Μεταπτυχιακό ΑΛΜΑ Ζαχαράκης Αλέξανδρος azacharakis@yandex.com Τσιάρας Λάμπρος std08262@di.uoa.gr Ακαδημαικό Έτος 2016-2017

Θεωρία Αναδρομής 1η Σειρά Ασκήσεων

Άσκηση 2

Θα δείξουμε ότι το πρόβλημα είναι αποφάνσιμο κατασκευάζοντας μηχανή Turing που το αποφασίζει. Παρατηρούμε το εξής: οι διαμορφώσεις μιας μηχανής turing $M=(Q,\Sigma,\Gamma,q_0,q_{yes},q_{no})$ που η κεφαλή δεν περνάει από τη θέση n της ταινίας είναι πεπερασμένες. Συγκεκριμένα κάθε διαμόρφοση μπορεί να κωδικοποιηθεί ως (q,i,w) όπου q είναι η κατάσταση της μηχανής, i η θέση της κεφαλής και w η λέξη που περιέχει η ταινία. Αφού μετράμε τις καταστάσεις που η κεφαλή δεν φτάνει στη θέση n το μήκος της w είναι μικρότερο από n. Άρα όλες οι πιθανές διαφορετικές διαμορφώσεις της M είναι το πολύ $C=|Q|\cdot n\cdot |\Sigma|^n$. Αν λοιπόν τρέξουμε τη μηχανή M για περισσότερα από C βήματα έχουμε τρεις περιπτώσεις:

- 1. Θα περάσει η κεφαλή από τη θέση n
- 2. Θα τερματίσει η μηχανή χωρίς να περάσει η κεφαλή από τη θέση n
- 3. Μία διαμόρφωση θα επαναληφθεί.

Αν συμβεί το τρίτο ενδεχόμενο ο υπολογισμός δεν θα τερματίσει ποτέ αφού η Μηχανή θα επαναλαμβάνει τα ίδια configuration (ο υπολογισμός είναι ντετερμινιστικός) και η κεφαλή δεν θα περάσει ποτέ από τη θέση n αν δεν έχει ήδη περάσει.

Θα χρησιμοποιήσουμε την καθολική μηχανή Turing U για να προσωμοιώσουμε C+1 βήματα της M. Η μηχανή που θα κάνει την προσωμοίωση θα έχει δύο επιπλέον ταινίες από αυτές που χρειάζεται η U. Αρχικά στην μία επιπλέον ταινία εκτελοούμε n κινήσεις δεξιά και βάζουμε ένα ειδικό σύμβολο * σε αυτή τη θέση. Στην άλλη κρατάμε έναν δυαδικό μετρητή ξεκινόντας από 0.

Η μηχανή U προσωμοιώνει ένα ενα τα βήματα της . Σε κάθε βήμα που προσωμοιώνει κάνει τις εξής επιπλέον δουλειές: Κινεί την 1η επιπλέον κεφαλή ακριβώς όπως κινήται η κεφαλή της M, αυξάνει κατά 1 τον μετρητή, ελέγχει αν διάβασε το ειδικό σύμβολο * και αν ναι πηγαίνει στην κατάσταση αποδοχής και τέλος συγκρίνει τον μετρητή με την ποσότητα C και αν είναι μεγαλύτερος από αυτή πηγαίνει στην κατάσταση απόρριψης.

Άσκηση 4

Θα κατασκευάσουμε την αναδρομική γλώσσα C ώς τη γλώσσα που αποφασίζει μια μηχανή Turing (δηλαδή θα κατασκευάσουμε M_C και θα ορίσουμε $C=L(M_C)$. Η μηχανή M_C χρησιμοποιεί τις M_{coA} και M_{coB} που ημιαποφασίζουν τις $\overline{A}, \overline{B} \in RE$. Με είσοδο w Η M_C προσωμοιώνει "παράλληλα" (ένα βήμα την καθεμία) τις M_{coA} , M_{coB} ξεκινώντας από την M_{coA} . Αν η M_{coA} αποδεχτεί τότε η M_C αποδέχεται. Αν η M_{coB} αποδεχτεί τότε η M_C απορίπτει. Ισχύουν τα κάτωθι:

- $\overline{A} \cup \overline{B} = \Sigma^*$ γιατί αν δεν ίσχυε τότε για κάποιο x θα είχαμε ότι $x \notin \overline{A} \cup \overline{B} \Rightarrow x \in \overline{\overline{A} \cup \overline{B}} = A \cap B$ που είναι άτοπο από υπόθεση
- C ∈ REC γιατί αφού η ένωση είναι το Σ* όπως δείξαμε η παραπάνω μηχανή τερματίζει σε κάθε πιθανή είσοδο είτε σε αποδοχή είτε σε απόρριψη.
- $B \subseteq C$. Γιατί αν $x \in B$ η M_{coB} δεν θα τερματίσει αλλά θα τερματίσει η M_{coA} και θα αποδεχτεί οπότε η M_C αποδέχεται εκ κατασκευής
- $A\subseteq \overline{C}$. Γιατί αν $x\in A$ η M_{coA} δεν θα τερματίσει αλλά θα τερματίσει η M_{coB} και θα αποδεχτεί οπότε η M_C απορρίπτει εκ κατασκευής

Τελικά όλα τα παραπάνω δείχνουν ότι η C διαχωρίζει τις A, B.

