MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

2011 írásbeli vizsga 3 / 21 2020. május 5.

I.

1. a) első megoldás		
A sorozat első négy tagja: a_1 , $a_1 + d$, $a_1 + 2d$, $a_1 + 3d$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A feltételek szerint $2a_1 + 2d = 26$ és $2a_1 + 4d = 130$.	1 pont	
Innen (pl. a két egyenlet kivonása után) $d = 52$,	1 pont	
és visszahelyettesítés után $a_1 = -39$.	1 pont	
A sorozat ötödik tagja $a_5 = a_1 + 4d = 169$. (A sorozat első öt tagja: -39 , 13, 65, 117, 169.)	1 pont	
Összesen:	5 pont	

1. a) második megoldás		
A számtani sorozat ismert tulajdonsága miatt (három		Ez a pont akkor is jár, ha
szomszédos tag közül a középső a két szélsőnek a	1 pont	ez a gondolat csak a meg-
számtani közepe):		oldásból derül ki.
$a_2 = \frac{a_1 + a_3}{2} = \frac{26}{2} = 13,$	1 pont	
és $a_3 = \frac{a_2 + a_4}{2} = \frac{130}{2} = 65$.	1 pont	
$d = (a_3 - a_2 = 65 - 13 =) 52.$	1 pont	
A sorozat ötödik tagja $a_5 = a_3 + 2d = 169$.	1 pont	
Összesen:	5 pont	

1. b) első megoldás		
A sorozat első négy tagja: $b_1, b_1q, b_1q^2, b_1q^3 (b_1 \neq 0, q \neq 0)$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A feltétel szerint $b_1 + b_1 q^2 = 26$ és $b_1 q + b_1 q^3 = 130$.	1 pont	
Szorzattá alakítva: $b_1(1+q^2) = 26$ és $b_1q(1+q^2) = 130$.	1 pont	
(Egyik tényező sem nulla, ezért) a két egyenletet el- oszthatjuk egymással, amiből $q=5$ adódik,	1 pont	
visszahelyettesítéssel pedig $b_1 = 1$.	1 pont	
A sorozat ötödik tagja $b_5 = b_1 q^4 = 5^4 = 625$. (A sorozat első öt tagja: 1, 5, 25, 125, 625.)	1 pont	
Összesen:	6 pont	

1. b) második megoldás		
Ha a sorozat második tagja b , hányadosa pedig q $(b \neq 0, q \neq 0)$, akkor a sorozat első négy tagja rendre: $\frac{b}{q}$, b , bq , bq^2 .	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A feltétel szerint $\frac{b}{q} + bq = 26$ és $b + bq^2 = 130$.	1 pont	
Az első egyenletből (q -val szorzás után): $b + bq^2 = 26q$.	1 pont	
Ezt a második egyenlettel összehasonlítva kapjuk, hogy $26q = 130$, vagyis $q = 5$,	1 pont	
visszahelyettesítéssel pedig $b = 5$.	1 pont	
A sorozat ötödik tagja $bq^3 = 5^4 = 625$.	1 pont	
Összesen:	6 pont	

2. a)		
Három számjegy szorzata prím, ha két számjegy 1-es, a harmadik pedig prímszám.	1 pont	
Egyjegyű prímszám négy darab van: 2, 3, 5, 7.	1 pont	
Bármely kiválasztott prímszám három helyen fordulhat elő, így összesen $4 \cdot 3 = 12$ különböző "prímes" rendszám készíthető.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó rendezetten felsorolja az összes lehetőséget, és ez alapján helyes választ ad, akkor teljes pontszámot kapjon.

2. b)		
A 6 előállítási lehetőségei három számjegy összegeként (a sorrendtől eltekintve): $6+0+0$, $5+1+0$, $4+2+0$, $4+1+1$, $3+3+0$, $3+2+1$, $2+2+2$.	2 pont	Egy vagy két hiba esetén 1 pont, több hiba esetén 0 pont jár.
Az ezekből előállítható számhármasok száma rendre 3, 6, 6, 3, 3, 6, 1.	2 pont	
Összesen $3+6+6+3+3+6+1=28$ -féle "hatos" rendszám készíthető.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó rendezetten felsorolja az összes lehetőséget, és ez alapján helyes választ ad, akkor teljes pontszámot kapjon.

2. c)		
Definíció szerint $\log_a b = c \iff a^c = b$, ahol $a > 0$, $a \ne 1$ és $b > 0$ (így $2 \le a \le 9$ és $1 \le b \le 9$).	1 pont	Ez a pont akkor is jár, ha ezek a gondolatok csak a megoldásból derülnek ki.
(Esetszétválasztás c lehetséges értékei alapján.) Ha $c=0$, akkor $b=1$ és $a=2,3,4,5,6,7,8$ vagy 9. Ez 8 lehetőség.	1 pont	<i>Ha a</i> = 2, <i>akkor</i> $c \in \{0; 1; 2; 3\}$, <i>ez</i> 4 <i>lehetőség</i> .
Ha $c = 1$, akkor $a = b = 2, 3, 4, 5, 6, 7, 8 vagy 9. Ez 8 lehetőség.$	1 pont	Ha $a = 3$, akkor $c \in \{0; 1; 2\}$, ez 3 lehetőség.
Ha $c = 2$, akkor $a = 2$ és $b = 4$, vagy $a = 3$ és $b = 9$. Ez 2 lehetőség.	1 pont	$Ha \ a \in \{4, 5, 6, 7, 8, 9\},$ $akkor \ c \in \{0, 1\},$
Ha $c = 3$, akkor $a = 2$ és $b = 8$. Ez 1 lehetőség.	1 pont	$ez (6 \cdot 2 =) 12 lehetőség.$
$(c \ge 4 \text{ nem lehet, hiszen } b = a^4 \ge 2^4 = 16 \text{ lenne, igy})$ összesen $8 + 8 + 2 + 1 = 19$ "logaritmusos" rendszám készíthető.	1 pont	\ddot{O} sszesen $4 + 3 + 12 = 19$ lehetőség.
Összesen:	6 pont	

