LØSNINGER

DANMARKS TEKNISKE UNIVERSITET

Skriftlig prøve, den 13. december 2018

Kursus navn: Diskret Matematik

Kursus nummer: 01017

Hjælpemidler: Alle hjælpemidler er tilladt.

Varighed: 2 timer.

Vægtning:

Opgave 1: 10%

Opgave 2: 25%

Opgave 3: 15%

Opgave 4: 6%

Opgave 5: 14%

Opgave 6: 15%

Opgave 7: 15%

Alle opgaver besvares ved at udfylde de dertil indrettede tomme pladser på de følgende sider.

Side 1

Bord	Kursus nr.: 01017	Dato: 13. december 2018	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 1 (Tableau-kalkulen i udsagnslogik) 10%

Brug tableau-metoden til at afgøre om følgende påstand holder. Hvis den **ikke** holder skal du angive en konkret sandhedstilskrivning som gør præmisserne sande og konklusionen falsk.

$$(p \land q) \to r, \neg (p \to r) \models q \to r$$

LØSNING.

Alle grene lukker, så den er gyldig.

Bord	Kursus nr.: 01017	Dato: 13. december 2018	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	_
	Navn:		_

Opgave 2 (Prædikatlogik) 25%

Betragt julegavestablerne ovenfor. Vi kan beskrive situationen som en fortolkning \mathcal{F} i prædikatlogik som angivet ovenfor til højre. Her betyder: Gave(x) at x er en gave; På(x,y) at gaven x ligger på gaven y; Over(x,y) at x ligger over y; Farve(x,y) at gaven x har farven y.

1. Afgør hvilke af følgende formler der er sande i fortolkningen \mathcal{F} . Forkert svar tæller negativt.

	sand	talsk
1. $\forall x (\text{Gave}(x) \to \exists y \text{Farve}(x, y))$	\boxtimes	
2. $\forall x \exists y \text{Farve}(x, y)$		\boxtimes
3. $\forall y (\neg \text{Gave}(y) \to \exists x \text{Farve}(x, y))$		\boxtimes
4. $\forall x \forall y (På(x, y) \rightarrow På(y, x))$		\boxtimes
5. $\forall x \forall y (\text{Over}(x, y) \vee \text{Over}(y, x))$		\boxtimes
6. $\forall x \forall y (På(x,y) \to Over(x,y))$	\boxtimes	
7. $\forall x \forall y \forall z (\text{Gave}(x) \land \text{Gave}(y) \land \text{Farve}(x, z) \rightarrow \text{Farve}(y, z))$		\boxtimes
8. $\forall x(\operatorname{Farve}(x, \operatorname{hvid}) \to \exists y(\operatorname{På}(x, y) \land \operatorname{Farve}(y, \operatorname{rød}))$		\boxtimes
9. $\forall x(\operatorname{Farve}(x, \operatorname{rød}) \to \exists y(\operatorname{På}(y, x) \land \operatorname{Farve}(y, \operatorname{hvid}))$	\boxtimes	
10. $\forall x \forall y (\text{Over}(x, y) \land \text{Over}(y, x) \rightarrow \text{Farve}(x, \text{blå}))$	\boxtimes	
11. $\forall x (\text{Gave}(x) \land \neg \exists y \text{På}(x, y) \rightarrow \text{Farve}(x, \text{grøn}))$	\boxtimes	
12. $\forall x (\text{Farve}(x, \text{hvid}) \rightarrow \exists y (\text{Farve}(y, \text{rød}) \land (\text{På}(x, y) \lor \text{På}(y, x))))$	\boxtimes	

Bord	Kursus nr.: 01017	Dato: 13. december 2018	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

- 2. Overstreg herunder de elementer i fortolkning der skal fjernes, hvis man fjerner julegave 7:

 - Gave $\mathcal{F} = \{1, 2, 3, 4, 5, 6, \chi\}.$
 - $På^{\mathcal{F}} = \{(2,1), (3,2), (5,4), (6,5), (7,6)\}.$
 - Over $\mathcal{F} = P\mathring{a}^{\mathcal{F}} \cup \{(3,1), (6,4), (7,4), (7,5)\}.$
 - Farve $\mathcal{F} = \{(1, \text{grøn}), (2, \text{rød}), (3, \text{hvid}), (4, \text{grøn}), (5, \text{hvid}), (6, \text{rød}), (7, \text{hvid})\}.$

Opgave 3 (Prædikatlogik) 15%

Betragt formlen A givet ved

$$A = \forall y (P(x, y) \to P(y, x))$$

1. Angiv virkefeltet for kvantoren $\forall y$ i A ved at sætte en ring om virkefeltet i formlen ovenfor.

LØSNING. Der skal en ring om hele formlen.

2. Kryds det rigtige svar af i to nedenstående spørgsmål. Forkert svar tæller negativt.

åben lukket hverken åben eller lukket Formlen A er \square \square \boxtimes \square

3. Angiv herunder resultatet af substitutionen A[z/y].

LØSNING. A[z/y] = A, eftersom alle forekomster af y i A er bundet.

