Traffic Aware Precoder Design for Space Frequency Resource Allocation

Ganesh Venkatraman, Antti Tölli, Le-Nam Tran and Markku Juntti Email: {gvenkatr, antti.tolli, le.nam.tran, markku.juntti}@ee.oulu.fi

Centre for Wireless Communications (CWC), Department of Communications Engineering (DCE), University of Oulu, Oulu, FI-90014

Outline

Introduction

System Model & Problem Formulation

Centralized Solutions

Existing Q-WSRM Formulation

JSFRA Formulation (SINR Relaxation)

JSFRA Formulation (MSE Reformulation)

Distributed Solutions

Primal & ADMM based decompositions KKT based Distributed Solution

Simulation Results

SISO Example
MIMO Examples
Centralized Solutions
Distributed Solutions
Effect of varying ℓ_q norms
KKT Based Approach

Time Correlated Fading Performance

Conclusions

Section 1

Introduction

Introduction and Motivation

- Complex algorithms are adopted to maximize the throughput to satisfy the data requirements of the higher layers
- Available wireless resources are to be utilized efficiently to minimize the backlogged packets
- Spatial and Frequency resources are exploited to empty the packets waiting at the BSs
- In this work, we discuss the precoder design for the multiple users MIMO-OFDM setup to minimize the number of queued packets

Section 2

System Model & Problem Formulation

Symbols used

- ▶ OFDM system with N sub-channels and N_B base stations (BSs), each equipped with N_T transmit antennas
- \triangleright Let K be the total number of users with N_R antennas
- \blacktriangleright Let ${\cal B}$ and ${\cal U}$ denote the set of coordinating BSs and users in the system
- ▶ The set of users belonging to BS b is denoted by $U_b \in \mathcal{U}$
- ▶ Let $b_k \in \mathcal{B}$ denotes the BS serving the user k
- Let L be the total available spatial streams for a user k, given by $\min(N_T, N_R)$

System Model

▶ The Ith spatial signal received on sub-channel n of user k is given by

$$\begin{split} \hat{d}_{l,k,n} &= \mathbf{w}_{l,k,n}^{\mathrm{H}} \mathbf{H}_{b_{k},k,n} \, \mathbf{m}_{l,k,n} d_{l,k,n} + \mathbf{w}_{l,k,n}^{\mathrm{H}} \mathbf{n}_{l,k,n} \\ &+ \mathbf{w}_{l,k,n}^{\mathrm{H}} \sum_{i \in \mathcal{U} \setminus \{k\}} \mathbf{H}_{b_{i},k,n} \sum_{j=1}^{L} \mathbf{m}_{j,i,n} d_{j,i,n} \end{split} \tag{1}$$

• where $\mathbf{m}_{l,k,n}$ and $\mathbf{w}_{l,k,n}$ are transmit and receive beamformers corresponding to the Ith spatial stream on the nth sub-channel of user k

System Model

- $ightharpoonup \mathbf{H}_{b_k,k,n} \in \mathbb{C}^{N_R imes N_T}$ denotes the channel between BS b_k and user k
- b $d_{l,k,n}$ and $n_{l,k,n}$ correspond to data symbol and equivalent noise on lth spatial stream of user k
- ▶ Using the above notations, the SINR seen by the /th spatial stream on the *n*th sub-channel for user *k* is given by

$$\gamma_{l,k,n} = \frac{\left| \mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n} \right|^{2}}{\hat{N}_{0} + \sum_{(j,i) \neq (l,k)} |\mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{i},k,n} \mathbf{m}_{j,i,n}|^{2}}$$
(2)

• where $\grave{N}_0 = \|\mathbf{w}_{l,k,n}^{\mathrm{H}}\mathbf{n}_{l,k,n}\|^2$

Queueing Model

- Each user is associated with backlogged packets of size Q_k packets.
- Queued packets Q_k of each user follows dynamic equation at the *i*th instant as

$$Q_k(i+1) = \left[Q_k(i) - t_k(i)\right]^+ + \lambda_k(i) \tag{3}$$

- where $t_k = \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n}$ denotes the total number of transmitted packets corresponding to user k in the previous ith instant
- \triangleright λ_k represents the fresh arrivals of user k at BS b_k