Megjegyzések:

- 1. Ha a vizsgázó rendezetten felsorolja az összes lehetőséget, és ez alapján helyes választ ad, akkor teljes pontszámot kapjon.
- 2. Ha a vizsgázó megengedi az a = 1 lehetőséget, akkor ezért 1 pontot veszítsen.
- 3. Ha a vizsgázó megengedi az a = 0 lehetőséget, akkor ezért 1 pontot veszítsen.

3. a)		
A keletkező hulladék akkor minimális, ha az oldallapok területe, és így (alapélhez tartozó) <i>h</i> magassága maximális, azaz 10 cm.	1 pont	
Ekkor a négy oldallap területe $\frac{10 \cdot h}{2} \cdot 4 = 200 \text{ cm}^2$,	1 pont	
a hulladék tehát legalább $4 \cdot 10 \cdot 10 - 200 = 200 \text{ cm}^2$.	1 pont	
Minél kisebb az oldallapok magassága, annál több a hulladék. A lapmagasságok merőleges vetülete az alaplapon 5 cm, így $h > 5$ cm. (Derékszögű háromszögben az átfogó nagyobb, mint a befogó.)	1 pont	A palást nagyobb terü- letű, mint az alaplap, azaz több, mint 100 cm², így
Az oldallapok területösszege: $\frac{10 \cdot h}{2} \cdot 4 > \frac{10 \cdot 5}{2} \cdot 4 = 100 \text{ cm}^2, \text{ fgy}$	1 pont	
a hulladék kevesebb, mint $4 \cdot 10 \cdot 10 - 100 = 300 \text{ cm}^2$. Összesen:	1 pont 6 pont	

3. b) első megoldás		
Két csúcsot $\binom{8}{2}$ (= 28)-féleképpen választhatunk ki	1 pont	
(összes eset száma).		
(A gráfnak 12 éle van, így) a két csúcs 12 esetben lesz egy él két végpontja (kedvező esetek száma).	2 pont	
A keresett valószínűség $\frac{12}{\binom{8}{2}} = \frac{3}{7} \ (\approx 0,429).$	1 pont	
Összesen:	4 pont	

3. b) második megoldás		
Ha az első kiválasztott csúcs "külső" pont (E, F, G) vagy (E, F, G) v		
tásának $\frac{2}{7}$ a valószínűsége (a maradék 7 csúcsból	1 pont	
2 szomszédos).		
Ha az első kiválasztott csúcs "belső" pont (A, B, C) vagy (A, B, C) vagy (A, B, C) vagy (A, B, C) tásának (A, B, C) vagy (A, B, C) tásának (A, B, C) vagy $(A, B,$	1 pont	
A külső és a belső csúcs kiválasztásának a valószínű- sége egyaránt $\frac{1}{2}$,	1 pont	
így a keresett valószínűség $\frac{1}{2} \cdot \frac{2}{7} + \frac{1}{2} \cdot \frac{4}{7} = \frac{3}{7}$.	1 pont	
Összesen:	4 pont	

3. c) első megoldás		
Az <i>ADH</i> , <i>DCG</i> , <i>CBF</i> , <i>BAE</i> háromszögek mindegyik éle pontosan egy háromszöghöz tartozik.	1 pont	
Mivel (4 háromszög és) 3 zöld él van, lesz a háromszögek között olyan, amelynek minden éle kék (és ez egy gráfelméleti kör).	2 pont	
Összesen:	3 pont	

3. c) második megoldás		
Ha egy n pontú gráfban nincsen kör, akkor legfeljebb $n-1$ éle lehet.	1 pont	
A kék élek által alkotott részgráfnak legfeljebb 8 csúcsa és 9 éle van, tehát biztosan van benne kör.	2 pont	
Összesen:	3 pont	

4. a)		
A másodfokú egyenletnek pontosan akkor van két különböző valós gyöke, ha a diszkriminánsa pozitív.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A diszkrimináns: $(4p+1)^2 - 4 \cdot 2p = 16p^2 + 1$.	1 pont	
Ez $(p^2 \ge 0 \text{ miatt})$ a p minden valós értékére pozitív, tehát az állítás igaz.	1 pont	
Összesen:	3 pont	

