Tutorial 9

- 1. Prove that any language accepted by an NPDA is Turing decidable.
- 2. Prove that the following language is decidable: $\{\langle M \rangle \mid M \text{ does not move left on any input}\}$.
- 3. Prove that for any non-deterministic TM there is an equivalent deterministic TM.
- 4. In class we proved that $\text{Halt} = \{(M, w) \mid M \text{ halts on } w\}$ is undecidable by giving a reduction (from A_{TM}). Prove that Halt is undecidable by giving a proof by the diagonalization argument.
- 5. Prove that $\overline{\text{Halt}}$ is not Turing recognizable.
- 6. A function $f: \Sigma^* \to \Gamma^*$ is called a **computable function** if there is a single tape TM M such that on every input $w \in \Sigma^*$ it halts with exactly f(w) on the tape.

We say that a language $L \subseteq \Sigma^*$ is **reducible** to language $L' \subseteq \Gamma^*$, which we denote by $L \le L'$, if there is a computable function $f: \Sigma^* \to \Gamma^*$, where for every $w, w \in L \Leftrightarrow f(w) \in L'$. The function f of this form is called a **reduction**. Prove or disprove the following statements:

- (a) If $L \leq L'$ and L' is decidable then L is also decidable.
- (b) If $L \leq L'$ and L is undecidable then L' is also undecidable.
- (c) If $L \leq L'$ and L' is a CFL then so is L.
- (d) If L is Turing recognizable and $L \leq \overline{L}$ then L is decidable.
- (e) L is Turing recognizable if and only if $A \leq A_{TM}$.
- (f) There is a laguage L such that L is undecidable and $L \leq \overline{L}$.