

Deep Learning on Modern Architectures

Keren Zhou

4/17/2017

Deep Learning

- Neural network with more than one non-linear hidden layers—Hinton
- Three research areas:
 - Brain->model (Neuro Science)
 - Model->parameters (Machine Learning)
 - Parameters->codes (HPC)

MM, Conv, Relu, BN, LRN, RNN

Data Layout

CPU

GPU

MIC

Others

Arithmetic Intensity

- Matrix Multiplication is the core of Deep Learning
- Fully-connected layer
 - $output_j = \sum_{k=0} input_k \times weight_{kj}$
 - *I*: input size
 - 0: output size
 - *B*: batch size

- Recurrent Neural Network

 - x^t : time t's input
 - h^{t-1} : time t-1's hidden state

Convolution

- R, S: filter height and width
- *C*: input channels
- *K*: output channels

MM, Conv, Relu, BN, LRN, RNN

C, H, W, N

CPU

GPU

MIC

Others

Data Layout

- N: Batch size, C: Channel size, H: Height, W: Width
 - Different data layout has different performance because of contiguous memory accesses
 - Single data layout cannot achieve the highest performance

Data Layout

- Solutions
 - cuDNN
 - Different implementations for each data layout
 - MKL
 - Transformation before execution
 - Data transformation on GPU [Optimizing Memory Efficiency for Deep Convolutional Neural Networks on GPUs]
 - Blitz: search the best format on each layer

MM, Conv, Relu, BN, LRN, RNN

Data Layout

CPU

GPU

MIC

Others

- CPU Architecture
 - Cache Hierarchy
 - Multiple issue ports

■ SIMD instructions

Haswell

IM2COL+GEMM

Idea: Reduce my problem to one already solved [https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo]

Filter

Pros:

Cons:

- Inefficient on GPU
- Large memory consumption

Blocking

Idea: Maximum Byte/Flops ratios. [Distributed Deep Learning Using Synchronous Stochastic Gradient Descent]

Original convolution consists of seven loops

Algorithm 2 Generic Optimized Forward Propagation

```
1: for i_0 \in 0, ..., minibatch do
2: for i_1 \in 0, ..., ifm/SW do
3: for i_2 \in 0, ..., ofm/SW do
4: for i_3 \in 0, ..., out_h/RB_h do
5: for i_4 \in 0, ..., out_w/RB_w do
6: for rb_h \in 0, ..., RB_h do
7: for rb_w \in 0, ..., RB_w do
```

Pros:

Extreme performance

Cons:

- Not open source
- Require format transformation

Blocking each loop is a constrained minimization problem:

```
\begin{split} BS &= size_{data}*(b1_0*\dots b1_{k+2} + b2_0*\dots b2_{k+2} + b1_0*\\ b2_0*(b1_2*s_1 + b2_2 - 1)\dots (b1_{k+2}*s_{k+2} + b2_{k+2} - 1))\\ CPB &= 2*b1_0*b1_2*\dots b1_{k+2}*b2_1*b2_2*\dots b2_{k+2}\\ B/F &= BS/CPB\\ \forall_i \ find \ b1_i, \ b2_i \ \text{that minimize} \ B/F, \text{s.t.} \ BS < Size_{cache} \end{split}
```

70-90% GFLOPS!

MM, Conv, Relu, BN, LRN, RNN

Data Layout

CPU

GPU

MIC

Others

Idea: based on cudaConvnet, NVCC is not efficient in transforming Cuda C to

FFMA R21, R76.reuse, R67.reuse, R21;

FFMA R20, R77.reuse, R67, R20;

FFMA R22, R77.reuse, R65.reuse, R22;

FFMA R23, R76.reuse, R65, R23;

FFMA R49, R76.reuse, R70.reuse, R49;

FFMA R48, R77.reuse, R70, R48;

Only support CHWN

Perform bad when N is small

Fixed K, C, and N parameters

80-95% GFLOPS!

Pros:

- Open source assembler

Cons:

cuDNNv4: FFT+Multiple GEMM implementations

Idea: Using shared memory for blocking and FbFFT [Fast Convolutional Nets With fbfft: A GPU Performance Evaluation].

GEMM: 50-60% GFLOPS!

TensorRT: Graph+cuBLAS intrinsics+mixed precision

Idea: Parameters do not change in an inference engine

Graph optimization: Concurrency

13% Speedup!

Pros:

Efficient suitcase

Cons:

- Performance
- Hardware support for low precision

Performance Advisor

 B_{ilp} : Instruction level parallel bottleneck, optimized by issuing instructions simultaneously. (+DUAL)

 B_{comp} : Compute resource usage bottleneck, optimized by using more compute units. (+DUAL)

 B_{mem} : Memory access bottleneck, optimized by high bandwidth instruction (+BW) and read-only-cache (+ROC).

 B_{pipe} : Instruction pipeline bottleneck, optimized by instruction scheduling (+IS) and register reuse (RR).

