Lecture 4: An introduction to Regression

based on Andrew W. Moore Slides

Single-Parameter Linear Regression

inputs	outputs
$x_1 = 1$	$y_1 = 1$
$x_2 = 3$	$y_2 = 2.2$
$X_3 = 2$	$y_3 = 2$
$X_4 = 1.5$	$y_4 = 1.9$
$X_5 = 4$	$y_5 = 3.1$

Linear regression assumes that the expected value of the output given an input, E[y/x], is linear.

Simplest case: Out(x) = wx for some unknown w.

Given the data, we can estimate w.

1-parameter linear regression

Assume that the data is formed by

$$y_i = wx_i + noise_i$$

where...

- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance σ^2

p(y|w,x) has a normal distribution with

- mean wx
- variance σ^2

Bayesian Linear Regression

 $p(y|w,x) = Normal (mean wx, var \sigma^2)$

We have a set of datapoints (x_1, y_1) (x_2, y_2) ... (x_n, y_n) which are EVIDENCE about w.

We want to infer w from the data.

$$p(w|X_1, X_2, X_3,...X_n, Y_1, Y_2...Y_n)$$

- •You can use BAYES rule to work out a posterior distribution for *w* given the data.
- Or you could do Maximum Likelihood Estimation

Maximum likelihood estimation of w

Asks the question:

"For which value of w is this data most likely to have happened?"

For what w is

$$p(y_1, y_2...y_n | x_1, x_2, x_3,...x_n, w)$$
 maximized? <=>

For what w is

$$\prod_{i=1}^{n} p(y_i | w, x_i) \text{ maximized?}$$

For what w is

$$\prod_{i=1}^{n} p(y_i|w,x_i) \text{ maximized?}$$

For what w is

$$\prod_{i=1}^{n} \exp(-\frac{1}{2}(\frac{y_i - wx_i}{\sigma})^2) \text{ maximized?}$$

For what w is

$$\sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_i - wx_i}{\sigma} \right)^2$$
 maximized?

For what w is

$$\sum_{i=1}^{n} (y_i - wx_i)^2$$
 minimized Peast Square

The maximum likelihood w is the one that minimizes sum-of-squares of residuals

$$E = \sum_{i} (y_{i} - wx_{i})^{2}$$

$$= \sum_{i} y_{i}^{2} - (2\sum_{i} x_{i}y_{i})w + (\sum_{i} x_{i}^{2})w^{2}$$

We want to minimize a quadratic function of w.

Easy to show the sum of squares is minimized when

$$w = \frac{\sum x_i y_i}{\sum x_i^2}$$

The maximum likelihood model

is
$$Out(x) = wx$$

We can use it for prediction

Easy to show the sum of squares is minimized when

$$w = \frac{\sum x_i y_i}{\sum x_i^2}$$

The maximum likelihood mode

is
$$Out(x) = wx$$

We can use it for prediction

Note: In Bayesian stats you'd have ended up with a prob dist of w

And predictions would have given a prob dist of expected output

Often useful to know your confidence. Max likelihood can give some kinds of confidence too.

Regression example

• Generated: w=2

• Recovered: w=2.03

Noise: std=1

Regression example

• Generated: w=2

• Recovered: w=2.05

Noise: std=2

Regression example

• Generated: w=2

• Recovered: w=2.08

Noise: std=4

Multivariate Linear Regression

What if the inputs are vectors?

2-d input example

 $X_1 \longrightarrow$

Dataset has form

Write matrix X and Y thus:

$$\mathbf{x} = \begin{bmatrix} \dots \mathbf{x}_1 \dots \\ \mathbf{x}_2 \dots \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \mathbf{M} \\ y_R \end{bmatrix}$$

(there are *R* datapoints. Each input has *m* components)

The linear regression model assumes a vector w such that

Out(
$$\mathbf{x}$$
) = $\mathbf{w}^{T}\mathbf{x}$ = $w_{1}x[1] + w_{2}x[2] + w_{m}x[D]$

The max. likelihood w is $w = (X^T X)^{-1} (X^T Y)$

Write matrix X and Y thus:

$$\mathbf{x} = \begin{bmatrix} \dots \mathbf{x}_1 \dots \\ \mathbf{x}_2 \dots \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \mathbf{M} \\ y_R \end{bmatrix}$$

(there are *R* datapoints. Each input has *m* components)

The linear regression model assumes a vector w such that

Out(
$$\mathbf{x}$$
) = $\mathbf{w}^{T}\mathbf{x}$ = $w_{1}x[1] + w_{2}x[2] + w_{m}x[D]$

The max. likelihood w is $w = (X^T X)^{-1} (X^T Y)$

•
$$|Y - XW|^2 = (Y - XW)^T (Y - XW)$$

$$A = (Y^{T} - W^{T}X^{T})(Y - XW) = Y^{T}Y - Y^{T}XW$$
$$- W^{T}X^{T}Y + W^{T}X^{T}XW =$$

$$A = Y^T Y - 2W^T X^T Y + W^T X^T X W$$

$$\frac{\partial A}{\partial W} = -2X^TY + 2X^TXW = 0 \rightarrow$$

$$W = (X^T X)^{-1} X^T Y$$

Multivariate Regression (con't)

The max. likelihood w is $w = (X^T X)^{-1} (X^T Y)$

 $X^{T}X$ is an $m \times m$ matrix: i,j'th elt is

$$\sum_{k=1}^{R} x_{ki} x_{kj}$$

X^TY is an *m*-element vector: i'th elt

$$\sum_{k=1}^{R} x_{ki} y_k$$

Constant Term in Linear Regression

What about a constant term?

We may expect linear data that does not go through the origin.

Statisticians and Neural Net Folks all agree on a simple obvious hack.

Can you guess??

The constant term

• The trick is to create a fake input " X_0 " that always takes the value 1

X_1	X_2	Y
2	4	16
3	4	17
5	5	20

Before:

$$Y=w_1X_1+w_2X_2$$

...has to be a poor model

X_{0}	X_1	X_2	Y
1	2	4	16
1	3	4	17
1	5	5	20

After:

$$Y = w_0 X_0 + w_1 X_1 + w_2 X_2$$

$$= w_0 + w_1 X_1 + w_2 X_2$$

...has a fine constant term

In this example, You should be able to see the MLE w_0 , w_1 and w_2 by inspection

Heteroscedasticity...

Linear Regression with varying noise

Regression with varying noise

 Suppose you know the variance of the noise that was added to each datapoint.

X _i	y _i	σ_i^2
1/2	1/2	4
1	1	1
2	1	1/4
2	3	4
3	2	1/4

Assume
$$y_i \sim N(wx_i, \sigma_i^2)$$
 what's the MLE estimate of W?

MLE estimation with varying noise

argmax log
$$p(y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma_1^2, \sigma_2^2, ..., \sigma_R^2, w) =$$

 \mathcal{W}

argmin
$$\sum_{i=1}^{R} \frac{(y_i - wx_i)^2}{\sigma_i^2} = \begin{cases} \text{among noise and then plugging in equation for Gaussian and simplifying.} \end{cases}$$

Assuming independence

$$\left(w \text{ such that } \sum_{i=1}^{R} \frac{x_i(y_i - wx_i)}{\sigma_i^2} = 0\right) = \frac{\text{Setting dLL/dw}}{\text{equal to zero}}$$

$$\frac{\left(\sum_{i=1}^{R} \frac{x_i y_i}{\sigma_i^2}\right)}{\left(\sum_{i=1}^{R} \frac{x_i^2}{\sigma_i^2}\right)}$$

Trivial algebra

This is Weighted Regression

 We are asking to minimize the weighted sum of squares

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R} \frac{(y_i - wx_i)^2}{\sigma_i^2}$$

where weight for i'th datapoint is $\frac{1}{\sigma_i^2}$

Non-linear Regression

Non-linear Regression

 Suppose you know that y is related to a function of x in such a way that the predicted values have a non-linear dependence on w, e.g:

X _i	y _i
1/2	1/2
1	2.5
2	3
3	2
3	3

Assume
$$y_i \sim N(\sqrt{w+x_i}, \sigma^2)$$

What's the MLD of W?

Non-linear MLE estimation

Non-linear MLE estimation

argmax log
$$p(y_1, y_2,...,y_R | x_1, x_2,...,x_R, \sigma, w) =$$

 \mathcal{W}

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R} \left(y_i - \sqrt{w + x_i} \right)^2 =$$

Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.

$$\left(w \text{ such that } \sum_{i=1}^{R} \frac{y_i - \sqrt{w + x_i}}{\sqrt{w + x_i}} = 0\right) = \text{Setting dLL/dw equal to zero}$$

algebraic solution???

