IN THE UNITED STATES PATENT & TRADEMARK OFFICE

In re application of)
Applicant: Gross et al.)
) Group Art Unit:
Title: Genes Coding for Tomato)
B-Galactosidase Polypeptides) Examiner:
)
International Application No.:)
PCT/US99/12697)
)
Docket No.: 0066.99)
)
International Filing Date: 6/8/99)

NATIONAL STAGE ENTRY

BOX PCT

Honorable Commissioner of Patents And Trademarks Washington, D.C. 20231

Sir:

The following documents and fees are submitted herewith in connection with the above application for the purpose of entering the National Stage under 35 U.S.C. §371 and in accordance with Chapter II of the Patent Cooperation Treaty:

- <u>X</u> this express request to immediately begin national examination procedures [35 U.S.C. 371 (f)].
- \underline{X} an executed Declaration and Power of Attorney
- \underline{X} an English Language International Application with U.S. Search Report
- \underline{X} an executed Assignment w/ Assignment Recordation Coversheet

09/701868 528 Rec'd PCT/PTO 05 DEC 2000

Docket No. 0066.99

- X International Preliminary Examination Report
- \underline{X} Sequence Listing Paper Readable and Computer Readable Copies

It is assumed that copies of the International Application, the International Search Report, the International Preliminary Examination Report, and any Article 19 and 34 amendments as required by §371(c) will be supplied directly by the International Bureau, but if further copies are needed, the undersigned can easily provide them upon request.

Please charge these fees to deposit account 21-0561. The Commissioner is hereby authorized to charge any additional fees which may be required at anytime during the prosecution of this application, or credit any overpayment, to Deposit Account 21-0561.

^{*}A copy of the U.S. Search Report is attached.

528 Rec'd PCT/PTO 0 5 DEC 2000

Docket No. 0066.99

Priority is claimed from June 9, 1998, based on U.S. Provisional Application No. 60/088,805.

Respectfully submitted,

rember 5, 2000

Date

Janelle S. Graeter, Patent Advisor

Registration No. 35,024

USDA-ARS-OTT

5601 Sunnyside Ave., Rm. 4-1188

Beltsville, Maryland 20705-5131

Telephone: (301)504-6558

Enclosures

cc:

The Hall they had hall

Sul Sin

10

1

San San

M. Ruff

J. Blalock

H. Silverstein

K. Gross

D. Smith

09/701868

528 Rec'd FCT/PTO 05 DEC 2000

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

In re application of)
Applicant: Gross et al.)
) Group Art Unit:
Title: Genes Coding for Tomato)
B-Galactosidase Polypeptides) Examiner:
)
Serial No.: Unknown)
)
Docket No.: 0066.99)
)
Filed: Concurrently herewith)

Statement Pursuant to 37 C.F.R. 1.821 (f)

Sir:

Submitted for filing concurrently herewith in connection with the above-referenced patent application is a labeled, computer-readable copy of the Sequence Listing included with the application in accordance with 37 C.F.R. 1.821-1.824.

I hereby state that I have reviewed the paper copy of the Sequence Listing, as required by 37 C.F.R. 1.821 (c) and the computer readable form of the Sequence Listing, as required by 37 C.F.R. 1.821(e) and that the content of the paper and computer readable copies are the same.

Favorable consideration of the patent application is respectfully requested.

Respectfully submitted,

Doto

Janelle S. Graeter, Patent Advisor

Registration No. 35,024

USDA-ARS-OTT

5601 Sunnyside Ave., Rm. 4-1188 Beltsville, Maryland 20705-5131

Telephone: (301) 504-6558

Enclosures: Diskette

Sequence Listing

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

In re application of)
Applicant: Gross et al.))
) Group Art Unit: 1646
Title: Genes Coding for Tomato)
B-Galactosidase Polypeptides) Examiner:
)
Serial No.: Unknown)
)
Docket No.: 0066.99)
)
Filed: Concurrently herewith)
-)
)

SUBMISSION OF POWER OF ATTORNEY/DECLARATION AND ASSIGNMENT

Assistant Commissioner for Patents Washington, D.C. 20231 ATTN: Application Branch

Sir:

Enclosed for filing in the above-identified application is a Declaration and Power of Attorney signed by all of the Applicants.

Also enclosed for filing is an Assignment document signed by all inventors and an Assignment Recordation Coversheet.

The Commissioner is hereby authorized to charge any additional fees which may be required at anytime during the

Docket No. 0066.99

prosecution of this application, or credit any overpayment, to Deposit Account 21-0561.

Respectfully submitted,

nou 5, dead

Date

Janelle S. Graeter, Patent Advisor

Registration No. 35,024

USDA-ARS-OTT

5601 Sunnyside Ave., Rm. 4-1186 Beltsville, Maryland 20705-5131

Telephone: (301) 504-6558

Enclosures:

Declaration

Assignment Recordation Coversheet

Assignment

cc:

K. Gross

D. Smith

528 Rec'd PCT/PTO 0 5 DEC 2000 GENES CODING FOR TOMATO β-GALACTOSIDASE

POLYPEPTIDES

5

10

L. H. Tank And And And An

15

Field of the Invention

The present invention relates to a family of novel plant genes encoding polypeptides characterized by their ability to hydrolyze terminal non-reducing β -D-galactosyl residues from β -D-galactosides. More specifically, a polynucleotide sequence derived from a cDNA clone designated pZBG2-1-4 (referred to in U.S. Provisional Appln. No. 60/088,805 as pTomβgal 4), which encodes a specific plant polypeptide named β-galactosidase II, is provided. Also provided are cDNA clones encoding six other homologous polypeptides, methods of using these cDNA clones for producing \(\beta \text{-D-galactoside} \) polypeptides of the invention, and methods of modifying fruit quality by employment of a polynucleotide or polypeptide of the present invention.

Background of the Invention

The most conspicuous and important processes related to post-harvest quality of climacteric fruit are the changes in texture, color, taste, and aroma which occur during ripening. Because of the critical relationship that deleterious changes in texture have to quality and post-harvest shelf-life, emphasis has been placed on studying the mechanisms involved in the loss of firmness that occurs during tomato fruit ripening. Although fruit softening may involve changes in turgor pressure, anatomical characteristics and cell

20

WO 99/64564 PCT/US99/12697

wall integrity, it is generally assumed that cell wall disassembly leading to a loss of wall integrity is a critical feature. The most apparent changes, in terms of composition and size, occur in the pectic fraction of the cell wall (see references in Seymour and Gross, 1996).

5

10

15

Changes known to occur in the pectic fraction of the cell wall during fruit ripening include increased solubility, depolymerization, de-esterification and a significant net loss of neutral sugar containing side chains (Huber, 1983; · Fischer and Bennett, 1991; Seymour and Gross, 1996). The best characterized pectin-modifying enzymes are polygalacturonase (endo-α1→4-D-galacturonan hydrolase; E.C. 3.2.1.15; PG) and pectin methylesterase (E.C. 3.1.1.11; PME). Although PG and PME are relatively abundant and have substantial activity during tomato fruit ripening, softening still occurs, albeit with a slight delay, in fruit where PG (Smith *et al.* 1988, 1990) or PME (Tieman *et al.* 1992; Hall *et al.* 1993) gene expression and enzyme activity was significantly down-regulated in transgenic plants. Moreover, over-expression of PG in non-ripening mutant *rin* tomato fruit did not result in softening even though depolymerization and solubilization of pectin was evident (Giovannoni *et al.*, 1989).

20

Among the other known pectin modifications that occur during fruit development, one of the best characterized is the significant net loss of galactosyl residues which occurs in the cell walls of many ripening fruit (Gross and Sams, 1984; Seymour and Gross, 1996). Although some loss of galactosyl residues could result indirectly from the action of PG, β -galactosidase (exo- $\beta(1\rightarrow 4)$ -D-galactopyranoside; E.C. 3.2.1.23) is the only enzyme identified in

WO 99/64564 PCT/US99/12697

higher plants capable of directly cleaving $\beta(1\rightarrow 4)$ galactan bonds, and probably plays a role in galactan sidechain loss (DeVeau et al., 1993; Carey et al., 1995; Carrington and Pressey, 1996). No endo-acting galactanase has yet been identified in higher plants. The view that β-galactosidase is active in releasing galactosyl residues from the cell wall during ripening is supported by the dramatic increase in free galactose, a product of β -galactosidase activity (Gross, 1984) and a concomitant increase in activity of a particular enzyme, designated B-galactosidase II, in tomatoes during ripening (Carey et al., 1995). β-galactosidase activity is thought to be important in cell wall metabolism (Carey et al., 1995). \(\beta\)-Galactosidases are generally assayed using artificial substrates such as p-nitrophenyl-β-D-galactopyranoside (PNP), 4methylumbelliferyl-β-D-galactopyranoside and 5-bromo-4-chloro-3-indoxyl- β -D-galactopyranoside (X-GAL). However, it is clear that β -galactosidase II is also active against natural substrates, i.e., β (1>4)galactan (Carey et al., 1995; Carrington and Pressey, 1996; Pressey, 1983). β-Galactosidase proteins have been purified and characterized in a number of other fruits including kiwifruits (Ross et al., 1993), coffee (Golden et al., 1993), persimmon (Kang et al., 1994), and apple (Ross et al., 1994).

Carey et al. (1995) were able to purify three previously identified β -galactosidases from ripening tomato fruit (Pressey, 1983), but only one (β -galactosidase II) was active against $\beta(1\rightarrow 4)$ galactan. Even though they were able to identify putative β -galactosidase cDNA clones, none of the cDNA's deduced amino acid sequences matched the amino terminal sequence of the β -galactosidase II protein. Although β -galactosidase II, a protein present in

10

15

20

tomato (Lycopersicon esculentum Mill.) fruit during ripening and capable of degrading tomato fruit galactan has been purified, cloning of the corresponding gene has been elusive.

The modification of plant gene expression has been achieved by several methods. The molecular biologist can choose from a range of known methods to decrease or increase gene expression or to alter the spatial or temporal expression of a particular gene. For example, the expression of either specific antisense RNA or partial (truncated) sense RNA has been utilized to reduce the expression of various target genes in plants (as reviewed by Bird and Ray, 1991, Biotechnology and Genetic-Engineering Reviews 9:207-227). These techniques involve the incorporation into the genome of the plant of a synthetic gene designed to express either antisense or sense RNA. They have been successfully used to down-regulate the expression of a range of individual genes involved in the development and ripening of tomato fruit (Gray et al, 1992, Plant Molecular Biology, i9:69-87). Methods to increase the expression of a target gene have also been developed. For example, additional genes designed to express RNA containing the complete coding region of the target gene may be incorporated into the genome of the plant to "over-express" the gene product. Various other methods to modify gene expression are known; for example, the use of alternative regulatory sequences. The complete disclosure of each of the references cited above is fully incorporated herein by reference.

The need therefore exists to clone a gene for β -galactosidase II and related polypeptides, and using known methods of modification of plant gene expression, thereby to provide methods for modifying quality of fruits,

particularly by modifying the cell wall, thereby directly affecting the ripening of the fruit.

Summary of the Invention

5

The present invention is based on the discovery of novel DNA sequences derived from cDNA clones from a family of genes encoding β -galactosidases. The phylogenic tree based on the shared amino acid sequence identities for the DNA sequences of the present invention is shown in Figure 1A,B. Five cDNA and two RT-PCR clones, designated herein as TBG1, TBG2, TBG3, TBG4, TBG5, TBG6, and TBG7 and having the nucleic acid sequences designated SEQ ID NOs 1-7, respectively as shown in Figure 2, were identified which had a high degree of shared sequence identity to other known β -galactosidases. The corresponding amino acid sequences are designated herein as SEQ ID NOs 8-16, respectively and are shown in Figure 2 and 3. The nucleotide sequences for SEQ ID NOs 1-7 are recorded in Gen Bank with the following respective Accessions Numbers:

15

20

- 10

SEQ ID NO:1	TGB1	AF023847	deposit Sept 10, 1997
SEQ ID NO:2	TGB2	AF154420	deposited May 19, 1999
SEQ ID NO: 3	TGB3	AF154421	deposited May 20, 1999
SEQ ID NO:4	TGB4	AF020390	deposited Aug 21, 1997
SEQ ID NO:5	TGB5	AF154423	deposited May 20, 1999
SEQ ID NO:6	TGB6	AF154424	deposited May 20, 1999
SEQ ID NO: 7	TGB7	AF154422	deposited May 20, 1999

15

20

5

Throughout the following discussion, wherever TBG4 is indicated in the description of the invention, it is to be understood that TBG1-3 and 5-7 are also to be included in that description, unless otherwise indicated.

A method of providing a DNA sequence of the invention, either by cloning a cDNA (for instance, pZBG2-1-4) that codes for a protein of the present invention, such as β -galactosidase II, or by deriving the DNA sequence from genomic DNA, or by synthesis of a DNA sequence <u>ab initio</u> using the cDNA sequence as a guide is also provided.

A method for modifying cell wall metabolism which involves modifying the activity of at least one galactosidase, and thus modifying the quality of the fruit is also provided.

Also provided by the present invention is a DNA construct including some or all of an exemplary β -galactosidase DNA sequence under control of a transcriptional initiation region operative in plants, so that the construct can generate RNA in plant cells.

Also discovered is an enhancer/promoter associated with expression of the genes encoding β -galactosidase.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using them for production of β -galactosidase polypeptides or peptides by recombinant techniques.

10

5

The present invention also provides plant cells containing DNA constructs of the present invention; plants derived therefrom having modified β -galactosidase gene expression; and seeds produced from such plants.

The β -galactosidase II protein of the present invention has demonstrated enzyme activity in cell wall disassembly leading to loss of tissue integrity and fruit softening. The β -galactosidase II protein also may be involved in cell wall turnover, which could be involved in cell extension and/or expansion and therefore plant growth and development.

By hydrolyzing galactose from the cell wall, the enzyme may allow ripening to commence and/or progress, since galactose may be involved in stimulating ethylene production alone or in conjunction with unconjugated N-glycans.

The β -galactosidase of the invention may be involved in conversion of chloroplasts (green – chlorophyll) to chromoplasts (red – lycopene) during fruit ripening by degrading chloroplast membrane galactolipids.

The family of genes represented by the nucleotide sequences shown in Figure 2 is expected to code for a group of similar enzymes with the same type of hydrolytic activity but with different tissue and/or substrate specificity's or cellular compartmentation profiles.

The β -galactosidase II protein of the present invention as well as other proteins encoded in the nucleotide sequences shown in Figure 2 may be used for preparation of pectin and other cell wall derived polymers with lowered galactosyl content for use in biofilms and solutions (for example in

15

20

5

clarification of fruit juices) requiring lower or higher cross-linking or viscomertric properties.

The present invention also provides β -galactosidase enzymes for use as components of enzyme mixtures for protoplast isolation.

Brief Description of the Figures

Figure 1A and 1B shows a phylogenic tree based on shared amino acid sequence identity among tomato β -galactosidase clones TGB1-7 and other known plant β -galactosidase polypeptides.

Figure 2 shows cDNA sequences [SEQ ID NOs: 1-7, respectively] for the seven β -galactosidase genes of the invention: TGB1, TGB2, TGB3, TGB4, TGB5, TGB6, TGB7.

Figure 3 shows multiple sequence alignment of the deduced amino acid sequences of tomato fruit for cDNA clones TGB1, TGB2, TGB3, TGB4, TGB5, TGB6 and TGB7 [SEQ ID NOs: 8-16, respectively] and various plant β-galactosidase cDNA clones.

Figure 4 shows autoradiograph of northern blot analysis of TBG expression in various plant tissues (flowers, leaves, roots and stems).

Figure 5 shows Autoradiograph of northern blot analysis of TBG expression in fruit tissues at different stages of development.

10

They were good were now to the first first

15

1.3 L.3 2.3 L.3 4.3 4.3

20

25

Figure 7 shows autoradiograph of northern blot analysis of TBG expression in normal and mutant fruit tissues.

Figure 8 shows autoradiograph of northern blot analysis of TBG expression in response to ethylene treatment of mature green fruit tissues.

Figure 9 shows Western blot analysis of TBG4 expression by yeast.

Figure 10 shows detection of β -galactosidase activity from pZBG2-1-4 expression in *E. coli*.

Figure 11 A - E (1-4) shows the comparative results of texture measurements for fruit from tomato plants containing antisense constructs to suppress TBG4 mRNA and fruit from the parental line.

Figures 12A - B show Northern blot analysis of TBG4 expression in transgenic fruit containing TBG4 antisense construct.

Figure 13 shows a Binary construct used to transform plants and express TBG4 (pZBG2-1-4) in the antisense orientation.

Detailed Description

The following detailed description is directed to a preferred embodiment of the present invention and is intended as illustrative of each of other DNA sequences of the present invention.

5

The present invention provides isolated nucleic acid molecules comprising a polynucleotide encoding β -galactosidase polypeptides, particularly a β -galactosidase II polypeptide having the amino acid sequence shown in Figure 2. The DNA sequence of the exemplary β -galactosidase II cDNA clone of the invention, which was determined from a cDNA clone, pZBG2-1-4, encoding β -galactosidase II, is recorded in GenBank as Accession Number AF020390. Not all β -galactosidases possess *in vitro* activity against extracted cell wall material via the release of galactose from wall polymers containing $\beta(1\rightarrow 4)$ -D-galactan. The polypeptide expressed from the exemplary β -galactosidase II clone, pZBG2-1-4, has been shown to exhibit β -galactosidase activity and exogalactinase activity.

15

20

10

The exemplary β -galactosidase II protein of the present invention, as shown in Figure 2, shares sequence homology with the amino acid sequence deduced from β -galactosidase cDNA clones of TBG2-7 and cDNA clones of the fruits of asparagus (accession number P45582), apple (accession number P48981), and carnation (accession number Q00662), as well as with β -galactosidase cDNA clones of a previously published sequence of a tomato β -galactosidase cDNA clone designated pTom β gal1 (accession number P48980) isolated from ripe 'Ailsa Craig' fruit (Carey *et al.*, 1995). The ORF of the clone TBG1 disclosed herein by the inventors (accession number AF023847)

is nearly identical to the cDNA previously described by Carey et al. As shown in Figure 2, the shared deduced sequence identity is high among all the published plant β -galactosidases of the seven clones (TBG1-7) and the other plant β-galactosidases.

5

BLAST searches of the database also indicated significant shared sequence identity between domains of the plant \beta-galactosidases and mammalian and fungal β-galactosidases, however little share sequence identity was detected with bacterial \(\beta-galactosidases.

As shown in Figure 1, the shared amino acid identity of TBG1 and TBG3 was high. TBG4 was also very similar to both TBG1 and 3. The amino acid sequences of TBG2 and 7 were unique because several regions of amino acid insertions appear throughout their sequence (Figure 3).

Nucleic Acid Molecules

20

10

Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using a PCR-based dideoxynucleotide terminator protocol and an ABI automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc., Foster City, CA), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least

10

15

20

WO 99/64564 PCT/U\$99/12697

about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

By "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides, and for an RNA molecule or polynucleotide, the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U).

Using the information provided herein, such as the exemplary nucleotide sequence shown in Figure 2 [SEQ ID NO: 4], a nucleic acid molecule of the present invention encoding a β-galactosidase II polypeptide may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA as starting material. Illustrative of the invention, the nucleic acid molecule described in Figure 2 [SEQ ID NO: 4] was discovered in a cDNA library derived from breaker, turning and pink fruit pericarp from 'Rutgers' tomato plants.

Sud Sun S. S. S. S. Sand S. S. Sand 5

10

15

20

The complete sequence of the cDNA insert of pZBG2-1-4 is accessible in the GenBank (no. AF020390) and is provided in Figure 2 [SEQ ID NO: 4]. The cDNA insert is 2532 nucleotides (nt) long and contains a single, long open reading frame (ORF) predicted to start with the first in-frame ATG at nt 64 and end with TAA at nt 2238. This ORF codes for a 79 kD protein 724 amino acids long. The deduced amino acid sequence of pZBG2-1-4 shared significant amino acid identity to all published plant β-galactosidase sequences in the database (Figure 1A,B). When the entire ORF of each β-galactosidase gene was compared to pZBG2-1-4, the shared sequence identity was about 64% for tomato pTomβgal 1 (P48980), about 67.6% for apple (P48981), about 63% for asparagus (P45582) and about 55% for carnation (Q00662). As one of ordinary skill would appreciate, due to the possibilities of sequencing errors discussed above, the actual complete β-galactosidase II polypeptide encoded by the deposited cDNA, which comprises about 724 amino acids, may be somewhat longer or shorter. More generally, the actual open reading frame may be anywhere in the range of ± 20 amino acids, more likely in the range of ± 10 amino acids, of that predicted from either the first methionine codon from the N-terminus shown in Figure 2 [SEQ ID NO: 4]. In any event, as discussed further below, the invention further provides polypeptides having various residues deleted from the N-terminus of the complete polypeptide, including polypeptides lacking one or more amino acids from the N-terminus of the βgalactosidase II polypeptide described herein.

Leader and Mature Sequences

Analysis of the deduced amino acid sequence of pZBG2-1-4 suggested a high probability for secretion based on the presence of a hydrophobic leader sequence, a leader sequence cleavage site and three possible N-glycosylation sites. The programs PSORT V6.4 (Nakai and Kanehisa, 1992, incorporated herein by reference) and SignalP V1.1 (Nielsen et al., 1997, incorporated herein by reference), were used to predict that the ORF contains a hydrophobic leader sequence that would be cleaved between the alanine and serine residues at positions 23 and 24 respectively, and that the mature polypeptide has an extracellular location. The mature polypeptide contains three possible N-glycosylation sites at asparagine numbers 282, 459 and 713, however the asparagine at position 713 is unlikely to be glycosylated due to the proline at position 714. The predicted molecular mass of the unglycosylated mature polypeptide was 75 kD with a pI of 8.9.

Accordingly, the amino acid sequence of the complete β -galactosidase II protein of the invention includes a leader sequence and a mature protein, as shown in Figure 3 [SEQ ID NO: 4]. More in particular, the present invention provides nucleic acid molecules encoding a mature form of the β -galactosidase II protein. Thus, according to the signal hypothesis, secreted proteins have a signal or secretory leader sequence which is cleaved from the complete polypeptide to produce a secreted "mature" form of the protein. In some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species of the protein. Further, it has long been known that the cleavage specificity of a secreted protein is ultimately determined by the

20

15

5

10

primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide. Therefore, the present invention provides a nucleotide sequence encoding the mature β -galactosidase II polypeptide having the amino acid sequence encoded by the cDNA shown in Figure 2 [SEQ ID NO: 4] and provided in GenBank (Accession No. AF20390). By the "mature β -galactosidase II polypeptide having the amino acid sequence encoded by the cDNA clone shown in Figure 2 [SEQ ID NO: 4] is meant the mature form(s) of the β -galactosidase II protein produced by expression in a plant cell of the complete open reading frame encoded by the cDNA sequence of the clone shown in Figure 2 [SEQ ID NO: 4] and provided in GenBank (Accession No. AF20390).

The exemplary β -galactosidase II cDNA of the present invention (TBG4) has been expressed in *E. coli* strain XLI blue MR (lacZ) (Stratagene, La Jolla, CA), as described hereinbelow (see Example).

Analysis of the deduced amino acid sequence of cDNA clones representing the other β-galactosidase genes of the invention also revealed open reading frames and, in some cases, suggested a high probability for secretion of the encoded proteins. All the full-length cDNA clones were predicted to have a signal sequence (Fig. 2). Using the two prediction programs SignalP and PSORT, TBG4 was predicted to be secreted by both programs. TBG1, 2 and 3 were predicted to have cleavable signal sequences by SignalP, but uncleavable signal sequences by PSORT. TBG7 was suggested to be targeted to the chloroplast by PSORT. Particular observations for each of the seven clones are as follows, based on the presence of a hydrophobic

20

10

15

leader predicted by the programs PSORT V6. and SignalP V1.1: TBG1: initiation codon at 306 [SEQ ID NO: 1], ORF = 835 amino acids [SEQ ID NO: 8], signal sequence at 1-24; TBG2: initiation codon not determined [SEQ ID NO: 2], ORF = 888 amino acids [SEQ ID NO: 9], signal sequence at 1-25; TBG3: initiation codon at 32 [SEQ ID NO: 3], ORF = 838 amino acids [SEQ ID NO: 10], signal sequence at 1-22; TBG5: initiation codon not determined [SEQ ID NO:5], ORF = 251 amino acids [SEQ ID NO: 12], signal sequence not determined; TBG6: initiation codon not determined [SEQ ID NO:6], ORF = 248 amino acids [SEQ ID NO:13], signal sequence not determined; TBG7: initiation codon at 104 [SEQ ID NO: 7], ORF = 870 amino acids [SEQ ID NO:14], signal sequence at 1-35.

The deduced amino acid sequences of the seven clones was also subjected to analysis using the program DNAsis and the predictions for molecular mass, cellular targeting, pI and potential N-linked glycosylation sites are summarized in Table I.

Table I. Tomato β -galactosidase (TBG) cDNA sequence data. Five full-length and 2 partial-length cDNAs were cloned and sequenced. The DNA and deduced amino acid sequence data is presented below

	CLONE	mRNA(kb)	kD	pl	N-LINK	TARGET
	TBG1	3.2	90.8	`, 6.2	2	ER/OUT
	TBG2	3.0	97.0	6.2	6	РМ
	TBG3	2.8	90.5	8.2	1	ER/OUT
	TBG4	2.6	77.9	8.9	3	OUT
	TBG5	~3				
	TBG6	~3				
NI E I	TBG7	3.0	93.3	8.0	6 0: ED = 05	CHLOR

N-LINK = possible N-linked glycosylation sites; ER = endoplasmic reticulum; out = secreted; PM = tethered to plasma membrane; CHLOR = chloroplast

As indicated, nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically. The DNA may be double-stranded or single-stranded.

Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.

By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment

5

WO 99/64564 PCT/US99/12697

For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Isolated nucleic acid molecules of the present invention include DNA molecules comprising an open reading frame (ORF) with an initiation codon at position 64 of the nucleotide sequence shown in Figure 2 [SEQ ID NO: 4]. Also included are DNA molecules comprising the coding sequence for the mature β -galactosidase II protein shown at positions 135-2532 of Figure 2 [SEQ ID NO: 4].

In addition, isolated nucleic acid molecules of the invention include DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode the β -galactosidase II protein. Of course, the genetic code and species-specific codon preferences are well known in the art. Thus, it would be routine for one skilled in the art to generate the degenerate variants described above, for instance, to optimize codon expression for a particular host (e.g., change codons in the plant mRNA to those preferred by a bacterial host such as *E. coli*). Preferably, this nucleic acid molecule will encode the mature polypeptide encoded by the above-described deposited cDNA clone.

15

10

5

10

15

The invention further provides an isolated nucleic acid molecule having the nucleotide sequence shown in Figure 2 [SEQ ID NO: 4] or a nucleic acid molecule having a sequence complementary to the above sequence. Such isolated molecules, particularly DNA molecules, are useful as probes for gene mapping, by *in situ* hybridization with chromosomes, and for detecting expression of the β-galactosidaṣe II gene in plant tissue, for instance, by Northern blot analysis.

The present invention is further directed to nucleic acid molecules encoding portions of the nucleotide sequences described herein as well as to fragments of the isolated nucleic acid molecules described herein. In particular, the invention provides a polynucleotide having a nucleotide sequence representing the portion of Figure 2 [SEQ ID NO: 4] which consists of positions 1-2538 of Figure 2 [SEQ ID NO: 4].

In addition, the invention provides additional nucleic acid molecules having nucleotide sequences related to extensive portions of Figure 2 [SEQ ID NO: 4] which have been determined from the following related cDNA clones: TBG1-3 and TBG5-7 as shown in Figure 3, SEQ. NO's 1-3 and 5-7

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, the cDNA clone shown in Figure 2 [SEQ ID NO: 4]. By "stringent hybridization conditions" is intended overnight incubation at 42° C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml

10

15

20

WO 99/64564 PCT/US99/12697

denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65° C.

As indicated, nucleic acid molecules of the present invention which encode a β -galactosidase II polypeptide may include, but are not limited to those encoding the amino acid sequence of the mature polypeptide, by itself; and the coding sequence for the mature polypeptide and additional sequences, such as those encoding the about 1-23 amino acid leader sequence, such as a pre-, or pro- or prepro- protein sequence; the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences.

Also discovered is an enhancer/promoter associated with expression of the genes encoding β -galactosidase. The inventors have characterized the expression profile of TBG2 mRNA and have cloned a lambda genomic cDNA. TBG2 is expressed before the onset of fruit ripening and continues at uniform level throught all the ripening stages. TBG2 has been found to be expressed in all fruit tissues and has also been found to be fruit specific. Experiments have shown TBG2 to be unaffected by ethylene. TBG2 is expressed in the ripening mutants rin, nor and Nr at the normal chronological time after anthesis. The promoter discovered would be useful to express any gene in the sense or antisense orientation, specifically in tomato fruit, in all tomato fruit tissues, starting before and continuing throughout the entire ripening process. The promoter could also be used to express any gene in the ripening mutants rin, nor and Nr without the need to gas the fruit with exogenous ethylene.

