

# 15-Meta Learning(元學習)

- 1. 什麼是 Meta Learning?
- 2. 尋找 Learning Algorithm 三步驟
  - Step 1: What is learnable?
  - Step 2 : Define loss function  $L(\phi)$
  - Step 3: Optimazation
  - Framework
- 3. ML vs Meta
  - 3.1 Goal
  - 3.2 Training Data
  - 3.3 Framework
    - 3.3.1 Training
    - 3.3.2 Testing
    - 3.3.3 Loss
  - 3.4 相同點
- 4. What is learnable in a learning algorithm?
  - 4.1 模型初始參數  $\theta^0$ 
    - 4.1.1 MAML vs Pre-training
  - 4.2 Optimizer (learning rate, momentum)
  - 4.3 Network Architecture Search (NAS)
    - 4.3.1 解法 1: Reinforcement Learning
    - 4.3.2 解法 2: Evolution Algorithm
    - 4.3.3 解法 3: DARTS
  - 4.4 Data Augmentation
  - 4.5 Sample Reweightnig
  - 4.6 Beyond Gradient Descent
- 5. Learning to compare
- 6. Application
  - 6.1 Few-shot Image Classification
  - 6.2 More application

# 1. 什麼是 Meta Learning?

將訓練資料輸入進F,F 直接輸出一個模型 $f^*$  可以直接進行測試

# What is Meta Learning?



meta learning 就是要找一個 learning algorithm F

# 2. 尋找 Learning Algorithm 三步驟

#### 注意:

任務有**訓練任務**與**測試任務**之別

### Step 1: What is learnable?

決定 learning algorithm 中要被學的 components(網路架構、初始參數、學習率等等),以  $\phi$  表示

### Meta Learning – Step 1

• What is *learnable* in a learning algorithm?



不同的 meta learning 方法的差異在於 components 的選擇

# Step 2: Define loss function $L(\phi)$

#### 訓練資料來自很多訓練任務,每個任務中有訓練集和測試集



### 定義 loss function $L(\phi)$ :

1. 將某一任務的訓練資料輸入進 learning algorithm  $F_\phi$ ,得到模型  $f_{ heta^{1*}}$ 



Evaluate the classifier on testing set

2. 使用對應任務的測試資料對模型  $f_{\theta^{1*}}$  進行測試,計算每個預測資料的結果與 ground truth 之間的 cross entropy,並將全部的 cross entropy 加總得到  $l^1$ 



- $l^1$  若越小,表示模型  $f_{ heta^{1*}}$  越好,代表是好 learning algorithm  $F_{\phi}$
- $l^1$  若越大,表示模型  $f_{ heta^{1*}}$  越不好,代表是差 learning algorithm  $F_\phi$

- 3. 將下一任務的訓練資料輸入進 learning algorithm  $F_{\phi}$ ,得到模型  $f_{\theta^{2*}}$ ,並計算每個預測資料的結果與 ground truth 之間的 cross entropy,並將全部的 cross entropy 加總得到  $l^2$
- 4. 以此類推得到全部訓練任務的 l,並加總得到 learning algorithm 的 loss  $L(\phi)$



#### 注意:

在一般機器學習中,loss 是根據訓練資料得來的;而在 **meta learning 中,loss 是根據訓練任 務中的測試資料得來的** 

## **Step 3: Optimazation**

- Loss function for learning algorithm  $L(\phi) = \sum_{n=1}^{N} l^n$
- Find  $\phi$  that can minimize  $L(\phi)$   $\phi^* = arg \min_{\phi} L(\phi)$
- Using the optimization approach you know If you know how to compute  $\partial L(\phi)/\partial \phi$

Gradient descent is your friend.

What if  $L(\phi)$  is not differentiable?

