

โครงการฝึกงาน เรื่อง ฝึกงานภาคฤดูร้อน

นายพัชร อัครประสิทธิ์ 6030300741

นายณัฐพงค์ ตื่มสูงเนิน 6030300318

คณะวิศวกรรมศาสตร์ศรีราชา มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรีราชา ปีการศึกษา 2563

คำนำ

โครงการฉบับนี้เป็นส่วนหนึ่งของการฝึกงานภาคฤดูร้อน ประจำปีการศึกษา 2563 ซึ่งจัดทำขึ้นเพื่อ รวบรวมข้อมูลและประสบการณ์จากการฝึกงานที่ภาควิชาคอมพิวเตอร์และสารสนเทศ คณะวิศวกรรมศาสตร์ ศรีราชา โดยมีเนื้อหาเกี่ยวกับระบบแผงควบคุมเพื่อเพิ่มประสิทธิภาพโซล่าเซลล์ เพื่อหาจุดMPPT หรือ Maximum Power Point Tracking เพื่อผลิตกระแสกระแสตรงให้มีประสิทธิภาพและเสถียรมากขึ้น

ผู้จัดทำขอขอบพระคุณอาจารย์ กุลวดี สมบูรณ์วิวัฒน์ ผู้บังคับบัญชาในการฝึกงาน ที่ได้ให้ความรู้และ แนวทางต่าง ๆที่เป็นประโยชน์ต่อการฝึกงานอย่างยิ่ง สุดท้ายผู้จัดทำหวังว่าโครงการฉบับนี้จะเป็นปนะโยชน์ไม่ มากก็น้อยต่อผู้ที่สนใจ หากโครงการฉบับบนี้ไม่ข้อผิดพลาดประการใดผู้จัดทำขอน้อมรับคำติชมด้วยความยินดี

นาย พัชร อัครประสิทธิ์

นาย ณัฐพงค์ ตื่มสูงเนิน

คณะผู้จัดทำ

สารบัญ

สารบัญภาพ	4
บทที่ 1 บทนำ	5
ที่มาและความสำคัญ	5
เป้าหมายของโครงการ	5
สถานที่ฝึกงานหรือหน่วยงาน	5
ข้อมูลผู้บังคับบัญชาระหว่างฝึกงาน	5
ระบบโครงสร้างบุคลากรในหน่วยงาน แผนภูมิโครงสร้างองค์กร	6
บทที่ 2 การดำเนินงาน	8
งานที่ได้รับมอบหมาย	8
การออกแบบวงจร	8
การสร้างวงจรจำลองเพื่อใช้ทดสอบประสิทธิภาพกับอัลกอริทึม P&O และ INC	9
เขียนโค้ดอัลกอริทึม P&O และ INC ลงใน C-Block ของโปรแกรมจำลอง PSIM	10
หลักการทำงานอัลกอริทึม P&O	10
หลักการทำงานอัลกอริทึม INC	13
สรุปค่าเปรียบเทียบประสิทธิภาพของแต่อัลกอริทึม	15
สรุปค่าประสิทธิภาพเฉลี่ย	16
รายงานการดำเนินงานประจำวัน	17
ปัญหาที่พบระหว่างฝึกงานและวิธีแก้ปัญหาที่เหมาสม	21
สิ่งที่ประทับใจ	21
บทที่ 3 สรุป	22
บรรณานกรม	23

สารบัญภาพ

รูปภาพ 1 แผนภูมิโครงสร้างองค์กร	6
รูปภาพ 2 แผนภูมิโครงสร้างบริหารงาน	6
รูปภาพ 3 แผนภูมิโครงสร้างอัตรากำลัง	7
รูปภาพ 4 รูปโปรแกรม PSIM	9
รูปภาพ 5 วงจร P&O ที่ใช้โปรแกรม PSIM จำลอง	9
รูปภาพ 6 รูปวงจร INC ที่ใช้โปรแกรม PSIM จำลอง	10
รูปภาพ 7 flowchart การทำงานของ P&O	10
รูปภาพ 8 โค้ดหลักการ P&O ที่ได้เขียนลงไป	11
รูปภาพ 9 กราฟประสิทธิภาพที่ได้ของ P&O	12
รูปภาพ 10 flowchart การทำงานของ INC	13
รูปภาพ 11 โค้ดหลักการ INC ที่ได้เขียนลงไป	14
รูปภาพ 12 กราฟประสิทธิภาพที่ได้ของ INC	15
รูปภาพ 13 ตารางสรุปค่าประสิทธิภาพของ P&O	15
รูปภาพ 14 ตารางสรุปค่าประสิทธิภาพของ INC	16
รูปภาพ 15 ตารางสรุปค่าประสิทธิภาพเฉลี่ย	16

