CLAIMS:

1. An electroluminescent display comprising a common substrate and an array of electroluminescent devices disposed on the common substrate, wherein each of said electroluminescent devices comprise an electroluminescent layer which is sandwiched between a first and a second electrode, a color converting material which is capable of changing light emitted by the electroluminescent layer into light having a longer wavelength and a stack of 2n + 1 transparent dielectric layers wherein n = 0, 1, 2, 3, ..., 3, ..., 3

said transparent dielectric layers having a high refractive index of n > 1.7 or a low refractive index of $n \le 1.7$,

said transparent dielectric layers having a high refractive index n being arranged in alternating manner with said transparent dielectric layers having a low refractive index n,

said stack of 2n + 1 transparent dielectric layers being arranged adjacent to one of the electrodes and a dielectric transparent layer having a high refractive index n adjoining said electrode.

- 2. An electroluminescent display as claimed in claim 1, wherein said transparent dielectric layers having a refractive index n > 1.7 is selected from the group consisting of TiO₂, ZnS and SnO₂.
- 3. An electroluminescent display as claimed in claim 1, wherein said transparent dielectric layers having a refractive index $n \le 1.7$ is selected from the group consisting of SiO₂, MgF₂ and alumino silicates.

20

15

- 4. An electroluminescent display as claimed in claim 1, wherein said transparent dielectric layers having a high refractive index n is ZnS and said transparent dielectric layers having a low refractive index n is MgF₂.
- 5 5. An electroluminescent display as claimed in claim 1, wherein said electroluminescent device is an active matrix device having a pixelated first electrode.
- 6. An electroluminescent display as claimed in claim 1, wherein a capping layer is placed adjacent to the second electrode and wherein the color converter
 10 material is embedded in or placed on top of the capping layer.
- An electroluminescent display as claimed in one of the claims 1 to 6, wherein the color converting material is selected from the group consisting of (Ba,Sr)₂SiO₄:Eu, SrGa₂S₄:Eu, CaS:Ce, Ba₂ZnS₃:Ce,K, Lumogen yellow ED206,
 (Sr,Ca)₂SiO₄:Eu, (Y,Gd)₃(Al,Ga)₅O₁₂:Ce, Y₃Al₅O₁₂:Ce, Lumogen F orange 240, SrGa₂S₄:Pb, Sr₂Si₅N₈:Eu, SrS:Eu, Lumogen F red 300, Ba₂Si₅N₈:Eu, Ca₂Si₅N₈:Eu CaSiN₂:Eu and CaS:Eu.
- 8. An electroluminescent device comprising an electroluminescent layer
 20 which is sandwiched between a first and a second electrode, a color converting material
 which is capable of changing light emitted by the electroluminescent layer into light
 having a longer wavelength and a stack of 2n + 1 transparent dielectric layers wherein
 n = 0, 1, 2, 3, ...,

said transparent dielectric layers having a high refractive index of n > 1.7or a low refractive index of $n \le 1.7$,

said transparent dielectric layers having a high refractive index n being arranged in alternating manner with said transparent dielectric layers having a low refractive index n,

said stack of 2n + 1 transparent dielectric layers being arranged adjacent to one of the electrodes and a dielectric transparent layer having a high refractive index n adjoining said electrode.