LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider (joint with Willem de Graaf)

Computer and Automation Research Institute Budapest csaba.schneider@sztaki.hu www.sztaki.hu/~schneider

GAP Package Developers Workshop Braunschweig, 14 September 2007 LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determinin nilpotent Li algebras

Problems a solutions

Generic computations

Classification Neorems

Sophus V1.22

LieAlgDB — A database of Lie algebras Sophus -Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlaDB

Sophus: Computing with nilpotent Lie algebras

- Computing nice bases (NilpotentBasis)
- Computing extensions (LieCover, Descendants)
- Computing automorphism groups (AutomorphismGroupOfNilpotentLieAlgebra)
- (iv) Testing for isomorphism (AreIsomorphicNilpotentLieAlgebras)

LieAlgDB V2.0.1

LieAlgDB: A database of nilpotent Lie algebras (with Willem de Graaf)

- Solvable of dimension at most 4
 (AllSolvableLieAlgebras)
- Non-solvable of dimension at most 6 over FF (AllNonSolvableLieAlgebras);
- Nilpotent of dimension at most 6 over odd characteristic (AllNilpotentLieAlgebras);
- Nilpotent of dimension at most 9 over F₂; at most 7 over F₃ and F₅ (AllNilpotentLieAlgebras);
- Simple of dimension at most 9 over F₂ (AllSimpleLieAlgebras);

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems ar solutions

Generic computations

lassification neorems

Following the p-group generation algorithm (Newman, O'Brien et al.):

If L is a nilpotent Lie algebra, then

$$L > L' = \gamma_2(L) > \gamma_3(L) > \cdots > \gamma_c(L) > \gamma_{c+1}(L) = 0.$$

L is an immediate descendant of $L/\gamma_c(L)$.

Stepsize: dim $\gamma_c(L)$.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and olutions

Generic computations

> lassification eorems

Following the *p*-group generation algorithm (Newman, O'Brien et al.):

If L is a nilpotent Lie algebra, then

$$L > L' = \gamma_2(L) > \gamma_3(L) > \cdots > \gamma_c(L) > \gamma_{c+1}(L) = 0.$$

L is an immediate descendant of $L/\gamma_c(L)$.

Stepsize: dim $\gamma_c(L)$.

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and olutions

Generic computations

lassification leorems

Following the *p*-group generation algorithm (Newman, O'Brien et al.):

If L is a nilpotent Lie algebra, then

$$L > L' = \gamma_2(L) > \gamma_3(L) > \cdots > \gamma_c(L) > \gamma_{c+1}(L) = 0.$$

L is an immediate descendant of $L/\gamma_c(L)$.

Stepsize: dim $\gamma_c(L)$.

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and olutions

Generic computations

lassification leorems

Following the p-group generation algorithm (Newman, O'Brien et al.):

If L is a nilpotent Lie algebra, then

$$L > L' = \gamma_2(L) > \gamma_3(L) > \cdots > \gamma_c(L) > \gamma_{c+1}(L) = 0.$$

L is an immediate descendant of $L/\gamma_c(L)$.

Stepsize: dim $\gamma_c(L)$.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and olutions

Generic computations

lassification neorems

Suppose *L* is a nilpotent Lie algebra of class *c*.

The cover: The is a largest central extension $0 \to M \to L^* \to L \to 0$.

M is called the multiplicator and $\gamma_{c+1}(L^*)$ is the nucleus.

If \overline{L} is a central extension of L then $\overline{L} \cong L^*/U$ where $U \leq M$.

 \overline{L} is an immediate descendant if and only if $U \neq M$ and $U + \gamma_{c+1}(L^*) = M$. Such a U is called allowable.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and olutions

Generic computations

lassification eorems

Suppose *L* is a nilpotent Lie algebra of class *c*.

The cover: The is a largest central extension $0 \to M \to L^* \to L \to 0$.

M is called the multiplicator and $\gamma_{c+1}(L^*)$ is the nucleus.

If \overline{L} is a central extension of L then $\overline{L} \cong L^*/U$ where $U \leq M$.

