

Les nombres complexes

Introduction

On appelle *i* une racine carrée de -1: $i^2 = -1$ et on définit l'ensemble des *nombres complexes* comme :

$$\mathbb{C} = \{ z = x + iy \mid x, y \in \mathbb{R}, \quad i^2 = -1 \}$$

- -x est la partie réelle de z, notée : $x = \Re(z)$
- y est la partie imaginaire de z, notée : y = Im(z)

1.2 Opérations sur ℂ

1.
$$z = x + iy = 0 \Leftrightarrow x = y = 0$$
. Sinon pour $y \neq 0$: $i = -\frac{x}{y} \in \mathbb{R}$

2.
$$z + z' = (x + iy) + (x' + iy') = x + x' + i(y + y')$$

$$- \Re (z + z') = \Re (z) + \Re (z')$$

$$-\operatorname{Im}(z+z')=\operatorname{Im}(z)+\operatorname{Im}(z')$$

3.
$$z \cdot z' = (x + iy) \cdot (x' + iy') = x \cdot x' - y \cdot y' + i(x \cdot y' + x' \cdot y)$$

$$- \Re(z.z') = \Re(z).\Re(z') - \operatorname{Im}(z)\operatorname{Im}(z')$$

$$-\operatorname{Im}(z.z') = \operatorname{\mathfrak{Re}}(z)\operatorname{Im}(z') + \operatorname{\mathfrak{Re}}(z')\operatorname{Im}(z)$$

4.
$$x + iy = x' + iy'$$
 \Leftrightarrow $x = x'$ et $y = y'$. Puisque: $x + iy = x' + iy'$ \Leftrightarrow $x - x' + i(y - y') = 0$

5.
$$(x+iy).(x-iy) = x^2 + y^2$$

6. Si
$$x + iy \neq 0$$
: $\frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}$

$$- \Re(\frac{1}{z}) = \frac{\Re(z)}{\Re(z)^2 + \operatorname{Im}(z)^2}$$

$$- \operatorname{Im}(\frac{1}{z}) = \frac{-\operatorname{Im}(z)}{\Re(z)^2 + \operatorname{Im}(z)^2}$$

$$-\operatorname{Im}(\frac{1}{z}) = \frac{-\operatorname{Im}(z)}{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$$

Les nombres complexes représentés dans le plan

Le nombre complexe z s'appelle *l'affixe* du point M de coordonnées (a,b) dans le plan.

1.4 Représentation de l'addition des complexes

Addition

Soustraction

1.5 Conjugaison

Soit $z = x + iy \in \mathbb{C}$. On appelle nombre complexe *conjugué de z*, le nombre :

Conjugué: règles de calcul

$$z = x + iy$$
 $\bar{z} = x - iy$

1.
$$\Re(\bar{z}) = \Re(z)$$
 et $\operatorname{Im}(\bar{z}) = -\operatorname{Im}(z)$

2. •
$$z + \bar{z} = (x + iy) + (x - iy) = 2x$$
 \Rightarrow $\Re c(z) = \frac{1}{2}(z + \bar{z})$

•
$$z - \bar{z} = (x + iy) - (x - iy) = 2ix$$
 \Rightarrow $\operatorname{Im}(z) = \frac{1}{2i}(z - \bar{z})$

3.
$$z = \overline{z} \iff \operatorname{Im}(z) = 0$$
 d'après 2. $\iff z \in \mathbb{R}$

4.
$$z + \bar{z} = 0 \iff \Re \varepsilon(z) = 0$$
 d'après 2. $\iff z \in i \mathbb{R} = \mathbb{C} \setminus \mathbb{R}$

5. •
$$\overline{(z+z')} = \overline{(x+iy) + (x'+iy')} = \overline{(x+x') + i(y+y')} = (x+x') - i(y+y') = (x-iy) + (x'-iy') = \overline{z} + \overline{z}'$$

•
$$\overline{(\bar{z})} = \overline{x - iy} = x + iy = z$$

•
$$\overline{(z.z')} = \overline{(x+iy).(x'+iy')} = \overline{(x.x'-y.y')+i(x.y'+x'.y)} = (x.x'-y.y')-i(x.y'+x'.y) = (x-iy).(x'-iy') = \overline{z}.\overline{z}'$$

