課程資料下載 twgo.io/tzkuy

MTDuino NBIoT

(夜市小霸王)

主要資料來源:柯大 網址:<u>Makerpro</u>

本日課程

- 1. 規格概述
- 2. NBIoT簡述
- 3. 環境設定
- 4. NBIoT MQTT傳輸
- 5. GPS定位及傳輸
- 6. 案例:自動定位及地圖追蹤

研習套件包裝

- 1. MTDuino BG77
 - MTDuino BG77開發版
 - NBIoT貼片天線(800~960Mhz)
 - GPS陶瓷天線
- 2. 遠傳NBIoT 30M/3年/100元 預付卡
- 3. 麵包版
- 4. DHT11
- 5. LED燈
- 6. USB線
- 7. 包裝盒

1.規格概述

MTDuino IOT開發板

45x18mm 嬌小尺寸,可放在意想不到的地方~

微控器 SAMD21 Cortex®-M0+ 32bit low power ARM 規格 **MCU** 通訊模組 特點 1. 相容nano 33 loT 2. NBIoT台灣全頻段 3. CATM1速度更快 內建GPS可追蹤 5. 內建電池充電迴路 內建感測器 6. 內建六軸感測 (USB/VIN) 供電 5V 外接電池 運作電源 3.3V I/O 供電 MCU 速度 48MHz

功能

Quectel BG77 LTE Cat M1 (LTE-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B18/ B19/B20/B25/B26/B27/B28/B66/B85*) LTE Cat NB2 (LTE-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B18/ B19/B20/B25/B28/B66/B71/B85*) GNSS (GPS/GLONASS/BeiDou/Galileo/QZSS) 12C 介面 LSM6DS3 , 6 軸動作感測器 Li-Po Single Cell, 3.7V, 內建充電電路 7 mA

規格

規格 MCU與Arduino NANO 33 IoT 同規格 USB為SAMD21

CPU Flash	256KB
Memory	
SRAM	32KB
Digital Input /	14
Output Pins	
PWM Pins	11 (2, 3, 5, 6, 9, 10, 11, 12, 16 / A2, 17 / A3,
	19 / A5)
UART	1
SPI	1
I2C	1
Analog Input	8 (ADC 8/10/12 bit)
Pins	
Analog Output	1 (DAC 10 bit)
Pins	
External	All digital pins (all analog pins can also be
Interrupts	used as interrupt pins, but will have
	duplicated interrupt numbers)
LED_BUILTIN	13
USB	Native in the SAMD21 Processor

LSM6DS3

功能

IMU

規格

2. NBIoT簡述

NBIoT/CAT Mx

NBIoT為最新的傳輸技術,透過電信業基地台進行網路傳輸,免除WiFi設定及安裝,「插電即上網」的快速便利。

傳輸慢,但費用便宜,非常適合物聯網傳輸文字數字資訊,關於NBIoT傳輸MQTT的資訊量可參考本文:<u>https://www.nmking.io/index.php/2023/04/09/1182/</u>

比較	MQTT協定	HTTP GET	HTTP POST
消耗量	0.244K	1.120K	1.337K
以MQTT為1	1灾	4.6次	5.5次
30M可傳次數	125,523次	27,422次	22,971次
1分鐘傳1次	可用87天	可用19天	可用16天
5分鐘1次	可用435天	可用95天	可用80天
每百次成本	0.079元	0.364元	0.435元

LPWAN

LPWAN (Low-Power Wide-Area Network, 低功率廣域網路)

NB-IoT和Cat-M1

- 1. 頻段: NB-IoT使用更低的頻段(700-900), 具有較高的穿透性, 這對於需要 長距離通訊的應用非常有用。Cat-M1使用較高的頻段, 這意味著它具有更高 的資料速率, 並且可以支持更多同時連接的設備。
- 2. 資料速率:Cat-M1的最高速率可達1Mbps,而NB-IoT的最高速率為250kbps
- 3. 移動性: NBIoT建議不要移動,例如電錶、水表、河流監測等, CatM1則可移動,可以監測車輛等移動性的物體。
- 4. 電池壽命:由於NB-IoT使用更低的頻段,電池時效可以更長。Cat-M1需要較多的能源,其電池時效比NB-IoT裝置短。
- 5. 覆蓋範圍:如果您需要在較偏遠地區或室內使用,NB-IoT可能更好,因為它使用的低頻段訊號可以更深入建築物和地下。

