CS 8725: Equations in Supervised Learning final project

Classifiers Comparison for Gender Identification from Facial Images

December 03, 2015

SVM	Training	Test
Gaussian RBF	89.32%	87.37%
Polynomial ³	89.68%	86.48%
Linear	82.34%	81.67%
K-NN ⁹	82.34%	77.76%
Naive Bayes	77.10%	76.16%

Boosting	SVMguassian	SVM ^{polynomial}	K-NN	NB
1	87.37%	86.30%	77.76%	76.16%
2	84.88%	87.01%	77.76%	76.16%
3	86.48%	86.65%	77.76%	78.11%
4	84.52%	87.90%	77.76%	77.94%
5	85.94%	87.19%	77.76%	78.29%
6	85.77%	86.65%	77.76%	78.29%
7	84.88%	86.65%	77.76%	79%
8	85.94%	86.12%	77.76%	79%
9	86.30%	86.65%	77.76%	79%
10	86.65%	86.65%	77.76%	79%
11	86.48%	86.83%	77.76%	79%
12	86.30%	85.94%	77.76%	79%
13	87.01%	86.30%	77.76%	79%
14	87.01%	86.30%	77.76%	79%
15	87.19%	86.48%	77.76%	79%
16	87.54%	86.48%	77.76%	79%

$$G(x_i, x_j) = e^{-||x_i - x_j||^2}$$
(1)

$$G(x_i, x_j) = x_i^T x_j \tag{2}$$

$$G(x_i, x_j) = (1 + x_i^T x_j)^p (3)$$

$$x_i \leftarrow \frac{x_i}{\sigma} \quad \forall i \tag{4}$$

$$x_{i} \leftarrow \frac{x_{i}}{\sigma} \quad \forall i$$

$$K(x^{\prime(i)}, x^{\prime(j)}) = e^{-\frac{||x^{(i)} - x^{(j)}||^{2}}{\sigma^{2}}}$$

$$(5)$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \tag{6}$$

$$D_{t+1}(i) = \frac{D_t(i)}{2} \begin{cases} 1/(1 - \epsilon_t) & \text{Correct} \\ 1/\epsilon_t & \text{Wrong} \end{cases}$$
 (7)

$$\epsilon_t = \sum_{i \in Wrong} D_t(i) \tag{8}$$

$$u_{ij} = \frac{\exp(-\beta d(x_i, \theta_j))}{\sum_{k=1}^{c} \exp(-\beta d(x_i, \theta_k))}$$
(9)

$$\theta_j = \{ x_k \in X - \Theta | \underset{k}{\operatorname{argmin}} \sum_{i=1}^N u_{ij}^q d(x_i, x_k) \}$$
(10)