

C1 : Modélisation des systèmes pluritechniques C1-1 : Introduction aux Sciences Industrielles de l'Ingénieur et à l'ingénierie systèmes

Émilien DURIF

Lycée La Martinière Monplaisir Lyon Classe de MPSI 4 Septembre 2018

Plan

- Métiers de l'ingénieur
 - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- 2 Cursus de formation pour être ingénieur
 - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- L'ingénierie système
 - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

- Métiers de l'ingénieur
 - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

Émilien DURIE

Contexte du travail dans l'entreprise

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- ouvriers;
- techniciens:
- agents des ressources humaines;
- gestionnaires
- commerciaux
- a incónioure

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- Ouvileis,
- techniciens;
- agents des ressources humaines.
- gestionnaires;
- commerciaux
- ingénieurs.

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- ouvriers;
 - techniciens:
 - agents des ressources humaines.
 - gestionnaires :
- commerciaux
- ingénieurs.

Contexte du travail dans l'entreprise

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- ouvriers;
- techniciens:
- agents des ressources humaines:
- gestionnaires :
- commerciaux
- ingénieurs.

Contexte du travail dans l'entreprise

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- ouvriers;
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux
- ingénieurs.

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- ouvriers;
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux
- ingénieurs.

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

Différentes fonctions au sein d'une entreprise

- ouvriers;
 - techniciens:
 - agents des ressources humaines;
 - gestionnaires;
 - commerciaux:
 - ingénieurs

Contexte du travail dans l'entreprise

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de clients.

Différentes fonctions au sein d'une entreprise

- ouvriers:
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux:
- ingénieurs.

Émilien DURIE

- L'ensemble de ces employés forment une équipe et mettent à disposition leurs compétences en échange d'un salaire pour concevoir, réaliser et mettre en vente le produit dans le but d'un retour d'investissement qui assure la pérennité de l'entreprise mais aussi son évolution (innovation de produits et développement des marchés).
- On l'aura compris tout ceci est possible s'il existe au moins un client qui éprouve de l'intérêt pour le produit proposé.

client

Le client est l'entité qui achète le produit (le client peut être une entreprise). Pour un seul client, une entreprise peut être en concurrence avec une autre c'est pourquoi il est nécessaire d'identifier avec précision les attentes et besoins de ce dernier.

Contexte du travail dans l'entreprise

- L'ensemble de ces employés forment une équipe et mettent à disposition leurs compétences en échange d'un salaire pour concevoir, réaliser et mettre en vente le produit dans le but d'un retour d'investissement qui assure la pérennité de l'entreprise mais aussi son évolution (innovation de produits et développement des marchés).
- On l'aura compris tout ceci est possible s'il existe au moins un client qui éprouve de l'intérêt pour le produit proposé.

client

Le client est l'entité qui achète le produit (le client peut être une entreprise). Pour un seul client, une entreprise peut être en concurrence avec une autre c'est pourquoi il est nécessaire d'identifier avec précision les attentes et besoins de ce dernier.

Contexte du travail dans l'entreprise

- L'ensemble de ces employés forment une équipe et mettent à disposition leurs compétences en échange d'un salaire pour concevoir, réaliser et mettre en vente le produit dans le but d'un retour d'investissement qui assure la pérennité de l'entreprise mais aussi son évolution (innovation de produits et développement des marchés).
- On l'aura compris tout ceci est possible s'il existe au moins un client qui éprouve de l'intérêt pour le produit proposé.

client

Le client est l'entité qui achète le **produit** (le client peut être une entreprise). Pour un seul client, une entreprise peut être en concurrence avec une autre c'est pourquoi il est nécessaire d'identifier avec précision les **attentes et besoins** de ce dernier.

Rôle de l'ingénieur

- Définir, piloter et garantir la réussite du produit en mettant en oeuvre les méthodes permettant d'assurer que le besoin du client soit satisfait.
- Modéliser les attentes du client. Ce sera le rôle du cahier des charges fonctionnel (CdCF) qui permettra alors de définir et chiffrer les attentes du client.

Rôle de l'ingénieur

- Définir, piloter et garantir la réussite du produit en mettant en oeuvre les méthodes permettant d'assurer que le besoin du client soit satisfait.
- Modéliser les attentes du client. Ce sera le rôle du cahier des charges fonctionnel (CdCF) qui permettra alors de définir et chiffrer les attentes du client.

