UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN, TACNA FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería en Informática y Sistemas

SILABO

I. DATOS GENERALES

1. Nombre de la asignatura : Métodos Numéricos

2. Código del curso : 19.03118

3. Año de estudios : Segundo Año – I Semestre

4. Créditos : 4

5. Total de horas semestrales : 85 horas

6. No. total de horas por semana : 05 (Teoría 02; Taller 01; Laboratorio 02)

7. Fecha de inicio : 1 de Abril del 2014 8. Fecha de término : 02 de Agosto del 2014

9. Duración : 17 semanas

10. Profesor responsable : MSc. Luis Andrés Amaya Cedrón

lamayaster@gmail.com

11. N° de alumnos : (Turno mañana)

II. SUMILLA

Análisis de error, raíces de ecuaciones, sistemas de ecuaciones algebraicas lineales, Optimización, sistemas de ecuaciones lineales con métodos directos, con métodos iterativos, aproximación polinomial e interpolación, Integración Numérica. Ajuste de curvas, diferenciación e integración numérica, métodos numéricos para Ecuaciones diferenciales Ordinarias, métodos numéricos para Ecuaciones diferenciales. Métodos numéricos y algoritmos computacionales. Adicionales: algoritmos computacionales paralelos

III. LOGRO DE LA ASIGNATURA

Al finalizar el desarrollo del curso, el estudiante estará en condiciones de:

Desarrollar e implementar algoritmos matemáticos y computacionales de modelos matemáticos que se aplican usualmente en Ciencias e Ingeniería. Analizar programas de computadora usando un lenguaje de Programación de Propósito General y/o Sistema de Computación Científica.

IV. UNIDADES DE APRENDIZAJE.

PRIMERA UNIDAD DIDÁCTICA:	ERRORES;	SOLUCIÓN DE	F(X)=0 Y SISTEMAS	DE	ECUACIONES	POR	MÉTODOS
NUMÉRICOS							

LOGRO: Al finalizar la primera unidad didáctica, el estudiante analiza errores de truncamiento, e implementa procesos computacionales, para métodos iterativos de los modelos matemáticos tratados.

Semana	Contenidos
1	TEORÍA Errores. Errores de truncamiento ,Polinomio y Teorema de de Taylor. Análisis de la precisión utilizando el error de Taylor. PRÁCTICA: Aplicaciones del teorema de Taylor.
2	TEORÍA: Raíces de ecuaciones- Algoritmo matemático de Newton Raphson PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el Modelo Matemático Iterativo de Newton Raphson
3	TEORÍA: . Sistemas de ecuaciones algebraicas lineales. Algoritmo del Método iterativo de Jacobi. PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmos diseñado para el Modelos Matemáticos Iterativo de Jacobi.
4	Aplicaciones de los métodos iterativos EVALUACIÓN. La presente unidad representa el 20% del promedio final de la asignatura.

	ROBRICA DE EVALUACION DE LA PRIMIERA UNIDAD				
	CRITERIOS	INDICADORES / ESCALA DE PUNTAJES			
	Utiliza el teorema de Taylor para determinar la precisión de los errores.	Halla la aproximación de una función usando el polinomio de Taylor	Mide la aproximación con respecto al error permitido	Identifica el orden los errores y conoce como determinarlo según su orden	
1					

DÍIRDICA DE EVALUACIÓN DE LA DRIMEDA UNIDAD

Determina aproximaciones de raíces de una ecuación f(x)=0 y de sistemas de ecuaciones.	Halla la solución de raíces de ecuaciones y sistemas de ecuaciones algebraicas lineales, mediante los modelos iterativos de Newton-Raphson y Jacobi	Aplica el algoritmo matemático de Newton-Raphson y Jacobi, a la Ciencia e ingeniería.	Identifica el problema acerca de de encontrar raíces y solucionar un sistema de Ecuaciones lineales
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.

