

# Ray Tracing Simulation of optically pumped Laser Crystals

Master's Thesis
Matthias Koenig
Chair for Computer Science 10, System Simulation, Friedrich-Alexander University of
Erlangen-Nuremberg
May 19, 2022







- Build a framework for physically accurate raytracing
- 2. Calculate absorbed power
- 3. Optimize mirror shape





- 1. Build a framework for physically accurate raytracing
- Calculate absorbed power
- 3. Optimize mirror shape





- 1. Build a framework for physically accurate raytracing
- 2. Calculate absorbed power
- 3. Optimize mirror shape





- 1. Build a framework for physically accurate raytracing
- 2. Calculate absorbed power
- 3. Optimize mirror shape



# **Outline**

**Optics** 

**Ray Tracing** 

Optimization

Results



# Optics





#### Reflection

A ray is reflected by creating a new ray with the origin at the intersection point and the direction determined by the incident angle.

$$\theta_1 = \theta_2$$

where  $\theta_1$  is the incident angle and  $\theta_2$  is the reflection angle.



#### Refraction

Refraction is modelled accurately by Snells' law:

$$n_1\sin(\theta_1)=n_2\sin(\theta_2)$$

where  $n_1$ ,  $n_2$  are the indices of refraction.





#### Fresnel Laws

The transmitted and reflected power can be calculated with the transmission- and reflection rates given by Fresnel's laws.

These are dependent on the orientation of the polarization of the incident ray (perpendicular or parallel) to the surface:

$$egin{aligned} R_{\perp} &= rac{\sin^2( heta_1 - heta_2)}{\sin^2( heta_1 + heta_2)} \ R_{\parallel} &= rac{ an^2( heta_1 - heta_2)}{ an^2( heta_1 + heta_2)} \ T_{\perp} &= 1 - R_{\perp} \end{aligned}$$



#### Fresnel Laws contd.

For now unpolarized light is assumed and only one refraction takes place so the total rates are:

$$R_{total} = rac{R_{\perp} + R_{\parallel}}{2}$$

$$T_{total} = \frac{T_{\perp} + T_{\parallel}}{2}$$



## **Sellmeier Equation**

Dependency of the refractive index on the wavelength of light is modelled using the Sellmeier equation.

$$n^2(\lambda) = 1 + \sum_i \frac{B_i \lambda^2}{\lambda^2 - C_i}$$

Here the  $B_i$  and  $C_i$  are empirically determined coefficients.



# **Ray Tracing**





#### **Parametrization**

All points along a ray are described as follows:

$$r(t) = o + t \cdot d$$

Testing intersections against primitives involves solving for the parameter *t*. **Example:** Axis aligned box intersection





#### Parametrization contd.

#### Solution:

```
float tx1 = (xmin - ray.origin.x) / ray.direction.x;
      float tx2 = (xmax - ray.origin.x) / ray.direction.x;
3
      float tmin = min(tx1, tx2):
4
      float tmax = max(tx1, tx2);
      float ty1 = (ymin - ray.origin.y) / ray.direction.y;
7
      float ty2 = (ymax - ray.origin.y) / ray.direction.y;
9
      tmin = max(tmin, glm::min(ty1, ty2));
10
      tmax = min(tmax, glm::max(ty1, ty2));
11
```

Other primitives in 2D can be lines, cricles, etc. Or in 3D triangles, quads, spheres, etc.

All objects in a scene need to be built with a collection of such primitives.



## Scene Tracing

If a ray hits an object new rays are genertated according to its type of surface (reflection, refraction).

These new rays are traced again through the scene.

⇒ Recurse until a desired "depth".

An object is intersected if one of its primitives is hit.

⇒ Need to check each primitive of every object in the scene.

Runtime of a scene tracing step with N objects with M primitives each:

$$O(N*M)$$



# **Hierarchical Bounding Volumes**

#### Performance optimization:

Runtime of a scene tracing step with N objects with M primitives each and 5 recursive subdivisions:

$$O(N*(5*4+M/4^5)) = O(N*M/1024)$$



# **Hierarchical Bounding Volumes**

#### Performance optimization:

- 1. Preprocessing: Attach a bounding box around each object and recursively subdivide.

