# Flash ADC e realizzazione di un termometro

Lorenzo Bartolozzi

Luca Pacioselli

GIUSEPPE PRUDENTE

Università di Perugia A.A. 2018/2019

#### **Sommario**

La presente esperienza è volta a studiare il funzionamento di un flash ADC con 4 canali e realizzarci un termometro digitale tramite un sensore LM35.

#### I. Introduzione

# i. Strumenti a disposizione

- generatore di funzioni (alimentatore in alternata, AC) GW GFG;
- oscilloscopio digitale RIGOL;
- basette sperimentali;
- LED a luce gialla (funzionamento tra 2,10V-2,18V);
- resistenze da  $100\Omega$ ,  $1000\Omega$  e  $10k\Omega$ ;
- un sensore di temperatura LM35;
- due amplificatori operazionali, od op-amp, 741

**Figura 1:** Schema flash ADC esperienza (la E sopra al partitore di tensione è la  $V_{max}$  che viene "ripartita" dal partitore)



### ii. Cenni di teoria

Un flash ADC è un dispositivo che, tramite un determinato numero di comparatori, è in grado di convertire un segnale analogico in uno digitale. Nella presente esperienza si sono utilizzati degli op-amp 741 come comparatori, i quali agiscono in modo tale che, secondo la seguente Figura 1: quando la  $V_{in}$  è maggiore della  $V_{ref}$ , determinata per ogni comparatore tramite il partitore di tensione, la  $V_{out}$  sarà uguale all'alimentazione positiva dell'op-amp 741 e la corrente che ne risulta alimenterà il LED corrispondente; quando la  $V_{in}$  è minore della  $V_{ref}$ , la  $V_{out}$  passerà attraverso la resistenza di pull-up (di seguito nella relazione si vedrà che il nostro apparato sperimentale non presenta resistenze di pull-up).

Il sensore di temperatura LM35 è un circuito integrato che presenta un segnale in tensione in uscita linearmente proporzionale alla temperatura, in gradi centigradi, che rileva secondo

la seguente formula:

$$V_{out} = V_{offset} + 10 \frac{mV}{^{\circ}C} * T(^{\circ}C)$$
 (1)

la precisione con cui si ricava la temperatura da tale formula è di circa 0,5°C. Il dispositivo LM35 (Figura 2)

Figura 2: Sensore di temperatura LM35



ha tre terminali:

- 1: alimentazione che va da 4V a 20V;
- 2: tensione in uscita, che segue la formula (1);
- 3: messa a terra.

## II. Procedura sperimentale

#### Flash ADC

Inizialmente si è costruito il circuito seguendo la Figura 1, con le resistenze di pull-up di valore pari a  $1k\Omega$ , quelle prima dei LED di  $100\Omega$  e quelle del partitore di tensione tutte di  $10k\Omega$ . Al fine di verificare il corretto funzionamento del circuito si è utilizzata come  $V_{in}$  un'onda triangolare creata dal generatore di funzioni con ampiezza picco-picco di 20,6V e una frequenza di 1,01Hz; la risposta del dispositivo è la seguente (Figura 3):

**Figura 3:** Il segnale in giallo è quello in ingresso, mentre gli altri sono i LED 1, 2 e 3 (il LED 4 non è stato preso in considerazione per questa acquisizione, in quanto l'oscilloscopio RIGOL ha 4 canali in entrata)



che è proprio l'andamento che si sta cercando, i LED che si accendono, e poi si spengono, in maniera progressiva con l'avanzare della forma d'onda del segnale in ingresso.

# Termometro digitale

Successivamente si è modificato il circuito sostituendo il generatore di funzioni con il sensore LM35 e adeguando il partitore di tensione in modo da farlo funzionare con il dispositivo LM35.

Si è notato mentre sostituivamo il generatore di funzioni con il sensore, quindi in una condizione in cui i comparatori non avrebbero dovuto fornire corrente ai LED, che questi ultimi risultavano comunque parzialmente accesi, suggerendoci che in qualche modo, la  $V_{max}$  fornita al circuito raggiungesse i LED. Poiché dai comparatori, quando  $V_{in} < V_{ref}$  esce una  $V_{out}$  pari all'alimentazione negativa, come si evince dalla seguente Figura 4:

Figura 4: Funzionamento di un comparatore con operazionale ad anello aperto



che serve per tenere spenti i LED, abbiamo incriminato il collegamento che questi hanno con le resistenze di pull-up, collegate a  $V_{max}$ , e perciò sono state eliminate dal circuito, il quale poi è stato modificato in modo tale che non ci fosse il rischio che della corrente rientrasse negli op-amp 741.

Attuati questi cambiamenti il circuito funziona nel modo che ci si aspetta; i parametri scelti sono (in riferimento alla Figura 1, ma senza resistenze di pull-up):

- $V_{max} = (7,37 \pm 0,02)V$ ;
- $V_{CC+} = (7,37 \pm 0,02)V$  alimentazione positiva comparatori;
- $V_s = (7,37 \pm 0,02)V$  alimentazione del sensore LM35;
- $V_{CC-} = (-1,01 \pm 0,02)V$  alimentazione negativa comparatori;
- resistenze prima dei LED pari a  $(100 \pm 5)\Omega$ ;
- $R_1 = (1000 \pm 50)\Omega$ ;
- $R_2 = R_3 = R_4 = (100 \pm 5)\Omega$ ;
- $R_5 = (11000 \pm 550)\Omega$ .

### III. Analisi dati

<sup>1</sup> Si è misurata, tramite un voltmetro digitale, la tensione in uscita dal sensore LM35 a

$$\begin{array}{lll} \textit{Dati} & (x \pm \delta_x) & (y \pm \delta_y) & \textit{si ha} & ((x \pm y) \pm (\delta_x + \delta_y)) & \textit{ed anche} & (x * y) & \textit{et} & (\frac{x}{y}) & (\delta_{\textit{rel}_{finale}} = \frac{\delta_x}{x} + \frac{\delta_y}{y}) \end{array}$$

temperatura ambiente  $(T=20\pm1)^{\circ}C$ ,  $V_{out}=(0,42\pm0,02)V$ , e dalla formula (1) si è ricavato il valore della  $V_{offset}=(0,22\pm0,03)V$  con il quale si è poi potuto calcolare la temperatura sul sensore LM35 corrispondente ad un LED che si accende.

Tramite i valori delle resistenze riportati in elenco precedentemente, si ottengono le  $V_{ref}$  e, conoscendo  $V_{offset}$ , tramite la formula (1) anche le temperature corrispondenti all'accensione di ciascun LED riportati nella seguente Tabella 1.

**Tabella 1:** Valori teorici di voltaggi e temperature per ciascun LED

| LED | Voltaggio(V)    | Temperatura(°C) $\pm$ 0,5°C |
|-----|-----------------|-----------------------------|
| 1   | $0,60 \pm 0,06$ | 37,9                        |
| 2   | $0.66 \pm 0.07$ | 43,9                        |
| 3   | $0.72 \pm 0.07$ | 49,9                        |
| 4   | $0.78 \pm 0.08$ | 55,9                        |

Infine si è messo il voltmetro digitale in modo che misurasse la  $V_{out}$  del sensore LM35 e, sapendo che quest'ultimo può sopportare fino a  $120^{\circ}C$ , lo si è riscaldato finché non si sono accesi tutti i LED; si è fatto un video al circuito, con il sensore che si raffredda mano a mano, e al monitor del multimetro fino a quando non si sono spenti tutti i LED. Andando a rivedere il video in slow-motion si sono potute vedere le  $V_{out}$  alle quali ciascun LED si spegne, con i risultati riportati nella seguente Tabella (2):

**Tabella 2:** Valori sperimentali di voltaggi e temperature per ciascun LED

| LED | Voltaggio(V)    | Temperatura(°C) $\pm$ 5°C |
|-----|-----------------|---------------------------|
| 1   | $0,55 \pm 0,02$ | 33                        |
| 2   | $0.65 \pm 0.02$ | 43                        |
| 3   | $0.71 \pm 0.02$ | 49                        |
| 4   | $0.76 \pm 0.02$ | 54                        |

### IV. Conclusioni

Il termometro digitale costruito con il sensore LM35 risulta quindi funzionare in maniera

<sup>&</sup>lt;sup>1</sup>Tutti gli errori, fatta eccezione per quelli sulla temperatura ricavata dai voltaggi teorici che sono determinati dal sensore LM35, sono stati calcolati con le formule base della propagazione degli errori:

corretta poiché i risultati sperimentali sono in completo accordo con le previsioni teoriche.