1.6 Module d'un nombre complexe

On appelle *module* du nombre complexe z, le nombre réel :

$$|z| = \sqrt{z.\bar{z}} = \sqrt{x^2 + y^2}$$

Propriétés

1.
$$|z| = |-z| = |\bar{z}|$$

- Si
$$z = x + iy$$
 alors: $-z = -x - iy$, $|-z| = \sqrt{(-x)^2 + (-y)^2} = \sqrt{x^2 + y^2} = |z|$

$$-\bar{z} = x - iy$$
 et $|\bar{z}| = \sqrt{x^2 + (-y)^2} = |z|$

2.
$$|x| \le |z|$$
, et $|y| \le |z|$

$$-x^{2} \le x^{2} + y^{2} \implies \sqrt{x^{2}} = |x| \le \sqrt{x^{2} + y^{2}}$$

3.
$$|z| = 0 \Leftrightarrow z = 0$$

- Si
$$z = 0$$
, alors $x = 0$ et $y = 0$, donc: $\sqrt{x^2 + y^2} = 0$, c'est-à-dire: $z = 0 \implies x = y = 0$

– Si
$$|z| = 0$$
, $\sqrt{x^2 + y^2} = 0$, soit : $x^2 + y^2 = 0$. Si la somme de deux carrés est nulle, chaque carré est nul...

4.
$$|z.z'| = |z|.|z'|$$

$$-|z.z'|^2 = (z.z').\overline{(z.z')} = (z.z').(\overline{z}.\overline{z}') = (z.\overline{z}).(z'.\overline{z}') = |z|^2.|z'|^2$$
. Comme il s'agit de carrés de nombres réels positifs, l'égalité des carrés, implique l'égalité des nombres.

5.
$$|z + z'| \le |z| + |z'|$$
 Inégalité triangulaire.

$$-|z+z'|^{2} = (z+z').\overline{(z+z')} = z.\overline{z} + z.\overline{z}' + z'.\overline{z} + z'.\overline{z}'$$

$$= |z|^{2} + 2\Re(z.\overline{z}') + |z'|^{2}$$

$$\leq |z|^{2} + 2|z|.|z'| + |z'|^{2} = (|z| + |z'|)^{2}$$

Module d'un nombre complexe

1.7 Racine carrée des nombres complexes

Proposition: Tout nombre complexe a deux racine carrées opposées.

Pour trouver la racine d'un nombre complexe a + ib, on pose : $(x + iy)^2 = a + ib$, alors :

$$(x + iy)^2 = x^2 - y^2 + 2ixy = a + ib$$

De plus:

$$|z|^2 = x^2 + y^2 = \sqrt{a^2 + b^2}$$

D'où le système :
$$\begin{cases} x^2 - y^2 &= a & (1) \\ 2xy &= b & (2) \\ x^2 + y^2 &= \sqrt{a^2 + b^2} & (3) \end{cases}$$

On calcule x et y avec les équations (1) et (3) :

1.
$$(1) + (3) : 2x^2 = \sqrt{a^2 + b^2} + a = \alpha$$

2. (3) – (1):
$$2y^2 = \sqrt{a^2 + b^2} - a = \beta$$

D'où :
$$\begin{cases} x = \pm \sqrt{\frac{\alpha}{2}} \\ y = \pm \sqrt{\frac{\beta}{2}} \end{cases}$$

L'équation (2) permet de choisir le signe de x et de y :

- Si b > 0 alors x et y sont de même signe et on a les solutions :

$$z = \sqrt{\frac{\alpha}{2}} + i\sqrt{\frac{\beta}{2}}$$
 et $-z = -\sqrt{\frac{\alpha}{2}} - i\sqrt{\frac{\beta}{2}}$

– Si b > 0 alors x et y sont de signes contraires et on a les solutions :

$$z = \sqrt{\frac{\alpha}{2}} - i\sqrt{\frac{\beta}{2}}$$
 et $-z = -\sqrt{\frac{\alpha}{2}} + i\sqrt{\frac{\beta}{2}}$

Exemple

Racine carrée de 3 + 4 i

On pose z = x + iy tel que $z^2 = 3 + 4i$

$$(x+iy)^2 = x^2 - y^2 + 2ixy = 3 + 4i$$
 et $|z|^2 = x^2 + y^2 = \sqrt{3^2 + 4^2} = 5$

x et y sont donc solutions du système :

$$\begin{cases} x^2 - y^2 = 3 & (1) \\ 2xy = 4 & (2) \\ x^2 + y^2 = 5 & (3) \end{cases}$$

