Algorithm Homework 2

Jingwei Zhang 201528013229095

2015-10-13

1 Problem 1

1.1 Sequence

1.1.1 Optimal Substructure

Suppose the houses are placed in a line from left to right labeled with integer from 1 to n, each storing money $h_i(i=1,\ldots,n)$. The optimal substructure is the maximum amount of money m_i the the robber can get from house 1 to i([1,i]), the DP equation is:

$$m_i = \begin{cases} 0 , & \text{if } i = 0 \\ h_i , & \text{if } i = 1 \\ max(m_{i-1}, h_i + m_{i-2}) , & \text{otherwise} \end{cases}$$

The answer to this problem is m_n .

1.1.2 Algorithm

MAXIMIM-ROBBED-MONEY-SEQUENCE(H)

```
 \begin{array}{ll} 1 & n = H. length \\ 2 & m[0] = 0 \\ 3 & m[1] = H[1] \\ 4 & \textbf{for } i = 2 \textbf{ to } n \\ 5 & m[i] = max(m[i-1], H[i] + m[i-2]) \\ 6 & \textbf{return } m[n] \end{array}
```

1.1.3 Correctness

Proof. m[i] maintains the maximum amount of money the robber can get in house [1, i]. For i = 0, 1, the correctness of m[i] is obvious. Suppose m[i] is correct $\forall i = 1, ..., k-1$. For i = k:

If the robber steals house k, he will get H[k] in it and have not steal house k-1; before house k-1 he gets at most m[k-2], according to the optimal structure, m[k] = H[i] + m[k-2].

The correctness of this optimal structure: Suppose we have a smaller m'[k-2](< m[k-2]) (not the optimal solution of sub-problem with size k-2) that generates the optimal solution m'[k](> m[k]) of larger problem with size k. Then we substitute its previous k-2 part with our optimal solution for sub-problem since house k-1 is not stolen, we get a new solution m'[k] - m'[k-2] + m[k-2] for larger problem, which is larger than m'[k], contradictory.

If he does not steal house k, no constrain exits on previous houses. Thus, m[i] = m[i-1], according to the optimal structure.

The correctness of this optimal structure: Suppose we have a smaller m'[k-1](< m[k-1]) (not the optimal solution of sub-problem with size k-1) that generates the optimal solution m'[k](> m[k]) of larger problem with size k. Then we substitute its previous k-1 part with our optimal solution for sub-problem since house k is not stolen, we get a new solution m'[k] - m'[k-1] + m[k-1] for larger problem, which is larger than m'[k], contradictory.

Then, picking the maximum value of these two(steal or not) gets maximum amount of money the robber can get in house [1, k], which means m[i] is correct for i = k and obviously when i > n MAXIMIM-ROBBED-MONEY-SEQUENCE stops. Thus the correctness of this algorithm is proven.

1.1.4 Complexity

The size of this problem is the number of houses n. Thus, sequence m has n+1 elements with O(1) computing each. Thus the total time complexity is O(n) and space complexity is O(n) for storing array m.

1.2 Circle

1.2.1 Algorithm

Suppose the houses are placed in a circle, and we arbitrary label one with integer 1, then label others with integer from 2 to n, clockwise, each storing money $h_i (i = 1, ..., n)$. Then, we enumerate all possible conditions of house 1, stolen or not stolen, then, the problem left is a sequence problem we have solved in previous part.

MAXIMIM-ROBBED-MONEY-CIRECLE(H)

1.2.2 Correctness

Proof. If we enumerate two possible states of house 1, the left part ([3, ..., n-1] for stolen and [2, n] for not stolen) have no connection directly between the head and tail house, thus, they are sequence problem. The correctness of sequence problem has been proven in previous section.

1.2.3 Complexity

We call function MAXIMIM-ROBBED-MONEY-SEQUENCE twice, both with size O(n). This function costs O(n) of time and O(n) of space. Thus, the total time complexity is O(n), total space complexity is O(n).

