Carlos Núñez-Molina*, Masataro Asai*, On Using Admissible Bounds Pablo Mesejo, Juan Fernández-Olivares for Learning Forward Search Heuristics

1. Task: Learn the cost to go for forward heuristic search

We know a certain lower bound of h*: Admissible heuristics h

obtained by solving a simplified problem

2. Stop using (Mean) Square Errors!

: data point

: prediction (from s, g)

 $(x - \mu)^2$: Square error

because it is just a special case of

Negative Log Likelihood (NLL)

of a Gaussian distribution
$$-\log p(x) = -\log \mathcal{N}(\mu, \sigma)$$

$$= \frac{(x - \mu)^2}{2\sigma^2} + \log \sqrt{2\pi\sigma^2}.$$

which contains the square error

It is a special case because

it sets an arbitrary fixed
$$\sigma = \frac{1}{\sqrt{2}}$$

$$-\log \mathcal{N}(\mu, \frac{1}{\sqrt{2}}) = \frac{(x-\mu)^2}{2 \cdot \frac{1}{2}} + \log \sqrt{2\pi \cdot \frac{1}{2}}$$
$$= (x-\mu)^2 + \text{Const.}$$

Choosing a loss function **⇔** Choosing a distribution

So don't "innovate" a new loss. Innovate a distribution instead!

(Mean) Absolute error
$$\Leftrightarrow$$
 Laplacian NLL $-\log \mathcal{L}(\mu, b) = \frac{|x - \mu|}{b} + \log 2b$

(Mean) Squared error
$$\Leftrightarrow$$
 Gaussian NLL
$$-\log \mathcal{N}(\mu, \sigma) = \frac{(x - \mu)^2}{2\sigma^2} + \log \sqrt{2\pi\sigma^2}$$

3. Thinking with Distributions: Is $N(\mu,\sigma)$ the correct distribution for h*?

- We know $h^* \ge 0$
- Why do we assign non-zero probability to h*<h?
- i.e. $N(\mu, \sigma)$ ignores our expert knowledge on h*
- It is **not** the **correct** distribution

4. What is *the correct* distribution? **→Follow the Maximum Entropy Principle:**

Choose the distribution with the largest entropy among those that satisfy the expert knowledge / constraint.

 \hookrightarrow We know a lower bound h \leq h*!

Truncated-Gaussian distribution TN(μ , σ , I, u):

Max-ent distribution under

- mean μ,
- variance σ^2 ,
- lower/upper bound l, u (u = ∞ is permissible) (I = LMcut heuristics)

NLL Loss:
$$-\log \mathcal{TN}(x|\mu,\sigma,l,u) = \frac{(x-\mu)^2}{2\sigma^2} + \log \sqrt{2\pi\sigma^2} + \log \sqrt{2\pi\sigma^2} + \log (\Phi(\frac{u-\mu}{\sigma}) - \Phi(\frac{l-\mu}{\sigma})).$$

We use E[x] as the heuristics for GBFS. $1 \le E[x] \le u$

5. Results

Data generation details

- The test instances are larger than the training instances. \rightarrow Evaluate problem-size generalization $^{0.3}$ • h*: A*+LMcut on Fast Downward under 5min/8GB (train/val) or 30min/8GB (test)

TN training: faster & more accurate learn vs. fixed:

 AdamW batch-size 256 decay 10⁻² gradient clip 0.1, lr=10⁻² 0.5-2 hours / training **2.98**±**1.4** 3.85±.9 3.73±.7 **3.45**±**.8** 10.44 ± 28.4 N vs TN: TN outperforms N $3.69\pm.9$ $3.72\pm.9$ 68.22 ± 16.1 MSE 9.93 15.82 N often completely fails esp. w/o hf $3.65 \pm .7$ 13.37 ± 15.2 $3.69 \pm .8$ 13.38 ± 14.5 Residual learning (h^{FF}) is effective 7.67±.4 **5.30**±**.6** 25.31 ± 7.9 $6.49 \pm .6$ $6.62 \pm .9$ 21.71 ± 2.6 14.11 ± 1.0 • Learning σ is crucial for TN $7.60 \pm .4$ 18.79 ± 7.3 $6.35 \pm .6$ 16.38 ± 2.3 • N+clip vs TN: Clipping is not enough

Test metrics for NLM (smaller the better). Each number represents the mean±std of 5 random seeds. For each configuration, we performed 10⁴ training steps, saving the checkpoints with the best validation MSE metric.

TN searches faster

- Instances: 100 instances subsampled from test
- Pyerplan GBFS with early-stopping (added) Limited to 10k node evaluations
- Compared success ratio and avg. evaluations Findings:
- TN outperforms N, N+clip TN also outperforms h^{FF} Better to learn σ and learn the residual from h^{FI}

 \hookrightarrow TN's heuristics E[x] depends on σ

		learn/h ^{FF} (proposed)			fixed/none (baseline)		
domain	h^{FF}	\mathcal{N}	\mathcal{N} +clip	$\mathcal{T}\mathcal{N}$	\mathcal{N}	\mathcal{N} +clip	$\mathcal{T}\mathcal{N}$
		Ratio of solv	ed instances un	nder 10^4 evalua	ntions (higher th	ne better)	
blocks	.13	.84±.19	.85±.19	.88±.14	.79±.29	.50±.35	.55±.33
ferry	.82	.91±.19	$.91 \pm .19$	$.98 {\pm} .05$	$.01 \pm .01$	$.57 \pm .10$	$.58 {\pm} .13$
gripper	.96	1	1	1	0	$.92 \pm .12$	1
visitall	.86	.97±.07	$\textbf{.98} {\pm} \textbf{.06}$	$\textbf{.98} {\pm} \textbf{.05}$.82±.33	1	1
		A	verage node ev	aluations (smal	ler the better)		
blocks	9309	2690±2128	2681 ± 2121	$2060{\pm}1607$	4118±2663	6268 ± 2675	5903±2685
ferry	5152	3216±1964	3117 ± 1967	2477 ± 1093	9933±92	6675 ± 582	6475 ± 725
gripper	3918	1642±139	1643 ± 141	$1637 {\pm} 492$	10000±0	2941 ± 1513	1709 ± 658
visitall	3321	2156±1451	2148 ± 1511	1683 ± 1290	3384±3448	591±216	612 ± 363

- Model-agnostic: tested NLM, GNN, linear regression
- Comparable performance to rank-based approach

 Chrestein et. al. uses HGN → we compared our HGN models vs Chrestein et. a • Our HGN models is not our best model (it performs worse than NLM models.)

domain	h^{FF}	N	learn/ h^{FF} \mathcal{N} +clip	TN	(Chrestien <i>et al.</i> , 2023) L^{GBFS}					
Ratio of solved instances under 10^4 evaluations (higher the better)										
blocks	.13	.70±.30	.72±.29	.48±.26	.24					
ferry	.82	.01±.02	$.01 {\pm} .02$	$.02 \pm .06$.61					
gripper	.96	.36±.14	$.37 \pm .15$	$.39 \pm .13$	-					
visitall	.86	.99±.03	$.97 \pm .04$	$.97 \pm .04$	0					
	Average node evaluations (smaller the better)									
blocks	9309	3984±2675	3906±2649	5844±2088	8282.6					
ferry	5152	9916±132	9915 ± 134	9834 ± 424	5103.5					
gripper	3918	7078±971	7008 ± 1058	6949 ± 1020	_					
visitall	3321	1512±1192	1555 ± 1149	1472 ± 1182	10000					