

WEST**Freeform Search**

Database:

Term: L7 and polyvalent

Display: Documents in Display Format: Starting with Number

Generate: Hit List Hit Count Image

Search History

Today's Date: 12/8/2000

<u>DB Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
USPT	L7 and polyvalent	9	<u>L8</u>
USPT	L6 and L2	100	<u>L7</u>
USPT	biopolymer	4026	<u>L6</u>
USPT	bioploymer and l2	0	<u>L5</u>
USPT,JPAB,EPAB,DWPI	bioploymer and l2	0	<u>L4</u>
USPT,EPAB,DWPI	bioploymer and l2	0	<u>L3</u>
USPT,EPAB,DWPI	L1 and biosynthesis	3382	<u>L2</u>
DWPI,USPT,EPAB	liquid phase carrier	85879	<u>L1</u>

Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention:

Solution Phase Biopolymer Synthesis

Inventors (please provide full names):

Hubert Koster; Ralph Worf

Earliest Priority Filing Date:

This application is a CON of 09/067,337 04/27/98

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

1. (Amended) A liquid phase carrier (LPC) of formula $Sp(X^1)_n$, wherein:

Sp is a polyvalent group that has more than two points of attachment, n is the number of points of attachment in Sp and X^1 is a reactive group for synthesis [synthesis] of biopolymers.

33. A method of solution phase biopolymer synthesis, comprising

20 the steps of:

(a) reacting an LPC of formula $Sp(X^1)_n$ with a first monomer N^1 ;

(b) separating and purifying the product of step (a) to afford a compound of formula $Sp(X^1-N^1)_n$;

(c) reacting the product of step (b) with a second monomer N^2 , a

25 dimer N^2-N^3 or a trimer $N^2-N^3-N^4$; and

(d) repeating steps (b) and (c) to produce an LPC-bound biopolymer of formula $Sp(X^1-N^1-N^2-\dots-N^m)_n$, where m is 3 to 100, wherein:

Sp is a polyvalent group that has more than two points of attachment, n corresponds to the number of points of attachment in Sp

30 and X^1 is a reactive group for biopolymer synthesis;

$N^1, N^2, N^3\dots N^m$ are biopolymer monomers; and

the dimers and trimers comprise the monomers.

48. A method of solution phase biopolymer synthesis, comprising

35 the steps of:

(a) reacting an LPC of formula $Sp(X^1)_n$ with a first monomer N^1 ;

(b) separating and purifying the product of step (a) to afford a compound of formula $Sp(X^1-N^1)_n$;

(c) reacting the product of step (b) with a second monomer N^2 , a dimer N^2-N^3 or a trimer $N^2-N^3-N^4$; and

5 (d) repeating steps (b) and (c) to produce an LPC-bound biopolymer of formula $Sp(X^1-N^1-N^2-\dots-N^m)_n$, where m is 3 to 100, wherein:

Sp is a polyvalent group that has two or more points of attachment, n corresponds to the number of points of attachment in Sp and X^1 is a reactive group for biopolymer synthesis;

STAFF USE ONLY

Searcher: JOHN DA

Searcher Phone #: _____

Searcher Location: _____

Date Searcher Picked Up: 11

Date Completed: 12

Searcher Prep & Review Time: _____

Clerical Prep Time: _____

Online Time: _____

40

Other _____

Other (specify) _____