Database Technology

김 형주 교수 Internet Database Lab 서울대학교 컴퓨터공학부

Data Management

어디에 무엇이 있는지,누가 먼저 사용할 것인지 알 수 없다

<혼란스러운 창고>

<정리된 창고>

Data Management – Dedicated System

물건	데이터	
창고	데이터베이스(디스크)	
창고관리인	Dedicated System - DBMS	
직원	응용 프로그램 또는 사용자	

File Systems

- File System
 - Core part of OS
 - Stores programs, data, documents, or anything
 - (in disk)
- Drawbacks:
 - Redundancy and Inconsistency
 - Multiple file formats, duplication of information in different files
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance

Database Management System (DBMS)

Data Base Management System (DBMS)

Basic functionalities

- Store and Retrieve massive data effectively
- Provide "ad-hoc" queries
- Provide concurrent accesses to data (transaction)
- Keep the integrity of data (recovery) despite of failures
- Provide standard platform for application SWs
- Enforce security constraints on data

Simple Data Base

Mobile phone accounting data

40M Persons * 120 Byte * 50 calls/day * 365 days = 80000 G Byte / 1 year = 80 Tera Byte / 1 year

Fastly Growing Big Data Base

NCBI (National Center for Biotechnology Information)

GenBank

- management of information of 165,000 species
- add 3 million new DNA sequences monthly

Enormous Data in Social Network

Web(Internet)을 소통과 협력의 도구로 활용

15,000,000,000 Smart Devices (5000억개)

- Programmable (프로그램 작동이 가능하고)
- Internet connected (인터넷 접속된)

Data Explosion!

Role of DBMS [1]: Simple record search

■ 주민번호 "840101-1212141" 인 학생의 수능 수학성적을 찾아라?

740,000**명** * 5 records = 3,700,000 records

If 12ms is required for fetching a record & checking using a file system

3,700,000 * 12ms = 44.4K secs = *over 12 hours*

If we use DBMS, it will be less than 0.1sec!

Statistical processing for population census

Search for the purchase pattern on customer groups

Search for the correlation between gene and disease

Role of DBMS[2]: Supporting Enterprise Applications

Role of DBMS [3]: Even Knowledge Discovery!

- Data Analysis/Mining
 - * 빵과 과자를 사는 사람의 80%는 우유를 같이 산다
 - * 분유와 기저귀를 사는 사람의 74%는 맥주를 같이 산다
- Decision Making
 - * 상품 진열대에 (빵, 과자, 우유), (분유, 기저귀, 맥주)를 같이 진열
 - * 우유 소비를 조절하기 위해 빵, 과자 가격을 조정

In The Beginning...

A Sample Relational Database

customer-id	customer-name	customer-street	customer-city	
192-83-7465	Johnson	12 Alma St.	Palo Alto	
019-28-3746	Smith	4 North St.	Rye	
677-89-9011	Hayes	3 Main St.	Harrison	
182-73-6091	Turner	123 Putnam Ave.	Stamford	
321-12-3123	Jones	100 Main St.	Harrison	
336-66-9999	Lindsay	175 Park Ave.	Pittsfield	
019-28-3746	Smith	72 North St.	Rye	
(a) The <i>customer</i> table				

account-number	balance	
A-101	500	
A-215	700	
A-102	400	
A-305	350	
A-201	900	
A-217	750	
A-222	700	
(b) The account table		

customer-id	account-number	
192-83-7465	A-101	
192-83-7465	A-201	
019-28-3746	A-215	
677-89-9011	A-102	
182-73-6091	A-305	
321-12-3123	A-217	
336-66-9999	A-222	
019-28-3746	A-201	
(c) The <i>depositor</i> table		

SQL: supporting ad-hoc queries

- SQL: widely used commercial query language
 - E.g. Find the name of the customer with customer-id 192-83-7465

select customer.customer-name

from customer

where customer.customer-id = '192-83-7465'

 E.g. Find the balances of all accounts held by the customer with customer-id 192-83-7465

select account.balance

from depositor, account

where depositor.customer-id = '192-83-7465' and

depositor.account-number = account.account-number

Experimental RDBMS Prototypes

INGRES
At UC Berkeley

Commercial RDBMS Products

INGRES (commercial)

Genealogy of Commercial DBMS Products

범용 "Disk-기반" DBMS Architecture

Database Companies in the World

DBMS Market Share: World Wide (2011)

리서치 전문회사 <u>가트너</u>

2011년 매출기준 TOP 5 상용 관계형 데이터베이스 업체

- Oracle (48.8%)
- IBM (20.2%)
- MicroSoft (17.0%)
- SAP (4.6%)
- TeraData (3.7%)

Source: Gartner Dataquest

국내 DBMS 시장규모 (5천억원 내외)

국내 DBMS Market Share (2013)

Lawrence Joseph Ellison (Oracle Founder)

- Univ of Chicago, Physics Major
- 1976년까지 캘리포니아의 중소기업에서 SW Programmer
- 1977년 1200달러로 Oracle 창업 (Oracle: 신탁, 신의 뜻)
- 보유주식: 430억달러 (약 50조원)
- 세계 부자순위 5위
- Oracle 현황
 - 오라클 2014년도 매출 380억달러 (약 42조원)
 - DBMS, ERP, Data Warehouse, etc
 - 고객: 미국CIA포함 전세계 27만개 기업
 - 직원: 전세계 145개국에서 13만2천명
 - 기업용 SW업체 중 1위, 종합 SW 업체 순위는 2위

