

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Institute for Automotive Engineering

Semantic Point Cloud Segmentation Introduction

Bastian Lampe

© ika 2022 · All rights reserved

Computer Vision Approaches

Single Object

Multi Objects

Introduction

Video: ika

Definition

- Goal: Given a point cloud, assign a class from a fixed set of classes to every point in the point cloud
- Fixed set of classes:
 - Road
 - Sidewalk
 - Pedestrian
 - Car
 - Bus
 - Motorcycle
 - ...
- Classification task for every data point
- Scene Understanding

Images: ika

Main Challenges

- Point clouds are unstructured
 - Different number of points in each sample
 - Sparse representation

Video: ika

Main Challenges

- Point clouds are unstructured
 - Different number of points in each sample
 - Sparse representation
- Class ambiguity
 - Practically "unlimited" number of possible classes that can look similar in point cloud

Video: ika

Main Challenges

- Point clouds are unstructured
 - Different number of points in each sample
 - Sparse representation

Class ambiguity

 Practically "unlimited" number of possible classes that can look similar in point cloud

Class imbalance

- Relatively frequent classes: road, sidewalk, building
- Relatively rare classes: person, truck, bicycle
- Lack of public datasets
 - High manual effort for creating own datasets
 - Solution: Automatic labeling approaches
- Different sensor characteristics
 - Number of layers
 - Horizontal and vertical resolution

Approaches

- Traditional Machine Learning approaches:
 - Clustering
 - k-Means Clustering, DBScan
 - Find and segment objects
 - RANSAC (random sample consensus)
 - Iterative method to detect inliers and outliers
 - Road segmentation in point clouds

- Deep Learning based approaches:
 - Dataset with annotations
 - Convert the point cloud to image-like tensor
 - Use Convolutional Neural Networks
 - E.g. DarkNet, SqueezeSeg

Summary

- Computer Vision problem for scene understanding
- Similar approach to semantic image segmentation
- Assign a semantic class to data points of the point cloud
- Modern Approaches rely on Deep Neural Networks and labelled datasets