10

15

20

Variant and Mutant Polynucleotides

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of the β-galactosidase II protein. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. *Genes II*, Lewin, B., ed., John Wiley & Sons, New York (1985). Non-naturally occurring variants may be produced using art-known mutagenesis techniques.

Such variants include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the β -galactosidase Π protein or portions thereof. Also especially preferred in this regard are conservative substitutions.

Most highly preferred are nucleic acid molecules encoding the mature protein having the amino acid sequence shown in Figure 2 as pZBG2-1-4 or the mature β -galactosidase II amino acid sequence encoded by the deposited cDNA clone.

Further embodiments include an isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 90%

identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to a polynucleotide selected from the group consisting of: (a) a nucleotide sequence encoding the β -galactosidase II polypeptide having the complete amino acid sequence in Figure 2 [SEQ ID NO: 4] (b) a nucleotide sequence encoding the mature β -galactosidase II polypeptide shown in Figure 2 [SEQ ID NO: 4]; (c) a nucleotide sequence complementary to any of the nucleotide sequences in (a) or (b) above.

Vectors and Host Cells

The present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells which are genetically engineered with the recombinant vectors, and the production of β -galactosidase II polypeptides or fragments thereof by recombinant techniques. The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the *E. coli lac*, *trp*, *phoA* and *tac* promoters, the SV40 early and late promoters and promoters of

15

10

5

10

15

retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in *E. coli* and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as *E. coli*, StrepZBG2-1-4yces and *Salmonella typhimurium* cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293 and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc., *supra*; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

10

15

20

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis *et al.*, *Basic Methods In Molecular Biology* (1986).

Example

Tomato (Lycopersicon esculentum Mill., cv. 'Rutgers') plants were grown in a greenhouse using standard cultural practices. The ripening mutants, ripening inhibitor (rin), non-ripening (nor) and never ripe (Nr) (Tigchelaar et al., 1978), were all in the 'Rutgers' background. Flowers were tagged at anthesis and fruit were harvested according to the number of days post-anthesis (dpa) or based on their surface color using ripeness stages as previously described (Mitcham et al., 1989), the complete disclosure of which is hereby fully incorporated herein by reference. For gene expression studies, a variety of leaf, flower, and stem tissues were harvested from greenhouse-grown plants and roots were harvested from seedlings grown in basal tissue culture medium for 4 weeks after seed germination.

RNA Extraction

Fruits were processed immediately after harvest in the greenhouse by chilling on ice, excising the various tissues and freezing them in liquid nitrogen. Tissue samples were ground using a mortar and pestle and stored at -80°C. RNA was extracted using the method described in Verwoerd et al. (1989). Poly(A)RNA was purified from total RNA using oligo(dT) columns

(Pharmacia, Piscataway, NJ). RNA was quantified by measuring A_{260} using a dual beam spectrophotometer.

RT-PCR

5

10

15

20

Degenerate primers were designed based on the highest shared deduced amino acid sequence identity we found between an apple (accession number P48980), asparagus (P45582) and carnation (Q00662) β-galactosidase cDNA clones. The two primers used for the first reaction were BG5'E1 (WSNGGNWSNATHCAYTAYCC) and BG3'E (CCRTAYTCRTCNADNGGNGG). A second reaction was done on the products of the first reaction using BG5'I1 (ATHCARACNTAYGTNTTYTGG) and BG3'E. The degeneracy code for the primer sequences is N=a+t+c+g; H=a+t+c; B=t+c+g; D=a+t+g; V=a+c+g; R=a+g; Y=c+t; M=a+c; K=t+g; S=c+g; and W=a+t. The 5' and 3' primers corresponded to amino acids 72-78 and 321-315 of the apple clone, respectively. Amplification was done using AmpliTaq DNA polymerase (Perkin Elmer, Norwalk, CT) and standard PCR conditions using the cDNA made for the first cDNA library described below as a template (Ausubel et al., 1987). PCR products were separated in an agarose gel and fragments of the expected size (approximately 750 bp) were purified, cloned into pCRscript

cDNA library

(Stratagene, La Jolla, CA), and sequenced.

Two cDNA libraries were constructed. The first comprised poly(A) RNA isolated from breaker, turning and pink fruit pericarp from 'Rutgers' plants.

10

15

20

WO 99/64564 PCT/US99/12697

The cDNA synthesis and library construction was done exactly according to the manufacturers instructions for the ZAP-cDNA Gigapack II Gold Cloning Kit (Stratagene), the complete disclosure of which is fully incorporated herein by reference. First-strand cDNA synthesis was primed using a poly(dT) primer and inserts were directionally cloned into the Uni-Zap XR vector using EcoRI and XhoI restriction sites. The second library comprised poly(A) RNA isolated from all fruit tissues (except seeds) from immature green, mature green, breaker, turning, pink, red-ripe and over-ripe fruit of 'Rutgers' plants. The cDNA synthesis and library construction was done exactly according to the manufacturers instructions for the SuperScript Lambda System for cDNA synthesis and • Cloning (GibcoBRL, Gaithersburg, MD). First-strand cDNA synthesis was primed using a oligo(dT) primer and cDNA inserts were directionally cloned into the • ZipLox cloning vector using SalI and NotI restriction sites. Both libraries were amplified and maintained using the host strains provided by the manufacturer, according to their instructions.

One of the clones (RT-PCR2-1) was used to screen 10⁶ plaques from the tomato fruit cDNA libraries at low stringency (hybridization at 45°C, no formamide and final wash with 0.2X SSC at 42°C). Thirty positive cDNA clones were identified and partially sequenced. Complete sequencing and characterization of the RT-PCR and cDNA clones revealed the possibility of seven unique β -galactosidase genes.

10

DNA and RNA Gel Blot Analysis

Southern analysis was done using the 3' UTR of each full length clone and the RT-PCR clones as probes against restriction enzyme digested genomic DNA. DNA gel blot analysis was done essentially as described in Smith and Fedoroff (1995) except that 3 µg of genomic DNA was used for each digest. The genes corresponding to the clones appeared to be present as single copies (data not shown). The same probes were used to map 6 of the 7 genes using RFLPs of recombinant inbred lines and the loci names and map positions are shown in Table II (James Gioviannone, Texas A&M University, personal communication).

Table II. TBG loci map positions. Genes were maped by Southern analysis using RFLPs of recombinant inbred lines.

 Gene	chromosome	map position
TBG1	12*	overlap of IL 12-2, IL 12-3
TBG2	9	IL 9-3
TBG3	3	IL 3-5
TBG4	12*	overlap of IL 12-2, IL 12-3
TBG5	11	IL 11-3
TBG6	2	overlap of IL 2-4, IL 2-5
TBG7	no RFLP	

^{*}TBG1 and 4 are loosely linked

Total RNA (20 μ g/ lane) was separated in a formaldehyde/Mops agarose gel, transferred to Hybond-N⁺ nylon membrane (Amersham, Arlington Heights, IL), fixed by incubating for 2 h at 80°C, hybridized overnight in a

10

15

20

hybridization incubator (Robbins Scientific, Sunnyvale, CA) using a buffer described by Church and Gilbert (1984) washed to a final stringency of 0.1 X SSC with 0.2% SDS at 65°C, and autoradiographed essentially as described by Ausubel *et al.* (1987). An RNA ladder standard (GibcoBRL) was used to estimate the length of the RNAs. Probes were synthesized using a random priming kit with ³²P-dATP as the label (Boehringer Mannheim, Indianapolis, IN). Northern analysis was done using the 3' UTR of each full length clone and the RT-PCR clones as templates for probe synthesis. As a loading control, RNA blots were stripped and re-probed at a reduced hybridization and washing stringency using a soybean 26S rDNA fragment (Turano et al., 1997). For all hybridizations, ³²P(dATP)-labeled probe was diluted to 1-2 x 10⁶ dpm/mL. The complete disclosures of the above references are fully incorporated herein by reference.

Sequence Analysis

Sequencing was done at the Iowa State University Sequencing Facility (Ames, IA) using a PCR-based dideoxynucleotide terminator protocol and an ABI automated sequencer (Applied Biosystems, Foster City, CA). The sequencing of both cDNA insert strands was done by primer walking. Nucleotide and deduced amino acid sequence comparisons against the databases were done using BLAST searches (Altschul *et al.*, 1990). Sequence data were analyzed and aligned using DNA Strider 1.2 (Marck, 1988) and MacDNAsis (Hitachi, San Bruno, CA) software. The complete disclosures of the above references are fully incorporated herein by reference.

10

15

Northern Blot Analysis

Tissue Specific Expression

Northern blot analysis was done to reveal which, if any, of the β -galactosidase genes had a fruit-specific expression pattern. With the exception of TBG2, transcripts of all clones were detected in non-fruit tissues (Fig. 4). Transcripts of TBG 1, 4, 5 and 6 were detected in all the tissues tested. TBG3 transcript was detected at low levels in root and stem tissues, while TBG7 transcript was detected in flower and stem tissues.

Temporal expression pattern in fruit

The temporal expression pattern of the seven genes in fruit tissue was examined using RNA extracted from all fruit tissues except seeds. Transcripts for all seven genes were detected during some stage of fruit development (Fig. 5). TBG1 and 3 had similar expression patterns and their transcripts were detected throughout the breaker to over-ripe stages. TBG2 had a unique expression pattern and its transcript was detected at a constant level from 30 dpp to the over ripe stage. TBG4 expression pattern was similar to TBG1 and 3, but differed in that the transcript level was significantly higher at the turning stage. TBG5 had a similar expression pattern to TBG4 during the ripening stages of development, however TBG5 transcript was also detected throughout all the earlier stages of fruit development. TBG6 had an interesting expression pattern and its transcript was only detected at high levels in all pre-ripening stages tested. TBG7 also had a unique expression pattern and its transcript was detected at very low levels throughout all the stages tested, and at moderate levels at 10 dpp and the over-ripe stage.

10

15

Spatial expression pattern in fruit

Northern blot analysis was also done to determine transcript accumulation in various fruit tissues. Since there were temporal differences in the expression patterns of the TBG genes both the mature green and turning fruit stages were used for RNA extractions (Fig. 6). Both TBG2 and TBG6 transcripts were detected in all mature green fruit tissues tested. TBG7 transcript was present in all fruit tissues tested except for locules. Both TBG1 and TBG4 transcripts were detected in RNA samples extracted from all turning stage fruit tissues. TBG4 transcript was notably more abundant in the peel. TBG3 and TBG5 expression patterns were unique and their transcripts were detected in all tissues except the outer pericarp and locular respectively.

Expression in normal versus mutant fruit

In order to better understand the potential roles of the TBG products and transcriptional regulatory mechanisms, northern analysis was performed using fruit tissue from the ripening mutants rin, nor and N^r . This analysis was important because it might give clues for preliminary determination of any potential ripening and/or softening role any of the TBGs might possess.

20

The results of mutant fruit Northern analysis suggested that the transcriptional regulation of TBG1, 2, 3, 5 and 7 was unaffected in mutant fruit tissue and that their transcripts were present in a normal chronological (dpp) pattern (Fig. 7). The abundance of TBG4 and 6 transcripts were however different in the mutant fruit. TBG4 transcript was not detected in fruit tissue of N^r and was detected at much lower levels in *rin* and *nor* than wild type fruit

15

tissues. Normally TBG6 transcripts are detectable at high levels throughout the early stages of fruit development but are not detectable after the mature green stage (40-42 dpp). TBG6 transcripts persisted even to 50 dpp in fruit of all three mutants.

5

Transcriptional regulation by ethylene,

The northern analysis done using mutant and wild type fruit suggested that TBG4 expression might be up-regulated by ethylene and that TBG6 expression might be down-regulated by ethylene. In order to evaluate this hypothesis mature green fruit were harvested and subjected to a continuous flow of 10 ppm ethylene mixed in air. Control and ethylene-treated fruit were used for RNA extractions at 1, 2, 12 and 24 hours. The results of this experiment confirmed the findings from the mutant fruit northern analysis. As expected, the presence and abundance of TBG1, 2, 3, 5 and 7 transcripts was essentially unaffected in mature green tissues subjected to exogenous ethylene treatment (Fig. 8). However, TBG4 transcript abundance was increased in mature green tissues in the presence of ethylene. From the data presented it was unclear whether TBG6 transcript abundance was reduced by exogenous ethylene treatment since its transcript level was normally reduced at this stage of fruit development.

20

Enzyme activity

In order to determine the role of the TBG encoded products we initiated experiments to express the cDNA encoded enzymes using heterologous expression systems. Several E. coli expression systems were

10

tested, but the yield of product was very low due to toxicity (See the example below). Therefore we used a yeast expression system which secretes a mature amino-terminal-FLAG fusion protein into the culture medium. The TBG4 cDNA was tested first and resulted in the production of approximately 1 mg TBG4 active protein per 50 mls culture. TBG4 was used first because the cDNA codes for the enzyme β-galactosidase II which was purified from tomato fruit and has been characterized in some detail (Carey et al 1995, Smith et al 1998). Therefore we could compare the activity of the heterologous system-expressed protein to the native enzyme purified from tomato. The TBG4 protein was successfully affinity purified using an anti-FLAG affinity resin (Figure 9).

The affinity-purified TBG4 enzyme was shown to have $\beta(1\rightarrow 4)$ -D-galactosidase activity by virtue of its ability to hydrolyze the synthetic substrate p-nitrophenyl- β -D-galactopyranoside (Smith et al. 1998). The enzyme can cleave galactosyl residues from a variety of cell wall substrates and therefore has exo-galactanase activity (Table III). The remaining full-length cDNA clones are currently being tested for successful expression of active enzyme. Preliminary results have shown that TBG1 codes for an enzyme which also has both β -D-galactosidase and exo-galactanase activity (Table III).

20

Table III. Cell wall degrading activity of TBG4 and TBG1 expressed in yeast. Removal of galactosyl residues from chelator soluble (CSP) and alkali soluble (ASP) pectin and hemicellulosic (HCF) cell wall fractions purified from tomato fruit.

			μg gala relea	
	enzyme	substrate	boiled	live
••	aTBG4	CSP	0	5
		ASP	0	14.5
	-	HCF	0	4
	^b TBG1	ASP	0	1.2

² mg substrate; 4 hours at 37°C

pZBG2-1-4 Codes for a β-Galactosidase

The TBG4 ORF was cloned in-frame into the repressible/inducible bacterial expression vector pFLAG-CTC. The host strain XL1-Blue MR is a mutant strain containing no endogenous β -galactosidase activity nor α -complementation. Induction of gene transcription by (IPTG) caused the immediate cessation of *E. coli* growth at 30 to 37°C. However, induction at 20°C did allow for some limited *E. coli* growth. When clones containing the pZBG2-1-4 4 ORF were grown at 20°C and induced with IPTG, the cells slowly turned blue after 36 hrs growth in medium containing the β -galactosidase substrate X-GAL, (Figure 10). If not induced with IPTG, no blue color was seen, even after extended growth in media containing X-GAL. As an additional negative control, clones consisting of XL1-Blue MR transformed with the FLAG vector alone never showed any β -galactosidase activity with or without IPTG-induction, even after 7-days growth (Fig 10).

15

a.005 units enzyme/rx

b.0005 units enzyme/rx

10

15

20

WO 99/64564 PCT/US99/12697

As a positive control for maximal β -galactosidase (derived from E. coli β -galactosidase) activity the cloning vector pGEM was transformed into the host strain DH5 α and the results are also shown in Figure 10. Figure 10 shows the detection of β -galactosidase activity from pZBG2-1-4 expression in E. coli. Cells were harvested and extracts were prepared every 12 hours and the A_{615} measured. Cultures were grown with the addition of the chromogenic substrate X-GAL (open symbols) or X-GAL and the transcriptional inducer IPTG (closed symbols) in the medium. The vector used as a positive control for E. coli β -galactosidase activity was pGEM (\blacksquare) and the vector used as a negative control and for expression was pFLAG-CTC either without (\bigcirc , \bullet) or containing the pZBG2-1-4 ORF (\triangle , \blacktriangle).

Effects on Plant Tissue Texture

To further demonstrate the function of TBG4 encoded β -galactosidase II the following experiments were carried out.

Fruit from tomato plants containing antisense constructs to suppress TBG4 mRNA were up to 40% firmer [compare means of parental line #1 with antisense line #2 in Figures 11A – 11E(1-4)] than fruit from the parental line. Among the transformants the line with the firmest fruit also had the lowest overall levels of TBG4 mRNA (Figure 12A,B). This correlation suggests that a reduction in TBG4 mRNA is associated with increased fruit firmness. Firmer fruit might result in (1) less shipping damage (a) less loss due to damage and (b) ability to harvest at later stage resulting in better flavor at market (2) longer

10

15

shelf life for both market and consumer. (3) better quality fruit for fresh slice market; fruit cut better at the pink/red stage when firmer.

Methods

To determine the function of TBG4 encoded β-galactosidase II, antisense constructs were made using the constitutively expressed 35S CaMV promoter to express TBG4 antisense RNA (Figure 13). Constructs were moved into tomato using Agrobacterium-mediated transformation. Four tomato cultivars have been transformed in order to evaluate the effect of TBG4 suppression on processing tomato (cv 'UC82b') fruit paste quality and three fresh pick cultivars. Of the fresh pick cultivars one is a soft fruit large cherry tomato (cv 'Ailsa Craig'), the second is a soft fruit old breeding line (cv 'Rutgers') and the third is a recently developed somewhat firm cultivar 'New Rutgers'. Among the lines where TBG4 mRNA is suppressed we expect to observe an increase in firmness and paste viscosity.

Texture

Although this project is nearly finished the complete biochemical and molecular analysis is not finished. The preliminary results on the analysis of the 'New Rutgers' cultivar is presented in Figures 11A – E(1-4) and 12A,B. In this example a fresh pick cultivar called 'New Rutgers' was used. Plants of the purchased seed were grown and allowed to self and the resulting seed was used as the parental control (line 1). Seven independent transformed plants (lines 2-8) containing TBG4 antisense constructs were grown and allowed to self. Transformation (T-DNA insertion) was confirmed by southern analysis

10

15

(data not shown). From each transformed line, five plants were grown along with 10 parental line plants. Fruit were tagged at the breaker stage (1st onset of color change) and were harvested at breaker plus 7 days. Data were taken using 15-20 fruit from each line. Each type of texture measurement was done twice for each fruit and fruit were subjected to 4 types of texture measurements using a Stable Micro System's TA-XT2i texture analyzer. The 4 measurements were; 1, 2-inch flat plate compression to 3 mm (Figure 1A), 2, 4 mm spherical indenter compression to 3 mm (Figure 11B), 3, 4 mm cylindrical indenter compression to 3 mm (Figure 11C) and 4, 4 mm cylindrical indenter puncture to 10 mm (Figure 11D). The summary of this data is shown in Figure 11E(1-4). In Figures 11A -E (1-4) line 1 was the parental line and lines 2-8 each represent an independent transformant containing one T-DNA copy of the TBG4 antisense construct. Statistical analysis (Duncans and Scheffé) of the data revealed that fruit from the transformed lines 3, 7 and 8 were not significantly different from the parental line but that transformed lines 2, 4, 5 and 6 were significantly firmer than the parental fruit. Most noteworthy is that fruit from transformed line 2 had fruit with a mean firmness that was 40% firmer than that of the parental line (Figures 11A-D).

Northern Blot Analysis

We are currently investigating any changes in the biochemical composition of fruit where TBG4 mRNA levels have been suppressed. These experiments are designed to show a link between increased fruit firmness and TBG4 mRNA suppression, TBG4 encoded enzyme activity suppression,

10

15

20

possible cell wall modification (e.g. increased galactosyl residue content) and a decrease in free galactose levels during fruit ripening.

These experiments are not complete, however some preliminary Northern blot experiments were done and the data is shown in Figure 12A,B. There is no parental or azygous control fruit RNA shown in Figure 12A,B because these plants were the last to grow, and RNA extractions are just being done now. As a comparison of normal fruit TBG4 mRNA levels refer to Figure 5 above. The data from Figure 5 showed that TBG4 mRNA levels are low at the mature green stage, peak at the turning stage and are reduced at the red stage. All the lines except for 2 and 3 expressed antisense TBG4 mRNA (Figure 12A,B). The antisense transcripts appear as two bands, smaller in length than the endogenous mRNA. The two bands probably resulted from 1, the expected transcriptional stop signal provided by the NOS-terminator and 2, a cryptic transcriptional stop signal in the antisense TBG4 cDNA. The most notable result was in line 2 where no TBG4 mRNA was detected at the turning stage. Line 2 also had the firmest red fruit (see Figure 11A -D). The absence of detectable TBG4 mRNA probably was the result of cosupression of both the endogenous and antisense mRNAs. When compared to earlier blots (e.g. Figure 4), all of the lines appeared to have an overall reduced level of TBG4 mRNA, but it is impossible to assign numbers to this statement without the parental and azygous control RNA on the same Northern blot.

The specification discloses that β -galactosidase II polypeptide is involved in the degradation of cell wall pectin during fruit ripening. In the present invention, the role of β -galactosidases in tomato during fruit ripening and softening and the description of the cloning of a β -galactosidase cDNA clone

5

10

15

that codes for a $\beta(1\rightarrow 4)$ galactan degrading enzyme, which is expressed in ripening tomato fruit tissues, has been shown.

38

The present work indicates that pZBG2-1-4 is a cDNA derived from the transcript of the TBG4 gene which codes for β -galactosidase II for the following reasons:

First, the deduced amino acid sequence of the highly conserved amino-terminal portion of the expected mature pZBG2-1-4 translation product matches almost exactly (28 of 30 amino acids) with the amino-terminal sequence of β -galactosidase II as purified by Carey *et al.* (1995) and designated TOMAA. Importantly, the two amino acids (KY) in the β -galactosidase II sequence (TOMAA), that do not match the pZBG2-1-4 deduced amino acid sequence of the present invention are believed to be incorrect since all plant β -galactosidase sequences in the database and four additional β -galactosidase-related cDNAs that were identified from tomato all match or have conserved substitutions with the deduced amino acid sequence of pZBG2-1-4 at these same two amino acid (ST) positions (Figure 3).

Second, the transcript detected by pZBG2-1-4 is present in normal ripening fruit at the same time that β -galactosidase II activity was detected (Figure 5; Carey *et al.*, 1995). Moreover, little or no transcript was detected in fruit at 45 and 50 dpa from the mutants *nor*, *rin* and *Nr* (Figure 7). This observation also coincides with the data presented by Carey *et al.* (1995) that β -galactosidase II activity remained at levels equal to mature green fruit and did not rise in fruit 45-65 dpa from *nor* or *rin* plants. Interestingly, Carrington and Pressey (1996) have reported that β -galactosidase II activity was only

10

detected in 'Rutgers' fruit after the turning stage of ripeness. The Northern data in the present invention indicates that maximum β -galactosidase II' activity occurs only after the turning stage, assuming mRNA levels predict extractable enzyme activity (Figure 5).

Third, the apparent molecular weight of 77.9 kD and pI of 8.9 for the mature protein predicted from the pZBG2-1-4 sequence is similar to that determined for β-galactosidase II., Pressey (1983), estimated a molecular weight of 62 kD by gel-filtration column chromatography and a pI of 7.8 by isoelectric focusing, while Carey *et al.* (1995) estimated a molecular weight of 75 kD by SDS-PAGE and a pI of 9.8 by isoelectric focusing.

Fourth, enzyme produced from pZBG2-1-4 ORF using a heterologous yeast expression system has both β -galactosidase activity and exogalactinase activity.

10

15

20

LITERATURE CITED

- Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410
- Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K, eds, (1987) Current Protocols in Molecular Biology. John Wiley and Sons, New York
- Carey AT, Holt K, Picard S, Wilde R, Tucker GA, Bird CR, Schuch W, Seymour GB (1995) Tomato exo-(1→4)- β-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related clone. Plant Physiol 108:1099-1107
- Carrington CM, Pressey R (1996) β-galactosidase II activity in relation to changes in cell wall galactosyl composition during tomato ripening. J

 Amer Soc Hort Sci 121:132-136
- Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991-1995
- DeVeau EJ, Gross KC, Huber DJ, Watada AE (1993) Degradation and solubilization of pectin by β-galactosidases purified from avocado mesocarp. Physiol Plant 87:279-285
- **Fischer RL**, **Bennett AB** (1991) Role of cell wall hydrolases in fruit ripening.

 Annu Rev Plant Physiol Plant Mol Bio **42:**675-703
- Giovannoni JJ, DellaPenna D, Bennett AB, Fischer RL (1989) Expression of a chimeric polygalacturonase gene in transgenic *rin* (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening.

 Plant Cell 1:53-63

15 008 91

10

15

- Golden KD, John MA, Kean EA (1993) β-Galactosidase from *Coffea* arabica and its role in fruit ripening. Phytochemistry 34:355-360
- Gross KC (1984) Fractionation and partial characterization of cell walls from normal and non-ripening mutant tomato fruit. Physiol Plant 62:25-32
- Gross KC, Sams CE (1984) Changes in cell wall neutral sugar composition during fruit ripening: A species survey. Phytochemistry 23:2457-2461
- Gross KC, Wallner SJ (1979) Degradation of cell wall polysaccharides during tomato fruit ripening. Plant Physiol 63:117-121
- Hall LN, Tucker GA, Smith CJS, Watson CF, Seymour GB, Bundick Y,
 Boniwell JM, Fletcher JD, Ray JA, Schuch W, Bird CR, Grierson D.
 (1993) Antisense inhibition of pectin esterase gene expression in
 transgenic tomatoes. Plant J 3:121-129
- **Huber DJ** (1983) The role of cell wall hydrolases in fruit softening. Hort Rev **5**:169-219
- Kang IK, Suh SG, Gross KC, Byun JK (1994) *N*-terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiol **105**: 975-979
- Kim J, Gross KC, Solomos T (1991) Galactose metabolism and ethylene production during development and ripening of tomato fruit. Postharv Biol Technol 1:67-80
- Marck C (1988) DNA Strider: a "C" program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers.

 Nucleic Acids Res 16:1829-1836

10

15

Mit	cham EJ, Gross KC, Ng TJ (1989) Tomato fruit cell wall synthesis
	during development and senescence. In vivo radiolabeling of cell wal
	fractions using [14C]sucrose. Plant Physiol 89 :477-481

- Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897-911
- Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10:1-6
- Pressey R (1983) β -Galactosidases in ripening tomatoes. Plant Physiol 71:132-135
- Ross GS, Redgwell RJ, MacRae EA (1993) Kiwifruit β-galactosidase: isolation and activity against specific fruit cell-wall polysaccharides. Planta 189:499-506
- Ross GS, Wegrzyn T, MacRae EA, Redgwell RJ, (1994) Apple β-galactosidase. Activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiol 106:521-528
- Seymour GB, Gross KC (1996) Cell wall disassembly and fruit softening.

 Postharvest News Info 7:45N-52N
- Smith CJS, Watson CFS, Ray J, Bird CR, Morris PC, Schuch W,

 Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene
 expression in transgenic tomatoes. Nature 334:724-726
- Smith DL, Fedoroff NV (1995) LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7: 735-745

10

15

Smith DL, Starrett DA and Gross KC (1998) A gene coding for tomato fruit β-galatosidase II is expressed during fruit ripening. Plant Physiol. 117: 417-423

Tieman DM, Harriman RW, Ramamohan G, Handa AK (1992) An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4:667-679

Tigchelaar EC, McGlasson WB, Buescher RW (1978) Genetic regulation of tomato fruit ripening. HortScience **13:**508-513

Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H) dependent glutamate dehydrogenase genes in Arabidopsis thaliana. Plant Physiol 113: 1329-1341

Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nuc Acids Res 17: 2362

Wegrzyn TF, MacRae EA (1992) Pectinesterase, polygalacturonase, and β-galactosidase during softening of ethylene-treated kiwifruit. HortScience 27:900-902

What we claim is:

1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

5

(a) a nucleotide sequence encoding the β-galactosidase II polypeptide having the complete amino acid sequence selected from the group consisting of SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO: 15 and SEQ ID NO: 16 and designated TBG1, TBG2, TBG3, TBG4, TBG5, TBG6 and TBG7, respectively as shown in Figure 2 or as encoded by the cDNA clone selected from the group consisting of cDNA clones contained in Gen Bank Accession No. AF023847, AF154420, AF154421, AF020390, AF154423, AF154424 and AF154422;

10

(b) a nucleotide sequence encoding the mature β-galactosidase II polypeptide having the amino acid sequence at about positions 24-724 selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16 and designated TBG1, TBG2, TBG3, TBG4, TBG5, TBG6 and TBG7, respectively as shown in Figure 2 or as encoded by the cDNA clone selected from the group consisting of cDNA clones contained

20

15

(c) a nucleotide sequence complementary to any of the nucleotide sequences in (a) or (b), above.

