PROJET 5: ROBOT CONTINU BI-BRAS

PRÉSENTÉ PAR:

- -ALEXIS BOUYER
- -GUILLAUME FLAMA
- -ANAÏS TAÏATI
- -EMNA ADHAR

- 1. État de l'art:
- a. Limites et avantages des robots continus individuels

environnement dispicile d'accès	longue portée	port de
+	_	_
_	+	_
_	_	+

1. État de l'art:

a. Limites et avantages des robots continus individuels

b. Limites et avantages des robots continus coopératifs, jusque là étudiés

אמבנכנבנב ככ

per formance mécanique auxilièrée! mais forme peu adaptée

- 2. Solution proposée:
 - a. Contraintes à respecter

b. solution mécanique choisie: mécanisme de libération basé sur ...

- 3. Tests expérimentaux et évaluations
 - a. rigidité

TABLE I
DEFLECTION TEST PARAMETERS AND RESULTS

Parameter	RAIN-Snake	FLARE	Cooperating System
Length	1015 mm	715 mm	-
Outer diameter	20 mm	12 mm	-
Inner diameter	8 mm	6 mm	
Maximum hysteresis	25 mm 2.5%	21 mm 2.9%	6 mm 0.7%
Maximum deflection	139 mm 13.7%	132 mm 18.5%	38 mm 4.5%
Displacement on cycle 1	25 mm 2.5%	67 mm 9.4%	13 mm 1.5%
Max. displ. on cycles 2+	2 mm 0.2%	8 mm 1.1%	2 mm 0.2%
Stiffness coeff.	0.0147 N/mm	0.0112 N/mm	0.0437 N/mm

b. levée de charge utile

MODÉLISATION DANS SOFA

Dimensions:

Boite: 30cm de côté, D_trous: 4cm

Objet: poids 2kg, E= 69GPa (Rigide en Al)

Bras: poids: 100g, E=0.5GPa

STRUCTURE DU CODE

main.py

```
def createScene(rootNode): ...

def createRobot(modeling, pos, rot, num = 1

def createBox(modeling, pos=[0,0,0], rot=[0

def createPoids(modeling, pos=[0,0,0], rot=
```

controler.py

```
class ControllerDirect(Sofa.Core.Controller):
    def __init__(self, *args, **kwargs): ...

    def onAnimateBeginEvent(self, event): ...

    def onKeypressedEvent(self, event): ...
```

fonctions.py

```
def createObject(robot, filename, pos=[0,0,0], rot=[0,0,0]):
    def createVisual(robot, filename, pos=[0,0,0], rot=[0,0,0],
    def createCable(robot, i, r, angle, h, pos, rot): ...
    def createCollision(robot, loader, pos=[0,0,0], rot=[0,0,0],
    def setupCollisionPipeline(node): ...
    def import_plugins(root): ...
```

DÉTAILS DE LA SIMULATION

BUGS RENCONTRÉS

RÉSULTATS

- Force nécessaire pour soulever une mass
- 3 type de levage

EXPÉRIENCES

ANALYSE

- Rigidité
- Stabilité

MERCI POUR VOTRE ATTENTION