Devoir à la maison n° 07

À rendre le 17 novembre

I. Résolution d'une équation fonctionnelle.

Dans cet exercice, on cherche à déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} , $\underline{2\pi\text{-périodiques}}$ et vérifiant : $\forall x \in \mathbb{R}$, $f'(x) = f(x - \pi) + \sin x$.

- 1) Question préliminaire : résoudre l'équation différentielle (E) : $f'' f = -\sin x + \cos x$.
- 2) Soit f une fonction solution du problème.
 - a) Montrer que la fonction f' est elle-même dérivable sur \mathbb{R} .
 - b) Montrer que f est solution d'une équation différentielle d'ordre 2 à coefficients constants, dont le second membre est une somme de fonctions trigonométriques.
 - c) En déduire qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ vérifiant

$$\forall x \in \mathbb{R} \quad f(x) = \alpha e^x + \beta e^{-x} + \frac{1}{2} (\sin x - \cos x)$$

Dans la suite on fixe un tel couple (α, β) .

d) En utilisant la périodicité de f, montrer

$$\forall x \in \mathbb{R} \quad \alpha (1 - e^{2\pi}) e^x + \beta (1 - e^{-2\pi}) e^{-x} = 0$$

- e) En dérivant la relation précédente, montrer que $\alpha = \beta = 0$
- 3) Réciproquement, la fonction trouvée est-elle solution du problème de départ?

II. Étude de trois relations d'équivalence.

Soit E un ensemble non vide, on note pour toute application $f \in E^E$ et $n \in \mathbb{N}$, $f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ fois}}$.

On considère alors les relations suivantes sur $F = E^E$:

- $f \sim g \text{ si } \exists n \in \mathbb{N}^*, \ f^n = g^n;$
- $-f \approx g \text{ si } \exists (m,n) \in (\mathbb{N}^*)^2, f^m = g^n;$
- $-f \equiv g \text{ si } f(E) = g(E).$
- 1) Montrer que \sim , \approx et \equiv sont des relations d'équivalence sur F.
- 2) Pour $f \in F$, on note f^{\sim} , f^{\approx} , f^{\equiv} les classes d'équivalence de f modulo \sim , \approx , \equiv respectivement.
 - a) Comparer f^{\sim} et f^{\approx} .
 - b) Montrer que toute classe d'équivalence pour \approx est réunion de classes d'équivalence pour \sim .
 - c) Que peut-on dire s'il existe $g \in f^{\approx}$ injective? surjective?
 - d) Même question avec f^{\equiv} .

— FIN —