1.
$$(1) + (3) : 2x^2 = 3 + 5 = 8 \implies x = \pm 2$$

2. (3)
$$-(1): 2y^2 = 5 - 3 = 2 \implies y = \pm 1$$

D'après l'équation (2), x et y sont de même signe les deux solutions sont donc :

$$z = 2 + i$$
 et $-z = -2 - i$

1.8 L'équation du second degré

L'équation générale du second degré s'écrit :

$$az^2 + bz + c = 0, \quad a \neq 0, b, c \in \mathbb{C}$$

Écriture sous la forme « canonique » :

$$az^{2} + bz + c = a\left(z^{2} + \frac{b}{a}z + \frac{c}{a}\right) = 0$$
 (1)

$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] = 0 \tag{2}$$

$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] = 0 \tag{3}$$

Comme on a supposé que $a \neq 0$ (pourquoi?), l'équation (3) nous dit alors que : $\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0$

D'où : $\left(z + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$ et les racines de l'équation sont donc les nombres complexes z tels que $z + \frac{b}{2a}$ soit une racine carrée de $\frac{\Delta}{4a^2}$; il y en a donc deux, d'après la section précédente.

Si a, b et c sont réels:

1. Si
$$\Delta > 0$$
, les deux racines sont : $z_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$

2. Si
$$\Delta < 0$$
, $\Delta = -i^2 \Delta$ et $i^2 \Delta > 0$, les deux racines sont : $z_1 = \frac{-b + i \sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b - i \sqrt{-\Delta}}{2a}$

3. Si
$$\Delta = 0$$
, il y a une racine double : $z = -\frac{b}{2a}$

Si a, b et c sont complexes:

Soit d un nombre complexe tel que $d^2 = b^2 - 4ac$, il y en a deux d'après la section précédente.

1. Si
$$b^2 - 4ac \neq 0$$
, l'équation a deux racines : $z_1 = \frac{-b+d}{2a}$ et $z_2 = \frac{-b-d}{2a}$.

2. Si
$$b^2 - 4ac = 0$$
, l'équation a une racine double : $z = -\frac{b}{2a}$

En conclusion : Dans C, toute équation du second degré a toujours des racines.

1.9 Argument

Argument d'un nombre complexe

On appelle *argument* du nombre complexe z = x + iy, la seule solution θ , $0 \le \theta < 2\pi$, du système :

$$\begin{cases}
\cos \theta &= \frac{x}{\sqrt{x^2 + y^2}} \\
\sin \theta &= \frac{y}{\sqrt{x^2 + y^2}}
\end{cases}$$

Notation : $\theta = \arg(z)$

Remarque: Le choix $0 \le \theta < 2\pi$ est un choix arbitraire, on peut tout aussi bien choisir: $-\pi \le \theta < \pi$ ou tout intervalle de longueur 2π .

1.10 Écriture trigonométrique des nombres complexes

Un nombre complexe peut s'écrire de deux manières :

1. algébrique : z = x + iy, $x, y \in \mathbb{R}$

2. trigonométrique : $z = r(\cos \theta + i \sin \theta)$, $r \in \mathbb{R}_+$, $0 \le \theta < 2\pi$

Exemples

$$-z = 1 + i \qquad r = |z| = \sqrt{1^2 + 1^2} = \sqrt{2}$$
Donc:
$$z = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$-z = 3 + i\sqrt{3} \qquad r = |z| = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3}$$
Donc:
$$z = 2\sqrt{3} \left(\frac{3}{2\sqrt{3}} + i\frac{\sqrt{3}}{2\sqrt{3}}\right) = 2\sqrt{3} \left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 2\sqrt{3} \left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$$

$$-z = 1 - i\sqrt{3} \qquad r = |z| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$
Donc:
$$z = 2\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right)$$

1.11 Représentation de la multiplication

L'écriture trogonométrique des nombres complexes permet de donner une interprétation géométrique de la multiplication des nombres complexes :

Soit:
$$z = r(\cos\theta + i\sin\theta)$$
, $z' = r'(\cos\theta' + i\sin\theta')$

$$zz' = rr' \Big((\cos \theta \cos \theta' - \sin \theta \sin \theta') + i (\cos \theta \sin \theta' + \sin \theta \cos \theta') \Big)$$
$$= rr' \Big(\cos(\theta + \theta') + i \sin(\theta + \theta') \Big)$$