歐亞科技移動管理

各種應用

機台運作監測

路邊停車位監測

人流監測

各家費率比較

中華

NB-IoT/LTE-M 門號計價方式						
服務模式	NB-IoT		LTE-M			
資費方案	物聯NB-A型	物聯NB-B型	物聯NB-C型	物聯M1-A型	物聯M1-B型	物聯M1-C型
月租費	10元	25元	60元	20元	40元	80元
國內數據內含量	5MB	15MB	40MB	5MB	15MB	40MB
超量費率	超出內含量按0.0015元/KB計價 超出內含量按0.003元/KB計價			KB計價		
數據收費上限	超量產生之數據通信費合併基本月租費之收費上限為750元					

各家費率比較

遠傳

NB-IoT 資費方案

方案類型	輕量型	重量型	勁量型
月租費	\$10	\$25	\$60
內含資料傳輸量	5MB	15MB	40MB
超過上網用量 資料傳輸費	\$0.0015/KB(\$1.536/MB),最高上限為699元		

各家費率比較

遠傳數據共享方案

數據共享方案

數據共享型方案:企業客戶申請一個數據共享服務的主帳戶,可讓主帳戶下的多個門號共享其傳輸量,不限制共享門號數。

方案類型	NB-IoT數據共享1GB方案
數據共享月租費	\$800
內含資料傳輸量	\$0.0015/KB (\$1.536/MB)
超過上網用量 資料傳輸費	可依需求額外加購流量,每GB\$800
加購數據流量 (使用期限2個月)	\$8 /門 (原 \$20 / 門)
適用企業客戶對象	門號數多及終端每月流量超過15MB者(重量型月租型)

遠傳預付方案

30M/100元,使用期效3年,可加值延續期效3年

內建CPM平台,可即時查詢每張卡流量

此次研習所附遠傳NBIoT卡為買斷,不提供加值,需要查詢流量可透過小妹人工查

詢,請加LineID:@nmkingtw

3. 環境設定

安裝天線

插入USB,可偵測到「USB序列裝置」

🖁 裝置管理員

檔案(F) 動作(A) 檢視(V) 說明(H)

- > ma IDE ATA/ATAPI 控制器
- > 🥅 人性化介面裝置
- > 📺 列印佇列
- > 🌬 存放控制器
- > 安全性裝置
- > 🛅 系統裝置
- > 🚇 相機
- > 👊 音效、視訊及遊戲控制器
- > 👊 音訊輸入與輸出
- > | 處理器
- > 軟體裝置
- > 通用序列匯流排控制器
- 🗸 🦷 連接埠 (COM 和 LPT)
- httel(R) Active Management Technology SOL (COM1)
 - USB 序列裝置 (COM3)

安裝Arduino IDE 2.0

網址:https://www.arduino.cc/en/software

下載2.0,我自己習慣ZIP

安裝開發板核心

點選左側開發板圖示

輸入關鍵字samd

點選Arduino SAMD....

下方的Install

選擇上方開發板

選擇正確的開發版及Port編號後

基礎Blink閃耀測試

開啟範例程式Blink

直接上傳即可看到LED閃耀

六軸感測器測試

安裝程式庫Arduino_LSM6DS3

使用範例程式即可

4. NBIoT傳輸 MQTT

NBIoT連線

NBIoT插上SIM卡即可連線

NBIoT以Serial2進行連接

NBIoT	ARM
TX RX	Serial2
Power	26
RST	27

手動上傳測試

範例程式:

twgo.io/zndea

完成後,可以用AT模式溝通

要記得轉換為CR模式

輸入ATI獲得回應資訊

常用AT命令(完整AT命令手冊twgo.io/dcykw)

- ATI:詢問模組資訊
- AT+CIMI: 查詢 SIM 卡 IMSI 資訊 回覆: 466011******4, 此為SIM卡編號
- AT+CPIN?: 查詢SIM卡Pin碼

回覆:+CPIN: READY

解說:Readv代表無鎖,SIMPIN代表鎖碼,ERROR代表沒有SIM卡

- AT+CPIN="xxxx":輸入PIN碼
- AT+QGPSCFG="priority",1

解說:改變優先權為NBIoT

● AT+CSQ:查詢訊號強度

回覆:+CSQ:31, 99

<u>解說:其中-1</u>13+(31*2)=-51,表示很好,一般介於-50~-100之間

● AT+CEREG?:是否註冊基地台成功

回覆:+CEREG: 0,1、代表註冊成功、其餘都為失敗、需要再等候一段時間

MQTT指令(HTTP指令請自行參考手冊)

1. 建立連線AT+QMTOPEN
AT+QMTOPEN=0,"mqttgo.io",1883
mqttid, server name or ip, port

1~2之間操作時間需要在10秒內

1. 開啟連線AT+QMTCONN

AT+QMTCONN=0,"ClientID亂碼","帳號","密碼"

