### Отчёт по лабораторной работе №2

Управление версиями

Мадина Давлетова

## Содержание

| 1 | Цель работы                    | 4  |
|---|--------------------------------|----|
| 2 | Выполнение лабораторной работы | 5  |
| 3 | Вывод                          | 9  |
| 4 | Контрольные вопросы            | 10 |

# **List of Figures**

| 2.1  | Загрузка пакетов              |
|------|-------------------------------|
| 2.2  | Параметры репозитория         |
| 2.3  | rsa-4096                      |
| 2.4  | ed25519                       |
| 2.5  | GPG ключ                      |
| 2.6  | GPG ключ                      |
| 2.7  | Параметры репозитория         |
| 2.8  | Связь репозитория с аккаунтом |
| 2.9  | Загрузка шаблона              |
| 2.10 | Первый коммит                 |

### 1 Цель работы

Целью данной работы является изучение идеологии и применения средств контроля версий и освоение умений работать c git.

### 2 Выполнение лабораторной работы

Устанавливаем git, git-flow и gh.

Figure 2.1: Загрузка пакетов

Зададим имя и email владельца репозитория, кодировку и прочие параметры.

```
madinadavletova@madinadavletova:-|$
madinadavletova@madinadavletova:-|$ git config --global user.name "madinadavletova"
madinadavletova@madinadavletova:-|$ git config --global user.email "1032234226@pfur.ru"
madinadavletova@madinadavletova:-|$ git config --global core.quotepath false
madinadavletova@madinadavletova:-|$ git config --global init.defaultsnach master
madinadavletova@madinadavletova:-|$ git config --global core.autocrlf input
madinadavletova@madinadavletova:-|$ git config --global core.safecrlf warn
madinadavletova@madinadavletova:-|$
```

Figure 2.2: Параметры репозитория

Создаем SSH ключи

Figure 2.3: rsa-4096

Figure 2.4: ed25519

Создаем GPG ключ

Figure 2.5: GPG ключ

#### Добавляем GPG ключ в аккаунт



Figure 2.6: GPG ключ

#### Настройка автоматических подписей коммитов git

```
WMNN6UZ/oCkriQvy1GnFxKwhfUhQZ/pCMIlHQO3/PcVIzbnbLGG3Rjz6DeDzKPWG
c8duqfmnF1Zu8TQqh3ob5q3GNZ/8NTqfey9pzCXTaLFcV7yCuWHDcBmZtICN8lT+
ARzymMiKNGAeFg5VHd3HRPKbLsr8mRODyeo2z/f/YXUAWzupMF1dmQZeqgquz88n
LAe5
=RYOV
-----END PGP PUBLIC KEY BLOCK----
madinadavletovaemadinadavletova:-$
madinadavletovaemadinadavletova:-$
madinadavletovaemadinadavletova:-$
madinadavletovaemadinadavletova:-$
git config --global user.signingkey C4EASC79F571C31A
madinadavletovaemadinadavletova:-$
```

Figure 2.7: Параметры репозитория

#### Настройка gh

```
madinadavletova@madinadavletova: $ gh auth login
? What account do you want to log into? GitHub.com
? What is your preferred protocol for Git operations on this host? SSH
? Upload your SSH public key to your GitHub account? /home/madinadavletova/.ssh/id_rsa.pub
? Title for your SSH key: GitHub CLI
? How would you like to authenticate GitHub CLI? Login with a web browser

! First copy your one-time code: 9B35-FFE7
Press Enter to open github.com in your browser...
/ Authentication complete.
- gh config set -h github.com git_protocol ssh
/ Configured git protocol
/ Uploaded the SSH key to your GitHub account: /hipme/madinadavletova/.ssh/id_rsa.pub
/ Logged in as madinadavletova
madinadavletova@madinadavletova:-$
madinadavletova@madinadavletova:-$
madinadavletova@madinadavletova:-$
madinadavletova@madinadavletova:-$ cd -/work/study/2023-2024/"Операционные системы"
madinadavletova@madinadavletova:-$ cd -/work/study/2023-2024/"Операционные системы"
madinadavletova@madinadavletova:-yourk/study/2023-2024/"Операционные системы$ gh repo create os-intro --templat
eeyamadharma/course-directory-student-template --public
/ Created repository madinadavletova:-/work/study/2023-2024/Oперационные системы$ gh repo create os-intro --templat
madinadavletova@madinadavletova:-/mork/study/2023-2024/Oперационные системы$ gh repo create os-intro --templat
eeyamadharma/course-directory-student-template --public
/ Created repository madinadavletova?-/mork/study/2023-2024/Oперационные системы$
```

