Jety s vysokou příčnou hybností v RunII experimentu ATLAS

Jan Lochman

FJFI ČVUT

Obhajoba diplomové práce

June 9, 2015

Úvod

Cíl práce

Cílem diplomové práce bylo připravit analýzu inkluzivního účinného průřezu produkce jetů a porovnat data s předpovědí next-to-leading order QCD v rámci Standard Model skupiny experimentu ATLAS pro použití po spuštění urychlovače s těžišťovou energií 13 TeV.

Osnova prezentace

- ► Úvod Jet, Inkluzivní jet, K čemu?
- Analýza dat Charakteristika dat, Rekonstrukce jetů, Unfolding.
- Porovnání dat s předpovědí NLO QCD Neurčitosti v předpovědích QCD, LO vs. NLO QCD.
- ▶ Závěr

Why Do We Need Jets?

Gluon radiation cross section: Divergences:

- ▶ Infrared $(E_k = 0)$
- ▶ *Collinear* $(\theta = 0)$

$$\sigma_{q \to qg} \sim \frac{d\theta}{|\sin \theta|} \frac{dE_k}{E_k}$$

10000000000

Jet: A group of collimated particles

Jet algorithm: A prescription, how particles (or other objects) are clustered into separate jets. It should fulfill

- ► Infrared safety: The presence of an additional soft particle should not affect the recombination of particles into a jet
- ► Collinear safety: Jet reconstruction should not depend on the fact, if the energy is carried by one particle, of if the particle is split into more collinear particles

q or g CANNOT be directly observed. Jets CAN

Why Do We Need Jets?

Gluon radiation cross section: Divergences:

$$\sigma_{q o qg} \sim rac{d heta}{|\sin heta|} rac{dE_k}{E_k}$$

- ▶ Infrared $(E_k = 0)$
- ▶ *Collinear* $(\theta = 0)$

Jet: A group of collimated particles

Jet algorithm: A prescription, how particles (or other objects) are clustered into separate jets. It should fulfill

- ► Infrared safety: The presence of an additional soft particle should not affect the recombination of particles into a jet
- ► Collinear safety: Jet reconstruction should not depend on the fact, if the energy is carried by one particle, of if the particle is split into more collinear particles

q or g CANNOT be directly observed. Jets CAN

Inclusive Jets

Inclusive Jet: $pp \rightarrow jet + "anything"$, 2012 Analysis¹:

Why Inclusive Jets?

- ► They Cover a wide range of momentum transfers (\sim 1 GeV 1 TeV on the LHC) \rightarrow predictions sensitive to the properties of the running coupling constant α_S
- ► They probe the structure of proton at small distance scales

$$\lambda \sim 1/
ho_{T} \sim \, ext{TeV}^{-1} \sim 10^{-19} \, ext{m}$$

- ► They contribute to our understanding of PDFs
- They appreciate the increase in the center-of-mass energy as no other physics process observed on hadron colliders

¹Georges Aad et al. "Measurement of inclusive jet and dijet production in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector". In: Phys.Rev. D86 (2012), p. 014022. DOI: 10.1103/PhysRevD.86.014022. arXiv: 1112.6297 [hep-ex].

Three Different Levels of Collision

- **Parton level** particles (q,g,...) created just after the collision NLOJET++ (NLO QCD)
- ▶ Particle level particles created by the hadronization Events generated by PYTHIA8 (LO QCD)
- ▶ Detector level recorded signal Detector response obtained by GEANT4 full detector simulation

Detector causes distortion of observables

Jet Corrections

- ► Correct observables derived from detector to particle level by removing the detector effects
- ► Two main procedures Calibration and Unfolding

Unfolding

- ► Final step of jet corrections
- ► Tries to minimize the effects of detector *finite resolution*
- ► Analysis dependent

Unfolding - Mathematical Formulation

- ▶ I want: $f(p_T)$ (distribution of inclusive jet p_T for $p_T \in \langle a, b \rangle$)
- ▶ From detector, **I get:** g(x) (distribution of unphysical variable x)

$$g(x) = \int_a^b A(x, p_T) f(p_T) dp_T$$

- Detector smearing described by $A(x, p_T)$ (suppose, it is known)
- Complicated integral equation for $f(p_T)$
- ▶ Luckily g(x) and $f(p_T)$ are for practical purpose discretized and in

$$g_i = \int_{N(i)} g(x) dx$$
 , $f_i = \int_{N(i)} f(p_T) dp_T$

► So the response of the detector is described by a "simple"