 \overline{L} is an immediate descendant if and only if $U \neq M$ and $U + \gamma_{c+1}(L^*) = M$. Such a U is called allowable.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and olutions

Generic computations

> lassification eorems

Suppose *L* is a nilpotent Lie algebra of class *c*.

The cover: The is a largest central extension $0 \to M \to L^* \to L \to 0$.

M is called the multiplicator and $\gamma_{c+1}(L^*)$ is the nucleus.

If \overline{L} is a central extension of L then $\overline{L} \cong L^*/U$ where $U \leq M$.

 \overline{L} is an immediate descendant if and only if $U \neq M$ and $U + \gamma_{c+1}(L^*) = M$. Such a U is called allowable.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and

Generic computations

Classification neorems

Suppose *L* is a nilpotent Lie algebra of class *c*.

The cover: The is a largest central extension $0 \to M \to L^* \to L \to 0$.

M is called the multiplicator and $\gamma_{c+1}(L^*)$ is the nucleus.

If \overline{L} is a central extension of L then $\overline{L} \cong L^*/U$ where $U \leqslant M$.

 \overline{L} is an immediate descendant if and only if $U \neq M$ and $U + \gamma_{c+1}(L^*) = M$. Such a U is called allowable.

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

roblems and

Generic computations

lassification neorems

Determining descendants

Aut(L) acts on M.

Theorem

The isomorphism types of the immediate descendants of L correspond to the Aut(L)-orbits on the set of allowable subspaces.

Further

$$Aut(\overline{L}) = Aut(L^*/U) = Aut(L)_U \cdot p^U$$

where $u = (\dim L/\gamma_2(L)) \cdot (\dim M - \dim U)$.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems an solutions

Generic computations

Classification neorems

Determining descendants

Aut(L) acts on M.

Theorem

The isomorphism types of the immediate descendants of L correspond to the Aut(L)-orbits on the set of allowable subspaces.

Further

$$Aut(\overline{L}) = Aut(L^*/U) = Aut(L)_U \cdot \rho^U$$

where $u = (\dim L/\gamma_2(L)) \cdot (\dim M - \dim U)$.

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems a

Generic computations

Classification neorems

6-dimensional nilpotent Lie algebras over F2

Let's compute the 6-dim nilpotent Lie algebras over \mathbf{F}_2 .

```
gap> 12 := [AbelianLieAlgebra( GF(2), 2 )];;
gap> 13 := [AbelianLieAlgebra( GF(2), 3 )];;
gap> for i in 12 do Append( 13, Descendants( i, 1 )); od; time;
16
gap> Length (13);
gap> 14 := [AbelianLieAlgebra( GF(2), 4 )];;
gap> for i in 12 do Append( 14, Descendants( i, 2 )); od; time;
gap> for i in 13 do Append( 14, Descendants( i, 1 )); od; time;
148
gap> Length ( 14 );
gap> 15 := [AbelianLieAlgebra( GF(2), 5 )];;
gap> for i in 13 do Append( 15, Descendants( i, 2 )); od; time;
gap> for i in 14 do Append( 15, Descendants( i, 1 )); od; time;
648
gap> Length ( 15 );
gap> 16 := [AbelianLieAlgebra( GF(2), 6 )];;
gap> for i in 13 do Append( 16, Descendants( i, 3 )); od; time;
gap> for i in 14 do Append( 16, Descendants( i, 2 )); od; time;
352
gap> for i in 15 do Append( 16, Descendants( i, 1 )); od; time;
1728
gap> Length ( 16 );
36
```

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems ar solutions

Generic computations

Classification heorems

E.g. compute step-3 immediate descendants of abelian Lie algebra $\langle x_1, \ldots, x_5 \rangle$.

$$M = N = \langle [x_i, x_j] \mid i < j \rangle.$$

Hence dim M = 10, and every 3-dim subspace is allowable.

#(allowable subspaces): 6,347,715 (over F_2), 1.8 · 10¹¹ (over F_3), 6.2 · 10¹⁵ (over F_5).

