18-447 Lecture 23: Illusiveness of Parallel Performance

James C. Hoe
Department of ECE
Carnegie Mellon University

Housekeeping

- Your goal today
 - peel back simplifying assumptions to understand parallel performance (or the lack of)
- Notices
 - Lab 4 and HW5: due Friday, 5/7
 - Midterm 2 Regrade: Monday, 5/3
 - Midterm 3: Tuesday, 5/11, 5:30~6:25pm
- Readings
 - P&H Ch 6
 - LogP: a practical model of parallel computation,
 Culler, et al. (advanced optional)

Format of Midterm 3

- Covers lectures (L19~L25), HW, labs, assigned readings (from textbook and papers)
- Types of questions
 - freebies: remember the materials
 - >> probing: understand the materials <<</p>
 - applied: apply the materials in original interpretation
- **55 minutes, 55 points**
 - 11 short-answer, typed-response questions
 - start of final exam period, online through Canvas
 - communicate with me privately by Zoom chat
 - openbook, <u>individual effort</u>

What to Expect

- 11 "5-point" short answer questions
 - ordered "easier" to "harder"
 - 1 question at a time and cannot go back
 - only first 45 words of each response graded
- Recommended strategy
 - give each question about 5min—as if taking 11 separate 5-min quizzes
- Be prepared
 - try practice midterm on Canvas
 - have your space and equipment ready
 - have a clock on your desk

AltGrade Option

- BaseIndex and BaseGrade unchanged from Handout #1: Syllabus
- AltIndex computed using adjusted weighting
 - 16% highest scored midterm
 - 16% second highest scored midterm
 - 8% third highest scored midterm
- AltGrade determined relative to class AltIndex average and standard deviation
- Bonuses work the same way for AltGrade as BaseGrade

"Ideal" Linear Parallel Speedup

Ideally, parallel speedup is linear with p

$$Speedup = \frac{time_{sequential}}{time_{parallel}}$$

Non-Ideal Speed Up

Never get to high speedup regardless of p!!

Parallelism Defined

- T₁ (work measured in time):
 - time to do work with 1 PE
- T_∞ (critical path):
 - time to do work with infinite PEs
 - T_∞ bounded by dataflow dependence
- Average parallelism:

$$P_{avg} = T_1 / T_{\infty}$$

For a system with p PEs

$$T_p \ge \max\{T_1/p, T_\infty\}$$

When P_{avg}>>p

 $T_p \approx T_1/p$, aka "linear speedup"

Amdahl's Law

If only a fraction f (by time) is parallelizable by p

- if f is small, p doesn't matter
- even when f is large, diminishing return on p;
 eventually "1-f" dominates

Non-Ideal Speed Up

Cheapest algo may not be the most scalable, s.t.

 $time_{parallel-algo@p=1} = K \cdot time_{sequential-algo}$ and K>1 and

Speedup = p/K

18-447-S21-L23-S10, James C. Hoe, CMU/ECE/CALCM, ©2021

Non-Ideal Speed Up

Never get to high speedup regardless of p!!

Communication not free

- PE may spend extra time
 - in the act of sending or receiving data
 - waiting for data to be <u>transferred</u> from another
 PE
 - latency: data coming from far away
 - bandwidth: data coming thru finite channel
 - waiting for another PE to get to a particular point of the computation (a.k.a. <u>synchronization</u>)

How does communication cost grow with T_1 ? How does communication cost grow with p?

Aside: Strong vs. Weak Scaling

- Strong Scaling (assumed so far)
 - what is S_p as p increases for constant work, T_1 run same workload faster on new larger system
 - harder to speedup as (1) p grows toward P_{avg} and
 (2) communication cost increases with p
- Weak Scaling
 - what is S_p as p increases for larger work, $T_1'=p \cdot T_1$ run a <u>larger</u> workload faster on new larger system
 - $-S_p = time_{sequential}(p \cdot T_1) / time_{parallel}(p \cdot T_1)$
- Which is easier depends on
 - how P_{avg} scales with work size T₁'
 - scaling of bottlenecks (storage, BW, etc)

Continuing from Last Lecture

Parallel Thread Code (Last Lecture)

```
void *sumParallel(void *_id) {
  long id=(long) _id;
  psum[id]=0;
  for(long i=0;i<(ARRAY_SIZE/p);i++)
     psum[id]+=A[id*(ARRAY_SIZE/p) + i];
}</pre>
```

Assumed "+" takes 1 unit-time; everything else free

$$T_1 = 10,000$$
 $T_{\infty} = \lceil \log_2 10,000 \rceil = 14$
 $P_{average} = 714$

What would you predict is the real speedup on a 28-core ECE server?

