3.044 MATERIALS PROCESSING

LECTURE 14

1-D Fluid Flow

Newton's Law of Viscosity: $\boxed{\tau_{yx} = -\mu \frac{\partial V_x}{\partial y}}$

Momentum Balance: $\frac{\partial (\rho V_x)}{\partial t} = \mu \frac{\partial^2 V_x}{\partial y^2} + F_x$

Assume Incompressible: $\frac{\partial V_x}{\partial t} = \nu \frac{\partial^2 V_x}{\partial y^2} + \frac{F_x}{\rho}$

Let's Explore Body Force: e.g. gravity

 \Rightarrow no gravity for horizontal flow, more relevant for inclined flow

Falling Film:

 $g_x = |\bar{g}| \sin \theta$ $g_x = g \sin \theta$

Body Force:

 $F_x = \rho \ g \ \sin \theta$

2 LECTURE 14

Steady State Flow Eq.

$$0 = \frac{\partial V_x}{\partial t} = \nu \frac{\partial V_x}{\partial y} + \frac{F_x}{\rho}$$
$$0 = \frac{\partial V_x}{\partial t} = \nu \frac{\partial V_x}{\partial y} + g \sin \theta$$

Solve:

$$\frac{\partial^2 V_x}{\partial y^2} = \frac{-g \sin \theta}{\nu}$$

$$\int d\left(\frac{\partial V_x}{\partial y}\right) = \int -\frac{g}{\nu} \sin \theta \, dy$$

$$\int dV_x = \int \left(-\frac{g}{\nu} \sin \theta \, y + A\right) \, dy$$

$$V_x = -\frac{g}{2\nu} \sin \theta \, y^2 + Ay + B$$

Boundary Conditions:

$$@y = 0, \frac{\partial V_x}{\partial y} = 0 \Rightarrow \tau_{yx} = 0$$

$$@y = L, V_x = 0$$

Plug in B.C:

$$\frac{\partial V_x}{\partial y}\Big|_{y=0} = \left(-\frac{g}{\nu}\sin\theta\right)0 + A = 0 \Rightarrow \boxed{A=0}$$

$$V_x|_{y=L} = -\frac{g}{2\nu}\sin\theta L^2 + 0(y) + B = 0 \Rightarrow \boxed{B = -\frac{g}{2\nu}\sin\theta L^2}$$

$$\boxed{V_x = -\frac{g\sin\theta}{2\nu} \left(L^2 - y^2\right)}$$

Maximum velocity occurs at y = 0:

$$V_{max} = \frac{g\sin\theta}{2\nu}L^2$$

Average velocity:

$$V_{avg} = \frac{\int_0^L V_x \, \mathrm{d}y}{\int_0^L \, \mathrm{d}y} = \frac{g \sin \theta}{3\nu} L^2$$
$$V_{avg} = \frac{2}{3} V_{max}$$

Net Flow Rate:

$$Q = V_{avg} \cdot A$$

 \Rightarrow where A is the cross-sectional area of flow

Pressure Driven Flow:

Force Balance:

$$F_{net} = (P_1 - P_2) D \cdot W$$

Force Per Volume:

$$F_p = \frac{(P_1 - P_2) D \cdot W}{(D \cdot W \cdot L)}$$
$$F_p = \frac{\Delta P}{L}$$

Full Equation for Flow:

$$\frac{\partial V_x}{\partial t} = \nu \frac{\partial^2 V_x}{\partial y^2} + \frac{F_x}{\rho} + \frac{\Delta P}{\rho L}$$

1-D Fluid Flow Equation:

$$\frac{\partial V_x}{\partial t} = \nu \frac{\partial^2 V_x}{\partial y^2} + \frac{F_x}{\rho} - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

Assume Body Force is Zero:

$$\frac{\partial V_x}{\partial t} = \nu \frac{\partial^2 V_x}{\partial y^2} + \overbrace{\frac{F_x}{\rho}}^{=0} - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

Steady State:

$$\frac{\partial^2 V_x}{\partial y^2} = \frac{1}{\nu \rho} \frac{\Delta P}{L}$$

Boundary Conditions:

$$@y = 0, V_x = 0$$

 $@y = D, V_x = 0$

Pressurized Flow Between Horizontal Plates:

$$V_x = \frac{\Delta P}{8\mu L} \left(D^2 - 4y^2 \right)$$

Pressurized Flow In a Tube:

Summary and Comparison:

	Chemical Diffusion	Heat Conduction	Fluid Flow
Conserved Quantity	moles of solute	joules of energy	$kg\frac{m}{s}$ of momentum
Local Density of It	С	$(\rho c_p) T$	$(ho)ar{V}$
Flux (1-D)	Fick's 1st: $j = -D\frac{\partial c}{\partial x} \left[\frac{mol}{m^2 s} \right]$	Fourier: $q = -k \frac{\partial T}{\partial x} \left[\frac{J}{m^2 s} \right]$	Newton: $\tau_{yx} = -\mu \frac{\partial V_x}{\partial y} \left[\frac{kg}{m s^2} \right]$
Conservation Equation (1-D)	$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x}(j) + G$	$\rho c_p \frac{\partial T}{\partial t} = -\frac{\partial}{\partial x}(q) + \dot{q}$	$\frac{\partial(\rho V_x)}{\partial t} = -\frac{\Delta P}{L} - \frac{\partial}{\partial x}\tau_{yx} + F_x$
Diffusion Equation (1-D)	$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + G$	$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} + \frac{\dot{q}}{c_p \rho}$	$\frac{\partial V_x}{\partial t} = \nu \frac{\partial^2 V_x}{\partial y^2} + \frac{F_x}{\rho} - \frac{1}{\rho} \frac{\partial P}{\partial x}$
Diffusivity	$D \frac{m^2}{s}$	$\alpha = \frac{k}{c_p \rho} \frac{m^2}{s}$	$\nu = \frac{\mu}{\rho} \frac{m^2}{s}$
Flux (3-D)	$j = -D\nabla C$	$q = -k\nabla T$	$\tau = -\mu \left(\nabla \bar{V} + \left(\nabla \bar{V} \right)^T \right)$
Diffusion Equation (3-D)	$\frac{\partial c}{\partial t} = D\nabla^2 c + G$	$\frac{\partial T}{\partial t} = \alpha \nabla^2 T + \frac{\dot{q}}{\rho c_p}$	$\frac{\partial \bar{V}}{\partial t} = \nu \nabla^2 \bar{V} + \frac{\bar{F}}{\rho} \frac{\Delta P}{\rho}$

6 LECTURE 14

Plate Glass

- \cdot 1500-1600 modified glass blowing
- \cdot 1700 cast large blocks + grinding + polishing
- \cdot 1930 continuous rolling + grinding + polishing (\sim 25%)
- \cdot 1970 Pilkington Process: pour molten glass onto a **liquid** mold \Rightarrow need liquid with **special properties**

3.044 Materials Processing Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.