

Corso di Laurea in Ingegneria Informatica

COMUNICAZIONI NUMERICHE – 09-06-08

Esercizio 1

Con riferimento alla Fig. 1, siano

- $x_1(t) = 2AB \operatorname{sinc}(2Bt)$
- $x_2(t) = 4AB \operatorname{sinc}(4Bt)$
- $h(t) = B \operatorname{sinc}^2(Bt)$
- $p(t) = 2B \operatorname{sinc}(2Bt)$
- T = 1/2B

Si calcolino quindi:

- 1) P_x, E_x
- (2) X(f)
- 3) y(t)
- 4) P_{ν}, E_{ν}

Esercizio 2

Al ricevitore di Fig. 1 viene applicato il segnale PAM in banda base $r(t) = \sum_i a_i \, g_T \, (t-iT) \cos^2(2\pi f_0 t + \vartheta) + w(t)$ con $f_0 >> 1/T$, $\vartheta = -\pi/4$, simboli a_i , indipendenti ed equiprobabili, appartenenti all'alfabeto $A \equiv [-1,1]$. Il rumore w(t) introdotto dal canale è Gaussiano, a media nulla, con densità spettrale di potenza $S_W \, (f) = \frac{N_0}{2}$. L'impulso $g_T \, (t) = rect \left(\frac{t}{T/2} \right)$. Nell'ipotesi che la risposta impulsiva del filtro in ricezione $g_R \, (t)$ sia $g_R \, (t) = rect \left(\frac{t}{T/2} \right)$ si calcoli:

- 1) L'energia trasmessa media per simbolo
- 2) La potenza media della componente di rumore all'uscita del filtro in ricezione $g_R(t)$
- 3) La Probabilità di Errore su bit.

Fig. 2