SEGUNDA UNIDAD	DIDÁCTICA: OPTIMIZACIÓN DE FUNCIONES, INTERPOLACIÓN; DIFERENCIACIÓN E INTEGRACIÓN			
NUMÉRICA.				
	la cagunda unidad didáctica, al actudianta implementa procesa computacionales, para métados			
	la segunda unidad didáctica, el estudiante implementa procesos computacionales, para métodos			
iterativos de los mo	odelos matemáticos tratados.			
5 y 6	TEORÍA: . Métodos numéricos para optimización (mínimo) de una función. Interpolación y el polinomio			
	de Lagrange			
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el			
	Modelo Matemático Iterativo de optimización e interpolación.			
7 y 8	TEORÍA: Diferenciación Numérica e Integración numérica. Método de Simpson			
PRÁCTICA: : Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el				
	Modelo Matemático Iterativo de Diferenciación e Integración numérica			
9	EVALUACIÓN. La presente unidad representa el 20% del promedio final de la asignatura.			

RÚBRICA DE EVALUACIÓN DE LA SEGUNDA UNIDAD **CRITERIOS INDICADORES / ESCALA DE PUNTAJES** Halla la aproximación de Mide la aproximación Identifica el problema para un mínimo para funciones con respecto al error aplicar el método para Determina aproximaciones de y de interpolación permitido. determinar el mínimo y para optimización de aplicar interpolación. funciones e interpolación Determina Halla la aproximación de Aplica algoritmo Identifica el problema acerca el aproximaciones de Diferenciación Numérica e matemático de encontrar Integración numérica por Diferenciación Numérica Diferenciación Numérica e aproximaciones simpson e Integración numérica. Integración numérica por diferenciación e integración Simpson numérica Valida en el ordenador Implementa el algoritmo Verifica la validez de los Aplica los algoritmos computacional para cada implementados algoritmos algoritmos para casos computacionales para método Iterativo computacionales para reales. cada modelo iterativo cada modelo iterativo, usando problemas

TERCERA UNIDAD DIDÁCTICA: ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES			
LOGRO: Al finalizar	LOGRO: Al finalizar la segunda unidad didáctica, el estudiante implementa procesos computacionales, para métodos		
iterativos de los mo	iterativos de los modelos matemáticos tratados.		
10 y 11	TEORÍA: Método de Euler. Método de Euler-Mejorado (HEUM)		
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el		
	Modelo Matemático Iterativo de Euler y de Euler-Mejorado		
12 y 13	TEORÍA: Método de Runge Kutta. Sistemas de Ecuaciones Diferenciales Ordinaria		
PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el			

	Modelo Matemático Iterativo de Runge Kutta y de S. E. D.O
14	EVALUACION . La presente unidad representa el 30% del promedio final de la asignatura.

RÚBRICA DE EVALUACIÓN DE LA TERCERA UNIDAD			
INDICADORES / ESCALA DE PUNTAJES			
Mide la aproximación	Identifica el problema para		
	NDICADORES / ESCALA DE I		

CRITERIOS	IN	IDICADORES / ESCALA DE I	PUNTAJES	
Determina aproximaciones de ecuaciones diferenciales	Halla la aproximación de ecuaciones diferenciales	Mide la aproximación con respecto al error permitido.	Identifica el problema para aplicar los métodos de Euler, Heum.	
Determina aproximaciones sistemas de ecuaciones diferenciales.	Halla la aproximación de sistemas de ecuaciones diferenciales	Aplica el algoritmo matemático de sistemas de ecuaciones diferenciales	Identifica el problema acerca de de encontrar aproximaciones para la solución de un sistemas de ecuaciones diferenciales	
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.	

CUARTA UNIDAD DIDÁCTICA: ECUACIONES DIFERNCIALES PARCIALES Y TRATO DE METDOS ADICIONALES

LOGRO: Al finalizar la segunda unidad didáctica, el estudiante implementa procesos computacionales, para métodos iterativos de los modelos matemáticos tratados

15	TEORÍA: Planteamiento general del problema. Métodos numéricos para aproximar las soluciones de
	ecuaciones diferenciales Parciales: Método Explicito.
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el
	Modelo Matemático Iterativo de Método Explicito
16	TEORÍA: Trabajo y Sustentación de un tema dado por el docente .
17	EVALUACION . La presente unidad representa el 30% del promedio final de la asignatura

RÚBRICA DE EVALUACIÓN DE LA TERCERA UNIDAD

CRITERIOS	INDICADORES / ESCALA DE PUNTAJES			
Determina aproximaciones de ecuaciones diferenciales parciales	Halla la aproximación de ecuaciones diferenciales parciales	Mide la aproximación con respecto al error permitido.	Identifica el problema para aplicar el método Explicito.	
Explica un método numérico propuesto.	Sustenta el método	Aplica el algoritmo matemático del método	Identifica el problema para aplicar el método	
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.	

