

Temporal Aggregated Analysis of GPS Trajectory Data using Two-fluid Model

TRBAM-22-04844

Yunfei Zhang M.Sc. (Technical University of Munich, TUM)

Dr. Allister Loder (TUM)

Dr. Felix Rempe (BMW Group)

Prof. Dr. Klaus Bogenberger (TUM)

Outline

- Background
- Methodology
- Case study
- Conclusion

Two trends

Massive GPS (trajectory) data

Trajectory of 50 vehicles over 1 hour

Network-level traffic models

Examples of Estimated MFD

Leclercq, L., Chiabaut, N., & Trinquier, B. (2014). Macroscopic fundamental diagrams: A cross-comparison of estimation methods. Transportation Research Part B: Methodological, 62, 1-12.

Network-level model: Two-fluid

Herman, R., & Prigogine, I. (1979). A two-fluid approach to town traffic. Science, 204(4389), 148-151.

Network-level model: Two-fluid

Methodology

Data set

Data source: Didi Chuxing, GAIA Open
 Data Initiative [3]

Location: Chengdu (16.3M), China

Time period: November 2016

• Average frequency: 3.11 seconds

Dimension: ~30M records/day

Variables:

Variable	Example
Driver Id	"389b1a63fca70651270be4d9e64464a8"
Order Id	"13994a1c492c8901d5db1baf1c7c3ee"
Timestamp	1477962003
Longitude	104.05
Latitude	30.67

黄田坝街道(清源社区 府青路街道 宝街社区 芳草街街道 Location of Chengdu in China [4] 104.04

安靖街道

Didi Chuxing. (2021). The Gaia Initiative. https://outreach.didichuxing.com/research/opendata/en/. [Online; accessed 14-Dec-2021].

Liu et al. (2014). An Integrated Approa **Structs Engine Theorem Structs Engine St**

Methodology

Methodology

Summary of variables

Theme	Variable	Description	Unit	_
Two-fluid	n	Model coefficient of network performance	-	_
parameters	T_m	Minimum trip time per unit distance	min/km	<u> </u>
•	v_m	Maximum average vehicle speed	km/h	 Reciprocal
Fraction	f_r	Fraction of moving cars	-	
	f_{s}	Fraction of stopped cars	-	
Velocity	u_0	Desired velocity	km/h	-
	v	Average velocity	km/h	٦
	v_r	Average velocity of the moving cars	s km/h	
	v_s	Average velocity of the stopped cars	km/h	_
Trip time	T	Average trip time per unit distance	min/km] Rooiprooar
	T_r	Average running time	min/km	}
	$T_{\mathcal{S}}$	Average stopped time	min/km	_

Theme	Variabl	le Description	Unit
	n	Model coefficient of network performance	-
Two-fluid parameters	T_m	Minimum trip time per unit distance	min/km
	v_m	Maximum average vehicle speed	km/h
Fraction	f_r	Fraction of moving cars	-
	f_{s}	Fraction of stopped cars	-
Velocity	u_0	Desired velocity	km/h
	v	Average velocity	km/h
	v_r	Average velocity of the moving cars	s km/h
	v_{s}	Average velocity of the stopped cars	km/h
Trip time	T	Average trip time per unit distance	min/km
	T_r	Average running time	min/km
	T_{s}	Average stopped time	min/km

	Date	Day-of-Week	R^2	n	T_m
C	1.11.2016	Tuesday	0.986	2.13	0.814
C	2.11.2016	Wednesday	0.987	2.00	0.855
C	3.11.2016	Thursday	0.980	1.95	0.865
C	4.11.2016	Friday	0.979	1.80	0.907
C	5.11.2016	Saturday	0.987	1.98	0.846
C	6.11.2016	Sunday	0.986	2.34	0.765
C	7.11.2016	Monday	0.989	1.89	0.895

Theme	Variable	e Description	Unit
Two-fluid	n	Model coefficient of network performance	-
parameters	T_m	Minimum trip time per unit distance	min/km
	v_m	Maximum average vehicle speed	km/h
Fraction	f_r	Fraction of moving cars	-
	f_{s}	Fraction of stopped cars	-
	u_0	Desired velocity	km/h
	v	Average velocity	km/h
Velocity	v_r	Average velocity of the moving care	s km/h
	v_{s}	Average velocity of the stopped cars	km/h
	T	Average trip time per unit distance	min/km
Trip time	T_r	Average running time	min/km
	T_{s}	Average stopped time	min/km

Logarithm of running time

 $\log T_r$

Methodology

Result: Recurrent traffic pattern

Observation over 1 week

Result: Recurrent traffic pattern

- Differencing (degree *d*)
- AutoRegressive Integrated MovingAverage (ARIMA) model
- ARIMA (p, d, q) model

$$e_i' = e_i - e_{i-1}$$

AutoRegressive term (p steps) $y_t' = c + \varphi_1 y_{t-1}' + \dots + \varphi_p y_{t-p}' + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$ MovingAverage term (q steps)

Result: Recurrent traffic pattern

- ARIMA model: (0, 1, 4)
 (Moving average model)
- ACF: autocorrelation function existing in the differenced residuals (no AR term)
- Depends linearly on the current and past 4 values (20-minute duration) of stochastic terms

Contribution

GPS data from a fleet of moving vehicles

Estimation

General traffic flow state

Restriction

Further works

Compare multiple cities to find the influence factors

Thanks and any questions?

Contact Information:

Yunfei Zhang
Technical University of Munich
Chair of Traffic Engineering and Control
yunfei.zhang@tum.de

Full paper:

