MA 105 : Calculus

D1 and D4 - Upcoming Lectures

Sandip Singh

Department of Mathematics, IIT Bombay

September 11, 2023

Partial derivatives

As before, U will denote a subset of \mathbb{R}^2 . Given a function $f:U\to\mathbb{R}$, we can fix one of the variables and view the function f as a function of the other variable alone. We can then take the derivative of this one variable function.

To make things precise, fix x_2 .

Definition: The partial derivative of $f:U\to\mathbb{R}$ with respect to x_1 at the point (a,b) is defined by

$$\frac{\partial f}{\partial x_1}(a,b) := \lim_{x_1 \to a} \frac{f((x_1,b)) - f((a,b))}{x_1 - a} = \lim_{t \to 0} \frac{f((a+t,b)) - f((a,b))}{t}.$$

Similarly, one can define the partial derivative with respect to x_2 .

In this case the variable x_1 is fixed and f is regarded only as a function of x_2 :

$$\frac{\partial f}{\partial x_2}(a,b) := \lim_{x_2 \to b} \frac{f((a,x_2)) - f((a,b))}{x_2 - b} = \lim_{t \to 0} \frac{f((a,b+t)) - f((a,b))}{t}.$$

Directional Derivatives

The partial derivatives are special cases of the directional derivative. Let $v = (v_1, v_2)$ be a unit vector. Then v specifies a direction in \mathbb{R}^2 .

Definition: The directional derivative of f in the direction v at a point $x = (x_1, x_2)$ is defined as

$$\nabla_{v} f(x) = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} = \lim_{t \to 0} \frac{f((x_1 + tv_1, x_2 + tv_2)) - f((x_1, x_2))}{t}.$$

It measures the rate of change of the function f at x along the path x+tv.

Observe that if we take v=(1,0) in the above definition, we obtain $\partial f/\partial x_1$, while v=(0,1) yields $\partial f/\partial x_2$.

Consider the function

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } x_1 = 0 \text{ or if } x_2 = 0 \\ 0 & \text{otherwise.} \end{cases}$$

It should be clear to you that since this function is constant along the two axes,

$$\frac{\partial f}{\partial x_1}(0,0) = 0$$
 and $\frac{\partial f}{\partial x_2}(0,0) = 0$.

On the other hand, $f(x_1, x_2)$ is not continuous at the origin. (why?)

Thus, a function may have both partial derivatives (and, in fact, any directional derivative - see the next slide) but still not be continuous.

This suggests that for a function of two variables, just requiring that both partial derivatives exist is not a good or useful definition of "differentiability" (why?).

In the section on iterated limits, we studied the following function from Exercise 5.5:

$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$
 for $(x,y) \neq (0,0)$.

Let us further set f(0,0)=0. You can check that every directional derivative of f at (0,0) exists and is equal to 0, except along y=x (that is, along the unit vector $v=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$) when the directional derivative is not defined.

However, we have already seen that the function is not continuous at the origin since we have shown that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist. For an example with directional derivatives in all directions see Exercise 5.3(i).

Conclusion: All directional derivatives may exist at a point even if the function is discontinuous at that point.

Let us go back and examine the notion of differentiability for a function f(x) of one variable.

Suppose f is differentiable at the point x_0 . When is a line passing through the point $(x_0, f(x_0))$ on the curve y = f(x) is the tangent line to the curve?

Recall that the equation of a line passing through the point $(x_0, f(x_0))$ and having slope m is

$$y=f(x_0)+m(x-x_0).$$

If we consider the difference $f(x) - f(x_0) - m(x - x_0)$ and write $h = (x - x_0)$, we see that the difference can be rewritten as

$$f(x_0+h)-f(x_0)-m\cdot h.$$

The above line is the tangent line to the curve y = f(x) at the point $(x_0, f(x_0))$ on the curve if $m = f'(x_0)$, which is equivalent of saying that

$$f(x_0 + h) - f(x_0) - m \cdot h = o(h) = \varepsilon_1(h)h$$

where $\varepsilon_1(h)$ is a function of h that goes to 0 as h goes to 0, and in this case the function $o(h) = \varepsilon_1(h)|h|$ is a function of h "that goes to zero faster than h" (that is, $\lim_{h\to 0} \frac{o(h)}{|h|} = 0$).

The preceding idea generalises to two (or more) dimensions.

Let f(x, y) be a function which has both partial derivatives. In the two variable case we need to look at the difference of z = f(x, y) (defining a surface in \mathbb{R}^3) and z = g(x, y) (defining a plane in \mathbb{R}^3).

Let us first recall how to find the equation of a plane passing through the point $P = (x_0, y_0, z_0)$.

