$12n_{0125} \ (K12n_{0125})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5.24906 \times 10^{251} u^{61} - 2.63379 \times 10^{252} u^{60} + \dots + 3.44441 \times 10^{254} b + 2.69575 \times 10^{254}, \\ &1.32614 \times 10^{254} u^{61} + 8.14465 \times 10^{254} u^{60} + \dots + 2.75553 \times 10^{255} a + 1.08450 \times 10^{257}, \\ &u^{62} + 6u^{61} + \dots + 1248u + 64 \rangle \\ I_2^u &= \langle -u^3 - u^2 + b - u, -u^3 + a + 2, \ u^4 + u^2 - u + 1 \rangle \\ I_3^u &= \langle 2u^5 + u^4 + 3u^3 + 2u^2 + b + 2u + 2, \ -2u^5 - 4u^3 - u^2 + a - 3u - 2, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle \\ I_1^v &= \langle a, \ 186v^5 + 1767v^4 + 16759v^3 + 279v^2 + 385b + 93v + 306, \ v^6 + 10v^5 + 95v^4 + 48v^3 + 15v^2 + 5v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 78 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5.25 \times 10^{251} u^{61} - 2.63 \times 10^{252} u^{60} + \dots + 3.44 \times 10^{254} b + 2.70 \times 10^{254}, \ 1.33 \times 10^{254} u^{61} + 8.14 \times 10^{254} u^{60} + \dots + 2.76 \times 10^{255} a + 1.08 \times 10^{257}, \ u^{62} + 6u^{61} + \dots + 1248 u + 64 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0481264u^{61} - 0.295575u^{60} + \cdots - 637.661u - 39.3574 \\ 0.00152394u^{61} + 0.00764656u^{60} + \cdots - 7.07240u - 0.782645 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0507184u^{61} - 0.309962u^{60} + \cdots - 642.175u - 39.0110 \\ 0.00177774u^{61} + 0.00929252u^{60} + \cdots - 5.78492u - 0.708113 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0290606u^{61} - 0.178730u^{60} + \cdots - 379.788u - 22.2184 \\ 0.000355637u^{61} + 0.000276515u^{60} + \cdots - 9.59505u - 0.781127 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.165545u^{61} + 0.979872u^{60} + \cdots + 380.906u - 1.53739 \\ 0.00433759u^{61} + 0.0238765u^{60} + \cdots + 4.60076u + 0.0296773 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0294163u^{61} - 0.179007u^{60} + \cdots - 370.193u - 21.4373 \\ 0.000355637u^{61} + 0.000276515u^{60} + \cdots - 9.59505u - 0.781127 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0294071u^{61} - 0.179875u^{60} + \cdots - 373.738u - 23.7994 \\ -0.000269202u^{61} - 0.00331814u^{60} + \cdots - 10.7470u - 0.840234 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00835458u^{61} - 0.0484189u^{60} + \cdots - 50.9506u - 3.17945 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.160433u^{61} + 0.951245u^{60} + \cdots + 378.382u - 1.35204 \\ 0.000774875u^{61} + 0.00475004u^{60} + \cdots - 0.0771139u - 0.215021 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0505800u^{61} + 0.275509u^{60} + \cdots - 864.856u - 57.5492 \\ 0.00229093u^{61} + 0.0128560u^{60} + \cdots - 864.856u - 57.5492 \\ 0.00229093u^{61} + 0.0128560u^{60} + \cdots - 5.13956u - 0.334034 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.134110u^{61} 0.834494u^{60} + \cdots 2032.73u 106.916$

