



# Dritter Korrespondenzbrief

# Lösungshinweise

### Aufgabe 1.

Nach n Schritten:  $\left(\frac{4}{3}\right)^n$ 

Aufgabe 2. Wo ist der Schnee?



Der Flächeninhalt ist z.B. kleiner als der des Umkreises des Dreiecks. Genauer ist der Flächeninhalt

$$1 + \frac{1}{3} + \left(\frac{1}{3}\right)^2 + \dots = ???$$

TODO: Erklärung?

Aufgabe 3. Wie oft?

| Streckfaktor:   | 2-fach | 3-fach  | 4-fach  | 9-fach   |
|-----------------|--------|---------|---------|----------|
| Strecke         | 2-mal  | 3-mal   | 4-fach  | 9-fach   |
| Dreieck         | 4-mal  | 9-mal   | 16-fach | 81-fach  |
| Quadrat         | 4-mal  | 9-mal   | 16-fach | 81-fach  |
| Würfel          | 8-mal  | 227-mal | 64-fach | 729-fach |
| Kochschee Kurve |        | 4-mal   |         | 16-mal   |

Aufgabe 4. Potenzen und Dimensionen

|       | 2         | 3          | 4          | 9           |
|-------|-----------|------------|------------|-------------|
|       | $2^1 = 2$ | $3^1 = 3$  | $4^1 = 4$  | $9^1 = 9$   |
|       | $2^2 = 4$ | $3^2 = 9$  | $4^2 = 16$ | $9^2 = 81$  |
| 3     | $2^3 = 8$ | $3^3 = 27$ | $4^3 = 64$ | $9^3 = 729$ |
| 1,262 | 2,398     | 4,001      | 5,752      | 16,005      |

Es fällt auf: Streckt man ein d-dimensionales Objekt um den Faktor k, so passt das ursprüngliche genau  $k^d$  in das neue.

## Aufgabe 5.



| Streckfaktor: | 2-fach | 4-fach |
|---------------|--------|--------|
| Fraktal-Baum  | 3-mal  | 9-mal  |

 $d \approx 1,585$ 

# 0.1 Das Sierpinski-Dreieck



#### Aufgabe 6.

Strecken um 2 - passt 3-mal hinein. Also erneut  $d \approx 1,585$ 

#### Aufgabe 7.

In jedem Schritt verliert man  $\frac{1}{4}$  der grauen Fläche. Es bleiben also noch  $\frac{3}{4}$ . Nach n Schritten also noch  $\left(\frac{3}{4}\right)^n$ . Der Flächeninhalt wird dadurch kleiner als jede positive Zahl. Folglich ist er 0.

#### Aufgabe 8. Pascalsches Dreieck

TODO: Ausgefülltes und -gemaltes Pascalsches Dreieck.

Man erhält das Muster des Sierpinski-Dreiecks.

#### Aufgabe 9.

Strecken um 3 -<br/>¿ passt 2-mal hinein. Also  $d\approx 0,631$ 

Nach jedem Schritt nur noch  $\frac{2}{3}$  der Länge. Nach n Schritten also noch  $\left(\frac{2}{3}\right)^n$ . Wird daher 0.

#### Aufgabe 10.

Strecken um 2 und passt 5-mal hinein. Also  $d \approx 2,322$ .

#### Aufgabe 11.

Fraktale Dimension größer als 2. Daher Fläche (2-dimensional) unendlich. Kleiner als 3, daher Volumen (3-dimensional) gleich 0.

Fläche nach einem Schritt  $\frac{5}{4}$ -mal so groß und Volumen  $\frac{5}{8}$ -mal (5 Pyramiden, die jeweils halb so breit, halb so tief und halb so hoch sind.)

### Aufgabe 12.

2-mal so groß, dann passt es 4-mal hinein. Damit ist d=2.

Dieses Objekt ist flächenfüllend (d.h. wie eine Fläche - 2-dimensional)