It is the graph of the function

Let us determine the tangent plane to the surface z = f(x, y) passing through a point $P = (x_0, y_0, z_0)$ on the surface. In other words, we have to determine the constants a and b so that the above plane becomes the tangent plane to the surface z = f(x, y) at the point $P = (x_0, y_0, z_0)$.

 $z = g(x, y) = z_0 + a(x - x_0) + b(y - y_0).$

If we fix the y variable as $y=y_0$ and treat f(x,y) only as a function of x, we get a curve on the surface z=f(x,y).

Similarly, if we treat g(x, y) as function only of x (by fixing $y = y_0$), we obtain a line on the plane z = g(x, y).

The tangent plane in a picture

https://openstax.org/books/calculus-volume-3/pages/4-4-tangent-planes-and-linear-approximations

The tangent to the curve passing through (x_0, y_0, z_0) must be the same as the line passing through (x_0, y_0, z_0) , and, in any event, their slopes (which are given by the derivatives of the curve $z = f(x, y_0)$ at $x = x_0$ and the line $z = g(x, y_0)$ at $x = x_0$, resp.) must be the same.

Since the above derivatives with respect to x are same as the partial derivatives with respect to x, we get

$$\frac{dz}{dx}(x_0) = \frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial g}{\partial x}(x_0, y_0) = a.$$

Arguing in exactly the same way but fixing the x variable as $x = x_0$ and varying the y variable, we obtain

$$\frac{\partial f}{\partial y}(x_0, y_0) = \frac{\partial g}{\partial y}(x_0, y_0) = b.$$

Hence, the equation of the tangent plane to the surface z = f(x,y) at the point (x_0,y_0) is (remember that $z_0 = f(x_0,y_0)$)

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Differentiability for functions of two variables

We now define differentiability for functions of two variables by imitating the one variable definition, but using the "o(h)" version.

We let $(x, y) = (x_0, y_0) + (h, k) = (x_0 + h, y_0 + k)$.

Definition A function $f: U \to \mathbb{R}$ is said to be differentiable at a point (x_0, y_0) if $\frac{\partial f}{\partial x}(x_0, y_0)$ and $\frac{\partial f}{\partial y}(x_0, y_0)$ exist and

point
$$(x_0, y_0)$$
 if $\frac{\partial f}{\partial x}(x_0, y_0)$ and $\frac{\partial f}{\partial y}(x_0, y_0)$ exist and
$$\lim_{(h,k)\to(0,0)} \frac{|f(x_0+h, y_0+k)-f(x_0, y_0)-\frac{\partial f}{\partial x}(x_0, y_0)h-\frac{\partial f}{\partial y}(x_0, y_0)k|}{\|(h,k)\|} = 0.$$

We could rewrite this as

$$f((x_0, y_0) + (h, k)) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)h - \frac{\partial f}{\partial y}(x_0, y_0)k$$
$$= \varepsilon(h, k) \|(h, k)\|$$

where $\varepsilon(h, k)$ is a function that goes to 0 as $(h, k) \to (0, 0)$.

This form of differentiability now looks exactly like the one variable version case (put $o(h, k) = \varepsilon(h, k) ||(h, k)||$). Can you guess the derivative $f'(x_0, y_0)$ of the function f(x, y) at (x_0, y_0) ?

The derivative as a linear map

We can rewrite the differentiability criterion once more as follows.

We define the 1×2 matrix

$$Df(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}.$$

A 1×2 matrix can be multiplied by a column vector (which is a 2×1 matrix) to give a real number. In particular:

$$\left(\frac{\partial f}{\partial x}(x_0, y_0) \quad \frac{\partial f}{\partial y}(x_0, y_0)\right) \begin{pmatrix} h \\ k \end{pmatrix} = \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k$$

that is,

$$Df(x_0, y_0) \begin{pmatrix} h \\ k \end{pmatrix} = \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k.$$

The definition of differentiability can thus be reformulated using matrix notation.

Definition 2: The function f(x,y) is said to be differentiable at a point (x_0,y_0) if there exists a matrix denoted $Df(x_0,y_0)$ with the property that

$$f((x_0, y_0) + (h, k)) - f(x_0, y_0) - Df(x_0, y_0) \binom{h}{k} = o(h, k) = \varepsilon(h, k) ||(h, k)||$$

for some function $\varepsilon(h, k)$ that goes to 0 as (h, k) goes to (0, 0).

