

Appendix to:

EFSA (European Food Safety Authority), 2020. Conclusion on the peer review of the pesticide risk assessment of the active substance abamectin. EFSA Journal 2020;18(8):6227, 134 pp. doi:10.2903/j.efsa.2020.6227

© European Food Safety Authority, 2020

Appendix A — List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Abamectin		
Function (eg. fungicide)	Insecticide, acaricide		
Rapporteur Member State	Austria		
Co-rapporteur Member State	Malta		

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

	· · · · · · · · · · · · · · · · · · ·
Chemical name (IUPAC)	avermectin B _{1a} (10 <i>E</i> ,14 <i>E</i> ,16 <i>E</i>)-(1 <i>R</i> ,4 <i>S</i> ,5' <i>S</i> ,6 <i>S</i> ,6' <i>R</i> ,8 <i>R</i> ,12 <i>S</i> ,13 <i>S</i> ,20 <i>R</i> ,21 <i>R</i> ,24 <i>S</i>)-6'-[(<i>S</i>)- <i>sec</i> -butyl]-21,24-dihydroxy-5',11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo[15.6.1.1 ^{4,8} .0 ^{20,24}]pentacosa-10,14,16,22-tetraene)-6-spiro-2'-(5',6'-dihydro-2' <i>H</i> -pyran)-12-yl 2,6-dideoxy-4- <i>O</i> -(2,6-dideoxy-3- <i>O</i> -methyl-α-L- <i>arabino</i> -hexopyranosyl)-3- <i>O</i> -methyl-α-L- <i>arabino</i> -hexopyranoside
Chemical name (10171C)	avermectin B _{1b}
	$(10E,14E,16E) - (1R,4S,5'S,6S,6'R,8R,12S,13S,20R,21R,24S) - 21,24-dihydroxy-6'-isopropyl-5',11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo[15.6.1.1^{4,8}.0^{20.24}]pentacosa-10,14,16,22-tetraene)-6-spiro-2'-(5',6'-dihydro-2'H-pyran)-12-yl 2,6-dideoxy-4-O-(2,6-dideoxy-3-O-methyl-\alpha-L-arabino-hexopyranosyl)-3-O-methyl-\alpha-L-arabino-hexopyranoside$
	Abamectin: avermectin B ₁
Chemical name (CA)	avermectin B_{1a} : 5-O-demethyl-avermectin A_{1a} avermectin B_{1b} : 5-O-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl)-avermectin A_{1a}
CIPAC No	495 (Abamectin)
CAS No	71751-41-2 (abamectin) 65195-55-3 (avermectin B _{1a}) 65195-56-4 (avermectin B _{1b})
EC No (EINECS or ELINCS)	265-610-3 (avermectin B _{1a})

	265-611-9 (avermectin B _{1b})
FAO Specification (including year of publication)	Not available
Minimum purity of the active substance as manufactured	The minimum purity of abamectin as manufactured should not be less than min. 850 g/kg abamectin (sum of avermectin B_{1a} and avermectin B_{1b}), min. 800 g/kg avermectin B_{1a} and max. 200 g/kg avermectin B_{1b} (as proposed in the amendment of the definition in ISO 1750 by the main notifier).
Identity of relevant impurities (of toxicological, environmental and/or other significance) in the active substance as manufactured	Abamectin technical does not contain significant amounts of impurities or by-products of particular toxicological, environmental or ecotoxicological concern.
Molecular formula	$C_{48}H_{72}O_{14} \text{ (avermectin } B_{1a})$ $C_{47}H_{70}O_{14} \text{ (avermectin } B_{1b})$
Molecular mass	873.1 g/mol (avermectin B _{1a}) 859.1 g/mol (avermectin B _{1b})
Structural formula	R = -CH ₂ CH ₃ (avermectin B _{1a}) R = -CH ₃ (avermectin B _{1a}) H OH OH OH OH OH

Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Melting point (state purity)	161.8 - 169.4°C (96.7%)
Boiling point (state purity)	Boiling point: not determined, due to thermal decomposition during melting of Abamectin
Temperature of decomposition (state purity)	Not available
Appearance (state purity)	Purified active substance is a white powder (25°C) and the odour of the active substance was not determined (due to health protection of laboratory stuff) (96.7%)
Vapour pressure (state temperature, state purity)	< 3.7 × 10 ⁻⁶ Pa at 25°C (96.7%)
Henry's law constant (state temperature)	< 0.159 Pa·m³/mol at 20°C
Solubility in water (state temperature, state purity and pH)	$20.31~\mu g/L$ at $20^{\circ}C$ (the pH dependency of the water solubility was not investigate as the hydrolysis of the test item is not pH dependent) (97.06%)
	at 25°C (96.7%) in:
	acetone: 72 g/L
	dichloromethane: 470 g/L
Solubility in organic solvents	ethyl acetate: 160 g/L
(state temperature, state purity)	hexane: 0.11 g/L
	methanol: 13 g/L
	octanol: 83 g/L
	toluene: 23 g/L
Surface tension	52.4 mN/m (90 % saturated solution) (96.7%)
(state concentration and temperature, state purity)	at 20°C
Partition coefficient	$\log K_{ow} = 4.4 \pm 0.03 \ (96.7\%)$
(state temperature, pH and purity)	at room temperature, pH 7.2
Dissociation constant (state purity)	No dissociation or spectral changes were observed in the 1 - 12 pH range
	UV/VIS (96.6%)
	No absorption maximum observed between 290 and 750
	nm
	Neutral
	$(\varepsilon) = 32549 \text{ L} \times \text{mol}^{-1} \times \text{cm}^{-1} \text{ at } 245 \text{ nm}$
	$(\varepsilon) = 18983 \text{ L} \times \text{mol}^{-1} \times \text{cm}^{-1} \text{ at } 255 \text{ nm}$
UV/VIS absorption (max.) incl. ϵ	Acidic
(state purity, pH)	$(\epsilon) = 34515 \text{ L} \times \text{mol}^{-1} \times \text{cm}^{-1} \text{ at } 245 \text{ nm}$
	$(\epsilon) = 20977 \text{ L} \times \text{mol}^{-1} \times \text{cm}^{-1} \text{ at } 255 \text{ nm}$
	Basic
	$(\varepsilon) = 29551 \text{ L} \times \text{mol}^{-1} \times \text{cm}^{-1} \text{ at } 245 \text{ nm}$
	Acceptable ¹ H-NMR, ¹³ C-NMR, IR and MS spectra were submitted
Flammability (state purity)	Abamectin is not highly flammable (96.7%)
Explosive properties (state purity)	Abamectin was considered not thermally, shock or friction sensitive (96.7%)
Oxidising properties (state purity)	Abamectin is not classified as an oxidizing substance (96.7%)

Summary of representative uses evaluated, for which all risk assessments needed to be completed (name of active substance or the respective variant) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Сгор	Member		F	Pests or	Prepa	aration		Applica	ition		Application	on rate per	treatment		
and/or situation (a)	State or Country	Product name	G or I (b)	Group of pests controlled (c)	Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s /hL min-max (1)	Water L/ha min-max	kg a.s./ha min-max (1)	PHI (days) (m)	Remarks
Tomato LYPES	Northern, central, southern EU	Abamectin 1.8% EC	G*	Tetranychus urticae TETRUR Liriomyza spp. LIRISP Aculops lycopersici VASALY Tuta absoluta GNORAB	EC	18 g/L	Spray (Back sprayer)	At infestation BBCH 10-89 (excluding November to February)	1-3	7 days	0.0009- 0.0018	300- 1000	0.0027- 0.018	3	mL product/hL (min- max): 50-100 treated Leaf Wall Area: 0.43 L per 10000 m² tLWA Assumptions**: Canopy height:2.3 m Row distance: 2 m max. tLWA: 23000m²/ha
Strawberry FRAAN	Northern, central, southern EU	Abamectin 1.8% EC	G*	Tetranychus urticae TETRUR Liriomyza trifolii LIRITR Phytonemus pallidus TARSPA	EC	18 g/L	Spray (Back sprayer)	At infestation BBCH 10-89 (excluding November to February)	1-2	7 days	0.0009- 0.0018	300- 1000	0.0027- 0.018	3	mL product/hL (min- max): 50-100

^{*}closed walk-in structures with soil bound crops (Glasshouse, greenhouse and walk-in tunnel)

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the
use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of	(j)	Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997,
pesticide		Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of
(f) All abbreviations used must be explained		application
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench	(k)	Indicate the minimum and maximum number of applications possible under practical conditions of use
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated	(1)	The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha

(m) PHI - minimum pre-harvest interval

Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)

Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop Member		F	Pests or	Prepa	ration		Applic	ation		Application	on rate per	treatment		
and/or State situation or (a) Country	Product name	G or I (b)	Group of pests controlled (c)	Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s /hL min-max (l)	Water L/ha min-max	kg a.s./ha min-max (1)	PHI (days) (m)	Remarks

MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)

Not applicable

- (a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated

- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of applications possible under practical conditions of use
- The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

The efficacy of the representative uses has already been evaluated under Uniform Principles for national registration. The applicant provided an efficacy summary:

The most challenging target is considered to be *Tetranychus urticae* (TETRUR). Trials data supporting effectiveness against this target comprise 7 trials were conducted on strawberries and tomatoes. Efficacy at a dose of 0.9-1.8 g a.s/hl (the actually applied dose per ha or tLWA was not indicated) was 84-96 %.

Efficacy trials are also available against *Liriomyza* sp. in tomatoes and lettuce (according to the EPPO extrapolation tables for minor uses, trials in lettuce can be used to reduce the required data set in tomato). Trials were conducted under protected and field conditions. Efficacy was 77-82 % on tomato (83-87 % on lettuce).

Efficacy against *Tuta absoluta* on tomatoes is shown from 2 trials with the very similar formulation Abamectin 1.8% EW. Trials were conducted under protected and field conditions. Efficacy was 63-83 %.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

The crop safety of the representative uses has already been evaluated under Uniform Principles for national registration. The applicant provided a summary on crop safety:

Crop safety has been considered in the effectiveness trials. Abamectin 1.8% EC is very well tolerated by the target crops.

The possibly impact on the quality of yield, processing, or the amount of yield was not addressed.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

The representative uses have already been evaluated under Uniform Principles for national registration.

Since abamectin is degraded in soil very quickly and since it has no herbicidal properties, a negative impact on succeeding or adjacent crops is very unlikely. No negative effects of abamectin applications on succeeding crops were seen. Undesirable or unintended side-effects are not expected.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

Not required, PEC $_{GW}$ modelling leads to concentrations below the regulatory threshold of 0.1 $\mu g/L$ for all metabolites and uses considered.

Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	The content of of avermectin B_{1a} and avermectin B_{1b} in technical grade abamectin was determined by dissolving the test substance in methanol/THF (9:1, v/v). HPLC-UV/DAD was used for the determination of avermectin B_{1a} and avermectin B_{1b} .
Impurities in technical a.s. (analytical technique)	HPLC-UV HPLC with G1311C pump, G1316A oven, G1329B auto sampler, G1315D DAD detector, G1311C degasser and controlled by chemstation software.
Plant protection product (analytical technique)	Formulated product APACHE (Abamectin 1.8% w/v EC) The analytical method for the determination of abamectin in the formulated product was done by High Performance Liquid Chromatograph (HPLC) with UV detection.

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2) Residue definitions for monitoring purposes

Food of plant origin	sum of avermectin B_{1a} , [8,9-Z]-isomer of avermectin B_{1a} , and avermectin B_{1b} , expressed as avermectin B_{1a}
Food of animal origin	Avermectin B _{1a} , covered by legal provisions in force for abamectin from veterinary uses
Honey	sum of avermectin B_{1a} , [8,9-Z]-isomer of avermectin B_{1a} , and avermectin B_{1b} , expressed as avermectin B_{1a}
Soil	$\label{eq:avermectinB1a} Avermectin B_{1a}, avermectin B_{1b}, 8a\text{-}oxo\text{-}avermectin } B_{1a} \\ (NOA448111), 8a\text{-}hydroxy\text{-}avermectin } B_{1a} \\ (NOA448112), 4\text{``-}oxo\text{-}avermectin } B_{1a} \\ (NOA457464), 8a\text{-}oxo\text{-}4\text{-}hydroxy\text{-}avermectin } B_{1a} \\ (NOA457465)$
Water surface drinking ground	Avermectin B_{1a} , avermectin B_{1b} , 8a-oxo-avermectin B_{1a} (NOA448111), 8a-hydroxy-avermectin B_{1a} (NOA448112), 4"-oxo-avermectin B_{1a} (NOA426289), 4,8a-dihydroxy-avermectin B_{1a} (NOA457464), 8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)
Air Body fluids and tissues	Avermectin B_{1a} , avermectin B_{1b} (by default) sum of avermectin B_{1a} , [8,9-Z]-isomer of avermectin B_{1a} , and avermectin B_{1b} , expressed as avermectin B_{1a}

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Dry content (wheat grains), high water content (tomatoes), high acid content (strawberry) and high oil content (olives)

Abamectin was determined as avermectin B_{1a} , abermectin B_{1b} and 8,9-Z-avermectin B_{1a} by HPLC-MS/MS ESI monitoring two mass transitions. The sample were extracted with acetonitrile and purification by liquid-liquid partition in the presence of sodium chloride

(QuEChERS multi-residue analytical method)

LOQ = 0.002 mg/kg

ILV is available.

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Animal matrices (milk, eggs, muscle, fat and kidney)

Abamectin was determined as avermectin B_{1a} , abermectin B_{1b} and 8,9-Z-avermectin B_{1a} by HPLC-MS/MS ESI monitoring two mass transitions. The sample were extracted with acetonitrile and purification by liquid-liquid partition in the presence of sodium chloride

(QuEChERS multi-residue analytical method)

LOQ = 0.002 mg/kg

ILV is available.

Soil (analytical technique and LOQ)

Loamy soil

Abamectin and metabolites were determined by HPLC-MS/MS ESI monitoring two mass transitions. The sample were extracted with acetonitrile and purification by liquid-liquid partition in the presence of sodium chloride

LOQ = 0.002 mg/kg for all analytes

Note by RMS : This method for monitoring in soil does not cover 4''-oxo-avermectin B_{1a} (Metabolite of abamectin), which is included in the residue definition for soil for monitoring. However, the applicant has submitted a validated method for 4''-oxo-avermectin B_{1a} (Metabolite of abamectin) in soil for the risk assessment (see B.5.1.2.1. Methods in soil, water, sediment, air and any additional matrices used in support of environmental fate studies, Persch (2017) S16-02007, KCA 7.1.3.1.2/03).

All other metabolites are covered by the methods.

Water (analytical technique and LOQ)

Surface, drinking and ground water

Abamectin and metabolites were determined by HPLC-MS/MS, ESI monitoring two mass transitions. The samples were extracted with acetonitrile and purification by liquid-liquid partition in the presence of sodium chloride

 $LOQ = 0.10 \mu g/L$ for all analytes

The metabolites are covered by the methods.

ILV for drinking water is available.

Data gap: method for the enforcement of the relevant limits based on the lowest effect concentrations for aquatic invertebrates.

Air (analytical technique and LOQ)

Avermectin B_{1a} and avermectin B_{1b} were determined by HPLC-MS/MS ESI monitoring two mass transitions. The air is sampled in a climate-controlled room at constant temperature and humidity. The cartridge content is subjected to air stream and then extracted with acetonitrile and analysed by LC-MS/MS.

 $LOQ = 0.05 \,\mu g/m^3$

Body fluids and tissues (analytical technique and LOQ)

Body fluid: (blood)

Abamectin was determined as avermectin B_{1a} , abermectin B_{1b} and 8,9-Z-avermectin B_{1a} by HPLC-MS/MS ESI monitoring two mass transitions. The sample were extracted with acetonitrile and purification by liquid-liquid partition in the presence of sodium chloride

(QuEChERS multi-residue analytical method)

LOQ = 0.002 mg/kg

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance:

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

According to the Peer review, the criteria for classification may be met for:

Abamectin

No harmonised classification available

None

13

www.efsa.europa.eu/efsajournal

EFSA Journal 2020;18(8):6227

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic Approximately 86% (based on urinary excretion after bioavailability oral or intravenous administration). Toxicokinetics Maximum blood concentration within 4-8 h. Distribution Distributed throughout all major organs and tissues. Potential for bioaccumulation No potential for accumulation upon repeated oral administration. Rate and extent of excretion Rapidly eliminated, almost exclusively in the faeces (more than 92%). Metabolism in animals Major pathways in rats and human include demethylation, hydroxylation, cleavage of the oleandrosyl ring and oxidation reactions. *In vitro* metabolism Rat and human metabolism are similar and no unique human metabolite was identified. Toxicologically relevant compounds Parent and [8,9-Z]-isomer of avermectin B_{1a} (animals and plants) (photodegradation product) Toxicologically relevant compounds Parent and [8,9-Z]-isomer of avermectin B_{1a} (environment) (photodegradation product)

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD ₅₀ oral	$LD_{50} = 8.7 - 12.8 \text{ mg/kg bw}$	Cat 2 H300
Rat LD ₅₀ dermal	$LD_{50} = 1914 \text{ mg/kg bw}$	Cat 4 H312
Rat LC ₅₀ inhalation (4h, nose only)	$LC_{50} = < 0.21 \text{ mg/L}$	Cat 1 H330
Skin irritation	Non-irritant	
Eye irritation	Non-irritant	
Skin sensitisation	Non-sensitizing (Magnusson Kligman maximiation assay)	
Phototoxicity	Not required	

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Rats: clinical signs, bw loss stomach (inflammatory changes.	
	Dogs: central nervous system toxicity tremors, ataxia and mydriasis, absent or decreased pupil reflex, liver.	

Relevant oral NOAEL	90-day rat: 1.6 mg/kg bw/ per day 18-week and 53-week, dog: 0.25 mg/kg bw/ per day	H372
Relevant dermal NOAEL	No data – not required	
Relevant inhalation NOAEL	30-day, rat: 0.577 µg/L (based on the increased incidence in clinical signs and reduced motor activity in females)	

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies	Ames test, 3 studies: negative Mammalian gene mutation, 2 studies: negative Chromosome aberration, 1 study: negative
In vivo studies	In vivo Chromosome aberration, "in vivo mouse bone marrow cytogenetics assay of Avermectin B1", negative
Photomutagenicity	Not required
Potential for genotoxicity	Abamectin is unlikely to be genotoxic. Data gap for assessment of aneugenicity profile.

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)	Rat: CNS toxicity e.g. tremors Mouse: increased mortality (m), extramedullary hematopoiesis in the spleen (m), reduced bw gain
Relevant long-term NOAEL	1.5 mg/kg bw/ per day (2 year rat) 4 mg/kg bw/ per day (90-wk mouse)
Carcinogenicity (target organ, tumour type)	Abamectin is unlikely to be carcinogenic in humans
Relevant NOAEL for carcinogenicity	1.5 mg/kg bw/ per day (104-wk rat) 4 mg/kg bw/ per day (94-wk mouse)

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6) Reproduction toxicity

Reproduction target / critical effect	Rat multigeneration:
	Parent: no treatment-related effects
	Fertility: no treatment-related effects
	Offspring: increased pup mortality, , retarded body weight gain, and transient retinal anomalies in the eyes
Relevant parental NOAEL	0.4 mg/kg bw per day
Relevant reproductive NOAEL	0.4 mg/kg bw per day

Relevant offspring NOAEL	0.12 mg/kg bw per day		
Developmental toxicity			
Developmental target / critical effect	Rat: a absence of effects in the highest dose group in rats. Cleft palate, effects on the sex ratio, lumbar rib and lumbar count variation (in the absence of maternal toxicity in pups. Maternal: absence of effects in the highest	H361	
	dose group in rats		
	Rabbit: In pups: cleft palate, omphaloceles, clubbed forefeet and delayed ossification (at maternally toxic dose) increased incidence clubbed forefoot at 1 and 2 mg/kg bw and increased number of resorptions, delayed ossification and excess incidences of cleft palate, omphalocele and at 2.0 mg/kg bw per day.		
	Maternal: decreased water and food consumption and weight loss during gestation in rabbits.		
Relevant maternal NOAEL	Rat: 1.6 mg/kg bw per day Rabbit: 1.0 mg/kg bw per day		
Relevant developmental NOAEL	Rat: 0.8 mg/kg bw per day Rabbit: 0.5 mg/kg bw per day		

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity	NOAEL 0.5 mg/kg bw (rat, reduced splay reflex)	
Repeated neurotoxicity	Combined 90-day neurotoxicity rat: NOAEL for neurotoxicity 1.6 mg/kg bw per day (clinical signs: irregular breathing, upward curvature of the spine, reduced righting reflex, reduced splay reflex and sides pinched in)	
Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)	Developmental neurotoxicity, rat (2): Maternal NOAEL: 0.4 mg/kg bw per day (increased body weight, food consumption) Develop-mental neurotoxicity LOAEL: 0.12 mg/kg bw per day (decreased body weight, delay in vaginal opening)	

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

Exploratory oral toxicity studies in CF-1 / CD-1 mice and rats: increased sensitivity of animals lacking or showing decreased expression of p-glycoprotein. CF-1 mouse is more sensitive to abamectin toxicity, the studies with the unique polymorphic CF-1 mouse are not relevant for human risk assessment.

Impact of ABCB1 (P-glycoprotein) polymorphisms on abamectin toxicity in humans showed no evidence for mutations of the ABCB1 gene in the human population; most common haplotypes were found to have equal functionality.

Oral toxicity and plasma level study in monkeys:

NOAEL: 1.0 mg/kg bw/ per day

At birth about 50% P-glycoprotein of adult levels were detected, increasing with postnatal maturation and reaching adult levels at 3-6 months of age

Endocrine disrupting properties

Studies performed on metabolites or impurities

Abamectin does not meet ED criteria

[8,9-Z]-isomer of avermectin $B_{\underline{1a}}$: Toxicity lower or comparable to abamectin:

- oral LD_{50} 217 mg/kg bw (CD-1 mice)
- Developmental study with CD-1 mice: maternal NOAEL 3.0 mg/kg bw per d (highest dose), foetal NOAEL < 0.75 mg/kg bwper d (cleft palate)
- Developmental study with rats: maternal NOAEL 1.0 mg/kg bw per day, foetal NOAEL 1.0 mg/kg bw per d (no effects at the highest dose)
- One generation study with rats: maternal and reproductive NOAEL 0.40 mg/kg bw per d (highest dose), offspring NOAEL 0.4 mg/kg bw per d (highest dose)
- Ames test negative.

The reference values derived for abamectin are applicable also for the [8,9-Z]-isomer. Aneugenicity is a data gap.

-24-hydroxymethyl-avermectin B1:

Genotoxicity/General toxicity covered by the parent. Aneugenicity is a data gap.

-Monosaccharide of avermectin B1 [NOA 419150]:

Genotoxicity/General toxicity

covered by parent. Aneugenicity is a data gap.

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No adverse health effects from manufacturing. Severely poisoned patients showed a predominantly uneventful recovery from typical symptoms of avermectin toxicity, a single case of myoclonus and polyneuropathy was reported.

Uncertainty

factor

Summary¹ (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

Acceptable Daily Intake (ADI)

Acute Reference Dose (ARfD)

Acceptable Operator Exposure Level (AOEL)

Acute Acceptable Operator Exposure Level (AAOEL)

(per day))		
0.0012	Developmental neurotoxicity, rat	100
0.0012	Developmental neurotoxicity, rat	100
0.0012	Developmental neurotoxicity, rat	100
0.0012	Developmental	100

Study

The previous reference values (European Commission, 2008) are: The acceptable daily intake (ADI) and acceptable operator exposure level (AOEL) are 0.0025 mg/kg bw/day based on the short term dog studies, whereas the acute reference dose (ARfD) is 0.005 mg/kg bw based on the acute neurotoxicity study.

Value

(mg/kg bw

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (Abamectin 1.8% EC)

in vitro study with human skin:

Concentrate: 11%

Spray dilution: 4.8% (dilution 1:10, 1.82 g/L)

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

\cap	perators
\mathbf{v}	Deraiors

Tomato and strawberries, glasshouse/greenhouse uses, walk-in tunnel, professional back sprayer, upwards and

PPE (gloves during mixing and loading only): 59
PPE (gloves during mixing/loading and application and coverall): 33
ECPA model, downward spraying

Without PPE: 20.5

PPE (gloves during mixing and loading only): 16

PPE (gloves during mixing/loading

and application and coverall):

10

¹ If available include also reference values for metabolites

Workers	EFSA model		
	Without PPE:	222	
	PPE (gloves):	56	
Bystanders and residents	Refined exposure-assessment for residents and bystander (considering vapour exposure only)		
	Resident child:	89	
	Resident adult:	19	
	Bystander child:	89	
	Bystander adult:	9	

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance:

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

According to the Peer review, the criteria for classification may be met for:

Abamectin

Repr. 2 (H361d)

Acute Tox. 1 (H330 Fatal if inhaled) Acute Tox. 2 (H300 Fatal if swallowed) STOT RE 1 (H372, nervous system)

Repr. 2 (H361d)

Acute Tox. 2 (H300 Fatal if swallowed)

Acute Tox. 4 (H312 Harmful in contact with skin)

Acute Tox. 1 (H330 Fatal if inhaled) STOT RE 1 (H372, nervous system)

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

Residues in or on treated products food and feed Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops	Crop groups	Crop(s)	Application(s)	DAT (days)
(Plant groups covered) OECD Guideline 501			Foliar spray, GH 1) 5x26.4 g/ha (7d), 2.44 N	0 DAT3, 0, 3, 7, 14, 28
301		Tomato	2) 3x280.8 g/ha (14d), 15.6N	0, 3, 7, 14, 28
	Fruit crops	Tomato	Foliar spray, F 1) 5x26 g/ha (7d), 2.4N	0 DAT1, 0 DAT2, 0, 3, 7, 14, 28
			2) 5x246 g/ha (14d), 22.8N	7, 28
		Citrus (orange, lemon, grapefruit)	Fruit direct application 1) 4 µg/fruit 2) 40 µg/fruit	0, 7, 14, 28, 56, 84
	Leafy crops	Celery	Foliar 1a) 4 × 0.017 kg a.s./ha 1b) 4 × 0.011 kg a.s./ha 1c) 4 × 0.111 kg a.s./ha	0, 7, 14, 29, 43
			2a) 10 × 0.017 kg a.s./ha 2b) 10 × 0.011 kg a.s./ha 2b) 10 × 0.111 kg a.s./ha	0, 1, 3, 7, 15, 22
	D 1/011	G. W.	Foliar 1) 100 µg/leaf	0, 0.25, 1, 2, 4, 8
	Pulses/Oilseeds Cotton		2) 2 × 0.020 kg a.s./ha 3) 3 × 0.024 kg a.s./ha 4) 2 × 0.224 kg a.s./ha	60 21
Due to a different study design it was not possible to state the compa metabolic routes among the different crop groups, but as photolysi mechanism involved in the metabolism of avermectin B1a the qualitatively similar for all crop groups.			lysis is the main	
Rotational crops	Crop groups	Crop(s)	PBI (days)	Comments
(metabolic pattern) OECD Guideline 502	Root/tuber crops	Carrots Turnips	14/29/31 - 120/123 -	
202	Leafy crops	Lettuce	365	
	Cereal (small grain)	Sorghum		
Rotational crop and primary crop metabolism similar?	Yes			

Processed commodities	Conditions	Avermectin B1a	Monosaccharid of avermectin B1a	
(standard hydrolysis study)	20 min, 90°C, pH 4	62-65%	16-20% TRR	
OECD Guideline 507	60 min, 100°C, pH 5	67-71%	13-15% TRR	
	20 min, 120°C, pH 6	69-73%	9.7-11% TRR	
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Not exactly the same from a chemical point of view. The same from a toxicological point of view. 30-40% avermectin B1a is degraded. The major degradation product was the monosaccharide of avermectin B1a.			
Plant residue definition for monitoring (RD-Mo)			B_{1a} , [8,9-Z]-isomer of a pressed as avermectin B_{1a}	
OECD Guidance, series on pesticides No 31				
Plant residue definition for risk assessment (RD-RA)			B_{1a} , [8,9-Z]-isomer of a pressed as avermectin B_{1a}	
Conversion factor (monitoring to risk assessment)		none		

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duratio n (days)	N rate/comment
Animals covered	Laying hen	-		
	Goat/Cow	0.000125, 0.00125 and 0.025	10	Not applicable: no residues expected in feed from the intended crops
	Pig	-		
	Fish	-		
	excreta was	Main residue identified in Representative crops are aculture diets.		
Time needed to reach a plateau concentration in milk and eggs (days)		Milk: 4-7 days Eggs: no data availa	ble	
Animal residue definition for monitori OECD Guidance, series on pesticide		Avermectin B1a, co Abamectin from vet		al provisions in force for
Animal residue definition for risk assessment (RD-RA)		Avermectin B1a, covered by legal provisions in force for Abamectin from veterinary uses		•
Conversion factor (monitoring to risk	assessment)	No		

Metabolism in rat and	1 ruminant similar	(Yes/No)	Yes					
Fat soluble residues (Yes/No)		Yes (log I	P _{ow} = 4.4)				
(FAO, 2009)				, ,				
Residues in succee	eding crops (Reg	gulation ((EU) N° 283/2	2013, Annex P	art A, point 6.	6.2)		
Confined rotational	crop study			n residue levels i		nmodities are		
(Quantitative aspect)			not expec	ted to exceed 0.0	or mg/kg			
OECD Guideline 50	12							
Field rotational crop	p study		Not deem	ed necessary				
OECD Guideline 50)4							
Stability of residu		(EU) N°	283/2013, An	nex Part A, po	int 6.1)			
OECD Guideline 3								
DI4 I4		\mathbf{T}		Stability (Month)				
Plant products (Category)	Commodity	(°C)	Avermectin	Avermectin B1a [8,9-Z]-	Avermectin			
(Category)			B1a	isomer	B1b			
High water content	Pears	-20°C	35	35	35			
	Celery	-18°C	24	24	24			
	Tomato	-18°C	24	24	24			
High oil content	Sunflower seeds	-18°C	24	24	24			
	Orange peel	-18°C	12	12	12			
High protein content	Runner bean	-18°C	24	24	24			
High starch content	Potato	-18°C	24	24	24			
High acid content	Strawberries	-20°C	24	24	24			
Processed products	Orange pulp	-18°C	12	12	12			
Abamectin is stable	up to 12 months in	all comm	nodity groups w	hen stored at ≤-1	18 °C			
	Animal	T		Stability (M	Ionth/Year)			
Animal	commodity	(°C)						
	Muscle							
	Liver							
	Kidney							

Milk

	Egg					
Storage stability data no feeding studies w		lities are	not required, since	no significant i	residues are exp	ected and

23

Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg) (e)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Indoor (South)	$6 \times < 0.01, 2 \times 0.01$	OECD: 0.0152 mg/kg	0.015	0.01	0.01
Indoor (North)	Data gap				
Indoor (South)	1 × <0.01, 0.014, 0.017, 0.019, 0.02, 0.021, 2 × 0.041	OECD: 0.07 mg/kg	0.07	0.041	0.02
Indoor (North)	Data gap				
on formulation equival	ence OECD Guideline 509	1			
Region	Residue data (mg/kg)	Recommendations/comments			
residues in pollen and l	bee products (Regulation (EU) No 283/2013, Ann	ex Part A, point 6.10.1)			
Region	Residue data (mg/kg)	Recommendations/comments			
	Indoor (a) Indoor (South) Indoor (North) Indoor (North) Indoor (North) on formulation equival Region residues in pollen and leading to the second content of the second c	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Indoor (South) 6 × < 0.01, 2 × 0.01 OECD: 0.0152 mg/kg Indoor (North) Data gap Indoor (South) 1 × < 0.01, 0.014, 0.017, 0.019, 0.02, 0.021, 2 × 0.041 Indoor (North) Data gap Indoor (North)	Indoor (South) 6 × < 0.01, 2 × 0.01 OECD: 0.0152 mg/kg 0.015 Indoor (North) Data gap Indoor (North) Data gap Indoor (North) Data gap OECD: 0.041 Indoor (North) Data gap OECD: 0.07 mg/kg 0.07 Indoor (North) Data g	Indoor (South) 6 × < 0.01, 2 × 0.01 OECD: 0.0152 mg/kg O.015 O.01

⁽a): **NEU** or **SEU** for northern or southern **outdoor** trials in EU member states (**N+SEU** if both zones), **Indoor** for glasshouse/protected crops, **Country** if non-EU location.

⁽b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use **Mo/RA** to differentiate data expressed according to the residue definition for **Mo**nitoring and **R**isk **A**ssessment.

⁽c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).

⁽d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).

⁽e): MRL calculated (OECD calculator) in this dossier are below the ones already set in Reg. (EU) No 2016/1003. It is not proposed to change any of the set EU-MRLs.

Inputs for animal burden calculations

Not relevant.

Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4) OECD Guideline 505 and OECD Guidence, series on pesticides No 73

MRL calculations		Rui	minant		Pig/S	Swine	Pe	oultry	F	ish
Highest expected intake	Beef cattle	-	Ram/Ewe	-	Breeding	-	Broiler	-	Carp	-
(mg/kg bw/d)	Dairy cattle	-	Lamb	-	Finishing	-	Layer	-	Trout	-
(mg/kg DM for fish)							Turkey	_	Fish intake >	0.1 mg/kg DM
Intake >0.004 mg/kg bw	No)	N	бо	N	10	į	No	1	No
Feeding study submitted	No)	N	бо	No			No	No	
Representative feeding	Level	Beef: N	Level	Lamb: N	Level	N rate	Level	B or T: N	Level	N rate
level (mg/kg bw/d, mg/kg		Dairy: N		Ewe: N		Breed/Finish	Layer: N			Carp/Trout
DM for fish) and N rates	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 11		Estimated HR ^(a) at 1N	MRL proposals
Muscle	THE WELL	proposais	THE GUTTY	proposais	THE WELL	proposais	THE WELL	proposais	THE WELL	proposais
Fat										
Meat ^(b)										
Liver										
Kidney										
Milk ^(a)										
Eggs										
Method of calculation(c)						:		·		:

a): Estimated HR calculated at 1N level (estimated mean level for milk).

⁽b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

STMR calculations	Ruminant				Pig/Swine		Poultry		Fish	
Median expected intake	Beef cattle	-	Ram/Ewe	-	Breeding	-	Broiler	-	Carp	-
(mg/kg bw/d) (mg/kg DM for fish)	Dairy cattle	-	Lamb	-	Finishing	-	Layer	-	Trout	-
							Turkey	-		
Representative feeding level (mg/kg bw/d, mg/kg	Level	Beef: N Dairy: N	Level	Lamb : N Ewe: N	Level	N rate Breed/Finish	Level	B or T: N Layer: N	Level	N rate Carp/Trout
DM for fish) and N rates	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N
Muscle										
Fat										
Meat ^(a)										
Liver										
Kidney										
Milk										
Eggs										
Method of calculation ^(c)										

⁽a): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

⁽b): When the mean level is set at the LOQ, the STMR is set at the LOQ.

⁽c): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3) OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or	Number	Processing Factor	or (PF)	Conversion
Crop (RAC)/Processed product	of trials ^(a)	Individual values	Median PF	Factor (CF _P) for RA ^(b)
Representative uses				
Tomato/ raw juice	4	0.32, 0.28, 0.14, 0.58	0.30	-
Tomato/ pasteurised juice	6	0.29, 0.30, 0.21, 0.31, 0.12, 0.53	0.30	-
Tomato/ raw puree	4	1.63, 1.68, 0.23, 1.84	1.66	-
Tomato/ pasteurised puree	6	1.58, 1.81, 1.07, 1.56, 0.23, 1.53	1.55	-
Tomato/ raw paste	2	0.30, 2.61	1.46	-
Tomato/ pasteurised paste	2	0.34, 2.42	1.38	-
Tomato/preserves	4	0.21, 0.19, 0.15, 0.23	0.20	-

⁽a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)

Including all uses (representative uses).

ADI	0.0012 mg/kg bw per day					
TMDI according to EFSA PRIMo 2	Highest TMDI: 2.71 % ADI (WHO Cluster diet B)					
NTMDI, according to (to be specified)	Highest NTMDI: no refinement needed					
IEDI (% ADI), according to EFSA PRIMo 3.1	Highest IEDI: 3% ADI (GEMS/Food G06)					
NEDI (% ADI), according to (to be specified)	Not relevant					
Factors included in the calculations						
ARfD	0.0012 mg/kg bw					
IESTI (% ARfD), according to EFSA PRIMo 2	Highest IESTI: 53.3% ARfD (Strawberry)					
	48.5% ARfD (Tomato)					
	4.4% ARfD (Tomato juice)					
IESTI (% ARfD), according to EFSA PRIMo 3.1	Highest IESTI: 56% ARfD (Strawberry)					
	48% ARfD (Tomato)					
NESTI (% ARfD), according to (to be specified)	Not relevant					
Factors included in IESTI and NESTI						

28

⁽b): When the residue definition for risk assessment differs from the residue definition for monitoring

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code ^(a)	Commodity/Group	MRL/Import tolerance(b) (mg/kg) and Comme							
Plant com	modities	l							
Representa	ative uses								
0231010	Tomato	0.09	No change of MRL proposed						
0152000	Strawberry	0.15	No change of MRL proposed						
Animal co	mmodities Not relevant								
-	-								
_	-								

Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005 MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure. (a): (b):

Environmental fate and behaviour

The fate and behaviour of the B_{1b} component of abamectin in soil water and air is expected to be comparable to that of the B_{1a} component due to the small difference in the structure resulting from an ethyl or a methyl functional group substitution in a compound with a molecular mass of >850 (assessment of B_{1a} is considered to cover B_{1b} and both their consequent [8,9-Z] isomers) (EFSA, 2016)⁴.

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days

Non-extractable residues after 100 days

Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)

20 °C: 4.1-14.0 % after 91 d, [23- 14 C]-avermectin B_{1a} (5 – 6)

10 °C: 1.4 % after 91 d, [23- 14 C]- avermectin B_{1a} (n = 1)

20 °C: 17.0-39.1 % after 91 d, [23- 14 C]- avermectin B_{1a} (n = 9)

10 °C: 11.7-17.0 % after 91 d, [23- 14 C]- avermectin B_{1a} (n = 2)

8a-oxo-avermectin B_{1a} (NOA448111):

20 °C: 3.8-17.0 % at 62 d (n = 9)

 $10 \,^{\circ}\text{C}$: $10.8-17.0 \,^{\circ}$ at $90 \,^{\circ}$ d (n = 2)

8a-hydroxy-avermectin B_{1a} (NOA448112):

20 °C: 0.9-22.0 % at 62 d (n = 9)

 $10 \,^{\circ}\text{C}$: $12.0\text{-}15.0 \,^{\circ}$ at $90 \,^{\circ}$ d (n = 2)

4"-oxo-avermectin B_{1a} (NOA426289):

20 °C: 1.0-12.0 % at 21 d (n = 4)

 $10 \,^{\circ}\text{C}$: 11.0 % at 90 d (n = 1)

4,8-dihydroxy-avermectin B1a (NOA457464, M6):

 $20 \,^{\circ}\text{C}$: 0.5-9.9 % at 90 d (n = 5)

 $10 \,^{\circ}\text{C}$: 7.1 % at 90 d (n = 1)

8a-oxo-4-hydroxy-avermectin B1a (NOA457465):

20 °C: 3.9-9.9 % at 168 d (n = 5)

 $10 \, ^{\circ}\text{C}$: 4.4 % at 90 d (n = 1)

8-carboxy-6-hydroxy-avermectin B1a (M4):

20 °C: 2.0-9.0 % at 90 d (n = 4)

 $10 \,^{\circ}\text{C}$: $3.0 \,^{\circ}$ at $90 \,^{\circ}$ d (n = 1)

All metabolites were labelled at [23-14C]

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Mineralisation after 100 days

2.7 % after 91 d, $[23^{-14}C]$ -avermectin B_{1a} (n = 1)

Non-extractable residues after 100 days

24.8 % after 91 d, $[23^{-14}C]$ -avermectin B_{1a} (n = 1)

www.efsa.europa.eu/efsajournal

EFSA Journal 2020;18(8):6227

⁴ EFSA Journal 2016;14(5):4491

⁵ n corresponds to the number of soils.

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) 8a-oxo-avermectin B_{1a} (NOA448111): 9.9 % at 14 d (n = 1) 8a-hydroxy-avermectin B_{1a} (NOA448112): 14.2 % at 3 d (n = 1)

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Mineralisation at study end

Non-extractable residues at study end

 $8a\text{-}oxo\text{-}avermectin \ B_{1a} \ (NOA448111);$ $5.7 \ \% \ at \ 21 \ d \ (n=1)$ $8a\text{-}hydroxy\text{-}avermectin \ B_{1a} \ (NOA448112);$ $4.0 \ \% \ at \ 10 \ d \ (n=1)$ $7.6 \ \% \ after \ 28 \ d, \ [23\text{-}^{14}C] \ -avermectin \ B_{1a} \ (n=1)$

25.9 % after 28 d, $[23^{-14}C]$ -avermectin B_{1a} (n = 1)

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Abamectin B _{1a}	Dark aerobic conditions								
Soil type (Study; Kinetic evaluation)	pH ^{a)}	T °C / % MWHC	DT ₅₀ /DT ₉₀ (d) Biphasic parameters	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation ^{d)} for best-fit / modelling endpoints			
Gartenacker, loam (Nicollier, 2001; RMS AT)	7.3	20 °C / 40 %	$15.1 / 88.7$ $\alpha = 1.627$ $\beta = 28.43$	26.7°)	2.65	FOMC			
Gartenacker, silt loam (Adam, 2001a; RMS AT)	7.2	20 °C / 40 %	$ \begin{array}{c} 19.5 / 90.2 \\ \alpha = 2.674 \\ \beta = 66.01 \end{array} $	27.1 °)	3.67	FOMC			
Pappelacker, loamy sand (Phaff, 2003; RMS AT)	7.4	20 °C / 40 %	23.5 / 77.9	23.5	6.6	SFO			
18-Acres, sandy clay loam (Phaff, 2003; RMS AT)	5.8	20 °C / 40 %	15.9 / 52.7	15.9	17.3	SFO			
Marsillagues, silty clay loam (Phaff, 2003; RMS AT)	7.9	20 °C / 40 %	49.3 / 164	38.5	3.47	SFO			
LUFA 2.2, loamy sand (Hellstern, 2009a; Serrano, 2016)	5.7	20 °C / 45 %	12.4 / 151.6 $\alpha = 0.798$ $\beta = 8.97$	45.7°)	10.12	FOMC			
LUFA 2.1, loamy sand (Hellstern, 2009b; Serrano, 2016)	5.67	20 °C / 45 %	18.6 / 61.7	18.6	4.31	SFO			
LUFA 2.3, sandy loam (Hellstern, 2009b; Serrano, 2016)	6.87	20 °C / 45 %	27.2 / 90.5	21.1	1.97	SFO			
LUFA 5M, sandy loam (Hellstern, 2009b; Serrano, 2016)	7.22	20 °C / 45 %	27.8 / 85.6	22.8	3.79	SFO			
Geometric mean (n = 9)	•	•		25.3					
pH dependence				No					
Gartenacker, silt loam (Adam, 2001a; RMS AT)	7.2	10 °C / 40 %	57.6 / 191	-	2.24	SFO			
LUFA 2.2, loamy sand (Hellstern, 2009c; Serrano, 2016)	5.73	10 °C / 45 %	28.9 / 125.8	-	5.55	DFOP			

a) Measured in water

b) Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7 c) $DT_{50} = FOMC-DT_{90} / 3.32$

d) when two methods mentioned: 1st for persistence endpoint, 2nd for modelling endpoint

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

8a-oxo-avermectin B _{1a} (NOA448111)	Dark aer B _{1a}	Dark aerobic conditions, the precursor from which the f.f. was derived was abamectin B_{1a}							
Soil type	pH ^{a)}	T °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation		
Gartenacker, loam	7.3	20 °C / 40 %	52.5 / 174	0.196	52.5	14.5	FOMC _P →SFO _M		
Gartenacker, silt loam	7.2	20 °C / 40 %	53.9 / 179	0.224	53.9	13.5	FOMC _P →SFO _M		
Pappelacker, loamy sand	7.4	20 °C / 40 %	43.9 / 146	0.180	43.9	14.4	SFO _P →SFO _M		
8-Acres, sandy clay loam	5.8	20 °C / 40 %	68.4 / 227	n/a	68.4	11.8	SFO _P →SFO _M		
Marsillagues, silty clay loam	7.9	20 °C / 40 %	71.3 / 237	0.138	55.6	12.9	SFO _P →SFO _M		
LUFA 2.2, loamy sand	5.7	20 °C / 45 %	47.0 / 156	0.284	47.0	14.8	FOMC _P →SFO _M		
Geometric mean (n = 0	5)				53.0				
Arithmetic mean (n =	5)			0.204					
pH dependence					No				
Gartenacker, sandy loam	7.2	10 °C / 40 %	114 / 379	0.235	-	16.1	SFO _P →SFO _M		
LUFA 2.2, loamy sand	5.73	10 °C / 45 %	83.2 / 276	0.309	-	13.6	DFOP _P →SFO _M		

a) Measured in water

 $^{^{\}mbox{\scriptsize b)}}$ Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

8a-hydroxy- avermectin B _{1a} (NOA448112)	Dark aer	obic conditions,	the precursor fro	om which	the f.f. was deriv	ed was a	bamectin B _{1a}
Soil type	pH ^{a)}	T °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation
Gartenacker, loam	7.3	20 °C / 40 %	37.6 / 125	0.330	37.6	4.86	FOMC _P →SFO _M
Gartenacker, silt loam	7.2	20 °C / 40 %	35.3 / 117	0.306	35.3	4.46	FOMC _P →SFO _M
Pappelacker, loamy sand	7.4	20 °C / 40 %	27.1 / 90.1	0.314	27.1	10.6	SFO _P →SFO _M
18-Acres, sandy clay loam	5.8	20 °C / 40 %	22.5 / 74.6	n/a	22.5	7.19	SFO _P →SFO _M
Marsillagues, silty clay loam	7.9	20 °C / 40 %	45.7 / 152	0.264	35.7	7.05	SFO _P →SFO _M
LUFA 2.2, loamy sand	5.7	20 °C / 45 %	35.8 / 119	0.162	35.8	21.1	FOMC _P →SFO _M
LUFA 2.1, loamy sand	5.67	20 °C / 45 %	16.9 / 56.0	0.329	16.9	13.9	SFO _P →SFO _M
LUFA 2.3, sandy loam	6.87	20 °C / 45 %	57.3 / 190	0.410	44.4	7.47	SFO _P →SFO _M
LUFA 5M, sandy loam	7.22	20 °C / 45 %	52.8 / 175	0.325	46.7	12.5	SFO _P →SFO _M
Geometric mean (n = 9	9)				32.1		
Arithmetic mean (n =	8)			0.305			
pH dependence					No		
Gartenacker, sandy loam	7.2	10 °C / 40 %	38.5 / 128	0.556	-	7.45	SFO _P →SFO _M
LUFA 2.2, loamy sand	5.73	10 °C / 45 %	81.7 / 272	0.203	-	20.0	DFOP _P →SFO _M

a) Measured in water

b) Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

4,8-dihydroxy- avermectin B _{1a} (NOA457464, M6)		Dark aerobic conditions, the precursor from which the f.f. was derived was 8a-hydroxy-avermectin B_{1a} (NOA448112)								
Soil type	pH ^{a)}	t. °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation			
Gartenacker, loam	7.3	20 °C / 40 %	74.0 / 246	0.719	74.0	14.4	SFO _P →SFO _M			
Gartenacker, silt loam	7.2	20 °C / 40 %	44.5 / 148	0.943	44.5	7.39	SFO _P →SFO _M			
Pappelacker, loamy sand	7.4	20 °C / 40 %	61.6 / 205	0.560	61.6	10.2	SFO _P →SFO _M			
Marsillagues, silty clay loam	7.9	20 °C / 40 %	46.0 / 153	0.505	35.9	32.6	SFO _P →SFO _M			
Geometric mean (n = 4	4)				51.9					
Arithmetic mean (n = 4)				0.682						
pH dependence	No									

a) Measured in water

b) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

8a-oxo-4-hydroxy- avermectin B _{1a} (NOA457465)	Dark aerobic conditions, the precursor from which the f.f. was derived was 8a-oxo-avermectin B_{1a} (NOA448111)							
Soil type	pH ^{a)}	t. °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation	
Gartenacker, loam	7.3	20 °C / 40 %	181 / 602	0.841	181	7.26	SFO _P →SFO _M	
Gartenacker, silt loam	7.2	20 °C / 40 %	65.3 / 217	1.0	65.3	12.5	SFO _P →SFO _M	
Pappelacker, loamy sand	7.4	20 °C / 40 %	122 / 405	0.995	122	13.3	SFO _P →SFO _M	
Marsillagues, silty clay loam	7.9	20 °C / 40 %	50.5 / 168	1.0	39.4	34.9	SFO _P →SFO _M	
Geometric mean (n = 4)					86.8			
Arithmetic mean (n = 4)				0.959				
pH dependence					No			

a) Measured in water

 $^{^{\}mbox{\scriptsize b)}}$ Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

4"-oxo-avermectin B _{1a} (NOA426289)	Dark aero	obic conditions, t	he precursor f	rom whic	ch the f.f. was d	lerived v	was abamectin B _{1a}
Soil type	pH ^{a)}	t. °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation
LUFA 2.2, loamy sand	5.7	20 °C / 45 %	35.0 / 116	0.233	35.0	14.6	FOMC _P →SFO _M
LUFA 2.1, loamy sand	5.67	20 °C / 45 %	5.5 / 18.2	0.294	5.5	15.0	SFO _P →SFO _M
Geometric mean (n = 2)					13.9 d)		
Arithmetic mean (n = 2)				0.264 d)			
pH dependence					No		
LUFA 2.2, loamy sand ^{c)}	5.73	10 °C / 45 %	46.4 / 154	0.254	-	15.6	DFOP _P →SFO _M

a) Measured in water

d) A data gap was identified for soil incubation to address the degradation rate of 4"-oxo-avermectin B1a (NOA 426289) in one additional soil.

