Relación entre las distancias de un punto D a los vértices de un triángulo equilátero, y el lado de éste

Sean **a**, **b** y **c** las distancias del punto **D** al triángulo equilátero **ABC** y sea **d** el lado de este.

Llamemos $u = \angle BDC$, $v = \angle CDA$, $w = \angle ADB$.

Tenemos que $u + v + w = {2\pi \choose 0}$, según que el punto D sea interior o exterior al triángulo. En cualquier caso, tenemos entonces que

$$\cos w = \cos(2\pi - (u+v)) = \cos(u+v) = \cos u \cos v - \sin u \sin v$$

Aplicando el teorema del coseno a los tres triángulos BDC, CDA y ADB,

$$d^2 = b^2 + c^2 - 2bc \cos u$$

$$d^2 = c^2 + a^2 - 2ca\cos\nu$$

$$d^2 = a^2 + b^2 - 2ab\cos w = a^2 + b^2 - 2ab(\cos u \cos v - \sin u \sin v)$$

$$\begin{split} d^2 &= a^2 + b^2 - 2ab \left(\frac{b^2 + c^2 - d^2}{2bc} \frac{c^2 + a^2 - d^2}{2ac} \right. \\ &- \sqrt{1 - \left(\frac{b^2 + c^2 - d^2}{2bc} \right)^2} \sqrt{1 - \left(\frac{c^2 + a^2 - d^2}{2ca} \right)^2} \right) \\ &= a^2 + b^2 - \frac{(b^2 + c^2 - d^2)(c^2 + a^2 - d^2)}{2c^2} \\ &+ \frac{\sqrt{(4b^2c^2 - (b^2 + c^2 - d^2)^2)(4c^2a^2 - (c^2 + a^2 - d^2)^2)}}{2c^2} \Rightarrow \end{split}$$

$$2c^{2}(d^{2} - a^{2} - b^{2}) + (b^{2} + c^{2} - d^{2})(c^{2} + a^{2} - d^{2})$$

$$= \sqrt{(4b^{2}c^{2} - (b^{2} + c^{2} - d^{2})^{2})(4c^{2}a^{2} - (c^{2} + a^{2} - d^{2})^{2})}$$

$$(2c^{2}(d^{2} - a^{2} - b^{2}) + (b^{2} + c^{2} - d^{2})(c^{2} + a^{2} - d^{2}))^{2}$$

$$= (4b^{2}c^{2} - (b^{2} + c^{2} - d^{2})^{2})(4c^{2}a^{2} - (c^{2} + a^{2} - d^{2})^{2})$$

$$4c^{4}(d^{2} - a^{2} - b^{2})^{2} + (b^{2} + c^{2} - d^{2})^{2}(c^{2} + a^{2} - d^{2})^{2}$$

$$+ 4c^{2}(d^{2} - a^{2} - b^{2})(b^{2} + c^{2} - d^{2})(c^{2} + a^{2} - d^{2})$$

$$= 16a^{2}b^{2}c^{4} - 4b^{2}c^{2}(c^{2} + a^{2} - d^{2})^{2} - 4c^{2}a^{2}(b^{2} + c^{2} - d^{2})^{2}$$

