ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐỀ THI OLYMPIC TOÁN 2017-2018 VÒNG SO LOẠI MÔN ĐẠI SỐ

Ngày thi: 14/10/2017 Thời gian làm bài: **90** phút Không được sử dụng tài liệu

Câu 1.

Hãy giải hệ phương trình tuyến tính sau trên trường số thực R:

$$\begin{cases} 2x_1 + x_2 - x_6 + 2x_4 + x_5 - x_3 = 1 \\ 2x_2 - x_6 + x_4 - x_1 + 2x_3 + x_5 = 1 \\ 2x_3 + x_5 + x_1 - x_6 + x_4 - 2x_2 = 1 \\ 2x_4 + x_5 - 2x_1 - x_3 - x_6 - x_2 = 1 \\ 2x_6 - x_4 + 2x_1 - x_5 + x_3 + x_2 = 1 \\ 2x_5 - x_4 - x_1 + x_6 + 2x_2 + x_3 = 1 \end{cases}$$

Câu 2.

Cho ma trận
$$A = \begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Hãy tìm tất cả các ma trận vuông X cấp 4 sao cho AX = XA.

Câu 3.

Cho A và B là các ma trận vuông thực, cấp $n \ge 2$, thỏa mãn điều kiện $AB + aA + bB = \mathbf{O}_n$, trong đó a,b là hai số thực khác 0. Chứng minh rằng AB = BA.

<u>Câu 4</u>.

Cho A và B là các ma trận vuông thực, cấp n, thỏa $A^2 = \mathbf{O}_n$. Đặt $B = I_n + A$.

Trong đó, I_n là ma trận đơn vị cấp n.

a/ Tính B^k theo I_n và A, với k là số tự nhiên.

b/ Tính $S_k = I_n + B + B^2 + \dots + B^k$ theo I_n và A, với k là số tự nhiên.

c/ Tính
$$S_k$$
 khi $B = \begin{pmatrix} 7 & -4 \\ 9 & -5 \end{pmatrix}$.

<u>Câu 5</u>.

Một ma trận vuông P, cấp n, trên trường số thực R, được gọi là *lũy linh* nếu tồn tại số tự nhiên k sao cho $P^k = \mathbf{O}_n$.

Cho A là ma trận vuông thực, cấp n, lũy linh.

a/ Chứng minh B = $(I_n - A)$ khả nghịch, và $B^{-1} = I_n + A + A^2 + \cdots + A^{k-1}$.

Từ đó suy ra $C = (I_n + A)$ cũng khả nghịch và tính C^{-1} theo A.

b/ Chứng minh $e^A = \sum_{i=0}^{+\infty} \frac{A^i}{i!}$ khả nghịch và $(e^A)^{-1} = e^{-A}$. Suy ra $e^{mA} = (e^A)^m$, $\forall m \in \mathbb{Z}$.

Hết

Cán bô coi thi không giải thích gì thêm

TRƯ**ỞNG BỘ MÔN**