8-carboxy-6- hydroxy-avermectin B _{1a} (M4)	Dark aerobic conditions, the precursor from which the f.f. was derived was 8a-hydroxy-avermectin B_{1a} (NOA448112)							
Soil type	pH ^{a)}	T °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation	
LUFA 2.3, sandy loam	6.87	20 °C / 45 %	31.9 / 106	1.0	24.7	7.51	SFO _P →SFO _M	
LUFA 5M, sandy loam	7.22	20 °C / 45 %	31.3 / 104	0.823	27.7	22.2	SFO _P →SFO _M	
LUFA 2.2, loamy sand c)	5.73	10 °C / 45 %	31.4 / 104	1.0	9.43	27.0	SFO _P →SFO _M	
Geometric mean (n = 3)					18.6			
Arithmetic mean (n = 3)				0.941				
pH dependence					No			

a) Measured in water

b) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

 $^{^{\}rm c)}$ 10 $^{\rm o}$ C experimental data considered as additional soil for deriving persistence endpoints

b) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

c) 10 °C study, normalised to reference conditions (20 °C, pF 2) using correction factors for temperature and moisture of 0.3876 and 0.775, respectively

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Abamectin B _{1a}	Aerobic conditions							
Soil type (indicate if bare or cropped soil was used)	Location (country or USA state)	pH ^{a)}	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	DT ₅₀ (d) Norm ^{b)}	Method of calculation
Silty loam, bare soil	Neu-Ulm, Germany	7.6	30	0.32	3.51	3.0	-	DFOP
Silt, bare soil	Wissembourg, France	5.7	30	0.53	1.74	4.6	-	SFO
Loam, bare soil	Juzancourt, France	6.3	10	0.26	0.86	26.3	-	SFO
Clayey loam, bare soil	Herrentierbach, Germany	6.3	30	1.70	5.63	22.5	-	SFO
Silt loam, bare soil	Mauchenheim, Germany	7.6	30	0.677	15.5	13.0	-	FOMC
Geometric mean (if not	pH dependent)						-	
pH dependence				No				

^{a)} Measured in water; except for Wallersdorf-See (measured in KCl)

 $^{^{\}text{b)}}$ Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*

Rate of degradation in soil active substance,
normalised geometric mean (if not pH dependent)

Rate of degradation in soil transformation products,
normalised geometric mean (if not pH dependent)

Not relevant

Not relevant

Not relevant

Not relevant

Kinetic formation fraction (f. f. k_f / k_{dp}) of transformation products, arithmetic mean

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

No study submitted

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Abamectin B _{1a}	Dark anae	ark anaerobic conditions									
Soil type	pH ^{a)}	T °C / % MWHC									
Gartenacker, loam	7.3	20 °C / flooded	80 / 353	-	2.70	DFOP					
Geometric mean (if not p	oH depende	nt)		-							

a) Measured in water

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

8a-oxo-avermectin B _{1a} (NOA448111)		Dark anaerobic conditions, metabolite dosed or the precursor from which the f.f. was derived was bamectin B _{1a}							
Soil type	pH ^{a)}	T °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20°C ^{b)}	St. (χ ²)	Method of calculation		
Gartenacker, loam	7.3	20 °C / flooded	175 / 581	n/a	-	9.94	DFOP _P →SFO _M		
Geometric mean (if n	ot pH de	pendent)			-				
Arithmetic mean				-					

a) Measured in water

^{*} Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

b) Normalised using a Q₁₀ of 2.58

b) Normalised using a Q₁₀ of 2.58

8a-hydroxy- avermectin B _{1a} (NOA448112)		Dark anaerobic conditions, metabolite dosed or the precursor from which the f.f. was derived was abameetin B _{1a}							
Soil type	pH ^{a)}	T °C / % MWHC	DT50/ DT90 (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20°C ^{b)}	St. (χ ²)	Method of calculation		
Gartenacker, loam	7.3	20 °C / flooded	100 / 332	n/a	-	11.4	DFOP _P →SFO _M		
Geometric mean (if n	ot pH de	pendent)			-				
Arithmetic mean				-					

a) Measured in water

b) Normalised using a Q₁₀ of 2.58

4,8-dihydroxy- avermectin B _{1a} (NOA457464, M6)		Dark anaerobic conditions, metabolite dosed or the precursor from which the f.f. was derived was 8a-hydroxy-avermectin B _{1a} (NOA448112)							
Soil type	pH ^{a)}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Gartenacker, loam	7.3	20 °C / flooded	177 / 589	n/a	-	15.9	DFOP _P →SFO _M		
Geometric mean (if r	not pH de	ependent)			-				
Arithmetic mean				-					

a) Measured in water

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3

Abamectin B _{1a}	Soil pho	oil photolysis									
Soil type	pH ^{a)}	T °C / % MWHC	DT ₅₀ / DT ₉₀ (d) calculated at 30-50 °N	St. (χ ²)	Method of calculation						
Gartenacker, sandy loam	7.1	24.5 / 75 % FC	21.0 / 69.6	8.85	SFO						

a) Measured in water

b) Normalised using a Q₁₀ of 2.58

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Abamectin B _{1a}							
Soil Type	OC %a)	Soil pH ^{b)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Borstel (DE), IS	1.51	5.8	-	-	87.2	5701	0.961
Pappelacker (CH), 1S	0.99	7.6	-	-	77.3	7893	0.961
Schwaderloch (CH), sL	1.28	7.4	-	-	76.8	6004	0.950
Gartenacker (CH), uL	2.61	7.1	-	-	178	6875	1.001
Vetroz (CH), uL	4.99	7.2	-	-	334	6682	1.013
Geometric mean (if not pH dependent	t)				125.2	6588	
Arithmetic mean (if not pH dependen	t)						0.977
pH dependence			No				

a) Calculated as $OC = OM \times 0.58$

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

8a-oxo-avermectin B _{1a} (NOA44811	1)						
Soil Type	OC % a)	Soil pH ^{b)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Pappelacker (CH), IS	0.99	7.56	-	-	38.3	3912	0.835
Gartenacker (CH), uL	2.61	7.13	-	-	78.4	3027	0.826
18 Acres (UK), scL	2.49	5.83	-	-	128	5052	0.827
Geometric mean (if not pH depender	nt)*	1	•	•	72.7	3911	
Arithmetic mean (if not pH depender	nt)						0.829
pH dependence No							

a) Calculated as $OC = OM \times 0.58$

b) Measured in water

b) Measured in water

8a-hydroxy-avermectin B _{1a} (NOA44	8a-hydroxy-avermectin B _{1a} (NOA448112)										
Soil Type	OC % a)	Soil pH ^{b)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n				
Pappelacker (CH), 1S	0.99	7.56	-	-	15.9	1626	0.857				
Gartenacker (CH), uL	2.61	7.13	-	-	28.4	1098	0.796				
18 Acres (UK), scL	2.49	5.83	-	-	78.9	3104	0.961				
Geometric mean (if not pH dependent	*	1	1	ı	32.9	1770					
Arithmetic mean (if not pH dependent	t)						0.871				
pH dependence			No								

a) Calculated as $OC = OM \times 0.58$

Soil adsorption of 8-carboxy-6-hydroxy avermectin B_{1a} (M4) were taken from 8a-hydroxy-avermectin B_{1a} (NOA448112) due to their similar molecular properties and lack of experimental data (i.e., $K_{fOC} = 1770 \text{ L/kg}$, 1/n = 0.871).

4,8-dihydroxy-avermectin B _{1a} (NO	OA457464, M	6)		•			
Soil Type	OC % a)	Soil pH ^{b)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Pappelacker (CH), lS	0.99	7.56	-	-	16.9	1690	0.890
Gartenacker (CH), uL	2.61	7.13	-	-	28.0	1082	0.902
18 Acres (UK), scL	2.49	5.83	-	-	61.3	2423	0.944
Geometric mean (if not pH depende	ent)*				30.7	1642	
Arithmetic mean (if not pH dependent)							0.912
pH dependence No					•	•	•

a) Calculated as $OC = OM \times 0.58$

b) Measured in water

8a-oxo-4-hydroxy-avermectin B _{1a} (NOA457465)					
Soil Type	OC % a)	Soil pH ^{b)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Pappelacker (CH), IS	0.99	7.56	-	-	32.7	3338	0.791
Gartenacker (CH), uL	2.61	7.13	-	-	66.6	2573	1.005
18 Acres (UK), scL	2.49	5.83	-	-	148	5813	1.011
Geometric mean (if not pH dependen	t)*				68.6	3682	
Arithmetic mean (if not pH dependent)							0.936
pH dependence No							

a) Calculated as $OC = OM \times 0.58$

b) Measured in water

b) Measured in water

4"-oxo-avermectin B _{1a} (NOA4	26289)						
Soil Type	OC %	Soil pHa)	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
LUFA 2.2 (DE), IS	1.57	5.65	-	-	27.9	1778	0.93
LUFA 2.3 (DE), sL	0.64	6.07	-	_	39.3	6142	1.085
LUFA 2.4 (DE), L	2.13	7.51	-	-	30.4	1427	0.876
Lowest individual value ^{b)}	1	- 1		•	30.4	1427	
Value corresponding to lowest I	ζ _{Foc} ^{b)}						0.876
pH dependence			No				

a) Measured in CaCl₂

b) Due to uncertainties in the reliability of the available adsorption measurements, experts agreed that the lowest measured adsorption value of 1427 mL/g and the corresponding 1/n of 0.876 shall be used as endpoint for exposure assessment

8-carboxy-6-hydroxy avermectin B _{1a} (M4)											
Soil Type	OC %	Soil pH ^{a)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n				
No experimental data (data gap) ^{a)}											
Geometric mean (if not pH dependent	t)	•				1082 a)					
Arithmetic mean (if not pH dependen			1.0 a)								
pH dependence											

 $^{^{}a)}$ As no experimental data were available a data gap was identified; however experts agreed that the lowest measured K_{Foc} value from all compounds (1082 L/kg) and a default 1/n of 1 shall be used as a reasonably conservative estimate endpoint for exposure assessment

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching	Not relevant
	Not relevant

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching	Not relevant
	Not relevant

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies	Not relevant
-----------------------------------	--------------

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1

Hydrolytic degradation of the active substance and metabolites $> 10\ \%$

pH 5: Abamectin (Avermectin B_{1a}) stable

No data on metabolites

pH 7: Abamectin (Avermectin B_{1a}) stable

No data on metabolites

pH 9: DegT_{50,hydrolysis} at 25 °C: 206.1 d (SFO, χ^2 =0.5)

No metabolites > 10 % AR

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above $10\ \%$

 $DegT_{50,photolysis}$: 1.41 d (n = 2)

Natural light, 30 – 50 °N; DT₅₀ 1.5 days

[8,9-Z]-Avermectin B_{1a} (NOA427011): max. 8.2 % at

0.54 d

 $DegT_{50,photolysis}$: 0.437 d (n = 1)

Quantum yield of direct phototransformation in water at $\Sigma > 290 \text{ nm}$

0.0347 mol · Einstein ⁻¹ (summer)

'Ready biodegradability' (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

No (based on data)

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Abamectin B _{1a}										
System identifier (indicate fresh,	pH water phase	pH sed a)	T °Cb)			St. DT_{50} / DT_{90} (χ^2) Water (pelagic test) d		St. (χ^2)	Method of calculation	
estuarine or marine)				At study temp	Normalise d to 20 °C°		At study temp	Norma lised to 20 °C°)		
Fresh water	8.18	-	20	-	-	-	35.4 / 118	-	9.35	SFO

a) Measured in [medium to be stated, usually calcium chloride solution or water]

b) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

c) Normalised using a Q₁₀ of 2.58 to the temperature of the environmental media at the point of sampling.

d) Only the high dose endpoints are presented

8a-hydroxy- Avermectin B _{1a} (NOA448112)	Max in	Max in total system 17.1 % after 32 days										
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	T °C'b)			St. (χ^2)	DT ₅₀ / DT ₉₀ Water (pelagic test) d) At Norma		St. (χ^2)	Method of calculation		
marine)				temp	d to 20 °C°)		study temp	lised to 20 °C°)				
Fresh water	8.18	-	20	-	-	-	26.9 / 89.3	-	14.1	SFO		

d) Only the high dose endpoints are presented

Mineralisation an	Mineralisation and non extractable residues (for parent dosed experiments)											
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation x % after n d. (end of the study).	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)							
Fresh water	8.18	-	2.2 % after 60 d	n/a (pelagic test)	n/a (pelagic test)							

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C
c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling.

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Abamectin B _{1a}	Distrib	ution (n	nax. in	sediment 82.8	% af	ter 14 d)				
Water / sediment system	pH water phase	pH sed	T °C	DegT ₅₀ / DegT ₉₀ whole sys. ^{b)}	St. (χ ²)	DissT ₅₀ / DissT ₉₀ water ^{c)}	St. (χ ²)	DissT ₅₀ / DissT ₉₀ sed ^{c)}	St. (χ ²)	Method of calculation
Rhine river, IS	8.13	7.2	20	86.3 / 289	3.8	0.82 / 18.1	4.6	86.9 / 289	5.2	SFO / SFO / SFO
Rotenfluh (pond), cL	8.03	7.1	20	91.0 / 302	1.8	1.81 / 24.6	4.8	111 / 370	1.9	SFO / HS /SFO
Dentelbach (creek), S	8.12	7.5	20	20.5 / 68.0	5.1	8.2 / 38.4	6.5	23.4 / 99.7	4.0	SFO / DFOP / FOMC
Illingen (pond), uC	8.13	7.7	20	37.3 / 167	5.3	4.85 / 45.7	6.9	86.3 / 287	3.6	SFO / HS / SFO
Geometric mean a	t 20°C ^{d)}			51.7 / 177		2.77 / 29.7		66.4 / 235		

a) Measured in CaCl₂

c) Persistence endpoint
d) Normalised using a Q₁₀ of 2.58

8a-oxo- Avermectin B _{1a} (NOA448111)	after 74	Distribution: max. water 8 % after 7 d, max. sed 9 % after 117 d, max. in total system 16 % after 74 days kinetic formation (k_f/k_{dp}): n/a (Metabolite was fitted as parent) ^{f)}									
Water / sediment system	pH water phase	pH sed	T °C	DegT ₅₀ / DegT ₉₀ whole sys. ^{b)}	St. (χ ²)	DissT ₅₀ / DissT ₉₀ water ^{c)}	St. (χ ²)	DissT ₅₀ / DissT ₉₀ sed ^{c)}	St. (χ^2)	Method of calculation	
Dentelbach (creek), S	8.12	7.5	20	95.0 / >1000	9.5	-	-	971 / >1000	6.6	SFO / FOMC	
Illingen (pond), uC	8.13	7.7	20	126 / 418	16.2	-	-	-	-	SFO	
Geometric mean a	Geometric mean at 20°Cd)										

a) Measured in CaCl₂

b) Modelling endpoint

b) Modelling endpoint

c) Persistence endpoint
d) Normalised using a Q₁₀ of 2.58
e) Mean DegT₉₀ can not be calculated

f) A worst-case formation fraction of 1.0 should be used for modelling

8a-hydroxy- Avermectin B _{1a} (NOA448112)	after 97	Distribution: max. water 3 % after 62 d, max. sed 7 % after 97 d, max. in total system 9 % after 97 days kinetic formation fraction (k_f/k_{dp}): 0.098 from parent (total system value, n = 1)									
Water / sediment system	pH water phase	ater $\begin{bmatrix} sed \\ {}^{\circ}C \end{bmatrix}$ whole sys. $\begin{bmatrix} \chi^2 \\ \chi^2 \end{bmatrix}$ water $\begin{bmatrix} \chi^2 \\ \chi^2 \end{bmatrix}$ sed $\begin{bmatrix} \chi^2 \\ \chi^2 \end{bmatrix}$ calculation									
Dentelbach (creek), S	8.12	7.5	20	45.0 / 149	8.0	-	-	-	-	SFO	
Geometric mean a	Geometric mean at 20°C ^{b)} 45.0 / 149										

 $^{^{}a)}$ Measured in [medium to be stated, usually calcium chloride solution or water] $^{b)}$ Normalised using a Q_{10} of 2.58

4"-0x0- Avermectin B _{1a} (NOA426289)	after 29	Distribution: max. water 6 % after 29 d, max. sed 7 % after 29 d, max. in total system 12 % after 29 days kinetic formation (k_f/k_{dp}): 0.098 from parent (total system value, n = 1)										
Water / sediment system	pH water phase	pH sed	T °C	DegT ₅₀ / DegT ₉₀ whole sys. ^{b)}	St. (χ²)	DissT ₅₀ / DissT ₉₀ water ^{c)}	St. (χ ²)	DissT ₅₀ / DissT ₉₀ sed ^{c)}	St. (χ ²)	Method of calculation		
Dentelbach (creek), S	8.12	7.5	20	18.5 / 61.4	12.6	24.7 / 82.2	17.8	60.4 / 201	16.2	SFO / SFO / SFO		
Illingen (pond), uC	8.13	7.7	20	58.9 / 196	8.2	-	-	-	-	SFO		
Geometric mean a	t 20°Cd)			33.0 / 110								

d) Normalised using a Q₁₀ of 2.58

Mineralisation an	Mineralisation and non extractable residues (from parent dosed experiments)												
Water / sediment system	pH water phase	pH sed	Mineralisation x % after the end of the study	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after the end of the study								
Rhine river, 1S	8.13	7.2	3.0 % after 100 d	20.4 % after 100 d	20.4 % after 100 d								
Rotenfluh (pond), cL	8.03	7.1	3.2 % after 100 d	23.2 % after 100 d	23.2 % after 100 d								
Dentelbach (creek), S	8.12	7.5	7 % after 117 d	16 % after 117 d	16 % after 117 d								
Illingen (pond), uC	8.13	7.7	6 % after 117 d	19 % after 117 d	19 % after 117 d								

a) Measured in CaCl₂ b) Modelling endpoint c) Persistence endpoint

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air

Photochemical oxidative degradation in air

Volatilisation

Not studied – no data requested

 $DT_{50,air} < 1$ h derived by the Atkinson method.

from plant surfaces (BBA guideline): No information provided; vapour pressure of $<10^{-6}$ Pa (20 °C) below trigger for volatilization

from soil surfaces (BBA guideline): No information provided; vapour pressure of $< 10^{-6}$ Pa (20 °C) below trigger for volatilization

No data

Metabolites

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure Soil: Avermectin B_{1a} , Avermectin B_{1b} , 8a-oxo-Avermectin B_{1a} (NOA448111), 8a-hydroxy-Avermectin B_{1a} (NOA448112), 4,8-dihydroxy-Avermectin B_{1a} (NOA457464, M6), 8a-oxo-4-hydroxy-Avermectin B_{1a} (NOA457465), 4"-oxo-Avermectin B_{1a} (NOA426289), and 8-carboxy-6-hydroxy-Avermectin B_{1a} (M4)

Surface water: Avermectin B_{1a}, Avermectin B_{1b}, 8a-oxo-Avermectin B_{1a} (NOA448111), 8a-hydroxy-Avermectin B_{1a} (NOA448112), 4,8-dihydroxy-Avermectin B_{1a} (NOA457464, M6), 8a-oxo-4-hydroxy-Avermectin B_{1a} (NOA457465), 4"-oxo-Avermectin B_{1a} (NOA426289), and 8-carboxy-6-hydroxy-Avermectin B_{1a} (M4)

Sediment: Avermectin B_{1a}, Avermectin B_{1b}, 8a-oxo-Avermectin B_{1a} (NOA448111), 8a-hydroxy-Avermectin B_{1a} (NOA448112), 4,8-dihydroxy-Avermectin B_{1a} (NOA457464, M6), 8a-oxo-4-hydroxy-Avermectin B_{1a} (NOA457465), 4"-oxo-Avermectin B_{1a} (NOA426289), and 8-carboxy-6-hydroxy-Avermectin B_{1a} (M4)

Groundwater: Avermectin B_{1a}, Avermectin B_{1b}, 8a-oxo-Avermectin B_{1a} (NOA448111), 8a-hydroxy-Avermectin B_{1a} (NOA448112), 4,8-dihydroxy-Avermectin B_{1a} (NOA457464, M6), 8a-oxo-4-hydroxy-Avermectin B_{1a} (NOA457465), 4"-oxo-Avermectin B_{1a} (NOA426289), and 8-carboxy-6-hydroxy-Avermectin B_{1a} (M4)

Air: Avermectin B_{1a} and Avermectin B_{1b} (by default)

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

Soil (indicate location and type of study)

No information provided

Surface water (indicate location and type of study)

Public monitoring data available from France and the Netherlands (2008-2019). Detections $> 0.1 \mu g/L$ in 101 out of 19.598 (0.51%) in the Netherlands.

Ground water (indicate location and type of study)

Public monitoring data available from France and the Netherlands (2008-2019). No findings $> 0.1~\mu g/L$.

Air (indicate location and type of study)

No information provided

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Abamectin B_{1a}

Method of calculation

 $DT_{50}\,/\,DT_{90}$ (d): $0.677\,/\,15.5$ days

Kinetics: FOMC ($\alpha = 0.577, \beta = 0.291$)

Field or Lab: Representative worst-case from field

dissipation studies (n = 5)

Application data

Crop: tomato, strawberry

Depth of soil layer (mixing): tomato: 5cm; strawberry:

5cm

Soil bulk density: 1.5g/cm³

% plant interception: tomato: 50 % (BBCH 10);

strawberry: 30 % (BBCH 10)

Number of applications: tomato: 3; strawberry: 2

Interval (d): 7 (tomato and strawberry)

Application rates: 18 g a.s./ha (tomato and strawberry)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.012		0.015	
Short term	24h	0.005	0.010	0.008	0.012
	2d	0.004	0.008	0.007	0.010
	4d	0.003	0.006	0.005	0.009
Long term	7d	0.002	0.004	0.004	0.007
	28d	0.001	0.001	0.002	0.005
	50d	0.001	0.000	0.002	0.004
	100d	0.000	0.000	0.001	0.003
Plateau concentration		0.0002 mg/kg after 5 yr			

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.017		0.019	
Short term	24h	0.007	0.012	0.010	0.015
	2d	0.005	0.009	0.007	0.013
	4d	0.004	0.007	0.006	0.010
Long term	7d	0.003	0.005	0.004	0.008
	28d	0.001	0.003	0.002	0.005
	50d	0.001	0.002	0.002	0.004
	100d	0.001	0.001	0.001	0.003
Plateau concentration		0.0003 mg/kg after 5 yr			

8a-oxo-avermectin	D1a	NO	A //Q111	١
8a-0x0-avermecum	ВІЯ		4448111	•

Molecular weight relative to the parent: 1.016

DT₅₀ (d): 71.3 days Kinetics: SFO

Field or Lab: Representative worst-case from lab studies

(n = 9)

Application data

Application rate assumed: 3.11 g a.s./ha (assumed 8a-oxo-avermectin B_{1a} is formed at a maximum of 17 % of

the applied dose)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.002		0.006	
Short term	24h	0.002	0.002	0.006	0.006
	2d	0.002	0.002	0.006	0.006
	4d	0.002	0.002	0.006	0.006
Long term	7d	0.002	0.002	0.005	0.006
	28d	0.002	0.002	0.004	0.006
	50d	0.001	0.002	0.004	0.005
	100d	0.001	0.001	0.002	0.004
Plateau concentration		0.0 mg/kg after 5 yr			

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.003		0.006	
Short term	24h	0.003	0.003	0.006	0.006
	2d	0.003	0.003	0.006	0.006
	4d	0.003	0.003	0.005	0.006
Long term	7d	0.003	0.003	0.005	0.005
	28d	0.003	0.003	0.004	0.005
	50d	0.002	0.002	0.003	0.004
	100d	0.001	0.002	0.002	0.004
Plateau concentration		0.0002 mg/kg after 2 yr			

0 - 1 - 1	D1.	(NIO A 440113)
8a-hvdroxy-avermectin	віа	(NOA448112)

Molecular weight relative to the parent: 1.018

DT₅₀ (d): 57.3 days Kinetics: SFO

Field or Lab: Representative worst-case from lab studies

(n = 9)

Application data

Application rate assumed: 4.03 g a.s./ha (assumed 8ahydroxy-avermectin B_{1a} is formed at a maximum of $22\,$ % of the applied dose)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.003		0.007	
Short term	24h	0.003	0.003	0.007	0.007
	2d	0.003	0.003	0.007	0.007
	4d	0.003	0.003	0.007	0.007
Long term	7d	0.002	0.003	0.007	0.007
	28d	0.002	0.002	0.005	0.006
	50d	0.001	0.002	0.004	0.006
	100d	0.001	0.002	0.002	0.004
Plateau concentration	on	0.0 mg/kg after 5 yr			

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.004		0.007	
Short term	24h	0.004	0.004	0.007	0.007
	2d	0.004	0.004	0.007	0.007
	4d	0.004	0.004	0.007	0.007
Long term	7d	0.003	0.004	0.007	0.007
	28d	0.003	0.003	0.005	0.006
	50d	0.002	0.003	0.004	0.005
	100d	0.001	0.002	0.002	0.004
Plateau concentration	on	0.0 mg/kg after 5 yr			

4,8a-dihydroxy-avermectin	B1a	(NOA457464,
M6)		

Application data

Molecular weight relative to the parent: 1.037

DT₅₀ (d): 74.0 days Kinetics: SFO

Field or Lab: Representative worst-case from lab studies

(n = 4)

Application rate assumed: 1.85 g a.s./ha (assumed 4,8a-dihydroxy-avermectin $B_{1a}\, \mathrm{is}$ formed at a maximum of

9.9 % of the applied dose)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.001		0.003	
Short term	24h	0.001	0.001	0.003	0.003
	2d	0.001	0.001	0.003	0.003
	4d	0.001	0.001	0.003	0.003
Long term	7d	0.001	0.001	0.003	0.003
	28d	0.001	0.001	0.003	0.003
	50d	0.001	0.001	0.002	0.003
	100d	0.000	0.001	0.001	0.002
Plateau concentrati	on	0.0 mg/kg after 5 yr			

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.002		0.003	
Short term	24h	0.002	0.002	0.003	0.003
	2d	0.002	0.002	0.003	0.003
	4d	0.002	0.002	0.003	0.003
Long term	7d	0.002	0.002	0.003	0.003
	28d	0.001	0.002	0.003	0.003
	50d	0.001	0.001	0.002	0.003
	100d	0.001	0.001	0.001	0.002
Plateau concentration		0.0 mg/kg after 5 yr			

8a-oxo-4-hydroxy-avermectin	B1a	(NOA457465)
		(1,011,00)

Molecular weight relative to the parent: 1.034

DT₅₀ (d): 181 days

Kinetics: SFO Field or Lab: Representative worst-case from lab studies

(n = 4)

