Estimation de variance dans les enquêtes de l'Insee : le *package* R gustave et ses applications

Martin CHEVALIER (Insee, DMS)

13^{ème} journées de méthodologie statistique Session 13 : Calcul de précision

Paris, 13 juin 2018

Estimation de variance dans les enquêtes de l'Insee

L'estimation de variance est une opération qui gagne en importance dans le processus de production d'une enquête :

- outil pour évaluer la qualité de l'information collectée susceptible d'influer sur sa diffusion :
- indicateur utilisé dans les rapports qualité mais aussi dans le nouveau règlement européen IESS (*Integrated european social statistics*) en discussion.

Remarque Cette présentation porte sur une composante parmi d'autres de l'imprécision associée à un processus d'enquête.

Cette contribution présente :

- ► la stratégie mise en œuvre à l'Insee pour mener à bien l'estimation de variance sur des enquêtes complexes;
- ▶ le *package* R gustave développé au sein du Département des méthodes statistiques (DMS).

Estimation de variance dans les enquêtes de l'Insee Plan de la présentation

Objectif : rendre le calcul de précision (plus) simple

Exemple d'applications de gustave à l'Insee

Principe de fonctionnement du package gustave

Objectif : rendre le calcul de précision (plus) simple

Objectif : rendre le calcul de précision (plus) simple Sources de complexité du calcul de précision

Plan de sondage

- algorithmes de tirage;
- tirages à plusieurs degrés;
- bases de sondage multiples.

Méthodes d'estimation

- correction de la non-réponse;
- calage sur marges.

Estimateurs

- linéarisation : ratio, quantiles, indicateurs de pauvreté, etc.;
- estimation sur des domaines.

Objectif : rendre le calcul de précision (plus) simple Première solution : le logiciel Poulpe

Poulpe (Programme Optimal et Universel pour la Livraison de la Précision des Enquêtes) est une macro SAS de calcul de précision présentée lors des 6ème JMS (1998) :

- estimateurs de variance s'appuyant sur les probabilités d'inclusion simple;
- modélisation générique du plan de sondage et des phases de redressement;
- modules de linéarisation intégrés.

La présente contribution s'appuie sur les travaux associés à Poulpe avec quelques différences notables :

- aucune restriction sur le type d'estimateur de variance (échantillon-maître Octopusse);
- simplification de la mise en œuvre du calcul pour le non-spécialiste.

Objectif : rendre le calcul de précision (plus) simple Nouvelle proposition (1) : procéder en deux étapes

Difficultés de l'estimation de variance en pratique :

- construire une modélisation méthodologiquement cohérente du plan de sondage et des redressements;
- disposer des données nécessaires pour les prendre en compte.

Proposition organisationnelle : bien distinguer deux étapes

- Méthodologue : analyse méthodologique, mobilisation de l'information auxiliaire, construction d'un programme d'estimation de variance raisonnablement exact;
- Responsable d'enquête, chargé(e) d'étude : utilisation du programme d'estimation dans le cadre d'études ou pour répondre à des obligations réglementaires.

Objectif : rendre le calcul de précision (plus) simple Nouvelle proposition (2) : le *package* R gustave

Conséquence : les programmes d'estimation de variance doivent donc

- être autonomes et aussi simples d'utilisation que possible;
- prendre en compte l'ensemble des éléments relatifs au calcul de précision (linéarisations, domaines, etc.);
- ▶ ne pas être trop complexes à développer ni à maintenir.

Proposition technique : package R Gustave : a User-oriented Statistical Toolkit for Analytical Variance Estimation

- ► Faciliter la mise en œuvre du calcul de précision par tout un chacun...
- ... en fournissant au ou à la méthodologue des outils dédiés.

Exemple d'applications de gustave à l'Insee

Exemple d'applications de gustave à l'Insee Le package gustave à l'Insee

Utilisé pour l'estimation de variance des enquêtes ménages périodiques : Enquête emploi en continu (EEC), dispositif Statistique sur les revenus et les conditions de vie (SRCV), Cadre de vie et sécurité (CVS), Loyers et charges.

Exemple Enquête emploi en continu

- panel de logements initialisé en 2009, tirage équilibré;
- correction de la non-réponse par calage en une étape;
- indicateurs standards : ratios (taux de chômage, etc.) ventilés par domaine.

