

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institut für Integrierte Systeme

Integrated Systems Laboratory

Lecture notes on

Computer Arithmetic: Principles, Architectures, and VLSI Design

March 16, 1999

Reto Zimmermann

Integrated Systems Laboratory
Swiss Federal Institute of Technology (ETH)
CH-8092 Zürich, Switzerland
zimmermann@iis.ee.ethz.ch

Copyright © 1999 by Integrated Systems Laboratory, ETH Zürich

http://www.iis.ee.ethz.ch/ zimmi/publications/comp_arith_notes.ps.qz

Contents
Contents
1 Introduction and Conventions 4
1.1 Outline
1.2 Motivation
1.3 Conventions
1.4 Recursive Function Evaluation 6
2 Arithmetic Operations 8
2.1 Overview 8
2.2 Implementation Techniques 9
3 Number Representations
3.1 Binary Number Systems (BNS)
3.2 Gray Numbers
3.3 Redundant Number Systems
3.4 Residue Number Systems (RNS)
3.5 Floating-Point Numbers
3.6 Logarithmic Number System
3.7 Antitetrational Number System
3.8 Composite Arithmetic
3.9 Round-Off Schemes
4 Addition
4.1 Overview
4.2 1-Bit Adders, (m, k)-Counters
Computer Arithmetic: Principles, Architectures, and VLSI Design

Contents
7.2 Restoring Division
7.3 Non-Restoring Division
7.4 Signed Division
7.5 SRT Division
7.6 High-Radix Division
7.7 Division by Multiplication
7.8 Remainder / Modulus
7.9 Divider Implementations
7.10 Square Root Extraction
8 Elementary Functions 85
8.1 Algorithms
8.2 Integer Exponentiation
8.3 Integer Logarithm
9 VLSI Design Aspects
9.1 Design Levels
9.2 Synthesis 90
9.3 VHDL 91
9.4 Performance
9.5 Testability
Bibliography 96

Contents
4.3 Carry-Propagate Adders (CPA)
4.4 Carry-Save Adder (CSA)
4.5 Multi-Operand Adders
4.6 Sequential Adders
5 Simple/Addition-Based Operations 53
5.1 Complement and Subtraction 53
5.2 Increment / Decrement
5.3 Counting 58
5.4 Comparison, Coding, Detection
5.5 Shift, Extension, Saturation
5.6 Addition Flags
5.7 Arithmetic Logic Unit (ALU)
6 Multiplication 69
6.1 Multiplication Basics
6.2 Unsigned Array Multiplier
6.3 Signed Array Multipliers
6.4 Booth Recoding
6.5 Wallace Tree Addition
6.6 Multiplier Implementations
6.7 Composition from Smaller Multipliers
6.8 Squaring 76
7 Division / Square Root Extraction 77
7.1 Division Basics
Computer Arithmetic: Principles, Architectures, and VLSI Design 2

1 Introduction and Conventions

1.1 Outline

- Basic *principles* of computer arithmetic [1, 2, 3, 4, 5, 6, 7]
- Circuit architectures and implementations of main arithmetic operations
- Aspects regarding VLSI design of arithmetic units

1.2 Motivation

- Arithmetic units are, among others, core of every *data* path and addressing unit
- Data path is core of:
 - o microprocessors (CPU)
 - ∘ signal processors (DSP)
 - o data-processing application specific ICs (ASIC) and programmable ICs (e.g. FPGA)
- Standard arithmetic units available from libraries
- Design of arithmetic units necessary for :
 - o non-standard operations
 - o high-performance components
 - o library development

Computer Arithmetic: Principles, Architectures, and VLSI Design

1 Introduction and Conventions

1.4 Recursive Function Evaluation

1.4 Recursive Function Evaluation

• Given: inputs a_i , outputs z_i , function f (graph sym.: •)

Non-recursive functions (n.)

ullet Output z_i is a function of input a_i (or $a_{j+m:j}$, m const.)

$$z_i = f(a_i, x) ; i = 0, ..., n-1$$

 \Rightarrow parallel structure :

A = O(n) , T = O(1)

Recursive functions (r.)

- Output z_i is a function of all inputs a_k , $k \leq i$
- a) with *single* output $z = z_{n-1}$ (r.s.) :

$$t_i = f(a_i, t_{i-1}) ; i = 0, ..., n-1$$

 $t_{-1} = 0/1 , z = t_{n-1}$

1. f is non-associative (**r.s.n.**) \Rightarrow serial structure :

Computer Arithmetic: Principles, Architectures, and VLSI Design

1.3 Conventions

Naming conventions

1 Introduction and Conventions

Signal buses: A (1-D), A_i (2-D), $a_{i:k}$ (subbus, 1-D)

Signals: a, a_i (1-D), $a_{i,k}$ (2-D), $A_{i:k}$ (group signal)

Circuit complexity measures : A (area), T (cycle time, delay), AT (area-time product), L (latency, # cycles)

Arithmetic operators: $+, -, \cdot, /, \log (= \log_2)$

Logic operators : + (or), \cdot (and), \oplus (xor), \odot (xnor), $\bar{}$ (not)

Circuit complexity measures

Unit-gate model (\sim gate-equivalents (GE) model):

- *Inverter, buffer* : A = 0, T = 0 (i.e. ignored)
- Simple monotonic 2-input gates (AND, NAND, OR, NOR) : A = 1, T = 1
- Simple non-monotonic 2-input gates (XOR, XNOR) : A = 2, T = 2
- Complex gates: composed from simple gates
- \Rightarrow Simple m-input gates: A = m 1, $T = \lceil \log m \rceil$
- *Wiring* not considered (acceptable for comparison purposes, local wiring, multilevel metallization)
- Only estimations given for complex circuits

Computer Arithmetic: Principles, Architectures, and VLSI Design

1.4 Recursive Function Evaluation

5

2. f is associative (**r.s.a.**)

1 Introduction and Conventions

 \Rightarrow serial or *single-tree* structure :

$$A = O(n)$$
, $T = O(\log n)$

b) with *multiple* outputs z_i (r.m.) (\Rightarrow prefix problem):

$$z_i = f(a_i, z_{i-1}) ; i = 0, ..., n-1, z_{-1} = 0/1$$

1. f is non-associative (**r.m.n.**) \Rightarrow serial structure :

$$A = O(n)$$
, $T = O(n)$

2. f is associative (**r.m.a.**)

$$\Rightarrow$$
 serial or *multi-tree* structure :

$$A = O(n^2), T = O(\log n)$$

 \Rightarrow or *shared-tree* structure :

$$A = O(n \log n) , T = O(\log n)$$

2 Arithmetic Operations

2.1 Overview

1 shift/extension 7 division

2 comparison 8 square root extraction

3 increment/decrement 9 exponential function

4 complement 10 logarithm function

5 addition/subtraction 11 trigonometric functions

6 multiplication 12 hyperbolic functions

Computer Arithmetic: Principles, Architectures, and VLSI Design

3 Number Representations

3.1 Binary Number Systems (BNS)

3 Number Representations

3.1 Binary Number Systems (BNS)

- Radix-2, binary number system (BNS): irredundant, weighted, positional, monotonic [1, 2]
- *n*-bit number is *ordered sequence* of **bits** (binary digits) : $A = (a_{n-1}, a_{n-2}, \dots, a_0)_2$, $a_i \in \{0, 1\}$
- Simple and efficient implementation in digital circuits
- *MSB/LSB* (most-/least-significant bit) : a_{n-1} / a_0
- Represents an integer or fixed-point number, exact
- Fixed-point numbers : $(\underbrace{a_{m-1},\ldots,a_0}_{m\text{-bit integer}} \cdot \underbrace{a_{-1},\ldots,a_{m-n}}_{(n-m)\text{-bit fraction}})$

Unsigned: positive or natural numbers

Value:
$$A = a_{n-1}2^{n-1} + \dots + a_12 + a_0 = \sum_{i=0}^{n-1} a_i 2^i$$

Range : $[0, 2^n - 1]$

Two's (2's) complement: standard representation of *signed* or *integer* numbers

Value:
$$A = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

Range:
$$[-2^{n-1}, 2^{n-1} - 1]$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

2 Arithmetic Operations

2.2 Implementation Techniques

Direct implementation of dedicated units:

• *always* : 1 − 5

• in most cases: 6

• *sometimes* : 7, 8

Sequential implementation using simpler units and several clock cycles (⇒ decomposition):

• sometimes : 6

• in most cases: 7, 8, 9

Table look-up techniques using ROMs:

- universal: simple application to all operations
- efficient only for single-operand operations of high complexity (8-12) and small word length (note: ROM size $= 2^n \times n$)

Approximation techniques using simpler units: 7–12

- taylor series expansion
- polynomial and rational approximations
- convergence of recursive equation systems
- CORDIC (COordinate Rotation DIgital Computer)

Computer Arithmetic: Principles, Architectures, and VLSI Design

9

3 Number Representations

3.1 Binary Number Systems (BNS)

Complement:
$$-A = 2^n - A = \overline{A} + 1$$
, where $\overline{A} = (\overline{a}_{n-1}, \overline{a}_{n-2}, \dots, \overline{a}_0)$

 $Sign: a_{n-1}$

Properties: asymmetric range, compatible with unsigned numbers in many arithmetic operations (i.e. same treatment of positive and negative numbers)

One's (1's) complement: similar to 2's complement

$$\textit{Value}: A = -a_{n-1}(2^{n-1}-1) + \sum_{i=0}^{n-2} a_i 2^i$$

Range:
$$[-(2^{n-1}-1), 2^{n-1}-1]$$

Complement:
$$-A = 2^n - A - 1 = \overline{A}$$

 $Sign: a_{n-1}$

Properties: double representation of zero, symmetric range, modulo $(2^n - 1)$ number system

Sign-magnitude: alternative representation of signed numbers

Value:
$$A = (-1)^{a_{n-1}} \cdot \sum_{i=0}^{n-2} a_i 2^i$$

Range:
$$[-(2^{n-1}-1), 2^{n-1}-1]$$

Complement:
$$-A = (\overline{a}_{n-1}, a_{n-2}, \dots, a_0)$$

 $Sign: a_{n-1}$

10

Gray

Properties: double representation of zero, symmetric range, different treatment of positive and negative numbers in arithmetic operations, no MSB toggles at sign changes around 0 (⇒ low power)

Graphical representation

binary number representation

Conventions

- 2's complement used for *signed numbers* in these notes
- *Unsigned* and *signed* numbers can be treated equally in most cases, exceptions are mentioned

Computer Arithmetic: Principles, Architectures, and VLSI Design

12

3 Number Representations

3.3 Redundant Number Systems

3.3 Redundant Number Systems

- Non-binary, redundant, weighted number systems [1, 2]
- Digit set larger than radix (typically radix 2) ⇒ multiple representations of same number ⇒ redundancy
- + No *carry-propagation* in adders ⇒ more efficient impl. of *adder-based* units (e.g. multipliers and dividers)
- Redundancy ⇒ no direct implementation of *relational* operators ⇒ conversion to irredundant numbers
- Several bits used to represent one digit ⇒ higher storage requirements
- Expensive conversion into irredundant numbers (not necessary if redundant input operands are allowed)

Delayed-carry of half-adder number representation:

•
$$r_i \in \{0, 1, 2\}$$
, $c_i, s_i, a_i, b_i \in \{0, 1\}$,
 $r_i = (c_{i+1}, s_i) = 2c_{i+1} + s_i = a_i + b_i$, $c_{i+1}s_i = 0$

- $R = \sum_{i=0}^{n-1} r_i 2^i = (C, S) = C + S = A + B$
- 1 digit holds sum of 2 bits (no carry-out digit)
- example : (00, 10) = 00 + 10 = 01 + 01 = (10, 00)
- irredundant representation of -1 [8], since $c_{i+1}s_i=0$ & C+S=-1 \rightarrow S=-1, C=0

Carry-save number representation:

•
$$r_i \in \{0, 1, 2, 3\}$$
, $c_i, s_i, a_i, b_i, d_i \in \{0, 1\}$,
 $r_i = (c_{i+1}, s_i) = 2c_{i+1} + s_i = a_i + b_i + d_i = a_i + r'_i$

•
$$R = \sum_{i=0}^{n-1} r_i 2^i = (C, S) = C + S = A + R'$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

3.2 Gray Numbers

- Gray numbers (code): binary, irredundant, non-weighted, non-monotonic
- + *Property*: unit-distance coding (i.e. exactly one bit toggles between adjacent numbers)
- Applications: counters with low output toggle rate (low-power signal buses), representation of continuous signals for low-error sampling (no false numbers due to switching of different bits at different times)
- Non-monotonic numbers : difficult arithmetic operations,e.g. addition, comparison :

g_1g_0	$g_1'g_0'$		g_0	g_0'
0 0 <	0 1	and	0 <	< 1
1 <u>1</u> <	1 <u>0</u>	but	1 >	> 0

• $binary \rightarrow Gray$:

$$g_i = b_{i+1} \oplus b_i, b_n = 0;$$

 $i = 0, \dots, n-1$ (n.)

