

T569 -SISTEMAS DE TEMPO REAL

Aula 2- Modelagem e Características Prof. Marcelo Sousa

T569 -SISTEMAS DE TEMPO REAL

- Agenda
 - Modelo de Sistemas de Tempo Real
 - Características de Sistemas de Tempo Real

- Sensores
 - Converter características físicas do ambiente em sinais elétricos
 - Exemplos:

Input Conditioning Unit

Output

Unit

Conditioning

- Condicionadores de sinais
 - Condicionamento de Entrada: Geralmente os sinais obtidos a partir de um sensor possuem níveis de tensão muito baixos. Faz-se necessário o condicionamento da entrada antes da ligação com a entrada do computador.
 - Condicionamento de Saída: Os sinais produzidos por um computador raramente podem ser utilizados diretamente para contolar um atuador. Os sinais devem ser condicionados antes de serem utilizados em um atuador.

Input Conditioning Unit

- Condicionadores de sinais
 - Exemplos:
 - Level shifting

Frequency range shifting and filtering

Signal mode conversion

Interfaces

 Normalmente os comandos da CPU aos atuadores passam por uma interface de saída que converte estes valores digitais em valores analógicos.

Interfaces

 Interfaces entre os sensores e o computador também são necessárias, uma vez que computadores não são capazes de interpretar sinais analógicos.

- Interfaces
 - Conversão Analógica Digital

- Interfaces
 - Conversão Analógica Digital

- Real Time Computer
 - Unidade de processamento das informações obtidas através dos sensores e de tomada de decisão a partir destas informações.
 - Exemplos:

- Restrições Temporais (Time Constraints)
 - Todas as tarefas de tempo real estão associadas a alguma restrição temporal. É de responsabilidade de sistema operacionalo de tempo real garantir que todas as tarefas atingirão suas restrições temporais.
 - Exemplo:
 - Deadline: Tempo necessário para uma tarefa (task) finalizada e produzir resultados

- Critério de corretude (correctness)
 - Resultados corretos E dentro do tempo esperado.
 - Resultados corretos após o tempo especificado são considerados resultados ERRADOS!!!
 - Defesa:
 - Resultado: Atraso no cálculo de rota de um míssel
 - Consequência: Erro do alvo
 - Médica:
 - Resultado: Atrado no calculo de injeção de oxigênio em um respirador automático
 - Consequência: Falta ou excesso de oxigênio para o paciente

- Embarcados (embedded)
 - Em sua grande maioria, estão associados a sistemas embarcados;

- Safety-Criticality
 - Seguro (Safe): Não causar danos quando falhar
 - Confiável (Reliable): demora a falhar;
 - Característica extremamente necessária em sistemas que não devem apresentar falhas por longos períodos de tempo.
 - Exemplo:
 - Sistemas de controle de freio (ABS)

- Concorrentes (Concurrency)
 - Deve responder a diversos eventos independentes e simultâneos em um curto espaço de tempo.
 - Exemplo:
 - Leitura de diversos sensores diferentes

- Distribuídos e com estrutura de feedback
 - Muitos RTS podem estar distibuidos em um grande área geografica .
 - Exemplo:
 - Central de controle (SCADA);

- Criticidade de tarefas (Task Criticality)
 - A criticidade de uma tarefa pode ser traduzida como o custo da ocorrência de uma falha no atendimento àquela tarefa.
 - Tarefas em um sistema de tempo real possuem criticidades diferentes, logo devem possuir tratamento diferenciado
 - Exemplo:
 - Aplicação: Respirador Artificial
 - Leitura do sensor de gases : criticidade alta
 - Leitura dos comandos de controle manual: criticidade média
 - Controle dos LEDs: criticidade baixa
 - Controle do LCD: criticidade baixa

Hardware customizado

 Normalmente tratam hardware (componentes) que foram desenvolvidos especificamente para atender àquela aplicação

– Exemplos:

- Um celular não utiliza um microprocessador de uso geral, e sim processadores que possuem baixo consumo de energia, de dimesões físicas reduzidas, que agregam o maior número de perífericos em um único *chip*
- O microprocessador de um sistema de controle automotivo não necessita do mesmo poder de processamento de um processador de uso geral. Geralmente são processadores de 16bits e 8 bits.

- Reativos (*Reactive*)
 - Frequentemente reagem às entradas oriundas do ambiente externo.

- Estabilidade (Stability)
 - O sistema deve se manter estável mesmo em condições de sobrecarga de processamento, garantindo todos os *deadlines* das tarefas críticas (*tasks*), mesmo que para isso não garanta o atendimento das tarefas não-críticas.

Tratamento de Exceções

- Geralmente sistemas de tempo-real funcionam sem a intevesão humana, logo devem ser capazes de tratar exceções.
- Este tratamento deve ser capaz de assegurar que o sistema continue a funcionar, mesmo que de maneira precária, até que ocorrea alguma intervenção para o pleno funcionamento do sistema.

Sumário

• O Modelo de Sistema de tempo real considera a utilização de meios para interação com o ambiente de controle.

• A análise das característica do sistema de tempo real são necessárias para garantir o funcionamento do sistema e em caso de falha não haver consequências drásticas.

Próxima Aula

-Confiabilidade de Sistemas de Tempo Real

-Técnicas de Tolerância a Falhas