Crossings	u-Polynomials at each crossing
c_1	$u^{62} + 71u^{61} + \dots + 267u + 1$
c_2, c_4	$u^{62} - 13u^{61} + \dots + 15u - 1$
c_3, c_6	$u^{62} + 3u^{61} + \dots - 8192u - 1024$
c_5	$u^{62} + 4u^{61} + \dots - 10u^2 + 1$
c_7	$u^{62} - 6u^{61} + \dots - 1248u + 64$
c_8, c_{11}	$u^{62} - 5u^{61} + \dots + 113u + 1$
<i>c</i> 9	$u^{62} + 44u^{60} + \dots + 9664u + 824$
c_{10}	$u^{62} + 4u^{61} + \dots - 3025807u + 537503$
c_{12}	$u^{62} - 21u^{61} + \dots + 12769u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{62} - 147y^{61} + \dots - 20183y + 1$
c_2, c_4	$y^{62} - 71y^{61} + \dots - 267y + 1$
c_3, c_6	$y^{62} - 57y^{61} + \dots + 9961472y + 1048576$
c_5	$y^{62} - 4y^{61} + \dots - 20y + 1$
	$y^{62} - 30y^{61} + \dots - 185344y + 4096$
c_8, c_{11}	$y^{62} + 21y^{61} + \dots - 12769y + 1$
<i>c</i> ₉	$y^{62} + 88y^{61} + \dots + 13013520y + 678976$
c_{10}	$y^{62} + 16y^{61} + \dots - 11200434939731y + 288909475009$
c_{12}	$y^{62} + 45y^{61} + \dots - 163345321y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.966330		
a = 2.06084	-10.3258	-5.46580
b = -0.132404		
u = 0.225473 + 1.012430I		
a = 0.68800 - 2.63426I	-2.91907 - 1.90864I	-12.3927 + 9.8412I
b = -0.10147 - 2.38732I		
u = 0.225473 - 1.012430I		
a = 0.68800 + 2.63426I	-2.91907 + 1.90864I	-12.3927 - 9.8412I
b = -0.10147 + 2.38732I		
u = 0.906197 + 0.566629I		
a = 0.898820 - 1.059170I	-6.85055 - 2.44704I	0
b = -0.080489 - 0.151302I		
u = 0.906197 - 0.566629I		
a = 0.898820 + 1.059170I	-6.85055 + 2.44704I	0
b = -0.080489 + 0.151302I		
u = 0.630967 + 0.873245I		
a = -0.0480953 + 0.0962373I	-0.54827 - 2.57263I	0
b = 0.066678 - 0.565097I		
u = 0.630967 - 0.873245I		
a = -0.0480953 - 0.0962373I	-0.54827 + 2.57263I	0
b = 0.066678 + 0.565097I		
u = -0.428788 + 0.808171I		
a = 0.166658 + 0.166436I	3.58947 + 0.62301I	3.36345 - 2.22600I
b = 0.144316 + 0.950356I		
u = -0.428788 - 0.808171I		
a = 0.166658 - 0.166436I	3.58947 - 0.62301I	3.36345 + 2.22600I
b = 0.144316 - 0.950356I		
u = 0.175720 + 0.877651I		
a = -1.87346 - 0.71678I	-9.63287 + 2.57588I	-1.03891 + 4.65048I
b = 0.1068970 - 0.0427277I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.175720 - 0.877651I	,	
a = -1.87346 + 0.71678I	-9.63287 - 2.57588I	-1.03891 - 4.65048I
b = 0.1068970 + 0.0427277I		
u = -0.613756 + 1.022410I		
a = -0.0631222 + 0.0157113I	1.46847 + 7.47551I	0
b = -0.017254 + 0.535087I		
u = -0.613756 - 1.022410I		
a = -0.0631222 - 0.0157113I	1.46847 - 7.47551I	0
b = -0.017254 - 0.535087I		