• $Gray \rightarrow binary$:

$$b_i = b_{i+1} \oplus g_i, b_n = 0;$$

 $i = n - 1, \dots, 0$ (r.m.a.)

	$b_3 b_2 b_1 b_0$	$g_3 g_2 g_1 g_0$
0	$0 \ 0 \ 0 \ 0$	0 0 0 0
1	0 0 0 1	0 0 0 1
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 0 1 0
4	0 1 0 0	0 1 1 0
2 3 4 5	0 1 0 1	0 1 1 1
6 7	0 1 1 0	0 1 0 1
7	0 1 1 1	0 1 0 0
8	1 0 0 0	1 1 0 0
9	1 0 0 1	1 1 0 1
10	1 0 1 0	1 1 1 1
11	1 0 1 1	1 1 1 0
12	1 1 0 0	1 0 1 0
13	1 1 0 1	1 0 1 1
14	1 1 1 0	1 0 0 1
15	1 1 1 1	1 0 0 0

binary

Computer Arithmetic: Principles, Architectures, and VLSI Design

13

3 Number Representations

3.3 Redundant Number Systems

- 1 digit holds sum of 3 bits or 1 digit + 1 bit (no carry-out digit, i.e. carry is **saved**)
- standard redundant number system for fast addition

Signed-digit (SD) or **redundant digit** (RD) number representation :

- $r_i, s_i, t_i \in \{-1, 0, 1\} \equiv \{\overline{1}, 0, 1\}, R = \sum_{i=0}^{n-1} r_i 2^i$
- no carry-propagation in S = R + T:
 - $\circ r_i + t_i = (c_{i+1}, u_i) = 2c_{i+1} + u_i$, $c_{i+1}, u_i \in \{\overline{1}, 0, 1\}$ $\circ (c_{i+1}, u_i)$ is redundant (e.g. $0 + 1 = 01 = 1\overline{1}$)
- $\circ \forall i \ \exists (c_i, u_i) \mid c_i + u_i = s_i \in \{\overline{1}, 0, 1\}$
- 1 digit holds sum of 2 digits (no carry-out digit)
- minimal SD representation : minimal number of non-zero digits, $\boxed{\cdots 011\{1\}10\cdots \rightarrow \cdots 100\{0\}\overline{1}0\cdots}$
 - o *applications*: sequential multiplication (less cycles), filters with constant coefficients (less hardware)
 - o example :

cample:
$$7 = (0111 \mid 1\overline{1}11 \mid 10\overline{1}1 \mid 100\overline{1} \mid 1\overline{1}111 \mid \cdots)$$

- canonical SD repres.: minimal SD + not two non-zero digits in sequence, $\cdots 01\{1\}10\cdots \rightarrow \cdots 10\{0\}\overline{1}0\cdots$
- $SD \rightarrow binary$: carry-propagation necessary (\Rightarrow adder)
- other applications : high-speed multipliers [9]
- similar to *carry-save*, simple use for *signed* numbers

3.4 Residue Number Systems (RNS)

- Non-binary, irredundant, non-weighted number system [1]
- + Carry-free and fast additions and multiplications
- Complex and slow other arithmetic operations
 (e.g. comparison, sign and overflow detection) because digits are not weighted, conversion to weighted mixed-radix or binary system required
- Codes for error detection and correction [1]
- Possible applications (but hardly used):
 - o digital filters: fast additions and multiplications
 - o *error detection* and *correction* for arithmetic operations in conventional and residue number systems
- Base is n-tuple of integers $(m_{n-1}, m_{n-2}, \dots, m_0)$, residues (or moduli) m_i pairwise relatively prime

$$\circ A = (a_{n-1}, a_{n-2}, \dots, a_0)_{m_{n-1}, m_{n-2}, \dots, m_0} ,$$

$$a_i \in \{0, 1, \dots, m_i - 1\}$$

$$\circ$$
 Range: $M = \prod_{i=0}^{n-1} m_i$, anywhere in **Z**

$$\circ a_i = A \bmod m_i = |A|_{m_i} , A = m_i \cdot q_i + a_i$$

$$\circ |A|_{M} = \left| \sum_{i=0}^{n-1} C_{i} a_{i} \right|_{M}, C_{i} = (\dots, 0, \underbrace{1, 0}_{i}, \dots)$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

16

18

3 Number Representations

3.5 Floating-Point Numbers

3.5 Floating-Point Numbers

- Larger *range*, smaller *precision* than fixed-point representation, **inexact**, *real* numbers [1, 2]
- Double-number form \Rightarrow discontinuous precision
- S | biased exponent E | unsigned norm. mantissa M
- $F = (-1)^S \cdot M \cdot \beta^E = (-1)^S \cdot 1.M \cdot 2^{E-bias}$
- Basic arithmetic operations :

$$\begin{split} \circ A \cdot B &= (-1)^{S_A \oplus S_B} \cdot \underline{M_A \cdot M_B} \cdot \beta^{\underline{E_A + E_B}} \\ \circ A + B &= \left(\underline{(-1)^{S_A} \cdot M_A +} \\ &\qquad \qquad (-1)^{S_B} \cdot \left(\underline{M_B} \gg (\underline{E_A - E_B}) \right) \right) \cdot \beta^{E_A} \end{split}$$

- \circ base on *fixed-point* add, multiply, and shift operations \circ *postnormalization* required $(1/\beta < M < 1)$
- Applications:

processors: "real" floating-point formats (e.g. IEEE standard), large range due to universal use

ASICs: usually *simplified* floating-point formats with small exponents, smaller range, used for *range extension* of normal fixed-point numbers

• *IEEE floating-point format* :

precision	n	n_M	n_E	bias	range	precision
single	32	23	8	127	3.8 10 ³⁸	10^{-7}
double	64	52	11	1023	$9 \cdot 10^{307}$	10^{-15}

Computer Arithmetic: Principles, Architectures, and VLSI Design

- 3 Number Representations
- Arithmetic operations : (each digit computed separately)

- Best moduli m_i are 2^k and $(2^k 1)$:
 - \circ high storage efficiency with k bits
 - o simple *modular addition*: 2^k : k-bit adder without c_{out} , $2^k 1$: k-bit adder with end-around carry ($c_{in} = c_{out}$)
- Example: $(m_1, m_0) = (3, 2)$, M = 6

$$\begin{aligned} & \underline{|5|_6} = A = (a_1, a_0) = (|5|_3, |5|_2) = \underline{(2, 1)} \\ & \underline{|4 + 5|_6} = (1, 0) + (2, 1) = \\ & = (|1 + 2|_3, |0 + 1|_2) = (0, 1) = \underline{|3|_6} \\ & \underline{|4 \cdot 5|_6} = (1, 0) \cdot (2, 1) = \\ & = (|1 \cdot 2|_3, |0 \cdot 1|_2) = (2, 0) = |2|_6 \end{aligned}$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

17

3 Number Representations

3.7 Antitetrational Number System

3.6 Logarithmic Number System

- Alternative representation to floating-point (i.e. mantissa + integer exponent → only fixed-point exponent) [1]
- *Single-number* form ⇒ *continuous* precision ⇒ higher accuracy, more reliable
- S biased fixed-point exponent E
- $L = (-1)^S \cdot \beta^E = (-1)^S \cdot 2^{E-bias}$ (signed-logarithmic)
- Basic arithmetic operations :
 - $\circ (A < B) = (E_A < E_B)$ (additionally consider sign)
 - \circ A+B: by approximation or addition in conventional number system and double conversion

$$\circ A \cdot B = (-1)^{S_A \oplus S_B} \cdot \beta^{E_A + E_B}$$

$$\circ A^{y} = (-1)^{S_{A}} \cdot \beta^{y \cdot E_{A}}, \ \sqrt[q]{A} = (-1)^{S_{A}} \cdot \beta^{E_{A}/y}$$

- + Simpler multiplication/exponent., more complex addition
- Expensive *conversion*: (anti)logarithms (table look-up)
- Applications : real-time digital filters

3.7 Antitetrational Number System

- Tetration (t. $x = \underbrace{2^{2^{-2}}}_{x \times}$) and antitetration (a.t. x) [10]
- Larger *range*, smaller *precision* than logarithmic repres., otherwise analogous (i.e. $2^x \to t$. x, $\log x \to a.t$. x)

3.8 Composite Arithmetic

- Proposal for a *new standard* of number representations [10]
- Scheme for storage and display of *exact* (primary: integer, secondary: rational) and inexact (primary: logarithmic, secondary: antitetrational) numbers
- Secondary forms used for numbers not representable by *primary* ones (\Rightarrow no over-/underflow handling necessary)
- Choice of number representation hidden from user, i.e. software/compiler selects format for highest accuracy
- Number representations :

	tag	value				
integer :	00	2's complement integer				
rational:	01±	slash	denominator \ numera			
logarithmic:	10±	log integer		log fraction		
antite trational:	11±	a.t. integer		a.t. integer		a.t. fraction

- Rational numbers : slash position (i.e. size of numerator/ denominator) is variable and stored (floating slash)
- Storage form sizes: 32-bit (short), 64-bit (normal), 128-bit (long), 256-bit (extended)
- Implementation : mixed hardware/software solutions
- Hardware proposal : long accumulator (4096 bits) holds any floating-point number in fixed-point format ⇒ higher accurary ⇒ large hardware/software overhead

Computer Arithmetic: Principles, Architectures, and VLSI Design

4.1 Overview

4 Addition

4 Addition

4.1 Overview

Legend:

HA: half-adder full-adder (m.k): (m.k)-counter (m,2): (m,2)-compressor CPA: carry-propagate adder RCA: ripple-carry adder CSKA:carrv-skip adder CSLA: carry-select adder CIA: carry-increment adder

CLA: carry-lookahead adder PPA: parallel-prefix adder COSA:conditional-sum adder

22

CSA: carry-save adder

based on component related component

Computer Arithmetic: Principles, Architectures, and VLSI Design

3 Number Representations

3.9 Round-Off Schemes

- Intermediate results with d additional lower bits $(\Rightarrow \text{ higher accuracy}): A = (a_{n-1}, \dots, a_0, a_{-1}, \dots, a_{-d})$
- Rounding: keeping error ϵ small during final word length reduction: $R = (r_{n-1}, \ldots, r_0) = A - \epsilon$
- Trade-off: numerical accuracy vs. implementation cost

Truncation: $R_{TRUNC} = (a_{n-1}, \dots, a_0)$

• $bias = -\frac{1}{2} + \frac{1}{2^{d+1}}$ (= average error ϵ)

