ImageNet Analysis

Name: Mihir Prajapati

1. Experiment Design

The main aim of this project is to check the performance of different GPUs on the cloud when training the ImageNet dataset using different architectures. As this is just a test of GPU performance, the whole dataset is not needed, and the model also does need not to be trained all the way through.

So, for the purpose of this experiment the following GPUs were used on the NYU HPC provided:

A100 (GPU: 1)V100 (GPU: 1)

And the following architectures were trained:

- resnet18
- alexnet

As the focus of the experiment is just GPU performance, the dataset that was used was just a **dummy dataset** that randomly generated using **FakeData** function provided by PyTorch. It had the same input size as the ImageNet dataset, so it doesn't have any impact on the expected output as compared to the original dataset.

2. Complexity Estimation and Measurement

To measure performance, two things are estimated the **FLOPs** during training and the **bytes** used.

For this, the **profiler** from the **torch** library is utilized in conjunction Nsight profiler command **ncu** in the terminal to run the python script. The profiling is done using the commands **ncu.start()** and **ncu.stop()**, which are inserted at points in the **train** function where FLOPs estimation is required.

The following command was used to obtain all required metrics to calculate **FLOPs** and **memory**:

ncu -f --log-file resnet18_A100.log --profile-from-start off --replay-mode application --metrics smsp_sass_thread_inst_executed_op_fp16_pred_on.sum,smspsass_thread_inst_executed_op_fadd_pred_on.sum,smspsass_thread_inst_executed_op_fmul_pred_on.sum,smspsass_thread_inst_executed_op_ffma_pred_on.sum,dramsectors_write.sum,drambytes_write.sum.per_second,dramsectors_read.sum,dram_bytes_read.sum.per_second --target-processes all python3 ./main.py --batch-size 4 --epochs 1 -- print-freq 10 -a resnet18 --dummy

The following shell script command was used to retrieve the records from the generated LOGs:

ncu -f --log-file \$LOG --metrics \$METRICS --target-processes all \$RUN_COMMAND

```
for TYPE in ${METRICS//,/}; do cat $LOG | grep $TYPE | sed -e "s/,//g" | awk -v t="$TYPE"

'BEGIN{sum=0}{sum=sum+$3}END{printf("%s %d\n", t, sum);}' >> $ LOG done
```

FLOPs were calculated using the following formula:

ImageNet Analysis

Name: Mihir Prajapati

FLOPs = smspsass_thread_inst_executed_op_fadd_pred_on.sum + smspsass_thread_inst_executed_op_fmul_pred_on.sum + (smspsass_thread_inst_executed_op_ffma_pred_on.sum * 2)

Bytes accessed:

(drambytes_write.sum.per_second + dramsectors_read.sum) * 32

Arithmetic Intensity: FLOPs / Bytes

Attainable FLOPs/sec: FLOPs/ total time

The following values were obtained for each architecture on each GPU:

ResNet-18 Model

NVIDIA A100 GPU

gpu__time_duration.sum: 4953 ms dram__bytes_read.sum: 67,685 dram__bytes_write.sum: 10,175 dram__sectors_write.sum: 721,025 dram__sectors_read.sum: 32,093,153

smsp__sass_thread_inst_executed_op_fadd_pred_on.sum: 132,532,938 smsp__sass_thread_inst_executed_op_fmul_pred_on.sum: 169,224,032 smsp__sass_thread_inst_executed_op_ffma_pred_on.sum: 139,482,243

Total FLOPs: 580,721,456

Arithmetic Intensity (AI): 0.553 FLOPS/byte

Performance: 0.1172 TFLOPS

NVIDIA V100 GPU

gpu__time_duration.sum: 6892 ms dram__bytes_read.sum: 38,461 dram__bytes_write.sum: 26,543 dram__sectors_write.sum: 14,217,318 dram__sectors_read.sum: 27,932,573

smsp__sass_thread_inst_executed_op_fadd_pred_on.sum: 598,970,432 smsp__sass_thread_inst_executed_op_fmul_pred_on.sum: 126,847,035 smsp__sass_thread_inst_executed_op_ffma_pred_on.sum: 15,498,365,832

Total FLOPs: 31,722,549,131

Arithmetic Intensity (AI): 23.5191 FLOPS/byte

Performance: 4.602 TFLOPS

AlexNet Model

NVIDIA A100 GPU

gpu__time_duration.sum: 2453 ms dram__bytes_read.sum: 19,034

ImageNet Analysis

Name: Mihir Prajapati

dram__bytes_write.sum: 5,179

dram__sectors_write.sum: 6,132,105 dram__sectors_read.sum: 19,934,612

smsp__sass_thread_inst_executed_op_fadd_pred_on.sum: 25,201,689 smsp__sass_thread_inst_executed_op_fmul_pred_on.sum: 112,320,861 smsp__sass_thread_inst_executed_op_ffma_pred_on.sum: 2,115,336,075

Total FLOPs: 4,368,194,700

Arithmetic Intensity (AI): 5.2367 FLOPS/byte

Performance: 1.780 TFLOPS

NVIDIA V100 GPU

gpu__time_duration.sum: 3531 ms dram__bytes_read.sum: 14,752 dram__bytes_write.sum: 8,137

dram__sectors_write.sum: 14,491,783 dram_sectors_read.sum: 24,013,751

smsp__sass_thread_inst_executed_op_fadd_pred_on.sum: 181,164,298 smsp__sass_thread_inst_executed_op_fmul_pred_on.sum: 147,095,735 smsp__sass_thread_inst_executed_op_ffma_pred_on.sum: 6,092,243,504

Total FLOPs: 12,512,747,041

Arithmetic Intensity (AI): 10.3799 FLOPS/byte

Performance: 3.543 TFLOPS

3. Roofline Modeling and Discussion

ImageNet Analysis

Name: Mihir Prajapati

By referring the following graph, discussion can be done of an architecture's performance on a GPU.

ImageNet Analysis

Name: Mihir Prajapati

The horizontal dashed red line is the max FLOPs of the GPU which is 14 TFLOPs.

For ResNet18, a relatively low AI and attainable TFLOPs, this point indicates that the V100 is not being fully utilized for ResNet18. This suggests that ResNet18 may be memory-bound on the V100, and the performance is likely limited by memory bandwidth.

AlexNet on V100 appears to be slightly more compute-intensive than ResNet18 with a higher AI, but still does not come close to the peak performance of the V100. It indicates that while AlexNet is utilizing the GPU's resources better than ResNet18, there's still a considerable gap to reach peak performance, suggesting that there is room for optimization.

Both architectures are well below the peak performance line, indicating that neither is fully utilizing the compute potential of the V100 GPU.

ImageNet Analysis

Name: Mihir Prajapati

ResNet18 has a lower arithmetic intensity and FLOPs, it's less compute-intensive and more memory bandwidth-bound. Its performance is closer to the bandwidth line, suggesting memory accesses are a limiting factor.

AlexNet achieves higher TFLOPS and has a higher arithmetic intensity than ResNet18, suggesting it is making better use of the A100 GPU's compute resources, but it is still below the peak performance, possibly due to a combination of compute and memory limitations.

AlexNet appears to be more compute-bound than ResNet18, given its higher position on the graph relative to the memory bandwidth line.

4. Conclusion

Thus, it is clear that different performance is obtained on each of the GPUs for different architectures. AlexNet has better performance on the A100, and ResNet18 seems to perform better on the V100.

References

- [1] https://github.com/pytorch/examples/tree/master/imagenet
- [2] https://developer.nvidia.com/nsight-systems