u = 1.148340 + 0.333874I		
a = 1.27542 + 0.77535I	-3.40045 - 1.02073I	0
b = -0.26412 - 2.34055I		
u = 1.148340 - 0.333874I		
a = 1.27542 - 0.77535I	-3.40045 + 1.02073I	0
b = -0.26412 + 2.34055I		
u = -0.768297 + 0.223225I		
a = -1.92583 + 0.47346I	-0.90689 + 2.60619I	-4.21909 - 1.98730I
b = 0.61700 - 1.55498I		
u = -0.768297 - 0.223225I		
a = -1.92583 - 0.47346I	-0.90689 - 2.60619I	-4.21909 + 1.98730I
b = 0.61700 + 1.55498I		
u = -0.625920 + 0.391100I		
a = 1.359350 - 0.293081I	0.16449 - 2.80931I	-2.02619 + 2.03045I
b = -0.217590 + 0.449117I		
u = -0.625920 - 0.391100I		
a = 1.359350 + 0.293081I	0.16449 + 2.80931I	-2.02619 - 2.03045I
b = -0.217590 - 0.449117I		
u = -0.569996 + 0.465415I		
a = -2.68911 - 0.37051I	-0.271555 + 0.561550I	-5.56822 - 2.77116I
b = -0.345079 - 0.969509I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.569996 - 0.465415I		
a = -2.68911 + 0.37051I	-0.271555 - 0.561550I	-5.56822 + 2.77116I
b = -0.345079 + 0.969509I		
u = 1.269210 + 0.022101I		
a = -1.118240 - 0.162406I	-5.71401 + 2.41800I	0
b = 0.125530 + 0.806401I		
u = 1.269210 - 0.022101I		
a = -1.118240 + 0.162406I	-5.71401 - 2.41800I	0
b = 0.125530 - 0.806401I		
u = -1.268290 + 0.189716I		
a = -1.227750 + 0.054676I	-5.53536 + 3.45054I	0
b = 0.107949 - 0.868842I		
u = -1.268290 - 0.189716I		
a = -1.227750 - 0.054676I	-5.53536 - 3.45054I	0
b = 0.107949 + 0.868842I		
u = -1.187220 + 0.502909I		
a = 1.52617 - 0.01474I	1.17723 + 4.19224I	0
b = -0.80672 + 1.64220I		
u = -1.187220 - 0.502909I		
a = 1.52617 + 0.01474I	1.17723 - 4.19224I	0
b = -0.80672 - 1.64220I		
u = 0.568930 + 0.416577I		
a = 0.120281 + 1.074160I	-0.76460 - 1.25688I	-5.53847 + 5.17379I
b = 0.045387 - 0.507767I		
u = 0.568930 - 0.416577I		
a = 0.120281 - 1.074160I	-0.76460 + 1.25688I	-5.53847 - 5.17379I
b = 0.045387 + 0.507767I		
u = -0.453256 + 1.217240I		
a = 0.90351 + 1.13576I	-2.25042 - 3.70807I	0
b = 0.71700 + 2.26803I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.453256 - 1.217240I		
a = 0.90351 - 1.13576I	-2.25042 + 3.70807I	0
b = 0.71700 - 2.26803I		
u = -0.042454 + 0.695928I		
a = -0.025549 + 0.219032I	3.47148 + 0.76506I	5.05392 - 1.67806I
b = -0.276487 + 1.114370I		
u = -0.042454 - 0.695928I		
a = -0.025549 - 0.219032I	3.47148 - 0.76506I	5.05392 + 1.67806I
b = -0.276487 - 1.114370I		
u = 0.384833 + 0.475726I		
a = 1.82484 + 0.76996I	-0.75966 - 1.41499I	-4.04897 + 4.67258I
b = -0.016778 - 0.470642I		
u = 0.384833 - 0.475726I		
a = 1.82484 - 0.76996I	-0.75966 + 1.41499I	-4.04897 - 4.67258I
b = -0.016778 + 0.470642I		
u = -1.33070 + 0.53202I		
a = 1.058240 + 0.373107I	-13.75470 + 2.34725I	0
b = -0.234697 + 0.167699I		
u = -1.33070 - 0.53202I		
a = 1.058240 - 0.373107I	-13.75470 - 2.34725I	0
