

Indian Institute of Science Banglore Department of Computational and Data Sciences (CDS)

DS284: Numerical Linear Algebra

Assignment 4 [Posted Oct 25, 2022]

Faculty Instructor: Dr. Phani Motamarri

TAs: Ashish Rout, Dibya Nayak, Gourab Panigrahi, Nikhil Kodali

Submission Deadline: Nov 10, 2022 23:59 hrs Max Points: 100

Notations: Vectors and matrices are denoted below by bold faced lower case and upper case alphabets respectively.

Problem 1 [15 marks]

Gaussian Elimination allows us to compute determinant of a square matrix. Recall the following points about the determinant.

- Swapping 2 rows multiplies the determinant by -1.
- Multiplying a row by a non-zero scalar multiplies the determinant by the same scalar.
- Adding one row, which is a scalar multiple of the other does not change the determinant.

Now describe the procedure how Gaussian Elimination with partial pivoting can be used to find the determinant of a general square matrix. Also comment on the number of floating point operations in this procedure!

Problem 2 [20 marks]

Let **A** be a matrix defined in MATLAB as:

 $A = \mathbf{rand}(N)$ $A = A - \mathbf{diag}(\mathbf{diag}(A)) + \mathbf{diag}(0.001 * ones(N, 1))$

Compute LU Decomposition of **A** with and without partial pivoting. Plot $\|\mathbf{L}\mathbf{U} - \mathbf{A}\|_F$ versus N for N = 5, 6, 7..., 20. For LU Decomposition with partial pivoting, use built in LU function. For LU Decomposition without pivoting, write your own function.

Problem 3 [24 marks]

(a) Let **A** be a non-singular square matrix and let $\mathbf{A} = \mathbf{Q}\mathbf{R}$ be its QR factorization. Let also $\mathbf{A}^T\mathbf{A} = \mathbf{U}^T\mathbf{U}$ be the Cholesky factorization of $\mathbf{A}^T\mathbf{A}$. Can you conclude that $\mathbf{R} = \mathbf{U}$? If yes, prove it; if not, why not?

- (b) Recall that by $\mathbf{A} \in \mathbb{R}^{m \times m}$, being symmetric and strictly positive definite, we mean $\mathbf{A} = \mathbf{A}^T$ and $\forall \mathbf{x} \in \mathbb{R}^m, \mathbf{x} \neq 0$, we have $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ is positive semi-definite if $\forall \mathbf{x} \in \mathbb{R}^m, \mathbf{x} \neq 0$, we have $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$
 - If $\{\phi_i(x)\}_{i=1...m}$ denote m linearly independent basis functions (non-zero) defined over [-1,1] in an m-dimensional vector space then show that the matrix $\mathbf{M} = \int_{-1}^{1} \phi_i(x)\phi_j(x)dx$ for $i,j=1,2\cdots m$ is a symmetric positive definite matrix.
 - Similarly show that the matrix $\mathbf{K} = \int_{-1}^{1} \frac{d\phi_i(x)}{dx} \frac{d\phi_j(x)}{dx} dx$ for $i, j = 1, 2 \cdots m$ is a symmetric positive semi-definite matrix.
- (c) Show that a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, strictly positive definite if and only if there exists a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank n, where $n \leq m$, such that $\mathbf{A} = \mathbf{B}^T \mathbf{B}$. Assuming that \mathbf{A} is of this form, is there a unique such \mathbf{B} ?

Problem 4 [18 marks]

For each of the following statements prove that it is true or give an example to show that it is false. Assume $\mathbf{A} \in \mathbb{C}^{m \times m}$ unless otherwise indicated.

- (a) If λ is an eigenvalue of **A** and $\mu \in \mathbb{C}$, then $\lambda \mu$ is an eigenvalue of $\mathbf{A} \mu \mathbf{I}$.
- (b) If **A** is real and λ is an eigenvalue of **A** then so it $-\lambda$.
- (c) If **A** is real and λ is an eigenvalue of **A**, then so is λ^* . (λ^* is the complex conjugate of λ).
- (d) If λ is an eigen value of ${\bf A}$ and ${\bf A}$ is non-singular, then λ^{-1} is the eigenvalue of ${\bf A}^{-1}$
- (e) If all the eigenvalues of **A** are zero, then $\mathbf{A} = 0$.
- (f) If **A** is diagonalizable and all its eigenvalues are equal, then **A** is diagonal.

Problem 5 [23 marks]

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ with entries a_{ij} for i, j = 1, 2, ..., n and define the closed disks $D(a_{ii}, r_i)$ centered at the diagonal entries a_{ii} of \mathbf{A} of radius $r_i = \sum_{j=1}^n (1 - \delta_{ij})|a_{ij}|$ for i = 1, 2, ..., n. Note that δ_{ij} represents Kronecker delta i.e $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. The above disks are called Greshgorin's disks.

- (a) Prove that every eigenvalue of $\bf A$ lies in a Greshgorin disk. (*Hint*: Let λ be any eigenvalue of $\bf A$ and $\bf x$ be the corresponding eigenvector with largest entry 1.)
- (b) Suppose that **A** is diagonally dominant i.e. $|a_{ii}| > \sum_{j=1}^{n} (1 \delta_{ij})|a_{ij}|$ for all i = 1, 2, ..., n. Prove that **A** is invertible.
- (c) Give estimates based on (a), for the eigenvalues of:

$$\mathbf{A} = \begin{bmatrix} 8 & 2 & 0 \\ 1 & 4 & \epsilon \\ 0 & \epsilon & 1 \end{bmatrix}$$
 where $|\epsilon| < 1$