Calculo Numérico

Professor: Pedro Henrique González Silva

Período: 2013/1

Objetivos

• Ao final do período o aluno deverá estar capacitado a utilizar os recursos computacionais na solução de problemas matemáticos, através da aplicação de algoritmos de métodos numéricos.

Ementa do Curso

- Erros nas aproximações numéricas.
- Desenvolvimento em série de Taylor/Maclaurin.
- Resolução numérica de sistemas de equações algébricas e transcendentes.
- Resolução numérica de sistemas lineares.
- Interpolação.
- Diferenciação Numérica.
- Integração Numérica.

Bibliografia

- Dom, Willian S./ McCraken, Daniel D. Cálculo Numérico com estudos de Casos em Fortran IV – ed. Campus.
- Ruggiero, Marcia / Lopes, Vera Lucia Cálculo Numérico (aspectos teóricos e computacionais) ed. McGraw.Hill.
- Mirshawka, Victor Cálculo Numérico ed. Nobel.
- Portes, Mariluci F. Apostila de Calculo Numérico.

• 1.1 – Considerações Gerais:

- Uso de dados provenientes de medições;
- Uso de dados matemáticos inexatos;
- Uso de dados provenientes de tabelas;
- Uso de dados inexatos provenientes da supressão de algarismos;
- Aproximações devido à fórmulas de resolução aproximadas.
- Ordem de cálculo nas operações;
- Uso de rotinas inadequadas de cálculo;
- Enganos.

• 1.2 – Números Aproximados:

DEFINIÇÃO:

Número aproximado é a aproximação de um valor exato, sendo a diferença entre os dois bem pequena. Consideramos um valor exato quando não existe aproximação ou incerteza associado a ele.

• 1.3 – Algarismos Significativos de um Numero:

• {1,2,3,4,5,6,7,8,9}

Sempre são.

• {0}

Exceto nas casos em que é usado para fixar a posição da parte decimal ou preencher casas decimais de dígitos desprezados ou desconhecidos.

 1.3 – Algarismos Significativos de um Numero:

- Exemplo:
 - 3,124
 - 405
 - 0,0095
 - 45,1300

 1.3 – Algarismos Significativos de um Numero:

- Solução Exemplo:
 - $3,124 \rightarrow 4$ significatives
 - $405 \rightarrow 3$ significatives
 - $0,0095 = 9,5 \ 10^{-3} \rightarrow 2 \text{ significatives}$
 - $45,1300 \rightarrow 4$ significativos se os zeros estiverem preenchendo casas decimais vazias

• 1.4 – Arredondamento de um Numero:

DEFINIÇÃO:

Arredondar um número é guardar uma certa quantidade de dígitos, contados a partir da esquerda para a direita, ignorando consequentemente os demais dígitos do número.

- Regras de Arredondamento:
 - Se o algarismo desprezado for maior que 5, adiciona-se l unidade ao enésimo dígito;
 - Se o algarismo desprezado for menor que 5, o enésimo dígito permanece inalterado;
 - Se o algarismo desprezado for igual a 5, então:
 - · deixa-se o enésimo dígito inalterado se for par;
 - · acrescenta-se l unidade ao enésimo dígito se for ímpar.

- Regras de Arredondamento:
 - Exemplo:
 - 2,45879 (Obtendo 4 Dígitos Significativos) \rightarrow
 - 2,45376 (Obtendo 3 Dígitos Significativos) →
 - 4,67857 (Obtendo 4 Dígitos Significativos) →
 - 4,67757 (Obtendo 4 Dígitos Significativos) \rightarrow

- Regras de Arredondamento:
 - Solução Exemplo:
 - $2,45879 \rightarrow 2,459$
 - $2,45376 \rightarrow 2,45$
 - $4,67857 \rightarrow 4,678$
 - $4,67757 \rightarrow 4,678$

- 1.5 Tipos de Erro:
 - Erro Absoluto
 - Erro Relativo
 - Erro Percentual Relativo

- - Erro Absoluto:

DEFINIÇÃO:

Definimos erro absoluto como sendo a diferença em módulo entre o valor exato e o valor aproximado.

$$\Delta Q = |Q - Q^*|$$

- - Erro Relativo:

DEFINIÇÃO:

Definimos erro relativo como sendo a razão entre o erro absoluto e valor exato do numero.

$$\delta Q = \frac{\Delta Q}{Q}$$

- - Erro Percentual Relativo :

DEFINIÇÃO:

Definimos erro relativo percentual como sendo a razão entre o erro absoluto e valor exato do numero expresso em percentagem.

$$\delta Q\% = \frac{\Delta Q}{Q} x 100$$

- - Exemplo Tipos Erro:
 - Dados Q = 3,251408 e $Q^* = 3,2524634$, determine:
 - O erro absoluto;
 - O erro relativo;
 - O erro percentual relativo.

- 1.5 Tipos de Erro:
 - Solução Exemplo Tipos Erro:
 - Dados Q = 3,251408 e $Q^* = 3,2524634$, determine:
 - O erro absoluto $1{,}0554x10^{-3}$
 - O erro relativo 0.324597×10^{-3}
 - O erro percentual relativo 0.324597×10^{-1}

• 1.5.1 – Cota Superior:

Cota Superior de Erro Absoluto:

DEFINIÇÃO:

Cota superior de erro absoluto é o limite máximo permitido para o erro absoluto.

 $e = \sum_{i=0}^{\infty} \frac{1}{i!}$

- 1.5.1 Cota Superior:
 - Exemplo de Cota Superior de Erro Absoluto:

• Considerando
$$e = \sum_{i=0}^{\infty} \frac{1}{i!}$$
 $e^{-e^*} = \sum_{i=0}^{7} \frac{1}{i!}$, determine a cota superior de erro absoluto :

De imediato sabemos:

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{7!} + \frac{1}{8!} + \frac{1}{9!} + \dots$$
 (1)

$$e^* = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{7!}$$
 (2)

$$\Delta e = |e - e^*| = \frac{1}{8!} + \frac{1}{9!} + \frac{1}{10!} + \dots$$
 (3)

Analisando a equação (3) temos:

$$\begin{split} \frac{1}{8!} &= \frac{1}{8!} \\ \frac{1}{9!} &= \frac{1}{8! \cdot 9} \\ \frac{1}{10!} &= \frac{1}{8! \cdot 9 \cdot 10} < \frac{1}{8! \cdot 9^2} \\ \frac{1}{11!} &= \frac{1}{8! \cdot 9 \cdot 10 \cdot 11} < \frac{1}{8! \cdot 9^3} \\ \Delta e &< \frac{1}{8!} \left(1 + \frac{1}{9} + \frac{1}{9^2} + \frac{1}{9^3} + \dots \right) \qquad \rightarrow \textit{P.G. ilimitada decrescente com } q = \frac{l}{9} \\ \Delta e &< \frac{1}{8!} \cdot \frac{1}{1 - \frac{1}{9}} \quad \Rightarrow \quad \Delta e < 0.279017 \cdot 10^{-4} \quad \Rightarrow \quad \Delta e < 0.3 \cdot 10^{-4} \end{split}$$

Logo a cota superior de erro absoluto é 10^{-4}

• 1.5.1 – Cota Superior:

Cota Superior de Erro Relativo:

DEFINIÇÃO:

Cota superior de erro relativo é o limite máximo permitido para o erro relativo.

