Chapter 1 概率论基本概念

南京大学

高尉

随机现象

自然界所观察到的现象: 必然现象 随机现象

• 必然现象: 在一定条件下必然发生的现象, 其特征是条件完

全决定结果

- 太阳从东边升起
- 水往低处流
- 可导的函数必连续

• **随机现象:** 在一定条件下可能出现、可能不出现的现象, 其特征是条件不能完全决定结果

例1: 在相同条件下掷一枚均匀的硬币

结果:可能是正面、也可能反面

随机现象(续)

例2: 同一门火炮向同一目标发射同一种炮弹多发

结果: 弹落点会各不相同

例3: 抛一枚骰子

结果: 1, 2, 3, 4, 5, 6

例4: 过马路交叉口时,可能遇上的交通指挥灯

结果:红、黄、绿

例5:一批含正品和次品的产品中任取一个产品

结果: 正品、次品

判断随机现象

- 人往高处走
- 明天的天气情况
- 昨天的天气情况
- 玩扑克时拿到一手好牌
- 彩票中奖
- 明天上课是否点名

随机现象的必然性与偶然性

- 随机现象揭示了条件和结果之间的非确定性联系,其数量关系 无法用函数确切的描述
- 随机现象在一次观察中出现什么结果具有偶然性,即多种可能的结果中不能确定到底是哪一种结果
- 随机现象是否是无规律可言 不是
 大量重复试验或观察中,结果的出现具有一定的统计规律性
- □偶然性:对随机现象做一次观察,观察结果不可预知
- □必然性:对随机现象做大量观察,观察结果具有一定的规律性,即统计规律性

概率是研究与揭示随机现象统计规律性的数学分支

随机试验

- 随机现象: 具有不确定性(或偶然性)的现象
- 试 验:对某随机现象的观察或测量等
- · 随机试验(用E表示): 具备以下三个特点的试验
 - 可重复: 可在相同的条件下重复进行
 - 多结果: 结果不止一个, 所有可能的结果事先已知
 - 不确定: 试验前无法预测/确定哪一种结果

例如

- ✓ E1: 抛一枚骰子, 观察其出现的点数
- ✓ E2: 随机选取一盏电灯, 测试其寿命

样本空间

- 样本点: 试验的每一个可能的结果
 - 称为基本时间, 记为ω
- 样本空间: 试验中所有可能的结果组成的集合
 - -记为Ω

E1: 抛一枚骰子, 观察其出现的点数 样本空间 $\Omega = \{1, 2, 3, 4, 5, 6\}$

E2: 随机选取一盏电灯, 测试其寿命 样本空间 $\Omega = \{t: t \geq 0\}$

样本空间

有限样本空间:有限个样本点

例:将一枚硬币抛掷两次,观察正面H、反面T出现的情况,则该试验的样本空间 $\Omega = ?$

无限可列样本空间: 样本点是无限的但可列的

例:中国一年内出生的婴儿数,其样本空间 $\Omega = ?$

不可列样本空间: 样本点是无限的、且不可列的

例:随机选取一盏电灯,测试其寿命,则样本空间Ω=?

随机事件

随机事件: 样本空间 Ω 的子集、或某些样本点 ω 的集合

- ◆本质是集合
- ◆ 一般用字母A、B、C等

称"随机事件A发生"当且仅当试验的结果是子集A中的元素

对试验E: 抛两枚骰子

其样本空间 $\Omega = \{(i,j): i,j \in [6]\}$

- 随机事件A: 点数相同, A =?
- 随机事件B: 点数和为偶数, B =?

随机事件

- 基本事件: 由一个样本点构成的事件
- 复合事件:包含两个或以上样本点构成的事件

对试验E: 抛一枚骰子

- · 必然事件: 试验中必定发生的事件, 记为Ω
- · 不可能事件: 试验中不可能发生的事件, 用Ø表示

对试验E: 抛一枚骰子

- -"抛出的点数小于8"的事件是必然事件
- -"抛出的点数大于8"的事件是不可能事件

概率论与集合论之间的关系

记号	概率论	集合论
Ω	样本空间,必然事件	全集
Ø	不可能事件	空集
ω	基本事件	元素
A	随机事件	子集

事件间的关系

包含: $若A发生必然导致B发生,称事件B包含事件A, 记为<math>A \subset B$ 或 $B \supset A$

事件间的关系

事件的并:事件A和B至少发生一个的事件称为A和B的并,记为AUB n个事件 $A_1,A_2,...,A_n$ 中至少有一个发生的事件称为 $A_1,A_2,...,A_n$ 的并,记为

 $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$

事件的交: $A \cap B$ 同时发生的事件称为 $A \cap B$ 的交, 记为 $A \cap B = AB$

n个事件 $A_1,A_2,...,A_n$ 同时发生的事件称为 $A_1,A_2,...,A_n$ 的交,记 $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i = A_1 A_2 \cdots A_n$

事件间的关系

互斥/互不相容: 若事件A和B不可能发生

,称事件A和B互斥、或互不相容 $B \cap \bar{A} = \emptyset$

$$A$$
 B
 Ω

对立/逆事件:事件A不发生的事件称为A的对立事件、或逆时间、记 \overline{A}

$$A \cap \bar{A} = \emptyset$$
, $A \cup \bar{A} = \Omega$

对立和互不相容事件之间的关系?