AF154423, AF154424 and AF154422; and

in Gen Bank Accession No. AF023847, AF154420, AF154421, AF020390,

25

2. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6 and SEQ ID NO:7 as shown in Figure 2.

3. The nucleic acid molecule of claim 1 wherein said polynucleotide has the nucleotide sequence in Figure 2 (SEQ ID NO:4) encoding the β -galactosidase II polypeptide having the amino acid sequence designated TBG4 in Figure 2.

45

5

4. The nucleic acid molecule of claim 1 wherein said polynucleotide has the nucleotide sequence in Figure 2 (SEQ ID NO:4) encoding the mature polypeptide having the amino acid sequence from about 24 to about 724 in the amino acid sequence designated TBG4 in Figure 2.

10

5. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF023847.

15

6. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF154420.

20

7. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF154421.

25

8. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF020390.

30

9. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF154423.

10. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF154424.

5

11. The nucleic acid molecule of claim 1 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in Gen Bank Accession No. AF154422.

10

12. An isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence identical to a nucleotide sequence in (a), (b), or (c) of claim 1 wherein said polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.

15

13. An isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a β -galactosidase II polypeptide having an amino acid sequence in (a), (b), or (c) of claim 1.

20

14. A method for making a recombinant vector comprising inserting an isolated nucleic acid molecule of claim 1 into a vector.

25

- 15. A recombinant vector produced by the method of claim 14.
- 16. A method of making a recombinant host cell comprising introducing the recombinant vector of claim 15 into a host cell.

30

17. A recombinant host cell produced by the method of claim 16.

10

15

- 18. A recombinant method for producing β -galactosidase II polypeptide, comprising culturing the recombinant host cell of claim 17 under conditions such that said polypeptide is expressed and recovering said polypeptide.
- 19. An isolated β -galactosidase II polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
- a) amino acid sequence at about positions 24-724 selected from the group consisting of sequences SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16 and designated TBG1, TBG2, TBG3, TBG4, TBG5, TBG6 and TBG7, respectively as shown in Figure 2; and
- b) amino acid sequence as encoded by the cDNA clone selected from the group consisting of cDNA clones contained in Gen Bank Accession No. AF023847, AF154420, AF154421, AF020390, AF154423, AF154424 and AF154422.
- 20. An isolated polypeptide comprising an epitope-bearing portion of the β -galactosidase II protein.
- 21. An isolated antibody that binds specifically to a β -galactosidase II polypeptide of claim 20.

10

15

20

25

22. An isolated nucleic acid molecule nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding the β-galactosidase II polypeptide having the complete amino acid sequence selected from the group consisting of SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO: 15 and SEQ ID NO: 16 and designated TBG1, TBG2, TBG3, TBG4, TBG5, TBG6 and TBG7, respectively as shown in Figure 3 or as encoded by the cDNA clone selected from the group consisting of cDNA clones contained in Gen Bank Accession No. AF023847, AF154420, AF154421, AF020390, AF154423, AF154424 and AF154422;
- (b) a nucleotide sequence encoding the mature β-galactosidase II polypeptide having the amino acid sequence at about positions 24-724 selected from the group consisting of sequences SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16 and designated TBG1, TBG2, TBG3, TBG4, TBG5, TBG6 and TBG7, respectively as shown in Figure 3 or as encoded by the cDNA clone selected from the group consisting of cDNA clones contained in Gen Bank Accession No. AF023847, AF154420, AF154421, AF020390, AF154423, AF154424 and AF154422; and
- (c) a nucleotide sequence complementary to any of the nucleotide sequences in (a) or (b), above.
- 23. The nucleic acid molecule of claim 22 wherein said polynucleotide has a complete nucleotide sequence in Figure 2 selected from the group consisting of SEQ ID NOs: 1-3 and 5-7.

10

15

20

25

- 24. The nucleic acid molecule of claim 22 wherein said polynucleotide has a nucleotide sequence in Figure 2 selected from the group consisting of SEQ ID NOs: 1-3 and 5-7 encoding the β -galactosidase polypeptide having the complete amino acid sequence designated TBG1-3 and 5-7, respectively.
- 25. The nucleic acid molecule of claim 22 wherein said polynucleotide has the nucleotide sequence in Figure 2 selected from the group consisting of SEQ ID NOs: 1-3 and 5-7 encoding the mature polypeptide having the amino acid sequence designated TBG1-3 and 5-7, respectively.
- 26. The nucleic acid molecule of claim 22 wherein said polynucleotide has the complete nucleotide sequence of the cDNA clone contained in an Gen Bank Accession No. selected from the group consisting of ATCC Deposit No. selected from the group consisting of AF023847, AF154420, AF154421, AF020390, AF154423, AF154424 and AF154422.
- 27. A method of modifying cell wall metabolism in a plant which comprises transforming said plant with a DNA construct adapted to modify the activity of a β -galactosidase, growing said plant or its descendent and selecting a plant having modified cell wall characteristics, said construct comprising a transcriptional initiation region operative in plants operably linked to a DNA sequence encoding at least one β -galactosidase.
- 28. A method as claimed in claim 27, wherein said DNA sequence is selected from the group consisting of the sequences of nucleic acid molecules claimed in claim 1 or claim 22.
- 29. A plant cell transformed with a nucleic acid molecule as claimed in claim 1 or claim 22.
 - 30. A plant derived from a plant cell as claimed in claim 29.

A plant seed derived from a plant as claimed in claim 30.

31.

32. A method for modifying β -galactosidase gene expression in a plant comprising transforming said plant with a nucleic acid molecule as claimed in claim 1 or claim 22, growing the transformed plant and selecting a plant having modified β -galactosidase gene expression when compared with an untransformed plant.

WO 99/64564

1 / 31

Figure 1. β -Galactosidase phylogenetic tree based on shared amino acid sequence identity. A. Tomato β -galactosidase (TBG) cDNAs. B. Plant β -galactosidases. Higgins-Sharp algorithm (UPGMA method)

2 / 31

PCT/US99/12697

Figure 2 Sheet 1 of 12 Gene/clone name: TBG1/pzBG2-1-10; accession number AF023847; Sequence ID number 1

									_								-							
																							ACTA	_
																							CAAC	
																							AAAA	
215	GAA	TAAT	AAGC	TGTG	GGGG	TAGG	GAGG	AAGT	TAGT	TCAT	TAGI	TCAT	TGCC	TIGI	AAAG	GCAC	AATC	TTGA	TTCT	TGAT	TTGT	TGAC	TAAA	30
306	ATTC	ccm	dalah	ancoc:	NING:	GC3	አጥሮ	44/3	cmc	2972	Table 1	מיזים:	गगाः	- गरः	T TPL	TTCC:	Certain	- OK-AN	W.ZT	420	יניסני ע	GCT	TCT	374
																							Ser	2:
•	126 C	Gry	FAIC	щ	Mec	n.u	*****	20-12		1100			200	-510	200		701	-	Cyc	Gry				2.
375	GTT	TCA	TAT	GAC	CAT	AAA	GCT	ATC	ATT	GTA	AAT	GGA	CAA	AGA	AAA	ATT	CTC	ATT	TCT	GGA	TCC	ATT	CAC	443
								Ile																40
			_	_		-								_	-					-				
444	TAC	CCT	AGA	AGC	ACC	CCT	GAG	ATG	TGG	CCA	GAT	CTT	ATT	CAG	AAG	GCA	AAA	GAA	GGG	GGA	GTT	GAT	GTT	512
47	Tyr	Pro	Arg	Ser	Thr	Pro	Glu	Met	Trp	Pro	Asp	Leu	Ile	Gln	Lys	Ala	Lys	Glu	Gly	Gĵy	Val	Asp	Val	69
								AAT																581
70	Ile	Gln	Thr	Tyr	Val	Phe	Trp	Asn	GIA	His	Glu	Pro	Glu	Giu	Gly	Lys	Tyr	Tyr	Phe	Glu	Glu	Arg	Tyr	92
E02	C3m	mm.	~~~		am-c	3.000		GTG	~~~	CNN	CNA	~~	~~	-mm	mam	~m~	a.m	~~	300	2000	~~	~~~	mam	650
								Val																115
95	nap	Dea	Val	цуs	FIIC	116	муэ	441	var	G111	Gra	714	Gry	200	131	Vai	IIIB	Deu	my	116	Gry	110	TYT	-1-
651	GCA	TGT	GCT	GAA	TGG	AAT	Jalal	GGG	GGT	TTT	CCT	GTT	TGG	CIG	AAG	TAT	GTT	CCA	GGT	ATT	AGT	TTC	AGA	719
								Gly																138
								_	-				-		-	-			-				_	
720	ACA	AAC	AAT	GAG	CCA	TTC	AAG	GCT	GCA	ATG	CAA	AAG	TTC	ACT	ACT	AAG	ATT	GTT	GAT	ATG	ATG	AAA	GCA	788
139	Thr	Asn	Asn	Glu	Pro	Phe	Lys	Ala	Ala	Met	Gln	Lys	Phe	Thr	Thr	Lys	Ile	Val	qaA	Met	Met	Lys	Ala	161
								CCT																857
162	Glu	Lys	Leu	Tyr	Glu	Thr	Gln	Gly	Gly	Pro	Ile	Ile	Leu	Ser	Gln	Ile	Glu	Asn	Glu	Tyr	Gly	Pro	Met	184
050	~~~		~				~~~						~~~			-i-								02.0
								GGT																926 207
100	GIU	up	GIU	ren	GTĀ	GIU	PIO	Gly	TAR	vai	TAT	Ser	GIU	H	WIR	Ma	ьyь	nec	Mia	VAL	wsħ	Dea	GLY	201
927	ACT	CCT	GTC	CCA	TGG	ATC	ATG	TGC	AAG	CAA	GAT	GAT	GTC	CCT	GAT	CCT	ATT	ATT	AAT	ACT	TGC	TAA	GGT	995
								Сув																230
		-			-			-	_		_													
					_			CCA																1064
231	Phe	Tyr	Суѕ	Asp	Tyr	Phe	Thr	Pro	Asn	Lys	Ala	Asn	Lys	Pro	Lys	Met	\mathbf{Trp}	Thr	Glu	Ala	Trp	Thr	Ala	253
								CCA																1133 276
Z34	rrp	Pue	unr	GIU	Pne	GIÀ	GIY	Pro	vaı	PIO	TYL	Arg	PIO	Ala	GIU	ASP	Mec	ALA	Pne	ATG	ANT	MIG	My	270
134	بزملمك	מיזיא	CAN	300	CCA	ccc	WY	TTC	יציףת	ልልጥ	ጥልሮ	ጥልጥ	DTC:	ጥልጥ	CAT	420	CCA	474	244	ىژىلىك	CCA	200	ىلىي	1202
								Phe																299
					,	,					-2-	-3-		-,-			,					5		
203	TCT	GGT	GGC	CCA	TIT	ATT	GCT	ACT	agt	TAT	GAT	TAT	GAT	GCA	ccc	CTA	GAT	GAA	Lili	GGG	TCA	TTA	CGG	1271
300	Ser	Gly	Gly	Pro	Phe	Ile	Ala	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Pro	Leu	Asp	Glu	Phe	Gly	Ser	Leu	Arg	322
								AAA																1340
323	GJU	Pro	Lys	Trp	Gly	His	Leu	Lys	Asp	Leu	His	Arg	Ala	Ile	Lys	Leu	Cys	Glu	Pro	Ala	Leu	Val	Ser	345
																								3.400
								TTA																1409
346	Vai	Asp	Pro	Thr	Val	Thr	Ser	Leu	GIĀ	ASN	TYT	GIN	GIU	ATG	Arg	vaı	Pne	цуs	Ser	GIU	ser	GIY	AJA	368
410	m~~				~~~	cca	2.20	TAC	N N C	CAG	CAC	en-en-	delah	ىتىت	**	Catc	CCA	Intels	ccc	220	ATY2	СУП	ጥልጥ	1478
								Tyz																391
	~, ~	- 244	-144		-~u			-,-							-,, -				,		-30-0		-3-	
479	AAC	TTG	CCA	ccc	TGG	TCT	ATC	AGC	ATT	CTT	ccc	GAC	TGC	AAG	AAC	ACT	GTC	TAT	TAA	ACT	GCA	AGG	GIT	1547
								Ser																414
					-																			
								AAG																1616
415	Gly	Ala	Gln	ser	Ala	Gln	Met	Lys	Met	Thr	Pro	Val	Ser	Arg	GJA	Phe	Ser	Trp	Glu	Ser	Phe	Asn	Glu	437

3 / 31

Figure 2
Sheet 2 of 12
Gene/clone name: TBG1/pzBG2 10; accession number AF023847; sequence ID number 1 cont.

Gene/	clon	e n	ame :	T	BG1/	pzb	G2 (710	; a.c	COS	#10	2 R	nmp4	r A	F023	3847	j. 8	equi		ID	nu	mbe:	. 1	cont.	
1617 438	GAC Asp																								
	-													_									_		
1686 461	GAT Asp																								
***	-wp	•41	361	,nap	171	Deu	11,0	2y1	Mec	1111	res 5	110	910	116	wah	FIO	4111	61 4	Gry	riic	 eu	no.	. Der	403	
1755																									
404	Gly	ASII	up	Pro	тр	Den	1111	vaı	Pne	ser	AJA	GIÀ	HIS	AIA	Leu	HIS	VAI	rne	var	ASII	GIY	GII	Leu	506	
1824																								1892	
507	Ala	GIY	ınr	vaı	ıyr	GIÀ	ser	Leu	GIA	ASD.	Pro	Lys	Leu	Thr	Pne	ser	Asn	GIY	Tie	Asn	Leu	Arg	Ala	529	
1893																								1961	
530	Gly	Val	Asn	Lys	Ile	Ser	Leu	Leu	Ser	Ile	Ala	Val	Gly	Leu	Pro	Asn	Val	Gly	Pro	His	Phe	Glu	Thr	552	
1962																								2030	
553	TTP	Asn	Ala	Gly	Val	Leu	Gly	Pro	Val	Ser	Leu	Asn	Gly	Leu	Asn	Glu	Gly	Thr	Arg	Asp	Leu	Thr	Trp	575	
2031	CAG	AAA	TGG	TTC	TAC	aag	GTT	GGT	CTA	AAA	GGA	GAA	GCC	CIG	AGT	CTT	CAT	TCA	CTC	agt	GGT	AGC	CCA	2099	
576	Gln	Lys	ŢŢŖ	Phe	lyr	Lys	Val	GJÀ	Leu	Lys	Gly	Glu	Ala	Leu	Ser	Leu	His	Ser	Leu	Ser	Gly	Ser	Pro	598	
2100	TCC	GTG	GAG	TGG	GTG	GAA	GGC	TCT	TTA	GTG	GCT	CAG	AAG	CAG	CCA	crc	AGT	TGG	TAT	AAG	ACT	ACA	TTC	2168	
599	Ser	Val	Glu	Trp	Val	Glu	Gly	Ser	Leu	Val	Ala	Gln	Lys	Gln	Pro	Leu	Ser	Trp	Tyr	Lys	Thr	Thr	Phe	621	
2169	TAA	GCT	CCA	GAT	GGA	AAT	GAA	сст	TTG	GCT	TTA	GAT	ATG	AAT	ACC	ATG	GGC	ААА	GGT	CAA	GTA	TGG	ATA	2237	
622	Asn	Ala	Pro	Asp	GJA	naA	Glu	Pro	Leu	Ala	Leu	Asp	Met	Asn	Thr	Met	Gly	Lys	Gly	Gln	Val	Trp	Ile	644	
2238	TAA	GGT	CAG	AGC	CTC	GGA	CGC	CAC	TGG	CCT	GCA	TAT	AAA	TCA	TCT	GGA	AGT	TGT	AGT	GIC	TGT	AAC	TAT	2306	
645	Asn	Gly	Gln	Ser	Leu	Gly	Arg	His	ŢŢÞ	Pro	Ala	Tyr	Lys	Ser	Ser	Gly	Ser	Cys	Ser	Val	Суз	Asn	Tyr	667	
2307	ACT	GGC	TGG	TTT	GAT	GAG	AAA	AAG	TGC	CTA	ACT	AAC	TOT	GGT	GAG	GGC	TCA	CAA	AGA	TGG	TAC	CAC	GTA	2375	
668	Thr	Gly	Trp	Phe	Asp	Glu	Lys	Lys	Cys	Leu	Thr	Asn	Cys	Gly	Glu	Gly	Ser	Gln	Arg	Trp	Tyr	Kis	Val	690	
2376	ccc	CGG	TCT	TGG	CTG	TAT	CCT	ACT	GGA .	AAT	TTG	TTA	GTT	GTA	TTC	GAG	GAA	TGG	GGA	GGA	GAT	CCI	TAT	2444	
691	Pro	Arg	Ser	Trp	Leu	Tyr	Pro	Thr	Gly	Asn	Leu	Leu	Val	Val	Phe	Glu	Glu	Trp	Gly	Gly	Asp	Pro	Tyr	713	
2445	GGA	ATC	ACT	ATT	GTC	AAA	AGA	GAA	ATA	GGG .	agt	GIT	TGT	GCT	GAT	ATA	TAT	gag	TGG	CAA	CCA	CAG	TTA	2513	
	Gly																							736	
2514	TTG	TAA	TGG	CAG	AGG	CTA	GTA	TCT	GGT .	AAG	Lalal	GAC	AGA	CCT	CTC	AGA	CCT	AAA	GCC :	CAT	CTT	aag	TOT	2582	
	Leu																							759	
2583	GCA	CCT	GGT	CAG	AAG	ATT	TCT	TCA .	ATC .	AAA	TTT	GCA	AGC	TTT .	GGA .	ACA	CCA	GAG	GGA :	GTT	TGT	GGG	AAC	2651	
	Ala																							782	
2652	TTC	CAG	CAG	GGA	AGC	TGC	CAT	ርርጥ	CCG :	ccc ·	מיית	тат	GAT	GCT ·	TTC .	AAA	AAG	ልልጥ	TTT I	GTT 4	GGG	AAA	GAG	2720	
	Phe																							805	
2721	مامكات	TYCO .	መጉአ	ርጥል	CAG	CT2	מית	CC3	CNC	አልጥ የ	. باعلمك	425	CCT	יי ייי מבי	CCA (بلتكان	CC A	220	اعملت	ር ሞኔ	AAG	AAA	رکلات)	2789	
	Ser																							828	
2790	π⁄~ λ	CTVC .	ON N	~~	2000	m>n	n Can	mon.	ሙግእመ	m~m~	a.cma	m> C>	x ~~~	***	አ አጥአ	~~~	**~	» cmo	እ <i>የ</i> ባእመ	***	V-CALAL	*TYTY~7	አልርር	2873	
	Ser								1\5A1	1016	MOTM	IMCA	AGIG	АААА	WWIW	CIIG	MACC	ACTU	A1A1	MANC	WILL	TIC	MMCG	836	
2074	****	a (****) =	~.~	m ~~-		0003	O						~~~	ma	~~~	m. 0.	~~~				~~~	~ h ~~	***	29 65	
2874 2966																									
3058	GTGC	AAAT	TTTG	TTTC	TGTI	'AGGG	TGAG	AGAG	ACTIV	GAAA	AGCA	TT	GCTT	TCAT!	GATG	TTCT	ACAT	TATA	CAAT					3149	
3150	AAGC	ATAA	ATTC	ATTG	CTT	GCAC	ATTG	AAAA	ATGC.	MININ.	TACT	ATGT	TGCA	GTAC	AAAA	AAAA	AAAA	AAAA	AAA					3224	

4 / 31

Figure 2 Sheet 3 of 12 Gene/clone name: TBG2/pZBG2-1-12; accession number AF154420; Sequence ID number 2

1																							GG	2
3 1	AGC Ser	AGA Arg	AGA Arg	AAA Lys	ACA Thr	CTG Leu	AAT Asn	TTT Phe	CCG Pro	TTA Leu	ATA Ile	CTA Leu	ACG Thr	GTG Val	TTA Leu	ACT Thr	ATC	CAC	TIT Phe	GTG Val	ATC Ile	GTC Val	GCC Ala	71 23
																							CGT	140 46
							ATT																AGG Arg	209 69
							GAT Asp																	278 92
279 93	CAG Gln	TAC Tyr	AAT Asn	TTT Phe	GAA Glu	GGA Gly	AGA Arg	TAT Tyr	gat Asp	ATT Ile	GTC Val	aag Lys	TTC Phe	GCA Ala	aag Lys	CTA Leu	GTC Val	GGA Gly	TCT Ser	CAT His	GGA Gly	CTG Leu	TTC Phe	347 115
							CCT Pro																	41 6 138
139	Asp	Ile	Pro	Gly	Ile	Glu	TTT	Arg	Thr	Asp	Asn	Ala	Pro	Phe	Lys	Glu	Glu	Met	Glu	Arg	Тут	Val	Lys	4 85 161
162	Lys	lle	Val	Asp	Leu	Met	ATA	Ser	Glu	Ser	Leu	Phe	Ser	Trp	Gln	Gly	Gly	Pro	Ile	Ile	Leu	Leu	Gln	554 184 623
185	Ile	Glu	Asn	Glu	Tyr	Gly	AAT Asn CTT	Val	Glu	Ser	Ser	Phe	Gly	Pro	Lys	Gly	Lys	Leu	Tyr	Met	Lys	Trp	Ala	207 692
208	Ala	Glu	Met	Ala	Val	Gly	Leu	Gly	Ala	Gly	Val	Pro	TTP	Val	Met	Cys	Arg	Gln	Thr	Asp	Ala	Pro	Glu	230 761
762	ATT	TGG	ACT	GAG	TAA	TGG	Asn AAT	GGA	TGG	TTT	GCA	GAT	TGG	GGT	GAA	AGA	CIT	CCA	TAT	A GA	CCT	TCC	GAG	253 830
831	GAT	ATT	GCA	TTT	GCA	TTA	Asn GCT	CCT	TTC	TTT	CAA	CGT	GGG	GGC	AGC	TTA	CAG	AAC	TAT	TAT	ATG	TAT	TTT	276 899
900	GGT	GGG	ACA	AAT	TTT	GGC	Ala	ACT	GCT ·	GGT	G GC	CCA.	ACT	CAA	ATC	ACT	AGC	TAT	GAT	TAT	GAT	GCT	CCA	299 968 322
969	CTG	GAT	GAA	TAT	GGA	CTA	Arg CTA Leu	CGT	CAA	CCT .	AAA	TGG (GGÇ	CAT	TIG .	aag	GAT	CTG	CAT	GCT	CCT	ATA	aag	1037 345
1038	CTT	TGT	GAA	CCA	GCT	CTT		GCT ·	GCT ·	GAT	TCA	cer (CAG	TAT	ATT .	AAA	CTG	GGA (CCA.	AAA	CAG	GAG	GCA	1106 368
1107 369	CAT	GTC	TAT	CGT	GGA	ACA	TCC	AAC .	AAC.	ATT	GGC ·	CAA '	TAT .	ATG '	TCC '	TTA	AAT	GAA (GGC .	ATA	TGC	GCA	GCA	1175 391
1176 392	TTT Phe	ATT Ile	GCA Ala	TAA naa	ATT Ile	GAT Asp	GAA Glu	CAT His	GAA ' Glu :	TCA Ser	GCA :	ACA (GTG . Val :	AAA Lys	TTT Phe	TAC Tyr	GT Gly	CAA (GAG '	TTC Phe	ACT Thr	TTA Leu	CCT Pro	1244 414
1245 415																								1313 437
1314 438							GCT Ala																	1382 460

5 / 31

Gene/c	:lone	13,8	me:	TB(G2/p	ZBG	2 - 🕎	7 2;	Sh	ure eet 4	of 1		mber	. AJ	P154	420;	. Se	sque		ID	מעמ	ber	2	cont.
								-											_					
	CTA Leu																							
401	. Deu	Dya	niu	Ser	SEI	010	361	File	Ser	GII	, ser	111	, met		. 1.00	LDY		. FIC	, nec	CLY	•	411	. G.T.)	403
	GAC																							
484	Asp	Lys	Asn	Phe	Thr	Ser	Lys	Gly	Ile	Leu	Glu	His	Leu	Asn	Va.	Thr	Lys	Asp	Gln	Ser	Asp	Tyr	Let	506
1521	TGG	TAT	CIG	.vcc	AGG	ATA	TAT	ATT	TCT	GAT	GAT	GAC	ATC	TCA	יייי ו	r TGG	GAG	GAA	TAA	GAT	GTT	AGT	CCA	1589
507	Trp	Tyr	Leu	Thr	Arg	Ile	Тут	Ile	Ser	Asp	Asp	Asp	Ile	Ser	Phe	Tr	Glu	Glu	Asn	Asp	Val	Ser	Pro	529
1500		2000	C N C	***	~~~	200	3000	~~	C T TD	- COURT	com	~~	יושוו ג	datal	- Cara	. 224	cco	CAC	بتملت	GC N	CCT) TOTAL	OTTO:	1658
	ACA Thr																							
																	•				-			
	AAA																							
253	Lys	GLY	Lys	TTP	ITE	Lys	Vai	Vai	Gin	Pro	-Va1	Lys	Leu	Vai	GIR	GLY	Тух	Asn	Asp	116	Leu	Leu	Leu	575
1728	TCT	GAG	ACG	GTG	GGA	TTG	CAG	AAT	TAT	GGT	GCC	TTC	TTG	GAG	AAG	GAT	GGG	GCA	GGT	TTT	AAA	GGT	CAG	1796
576	Ser	Glu	Thr	Val	Gly	Leu	Gln	Asn	Tyr	Gly	Ala	Phe	Leu	Glu	Lys	Asp	Gly	Ala	GĮĀ	Phe	Lys	Gly	Gln	598
1707	ATA	220	COME	202	001	moc.	222	200	000	C N M	2000	5 5 CC	~	202	እሮእ	للحلا	מידים	arcc.	NCC.	ma C	CNG	CTC:	ccc	1865
	Ile																							621
	CIT																							1934 644
622	Leu	Arg	GIA	GIU	Pne	rec	GIU	vai	1 y 1	ASP	vaı	ASD	ser	THE	GIU	Ser	ALA	GIA	ΙΙĐ	1117	GIU	rne	PLO	D44
1935	ACT	GGT	ACA	ACT	CCG	TCA	GTC	LIL	TCG	TGG	TAC	AAG	ACA	aag	TTT	GAT	GCC	CCA	GGC	GGG	ACA	Gat	CCA	2003
645	Thr	Gly	Thr	Thr	Pro	Ser	Val	Phe	Ser	Trp	Тут	Lys	Thr	Lys	Phe	Asp	Ala	Pro	Gly	Gly	Thr	Asp	Pro	667
2004	GTT	GCT.	ملعك	CMT	للملمك	ልርም	agc.	ልጥር	CCA	444	GCT1	CAG	מרא	alco.c	ىلملت	ΔAT	രാ	CAC	_ር ልጥ	מיזים	CCZ	Z ΩA	ጥልጥ	2072
	Val																							690
	TGG																							2141 713
0,1	***	2142	Locu	Vai	A.La	110	erott	ALS!!	GIY	Cys	GIY	ni g	1111	Cys	g C	191	мg	Gly	MIG	1 y 1	1112	Der	nop.	.13
	AAA																							2210
714	Lys	Cys	Arg	Thr	Asn	Cys	Gly	Glu	Ile	Thr	Gln	Ala	Trp	TYI	His	Ile	Pro	Arg	Ser	Trp	Leu	Lys	Thr	736
2211	TTA	AAT	AAT	GTA	CTA	GTT	ATC	TTT	GAA	GAA	ACA	GAT	AAA	ACT	CCG	TTT	GAT	ATT	TCC	ATT	TCT .	ACG	CGT	2279
737	Leu	Asn	Asn	Val	Leu	Val	Ile	Phe	Glu	Glu	Thr	Asp	Lys	Thr	Pro	Phe	Asp	Ile	Ser	Ile	Ser	Thr	Arg	759
ລວຍກ	2770	N .CM	C2.2	.~~	.	mm		<i>-</i>	cm.		٠. د د د		a.c	en a en	CC3	CCT	איזיי	רמיתי	מ מ	arcs:	יייאני	C ውጥ	TYC:	2348
	TCT Ser																							782
	GAG																							2417 805
/83	Glu	Pne	ASP	Arg	гуs	Leu	ser	Leu	wec	ASP	ьys	Thr	PTO	GIU	met	HIS	ren	GIN	Cys	ASP	GIU	стÀ	HIS	803
2418	ACA	ATC	TCT	TCT	TTA	GAA	TTT	GCA	AGC	TAT	GGA	AGT	CCG	AAT	GGC	AGC	TGT	CAA	AAG	TTC	TCA :	CAA	GGA	2486
806	Thr	Ile	Ser	Ser	Ile	Glu	Phe	Ala	Ser	Tyr	Gly	Ser	Pro	Asn	Gly	Ser	Суѕ	Gln	Lys	Phe	Ser	Gln	Gly	828
2487	AAA	TCCC	ጥፈጋ	CCT	GC N	ልልጥ	WCC.	anale:	ידייייני	ىلىنى	απъ	44~II	CAG	رس	ብረታው ተ	ል ጥል	GCA	AGA	AСT	ልርጥ	TCC	204	ል ም ጥ	2555
	Lys																							851
															_									
	GGC																							2624
652	Gly	116	ser	ASN	GIĀ	vaı	rne	GIÀ	ASP	rro	Lys	arg	nıs	vaı	vaı	ьys	ser	⊥eu .	MIG	val	O LII	nia .	ьуѕ	874
2625	TGC	TCA	CCA	CCA	CCA	GAC	CIC	AGC .	ACT	TCA	GCT	TCC	TCG	TGA	GGAG	ACTC	TGGT	AACA	CGTT	AACC	TTT.	AGAA	CGAA	2702
875	Cys	Ser	Pro	Pro	Pro	qzA	Leu	Ser	Thr	Ser	Ala	Ser .	Ser	***										888
2703	ACG	ATTOCO	zarr:	ACTY	ርልርጥ	CGiru	cccc	TGCC	cccc	ልርታር	المكلك	GCጥ _A	CATT	ייכיור	адат	CC:A	TCGT	TACA	ፋ ንፒል	CCCC	GAGA	እልልሶ	G T AC	2794
	ATG																							
	AGTA		ATGA	AAAT	AGAA	AACT	CCTG	TCTG	TCAA	AGAA	TTT	AACA	ACAC	CATT	TATT	AAAA	GTTA	GTTA	ACAT	GATT	AAAA	AAAA	AAAA	
2979	AAAA	AAA																						2984