Nota bene Les estimateurs ponctuels figurant sur les diapositives suivantes ne coïncident en général pas avec la diffusion officielle (champs de calcul différents, pas de désaisonnalisation, etc.).

Exemple d'applications de gustave à l'Insee Les fichiers de calcul de précision

Le *package* gustave permet de produire, pour chaque millésime d'une enquête (chaque trimestre pour l'EEC) un **fichier de données** R qui contient :

- les micro-données de l'enquête (table z pour l'EEC);
- les programmes d'estimation de variance spécifiques à l'enquête (fonction precisionEec() pour l'EEC);
- toute l'information auxiliaire nécessaire.

Pour mettre en œuvre l'estimation de variance, il suffit de charger ce fichier (par exemple pour le T2 2014) :

```
load("precisionEec142.RData")
```

Remarque Ces fichiers de calcul de précision sont susceptibles de contenir des informations auxiliaires réidentifiantes.

Exemple d'applications de gustave à l'Insee Code : Précision du taux de chômage au T2 2014

Nombre total de chômeurs (acteu %in% 2)

Taux de chômage

Exemple d'applications de gustave à l'Insee Code : Précision du taux de chômage au T2 2014

Taux de chômage des 50 ans et plus

Taux de chômage par région

```
precisionEec(z,
  ratio(acteu %in% 2, acteu %in% c(1, 2)),
  by = reg
)
```

```
## by est variance std cv
## 1 11 0.1003089 1.538408e-05 0.003922254 3.910175
## 2 21 0.1130015 1.068723e-04 0.010337904 9.148463
## 3 22 0.1220682 9.565600e-05 0.009780388 8.012235
```

Principe de fonctionnement du package gustave

Principe de fonctionnement du *package* gustave « Emballer » (*wrap*) la complexité

L'objectif du *package* gustave est de **préserver l'utilisateur final de la complexité** du processus d'estimation de la variance.

Idée centrale « Emballer » la fonction d'estimation de variance complexe dans une autre fonction (appelée « *wrapper* ») plus simple d'utilisation :

- ► fonction d'estimation de la variance : fonction spécifique à chaque enquête développée par le ou la méthodologue; → complexité méthodologique
- wrapper d'estimation de variance : fonction générique qui prend en charge des opérations systématiques (linéarisations, domaines), appelle la fonction de variance et affiche les résultats. → complexité informatique

Principe de fonctionnement du *package* gustave Apports du *package* gustave

La production d'un programme d'estimation de variance avec le package gustave suppose en général trois étapes pour le ou la méthodologue :

- 1. Élaborer la fonction de variance spécifique à l'enquête
 - → gustave propose des **fonctions optimisées** qui mettent en œuvre les estimateurs de variance standard.
- 2. Définir le wrapper de variance
 - → gustave **simplifie la production** de *wrappers* de variance faciles à utiliser et intégrant toute l'information auxiliaire nécessaire.
- 3. Définir des linéarisations ad hoc si nécessaire
 - → gustave permet l'**interaction** entre *wrappers* de variance et fonctions de linéarisation.

Principe de fonctionnement du *package* gustave Diffusion et perspectives

- ► Version 0.3.0 en ligne sur le CRAN
- Code source accessible sur github.com : https://github.com/martinchevalier/gustave
- Maintenance assurée par la division Sondages de l'Insee
- ► Fonctionnalités en développement :
 - création d'une fonction « prête-à-estimer » pour les cas les plus simples (SAS stratifié, repondération dans des GRH, calage) similaire à la macro SAS %everest;
 - intégration dans le package de linéarisations plus complexes.

Estimation de variance dans les enquêtes de l'Insee En guise de conclusion

Le Département des méthodes statistiques a mis en place une organisation pour industrialiser l'estimation de variance :

- processus systématisé et documenté;
- programmes simples d'utilisation et faciles à diffuser;
- fichiers d'estimation de variance résilients.

Le développement du *package* gustave constitue un **investissement important** :

- présenté en workshop européen;
- utilisé pour vérifier le respect des objectifs de précision prévus par le réglement IESS;
- qui inscrit avec d'autres les travaux du DMS et de l'Insee dans l'univers du logiciel libre.

Estimation de variance dans les enquêtes de l'Insee

Merci de votre attention!

Martin Chevalier martin.chevalier@insee.fr https://github.com/martinchevalier/gustave