4. b) első megoldás		
Ha a 3 gyöke az egyenletnek, akkor $9-3(4p+1)+2p=0$,	1 pont	
ahonnan $p = 0.6$.	1 pont	
Az egyenlet ezzel az értékkel: $x^2 - 3.4x + 1.2 = 0$.	1 pont	
A megoldóképletből adódik, hogy a másik valós gyök ekkor 0,4.	1 pont	A gyökök és együtthatók közötti összefüggés szerint a másik valós gyök ekkor $3,4-3=0,4$ vagy $\frac{1,2}{3}=0,4$.
Összesen:	4 pont	

4. b) második megoldás		
(Az egyenletnek mindig két valós gyöke van, ezért) a gyökök és együtthatók közötti összefüggések szerint $x_2 + 3 = 4p + 1$ és $3x_2 = 2p$.	1 pont	
Ez utóbbi alapján $p = \frac{3}{2}x_2$,	1 pont	Az első egyenletből: $x_2 = 4p - 2$.
amelyet az első összefüggésbe helyettesítve: $x_2 + 3 = 6x_2 + 1$,	1 pont	Ezt a másodikba helyette- sítve: $12p - 6 = 2p$, ebből $p = 0.6$,
ahonnan a másik gyök $x_2 = 0.4$.	1 pont	igy $x_2 = (4 \cdot 0.6 - 2) = 0.4$.
Összesen:	4 pont	

4. c)		
(A megadott egyenletnek mindig 2 valós gyöke van.) $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$	1 pont*	
A gyökök és együtthatók közötti összefüggések szerint $x_1 + x_2 = 4p + 1$ és $x_1x_2 = 2p$, ezért $x_1^2 + x_2^2 = (4p + 1)^2 - 2 \cdot 2p$.	2 pont*	
$(4p+1)^2 - 2 \cdot 2p = 7$	1 pont	
$16p^2 + 4p - 6 = 0$	1 pont	
Ennek az egyenletnek a valós gyökei 0,5 és –0,75, így ezek a <i>p</i> paraméter keresett értékei.	1 pont	
Összesen:	6 pont	

Megjegyzések:

1.
$$p = 0.5$$
 esetén az egyenlet $x^2 - 3x + 1 = 0$, melynek a gyökei $\frac{3 \pm \sqrt{5}}{2}$, $p = -0.75$ esetén az egyenlet $x^2 + 2x - 1.5 = 0$, melynek a gyökei $\frac{-2 \pm \sqrt{10}}{2}$.

2. A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

2.11 Suiferent pontional all and set gondoral mentelet is in		900 00 11=280=21
$x_{1} = \frac{4p+1+\sqrt{(4p+1)^{2}-8p}}{2}$ $x_{2} = \frac{4p+1-\sqrt{(4p+1)^{2}-8p}}{2}$	1 pont	
$x_1^2 + x_2^2 = \frac{2 \cdot (4p+1)^2 + 2 \cdot ((4p+1)^2 - 8p)}{4} =$ $= \frac{4(4p+1)^2 - 16p}{4} = (4p+1)^2 - 4p$	2 pont	

II.

5. a)		
$\frac{9}{58} \cdot \frac{180^{\circ}}{\pi} \approx 8,89^{\circ}$	2 pont	
Összesen:	2 pont	

5. b)		
$f(50) = -5,2\cos(1) + 11,2$	1 pont	
$f(50) \approx 8,39 \text{ óra}$	1 pont	
Az 50. napon (körülbelül) 8:23 óra (8 óra 23 perc) hosszú a nappal.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	3 pont	

5. c) első megoldás		
(Az f(n) > 12 megoldásai számának megállapításá-		
hoz) először a g függvény értelmezési tartományán		
oldjuk meg a $-5,2\cos\left(\frac{x+8}{58}\right)+11,2=12$ egyenletet	1 pont	
$(1 \le x \le 365, x \in \mathbf{R}).$		
(Ekkor $0.16 \approx \frac{9}{58} \le \frac{x+8}{58} \le \frac{373}{58} \approx 6.43.$)		
$\cos\left(\frac{x+8}{58}\right) \approx -0.1538$	1 pont	
$\frac{x+8}{58} \approx 1,7253 \text{ vagy } \frac{x+8}{58} \approx 2\pi - 1,7253 \approx 4,5579$	2 pont	
Innen $x \approx 92,06$ vagy $x \approx 256,36$.	1 pont	
A g függvény ábrája alapján az $f(n) > 12$ megoldásai azok az n -ek, amelyekre $93 \le n \le 256$.	1 pont	
A 12 óránál hosszabb nappalok száma tehát (256 – 93 + 1 =) 164 valóban.	1 pont	
Összesen:	7 pont	

5		
5. c) második megoldás		
(Az f(n) > 12 megoldásai számának megállapításához) először a g függvény értelmezési tartományán		
oldjuk meg a $-5,2\cos\left(\frac{x+8}{58}\right)+11,2>12$ egyenlőtlen-	1 pont	
séget $(1 \le x \le 365, x \in \mathbf{R})$.		
Ez (az adott halmazon) ekvivalens a		
$\cos\left(\frac{x+8}{58}\right) < -\frac{2}{13}$ egyenlőtlenséggel.	1 pont	
Közelítő értékeket alkalmazva: $\frac{x+8}{58} \in]1,7253+2k\pi;4,5579+2k\pi[\ (k \in \mathbf{Z}).$ Így a $]92,1+116k\pi;\ 256,3+116k\pi[$ intervallumok elemei megoldásai az egyenlőtlenségnek.	2 pont	$\alpha \approx 1,7253 \operatorname{radián} \\ \beta \approx 4,5579 \operatorname{radián}$
$k = 0$ esetén a]92,1; 256,3[intervallum a g értelmezési tartományának részhalmaza (ha pedig $k \neq 0$, akkor nincs a g értelmezési tartományához tartozó eleme az intervallumoknak).	1 pont	
Ezért $f(n) > 12$ megoldásai azok az n -ek, amelyekre $93 \le n \le 256$.	1 pont	
A 12 óránál hosszabb nappalok száma tehát (256 – 93 + 1 =) 164 valóban.	1 pont	
Összesen:	7 pont	

