Some Class Random Examples

Your Name

Contents

Chapter 1		Page 2
1.1	Random Examples	5
1.2	Random	7
1.3	Algorithms	8

Chapter 1

Question 1

Ejercicio 1. Mostrar que, dado un k fijo, la función constante f(x) = k puede definirse usando las funciones iniciales y composición (sin usar recursión primitiva).

Solution: Cualquier $k \in \mathbb{N}$ puede ser construido aplicando sucesivamente la funcion s(x) a la funcion n(x).

$$f(x) = s_k(x) = \underbrace{s(s(\dots s(n(x))\dots))}_{k \text{ veces}}$$
(1.1)

Ya que s(n(x)) es composicion de funciones primitivas, es primitiva recursiva. Razonando de forma inductiva, cada vez que aplicamos s(x) a un cierto $s_{k-1}(x)$, obtenemos un $s_k(x)$ que de nuevo, por composicion, es primitiva recursiva.

Question 2

Ejercicio 2. Probar que las signientes funciones son primitivas recursivas, mostrando que pueden obtenerse a partir des funciones iniciales usando composición y/o recursion primitiva:

$$f_1(x,y) = x + y$$
 $f_2(x,y) = x \cdot y$ $f_3(x,y) = x^y$ $f_4(x,y) = \underbrace{x^{x^{x^{y^{-x^{x^{y^{-x^{x^{y^{-x^{y^{-x^{y^{-x^{y^{-x^{-x^{-y^{-x^{-x^{-y^{-x^{-y^{-x^{-y^{-x^{-y^{-x^{-y^{-x^{-y^{-x^{-x^{-y^{-x^{-x^{-y^{-x^{-y^{-x^{-y^{-x^{-y^{-x^{-x^{-y^{-x^{-x^{-x^{-y}}}}}}}}}}}}}}}}}}}}}}}}f_1$

$$g_1(x) = x - 1$$
 $g_2(x, y) = x - y$ $g_3(x, y) = \max\{x, y\}$ $g_4(x, y) = \min\{x, y\}$

Observaciones : Se asume que
$$f_4(x,0)=1$$
. $x \doteq y = \begin{cases} x-y & \text{si } y \leq x \\ 0 & \text{si } y > x \end{cases}$

Solution: $f_1(x, y) = x + y$

$$f_1(x,0) = 0 = n(x)$$

$$f_1(x,y) = \underbrace{((\dots((0+1)+1)\dots+1)+1)+1}_{y \text{ veces}}$$

$$f_1(x,y) = f_1(x,y-1)+1$$

$$= s(f_1(x,y-1))$$

Pero para que cierre la aridad con el esquema de recursion primitiva, debemos encontrar una funcion g tal que: $f_1(x, y) = g(f(x, y - 1), x, y - 1)$, esto se arregla tomando $g(x, y, z) = s(u_1^3(x, y, z))$ Entonces nos queda:

$$f_1(x,y) = g(f(x,y-1),x,y-1) = s(u_1^3(f(x,y-1),x,y-1))$$
(1.2)

Solution: $f_2(x, y) = x.y$

$$f_2(x,0) = n(x)$$

$$f_2(x,y) = f_2(x,y-1) + x = f_1(f_2(x,y-1),x)$$

$$f_2(x,y) = f_1(u_1^3(f_2(x,y-1),x,y-1), u_2^3(f_2(x,y-1),x,y-1))$$

$$f_2(x,y) = g(f_2(x,y-1),x,y-1)$$

Con $g(x, y, z) = f_1(u_1^3(x, y, z), u_2^3(x, y, z))$, ya que g se obtiene por coposicion de funciones PR, entonces tambien es PR.