Round-to-nearest (i.e. normal rounding):

$$R_{ROUND} = (a'_{n-1}, \dots, a'_0), A' = A + \frac{1}{2} = A + 0.1_2$$

- $bias = \frac{1}{2d+1}$ (nearly symmetric)
- "+ 0.12" can often be included in previous operation

Round-to-nearest-even/-odd:

$$R_{ROUND-EVEN} = \begin{cases} R_{ROUND} & \text{if } (a'_{-1}, \dots, a'_{-d}) \neq 0 \cdots 0 \\ (a'_{n-1}, \dots, a'_{1}, 0) & \text{otherwise} \end{cases}$$

- bias = 0 (symmetric)
- mandatory in IEEE floating-point standard
- 3 guard bits for rounding after floating-point operations : guard bit G (postnormalization), round bit R(round-to-nearest), *sticky* bit S (round-to-nearest-even)

Computer Arithmetic: Principles, Architectures, and VLSI Design

4 Addition

4.2 1-Bit Adders, (m, k)-Counters

4.2 1-Bit Adders, (m, k)-Counters

- Add up m bits of same magnitude (i.e. 1-bit numbers)
- Output sum as k-bit number $(k = |\log m| + 1)$
- or : **count** 1's at inputs \Rightarrow (m, k)-counter [3] (combinational counters)

Half-adder (HA), (2, 2)-counter

$$[(c_{out}, s) = 2c_{out} + s = a + b]$$
 $[A = 3, T = 2 (1)]$

$$s = a \oplus b \quad \text{(sum)}$$

$$c_{out} = ab \quad \text{(carry-out)}$$

4.2 1-Bit Adders, (m, k)-Counters

Full-adder (FA), (3, 2)-counter

$$(c_{out}, s) = 2c_{out} + s = a + b + c_{in}$$
 $A = 7, T = 4 (2)$

$$g = ab \quad \text{(generate)} \qquad c^0 = ab$$

$$p = a \oplus b \quad \text{(propagate)} \qquad c^1 = a + b$$

$$s = a \oplus b \oplus c_{in} = p \oplus c_{in}$$

$$c_{out} = ab + ac_{in} + bc_{in} = ab + (a \oplus b)c_{in}$$

$$= g + pc_{in} = \overline{p}g + pc_{in} = \overline{p}a + pc_{in}$$

$$= \overline{c}_{in}c^0 + c_{in}c^1$$

4 Addition

4.3 Carry-Propagate Adders (CPA)

4.3 Carry-Propagate Adders (CPA)

- Add two n-bit operands A and B and an optional carry-in c_{in} by performing **carry-propagation** [1, 2, 11]
- Sum (c_{out}, S) is irredundant (n + 1)-bit number

$$(c_{out}, S) = c_{out}2^n + S = A + B + c_{in}$$

26

Ripple-carry adder (RCA)

- Serial arrangement of n full-adders
- Simplest, smallest, and slowest CPA structure

$$A = 7n \; , \; T = 2n \; , \; AT = 14n^2$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

(m, k)-counters

4 Addition

$$(s_{k-1}, \dots, s_0) = \sum_{j=0}^{k-1} s_j 2^j = \sum_{i=0}^{m-1} a_i$$

- Usually built from full-adders
- Associativity of addition allows convertion from linear to $tree\ structure \Rightarrow faster\ at\ same\ number\ of\ FAs$

$$\begin{split} A &= 7 \sum_{k=1}^{\log m} \lfloor m 2^{-k} \rfloor \approx 7 (m - \log m) \;, \\ T_{LIN} &= 4 m + 2 \lfloor \log m \rfloor \;, \; T_{TREE} = 4 \lceil \log_3 m \rceil + 2 \lfloor \log m \rfloor \end{split}$$

• Example : (7, 3)-counter

4 Addition

4.3 Carry-Propagate Adders (CPA)

25

Carry-propagation speed-up techniques

a) Concatenation of partial CPAs with fast $c_{in} \rightarrow c_{out}$

a) Fast carry look-ahead logic for entire range of bits

Carry-skip adder (CSKA)

• Type a): partial CPA with fast $c_k \to c_i$

$$\begin{split} c_i &= \overline{P}_{i-1:k} c_i' + P_{i-1:k} c_k \ \ \text{(bit group } (a_{i-1}, \dots, a_k) \text{)} \\ P_{i-1:k} &= p_{i-1} p_{i-2} \cdots p_k \ \ \text{(group propagate)} \end{split}$$

- 1) $P_{i-1:k} = 0$: $c_k \not\to c_i'$ and c_i' selected $(c_i' \to c_i)$ 2) $P_{i-1:k} = 1$: $c_k \to c_i'$ but c_i' skipped $(c_i' \not\to c_i)$
- \Rightarrow path $c_k \rightarrow c_i' \rightarrow c_i$ never sensitized \Rightarrow fast $c_k \rightarrow c_i$
- \Rightarrow false path \Rightarrow inherent logic redundancy \Rightarrow problems in circuit optimization, timing analysis, and testing
- *Variable* group sizes (faster): larger groups in the *middle* (minimize delays $a_0 \to c_k \to s_{i-1}$ and $a_k \to c_i \to s_{n-1}$)
- Partial CPA typ. is RCA or CSKA (*⇒ multilevel* CSKA)
- Medium speed-up at small hardware overhead (+ AND/bit + MUX/group)

$$A \approx 8n$$
, $T \approx 4n^{1/2}$, $AT \approx 32n^{3/2}$

Computer Arithmetic: Principles, Architectures, and VLSI Design

28

30

4 Addition

4.3 Carry-Propagate Adders (CPA)

Carry-increment adder (CIA)

• Type a): partial CPA with fast $c_k \to c_i$ and $c_k \to s_{i-1:k}$

$$\begin{split} s_{i-1:k} &= s'_{i-1:k} + c_k \;,\; c_i = c'_i + P_{i-1:k}c_k \\ P_{i-1:k} &= p_{i-1}p_{i-2}\cdots p_k \;\; \text{(group propagate)} \end{split}$$

- Result is **incremented** after addition, if $c_k = 1$ [12, 11]
- Variable group sizes (faster): larger groups at end (MSB) (balance delays $a_0 \rightarrow c_k$ and $a_k \rightarrow c_i'$)
- Part. CPA typ. is RCA, CIA (*⇒ multilevel* CIA) or CLA
- *High* speed-up at *medium* hardware overhead (+ AND/bit + (incrementer + AND-OR)/group)
- Logic of CPA and incrementer can be merged [11]

$$A \approx 10n$$
, $T \approx 2.8n^{1/2}$, $AT \approx 28n^{3/2}$

Computer Arithmetic: Principles, Architectures, and VLSI Design

Carry-select adder (CSLA)

• Type a): partial CPA with fast $c_k \to c_i$ and $c_k \to s_{i-1:k}$

$$\overline{s_{i-1:k}} = \overline{c}_k s_{i-1:k}^0 + c_k s_{i-1:k}^1
c_i = \overline{c}_k c_i^0 + c_k c_i^1$$

- Two CPAs compute two possible results ($c_{in} = 0/1$), group carry-in c_k selects correct one afterwards
- *Variable* group sizes (faster) : larger groups at *end* (MSB) (balance delays $a_0 \rightarrow c_k$ and $a_k \rightarrow c_i^0$)
- Part. CPA typ. is RCA, CSLA (⇒ multil. CSLA), or CLA
- High speed-up at high hardware overhead
 (+ MUX/bit + (CPA + MUX)/group)

$$A \approx 14n$$
, $T \approx 2.8n^{1/2}$, $AT \approx 39n^{3/2}$

Computer Arithmetic: Principles, Architectures, and VLSI Design

4 Addition

4.3 Carry-Propagate Adders (CPA)

29

Example: gate-level schematic of carry-incr. adder (CIA)
 only 2 different logic cells (bit-slices): IHA and IFA

T	4	6	10	12	14	16	18	20	22	24	26	28	 38
$\max n_{group}$			2	3	4	5	6	7	8	9	10	11	 16
\overline{n}	1	2	4	7	11	16	22	29	37	46	56	67	 137

Conditional-sum adder (COSA)

- Type a): optimized *multilevel CSLA* with (log n) levels (i.e. double CPAs are merged at higher levels)
- Correct sum bits $(s_{i-1:k}^0 \text{ or } s_{i-1:k}^1)$ are (**conditionally**) selected through $(\log n)$ levels of multiplexers
- Bit groups of size 2^l at level l
- Higher parallelism, more balanced signal paths
- *Highest* speed-up at *highest* hardware overhead (2 RCA + more than (log n) MUX/bit)

$$A \approx 3n \log n$$
, $T \approx 2 \log n$, $AT \approx 6n \log^2 n$

Computer Arithmetic: Principles, Architectures, and VLSI Design

32

4 Addition

4.3 Carry-Propagate Adders (CPA)

Parallel-prefix adders (PPA)

- Type b): universal adder architecture comprising RCA, CIA, CLA, and more (i.e. entire range of area-delay trade-offs from slowest RCA to fastest CLA)
- Preprocessing, carry-lookahead, and postprocessing step
- Carries calculated using parallel-prefix algorithms
- + High regularity: suitable for synthesis and layout
- + *High flexibility*: special adders, other arithmetic operations, exchangeable prefix algorithms (i.e. speeds)
- + High performance: smallest and fastest adders

4 Additio

Carry-lookahead adder (CLA), traditional

- Type b): carries **looked ahead** before sum bits computed
- Typically 4-bit blocks used (e.g. standard IC SN74181)

- Hierarchical arrangement using $(\frac{1}{2} \log n)$ levels : (g'_3, p'_3) passed up, c'_0 passed down between levels
- High speed-up at medium hardware overhead

$$A \approx 14n$$
, $T \approx 4 \log n$, $AT \approx 56n \log n$

Computer Arithmetic: Principles, Architectures, and VLSI Design

n

4 Addition

4.3 Carry-Propagate Adders (CPA)

Prefix problem

• Inputs (x_{n-1}, \ldots, x_0) , outputs (y_{n-1}, \ldots, y_0) , associative binary operator • [11, 13]

$$(y_{n-1}, \dots, y_0) = (x_{n-1} \bullet \dots \bullet x_0, \dots, x_1 \bullet x_0, x_0)$$
 or $y_0 = x_0, y_i = x_i \bullet y_{i-1}; i = 1, \dots, n-1$ (r.m.a.)