Runtime of a scene tracing step with N objects with M primitives each and 5 recursive subdivisions:

$$O(N*(5*4+M/4^5)) = O(N*M/1024)$$



# **Hierarchical Bounding Volumes**

#### Performance optimization:

- 1. Preprocessing: Attach a bounding box around each object and recursively subdivide.
- 2. Tracing: Check if ray hits bounding box. If yes recursively check its subdivisions.

Runtime of a scene tracing step with N objects with M primitives each and 5 recursive subdivisions:

$$O(N*(5*4+M/4^5)) = O(N*M/1024)$$



# **Generating Rays and Random Sampling**

The goal is to randomly generate a cone of rays originating in the focus of the fresnel lens.

Uniformly sample the opening angle around a direction vector.



⇒ Not ideal in this case (big gaps between rays)

Better: Stratified Uniform Sampling



In reality sunlight consists of unpolarized light with a specific frequency spectrum. Thus the rays need to carry information about their power, frequency and polarity.

> Need mechanism to generate random samples x according to a given distribution density function p(x) (gauss, poisson, sun spectrum, etc.)

#### Inversion Method:



In reality sunlight consists of unpolarized light with a specific frequency spectrum. Thus the rays need to carry information about their power, frequency and polarity.

 $\implies$  Need mechanism to generate random samples x according to a given distribution density function p(x) (gauss, poisson, sun spectrum, etc.)

#### Inversion Method:

- 1. Integrate(sum up) the distribution p(x) in uniform steps x and save the value for each step resulting in P(x).



In reality sunlight consists of unpolarized light with a specific frequency spectrum. Thus the rays need to carry information about their power, frequency and polarity.

 $\implies$  Need mechanism to generate random samples x according to a given distribution density function p(x) (gauss, poisson, sun spectrum, etc.)

#### Inversion Method:

- 1. Integrate(sum up) the distribution p(x) in uniform steps x and save the value for each step resulting in P(x).
- 2. Uniformly sample  $\xi \in [0,1]$  and figure out in which interval it lies.



In reality sunlight consists of unpolarized light with a specific frequency spectrum. Thus the rays need to carry information about their power, frequency and polarity.

 $\implies$  Need mechanism to generate random samples x according to a given distribution density function p(x) (gauss, poisson, sun spectrum, etc.)

#### Inversion Method:

- 1. Integrate(sum up) the distribution p(x) in uniform steps x and save the value for each step resulting in P(x).
- 2. Uniformly sample  $\xi \in [0,1]$  and figure out in which interval it lies.
- 3. Interpolate linearly within the interval and return resulting x value.



#### **Inversion Method contd.**





#### **Mirror**

Mirror consists of 2D line segments arranged by a 1D shape function (parabolic for testing purposes).





### Crystal

The laser crystal is a 2D Box with an internal grid structure and grid tracing algorithm.

Rays need to be traced through cells in order<sup>1</sup> because of the absorbed energy calculation.



15

<sup>&</sup>lt;sup>1</sup> A Fast Voxel Traversal Algorithm for Ray Tracing, John Amanatides, Andrew Woo, University of Toronto



# Calculating Absorbed Power

The remaining power of a ray passing through the crystal is calculated by the Lambert law of absorption:

$$I_{out} = I_{in} \cdot e^{-\alpha d}$$

where  $\alpha$  is the absorption coefficient d is the distance travelled through a cell. Thus the absorbed power is:

$$I_{abs} = I_{in} - I_{out}$$

In reality the  $\alpha$  is frequency dependent but this is not implemented yet.



#### **Framework Overview**





# Optimization





#### **Problem**

Goal: Optimize both total absorbed power and variance across the crystal

- ⇒ Should result in a better and more powerful beam (verification in ASLD)
- ⇒ Need an algorithm to handle two objective functions at the same time (biobjective optimization)

Additional problem: noisy and nonsmooth, computationally expensive objective functions!







