

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

SOIL MECHANICS

CIVIL ENGINEERING

Date of Test: 30/06/2023

ANSWER KEY >

1.	(a)	7.	(b)	13.	(b)	19.	(b)	25.	(b)
2.	(d)	8.	(c)	14.	(c)	20.	(d)	26.	(c)
3.	(c)	9.	(c)	15.	(b)	21.	(c)	27.	(b)
4.	(d)	10.	(a)	16.	(b)	22.	(b)	28.	(a)
5.	(b)	11.	(a)	17.	(b)	23.	(d)	29.	(b)
6.	(c)	12.	(c)	18.	(b)	24.	(a)	30.	(b)

MADE EASY

DETAILED EXPLANATIONS

1. (a)

Equivalent permeability,

$$k_e = \sqrt{k_x k_y}$$

$$13 \times 10^{-7} = \sqrt{3 \times 10^{-7} \times k_y}$$

$$k_y = \frac{169 \times 10^{-14}}{3 \times 10^{-7}}$$

$$k_y = 5.63 \times 10^{-6} \text{ cm/s}$$

2. (d)

To prevent possibility of erosion and piping filter must have grain sizes that satisfy following requirements:

(i)
$$\frac{D_{15 \, (\text{filter})}}{D_{85 \, (\text{protected material})}} < 5$$

It ensures that no significant invasion of particles from the protected material to the filter.

(ii)
$$4 < \frac{D_{15(\text{filter})}}{D_{15(\text{protected material})}} < 20$$

It ensures that sufficient head is lost in filter without build-up of seepage pressure (specifies the lower limit of material.

(iii)
$$\frac{D_{50(\text{filter})}}{D_{50(\text{protected material})}} < 25$$

This is the additional guideline for the selection of material.

3. (c)

$$S_n = \frac{C}{\gamma H} = \frac{60}{18 \times 6} = 0.56$$

$$q = k. H. \frac{N_f}{N_D}$$

$$= \frac{3 \times 10^{-3}}{60} \times 4 \times \frac{14}{10} \text{ m}^3/\text{s per m length of the dam}$$

$$= 2.8 \times 10^{-4} \text{ m}^3/\text{s per m length of dam}$$

$$= 280 \text{ cm}^3/\text{s per m length of dam}$$

CT-2022-23

6. (c)

$$i_c = \frac{G-1}{1+e} = \frac{2.65-1}{1+0.75} = 0.943$$

Permissible upward gradient = 30% of critical gradient

$$= 0.943 \times 0.30 = 0.2829 \simeq 0.28$$

7. (b)

Equivalent horizontal permeability

$$k_{eq} = \frac{k_1 h_1 + k_2 h_2}{h_1 + h_2} = \frac{2kh + kh}{h + h}$$
$$k_{eq} = 1.5 \text{ k}$$

9. (c)

 \Rightarrow

Consistency of soil refers to the resistance offered by it against forces that tends to deform or rupture the soil aggregate. It is related to strength.

11. (a)

Given weight of water = 52 gm

Total weight water of soil sample = 320 gm

Calcium carbide method of determination of water content give water content in terms of total weight of soil,

i.e.,
$$w_t = \frac{w_w}{w} = \frac{52}{320} = 0.1625$$

Since, water content is defined w.r.t. soil solids.

Hence, w_t can be converted into w in terms of weight of soil solid as

$$w = \frac{w_w}{w_s} = \frac{w_t}{1 - w_t} = \frac{0.1625}{1 - 0.1625}$$
$$= 0.1940 = 19.40\%$$

12.

Given, $\gamma_b = 19 \text{ kN/m}^3$, w = 17%

So, dry density,
$$\gamma_d = \frac{\gamma_b}{1+w} = \frac{19}{1+0.17} = 16.24 \text{ kN/m}^3$$
Also,
$$\gamma_d = \frac{G\gamma_w}{1+e} = \frac{2.7 \times 9.81}{1+e} = 16.24$$

$$\Rightarrow e = \frac{2.7 \times 9.81}{16.24} - 1 = 0.631$$

When the soil is fully saturated, S = 1,

$$\therefore \qquad S \cdot e = w \cdot G$$

So, new moisture content,

$$w = \frac{S \cdot e}{G} = \frac{1 \times 0.631}{2.7} = 0.2337 \text{ or } 23.37\%$$