บทที่ 1

บทน้ำ

ที่มาและความสำคัญ

ปัจจุบันการใช้พลังงานสะอาดกำลังเป็นที่นิยมอย่างมากโดยเฉพาะพลังงานไฟฟ้าจากแสงอาทิตย์หรือ โซล่าเซลล์เนื่องจากเป็นพลังงานที่ไม่สร้างมลภาวะแก่สิ่งแวดล้อมแต่พลังงานไฟฟ้าที่ได้จากเครื่องผลิตกระ ไฟฟ้ากระแสตรงนี้ มีความไม่แน่นอน ขึ้นอยู่กับปริมาณและความเข้มของแสงอาทิตย์อัลกอลิธี่มหรือรูปแบบ การคำนวณแบบ MPPT จึงถูกคิดค้นขึ้นมาเพื่อเอาจุดที่ก่อให้เกิดพลังงานไฟฟ้าสูงสุดมาใช้งานไม่ว่าความเข้มของแสงอาทิตย์จะเปลี่ยนไป

เป้าหมายของโครงการ

- 1.พัฒนาอัลกอริทึมการตามรอยจุดกำลังสูงสุด(MPPT)
- 2.เปรียบเทียบประสิทธิภาพอัลกอริทึมการตามรอยจุดกำลังสูงสุด(MPPT)

สถานที่ฝึกงานหรือหน่วยงาน

ห้อง 23610 ชั้น 6 อาคาร 23 ห้องวิจัย G-SET อาคาร 2 ชั้น 3 หน่วยปฏิบัติการวิจัยเทคโนโลยี พลังงานสีเขียวอัจฉริยะ (G-SET Research Unit) คณะวิศวกรรมศาสตร์ศรีราชา มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรีราชา 199 ถนนสุขุมวิท ตำบลทุ่งสุขลา อำเภอศรีราชา จังหวัดชลบุรี 20230 (Work from home)

ข้อมูลผู้บังคับบัญชาระหว่างฝึกงาน

ผู้ที่ทำการควบคุมและสอนงานให้กับข้าพเจ้าคือ ผศ.ดร.กุลวดี สมบูรณ์วิวัฒน์ มีตำแหน่งเป็นผู้ช่วย ศาสตราจารย์ โดยปฏิบัติงานอยู่ที่ คณะวิศวกรรมศาสตร์ศรีราชา มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรี ราชา อีเมล์ที่สามารถติดต่อได้ kulwadee@eng.src.ku.ac.th

ระบบโครงสร้างบุคลากรในหน่วยงาน

แผนภูมิโครงสร้างองค์กร

รูปภาพ 1 แผนภูมิโครงสร้างองค์กร

แผนภูมิโครงสร้างการบริหารงาน

รูปภาพ 2 แผนภูมิโครงสร้างบริหารงาน

แผนภูมิโครงสร้างอัตรากำลัง

รูปภาพ 3 แผนภูมิโครงสร้างอัตรากำลัง

บทที่ 2

การดำเนินงาน

งานที่ได้รับมอบหมาย

ได้รับมอบหมายให้ทำการเปรียบเทียบประสิทธิภาพของอัลกอริทึม MPPT หรือ Maximum Power Point Tracking โดยทำการเปรียบเที่ยบอัลกอริทึม P&O กับ INC

MPPT คือ

MPPT ย่อมาจาก Maximum power point tracking คือ อัลกอลิธี่มหรือรูปแบบการคำนวณอย่าง หนึ่ง ที่นำมาใช้กับการทำงานของเครื่องผลิตไฟฟ้ากระแสตรง เช่น กังหันลม และ แผง โซล่าเซลล์ เพื่อผลิต กระแสไฟฟ้าให้มีประสิทธิภาพและมีเสถียรภาพมากขึ้น เพราะในความเป็นจริง พลังงานไฟฟ้าที่ได้จากเครื่อง ผลิตกระไฟฟ้ากระแสตรงเหล่านี้ มีความไม่ แน่นอน ขึ้นอยู่กับปริมาณ และความเข้มของแสงอาทิตย์ อัลกอริทึมหรือรูปแบบการคำนวณแบบ MPPT จึงถูกคิดค้นขึ้นมาเพื่อเอาจุดที่ก่อให้เกิดพลังงานไฟฟ้าสูงสุดมา ใช้งานไม่ว่าความเข้มของแสงอาทิตย์หรือความเร็วลมจะเปลี่ยนไป

