

Instance Segmentation: Mask R-CNN

徐培 **2019.07.13**

From Faster R-CNN to Mask R-CNN

Mask R-CNN = Faster R-CNN + Mask Branch

Two-stage object detection network

- Faster R-CNN = Fast R-CNN + RPN
- ➤ RPN取代离线的Selective Search 模块
- ➤ RPN 和检测网络共享卷积计 算
- ➤ 基于Attention注意机制引导 Fast R-CNN关注区域
- ➤ Region proposals 量少质优 (~300,高precision,高 recall)
- ➤ 比SPPnet and Fast R-CNN 更快 (5fps for VGG16 backbone).

Predict object bounds and objectness scores by RPN

- ▶ 每个位置3*3个anchors,3个尺度和3个宽高比
- ➤ 对于W x H 的卷积特征图,共产生WxHxk个anchors

Predict object bounds and objectness scores by RPN

- ➤ 3 x 3, 256-d (256-d for ZF and 512-d for VGG) 卷积层 + ReLU ← 输入图片Conv5特征.
- ➤ 1x1, 4k-d卷积层 → 输出k组proposal的offsets (t_x, t_v, t_w, t_h)
- ➤ 1x1, 2k-d卷积层 → 输出k组 (object score, non-object score)

RPN loss function

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

- ➤ i: 每个mini-batch中anchor的索引;
- p_i 第i个anchor 预测为物体的概率, p_i*为 ground-truth label(1 for positive);
- ➤ t_i 是预测的bounding box 参数, t_i* 是正样本anchor的ground-truth box 参数;
- ➤ L_{cls} is log loss over two classes(object vs. not object);
- The two terms are normalized by N_{cls} (mini-batch size) and N_{reg} (the number of anchor locations) and weighted by a balancing parameter λ.

Bounding box regression

$$t_{\rm x} = (x - x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y - y_{\rm a})/h_{\rm a},$$
 $t_{\rm w} = \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}),$
 $t_{\rm x}^* = (x^* - x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^* - y_{\rm a})/h_{\rm a},$
 $t_{\rm w}^* = \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}),$

- where x, y, w, and h denote the box's center coordinates and its width and height.
- Variables x, x_a, and x* are for the predicted box, anchor box, and ground-truth box respectively (likewise for y,w, h);
- thought of as bounding-box regression from an anchor box to a nearby ground-truth box.

Bounding box regression

Table 1: the learned average proposal size for each anchor using the ZF net (numbers for s=600). anchor $\begin{vmatrix} 128^2, 2:1 & |128^2, 1:1 & |128^2, 1:2 & |256^2, 2:1 & |256^2, 1:1 & |256^2, 1:2 & |512^2, 2:1 & |512^2, 1:1 & |512^2, 1:2 \\ \hline proposal & |188\times111 & |113\times114 & |70\times92 & |416\times229 & |261\times284 & |174\times332 & |768\times437 & |499\times501 & |355\times715 \\ \hline \end{vmatrix}$

▶ 算法允许比潜在感受野更大的预测。这样的预测并非不可能——如果一个物体的中心是可见的,仍然可以粗略地推断出这个物体的范围(管中窥豹).

Detection Network use Fast R-CNN

ROI pooling

FPN

Feature Pyramid Network

➤ FPN是一种具有横向连接的自顶向下体系结构,用于构建 各种尺度的高级语义特征图。

FPN

ResNet-FPN

Down to top

ResNet backbone

Output: C2, C3, C4, C5

Strides: 4, 8, 16, 32

Top to down

Nearest neighbor upsample Store high-level semantics

Lateral connections

Reduce channels by 1x1 conv Enhance location information Remove aliasing by 3X3 conv

Mask-RCNN Inference Model

Question: How to assign Rols of different scales to the pyramid levels?

Assign an Rol of width \mathbf{w} and height \mathbf{h} to the level P_k of feature pyramid by:

$$k = \lfloor k_0 + \log_2(\sqrt{wh}/224) \rfloor.$$

- > 224: is the canonical ImageNet pre-training size;
- $ightharpoonup k_0$: is the target level on which an RoI with w*h = 224² should be mapped into.

Mask-RCNN Head Architecture

➤ All convs are 3x3, except the output conv which is 1x1, deconvs are 2x2 with stride 2, and use ReLU in hidden layers.

Rol Align & Rol pooling

The misalign problem introduced by Rol pooling!

These quantizations introduce misalignments between the Rol and the extracted features.

It has a large negative effect on predicting pixel-accurate masks!

Rol Align & Rol pooling

RolAlign is used to remove the harsh quantization of RolPooling

Rol Align & Rol pooling

Bilinear interpolation

$$f(R_1)pprox rac{x_2-x}{x_2-x_1}f(Q_{11})+rac{x-x_1}{x_2-x_1}f(Q_{21}) \quad ext{Where} \quad R_1=(x,y_1), \ f(R_2)pprox rac{x_2-x}{x_2-x_1}f(Q_{12})+rac{x-x_1}{x_2-x_1}f(Q_{22}) \quad ext{Where} \quad R_2=(x,y_2).$$

$$f(P)pprox rac{y_2-y}{y_2-y_1}f(R_1) + rac{y-y_1}{y_2-y_1}f(R_2).$$

Mask-RCNN training Model

Loss function

A multi-task loss on each sampled Rol as:

$$L = L_{cls} + L_{box} + L_{mask}$$

 \triangleright The classification loss L_{cls} and bounding-box loss L_{box} are identical as those defined in Faster R-CNN.

Loss function

- ➤ 对于每个Rol, mask 分支产生一个Km²-d 的输出, 对应K个类别.
- ➤ 对每个28x28-d 的输出的每个像素使用sigmoid激活, L_{mask} 定义为所有像素上的平均二分类交叉熵损失.
- ➤ Rol 对应的ground-truth为k,则只有第k个mask对L_{mask} 产生贡献(其 他mask 输出不对loss产生贡献).

Applications

Instance segmentation

Mask R-CNN results on the COCO test set

Applications

Human pose estimation

Keypoint detection results on COCO test

Thank you!