Localization | Research Purpose

Research Introduction

- Robots need autonomous decision-making for self-driving, requiring robot localization.
- Only using kinematic inputs aren't reliable due to significant errors like grass texture and robot joint backlash.
- Incorrect position estimates can lead to major mistakes, such as scoring own goals.

RoboCup 2019

Localization

 Aims for an precise and accurate localization despite unstable walking and limited-view cameras.

Research Goal

- ❖ Develop an algorithm for real-time position estimation of the robot.
- Enable re-estimation of position after events like the robot falling or "kidnapping" due to collisions between robots.

Humanoid Robot Model

OS: Ubuntu 20.04

HW: Jetson Xavier, Intel NUC

Language: Python, C/C++

Middleware: ROS

ALICE in Webots

ALICE ver.3

Pseudo-code

Pseudo-code and System Diagram of Localization

```
Algorithm 1 Augmented Monte Carlo Localization
Input: \chi_{t-1}, u_t, z_t, m
Output: \chi_t
1: static ω<sub>slow</sub>, ω<sub>fast</sub>
 2: \bar{\chi}_t = \chi_t = \emptyset
 3: for m = 1 to M do
               = sample_motion_model(u_t, x_{t-1}^{[m]})
         \omega_t^{[m]} = \text{measurement\_model}(z_t, x_t^{[m]}, m)
         \omega_{avg} = \omega_{avg} + \frac{1}{M}\omega_t^{|n|}
 9: \omega_{slow} = \omega_{avg} + \alpha_{slow}(\omega_{avg} - \omega_{slow})
10: \omega_{fast} = \omega_{avg} + \alpha_{fast}(\omega_{avg} - \omega_{fast})
         idx = resampling(\omega)
         if max(0.0, 1.0 - \omega_{fast}/\omega_{slow}) then
            add random pose to Y
15:
            idx = resampling(\omega)
            add x_t^{[idx]} to \chi_t
17:
20: return X
```

Observed xy

Transformation Matrix Node

Transformed xy

Monte Carlo Localization

Delta xy

Movement

Delta xy

Monte Carlo Localization

Delta xy

Monte Carlo Localization

Delta xy

Localization System Diagram

Localization | aMCL-based localization w/ using Object Detection Model

Humanoid Localization Process

Humanoid "ALICE3", hardware and TF configuration

(1) Preview Control-based Pelvis and ZMP trajectory

(2) Detection result of pre-defined landmarks

(3) Comparison result of data association method (Hungarian algorithm and nearest neighbor method)

index	Success Rate	Success Rate
	(nearest)	(hungarian)
scene 1	80.89%	90.00%
scene 2	84.25%	92.01%
scene 3	83.98%	93.22%
scene 4	85.90%	96.85%

Data Association evaluation of each methods

(5) Pseudocode of Roulette Wheel Resampling

(6) Weigh tracking results

- 1) Constructing a motion model for prediction (ZMP trajectory)
- Creating a sensor model for estimation (Deep learning-based object detection)
- Data assignment between keypoints and landmarks (Hungarian method)
- Particle sample weights calculation (Multi-variant Gaussian function)
- Resampling for the next prediction (Roulette Wheel)
- Tracking short- and long-term weights to address the Kidnap problem

Localization Results and Performance Evaluation

Simulation Results

- Precise position estimation in noisy environments like soccer fields.
- Application of Hungarian method and deep learning-based object detection for real-time use.

The localization results from two tested scenarios in a simulated environment

Addressing "kidnap" problem

Real-Word Experiments

Real-World localization in fully autonomous robot plays Soccer

Detection & Localization Result

Ground Truth Estimated position

RoboCup 2022 Bangkok Humanoid AdultSize Competition

RoboCup 2022 Bangkok

RoboCup AdultSize 2nd Place

Selected news article

Page 3