Solution: $f_3(x, y) = x^y$

$$f_3(x,0) = 1$$

$$f_3(x,y) = f_3(x,y-1).x = f_2(f_3(x,y-1),x)$$

$$f_3(x,y) = f_2(u_1^3(f_3(x,y-1),x,y-1), u_2^3(f_3(x,y-1),x,y-1))$$

$$f_3(x,y) = g(f_3(x,y-1),x,y-1)$$

Con $g(x,y,z)=f_2(u_1^3(x,y,z),u_2^3(x,y,z))$, ya que g se obtiene por coposicion de funciones PR, entonces tambien es PR.

$$\begin{split} f_4(x,0) &= 1 \\ f_4(x,y) &= f_4(x,y-1)^x = f_3(f_4(x,y-1),x) \\ f_4(x,y) &= f_3(u_1^3(f_4(x,y-1),x,y-1),u_2^3(f_4(x,y-1),x,y-1)) \end{split}$$

Con $g(x,y,z)=f_3(u_1^3(x,y,z),u_2^3(x,y,z))$, ya que g se obtiene por coposicion de funciones PR, entonces tambien es PR.

Solution: $g_1(x) = x \div 1$

$$g_1(0) = n(x)$$

$$g_1(x) = u_2^2(g_1(x), x - 1)$$

Solution: $g_2(x, y) = x - y$

$$g_2(x,0) = u_1^1(x)$$

$$g_2(x,y) = g_2(x,y-1) - 1 = g_1(g_2(x,y-1))$$

$$g_2(x,y) = g_1(u_1^3(g_2(x,y-1),x,y-1))$$

$$g_2(x,y) = g(g_2(x,y-1),x,y-1)$$

Con $g(x,y,z)=g_2(u_1^3(x,y,z))$, ya que g se obtiene por coposicion de funciones PR, entonces tambien es PR.

Solution: $g_3(x,y) = \max\{x,y\}$

$$\max\{x, y\} = (x \le y).y + \alpha(x \le y).x$$

$$\max\{x, y\} = f_2((x \le y), y) + f_2(\alpha(x \le y), y)$$

$$\max\{x, y\} = f_1(\underbrace{f_2((x \le y), y)}_{h_1}, \underbrace{f_2(\alpha(x \le y), y)}_{h_2})$$

Las funciones α (negacion) y \leq son las definidas en la clase teorica numero 2. Se puede probar por composicion que h_1 y h_2 son PR. Por lo tanto queda demostrado por composicion que g_3 tambien es PR.

Solution: $g_4(x, y) = \min\{x, y\}$

$$\min\{x, y\} = (x \le y).x + \alpha(x \le y).y$$

$$\min\{x, y\} = f_2((x \le y).x) + f_2(\alpha(x \le y), y)$$

$$\min\{x, y\} = f_1(\underbrace{f_2((x \le y), y)}_{h_1}, \underbrace{f_2(\alpha(x \le y), y)}_{h_2})$$

Las funciones α (negacion) y \leq son las definidas en la clase teorica numero 2. Se puede probar por composicion que h_1 y h_2 son PR. Por lo tanto queda demostrado por composicion que g_3 tambien es PR.

Question 3

Ejercicio 3. Sea C_i la clase de funciones iniciales, es decir, aquella que contiene a:

$$n(x) = 0$$
 $s(x) = x + 1$ $u_i^n(x_1, \dots, x_n) = x_i$ para cada $n \in \mathbb{N}$ e $i \in \{1, \dots, n\}$

y sea C_c la (mínima) clase que extiende a C_i y se encuentra cerrada por composición, i.e., si f, g_1, \ldots, g_m están en C_c , entonces $h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_m(x_1, \ldots, x_n))$ también lo está

a. Demostrar que para toda $f: \mathbb{N}^n \to \mathbb{N}, f$ está en C_c sii existe $k \ge 0$ tal que, o bien sucede $f(x_1, \ldots, x_n) = k$, o bien para algún i fijo, se tiene $f(x_1, \ldots, x_n) = x_i + k$.

b. Mostrar que existe una función primitiva recursiva que no está en C_c .

Solution: a)

 (\rightarrow)

Vamos a usar induccion estructural

Casos Base: Veamos que se cumple para las funciones iniciales

$$n(x) = 0, \quad k = 0$$

 $s(x) = x + 1, \quad k = 1$
 $u_i^n(x_1, ..., x_n) = x_i + 0, \quad k = 0$

Paso inductivo:

Sea $f \in C$, $f(x_1, \ldots, x_n) = h(g_1(x_1, \ldots, x_n), \ldots, g_n(x_1, \ldots, x_n))$. Veamos que o bien $f(x_1, \ldots, x_n) = k$, o bien $f(x_1, \ldots, x_n) = x_i + k$

Las funciones que componen a h, cumplen con la HI. Por lo tanto, separemos en casos:

Caso $h(x_1, \ldots, x_n) = k$: Entonces tenemos que $f(x_1, \ldots, x_n) = k = k'$, ya esta!

