Probability and Measure - Tutorial 9

- 1. Let Ω be a set, \mathcal{F}, \mathcal{G} be two σ -algebras of subsets of Ω with $\mathcal{F} \subset \mathcal{G}$ and μ be a measure on \mathcal{G} (also denote the restriction of μ to \mathcal{F} by μ). Let $f: \Omega \to \mathbb{R}$ be $(\mathcal{F}, \overline{\mathcal{B}})$.
 - (a) Prove that f is $(\mathcal{G}, \bar{\mathcal{B}})$ -measurable.
 - (b) Prove if $f \geq 0$, then the integral of f defined in either measure space gives the same value.

Suggestion: Adopt the notation

$$\int_{(\Omega, \mathcal{F}, \mu)} f \text{ and } \int_{(\Omega, \mathcal{G}, \mu)} f$$

to make the measure space where the integration is taking place explicit.

- (c) Prove that f is integrable in $(\Omega, \mathcal{F}, \mu)$ if and only if it is integrable in $(\Omega, \mathcal{G}, \mu)$, and in that case, the values of the integral of f taken in either space coincide.
- 2. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $f: \Omega \to \mathbb{R}$ be integrable. Prove that $|f| < \infty$ almost everywhere.
- 3. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $f: \Omega \to \mathbb{R}$ be integrable and nonnegative. Define

$$E_n = \{\omega : f(\omega) > n\}, \ n \in \mathbb{N}, \qquad E = \{\omega : f(\omega) = \infty\}.$$

Show that $\lim_{n\to\infty} \mu(E_n) = \mu(E) = 0$.

4. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and assume $f_n : \Omega \to \mathbb{R}$, $n \in \mathbb{N}$, are measurable real-valued functions. Assume that $f_n \to 0$ pointwise. In Exercise 4 of Tutorial 8, you have seen that, if the measure is a probability,

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mu(\{\omega : |f_n(\omega)| > \varepsilon\}) = 0$$

(more generally, this implication holds if the measure space is finite). Show that this is not necessarily true in case the measure space is not finite.

5. Prove or give a counterexample to the following statement. If $f_n : \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{N}$, are measurable functions with $f_1 \geq f_2 \geq \cdots \geq 0$ and such that $\int_{\mathbb{R}} f_n \, dm \to 0$, then $f_n \to 0$ almost everywhere.