

Industrie 4.0 meets Making – Trends und Potenziale

Prof. Dr. Volkmar Pipek, Thomas Ludwig, Oliver Stickel

30. Mai 2015 MittelstandstagungSparkasse Siegen

Agenda

10:30 - 10:35	Begrüßung und Vorstellung
---------------	---------------------------

10:35 – 10:50 Einführung und Überblick über Industrie 4.0

10:50 – 11:00 Industrie 4.0 meets Making

11:00 – 12:00 Diskussion und Workshop

Vorstellung

Institut für Wirtschaftsinformatik CSCW/Kooperationssysteme und Soziale Medien

- Professur "Computerunterstützte Gruppenarbeit und Soziale Medien"
- 6 Wissenschaftliche Mitarbeiter
- Forschungsfokus:
 - Gestaltung und Aneignung kooperativer Hard- und Softwaresysteme
 - Kommunikationsorientiertes Wissensmanagement
 - Nutzer-zentrierte Softwareentwicklung

Einführung und Überblick über Industrie 4.0

30. Mai 2015 MittelstandstagungSparkasse Siegen

Industrie 3.0

Richard Morley und Odo J. Struger sind die Väter der speicherprogrammierbaren Steuerung SPS.

Morley stellte 1969 ein Halbleiterbasierendes sequentielles Logiksystem vor.

Visionen

 Der Rohling teilt der Fräsmaschine mit, wie er zu formen ist.

- Das Paket mit Blutplasma beschwert sich, wenn es nicht genügend gekühlt wird.
- Das Auto meldet sich, wenn ein falscher Bremsbelag eingebaut wird.
- Die Packung sagt dem Roboter, wie sie zu greifen ist und wohin sie abzulegen ist.

Visionen

- Der Rohling teilt der Fräsmaschine mit, wie er zu formen ist.
- Das Paket mit Blutplasma beschwert sich, wenn es nicht genügend gekühlt wird.
- Das Auto meldet sich, wenn ein falscher Bremsbelag eingebaut wird.
- Die Packung sagt dem Roboter, wie sie zu greifen ist und wohin sie abzulegen ist.

Ziele

- Produkt unterstützt den Produktionsprozess aktiv
- Digitalisierung der Industrie: Verschmelzung physikalische und virtuelle Welt (CPS)
- Auflösung der klassischen Produktionshierarchie von zentraler Steuerung hin zu dezentraler Selbstorganisation
- "Individualisierung der Produkte unter den Bedingungen einer hoch flexibilisierten (Großserien-) Produktion" [2]

Beispiel - I4.0 & "Losgröße eins"

Heute Morgen

Ziele

- "Autonome Produkte und Entscheidungsprozesse steuern Wertschöpfungsnetzwerke in Echtzeit" [1]
- Einbeziehung von Geschäftspartnern und Kunden in die Wertschöpfungskette
- "Verknüpfung von physischen Objekten und Prozessen mit virtuellen Objekten und Prozessen über (globale) Netzwerke" [3]
- Kontakt mit Produkt über gesamten Lebenszyklus
 - → Service statt Produkt (Geschäftsmodell)

Schaubild - Industrie 4.0

14

Visionen & Ziele

- Verschmelzung physikalische und virtuelle Welt (CPS)
- "Autonome Produkte und Entscheidungsprozesse steuern Wertschöpfungsnetzwerke in Echtzeit" [1]
- "Individualisierung der Produkte unter den Bedingungen einer hoch flexibilisierten (Großserien-) Produktion" [2]
- Einbeziehung von Geschäftspartnern und Kunden in die Wertschöpfungskette
- Kontakt mit Produkt über gesamten Lebenszyklus
 → Service statt Produkt (Geschäftsmodell)

Kernelement CPPS

- Cyber-Physical Production Systems (CPPS)
- "Verknüpfung von physischen Objekten und Prozessen mit virtuellen Objekten und Prozessen über (globale) Netzwerke" [3]
- Interaktion mittels eingebetteter Software, Sensoren & Aktoren
- Vernetzung aller CPPS (Ubiquitous Computing)
- Datenverarbeitung über verteilte Anwendungssysteme
- Grundbausteine: I/O, Analyse, Verarbeitung, Programmierung, Benutzerschnittstelle, Ausführungsplattform

Schaubild - Industrie 4.0

18

Beispiel - I4.0 & "Losgröße eins"

Heute Morgen

Potenziale aus der Sicht des Mittelstandes

- Mehr/schneller Informationen über Störungen der Zuliefererkette
- Bessere Bewertung/Verbesserung des eigenen Produktionssystems vor dem Hintergrund von Zulieferer und -Kundenkontexten
- Integration von Produktionskonzepten entlang der Wertschöpfungskette
 - Dezentrale externe Produktionseinheiten bei Zulieferern/Kunden
- Maschinenhersteller: Bessere Maschineneinsatzprofile für Wartungs- und Weiterentwicklungsprozesse
 - Verbesserte Sensorik führt zu mehr Einsatztransparenz
 - Engere Beratung von Kunden
 - Engere Einbindung in Weiterentwicklungsprozesse
- Sociable Technologies: Jenseits datenbezogener Vernetzung auch Akteure vernetzen
 - Kollaboration statt Automation

Risiken aus der Sicht des Mittelstandes

- Autonomie eigener unternehmerischer Entscheidungen gefährdet?
- Transparenz eigener unternehmerischer Entscheidungen und Strategien?
 - Welche Rückschlüsse lassen offengelegte Produktionsdaten zu?
- Digitalisierung und Kompetenzentwicklung: Probleme durch veränderte Arbeitsstrukturen?
- IT-Investitionen und Kosten-Nutzen-Balance: Was rechnet sich?
 - Startproblem: Mehrwert ergibt sich möglicherweise erst, wenn alle mitmachen/investieren