Viewing the derivative as a matrix allows us to view it as a linear map from $\mathbb{R}^2 \to \mathbb{R}$. Given a 1×2 matrix A and two column vectors v and w, we see that

$$A \cdot (v + w) = A \cdot v + A \cdot w$$
 and $A \cdot (\lambda v) = \lambda (A \cdot v)$,

for any real number λ .

As we have seen before, functions satisfying the above two properties are called linear functions or linear maps. Thus, the map $v \to A \cdot v$ gives a linear map from \mathbb{R}^2 to \mathbb{R} .

A condition for differentiability

Exercise: Show that a function f(x, y) is differentiable in the sense of Definition 1 if and only if it is differentiable in the sense of Definition 2 with

$$Df(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}.$$

The matrix $Df(x_0, y_0)$ is called the Derivative matrix of the function f(x, y) at the point (x_0, y_0) .

Theorem 1: Let $f: U \to \mathbb{R}$. If the partial derivatives $\frac{\partial f}{\partial x}(x_0, y_0)$ and $\frac{\partial f}{\partial y}(x_0, y_0)$ exist and are continuous in a neighbourhood of a point (x_0, y_0) (that is, in a region of the plane of the form $\{(x, y) \mid ||(x, y) - (x_0, y_0)|| < r\}$ for some r > 0), then f is differentiable at (x_0, y_0) .

Remark: We omit the proof of this theorem. However, we note that a function whose partial derivatives exist and are continuous is said to be of class \mathcal{C}^1 . The theorem says that every \mathcal{C}^1 function is differentiable.

Differentiability ⇒ continuity

Theorem: Let U be a subset of \mathbb{R}^2 and $(x_0, y_0) \in U$. If $f: U \longrightarrow \mathbb{R}$ is differentiable at (x_0, y_0) , then f is continuous at (x_0, y_0) .

Proof: Note that for $\epsilon = 1, \exists \delta_1 > 0$ such that

$$|f((x_0, y_0) + (h, k)) - f(x_0, y_0)| = \left| \varepsilon(h, k) \| (h, k) \| + Df(x_0, y_0) \left(\frac{h}{k} \right) \right|$$

$$\leq |\varepsilon(h, k)| \cdot \| (h, k) \| + \| Df(x_0, y_0) \| \cdot \| (h, k) \| \quad \text{(property of dot product)}$$

$$< (1 + K) \| (h, k) \| \quad \text{(since } \varepsilon(h, k) \text{ tends to 0 as } (h, k) \text{ tends to } (0, 0))$$
whenever $||(h, k)|| < \delta_1 \text{ (where } K = \| Df(x_0, y_0) \|).$

Therefore, for a given $\epsilon>0$, if we take $\delta=\min\{\delta_1,\frac{\epsilon}{1+K}\}$, then

$$|f((x_0,y_0)+(h,k))-f(x_0,y_0)|<\epsilon$$

whenever $||(h, k)|| < \delta$. Hence the differentiable function f is continuous.

The Gradient

When viewed as a row vector rather than as a matrix, the derivative matrix is called the gradient and is denoted $\nabla f(x_0, y_0)$. Thus

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

In terms of the coordinate vectors ${\bf i}$ and ${\bf j}$, the gradient can be written as

$$\nabla f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)\mathbf{i} + \frac{\partial f}{\partial y}(x_0, y_0)\mathbf{j}.$$

As we will see later in this lecture, the gradient is related to the directional derivative in the direction v:

$$\nabla_{\mathbf{v}} f = \nabla f \cdot \mathbf{v}.$$

Three variables

For the next few slides, we will assume that $f: U \to \mathbb{R}$ is a function of three variables, that is, U is a subset of \mathbb{R}^3 . In this case, if we denote the variables by x, y and z, we get three partial derivatives as follows: we hold two of the variables constant and vary the third. For instance, if y and z are kept fixed while x is varied, we get the partial derivative with respect to x at the point (a, b, c):

$$\frac{\partial f}{\partial x}(a,b,c) = \lim_{x \to a} \frac{f(x,b,c) - f(a,b,c)}{x-a} = \lim_{t \to 0} \frac{f(a+t,b,c) - f(a,b,c)}{t}.$$

In a similar way, we can define the partial derivatives

$$\frac{\partial f}{\partial y}(a,b,c)$$
 and $\frac{\partial f}{\partial z}(a,b,c)$.

Once we have the three partial derivatives we can once again define the gradient of f:

$$\nabla f(a,b,c) = \left(\frac{\partial f}{\partial x}(a,b,c), \frac{\partial f}{\partial y}(a,b,c), \frac{\partial f}{\partial z}(a,b,c)\right).$$

Differentiability in three variables

Exercise 1: Formulate a definition of differentiability for a function of three variables.