การออกแบบวงจร

โดยใช้โปรแกรม PSIM เป็นแพคเกจซอฟต์แวร์จำลองวงจรอิเล็กทรอนิกส์ที่ออกแบบมาโดยเฉพาะสำหรับใช้ใน อุปกรณ์อิเล็กทรอนิกส์กำลัง และ Motor Drive Simulations ใช้เพื่อจำลองวงจรอิเล็กทรอนิกส์ต่าง ๆ พัฒนา โดยบริษัท Powersim มาพร้อมกับอินเทอร์เฟซที่เรียบง่ายพร้อมด้วยเครื่องมือและฟังก์ชั่นในการใช้งานที่มี ประสิทธิภาพมากมาย

รูปภาพ 4 รูปโปรแกรม PSIM

การสร้างวงจรจำลองเพื่อใช้ทดสอบประสิทธิภาพกับอัลกอริทึม P&O และ INC

เริ่มทำการออกแบบวงจรโดยจะมีวงจรหลัก ๆอยู่สองวงจร คือ 1.วงจร Buck Converter 2. วงจร MPPT โดยเมื่อทำการคลิ๊กที่ c-block สามารถเขียนโค้ดอัลกอริทึมต่าง ๆ ที่เราต้องการให้วงจร ทำงานได้ตามที่เราต้องการได้ความแตกต่างของวงจรที่ได้ออกแบบคือ โค้ดที่ได้ทำการเขียนเข้าไปในตัว c-block จะขึ้นอยู่กับอัลกอรึมที่เราต้องการใช้นั่นเอง

รูปภาพ 5 วงจร P&O ที่ใช้โปรแกรม PSIM จำลอง

รูปภาพ 6 รูปวงจร INC ที่ใช้โปรแกรม PSIM จำลอง

เขียนโค้ดอัลกอริทึม P&O และ INC ลงใน C-Block ของโปรแกรมจำลอง PSIM

หลักการทำงานอัลกอริทึม P&O

รูปภาพ 7 flowchart การทำงานของ P&O

เมื่อทางผู้จัดทำได้ทราบถึงหลักการทำงานของอัลกอรีทึม P&O ก็สามารถลงมือเขียนโค้ดลงใน C-Block ได้เลยดังนี้

รูปภาพ 8 โค้ดหลักการ P&O ที่ได้เขียนลงไป

เมื่อกดปุ่ม Simulate เพื่อหาค่าประสิทธิภาพที่ได้ จะเห็นได้ว่าค่าประสิทธิภาพจะเพิ่มขึ้นเรื่อย ๆ จนถึงจุด MPPT แล้วจะคงที่ตามรูปภาพดังนี้

รูปภาพ 9 กราฟประสิทธิภาพที่ได้ของ P&O

หลักการทำงานอัลกอริทึม INC

รูปภาพ 10 flowchart การทำงานของ INC

เมื่อทางผู้จัดทำได้ทราบถึงหลักการทำงานของอัลกอริทึม INC ก็สามารถลงมือ เขียนโค้ดลงใน C-Block ได้ เลยดังนี้

รูปภาพ 11 โค้ดหลักการ INC ที่ได้เขียนลงไป

เมื่อกดปุ่ม Simulate เพื่อหาค่าประสิทธิภาพที่ได้ จะเห็นได้ว่าค่าประสิทธิภาพจะเพิ่มขึ้นเรื่อย ๆ จนถึงจุด MPPT แล้วจะคงที่ตามรูปภาพดังนี้

รูปภาพ 12 กราฟประสิทธิภาพที่ได้ของ INC

สรุปค่าเปรียบเทียบประสิทธิภาพของแต่อัลกอริทึม

Algorithm	Time(s)	p_pv_out	pmax	Efficiency	Average efficiency
perturb and observe (P&O)	0.1	43.804	43.968	99.627	
	0.2	42.383	43.968	96.393	
	0.3	43.814	43.968	99.648	
	0.4	42.365	43.968	96.353	
	0.5	43.806	43.968	99.630	
\$ 	0.6	42.340	43.968	96.297	#
	0.7	43.798	43.968	96.612	
	0.8	42.341	43.968	96.297	
	0.9	43.763	43.968	99.534	
	1	43.968	43.968	99.999	98.038

