Usando Algoritmos Genéticos para encontrar Matrices Mágicas.

Eder Samir Correa Acosta

GITA, Universidad de Antioquia

Problema

Disponer los N^2 primeros números naturales en una matriz cuadrada M(N; N) de tal manera que las sumas tanto de las filas por las como por columnas coincidan.

Ejemplos:

5	15	16	2
10	8	7	13
6	12	11	9
17	3	4	14

AG: Representación y FO

Para N=3 (Posible Solución)

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{11} & a_{11} \end{pmatrix} \implies$$

$$\label{eq:Cromosoma} \text{Cromosoma=} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} & a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Función Objetivo

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{34} & \dots & a_{3n} \\ a_{41} & a_{42} & a_{43} & a_{44} & \dots & a_{4n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & a_{n4} & \dots & a_{nn} \end{pmatrix}$$
 Sea F(k) un vector tal que:

$$F(k) = \begin{cases} \sum_{j=1}^{N} a_{jk}, & 0 < k \le N \\ \sum_{j=1}^{N} a_{kj}, & N < k \le 2N \end{cases}$$

Sea F(k) un vector tal que:

$$F(k) = \begin{cases} \sum_{j=1}^{N} a_{jk}, & 0 < k \le N \\ \sum_{j=1}^{N} a_{kj}, & N < k \le 2N \end{cases}$$

Sea la Desviación Estandar de F(x) igual a σ entonces:

F.O. =
$$Min(\sigma)$$

Restricción: Cada elemento (primeros N^2 números naturales) solo puede ser asignado a una sola posición del cromosoma y cada elemento debe ser asignado.

Prueba de Escritorio (Excel)