 1.5.2 – Propagação de Erros em Operações Elementares:

- Adição:
 - Erro Absoluto:

$$\Delta_{X+Y} = \Delta_X + \Delta_Y$$

Erro Relativo:

$$\delta_{x+y} = \frac{x^*}{x^* + y^*} \cdot \delta x + \frac{y^*}{x^* + y^*} \cdot \delta y$$

- Subtração:
 - Erro Absoluto:

$$\Delta_{X-Y} = \Delta_X - \Delta_Y$$

• Erro Relativo:

$$\delta_{x+y} = \frac{x^*}{x^* - y^*} \cdot \delta x - \frac{y^*}{x^* - y^*} \cdot \delta y$$

- Multiplicação:
 - Erro Absoluto:

$$\Delta_{xy} = x^* \Delta y + y^* \Delta x$$

• Erro Relativo:

$$\delta_{xy} = \delta_x + \delta_y$$

- Divisão:
 - Erro Absoluto:

$$\Delta \frac{x}{y} \approx \frac{y^* \Delta x - x^* \Delta y}{y^{*2}}$$

• Erro Relativo:

$$\delta \frac{x}{y} = \delta x - \delta y$$

 1.6 - Algarismos Significativos Exatos contidos em um Numero Aproximado:

DEFINIÇÃO

Consideramos que os "n" primeiros algarismos de um número são exatos quando o erro absoluto não exceder a uma unidade na enésima casa, contando-se da esquerda para a direita.

• 1.6 - Algarismos Significativos Exatos contidos em um Numero Aproximado:

Teorema I:

Se o 1° algarismo significativo de um número aproximado A^{*} é k, contendo o referido número N de algarismos significativos, então o erro relativo associado à aproximação será:

$$\delta A \leq \frac{1}{k} \times 10^{1-N}$$

- 1.6 Algarismos Significativos Exatos contidos em um Numero Aproximado:
 - Exemplo de Aplicação do Teorema I:
 - Seja A*=3,1415 com 5 algarismos significativos exatos. Determine uma cota superior de erro relativo.

• 1.6 - Algarismos Significativos Exatos contidos em um Numero Aproximado:

Teorema II:

Se o erro relativo δA cometido na aproximação de A for menor que $\frac{1}{k+1} 10^{1-N}$, então A^* contém N algarismos significativos exatos.

- 1.6 Algarismos Significativos Exatos contidos em um Numero Aproximado:
 - Exemplo de Aplicação do Teorema II:
 - Determine o número de algarismos significativos exatos contidos em $A^* = 3,241$ sendo $\triangle A < 0,001$.

- 1.7 Propagação de Erros:
 - 1.7.1 Funções de uma variável real:

$$\Delta y \le |f'(x)| \cdot \Delta x$$

• 1.7.2 – Funções de varias variáveis reais:

$$\Delta w \le \left| \frac{\partial f}{\partial x_1} \right| \Delta x_1 + \ldots + \left| \frac{\partial f}{\partial x_n} \right| \Delta x_n = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \Delta x_i$$

- 1.7 Propagação de Erros:
 - 1.7.3 Problema Inverso:

$$\partial x_i = \frac{\partial w}{n} \qquad I \le i \le n$$

- 1.7 Propagação de Erros:
 - · Exemplos Propagação de Erros:
 - Determine o erro absoluto cometido no cálculo do volume de um cubo de 0,45 metros de aresta, sabendo que o erro cometido na medida da aresta é inferior a 0,005 metros.

Erro nas Aproximações Numéricas

- 1.7 Propagação de Erros:
 - Exemplos Propagação de Erros:
 - Entre que valores está o valor real do volume do cubo do exercício anterior?
 - Entre que valores está o valor real de z $(x,y) = x^2y + 2y + 0,3$ para x = 3,14 e y = 2,71; com Δx e Δy inferiores a 0,01.

Erro nas Aproximações Numéricas

- 1.7 Propagação de Erros:
 - Exemplos Propagação de Erros:
 - Sabendo-se que o volume de uma esfera é dado pela expressão $V = \frac{1}{6} \pi d^3$, determine entre que valores está o valor real de V, considerando $\pi \approx 3,141$ (com $\Delta \pi < 0,001$) e d = 3,71 cm (com $\Delta d < 0,005$ cm).

Erro nas Aproximações Numéricas

- 1.7 Propagação de Erros:
 - Exemplos Propagação de Erros:
 - Qual deve ser a precisão da medida do raio R=30,5 cm de um círculo e quantas decimais devem ser consideradas em π para que o erro cometido no cálculo da área não ultrapasse a 0,1%.

