Approx-SVP in Ideal lattices with Pre-Processing

Alice Pellet-Mary, Guillaume Hanrot and Damien Stehlé

LIP, ENS de Lyon (France)

tMeet seminar at IIT Madras, October 30, 2018

European Research Council
Established by the European Commission

What is this talk about

Time/Approximation factor trade-off for SVP in ideal lattices:

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

A basis of L is an invertible matrix B such that $L = \{Bx \mid x \in \mathbb{Z}^n\}$.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 11 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

 \Rightarrow this is an ideal lattice

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices, e.g.

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ -a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ -a_2 & -a_3 & \cdots & a_1 \end{pmatrix}$$

⇒ this is an ideal lattice

Is approx-SVP still hard when restricted to ideal lattices?

SVP in ideal lattices

[CDPR16,CDW17]: Better than BKZ in the quantum setting

- Heuristic
- For prime power cyclotomic fields

[[]CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

This work

- Heuristic
- Pre-processing $2^{O(n)}$, independent of the choice of the ideal (non-uniform algorithm).

Outline of the talk

- Definitions and objective
- 2 The CDPR algorithm
- This work
- 4 Extensions and conclusion

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$
 - lacktriangledown e.g. $\mathbb{Z}^{ imes}=\{-1,1\}$

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$
 - lacksquare e.g. $\mathbb{Z}^{ imes}=\{-1,1\}$
- Principal ideals: $\langle g \rangle = \{gr \mid r \in R\}$ (i.e. all multiples of g)
 - e.g. $\langle 2 \rangle = \{ \text{even numbers} \} \text{ in } \mathbb{Z}$
 - g is called a generator of $\langle g \rangle$
 - ▶ The generators of $\langle g \rangle$ are exactly the ug for $u \in R^{\times}$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

i.e.,
$$\begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_{n-1} \end{pmatrix}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

i.e.,
$$\begin{pmatrix} g_0 & -g_{n-1} \\ g_1 & g_0 \\ \vdots & \vdots \\ g_{n-1} & g_{n-2} \end{pmatrix}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

i.e.,
$$\begin{pmatrix} g_0 & -g_{n-1} & \cdots & -g_1 \\ g_1 & g_0 & \cdots & -g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \cdots & g_0 \end{pmatrix}$$

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0,1]$, Find $r \in \langle g \rangle$ such that $\|r\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0,1]$, Find $r \in \langle g \rangle$ such that $\|r\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

BKZ algorithm can do it in time $2^{O(n^{1-\alpha})}$, can we do better?

Outline of the talk

- Definitions and objective
- 2 The CDPR algorithm
- This work
- 4 Extensions and conclusion

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g
angle$

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g \rangle$

If n = 1: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g \rangle$

If $\mathbf{n}=\mathbf{1}$: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

$$-6$$
 -4 -2 0 2 4 6

For larger n: one of the generators is somehow small

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$.

 $Log: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\text{Log } r = h + a\mathbf{1}$, with $h \in H$

• a > 0

 $Log: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := \text{Log}(R^{\times})$ is a lattice

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice
- $||r|| \simeq 2^{||\operatorname{Log} r||_{\infty}}$

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time $\operatorname{poly}(\underline{n})$
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time $\operatorname{poly}(\underline{n})$
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\widetilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\widetilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $\|h\| \leq \widetilde{O}(\sqrt{n})$

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| < \widetilde{O}(\sqrt{n})$

$$\|u\mathbf{g}_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $\|h\| \leq \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

Outline of the talk

- Definitions and objective
- The CDPR algorithm
- This work
- Extensions and conclusion

Important

Important

Important

Important

 $\text{Log } r = h + a\mathbf{1} \text{ with } a \text{ small (and } h \in H).$

Important

Compute r_1, \dots, r_n with small 'a'

Compute r_1, \dots, r_n with small 'a'

Compute $\Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda) \Rightarrow \mathsf{lattice}\; L$

Compute r_1, \dots, r_n with small 'a'

Compute $\Lambda \cup \bigcup_i (h_{\text{Log } r_i} + \Lambda) \Rightarrow \text{lattice } L$

Compute g_1 a generator of $\langle g
angle$, let $t = h_{\mathsf{Log}(g_1)}$

```
Compute r_1, \dots, r_n with small 'a'
```

Compute
$$\Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda) \Rightarrow \mathsf{lattice}\,L$$

Compute
$$g_1$$
 a generator of $\langle g \rangle$, let $t = h_{\mathsf{Log}(g_1)}$

Solve CVP in
$$L$$
 with target t (for some $\alpha \in [0,1]$)

$$\Rightarrow$$
 get a vector $s \in L$ such that $\|s-t\| \leq \widetilde{O}(n^{lpha})$

```
Compute r_1, \dots, r_n with small 'a'
```

Compute
$$\Lambda \cup \bigcup_i (h_{\text{Log } r_i} + \Lambda) \Rightarrow \text{lattice } L$$

Compute
$$g_1$$
 a generator of $\langle g \rangle$, let $t = h_{\mathsf{Log}(g_1)}$

