

Sun-Yuan Hsieh 謝孫源 教授 成功大學資訊工程學系

Heap

- ▶ Heap *A* is a nearly complete binary tree.
 - ▶ *Height* of node = # of edges on a longest simple path from the node down to a leaf.
 - \triangleright *Height* of heap = height of root = θ (lg *n*)
- ► A heap can be stores as an array *A*
 - \triangleright **Root** of trees is A[1]
 - \triangleright **Parent** of $A[i] = A[\lfloor i/2 \rfloor]$
 - \triangleright **Left child** of A[i] = A[2i]
 - ightharpoonup Right child of A[i] = A[2i + 1]
 - Computing is fast with binary representation implementation

Example

Heap property

- Heap property
 - ▶ For max-heap (largest element at root), max-heap property: for all nodes i, excluding the root, $A[PARENT(i)] \ge A[i]$.
 - For min-heap (smallest element at root), *min-heap property*: for all nodes i, excluding the root, $A[PARENT(i)] \le A[i]$.
- Maximum element of a max-heap is at the root.

▶ The heapsort algorithm we'll use max-heaps.

Maintaining the heap property

- ► MAX-HEAPIFY is important for manipulating maxheaps. It is used to maintain the max-heap property.
 - \triangleright Before MAX-HEAPIFY, A[i] may be smaller than its children.
 - \triangleright Assume left and right subtrees of *i* are max-heaps.
 - ▶ After MAX-HEAPIFY, subtree rooted at *i* is a max-heap.

Pseudocode

MAX-HEAPIFY(A, i, n)

- 1. $l \leftarrow \text{LEFT}(i)$
- **2.** $r \leftarrow RIGHT(i)$
- **3.** if $l \le n$ and A[l] > A[i]
- **4. then** *largest* \leftarrow *l*
- **5.** else $largest \leftarrow i$
- **6.** if $r \le n$ and A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- **8.** if largest \neq i
- **9. then** exchange $A[i] \leftrightarrow A[largest]$
- **10.** MAX-HEAPIFY(A, largest, n)

Example

Run MAX-HEAPIFY on the following heap example.

Analysis of MAX-HEAPIFY

► Time: *O*(lg *n*)

► *Correctness:* Heap is almost-complete binary tree, hence must process $O(\lg n)$ levels, with constant work at each level (comparing 3 items and maybe swapping 2).

The following procedure, given an unordered array, will produce a max-heap.

BUILD-MAX-HEAP(A, n)

- **1.** for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- **2. do** MAX-HEAPIFY(A, i, n)

Example

影成功大學

- ▶ Building a max-heap from the following unsorted array results in the first heap example.
 - \triangleright *i* starts off as 5.
 - ▶ MAX-HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2, 3, 1, 4.

	1	2	3	4	5	6	7	8	9	10
A	4	1	3	2	16	9	10	14	8	7

Correctness

- ▶ **Loop invariant:** At start of every iteration of for loop, each node i + 1, i + 2,..., n is root of a max-heap.
 - **Initialization:** By Exercise 6.1-7, we know that each node $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2,...,n$ is a leaf, which is the root of a trivial max-heap. Since $i = \lfloor n/2 \rfloor$ before the first iteration of the for loop, the invariant is initially true.
 - Maintenance: Children of node i are indexed higher than i, so by the loop invariant, they are both roots of max-heaps. Correctly assuming that i + 1, i + 2,..., n are all roots of max-heaps, MAX-HEAPIFY makes node i a max-heap root. Decrementing i reestablishes the loop invariant at each iteration.
 - ightharpoonup Termination: When *i* = 0, the loop terminates. By the loop invariant, each node, notably node 1, is the root of a max-heap.

Analysis

形 成 b 大 学 RIGHT 2002 A THO W CHEN

HITT. III.

- Analysis of BUILD-MAX-HEAP
 - \triangleright *Simple bound:* O(n) calls to MAX-HEAPIFY, each of which takes $O(\lg n)$ time → $O(n \lg n)$.
 - ▶ **Tighter analysis:** Have $\leq \lceil n/2^{h+1} \rceil$ nodes of height h (see Exercise 6.3-3), and height of heap is $\lfloor \lg n \rfloor$ (Exercise 6.1-2).
 - The Time required by MAX-HEAPIFY when called on a node of height h is O(h), so the total cost of BUILD-MAX-HEAP is

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left[\frac{n}{2^{h+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \right)$$

Evaluate the last summation by substituting $x = \frac{1}{2}$ in the formula (A.8) $\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$

- Thus, the running time of BUILD-MAX-HEAP is O(n).

