Yuta Toyama

Last update: July 9, 2019

Introduction

- ▶ Difference-in-differences (DID)
 - Exploit the panel data structure to estimate the causal effect.
- Consider that
 - ► Treatment and control group comparison: selection bias
 - ▶ Before v.s. After comparison: time trend
- ▶ DID combines those two comparisons to draw causal conclusion.

0000

Plan of the Lecture

- Formal Framework
- Implementation in a regression framework
- ► Parallel Trend Assumption

Reference

- ► Angrist and Pischke "Mostly Harmless Econometrics" Chapter 5
- Marianne Bertrand, Esther Duflo, Sendhil Mullainathan, How Much Should We Trust Differences-In-Differences Estimates?, The Quarterly Journal of Economics, Volume 119, Issue 1, February 2004, Pages 249–275, https://doi.org/10.1162/003355304772839588
 - ▶ Discuss issues of calculating standard errors in the DID method.
- ▶ Hiro Ishise, Shuhei Kitamura, Masa Kudamatsu, Tetsuya Matsubayashi, and Takeshi Murooka (2019) "Empirical Research Design for Public Policy School Students: How to Conduct Policy Evaluations with Difference-in-differences Estimation" February 2019
 - ► Slide: https://slides.com/kudamatsu/did-manual/fullscreen#
 - Paper: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbV

- ▶ Consider two periods: t = 1, 2. Treatment implemented at t = 2.
- $ightharpoonup Y_{it}$: observed outcome for person i in period t
- ► *G_i*: dummy for treatment group
- D_{it}: treatment status
 - $ightharpoonup D_{it} = 1$ if t = 2 and $G_i = 1$
- potential outcomes
 - \triangleright $Y_{it}(1)$: outcome for *i* when she is treated
 - $Y_{it}(0)$: outcome for *i* when she is not treated
- ▶ With this, we can write

$$Y_{it} = D_{it} Y_{it}(1) + (1 - D_{it}) Y_{it}(0)$$

ightharpoonup Goal: ATT at t=2

$$E[Y_{i2}(1) - Y_{i2}(0)|G_i = 1] = E[Y_{i2}(1)|G_i = 1] - E[Y_{i2}(0)|G_i = 1]$$

What we observe

	Pre-period $(t=1)$	Post $(t=2)$
Treatment $(G_i = 1)$	$E[Y_{i1}(0) G_i=1]$	$E[Y_{i2}(1) G_i=1]$
Control $(G_i = 0)$	$E[Y_{i1}(0) G_i=0]$	$E[Y_{i2}(0) G_i=0]$

- ▶ Under what assumptions can we the ATT?
 - ▶ Simple comparison if $E[Y_{i2}(0)|G_i = 1] = E[Y_{i2}(0)|G_i = 0]$.
 - ▶ Before-after comparison if $E[Y_{i2}(0)|G_i=1]=E[Y_{i1}(0)|G_i=1]$.
 - ▶ Other (more reasonable) assumption?

Parallel Trend Assumption

Assumption:

$$E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0] = E[Y_{i2}(0) - Y_{i1}(0)|G_i = 1]$$

- ► Change in the outcome *in the absence of treatment* is the same across two groups.
- ► Then,

$$\underbrace{E[Y_{i2}(1) - Y_{i2}(0)|G_i = 1]}_{ATT} = E[Y_{i2}(1)|G_i = 1] - E[Y_{i2}(0)|G_i = 1]$$

$$= E[Y_{i2}(1)|G_i = 1] - E[Y_{i1}(0)|G_i = 1]$$

$$- \underbrace{(E[Y_{i2}(0)|G_i = 1] - E[Y_{i1}(0)|G_i = 1])}_{=E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0] \text{ (pararell trend)}}$$

Thus,

$$ATT = E[Y_{i2}(1) - Y_{i1}(0)|G_i = 1] - E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0]$$
 which is why this is called "difference-in-differences".