Exercise 2: Formulate the analogue of Theorem 1 (of this section) for a function of three variables.

We can also define differentiability for functions from \mathbb{R}^m to \mathbb{R}^n where m and n are any positive integers. We will do this in detail in this course when m and n have the values 1 and 2 and 3.

Finally, the rules for the partial derivatives of sums, differences, products and quotients of functions $f,g:U\to\mathbb{R}$, $(U\subset\mathbb{R}^m,m=2,3)$ are exactly analogous to those for the derivative of functions of one variable.

The derivative of vector-valued functions

We now define the derivative of a function $f: U \to \mathbb{R}^n$, where U is a subset of \mathbb{R}^m .

Recall that we can write $f = (f_1, f_2, \dots, f_n)$ where $f_j = \pi_j \circ f : U \to \mathbb{R}$ and $\pi_j : \mathbb{R}^n \to \mathbb{R}$ is the projection on the j-th coordinate defined as $(y_1, y_2, \dots, y_n) \mapsto y_j$.

The function f is said to be differentiable at a point x if there exists an $n \times m$ matrix Df(x) such that

$$\lim_{h \to (0,0,\dots,0)} \frac{\|f(x+h) - f(x) - Df(x)(h)\|}{\|h\|} = 0$$

where $x = (x_1, x_2, \dots, x_m)$, $h = (h_1, h_2, \dots, h_m)$ are vectors in \mathbb{R}^m and $Df(x)(h) = Df(x) \cdot h$ is a vector in \mathbb{R}^n (we are considering h here as a column vector, that is, a matrix of order $m \times 1$).

The matrix Df(x) is usually called the total derivative of f. It is also referred as the Jacobian matrix. What are its entries?

From our experience in the 1×2 case we might guess (correctly!) that the entries will be the partial derivatives.

Here is the total derivative or the derivative matrix written out fully:

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_m}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_m}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \frac{\partial f_n}{\partial x_2}(x) & \cdots & \frac{\partial f_n}{\partial x_m}(x) \end{bmatrix}.$$

In the 3×1 case (that is, when m = 1, n = 3 and $f = (f_1, f_2, f_3) : U(\subseteq \mathbb{R}) \to \mathbb{R}^3$) we get

$$f'(t) = Df(t) = egin{bmatrix} f_1'(t) \ f_2'(t) \ f_3'(t) \end{bmatrix}.$$

As before, the derivative may be viewed as a linear map, this time from \mathbb{R}^m to \mathbb{R}^n (or, in the case just above, from \mathbb{R} to \mathbb{R}^3).

Norm of a matrix

Let

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

be an $n \times m$ matrix with entries in \mathbb{R} . One can define the norm of the matrix A as

$$||A|| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^{2}}.$$

Just by using the fact that

$$|a_{i1}x_1 + a_{i2}x_2 + \dots + a_{im}x_m| \le \sqrt{\sum_{j=1}^m a_{ij}^2} \sqrt{\sum_{j=1}^m x_j^2}$$

one can show easily that

$$||A(x)|| < ||A|| \cdot ||x||$$

for $x = (x_1, x_2, ..., x_m) \in \mathbb{R}^m$.

An Exercise and a Remark

Exercise: Following the proof of the continuity of differentiable scalar fields (and by using the property of the norm of a matrix), show that the differentiable vector-valued functions are also continuous.

Note that the scalar (real) valued functions of multi-variables are also known as scalar fields and vector-valued functions as vector fields.

Remark: Theorem 1 holds in this greater generality - a function from \mathbb{R}^m to \mathbb{R}^n is differentiable at a point x_0 if all the partial derivatives $\frac{\partial f_i}{\partial x_j}$ $1 \leq i \leq n$, $1 \leq j \leq m$, are continuous in a neighborhood of x_0 (define a neighborhood of x_0 in \mathbb{R}^m !).

Rules for the total derivative

Rule 1: Just like in the one variable case, if f and g are differentiable

$$D(f+g)(x) = Df(x) + Dg(x)$$

and

$$D(cf)(x) = cDf(x), \ \forall c \in \mathbb{R}.$$

Rule 2: Somewhat harder, but only because the notation gets more cumbersome, is the Chain rule:

$$D(f \circ g)(x) = Df(g(x)) \circ Dg(x),$$

where \circ on the right hand side denotes the matrix multiplication.