6 / 31

Figure 2 Sheet 5 of 12 Gene/clone name: TBG3/p2-0c/b1; accession number AF154421; steence ID number 3

1 31	AAG	AGGA	AAAA	AATA.	aagt	TAAA	GCGG	GGGG	AAAA	AGTT	TTCA	TTT	GCCT	ТААА	aagg					TTTT AAGG				30 121
122 1	ATG Met	GGT Gly	TGT Cys	ACG Thr	CTT Leu	ATA Ile	CTA Leu	ATG Met	TTG Leu	AAT Asn	GTG Val	TTG Leu	TTG Leu	GTG Val	TTG Leu	TTG Leu	GGT Gly	TCA Ser	TGG Trp	GTT Val	TTT Phe	TCT Ser	GGA Gly	190 23
						TAT Tyr																		259 46
260 47	TCT Ser	GTT Val	CAT His	TAT Tyr	CCA Pro	AGA Arg	AGC Ser	ACT Thr	CCT Pro	GAG Glu	ATG Met	TGG Trp	CCA Pro	GGT Gly	ATT Ile	ATT Ile	CAA Gln	AAG Lys	GCT Ala	AAA Lys	GAA Glu	GGA Gly	GGT Gly	328 69
329 70	GTG Val	GAT Asp	GTG Val	ATT Ile	CAG Gln	ACT Thr	TAT Tyr	GTT Val	TTC Phe	TGG Trp	AAT Asn	GGA Gly	CAT His	GAG Glu	CCT Pro	CAA Gln	CAA Gln	GGG Gly	aaa Lys	TAT Tyr	ТАТ Тут	TTT Phe	GAA Glu	397 9 2
398 93	GGG Gly	AGA Arg	TAT Tyr	GAT Asp	TTA Leu	GTG Val	AAG Lys	TTT Phe	ATT Ile	AAG Lys	CTG Leu	GTG Val	CAC His	CAA Gln	GCA Ala	GGA Gly	CTT Leu	TAT Tyr	GTC Val	CAT His	CTT Leu	AGA Arg	GTT Val	466 115
467 116	GGA Gly	CCT Pro	TAT Tyr	GCT Ala	TGT Cys	GCT Ala	GAA Glu	TGG Txp	AAT Asn	TTT Phe	GJA GCC	GGC Gly	TTT Phe	CCT Pro	GTT Val	TGG Trp	CTG Leu	AAA Lys	TAT Tyr	GTT Val	CCA Pro	GGT Gly	ATC Ile	535 138
536 139	AGT Ser	TTC	AGA Arg	ACA Thr	GAT Asp	AAT Asn	GGA Gly	CCT Pro	TTC Phe	AAG Lys	GCT Ala	GCA Ala	ATG Met	CAA Gln	aaa Lys	TTT Phe	ACT Thr	GCC Ala	AAG Lys	ATT Ile	GTC Val	AAT Asn	ATG Met	604 161
162	Met	Lys	Ala	Glu	Arg	TTG Leu	Tyr	Glu	Thr	Gln	Gly	Gly	Pro	Ile	Ile	Leu	Ser	Gln	Ile	Glu	Asn	Glu	Tyr	673 184
185	Gly	Pro	Met	Glu	Trp	GAA Glu	Leu	Gly	Ala	Pro	Gly	Lys	Ser	Tyr	Ala	Gln	Trp	Ala	Ala	Lys	Met	Ala	Val	742 207
208	Gly	Leu	Asp	Thr	Gly	GTC Val	Pro	Trp	Val	Met	Cys	Lys	Gln	Asp	Asp	Ala	Pro	Asp	Pro	Ile	Ile	Asn	Ala	811 230
231	Cys	Asn	GJA	Phe	Tyr	TGT Cys	Asp	Tyr	Phe	Ser	Pro	Asn	Lys	Ala	Тут	Lys	Pro	Lys	Ile	Trp	Thr	Glu	Ala	880 253
254	Trp	Thr	Ala	Trp	Phe	ACT Thr	Gly	Phe	Gly	Asn	Pro	Val	Pro	Tyr	Arg	Pro	Ala	Glu	Asp	Leu	Ala	Phe	Ser	949 276
277	Val	Ala	Lys	Phe	Ile	CAG Gln	Lys	Gly	Gly	Ser	Phe	Ile	Asn	Tyr	Тут	Met	Tyr	His	Gly	GJA	Thr	Asn	Phe	1018 299
	Gly	Arg	Thr	Ala	Gly	Gly	Pro	Phe	Ile	Ala	Thr	Ser	Tyr	Asp	Тут	Asp	Ala	Pro	Leu	Asp	Glu	Tyr	Gly	1087 322
	Leu	Leu	Arg	Gln	Pro	Lys	Trp	Gly	His	Leu	Lys	Asp	Leu	Hıs	Arg	Ala	lle	ГÀЗ	Leu	Cys	Glu	Pro	Ala	1156 345 1225
	Leu	Val	Ser	CJA	Asp	Pro	Ala	Val	Thr	Ala	Leu	Gly	His	Gln	Gln	Glu	Ala	His	Val	Phe	Arg	Ser	Lys	368 1294
	Ala	Сĵу	Ser	Cys	Ala	Ala	Phe	Leu	Ala	Asn	Тут	Asp	Gln	Hıs	Ser	Phe	Ala	Thr	Val	Ser	Phe	Ala	Asn	391 1363
	Arg	Hıs	Тут	Asn	Leu	Pro	Pro	Trp	Ser	Ile	Ser	lle	Leu	Pro	Asp	Cys	Lys	Asn	Thr	Val	Phe	Asn	Thr	1363 414 1432
	Ala	Arg	Ile	Gly	Ala	Gln	Ser	Ala	Gln	Met	Lys	Met	Thr	Pro	Val	Ser	Arg	Gly	Leu	Pro	Trp	Gln	Ser	437
1433 438	TTC Phe	AAT ASD	GAA Glu	GAG Glu	ACA Thr	TCA Ser	TCT Ser	TAT Tyr	GAA Glu	GAC Asp	AGT Ser	AGT Ser	Phe	ACA Thr	GTT Val	GTT Val	GGG Gly	CTA Leu	TTG Leu	GAA Glu	CAG Gln	Al'A Ile	AAT Asn	1501 460

7 / 31

Figure 2 Sheet 6 of 12

Bene/c	lone	20.8	me :	TB	G3/g	2-1	- 3	⊮ы	; a	cces	sio	 n	umb	or J	AF15	442	1, 8	eq¶	E ce	ΙĎ	చ్ బ	adbé:	r 3	cont.
	ACA																							
461	Thr	Thr	Arg	Asp	Val	Ser	Asp	Тух	Leu	Trp	Tyr	Ser	Thi	Ası	val	Ly	5 Ile	Asp	Ser	Arg	Glu	Lys	Phe	483
1571	TTG	AGA	GGC	GGA	AAA	TGG	CCT	TGG	CTT	ACG	ATC	ATC	TCF	GCI	GGG	CAT	r GCA	110	CAT	GIT	TTT	GTO	AAT	1639
484	Leu	Arg	Gly	Gly	Lys	Trp	Pro	Trp	Leu	Thr	Ile	Met	Ser	Ala	Gly	His	: Ala	Leu	His	Val	Phe	Va1	Asn	506
1640	GGT	CD 2	mma.	CCA	CC3	3/70	~~	መእጥ	CCA) Car	elali y	CAA	222	~~		CTV	. »~r	- date.	acm	200	in	COL	220	1708
	Gly																							529
	CTG Leu																							1777 552
		•		,	101		,-			200				1111		42,	20.0				u.,		114.5	332
1778																								1846
553	Phe	Glu	Thr	Trp	Asn	Ala	Gly	Val	Leu	Gly	Pro	Val	Ser	Leu	Thr	Gly	Leu	Asp	Glu	Gly	Lys	Arg	Asp	575
1847	TTA	ACA	TGG	CAG	AAA	TGG	TCT	TAC	AAG	GTT	GGT	CTA	AAA	GGA	GAA	GCC	TTG	AGC	CIC	CAT	TCA	CTC	AGT	1915
576	Leu	Thr	Trp	Gln	Lys	Trp	Ser	Tyr	Lys	Val	Gly	Leu	Lys	Gly	Glu	Ala	Leu	ser	Leu	His	Ser	Leu	Ser	598
1916	GGT	AGC	TCG	TCA	بلملت	GAG	TYCG	GTC	GAG	GGT	ינייטני	מידים	GIV:	CCT	CAG	AGA	CAG	CCA	بكلت	ACA	TCC:	TAC	AAG	1984
	Gly																							621
1005	200	3.cm					~~	-		~~~	~~~		~~~		~~~	****							~~~	2052
1985 622	Ser																							2053 644
								_													_			
2054	GTG Val																							2122 667
043	Val	11p	116	ASII	GLY	بنترى	Ser	Deu	Gly	win	TYL	тър	FIO	GLY	IYI	Lys	ma	Ser	GIY	ASII	Cys	GLY	ALI O	007
2123																								2191
668	Cys	Asn	Tyr	Ala	Gly	Trp	Phe	Asn	Glu	Lys	Lys	Суѕ	Leu	Ser	Asn	Cys	Gly	Glu	Ala	Ser	Gln	Arg	Trp	690
2192	TAT	CAT	GTT	ccc	CGT	TCT	TG G	CTG	TAT	ccr	ACT	GGA	AAT	TTG	TTA	GTT	CTA	TT	GAG	GAA	TGG	GGA	GGA	2260
691	Tyr	His	Val	Pro	Arg	Ser	Trp	Leu	Tyr	Pro	Thr	Gly	Asn	Leu	Leu	Val	Leu	Phe	Glu	Glu	Trp	Gly	Gly	713
2261	GAG	ccr	CAT	GGA	እጥዮ	ىلتىك	TTG	GTA	AAA	AGA	GAA	بيري	GCA	AGT	GTT	TET	GCA	GAT	ATA	AAC -	GAA	TGG	CAA	2329
	Glu																							736
2220	~~	~~	mma	~~~		ma 0	~~ ~	100	~ .	~~	m-m	~~		~	020		~~	~~~	102	~~		~~m	0.50	2398
2330 737	Pro																							759
2399 760	CTC :																							2467 782
700	Leu .	Ser	cys	MIG	SEI	GIY	GIII	Lys	116	1111	261	116	Lys	rie	AIA	261	Pne	GIÀ	1111	PIC I	3111	GIĀ	vai	762
2468																								2536
783	Cys	Gly	Ser	Phe	Arg	Glu	Gly	Ser	Cys	Hıs .	Ala	Phe	His	Ser	Tyr	Asp	Ala	Phe	Glu .	Arg '	Tyr	Cys	Ile	805
2537	GGG	CAA	AAC	TCG	TGC	TCA	GTA	CCT	GTA .	ACA	CCA	GAG	ATC	TTT	GGA -	GGT	GAT	CCA '	TGT (CCA (CAT	CTT	ATG	2605
806	Gly	Gln	asa	Ser	Cys	Ser	Val	Pro	Val '	Thr	Pro (Glu	Ile	Phe	Gly ·	Gly	Asp	Pro '	Cys i	Pro 1	His '	Val	Met	828
2606	244	444	ст с	m~ h	COLUMN	CIC.	יואוי	עאנע	mar.	است.	י מייחד	TY: NC	בערי ע	BCC N	CAAA	~225	מממיים	ארייזים	المتعددت	- ≽ ⊂π•	יים מיד	ראניבאוי	מ מביצדי	2686
	Lys :											ıunc	ACIG	noon.	CHAN		IAAA	no zo	3111	J1G1.	17.01	2040	101	840
2687 2779																								2778 2870
2871																								2962
2963	ACAA'	TGAG	ACTG	ATTC																				3054
3055	AAAA	AAAA	AAAA	AAA																				3069

Figure 2
Sheet 7 of 12
ene/clone name: TBG4/pzbG2-TempTomBgal4; accession number AF0203 sequence ID number 4

1								AAA	AAAA	GTTI	raad	TTT	TTTC	TAAA	ATA	AAAA	LAAA	TCAT	TTTT	TTTG	AATG	TOGA	AAAA	63
64	ATG	CTA	AGG	ACT	ААТ	GTG	TTG	TTG	TTA	TTA	GTI	ATI	TGT	TTA	TTG	GAT	TTT	TT	TCT	TCA	GIG	AAA	GCT	132
																							Ala	23
133	AGT	GIT	TCT	TAT	GAT	GAC	AGA	GCT	ATA	ATC	ATA	AAT	GGG	AAA	AGA	AAA .	ATT	CTI	ATT	TCT	GGT	TCA	ATT	201
																							Ile	46
202	CAT	TAT	CCA	AGA	AGC	ACT	CCA	CAG	ATG	TGG	CCT	GAT	CTT	ATA	CAA	AAG	GCT	AAA	GAT	GGA	GGC	TTA	GAT	270
47	His	Тут	Pro	Arg	Ser	Thr	Pro	Gln	Met	Trp	Pro	Asp	Leu	`Ile	Gln	Lys	Ala	Lys	Asp	Gly	Gly	Leu	Asp	69
271	GTT	ATT	GAA	ACT	TAT	GTT	TTC	TGG	AAT	GGA	CAT	GAG	CCT	TCT	CCT	GGA	AAA	TAT	AAT	TTT	GAA	GGA	AGA	339
70	Val	Ile	Glu	Thr	Tyr	Val	Phe	Trp	Asn	Gly	His	Glu	Pro	Ser	Pro	Gly	Lys	Tyr	Asn	Phe	Glu	Gly	Arg	92
								AAA																408
93	Tyr	Asp	Leu	Val	Arg	Phe	Ile	Lys	Met	Val	Gln	Arg	Ala	Gly	Leu	Tyr	Val	Asn	Leu	Arg	Ile	Gly	Pro	115
								TTT																477
								Phe																138
								AAG																546
								Lys																161
								CAA																615
162	Ser	GIU	Asn	Leu	Phe	Glu	ser	Gln	GIA	GIA	Pro	IIe	ITE	Met	Ala	GIN	11e	GIU	ASD	GIT	Tyr	GIY	Pro	184
616	GTA	GAA	TGG	GAA	ATT	GGT	GCT	CCT	GGT	AAA	GCT	TAT	ACA	AAA	TGG	GCA	GCT	CAA	ATG	CCT	GTA	GCT	TTG	684
185	V al	Glu	Trp	Glu	Ile	Gly	Ala	Pro	Gly	Lys	Ala	Tyr	Thr	Lys	Trp	Ala	Ala	Gln	Met	Ala	Val	Gly	Leu	207
								ATG																753
208	Lys	Thr	Gly	Val	Pro	Trp	Ile	Met	Cys	Lys	Gln	Glu	Asp	Ala	Pro	Asp	Pro	Val	Ile	Asp	Thr	Cys	Asn	230
								CGT																822
231	Gly	Phe	Tyr	Cys	Glu	Gly	Phe	Arg	Pro	Asn	Lys	Pro	Tyr	Lys	Pro	Lys	Met	Trp	Thr	Glu	Val	dır	Thr	253
								CCT																891
254	Gly	Trp	Tyr	Thr	Lys	Phe	Gly	Gly	Pro	Ile	Pro	Gln	Arg	Pro	Ala	Glu	Asp	Ile	Ala	Phe	Ser	Val	Ala	276
892	AGG	TTT	GTT	CAG	AAC	AAT	GGT	TCA	TTC	TTC	AAT	TAC	TAC	ATG	TAT	CAT	GGA	GGA	ACA	AAT	TTT	GGC	CGG	960
								Ser																299
961	ACA	TCA	TCA	GGG	CTT	TTC	TTA	GCA	ACT	AGC	TAC	GAT	TAT	GAT	GCT	CCT	CTC	GAT	GAA	TAT	GGG	TTG	CIG	1029
								Ala																322
1030	TAA	GAA	CCA	AAG	TAT	GGG	CAC	TIG	AGA	GAC	TTA	CAT	AAA	GCT	ATC	AAG	CTA	TCT	GAA	CCG	GCT	TTA	GTT	1098
								Leu																345
1099	TCA	TCA	TAT	GCT	GCG	GTG	ACT	AGT	CTT	GGA	AGT	TAA	CAA	GAG	CCT	CAT	GTT	TAT	AGA	TCA	AAA	TCT	GGA	1167
346	Ser	Ser	Tyr	Ala	Ala	Val	Thr	Ser	Leu	Gly	Ser	Asn	Gln	Glu	Ala	Hıs	Val	TYI	Arg	Ser	Lys	Ser	Gly	368
1168	GCT	TGT	GCT	GCT	LalaL	ATT	TCC	AAC	TAT	GAC	TCT	AGA	TAT	TCA	GTA	AAA	GTC	ACC	TTT	CAG .	AAT .	AGG	CCA	1236
369	Ala	Суѕ	Ala	Ala	Phe	Leu	Ser	Asn	Tyr	Asp	Ser	Arg	Тут	Ser	Val	Lys	Val	Thr	Phe	Gln	Asn	Arg	Pro	391
1237	ጥልሮ	ልልም	C-TY2	C TI	CC3	mee:	₩CC	איניא	እርር	ጀመጥ	بلعلم	ccc	GYC.	TCCC	444	»C~Tr	CCC	بتبت	ጥልሮ	244	יייטע	GC.Y	CAG	1305
								Ile																414
1200	~~~					mc		.		>	200	~~	cas	~~		CC3		·	m c	C2C	mv-> .	ma c	3 3 C	1374
1306 415																								437
1375																								1443 460
438	чи	GIU	TITE	Pro	rnr	Ala	ASP	Asp	ser.	ASP	ınr .	ren ,	mr.	MIS .	nsn i	оту	ren .	rp	GIU (atu :	Lys .	MSTI	vaı	400

/ 31

Figure 2 Sheet 8 of 12

ne/cl	one	nar	ne :	TBG	44/p	ZBG2		l /p2	°omβ	gale		rcce:			davi	er 1	LF02	03	y e	upel	6 200 6	ID	numi	cont.
1444	ACA	AGA	GAT	TCA	TCA	GAC	TAT	CTG	TGG	TAC	ATG	ACA	AAT	GTA	AAT	ATA	GCA	TCT	AAT	GAA	GGA	TIT	CTA	1512
461	Thr	Arg	Asp	Ser	Ser	Asp	Tyr	Leu	Trp	Tyr	Met	Thr	Asn	Val	Asn	Ile	Ala	Ser	Asn	Glu	Gly	Phe	Leu	483
1513																	-							1581
484	Lys	Asn	Gly	Lys	Asp	Pro	Tyr	Leu	Thr	Val	Met	Ser	Ala	Gly	His	Val	Leu	His	Val	Phe	Val	Asn	GΙΆ	506
1582	AAA	CTA	TCA	GGA	ACT	GTT	TAT	GGT	ACA	TTG	GAT	TAA	CCA	AAA	CTT	ACA	TAC	AGT	GGC	AAC	-GTG	AAG	TTA	1650
507	Lys	Leu	Ser	Gly	Thr	Val	Tyr	Gly	Thr	Leu	Asp	Asn	Pro	Lys	Leu	Thr	Tyr	Ser	Gly	Asn	Val	Lys	Leu	529
1651	AGA	GCT	GGT	ATT	AAC	AAG	ATT	TCT	CTG	crc	AGT	GTT	TCC	GTT	GCT	CTC	CCG	AAC	GTT	GGC	GTG	CAT	TAT	1719
530	Arg	Ala	Gly	Ile	Asn	Lys	Ile	Ser	Leu	Leu	Ser	Val	Ser	Val	Gly	Leu	Pro	Asn	Val	Gly	Val	His	Tyr	552
1720	GAT	ACA	TGG	AAT	GCA	GGA	GTT	CTA	GGT	CCA	GTC	ACG	TTG	AGC	GGT	CTC	AAT	GAA	GGG	A.OT	AGA	AAC	TIG	1788
553	Asp	Thr	Trp	Asn	Ala	Gly	Val	Leu	Gly	Pro	Val	Thr	Leu	Ser	Gly	Leu	Asn	Glu	Gly	Ser	Arg	Asn	Leu	575
1789					-																			1857
576	Ala	Lys	Gln	Lys	Trp	Ser	Tyr	Lys	Val	GJÅ	Leu	Lys	Gly	Glu	Ser	Leu	Ser	Leu	His	Ser	Leu	Ser	Gly	598
1858	AGT	TCT	TCT	GTT	GAA	TGG	GTT	CGA	GGT	TCA	CTA	ATG	GCT	CAA	AAG	CAG	ccc	CIG	ACT	TGG	TAC	AAG	CCT	1926
599	Ser	Ser	Ser	Val	Glu	Trp	Val	Arg	Gly	Ser	Leu	Met	Ala	Gln	Lys	Gln	Pro	Leu	Thr	Trp	Tyr	Lys	Ala	621
1927	ACA	TTT	AAC	GCG	CCT	GGA	GGA	TAA	GAT	CCA	CTA	GCT	TTA	GAC	ATG	GCA	AGT	ATG	GGA	AAA	GGT	CAG	ATA	1995
622	Thr	Phe	Asn	Ala	Pro	Gly	Gly	Asn	Asp	Pro	Leu	Ala	Leu	Asp	Met	Ala	Ser	Met	Gly	Lys	Gly	Gln	Ile	644
1996					_																			2064
645	Trp	Ile	Asn	Gly	Glu	Gly	Val	Gly	Arg	His	Trp	Pro	Gly	Tyr	Ile	Ala	Gln	Gly	Asp	Cys	Ser	Lys	Cys	667
2065	AGT	TAT	GCT	GGA	ACG	TTC	AAC	GAG	AAG	aag	TGC	CAG	ACT	AAC	TGC	GGA	CAA	CCT	TCT	CAG	AGA	TGG	TAC	2133
668	Ser	Tyr	Ala	Gly	Thr	Phe	Asn	Glu	Lys	Lys	Cys	Gln	Thr	Asn	Cys	$Gl_{\mathbf{y}}$	Gln	Pro	Ser	Gln	Arg	Trp	Tyr	690
2134	CAT	GTT	CCA	CGA	TCG	TGG	CTG	AAA	CCA	AGT	GGA	AAC	TTG	ATT	GTA	GTA	TTC	GAA	GAA	TGG	GGA	GGT .	AAT	2202
691	Hıs	Val	Pro	Arg	Ser	Trp	Leu	Lys	Pro	Ser	Gly	Asn	Leu	Leu	Val	Val	Phe	Glu	Glu	Trp	Gly	Gly	Asn	713
2203													AGAA	CTCC	KAAA	GTAA	AACI	TGTT	CAGI	'AAC'I	`ATGC	TGCT	TGAA	2282
714	Pro	Thr	Gly	Ile	Ser	Leu	Val	Arg	Arg	Ser	Arg	***												725
2283																								2374
2375																						TGTT AAAA	A.I.I.L	2466 2554

10/31

Figure 2 Sheet 9 of 12

Gene/clone name: TBG5/RT R2-1/bl; accession number AF154423; equence ID number 5

		~~	3.00	ma.c	GIT	and.	mar.	220	CTT	CAT	GAA	CCT	GIT	CGA	AAT	CAG	TAT	GAT	LaLaL	GAA	GGA	AGG	AAA	69	j
1	AIC	CAG	ALT.	775	Val	Dha	100	Agn	Leu	His	Glu	Pro	Val	Arg	Asn	Gln	Tyr	Asp	Phe	Glu	Gly	Arg	Lys	23	,
1	116	GIII	THE	Tyr	vai	FIIC	110										-								
70	~~~		3.00	***	TTT	CTC:	AAG	4416	GTG	GAG	AGA	GCT	GGC	TTA	Lalal	GTT	CAT	ATA	AGG	ATT	GGG	CCT	TAT	138	;
70	GAT	116	ALL	AAT	Phe	Ual	TARS	Len	Val	Glu	Ara	Ala	Gly	Leu	Phe	Val	His	Ile	Arg	Ile	Ġly	Pro	Tyr	46	;
24	ASD	ren	TTG	Wati	FITE	AGI	2,0						•												
120	~~~		~~	C2.2	TGG	220	ምልጥ	COT	ccc	dalah	CCT	CTT	TGG	TIG	CAT	TTC	TTA	CCT	GGA	ATT	GAA	TTT	CGA	207	
139	GIT.	761	272	CAM	Trp	yen.	TOL	Glv	Glv	Phe	Pro	Leu	Tro	Leu	His	Phe	Ile	Pro	Gly	Ile	Glu	Phe	Arg	69	
													١,												
200	300	CNC	220		CCG	ייצועה	DAG	GCA	GAA	ATG	AAG	CGA	TTC	ACA	GCT	AAA	ATT	GTT	GAC	ATG	ATC	AAG	CAA	276	
200	Mh~	Acr	VCD	Clu	Pro	Dhe	INS	Ala	Glu	Met	Lvs	Arg	Phe	Thr	Ala	Lys	Ile	Val	Asp	Met	Ile	Lys	Gln	92	
277	CAA	አስጥ	מיזים	ጥልጥ	GCA	TY.	CAG	GGT	GGG	ಯಾ	GTT	ATC	TTG	TCT	CAG	ATA	GAA	AAT	GAG	TAT	GGC	TAA	GGT	345	
2//	Chi	Agn	Len	TUT	Ala	Ser	Gln	Gly	Gly	Pro	Val	Ile	Leu	Ser	Gln	Ile	Glu	Asn	Glu	Tyr	Gly	Asn	Gly	115	
346	CAT	ידידים	GAG	ىلمكة	CGT	TAT	GGT	CCT	CGT	GCC	AAA	CCT	TAC	GTG	AAC	TGG	GCA	GCA	TCA	ATG	CCT	ACG	TCT	414	
116	Asp	Tle	Glu	Ser	Arg	īvr	Gly	Pro	Arg	Ala	Ľув	Pro	Tyr	Val	Asn	Trp	Ala	Ala	Ser	Met	Ala	Thr	Ser	138	
415	TTA	AAT	ACG	GGA	GTG	CCA	TGG	GTT	ATG	TGT	CAG	CAA	CCA	GAT	GCC	CCT	CCI	TCC	GIT	TTA	AAC	ACT	TCC	483	
139	Leu	Asn	Thr	Glv	Val	Pro	Trp	Val	Met	Cys	Gln	Gln	Pro	qzA	Ala	Pro	Pro	Ser	Val	Ile	Asn	Thr	Cys	161	
484	TAA	GGA	TTT	TAT	TGT	GAC	CAA	TTC	AAG	CAA	TAA	TCC	GAT	AAA	ACA	ccc	AAG	ATG	TGG	ACT	GAG	AAT	TGG	552	
162	Asn	Glv	Phe	Tyr	Cys	Asp	Gln	Phe	Lys	Gln	neA	Ser	Asp	Lys	Thr	Pro	Lys	Met	Txp	Thr	Glu	Asn	Trp	184	
																								621	
553	ACC	GGA	TGG	TTT	CTG	TCG	TIT	GGT	GGT	CCT	GIC	CCT	TAC	AGA	CCA	GIG	GAA	GAC	ATC	CCT	TIC	GCT	GIG	207	
185	Thr	Gly	Trp	Phe	Leu	Ser	Phe	Gly	Gly	Pro	Val	Pro	Tyr	Arg	Pro	Val	Glu	Asp	He	Ala	Pne	WIS	Vai	207	
																								690	,
622	GCT	CGA	TTT	TTC	CAG	CGA.	GGC	GGA	ACT	TTC	CAG	AAC	TAT	TAC	ATG	TAC	CAC	GGG	GGA	ACT	AAC	1,1,1	Clir	230	
208	Ala	Arg	Phe	Phe	Gln	Arg	Gly	Gly	Thr	Phe	Gln	Asn	Tyr	Tyr	Met	Tyr	His	GTA	GIĀ	-TITIE	ASII	Pne	GIY	250	
																								755	
691	AGA	ACC	AGT	CCT	GGA	CCG	TTT	TTA	GCA	ACT	AGC	TAT	GAC	TAT	GAT	GCC	CCI	CIC	SAC	CIL	TAN-	•		252	
231	Arg	Thr	Ser	Gly	Gly	Pro	Phe	Ile	Ala	Thr	Ser	Tyr	vab	ıyı	ASD	ATG	PTO	Leu	veb	GIU	TAT				

1	ATC	CAG	ACA	TAT	GTT	TTT	TGG	AAT	GTT	CAT	GAG	CCT	TCT	CCI	GGC	AAT	TAC	AAT	TTT	GAA	GGA	AGA	TAT	6
1	Ile	Gln	Thr	Tyr	Val	Phe	Trp	Asn	Val	His	Glu	Pro	Ser	Pro	Gly	Asn	Tyr	Asn	Phe	Glu	Gly	Arg	Tyr	2
						GTA																		13
24	Asp	Leu	Val	Arg	Phe	Val	Lys	Thr	Ile	Gln	Lys	Ala	Gly	Leu	Tyx	Ala	His	Leu	Arg	Ile	.Gly	Pro	Tyr	4
139	بلملت	a)Car	GC A	GAG	TCC:	AAT	بالملمك	GCA	രവ	بلعلعك	422	CTTA	7433	CALAC	AAG	ጥልጥ	CT A	CCT	ccc	יושייע	NGC.	-Atab	202	20
						Asn																		20 6
•	***	4 ,5	744.4	ULU	LL		1 110	O ₁	31,	1110	110	Va.	LLP	Deu	Dyo	-3-	•		Gry	110	GCL	r me	AL 9	О
208	GCT	GAT	TAA	GAA	CCT	TTC	AAG	AAC	GCA	ATG	AAA	GGG	TAT	GCT	GAG	AAA	ATT	GTT	AAC	TTG	ATG	AAG	ATC	27
70	Ala	Asp	Asn	Glu	Pro	Phe	Lys	Asn	Ala	Met	Lys	Gly	Tyr	Ala	Glu	Lys	lle	Val	Asn	Leu	Met	Lys	Ile	9:
											_											_		
277	ATA	ATC	TTT	TCG	agt	CTC	AGG	GTG	GTC	CAA	TCA	TAC	TCT	CAC	AGA	TIG	AGA	ATG	AGT	ATG	GGC	CTC	AAG	349
93	lle	Ile	Phe	Ser	Ser	Leu	Arg	Val	Val	Gln	Ser	Tyr	Ser	His	Arg	Leu	Arg	Met	Ser	Met	Gly	Leu	Lys	115
						CAC																		41
16	Pro	Arg	Tyr	Leu	Glu	His	Arg	Asp	Ile	Ser	Ile	Gln	His	Gly	Leu	Gln	Ile	dil	Gln	Leu	As p	Leu	Asn	138
		~~~	~~~	~~	<b>~~~</b>	~~~	3. <b>m</b> o	<b>m</b> na			~~~	~~~		~~•	~~~	~~								
				-		GTG																		483
	1121.	GLY	Val	PLO	пр	Val	Mec	Cys	Lys	GIU	GIU	Asp	MIA	PIO	asp	PLO	Val	TTG	ASII	THE	Cys	ASn	Gly	161
84	كلمك	ጥልሮ	क्रा	TAD	יייבב	TTC	بكلمك	C A	ממ	asa	(C)	ጥልሮ	444	بلمك	CCA	باعلاتا	TCC:	ΔCT	CA A	CC4F	TYYC:	እርጥ	CC3	552
						Phe																		184
		-2-	-2-					•				-3-			•~=~						,		<b>-</b> 1	201
53	TGG	TTC,	TCG	GAA	TTT	GGC	GGT	ccc	CTT	CAT	CAG	AGA	CCA	GTT	CAG	GAT	TTG	GCA	TTT	GCT	GTT	GCC -	CAA	621
						Gly																		207
22	TTT	ATA	CAA	AGA	GGA	GGA	TCT	TTT	GTT .	AAC	TAT	TAC	ATG	TAC	CAT	GGG	GGC	ACG .	AAC	TTT	GGA	CGC .	ACT	690
80	Phe	Ile	Gln	Arg	Gly	Gly	ser	Phe	Val .	Asn	Tyr	Тух	Met	Tyr	His	Gly	Gly	Thr	Asn	Phe	Gly	Arg '	Thr	230
						ATC .														GG				749
31	Ala	Gly	Gly	Pro	Phe	Ile	Thr '	Thr	Ser	Tyr .	Asp	Tyr	Asp	Ala	Pro	Leu	Asp	Glu	Tyr					250

,

### PCT/US99/12697

12/31

1 13		ATAA	ACAC	CGGT	AAAC	GGCC	AATG	CCAA	CICI	CGIC	GGAA	TCTG	AATA	GTG	ATTE	AGCA	GCTT	AGCT	'AGCT				TCCS TGCA	<u>12</u> 103
																							ATG	172
1	Met	Asn	Thr	Met	Ser	Cys	Leu	Ser	Ser	Asn	Phe	Lys	Phe	Val	Phe	Leu	Ala	Ser	Thr	Val	Ile	Trp	Met	23
																		ATT Ile					GTG Val	241 46
																								310
																		TCC Ser						69
311	CCT	CGC	agt	GTC	CCT	GCC	ATG	TGG	ССТ	GGT	CTG	GTT	) CGA	TTG	GCG	AAG	GAA	GGA	GGA	GTG	GAT	GTT	ATT	379
70	Pro	Arg	Ser	Val	Pro	Ala	Met	Trp	Pro	Gly	Leu	Val	Arg	Leu	Ala	Lys	Glu	Gly	Gly	Val	Asp	Val	Ile	92
. 380	GAA	ACG	TAT	GTT	TTC	TGG	AAC	GGT	CAC	GAA	CCT	TCT	CCG	GGC	AAT	TAT	TAC	TTT	GGA	GGA	AGG	TTT	GAT Asn	448 115
																		Phe						
449 116	CTA Leu	GTC Val	AAA Lys	TTT Phe	TGT Cys	AAG Lys	ATC Ile	ATT Ile	CAG Gln	CAG Gln	GCT Ala	GGA Gly	ATG Met	TAT Tyr	ATG Met	ATT Ile	CTT Leu	CGG Arg	ATT Ile	GGA Gly	CCA Pro	TTT Phe	GTA Val	517 138
																		GGT						586
139	Ala	Ala	Glu	Trp	Asn	Phe	Gly	Gly	Leu	Pro	Val	Trp	Leu	His	Tyr	Val	Pro	Gly	Thr	Thr	Phe	Arg	Thr	161
																		AAC						655
162	Asp	Ser	Glu	Pro	Phe	Lys	Tyr	His	Met	Gln	Lys	Phe	Met.	Thr	Тух	Thr	Val	Asn	Leu	Met	Lys	Arg	Glu	184
																		GAG Glu						724 207
	_																	GCC						793
																		Ala						230
794	GGT	GTA	ccr	TGG	ATA	ATG	TGC	CAG	CAG	TAT	GAT	GCT	CCT	GAT	CCT	GIG	TTA	GAC	ACA	TGC	TAA	TCA	TTT	862
231	Gly	Val	Pro	Trp	Ile	Met	Cys	Gln	Gln	Tyr	Asp	Ala	Pro	Asp	Pro	Val	Ile	Asp	Thr	Cys	Asn	Ser	Phe	253
863	TAC	TGC	GAC	CAA	TTT	AAA	CCA	ATC	TCT	CCA	AAC	AAG	CCC	AAA	ATT	TGG	ACA	GAG Glu	AAC	TGG	CCG	GGA Glv	TCG Tro	931 276
932 277	TTC Phe	AAG Lys	ACA Thr	TTT Phe	GJA GGG	GCC Ala	AGA Arg	GAT Asp	CCT Pro	CAC His	AGG Arg	CCT Pro	GCA Ala	GAA Glu	GAT Asp	GTT Val	GCT Ala	TAT Tyr	TCC Ser	GIG Val	Ala	Arg	Phe	1000 299
1001	TTC	CAA	AAA	GGA	GGA	AGC	GTG	CAG	AAT	TAT	TAC	ATG	TAC	CAT	GGT	GGG	ACG	AAC	TTT	GGC	agg	ACA	GCA	1069
300	Phe	Gln	Lys	Gly	Gly	Ser	Val	Gln	Asn	Туг	Tyr	Met	Тух	His	Gly	Gly	Thr	Asn	Phe	Gly	Arg	Thr	Ala	322
1070	GGT	GGC	CCT	TTC	TTA	ACC	ACA	AGT	TAT	GAC	TAT	GAT	GCC	CCA	ATT	GAC	GAA	TAT	CCT	TTA	CCA	AGG	TTT	1138
323	Gly	Gly	Pro	Phe	Ile	Thr	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Pro	Ile	Asp	Glu	Tyr	Gly	Leu	Pro	Arg	Pne	345
1139 346	CCA	AAA	TGG	GGT	CAC	CTT	AAA	GAA Glu	CTT Leu	CAT His	AAA Lws	GTC Val	ATA Ile	AAA Lvs	TCG Ser	TGT Cvs	GAG Glu	CAT His	GCT Ala	CTG Leu	CTG Leu	AAC Asn	AAT Asn	1207 368
																								1276
1208 369	Asp	Pro	ACT	Leu	Leu	Ser	Leu	Gly	Pro	Leu	Gln	Glu .	Ala	Asp	Val	Tyr	Glu	Asp	Ala	Ser	Gly	Ala	Cys	391
1277	GCT	GCC	TIT	CTC	GCG	AAT	ATG	GAT	GAC .	AAA	AAT ·	GAC .	AAG	GIG	GTA	CAG	TTC	CGA	CAT	GTA	TCA	TAC	CAC	1345
																		Arg						414
1346																								1414
																		Asn						437
1415 438																		AGT Ser						1483 460
450	-10	J211		JCT.	116	491	11000	.,													-,-	9		

# .

13 / 31

### PCT/US99/12697

Figure 2
Sheet 12 of 12
Gene/clone name: TBG7/pzBG==18; accession number AF154422; Sequence ID number 7 cont.

Gene/	clor	10 1	name	: 1	BG7	/pze	G	18	; &	CCGI	ssio	n n	umbe	r A	LF15	4422	; 8	60	ce	ID	nu	mber	. ,	COLE.
1484	ATC	AAG	TCT	CTT	CAG	TGG	GAA	GTC	TTC	AAG	GAA	ACA	GCT	GGA	GTA	TGG	GGA	GTT	GCT	GAT	TIC	ACT	AAA	1552
461	Ile	Lys	Ser	Leu	Gln	Trp	Glu	Val	Phe	Lys	Glu	Thr	Ala	Gly	Val	Trp	Gly	Val	Ala	Asp	Phe	Thr	Lys	483
1553						~10	3.000	***	300	»C»	***	CAM	COT	NC3	GAC	ጥልር	CITC.	W.C.C.	ሞልር	ACA	ACA	AGT	TTA	1621
1553	AAC Asn	GGA	TTT	GTA	GAT	His	TIE	Asn	Thr	Thr	Lvs	ASD	Ala	Thr	Asp	TVI	Leu	Tro	Tyr	Thr	Thr	Ser	Ile	506
1622	TTT	GTT	CAT	GCA	GAG	GAG	GAT	TTC	CTA	AGA	AAC	AGA	GGC	ACT	GCA	ATG	CTT	TTC	GTT	GAA	TCA	AAG	GGT	1690
507	Phe	Val	His	Ala	Glu	Glu	Asp	Phe	Leu	Arg	Asn	Arg	Gly	Thr	Ala	Met	Leu	Phe	Val	Glu	ser	Lys	GIY	529
1691	01 m	~~	3.000		~~	mmc.	איניה	ጥልል	222	DAG.	ىلملم	CAA	GCC	ACT	GCA	TCT	GGA	AAT	GGC	ACA	GTG	CCA	CAG	1759
530	His	Ala	Met	His	Val	Phe	Ile	Asn	Lys	Lys	Leu	Gln	Ala	Ser	Ala	Ser	Gly	Asn	Gly	Thr	Val	Pro	Gln	552
1760	TTC	aag	TIT	GGA	ACT	CCT	ATT	GCT	CTA	AAG	GCA	GGG	AAG	TAA	GAA	ATT	TCC	TTG	TTA	AGC	ATG	ACT	GIG	1828 575
553	Phe	Lys	Phe	Gly	Thr	Pro	Ile	Ala	Leu	Lys	Ala	GIA	Lys	Asn	GIU	116	ser	Leu	rea	sei	mec	1111	vai	313
1829	GGC.	СТА	CAA	ACA	CCT	GGA	GCG	TTT	TAT	GAA	TGG	ATT	GGA	GCT	GGT	CCA	ACA	AGT	GTC	AAA	GTT	GCA	GGG	1897
576	Gly	Leu	Gln	Thr	Ala	Gly	Ala	Phe	Tyr	Glu	Trp	Ile	Gly	Ala	Gly	Pro	Thr	Ser	Val	Lys	Val	Ala	Gly	598
																								1966
1898	TTC	AAG	ACT	GGG	ACT	ATG	GAC	TTG	ACT	GCG	TCT	CCT	TGG	ACC	TAT	TARE	ATT	GGA	Teu	Gln	Glv	Glu	His	621
599	Phe	Lys	Thr	GIY	Thr	Met	ASP	Leu	THE	Ala	Ser	MIG	щ	1111	TAT	шуз	116	GIY	Deu	024.	,			
1967	TTG	AGG	ATA	CAG	AAG	TCA	TAT	AAC	TTG	AAG	AGT	AAA	ATT	TGG	GCA	CCA	ACT	TCG	CAG	CCA	CCA	aag	CAA	2035
622	Leu	Arg	Ile	Gln	Lys	Ser	Tyr	Asn	Leu	Lys	Ser	Lys	lle	Trp	Ala	Pro	Thr	Ser	Gln	Pro	Pro	Lys	Gln	644
2036									~~~	~	C A M	~~	~~	~~	~~	አስጥ	CD 2	~~	بلملت	CCA	بلملت	CAT	S/P/A	2104
2036	CAG Gln	Pro	CIC	ACA	TGG	TAT	LVS	Ala	Val	Val	ASD	Ala	Pro	Pro	Gly	Asn	Glu	Pro	Val	Ala	Leu	Asp	Met	667
2105	ATT	CAT	ATG	GGA	AAA	GGA	ATG	CCT	TGG	TTG	AAT	GGA	CAA	GAA	TTA	GGC	AGA	TAT	TGG	CCG	AGG	AGA	ACT	2173 690
668	Ile	His	Met	Gly	Lys	Gly	Met	Ala	Trp	Leu	Asn	Gly	Gln	Glu	Ile	GIY	Arg	Tyr	Tp	Pro	Arg	Arg	THE	030
2174	et-Atr	444	ጥልጥ	CAC	<b>አ</b> ልጥ	W.T	بلملت	ACT.	CAA	TGT	GAC	TAC	AGA	GGC	AAA	TTT	AAC	CCT	GAT	AAG	TGT	GIC	ACT	2242
691	Ser	Lvs	TVX	Glu	Asn	Cys	Val	Thr	Gln	Cys	qaA	Tyr	Arg	Gly	Lys	Phe	Asn	Pro	Asp	Lys	Cys	Val	Thr	713
																								2211
2243	GGC Gly	TGT	GGA	CAA	CCT	ACA	CAG	AGA	TGG	TAT	CAT	GTG	CCA	CGA	TCT	TGG	TTC	AAG	Pro	Ser	GGA	Asn	Val	2311 736
.714	GIY	Cys	GIA	GIn	Pro	inr	GIN	Arg	пр	TAT	urs	Vai	PIO	<b>A</b> LY	عدد	пр	1110	Dy S	110					
2312	TTA	ATT	ATC	TTT	GAG	GAA	ATA	GGT	GGA	GAT	ccc	TCT	CAA	ATT	AGA	TTC	TCA	ATG	CGA	AAG	GTT	TCT	GGA	2380
737	Leu	Ile	Ile	Phe	Glu	Glu	Ile	Gly	Gly	Asp	Pro	Ser	Gln	Ile	Arg	Phe	Ser	Met	Arg	Lys	Val	Ser	Gly	759
									a.m		m20		CAM	COROLL STREET	CNA	2.20	CTYC	CAA	CCA	አርጥ	AAD	ጥጥል	GAG	2449
2381	GCT Ala	TGT	GGT	CAT	CTT	TCA	Val	ASD	His	Pro	Ser	Phe	ASD	Val	Glu	Asn	Leu	Gln	Gly	Ser	Glu	Ile	Glu	782
2450	AAC	GAC	AAA	AAC	AGG	CCA	ACT	CTA	AGT	TTG	AAA	TGC	ccc	ACA	aat	ACT	TAA	ATT	TCC	TCT	GTC	AAA	TTT	2518
783	Asn	Asp	Lys	Asn	Arg	Pro	Thr	Leu	Ser	Leu	Lys	Cys	Pro	Thr	Asn	Thr	Asn	Ile	Ser	Ser	Val	Lys	Pne	805
2510	GCC	N-C-C	- CLEIAL	CCA	מאמ	درس.	አልጥ	GCT	ACA	TYTE	GGC	TCC	TAC	ATG	ATO	GGA	GAC	TGC	CAC	GAT	CAG	AAT	TCT	2587
806	Ala	Ser	Phe	Glv	Asn	Pro	Asn	Gly	Thr	Cys	Gly	Ser	Тут	Met	Leu	Gly	Asp	Cys	His	Asp	Gln	Asn	Ser	828
																								2656
2588	GCA	GCA	CTG	GTC	GAA	AAG	GTT	TGC	CIG	AAC	CAA	TAA	GAG	TGT	GCA	TTA	GAA	ATG	TCC	AGC	Δla	AAC	Phe	2656 851
829	Ala	Ala	Leu	Val	Glu	Lys	Val	Cys	Leu	ASD	GID	ASN	GIU	cys	WIG	reu	GIU	met	Ser	JCI	.n.a	23361		001
2657	AAC	ATG	CAA	TTG	TGT	CCA	AGT	ACA	GTA	AAG	AAA	CTT	GCA	GTT	GAA	GTG	AAT	TGC	AGC	TGA	GIG	CATI	GCCC	2728
852	Asn	Met	Gln	Leu	Cys	Pro	Ser	Thr	Val	Lys	Lys	Leu	Ala	Val	Glu	Val	Asn	Cys	Ser	***				871
																					بزيامية	ואנו על עוב	لتعلمك	2820
2729	AAA (	ATGA	ATGA	CATA	TTCT	AATT	TATA'	TAGT	PTGC acma/	TACG(	JAGA?	IGCTY MANY	יויאב יוא מיו	יייראי. יייראי	AACC.	ATA:	CLATA CCT	CGA1	AGA.	ATGT	TTG	AAAGA	CTAA	
2917	GTA	TAC:	TAT.	TAT'I	ጊርነዊ የርያርጥ	CGAG	ATGC:	YYCY.	rrra.	TTG	IGAA	AAAA	LAAA.	AAAA	AAAA	 A								2972
											_													



# 14/31

DNASIS							
Multiple	Edit1			ure 3 eet 1 of 4			
			) 20	0 30	0 40	50	
TBG1-ORF					a miimiticiw		26
TBG2-ORF					L TIHFVIVAGE		36
TBG3-ORF	-20			. мсстыниц	A ATTATTCEMA	FSGTASVSYD	30
TBG4-ORF	-22			MLRINVIII	LINICHDFÉ	SSYKASVSYD	28 50
TBG5-ORF TBG6-ORF	1					~	50
TBG7-ORF	_1	MNTMSCLSS	NEKEVELAS	r VIWMIVMSS	LAAVDASNVT	TIGIDSVIÝĎ	49
apple	-21			.MGVGIQTM	V SILLLESCIF	SAASASVSYD	29
carnation					VYVEVÈTLI		34
asparagus	-20			WATKINIMIN	I VALLAAVWSP	PAVIASVIYD	30
broccoli					LFLILITSFG		30
Lupin	12		MEGERIAN	ESIMSKKWIH	MVIIIIFFWV	CIVINSKITE	<b>3</b> 8
		60	70	80	90	100	
TBG1-ORF	27	HKALIVNGOR	KILISOSIHI	PRSTPEMWPE	LIOKAKEGGV LIARSKEGGA	DATOTEANN	76
TBG2-ORF	37	NRALFIGGER	RMINISAGINIY	PRATEEMARI	DIARSKEGGA	PVIENTEM	86
TBG3-ORF TBG4-ORF	31	HRALITYNGUK	VIII SOSVAX	DECITION HADE	IIOKAKEGGV LIOKAKDGGL		80 78
TBG5-ORF	29 51	Diffiliant	VANIA MARKET	: STATISTICAL CO.	HATCHARDAN	KOLAWAN	100
TBG6-ORF	51					WIRATEN	100
TBG7-ORF	50	RESLETINGOE	KLINGASTRY	PRSVPANNEG	IVRLAKE GV	BUTETONE	99
apple	30	HKATTINGOK	FILTEGSERY	PRSEEDMAND	LIOKAKEXGGL	DVIOTYVEWN	79
apple carnation	35	YRACKINDOR	HILLSGOTHY	PRSTPERWPD	IVRLĀKEŠÇV LADIKĀKESCIS LAEKĀKESCIS LADIKĀKĀCISCIS LADIKĀKĀCIS LADIKĀKĀCISCIS	EVEQUYATAN	84
asparagus broccoli Lupin	31	HKSV LINGOR	RIVESCELLY	PRSTREMARD	LECKAROCCI	DATOTAVENIN	80
broccoli	31	ERADI'IDGOR		HESISDMWED	LILSKAKEGGI	DI TENYARWA	80 88
Lupin	39	HKWIMINGOV	BEHALT TO THE	PESSEQUIMED	IMOKAKECCI.	DY SECTIONS	••
	91	110	120	130	140	150	100
TBG1-ORF TBG2-ORF	77	CHEDEECKXX		A PROPERTY	VIIISTONA	AL VICE AND A STATE OF THE PARTY OF THE PART	126 136
TBG3-ORF	87	GHENTROOM		100	THE PARTY OF THE P		130
TBG4-ORF	79	CHEPSPCKYN	THE REAL PROPERTY.	EM RACE Y	VHIETERAC LFIRE AC VHIEVERAC VIVE GEVOC	A WAR TO THE	128
TBG5-ORF	101	LHERVRINOYD	FESKABEINE	VKIVERAGIF	VITE IGEVO VITE IGEVO ALLE CEPVO VITE IGEVO VITE IGEFAC ALLE CEVO	ALMY CHIL	150
TBG6-ORF	101	VIII	PART PROPERTY	VETTEK	AHIRTCHYVC	AENNE SEEV	150
TBG7-ORF	100	CHERSPONY	ECCEPTIVE	CKILIOGAGMY	MIPRICEFVA	REWNESSLEY.	149
apple	80	CHEPSEGNY		TATE OF CITY	VNERTGEXYC	ALWANDS GERAL	129 134
carnation	85	CHEROEDCO VV	BCCDVIIIIR	T.KIZIK ODIZI V	AHLIRAGPYVO	ARMINECERPY	130
asparagus broccoli					SVIRISPYVO		130
Lupin	89	GHEPSPGKYY	FEDREDENGE	TRINOQAGLE	VHIRIGPFIC	AEWNEGGFPV	138
		160	170	180	190	200	
TBG1-ORF	127	WEXXIDETER	RUNNEPEKAA	MOKESTIKEVO	MMKAE	KLYETOGGPI	176
TBG2-ORF	137	WERDTPGIEF	RIPONA PEKEE	MERYVKKIVD	LMISE	SLESWOGGPI	186
TBG3-ORF	131	WLKYVPGISF	RIDNGPFKAA	MORFTAKIVN	MMKAE	RLYETQGGPI	180
TBG4-ORF					MMKSE		178
TBG5-ORF	151	WLHFIPGIEF	RTENEPFKAE	MKRETAKTVD	MIKQE	NLYASQGGPV	200
TBG6-ORF	151	WLKYVPGISF	RADNEPEKNA	MKGYAEKIVN	LMKIIIFSSL	RVVQSYSHRL	200
TBG7-ORF	150	WIHYVPGPTF	POTTATE DETENT	MOKEMITTION	LMKRE I	KLEASQGGEL	199 179
apple carnation	130	WLKIVPGIAF.	MINNE DEKEK	WOVETERING	MMKAE	KT.FHWOCGPT	184
asparagus	131 1	WEXTVEGIES WEXTVEGIES	RTONSPEKAA	MCKETEKTUS	MMKAE	GLYEROGGET	180
broccoli					MMKEE		180
Lupin					IMKAE		188
		210	220	230	240	250	
TBG1-ORF	177				AKMAVDLGTG V		226
TBG2-ORF					AEMAVGLGAG V		236
TBG3-ORF					AKMAVGLDTG V		230
TBG4-ORF	179	IMAQ-IENEY	GPVEWEIG	APGKAYTKWA	AQMAVGLKTG V	PWIMCKQE-	228
TBG5-ORF					ASMATSLINIG V		250
TBG6-ORF					LDLNTG V		250
TBG7-ORF					AKMALSQNTG V		249
apple carnation					AQMAVGLDTG / AQMAQSLNAG /		229 234
Carnacton	185 -	TIME I	GE AEMETG	WE GUVE TUMP	učiničatimie /	LMTLCVÓRO	224

WO 99/64564

### PCT/US99/12697

DNASIS Multiple	Edit1		Figur Shee	re 3 et 2 of 4			
asparagus broccoli Lupin	181	IIAO- IENEY	GPVEYYDO GPVEYEIG	AEĞKAYIDM	ANMANSIDI	WWING-OF VENVICEOE-	230 230 238
TBG1-ORF TBG2-ORF TBG3-ORF TBG4-ORF TBG5-ORF TBG7-ORF apple carnation asparagus broccoli	237 231 229 251 251 250 230 235 231 231	DATESTING DATEST	NGFYCDYFTE NAYYGDGFTE NGFYCDGFRE NGFYCDGFRE NGFYCDFRE NGFYCDFRE NGFYCDFRE NGFYCDYFSE NGFYCDYFSE NGFYCDYFSE NGFYCDYFSE	NKANKPRAMI NSEKKPRIMI NKEKPKAMI NKEKPKAMI NSEKTEKMI ISPNEPKMI NKOKEPKAMI KEKEKPKAMI NKOKEPKAMI SUESSEKAMI	EAVIGAVETE ENVIRONEAU	GERLPYRPSE GNPVPYRPSE GNPVPYRPAE GGPI HORPAE GGPVPYRPVE	276 286 280 278 300 300 299 279 284 280 288
TEG1-ORF TEG2-ORF TEG3-ORF TEG4-ORF TEG5-ORF TEG6-ORF TEG7-ORF apple carnation asparagus broccoli Lupin	300 280 285 281	DAYSVARET DV FSVARET PARSVARET EL FEVARET DISCEVARET	320 OTGSELINYY ORGSLONYY ORGSLONYY ORGSENNYY	MYHOGINEGE MYHOGINEGE MYHOGINGGE MYHOGINGGE MYHOGINEGE MYHOGINEGE			326 336 330 328 350 350 349 329 334 330 338
TEG1-ORF TEG2-ORF TEG3-ORF TEG4-ORF TEG5-ORF TEG7-ORF apple carnation asparagus broccoli	337 331 329 351 350 330 335 331 331	ENTINOPKWEH  ELEKEPKYTH  ELEKPT  ELEKT	370 EKDÉTRÁTKL EKDÉTRÁTKL EKDÉTRÁTKL EKDÉTRÁTKL EKDÉTRÁTKL EKETAKVIKS LKULÍKAIKM LKULÍKAIKM LKULÍKAIKM LKULÍKAIKM LKULÍTLLKS LKULÍTLLKS LKELÍTAIKQ	CEPALVSO- CEPALVSO- CEPALVSO- CEPALVSO- CEPALVSGE- MEKPLITYCNI	PATTA ESHO PATTA ESHO PATTA ESHO PATTA ESHO PATTA ESHO PATTA ESHO PATTA ESHO PATTA ESHO STID- LONSV	EARYSIS EARYSIS EARYSIS EARYSIS ESYVYRSKS- TAIVYSINEK	376 386 380 378 400 400 399 379 384 380 380 388
TBG1-ORF TBG2-ORF TBG3-ORF TBG4-ORF TBG5-ORF TBG7-ORF apple carnation asparagus broccoli Lupin	387 381 379 401 401 400 380 385 381 381	NIGQYMSLNE	420 GACAAFLANY GICAAFLANY GACAAFLANY GACAAFLANY CACAAFLANY D-CAAFLANY GSCAAFLANY -SCAAFLANY -SCAAFLANY A-CAAFLANY	DEHESATVKF DOHSFATVSF DOHSFATVSF DOKNDKVVQF DAKYSVKVSF DPKWSVKVTF NSRYYATVTF NATADALVNF	YGQEFTLPPW ANRHYNLPPW QNRPYNLPPW RHVSYHLPAW GGQYDLPPW SGMEFELPAW NEMHYNLPPW KGKDYNVPAW	SVF	426 436 430 428 450 450 449 434 430 438
TEG1-ORF TEG2-ORF TEG3-ORF TEG4-ORF TEG5-ORF	437 431 429	AEIQLSTQLR TVFNTARIGA	470 QSAQMK WGHKLQSKQW QSAQMK QSSSIK	AQILFQLGII	LCFYKLSLKA	SSESFSQSWM VSRGLPWQ AGGGLSWO	476 486 480 478 500

### 16 / 31

DNASIS								
Multiple	Edit1			Figur Shee	re 3 et 3 of 4			
TBG6-ORF		451						500
TBG7-ORF		450	VAFNTAKVGC	: ÇTŠIVNMAP-	·	D BHPTASS	KRDIKŠLOVE	499
apple		430	EVYNTAKVGS	QSSQVQ		imi	VHEGEPWO	479
carnation		435	EVYNDARVNE	PSPKLHSK		<u>M</u>	VISNINW	484
asparagus		431	TVFNUARVGA	QTTTKK			LG-G	480
broccoli		431	EAYNTARVNI	· Orsiiteds-		<u> </u>	EPEKLKWIWR	480
Lupin		439	EVFNÇAKVNS	PRLHRK		·	vnsafano	488
			510	520	530	540	. 550	
TBG1-ORF		177					ELDPTE-GE	526
TBG2-ORF							IYISDDDISE	
TBG3-ORF		481	S- FNEETSSY	EDS-SERVIG	DECENTRE	VSDVIWYSTY	VKIDSRE-KF	530
TBG4-ORF	•	479	S-YNEETPTÄ	DDSDILTANG	IWECKNYTRI	SSDYLWYMIN	VNIASNE-GE	528
TBG5-ORF								550
TBG6-ORF	-							550
TBG7-ORF		500	V-FKĚTAGVW	GVAD-EURONG	FVDHIMTIKE	ALDAIMXLAS	IFVHAEE-DE	549
apple		480	S-EIEETTSS	DELDILATO	<b>的新拉勒</b>	TTDYTMYMII	ITIGSDE-AF	529
carnation		485	S-YSDEVPTA	DSPGTEREKK	TABOTMIME	KSDYLWYMII	KATICHE-CE	534
asparagus							VDIAKNE-EE	530
broccoli		481	PERMORTIL	KGSGDLLAKS	TADOKDATA	BEINAMALIE	WILDKKDPIW	530
Lupin		489	S-YNEEPASS	SENDPVKGYA	TIMERAC MARKET	SSUMMALTE	MATTER BD	538
			560	570	580	590	600	
TBG1-ORF		527	LNSCN-WEWE WEENDVSKTI	THE STATE OF THE PARTY OF	(ANALYSIA)	VINE THE NUMBER	THE WATER	576
TBG2-ORF		537	WEENDUSETT	DIDSMRDEVR	THAT	VKOKWT	KVVÖPÄKTÄVÖ	586
TBG3-ORF		531	LRGGK-WPWL	TIMSACHATH	VHUNGGIAGI	AVGSTEK PKT	PESKAVNERA	580
TBG4-ORF		529	LKNCK-DPYL	TVMSAGHVLH	VEVNGKISGI	VYGTLINPKI	TYSGNVKLRA	578
TBG5-ORF								600
TBG6-ORF		551						600
TBG7-ORF		550	ÎRN-RGTAMÎ	<b>FVESKSHIMH</b>	VEINKEQAS	ASSINGIVEOF	KEGTPIAIKA	599
