Minimalizacja funkcji boolowskich

Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 20 wieku.

Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 80.

Przyczyna: możliwość realizacji układów logicznych w strukturach scalonych o złożoności milionów bramek logicznych.

- Graficzne
- Analityczne
- Komputerowe

Absolutnie nieprzydatne do obliczeń komputerowych

Tablice Karnaugha Metoda Quine'a – McCluskey'a

Pierwsze skuteczne narzędzie do minimalizacji wieloargumento wielowyjściowych funkcji boolowskich (Uniwersytet Kalifornijski w Berkeley):

Metoda i system Espresso (1984)

Ze względu na ograniczony zakres wykładu omówimy wyłącznie:

Metodę tablic Karnaugha

Metodę Ekspansji (przykładową procedurę Espresso)

Omówienie całego Espresso jest nierealne!

W kratki wpisuje się wartości funkcji.

W tablicy K. różniącym się tylko o negację pełnym iloczynom przyporządkowane są leżące obok siebie pola tablicy (sąsiednie kratki). Korzysta się z faktu, że dla dowolnego A:

$$A\overline{x} + Ax = A$$

Dla uzyskania efektu sąsiedztwa współrzędne pól opisuje się kodem Gray'a

Kod Gray'a

0	00	000	0000
1	01	001	0001
	11	011	0011
	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1110
			1010
			1011
			1001
			1000

Przykłady sklejeń

I T P W

Przykładzik

	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

- 1) Wpisanie funkcji do tablicy
- 2) Zakreślanie pętelek

Z pętelkami kojarzymy iloczyn zmiennych (prostych lub zanegowanych)

X_3 X_1X_2	0	1
00	0	1
01	0	1
11	1	1
10	0	1

$$f = \boxed{x_1 x_2} + \boxed{x_3}$$

Wpisywanie funkcji ułatwia...

...opis kratek tablic Karnaugha wg NKB

X_3X_4 X_1X_2	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

X_4X_5 $X_1X_2X_3$	00	01	11	10
000	0	1	3	2
001	4	5	7	6
011	12	13	15	14
010	8	9	11	10
110	24	25	27	26
111	28	29	31	30
101	20	21	23	22
100	16	17	19	18

Przykładzik

	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3 4	0	1	1	1
	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Wpisanie funkcji do tablicy

x_3 x_1x_2	0	1
00	0	1
01	2	3
11	6	7
10	4	5

Zakreślanie pętelek i kojarzenie z nimi odpowiednich iloczynów jest trudniejsze

Przykład

X ₁	X_3 X_2	0	1	
0	0	0	0	\overline{x}_1
0	1	1	0	^ 1
1	1	1	1	
1	0	1	0	X ₁

x ₁	X_3 X_2	0	1	
0	0	0	0	\overline{x}_2
0	1	1	0	V
1	1	1	1	X ₂
1	0	1	0	\overline{x}_2

X ₁	X ₃ X ₂	0	1
0	0	0	0
0	1	1	0
1	1	1	1
1	0	1	0
		\overline{x}_3	X_3

Przykład

$$f = \Sigma[0, 5, 6, 7, 10, (2, 3, 11, 12)]$$

X_3X_4 X_1X_2	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$$f = \overline{X}_1 X_3 + \overline{X}_2 X_3 + \overline{X}_1 \overline{X}_2 \overline{X}_4 + \overline{X}_1 X_2 X_4$$

Implikant funkcji boolowskiej

Implikant danej funkcji f jest to iloczyn literałów (zmiennych prostych i zanegowanych) o następującej własności: dla wszystkich kombinacji wartości zmiennych, dla których implikant jest równy jedności, również funkcja f jest równa jedności.

Prosty implikant jest to implikant, który zmniejszony o dowolny literał przestaje być implikantem.

Implikant funkcji boolowskiej

W interpretacji tablic Karnaugha implikant prosty odpowiada grupie jedynek (i kresek), której nie można powiększyć.

