Workshop Autonomous Database for Developers (JavaScript/NodeJS)

Contents

Introdução ao Autonomous Database	1
Provisionamento do ambiente	
Provisionamento de Banco de Dados	2
Provisionamento de Rede	5
Provisionamento de Instância	7
Deploy da aplicação	8
Configuração da Instância	8
Configuração de Banco de Dados	10
Configuração de Backend	12
Configuração de Frontend	12
Festes	13
Executando teste de conexão e revisando o código	13
Executando teste de JSON e revisando o código	14
Executando teste de SOL e revisando o código	16

Introdução ao Autonomous Database

Oracle redefine o gerenciamento de dados com o primeiro banco de dados autônomo do mundo. O Autonomous Database Cloud elimina a complexidade, a probabilidade de erro humano e o gerenciamento manual, ajudando a garantir uma maior confiabilidade, segurança, além de uma maior eficiência operacional pelo menor custo.

Autonomous Vision: Effortless, Limitless, Unbreakable Data Cloud

Para o desenvolvedor, o Autonomous Database simplifica o acesso ao banco e traduz, em a uma linguagem mais acessível, todas as vantagens de um banco de dados Oracle.

Neste Workshop veremos como é provisionar uma infraestrutura completa, onde serão executadas tarefas de criação de infraestrutura, de banco de dados, e o deploy de uma aplicação com duas formas de acesso ao Banco de Dados (JSON, e SQL), em uma instância na Oracle Cloud Infraestructure(OCI).

Provisionamento do ambiente

Neste passo vamos provisionar o ambiente necessário para o workshop.

Ferramentas como WINSCP e Putty serão utilizadas neste workshop, suas instalações não estão cobertas neste documento e suas funções podem ser substituidas por outro metodo a sua escolha.

Provisionamento de Banco de Dados

O provisionamento do Autonomous Database pode ser feito de diversas formas, para esse workshop utilizaremos a UI da Oracle Cloud Infraestructure (OCI).

- 1. Acesse: https://cloud.oracle.com
- 2. No canto superior direito clique em 🎍 Sign In
- 3. Digite o nome da sua instância e clique em next

4.Digite seu email, e sua senha e clique em sign in

- 5. Clique no menu localizado no canto superior esquerdo
- 6. Na aba Serviços, clique em Autonomous Data Warehouse

- 7. No canto esquerdo inferior selecione, na sessão Compartment selecione o compartimento com final (root)
- 8. No canto esquerdo inferior, na sessão Filters selecione Transaction Processing

9. Clique em

Create Autonomous Database

10. Preencha o formulário com as seguintes informações:

Compartment	Mantenha o valor default
Display Name	ATPFORDEV
Database Name	ATPFORDEV
Workload Type	Transaction Processing
Deployment Type	Serverless
CPU Core Count	1
Storage	1
Password	Oracle123456
License	License Included

- 11. Clique em Create Autonomous Database
- 12. Aguarde o provisionamento (3min aprox.)

13. Clique em

14. Faça o download das credenciais de acesso (Wallet)

Download Client Credentials (Wallet)	
To download your client credentials, click Download, and supply a password for the wallet.	
Download	

15. Insira a senha Oracle123456

Download Wallet	help close
Database connections to your Autonomous Database use a secure connection. The wallet file will be required to and tools to access Autonomous Database.	configure your database clients
Please create a password for this wallet. Some database clients will require that you provide both the wallet and database (other clients will auto-login using the wallet without a password).	password to connect to your
PASSWORD	
CONFIRM PASSWORD	

- 16. Salve o arquivo em uma pasta. (Não é necessário descompacta-lo).
- 17. Acesse a console do serviço clicando em → Service Console
- 18. No canto esquerdo, clique em Development

19. Clique em SQL Developer Web

20. Acesse utilizando o Usuario: admin a Senha: Oracle123456

21. Mantenha a aba do SQL Developer Web aberta, voltaremos a ela nos próximos passo.

Mais informações sobre o provisionamento e configuração da Base de dados podem ser encontradas em: https://docs.oracle.com/en/database/autonomous-database-cloud-services.html

Provisionamento de Rede

- 1. Retorne a console da Oracle Cloud Infraestructure (OCI). (Repita os passos de 1 a 6 do Provisionamento de Banco de Dados se caso necessário)
- 2. No canto superior esquerdo, acesse o menu
- 3. Clique em Networking
- 4. No canto esquerdo, na sessão Networking, selecione Virtual Cloud Network (VCN)

- 5. Clique em
- 6. Preencha o formulário de criação da seguinte forma:

Name	<qualquer nome=""></qualquer>
Compartment	(root)

Selecione a Opção:

Create virtual cloud network plus related resources

- 7. Clique em Create Virtual Cloud Network
- 8. Aguarde o provisionamento (< 1 min aprox.)

