Lecture 9: Lagranges theorem

<u>Lagranges theorem</u>: Let G be a finite group and let H be a subgroup of G then Lagranges thm. States that IHI/G!

<u>Proof:</u> If H=G then the result is trivial. If H is a proper subgroup of G then let $g_1 \in G$, $g_1 \notin H$ and consider the set $g_1 H = \{g_1h : h \in H\}$. We have two claims

(i) 9,H NH = \$

onto mapping. (check!).

(ii) |91H|= |H|

To prove (i) assume that he giHNH, then h = gihi for some hield \Rightarrow gi=hhill But this is a contradiction since by hypothesis gi\(\psi\) H. Therefore gi\(\Pi\) NH = \(\phi\)

To show (ii) we check that the mapping Φ : H\(\to\) given by h\(\mapsi\) sh is a 1-1 and

Next let gz & G, gz & H and gz & g1H then again we have the claims

- (iii) $g_2H \cap H = \phi$, $g_2H \cap g_1H = \phi$
- (iv) |924|= |H|

Proof of $g_2H \cap H = \emptyset$ goes along the same lines as before. To show that $g_1H \cap g_2H = \emptyset$ assume by the way of contradiction that it is not so, then \exists an elemet $g_1H \in g_1H$ such that it also belongs to $g_2H : g_1H = g_2H'$ for some $h_2h' \in H$. Thefore $g_2 = g_1hh')^{-1}$ $\implies g_2 \in g_1H$ which is a contradiction. So, $g_1H \cap g_2H = \emptyset$. Claim (iv) can be Shown similar to claim (ii).

(ontinuing in this manner till we exhaust all the elements of Gr (this has to happen since Grisfinite) we get a partition of Gr as shown

Then counting the elements of G we set

[G|= |H|+ |9,H|+ |9,H|++ |9KH|

|G| = |H| + K|H| (Since |9iH|=|H|)

141 = (K+1) H

.. |H| |G| as required.

Applications of Lagranges theorem:

Corollary 1: Let G be a group and Let x & G then (< 27) |G|

Compllany 2: Let G be a group of prime order then then G is cyclic.

Proof: Let $x \notin G$ s.t. $x \neq e$ and consider $\langle x \rangle$. By corollary 1 $|\langle x \rangle| |G|$. Since |G| is prime $|\langle x \rangle| = 1$ or $|\langle x \rangle| = |G|$. Since $|X \neq e| \implies |\langle x \rangle| = |G|$. Therefore |X| generates |G| and |G| is cyclic

Corollary 3: Let G be a group and x be any element of G then $\chi^{[G]} = e$.

Proof: Let m be the order of x. From corollary 1 m[G], so [G] = Km for some $m \in \mathbb{Z}$. So $\chi^{[G]} = \chi^{mK} = (\chi^m)^K = e^K = e$.

Consider the set \mathbb{Z}_n^* consisting of elements that are less than n and relatively prime to n. For eg $\mathbb{Z}_0^*=\{1,3,5,7\}$, $\mathbb{Z}_0^*=\{1,3,7,9,11,13,17,19\}$. This forms a group under multiplication modulo n. (check!). The order of this group is $\Phi(n)$ the Euler Phi function.

Corollary 4: (Euler's theorem) If gcd (mn)=1 then 20 = 1 mod n

<u>Proof</u>: $x \in \mathbb{Z}_n^{\infty}$ (modulo n) then from cosollary 3 x = 1

Corollary 5: (Fermat's Little theorem) If p is a prime and x is not a multiple of p then $\mathcal{N}^{p-1} \equiv 1 \mod p$.

<u>Proof</u>: Apply Eulers theorem with n = P noting that $\Phi(P) = P-1$.