Bayesian Well-log Analysis

Paul Sava

Center for Wave Phenomena Colorado School of Mines psava@mines.edu

prior joint probability density function

prior marginal model PDF

center: predict using GR-v equation

$$\overline{v} = 5.654 - 0.008 \ GR$$

dispersion: set using confidence in the GR- ν equation

prior marginal data PDF

CREF: reference caliper (6in)

CMAX: max allowed caliper (8in)

center: use actual observations for δ and ϕ **dispersion**: predict using the CALI measurements

$$\sigma_{\delta} = extbf{a}_{\delta} + rac{ extit{CALI} - extit{CREF}}{ extit{CMAX} - extit{CREF}} b_{\delta} \ \sigma_{\phi} = extbf{a}_{\phi} + rac{ extit{CALI} - extit{CREF}}{ extit{CMAX} - extit{CRFF}} b_{\phi}$$

▶ a_{*}: minimum uncertainty

 b_* : uncertainty range

theoretical joint probability density function

conditional theoretical PDF: Wyllie equation

center: use the theoretical relations between v- δ - ϕ

$$rac{1}{ extstyle v} = rac{1-\phi}{ extstyle v_M} + rac{\phi}{ extstyle v_F}$$
 $\delta = (1-\phi)\,\delta_M + \phi\delta_F$

dispersion: set using confidence in the theoretical relations

conditional theoretical PDF: Gardner equation

center: use the theoretical relations between v- δ - ϕ

$$\delta = (1-\phi)\,\delta_{\mathsf{M}} + \phi\delta_{\mathsf{F}}$$

 $\delta = 1.74 v^{0.25}$

dispersion: set using confidence in the theoretical relations

posterior joint probability density function

marginal model probability density function