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

Generic computations

Classification

Problem: Large number of subspaces for orbit computations.

E.g. compute step-3 immediate descendants of abelian Lie algebra $\langle x_1, \ldots, x_5 \rangle$.

$$M = N = \langle [x_i, x_j] \mid i < j \rangle.$$

Hence dim M = 10, and every 3-dim subspace is allowable.

#(allowable subspaces): 6,347,715 (over \mathbf{F}_2), 1.8 · 10¹¹ (over \mathbf{F}_3), 6.2 · 10¹⁵ (over \mathbf{F}_5).

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

Generic computations

lassification eorems

Problem: Large number of subspaces for orbit computations.

E.g. compute step-3 immediate descendants of abelian Lie algebra $\langle x_1, \ldots, x_5 \rangle$.

$$M = N = \langle [x_i, x_j] \mid i < j \rangle.$$

Hence dim M = 10, and every 3-dim subspace is allowable.

#(allowable subspaces): 6,347,715 (over \mathbf{F}_2), 1.8 · 10¹¹ (over \mathbf{F}_3), 6.2 · 10¹⁵ (over \mathbf{F}_5).

LieAlgDB — A database of Lie algebras Sophus -Computing with nilpotent Lie algebras

Csaba Schneider

Problems and solutions

Task: Find all step-2 descendants of 7-dim abelian.

Need to determine the orbits of GL(7,2) on the set of 2 dimensional subspaces acting on $\mathbf{F}_2^7 \wedge \mathbf{F}_2^7 \cong \mathbf{F}_2^{21}$.

There are 733, 006, 703, 275 subspaces.

The number of orbits can be found using the Cauchy-Frobenius Lemma:

#orbits =
$$\frac{1}{|G|} \sum_{g \in G} \text{fix } g = 20.$$

Using the list of groups with order 2⁹ we can find 20 Lie algebras.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining ilpotent Lie llgebras

Problems and solutions

Generic computations

Classification heorems

Task: Find all step-2 descendants of 7-dim abelian.

Need to determine the orbits of GL(7,2) on the set of 2 dimensional subspaces acting on $\mathbf{F}_2^7 \wedge \mathbf{F}_2^7 \cong \mathbf{F}_2^{21}$.

There are 733, 006, 703, 275 subspaces.

The number of orbits can be found using the Cauchy-Frobenius Lemma:

#orbits =
$$\frac{1}{|G|} \sum_{g \in G} \operatorname{fix} g = 20$$
.

Using the list of groups with order 2⁹ we can find 20 Lie algebras.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

Generic computations

Classification heorems

Task: Find all step-2 descendants of 7-dim abelian.

Need to determine the orbits of GL(7,2) on the set of 2 dimensional subspaces acting on $\mathbf{F}_2^7 \wedge \mathbf{F}_2^7 \cong \mathbf{F}_2^{21}$.

There are 733, 006, 703, 275 subspaces.

The number of orbits can be found using the Cauchy-Frobenius Lemma:

$$\text{\#orbits} = \frac{1}{|G|} \sum_{g \in G} \operatorname{fix} g = 20.$$

Using the list of groups with order 2⁹ we can find 20 Lie algebras.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

Generic computation

Classification heorems

Task: Find all step-2 descendants of 7-dim abelian.

Need to determine the orbits of GL(7,2) on the set of 2 dimensional subspaces acting on $\mathbf{F}_2^7 \wedge \mathbf{F}_2^7 \cong \mathbf{F}_2^{21}$.

There are 733, 006, 703, 275 subspaces.

The number of orbits can be found using the Cauchy-Frobenius Lemma:

#orbits =
$$\frac{1}{|G|} \sum_{g \in G} \text{fix } g = 20.$$

Using the list of groups with order 2⁹ we can find 20 Lie algebras.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lic algebras

Problems and solutions

Generic computation

Classification heorems

Task: Find all step-2 descendants of 7-dim abelian.

