SEQUENCE LISTING

5 <110> Devgen N.V.

<120> Amino acid sequences useful for developing compounds for the prevention and/or treatment of metabolic diseases and nucleotide sequences encoding such amino acid sequences.

15 <130> P 02/003 PCT

<160> 9 20

<170> PatentIn version 3.1

25

<210> 1

<211> 465

30

<212> PRT

<213> Caenorhabditis elegans

35

50

<400> 1

Met Ser Ala Ser Leu Ala Arg Gly Ile Leu Ser Lys Met Gly Gly Ser 40 1 5 10 15

Cys Cys Pro His His Ala Pro Ala Thr Asn Pro Phe Lys Leu Ala Lys
20 25 30

Leu His Gly Asn Asn Lys Ser Thr Asp Tyr Ala Phe Glu Met Val Cys 35 40 45

Ser Thr Leu Arg Phe Gly Lys Gly Val Thr Leu Glu Ile Gly Tyr Asp 50 55 60

Val Arg Asn Leu Gly Ala Lys Lys Thr Leu Leu Ile Thr Asp Lys Asn 65 70 75 80

	Va]	l Glı	n Ası	n Thi	: Ile 85	a Ala	a Phe	e Lys	a Asn	Ala	a Glı	ı Glr	a Ala	a Leu	Lys 95	Met
5	Val	. Asr	ı Ile	e Glu 100	ı Tyr)	Glu	ı Val	l Phe	Asp 105	As <u>r</u>	o Val	Let	ı Ile	e Glu 110	Pro	Thr
10	Val	. Asr	Ser 115	: Met	Gln	Lys	: Ala	11e 120	Ala	Ph∈	e Ala	Lys	Ser 125	Lys	Gln	Phe
15	Asp	Ser 130	Phe	: Ile	: Ala	Val	Gly 135	Gly	Gly	Ser	. Val	. Ile 140	: Asp	Thr	Thr	Lys
20	Ala 145	Ala	Ala	Leu	Tyr	Ala 150	Ser	Asn	Pro	Glu	Ala 155	Asp	Phe	Leu	Asp	Phe 160
25	Val	Gly	Pro	Pro	Phe 165	Gly	Lys	Ser	Met	Gln 170	Pro	Lys	Asn	Pro	Met 175	Leu
25	Pro	Leu	Ile	Ala 180	Val	Pro	Thr	Thr	Ala 185	Gly	Thr	Gly	Ser	Glu 190	Thr	Thr
30	Ala	Ala	Ala 195	Ile	Met	Asp	Leu	Pro 200	Glu	His	Lys	Суз	Lys 205	Thr	Gly	Ile
35	Arg	Leu 210	Arg	Суз	Ile	Lys	Pro 215	Tyr	Leu	Ala	Val	Val 220	Asp	Pro	Leu	Asn
40	Val 225	Met	Ser	Met	Pro	Arg 230	Asn	Val	Ala	Ile	Tyr 235	Ser	Gly	Phe	Asp	Val 240
45	Leu	Cys	His	Ala	Leu 245	Glu	Ser	Phe	Thr	Ala 250	Leu	Pro	Phe	Asp	Gln 255	Arg
45	Ser	Pro	Arg	Pro 260	Glu	Asn	Pro	Gly	Val 265	Arg	.Pro	Leu	Tyr	Gln 270	Gly	Ser
50	Asn	Pro	Ile 275	Ser	Asp	Val	Trp	Ser 280	Lys	Glu	Ala	Leu	Arg 285	Ile	Ile	Gly
55	Lys	Tyr 290	Phe	Arg	Arg	Ser	Ile 295	Phe	Asp	Pro	Thr	Asp 300	Glu	Glu	Ala	Arg

Thr Glu Met Leu Ly	S Ala Ser Ser Phe	Ala Gly Ile Gly Phe Gly Asn
305	310	315 320

- Ala Gly Val His Leu Cys His Gly Leu Ser Tyr Pro Ile Ser Ser Gln
- Ala Lys Ser Cys Val Ala Asp Asp Tyr Pro Lys Glu Lys Asn Leu Ile 10 345
- Pro His Gly Leu Ser Val Met Thr Thr Ala Val Ala Asp Phe Glu Phe 15

