#25	0.266	0.182	2.310	21.570	22.000	0.294	1.104
Right Head Touched	23095/70 7.5	10M QPSK	0.565	0.362	2.570	21.570	22.000	0.624	1.104

Page 53 of 70

TCI	TESTING CENT	RE TECHNOLOGY					Report No.:	TCT171020	E002
]	25RB#25							
Right Head Tilted 15°	23095/70 7.5	10M QPSK 25RB#25	0.312	0.252	0.320	21.570	22.000	0.344	1.104
Test Position of Body with	Test channel	Test		Value /kg)	Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig
10mm	/Freq.(M Hz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
1/4)	SAR R	esults fo	r Hotspo	t Exposu	re Condition	,	(0)	
Front side	23095/70 7.5	10M QPSK 1RB#49	0.513	0.331	0.520	21.810	22.000	0.536	1.045
Rear side	23095/70 7.5	10M QPSK 1RB#49	0.630	0.461	-0.630	21.810	22.000	0.658	1.045
Top side	23095/70 7.5	10M QPSK 1RB#49	0.438	0.307	-1.490	21.810	22.000	0.458	1.045
Left side	23095/70 7.5	10M QPSK 1RB#49	0.342	0.281	-1.790	21.810	22.000	0.357	1.045
Right side	23095/70 7.5	10M QPSK 1RB#49	0.286	0.196	2.350	21.810	22.000	0.299	1.045
Front side	23095/70 7.5	10M QPSK 25RB#25	0.503	0.354	1.440	21.570	22.000	0.555	1.104
Rear side	23095/70 7.5	10M QPSK 25RB#25	0.551	0.368	-0.640	21.570	22.000	0.608	1.104
Top side	23095/70 7.5	10M QPSK 25RB#25	0.426	0.293	-0.350	21.570	22.000	0.470	1.104
Left side	23095/70 7.5	10M QPSK 25RB#25	0.350	0.289	1.250	21.570	22.000	0.386	1.104
Right side	23095/70 7.5	10M QPSK 25RB#25	0.282	0.189	-0.250	21.570	22.000	0.311	1.104

11.11. Results overview of LTE Band IV

TestPosition	Test channel	Test		Value 'kg)	Power Drift	Conducted Power	Tune-u p	Scaled SAR _{1-q}	Scalig
of Head			(dBm)	Limit(d Bm)	(W/kg)	Factor			
Left Head Touched	23790/71 0	10M QPSK 1RB#49	0.482	0.332	3.090	21.960	22.000	0.486	1.009
Left Head Tilted 15°	23790/71 0	10M QPSK 1RB#49	0.235	0.207	1.920	21.960	22.000	0.237	1.009
Right Head Touched	23790/71 0	10M QPSK 1RB#49	0.458	0.319	-0.500	21.960	22.000	0.462	1.009
Right Head Tilted 15°	23790/71 0	10M QPSK 1RB#49	0.281	0.196	-0.990	21.960	22.000	0.284	1.009

Page 54 of 70

TC1	TESTING CEN	TRE TECHNOLOGY					Report No.:	TCT171020	E002
Left Head Touched	23790/71 0	10M QPSK 25RB#25	0.503	0.355	-0.480	21.680	22.000	0.541	1.076
Left Head Tilted 15°	23790/71 0	10M QPSK 25RB#25	0.233	0.132	1.810	21.680	22.000	0.251	1.076
Right Head Touched	23790/71 0	10M QPSK 25RB#25	0.441	0.292	-2.700	21.680	22.000	0.475	1.076
Right Head Tilted 15°	23790/71 0	10M QPSK 25RB#25	0.296	0.138	-1.880	21.680	22.000	0.319	1.076
Test Position of Body with	Test	Test		Value /kg)	Power Drift	Conducted Power	Tune-u	Scaled SAR _{1-q}	Scalig
10mm	/Freq.(M Hz)	Mode	1-g	10-g	(%)	(dBm)	Limit(d Bm)	(W/kg)	Factor
	,	SAR R	esults fo	r Hotspo	t Exposu	re Condition	, ,		
Front side	23790/71 0	10M QPSK 1RB#49	0.337	0.257	2.060	21.960	22.000	0.340	1.009
Rear side	23790/71 0	10M QPSK 1RB#49	0.395	0.286	-1.260	21.960	22.000	0.399	1.009
Top side	23790/71	10M QPSK 1RB#49	0.353	0.262	0.680	21.960	22.000	0.356	1.009
Left side	23790/71 0	10M QPSK 1RB#49	0.242	0.156	1.610	21.960	22.000	0.244	1.009
Right side	23790/71 0	10M QPSK 1RB#49	0.196	0.123	0.520	21.960	22.000	0.198	1.009
Front side	23790/71 0	10M QPSK 25RB#25	0.352	0.262	-0.250	21.680	22.000	0.379	1.076
Rear side	23790/71 0	10M QPSK 25RB#25	0.474	0.351	-1.590	21.680	22.000	0.510	1.076
Top side	23790/71 0	10M QPSK 25RB#25	0.386	0.282	0.250	21.680	22.000	0.416	1.076
Left side	23790/71 0	10M QPSK 25RB#25	0.325	0.269	-0.340	21.680	22.000	0.350	1.076
Right side	23790/71	10M QPSK 25RB#25	0.185	0.112	0.590	21.680	22.000	0.199	1.076

