CONSIDERATIONS FOR INTEGRATING VIRTUAL THREADS IN A JAVA FRAMEWORK: A QUARKUS EXAMPLE IN A RESOURCE-CONSTRAINED ENVIRONMENT

A. NAVARRO^{1,2} J. PONGE^{1,2} F. LE MOUËL² C. ESCOFFIER¹

¹RED HAT ²CITI LABORATORY-INSA LYON

1 Context

2 Integration

3 The experiment

4 Results

THE END OF THE MONOLITH

- · difficult to maintain
- · dependency hell
- reboot for every change

- · sub-optimal deployment
- · limit scalability
- technology lock-in

from

Microservices: yesterday, today, and tomorrow - Dragoni & al

MICROSERVICES

- difficult to maintain
- split in smaller entities
- · dependency hell
- · less dependencies per service
- reboot for every change
- · reboot only impacted service

- sub-optimal deployment
- · per-service deployment
- limits scalability
- · scale each service
- technology lock-in
- per service technology

Remark

Transitioning to cloud becomes a thing

resource-efficiency

resource-efficiency resource-efficiency

resource-efficiency resource-efficiency resource-efficiency

resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency

resource-efficiency resource-efficiency

resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency resource-efficiency ciency

resource-efficiency resource-efficie

SCALING AND REACTIVE PROGRAMMING

Problem

Communications over the network are unreliable and slow.

Goal

Achieving efficient and timely communication between services.

BLOCKING AND NON-BLOCKING PROGRAMMING

Non-blocking abstractions

- asynchronous callbacks
- · promises and futures
- · reactive streams

- coroutines
- · async functions
- light threads

CODE COMPARISON - BLOCKING

```
var names = getAll();
var quotes = getQuotes(names.size());
for(int i=0; i < names.size();i ++){
   names.get(i).surname+= "-"+quotes.get(i);
}
return names;</pre>
```

CODE COMPARISON - ASYNCHRONOUS CALLBACKS

```
getAll( names => {
    getQuotes(names.size(), quotes => {
        for(int i=0; i < names.size();i ++){
            names.get(i).surname+= "- "+quotes.get(i);
        }
        //continuation
    })
});</pre>
```

CODE COMPARISON - REACTIVE STREAMS

```
var names = getAll().memoize().indefinitely();
var quotes = names.onItem().transformToUni(list ->
         getQuotes(list.size()));
return Uni.combine().all()
   .unis(names,quotes).asTuple()
   .onItem().transform(tuple -> {
      var nList=tuple.getItem1();
      //can await it since it is already resolved
      var qList = tuple.getItem2();
      for(int i=0; i < namesList.size();i ++){</pre>
         nList.get(i).surname += " - "+qList.get(i);
      return namesList;
   });
```

ASYNCHRONOUS PROGRAMMING ABSTRACTIONS

We should do (as wise programmers aware of our limitations) our utmost best to shorten the conceptual gap between the static program and the dynamic process, to make the correspondence between the program (spread out in text space) and the process (spread out in time) as trivial as possible.

Edgar. J. Dijkstra, 1968

CODE COMPARISON - VIRTUAL THREADS

```
var names = getAll();
var quotes = getQuotes(names.size());
for(int i=0; i < names.size();i ++){
   names.get(i).surname+= "-"+quotes.get(i);
}
return names;</pre>
```

VIRTUAL THREADS

TABLE OF CONTENTS

1 Context

- 2 Integration
- 3 The experiment
- 4 Results

A QUICK OVERVIEW OF QUARKUS

THREE INTEGRATION STRATEGIES

Strategy	Pros	Cons
Forking worker model	Simple, fits virtual threads model	Context switches
Using event-loop as carrier	No context-switch, Fewer threads overall	Potential deadlocks
Modifying Netty event-loops to be virtual threads	Integration done at the Netty level, Netty-based frameworks would benefit from it	stream, unpredictable

Table: Comparison of the different Quarkus-virtual-threads options

FORKING THE WORKER MODEL

REUSING EVENT-LOOPS

"VIRTUALIZING" NETTY EVENT-LOOPS

DEADLOCK SITUATION

DEADLOCK: SHARING LOCKS

Conclusion

The event-loop can't reuse locks as a carrier

INTEGRATION STRATEGIES SUMMARY

Strategy	Pros	Cons
Forking worker model	Simple, fits virtual threads model	Context switches
Using event-loop as carrier	No context-switch, Fewer threads overall	Potential deadlocks
Modifying Netty event-loops to be virtual threads	Integration done at the Netty level, Netty-based frameworks would benefit from it	stream, unpredictable

Table: Comparison of the different Quarkus-virtual-threads options

FINAL CHOICE: FORKING THE WORKER MODEL

TABLE OF CONTENTS

1 Context

- 2 Integration
- 3 The experiment

4 Results

THE EXPERIMENT

Goal

Measure how performance of the application is affected by replacing reactive endpoints with virtual-threads offloading

Hypothesis

Quarkus-virtual-threads should perform better than **Quarkus-blocking** but not as well as **Quarkus-reactive**

THE ENVIRONMENT

Limited resources

- 512MB memory
- 0.5 vCPU
- · 256MB heap

Fault-inducing settings

- 200ms of delay between the DB and the server
- Hyperfoil to avoid Coordinated Omission

ELEMENTS OF THE EXPERIMENT

TABLE OF CONTENTS

1 Context

- 2 Integration
- 3 The experiment
- 4 Results

RESULTS WITHOUT DELAY

RESULTS WITH 200MS DELAY

GARBAGE COLLECTION DETAIL

	Quarkus-virt-threads-0	Quarkus-virt-threads-200
Max-latency	1.44 s	31.54 s
GC count	275	709
Avg pause	18.662 ms	92.270 ms
Longest pause	89.723 ms	520.437 ms
Young Collection time	5.132 s	41.685 s
Old Collection time	N/A	23.734 s
Sum of pauses	5.132 s	65 s

	Quarkus-reactive-0	Quarkus-reactive-200
Max-latency	1.08 s	704.64 ms
GC count	192	183
Avg pause	15.169 ms	14.968 ms
Longest pause	32.898 ms	49.312 ms
Young Collection time	3.004	2.739s
Old Collection time	N/A	N/A
Sum of pauses	3.004 s	2.739 s

EXPLAINING LONGER GARBAGE COLLECTION

- Too many virtual threads exist in memory at the same time.
- Data structures generated by Quarkus/Netty pollute memory.

EXPLAINING LONGER GARBAGE COLLECTION

- Too many virtual threads exist in memory at the same time.
- Data structures generated by Quarkus/Netty pollute memory.

CONCLUSIONS

- Although Quarkus-virtual-threads outperforms Quarkus-blocking in the context of the experiment, it still does not scale to the concurrency of Quarkus-reactive.
- Memory consumption is especially high for Ouarkus-virtual-threads.
- Virtual threads are not directly responsible for the high memory consumption.
- Data structures generated by Quarkus/Netty are the main memory consumers.

GENERALIZING THE RESULTS

The integration of virtual threads in frameworks built on top of Netty or that rely heavily on ThreadLocals, presuming a small thread count, is likely to experience significant garbage collection (GC) pressure.