

# Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 30 de julio de 2021

### **Examen Final**

- 1. Dado  $M=\{(u,w):u\in\mathbb{R}^n,w\in\mathbb{R}\}\subset\mathbb{R}^{n+1}$  no vacío y que no contenga rectas verticales con respecto al eje (n+1). Se considera los siguientes problemas (Ver Figura 1):
  - P1) Encontrar la (n + 1)-ésima componente mínima del conjunto de puntos de M que estén sobre el eje (n + 1), es decir

$$w^* = \inf_{(0,w)\in M} w. \tag{1}$$

P2) Encontrar el punto de cruce máximo con el eje (n + 1) de los hiperplanos cuyos semiespacios cerrados contienen a M y cuyo cono de recesión contiene al eje positivo (n + 1), inclusive el origen, es decir

$$q^* = \sup_{\mu \in \mathbb{R}^n} \inf_{(u,w) \in M} \{ w + \langle \mu, u \rangle \}.$$
 (2)

### Demuestre

- a) La función  $q(\mu) = \inf_{(u,w) \in M} \{ w + \langle \mu, u \rangle \}$  es cónvava y scs sobre  $\mathbb{R}^n$ . [2.5ptos]
- b) La relación de dualidad débil entre las soluciones de P1 y P2: [2.5ptos]

$$q^* \le w^*. \tag{3}$$



Figura 1: Problemas de optimización sobre M

### Solución:

- a) Como  $-q(\mu) = \sup\{-w + \langle \mu. u \rangle\}$ . Entonces -q es el supremo de una familia de funciones afines por tanto es convexa y sci, lo cual implica que q sea cóncova y scs.
- b) Dado  $(u, w) \in M$  y  $\mu \in \mathbb{R}^n$  se tiene

$$q(\mu) = \inf_{(u,w)\in M} \{w + \langle \mu, u \rangle\} \le \inf_{(0,w)\in M} w = w^*,$$

luego tomando supremo sobre  $\mu$ , se obtiene  $q^* \leq w^*$ .

- 2. Considere los problemas P1 y P2 definidos sobre el conjunto M de la Pregunta 1 y asuma i, ii y iii:
  - i)  $-\infty < w^*$
  - ii) El conjunto

$$\overline{M} = \{(u, w) : \exists \overline{w} \text{ con } \overline{w} < w \land (u, \overline{w}) \in M\}$$

es convexo.

iii) El conjunto

$$D = \{ u : \exists w \in \mathbb{R} \text{ con } (u, w) \in \overline{M} \}$$

contiene el origen en su interior relativo.

Entonces  $q^* = w^*$ , el conjunto de soluciones optimales de P2,  $Q^* = \{\mu : q(\mu) = q^*\}$ , tiene la forma

$$Q^* = (\operatorname{aff} D)^{\perp} + \tilde{Q},$$

donde  $\tilde{Q}$  es un conjunto compacto, convexo no vacío. Además,  $Q^*$  es compacto y no vacío si y solo si el origen pertenece a su interior. [8ptos]

#### Solución:

- a) La condición (iii) implica que  $w^* < \infty$  y por la condición (i),  $w^* \in \mathbb{R}$ .
- b) Desde que  $w^*$  es el valor optimal de P1 y la recta  $\{(0, w) : w \in \mathbb{R}\}$  está contenida en la cápsula afín de  $\overline{M}$ , se sigue que  $(0, w^*) \notin \operatorname{ri} \overline{M}$ . Por lo tanto, por un teorema de separación, existe  $(\mu, \beta) \in \mathbb{R}^{n+1}$  tal que

$$\beta w^* \le \langle \mu, u \rangle + \beta w, \quad \forall (u, w) \in \overline{M},$$
 (4)

$$\beta w^* < \sup_{(u,w) \in \overline{M}} \{ \langle \mu, u \rangle + \beta w \}. \tag{5}$$

c) Desde que

$$\{(\overline{u}, w) : \overline{w} \le w\} \subset \overline{M} \quad \forall (\overline{u}, \overline{w}) \in M,$$

se sigue de (4) que  $\beta \geq 0$ .

d) Si  $\beta = 0$ , entonces de (4), se tiene

$$0 \le \langle \mu, u \rangle \quad \forall u \in D,$$

así, la función lineal  $\langle \mu, u \rangle$  alcanza su mínimo sobre D en  $0 \in \text{ri } D$  por (iii).

