MOOC Statistique pour ingénieur Thème 3 : tests d'hypothèses, analyse de la variance

Vidéo 4 : Test d'ajustement et test d'indépendance

Martial Sauceau

Mines Albi

Les tests d'hypothèses

Test d'ajustement à une loi

Test d'indépendance de deux variables qualitatives

Jour X _i	lundi	mardi	mercredi	jeudi	vendredi
Effectifs observés	30	20	41	20	39

Répartition uniforme des pannes selon les 5 jours de la semaine ?

 \mathcal{H}_0 : la répartition des pannes est uniforme

 \mathcal{H}_1 : la répartition n'est pas uniforme

	Jour X _i	lundi	mardi	mercredi	jeudi	vendredi	n
i	Effectifs observés	30	20	41	20	39	150

 \mathcal{H}_0 : la répartition des pannes est uniforme

$$p_i = 1/5$$
 $n_i = n \times p_i = 30$

n x pi

Jour X _i	lundi	mardi	mercredi	jeudi	vendredi	n
Effectifs observés	30	20	41	20	39	150
Effectifs théoriques	30	30	30	30	30	150

 \mathcal{H}_0 : la répartition des pannes est uniforme

$$d^2 = \sum_{i=1}^k rac{(N_i - np_i)^2}{np_i} \sim \chi^2(k-1-l) = \chi^2(4)$$
 nombre de classes

nombre de paramètres estimés

Ni

n x pi

Jour X _i	lundi	mardi	mercredi	jeudi	vendredi	n
Effectifs observés	30	20	41	20	39	150
Effectifs théoriques	30	30	30	30	30	150

 \mathcal{H}_0 : la répartition des pannes est uniforme

$$d^2 = \sum_{i=1}^k rac{(N_i - np_i)^2}{np_i} \sim \chi^2(k-1-l) = \chi^2(4)$$

Ni

n x pi

Jour X _i	lundi	mardi	mercredi	jeudi	vendredi	n
Effectifs observés	30	20	41	20	39	150
Effectifs théoriques	30	30	30	30	30	150

 \mathcal{H}_0 : la répartition des pannes est uniforme

$$d^2 = \sum_{i=1}^k rac{\left(N_i - np_i
ight)^2}{np_i}$$

Ni

n x pi

Jour X _i	lundi	mardi	mercredi	jeudi	vendredi	n
Effectifs observés	30	20	41	20	39	150
Effectifs théoriques	30	30	30	30	30	150
Distance	0	3.33	4.03	3.33	2.70	13.4

 \mathcal{H}_0 : la répartition des pannes est uniforme

$$d^2 = \sum_{i=1}^k rac{(N_i - np_i)^2}{np_i} = 13.4 > c$$
 $\Rightarrow \mathcal{H}_0$ $\Rightarrow \mathcal{H}_0$ $\Rightarrow \mathcal{H}_0$

 N_i

n x pi

Jour X _i	lundi	mardi	mercredi	jeudi	vendredi	n
Effectifs observés	30	20	41	20	39	150
Effectifs théoriques	30	30	30	30	30	150
Distance	0	3.33	4.03	3.33	2.70	13.4

 \mathcal{H}_0 : la répartition des pannes est uniforme

$$d^2 = \sum_{i=1}^k rac{\left(N_i - np_i
ight)^2}{np_i} = 13.4 > c \ \Rightarrow \mathcal{H}_0$$

la répartition des pannes pas uniforme

p-valeur = 0.009

Les tests d'hypothèses

Test d'ajustement à une loi

Test d'indépendance de deux variables qualitatives

AB	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	52	41	93
Yeux bruns	98	190	288
Yeux verts	26	62	88
Σ	176	293	469

A B	B ₁	B ₂	Σ
A ₁	n 11	n ₁₂	n _{1.}
A ₂	n ₂₁	n ₂₂	n ₂ .
A 3	n 31	n 32	n _{3.}
Σ	n _{.1}	n _{.2}	n

La couleur des yeux est-elle liée à la couleur des cheveux ?

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

 \mathcal{H}_1 : la couleur des yeux et celle des cheveux ne sont pas indépendantes

AB	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	52	41	93
Yeux bruns	98	190	288
Yeux verts	26	62	88
Σ	176	293	469

AB	B ₁	B ₂	Σ
A ₁	n ₁₁	n ₁₂	n ₁ .
A ₂	n ₂₁	n ₂₂	n ₂ .
A ₃	n 31	n ₃₂	n 3.
Σ	n _{.1}	n _{.2}	n

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

$$p_{ij} = p_{i.} imes p_{.j} \qquad \hat{p}_{i.} = rac{n_{i.}}{n} \quad \hat{p}_{.j} = rac{n_{.j}}{n} \quad \hat{p}_{ij} = rac{n_{i.} imes n_{.j}}{n imes n}$$

A B	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	52	41	93
Yeux bruns	98	190	288
Yeux verts	26	62	88
Σ	176	293	469

A \ B	B ₁	B ₂	Σ
A ₁	n ₁₁	n ₁₂	n ₁ .
A ₂	n ₂₁	n ₂₂	n ₂ .
A ₃	n 31	n 32	n _{3.}
Σ	n _{.1}	n _{.2}	n

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

$$p_{ij} = p_{i.} imes p_{.j}$$

$$\hat{p}_{ij} = rac{n_i imes n_{ij}}{n imes n}$$

$$t_{ij} = rac{m_{i.} \times m_{.j}}{n}$$

n _{ij}	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	52	41	93
Yeux bruns	98	190	288
Yeux verts	26	62	88
Σ	176	293	469

tij	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	34,9	58,1	93
Yeux bruns	108,1	179,9	288
Yeux verts	33,0	55,0	88
Σ	176	293	469

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

$$p_{ij} = p_{i.} \times p_{.j}$$

$$\hat{p}_{ij} = rac{m_{i.} imes m_{.j}}{n imes n}$$

$$t_{ij} = rac{n_{i.} imes n_{.j}}{n}$$

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

s modalités

	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus			
Yeux bruns			
Yeux verts			
Σ			

$$d^2 = \sum_{i=1}^r \sum_{j=1}^s rac{(n_{ij} - t_{ij})^2}{t_{ij}} \sim \chi^2((r-1)(s-1)) \sim \chi^2(2)$$

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

$$d^2 = \sum_{i=1}^r \sum_{j=1}^s rac{(n_{ij} - t_{ij})^2}{t_{ij}} \sim \chi^2(2)$$

$$d^2>c \Rightarrow \mathcal{H}_0$$

s modalités

$rac{\left(n_{ij}-t_{ij} ight)^2}{t_{ij}}$	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	8,38	5,03	
Yeux bruns	0,94	0,57	
Yeux verts	1,48	0,89	
Σ			17,3

 \mathcal{H}_0 : la couleur des yeux et celle des cheveux sont indépendantes

$$d^2 = \sum_{i=1}^r \sum_{j=1}^s rac{(n_{ij} - t_{ij})^2}{t_{ij}} \sim \chi^2(2)$$

$$d^2>c \Rightarrow \mathcal{H}_0$$

s modalités

$rac{\left(n_{ij}-t_{ij} ight)^2}{t_{ij}}$	Cheveux clairs	Cheveux sombres	Σ
Yeux bleus	8,38	5,03	
Yeux bruns	0,94	0,57	
Yeux verts	1,48	0,89	
Σ			17,3

la couleur des cheveux et la couleur des yeux ne sont pas indépendantes

$$p$$
-valeur = 0.00017

