Tarea 4 MR: Simulación de Taller

Facundo Bautista Barbera

16 de octubre de 2025

Planteamiento del problema

Suponga que el tiempo necesario para fabricar una parte en una máquina se describe con la siguiente distribución uniforme:

$$f(t) = \frac{1}{b-a}, \quad a \le t \le b$$

En un taller con una sola máquina se reciben trabajos en forma aleatoria. El tiempo entre llegadas tiene una distribución exponencial, con una media de 2 horas. El tiempo necesario para procesar un trabajo tiene una distribución uniforme entre $1.1~\rm y~2$ horas. Suponiendo que el primer trabajo llegue cuando el tiempo es 0.

Parte a) Ecuación para el tiempo t dado el número aleatorio R

Para generar variables aleatorias a partir de números uniformes $R \sim U(0,1)$, utilizamos el método de la transformada inversa.

Distribución Uniforme U(a,b)

La función de distribución acumulada es:

$$F(t) = \frac{t-a}{b-a}, \quad a \le t \le b$$

Igualando F(t) = R y despejando t:

$$R = \frac{t - a}{b - a}$$

$$t = a + (b - a)R$$

Para nuestro caso con a = 1,1 y b = 2:

$$t_2 = 1.1 + 0.9R$$

donde t_2 es el tiempo de procesamiento.

Distribución Exponencial con media $\mu=2$

La función de distribución acumulada es:

$$F(t) = 1 - e^{-t/\mu} = 1 - e^{-t/2}$$

Igualando F(t) = R y despejando t:

$$R = 1 - e^{-t/2}$$

$$e^{-t/2} = 1 - R$$

$$-\frac{t}{2} = \ln(1 - R)$$

$$t_1 = -2\ln(1 - R)$$

donde t_1 es el tiempo entre llegadas.

Nota: Como $R \sim U(0,1)$, entonces $(1-R) \sim U(0,1)$, por lo que también se puede usar $t_1 = -2 \ln(R)$.

Parte b) Simulación de los primeros 5 trabajos

Usando los primeros cinco números aleatorios de la primera columna de la TABLA 18.1 para generar tiempos entre llegadas, y los de la segunda columna para tiempos de procesamiento:

```
Columna 1 (para t_1): 0.0589, 0.6733, 0.4799, 0.9486, 0.6139
Columna 2 (para t_2): 0.3529, 0.3646, 0.7676, 0.8931, 0.3919
```

Cálculos detallados:

Cliente 1:

- Hora de llegada: 0 (dado en el problema)
- Tiempo de procesamiento: $t_2 = 1.1 + 0.9(0.3529) = 1.4176$
- Hora de inicio: 0 (máquina libre)
- Hora de salida: $0 + 1{,}4176 = 1{,}4176$

Cliente 2:

- Tiempo entre llegadas: $t_1 = -2\ln(0.0589) = 5.6632$
- Hora de llegada: 0 + 5,6632 = 5,6632
- Tiempo de procesamiento: $t_2 = 1.1 + 0.9(0.3646) = 1.4281$
- Hora de inicio: 5.6632 (máquina libre desde 1.4176)
- Hora de salida: 5,6632 + 1,4281 = 7,0913

Cliente 3:

- Tiempo entre llegadas: $t_1 = -2\ln(0.6733) = 0.7913$
- Hora de llegada: 5,6632 + 0,7913 = 6,4545
- Tiempo de procesamiento: $t_2 = 1.1 + 0.9(0.7676) = 1.7908$
- Hora de inicio: 7.0913 (máquina ocupada hasta entonces)
- Hora de salida: 7,0913 + 1,7908 = 8,8821

Cliente 4:

- Tiempo entre llegadas: $t_1 = -2\ln(0.4799) = 1.4676$
- \blacksquare Hora de llegada: 6,4545 + 1,4676 = 7,9221
- Tiempo de procesamiento: $t_2 = 1.1 + 0.9(0.8931) = 1.9038$
- Hora de inicio: 8.8821 (máquina ocupada)

 \bullet Hora de salida: $8{,}8821+1{,}9038=10{,}7859$

Cliente 5:

 \blacksquare Tiempo entre llegadas: $t_1 = -2\ln(0.9486) = 0.1057$

■ Hora de llegada: 7,9221 + 0,1057 = 8,0278

 \blacksquare Tiempo de procesamiento: $t_2 = 1.1 + 0.9 (0.3919) = 1.4527$

 \blacksquare Hora de inicio: 10.7859 (máquina ocupada)

 \bullet Hora de salida: 10,7859 + 1,4527 = 12,2386

Tabla resumen:

Cliente	R (t1)	t1	Hora llegada	R (t2)	t2	Hora salida
1	-	-	0.0000	0.3529	1.4176	1.4176
2	0.0589	5.6632	5.6632	0.3646	1.4281	7.0913
3	0.6733	0.7913	6.4545	0.7676	1.7908	8.8821
4	0.4799	1.4676	7.9221	0.8931	1.9038	10.7859
5	0.9486	0.1057	8.0278	0.3919	1.4527	12.2386

Parte c) Simulación completa con 60 trabajos

Para realizar la simulación completa con 60 trabajos, se utilizan los números aleatorios de la TABLA 18.1. Se implementó un programa en Python que:

- 1. Lee los números aleatorios de la tabla (columna 1 para llegadas, columna 2 para procesamientos)
- 2. Genera tiempos entre llegadas usando distribución exponencial ($\mu=2$)
- 3. Genera tiempos de procesamiento usando distribución uniforme [1,1,2]
- 4. Simula el sistema de colas considerando si la máquina está libre u ocupada
- 5. Calcula estadísticas del sistema

El código completo se encuentra en el archivo simulacion.py adjunto.

Estadísticas del sistema:

■ Tiempo total de simulación: 105.4364 horas

 \blacksquare Utilización de la máquina: $95.15\,\%$

■ Tiempo promedio en el sistema: 4.4098 horas

■ Tiempo promedio de espera: 2.7377 horas

■ Tiempo promedio de servicio: 1.6720 horas

■ Número de clientes atendidos: 60

Tabla de primeros 10 trabajos:

Cliente	R (t1)	t1	Llegada	R (t2)	t2	Salida
1	-	-	0.0000	0.3529	1.4176	1.4176
2	0.0589	5.6638	5.6638	0.3646	1.4281	7.0920
3	0.6733	0.7911	6.4550	0.7676	1.7908	8.8828
4	0.4799	1.4684	7.9233	0.8931	1.9038	10.7866
5	0.9486	0.1055	8.0288	0.3919	1.4527	12.2393
6	0.6139	0.9758	9.0047	0.7876	1.8088	14.0481
7	0.5933	1.0441	10.0488	0.5199	1.5679	15.6161
8	0.9341	0.1363	10.1851	0.6358	1.6722	17.2883
9	0.1782	3.4497	13.6348	0.7472	1.7725	19.0608
10	0.3473	2.1151	15.7500	0.8954	1.9059	20.9666

Análisis de resultados:

- \blacksquare La utilización de la máquina es del 95.15 %, lo que indica que el sistema está altamente ocupado.
- \blacksquare El tiempo promedio de espera (2.74 horas) representa aproximadamente el 62 % del tiempo total en el sistema.
- El sistema está cercano a la saturación, ya que $\lambda \approx 0.57$ trabajos/hora y $\mu_{\rm servicio} \approx 0.60$ trabajos/hora.
- Los resultados completos se encuentran en resultados_simulacion.csv.

Gráficas de la simulación:

