FICHE 02-04: Sous-groupes distingués de \mathfrak{S}_p : divers

Yvann Le Fay Juin 2019

Enoncé

Soit $p \geq 5$, montrer que les sous-groupes distingués de \mathfrak{S}_p sont $\{\mathrm{Id}\}, \mathfrak{A}_p, \mathfrak{S}_p$.

Solution

Soit H un sous-groupe distingué de \mathfrak{S}_p , posons $K = H \cap \mathfrak{A}_n$, alors K est un sous-groupe distingué de \mathfrak{A}_p , or \mathfrak{A}_p est simple, donc K est $\{\mathrm{Id}\}$ ou \mathfrak{A}_n .

Plaçons-nous dans le premier cas, remarquons que $\ker \varepsilon|_H = K = \{\mathrm{Id}\}$, donc ε est injectif et H est isomorphe à un sous-groupe de $\{-1,1\}$. Si H n'est pas de cardinal 1 alors il est de cardinal 2 et $H = \{\mathrm{Id},\sigma\}$ où $\sigma \in \mathfrak{S}_p \backslash \mathfrak{A}_n$. Or σ se décompose en des transpositions, notons en une $(a\,b)$, trouvons $g \in \mathfrak{S}_p$ tel que $g\sigma g^{-1} \neq \sigma$, ce qui contredira le caractère distingué de H. On pose $c \notin \{a,b\}$ alors en posant $g = (b\,c)$ on a $g\sigma g^{-1}(a) = c \neq \sigma(a)$. On en déduit donc que $H = \{\mathrm{Id}\}$.

Dans le second cas, cela implique que H contient \mathfrak{A}_p et donc $[H:\mathfrak{S}_p]\in\{1;2\}$, les deux cas correspondent respectivement à $H=\mathfrak{S}_p$ et à $H=\mathfrak{A}_p$.