• Associativity of • \Rightarrow *tree structures* for evaluation :

$$\underbrace{x_3 \bullet (x_2 \bullet (\underbrace{x_1 \bullet x_0}))}_{y_1 = Y_{1:0}^1} = \underbrace{(\underbrace{x_3 \bullet x_2})}_{Y_{3:2}^1} \bullet \underbrace{(\underbrace{x_1 \bullet x_0})}_{y_1 = Y_{1:0}^1}, \text{ but } y_2 ?$$

$$\underbrace{y_2 = Y_{2:0}^2}_{y_3 = Y_{3:0}^2}$$

$$\underbrace{y_3 = Y_{3:0}^2}_{y_3 = Y_{3:0}^2}$$

- Group variables $Y_{i:k}^l$: covers bits (x_k, \ldots, x_i) at level l
- Carry-propagation is prefix problem : $Y_{i:k}^l = (G_{i:k}^l, P_{i:k}^l)$

$$(G_{i:i}^{0}, P_{i:i}^{0}) = (g_{i}, p_{i})$$

$$(G_{i:k}^{l}, P_{i:k}^{l}) = (G_{i:j+1}^{l-1}, P_{i:j+1}^{l-1}) \bullet (G_{j:k}^{l-1}, P_{j:k}^{l-1}) ; k \leq j \leq i$$

$$= (G_{i:j+1}^{l-1} + P_{i:j+1}^{l-1} G_{j:k}^{l-1}, P_{i:j+1}^{l-1} P_{j:k}^{l-1})$$

$$c_{i+1} = G_{i:0}^{m} ; i = 0, \dots, n-1, l = 1, \dots, m$$

- Parallel-prefix algorithms [11]:
 - \circ multi-tree structures $(T = O(n) \to O(\log n))$
 - \circ sharing subtrees $(A = O(n^2) \to O(n \log n))$
 - \circ different algorithms trading *area* vs. *delay* (influences also from *wiring* and maximum *fan-out* FO_{max})

Prefix algorithms

- Algorithms visualized by *directed acyclic graphs* (DAG) with array structure (*n* bits × *m* levels)
- Graph *vertex* symbols :

• Performance measures :

 A_{\bullet} : graph *size* (number of black nodes)

 T_{\bullet} : graph *depth* (number of black nodes on critical path)

• *Serial*-prefix algorithm (⇒ RCA)

Computer Arithmetic: Principles, Architectures, and VLSI Design

36

38

4 Addition

- 4.3 Carry-Propagate Adders (CPA)
- *Kogge-Stone* parallel-prefix algorithm (⇒ PPA-KS)
 - o very high wiring requirements

• Carry-increment parallel-prefix algorithm $(\Rightarrow CIA)$

$$A_{\bullet} \approx 2n - 1.4n^{1/2} \;,\; T_{\bullet} \approx 1.4n^{1/2} \;,\; FO_{max} \approx 1.4n^{1/2}$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

- *Sklansky* parallel-prefix algorithm (⇒ PPA-SK)
 - o Tree-like collection, parallel redistribution of carries

$$\frac{A_{\bullet} \approx \frac{1}{2} n \log n \;,\; T_{\bullet} = \lceil \log n \rceil \;,\; FO_{max} \approx \frac{1}{2} n}{\underset{1}{\text{15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0}}{\underset{1}{\text{000 possible}}}$$

- *Brent-Kung* parallel-prefix algorithm (⇒ PPA-BK)
 - Traditional CLA is PPA-BK with 4-bit groups
 - o Tree-like redistribution of carries (fan-out tree)

$$\begin{split} A_{\bullet} = 2n - \lceil \log n \rceil - 2 \;,\; T_{\bullet} = 2\lceil \log n \rceil - 2 \\ FO_{max} \approx \log n \end{split}$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

37

4 Addition

- 4.3 Carry-Propagate Adders (CPA)
- *Mixed serial/parallel*-prefix algorithm (⇒ RCA + PPA)
 - \circ linear *size-depth trade-off* using parameter k:

$$0 \le k \le n - 2\lceil \log n \rceil + 2$$

- $\circ k = 0$: serial-prefix graph
 - $k = n 2\lceil \log n \rceil + 1$: Brent-Kung parallel-prefix graph
- ∘ fills gap between RCA and PPA-BK (i.e. CLA) in steps of single •-operations

 $\overline{A_{\bullet} = n - 1 + k}$, $T_{\bullet} = n - 1 - k$, $FO_{max} = var$.

- Example : 4-bit *parallel-prefix* adder (PPA-SK)
 - efficient *AND-OR-prefix* circuit for the generate and *AND-prefix* circuit for the propagate signals
 - optimization: alternatingly AOI-/OAI- resp. NAND-/ NOR-gates (inverting gates are smaller and faster)
 - o can also be realized using two MUX-prefix circuits

4 Addition

4.3 Carry-Propagate Adders (CPA)

42

Multilevel adders

- *Multilevel* versions of adders of type a) possible (CSKA, CSLA, and CIA; notation: 2-level CIA = CIA-2L)
- + Delay is $O(n^{1/(m+1)})$ for m levels
- Area increase small for CSKA and CIA, high for CSLA (⇒ COSA)
- Difficult computation of optimal group sizes

Hybrid adders

- Arbitrary *combinations* of speed-up techniques possible
 ⇒ hybrid/mixed adder architectures
- Often used combinations : CLA and CSLA [14]
- *Pure* architectures usually perform best (at gate-level)

Transistor-level adders

- Influence of *logic styles* (e.g. dynamic logic, pass-transistor logic ⇒ faster)
- + Efficient *transistor-level* implementation of ripple-carry chains (Manchester chain) [14]
- + Combinations of speed-up techniques make sense
- Much higher design effort
- Many efficient implementations exist and published

Prefix adder synthesis

4 Addition

• Local prefix graph transformation :

- Repeated (local) prefix transformations result in *overall* minimization of graph depth or size ⇒ which sequence?
- Goal: minimal size (area) at given depth (delay)
- Simple *algorithm* for sequence of applied transforms : Step 1 : *prefix graph compression* (depth minimization) : depth-decr. transforms in *right-to-left bottom-up* order
 - Step 2 : *prefix graph expansion* (size minimization) : size-decreasing transforms in *left-to-right top-down* order, if allowed depth not exceeded
- *Prefix adder synthesis*: 1) generate serial-prefix graph, 2) graph compression, 3) depth-controlled graph expansion, 4) generate pre-/postprocessing and prefix logic
- + Generates *all* previous prefix graphs (except PPA-KS)
- + *Universal adder synthesis* algorithm: generates area-optimal adders for any given timing constraints [11] (including non-uniform signal arrival times)

Computer Arithmetic: Principles, Architectures, and VLSI Design

41

4 Addition

4.3 Carry-Propagate Adders (CPA)

Self-timed adders

- Average carry-propagation length: $\log n$
- + RCA is fast in average case $(\tilde{T} = O(\log n))$, slow in worst case \Rightarrow suitable for self-timed asynchronous designs [15]
- Completion detection is not trivial

Adder performance comparisons

• Standard-cell implementations, $0.8\mu m$ process

area [lambda^2] RCA 128-bit CSKA-2L 1e+07 CIA-1L CIA-2L 5 PPA-SK PPĀ-BK 32-bit ĈĹĀ 2 ČŌSĀ Ī const. AT 1e+06 5 delay [ns]

• Complexity comparison under the unit-gate model

adder	A	T	AT	opt.1	syn. ²
RCA	7 <i>n</i>	2n	$14n^{2}$	aaa	$\sqrt{}$
CSKA-1L	8n	$4n^{1/2}$	$32n^{3/2}$	aat 3	
CSKA-2L	8n	$xn^{1/3}$ 4	$xn^{4/3}$ 4	_	
CSLA-1L	14n	$2.8n^{1/2}$	$39n^{3/2}$	_	
CIA-1L	10n	$2.8n^{1/2}$	$28n^{3/2}$	att	$\sqrt{}$
CIA-2L	10n	$3.6n^{1/3}$	$36n^{4/3}$	att	$\sqrt{}$
CIA-3L	10n	$4.4n^{1/4}$	$44n^{5/4}$		$\sqrt{}$
PPA-SK	$\frac{3}{2}n\log n$	$2 \log n$	$3n\log^2 n$	ttt	$\sqrt{}$
PPA-BK	10n	$4 \log n$	$40n \log n$	att	$\sqrt{}$
PPA-KS	$3n \log n$	$2 \log n$	$6n\log^2 n$	_	
CLA 5	14n	$4 \log n$	$56n \log n$	_	(√)
COSA	$3n \log n$	$2 \log n$	$6n\log^2 n$		

optimality regarding area and delay

aaa : smallest area, longest delay

aat : small area, medium delay

att: medium area, short delay ttt: large area, shortest delay

tit : large area, shortesi

— : not optimal

² obtained from prefix adder synthesis

³ automatic logic optimization not possible (redundancy)

⁴ exact factors not calculated

⁵ corresponds to 4-bit PPA-BK

Computer Arithmetic: Principles, Architectures, and VLSI Design

44

4 Addition

4.5 Multi-Operand Adders

4.5 Multi-Operand Adders

• Add *three* or *more* (m > 2) *n*-bit operands, yield $(n + \lceil \log m \rceil)$ -bit result in *irredundant* number rep. [1, 2]

Array adders

- Realization by **array adders** : (see figures on next page)
 - a) linear arrangement of CPAs
 - b) linear arr. of CSAs (adder array) and final CPA
- a) and b) differ in bit arrival times at final CPA:
 ⇒ if CPA = RCA: a) and b) have same overall delay
- ⇒ if fast final CPA: uniform bit arrival times required
 - \Rightarrow CSA array (b)
- Fast implementation: CSA array + fast final CPA (note: array of fast CPAs not efficient/necessary)

$$A = (m-2)A_{CSA} + A_{CPA}$$
$$T = (m-2)T_{CSA} + T_{CPA}$$

46

Computer Arithmetic: Principles, Architectures, and VLSI Design

4 Addition

4.4 Carry-Save Adder (CSA)

a) Adds three n-bit operands A_0 , A_1 , A_2 performing no carry-propagation (i.e. carries are **saved**) [1]

$$(C, S) = C + S = A_0 + A_1 + A_2$$

$$2c_{i+1} + s_i = a_{0,i} + a_{1,i} + a_{2,i};$$

 $i = 0, 1, \dots, n-1 \text{ (n.)}$

b) Adds one n-bit operand to an n-digit carry-save operand

$$(C, S)_{out} = A + (C, S)_{in}$$

- Result is in redundant *carry-save* format (n digits),
 represented by two n-bit numbers S (sum bits) and C (carry bits)
- + Parallel arrangement of n full-adders, constant delay

$$A = 7n , T = 4$$

• Multi-operand carry-save adders (m > 3) \Rightarrow adder array (linear arrangement), adder tree (tree arr.)

Computer Arithmetic: Principles, Architectures, and VLSI Design

45

4 Addition

4.5 Multi-Operand Adders

a) 4-operand CPA (RCA) array:

b) 4-operand CSA array with final CPA (RCA):

Computer Arithmetic: Principles, Architectures, and VLSI Design

47

(m, 2)-compressors

$$2(c + \sum_{\substack{l=0 \\ m-1 \\ \sum_{i=0}^{m-1} a_i + \sum_{l=0}^{m-4} c_{in}^l}} c_{out}^l + s = \\ \sum_{i=0}^{c_{out}} a_i + \sum_{l=0}^{m-4} c_{in}^l$$

$$\begin{matrix} c_{out}^0 & \vdots & \ddots & \vdots \\ c_{out}^{m-4} & \vdots & \ddots & \vdots \\ c & s & c_{in}^{m-4} \end{matrix}$$

- 1-bit adders (similar to (m, k)-counters) [16]
- Compresses m bits down to 2 by forwarding (m-3)intermediate carries to next higher bit position
- Is bit-slice of multi-operand CSA array (see prev. page)
- + No horizontal carry-propagation (i.e. $c_{in}^l \rightarrow c_{out}^k$, $\underline{k > l}$)
- Built from *full-adders* (= (3, 2)-compressor) or (4, 2)-compressors arranged in linear or tree structures
- Example : 4-operand adder using (4, 2)-compressors

Computer Arithmetic: Principles, Architectures, and VLSI Design

48

4 Addition

- 4.5 Multi-Operand Adders
- Advantages of (4, 2)-compressors over FAs for realizing (m, 2)-compressors:
 - o higher compression rate (4:2 instead of 3:2)
 - o less deep and more regular trees

tree depth		012	2 3	4	5	6	7	8	9	10
# operands	FA	234	1 6	9	13	19	28	42	63	94
# operands	(4,2)	248	3 16	32	64	128				

• Example : (8, 2)-compressor

$$A = 42, T = 16$$

$$a_0a_1 \ a_2a_3 \ a_4a_5 \ a_6a_7$$

$$c_{out}^{0}$$

$$c_{out}^{1}$$

$$c_{out}^{2}$$

$$c_{out}^{2}$$

$$c_{out}^{2}$$

$$c_{out}^{2}$$

$$c_{out}^{3}$$

$$c_{out}^{4}$$

A = 42 , T = 12

(4, 2)-compressor tree

50

full-adder tree

Computer Arithmetic: Principles, Architectures, and VLSI Design

4 Addition

$$A = 7(m-2)$$

$$T_{LIN} = 4(m-2) , T_{TREE} = 6(\lceil \log m \rceil - 1)$$

- Optimized (4, 2)-compressor :
 - o 2 full-adders merged and optimized (i.e. XORs arranged in tree structure)

