

Departamento de Matemática

Análise Matemática EE

Teste 2 :: 6 junho 2019

duração: 2 horas

Nome:	_ Número:
l As respostas às perguntas deste grupo devem ser dadas no enunciado e n para o efeito.	o espaço reservado
1. Indique, justificando sucintamente, se as proposições seguintes são verdadeira	as ou falsas:
a) O ponto $(0,0)$ é um ponto de sela da função $f(x,y)=e^{1+x^2-y^2}$;	
b) A função $f(x,y)=x^3-y^3$ tem um mínimo local no ponto $(0,0)$;	
c) Se uma função f tem um máximo local em P , então P é um ponto crí	tico de f ;
d) Se $\nabla f(P) = 0$, então f tem um extremo local no ponto P ;	
e) A função $f(x,y)=x^2+y^2+2x$ tem um mínimo no conjunto $\{(x,y)\in A\}$	$\in \mathbb{R}^2 : y = x\};$

f) A função $f(x,y)=x^2+y^2+2x$ tem um mínimo no conjunto $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}.$

- 2. Responda às seguintes questões nos espaços indicados, sem apresentar os seus cálculos.
 - a) A área da região $R = \{(x,y) \in \mathbb{R}^2 : |y| \le 1 x^2\}$ é dada pela expressão integral:

______ e tem o valor: _____

- **b)** O integral $\int_0^1 \int_{-x^2}^x f(x,y) dy dx$ escreve-se, trocando a ordem de integração, como:
- c) A mudança de variáveis $(u, v, w) = (x y, \frac{x}{2}, z)$ permite escrever o integral $\int_0^1 \int_0^1 \int_0^x f(x, y, z) dy dx dz$ como:
- **d)** O volume do sólido $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, \ 0 \le z \le 1\}$ pode exprimir-se, usando coordenadas esféricas, como:

П

As respostas às perguntas deste grupo devem ser dadas na folha de exame, justificando, convenientemente, todas as respostas.

- 1. Considere a função f(x,y)=xy, a curva C de equação $x^2+y^2=2$ e o ponto P=(1,1).
 - a) Represente graficamente a curva C, as curvas de nível 1 e -1 de f e o ponto P.
 - **b)** Coloque no esboço efetuado na alínea anterior, um representante de $\nabla f(P)$ com origem em P.
 - c) Determine equações da reta normal e da reta tangente à curva de nível de f que passa em P.
 - d) Calcule os extremos da função f nos pontos da curva C, usando o método dos multiplicadores de Lagrange.
 - e) Diga como poderia obter o resultado da alínea anterior, usando argumentos geométricos e o esboço efetuado nas alíneas anteriores.
- **2.** Considere o sólido $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ x^2 + y^2 \le z^2, \ 0 \le z \le \sqrt{3}\}.$
 - a) Faça um esboço do sólido, identificando as superficies envolvidas.
 - b) Escreva uma expressão integral que permita obter o volume de S, usando coordenadas cilíndricas.
 - c) Calcule o volume de S.