Лабораторная работа №4.5.2

ИНТЕРФЕРЕНЦИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

1 Немного теории

Лазер работает на волнах

$$\lambda_0 = 632.8nm$$

Доплеровский эффект вызывает уширение спектральной линии, в приближении небольших скоростей и разложении по линейным членам $\frac{v}{c}$ релятивистких эффектов позволяет нам говорить о максвелловском виде спектра. Характерной особенностью является очень узкая величина уширения и соответственно небольшое количество возбужденных побочных мод в лазерном резонаторе.

$$\Delta f = f_0 \sqrt{\frac{2kT}{mc^2}}$$

2 Измерение коэффициента видности

Коэффициент видности зависит от нескольких величин, примем без доказательства, что суммарный коэффициент можно представить в виде:

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$

2.1 Разные амплитуды монохроматических волн

Видность (1) обусловлена видностью одной моды излучения частоты f_m для волн разных амплитуд, сходящихся под маленьким углом с разностью хода l:

$$\Delta = k_m l = \frac{2\pi}{\lambda} l$$

$$I = A_m^2 + B_m^2 + 2A_m B_m \cos(\Delta)$$

В минимуме и максимуме можно выразить видность через безразмерный параметр $\delta \equiv \delta_m = A_m^2/B_m^2$

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta}$$

Т.е. видность (1) определяется только амплитудами интерферирующих волн.

2.2 Рассмотрение влияния нескольких мод колебаний

Пренебрегая межмодовыми биениями, можно рассмотреть интенсивность суммарной волны как сумму интенсивностей интерферирующих мод:

$$I = \sum_{m} A_m^2 (1 + \delta + 2\sqrt{\delta}\cos(\frac{2\pi}{\lambda_m}l))$$

Функция представляет собою часть тригонометрического ряда, максимум суммы которого достигается при условии:

$$\Delta_m = pi\frac{l}{L} = 2\pi n_m$$

Откуда получаем, что максимум будет при $l=\pm(2k)L$

Определяя форму γ_2 можно найти связь полуширины γ_2 с ΔF :

$$l_{1/2} = \frac{c}{\pi \Delta F} \sqrt{\ln 2} \approx \frac{0.26c}{\Delta F}$$

2.3 Поляризация

В интерференции принимают участие волны с одинаковой поляризацией. Вклад различной поляризации линейных волн:

$$\gamma_3 = |\cos \alpha|$$

3 Ход работы

Измерения производятся с помощью осциллографа, по сигналу которого мы сразу можем измерить видность картины. Сначала исследуем зависимость $\gamma_3(\alpha)$. Чтобы легче пронаблюдать ожидаемую зависимость лучше строить график $\gamma_3\cos(\alpha)$, предполагая зависимость вида $\gamma_3=|t|$

В	h1	h2	h3	h4	Υ	d	y1	у3	cos(B)
0	1	1,6	0,4	5	0,851852	0,625	0,973009	0,875482	1
10	1,4	1,6	0,4	5,3	0,859649	0,875	0,997775	0,861566	0,984809
20	1	1,6	0,4	4,6	0,84	0,625	0,973009	0,863302	0,939696
35	0,9	1,6	0,7	4	0,702128	0,5625	0,96	0,731383	0,819162
45	0,8	1,6	1	3,8	0,583333	0,5	0,942809	0,618718	0,707123
60	0,6	1,6	1,4	3,02	0,366516	0,375	0,890724	0,411481	0,500027
75	0,5	1,6	2,2	2,3	0,022222	0,3125	0,851835	0,026087	0,258856
90	0,2	0,8	0,8	1,3	0,238095	0,25	0,8	0,297619	4,63E-05
100	0,3	0,8	0,6	1,6	0,454545	0,375	0,890724	0,51031	-0,1736
110	0,3	0,8	0,3	1,8	0,714286	0,375	0,890724	0,801916	-0,34197
130	0,4	0,8	0,2	2,1	0,826087	0,5	0,942809	0,876198	-0,64274
145	0,5	0,8	0,2	2,4	0,846154	0,625	0,973009	0,869626	-0,81911
160	0,6	0,8	0	2,6	1	0,75	0,989743	1,010363	-0,93966
175	0,6	0,8	0,1	2,7	0,928571	0,75	0,989743	0,938194	-0,99619

Теперь установим зависимость γ_2 Будем двигать штангу вдоль оси и честно снимать точки

L	h1	h2	h3	h4	Y1		Υ	y2(x)
10	1,4	1	0,8	4	0,66666	7 1,4	0,986013	0,676123
12	1,4	1,6	0,7	5,8	0,78461	5 0,875	0,997775	0,786365
14	1,4	2,4	0,6	7,2	0,84615	4 0,583333	0,964753	0,877068
16	1,4	2	0,2	7,2	0,94594	6 0,7	0,984306	0,961028
18	1,4	2,6	0,5	7,6	0,87654	3 0,538462	0,953939	0,918867
20	1,4	2,6	0,8	7,2	0,	8 0,538462	0,953939	0,838628
24	1,4	1,8	1,1	5,1	0,64516	1 0,777778	0,992157	0,650261
28	1,4	1,8	2	4,4	0,37	5 0,777778	0,992157	0,377964
32	1,4	2	3,2	3,4	0,03030	3 0,7	0,984306	0,030786
36	1,4	2,8	3,6	4,8	0,14285	7 0,5	0,942809	0,151523
40	1,4	2,4	3	4,6	0,21052	6 0,583333	0,964753	0,218218
46	1,4	2,9	3,4	4,2	0,10526	3 0,482759	0,937183	0,112319
50	1,4	2,4	3,6	4,6	0,12195	1 0,583333	0,964753	0,126407
55	1,4	2,8	3,6	4,8	0,14285	7 0,5	0,942809	0,151523
60	1,4	1,8	3,4	4,8	0,17073	2 0,777778	0,992157	0,172081
65	1,4	1,8	3,2	5,1	0,22891	6 0,777778	0,992157	0,230725
70	1,4	1,6	2	5,6	0,47368	4 0,875	0,997775	0,47474
72	1,4	2	1,1	7,2	0,7349	4 0,7	0,984306	0,746658
74	1,4	2,4	0,6	7,4	0,8	5 0,583333	0,964753	0,881055
76	1,4	2,2	0,2	7,6	0,94871	8 0,636364	0,974996	0,973048
78	1,4	2,6	0,7	7,2	0,82278	5 0,538462	0,953939	0,862513

Отсюда по расстоянию между максимумами можно найти длину лазера:

$$L = 30 \pm 2 \ cm$$
.

И оценить ширину спектра:

$$\Delta F = \frac{0.26c}{[l_{1/2} = 11cm]} \approx (7, 1 \pm 0, 7) \cdot 10^8 \ hz$$

Число мод:

$$N = 1 + 2\frac{\Delta F}{\Delta \nu} = 1 + 2\frac{7}{5} \approx 3 \pm 1$$