Figure 2.8: Связь репозитория с аккаунтом

#### Загрузка шаблона репозитория и синхронизация

```
Клонирование в «/home/madinadavletova/work/study/2023-2024/Операционные системы/os-intro/template/report»...
remote: Enumerating objects: 126, done.
remote: Counting objects: 100% (126/126), done.
remote: Compressing objects: 100% (87/87), done.
remote: Total 126 (delta 52), reused 108 (delta 34), pack-reused 0
Получение объектов: 100% (126/126), 335.80 киб | 2.52 Миб/с, готово.
Определение изменений: 100% (52/52), готово.
Submodule path 'template/presentation': checked out '40a1761813e197d00e8443ff1ca72c60a304f24c'
Submodule path 'template/presentation': checked out '40a1761813e197d00e8443ff1ca72c60a304f24c'
Submodule path 'template/present': checked out '17c31ab8e5dfa8cdb2d67caeb8a19ef8028ced88e'
madinadavletova@madinadavletova:-/work/study/2023-2024/Oперационные системы% cd ~/work/study/2023-2024/"Oперационные системы% cd ~/work/study/2023-2024/"Oперационные системы/os-intro% rm package.json
madinadavletova@madinadavletova:-/work/study/2023-2024/Операционные системы/os-intro% make COURSE-os-intro pre
pare
madinadavletova@madinadavletova:-/work/study/2023-2024/Oперационные системы/os-intro% ls
CHANGELOG.md COURSE LICENSE prepare project-personal README.git-flow.md template
config labs Makefile presentation README.en.md README.en.m
```

Figure 2.9: Загрузка шаблона

#### Подготовка репозитория и коммит изменений

```
create mode 100644 project-personal/stage6/report/bib/cite.bib
create mode 100644 project-personal/stage6/report/jmage/placeimg_800_600_tech.jpg
create mode 100644 project-personal/stage6/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
create mode 100755 project-personal/stage6/report/pandoc/filters/pandoc_gnos.py
create mode 100755 project-personal/stage6/report/pandoc/filters/pandoc_fignos.py
create mode 100755 project-personal/stage6/report/pandoc/filters/pandoc_fignos.py
create mode 100755 project-personal/stage6/report/pandoc/filters/pandoc_tos.py
create mode 100644 project-personal/stage6/report/pandoc/filters/pandocxnos/__init__.py
create mode 100644 project-personal/stage6/report/pandoc/filters/pandocxnos/__init__.py
create mode 100644 project-personal/stage6/report/pandoc/filters/pandocxnos/main.py
create mode 100644 project-personal/stage6/report/pandoc/filters/pandocxnos/main.py
create mode 100644 project-personal/stage6/report/pandoc/filters/pandocxnos/pandocattributes.py
create mode 100644 project-personal/stage6/report/pandoc/filters/pandocxnos/pandocattributes.py
create mode 100644 project-personal/stage6/report/report.md
Перечисление объектов: 38, готово.
Подсчет объектов: 100% (38/38), готово.
Подсчет объектов: 100% (38/38), готово.
Запись объектов: 100% (30/30), готово.
Всего 37 (изменений 4), повторно использовано 0 (изменений 0), повторно использовано пакетов 0
remote: Resolving deltas: 100% (4/4), completed with 1 local object.
To github.com.madinadavletova/os-intro.git
d886369..d707699 master -> master
madinadavletovas-intro.git
```

Figure 2.10: Первый коммит

## 3 Вывод

Мы приобрели практические навыки работы с сервисом github.

### 4 Контрольные вопросы

1. Что такое системы контроля версий (VCS) и для решения каких задач они предназначаются?

