实验 8 河流流量估计与数据插值

例 8-1 己知观测数据

X	1	2	3	4	5	
у	-1	1.5	2.1	3.6	4.9	

求其插值多项式曲线。

例 8-2 已知观测数据

х	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1
у	447	1.978	3.28	6.16	7.08	7.34	7.66	9.56	9.48	9.3	11.2

求其插值多项式曲线。

 $y = \frac{y}{1+20x^2}$ **例 8-3** 对函数 $1+20x^2$,在 [-5, 5] 上以 1 为步长进行划分作 **Lagrange 插值**,观察函数曲线(虚线)与插值曲线(实线)的变化。

(1) 画出河床观测点的散点图

clf;clear x=0:5:100; y=[0 2.41 2.96 2.15 2.65 3.12 4.23 5.12 6.21 5.68 4.22 ... 3.91 3.26 2.85 2.35 3.02 3.63 4.12 3.46 2.08 0]; y1=10-y; plot(x,y1,'k.','markersize',18); axis([0 100 0 10]); grid

(2) 利用分段线性插值绘制河床曲线

(3) 利用样条插值绘制河床曲线

实验 9 人口预测与数据拟合

例 9-1 已知观测数据

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	447	1.978	3.28	6.16	7.08	7.34	7.66	9.56	9.48	9.3	11.2

分别拟合 3 次和 6 次多项式曲线,并分析该组数据的总体发展趋势。

实验 10 最优投资方案与优化问题的计算机求解

例 10-1 求下列线性规划问题的最优解:

$$\min Z = -40x_1 - 50x_2$$

$$s.t.\begin{cases} x_1 + 2x_2 \le 30\\ 3x_1 + 2x_2 \le 60\\ 2x_2 \le 24\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

例 10-2 求解线性规划问题

$$\min z = 2x_1 + 3x_2 + x_3$$

$$\begin{cases} x_1 + 4x_2 + 2x_3 \ge 8\\ 3x_1 + 2x_2 \ge 6\\ x_1, x_2, x_3 \ge 0 \end{cases}$$
s.t.

例 10-3 求解线性规划问题:

$$\min z = 5x_1 + x_2 + 2x_3 + 3x_4 + x_5$$

$$s.t. \begin{cases}
-2x_1 + x_2 - x_3 + x_4 - 3x_5 \le 1 \\
2x_1 + 3x_2 - x_3 + 2x_4 + x_5 \le -2 \\
0 \le x_j \le 1, \quad j = 1, 2, 3, 4, 5
\end{cases}$$

例 10-8 $\min f = 4x^2 + 5xy + 2y^2$

例 10-9 求解下列最大最小化问题:

例 10-10 设某城市有某种物品的 10 个需求点,第 i 个需求点 P_i 的坐标为(a_i,b_i),道路网与坐标轴平行,彼此正交。现打算建一个该物品的供应中心,且由于受到城市某些条件的限制,该供应中心只能设在 x 界于[5,8],y 界于[5,8]的范围之内。问该中心应建在何处为好? P_i 点的坐标为:

Н	1177/4/24												
	a_i	1	4	3	5	9	12	6	20	17	8		
	b_i	2	10	8	18	1	4	5	10	8	9		