Page 55 of 70

11.12. Results overview of WIFI 2.4G

Report No.: TCT171020E002

1								
Test channel	Test	_	Value 'kg)	Power	Conducte d	Tune- up	Scaled SAR	Scaling
/Freq.(M Hz)	Mode	1-g	10-g	(%)	Power (dBm)	Limit(dBm)	(W/kg)	Factor
6/2437	802.11b	0.741	0.542	0.250	14.330	14.500	0.771	1.040
6/2437	802.11b	0.538	0.502	0.830	14.330	14.500	0.559	1.040
6/2437	802.11b	0.559	0.444	-0.620	14.330	14.500	0.581	1.040
6/2437	802.11b	0.542	0.302	-0.420	14.330	14.500	0.564	1.040
Test channel	Test	_		Power Drift	Conducte d	Tune- up	Scaled SAR _{1-q}	Scaling
Hz)	Wode	1-g	10-g	(%)	(dBm)	dBm)	(W/kg)	Factor
	SAR Re	sults fo	r Hotsp	ot Expos	ure Conditio	n		
6/2437	802.11b	0.270	0.151	1.020	14.330	14.500	0.281	1.040
6/2437	802.11b	0.508	0.306	1.830	14.330	14.500	0.528	1.040
6/2437	802.11b	0.456	0.254	-0.400	14.330	14.500	0.474	1.040
6/2437	802.11b	0.183	0.097	3.160	14.330	14.500	0.190	1.040
	channel /Freq.(M Hz) 6/2437 6/2437 6/2437 Test channel /Freq.(M Hz) 6/2437 6/2437	channel /Freq.(M Hz) Test Mode 6/2437 802.11b 6/2437 802.11b 6/2437 802.11b 6/2437 802.11b Test channel /Freq.(M Hz) SAR Reference 6/2437 802.11b 6/2437 802.11b 6/2437 802.11b 6/2437 802.11b	channel /Freq.(M Hz) Test Mode (W/ 1-g) 6/2437 802.11b 0.741 6/2437 802.11b 0.538 6/2437 802.11b 0.559 6/2437 802.11b 0.542 Test channel /Freq.(M Hz) Test Mode / 1-g SAR Results for 6/2437 6/2437 802.11b 0.270 6/2437 802.11b 0.508 6/2437 802.11b 0.456	channel /Freq.(M Hz) Test Mode (W/kg) 6/2437 802.11b 0.741 0.542 6/2437 802.11b 0.538 0.502 6/2437 802.11b 0.559 0.444 6/2437 802.11b 0.542 0.302 Test channel /Freq.(M Hz) Test Mode / Hz) SAR Value (W/kg) 1-g 10-g SAR Results for Hotsp 6/2437 802.11b 0.270 0.151 6/2437 802.11b 0.508 0.306 6/2437 802.11b 0.456 0.254	Channel /Freq.(M Hz) Test Mode (W/kg) Power Drift (%) 6/2437 802.11b 0.741 0.542 0.250 6/2437 802.11b 0.538 0.502 0.830 6/2437 802.11b 0.559 0.444 -0.620 6/2437 802.11b 0.542 0.302 -0.420 Test channel /Freq.(M Hz) SAR Value (W/kg) Power Drift (%) SAR Results for Hotspot Expos 6/2437 802.11b 0.270 0.151 1.020 6/2437 802.11b 0.508 0.306 1.830 6/2437 802.11b 0.456 0.254 -0.400	Channel /Freq.(M Hz) Test Mode (W/kg) Power (%) d Power (dBm) 6/2437 802.11b 0.741 0.542 0.250 14.330 6/2437 802.11b 0.538 0.502 0.830 14.330 6/2437 802.11b 0.559 0.444 -0.620 14.330 6/2437 802.11b 0.542 0.302 -0.420 14.330 Test channel /Freq.(M Hz) Test Mode (W/kg) Power Orift (%) Conducte d Power (dBm) SAR Results for Hotspot Exposure Conditio 6/2437 802.11b 0.270 0.151 1.020 14.330 6/2437 802.11b 0.508 0.306 1.830 14.330 6/2437 802.11b 0.456 0.254 -0.400 14.330	Channel /Freq.(M Hz) Test Mode (W/kg) Power Drift (%) d Power (dBm) up Limit(dBm) 6/2437 802.11b 0.741 0.542 0.250 14.330 14.500 6/2437 802.11b 0.538 0.502 0.830 14.330 14.500 6/2437 802.11b 0.559 0.444 -0.620 14.330 14.500 Test channel /Freq.(M Hz) Test Mode SAR Value (W/kg) Power Drift (%) Conducte d Power (dBm) Tune-Up Limit(dBm) SAR Results for Hotspot Exposure Condition 6/2437 802.11b 0.270 0.151 1.020 14.330 14.500 6/2437 802.11b 0.508 0.306 1.830 14.330 14.500 6/2437 802.11b 0.456 0.254 -0.400 14.330 14.500	Channel /Freq.(M Hz) Test Mode Hz) (W/kg) Power (dBm) d power (dBm) Limit (dBm) Scaled SAR₁-q (W/kg) 6/2437 802.11b 0.741 0.542 0.250 14.330 14.500 0.771 6/2437 802.11b 0.538 0.502 0.830 14.330 14.500 0.559 6/2437 802.11b 0.559 0.444 -0.620 14.330 14.500 0.581 Test channel /Freq.(M Hz) Test Mode Hz) SAR Value (W/kg) Power Orifit (%) Conducte d Mgm) Tune-Umit (dBm) Scaled SAR₁-g (W/kg) SAR Results for Hotspot Exposure Condition 6/2437 802.11b 0.270 0.151 1.020 14.330 14.500 0.281 6/2437 802.11b 0.508 0.306 1.830 14.330 14.500 0.528 6/2437 802.11b 0.456 0.254 -0.400 14.330 14.500 0.474

11.13. Stand-alone SAR test exclusion

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
 When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

a)Head position

Mode	ode Pmax(dBm) Pmax(mW) Distance(m		Distanco(mm)	f(CH-1)	Calculation	exclusion	SAR test
Wiode	Filiax(ubili)	riliax(IIIVV)	Distance(IIIIII)	i(GHZ)	Result	Threshold	exclusion
ВТ	3.5	2.24	5.00	2.45	0.70	3.00	Yes

Body-Wornposition

Mode	Pmay(dRm)	Pmay(m\//)	Distance(mm)	f(CH2)	Calculation	exclusion	SAR test
Wiode	Piliax(ubili)	i iliax(IIIVV)	Distance(IIIII)	1(0112)	Result	Threshold	exclusion
BT	3.5	2.24	10.00	2.45	0.35	3.00	Yes

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm,where x = 7.5 for 1-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	х	Estimated SAR(W/Kg)
BT	Head	3.5	2.24	5.00	2.45	7.50	0.093
BT	Body	3.5	2.24	10.00	2.45	7.50	0.047

11.14. Simultaneous transmission possibilities

The Simultaneous Transmission Possibilities are as below:

Simultaneous Transmission Possibilities									
Simultaneous Tx Combination	Configuration	Head	Body	Hotspot					
1	GSM/GPRS/UMTS/LTE +Wi-Fi	YES	YES	YES					
2	GSM/GPRS/UMTS/LTE +BT	YES	NO	NO					

Note: The device does not support simultaneous BT and Wi-Fi, because the BT and Wi-Fi share the same antenna and can't transmit simultaneously.

Page 58 of 70

11.15. SAR summation scenario

		Scaled	SAR _{Max}		Wi-Fi	7.		
1	Test Position	GSM850	Wi-Fi (2.4G)	∑ _{1-g} SAR	(5G)	∑ _{1-g} SAR	SPLSP	
	Left Head Touched	0.677	0.771	1.448	N/A	N/A	NA	
/	Left Head Tilted 15°	0.634	0.559	1.193	N/A	N/A	NA	
Head	Right Head Touched	0.753	0.581	1.334	N/A	N/A	NA	
	Right Head Tilted 15°	0.402	0.564	0.966	N/A	N/A	NA	
	Front side	0.735	0.281	1.016	N/A	N/A	NA	
	Rear side	0.783	0.528	1.311	N/A	N/A	NA	
Hotspot	Top side	0.447	0.474	0.921	N/A	N/A	NA	
	Left side	0.451	0.000	0.451	N/A	N/A	NA	
	Right side	0.144	0.190	0.334	N/A	N/A	NA	