Системы контроля версий (Version Control System, VCS) применяются при работе нескольких человек над одним проектом. Обычно основное дерево проекта хранится в локальном или удалённом репозитории, к которому настроен доступ для участников проекта. При внесении изменений в содержание проекта система контроля версий позволяет их фиксировать, совмещать изменения, произведённые разными участниками проекта, производить откат к любой более ранней версии проекта, если это требуется

- 2. Объясните следующие понятия VCS и их отношения: хранилище, commit, история, рабочая копия.
- хранилище пространство на накопителе где расположен репозиторий
- commit сохранение состояния хранилища
- история список изменений хранилища (коммитов)
- рабочая копия локальная копия сетевого репозитория, в которой работает программист. Текущее состояние файлов проекта, основанное на версии, загруженной из хранилища (обычно на последней)
- 3. Что представляют собой и чем отличаются централизованные и децентрализованные VCS? Приведите примеры VCS каждого вида.

Централизованные системы контроля версий представляют собой приложения типа клиент-сервер, когда репозиторий проекта существует в единственном экземпляре и хранится на сервере. Доступ к нему осуществлялся через специальное клиентское приложение. В качестве примеров таких программных продуктов можно привести CVS, Subversion.

Распределенные системы контроля версий (Distributed Version Control System, DVCS) позволяют хранить репозиторий (его копию) у каждого разработчика, работающего с данной системой. При этом можно выделить центральный репозиторий (условно), в который будут отправляться изменения из локальных и, с ним же эти локальные репозитории будут синхронизироваться. При работе с такой системой, пользователи периодически синхронизируют свои локальные репозитории с центральным и работают непосредственно со своей локальной копией. После внесения достаточного количества изменений в локальную копию они (изменения) отправляются на сервер. При этом сервер, чаще всего, выбирается условно, т.к. в большинстве DVCS нет такого понятия как "выделенный сервер с центральным репозиторием".

4. Опишите действия с VCS при единоличной работе с хранилищем.

Один пользователь работает над проектом и по мере необходимости делает коммиты, сохраняя определенные этапы.

5. Опишите порядок работы с общим хранилищем VCS.

Несколько пользователей работают каждый над своей частью проекта. При этом каждый должен работать в своей ветки. При завершении работы ветка пользователя сливается с основной веткой проекта.

- 6. Каковы основные задачи, решаемые инструментальным средством git?
- Ведение истории версий проекта: журнал (log), метки (tags), ветвления (branches).

- Работа с изменениями: выявление (diff), слияние (patch, merge).
- Обеспечение совместной работы: получение версии с сервера, загрузка обновлений на сервер.
- 7. Назовите и дайте краткую характеристику командам git.
- git config установка параметров
- git status полный список изменений файлов, ожидающих коммита
- git add . сделать все измененные файлы готовыми для коммита.
- git commit -m "[descriptive message]" записать изменения с заданным сообщением.
- git branch список всех локальных веток в текущей директории.
- git checkout [branch-name] переключиться на указанную ветку и обновить рабочую директорию.
- git merge [branch] соединить изменения в текущей ветке с изменениями из заданной.
- git push запушить текущую ветку в удаленную ветку.
- git pull загрузить историю и изменения удаленной ветки и произвести слияние с текущей веткой.
- 8. Приведите примеры использования при работе с локальным и удалённым репозиториями.
- git remote add [имя] [url] добавляет удалённый репозиторий с заданным именем;
- git remote remove [имя] удаляет удалённый репозиторий с заданным именем;
- git remote rename [старое имя] [новое имя] переименовывает удалённый репозиторий;
- git remote set-url [имя] [url] присваивает репозиторию с именем новый адрес;

- git remote show [имя] показывает информацию о репозитории.
- 9. Что такое и зачем могут быть нужны ветви (branches)?

Ветвление — это возможность работать над разными версиями проекта: вместо одного списка с упорядоченными коммитами история будет расходиться в определённых точках. Каждая ветвь содержит легковесный указатель HEAD на последний коммит, что позволяет без лишних затрат создать много веток. Ветка по умолчанию называется master, но лучше назвать её в соответствии с разрабатываемой в ней функциональностью.

10. Как и зачем можно игнорировать некоторые файлы при commit?

Зачастую нам не нужно, чтобы Git отслеживал все файлы в репозитории, потому что в их число могут входить: