Základný Solowov model

Ekonomický rast v dlhom období. Odvodenie Solowovho modelu. Grafická analýza modelu.

Tomáš Oleš

Department of Economic Policy Faculty of Economics and Finance

February 2, 2025

Agenda

Solowov model je základným nástrojom na pochopenie dlhodobého ekonomického rastu a rozdielov v príjmoch medzi krajinami.

- Vyvinutý Robertom Solowom (1956), neskôr ocenený Nobelovou cenou.
- Model zahŕňa:
 - Agregátnu produkčnú funkciu
 - Funkciu spotreby/úspor
 - Rovnicu akumulácie kapitálu
- Predpovede modelu dobre korešpondujú s reálnymi dátami.

Institute Professor Emeritus Robert Solow, pathbreaking economist, dies at age 99 Nobel-winning scholar changed his field, taught generations of students, and helped make MIT a global leader in economics research.

Produkcia, spotreba a investície

Solowov model predpokladá existenciu celkovej produkčnej funkcie, ktorá transformuje kapitál a prácu na výstup. Kapitál a práca sa líšia:

- Kapitál je stavový (stock) pojem, možno ho akumulovať.
- Práca je *tokový* (flow) koncept, čas na prácu je obmedzený.

Príklad:

- Kosačka = kapitál
- Čas kosenia = práca

Kapitál akumulujeme, zatiaľ čo práca je daná exogénne.

Matematická definícia produkčnej funkcie

Produkčná funkcia:

$$Y_t = A_t F(K_t, N_t) \tag{1}$$

kde:

- A_t exogénna produktivita,
- K_t kapitál,
- N_t pracovná sila.

Predpoklady:

- $F_K > 0$, $F_N > 0$ viac vstupov znamená viac výstupu,
- $F_{KK} < 0$, $F_{NN} < 0$ klesajúce hraničné produkty,
- $F_{KN} > 0$ viac kapitálu zvyšuje hraničný produkt práce,
- Konštantné výnosy z rozsahu: $F(\gamma K_t, \gamma N_t) = \gamma F(K_t, N_t)$,
- Produkcia nie je možná bez kapitálu a práce: $F(0, N_t) = F(K_t, 0) = 0$.

Cobb-Douglasova produkčná funkcia

Špecifická forma produkčnej funkcie:

$$F(K_t, N_t) = K_t^{\alpha} N_t^{1-\alpha}, \quad \text{kde} \quad 0 < \alpha < 1.$$
 (2)

Táto funkcia zachováva vyššie uvedené vlastnosti a bude používaná v celom kurze.

Overenie vlastností Cobb-Douglasovej produkčnej funkcie

Prvé parciálne derivácie:

$$F_K(K_t, N_t) = \alpha K_t^{\alpha - 1} N_t^{1 - \alpha}$$
$$F_N(K_t, N_t) = (1 - \alpha) K_t^{\alpha} N_t^{-\alpha}$$

Keďže $0<\alpha<1$, hraničné produkty kapitálu a práce sú pozitívne.

Druhé derivácie:

$$F_{KK}(K_t, N_t) = \alpha(\alpha - 1)K_t^{\alpha - 2}N_t^{1 - \alpha}$$

$$F_{NN}(K_t, N_t) = -\alpha(1 - \alpha)K_t^{\alpha}N_t^{-\alpha - 1}$$

$$F_{KN}(K_t, N_t) = (1 - \alpha)\alpha K_t^{\alpha - 1}N_t^{-\alpha}$$

Klesajúce hraničné produkty sú splnené ($F_{KK} < 0$, $F_{NN} < 0$) a $F_{KN} > 0$.

Konštantné výnosy z rozsahu a podmienky optimalizácie

Overenie konštantných výnosov z rozsahu:

$$F(\gamma K_t, \gamma N_t) = \gamma K_t^{\alpha} N_t^{1-\alpha}$$

Súčet exponentov sa rovná jednej, čo znamená konštantné výnosy. Nevyhnutnosť oboch vstupov:

$$F(0,N_t)=0, \quad F(K_t,0)=0$$

Produkcia bez jedného vstupu nie je možná.

Optimalizačný problém firmy

Firma maximalizuje zisk:

$$\max_{K_t, N_t} \Pi_t = AF(K_t, N_t) - w_t N_t - R_t K_t \tag{3}$$

kde w_t je reálna mzda a R_t je návratnosť kapitálu.

Podmienky prvého rádu:

$$w_t = AF_N(K_t, N_t) \tag{4}$$

$$R_t = AF_K(K_t, N_t) \tag{5}$$

Firma optimalizuje vstupy tak, aby sa hraničný produkt rovnal cene faktora.