Règle: Pour multiplier deux nombres complexes écrits sous forme trigonométrique,

- On multiplie les modules
- On additionne les arguments

Multiplication des nombres complexes

On peut généraliser le procédé à la multiplication d'un nombre quelconque de complexes :

$$z = r_k (\cos \theta_k + i \sin \theta_k), \quad 1 \le k \le n$$

$$(r_1(\cos\theta_1 + i\sin\theta_1))(r_2(\cos\theta_2 + i\sin\theta_2))\cdots(r_n(\cos\theta_n + i\sin\theta_n))$$

$$= r_1r_2\cdots r_n(\cos(\theta_1 + \theta_2 + \cdots + \theta_n) + i\cos(\theta_1 + \theta_2 + \cdots + \theta_n))$$

Que l'on peut écrire plus simplement :

$$\prod_{k=1}^{k=n} [r_k (\cos \theta_k + i \sin \theta_k)] = \left[\prod_{k=1}^{k=n} r_k \right] \left[\cos \left(\sum_{k=1}^{k=n} \theta_k \right) + i \sin \left(\sum_{k=1}^{k=n} \theta_k \right) \right]$$

1.12 Représentation de la division

Inverse d'un nombre complexe

Si
$$z \neq 0$$
, $\frac{1}{z} = \frac{\bar{z}}{z.\bar{z}} = \frac{r.(\cos\theta - i\sin\theta)}{r^2}$ donc: $\frac{1}{z} = \frac{1}{r}(\cos\theta - i\sin\theta)$

Division des nombres comlexes

 $\forall z \neq 0, z' \in \mathbb{C}$:

$$\frac{z'}{z} = z'\frac{1}{z} = \frac{r'}{r} \Big(\cos\theta' + i\sin\theta'\Big) \Big(\cos\theta - i\sin\theta\Big)$$
$$= \Big((\cos\theta'\cos\theta + \sin\theta'\sin\theta) + i(\sin\theta'\cos\theta - \cos\theta'\sin\theta)\Big)$$
$$= \frac{r'}{r} \Big(\cos(\theta' - \theta) + i\sin(\theta' - \theta)\Big)$$

Règle: Pour diviser deux nombres complexes écrits sous forme trigonométrique,

- On divise les modules
- On soustrait l'argument du dénominateur de l'argument du numérateur

1.13 Formule de De Moivre

Puissance entière d'un nombre complexe.

Si $n \in \mathbb{N}$,

$$z^{n} = \underbrace{z.z...z}_{n-\text{fois}}$$

$$= \underbrace{r.r...r.(\cos\theta + i\sin\theta).(\cos\theta + i\sin\theta)...(\cos\theta + i\sin\theta)}_{n-\text{fois}}$$

$$= r^{n}.(\cos(n\theta) + i\sin(n\theta))$$

Si $n \in \mathbb{Z}_{-}^*$, $-n \in \mathbb{N}$

$$z^{n}.z^{-n} = z^{n}.\left(r^{-n}.\left(\cos(-n\theta) + i\sin(-n\theta)\right)\right) = 1$$

$$z^{n} = \frac{1}{z^{-n}} = \frac{1}{r^{-n}.\left(\cos(-n\theta) + i\sin(-n\theta)\right)}$$

$$= r^{n}.\left(\cos(-n\theta) - i\sin(-n\theta)\right)$$

$$= r^{n}.\left(\cos(n\theta) + i\sin(n\theta)\right) \quad (puisque\ le\ cosinus\ est\ pair\ et\ le\ sinus\ impair)$$

Dans les deux cas, que n soit positif ou négatif, c'est-à-dire si $n \in \mathbb{Z}$:

$$z^{n} = r^{n} \cdot \left(\cos(n\theta) + i\sin(n\theta)\right)$$

Quand r = 1, on obtient la *Formule de De Moivre* :

$$\forall n \in \mathbb{Z}: (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

1.14 Exponentielle complexe

On peut définir une fonction exponentielle sur les nombres complexes, qui coincide sur $\mathbb{R} \subset \mathbb{C}$ avec la fonction exponentielle définie pour les nombres réels.

C'est un théorème que nous admettrons mais dont les résultat doivent être connus.