Caso $h(x_1, \ldots, x_n) = x_i + k'$: Entonces tenemos que $f(x_1, \ldots, x_n) = g_i(x_1, \ldots, x_n)$.

Ahora tenemos 2 sub-casos mas:

Caso
$$g_i(x_1,...,x_n) = k''$$
: $f(x_1,...,x_n) = k' + k'' = k$

Caso
$$g_i(x_1,...,x_n) = x_j + k''$$
: $f(x_1,...,x_n) = x_j + k'' + k' = x_j + k$

En ambos casos, vemos que se cumple lo que queriamos.

 (\leftarrow)

Ya vimos que la funcion $h_k(x) = k$, puede ser definida por composicion y recursion a partir de las funciones iniciales, entonces $h_k \in C$. Entonces $f(x_1, \ldots, x_n) = h_k(u_1^n(x_1, \ldots, x_n)) = k$, xlt $f \in C$

Se puede definir la funcion $s_k(x) = x + k$ usando sucesivamente la funcion s, por composicion $s_k \in C$. Xlt $f(x_1,...,x_n) = x_i + k = s_k(u_i^n(x_1,...,x_n))$. Y esta ultima al ser composicion de funciones de C, nos asegura que f tambien esta en C.

$\mathbf{\alpha}$	uestion	- 4
	HASTIAN	

Question 5

Question 6

Question 7

Question 8

Question 9

Question 10

1.1 Random Examples

Definition 1.1.1: Limit of Sequence in \mathbb{R}

Let $\{s_n\}$ be a sequence in \mathbb{R} . We say

$$\lim_{n\to\infty} s_n = s$$

where $s \in \mathbb{R}$ if \forall real numbers $\epsilon > 0$ \exists natural number N such that for n > N

$$s - \epsilon < s_n < s + \epsilon$$
 i.e. $|s - s_n| < \epsilon$

Question 11

Is the set x-axis\{Origin} a closed set

Solution: We have to take its complement and check whether that set is a open set i.e. if it is a union of open balls

🛉 Note:- 🛉

We will do topology in Normed Linear Space (Mainly \mathbb{R}^n and occasionally \mathbb{C}^n)using the language of Metric Space

Claim 1.1.1 Topology

Topology is cool

Example 1.1.1 (Open Set and Close Set)

Open Set:

- φ
 - $\bigcup_{x \in B_r(x)} (Any \ r > 0 \text{ will do})$
 - $x \in X$
 - $B_r(x)$ is open

Closed Set:

- \bullet X, ϕ
- $\overline{B_r(x)}$
- x-axis $\cup y$ -axis

Theorem 1.1.1

If $x \in \text{open set } V \text{ then } \exists \ \delta > 0 \text{ such that } B_{\delta}(x) \subset V$

Proof: By openness of $V, x \in B_r(u) \subset V$

Given $x \in B_r(u) \subset V$, we want $\delta > 0$ such that $x \in B_\delta(x) \subset B_r(u) \subset V$. Let d = d(u, x). Choose δ such that $d + \delta < r$ (e.g. $\delta < \frac{r-d}{2}$)

If $y \in B_{\delta}(x)$ we will be done by showing that d(u, y) < r but

$$d(u, y) \le d(u, x) + d(x, y) < d + \delta < r$$

⊜

Corollary 1.1.1

By the result of the proof, we can then show...

Lenma 1.1.1

Suppose $\vec{v}_1, \ldots, \vec{v}_n \in \mathbb{R}^n$ is subspace of \mathbb{R}^n .

Proposition 1.1.1

1 + 1 = 2.

1.2 Random

Definition 1.2.1: Normed Linear Space and Norm $\|\cdot\|$

Let V be a vector space over \mathbb{R} (or \mathbb{C}). A norm on V is function $\|\cdot\| \ V \to \mathbb{R}_{\geq 0}$ satisfying

- ② $\|\lambda x\| = |\lambda| \|x\| \ \forall \ \lambda \in \mathbb{R}(\text{or } \mathbb{C}), \ x \in V$
- (3) $||x + y|| \le ||x|| + ||y|| \ \forall \ x, y \in V$ (Triangle Inequality/Subadditivity)

And V is called a normed linear space.