© 2 - Série de Potências:

Uma série da forma $c_0 + c_1(x - a) + c_2(x - a)^2 + \ldots + c_n(x - a)^n + \ldots$, onde "a" e c_i ($0 \le i < \infty$) são constantes, é chamada de série de potências em (x - a).

- 2.1 Série de Taylor e MacLaurin:
 - Seja y = f(x) uma função contínua e que todas as suas derivadas existam no domínio que nos interessa.
 - Suponha que se conheça tudo da função no ponto x = 0, ou seja:
 - $f(0) \Rightarrow valor da f(x) em x = 0$
 - f'(0) \Rightarrow inclinação da curva f(x) em x = 0
 - f "(0) \Rightarrow curvatura da f (x) em x = 0
 - $f^{n}(0) \Rightarrow n$ -ésima derivada da f(x) em x = 0

- 2.1 Série de Taylor e MacLaurin:
 - De um modo geral, uma série que representa o valor exato da f (x) será dado por um polinômio de grau infinito, ou seja:

•
$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

- Para se determinar, apliquemos a derivação sucessiva de f(x) em x = 0:
 - $f(0) = c_0$
 - $f'(x) = c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1} + \dots \Rightarrow f'(0) = c_1$
 - $f''(x) = 2c_2 + 6c_3x + \dots + n \cdot (n-1)c_nx^{n-2} + \dots \Rightarrow f''(0) = 2c_2$
 - $f'''(x) = 6c_3 + \dots + n \cdot (n-1)(n-2)c_n x^{n-3} + \dots \Rightarrow f'''(0) = 6c_3$
 - ...
 - $f^n(0) = n! c_n + \dots \Rightarrow f^n(0) = n! c_n$

- © 2.1- Série de Taylor e MacLaurin:
 - Em seguida temos:

•
$$c_0 = f(0)$$

•
$$c_1 = f'(0)$$

•
$$c_2 = \frac{f''(0)}{2!}$$

•
$$c_3 = \frac{f''(0)}{3!}$$

•
$$c_n = \frac{f^n(0)}{n!}$$

- 2.1 Série de Taylor e MacLaurin:
 - Então:

$$f(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \frac{f'''(0)}{3!} \cdot x^3 + \dots + \frac{f^n(0)}{n!} \cdot x^n + \dots$$

É o desenvolvimento de f(x) em série de MacLaurin.

- 2.1 Série de Taylor e MacLaurin:
 - Para $x \neq 0$ temos:

$$f(x) = f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2!} \cdot (x - a)^2 + \frac{f'''(a)}{3!} \cdot (x - a)^3 + \dots + \frac{f^n(a)}{n!} \cdot (x - a)^n + \dots$$

É o desenvolvimento de f(x) em torno do ponto a em série de Taylor.

- © 2.1 Série de Taylor e MacLaurin:
 - 2.1.1 Raio de Convergência:
 - Teorema:

Seja $\sum_{n=0}^{\infty} c_n (x-a)^n$ uma série de potências em (x - a). Se $\lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right| = R$ $0 \le R \le \infty$, então R é raio de convergência da série de potências.

- 2.1 Série de Taylor e MacLaurin:
 - 2.1.2 Erro de Truncamento no desenvolvimento em série:
 - Definição:

Sejam R_n os termos da série após o termo que envolve a n-ésima derivada.

Então:

$$|R_n| \le M \cdot \frac{(x-a)^{n+1}}{(n+1)!}$$
 onde $M = m ax | f^{n+1}(t) | em [a, x]$

3.1 - Introdução

- Métodos Gráficos:
 - · Interseção da curva com o eixo das abcissas.
 - · Interseção de duas curvas.
 - f(x) = sen(x) cos(x)
- Métodos Numéricos:
 - Método de Newton-Raphson.
 - Método das Partes Proporcionais.

- 3.2 Métodos Numéricos:
 - 3.2.1 Método de Newton-Raphson
 - Definição da formula de iteração do método:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 3.2.1.1 Critério de Fourier Condição de convergência:
 - F'(x) tem que ter sinal determinado em [a,b]
 - F"(x) não pode se anular em [a,b]
 - Escolhe-se o extremo em que F(x).F''(x)>0

- 3.2.1.2 Erro de Truncamento
 - Definição:

$$E_T < \frac{k.\,h^2}{2.\,|f'(a)|}$$

onde h = x - a e $k = \max |f''(x)|$ em [a,b]

- 3.2.2 Método das Partes Proporcionais
 - · Definição da formula de iteração do método:
 - Para f(x) estritamente decrescente:

$$x_{n+1} = x_n - \frac{x_n - a}{f(x_n) - f(a)} f(x_n)$$

• Para f(x) estritamente crescente:

$$x_{n+1} = x_n - \frac{x_n - b}{f(x_n) - f(b)} f(x_n)$$

- 3.2.2 Método das Partes Proporcionais
 - · Critério de Parada:

$$|x_{n+1} - x_n| < \varepsilon$$

4 - Métodos de Resolução de Sistemas
 Lineares

I - Métodos de eliminação.

II - Métodos iterativos.

O vetor = $(x_1, x_2, ..., x_n)^t$ constitui uma solução para S_n se para $x_i = \bar{x}_i$ $(1 \le i \le n)$ as equações de S_n forem satisfeitas. Um sistema linear pode ser classificado do seguinte modo:

- 1. **Compatível** (quando possuí solução):
 - a. Determinado (única solução)
 - b. **Indeterminado** (infinitas soluções)
- 2. Incompatível (quando NÃO possuí solução)

4.0.2 – Definição 2:

Dois sistemas lineares S_n e S_n ' são equivalentes quando S_n ' é obtido de S_n por meio de **transformações elementares**. Nesse caso, S_n tendo solução, S_n ' também terá.

4 – Definição 2.1: Transformações
 Elementares

- a) Trocar a ordem de duas equações do sistema;
- b) Multiplicar uma equação do sistema por uma constante não nula;
- c) Adicionar duas equações do sistema.

• 4.1 - Sistema Triangular Superior:

Seja S_n um sistema da forma Ax = b, onde $A = a_{ij}$ tal que:

$$S_{n} = \begin{cases} a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} = b_{1} \\ a_{22}x_{2} + ... + a_{2n}x_{n} = b_{2} \\ \vdots & \vdots \\ a_{nn}x_{n} = b_{n} \end{cases}$$

São facilmente resolvidos pelo <u>processo retroativo</u>

- 4.1 Sistema Triangular Superior:
 - 4.1.1 Processo Retroativo

a) Obter o valor de x_n da n-ésima equação por meio da relação:

$$x_n = \frac{b_n}{a_{nn}}$$

b) Substituir o valor de x_n na equação de ordem (n-1) para obter x_{n-1} . E assim sucessivamente, até calcular x_1 .

• 4.2 - Método de Eliminação de Gauss:

$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{bmatrix} \qquad \begin{bmatrix} 1 & a_{12}{}^{(1)} & a_{13}{}^{(1)} & \cdots & a_{1n}{}^{(1)} & b_1{}^{(1)} \\ 0 & 1 & a_{23}{}^{(2)} & \cdots & a_{2n}{}^{(2)} & b_2{}^{(2)} \\ 0 & 0 & 1 & \cdots & a_{3n}{}^{(3)} & b_3{}^{(3)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & b_n{}^{(n)} \end{bmatrix}$$

Transformações Elementares

Processo Retroativo

- 4.2 Método de Eliminação de Gauss:
 - 4.2.1 Condensação Pivotal Parcial:
 - · A finalidade da condensação pivotal parcial é:
 - Minimizar o erro de arredondamento.
 - · Evitar a divisão por zero.
 - · Testar a <u>singularidade do sistema</u>.

- 4.3 Métodos Iterativos:
 - 4.3.1 Método de Jacobi
 - 4.3.2 Método de Gauss-Seidel

- 4.3 Métodos Iterativos:
 - 4.3.1 Método de Jacobi

O método de Jacobi consiste em partindo da aproximação inicial $\mathbf{x}^{(0)}$, gera-se a sequência de aproximações $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(k)}$. Como critério de parada, utilizamos $||x^{(k)}-x^{(k-1)}||<\varepsilon$, onde $\varepsilon=$ precisão desejada para raiz.

- 4.3 Métodos Iterativos:
 - 4.3.1 Método de Jacobi
 - Para se aplicar o método é necessário transformar o sistema dado em: x = F(x) + d, onde:
 - F é uma matriz de ordem n, chamada de matriz iteração;
 - \mathbf{x} , \mathbf{d} são matrizes $\mathbf{n} \times \mathbf{l}$

- 4.3 Métodos Iterativos:
 - 4.3.1 Método de Jacobi

$$F = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & -\frac{a_{n3}}{a_{nn}} & \cdots & 0 \end{bmatrix} \quad d = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \\ a_{11} & a_{22} & \cdots & a_{nn} \end{pmatrix}^t$$

Mas o que isso significa?

- 4.3 Métodos Iterativos:
 - 4.3.1 Método de Jacobi
 - Exemplo:

$$S_{2} = \begin{cases} 2x_{1} - x_{2} = 1 \\ x_{1} + 2x_{2} = 3 \end{cases}$$

$$x_{1}^{(k)} = \frac{1}{2}(1 + x_{2}^{(k-1)})$$

$$x_{2}^{(k)} = \frac{1}{2}(3 - x_{1}^{(k-1)})$$

$$X^{(0)} = (0,9 \quad 0,9)$$

- 4.3 Métodos Iterativos:
 - 4.3.2 Método de Gauss-Seidel
 - Exemplo:

$$S_{2} = \begin{cases} 2x_{1} - x_{2} = 1 \\ x_{1} + 2x_{2} = 3 \end{cases}$$

$$x_{1}^{(k)} = \frac{1}{2}(1 + x_{2}^{(k-1)})$$

$$x_{2}^{(k)} = \frac{1}{2}(3 - x_{1}^{(k)})$$

- 4.3 Métodos Iterativos:
 - 4.3.3 Critério de Parada dos Métodos Iterativos:

$$||x^{(k)} - x^{(k-1)}|| < e$$

onde,

$$||x^{(k)} - x^{(k-1)}|| = \max_{1 \le i \le n} |x_i^{(k)} - x_i^{(k-1)}|$$
 e "e" é a precisão desejada

- 4.3 Métodos Iterativos:
 - 4.3.4 Convergência:

```
Seja o sistema AX = b, na forma:

(1) x = F x + d, e a iteração definida por:

(2) x^{(k+1)} = F x^{(k)} + d

Subtraindo (1) de (2) \rightarrow x^{(k+1)} - x = F (x^{(k)} - x)

Fazendo e^{(k+1)} = x^{(k+1)} - x \rightarrow e^{(k+1)} = F e^{(k)}
```

- 4.3 Métodos Iterativos:
 - 4.3.4 Convergência:

Teorema: A condição suficiente para que a iteração dada em (2) convirja é que os elementos f_{ij} da matriz F satisfaçam a desigualdade:

$$\sum_{i=1}^{n} |f_{ij}| < L < 1 \qquad j=1, n$$

Corolário 1: (Critério das linhas)

A condição suficiente para que a iteração dada em (2) convirja é que:

$$|a_{i|i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i|j}|$$
 $i=1,n$

Corolário 2: (Critério das colunas)

A condição suficiente para que a iteração dada em (2) convirja é que:

$$|a_{jj}| > \sum_{\substack{i=1 \ i \neq j}}^{n} |a_{ij}| \qquad j=1, r$$

Interpolação

Definição:

Interpolar significa determinar valores intermediários entre valores dados de uma função.

Interpolação

• Exemplo:

 Suponha que um móvel, partindo do repouso, é dirigido com uma aceleração máxima até atingir 96 Km/h e que as leituras do velocímetro, com intervalos não equidistantes, são apresentadas no gráfico do próximo slide:

 Desejaríamos que os pontos definissem uma curva suave. No entanto, devido a erros de leitura e outros fatores, os pontos não estão muito bem situados, pois as velocidades são grandes, e outras são pequenas.

- 5 Polinômio Interpolador
 - Para melhor aproximação de f (x) poderíamos escolher uma curva de ordem mais elevada. dados (n + 1) pontos, a curva de mais alto grau e o polinômio de grau n, cuja expressão é:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- 5 Polinômio Interpolador
 - 5.1- Polinômio Interpolador de Lagrange:

$$P_n(x) = \sum_{i=0}^n \left[\left(\prod_{\substack{j=0\\i=j}}^n \frac{(x-x_j)}{(x_i-x_j)} \right) f(x_i) \right]$$

- 5 Polinômio Interpolador
 - 5.1- Polinômio Interpolador de Lagrange:
 - Exemplo:
 - Dados os valores f(0) = 7.3; f(0.5) = -5.1; f(1) = 6; determine a expressão do Polin. Int. de Lagrange e f(0.8).

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$L_{0}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} = \frac{(x - 0.5)(x - 1)}{(-0.5)(-1)} = 2x^{2} - 3x + 1$$

$$L_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} = \frac{x(x - 1)}{0.5(-0.5)} = 4x^{2} + 4x$$

$$L_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} = \frac{x(x - 0.5)}{1(-0.5)} = 2x^{2} - x$$

$$P_{2}(x) = (2x^{2} - 3x + 1) \cdot 7.3 + (4x^{2} + 4x)(-5.1) + 6(2x^{2} - x)$$

$$P_{2}(x) = 47x^{2} - 48.3x + 7.3$$

$$P_{2}(0.8) = -1.26$$

- 5 Polinômio Interpolador
 - 5.2 Polinômio Interpolador de Newton Gregory:

• Quando os pontos $x_0, x_1, ..., x_n$ são igualmente espaçados, recorremos ao cálculo das diferenças finitas para interpolarmos.

- 5 Polinômio Interpolador
 - 5.2 Polinômio Interpolador de Newton Gregory:
 - Definição:

Definimos operador diferença progressiva Δ_h da seguinte maneira:

$$\Delta_h^{f(x)} = f(x+h) - f(x)$$

onde h é o passo (no idioma inglês, 'step') entre os pontos.

- 5 Polinômio Interpolador
 - 5.2 Polinômio Interpolador de Newton Gregory:
 - Exemplo:
 - Seja f (x) = $x^3 + 5$, considere a tabela:

х	f(x)	$\Delta_2 f(x)$	$\Delta_2^2 f(x)$	$\Delta_2^3 f(x)$	$\Delta_2^4 f(x)$
0	5	8	48	48	0
2	13	56	96	48	0
4	69	52	144	48	
6	221	296			
8	517				

- 5 Polinômio Interpolador
 - 5.2 Polinômio Interpolador de Newton Gregory:
 - Definição:

$$P_{i+1}(x) = P_i x + \frac{\Delta_h^i f(x_0)}{i! \ h^i} (x - x_0) (x - x_1) \dots (x - x_{i-1})$$

- 5 Polinômio Interpolador
 - 5.2 Polinômio Interpolador de Newton Gregory:
 - Exemplo:

Dada a tabela:

x	0	2	4	6
f(x)	1	3	2	5

- a. Obter a fórmula do Pol. Interp. de Newton-Gregory;
- b. Determinar o valor aproximado de f (5).