Note: Simultaneous Tx Combination of GSM850 and Wi-Fi

		Scaled	SAR _{Max}		Wi-Fi	۲.		
1	Test Position	GSM1900	Wi-Fi (2.4G)	∑ _{1-g} SAR	(5G)	∑ _{1-g} SAR	SPLSP	
	Left Head Touched	0.527	0.771	1.298	N/A	N/A	NA	
	Left Head Tilted 15°	0.429	0.559	0.988	N/A	N/A	NA	
Head	Right Head Touched	0.673	0.581	1.254	N/A	N/A	NA	
	Right Head Tilted 15°	0.368	0.564	0.932	N/A	N/A	NA	
No.	Front side	0.435	0.281	0.716	N/A	N/A	NA	
Hotopot	Rear side	0.500	0.528	1.028	N/A	N/A	NA	
Hotspot	Top side	0.204	0.474	0.678	N/A	N/A	NA	
	Left side	0.129	0.000	0.129	N/A	N/A	NA	
))	Right side	0.089	0.190	0.279	N/A	N/A	NA	

Note: Simultaneous Tx Combination of GSM1900 and Wi-Fi

		Scaled	dSAR _{Max}		Wi-Fi		
Test Position		UMTS Band II	Wi-Fi (2.4G)	∑ _{1-g} SAR	(5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.627	0.771	1.398	N/A	N/A	NA
Head	Left Head Tilted 15°	0.579	0.559	1.138	N/A	N/A	NA
пеац	Right Head Touched	0.421	0.581	1.002	N/A	N/A	NA
(G)	Right Head Tilted 15°	0.709	0.564	1.273	N/A	N/A	NA
	Front side	0.601	0.281	0.882	N/A	N/A	NA
Lloton	Rear side	0.601	0.528	1.129	N/A	N/A	NA
Hotsp ot	Top side	0.697	0.474	1.171	N/A	N/A	NA
01	Left side	0.601	0.000	0.601	N/A	N/A	NA
	Right side	0.144	0.190	0.334	N/A	N/A	NA

Note: Simultaneous Tx Combination of UMTS Band II and Wi-Fi

		Scale	dSAR _{Max}				
	Test Position	UMTS Band IV	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.465	0.771	1.236	N/A	N/A	NA
Head	Left Head Tilted 15°	0.214	0.559	0.773	N/A	N/A	NA
пеац	Right Head Touched	0.298	0.581	0.879	N/A	N/A	NA
	Right Head Tilted 15°	0.212	0.564	0.776	N/A	N/A	NA
	Front side	0.504	0.281	0.785	N/A	N/A	NA
Hoton	Rear side	0.524	0.528	1.052	N/A	N/A	NA
Hotsp ot	Top side	0.297	0.474	0.771	N/A	N/A	NA
Ot .	Left side	0.297	0.000	0.297	N/A	N/A	NA
	Right side	0.135	0.190	0.325	N/A	N/A	NA

Note: Simultaneous Tx Combination of UMTS Band II and Wi-Fi

		Scale	dSAR _{Max}				
Test Position		UMTS Band V	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	\. SAR	
	Left Head Touched	0.710	0.771	1.481	N/A	N/A	NA
Hood	Left Head Tilted 15°	0.643	0.559	1.202	N/A	N/A	NA
Head	Right Head Touched	0.662	0.581	1.243	N/A	N/A	NA
	Right Head Tilted 15°	0.321	0.564	0.885	N/A	N/A	NA
	Front side	0.452	0.281	0.733	N/A	N/A	NA
	Rear side	0.477	0.528	1.005	N/A	N/A	NA
Hotspot	Top side	0.275	0.474	0.749	N/A	N/A	NA
	Left side	0.265	0.000	0.265	N/A	N/A	NA
	Right side	0.155	0.190	0.345	N/A	N/A	NA

Note: Simultaneous Tx Combination of UMTS Band V and Wi-Fi

			dSAR _{Max}				
	Test Position	LTE Band II	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.432	0.771	1.203	N/A	N/A	NA
Head	Left Head Tilted 15°	0.344	0.559	0.903	N/A	N/A	NA
пеац	Right Head Touched	0.469	0.581	1.050	N/A	N/A	NA
	Right Head Tilted 15°	0.252	0.564	0.816	N/A	N/A	NA
(O)	Front side	0.590	0.281	0.871	N/A	N/A	NA
Hotsp	Rear side	0.797	0.528	1.325	N/A	N/A	NA
ot	Top side	0.757	0.474	1.231	N/A	N/A	NA
	Left side	0.149	0.000	0.149	N/A	N/A	NA
	Right side	0.094	0.190	0.284	N/A	N/A	NA

Note: Simultaneous Tx Combination of LTE Band II and Wi-Fi

		Scaled	SAR _{Max}				
1	Test Position	LTE Band IV	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.606	0.771	1.377	N/A	N/A	NA
	Left Head Tilted 15°	0.608	0.559	1.167	N/A	N/A	NA
Head	Right Head Touched	0.726	0.581	1.307	N/A	N/A	NA
, and the second	Right Head Tilted 15°	0.626	0.564	1.190	N/A	N/A	NA
	Front side	0.707	0.281	0.988	N/A	N/A	NA
	Rear side	0.722	0.528	1.250	N/A	N/A	NA
Hotspot	Top side	0.115	0.474	0.589	N/A	N/A	NA
	Left side	0.264	0.000	0.264	N/A	N/A	NA
	Right side	0.106	0.190	0.296	N/A	N/A	NA

