MAST30027: Modern Applied Statistics

Week 9 Lab

1. Suppose that $X \sim \text{bin}(n, \theta)$ and $\theta \sim \text{beta}(a, b)$. That is, $X|\theta$ has the pmf

$$p_{X|\theta}(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

and θ has pdf

$$f_{\theta}(x) = \beta(a,b)^{-1}x^{a-1}(1-x)^{b-1}.$$

The marginal distribution of X is given by

$$p_X(x) = \int_0^1 p_{X\theta}(x) f_{\theta}(\theta) d\theta.$$

X is said to have a beta-binomial distribution. It is possible, but not easy, to work out p_X for a beta-binomial. However, it is easy to estimate it using simulation.

Generate a sample of size 1000,000 from a beta-binomial with n = 10, a = 2 and b = 3. Use it to estimate the pmf of X.

- 2. Suppose that Z follows a truncated exponential distribution, which has the pdf $p(z) = \frac{e^{-z}}{1-e^{-1}}$, 0 < z < 1. Its theoretical mean and variance are known to be E(Z) = 0.418 and Var(Z) = 0.079.
 - (a) Construct an rejection sampling algorithm to generate a sample of observations from the truncated exponential distribution.
 - (b) Write an R program to implement the algorithm in (a) and use it to generate a sample of 10000 observations. Plot a histogram of the sample. Calculate the sample mean and variance, and compare them with the theoretical mean and variance.
 - (c) Show that the following algorithm also simulates from the truncated exponential distribution.
 - 1° Generate U from Unif(0,1);
 - 2° If $U > e^{-1}$ then deliver $Z = -\ln(U)$; otherwise go to 1°.