Solve CVP in
$$L$$
 with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = h_{\log r}$$
 for some $r \in R$

Compute r_1, \dots, r_n with small 'a'

Compute $\Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda) \Rightarrow \mathsf{lattice}\,L$

Compute g_1 a generator of $\langle g \rangle$, let $t = h_{\mathsf{Log}(g_1)}$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write $s = h_{\log r}$ for some $r \in R$

$$\|rg_1\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$$

Compute r_1, \dots, r_n with small 'a'

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Compute $\Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda) \Rightarrow \mathsf{lattice}\,L$

Compute g_1 a generator of $\langle g \rangle$, let $t = h_{\text{Log}(g_1)}$

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Solve CVP in L with target t (for some $\alpha \in [0,1]$)

 \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write $s = h_{\text{Log } r}$ for some $r \in R$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{\alpha})} \cdot \lambda_1$$

Compute
$$r_1, \dots, r_n$$
 with small 'a'

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Compute
$$\Lambda \cup \bigcup_i (h_{\log r_i} + \Lambda) \Rightarrow \text{lattice } L$$

Compute
$$g_1$$
 a generator of $\langle g
angle$, let $t = h_{\mathsf{Log}(g_1)}$

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Solve CVP in
$$L$$
 with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = h_{\log r}$$
 for some $r \in R$

$$\|rg_1\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$$

Compute
$$r_1, \dots, r_n$$
 with small 'a' $\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$
Compute $\Lambda \cup \bigcup_i (h_{\operatorname{Log} r_i} + \Lambda) \Rightarrow \operatorname{lattice} L$ $\operatorname{poly}(n)$

Compute
$$g_1$$
 a generator of $\langle g \rangle$, let $t = h_{\mathsf{Log}(g_1)} \qquad \mathrm{poly}(n) \ / \ 2^{\widetilde{O}(\sqrt{n})}$

Solve CVP in
$$L$$
 with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = h_{\log r}$$
 for some $r \in R$ poly (n)

$$\|rg_1\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$$

CDPR	This work	
Good basis of Λ	No good basis of L known	

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

$$L = \Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda)$$
 does not depend on $\langle g \rangle$

CDPR	This work
Good basis of Λ	No good basis of <i>L</i> known

Key observation

 $L = \Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda)$ does not depend on $\langle g \rangle \; \Rightarrow \; \mathsf{Pre\text{-}processing}$ on L

CDPR	This work
Good basis of Λ	No good basis of <i>L</i> known

Key observation

 $L = \Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda)$ does not depend on $\langle g
angle \; \Rightarrow$ Pre-processing on L

- [Laa16]: ullet Find $s\in L$ such that $\|s-t\|=\widetilde{O}(n^{lpha})$
 - Time:
 - $\triangleright 2^{\widetilde{O}(n^{1-2\alpha})}$ (query)
 - \rightarrow + 2^{O(n)} (pre-processing)

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

Conclusion

Approximation	Query time	Pre-processing
$2^{\widetilde{O}(n^{\alpha})}$	$2^{\widetilde{O}(n^{1-2\alpha})} + (\operatorname{poly}(n) \text{ or } 2^{\widetilde{O}(\sqrt{n})})$	2 ^{O(n)}

 $+2^{O(n)}$ Pre-processing / Non-uniform algorithm

Outline of the talk

- Definitions and objective
- 2 The CDPR algorithm
- This work
- Extensions and conclusion

Extensions

We can extend the algorithm to

Non principal ideals

Extensions

We can extend the algorithm to

- Non principal ideals
- Other number fields

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

 All generators • are somehow large

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

- All generators are somehow large
- Multiply by some small r
 - $\langle rg \rangle$ sublattice of $\langle g \rangle$

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

- All generators are somehow large
- Multiply by some small r
 - $\langle rg \rangle$ sublattice of $\langle g \rangle$
 - not much smaller

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

What we did

- All generators are somehow large
- Multiply by some small r
 - $\langle rg \rangle$ sublattice of $\langle g \rangle$
 - not much smaller
 - with a small generator •

Ideal

An ideal is $I = \{ar_1 + br_2, r_1, r_2 \in R\}$ for some $a, b \in R$ A principal ideal is $\langle g \rangle = \{gr, r \in R\}$ for some $g \in R$.

[CDPR]: find the smallest generator of a principal ideal

Extension to any ideal

- I has no generator (not principal)
- Multiply by some small ideal J
 - ► // sublattice of /
 - not much smaller
 - principal
 - with a small generator •

• Approx-SVP in ideal lattices might be easier than in general lattices

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - almost no schemes based in ideal-SVP

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - almost no schemes based in ideal-SVP

- Approx-SVP in ideal lattices might be easier than in general lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - almost no schemes based in ideal-SVP

Perspectives and open questions

- Remove/test the heuristics
- Improving the algorithm for specific rings?
- Generalize to module SVP?

Perspectives and open questions

- Remove/test the heuristics
- Improving the algorithm for specific rings?
- Generalize to module SVP?

Questions?