標準ライブラリとモジュール

初めてのプログラミング 2020年度 只木進一(理工学部)

関数とは Functions

- ■引数を与えると、それに基づく計算を 行い、結果を返す
 - ▶数学関数など
 - ▶式で表せなくてもよい
- ■引数を与えると、そのデータを加工して返す

Pythonの関数 Functions in Python

- ■組み込み関数
 - ▶特別な指定なしで利用できる
- ▶モジュールを指定して利用する関数
 - ▶沢山ある
- ■自分で定義した関数

サンプルプログラムの取得

- ■GitHubRepositoryを指定
 - https://github.com/first-programmingsaga/StandardLibraries

数値計算に使える組み込み関数

関数	説明
abs(x)	x
divmod(a,b)	aを b で割った(商、余り)のタプル(値の組)
max(a,b,c,)	最大値
min(a,b,c,)	最小値
pow(x,y)	x^y
pow(x,y,z)	$x^y \%z$
round(x,k)	xをk桁に丸める。切り上げ、切り捨ての距離が同じ場合は偶数側になることに注意

StandardLibraries/basicFunctions.ipynb

絶対値

$$abs(x) = |x|$$

In []: 1 abs(-10)

徐算の商と余り (a,b) = divmod(x,y)

$$a = int(x/y)$$
$$b = x \mod y$$

In []: 1 divmod(10,3)

In []: 1 divmod(10,2.5)

最大値

In []: 1 max(3,1,5,10,4)

べき乗

$$pow(x, y) = x^y$$

In []: 1 pow(2,8)

$$pow(x, y, z) = x^y \mod z$$

In []: 1 pow(2,8,3)

まるめ。距離が等しい場合には、偶数側に丸めること注意が必要。

In []: 1 round(3.5)

In []: 1 round(2.5)

二番目の引数を与えて、丸める桁を指定することもできる。

In []: 1 round(3.1415,2)

課題

与えられた数値の中から、最小値を求める例を作成しなさい

文字操作関数 string functions

関数	説明
chr(整数)	整数が表すUnicode文字列
ord(一文 字)	文字に対するUnicode
len(文字 列)	文字列の長さ
str(数值)	数値を文字列化

StandardLibraries/basicStringFunctions.ipynb

文字に関する基本的関数

文字に関する基本的な関数の例。

文字コードから文字へ

```
In [ ]: 1 chr(66)
      文字から文字コードへ
In []: 1 ord('A')
In []: 1 ord('佐')
In []: 1 chr(20305)
     文字列の長さ。len()は、他のオブジェクトについても長さを返す。
In []: 1 len('佐賀県')
      数値に対応した文字列を返す
In []: 1 str(100)
      文字列に対応した整数値を返す
In []: 1 int ('256')
      文字列に対応した浮動小数点値を返す
In []: 1 float ('9.12')
      文字コードからアルファベット小文字を表示する
In []: 1 ca = 97#小文字~a~のアスキーコード
       2 for i in range(ca,ca+26):
           print(chr(i))
```

課題

文字コードを指定することで、アルファベット大文字を表示しなさい

モジュール (modules)

- ■関連する関数や定数などをまとめたもの
 - ▶pythonと一緒に配布されているもの
 - ▶後からインストールするもの
- **■**import モジュール
- ■from モジュール import 関数
- ■asで別名を付けることも可能

- ■様々な数学関数
- ■整数への切り上げ(ceil())、整数への 切り下げ(floor())、最大公約数 (gcd())、平方根(sqrt())

数学関数

これらはmathモジュールが必要である。

In []: 1 import math

mathモジュールを使った例

xに対して、その常用対数を求め($y = \log_{10} x$)、整数へと切り下げて1を加える。これにより、xの整数部分の桁数がわかる。

```
In []: 1 x = 101
2 y = math.log10(x)
3 print(f'log_10({x}) = {y}')
4 n = math.floor(y)+1
5 print(f'{x}の整数部分は{n}桁です')#文字列中に数値を埋めこむ。 ~ (x) ~ は変数xの値を埋めこむことを表す
```

二つの整数の最大公約数

In []: | 1 | math.gcd(21,36)

指数関数、対数関数、平方根、三角関数が使える

【課題】

小数以下の切り下げ、切り上げの例を作成しなさい。

In []: 1

mathモジュール

関数	説明
ceil(x)	小数以下切り下げて整数に
copysign(x, y)	xと絶対値が等しく、yと符号の 等しい値を返す
fabs(x)	x
factorial(x)	x!
floor(x)	小数以下切り上げて整数に
fmod(x,y)	x%y
fsum(iterab le)	iterableなデータ列の和
gcd(a,b)	aとbの最大公約数
inf	浮動小数の最大値
nan	浮動小数型の非数

関数	説明
exp(x)	e^x
log(x,b)	$\log_b x$
log(x)	$\ln x = \log_e x$
log2(x)	$\log_2 x$
log10(x)	$\log_{10} x$
sqrt(x)	\sqrt{x}
е	e

Python入門©只木進一

mathモジュール:三角関数

関数	説明:角度はラジアン
acos(x)	acos(x) 逆余弦
asin(x)	asin(x) 逆正弦
atan(x)	atan(x) 逆正接
atan2(x,y)	原点から(x,y)へのベクトルの角 度
$cos(\theta)$	余弦
$sin(\theta)$	正弦
$tan(\theta)$	正接
$degrees(\theta)$	角度をラジアンから度へ変換
radians(x)	角度を度からラジアンへ変換
pi	π

- pythonでは、データやデータの塊を オブジェクトと呼ぶ
- ■オブジェクトには、操作方法(メソッド)が付随している

- ▶大文字小文字変換
- ■含まれる文字の数
- ▶文字列を発見
- ▶文字列を置き換え
- ●余分な文字を取り去る
- ▶文字列差し込み
- ▶注意:immutableであること

StandardLibraries/stringFunctions.ipynb

文字列を操作する基本的な関数

元の文字列は変更されていないことに注意する。

```
In []: 1 a = 'Apple Pie'

In []: 1 a.lower()

In []: 1 #元の文字列が変更されていないことを確認 2 2 a

In []: 1 b = "saga university"

In []: 1 b.capitalize()

In []: 1 b.title()
```

部分文字列

インデクスを用いて、部分文字列を取り出すことができる

```
In []: 1 a[0:4]

In []: 1 a[:4]

In []: 1 a[4:]
```

検索と置換

```
In []: 1 print(b.find('y'))#'y'を探索

In []: 1 print(b.find('s',0))#'s'を先頭から探索

In []: 1 print(b.find('z'))#含まれていない文字を探すと

In []: 1 print(b.rfind('s'))#後ろから探索

In []: 1 c = b.replace('a','A')
2 print(c)
```

次回

- ■5章「条件分岐、繰り返し、例外処 理」
 - ■条件分岐とwhile