- + same area, 25% shorter delay
- o SD-FA (signed-digit full-adder) is similar to (4, 2)-compressor regarding structure and complexity

Computer Arithmetic: Principles, Architectures, and VLSI Design

49

4 Addition

4.5 Multi-Operand Adders

Tree adders (Wallace tree)

- Adder tree : n-bit m-operand carry-save adder composed of n tree-structured (m, 2)-compressors [1, 17]
- Tree adders: fastest multi-operand adders using an adder tree and a fast final CPA

$$A = A_{(m,2)} \cdot n + A_{CPA} = O(mn + n \log n)$$

$$T = T_{(m,2)} + T_{CPA} = O(\log m + \log n)$$

Adder arrays and adder trees revisited

- Some FA can often be replaced by HA or eliminated (i.e. redundant due to constant inputs)
- Number of (irredundant) FA does not depend on adder structure, but number of HA does
- An m-operand adder accomodates (m-1) carry inputs
- Adder trees $(T = O(\log n))$ are *faster* than adder arrays (T = O(n)) at same amount of gates (A = O(mn))
- Adder trees are less regular and have more complex routing than adder arrays ⇒ larger area, difficult layout (i.e. limited use in layout generators)

4.6 Sequential Adders

Bit-serial adder : Sequential n-bit adder

$$A = A_{FA} + A_{FF}$$

$$T = T_{FA} + T_{FF}$$

$$L = n$$

Accumulators: Sequential m-operand adders

• With CPA

$$A = A_{CPA} + A_{REG}$$

$$T = T_{CPA} + T_{REG}$$

$$L = m$$

- With CSA and final CPA
 - o Allows higher clock rates
 - o Final CPA too slow:
 - \Rightarrow pipelining or multiple cycles for evaluation

$$A = A_{CSA} + A_{CPA} + 4A_{REG}$$
$$T = T_{CSA} + T_{REG}$$
$$L = m$$

• Mixed CSA/CPA: CSA with partial CPAs (i.e. fewer carries saved), trade-off between speed and register size

Computer Arithmetic: Principles, Architectures, and VLSI Design

54

5 Simple / Addition-Based Operations

5.2 Increment / Decrement

5.2 Increment / Decrement

Incrementer

• Adds a single bit c_{in} to an n-bit operand A

$$c_{out}, Z) = c_{out}2^n + Z = A + c_{in}$$

$$c_i = a_i \oplus c_i$$

$$c_{i+1} = a_i c_i \; ; \; i = 0, \dots, n-1$$

$$c_0 = c_{in} \; , \; c_{out} = c_n \; \text{ (r.m.a.)}$$

- Corresponds to addition with $B = 0 \ (\Rightarrow FA \rightarrow HA)$
- Example : Ripple-carry incrementer using half-adders

$$A = 3n, T = n + 1, AT \approx 3n^2$$

or using *incrementer slices* (= half-adder)

Computer Arithmetic: Principles, Architectures, and VLSI Design

5 Simple / Addition-Based Operations

5.1 Complement and Subtraction

5 Simple/Addition-Based Operations

5.1 Complement and Subtraction

2's complementer (negation)

2's complement subtractor

$$A - B = A + (-B)$$
$$= A + \overline{B} + 1$$

2's complement adder/subtractor

$$A \pm B = A + (-1)^{sub} B$$
$$= A + (B \oplus sub) + sub$$

1's complement adder

$$A + B \pmod{2^n - 1}$$

= $A + B + c_{out}$
(end-around carry)

Computer Arithmetic: Principles, Architectures, and VLSI Design

5 Simple / Addition-Based Operations

5.2 Increment / Decrement

• Prefix problem : $C_{i:k} = C_{i:j+1}C_{j:k} \Rightarrow AND$ -prefix struct.

$$A \approx \frac{1}{2}n\log n + 2n$$
, $T = \lceil \log n \rceil + 2$, $AT \approx \frac{1}{2}n\log^2 n$

Decrementer

Incrementer-decrementer

 $(c_{out}, Z) = A \pm c_{in} = A + (-1)^{dec} c_{in}$

Computer Arithmetic: Principles, Architectures, and VLSI Design

55

Fast incrementers

• 4-bit incrementer using multi-input gates:

8-bit parallel-prefix incrementer (Sklansky AND-prefix structure):

5 Simple / Addition-Based Operations

5.3 Counting

58

5.3 Counting

Count clock cycles ⇒ counter,
 divide clock frequency ⇒ frequency divider (c_{out})

Binary counter

- Sequential in-/decrementer
- Incrementer *speed-up techniques* applicable
- *Down* and *up-down-counters* using decrementers / incrementer-decrementers

• Example : Ripple-carry up-counter using counter slices (= HA + FF), c_{in} is count enable

• Asynchronous counter using toggle-flip-flops (lower toggle rate ⇒ lower power)

Computer Arithmetic: Principles, Architectures, and VLSI Design

5 Simple / Addition-Based Operations

Gray incrementer

• Increments in Gray number system

$$c_0 = a_{n-1} \oplus a_{n-2} \oplus \cdots \oplus a_0 \text{ (parity)}$$

$$c_{i+1} = \overline{a_i} c_i \text{ ; } i = 0, \dots, n-3 \text{ (r.m.a.)}$$

$$z_0 = \overline{a_0} \oplus c_0$$

$$z_i = a_i \oplus a_{i-1} c_{i-1} \text{ ; } i = 1, \dots, n-2$$

$$z_{n-1} = a_{n-1} \oplus c_{n-2}$$

• $Prefix problem \Rightarrow AND$ -prefix structure

Computer Arithmetic: Principles, Architectures, and VLSI Design

57

5 Simple / Addition-Based Operations

5.3 Counting

• Fast divider (T = O(1)) using delayed-carry numbers (irredundant carry-save represention of -1 allows using fast carry-save incrementer) [8]

Gray counter

• Counter using Gray incrementer

Ring counters

• Shift register connected to ring:

- State is *not encoded* \Rightarrow *n* FF for counting *n* states
- Must be *initialized* correctly (e.g. 00 · · · 01)
- Applications:
 - o fast dividers (no logic between FF)
- o state counter for one-hot coded FSMs
- Johnson / twisted-ring counter (inverted feed-back) :

 \circ n FF for counting 2n states

Comparison operations

 $NE = (A \neq B) = \overline{EQ}$

 $LT = (A < B) = \overline{GE}$

 $GT = (A > B) = GE \cdot \overline{EQ}$

EQ = (A = B)

 $= (a_i \odot b_i) eq_i$;

 $eq_0 = 1$, $EQ = eq_n$ (r.s.a.)

i = 0, ..., n - 1

 $ge_{i+1} = (a_i > b_i) + (a_i = b_i) ge_i$

 $LE = (A \le B) = \overline{GT} = \overline{GE} + EQ$

EQ = (A = B)

 $GE = (A \ge B)$

Equality comparison

 $eq_{i+1} = (a_i = b_i) eq_i$

Magnitude comparison

5.4 Comparison, Coding, Detection

(equal)

(not equal)

(less than)

(greater than)

(less or equal)

(greater or equal)

5 Simple / Addition-Based Operations 5.4 Comparison, Coding, Detection

Comparators

• Subtractor (A - B):

$$GE = c_{out}$$

 $EQ = P_{n-1:0}$
(for free in PPA)

$$\begin{vmatrix} A_{RCA} = 7n , T_{RCA} = 2n \text{ or } \\ A_{PPA-KS} \approx \frac{3}{2} n \log n , T_{PPA-KS} \approx 2 \log n \end{vmatrix}$$

- *Optimized* comparator :
 - \circ removing *redundancies* in subtractor (unused s_i)
 - \circ *single-tree* structure \Rightarrow speed-up at *no* cost :

$$A = 6n$$
, $T_{LIN} = 2n$, $T_{TREE} \approx 2 \log n$

o example: ripple comparator using comparator slices

5.4 Comparison, Coding, Detection

Computer Arithmetic: Principles, Architectures, and VLSI Design

60

5 Simple / Addition-Based Operations

decoder

5.4 Comparison, Coding, Detection

Decoder

• Decodes binary number $A_{n-1:0}$ to vector $Z_{m-1:0}$ $(m=2^n)$

 $GE = (A \ge B)$

 $=a_i\overline{b}_i+(a_i\odot b_i)\ ge_i\ ;\ i=0,\ldots,n-1$ $ge_0 = 1$, $GE = ge_n$ (r.s.a.)

$$z_i = \begin{cases} 1 & \text{if } A = i \\ 0 & \text{else} \end{cases} ; i = 0, \dots, m-1$$

 $A = (n-1)2^n , T = \lceil \log n \rceil$

Encoder

• Encodes vector $A_{m-1:0}$ to binary number $Z_{n-1:0}$ $(m=2^n)$ (condition: $\exists i \ \forall k \mid \text{ if } k = i \text{ then } a_k = 1 \text{ else } a_k = 0$)

$$Z = i \text{ if } a_i = 1 ; i = 0, ..., m - 1$$
 $Z = \log_2 A$

(note: connections according to PPA-SK)

62

Computer Arithmetic: Principles, Architectures, and VLSI Design

b) encoded output: + encoder

• signed numbers: + leading-ones detector (LOZ)

 $\circ \ \textit{prefix problem} \ (\text{r.m.a.}) \Rightarrow AND\text{-prefix structure}$

5 Simple / Addition-Based Operations

Detection operations

• All-zeroes detection : $z = \overline{a_{n-1} + a_{n-2} + \cdots + a_0}$ All-ones detection : $z = a_{n-1}a_{n-2} \cdots a_0$ (r.s.a.)

$$A = n$$
, $T = \log n$

- Leading-zeroes detection (LZD):
 - o for scaling, normalization, priority encoding
 - a) non-encoded output:

 $\{0\}1\{0|1\} \rightarrow \{0\}1\{0\}$

 $(e.g. 000101 \rightarrow 000100)$

A = 2n, T = n

5.5 Shift, Extension, Saturation

Shift: a) *shift* n-bit vector by k bit positions

b) select n out of more bits at position k

5.5 Shift, Extension, Saturation

• also: logical (= unsigned), arithmetic (= signed)

Rotation by k bit positions, n constant (logic operation)

Extension of word lengths by k bits $(n \rightarrow n + k)$

(i.e. sign-extension for signed numbers)

Saturation to highest/lowest value after *over-/underflow*

shift a)	un-	1.	$a_{n-2}, \ldots, a_0, \underline{0}$	sll
	signed	r.	$\underline{0}, a_{n-1}, \ldots, a_1$	srl
	signed	1.	$a_{n-1}, \qquad a_{n-3}, \ldots, a_0, \underline{0}$	sla
		r.	$a_{n-1}, \underline{a_{n-1}}, a_{n-2}, \ldots, a_1$	sra
shift b)	unsigne	ed	a_{n+k-1}, \ldots, a_k	
	signed		$a_{2n-1}, a_{n+k-2}, \ldots, a_k$	
rotate		1.	$a_{n-2},\ldots,a_0,\underline{a_{n-1}}$	rol
		r.	$\underline{a_0}, a_{n-1}, \ldots, a_1$	ror
extend	un-	1.	$\underline{0}, a_{n-1}, \ldots, a_0$	
	signed	r.	$a_{n-1}, \ldots, a_0, \underline{0}$	
	signed	1.	$a_{n-1}, \underline{a_{n-1}}, a_{n-2}, \ldots, a_0$	
		r.	$a_{n-1}, \qquad a_{n-2}, \ldots, a_0, \underline{0}$	
saturate	unsigne	ed	a_{n-1},\ldots,a_{n-1}	
	signed		$\overline{a}_{n-1}, \overline{a}_{n-1}, \ldots, \overline{a}_{n-1}$	