Application data

Application rate assumed: 1.847 g a.s./ha (assumed 8aoxo-4-hydroxy-avermectin B_{1a} is formed at a maximum of 9.9 % of the applied dose)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.001		0.004	
Short term	24h	0.001	0.001	0.004	0.004
	2d	0.001	0.001	0.004	0.004
	4d	0.001	0.001	0.004	0.004
Long term	7d	0.001	0.001	0.003	0.004
	28d	0.001	0.001	0.003	0.003
	50d	0.001	0.001	0.003	0.003
	100d	0.001	0.001	0.002	0.003
Plateau		0.0001 mg/kg after			

concentration

2 yr

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.002		0.003	
Short term	24h	0.002	0.002	0.003	0.003
	2d	0.002	0.002	0.003	0.003
	4d	0.002	0.002	0.003	0.003
Long term	7d	0.002	0.002	0.003	0.003
	28d	0.002	0.002	0.003	0.003
	50d	0.001	0.002	0.003	0.003
	100d	0.001	0.001	0.002	0.003
Plateau concentration	on	0.0006 mg/kg after 2 yr			

4"-oxo-avermectin	R1a	NO	A 426280)
4"-0x0-avermeciin	кія		A4202771

Molecular weight relative to the parent: 0.998

DT₅₀ (d): 35.0 days

Kinetics: SFO

Field or Lab: Representative worst-case from lab studies

(n = 3)

Application data

Application rate assumed: 2.16~g a.s./ha (assumed 4"-oxo-avermectin B_{1a} is formed at a maximum of 12 % of the applied dose)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.001		0.004	
Short term	24h	0.001	0.001	0.004	0.004
	2d	0.001	0.001	0.004	0.004
	4d	0.001	0.001	0.003	0.004
Long term	7d	0.001	0.001	0.003	0.004
	28d	0.001	0.001	0.002	0.003
	50d	0.001	0.001	0.001	0.002
	100d	0.000	0.001	0.001	0.002
Plateau concentrati	on	0.0 mg/kg after 5 yr			

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.002		0.004	
Short term	24h	0.002	0.002	0.004	0.004
	2d	0.002	0.002	0.004	0.004
	4d	0.002	0.002	0.003	0.004
Long term	7d	0.002	0.002	0.003	0.004
	28d	0.001	0.002	0.002	0.003
	50d	0.001	0.001	0.001	0.002
	100d	0.000	0.001	0.001	0.002
Plateau concentration	on	0.0 mg/kg after 5 yr			

Molecular weight relative to the parent: 1.036

DT₅₀ (d): 31.9 days Kinetics: SFO

Field or Lab: Representative worst-case from lab studies

(n = 3)

Application data

Application rate assumed: 1.68 g a.s./ha (assumed 8carboxy-6-hydroxy-avermectin B_{1a} is formed at a maximum of 9.0 % of the applied dose)

PEC _(s) (mg/kg)		Single application Actual (crop: tomato)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.001		0.003	
Short term	24h	0.001	0.001	0.003	0.003
	2d	0.001	0.001	0.003	0.003
	4d	0.001	0.001	0.003	0.003
Long term	7d	0.001	0.001	0.002	0.003
	28d	0.001	0.001	0.002	0.002
	50d	0.000	0.001	0.001	0.002
	100d	0.000	0.000	0.000	0.001
Plateau	On.	0.0 mg/kg after 5 yr			

concentration

PEC _(s) (mg/kg)		Single application Actual (crop: strawberry)	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.002		0.003	
Short term	24h	0.002	0.002	0.003	0.003
	2d	0.001	0.002	0.003	0.003
	4d	0.001	0.002	0.003	0.003
Long term	7d	0.001	0.001	0.003	0.003
	28d	0.001	0.001	0.002	0.002
	50d	0.001	0.001	0.001	0.002
	100d	0.000	0.001	0.000	0.001
Plateau concentration	on	0.0 mg/kg after 5 yr			

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (*e.g.* modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used -

Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Models used: PEARL 4.4.4, PELMO 5.5.3, MACRO 5.5.4

Crops: Tomato, strawberry

Abamectin B_{1a}

Mol weight (g/mol): 873.1

Crop uptake factor: 0

Water solubility (mg/L): 2.031×10^{-2} at pH 7 and 20° C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean DT_{50,lab}: 25.3 d

(n = 9; normalisation to 10kPa or pF2, 20 °C with Q_{10} of

2.58 and Walker equation coefficient 0.7)

 K_{OC}/K_{OM} : 6588/3821 mL/g (geometric mean, n = 5)

 $^{1}/_{n}$: 0.977 (arithmetic mean, n = 5)

8a-oxo-avermectin B_{1a} (NOA448111)

Mol weight (g/mol): 887.1

Water solubility (mg/L): 51.0 at pH 7 and 20°C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean DT_{50,lab}: 53.0 d

(n = 6; normalisation to 10kPa or pF2, 20 °C with Q_{10} of

2.58 and Walker equation coefficient 0.7)

 K_{OC}/K_{OM} : 3911/2269 mL/g (geometric mean, n = 3)

 $^{1}/_{n}$: 0.829 (arithmetic mean, n = 3)

ff (from parent): 0.204 (arithmetic mean, n = 5)

8a-hydroxy-avermectin B_{1a} (NOA448112)

Mol weight (g/mol): 889.1

Water solubility (mg/L): 13.8 at pH 7 and 20°C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean DT_{50,lab}: 32.1 d

(n = 9; normalisation to 10kPa or pF2, 20 °C with Q_{10} of

2.58 and Walker equation coefficient 0.7)

 K_{OC}/K_{OM} : 1770/1027 mL/g (geometric mean, n = 3)

 $^{1}/_{n}$: 0.871 (arithmetic mean, n = 3)

ff (from parent): 0.305 (arithmetic mean, n = 8)

4,8-dihydroxy-avermectin B_{1a} (NOA457464, M6)

Mol weight (g/mol): 905.1

Water solubility (mg/L): 2.031×10^{-2} at pH 7 and 20° C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean DT_{50,lab}: 51.9 d

(n = 4; normalisation to 10kPa or pF2, 20 °C with $Q_{\rm 10}$ of

2.58 and Walker equation coefficient 0.7)

 K_{OC}/K_{OM} : 1642/952 mL/g (geometric mean, n = 3)

 $^{1}/_{n}$: 0.912 (arithmetic mean, n = 3)

ff (from NOA448112): 0.682 (arithmetic mean, n = 4)

8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)

Mol weight (g/mol): 903.1

Water solubility (mg/L): 2.031×10^{-2} at pH 7 and 20° C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean DT_{50,lab}: 86.8 d

(n = 4; normalisation to 10kPa or pF2, 20 °C with Q_{10} of

2.58 and Walker equation coefficient 0.7)

 K_{OC}/K_{OM} : 3682/2136 mL/g (geometric mean, n = 3)

 $^{1}/_{n}$: 0.936 (arithmetic mean, n = 3)

ff (from NOA448111): 0.959 (arithmetic mean, n = 4)

4"-oxo-avermectin B_{1a} (NOA426289)

Mol weight (g/mol): 871.1

Water solubility (mg/L): 2.031×10^{-2} at pH 7 and 20° C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean $DT_{50,lab}$: 20.8 d (n = 3; normalisation to 10kPa or pF2, 20 °C with Q_{10} of 2.58 and Walker equation coefficient 0.7) (Note: A data gap was identified for soil incubation to address the degradation rate of 4"-oxo-avermectin B1a (NOA 426289) in one additional soil. A geomean DT50 of 13.9 days should had been used in the present assessment, since the endpoint used lead to a conservative assessment the simulation was not redone)

 K_{OC}/K_{OM} : 1427/828 mL/g (lowest value as agreed at experts' meeting)

 $^{1}/_{n}$: 0.876 (value corresponding to lowest K_{OC} as agreed at experts' meeting)

ff (from parent): 0.260 (arithmetic mean, n = 3)

$8\text{-}carboxy\text{-}6\text{-}hydroxy\text{-}avermectin} \ B_{1a} \ (M4)$

Mol weight (g/mol): 904.5

Water solubility (mg/L): 2.031×10^{-2} at pH 7 and 20° C

Vapour pressure: 3.7×10^{-6} Pa at 25° C

Geometric mean DT_{50,lab}: 27.8* d

(n = 3; normalisation to 10kPa or pF2, 20 °C with Q_{10} of 2.58 and Walker equation coefficient 0.7) *(the correct geometric mean DT_{50} for future assessments is 18.6 days)

 K_{OC}/K_{OM} : 1082/628 mL/g (lowest measured K_{OC} value from all compounds as agreed at experts' meeting) $^{1}/_{n}$: 1.0 (default value as agreed at experts' meeting) ff (from NOA448112): 0.941 (arithmetic mean, n = 3)

Gross application rate: 18 a.s. g/ha

Crop growth stage: BBCH 10-89 (tomato and

strawberry)

Application rate

Canopy interception %: 50 (tomato, early application), 30 (strawberry, early application)

Application rate net of interception: 9 g a.s./ha (tomato), 12.6 g a.s./ha (strawberry)

Early application dates are protective for mid and late application dates (risk envelope)

No. of applications: 3 (tomato, 7 d interval), 2 (strawberry, 7 d interval)

Time of application (absolute or relative application dates): 7, 14, 21 d after emergence (tomato), 7, 14 d after emergence (strawberry)

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Use: Tomato

PE	Scenario	Parent	Metabolites (μg/L)		
PEARL		(µg/L)	NOA448111	NOA448112	NOA457464
4.4.4	Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001
·/Tomato,	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
	Porto	< 0.001	< 0.001	< 0.001	< 0.001
early appl	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001
pl.	Thiva	< 0.001	< 0.001	< 0.001	< 0.001

Scenario	Metabolites (μg/I	L)	
PEARL Scenario	NOA457465	NOA426289	M4
Châteaudun	< 0.001	< 0.001	< 0.001
Piacenza Porto	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001
Sevilla	< 0.001	< 0.001	< 0.001
Thiva	< 0.001	< 0.001	< 0.001

PELMO	Scenario	Parent	Metabolites (μg/L)		
		(µg/L)	NOA448111	NOA448112	NOA457464
5.5.3	Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001
/Tom	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
ato, ea	Porto	< 0.001	< 0.001	< 0.001	< 0.001
/Tomato, early appl.	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001
pl.	Thiva	< 0.001	< 0.001	< 0.001	< 0.001

Scenario Scenario	Metabolites (μg/I	L)	
Scenario Scenario	NOA457465	NOA426289	M4
Châteaudun	< 0.001	< 0.001	< 0.001
Piacenza Porto	< 0.001	< 0.001	< 0.001
-	< 0.001	< 0.001	< 0.001
carly Sevilla	< 0.001	< 0.001	< 0.001
Thiva	< 0.001	< 0.001	< 0.001

eariv	MAC Toma	Scenario	Parent	Metabolites (μg/L))	
appi	, to,		(µg/L)	NOA448111	NOA448112	NOA457464
i	5.5.4/	Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001

	Toma	AC.	Scenario	Metabolites (µg/L)				
	ato,	Ô		NOA457465	NOA426289	M4		
Ì		5.5.4/	Châteaudun	< 0.001	< 0.001	< 0.001		

Use: Strawberry

PE, early	Scenario	Parent	Metabolites (µg/L)	
PEARL 4 arly appl.		$(\mu g/L)$	NOA448111	NOA448112	NOA457464
1.4.4.4	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
/Strawberry,	Kremsmünster	< 0.001	< 0.001	< 0.001	< 0.001
,,,	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001

PE.⁄ early	Scenario	Metabolites (μg/I	Metabolites ($\mu g/L$)				
ARL 2		NOA457465	NOA426289	M4			
, 4.4.4 sl	Hamburg	< 0.001	< 0.001	< 0.001			
	Jokioinen	< 0.001	< 0.001	< 0.001			
/Strawberry,	Kremsmünster	< 0.001	< 0.001	< 0.001			
7,	Sevilla	< 0.001	< 0.001	< 0.001			

PEI early	Scenario	Parent	Metabolites (µg/L)	
LMO ⁷ appl		(µg/L)	NOA448111	NOA448112	NOA457464
) 5.5.3 1.	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
/Strawberry,	Kremsmünster	< 0.001	< 0.001	< 0.001	< 0.001
Ż.	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001

PE] early	Scenario	Metabolites (μg/I	Metabolites (μg/L)				
LM(NOA457465	NOA426289	M4			
PELMO 5.5.3 early appl.	Hamburg	< 0.001	< 0.001	< 0.001			
	Jokioinen	< 0.001	< 0.001	< 0.001			
/Strawberry,	Kremsmünster	< 0.001	< 0.001	< 0.001			
у,	Sevilla	< 0.001	< 0.001	< 0.001			

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent

Parameters used in FOCUSsw step 1 and 2

Version control no. of FOCUS calculator: 3.2

Molecular weight (g/mol): 873.1

K_{OC}/K_{OM} (mL/g): 6588/3821

 DT_{50} soil (d): 25.3 (geometric mean (n = 9) lab in

accordance with FOCUS SFO)

 DT_{50} water/sediment system (d): 51.7 (geomean from n =

4 sediment water studies)

DT₅₀ water (d): 1000 (default value)

DT₅₀ sediment (d): 51.7 (total system value)

Crop interception (%): 0 % (no canopy)

For applications in walk-in tunnels and soil-bound greenhouses (STEP 1 & 2), only spray drift and drainage

were considered (no run-off).

Parameters used in FOCUSsw step 3 (if performed)

Version control no. of FOCUS software:

Walk-in tunnels: SWASH 5.3, MACRO 5.5.4, PRZM

4.3.1, TOXSWA 4.4.3

Greenhouse according to Regulation (EC) No

1107/2009: GEM 3.3.2 (PEC $_{\rm SW}$ GEM model results for early applications were multiplied by a factor of 2 agreed

at experts' meeting)

Water solubility (mg/L): 2.031×10^{-2} at 20 °C

Vapour pressure: 3.7×10^{-6} Pa at 25 °C

 K_{OC}/K_{OM} (mL/g): 6588/3821

1/n: 0.977

Q₁₀: 2.58, Walker equation coefficient: 0.7

Crop uptake factor: 0

Crop and growth stage: tomato BBCH 10-89; strawberry

BBCH 10-89

Number of applications: 3 (tomato), 2 (strawberry)

Interval (d): 7

Application rate(s): 18 g a.s./ha

Application window:

STEP 1, 2: March-May, June-September

STEP 3, 4 (walk-in tunnels): tomato early: 17.04.-31.05; tomato late: 24.06.-07.08.; strawberry early: 17.04.-

24.05.; strawberry late: 01.07.-07.08.

STEP 3 (permanent greenhouses): tomato: 16.05.-30.05.; strawberry: 23.05.-30.05. (agreed at experts' meeting)

Application rate

FOCUS STEP	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
tomato	0 h	2.34		122.89	
strawberry	0 h	1.56		81.92	

FOCUS STEP 2	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
tomato, March-M	<u>Iay</u>				
Northern EU	0 h	0.32		20.21	
Southern EU	0 h	0.60		38.37	
tomato, June-Sep	<u>otember</u>				
Northern EU	0 h	0.32		20.21	
Southern EU	0 h	0.46		29.29	
strawberry, Mar	ch-May				
Northern EU	0 h	0.24		14.94	
Southern EU	0 h	0.44		28.15	
strawberry, June	e-September				
Northern EU	0 h	0.24		14.94	
Southern EU	0 h	0.34		21.54	

FOCUS STEP 3 for applications in walk-in tunnels (calculated as open-field application without run-off)

EQCUIC CEED 2		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)		
FOCUS STEP 3 Scenario	Water- body	overall maximu m	Actual	TWA 21	Actual	TWA 21	
tomato, early app	olication						
D6	ditch	0 h	0.1125 ^{a)}	0.003767	0.0471	0.02924	
tomato, late appl	<u>ication</u>						
D6	ditch	0 h	0.1125	0.004221	0.0465	0.03327	
strawberry, early	application	<u>n</u>					
D6	ditch	0 h	0.1125	0.003578	0.0390	0.02270	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	0.1125	0.003111	0.0475	0.03065	

a) Results present worst-case of single and multiple applications

STEP 3 for applications in <u>permanent greenhouses</u> according to Regulation (EC) No 1107/2009 (GEM 3.3.2)

STEP 3	Water-	Day after	PECsw ⁶ (μg/L)		PEC _{SED} ⁷ (µg/kg)	
Scenario	body	overall maximum	Actual	TWA 21	Actual	TWA 21
tomato ^{a)}						
Greenhouse SWb)	-	0 h	0.001342	0.000818	see STEP 2	
strawberry ^{a)}	strawberry ^{a)}					
Greenhouse SW	-	0 h	0.000998	0.000608	see STEP 2	

a) Surrogate crop: Vegetables, fruiting: Gherkin

FOCUS STEP 4 for applications in walk-in tunnels with no-spray buffer zones for drift mitigation

FOCUS STEP 4	Water-	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)			
Scenario	body	overall maximum	10 m buffer	20 m buffer	10 m buffer	20 m buffer		
tomato, early app	olication							
D6	ditch	0 h	0.0131 ^{a)}	0.0067	0.0637	0.0329		
tomato, late appli	<u>ication</u>							
D6	ditch	0 h	0.0133	0.0068	0.0595	0.0307		
strawberry, early	application	<u>n</u>						
D6	ditch	0 h	0.0146	0.0074	0.0574	0.0293		
strawberry, late a	strawberry, late application							
D6	ditch	0 h	0.0151	0.0077	0.0552	0.0282		

a) Results present worst-case of single and multiple applications

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

⁶ According to experts' decision, model results from early application patterns were multiplied by a factor of 2

⁷ According to experts' decision, FOCUS STEP 2 calculations for sediment (PEC_{SED}) are to be taken for exposure and risk assessment

Metabolite 8a-oxo-avermectin B_{1a} (NOA448111)

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 887.1

Soil or water metabolite: soil

Koc/Kom (mL/g): 3911/2269

 DT_{50} soil (d): 53.0 (geometric mean (n = 6) lab in

accordance with FOCUS SFO)

DT₅₀ water/sediment system (d): 109 (representative

worst case from n = 2 sediment water studies)

DT₅₀ water (d): 1000 (default value)

DT₅₀ sediment (d): 109 (total system value)

Crop interception (%): 0

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 16.0

Soil: 17.0

Metabolite 8a-hydroxy-avermectin B_{1a} (NOA448112)

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 889.1

Soil or water metabolite: soil

Koc/Kom (mL/g): 1770/1027

 DT_{50} soil (d): 32.1 (geometric mean (n = 9) lab in

accordance with FOCUS SFO)

 DT_{50} water/sediment system (d): 45 (n = 1 sediment

water study)

DT₅₀ water (d): 1000 (default value)

DT₅₀ sediment (d): 45.0 (total system value)

Crop interception (%): 0

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 9.0

Soil: 22.0

Metabolite 4"-oxo-avermectin B_{1a} (NOA426289)

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 871.1

Soil or water metabolite: soil

Koc/Kom (mL/g): 1427/828 (owest value agreed at

experts' meeting)

 DT_{50} soil (d): 20.8 (geometric mean (n = 3) lab in accordance with FOCUS SFO) (Note: A data gap was identified for soil incubation to address the degradation rate of 4"-oxo-avermectin B1a (NOA 426289) in one additional soil. A geomean DT50 of 13.9 days should had been used in the present assessment, since these endpoints lead to a conservative assessment the

simulation was not redone)

DT₅₀ water/sediment system (d): 33 (representative worst

case from n = 2 sediment water studies) DT₅₀ water (d): 1000 (default value)

DT₅₀ sediment (d): 33 (total system value)

Crop interception (%): 0

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 12.0

Soil: 12.0

Metabolite 4,8-dihydroxy-avermectin B_{1a} (NOA457464, M6)

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 905.1

Soil or water metabolite: soil

Koc/Kom (mL/g): 1642/952

 DT_{50} soil (d): 51.9 (geometric mean (n = 4) lab in

accordance with FOCUS SFO)

 DT_{50} water/sediment system (d): 1000 (default value)

DT₅₀ water (d): 1000 (default value) DT₅₀ sediment (d): 1000 (default value)

Crop interception (%): 0

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 0

Soil: 9.9

Metabolite 8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 903.1

Soil or water metabolite: soil

Koc/Kom (mL/g): 3682/2136

 DT_{50} soil (d): 86.8 (geometric mean (n = 2) lab in

accordance with FOCUS SFO)

DT₅₀ water/sediment system (d): 1000 (default value)

DT₅₀ water (d): 1000 (default value) DT₅₀ sediment (d): 1000 (default value)

Crop interception (%): 0

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 0

Soil: 9.9

Metabolite 8-carboxy-6-hydroxy-avermectin B_{1a} (M4)

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 904.5

Soil or water metabolite: soil

Koc/Kom (mL/g): 1082/628 (lowest measured Koc value from all compounds as agreed at experts' meeting))

 DT_{50} soil (d): 18.6 (geometric mean (n = 3) lab in

accordance with FOCUS SFO)

DT₅₀ water/sediment system (d): 1000 (default value)

DT₅₀ water (d): 1000 (default value) DT₅₀ sediment (d): 1000 (default value)

Crop interception (%): 0

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 0

Soil: 9.0

Application rate

Crop and growth stage: tomato BBCH 10-89; strawberry

BBCH 10-89

Number of applications: 3 (tomato), 2 (strawberry)

Interval (d): 7

Application rate(s): 18 g a.s./ha

Application window: STEP 1, 2: Same as parent STEP 3, 4: Same as parent

Main routes of entry

drift

FOCUS STEP	Day after	PECsw (µg/L)		PEC _{SED} (μg/kg)	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
tomato					
NOA448111	0 h	1.05		38.25	
NOA448112	0 h	1.74		29.93	
NOA426289	0 h	1.54		21.19	
NOA457464	0 h	0.58		9.51	
NOA457465	0 h	0.31		11.48	
M4	0 h	0.69		7.43	
strawberry		•			
NOA448111	0 h	0.70		25.50	
NOA448112	0 h	1.16		19.96	
NOA426289	0 h	1.03		14.13	
NOA457464	0 h	0.39		6.34	
NOA457465	0 h	0.21		7.66	
M4	0 h	0.46		4.96	

FOCUS STEP 2	Day after	PEC _{SW} (μg/L)		PEC _{SED} (µg/kg)		
Scenario	overall maximum	Actual	TWA	Actual	TWA	
tomato, March-N	Iay, Northern I	<u>EU</u>				
NOA448111	0 h	0.17		6.48		
NOA448112	0 h	0.28		4.81		
NOA426289	0 h	0.23		3.24		
NOA457464	0 h	0.10		1.65		
NOA457465	0 h	0.06		2.11		
M4 0 h		0.09		1.01		
tomato, March-N	Aay, Southern I	<u>EU</u>		•		

FOCUS STEP 2	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
NOA448111	0 h	0.33		12.64	
NOA448112	0 h	0.54		9.49	
NOA426289	0 h	0.45		6.33	
NOA457464	0 h	0.20		3.29	
NOA457465	0 h	0.11		4.21	
M4	0 h	0.19		2.02	
tomato, June-Sep	tember, North	nern EU		·	
NOA448111	0 h	0.17		6.48	
NOA448112	0 h	0.28		4.81	
NOA426289	0 h	0.23		3.24	
NOA457464	0 h	0.10		1.65	
NOA457465	0 h	0.06		2.11	
M4	0 h	0.09		1.01	
tomato, June-Sep	tember, South	nern EU			
NOA448111	0 h	0.25		9.56	
NOA448112	0 h	0.41		7.15	
NOA426289	0 h	0.34		4.79	
NOA457464	0 h	0.15		2.47	
NOA457465	0 h	0.09		3.16	
M4	0 h	0.14		1.51	
strawberry, Mar	ch-May, North	nern EU			
NOA448111	0 h	0.12		4.64	
NOA448112	0 h	0.20		3.48	
NOA426289	0 h	0.17		2.40	
NOA457464	0 h	0.07		1.15	
NOA457465	0 h	0.04		1.44	
M4	0 h	0.07		0.76	
strawberry, Mar	ch-May, South	ern EU			
NOA448111	0 h	0.23		9.02	
NOA448112	0 h	0.39		6.84	
NOA426289	0 h	0.33		4.66	
NOA457464	0 h	0.14		2.30	
NOA457465	0 h	0.08		2.89	
M4	0 h	0.14		1.51	
strawberry, June	-September, N	orthern EU			

FOCUS STEP 2	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
NOA448111	0 h	0.12		4.64	
NOA448112	0 h	0.20		3.48	
NOA426289	0 h	0.17		2.40	
NOA457464	0 h	0.07		1.15	
NOA457465	0 h	0.04		1.44	
M4	0 h	0.07		0.76	
strawberry, June	-September, So	outhern EU			
NOA448111	0 h	0.18		6.83	
NOA448112	0 h	0.29		5.16	
NOA426289	0 h	0.25		3.53	
NOA457464	0 h	0.10		1.72	
NOA457465	0 h	0.06		2.16	
M4	0 h	0.10		1.13	

FOCUS STEP 3 for applications in walk-in tunnels (open-field without runoff)

FOCUS STEP 3		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario NOA448111	Water- body	overall maximu m	Actual	TWA 21	Actual	TWA 21
tomato, early app	olication_					
D6	ditch	0 h	$0.000090^{a)}$	0.000007	0.01184	0.01178
tomato, late appli	ication_					
D6	ditch	0 h	0.000150	0.000030	0.01608	0.01599
strawberry, early	application	<u>1</u>				
D6	ditch	0 h	0.000047	0.000004	0.00812	0.00808
strawberry, late application						
D6	ditch	0 h	0.000075	0.000026	0.01304	0.01297

a) Results present worst-case of single and multiple applications

FOCUS STEP 3	Scenario Water- body	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)			
Scenario NOA448112		overall maximu m	Actual	TWA 21	Actual	TWA 21		
tomato, early app	tomato, early application							
D6	ditch	0 h	0.000496 ^{a)}	0.000006	0.000733	0.000724		
tomato, late application								
D6	ditch	0 h	0.002041	0.000023	0.000987	0.000968		