Problem Formulation

- Objective is to transmit the queued packets waiting at BSs to corresponding users in the system.
- ► The available spatial and frequency resources are to be efficiently utilized to minimize the queued packets
- In order to achieve this, precoders are to be designed with certain objective that involves the backlogged packets as well
- Precoders can perform scheduling of users by providing zero powers to exclude from the resource elements

Section 3

Centralized Solutions

Queue-Weighted Sum Rate Maximization (Q-WSRM)

- Q-WSRM formulation is the result of minimizing the conditional Lyapunov drift ¹
- Q-WSRM formulation is also called as back pressure algorithm, since it acts greedily in minimizing the backlogged packets at each instant

$$\label{eq:minimize} \mathop{\text{minimize}}_{t_{l,k,n}} \quad \sum_{k \in \mathcal{U}} \left\{ Q_k(i)^2 - Q_k(i-1)^2 \right\},$$

where Q_k follows the dynamic Queue expression in (3) and $t_k = \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n}$

Queue-Weighted Sum Rate Maximization (Q-WSRM)

 Upon solving the Lyapunov drift expression, we obtain the Q-WSRM formulation as

$$\underset{t_{l,k,n}}{\text{maximize}} \qquad \sum_{k \in \mathcal{U}} Q_k \left(\sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \right) \tag{4a}$$

$$\sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \le Q_k / Q_{k,n}$$
 (4b)

- Performs better in cell-edge scenarios
- ► Complexity can be reduced if precoders are designed for each sub-channel independently

Queue-Weighted Sum Rate Maximization (Q-WSRM)

- Complexity can be reduced if precoders are designed for each sub-channel independently
- Coupling across sub-channels is obtained by the queues, which are updated after evaluating the rate from previously chosen sub-channels as

$$Q_{k,n} = \max \Big\{Q_k - \sum_{j=1}^{n-1} \sum_{l=1}^L t_{l,k,j}, 0\Big\}, \ orall \ k \in \mathcal{U}$$

- ightharpoonup Precoders are designed by a centralized controller, which are then used by all BSs in $\mathcal B$
- ▶ The objective used to design transmit precoders is

$$v_k = \left| Q_k - \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \right|^q$$

- ► To generalize the objective, we use $\tilde{v}_k \triangleq a_k v_k$, where a_k is arbitrary weights used control the priorities
- Exponent q plays different role based on the value it assumes
 - $\ell_{q=1}$ results in greedy allocation
 - ho $\ell_{q=2}$ ideal for the delay or buffer size limited scenarios
 - ullet $\ell_{q=\infty}$ provides fair resource allocation in each transmission instant

Now, the precoder design problem is given as

$$\underset{t_{l,k,n},\mathsf{M}_{k,n},\mathsf{W}_{k,n}}{\mathsf{minimize}} \qquad \|\tilde{\mathbf{v}}\|_{q} \tag{5a}$$

subject to
$$t_{l,k,n} \leq \log_2(1 + \gamma_{l,k,n})$$
 (5b)

$$\gamma_{l,k,n} \leq \frac{\left|\mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n}\right|^{2}}{\beta_{l,k,n}} \triangleq f(\tilde{\mathbf{u}}_{l,k,n}), \qquad (5c)$$

$$\beta_{l,k,n} \geq \hat{N}_{0} + \sum_{l} |\mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{l},k,n} \mathbf{m}_{j,l,n}|^{2}, \qquad (5d)$$

$$\beta_{l,k,n} \ge \mathring{N}_0 + \sum_{(j,i)\ne(l,k)} |\mathbf{w}_{l,k,n}^H \mathbf{H}_{b_i,k,n} \mathbf{m}_{j,i,n}|^2,$$
 (5d)

$$\sum_{n=1}^{N} \sum_{k \in \mathcal{U}_b} \operatorname{tr}(\mathbf{M}_{k,n} \mathbf{M}_{k,n}^{H}) \leq P_{\max}, \forall b$$
 (5e)

 \blacktriangleright where $\tilde{\mathbf{u}}_{l,k,n} \triangleq \{\mathbf{w}_{l,k,n}^H, \mathbf{H}_{b_k,k,n}, \mathbf{m}_{l,k,n}, \beta_{l,k,n}\}$

