Car prices predetor

This report summarizes the work carried out on the **Car Price Prediction** project using machine learning techniques.

The main goal of this project was to **build a predictive model** capable of estimating the price of a car based on multiple features such as the manufacturer, year of production, fuel type, transmission, and other specifications.

Dataset Description & Exploration

The dataset, provided in a CSV file, contained a large number of car listings with multiple attributes.

Key columns included:

- Company Name: (e.g., Hyundai, Toyota, BMW)
- Model: Car model name or code
- Year of Manufacture: The production year of the car
- Fuel Type: Petrol, Diesel, Electric, Hybrid
- Transmission Type: Manual, Automatic, etc.
- Engine Capacity / Battery Size: Represented in CC or kWh
- Price: The target variable (car price in the market)

Exploration steps performed:

- Used df.head(), df.info(), and df.describe() to understand data structure and summary statistics.
- Inspected unique values in categorical fields like fuel type and transmission.
- Counted missing values with df.isnull().sum().

Data Cleaning & Preprocessing

Data cleaning was crucial for ensuring the model received high-quality inputs.

Steps performed:

- Handling missing values:
 - o Removed rows with critical missing values (like missing price or engine size).
 - o Filled some non-critical missing entries with mean or mode values.
- Standardizing categorical data:
 - Normalized strings (e.g., "Petrol", "petrol", "PETROL" → "Petrol").
- Converting features into usable formats:
 - o Converted "CC" or "kWh" values from text to numeric.
 - Encoded categorical variables (Fuel Type, Transmission) into numeric codes for ML algorithms.
- Outlier detection & treatment:
 - Removed extreme unrealistic entries (e.g., cars priced at \$0 or absurdly high).
- Feature scaling:
 - Applied scaling to numerical values (using StandardScaler) to improve model performance.

Exploratory Data Analysis (EDA)

Visual analysis was performed to gain insights into the dataset:

Techniques & graphs used:

- Bar charts: Count of cars by manufacturer. (Showed which brands dominate the dataset e.g., Hyundai, Toyota).
- Pie charts: Distribution of fuel types (Petrol was most common).
- Box plots: Price ranges per brand to identify expensive vs. affordable manufacturers.
- Heatmap (Correlation Matrix): Showed how strongly numerical features (Year, Engine Size)
 correlate with Price.

Key insights from EDA:

- Newer cars generally had higher prices.
- Engine capacity had a positive correlation with price.
- Petrol cars were more frequent in the dataset than diesel or hybrid cars.

Model Building

The machine learning phase consisted of **training multiple regression algorithms** and comparing their performance.

Steps taken:

1. Data Splitting:

Dataset was split into 80% training and 20% testing using train_test_split().

2. Models tested:

- o **Linear Regression** Baseline model for simple performance comparison.
- o Random Forest Regressor Good for handling mixed feature types.
- Gradient Boosting Regressor (GBR) An ensemble model that builds strong predictions by combining multiple weak learners.

3. Hyperparameter tuning (basic):

 For GBR, experimented with parameters like n_estimators, learning_rate, and max_depth to find the best combination.

Best Model:

Gradient Boosting Regressor consistently produced the highest accuracy.

Model Evaluation

After training, models were evaluated using R² score and Mean Absolute Error (MAE).

Results for Gradient Boosting Regressor:

• Training Accuracy: ~88.35%

Test Accuracy: ~94.98%

• MAE: Low (indicating predictions were close to actual prices).

This performance showed that the model generalized well — it didn't overfit on training data and performed well on unseen data.