Machine Learning based Epileptic Seizure Prediction

Aditya Sriram S Sathiya Murthi S Duke Daffin T

Under the guidance of

Dr. D Sangeetha - Assistant Professor, MIT

Dr. S Umamaheswari - Assistant Professor, MIT

Block Diagram

Training

EEG Signals - Raw Data - 23 Channels

CHB-MIT Dataset

Pre-Processing

Split into 5 min intervals

Pre-Ictal and Inter-Ictal periods Separation

Binary data fed to model

Trained Classifier Model

Training Model

Classifier Model

Bi-LSTM Model Architecture

Model Sumary

Total params: 2,690,475 Trainable params: 2,690,347 Non-trainable params: 128

Layer (type)	Output Shape	
conv2d_3 (Conv2D)	(None, 1278, 2	22, 32)
max_pooling2d_3 (MaxPooling2 (None, o	639, 11, 32) 0
batch_normalization	n_2 (Batch (None, 63	39, 11, 32) 128
conv2d_4 (Conv2D)	(None, 637, 10), 32) 6176
max_pooling2d_4 (MaxPooling2 (None,	318, 5, 32) 0
batch_normalization	n_3 (Batch (None, 31	18, 5, 32) 128
conv2d_5 (Conv2D)	(None, 316, 4,	32) 6176
max_pooling2d_5 (MaxPooling2 (None, 1	158, 2, 32) 0
flatten_1 (Flatten)	(None, 10112)	0
repeat_vector_1 (Re	epeatVecto (None, 1,	, 10112) 0
bidirectional_2 (Bidi	rection (None, 1, 64)	2597120
bidirectional_3 (Bidi	rection (None, 64)	24832
dense_5 (Dense)	(None, 300)	
dense_6 (Dense)		
dense_7 (Dense)		
dense_8 (Dense)		1020
dense_9 (Dense)	(None, 1)	21

Block Diagram

Testing

EEG Signals - Raw Data - 23 Channels **Pre-Processing**

Split into 5 min intervals

Trained Classifier Model

Prediction

Alerts

Outcomes

- Machine Learning has been employed to classify raw EEG signal data into Pre-ictal and Inter-ictal periods.
- Classifier model is trained using CHB-MIT EEG Dataset.
- Classification is carried out on 5-minute intervals of 23-channel EEG signal collected using Brain-Computer Interface.
- The model makes use of Convolutional layers to find spatial relationships and Bidirectional LSTM layers to find temporal relationships, so as to classify pre-ictal and inter-ictal periods.
- When this model is fed real-time data, classification can be done in real-time so as to identify potential pre-ictal periods, allowing pre-emptive indication of an impending Epileptic seizure.
- This alarm would allow for medication to be taken ahead of an Epileptic Seizure to reduce the effects of the seizure or even avoid it completely.