- \triangleright To maximize the received SINR, $\mathbf{w}_{l,k,n}$ are modeled with the MMSE receivers
- ▶ The JSFRA formulation in (5) is nonconvex due to the constraint

defined by (5c) as
$$\gamma_{l,k,n} \le \frac{\left|\mathbf{w}_{l,k,n}^H \mathbf{H}_{b_k,k,n} \mathbf{m}_{l,k,n}\right|^2}{\beta_{l,k,n}}$$

- ▶ In order to solve the problem in (5), we use successive convex approximation (SCA) approach for the constraint defined by (5c)
- ▶ Let, $f(\tilde{\mathbf{u}}_{l,k,n}) = (p_{l,k,n}^2 + q_{l,k,n}^2)/\beta_{l,k,n}$, where

$$p_{l,k,n} \triangleq \Re \left\{ \mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n} \right\},$$

$$q_{l,k,n} \triangleq \Im \left\{ \mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n} \right\}$$
(6a)

$$q_{l,k,n} \triangleq \Im \left\{ \mathbf{w}_{l,k,n}^H \mathbf{H}_{b_k,k,n} \mathbf{m}_{l,k,n} \right\}$$
 (6b)

- Now, the first order Taylor approximation is used for the function $f(\tilde{\mathbf{u}}_{l,k,n})$ around an arbitrary point $\tilde{\mathbf{u}}_{l,k,n}^{(i-1)}$
- ▶ With this approximation, the problem in (5) can be solved using the well known solvers for the optimal precoders and $\tilde{\mathbf{u}}_{l,k,n}$
- ▶ Once the precoders $\mathbf{m}_{l,k,n}$ are evaluated, $\mathbf{w}_{l,k,n}$ are updated using the MMSE receivers
- The local point $\tilde{\mathbf{u}}_{l,k,n}^{(i-1)}$ is updated with the current optimal point $\tilde{\mathbf{u}}_{l,k,n}^{(i)}$
- With the updated precoders and $\tilde{\mathbf{u}}_{l,k,n}^{(i)}$, optimization is carried out in an iterative manner until convergence

JSFRA Formulation (MSE Reformulation)

- In this approach, we utilize the relation between the MSE and the SINR as $\epsilon_{I,k,n} = (1 + \gamma_{I,k,n})^{-1}$
- ▶ Equivalence is valid only when the receivers are designed with the mean squared error (MSE) objective, *i.e.*, using MMSE receivers

$$\mathbb{E}[(d_{l,k,n} - \hat{d}_{l,k,n})^{2}] = |1 - \mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n}|^{2} + \sum_{(j,i) \neq (l,k)} |\mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{i},k,n} \mathbf{m}_{j,i,n}|^{2} + \mathring{N}_{0} = \epsilon_{l,k,n} \quad (7)$$

JSFRA Formulation (MSE Reformulation)

Using the above reformulation, we can formulate the JSFRA problem as

$$\underset{\substack{t_{l,k,n},\mathbf{m}_{l,k,n},\\\epsilon_{l,k,n},\mathbf{w}_{l,k,n}}}{\mathsf{minimize}}$$

$$\|\tilde{\mathbf{v}}'\|_q$$
 (8a)

$$t_{l,k,n} \le -\log_2(\epsilon_{l,k,n}) \tag{8b}$$

$$\sum_{(j,i)\neq(l,k)}\left|\mathbf{w}_{l,k,n}^{\mathrm{H}}\mathbf{H}_{b_{i},k,n}\mathbf{m}_{j,i,n}\right|^{2}+\grave{N}_{0}$$

$$+ \left| 1 - \mathbf{w}_{l,k,n}^{\mathrm{H}} \mathbf{H}_{b_k,k,n} \mathbf{m}_{l,k,n} \right|^2 \le \epsilon_{l,k,n} \qquad (8c)$$

$$\sum_{n=1}^{N} \sum_{k \in \mathcal{U}_{b}} \sum_{l=1}^{L} \operatorname{tr}\left(\mathbf{m}_{l,k,n} \mathbf{m}_{l,k,n}^{H}\right) \leq P_{\mathsf{max}} \ \forall b. \tag{8d}$$