Reprezentatívna domácnosť v ekonomike

Existuje jedna reprezentatívna domácnosť, ktorá má v čase t stavový veličinu kapitálu K_t a pracovnú silu N_t . Jej príjem je získaný z dodávania kapitálu a práce firme:

$$w_t N_t + R_t K_t$$

Tento príjem môže byť použitý na spotrebu C_t alebo investície I_t , pričom rozpočtové obmedzenie je:

$$C_t + I_t \le w_t N_t + R_t K_t + \pi_t \tag{6}$$

kde π_t predstavuje dividendové platby. Ak platí rovnosť, celkové výdavky sa rovnajú celkovému príjmu a výstupu:

$$Y_t = C_t + I_t \tag{7}$$

Akumulácia kapitálu

Budúce úrovne kapitálu sú ovplyvnené investíciami. Kapitál sa akumuluje podľa rovnice:

$$K_{t+1} = I_t + (1 - \delta)K_t \tag{8}$$

kde $0<\delta<1$ je miera opotrebenia kapitálu. Táto rovnica vyjadruje tzv. 'zákon pohybu' kapitálu. Predpokladáme jedno obdobie oneskorenia medzi investíciou a produktivitou nového kapitálu.

Reprezentatívna domácnosť v ekonomike

Existuje jedna reprezentatívna domácnosť, ktorá má v čase t stavový veličinu kapitálu K_t a pracovnú silu N_t . Jej príjem je získaný z dodávania kapitálu a práce firme:

$$w_t N_t + R_t K_t$$

Tento príjem môže byť použitý na spotrebu C_t alebo investície I_t , pričom rozpočtové obmedzenie je:

$$C_t + I_t \le w_t N_t + R_t K_t + \pi_t \tag{9}$$

kde π_t predstavuje dividendové platby. Ak platí rovnosť, celkové výdavky sa rovnajú celkovému príjmu a výstupu:

$$Y_t = C_t + I_t \tag{10}$$

Akumulácia kapitálu

Budúce úrovne kapitálu sú ovplyvnené investíciami. Kapitál sa akumuluje podľa rovnice:

$$K_{t+1} = I_t + (1 - \delta)K_t$$
 (11)

kde $0<\delta<1$ je miera opotrebenia kapitálu. Táto rovnica vyjadruje tzv. 'zákon pohybu' kapitálu. Predpokladáme jedno obdobie oneskorenia medzi investíciou a produktivitou nového kapitálu.

Príklad: Kosačky na trávu

Predpokladajme, že stavová veličina kapitálu je $K_t=10$ kosačiek na trávu a miera opotrebenia je $\delta=0.1$. Ak vyprodukujete 3 jednotky výstupu, $Y_t=3$:

- Ak spotrebujete všetok výstup ($C_t = 3$), potom $I_t = 0$ a v ďalšom období $K_{t+1} = 9$.
- Ak spotrebujete dve jednotky výstupu ($C_t = 2$), potom $I_t = 1$ a $K_{t+1} = 10$.
- Ak spotrebujete jednu jednotku výstupu ($C_t = 1$), potom $I_t = 2$ a $K_{t+1} = 11$.

Rozhodnutie o investovaní je intertemporálne rozhodnutie medzi súčasnou a budúcou spotrebou. Viac kapitálu v budúcnosti znamená vyšší budúci výstup a možnosť vyššej spotreby.

Solowov model úspor a práce

Solowov model predpokladá, že investície sú konštantným podielom výstupu. Nech 0 < s < 1 označuje mieru úspor:

$$I_t = sY_t \tag{12}$$

Kombináciou s rovnicou (10) dostávame:

$$C_t = (1 - s)Y_t \tag{13}$$

Ekonomika teda každé obdobie spotrebuje konštantnú časť svojho výstupu a investuje zvyšok.

Predpokladáme tiež, že domácnosť ponúka prácu neelasticky, teda celkové množstvo práce N_t je exogénne a fixné v čase. Tento predpoklad je v súlade s dlhodobými trendmi pracovných hodín na obyvateľa.

Základné rovnice Solowovho modelu

Solowov model je charakterizovaný nasledujúcimi rovnicami:

$$Y_t = AF(K_t, N_t)$$

$$Y_t = C_t + I_t$$

$$K_{t+1} = I_t + (1-\delta)K_t$$

$$I_t = sY_t$$

$$w_t = AF_N(K_t, N_t)$$

$$R_t = AF_K(K_t, N_t)$$

(14)

(15)

(16)

(17)

Tieto rovnice opisujú dynamiku ekonomiky v čase.

Dynamika kapitálu na pracovníka

z rozsahu:

Kombináciou rovníc (14), (16) a (17) dostávame:

$$K_{t+1} = sAF(K_t, N_t) + (1 - \delta)K_t.$$

Definujeme kapitál na pracovníka $k_t = \frac{K_t}{N_t}$ a využívame predpoklad konštantných výnosov

$$k_{t+1} = sAf(k_t) + (1-\delta)k_t.$$

Výstup, spotreba a investície na pracovníka:

$$y_t = Af(k_t)$$

$$y_t = At$$

$$t = (1-s)t$$

$$t = 3 \pi i (\kappa_t)$$

$$R_t = Af'(k_t)$$

$$R_t = Af'(k_t)$$

$$w_t = Af(k_t) - k_t Af'(k_t)$$

(23)

(24)

$$c_t = (1 - s)Af(k_t)$$
$$i_t = sAf(k_t)$$

$$-OJK_t$$
.