apple		530	LKNCK-SPLI	TIFSAGHAIN	VEINGOISCI	VYGSLENEKL	SESONVALES	579
carnation		535	FKKGD-EEME	TVNSAGHVIH	AFXINGOIDGH	AYGSEAKPOL	SESONVIVES DESCRIZOTE DESCRIZOTE	584
<b>aspara</b> gus		531	TKLCK-ABAF	TVMSAGHAVH	VEINGOLSGI	AYISSIONEKI.	WY SGSAKIWA	580
broccoli		531	SRNMSÜ	RVHSNAHVISH	AYNIKYVEN	OTAKTIVELDA	REEKKUNIVH	580 588
Lupin		539	IKDCK-MEAR	TVIND STATE	KATT MAYEL BOSK	#######	AUDIO MATERIA	200
			610	620	630	640	650	
TBG1-ORF		577	GVNKISII.SI					626
TBG2-ORF		587	GYNDII JASE	TWEEDNYGAE	LEKDGAGFKG	OTKESTICKS	DINETUS	636
TBG3-ORF		581	GVNKISII SI	AVGI PNI GPH	FEIWNAGVIG	EVSLIGIDEG	KRDDTWQ	630
TBG4-ORF		579	GINKISLLSV	SVGLPNVGVH	YDTWNAGVLG	PVILEGINEG	srínlarq	628
TBG5-ORF		601						650
TBG6-ORF		601						650
TBG7-ORF			GKNEISLLSM					649
apple			GINKLALLSI					629
carnation			GVNRISLLSA					634
asparagus broccoli			GSNKISILSV GTNHLALLSV					630 630
Lupin			GNNKISLLSV					638
naprii		303	GVIVICESTIESV	Svemyeni	1,0144410,010	POZZEDICKE, MA	T MDIDING	050
			660	670	680	690	700	
TBG1-ORF		627	KWFYKVGLKG	EALSLHÄLSG	SPSVEWVE	GSLVAOKOPL	SWYKTTFNAP	676
TBG2-ORF		637	LWTYQVGLRG	EFLEVYDVNS	TESAGWTE	FPIGTTPSVF	SWYKTKFDAP	686
TBG3-ORF			KWSYKVGLKG					680
TBG4-ORF			KWSYKVGLKG					678
TBG5-ORF								700
TBG6-ORF								<b>70</b> 0
TBG7-ORF			AWTYKIGLQG					699
apple			KWTYKTGLKG					679
carnation			YWSYKIGTKG					684
asparagus			KWTYQIGLHG					680 680
broccoli			QWDYKIGLNG KWSYKIGLKG					680 688
Lupin		ودن	VANDIVIONA	Chartener	~424₽MA\Ā	22HAW/VAST	TWITTEDAR	000
			710	720	730	740	750	
TBG1-ORF		677	DGNEPLALDM					726
		• • •						

#### PCT/US99/12697

#### 17 / 31

DNASIS Multiple	Edit1		Figur Shee	e 3 t 4 of 4			
TBG2-ORF TBG3-ORF TBG4-ORF TBG5-ORF TBG6-ORF TBG7-ORF apple carnation asparagus broccoli Lupin	681 679 701 701 700 680 681 681	GETDEVALER AGNOPLÄLER PEREFVÄLER PEREFVÄLER GENOPLÄLDL PEREFJÄLER LEKDEVIVIL LEKDEVIVIL AGNOPLÄLDL	SEMEKGOAM MTMEKGEVWI ASEMSKGOIWI I HIMSKGMAWI I GEMSKGOIWI I MTMSKGOIWI MSLEKCEVWI	V BEHHVERVIN NEBCVGRHWE NEBCVGRHWE NEOSVGRHWE NEOSVGRHWE NEOSIGRIWS NEOSIGRIWS	GYTAO-GDCS  RRTSKYENČV  RRTSKYENČV  GYTAR-GSCC  NNTAK-GSCN  AYKAS-GSCC  SFNSSDBGGT	A-CONTROLL NO CONTROLL NO CONT	736 730 728 750 750 749 729 734 730 730 738
TBG1-ORF TBG2-ORF TBG3-ORF TBG4-ORF TBG5-ORF TBG6-ORF TBG7-ORF apple carnation asparagus broccoli Lupin	737 731 729 751 751 750 730 735 731	760 EKKCI/NCGE SDKCR/NCGE EKKCI/NGGE EKKC/NGGE OKKCR/HCGE ETKCI/SDCGK EKKCI/SDGGE SDKCAFMGGE SDKCAFMGGK DTKCI/ANGGE	GSORWYHVPE ITOAWYHIPE ASORWYHVPE ESORWYHVPE PTORWYHVPE PSORWYHIPE SSORWYHVPE ASORWYHVPE ASORWYHVPE ASORWYHVPE ASORWYHVPE	SWATIAMI SWATIAMI SWATES COVI SWATES COVI	V-VFENGO V-IFEIDKT V-IFEIDKT V-IFENGGE V-VFENGO V-VFENGO V-VFENGO V-VFENGO V-VFENGO V-VFENGO V-VFENGO V-VFENGO V-VFENGO V-VFENGO	PYGÜTÜNÜRE PFDISISTRIS PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFGISINTE PFG	776 786 780 778 800 800 799 779 784 780 780
TEG1-ORF TEG2-ORF TEG3-ORF TEG4-ORF TEG6-ORF TEG6-ORF TEG7-ORF apple carnation asparagus broccoli Lupin	787 781 779 801 801 800 780 785 781	810 IGSVETENE TETT CAOVSE TASVCATINE VASVCACHLSV VASVCACVE TGRVCACVE	KHY PE PIK (S KE-PIK (S -DHESFÖ-V LQ-PIK (S)	HSEPDRKLSL MONSCHVIKP 	MOKT PEMBO IK-PRAHES DKNR PILSEK 10-AK	CPININISSV	826 836 830 828 850 850 849 829 834 830 830
TBG1-ORF TBG2-ORF TBG3-ORF TBG4-ORF TBG5-ORF TBG6-ORF TBG7-ORF apple carnation asparagus broccoli Lupin	837 831 829 851 851 850 830 835 831	860 KFASFGTPEG EFASYGSPING KFASFGTPQG KFASFGNPNG KFASFGNPSG KFASFGNPSG	VCGNFQQGSC SCOKESQGKC VCGSFREGSC TCGSYMLGDC TCGSFSEGSC QCGSFAAGSC	HANSLSV-HAFHSYDAFE HDQNSAALVE HAHKSYDAFE BSAKDAVKV-	VSQACIG RYCIG	KEŚĆŚVQVTP RTŚCSIGIŚN QNSCSVPVTP QNECALEMSS QUECALEMSS QEFCSVNVAP KLNCTMNVSS	876 886 880 878 900 900 899 879 884 880 880
TBG1-ORF TBG2-ORF TBG3-ORF TBG4-ORF TBG5-ORF TBG6-ORF TBG7-ORF apple carnation asparagus broccoli	887 881 879 901 900 880 885 881	910 ENFGGDP-CR GVFG-DP-CR EI FGGDP-CP	HVVKSLAVQA HVMKKLSVEVKL GTMKKLAVEA	KÇSPPPDLST IÇS NCS ICE	SASS		926 936 930 928 950 950 949 929 934 930



Figure 4. Autoradiograph of northern blot analysis of TBG expression in various plant tissues. Twenty μg of total RNA extracted from flowers (F), leaves (L), roots (R) and stems (S) was loaded in each lane. RNAs were separated in an agarose gel and transferred to nylon membrane. Blots were hybridized using the probes indicated to the right, washed to a final stringency of 0.1X SSC at 65°C and were used to expose x-ray film. A 26S ribosomal gene clone from soybean was used as a loading control for each blot and one example is shown.

PCT/US99/12697

#### 19 / 31



Figure 5. Autoradiograph of northern blot analysis of TBG expression in fruit tissues. Twenty μg of total RNA extracted from peel and outer pericarp tissue was loaded in each lane. Fruit were harvested at 10, 20, 30, 35, and 40 days post-pollenation and at the breaker (Br), turning (Tr), pink (Pk), red (Rd) and over ripe (OR) stages. RNAs were separated in an agarose gel and transferred to nylon membrane. Blots were hybridized using the probes indicated to the right, washed to a final stringency of 0.1X SSC at 65°C and were used to expose x-ray film. A 26S ribosomal gene clone from soybean was used as a loading control for each blot and one example is shown. A cDNA clone for tomato polygalacturonase (PG) was also used as a probe to show a well characterized, fruit-ripening-specific control.



Figure 6. Autoradiograph of northern blot analysis of TBG expression in fruit tissues. Twenty  $\mu g$  of total RNA extracted from mature green or turning stage fruit peel (P), outer pericarp (OP), inner pericarp (IP) and locular (L) tissue was loaded in each lane. RNAs were separated in an agarose gel and transferred to nylon membrane. Blots were hybridized using the probes indicated to the right, washed to a final stringency of 0.1X SSC at 65°C and were used to expose x-ray film. A 26S ribosomal gene clone from soybean was used as a loading control for each blot and one example is shown. A cDNA clone for tomato polygalacturonase (PG) was also used as a probe to show a well characterized, fruit-ripening-specific control.



Figure 7. Autoradiograph of northern blot analysis of TBG expression in normal and mutant fruit tissues. Twenty μg of total RNA extracted from peel and outer pericarp tissue at various days post-pollination (dpp) was loaded in each lane. RNAs were separated in an agarose gel and transferred to nylon membrane. Blots were hybridized using the probes indicated to the right, washed to a final stringency of 0.1X SSC at 65°C and were used to expose x-ray film. A 26S ribosomal gene clone from soybean was used as a loading control for each blot and one example is shown. A cDNA clone for tomato polygalacturonase (PG) was also used as a probe to show a well characterized, fruit-ripening-specific control. The - and > marks on the left indicate the position of the tomato 27S and 18S rRNAs respectively.



Figure 8. Autoradiograph of northern blot analysis of TBG expression in response to ethylene treatment of mature green fruit tissues. Twenty μg of total RNA extracted from peel and outer pericarp tissue at various times (1, 2, 12 and 24 hours) after treatment with (+) or without (-) 10 ppm ethylene was loaded in each lane. RNAs were separated in an agarose gel and transferred to nylon membrane. Blots were hybridized using the probes indicated to the right, washed to a final stringency of 0.1X SSC at 65°C and were used to expose x-ray film. A 26S ribosomal gene clone from soybean was used as a loading control for each blot and one example is shown. The - marks on the left indicate the position of the tomato 27S rRNA.



Figure 9. Western blot analysis of TBG4 expression by yeast. A yeast clone was isolated that secreted high levels of FLAG-TBG4 fusion protein into the culture medium. Protein samples were separated in an 8% acrylamide gel, transferred to nitrocellulose and were blotted with M1 anti-FLAG primary antibody. Blots were washed and blotted with an alkaline-phosphatase conjugated secondary antibody and alkaline phosphatase activity was detected using Sigma Fast substrate. Lane 1, culture medium of an untransformed yeast clone was used as a negative control. Lane 2, culture medium of yeast clone expressing FLAG-TBG4 fusion protein. Lane 3, Affinity purified FLAG-TBG4 fusion protein.

24 / 31

Figure 10



25/31

Figure 11A

#### Flat plate compression to 3 mm Breaker + 7 d



#### * Standard Deviation

#### FP07 Line #FP07 mean FP07 std dev

1	17.52665	3.418542
2	24.56026	4.786548
3	20.81681	4.066194
4	22.54655	4.15923
5	23.03255	4.493091
6	22.84338	4.517462
7	20.36124	3.24608
8	17.81924	2.665468

Figure 11B
Spherical indentor to 3 mm
Breaker + 7 d



* Standard Deviation

SP07	Line #SP07	Mean SP07	Std Dev
	4	7.02	1 22

 		4.00
1	7.02	1.22
5	9.77	1.57
6	8.43	1.15
7	8.87	1.32
8	8.78	1.36
9	9.28	1.29
11	7. <b>9</b> 6	1.30
12	7.26	1.45

Figure 11C

## 4-mm cylindrical indentor to mm. Breaker + 7 d



Standard Deviation

### CY07 LINE#CY07 Mean CY07 Std Dev

FILATING		
 1	8.62	1.69
5	11.07	1.96
6	9.31	1.33
7	10.07	1.81
8	10.18	1.88
9	10.27	1.26
11	9.15	1.30
12	7.99	1.33

PC1/US:



#### * Standard Deviation

0

PU07 L	ine# PL	07 Mean PU	107 Std Dev
	1	12.91	2.43
	5	15.13	2.61
	6	13.44	1.90
	7	14.28	2.16
	8	14.47	2.58
	9	14.14	1.81
	11	12.90	1.20
	12	13.18	1.25

2

3

5

Line#

6





Figure 12. Northern blot analysis of TBG4 expression in transgenic fruit containing TBG4 antisense construct. A. Total RNA was extracted from mature green/42 days post-pollenation (MG), turning/breaker + 3 (TR) and red/breaker + 7 (RD) fruit and twenty μg was loaded in each lane. RNAs were separated in an agarose gel and transferred to nylon membrane. Blots were hybridized using the probes indicated to the right, washed to a final stringency of 0.1X SSC at 65°C and were used to expose x-ray film. A 26S ribosomal gene clone from soybean was used as a loading control. The marks - and { denote the positions of the endogenous TBG4 and antisense mRNAs respectively. Lanes 2-8 correspond to transgenic lines 2-8 in Figures 11A-E. B. Chart of TBG4 mRNA levels in lines 2-8. Autoradiographs were scanned using a densitometer and TBG4 mRNA levels were corrected against the loading controls. TBG4 mRNA levels are shown in arbitrary units.



Figure 13. Binary construct used to transform plants and express TBG4 (pZBG2-1-4) in the antisense orientation.

Docket No. 0066.99

## **Declaration and Power of Attorney For Patent Application**

### **English Language Declaration**

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original,

	first and joint inventor (if plu which a patent is sought on		ed below) of the subject matter w led	hich is claimed and for
	Genes Coding for Toma	ato B-Galactosi	dase Polypeptides	
	the specification of which			
	(check one)			
	☐ is attached hereto.			
			as United States Application No	or PCT International
	Application Number Po	CT/US99/12697		
	and was amended on _		(if applicable)	
:			(if applicable)	
	I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.			
			ited States Patent and Trademar as defined in Title 37, Code of	
	Section 365(b) of any foreig PCT International application listed below and have also	n application(s) for on which designat identified below, b International appl	er Title 35, United States Code, repatent or inventor's certificate, on ted at least one country other the country other they checking the box, any foreign a lication having a filing date before	r Section 365(a) of any nan the United States, pplication for patent or
	Prior Foreign Application(s)			Priority Not Claimed
	(Number)	(Country)	(Day/Month/Year Filed)	
	(Number)	(Country)	(Day/Month/Year Filed)	u
	(Number)	(Country)	(Day/Month/Year Filed)	



Application Serial No.)	· · · · · · · · · · · · · · · · · · ·	
reproducti Conditio.	(Filing Date)	
Application Serial No.)	(Filing Date)	
Application Serial No.)	(Filing Date)	•
1.56 which became available International filing date of this  Application Serial No.)	between the filing date of	the prior application and the nation (Status)  (patented, pending, abandone
by claim the benefit under 35 in 365(c) of any PCT Internation as the subject matter of each States or PCT International at Section 112, I acknowledge all information known to me in 1.56 which became available International filing date of this	onal application designating th of the claims of this apparent application in the manner parent the duty to disclose to the to be material to patentabe between the filing date of	the United States, listed blication is not disclosed in provided by the first paragularity as defined in Title 37

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

(patented, pending, abandoned)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. (list name and registration number)



GRAETER, Janelle S., Reg. No. 35,024 RIBANDO, Curtis P., Reg. No. 27,976 CONNOR, Margaret A., Reg. No. 30,043 DECK, Randall E., Reg. No. 34,078 LIPOVSKY, Joseph A., Reg. No. 34,526 POULOS, Gail E., Reg No. 36,326

#### Send Correspondence to:

Janelle S. Graeter

USDA-ARS-OTT

5601 Sunnyside Avenue, Rm. 4-1188

Directer telephone Calls to: (name and telephone number)

Full name of sole or first inventor	
GROSS, Kenneth C.	
Sole or first inventors signature	Date (2/1/2000
Residence	
4713 Knapp Court, Ellicott City, Maryland 21043	MN
Citizenship	
U.S.A.	
Post Office Address	

Full name of second inventor, if any		
SMITH, David L.		
Second inventor's signature		Date
Town I Som H		12/1/2000
Residence	7.4	
9017 Lambskin Lane, Columbia, Maryland 21045	ALD	
Citizenship		
U.S.A.		
Post Office Address		

# 528 Redd PGT/PTO 05 DEG 2000

#### SEQUENCE LISTING

<110> U.S. Department of Agriculture

<120> Genes Coding For Tomato Beta-Calactosidase Polypeptides

<130>70608/125650

<140> PCT/US99/12697

<141> 1999-06-08

<150>60/088,805

<151> 1998-06-09

<160> 14

<170> PatentIn Ver. 2.1

<210>1

<211>3224

<212> DNA

<213> Lycopersicon esculentum

<400>1

ttttttettt gttettttge teageactag ageetagaag aaggaaaaaa agaagtatgg 60 caaaaacage tgtttteeet teactaettt tttttteeea atetetatat aattgeaaga 180 atagaataaa gtttgcaact tgattaaaaa aaaagaataa taagctgtgg gggtagggag 240 gaagttagtt cattagttca ttgccttgta aaggcacaat cttgattctt gatttgttga 300 caaatatggg tttttggatg gcaatgttgc tgatgttgtt attgtgttta tgggtttctt 360 gtggaattgc ttctgtttca tatgaccata aagctatcat tgtaaatgga caaagaaaaa 420 tteteattte tggateeatt eaetaceeta gaageaeeee tgagatgtgg eeagatetta 480 ttcagaaggc aaaagaaggg ggagttgatg ttatacagac ttatgttttc tggaatgggc 540 atgagcctga agaagggaaa tattattttg aagagaggta tgatttagtg aagttcatta 600 aagtggtgca agaagcagga ctttatgtgc atcttaggat tggaccttat gcatgtgctg 660 aatggaattt tgggggtttt cetgtttggc tgaagtatgt teeaggtatt agttteagaa 720 caaacaatga gccattcaag gctgcaatgc aaaagttcac tactaagatt gttgatatga 780 tgaaagcaga aaagctctat gaaactcagg gtggtccaat tattctatct cagatagaaa 840 atgaatatgg acctatggag tgggaactag gtgaacctgg taaagtttac tcagaatggg 900 cagecaaaat ggetgtggat ettggeaetg gtgteecatg gateatgtge aageaagatg 960 atgtccctga tcctattatt aatacttgca atggtttcta ctgtgactac ttcacaccaa 1020 ataaggetaa taaacccaag atgtggactg aagcetggac tgcetggttt accgaatttg 1080 gaggtccagt teettacegt cetgeagagg atatggeatt tgetgtegea agatttatae 1140 aaacgggagg ctccttcatc aattactata tgtatcatgg aggaacaaac tttggaagga 1200 cttctggtgg cccatttatt gctactagtt atgattatga tgcaccccta gatgaatttg 1260 ggtcattacg gcagcctaaa tggggtcatc tgaaagatct acatagagca ataaagctct 1320

gtgagccagc tttagtatct gtagatccaa ctgtgacatc cttaggaaac tatcaagagg 1380 cacgtgtttt caagtcagag tetggggeet gegetgeett eetageaaat taeaaceage 1440 actettttge taaagtggea tttgggaaca tgeattataa ettgeeacee tggtetatea 1500 gcattettee egactgeaag aacaetgtet ataataetge aagggttggt geteaaagtg 1560 ctcagatgaa gatgactcca gtcagtagag gattctcatg ggagtcattc aatgaagacg 1620 cagcategae tgaagaegae aettteaeag ttgttgggtt attggageag attaatatea 1680 caagagatgt atctgattac ttgtggtata tgactgacat tgagattgat ccaacagaag 1740 gatttttgaa tagtggaaat tggccttggc ttactgtctt ttctgctggc catgcattgc 1800 atgtattcgt gaatggtcaa ttagcaggaa ctgtgtacgg aagtttagaa aacccaaaac 1860 taactttcag caacggtata aatctgagag ctggtgtgaa caagatttet ctgctaagca 1920 ttgctgttgg tcttccgaac gttggccctc attttgagac atggaatgct ggtgttcttg 1980 gaccagtttc acttaatgsa cttaatgaag gaacaagaga tttaacatgg cagaaatggt 2040 tctacaaggt tggtctaaaa ggagaagccc tgagtcttca ttcactcagt ggtagcccat 2100 ccgtggagtg ggtggaaggc tctttagtgg ctcagaagca gccactcagt tggtataaga 2160 ctacattcaa tgctccagat ggaaatgaac ctttggcttt agatatgaat accatgggca 2220 aaggtcaagt atggataaat ggtcagagcc tcggacgcca ctggcctgca tataaatcat 2280 ctggaagttg tagtgtctgt aactatactg gctggtttga tgagaaaaag tgcctaacta 2340 actgtggtga gggctcacaa agatggtacc acgtaccccg gtcttggctg tatcctactg 2400 gaaatttgtt agttgtattc gaggaatggg gaggagatcc ttatggaatc actttagtca 2460 aaagagaaat agggagtgtt tgtgctgata tatatcagtg gcaaccacag ttattgaatt 2520 ggcagagget agtatetggt aagtttgaca gaceteteag acetaaagee eatettaagt 2580 gtgcacctgg tcagaagatt tcttcaatca aatttgcaag ctttggaaca ccagagggag 2640 tttgtgggaa etteeageag ggaagetgee atgeteegeg eteatatgat gettteaaaa 2700 agaattgtgt tgggaaagag tcttgctcag tacaggtaac accagagaat tttggaggtg 2760 atccatgtcg aaacgttcta aagaaactct cagtggaagc catttgtagt tgatgattct 2820 gagtatacaa gtgaaaaaat acttgaacca ctcatataaa catttttcaa acgagctact 2880 agacateeat taaceeacae taccattttt tggetttget ggggttgaag ttgtacagtt 2940 aagcaacaca cetetttgat caaageteae etgattatga agatgattga egaaagatte 3000 tgtacatgta aggtttegte taattacaca tacagatatg attettgatg aategatgtg 3060 caaattttgt ttgtgttagg gtgagagaga cttgaaaagc attttgcttt catgatgttc 3120 tacattatac aatcataatg taagtaagca agcaataatt cattgctttg cacattgaaa 3180 3224

<210> 2 <211> 2984 <212> DNA <213> Lycopersicon esculentum

<400>2

ggagcagaag aaaaacactg aattttccgt taatactaac ggtgttaact atccactttg 60 tgatcgtcgc cggcgagtat ttcaagccgt tcaatgtcac ctacgataac cgagctctca 120 tcatcggcgg taaacgccgt atgcttatct ccgccggaat tcactaccct cgcgccactc 180 ctgagatgtg gcccacattg atagctagga gcaaagaagg tggtgcagat gtcatcgaga 240 cttatacatt ttggaatggt catgagccaa ccaggggaca gtacaatttt gaaggaagat 300 atgatattgt caagttcgca aagctagtcg gatctcatgg actgttcctc tttattcgaa 360

taggtcctta tgcctgtgca gaatggaact tcgggggatt ccccatatgg cttcgtgata 420 tacctggaat agaatttcga acagataatg caccattcaa ggaggagatg gagcgctatg 480 ttaaaaagat agttgatctt atgatatctg agtcgctctt ttcgtggcaa ggtggtccta 540 tcattttgct gcagattgaa aatgaatatg gaaatgttga aagctcattc ggtcccaagg 600 ggaagttata tatgaaatgg gctgctgaaa tggctgttgg tcttggtgct ggtgttccat 660 gggtcatgtg caggcaaact gatgctccag aatacatcat agatacttgt aatgcatact 720 attgtgatgg gttcacgccg aattccgaga agaaaccgaa aatttggact gagaattgga 780 atggatggtt tgcagattgg ggtgaaagac ttccatatag accttccgag gatattgcat 840 ttgcaattgc tcgtttcttt caacgtgggg gcagcttaca gaactattat atgtattttg 900 gtgggacaaa ttttggccgg actgctggtg gcccaactca aatcactagc tatgattatg 960 atgetecaet ggatgaatat ggaetaetae gteaaeetaa atggggeeat ttgaaggate 1020 tgeatgetge tataaagett tgtgaaceag etettgttge tgetgattea eeteagtata 1080 ttaaactggg accaaaacag gaggcacatg tctatcgtgg aacatccaac aacattggcc 1140 aatatatgtc cttaaatgaa ggcatatgcg cagcatttat tgcaaatatt gatgaacatg 1200 aatcagcaac agtgaaattt tacggtcaag agttcacttt acctccatgg tcagtggtat 1260 tetgecagat tgeagaaata eagettteaa eacagetaag gtgggggeae aaaetteaat 1320 caaaacagtg ggctcagatt ctgtttcagt tgggaataat tctttctttc tacaagttat 1380 cactaaaagc aagctcggaa agtttttcac aatcttggat gacattgaag gagccacttg 1440 gtgtgtgggg tgacaagaat ttcacttcta aaggaatact ggagcatctg aatgtgacaa 1500 aagaccagtc tgattacctg tggtatctga ccaggatata tatttctgat gatgacatct 1560 cattttggga ggaaaatgat gttagtccaa caattgatat tgatagcatg cgtgattttg 1620 ttcgcatttt tgttaatggg cagcttgcag gtagtgtgaa aggcaaatgg atcaaggtgg 1680 ttcaacctgt taagctggtt cagggataca acgacatact gctattatct gagacggtgg 1740 gattgcagaa ttatggtgcc ttcttggaga aggatggggc aggttttaaa ggtcagataa 1800 agettacagg atgeaaaage ggggatatea ateteacaae atetttatgg acetaceagg 1860 tggggcttag aggcgaattc ctggaagtat atgatgtcaa tagtactgaa agtgcaggat 1920 ggactgagtt teceaetggt acaaeteegt eagtetttte gtggtacaag acaaagtttg 1980 atgccccagg cgggacagat ccagttgctc ttgattttag tagcatggga aaaggtcagg 2040 catgggttaa tggccaccat gtaggaagat attggacttt ggttgcacca aataatggat 2100 gtggaagaac ttgtgattat cgtggtgctt accactctga taaatgtagg acaaactgtg 2160 gagagattac teaggeetgg taccatatac etagateatg getaaagaca ttaaataatg 2220 tactagttat ctttgaagaa acagataaaa ctccgtttga tatttccatt tctacgcgtt 2280 ctactgaaac catttgtgct caagtategg aaaagcacta tecaceteta cataagtggt 2340 ctcattcgga gtttgacaga aagttgtctc tgatggataa aacaccagaa atgcacttgc 2400 agtgtgacga aggacataca atctcttcta ttgaatttgc aagctatgga agtccgaatg 2460 geagetgtea aaagttetea eaaggaaaat geeatgetge aaatteettg tetgttgtat 2520 ctcaggettg tataggaaga actagttgea geattggeat ttccaatggt gtatttggag 2580 atccatgtcg acacgttgtg aagagtttgg ctgttcaagc aaaatgctca ccaccaccag 2640 acctcagcae tteagettee tegtgaggag actetggtaa eaegttaace ttttagaaeg 2700 aaacgateee ttaaagteea etegtteeee tgeeeeegag eeetetgeta eattteteag 2760 ategeategt tacaateagg eggagaaaac gtacatggae gattttaett gtaaatattt 2820 ggttactgta tataaaatga aaggaataat gttgcttatg catatgagct gcaaattata 2880 tgacaaagta acaaatgaaa atagaaaact cetgtetgte aaagaatttt aacaacacca 2940 2984

<210> 3 <211> 3069 <212> DNA <213> Lycopersicon esculentum

#### <400>3

agagttcatt attttttttg cattttgaaa aagaggaaaa aaataaagtt aaaggggggg 60 gaaaaagttt tcattttgcc ttaaaaaggc acaatcttga tagaaaagga gataatttta 120 catgggttgt acgcttatac taatgttgaa tgtgttgttg gtgttgttgg gttcatgggt 180 tttttctgga acagcttctg tttcatatga ccatagggct attattgtaa atggacaaag 240 aagaatactt atttetggtt etgtteatta teeaagaage aeteetgaga tgtggeeagg 300 tattattcaa aaggctaaag aaggaggtgt ggatgtgatt cagacttatg ttttctggaa 360 tggacatgag ceteaacaag ggaaatatta ttttgaaggg agatatgatt tagtgaagtt 420 tattaagetg gtgeaceaag eaggaettta tgteeatett agagttggae ettatgettg 480 tgctgaatgg aattttgggg gctttcctgt ttggctgaaa tatgttccag gtatcagttt 540 cagaacagat aatggacctt tcaaggctgc aatgcaaaaa tttactgcca agattgtcaa 600 tatgatgaaa gcggaacgtt tgtatgaaac tcaagggggg ccaataattt tatctcagat 660 tgagaatgaa tatggaccca tggaatggga actgggagca ccaggtaaat cttacgcaca 720 gtgggccgcc aaaatggctg tgggtcttga cactggtgtc ccatgggtta tgtgcaagca 780 agacgatgcc cctgatccta ttataaatgc ttgcaatggc ttctactgtg actacttttc 840 tccaaacaag gcttataaac caaagatatg gactgaagcc tggactgcat ggtttactgg 900 ttttggaaat ccagttcctt accgtcctgc tgaggacttg gcattttctg ttgcaaaatt 960 tatacagaag ggaggtteet teateaatta ttacatgtat catggaggaa caaactttgg 1020 acggactgct ggtggtccat ttattgctac tagttatgac tatgatgcac cacttgatga 1080 atatggatta ttgcgacaac caaaatgggg tcacctgaaa gatctgcata gagcaataaa 1140 getttgtgaa ceagetttag tetetggaga teeagetgtg acageaettg gacaceagea 1200 ggaggcccat gtttttaggt cgaaggctgg ctcttgtgct gcattccttg ctaactacga 1260 ccaacactet tttgetactg tgteatttge aaacaggeat tacaacttge catggtggte 1320 aatcagcatt etteeegact geaagaacae tgtatttaat acagcaegga teggtgetea 1380 aagtgeteag atgaagatga eteeagteag eagaggattg eeetggeagt eatteaatga 1440 agagacatca tettatgaag acagtagttt tacagttgtt gggetattgg aacagataaa 1500 tacaacaaga gacgtgtctg attatttgtg gtattcaaca gatgtcaaga ttgattcaag 1560 agaaaagttt ttgagaggcg gaaaatggcc ttggcttacg atcatgtcag ctgggcatgc 1620 attgcatgtt tttgtgaatg gtcaattagc aggaactgca tatggaagtt tagaaaaacc 1680 gaaactaact ttcagtaaag ccgtaaatct gagagcaggt gttaacaaga tttctctact 1740 gagcattgct gttggccttc cgaatatcgg cccacatttt gagacatgga atgctggtgt 1800 tettgggcca gteteactaa etggtettga egaggggaaa agagatttaa eatggeagaa 1860 atggtettae aaggttggte taaaaggaga ageettgage eteeatteae teagtggtag 1920 ctegteagtt gagtgggteg agggttettt agtggeteag agacageeae teacatggta 1980 caagagcact tttaatgctc cagctggaaa tgatcctttg gctttagact tgaataccat 2040 gggcaaagga caagtgtgga taaatggtca aagcctcgga cgctattggc ctggatataa 2100 agcatctggt aactgcggtg cctgtaacta tgcaggctgg tttaatgaga aaaaatgcct 2160 aagtaactgt ggagaggett cacaacgatg gtatcatgtt ccccgttett ggetgtatee 2220 tactggaaat ttgttagttc tatttgagga atggggagga gagcctcatg gaatctcttt 2280 ggtaaaaaga gaagttgcaa gtgtttgtgc agatataaac gaatggcaac cacagttggt 2340 gaattggcaa atgcaagcat ctggtaaagt tgacaaacca ctgagaccta aagctcacct 2400

<210> 4 <211> 2554 <212> DNA <213> Lycopersicon esculentum

<400>4

aaaaaaaagtt tcaatttttt ttctaaaata aaaaaaaatt cattttttt gaatgtggaa 60 attettattt etggtteaat teattateea agaageaete eaeagatgtg geetgatett 240 atacaaaagg ctaaagatgg aggcttagat gttattgaaa cttatgtttt ctggaatgga 300 catgageett eteetggaaa atataatttt gaaggaagat atgatettgt tagatteate 360 aaaatggtac aaagagcagg actttatgtc aatttacgta ttggccctta cgtctgtgct 420 gaatggaact ttgggggatt ccctgtttgg ctaaaatatg tgcctggtat ggaatttaga 480 acaaacaatc agccttttaa ggtggctatg caaggatttg ttcagaaaat agtcaacatg 540 atgaagtcag aaaatttgtt tgaatctcaa ggaggaccaa taattatggc ccagatacaa 600 aatgagtatg gaccagtaga atgggaaatt ggtgctcctg gtaaagctta tacaaaatgg 660 gcagctcaaa tggctgtagg tttgaaaact ggtgtcccat ggatcatgtg taagcaagag 720 gatgeteetg atcetgtgat tgataettgt aatggettet aetgegaagg gtteegteet 780 aataagcett acaaacetaa aatgtggaca gaagtatgga etggetggta tacgaaatte 840 ggtggtccaa ttcctcaaag accagccgaa gacattgcat tttcagttgc caggtttgtt 900 cagaacaatg gttcattctt caattactac atgtatcatg gaggaacaaa ttttggccgg 960 acateateag ggetttteat tgeaactage taegattatg atgeteetet egatgaatat 1020 gggttgetga atgaaccaaa gtatgggcac ttgagagact tacataaagc tatcaagcta 1080 tetgaacegg etttagttte ateatatget geggtgaeta gtettggaag taateaagag 1140 geteatgttt atagateaaa atetggaget tgtgetgett ttttateeaa etatgaetet 1200 agatattcag taaaagtcac ettteagaat aggecataca atetgeetee atggteeate 1260 agcattette eegaetgeaa aactgeegtt tacaacactg eacaggttaa eteteaaage 1320 tcgagcataa agatgacgcc tgcaggtggt ggattctctt ggcagtcata caatgaagaa 1380 acgcctactg ctgatgacag cgatacactt acagctaacg gactatggga acagaaaaaa 1440 gtcacaagag attcatcaga ctatctgtgg tacatgacaa atgtaaatat agcatctaat 1500 gaaggatttc taaagaacgg aaaggatcct tatctcactg ttatgtccgc tggtcatgtc 1560

ttgcatgttt tcgtcaatgg aaaactatca ggaactgttt atggtacatt ggataatcca 1620 aaacttacat acagtggcaa cgtgaagtta agagctggta ttaacaagat ttctctgctc 1680 agtgtttccg ttggtctccc gaacgttggc gtgcattatg atacatggaa tgcaggagtt 1740 ctaggtccag tcacgttgag cggtctcaat gaagggtcaa gaaacttggc gaaacagaaa 1800 tggtcttaca aggttggtct gaaaggcgaa tcgttaagtc ttcactcctt aagtgggagt 1860 tettetgttg aatgggtteg aggtteaeta atggeteaaa ageageeeet gaettggtae 1920 aaggetacat ttaacgegee tggaggaaat gateeactag etttagacat ggeaagtatg 1980 ggaaaaggtc agatatggat aaatggtgaa ggcgtaggtc gccattggcc tggatacata 2040 gcacaaggcg actgcagcaa atgcagttat gctggaacgt tcaacgagaa gaagtgcgga 2100 actaactgcg gacaaccttc tcagagatgg taccatgttc cacgatcgtg gctgaaacca 2160 agtggaaact tgttagtagt attcgaagaa tggggaggta atccaacagg aatttctcta 2220 gtcaggagat caagataaag aactcgaaaa gtaaaacttg ttcagtaact atggtgcttg 2280 aattegegee gaaaaataca tacacgaage taacaatgga ggetacagtt tgcaaattge 2340 agetgaataa aacattagaa gataaagaaa tatttgatta aaaggagtat ataaatttac 2400 agagaatttt etttattett tgtaaaaett tggtttataa agtttataea gaattttetg 2460 ttatttggat tatgagattg aagaagattg tacagettee aaatactatt agaatacaaa 2520 taaatttcat gtaaaaaaaa aaaaaaaaaa aaaa 2554

<210> 5 <211> 755 <212> DNA <213> Lycopersicon esculentum

<400>5

atccagactt acgttttctg gaaccttcat gaacctgttc gaaatcagta tgattttgaa 60 ggaaggaaag atttgattaa ttttgtgaag ttggtggaga gagctggctt atttgttcat 120 ataaggattg ggccttatgt ttgtgcagaa tggaactatg gtgggtttcc tctttggttg 180 catttcattc ctggaattga atttcgaacc gacaatgaac cgttcaaggc agaaatgaag 240 cgattcacag ctaaaattgt tgacatgatc aagcaagaaa atctatatgc atcccagggt 300 gggccggtta tcttgtctca gatagaaaat gagtatggca atggtgatat tgagtctcgt 360 tatggtcctc gtgccaaacc ttacgtgaac tgggcagcat caatggctac gtctttaaat 420 acgggagtgc catgggttat gtgtcagcaa ccagatgccc ctccttccgt tattaacact 480 tgcaatggat tttattgtga ccaattcaag caaaattccg ataaaacacc caagatgtgg 540 actgagaatt ggaccggatg gtttctgtcg tttggtggtc ctgtccctta cagaccagtg 600 gaagacatcg ctttcgctgt ggctcgattt ttccagcgag gcggaacttt ccagaactat 660 tacatgtacc acgggggaac taactttggg agaaccagtg gtggaccgtt tattgcaact 720 agctatgact atgatgccc tctcgacgaa tacgg

<210> 6 <211> 749 <212> DNA <213> Lycopersicon esculentum <400> 6 atccagacat atgttttttg gaatgttcat gagccttctc ctggcaatta caattttgaa 60 ggaagatatg acctggtgag gtttgtaaaa acgattcaga aagcagggct gtatgctcat 120 cttcgaattg gcccttacgt ttgtgcagag tggaattttg gagggtttcc agtatggctg 180 aagtatgtac ctggcattag cttcagagct gataatgaac ctttcaagaa cgcaatgaaa 240 gggtatgctg agaaaattgt taacttgatg aagatcataa tcttttcgag tctcagggtg 300 gtccaatcat actctcacag attgagaatg agtatgggcc tcaagccaag gtacttggag 360 caccgggaca tcagtattca acatgggctg caaatatggc agttggattt gaacacaggc 420 gtcccatggg tgatgtgcaa ggaagaagat gcaccagate ctgtgatcaa cacatgcaat 480 ggtttctact gtgataattt cttcccaaac aaaccataca aacctgcaat ttggactgaa 540 gcttggagtg gatggttct ggaatttggc ggtcccttc atcagagacc agttcaggat 600 ttggcatttg ctgttgccca atttatacaa agaggaggat cttttgttaa ctattacatg 660 tacatggggg gcacgaactt tggacgcact gcgggtggc cattcatcac taccagctat 720 gattatgatg ccccctcga cgagtatgg

<210> 7 <211> 2972 <212> DNA <213> Lycopersicon esculentum

<400>7

gcaacttctc cggtgaataa caccggtaaa cggccaatgc caactctcgt cggaatctga 60 atagtgattt aagcagctta gctagctaac ttttgcctct gcaatgaaca caatgagttg 120 tttgtcctct aatttcaagt tcgttttcct tgcctcgact gtgatatgga tgacggtaat 180 gtcgtcgtcg ttagcagcag tagatgcttc caatgttact actattcgta ctgatagtgt 240 gacttacgat cgacgctcgt tgattattaa cggccagagg aagctgctca tctccgcttc 300 cattcactat cetegeagtg teeetgecat gtggeetggt etggttegat tggegaagga 360 aggaggagtg gatgttattg aaacgtatgt tttctggaac ggtcacgaac cttctccggg 420 caattattac tttggaggaa ggtttgatct agtcaaattt tgtaagatca ttcagcaggc 480 tggaatgtat atgattette ggattggace atttgtaget geagaatgga aetttggtgg 540 acttectgtg tggttgcatt atgtgccagg taccaccttt cggactgata gtgaaccatt 600 taagtatcac atgcagaagt tcatgacata tacagtgaac ttaatgaaga gagagaggct 660 ttttgeatet eaaggaggte eaateatett gteacaggta gaaaatgagt aeggetaeta 720 tgaaaatgca tatggagaag gagggaaaag gtatgcctta tgggctgcta aaatggccct 780 tteteaaaat aetggtgtae ettggataat gtgeeageag tatgatgete etgateetgt 840 gattgacaca tgcaattcat tttactgcga ccaatttaaa ccaatctctc caaacaagec 900 caaaatttgg acagagaact ggccgggatg gttcaagaca tttggggcca gagatcctca 960 caggecteae gaagatgttg ettatteegt ggetegtttt tteeaaaaag gaggaagegt 1020 gcagaattat tacatgtacc atggtgggac gaactttggc aggacagcag gtggcccttt 1080 cattaccaca agttatgact atgatgcccc aattgacgaa tatggtttac caaggtttcc 1140 aaaatggggt caccttaaag aacttcataa agtcataaaa tcgtgtgagc atgctctgct 1200 gaacaatgat ccaactette ttteattagg teetetacaa gaggetgatg tttatgaaga 1260 tgcttcaggc gcttgtgctg cctttctcgc gaatatggat gacaaaaatg acaaggtggt 1320 acagttccga catgtatcat accacttgcc agcatggtct gttagcattt tgccagactg 1380 caaaaatgta gcgttcaaca cagcaaaggt tggatgtcaa acttctattg tcaatatggc 1440 acceatagat ttgcatceca cegeaagtte accaaagaga gacatcaagt etetteagtg 1500

ggaagtette aaggaaacag etggagtatg ggeagttget gattteacta aaaacggatt 1560 tgtagatcac attaacacca caaaagatgc tacagactac ctctggtaca caacaagtat 1620 ttttgttcat gcagaggagg atttcctaag aaacagaggc actgcaatgc ttttcgttga 1680 atcaaagggt catgetatge atgtetteat caataaaaag etteaageea gtgeatetgg 1740 aaatggcaca gtgccacagt tcaagtttgg aactcctatt gctctaaagg cagggaagaa 1800 tgaaatttcc ttgttaagca tgactgtggg cctacaaaca gctggagcgt tttatgaatg 1860 gattggaget ggtecaacaa gtgteaaagt tgeagggtte aagaetggga etatggaett 1920 gactgcgtct gcttggacct ataagattgg attgcaagca gaacatttga ggatacagaa 1980 gtcatataac ttgaagagta aaatttgggc accaacttcg cagccaccaa agcaacagcc 2040 ceteacatgg tataaggeag tagtagatge geeteetggt aatgaacetg ttgeacttga 2100 tatgattcat atgggaaaag gaatggcttg gttgaatgca caagaaattg gcagatattg 2160 geegaggaga aettetaaat atgagaattg tgttaeteaa tgtgaetaca gageeaaatt 2220 taaccctgat aagtgtgtca ctggctgtgg acaacctaca cagagatggt atcatgtgcc 2280 acgatettgg tteaageeat eaggaaatgt ettaattate tttgaggaaa taggtggaga 2340 teeeteteaa attagattet eaatgegaaa ggtttetgga gettgtggte atettteagt 2400 ggaccateca teetttgatg ttgaaaatet geaageaagt gaaattgaga aegacaaaaa 2460 cageceaact etaagtttea aatgeeeeae aaataetaat attteetetg teaaatttge 2520 cagetttgga aatectaatg gtacatgtgg etectacate etaggagaet geeaegatea 2580 gaattetgea geaetggteg aaaaggtttg eetgaaceaa aatgagtgtg eattagaaat 2640 gtccagcgca aactttaaca tgcaattgtg tccaagtaca gtaaagaaac ttgcagttga 2700 agtgaattgc agctgagtgt cattgcccaa aatgaatgac atattctaat ttatatagtt 2760 tgctacggag atgctcattc ttaaaccttt cttatatagc agaaaaatct gctattcctt 2820 ctttcgtcta tgatttgaag tttaagatat gagtactgat gtcttattaa gcatcaccag 2880 ataaccttgg atattcatgt ttgaaagact aagtattcat atttattcag tcgagatgca 2940 agatttattt gtgaaaaaaa aaaaaaaaaa aa 2972