Note: Simultaneous Tx Combination of LTE Band IV and Wi-Fi

		Scaled	SAR _{Max}				
7	Test Position	LTE Band V	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.540	0.771	1.311	N/A	N/A	NA
	Left Head Tilted 15°	0.421	0.559	0.980	N/A	N/A	NA
Head	Right Head Touched	0.481	0.581	1.062	N/A	N/A	NA
	Right Head Tilted 15°	0.377	0.564	0.941	N/A	N/A	NA
	Front side	0.16	0.281	0.441	N/A	N/A	NA
	Rear side	0.297	0.528	0.825	N/A	N/A	NA
Hotspot	Top side	0.056	0.474	0.530	N/A	N/A	NA
K\	Left side	0.037	0.000	0.037	N/A	N/A	NA
	Right side	0.015	0.190	0.205	N/A	N/A	NA (

Note: Simultaneous Tx Combination of LTE Band V and Wi-Fi

		Scaled	SAR _{Max}	SAR _{Max}			
-	Test Position	LTE Band VII	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.649	0.771	1.420	N/A	N/A	NA
· ·	Left Head Tilted 15°	0.500	0.559	1.059	N/A	N/A	NA
Head	Right Head Touched	0.600	0.581	1.181	N/A	N/A	NA
	Right Head Tilted 15°	0.640	0.564	1.204	N/A	N/A	NA
	Front side	0.401	0.281	0.682	N/A	N/A	NA
/	Rear side	0.406	0.528	0.934	N/A	N/A	NA
Hotspot	Top side	0.414	0.474	0.888	N/A	N/A	NA
	Left side	0.172	0.000	0.172	N/A	N/A	NA
	Right side	0.097	0.190	0.287	N/A	N/A	NA

Note: Simultaneous Tx Combination of LTE Band VII and Wi-Fi

		Scaled	SAR _{Max}				
٦	Test Position	LTE Band XII	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.674	0.771	1.445	N/A	N/A	NA
	Left Head Tilted 15°	0.350	0.559	0.909	N/A	N/A	NA
Head	Right Head Touched	0.624	0.581	1.205	N/A	N/A	NA
(Right Head Tilted 15°	0.344	0.564	0.908	N/A	N/A	NA
	Front side	0.555	0.281	0.836	N/A	N/A	NA
	Rear side	0.658	0.528	1.186	N/A	N/A	NA
Hotspot	Top side	0.470	0.474	0.944	N/A	N/A	NA
	Left side	0.386	0.000	0.386	N/A	N/A	NA
	Right side	0.311	0.190	0.501	N/A	N/A	NA

Note: Simultaneous Tx Combination of LTE Band XII and Wi-Fi

		Scaled	SAR _{Max}				
1	Test Position	LTE Band XVII	Wi-Fi (2.4G)	∑ _{1-g} SAR	Wi-Fi (5G)	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.541	0.771	1.312	N/A	N/A	NA
Head	Left Head Tilted 15°	0.251	0.559	0.810	N/A	N/A	NA
	Right Head Touched	0.475	0.581	1.056	N/A	N/A	NA
	Right Head Tilted 15°	0.319	0.564	0.883	N/A	N/A	NA
	Front side	0.379	0.281	0.660	N/A	N/A	- NA
1	Rear side	0.510	0.528	1.038	N/A	N/A	NA
Hotspot	Top side	0.416	0.474	0.890	N/A	N/A	NA
	Left side	0.350	0.000	0.350	N/A	N/A	NA
K \	Right side	0.199	0.190	0.389	N/A	N/A	NA

Note: Simultaneous Tx Combination of LTE Band XVII and Wi-Fi

MAX. Σ SAR_{1g} = 1.481W/kg<1.6 W/kg, so the Simultaneous SAR is not required for Wi-Fi and GSM & UMTS & LTE antenna.

Test Position		Scaled	ISAR _{Max}	7 CAD CDIC	SPLSP
		GSM850	BT	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.677	0.093	0.770	NA
Llood	Left Head Tilted 15°	0.634	0.093	0.727	NA
Head	Right Head Touched	0.753	0.093	0.846	NA
	Right Head Tilted 15°	0.402	0.093	0.495	NA

Note: Simultaneous Tx Combination of GSM850 and BT

Test Position		Scaled	ISAR _{Max}	∑ _{1-q} SAR	SPLSP
		GSM1900	BT	∠1-g 3AK	SFLSF
	Left Head Touched	0.527	0.093	0.620	NA
Llood	Left Head Tilted 15°	0.429	0.093	0.522	NA
Head	Right Head Touched	0.673	0.093	0.766	NA
	Right Head Tilted 15°	0.368	0.093	0.461	NA