Industrie 4.0 meets Making

30. Mai 2015 MittelstandstagungSparkasse Siegen

- Gesellschaftlicher Wunsch nach Teilhabe an Produktion
- Und: Steigend auch Möglichkeiten und Infrastrukturen hierfür
- "Making": Nicht- / Semiprofessionelle (digitale) Fabrikation
- Graswurzel-Ansatz

- Verankerung in Makerspaces / Fabrication Laboratories
- Weltweiter Trend (hunderte entsprechender Einrichtungen)
- Perspektivisch: Verteilung von Produktion bis in die Haushalte

- Verankerung in Makerspaces / Fabrication Laboratories
- Weltweiter Trend (hunderte entsprechender Einrichtungen)
- Perspektivisch: Verteilung von Produktion bis in die Haushalte 25

[9]

 Innovationen vom 3D-Drucker aus Elektroschrott in Afrika bis hin zur kommerziell erfolgreichen Smartwatch

- Chance: Kooperationen zwischen Industrie, "Maker"-Szene und (semi-)privater Produktion
- Beispiel: Internetradio, teilweise selbst 3D-gedruckt, teilweise vorgefertigt

- Fab Lab Siegen als Versuchsfeld (Uni, Stadt, Industrie)
- Weitere Infos: Heute! Session "Gründungsförderung und unternehmerische Projekte"
 Vortrag Oliver Stickel, Mitbegründer Fab Lab Siegen 12:30-14:00 Sparkasse Siegen

Chancen aus der Sicht des Mittelstandes

- Neue Möglichkeiten für Additive Digital Fabrication
 - Integration von Makerspaces/FabLabs als verteilte, dezentrale ,Produktionsstandorte
 - Fertigstellung/Individualisierung eigener Produkte vor Ort (beim Kunden, beim Vertrieb)
 - Bessere Kommunikation mit Zulieferern und Kunden durch Low-Cost-Prototyping
- Kompetenzentwicklung, Aus- und Weiterbildung
 - Mehr maschinennahes Wissen vorhanden.
 - Andere Lehr-/Lernkonzepte
- Kreatives Denken, Design Thinking
 - Die eigene Welt als Gestaltungsort
 - (Social) Entrepreneur Thinking: Produkte ohne Markt
 - Neue Innovationsstrategien f
 ür die Industrie?

Risiken aus der Sicht des Mittelstandes

- Mangelnde technologische Reife von Produktionstechnologien für Consumer
 - Abhängig von Geräteart
 - Beispiel 3D-Druck: Erschwinglich, aber nicht immer customertauglich; Langsam; Hohe Fertigungstoleranzen
 - Aber: Rasante Verbesserungen für die Zukunft erwartbar
- Vielzahl offener Fragen im Bereich Urheberrecht, Musterschutz und Lizensierung
- Obsoleszenz von Teil-Schritten der industriellen Fertigung als Marktrisiko?
- Inkompatibilität mit klassischen Prozessmodellen (Agilität und Dynamik, Bottom-Up vs. Top-Down)

Diskussion und Workshop: Was halten Sie von diesen Trends?

30. Mai 2015 MittelstandstagungSparkasse Siegen

Diskussion und Workshop

Mögliche Themen

- Die Theorie ist verstanden. Was bedeutet 14.0 konkret für Ihr Unternehmen?
 - Wird I4.0 in Ihrem Unternehmen bereits diskutiert oder bestehen sogar bereits Umsetzungsbestrebungen?
- Wechselwirkung I4.0 und Making: Inwiefern kann Making die Existenz von Kleinserien- oder Einzelfertigern "bedrohen"?
- Erwartete Chancen/Risiken, Stärken/Schwächen von I4.0 oder Making
- Was machen wir schon? Self-Assessment-Ideen für den Mittelstand
 - Machen wir schon Industrie 4.0?
 - Wissen und Probleme in Bezug auf Sensorik, Informationsverarbeitung, Automatisierung?
 - Wissen und Probleme zur Abbildung realer Produktionsaspekte in die 'Virtuelle' Ebene (Produktionsplanung, -monitoring)
 - Existierende Tradition der Weiterentwicklung der eigenen Produktion: Was müsste man mehr wissen über die eigene Produktion, um sich schneller weiterzuentwickeln?

Quellen

- [1] IHK Koblenz: Industrie 4.0 Fabrik der Zukunft; http://www.ihk-koblenz.de/innovation/innovation_technologie/Industrie_4_0_Fabrik_der_Zukunft (abgerufen am 27.05.2015)
- [2] BMBF: Zukunftsprojekt Industrie 4.0; http://www.bmbf.de/de/9072.php (abgerufen am 27.05.2015)
- [3] Integrierte Forschungsagenda Cyber-Physical Systems, Acatech 2012
- [4] Fab Lab Ansicht: https://www.fablabs.io
- [5] Fab Lab Karte: https://www.fablabs.io
- [6] New Matter 3D Drucker: https://www.indiegogo.com/projects/new-matter-mod-t-a-3d-printer-for-everyone#/story
- [7] Fab Lab Torino at Operae: http://www.domusweb.it/content/dam/domusweb/en/design/2013/10/25/fablab_at_operae2013/FabLab_Operae_0 983__MG_4602.jpg
- [8] w.afate 3D Drucker: http://cdn.c.photoshelter.com/img-get/I00005MJOY4s2m6o/s/750/750/w-afate-3d- printer-togo003.jpg
- [9] Pebble Smartwatch: http://upload.wikimedia.org/wikipedia/commons/5/5e/Pebble_watch_trio_group_04.png
- [10] Raspdio: http://3dprintingindustry.com/2014/12/24/raspdio-radio-3d-printed/