- e) D es convexo por ser la proyección del espacio de u del conjunto  $\overline{M}$ , el cual es convexo por (ii).
- f) Por la parte (d), (e) y la Proposición 1, se deduce que  $\langle \mu, u \rangle$  es constante sobre D, es decir

$$\langle \mu, u \rangle = 0 \quad \forall u \in D,$$

lo cual contradice (5). Por tanto  $\beta>0$  y por normalización, tomamos  $\beta=1.$  De (4), obtenemos

$$w^* \leq \inf_{(u,w) \in \overline{M}} \{ \langle \mu, u \rangle + w \} \leq \inf_{(u,w) \in M} \{ \langle \mu, u \rangle + w \} = q(\mu) \leq q^*.$$

Luego, por Pregunta 1.b, se obtiene  $q(\mu)=q^*=w^*$  y así  $Q^*$  es no vacío.

g) En particular  $Q^* = \{\mu : q(\mu) \ge q^*\}$  y por Pregunta 1.a, se sigue que  $Q^*$  es convexo y cerrado.

**Proposición 1** Sea  $X \subset \mathbb{R}^n$  convexo no vacío  $y f : X \to \mathbb{R}$  una función cóncava y sea

$$X^* := \{ x \in X \, : \, f(x^*) = \inf_{x \in X} f(x) \}.$$

 $Si\ X^* \cap riX \neq \emptyset$  entonces f es constante, es decir  $X^* = X$ .

**Demostración:** Ver Proposición 1.4.2 de Bertsekas - Convex Analysis and Optimization.

3. Sea  $C \subset \mathbb{R}^n$  convexo no vacío, y sea  $f: C \to \mathbb{R}^n$  y  $g_j: C \to \mathbb{R}, j = 1, \dots, r$  funciones convexas. Considere el conjunto

$$F = \{x \in C : q(x) < 0\},\$$

donde  $g(x) = (g_1(x), \dots, g_r(x))$  y asuma que

$$f(x) > 0 \quad \forall x \in F.$$

Considere el conjunto  $Q^* \subset \mathbb{R}^r$  dado por

$$Q^* = \{ \mu > 0 : f(x) + \langle \mu, q(x) \rangle > 0 \ \forall x \in C \}.$$

Entonces

a)  $Q^*$  es compacto no vacío si y solo si existe  $\overline{x} \in C$  tal que

[3.5ptos]

$$g_i(\overline{x}) < 0 \quad \forall j = 1, \cdots, r.$$

b) Si las funciones  $g_j$   $j=1,\cdots,r$  son afines y  $F\cap \mathrm{ri}\, C\neq\emptyset$  entonces  $Q^*$  es no vacío. [3.5ptos] (Sug. Utilice el Problema 2)

## Solución:

a) Supongamos que existe  $\overline{x} \in C$  tal que  $g(\overline{x}) < 0$ . Ahora verificamos las hipótesis del Problema 2 al conjunto (vea Figura 2):

$$M = \{(u, w) : \exists x \in C \text{ tal que } g(x) \le u, \ f(x) \le w\}.$$

Así se obtiene  $w^* = \sup_{\mu} q(\mu)$ , donde

$$\inf_{(u,w)\in M} \{w + \langle \mu, u \rangle\}.$$

Además, el conjunto de soluciones óptimas  $P = \{\mu : q(\mu) \ge w^*\}$  es no vacío y compacto. Usando la definición de M, obtenemos

$$q(\mu) = \left\{ \begin{array}{ll} \inf_{x \in C} \{f(x) + \langle \mu, g(x) \rangle \} & \mu \geq 0, \\ -\infty & \text{en otro caso.} \end{array} \right.$$

De la definición de  $Q^*$ , tenemos

$$Q^* = \{ \mu : q(\mu) \ge 0 \},$$

luego,  $Q^*$  y P son conjuntos de nivel de la función convexa, cerrada propia -q. Desde que P es no vacío y compacto, se tiene que  $Q^*$  es compacto. Además,  $Q^*$  es no vacío desde que  $Q^* \supset P$ .

La otra implicación, supongamos que  $Q^*$  es no vacío y compacto. Procediendo por contradicción, supongamos que  $0 \notin \text{int } D$ . Desde que D es convexo, existe un vector no nulo  $\nu \in \mathbb{R}^r$  tal que

$$\langle \nu, u \rangle \ge 0 \quad \forall u \in D.$$

De la definición de D, se sigue que  $\nu \geq 0$  Desde que  $g(x) \in D$  para todo  $x \in C$ , se obtiene que

$$\langle \nu, g(x) \rangle \ge 0 \quad \forall x \in C.$$

Así, para cada  $\mu \in Q^*$ , se deduce

$$f(x) + \langle \mu + \gamma \nu, g(x) \rangle \ge 0 \quad \forall x \in C, \, \forall \gamma \ge 0.$$

Desde que se tiene  $\nu \geq 0$ , se sigue que  $(\mu + \gamma \nu) \in Q^*$  para todo  $\gamma \geq 0$ , lo cual contradice que  $Q^*$  es acotado.



Figura 2: Conjunto M sobre el cual aplicamos el Problema 2