Rappels : survie par classes d'âge et par cohortes

FMOV 204

'Biologie de la conservation et dynamique des populations'

Olivier Duriez Laetitia BLANC

Rappels données martinet noir.inp

- Oiseau vivant dans les bâtiments du musée de Nîmes
- Captures et recaptures d'adultes nicheurs 8 années
- 2 colonies (= groupes)
- Colonie 1 = exposée Nord (avec Mistral) Colonie 2 = exposée
 Sud (sans Mistral)
- Différences de survie et/ou recapture entre ces 2 groupes?

Modèles de survie avec effet âge

- Ouvrir données martinet noir.inp
- Rappel forme des données :


```
8 occasions
```

```
00000001 7 18;
00000010 6 15;
00000011 18;
```

Modèles de survie avec effet âge

- Ouvrir données martinet noir.inp
- Rappel forme des données :

Colonie SUD (groupe 2)
Colonie NORD (groupe 1)

00000001 7 18;
00000010 6 15;
00000011 1 8

Modèles de survie avec effet âge

- Il existe deux sources de différences entre individus :
 - une qui change au cours de la vie d'un individu (âge)
 - une qui ne change pas au cours de la vie d'un individu (cohorte)
- Faire tourner Phi(t) p(t) et ouvrir la PIM pour la survie

Importer les données

Ouvrir la PIM pour les paramètres de survie

<u>Comment sont construites les PIM (Parameter Index Matrix) ?</u>

Qu'en est-il des individus capturés pour la première fois à la seconde occasion ?

Cohort 1 1
$$\frac{1}{2}$$
 $\frac{2}{3}$ $\frac{3}{8}$ $\frac{4}{9}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{8}{3}$ $\frac{11}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{3}{3}$ $\frac{4}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{8}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{8}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{8}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{6}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{11}{3}$ $\frac{6}{3}$ $\frac{12}{3}$ $\frac{7}{3}$ $\frac{13}{3}$ $\frac{13}{$

Modèle constant Phi(.)

Modèle Phi(âge=cohorte)

• Définition de deux paramètres pour la survie en fonction de l'âge par rapport à la capture (= effet cohorte).

Ex: Survie 'la 1ère année après la capture' différente des autres années

Modèle Phi(âge vrai)

PIM des bagués 1A Signification des lignes et colonnes de la PIM dans le contexte de l'effet de l'âge vrai

PIM Chart

1 = phi_{1A}

2005-2006

2

2

2

2

2

2

1

 $2 = phi_{+1A}$

Bagués 1A en 1999
Bagués 1A en 2000
Bagués 1A en 2001
Bagués 1A en 2002
Bagués 1A en 2003
Bagués 1A en 2004
Bagués 1A en 2004

Modèle Phi(a.g) p(g.t)

Faites le test avec un modèle Phi(a.g) p(g.t)

Mettre les PIM pour Phi et p

Résultats Phi(a.g) p(g.t)

N.B.: Clic droit sur le modèle > Real estimates

martinets

Parameter	Estimate	Standard Error		Upper		
					_	
1:Phi	0.5421942	0.1304741	0.2971148	0.7684239		
2:Phi	0.6566680	0.1044161				
3:Phi	0.8279851	0.0670174	0.6568190	0.9236974		
4:Phi	0.7335965	0.0510375	0.6227155	0.8212447		
5:p	1.0000000	0.1274280E-018	1.0000000	1.0000000		
6:p	0.7103196	0.2128974	0.2439774	0.9490622		
7:p	0.4393144	0.2616169	0.0890178	0.8626880		
8:p	0.1976306	0.1847865	0.0244785	0.7074103		
9:p	0.5116894	0.2865190	0.0996813	0.9084041		
10:p	1.0000000	0.2176970E-017	1.0000000	1.0000000		
11:p	0.3497031	0.2284816	0.0698125	0.7939471		
12:p	0.8720804	0.1169541	0.4662116	0.9815545		
13:p	0.7264174	0.1196539	0.4492875	0.8962832		
14:p	0.5412673	0.1239404	0.3072703	0.7583772		
15:p	0.7909458	0.1016557	0.5313710	0.9266017		
16:p	0.9126352	0.0800434	0.5935339	0.9867954		
17:p	0.8445892	0.1129741	0.5014512	0.9670657		
18:p	0.4711418	0.1002334	0.2882255	0.6621512		

Résultats Phi(a.g) p(g)t)

martinets

				95% Contidenc	e Interval
Parameter		Estimate	Standard Error	Lower	Upper
1.064		0 5421042	0.1304741	0.2071148	0.7694220
1:Phi		0.5421942	0.1304741	0.2971148	0.7684239
2:Phi		0.6566680	0.1044161	0.4355448	0.8258109
3:Phi		0.8279851	0.0670174	0.6568190	0.9236974
4:Phi		0.7335965	0.0510375	0.6227155	0.8212447
5:p		1.0000000	0.1274280E-018	1.0000000	1.0000000
6:p		0.7103196	0.2128974	0.2439774	0.9490622
7:p		0.4393144	0.2616169	0.0890178	0.8626880
8:p	Groupe 1	0.1976306	0.1847865	0.0244785	0.7074103
9:p		0.5116894	0.2865190	0.0996813	0.9084041
10:p		1.0000000	0.2176970E-017	1.0000000	1.0000000
11:p_		0.3497031	0.2284816	0.0698125	0.7939471
12:p		0.8720804	0.1169541	0.4662116	0.9815545
13:p		0.7264174	0.1196539	0.4492875	0.8962832
14:p		0.5412673	0.1239404	0.3072703	0.7583772
15:p	Groupe 2	0.7909458	0.1016557	0.5313710	0.9266017
16:p		0.9126352	0.0800434	0.5935339	0.9867954
17:p		0.8445892	0.1129741	0.5014512	0.9670657
18:p		0.4711418	0.1002334	0.2882255	0.6621512

