Data Mining & Machine Learning

Yong Zheng

Illinois Institute of Technology Chicago, IL, 60616, USA

Schedule

- Supervised & Unsupervised Learning
- Supervised Learning: Classification
- Classification Algorithms
 - KNN Classifier
 - Naïve Bayes Classifier

Important Notes

- Emphasis: understanding!!!
- You must understand the techniques
 - What it is
 - What problems it can solve
 - In which situations we should use them
 - Any limitations or requirements to use them
 - How to evaluate them

ILLINOIS TECH College of Computing

Schedule

- Supervised & Unsupervised Learning
- Supervised Learning: Classification
- Classification Algorithms
 - KNN Classifier
 - Naïve Bayes Classifier

Supervised v.s. Unsupervised Learning

Supervised Learning: infer a (predictive) function from data associated with pre-defined targets/classes/labels

Example: group objects by predefined labels

Goal: Learn a model from labelled data (with multiple features) for future

predictions

Outcomes: We know outcomes: the predefined labels Evaluation: error/accuracy, and other more metrics

Data Mining Task: Classification

Unsupervised Learning: discover or describe underlying structure from unlabelled data

Example: group objects by multiple features

Goal: Learn the structure from unlabelled data (with multiple features)

Outcomes: We do not know the outcomes

Evaluation: No clear performance or evaluation methods

Data Mining Task: Clustering

ILLINOIS TECH College of Computing

Supervised v.s. Unsupervised Learning

Supervised Learning

x_2 x_2 x_1

Example: Classification

Unsupervised Learning

Example: Clustering

Supervised v.s. Unsupervised Learning

Machine Learning Algorithms (sample)

Continuous

Unsupervised

- Clustering & Dimensionality Reduction
 - SVD
 - PCA
 - K-means

Categorical

- Association Analysis
 - Apriori
 - FP-Growth
- Hidden Markov Model

<u>Supervised</u>

- Regression
 - Linear
 - Polynomial
- Decision Trees
- Random Forests
- Classification
 - KNN
 - Trees
 - Logistic Regression
 - Naive-Bayes
 - SVM

Supervised Learning: Linear Regression

- We have knowledge: values in y
- We have factors or features: x variables
- We need to split data into training and testing
- We learned the model from training, and evaluate it on the testing set
- We do have truth in testing test and predictions for test set, as well as evaluation metrics: RMSE, MAE
- Have a general problem in supervised learning: overfitting

LLINOIS TECH College of Computing

Schedule

- Supervised & Unsupervised Learning
- Supervised Learning: Classification
- Classification Algorithms
 - KNN Classifier
 - Naïve Bayes Classifier

Supervised Learning: Classification

- Classification: a supervised way to group objects
 - We must have predefined labels
 - We must have knowledge: we know some instances are labeled by predefined classes/labels/categories
- For a Purpose of Prediction
 - To forecast or deduce the label/class based on values of features
 - Let the machines/computers think as humans
- There are many real-world applications
 - Financial Decision Making, e.g., credit card application
 - Image Processing, e.g., face recognition in cameras
 - Computer/Network Security, e.g., virus or attack detection
 - Information Retrieval, e.g., relevance of a document to a query
 - Recommender Systems, e.g., rating prediction for Amazon

ILLINOIS TECH College of Computing

Classification App: Credit Card Application

Classification App: Credit Card Application

Date Received	Card	Status of Application	
05/21/15	THE AMERICAN EXPRESS BUSINESS PLATINUM CARD	Approved	
07/22/15	THE GOLD DELTA SKYMILES BUSINESS CREDIT CARD	Rejected	
08/19/15	PREMIER REWARDS GOLD CARD FROM AMERICAN EXPRESS	Under Review	

ILLINOIS TECH

Classification App: Credit Card Application

Terminologies in Classification

Each row with features values is named as example or instance

Classification

Learn from the knowledge (examples with unknown labels) build predictive models to predict the unknown examples

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- General Problem: overfitting
- Algorithms: How to perform classification tasks

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- General Problem: overfitting
- Algorithms: How to perform classification tasks

Classification Task

There are usually three types of classification:

1). Binary Classification

Question: Is this an apple? Yes or No.

2). Multi-class Classification

Question: Is this an apple, banana or orange?

3). Multi-label Classification

Use appropriate words to describe it:

Red, Apple, Fruit, Tech, Mac, iPhone

16

Classification Task

There are usually three types of classification:

1). Binary Classification

Question: Is this an apple? Yes or No.

2). Multi-class Classification

Question: Is this an apple, banana or orange?

3). Multi-label Classification

Use appropriate words to describe it:

Red, Apple, Fruit, Tech, Mac, iPhone

We use binary classification as examples to introduce classification techniques. But most of these classification methods can handle multi-class classifications too. There are different strategies to handle multi-class classifications.