FOCUS STEP 3	Water- body	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)			
Scenario NOA448112		overall maximu m	Actual	TWA 21	Actual	TWA 21		
strawberry, early	strawberry, early application							
D6	ditch	0 h	0.000262	0.000003	0.000500	0.000494		
strawberry, late application								
D6	ditch	0 h	0.001364	0.000015	0.000808	0.000793		

a) Results present worst-case of single and multiple applications

FOCUS STEP 3		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)				
Scenario NOA426289	Water- body	overall maximu m	Actual	TWA 21	Actual	TWA 21			
tomato, early app	tomato, early application								
D6	ditch	0 h	0.000112 ^{a)}	0.000003	0.002021	0.001991			
tomato, late appli	ication								
D6	ditch	0 h	0.000824	0.000010	0.002701	0.002641			
strawberry, early	application	<u>1</u>		•					
D6	ditch	0 h	0.000057	0.000002	0.001378	0.001360			
strawberry, late a	strawberry, late application								
D6	ditch	0 h	0.000586	0.000009	0.002217	0.002172			

a) Results present worst-case of single and multiple applications

FOCUS STEP 3		Day after	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)		
Scenario NOA457464	body	overall maximu m	Actual	TWA 21	Actual	TWA 21	
tomato, early app	olication						
D6	ditch	0 h	0.004402 ^{a)}	0.000114	0.001878	0.001167	
tomato, late appli	ication_						
D6	ditch	0 h	0.010810	0.000213	0.003440	0.002023	
strawberry, early	application	<u>1</u>					
D6	ditch	0 h	0.002530	0.000062	0.001033	0.000649	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	0.007208	0.000133	0.002148	0.001263	

a) Results present worst-case of single and multiple applications

FOCUS STEP 3			PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario NOA457465	Water- body	overall maximu m	Actual	TWA 21	Actual	TWA 21
tomato, early application						

FOCUS STEP 3		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)		
Scenario Water-body NOA457465	overall maximu m	Actual	TWA 21	Actual	TWA 21		
D6	ditch	0 h	0.001696 ^{a)}	0.000086	0.001484	0.001017	
tomato, late application							
D6	ditch	0 h	0.006990	0.000097	0.001668	0.001137	
strawberry, early	application	<u>n</u>					
D6	ditch	0 h	0.003423	0.000051	0.000876	0.000603	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	0.004327	0.000058	0.000998	0.000684	

a) Results present worst-case of single and multiple applications

FOCUS STEP 3		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario M4	Water- body	overall maximu m	Actual	TWA 21	Actual	TWA 21
tomato, early app	olication_					
D6	ditch	0 h	0.002911 ^{a)}	0.000368	0.001826	0.001430
tomato, late appli	ication_					
D6	ditch	0 h	0.010170	0.001507	0.007416	0.005622
strawberry, early	application	<u>1</u>		•		
D6	ditch	0 h	0.001702	0.000214	0.001065	0.000837
strawberry, late a	strawberry, late application					
D6	ditch	0 h	0.007536	0.001125	0.005568	0.004132

a) Results present worst-case of single and multiple applications

STEP 3 evaluation for applications in permanent greenhouses according to Regulation (EC) No 1107/2009 (GEM 3.3.2)

STEP 3		Day after	PEC _{sw} ⁸ (μg/L)	PEC _{SW} ⁸ (μg/L)		PEC _{SED} ⁹ (μg/kg)	
Scenario NOA448111	Water- body	overall maximu m	Actual	TWA 21	Actual	TWA 21	
tomato ^{a)}							
Greenhouse SWb)	-	0 h	0.000072	0.000062	see STEP 2		
strawberry ^{a)}							
Greenhouse SW	-	0 h	0.000042	0.000036	see STEP 2		

a) Surrogate crop: Vegetables, fruiting: Gherkin

-

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

⁸ According to experts' decision, model results from early application patterns were multiplied by a factor of 2

⁹ According to experts' decision, FOCUS STEP 2 calculations for sediment (PEC_{SED}) are to be taken for exposure and risk assessment

STEP 3 Scenario NOA448112	Water- body	Day after overall maximu m	PECsw ¹² (μg/L)		PEC _{SED} ¹⁴ (µg/kg)		
			Actual	TWA 21	Actual	TWA 21	
tomato ^{a)}							
Greenhouse SWb)	-	0 h	0.000396	0.000234	see STEP 2		
strawberry ^{a)}							
Greenhouse SW	-	0 h	0.000228	0.000134	see STEP 2		

a) Surrogate crop: Vegetables, fruiting: Gherkin

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

STEP 3 Scenario NOA426289	Water- body	Day after overall maximu m	PECsw ¹² (μg/L)		PEC _{SED} ¹⁴ (µg/kg)		
			Actual	TWA 21	Actual	TWA 21	
tomato ^{a)}							
Greenhouse SWb)	-	0 h	0.000344	0.000204	see STEP 2		
strawberry ^{a)}							
Greenhouse SW	-	0 h	0.000200	0.000118	see STEP 2		

a) Surrogate crop: Vegetables, fruiting: Gherkin

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

STEP 3 Scenario NOA457464	Water- body	Day after overall maximu m	PECsw ¹² (µg/L)		PEC _{SED} ¹⁴ (µg/kg)		
			Actual	TWA 21	Actual	TWA 21	
tomato ^{a)}							
Greenhouse SWb)	-	0 h	0.000402	0.000242	see STEP 2		
strawberry ^{a)}							
Greenhouse SW	-	0 h	0.000240	0.000144	see STEP 2		

a) Surrogate crop: Vegetables, fruiting: Gherkin

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

Scenario		Day after overall maximu m	PECsw ¹² (μg/L)		PEC _{SED} ¹⁴ (µg/kg)		
	Water- body		Actual	TWA 21	Actual	TWA 21	
tomato ^{a)}							
Greenhouse SWb)	-	0 h	0.000254	0.000152	see STEP 2		
strawberry ^{a)}							
Greenhouse SW	-	0 h	0.000154	0.000092	see STEP 2		

a) Surrogate crop: Vegetables, fruiting: Gherkin

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

STEP 3			PECsw ¹² (µg/L)		PEC _{SED} ¹⁴ (µg/kg)	
Scenario M4	Water- body			TWA 21	Actual	TWA 21
tomato ^{a)}						
Greenhouse SWb)	-	0 h	0.002170	0.001240	see STEP 2	
strawberry ^{a)}					•	
Greenhouse SW	-	0 h	0.001340	0.000748	see STEP 2	

a) Surrogate crop: Vegetables, fruiting: Gherkin

FOCUS STEP 4 for applications in walk-in tunnels with no-spray buffer zones for drift mitigation

FOCUS STEP 4	Day after		PECsw (µg/L)		PEC _{SED} (μg/kg)		
Scenario Water-body NOA448111	overall maximu m	10 m buffer	20 m buffer	10 m buffer	20 m buffer		
tomato, early app	olication_						
D6	ditch	0 h	0.000069 ^{a)}	0.000032	0.0260	0.0136	
tomato, late appl	ication_						
D6	ditch	0 h	0.000097	0.000045	0.0289	0.0151	
strawberry, early	application	<u>n</u>					
D6	ditch	0 h	0.000049	0.000023	0.0199	0.0103	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	0.000076	0.000035	0.0229	0.0119	

a) Results present worst-case of single and multiple applications

FOCUS STEP 4	Day aft		PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)		
Scenario Water- body	Water- body	overall maximu m	10 m buffer	20 m buffer	10 m buffer	20 m buffer	
tomato, early app	olication_						
D6	ditch	0 h	0.000014 ^{a)}	0.000007	0.00162	0.00085	
tomato, late appl	ication						
D6	ditch	0 h	0.000019	0.000009	0.00180	0.00094	
strawberry, early	application	<u>1</u>					
D6	ditch	0 h	0.000011	0.000005	0.00125	0.00065	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	0.000016	0.000008	0.00144	0.00075	

a) Results present worst-case of single and multiple applications

b) Greenhouse surface water scenario; customized scenario basing on "Example project 2 soil-bound-surface water"

FOCUS STEP 4		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)			
Scenario NOA426289	Water- body	overall maximu m	10 m buffer 20 m	20 m buffer	10 m buffer	20 m buffer		
tomato, early app	olication_							
D6	ditch	0 h	0.000054 ^{a)}	0.000027	0.00451	0.00237		
tomato, late appli	<u>ication</u>							
D6	ditch	0 h	0.000075	0.000037	0.00496	0.00260		
strawberry, early	application	<u>1</u>						
D6	ditch	0 h	0.000044	0.000022	0.00347	0.00181		
strawberry, late a	strawberry, late application							
D6	ditch	0 h	0.000065	0.000032	0.00400	0.00208		

a) Results present worst-case of single and multiple applications

FOCUS STEP 4		Day after	PECsw (µg/L)	ECsw (µg/L)			
Scenario NOA457464	Water- body	overall maximu m	10 m buffer	20 m buffer	10 m buffer	20 m buffer	
tomato, early app	olication_						
D6	ditch	0 h	<1E-06 ^{a)}	<1E-06	<1E-06	<1E-06	
tomato, late appl	ication_						
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06	
strawberry, early	application	<u>n</u>					
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06	

a) Results present worst-case of single and multiple applications

FOCUS STEP 4			PECsw (µg/L)		PEC _{SED} (μg/kg)		
Scenario Water-body NOA457465	Water- body	overall maximu m	10 m buffer	20 m buffer	10 m buffer	20 m buffer	
tomato, early app	olication_						
D6	ditch	0 h	<1E-06 ^{a)}	<1E-06	<1E-06	<1E-06	
tomato, late appli	ication_						
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06	
strawberry, early	application	<u>n</u>					
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06	
strawberry, late a	strawberry, late application						
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06	

a) Results present worst-case of single and multiple applications

FOCUS STEP 4		Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
Scenario M4	body	overall maximu m	10 m buffer	20 m buffer	10 m buffer	20 m buffer
tomato, early app	olication					
D6	ditch	0 h	<1E-06 ^{a)}	<1E-06	<1E-06	<1E-06
tomato, late appl	<u>ication</u>					
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06
strawberry, early	application	<u>n</u>				
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06
strawberry, late application						
D6	ditch	0 h	<1E-06	<1E-06	<1E-06	<1E-06

a) Results present worst-case of single and multiple applications

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation	No calculation provided
PEC	
Maximum concentration	No other routes of exposure expected following the proposed uses

Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity [mg/kg bw per day]
Birds				
Bobwhite quail	Abamectin	Acute	LD ₅₀	>2000
Mallard duck	Abamectin	Acute	LD ₅₀	26 ¹
Bobwhite quail	Abamectin	Long-term	NOEC NOED	6 mg/kg feed 0.7
Mallard duck	Abamectin	Long-term	NOEC NOED	10 mg/kg feed 1.0
Mammals				
Rat	Abamectin	Acute	LD ₅₀	8.7 (male) 12.8 (female)
Rat	Abamectin	Long-term	NOAEL	0.12

Endocrine disrupting properties (Annex Part A, points 8.1.5)

Abamectin was not indicated to be an endocrine disruptor following an assessment according to the GD on endocrine disruptors (ECHA and EFSA, 2018)

Additional higher tier studies (Annex Part A, points 10.1.1.2):

No higher tier studies available

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3): There are no indications of adverse effects of Abamectin on terrestrial vertebrate wildlife

¹ corrected for regurgitation, represents a NOED

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Tomato at 0.018 kg a.s./ha, 3 applications, permanent (high-tech) greenhouse

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step	(Birds): Not relevant			•	•
Tier 1 (Birds):					
` '	ds): Not relevant				
	(Mammals): Not releva	nt			
	als): Not relevant				
	nmmals): Not relevant				
	accumulation and food	chain behaviou	r		
Indicator	or focal species	Time scale	DDD (mg/kg bw per	TER	Trigger
			day)		
		Abam		T	
Fish-eating bird	ls	Long-term	0.00000897	78001	5
Fish-eating man	mmals	Long-term	0.00000801	14972	5
Earthworm-eat	ing birds	Long-term	0.0147	48	5
Earthworm-eati	ing mammals	Long-term	0.0179	6.7	5
	8-cart	ooxv-6-hvdroxv-	avermectin B1a (M4)	-	
Fish-eating bird		Long-term	0.00001360	5146	5
Fish-eating man	mmals	Long-term	0.00001215	988	5
Earthworm-eat	ing birds	Long-term	0.0014	50	5
Earthworm-eat	Ŭ	Long-term	0.0017	7.1	5
		4´´-oxo-aver	mectin B1a	•	
Fish-eating bird	ls	Long-term	0.00000224	31277	5
Fish-eating man	mmals	Long-term	0.00000200	6004	5
Earthworm-eati	ing birds	Long-term	4.78	0.015	5
Earthworm-eati	ing mammals	Long-term	5.82	0.002	5
Higher tier: No	t available	1		<u>. I</u>	
	sumption of contamina	ated water			
Scenarios		focal species	Time scale PEC _{dw}	xDWR TER	Trigger
Leaf scenario Birds Not relevant					
	io, Screening step				
	e (g a.s./ha)/relevant end	Inoint < 3000 (kg	c>500 L/kg) TFR calc	ulation not need	ed
r ipplication rati	c (5 a.s./ na)/Televant end	*Pour <2000 (KO	c_500 L/Rg), TER Calc	diation not need	

Bold values are below the respective trigger

Strawberry at 0.018 kg a.s./ha \times 2, permanent (high-tech) greenhouse

Leaf scenario Puddle scenario	Birds o, Screening step			No	t relevant	
Scenarios	Indicator of	r focal species	Time scale	PECdwx		ER Trigger
Higher tier: Not	available umption of contamina	ated water				
Earthworm-eating		Long-term	5.82	,	0.002	5
Earthworm-eati	ng birds	Long-term	4.78		0.015	5
Fish-eating man	nmals	Long-term	0.00000	116	10379	5
Fish-eating bird	S	Long-term	0.00000	129	54072	5
	-0	4''-oxo-aver				
Earthworm-eating		Long-term Long-term	0.001		7.1	5
Fish-eating man Earthworm-eating		Long-term Long-term	0.001		50	5
			0.00000	733	1637	5
Fish-eating bird		Long-term	0.00000		8530	5
		 	 avermectin R1s	(M4)		
Earthworm-eating	ng mammals	Long-term	0.017	9	6.7	5
Earthworm-eating	ng birds	Long-term	0.014	7	48	5
Fish-eating man	nmals	Long-term	0.00000	596	20144	5
Fish-eating bird	S	Long-term	0.00000	667	104942	5
		Abam				
	or focal species	Time scale	DDI (mg/kg b day)	w per	TER	Trigger
-	ccumulation and food	l chain behaviou	r			
	ls): Not relevant mmals): Not relevant					
	(Mammals): Not releva	nnt				
	s): Not relevant					
Tier 1 (Birds): N						
Screening Sten	(Birds): Not relevant		day)			
Growth stage	Indicator or focal species	Time scale	DDI (mg/kg b	w per	TER	Trigger

Bold values are below the respective trigger

Tomato at 0.018 kg a.s./ha, 3 applications Walk-in tunnel (and permanent low-tech greenhouse)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per	TER	Trigger
Screening Step (Bird	1		day)		
Screening Step (Bit	Small				
All	insectivorous bird	Acute	4.57	5.7	10
All	Small insectivorous bird	Long-term	1.24	0.6	5
Tier 1 (Birds)	1		T	1	1
Fruiting vegetables Fruit stage 71 - 89	Frugivorous bird "crow"	Acute	1.66	15.7	10
Fruiting vegetables BBCH 10 - 49	Small granivorous bird "finch"	Acute	0.71	36.6	10
Fruiting vegetables $BBCH \ge 50$	Small granivorous bird "finch"	Acute	0.21	122.0	10
Fruiting vegetables BBCH 10 - 49	Small omnivorous "lark"	Acute	0.69	37.6	10
Fruiting vegetables $BBCH \ge 50$	Small omnivorous "lark"	Acute	0.21	125.4	10
Fruiting vegetables Fruit stage 71 - 89	Frugivorous bird "starling"	Acute	1.42	18.3	10
Fruiting vegetables BBCH 10 - 19	Small insectivorous bird "wagtail"	Acute	0.77	33.7	10
Fruiting vegetables BBCH ≥ 20	Small insectivorous bird "wagtail"	Acute	0.73	35.8	10
Fruiting vegetables Fruit stage 71 - 89	Frugivorous bird "crow" ^a	Long-term	0.23	3.0	5
Fruiting vegetables BBCH 10 - 49	Small granivorous bird "finch"	Long-term	0.22	3.2	5
Fruiting vegetables BBCH ≥ 50	Small granivorous bird "finch"	Long-term	0.06	11.7	5
Fruiting vegetables BBCH 10 - 49	Small omnivorous "lark"	Long-term	0.21	3.3	5
Fruiting vegetables BBCH ≥ 50	Small omnivorous "lark"	Long-term	0.06	11.7	5
Fruiting vegetables Fruit stage 71 - 89	Frugivorous bird "starling"	Long-term	0.39	1.8	5

	1		222								
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger						
Fruiting vegetables BBCH 10 - 19	Small insectivorous bird "wagtail"	Long-term	0.22	3.2	5						
Fruiting vegetables BBCH ≥ 20	Small insectivorous bird "wagtail"	Long-term	0.19	3.7	5						
	Higher tier (birds): Not available, risk mitigation measures recommended										
Screening Step (Mammals)											
All	Small herbivorous mammal	Acute	3.93	2.2	10						
All	Small herbivorous mammal	Long-term	1.38	0.09	5						
	1	Tier 1 (Mar	nmals)		<u> </u>						
Fruiting vegetables BBCH 71 – 89	Frugivorous mammal "rat"	Acute	1.30	6.7	10						
Fruiting vegetables BBCH 10 – 19	Small insectivorous "shrew"	Acute	0.22	39.7	10						
Fruiting vegetables BBCH ≥ 20	Small insectivorous "shrew"	Acute	0.16	55.9	10						
Fruiting vegetables BBCH 10 – 49	Small herbivorous "vole"	Acute	3.93	2.2	10						
Fruiting vegetables BBCH ≥ 50	Small herbivorous "vole"	Acute	1.18	7.4	10						
Fruiting vegetables BBCH 10 – 49	Small omnivorous "mouse"	Acute	0.50	17.6	10						
Fruiting vegetables BBCH ≥ 50	Small omnivorous "mouse"	Acute	0.15	58.1	10						
Fruiting vegetables BBCH 71 – 89	Frugivorous mammal "rat"	Long-term	0.48	0.2	5						
Fruiting vegetables BBCH 10 – 19	Small insectivorous "shrew"	Long-term	0.08	1.5	5						
Fruiting vegetables BBCH ≥ 20	Small insectivorous "shrew"	Long-term	0.04	3.3	5						
Fruiting vegetables BBCH 10 – 49	Small herbivorous "vole"	Long-term	1.38	0.1	5						
Fruiting vegetables BBCH ≥ 50	Small herbivorous "vole"	Long-term	0.41	0.3	5						
Fruiting vegetables BBCH 10 – 49	Small omnivorous "mouse"	Long-term	0.15	0.8	5						

80

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg by day)	w per	TE	ER	Trigger
Fruiting vegetables BBCH ≥ 50	Small omnivorous "mouse"	Long-term	0.04		2.	7	5
Higher tier (Mamma		risk mitigation me	easures recomn	nended		L	
Risk from bioaccur	nulation and food	chain behaviou	r				
Indicator or fo	ocal species	Time scale	DDD (mg/kg by day)	w per	TE	ER	Trigger
		Abam					
Fish-eating birds		Long-term	0.0000)46	151	16	5
Fish-eating mammal	ls	Long-term	0.00004	136	29	02	5
Earthworm-eating birds		Long-term	0.014	7	4	8	5
Earthworm-eating mammals		Long-term	0.017	0.0179 6		7	5
	8-cart	oxy-6-hydroxy-a	avermectin B1a	a (M4)		•	
Fish-eating birds		Long-term	0.00001	653	42	34	5
Fish-eating mammal	ls	Long-term	0.00001	477	81	.3	5
Earthworm-eating bi		Long-term	0.0014		5	0	5
Earthworm-eating m	nammals	Long-term	0.001	7	7.	1	5
		4''-oxo-aver					
Fish-eating birds		Long-term	0.00000		638		5
Fish-eating mammal	ls	Long-term	0.00000	010	122	474	5
Earthworm-eating bi	irds	Long-term	4.78		0.0	15	5
Earthworm-eating m	nammals	Long-term	5.82	,	0.0	02	5
Higher tier: Not avai	ilable	•		L		L	
Risk from consump	otion of contamina	ited water					
Scenarios		focal species	Time scale	PECdwX		TER	Trigger
Leaf scenario	Birds			No	t releva	nt	
Puddle scenario, So	creening step						
Application rate (g a	a.s./ha)/relevant end	lpoint <3000 (ko	c≥500 L/kg), T	ER calcul	ation no	ot needed	
ald values one helevy the		- '					

Bold values are below the respective trigger

Strawberry at 0.018 kg a.s./ha, 2 applications Walk-in tunnel (and permanent low-tech greenhouse) $\,$

Growth stage	Growth stage Indicator or focal species Time scale (1		DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Bird	ds)				
All	Small insectivorous bird	Acute	4.02	6.5	10
All	Small insectivorous bird	Long-term	0.99	0.7	5

^a based on residue values for tomatoes

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Tier 1 (Birds)			1,00,1,071		
Strawberries BBCH 10 - 39	Small omnivorous bird "lark"	Acute	0.60	43.0	10
Strawberries BBCH ≥ 40	Small omnivorous bird "lark"	Acute	0.24	107.5	10
Strawberries BBCH 61 - 89	Frugivorous bird "Starling"	Acute	0.68	38.2	10
Strawberries BBCH 10 - 19	Small insectivorous bird "Wagtail"	Acute	0.68	38.5	10
Strawberries BBCH ≥ 20	Small insectivorous bird "Wagtail"	Acute	0.64	40.9	10
Strawberries BBCH 10 - 39	Small omnivorous bird"lark"	Long-term	0.17	4.1	5
Strawberries BBCH ≥ 40	Small omnivorous bird"lark"	Long-term	0.07	10.0	5
Strawberries BBCH 61 - 89	Frugivorous bird "Starling"	Long-term	0.20	3.5	5
Strawberries BBCH 10 - 19	Small insectivorous bird "Wagtail"	Long-term	0.17	4.1	5
Strawberries BBCH ≥ 20	Small insectivorous bird "Wagtail"	Long-term	0.15	4.7	5
Higher tier (birds): 1		nitigation measures	s recommended		
Screening Step (Mar	mmals) Small				
All	herbivorous mammal	Acute	2.98	2.9	10
All	Small herbivorous mammal	Long-term	0.74	0.16	5
Tier 1 (Mammals)					
Strawberries BBCH 10 -19	Small insectivorous mammal "Shrew"	Acute	0.19	45.4	10
Strawberries BBCH ≥ 20	Small insectivorous mammal "Shrew"	Acute	0.14	63.9	10
Strawberries BBCH ≥ 40	Small herbivorous mammal "Vole"	Acute	1.38	6.3	10
Strawberries BBCH 10 -39	Large herbivorous mammal "Lagomorph"	Acute	0.88	9.8	10