V. METODOLOGÍA

El desarrollo del curso tiene lugar a través de actividades teórico-prácticas que conforman su contenido. En las sesiones teóricas el profesor trabaja activamente con los estudiantes en el aula en forma dinámica, y participativa promoviendo la reflexión y el pensamiento crítico a través de preguntas, exposiciones y trabajo en equipo, utilizando material impreso y audiovisual. En las prácticas de laboratorio los alumnos interactúan a través de un conjunto de actividades (tareas y aplicaciones) especialmente diseñadas para propiciar la habilidad de la obtención de aproximaciones por métodos numéricos.

VI. MATERIALES EDUCATIVOS

Los materiales a utilizar para el desarrollo de la asignatura son los siguientes:

a. Materiales educativos interactivos

Materiales impresos: Libros, textos impresos, módulos de aprendizaje, manual de prácticas. Direcciones electrónicas para recabar información especializada sobre los contenidos planteados.

b. Materiales educativos para la exposición.

Se contará con pizarras, plumones, acrílicos, mota, proyector multimedia, diapositivas.

c. Materiales de laboratorio, computadoras, equipos de comunicación de datos.

VII. EVALUACIÓN

EVALUACION TEÓRICA:

UNIDADES DIDACTICAS	PRODUCTOS FINALES	INSTRUMENTOS	PORCENTAJE
ERRORES; SOLUCIÓN DE F(X)=0 Y SISTEMAS DE ECUACIONES POR MÉTODOS NUMÉRICOS	Implementa algoritmos matemáticos y computacionales de la serie de Taylor y métodos numéricos iterativos de Newton Raphson y Jacobi.	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	20%
OPTIMIZACIÓN DE FUNCIONES, INTERPOLACIÓN; DIFERENCIACIÓN E INTEGRACIÓN NUMÉRICA.	Implementa algoritmos matemáticos y computacionales de y métodos numéricos iterativos para optimización de funciones, interpolación, diferenciación e integración numérica.	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	20%
ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES	Implementa algoritmos matemáticos y computacionales de y métodos numéricos iterativos para Ec. Diferenciales y sistemas de ecuaciones diferenciales	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	30%
ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES.	Implementa algoritmos matemáticos y computacionales de y métodos numéricos iterativos para Ec. Diferenciales parciales	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	30%

CRONOGRAMA:

Unidades	Fecha	Tipo de evaluación	Peso
I	02/05/2014	Examen Escrito	70%
I	05/05/2014	Evaluación Práctico	30%
II	22/05/2014	Examen Escrito	70%
II	23/05/2014	Evaluación Práctico	30%
III	19/06/2014	Examen Escrito	70%
III	20/06/2014	Evaluación Práctico	30%

IV	24/07/2014	Examen Escrito	70%
IV	25/07/2014	Evaluación Práctico	30%

VIII. BIBLIOGRAFÍA

Bibliografía general

- ✓ BURDEN R. y Faires D. (1992). Análisis Numérico. México, D.F.: Iberoamérica
- ✓ BURDEN R. y Faires D. (2007). Análisis Numérico. México, D.F.: Iberoamérica
- ✓ NIEVES H. y Domínguez F. (1997). *Métodos Numéricos*. (2º edic.). México, D.F.: Continental
- ✓ CURTIS G. (1992). Análisis Numérico. México, D.F.: Ediciones Alfa y Omega
- ✓ CHAPRA S. (2007). *Métodos numéricos.* (2º edic.). Mexico: Mc Graw Hill
- ✓ INFANTE J. y Rey J. (2007). Métodos Numéricos/Numerical Methods: Teoría, problemas y prácticas con Matlab/Theory, Problems and Matlab Practices.
- ✓ INFANTE J. Y REY J. (2004). *Métodos Numéricos: Teoría, problemas y prácticas con Matlab (Ciencia y Técnica).*

Fuentes de consulta complementaria:

- ✓ Hanselman D. y Littlefield B. (1995) *MatLab*. España: Prentice Hall.
- ✓ www.uhu.es/cristobal.garcia/descargas/AnalisiNumericoITema3.pdf