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha (számításokkal és a g függvény monotonitására/grafikonjára hivatkozva) igazolja, hogy az év első 12 óránál hosszabb nappali időszaka a 93., az utolsó pedig a 256. napon van, majd ennek alapján helyesen következtet.

5. d)		
A terület: $\int_{0}^{2\pi} (-5,2\cos(x)+11,2)dx$.	1 pont	$-5.2 \int_{0}^{2\pi} \cos(x) dx + \int_{0}^{2\pi} 11.2 dx$
$\int_{0}^{2\pi} (-5,2\cos(x)+11,2)dx = [-5,2\sin(x)+11,2x]_{0}^{2\pi} =$	2 pont	Mivel $\int_{0}^{2\pi} \cos(x) dx = 0$, $\int_{0}^{2\pi} 11,2 dx = 11,2 \cdot 2\pi$,
$= (0+11,2\cdot 2\pi) - (0+0) \approx 70,37$	1 pont	ezért a terület ≈ 70,37.
Összesen:	4 pont	

6. a) első megoldás		
A 90-nél nem nagyobb pozitív egészek között 2-vel osztható 45 db, 3-mal osztható 30 db, 5-tel osztható 18 db van.	1 pont	Venn-diagramon szemlél-
Ha összeadjuk a 2-vel, a 3-mal, és az 5-tel osztható számok számát, akkor ezek közt kétszer számoltuk a 6-tal, a 10-zel és a 15-tel oszthatókat, az összegből tehát le kell vonni ezek számának a kétszeresét.	1 pont	tetjük az egyes halmazo- kat és azok elemszámát. 2-vel osztható (45) 3-mal osztható (30)
A 30-cal oszthatókat viszont így háromszor számoltuk, majd hatszor levontuk, tehát ezek számát még háromszor hozzá kell adnunk.	1 pont	24 12 12 12
2-vel és 3-mal (tehát 6-tal) osztható számból 15 db, 2-vel és 5-tel (tehát 10-zel) oszthatóból 9 db, 3-mal és 5-tel (tehát 15-tel) oszthatóból 6 db, végül 2-vel, 3-mal és 5-tel is (tehát 30-cal) oszthatóból 3 db van.	1 pont	5-tel osztható (18)
A 2, a 3 és az 5 közül pontosan az egyikkel osztható 90-nél nem nagyobb pozitív egészek száma tehát $45 + 30 + 18 - 2 \cdot (15 + 9 + 6) + 3 \cdot 3 = 42$.	2 pont	A keresett szám a Venn- diagram alapján: 24 + 12 + 6 = 42
Összesen:	6 pont	

6. a) második megoldás		
A 90-nél nem nagyobb pozitív egészek között 45 db 2-vel osztható van. Ezek között 3-mal is (tehát 6-tal) osztható 15 db, 5-tel is (tehát 10-zel) osztható 9 db. $45-15-9=21$, de így a 3-mal és 5-tel is (tehát 30-cal) osztható 3 db számot kétszer vontuk le. Ezért a csak 2-vel oszthatók száma $45-15-9+3=24$.	2 pont	
Hasonlóan: a 90-nél nem nagyobb pozitív egészek között 3-mal osztható 30 db, közülük 2-vel is osztható 15 db, 5-tel is osztható 6 db, 2-vel és 5-tel is osztható pedig 3 db van, így a csak 3-mal oszthatók száma $30-15-6+3=12$. A 90-nél nem nagyobb pozitív egészek között 5-tel osztható 18 db, közülük 2-vel is osztható 9 db, 3-mal is osztható 6 db, 2-vel és 3-mal is osztható pedig 3 db van, így a csak 5-tel oszthatók száma $18-9-6+3=6$.	3 pont	
Összesen tehát $(24 + 12 + 6 =) 42$ ilyen szám van.	1 pont	
Összesen:	6 pont	

6. a) harmadik megoldás		
Mivel a 2, a 3 és az 5 legkisebb közös többszöröse a		
30, ezért elég megnézni, hogy 30-ig hány szám ren-	2 pont	
delkezik a keresett tulajdonsággal.		
A megfelelő oszthatóságok ezután periodikusan is-		
métlődnek, tehát 90-ig háromszor annyi ilyen szám	1 pont	
lesz, mint 30-ig.		
A 2, a 3 és az 5 közül pontosan az egyikkel osztható		
számok 1-től 30-ig:	2 pont	
2, 3, 4, 5, 8, 9, 14, 16, 21, 22, 25, 26, 27 és 28.	_	
Ez 14 db, tehát a 90-nél nem nagyobb megfelelő szá-	1	
mok száma $(14 \cdot 3 =) 42$.	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó rendezetten felsorolja az összes lehetőséget, és ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

