试 卷 (三)

一、选择题 (每题 2 分,共 20 分)

1.	设A,	B是两个互不相容的事件,	P(B) >	0,则下列各	式中-	_
定成立	的是				()

- (A) P(A) = 1 P(B);
- (B) $P(A \mid B) = 0$;
- (C) $P(A \mid \overline{B}) = 1$;
- (D) $P(\overline{AB}) = 0$.
- 2. 若函数 y = f(x) 是一随机变量 X 的概率密度函数,则一定成立的是
 - (A) f(x)的定义域为[0,1];
 - (B) f(x)的值域为[0,1];
 - (C) f(x)为非负;
 - (D) f(x)在($-\infty$, $+\infty$)内连续.
 - 3. 设(X, Y)的联合分布律为

X	0	1	2
-1	$\frac{1}{15}$	t	1 5
1	s	$\frac{1}{5}$	$\frac{3}{10}$

若 X 和 Y 相互独立,则(s, t)取

(A) $\left(\frac{2}{10}, \frac{1}{15}\right)$;

(B) $\left(\frac{1}{15}, \frac{2}{10}\right)$;

(C) $\left(\frac{1}{10}, \frac{2}{15}\right)$;

- (D) $\left(\frac{2}{15}, \frac{1}{10}\right)$.
- 4. 若随机变量 X 与 Y 不相关,则与之等价的条件是 ()

)

(A)
$$D(XY) = D(X)D(Y)$$

(A)
$$D(XY) = D(X)D(Y);$$
 (B) $D(X+Y) = D(X-Y);$

(C)
$$D(XY) \neq D(X)D(Y)$$
; (D) $D(X+Y) \neq D(X-Y)$.

(D)
$$D(X+Y) \neq D(X-Y)$$

)

5. 设随机变量 X 的概率密度函数 $f(x) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(x+3)^2}{4}}$ $(x \in$

 $(-\infty, +\infty)$),则服从 N(0, 1) 的随机变量是

(A)
$$\frac{X+3}{2}$$
;

(B)
$$\frac{X+3}{\sqrt{2}}$$
;

(C)
$$\frac{X-3}{2}$$
;

(D)
$$\frac{X-3}{\sqrt{2}}$$
.

6. 现有 10 张奖券,其中 8 张为 2 元,2 张为 5 元. 某人从中随机地 无放回地抽取 3 张,则此人所得奖金的数学期望为

(A) 6元;

(B) 12元:

(C) 7.8元:

(D) 9元.

7. 设 $X_1, X_2, ..., X_8$ 和 $Y_1, Y_2, ..., Y_{10}$ 为分别来自两个正态总 体 $N(-1, 2^2)$ 及 $N(2, 5^2)$ 的样本,且相互独立, S_1^2 和 S_2^2 分别为两个 样本的样本方差,则服从 F(7,9)分布的统计量是

(A)
$$\frac{2S_1^2}{5S_2^2}$$
;

(B)
$$\frac{5S_1^2}{2S_2^2}$$
;

(C)
$$\frac{4S_2^2}{25S_1^2}$$
;

(D)
$$\frac{25S_1^2}{4S_2^2}$$
.

8. 设 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, X_1, X_2, \dots, X_n 为来自总体X的一个样本,则μ的置信度为95%的置信区间是)

(A)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{0.025}\right);$$

(B)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.025}, \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.025}\right);$$

(C)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{0.05}\right);$$

(D)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}t_{0.05}, \overline{X} + \frac{\sigma}{\sqrt{n}}t_{0.05}\right)$$
.

9. 在假设检验中,显著性水平 α 是指	()
(A) $P($ 接受 $H_0 H_0 $ 为假 $) = \alpha;$		
(B) $P($ 接受 $H_1 H_1$ 为假 $)=\alpha;$		
(C) $P(拒绝 H_0 H_0)=\alpha$;		
(D) $P(拒绝 H_1 H_1 为真)=\alpha$.		
10. 设 $X \sim \begin{pmatrix} 0 & 1 \\ 0.3 & 0.7 \end{pmatrix}$, $Y \sim \begin{pmatrix} 0 & 1 \\ 0.3 & 0.7 \end{pmatrix}$, 若 X , Y 相互	独立,	则
必有	()
(A) $X = Y$; (B) $P(X = Y) = 1$;		
(C) $P(X = Y) = 0;$ (D) 以上 A, B, C 都不)	付.	
二、填空题 (每题 2 分,共 16 分)		
1. 设 A , B , C 为三个随机事件,用 A , B , C 的运算关系	表示	事
件: A , B , C 中不多于一个发生=		
2. 将红、黄、蓝 3 个球随机地放入 4 只盒子中,若每只盒子	P容球	数
不限,则有3只盒子各放一个球的概率是	1000	
3. 已知 $P(A \cup B) = 0.8$, $P(B) = 0.4$, 则 $P(A) = 0.4$	\overline{B})	=
5	i.	
4. 袋中有1个黑球、2个白球,从中任取2个,则取得黑球	数 X	的
分布函数 F(x) = .		
5. 设 X 是区间[0,1]上的连续型随机变量, $P(X \leq 0.3)$	= 0.8	8.
若 $Y = 1 - X$,则当常数 $c =$ 时,有 $P(Y \le c) = 0$.	2.	
6. 设 X 和 Y 相互独立且都服从 $N(0,1)$,则随机变量 Z		_
3Y+1 的概率密度函数 $f(z)=$.		
7. 设 X 服从区间(-1 , 1)内的均匀分布,则 X 和 $Y= X $	的相	关
系数 $\rho_{XY} = $		
8. 设假设检验中犯第一类错误的概率为 α, 犯第二类错误	吴的概	率
为 β . 为了同时减少 α 和 β ,那么只有		

三、计算题 (每题8分,共64分)

- 1. 设有两台机床加工同样的零件,第一台机床出废品的概率是 0.03,第二台机床出废品的概率是 0.02.加工出来的零件混放在一起, 并且已知第一台机床加工的零件比第二台机床多一倍.
 - (1) 求任意取出的一个零件是合格品的概率;
- (2) 如果任意取出的一个零件经过检验后发现是废品,求它是第二台机床加工的概率.
 - 2. (1) 设随机变量 X 的概率密度函数

$$f(x) = \begin{cases} ax + b & (0 < x < 1), \\ 0 & (其他), \end{cases}$$

且
$$P(X < \frac{1}{3}) = P(X > \frac{1}{3})$$
,求常数 a 和 b .

- (2) 设随机变量 X 服从(0,1) 内的均匀分布,求 $Y = -2\ln X$ 的概率密度函数.
 - 3. 设二维随机变量(X, Y)的联合密度函数

$$f(x, y) = \begin{cases} ce^{-(3x+4y)} & (x > 0, y > 0), \\ 0 & (\sharp e). \end{cases}$$

- (1) 确定常数 c;
- (2) 讨论 X,Y 的独立性;
- (3) 求 $P(0 < X \leq 1, 0 < Y \leq 2)$.
- 4. (1) 证明: 在一次试验中,事件 A 发生的次数 X 的方差 $D(X) \leq \frac{1}{4}$.
- (2) 设X为具有二阶矩的随机变量,c为任意常数.问:c为何值时, $E((X-c)^2)$ 取最小值.
- 5. 设某一复杂的系统由 n 个相互独立的部件组成,每个部件的可靠性(即部件正常工作的概率)为 0.9,并且必须至少有 80%的部件工作,才能使整个系统正常工作.问:n 至少为多少时才能使系统的可靠

性不低于 0.95?

6. 已知随机变量 X 的概率密度

$$f(x; \theta) = \begin{cases} \theta x^{\theta-1} & (0 < x < 1, \theta > 0), \\ 0 & (\sharp e), \end{cases}$$

设 X_1, X_2, \dots, X_n 是来自总体X的一个样本. 求: θ 的矩估计量和极大似然估计量.

- 7. 设随机变量 X 在区间 $(0, \theta)$ 上服从均匀分布,其中 θ 未知. X_1, X_2, \dots, X_n 是来自总体 X 的一个样本,则 θ 的极大似然估计量 $\hat{\theta} = X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$. 试确定 c,使得 $c\hat{\theta}$ 为 θ 的无偏估计.
- 8. (1) 从理论上分析得出结论: 压缩机的冷却用水的温度 $T \sim N(\mu, \sigma^2)$,升高的平均值不多于 5°C. 现测量了 5 台压缩机的冷却用水的升高温度分别是

问: $\alpha = 0.05$ 时,这组数据与理论上分析所得出的结论是否一致?

(2) 已知纤维的纤度 $X \sim N(1.405, 0.048^2)$. 现抽取了 5 根纤维,测得纤度为

问: 纤度的总体方差是否正常(取 α =0.05)?

附表 标准正态分布函数

Z	3	4	5	
1. 6	0.9484	0. 949 5	0. 950 5	
1, 7	0.9582	0.9591	0.9599	

t 分布

n	$\alpha = 0.25$	0.10	0.05	0.025	0.01
4	0.7407	1. 533 2	2. 131 8	2. 776 4	3. 746 7
5	0.7267	1. 475 9	2.0150)	2.5706	3.3649

χ² 分布

n	$\alpha = 0.975$	0.95	0. 90	0.10	0.05	0.025
4	0. 484	0.711	1.064	7. 779	9. 488	11. 143
5	0.831	1. 145	1.610	9. 236	11.071	12, 833

试卷(三)考核内容分值表

	概	率 论	68		数理统计 32		
随机事件	一维变量	二维变量	数字特征	极限定理	抽样分布	参数估计	假设检验
16	16	14	14	8	2	18	12