5 Simple / Addition-Based Operations

Computer Arithmetic: Principles, Architectures, and VLSI Design

5.6 Addition Flags

64

66

5.6 Addition Flags

flag	formula	description
C	c_n	carry flag
V	$c_n \oplus c_{n-1}$	signed overflow flag
	$a_n b_n \overline{s}_n + \overline{a}_n \overline{b}_n s_n$	
Z	$\forall i: s_i = 0$	zero flag
N	s_{n-1}	negative flag, sign

Implementation of adder with flags

C, N: for free

V: fast c_n , c_{n-1} computed by e.g. PPA \Rightarrow very cheap

 $Z: a) \ \underline{c_{in} = 1} \ (subtract.) : Z = (A = B) = P_{n-1:0} \ (of PPA)$

b) $c_{in} = 0/1$:

1)
$$Z = \overline{s_{n-1} + s_{n-2} + \dots + s_0} \text{ (r.s.a.)}$$

$$A = A_{CPA} + n, T_Z = T_{CPA} + \lceil \log n \rceil$$

2) • faster without final sum (i.e. carry prop.) [18]

$$z_0 = ((a_0 \oplus b_0) \odot c_{in})$$

$$z_i = ((a_i \oplus b_i) \odot (a_{i-1} + b_{i-1}))$$

$$Z = z_{n-1} z_{n-2} \cdots z_0 ; i = 0, \dots, n-1 \text{ (r.s.a.)}$$

$$A = A_{CPA} + 3n , T_Z = 4 + \lceil \log n \rceil$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

• Applications :

- o adaption of *magnitude* (shift a)) or *word length* (extension) of operands (e.g. for addition)
- o multiplication/division by multiples of 2 (shift)
- ∘ *logic* bit/byte operations (shift, rotation)
- o *scaling* of numbers for *word-length reduction* (i.e. ignore leading zeroes, shift b)) or *normalization* (e.g. of floating-point numbers, shift a)) using LZD
- o reducing error after over-/underflow (saturation)
- Implementation of shift/extension/rotation by
 - o constant values : hard-wired
 - o variable values : multiplexers
 - \circ *n* possible values : *n*-by-*n* barrel-shifter/rotator
- Example : 4-by-4 barrel-rotator

5 Simple / Addition-Based Operations

5.6 Addition Flags

Basic and derived condition flags

		formula			
condition	flag	unsigned	signed		
operation:	S = A + B	(+) or	S = A - B (-)		
S = 0	zero	Z	Z		
S < 0	negative	_	N		
$S \ge 0$	positive	_	\overline{N}		
S > max	overflow	C(+)	$V\overline{C}$		
S < min	underflow	\overline{C} (-) VC			
operation: $A - B$					
A = B	EQ	Z	Z		
$A \neq B$	NE	\overline{Z}	\overline{Z}		
$A \ge B$	GE	C	$\overline{N}\overline{V}+NV$		
A > B	GT	$C\overline{Z}$	$(\overline{N}\overline{V} + NV)\overline{Z}$		
A < B	LT	\overline{C} $N\overline{V} + \overline{N}V$			
$A \leq B$	LE	$\overline{C} + Z N\overline{V} + \overline{N}V + Z$			

• *Unsigned* and *signed* addition/subtraction only differ with respect to the *condition flags*

5.7 Arithmetic Logic Unit (ALU)

ALU operations

arithmetic	add	$A+B+c_{in}$	sub	$A-B-c_{in}$
	inc	A+1	dec	A-1
	pass	A	neg	-A
logic	and	a_ib_i	nand	$\overline{a_i b_i}$
	or	$a_i + b_i$	nor	$\overline{a_i + b_i}$
	xor	$a_i \oplus b_i$	xnor	$a_i \odot b_i$
	pass	a_i	not	$\overline{a_i}$
shift/ rotate	sll *	$A \ll 1$	srl *	$A \gg 1$
	sla *	$A \ll_a 1$	sra *	$A \gg_a 1$
	rol *	$A \ll_r 1$	ror *	$A \gg_r 1$

* s/ro : shift/rotate ; l/r : left/right ;

l/a: logic (unsigned) / arithmetic (signed)

• Logic of adder/subtractor can partly be *shared* with logic operations

Computer Arithmetic: Principles, Architectures, and VLSI Design

68

6 Multiplication

6.1 Multiplication Basics

Sequential multipliers:

partial products generated and added *sequentially* (using *accumulator*)

$$A = O(n)$$
, $T = O(\log n)$, $L = n$

Array multipliers:

partial products generated and added *simultaneously* in linear array (using *array adder*)

Parallel multipliers:

partial products generated in *parallel* and added *subsequently* in multi-operand adder (using *tree adder*)

$$A = O(n^2) , T = O(\log n)$$

Signed multipliers:

- a) *complement* operands before and result after multiplication \Rightarrow *unsigned* multiplication
- b) direct implementation (dedicated multiplier structure)

Computer Arithmetic: Principles, Architectures, and VLSI Design

6 Multiplication

6 Multiplication

6.1 Multiplication Basics

14 to the state of the state of

- Multiplies two n-bit operands A and B [1, 2]
- Product P is (2n)-bit unsigned number or (2n-1)-bit signed number
- Example : unsigned multiplication

$$P = A \cdot B = \sum_{i=0}^{n-1} a_i 2^i \cdot \sum_{j=0}^{n-1} b_j 2^j = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i b_j 2^{i+j} \quad \text{or}$$

$$P_i = a_i \cdot B$$
, $P = \sum_{i=0}^{n-1} P_i 2^i$; $i = 0, ..., n-1$ (r.s.a.)

Algorithm

- 1) Generation of n partial products P_i
- 2) Adding up partial products:
 - a) sequentially (sequential shift-and-add),
 - b) serially (combinational shift-and-add), or
 - c) in parallel

Speed-up techniques

- Reduce number of partial products
- Accelerate addition of partial products

Computer Arithmetic: Principles, Architectures, and VLSI Design

69

71

6 Multiplication

6.2 Unsigned Array Multiplier

6.2 Unsigned Array Multiplier

• Braun multiplier: array multiplier for unsigned numbers

$$P = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i b_j 2^{i+j}$$

$$A = 8n^2 - 11n$$
$$T = 6n - 9$$

6.3 Signed Array Multipliers

Modified Braun multiplier

• Subtract bits with negative weight ⇒ special FAs [1]

1 neg. bit :
$$-a+b+c_{in}=2c_{out}-s$$

2 neg. bits : $a-b-c_{in}=-2c_{out}+s$

• Replace FAs in regions
①, ②, and ③ by:
(input a at mark •)

$$s = a \oplus b \oplus c_{in}$$
$$c_{out} = \overline{a}b + \overline{a}c_{in} + bc_{in}$$

• Otherwise exactly *same structure* and *complexity* as Braun multiplier ⇒ efficient and flexible

Baugh-Wooley multiplier

• *Arithmetic transformations* yield the following partial products (two additional ones):

Less efficient and regular than modified Braun multiplier

Computer Arithmetic: Principles, Architectures, and VLSI Design

72

6 Multiplication

6.4 Booth Recoding

- Applicable to sequential, array, and parallel multipliers
- – *additional* recoding logic and *more complex* partial product generation (MUX for shift, XOR for negation)

A: +8nT: +7

- + adder array/tree cut in half
- ⇒ considerably *smaller* (array and tree)

A:/2

 \Rightarrow much *faster* for adder arrays

T:/2

 \Rightarrow slightly or not faster for adder trees

T:-0

74

• Negative partial products (avoid sign-extension):

- Suited for *signed* multiplication (incl. Booth recod.)
- Extend A for *unsigned* multiplication : $a_n = 0$
- Radix-8 (3-bit recoding) and higher radices: precomputing $3B, \ldots \Rightarrow$ larger overhead

6.4 Booth Recoding

6 Multiplication

• Speed-up technique: reduction of partial products

Sequential multiplication

- Minimal (or canonical) signed-digit (SD) represent. of A
- + One cycle per non-zero partial product (i.e. $\forall a_i \mid a_i \neq 0$)
- Negative partial products
- Data-dependent reduction of partial products and latency

Combinational multiplication

- Only *fixed* reduction of partial product possible
- Radix-4 modified Booth recoding : 2 bits recoded to one multiplier digit $\Rightarrow n/2$ partial products

$$A = \sum_{i=0}^{n/2} \underbrace{(a_{2i-1} + a_{2i} - 2a_{2i+1})}_{\{-2,-1,0,+1,+2\}} 2^{2i} ; a_{-1} = 0$$

			ח		
a_{2i+1}	a_{2i}	a_{2i-1}	P_{i}		
0	0	0	+ 0		
0	0	1	+ B		
0	1	0	+ B		
0	1	1	+2B		
1	0	0	-2B		
1	0	1	- B		
1	1	0	- B		
1	1	1	- 0		

Computer Arithmetic: Principles, Architectures, and VLSI Design

73

6 Multiplication

6.6 Multiplier Implementations

6.5 Wallace Tree Addition

• Speed-up technique : fast partial product addition

$$A = O(n^2) , T = O(\log n)$$

- Applicable to *parallel multipliers*: parallel partial product generation (normal or Booth recoded)
- Irregular adder tree (Wallace tree) due to different number of bits per column
 - ⇒ irregular wiring and/or layout
 - ⇒ non-uniform bit arrival times at final adder

6.6 Multiplier Implementations

- Sequential multipliers :
 - o low performance, small area, resource sharing (adder)
- Braun or Baugh-Wooley multiplier (array multiplier):
 - o medium performance, high area, high regularity
 - \circ *layout generators* \Rightarrow data paths and macro-cells
 - \circ simple *pipelining*, *faster* CPA \Rightarrow higher speed
- Booth-Wallace multiplier (parallel multiplier) [9]:
- o high performance, high area, low regularity
- o custom multipliers, netlist generators
- o often pipelined (e.g. register between CSA-tree and CPA)
- Signed-unsigned multiplier: signed multiplier with operands extended by 1 bit $(a_n = a_{n-1}/0, b_n = b_{n-1}/0)$

6.7 Composition from Smaller Multipliers

• $(2n \times 2n)$ -bit multiplier can be *composed* from 4 $(n \times n)$ -bit multipliers (can be repeated recursively)

$$A \cdot B = (A_H 2^n + A_L) \cdot (B_H 2^n + B_L)$$

= $A_H B_H 2^{2n} + (A_H B_L + A_L B_H) 2^n + A_L B_L$

- 4 $(n \times n)$ -bit multipliers + (2n)-bit CSA + (3n)-bit CPA
- $A_H \cdot B_L$ $A_H \cdot B_H A_L \cdot B_L$
- less efficient (area and speed)

6.8 Squaring

• $P = A^2 = AA$: multiplier *optimizations* possible

					a_0a_3	$\mathbf{a_0}\mathbf{a_2}$	a_0a_1	a_0
				a_1a_3	a_1a_2	a_1	a_1a_0	
			a_2a_3	a_2	a_2a_1	$\mathbf{a_2}\mathbf{a_0}$	•	
	+	a_3	a_3a_2	a_3a_1	a_3a_0			
		a_2a_3	a_1a_3	a_0a_3	$\mathbf{a_0}\mathbf{a_2}$	a_0a_1		a_0a_0
\rightarrow		a_3a_3		a_1a_2		a_1a_1		
	+			a_2a_2				
	p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0

- + $(\lfloor n/2 \rfloor + 1)$ partial products (if no Booth recoding used) ⇒ optimized squarer more efficient than multiplier
- Table look-up (ROM) less efficient for every n

