アルゴリズム論 1 第 2 回 有限オートマトン

関川浩

2017/04/19

第1回から第3回の内容

言語理論とオートマトンの主題

無限集合である言語をいかに表現するか

一つの方法:

言語が満たすルールをうまく書いて、それを言語の表現とする手法. 文法がその代表

第1回:正規表現というシステムを紹介

第 2 回: 有限オートマトンという表現法を紹介

第3回:正規表現と有限オートマトン(見掛けはかなり違う)は

言語の表現能力が等しいことを証明

有限オートマトン (正規表現) の能力の限界を説明

- 1 有限オートマトン
 - 有限オートマトン (fa) の定義
 - fa が認識する言語
 - 直積オートマトン
 - 言語の補集合

- ② 非決定性有限オートマトン
 - 非決定性有限オートマトン
 - ε入力付非決定性有限オートマトン

- 1 有限オートマトン
- 2 非決定性有限オートマトン

有限オートマトン (fa) の定義

定義 1 (有限オートマトン (fa))

fa (finite automaton): 五つ組 $M=(K,\Sigma,\delta,s_0,F)$

- K, Σ : 空ではない有限集合, $F \subseteq K$
- 状態: K の要素

入力記号: Σ の要素 受理状態: F の要素

初期状態: K のある要素 s_0

• $\delta: K \times \Sigma \longrightarrow K$: 状態遷移関数

fa の概念図

- テープと有限制御部からなる
- ヘッドがテープを左から右にスキャン
- テープはマス目に分かれ、各マス目に記号が書いてある (テープ全体で1個の列)
- テープをスキャン後, テープ上の列が対象の言語に属しているか否か を判定することによりその言語を表現

fa の動作

- 1ステップの動作
- (1) ヘッドの下の入力記号を読む
- (2) ヘッドを 1 コマ右に移動
- (3) 有限制御部は (1) で読んだ記号と現在の状態から決まる次の状態に 遷移

fa の例

例: 有限オートマトン M_1

- 状態: s₀, s₁, s₂, s₃
- 入力記号: 0, 1
- 初期状態 (⇒→ で表わす): s₀
- 受理状態 (二重丸で表わす): s₀
- 状態遷移関数: 状態間の矢印で表現

たとえば, s_0 から出る矢印で,

$$\delta(s_0, 0) = s_1, \quad \delta(s_0, 1) = s_2$$

を表現

fa が認識する言語

定義 2 (状態遷移関数の拡張)

状態遷移関数 δ の定義域を $K \times \Sigma$ から $K \times \Sigma^*$ に拡張

• 任意の $s \in K$, $a \in \Sigma$, $x \in \Sigma^*$ に対して,

$$\delta(s,\varepsilon) \stackrel{\text{def}}{=} s, \quad \delta(s,xa) \stackrel{\text{def}}{=} \delta(\delta(s,x),a)$$

例: 前スライドの M_1

$$\delta(s_0, 110) = \delta(\delta(s_0, 11), 0) = \delta(\delta(\delta(s_0, 1), 1), 0)$$

= $\delta(\delta(s_2, 1), 0) = \delta(s_0, 0) = s_1$

定義 3 (列の受理, 言語の認識)

- $\delta(s_0, x) \in F$ なら, 列 x は受理されるという
- ullet M が受理する列の全体を M が<mark>認識する言語</mark>という

例題 1 (1/2)

例題 $1(M_1$ が認識する言語)

列 $x \in \{0,1\}^*$ に対し, $\delta(s_0,x) = s$ としたとき, 以下を示せ

 $s = s_0 \iff x$ において 0 と 1 の個数はともに偶数

 $s = s_1 \iff x$ において 0 の個数のみ奇数

 $s = s_2 \iff x$ において 1 の個数のみ奇数

 $s = s_3 \iff x$ において 0 と 1 の個数はともに奇数

よって, M_1 が認識する言語は, 0, 1 ともに偶数個である列全体

証明 (1/2)

列xの長さによる帰納法

- ε の 0 と 1 の個数はともに 0 個で偶数
- \Longrightarrow 長さ 0 のときは成立

例題 1 (2/2)

証明 (2/2)

- 長さ n のとき成立すると仮定、列 y (|y| = n + 1) を考える $\Rightarrow y = xa$ 、ただし、 $x \in \{0,1\}^*$ 、|x| = n、 $a \in \{0,1\}$ 場合分け (0, 1 の偶奇が x で 4 通り、a で 2 通り計 8 通り)
 - x において 0 のみ奇数個, かつ, a=0 $\implies y$ では 0, 1 ともに偶数個

$$\delta(s_0, y) = \delta(s_0, x_0) = \delta(\delta(s_0, x), 0) = \delta(s_1, 0) = s_0$$

• 残りの 7 通りも同様に成立

直積オートマトン

定義 4 (直積オートマトン)

アルファベットが等しい二つの fa

$$M_1 = (K_1, \Sigma, \delta_1, s_{01}, F_1), \qquad M_2 = (K_2, \Sigma, \delta_2, s_{02}, F_2)$$

の直積とは、二つの fa を並列に動作させたシステムを模擬した fa

- 状態: 二つの fa の状態の対 $(s_1, s_2) \in K_1 \times K_2$
- ・ 状態 (s_1, s_2) で $a \in \Sigma$ を読むと $(\delta_1(s_1, a), \delta_2(s_2, a))$ に遷移
- 初期状態, 受理状態は目的に応じて指定

直積オートマトンと言語の対応

定理 1

 Σ 上の言語 L_1 , L_2 が fa で認識可能なら $L_1 \cap L_2$ も fa で認識可能

証明

 $M_i = (K_i, \Sigma, \delta_i, s_{0i}, F_i)$: L_i を認識する fa (i = 1, 2)

 $M: M_1$ と M_2 の直積オートマトン

- 初期状態は (s₀₁, s₀₂)
- \bullet (s_1, s_2) が受理状態 $\iff s_1 \in F_1, s_2 \in F_2$

M が $L_1 \cap L_2$ を認識するのは明らか

最少状態数の fa (1/4)

- fa の状態数 (有限): 記憶容量と考えられる
 - ⇒ 同じ言語を認識するなら状態数は少ない方が効率的
- 最少状態数の fa を得るには?
 - ⇒ 冗長な状態があれば削除
 - 明らかに冗長な状態: 初期状態から到達できない状態
 - そのほかにも冗長な状態がある

定義 5 (状態の等価性)

fa $M=(K,\Sigma,\delta,s_0,F)$ の二つの状態 s_1 と s_2 が等価とは、以下の条件を満たすこと

 $\forall x \in \Sigma^*$ に対して、「 $\delta(s_1, x) \in F \iff \delta(s_2, x) \in F$ 」

最少状態数の fa (2/4)

定理 2

仮定: 初期状態から到達できない状態は存在しない

- **①** fa M に等価な 2 状態が存在すれば、認識する言語が M と同じで、 状態数が M より 1 少ない fa M' が存在
- ② fa M と同じ言語を認識して状態数がより少ない fa M' が存在すれば, M には等価な 2 状態が存在

証明 (1/2)

- ① $s_1 \neq s_2$: 等価な 2 状態
 - 状態 s から s_1 への遷移があれば, すべて s_2 への遷移と変更
 - ullet s_1 を削除した f_2 M' は, M と同じ言語を認識し, 状態数が 1 少ない

最少状態数の fa (3/4)

証明 (2/2)

- ② 以下を仮定して矛盾を出す
 - (1) M と M' は同じ言語を認識
 - (2) M の状態数は M' の状態数より多い
 - (3) M の任意の二つの状態は等価ではない

$$M=(K,\Sigma,\delta,s_0,F)$$
, $M'=(K',\Sigma,\delta',s_0',F')$ とする

(2) より以下を満たす列 x_1 , x_2 ($x_1 \neq x_2$) が存在 (鳩の巣原理)

$$s_1 = \delta(s_0, x_1) \neq \delta(s_0, x_2) = s_2, \quad \delta'(s_0', x_1) = \delta'(s_0', x_2)$$

 s_1 と s_2 は等価ではないので,ある列yが存在して,

- ullet M では x_1y と x_2y のうち一方のみが受理
- M' では x_1y と x_2y はともに受理か非受理
- ⇒ (1) に矛盾

最少状態数の fa (4/4)

• 定理 2 がいっていること:

仮定「初期状態から到達できない状態は存在しない」の下で、M が最少状態数 $\iff M$ に等価な 2 状態は存在しない

• よって, 初期状態から到達できない状態を削除の上,

等価な状態の対があれば,定理 2 (1) の証明中に述べた方法で一方の状態を削除,

を繰り返せば、最少状態数の fa が得られる

問題

2 状態が等価か否かを判定せよ

定義通りでは無限個の列を調べることが必要 ⇒ 不可能

2 状態 s_1 , s_2 が等価か否かの判定法

- - 初期状態: (s₁, s₂)
 - ullet (s_3,s_4) が受理状態 $\stackrel{\mathrm{def}}{\Longleftrightarrow} s_3$, s_4 がともに M の受理状態
- ② 初期状態から到達できない状態を削除
- 残った対 (すべて初期状態から到達可能) (s₃, s₄) をすべてチェック (有限個だから可能)
 - 一方が受理状態, 他方が非受理状態である対が存在すれば s_1 と s_2 は非等価
 - そうでなければ等価

言語の補集合

定理 3

 Σ 上の言語 L が fa で認識できるなら, L の補集合 $\Sigma^* \setminus L$ も fa で認識できる

証明

- *M*: *L* を認識する fa
- ullet M': M の受理状態と非受理状態を入れ換えた fa $\Longrightarrow M'$ は $\Sigma^* \setminus L$ を認識する fa

