FIT I 045: Algorithms and Programming Fundamentals in Python Lecture 12 Decrease and Conquer

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING

Objectives

Objectives of this lecture are to:

- Know to search efficiently in ordered sequence (Binary Search)
- 2. Understand design paradigm decrease-and-conquer and recognise situations with logarithmic complexity
- 3. Demonstrate the time complexity of Euclid's algorithm

This covers learning outcomes:

- 2 choose and implement appropriate problem solving strategies
- 5 determine the computational cost and limitations of algorithms

Overview

- 1. The Ordered Search Problem
- 2. Binary Search
- 3. Revisiting Euclid's Algorithm

Search in Ordered Sequence

Gertrudis Atkinson 0463935372

Kiley Basinger 0411484152

Romana Brose 0418721183

Shayne Brotherton 0436242684

Calandra Clifton 0479753034

Roy Dupuis 0445778949

Leticia Fukushima 0436756947

Cherlyn Gayles 0483503919

. . .

Problem: find (the position of) a name in a phone book.

Search in Ordered Sequence

ato.gov.au 180.149.195.3 cancer.org.au 52.187.229.23 facebook.com 31.13.71.36 google.com 172.217.12.142 monash.edu 43.245.43.30 newscientist.com 45.60.19.101 news.com.au 23.221.48.198 wikipedia.org 208.80.154.224

Problem: find URL in DNS records.

Sequential search solves problem

```
def sequential search (v, seq):
    """I: value v and sequ
                              Quiz time (https://flux.qa)
       O: an index of seq
                              Clayton:
                                        AXXULH
          (if no such inde
                             Malaysia:
                                               LWERDE
    // // //
   n = len(seq)
                                             O(0)
                                              O(0)
    while i < n:
                                             O(n)
        <u>if</u> seq[i] == v: —
                                             O(n)
            return i ——
                                             O(0)
        i += 1 -----
                                             O(n)
    return None —
```

Example Scenario (e.g. Web search):

- need to find 10.000.000 values from sequence of 2.000.000.000 entries
- cost of I elementary step is Ins (and constant factor in O-notation is I)

Outcome: need about 40 years

Can we solve problem *more* efficiently for ordered sequences?

```
def sequential search(v, seq):
    """I: value v and ordered sequence seq
       O: an index of seq with value v or None
          (if no such index exists)
    // // //
    n = len(seq)
    i = 0
    while i < n:
        #I) v in seq[i:] or v not in seq
        if seq[i] == v:
            return i
        i += 1
    return None
```

X

seq

W

However: order of sequence implies many more comparisons

```
def sequential_search(v, seq):
    n = len(seq)
    i = 0
    while i < n:
        #I) v in seq[i:] or v not in seq
        if seq[i] == v:
            return i
        i += 1
    return None</pre>
```

seq			∨ ≠		V <		<	<-			
?	?	?	 W		 X				у		 ?
0	1	2	 j						k		 n-1

However: order of sequence implies many more comparisons

```
def sequential_search2(v, seq):
    n = len(seq)
    i = 0
    while i < n:
        #I) v in seq[i:] or v not in seq
        if seq[i] == v:
            return i
        if seq[i] > v:
        # v not in seq[:i]
            return None
        i += 1
    return None
```

Does that reduce worst-case complexity?

se	eq			∨ ≠		V <		 <-			
3	?	?	?	 W		 X			У		 ?
)	1	2	 j		 i			k		 n-1

Case I: v = q

Case I: v = q

≤q ≤q ≤q		≥q	≥q
0 1 2	 n//2		n-1

Case 2: v < q

Case 2: v < q

Case 3: v > q

Case 3: v > q

Overview

- The Ordered Search Problem
- 2. Binary Search
- 3. Revisiting Euclid's Algorithm

Decrease-and-Conquer: reduce problem to smaller subproblem

```
def probing search(v, seq):
    a, b = 0, len(seq) -1
    c = b // 2
    if seq[c] == v:
        return c
    elif v < seq[c]:</pre>
        b = c - 1
    else:
        a = c + 1
    # search between a and b
```


We could solve remaining subproblem as before...

```
def probing search(v, seq):
    a, b = 0, len(seq) -1
    c = b // 2
    if seq[c] == v:
        return c
    elif v < seq[c]:</pre>
      b = c - 1
    else:
     a = c + 1
    i = a
    while a <= i <= b:
        if seq[i] == v:
            return i
        i += 1
    return None
```


