Forma generale delle EDS

$$dX_t = a(t, X_t, \theta) dt + b(t, X_t, \sigma) dW_t$$

Parametri:

 X_t : Valore del processo al tempo t

 $a(t,X_t,\theta)$: Parte deterministica dell'equazione con il parametro θ

 $b(t,X_t,\sigma)$: Parte stocastica dell'equazione con il parametro σ

 σ : Volatilità

 dW_t : Incremento di un processo di Wiener, che rappresenta la componente casuale del processo

Arithmetic Brownian Motion

$$S_{t+1} = S_t + \mu \Delta t + \sigma \varepsilon \sqrt{\Delta t}$$

Parametri:

 S_t : Valore dell'asset al tempo t

 μ : Tasso di deriva (movimento medio)

 σ : Volatilità

 Δt : Intervallo di tempo

 ε : Variabile casuale distribuita normalmente con media 0 e deviazione standard 1

Geometric Brownian Motion (Black-Scholes)

$$S_{t+1} = S_t \exp\left((\mu - \frac{\sigma^2}{2})\Delta t + \sigma \varepsilon \sqrt{\Delta t}\right)$$

Parametri: Come sopra.

Ornstein-Uhlenbeck (mean-reverting)

$$dX_t = \theta(\mu - X_t)dt + \sigma dW_t$$

Parametri:

 X_t : Valore del processo al tempo t

 θ : Velocità di reversibilità

 μ : Valore di reversibilità

 σ : Volatilità

 dW_t : Incremento del processo di Wiener (rumore bianco)

Vasicek

$$dX_t = \alpha(\beta - X_t)dt + \sigma dW_t$$

Parametri:

 X_t : Valore del processo al tempo t

 α : Velocità di reversibilità

 β : Valore di reversibilità

 σ : Volatilità

 dW_t : Incremento del processo di Wiener (rumore bianco)

Hull-White

$$dr_t = (\theta(t) - ar_t)dt + \sigma dW_t$$

Parametri:

 r_t : Tasso di interesse al tempo t

 $\theta(t)$: Parametro di media reversibile variabile nel tempo

 \boldsymbol{a} : Velocità di reversibilità

 σ : Volatilità

 dW_t : Incremento del processo di Wiener (rumore bianco)

Cox-Ingersoll-Ross (CIR)

$$dr_t = \alpha(\beta - r_t)dt + \sigma\sqrt{r_t}dW_t$$

Parametri:

 \boldsymbol{r}_t : Tasso di interesse al tempo t

 α : Velocità di reversibilità

 β : Valore di reversibilità

 σ : Volatilità

 dW_t : Incremento del processo di Wiener (rumore bianco)

Black-Karasinski

$$dr_t = (\theta(t) - ar_t)dt + \sigma r_t^{\gamma} dW_t$$

Parametri:

 \boldsymbol{r}_t : Tasso di interesse al tempo t

 $\theta(t)$: Parametro di media reversibile variabile nel tempo

 \boldsymbol{a} : Velocità di reversibilità

 σ : Volatilità

 $\gamma:$ Parametro di potenza

 dW_t : Incremento del processo di Wiener (rumore bianco)

Heston

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dW_t^S$$

$$dv_t = \kappa(\theta - v_t) dt + \sigma \sqrt{v_t} dW_t^v$$

Parametri:

 S_t : Prezzo dell'asset al tempo t

 \boldsymbol{v}_t : Volatilità dell'asset al tempo t

 μ : Tasso di deriva del prezzo dell'asset

 κ : Velocità di reversibilità della volatilità

 θ : Valore di reversibilità della volatilità

 σ : Volatilità della volatilità

 dW_t^S : Incremento del processo di Wiener per il prezzo dell'asset

 dW^{v}_{t} : Incremento del processo di Wiener per la volatilità

Chen Model

Da capire (?)