รูปภาพ 13 ตารางสรุปค่าประสิทธิภาพของ **P&O**

Algorithm	Time(s)	p_pv_out	pmax	Efficiency	Average efficiency
Incremental Conductance (INC)	0.1	43.314	43.968	98.511	~ ~
	0.2	43.884	43.968	99.806	
	0.3	43.968	43.968	99.998	
	0.4	43.968	43.968	99.998	
	0.5	43.789	43.968	99.611	
	0.6	43.968	43.968	99.999	
	0.7	43.804	43.968	99.625	
	0.8	43.952	43.968	99.963	
	0.9	43.755	43.968	99.513	
	1	43.968	43.968	99.999	99.702

รูปภาพ 14 ตารางสรุปค่าประสิทธิภาพของ INC

สรุปค่าประสิทธิภาพเฉลี่ย

verage efficiency
98.038
99.702

รูปภาพ 15 ตารางสรุปค่าประสิทธิภาพเฉลี่ย

รายงานการดำเนินงานประจำวัน

วัน/เดือน/ปี	งานที่ได้รับมอบหมาย
17/พ.ค./64	 ได้รับมอบหมายให้ศึกษาข้อมูล อัลกอริทึม P&O ศึกษา paper ที่อาจารย์มอบหมายให้
18/พ.ค./64	ศึกษาข้อมูลอัลกอริทีม P&Oศึกษาหลักการทำงาน
19/พ.ค./64	 ตรวจพบข้อผิดพลาดของอัลกอริทีม P&O
20/พ.ค./64	 ศึกษาข้อมูลอัลกอริทึมเพิ่มเติมเนื่องจาก ตัว P&O มีข้อผิดพลาด
21/พ.ค./64	นำเสนออัลกอริทีม INCศึกษาการทำงานของ INC
24/พ.ค./64	 นำเสนอข้อดีของอัลกอริทึม INC
25/พ.ค./64	• ศึกษาหาโปรแกรมจำลองวงจร
26/พ.ค./64	 ได้นำเสนอโปรแกรมจำลองชื่อ PSIM ศึกษาการทำงานของโปรแกรมจำลอง
27/พ.ค./64	 ปรึกษาอาจารย์เรื่องการใช้งานโปรแกรม จำลอง

	● จำลองวงจร P&O
28/พ.ค./64	นำเสนอวงจร P&O ที่ได้จำลองปรึกษาข้อผิดพลาดของวงจร
31/พ.ค./64	 ได้รับมอบหมายให้ศึกษาข้อมูล อัลกอริทึม INC
1/มิ.ย./64	● จำลองวงจร INC
2/มิ.ย./64	นำเสนอวงจร INC ที่ได้จำลองปรึกษาข้อผิดพลาดของวงจร
3/มิ.ย./64	 ได้รับมอบหมายให้เพิ่มวงจรที่ OUTPUT ออกมาเป็นประสิทธิภาพ
4/มิ.ย./64	• ปรึกษาเรื่องการสร้างวงจร
7/มิ.ย./64	 นำเสนอวงจรที่ OUTPUT ออกมาเป็น ประสิทธิภาพ ได้รับมอบหมายให้แก้วงจร
8/มิ.ย./64	• นำเสนอวงจรที่ได้รับมอบหมาย
9/มิ.ย./64	 ได้รับมอบหมายให้แก้วงจรให้มี OUTPUT เป็นประสิทธิภาพเฉลี่ย
10/มิ.ย./64	• นำเสนอวงจรที่ได้จำลอง

	• ปรึกษาหาข้อผิดพลาด
11/มิ.ย./64	 ได้รับมอบหมายให้ศึกษาข้อมูล อัลกอริทึม MP&O
14/มิ.ย./64	● ศึกษาหาข้อมูล MP&O
15/มิ.ย./64	นำเสนออัลกอริทึม MP&Oปรึกษาหาข้อดีและข้อเสีย
16/มิ.ย./64	 ได้รับมอบหมายให้ศึกษาหาโปรแกรม จำลอง Neural network
17/มิ.ย./64	 นำเสนอโปรแกรมจำลอง Neural network ปรีกษาหาข้อผิดพลาด
18/ົນ.ຍ./64	● จำลอง Neural network
21/ົນ. ຍ./64	 ปรึกษาอาจารย์เรื่องข้อผิดพลาดในการ จำลอง Neural network
22/ົນ.ຶຍ./64	ได้รับมอบหมายให้ทำการสรุปค่า เปรียบเทียบอัลกอริทึมทั้งสอง
23/ົນ.ຶຍ./64	 สรุปค่าประสิทธิภาพของอัลกอริทึมทั้ง สอง

