Feuille d'exercices n°1 Révisions

(du lundi 28 septembre 2009 au vendredi 2 octobre 2009)

Exercice 1

Rappeler les développements limités au voisinage de 0 à l'ordre 6 des fonctions suivantes :

- 1. $f(x) = e^x$
- 2. $g(x) = \ln(1+x)$
- 3. $h(x) = (1+x)^{\alpha}$ où $\alpha \in \mathbb{R}^*$
- 4. $i(x) = \sin(x)$
- 5. $j(x) = \cos(x)$

Exercice 2

Déterminer, au voisinage de 0, les développements limités des fonctions suivantes :

- 1. $f(x) = \cos(x)e^x$ à l'ordre 4
- 2. $g(x) = \frac{1}{1-x} e^x$ à l'ordre 3
- 3. $h(x) = \ln(1 + \cos(x))$ à l'ordre 4
- 4. $i(x) = e^{\sin(x)}$ à l'ordre 3
- 5. $j(x) = e^{\cos(x)}$ à l'ordre 4
- 6. $k(x) = (\ln(1+x))^2$ à l'ordre 4

Exercice 3

Déterminer les limites suivantes :

$$1. \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x$$

2.
$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$$

3.
$$\lim_{x \to +\infty} \left(\cos \left(\frac{1}{x} \right) \right)^{x^2}$$

4.
$$\lim_{x \to +\infty} x^3 \sin\left(\frac{1}{x}\right) - x^2$$

5.
$$\lim_{x \to 0} \frac{e^x - \cos(x) - x}{x - \ln(1+x)}$$

6.
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\ln(1+x)}$$

7.
$$\lim_{x \to 0} \frac{\ln(1 + \sin(x)) - \sin(\ln(1+x))}{x^2 \sin(x^2)}$$

Exercice 4

Dans tout l'exercice, (u_n) est une suite réelle et $a \in \mathbb{R}$.

1. Montrer que si

$$\lim_{n \to +\infty} u_n = a$$

alors

$$\lim_{n \to +\infty} \frac{u_1 + u_2 + \dots + u_n}{n} = a$$

2. Montrer que si

$$\lim_{n \to +\infty} (u_n - u_{n-1}) = a$$

alors

$$\lim_{n \to +\infty} \left(\frac{u_n}{n} \right) = a$$

3. Supposons $u_n > 0$. Montrer que si

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = a$$

alors

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = a$$

Exercice 5

Soient $a \in \mathbb{R} \cup \{+\infty\}$, f et g deux fonctions définies sur \mathbb{R} à valeurs réelles. On note e^f l'application $x \mapsto e^{f(x)}$ et $\ln(f)$ l'application $x \mapsto \ln(f(x))$.

1. Montrer que :

$$f \sim_a g \Rightarrow e^f \sim_a e^g$$

- 2. Donner une condition nécessaire et suffisante sur f et g pour que $e^f \sim e^g$
- 3. On suppose f et g stritement positives. Montrer que :

$$f \sim g \Rightarrow \ln(f) \sim \ln(g)$$

4. On suppose f et g strictement positives telles que $f \sim g$. On suppose de plus que g admet en a une limite l dans $(\mathbb{R}^+_* - \{1\}) \cup \{+\infty\}$. Montrer qu'alors $\ln(f) \sim \ln(g)$. On distinguera le cas $l = +\infty$ du cas $l \in \mathbb{R}^+_* - \{1\}$.