9. No canto inferior esquerdo, na sessão Resources, clique em Security Lists

Add Ingress Rules

10. No canto inferior central, clique em Default Security List <nome da sua vcn>

- 11. Clique em
- 12. Preencha os campos da seguinte forma para abrir as portas necessárias para esse workshop.

13. Clique em Add Ingress Rules

Mais informações sobre o provisionamento e configuração da Virtual Cloud Network podem ser encontradas em: https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/creatingnetwork.htm

Provisionamento de Instância

- 1. Retorne a console da Oracle Cloud Infraestructure (OCI). (Repita os passos de 1 a 6 do Provisionamento de Banco de Dados se caso <u>nec</u>essário)
- 2. No canto superior esquerdo, acesse o menu
- 3. Clique em Compute >
- 4. No canto esquerdo clique em Instances

- 5. Clique em
- 6. Preencha o formulário com as seguintes informações:

Instance Name	<nome a="" escolha="" sua=""></nome>
Avaiability Zone	AD 1, AD 2, ou AD 3
Sistema Operacional	Oracle Linux 7.6
Instance Type	Virtual Machine
Instance Shape	VM.Standard.2.1

7. SSH Key:

Para este exercicio será necessario gerar um par de chave publica/privada para acessar a instância. Siga este passo-a-passo para gera-las utilizando o Putty:

https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/creatingkeys.htm#

8. Realize o upload de sua chave pública .pub

- 9. Na sessão de Configure networking selecione a Virtual Cloud Network criada no exercício Provisionamento de Rede
- 10. Clique em Show Advanced Options $\frac{32}{32}$ Show Advanced Options
- 11. Clique em Create
- 12. Aguarde o provisionamento da instância. (<3min aprox.)

- 13. No canto inferior esquerdo, na sessão Resources clique em Console Connections
- 14. Clique em Create Console Connection

15. Copie/Faça o Upload da sua chave pública (.pub) e clique em

Mais informações sobre o provisionamento e configuração de Instâncias podem ser encontradas em:
https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/creatingnetwork.htm

Deploy da aplicação

Neste passo vamos configurar o ambiente e fazer o deploy da aplicação.

Configuração da Instância

- 1. Na console de sua instância copie a informação de IP Publico Publico
- 2. Acesse o PuTTY em seu desktop

3. Preencha o campo de Host Name com a seguinte informação:

ŀ	Basic options for your PuTTY	session
Specify the	destination you want to con	nect to
Host Name	e (or IP address)	Port
opc@ <ip< td=""><td>oublico de sua instacia></td><td>22</td></ip<>	oublico de sua instacia>	22

4. No canto esquerdo, expanda a sessão de Connection>SSH, e clique em Auth

•	•
Connection	
- Data	
Proxy	Α .
-Telnet	
Rlogin	8
SSH	31
- Kex	
- Host keys	
Cipher	
Auth	
-ПΥ	

5. Na sessão Authentication Parameters, procure pelo arquivo de sua chave privada (.ppk)

Proxy	Authentication parameters
- Telnet - Rlogin ∃ SSH - Kex	Allow agent forwarding Allow attempted changes of username in SSH-2 Private key file for authentication:
- Host keys	C:\Users\galves\Desktop\rsakey.ppk Browse
- Cipher ⊞ Auth	

6. No canto esquerdo, clique em Session

Connection	on type:	Rlogin	● SSH	Serial
Load, save	or delete a	stored sess	ion	
Saved Se	ssions			
workshop)			
		Open		

7.