- 1 有限オートマトン
- ② 非決定性有限オートマトン

非決定性有限オートマトン (nfa) の定義 (1/2)

定義 6 (非決定性有限オートマトン (nfa))

nfa (nondeterministic finite automaton): $M = (K, \Sigma, \delta, s_0, F)$

ullet 状態遷移関数 δ のみが ullet の場合と異なる

 $\delta: K \times \Sigma \longrightarrow 2^K (K$ のべき集合 (すべての部分集合の集合))

例

$$\delta(s_0, 1) = \{s_0, s_1\}, \qquad \delta(s_1, 1) = \emptyset$$

非決定性有限オートマトン (nfa) の定義 (2/2)

注意

今までの fa を

- 決定性有限オートマトン (deterministic finite automaton)
- 決定性 fa
- dfa

と呼ぶこともある

状態遷移関数の拡張

定義 7 (状態遷移関数の拡張)

 δ の定義域を $K \times \Sigma$ から $K \times \Sigma^*$ に拡張

• 任意の $s \in K$, $a \in \Sigma$, $x \in \Sigma^*$ に対して,

$$\delta(s,\varepsilon)\stackrel{\mathrm{def}}{=}\{s\},$$

$$\delta(s,xa)\stackrel{\mathrm{def}}{=}\{q\mid \exists p\in K \text{ s.t. } p\in\delta(s,x) \text{ かつ } q\in\delta(p,a)\}$$

例

$$\delta(s_0, 101) = \{s_0, s_1, s_3\}$$

nfa が認識する言語

定義 8 (列の受理, 言語の認識)

- $\delta(s_0,x) \cap F \neq \emptyset$ なら、列 x は<mark>受理される</mark>という
- ullet M が受理する列の全体を M が認識する言語という

注意

列 $x=x_1x_2\dots x_n$ が受理される $\iff s_{i+1}\in \delta(s_i,x_{i+1})\;(i=0,\,\dots,\,n-1)$ をうまく選べば $s_n\in F$

例

この nfa が認識する言語は, 10100 で終る列の全体

例題 2

例題 2

言語 $\{x111 \mid x \in \{0,1\}^*\}$ を認識する nfa と fa を与えよ

解答

nfa

fa

例題 3

例題 3

例題 2 の言語の補集合を認識する nfa を求めよ

解答

定理 3 の証明を利用

⇒ fa も nfa なので (fa は nfa の特別な場合), 前スライドの fa の 受理状態と非受理状態を入れ換え

注意

fa ではない nfa に対して定理 3 の証明を利用するのは不可

• この例では s_0 が受理状態に $\Longrightarrow \{0,1\}^*$ のすべての列を受理

ε 入力付非決定性有限オートマトン (ε nfa)

- 今までの fa の 1 ステップは以下の 3 動作
 - 入力を読む
 - ヘッドを 1 コマ右に動かす
 - ・状態を変える
- εnfa では 入力記号を読まない ことも可 (ヘッドを動かさず状態遷移可)
- 形式的には状態遷移関数 δ が

$$\delta: K \times (\Sigma \cup \{\varepsilon\}) \longrightarrow 2^K$$

様相 (1/2)

定義 9 (様相)

様相 (x,p): アルファベット Σ 上の列 x と状態 p の対

気持ち: オートマトンの動作途中の状況

- x: テープのまだ読んでいない部分の列
- p: そのときの状態

例

図の状況を様相 (001010, s5) で表す

様相が与えられればオートマトンの今後の動作が決まる

様相 (2/2)

定義 10 (⇒, ^{*}⇒)

- 様相 $c_1 = (x_1, p_1)$ と $c_2 = (x_2, p_2)$ は, 条件 (1) または (2) を満たすとき, c_1 から c_2 へ 1 ステップで移れるといい, $c_1 \Rightarrow c_2$ と書く
 - (1) $x_1 = x_2$ かつ $p_2 \in \delta(p_1, \varepsilon)$
 - (2) $x_1 = ax_2$ かつ $p_2 \in \delta(p_1, a)$
- $c_0 \Rightarrow c_1 \Rightarrow \cdots \Rightarrow c_k$ のとき, c_0 から c_k へ何ステップかで移れるといい, $c_0 \stackrel{*}{\Rightarrow} c_k$ と書く (k=0 でもよい)

定義 11 (列の受理)

列 x は, 初期状態 s_0 , ある受理状態 s_F に対し, $(x,s_0)\stackrel{*}{\Rightarrow}(\varepsilon,s_F)$ のとき, 受理されるという

例題 4

例題 4

下図のオートマトンで列 110 が受理されることを示せ

解答

 $(110, s_0) \Rightarrow (10, s_1) \Rightarrow (10, s_4) \Rightarrow (10, s_0) \Rightarrow (0, s_1) \Rightarrow (\varepsilon, s_3)$