b = -0.234697 - 0.167699I		
u = -0.468299 + 0.280082I		
a = -0.059976 - 0.302032I	2.81830 - 4.57708I	-11.91750 - 5.21602I
b = -0.276860 - 1.385290I		
u = -0.468299 - 0.280082I		
a = -0.059976 + 0.302032I	2.81830 + 4.57708I	-11.91750 + 5.21602I
b = -0.276860 + 1.385290I		
u = 1.30977 + 0.65145I		
a = 0.967015 - 0.381842I	-12.7715 - 8.3839I	0
b = -0.229472 - 0.212903I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.30977 - 0.65145I		
a = 0.967015 + 0.381842I	-12.7715 + 8.3839I	0
b = -0.229472 + 0.212903I		
u = 1.43373 + 0.32544I		
a = 0.1365400 - 0.0114578I	-8.50399 - 1.01711I	0
b = -0.05979 + 1.64995I		
u = 1.43373 - 0.32544I		
a = 0.1365400 + 0.0114578I	-8.50399 + 1.01711I	0
b = -0.05979 - 1.64995I		
u = -1.40066 + 0.45878I		
a = 0.0626733 - 0.1057400I	-7.87011 + 7.16358I	0
b = -0.04777 - 1.57885I		
u = -1.40066 - 0.45878I		
a = 0.0626733 + 0.1057400I	-7.87011 - 7.16358I	0
b = -0.04777 + 1.57885I		
u = 1.39279 + 0.63989I		
a = 1.172420 - 0.173984I	-6.43547 - 4.60616I	0
b = -0.44372 - 1.75238I		
u = 1.39279 - 0.63989I		
a = 1.172420 + 0.173984I	-6.43547 + 4.60616I	0
b = -0.44372 + 1.75238I		
u = -1.35459 + 0.72187I		
a = 1.220540 + 0.275631I	-5.32588 + 10.75820I	0
b = -0.42983 + 1.70660I		
u = -1.35459 - 0.72187I		
a = 1.220540 - 0.275631I	-5.32588 - 10.75820I	0
b = -0.42983 - 1.70660I		
u = -0.032223 + 0.152731I		
a = 36.7699 - 20.1859I	-1.08843 + 2.05155I	143.754 - 62.581I
b = 0.421858 - 0.101939I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.032223 - 0.152731I		
a = 36.7699 + 20.1859I	-1.08843 - 2.05155I	143.754 + 62.581I
b = 0.421858 + 0.101939I		
u = -1.46857 + 1.15578I		
a = -1.018750 - 0.533372I	-12.7985 + 16.4675I	0
b = 0.95221 - 2.16134I		
u = -1.46857 - 1.15578I		
a = -1.018750 + 0.533372I	-12.7985 - 16.4675I	0
b = 0.95221 + 2.16134I		
u = -0.0940543		
a = -7.89489	-1.10354	-8.74860
b = -0.510696		
u = 1.57350 + 1.21978I		
a = -0.928353 + 0.487034I	-14.6014 - 9.8690I	0
b = 0.99889 + 2.35016I		
u = 1.57350 - 1.21978I		
a = -0.928353 - 0.487034I	-14.6014 + 9.8690I	0
b = 0.99889 - 2.35016I		
u = -1.98204 + 1.05164I		
a = -0.878361 - 0.248375I	-6.11414 + 6.99153I	0
b = 1.90729 - 2.58093I		
u = -1.98204 - 1.05164I		
a = -0.878361 + 0.248375I	-6.11414 - 6.99153I	0
b = 1.90729 + 2.58093I		
u = -1.49547 + 2.13069I		
a = -0.493036 - 0.217503I	-11.14940 - 5.54057I	0
b = -1.52334 - 3.84431I		
u = -1.49547 - 2.13069I		
a = -0.493036 + 0.217503I	-11.14940 + 5.54057I	0
b = -1.52334 + 3.84431I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 2.00127 + 1.81072I		
a = -0.633745 + 0.258104I	-13.40670 - 2.05335I	0
b = 0.48201 + 4.34193I		
u = 2.00127 - 1.81072I		
a = -0.633745 - 0.258104I	-13.40670 + 2.05335I	0
b = 0.48201 - 4.34193I		

II.