## **Derivative-Free Optimization**

Minimization problem:

Find 
$$\mathbf{x}_{min} \in \Omega \subseteq \mathbb{R}^n$$
 s.t.  $f(\mathbf{x}_{min}) \le f(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega$ 

Global optimization is not possible anyway for non-convex functions.

Problem: Gradient is not available, or easily computable!

Use Derivative-Free algorithms, not relying on derivatives of objective functions

- ⇒ Should be used as last resort, only if little or no information can be exploited
- ⇒ Objectives are treated as black-box functions, where the goal is to also use as little actual evaluations as possible (caching, etc.)
- ⇒ Optimality is often defined in an alternative way, to e.g. gradient search algorithms

Types of BBO: Simplex-Methods, Direct-Search-Methods, Model-Based-Methods etc.



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

#### Main Idea:

- ⇒ Optimality defined by via the Clarke generalized gradient

20



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

#### Main Idea:

- 1. Generate two different meshes (only conceptually)

- ⇒ Optimality defined by via the Clarke generalized gradient



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

#### Main Idea:

- 1. Generate two different meshes (only conceptually)
- 2. Let mesh sizes shrink at different rates
- ⇒ Optimality defined by via the Clarke generalized gradient



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

#### Main Idea:

- 1. Generate two different meshes (only conceptually)
- Let mesh sizes shrink at different rates.
- 3. Evaluate black-box functions only at intersections of the two meshes
- ⇒ Optimality defined by via the Clarke generalized gradient



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

- ⇒ Optimality defined by via the Clarke generalized gradient
- ⇒ Can be extended and used in a biobjective optimization problem!



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

- 1. Generate two different meshes (only conceptually)

- ⇒ Optimality defined by via the Clarke generalized gradient
- ⇒ Can be extended and used in a biobjective optimization problem!



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

- 1. Generate two different meshes (only conceptually)
- Let mesh sizes shrink at different rates.
- ⇒ Optimality defined by via the Clarke generalized gradient
- ⇒ Can be extended and used in a biobjective optimization problem!



Mesh Adaptive Direct Search is a Directional Direct Search method, using two different meshes in order to achieve a stronger optimality criterium than e.g. pattern search methods.

- 1. Generate two different meshes (only conceptually)
- Let mesh sizes shrink at different rates.
- 3. Evaluate black-box functions only at intersections of the two meshes
- ⇒ Optimality defined by via the Clarke generalized gradient
- ⇒ Can be extended and used in a biobjective optimization problem!



#### Clarke's Calculus

#### Definition

Let X be Banach,  $\mathbf{v} \in X$  some direction and  $f: X \to \mathbb{R}$  a real valued function that is locally Lipschitz continuous. The generalized directional derivative or Clarke directional derivative of f at  $\mathbf{x}$  in direction  $\mathbf{v}$  is given by

$$f^{\circ}(\mathbf{x}; \mathbf{v}) = \lim_{\mathbf{y} \to \mathbf{x}; \lambda \downarrow 0} \sup \frac{f(\mathbf{y} + \lambda \mathbf{v}) - f(\mathbf{y})}{\lambda}$$
(1)

#### Definition

The Clarke generalized gradient of f at  $\mathbf{x}$  is

$$\partial f(\mathbf{x}) = \{ \xi \in X : f^{\circ}(\mathbf{x}; \mathbf{v}) > \langle \xi, \mathbf{v} \rangle \} \quad \forall \mathbf{v} \in X$$
 (2)



#### Clarke's Calculus

#### **Definition**

A point **x** is called a Clarke stationary point, if the following holds

$$f^{\circ}(\mathbf{x}; \mathbf{v}) \ge 0 \quad \forall \mathbf{v} \in \mathbb{R}^n \iff 0 \in \partial f(\mathbf{x})$$
 (3)

- ⇒ MADS produces Clarke stationary points!
- ⇒ Pattern serach does not in general!
- ⇒ Search directions need to be asymptotically dense!



