Course: Modern Cryptography

DL and Factorisation based Public-Key Encryption Schemes

Shashank Singh

IISER Bhopal

October 30, 2025

ELGAMAL ENCRYPTION SCHEME

bob

ELGAMAL ENCRYPTION SCHEME

- ▶ Let \mathcal{G} be a polynomial-time algorithm that takes as input n and (except possibly with negligible probability) outputs a description of a cyclic group G, its order q (with $||q|| \approx n$), and a generator g.
- ► Now we formally describe ElGamal encryption scheme as (GEN, ENC, DEC).

SYNTAX OF THE ELGAMAL ENCRYPTION SCHEME

- GEN: on input 1^n , run $\mathcal{G}(1^n)$ to obtain (G,q,g). Then choose a uniform $x \in \mathbb{Z}/q\mathbb{Z}$ and compute $h := g^x$. The public key is $\langle G,q,g,h \rangle$ and the private key is $\langle G,q,g,x \rangle$. The message space is G.
- ENC: on input a public key $pk = \langle G, q, g, h \rangle$ and a message $m \in G$, choose a uniform $y \in \mathbb{Z}/q\mathbb{Z}$ and output the ciphertext $\langle g^y, m \cdot h^y \rangle$.
- DEC: on input a private key $pk = \langle G, q, g, x \rangle$ and a ciphertext (c_1, c_2) , output $\hat{m} = c_2 \cdot (c_1^x)^{-1}$.

Theorem

If the DDH (Decisional Diffie Hellman) problem is hard relative to G, then the ElGamal encryption scheme is CPA-secure.

DDH-BASED KEY ENCAPSULATION

Let \mathcal{G} be as defined. Define a KEM as follows:

- GEN: on input n run $\mathcal{G}(n)$ to obtain (G, q, g). Choose a uniform $x \in \mathbb{Z}/q\mathbb{Z}$ and set $h := g^x$. Also specify a function $H : G \mapsto \{0,1\}^{\ell n}$ for some function ℓ . Set $pk := \langle G, q, g, h, H \rangle$ and $sk := \langle G, q, g, x \rangle$.
- ENCAPS: on input a public key $pk := \langle G, q, g, h, H \rangle$, choose a uniform $y \in \mathbb{Z}/q\mathbb{Z}$ and output the ciphertext g^y and the key $H(h^y)$.
- DECAPS: on input a private key $sk := \langle G, q, g, x \rangle$ and a ciphertext $c \in G$, output the key $H(c^x)$.

Theorem

If the DDH problem is hard relative to G, and H is modeled as a random oracle, then the above Construction is a CPA-secure KEM.

PLAIN RSA ENCRYPTION SCHEME

- choose primes p and q s.t., $p \approx q \approx 2^{2048}$. Let $N := p \cdot q$; $\phi(N) = (p-1) \cdot (q-1)$. Choose e > 1 s.t $\gcd(e, \phi(N)) = 1$.
- Compute $d := [e^{-1} \mod \phi(N)]$.

alice

bob

PLAIN RSA ENCRYPTION SCHEME

Formal description of plain RSA algorithm is given below

Algorithm 1: RSA key generation genRSA(n)

Input: Security Parameter *n*

Output:
$$N, e, d$$
 $N, n, a \leftarrow \text{genModulus}(n)$

$$N, p, q \leftarrow \text{genModulus}(n)$$

/* It is a PPT algorithm which outputs
$$(N,p,q)$$

$$/*$$
 It is a PPI algor
where $N = pq$, and p and

where
$$N=pq$$
, and p and q are n -bit primes except

where
$$N=pq$$
, and p and

with probability negligible in
$$n$$
. $\star/$ $h(N) := (n-1) \cdot (n-1)$

$$\phi(N) := (p-1) \cdot (q-1)$$
Choose $e > 1$ such that $\gcd(e, \phi(N)) = 1$.