Thr Thr Ala Ala Cys Pro Asp Arg His Leu Ile Ser Ala Gln Thr Leu 375

20 Gly Ala Asp Ile Pro Asn Asn Ala Ser Asn Glu Tyr Ile Ser Arg Thr 395

- 25 Leu Cys Asp Arg Leu Arg Gly Tyr Met Arg Asp Phe Gly Val Pro Asn 405
- Gly Leu Lys Gly Met Gly Phe Glu Phe Ser Asp Ile Glu Met Leu Thr 30
- Glu Ala Ala Ser His Ser Val Pro Asn Ile Ala Ile Ser Pro Lys Ser 440 35

Ala Asp Arg Glu Ile Ile Ser Thr Leu Tyr Glu Lys Ser Leu Thr Val 455 460

40 Tyr 465

50

45 <210> 2

<212> DNA

<211> 1398

<213> Caenorhabditis elegans

55 <400> 2 atgagtgcaa gtctggcacg tggaatactg agcaagatgg gcggctcatg ctgtcctcac

catgccccag ctacaaatcc attcaaactt gcaaagcttc atggaaataa caagtcaaca gattacgcgt tcgagatggt gtgctcaact cttcgtttcg gaaaaggagt cacgttggag 5 attggatacg acgtccgtaa tctcggagca aagaaaacgt tgcttatcac tgataagaat 10 gtgcagaata cgatcgcttt taaaaacgcc gagcaagcct taaaaatggt gaatatcgag tatgaggtgt ttgatgatgt gctcattgag ccaaccgtca acagtatgca gaaagcaatc 15 gcatttgcca aatcgaagca attcgatagt ttcatcgctg ttggtggagg atctgtgatc gacacgacga aggetgeage tetatatget tetaateeag aageggaett cetegaettt 20 gttggaccac cattcggaaa atccatgcaa ccaaagaacc caatgctccc attgatcgct 25 gtgccaacaa ctgctggaac tggatccgag actaccgcgg ctgcaatcat ggatcttcca gagcacaagt gcaagactgg aatcagactt cgttgcatca agccgtactt ggcagttgtg 30 gatccgttga atgtgatgag tatgcctcga aacgtggcaa tctattctgg tttcgatgtt ctctgtcacg cgttggaaag cttcacagct ttgccattcg atcaaagatc tccacgccct 35 gagaatccag gagttcgtcc actttatcaa ggttccaacc cgatcagtga tgtctggagt 40 aaagaggett tgagaateat tggaaaatae tteegeegtt etatettega teeaacegae gaagaagete gtacagaaat geteaagget agtteatttg etgggattgg atteggaaae 45 gctggggttc atctttgcca cggactctcc tacccaatca gctcccaggc gaaaagctgt gtggctgatg attatccaaa ggagaagaac ttgattccac atggactctc tgtaatgaca 50 accgcagtgg ctgatttcga gtttacaact gccgcgtgcc cagatagaca tttgatttct 55 gcacagactc ttggtgcaga tattccgaac aatgccagca atgagtacat ttcccgaact

```
ctttgtgatc ggctgagagg ttatatgcga gactttggag ttccaaatgg actgaaagga
```

- 5 atgggattcg aattttctga tattgaaatg cttactgaag cagccagcca ctccgtccca 1320
 - aatattgcaa teteteeaaa gtetgeggat egtgaaatta teageaetet gtaegagaag 1380

10 tcccttacgg tttattag

1398

- 15 <210> 3
 - <211> 23
 - <212> DNA

- <213> Artificial sequence
- 25 <220>
 - <223> primer
 - <400> 3
- 30 gatgatgtgc tcattgagcc aac 23
- <210> 4
- <211> 21
 - <212> DNA
- 40 <213> Artificial sequence
- <220> 45
- <223> primer
 - <400> 4
- atatttggga cggagtggct g
- 50 21
 - <210> 5
- 55 <211> 1163