We will prove the chain rule in a special case when

$$g(t) = (x(t), y(t)) : I(\subseteq \mathbb{R}) \to \mathbb{R}^2 \text{ and } f : \mathbb{R}^2 \to \mathbb{R}.$$

The Chain Rule

We now study the situation where we have composition of functions. We assume that $x,y:I\to\mathbb{R}$ are differentiable functions from some interval (open or closed) to \mathbb{R} . Thus the pair (x(t),y(t)) defines a function from I to \mathbb{R}^2 . Suppose we have a function $f:\mathbb{R}^2\to\mathbb{R}$ which is differentiable. We would like to study the derivative of the composite function z(t)=f(x(t),y(t)) from I to \mathbb{R} .

Theorem 2: With notation as above

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

For a function w(t) = f(x(t), y(t), z(t)) in three variables, the chain rule takes the form

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}.$$

Notation:
$$f_x = \frac{\partial f}{\partial x}$$
, $f_y = \frac{\partial f}{\partial y}$, $f_z = \frac{\partial f}{\partial z}$.

The proof of the chain rule in two variable case

Since x(t), y(t) are differentiable,

$$\frac{x(t+h)-x(t)-hx'(t)}{h} = \varepsilon_1(h) \Rightarrow x(t+h) = x(t)+h[x'(t)+\varepsilon_1(h)],$$

$$\frac{y(t+h)-y(t)-hy'(t)}{h} = \varepsilon_2(h) \Rightarrow y(t+h) = y(t)+h[y'(t)+\varepsilon_2(h)]$$

where $\varepsilon_1(h)$ and $\varepsilon_2(h)$ are functions of h that go to zero as h goes to zero. Hence

to zero. Hence
$$f(x(t+h), y(t+h)) = f(x(t) + h[x'(t) + \varepsilon_1(h)], y(t) + h[y'(t) + \varepsilon_2(h)]).$$
 (1)

Since the function f(x, y) is differentiable,

$$f(x(t) + h[x'(t) + \varepsilon_1(h)], y(t) + h[y'(t) + \varepsilon_2(h)])$$

$$= f(x(t), y(t)) + Df \cdot \begin{bmatrix} h[x'(t) + \varepsilon_1(h)] \\ h[y'(t) + \varepsilon_2(h)] \end{bmatrix}$$

$$= f(x(t), y(t)) + Df \cdot \left[h[y'(t) + \varepsilon_2(h)]\right]$$

$$+ \|(h[x'(t) + \varepsilon_1(h)], h[y'(t) + \varepsilon_2(h)])\| \cdot \varepsilon(h[x'(t) + \varepsilon_1(h)], h[y'(t) + \varepsilon_2(h)])$$

$$= f(x(t), y(t)) + Df \cdot \left[h[x'(t) + \varepsilon_1(h)]\right] + h \cdot \varepsilon_3(h)$$

$$= f(x(t), y(t)) + Df \cdot \begin{bmatrix} h[x'(t) + \varepsilon_1(h)] \\ h[y'(t) + \varepsilon_2(h)] \end{bmatrix} + h \cdot \epsilon_3(h)$$

$$= f(x(t), y(t)) + f_x \cdot h[x'(t) + \varepsilon_1(h)] + f_y \cdot h[y'(t) + \varepsilon_2(h)] + h \cdot \varepsilon_3(h)$$

(since $Df = [f_x f_y]$)

$$= f(x(t), y(t)) + f_x \cdot h \cdot x'(t) + f_y \cdot h \cdot y'(t)$$

$$+ h[f_x \cdot \varepsilon_1(h) + f_y \cdot \varepsilon_2(h) + \varepsilon_3(h)]$$
(2)

where $\varepsilon_3(h)$ is also a function of h which goes to zero as h goes to zero (and $\varepsilon(h_1, h_2)$ goes to zero as (h_1, h_2) go zero).

Now (1) and (2) imply that

$$\lim_{h \to 0} \frac{f(x(t+h), y(t+h)) - f(x(t), y(t)) - f_x x'(t)h - f_y y'(t)h}{h}$$

$$= \lim_{h \to 0} [f_x \cdot \varepsilon_1(h) + f_y \cdot \varepsilon_2(h) + \varepsilon_3(h)] = 0$$

and hence

$$\lim_{h\to 0} \frac{f(x(t+h),y(t+h)) - f(x(t),y(t))}{h} = f_x x'(t) + f_y y'(t)$$

that is,

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

An application to tangents of curves

A simple example to verify the chain rule: Let z = f(x, y) = xy, $x(t) = t^3$ and $y(t) = t^2$. Then $z(t) = t^5$, so $z'(t) = 5t^4$.

On the other hand, using the chain rule we get

$$z'(t) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} = y \cdot 3t^2 + x \cdot 2t = 3t^4 + 2t^4 = 5t^4.$$

Example: A continuous mapping $c: I \to \mathbb{R}^n$ on an interval $I \subseteq \mathbb{R}$ is called a path or curve in \mathbb{R}^n , (n = 2, 3). The function c(t) will be given by a tuple of functions form.