Note: Simultaneous Tx Combination of GSM1900 and BT

Report	No.: TCT171020E002

Test Position		Scaled	ISAR _{Max}			
		UMTS Band II	ВТ	∑ _{1-g} SAR	SPLSP	
	Left Head Touched	0.627	0.093	0.720	NA	
Llaad	Left Head Tilted 15°	0.579	0.093	0.672	NA	
Head	Right Head Touched	0.421	0.093	0.514	NA	
	Right Head Tilted 15°	0.709	0.093	0.802	NA	

Note: Simultaneous Tx Combination of UMTS Band II and BT

Test Position		Scaled	ISAR _{Max}		
		UMTS Band IV	ВТ	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.465	0.093	0.558	NA
Llaad	Left Head Tilted 15°	0.214	0.093	0.307	NA
Head	Right Head Touched	0.298	0.093	0.391	NA
	Right Head Tilted 15°	0.212	0.093	0.305	NA

Note: Simultaneous Tx Combination of UMTS Band V and BT

Test Position		Scaled	ISAR _{Max}		
		st Position UMTS BT		∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.710	0.093	0.803	NA
Llood	Left Head Tilted 15°	0.643	0.093	0.736	NA
Head	Right Head Touched	0.662	0.093	0.755	NA
	Right Head Tilted 15°	0.321	0.093	0.414	NA

Note: Simultaneous Tx Combination of UMTS Band V and BT

Test Position		Scaled	SAR _{Max}		
		LTE Band II	вт	∑ _{1-g} SAR	SPLSP
(VC)	Left Head Touched	0.432	0.093	0.525	NA
Hood	Left Head Tilted 15°	0.344	0.093	0.437	NA
Head	Right Head Touched	0.469	0.093	0.562	NA
	Right Head Tilted 15°	0.252	0.093	0.345	NA

Note: Simultaneous Tx Combination of LTE Band II and BT

Test Position		Scaled	ISAR _{Max}		
		LTE Band IV	вт	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.606	0.093	0.699	NA
Llood	Left Head Tilted 15°	0.608	0.093	0.701	NA
Head	Right Head Touched	0.726	0.093	0.819	NA
	Right Head Tilted 15°	0.626	0.093	0.719	NA

Note: Simultaneous Tx Combination of LTE Band IV and BT

	_		SAR _{Max}			
Test Position		LTE Band V	ВТ	∑ _{1-g} SAR	SPLSP	
	Left Head Touched	0.540	0.093	0.633	NA	
Llood	Left Head Tilted 15°	0.421	0.093	0.514	NA	
Head	Right Head Touched	0.481	0.093	0.574	NA	
(20)	Right Head Tilted 15°	0.377	0.093	0.470	NA	

Note: Simultaneous Tx Combination of LTE Band V and BT

		Scaled	ISAR _{Max}			
Test Position		LTE Band VII	ВТ	∑ _{1-g} SAR	SPLSP	
	Left Head Touched	0.649	0.093	0.742	NA	
Hood	Left Head Tilted 15°	0.500	0.093	0.593	NA	
Head	Right Head Touched	0.600	0.093	0.693	NA	
	Right Head Tilted 15°	0.640	0.093	0.733	NA	

Note: Simultaneous Tx Combination of LTE Band VII and BT

		Scaled	SAR _{Max}			
Test Position		LTE Band XII	ВТ	∑ _{1-g} SAR	SPLSP	
	Left Head Touched	0.674	0.093	0.767	NA	
Hood	Left Head Tilted 15°	0.350	0.093	0.443	NA	
Head	Right Head Touched	0.624	0.093	0.717	NA	
	Right Head Tilted 15°	0.344	0.093	0.437	NA	

Note: Simultaneous Tx Combination of LTE Band XII and BT

Test Position		Scaled	SAR _{Max}		
		est Position LTE Band XVII		∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.541	0.093	0.634	NA
Hood	Left Head Tilted 15°	0.251	0.093	0.344	NA
Head	Right Head Touched	0.475	0.093	0.568	NA
	Right Head Tilted 15°	0.319	0.093	0.412	NA

Note: Simultaneous Tx Combination of LTE Band XVII and BT

MAX. Σ SAR_{1g}=0.846W/kg<1.6 W/kg, so the Simultaneous SAR is not required for BT and GSM & UMTS & LTE antenna.