Strawberries BBCH ≥ 40 mammal Mouse" Small Strawberries BBCH ≥ 40 mammal misoctivorous BBCH ≥ 20 mammal misoctivorous BBCH ≥ 40 mammal misoctivorous mammal misoctivorous BBCH ≥ 20 mammal misoctivorous miso						
Strawberries BBCH ≥ 40	Growth stage		Time scale		TER	Trigger
Strawberries BBCH 20.9 Small Strawberries BBCH 20.1 Small Strawberries BBCH 20.1 Small Insectivorous mammal "Mouse" Small Insectivorous Mammal Strawberries BBCH 20 Small Insectivorous Mammal "Shrew" Small Strawberries BBCH 20 Small Insectivorous Mammal "Shrew" Small Long-term 0.03 4.3 5		herbivorous mammal	Acute		24.7	10
Strawberries BBCH ≥ 40		omnivorous mammal "Mouse"	Acute	0.43	20.1	10
Strawberries BBCH 10 -19		omnivorous mammal	Acute	0.17	50.0	10
Strawberries BBCH ≥ 20 insectivorous mammal "Shrew" Long-term 0.03 4.3 5 Strawberries BBCH ≥ 40 Small herbivorous mammal "Vole" Large herbivorous mammal "Lagomorph" Long-term 0.22 0.5 5 Strawberries BBCH 10 - 39 Large herbivorous mammal "Lagomorph" Long-term 0.09 1.4 5 Small omnivorous mammal "Mouse" Long-term 0.12 1.0 5 Strawberries BBCH 10 - 39 "Mouse" Small omnivorous mammal "Mouse" Long-term 0.05 2.5 5 Strawberries BBCH 2 40 "Mouse" Small omnivorous mammal "Mouse" Long-term 0.05 2.5 5 Higher tier (Mammals): Not available, risk mitigation measures recommended Risk from bioaccumulation and food chain behaviour[indicate when not relevant i.e if Log kow≤3] Indicator or focal species Time scale DDD (mg/kg bw per day) TER Trigger Abamectin Fish-eating birds Long-term 0.00003925 17832 5 Fish-eating mammals Long-term 0.00147 48 5		insectivorous mammal	Long-term	0.06	1.9	5
Strawberries BBCH ≥ 40 herbivorous mammal "Vole" Long-term 0.44 0.3 5 Strawberries BBCH 10 -39 Large herbivorous mammal "Lagomorph" Long-term 0.22 0.5 5 Strawberries BBCH ≥ 40 Large herbivorous mammal "Lagomorph" Long-term 0.09 1.4 5 Strawberries BBCH 10 -39 Small omnivorous mammal "Mouse" Long-term 0.12 1.0 5 Strawberries BBCH ≥ 40 Small omnivorous mammal "Mouse" Long-term 0.05 2.5 5 Higher tier (Mammals): Not available, risk mitigation measures recommended Risk from bioaccumulation and food chain behaviour [indicate when not relevant i.e. if Log kow≤3] Indicator or focal species Time scale (mg/kg bw per day) TER Trigger Abamectin Long-term 0.00003925 17832 5 Fish-eating birds Long-term 0.00003925 17832 5 Earthworm-eating birds Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0179 6.7 5		insectivorous mammal	Long-term	0.03	4.3	5
Strawberries BBCH 10 -39 herbivorous mammal "Lagomorph" Long-term 0.22 0.5 5 Strawberries BBCH ≥ 40 Large herbivorous mammal "Lagomorph" Long-term 0.09 1.4 5 Strawberries BBCH ≥ 40 Small omnivorous mammal "Mouse" Long-term 0.12 1.0 5 Strawberries BBCH ≥ 40 Small omnivorous mammal "Mouse" Long-term 0.05 2.5 5 Higher tier (Mammals): Not available, risk mitigation measures recommended Risk from bioaccumulation and food chain behaviour[indicate when not relevant i.e if Log kow≤3] DDD (mg/kg bw per day) TER Trigger Fish-eating birds Long-term 0.00003925 17832 5 Fish-eating mammals Long-term 0.00003506 3423 5 Earthworm-eating birds Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0179 6.7 5		herbivorous mammal	Long-term	0.44	0.3	5
Strawberries BBCH ≥ 40 herbivorous mammal "Lagomorph" Long-term 0.09 1.4 5 Strawberries BBCH 10 -39 Small omnivorous mammal "Mouse" Long-term 0.12 1.0 5 Strawberries BBCH ≥ 40 Small omnivorous mammal "Mouse" Long-term 0.05 2.5 5 Higher tier (Mammals): Not available, risk mitigation measures recommended "Mouse" Time scale omnivorous mammal (mouse) TER Trigger Indicator or focal species Time scale omnivorous mammal (mouse) TER Trigger Eish-eating birds Long-term omnivorous mammals 17832 5 Fish-eating mammals Long-term omnivorous mammals 17832 5 Earthworm-eating birds Long-term omnivorous mammals 0.00003506 3423 5 Earthworm-eating mammals Long-term omnivorous mammals 0.0147 48 5 Earthworm-eating mammals Long-term omnivorous mammals 0.0147 6.7 5	Strawberries herbivorous BBCH 10 -39 mammal		Long-term	0.22	0.5	5
Strawberries BBCH 10 - 39 omnivorous mammal "Mouse" Long-term 0.12 1.0 5 Strawberries BBCH ≥ 40 Small omnivorous mammal "Mouse" Long-term 0.05 2.5 5 Higher tier (Mammals): Not available, risk mitigation measures recommended Risk from bioaccumulation and food chain behaviour[indicate when not relevant i.e if Log kow≤3] TER Trigger Indicator or focal species Time scale DDD (mg/kg bw per day) TER Trigger Fish-eating birds Long-term 0.00003925 17832 5 Fish-eating mammals Long-term 0.00003506 3423 5 Earthworm-eating birds Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0179 6.7 5		herbivorous mammal	Long-term	0.09	1.4	5
Strawberries BBCH ≥ 40omnivorous mammal "Mouse"Long-term 0.05 2.5 5 Higher tier (Mammals): Not available, risk mitigation measures recommendedRisk from bioaccumulation and food chain behaviour [indicate when not relevant i.e if $Log kow ≤ 3$]Indicator or focal speciesTime scaleDDD (mg/kg bw per day)TERTriggerAbamectinFish-eating birdsLong-term 0.00003925 17832 5 Fish-eating mammalsLong-term 0.00003506 3423 5 Earthworm-eating birdsLong-term 0.0147 48 5 Earthworm-eating mammalsLong-term 0.0179 6.7 5 Earthworm-eating mammalsLong-term 0.0179 6.7 5		omnivorous mammal	Long-term	0.12	1.0	5
Risk from bioaccumulation and food chain behaviour [indicate when not relevant i.e if Log kow≤3]Indicator or focal speciesTime scaleDDD (mg/kg bw per day)TERTriggerAbamectinFish-eating birdsLong-term 0.00003925 17832 5 Fish-eating mammalsLong-term 0.00003506 3423 5 Earthworm-eating birdsLong-term 0.0147 48 5 Earthworm-eating mammalsLong-term 0.0179 6.7 5 8-carboxy-6-hydroxy-avermectin B1a (M4)	BBCH ≥ 40	omnivorous mammal "Mouse"			2.5	5
Indicator or focal species Time scale Abamectin Fish-eating birds Long-term DDD (mg/kg bw per day) TER Trigger Abamectin 5 Long-term 0.00003925 Fish-eating mammals Long-term 0.00003506 3423 5 Earthworm-eating birds Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0179 6.7 5 8-carboxy-6-hydroxy-avermectin B1a (M4)						
Abamectin				DDD		ow≤3] Trigger
Fish-eating birds Long-term 0.00003925 17832 5 Fish-eating mammals Long-term 0.00003506 3423 5 Earthworm-eating birds Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0179 6.7 5 8-carboxy-6-hydroxy-avermectin B1a (M4) 0.0001234 5672			l Ahamed			
Earthworm-eating birds Long-term Long-term 0.0147 48 5 Earthworm-eating mammals Long-term 0.0179 6.7 5 8-carboxy-6-hydroxy-avermectin B1a (M4)	Fish-eating birds				17832	5
Earthworm-eating birds Long-term Earthworm-eating mammals Long-term 0.0179 6.7 5 8-carboxy-6-hydroxy-avermectin B1a (M4)	Fish-eating mammals		Long-term	0.00003506	3423	5
8-carboxy-6-hydroxy-avermectin B1a (M4)	Earthworm-eating birds		Long-term	0.0147	48	5
0.00001234 5672	Earthworm-eating n	nammals	Long-term	0.0179	6.7	5
Fish-eating birds Long-term 0.00001234 5672 5		8-cart	oxy-6-hydroxy-ave			1
Long-term	Fish-eating birds		Long-term	0.00001234	5672	5

	I	(mg/kg bw	DDD (mg/kg bw per day)		ER	Trigger
Fish-eating mammals		0.0000	0.00001102		089	5
ds	Long-term	0.00	14	;	50	5
nmals	Long-term	0.00	17	7	7.1	5
	4''-oxo-averi	nectin B1a				
	Long-term	0.0000	0010	708	8940	5
Fish-eating mammals		0.0000	0000009 136082		6082	5
rds	Long-term	4.7	8	0.	015	5
ammals	Long-term	5.8	5.82			5
able	1	- 1	<u>'</u>		<u> </u>	
tion of contamina	ted water					
Indicator or	focal species	Time scale	PECdwxD	WR	TER	Trigger
scenario Birds Not relevant						
_			ER calculat	tion no	ot needed	
1	rds ammals rds rds rds rds rds rds rds r	Long-term Long-term	Long-term 0.00	Long-term 0.0014	Comparison Com	Long-term 0.0014 50 Immals Long-term 0.0017 7.1 4"-oxo-avermectin B1a Long-term 0.00000010 708940 Long-term 0.00000009 136082 Immals Long-term 4.78 0.015 Immals Long-term 5.82 0.002 Immals Image: Imag

Bold values are below the respective trigger

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2))

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Laboratory tests		(
Fish				
Pimephales promelas	Abamectin (purity: 86.2%)	96-hour (flow-through)	LC ₅₀	14.7 μg a.s./L (mm)
Oncorhynchus mykiss	Abamectin (purity: 86.2%)	96-hour (flow- through, modified exposure)	LC ₅₀	7.0 µg a.s./L (mm)
Oncorhynchus mykiss	[8,9-Z]-avermectin B _{1a}	96-hour (flow-through)	LC ₅₀	5.4 μg/L (mm)
Oncorhynchus mykiss	8a-hydroxy- avermectin B _{1a}	96-hour (semi- static)	LC ₅₀	504 μg/L (mm)
Oncorhynchus mykiss	Abamectin 1.8% EC	96-hour (semi- static)	LC ₅₀	141 μg prep./L 2.5 μg a.s./L (mm)
Danio rerio	Abamectin	96-hour (semi- static)	LC_{50}	49 μg a.s./L (mm)
Geomean approach	Abamectin	-	LC_{50}	12.2 μg a.s./L
Oncorhynchus mykiss	Abamectin (purity: 91 %)	72 d (flow-through)	NOEC	0.52 μg a.s./L ^a
Aquatic invertebrates				
Daphnia magna	³ H-Avermectin B ₁	48-hour (static)	EC_{50}	0.37 μg a.s./L (mm)
Daphnia magna	³ H-Avermectin B ₁	48-hour (static; sediment spiked)	EC ₅₀	Water: 0.21 µg a.s./L (mm) Centrifuged water: 0.20 µg a.s./L (mm)

	<u> </u>	<u> </u>		Sadiment: 20 ug
				Sediment: 39 µg a.s./kg
Daphnia magna	Abamectin (purity: 88.5%)	48-hour (static)	EC ₅₀	0.56 μg a.s./L (mm)
Daphnia longispona	Abamectin (purity. 89.3%)	48-hour (static)	EC ₅₀	0.35 µg a.s./L (mm)
Daphnia pulex	Abamectin (purity: 89.3%)	48-hour (static)	EC ₅₀	0.096 μg a.s./L (mm)
Simocephalus sp.	Abamectin (purity: 89.3%)	48-hour (static)	EC ₅₀	0.30 μg a.s./L (mm)
Brachionus calciflorus	Abamectin (purity: 89.3%)	24-hour (static)	EC ₅₀	3778 µg a.s./L (mm)
Thamnocephalus platyururs	Abamectin (purity: 89.3%)	24-hour (static)	EC ₅₀	2.1 µg a.s./L (mm)
Chaoborus sp.	Abamectin (purity: 89.3%)	48-hour (static)	EC ₅₀	190 µg a.s./L (mm)
Gammarus sp.	Abamectin (purity: 89.3%)	48-hour (static)	EC ₅₀	7.7 µg a.s./L (mm)
Lymnaea stagnalis	Abamectin (purity: 89.3%)	48-hour (static)	EC ₅₀	50.7 μg a.s./L (mm)
Mysidopopsis bahia	³ H-Abamectin B1	96-hour (flow-through)	LC ₅₀	0.022 µg a.s./L (mm)
Mysidopopsis bahia	³ H-Abamectin B1	96-hour (flow-through)	LC ₅₀	0.020 µg a.s./L (mm)
Daphnia magna	8a-hydroxy- avermectin B _{1a} (purity: > 91.7%)	48-hour (static)	EC ₅₀	1.6 μg/L (mm)
Daphnia magna	[8,9-Z]- avermectin B _{1a} (purity: 98.8%)	48-hour (static)	EC ₅₀	0.082 µg/L (mm)
Daphnia magna	4"-oxo-avermectin B _{1a} (purity: 98%)	48-hour (static)	EC_{50}	0.28 µg/L (nom)
Daphnia magna	4,8a-dihydroxy- avermectin B _{1a} (purity: 99.7%)	48-hour (semi- static)	EC ₅₀	854 μg/L (nom)
Daphnia magna	4-Hydroxy-8a- oxo-avermectin B _{1a} (purity: 99.4%)	48-hour (semi- static)	EC ₅₀	302.7 μg/L (nom)
Daphnia magna	8a-oxo-avermectin B _{1a} (purity: 97.7%)	48-hour (semi- static)	EC_{50}	3.53 µg/L (mm)
Daphnia magna	Abamectin 1.8% EC	48-hour (semi- static)	EC ₅₀	33.9 μg/L 0.603 μg a.s./L (mm)
Eudiaptomus graciloides	Abamectin 1.8% EC	48-hour (static)	EC ₅₀	54.17 μg prep./L 1.08 μg a.s./L (nom)
Species sensitivity distribution (SSD)	Abamectin	-	HC ₅ (median)	0.018 µg a.s./L
Daphnia magna	Abamectin 1.8% EC	21-d (semi- static)	NOEC	0.37 μg prep./L 0.0067 μg a.s./L (mm)
Sediment-dwelling organisms	S	1		
Chironomus riparius	¹⁴ C-avermectin B _{1a}	28-d (static), sediment spiked	NOEC	3.3 µg a.s./kg dw (nom)
Chironomus riparius	4"-oxo-avermectin B ₁ a (purity: 97.4 %)	28-d (static), sediment spiked	NOEC	8.1 µg a.s./kg dwi

Algae				
Pseudokirchneriella subcapitata	avermectin B _{1a}		$\begin{array}{c} E_bC_{50} \\ E_rC_{50} \end{array}$	> 9 mg/L > 9 mg/L (mm)
Pseudokirchneriella subcapitata	8a-hydroxy- avermectin B _{1a} (purity: 91.7%)	72-h (static)	$\begin{array}{c} E_bC_{50} \\ E_rC_{50} \end{array}$	> 6.1 mg/L > 6.1 mg/L (mm)
Desmodesmus subspicatus	4,8a-dihydroxy- avermectin B _{1a} (purity: > 97.7%)	72-h (static)	$\begin{array}{c} E_rC_{50} \\ E_yC_{50} \end{array}$	34.1 mg/L 36.7 mg/L (mm)
Desmodesmus subspicatus	8a-oxo-avermectin B _{1a}	72-h (static)	$\begin{array}{c} E_rC_{50} \\ E_yC_{50} \end{array}$	> 100 mg/L > 100 mg/L (nom)
Desmodesmus subspicatus	4-Hydroxy-8a- oxo-avermectin B _{1a} (purity: > 94.4%)	72-h (static)	$\begin{array}{c} E_rC_{50} \\ E_yC_{50} \end{array}$	43.5 mg/L 16.5 mg/L (mm)
			E_bC_{50}	25.9 mg/L
Desmodesmus subspicatus	Abamectin 1.8%	72-h (static)	E_yC_{50}	0.518 mg a.s./L 31.7 mg/L 0.632 mg a.s./L
	EC	, ,	$\mathrm{E_{r}C_{50}}$	50.8 mg/L 1.012 mg a.s./L
				(mm)

Further testing on aquatic organisms

Tier 2 assessment addressing the acute risk to fish considering a geomean approach based on three different fish species (*Oncorhynchus mykiss*, *Pimephales promelas*, *Danio rerio*). The 96 h LC₅₀ vlaues were 2.5 μ g a.s./L (*O. mykiss*), 14.7 (*P. promelas*) and 49 μ g a.s./L (*D. rerio*) resulting in a geometric mean of 12.17 μ g a.s./L. Applying an AF of 100 results in a tier 2A geomean RAC_{sw,ac} of 0.122 μ g a.s./L.

Tier 2 assessment addressing the acute risk to aquatic invertebrates considering a species sensitivity distribution (SSD) based on 8 different crustacean species (Americamysis bahia, Daphnia longispina, Daphnia magna, Daphnia pulex, Eudiaptomus graciloides, Gammarus sp., Simocephalus sp., Thamnocephalus platyurus). The EC_{50} values were in the range of 0.02 µg a.s./L (A. bahia) and 2.10 µg a.s./L (T. platyurus). The median HC_5 was determined to be 0.018 µg a.s./L (LL $HC_5 = 0.0012$ µg a.s./L, UL $HC_5 = 0.0075$ mg a.s./L). An AF of 6 is agreed resulting in a tier 2B SSD-RAC_{sw,ac} of 0.003 µg a.s./L.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

Abamectin was not indicated to be an endocrine disruptor following an assessment according to the GD on endocrine disruptors (ECHA and EFSA, 2018)

mm Mean measured concentrations

nom Nominal concentrations

im Initial measured concentrations

- Temperature (validity criteria) was slightly outside the recommended range and further raw data for length and weight were not included in the study report. However, due to only a slight deviation of the temperature and the fact that aquatic invertebrates are the most sensitive species the study is considered acceptable for the risk assessment without repetition of a vertebrate study.
- b Only supplementary information

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Active substance*	Metabolite 4-oxo-avermectin B _{1a}
Log K _{OW}	4.4	6.80 (measured)
Steady-state bioconcentration factor (BCF)	69 (total ³ H in whole fish)	-
Uptake/depuration kinetics BCF	52	-

Annex VI Trigger for the bioconcentration factor	100	-						
Clearance time (days) (CT ₅₀)	Not determined	-						
(CT ₉₀)	Not determined	-						
Level and nature of residues (%) in organisms after the 14 day depuration phase	0.32 µg/kg wwt, 95 % (total ³ H in whole fish)	-						
Higher tier study								
Not required								

^{*} BCF study not full in line with the guideline. Lipid content of the fish were not measurend as well as fish length and weight were not provided in the study.

Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2) Abamectin

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March – May

Scenario	PEC global max (µg L)	Fish acute (Tier 1)	Fish acute (Geomean)		Aquatic invertebrates (Tier 1)	Aquatic invertebrates (SSD)	Aquatic invertebrates prolonged	Algae	Higher plant	PEC _{sed} (µg/kg)	Sed. dweller prolonged	Microcosm / Mesocosm
Species		Oncorhynchus mykiss	Fish Geomean	Oncorhynchus mykiss	Americamysis bahia	Crustacean SSD	Daphnia magna	Desmodesdmus subspicatus	-		Chironomus riparius	-
Toxicity		LC ₅₀ = 2.5 μg/L	$LC_{50} = 12.2$	NOEC = 0.52 μg/L	$EC_{50} = 0.02$ $\mu g/L$	$HC_5 = 0.018$ $\mu g/L$	NOEC = 0.0067 μg/L	$E_r C_{50} = 1012$ $\mu g/L$	-		NOEC = 3.3 μg/kg	-
Trigger**		100	100	10	100	6	10	10	-		10	-
RAC [µg/L]		0.025	0.122	0.052	0.0002	0.003	0.00067	101.2	-		0.33	-
FOCUS Step 1												
	2.34	93.60	19.18	45	11700	780	3493	0.023		122.89	372.39	-
FOCUS Step 2												
North Europe	0.32	12.80	2.62	6.15	1600	106.67	477.61	0.0032		20.21	61.24	-
South Europe	0.6	24	4.92	11.54	3000	200	895.52	0.0059		38.37	116.27	-
FOCUS Step 3* (walk-in-												
tunnel)												
D6 / ditch	0.1125	4.5	0.92	2.16	562.5	37.5	167.9			0.0471	0.14	-
Step 3* (Greenhouse)												
	0.001342	0.0537	0.011	0.026	6.71	0.447	2.0					-

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March – May

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Organisms O. mykiss

RACchronic: 0.52 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.0131	0.025
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March – May

Organisms Crustacean SSD

SSD-RAC_{acute}: 0.003 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-intunnel)				
D6 / ditch	10 m 20 m	-	0.0131 0.0067	4.4 2.2
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March – May

Organisms D. magna

RAC_{chronic}: $0.00067 \mu g/L$

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-tunnel)				
D6 / ditch	10 m 20 m	-	0.0131 0.0067	19.6 10.0

Trigger 1

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June – September

Scenario	PEC global max (µg L)	Fish acute (Tier 1)	Fish acute (Geomean)	Fish chronic	Aquatic invertebrates (Tier 1)	Aquatic invertebrates (SSD)	Aquatic invertebrates prolonged	Algae	Higher plant	PEC _{sed} (µg/kg)	Sed. dweller prolonged	Microcosm / Mesocosm
Species	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Oncorhynchus mykiss	Fish Geomean	Oncorhynchus mykiss	Americamysis bahia	Crustacean SSD	Daphnia magna	Desmodesdmus subspicatus	-		Chironomus riparius	-
Toxicity		LC ₅₀ = 2.5 μg/L	$LC_{50} = 12.2$	NOEC = 0.52 μg/L	$EC_{50} = 0.02$ $\mu g/L$	$HC_5 = 0.018$ $\mu g/L$	NOEC = 0.0067 μg/L	$E_r C_{50} = 1012$ $\mu g/L$	-		NOEC = 3.3 μg/kg	-
Trigger**		100	100	10	100	6	10	10	-		10	-
RAC [µg/L]		0.025	0.122	0.052	0.0002	0.003	0.00067	101.2	-		0.33	-
FOCUS Step 1												
	2.34	93.6	19.18	45.00	11700	780	3493	0.023		122.89	372.39	-
FOCUS Step 2												
North Europe	0.32	12.8	2.62	6.15	1600	106.67	477.61	0.0032		20.21	61.24	_
South Europe	0.46	18.4	3.77	8.85	2300	153.33	686.57	0.0045		29.29	88.76	-
FOCUS Step 3* (walk-in-												
tunnel) D6 / ditch	0.1125	4.5	0.92	2.16	562.5	37.50	167.9			0.0465	0.14	-
Step 3* (Greenhouse)												
	0.001342	0.054	0.011	0.0258	6.71	0.45	2.00					_

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June – September

Organisms O. mykiss

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

RACchronic: 0.52 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.0133	0.026
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June – September

Organisms Crustacean SSD

SSD-RAC_{acute}: 0.003 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-tunnel)				
D6 / ditch	10 m 20 m	- -	0.0133 0.0068	4.4 2.3
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June – September

Organisms D. magna

 $\textbf{RAC}_{\textbf{chronic}}\textbf{:}~0.00067~\mu\text{g/L}$

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-tunnel)				
D6 / ditch	10 m 20 m	-	0.0133 0.0068	19.9 10.1
Trigger				1

FOCUS_{sw} step 1, 2 & 3 - PEC_{sw}/RAC for Abamectin – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March – May

Scenario	PEC global max (µg L)		Fish acute (Geomean)		Aquatic invertebrates (Tier 1)	Aquatic invertebrates (SSD)	Aquatic invertebrates prolonged	Algae	Higher plant	PEC _{sed} (µg/kg)	Sed. dweller prolonged	Microcosm / Mesocosm
Species		Oncorhynchus mykiss	Fish Geomean	Oncorhynchus mykiss	Americamysis bahia	Crustacean SSD	Daphnia magna	Desmodesdmus subspicatus	-		Chironomus riparius	-
Toxicity		$LC_{50} = 2.5$ $\mu g/L$	$LC_{50} = 12.2$	NOEC = 0.52 $\mu g/L$	$EC_{50} = 0.02$ $\mu g/L$	$HC_5 = 0.018$ $\mu g/L$	NOEC = 0.0067 μg/L	$E_rC_{50} = 1012$ $\mu g/L$	-		NOEC = $3.3 \mu g/kg$	-
Trigger**		100	100	10	100	6	10	10	-		10	-
RAC [µg/L]		0.025	0.122	0.052	0.0002	0.003	0.00067	101.2	-		0.33	-
FOCUS Step 1	1.56	62.4	12.79	30	7800	520	2328	0.015		81.92	248.24	_
FOCUS Step 2	1.50	02.4	12.77	30	7000	320	2320	0.013		01.72	240.24	
North Europe	0.24	9.6	1.97	4.62	1200	80	358	0.0024		14.94	45.27	
South Europe	0.44	17.6	3.61	8.46	2200	147	657	0.0043		28.15	85.3	-
FOCUS Step 3* (walk-in-tunnel) D6 / ditch	0.1125	4.5	0.92	2.16	562.5	37.5	167.9			0.039	0.12	-
Step 3* (Greenhouse)	0.000998	0.040	0.0082	0.019	4.99	0.33	1.5					

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March – May

Organisms O. mykiss

 $\textbf{RAC}_{\textbf{chronic:}}~0.52~\mu\text{g/L}$

Mitigation options	x m non-spray buffer zone	x m vegetated buffer strip	PECsw	PEC/RAC ratio
Wingation options	(corresponding to ≤ 95 % drift reduction)	(corresponding to $\leq 90 \%$ run-off reduction)	(µg/L)	TEC/KAC Tauo

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.0146	0.028
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March - May

Organisms Crustacean SSD

SSD-RAC_{acute}: 0.003 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-tunnel)				
D6 / ditch	10 m 20 m	- -	0.0146 0.0074	4.9 2.5
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March – May

Organisms D. magna

RAC_{chronic}: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-tunnel)				
D6 / ditch	10 m	-	0.0146	21.8
Do / uten	20 m		0.0074	11.0
Trigger				1

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for Abamectin – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June – September

Scenario	PEC global max (µg L)	Fish acute (Tier 1)	Fish acute (Geomean)	Fish chronic	Aquatic invertebrates (Tier 1)	Aquatic invertebrates (SSD)	Aquatic invertebrates prolonged	Algae	Higher plant	PEC _{sed} (µg/kg)	Sed. dweller prolonged	Microcosm / Mesocosm
Species	, 0	Oncorhynchus mykiss	Fish Geomean	Oncorhynchus mykiss	Americamysis bahia	Crustacean SSD	Daphnia magna	Desmodesdmus subspicatus	-		Chironomus riparius	-
Toxicity		$LC_{50} = 2.5$ $\mu g/L$	$LC_{50} = 12.2$	$NOEC = 0.52$ $\mu g/L$	$EC_{50} = 0.02$ $\mu g/L$	$HC_5 = 0.018$ $\mu g/L$	NOEC = 0.0067 μg/L	$E_r C_{50} = 1012$ $\mu g/L$	-		NOEC = $3.3 \mu\text{g/kg}$	-
Trigger**		100	100	10	100	6	10	10	-		10	-
RAC [µg/L]		0.025	0.122	0.052	0.0002	0.003	0.00067	101.2	-		0.33	-
FOCUS Step 1												
	1.56	62.4	12.79	30	7800	520	2328	0.015		81.92	248.24	-
FOCUS Step 2												
North Europe	0.24	9.6	1.97	4.62	1200	80	358.21	0.0024		14.94	45.27	-
South Europe	0.34	13.6	2.79	6.54	1700	113.33	507.46	0.0034		21.54	65.27	-
FOCUS Step 3* (walk-in-tunnel)												
D6 / ditch	0.1125	4.5	0.92	2	563	38	168			0.0475	0.14	-
Step 3* (Greenhouse)												
•	0.000998	0.0399	0.0082	0.0192	4.99	0.333	1.49					_

