Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety: goal

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"

[LCBE] Langlands correspondence and Bezrukavnikov's equivalence

[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)

https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables: Ghere is SL_n but not GL_n (to make

sure the correctness of K(St)

We use the shorthand.

K-(-)	pt	B T*B	3×B T*(8×B)	St
G	R(T)W	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	$R(T)\otimes_{R(G)}R(T)$	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	72			RIT)/ ₁ ~ Z[W _f]
C×C*	R(G)[t ^{±1}]			\mathcal{H}_{ext}
β× ¢ *	R(T)[t ^{±1}]			
C*	Z[t±]			

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{\mathbf{w}} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathcal{C}) = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[t^{\frac{1}{2}}]$$

$$K^{G \times \mathcal{C}}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St		
SL ₂	Z(r)	Z [¿ ^{±'}]		$Z[W_{\text{ext}}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$		
B	Z[y ^{±1}]	Z[yt',z]/(z-y)(z-y')	$\mathbb{Z}[y^{\sharp^1},z_1,z_2] \Big/ \big((z_{x-y})(z_{x-y}^{-1}),(z_{x-y})(z_{x-y}^{-1}) \big)$			
Id	72	7[2]/(2-1)2	Z[2, 2]/(2,-1)2,(2,-1)2)	$R(T)/_{I_{\tau}} \times \mathbb{Z}[W_{I}] = \bigoplus_{w \in W} \mathbb{Z}[z_{w}^{\pm 1}]/_{(z_{w}-1)^{x}}$		
Sr xCx	Z/[×,t [±]]			Hext = D Z[Z L']		
B× C *	Z/[yt',tt]					
C*	Z(t±¹]					

K-(-)	pt	Fd Repd(Q)	$F_{\underline{d}} \times F_{\underline{d}}$	Zd.d'	
Gol	R(Td)Wd	R(T _d)	R(Ti) (R(Ti)		
Bu	R(Ta)	R(J)⊗ _{R(Ga)} R(J _d) ⊕ _{we wa} R(Ja)[Ωω] ^{Ta}	R(Ti) & R(Ti) & R(Ci) R(Ti) Buniewa R(Ti) [Mu, w] Ta	[⊕] R(Td) [<u>Mu,u</u>] ^{Td}	
Id	72	سي الآيس		Busiewa Z [Mww.]	
C"×C,	R(Gd)[t ^{±1}]				
B _a × ¢ *	R(T ₄)[t ^{±1}]	Φ p(τ<*\[ਨੌ]		$\bigoplus_{w,w'\in w_{dd}} R(T_{dl} \times \mathring{C}) \left[\overline{\widetilde{\Omega}_{w,w'}} \right]^{T_{dl} \times C^{\times}}$	
C*	Z(t [±] 1	$\bigoplus_{m \in M^1} K(\mathbb{C}_*) [\underline{\mathcal{V}}^m]$		But the Report of the series o	

K-(-)	pt	Fd Repd(Q)	Fax Fd	Zd = 11 Zd.d'
Gd	R(Ta) ^{wa}	₽ R(Ta)	PR(TI) ORIGINAL TO)	
Bu	R(Ta)	PRIJORICARITA PENNARITA I [O] TA	$ \begin{array}{l} \bigoplus_{\underline{C}} R(T_{i}) \otimes_{R(C_{i})} R(T_{i}) \otimes_{R(C_{i})} R(T_{i}) \\ \bigoplus_{\underline{C},\underline{C}' \in W_{idi}} R(T_{i}) \left[O_{\underline{C},\underline{C}'} \right]^{T_{idi}} \end{array} $	Onwie Wild P(Tal) [أكاني الم
Id	72	or ElWel Z [Ow]	O O O O O	On the state of th
	R(Gd)[t ^{±1}]			W. W. C. V. III
B _a × ¢ *	R(T ₄)[t ^{±1}] ### R(C ₄ ×C)	$\bigoplus_{w \in W_n} R(T_d \times \mathbb{C}^{\vee}) [\overline{O_w}]^{\overline{U} \times \overline{U}}$	⊕'; Wal R(Td×C) [Jos, w] Ta×c×	⊕
C*	Z[t±]	wellwan R(C*)[O]	$\bigoplus_{w,w}_{\in W_{kd}} R(\mathbb{C}^{x}) [\overline{\mathcal{O}}_{w,w}]^{\mathbb{C}^{x}}$	$\bigoplus_{w,w'\in W_{kel}} R(\mathbb{C}^{x}) [\overline{\widetilde{\mathcal{O}}_{w,w'}}]^{\mathbb{C}^{x}}$

$$H^{G_d}_*(Z_{\underline{d},\underline{d}}) \cong \bigotimes_{a_i} N H_{d_i}$$

$$\mathsf{K}^{\mathsf{Gd}} \left(\mathsf{Z}_{\underline{d},\underline{d}} \right) \cong \mathsf{R}(\mathsf{Td}) \otimes_{\mathsf{R}(\mathsf{Gd})} \mathsf{R}(\mathsf{Td}) \cong \bigotimes_{\mathsf{d}_{\mathsf{L}}} \mathsf{R}(\mathsf{Td}_{\mathsf{L}}) \otimes_{\mathsf{R}(\mathsf{Gd}_{\mathsf{L}})} \mathsf{R}(\mathsf{Td}_{\mathsf{L}})$$