- Sortez vos Téléphones portables
- Télécharger l'application "SOCRATIVE STUDENT"
- Ou taper dans google "SOCRATIVE STUDENT"
- Saisir le nom de la "ROOM" : DURIF
- Saisir un PSEUDO

Émilien DURIE

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie;
- finance:
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

- a ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- a ingénieur commercial

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique ;
- électronique;
- chimie;
- optique;
- économie;
- finance:
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

- e ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- a ingénieur commercial:

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- a ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- ingénieur produit
- ingénieur en bureau d'étudee
- ingénieur en recherche et développement
- a ingénieur commercial :

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Les différentes formes du métier d'ingénieur

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- a ingénieur commercial ·

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement.
- a ingénieur commercial ·

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Les différentes formes du métier d'ingénieur

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Ingenieur commercial;

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique ;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

- ingénieur produit :
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie;
- finance:
- informatique;
- biologie;
- agronomie;
- etc..

Différents types de fonctions

- ingénieur produit :
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- ingénieur commercial:

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

o ingénieur produit :

• ingénieur en bureau d'étude

• ingénieur en recherche et développement

• ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- maître d'oeuvre;
- ingénieur produit ;
- o ingénieur en hureau d'étude ·
- ingénieur en recherche et développement
- a ingénieur commercial:

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- maître d'oeuvre;
- ingénieur produit ;
- o ingénieur en bureau d'étude :
- o ingénieur en recherche et développement :
- ingénieur commercial

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Les différentes formes du métier d'ingénieur

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- maître d'oeuvre;
- ingénieur produit;
- o ingénieur en bureau d'étude :
- ingénieur en recherche et développement
- ingénieur commercial

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- maître d'oeuvre;
- ingénieur produit ;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement :
- ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc...

Différents types de fonctions

- maître d'oeuvre;
- ingénieur produit ;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement;
- ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique :
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

- maître d'oeuvre :
- ingénieur produit;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement;
- ingénieur commercial;

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique :
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc

Différents types de fonctions

- maître d'oeuvre :
- ingénieur produit;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement;
- ingénieur commercial;

Image 1

Image 3

Image 3

Image 4

Image 4

Plan

- Métiers de l'ingénieur
 - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- Cursus de formation pour être ingénieur
 - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- L'ingénierie système
 - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

Déroulement du cursus en CPGE

En MPSI (Mathématiques Physique Sciences de l'Ingénieur) l'organisation des sciences de l'ingénieur se découpe en deux semestres avec deux volumes horaires hebdomadaires différents

- S1 : 1h de cours + 1h de TD par demi-classe;
- S2: 1h de cours + 1h de TD par demi-classe + 2h de TP par tiers de classe (maxi 18).

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation ;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques:
- etc ...

Émilien DURIE

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques:
- etc

Émilien DURIE

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;

• etc ...

Émilien DURIE

Ce qu'on attend de vous durant la formation en CPGE est le développement d'un certain nombre de compétences qui sont exigibles pour un ingénieur :

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation ;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - a 1h de Travaux Dirigés (TD)
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaine
 - (seulement au S2)
 - A plances de préparation à chaque fois sur la finance de synthèse avec écollistique à l'actual de l'actual de
 - présentation format type poser-point de 10 min (per binôme ou trinôme).

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cour
 - 1h de Travaux Dirigés (TD)
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2):
 - 4 séances de préparation à chaque fois sur un système différent :
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une
 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une

Émilien DURIE 13/27

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :
 - 4 séances de préparation à chaque fois sur un système différent;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une
 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours ;
 - 1h de Travaux Dirigés (TD);

Émilien DURIE

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours ;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :
 - 4 séances de préparation à chaque fois sur un système différent
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2):
 - 4 séances de préparation à chaque fois sur un système différent;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

Émilien DURIF 13/2:

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours ;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :
 - 4 séances de préparation à chaque fois sur un système différent ;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux ;
- Énergie;
- Logistique

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Transports;

Émilien DURIF

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;

Émilien DURIF

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages
- Sciences des matériaux;
- Énergie ;
- Logistique

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;
- Logistique

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux
- Énergie;
- Logistique

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Energie;
- Logistique

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;

Émilien DURIF

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;
- Logistique.

Principales débouchées

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie ;
- Logistique.

Remarque

Le cursus en CPGE vous permet également d'accéder à d'autres métiers que celui d'ingénieur, tel que :

- enseignant;
- chercheur;
- enseignant/chercheur.

