Intercepts of the Quadratic

 $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a} \quad \text{computes the } z - \text{intercepts of multiplicity 1.}$ $n(0) = c \quad \text{computes the single } n - \text{intercept.}$ Example 1.

Given a quadratic $n(z) = a z^2 + b z + c$ compute its discriminant \triangle :

$$n(z)=z^2-6z-16$$
 compute its discriminant \triangle : $\triangle=100>0$

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

Example 2.

no z-intercepts.

n(0) = -490 n-intercept.

Example 3.

However there is a n-intercept.

∆=0

$$z_{1,2}=-2.8$$

 $n(0)=-16$ $n-intercept.$

300

$z_{1,2}=9,9$ n(0)=243 n-intercept.

 $n(z) = 3z^2 - 54z + 243$ compute its discriminant \triangle :

 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$ has no value in Real Numbers. Therefore there are

$n(z) = -9 z^2 - 126 z - 490$ compute its discriminant \triangle : $\triangle = -1764 < 0$