

Encuentro Sincrónico 5

Modelos secuenciales y mecanismos de atención

Redes recurrentes-(RNN)

Redes recurrentes-(RNN)

Redes recurrentes-(RNN)

Variaciones de las redes recurrentes

Variaciones de las redes recurrentes

La compuerta de reinicio $r_t = \sigma \left(\mathbf{W}^{(xr)} \mathbf{x}_t + \mathbf{h}_{t-1} \mathbf{W}^{(hr)} + \mathbf{b}_r \right)$, [0, 1]

La compuerta de actualización $\Gamma_t = \sigma \left(\mathbf{x}_t \mathbf{W}^{(xz)} + \mathbf{h}_{t-1} \mathbf{W}^{(hz)} + \mathbf{b}_z \right), [0, 1]$

El candidato $\hat{\boldsymbol{h}}_t = anh \left(\boldsymbol{x}_t \boldsymbol{W}^{(xh)} + (\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1}) \boldsymbol{W}^{(hh)} + \boldsymbol{b}_h \right)$

$$\mathbf{h}_t = \Gamma_t \odot \mathbf{h}_{t-1} + (1 - \Gamma_t) \hat{\mathbf{h}}_t$$

- Esto es útil en problemáticas como las que planteamos en la frase: *El perro que ya había comido ..., estaba lleno*.
- La red GRU podría entrenarse de tal forma que reconozca las palabras que son claves para resolver la tarea y descarte las menos importantes.

$$\Gamma_1 = 1$$
 $\Gamma_2 = 0$ $\Gamma_3 = 1$ $\Gamma_4 = 1$ $\Gamma_5 = 1$ $\Gamma_6 = 1$ $\Gamma_{T-1} = 0$ $\Gamma_T = 1$
El perro que ya había comido · · · estaba lleno

• Así, se eliminan las distancias entre las partes más importantes de la frase y reduce la posibilidad de que los gradientes tiendan a cero.

 c_t : Memoria a largo plazo, h_t : Memoria a corto plazo.

 f_t :Compuerta de olvido, $f_t : \sigma \left(\mathbf{x}_t \mathbf{W}^{(xf)} + \mathbf{h}_{t-1} \mathbf{W}^{(hf)} + \mathbf{b}_f \right), \ [0,1]$

 $egin{aligned} & m{i_t} : ext{Compuerta de entrada,} & \hat{m{c}_t} : ext{Candidato} \ & m{i_t} : \sigma \left(m{x_t} m{W}^{(xi)} + m{h_{t-1}} m{W}^{(hi)} + m{b_i}
ight), \ [0,1] & \hat{m{c}_t} = anh \left(m{x_t} m{W}^{(xc)} + m{h_{t-1}} m{W}^{(hc)} + m{b_c}
ight) \end{aligned}$

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t$$

 o_t : Compuerta de salida,

 $\mathbf{o}_t : \sigma \left(\mathbf{x}_t \mathbf{W}^{(\mathrm{xo})} + \mathbf{h}_{t-1} \mathbf{W}^{(\mathrm{ho})} + \mathbf{b}_o \right), [0, 1] \qquad \mathbf{h}_t = \mathbf{o}_t \odot \tanh \left(\mathbf{c}_t \right)$

 h_t : Memoria a corto plazo