2 Problem 2

2.1 Optimal Substructure

The optimal substructure is the minimum path sum $s_{i,j}$ from current place(row i, column $j, j \leq i$) to bottom, the DP equation is $(a_{i,j}$ denotes the number in row i, column j):

$$s_{i,j} = \begin{cases} a_{i,j}, & \text{if row i is the bottom row} \\ a_{i,j} + min(s_{i+1,j}, s_{i+1,j+1}), & \text{otherwise} \end{cases}$$

The answer to this problem is $s_{1,1}$.

2.2 Algorithm

Pseudo-code: A is the matrix storing the number. r is the number of rows(columns) in A. S is the matrix storing the minimum path sum S[i][j] from current place(row i, column j, $j \le i$) to bottom.

```
MINIMUM-PATH-SUM(A, r)

1 for j = 1 to r

2 S[r][j] = A[r][j]

3 for i = n - 1 to 1

4 for j = 1 to i

5 S[i][j] = A[i][j] + min(S[i+1][j], S[i+1][j+1])

6 return S[1][1]
```

2.3 Correctness

Proof of Optimal Substructure: Suppose there exists a smaller path sum s'_l (what we get is s_l in MINIMIM-PATH-SUM and $s'_l > s_l$) in an arbitrary sub-problem (the min sum from a not-top place to bottom) which leads to the minimum global path sum s'_g (what we get is s_g in MINIMUM-PATH-SUM and $s'_g < s_g$). Due to the path from top to this place above and the path from this place to bottom are independent, we can always substitute s'_l part with s_l part, that leads a larger global path sum $s''_g = s'_g + s_l - s'_l < s'_g$. However, this contradicts to the assumption that s'_g is the minimum global path sum.

2.4 Complexity

Let the size of this Problem be the total numbers in this triangle. S matrix have totally $O(n^2)$ numbers with O(1) for computing each. Thus, the total time complexity is O(n) and space complexity is $O(n^2)$ for the storage of S.

3 Problem 5

3.1 Optimal Substructure

The optimal substructure is the number of ways (w_j) to decode the sequence S[1, i] (suppose the original sequence is S[1, n]), the DP equation is:

$$w_{j} = \begin{cases} 0 , & \text{if } j = 0 \\ 1 , & \text{if } j = 1 \\ w_{j-1} , & \text{if } j \ge 2 \text{ and } 10 * S[j-1] + S[j] > 26 \\ w_{j-1} + w_{j-2} , & \text{if } j \ge 2 \text{ and } 10 * S[j-1] + S[j] \le 26 \end{cases}$$

The answer to this problem is w_n .

3.2 Algorithm

Pseudo-code: S represents the message containing n digits. w stores the number of ways decoding the prefix of message sequence.

Number-of-Ways-Decoding-Message(S)

```
\begin{array}{lll} 1 & n = S. \, length \\ 2 & w[0] = 0 \\ 3 & w[1] = 1 \\ 4 & \textbf{for } j = 2 \textbf{ to } n \\ 5 & \textbf{if } 10 * S[j-1] + S[j] > 26 \\ 6 & w[j] = w[j-1] \\ 7 & \textbf{else } w[j] = w[j-1] + w[j-2] \\ 8 & \textbf{return } w[n] \end{array}
```

3.3 Correctness

Proof. w[i] maintains the number of ways to decode the sequence S[1,i]. For i=0,1, the correctness of w[i] is obvious. Suppose w[i] is correct $\forall i=1,\ldots,k-1$. For i=k:

If $10 * S[k-1] + S[k] \le 26$, which means S[j-1]S[j] can be decoded as a single character. In this case the number of ways is w[k-2] according to the optimal structure. Also, S[k] can be decoded as a single character. In this case, the number is w[k-1]. Thus, m[k] = w[k-1] + w[k-2].

The correctness of optimal substructure: Suppose there exists a larger number of ways decoding the prefix sequence S[1, k-1] with number w'_{k-1} (what we get is w_{k-1} in Number-of-Ways-Decoding-Message and $w'_{k-1} \leq w_{k-1}$) which leads to the optimal global solution w'_k (what we get is w_k in Number-of-Ways-Decoding-Message and $w'_k \geq w_k$). If we substitute w'_{k-1} with w'_k we will get a larger optimal global solution. Contradictory. For subproblem k-2, it is similar.

