King Saud University

College of Science

Department of Mathematics

151 Math Exercises

(4.4)

Properties of Relations

Malek Zein AL-Abidin

<u>1441ھ</u> 2020 **DEFINITION** 1 Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation from A to B is a set T of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B. We use the notation a T b to denote that $(a, b) \in T$ and a T b to denote that $(a, b) \notin T$. Moreover, when (a, b) belongs to T, a is said to be **related to** b by T.

Binary relations represent relationships between the elements of two sets.

EXAMPLE 1 Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. This means, for instance, that 0Ta, but that 1Tb. Relations can be represented graphically, as shown in Figure 1, using arrows to represent ordered pairs.

FIGURE 1 Displaying the Ordered Pairs in the Relation T

Relations on a Set

Relations from a set A to itself are of special interest.

DEFINITION 2 A relation on a set A is a relation from A to A. In other words, a relation on a set A is a subset of $A \times A$.

EXAMPLE 2 Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b, we see that

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}.$$

The pairs in this relation are displayed graphically form in Figure 2.

FIGURE 2 Displaying the Ordered Pairs in the Relation *R* from Example 2.

Properties of Relations

DEFINITION 3 A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$. $\forall a \in A$, aRa

EXAMPLE 3 $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ is reflexive

DEFINITION 4 A relation R on a set A is called *symmetric*

if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. $\forall a, b \in A$, $aRb \Rightarrow bRa$

EXAMPLE 4 $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ is *symmetric*

DEFINITION 5 A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

EXAMPLE 5 $a \le b \land b \le a \Rightarrow a = b : a, b \in A : \le \text{ is antisymmetric.}$

DEFINITION 6 A relation R on a set A is called *transitive* if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$. $aRb \& bRc \Rightarrow aRc$

$$(a,b) \in R \& (b,c) \in R \Rightarrow (a,c) \in R , \forall a,b,c \in A$$

EXAMPLE 6 $a|b \wedge b|c \Rightarrow a|c , : |$ is transitive #

Representing Relations Using Digraphs

DEFINITION 10 A *directed graph*, or *digraph*, consists of a set V of *vertices* (or *nodes*) together with a set E of ordered pairs of elements of V called *edges* (or *arcs*). The vertex a is called the *initial vertex* of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

EXAMPLE 1 Determine whether the relation for the directed graphs shown in Figure 3 is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

Solution: Because there are loops at every vertex of the directed graph of R, it is *reflexive*. R is *neither symmetric* nor antisymmetric because there is an edge from a to b but not one from b to a, but there are edges in both directions connecting b and c. Finally, R is *not transitive* because there is an edge from a to b and an edge from a to b to a, but no edge from a to a.

FIGURE 3 A Directed Graph of the relation R

#

EXAMPLE 2 Determine whether the relation for the directed graphs shown in Figure 4 is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

FIGURE 4 A Directed Graph of the relation R

Solution: Because loops are not present at all the vertices of the directed graph of *S*, this relation is *not reflexive*.

It is *symmetric* and *not antisymmetric*, because every edge between distinct vertices is accompanied by an edge in the opposite direction. It is also not hard to see from the directed graph that S is *not transitive*, because (c, a) and (a, b) belong to S, but (c, b) does not belong to S.

EXERCISES

1. Let $T = \{(a, a), (a, b), (b, b), (c, c)\}$ be a relation defined on the set $A = \{a, b, c\}$. Decide whether T is reflexive, symmetric, antisymmetric, transitive, equivalence, partial ordering relation. Why?

Solution:

1-
$$(a,a),(b,b),(c,c) \in T \Rightarrow T \text{ is reflexive}$$

2-
$$(a,b) \in T \land (b,a) \notin T \Rightarrow T \text{ is not symmetric}$$

3-
$$(a,b) \in T \land (b,a) \notin T \Rightarrow T \text{ is antisymmetric}$$

$$3- : (a,a) \in T \land (a,b) \in T \Rightarrow (a,b) \in T$$

&
$$(a,b) \in T \land (b,b) \in T \Rightarrow (a,b) \in T \Rightarrow T \text{ is transitive}$$

: T is reflexive , antisymmetric and transitive

 \Rightarrow :: T is partial ordering relation.

