Capstone 2 Report

Problem Statement

Used car market has always been frequently discussed as the prices and depreciation of used cars are very tricky for both sellers and buyers and there is a considerable amount of transaction cost. This project is dedicated to provide some insights on the pricing mechanism and help to reduce the information cost.

For both dealers/sellers and buyers, this model would provide a good reference on pricing the vehicle and price transparency, which could improve the market efficiency by reducing the information cost and simplify the decision making process.

Data Source

https://www.kaggle.com/lepchenkov/usedcarscatalog/data

Author: Kirill Lepchenkov

The dataset is collected from various web resources in order to explore the used cars market and try to build a model that effectively predicts the price of the car based on its parameters (both numerical and categorical)

The data is scraped in Belarus (western Europe) on the 2nd of December 2019.

Data Cleaning

The original dataset has 38531 entries and 30 columns, all of them are non-null but 10 of them are nan and 2 columns are float64, 18 columns are int64, and 10 columns are object.

Data Wrangling

Boolean columns were then converted to numerical values. For categorical columns with less than 10 distinct values, one hot encoding was applied and then high correlation columns were dropped. For categorical columns with high cardinality, target encoding and hashing encoding were applied to generate 2 versions of the data, and missing values were filled with mean after splitting training and testing data.

Exploratory Analysis

Some columns such as price and odometer value seem to have distribution patterns.

And some columns seem to be correlated: year produced and price seem to be positively correlated while odometer value and price seem to be negatively correlated, which is aligned with common sense on used cars.

From price's histogram and empirical cumulative distribution it looks like price is exponentially distributed, and the bootstrap test (n=1000) suggests so as well.

As for odometer value's histogram and empirical cumulative distribution, it seems to be gamma distributed.

And year produced's histogram, empirical cumulative distribution and the bootstrap test (n=1000) suggest it is log gamma distributed.

In-Depth Analysis

The 2 datasets (hashing encoding version and target encoding version) are split into training and test sets (test dataset size is 30% of the entire dataset) and fitted into various models which are then evaluated using 4 metrics: MSE, MAE, R2 score and explained variance score. The baseline for comparison is from fitting the data into a dummy model.

For target encoded data, I started with Bayesian models. Unfortunately I encountered some computation issues when trying ARD regression models and couldn't get any results. Bayesian Ridge models have good performance in general.

For hashing encoded data, I tried ensemble models first. Gradient Boost, XG Boost and Random Forest models all have better performance compared to Bayesian models with target encoded data, Random Forest seem to have slightly better performance than the other two ensemble methods.

Then I tried a few more ensemble models on target encoded data for comparison purposes. I fitted target encoded data into the ensemble models and did the same tuning as well, the models' performance improved and Random Forest still seems to be the better method.

A few dense network models were tried on both target encoded and hashing encoded datasets. Models with up to 3 Dense layer and 100 nodes were trained and in general models trained with target encoded data have better performance compared to those with hashing encoded data. However, ensemble and Bayesian methods have better performance over the network models.

Results

For target encoded data, all models perform better than the dummy model, Gradient Boost, Random Forest and XG Boost have the best performance out of all models listed, Bayesian Ridge and tuned Bayesian Ridge models are less accurate but still better than network models.

For hashing encoded data, one Gradient model with tuned hyperparameters has the same performance as the dummy model while other original ensemble models have the best performance out of all models listed. Bayesian models still seem to be better than network models.

All scores are listed below:

Model	Data	MSE	MAE	R2 Score	Explained Variance Score
Dummy	One hot encoding & target encoding	41555324.89972 137	4578.682299877 935	0.0	-9.359094948413 471e-05
BayesianRidge	One hot encoding & target encoding	9546128.604215 752	1952.243920030 1233	0.770259666684 8693	0.770257552828 8137
BayesianRidgeGridSearchMSE	One hot encoding & target encoding	9562581.185422 89	1953.761064464 0974	0.769864539202 2938	0.769861595847 1383
BayesianRidgeGridSearchMAE	One hot encoding & target encoding	9562581.185404 427	1953.761064258 2426	0.769864539201 0696	0.769861595847 5826
GradientBoost	One hot encoding & target encoding	3983567.320946 8764	1212.932900386 4452	0.904129388499 0883	0.904129250429 1913
RandomForest	One hot encoding & target encoding	3677942.577723 576	1090.922456944 0696	0.911486179583 577	0.911484585700 2014
XGBoost	One hot encoding & target encoding	3999238.239020 8724	1214.645776197 3081	0.903752432359 3867	0.903752105387 7816