Research Strategy

Estimation Approach

- 1. Plug-in estimator
- 2. Regression estimators

Remember that the ATT is

$$ATT = E[Y_{i2}(1) - Y_{i1}(0)|G_i = 1] - E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0]$$

Replace them with the sample average.

$$AT\hat{T} = \{ \bar{y}(t=2, G=1) - \bar{y}(t=1, G=1) \}$$
$$- \{ \bar{y}(t=2, G=0) - \bar{y}(t=1, G=0) \}$$

where $\bar{y}(t, G)$ is the sample average for group G in period t.

ightharpoonup Easy to make a 2 imes 2 table!

	Stores by state		
Variable	PA (i)	NJ (ii)	Difference, NJ – PA (iii)
FTE employment before, all available observations	23.33	20.44	-2.89
	(1.35)	(0.51)	(1.44)
2. FTE employment after, all available observations	21.17	21.03	-0.14
	(0.94)	(0.52)	(1.07)
3. Change in mean FTE employment	-2.16	0.59	2.76
	(1.25)	(0.54)	(1.36)

► Run the following regression

$$y_{it} = \alpha_0 + \alpha_1 G_i + \alpha_2 T_t + \alpha_3 D_{it} + \beta X_{it} + \epsilon_{it}$$

- $ightharpoonup G_i$: dummy for treatment group
- T_t:dummy for treatment period
- ▶ $D_{it} = G_i \times T_t$. α_3 captures the ATT.
- Regression framework can incorporate covariates X_{it} , which is important to control for observed confounding factors.

▶ With panel data

$$y_{it} = \alpha D_{it} + \beta X_{it} + \epsilon_i + \epsilon_t + \epsilon_{it}$$

where ϵ_i is individual FE and ϵ_t is time FE.

- ▶ Do not forget to use the cluster-robust standard errors!
 - See Bertrand, Duflo, and Mullainathan (2004, QJE) for the standard error issues.

Discussions on Parallel Trend

- ▶ Parallel trend assumption can be violated in various situations.
- ▶ Most critical issue: Treatment may depend on time-varying factors
 - ▶ DID can only deal with time-invariant factors.
- ► Self-selection: participants in worker training programs experience a decrease in earnings before they enter the program
- ► Targeting: policies may be targeted at units that are currently performing best (or worst).

Diagnostics for Parallel Trends: Pre-treatment trends

- ► Check if the trends are parallel in the pre-treatment periods
- ▶ Requires data on multiple pre-treatment periods (the more the better)
- ► This is very popular. You MUST do this if you have multiple pre-treatment periods.
- Note: this is only diagnostics, NEVER a direct test of the assumption!
 - ▶ You should never say "the key assumption for DID is satisfied if the pre-treatment trends are parallel.

Example (Fig 5.2 from Mastering Metrics)

FIGURE 5.2
Trends in bank failures in the Sixth and Eighth Federal
Reserve Districts

Unit-Specific Time Trends

► Add group-specific time trends as

$$y_{it} = \alpha D_{it} + \beta_1 G_i \times t + \epsilon_i + \epsilon_t + \epsilon_{it}$$

- ► To see whether including the time trend does not change estimates that much. (robustness check)
- Note that
 - ▶ These time trends are meant to capture the trend in each group.
 - ► At least 3 periods of the data is needed.
 - ▶ But, these are assumed to be linear. We are not sure whether the trend is linear or not! So this is just a robustness check.

Placebo test using other period as treatment period.

$$y_{it} = \sum_{\tau} \gamma_{\tau} G_i \times I_{t,\tau} + \mu_i + \nu_t + \epsilon_{it}$$

- ▶ The estimates of γ_{τ} should be close to zero up to the beggining of treatment (Fig 5.2.4 of Angrist and Pischke)
- Placebo test using different dependent variable which should not be affected by the policy.

Research Strategy using DID

- Going back to Ishise et al (2019)
 - 1. How to find a research question
 - 2. What outcome dataset to look for
 - 3. What policy to look for (except for example 1 and 2).

Research Strategy