: Additional moisture content required

13. (b)

$$C_V = \frac{K}{m_V \gamma_w}$$
 where,
$$m_V = \frac{a_V}{1 + e_0} = \frac{\Delta e}{(\Delta \sigma)(1 + e_0)}$$

$$\Rightarrow m_V = \frac{0.8 - 0.45}{(150 - 75)(1 + 0.8)}$$

$$\Rightarrow m_V = 2.6 \times 10^{-3} \text{ m}^2/\text{kN}$$

$$\therefore C_V = \frac{1.4 \times 10^{-9}}{2.6 \times 10^{-3} \times 9.81}$$

$$\Rightarrow C_V = 5.4889 \times 10^{-8} \text{ m}^2/\text{s}$$

$$\Rightarrow C_V = 0.0549 \times 10^{-6} \text{ m}^2/\text{s} \simeq 0.055 \times 10^{-6} \text{ m}^2/\text{s}$$

14. (c)

 \Rightarrow

$$C_{\text{u (undisturbed)}} = \frac{T}{\pi d^2 \left[\frac{h}{2} + \frac{d}{6} \right]} = \frac{35 \times 1000}{\pi \times 60^2 \times \left[\frac{100}{2} + \frac{60}{6} \right]}$$

$$= 0.05158 \text{ N/mm}^2 = 51.58 \text{ kN/m}^2$$

$$C_{\text{u (remoulded)}} = \frac{5 \times 1000 \times 10^3}{\pi \times 60^2 \left[\frac{100}{2} + \frac{60}{6} \right]} \text{ kN/m}^2 = 7.368 \text{ kN/m}^2$$

∴ Sensitivity of the clay =
$$\frac{C_{u \text{(undisturbed)}}}{C_{u \text{(remoulded)}}} = \frac{51.58}{7.368} = 7$$

15. (b)

$$K_{P_{1}} = \frac{1 + \sin \phi}{1 - \sin \phi} = 3$$

$$K_{P_{2}} = 1$$

$$p_{b} = K_{P_{1}} \gamma_{1} z_{1} = 3 \times 20 \times 2 = 120 \text{ kN/m}^{2}$$

$$p'_{B} = K_{P_{2}} \gamma_{1} z_{1} + 2c \sqrt{K_{P_{2}}}$$

$$(\because \phi_{\text{clay}} = 0^{\circ})$$

=
$$1 \times 20 \times 2 + 2 \times 30\sqrt{1} = 100 \text{ kN/m}^2$$

 $p_c = K_{p2} \times \gamma_1 z_1 + K_{p2} \gamma_2 z_2 + 2c\sqrt{K_{P2}}$
= $1 \times 20 \times 2 + 1 \times 18 \times 3 + 2 \times 30\sqrt{1} = 154 \text{ kN/m}^2$

Therefore total passive earth pressure per unit length of the wall is

$$p_a = \frac{1}{2} \times 120 \times 2 + \frac{1}{2} (154 + 100) \times 3$$

= 120 + 381 = 501 kN/m

16. (b)

Given:

Weight of pile, $P_s = 22 \text{ kN}$ Shaft diameter, $D_0 = 340 \text{ mm}$ Under-ream dia, $D_u = 700 \text{ mm}$ Undrained shear strength, C = 60 kPa $\alpha = 0.3, N_C = 9$

Ultimate tensile capacity will be due to

1. Friction along the length of pile (P_1)

2. Bearing action caused by under-reamed portion (P_2)

3. Self weight of pile (P_3)

Tensile capacity due to friction

$$P_1 = f_s \times A_s$$

= $\alpha \cdot C (\pi D_0) (L - \text{Depth of under-ream})$
= $0.3 \times 60 \times \pi \times 0.34 \times (10 - 0.42) = 184.19 \text{ kN}$

Tensile capacity due to bearing action

$$P_2 = C N_C \cdot A$$

$$= \frac{60 \times 9\pi (D_u^2 - D_o^2)}{4}$$

$$= \frac{60 \times 9 \times \pi (0.7^2 - 0.34^2)}{4} = 158.79 \text{ kN}$$

$$\therefore P = P_1 + P_2 + P_3$$

$$= 184.19 + 158.79 + 22$$

$$= 364.98 \approx 365 \text{ kN}$$

17. (b)

$$q_{u} = 1.3 C N_{C} + \gamma D_{f} N_{q} + 0.4 \gamma B N_{\gamma} \cdot R_{\gamma}$$

$$C = 0$$

$$\vdots \qquad q_{u} = \gamma D_{f} N_{q} + 0.4 \gamma B N_{\gamma} \cdot R_{\gamma}$$

$$R_{\gamma} = 0.5 \left(1 + \frac{D}{B}\right) = 0.5 \left(1 + \frac{2.5}{3}\right) = 0.917$$

$$\vdots \qquad q_{u} = 18 \times 1 \times 21 + 0.4 \times 20 \times 3 \times 17 \times 0.917$$

