1. I connected all of the final states to a new start state, I turned the original start state into the new final state. Lastly I reversed every edge keeping all symbols the same.

final state. Lastly I reversed every edge keeping all symbols the same.

Finite State Machine Designer

Output

Designer

Lambda
Lambda
Lambda
Lambda
Lambda
Lambda

2.DFAs used for product table

Product Table

State	а	b
{r0,s0}	{r1,s1}	{jail,s1}
{r1,s1}	{r2,s2}	{jail,s2}
{jail,s1}	{jail,s2}	{jail,s2}
+{r2,s2}	{jail,s3}	{r2,s3}
{jail,s2}	{jail,s3}	{jail,s3}
+{jail,s3}	{jail,s1}	{jail,s1}
+{r2,s3}	{jail,s1}	{r2,s1}
+{r2,s1}	{jail,s2}	{r2,s2}

3. All states that are accepting states from R or S or both {r2,s2} {jail,s3} {r2,s3} {r2,s2}
4. All states that are accepting states in both R and S (&&) $\{r2,s3\}$
5. All states that are accepting states R but not in S {jail,s3}
6. All states that are accepting states in S but not R {r2,s2} {r1,s1}
7. All states that are in either S or R but not both (Xor) {r2,s2} {r1,s1} {jail,s3}