Problem-304

Problem Statement

- (a) Find the side of a square having the same perimeter as a rectangle with sides *a* and *b*.
- (b) Find the side of a square having the same area as a rectangle with sides a and b.

Solution

- (a) The question could also ask what are the sides of the rectangle having the same perimeter as a rectangle with sides a and b, but has the maximum possible area. From **Problem-263**, we know that the rectangle with the maximum area would be a square. Say the side of the square is x. Then we need 4x = 2(a + b), or $x = \frac{a+b}{2}$. Therefore, the side of the square is the arithmetic mean of the sides of the rectangle.
- (b) The question could also ask what are the sides of the rectangle having the same area as a rectangle with sides a and b, but has the minimum possible preimeter. From **Problem-264**, we know that the rectangle with the minimum perimeter would be a square. We need $x^2 = a \cdot b$, or $x = \sqrt{a \cdot b}$. Therefore, the side of the square is the geometric mean of the sides of the rectangle.

Problem-317

Problem Statement

Prove the inequality between arithmetic and geometric means for n = 4.

Solution

For non-negative integers a, b, c, d, we need to prove

$$\sqrt[4]{a \cdot b \cdot c \cdot d} \leq \frac{a + b + c + d}{4}$$

We make the below two observations, (1) and (2) which we use during the proof.

$$a \cdot b \quad ? \quad \frac{a+b}{2} \cdot \frac{a+b}{2}$$

$$4 \cdot a \cdot b \quad ? \quad (a+b)^2$$

$$0 \quad ? \quad (a-b)^2$$

$$0 \quad \leq \quad (a-b)^2$$

Thus we have

$$\frac{a+b}{2} \cdot \frac{a+b}{2} \ge a \cdot b \tag{1}$$

Similarly,

$$\frac{a+b}{2} \cdot \frac{c+d}{2}$$
 ? $\frac{a+b+c+d}{4} \cdot \frac{a+b+c+d}{4}$

Let a + b = x and c + d = y, and we have

$$\frac{x}{2} \cdot \frac{y}{2} \quad ? \quad \frac{x+y}{4} \cdot \frac{x+y}{4}$$

$$(a-b)^{24} \cdot x \cdot y \quad ? \quad (x+y)^{2}$$

$$0 \quad ? \quad (x-y)^{2}$$

$$0 \quad \leq \quad (x-y)^{2}$$

Thus we have,

$$\frac{a+b+c+d}{4} \cdot \frac{a+b+c+d}{4} \ge \frac{a+b}{2} \cdot \frac{c+d}{2} \tag{2}$$

Now we perform a sequence of transformations on the four numbers (a,b,c,d). After each transformation, the sum remains a+b+c+d but the product is bigger or equal to $a \cdot b \cdot c \cdot d$.

$$(a,b,c,d) \mapsto \left(\frac{a+b}{2}, \frac{a+b}{2}, c, d\right)$$

In the above transformation, the product increases or remains the same (when a = b) because of (1).

$$\left(\frac{a+b}{2},\frac{a+b}{2},c,d\right) \mapsto \left(\frac{a+b}{2},\frac{a+b}{2},\frac{c+d}{2},\frac{c+d}{2}\right)$$

In the above transformation, the product increases or remains the same (when c = d) because of (1).

$$\left(\frac{a+b}{2},\frac{a+b}{2},\frac{c+d}{2},\frac{c+d}{2}\right) \mapsto \left(\frac{a+b+c+d}{4},\frac{a+b}{2},\frac{a+b+c+d}{4},\frac{c+d}{2}\right)$$

In the above transformation, the product increases or remains the same (when a+b=c+d) because of (2).

$$\left(\frac{a+b+c+d}{4},\frac{a+b}{2},\frac{a+b+c+d}{4},\frac{c+d}{2}\right) \mapsto \left(\frac{a+b+c+d}{4},\frac{a+b+c+d}{4},\frac{a+b+c+d}{4},\frac{a+b+c+d}{4}\right)$$

In the above transformation, the product increases or remains the same (when a+b=c+d) because of (2). Let $\frac{a+b+c+d}{4}=S$. Then from the last transformation, we have

$$a \cdot b \cdot c \cdot d \le S \cdot S \cdot S$$

$$\sqrt[4]{a \cdot b \cdot c \cdot d} \le \frac{a + b + c + d}{4}$$