$$+ (b^{2} + c^{2} - d^{2})^{2}(c^{2} + a^{2} - d^{2})^{2}$$

$$\begin{aligned} 4c^4(d^2-a^2-b^2)^2 + 4c^2(d^2-a^2-b^2)(b^2+c^2-d^2)(c^2+a^2-d^2) \\ &= 16a^2b^2c^4 - 4b^2c^2(c^2+a^2-d^2)^2 - 4c^2a^2(b^2+c^2-d^2)^2 \\ c^2(d^2-a^2-b^2)^2 + (d^2-a^2-b^2)(b^2+c^2-d^2)(c^2+a^2-d^2) \\ &= 4a^2b^2c^2 - b^2(c^2+a^2-d^2)^2 - a^2(b^2+c^2-d^2)^2 \\ c^2(d^2-a^2-b^2)^2 + b^2(c^2+a^2-d^2)^2 + a^2(b^2+c^2-d^2)^2 \\ &= 4a^2b^2c^2 + (a^2+b^2-d^2)(b^2+c^2-d^2)(c^2+a^2-d^2) \\ c^2d^4+c^2a^4+c^2b^4-2c^2d^2a^2-2c^2d^2b^2+2c^2a^2b^2+b^2c^4+b^2a^4+b^2d^4 \\ &+ 2b^2c^2a^2-2b^2c^2d^2-2b^2a^2d^2+a^2b^4+a^2c^4+a^2d^4+2a^2b^2c^2 \\ &= 4a^2b^2c^2+a^2b^2c^2+a^4b^2-a^2b^2d^2+a^2c^4+a^4c^2-a^2c^2d^2 \\ &= 4a^2b^2c^2+a^2b^2c^2+a^4b^2-a^2b^2d^2+a^2c^4+a^4c^2-a^2c^2d^2 \\ &-a^2c^2d^2-a^4d^2+a^2d^4+b^4c^2+b^4a^2-b^4d^2+b^2c^4+a^2b^2c^2 \\ &-b^2c^2d^2-b^2c^2d^2-b^2d^2a^2+b^2d^4-a^2c^2d^2-b^2a^2d^2+b^2d^4 \\ &-d^2c^4-a^2c^2d^2+c^2d^4+c^2d^4+a^2d^4-d^6 \end{aligned}$$

$$-b^2c^2d^2-a^2c^2d^2-b^2a^2d^2=-a^4d^2-b^4d^2+b^2d^4-d^2c^4+c^2d^4+a^2d^4-d^6$$

$$-b^2c^2-a^2c^2-b^2a^2=-a^4-b^4+b^2d^2-c^4+c^2d^2+a^2d^2-d^4$$

$$a^4+b^4+c^4+d^4=b^2c^2+a^2c^2+b^2a^2+b^2d^2+c^2d^2+a^2d^2$$

La suma de las cuartas potencias de las cuatro variables es igual a la suma de los cuadrados de los seis productos de cada par de ellas. Multiplicando por dos ésta última ecuación y sumando las cuartas potencias, queda finalmente:

$$3(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2$$

Ecuación simétrica en las cuatro variables. Se trata de una ecuación bicuadrada en cualquiera de ellas, por lo que puede resolverse mediante radicales cuadráticos. Por ejemplo, para *d*:

$$d^{4} - (a^{2} + b^{2} + c^{2})d^{2} + (a^{4} + b^{4} + c^{4} - b^{2}c^{2} - a^{2}c^{2} - b^{2}a^{2}) = 0$$

$$d^{2} = \frac{(a^{2} + b^{2} + c^{2}) \pm \sqrt{(a^{2} + b^{2} + c^{2})^{2} - 4(a^{4} + b^{4} + c^{4} - b^{2}c^{2} - a^{2}c^{2} - b^{2}a^{2})}}{2}$$

$$= \frac{(a^{2} + b^{2} + c^{2}) \pm \sqrt{-3(a^{4} + b^{4} + c^{4}) + 6(b^{2}c^{2} + a^{2}c^{2} + b^{2}a^{2})}}{2}$$

$$= \frac{(a^{2} + b^{2} + c^{2}) \pm \sqrt{3}\sqrt{-(a^{4} + b^{4} + c^{4}) + 2(b^{2}c^{2} + a^{2}c^{2} + b^{2}a^{2})}}{2}$$

La expresión dentro del radical puede factorizarse:

$$-(a^{4} + b^{4} + c^{4}) + 2(b^{2}c^{2} + a^{2}c^{2} + b^{2}a^{2}) = -(a^{2} - b^{2})^{2} + 2c^{2}(a^{2} + b^{2}) - c^{4}$$

$$= -((a + b)(a - b))^{2} + c^{2}((a + b)^{2} + (a - b)^{2}) - c^{4}$$

$$= -((a + b)^{2} - c^{2})((a - b)^{2} - c^{2})$$

$$= (a + b + c)(a + b - c)(a - b + c)(b + c - a)$$

Con lo que finalmente queda:

$$d = \sqrt{\frac{(a^2 + b^2 + c^2) \pm \sqrt{3}\sqrt{(a+b+c)(a+b-c)(a-b+c)(b+c-a)}}{2}}$$

Que poniendo $s = \frac{a+b+c}{2}$ y llamando **S'** al área del triángulo de lados **a**, **b** y **c**, también puede escribirse como:

$$d = \sqrt{\frac{(a^2 + b^2 + c^2) \pm 4\sqrt{3s(s-a)(s-b)(s-c)}}{2}} = \sqrt{\frac{(a^2 + b^2 + c^2) \pm 4\sqrt{3}S'}{2}}$$

Vemos que cada una de las tres distancias debe ser menor que la suma de las otras dos. Si **d** corresponde al lado del triángulo y **D e**s interior, debe tomarse el signo '+'.

Esta relación puede obtenerse también de forma más sencilla determinando el

área del triángulo equilátero en función de las distancias a los tres vértices. Para ello basta construir sobre cada uno de los segmentos **a**, **b** y **c** triángulos equiláteros **ADE**, **BDF** y **CFG**, siempre con la misma orientación, de manera que los nuevos vértices de estos triángulos y los tres del **ABC** forman un hexágono. Los tres triángulos **AFD**, **GDB** y **DCE** que quedan entre los equiláteros son iguales entre si, pues tiene sus lados iguales a **a**, **b** y **c**.

Por otra parte, los triángulos que están igualmente coloreados en la figura son idénticos, pues se obtienen u

coloreados en la figura son idénticos, pues se obtienen unos de otros mediante un giro de 60º respecto a los vértices del triángulo **ABC**. Por tanto, el hexágono tiene área 2**S** y:

$$S = \frac{\sqrt{3}}{4}d^2 = \frac{1}{2}\left(\frac{\sqrt{3}}{4}(a^2 + b^2 + c^2) + \frac{3}{4}\sqrt{(a+b+c)(a+b-c)(a-b+c)(b+c-a)}\right)$$

Multiplicando por $\frac{8}{\sqrt{3}}$,

$$2d^{2} = a^{2} + b^{2} + c^{2} + \sqrt{3(a+b+c)(a+b-c)(a-b+c)(b+c-a)}$$

$$2d^{2}-a^{2}-b^{2}-c^{2}=\sqrt{3(a+b+c)(a+b-c)(a-b+c)(b+c-a)}$$

Elevando al cuadrado y desarrollando,

$$4d^{4} + a^{4} + b^{4} + c^{4} + 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2}) - 4d^{2}(a^{2} + b^{2} + c^{2})$$

$$= -3(a^{4} + b^{4} + c^{4}) + 6(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2})$$

$$4(a^{4} + b^{4} + c^{4} + d^{4}) = 4(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2} + a^{2}d^{2} + b^{2}d^{2} + c^{2}d^{2})$$

$$2(a^{4} + b^{4} + c^{4} + d^{4}) = 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2} + a^{2}d^{2} + b^{2}d^{2} + c^{2}d^{2})$$

$$3(a^{4} + b^{4} + c^{4} + d^{4}) = a^{4} + b^{4} + c^{4} + d^{4} + 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2} + a^{2}d^{2} + b^{2}d^{2} + c^{2}d^{2})$$

$$3(a^{4} + b^{4} + c^{4} + d^{4}) = (a^{2} + b^{2} + c^{2} + d^{2})^{2}$$

Resultado que como se vio anteriormente también es válido si **D** es exterior al triángulo **ABC**.

Las 96 soluciones con triángulos equiláteros de lado d entero y D un punto **interior** a distancias enteras a < b < c de sus vértices, con suma de estas distancias $t \le 10000$ son las siguientes:

а	b	С	d	t
57	65	73	112	195
73	88	95	147	256
43	147	152	185	342
97	185	208	273	490
127	168	205	283	500
43	248	285	287	576
111	221	280	331	612
49	285	296	331	630
95	312	343	403	750
152	343	387	485	882
147	377	437	520	961
296	315	361	559	972
152	365	497	507	1014
255	343	473	592	1071
323	392	407	645	1122
247	408	485	637	1140
285	464	469	691	1218
217	425	608	633	1250
323	392	645	713	1360
57	673	715	728	1445
469	589	624	965	1682
245	632	817	873	1694
403	725	728	1047	1856
561	931	1016	1415	2508
285	1067	1288	1343	2640
871	901	931	1560	2703
559	1120	1311	1649	2990
657	1085	1273	1688	3015

551	1055	1519	1584	3125
485	1208	1443	1687	3136
553	1105	1488	1657	3146
767	1005	1477	1768	3249
211	1541	1560	1729	3312
760	1099	1469	1839	3328
195	1544	1591	1729	3330
824	915	1591	1729	3330
833	1147	1368	1895	3348
379	1464	1519	1805	3362
507	1400	1457	1843	3364
1057	1128	1387	2045	3572
811	1029	1744	1805	3584
1083	1240	1313	2093	3636
1072	1105	1463	2073	3640
559	1415	1896	1939	3870
392	1653	1987	2015	4032
952	1403	1895	2337	4250
721	1480	2131	2139	4332
1023	1387	2045	2408	4455
1208	1635	1687	2593	4530
715	1737	2353	2408	4805
1051	1744	2045	2709	4840
889	1891	2085	2696	4865
1443	1463	2015	2792	4921
1209	1505	2231	2704	4945
1240	1617	2197	2813	5054
1249	1769	2289	2960	5307
1005	2072	2363	3007	5440

193	2667	2728	2855	5588
1423	1885	2347	3192	5655
1568	1713	2465	3217	5746
855	2197	2863	3032	5915
1267	1857	2840	3113	5964
485	2784	2821	3211	6090
523	2707	3145	3192	6375
936	2431	3059	3365	6426
1679	2345	2416	3681	6440
1843	2165	2553	3752	6561
1083	2408	3233	3475	6724
1456	2251	3021	3685	6728
731	2755	3399	3416	6885
481	3121	3360	3601	6962
1769	1899	3379	3640	7047
1501	2216	3465	3679	7182
1897	2425	2953	4128	7275
1568	2197	3515	3723	7280
1512	2855	2923	4097	7290
1581	2680	3241	4171	7502

936	3199	3379	4055	7514
903	3035	3608	3937	7546
784	3249	3655	4031	7688
2089	2405	3441	4424	7935
1803	2767	3368	4445	7938
1960	2883	3173	4553	8016
344	3971	4095	4309	8410
1967	3095	3368	4773	8430
2131	2261	4120	4329	8512
1015	3784	4161	4771	8960
1987	2728	4305	4693	9020
2392	3003	3713	5165	9108
2667	2728	3965	5263	9360
1807	3515	4087	5208	9409
1577	3792	4207	5255	9576
1985	3493	4147	5352	9625
2873	3192	3685	5597	9750
1256	3741	4805	4921	9802
2291	2735	4776	4921	9802

Se ve fácilmente que no puede haber soluciones enteras con dos distancias iguales, pues haciendo b = a, tendríamos:

$$3(2a^4 + c^4 + d^4) = (2a^2 + c^2 + d^2)^2$$

Que resolviendo para **a** nos da:

$$a = \pm \sqrt{c^2 + d^2 \pm \sqrt{3}cd}$$

Que nunca puede ser entero, ni siquiera racional, para c y d racionales distintos de cero. Naturalmente, las distancias a los vértices se pueden permutar, por lo que, en la mayoría de los casos, en el interior de un triángulo de lado d recogido en la tabla anterior hay 6 puntos que distan distancias enteras de los vértices. La excepción son los de lado d 1805, d0, d192 y 4921, que figuran dos veces en la tabla, y el famoso d1729 (número de Hardy-Ramanujan, que es el menor que puede escribirse de dos formas distintas como suma de dos cubos), que aparece tres veces, en dos de las cuales además coincide la mayor de las distancias y la suma de las tres. La mayor de las soluciones listadas es el otro caso en que coinciden las sumas de distancias, aunque no ninguna de ellas.