Théorème : Il existe une fonction *exponentielle* définie sur \mathbb{C} (notée $e^z \quad \forall z \in \mathbb{C}$) qui vérifie :

- 1. $\forall z. \ z' \in \mathbb{C}: \ e^{z+z'} = e^z.e^{z'}$
- 2. Si $x \in \mathbb{R}$, e^x est l'exponentielle réelle
- 3. L'application : $[0,2\pi[$ \longmapsto \mathbb{C} est une bijection sur l'ensemble des complexes de module 1 θ \longmapsto $e^{i\theta}$

Les nombres complexes de modules 1

Représentés dans le plan complexe, ces nombres sont tous situés sur le cercle de centre O et de rayon 1.

Quelques nombres complexes de module 1

Tout point du plan complexe, et donc tout nombre complexe, peut s'exprimer sous la forme du produit d'un nombre réel positif — le module du nombre complexe — et d'un nombre complexe de module 1, écrit sous forme exponentielle.

Notation exponentielle des nombres complexes

On dispose donc de trois notations pour les nombres complexes :

1. algébrique : z = x + iy, $x, y \in \mathbb{R}$

2. trigonométrique : $z = r.(\cos \theta + i \sin \theta), \quad r \in \mathbb{R}_+, \quad \theta \in [0, 2\pi[$

3. exponentielle : $z = r.e^{i\theta}$, $r \in \mathbb{R}_+$, $\theta \in [0, 2\pi[$

Pour la dernière notation, exponentielle, on notera les propriétés suivantes (analogues à celle de l'exponentielle réelle) :

 $-e^{i\theta} = \cos\theta + i\sin\theta$ (Relation entre notations trigonométrique et exponentielle)

 $-e^{i\theta_1} \cdot e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$ (Addition des arguments dans la multiplication)

 $-(e^{i\theta})^n = e^{ni\theta}$ (Formule de De Moivre)

1.15 Racines des nombres complexes

Définition

On appelle racine n-ième du nombre complexe z, le nombre complexe a qui vérifie : $z = a^n$

Soit $z = r(\cos \theta + i \sin \theta) \in \mathbb{C}$ et $n \in \mathbb{N}^*$, on a donc :

$$r(\cos\theta + i\sin\theta) = (a = \rho(\cos\alpha + i\sin\alpha))^n$$

D'où le système d'équations :

$$\begin{cases} \rho^n &= r \\ n\alpha &= \theta + 2k\pi \end{cases} \Leftrightarrow \begin{cases} \rho &= \sqrt[n]{r} \\ \alpha &= \frac{\theta + 2k\pi}{r} \end{cases}$$

Pour $k \in \mathbb{N}$ tel que : $0 \le k \le n-1$

On a donc le résultat suivant :

Théorème : Pour $n \in \mathbb{N}^*$, tout nombre complexe $z = r(\cos \theta + i \sin \theta)$, non-nul, a n racines n-ièmes :

$$a_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$
$$0 < k < n - 1$$

Pour n = 2, on retrouve le résultat que l'on a démontré précédemment : tout nombre complex possède 2 racine carrées opposées.

Les racines n-ièmes de l'unité

Si z = 1: r = 1, $\theta = 0$.

Les nombres complexes :

$$\omega_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = e^{i\frac{2k\pi}{n}}$$
$$0 \le k \le n - 1$$

s'appellent les racines n-ièmes de l'unité, ils vérifient :

Pour
$$0 \le k \le n-1$$
, $\omega_k^n = 1$

Les racines cubiques, quatrièmes et cinquièmes de l'unité

La somme des racines n-ièmes de l'unité

Théorème : Pour
$$n \in \mathbb{N}^*$$
, $\sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = 0$

Les racines n-ièmes de l'unité forment une suite géométrique de raison $e^{i\frac{2\pi}{n}}$, donc :

$$\sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = \sum_{k=0}^{n-1} (e^{i\frac{2\pi}{n}})^k = \frac{1 - (e^{i\frac{2\pi}{n}})^n}{1 - e^{i\frac{2\pi}{n}}} = 0 \quad \text{puisque} \quad (e^{i\frac{2\pi}{n}})^n = 1$$

Racines *n-ièmes* d'un nombre quelconque

Soit $n \in \mathbb{N}^*$, $z \in \mathbb{C}$ et a et b deux racines n-ièmes de z.

$$a^n = b^n = z$$

Soit:

$$\left(\frac{a}{b}\right)^n = 1 \iff a = b.\omega_k \text{ où } \omega_k, \quad (0 \le k \le n-1) \text{ est une racine } n\text{-ièmes de l'unité.}$$

Théorème : On obtient les *n* racines *n-ièmes* d'un nombre complexe en multipliant l'une d'entre elles par les *n* racines *n-ièmes* de l'unité.

