# ARIS Manual

2024. 10. 28.

작성자 : 함종수

## 목차



- 1. ARIS 소개
- 2. UFACTORY Studio 사용
- 3. Python SDK



# 1. ARIS 소개



· ARIS 개요

6 DOF 로봇팔 (UFACTORY Lite 6) + 아이스크림 장비 (엑스와이지)



# 1. ARIS 소개



• 아이스크림 장비 구성







#### 연결

6 DOF 로봇팔 (UFACTORY Lite 6) + 아이스크림 장비 (엑스와이지)

Name: S/N

PW: xyz20190529!





- UFACTORY Studio 설치
  - <u>https://www.ufactory.cc/ufactory-studio/</u>













#### Recording

1. +New 버튼으로 새로운 Recording 작성





#### Recording

2. Recording 할 로봇 경로명 지정





#### Recording

3. 기록할 준비가 끝나면 Record 버튼 눌러서 기록 시작





#### Recording

4. 아래와 같은 화면에서 로봇파릉ㄹ 수동 조작하여 기록 진행





#### Recording

5. 기록이 완료되면 저장























































#### 로봇팔 조인트 각도로 움직이기

#### DIGITAL PIN 사용하기 (토핑 기계 + 프레스)

Index Value

```
code = self._arm.set_cgpio_digital(0, 0, delay_sec=0)
if not self._check_code(code, 'set_cgpio_digital'):
    return
```



3 (프레스)



1 0 (토핑)



#### ANALOG PIN 사용하기 (컵 디스펜서)

```
code = self._arm.set_cgpio_analog(0, 5)
if not self._check_code(code, 'set_cgpio_analog'):
    return
code = self._arm.set_cgpio_analog(1, 5)
if not self._check_code(code, 'set_cgpio_analog'):
    return
time.sleep(3)
code = self. arm.set cgpio analog(0, 0)
if not self._check_code(code, 'set_cgpio_analog'):
    return
time.sleep(3)
code = self._arm.set_cgpio_analog(1, 0)
if not self. check code(code, 'set cgpio analog'):
    return
```





- SDK 사용 환경 구축
  - https://github.com/xArm-Developer/xArm-Python-SDK

python3 -m venv xarm 가상환경 구축
source xarm/bin/activate 가상환경 활성화
git clone https://github.com/xArm-Developer/xArm-Python-SDK.git
cd xArm-Python-SDK
python setup.py install



- · SDK 기본 사용 방법
  - 작성한 로봇팔 시나리오 코드를 sdk 디렉토리에 위치 시킨 후 인터프리터로 실행하면 동작





- 코드 작성은 Git 참조 (https://github.com/xArm-Developer/xArm-Python-SDK)
  - API: https://github.com/xArm-Developer/xArm-Python-SDK/blob/master/doc/api/xarm\_api.md

def set\_servo\_angle(self, servo\_id=None, angle=None, speed=None, mvacc=None, mvtime=None, relative=False, is\_radian=None, wait=False, timeout=None, radius=None, \*\*kwargs):

Set the servo angle, the API will modify self.last\_used\_angles value Note:

- 1. If the parameter angle you are passing is an radian unit, be sure to set the parameter is\_radian to True. ex: code = arm.set\_servo\_angle(servo\_id=1, angle=1.57, is\_radian=True)
- 2. If you want to wait for the robot to complete this action and then return, please set the parameter wait to True. ex: code = arm.set servo\_angle(servo\_id=1, angle=45, is\_radian=False,wait=True)
- 3. This interface is only used in the base coordinate system.

:param servo id: 1-(Number of axes), None(8)

- 1. 1-(Number of axes) indicates the corresponding joint, the parameter angle should be a numeric value ex: code = arm.set\_servo\_angle(servo\_id=1, angle=45, is\_radian=False)
- 2. None(8) means all joints, default is None, the parameter angle should be a list of values whose length is the number of joints ex: code = arm.set\_servo\_angle(angle=[30, -45, 0, 0, 0, 0, 0], is\_radian=False)

:param angle: angle or angle list, (unit: rad if is\_radian is True else °)

- If servo\_id is 1-(Number of axes), angle should be a numeric value ex: code = arm.set\_servo\_angle(servo\_id=1, angle=45, is\_radian=False)
- 2. If servo\_id is None or 8, angle should be a list of values whose length is the number of joints

like [axis-1, axis-2, axis-3, axis-4, axis-5, axis-6, axis-7]

ex: code = arm.set\_servo\_angle(angle=[30, -45, 0, 0, 0, 0, 0], is\_radian=False)

:param speed: move speed (unit: rad/s if is\_radian is True else °/s), default is self.last\_used\_joint\_speed :param myacc: move acceleration (unit: rad/s^2 if is radian is True else °/s^2), default is self.last used joint acc