<212> DNA

<213> Caenorhabditis elegans

5

<400> 5

gatgatgtgc tcattgagcc aaccgtcaac agtatgcaga aagcaatcgc atttgccaaa

10

20

25

40

tcgaagcaat tcgatagttt catcgctgtt ggtggaggat ctgtgatcga cacgacgaag

15

gctgcagctc tatatgcttc taatccagaa gcggacttcc tcgactttgt tggaccacca ttcggaaaat ccatgcaacc aaagaaccca atgctcccat tgatcgctgt gccaacaact

gctggaactg gatccgagac taccgcggct gcaatcatgg atcttccaga gcacaagtgc

aagactggaa tcagacttcg ttgcatcaag ccgtacttgg cagttgtgga tccgttgaat

gtgatgagta tgcctcgaaa cgtggcaatc tattctggtt tcgatgttct ctgtcacgcg

ttggaaagct tcacagcttt gccattcgat caaagatctc cacgccctga gaatccagga 30

gttcgtccac tttatcaagg ttccaacccg atcagtgatg tctggagtaa agaggctttg

agagtgagtt ggaatttcaa ccatgaagct ctaaatgaat ttatataatt tcagatcatt 35

ggaaaatact tccgccgttc tatcttcgat ccaaccgacg aagaagctcg tacagaaatg

ctcaaggcta gttcatttgc tgggattgga ttcggaaacg ctggggttca tctttgccac

ggactetect acceaateag eteccaggeg aaaagetgtg tggetgatga ttatecaaag 45

gagaagaact tgattccaca tggactctct gtaatgacaa ccgcagtggc tgatttcgag

tttacaactg ccgcgtgccc agatagacat ttgatttctg cacagactct tggtgcagat 50

attccggtat gtaaattggc caccaagatg gttctgaact aactagatat ttccagaaca

55

atgccagcaa tgagtacatt tcccgaactc tttgtgatcg gctgagaggt tatatgcgag

actttggagt tccaaatgga ctgaaaggaa tgggattcga attttctgat attggtagaa cacctctctc tagttgaact gccttatatt atactatttt cagaaatgct tactgaagca 5 gccagccact ccgtcccaaa tat 1163 10 <210> 6 <211> 467 15 <212> PRT <213> Homo sapiens 20 <400> 6 Met Ala Ala Ala Arg Ala Arg Val Ala Tyr Leu Leu Arg Gln Leu 25 Gln Arg Ala Ala Cys Gln Cys Pro Thr His Ser His Thr Tyr Ser Gln 25 30 Ala Pro Gly Leu Ser Pro Ser Gly Lys Thr Thr Asp Tyr Ala Phe Glu 35 Met Ala Val Ser Asn Ile Arg Tyr Gly Ala Ala Val Thr Lys Glu Val Gly Met Asp Leu Lys Asn Met Gly Ala Lys Asn Val Cys Leu Met Thr 40 Asp Lys Asn Leu Ser Lys Leu Pro Pro Val Gln Val Ala Met Asp Ser 45 Leu Val Lys Asn Gly Ile Pro Phe Thr Val Tyr Asp Asn Val Arg Val 50 105 Glu Pro Thr Asp Ser Ser Phe Met Glu Ala Ile Glu Phe Ala Gln Lys 55 Gly Ala Phe Asp Ala Tyr Val Ala Val Gly Gly Gly Ser Thr Met Asp