٧
\

Instead: let's re-apply same principle

```
def probing search(v, seq):
    a, b = 0, len(seq) -1
    c = b // 2
    if seq[c] == v:
        return c
    elif v < seq[c]:</pre>
      b = c - 1
    else:
     a = c + 1
    i = a
    while a <= i <= b:
        if seq[i] == v:
            return i
        i += 1
    return None
```


\ >

≤q	≤q	≤q			 ≤q	q	≥q				 ≥q
0	1	2				n//2	а				 b

Instead: let's re-apply same principle


```
def binary_search(v, seq):
    a = 0
    b = len(seq) - 1
```



```
def binary_search(v, seq):
    a = 0
    b = len(seq) - 1
    # in iteration i:
        c = (a + b) // 2
        if seq[c] == v:
            return c
        elif seq[c] > v:
            b = c - 1
        else:
        a = c + 1
```



```
def binary_search(v, seq):
    a = 0
    b = len(seq) - 1
    while a <= b:
        c = (a + b) // 2
        if seq[c] == v:
            return c
        elif seq[c] > v:
            b = c - 1
        else:
            a = c + 1
        return None
```



```
def binary_search(v, seq):
    a = 0
    b = len(seq) - 1
    while a <= b:
        c = (a + b) // 2
        if seq[c] == v:
            return c
        elif seq[c] > v:
            b = c - 1
        else:
        a = c + 1
    return None
```



```
def binary search(v, seq):
                                n = len(lst)
   a = 0 ———
   b = len(seq) - 1
   while a <= b: -----
       c = (a + b) // 2 - - 
       if seq[c] == v: 
         return c
       elif seq[c] > v:
         b = c - 1
       else:
       a = c + 1
   return None —
```

Quiz time (https://flux.qa)

Clayton: AXXULH
Malaysia: LWERDE

```
def binary search(v, seq):
                                   n = len(lst)
   a = 0 ———
                                         O(0)
   b = len(seq) - 1
   while a <= b:
       c = (a + b) // 2 - - 
       if seq[c] == v:
          return c
       elif seq[c] > v:
         b = c - 1
       else:
        a = c + 1
   return None ———
                      35
```

```
n = len(lst)
def binary search(v, seq):
                                          O(0)
   b = len(seq) - 1
   while a <= b:
                                         O(\log n)
       c = (a + b) // 2 -
       if seq[c] == v:
          return c
       elif seq[c] > v:
                                         O(\log n)
          b = c - 1
       else:
         a = c + 1
   return None -
```

- Let $n_i = b_i a_i + 1$ be problem size after i iterations of loop
- In the beginning: $n_0 = n$
- In every iteration size is cut in half: $n_i = \lceil n_{i-1}/2 \rceil$, i.e., $n_i = \lceil n/2^i \rceil$
- After $k = \lceil \log_2 n \rceil$ iterations: $n_k = \lceil n/2^{\log_2 n} \rceil = 1$, i.e., $b_k = a_k$
- So at most $O(\log_2 n)$ loop iterations

Example Scenario (e.g. Web search):

- need to find 10.000.000 values from sequence of 2.000.000.000 entries
- cost of I elementary step is Ins (and constant factor in O-notation is I)

Outcome: need about 0.3 seconds

Overview

- The Ordered Search Problem
- 2. Binary Search
- 3. Revisiting Euclid's Algorithm

Recall Euclid's Algorithm

Eukleides of Alexandria 3xx BC – 2xx BC

```
def gcd_euclid(a, b):
    """
    Input : integers a and b such that not a==b==0
    Output: the greatest common divisor of a and b
    """
    while b != 0:
        a, b = b, a % b
    return a
```