VCDaast1CridSaarahMSE	One hat anadding 9	20574224 05220	2446 474002272	0.450696504500	0.212206244214
XGBoost1GridSearchMSE	One hot encoding & target encoding	28571334.85330 3522	3146.171982372 033	0.459686594599 07735	0.312386344214 2871
XGBoost1GridSearchMAE	One hot encoding & target encoding	28571334.85330 3522	3146.171982372 033	0.459686594599 07735	0.312386344214 2871
model1_1_100	One hot encoding & target encoding	14160433.22876 375	2517.182053211 087	0.671254795721 4745	0.659207128055 6949
model1_2_100	One hot encoding & target encoding	13795553.04985 5424	2340.337850864 5424	0.668416671948 1491	0.667988537640 8998
model1_2_50	One hot encoding & target encoding	14333917.26218 6868	2565.760145237 484	0.664791415436 3566	0.655031964695 1098
model1_2_150	One hot encoding & target encoding	14562651.90531 5619	2448.621141861 4043	0.668368205770 5136	0.649527109392 6137
model1_3_100	One hot encoding & target encoding	14035659.97521 5843	2390.780928099 7412	0.662781478010 5654	0.662209990661 0601
Dummy	One hot encoding & hashing encoding	41555324.89972 137	4578.682299877 935	0.0	-9.359094948413 471e-05
GradientBoost	One hot encoding & hashing encoding	5354689.928597 2575	1432.546683769 2136	0.871151712801 502	0.871131050183 4681
GradientBoostGridSearchMSE	One hot encoding & hashing encoding	41548320.14531 531	4578.231427053 105	0.000168554147 24414874	7.498937095795 633e-05
GradientBoostGridSearchMAE	One hot encoding & hashing encoding	41548320.14531 531	4578.231427053 105	0.000168554147 24414874	7.498937095795 633e-05
RandomForest	One hot encoding & hashing encoding	5093579.896415 042	1348.214270705 7683	0.877498887321 1101	0.877415069628 5863
RandomForestGridSearchMSE	One hot encoding & hashing encoding	12289288.39838 7972	2195.621060198 55	0.704247131708 7462	0.704239141572 9234
RandomForestGridSearchMAE	One hot encoding & hashing encoding	11529432.54513 8331	2114.398264404 9665	0.722528705652 7598	0.722526255696 4256
XGBoost	One hot encoding & hashing encoding	5382670.103059 661	1434.629779793 6065	0.870478153997 942	0.870457663722 8636
XGBoost2GridSearchMSE	One hot encoding & hashing encoding	29749674.55209 0026	3139.771340876 9123	0.429648131106 09135	0.284027764812 9351
XGBoost2GridSearchMAE	One hot encoding & hashing encoding	29749674.55209 0026	3139.771340876 9123	0.429648131106 09135	0.284027764812 9351
model2_1_100	One hot encoding & hashing encoding	33135927.04444 4196	4297.972246364 078	0.254692761439 5935	0.202532326548 10693
model2_2_100	One hot encoding & hashing encoding	32803207.80149 969	4186.972484155 358	0.231550479086 81137	0.210539733138 17298

From all models' scores (dummy models excluded) above, it is clear that ensemble methods have better performance especially with target encoding, Bayesian Ridge is also a good alternative, and networks models I tried are not the best options. In general models with target encoding perform better. Due to time and computation cost concerns I didn't tune each model very well and ARD models were not included in the results, it's possible that there are better encoding methods such as different combinations of the encoding methods used here and models such as other Bayesian models and might give better predictions with more efforts spent on tuning the hyperparameters.

If given limited time and computation power, I would suggest using Random Forest or XG Boost with one hot encoded and target encoded data, and update the model at least once a year and when prediction's scores fall close to a dummy model's prediction score. As for data collection, I suggest dropping the redundant or similar features such as engine type and if engine has gas, and maybe adding some new features such as if had major accident, if modified, times of being traded.

I believe with good quality data, proper implementation, the suggested model would perform effectively on reducing information cost in the used car market and promote market efficiency. This model can be used on mobile apps and websites for consumers and combined with offers from dealers or customer reviews of dealers to help consumers make better decisions with less efforts. It can also be used for dealers to automate some processes during the transaction to cut the cost and make the price more transparent to consumers. There are many more applications for this model that would generate economic and social benefits, and I hope more people would be interested in using and improving the model.