24/มิ.ย./64	นำเสนอตารางสรุปค่าผลลัพธ์ของประสิทธิภาพของอัลกอริทีมทั้งสอง
25/ົນ.ຍ./64	 ทำการสรุปผลลัพธ์ของการฝึกงานเรื่อง เพิ่มประสิทธิภาพแผงโซล่าเซลล์

ปัญหาที่พบระหว่างฝึกงานและวิธีแก้ปัญหาที่เหมาสม

จากการฝึกงานนั่นได้พบกับปัญหาคือ ไม่สามารถนำข้อมูลที่ได้ไปเทรน Neural network เพื่อสร้าง อัลกอริทึม MP&O มาเปรียบเทียบเติมนั่นเอง ซึ่งผู้จัดทำสามารถได้ข้อมูลที่จำเป็นทั้งหมดในการเทรน Neural network แล้วแต่จากปัญหาดังกล่าวอาจเกิดจากตัวโปรแกรมจำลองวงจรของผู้จัดทำเป็นเวอร์ชั่นที่ไม่รองรับ กับโปรแกรมที่จำลอง Neural network นั่นเอง วิธีแก้ปัญหาต้องหาโปรแกรมจำลองวงจร PSIM เวอร์ชั่น R2009b มาใช้เชื่อมต่อกับโปรแกรมจำลอง Neural network ก็จะสามารทราบถึงประสิทธิภาพของ อัลกอริทึม MP&O ได้นั่นเอง

สิ่งที่ประทับใจ

การฝึกงานครั้งนี้ผู้จัดทำได้ความรู้จากอาจารย์มาโดยตลอด เมื่อพบปัญหาทุกปัญหาอาจารย์จะคอย ปรึกษาและให้คำแนะนำเสมอ

บทที่ 3

สรุป

MPPT ย่อมาจาก Maximum power point tracking คือ อัลกลิธิ่มหรือรูปแบบการคำนวณ อย่างหนึ่ง ที่นำมาใช้กับการทำงานของเครื่องผลิตไฟฟ้ากระแสตรง เช่น กังหันลมและแผงโซล่าเซลล์ เพื่อผลิต กระแสไฟฟ้าให้มีประสิทธิภาพและมีเสถียรภาพมากขึ้น เพราะในความเป็นจริงพลังงานไฟฟ้าที่ได้จากเครื่อง ผลิตกระไฟฟ้ากระแสตรงเหล่านี้ มีความไม่แน่นอน ขึ้นอยู่กับปริมาณและความเข้มของแสงอาทิตย์ อัลกอ ลิธิ่มหรือรูปแบบการคำนวณแบบ MPPT จึงถูกคิดค้นขึ้นมาเพื่อเอาจุดที่ก่อให้เกิดพลังงานไฟฟ้าสูงสุดมาใช้งาน ไม่ว่าความเข้มของแสงอาทิตย์หรือความเร็วลมจะเปลี่ยนไป เพื่อเพิ่มประสิทธิภาพตัว MPPT ผู้จัดทำจึงได้ เสนอสองอัลกอริทึมคือ P&O และ INC แต่จากการทดสอบพบว่าตัว P&O มีข้อผิดพลาดคือเมื่อสภาพอาการ เปลี่ยนแปลงค่าของ MPPT จะไม่เสถียร แต่ตัวอัลกอริทึม INC จะมีประสิทธิภาพที่มากกว่าเมื่อเทียบกับ P&O และสามารถลดข้อผิดพลาดของตัว P&O ได้อีกด้วย

การจัดทำโครงงานเพื่อเพิ่มประสิทธิภาพแผงโซล่าเซลล์สามารถนำไปใช้ประโยชน์สูงสุดเพื่อ อำนวยความสะดวกแก่มนุษย์

บรรณานุกรม

- [1] Implement maximum power point tracking algorithms for photovoltaic systems using MATLAB and Simulink. แหล่งที่มา: https://www.mathworks.com/solutions/power-electronics-control/mppt-algorithm.html, 20 มิถุนายน พ.ศ. 2564
- [2] Artificial intelligence based P&O MPPT method for photovoltaic systems. แหล่งที่มา: https://www.researchgate.net/publication/228902464_Artificial_intelligence_based_PO_MPPT method for photovoltaic systems, 25 มิถุนายน พ.ศ. 2564