事件间的关系

事件的差: A发生, 而B不发生的事件称为A

与B的差,记为A-B

$$A - B = A - AB = A\overline{B}$$

概率论与集合论之间的对应关系

记号	概率论	集合论		
$ar{A}$	A的对立事件	A的补集		
$A \subset B$	A出现必然导致B出现	A是 B 的子集		
A = B	事件A与事件B相等	A集合与B集合相等		
$A \cup B$	事件A与事件B的和	A集合与B集合的并集		
$A \cup B$ $A \cap B$	事件A与B的积事件	A集合与B集合的交集		
A - B	事件A与事件B的差	A与B两集合的差集		
$A \cap B = \emptyset$	事件A与B互不相容	A与B两集合中没有相同的		
		元素		

事件的运算规律

- · 幂等律: *AUA = A*, *A*∩*A = A*
- 交换律: $AUB = BUA, A \cap B = B \cap A$
- 结合律: (AUB)UC = AU(BUC)

$$(A \cap B) \cap C = A \cap (B \cap C)$$

• 分配律: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• 对偶律: $\overline{AUB} = \overline{A}\overline{B}$, $\overline{AB} = \overline{A}U\overline{B}$

练习

设A、B、C为三个随机事件,试用A、B、C表示如下随机事件:

- A发生、且B和C不发生
- *A*、B、C都不发生
- A、B、C中恰好有一个事件发生
- A、B、C中至少有两个事件发生
- A、B、C中至少有一个事件发生
- A、B、C中恰好有两个事件发生

可靠性系统

如图(1)、(2)两个系统中 A_i 表示"第i个元件工作正常", B_i 表示"第i个系统工作正常"

试用 A_1, A_2, A_3, A_4 表示 B_1, B_2

解: (1) $B_1 = A_1 A_2 \cup A_3 A_4$ (2) $B_2 = (A_1 \cup A_3)(A_2 \cup A_4)$

频率

在相同的条件下,进行了n次试验,n次试验中事件A发生的次数为 n_A ,称为A发生的频数。事件A发生的频率为

$$f_n(A) = \frac{n_A}{n}$$

频率的性质:

- $0 \le f_n(A) \le 1$
- $-f_n(\Omega)=1$
- $若A_1, A_2, ...A_k$ 两两互不相容,则

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_k) = \sum_{i=1}^k f_n(A_i)$$

频率的稳定性

在充分多次试验中,事件的频率总在一个定值附近摆动,而且试验次数越多,一般来说摆动越小,这个性质称为频率的稳定性。

例: 拋硬币出现的正面的频率

试验	n=5		n =50		n=500	
序号	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$
1	2	0.4	22	0.44	251	0.502
2	3	0.6	25	0.50	249	0.498
3	1	0.2	21	0.42	256	0.512
4	5	1.0	25	0.50	253	0.506
5	1	0.2	24	0.48	251	0.502
6	2	0.4	21	0.42	246	0.492
7	4	0.8	18	0.36	244	0.488
8	2	0.4	24	0.48	258	0.516
9	3	0.6	27	0.54	262	0.524
10	3	0.6	31	0.62	247	0.494

频率的稳定性

例: 拋硬币出现的正面的频率

概率的统计定义

在大量重复的试验中,事件A发生的频率总是稳定在一个确定的常数附近,定义该常数为事件A发生的概率,记为P(A)

当重复的次数足够多, 即 $n \to \infty$ 时, 有

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

概率的性质:

- $0 \le f_n(A) \le 1$
- $f_n(\Omega) = 1$

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_k) = \sum_{i=1}^k f_n(A_i)$$

概率与频率

- 概率用于度量事件发生的可能性
- 频率在一定程度上反映了事件发生的可能性
- 概率是恒定的, 而频率在一些列试验中可能是变化的
- 但只要试验次数足够多, 频率与概率是会非常接近的
- 概率可以通过频率来"测量", 频率是概率的一个近似

概率的公理化定义

苏联数学家柯尔莫哥洛夫于1933年给出了概率的公理化定义,

即通过规定概率应具备的基本性质来定义概率。

在随机试验的样本空间 Ω 上,对于每一个事件 A赋予一个实数, 记为<math>P(A), 称为事件A的概 率. 其满足下列条件:

- 规范性: $P(\Omega) = 1$

-可列可加性: 若 $A_1,A_2,...$ 两两互不相容,则

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$