- 5 Polinômio Interpolador
 - 5.2 Polinômio Interpolador de Newton Gregory:
 - · Resolução do Exemplo:

x	f(x)	Δ_2 f (x)	$\Delta_2^2 f(x)$	$\Delta_2^3 f(x)$
0	1	2	-3	7
2	3	-1	4	
4	2	3		
6	5			

$$\begin{split} P_3(x) &= f(x_0) + \frac{\Delta_h f(x_0)}{h} (x - x_0) + \frac{\Delta_h^2 f(x_0)}{2!h^2} (x - x_0)(x - x_1) + \frac{\Delta_h^3 f(x_0)}{3!h^3} (x - x_0)(x - x_1)(x - x_2) \\ P_3(x) &= 1 + \frac{2}{2} (x - 0) + \frac{(-3)}{2 \cdot 2^2} (x - 0)(x - 2) + \frac{7}{6 \cdot 2^3} (x - 0)(x - 2)(x - 4) \\ P_3(x) &= 1 + x - \frac{3}{8} (x^2 - 2x) + \frac{7}{48} (x^3 - 4x^2 - 2x^2 + 8x) \\ P_3(x) &= \frac{1}{48} (7x^3 - 60x^2 + 140x + 48) \end{split}$$

- 5 Polinômio Interpolador
 - Observações Finais:
 - O processo do Pol. Interp. exige grande quantidade de cálculos;
 - O método de Lagrange é útil, porém ainda hoje exige muitos cálculos;
 - O método das diferenças de Newton-Gregory é ineficiente se forem necessárias poucas interpolações; porém uma vez construída a tabela, torna-se fácil utilizá-la para outras interpolações.

Diferenciação Numérica

- 6 Métodos de Diferenciação Numérica
 - Pontos Equidistantes

x	0	2	4	6
f(x)	1	9	65	217

Pontos não Equidistantes

x	0	1	3	6
f(x)	1	5	54	217

Diferenciação Numérica

- 6 Métodos de Diferenciação Numérica
 - 6.2 Pontos Equidistantes
 - Definição:

$$f'(x) = \frac{f(x_0 + h/2) - f(x_0 - h/2)}{h}$$

Onde $h = 2\Delta x$ e $e_t \le \left| \frac{h^2}{24} f'''(\xi) \right|$ é o erro de truncamento associado.

Diferenciação Numérica

- 6 Métodos de Diferenciação Numérica
 - 6.1 Pontos não Equidistantes
 - Definição:

$$f'(x_0) = \frac{h_1^2 f(x_0 + h_2) + (h_2^2 - h_1^2) f(x_0) - h_2^2 f(x_0 - h_1)}{h_1 h_2 (h_1 + h_2)}$$

Onde h_i são as respectivas distâncias entre os pontos tabelados e o ponto que desejamos informação. $e_t \leq \frac{h_1 h_2}{6} M$ é o erro de truncamento associado e |f'''(x)| < M.

- 7 Métodos de Integração Numérica
 - Método do Trapézio
 - Método de Simpson de 1/3

- 7 Métodos de Integração Numérica
 - 7.1 Método do Trapézio:
 - Definição:

$$\int_{a}^{b} f(x)dx \cong \frac{h}{2} [f(x_0) + f(x_n) + 2(f(x_1) + f(x_2) + \dots + f(x_{n-1}))]$$

Onde
$$h = \frac{b-a}{n}$$

- 7 Métodos de Integração Numérica
 - 7.1 Método do Trapézio:
 - Erro de Truncamento:

$$E_t = \sum_{i=0}^{n=1} E_{t_i} = -\frac{h^2}{12} [f'(b) - f'(a)]$$

- 7 Métodos de Integração Numérica
 - 7.2 Método de Simpson de 1/3:
 - Definição:

$$\int_{a}^{b} f(x)dx \cong \frac{h}{3} [f(x_{0}) + f(x_{n}) + 4(f(x_{1}) + f(x_{3}) + \dots + f(x_{n-1})) + 2(f(x_{2} + f(x_{4}) + \dots + f(x_{n-2}))]$$

Onde
$$h = \frac{b-a}{n}$$

- 7 Métodos de Integração Numérica
 - 7.1 Método do Trapézio:
 - Erro de Truncamento:

$$E_t \le \frac{h^4}{180}(b-a)f^{IV}(\xi)$$

Onde $\xi \in (a, b)$