JSFRA Formulation (MSE Reformulation)

- ▶ The nonconvex constraint in (8b) is approximated by a sequence of convex constraints
- It is achieved by using SCA technique as earlier
- The iterative procedure is performed until convergence or for suitable number of iterations
- ► The above reformulation works only with the MMSE receiver

Section 4

Distributed Solutions

Distributed Methods

- ▶ When the system size is small, centralized approach is viable if the channel remains constant for multiple transmission slots
- ► However, the overhead involved in the centralized design scales up significantly as the network size grows
- Distributed schemes based on primal decomposition or ADMM can be used to reduce the signaling requirements
- The overhead involved in the design of precoders are only scalar interference variables
- Only the convex approximated subproblem in each SCA step is performed via distributed approaches

Primal Decomposition Method

- Precoder design is performed by a master-slave approach
- Interference created to the neighboring BS users are bounded by a scalar variable
- ► The interference thresholds are determined by the master problem, which is performed at each BS with the signaling exchange

$$\zeta_{l,k,n,b} \ge \sum_{i \in \mathcal{U}_b} \sum_{j=1}^{L} |\mathbf{w}_{l,k,n}^{\mathrm{H}} \mathbf{H}_{b,k,n} \mathbf{m}_{j,i,n}|^2 \, \forall b \in \bar{\mathcal{B}}_{b_k}. \tag{9}$$

▶ Each BS subproblem includes (9) as an additional interference constraint in the respective optimization problem

ADMM based Decomposition Method

- ► The alternating directions method of multipliers (ADMM) is superior to other distributed schemes in terms of the convergence speed
- The ADMM includes an additional quadratic term in the objective as $\|\zeta_b \zeta_b^{(j)}\|^2$, where $\zeta_b^{(j)}$ is global consensus variable
- ▶ Unlike primal decomposition method, $\zeta_{l,k,n,b}$ in (9) is treated as an optimization variable in ADMM
- The consensus variables are updated as

$$\zeta_{b_k}(b)^{(j+1)} = \zeta_b(b_k)^{(j+1)} = \frac{\zeta_b(b_k) + \zeta_{b_k}(b)}{2}.$$
 (10)

ightharpoonup where $\zeta_{b_k}(b)$ denotes the entries corresponding to BS b in BS b_k

KKT based Distributed Solution

- The decentralization methods considered so far involve considerable signaling exchanges via backhaul
- ▶ However, when the users are equipped with multiple receive antennas, the overhead requirement is significantly large
- Since the signaling requirements are large, the iterative algorithm should design efficient precoders in few number of iterations to reduce the backlogged packets
- ▶ In order to achieve that, we design an iterative procedure based on solving the Karush-Kuhn-Tucker (KKT) equations for the JSFRA problem via MSE reformulation
- Unlike the earlier schemes, we perform the group update of all the involved optimization variables to speed up the convergence of precoder design

© Centre for Wireless Communications (CWC)

KKT based Distributed Solution

$$\mathbf{m}_{l,k,n}^{(i)} = \left(\sum_{x \in \mathcal{U}} \sum_{v=1}^{L} \alpha_{y,x,n}^{(i-1)} \mathbf{H}_{b_{k},x,n}^{H} \mathbf{w}_{y,x,n}^{(i-1)} \mathbf{w}_{y,x,n}^{H} \mathbf{H}_{b_{k},x,n}^{(i-1)} + \delta_{b} \mathbf{I}_{N_{\mathcal{T}}}\right)^{-1} \alpha_{l,k,n}^{(i-1)} \mathbf{H}_{b_{k},k,n}^{H} \mathbf{w}_{l,k,n}^{(i-1)}$$

$$\mathbf{w}_{l,k,n}^{(i)} = \left(\sum_{y \in I} \sum_{v=1}^{L} \mathbf{H}_{b_{x},k,n} \mathbf{m}_{y,x,n}^{(i)} \mathbf{m}_{y,x,n}^{\mathrm{H}(i)} \mathbf{H}_{b_{x},k,n}^{\mathrm{H}} + N_{0} \mathbf{I}_{N_{R}}\right)^{-1} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n}^{(i)}$$
(11a)

