Abstract Code Search

New York, ICLP 2016, October 18, 2016

<u>Isabel Garcia-Contreras</u> Jose F. Morales Manuel V. Hermenegildo

IMDEA Software Institute, and

Technical University of Madrid

Introduction

Motivation: Find code to reuse.

Problem: The large amount of code available makes it impossible for a programmer to find useful fragments manually.

Current code finders are mainly based on:

- Documentation keyword indexing (Maarek et al. 1991).
- Signature matching (Rollins and Wing 1991 λ Prolog).
- Combinations of both (Mitchell 2008 Hoogle/Haskell).

Introduction

Motivation: Find code to reuse.

Problem: The large amount of code available makes it impossible for a programmer to find useful fragments manually.

Current code finders are mainly based on:

- Documentation keyword indexing (Maarek et al. 1991).
- Signature matching (Rollins and Wing 1991 λ Prolog).
- Combinations of both (Mitchell 2008 Hoogle/Haskell).

Our approach:

 Find code based on its semantic characteristics. (that can be inferred automatically).

(Ciao) Assertions

Assertions are a fundamental component of our approach.

They are **linguistic constructions** for expressing abstractions of the meaning and behavior of programs.

pred assertions (subset)

Allow specifying certain conditions on the state (current substitution or constraint store) that must hold at certain points of program execution.

- Head: normalized atom that denotes the predicate that the assertion applies to.
- Pre and Post: conjunctions of "prop" atoms.

(Ciao) Assertions - example

Herein we will use assertions for:

- Programming: To specify calling modes for predicates.
- [New!] Searching: To express properties of the code to be found.

Main idea of our method:

1. A **set of modules** is specified within which code is to be found.

Main idea of our method:

1. A **set of modules** is specified within which code is to be found.

```
1 :- module(lengths, [check_length/2, gen_list/2], [assertions]).
2 :- pred check_length(L,N) : (list(L), int(N)).
4 check_length(L,N) :- length(L,N).
5 :- pred gen_list(L,N) : (var(L), var(N)) => (list(L), int(N)).
7 gen_list(L,N) :- length(L,N).
8 % length implementation ...
```

Main idea of our method:

- 1. A **set of modules** is specified within which code is to be found.
- 2. A static pre-analysis is made to:
 - Infer semantic properties in one or more abstract domains (e.g.: shapes/types, variable sharing, inst. modes, polyhedra, ...).

Static analysis inference

Shapes and Modes/Sharing analysis:

```
% :- pred check length(L.N) : (list(L), int(N)).
   :- true pred check length(L,N) : (list(L), int(N))
2
                                   => (list(L), int(N)).
3
   :- true pred check_length(L,N) : (mshare([[L],[L,N],[N]])
4
                                   => (mshare([[L]]), ground([N])).
5
   check_length(L,N) := length(L,N).
7
   %: - \text{ pred gen list}(L.N) : ((var(L), var(N))).
   :- true pred gen list(L.N) : ((term(L), term(N))
                              => ((list(L), int(N)).
10
   :- true pred gen_list(L,N) : (mshare([[L],[L,N],[N]])), var(L), var(N))
11
                              => (mshare([[L]]), ground([N])).
12
   gen list(L,N) :- length(L,N).
13
14
   % length implementation ...
15
```

Main idea of our method:

- 1. A **set of modules** is specified within which code is to be found.
- 2. A static pre-analysis is made to:
 - Infer semantic properties in one or more abstract domains (e.g.: shapes/types, variable sharing, inst. modes, polyhedra, ...).
- 3. User specifies **semantic properties** in a query, using a new kind of assertions that we call **query assertions**:
 - Example: :- pred P(X,Y) : list(X) => sorted(Y).
 Based on (Stulova et al. 2014).
- 4. Look within the modules for predicates that meet those properties (by comparing to inferred information).

Inferring semantic properties

Abstract interpretation:

- To simulate the execution using an abstract domain D_{α} .
- It guarantees:
 - Analysis termination, provided that D_{α} meets some conditions.
 - Results are safe approximations of the concrete semantics.