Instance of decrease and conquer


```
def gcd_euclid(a, b):
    """"
    I: integers a0 and b0 such
        that not a0==a0==0
    O: gcd(a0,b0)
    """
    while b != 0:
        a, b = b, a % b
    return a
```



```
def gcd_euclid(a, b):
    """"
    I: integers a0 and b0 such
        that not a0==a0==0
    O: gcd(a0,b0)
    """"
    #PRC: a,b==a0,b0 (original input)
    while b != 0:
        a, b = b, a % b
    return a
```



```
def gcd_euclid(a, b):
    """"
    I: integers a0 and b0 such
        that not a0==a0==0
    O: gcd(a0,b0)
    """

    #PRC: a,b==a0,b0 (original input)
    while b != 0:
        #I: gcd(a,b)==gcd(a0,b0)
        a, b = b, a % b
        #I: gcd(a,b)==gcd(a0,b0)
    return a
```



```
def gcd euclid(a, b):
    ** ** **
    I: integers a0 and b0 such
       that not a0==a0==0
    0: gcd(a0,b0)
    ** ** **
    #PRC: a,b==a0,b0 (original input)
    while b != 0:
        #I: gcd(a,b) == gcd(a0,b0)
        a, b = b, a % b
        #I: gcd(a,b) == gcd(a0,b0)
    \#EXC: b==0
    return a
```


Exercise: correctness via loop invariant

```
def gcd euclid(a, b):
    ** ** **
    I: integers a0 and b0 such
       that not a0==a0==0
    0: \gcd(a0,b0)
    ** ** **
    #PRC: a,b==a0,b0 (original input)
    while b != 0:
        #I: gcd(a,b) == gcd(a0,b0)
        a, b = b, a % b
        #I: gcd(a,b) == gcd(a0,b0)
    \#EXC: b==0
    #POC: a = gcd(a, b) = gcd(a0, b0)
    return a
```


Can we analyse computational complexity as for binary search?

Need to determine how many iterations we can have in worst case!


```
def gcd_euclid(a, b): \longrightarrow n = abs(a) + abs(b)

while b != 0: \longrightarrow 0(1) ?

a, b = b, a % b \longrightarrow 0 ?

return a \longrightarrow 0(1) \bigcirc 0(1) ?
```

By what factor is problem decreased per iteration of Euclid's Algorithm?

Do we need a fixed rate of decrease for logarithmic complexity? No, just guarantee that reduction factor is always at least some $\alpha>1$

First case: "large b"

Case $b \ge a/2$

gcd(a,b)=gcd(b, a%b)

Relative size of decreased problem with large b

Case $b \ge a/2$

b	a%b			b a%b		$ = \frac{2}{3} $	
a/2	a/2	b	'	a/2	a/2	a/2	3

Second case: "small b"

Case $b \ge a/2$

Case $a/2 > b \ge a/4$

Relative size of decreased problem in second case

Case $b \ge a/2$

Case $a/2 > b \ge a/4$

Final case: "tiny b"

Case $b \ge a/2$

Case $a/2 > b \ge a/4$

Case a/4 > b

Relative size of decreased problem in final case

Case $b \ge a/2$

Case $a/2 > b \ge a/4$

Case a/4 > b

In all cases: problem is at least decreased by a rate r of 5/4

Almost identical analysis as for binary search

- Let $n_i = a_i + b_i$ be problem size after i iterations of loop
- In the beginning: $n_0 = n$
- Per iteration size is reduced by at least:

$$n_i = [n_{i-1}/r], \text{ i.e., } n_i = [n/r^i]$$

- After at most $k = \lceil \log_r n \rceil$ iterations: $n_k = \lceil n/r^{\log_r n} \rceil = 1$, i.e., $b_k = 0$ and $a_k = 1$
- So at most $O(\log_r n)$ loop iterations

What does this mean in terms of order of growth?

Is order of growth log base 5/4 higher than log base 2?

No: $O(\log n) = O(\log_r n)$

Almost identical analysis as for binary search

- Let $n_i = a_i + b_i$ be problem size after i iterations of loop
- In the beginning: $n_0 = n$
- Per iteration size is reduced by at least:

$$n_i = [n_{i-1}/r], \text{ i.e., } n_i = [n/r^i]$$

- After at most $k = \lceil \log_r n \rceil$ iterations: $n_k = \lceil n/r^{\log_r n} \rceil = 1$, i.e., $b_k = 0$ and $a_k = 1$
- So at most $O(\log_r n)$ loop iterations

Summary

Algorithmic paradigm: decrease-and-conquer

- decreasing problem size by at least some rate r>l leads to trivial subproblems after logarithmically many reductions
- if not too much overhead: allows to replace linear complexity term by logarithmic term

Binary Search allows logarithmic time look-up of value in sorted sequence

Euclid's Algorithm finds gcd in time logarithmically in sum of input abs(a) + abs(b)

Coming Up

- More examples for algorithm analysis
- Divide and conquer