```
<210> 8
<211> 835
<212> PRT
<213> Lycopersicon esculentum
```

<400>8

Met Gly Phe Trp Met Ala Met Leu Leu Met Leu Leu Leu Cys Leu Trp 1 5 10 15

Val Ser Cys Gly Ile Ala Ser Val Ser Tyr Asp His Lys Ala Ile Ile 20 25 30

Val Asn Gly Gln Arg Lys Ile Leu Ile Ser Gly Ser Ile His Tyr Pro 35 40 45

Arg Ser Thr Pro Glu Met Trp Pro Asp Leu Ile Gln Lys Ala Lys Glu 50 55 60

Gly Gly Val Asp Val Ile Gln Thr Tyr Val Phe Trp Asn Gly His Glu

Pro Glu Glu Gly Lys Tyr Tyr Phe Glu Glu Arg Tyr Asp Leu Val Lys 85 90 95

Phe Ile Lys Val Val Gln Glu Ala Gly Leu Tyr Val His Leu Arg Ile 100 105 110

Gly Pro Tyr Ala Cys Ala Glu Trp Asn Phe Gly Gly Phe Pro Val Trp 115 120 125

Leu Lys Tyr Val Pro Gly Ile Ser Phe Arg Thr Asn Asn Glu Pro Phe 130 135 140

Lys Ala Ala Met Gln Lys Phe Thr Thr Lys Ile Val Asp Met Met Lys 145 150 155 160

Ala Glu Lys Leu Tyr Glu Thr Gln Gly Gly Pro Ile Ile Leu Ser Gln
165 170 175

Ile Glu Asn Glu Tyr Gly Pro Met Glu Trp Glu Leu Gly Glu Pro Gly 180 185 190

Lys Val Tyr Ser Glu Trp Ala Ala Lys Met Ala Val Asp Leu Gly Thr 195 200 205

Gly Val Pro Trp Ile Met Cys Lys Gln Asp Asp Val Pro Asp Pro Ile 210 215 220

Ile Asn Thr Cys Asn Gly Phe Tyr Cys Asp Tyr Phe Thr Pro Asn Lys 225 230 235 240

Ala Asn Lys Pro Lys Met Trp Thr Glu Ala Trp Thr Ala Trp Phe Thr 245 250 255

Glu Phe Gly Gly Pro Val Pro Tyr Arg Pro Ala Glu Asp Met Ala Phe 260 265 270

Ala Val Ala Arg Phe Ile Gln Thr Gly Gly Ser Phe Ile Asn Tyr Tyr 275 280 285

Met Tyr His Gly Gly Thr Asn Phe Gly Arg Thr Ser Gly Gly Pro Phe 290 295 300

Ile Ala Thr Ser Tyr Asp Tyr Asp Ala Pro Leu Asp Glu Phe Gly Ser 305 310 315 320

- Leu Arg Gln Pro Lys Trp Gly His Leu Lys Asp Leu His Arg Ala Ile 325 330 335
- Lys Leu Cys Glu Pro Ala Leu Val Ser Val Asp Pro Thr Val Thr Ser 340 345 350
- Leu Gly Asn Tyr Gln Glu Ala Arg Val Phe Lys Ser Glu Ser Gly Ala 355 360 365
- Cys Ala Ala Phe Leu Ala Asn Tyr Asn Gln His Ser Phe Ala Lys Val 370 375 380
- Ala Phe Gly Asn Met His Tyr Asn Leu Pro Pro Trp Ser Ile Ser Ile 385 390 395 400
- Leu Pro Asp Cys Lys Asn Thr Val Tyr Asn Thr Ala Arg Val Gly Ala 405 410 415
- Gln Ser Ala Gln Met Lys Met Thr Pro Val Ser Arg Gly Phe Ser Trp 420 425 430
- Glu Ser Phe Asn Glu Asp Ala Ala Ser His Glu Asp Asp Thr Phe Thr 435 440 445
- Val Val Gly Leu Leu Glu Gln Ile Asn Ile Thr Arg Asp Val Ser Asp 450 455 460
- Tyr Leu Trp Tyr Met Thr Asp Ile Glu Ile Asp Pro Thr Glu Gly Phe 465 470 475 480
- Leu Asn Ser Gly Asn Trp Pro Trp Leu Thr Val Phe Ser Ala Gly His 485 490 495
- Ala Leu His Val Phe Val Asn Gly Gln Leu Ala Gly Thr Val Tyr Gly 500 505 510
- Ser Leu Glu Asn Pro Lys Leu Thr Phe Ser Asn Gly Ile Asn Leu Arg 515 520 525
- Ala Gly Val Asn Lys Ile Ser Leu Leu Ser Ile Ala Val Gly Leu Pro 530 535 540
- Asn Val Gly Pro His Phe Glu Thr Trp Asn Ala Gly Val Leu Gly Pro 545 550 555 560
- Val Ser Leu Asn Gly Leu Asn Glu Gly Thr Arg Asp Leu Thr Trp Gln

Man and

ú

Fred Hour

90.J

---

general Haran

Marie Marie

1

Lys Trp Phe Tyr Lys Val Gly Leu Lys Gly Glu Ala Leu Ser Leu His 580 585 590

Ser Leu Ser Gly Ser Pro Ser Val Glu Trp Val Glu Gly Ser Leu Val 595 600 605

Ala Gln Lys Gln Pro Leu Ser Trp Tyr Lys Thr Thr Phe Asn Ala Pro 610 615 620

Asp Gly Asn Glu Pro Leu Ala Leu Asp Met Asn Thr Met Gly Lys Gly 625 630 635 640

Gln Val Trp Ile Asn Gly Gln Ser Leu Gly Arg His Trp Pro Ala Tyr 645 650 655

Lys Ser Ser Gly Ser Cys Ser Val Cys Asn Tyr Thr Gly Trp Phe Asp 660 665 670

Glu Lys Lys Cys Leu Thr Asn Cys Gly Glu Gly Ser Gln Arg Trp Tyr 675 680 685

His Val Pro Arg Ser Trp Leu Tyr Pro Thr Gly Asn Leu Leu Val Val 690 695 700

Phe Glu Glu Trp Gly Gly Asp Pro Tyr Gly Ile Thr Leu Val Lys Arg 705 710 715 720

Glu Ile Gly Ser Val Cys Ala Asp Ile Tyr Glu Trp Gln Pro Gln Leu 725 730 735

Leu Asn Trp Gln Arg Leu Val Ser Gly Lys Phe Asp Arg Pro Leu Arg
740 745 750

Pro Lys Ala His Leu Lys Cys Ala Pro Gly Gln Lys Ile Ser Ser Ile 755 760 765

Lys Phe Ala Ser Phe Gly Thr Pro Glu Gly Val Cys Gly Asn Phe Gln 770 775 780

Gln Gly Ser Cys His Ala Pro Arg Ser Tyr Asp Ala Phe Lys Lys Asn 785 790 795 800

Cys Val Gly Lys Glu Ser Cys Ser Val Gln Val Thr Pro Glu Asn Phe 805 810 815

Gly Gly Asp Pro Cys Arg Asn Val Leu Lys Lys Leu Ser Val Glu Ala 820 825 830 Ile Cys Ser 835 <210>9 <211>887 <212> PRT <213> Lycopersicon esculentum <400>9 Ser Arg Arg Lys Thr Leu Asn Phe Pro Leu Ile Leu Thr Val Leu Thr 10 15 Ile His Phe Val Ile Val Ala Gly Glu Tyr Phe Lys Pro Phe Asn Val 25 30 Thr Tyr Asp Asn Arg Ala Leu Ile Ile Gly Gly Lys Arg Arg Met Leu 45 40 Ile Ser Ala Gly Ile His Tyr Pro Arg Ala Thr Pro Glu Met Trp Pro 55 60 Thr Leu Ile Ala Arg Ser Lys Glu Gly Gly Ala Asp Val Ile Glu Thr 75 Tyr Thr Phe Trp Asn Gly His Glu Pro Thr Arg Gly Gln Tyr Asn Phe 90 85 95 Glu Gly Arg Tyr Asp Ile Val Lys Phe Ala Lys Leu Val Gly Ser His 105 110 Gly Leu Phe Leu Phe Ile Arg Ile Gly Pro Tyr Ala Cys Ala Glu Trp 115 120 Asn Phe Gly Gly Phe Pro Ile Trp Leu Arg Asp Ile Pro Gly Ile Glu 135 Phe Arg Thr Asp Asn Ala Pro Phe Lys Glu Glu Met Glu Arg Tyr Val 150 155 160

Lys Lys Ile Val Asp Leu Met Ile Ser Glu Ser Leu Phe Ser Trp Gln

175

170

165

- Gly Gly Pro Ile Ile Leu Leu Gln Ile Glu Asn Glu Tyr Gly Asn Val
  180
  185
  190

  Glu Ser Ser Phe Gly Pro Lys Gly Lys Leu Tyr Met Lys Trp Ala Ala
  195
  200
  205

  Glu Met Ala Val Gly Leu Gly Ala Gly Val Pro Trp Val Met Cys Arg
  210
  215
  220
- Gln Thr Asp Ala Pro Glu Tyr Ile Ile Asp Thr Cys Asn Ala Tyr Tyr 225 230 235 240
- Cys Asp Gly Phe Thr Pro Asn Ser Glu Lys Lys Pro Lys Ile Trp Thr 245 250 255
- Glu Asn Trp Asn Gly Trp Phe Ala Asp Trp Gly Glu Arg Leu Pro Tyr 260 265 270
- Arg Pro Ser Glu Asp Ile Ala Phe Ala Ile Ala Arg Phe Phe Gln Arg 275 280 285
- Gly Gly Ser Leu Gln Asn Tyr Tyr Met Tyr Phe Gly Gly Thr Asn Phe 290 295 300
- Gly Arg Thr Ala Gly Gly Pro Thr Gln Ile Thr Ser Tyr Asp Tyr Asp 305 310 315 320
- Ala Pro Leu Asp Glu Tyr Gly Leu Leu Arg Gln Pro Lys Trp Gly His 325 330 335
- Leu Lys Asp Leu His Ala Ala Ile Lys Leu Cys Glu Pro Ala Leu Val 340 345 350
- Ala Ala Asp Ser Pro Gln Tyr Ile Lys Leu Gly Pro Lys Gln Glu Ala 355 360 365
- His Val Tyr Arg Gly Thr Ser Asn Asn Ile Gly Gln Tyr Met Ser Leu 370 375 380
- Asn Glu Gly Ile Cys Ala Ala Phe Ile Ala Asn Ile Asp Glu His Glu 385 390 395 400
- Ser Ala Thr Val Lys Phe Tyr Gly Gln Glu Phe Thr Leu Pro Pro Trp 405 410 415
- Ser Val Val Phe Cys Gln Ile Ala Glu Ile Gln Leu Ser Thr Gln Leu

- Arg Trp Gly His Lys Leu Gln Ser Lys Gln Trp Ala Gln Ile Leu Phe 435 440 445
- Gln Leu Gly Ile Ile Leu Cys Phe Tyr Lys Leu Ser Leu Lys Ala Ser 450 455 460
- Ser Glu Ser Phe Ser Gln Ser Trp Met Thr Leu Lys Glu Pro Leu Gly 465 470 475 480
- Val Trp Gly Asp Lys Asn Phe Thr Ser Lys Gly Ile Leu Glu His Leu 485 490 495
- Asn Val Thr Lys Asp Gln Ser Asp Tyr Leu Trp Tyr Leu Thr Arg Ile 500 505 510
- Tyr Ile Ser Asp Asp Ile Ser Phe Trp Glu Glu Asn Asp Val Ser 515 520 525
- Pro Thr Ile Asp Ile Asp Ser Met Arg Asp Phe Val Arg Ile Phe Val 530 535 540
- Asn Gly Gln Leu Ala Gly Ser Val Lys Gly Lys Trp Ile Lys Val Val 545 550 555 560
- Gln Pro Val Lys Leu Val Gln Gly Tyr Asn Asp Ile Leu Leu Leu Ser 565 570 575
- Glu Thr Val Gly Leu Gln Asn Tyr Gly Ala Phe Leu Glu Lys Asp Gly 580 585 590
- Ala Gly Phe Lys Gly Gln Ile Lys Leu Thr Gly Cys Lys Ser Gly Asp 595 600 605
- Ile Asn Leu Thr Thr Ser Leu Trp Thr Tyr Gln Val Gly Leu Arg Gly 610 615 620
- Glu Phe Leu Glu Val Tyr Asp Val Asn Ser Thr Glu Ser Ala Gly Trp 625 630 635 640
- Thr Glu Phe Pro Thr Gly Thr Thr Pro Ser Val Phe Ser Trp Tyr Lys 645 650 655
- Thr Lys Phe Asp Ala Pro Gly Gly Thr Asp Pro Val Ala Leu Asp Phe 660 665 670

- Ser Ser Met Gly Lys Gly Gln Ala Trp Val Asn Gly His His Val Gly 675 680 685
- Arg Tyr Trp Thr Leu Val Ala Pro Asn Asn Gly Cys Gly Arg Thr Cys 690 695 700
- Asp Tyr Arg Gly Ala Tyr His Ser Asp Lys Cys Arg Thr Asn Cys Gly 705 710 715 720
- Glu Ile Thr Gln Ala Trp Tyr His Ile Pro Arg Ser Trp Leu Lys Thr
  725 730 735
- Leu Asn Asn Val Leu Val Ile Phe Glu Glu Thr Asp Lys Thr Pro Phe 740 745 750
- Asp Ile Ser Ile Ser Thr Arg Ser Thr Glu Thr Ile Cys Ala Gln Val 755 760 765
- Ser Glu Lys His Tyr Pro Pro Leu His Lys Trp Ser His Ser Glu Phe 770 775 780
- Asp Arg Lys Leu Ser Leu Met Asp Lys Thr Pro Glu Met His Leu Gln 785 790 795 800
- Cys Asp Glu Gly His Thr Ile Ser Ser Ile Glu Phe Ala Ser Tyr Gly 805 810 815
- Ser Pro Asn Gly Ser Cys Gln Lys Phe Ser Gln Gly Lys Cys His Ala 820 825 830
- Ala Asn Ser Leu Ser Val Val Ser Gln Ala Cys Ile Gly Arg Thr Ser 835 840 845
- Cys Ser Ile Gly Ile Ser Asn Gly Val Phe Gly Asp Pro Cys Arg His 850 855 860
- Val Val Lys Ser Leu Ala Val Gln Ala Lys Cys Ser Pro Pro Pro Asp 865 870 875 880
- Leu Ser Thr Ser Ala Ser Ser 885

<210> 10

<211>838

<212> PRT

## <213> Lycopersicon esculentum <400> 10

Met Gly Cys Thr Leu Ile Leu Met Leu Asn Val Leu Leu Val Leu Leu 1 5 10 15

Gly Ser Trp Val Phe Ser Gly Thr Ala Ser Val Ser Tyr Asp His Arg 20 25 30

Ala Ile Ile Val Asn Gly Gln Arg Arg Ile Leu Ile Ser Gly Ser Val 35 40 45

His Tyr Pro Arg Ser Thr Pro Glu Met Trp Pro Gly Ile Ile Gln Lys 50 55 60

Ala Lys Glu Gly Gly Val Asp Val Ile Gln Thr Tyr Val Phe Trp Asn 65 70 75 80

Gly His Glu Pro Gln Gln Gly Lys Tyr Tyr Phe Glu Gly Arg Tyr Asp 85 90 95

Leu Val Lys Phe Ile Lys Leu Val His Gln Ala Gly Leu Tyr Val His 100 105 110

Leu Arg Val Gly Pro Tyr Ala Cys Ala Glu Trp Asn Phe Gly Gly Phe 115 120 125

Pro Val Trp Leu Lys Tyr Val Pro Gly Ile Ser Phe Arg Thr Asp Asn 130 135 140

Gly Pro Phe Lys Ala Ala Met Gln Lys Phe Thr Ala Lys Ile Val Asn 145 150 155 160

Met Met Lys Ala Glu Arg Leu Tyr Glu Thr Gln Gly Gly Pro Ile Ile 165 170 175

Leu Ser Gln Ile Glu Asn Glu Tyr Gly Pro Met Glu Trp Glu Leu Gly 180 185 190

Ala Pro Gly Lys Ser Tyr Ala Gln Trp Ala Ala Lys Met Ala Val Gly 195 200 205

Leu Asp Thr Gly Val Pro Trp Val Met Cys Lys Gln Asp Asp Ala Pro 210 215 220

Asp Pro Ile Ile Asn Ala Cys Asn Gly Phe Tyr Cys Asp Tyr Phe Ser

Pro Asn Lys Ala Tyr Lys Pro Lys Ile Trp Thr Glu Ala Trp Thr Ala 245 250 255

Trp Phe Thr Gly Phe Gly Asn Pro Val Pro Tyr Arg Pro Ala Glu Asp 260 265 270

Leu Ala Phe Ser Val Ala Lys Phe Ile Gln Lys Gly Gly Ser Phe Ile 275 280 285

Asn Tyr Tyr Met Tyr His Gly Gly Thr Asn Phe Gly Arg Thr Ala Gly 290 295 300

Gly Pro Phe Ile Ala Thr Ser Tyr Asp Tyr Asp Ala Pro Leu Asp Glu 305 310 315 320

Tyr Gly Leu Leu Arg Gln Pro Lys Trp Gly His Leu Lys Asp Leu His 325 330 335

Arg Ala Ile Lys Leu Cys Glu Pro Ala Leu Val Ser Gly Asp Pro Ala 340 345 350

Val Thr Ala Leu Gly His Gln Gln Glu Ala His Val Phe Arg Ser Lys 355 360 365

Ala Gly Ser Cys Ala Ala Phe Leu Ala Asn Tyr Asp Gln His Ser Phe 370 375 380

Ala Thr Val Ser Phe Ala Asn Arg His Tyr Asn Leu Pro Pro Trp Ser 385 390 395 400

Ile Ser Ile Leu Pro Asp Cys Lys Asn Thr Val Phe Asn Thr Ala Arg 405 410 415

Ile Gly Ala Gln Ser Ala Gln Met Lys Met Thr Pro Val Ser Arg Gly
420 425 430

Leu Pro Trp Gln Ser Phe Asn Glu Glu Thr Ser Ser Tyr Glu Asp Ser 435 440 445

Ser Phe Thr Val Val Gly Leu Leu Glu Gln Ile Asn Thr Thr Arg Asp 450 455 460

Val Ser Asp Tyr Leu Trp Tyr Ser Thr Asp Val Lys Ile Asp Ser Arg 465 470 475 480

- Glu Lys Phe Leu Arg Gly Gly Lys Trp Pro Trp Leu Thr Ile Met Ser 485 490 495
- Ala Gly His Ala Leu His Val Phe Val Asn Gly Gln Leu Ala Gly Thr 500 505 510
- Ala Tyr Gly Ser Leu Glu Lys Pro Lys Leu Thr Phe Ser Lys Ala Val 515 520 525
- Asn Leu Arg Ala Gly Val Asn Lys Ile Ser Leu Leu Ser Ile Ala Val 530 535 540
- Gly Leu Pro Asn Ile Gly Pro His Phe Glu Thr Trp Asn Ala Gly Val 545 550 555 560
- Leu Gly Pro Val Ser Leu Thr Gly Leu Asp Glu Gly Lys Arg Asp Leu 565 570 575
- Thr Trp Gln Lys Trp Ser Tyr Lys Val Gly Leu Lys Gly Glu Ala Leu 580 585 590
- Ser Leu His Ser Leu Ser Gly Ser Ser Ser Val Glu Trp Val Glu Gly 595 600 605
- Ser Leu Val Ala Gln Arg Gln Pro Leu Thr Trp Tyr Lys Ser Thr Phe 610 615 620
- Asn Ala Pro Ala Gly Asn Asp Pro Leu Ala Leu Asp Leu Asn Thr Met 625 630 635 640
- Gly Lys Gly Gln Val Trp Ile Asn Gly Gln Ser Leu Gly Arg Tyr Trp 645 650 655
- Pro Gly Tyr Lys Ala Ser Gly Asn Cys Gly Ala Cys Asn Tyr Ala Gly 660 665 670
- Trp Phe Asn Glu Lys Lys Cys Leu Ser Asn Cys Gly Glu Ala Ser Gln 675 680 685
- Arg Trp Tyr His Val Pro Arg Ser Trp Leu Tyr Pro Thr Gly Asn Leu 690 695 700
- Leu Val Leu Phe Glu Glu Trp Gly Gly Glu Pro His Gly Ile Ser Leu 705 710 715 720
- Val Lys Arg Glu Val Ala Ser Val Cys Ala Asp Ile Asn Glu Trp Gln

W WW W

The But Sul

i zi

Hard Hard

Pro Gln Leu Val Asn Trp Gln Met Gln Ala Ser Gly Lys Val Asp Lys 740 745 750

Pro Leu Arg Pro Lys Ala His Leu Ser Cys Ala Ser Gly Gln Lys Ile 755 760 765

Thr Ser Ile Lys Phe Ala Ser Phe Gly Thr Pro Gln Gly Val Cys Gly 770 775 780

Ser Phe Arg Glu Gly Ser Cys His Ala Phe His Ser Tyr Asp Ala Phe 785 790 795 800

Glu Arg Tyr Cys Ile Gly Gln Asn Ser Cys Ser Val Pro Val Thr Pro 805 810 815

Glu Ile Phe Gly Gly Asp Pro Cys Pro His Val Met Lys Lys Leu Ser 820 825 830

Val Glu Val Ile Cys Ser 835

<210>11

<211>724

<212> PRT

<213> Lycopersicon esculentum

<400> 11

Met Leu Arg Thr Asn Val Leu Leu Leu Leu Val Ile Cys Leu Leu Asp 1 5 10 15

Phe Phe Ser Ser Val Lys Ala Ser Val Ser Tyr Asp Asp Arg Ala Ile 20 25 30

Ile Ile Asn Gly Lys Arg Lys Ile Leu Ile Ser Gly Ser Ile His Tyr 35 40 45

Pro Arg Ser Thr Pro Gln Met Trp Pro Asp Leu Ile Gln Lys Ala Lys 50 55 60

Asp Gly Gly Leu Asp Val Ile Glu Thr Tyr Val Phe Trp Asn Gly His 65 70 75 80

Glu Pro Ser Pro Gly Lys Tyr Asn Phe Glu Gly Arg Tyr Asp Leu Val

- Arg Phe Ile Lys Met Val Gln Arg Ala Gly Leu Tyr Val Asn Leu Arg 100 105 110
- Ile Gly Pro Tyr Val Cys Ala Glu Trp Asn Phe Gly Gly Phe Pro Val 115 120 125
- Trp Leu Lys Tyr Val Pro Gly Met Glu Phe Arg Thr Asn Asn Gln Pro 130 135 140
- Phe Lys Val Ala Met Gln Gly Phe Val Gln Lys Ile Val Asn Met Met 145 150 155 160
- Lys Ser Glu Asn Leu Phe Glu Ser Gln Gly Gly Pro Ile Ile Met Ala 165 170 175
- Gln Ile Glu Asn Glu Tyr Gly Pro Val Glu Trp Glu Ile Gly Ala Pro 180 185 190
- Gly Lys Ala Tyr Thr Lys Trp Ala Ala Gln Met Ala Val Gly Leu Lys 195 200 205
- Thr Gly Val Pro Trp Ile Met Cys Lys Gln Glu Asp Ala Pro Asp Pro 210 215 220
- Val Ile Asp Thr Cys Asn Gly Phe Tyr Cys Glu Gly Phe Arg Pro Asn 225 230 235 240
- Lys Pro Tyr Lys Pro Lys Met Trp Thr Glu Val Trp Thr Gly Trp Tyr 245 250 255
- Thr Lys Phe Gly Gly Pro Ile Pro Gln Arg Pro Ala Glu Asp Ile Ala 260 265 270
- Phe Ser Val Ala Arg Phe Val Gln Asn Asn Gly Ser Phe Phe Asn Tyr 275 280 285
- Tyr Met Tyr His Gly Gly Thr Asn Phe Gly Arg Thr Ser Ser Gly Leu 290 295 300
- Phe Ile Ala Thr Ser Tyr Asp Tyr Asp Ala Pro Leu Asp Glu Tyr Gly 305 310 315 320
- Leu Leu Asn Glu Pro Lys Tyr Gly His Leu Arg Asp Leu His Lys Ala 325 330 335

- Ile Lys Leu Ser Glu Pro Ala Leu Val Ser Ser Tyr Ala Ala Val Thr 340 345 350
- Ser Leu Gly Ser Asn Gln Glu Ala His Val Tyr Arg Ser Lys Ser Gly 355 360 365
- Ala Cys Ala Ala Phe Leu Ser Asn Tyr Asp Ser Arg Tyr Ser Val Lys 370 375 380
- Val Thr Phe Gln Asn Arg Pro Tyr Asn Leu Pro Pro Trp Ser Ile Ser 385 390 395 400
- Ile Leu Pro Asp Cys Lys Thr Ala Val Tyr Asn Thr Ala Gln Val Asn 405 410 415
- Ser Gln Ser Ser Ser Ile Lys Met Thr Pro Ala Gly Gly Gly Leu Ser 420 425 430
- Trp Gln Ser Tyr Asn Glu Glu Thr Pro Thr Ala Asp Asp Ser Asp Thr 435 440 445
- Leu Thr Ala Asn Gly Leu Trp Glu Gln Lys Asn Val Thr Arg Asp Ser 450 455 460
- Ser Asp Tyr Leu Trp Tyr Met Thr Asn Val Asn Ile Ala Ser Asn Glu 465 470 475 480
- Gly Phe Leu Lys Asn Gly Lys Asp Pro Tyr Leu Thr Val Met Ser Ala 485 490 495
- Gly His Val Leu His Val Phe Val Asn Gly Lys Leu Ser Gly Thr Val 500 505 510
- Tyr Gly Thr Leu Asp Asn Pro Lys Leu Thr Tyr Ser Gly Asn Val Lys 515 520 525
- Leu Arg Ala Gly Ile Asn Lys Ile Ser Leu Leu Ser Val Ser Val Gly 530 535 540
- Leu Pro Asn Val Gly Val His Tyr Asp Thr Trp Asn Ala Gly Val Leu 545 550 555 560
- Gly Pro Val Thr Leu Ser Gly Leu Asn Glu Gly Ser Arg Asn Leu Ala 565 570 575
- Lys Gln Lys Trp Ser Tyr Lys Val Gly Leu Lys Gly Glu Ser Leu Ser

Leu His Ser Leu Ser Gly Ser Ser Ser Val Glu Trp Val Arg Gly Ser

595 600

605

Leu Met Ala Gln Lys Gln Pro Leu Thr Trp Tyr Lys Ala Thr Phe Asn 610 615 620

Ala Pro Gly Gly Asn Asp Pro Leu Ala Leu Asp Met Ala Ser Met Gly 625 630 635 640

Lys Gly Gln Ile Trp Ile Asn Gly Glu Gly Val Gly Arg His Trp Pro 645 650 655

Gly Tyr Ile Ala Gln Gly Asp Cys Ser Lys Cys Ser Tyr Ala Gly Thr 660 665 670

Phe Asn Glu Lys Lys Cys Gln Thr Asn Cys Gly Gln Pro Ser Gln Arg 675 680 685

Trp Tyr His Val Pro Arg Ser Trp Leu Lys Pro Ser Gly Asn Leu Leu 690 695 700

Val Val Phe Glu Glu Trp Gly Gly Asn Pro Thr Gly Ile Ser Leu Val 705 710 715 720

Arg Arg Ser Arg

<210>12

<211>251

<212> PRT

<213> Lycopersicon esculentum

<400> 12

Ile Gln Thr Tyr Val Phe Trp Asn Leu His Glu Pro Val Arg Asn Gln
1 5 10 15

Tyr Asp Phe Glu Gly Arg Lys Asp Leu Ile Asn Phe Val Lys Leu Val 20 25 30

Glu Arg Ala Gly Leu Phe Val His Ile Arg Ile Gly Pro Tyr Val Cys 35 40 45

Ala Glu Trp Asn Tyr Gly Gly Phe Pro Leu Trp Leu His Phe Ile Pro

٠.

Gly Ile Glu Phe Arg Thr Asp Asn Glu Pro Phe Lys Ala Glu Met Lys 75

Arg Phe Thr Ala Lys Ile Val Asp Met Ile Lys Gln Glu Asn Leu Tyr 90

Ala Ser Gln Gly Gly Pro Val Ile Leu Ser Gln Ile Glu Asn Glu Tyr 100 105

Gly Asn Gly Asp Ile Glu Ser Arg Tyr Gly Pro Arg Ala Lys Pro Tyr 120 115

Val Asn Trp Ala Ala Ser Met Ala Thr Ser Leu Asn Thr Gly Val Pro 130 135

Trp Val Met Cys Gln Gln Pro Asp Ala Pro Pro Ser Val Ile Asn Thr 145 150 155 160

Cys Asn Gly Phe Tyr Cys Asp Gln Phe Lys Gln Asn Ser Asp Lys Thr 165 170 175

Pro Lys Met Trp Thr Glu Asn Trp Thr Gly Trp Phe Leu Ser Phe Gly 180 185

Gly Phe Val Pro Tyr Arg Pro Val Glu Asp Ile Ala Phe Ala Val Ala 195 200 205

Arg Phe Phe Gln Arg Gly Gly Thr Phe Gln Asn Tyr Tyr Met Tyr His 210 215 220

Gly Gly Thr Asn Phe Gly Arg Thr Ser Gly Gly Pro Phe Ile Ala Thr 225 230 235 240

Ser Tyr Asp Tyr Asp Ala Pro Leu Asp Glu Tyr 245 250

<210>13

<211>249

<212> PRT

<213> Lycopersicon esculentum

<400>13

Ile Gln Thr Tyr Val Phe Trp Asn Val His Glu Pro Ser Pro Gly Asn

Tyr Asn Phe Glu Gly Arg Tyr Asp Leu Val Arg Phe Val Lys Thr Ile 20 25 30

Gln Lys Ala Gly Leu Tyr Ala His Leu Arg Ile Gly Pro Tyr Val Cys 35 40 45

Ala Glu Trp Asn Phe Gly Gly Phe Pro Val Trp Leu Lys Tyr Val Pro 50 55 60

Gly Ile Ser Phe Arg Ala Asp Asn Glu Pro Phe Lys Asn Ala Met Lys 65 70 75 80

Gly Tyr Ala Glu Lys Ile Val Asn Leu Met Lys Ile Ile Ile Phe Ser 85 90 95

Ser Leu Arg Val Val Gln Ser Tyr Ser His Arg Leu Arg Met Ser Met 100 105 110

Gly Leu Lys Pro Arg Tyr Leu Glu His Arg Asp Ile Ser Ile Gln His 115 120 125

Gly Leu Gln Ile Trp Gln Leu Asp Leu Asn Thr Gly Val Pro Trp Val 130 135 140

Met Cys Lys Glu Glu Asp Ala Pro Asp Pro Val Ile Asn Thr Cys Asn 145 150 155 160

Gly Phe Tyr Cys Asp Asn Phe Phe Pro Asn Lys Pro Tyr Lys Pro Ala 165 170 175

Ile Trp Thr Glu Ala Trp Ser Gly Trp Phe Ser Glu Phe Gly Gly Pro
180 185 190

Leu His Gln Arg Pro Val Gln Asp Leu Ala Phe Ala Val Ala Gln Phe 195 200 205

Ile Gln Arg Gly Gly Ser Phe Val Asn Tyr Tyr Met Tyr His Gly Gly 210 215 220

Thr Asn Phe Gly Arg Thr Ala Gly Gly Pro Phe Ile Thr Thr Ser Tyr 225 230 235 240

Asp Tyr Asp Ala Pro Leu Asp Glu Tyr 245

<210> 14 <211> 870 <212> PRT <213> Lycopersicon esculentum
<400> 14 Met Asn Thr Met Ser Cys Leu Ser Ser Asn Phe Lys Phe Val Phe Leu 1 5 10 15
Ala Ser Thr Val Ile Trp Met Thr Val Met Ser Ser Ser Leu Ala Ala 20 25 30
Val Asp Ala Ser Asn Val Thr Thr Ile Gly Thr Asp Ser Val Thr Tyr 35 40 45
Asp Arg Arg Ser Leu Ile Ile Asn Gly Gln Arg Lys Leu Leu Ile Ser 50 55 60
Ala Ser Ile His Tyr Pro Arg Ser Val Pro Ala Met Trp Pro Gly Leu 65 70 75 80
Val Arg Leu Ala Lys Glu Gly Gly Val Asp Val Ile Glu Thr Tyr Val 85 90 95
Phe Trp Asn Gly His Glu Pro Ser Pro Gly Asn Tyr Tyr Phe Gly Gly 100 105 110
Arg Phe Asp Leu Val Lys Phe Cys Lys Ile Ile Gln Gln Ala Gly Met 115 120 125
Tyr Met Ile Leu Arg Ile Gly Pro Phe Val Ala Ala Glu Trp Asn Phe 130 135 140
Gly Gly Leu Pro Val Trp Leu His Tyr Val Pro Gly Thr Thr Phe Arg 145 150 155 160
Thr Asp Ser Glu Pro Phe Lys Tyr His Met Gln Lys Phe Met Thr Tyr 165 170 175
Thr Val Asn Leu Met Lys Arg Glu Arg Leu Phe Ala Ser Gln Gly Gly 180 185 190
Pro Ile Ile Leu Ser Gln Val Glu Asn Glu Tyr Gly Tyr Tyr Glu Asn 195 200 205

Ala Tyr Gly Glu Gly Gly Lys Arg Tyr Ala Leu Trp Ala Ala Lys Met 210 215 220
Ala Leu Ser Gln Asn Thr Gly Val Pro Trp Ile Met Cys Gln Gln Tyr 225 230 235 240
Asp Ala Pro Asp Pro Val Ile Asp Thr Cys Asn Ser Phe Tyr Cys Asp 245 250 255
Gln Phe Lys Pro Ile Ser Pro Asn Lys Pro Lys Ile Trp Thr Glu Asn 260 265 270
Trp Pro Gly Trp Phe Lys Thr Phe Gly Ala Arg Asp Pro His Arg Pro 275 280 285
Ala Glu Asp Val Ala Tyr Ser Val Ala Arg Phe Phe Gln Lys Gly Gly 290 295 300
Ser Val Gln Asn Tyr Tyr Met Tyr His Gly Gly Thr Asn Phe Gly Arg 305 310 315 320
Thr Ala Gly Gly Pro Phe Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro 325 330 335
Ile Asp Glu Tyr Gly Leu Pro Arg Phe Pro Lys Trp Gly His Leu Lys 340 345 350
Glu Leu His Lys Val Ile Lys Ser Cys Glu His Ala Leu Leu Asn Asn 355 360 365
Asp Pro Thr Leu Leu Ser Leu Gly Pro Leu Gln Glu Ala Asp Val Tyr 370 375 380
Glu Asp Ala Ser Gly Ala Cys Ala Ala Phe Leu Ala Asn Met Asp Asp 385 390 395 400
Lys Asn Asp Lys Val Val Gln Phe Arg His Val Ser Tyr His Leu Pro 405 410 415
Ala Trp Ser Val Ser Ile Leu Pro Asp Cys Lys Asn Val Ala Phe Asn 420 425 430
Thr Ala Lys Val Gly Cys Gln Thr Ser Ile Val Asn Met Ala Pro Ile 435 440 445

Asp Leu His Pro Thr Ala Ser Ser Pro Lys Arg Asp Ile Lys Ser Leu

. . . .

In the first

and her an

IQ

i.

Anna Santa

Gln Trp Glu Val Phe Lys Glu Thr Ala Gly Val Trp Gly Val Ala Asp 465 470 475 480

Phe Thr Lys Asn Gly Phe Val Asp His Ile Asn Thr Thr Lys Asp Ala 485 490 495

Thr Asp Tyr Leu Trp Tyr Thr Thr Ser Ile Phe Val His Ala Glu Glu 500 505 510

Asp Phe Leu Arg Asn Arg Gly Thr Ala Met Leu Phe Val Glu Ser Lys 515 520 525

Gly His Ala Met His Val Phe Ile Asn Lys Lys Leu Gln Ala Ser Ala 530 535 540

Ser Gly Asn Gly Thr Val Pro Gln Phe Lys Phe Gly Thr Pro Ile Ala 545 550 555 560

Leu Lys Ala Gly Lys Asn Glu Ile Ser Leu Leu Ser Met Thr Val Gly 565 570 575

Leu Gln Thr Ala Gly Ala Phe Tyr Glu Trp Ile Gly Ala Gly Pro Thr 580 585 590

Ser Val Lys Val Ala Gly Phe Lys Thr Gly Thr Met Asp Leu Thr Ala 595 600 605

Ser Ala Trp Thr Tyr Lys Ile Gly Leu Gln Gly Glu His Leu Arg Ile 610 615 620

Gln Lys Ser Tyr Asn Leu Lys Ser Lys Ile Trp Ala Pro Thr Ser Gln 625 630 635 640

Pro Pro Lys Gln Gln Pro Leu Thr Trp Tyr Lys Ala Val Val Asp Ala 645 650 655

Pro Pro Gly Asn Glu Pro Val Ala Leu Asp Met Ile His Met Gly Lys 660 665 670

Gly Met Ala Trp Leu Asn Gly Gln Glu Ile Gly Arg Tyr Trp Pro Arg 675 680 685

Arg Thr Ser Lys Tyr Glu Asn Cys Val Thr Gln Cys Asp Tyr Arg Gly 690 695 700

Lys Phe Asn Pro Asp Lys Cys Val Thr Gly Cys Gly Gln Pro Thr Gln 705 710 715 720
Arg Trp Tyr His Val Pro Arg Ser Trp Phe Lys Pro Ser Gly Asn Val 725 730 735
Leu Ile Ile Phe Glu Glu Ile Gly Gly Asp Pro Ser Gln Ile Arg Phe 740 745 750
Ser Met Arg Lys Val Ser Gly Ala Cys Gly His Leu Ser Val Asp His 755 760 765
Pro Ser Phe Asp Val Glu Asn Leu Gln Gly Ser Glu Ile Glu Asn Asp 770 775 780
Lys Asn Arg Pro Thr Leu Ser Leu Lys Cys Pro Thr Asn Thr Asn Ile 785 790 795 800
Ser Ser Val Lys Phe Ala Ser Phe Gly Asn Pro Asn Gly Thr Cys Gly 805 810 815

Ser Tyr Met Leu Gly Asp Cys His Asp Gln Asn Ser Ala Ala Leu Val

Glu Lys Val Cys Leu Asn Gln Asn Glu Cys Ala Leu Glu Met Ser Ser

Ala Asn Phe Asn Met Gln Leu Cys Pro Ser Thr Val Lys Lys Leu Ala 

Val Glu Val Asn Cys Ser