Matriz de mudança de base

Problema 1

Se a matriz de mudança da base B para a base C é $P=(a_{ij})$ e a matriz de mudança de base C para outra base D (do mesmo espaço) é $Q=(b_{ij})$, qual é a matriz de mudança de B para D?

Resolução

 $P\cdot Q$. Suponhamos $B=\{u_1,\cdots,u_n\}$, $C=\{v_1,\cdots,v_n\}$ e $D=\{w_1,\cdots,w_n\}$. A definição de matriz de mudança nos garante então que:

$$v_j = \sum_{i=1}^n a_{ij} u_i ext{ (onde } j=1,\ldots,n) ext{ e } w_k = \sum_{j=1}^n b_{ik} u_j ext{ (onde } k=1,\ldots,n)$$

Daí

$$w_k = \sum_{j=1}^n b_{jk} \left(\sum_{i=1}^n a_{ij} u_i
ight) = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} b_{jk}
ight) u_i ext{ (onde } k=1,\ldots,n)$$

Nota

Uma consequência do que acabamos de ver é que uma matriz de mudança de bases é sempre inversível 1 . Sejam P a matriz de mudança de base de B para C e Q a matriz de mudança de C para B.

Do diagrama acima decorre que $PQ=QP=I_n$. Logo P é inversível e P^{-1} é simplesmente a matriz de mudança de C para B.

Problema 2

Problema 3

Se $\{u_1,\ldots,u_n\}$ é uma base de V e $P=(a_{ij})$ é uma matriz inversível, então os n vetores $v_j=\sum_{i=1}^n a_{ij}u_i$ onde $(j=1,\ldots,n)$ também formam uma base de V?

Resolução

Suponhamos $\sum_{j=1}^n x_j v_j = e$. Sendo x_j escalares quaisquer. Então

$$\sum_{j=1}^n x_j \left(\sum_{i=1}^n lpha_{ij} u_i
ight) = \sum_{j=1}^n \left(\sum_{i=1}^n lpha_{ij} x_j
ight) u_i = e$$

Como este sistema é homogêneo e a matriz dos seus coeficientes é P (inversível) então $x_1=\cdots=x_n=0$. Logo $\{v_1,\ldots,v_n\}$ é L.I. e também é base de V.

Com isso concluímos que **qualquer** matriz inversível pode ser utilizada enquanto uma matriz de mudança de base e **qualquer** matriz de mudança de base também é uma matriz inversível.

^{1.} A matriz inversa é obtida quando a multiplicação da matriz original por esta resulta na matriz identidade.