3.3.3. Опыт Милликена. Теоретический файл

Пазов Тенгиз 16.09.2024

Теория

Если элементарный заряд существует, то все заряды будут ему кратны. В опыте будут измерятся заряды капелек масла, несущих несколько элементарных зарядов.

Для измерения заряда будем исследовать движение капелек в электрическом поле. Уравнение движения капли при свободном падении

$$m\frac{dv}{dt} = mg - F_{\rm pp},\tag{1}$$

где m – масса капли, v – её скорость, $F_{\rm rp}=6\pi\eta rv=kv$ – сила вязкого трения, r – радиус капли, η – коэффициент вязкости воздуха. Отсюда получаем

$$v = \frac{mg}{k} \left(1 - e^{-kt/m} \right). \tag{2}$$

Скорость установится на

$$v_{\text{yct}} = \frac{mg}{k} = \frac{2}{9} \frac{\rho}{\eta} gr^2,$$

где ρ — плотность масла. Установление этой скорости происходит с постоянной

$$\tau = \frac{m}{k} = \frac{2}{9} \frac{\rho}{\eta} r^2$$

Обозначая h путь капли, пройденный за t_0 , получаем формулу для её радуса:

$$r = \sqrt{\frac{9\eta h}{2\rho g t_0}}. (3)$$

В случае движения в электрическом поле конденсатора с разностью потенциалов V и расстоянием l между пластинами получаем уравнение движения

$$m\frac{dv}{dt} = \frac{qV}{l} - mg - kv,\tag{4}$$

Новое слагаемое не влияет на τ , новая установившаяся скорость

$$v_{\rm yct}' = \frac{qV/l - mg}{k}.$$

Если t – время подъёма на высоту h, то можно получить формулу заряда капли:

$$\frac{qV}{kl} - v_{\text{ych}} = v'_{\text{ych}} = \frac{h}{t};$$

$$k = 6\pi\eta r = 6\pi\eta \sqrt{\frac{9\eta h}{2\rho gt_0}};$$

Получаем итоговую формулу для вычисления заряда:

$$q = 9\pi \sqrt{\frac{2\eta^3 h^3}{g\rho}} \cdot \frac{l(t_0 + t)}{V t_0^{3/2} t}$$

Теперь приведем таблицу с результатами вычислений зарядов. Из результатов вычислений разобьем на группы заряды по кучности и вычислим среднее в каждой из таких групп. Получим 5 значений:

Таблица 1: Заряды капель

$q_1, 10^{-19}$ Кл	1.717	1.714	1.315	0.993	0.744
	$\sigma = 0.113$	$\sigma = 0.0998$	$\sigma = 0.076$	$\sigma = 0.551$	$\sigma = 0.041$
$q_2, 10^{-19}$ Кл	1.463	1.258	1.297	1.058	1.035
	$\sigma = 0.083$	$\sigma = 0.071$	$\sigma = 0.073$	$\sigma = 0.055$	$\sigma = 0.056$
$q_3, 10^{-19}$ Кл	1.302	1.998	1.534	1.098	1.262
	$\sigma = 0.073$	$\sigma = 0.115$	$\sigma = 0.088$	$\sigma = 0.0586$	$\sigma = 0.0694$
$q_4, 10^{-19}$ Кл	$\sigma = 0.073$ 1.252	$\sigma = 0.115$ 1.327	$\sigma = 0.088$ 1.473	$\sigma = 0.0586$ 1.509	$\sigma = 0.0694$ 1.064
$q_4, 10^{-19}$ Кл $q_5, 10^{-19}$ Кл	1.252	1.327	1.473	1.509	1.064

Таблица 2: Средние по кучностям значения

$q, 10^{-19}$ Кл	1.282	1.222	1.439	1.325	1.626
1/	1				

Таблица погрешностей средних величин зарядов Как видно из данных значений в ка-

Таблица 3: Погрешности средних значений зарядов

$\sigma_{sr}, 10^{-19} \text{m/c}$	0.177	0.153	0.185	0.168	0.238

честве элементарного заряда можно взять наименьший из перечисленных, то есть $q=1.222\cdot 10^{-19}$ Кл. Данная величина есть 76,27~% от заряда, который обнаружил Милликен.

В таблице видно, что помимо величины заряда для каждой из частиц, присутствует величина σ, показывающая величину погрешности для каждой из величин зарядов.

$$\sigma_q \approx q \sqrt{\left(\frac{\delta U}{U}\right)^2 + 5\left(\frac{\delta t}{t + t'}\right)^2} \tag{5}$$

Приняв δU за 5% и δt за ≈ 0.2 с, и проходя по массиву времен, получим массив погрешностей для каждого измеренного заряда. В таблице приведены погрешности в размерности 10^{-19} Кл.

А погрешность среднего значения заряда в каждой куче может быть посчитана по следующей формуле:

$$\sigma_{sr} = \sqrt{\sum \sigma_i^2} \tag{6}$$

где σ_i - погрешность іого заряда в куче.

Теперь рассмотрим:

$$v = \frac{mg}{k} \left(1 - e^{-kt/m} \right). \tag{7}$$

Чтобы найти отклонение установившейся скорости от среднего значения на промежутке времени релаксации, проинтегрируем данное выражение по времени и разделим на t. Получаем:

$$v \int dt = \int \frac{mg}{k} \left(1 - e^{-kt/m} \right) dt. \tag{8}$$

Разделив на t, получаем:

$$v_{sr} = \frac{\int \frac{mg}{k} \left(1 - e^{-k\tau/m}\right) dt}{\tau} \tag{9}$$

где au - время релаксации.

Взяв интеграл, получим:

$$v_{sr} = 1 - e^{-k\tau/m} \tag{10}$$

Погрешность установившейся скорости может быть рассчитана по следующей формуле:

$$\sigma_{v_{\infty}} = v_{\infty} \sqrt{\left(\frac{\sigma_h}{h}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2} \tag{11}$$

А погрешность вычисления средней скорости:

$$\sigma_{v_{sr}} = \sqrt{\left(\frac{\partial v_{sr}}{\partial \tau}\right)^2 \sigma_{\tau}^2 + \left(\frac{\partial v_{sr}}{\partial r}\right)^2 \sigma_{r}^2} = \sqrt{\frac{81}{4} \frac{\eta^2}{r^4 \rho^2} e^{-\frac{9\eta\tau}{r^2 \rho}} \sigma_{\tau}^2 + 81 \frac{\eta^2 \tau^2}{\rho^2 r^6} e^{-\frac{9\eta\tau}{r^2 \rho}} \sigma_{r}^2}$$
(12)

Как видно из данной формулы, для вычисления погрешности среденей скорости нам потребуется погешность вычисления радиуса частицы. Найдем его по формуле:

$$\sigma_r = \frac{1}{2}r\sqrt{(\frac{\sigma_h}{h})^2 + (\frac{\sigma_t}{t})^2} \tag{13}$$

Приведем таблицу погрешностей радиусов частиц

Таблица 4: Погрешности радиусов частиц

σ_r , 10^{-9} M	8.17	7.34	6.74	6.71	5.83

Приведем таблицу для средних значений, а также значений установившейся скоростей

Таблица 5: Средняя и установившаяся скорости

$v_{est}, 10^{-5}, \sigma_{v_{est}},$	$1.601, \ \sigma_{v_{est}} =$	$1.329, \ \sigma_{v_{est}} =$	$1.141, \ \sigma_{v_{est}} =$	$1.132, \ \sigma_{v_{est}} =$	$0.872, \ \sigma_{v_{est}} =$
$10^{-7} { m M/c}$	6.72	5.50	4.68	4.74	3.54
$v_{sr}, 10^{-5}\sigma_{v_{sr}},$	$0.632, \ \sigma_{v_{sr}} =$				
$10^{-7} \mathrm{m/c}$	3.21	5.03	5.33	4.30	2.89

Т.о. используя таблицу можем найти отклонение от средней величины скорости.

Теперь приведем таблицу с временами релаксации, а также с s(t), пройденным частицей за данное время.

Таблица 6: Средняя и установившаяся скорости

τ , 10^{-6} , σ_{τ} ,	$1.633, \sigma_{\tau} =$	$1.363, \sigma_{\tau} =$	$1.164, \sigma_{\tau} =$	$1.161, \ \sigma_{\tau} =$	$0.892, \ \sigma_{\tau} =$
10^{-8} ,c	6.86	5.61	4.78	4.75	3.61
$s, 10^{-11}, \sigma_S,$	$2.613, \ \sigma_S =$	$1.801, \ \sigma_S =$	$1.328, \ \sigma_S =$	$1.308, \ \sigma_S =$	$0.775, \sigma_S =$
10^{-12} M	2.20	1.49	1.09	1.07	0.63

Погрешность вычисления пути:

$$\sigma_S = S\sqrt{4(\frac{\sigma_{v_\infty}}{v_\infty})^2} \tag{14}$$

Погрешность измерения времени релаксации:

$$\sigma_{\tau} = \tau \frac{\sigma_{v_{\infty}}}{v_{\infty}} \tag{15}$$

Погрешности, которые были получены этими формулами, записаны в таблицах.