Оглавление

1 ТФКП		КΠ	2
	1.1	Теорема о единственности значения аналитической функции	2
	1.2	Аналитическое продолжение функции	2
	1.3	Функции, продолжимые по любому пути	3
	1.4	Теорема о монодромии	4
	1.5	Ряды Лорана	4

Глава 1

$T\Phi K\Pi$

1.1. Теорема о единственности значения аналитической функции

Теорема 1. $D \subset \mathbb{C}, \qquad E \subset D, \qquad z_0 - \text{т. сг. } E, \qquad z_0 \in D, \qquad f \in \mathcal{A}(D), \qquad f(z) = 0 \quad \forall z \in E$ $\Longrightarrow f(z) \equiv 0$

Доказательство.

$$f(z) \xrightarrow[z \to z_0]{z \in E} f(z_0)$$
$$0 \to f(z_0)$$

То есть, $f(z_0) = 0$. **Пусть** $f(z) \not\equiv 0$. Тогда

$$\exists \varphi(z) \quad \exists n_0 \in \mathbb{N} \quad \exists \delta > 0 : \quad \begin{cases} f(z) = (z - z_0)^{n_0} \varphi(z) \\ |z - z_0| < \delta & \Longrightarrow \quad \varphi(z) \neq 0 \end{cases}$$
 $\Longrightarrow \quad \text{если } |z - z_0| < \delta, \quad f(z) = 0 \implies z = z_0$ (1.1)

$$z_0$$
 — т. сг. $E\implies\exists\,z_1\in E:\quad |z_1-z_0|<\delta$
$$z_1\in E\implies f(z_1)=0 \eqno(1.2)$$

(1.1) и (1.2) противоречивы.

Следствие. $f \in \mathcal{A}(D), \quad g \in \mathcal{A}(D), \quad \forall z \in E \quad f(z) = g(z)$

$$\implies f(z) \stackrel{D}{=\!\!\!=\!\!\!=} g(z)$$

Доказательство. Рассмотрим функцию h(z) = g(z) - f(z). В силу аналитичности f и g получаем $h(z) \in \mathcal{A}(D)$.

$$h(z) = 0 \quad \forall z \in E \implies h(z) \equiv 0$$

1.2. Аналитическое продолжение функции

Определение 1. $D_1, D_2 \in \mathbb{C}, \qquad D_1 \cap D_2 \eqqcolon G \neq \emptyset, \qquad f_1 \in \mathcal{A}(D_1), \quad f_2 \in \mathcal{A}(D_2)$

 $\forall z \in G \quad f_1(z) = f_2(z)$

Говорят, что функция f_1 аналитически продолжена в область D_2 функцией f_2 .

Теорема 2. Пусть имеется два аналитических продолжения функции f_1 в область D_2 : f_2 и $\widetilde{f_2}$.

$$\implies \widetilde{f}_2(z) \stackrel{D_2}{=\!=\!=} f_2(z)$$

Доказательство. G открыто, $\forall z_0 \in G$ — т. сг. G. Рассмотрим область D_2 :

$$f_2(z) = \widetilde{f}_2(z) \quad \forall z \in G$$

Можно применить следствие из теоремы о единственности.

Определение 2. $\Pi y m \ddot{e}_M \Gamma(t) : [a,b] \to \mathbb{C}$ называется непрерывное отображение отрезка [a,b] в \mathbb{C} .

Замечание. Нет требований к инъективности или сюръективности.

Определение 3. Системой кругов, связанных с путём $\Gamma(t)$ будем называть следующее:

$$a = t_0 < t_1 < \dots < t_n = b,$$
 $r_0, r_1, \dots, r_n > 0$

Рассматриваем круги $B_{r_k}(\Gamma(t_k))$. Будем называть их системой кругов, если выполнено

$$B_{r_k}(\Gamma(t_k)) \cap B_{r_{k-1}}(\Gamma(t_{k-1})) \neq \emptyset, \qquad k = 1, \dots, n$$

Определение 4. Пусть имеется путь $\Gamma(t)$ и система кругов, связанных им.

$$f \in \mathcal{A}\bigg(\mathtt{B}_{r_0}\big(\Gamma(t_0)\big)\bigg) = \mathtt{B}_{r_0}\big(\Gamma(a)\big)$$

Будем говорить, что функция f аналитически продолжена вдоль пути $\Gamma(t)$ в круг $\mathsf{B}_{r_n}\big(\Gamma(t_n)\big)=\mathsf{B}_{r_n}\big(\Gamma(b)\big),$ если функция f аналитически продолжается из круга r_0 в круг r_1 , далее из него в круг r_2 , и так далее до круга r_n .

Теорема 3. Аналитическое продолжение вдоль пути единственно.

Доказательство. Следует из единственности аналитического продолжения в область.

1.3. Функции, продолжимые по любому пути

Определение 5. $D \subset \mathbb{C}$, $B = B_r(z_0) \subset D$, $f \in \mathcal{A}(B_r(z_0))$

Будем говорить, что функция f продолжима из круга B по любому пути в области D, если

 $\forall \Gamma(t): [a,b] \to D: \ \Gamma(a) = z_0 \quad f$ аналитически продолжается вдоль этого пути,

причём в качестве первого круга мы берём круг B.

Пример. $D = \mathbb{C} \setminus \{0\}, \qquad B = \mathsf{B}_1(1)$

Рассмотрим функцию $f(z) = \log z$, $z \in B$.

$$\log z = |z| + i \arg z, \qquad z \in \mathbb{C} \setminus (-\infty, 0]$$

Зададим $\operatorname{Arg} z = \operatorname{arg} z + 2\pi k$.

Рассмотрим теперь любой круг \widetilde{B} . Хотим задать Arg так, чтобы он был в этом круге непрерывен. Положим $\log z \coloneqq \log |z| + i \operatorname{Arg} z$ при $z \in \widetilde{B}$. Эта функция аналитична в \widetilde{B} .

Определение 6. Область называется односсязной, если любой замкнутый путь можно непрерывно деформировать в точку, оставаясь в этой области.

Пример. $\mathbb{C} \setminus \{0\}$ не является односвязной.

1.4. Теорема о монодромии

Теорема 4. D — односвязная область, $B = \{ \ z \ | \ | \ z - z_0| < r \ \} \subset D, \qquad f \in \mathcal{A}(B), \qquad f$ продолжима в D по любому пути.

Тогда f аналитична в D, то есть

$$\exists F \in \mathcal{A}(D): \quad F(z) \stackrel{B}{\Longrightarrow} f(z)$$

Доказательство. Тут какие-то интуитивные рассуждения.

1.5. Ряды Лорана

Определение 7. $0 \le r \le R \le +\infty$

$$D_{r,R}(a) = \{ z \mid r < |z - a| < R \}$$

Будем называть $D_{r,R}$ кольцом.

Теорема 5. $f \in \mathcal{A}(D_{r,R}(a))$

$$\implies \exists c_n \in \mathbb{Z}: \quad \forall z \in D_{r,R}(a) \quad f(z) = \sum_{n=1}^{\infty} c_{-n}(z-a)^{-n} + c_0 + \sum_{n=1}^{\infty} c_n(z-a)^n, \tag{1.3}$$

где ряды сходятся.

Если $r < r_1 < R_1 < R$, то каждый из рядов сходится равномерно и абсолютно при $z \in \overline{D_{r,R}(a)}$. Эта формула называется разложением функции в ряд Лорана.