Let us consider a curve c(t) in \mathbb{R}^3 . Each point on the curve will be given by a triple of coordinates which will depend on t, that is, the curve can be described by a triple of functions (g(t), h(t), k(t)).

We can write

$$c(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$$
, and if $c'(t_0) = g'(t_0)\mathbf{i} + h'(t_0)\mathbf{j} + k'(t_0)\mathbf{k}$

exists and is nonzero, it represents the tangent vector to the curve c(t) at the point $c(t_0)$.

For an example, consider the curve $c(t)=(t,\sqrt{1-t^2})$ in \mathbb{R}^2 and defined on the interval [-1,1]. Observe that the curve c(t) represents the **upper unit semicircle** centered at the origin.

You can verify easily that whenever $c'(t_0)$ exists and is nonzero, the tangent line to the circle c(t) at the point $c(t_0)$ is the line that passes through the point $c(t_0)$ and is parallel to the tangent vector $c'(t_0)$.

So far our example has nothing to do with the chain rule. Suppose z = f(x, y) is a surface, and our curve given by c(t) = (g(t), h(t), f(g(t), h(t))) lies on the surface z = f(x, y).

Let us compute the tangent vector to the curve at $c(t_0) = (x_0, y_0, z_0)$. It is given by

$$c'(t_0) = g'(t_0)\mathbf{i} + h'(t_0)\mathbf{j} + k'(t_0)\mathbf{k},$$

where k(t) = f(g(t), h(t)). Using the chain rule we see that

$$k'(t_0) = \frac{\partial f}{\partial x}(x_0, y_0)g'(t_0) + \frac{\partial f}{\partial y}(x_0, y_0)h'(t_0).$$

We can further show that this tangent vector lies on the tangent plane to the surface z = f(x, y).

Indeed, we have already seen that the tangent plane has the equation

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

A normal vector to this plane is given by

$$\left(-\frac{\partial f}{\partial x}(x_0,y_0),-\frac{\partial f}{\partial y}(x_0,y_0),1\right).$$

Thus, to verify that the tangent vector

$$c'(t_0) = \left(g'(t_0), h'(t_0), \frac{\partial f}{\partial x}(x_0, y_0)g'(t_0) + \frac{\partial f}{\partial y}(x_0, y_0)h'(t_0)\right)$$

at the point $c(t_0) = (x_0, y_0, z_0)$ on the curve c(t) lies on the plane, we need only check that its dot product with the normal vector is 0. But this is now clear.

The Gradient of scalar fields

When viewed as a row vector rather than as a matrix, the derivative matrix of $f: U \to \mathbb{R}$ at a point $(a_1, a_2, \ldots, a_m) \in U \subseteq \mathbb{R}^m$ is called the gradient of f at (a_1, a_2, \ldots, a_m) and is denoted as $\nabla f(a_1, a_2, \ldots, a_m)$. Thus

$$\nabla f(a_1, a_2, \ldots, a_m) = \left(\frac{\partial f}{\partial x_1}(a_1, a_2, \ldots, a_m), \ldots, \frac{\partial f}{\partial x_m}(a_1, a_2, \ldots, a_m)\right).$$

For the case m=2, in terms of the coordinate vectors ${\bf i}$ and ${\bf j}$ the gradient can be written as

$$\nabla f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)\mathbf{i} + \frac{\partial f}{\partial y}(x_0, y_0)\mathbf{j}.$$

As we will see in the next lecture, the gradient is related to the directional derivative in the direction v:

$$\nabla_{\mathbf{v}} f = \nabla f \cdot \mathbf{v}.$$

Another application of the chain rule: Directional derivatives

Let $U \subset \mathbb{R}^3$ and let $f: U \to \mathbb{R}$ be differentiable. We want to relate the directional derivative to the gradient.

We consider the (differentiable) curve $c(t) = (x_0, y_0, z_0) + tv$, where $v = (v_1, v_2, v_3)$ is a **unit vector**. We can rewrite c(t) as $c(t) = (x_0 + tv_1, y_0 + tv_2, z_0 + tv_3)$. We apply the chain rule to compute the derivative of the function f(c(t)) (observe that $\frac{d}{dt}f(c(t))$ at t=0 is same as the directional derivative of f at (x_0, y_0, z_0) in the direction of the vector $v = (v_1, v_2, v_3)$):

$$\frac{d}{dt}f(c(0)) = \frac{\partial f}{\partial x}(x_0, y_0, z_0)v_1 + \frac{\partial f}{\partial y}(x_0, y_0, z_0)v_2 + \frac{\partial f}{\partial z}(x_0, y_0, z_0)v_3$$

and this can be rewritten as

$$\nabla_{v} f(x_0, y_0, z_0) = \frac{d}{dt} f(c(0)) = \nabla f(x_0, y_0, z_0) \cdot v.$$

Of course, the same argument works when $U \subset \mathbb{R}^2$ and f is a function of two variables.