$$= 752.136 \text{ kN/m}^{2}$$

$$\begin{array}{ll} \therefore & q_{nu} = q_u - \gamma D_f = 752.136 - 18 \times 1 \\ & = 734.136 \; \mathrm{kN/m^2} \end{array}$$

$$q_{ns} = \frac{q_{nu}}{FOS} = \frac{734.136}{2.5} = 293.65 \text{ kN/m}^2$$

$$q_z = q (1 - \cos^3 \theta)$$

$$q = 6 \text{ kN/m}^2$$

$$\cos \theta = \frac{6}{7.81}$$

$$q_z = 6 \times \left[1 - \left(\frac{6}{7.81} \right)^3 \right]$$
$$= 3.28 \text{ kN/m}^2$$

$$G = \frac{M_2 - M_1}{(M_2 - M_1) - (M_3 - M_4)}$$
$$= \frac{0.198}{0.198 - (1.653 - 1.548)} = 2.129 \approx 2.13$$

$$S_{i} = qB \left(\frac{1-\mu^{2}}{E_{s}}\right) \times I_{f}$$

$$= \frac{600}{2\times3} \times 2 \times \left(\frac{1-0.25^{2}}{20000}\right) \times 1.06$$

$$= 9.94 \times 10^{-3} \text{ m}$$

$$= 9.94 \text{ mm}$$
So final depth of footing = $D_{f} + S_{i}$

$$= 1000 + 9.94 = 1009.94 \text{ mm}$$

21. (c)

Shrinkage limit,
$$ws = w_1 - \Delta w$$

$$= w_1 - \frac{\Delta V \cdot \rho_w}{M_S}$$

$$= \frac{M_1 - M_d}{M_d} - \frac{(V_1 - V_d)\rho_w}{M_d}$$

$$= \frac{55.4 - 39.8}{39.8} - \frac{(29.2 - 21.1) \times 1}{39.8} = 0.188$$
i.e.
$$ws = 18.8\%$$

 $\simeq 1010 \text{ mm}$

22. (b)

230 сс

Water content

$$w_{\rm s} = 0.151$$
 $w_{\rm 1} = {\rm unknown}$
 $w_{\rm soil} = 450~{\rm gm}$ $w_{\rm solid} = 391~{\rm gm}$
 $w_{\rm solid} = 391~{\rm gm}$
 $w_{\rm w} = 450 - 391 = 59~{\rm gm}$
 $w_{\rm s} = 0.51$
 $w_{\rm s} = 0.51$
 $w_{\rm s} = 0.51$

$$V_2 = 1.12 \times 230 = 257.6 \text{ cc}$$

{:: 12% increment in original volume}

Now, shrinkage ratio,
$$R = G_D = \frac{\gamma_d}{\gamma_w} = 1.7$$

We, also know,
$$R = \frac{\frac{V_1 - V_s}{V_s}}{\frac{V_s}{w_1 - w_s}}$$

$$\Rightarrow \qquad 1.7 = \frac{\frac{(257.6 - 230)}{230}}{\frac{230}{w_1 - 0.151}}$$

$$\Rightarrow$$
 $w_1 = 0.22 \simeq 22\%$

$$w_w = w_1 \times w_{\text{solid}}$$

$$w_w = w_1 \times w_{\text{solid}} = 0.22 \times 391 = 86.64 \text{ gm}$$

$$\Delta w_w = 86.64 - 59 = 27.02 \text{ gm}$$

$$\Delta V_w = 27.64 \text{ cc}$$
 (: $\gamma_w = 1 \text{ g/cc}$)

$$D = 30 \text{ cm} = 0.3 \text{ m}$$

$$L = 12 \,\mathrm{m}$$

$$C = \frac{\sigma_1}{2} = \frac{200}{2} = 100 \text{ kN/m}^2$$

$$\gamma = 20 \text{ kN/m}^3$$

$$Q_{uv} = 9C A_b + \alpha \overline{c} A_s$$

$$Q_{up} = 9C\frac{\pi}{4}D^2 + \alpha \overline{c} \pi D_L$$

$$Q_{up} = 9(100) \left(\frac{\pi}{4} \times 0.3^{2}\right) + 0.6(100)(\pi \times 0.3 \times 12)$$

$$\Rightarrow$$
 $Q_{up} = 742.20 \text{ kN}$
For 16 piles, $Q_{ug} = n \ Q_{up}$
 $= 16 \times 742.20 = 11875.20 \text{ kN}$