2. Let $R = \{(a, a), (b, b), (c, c), (d, d)\}$ be a relation defined on the set $A = \{a, b, c, d\}$. Decide whether R is reflexive, symmetric, antisymmetric, transitive, equivalence, partial ordering, totally ordering relation. Why?

Solution:

1-
$$(a,a),(b,b),(c,c),(d,d) \in R \Rightarrow : R \text{ is reflexive}$$

2-
$$(a,a) \land (a,a) \in R \& (b,b) \land (b,b) \in R$$

$$\& (c,c) \land (c,c) \in R \& (d,d) \land (d,d) \in R \Rightarrow :: R \text{ is symmetric}$$

3-
$$(a,a) \land (a,a) \in R \Rightarrow : a = a$$
, also same for $(b,b),(c,c),(d,d)$
 \therefore R is antisymmetric

4-
$$\because$$
 $(a,a) \land (a,a) ∈ R ⇒ $(a,a) ∈ R$, also same for $(b,b),(c,c),(d,d)$
 \therefore R is transitive$

- : R is reflexive, symmetric and transitive 5- \Rightarrow : R is equivalence relation
- : R is reflexive, antisymmetric and transitive 6- \Rightarrow : R is partial ordering relation
- $(a,b) \land (b,a) \notin R \Rightarrow a \text{ and } b \text{ incomparable}$ 7- \Rightarrow :: R is not totally ordering relation

Finally R is equivalence relation & partial ordering relation.

3. Let $R = \{(x, x)\}$ be a relation defined on the set $A = \{x\}$.

Decide whether R is reflexive, symmetric, antisymmetric, transitive, equivalence, partial ordering, totally ordering relation. Why?

4. Let R be a relation defined on the set $\mathbb{Z}^+ = \{1,2,3,...\}$

$$m, n \in \mathbb{Z}^+$$
, $mRn \Leftrightarrow m+n=20$

Decide whether R is reflexive, symmetric, antisymmetric, transitive, equivalence, partial ordering relation. Why?

Solution:

1-
$$:$$
 5+5 \neq 20 \Rightarrow (5,5) $\notin R \Rightarrow :$ R is not reflexive

2-
$$m, n \in \mathbb{Z}^+$$
, $m R n \Leftrightarrow m + n = 20$

$$\xrightarrow{\text{(commutative)}} n + m = 20 \Rightarrow \therefore n R m \Rightarrow \therefore R \text{ is symmetric}$$

3-
$$\therefore$$
 7 R 13 : 7 + 13 = 20 \land 13 R 7 : 13 + 7 = 20 but 7 \neq 13 \Rightarrow \therefore R is not antisymmetric.

4-
$$\therefore 8R12 : 8 + 12 = 20 \land 12R8 : 12 + 7 = 20$$

But $(8,8) \notin R : 8 + 8 = 16 \neq 20 \Rightarrow \therefore R$ is not transitive.

Finally, R is only symmetric.

5. Let $T = \{(a, a), (a, c), (b, b), (b, c), (c, a), (d, d)\}$ be a relation defined on the set $A = \{a, b, c, d\}$. Decide whether T is reflexive, symmetric, antisymmetric ,transitive . Why?

6. Let *R* be a relation defined on the set $A = \{0,1,2,3\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a \leq 2b$

- (i) List all the ordered pairs of R.
- Represent R in a diagram. (ii)
- (iii) Decide whether R is reflexive, symmetric, antisymmetric, transitive . Why?

7. Let R be a relation defined on the set $\mathbb{Z}^+ = \{1,2,3,...\}$

$$m,n \in \mathbb{Z}^+$$
 , $m R n \iff 6|m n$

Decide whether R is reflexive, symmetric, antisymmetric, transitive. Why?

8. Suppose T is a relation defined on the integers set \mathbb{Z}

 $m, n \in \mathbb{Z}$, $m T n \Leftrightarrow m + n \ge 2$

Decide whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

9. Let T be a relation defined on the set $\mathbb{N} = \{1,2,3,...\} : m \ T \ n \Leftrightarrow m < n$ Decide whether the relation T is *reflexive*, *symmetric*, *antisymmetric*, and/or transitive.

