```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
```

In [2]: from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	рор	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

Out[4]:

	km	lat
0	25000	44.907242
1	32500	45.666359
2	142228	45.503300
3	160000	40.633171
4	106880	41.903221
5	70225	45.000702
6	11600	44.907242
7	49076	41.903221
8	76000	45.548000
9	89000	45.438301

In [5]: sns.lmplot(x="km",y="lat",data=df,order=2,ci=None)

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1772a582e30>


```
In [6]: df.describe()
Out[6]:
                        km
                                    lat
                 1538.000000 1538.000000
         count
                53396.011704
                              43.541361
          mean
                40046.830723
                               2.133518
           std
           min
                 1232.000000
                              36.855839
           25%
                20006.250000
                              41.802990
                39031.000000
           50%
                              44.394096
          75%
                79667.750000
                              45.467960
                              46.795612
          max 235000.000000
In [7]: df.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1538 entries, 0 to 1537
        Data columns (total 2 columns):
              Column Non-Null Count Dtype
                      1538 non-null
              km
                                       int64
              lat
                      1538 non-null
                                       float64
         dtypes: float64(1), int64(1)
        memory usage: 24.2 KB
        df.fillna(method = 'ffill',inplace = True)
        C:\Users\DELL E5490\AppData\Local\Temp\ipykernel 19356\3028625988.py:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
        g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu
         s-a-copy)
           df.fillna(method = 'ffill',inplace = True)
```

0.0008701088012534886

```
In [13]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [22]: df500=df[:][:500]
sns.lmplot(x="km",y="lat",data=df500,order=1,ci=None)
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x1773215f3a0>

vehicle1 - Jupyter Notebook

```
In [23]:
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: -0.0026732756969793936


```
In [21]: from sklearn.linear_model import LinearRegression
         from sklearn.metrics import r2_score
         model=LinearRegression()
         model.fit(x_train,y_train)
         y_pred=model.predict(x_test)
         r2=r2_score(y_test,y_pred)
         print("R2.score:",r2)
```

R2.score: 0.0014001719274152613

```
In [ ]:
```