In class work 2 has questions 1 through 3 with a total of 15 points. Turn in your work at the end of class *on paper*. This assignment is due *Wednesday 31 August at 13:15* PM.

1. After graduation, suppose your starting salary is \$46,000. Further, suppose that you expect to earn a 4.1% pay rise each year you work. What is your salary for your 40^{th} year of work? **Hint:** Your salary for your 3^{rd} year of work is \$46,000 × 1.041^2 .

Solution: In your 40th year of work, you will have earned 39 pay rises each of 4.1%. Rounded to the nearest penny, your salary for your 40th year of work is

$$46,000 \times 1.041^{39} = 220,463.29.$$

2. Let $Q(x) = \frac{6}{1 + \exp(-x)}$. As best you can, reproduce the graph here. Using the graph, find range(Q). Be careful: Is zero in the range? What is the solution set to $0 = \frac{6}{1 + \exp(-x)}$? Is six in the range? What is the solution set to $6 = \frac{6}{1 + \exp(-x)}$?

Solution: Here is the graph:

From the picture, it's not entirely clear if 6 is in the range. Maybe the graph of y = Q(x) stays below the horizontal line y = 6 or maybe it touches it, but the picture isn't decisive. To decide if 6 is in the range, let's solve the equation:

$$\left[6 = \frac{6}{1 + \exp(-x)}\right] = \left[1 + \exp(-x) = 1\right],$$
 (cross multiply)
= $\left[\exp(-x) = 0\right],$ (subtract 1)
= \emptyset (zero not in range of exp)

Since the solution set is empty, the number $6 \notin \text{range}(Q)$. Let's determine if 0 is in the range:

$$\left[0 = \frac{6}{1 + \exp(-x)}\right] = [0 = 6],$$
 (cross multiply)
= \emptyset

From the graph and the above calculations, almost surely we have range (Q) = (0,6).

3. Define $Q(x) = (x-1)^2 + 1$ and dom(Q) = [1,∞). Find the formula and the domain of Q^{-1} . Use desmos to graph both Q and Q^{-1} . As best you can, reproduce your graphs here.

Solution: First, let's find the formula for the inverse function. We need to solve

$$[(y = (x-1)^{2} + 1)] = [y-1 = (x-1)^{2}],$$
 (subtract 1)
=
$$[(x-1 = -\sqrt{y-1}) \lor (x-1 = -\sqrt{y-1})],$$

=
$$[(x = 1 - \sqrt{y-1}) \lor (x = 1 + \sqrt{y-1})].$$
 (add 1)

Yikes! There are two solutions—that means the function isn't one-to-one. But wait! Remember the condition $1 \le x$? The solution $x = 1 - \sqrt{y-1}$ gives a value for x that is *less* than one. So the solution $x = 1 - \sqrt{y-1}$ is rubbish, leaving exactly one solution.

To find the domain of Q^{-1} we need $1 + \sqrt{y-1}$ to be real—that tells us that $y \ge 1$. Putting it together $Q^{-1}(y) = 1 + \sqrt{y-1}$ and $dom(Q^{-1}) = [1, \infty)$. Here are my graphs:

