This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DERWENT-ACC-NO:

1994-222257

DERWENT-WEEK:

199427

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Pressure-sensitive adhesive resin compsn with good adhesion to damp surfaces - contains acrylic, rubber, EVA, silicone or urethane etc emulsion, latex, solvent hot melt etc resin and inorganic or organic porous

particles

PATENT-ASSIGNEE: MITSUI TOATSU CHEM INC[MITK]

PRIORITY-DATA: 1992JP-0312042 (November 20, 1992)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

004

PAGES MAIN-IPC

JP 06158006 A

June 7, 1994

N/A

C09J 011/02

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 06158006A

N/A

1992JP-0312042

November 20, 1992

INT-CL (IPC): C09J011/02

ABSTRACTED-PUB-NO: JP 06158006A

BASIC-ABSTRACT:

The pressure-sensitive adhesive resin compsn. comprises 100 pts. wt. of pressure-sensitive adhesive resin and 1 to 40 pts. wt. of inorganic or organic porous particles. The pressure-sensitive adhesive resin includes emulsion and latex types, solvent type, hot-melt type and electron beam and UV-curing types made from acrylic resin, natural or synthetic rubber, ethylene-vinyl acetate copolymer resin, silicone resin, urethane resin, etc.. Pref. acrylic resin which is a copolymer consisting mainly of 4-14C alkyl (meth)acrylate and contains (meth)acrylic acid, 2-hydroxyethyl methacrylate, diethylaminomethacrylate, vinyl acetate, acrylonitrile, styrene, etc. as comonomer.

03/03/2004, EAST Version: 1.4.1

The inorganic porous particle includes white carbon, bauxite, synthetic bentonite, silica gel, apatite and molecular sieves.

The organic porous particle includes urea-formalin resin, polystyrene and ion exchange resin.

The particle has an average diameter of 0.5 to 50, pref. 1 to 30 mu and a void volume of 0.5 to 10, pref. 1 to 5 cc/g.

ADVANTAGE - Good adhesion to surfaces covered with condensed water, or wet surfaces. Useful for a pressure-sensitive adhesive sheet to be attached to frozen food packs taken out of a refrigerator.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: PRESSURE SENSITIVE ADHESIVE RESIN COMPOSITION ADHESIVE DAMP

SURFACE CONTAIN ACRYLIC RUBBER EVA SILICONE URETHANE EMULSION LATEX

SOLVENT HOT MELT RESIN INORGANIC ORGANIC POROUS PARTICLE

DERWENT-CLASS: A81 G03

CPI-CODES: A08-R01; A12-A05; G03-B01; G03-B02;

UNLINKED-DERWENT-REGISTRY-NUMBERS: 0001U; 0123U; 0708U; 1694U

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1]

017; R24073 D01 D02 D03 D12 D10 D51 D53 D59 D85 P0599 H0124 B5061; H0124*R; \$9999 \$1025 \$1014; \$9999 \$1605*R; \$9999 \$1387

Polymer Index [1.2]

017; R00326 G0044 G0033 G0022 D01 D02 D12 D10 D51 D53 D58 D82; R00835 G0566 G0022 D01 D11 D10 D12 D51 D53 D58 D63 D84 F41; H0022 H0011; S9999 S1025 S1014; S9999 S1605*R; S9999 S1387; P1150; P1310

Polymer Index [1.3]

017; P1592*R F77 D01; P1445*R F81 Si; S9999 S1025 S1014; S9999 S1605*R; S9999 S1387

Polymer Index [1.4]

017; P0088*R; S9999 S1025 S1014; S9999 S1605*R; S9999 S1387 Polymer Index [1.5]

017 : G0340*R G0339 G0260 G0022 D01 D12 D10 D51 D53 D58 D63 F41 D87 D88 D89 D90 D91 D92 D93 G0384*R; G0419 G0384 G0339 G0260 G0022 D01 D12 D10 D51 D53 D58 D63 F41 D11 D89 F08 F07; R00446 G0282 G0271 G0260 G0022 D01 D12 D10 D51 D53 D58 D60 D83 F36 F35 ; R00460 G0306 G0271 G0260 G0022 D01 D12 D10 D51 D53 D58 D60 D84 F36 F35; R01463 G0408 G0384 G0339 G0260 G0022 D01 D11 D10 D12 D51 D53 D58 D63 D86 F27 F26 F41; R00708 G0102 G0022 D01 D02 D12 D10 D19 D18 D31 D51 D53 D58 D88; R00817 G0475 G0260 G0022 D01 D12 D10 D51 D53 D58 D83 F12; R00835 G0566 G0022 D01 D11 D10 D12 D51 D53 D58 D63 D84 F41 ; \$9999 \$1025 \$1014 ; \$9999 \$1605*R ; \$9999 \$1387 ; H0033 H0011 ; P1741; P0088 Polymer Index [1.6] 017; G0340*R G0339 G0260 G0022 D01 D12 D10 D51 D53 D58 D63 F41 D87 D88 D89 D90 D91 D92 D93 G0384*R; G0419 G0384 G0339 G0260 G0022 D01 D12 D10 D51 D53 D58 D63 F41 D11 D89 F08 F07; R00446 G0282 G0271 G0260 G0022 D01 D12 D10 D51 D53 D58 D60 D83 F36 F35 ; R00460 G0306 G0271 G0260 G0022 D01 D12 D10 D51 D53 D58 D60 D84 F36 F35; R01463 G0408 G0384 G0339 G0260 G0022 D01 D11 D10 D12 D51 D53 D58 D63 D86 F27 F26 F41; R00708 G0102 G0022 D01 D02 D12 D10 D19 D18 D31 D51 D53 D58 D88; R00817 G0475 G0260 G0022 D01 D12 D10 D51 D53 D58 D83 F12; R00835 G0566 G0022 D01 D11 D10 D12 D51 D53 D58 D63 D84 F41 ; \$9999 \$1025 \$1014 ; \$9999 \$1605*R ; \$9999 \$1387 ; H0022 H0011 ; P1741 ; P0088 ; P0157 Polymer Index [1.7] 017; ND01; ND04; Q9999 Q6677 Q6644; K9449; K9814 K9803 K9790 ; K9869 K9847 K9790 ; K9483*R ; B9999 B5301 B5298 B5276 ; B9999 B3178; Q9999 Q7589*R; K9665; Q9999 Q8571 Q8366 Polymer Index [1.8] 017; D00; R01694 D00 F20 O* 6A Si 4A; A999 A237; S9999 S1456*R : S9999 S1365 Polymer Index [2.1] 017; D01; R00123 G1821 D01 D50 D81 F78; R00001 G1503 D01 D50 D81 F22; H0022 H0011; S9999 S1456*R; P0259*R P0226 D01; A999 A782; A999 A237; P0271 Polymer Index [2.2] 017; D01; R00708 G0102 G0022 D01 D02 D12 D10 D19 D18 D31 D51 D53 D58 D88; H0000; H0011*R; S9999 S1456*R; A999 A237; A999 A782 ; P1741; P1752 Polymer Index [2.3] 017; B9999 B5221 B4740 Polymer Index [3.1] 017; D01; P0000; S9999 S1456*R; A999 A782; A999 A237 Polymer Index [3.2]

017; B9999 B5221 B4740; Q9999 Q7772

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:

Key Serials: 0004 0009 0036 0147 0150 0153 0165 0168 0205 0212 0214 0226 0231 0241 0304 0305 0306 0307 0376 0377 0411 0412 0418 0419 0495 0496 0502 0503 0586 0587 0593 0594 0600 0601 0789 0790 1276 1294 1304 1306 1513 1517 1731 1987 2216 2218 2219 2220 2504 2506 2510 2512 2584 2653 2670 2683 2780 2791 3003 3062 3063 3152 3155 3160 3252 3264

Multipunch Codes: 017 02& 032 034 04- 041 046 047 05- 055 056 066 067 072 074 075 076 077 08& 081 084 085 10- 15- 150 17& 17- 19- 20& 229 246 257 27& 28& 308 310 334 35& 351 38- 381 397 398 40- 436 437 501 504 52& 54& 575 583 585 588 59& 597 600 609 633 654 721 727 017 034 038 055 056 080 13- 139 180 185 186 27& 308 310 311 575 595 654 681 688 721 017 308 310 311 54& 575 595 642 654 721