Computer Arithmetic: Principles, Architectures, and VLSI Design

76

7 Division / Square Root Extraction

7.3 Non-Restoring Division

7.2 Restoring Division

$$q_i = \begin{cases} 1 & \text{if } R_{i+1} - B2^i \ge 0 \\ 0 & \text{if } R_{i+1} - B2^i < 0 \end{cases}$$

$$\begin{array}{c|c} i & R_{i+1} - B2^i < 0: & q_i = 0 \; , \, R_i = \underline{R_{i+1}} \quad \text{(restored)} \\ i-1 & \underline{R_{i+1}} - B2^{i-1} \geq 0: q_{i-1} = 1 \; , \, R_{i-1} = \underline{R_{i+1} - B2^{i-1}} \end{array}$$

7.3 Non-Restoring Division

$$q_i' = \begin{cases} 1 & \text{if } R_{i+1} \ge 0\\ -1 = \overline{1} & \text{if } R_{i+1} < 0 \end{cases}$$

$$\begin{array}{c|c} i & R_{i+1} \geq 0: \quad q_i' = 1 \; , \, R_i = \underline{R_{i+1} - B2^i} \\ i - 1 \left| \underline{R_{i+1} - B2^i} < 0: q_{i-1}' = \overline{1} \; , \, R_{i-1} = \underline{R_{i+1} - B2^i} \\ & + B2^{i-1} = \underline{R_{i+1} - B2^{i-1}} \end{array} \right.$$

- One subtraction/addition (CPA) per step
- Final *correction step* for R (additional CPA)
- Simple quotient digit *conversion*: (note: q'_i irredundant)

$$q_i' \in \{\overline{1}, 1\} \to q_i \in \{0, 1\} : q_i = \frac{1}{2}(q_i' + 1)$$

$$Q = (\overline{q_{n-1}}, q_{n-2}, q_{n-3}, \dots, q_0, 1)$$

$$A = (n+1)A_{CPA}$$

$$= O(n^2) \text{ or } O(n^2 \log n)$$

$$T = (n+1)T_{CPA}$$

$$= O(n^2) \text{ or } O(n \log n)$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

7 Division / Square Root Extraction

7.1 Division Basics

7 Division / Square Root Extraction

$$\boxed{ \frac{A}{B} = Q + \frac{R}{B} } \qquad \boxed{ \begin{aligned} A &= Q \cdot B + R \; ; \; R < B \\ \hline R &= A \; \text{rem} \; B \; \; \text{(remainder)} \end{aligned} }$$

- $A \in [0, 2^{2n} 1]$, $B, Q, R \in [0, 2^n 1]$, $B \neq 0$
- $Q < 2^n \to A < 2^n B$, otherwise overflow \Rightarrow normalize B before division $(B \in [2^{n-1}, 2^n - 1])$

Algorithms (radix-2)

- Subtract-and-shift: partial remainders R_i [1, 2]
- Sequential algorithm: recursive, f non-associative

$$q_i = (R_{i+1} \ge 2^i B)$$
, $R_i = R_{i+1} - q_i 2^i B$
 $R_n = A$, $R = R_0$; $i = n - 1, \dots, 0$ (r.m.n.)

Basic algorithm: compare and conditionally subtract ⇒ expensive comparison and CPA

Restoring division: subtract and conditionally restore $(adder or multiplexer) \Rightarrow expensive CPA and restoring$

Non-restoring division: detect sign, subtract/add, and *correct* by next steps \Rightarrow expensive CPA

SRT division: estimate range, subtract/add (CSA), and *correct* by next steps \Rightarrow inexpensive CSA

Computer Arithmetic: Principles, Architectures, and VLSI Design

77

7 Division / Square Root Extraction

7.4 Signed Division

7.4 Signed Division

$$q_i' = \begin{cases} \frac{1}{1} & \text{if } R_{i+1}, B \text{ same sign} \\ \frac{1}{1} & \text{if } R_{i+1}, B \text{ opposite sign} \end{cases}$$

• Example : signed non-restoring array divider (simplifications: B > 0, final correction of R omitted)

$$A = 9n^2$$
, $T = 2n^2 + 4n$

Computer Arithmetic: Principles, Architectures, and VLSI Design

79

7.5 SRT Division (Sweeney, Robertson, Tocher)

• If $2^{n-1} \le B < 2^n$, i.e. B is normalized:

$$\Rightarrow -B2^{i} \leq -2^{n+i-1} \leq R_{i+1} < 2^{n+i-1} \leq B2^{i}$$

$$\Rightarrow \boxed{ q_i' = \begin{cases} 1 & \text{if} \quad 2^{n+i-1} \le R_{i+1} \\ 0 & \text{if} \quad -2^{n+i-1} \le R_{i+1} < 2^{n+i-1} \\ \overline{1} & \text{if} & R_{i+1} < -2^{n+i-1} \end{cases}}$$

- + Only 3 MSB are compared $\Rightarrow q'_i$ are estimated \Rightarrow CSA instead of CPA can be used (precise enough) [19]
- Correction in following steps (+ final correction step)
- Redundant representation of q'_i (SD representation) \Rightarrow final conversion necessary (CPA)
- + Highly regular and fast (O(n)) SRT array dividers \Rightarrow only slightly slower/larger than array multipliers

$$A = nA_{CSA} + 2A_{CPA}$$

$$= O(n^2)$$

$$T = nT_{CSA} + T_{CPA}$$

$$= O(n)$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

80

82

7 Division / Square Root Extraction

7.8 Remainder / Modulus

Division by reciprocation

$$Q = \frac{A}{B} = A \cdot \frac{1}{B}$$

• Newton-Raphson iteration method :

find
$$f(X) = 0$$
 by recursion $X_{i+1} = X_i - \frac{f(X_o)}{f'(X_i)}$

- $f(X) = \frac{1}{X} B$, $f'(X) = -\frac{1}{X^2}$, $f(\frac{1}{B}) = 0$
- Algorithm:

$$X_{i+1} = X_i \cdot (2 - B \cdot X_i) \; ; \; i = 0, \dots, m-1$$

 $X_0 = B \; , \; Q = X_m \quad \text{(r.s.n.)}$

- Quadratic convergence : $L = O(\log n)$
- Speed-up: first approximation X_0 from table

7.8 Remainder / Modulus

Remainder (rem) : *signed* remainder of a division

$$R = A \operatorname{rem} B = A - |A/B| \cdot B$$
, $\operatorname{sign}(R) = \operatorname{sign}(A)$

Modulus (mod): positive remainder of a division

$$M = A \bmod B \;,\; M \geq 0 \;,\; M = \begin{cases} R & \text{if } \; A \geq 0 \\ R + B \; \text{else} \end{cases}$$

Computer Arithmetic: Principles, Architectures, and VLSI Design

7.6 High-Radix Division

- Radix $\beta = 2^m$, $q'_i \in \{\overline{\beta 1}, \dots, \overline{1}, 0, 1, \dots, \beta 1\}$
- m quotient bits per step \Rightarrow fewer, but more complex steps
- + Suitable for *SRT* algorithm \Rightarrow *faster*
- Complex comparisons (more bits) and decisions
 ⇒ table look-up (⇒ Pentium bug!)

7.7 Division by Multiplication

Division by convergence

$$Q = \frac{A}{B} = \frac{A \cdot R_0 R_1 \cdots R_{m-1}}{B \cdot R_0 R_1 \cdots R_{m-1}} \rightarrow \frac{A \cdot \frac{1}{B}}{B \cdot \frac{1}{B}} = \frac{Q}{1} \text{ resp. } \frac{Q}{2^n}$$

•
$$B_{i+1} = B_i \cdot R_i = \underbrace{2^n (1-y)}_{B_i} \cdot \underbrace{(1+y)}_{R_i} = \underbrace{2^n (1-y^2)}_{> B_i, \to 2^n},$$

 $y = 1 - B_i 2^{-n}, \ R_i = 2 - B_i 2^{-n} = \overline{B}_i + 1 \text{ (signed)}$

• Quadratic convergence : $L = \lceil \log n \rceil$

Computer Arithmetic: Principles, Architectures, and VLSI Design

8

7 Division / Square Root Extraction

7.9 Divider Implementations

7.9 Divider Implementations

- Iterative dividers (through multiplication):
 - o resource sharing of existing components (multiplier)
 - o medium performance, medium area
 - o high efficiency if components are shared
- Sequential dividers (restoring, non-restoring, SRT):
 - o resource sharing of existing components (e.g. adder)
 - o low performance, low area
- Array dividers (restoring, non-restoring, SRT):
 - o dedicated hardware component
 - o high performance, high area
 - \circ *high* regularity \Rightarrow layout generators, pipelining
 - o square root extraction possible by minor changes
 - o combination with multiplication or/and square root
- No *parallel* dividers exist, as compared to parallel multipliers (sequential nature of division)

7.10 Square Root Extraction

$$\boxed{\sqrt{A-R} = Q} \qquad \boxed{A = Q^2 + R}$$

• $A \in [0, 2^{2n} - 1], Q \in [0, 2^n - 1]$

Algorithm

- Subtract-and-shift: partial remainders R_i and quotients $Q_i = Q_{i+1} + q_i 2^i = (q_{n-1}, \dots, q_i, 0, \dots, 0)$ [1]
- $Q_i^2 = (Q_{i+1} + q_i 2^i)^2 = Q_{i+1}^2 + q_i 2^i (2Q_{i+1} + q_i 2^i)$

$$q_i = \left(R_{i+1} \ge 2^i \left(2Q_{i+1} + 2^i\right)\right), \ Q_i = Q_{i+1} + q_i 2^i$$

 $R_i = R_{i+1} - q_i 2^i \left(2Q_{i+1} + q_i 2^i\right); \ i = n - 1, \dots, 0$
 $R_n = A, \ Q_n = 0, \ R = R_0, \ Q = Q_0 \quad \text{(r.m.n.)}$

Implementation

- + Similar to *division* ⇒ *same algorithms* applicable (restoring, non-restoring, SRT, high-radix)
- + Combination with division in same component possible
- Only *triangular array* required (step $i: q_{k < i} = 0$)

Computer Arithmetic: Principles, Architectures, and VLSI Design

84

8 Elementary Functions

8.2 Integer Exponentiation

8.2 Integer Exponentiation

- Approximated exponentiation : $x^y = e^{y \ln x} = 2^{y \log x}$
- Base-2 integer exponentiation : $2^A = (\dots, 0, 1, 0, \dots)$
- *Integer* exponentiation (exact) :

$$A^{B} = \underbrace{A \cdot A \cdots A}_{B \times} \qquad \boxed{L = 0 \cdots 2^{n} - 1 \ (!)}$$

Applications: modular exponentiation $A^B \pmod{C}$ in *cryptographic* algorithms (e.g. IDEA, RSA)

Algorithms: square-and-multiply

a)
$$E = A^B = A^{b_{n-1}2^{n-1} + \dots + b_1 2 + b_0}$$

= $A^{2^{n-1}b_{n-1}} \cdot \underline{A^{2^{n-2}b_{n-2}}} \cdot \underline{A^{4b_2} \cdot \underline{A^{2b_1}} \cdot A^{b_0}}$

$$E_i = P_i^{b_i} \cdot E_{i-1}, \ P_{i+1} = P_i^2; \ i = 0, \dots, n-1$$

 $E_{-1} = 1, \ P_0 = A, \ E = E_{n-1}$ (r.s.n.)

$$A = 2A_{MUL}$$
, $T = T_{MUL}$, $L = n$ or $A = A_{MUL}$, $T = T_{MUL}$, $L = 2n$

8 Elementary Functions

8 Elementary Functions

- Exponential function : $e^x (\exp x)$
- Logarithm function : $\ln x$, $\log x$
- Trigonometric functions : $\sin x$, $\cos x$, $\tan x$
- Inverse trig. functions: $\arcsin x$, $\arccos x$, $\arctan x$
- Hyperbolic functions : $\sinh x$, $\cosh x$, $\tanh x$