6. b) első megoldás		
(A hátralevő két nyerőszámot 87 szám közül sorsol-		
ják ki, erre a sorrendet nem figyelembe véve) össze-	4 ,	
$\operatorname{sen} \binom{87}{2} (= 3741)$ lehetőség van (összes eset száma).	1 pont	
Nézzük a komplementer eseményt: ekkor az utolsó	2 pont	
két kihúzott szám között nincs sem a 64, sem a 68.	2 point	
Erre összesen $\binom{85}{2}$ (= 3570) lehetőség van.	1 pont	
A kedvező esetek száma tehát (3741 – 3570 =) 171.	1 pont	
A keresett valószínűség $\frac{171}{3741} \approx 0,046$.	1 pont	
Összesen:	6 pont	

6. b) második megoldás		
(A hátralevő két nyerőszámot 87 szám közül sorsolják ki, erre a húzás sorrendjét is figyelembe véve) összesen 87 · 86 (= 7482) lehetőség van (összes eset száma).	1 pont	A sorrendet nem figyelembe véve: $\binom{87}{2} (= 3741) \text{ lehetőség.}$
Ha a negyedik kihúzott szám a 64 vagy a 68, de az ötödik szám valami más, akkor erre 2 · 85 (= 170) lehetőség van; hasonlóképpen 85 · 2 (= 170) lehetőség van arra, hogy a negyedik kihúzott szám nem jó, de az ötödik kihúzott szám a 64 vagy a 68.	2 pont	$2 \cdot 85 = 170 \ eset$
Végül kétféleképpen fordulhat elő az, hogy a negyedik és az ötödik kihúzott szám (valamilyen sorrendben) a 64 és a 68.	1 pont	1 eset

A kedvező esetek száma $(2 \cdot 170 + 2 =) 342$.	1 pont	(170 + 1 =) 171
A keresett valószínűség $\frac{342}{7482} \approx 0,046$.	1 pont	$\frac{171}{3741} \approx 0,046$
Összesen:	6 pont	

6. b) harmadik megoldás		
(A hátralevő két nyerőszámot 87 szám közül sorsolják ki.) Annak a valószínűsége, hogy a negyediknek húzott szám a 64 vagy a 68, de az ötödik ezek egyike sem: $\frac{2}{87} \cdot \frac{85}{86}$ ($\approx 0,0227$). Ugyanennyi, $\frac{85}{87} \cdot \frac{2}{86}$ ($\approx 0,0227$) a valószínűsége, hogy a negyedik kihúzott szám nem a 64 és nem a 68, de az ötödik ezek közül kerül ki.	2 pont	2/87 annak a valószínű- sége, hogy a negyedik ki- húzott szám a 64 vagy a 68.
Annak a valószínűsége, hogy a 64-et és a 68-at is kihúzzák: $\frac{2}{87} \cdot \frac{1}{86}$ (\approx 0,0003).	2 pont	Annak a valószínűsége, hogy a negyedik szám nem a 64 és a 68 közül kerül ki, de az ötödik szám igen: $\frac{85}{87} \cdot \frac{2}{86}$.
A keresett valószínűség: $2 \cdot \frac{2 \cdot 85}{87 \cdot 86} + \frac{2}{87 \cdot 86} =$	1 pont	$\frac{2}{87} + \frac{85 \cdot 2}{87 \cdot 86} =$
$= \frac{342}{7482} \approx 0,046.$	1 pont	
Összesen:	6 pont	

6. c)		
Az összes kifizetett nyeremény:		
$17 \cdot 3 \cdot 113 \cdot 255 + 1617 \cdot 34 \cdot 915 + 62 \cdot 757 \cdot 1970 =$	2 pont	
= 233 014 180 Ft.		
Az egy szelvényre eső átlagos kifizetett nyeremény:		
$\frac{233014180}{2222221} \approx 72,3 \text{ Ft.}$	1 pont	
3 222 831		
A szelvény árát is figyelembe véve az egy szelvényre	1 pont	
jutó átlagos veszteség 250 – 72,3 = 177,7 Ft.	1 point	
Összesen:	4 pont	

7. a)		
D^{δ} $\begin{array}{c} C \\ \hline \\ 50^{\circ} \\ \end{array}$ $\begin{array}{c} 20 \\ \hline \\ A \\ \end{array}$	1 pont	
ABC háromszögben koszinusztétellel: $AC^{2} = 20^{2} + 18^{2} - 2 \cdot 20 \cdot 18 \cdot \cos 70^{\circ},$		
$AC = 20 + 16 = 2 \cdot 20 \cdot 16 \cdot \cos 70$, $AC \approx 21,86$.	1 pont	
A húrnégyszögben $\delta = 180^{\circ} - 70^{\circ} = 110^{\circ}$.	1 pont	
$\frac{ACD \text{ háromszögben szinusztétellel:}}{\frac{CD}{AC} = \frac{\sin 50^{\circ}}{\sin 110^{\circ}},$	1 pont	
$CD \approx 17,82.$	1 pont	
$DCA \angle = 20^{\circ}$, ezért a négyszög területe: $\frac{20 \cdot 18 \cdot \sin 70^{\circ}}{2} + \frac{21,86 \cdot 17,82 \cdot \sin 20^{\circ}}{2} \approx$ (≈ 169,1 + 66,6 =) 235,7.	2 pont	Szinusztétellel $AD \approx 7,96$, így a hűrnégyszög terület ($s \approx 31,9$ miatt): $\sqrt{11,9\cdot 13,9\cdot 14,1\cdot 23,9} \approx 236,1$.
Összesen:	7 pont	