Non-linear MLE estimation

argmax log
$$p(y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma, w) =$$

 \mathcal{N}

Common (but not only) approach:

Numerical Solutions:

- Line Search
- Simulated Annealing
- Gradient Descent
- Conjugate Gradient
- Levenberg Marquart
- Newton's Method

 $(v+x_i)^2 =$

Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.

$$\frac{+x_i}{=} = 0$$

Setting dLL/dw equal to zero

algebraic solution???

Also, special purpose statisticaloptimization-specific tricks such as E.M. (See Gaussian Mixtures lecture for introduction)

Polynomial Regression

Polynomial Regression

So far we've mainly been dealing with linear regression

- 50	idi vv	CVC		y	CIIC	Cum	119 **	1011 111	icai
X_1	X_2	Y			X =	3	2	y=	7
3	2	7				1	1		3
1	1	3				•••	:		:
•							2)		7
<u> </u>	Z=	1	3	2	y=	- 7	<u> </u>	<i>Y</i> .	₁ =7
		1	1	1		3			

$$\mathbf{z}_1 = (1, 3, 2)..$$
 $y_1 = 7..$

$$\mathbf{z}_{k} = (1, X_{k1}, X_{k2})$$

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Quadratic Regression

3

It's trivial to do linear fits of fixed nonlinear basis functions

It's trivial to do linear fits of fixed nonlinear									
X_1	X_2	Y			X =	3	2	y=	7
3	2	7	ľ			1	1		3
1	1	3				:	:		••
		•					•	1/	
Z=	1	3	2	9	6	4] y =		1-/
	4	4	4	4	4	4	/		

$$\mathbf{z} = (1, X_1, X_2, X_1^2, X_1X_2, X_2^2)$$

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_1 X_2 + \beta_5 X_2^2$$

Quadratic Regression

It's trive Each component of a z vector is called a term.

Each column of the Z matrix is called a term column

How many terms in a quadratic regression with *m* inputs?

- •1 constant term
- •m linear terms
- - \bullet (m+1)-choose-2 = m(m+1)/2 quadratic terms
 - (m+2)-choose-2 terms in total = $O(m^2)$

Note that solving $\beta = (\mathbf{Z}^T \mathbf{Z})^{-1} (\mathbf{Z}^T \mathbf{y})$ is thus $O(m^6)$

Qth-degree polynomial Regression

z=(all products of powers of inputs in which sum of powers is q or less)

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 X_1 + \dots$$

m inputs, degree Q: how many terms?

= the number of unique terms of the form

$$x_1^{q_1} x_2^{q_2} ... x_m^{q_m}$$
 where $\sum_{i=1}^{n} q_i \leq Q$

= the number of unique terms of the form

$$1^{q_0} x_1^{q_1} x_2^{q_2} ... x_m^{q_m}$$
 where $\sum q_i = Q$

- = the number of lists of non-negative integers $[q_0, q_1, q_2, ..., q_m]$ in which $\sum q_i = Q$
- = the number of ways of placing Q red disks on a row of squares of length Q+m = (Q+m)-choose-Q

Radial Basis Functions

Radial Basis Functions (RBFs)

z=(list of radial basis function evaluations)

$$\beta = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}(\mathbf{Z}^{\mathsf{T}}\mathbf{y})$$

$$y^{est} = \beta_0 + \beta_1 x_1 + \dots$$

1-d RBFs

$$y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x)$$

where

$$\phi_i(x) = KernelFunction(|x - c_i| / KW)$$

Example

$$y^{est} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x)$$

where

$$\phi_i(x) = KernelFunction(|x - c_i| / KW)$$

RBFs with Linear Regression

All c_i 's are held constant (initialized randomly or on a grid in m-dimensional input space)

KW also held constant (initialized to be large enough that there's decent overlap between basis functions*

*Usually much better than the crappy overlap on my diagram

$$y^{est} = 2\phi_1(x) + 0.05\phi_2$$
where
$$\phi_i(x) = KernelFunction(|x - c_i| / KW)$$

RBFs with Linear Regression

All c_i 's are held constant (initialized randomly or on a grid in m-dimensional input space)

KW also held constant (initialized to be large enough that there's decent overlap between basis functions*

*Usually much better than the crappy overlap on my diagram

$$y^{est} = 2\phi_1(x) + 0.05\phi_2(x)$$

where

$$\phi_i(x) = KernelFunction(|x - c_i| / KW)$$

then given Q basis functions, define the matrix Z such that Z_{kj} = $KernelFunction(| <math>x_k - c_i | / KW)$ where x_k is the kth vector of inputs

And as before, $\beta = (\mathbf{Z}^T \mathbf{Z})^{-1} (\mathbf{Z}^T \mathbf{y})$

RBFs with NonLinear Regression

But how do we now find all the β_i 's, c_i 's and KW?