Page 64 of 70

11.16. Measurement Uncertainty (450MHz-3GHz)

	<u>() </u>						Std.	Std.	1
Uncertainty Component	Descriptio n	Uncertainty Value(%)	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Unc. 1g(%)	Unc. 10g(%)	V
Measurement system Probe calibration	7.2.1	5.8	N	1	1	1	5.8	5.8	
				1 /2	P.A.	(1-C _{p)} ^{1/2}			~
Axial isotropy	7.2.1.1	3.5	R	$\sqrt{3}$	(1-C _p) ^{1/2}		1.43	1.43	000
Hemispherical isotropy	7.2.1.1	5.9	R	$\sqrt{3}$	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
Boundary Effects	7.2.1.4	1.00	R	$\sqrt{3}$	1	1	0.58	0.58	\propto
Linearity	7.2.1.2	4.70	R	$\sqrt{3}$	1	1	2.71	2.71	×
System detection limits	7.2.1.2	1	R	$\sqrt{3}$	1	(1)	0.58	0.58	\propto
Modulation Response	7.2.1.3	3	N	1	1	1	3.00	3.00	×
Readout Electronics	7.2.1.5	0.5	N	1	1	1	0.50	0.50	00
Response Time	7.2.1.6	0	R	$\sqrt{3}$. 1	1	0.00	0.00	\propto
Integration Time	7.2.1.7	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	\propto
RF Ambient Conditions-Noise	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	×
RF Ambient Conditions-Reflection	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	×
Probe positioned mechanical Tolerance	7.2.2.1	1.4	R	$\sqrt{3}$	1	(1)	0.81	0.81	×
Probe positioning with respect to phantom shell	7.2.2.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	0
Extrapolation interpolation and integration algorithms for Max.SAR evaluation	7.2.4	2.3	R	1	1	1	1.33	1.33	o
Test sample related									
Test sample positioning	7.2.2.4.4	2.6	N	1	1	1	2.60	2.60	×
Device holder uncertainty	7.2.2.4.2 7.2.2.4.3	3	N	1	1	1	3.00	3.00	×
output power variation-SAR drift measurement	7.2.3.6	5	R	$\sqrt{3}$	1	1	2.89	2.89	O.
SAR scaling	7.2.5	2	R	$\sqrt{3}$	1	1	1.15	1.15	×
Phantom and tissue parame	eters								
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	4	R	$\sqrt{3}$	1	1	2.31	2.31	×
uncertainty in SAR correction for deviation (in permittivity and conductivity)	7.2.6	2	N	1	1	0.84	2.00	1.68	0
Liquid conductivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	O
Liquid conductivity -measurement uncertainty	7.2.3.3	4	N	1	0.23	0.26	0.92	1.04	0
Liquid permittivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	0
Liquid permittivity measurement uncertainty	7.2.3.4	5	N	1	0.23	0.26	1.15	1.30	0
Combined standard uncertainty			RSS				10.83	10.54	
Expanded uncertainty (95%CONFIDENCEINTER VAL			k				21.26	21.08	

Uncertainty Component	Description	Uncertainty Value(%)	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. 1g(%)	Std. Unc. 10g(%)	v
Measurement system									
Probe calibration	7.2.1	5.8	N	1	1 1/2	1 1/2	5.8	5.8	∞
Axial isotropy	7.2.1.1	3.5	R	$\sqrt{3}$	(1-C _p) ^{1/2}	(1-C _{p)} ^{1/2}	1.43	1.43	∞
Hemispherical isotropy	7.2.1.1	5.9	R	$\sqrt{3}$	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
Boundary Effects	7.2.1.4	1.00	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	7.2.1.2	4.70	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	7.2.1.2	1	R	$\sqrt{3}$	1	(O1)	0.58	0.58	∞
Modulation Response	7.2.1.3	3	N	1	1	1	0.00	0.00	∞
Readout Electronics	7.2.1.5	0.5	N	1	1	1	0.50	0.50	∞
Response Time	7.2.1.6	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	7.2.1.7	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF Ambient Conditions-Noise	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Conditions-Reflection	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioned mechanical Tolerance	7.2.2.1	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	7.2.2.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation interpolation and integration algorithms for Max.SAR evaluation	7.2.4	2.3	R	1	1	1	1.33	1.33	∞
Dipole									
Deviation of experimental source from numerical source		4	N	1	1	1	4.00	4.00	∞
Input power and SAR drift measurement	7.2.3.6	5	R	√3	1	1	2.89	2.89	∞
Dipole axis to liquid distance		2	R	$\sqrt{3}$	1	1			∞
Phantom and tissue parar	neters								
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
uncertainty in SAR correction for deviation (in permittivity and conductivity)	7.2.6	2	N	1	1	0.84	2.00	1.68	~
Liquid conductivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	∞
Liquid conductivity -measurement uncertainty	7.2.3.3	4	N	1	0.23	0.26	0.92	1.04	∞
Liquid permittivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	∞
Liquid permittivity measurement uncertainty	7.2.3.4	5	N	1.0	0.23	0.26	1.15	1.30	∞
Combined standard uncertainty			RSS				10.15	10.05	
Expanded uncertainty (95%CONFIDENCEINTE RVAL			k				20.29	20.10	

