

# Programowanie liniowe Projekt nr 1

#### Polecenie:

Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A,B,C i D na trzech oddziałach produkcyjnych:  $O_1$  i  $O_2$ . Czas pracy oddziałów przypadający na obróbkę jednostek poszczególnych wyrobów (w godz.) podano w tabeli:

| Oddziały       | Czas pracy na jednostkę wyrobu (w godz.) |     |     |     |  |  |
|----------------|------------------------------------------|-----|-----|-----|--|--|
|                | А                                        | В   | С   | D   |  |  |
| O <sub>1</sub> | 1,0                                      | 1,0 | 1,5 | 2,0 |  |  |
| O <sub>2</sub> | 1,0                                      | 1,0 | 3,0 | 1,0 |  |  |

Jednostkowy zysk (w zł) wynosi odpowiednio: A - 3,0, B - 1,5, C - 4,0, D - 3,5. W jednym miesiącu poszczególne oddziały mogą pracować:  $O_1$  – co najwyżej 210 godz.,  $O_2$  – co najmniej 100 godz.

Które wyroby i w jakich ilościach powinny być produkowane przez przedsiębiorstwo, aby zrealizowany zysk był maksymalny? Podać wielkość maksymalnego zysku.

PP:

x<sub>1</sub> – wielkość prod. A

x<sub>2</sub> – wielkość prod. B

x<sub>3</sub> – wielkość prod. C

x<sub>4</sub> – wielkość prod. D

$$F_c$$
:  $f(x_1, x_2, x_3, x_4) = 3x_1 + 1,5x_2 + 4x_3 + 3,5x_4 \rightarrow max$ 

Ograniczenia:

$$\begin{cases} x_1 + x_2 + 1,5x_3 + 2x_4 \le 210 \\ x_1 + x_2 + 3x_3 + x_4 \ge 100 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Aby rozwiązać graficznie to zadanie musimy przejść do programu dualnego:

PD:

y<sub>1</sub> – zmienna dualna

y<sub>2</sub> – zmienna dualna

$$g(y_1, y_2) = 210y_1 + 100y_2 \rightarrow min$$

### Ograniczenia:

$$\begin{cases} y_1 + y_2 \ge 3 & \text{(1)} \\ y_1 + y_2 \ge 1,5 & \text{(2)} \\ 1,5y_1 + 3y_2 \ge 4 & \text{(3)} \\ 2y_1 + 1y_2 \ge 3,5 & \text{(4)} \\ y_1 \ge 0, y_2 \le 0 \end{cases}$$

## Przecięcia z osiami:

① 
$$y_1: 3 y_2: 3$$

② 
$$y_1: \frac{3}{2} y_2: \frac{3}{2}$$

$$3 y_1: \frac{8}{3} y_2: \frac{4}{3}$$

$$(4)$$
  $y_1: \frac{7}{4}$   $y_2: \frac{14}{4}$ 

$$g(A) = 210 * 3 = 630$$

$$210y_1 + 100y_2 = 630$$

Korzystamy z twierdzenia 4 o komplementarności. Podstawiamy punkt A(3,0) do warunków ograniczających w PD. Tylko pierwszy z nich jest aktywny (jest równość). Oznacza to, że w rozwiązaniu PP zmienna  $x_1$  ma wartości dodatnie, a pozostałe wynoszą 0.

Otrzymujemy:

$$x_1 + 0 + 1.5 * 0 + 2 * 0 = 210$$

$$x_1 = 210$$

Rozw. PP

$$\begin{cases} x_1 = 210 \\ x_2 = 0 \\ x_3 = 0 \\ x_4 = 0 \end{cases}$$

B(210,0,0,0)

$$f(B) = 3 * 210 + 1,5 * 0 + 4 * 0 + 3,5 * 0 = 630$$

#### Sprawdzenie w za pomocą Solver w programie Excel

|                      |     |     |     |     |      | f.celu            |     |
|----------------------|-----|-----|-----|-----|------|-------------------|-----|
| Zmienne              | x1  | x2  | х3  | x4  |      | Fc=               | 630 |
|                      | 210 | 0   | 0   | 0   |      | 11111111111111111 |     |
| Wspolczynnik f. celu | 3   | 1,5 | 4   | 3,5 |      |                   |     |
| Warunki              |     |     |     |     | Lewa | Prawa             |     |
| 01                   | 1   | 1   | 1,5 | 2   | 210  | 210               |     |
| O2                   | 1   | 1   | 3   | 1   | 210  | 100               |     |