Nostradamus

Sistema de previsão automatizado de séries temporais

Aluno: Jayme Tolpolar Anchante

Orientador: Prof. Dr. André R. A. Grégio

Especialização em Data Science e Big Data

Universidade Federal do Paraná

Objetivo

"Criar um sistema automatizado de previsão de séries temporais"

Motivação

Democratizar AI: do analista de marketing ao diretor de vendas

Poder preditivo: code free

Customização: dev e DS

Tecnologias utilizadas

Estrutura do projeto

```
time-series-forecasting-api
    - app.py
    - controller
       — fit.py
       — predict.py
        - signup.py
       verify email.py
     Dockerfile
     - helpers
       — benchmark.py
       — disk.py
        - generate_fake_data.py
        - spinner.py
     model
       — postgresql.py
      └─ sqlite.pv
     - README.md
     requirements.txt
    - run.sh
     - services
       — feature_engineering.py
        hyperparameter_optimization.py
        - json_processing.py
        modeling.py
        - pipeline.py
        — preprocessing.py
        - user.py
     sql
        - ddl
          └─ schema main.sql
            - verify_api_key.sql
            - verify_email.sql
```

Arquitetura

Visão do usuário

dados:

```
[{"y": 0.0}, {"y": 0.4967141530112327}, {"y": 0.3336141441894864}, {"y": 0.9646219750807046}, {"y": 2.4394207327346944}, {"y": 2.0832963213746236}, {"y": 1.744994548356712}]
```

requisição:

```
curl -X POST -H "Content-type: application/json"
-d@"dados.json"
"""api.<base_url>/<api_key>/forecast/?\
    steps=7&\
    freq=D&\
    num_iter=100&\
    timeout=360&\
    early_stop=20&\
    model=lr,xgb,lgbm""""
```

retorno:

```
{"performance": 0.7642, "forecast": [{"y": 1.123}, {"y": 0.12327}, {"y": 3.3336}, {"y": 0.19750807}, {"y": 1.2074394}, {"y": 2.08329632}, {"y": 2.344994548}]}
```

Fluxo de ML

Dados

1

Discovery

1

Pré-processamento

1

Engenharia de características

1

Modelagem

Ţ

Resultados, validações e explicações

Fluxo automatizado de ML

Dados Discovery Pré-processamento ----- $\{\mu, \text{interp \& log,padrão,MinMax}\}$ Engenharia de características -- $\{1, ..., p\}$ Modelagem ----- { algoritmo {parâmetros} } Resultados, validações e explicações

Otimização

Features: parâmetros amostrados

Alvo: erro

Algoritmo Bayesiano

Resultados preliminares

Bases de dados

- Sunspots: número anual de manchas solares entre 1700 e 2008
- Airpassengers: número mensal de passageiros do vôos
- Austres: número trimestral de dados residenciais
- Heartrate: batimentos cardíacos
- Lynx: número anual de linces aprisionados entre 1821-1934 no Canadá
- Wineind: venda de vinhos anual no Canadá
- Woolyrnq: produção trimestral de fios de lã na Austrália

Erro absoluto médio

dataset	arima	prophet	nostradamus
sunspots	42.53	47.03	40.42 *
airpassengers	55.18 *	55.81	105.25
austres	215.41	48.29 *	2599.92
heartrate	7.87	9.18	6.79 *
lynx	1133.79 *	1240.41	1521.27
wineind	4225.75	4252.09	3729.05 *
woolyrnq	678.70 *	810.89	847.96

ranking

1º lugar arima (3) e nostradamus (3)

2º lugar prophet (1)

Obrigado