Asymptotic Analysis (Ch. 3 from Cormen)

When we talk about running time, we will use asymptotic analysis. The following definitions are crucial. Commit them to memory:

Definition 0.1. Let \mathcal{F} be the set of functions from \mathbb{R}^+ to \mathbb{R}^+ . Let $g \in \mathcal{F}$. Then

1.
$$O(g(n)) = \{ f \in \mathcal{F} : \exists c, n_0 > 0, \forall n \ge n_o, f(n) \le cg(n) \}$$

2.
$$\Omega(g(n)) = \{ f \in \mathcal{F} : \exists c, n_0 > 0, \forall n \ge n_o, f(n) \ge cg(n) \}$$

3.
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

We use these in the following way: For functions $f, g : \mathbb{R}^+ \to \mathbb{R}^+$, we write

- f(n) = O(g(n)) to mean that f grows no faster than g, i.e. the growth of g is an upper bound to the growth of f.
- $f(n) = \Omega(g(n))$ to mean that f grows at least as fast as g, i.e. g is a lower bound to the growth of f.
- $f(n) = \Theta(g(n))$ to mean that f grows as fast as g.

Here are two more definition, also worth memorizing:

Definition 0.2. Let \mathcal{F} be the set of functions from \mathbb{R}^+ to \mathbb{R}^+ . Let $g \in \mathcal{F}$. Then

1.
$$o(g(n)) = O(g(n)) \setminus \Theta(g(n))$$

2.
$$\omega(g(n)) = \Omega(g(n)) \setminus \Theta(g(n))$$

We use these in the following way:

For functions $f, g: \mathbb{R}^+ \to \mathbb{R}^+$, we write

- f(n) = o(g(n)) to mean that f grows noticeably slower than g.
- $f(n) = \omega(g(n))$ to mean that f grows noticeably faster than g.

The following theorem is useful for when we have a good understanding of how a function grows:

Theorem 0.3. Let $f, g : \mathbb{R}^+ \to \mathbb{R}^+$ be monotonically increasing, i.e for all $a, b \in \mathbb{R}^+$ with a < b we have that

$$f(a) \le f(b)$$

and

$$g(a) \le g(b)$$
.

Then

1. If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
 then $f(n) = o(g(n))$.

2. If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0$$
 then $f(n) = \Theta(g(n))$.

3. If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$
 then $f(n) = \omega(g(n))$.

Proof. By authority.

To use this theorem, you have to be able to solve limits. Remember L'Hopitals rule from calculus:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

We also have the following helpful lemma:

Lemma 0.4. Let $f, g : \mathbb{R}^+ \to \mathbb{R}_{>1}$ be monotonically increasing. If f(n) = O(g(n)) then $\ln(f(n)) = O(\ln(g(n)))$.

Proof. Let $f, g : \mathbb{R}^+ \to \mathbb{R}_{>1}$ be monotonically increasing functions such that f(n) = O(g(n)).

So there exists $c, n_0 > 0$ such that $\forall n > n_0, f(n) \leq cg(n)$.

ln(x) is monotonically increasing, so for all $0 < a \le b$ we have that

$$ln(a) < ln(b).$$

Therefore, for all $n \geq n_0$, we have that

$$ln(f(n)) \le ln(cg(n))$$
 for all $n \ge n_0$

Case 1: $c \le 1$. Then $\ln(c) \le 0$. So

$$\ln(f(n)) \le \ln(cg(n)) \qquad \text{for all } n \ge n_0$$

$$= \ln(c) + \ln(g(n))$$

$$\le \ln(g(n)) \qquad \text{for all } n \ge n_0$$

Case 2: c > 1.

Then ln(c) > 0.

Case 2.1: There exists $m_0 > 0$ such that $\forall n \geq m_0, \ln(g(n)) \geq 1$.

Then we have

$$ln(f(n)) \le ln(c) + ln(g(n)) & \text{for all } n \ge n_0 \\
\le ln(c) ln(g(n)) + ln(g(n)) & \text{for all } n \ge \max\{n_0, m_0\} \\
= (ln(c) + 1) ln(g(n)) & \text{for all } n \ge \max\{n_0, m_0\}$$

Case 2.2: $\forall n > 0, \ln(q(n)) < 1.$

Since $g(n): \mathbb{R}^+ \to \mathbb{R}_{>1}$ is monotonically increasing we have that

$$1 < g(1) \le g(n)$$
 for all $n > 1$

therefore

$$0 < \ln(g(1)) \le \ln(g(n))$$
 for all $n > 1$.

there

$$1 \le \frac{\ln(g(n))}{\ln(g(1))} \text{ for all } n > 1.$$

Therefore,

$$\ln(f(n)) \le \ln(c) + \ln(g(n)) \qquad \text{for all } n \ge n_0$$

$$\le \ln(c) \frac{\ln(g(n))}{\ln(g(1))} + \ln(g(n)) \qquad \text{for all } n \ge n_0$$

$$= \left(\frac{\ln(c)}{\ln(g(1))} + 1\right) \ln(g(n)) \qquad \text{for all } n \ge n_0$$

Conclusion: Letting

$$c' = \max\left\{1, 1 + \ln(c), \frac{\ln(c)}{\ln(g(1))} + 1\right\}$$

and

$$n_0' = \max\{n_0, m_0\}$$

we have that $\ln(f(n)) \leq c' \ln(g(n))$ for all $n > n'_0$. Therefore, $\ln(f(n)) = O(\ln(g(n)))$.

This lemma will be useful to us because it gives a necessary condition for f(n) = O(g(n)) that we can take advantage of in proof by contradiction.