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- General Problem: overfitting
- Algorithms: How to perform classification tasks

Standard Classification Process

- Train: Learn a model using the training data
- Validation/Test: Test using test data to assess accuracy
- Application: Apply the selected model to unseen data

ILLINOIS TECH College of Computing

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- General Problem: overfitting
- Algorithms: How to perform classification tasks

- There are several ways to split your data for evaluations
 - Hold-out evaluation
 - N-fold cross validation
 - Leave-one-out evaluation
 - Stratified N-fold cross validation

1). Hold-out Evaluation

If your data is large enough

Color	Weight (lbs)	Stripes	Tiger?	
Orange	300	no	no	
White	50	yes	no	
Orange	490	yes	yes	Tr
White	510	yes	yes	
Orange	490	no	no	
White	450	no	no	
Orange	40	no	no	
Orange	200	yes	no	
White	500	yes	yes	├ To
Green	560	yes	no	
Orange	500	yes	,] U
White	50	yes	?	

raining Data Set

Test Data Set

Inseen data set

ILLINOIS TECH College of Computing 22

ILLINOIS TECH College of Computing 23

Summary

- We always suggest you to use N-fold cross validation, as long as you have enough computational power – it doesn't matter your data is large or small
- If your computer is not powerful
 - Data is large => you can use hold-out
 - Data is small => you must use N-fold cross validation
 - No fixed rule to say data is large or small. Usually, a data set with less than 500K rows can be considered as small data
- Common mistakes: some students run both hold-out and N-fold cross validation, and report best results

LLINOIS TECH College of Computing 25

How it works: Build a Model

How it works: Predictions

Color	Weight	Stripes	Pred	Truth
Orange	40 lbs	no	no	no
Orange	200 lbs	yes	no	no
White	500 lbs	yes	yes	yes
Green	560 lbs	yes	yes	no

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- General Problem: overfitting
- Algorithms: How to perform classification tasks

Overfitting Problem

Problem: The model is over-trained by the training set; the performance on the testing set (such as accuracy) is significantly worse than the performance on training set

Example of over-trained: students can work on questions on the assignment well, but they may not work well on the questions in the exams.

Example: Overfitting

- Is there an overfitting problem?
- Linear Regression Models
 - -M1: Adj-R2 = 96%, MAE = 0.36
 - M2: Adj-R2 = 98%, MAE = 0.6
- Classification Models
 - M1: Accuracy on training = 90%, testing = 85%
 - M2: Accuracy on training = 80%, testing = 85%
 - M3: Accuracy on training = 85%, testing = 60%

ILLINOIS TECH College of Computing

30

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- General Problem: overfitting
- Algorithms: How to perform classification tasks

ILLINOIS TECH College of Computing 31

Classification

- Classification algorithm is the key component in the process
- They are able to learn from training and build models...

ILLINOIS TECH College of Computing

Schedule

- Supervised & Unsupervised Learning
- Supervised Learning: Classification
- Classification Algorithms

ILLINOIS TECH | College of Computing 33

Classification Algorithms

- Classification algorithm is the key component in the process
- They are able to learn from training and build models

There are many (supervised) classification algorithms:

- K-nearest neighbor classifier
- Naïve Bayes classifier
- Decision tress
- Linear/Logistic regression
- Support Vector Machines
- Ensemble classifiers (e.g., random forest)
- Neural Networks
- ...

Classification Algorithms: KNN Classifier

K-Nearest Neighbor (KNN) Classifier

- Problem: Identify which animal the given object it is
- Features: weights, age, gender, stripes, size, etc

Unseen **Data**

K-Nearest Neighbor (KNN) Classifier

- KNN classifier is a simple classification algorithm
- The idea behind is to classify new examples based on their similarity to or distance from examples we have seen before (in training set).

ILLINOIS TECH College of Computing 37

Build a KNN Classifier

- 1. Calculate distances between target and instances in train set
- 2. Identify the top-K nearest neighbor (choose an odd number for K!)
- 3. Predict labels and validate with truth
 - How to predict? The predicted class = the majority class label in those neighbors

For example, among top 3 picks (K = 3), 2/3 are tigers!!

Distance Measures

Assume there are *n* features, and two examples: *X* and *Y*.

- Consider two vectors
 - Rows in the data matrix

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

- Common Distance Measures:
 - Manhattan distance: (aggregation of two right-angle legs)

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Euclidean distance: (length of hypotenuse)

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Manhattan

Euclidean

Example: Distance Measures

dist(X,Y) =	$(x_1 - y_1)^2 + \dots + (x_n - y_n)^2$
-------------	---

Data Matrix

point	feature1	feature	class
		2	
p1	1	2	Υ
<i>p</i> 2	3	5	Ν
<i>p3</i>	2	0	Υ
<i>p4</i>	4	5	Ν
<i>p5</i>	3	3	Ν

Distance Matrix (Euclidean)

	p1	<i>p</i> 2	р3	<i>p4</i>	<i>p</i> 5
<i>p1</i>	0				
<i>p</i> 2	3.61	0			
р3	2.24	5.1	0		
<i>p4</i>	4.24	1	5.39	0	
<i>p</i> 5	2.24	2	3.16	2.24	0

Set K = 3

 $p1' \text{ KNN} = \{p3, p5, p2\}$

 $p4' \text{ KNN} = \{p2, p5, p1\}$

Predict class for p1 = N

Time for Practice!

Data Matrix

point	feature1	feature 2	class
_	_	2	
p1	1	2	Y
p2	3	5	Ν
p3	2	0	Y
<i>p4</i>	4	5	Ν
<i>p</i> 5	3	3	Ν

Distance Matrix (Manhattan)

	<i>p1</i>	<i>p</i> 2	р3	<i>p4</i>	<i>p</i> 5
<i>p1</i>	0				
<i>p</i> 2		0			
р3			0		
<i>p4</i>				0	
<i>p</i> 5					0

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

1.1) Set
$$K = 3$$

1.2) Predict class for p4 = ?

Answers!

Data Matrix

point	feature1		class
		2	
p1	1	2	Υ
<i>p</i> 2	3	5	Ν
p3	2	0	Υ
<i>p4</i>	4	5	Ν
<i>p</i> 5	3	3	Ν

Distance Matrix (Manhattan)

	p1	<i>p</i> 2	р3	<i>p4</i>	<i>p</i> 5
<i>p1</i>	0				
<i>p</i> 2	5	0			
р3	3	6	0		
<i>p4</i>	6	1	7	0	
<i>p5</i>	3	2	4	3	0

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

1.1) Set
$$K = 3$$

$$p1' \text{ KNN} = \{p3, p5, p2\}$$

$$p4' \text{ KNN} = \{p2, p5, p1\}$$

1.2) Predict class for p4 = N

Classification Algorithm: K-Nearest Neighbor Classifier

More Questions

- What are the required data types by an algorithm
- Is there an overfitting problem?
- Is there a training-learning process?

- What are the required data types by an algorithm
- Is there an overfitting problem?
- Is there a training-learning process?

ILLINOIS TECH | College of Computing 45

KNN: Features must be numerical

point	oint feature1 feature		class
<i>x1</i>	1	2	Υ
<i>x</i> 2	3	5	N
<i>x</i> 3	2	0	Υ
<i>x4</i>	4	5	N
<i>x</i> 5	3	3	N

1	Color	Weight (lbs)	Stripes	Tiger?
	Orange	300	no	no
	White	50	yes	no
	Green	490	yes	yes
	White	510	yes	yes
	Orange	490	\ no	no
	\ /			

Answer: Convert a categorical feature to binary features

Color	Weight (lbs)	Stripes
Orange	300	no
White	50	yes
Green	490	yes
White	510	yes
Orange	490	no

Orange	White	Green	Weight (lbs)	Stripes
1	0	0	300	0
0	1	0	50	1
0	0	1	490	1
0	1	0	510	1
1	0	0	490	0

KNN: Features must be normalized

Feature normalization is used to convert values in a feature to the same scales with values in other features.

Answer: Yes, normalization is required, otherwise, the distance calculation will be influenced by the larger features!!!!

Orange	White	Green	W/eight	t (lbs)	Stripes
1	0	0	30	0	0
0	1	0	50)	1
0	0	1	49	0	1
0	1	0	51	0	1
1	0	0	49	0	0
<u>'</u>	<u>"</u>	<u> </u>			

Min-max normalization: transformation from OldValue to NewValue

$$NewValue = NewMin + \frac{OldValue - OldMin}{OldMax - OldMin} \times (NewMax - NewMin)$$

- What are the required data types by an algorithm
- Is there an overfitting problem?
- Is there a training-learning process?

Overfitting Problem

ILLINOIS TECH College of Computing

49

KNN: Overfitting Problem

- K value cannot be too small => overfitting!
 You make decisions based on a small neighborhood
 It is possible to have bias in the model!
- K value cannot be too large => underfitting!
 You make decisions based on a large neighborhood
- How to find the best K?
 - Try different K values in your experiments
 Do not always try 1, 3, 5, ..., consider size of the data
 - Evaluate them in the correct strategy, and observe classification performance

ILLINOIS TECH College of Computing 50

- What are the required data types by an algorithm
- Is there an overfitting problem?
- Is there a training-learning process?

KNN: Learning Process?

- KNN is a lazy-learned. There are no learning process
- A learning process must have optimizations or loss functions
- In KNN, we do not have optimization objective and methods. => machine learning

Summary

- ☐ K-Nearest Neighbor (KNN) Classifier
- A simple classifier, a lazy learner
- 1). Choose an odd number for K
- 2). Calculate distances between target and instances in training set
- 3). Pick the top KNN and assign the majority label as prediction
- Extended Problems in Classification Algorithms
- Q1. required data types?
- Q2. Is there an overfitting problem?
- Q3. Is there a learning process?

Note: they are general concerns in classification, not only KNN.