

AKADEMIA GÓRNICZO-HUTNICZA KATEDRA INFORMATYKI STOSOWANEJ I MODELOWANIA

METODY OPTYMALIZACJI

Optymalizacja funkcji wielu zmiennych metodami bezgradientowymi

1. Cel ćwiczenia.

Celem ćwiczenia jest zapoznanie się z metodami bezgradientowymi poprzez ich implementację oraz wykorzystanie do rozwiązania problemu optymalizacji.

2. Testowa funkcja celu.

Funkcja celu dana jest wzorem:

$$f(x_1, x_2) = x_1^2 + x_2^2 - \cos(2.5\pi x_1) - \cos(2.5\pi x_2) + 2$$

Jej wykres przedstawiony jest poniżej.

Punkt startowy powinien należeć do przedziału $x_1^{(0)} \in [-1,1]$, $x_2^{(0)} \in [-1,1]$.

3. Problem rzeczywisty.

Ramie robota o długości l=0.5~m oraz masie $m_r=1~kg$ ma za zadanie umieścić ciężarek o masie $m_c=10~kg$ na platformie P. W tym celu ramie musi wykonać obrót o kąt $\pi~rad$ i zatrzymać się.

Ruch ramienia opisany jest równaniem:

$$I\frac{d^2\alpha}{dt^2} + b\frac{d\alpha}{dt} = M(t),$$

gdzie: $b=0.5\ Nms$ jest współczynnikiem tarcia, a moment bezwładności ramienia z ciężarkiem I wynosi:

$$I = \frac{1}{3}m_r l^2 + m_c l^2.$$

Moment siły przykładany do ramienia wyznaczany jest ze wzoru:

$$M(t) = k_1 \left(\alpha_{ref} - \alpha(t) \right) + k_2 \left(\omega_{ref} - \omega(t) \right),$$

gdzie:
$$\omega=\frac{d\alpha}{dt}$$
, $\alpha_{ref}=\pi\ rad$, $\omega_{ref}=0\ rad/_{S}$, k_{1} oraz k_{2} współczynniki wzmocnienia regulatora.

Celem optymalizacji jest znalezienie takich wartości współczynników wzmocnienia k_1 oraz k_2 , dla których funkcjonał jakości:

$$Q(k_1,k_2) = \int_0^{t_{end}} \left(10\left(\alpha_{ref} - \alpha(t)\right)^2 + \left(\omega_{ref} - \omega(t)\right)^2 + \left(M(t)\right)^2\right) dt$$

przyjmuje najmniejszą wartość. Początkowe wartości współczynników wzmocnienia powinny należeć do przedziału: $k_1^{(0)} \in [0,10]\ Nm,\ k_2^{(0)} \in [0,10]\ Nms$. Symulacje należy przeprowadzać dla czasu od $t_0=0$ do $t_{end}=100s$ z krokiem dt=0,1s.

4. Algorytmy optymalizacji.

Optymalizację należy przeprowadzić metodą Hooke'a-Jeevesa oraz metodą Rosenbrocka.

5. Zadanie do samodzielnego wykonania.

a. Testowa funkcja celu.

Zadanie polega na wykonaniu 100 optymalizacji dla trzech różnych długości kroku startując z losowego punktu (jeżeli w dwóch sprawozdaniach pojawią się identyczne punkty startowe będą one ocenione na 0 punktów). Wyniki należy zestawić pliku xlsx w tabeli 1. Wartości średnie (tylko dla optymalizacji zakończonych znalezieniem minimum globalnego) należy przedstawić w tabeli 2. Dodatkowo, dla jednego wybranego przypadku należy na wykres poziomic funkcji celu nanieść rozwiązania optymalne uzyskane po każdej iteracji (rozwiązania bazowe dla metody Hooke'a-Jeevesa).

b. Problem rzeczywisty.

Zadanie polega na przeprowadzeniu optymalizacji dla jednej długości kroku. Wyniki należy zestawić w tabeli 3. Dla znalezionych, optymalnych wartości współczynników k_1 oraz k_2 należy przeprowadzić symulację, a jej wyniki wstawić do arkusza Symulacja. Na ich podstawie należy narysować wykresy przedstawiające położenie oraz prędkość ramienia.

6. Sprawozdanie.

Sprawozdanie powinno zostać przygotowane w formacie docx (lub doc) albo pdf i powinno zawierać parametry poszczególnych algorytmów, dyskusję wyników oraz wnioski. Dodatkowo, w sprawozdaniu należy umieścić kod zaimplementowanych metod oraz funkcji main, diff i fit_fun. Wyniki optymalizacji oraz wykresy należy przygotować w formacie xlsx (lub xls).