Oracle 성장 과정

- 1970년대말: CIA의 수집된 정보를 체계적 관리·분석해주는 프로젝트 성공
- 1980년대: 관계형 DBMS의 시장점유에 선도적 역할
- 1990년대: Internet & E-Business 열풍과 맞물려 또 한번 폭발적 성공
- 2000년 이후: 기업용 SW의 모든 것을 공급하는 One-Stop 서비스 업체
- 2000년 후반기: 200억달러를 들여 무려 27개의 기업 M&A
- 2009년 세계 4대 HW업체인 미국의 <u>선마이크로시스템스</u>를 \$74억에 인수

최근 Database 기술의 주된 발전방향

- Intelligent Retrieval (지능형 검색)
- Large scale Processing (대규모검색, 빅데이터처리)

Ontology: 지식과 개념의 표현과 처리기술

■ 컴퓨터 관련 기기 및 사무용품 온톨로지

Ontology Application: 신약개발분야

Ontology Applicable Example: Drug repositioning of Finsteride

Ontology Application: 신약개발분야

Ontology Application: 신약개발분야

Large Scale Web Search


```
potato: (url_ZZ; 3, 101, 178, 2009); (url_pq; 1; 809); ...
quake: (url_ds; 1; 16); (url_lk; 4; 3, 11, 12, 678); ...
```


Figure 5.3 In Google's data center, Dalles, Oregon. A search engine's index is huge, because in principle it keeps URLs for most of the words used on the Web; Google's index has been reported to be "100 million gigabytes" = 10¹⁷ bytes. However big it is, they can't store just one copy, because they need a backup in case some of those LEDs go dead.

Large Scale Web Search

** Google Search Engine Architecture

** Google Map-Reduce Framework! → Big Data Processing

Big Data의 시대의 도래!

- 2012년 한 해동안 생성된 디지털 데이터
- → 2,700,000,000,000,000,000 바이트 (2.7 ZB)
 - 원인: 정보화 가속, 모바일·소셜·센서 데이터의 급증
 - 1.5년마다 2배로 증가 → 2020년엔 지금의 20배

2.7 제타바이트

36 /

Big Data의 특징

- "빅 데이터"의 속성: 3V 또는 4V
 - 크기(Volume)
 - 속도(Velocity)
 - 다양성(Variety)
 - 가치(Value)

Big Data가 주는 가치

- 데이터: 의미를 담고 있는 기록된 사실 [Elmasri and Navathe. Fundamentals of Database Systems]
- 그렇다면, 다양하고 많은 "빅 데이터" → 다양하고 많은 의미?
 - "빅 데이터"를 처리, 분석하여 의미를 제대로 찾아낼 때에만!

Big Data 101: How Big Data Makes Big Impacts, Intel http://www.intel.com/content/www/us/en/big-data/big-data-101-animation.html

기계화/자동화 → 제조 프로세스 혁신 빅 데이터 분석 → 판단 프로세스 혁신

MapReduce란?

- 구글(Google)이 대용량 Web Data처리를 위한 분산 처리 프레임워크
 - 큰 작업을 잘게 나누고(Map) 종류별로 모아서(Reduce) 처리하는 방식
 - MapReduce는 비공개된 Google의 SW
 - 2004년에 논문을 통해 세상에 알려짐
- MapReduce가 널리 쓰이게 된 이유는? Hadoop의 등장

- Hadoop: 구글의 공식 허가를 받은 MapReduce의 오픈 소스 버전 몇몇 회사는 자체 프레임워크 사용 → 개발 및 유지보수 비용 부담
- 2006년 초: Don Cutting이 Yahoo!에서 Apache Hadoop 프로젝트
- * Hadoop은 Cutting의 아들이 좋아하는 코끼리 장난감 이름

MapReduce 예제: 단어 세기

■ 임무: 아래 책들에서 각 단어가 몇 번 나오는지 세어주세요.

- 문제점: 양이 너무 많아서 혼자 세면 너무 오래 걸림
- 해결방법: 여럿이서 나누어 하기
 - 여럿에게 일을 **나누어서** 시키고 (Map)
 - 몇 명이 각 결과를 모아서 작업을 완료 (Reduce)

MapReduce 예제: 단어 세기 – Map 단계

Map: 조금씩 **나누어서** 일 시키기

MapReduce 예제: 단어 세기 - Reduce 단계

■ Reduce: 몇 명이 각 결과를 모으기

Hadoop 관련 시스템 구조

Database System Concepts

Chapter 1: Introduction Part 1: Relational databases Chapter 2: Introduction to the Relational Model Chapter 3: Introduction to SQL Chapter 4: Intermediate SQL Chapter 5: Advanced SQL Chapter 6: Formal Relational Query Languages Part 2: Database Design Chapter 7: Database Design: The E-R Approach Chapter 8: Relational Database Design Chapter 9: Application Design Part 3: Data storage and querying Chapter 10: Storage and File Structure Chapter 11: Indexing and Hashing **Chapter 12: Query Processing** Chapter 13: Query Optimization **Part 4: Transaction management Chapter 14: Transactions** Chapter 15: Concurrency control Chapter 16: Recovery System **Part 5: System Architecture**

Chapter 17: Database System Architectures

Chapter 18: Parallel Databases

Chapter 19: Distributed Databases

Part 6: Data Warehousing, Mining, and IR Chapter 20: Data Mining **Chapter 21: Information Retrieval Part 7: Specialty Databases** Chapter 22: Object-Based Databases Chapter 23: XML **Part 8: Advanced Topics** Chapter 24: Advanced Application Development Chapter 25: Advanced Data Types Chapter 26: Advanced Transaction Processing Part 9: Case studies Chapter 27: PostgreSQL Chapter 28: Oracle Chapter 29: IBM DB2 Universal Database Chapter 30: Microsoft SQL Server **Online Appendices** Appendix A: Detailed University Schema Appendix B: Advanced Relational Database Model

Appendix C: Other Relational Query Languages Appendix D: Network Model Appendix E: Hierarchical Model