$$g = Af$$

Unfolding - Mathematical Formulation

- ▶ I want: $f(p_T)$ (distribution of inclusive jet p_T for $p_T \in \langle a, b \rangle$)
- ▶ From detector, **I get:** g(x) (distribution of unphysical variable x)

$$g(x) = \int_a^b A(x, p_T) f(p_T) dp_T$$

- Detector smearing described by $A(x, p_T)$ (suppose, it is known)
- ightharpoonup Complicated integral equation for $f(p_T)$
- ▶ Luckily g(x) and $f(p_T)$ are for practical purpose discretized and in analysis, I assume $x \in \langle a, b \rangle$, $N(i) \subset \langle a, b \rangle$

$$g_i = \int_{N(i)} g(x) dx$$
 , $f_i = \int_{N(i)} f(p_T) dp_T$

► So the response of the detector is described by a "simple" matrix equation, with A being called Transfer Matrix

$$g = Af$$

Unfolding

Unfolding(detector spectrum) \approx particle spectrum

Transfer matrix A_{ij} - containing the number of jets which entered detector in bin i but were reconstructed in bin j

I test two approaches to the unfolding, allowing a dealing with the double binning (in p_T and y)

1. Simple unfolding

If reconstructed jet migrates to different rapidity bin, it is ignored. 8 independent 46x46 transfer matrices, one for each rapidity bin $(46 = \text{number of } p_T \text{ bins})$

2. 2D unfolding

Migration to different rapidity bins allowed. Only one 368×368 transfer matrix $(368 = 8 \times 46)$

Transfer Matrices

2D unfolding

Unfolding Results

Detector (Reco) and Unfolded VS. Particle (Truth) Spectrum

Simple and 2D Unfolded VS. Particle (Truth) Spectrum

NLO QCD Prediction

- ▶ NLO QCD predictions on parton level for $\sqrt{s} = 8 \, \text{TeV}$ and 13 TeV
- ▶ Theoretical uncertainties which are taken into account
 - Scale uncertainty
 Choice of renormalization and factorization scales, including neglecting
 - α_S uncertainty
 Because of experimental measurements of α_S

the higher order terms beyond the NLO

- ► PDF uncertainty
 Prediction depends on the concrete choice of a PDF
- ► *Other corrections* (not so significant²)
 - Nonperturbative corrections
 Hadronization and Underlying Event corrections
 - Electroweak corrections
 Next to the QCD processes, the electroweak processes should be assumed

²Georges Aad et al. "Measurement of inclusive jet and dijet production in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector". In: Phys.Rev. D86 (2012), p. 014022. D0I: 10.1103/Phys.RevD.86.014022. arXiv: 1112.6297 [hep-ex].

NLO QCD Prediction

- ▶ NLO QCD predictions on parton level for $\sqrt{s} = 8 \text{ TeV}$ and 13 TeV
- ► Theoretical uncertainties which are taken into account
 - Scale uncertainty

Choice of renormalization and factorization scales, including neglecting the higher order terms beyond the NLO

- $\triangleright \alpha_{S}$ uncertainty
 - Because of experimental measurements of α_s
- PDF uncertainty

Prediction depends on the concrete choice of a PDF

- ► Other corrections (not so significant²)
 - ► Nonperturbative corrections Hadronization and Underlying Event corrections
 - Electroweak corrections Next to the QCD processes, the electroweak processes should be assumed

Jan Lochman (FNSPE CTU) High pr jets June 9, 2015 12 / 15

²Georges Aad et al. "Measurement of inclusive jet and dijet production in pp collisions at $\sqrt{s}=7$ TeV using the ATLAS detector". In: Phys.Rev. D86 (2012), p. 014022, DOI: 10.1103/PhysRevD.86.014022, arXiv: 1112.6297 [hep-ex].

NLO Systematic Uncertainties

Comparison of LO and NLO QCD

Thesis Conclusions

Unfolding

- ► Two approaches were probed
- ► No significant differences between these two approaches imply, for the real analysis, the Simple Unfolding approach should be used for its simpler implementation
- ▶ Agreement of the unfolded p_T spectra with the truth p_T spectra up to systematic error $< 10^{-3} \%$

LO and NLO QCD

► Significant differences showing the influence of the NLO QCD processes on physical observables

Jet Clustering

Slices in Transfer Matrix of 2D Unfolding

Comparison of $\sqrt{s} = 8$ and 13 TeV

