17. Способы борьбы с переобучением. Байесовская сеть доверия: определение и применение. Уменьшение размерности пространства признаков.

http://logic.pdmi.ras.ru/csclub/sites/default/files/slides/20080330_machine_learning_nikolenko_lecture07.pdf
http://www.habarov.spb.ru/new_es/exp_sys/es06/es6.htm

Способы борьбы с переобучением

Минимизацию эмпирического риска следует применять с известной долей осторожности. Если минимум функционала $Q(a,X^l)$ достигается на алгоритме a, то это ещё не гарантирует, что a будет хорошо приближать целевую зависимость на произвольной контрольной выборке $X^k = (x_i, y_i)_{i=1}^k$. Когда качество работы алгоритма на новых объектах, не вошедших в состав обучения, оказывается существенно хуже, чем на обучающей выборке, говорят об эффекте переобучения (overtraining).

Избавиться от него нельзя. Как его минимизировать?

- минимизировать одну из теоретических оценок;
- накладывать ограничения на Σ (регуляризация);
- минимизировать HoldOut, LOO или CV

 $\mbox{ Читать: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf}$

 $\verb|http://www.machinelearning.ru/wiki/images/2/2d/Voron-ML-Modeling.pdf|$

Байесовская сеть доверия

Байесовская сеть – графическая вероятностная модель, представляющая собой множество переменных и их вероятностных зависимостей. Является в некотором роде продолжением байесовского классификатора. Б.К. основывается на предположении об условной независимости атрибутов при условии данного целевого значения. Б.С. представляет собой направленный граф, в котором стрелки показывают причинноследственную связь. В вершинах графа заданы условные вероятности при условии всего множества предков. Если предков нет, вероятности

не условные, а маргинальные. В графе запрещены направленные циклы. Вся эта информация дает возможность вычислять любую вероятность в сети, т.е. единственным образом задает распределение.

http://habrahabr.ru/company/surfingbird/blog/176461/

Суть рассуждений в байсовской сети – пропагация свидетельств. Обычно пропагация идёт снизу вверх, от следствий к причинам.

Теорема о декомпозиции. Для БСД общее распределение вероятностей $p(X) = p(x_1, \dots, x_n) = \prod_{x \in X} p(x|pa(x))$, где pa(x) – множество родителей узла x в графе.

Маргинальные, совместные и условные распределения являются факторами (factor) – функциями от нескольких переменных. Над факторами можно производить некоторые операции: перемножать (multiply), маргинализировать по переменной(marginalize) и уменьшать (reduce).

0.1 Variable elimination

Совместное распределение в сети задается через перемножение нескольких факторов, соответствующих вершинам. По входным свидетельствам хотим получить апостериорные вероятности событий в сети.

- 1. Если есть свидетельства, делаем редукцию факторов по ним;
- 2. Выбираем событие, содержащееся в наименьшем числе факторов;

Рис. 1: Произведение факторов

Рис. 2: Маргинализация

- 3. Перемножаем и нормируем полученный фактор;
- 4. Маргинализуем по выбранному событию;
- 5. Если остались события, по которым суммирование еще не делали, возвращаемся на шаг 2.

Уменьшение размерности пространства признаков

http://logic.pdmi.ras.ru/~sergey/teaching/mlauii12/15-pca.pdf

Factor Reduction

a^1	b ¹	c1	0.25
α^1	b¹	c ²	0.35
a^1	p ₅	c1	0.08
α^1	b²	c²	0.16
a ²	b¹	c1	0.05
α²	b1	c²	0.07
a ²	b ²	c1	0
α²	b²	c²	0
a ³	b¹	C ¹	0.15
a^3	b1	c²	0.21
a ³	p _S	c ¹	0.09
a^3	b²	c²	0.18

a¹	b1	c1	0.25
a¹	b²	c¹	0.08
α²	b1	c1	0.05
α²	b²	c1	0
a ³	b¹	c1	0.15
a ³	b ²	c1	0.09

Daphne Kolle

Рис. 3: Редукция

Variable Elimination

Goal: P(J)

• Eliminate: C,D,I,H,G,S,L

Рис. 4: Variable elimination

Memod главных компонент – один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации.

- 1. Нормируем матрицу $X(d \times n)$ построчно
(мат.ожидание 0, дисперсия 1);
- 2. Строим матрицу ковариаций $\Sigma = XX^T;$
- 3. Вычисляем собственные значения;
- 4. Берем собственные вектора, соответстующие k самым большим собственным значениям, и формируем из них матрицу W.

5. Перемножаем полученную матрицу с исходной Y=WX. Y имеет размерность $k\times n$

Выбирать k можно разными способами:

- $\mathbf{k} = \sum_i [\lambda_i > \varepsilon]$ То есть берем все вектора, собственные значения которых больше ε .
- $k = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{n} \lambda_i} > 0.9$

Суть метода в нахождении проекции, в которой максимизируется дисперсия и минимизируется суммарное расстояние до проекций точек. Оказывется, что необходимо делать проекцию на пространство, базисом в котором являются собственные вектора. При этом некоторые вектора (с малым собственным значением) можно отбросить, тем самым уменьшив размерность пространства и потеряв минимум информации. РСА позволяет получить матрицу перехода в новое пространство, обнаружить зависимости между признаками исходных данных и сделать некоторый препроцессинг данных (после которого могут быть лучше видны характерные особенности).