

XPS & NEXAFS data analysis suite: Ctrl+Q

- efficient and effective analysis ever experienced -

Hideki NAKAJIMA

github: heitler/xps-excel-macro

10 May 2019

Brief

Plot with binding energy Identify elements and states

Energy and intensity calibrations

Curve fitting and BG subtraction

Preface

- Ctrl+Q is the first comprehensive data-analysis code for SR-XPS and XAS working on Windows Office Excel 2007 or later. Mac Excel 2016 works great now.
- Ctrl+Q will analyze the data by just pressing the shortcut key: Ctrl + q.
- It works great in publication quality.
 - Carbon, JPAP, ASS, ACS AMI, SAB, RCS Adv. etc. from the data obtained at BL3.2Ua and 5.3 in SPL
- GitHub: xps-excel-macro for updated info.

The VBA codes to be pasted in the personal macro workbook (Personal.xlsb) in Windows Office Excel 2007 - 2016 Visual Basic Editor (VBE) work with Solver for spectral analysis and curve fitting of the synchrotron-based soft x-ray photoemission (XPS) and absorption (XAS) spectra.

— Edit

Data preparation

	Α	В
1	KE/eV	Scan#1
2	496	19.69872
3	496.1	17.95129
4	496.2	19.18263
5	496.3	18.03784
6	496.4	19.03867
7	496.5	18.80417
Q	406 G	10 22572

- Two-column data in the spreadsheet format are analyzed in the code.
- Worksheet is named after workbook filename.
- Syntax in A1 cell corresponds to the following.

Syntax in A1 cell	Data in column A	Data in column B
KE/eV	KE	XPS
BE/eV	BE	XPS
PE/eV	PE	XAS
GE/eV	PE	G scan
AE/eV	EE	Auger
QE/eV	mass	Q-mass
ME/eV	Position	Any

Installation of the code in Excel

- Generate Personal Workbook Macro
- Install Solver Add-in and setup its DLL
- Setup the Shortcut key in Macro Option

• Compile your own database for BE and sensitivities on UD.xlsx

XPS worksheet

al de	Α	В	С	D
1	Element	Orbit	BE(eV)	ASF
2	С	1s	284.6	1
3	0	1s	532	2.93

AES worksheet

	Α	В	С	D
1	Element	Auger	KE(eV)	RSF
2	C	KLL	266	0.6
3	0	KLL	506	0.96

C1s sample csv or txt

600 eV of photon energy

XPS: Carbon 1s spectrum

Sample file with multiple scans

110904 1625 6.txt

110904 1625 7.txt

110904 1625 8.txt

110904 1625 9.txt

110904 1625 10.txt

110904 1625 11.txt

6/17/2016 1:29 PM

TXT File

TXT File

TXT File

TXT File

TXT File

TXT File

- Download Au4f sample.csv including 100 spectra.
- Open it with Excel as shown above.
- Export 100 text files by shortcut keys: Crtl+Q.

Sample file includes single data

Single data to plot in Graph sheet

KE/eV represents a kinetic energy scale.

600 eV of photon energy

Sample: Gold metal foil

Note that Au4f sensitivity is not in database, so you have to input factors in database in a way below.

Au 4f BE and ASF in XPS worksheet on UD.xlsx

	Α	В	С	D
1	Element	Orbit	BE(eV)	ASF
2	C	1s	284.6	1
3	0	1s	532	2.93
4	Au	4f5/2	87.6	7.54
5	Au	4f7/2	84	9.58

Graph sheet

Adjustable factors

X axis

- **PE**: photon energy (eV)

- WF: work function (4)

- Char: Charging shift (0)

Y axis

- Offset: constant

base line (0: default)

- Multiple: multiple

normalized factor (1)

Change Char to 3, and update by

Reference spectrum

Next, apply these factors to another by "debug" in A1 cell then

	А	В	С
1	debug	0	lines/mm
2	PE	600	eV
3	WF	4	eV
4	Char	3	eV
5	Start KE	496	eV
6	End KE	516	eV
7	Step KE	0.1	eV
8	# scan	1	times
9	Offset/mu	0	1
10	Ke	Be	In

"comp" in D4 cell Ctrl Q

Compared spectra

for BE&KE plots

Analysis on spectra compared

- Automatically scaled spectra for comparison
 - "auto" in A1 cell to scale at the both ends
 - "auto[x1:x2,x3:x4]" in A1 cell to scale in the ranges of (x1, x2) for offset (0) and (x3, x4) for multiple (1).
 - "auto{284.6}" in A1 cell to shift the maximum intensity to 284.6 eV in BE scale.
 - "auto'-7.8'" in A1 cell to set all char factor to be -7.8 eV.
- Annotate legends in each plot
 - "leg" in A1 cell to generate Sample sheet
 - Describe sample or spectrum name in the sheet
 - "leg" in A1 cell to run the code again.
- Normalize spectra with ref. spectrum by "norm" in A1 cell.
 - Second set of data will be selected for ref. and third set to be normalized data.
 - Norm sheet appears from the data normalized.