Résultats Phi(a.g) p(g.t)

martinets

			95% Contidend	e interval
Parameter	Estimate	Standard Error	Lower	Upper
1:Phi	0.5421942	0.1304741	0.2971148	0.7684239
2:Phi	0.6566680	0.1044161	0.4355448	0.8258109
3:Phi	0.8279851	0.0670174		0.9236974
			0.6568190	
4:Phi Occ 2	0.7335965	0.0510375	0.6227155	0.8212447
):D	1.0000000	0.1274280E-018	1.0000000	1.0000000
6:p Occ 3	0.7103196	0.2128974	0.2439774	0.9490622
7:p Occ 4	0.4393144	0.2616169	0.0890178	0.8626880
8:p — Occ 5	0.1976306	0.1847865	0.0244785	0.7074103
9:p Occ 6	0.5116894	0.2865190	0.0996813	0.9084041
10:p Occ 7	1.0000000	0.2176970E-017	1.0000000	1.0000000
11:p _ Occ 8	0.3497031	0.2284816	0.0698125	0.7939471
12:p Occ 2	0.8720804	0.1169541	0.4662116	0.9815545
13:p Occ 3	0.7264174	0.1196539	0.4492875	0.8962832
14:p Occ 4	0.5412673	0.1239404	0.3072703	0.7583772
15:p - Occ 5	0.7909458	0.1016557	0.5313710	0.9266017
16:p	0.9126352	0.0800434	0.5935339	0.9867954
17 · n	0.8445892	0.1129741	0.5014512	0.9670657
18:n	0.4711418	0.1002334	0.2882255	0.6621512
Occ 8				

100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			95% Contidend	e interval
Parameter	Estimate	Standard Error	Lower	Upper
1:Phi Croupe 1	0.5421942	0.1304741	0.2971148	0.7684239
2:Phi Groupe 1	0.6566680	0.1044161	0.4355448	0.8258109
2 · phi	0.8279851	0.0670174	0.6568190	0.9236974
4:Phi Groupe 2	0.7335965	0.0510375	0.6227155	0.8212447
5:p	1.0000000	0.1274280E-018	1.0000000	1.0000000
6:p	0.7103196	0.2128974	0.2439774	0.9490622
7:p	0.4393144	0.2616169	0.0890178	0.8626880
8:p	0.1976306	0.1847865	0.0244785	0.7074103
9:p	0.5116894	0.2865190	0.0996813	0.9084041
10:p	1.0000000	0.2176970E-017	1.0000000	1.0000000
11:p	0.3497031	0.2284816	0.0698125	0.7939471
12:p	0.8720804	0.1169541	0.4662116	0.9815545
13:p	0.7264174	0.1196539	0.4492875	0.8962832
14:p	0.5412673	0.1239404	0.3072703	0.7583772
15:p	0.7909458	0.1016557	0.5313710	0.9266017
16:p	0.9126352	0.0800434	0.5935339	0.9867954
17:p	0.8445892	0.1129741	0.5014512	0.9670657
18:p	0.4711418	0.1002334	0.2882255	0.6621512

1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			95% Contidenc	e interval
Parameter	Estimate	Standard Error	Lower	Upper
1:Phi Age 1	0.5421942	0.1304741	0.2971148	0.7684239
2:Phi Age 2	0.6566680	0.1044161	0.4355448	0.8258109
3:Phi	0.8279851	0.0670174	0.6568190	0.9236974
4:Phi Age 2	0.7335965	0.0510375	0.6227155	0.8212447
5:p	1.0000000	0.1274280E-018	1.0000000	1.0000000
6:p	0.7103196	0.2128974	0.2439774	0.9490622
7:p	0.4393144	0.2616169	0.0890178	0.8626880
8:p	0.1976306	0.1847865	0.0244785	0.7074103
9:p	0.5116894	0.2865190	0.0996813	0.9084041
10:p	1.0000000	0.2176970E-017	1.0000000	1.0000000
11:p	0.3497031	0.2284816	0.0698125	0.7939471
12:p	0.8720804	0.1169541	0.4662116	0.9815545
13:p	0.7264174	0.1196539	0.4492875	0.8962832
14:p	0.5412673	0.1239404	0.3072703	0.7583772
15:p	0.7909458	0.1016557	0.5313710	0.9266017
16:p	0.9126352	0.0800434	0.5935339	0.9867954
17:p	0.8445892	0.1129741	0.5014512	0.9670657
18:p	0.4711418	0.1002334	0.2882255	0.6621512

Real Function Parameters of {Phi(a.g) p(g.t)}

arameter	Estimate
1:Phi Age 1 2:Phi Age 2 3:Phi Age 1 4:Phi Age 1 4:Phi Age 2 5:p 6:p 7:p 8:p 9:p 10:p 11:p 12:p 13:p 14:p 15:p 16:p 17:p 18:p	0.5421942 0.6566680 0.8279851 0.7335965 1.0000000 0.7103196 0.4393144 0.1976306 0.5116894 1.0000000 0.3497031 0.8720804 0.7264174 0.5412673 0.7909458 0.9126352 0.8445892 0.4711418

➤ Survie de 1 an à 2 ans plus élevée dans la colonie SUD (groupe 2) que dans colonie NORD (groupe 1)