If 10 * S[k-1] + S[k] > 26, which means S[j-1]S[j] can not be decoded as a single character. The only possibility for S[j] is decoding it singly to a character. This leads to w[i] = w[i-1] according to optimal structure mentioned above.

Thus, w[i] is correct for i = k. Moreover, this procedure will stop after w[n]. Thus, the correctness of this algorithm is proven

3.4 Complexity

The size of this problem is the length of message sequence, n, the same as w. For each w[j], computing costs only O(1). So the total time complexity is O(n) and space complexity is O(n) for storing w.

4 Problem 6

4.1 Algorithm

Since there are two transactions (if there is only one, we can sell and buy the stock in a single day within this transaction), we can divide the problem into two independent sub-problems: the max profit p_1 of the first transaction within day [0, i) and max profit p_2 of the second transaction within day [i, n). We can enumerate all possible i and find the max $p_1 + p_2$. This costs O(n).

To find the max profit in first transaction, we compute the max profit ps_i we can get if we sell the stock in day i. The optimal substructure is the minimum price min_i in day [0,i], $min_{i+1} = min(p_i, min_i)$. Then $ps_i = p_i - min_i$, which costs O(n) to enumerate all i in [0,n). Then the max profit pm_i within day [0,i) will be $pm_0 = 0, pm_i = max(pm_{i-1}, ps_i)$, that costs O(n). The second transaction is similar.

From what have mentioned above, the total time complexity is O(n).

4.2 C++ Code

```
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
void fill_left (vector<int> &p, const vector<int> &d){
    p.resize(d.size());
    if(p.size() > 0){
        // Firstly, p[i] represents the max profile you can get
        // when you sell the stock in day i
        // price-min means the minimum price in [0,i]
        // when i iterates in array d
        int price_min = d[0];
        p[0] = 0;
        for (int i = 1; i < d. size(); i++){
            price_min = min(price_min, d[i]);
            p[i] = d[i] - price_min;
        }
        // Now compute the max profile you can get during [0,i]
```

```
// Store it in p[i]
        // profile_max maintains the max in p[0,i]
        int profile_max = 0;
        for(int i = 0; i < p.size(); i++){
            profile_max = max(profile_max, p[i]);
            p[i] = profile_max;
        }
    }
}
void fill_right (vector<int> &p, const vector<int> &d){
    p.resize(d.size());
    if(p.size() > 0){
        // Firstly, p[i] represents the max profile you can get
        // if you buy the stock in day i
        // price-min means the maximum price in [0,i]
        //\ when\ i\ iterates\ reversely\ in\ array\ d
        int price_max = p[p.size()-1];
        p[p.size()-1] = 0;
        for (int i = p. size() -1; i >= 0; i--){
            price_max = max(price_max, d[i]);
            p[i] = price_max - d[i];
        }
        // Now compute the max profile you can get during [i,end]
        // Store it in p[i]
        int profile_max = p[p.size()-1];
        for (int i = p. size() -1; i >= 0; i--){
            profile_max = max(profile_max, p[i]);
            p[i] = profile_max;
        }
}
int main()
{
    freopen ("stocks.in", "r", stdin);
    //freopen (".out", "w", stdout);
    vector < int > d;
    int t;
    \mathbf{while} ( \sin >> t ) 
        d.push_back(t);
    }
    // pre[i] stores the max profit you get during day [0, i]
    // in a single transaction
    vector<int> left;
    // last[i] stores the max profit you get during day from i to last
    // in a single transaction
    vector<int> right;
```

```
fill_left (left ,d);
fill_right (right ,d);

int sum_max = 0;
for(int i = 0; i < left.size(); i++){
      sum_max = max(sum_max, left[i] + right[i]);
}
cout<<sum_max<<endl;
return 0;
}</pre>
```