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1994-101856

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-158006

(43)公開日 平成6年(1994)6月7日

(51)Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 9 J 11/02

JAR JAU

7415-4 J 7415-4 J

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特願平4-312042	(71)出願人	000003126 三井東圧化学株式会社
(22)出顯日	平成4年(1992)11月20日	(72)発明者	東京都千代田区霞が関三丁目2番5号 萩原 昭 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内
		(72)発明者	
		(72)発明者	板垣 誠 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内
			最終頁に続く

(54)【発明の名称】 感圧接着剤樹脂組成物

(57)【要約】

感圧接着性樹脂に無機系多孔質粒子または 【構成】 有機系多孔質粒子を1~40部含有してなる感圧接着剤 樹脂組成物。

【効果】 粘着力、タック、凝集力を維持しながら、 結露面および湿潤面の接着力に優れる。

【特許請求の範囲】

【請求項1】 感圧接着性樹脂の樹脂成分100重量部 に対して、無機系多孔質粒子または有機系多孔質粒子を 1~40重量部含有してなることを特徴とする感圧接着 剤樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、室温中に取り出した時 の冷凍食品等のように結蹊または湿潤した表面への接着 圧接着性樹脂の樹脂に対して、無機系多孔質粒子またた は有機系多孔質粒子を特定量含有してなる感圧接着剤樹 脂組成物に関する。

[0002]

【従来の技術】冷凍食品等の低温状態に置かれた物は、 それを冷凍庫などから取り出してプライスシート等の感 圧接着シートを貼付しょうとしても、その表面が結露ま たは湿潤のため接着しにくくなるという問題があり、従 来よりこのような結露または湿潤した表面に対しても、 良好な接着性を有する感圧接着剤の開発が要望されてい 20 を挙げることができる。 た。このような問題を解決するために、例えば水性感圧 接着剤には、ポリビニルアルコール、セルロース誘導 体、アクリル酸系ポリマー等親水性高分子の水溶液を配 合した組成物が知られている。一方、特開平2-138 380号公報には、硫酸もしくは硝酸アルカリ金属塩の 含有の水性感圧接着剤が開示されている。

[0003]

【発明が解決しようとする課題】しかしながら、これら の組成物では、まだ結露面の接着性が不十分であったり 感圧接着剤にとしての本来の性質である、タック、粘着 30 カ、凝集力の3つのバランスがとれなく、実用上多くの 問題がある。

[0004]

【課題を解決するための手段】本発明者等は、感圧接着 剤としての本来の性質、即ち、常態粘着力、タック、凝 集力等の諸性質を低下させる事なく、結露面または湿潤 面接着力に優れた感圧接着剤を得るべく鋭意研究を行っ た結果、感圧接着性樹脂に多孔質粒子を特定量含有させ ることにより、これらの性質をことごとく備えた卓越し た感圧接着剤用組成物が得られることを見出し、本発明 に到達した。即ち本発明は、感圧接着性樹脂組成物の樹 脂成分100重量部に対して、無機系多孔質粒子または 有機系多孔質粒子を1~40重量部含有してなることを 特徴とする感圧接着性樹脂組成物に関するものである。 【0005】以下、本発明を詳細に説明する。本発明に 用いられる感圧接着性樹脂としては、特に限定される物 でなく、樹脂形態としては、エマルジョンーラテックス 型、溶剤型、ホットメルト型、電子線型、紫外線型が利 用出来る。このような樹脂組成としては、例えば、アク

酢酸ビニル系樹脂、シリコン系樹脂、ウレタン系樹脂等 挙げることができる。これらの樹脂組成の中、結露面ま たは湿潤接着力の改善効果の点から、本発明には、タッ ク、粘着力、凝集力の3性質のバランスが良く、耐候性 にも優れた感圧接着剤層を形成するアクリル系樹脂が好 適に用いられる。また、特に水分散系の樹脂が、細孔を ふさぐことが少なく、最も好適である。上記の感圧接着 層を形成するアクリル系樹脂としては公知のものなら何 でも使用でき、。例えば、ブチルアクリレート、ブチル 性に優れた感圧接着剤組成物に関し、更に詳しくは、感 10 メタアクリレート、2-エチルヘキシルアクリレート、 **2-エチルヘキシルメタアクリレート、イソブチルアク** リレート、イソブチルメタアクリレート、デシルアクリ レート、デシルメタアクリレートのような炭素数4~1 4程度のアルコールとアクリル酸、メタアクリル酸との エステルを主モノマーとし、これとアクリル酸、メタク リル酸、2-ヒドロキシエチルメタクリレート、ジエチ ルアミノメタアクリレートのような官能基含有共重合性 モノマーないし酢酸ビニル、アクリロニトリル、スチレ ンのような改質用の共重合性モノマーとの共重合体など