Formy kanoniczne

Kanoniczna forma sumacyjna (suma iloczynów)

Kanoniczna forma iloczynowa (iloczyn sum)

Kanoniczna forma sumacyjna

$$f(X) = \bigvee_{k=0}^{2^{n}-1} x_{1}^{e_{1k}} x_{2}^{e_{2k}} \cdots x_{n}^{e_{nk}} f(X_{k})$$

$$x^e = \begin{cases} x, & \text{gdy } e = 1 \\ \overline{x}, & \text{gdy } e = 0 \end{cases}$$

$$f(X) = \bigvee_{k=0}^{2^{n}-1} P_{k}(X) f(X_{k})$$

	<i>x</i> ₁	X ₂	X ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$f(X) = \overline{X}_1 \overline{X}_2 X_3 + \overline{X}_1 X_2 X_3 + X_1 \overline{X}_2 X_3 + X_1 X_2 \overline{X}_3 + X_1 X_2 \overline{X}_3$$

Kanoniczna forma iloczynowa

$$f(X) = \bigwedge_{k=0}^{2^{n}-1} \left(x_1^{e_{1k}} + x_2^{e_{2k}} + \dots + x_n^{e_{nk}} + f(X_k) \right)$$

$$x^e = \begin{cases} x, & \text{gdy } e = 0 \\ \overline{x}, & \text{gdy } e = 1 \end{cases}$$

$$f(X) = \bigwedge_{k=0}^{2^{n}-1} \left(S_{k} + f(X_{k})\right)$$

, i				Ĭ
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$f = (X_1 + X_2 + X_3)(X_1 + \overline{X}_2 + X_3)(\overline{X}_1 + X_2 + X_3)$$

Formy kanoniczne – realizacje bramkowe

Realizacja AND-OR

Realizacja NAND

Realizacja OR-AND

Realizacja NOR

$$y = x_1 x_2 + x_1 \overline{x}_3 + x_2 \overline{x}_3$$

$$y = x_1x_2 + x_1\overline{x}_3 + x_2\overline{x}_3$$

Realizacja NAND

$$y = \overline{x_1 x_2 + x_1 \overline{x}_3 + x_2 \overline{x}_3}$$

$$y = \overline{x_1 x_2} \bullet \overline{x_1 \overline{x_3}} \bullet \overline{x_2 \overline{x_3}}$$

$$y = (x_1 + x_2)(x_1 + \overline{x}_3)(x_2 + \overline{x}_3)$$

Realizacja NOR

$$y = (\overline{x_1 + x_2})(\overline{x_1 + \overline{x}_3})(\overline{x_2 + \overline{x}_3})$$

$$y = x_1 + x_2 + x_1 + \overline{x_3} + x_2 + \overline{x_3}$$

 $f = \Sigma[0, 5, 6, 7, 10, (2, 3, 11, 12)]$

$$f = (\overline{x}_1 \vee x_3)(\overline{x}_1 \vee \overline{x}_2)(x_2 \vee \overline{x}_4)(\overline{x}_2 \vee x_3 \vee x_4)$$

Układy wielowyjściowe - przykład

$$y_1 = \Sigma(2,3,5,7,8,9,10,11,13,15)$$

$$y_2 = \Sigma(2,3,5,6,7,10,11,14,15)$$

$$y_3 = \Sigma(6,7,8,9,13,14,15)$$

cd ab	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$$y_1 = a\overline{b} + bd + \overline{b}c$$

$$y_3 = bc + a\overline{c}d + a\overline{b}\overline{c}$$

7 bramek AND

Układy wielowyjściowe - przykład

- 1
- 2
- 3
- 4

 $y_1 = \overline{b}c + \overline{a}bd + abd + a\overline{b}\overline{c}$

- 1
- 2
- **5**

 $y_2 = \overline{b}c + \overline{a}bd + bc$

- 3
- 4 5
- $y_3 = abd + a\overline{b}\overline{c} + b\overline{c}$

5 bramek AND

... a poprzednio było 7 bramek AND!!!