Need to determine the orbits of GL(7,2) on the set of 2 dimensional subspaces acting on $\mathbf{F}_2^7 \wedge \mathbf{F}_2^7 \cong \mathbf{F}_2^{21}$.

There are 733, 006, 703, 275 subspaces.

The number of orbits can be found using the Cauchy-Frobenius Lemma:

$$\text{\#orbits} = \frac{1}{|G|} \sum_{g \in G} \operatorname{fix} g = 20.$$

Using the list of groups with order 29 we can find 20 Lie algebras.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determinin nilpotent Lic algebras

Problems and solutions

Generic computation

Jassificatior neorems

The number of small nilpotent Lie algebras

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining hilpotent Lie

8 9 algebras 1831 27073Problems and solutions

Generic computations

Classificatio

eorems

Examples and

```
dimension 1 2 3 4 5 6 7 \# nilp. \mathbf{F}_2-Lie algs 1 1 2 3 9 36 202 \# nilp. \mathbf{F}_3-Lie algs 1 1 2 3 9 34 199 \# nilp. \mathbf{F}_5-Lie algs 1 1 2 3 9 34 211
```

Suppose that

$$L=\langle 1,2,3,4,5 \mid [1,2]=3, \ [1,3]=4, \ [1,4]=5 \rangle$$

over \mathbf{F}_q . Determine the step-1 descendants.

Multiplicator

$$\langle [2,3]=6,[1,5]=7,[2,5]=8,[3,4]=-8,[3,5]=[4,5]=0$$
 nucleus: $\langle 7,8 \rangle$.

Number of allowable subspaces: $q^2 + q$. Then

$$\operatorname{Aut}(L) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{11}a_{22} & a_{11}a_{23} & a_{11}a_{24} \\ 0 & 0 & 0 & a_{11}^2a_{22} & a_{11}^2a_{23} \\ 0 & 0 & 0 & 0 & a_{11}^3a_{22} \end{pmatrix}$$

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

Generic computations

Classification theorems

Suppose that

$$L = \langle 1, 2, 3, 4, 5 \mid [1, 2] = 3, [1, 3] = 4, [1, 4] = 5 \rangle$$

over \mathbf{F}_a . Determine the step-1 descendants.

Multiplicator:

$$\langle [2,3]=6,[1,5]=7,[2,5]=8,[3,4]=-8,[3,5]=[4,5]=0 \rangle$$
, roblems nucleus: $\langle 7,8 \rangle$.

$$\operatorname{Aut}(L) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{11}a_{22} & a_{11}a_{23} & a_{11}a_{24} \\ 0 & 0 & 0 & a_{11}^2a_{22} & a_{11}^2a_{23} \\ 0 & 0 & 0 & 0 & a_{11}^3a_{22} \end{pmatrix}$$

LieAlgDB — A database of Lie algebras Sophus -Computing with nilpotent Lie algebras

Csaba Schneider

Generic computations

Suppose that

$$L = \langle 1, 2, 3, 4, 5 \mid [1, 2] = 3, [1, 3] = 4, [1, 4] = 5 \rangle$$

over \mathbf{F}_{q} . Determine the step-1 descendants.

Multiplicator:

$$\langle [2,3]=6,[1,5]=7,[2,5]=8,[3,4]=-8,[3,5]=[4,5]=0 \rangle$$
, roblems nucleus: $\langle 7,8 \rangle$.

Number of allowable subspaces: $q^2 + q$. Then

$$\operatorname{Aut}(L) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{11}a_{22} & a_{11}a_{23} & a_{11}a_{24} \\ 0 & 0 & 0 & a_{11}^2a_{22} & a_{11}^2a_{23} \\ 0 & 0 & 0 & 0 & a_{11}^3a_{22} \end{pmatrix}.$$

LieAlgDB — A database of Lie algebras Sophus -Computing with nilpotent Lie algebras

Csaba Schneider

Generic computations

$$L = \langle 1, 2, 3, 4, 5 \mid [1, 2] = 3, [1, 3] = 4, [1, 4] = 5 \rangle$$

over \mathbf{F}_{q} . Determine the step-1 descendants.