(20)

Solowov model s Cobb-Douglasovou produkčnou funkciou

Predpokladajme, že produkčná funkcia má tvar Cobb-Douglas. Centrálnu rovnicu modelu môžeme zapísať ako:

$$k_{t+1} = sAk_t^{\delta} + (1 - \delta)k_t. \tag{27}$$

Ostatné premenné sú určené ako funkcie k_t :

$$y_t = Ak_t^{\delta}, \tag{28}$$

$$c_t = (1 - s)Ak_t^{\delta},\tag{29}$$

$$= (1 - s)Ak_t^{\delta}, \tag{29}$$

$$i_t = sAk_t^{\delta}. \tag{30}$$

$$R_t = \delta A k_t^{\delta - 1},\tag{31}$$

$$w_t = (1 - \delta)Ak_t^{\delta}. \tag{32}$$

Tieto vzťahy popisujú produkciu, spotrebu, investície, ročnú sadzbu a mzdu ako funkcie kapitálu na pracovníka k_t .

Grafická analýza Solowovho modelu

Uvažujme centrálnu rovnicu Solowovho modelu, (21). Graficky zobrazíme k_{t+1} ako funkciu k_t (ktorý je v predchádzajúcom období t a preto exogénny).

- Ak $k_t=0$, potom $k_{t+1}=0$, keďže predpokladáme, že kapitál je nevyhnutný pre výrobu. To znamená, že v grafe s k_t na horizontálnej osi a k_{t+1} na vertikálnej osi, graf začína v počiatku.
- Ako sa bude meniť k_{t+1} s meniacim sa k_t ? Vezmime deriváciu k_{t+1} podľa k_t :

$$\frac{dk_{t+1}}{dk_t} = sAf'(k_t) + (1 - \delta). \tag{33}$$

Rovnica (33) vyjadruje výraz pre sklon grafu k_{t+1} voči k_t . Veľkosť tohto sklonu závisí od hodnoty k_t .

- Keďže $f'(k_t)$ je kladné a $\delta < 1$, sklon je kladný, takže k_{t+1} rastie s k_t .
- Keďže $f''(k_t) < 0$, výraz $sAf'(k_t)$ sa zmenšuje s rastúcim k_t . To znamená, že k_{t+1} je rastúca funkcia k_t , ale rastová rýchlosť sa znižuje.

Predpokladajme dve dodatočné podmienky, ktoré sa niekedy nazývajú *Inadove podmienky*:

$$\lim_{k_t \to 0} f'(k_t) = \infty, \tag{34}$$

$$\lim_{k_t \to \infty} f'(k_t) = 0. \tag{35}$$

Slovne:

- Rovnica (34) hovorí, že hraničný produkt kapitálu je nekonečný, keď nie je žiadny kapitál.
- Rovnica (35) hovorí, že hraničný produkt kapitálu sa blíži k nule, keď kapitálová zásoba na pracovníka rastie do nekonečna.

Tieto podmienky spolu implikujú, že sklon $\frac{dk_{t+1}}{dk_t}$ začína v kladnom nekonečne až sa ustáli na výraze $1-\delta$, čo je kladné číslo, menšie však ako jeden.

Cobb-Douglasova produkčná funkcia

Predpokladajme, že produkčná funkcia je Cobb-Douglas, takže centrálna rovnica Solowovho modelu je daná (27). Výraz pre sklon centrálnej rovnice je:

$$\frac{dk_{t+1}}{dk_t} = \alpha s A k_t^{\alpha - 1} + (1 - \delta). \tag{36}$$

To môžeme ekvivalentne zapísať ako:

$$\frac{dk_{t+1}}{dk_t} = \alpha s A \left(\frac{k_t}{k_t}\right)^{1-\delta} + (1-\delta). \tag{37}$$

Ak $k_t=0$, potom $\frac{1}{k_t^{1-\alpha}}=\infty$. Keďže $1-\alpha>0$, a mocnina nekonečna s kladným exponentom je nekonečno, sklon je teda nekonečný. Podobne, ak $k_t\to\infty$, potom $\frac{1}{k_t^{1-\alpha}}=0$. Preto Inadove podmienky platia pre produkčnú funkciu Cobb-Douglasoveho typu.

Graf centrálnej rovnice Solowovho modelu

Figure: Graf centrálnej rovnice Solowowho modelu

Konvergencia ku stálemu stavu: $k_t < k^*$

Ak $k_t=0$, potom $rac{1}{k_t^{1-lpha}}=\infty$. Keďže 1-lpha>0, sklon je nekonečný.

Konvergencia ku stálemu stavu: $k_t > k^*$

Ak $k_t > k^*$, kapitálová zásoba sa bude postupne znižovať, až kým nedosiahne stály stav.

Konvergencia ku stálemu stavu

Stály stav je bod rovnováhy, ku ktorému sa ekonomika približuje bez ohľadu na počiatočné k_t .

Figure: Konvergencia ku stálemu stavu

Alternatívne zobrazenie Solowovho modelu

Zmena kapitálovej zásoby sa rovná rozdielu medzi investíciami a opotrebením:

(38)

References I

Garın, J., Lester, R., and Sims, E. (2021). Intermediate macroeconomics. This Version, 3(0.1).