

VineNet: Grasp of the Grapes (P09-B)

Utilizing semantic segmentation to revolutionize precision viticulture.

The Challenge

Precise Grape Identification

To build a deep learning model capable of accurately segmenting grape bunches (semantic segmentation) in high-resolution images of vineyards.

Why Semantic Segmentation?

Pixel-Level Accuracy

Pinpoint the exact location and boundaries of each grape.

Unlock Valuable Insights

Enable data-driven decision making for vineyard management.

Computer Vision Synergy

Leverage advancements in deep learning for real-world applications.

Introducing U-Net

U-Net Architecture

- Convolutional Blocks
 Enhance feature extraction.
- 3 Bottleneck
 Intensive feature synthesis with 1024 filters.
- Encoder DesignConvolution and max pooling for context.
- 4 Decoder Designwith 1024 filters.Upscales, retains details via skip connections.

Training U-Net

Evaluating Performance

Metric	Description	Output
Mean IoU	Comprehensive metric for segmentation accuracy.	71.1%
Mean Inference	Time taken to process one image and output a result.	0.17664s (RTX 3090) approx.
Mean FPS	Number of images the model can process per second.	5.66122
Precision	Minimize false positives for reliable grape detection.	86.0%
Recall	Maximize true positives to capture all grapes.	81.1%

Plots

Output Images

Original image

Predicted Mask

Thank You

Open to Questions