7. b)		
$\overrightarrow{PH} = (0,2; 0), \ \overrightarrow{RH} = (-1,8; -5)$	1 pont	
$\overrightarrow{PH} \cdot \overrightarrow{RH} = 0.2 \cdot (-1.8) + 0 \cdot (-5) = -0.36$	1 pont	
Összesen:	2 pont	

7. c)		
$ \begin{array}{c c} y \\ 5 \\ R \end{array} $ $ \begin{array}{c c} P & O \\ \hline -2 & H(x;0) & G \\ \hline Legyen H az (x; 0) pont (ahol -2 \le x \le 6).$	1 pont*	
Ekkor $\overrightarrow{PH} = (x; 0) - (-2; 0) = (x + 2; 0)$ és $\overrightarrow{RH} = (x; 0) - (0; 5) = (x; -5).$	1 pont*	
$\overrightarrow{PH} \cdot \overrightarrow{RH} = (x+2)x + 0 \cdot (-5) = x(x+2)$	1 pont*	
$x(x+2) = (x+1)^2 - 1,$ ezért az $f: x \mapsto x(x+2), -2 \le x \le 6$ függvénynek minimuma van -1 -nél,	2 pont**	
(f a [-2; -1] intervallumon szigorúan monoton fogyó, a $[-1; 6] \text{ intervallumon szigorúan monoton növekvő,}$ f(-2) = 0 és f(6) = 48 > 0 ezért) a maximumát 6-nál veszi fel.	1 pont**	
A minimális skaláris szorzat a $H_1(-1; 0)$ ponthoz tartozik, a maximális pedig a $H_2 = Q(6; 0)$ ponthoz.	1 pont	
Összesen:	7 pont	

Megjegyzések:

1. A *-gal jelzett pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

2. A **-gal jelzett pontok akkor is járnak, ha a vizsgázó helyesen vázolja a [-2; 6] zárt intervallumra leszűkített $x \mapsto x(x+2) = x^2 + 2x$ másodfokú függvényt, majd az ábra alapján helyesen válaszol.

8. a) első megoldás		
Ha a javított számla alapján az ételekért végül bruttó x Ft-ot, az italokért y Ft-ot fizettek, akkor a hibás számla szerint az ételekért $x:1,04\cdot 1,30=1,25x$, az italokért pedig $y:1,30\cdot 1,04=0,8y$ Ft-ot kellett volna fizetniük.	2 pont	
$\begin{cases} 1,25x+0,8y = 8710 \\ x+y = 7670 \end{cases}$	1 pont	
A második egyenletet 0,8-del szorozva: $\begin{cases} 1,25x+0,8y=8710\\ 0,8x+0,8y=6136. \end{cases}$ A két egyenlet különbségéből 0,45 $x=2574$, azaz $x=5720$.	2 pont	Az első egyenletet 0,8-del szorozva: $\begin{cases} x+0,64y=6968 \\ x+y=7670. \end{cases}$ 0,36y = 702 y = 1950
A helyesen kiállított számla szerinti bruttó ételfogyasztás 5720 Ft, a bruttó italfogyasztás pedig $y = 7670 - x = 1950$ Ft volt.	1 pont	x = 7670 - y = 5720
Ellenőrzés: A tévesen kiállított számlán bruttó 5720: 1,04 · 1,3 + 1950: 1,3 · 1,04 = = (7150 + 1560 =) 8710 Ft szerepelt valóban.	1 pont	
Összesen:	7 pont	

8. a) második megoldás		
Ha a javított számla alapján az ételekért végül bruttó x Ft-ot, az italokért y Ft-ot fizettek, akkor a hibás számla szerint az ételekért x:1,04·1,3, az italokért pedig y:1,3·1,04 Ft-ot kellett volna fizetniük.	1 pont	
$\begin{cases} \frac{x}{1,04} \cdot 1, 3 + \frac{y}{1,3} \cdot 1, 04 = 8710\\ x + y = 7670 \end{cases}$	1 pont	
A második egyenletből $x = 7670 - y$, ezt az elsőbe visszaírva: $\frac{(7670 - y) \cdot 1,3}{1,04} + \frac{y \cdot 1,04}{1,3} = 8710.$ $(7670 - y) \cdot 1,25 + y \cdot 0,8 = 8710$ $9587,5 - 0,45y = 8710$	3 pont*	
A helyesen kiállított számla szerinti bruttó italfogyasztás $y = \frac{9587,5-8710}{0,45} = 1950 \text{ Ft}$, a bruttó ételfogyasztás pedig $x = 7670 - y = 5720 \text{ Ft}$ volt.	1 pont*	
Ellenőrzés: A tévesen kiállított számlán bruttó 5720: 1,04 · 1,3 + 1950: 1,3 · 1,04 = = (7150 + 1560 =) 8710 Ft szerepelt valóban.	1 pont	
Összesen:	7 pont	

Megjegyzés: A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

A második egyenletből $y = 7670 - x$, ezt az elsőbe visszaírva: $\frac{x \cdot 1,3}{1000} + \frac{(7670 - x) \cdot 1,04}{1000} = 8710$.		
1,04 1,3 Mindkét oldalt 1,04-dal és 1,3-del is szorozva: $x \cdot 1,3^2 + (7670 - x) \cdot 1,04^2 = 11775,92$.	3 pont	
0.6084x + 8295.872 = 11775.92		
A helyesen kiállított számla szerinti bruttó ételfo-		
gyasztás $x = \frac{11775,92 - 8295,872}{0,6084} = 5720 \text{ Ft, a bruttó}$	1 pont	
italfogyasztás pedig $y = 7670 - x = 1950$ Ft volt.		

8. a) harmadik megoldás		
Ha a hibás számla alapján az ételekért bruttó x Ft-ot, az italokért y Ft-ot fizettek volna, akkor az újraszámolás után az ételekért $x:1,3\cdot 1,04=0,8x$, az italokért pedig $y:1,04\cdot 1,3=1,25y$ Ft-ot kellett fizetniük.	2 pont	
$\begin{cases} x + y = 8710 \\ 0.8x + 1.25y = 7670 \end{cases}$	1 pont	
Az első egyenletet 0,8-del szorozva: $\begin{cases} 0,8x+0,8y=6968\\ 0,8x+1,25y=7670. \end{cases}$ A két egyenlet különbségéből 0,45 $y=702$, azaz $y=1560$, majd $x=8710-y=7150$.	2 pont	$y = 8710 - x$ $0.8x + 1.25(8710 - x) =$ $= 7670$ $10.887.5 - 0.45x = 7670$ $x = \frac{10.887.5 - 7670}{0.45} =$ $= 7150$ $y = (8710 - 7150) = 1560$
A helyesen kiállított számla szerinti bruttó ételfogyasztás $7150:1,3\cdot 1,04 = 5720$ Ft, a bruttó italfogyasztás pedig $1560:1,04\cdot 1,3 = 1950$ Ft volt.	1 pont	
Ellenőrzés: A helyesen kiállított számlán bruttó 5720 + 1950 = 7670 Ft szerepelt valóban.	1 pont	
Osszesen:	7 pont	

8. a) negyedik megoldás		
Legyen az elfogyasztott ételek nettó ára x Ft, az italoké pedig y Ft. Ekkor $ \begin{cases} 1,3x+1,04y=8710 \\ 1,04x+1,3y=7670. \end{cases} $	2 pont	
Az első egyenletből kivonva a másodikat: 0.26(x - y) = 1040, azaz $x - y = 4000$, tehát $x = 4000 + y$. Ezt visszaírva az első egyenletbe: 1.3(4000 + y) + 1.04y = 8710. 5200 + 2.34y = 8710 $y = \frac{8710 - 5200}{2.34} = 1500$ és $x = 4000 + y = 5500$	3 pont*	A két egyenletet össze- adva: 2,34(x + y) = 16 380, x + y = 7000, x = 7000 - y. 9100 - 0,26y = 8710 $y = \frac{9100 - 8710}{0,26} = 1500$ x = (7000 - 1500 =) 5500
A bruttó ételfogyasztás 5500 · 1,04 = 5720 Ft, a bruttó italfogyasztás 1500 · 1,3 = 1950 Ft volt.	1 pont	
Ellenőrzés: A helyesen kiállított számlán bruttó $5500 \cdot 1,04 + 1500 \cdot 1,3 = (5720 + 1950 =) 7670$ Ft, a tévesen kiállított számlán pedig bruttó $5500 \cdot 1,3 + 1500 \cdot 1,04 = (7150 + 1560 =) 8710$ Ft szerepelt valóban.	1 pont	
Összesen:	7 pont	

Megjegyzés: A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Az első egyenletet 1,3-del, a másodikat (-1,04)-dal			
szorozva:			
$\int 1,69x+1,352y=11323$			
$\left\{-1,0816x-1,352y=-7976,8\right\}$			
Az egyenletek összeadása után: $0,6084x = 3346,2$.	3 pont		
Ebből $x = 5500$.			
Visszahelyettesítve pl. az eredeti első egyenletbe:			
$1,3 \cdot 5500 + 1,04y = 8710.$			
1,04y = 1560, tehát $y = 1500$.			

8. b) első megoldás		
Az 1000 vendég összesen		
100 · 1000 + 200 · 1900 + 250 · 2800 + 300 · 3600 +	1 pont	
$+100 \cdot 4400 + 50 \cdot 5200 = 2960000$ Ft-ba kerül.		
1000 vendég 3 900 000 Ft-ot fizet be,	2 mont	
így az étterem várható haszna 940 000 Ft.	2 pont	
Összesen:	3 pont	

8. b) második megoldás		
Ha egy vendég k Ft-ba kerül és 3900 Ft-ot fizet, akkor az étterem haszna $(3900 - k)$ Ft.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A várható haszon 1000 vendég fogyasztása után: $100 \cdot 2900 + 200 \cdot 2000 + 250 \cdot 1100 + 300 \cdot 300 + 100 \cdot (-500) + 50 \cdot (-1300) = 940 000 \text{ Ft.}$	2 pont	
Összesen:	3 pont	