• Same definition works with V a vector space over \mathbb{C} (again $\|\cdot\| \to \mathbb{R}_{\geq 0}$) where ② becomes $\|\lambda x\| = |\lambda| \|x\|$ $\forall \lambda \in \mathbb{C}, x \in V$, where for $\lambda = a + ib$, $|\lambda| = \sqrt{a^2 + b^2}$

Example 1.2.1 (*p*-Norm)

 $V = \mathbb{R}^m, p \in \mathbb{R}_{\geq 0}$. Define for $x = (x_1, x_2, \dots, x_m) \in \mathbb{R}^m$

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_m|^p)^{\frac{1}{p}}$$

(In school p = 2)

Special Case p = 1: $||x||_1 = |x_1| + |x_2| + \cdots + |x_m|$ is clearly a norm by usual triangle inequality.

Special Case $p \to \infty$ (\mathbb{R}^m with $\|\cdot\|_{\infty}$): $\|x\|_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_m|\}$

For m = 1 these p-norms are nothing but |x|. Now exercise

Question 12

Prove that triangle inequality is true if $p \ge 1$ for p-norms. (What goes wrong for p < 1?)

Solution: For Property (3) for norm-2

When field is \mathbb{R} :

We have to show

$$\sum_{i} (x_i + y_i)^2 \le \left(\sqrt{\sum_{i} x_i^2} + \sqrt{\sum_{i} y_i^2} \right)^2$$

$$\implies \sum_{i} (x_i^2 + 2x_i y_i + y_i^2) \le \sum_{i} x_i^2 + 2\sqrt{\left[\sum_{i} x_i^2\right] \left[\sum_{i} y_i^2\right]} + \sum_{i} y_i^2$$

$$\implies \left[\sum_{i} x_i y_i\right]^2 \le \left[\sum_{i} x_i^2\right] \left[\sum_{i} y_i^2\right]$$

So in other words prove $\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$ where

$$\langle x, y \rangle = \sum_{i} x_i y_i$$

- $\bullet ||x||^2 = \langle x, x \rangle$
- $\bullet \ \langle x,y\rangle = \langle y,x\rangle$

• $\langle \cdot, \cdot \rangle$ is \mathbb{R} -linear in each slot i.e.

$$\langle rx + x', y \rangle = r \langle x, y \rangle + \langle x', y \rangle$$
 and similarly for second slot

Here in $\langle x, y \rangle$ x is in first slot and y is in second slot.

Now the statement is just the Cauchy-Schwartz Inequality. For proof

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

expand everything of $\langle x - \lambda y, x - \lambda y \rangle$ which is going to give a quadratic equation in variable λ

$$\langle x - \lambda y, x - \lambda y \rangle = \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle$$

$$= \langle x, x \rangle - \lambda \langle x, y \rangle - \lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle$$

$$= \langle x, x \rangle - 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle$$

Now unless $x = \lambda y$ we have $\langle x - \lambda y, x - \lambda y \rangle > 0$ Hence the quadratic equation has no root therefore the discriminant is greater than zero.

When field is \mathbb{C} :

Modify the definition by

$$\langle x, y \rangle = \sum_{i} \overline{x_i} y_i$$

Then we still have $\langle x, x \rangle \ge 0$

1.3 Algorithms

```
Algorithm 1: what
   Input: This is some input
   Output: This is some output
   /* This is a comment */
 1 some code here;
 \mathbf{z} \ x \leftarrow 0;
 \mathbf{3} \ \mathbf{y} \leftarrow 0;
 4 if x > 5 then
 5 x is greater than 5;
                                                                                                // This is also a comment
 6 else
 7 \mid x \text{ is less than or equal to } 5;
 9 foreach y in 0..5 do
10 y \leftarrow y + 1;
11 end
12 for y in 0..5 do
13 | y \leftarrow y - 1;
14 end
15 while x > 5 do
16 x \leftarrow x - 1;
18 return Return something here;
```