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June – September

Organisms O. mykiss

RACchronic: 0.52 µg/L

Mitigation antions	x m non-spray buffer zone	x m vegetated buffer strip	PECsw	PEC/RAC ratio
Mitigation options	(corresponding to ≤ 95 % drift reduction)	(corresponding to ≤ 90 % run-off reduction)	(μg/L)	PEC/RAC ratio

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.0151	0.029
Trigger				1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Organisms Crustacean SSD

SSD-RAC_{acute}: 0.003 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.0151	5.0
D6 / ditch	20 m	-	0.0077	2.6
Trigger			•	1

FOCUS_{sw} step 4 - PEC/RAC ratios for Abamectin - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Organisms D. magna

RAC_{chronic}: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-intunnel)				
D6 / ditch	10 m 20 m	-	0.0151 0.0077	22.5 11.5
Trigger				1

8a-oxo-avermectin B_{1a}

 $FOCUS_{sw}\ step\ 1,\ 2\ \&\ 3\ -\ PEC_{SW}/RAC\ for\ 8a-oxo-avermectin\ B_{1a}-Tomato\ at\ 0.018\ kg\ a.s./ha\ [3\ applications;\ interval\ 7\ days]-,\ March-May$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 3.53 \mu g/L$	NOEC = 0.0067 μg/L	$E_rC_{50} = 1000000$ μ g/L		NOEC = 3.3 μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0353	0.00067	10000		0.33
FOCUS Step 1								
	1.05	42	20.19	29.75	1567.16	0.00011	38.25	115.91
FOCUS Step 2								
North Europe	0.17	6.80	3.27	4.82	253.73	0.000017	6.48	19.64
South Europe	0.33	13.20	6.35	9.35	492.54	0.000033	12.64	38.30
FOCUS Step 3* (walk-in-tunnel)	0.00000	0.0026	0.0017	0.0025	0.124.0		0.01104	0.026
D6 / ditch	0.00009	0.0036	0.0017	0.0025	0.134 0		0.01184	0.036
Step 3*								
(Greenhouse)								
	0.000072	0.0029	0.00138	0.00204	0.107			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 8a-oxo-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June - September

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Ta: ::4					NOEC = 0.0067	$E_rC_{50} = 100000$		
Toxicity		$LC_{50} = 2.5 \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 3.53 \mu g/L$	μg/L	μg/L		$NOEC = 3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0353	0.00067	10000		0.33
FOCUS Step 1								
	1.05	42	20.19	29.75	1567.16	0.00011	38.25	115.91

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS Step 2								
North Europe	0.17	6.8	3.27	4.82	253.73	0.000017	6.48	19.64
South Europe	0.25	10	4.81	7.08	373.13	0.000025	9.56	28.97
FOCUS Step 3*								
(walk-in-tunnel)								
D6 / ditch open	0.00015	0.0060	0.0029	0.0042	0.224		0.01608	0.049
Step 3*								
(Greenhouse)								
	0.000072	0.00288	0.00138	0.00204	0.1075			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 8a-oxo-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 3.53 \mu g/L$	NOEC = 0.0067 μg/L	$E_r C_{50} = 100000$ $\mu g/L$		NOEC = 3.3 μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0353	0.00067	10000		0.33
FOCUS Step 1								
	0.7	28.0	13.46	19.83	1044.78	0.00007	25.5	77.27
FOCUS Step 2								
North Europe	0.12	4.8	2.31	3.4	179.10	0.000012	4.64	14.06
South Europe	0.23	9.2	4.42	6.52	343.28	0.000023	9.02	27.33
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch	0.000047	0.0019	0.0009	0.0013	0.070		0.008116	0.025
Step 3* (Greenhouse)								
(Greenhouse)	0.000042	0.00168	0.00081	0.00119	0.0627			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 8a-oxo-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 3.53 \mu g/L$	NOEC = 0.0067 μg/L	$E_r C_{50} = 100000$ $\mu g/L$		NOEC = 3.3 μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0353	0.00067	10000		0.33
FOCUS Step 1								
	0.7	28	13.46	19.83	1044.78	28	25.5	77.27
FOCUS Step 2								
North Europe	0.12	4.8	2.31	3.4	179.10	0.00001	4.64	14.06
South Europe	0.18	7.2	3.46	5.1	269	0.00002	6.83	20.7
FOCUS Step 3* (walk-in-tunnel)	0.000075	0.0020	0.0014	0.0021	0.112		0.01204	0.040
D6 / ditch	0.000075	0.0030	0.0014	0.0021	0.112		0.01304	0.040
Step 3* (Greenhouse)								
	0.000042	0.00168	0.00081	0.00119	0.0627			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

8a-hydroxy-avermectin B_{1a}

 $FOCUS_{sw}\ step\ 1,\ 2\ \&\ 3\ -\ PEC_{SW}/RAC\ for\ 8a-hydroxy-avermectin\ B_{1a}-Tomato\ at\ 0.018\ kg\ a.s./ha\ [3\ applications;\ interval\ 7\ days]-,\ March-May$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Raphidocelis subcapitata		Chironomus riparius

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

TT					NOEC = 0.0067			
Toxicity		$LC_{50} = 504 \ \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 1.6 \mu g/L$	μg/L	$E_r C_{50} = 6100 \ \mu g/L$		$NOEC = 3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		5.04	0.052	0.016	0.00067	610		0.33
FOCUS Step 1								
	1.74	0.35	33.46	108.75	2597.01	0.0029	29.93	90.7
FOCUS Step 2								
North Europe	0.28	0.06	5.38	17.50	417.91	0.00046	4.81	14.58
South Europe	0.54	0.11	10.38	33.75	805.97	0.00089	9.49	28.76
FOCUS Step 3*								
(walk-in-tunnel)								
D6 / ditch	0.000496		0.010	0.031	0.74		0.000733	0.0022
Step 3*								
(Greenhouse)								
	0.000396		0.0076	0.025	0.59			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

 $FOCUS_{sw}\ step\ 1,\ 2\ \&\ 3\ -\ PEC_{SW}/RAC\ for\ 8a-hydroxy-avermectin\ B_{1a}-Tomato\ at\ 0.018\ kg\ a.s./ha\ [3\ applications;\ interval\ 7\ days]-,\ June-September\ substantial$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Raphidocelis subcapitata		Chironomus riparius
Toxicity		$LC_{50} = 504 \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 1.6 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 6100 \mu g/L$		NOEC = $3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		5.04	0.052	0.016	0.00067	610		0.33
FOCUS Step 1								
	1.74	0.35	33.46	108.75	2597.01	0.0029	29.93	90.7
FOCUS Step 2								
North Europe	0.28	0.056	5.38	17.50	417.91	0.00046	4.81	14.6
South Europe	0.41	0.081	7.88	25.63	611.94	0.00067	7.15	21.7

FOCUS Step 3*

(walk-in-tunnel)

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

D6 / ditch	0.002041	0.04	0.13	3.05	0.000987	0.0030
Step 3*						<u> </u>
(Greenhouse)						
	0.000296	0.01	0.02	0.59		

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC_{SW}/RAC for 8a-hydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June - September

Organisms D. magna

RAC_{chronic}: 0.00067 μg/L

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.000019	0.028
Trigger				1

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 8a-hydroxy-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Raphidocelis subcapitata		Chironomus riparius
Tonisian					NOEC = 0.0067			_
Toxicity		$LC_{50} = 504 \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 1.6 \mu g/L$	μg/L	$E_r C_{50} = 6100 \mu g/L$		$NOEC = 3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		5.04	0.052	0.016	0.00067	610		0.33
FOCUS Step 1								
	1.16	0.23	22.31	72.50	1731.34	0.0019	19.96	60.5
FOCUS Step 2								
North Europe	0.2	0.040	3.85	12.50	298.51	0.00033	3.48	10.5
South Europe	0.39	0.077	7.50	24.38	582.09	0.00064	6.84	20.7

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS Step 3*						
(walk-in-tunnel)						
D6 / ditch open	0.000262	0.0050	0.016	0.39	0.0005	0.0015
Step 3*						_
(Greenhouse)						
	0.000228	0.0044	0.0143	0.340		

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$FOCUS_{sw}$ step 1, 2 & 3 - PEC_{SW}/RAC for 8a-hydroxy-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Raphidocelis subcapitata		Chironomus riparius
Toxicity		$LC_{50} = 504 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 1.6 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 6100 \ \mu g/L$		NOEC = 3.3 μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		5.04	0.052	0.016	0.00067	610		0.33
FOCUS Step 1								
-	1.16	0.23	22.31	72.50	1731.34	0.0019	19.96	60.5
FOCUS Step 2								
North Europe	0.2	0.040	3.85	12.50	298.51	0.00033	3.48	10.5
South Europe	0.29	0.058	5.58	18.13	432.84	0.00048	5.16	15.6
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch	0.001364		0.026	0.085	2.04		0.000808	0.0024
Step 3* (Greenhouse)								
<u> </u>	0.000228		0.00438	0.0143	0.340			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

$FOCUS_{sw}\ step\ 4-PEC_{SW}/RAC\ for\ 8a-hydroxy-avermectin\ B_{1a}-Strawberry\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]-,\ June-September\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]-$

Organisms D. magna

RAC_{chronic}: 0.00067 μg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.000016	0.024
Trigger				1

4"-oxo-avermectin B_{1a}

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 4"-oxo-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		LC ₅₀ = 2.5 μg/L	NOEC = $0.52 \mu g/L$	$EC_{50} = 0.28 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 1012 \mu g/L$		NOEC = $3.3 \mu\text{g/kg}$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0028	0.00067	101.2		0.33
FOCUS Step 1								
	1.54	62	29.62	550	2298.51	0.015	21.19	64.21
FOCUS Step 2								_
North Europe	0.23	9.2	4.42	82.14	343.28	0.0023	3.24	9.82
South Europe	0.45	18	8.65	160.71	671.64	0.0044	6.33	19.18
FOCUS Step 3*								
(walk-in-tunnel)								
D6 / ditch	0.000112	0.004	0.0022	0.04	0.17		0.002021	0.0061
Step 3*								

(Greenhouse)

0.000344	0.0138	0.0066	0.123	0.51
----------	--------	--------	-------	------

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 4"-oxo-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June - September

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 0.28 \mu\text{g/L}$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 1012 \ \mu g/L$		NOEC = $3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0028	0.00067	101.2		0.33
FOCUS Step 1								
	1.54	62	29.62	550	2298.51	0.015	21.19	64.21
FOCUS Step 2								
North Europe	0.23	9.20	4.42	82.14	343.28	0.0023	3.24	9.82
South Europe	0.34	13.60	6.54	121.43	507.46	0.0034	4.79	14.52
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch	0.000824	0.033	0.016	0.29	1.23		0.002701	0.0082
Step 3*								
(Greenhouse)								
	0.000344	0.0138	0.0066	0.123	0.513			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$\underline{FOCUS_{sw} \ step \ 4-PECSW/RAC \ for \ 4"-oxo-avermectin \ B1a-Tomato \ at \ 0.018 \ kg \ a.s./ha \ [3 \ applications; interval \ 7 \ days]-, \ June-September}$

Organisms D .	magna
-----------------	-------

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	0.000075	0.112
Trigger				1

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 4"-oxo-avermectin B_{1a} - Strawberryat 0.018 kg a.s./ha [2 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 0.28 \mu\text{g/L}$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 1012 \ \mu g/L$		NOEC = $3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0028	0.00067	101.2		0.33
FOCUS Step 1								
	1.03	41	19.81	368	1537.31	0.0102	14.13	42.82
FOCUS Step 2								_
North Europe	0.17	6.8	3.27	60.71	253.73	0.0017	2.4	7.27
South Europe	0.33	13.2	6.35	117.86	492.54	0.0033	4.66	14.12
FOCUS Step 3* (walk-in-tunnel)	0.000057	0.0022	0.0011	0.020	0.005		0.001279	0.0042
D6 / ditch	0.000057	0.0023	0.0011	0.020	0.085		0.001378	0.0042
Step 3* (Greenhouse)								
	0.0002	0.0080	0.0038	0.071	0.299			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS_{sw} step 1, 2 & 3 - PEC_{sw}/RAC for 4"-oxo-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 0.28 \mu\text{g/L}$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 1012 \ \mu g/L$		NOEC = 3.3 μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0028	0.00067	101.2		0.33
FOCUS Step 1								
	1.03	41	19.81	368	1537.31	0.0102	14.13	42.82
FOCUS Step 2								
North Europe	0.17	6.8	3.27	60.71	253.73	0.0017	2.4	7.27
South Europe	0.25	10.0	4.81	89.29	373.13	0.0025	3.53	10.70
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch	0.000586	0.023	0.011	0.21	0.87		0.002217	0.0067
Step 3* (Greenhouse)								
	0.0002	0.0080	0.0038	0.071	0.299			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

4,8-dihydroxy-avermectin B_{1a}

FOCUS_{sw} step 1, 2 & 3 - PEC_{Sw}/RAC for 4,8-dihydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

TD					NOEC = 0.0067	$E_rC_{50} = 34100$		
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu\text{g/L}$	$EC_{50} = 854 \mu g/L$	μg/L	μg/L		$NOEC = 3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	3410		0.33
FOCUS Step 1								
	0.58	23.2	11.15	0.068	865.67	0.00017	9.51	28.82
FOCUS Step 2								
North Europe	0.1	4	1.92	0.012	149.25	0.000029	1.65	5
South Europe	0.2	8	3.85	0.023	298.51	0.000059	3.29	9.97
FOCUS Step 3*								
(walk-in-tunnel)								
D6 / ditch open	0.004402	0.18	0.085	0.00052	6.57		0.001878	0.0057
Step 3*								
(Greenhouse)								
	0.000402	0.0161	0.0077	0.000047	0.60			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PECSW/RAC for 4,8-dihydroxy-avermectin B1a - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Organisms D. magna

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 4,8-dihydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June - September

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 854 \mu g/L$	NOEC = $\frac{0.018}{0.0067}$ µg/L	$E_rC_{50} = 34100$ $\mu g/L$		NOEC = 3.3 μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	3410		0.33
FOCUS Step 1								
	0.58	23.2	11.15	0.068	865.67	0.00017	9.51	28.82
FOCUS Step 2								
North Europe	0.1	4	1.92	0.012	149.25	0.000029	1.65	5
South Europe	0.15	6	2.88	0.018	223.88	0.000044	2.47	7.48
FOCUS Step 3* (walk-in-tunnel)	0.01001	0.42	0.21	0.0012	16 12		0.00244	0.010
D6 / ditch	0.01081	0.43	0.21	0.0013	16.13		0.00344	0.010
Step 3* (Greenhouse)								
	0.000402	0.0161	0.0077	0.0000471	0.6			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$FOCUS_{sw}\ step\ 4-PECSW/RAC\ for\ 4,8-dihydroxy-avermectin\ B1a-Tomato\ at\ 0.018\ kg\ a.s./ha\ [3\ applications;\ interval\ 7\ days]-,\ June-September\ and\ Assign and\ Assign and\ Assign and\ Assign and\ Assign\ and\ Assign\ and\ Assign\ and\ Assign\ and\ anti-applications;\ interval\ 7\ days]-,\ June-September\ and\ Assign\ and\ anti-applications;\ interval\ 7\ days]-,\ Assign\ and\ anti-applications;\ and\ anti-applications;\ and\ anti-applications;\ ant$

Organisms D. magna

RAC_{chronic}: 0.00067 μg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

$FOCUS_{sw}$ step 1, 2 & 3 - PEC_{SW}/RAC for 4,8-dihydroxy-avermectin B_{1a} – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March – May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 854 \mu g/L$	NOEC = 0.0067 μg/L	$E_rC_{50} = 34100$ $\mu g/L$		NOEC = $3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	3410		0.33
FOCUS Step 1								
	0.39	15.6	7.5	0.046	582.09	0.00011	6.34	19.21
FOCUS Step 2								
North Europe	0.07	2.8	1.35	0.008	104.48	0.000021	1.15	3.48
South Europe	0.14	5.6	2.69	0.016	208.96	0.000041	2.3	6.97
FOCUS Step 3* (walk-in-tunnel)	0.00275				0		0.00400-	
D6 / ditch	0.00253	0.1012	0.049		3.78		0.001033	0.0031
Step 3* (Greenhouse)								
	0.00024	0.0096	0.0046		0.358			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC_{SW}/RAC for 4,8-dihydroxy-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March - May

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw}$ step 1, 2 & 3 - PEC_{SW}/RAC for 4,8-dihydroxy-avermectin B_{1a} – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June – September

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 854 \mu\text{g/L}$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 34100$ $\mu g/L$		NOEC = $3.3 \mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	3410		0.33
FOCUS Step 1								
	0.39	15.6	7.5	0.046	582.09	0.00011	6.34	19.21
FOCUS Step 2								
North Europe	0.07	2.8	1.35	0.0082	104.48	0.000021	1.15	3.48
South Europe	0.1	4	1.92	0.012	149.25	0.000029	1.72	5.21
FOCUS Step 3* (walk-in-tunnel)							0.00-1.10	
D6 / ditch	0.007208	0.29	0.14		11		0.002148	0.0065
Step 3*								
(Greenhouse)								
	0.00024	0.0096	0.00462		0.358			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$FOCUS_{sw}$ step 4 - PEC_{SW}/RAC for 4,8-dihydroxy-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Organisms D. magn

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

4-hydroxy-8a-oxo-avermectin B_{1a}

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 4-hydroxy-8a-oxo-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 854 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_rC_{50} = 43500$ $\mu g/L$		$NOEC = 0.33$ $\mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	4350		0.033
FOCUS Step 1								
	0.31	12.4	5.96	0.036	462.69	0.000071	11.48	34.78
FOCUS Step 2								
North Europe	0.06	2.4	1.15	0.007	89.55	0.000014	2.11	63.9
South Europe	0.11	4.4	2.12	0.013	164.18	0.000025	4.21	140.33
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch open	0.001696	0.068	0.033		2.53		0.001484	0.045
Step 3* (Greenhouse)								
	0.000254	0.0102	0.0049		0.379			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

FOCUS_{sw} step 4 - PECSW/RAC for 4-hydroxy-8a-oxo-avermectin B1a - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Organisms D. magna

RAC_{chronic}: $0.00067 \mu g/L$

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw} \ step \ 1, \ 2 \ \& \ 3 \ - PEC_{SW}/RAC \ for \ 4-hydroxy-8a-oxo-avermectin \ B_{1a}-Tomato \ at \ 0.018 \ kg \ a.s./ha \ [3 \ applications; interval \ 7 \ days]-, \ June-September$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 854 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 43500$ $\mu g/L$		$NOEC = 0.33$ $\mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	4350		0.033
FOCUS Step 1								
	0.31	12.4	5.96	0.036	462.69	0.000071	11.48	34.78
FOCUS Step 2								
North Europe	0.06	2.4	1.15	0.0070	89.55	0.000014	2.11	63.9
South Europe	0.09	3.6	1.73	0.011	134.33	0.000021	3.16	95.75
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch	0.00699	0.28	0.13		10.43		0.001668	0.050
Step 3* (Greenhouse)								
	0.000254	0.0102	0.0049		0.379			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$FOCUS_{sw}\ step\ 4-PECSW/RAC\ for\ 4-hydroxy-8a-oxo-avermectin\ B1a-Tomato\ at\ 0.018\ kg\ a.s./ha\ [3\ applications;\ interval\ 7\ days]-,\ June-September$

Organisms D. magna

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw}$ step 1, 2 & 3 - PEC_{SW}/RAC for 4-hydroxy-8a-oxo-avermectin B_{1a} – Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March – May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Tariait.					NOEC = 0.0067	$E_rC_{50} = 43500$		NOEC = 0.33
Toxicity		$LC_{50} = 2.5 \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 854 \mu g/L$	μg/L	μg/L		μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	4350		0.033
FOCUS Step 1								
	0.21	8.4	4	0.025	313.	0.000048	7.66	232.12
FOCUS Step 2								
North Europe	0.04	1.60	0.77	0.0047	59.70	0.0000092	1.44	43.63
South Europe	0.08	3.20	1.54	0.0094	119.40	0.000018	2.89	87.57
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch open	0.003423	0.14	0.066		5.1		0.000876	0.0265

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Step 3*					
(Greenhouse)					
	0.000154	0.0062	0.0030	0230	

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC_{Sw}/RAC for 4-hydroxy-8a-oxo-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, March - May

Organisms D. magna

RAC_{chronic}: 0.00067 μg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw} \ step \ 1, 2 \ \& \ 3 - PEC_{SW}/RAC \ for \ 4-hydroxy-8a-oxo-avermectin \ B_{1a}-Strawberry \ at \ 0.018 \ kg \ a.s./ha \ [2 \ applications; interval \ 7 \ days]-, \ June-September$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		LC ₅₀ = 2.5 μg/L	NOEC = $0.52 \mu g/L$	$EC_{50} = 854 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_rC_{50} = 43500$ $\mu g/L$		$NOEC = 0.33$ $\mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	8.54	0.00067	4350		0.033
FOCUS Step 1								
	0.21	8.4	4	0.025	313.43	0.000048	7.66	232.12
FOCUS Step 2								
North Europe	0.04	1.6	0.77	0.0047	59.70	0.0000092	1.44	43.63

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

South Europe	0.06	2.4	1.15	0.0070	89.55	0.000014	2.16	65.45
FOCUS Step 3*								
(walk-in-tunnel)								
D6 / ditch	0.004327	0.17	0.083		6.5		0.000998	0.030
Step 3*								
(Greenhouse)								
	0.000154	0.0062	0.0030		0.230			

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$FOCUS_{sw}$ step 4 - PEC_{SW}/RAC for 4-hydroxy-8a-oxo-avermectin B_{1a} - Strawberry at 0.018 kg a.s./ha [2 applications; interval 7 days]-, June - September

Organisms D. magna

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

8-carboxy-6-hydroxy-avermectin B_{1a}

FOCUS_{sw} step 1, 2 & 3 - PEC_{SW}/RAC for 8-carboxy-6-hydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Toxicity					NOEC = 0.0067			NOEC = 0.33
Toxicity		$LC_{50} = 2.5 \ \mu g/L$	NOEC = $0.52 \mu\text{g/L}$	$EC_{50} = 0.02 \mu g/L$	μg/L	$E_r C_{50} = 1012 \mu g/L$		μg/kg
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0002	0.00067	101.2		0.033
FOCUS Step 1								
	0.69	28	13.27	3450	1029.85	0.0068	7.43	225.15
FOCUS Step 2								
North Europe	0.09	3.6	1.73	450	134.33	0.00089	1.01	30.60
South Europe	0.19	8	3.65	950	283.58	0.0019	2.02	61.21
FOCUS Step 3*								
(walk-in-tunnel)								
D6 / ditch	0.002911	0.116	0.0560	14.56	4.34	0.002911	0.001826	0.055
Step 3*								
(Greenhouse)								
	0.00217	0.0868	0.0417	10.85	3.24	0.00217		

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC_{Sw}/RAC for 8-carboxy-6-hydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Organisms A. bahia

RACchronic: 0.0002 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	<u>-</u>	< 0.000001	< 0.005
Trigger				1

FOCUS_{sw} step 4 - PEC_{SW}/RAC for 8-carboxy-6-hydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, March - May

Organisms D. magna

RACchronic: 0.00067 µg/L

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw}$ step 1, 2 & 3 - PEC_{SW}/RAC for 8-carboxy-6-hydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June - September

Scenario	PEC global max (μg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 0.02 \mu\text{g/L}$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 1012 \ \mu g/L$		$NOEC = 0.33$ $\mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0002	0.00067	101.2		0.033
FOCUS Step 1								
	0.69	28	13.27	3450	1029.85	0.0068	7.43	225.15
FOCUS Step 2								
North Europe	0.09	4	1.73	450	134.33	0.0009	1.01	30.60
South Europe	0.14	6	2.69	700	208.96	0.0014	1.51	45.76
FOCUS Step 3* (walk-in-tunnel)								
D6 / ditch	0.001547	0.062	0.030	7.74	2.31	0.001547	0.007416	0.224
Step 3*								
(Greenhouse)								
	0.00217	0.0868	0.04173	10.85	3.24	0.00217		

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 4 - PEC_{SW}/RAC for 8-carboxy-6-hydroxy-avermectin B_{1a} - Tomato at 0.018 kg a.s./ha [3 applications; interval 7 days]-, June -

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

September

Organisms A. bahia

RAC_{chronic}: $0.0002 \mu g/L$

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.005
Trigger				1

$FOCUS_{sw}\ step\ 4-PEC_{SW}/RAC\ for\ 8-carboxy-6-hydroxy-avermectin\ B_{1a}-Tomato\ at\ 0.018\ kg\ a.s./ha\ [3\ applications;\ interval\ 7\ days]-,\ June-September$

Organisms D. magna

RAC_{chronic}: $0.00067 \mu g/L$

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to $\leq 90 \%$ run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw}\,step\,1,2\,\&\,3-PEC_{SW}/RAC\,for\,8-carboxy-6-hydroxy-avermectin\,B_{1a}-Strawberry\,at\,0.018\,kg\,a.s./ha\,[2\,applications;\,interval\,7\,days]-,\\ March-May$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius

Tr					NOEC = 0.006	7		NOEC = 0.33
Toxicity		$LC_{50} = 2.5 \ \mu g/L$	$NOEC = 0.52 \mu g/L$	$EC_{50} = 0.02 \mu g/L$	μg/L	$E_r C_{50} = 1012 \mu g/L$		μg/kg
Frigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0002	0.00067	101.2		0.033
FOCUS Step 1								
	0.46	18.4	8.85	2300	686.57	0.0045	4.96	150.30
FOCUS Step 2								
North Europe	0.07	2.8	1.35	350	104.48	0.00069	0.76	23.03
South Europe	0.14	5.6	2.69	700	208.96	0.0014	1.51	45.76
FOCUS Step 3*								
walk-in-tunnel)								
O6 / ditch	0.001702	0.0681	0.0327	8.51	2.54	0.001702	0.001065	0.032
Step 3*								
Greenhouse)								
	0.00134	0.0536	0.0258	6.7	2.0	0.00134		

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

$FOCUS_{sw}\ step\ 4-PEC_{SW}/RAC\ for\ 8-carboxy-6-hydroxy-avermectin\ B_{1a}-Strawberry\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]-, March-May$

Organisms A. bahia

RAC_{chronic}: $0.0002 \ \mu g/L$

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				_
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.005
Trigger				1

$FOCUS_{sw}\ step\ 4-PEC_{sw}/RAC\ for\ 8-carboxy-6-hydroxy-avermectin\ B_{1a}-Strawberry\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]-, March-May$

Organisms D. magna

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

$FOCUS_{sw}\ step\ 1,\ 2\ \&\ 3\ -\ PEC_{sw}/RAC\ for\ 8\ -carboxy-6\ -hydroxy-avermectin\ B_{1a}\ -\ Strawberry\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]\ -,\ June\ -\ September$

Scenario	PEC global max (µg L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	PEC _{sed} (µg/kg)	Sed. dweller prolonged
Species		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Desmodesdmus subspicatus		Chironomus riparius
Toxicity		$LC_{50} = 2.5 \mu g/L$	NOEC = $0.52 \mu g/L$	$EC_{50} = 0.02 \mu g/L$	$NOEC = 0.0067$ $\mu g/L$	$E_r C_{50} = 1012 \ \mu g/L$		NOEC = 0.33 $\mu g/kg$
Trigger**		100	10	100	10	10		10
RAC [µg/L]		0.025	0.052	0.0002	0.00067	101.2		0.033
FOCUS Step 1								
	0.46	18.4	8.85	2300	686.57	0.0045	4.96	150.30
FOCUS Step 2								
North Europe	0.07	2.8	1.35	350	104.48	0.0007	0.76	23.03
South Europe	0.1	4.0	1.92	500	149.25	0.0010	1.13	34.24
FOCUS Step 3* (walk-in-tunnel)	0.007527	0.201	0.145	27.69	11.25	0.007527	0.005560	0.1697
D6 / ditch	0.007536	0.301	0.145	37.68	11.25	0.007536	0.005568	0.1687
Step 3*								
(Greenhouse)	0.00134	0.0536	0.02577	6.70	2.0	0.00134		

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

^{**[}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

$FOCUS_{sw}\ step\ 4-PEC_{SW}/RAC\ for\ 8-carboxy-6-hydroxy-avermectin\ B_{1a}-Strawberry\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]-,\ June-September$

Organisms A. bahia

RACchronic: 0.0002 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (μg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.005
Trigger				1

$FOCUS_{sw}\ step\ 4-PEC_{SW}/RAC\ for\ 8-carboxy-6-hydroxy-avermectin\ B_{1a}-Strawberry\ at\ 0.018\ kg\ a.s./ha\ [2\ applications;\ interval\ 7\ days]-,\ June-September$

Organisms D. magna

RACchronic: 0.00067 µg/L

Mitigation options	x m non-spray buffer zone (corresponding to \leq 95 % drift reduction)	x m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw (µg/L)	PEC/RAC ratio
FOCUS Step 4 (walk-in-				
tunnel)				
D6 / ditch	10 m	-	< 0.000001	< 0.001
Trigger				1

Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	Abamectin	Acute	contact: 24 h LD ₅₀	0.001 μg a.s./bee
Apis mellifera	Abamectin	Acute	oral: 24 h 24 h LD ₅₀	0.004 μg a.s./bee
Apis mellifera	Abamectin	Acute	oral: 72 h 24 h LD ₅₀	0.0069 μg a.s./bee
Apis mellifera	Abamectin	Chronic, adults	10 days, LDD50	0.011 µg test item/bee/day (equivalent to 0.000208 µg a.i./bee/day) <0.005 µg test item/bee/day(equivalent to <0.0000964 µg a.i./bee/day)
Apis mellifera	Abamectin 1.8% EC	Chronic, larvae	8 days, NOED	$8.82 \times 10^{-04} \mu g$ prod./larva (equivalent to $1.57 \times 10^{-05} \mu g$ a.s./larva)

	_				_
Dotontial	for	accumulative	tovicitue	No	data
r Otennai	101	accumulative	toxicity.	TNO	uaia

Semi-field test:

Extended laboratory study with Bombus terrestris exposed to dry residues of Abamectin 1.8% EC applied as foliar spray to apple leaves:

15% and 3.4% mortality at 18 g as/ha after 96 h and 4 d, respectivley. Behavioural effects up to 96 h.

Risk assessment for – Tomato at 0.018 kg a.s./ha, 3 applications

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Screening step				
Apis mellifera	a.s.	ETR _{acute adult oral}	19.83	0.2
Apis mellifera	a.s.	ETR _{chronic} adult oral	657.7	0.03
Apis mellifera	Abamectin 1.8% EC	ETR _{chronic larvae}	5044.59	0.2

Species	Test substance	Scenario	ВВСН	Risk quotient	HQ/ETR	Trigger
Tier 1						
		treated crop	10 – 49		2.40	
		treated crop	50 – 69		2.40	
		treated crop	≥ 70		0.00	
		weeds	10 – 49		9.65	
Apis mellifera	a.s.	weeds	50 – 69	ETR _{acute adult}	2.90	0.2
		weeds	≥ 70	orai	2.90	
		next crop	10 – 49		1.83	
		next crop	50 – 69		1.83	
		next crop	≥ 70		1.83	
		treated crop	10 - 49		57.32	
	a.s.	treated crop	50 - 69	1	57.32	0.03
		treated crop	≥ 70	ETR _{chronic} adult oral	0.00	
		Weeds	10 - 49		180.69	
Apis mellifera		Weeds	50 - 69		54.21	
		Weeds	≥ 70		54.21	
		next crop	10 - 49		33.65	
		next crop	50 - 69		33.65	
		next crop	≥ 70		33.65	
		treated crop	10 - 49		146.18	
		treated crop	50 - 69		146.18	
		treated crop	≥ 70		0.00	
		weeds	10 - 49		2143.95	
Apis mellifera	Abamectin 1.8% EC	weeds	50 - 69	ETR _{chronic}	643.18	0.2
		weeds	≥ 70	iai vac	643.18	
		next crop	10 - 49] [389.81	
		next crop	50 - 69] [389.81	
		next crop	≥ 70		389.81	

Bold values are below the respective trigger

Risk assessment for – Strawberries at 0.018 kg a.s./ha, 2 applications

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Screening step				
Apis mellifera	a.s.	ETR _{acute adult oral}	19.83	0.2
Apis mellifera	a.s.	ETR _{chronic} adult oral	743.5	0.03
Apis mellifera	Abamectin 1.8% EC	ETR _{chronic larvae}	5044.59	0.2

Species	Test substance	Scenario	ВВСН	Risk quotient	HQ/ETR	Trigger
Tier 1						
		treated crop	≥ 70		0.00	
		treated crop	10 - 39		19.83	
		treated crop	40 - 69		19.83	
		weeds	≥ 70		3.86	
Apis mellifera	a.s.	weeds	10 - 39	ETR _{acute adult}	9.65	0.2
		weeds	40 - 69		3.86	
		next crop	≥ 70		1.83	
		next crop	10 - 39		1.83	
		next crop	40 - 69		1.83	
		treated crop	≥ 70		0.00	
	a.s.	treated crop	10 - 39	ETR _{chronic} adult oral	361.39	0.03
		treated crop	40 - 69		361.39	
		Weeds	≥ 70		72.28	
Apis mellifera		Weeds	10 - 39		180.69	
		Weeds	40 - 69		72.28	
		next crop	≥ 70		33.56	
		next crop	10 - 39		33.65	
		next crop	40 - 69		33.65	
		treated crop	≥ 70		0.00	
		treated crop	10 - 39		4287.90	
		treated crop	40 - 69		4287.90	
		weeds	≥ 70		857.58	
Apis mellifera	Abamectin 1.8% EC	weeds	10 - 39	ETR _{chronic}	2143.95	0.2
		weeds	40 - 69		857.58	
		next crop	≥ 70		389.81	
		next crop	10 - 39		389.81	
		next crop	40 - 69		389.81	

Bold values are below the respective trigger

Risk assessment for honeybees from consumption of drinking water (covering all uses)

Species	Test substance Risk quotient		ETR	Trigger			
Screening level risk assessment from exposure to residues in guttation fluid							
Apis mellifera	a.s. (water solubility = 5.2 mg a.s./L)	ETR _{acute adult oral}	1.999	0.2			
Apis mellifera	Abamectin 1.8% EC (water solubility = 5.2 mg a.s./L)	ETR _{chronic} adult oral	35.811	0.03			
Apis mellifera	Abamectin 1.8% EC (water solubility = 5.2 mg a.s./L)	ETR _{larvae}	6159.44	0.2			
Risk assessment fi	rom exposure to residues in surface v	vater					
Apis mellifera	a.s.	ETR _{acute adult oral}	0.00	0.2			
Apis mellifera	a.s.	ETR _{chronic adult oral}	0.006	0.03			
Apis mellifera	Abamectin 1.8% EC	ETR _{larvae}	0.8	0.2			

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Laboratory tests with standard sensitive species									
Species	Test	End point	Toxicity						
	Substance								
No standard laboratory studies available									
Additional species									
-									

First tier risk assessment

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field ¹	Trigger
-					

Extended laboratory tests, aged residue tests

Species	Substrate, test substance,	Dose	End point	% effect	ER ₅₀
Aphidius rhopalosiphi	Apple leaf (3-D), fresh and aged residues,	42 g a.s./ha 0 d aged 7 d aged	Mortality	100.0 20.0	-
	Abamectin 1.8% EC	14 d aged 0 d aged 7 d aged 14 d aged	Reproduction	10.3 n.a. 57.3 36.6	
Aphidius rhopalosiphi	Barley plants (3- D), fresh and aged residues Abamectin 1.8% EC	7.5 mL prod./ha 15 mL prod./ha 30 mL prod./ha 60 mL prod./ha 120 mL prod./ha 7.5 mL prod./ha 15 mL prod./ha 30 mL prod./ha 60 mL prod./ha 120 mL prod./ha	Mortality Reproduction	0.0 0.0 33.3 70.0 86.7 2.1 10.9 -9.6	48h LR ₅₀ = 46.6 mL prod./ha (0.76 g a.s./ha) ER ₅₀ > 30 mL prod./ha (0.49 g a.s./ha)
Typhlodromus pyri	Apple leaf (3-D), fresh and aged residues, Abamectin 1.8% EC	42 g a.s./ha: 0 d aged 7 d aged 14 d aged 0 d aged 7 d aged 14 d aged	Mortality Reproduction	100.0 5.1 2.3 n.a. 9.5 n.a.	-
Typhlodromus pyri	Bean plants, leaf disc (2-D), fresh residues Abamectin 1.8% EC	5.7 mL prod./ha 10.3 mL prod./ha 18.5 mL prod./ha 33.0 mL prod./ha 60.0 mL prod./ha 5.7 mL prod./ha 10.3 mL prod./ha 18.5 mL prod./ha 33.0 mL prod./ha 33.0 mL prod./ha	Mortality	0.0 5.0 20.0 71.0 80.0 42.3 66.0 18.5	$48h \ LR_{50} = 26.72$ mL prod./ha $(0.44 \ g \ a.s./ha)$ $ER_{50} > 5.7 \ mL$ prod./ha $(0.09 \ g \ a.s./ha)$

Species	Substrate, test substance,	Dose	End point	% effect	ER ₅₀
Poecilus cupreus	Standard soil (2-D), fresh residue, Abamectin 1.8% EC	720 mL prod./ha 1200 mL prod./ha 2000 mL prod./ha 3333 mL prod./ha 5556 mL prod./ha 720 mL prod./ha 1200 mL prod./ha 2000 mL prod./ha 3333 mL prod./ha 5556 mL prod./ha	Mortality Feeding	0.0 0.0 0.0 3.3 1.0 0.0 1.1 1.1 0.0	LR ₅₀ > 5556 mL prod./ha (91.1 g a.s./ha) ER ₅₀ feeding > 5556 mL prod./ha (100 g a.s./ha) NOAEC > 2000 mL prod./ha (32.78 g a.s./ha) ¹
Orius laevigatus	Bean plants, leaf disc (2-D), fresh residues Abamectin 1.8% EC	21.3 mL prod./ha 47 mL prod./ha 103 mL prod./ha 227 mL prod./ha 500 mL prod./ha 21.3 mL prod./ha 47 mL prod./ha 103 mL prod./ha 227 mL prod./ha 500 mL prod./ha	Mortality Reproduction	0.0 12.0 43.0 95.0 99.0 -1.0 -8.0 50 n.a.	$LR_{50} = 102 \text{ mL}$ $prod./ha$ (1.67 g a.s./ha) $47 < ER_{50} < 103$ $mL \text{ prod./ha}$ $(0.77 < ER_{50} < 1.69$ $\text{ g a.s./ha})$

¹ conservative endpoint based on behavioural effects and deviations to the guideline

Risk assessment for – Tomato at 0.018 kg a.s./ha, 3 applications

Species	LR ₅₀ /ER ₅₀ (g/ha)	In-field rate (g/ha)	Off field rate (g/ha)
Aphidius rhopalosiphi	0.76 / 0.49	41.4	
Aphidius rhopalosiphi (aged residues)	>42	41.4	
Typhlodromus pyri	0.44 / 0.09	41.4	Not relevant ¹
Typhlodromus pyri (aged residues)	>42	41.4	
Orius laevigatus	1.67 / 0.77 – 1.69	41.4	
Poecilus cupreus	91.1 / 32.78	48.6	

Off-field risk assessment with buffer zones for – Tomato at 0.018 kg a.s./ha, 3 applications

Crop (use pattern)	Species			e with bu [g a.s./ha]			LR ₅₀ / ER ₅₀
Crop (use pattern) Species	Брестев	1m	3m	5m	10m	20m	[g a.s./ha]
Tomatoes	Aphidius	4.16	-	0.85	0.41	n.c.	0.76 / 0.49

Crop (use pattern)	Species			e with bu [g a.s./ha]			LR50 / ER50
cosp (and passes)	~ F * * * * * *	1m	3m	5m	10m	20m	[g a.s./ha]
<50 cm	rhopalosiphi						
(3 x 18 g a.s./ha)	Typhlodromus pyri	0.42	-	0.08	0.04	n.c.	0.44 / 0.09
	Orius laevigatus	0.42	-	0.08	0.04	n.c.	1.67 / 0.77 – 1.69
	Poecilus cupreus	0.49	-	0.10	0.05	n.c.	91.1 / 32.78
	Aphidius rhopalosiphi	-	14.28	n.c.	2.11	0.70	0.76 / 0.49
Tomatoes >50 cm	Typhlodromus pyri	-	1.43	n.c.	0.21	0.07	0.44 / 0.09
>50 cm (3 x 18 g a.s./ha)	Orius laevigatus	-	1.43	n.c.	0.21	0.07	1.67 / 0.77 – 1.69
	Poecilus cupreus	-	1.68	n.c.	0.25	0.08	91.1 / 32.78

$\textbf{Off-field risk assessment with drift reducing nozzles} \ for-Tomato\ at\ 0.018\ kg\ a.s./ha,\ 3$

applications

		Field r	ate with dri	ft reducing 1		
Crop (use pattern)	Species		[g a.s./ha]		LR ₅₀ / ER ₅₀ [g a.s./ha]	
		0 %	50 %	75 %	90 %	
	Aphidius rhopalosiphi	4.16	2.08	1.04	0.42	0.76 / 0.49
Tomatoes	Typhlodromus pyri	0.42	0.21	0.10	0.04	0.44 / 0.09
<50 cm (3 x 18 g a.s./ha)	Orius laevigatus	0.42	0.21	0.10	0.04	1.67 / 0.77 – 1.69
(5.11.18,8.11.11.11)	Poecilus cupreus	0.49	0.24	0.12	0.05	91.1 / 32.78
	Aphidius rhopalosiphi	14.28	7.14	3.57	1.43	0.76 / 0.49
Tomatoes	Typhlodromus pyri	1.43	0.71	0.36	0.14	0.44 / 0.09
>50 cm (3 x 18 g a.s./ha)	Orius laevigatus	1.43	0.71	0.36	0.14	1.67 / 0.77 – 1.69
(2.32.2.8 8 8 8 8 8 8 8 8	Poecilus cupreus	1.68	0.84	0.42	0.17	91.1 / 32.78

Risk assessment for – Strawberry at 0.018 kg a.s./ha, 2 applications

-	tibil assessificate for strawscrif at	phoduons			
	Species	LR ₅₀ /ER ₅₀ (g/ha)	In-field rate (g/ha)	Off field rate (g/ha)	
	Aphidius rhopalosiphi	0.76 / 0.49	30.6		
	Aphidius rhopalosiphi (aged residues)	>42	30.6	Not relevant ¹	

Species	LR ₅₀ /ER ₅₀ (g/ha)	In-field rate (g/ha)	Off field rate (g/ha)
Typhlodromus pyri	0.44 / 0.09	30.6	
Typhlodromus pyri (aged residues)	>42	30.6	
Orius laevigatus	1.67 / 0.77 – 1.69	30.6	
Poecilus cupreus	100 / 32.78 b	34.2	

Off-field risk assessment with buffer zones for – Strawberry at 0.018 kg a.s./ha, 2 applications

			Field ra				
Crop (use pattern)	Species			LR ₅₀ / ER ₅₀ [g a.s./ha]			
		1m	3m	5m	10m	20m	
Strawberry	Aphidius rhopalosiphi	3.64	-	0.72	0.37	n.c.	0.76 / 0.49
(2 10	Typhlodromus pyri	0.36	-	0.07	0.04	n.c.	0.44 / 0.09
(2 x 18 g a.s./ha)	Orius laevigatus	0.36	-	0.07	0.04	n.c.	1.67 / 0.77 – 1.69
u.s./11u/	Poecilus cupreus	0.41	-	0.08	0.04	n.c.	91.1 / 32.78 ^b

Off-field risk assessment with drift reducing nozzles for – Strawberry at 0.018 kg a.s./ha, 2

applications

		ozzles				
Crop (use pattern)	Species		[g a.s	LR ₅₀ / ER ₅₀ [g a.s./ha]		
		0 %	50 %	75 %	90 %	
Strawberry	Aphidius rhopalosiphi	3.64	1.82	0.91	0.36	0.76 / 0.49
(2 x 18 g	Typhlodromus pyri	0.36	0.18	0.09	0.04	0.44 / 0.09
a.s./ha)	Orius laevigatus	0.36	0.18	0.09	0.04	1.67 / 0.77 – 1.69
	Poecilus cupreus	0.41	0.20	0.10	0.04	91.1 / 32.78 ^b

Semi-field tests: Not available

Field studies: Not available

Additional specific test: Not available

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./ OM	Time scale	Endpoint	Toxicity		
Earthworms							
Eisenia fetida	Abamectin 1.8% EC	Overspray	Chronic (56 d)	NOEC _{reproduction} NOEC _{reproduction} corr.	<0.072 mg a.s./kg soil dw <0.036 mg a.s./kg soil dw		
Eisenia andrei	8a-OH- avermectin B _{1a}	Soil incorporation	Chronic (56 d)	NOEC _{reproduction} NOEC _{reproduction} corr.	3.66 mg/kg soil dw 1.83 mg /kg soil dw		
Other soil mac	Other soil macroorganisms (meso-fauna)						
Folsomia candida	Abamectin 1.8% EC	Soil incorporation	Chronic (28 d)	NOEC _{reproduction} NOEC _{reproduction} corr.	0.103 mg a.s./kg soil dw 0.052 mg a.s./kg soil dw		
Folsomia candida	8a-OH- avermectin B _{1a}	Soil incorporation	Chronic (28 d)	NOEC _{reproduction} NOEC _{reproduction} corr.	0.08 mg a.s./kg soil dw 0.04 mg a.s./kg soil dw		
Hypoaspis aculeifer	Abamectin 1.8% EC	Soil incorporation	Chronic (14 d)	NOEC _{reproduction} NOEC _{reproduction} corr.	3.33 mg a.s./kg soil dw 1.67 mg a.s./kg soil dw		
Hypoaspis aculeifer	8a-OH- avermectin B _{1a}	Soil incorporation	Chronic (14 d)	NOEC _{reproduction} NOEC _{reproduction} corr.	0.146 mg/kg soil dw 0.073 mg/kg soil d.w		

corr.: Endpoint has been corrected due to log $\ensuremath{K_{\text{OW}}}\xspace > 2.0$

Higher tier testing (e.g. modelling or field studies): Not available

Parameter	Test substance	Time scale	Effect
Nitrogen transformation	Abamectin 1.8% EC	42 d	<25 %: Nitrate-N-formation: +14.4 (28 – 42 d) at 0.18 mg a.s/kg sdw
	Metabolite 8a-hydroxy avermectin B1a	28 d	<25 %: Nitrate-N-formation: +21.7 % (14 – 28 d) at 0.61 mg/kg sdw
	[8,9-Z]-avermectin B1a	28 d	>25 %: Nitrate-N-formation: +57.8 % (14 – 28 d) at 0.4 mg/kg sdw

Toxicity/exposure ratios for soil organisms

Tomato at 0.18 kg a.s./ha, 3 applications

Test organism	Test substance	Time scale	Soil PEC (mg a.s./kg soil dw)	TER	Trigger	
Earthworms						
Eisenia fetida	Abamectin 1.8% EC	Chronic	0.0152	<2.4	5	
Eisenia andrei	8a-OH-avermectin B _{1a}	Chronic	0.0071	258	5	
Other soil macroorganis	Other soil macroorganisms (meso-fauna)					
Folsomia candida	Abamectin 1.8% EC	Chronic	0.0152	3.4	5	
Folsomia candida	8a-OH-avermectin B _{1a}	Chronic	0.0071	5.6	5	
Hypoaspis aculeifer	Abamectin 1.8% EC	Chronic	0.0152	109.9	5	
Hypoaspis aculeifer	8a-OH-avermectin B _{1a}	Chronic	0.0071	10.3	5	

Bold values are below the respective trigger.

Strawberry at 0.18 kg a.s./ha, 2 applications

Test organism	Test substance	Time scale	Soil PEC (mg a.s./kg soil dw)	TER	Trigger	
Earthworms						
Eisenia fetida	Abamectin 1.8% EC	Chronic	0.0195	<1.8	5	
Eisenia andrei	8a-OH-avermectin B _{1a}	Chronic	0.0071	258	5	
	Other soil macroorganisms (meso-fauna)					
Folsomia candida	Abamectin 1.8% EC	Chronic	0.0195	2.7	5	
Folsomia candida	8a-OH-avermectin B _{1a}	Chronic	0.0071	5.6	5	
Hypoaspis aculeifer	Abamectin 1.8% EC	Chronic	0.0195	85.6	5	
Hypoaspis aculeifer	8a-OH-avermectin B _{1a}	Chronic	0.0071	10.3	5	

Bold values are below the respective trigger.

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

* T .	• •		
Not	avail	lahi	le.

Laboratory dose response tests

Species	Test substance	Endpoint vegetative vigour	Endpoint emergence	Exposure [mL/ha]	TER	Trigger
Allium cepa, Avena sativa, Beta vulgaris, Glycine max, Brassica napus, Zea mays	Abamectin 1.8 % EC	ER50 > 6000 mL prod./ha	-	27.7	>217	5
Extended laboratory studies: Not available						

Extended laboratory studies: Not available Semi-field and field test: Not available

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	End point		
Activated sludge	EC_{20} , EC_{50} , $EC_{80} > 100$ mg a.s./L		

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.

Not required and not available

Available monitoring data concerning effect of the PPP.

Not required and not available

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds¹

Compartment	Compound
soil	Avermectin B_{1a} , Avermectin B_{1b} , 8a-oxo-avermectin B_{1a} (NOA448111), 8a-hydroxy-avermectin B_{1a} (NOA448112), 4"-oxo-avermectin B_{1a} (NOA426289), 4,8a-dihydroxy-avermectin B_{1a} (NOA457464), 8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)
water	Avermectin B_{1a} , Avermectin B_{1b} , 8a-oxo-avermectin B_{1a} (NOA448111), 8a-hydroxy-avermectin B_{1a} (NOA448112), 4"-oxo-avermectin B_{1a} (NOA426289), 4,8a-dihydroxy-avermectin B_{1a} (NOA457464), 8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)
sediment	Avermectin B_{1a} , Avermectin B_{1b} , 8a-oxo-avermectin B_{1a} (NOA448111), 8a-hydroxy-avermectin B_{1a} (NOA448112), 4"-oxo-avermectin B_{1a} (NOA426289), 4,8a-dihydroxy-avermectin B_{1a} (NOA457464), 8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)
groundwater	Avermectin B_{1a} , Avermectin B_{1b} , 8a-oxo-avermectin B_{1a} (NOA448111), 8a-hydroxy-avermectin B_{1a} (NOA448112), 4"-oxo-avermectin B_{1a} (NOA426289), 4,8a-dihydroxy-avermectin B_{1a} (NOA457464), 8a-oxo-4-hydroxy-avermectin B_{1a} (NOA457465)

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

¹ application only in greenhouses or closed walk-in tunnels

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹⁰:

According to the Peer review, the criteria for classification may be met for:

Abamectin

Regulation (EU) No. 618/2012

Aquatic Acute 1: H400 Aquatic Chronic 1: H410

M-Factor: 10 000

Aquatic Acute 1: H400 (EC₅₀ = 0.00002 mg/L *Americamysis bahia*); M-Factor = 10 000

Aquatic Chronic 1: H410 (NOEC = 0.0000067 mg/L

Daphnia magna); M-Factor = 10000

Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

