Лабораторная работа 2 Знакомство с возможностями ОрепМР

Цель работы. Получение практических навыков разработки параллельных программ с использованием ОрепМР. Ознакомление с основными функциями и директивами ОрепМР, позволяющими выполнять балансировку нагрузки при обработке данных.

Порядок выполнения работы

- 1. Ознакомиться с теоретическими сведениями.
- 2. Выполнить задания 1–3.
- 3. Подготовить отчет по лабораторной работе.
- 4. Защитить лабораторную работу перед преподавателем

ЗАДАНИЯ

Задание 2.1. Разработайте консольное приложение, реализующее вычисление числа Рі разными алгоритмами:

- последовательная реализация;
- параллельные реализации с использованием возможностей по управлению нагрузки и синхронизации данных OpenMP;

Для каждой реализации функций вычисления числа Рі выполните расчет времени и сформируйте сводную таблицу (табл. 2.1). В качестве параметра для наборов данных (НД) выступает количество итераций (**num_steps**), которое рекомендуется задавать в зависимости от мощности компьютера.

Таблица 2.1

Функция (реализация)	Потоки	НД 1	НД 2	НД 3	НД4
Последовательная реализация		*.**** MC.			
Параллельная реализация FOR (static)	2				
	3				
	4				
Параллельная реализация FOR (dinamic)	2				
	3				
	4				
Параллельная реализация FOR (guided)	2				
	3				
	4				
Параллельная реализация Section	2				
	3				
	4				

¹ Расчет времени выполнять в доверительном интервале для не менее чем 100 запусков.

Пример последовательной реализации вычисления числа Рі:

```
long i, num_steps = 1000000;
double step, pi, x, sum = 0.0;
step = 1.0 / (double)num_steps;
for (i = 0; i < num_steps; i++)
{
    x = (i + 0.5) * step;
    sum = sum + 4.0 / (1.0 + x * x);
}
pi = step * sum;
std::cout << "Pi = " << pi;</pre>
```

Задание 2.2. Разработайте консольное приложение, реализующее заполнение и перемножение матриц **A** и **B** (с размерностью М×N и N×K соответственно). Для перемножения матриц использовать классический алгоритм и один быстрый алгоритм². Каждый студент придумывает свои формулы заполнения для матриц **A** и **B** в зависимости от индексов. Необходимо осуществить следующие последовательную реализацию алгоритмов и параллельнык реализации с использованием различных видов распараллеливания.

При реализации перемножения матриц следует учитывать распределение элементов в памяти, и для одного алгоритма реализовать балансировку нагрузки. Также следует реализовать один из алгоритмов быстрого перемножения матриц.

Задание 2.3. Проведите экспериментального исследования по обработке данных с разными реализациями (выполнять не менее 20 запусков для каждой реализации). При проведении исследования используйте массивы вещественного типа размерностью от 800×800 до 2500×2500³; четыре разных набора данных (НД). Для реализованных функций на основе полученных данных исследования заполнить табл. 2.2.

Таблица 2.2

НД1 (Например, $A = 1000 \times 1000 B = 1000 \times 1000$)							
Функция (реализация)	Поток	Время	$S_p(n)$	$E_p(n)$			
Заполнение матриц (посл.)		***.**** MC.					
Заполнение матриц	2						
(парал.) Вариант реализации 1	3						
	4						
Заполнение матриц							
(парал.) Вариант реализации 2							

 $^{^2}$ Пример реализации последовательной версии быстрого алгоритма перемножения доступен на сервере Дистанционного образования СибГУ им. М.Ф. Решетнева

³ В зависимости от оборудования (на котором будут выполняться эксперименты) и согласованию с преподавателем возможно изменения наборов данных в сторону уменьшения. При этом должно быть несколько наборов данных учитывающих прямоугольные матрицы.

НД1 (Например, $A = 1000 \times 1000$ $B = 1000 \times 1000$)						
Функция (реализация)	Поток	Время	$S_p(n)$	$E_p(n)$		
Перемножение матриц (посл.)						
Перемножение матриц (парал.) Вариант реализации 1	2					
	3					
	4					
Перемножение матриц						
(парал.) Вариант реализации 2						
Перемножение быстрый алгоритм (посл.)		***.**** MC.				
Перемножение матриц	2					
быстрый алгоритм	3					
(парал.)	4					
НД2 (Напри	мер, $A = 1320 \times$	$1500 B = 1500 \times 14$	71)			
Функция (реализация)	Поток	Время	$S_p(n)$	$E_p(n)$		
Заполнение матриц (посл.)		***.**** MC.				
Заполнение матриц						
(парал.) Вариант реализации 1						
Перемножение матриц (посл.)						
Перемножение матриц	2					
(парал.) Вариант реализации 1	3					
	4					

Отчет

Отчет сдается преподавателю в электронном виде и должен содержать:

- титульный лист;
- цель работы;
- постановку задачи;
- исходный код программы задания 2.1;
- результаты экспериментального исследования программы в табличной форме (задание 2.1);
 - формулы, используемые при заполнении матриц (задание 2.2);
 - текст программы задания 2.2, с комментариями;
- конфигурация компьютера и параметры операционной системы, на которой производится выполнение задания 2.3;
- результаты выполнения задания 2.3 (экспериментального исследования) в табличной форме;
 - выводы по результатам экспериментального исследования;
 - выводы по лабораторной работе в целом.

Контрольные вопросы и задания

- 1. Приведите примеры параллельных алгоритмов вычисления суммы последовательности числовых значений.
- 2. Каким образом происходит распределение работы между параллельными потоками?
- 3. Охарактеризуйте особенности организации параллельной обработки с использованием секций.
- 4. Раскройте особенности балансировки нагрузки вычислений в параллельных секциях.
- 5. Охарактеризуйте планировщик распределения итераций цикла между потоками.
 - 6. Охарактеризуйте статическое распределение нагрузки.
 - 7. Охарактеризуйте динамическое распределение нагрузки.
 - 8. Охарактеризуйте управляемое распределение нагрузки.
- 9. Что нужно сделать для выделения упорядоченного блока в распараллеленном цикле?
- 10. Охарактеризуйте директивы синхронизации потоков atomic, barrier.
- 11. Как происходит согласование значений переменных между потоками?
- 12. Поясните подходы к реализации параллельно-последовательного вычисления числа Рі.
- 13. Приведите известные вам вариации реализаций классического алгоритма перемножения матриц.
- 14. Опишите известные вам быстрые алгоритмы перемножения матриц.
 - 15. Приведите рекомендации по разработке параллельных программ.
 - 16. Охарактеризуйте функции блокировки (Lock) в OpenMP.
 - 17. Поясните управление простой блокировкой (omp_lock_t).
- 18. Дайте определение понятию «задачи в OpenMP» и охарактеризуйте директиву task.
- 19. Что означает понятие «взаимная блокировка» и когда она возникает?
- 20. Охарактеризуйте проблему параллельного программирования не-инициализированные переменные.
- 21. Дайте определение понятию «зависимость данных и гонки в циклах».
- 22. Приведите параллельные алгоритмы умножения матрицы на вектор.
- 23. Приведите возможные виды распараллеливания алгоритмов перемножение матриц.