11.17. Test Equipment List

*)	(O)	(20	*)	Calibration			
Test Equipment	Manufacturer	Model	Serial Number	Calibration Date (D.M.Y)	Calibration Due (D.M.Y)		
PC			N/A	N/A	N/A		
Signal Generator	Angilent	N5182A	MY47070282	Sep. 28, 2017	Sep. 27, 2018		
Multimeter	Keithley	Multimeter 2000	4078275	Sep. 28, 2017	Sep. 27, 2018		
Network Analyzer	Agilent	8753E	US38432457	Sep. 28, 2017	Sep. 27, 2018		
Wireless Communication Test Set	R&S	CMU200	111382	Sep. 28, 2017	Sep. 27, 2018		
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 28, 2017	Sep. 27, 2018		
Power Meter	Agilent	E4418B	GB43312526	Sep. 28, 2017	Sep. 27, 2018		
Power Meter	Agilent	E4416A	MY45101555	Sep. 28, 2017	Sep. 27, 2018		
Power Meter	Agilent	N1912A	MY50001018	Sep. 28, 2017	Sep. 27, 2018		
Power Sensor	Agilent	E9301A	MY41497725	Sep. 28, 2017	Sep. 27, 2018		
Power Sensor	Agilent	E9327A	MY44421198	Sep. 28, 2017	Sep. 27, 2018		
Power Sensor	Agilent	E9323A	MY53070005	Sep. 28, 2017	Sep. 27, 2018		
Power Amplifier	PE	PE15A4019	112342	N/A	N/A		
Directional Coupler	Agilent	722D	MY52180104	N/A	N/A		
Attenuator	Chensheng	FF779	134251	N/A	N/A		
E-Field PROBE	MVG	SSE5	SN 07/15 EP248	Apr. 27, 2016	Apr. 26, 2017		
DIPOLE 835	MVG	SID835	SN 16/15 DIP 0G835-369	May. 06, 2015	May. 05, 2018		
DIPOLE 1800	MVG	SID 1800	SN 16/15 DIP 1G800-371	May. 06, 2015	May. 05, 2018		
DIPOLE 1900	MVG	SID1900	SN 16/15 DIP 1G900-372	May. 06, 2015	May. 05, 2018		
DIPOLE 2450	MVG	SID 2450	SN 16/15 DIP 2G450-374	May. 06, 2015	May. 05, 2018		
Limesar Dielectric Probe	MVG	SCLMP	SN 19/15 OCPG71	May. 06, 2015	May. 05, 2018		
Communication Antenna	MVG	ANTA59	SN 39/14 ANTA59	N/A	N/A		
Mobile Phone Position Device	MVG	MSH101	SN 19/15 MSH101	N/A	N/A		
Dummy Probe	MVG	DP66	SN 13/15 DP66	N/A	N/A		
SAM PHANTOM	MVG	SAM120	SN 19/15 SAM120	N/A	N/A		
PHANTOM TABLE	MVG	TABP101	SN 19/15 TABP101	N/A	N/A		
Robot TABLE	MVG	TABP61	SN 19/15 TABP61	N/A	N/A		
6 AXIS ROBOT	KUKA	KR6-R900	501822	N/A	N/A		

Note: 1.N/A means this equipment no need to calibrate

- 2. Each Time means this device need to calibrate every use time
- 3. The dipole was not damaged properly repaired.
- 4. The measured SAR deviates from the calibrated SAR value by less than 10%
- 5. The most recent return-loss result meets the required 20 dB minimum return-loss requirement
- 6. The most recent measurement of the real or imaginary parts of the impedance deviates by less than 5 Ω from the previous measurement.

Annex A: System Check

Report No.: TCT171020E002

(Please See the SAR Measurement Plots of annex A.)

Annex B: Measurement results

(Please See the SAR Measurement Plots of annex B.)

Annex C: Calibration reports

Annex D: SAR SYSTEM VALIDATION

Annex E: The Check Data of Impedance and Return Loss

(Please See the Calibration reports of Annex C and Annex D)

Annex F: Photo documentation

Photo 1: Measurement System OPENSAR

Photo 3: Rear View

Photo 4: Left Head Touched

Photo 5: Left Head Tilted 15°

Photo 7: Right Head Tilted 15°

Photo 8: Towards Phantom 10mm

Photo 9: Towards Ground 10mm 10mm

Photo 10: Right Side 10mm

Photo 11: Left Side10mm

Photo 12: TopSide10mm

Photo 13: Bottom Side10mm

Photo 14: 850MHz Liquid Depth ≥15.0cm

Photo 15: 1800~1900MHz Liquid Depth ≥15.0cm

Photo 16: 2450MHz Liquid Depth ≥15.0cm

****END OF REPORT****