PASSO

OPCIONAL -Salve sua sessão, colocando um nome em Saved Sessions, e clicando em

Save

- 8. Clique em Open para iniciar a sessão
- 9. Clique em Yes para adicionar a chave em suas chaves de segurança

10. Entre em modo root usando o comando

sudo su

11. Atualize os pacotes com o comando:

yum update -y

Este passo pode levar alguns minutos

12. Instale o git:

yum install -y git

13. Crie um diretorio para desenvolvimento, neste caso usarei o diretorio /home/dev criado com o comando:

mkdir /home/dev

cd /home/dev

14. Clone o repositorio com a aplicação que utilizaremos neste workshop usando o comando:

git clone https://github.com/gustavogaspar/workshops.git

15. Altere as permissões do arquivo /workshops/instancePrep.sh

chmod 775 workshops/instancePrep.sh

16. Execute o script de configuração da instância:

source workshops/instancePrep.sh

17. Acesse a pasta /workshop/lib

cd /workshop/lib

18. Instale o arquivo do Oracle Database Instant Client 19.x com o comando:

yum install -y oracle-instantclient19.3-basic-19.3.0.0.0-1.x86_64.rpm

Configuração de Banco de Dados

1. Abra a ferramenta WINSCP em seu Desktop

2. Preencha conforme imagem abaixo, e clique em Advanced

SFTP	~
Host name:	Port number:
opc@ <ip da="" instanc<="" sua="" th=""><th>ia> 22 🕏</th></ip>	ia> 22 🕏
User name:	Password:

3. Clique em SSH>Authentication

4. Carregue sua chave privada (.ppk) no campo Authentication Parameters

- 5. Clique em OK
- 6. Clique em □Login |▼

7. Clique em Yes para aceitar o certificado

- 8. Selecione o arquivo (.zip) de Wallet coletado nos passos 14 e 15 da sessão de Provisionamento de Banco de Dados.
- 9. Clique e arraste para o canto direito da aplicação

- 10. Feche a ferramenta WINSCP
- Acesse a instância novamente utilizando a ferramenta PuTTY. Passos 1 a 7 da sessão de Configuração da Instância
- 12. Copie o arquivo de Wallet para a pasta de administrador criada no passo 13:

cp /home/opc/<nome da Wallet> /usr/lib/oracle/19.3/client64/lib/network/admin/

13. Extraia os arquivos com os comando abaixo:

cd /usr/lib/oracle/19.3/client64/lib/network/admin/

unzip <<mark>nome da Walle</mark>t>

14. Inicie o serviço com os comandos:

sh -c "echo /usr/lib/oracle/19.3/client64/lib > /etc/ld.so.conf.d/oracle-instantclient.conf"

ldconfig

15. Retorne ao diretorio de desenvolvimento criado no passo 14 da sessão de Configuração de Instância, neste caso:

Configuração de Backend

- Acesse a instância novamente utilizando a ferramenta PuTTY. Passos 1 a 7 da sessão de Configuração da Instância
- 2. Acesse o modo root com o comando:

sudo su

3. Acesse o diretorio de desenvolvimento criado no passo 14 da sessão de Configuração de Instância, neste caso:

cd /home/dev

4. Acesse a pasta backend dentro do projeto workshop e instale os pacotes necessarios usando os comandos abaixo:

cd workshops/backend/

npm install

5. Altere o arquivo de dbconnect.js conforme a configuração do seu banco:

vim src/dbconnect.js

6. Ao abrir o arquivo pressione a tecla "i" do teclado, para entrar no modo de inserção, altere o codigo com as informações do seu Banco de dados criado na sessão Provisionamento do Banco de Dados. Exemplo abaixo: module.exports = { user : "admin", password : "<SENHA_DO_DB>", connectionString : "<NOME DO SEU BANCO DE DADOS>_TP" }

- 7. Pressione a tecla "ESC" do teclado, e digite ":wq" para salvar e sair.
- 8. Inicie o servidor utilizando o comando

npm start &

- 9. Pressione ENTER para voltar ao terminal sem encerrar o processo.
- 10. Execute o comando abaixo para verificar se o processo ainda esta ativo:

ps -a

Configuração de Frontend

- Acesse a instância novamente utilizando a ferramenta PuTTY. Passos 1 a 7 da sessão de Configuração da Instância
- 2. Acesse o diretorio de desenvolvimento criado no passo 14 da sessão de Configuração de Instância, neste caso:

cd /home/dev

- 3. Configure o arquivo /workshops/frontend/app.js conforme instruções abaixo:
 - a. Acesse o arquivo

vim /home/dev/workshops/frontend/app.js

b. Configure o trecho abaixo o IP referente a sua Instância function btnCall(chamada) { document.getElementById('status').innerText = "PROCESSANDO..."; axios.get('http://<IP_PUBLICO>:3000/' + chamada) .then(response => { document.getElementById('status').innerText = response.data return console.log(response.data) }) .catch(error => console.log(error)) }

