Отчёт №7 (вар.14)

Доверительное

оценивание и проверка

гипотез.

Романенко Демьян, M3238 16.06.2020

1 Постановка задачи

Для случайной величины $X \sim B(p)$, гипотезы $H_0: p=p_0=0.45$, альтернативы $H_1: p \neq p_0$ при n=100, $k_n = 37$ построить доверительный интервал для $\gamma = 0.95$ и проверить гипотезу на основании наиболее мощного критерия $\alpha = 0.05$.

Информация Фишера для $X \sim B(p) : I(p) = \frac{1}{p(1-p)}$.

Величины
$$t_\gamma:\Phi_1(t_\gamma)=P(|arepsilon|< t_\gamma)=\gamma$$

γ	0.9	0.95	0.99
t_{γ}	1.65	1.96	2.58

$\mathbf{2}$ Решение

Построение доверительного интервала

$$OM\Pi - \hat{\theta_n} = \hat{p_n} = \frac{k_n}{n} = \frac{37}{100} = 0.37$$

$$I(\hat{\theta_n}) = \frac{1}{0.37*(1-0.37)} \approx 4.29$$

$$p_0 = 0.45 \in I_n = \left[\hat{\theta_n} - \frac{t_{1-\alpha}}{\sqrt{nI(\hat{\theta_n})}}; \hat{\theta_n} - \frac{t_{1-\alpha}}{\sqrt{nI(\hat{\theta_n})}}\right] = \left[0.37 - \frac{1.96}{\sqrt{100*4.29}}; 0.37 + \frac{1.96}{\sqrt{100*4.29}}\right] \approx \left[0.27537; 0.46463\right]$$

Таким образом, гипотеза H_0 принимается

2.2Проверка гипотезы

2.2 Проверка гипотезы проверка гипотезы
$$\Psi_{n,\alpha}^* = \begin{cases} 1, \sqrt{nI(\hat{\theta_n})}|\hat{\theta_n} - \theta_0| \geq t_\gamma, \\ 0, \sqrt{nI(\hat{\theta_n})}|\hat{\theta_n} - \theta_0| \leq t_\gamma, \end{cases}$$
 Проверка гипотезы в случае двусторонней альтернативы: $\Psi_{n,\alpha}^* = \left[\sqrt{nI(\hat{\theta_n})}|\hat{\theta_n} - \theta_0| \leq t_\gamma; \right]$ $\Psi_{n,\alpha}^* = \left[\sqrt{nI(\hat{\theta_n})}|\hat{\theta_n} - \theta_0|\right] = \left[\sqrt{\frac{n}{p_0(1-p_0)}}|\frac{k_n}{n} - p_0|\right] = \left[\sqrt{\frac{100}{0.45*(1-0.45)}}|0.37 - 0.45|\right] = [1.608 < t_\gamma = 1.96] = 0$ Таким образом, гипотеза вновь принимается.

3 Вывод

В ходе лабораторной работы стало ясно, что гипотеза H_0 принимается.