$$I_2^u = \langle -u^3 - u^2 + b - u, -u^3 + a + 2, u^4 + u^2 - u + 1 \rangle$$

a₈ =
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$
 $a_{3} = \begin{pmatrix} u^{3} - 2 \\ u^{3} + u^{2} + u \end{pmatrix}$
 $a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$
 $a_{4} = \begin{pmatrix} u^{3} - 2 \\ u^{3} + u^{2} + u \end{pmatrix}$
 $a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$
 $a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$
 $a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$
 $a_{2} = \begin{pmatrix} u^{3} - u^{2} - 3 \\ u^{3} + 2u^{2} + u \end{pmatrix}$
 $a_{1} = \begin{pmatrix} -u^{2} - 1 \\ u^{2} \end{pmatrix}$
 $a_{9} = \begin{pmatrix} -u^{3} - u^{2} \\ u^{2} \end{pmatrix}$
 $a_{12} = \begin{pmatrix} u^{3} - u^{2} - 1 \\ u \end{pmatrix}$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^3 + 6u^2 2u 5$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_6	u^4
c_4	$(u+1)^4$
<i>C</i> ₅	$u^4 + 2u^3 + 3u^2 + u + 1$
c_7, c_8	$u^4 + u^2 - u + 1$
<i>c</i> ₉	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_{10}, c_{11}	$u^4 + u^2 + u + 1$
c_{12}	$u^4 - 2u^3 + 3u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
c_5, c_{12}	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_7, c_8, c_{10} c_{11}	$y^4 + 2y^3 + 3y^2 + y + 1$
<i>c</i> ₉	$y^4 - y^3 + 2y^2 + 7y + 4$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.547424 + 0.585652I		
a = -2.39923 + 0.32564I	-2.62503 - 1.39709I	-5.95551 + 2.35025I
b = 0.10488 + 1.55249I		
u = 0.547424 - 0.585652I		
a = -2.39923 - 0.32564I	-2.62503 + 1.39709I	-5.95551 - 2.35025I
b = 0.10488 - 1.55249I		
u = -0.547424 + 1.120870I		
a = -0.100768 - 0.400532I	0.98010 + 7.64338I	-11.5445 - 9.2043I
b = 0.395123 - 0.506844I		
u = -0.547424 - 1.120870I		
a = -0.100768 + 0.400532I	0.98010 - 7.64338I	-11.5445 + 9.2043I
b = 0.395123 + 0.506844I		

III.
$$I_3^u = \langle 2u^5 + u^4 + 3u^3 + 2u^2 + b + 2u + 2, \ -2u^5 - 4u^3 - u^2 + a - 3u - 2, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{5} + 4u^{3} + u^{2} + 3u + 2 \\ -2u^{5} - u^{4} - 3u^{3} - 2u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{5} + 4u^{3} + u^{2} + 3u + 2 \\ -2u^{5} - u^{4} - 3u^{3} - 2u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{5} + 4u^{3} + 3u + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{5} + 4u^{3} + 3u + 1 \\ -2u^{5} - u^{4} - 3u^{3} - u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} - u^{4} - 2u^{3} - 2u^{2} - 2u - 2 \\ u^{5} + 2u^{3} + u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^5 u^4 4u^2 + 3u 13$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^{6}$
c_3, c_6	u^6
c_4	$(u+1)^6$
<i>C</i> ₅	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_{7}, c_{8}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
<i>c</i> ₉	$(u^3 - u^2 + 1)^2$
c_{10}, c_{11}	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_{12}	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_{3}, c_{6}	y^6
c_5, c_{12}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_7, c_8, c_{10} c_{11}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