Multiplicator:

$$\langle [2,3]=6,[1,5]=7,[2,5]=8,[3,4]=-8,[3,5]=[4,5]=0 \rangle$$
, replications nucleus: $\langle 7,8 \rangle$.

Number of allowable subspaces: $q^2 + q$. Then

$$\operatorname{Aut}(L) = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{11}a_{22} & a_{11}a_{23} & a_{11}a_{24} \\ 0 & 0 & 0 & a_{11}^2a_{22} & a_{11}^2a_{23} \\ 0 & 0 & 0 & 0 & a_{11}^3a_{22} \end{array} \right).$$

$$|Aut(L)| = (q-1)^2 q^7.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□◆

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

Generic computations

Orbits and stabilisers

Orbit 1

 $\langle (1,0,0), (0,0,1) \rangle$

Stabiliser: $S_1 = Aut(L)$

Orbit size: 1

Orbit 2

Representative: $\langle (1,0,0), (0,1,-1) \rangle$

Stabiliser: $S_2 = \langle a_{12} = a_{22} - a_{11}, \ a_{24} = (-1/2)a_{23}^2/a_{22} \rangle$

Orbit size: q^2

Orbit 3

Representative: $\langle (1, -1, 0), (0, 0, 1) \rangle$

Stabiliser: $S_3 = \langle a_{22} = a_{11}^3 \rangle$

Orbit size: q - 1

The number of points in total is $q^2 + q$.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

etermining ilpotent Lie ligebras

roblems an olutions

Generic computations

neorems

Another instructive example

Compute step-2 descendants of $L = \mathbf{F}_q^4$ where q is odd.

$$Aut(L) = GL(4, q)$$
. Multiplicator=Nucleus= $W = L \wedge L$.

$$W = \langle e_1 = [1, 2], e_2 = [1, 3], e_3 = [1, 4], f_3 = [2, 3], f_2 = [4, 2], f_1 = [3, 4] \rangle.$$

Orthogonal form on
$$W$$
: $(e_i, e_j) = (f_i, f_j) = 0$; $(e_i, f_j) = \delta_{ij}$.

Aut(L) preserves form modulo scalars: $(xq, yq) = (\det q)(x, y)$.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems an solutions

Generic computations

Classification heorems

Problems an

Generic computations

lassification neorems

Examples and Implementation

There are 4 different 4-dimensional subspaces U of W:

- (i) form is non-degenerate on U with type +: $\langle e_1, e_2, f_1, f_2 \rangle$.
- (ii) form is non-degenerate on U with type -: $\langle (0,0,2,1,-2,0), (0,1,2,0,-a,0), (1,0,-2,0,-a,0), (0,0,0,0,0,1) \rangle$ where a/2 is not a square.
- (iii) form is degenerate on U with 1-dim kernel: $\langle e_1 + f_1, e_2, e_3, f_2 \rangle$.
- (iv) form is degenerate on U with 2-dim kernel: $\langle e_1, e_2, e_3, f_1 \rangle$.

6-dim nilpotent Lie algebras

Theorem

There are 34 isomorphism classes of nilpotent Lie algebras over finite fields with odd characteristic. There are 36 such classes over **F**₂.

Theorem (Willem)

Let char $\mathbb{F} \neq 2$. Then there are $26 + 4|F^*/(F^*)^2|$ isomorphism types of nilpotent Lie algebras with dimension 6.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems a solutions

Generic computations

Classification theorems

6-dim nilpotent Lie algebras

Theorem

There are 34 isomorphism classes of nilpotent Lie algebras over finite fields with odd characteristic. There are 36 such classes over **F**₂.

