Chapter 3 - Problems 6, 60

Michael Brodskiy

Instructor: Mr. Morgan

September 14, 2020

- 6. A solid circular cone made of pure platinum $(d = 21.45[\text{g cm}^{-3}])$ has a diameter of 2.75[cm] and a height of 3[in]. (a) How many moles of platinum are in the cone? (b) How many electrons are in the cone?
 - (a) $3[in] \to 7.62[cm]$

$$m = V\rho \to \frac{1}{3}\pi \cdot 1.375^2 \cdot 7.62 \cdot 21.45 = 323.61[g]$$

$$\text{mol}_{Pt} = \frac{323.61[\text{g}]}{195[\text{g mol}^{-1}]} = 1.66[\text{mol}]_{Pt}$$

- (b) $1.66 [\text{mol}] \cdot 78 \cdot 6.02 \cdot 10^{23} = 7.79 \cdot 10^{25}$
- 60. When tin comes in contact with the oxygen in the air, tin (IV) oxide, SnO_2 , is formed. A piece of tin foil, $8.25[\text{cm}] \cdot 21.5[\text{cm}] \cdot .6[\text{mm}]$, $(d = 7.28[\text{g cm}^{-1}])$, is exposed to oxygen.
 - (a) Assuming that all the tin has reacted, what is the mass of the oxidized tin foil?
 - (b) Air is about 21% oxygen by volume ($d = 1.309[g L^{-1}]$). How many liters of air are required to completely react with the tin foil?

$$Sn + O_2 \rightarrow SnO_2$$

(a)
$$.6[mL] = .06[cm]$$

$$V = 8.25 \cdot 21.5 \cdot .06 = 10.65 [\text{cm}^3] \rightarrow m = \rho V = 10.65 \cdot 7.28 = 77.5 [\text{g}]$$

$$\frac{77.5}{119} = .65[\text{mol}_{Sn}] = 1.3[\text{mol}_O \cdot 16 = 20.8[\text{g}] + 77.5[\text{g}] = 98.3[\text{g}]$$

(b)
$$.21 \cdot 1.309 = .275[g L^{-1}_{O}]$$

$$\frac{1}{275} \cdot 20.8 = 76[L]$$