Thr Cys Lys Ala Ala Asn Leu Tyr Ala Ser Ser Pro His Ser Asp Phe Leu Asp Tyr Val Ser Ala Pro Ile Gly Lys Gly Lys Pro Val Ser Val Pro Leu Lys Pro Leu Ile Ala Val Pro Thr Thr Ser Gly Thr Gly Ser Glu Thr Thr Gly Val Ala Ile Phe Asp Tyr Glu His Leu Lys Val Lys Ile Gly Ile Thr Ser Arg Ala Ile Lys Pro Thr Leu Gly Leu Ile Asp Pro Leu His Thr Leu His Met Pro Ala Arg Val Val Ala Asn Ser Gly Phe Asp Val Leu Cys His Ala Leu Glu Ser Tyr Thr Thr Leu Pro Tyr His Leu Arg Ser Pro Cys Pro Ser Asn Pro Ile Thr Arg Pro Ala Tyr Gln Gly Ser Asn Pro Ile Ser Asp Ile Trp Ala Ile His Ala Leu Arg Ile Val Ala Lys Tyr Leu Lys Arg Ala Val Arg Asn Pro Asp Asp Leu Glu Ala Arg Ser His Met His Leu Ala Ser Ala Phe Ala Gly Ile Gly Phe Gly Asn Ala Gly Val His Leu Cys His Gly Met Ser Tyr Pro Ile Ser Gly Leu Val Lys Met Tyr Lys Ala Lys Asp Tyr Asn Val Asp His Pro Leu Val Pro His Gly Leu Ser Val Val Leu Thr Ser Pro Ala Val

Phe	Thr 370	Phe	Thr	Ala	Gln	Met 375	Phe	Pro	Glu	Arg	His 380	Leu	Glu	Met	Ala	
-----	------------	-----	-----	-----	-----	------------	-----	-----	-----	-----	------------	-----	-----	-----	-----	--

- Glu Ile Leu Gly Ala Asp Thr Arg Thr Ala Arg Ile Gln Asp Ala Gly 385 390 395 400
- 10 Leu Val Leu Ala Asp Thr Leu Arg Lys Phe Leu Phe Asp Leu Asp Val
- Asp Asp Gly Leu Ala Ala Val Gly Tyr Ser Lys Ala Asp Ile Pro Ala
 420 425 430
- Leu Val Lys Gly Thr Leu Pro Gln Glu Arg Val Thr Lys Leu Ala Pro
 435 440 445

Cys Pro Gln Ser Glu Glu Asp Leu Ala Ala Leu Phe Glu Ala Ser Met 450 455 460

Lys Leu Tyr 465

30 <210> 7

25

55

5

<211> 1831

<212> DNA

- <213> Homo sapiens
- 40 <400> 7
 gaagaggact ccaagcgcca tggccgctgc cgcccgagcc cgggtcgcgt acttgctgag
 60
- gcaactgcaa cgcgcagcgt gccagtgccc aactcattct catacttact cccaagcccc 45 120

tggactttca ccttctggga aaacaacaga ttatgccttt gagatggctg tttcaaatat

50 tagatatgga gcagcagtta caaaggaagt aggaatggac ctaaaaaaca tgggtgctaa 240

aaatgtgtgc ttgatgacag acaagaacct ctccaagetc cctcctgtgc aagtagctat 300

ggattcccta gtgaagaatg gcatcccctt tacggtttat gataatgtga gagtggaacc 360

	aacggattca 420	agcttcatgg	aagctattga	gtttgcccaa	aagggagctt	ttgatgccta
5						tgtatgcatc
	cagccctcat 540	tctgatttcc	tagattatgt	cagtgcccc	attggcaagg	gaaagcctgt
10	gtctgtgcct 600	cttaagcctc	tgattgcagt	gccaactacc	tcaggaaccg	ggagtgaaac
15	tactggggtt 660	gccatttttg	actatgaaca	cttgaaagta	aaaattggta	tcacttcgag
	agccatcaaa 720	cccacactgg	gactgattga	tcctctgcac	accetecaca	tgcctgcccg
20	agtggtcgcc 780	aacagtggct	ttgatgtgct	ttgccatgcc	ctggagtcat	acaccaccct
25	gccctaccac 840	ctgcggagcc	cctgcccttc	aaatcccatc	acacggcctg	cgtaccaggg
	cagcaaccca 900	atcagtgaca	tttgggctat	ccacgcgctg	cggatcgtgg	ctaagtatct
30	gaagagggcc 960	gtcagaaatc	ccgatgatct	tgaagcaagg	tctcatatgc	acttggcaag
	tgcttttgct 1020	ggcatcggct	ttggaaatgc	tggtgttcat	ctgtgccatg	gaatgtctta
35				agcaaaggat		
40				gtccccagcg		
				agaaatattg		
45				agacacgctc		
50				ttactccaaa		
50				caagcttgca		
55				gaaactgtat		
	agaattaccg 1500	ctggccattg	tagtgctgag	agcaagagct	gatctagcta	gggctttgtc