Theorem (Willem)

Let char $\mathbb{F} \neq 2$. Then there are $26 + 4|F^*/(F^*)^2|$ isomorphism types of nilpotent Lie algebras with dimension 6.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems a solutions

Generic computations

Classification theorems

The classification of soluble Lie algebras of dimension at most 4

Theorem (Willem '05)

The number of soluble Lie algebras of dimension 3 over \mathbf{F}_q is q+5 if char $\mathbf{F}_q \neq 2$ and q+4 otherwise. The number of soluble Lie algebras of dimension 4 over \mathbf{F}_q is

$$q^{2} + 3q + 9 + \begin{cases} 5 & \text{if } q \equiv 1 \pmod{6} \\ 2 & \text{if } q \equiv 2 \pmod{6} \\ 3 & \text{if } q \equiv 3 \pmod{6} \\ 4 & \text{if } q \equiv 4 \pmod{6} \\ 3 & \text{if } q \equiv 5 \pmod{6}. \end{cases}$$

"Which is slightly more than the number found in Patera & Zassenhaus."

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

solutions

Generic computations

Classification theorems

Non-solvable Lie algebras

Theorem (Strade)

Over a finite field \mathbf{F}_q , the number of nonsolvable Lie algebras

- (iii) of dimension 3 is 1;
- (iv) of dimension 4 over char 2 is 2; over odd char it is 1;
- (v) of dimension 5 is 5, 4, 3 over char 2, [3 and 5], and ≥ 7, respectively;
- (vi) of dimension 6 is 14 + 2q, $13 + (5/3)q + \varepsilon$, 13 + q, 11 + q over fields of characteristic 2, 3, 5, and ≥ 7 .

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

solutions

Generic computations

Classification theorems

Simple Lie algebras

Theorem (Vaughan-Lee)

The number of isomorphism types of 7, 8, and 9-dimensional simple Lie algebras over \mathbf{F}_2 is 2, 2, 1, respectively.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems an solutions

Generic computations

Classification theorems

The LieAlgDB package

gap> SolvableLieAlgebra(GF(27), [4,3,1]);

```
<Lie algebra of dimension 4 over GF(3^3)>
gap> NonSolvableLieAlgebra( GF(27), [5,3] );
sl(2,27).V(1)
qap> L := AllNonSolvableLieAlgebras( GF(5^20), 6 );
Nonsolvable Lie algebras with dimension 6 over GF(5^20) computations
gap> Size( L );
95367431640638
gap> e := Enumerator( L );
                                                            Examples and
                                                            Implementation
<enumerator>
gap> e[1233223];
s1(2,95367431640625) + solv([3,4*Z(5,20)^11+4*Z(5,20)^13+3*Z(5,20)]
0) ^{15+4*}Z(5,20) ^{17+4*}Z(5,20) ^{18+4*}Z(5,20) ^{19} ])
```

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Nonsolvable algebras over characteristic 3

LieAlgDB — A database of Lie algebras Sophus — Computing with nilpotent Lie algebras

Csaba Schneider

```
gap> L := AllNonSolvableLieAlgebras ( GF(81), 6 );
Nonsolvable Lie algebras with dimension 6 over GF(3^4)
gap> e := Enumerator( L );
fail
gap> e := Iterator( L );
<iterator>
qap > z := [];; for i in e do
gap> Add( z, Dimension( LieCenter( i )));
gap> od;
gap> z;
. . .
 0, 0 ]
```

Implementation

Lie algebra identification

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

solutions

Generic

Classification theorems

The package contains about 30000 nilpotent Lie algebras.

Every such algebra is encoded: Let $L = \langle x_1, \dots, x_d \rangle$ be such an algebra over \mathbb{F}_p . Then

$$[x_i, x_j] = \sum_{k=j+1}^d \alpha_{i,j}^d x_d \quad \text{for} \quad i < j.$$

Write down the $\alpha_{i,j}^d$ in a certain order and consider it as a number in base p. Convert this number to base 62 using the digits, $0, \ldots, 9, a, \ldots, z, A, \ldots, Z$.

These strings are stored in the global variables _liealgdb_nilpotent_d*f*.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining illpotent Lie ilgebras

roblems and olutions

deneric omputations

assification eorems

The package contains about 30000 nilpotent Lie algebras.