The Chain Rule and Gradients

The preceding argument is a special case of a more general fact.

Let c(t) be a (differentiable) curve in \mathbb{R}^3 . Then, by writing c(t) = (x(t), y(t), z(t)) and then using the chain rule for the derivative of f(c(t)) we obtain that

$$\frac{d}{dt}f(c(t)) = \nabla f(c(t)) \cdot c'(t).$$

Going back to the directional derivative, we can ask ourselves the following question. In what direction is f changing fastest at a given point (x_0, y_0, z_0) ? In other words, in which direction does the directional derivative attain its largest value?

Using what we have just learnt, we are looking for a unit vector $v = (v_1, v_2, v_3)$ such that

$$\nabla f(x_0, y_0, z_0) \cdot v$$

is as large as possible (we assume that $\nabla f(x_0, y_0, z_0) \neq (0, 0, 0)$).

We rewrite the preceding dot product as

$$\nabla f(x_0, y_0, z_0) \cdot v = \|\nabla f(x_0, y_0, z_0)\| \|v\| \cos \theta$$

where θ is the angle between v and $\nabla f(x_0, y_0, z_0)$. Since v is a unit vector, this gives

$$\nabla f(x_0, y_0, z_0) \cdot v = \|\nabla f(x_0, y_0, z_0)\| \cos \theta.$$

The maximum value on the right hand side is obviously attained when $\theta=0$, that is, when v points in the direction of ∇f . In other words the function is increasing fastest in the direction v given by ∇f . Thus the unit vector that we seek is

$$v = \frac{\nabla f(x_0, y_0, z_0)}{\|\nabla f(x_0, y_0, z_0)\|}.$$

Surfaces defined implicitly

So far we have only been considering surfaces of the form z = f(x, y), where f was a function on a subset of \mathbb{R}^2 . We now consider a more general type of surface S defined implicitly:

$$S = \{(x, y, z) | f(x, y, z) = b\}$$

where b is a constant. Most surfaces we have come across are usually described in this form: for instance, the sphere which is given by $x^2 + y^2 + z^2 = r^2$ or the right circular cone $x^2 + y^2 - z^2 = 0$. Let us try to understand what a tangent plane is more precisely.

If S is a surface, a tangent plane to S at a point $s \in S$ (if it exists) is a plane that contains the tangent lines at s to all curves passing through s and lying on S.

If c(t) is a curve on the surface S given by f(x, y, z) = b, we see that f(c(t)) = b, and hence

$$\frac{d}{dt}f(c(t))=0.$$

On the other hand, by the chain rule,

$$0 = \frac{d}{dt}f(c(t)) = \nabla f(c(t)) \cdot c'(t).$$

Thus, if $s_0 = c(t_0) = (x_0, y_0, z_0)$ is a point on the surface, we see that

$$abla f(c(t_0)) \cdot c'(t_0) = 0,$$

for every curve c(t) on the surface S passing through $s_0 = (x_0, y_0, z_0)$.

Hence, if $\nabla f(x_0, y_0, z_0) \neq 0$, then $\nabla f(x_0, y_0, z_0)$ is perpendicular to the tangent plane of S at (x_0, y_0, z_0) . How to determine a vector perpendicular to the tangent plane at the point (x_0, y_0, z_0) on the surface S given by z = f(x, y)? It is determined by $\nabla (z - f(x, y))$ at the point (x_0, y_0, z_0) .

The equation of the tangent plane

Since we know that the gradient of f is normal to the level surface $S = \{(x,y,z) \in \mathbb{R}^3 \mid f(x,y,z) = c\}$ (provided the gradient is nonzero), it allows us to write down the equation of the tangent plane of S at the point $s_0 = (x_0, y_0, z_0)$. The equation of this plane is

$$f_x(x_0, y_0, z_0)(x-x_0)+f_y(x_0, y_0, z_0)(y-y_0)+f_z(x_0, y_0, z_0)(z-z_0)=0.$$

For the curve f(x,y) = c, by considering y as a function of x (implicitly) we obtain (by differentiating f(x,y) with respect to x and using the chain rule) that

$$f_x(x_0, y_0) + f_y(x_0, y_0) \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}$$

and hence the equation of the tangent line to the curve f(x, y) = c passing through (x_0, y_0) is

$$y - y_0 = -\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}(x - x_0),$$

that is, $f_x(x_0, y_0)(x - x_0) + f_v(x_0, y_0)(y - y_0) = 0$.