Trigonométrie

Les formules d'Euler

Tout nombre complexe de module 1 s'écrit sous forme trigonométrique :

$$z \in \mathbb{C}$$
 $z = \cos \theta + i \sin \theta = e^{i\theta}$

On obtient donc les formules suivantes, dites formules d'Euler, pour le sinus et le cosinus :

$$\Re \varepsilon(z) = \cos \theta = \frac{1}{2}(z + \bar{z}) = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$

$$\operatorname{Im}(z) = \sin \theta = \frac{1}{2i}(z - \bar{z}) = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

Ces expressions du sinus et du cosinus, jointes à la formule de De Moivre, sont très utiles pour effectuer des calculs trigonométriques.

Linéarisation

On appelle linéarisation du sinus et du cosinus, la transformation d'une expression des puissances du sinus ou du cosinus d'un angle θ pour obtenir une expression en fonction des sinus et cosinus de multiple de l'angle θ .

Par exemple : calcul de $\cos^3 \theta$:

$$2^{3} \cos^{3} \theta = (e^{i\theta} + e^{-i\theta})^{3}$$

$$= e^{3i\theta} + 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} + e^{-3i\theta}$$

$$= (e^{3i\theta} + e^{-3i\theta}) + 3(e^{i\theta} + e^{-i\theta})$$

$$= 2\cos 3\theta + 6\cos \theta$$

Donc:
$$\cos^3 \theta = \frac{1}{4} \cos 3\theta + \frac{3}{4} \cos \theta$$

Méthode:

- On écrit :
$$2^n \cos^n \theta = (e^{i\theta} + e^{-i\theta})^n$$

- On écrit :
$$2^n \cos^n \theta = (e^{i\theta} + e^{-i\theta})^n$$

- On développe $(e^{i\theta} + e^{-i\theta})^n$ avec la formule du binôme

- On regroupe chaque
$$e^{ki\theta}$$
 avec son conjugué $e^{-ki\theta}$

par la formule d'Euler pour le cosinus on développe le cube de la somme on simplifie et on regroupe les conjugués à nouveau les formules d'Euler

La même méthode s'applique pour les sinus.

Calcul de $\sin^3 \theta$

$$(2i)^{3} \sin^{3} \theta = (e^{i\theta} - e^{-i\theta})^{3}$$

$$= e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta}$$

$$= (e^{3i\theta} - e^{-3i\theta}) - 3(e^{i\theta} - e^{-i\theta})$$

$$= 2i\sin 3\theta - 6i\sin \theta$$

Donc:
$$\sin^3 \theta = -\frac{1}{4} \sin 3\theta + \frac{3}{4} \sin \theta$$

Calcul des sinus et cosinus de $n\theta$

On utilise la formule de De Moivre et la formule du binôme et on sépare les parties réelle et imaginaire du résultat.

$$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^{n}$$
$$\cos n\theta = \Re \left((\cos \theta + i \sin \theta)^{n} \right)$$
$$\sin n\theta = \operatorname{Im} \left((\cos \theta + i \sin \theta)^{n} \right)$$

Exemple:

$$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^{4}$$

$$= (\cos \theta)^{4} + 4i(\cos \theta)^{3} \sin \theta$$

$$+ 6i^{2}(\cos \theta)^{2}(\sin \theta)^{2} + 4i^{3}(\cos \theta)(\sin \theta)^{3}$$

$$+ i^{4}(\sin \theta)^{4}$$

$$\cos 4\theta = (\cos \theta)^{4} - 6(\cos \theta)^{2}(\sin \theta)^{2} + (\sin \theta)^{4}$$

$$\sin 4\theta = 4(\cos \theta)^{3} \sin \theta - 4\cos \theta(\sin \theta)^{3}$$

1.17 Le théorème fondamental de l'algèbre

Le théorème suivant, appelé « théorème de d'Alembert », et son corollaire sont une conclusion intéressante de l'étude des nombres complexes. Ils sont admis sans démonstration!

Théorème: Tout polynôme non-constant à coefficients complexes a au moins une racine complexe.

Corollaire : Tout polynôme de degré $n \ge 1$, à coefficients complexes, a n racines complexes.