Building a min-heap

The heapsort algorithm

HEAPSORT(A, n)

- **1.** BUILD-MAX-HEAP(A, n)
- 2. **for** $i \leftarrow n$ **downto** 2
- **3. do** exchange $A[1] \leftrightarrow A[i]$
- 4. MAX-HEAPIFY(A, 1, i-1)

Example

► The heapsort algorithm

Analysis

- Analysis of heapsort
 - ▶ BUILD-MAX-HEAP: *O*(*n*)
 - \triangleright **for** loop: *n* − 1 times
 - \triangleright Exchange elements: O(1)
 - ▶ MAX-HEAPIFY: *O*(lg *n*)

Total time: $O(n \lg n)$

► Though heapsort is a great algorithm, a wellimplemented quicksort usually beats it in practice.

Priority queue

Max-priority queues are implemented with max-heaps. Min-priority queues are implemented with min-heaps similarly.

▶ Max Priority Queues

- Maintains a dynamic set of S of elements.
- Each set element has a key: an associated value.
- Max-priority queue supports dynamic-set operations:
 - **–** INSERT(S, x): inserts element x into set S.
 - **-** MAXIMUM(*S*): returns elements of *S* with largest key.
 - **EXTRACT-MAX**(*S*): removes and returns element of *S* with largest key.
 - **-** INCREASE-KEY(S, x, k): increases value of element x's key to k. Assume $k \ge x$'s current key value.

Min-priority queue supports similar operation:

- \triangleright INSERT(S, x): inserts element x into set S.
- \triangleright MINIMUM(S): returns element of S with smallest key.
- EXTRACT-MIN(*S*): removes and returns element of *S* with smallest key.
- DECREASE-KEY(S, x, k): decreases value of element x's key to k. Assume $k \le x$'s current key value.

Finding the maximum element

Getting the maximum element is easy: it's the root.

HEAP-MAXIMUM(*A*)

- 1. return A[1]
- ightharpoonup Time: $\Theta(1)$

Extracting max element

Given the array A:

- Make sure heap is not empty
- Make a copy of the maximum element (the root).
- Make the last node in the tree the new root.
- Re-heapify the heap, with one fewer node.
- Return the copy of the maximum element.

HEAP-EXTRACT-MAX(A, n)

- 1. if n < 1
- **2. then error** "heap underflow"
- 3. $max \leftarrow A[1]$
- **4.** $A[1] \leftarrow A[n]$
- **5.** MAX-HEAPIFY(A, 1, n-1) \blacktriangleright remakes heap
- **6.** return max

- Analysis: constant time assignments plus time for MAX-HEAPIFY.
- ightharpoonup *Time:* $O(\lg n)$

Increasing key value

- ▶ Given set *S*, element *x* and new key value *k*:
 - ightharpoonup Make sure $k \ge x$'s current key.
 - \triangleright Update *x*'s key value to *k*.
 - ▶ Traverse the tree upward comparing *x* to its parent and swapping keys if necessary, until *x*'s key in smaller than parent's key.

HEAP-INCREASE-KEY(A, i, key)

- **1. if** key < A[i]
- **2. then error** "new key is smaller than current key"
- 3. $A[i] \leftarrow key$
- **4.** while i > 1 and A[PARENT(i)] < A[i]
- **5. do** exchange $A[i] \leftrightarrow A[PARENT(i)]$
- **6.** $i \leftarrow PARENT(i)$
- ► *Analysis:* Upward path from node *i* has length *O*(lg *n*) in an *n*-element heap.
- ightharpoonup Time: $O(\lg n)$

Inserting into the heap

- ▶ Given a key *k* to insert into the heap:
 - ▷ Insert a new node in the key last position in the tree with key $-\infty$
 - ▷ Increase the $-\infty$ key to k using the HEAP-INCREASE-KEY procedure defined above.

MAX-HEAP-INSERT(A, key, n)

- 1. $A[n+1] \leftarrow -\infty$
- **2.** HEAP-INCREASE-KEY(A, n + 1, key)
- ► *Analysis:* constant time assignments plus time for HEAP-INCREASE-KEY
- **► Time:** *O*(lg *n*)
- Min-priority queue operations are implemented similarly with min-heaps.