Compute
$$d := [e^{-1} \mod \phi(N)]$$
.

Compute
$$d := [e^{-1} \mod \phi(N)]$$
. return N, e, d

Plain RSA public-key encryption scheme

- GEN: on input n run genRSA(n) to obtain N, e, and d. The public key is $\langle N, e \rangle$ and the private key is $\langle N, d \rangle$
- ENC: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \mathbb{Z}/N\mathbb{Z}$, compute the ciphertext

$$c:=[m^e \bmod N]$$

– DEC: on input a private key $sk=\langle N,d\rangle$ and a ciphertext $c\in \mathbb{Z}/N\mathbb{Z}$, compute the message

$$m := \left\lceil c^d \bmod N \right\rceil$$

► Plain RSA is not even CPA-secure.

RSA-OAEP

OAEP- OPTIMAL ASYMMETRIC ENCRYPTION PADDING

- The OAEP transformation is a two-round Feistel network with *G* and *H* as round functions.
- First set $m' := m||0^{k_1}$ and choose a uniform $r \in \{0,1\}^{k_0}$. Then compute

$$s := m' \oplus G(r)$$
 and $t := r \oplus H(s)$
and set $\hat{m} = s||t$.

- Let $\ell(n)$, $k_0(n)$, $k_1(n)$ be integer-valued functions with $k_0(n)$, $k_1(n) = \Theta(n)$ and such that $\ell(n) + k_0(n) + k_1(n)$ is less than the minimum bit-length of moduli output by genRSA(1ⁿ).
- Let $G: \{0,1\}^{k_0} \mapsto \{0,1\}^{\ell+k_1}$ and $H: \{0,1\}^{\ell+k_1} \mapsto \{0,1\}^{k_0}$. be functions.

THE RSA-OAEP ENCRYPTION SCHEME

- GEN: on input n run genRSA(n) to obtain N, e, and d. The public key is $\langle N, e \rangle$ and the private key is $\langle N, d \rangle$
- ENC: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \mathbb{Z}/N\mathbb{Z}$, first set $m' := m||0^{k_1}$ and choose a uniform $r \in \{0,1\}^{k_0}$. Then compute $s := m' \oplus G(r)$ and $t := r \oplus H(s)$ and set $\hat{m} = s||t$. Compute the ciphertext

$$c := [\hat{m}^e \mod N]$$

− DEC: on input a private key $sk = \langle N, d \rangle$ and a ciphertext $c \in \mathbb{Z}/N\mathbb{Z}$, compute the message $\hat{m} := [c^d \mod N]$. If $\|\hat{m}\| > \ell + k_0 + k_1$, output \bot . Otherwise, parse \hat{m} as $\langle s, t \rangle$. Compute $r := H(s) \oplus t$ and $m' := G(r) \oplus s$. If the k_1 lsbs of m' are not all 0, output \bot . Otherwise, output the ℓ msb's of m'.

RSA BASED CCA-SECURE KEM

Let genRSA be as usual, and construct a KEM as follows:

- GEN: $(N,e,d) \leftarrow \text{genRSA}(1^n)$. Set $pk = \langle N,e \rangle$ and $sk = \langle N,d \rangle$. A function $H: \mathbb{Z}/N\mathbb{Z}^* \mapsto \{0,1\}^n$ is also specified, but we leave this implicit.
- ENCAPS: on input $pk = \langle N, e \rangle$ and 1^n , choose a uniform $r \in \mathbb{Z}/N\mathbb{Z}^*$ and output $c := r^e \mod N$ and k := H(r).
- DECAPS: on input $sk = \langle N, d \rangle$ and a ciphertext $c \in \mathbb{Z}/N\mathbb{Z}^*$, compute $r := c^d \mod N$ and output the key k := H(r).

Theorem

If the RSA problem is hard relative to genRSA *and H is modeled as a random oracle, then above Construction is CCA-secure.*