4. Remova o conteúdo da pasta /usr/share/nginx/html/ e copie o conteúdo da pasta frontend para o mesmo destino:

rm -rf /usr/share/nginx/html/*

cp /home/dev/workshops/frontend/* /usr/share/nginx/html/

5. Abra o browser de sua preferência, coloque o IP de sua instância na barra de endereço, e verifique se a página abaixo é exibida:

Testes

Executando teste de conexão e revisando o código

O teste de conexão realiza um fluxo simplificado de abertura e encerramento de conexão com o banco quando a chamada GET é feita na raiz do endpoint.

Exemplo 1:

Utilizando curl para realizar a chamada: curl

http://<ip da sua instancia>:3000/ Retorno:

```
[opc@atpdev2 ~]$ curl http://localhost:3000/
A conexão foi iniciada e encerrada com sucesso
```

Exemplo 2:

Utilizando o frontend Web:


```
Insert JSON

Insert SQL

Status: A conexão foi iniciada e encerrada com sucesso
```

Observando o código:

```
const oracledb = require('oracledb')
const dbconnect = require('./dbconnect.js')
async function testConnection() {
 let connection;
 try {
    connection = await oracledb.getConnection({
     user: dbconnect.user,
     password: dbconnect.password,
      connectString: dbconnect.connectionString
   })
 }
 catch (err) {
   console.log('Error in processing:\n', err);
 finally {
    const connectionStatus = "A conexão foi iniciada e" + await closeConnection(connection)
    return connectionStatus
```

- 1. O codigo importa a biblioteca 'oracledb', esta biblioteca é responsavel pelas funções relacionadas ao banco (ref. https://oracle.github.io/node-oracledb/doc/api.html#getstarted)
- 2. Os valores definidos no passo 6 da sessão Configuração do backend são utilizados para iniciar a conexão

Executando teste de JSON e revisando o código

O teste de JSON realiza a criação de uma tabela, e a inserção de um regristro simples no formato JSON quando a uma chamada GET é feita no endpoint /json.

Exemplo 1:

Utilizando curl para realizar a chamada: curl

http://<ip da sua instancia/json

```
[opc@atpdev2 ~]$ curl http://localhost:3000/json
A tabela carros já foi criada:

Infos do registro:
Nome: UNO

Marca: FIAT

Ano: 2003[opc@atpdev2 ~]$
```

Exemplo 2:

Utilizando o frontend Web:

Observando o código:

 Para o armazenamento em JSON utilizamos o Simple Oracle Document Access (SODA), um grupo de chamadas de API responsavel por receber e transformar em query chamadas feitas no formato JSON. (ref. https://docs.oracle.com/en/database/oracle/oracledatabase/18/adsdi/overview-soda.html)

```
soda = connection.getSodaDatabase()
tabela = 'carros'
collection = await soda.createCollection(tabela)
```

2. No Exemplo acima, utilizamos o SODA para coletar as informações da Base de Dados, e criar uma Collection com o nome de carros. Para a base de dados a collection é interpretada como uma tabela, onde cada registro armazena um BLOB contendo o payload JSON. Exemplo abaixo:

3. O payload JSON é enviado por meio de uma função após a execução do metodo .commit(), conforme exemplo abaixo:

```
async function insertAndGetValuesJSON(coll, conn) {
  let payload = '{"name": "UNO", "detalhe": { "marca": "FIAT", "ano": "2003" }}'
  try {
    let result = await coll.insertOneAndGet(JSON.parse(payload))
    conn.commit()
```

Executando teste de SQL e revisando o código

O teste de SQL realiza a criação de uma tabela, e a inserção de um regristro simples no formato SQL quando a uma chamada GET é feita no endpoint /sql.

Os comandos sql são realizados por meio do metodo .execute conforme exemplos abaixo:

```
let select = await connection.execute(
    "SELECT * FROM SERIES"
)
console.log("Select: ", select.rows)
```

Este é o fim do workshop!

Para mais exemplos de uso acesse: https://github.com/oracle/node-oracledb/tree/master/examples