ttttcatctt tgtgcataac ttacctgtta ccagtatagg tgggatatac atttatcttg

5 caggaaattc cccaaagctc agagtccagt tccttccata aaacaggctg gacaaatgac 1620

cactatgtta gacccccagg ctcgacttca ggggtcagtg ttcctgtccc aaaccccaca

10

cagaatactc tgcctctgtt tcatgtagca aatgagcaaa aactcagtat ctatcaaaag

tgtaaattat atttcctatg cctagtaatt cacttcatgt ctaaaaattt atctgataga 1800

aacactagca ccagtacata cagaagcatg g

20

<210> 8

<211> 419

25 <212> PRT

<213> Homo sapiens

30

55

<400> 8

Met Ala Val Ser Asn Ile Arg Tyr Gly Ala Ala Val Thr Lys Glu Val 1 5 10 15

Gly Met Asp Leu Lys Asn Met Gly Ala Lys Asn Val Cys Leu Met Thr 20 25 30

Asp Lys Asn Leu Ser Lys Leu Pro Pro Val Gln Val Ala Met Asp Ser . 35 40 45

45 Leu Val Lys Asn Gly Ile Pro Phe Thr Val Tyr Asp Asn Val Arg Val
50 . 60

Glu Pro Thr Asp Ser Ser Phe Met Glu Ala Ile Glu Phe Ala Gln Lys
50 65 70 75 80

Gly Ala Phe Asp Ala Tyr Val Ala Val Gly Gly Gly Ser Thr Met Asp 85 90 95

Thr Cys Lys Ala Ala Asn Leu Tyr Ala Ser Ser Pro His Ser Asp Phe

Leu Asp Tyr Val Ser Ala Pro Ile Gly Lys Gly Lys Pro Val Ser Val Pro Leu Lys Pro Leu Ile Ala Val Pro Thr Thr Ser Gly Thr Gly Ser Glu Thr Thr Gly Val Ala Ile Phe Asp Tyr Glu His Leu Lys Val Lys Ile Gly Ile Thr Ser Arg Ala Ile Lys Pro Thr Leu Gly Leu Ile Asp Pro Leu His Thr Leu His Met Pro Ala Arg Val Val Ala Asn Ser Gly Phe Asp Val Leu Cys His Ala Leu Glu Ser Tyr Thr Thr Leu Pro Tyr His Leu Arg Ser Pro Cys Pro Ser Asn Pro Ile Thr Arg Pro Ala Tyr Gln Gly Ser Asn Pro Ile Ser Asp Ile Trp Ala Ile His Ala Leu Arg Ile Val Ala Lys Tyr Leu Lys Arg Ala Val Arg Asn Pro Asp Asp Leu Glu Ala Arg Ser His Met His Leu Ala Ser Ala Phe Ala Gly Ile Gly Phe Gly Asn Ala Gly Val His Leu Cys His Gly Met Ser Tyr Pro Ile Ser Gly Leu Val Lys Met Tyr Lys Ala Lys Asp Tyr Asn Val Asp His Pro Leu Val Pro His Gly Leu Ser Val Val Leu Thr Ser Pro Ala Val Phe Thr Phe Thr Ala Gln Met Phe Pro Glu Arg His Leu Glu Met Ala