<i>C</i> 9	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498832 + 1.001300I		
a = -0.175218 + 0.614017I	-1.37919 - 2.82812I	-11.93937 + 4.05868I
b = 0.481306 + 0.637866I		
u = 0.498832 - 1.001300I		
a = -0.175218 - 0.614017I	-1.37919 + 2.82812I	-11.93937 - 4.05868I
b = 0.481306 - 0.637866I		
u = -0.284920 + 1.115140I		
a = 0.307599 - 0.479689I	2.75839	-4.40089 + 2.50363I
b = 0.662359 - 0.362106I		
u = -0.284920 - 1.115140I		
a = 0.307599 + 0.479689I	2.75839	-4.40089 - 2.50363I
b = 0.662359 + 0.362106I		
u = -0.713912 + 0.305839I		
a = -0.13238 + 2.74513I	-1.37919 - 2.82812I	-17.1597 + 2.2654I
b = -1.14366 - 1.20015I		
u = -0.713912 - 0.305839I		
a = -0.13238 - 2.74513I	-1.37919 + 2.82812I	-17.1597 - 2.2654I
b = -1.14366 + 1.20015I		

$$I_1^v = \langle a, 186v^5 + 1767v^4 + \dots + 385b + 306, v^6 + 10v^5 + 95v^4 + 48v^3 + 15v^2 + 5v + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.483117v^{5} - 4.58961v^{4} + \dots - 0.241558v - 0.794805 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.483117v^{5} + 4.58961v^{4} + \dots + 0.241558v + 0.794805 \\ -0.483117v^{5} - 4.58961v^{4} + \dots - 0.241558v - 0.794805 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.207792v^{5} - 1.97403v^{4} + \dots - 0.103896v + 1.41299 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.103896v^{5} + 1.01558v^{4} + \dots + 3.45195v + 0.207792 \\ 0.345455v^{5} + 3.38182v^{4} + \dots + 5.07273v + 0.690909 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.207792v^{5} + 1.97403v^{4} + \dots + 0.103896v - 0.412987 \\ -0.207792v^{5} - 1.97403v^{4} + \dots - 0.103896v + 1.41299 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.207792v^{5} - 1.97403v^{4} + \dots - 0.103896v + 1.41299 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.241558v^{5} - 2.36623v^{4} + \dots - 1.62078v - 0.483117 \\ 0.345455v^{5} + 3.38182v^{4} + \dots + 5.07273v + 0.690909 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.244156v^{5} + 2.34805v^{4} + \dots + 3.52208v + 0.174026 \\ 0.345455v^{5} + 3.38182v^{4} + \dots + 5.07273v + 1.69091 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{2881}{385}v^5 + \frac{28101}{385}v^4 + \frac{266701}{385}v^3 + \frac{72274}{385}v^2 + \frac{18419}{385}v + \frac{4464}{385}v^2 + \frac{18419}{385}v + \frac{18419}{385}v + \frac{18419}{385}v^2 + \frac{18419}{385}v^2$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
<i>C</i> ₅	$(u^3 + 3u^2 + 2u - 1)^2$
c_6	$(u^3 + u^2 + 2u + 1)^2$
c ₇	u^6
c_8, c_{12}	$(u^2 - u + 1)^3$
c_9, c_{10}	$u^6 - 2u^5 + 7u^4 + 8u^3 + 7u^2 + 3u + 1$
c_{11}	$(u^2+u+1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5	$(y^3 - 5y^2 + 10y - 1)^2$
<i>C</i> ₇	y^6
c_8, c_{11}, c_{12}	$(y^2 + y + 1)^3$
c_9, c_{10}	$y^6 + 10y^5 + 95y^4 + 48y^3 + 15y^2 + 5y + 1$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.041684 + 0.322031I		
a = 0	3.02413 + 0.79824I	-13.76355 - 1.90324I
b = -0.215080 + 1.307140I		
v = 0.041684 - 0.322031I		
