Лабораторная работа 6

Тагиев Б. А. 18 февраля 2023

Российский университет дружбы народов, Москва, Россия

Цель работы

Цель работы

Целью данной работы является построение модели эпидемиологической ситуации.

Задание

Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=4578) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0) = 78, А число здоровых людей с иммунитетом к болезни R(0) = 28. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0) = N - I(0) - R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0) > I^*$

1. Опишем начальные условия для варианта 62 на языке Julia

```
N = 4578
I0 = 78 \ \# \  заболевшие
R0 = 28 \ \# \  с иммунитетом
S0 = N - I0 - R0 \ \# \  здоровые, но восприимчивые
alpha = 0.5 \ \# \  коэффициент заболеваемости
beta = 0.1 \ \# \  коэффициент выздоровления
```

2. Зададим соответствующую систему ДУ для первого случая (больные изолированы).

```
function ode_fn(du, u, p, t)
   S, I, R = u
   du[1] = 0
   du[2] = -beta*u[2]
   du[3] = beta*I
end
```

3. Полный исходный код представлен в репозитории. Запустим вычисление и сохраним график. Давайте перейдем к расмотрению графика.

Figure 1: Графики численности особей трех групп S, I, R, когда больные изолированы

4. Изменим систему дифференциальных уравнений для второго случая, когда зараженные могут инфицировать особей из группы S

```
function ode_fn(du, u, p, t)
   S, I, R = u
   du[1] = -alpha*u[1]
   du[2] = alpha*u[1] - beta*u[2]
   du[3] = beta*I
end
```

5. Полный исходный код представлен в репозитории. Также запустим вычисления и посмотрим, что происходит с особями. Здесь мы видим, что зараженные особи заражают восприимчивых особей, а после все зараженные особи получают иммунитет.

Figure 2: Графики численности особей трех групп S, I, R, когда больные не изолированы 8/13

6. Перейдем к OpenModelica. Далее представлен код для описания модели с изоляцией. Полный исходный код представлен в репозитории.

```
equation
der(S) = 0;
der(I) = -beta*I;
der(R) = beta*I;
```

7. Если запустить симуляцию, то мы увидим следующие графики изменения количества особей в трех группах.

Figure 3: Графики численности особей трех групп S, I, R, когда больные изолированы

8. Добавим в наше ДУ
возможность equation
заражения группы S. der(S) = -alpha*S;
Полный исходный код der(I) = alpha*S - beta*I;
представлен в der(R) = beta*I;

9. Перейдем к симуляции и увидим следующия изменения.

Figure 4: Графики численности особей трех групп S, I, R, когда больные не изолированы

Выводы

Выводы

В итоге проделанной работы мы построили графики зависимости численности особей трех групп S, I, R для случаев, когда больные изолированы и когда они могут заражать особей группы S, на языках Julia и OpenModelica.