DISCRETE-TIME SYSTEMS

Classification of Systems

- with memory memoryless
- linear nonlinear
- time-invariant time-varying
- causal-noncausal
- stable-unstable

A Quotation from a Recent Research Paper:

Null Space Component Analysis for Noisy Blind Source Separation

"The solutions for the BSS problem were investigated under various source signal mixing models. Initially, linear instantaneous (<u>memoryless</u>) mixing models were used [3], followed by linear <u>convolution</u> mixing models [4]. More recently, nonlinear mixing models [5, 6, 7], bounded component analysis [8, 9], and the sparsity-based approach [10, 11] have been exploited."

DISCRETE-TIME SYSTEMS

A system is a transformation of signals

A system is an input-output relationship

$$x[n] \longrightarrow T\{\cdot\} \longrightarrow y[n]$$

A SISO system

Ex: A delay system

$$y[n] = x[n - \Delta]$$

Ex: A FIR (Finite Impulse Response) system

$$y[n] = ax[n] + bx[n-1]$$

In general,

$$y[n] = \sum_{N_1}^{N_2} a_k x[n-k]$$

Ex: An IIR (Infinite Impulse Response) system

$$y[n] = y[n-1] + x[n]$$

Equivalently,

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

CLASSIFICATION OF SYSTEMS

- With memory memoryless
- Linear nonlinear
- Time-invariant time-varying
- Causal-noncausal
- Stable-unstable

WITH MEMORY - MEMORYLESS

$$y[n] = x[n], \quad y[n] = 3x[n], \quad y[n] = 4^{x[n]}$$

are memoryless

whereas

$$y[n] = x[n-1],$$

$$y[n] = x[n+1],$$

$$y[n] = x[n-1] + x[n],$$

$$y[n] = y[n-1] + x[n]$$

have memory

You have heard or you will hear about "dynamic systems"; they have memory.

LINEARITY

A system, $T\{ullet\}$, is said to be linear if it satisfies

a) additivity:
$$T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}$$

b) homogeneity:
$$T\{ax[n]\} = aT\{x[n]\}$$

Ex:
$$y[n] = \sum_{k=-\infty}^{n} x[k]$$
 linear.

$$y[n] = \log |x[n]|$$
 nonlinear

$$y[n] = x[n] + 3$$
 nonlinear

TIME-INVARIANCE

Let $y_1[n] = T\{x[n]\}$ and $y_2[n] = T\{x[n-\Delta]\}$ be the outputs of the system to x[n] and $x[n-\Delta]$, respectively.

Then, if $y_2[n] = y_1[n-\Delta]$ the system is said to be time-invariant.

Ex: (compressor/downsampler) y[n] = x[Mn] *M*: integer

$$\rightarrow M$$

Is it time-invariant?

Following the above definition $y_1[n] = x[Mn]$, $y_2[n] = x[Mn - \Delta]$

$$\Rightarrow y_2[n] \neq y_1[n-\Delta] = x[Mn-M\Delta]$$

So, the system is time-varying.

Show that it is linear! (exercise)

Ex: (expander/upsampler)
$$y[n] = \begin{cases} x \left[\frac{n}{L} \right] & n = kL \\ 0 & n \neq kL \end{cases}$$
; k, L : integer $\uparrow L$

Is it time-invariant?

$$y_1[n] = \begin{cases} x \left[\frac{n}{L} \right] & n = kL \\ 0 & n \neq kL \end{cases}$$

$$y_{2}[n] = \begin{cases} x \left[\frac{n}{L} - \Delta \right] & n = kL \\ 0 & n \neq kL \end{cases}$$

$$\Rightarrow y_{2}[n] \neq y_{1}[n-\Delta] = \begin{cases} x \left[\frac{n-\Delta}{L} \right] & n-\Delta = kL \\ 0 & n-\Delta \neq kL \end{cases}$$

So, the system is time-varying

Show that it is linear! (exercise)

CAUSALITY

A system is said to be causal if the two output signals $y_1[n]$ and $y_2[n]$ (due to two input signals $x_1[n]$ and $x_2[n]$) satisfy

$$y_1[n] = y_2[n] \qquad n \le n_0$$

whenever

$$x_1[n] = x_2[n] \qquad n \le n_0$$

Ex:
$$y[n] = x[n+1] - x[n]$$
 noncausal

$$y[n] = x[n-1] - x[n]$$
 causal

$$y[n] = x[n] + 5$$
 causal

STABILITY (BIBO)

A system is said to be BIBO stable if "bounded inputs yield bounded outputs.", i.e.,

$$|x[n]| \le B_x < \infty \quad \Rightarrow \quad |y[n]| \le B_y < \infty$$

for arbitrary finite $\emph{B}_{\emph{x}}$ and $\emph{B}_{\emph{y}}$.

$$\underline{\mathbf{Ex}}: \qquad y[n] = \sum_{k=-\infty}^{n} x[k] = y[n-1] + x[n]$$

UNSTABLE

For example, for
$$x[n] = u[n]$$
 the output is $y[n] = \begin{cases} n+1 & n \ge 0 \\ 0 & n < 0 \end{cases}$

Bounded input does not yield bounded output.