Gravitational force as gradient of the potential energy

Let **r** denote the position vector

$$x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
,

of a point P = (x, y, z) in \mathbb{R}^3 . Instead of writing $\|\mathbf{r}\|$, it is customary to write r. This notation is very useful.

For instance, the Newton's Law of Gravitation can be expressed as

$$\mathbf{F} = -\frac{GMm}{r^3} \cdot \mathbf{r}$$

where the mass M is assumed to be at the origin, \mathbf{r} denotes the position vector of the mass m, G is a constant and \mathbf{F} denotes the gravitational force between the two (point) masses.

A simple computation shows that

$$\nabla\left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}.$$

Thus the gravitational force at any point can be expressed as the gradient of a function called the potential function/energy.

Keeping our previous discussion in mind, we know that if

$$V = -\frac{GMm}{r}, \quad \mathbf{F} = -\frac{GMm}{r^3} \cdot \mathbf{r} = -\nabla V.$$

What are the level surfaces of V? Clearly, r must be a constant on these level sets, so the level surfaces are spheres.

Since $\mathbf{F} = -\nabla V$, we see that the gravitational force \mathbf{F} is orthogonal to the sphere and points towards the origin.

Review - problems involving the gradient

Exercise 1: Find the points on the hyperboloid $x^2 - y^2 + 2z^2 = 1$ where the normal line is parallel to the line that joins the points (3, -1, 0) and (5, 3, 6).

Solution: The hyperboloid is an implicitly definined surface. A normal vector at a point (x_0, y_0, z_0) on the hyperboloid is given by the gradient of the function $x^2 - y^2 + 2z^2$ at (x_0, y_0, z_0) :

$$\nabla f(x_0, y_0, z_0) = (2x_0, -2y_0, 4z_0).$$

We require this vector to be parallel to the line joining the points (3,-1,0) and (5,3,6). This line lies in the same direction as the vector (5-3,3+1,6-0)=(2,4,6). Thus we need only solve the equations

$$(2x_0,-2y_0,4z_0)=\lambda(2,4,6),$$

for some $\lambda \in \mathbb{R}$ such that the point (x_0, y_0, z_0) lies on the hyperboloid. By solving the above equations, we find that $x_0 = \lambda$, $y_0 = -2\lambda$ and $z_0 = (3/2)\lambda$. Substituting x_0, y_0, z_0 in the equation of the hyperboloid yields $\lambda = \pm \sqrt{2/3}$.

Problems involving the gradient, continued

Exercise 2: Find the directions in which the directional derivative of $f(x, y) = x^2 + \sin xy$ at the point (1, 0) has the value 1.

Solution: We compute ∇f first:

$$\nabla f(x,y) = (2x + y\cos xy, x\cos xy),$$

so at (1,0) we get, $\nabla f(1,0) = (2,1)$.

To find the directional derivative in the direction $v=(v_1,v_2)$ (where v is a unit vector), we simply take the dot product with the gradient:

$$\nabla_{v} f(1,0) = \nabla f(1,0) \cdot v = (2,1) \cdot (v_1, v_2) = 2v_1 + v_2.$$

This will have value "1" when $2v_1 + v_2 = 1$, subject to $v_1^2 + v_2^2 = 1$, which yields $v_1 = 0$, $v_2 = 1$ or $v_1 = 4/5$, $v_2 = -3/5$.

Review of the gradient

Exercise 3: Find $D_uF(2,2,1)$ where D_u denotes the directional derivative of the function F(x,y,z)=3x-5y+2z and u is the unit vector in the direction of the outward normal to the sphere $x^2+y^2+z^2=9$ at the point (2,2,1).

Solution: The unit outward normal to the sphere $g(x, y, z) = x^2 + y^2 + z^2 = 9$ at (2, 2, 1) is given by

$$u = \frac{\nabla g(2,2,1)}{\|\nabla g(2,2,1)\|}.$$

We see that $\nabla g(2,2,1) = (4,4,2)$ so the corresponding unit vector u is $\frac{1}{3}(2,2,1)$.

To get the directional derivative we simply take the dot product of $\nabla F(2,2,1)=(3,-5,2)$ with $u=\frac{1}{3}(2,2,1)$:

$$D_u F(2,2,1) = (3,-5,2) \cdot \frac{1}{3}(2,2,1) = -\frac{2}{3}.$$