Семинарский лист 1337

Александр Богданов Telegram Алиса Вернигор Telegram Bасилий Шныпко Telegram Денис Козлов Telegram

Иван Пешехонов Telegram

Версия от 25.09.2020 22:16

Применяя признак Вейрштрасса, покажите, что ряд сходится абсолютно. Применяя признак Лейбница, покажите, что ряд сходится.

Задача 4

$$\sum_{n=1}^{\infty}\frac{(-1)^n(2n-1)}{n^2+3n+5} -$$
знакочередующийся ряд, $a_n=\frac{(-1)^n(2n-1)}{n^2+3n+5}, \ |a_n|=\frac{2n-1}{n^2+3n+5}$

Проверим, что $|a_n|$ монотонно убывает. Рассмотрим $f(x) = \frac{2x-1}{x^2+3x+5}$:

$$f'(x) = \frac{2(x^2 + 3x + 5) - (2x - 1)(2x + 3)}{(x^2 + 3x + 5)^2} = \frac{2x^2 + 6x + 10 - 4x^2 - 4x + 3}{(x^2 + 3x + 5)^2} = -\frac{2x^2 - 2x - 3}{(x^2 +$$

$$= -\frac{2\left(x - \frac{1}{2}\right)^2 - \frac{7}{2}}{(x^2 + 3x + 5)^2} < 0 \text{ при } x \ge 2 \Rightarrow$$

$$\Rightarrow |a_n| \searrow$$
 начиная с $n=2$

$$\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{2n - 1}{n^2 + 3n + 5} = \lim_{n \to \infty} \frac{2 - \frac{1}{n}}{n + 3 + \frac{5}{n}} = 0$$

$$\left\{ \begin{array}{l} \text{ряд знакочередующийся,} \\ |a_n| > |a_{n+1}| \forall n \geq 2, \\ \lim_{n \to \infty} |a_n| = 0 \end{array} \right. \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)}{n^2 + 3n + 5} \ \text{сходится условно по признаку Лейбница.}$$

$$\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}\frac{2n-1}{n^2+3n+5}\sim\sum_{n=1}^{\infty}\frac{1}{n}-\text{расходится по признаку сравнения}\ \Rightarrow\ \text{абсолютной сходимости нет.}$$

Применяя группировку членов постоянного знака, покажите, что ряд расходится.

Применяя признак Дирихле или Абеля, покажите, что ряд сходится.

Исследуйте ряд на сходимость и абсолютную сходимость, используя асимптотику общего члена.

Вычислите произведение рядов.