a = 0	3.02413 - 0.79824I	-13.76355 + 1.90324I
b = -0.215080 - 1.307140I		
v = -0.299729 + 0.124916I		
a = 0	3.02413 - 4.85801I	2.26089 + 13.10391I
b = -0.215080 - 1.307140I		
v = -0.299729 - 0.124916I		
a = 0	3.02413 + 4.85801I	2.26089 - 13.10391I
b = -0.215080 + 1.307140I		
v = -4.74195 + 8.21331I		
a = 0	-1.11345 - 2.02988I	-55.9973 - 74.4205I
b = -0.569840		
v = -4.74195 - 8.21331I		
a = 0	-1.11345 + 2.02988I	-55.9973 + 74.4205I
b = -0.569840		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^{10})(u^3-u^2+2u-1)^2(u^{62}+71u^{61}+\cdots+267u+1)$
c_2	$((u-1)^{10})(u^3+u^2-1)^2(u^{62}-13u^{61}+\cdots+15u-1)$
<i>c</i> ₃	$u^{10}(u^3 - u^2 + 2u - 1)^2(u^{62} + 3u^{61} + \dots - 8192u - 1024)$
<i>C</i> ₄	$((u+1)^{10})(u^3-u^2+1)^2(u^{62}-13u^{61}+\cdots+15u-1)$
<i>C</i> 5	$((u^{3} + 3u^{2} + 2u - 1)^{2})(u^{4} + 2u^{3} + 3u^{2} + u + 1)(u^{6} + 3u^{5} + \dots + 2u^{3} + 1)$ $\cdot (u^{62} + 4u^{61} + \dots - 10u^{2} + 1)$
<i>C</i> ₆	$u^{10}(u^3 + u^2 + 2u + 1)^2(u^{62} + 3u^{61} + \dots - 8192u - 1024)$
C ₇	$u^{6}(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{62} - 6u^{61} + \dots - 1248u + 64)$
<i>c</i> ₈	$(u^{2} - u + 1)^{3}(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{62} - 5u^{61} + \dots + 113u + 1)$
<i>c</i> ₉	$(u^{3} - u^{2} + 1)^{2}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)$ $\cdot (u^{6} - 2u^{5} + \dots + 3u + 1)(u^{62} + 44u^{60} + \dots + 9664u + 824)$
c_{10}	$(u^{4} + u^{2} + u + 1)(u^{6} - 2u^{5} + 7u^{4} + 8u^{3} + 7u^{2} + 3u + 1)$ $\cdot (u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{62} + 4u^{61} + \dots - 3025807u + 537503)$
c_{11}	$(u^{2} + u + 1)^{3}(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{62} - 5u^{61} + \dots + 113u + 1)$
c_{12}	$(u^{2} - u + 1)^{3}(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot (u^{62} - 21u^{61} + \dots + 22769u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^{10})(y^3+3y^2+2y-1)^2(y^{62}-147y^{61}+\cdots-20183y+1)$
c_2,c_4	$((y-1)^{10})(y^3-y^2+2y-1)^2(y^{62}-71y^{61}+\cdots-267y+1)$
c_3, c_6	$y^{10}(y^3 + 3y^2 + 2y - 1)^2(y^{62} - 57y^{61} + \dots + 9961472y + 1048576)$
<i>C</i> ₅	$(y^3 - 5y^2 + 10y - 1)^2(y^4 + 2y^3 + 7y^2 + 5y + 1)$ $\cdot (y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)(y^{62} - 4y^{61} + \dots - 20y + 1)$
c ₇	$y^{6}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{62} - 30y^{61} + \dots - 185344y + 4096)$
c_8, c_{11}	$(y^{2} + y + 1)^{3}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{62} + 21y^{61} + \dots - 12769y + 1)$
<i>c</i> 9	$(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{6} + 10y^{5} + 95y^{4} + 48y^{3} + 15y^{2} + 5y + 1)$ $\cdot (y^{62} + 88y^{61} + \dots + 13013520y + 678976)$
c_{10}	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^6 + 10y^5 + 95y^4 + 48y^3 + 15y^2 + 5y + 1)$ $\cdot (y^{62} + 16y^{61} + \dots - 11200434939731y + 288909475009)$
c_{12}	$((y^{2} + y + 1)^{3})(y^{4} + 2y^{3} + \dots + 5y + 1)(y^{6} - y^{5} + \dots + 8y^{2} + 1)$ $\cdot (y^{62} + 45y^{61} + \dots - 163345321y + 1)$