> 【0006】その製造は、前記の成分モノマーを通常の ラジカル重合処方により乳化重合、懸濁重合、あるいは 溶液重合などの公知の方法で行うことができる。本発明 の感圧接着性樹脂組成物は、前記の感圧接着性樹脂の樹 脂成分100重量部に対して、例えばホワイトカーボ ン、ボーキサイド、合成ベントナイト、シリカゲル、ア パタイト、モレキュラーシーブ等の無機系多孔質粒子、 あるいは、例えば尿素・ホルマリン系樹脂、ポリスチレ ン系粒子、イオン交換樹脂等の有機系多孔質粒子から選 ばれた1種又は2種以上の多孔質粒子が1~40重量部 を含有してなるものが適当である。多孔質粒子が1重量 部未満だと結露面での接着力が充分でなく、また、40 重量部を越えると粘着力、タックが極端に低下する傾向 にある。このような多孔質粒子の平均粒子は0.5~5 0μの範囲が適当であり、好ましくは1~30μの範囲 である。0.5 μ以下では、結露面での接着力が不十分 となり本発明の効果は得られずまた、50μ以上になれ ば系の混合状態の維持性、とくに多孔質粒子の沈降が見 られ好ましくない。また、多孔質粒子であるという1つ の目安となる、空隙率 (cc/g)が0.5~10の範 囲が適当であり、好ましくは1~5である。空隙率が 0.5以下では、結露面への接着力が不十分となり本発 明の効果は得られず、また、10以上になれば、系の混 合状態の維持性、とくに経日での増粘が見られ好ましく ない。

【0007】上記の多孔質粒子の中で、特に、好適に用 いられ無機系多孔質粒子としては、ホワイトカーボン (商品名としてはトクシール、徳山曹達製)、合成ゼオ ライト(商品名としてはミズカシール、水沢化学製)等 リル系樹脂、天然もしくは合成ゴム系樹脂、エチレンー 50 が挙げられる。有機系多孔質粒子としては、尿紫-ホル 3

マリン系樹脂は例えば、特開昭57-26686号公報 に記載された重合法で作られたもの、ポリスチレン系粒 子は、特開平2-70741公報に記載された重合法で 作られたもの等が挙げられる。本発明の感圧接着剤組成 物に上記した多孔質粒子と、ジブチルフタレート、ジオクチルフタレートなどの可塑剤、ロジン、ロジン誘導体、テルペン誘導体などのタッキファイヤー樹脂、 顔料、増粘剤、消泡剤、瀉剤、防腐剤などの改質剤を必要 に応じ添加することが出来る。

[0008]

【実施例】以下、本発明を、更に具体的に説明するため、実施例及び比較例をあげて説明するが、本発明はこれらの実施例に限定されるものではない。

参考例1

ブチルアクリレート97部(重量部、以下同じ。)、メタクリル酸3部、過硫酸アンモニウム 0.3部、ノニオン系界面活性剤 0.5部及びイオン交換水100部を混合し80℃で5時間反応させてアクリル樹脂の水分散液を得た。

参考例2

参考例1の水分散液に、アクリル樹脂100部あたりテルペンフェノール樹脂20部(固形分)を添加して混合物を得た。

【0009】実施例1~5

参考例1の水分散液に、アクリル樹脂の水分散液100 部あたり尿素-ホルマリン系縮合型樹脂(平均粒子径: 3μ、空隙率:2.9cc/g)を5部、15部、20 部、30部、40部を加え、撹拌下に感圧接着剤樹脂組成物を得た。

実施例6~10

参考例2の混合物にアクリル樹脂100部あたり尿素ーホルマリン系縮合型樹脂(平均粒子径:3μ、空隙率:2.9cc/g)を5部、15部、20部、30部、40部を加え、撹拌下に感圧接着剤樹脂組成物を得た。 実施例11~15

