COL202: Discrete Mathematical Structures. I semester, 2017-18.

Amitabha Bagchi

Tutorial Sheet 4: Part 1: Relations and infinite sets; Part 2: Pre-exam review 18 August 2017

Important: The boxed question is to be submitted at the beginning of class on a plain sheet of paper with your name, entry number and the tutorial sheet number clearly written at the top of the sheet.

Part 1: Relations and infinite sets

Problem 1

Prove that for any binary relations \mathcal{R} and \mathcal{S} on a set A,

- 1. $(\mathcal{R}^{-1})^{-1} = \mathcal{R}$
- 2. $(\mathcal{R} \cap \mathcal{S})^{-1} = \mathcal{R}^{-1} \cap \mathcal{S}^{-1}$
- 3. $(\mathcal{R} \cup \mathcal{S})^{-1} = \mathcal{R}^{-1} \cup \mathcal{S}^{-1}$
- 4. $(\mathcal{R} \setminus \mathcal{S})^{-1} = \mathcal{R}^{-1} \setminus \mathcal{S}^{-1}$

Problem 2

Recall that in class we tried to prove that \mathbb{N}^2 is countable as follows. We defined the set $A_{2,3} = \{2^i \cdot 3^j : i, j > 0\}$ and constructed a mapping $f : \mathbb{N}^2 \to A_{2,3}$ such that for any $(i,j) \in \mathbb{N}^2$, $f(i,j) = 2^i 3^j$. First convince yourself that f is a bijection. Let us now complete the proof.

Problem 2.1

Recall the Schröder-Bernstein theorem: Given two sets A and B, if there is an injection from A to B and an injection from B to A there exists a bijection between A and B. To use this to complete the proof do the following

- 1. Define an injection from $A_{2,3}$ to \mathbb{N} .
- 2. Define an injection from \mathbb{N} to $A_{2,3}$.
- 3. Prove that bijections compose, i.e., if f is a bijection between A and B and g is a bijection from B to C then $g \circ f$ is a bijection from A to C

After performing these three steps explain how they help us prove the result.

Problem 2.2

To avoid using Schröder-Bernstein's theorem we need to perform the "space-filling" argument to directly construct a bijection between \mathbb{N} and \mathbb{N}^2 . Write out explicitly the "space-filling" mapping for this purpose and demonstrate it is a bijection. Work out the generalisation of this mapping that gives us a bijection between \mathbb{N}^d and \mathbb{N} where $d \geq 2$.

Problem 3

Prove the following properties of countable sets. In doing so try to avoid using the Schröder-Bernstein theorem, i.e., try to construct bijections rather than two injections.

- 1. Every infinite subset of \mathbb{N} is countable.
- 2. If A is a finite set and B is a countable set then $A \cup B$ is countable.
- 3. If A and B are countable sets then $A \cup B$ is also countable.

Part 2: Pre-exam review

All problems taken from [1].

Problem 4

In the Double Tower of Hanoi problem there are 2n disks of n different sizes, 2 of each size. As before we are to move all the disks from tower 1 to tower 3 using tower 2 for help, without placing a disk of (strictly) larger radius on top of a disk of (strictly) smaller radius. How many moves will it take to transfer the disks if disks of the same radius are indistinguishable from each other.

Problem 5

Solve the recurrence

$$g_n = g_{n-1} + 2g_{n-2} + \dots + ng_0$$
, for $n > 0$,

with $g_0 = 1$. Try and solve it in multiple ways.

Problem 6

In the following assume that A(x), B(x) and C(x) are the ordinary power series generating functions of the sequences $\{a_n\}_{n\geq 0}$, $\{b_n\}_{n\geq 0}$ and $\{c_n\}_{n\geq 0}$ respectively. With this notation attempt the following problems:

Problem 6.1

If $c_n = \sum_{j+2k \le n} a_j b_k$, express C(x) in terms of A(x) and B(x).

Problem 6.2

If

$$nb_n = \sum_{k=0}^{n} 2^k \frac{a_k}{(n-k)!},$$

express A(x) in terms of B(x).

Problem 7

Solve the recurrence $g_0 = 0, g_1 = 1$ and

$$g_n = -2ng_{n-1} + \sum_{k=0}^{n} \binom{n}{k} g_k g_{n-k}, \text{ for } n > 1,$$

using an exponential generating function.

References

[1] R. L. Graham, D. E. Knuth, O. Patashnik. Concrete Mathematics: A foundation for computer science, 2nd ed. Pearson, 1994.