Quelques conseils pour l'année scolaire

organisation du travail

Quelques conseils pour l'année scolaire

Soigner sa santé

www.mangerbouger.fr

Quelques conseils pour l'année scolaire

Soigner sa santé

Cycle 1	Modélisation des systèmes pluritechniques	
Cycle 2	Modélisation des systèmes asservis	
Cycle 3	Analyse temporelle des systèmes asservis	
Cycle 4	Modélisation cinématiques des systèmes composés de chaines de solides	
Cycle 5	Analyse des performances cinématiques des systèmes composés de chaines de solides	
Cycle 6	Analyse fréquentielle des systèmes asservis	
Cycle 7	e 7 Modélisation multiphysique	
Cycle 8	8 Modélisation des performances statiques des systèmes	
Cycle 9	Modélisation de la chaine d'information des systèmes	

- Contexte du travail dans l'entreprise
- Rôle de l'ingénieur
- Les différentes formes du métier d'ingénieur

- Déroulement du cursus en CPGE
- Compétences visées
- Organisation en CPGE
- Principales débouchées
- Quelques conseils pour l'année scolaire
- Les cycles en MPSI

- Définitions
- Spécification du besoin
- Triptyque "système souhaité-réel-simulé"
- Cycle de vie d'un système
- Processus du conception de produits complexes

Émilien DURIE

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Remarque: système complexe

- Un système est dit complexe lorsque les inter-relations liant les composants sont multiples, interdépendantes et bouclées :
- le comportement global n'est donc pas directement prévisible à partir des comportements élémentaires des composants.

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Émilien DURIE 18/27

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Remarque : système complexe

- Un système est dit complexe lorsque les inter-relations liant les composants sont multiples, interdépendantes et bouclées :
- le comportement global n'est donc pas directement prévisible à partir des comportements élémentaires des composants.

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Remarque: système complexe

- Un système est dit complexe lorsque les inter-relations liant les composants sont multiples, interdépendantes et bouclées :
- le comportement global n'est donc pas directement prévisible à partir des comportements élémentaires des composants.

Émilien DURIE 18/27

Données du Standish Group :

Données du Standish Group:

Données du Standish Group :

Trois principales causes du non-aboutissement des projets :

- au manque de prise en compte des utilisateurs ;
- aux exigences et spécifications incomplètes;
- aux changements des exigences et spécifications au cours de la conception.

Émilien DURIE 20/27

Trois principales causes du non-aboutissement des projets :

- au manque de prise en compte des utilisateurs;
- aux exigences et spécifications incomplètes;
- aux changements des exigences et spécifications au cours de la conception.

Trois principales causes du non-aboutissement des projets :

- au manque de prise en compte des utilisateurs;
- aux exigences et spécifications incomplètes;
- aux changements des exigences et spécifications au cours de la conception.

(1993-1997) : cabine téléphonique portable 47000 abonnées au lieu des

Émilien DURIF

• Bi-bop (1993-1997) : cabine téléphonique portable 47000 abonnées au lieu des 500000 espérées;

Émilien DURIF

Q l'aérotrain (1957-1977): Un train sur coussin d'air, un futur qui n'a jamais vu le jour d'autant plus avec l'arrivée du TGV:

 l'aérotrain (1957-1977): Un train sur coussin d'air, un futur qui n'a jamais vu le jour d'autant plus avec l'arrivée du TGV;

1 trottoire roulant rapide de Montparnasse (2002-2009);

1 trottoire roulant rapide de Montparnasse (2002-2009);

4 le TO7 (1982-1984) : premier ordinateur grand public commercialisé par

Émilien DURIF

 le T07 (1982-1984): premier ordinateur grand public commercialisé par Thomson, plusieurs écoles sont équipées d'ordinateurs;

5 Avantime (2001-2003), échec automobile.

Émilien DURIF

5 Avantime (2001-2003), échec automobile.

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

En **Ingénierie Système**, la définition du système comporte

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

En **Ingénierie Système**, la définition du système comporte

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

En Ingénierie Système, la définition du système comporte

- Celle de ses sous-systèmes et constituants (matériels, logiciels, organisations et compétences humaines) et de leurs interfaces, sièges des interactions recherchées
- Celles des processus de leurs cycles de vie permettant de les concevoir, produire vérifier, distribuer, déployer, exploiter, maintenir en condition opérationnelle et retirer du service, et donc des produits contributeurs nécessaires à ces processus

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

En Ingénierie Système, la définition du système comporte

- Celle de ses sous-systèmes et constituants (matériels, logiciels, organisations et compétences humaines) et de leurs interfaces, sièges des interactions recherchées.
- Celles des processus de leurs cycles de vie permettant de les concevoir, produire, vérifier, distribuer, déployer, exploiter, maintenir en condition opérationnelle et retirer du service, et donc des produits contributeurs nécessaires à ces processus

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

En Ingénierie Système, la définition du système comporte

- Celle de ses sous-systèmes et constituants (matériels, logiciels, organisations et compétences humaines) et de leurs interfaces, sièges des interactions recherchées.
- Celles des processus de leurs cycles de vie permettant de les concevoir, produire, vérifier, distribuer, déployer, exploiter, maintenir en condition opérationnelle et retirer du service, et donc des produits contributeurs nécessaires à ces processus.