4. Angiv herunder resultatet af substitutionen A[y/x].

LØSNING. $A[y/x] = \forall y (P(y,y) \rightarrow P(y,y)).$

5. Betragt de to formler $\forall x A$ og $\forall x A[y/x]$. Angiv herunder en fortolkning hvori den ene af de to formler er falsk, mens den anden er sand—og argumentér for dit svar.

LØSNING. $\forall x A[y/x]$ er gyldig eftersom $P(y,y) \to P(y,y)$ er en første-ordens instans af en gyldig formel i udsangslogik. Det er derfor nok at finde en fortolkning som gør $\forall x A$ falsk. Betragt fortolkningen over de reelle tal, hvor P fortolkes som "større end". Da udtrykker $\forall x A$ at der for alle reelle tal x, y gælder, at hvis x er større end y, så er y større end x. Det er åbenlyst falsk.

Bore	d Kursus nr.: 01017	Ark	nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.: Fødselsdato:		
	Navn:	_	
6	. Kryds det rigtige svar af i nedenstående spørgsmål. Forkert svar tæller negati	ivt.	
	sand falsk $\forall x A[y/x]$ og $\forall x A$ er logisk ækvivalente \square		
	$\forall x A[y/x] \text{ og } \forall x A \text{ er logisk ækvivalente} \qquad \square$		
	x er erstattelige med y i A		
	y er erstattelig med z i A		
Op	ogave 4 (Kombinatorik) 6%		
Afgø	ør om hvert af følgende udsagn er sandt eller falsk. Forkert svar tæller negativt.		
		sandt	falsk
1.	Der er 12 forskellige måder at udvælge 4 forskellige elementer fra en mængde med 6 elementer.		\boxtimes
2.	For alle $n \ge 1$ gælder at $n! \le 2^n$.		\boxtimes
3.	Der er 120 forskellige måder at arrangere 5 forskellige elementer på en række.	\boxtimes	
4.	For alle $n \ge 1$ gælder at $\binom{n}{3} \le \binom{n}{4}$.		\boxtimes
5.	For alle $n \ge 1$ og alle $k \mod 0 \le k \le n$ gælder at $\binom{n}{k} = \binom{n}{n-k}$.	\boxtimes	
6.	En mængde med n elementer har $\binom{n}{k}$ forskellige delmængder med k elementer	·. 🛛	

Bord	Kursus nr.: 01017	Dato: 13. december 2018	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 5 (Heltals-aritmetik) 14%

1. Find mindst én heltallig løsning til følgende Diophantiske ligning, hvis der findes sådan en løsning. Argumentér for dit svar.

$$8x + 12y = 44$$

2. Find mindst én heltallig løsning til følgende Diophantiske ligning, hvis der findes sådan en løsning. Argumentér for dit svar.

$$33x + 18y = 52$$

Bord nr. **Kursus nr.:** 01017

Dato: 13. december 2018

Ark nr.

Kursusnavn: Diskret Matematik

Studienr.: _____

Fødselsdato: _____

Navn: _____

Solution.

1. 8x + 12y = 44

As gcd(8, 12) = 4 divides 44, there are solutions. One solution is (-2, 5). A systematic way to find a solution is to run the Extended Euclidean algorithm to find s, t such that 8s + 12t = 4. This would yield s = -1 and t = 1. Then a solution to the Diophantine equation is simply to multiply this by 11, i.e. $-11 \cdot 8 + 11 \cdot 12 = 44$.

 $2. \ 33x + 18y = 52.$

As gcd(33, 18) = 3 and $3 \nmid 52$, no solutions exist.

Opgave 6 (Kongruenser) 15%

1. Tegn i tabellen alle linjer mellem et a og et b, hvor der gælder at $a \equiv b \pmod{11}$.

\overline{a}	b
-7	15
1	4
84	7

Solution. One needs to draw a line between the pairs (-7, 15), (-7, 4), (84, 7).

2. Brug Euklids udvidede algoritme til at beregne sfd(12,21) ved at udfylde nedenstående tabel med mellem-regningerne.

k	q	r_k	s_k	t_k
0				
1				
2				
3				
4				
5				

sfd(12, 21) = 3.

Bord nr. **Kursus nr.:** 01017

Dato: 13. december 2018

Ark nr.

Kursusnavn: Diskret Matematik

Studienr.:

Fødselsdato: _____

Navn: ___

3. Markér en multiplikativ invers til 4 modulo 7:

 $\Box:0$

 \square : 1

 \square : 3

 $\Box:4$

 \square : 5

 \Box : 6

4. Bestem løsningsmængden til

$$12x \equiv 15 \pmod{21}.$$

ved at udfylde nedenstående ligning:

Løsningsmængde: $x \in 10 + 7\mathbb{Z}$

Solution.