24. (a)

$$I_D = \frac{\frac{1}{(\gamma_d)_{\min}} - \frac{1}{(\gamma_d)}}{\frac{1}{(\gamma_d)_{\min}} - \frac{1}{(\gamma_d)_{\max}}}$$

$$\Rightarrow \qquad 0.75 = \frac{\frac{1}{1.7} - \frac{1}{\gamma_d}}{\frac{1}{1.7} - \frac{1}{2.1}}$$

$$\Rightarrow \qquad \qquad \gamma_d = 1.983 \text{ g/cc}$$

We know,

$$\gamma_d = \frac{G\gamma_w}{1+e}$$

$$\Rightarrow \qquad 1.983 = \frac{2.7 \times 1}{1 + e}$$

$$e = 0.3616$$

$$n = \frac{e}{1+e} = 0.2656 \approx 0.27$$

25. (b)

Discharge =
$$\frac{200 \text{ ml}}{20 \text{ min}} = \frac{200 \times 10^3}{20 \times 60} = \frac{500}{3} \text{ mm}^3 / \text{sec}$$

$$k_{eq} = \frac{\sum Z_i}{\sum \frac{Z_i}{k_i}}$$

[: Flow is normal to bedding plane]

$$k_{eq} = \frac{150 + 150}{\frac{150}{0.04} + \frac{150}{k}}$$

$$i = \frac{600 - 300}{300} = 1$$

$$A = 80 \text{ cm}^2 = 80 \times 10^2 \text{ mm}^2$$

$$q = k_{eq} i A$$

$$\frac{500}{3} = \frac{300}{\left(\frac{150}{0.04} + \frac{150}{k}\right)} \times 1 \times 80 \times 10^2$$

$$\Rightarrow$$
 $k = 0.014 \text{ mm/sec}$

26. (c)

$$n = \frac{V_V}{V} = 0.7 = \frac{V_V}{200}$$

$$\Rightarrow V_V = 140 \text{ m}^3$$

$$S = \frac{V_W}{V_V} = \frac{V_V - V_a}{V_V} = \left(1 - \frac{V_a}{V_V}\right)$$

$$\Rightarrow 0.40 = 1 - \frac{V_a}{V_V}$$

$$\Rightarrow \frac{V_a}{V_V} = 0.6$$

$$\Rightarrow V_a = 0.6 \times 140 = 84 \text{ m}^3$$

27. (b)

$$\frac{\sigma_1 - \sigma_3}{2} = C\cos\phi + \frac{\sigma_1 + \sigma_3}{2}\sin\phi \qquad ...(i)$$

As,
$$q = 8\sqrt{3} + 0.7p$$
 ...(ii)

..
$$C \cos \phi = 8\sqrt{3}$$
 (on comparing equations (i) and (ii) and $\sin \phi = 0.7$ $\Rightarrow \qquad \phi = \sin^{-1}(0.7) = 44.43^{\circ}$

$$\therefore \qquad C \cos 44.43^{\circ} = 8\sqrt{3}$$

$$\Rightarrow \qquad C = 19.40 \text{ kPa}$$

28. (a)

$$S_{p} = S_{f} \left[\frac{B_{p} \left(B_{f} + 0.3 \right)}{B_{f} \left(B_{p} + 0.3 \right)} \right]^{2} \text{ for sandy soils}$$

$$\Rightarrow \qquad 15 = S_{f} \left[\frac{0.3 \left(1.5 + 0.3 \right)}{1.5 \left(0.3 + 0.3 \right)} \right]^{2}$$

$$\Rightarrow \qquad S_{f} = \frac{15}{0.36} = 41.67 \text{ mm}$$

29. (b)

$$\sigma_z = \frac{2q'}{\pi z} \left[\frac{1}{1 + \left(\frac{x}{z}\right)^2} \right]^2$$

$$= \frac{2 \times 120}{\pi \times 3.5} \left[\frac{1}{1 + \left(\frac{2}{3.5}\right)^2} \right]^2$$

$$= 12.40 \text{ kN/m}^2$$

30. (b)

As the flow is in upward direction.

$$P_H = H_1 + Z + iZ$$

 H_1 = Height of water above soil surface = 2 m Where,

Z = Vertical depth of section = 1 m

$$i$$
 = Hydraulic gradient = $\frac{\Delta h}{L} = \frac{2}{4} = 0.5$

$$P_{H} = 2 + 1 + 0.5 (1)$$

$$\Rightarrow \qquad \qquad P_{H} = 3.5 \text{ m}$$

$$\Rightarrow$$
 $P_H = 3.5 \text{ m}$

Datum head =
$$3 \text{ m}$$

 \therefore Total head = $3 + 3.5 = 6.5 \text{ m}$

Head loss = Total available head - Total head at
$$P$$

$$= (4 + 2 + 2) - (7.5) = 1.5 \text{ m}$$