Black: know the alg structure under tensor prod Grey: know the alg structure under tensor prod, which is not preferred red: know the alg structure under convolution prod Orange: only know the R(Grp)-module structure, and the alg structure is yet not known light yellow: $R(G_d)$ -module + Wd-equiv iso

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/ http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-SchubCells-Usp.pdf

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

For the cohomology of flag variety, see [GTM86, Prop 21.17].

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F), I)
 - How does $\mathcal{H}(G(F), I)$ reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/0611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Repk}}^{\mathsf{nil}}(\omega)$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot 5$ [Lec 2-3] - understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathfrak{sl}}_{\mathsf{L}})$ [Lec 4]

HTOV(IP') = Q: HTOV X

[Appendix 4]

- define (Quantum) Kac-Moody/loop algs

graded - Why is that

 $K_{\circ}(Rep^{\overline{a}}(R)) = U_{q}(n(Q))$

R = & H. GxCY, BM (Zy)

and what is $K_{\circ}\left(\operatorname{Rep}^{\mathbb{Z}}\left(\bigoplus_{i}K_{\circ}^{\mathsf{G}\times\mathbb{C}^{\mathsf{Y}}}(\mathsf{Z}_{\mathsf{d}})\right)\right) ?$

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/ http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-SchubCells-Usp.pdf

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

For the cohomology of flag variety, see [GTM86, Prop 21.17].

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F), I)
 - How does $\mathcal{H}(G(F), I)$ reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/0611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Repk}}^{\mathsf{nil}}(\omega)$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot 5$ [Lec 2-3] - understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathfrak{sl}}_{\mathsf{L}})$ [Lec 4]

HTOV(IP') = Q: HTOV X

[Appendix 4]

- define (Quantum) Kac-Moody/loop algs

graded - Why is that

 $K_{\circ}(Rep^{\overline{a}}(R)) = U_{q}(n(Q))$

R = & H. GxCY, BM (Zy)

and what is $K_{\circ}\left(\operatorname{Rep}^{\mathbb{Z}}\left(\bigoplus_{i}K_{\circ}^{\mathsf{G}\times\mathbb{C}^{\mathsf{Y}}}(\mathsf{Z}_{\mathsf{d}})\right)\right) ?$

Now, about Steinberg varieties.

6 Draw a picture, indicating the shape/generalization of the following spaces.

(e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$)

G, B,T

B, T*B, St

g, g, gs, gs, N, N, N, h, n gh, Oh, Mw

7. Try to understand what Kazhdan - Lusztig polynomials are [KL2], and

- Compute the transformation matrix between

[[Tw], weWf] and [[]], weWf]?

- understand what standard /crystal basis is

- understand the relationship between KL poly and crystal basis

- see if it is related to two basis in Rep (G) (irr reps & multiplicative basis)

Answer from my schoolmate:

standard basis (KL-poly)

[[Tw], we Wf]

irr reps

canonical basis $\stackrel{\text{tix q}}{\leadsto}$ crystal basis [[Nm], w∈Wf]

multiplicative basis

8 Try to understand the module part, i.e.,

- numbers of components of the Springer fiber
- how does Korr(St) act on Korr (Springer fiber) also act on Korr (Repolar)

- does that occupy "all rep" of Korp (St)

9 Ways of finding multiplication structure

1 By direct computation (with techniques)

double coset calculus

Hecke algebra

2. By formulas as alg-isos

KG (B)

induction formula

3 By geometrical computation cohomology

cup product? de Rham calculus index theorem

Chow group

4. By deformation (indirect)

H top (St)

K G x C (St)

intersection theory

How to get a clear intersection formula of Grothendieck? It's claimed in the introduction of $[https://www.uni-due.de/~adc3o1m/staff.uni-duisburg-essen.de/Publications_files/excessgw.pdf], and the control of the contro$ but I can not find any other references about this excess intersection formula. How is it related to the Riemann-Roch theorem?

10. Different views on the double coset

$$B\backslash G/B = (*/B) \times_{*/G} (*/B)$$

- as a set
- as flag variety quotient B-action
- as a stack
- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), Hsph, (Haff)		week
Applying for tutorials, extend the residence permit, preparation for TOEFL exam, Klein AG	2	weeks
Summer school on Langlands & ICM watch (part)	1	week
. 1		
In total	11	weeks

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Qt.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.