We find sfd(12, 21) by using the extended Euclidean algorithm

 $\square: 2$

\overline{k}	q	r_k	s_k	t_k	
-1		12	1	0	initial value
0		21	0	1	intial value
1	0	12	1	0	since $12 = 0 \cdot 21 + 12$
2	1	9	-1	1	since $21 = 1 \cdot 12 + 9$
3	1	3	2	-1	since $12 = 1 \cdot 9 + 3$
4	3	0	-7	4	since $9 = 3 \cdot 3 + 0$

So $d = \operatorname{sfd}(12, 21) = 3 = 2 \cdot 12 - 1 \cdot 21$.

Since d=3 divides 15, we the congruence is equivalent to

$$4x \equiv 5 \pmod{7}$$
.

Now gcd(4,7) = 1. From $3 = 2 \cdot 12 + -1 \cdot 21$ we conclude (dividing by 3) $1 = 2 \cdot 4 + -1 \cdot 5$ so $2 = 4^{-1} \pmod{7}$

The solution set then is $2 \cdot 5 + 7\mathbb{Z} = 10 + 7\mathbb{Z}$.

Opgave 7 (Polynomier og Induktion) 15%

Lad $f_n(x), n \in \mathbb{N}$ være følgende rekursivt definerede række af polynomier:

$$f_n(x) = \begin{cases} x & \text{for } n = 0\\ 2 \cdot (f_{n-1}(x))^2 - 1 & \text{for } n > 0 \end{cases}$$

Bord nr. Kursus nr.: 01017

Dato: 13. december 2018

Ark nr.

Kursusnavn: Diskret Matematik

Studienr.: _____

Fødselsdato:

Navn: _____

1. Angiv udtrykket for $f_n(x)$ for $n \in \{0, 1, 2\}$:

$$f_0(x) = \underline{\hspace{1cm}}$$

$$f_1(x) = \underline{\hspace{1cm}}$$

$$f_2(x) = \underline{\hspace{1cm}}$$

Solution.

$$f_0(x) = x$$

 $f_1(x) = 2x^2 - 1$
 $f_2(x) = 8x^4 - 8x^2 + 1$

2. Bevis at deg $f_n(x) = 2^n$ for $n \in \mathbb{N}$. Solution.

Med induktion:

Basis-tilfældet n=0 har $f_0(x)=x$ så deg $f_0(x)=1=2^0$.

Til induktions-trinnet antages deg $f_n(x) = 2^n$ for vilkårligt $n \in \mathbb{N}$, og vi skal bevise deg $f_{n+1}(x) = 2^{n+1}$. Men $f_{n+1}(x) = 2f_n(x)^2 - 1$, så deg $f_{n+1}(x) = 2 \deg f_n(x) = 2^{n+1}$, sidste led pr. induktionsantagelsen.

3. Lad $g_n(x) = f_n(x) - f_{n-1}(x)$ for $n \in \mathbb{N} - \{0\}$. Bevis at $(x-1) \mid g_n(x)$ for $n \in \mathbb{N} - \{0\}$.

Solution 1.

Vi beviser først med induktion, at $f_n(1) = 1$ for $n \in \mathbb{N}$.

Basis-tilfældet n = 0 har $f_0(x) = x$, så $f_0(1) = 1$.

Til induktions-trinnet antages $f_n(1) = 1$ for vilkårligt $n \in \mathbb{N}$, og vi skal bevise $f_{n+1}(1) = 1$.

Men $f_{n+1}(1) = 2f_n(1) - 1 = 2 \cdot 1 - 1 = 1$, næst-sidste lighed pr. induktionsantagelsen.

Derfor er $f_n(1) = 1$ for alle $n \in \mathbb{N}$. Og dermed $g_n(1) = f_n(1) - f_{n-1}(1) = 0$ for $n \in \mathbb{N} - \{0\}$.

Men $g_n(1) = 0 \iff (x - 1) | g_n(x)$.

Solution 2.

Vi beviser $g_n(1) = 0$ med induktion, og da $g_n(1) = 0 \iff (x-1) \mid g_n(x)$ løser det opgaven.

Basis-tilfældet n=1 har

$$g_1(x) = f_1(x) - f_0(x) = (2x^2 - 1) - 1 = 2x^2 - 2$$

Så derfor $g_1(1) = 0$, og dermed $(x - 1) \mid g(x)$.

Til induktions-trinnet antages $g_k(1)=0$ for $1\leq k\leq n$ for et vilkårligt n, og vi skal vise

Bord	Kursus nr.: 01017	Dato: 13. december 2018	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

$$g_{n+1}(1) = 0$$
. Vi har:

$$g_{n+1}(x) = f_{n+1}(x) - f_n(x)$$

$$= (2f_n(x)^2 - 1) - (2f_{n-1}(x)^2 - 1)$$

$$= 2(f_n(x)^2 - f_{n-1}(x)^2)$$

$$= 2(f_n(x) + f_{n-1}(x))(f_n(x) - f_{n-1}(x))$$

$$= 2(f_n(x) + f_{n-1}(x))g_n(x)$$

Så da $g_n(1) = 0$ må også $g_{n+1}(1) = 0$, som vi skulle bevise.