8.1 Algorithms

- Table look-up: inefficient for large word lengths [5]
- Taylor series expansion : complex implementation
- Polynomial and rational approximations [1, 5]
- Shift-and-add algorithms [5]
- Convergence algorithms [1, 2]:
 - o similar to division-by-convergence
- two (or more) *recursive formulas*: one formula converges to a constant, the other to the result
- Coordinate rotation (CORDIC) [2, 5, 20]:
 - o 3 equations for x-, y-coordinate, and angle
 - o computes *all elementary functions* by proper input settings and choice of modes and outputs
- o simple, universal hardware, small look-up table

Computer Arithmetic: Principles, Architectures, and VLSI Design

85

87

8 Elementary Functions

8.3 Integer Logarithm

b)
$$E = A^B = A^{b_{n-1}2^{n-1}+\dots+b_12+b_0}$$

= $(\underbrace{\dots(\underbrace{(A^{b_{n-1}})^2}_{-\dots-b_{n-2}} \cdot A^{b_{n-2}})^2 \dots A^{b_1}}_{-\dots-b_1})^2 \cdot A^{b_0}$

$$E_i = E_{i+1}^2 \cdot A^{b_i} \; ; \; i = n-1, \dots, 0$$

 $E_n = 1 \; , \; E = E_0 \; \; \text{(r.s.n.)}$

$$A = A_{MUL}, T = T_{MUL}, L = 2(n-1)$$

8.3 Integer Logarithm

$$Z = \lfloor \log_2 A \rfloor$$

- For detection/comparison of order of magnitude
- Corresponds to *leading-zeroes detection* (LZD) with encoded output

9 VLSI Design Aspects

9.1 Design Levels

Transistor-level design

- Circuit and layout designed by hand (full custom)
- Low design efficiency
- High circuit performance : high speed, low area
- High flexibility: choice of architecture and logic style
- Transistor-level circuit *optimizations* :
 - o logic style: static vs. dynamic logic, complementary CMOS vs. pass-transistor logic
 - o special *arithmetic* circuits: better than with gates

Computer Arithmetic: Principles, Architectures, and VLSI Design

90

9 VLSI Design Aspects

9.2 Synthesis

9.2 Synthesis

High-level synthesis

- Synthesis from abstract, behavioral hardware description (e.g. data dependency graphs) using e.g. VHDL
- Involves architectural synthesis and arithmetic transformations
- High-level synthesis is still in the *beginnings*

Low-level synthesis

- Layout and netlist generators
- Included in libraries and synthesis tools
- Low-level synthesis is *state-of-the-art*
- Basis for efficient ASIC design
- Limited diversity and flexibility of library components

Circuit optimization

- Efficient optimization of random logic is state-of-the-art
- Optimization of entire arithmetic circuits is **not** feasible ⇒ only local optimizations possible
- Logic optimization cannot replace the synthesis of efficient arithmetic circuit structures using generators

Computer Arithmetic: Principles, Architectures, and VLSI Design

9 VLSI Design Aspects

Gate-level design

- *Cell-based* design techniques : standard-cells, gate-array/ sea-of-gates, field-programmable gate-array (FPGA)
- Circuit implemented by *hand* or by *synthesis* (library)
- Layout implemented by automated *place-and-route*
- Medium to high design efficiency
- *Medium* to *low* circuit performance
- Medium to low flexibility: full choice of architecture

Block-level design

- Layout blocks and netlists from parameterized automatic generators or compilers (library)
- High design efficiency
- Medium to high circuit performance
- Low flexibility: limited choice of architectures
- Implementations:

data-path: bit-sliced, bus-oriented layout (array of cells: n bits $\times m$ operations), implementation of entire data paths, medium performance, medium diversity

macro-cells: tiled layout, fixed/single-operation components, high performance, small diversity

portable netlists : \Rightarrow gate-level design

Computer Arithmetic: Principles, Architectures, and VLSI Design

89

9 VLSI Design Aspects

9.3 VHDL

9.1 Design Levels

9.3 VHDL

Arithmetic types: unsigned, signed (2's complement)

Arithmetic packages

- numeric_bit, numeric_std (IEEE standard 1076.3), std_logic_arith(Synopsys)
- contain overloaded arithmetic operators and resizing / type conversion routines for unsigned, signed types

Arithmetic operators (VHDL'87/93) [21]

relational : =, /=, <, <=, >, >=

shift, rotate ('93 only): rol, ror, sla, sll, sra, srl

adding : +, -

sign(unary): +, -

multiplying : *, /, mod, rem

exponent, absolute: **, abs

Synthesis

• Typical *limitations* of synthesis tools :

/, mod, rem: both operands must be constant or divisor must be a power of two

**: for power-of-two bases only

• Variety of arithmetic components provided in *separate* libraries (e.g. DesignWare by Synopsys)

9 VLSI Design Aspects 9.3 VHDL 9 VLSI Design Aspects

Resource sharing

- Sharing one resource for multiple operations
- Done *automatically* by some synthesis tools
- Otherwise, appropriate coding is necessary:

```
a) S <= A + C when SELA = '1' else B + C; \Rightarrow 2 \text{ adders} + 1 \text{ multiplexer}b) T <= A when SELA = '1' else B; \text{S <= T + C}; \qquad \Rightarrow 1 \text{ multiplexer} + 1 \text{ adder}
```

Coding & synthesis hints

• Addition : single adder with carry-in/carry-out :

```
Aext <= resize(A, width+1) & Cin;
Bext <= resize(B, width+1) & '1';
Sext <= Aext + Bext;
S <= Sext(width downto 1);
Cout <= Sext(width+1);</pre>
```

 Synthesis: check synthesis result for allocated arithmetic units ⇒ code sanity check, control of circuit size

VHDL library of arithmetic units

• *Structural, synthesizable VHDL code* for most circuits described in this text is found in [22]

Computer Arithmetic: Principles, Architectures, and VLSI Design

92

9 VLSI Design Aspects

9.4 Performance

Low power

Power-related properties of arithmetic circuits:

• High *glitching activity* due to high bit dependencies and large logic depth

Power reduction in arithmetic circuits [23]:

- Reduce the *switched capacitance* by choosing an *area efficient* circuit architecture
- Allow for lower supply voltage by speeding up the circuitry
- Reduce the *transition activity*:
 - apply stable inputs while circuit is not in use (⇒ disabling subcircuits)
 - reduce *glitching transitions* by *balancing* signal paths (partly done by speed-up techniques, otherwise difficult to realize)
 - reduce *glitching transitions* by reducing *logic depth* (pipelining)
 - o take advantage of correlated data streams
 - choose appropriate number representations
 (e.g. *Gray codes* for counters)

9.4 Performance

Pipelining

- Pipelining is basically possible with every combinational circuit ⇒ higher throughput
- Arithmetic circuits are *well suited* for pipelining due to high regularity
- Pipelining of arithmetic circuits can be very costly:
 - o large amount of *internal* signals in arithmetic circuits
 - o array structures : many small pipeline registers
 - o tree structures: few large pipeline registers
- ⇒ no advantage of tree structures anymore (except for smaller latency)
- Fine-grain pipelining ⇒ systolic arrays (often applied to arithmetic circuits)

High speed

- Fast circuit *architectures*, *pipelining*, *replication* (parallelization), and combinations of those
- Optimal solution depends on arithmetic *operation*, circuit *architecture*, user *specifications*, and circuit *environment*

Computer Arithmetic: Principles, Architectures, and VLSI Design

9

9 VLSI Design Aspects

9.5 Testability

9.4 Performance

9.5 Testability

Testability goal: high *fault coverage* with few *test vectors* that are easy to generate/apply

Random test vectors: *easy* to generate and apply/propagate, few vectors give *high* (but not perfect) fault coverage for *most* arithmetic circuits

Special test vectors: sometimes *hard* to generate and apply, required for coverage of *hard-detectable* faults which are inherent in most arithmetic circuits

Hard-detectable faults found in:

- circuits of arithmetic operations with inherent *special cases* (arithmetic exceptions) : detectors, comparators, incrementers and counters (MSBs), adder flags
- circuits using *redundant number representations* (≠ redundant hardware) : dividers (Pentium bug!)

Bibliography

Bibliography

- [1] I. Koren, Computer Arithmetic Algorithms, Prentice Hall, 1993.
- [2] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design, John Wiley & Sons, 1979.
- [3] O. Spaniol, *Computer Arithmetic*, John Wiley & Sons, 1981.
- [4] J. J. F. Cavanagh, Digital Computer Arithmetic: Design and Implementation, McGraw-Hill, 1984.
- [5] J.-M. Muller, *Elementary Functions: Algorithms and Implementation*, Birkhauser Boston, 1997.
- [6] Proceedings of the Xth Symposium on Computer Arithmetic.
- [7] IEEE Transactions on Computers.
- [8] D. R. Lutz and D. N. Jayasimha, "Programmable modulo-k counters", *IEEE Trans. Circuits and Syst.*, vol. 43, no. 11, pp. 939–941, Nov. 1996.
- [9] H. Makino *et al.*, "An 8.8-ns 54 × 54-bit multiplier with high speed redundant binary architecture", *IEEE J. Solid-State Circuits*, vol. 31, no. 6, pp. 773–783, June 1996.
- [10] W. N. Holmes, "Composite arithmetic: Proposal for a new standard", *IEEE Computer*, vol. 30, no. 3, pp. 65–73, Mar. 1997.

Computer Arithmetic: Principles, Architectures, and VLSI Design

96

Bibliography

- [18] J. Cortadella and J. M. Llaberia, "Evaluation of A + B = K conditions without carry propagation", *IEEE Trans. Comput.*, vol. 41, no. 11, pp. 1484–1488, Nov. 1992.
- [19] S. E. McQuillan and J. V. McCanny, "Fast VLSI algorithms for division and square root", *J. VLSI Signal Processing*, vol. 8, pp. 151–168, Oct. 1994.
- [20] Y. H. Hu, "CORDIC-based VLSI architectures for digital signal processing", *IEEE Signal Processing Magazine*, vol. 9, no. 3, pp. 16–35, July 1992.
- [21] K. C. Chang, Digital Design and Modeling with VHDL and Synthesis, IEEE Computer Society Press, Los Alamitos, California, 1997.
- [22] R. Zimmermann, "VHDL Library of Arithmetic Units", http://www.iis.ee.ethz.ch/~zimmi/arith_lib.html.
- [23] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, Kluwer, Norwell, MA, 1995.

Bibliography

- [11] R. Zimmermann, Binary Adder Architectures for Cell-Based VLSI and their Synthesis, PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich, Hartung-Gorre Verlag, 1998.
- [12] A. Tyagi, "A reduced-area scheme for carry-select adders", IEEE Trans. Comput., vol. 42, no. 10, pp. 1162–1170, Oct. 1993.
- [13] T. Han and D. A. Carlson, "Fast area-efficient VLSI adders", in *Proc. 8th Computer Arithmetic Symp.*, Como, May 1987, pp. 49–56.
- [14] D. W. Dobberpuhl *et al.*, "A 200-MHz 64-b dual-issue CMOS microprocessor", *IEEE J. Solid-State Circuits*, vol. 27, no. 11, pp. 1555–1564, Nov. 1992.
- [15] A. De Gloria and M. Olivieri, "Statistical carry lookahead adders", *IEEE Trans. Comput.*, vol. 45, no. 3, pp. 340–347, Mar. 1996.
- [16] V. G. Oklobdzija, D. Villeger, and S. S. Liu, "A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach", *IEEE Trans. Comput.*, vol. 45, no. 3, pp. 294–305, Mar. 1996.
- [17] Z. Wang, G. A. Jullien, and W. C. Miller, "A new design technique for column compression multipliers", *IEEE Trans. Comput.*, vol. 44, no. 8, pp. 962–970, Aug. 1995.

Computer Arithmetic: Principles, Architectures, and VLSI Design

9