

APLICACIONES AVANZADAS DE LA IA

MÁSTER UNIV. EN INGENIERÍA INFORMÁTICA

Curso: 2023-2024

José Antonio Iglesias Martínez

IA en la Industria Automotriz

IA en el campo de la salud

3. IA en el mundo empresarial

IA en la Ingeniería

Grupos de 3 y 4

4 prácticas parciales (65%)

Preguntas prácticas (35%)

Prácticas

1.

IA en la Industria Automotriz

2.

IA en el campo de la salud

3.

IA en el mundo empresarial

4.

IA en la Ingeniería

ADAS centrados en el conductor

Modelado del Comportamiento del Conductor

Aplicaciones Reconocimiento de maniobras:

Identificación de estados deficientes del conductor (fatiga, la distracción, etc.), que pueden provocar una conducción insegura.

Creación de modelos cognitivos "humanos" en vehículos autónomos.

Detección de posibles estilos de conducción: normal, agresivo, etc..

OBJETIVO de la práctica:

Determinar qué secuencia de eventos (acciones atómicas) son características de una determinada maniobra. Para ello, se realizará el procesado las señales estándar de los vehículos:

velocidad,

revoluciones,

ángulo del volante,

posición de los pedales,

CAN

Reconocer las maniobras del conductor para:

Mejorar la seguridad del transporte, así como la experiencia de conducción.

Modelado del Comportamiento del Conductor

Entorno de simulación utilizado para obtener datos:

Entorno de simulación de conducción montado de forma similar al M300WS que provee *STSIM Drive* (Laboratorio Grupo CAOS)

Datos disponibles:

Velocidad

Revoluciones por minuto

Ángulo del volante

🖟 🖟 Pedal del acelerador

Pedal del freno

Pedal del embrague

Marchas

Maniobras

Metodología en la recogida de datos:

Diseño de un escenario de conducción simulado

Recopilación de datos

Vídeo maniobra

Identificación visual de las maniobras

Fusión de datos en bruto y etiquetas de maniobras

Podría utilizarse una Taxonomía

Podría realizarse **Preprocesamiento**

Velocidad

Revoluciones por minuto

Ángulo del volante

Pedal del acelerador

Pedal del freno

Pedal del embrague

Marchas

$$\hat{v}_k = \begin{cases} 1, & \Delta v_k > 0 \\ 0, & \Delta v_k = 0 \\ -1, & \Delta v_k < 0 \end{cases}$$

$$\Delta v_k = v_k - v_{k-1}$$

$$\hat{g}_{k} = \begin{cases} 1, & \Delta g_{k} > 0 \text{ o } g_{k} = 1 \\ 0, & \Delta g_{k} = 0 \\ -1, & \Delta g_{k} < 0 \end{cases}$$

$$\hat{p}_{k} = \begin{cases} 1, & p_{k} > 0 \\ 0, & p_{k} = 0 \end{cases}$$

$$\hat{s}_{k} = \begin{cases} 1, & \Delta s_{k} > 0 \\ -1, & \Delta s_{k} < 0 \end{cases}$$

Podría realizarse Preprocesamiento

Aspecto importante a tener en cuenta:

Conservar en cierta forma la secuencialidad de las acciones atómicas (eventos)

Papers Relacionados

Goran Andonovski, Oscar Sipele, José Antonio Iglesias, Araceli Sanchis, Edwin Lughofer, Igor Skrjanc: Detection of driver maneuvers using evolving fuzzy cloud-based system. 2020 IEEE Symposium Series on Computational Intelligence (Canberra, Australia). Pages: 700-706.

Link: https://ieeexplore.ieee.org/document/9308520

Igor Skrjanc, Goran Andonovski, Agapito Ledezma, Oscar Sipele, José Antonio Iglesias, Araceli Sanchis. Evolving cloud-based system for the recognition of drivers' actions. Expert Systems with Applications 99: 231-238 (2018)

Link: http://msc.fe.uni-lj.si/Papers/2016_%C5%A0krjanc_Driver_detection.pdf

Datos sobre la práctica

Dealine:

23 de febrero -15:00h

Grupos de 3-4 personas

Entrega:

 Documento explicativo de la propuesta: herramientas utilizadas, resultados y su análisis, conclusiones, etc...

No hay un formato de entrega establecido, podría entregarse un notebook de Python.

Aquellos ficheros que sean necesarios para "replicar" el sistema

APLICACIONES AVANZADAS DE LA IA

MÁSTER UNIV. EN INGENIERÍA INFORMÁTICA

Curso: 2023-2024

José Antonio Iglesias Martínez