PLAI algorithm (in Ciao) Input P: Program $D_{\alpha}^{i} : \text{ Abstract Domain(s)}$ $Q_{\alpha} = L : \lambda : \text{ Initial call pattern}$ Output $Analysis(P, L : \lambda, D_{\alpha}) = \{\langle L_{1}, \lambda_{1}^{c}, \lambda_{1}^{s} \rangle, \dots, \langle L_{n}, \lambda_{n}^{c}, \lambda_{n}^{s} \rangle\}, \text{ where:}$ $\bullet L_{i} \text{ is an atom}$ $\bullet \lambda_{i}^{c} \text{ are abstract call state in } D_{\alpha}$ $\bullet \lambda_{i}^{s} \text{ are abstract success state in } D_{\alpha}.$

Querying for predicates

Predicate query								
?- findp({ As}, M:Pred/A, Residue, Status).								
Input	As: Set of query assertions.							
Output	Output M:Pred/A: Module, predicate descriptor and arity.							
Residue: Information of condition matching.								
Input or Output	Status: Result of the proof for the whole set of conditions.							
 checked if all conditions are proved to be checked. 								
	• false if any condition is false.							
	• <i>check</i> if neither <i>checked</i> nor <i>false</i> can be proved.							

```
?- findp(\{ :- \text{ pred } P(L, S) \Rightarrow (\text{list}(L), \text{ num}(S)). \}, M:P/A, Res, St).
P/A = \text{check\_length/2} \quad St = \text{checked}
```

Normalizing the query

Assertion Conditions

Given a predicate represented by a normalized atom Head, and a corresponding set of assertions $\mathcal{A} = \{A_1 \dots A_n\}$, with $A_i =$ ":- pred $Head : Pre_i \Rightarrow Post_i$." The set of assertion conditions for Head determined by \mathcal{A} is $\{C_0, C_1, \dots, C_n\}$, with:

$$C_i = \left\{ egin{array}{ll} { t calls(Head, \bigvee_{j=1}^n Pre_j)} & i = 0 \ { t success(Head, Pre_i, Post_i)} & i = 1..n \end{array}
ight.$$

Assertion conditions from my_length/2:

```
C_i = \left\{ \begin{array}{ll} \text{calls} ( & \textit{length}(L,N), & (\textit{list}(L) \land \textit{var}(N)) \lor & (\textit{list}(L) \land \textit{int}(N))), \\ \text{success} ( & \textit{length}(L,N), & (\textit{list}(L) \land \textit{var}(N)), & & (\textit{list}(L), \textit{int}(N))), \\ \text{success} ( & \textit{length}(L,N), & (\textit{list}(L) \land \textit{int}(N)), & & (\textit{list}(L), \textit{int}(N))) \end{array} \right\}
```

Matching success conditions

Match $C = success(X(V_1, ..., V_n), Pre, Post)$ against analysis (P, Q_α)

Checked matches

If *Pre* holds at the time of calling the matching predicate and the execution succeeds then the *Post* conditions hold.

$$C$$
 is abstractly 'checked' for predicate $p \in P$ w.r.t. Q_{α} in D_{α} iff $\exists L = p(V'_1, \ldots, V'_n)$ s.t. $\forall \langle L, \lambda^c, \lambda^s \rangle \in analysis(P, Q_{\alpha})$ s.t. $\exists \sigma \in ren, \ L = p(V'_1, \ldots, V'_n) = X(V_1, \ldots, V_n)\sigma, \ \lambda^c \sqsubseteq \lambda^+_{TS(Pre \ \sigma, P)} \rightarrow \lambda^s \sqsubseteq \lambda^-_{TS(Post \ \sigma, P)}$

False matches

If *Pre* holds at the time of calling the matching predicate and the execution succeeds then its conditions and *Post* are disjoint.

C is abstractly false for $p \in P$ w.r.t. Q_{α} in D_{α} iff $\exists L = p(V'_1, \ldots, V'_n)$ s.t. $\forall \langle L, \lambda^c, \lambda^s \rangle \in \mathit{analysis}(P, Q_{\alpha})$ s.t. $\exists \sigma \in \mathit{ren}, \ L = p(V'_1, \ldots, V'_n) = X(V_1, \ldots, V_n)\sigma, \ \lambda^c \sqsubseteq \lambda^-_{TS(Pre \ \sigma, P)} \land (\ \lambda^s \sqcap \lambda^+_{TS(Post \ \sigma, P)} = \bot)$

Matching success conditions - Example

```
1
   perfect(b1).
                                               mixed(b0).
   perfect(b0).
                                               mixed(b1).
                                               mixed(z).
5
   reduced(b1).
                                               hard(X) :- functor(b1(_), X, _).
8
   outb(z).
10
11
   :- regtype b/1.
   b(b0).
12
   b(b1).
13
```

Matching *success* conditions - Example

```
:- true pred perfect(A) => b(A).
                                           :- true pred mixed(X) => top(X).
   perfect(b1).
                                            mixed(b0).
   perfect(b0).
                                            mixed(b1).
                                            mixed(z).
   :- true pred reduced(A) => t1(A).
   reduced(b1).
                                            :- true pred hard(X) => top(X).
                                            hard(X) :- functor(b1(_), X, _).
7
   :- true pred outb(A) => t2(A).
   outb(z).
10
   :- regtype b/1. :- regtype t1/1 :- regtype t2/1.
11
   b(b0).
                     t1(b1).
                                         t2(z).
12
   b(b1).
```


Matching success conditions - Example

```
:- true pred perfect(A) => b(A).
                                           :- true pred mixed(X) => top(X).
   perfect(b1).
                                            mixed(b0).
   perfect(b0).
                                            mixed(b1).
                                            mixed(z).
4
   :- true pred reduced(A) => t1(A).
   reduced(b1).
                                            :- true pred hard(X) => top(X).
7
                                            hard(X) :- functor(b1(_), X, _).
   :- true pred outb(A) => t2(A).
   outb(z).
10
   :- regtype b/1. :- regtype t1/1 :- regtype t2/1.
11
   b(b0).
                     t1(b1).
                                         t2(z).
12
   b(b1).
```

```
?- findp({ :- pred P(V) => b(V). }, M:P/A, Res, St). 
 P/A = perfect/1 St = checked  P/A = reduced/1 St = checked \\ P/A = outb/1 St = false \\ P/A = mixed/1 St = check \\ P/A = hard/1 St = check   D = \{b0, b1, z\} \\ D_{\alpha} = \{\top, b, t1, t2, \bot\}
```

Matching calls conditions - Example

Combining abstract domains

```
?- findp({ :- pred P(L, Size) : list(L), num(Size)). }, M:P/A, Res, St).
```

PredName/A	regtypes proof	shfr proof	combined proof	
check_length/2	checked	check	checked	
gen_list/2	check	false	false	

Conclusions

Finding code by its semantic characteristics:

- Ensures that the found code behaves correctly.
- Reasons with relations between properties (implication, abstraction).
- Is independent from the documentation.
- Implemented in Ciao, in combination with other types of search (which it complements).

Future work:

- Use more domains.
- Extend to other programming languages and combinations.
- Other uses: finding duplicated code.

Matching calls conditions

$$C = \mathtt{calls}(X(V_1, \ldots, V_n), \mathit{Pre})$$

Checked matches

The admissible calls of the matching predicate are within the set of *Pre* conditions.

C is abstractly 'checked' for a $p \in P$ w.r.t. Q_{α} in D_{α} iff $\forall \langle L, \lambda^c, \lambda^s \rangle \in analysis(P, D_{\alpha}, Q_{\alpha})$ s.t. $\exists \sigma \in ren, \ L = p(V_1, \dots, V_n) = X(V_1, \dots, V_n)\sigma, \lambda^c \sqsubseteq \lambda_{TS(Pre\ \sigma, P)}^-$.

False matches

The admissible calls of the matching predicate and the set *Pre* conditions are disjoint.

C is abstractly 'false' for a $p \in P$ w.r.t. Q_{α} in D_{α} iff $\forall \langle L, \lambda^c, \lambda^s \rangle \in analysis(P, D_{\alpha}, Q_{\alpha})$ s.t. $\exists \sigma \in ren, \ L = p(V_1, \dots, V_n) = X(V_1, \dots, V_n)\sigma, \lambda^c \sqcap \lambda^+_{TS(Pre \ \sigma, P)} = \bot$.

Performance

Search times in μs .

	Ar\Cnds	1	1 (AVG)	2	2 (AVG)	3	3 (AVG)	4	4 (AVG)
П	1 (85 pr)	19,064	224	53,530	630	180,246	2,121	298,292	3,509
П	2 (74 pr)	110,092	1,488	207,871	2,809	221,061	2,987	477,440	6,452
П	3 (47 pr)	294,962	6,276	3,757,208	79,941	3,806,917	80,998	6,127,015	130,362
	4 (12 pr)	5,116	426	12,939	1,078	22,508	1,876	30,300	2,525

The theme of the presentation is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The source of this theme is located at:

github.com/matze/mtheme