10. Let R be a relation defined on the set $A = \{1,2,3,4,5\}$

$$x, y \in A$$
, $x R y \Leftrightarrow xy \leq 9$

- List all the ordered pairs of the relation R? (i)
- Draw the directed graph (diagraph) that represents R? (ii) Solution:

- Suppose R is a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$, as $x, y \in A$, $x R y \Leftrightarrow |x y| < 2$
- (i) List all the ordered pairs of the relation R?
- (ii) Draw the directed graph (diagraph) that represents R
- (iii) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

12. Let R be a relation defined on the set $A = \{0,1,2,3\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a + b = 4$

- (i) List all the ordered pairs of the relation R?
- (ii) Draw the directed graph (diagraph) that represents R?
- (iii) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

13. Let R be a relation defined on the set $A = \{2,3,4,5,6\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a.b < 10$

- (i) List all the ordered pairs of the relation R?
- (ii) Draw the directed graph (diagraph) that represents R?
- (iii) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

14. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a^2 = b^2$

- List all the ordered pairs of the relation R? (i)
- (ii) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

and/or transitive.

15. Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a.b < 0$

- (i) List all the ordered pairs of the relation R?
- (ii) Draw the directed graph (diagraph) that represents R?
- (iii) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

16. Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a.b \ge 2$

- (i) List all the ordered pairs of the relation R?
- (ii) Draw the directed graph (diagraph) that represents R?
- (iii) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

- Let $S = \{(1,1), (1,2), (1,3), (2,2), (3,1), (3,3)\}$ be a relation on the **17.** set $B = \{1, 2, 3\}$
- (i) Draw the directed graph (diagraph) that represents S?
- (ii) Determine whether the relation S is reflexive, symmetric, antisymmetric, and/or transitive

Suppose *R* is a relation defined on the integers set $\mathbb{Z}^+ = \{1,2,3,...\}$ **18.** $m,n\in\mathbb{Z}^+$. $mRn \Leftrightarrow m+n=20$ Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

1- :
$$5+5 \neq 20 \Rightarrow (5,5) \notin R \Rightarrow : R \text{ is irreflexive}$$
.

2-
$$m, n \in \mathbb{Z}^+$$
, $mRn \Leftrightarrow m+n=20$

comutative
$$\longrightarrow$$
 $n+m=20 \Rightarrow : n R m \Rightarrow : R is symmetric$

$$3- : 7R13 : 7 + 13 = 20 \land 13R7 : 13 + 7 = 20$$

 $7 \neq 13 \Rightarrow \therefore R \text{ is not antisymmetric}$ But

4- ::
$$8R12 : 8 + 12 = 20$$
 \land $12R8 : 12 + 7 = 20$ but $(8,8) \notin R : 8 + 8 = 16 \neq 20 \Rightarrow \therefore R$ is not transitive.

∴ R is symmetric only. **19.** Suppose T is a relation defined on the integers set \mathbb{Z} $m,n\in\mathbb{Z}$, $m T n \Leftrightarrow m + n \leq 7$ Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

20. Let T be a relation defined on the set $\mathbb{N} = \{1, 2, 3, ...\}$, $m, n \in \mathbb{N}$, $m T n \Leftrightarrow m + n > 3$ Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

Let T be a relation defined on the integers set $\mathbb{Z} = \{\dots, -2 \ , -1 \ , 0, 1, 2, \dots \}$ 21. $m,n \in \mathbb{Z}$, $mTn \Leftrightarrow m+n$ is odd

Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

Let R be a relation defined on the integers set $\mathbb{N} = \{1,2,3,...\}$ **22.** $x,y \in \mathbb{N}$, $x R y \Leftrightarrow x < y$

Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

23. Determine whether the relation for the directed graphs shown in the Figure is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*. *Solution:*

Math151 Discrete Mathematics (4,4) Relations Properties By: Malek Zein AL-Abidin

24. Determine whether the relation for the directed graphs shown in the Figure is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*. *Solution:*