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits , les

Émilien DURIE

Spécification du besoin

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits, les critères de performances et leurs niveaux associés. Ce document doit être le plus exhaustif possible.

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits, les critères de performances et leurs niveaux associés. Ce document doit être le plus exhaustif possible.

Expression 1 du besoin	Critère 1	Valeur(s) 1
Expression 2 du besoin	Critère 2	Valeur(s) 2

Spécification du besoin

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits , les critères de performances et leurs niveaux associés. Ce document doit être le plus exhaustif possible.

	Expressions du besoin	Critères	Valeurs
	Quantité de café	Volume V	50 <i>cl</i>
	Qualité de café	Goût, odeur, couleur	Non détectable
ĺ	Chaleur du café	Température T	86° C − 96° C

Émilien DURIE

Remarque : acteurs de la définition du besoin

Selon le type de produit à concevoir : différents types de personnes pour concevoir le cahier des charges :

- ullet cafetière à capsule (type Nespresso) : produit Marketing o résultats d'enquêtes ;
- turbo-réacteur d'un gros porteur (ie Airbus A380) : haute technicité → ingénieurs;
- véhicule de tourisme (ie Renault Clio) : produit mixte → marketing et ingénieur

Spécification du besoin

Remarque : acteurs de la définition du besoin

Selon le type de produit à concevoir : différents types de personnes pour concevoir le cahier des charges :

- cafetière à capsule (type Nespresso) : produit Marketing → résultats d'enquêtes;
- turbo-réacteur d'un gros porteur (ie Airbus A380) : haute technicité → ingénieurs :
- véhicule de tourisme (ie Renault Clio) : produit mixte → marketing et ingénieur

Spécification du besoin

Remarque : acteurs de la définition du besoin

Selon le type de produit à concevoir : différents types de personnes pour concevoir le cahier des charges :

- cafetière à capsule (type Nespresso) : produit Marketing → résultats d'enquêtes;
- turbo-réacteur d'un gros porteur (ie Airbus A380) : haute technicité → ingénieurs;
- ullet véhicule de tourisme (ie Renault Clio) : produit mixte o marketing et ingénieurs.

Triptyque "système souhaité-réel-simulé"

Triptyque "système souhaité-réel-simulé"

Triptyque "système souhaité-réel-simulé"

Cycle de vie d'un système

La notion de "cycle de vie" est indissociable d'un système. Elle exprime les différentes étapes, appelées phases de vie, qui vont de l'analyse du besoin jusqu'à l'élimination et/ou le recyclage de ses constituants. Les phases de vie rassemblent les différents cas d'utilisation du produit parmi lesquels les phases de réalisation, d'utilisation auprès du client, de maintenance et de recyclage.

Processus de conception

- L'Ingénierie Système est la démarche de conception des systèmes complexes en entreprise.
- Le cycle de conception en "V" est l'un des cycles les plus utilisés dans l'ingénierie système puisque, celui-ci ne nécessite pas forcément qu'une activité d conception soit complètement finalisée pour qu'une autre commence.
- Cette démarche permet de diviser le système complexe en sous-composants. Le phases de validation sont donc ici primordiales pour valider la conception finale.
 Elles sont suivies d'itérations (modification de paramètres) si elles sont négatives

Processus de conception

- L'Ingénierie Système est la démarche de conception des systèmes complexes en entreprise.
- Le cycle de conception en "V" est l'un des cycles les plus utilisés dans l'ingénierie système puisque, celui-ci ne nécessite pas forcément qu'une activité de conception soit complètement finalisée pour qu'une autre commence.
- Cette démarche permet de diviser le système complexe en sous-composants. Le phases de validation sont donc ici primordiales pour valider la conception finale.
 Elles sont suivies d'itérations (modification de paramètres) si elles sont négatives

Processus de conception

- L'Ingénierie Système est la démarche de conception des systèmes complexes en entreprise.
- Le cycle de conception en "V" est l'un des cycles les plus utilisés dans l'ingénierie système puisque, celui-ci ne nécessite pas forcément qu'une activité de conception soit complètement finalisée pour qu'une autre commence.
- Cette démarche permet de diviser le système complexe en sous-composants. Les phases de validation sont donc ici primordiales pour valider la conception finale.
 Elles sont suivies d'itérations (modification de paramètres) si elles sont négatives.

