

$$x_1(t) = V_{C_1}(t), \quad x_2(t) = V_{C_2}(t)$$

$$x_1(\sigma) = X_2(\sigma) = 0$$

$$\frac{\dot{x}(t) = \begin{bmatrix} -\frac{1}{RC_1} & 0 \\ 0 & -\frac{1}{RC_2} \end{bmatrix} \dot{x}(t) + \begin{bmatrix} \frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix} \dot{x}(t)}{R} \underbrace{\begin{cases} -\frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix}}_{R} \dot{x}(t) + \begin{bmatrix} \frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix} \dot{x}(t)$$

$$\frac{1}{R^{3}C_{1}C_{2}^{2}} + \frac{1}{R^{3}C_{1}C_{2}} = \frac{1}{R^{3}C_{1}C_{2}} + \frac{1}{C_{1}}$$

$$= \frac{1}{R^{3}C_{1}C_{2}^{2}} + \frac{1}{R^{3}C_{1}C_{2}} + \frac{1}{C_{1}}$$

$$X_{C}(t)$$
 = spazio controllabile al tempo t
 X_{C} = (massimo) spazio controllabile

Definizione: Un sistema Σ a t.c. si dice (completamente) controllabile se X_{C} = \mathbb{R}^{n} .

 $X(t) = FX(t) + GX(t)$
 $X(t) = FX(t) + GX(t)$
 $X(t) = FX(t) + GX(t)$
 $X(t) = FX(t) + GX(t)$

$$\Sigma_{NR}$$
: $\times_{NR}(t) = e^{F_{22}t} \times_{NR}(t)$

Mai, perché a t.c. non abbionno modi convergenti in tempo finito! => INR non controllabile

Raggingibilita <=> Controllabilità

 g_1 $g_1,g_2,g_3 \in \mathbb{R}$

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ -4 & 4 & 0 \end{bmatrix}$$

- 1. Si determini, se esiste, una $G \in \mathbb{R}^3$ tale da rendere il sistema raggiungibile
- 2. Si determini, se esiste, una $G \in \mathbb{R}^3$ tale da rendere il sistema controllabile.

	[_1	1	0
F=	-1	1	0
	- 4	4	0
	- 		_
-	F-1-1	0	
	1. F12.	FLI	

G. Baggio Lez. 15: Raggiungibilità e controllabilità a t.c.

1) G l.c. I raggingibile?

Unionno il test PBH:

1) Calcolo autovalori F: $\lambda(F) = \lambda(F_{11}) \cup \lambda(F_{12})$

 $\Delta_{F_{11}}(\lambda) = \det(\lambda I - F_{11}) = \det\begin{bmatrix}\lambda + 1 - 1\\1 \lambda - 1\end{bmatrix} = (\lambda + 1)(\lambda - 1) + 1$ $= \lambda^{2} - \lambda + \lambda$

Autovalori F: 2=0, v=3

$$PBH(0) = \begin{bmatrix} -F & G \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & g_1 \\ -1 & 1 & 0 & g_2 \\ -4 & 4 & 0 & g_3 \end{bmatrix} \quad romk(PBH(0)) \leq 2 \quad \forall g_1, g_2, g_3 \in \mathbb{R}^3$$

$$\implies \sum non \, ragg. \quad \forall G \in \mathbb{R}^3$$

2) G t.c. E controllabile?

L'unico autovalore di F e O (F nilpotente)

 $\Longrightarrow \Sigma$ controllabile $\forall G \in \mathbb{R}^3$

$$\dot{x}(t) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} -1/2 & -1/2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- 1. Si determini se il sistema è raggiungibile.
- 2. Si determini, senza effettuare il calcolo, se esiste o meno un ingresso $u(\tau)$, $\tau \in [0,1]$, che porta il sistema da $x(0) = [0 \ 0 \ 1]^{\top}$ a $x(1) = [e \ e \ e^{-1}]^{\top}$.

	[-1/2	- 1/2	07		ſ
F	-1	0	0	(-=	
	0	O	-1]		
,	ر - 1 ت	п 7			
Ė	F11	-			
	LU	tzi J			

1)
$$\Sigma = (F, G)$$
 è reaggiongibile?

$$R = [G FG F^{2}G] = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

rank $R = 1 \implies \Sigma$ non ragg.

2)
$$u(\tau)$$
, $\tau \in [0,1]$, tale the $x(0) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $x(1) = \begin{bmatrix} e \\ e \\ 1/e \end{bmatrix}$

note

$$x(1) - e^{F}x(0) \in X_{R}(1) = X_{R} = im R = spom \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

$$\begin{bmatrix} e \\ e \\ 1/e \end{bmatrix} - e^{F} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} e \\ e \\ 1/e \end{bmatrix} - \begin{bmatrix} e^{F_{11}} & 0 \\ 0 & e^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} e \\ e \\ 1/e \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1/e \end{bmatrix} = \begin{bmatrix} e \\ e \\ 0 \end{bmatrix} e^{X_R}$$

$$e^{F_{z}} \begin{bmatrix} e^{F_{11}} & 0 \\ 0 & e^{F_{22}} \end{bmatrix} = \begin{bmatrix} e^{F_{11}} & 0 \\ 0 & e^{-1} \end{bmatrix}$$

l'ingresse richieste existe.