Άσκηση 10

Θα κατασκευάσουμε μηχανή Turing M_f που να την υπολογίζει. Θεωρούμε ότι M_i υπολογίζει την φ_i . Με είσοδο n η μηχανή δουλεύει ως εξής: Σε μία ταινία κρατάει το μερικό αθροισμα ξεκινώντας από 0 και σε μία άλλη ταινία αρχικοποιεί έναν μετρητή σε 0 που μετράει επαναλήψεις. Στην i-οστή επανάληψη προσωμοιώνει τη λειτουργεία της M_i με είσοδο n και το αποτέλεσμα που παίρνει (αν φυσικά τερματίζει) το προσθέτει στο άθροισμα και πηγαίνει στον επόμενο γύρο. Το αποτέλεσμα είναι σωστό αφού αν $\varphi_1(n) \downarrow \dots, \varphi_n(n) \downarrow \eta$ μηχανή θα τερματίσει με το άθροισμα, αλλιώς θα κολλήσει όπως θα έπρεπε αφού σε αυτή τη περίπτωση η f δεν ορίζεται.

Άσκηση 11

- (\Rightarrow) Έστω L μη κενή αναδρομικά απαριθμίσημη γλώσσα. Τότε υπάρχει απαριθμιτής E που απαριθμεί τα στοιχεία της. Ορίζουμε f ως εξής: f(n)= το ι-οστό στοιχείο που τυπώνει ο E.
 - Η f είναι υπολογίσημη. Θα κατασκευάσουμε μηχανή Turing M_f που υπολογίζει την f. Η M_f λειτουργεί ως εξής: Η μηχανεί παίρνει σαν είσοδο n. Ξεκινάει και τρέχει τον E και κάθε φορά που αυτός πηγαίνει

στην κατάσταση εκτύπωσης η M_f αυξάνει έναν μετρητή και τον συγκρίνει με το n. Αν οι δύο τιμές είναι ίσες σταματάει τυπώνοντας το στοιχείο που έδωσε ο E.

• Η f είναι επί. Από τον ορισμό ισχύει ότι κάθε στοιχείο $x \in L$ κάποια στιγμή θα τυπωθεί από τον απαριθμιτή και συνεπώς κάθε τέτοιο στοιχείο έχει προεικόνα.

 (\Leftarrow) Έστω ότι υπάρχει $f:\mathbb{N}\to L$ που να είναι υπολογίσιμη και επί. Θα κατασκευάσουμε μηχανή Turing M_L που να ημιαποφασίζει την L. Έστω M_f η μηχανή που υπολογίζει την f. Η M_L δουλεύει ως εξής. Με είσοδο w προσωμοιώνει ένα βήμα της εκτέλεσης $M_f(1)$. Στη συνέχεια προσωμοιώνει 2 βήματα της εκτέλεσης $M_f(1)$ και $M_f(2)$ κ.ο.κ. (δηλαδή σε κάθε "γύρο" t προσωμοιώνει t βήματα των εκτελέσεων $M_f(i)$ για $i\in\{1,2,\ldots,t\}$. Όταν κάποια από τις εκτελέσεις $M_f(i)$ τελειώσει ελέγχει αν η έξοδός της εκτέλεσης είναι ίση με w. Αν είναι αποδέχεται αλλιώς συνεχίζει να εκτελείται κανονικά. Επειδή η f είναι επί κάθε στοιχείο της $x\in L$ έχει προεικόνα δηλαδή για κάποιο $n\in\mathbb{N}$ θα ισχύει ότι f(n)=x και συνεπώς η μηχανή για κάθε στοιχείο της γλώσσας σταματάει αποδεχόμενη.

Άσκηση 12

Διαχρίνουμε δύο περιπτώσεις. Αν $Dom(f)=\emptyset$ τότε $\forall n\in\mathbb{N}$ $f(n)=\uparrow$ και συνεπώς έχουμε ότι $Im(f)=\emptyset$ το οποίο σύνολο είναι αναδρομικό και αναγνωρίζεται από την μηχανή Turing με $q_{\alpha \alpha \gamma \kappa \gamma \dot{\alpha}}=q_{no}$.

Αν $Dom(f) \neq \emptyset$ τότε ως μη κενό υποσύνολο των φυσικών το Dom(f) έχει ελάχιστο στοιχείο, έστω n και έστω f(n) = m. Η f λοιπόν δεν ορίζεται για στοιχεία μικρότερα του n και επειδή είναι και φθίνουσα το m είναι το μέγιστο στοιχείο του Im(f). Αρα $Im(f) \subseteq \{1, 2, \ldots, m\}$ και συνεπώς είναι πεπερασμένο. Όμως κάθε πεπερασμένο σύνολο είναι αναδρομικό.

Για το δεύτερο κομμάτι θεωρούμε ότι $L\subseteq\mathbb{N}$ για να βγαίνει νόημα (το οποίο είναι ΟΚ αφού $\Sigma *$ και \mathbb{N} είναι ισομορφικά). Η απόδειξη του ζητούμενου είναι ακριβώς ίδια με παραπάνω, δηλαδή είτε η εικόνα των στοιχείων του L είναι το κενό σύνολο, είτε έχει όπως και πριν ελάχιστο στοιχείο.