National University of Sciences & Technology School of Electrical Engineering and Computer Science Department of Basic Sciences

MATH-243: Vector Calculus (3+0): BEE-2k20-C Fall 2021

Quìz 1: Cylinde	rs and Quadric Surfaces	
Maximum Marks: $5 + 5 = 10$	Instructor: Dr. Naila Amir	
Date: 29 - 09 - 2021	Duration: 10 Minutes	
Name: Master Solution	CMS ID:	All All Andrews

Question:

- a) Sketch the solid described by the given inequalities and identify the resulting surface. $0 \le \rho \cos \theta \sin \varphi \le 2$; $0 \le \rho \sin \theta \sin \varphi \le 3$; $0 \le \rho \cos \varphi \le 4$.
- b) Convert the following equation in rectangular coordinates and identify the resulting surface. $r = \sin \theta$.

we know that;

This represents a rectangular box of dimensions of x3 x h along with its interior. This box is in the first octunt.

(b) Given that.

$$\lambda = \sin \theta$$

$$\Rightarrow 3^{2} = 8 \sin \theta$$

$$\Rightarrow \chi^{2} + y^{2} = y$$

$$\Rightarrow \chi^{2} + y^{2} - y = 0$$

$$\Rightarrow \chi^{2} + y^{2} - \alpha(y)(\frac{1}{2}) + (\frac{1}{2})^{2} - (\frac{1}{2})^{2} = 0$$

$$\Rightarrow \chi^{2} + y^{2} - \alpha(y)(\frac{1}{2}) + (\frac{1}{2})^{2} = (\frac{1}{2})^{2}$$

$$\Rightarrow \chi^{2} + (y - y_{2})^{2} = (y_{2})^{2}$$
This represents a circular cylinder with $x - \alpha x_{1} = x_{2} = x_{1} = x_{2} = x_{2} = x_{2} = x_{3} = x_{4} = x$