2. 推播訊息(送信): AT+QMTPUBEX

AT+QMTPUBEX=0,0,0,0,"yourTopic","28"

mqttid, msgid=0, qos, retain, topic, content

3. 訂閱訊息:AT+QMTSUB

AT+QMTSUB=0,msgid需不同,"yourTopic",0 mqttid, msgid, topic, qos

```
AT+QMTOPEN=0, "mqttgo.io", 1883
OK

+QMTOPEN: 0,0
AT+QMTCONN=0, "222test12345", "", ""
OK

+QMTCONN: 0,0,0
```

```
AT+QMTPUBEX=0,0,0,0,"yourTopic","28"
OK
+QMTPUB: 0,0,0
```

```
AT+QMTSUB=0,3,"yourTopic2",0
OK
+QMTSUB: 0,3,0,0
+QMTRECV: 0,0,"yourTopic2","22"
```

MQTTGO儀表板 <u>mqttgo.io</u>

5. GPS定位及追蹤

內建GPS存取

注意事項:GPS與NBIoT無法同時使用,因此必須使用優先權管理

- 1. 轉換為GPS優先: AT+QGPSCFG="priority",0
 - 0:GPS優先、1:NBIOT優先
- 2. 啟動GPS模組,須等候約30秒:AT+QGPS=1
- 3. 詢問座標: AT+QGPSLOC=1

```
AT+OGPSLOC=1
```

+QGPSLOC: 071730.0,2259.143854,N,12014.726292,E,2.3,113.7,3,0.00,0.0,0.0,230623,08

問問

精度.海拔

日期,衛星數

- 1. GGA格式: AT+QGPSGNMEA="GGA"
- 2. 轉換為NBIoT優先: AT+QGPSCFG="priority",1
- 3. 關閉GPS: AT+QGPSEND

GGA格式

AT+OGPSGNMEA="GGA"

\$GPGGA,072145.00,2259.144017,N,12014.726086,E,1,08,2.3,112.4,M,17.2,M,,*62

\$GPGGA.<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*hh

- <1>UTC時間,hhmmss(時分秒)格式
- <2> 緯度ddmm.mmmm (度分)格式(前面的0也將被傳輸)
- <3> 緯度半球N(北半球)或S(南半球)
- <4> 經度dddmm.mmmm (度分)格式(前面的0也將被傳輸)
- <5> 經度半球E〔東經〕或W〔西經〕
- <6> GPS狀態: 0=未定位, 1=非差分定位, 2=差分定位, 6=正在估算
- <7> 正在使用解算位置的衛星數量(00~12) 〔前面的0也將被傳輸〕
- <8> HDOP水準精度因數 (0.5~99.9)
- <9> 海拔高度 (-9999.9~99999.9)
- <10>地球橢球面相對大地水準面的高度
- <11> 差分時間(從最近一次接收到差分信號開始的秒數,如果不是差分定位將為空)
- <12> 差分站ID號0000~1023 (前面的0也將被傳輸,如果不是差分定位將為空)

DOP值的等級及其含義 ^{[12][13]}		
DOP值	等級	含義
1	理想	置信度水平高
2 - 4	優秀	置信度水平滿足所有的應用需求
4 - 6	良好	置信度水平滿足高精度應用需求
6 - 8	中等	置信度水平滿足大部分應用需求
8 - 20	一般	置信度水平較低,應評估應用風險
20 - 50	很差	置信度水平很差,基本無法滿足應用需求

解析GPS(AT+QGPSLOC=1)

075113.0, 2259.148748, N, 12014.724581, E, 2.0, 62.1, 3, 0.00, 0.0, 0.0, 230623, 08

 $22+59.148748/60=22.985812 \cdot N = > +22.985812$

120+14.724581/60=120.24541, E = > +120.24541

組合緯度經度 = >+22.985812,+120.24541

放置到Googlemap中

MQTTGO地圖儀表板

訂閱資訊前綴「GPS@緯度,經度」即可有地圖呈現,前例可自己推播到訂閱進行

測試,方式

GPS@+22.985812,+120.24541

6.自動定位及地圖追蹤

DHT11溫濕度

安裝SimpleDHT程式庫

載入範例 DHT11default

修改腳位即可上傳

依照下圖,我們選用21(A7)

自動傳輸完整程式

模組化設計,大部分NBIoT及GPS功能都以完成模組化,可快速呼叫使用

主流程都有清楚標示,閱讀容易 趕快來體驗看看~

尤濬哲(夜市小霸王)

專長:AI、IoT、通訊、整合

FB: twgo.io/nmkfb

蝦皮: twgo.io/nmksp

YT: twgo.io/nmkyt

官方網:<u>nmking.io</u>

官方Line:@nmkingtw