Every such algebra is encoded:

Let $L = \langle x_1, \dots, x_d \rangle$ be such an algebra over \mathbb{F}_p . Then

$$[x_i, x_j] = \sum_{k=j+1}^d \alpha_{i,j}^d x_d$$
 for $i < j$.

Write down the $\alpha_{i,j}^d$ in a certain order and consider it as a number in base p. Convert this number to base 62 using the digits, $0, \ldots, 9, a, \ldots, z, A, \ldots, Z$.

These strings are stored in the global variables _liealgdb_nilpotent_d*f*.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

ieneric omputations

eorems

The package contains about 30000 nilpotent Lie algebras.

Every such algebra is encoded:

Let $L=\langle x_1,\ldots,x_d\rangle$ be such an algebra over \mathbb{F}_p . Then

$$[x_i, x_j] = \sum_{k=j+1}^d \alpha_{i,j}^d x_d$$
 for $i < j$.

Write down the $\alpha_{i,j}^d$ in a certain order and consider it as a number in base p. Convert this number to base 62 using the digits, $0, \dots, 9, a, \dots, z, A, \dots, Z$.

These strings are stored in the global variables _liealgdb_nilpotent_d*f*.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems an solutions

ieneric omputation

assification eorems

The package contains about 30000 nilpotent Lie algebras.

Every such algebra is encoded:

Let $L=\langle x_1,\ldots,x_d\rangle$ be such an algebra over \mathbb{F}_p . Then

$$[x_i, x_j] = \sum_{k=j+1}^d \alpha_{i,j}^d x_d$$
 for $i < j$.

Write down the $\alpha_{i,j}^d$ in a certain order and consider it as a number in base p. Convert this number to base 62 using the digits, $0, \ldots, 9, a, \ldots, z, A, \ldots, Z$.

These strings are stored in the global variables _liealgdb_nilpotent_d*f*.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and solutions

ieneric omputation

eorems

Loading nilpotent Lie algebras

The files containing the codewords for nilpotent Lie algebras are about 1/2 MB long.

We don't want to read these files, unless the user really needs them. So we added to read.g

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems an solutions

Generic computations

Classification heorems

Loading nilpotent Lie algebras

The files containing the codewords for nilpotent Lie algebras are about 1/2 MB long.

We don't want to read these files, unless the user really needs them. So we added to read.g

```
DeclareAutoreadableVariables ("liealgdb",
        "gap/nilpotent/nilpotent_data62.gi",
        ["_liealgdb_nilpotent_d6f2"] );
```

LieAlgDB — A database of Lie algebras Sophus -Computing with nilpotent Lie algebras

Csaba Schneider

To do

Sophus

- (i) more computations over extension fields;
- (ii) better automorphism group and isomorphism testing.

LieAlgDB

- (i) 6-dim nilpotent over characteristic 2;
- (ii) check Strade's classification;
- (iii) add more classes of algebras.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determining nilpotent Lie algebras

Problems and

Generic computations

Classification neorems

References

W. A. de Graaf. Classification of solvable Lie algebras. *Experiment. Math.* **14**(1):15–25, 2005. arxiv.org/abs/math.RA/0404071.

Willem A. de Graaf. Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. *J. Algebra*, **309**(2):640–653, 2007. arxiv.org/abs/math.RA/0511668.

Csaba Schneider. A computer-based approach to the classification of nilpotent Lie algebras. *Experiment. Math.* **14**(2):153-160, 2005. arxiv.org/math.RA/0406365

Helmut Strade. Lie algebras of small dimension. arxiv.org/abs/math.RA/0601413.

Michael Vaughan-Lee. Simple Lie algebras of small dimension over GF(2). *LMS J. Comput. Math.* **9**:174–192, 2006.

LieAlgDB — A
database of Lie
algebras
Sophus —
Computing with
nilpotent Lie
algebras

Csaba Schneider

Sophus and LieAlgDB

Determinir nilpotent L algebras

Problems au solutions

Generic computation

lassification leorems

Examples and Implementation