Soit $L \subset Z$ une droite twistorielle de l'espace Z des twisteurs d'une variété hyperkahlérienne M de dimension 2n. Soit $O \in L$.

0.1Le fibré normal

Le fibré normal de L dans Z, noté N s'identifie à $\mathcal{O}(1) \otimes \mathbb{C}^{2n}$, ses sections globales forment donc un \mathbb{C} -ev de dimension 4n qui s'identifie naturellement aux polynômes de degré 1 à coefficients dans \mathbb{C}^{2n} .

$$H^0(L,N) \simeq H^0(\mathbb{P}^1, \mathcal{O}(1)) \otimes \mathbb{C}^{2n} \simeq \mathbb{C}[\zeta]_1 \otimes \mathbb{C}^{2n}$$
 (1)

Modulo cette identification, une section globale s de cet espace est donc donnée par

$$s(\zeta) = a + \zeta a' \qquad a, a' \in \mathbb{C}^{2n} \tag{2}$$

On construit une base $\beta = (\alpha_i, \alpha_i')$ de cet espace de la manière suivante :

- $\alpha_1, \dots, \alpha_{2n}$ des sections globales qui évalués en O forment la base canonique de \mathbb{C}^{2n} . C'est-à-dire $\alpha_i(\zeta) = a_i = (\delta_i^j)_j \in \mathbb{C}^{2n}.$
- $\alpha_1', \cdots, \alpha_{2n}'$ des sections globales qui s'annulent en O tandis que leurs dérivées forment la base canonique de \mathbb{C}^{2n} . C'est-à-dire $\alpha_i'(\zeta) = \zeta a_i' = (\zeta \delta_i^j)_j \in \mathbb{C}^{2n}$. On désignera par $t \in \mathbb{C}^{4n}$ une section de $H^0(L, N)$ vue dans la base β , au besoin on notera $t = (\tau, \tau') \in \mathbb{C}^{4n}$

 $\mathbb{C}^{2n} \oplus \mathbb{C}^{2n}$ les composantes sur α et α' .

On notera en majuscule les polynômes homogènes en t.

Si une fonction h_i est définie sur W_i (resp. U_i, V_i) on note $h_i(z, w)$ au lieu de $h_i(z_i, w_i)$ (resp. $h_i(z)$ au lieu de $h_i(z_i)$ et $h_i(w)$ au lieu de $h_i(w_i)$)

0.2 But

On cherche à construire $\varphi_i(z,t)$ telle que

- (i) convergence $\|\cdot\|_{\infty}$
- (ii) $[\varphi_i(z,t)]_1 = \sum_s t_s \beta_s(z_i)$
- (iii) Respecte les changements de carte (ou se recolle)

$$\varphi_i(g_{ik}(z,\varphi),t) = f_{ik}(z,\varphi) \tag{3}$$

- (iv) Condition de domination
- (v) Conditions ponctuelle et angulaire

$$[\varphi_0(0,t)]^m = [\varphi_0(0,t)]^1 = \sum_s t_s \beta_s(0)$$
(4)

$$\left[\frac{\partial \varphi_0}{\partial z}(0,t)\right]^m = \left[\frac{\partial \varphi_0}{\partial z}(0,t)\right]^1 = \sum_s t_s \frac{\partial \beta_s}{\partial z}(0) \tag{5}$$

Des fonctions $\varphi_i(z,t)$ satisfaisant (ii), (iii), et (v) sont appelées solutions formelles. Elles seront définies comme série formelle en t à coefficients holomorphes en z. Sous les hypothèses supplémentaires (i), et (iv), ces séries convergent sur un petit polydisque en t et donnent lieu à une famille de déformations de L dans Z.