8. c)		
Pontosan akkor lesz vesztesége az étteremnek ezen a két vendégen, ha az étterem összköltsége több mint 7800 Ft.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Ez a következő esetekben fordul elő (a sorrendre való tekintet nélkül): 5200 + 5200; 5200 + 4400; 5200 + 3600; 5200 + 2800; 4400 + 4400; 4400 + 3600.	2 pont	Egy hiba/hiány esetén 1 pont, több hiba esetén 0 pont jár.
A felsorolt esetek valószínűsége (a sorrendet is tekintetbe véve) rendre $0.05 \cdot 0.05 = 0.0025$; $2 \cdot 0.05 \cdot 0.1 = 0.01$; $2 \cdot 0.05 \cdot 0.3 = 0.03$; $2 \cdot 0.05 \cdot 0.25 = 0.025$; $0.1 \cdot 0.1 = 0.01$; $2 \cdot 0.1 \cdot 0.3 = 0.06$.	2 pont	
A keresett valószínűség az előző hat valószínűség összege, azaz 0,1375.	1 pont	
Összesen:	6 pont	

9. a)		
Az utazások száma $100\ 000 - 10 \cdot 1000 = 90\ 000$ lenne naponta,	1 pont	
a bliccelések száma ennek a 20%-a, vagyis 18 000, az érvényes jeggyel történő utazások száma pedig így (90 000 – 18 000 =) 72 000.	2 pont	
A napi bevétel ekkor 72 000 · 350 = 25 200 000 tallér lenne.	1 pont	
Összesen:	4 pont	

9. b)		
(A bevétel a fizető utasok számának és a vonaljegy		
árának a szorzata.)		
Ha az eredeti jegyárhoz képest 5x tallérral változik a	1 pont	
vonaljegy ára, akkor a jegyár 300 + 5x tallér.	1 point	
(A tanulmányban alkalmazott modellben		
-11 < x < 31, ahol x egész szám.)		
Az utazások száma 100 000 – 1000x,	1 pont	
a bliccelések száma pedig ennek a $(10 + x)$ %-a:		A fizető utasok száma az
$(100000 - 1000x) \cdot \frac{10 + x}{100} = (1000 - 10x)(10 + x) \text{ lesz.}$	1 pont	összes utas számának a (90 – x) %-a:
A fizető utasok száma így:		(1000 - 10x)(90 - x) =
100000 - 1000x - (1000 - 10x)(10 + x) =	2 pont	$= 10x^2 - 1900x + 90000.$
$=10x^2-1900x+90000$ fő.	-	= 10x - 1900x + 90000.
A jegyeladásból származó bevétel:		
$(10x^2 - 1900x + 90000)(300 + 5x) =$	1 pont	
$= 50x^3 - 6500x^2 - 120000x + 27000000 $ tallér.	1 pont	
A]–11; 31[nyílt intervallumon értelmezett		
$f(x) = 50(x^3 - 130x^2 - 2400x + 540000)$ függvény	1 pont	
deriváltfüggvénye $f'(x) = 50(3x^2 - 260x - 2400)$.	- F	
$f'(x) = 0$, ha $x \approx -8.41$ vagy $x \approx 95.08$, de ez utóbbi		
(az $x < 31$ feltétel miatt) nem lehetséges.	1 pont	
A - 8,41 helyen f' pozitívból negatívba megy át,		
$(\text{\'es} - 8,41 < x < 31 \text{ eset\'en negat\'ev})$ ezért az f -nek	4 .	£"(9 41) (15 522) ±0
-8,41-nél maximuma van (előtte szigorúan monoton	1 pont	f''(-8,41) (= -15523) < 0
növekedő, utána pedig szigorúan monoton csökkenő).		
A feladatban x egész szám lehet csak, ezért még meg		
kell vizsgálni $f(-8)$ és $f(-9)$ értékét.	1 pont	
f(-8) = 27518400 > f(-9) = 27517050,	1	
tehát a vonaljegy árát $(300 + 5 \cdot (-8)) = 260$ tallérban		
kell megállapítani. (Ekkor az utasok száma 108 000,	1 pont	
a fizető utasok száma pedig 105 840 fő lenne.)		
Összesen:	12 pont	

Megjegyzés: Ha a vizsgázó a 250 talléros jegyárat tekinti kiindulási alapnak, és ehhez viszonyítja az 5 talléros emeléseket, akkor a jegyárra 250 + 5x tallér adódik.

A bliccelő utazások aránya x%, az összes utazás száma 110 000 – 1000x, a napi bevétel pedig

$$(250+5x)(110\,000-1000x) \cdot \frac{100-x}{100} = 50x^3 - 8000x^2 + 25\,000x + 27\,500\,000 \ tall\'er \ lesz$$

 $(-1 \le x \le 41, ahol x egész szám).$

Deriváltfüggvényként $f'(x) = 50(3x^2 - 320x + 500)$ adódik, ennek két zérushelye (közelítőleg) 1,59, illetve 105,08 (amely kívül esik az értelmezési tartományon).

Az x = 1, illetve az x = 2 helyen vizsgálva a napibevétel-függvényt adódik, hogy x = 2 a maximumhely, vagyis a vonaljegy árát $250 + 2 \cdot 5 = 260$ tallérban kell megállapítani.