Fachgruppe Informatik Prof. Dr. A. Ittner, C. Menzer Wintersemester 2020/21 IF18/MI18

Big Data / Data Mining

Entscheidungsbaumlernen I

Aufgabe 1

Lesen Sie die Seiten 92 bis 96 in Cleve und Lämmel (2014).

- a) Welche prinzipiellen Möglichkeiten der Attributauswahl gibt es?
- b) Wie können Sie mit metrischen Attributen umgehen?
- c) Wie lautet der Basisalgorithmus zum Erzeugen eines Entscheidungsbaums? (vgl. Ittner 2019,
 6. Vorlesung S. 12)

Aufgabe 2

Vergleich mit RapidMiner

Erzeugen Sie einen neuen Rapid Miner-Prozess und lesen Sie die Datei Wetter.
csv ein. Erzeugen Sie mit dem Operator ID3 einen Entscheidungsbaum der Wetter
daten aus Tabelle 5.2 in Cleve und Lämmel (2014, S. 93), vgl. Abbildung 1.

a) Welche Methoden zur Attribute-Auswahl stellt der ID3-Operator bereit? (vgl. ID3 - Rapid-Miner Documentation 2019)

Aufgabe 3

Iris-Daten mit RapidMiner

Erstellen Sie einen RapidMiner-Prozess und laden Sie die Iris-Daten aus dem Repository.

- a) Diskretisieren Sie die numerischen Werte mit dem Operator Discretize. Verwenden Sie die Operatoren Work on Subset und Map und weisen Sie den Attributwerten sinnvolle Bezeichnungen zu.
- b) Teilen Sie die vorverarbeiteten Daten mit dem Operator Split in eine Trainings- und eine Testmenge. Erzeugen Sie ein Modell mit den Operatoren ID3 und Apply Model. Überprüfen Sie Ihr Ergebnis mit dem Performance-Operator.

Abbildung 1: Visualisierung eines Entscheidungsbaums in Rapid
Miner $\,$

- 1. a) manuell, zufällig, berechnet
- 1. b) Gruppierung (Intervalle), Schwellwerte
- **1.** c)

 ${\sf WENN}\,$ alle Datensätze in der Beispielmenge Ezur selben Klasse Cgehören

 ${\sf DANN}$ istCdas Ergebnis

SONST

- wähle ein Attribut a aus der Attributmenge A mit den Werten $\omega_1, \ldots, \omega_n \ (\omega \in \omega_a)$
- partitioniere E in E_1, \ldots, E_n ($E^{\omega} \subseteq E$), abhängig von den Wertausprägungen $\omega \in \omega_a$ des Attributes a
- konstruiere Unterbäume T_1, \dots, T_n für E_1, \dots, E_n
- das Ergebnis ist der Baum T mit der Wurzel a und den beschrifteten Kanten $\omega_1, \ldots, \omega_n$ zu den Unterbäumen T_1, \ldots, T_n

Der Algorithmus wird rekursiv wieder auf die jeweiligen Unterbäume T_i angewendet, solange bis jeder Knoten nur noch nicht weiter unterscheidbare Datensätze (einer Klasse) enthält.

3. Decision_□Tree_□Iris.rmp

Literatur

- Cleve, Jürgen und Uwe Lämmel (2014). Data mining. Studium. München: De Gruyter Oldenbourg. $306~\mathrm{S}$. ISBN: 978-3-486-72034-1 978-3-486-71391-6.
- ID3 RapidMiner Documentation (2019). URL: https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/trees/id3.html (besucht am 01.12.2019).
- Ittner, Prof. Dr.-Ing. Andreas (2019). "Data Mining". Vorlesung, Wintersemester 2019/20 (Hochschule Mittweida).