Going beyond linear regression

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Course objectives

- Learn building blocks of GLMs
- Train GLMs
- Interpret model results
- Assess model performance
- Compute predictions

- Chapter 1: How are GLMs an extension of linear models
- Chapter 2: Binomial (logistic) regression
- Chapter 3: Poisson regression
- Chapter 4: Multivariate logistic regression

salary
$$\sim$$
 experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

salary
$$\sim$$
 experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

salary \sim experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

x - explanatory variable (input)

salary
$$\sim$$
 experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

x - explanatory variable (input)

 β - model parameters

 β_0 - intercept

 β_1 - slope

salary
$$\sim$$
 experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

x - explanatory variable (input)

 β - model parameters

 β_0 - intercept

 β_1 - slope

 ϵ - random error

LINEAR MODEL - ols()

from statsmodels.formula.api import ols

GENERALIZED LINEAR MODEL - glm()

import statsmodels.api as sm
from statsmodels.formula.api import glm

Assumptions of linear models

$$salary = 25790 + 9449 \times experience$$

Regression function

$$E[y] = \mu = \beta_0 + \beta_1 x_1$$

Assumptions

- Linear in parameters
- Errors are independent and normally distributed
- Constant variance

What if ...?

ullet The response is binary or count ightarrow NOT continuous

• The variance of y is not constant ightarrow depends on the mean

Dataset - nesting of horseshoe crabs

Variable Name	Description
sat	Number of satellites residing in the nest
у	There is at least one satellite residing in the nest; 0/1
weight	Weight of the female crab in kg
width	Width of the female crab in cm
color	1 - light medium, 2 - medium, 3 - dark medium, 4 - dark
spine	1 - both good, 2 - one worn or broken, 3 - both worn or broken

¹ A. Agresti, An Introduction to Categorical Data Analysis, 2007.

satellite crab \sim female crab weight

y ~ weight

P(satellite crab is present) = P(y = 1)

Linear model and binary data

Linear model and binary data

From probabilities to classes

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

How to build a GLM?

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Systematic Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Systematic Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Interaction

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \beta_3 x_1 * x_2$$

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Systematic Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Interaction

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \beta_3 x_1 * x_2$$

Curvilinear

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

Random Component

Systematic Component

Link Function

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Continuous → **Linear Regression**

Data type: continuous

Domain: $(-\infty, \infty)$

Examples: house price, salary, person's height

Family: Gaussian()

Link: identity

$$g(\mu) = \mu = E(y)$$

Model = Linear regression

Binary → **Logistic regression**

Data type: binary

Domain: 0, 1

Examples: True/False

Family: Binomial()

Link: logit

Model = Logistic regression

Count \rightarrow Poisson regression

Data type: count

Domain: $0, 1, 2, ..., \infty$

Examples: number of votes, number of hurricanes

Family: Poisson()

Link: logarithm

Model = Poisson regression

Link functions

Density	Link: $\eta=g(\mu)$	Default link	glm(family=)
Normal	$\eta=\mu$	identity	Gaussian()
Poisson	$\eta = log(\mu)$	logarithm	Poisson()
Binomial	$\eta = log[p/(1-p)]$	logit	Binomial()
Gamma	$\eta=1/\mu$	inverse	Gamma()
Inverse Gaussian	$\eta=1/\mu^2$	inverse squared	<pre>InverseGaussian()</pre>

Benefits of GLMs

- A unified framework for many different data distributions
 - Exponential family of distributions
- Link function
 - Transforms the expected value of y
 - Enables linear combinations
 - Many techniques from linear models apply to GLMs as well

Let's practice

GENERALIZED LINEAR MODELS IN PYTHON

How to fit a GLM in Python?

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

statsmodels

Importing statsmodels

import statsmodels.api as sm

Support for formulas

import statsmodels.formula.api as smf

Use glm() directly

from statsmodels.formula.api import glm

Process of model fit

- 1. Describe the model \rightarrow glm()
- 2. Fit the model \rightarrow .fit()
- 3. Summarize the model \rightarrow .summary ()
- 4. Make model predictions → .predict()

Describing the model

FORMULA based

from statsmodels.formula.api import glm

model = glm(formula, data, family)

ARRAY based

import statsmodels.api as sm

```
X = sm.add_constant(X)
model = sm.glm(y, X, family)
```

Formula Argument

```
	extbf{response} \sim 	extbf{explanatory variable(s)} 	extbf{output} \sim 	extbf{input(s)}
```

```
formula = 'y \sim x1 + x2'
```

- C(x1): treat x1 as categorical variable
- -1 : remove intercept
- x1:x2: an interaction term between x1 and x2
- x1*x2: an interaction term between x1 and x2 and the individual variables
- np.log(x1): apply vectorized functions to model variables

Family Argument

```
family = sm.families.___()
```

The family functions:

- Gaussian(link = sm.families.links.identity) → the default family
- Binomial(link = sm.families.links.logit)
 - probit, cauchy, log, and cloglog
- Poisson(link = sm.families.links.log)
 - identity and sqrt

Other distribution families you can review at statsmodels website.

Summarizing the model

print(model_GLM.summary())

	Genera	nlized Linear	- Mod	el Re	gression Resu	ılts	
=========	======	:=======	====	=====	:========	:======:	=======
Dep. Variable:			у	No. 0	bservations:		173
Model:		G	SLM	Df Re	esiduals:		171
Model Family:		Binomi	lal	Df Mo	del:		1
Link Function:		log	git	Scale	e:		1.0000
Method:		IR	RLS	Log-L	ikelihood:		-97.226
Date:	Мс	on, 21 Jan 20	919	Devia	ince:		194.45
Time:		11:30:	:01	Pears	on chi2:		165.
No. Iterations:			4	Covar	iance Type:		nonrobust
=======================================	coef	std err	:====	===== Z	:======= P> z	[0.025	0.975]
Intercept -12	 2.3508	2.629	-4.	 698	0.000	-17.503	-7.199
width 6	0.4972	0.102	4.	887	0.000	0.298	0.697
==========	======	:========	====	=====	:========	:======:	========

Regression coefficients

. params prints regression coefficients

```
model_GLM.params
```

```
.conf_int(alpha=0.05, cols=None)
prints confidence intervals
```

```
model_GLM.conf_int()
```

```
0 1
Intercept -17.503010 -7.198625
width 0.297833 0.696629
```

Predictions

- Specify all the model variables in test data
- .predict(test_data) computes predictions

```
model_GLM.predict(test_data)
```

```
0 0.029309
1 0.470299
2 0.834983
3 0.972363
4 0.987941
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