Reinforcement Learning / Evolutionary Algorithm

Now we have a learned "learning algorithm"  $F_{\phi^*}$ 

- 若  $rac{\partial L(\phi)}{\partial \phi}$  可微,則可以使用 gradient descent 找出  $\phi^*$  最小化  $L(\phi)$
- 若  $\frac{\partial L(\phi)}{\partial \phi}$  不可微( $\phi$  有可能是一個 network 架構),使用 RL 硬 train,或<u>其他方法</u>

最終得到一 learning algorithm  $F_{\phi^*}$  使  $L(\phi)$  最小化

### **Framework**

我們真正關心的是在**測試任務**上,learning algorithm  $F_{\phi^*}$  的性能



將**測試任務**中的訓練資料輸入進 learning algorithm  $F_{\phi^*}$  進行訓練得到模型  $f_{\theta^*}$  , $f_{\theta^*}$  就是我們最終想要的模型

# 3. ML vs Meta

### 3.1 Goal

#### Machine Learning ≈ find a function f



• ML:找到一個能完成任務的函數 f

• Meta:找到一個 learning algorithm F,能夠找到能完成任務的函數 f

## 3.2 Training Data



• ML:使用一個任務中的訓練資料進行訓練

• Meta:使用若干個訓練任務進行訓練,每個訓練任務中都有訓練資料及測試資料

。 Support set:訓練任務中的訓練資料

。 Query set:訓練任務中的測試資料

#### 3.3 Framework

### 3.3.1 Training



• ML:人為設定 learning algorithm,稱作 Within-task Training

• Meta:多個任務上訓練得到 learning algorithm,稱作 Across-task Training

### 3.3.2 Testing



- ML:直接使用訓練得到的模型在任務中對測試資料進行測試,稱作 Within-task Testing
- Meta:需要測試的是 learning algorithm,稱作 Across-task Testing
  - learning algorithm 以測試任務的訓練資料做為訓練,稱作 Within-task Training
  - 。 以測試任務的測試資料測試模型,稱作 Within-task Testing

**Episode = Within-task Training + Within-task Testing** 

#### 3.3.3 Loss



• ML:對一個任務中所有的測試數據的損失之和

• Meta: l 是一個訓練任務的 loss,L 是所有訓練任務的 loss 總和



計算一個 l ,需要一次的 Within-task Training + Within-task Testing 即一個 episode。將 Within-task Training 稱作 Inner Loop;Across-task training 稱作 Outer Loop

### 3.4 相同點

- What you know about ML can usually apply to meta learning
  - · Overfitting on training tasks
  - Get more training tasks to improve performance
  - · Task augmentation
  - There are also hyperparameters when learning a learning algorithm .....
  - Development task ©

# 4. What is learnable in a learning algorithm?

## 4.1 模型初始參數 $\theta^0$

選擇  $heta^0$  作為 meta learning 要學習的參數  $\phi$ 



#### 方法:

- Model Agnostic MetaLearning (MAML): <a href="https://youtu.be/mxqzGwP\_Qys">https://youtu.be/mxqzGwP\_Qys</a>
- First order MAML (FOMAML) : https://youtu.be/3z997JhL9Oo
- Reptile: https://youtu.be/9jJe2AD35P8

#### 4.1.1 MAML vs Pre-training



- MAML 需要用到有標註的資料
- pre-training (self-supervised learning) 使用的資料沒有標註

#### 注意:

meta learning 中所謂不同任務的訓練,實際上就是不同的 domain,所以**也可以說 meta** learning 是 <u>domain adaptation</u> 的一種方法



過去 pre-training 還有其他的方法,如將來自不同任務的資料混在一起進行訓練(稱作 <u>multi-</u> <u>task training</u>)

multi-task training 通常作為 meta-learning 的 baseline

#### 學習更多:

https://youtu.be/vUwOA3SNb\_E

# 4.2 Optimizer (learning rate, momentum)

選擇 learning rate, momentum 等 optimizer 中的參數作為 meta learning 要學習的參數  $\phi$ 



# 4.3 Network Architecture Search (NAS)

選擇 network 架構作為 meta learning 要學習的參數  $\phi$ 





#### 問題:

 $\phi$  是一個 network 架構, $L(\phi)$  對  $\phi$  不可微

### 4.3.1 解法 1: Reinforcement Learning

用 RL 硬 train

#### Reinforcement Learning

- Barret Zoph, et al., Neural Architecture Search with Reinforcement Learning, ICLR 2017
- Barret Zoph, et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR, 2018
- Hieu Pham, et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018

An agent uses a set of actions to determine the network architecture.