5	Glu Ile Leu Gly Ala Asp Thr Arg Thr Ala Arg Ile Gln Asp Ala Gly 340 345 350											
	Leu Val Leu Ala Asp Thr Leu Arg Lys Phe Leu Phe Asp Leu Asp Val 355 360 365											
10	Asp Asp Gly Leu Ala Ala Val Gly Tyr Ser Lys Ala Asp Ile Pro Ala 370 375 380											
15	Leu Val Lys Gly Thr Leu Pro Gln Glu Arg Val Thr Lys Leu Ala Pro 385 390 395 400											
20	Arg Pro Gln Ser Glu Glu Asp Leu Ala Ala Leu Phe Glu Ala Ser Met 405 410 415											
25	Lys Leu Tyr											
	<210> 9											
	<211> 1830											
30	<212> DNA											
	<213> Homo sapiens											
35												
40	<400> 9 aagaggacto caagogocat ggoogotgoo gcoogagooo gggtogogta ottgottagg 60											
.0	caactgcaac gcgcagcgtg ccagtgccca actcattctc atacttactc ccaagatggc											
45	tgtttcaaat attagatatg gagcagcagt tacaaaggaa gtaggaatgg acctaaaaaa 180											
	catgggtgct aaaaatgtgt gcttgatgac agacaagaac ctctccaagc tccctcctgt											
50	gcaagtaget atggatteee tagtgaagaa tggeateeee tttaeggttt atgataatgt 300											
55	gagagtggaa ccaacggatt caagcttcat ggaagctatt gagtttgccc aaaagggagc											
	ttttgatgcc tatgttgctg tcggtggtgg ctctaccatg gacacctgta aggctgctaa											

	480
5	gggaaageet gtgtetgtge etettaagee tetgattgea gtgeeaaeta eeteaggaae
10	cgggagtgaa actactgggg ttgccatttt tgactatgaa cacttgaaag taaaaattgg
	catcacttog agagocatca aacccacact gggactgatt gatoctotgo acaccotoca
15	catgeetgee egagtggteg ceaacagtgg etttgatgtg etttgeeatg eeetggagte
	atacaccacc ctgccctacc acctgcggag cccctgccct tcaaatccca tcacacggcc
20	tgcgtaccag ggcagcaacc caatcagtga catttgggct atccacgcgc tgcggatcgt 840
25	ggctaagtat ctgaagaggg ctgtcagaaa tcccgatgat cttgaagcaa ggtctcatat 900
	gcacttggca agtgcttttg ctggcatcgg ctttggaaat gctggtgttc atctgtgcca 960
30	tggaatgtet tacccaattt caggtttagt gaagatgtat aaagcaaagg attacaatgt 1020
	ggatcaccca ctggtgcccc atggcctttc tgtggtgctc acgtccccag cggtgttcac
35	tttcaccgcc cagatgtttc cagagcgaca cctggagatg gcagaaatac tgggagccga 1140
40	caccegcact gecaggatee aagatgeagg getggtgttg geagacaege teeggaaatt
	cttattcgat ctggatgttg atgatggcct agcagctgtt ggttactcca aagctgatat 1260
45	ccccgcacta gtgaaaggaa cgctgcccca ggaaagggtc accaagcttg caccccgtcc
	ccagtcagaa gaggatctgg ctgctctgtt tgaagcttca atgaaactgt attaattgtc
50	attttaactg aaagaattac cgctggccat tgtagtgctg agagcaagag ctgatctagc
55	tagggetttg tetttteate tttgtgeata acttacetgt taccagtata ggtgggatat
-	acatttatct tgcaggaaat tccccaaagc tcagagtcca gttccttcca taaaacaggc

tggacaaatg accactatgt tagaccccca ggctcgactt caggggtcag tgttcctgtc ccaaacccca cacagaatac tctgcctctg cttcatgtag caaatgagca aaaactcagt atctatcaaa agtgtaaatt atatttccta tgcctagtaa ttcacttcat gtctaaaaat ttatctgata gaaacactag caccagtaca tacagaagca tggcaaggat gtttctggca gcacttttct aataataaaa gatttgaaac

5

10

15