MM, Conv, Relu, BN, LRN, RNN

Data Layout

CPU

GPU

MIC

Others

MIC

- MIC Architecture
 - Cache Hierarchy
 - Instruction Scheduling
 - SIMD Instructions

MIC

- Caffe
 - IM2COL+GEMM
 - 7% GFLOPS
- Libxsmm
 - JIT
 - 30%-80% GFLOPS
- MKL
 - Hand written ASMs
 - 80%GFLOPS
- Blitz
 - Cache blocking
 - 40% GFLOPS

MM, Conv, Relu, BN, LRN, RNN

Data Layout

CPU

GPU

MIC

Others

- FPGA
 - Configurable hardware
 - Both compute and energy efficient
- TPU, Cambrian

	CPU (Caffe+ATLAS)	FPGA	
Device	E7-4807	VC709	
Power	100 W	90W	
Precision	float	-Float fixed-point	
Frequency	1.87 GHz	5 0MHz 200MHz	
Process	32nm	28nm	

```
(Tile loop)
1 for(row=0; row<R; row+=Tr) {
                                                                  (Tile loop)
   for(col=0; col< C; col+=Tc)
      for(to=0; to<M; to+=Tm) {
                                                                  (Tile loop)
        for(ti=0; ti<N; ti+=Tn) {
                                                                  (Tile loop)
       Off-chip Data Transfer: Memory Access Optimization
              On-chip Data: Computation Optimization
          for(trr=row; trr<min(row+Tr, R); trr++) {
                                                                   (Point loop)
           for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {</pre>
                                                                   (Point loop)
             for(too=to; too<min(to+Tm, M); too++) {
                                                                   (Point loop)
              for(tii=ti; tii<(ti+Tn, N); tii++) {
                                                                   (Point loop)
                for(i=0; i<K; i++) {
                                                                   (Point loop)
                  for(j=0; j<K; j++) {
                                                                   (Point loop)
                    output fm[to][row][col] +=
                   weights[to][ti][i][j]*input_fm[ti][S*row+i][S*col+j];
          }}}}}}
```


24

```
Constraints on FPGA resource

0 < Tm*Tn < DSP resource

0 < Tn*Tr*Tc + Tm*Tr*Tc + Tm*Tn*K*K
 < BRAM resource
```

	CN	CNN Configuration			FPGA Configuration		Design Space (Legal Solutions)	
	R	С	М	N	BRAM	DSP	Design opace (Legal colutions)	
Conv3_1(vgg16)	56	56	256	128	6 MB	3600	25, 627, 392	
Conv3_2(vgg16)	56	56	256	256	6 MB	3600	28, 788, 480	
Conv4_1(vgg16)	28	28	512	256	6 MB	3600	7, 874, 496	
Conv5_2(vgg16)	14	14	512	512	6 MB	3600	2, 137, 968	
Conv3(AlexNet)	13	13	192	256	6 MB	3600	1, 486, 524	
Conv4(AlexNet)	13	13	192	192	6 MB	3600	1 421 628	

- Mixed Precision
- Using less bits for energy, memory, and speed efficiency.
- Energy efficiency
 - Fewer memory loads, save memory bandwidth
- Memory efficiency
 - Less parameter storage
- Speed efficiency
 - Operate more numbers in a cycle with available architectural support.

Pascal Hardware Numerical Throughput									
GPU	DFMA (FP64 TFLOP/s)	FFMA (FP32 TFLOP/s)	HFMA2 (FP16 TFLOP/s)	DP4A (INT8 TIOP/s)	DP2A (INT16/8 TIOP/s)				
GP100 (Tesla P100 NVLink)	5.3	10.6	21.2	NA	NA				
GP102 (Tesla P40)	0.37	11.8	0.19	43.9	23.5				
GP104 (Tesla P4)	0.17	8.9	0.09	21.8	10.9				

- Mixed Precision
- 1-bit

$$w_b = \begin{cases} +1 \text{ with probability } p = \sigma(w), \\ -1 \text{ with probability } 1 - p \end{cases} \quad w_b = \begin{cases} +1 \text{ if } w \ge 0, \\ -1 \text{ otherwise} \end{cases}$$

$$w_b = \begin{cases} +1 & \text{if } w \ge 0, \\ -1 & \text{otherwise} \end{cases}$$

- 8-bit
 - CPU->short
 - GPU->int8

Quantize weights to int8

Inference using int8

Quantize inputs to int8

- Why could we quantize?
 - Constant parameters can be grouped into several ranges
 - E.g. Alexnet-2 $1e^{-2} 1e^{-3}$
- Quantization Methods
- Clip

$$I = Clip(MaxV, MinV, round_bit(F))$$

Floating number

Dynamic Fixed Point

$$n = (-1)^{s} \cdot 2^{-fl} \cdot \sum_{i=0}^{B-2} 2^{i} \cdot x_{i}$$

Mini-float

Multiplier-free

$$n = (-1)^s \cdot 2^{\exp}$$

Deep Learning

Co-design Hardwares for Conv, MM, Relu, BN, LRN, RNN

Deep Learning-DSL

Co-design Hardwares for Conv, MM, Relu, BN, LRN, RNN

Suggestions

- Broader: ICLR, ICML, NIPS…
- Deeper: Intel and Nvidia Reference Guides

Thanks!