Faculté de Technologie

Département de Technologie. 2eme année

Module de Mécanique des Fluides

EXAMEN DE RATTRAPAGE

Durée : 02 heures. Documents non autorisés

Exercice 1 (05 pts)

Dans le dispositif de la figure ci-contre, le manomètre M indique une pression de 0,15 bar. Trouver la hauteur du liquide de densité δ dans la branche de gauche

On donne :

 $\rho = 10^3 \text{ kg/m}^3$; $g = 9.81 \text{ m/s}^2$; $\delta = 0.9$.

Exercice 2 (09 pts)

Un bassin d'eau est fermé par une porte métallique ABCD, de largeur L, perpendiculaire au plan de la figure ci-contre. Les parties AB et CD sont planes tandis que la partie BC est un quart de cylindre de rayon R.

Déterminer en grandeur et direction les actions de l'eau sur les parties AB, BC et CD.

On donne :

 $\rho = 10^3 \text{ kg/m}^3$; $g = 10 \text{ m/s}^2$; h = 2 m; R = 2 m; a = 1.5 m; L = 4 m.

Exercice 3 (06 pts)

On veut pomper une huile industrielle (ρ_1) à partir d'un réservoir à niveau constant, par une conduite terminée par une buse de diamètre D, avec un débit volume Q_V .

Avec les indications de la figure ci-contre, et en l'absence de frottements, trouver la hauteur d'élévation H.

On donne :

 $\rho = 10^3 \text{ kg/m}^3$; $\rho_1 = 820 \text{ kg/m}^3$; $g = 9.81 \text{ m/s}^2$; $\delta = 13.6$; D = 4 cm; h = 20 cm; $Q_V = 1.5 \text{ l/s}$.

Université A.MIRA de Béjaia

Faculté de Technologie

Département de Technologie. 2eme année

Module de Mécanique des Fluides

EXAMEN DE RATTRAPAGE

-Corrigé-

Appliquons l'EFH aux points (1) à (3) pris deux à deux dans le même liquide.

* Entre (1) et (2) dans δ :

 $p_2 - p_1 = pg\delta h$(a) \angle

* Entre (2) et (3) dans l'eau :

 $p_3 - p_2 = \rho g(1,80 - 1,20) = 0,6\rho g.....(b) \leftarrow Q$ (a) + (b) $\Leftrightarrow p_3 - p_1 = \rho g \delta h + 0,6\rho g$

Or, $p_1 = p_{at}$ et $p_3 - p_{at} = p_{Me}$, mesurée par le manomètre :

soit: $h = (p_{Me}/pg\delta) - 0.6/\delta$ A.N.: h = 0.7 m

Exercice 2 (09 pts)

1°)-Action sur la partie AB : \vec{F}_1

 $F_1 = \rho g Z_{G1} S_1$ OH: $Z_{G1} = OB/2 = h/2$ $S_1 = hL$

Soit: $F_1 = \rho g h^2 L/2$; F_1 est dirigée vers la droite et appliquée en C_1 tel que : $Z_{c1} = 2h/3$

A.N.: $F_1 = 8.10^4 \text{ N}$; $Z_{c1} = 1.33 \text{ m}$. $C_{c1} = 1.33 \text{ m}$.

composante horizontale \vec{F}_{x} et une composante

verticale \vec{F}_z .

 $F_x = \rho g Z_{6x} S_x$ où $Z_{6x} = h + R/2$ $S_x = RL$

Soit: $F_x = \rho g(2h + R)RL/2$; F_x est dirigée vers

la droite et appliquée en Cx tel que :

 $Z_{Gx} = Z_{Gx} + \frac{R_{Gx}^2}{Z_{Gx}}$ où: $R_{Gx}^2 = R^2/12$

A.N. $= F_x = 42.10^4 \text{ N}$; $z_{cx} = 3.71 \text{ m}$.

(p)

ZGX

 $x_6 = (x_{63}S_3 + x_{64}S_4)/(S_3 + S_4)$; où : $x_{63} = R/2$; $S_3 = hR$; $x_{64} = 0.5756R$; $S_4 = \pi R^2/4$. A.N.: $F_7 = 52.3.10^4$ N; $x_6 = 1.62$ m.

A.N.: $F_z = 52,3.10^4 \text{ N}$; 3°)-Action sur la partie CD: $\vec{F}_2 \sim 0.5$

 $F_2 = \rho g V_2$; où : $V_2 = volume$ d'eau imaginaire contenue dans CDD'C'C = (h + R)aL;

Ou bien : F2 = pG2SCD; soit :

 $F_2 = pgaL(h + R)$; F_2 est dirigée vers le haut et appliquée en G_2 , milieu de CD.

A.N.: F2 = 30.104 N.

Go