Edge correction in NEXAFS

Post-edge region to be 1

New spline edge correction

A1 cells: "edge"

New *Linear combination*

A1 cells: "lcmb"

After two references added.

Fit sheet

Switch the worksheet

Note that offset/multiple factors should be aligned for all spectra in Graph sheet to evaluate the peak area in Fit sheet.

Fitting functions and parameters

Shirley, Tougaard, Polynomial, Poly Shirley, Poly Tougaard, Victoreen, Arctan

Update results by setup constraints with bold font style, various BGs or Forms

Peak shape: Tailed pseudo-Voigt

Shirley's BG, Tailed Voigt, Doublet 4f (4:3), ΔSO Au4f: 3.6 eV are used for above fitting. User-defined peak and BG functions can be easily implemented in your Visual Basic code.

Polynomial (Shirley or Tougaard) Active-BGs

Poly Shirley ABG

3-eV FWHM Gaussian fit

Lists of fitting functions

Peak shapes (total 5 forms)

Code (form)	Shape	Option a	Option b
G (0)	Gauss		
L (1)	Lorentz		
GL (0 < shape < 1)	G + L with the same FWHM1		
SGL (0 < shape < 1)	G (FWHM1) + L (FWHM2)		
<u>TSGL</u>	Exponential blend GL (FWHM1)	Tail scale	Tail length at half max

Backgrounds (total 9 BGs)

BG (A1)	BG (B1)	BG (C1)	Technique	Optimization
Shirley	BG/ABG		XPS	Static/Active
Tougaard	BG		XPS	Static
Polynomial	BG/ABG		XPS/XAS	Static/Active
Polynomial	Shirley	ABG	XPS	Active
Polynomial	Tougaard	ABG	XPS	Active
Victoreen	BG		XAS	Static
ArcTangent	BG		XAS	Active

Sigmoid (convoluted) fitting

Constraint temperature at 300 K, and polynomial parameters as well prior to convolution. Sample temp. leads to ΔE =113 meV, and instrumental resolution (BL & analyzer) to 243 meV. Total resolution becomes ΔE =268 meV.

Secondary electron cutoff can be analyzed in the same way.

ULVAC-PHI

Multipak csv data analysis

Open Multipak-exported csv file with Excel, and type "phi" on B1 cell.

Run the macro, then new workbook appears with chart of spectrum in the csv file.

Open text file with Excel.

PET.csv	2/19/2016 2:40 PM	Microsoft Excel C	8 KB
PET.SPE	1/7/2015 4:45 PM	SPE File	7 KB
PET.xlsx	5/8/2019 2:28 PM	Microsoft Excel W	25 KB
PET_C1s.txt	5/8/2019 2:28 PM	TXT File	7 KB

Open Excel macro-exported txt file with Excel.

PET.csv	2/19/2016 2:40 PM	Microsoft Excel C	8 KB
PET.SPE	1/7/2015 4:45 PM	SPE File	7 KB
PET.xlsx	5/8/2019 2:28 PM	Microsoft Excel W	25 KB
PET_C1s.txt	5/8/2019 2:28 PM	TXT File	7 KB

continued

Run the macro.

Multiple data-fit

"debug"/"debuga" in D1 cell

- debug: apply the original fit parameters
- debuga: apply those used just before

Once fitting process above done, "ana" in D1 cell to compare those fitted xlsx files.

	Α	В	С	D	E	F
1	Shirley	BG		ana	Au4f7/2	Au4f5/2
2	Tolerance	0.000001		BE	83.89131	87.49132
3	Initial A	0.001		KE	509.1087	505.5087
4	Final A	0.00344		FWHM1	2.196802	2.052602
5	Iteration	6		FWHM2		

Summary of fitting results

Enjoy!

Depth-profile XPS: RSC Adv. 6, 94905 (2016).

