

CS1021 Tutorial #3 Condition Code Flags and Basic Flow Control

1 **Condition Code Flags**

(a) Determine whether the Overflow flag would be set after performing each of the following 4-bit arithmetic operations. (Assume a 4-bit microprocessor and a 4-bit 2's Complement system are being used.) Explain your answers.

(i)
$$0100_2 + 0010_2$$

(iii)
$$1110_2 + 0101_2$$

(ii)
$$0101_2 + 0100_2$$

(iv)
$$1101_2 + 1001_2$$

(b) Consider each of the highlighted instructions in the ARM Assembly Language program below. In each case, calculate the value stored in the destination register and state whether each of the N (Negative), Z (Zero), C (Carry) and V (oVerflow) flags would be set or clear (true or false) after the execution of the highlighted instruction. Provide a detailed explanation for your answer in each case.

-		
1	LDR	R0, =0xC0001000
2	LDR	R1, =0×51004000
3	ADDS	R2, R0, R1 ; result? flags?
4	LDR	R3, =0×92004000
5	SUBS	R4, R3, R3 ; result? flags?
6	LDR	R5, =0x74000100
7	LDR	R6, =0×40004000
8	ADDS	R7, R5, R6 ; result? flags?
9	LDR	R1, =0x6E0074F2
10	LDR	R2, =0x211D6000
11	ADDS	RO, R1, R2 ; result? flags?
12	LDR	R1, =0xBE2FDD2E
13	LDR	R2, =0x41D022D2
14	ADDS	RO, R1, R2 ; result? flags?

(c) Find pairs of 32-bit values which, when added together using the ADDS instruction, cause the following combinations of the conditions code flags to be set or cleared (1 or 0).

(i)
$$N=0; Z=0; C=0; V=0$$
 (vi) $N=0; Z=1; C=0; V=0$

(vi)
$$N = 0$$
: $7 = 1$: $C = 0$: $V = 0$

(ii)
$$N = 1$$
; $Z = 0$; $C = 0$; $V = 0$

(ii)
$$N=1; Z=0; C=0; V=0$$
 (vii) $N=1; Z=0; C=0; V=1$

(iii)
$$N = 0$$
; $Z = 0$; $C = 1$; $V = 0$

(viii)
$$N = 0$$
; $Z = 0$; $C = 1$; $V = 1$

(iv)
$$N = 1$$
; $Z = 0$; $C = 1$; $V = 0$

(ix)
$$N = 0$$
; $Z = 1$; $C = 1$; $V = 1$

(v)
$$N = 0$$
; $Z = 1$; $C = 1$; $V = 0$

2 Flow Control

(a) The ARM Assembly Language program shown below computes x^y . The program uses branch instructions to implement a loop construct, similar to a for or while loop in Java. Modify the program so it computes x! instead of x^y . Begin by modifying the pseudo-code and be sure to provide pseudo-code comments for your Assembly Language program.

```
; test with x = 3
     LDR
            r1, =3
     LDR
            r2 , =4
                      ; test with y = 4
     MOV
            r0 , #1
                      ; result = 1
  while
     CMP
            r2 , \#0
            BEQ
     MUI
     SUB
10
11
 endwh
12
        В
            stop
13
 stop
```

- (b) Translate each of the following pseudo-code constructs into ARM Assembly Language. You should assume that all values are unsigned. (i.e. Do not interpret any values as signed 2's complement values.)
 - (i) Assume x is stored in R0.

```
if (x == 0)
{
    x = x + 5;
}
```

(ii) Assume x is stored in R0.

```
if (x != 0)
{
    x = 1;
}
else
{
    x = x * 2;
}
```

(iii) Assume x is stored in R0.

```
if (x >= 5)
{
    x = 0;
}
```

© UNIVERSITY OF DUBLIN 2016