Need for more detailed analysis

- What cost were left out in "everything else"?
 - explicit cost: need to charge for all operations (branches, LW/SW, pointer calculations)
 - implicit cost: **communication and synchronization**
- PRAM-like models (Parallel Random Access Machine)
 capture cost/rate of parallel processing but assume
 - zero latency and infinite bandwidth to share data between processors
 - zero overhead cycles
 to send and receive

Useful when analyzing complexity but not for performance finetuning

Arithmetic Intensity: Modeling Communication as "Lump" Cost

Arithmetic Intensity

- An algorithm has a cost in terms of operation count
 - runtime_{compute-bound} = # operations / FLOPS
- An algorithm also has a cost in terms of number of bytes communicated (ld/st or send/receive)
 - runtime_{BW-bound} = # bytes / BW
- Which one dominates depends on
 - ratio of FLOPS and BW of platform
 - ratio of ops and bytes of algorithm
- Average Arithmetic Intensity (AI)
 - how many ops performed per byte accessed
 - # operations / # bytes

Roofline Performance Model

[Williams&Patterson, 2006]

- Last lecture we said
 - 100 threads perform 100 +'s each in parallel, and
 - between 1~7 (plus a few) +'s each in the parallel reduction
 - $-T_{100} = 100 + 7$
 - $S_{100} = 93.5$
- Now we see
 - Al is a constant, 1 op / 8 bytes (for doubles)
 - Let BW_{cyc} be total bandwidth (byte/cycle) shared by threads on a multicore

- useless to parallelize beyond $p > BW_{cyc}/8$

What about a multi-socket system?

Interesting AI Example: MMM

```
for(i=0; i<N; i++)
for(j=0; j<N; j++)
for(k=0; k<N; k++)
C[i][j]+=A[i][k]*B[k][j];</pre>
```


- N² data-parallel dot-product's
- Assume N is large s.t. 1 row/col too large for on-chip
- Operation count: N³ float-mult and N³ float-add
- External memory access (assume 4-byte floats)
 - 2N³ 4-byte reads (of A and B) from DRAM
 - $\dots N^2$ 4-byte writes (of C) to DRAM . . .
- Arithmetic Intensity $\approx 2N^3/(4\cdot2N^3)=1/4$

More Interesting Al Example: MMM

```
for (i0=0; i0<N; i0+=\frac{N_b}{N_b})
  for (j0=0; j0 < N; j0 += N_b)
     for (k0=0; k0<N; k0+=N_b) {
        for (i=i0;i<i0+N<sub>b</sub>;i++)
           for (j=j0;j<j0+N<sub>b</sub>;j++)
             for (k=k0; k< k0+N_b; k++)
                C[i][j]+=A[i][k]*B[k][j];
```

- Imagine a 'N/N_b'x''N/N_b' MATRIX of N_bxN_b matrices
 - inner-triple is straightforward matrix-matrix mult
 - outer-triple is MATRIX-MATRIX mult
- To improve AI, hold $N_b x N_b$ sub-matrices on-chip for data-reuse need to copy block (not shown)

Al of blocked MMM Kernel (N_bxN_b)

- Operation count: N_b³ float-mult and N_b³ float-add
- When A, B fit in scratchpad $(2xN_b^2x4 \text{ bytes})$
 - 2N_b³ 4-byte on-chip reads (A, B) (fast)
 - $-3N_b^2$ 4-byte off-chip DRAM read A, B, C (slow)
 - N_b² 4-byte off-chip DRAM writeback C (slow)
- Arithmetic Intensity = $2N_b^3/(4\cdot4N_b^2)=N_b/8$

AI and Scaling

- Al is a function of algorithm and problem size
- Higher AI means more work per communication and therefore easier to scale
- Recall strong vs. weak scaling
 - strong=increase perf on fixed problem sizes
 - weak=increase perf on proportional problem sizes
 - weak scaling easier if AI grows with problem size

LogP Model: Components of Communication Cost

LogP

- A parallel machine model with explicit communication cost
 - <u>Latency</u>: transit time between sender and receiver
 - <u>overhead</u>: time used up to setup a send or a receive (cycles not doing computation)
 - gap: wait time in between successive send's or receive's due to limited transfer bandwidth
 - Processors: number of processors, i.e., computation throughput

Message Passing Example

```
if (id==0)
                   //assume node-0 has A initially
   for (i=1;i<p;i=i+1)</pre>
      SEND(i, &A[SHARE*i], SHARE*sizeof(double));
else
   RECEIVE(0,A[]) //receive into local array
sum=0;
for (i=0;i<SHARE;i=i+1) sum=sum+A[i];</pre>
remain=p;
do {
    BARRIER();
    half=(remain+1)/2;
    if (id>=half&&id<remain) SEND(id-half,sum,8);</pre>
    if (id<(remain/2)) {</pre>
       RECEIVE (id+half, &temp);
       sum=sum+temp;
    remain=half;
    ile (remain>1);
```

erien

[based on P&H Ch 6 example]

```
1: if (id==0)
2: for (i=1;i<100;i=i+1)
3: SEND(i, &A[100*i], 100*sizeof(double));
4: else RECEIVE(0, A[])
```

- assuming no back-pressure, node-0 finishes sending to node-99 after 99× overhead of SEND()
- first byte arrives at node-99 some network latency later
- the complete message arrives at node-99 after 100*sizeof(double)/network_bandwidth
- node-99 finally ready to compute after the overhead to RECEIVE()

What if 100*sizeof(double)/network_bandwidth greater than the overhead to **SEND**()?

How long?

```
sum=0;
for(i=0;i<100;i=i+1) sum=sum+A[i];</pre>
```

- ideally, this step is computed p=100 times faster than summing 10,000 numbers by one processor
- big picture thinking, e.g.,

- is the time saved worth the data distribution cost?
 - if not, actually faster if parallelized less
- fine-tooth comb thinking, e.g.,
 - node-1 begins work first; node-99 begins work last
 ⇒ minimize overall finish time by assigning more
 work to node-1 and less work to node-99
 - maybe latency and bandwidth are different to different nodes

Performance tuning is a craft


```
do {
    BARRIER();
    half=(remain+1)/2;
    if (id>=half&&id<remain) SEND(<u>id-half</u>, sum, 8);
    if (id<(remain/2)) {
        RECEIVE(<u>id+half</u>, &temp);
        sum=sum+temp;
    }
    remain=half;
} while (remain>1);
```

- how does one build a BARRIER ()?
- do we need to synchronize each round?
- is this actually faster than if all nodes sent to node-0?

What if **p** is small? What if **p** is very large? Real answer is a combination of techniques

LogP applies to shared memory too


```
do {
   pthread_barrier_wait(...);

half=(remain+1)/2;
   if (id<(remain/2))
      psum[id]=psum[id]+
            psum[id+half];
   remain=half;
} while (remain>1);
```

- When C₀ is reading psum[0+half], the value originates in the cache of C_{"half"}
 - L: time from C_0 's cache miss to when data retrieved from the cache of $C_{\text{"half"}}$ (via cache coherence)
 - g: there is a finite bandwidth between C₀ and C_{"half"}
 - o: as low as a LW instruction but also pay for stalls

Implications of Communication Cost

- Large g—can't exchange a large amount of data
 - must have lots of work per byte communicated
 - only scalable for applications with high AI
- Large •—can't communicate frequently
 - can only exploit coarse-grain parallelism
 - if DMA, amount of data not necessarily limited
- Large L—can't send data at the last minute
 - must have high average parallelism (more work/time between production and use of data)
- High cost in each category limits
 - the kind of applications that can speed up, and
 - how much they can speed up

Parallelization not just for Performance

Ideal parallelization over N CPUs

$$- T = Work / (k_{perf} \cdot N)$$

$$-E = (k_{switch} + k_{static} / k_{perf}) \cdot Work$$

N-times static power, but **N**-times faster runtime

$$-P = N (k_{switch} \cdot k_{perf} + k_{static})$$

• Alternatively, forfeit speedup for power and energy reduction by $s_{freq} = 1/N$ (assume $s_{voltage} \approx s_{freq}$ below)

$$- T = Work / k_{perf}$$

$$-E'' = (k_{switch} / N^2 + k_{static} / (k_{perf} N)) \cdot Work$$

$$-P''=k_{switch}\cdot k_{perf}/N^2+k_{static}/N$$

so works with using N slower-simpler CPUs