RBFs with NonLinear Regression

Allow the c_i 's to adapt to the data (initialized randomly or on a grid in m-dimensional input space)

KW allowed to adapt to the data. (Some folks even let each basis function have its own KW_j, permitting fine detail in dense regions of input space)

$$y^{est} = 2\phi_1(x) + 0.05\phi_2(x)$$

where

$$\phi_i(x) = KernelFunction(|x - c_i| / KW)$$

But how do we now find all the β_j 's, c_i 's and KW?

Answer: Gradient Descent

RBFs with NonLinear Regression

Allow the c_i 's to adapt to the data (initialized randomly or on a grid in m-dimensional input space)

KW allowed to adapt to the data. (Some folks even let each basis function have its own KW_i, permitting fine detail in dense regions of input space)

$$y^{est} = 2\phi_1(x) + 0.05\phi_2(x)$$

where

$$\phi_i(x) = KernelFunction(|x - c_i| / KW)$$

But how do we now find all the β_i 's, c_i 's and KW?

(But I'd like to see, or hope someone's already done, a hybrid, where the c_i 's and KW are updated with gradient Answer: Gradient Descent descent while the β_i 's use matrix inversion)

Radial Basis Functions in 2-d

Happy RBFs in 2-d

Crabby RBFs in 2-d

example? Blue dots denote coordinates of input vectors Center Sphere of significant X_2 influence of center

What's the

problem in this

More crabby RBFs

And what's the problem in this example?

Hopeless! Even before seeing the data, you should understand that this is a disaster!

LOESS-based Robust Regression

LOESS-based Robust Regression

LOESS-based Robust Regression

For k = 1 to R...

- •Let (x_k, y_k) be the kth datapoint
- •Let y^{est}_k be predicted value of y_k
- •Let w_k be a weight for datapoint k that is large if the datapoint fits well and small if it fits badly:

$$W_k = KernelFn([y_k - y^{est}_k]^2)$$

Then redo the regression using weighted datapoints.

Weighted regression was described earlier in the "vary noise" section, and is also discussed in the "Memory-based Learning" Lecture.

Guess what happens next?

For k = 1 to R...

- •Let (x_k, y_k) be the kth datapoint
- •Let y^{est}_k be predicted value of Y_k
- •Let w_k be a weight for datapoint k that is large if the datapoint fits well and small if it fits badly:

$$W_k = KernelFn([y_k - y^{est}_k]^2)$$

Then redo the regression using weighted datapoints.

I taught you how to do this in the "Instance-based" lecture (only then the weights depended on distance in input-space)

Repeat whole thing until converged!

For k = 1 to R...

- •Let (x_k, y_k) be the kth datapoint
- •Let y^{est}_k be predicted value of y_k
- •Let w_k be a weight for datapoint k that is large if the datapoint fits well and small if it fits badly:

$$W_k = KernelFn([y_k - y^{est}_k]^2)$$

Robust Regression---what we're doing

What regular regression does:

Assume y_k was originally generated using the following recipe:

$$y_k = \beta_0 + \beta_1 x_k + \beta_2 x_k^2 + N(0, \sigma^2)$$

Computational task is to find the Maximum Likelihood β_0 , β_1 and β_2

Robust Regression---what we're doing

What LOESS robust regression does:

Assume y_k was originally generated using the following recipe:

With probability *p*:

$$y_k = \beta_0 + \beta_1 x_k + \beta_2 x_k^2 + N(0, \sigma^2)$$

But otherwise

$$y_k \sim N(\mu, \sigma_{huge}^2)$$

Computational task is to find the Maximum Likelihood β_0 , β_1 , β_2 , p, μ and σ_{huge}

Robust Regression---what we're doing

What LOESS robust regression does:

Assume y_k was originally generated using the following recipe:

With probability *p*:

$$y_k = \beta_0 + \beta_1 x_k + \beta_2 x_k^2 + N(0, \sigma^2)$$

But otherwise

$$y_k \sim N(\mu, \sigma_{huge}^2)$$

Computational task is to find the Maximum Likelihood β_0 , β_1 , β_2 , p, μ and σ_{huge}

Mysteriously, the reweighting procedure does this computation for us.

Your first glimpse of two spectacular letters:

E.M.