 $-L(\phi)$ Reward to be maximized

 $\phi$ : the agent's parameters

•  $\phi$ : the agent's parameters

• actor 的輸出:network 寬度、深度等等

• Reward to be maximized  $:-L(\phi)$ 

#### 舉例:



#### actor 是 RNN 架構; environment 為 network

- 1. RNN 輸出網路架構(action)
- 2. 搭建網路架構
- 3. 測試網路的精確度(observation)
- 4. 更新 RNN

### 4.3.2 解法 2: Evolution Algorithm

- Evolution Algorithm
  - · Esteban Real, et al., Large-Scale Evolution of Image Classifiers, ICML 2017
  - Esteban Real, et al., Regularized Evolution for Image Classifier Architecture Search, AAAI, 2019
  - Hanxiao Liu, et al., Hierarchical Representations for Efficient Architecture Search, ICLR, 2018

### 4.3.3 解法 3: DARTS

Differentiable Architecture Search(DARTS)方法修改 network architecture,使之可以 微分



## 4.4 Data Augmentation

選擇 data(augmentation)作為 meta learning 要學習的參數  $\phi$ 





Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M. Robertson, Yongxin Yang, DADA: Differentiable Automatic Data Augmentation, ECCV, 2020

Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, Xi Chen, Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules, ICML, 2019 Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le, AutoAugment: Learning Augmentation Policies from Data, CVPR, 2019

### 4.5 Sample Reweightnig

選擇 sample 的 weight 作為 meta learning 要學習的參數  $\phi$ 

• Give different samples different weights



Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng, Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting, NeurIPS, 2019 Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun, Learning to Reweight Examples for Robust Deep Learning, ICML, 2018

## 4.6 Beyond Gradient Descent

輸入數據,直接輸出模型



# 5. Learning to compare

learning to compare 直接輸入訓練資料和測試資料,學出 learning + classification,就直接輸出測試的結果



#### 學習更多:

https://youtu.be/yyKaACh\_j3M

https://youtu.be/scK2EIT7klw

https://youtu.be/semSxPP2Yzg

https://youtu.be/ePimv\_k-H24

# 6. Application

## 6.1 Few-shot Image Classification

• Each class only has a few images.



- N-ways K-shot classification: In each task, there are N classes, each has K examples.
- In meta learning, you need to prepare many N-ways K-shot tasks as training and testing tasks.
- N-ways K-shot:N 個類別、每個類別 K 個樣本

- 在 meta learning 中,需準備多個 N-ways K-shot 的任務作為訓練任務與測試任務
- 一般做 meta learning 的實驗通常會使用 Omniglot 資料集



| 20 ways                           | лη | ΙΠ  | म | 5 | ব  | 7 Testing set |  |
|-----------------------------------|----|-----|---|---|----|---------------|--|
| 1 shot                            | đ  | F   | 졍 | F | ₹  | (Query set)   |  |
| Each character represents a class | Љ  | 5   | ч | Д | ₽1 | Training set  |  |
|                                   | ਘ  | ત્ય | 4 | ₩ | 돲  | (Support set) |  |

- Split your characters into training and testing characters
  - Sample N training characters, sample K examples from each sampled characters → one training task
  - Sample N testing characters, sample K examples from each sampled characters  $\,\rightarrow$  one testing task

# 6.2 More application

更多 meta learning 應用可參考:

http://speech.ee.ntu.edu.tw/~tlkagk/meta\_learning\_table.pdf