ARITHMÉTIQUE -

Exercices complémentaires – Feuille 1

1 Logique et méthodes de démonstration

Exercice 1. Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction définie sur I à valeurs réelles. Exprimer à l'aide de quantificateurs les assertions suivantes :

- a) La fonction f s'annule.
- b) La fonction f est la fonction nulle.
- c) f n'est pas une fonction constante.
- d) f ne prend jamais deux fois la même valeur.
- e) La fonction f présente un minimum.
- f) f prend des valeurs arbitrairement grandes.
- g) f ne peut s'annuler qu'une seule fois.

Exercice 2. Exprimer, en phrases et à l'aide de quantificateurs, les négations des assertions (a)–(g) de l'exercice précèdent.

Exercice 3. Nier les propositions suivantes :

- a) "Tout triangle rectangle possède un angle droit".
- b) "Tous les habitants de la rue du Havre qui ont les yeux bleus gagneront au loto et prendront leur retraite avant 50 ans".
- c) "Tous les étudiants qui portent une casquette pendant le cours rateront l'examen final avec une note maximale de 9.5/20".
- d) Pour tout entier x, il existe un entier y tel que, pour tout entier z, la relation z < x implique la relation z < x + 1.

Exercice 4 (Le missionnaire et les cannibales, d'après Cervantès). Les cannibales d'une tribu se préparent à manger un missionnaire. Désirant lui prouver une dernière fois leur respect de la dignité et de la liberté humaine, les cannibales proposent au missionnaire de décider lui-même de son sort en faisant une courte déclaration : si celle-ci est vraie, le missionnaire sera rôti, et il sera bouilli dans le cas contraire. Que doit dire le missionnaire pour sauver sa vie?

Exercice 5. Soient I un intervalle de \mathbb{R} non vide et $f:I\to\mathbb{R}$ une fonction à valeurs réelles définie sur I.

Exprimer les négations des assertions suivantes :

a) $\forall x \in I, f(x) \neq 0.$

d) $\forall x, y \in I, x \leq y \Rightarrow f(x) \leq f(y)$.

b) $\forall y \in \mathbb{R}, \exists x \in I, f(x) = y.$

- e) $\forall x, y \in I, f(x) = f(y) \Rightarrow x = y.$
- c) $\exists M \in \mathbb{R}, \forall x \in I, |f(x)| \leq M$.

f) $\forall x \in I, f(x) > 0 \Rightarrow x \leq 0.$

Exercice 6. Soit $f : \mathbb{R} \to \mathbb{R}$. Donner la différence de sens des deux assertions proposées et donner des exemples de chacune d'elles, si possible :

- a) $[\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y = f(x)]$ et $[\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y = f(x)]$.
- b) $[\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)]$ et $[\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y = f(x)]$.
- c) $[\forall x \in \mathbb{R}, \exists M \in \mathbb{R}, f(x) \leqslant M]$ et $[\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leqslant M]$.

Exercice 7. Soit $a \in \mathbb{R}$. Montrer que

$$\forall \varepsilon > 0, |a| < \varepsilon \Longrightarrow a = 0.$$

Exercice 8. Soit $\mathbb{Q} = \{\frac{p}{q} \mid p, q \in \mathbb{Z}\}$ l'ensemble des nombres rationnels :

- a) Montrer que la somme de deux nombres rationnels est aussi un nombre rationnel.
- b) Sachant $\sqrt{2} \notin \mathbb{Q}$, montrer par l'absurde que

$$\forall x \in \mathbb{Q}: \ x + \sqrt{2} \notin \mathbb{Q}.$$

2 Manipulation des ensembles

Exercice 9. Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire :

a) $a \in E$

c) $\{a\} \subset E$

e) $\emptyset \subset E$

b) $a \subset E$

d) $\emptyset \in E$

f) $\{\emptyset\} \subset E$?

Exercice 10. Étant donné A, B et C trois parties de E, justifier les équivalences suivantes :

- a) $A = B \Leftrightarrow A \cap B = A \cup B$.
- b) $A \cup B = A \cap C \Leftrightarrow B \subset A \subset C$.

c)
$$\begin{cases} A \cup B = A \cup C \\ A \cap B = A \cap C \end{cases} \Leftrightarrow B = C$$

Exercice 11. Soient A et B deux parties de E, on appelle différence symétrique de A et B, l'ensemble

$$A \Delta B = (A \backslash B) \cup (B \backslash A)$$

- a) Donner l'idée intuitive de $A\Delta B$ en utilisant diagrammes de Venn.
- b) Montrer $A\Delta B = (A \cup B) \setminus (A \cap B)$.

Exercice 12. Etant donné A, B et C trois parties d'un ensemble E, montrer que :

- a) $A\Delta B = A\Delta C \Leftrightarrow B = C$.
- b) $A \backslash B = A \Leftrightarrow B \backslash A = B$.
- c) $A\Delta B = A \cap B \Rightarrow A = B = \emptyset$.

Exercice 13. Soient les ensembles $\mathcal{P} = \{2n \mid n \in \mathbb{Z}\}$ et $\mathcal{I} = \{2n+1 \mid n \in \mathbb{Z}\}$ formés par des entiers pairs et impairs, respectivement. Prouver que $\mathcal{P} \cap \mathcal{I} = \emptyset$.

Exercice 14. Montrer les égalités des ensembles suivantes :

- a) $\{x \in \mathbb{R} \mid x^3 x > 0\} = \{x \in \mathbb{R} \mid -1 < x < 0 \text{ ou } x > 1\}.$
- b) $\{(x,y,z) \in \mathbb{R}^3 \mid x=y, x+y+z=1\} = \{(x,y,z) \in \mathbb{R}^3 \mid \exists t \in \mathbb{R}, x=t/2, y=t/2, z=1-t\}.$

Exercice 15. On définit les ensembles $A_k = \{n \in \mathbb{Z} \mid n \geq k\}$, pour tout $k \in \mathbb{N}$.

- a) Vérifier que $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_k \supseteq A_{k+1} \supseteq \ldots$
- b) En déduire que $\bigcap_{m=0}^k A_m = A_k \neq \emptyset$, pour tout $k \in \mathbb{N}$.
- c) Par contre, montrer que $\bigcap_{m \in \mathbb{N}} A_m = \emptyset$.