Midterm #2, 11/16 Math 181 (Discrete Structures), Fall 2022

Each problem is worth 10 points, for a total of 50 points. Remember to *show your work* and *explain your answers* on all problems!

- 1. Prove the following theorem: "If the product of two integers is even, then at least one of these two integers must be even." Use proof by contrapositive or proof by contradiction.
- 2. Prove by induction that $1+3+5+\cdots+(2n-1)=n^2$ for any integer $n \ge 1$. (The left-hand side of the identity is the sum of all odd positive integers less than or equal to 2n-1.)
- 3. Let $X = \{0, 1, 2, 3\}$. Let the function $f: X \to X$ be given by $f(x) = 3x \mod 4$ for all $x \in X$. Draw the arrow diagram of f. Is f one-to-one? Is f onto?
- 4. Let $X = \{a, b, c\}$ and define a relation R on the set X^* of strings over X where for $\alpha, \beta \in X^*$ we have $\alpha R \beta$ if and only if α and β have the same first letter. For example, abc R acabb and bb R bca. For the null string $\lambda \in X^*$ (which has no first letter), we declare that λ is the only string that relates or is related to λ according to R. Explain why this relation R on X^* is an equivalence relation, and describe all the equivalence classes of R.
- 5. Let $A = \{1, 2\}$ and $C = \{1, 2, 3, 4, 5, 6\}$. How many sets B with $A \subseteq B \subseteq C$ are there? Explain your answer, for instance by referencing a counting principle.