$$\epsilon_{l,k,n}^{(i)} = \left| 1 - \mathbf{w}_{l,k,n}^{\mathrm{H}(i)} \mathbf{H}_{b_k,k,n} \mathbf{m}_{l,k,n}^{(i)} \right|^2 + \sum_{(x,y) \neq (l,k)} \left| \mathbf{w}_{l,k,n}^{\mathrm{H}(i)} \mathbf{H}_{b_y,k,n} \mathbf{m}_{x,y,n}^{(i)} \right|^2 + \mathring{N}_0$$
 (11b)

$$\mathbf{t}_{l,k,n}^{(i)} = -\log_2(\epsilon_{l,k,n}^{(i-1)}) - \frac{\left(\epsilon_{l,k,n}^{(i)} - \epsilon_{l,k,n}^{(i-1)}\right)}{\log(2)\,\epsilon_{l,k,n}^{(i-1)}}$$
(11c)

$$\sigma_{l,k,n}^{(i)} = \left[\frac{a_k \, q}{\log(2)} \left(Q_k - \sum_{n=1}^N \sum_{l=1}^L t_{l,k,n}^{(i)} \right)^{(q-1)} \right]^+ \tag{11d}$$

$$\alpha_{l,k,n}^{(i)} = \alpha_{l,k,n}^{(i-1)} + \rho^{(i)} \left(\frac{\sigma_{l,k,n}^{(i)}}{\epsilon_{l,k,n}^{(i)}} - \alpha_{l,k,n}^{(i-1)} \right)$$
(11e)

Section 5

Simulation Results

SISO Example

Let us consider a simple example with $N_T = N_R = 1$, N = 3 sub-channels, and K = 3 users

Table: Sub-channel-wise listing of channel gains and rate allocations

Q_k	$H_{b_k,k}$			(A)			(B)			(C)		
	1	2	3	1	2	3	1	2	3	1	2	3
4	1.71	0.53	0.56	0	0	0	4.0	0	0	0	0	0
8	0.39	1.41	1.03	0	4.88	3.11	0	5.49	0	0	4.39	3.53
4	2.34	1.26	2.32	4.0	0	0	0	0	4.0	5.81	0	0
Remaining packets (χ)				3.92 bits			2.51 bits			5.89 bits		

- ζ = 5.89 bits for Q-WSRM (C), ζ = 3.92 bits for Q-WSRME scheme (A) and, ζ = 2.51 bits for JSFRA scheme (B)

Performance Comparison with Number of Residual Packets

Figure: System Model - $\{N, N_B, K, N_T, N_R\} = \{2, 3, 9, 4, 2\}$

Performance Comparison with Number of Residual Packets

Figure: System Model - $\{N, N_B, K, N_T, N_R\} = \{3, 2, 8, 4, 1\}$

Effect on Residual Packets with different ℓ_q norms

Table: Number of backlogged bits associated with each user for a system $\{N, N_B, K, N_R\} = \{5, 2, 8, 1\}.$

q	user indices								
	1	2	3	4	5	6	7	8	χ
1	15.0	3.95	5.26	8.95	7.0	11.9	12.0	9.7	25.15
2	11.2	3.9	10.76	10.65	10.27	9.68	8.77	5.9	27.77
∞	11.4	4.4	10.4	10.4	10.4	8.4	8.4	6.4	28.68
Q_k	15.0	8.0	14.0	14.0	14.0	12.0	12.0	10.0	

Performance Comparison with Number of Residual Packets

Figure: System Model - $\{N, N_B, K, N_T, N_R\} = \{5, 2, 8, 4, 1\}$

Average Residual Packets after each Transmission Slot

Figure: System Model - $\{N, N_B, K, N_R\} = \{3, 2, 8, 1\}$ after 250 transmissions

Section 6

Conclusions

Conclusions

- ▶ We discussed the problem of wireless resource allocation to minimize backlogged packets in an efficient way
- ▶ The proposed approach uses SCA method by using linear approximation for the nonconvex constraint
- We also addressed different distributed methods for the precoder design across each BSs with minimal information exchange
- An iterative algorithm for the JSFRA scheme using MSE reformulation is also studied

Questions!