### **GPS Frames**

















### **MADS Frames**









#### **Definition**

Let  $\mathbf{u}, \mathbf{v} \in X$  be two points of the multiobjective function  $F: X \to Y$ .

- $\mathbf{u} \leq \mathbf{v}$  ( $\mathbf{u}$  weakly dominates  $\mathbf{v}$ )  $\iff$   $f_i(\mathbf{u}) \leq f_i(\mathbf{v}) \ \forall i \in \{1, \dots, p\}$
- $\mathbf{u} \prec \mathbf{v}$  ( $\mathbf{u}$  dominates  $\mathbf{v}$ )  $\iff \mathbf{u} \leq \mathbf{v}$  and  $f_j(\mathbf{u}) < f_j(\mathbf{v})$  for at least one  $j \in \{1, \dots, p\}$
- u ~ v (u is indifferent to v)
   \imp u does not dominate v and v does not dominate u







#### Definition

Let  $\mathbf{x} \in X$  be a point of the multiobjective function  $F: X \to Y$ .

- x is globally Pareto optimal (just called Pareto optimal) \( \leftrightarrow \) There exists no  $\mathbf{v}$  s.t.  $\mathbf{v} \prec \mathbf{x}$ . If  $\mathbf{x}$  is Pareto optimal then  $F(\mathbf{x})$  is called Pareto efficient.
- **x** is locally Pareto optimal  $\iff$  There exists an  $\varepsilon$ ,  $\sigma > 0$  for which the set  $\{y \in B_{\varepsilon}(x) \cap X \mid y \prec x, F(y) \in B_{\sigma}(F(x))\}$  is empty. If x is locally Pareto optimal then  $F(\mathbf{x})$  is called locally Pareto efficient.







#### Produces an approximation of the Pareto front!

#### Main Idea:



Produces an approximation of the Pareto front!

#### Main Idea:

- 1. Initially run MADS and save all Pareto optimal points



Produces an approximation of the Pareto front!

#### Main Idea:

- 1. Initially run MADS and save all Pareto optimal points
- 2. Generate a single objective formulation by a reference point approach



Produces an approximation of the Pareto front!

#### Main Idea:

- 1. Initially run MADS and save all Pareto optimal points
- 2. Generate a single objective formulation by a reference point approach
- 3. Run MADS and repeat step 2



#### **BiMADS**

Produces an approximation of the Pareto front!

#### Main Idea:

- 1. Initially run MADS and save all Pareto optimal points
- 2. Generate a single objective formulation by a reference point approach
- 3. Run MADS and repeat step 2
- 4. Pareto optimal points along the way are returned as Pareto front



# Results











### **Results**

| Setup                                                                  | Pump power | Absorbed Power[W] | Variance[W] | cw-Output[W] | optto-opt. Eff. [%] | Beam quality x | Beam quality y |
|------------------------------------------------------------------------|------------|-------------------|-------------|--------------|---------------------|----------------|----------------|
| Reference (al-                                                         | 720        | -                 | -           | 30.52        | 4.24                | 4.82           | 4.30           |
| gebraic)                                                               |            |                   |             |              |                     |                |                |
| Fixed mirror<br>and crystal<br>distance                                | 720        | 155.46            | 13.49       | 35.14        | 4.88                | 4.25           | 3.22           |
| Open mirror<br>and crytsal<br>distance (ini-<br>tial random<br>search) | 690        | 186.76            | 2.50        | 38.22        | 5.54                | 4.03           | 1.96           |
| Open mirror<br>and crytsal<br>distance (pipe<br>configuration)         | 665        | 191.13            | 4.08        | 38.05        | 5.72                | 3.90           | 1.66           |



# **Fixed setup**





## **Fixed Setup**





# Open setup





# Open setup





# Open setup - pipe configuration





# Open setup - pipe configuration





Thanks for listening.

Any questions/suggestions?