参考例1の水分散液に、アクリル樹脂の水分散液100 部あたりホワイトカーボン(平均粒子径:3μ、空隙 率:3.7cc/g)を5部、15部、20部、30 部、40部を加え、撹拌下に感圧接着剤組成物を得た。 【0010】比較例

参考例1のアクリル樹脂の水分散液をそのまま用いた。 尚、平均粒子径の測定はマイクロトラック〔日機装 (株)製〕により、また、空隙率は水銀ポロシメーター により測定した。

4

評価試験

離型材上に乾燥後の感圧接着層が22±3gr/m²になるように感圧接着剤組成物のサンプルを塗布し、100℃、3分間乾燥後、坪量55gr/m²上質紙に転写10して感圧接着シートを作成し、下記の方法で常態粘着力およびボールタックおよび凝集力および結露面接着力を調べた。

【0011】 [常態粘着力試験] JIS R-6523 に規定する#280の耐水研磨紙で磨いたSUS304のステンレス鋼板なよびポリエチレン板(ハイゼックス5000H) に上記の方法で作成した試験片をJIS Z-0237の方法に従って圧着し、24時間後20℃、65%RH、剥離速度300mm/minの条件下その剥離強度(g/25mm)を測定する。

20 [ボールタック試験] J. DOW法に準じ、傾斜角30 の斜面に長さ10cmの試験品を貼りつけ斜面上方10cmの位置より長径x/32インチの大きさのスチールボールをころがし、試料上で停止する最大径のボールの大きさxで表示する。

[凝集力試験] JIS R-6523に規定する#28 Oの耐水研磨紙で磨いたSUS304のステンレス鋼板 に、試験片の貼着面積が25×25mm²になるよう貼 る付け2kgローラーを1往復して圧着した。これを2 O℃×65%RHの雰囲気下で1kgの静荷重を試料に 30 かけ荷重が落下するまでの時間を測定する。

[結露面接着力] 厚み5mm×幅50mm×長さ125mmのSUS304のステンレス鋼板を-20℃の恒温室の中に3時間以上放置した後、20℃×65%RHの室内に取り出し、60秒間結露させ、直ちに試験片を120grのロール1往復で貼り合わせ、60秒後に剥離速度300mm/minの条件下でその剥離強度(gr/25mm)を測定する。

[0012]

【表1】

6

5

		組 多孔質粒子 程 駅 至量部		成 機脂系 の種類 7ララル樹脂 (重量部)	***	š~.	472 APP -1-	結算面	
					747/树脂	粘着力 / /05	379	製集力	接着力
	Ì					(g/25 m)		(2))	(g/25 m)
	1	展表・神でが系	5	参考例1	100	1500*	14	1000KL	950
	2	P	15	U	Ħ	1550*	14	1000以上	900
	3	,	20	ø	7	1620*	13	1000以上	950
	4	9	30	0	,,	1300	11	900	630
実	5	,	40	Ħ	n	600	8	850	350
	6		5	参考例 2	R	1800≉	16	1000 SLE	900
	7	,	15		Я	1500*	15	1000ELE	930
施	8	y	20	11	H	1150	15	1000£LE	900
例	9	y	30	н	p	1200	11	850	720
	10	y	40	n	p	700	9	800	550
	11	# 5/1-3-6">	Б	参考例 1	D	1600*	15	1000以上	700
	12	В	15	*	,	1550*	14	1000 BLE	720
	13	n	20		7	1400	11	1000以上	700
	14	_ "	30	R	H	1000	8	900	570
	15	v	40	p		650	в	650	370
坳	校例	-	_	D	_	1600*	14	1000以上	200

備考) * 印は基材破壊を示す。 表より、多孔質粒子の添加により粘着力とボールタックと凝集力のバランスを維持しながら、結 葉面接着力が大幅に向上出来ることがわかる。

[0013]

【発明の効果】本発明の感圧接着剤樹脂組成物は、多孔 質粒子の添加により粘着力とボールタックと凝集力のバ*40

* ランスを維持しながら、結露面接着力が大幅に向上出来ることが表1より明らかである。

フロントページの続き

(72)発明者 八重樫 誠

神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内