KONVERSI SISTEM BILANGAN

- I. Konversi dari Sistem Bilangan Desimal
- A. Konversi Ke Sistem Bilangan Binari

Metode I:

Dengan membagi dengan 2 dan sisa pembagian merupakan digit binari dari bilangan binari hasil konversi

Metode II:

Menjumlahkan bilangan-bilangan pangkat dua yang jumlahnya sama dengan bilangan desimal yang akan dikonversikan.

Contoh:

Bilangan desimal 45 dikonversi ke bilangan binar

$$2^{0} = 1 \longrightarrow 1$$

$$2^{2} = 4 \longrightarrow 1000$$

$$2^{3} = 8 \longrightarrow 100000$$

$$2^{5} = 32 \longrightarrow 101101$$

B. Konversi ke Bilangan Oktal

Untuk mengkonversi bilangan desimal ke bilangan oktal dapat digunakan remainder method dengan pembaginya adalah basis dari bilagan Oktal yaitu 8

Contoh

$$385:8 = 48 \text{ sisa } 1$$
 $48:8 = 6 \text{ sisa } 0$
 $6 0 1$

C. Konversi ke Bilangan Hexadesimal

Dengan menggunakan remainder method dibagi dengan basis bilangan hexadesimal yaitu 16 Contoh

II. Konversi dari Sistem Bilangan Binari

A. Konversi ke sistem bilangan desimal

Dari bilangan binari dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan position value-nya.

$$101101_{2} = 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{0} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 32 + 0 + 8 + 4 + 0 + 1$$

$$= 45_{10}$$

B. Konversi ke sistem bilangan oktal

Konversi dari bilangan binary ke oktal dapat dilakukan dengan mengkonversi tiap tiga buat digit binari

Contoh: 1101101 dapat dikonversi ke oktal dengan cara:

C. Konversi ke sistem bilangan hexadesimal

Konversi dari bilangan binary ke hexadesimal dapat dilakukan dengan mengkonversi tiap empat buat digit binari Contoh : 1101101 dapat dikonversi ke hexadecimal dengan

III. Konversi dari Sistem Bilangan Oktal

A. Konversi ke sistem bilangan desimal

Dari bilangan binari dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan position value-nya.

$$324_8 = 3 \times 8^2 + 2 \times 8^1 + 4 \times 8^0$$

= $3 \times 64 + 2 \times 8 + 4 \times 1$
= $192 + 16 + 4$
= 212_{10}

B. Konversi ke sistem bilangan binari

Konversi dari bilangan Oktal ke Binari dapat dilakukan dengan mengkonversi masing-masing digit oktal ke 3 digit binari.

Contoh:

5 6 7 dapat dikonversi ke binari dengan cara:

C. Konversi ke bilangan hexadesimal

Konversi dari bilangan oktal ke hexadesimal dapat dilakukan dengan cara merubah dari bilangan oktal menjadi bilangan binari terlebih dahulu, baru dikonversi ke bilangan hexadesimal

Contoh:

5 6 7 dikonversi terlebih dahulu ke binari:

101 10 111

dari bilangan binar baru dikonversi ke hexadesimal

Pengantar Komputer

Minggu ke 10-13

IV. Konversi dari Sistem Bilangan

A. HexadesimalKonversi ke sistem bilangan desimal

Dari bilangan binari dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan position value-nya.

$$B6A_{16} = 11 \times 16^{2} + 6 \times 16^{1} + 10 \times 16^{0}$$
$$= 11 \times 256 + 6 \times 16 + 10 \times 1$$
$$= 2816 + 96 + 10$$
$$= 2922_{10}$$

B. Konversi ke sistem bilangan binari

Konversi dari bilangan hexadesimal ke Binari dapat dilakukan dengan mengkonversi masing-masing digit hexadesimal ke 4 digit binari.

Contoh:

D 6 dapat dikonversi ke binari dengan cara:

C. Konversi ke bilangan oktal

Konversi dari bilangan hexadesimal ke oktal dapat

dilakukan dengan cara merubah ke bilangan binar terlebih dahulu baru dikonversi ke oktal.

Contoh:

D 6 dapat dikonversi ke binar dengan cara:

 \downarrow \downarrow

1101 0110

Kemudian dikonversi ke bilangan oktal

11 010 110

3 2 6