Метод Каратеодори-Фейера для проектирования рекурсивных цифровых фильтров

Роговой Сергей Анатольевич

Научный руководитель:

д.ф.-м.н., профессор А.Б. Богатырев

12 мая 2023 г.

Краткое введение в цифровые фильтры

Пусть последовательность $\{y(n)\}$ вычисляется по формуле

$$y_n = \sum_{k=-\infty}^{k=+\infty} c_k x_{n-k} + \sum_{k=1}^{+\infty} d_k y_{n-k}$$

Эта формула определяет цифровой фильтр. В случае если все коэфициенты $d_k=0$, фильтр называется нерекурсивным, в противном случае рекурсивным. Назовем фильтр физически реализуемым, если у него нет значений x_k, y_k для k<0. На практике имеет смысл рассматривать только цифровые фильтры ограниченной длины.

Краткое введение в цифровые фильтры

Для фильтров с конечной импульсной характеристикой:

Для фильтров с бесконечной импульсной характеристикой:

$$y_n = \sum_{k=0}^{M} b_k x_{n-k}$$
 $y_n = \sum_{k=0}^{M} b_k x_{n-k} + \sum_{k=1}^{N} a_k y_{n-k}$ $H(z) = \sum_{k=0}^{M} b_k z^{-k}$ $H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{M} a_k z^{-k}}$

Назовем фильтр устойчивым, если каждый ограниченный входной сигнал создает ограниченный выходной сигнал (не обязательно с таким же ограничением). Эквивалентное определение, что полюса передаточной фукнции находятся внутри единичного круга.

Мотивация метода

Существует много различных подходов для построения цифровых фильтров, однако большинство из них либо не являются быстрыми, либо не являются стабильными. В статье Martin H. Gutknecht, J. O. Smith, L. N. Trefethen "The Caratheodory-Fejer Method for Recursive, Digital Filter Design представлен новый метод проектирования стабильных, близких к оптимальным цифровых фильтров. Заметим, что алгоритм является спектральным и не требует никаких итераций, за исключением поиска собственных векторов и значений Ганкелевой матрицы. Отправной точкой является импульсная характеристика сигнала, которая предполагается конечной и физической. Метод вычисляет оптимальную рациональную Чебышевскую аппроксимацию с заданным наперед числом нулей и полюсов.

Постановка задачи

Пусть дана физическая импульсная характеристика $\{h(n)\}_0^K$ и соотвествующая ей передаточная функция: H(z):

$$H(z) \equiv \sum_{n=0}^{K} h(n) z^{-n}$$

Задача: приблизить ее на единичном круге с помощью рациональной передаточной функции

$$R_{MN}(z) \equiv \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

все полюса которой находятся внутри единичного круга. Обозначим множество функций такого вида как $\mathbb{R}_{MN}(M,N\geq 0)$.

Описание метода

Можно найти оптимальную Чебышевскую аппроксимацию для более широкого класса функций $\widetilde{\mathbb{R}_{MN}}$:

$$\widetilde{R}_{mn}(z) \equiv \frac{B(z)}{A(z)} = \frac{\sum_{k=-\infty}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Метод Каратеодори-Фейера состоит в том, чтобы вычислить расширенную лучшую аппроксимацию \widetilde{R}^*_{mn} и обрезать ее так, чтобы она попадала в изначальный класс \mathbb{R}_{mn} . При обрезании данного ряда приближение R^*_{mn} является близким к оптимальному в смысле Чебышева и фактически оптимальным в Ганкелевой норме (Спектральная норма Ганкелевой матрицы составленной из разности импульсных характеристик, идеальной и приближенной).

Описание метода

Составим Ганкелеву матрицу из конечной импульсной характеристики $\{h(n)\}_0^K$:

$$H_{v,K} \equiv egin{bmatrix} h(v) & h(v+1) & \dots & h(K) \\ h(v+1) & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots \\ h(K) & 0 & \dots & 0 \end{bmatrix}$$

где $h_k(i) = 0, i < 0, v = M - N + 1$ Пусть ее сингулярное разложение записывается как

$$H_{v,K} = U\Sigma V^*$$

Теорема

У H_k существует единственное оптимальная Чебышевская аппроксимация $\widetilde{R}^*_{mn} \in \mathbb{R}_{mn}$. И ошибка аппроксимации равна N-ому сингулярному числу Ганкелевой матрицы $H_{v,K}$:

$$\|H_k - \widetilde{R^*}_{mn}\|_{\infty} = \sigma_N$$

где $\sigma_N = 0, N > K - v$.

 $\widehat{R^*}_{mn}$ может быть найдена как:

$$\widetilde{R}^*_{mn}(z) = H_k(z) - \sigma_N z^{-v} \frac{U_n(z)}{V_N(z^{-1})}$$

где

$$U_n \equiv (u_n(0), ... u_n(K - v))$$

$$V_n \equiv (v_n(0), ... v_n(K-v))$$

- N-ые столбцы U и V соответственно и

$$U_N(z) \equiv \sum_{n=0}^{K-v} u_N(n) z^{-n}$$

Рассмотрим идеальный низкочастотный фильтр с полосой пропускания до 0.25 Hz. Чтобы практически получить приближение идеальной импульсной характеристики начнем с функции:

$$H(w) = \begin{cases} 0 & dB, & 0 \le w < \frac{\pi}{2} \\ -30 & dB, & w = \frac{\pi}{2} \\ -60 & dB & \frac{\pi}{2} < w \le \pi \end{cases}$$
 (1)

как желаемой амплитуды частотной характеристики.

Примеры. Рекурсивный низкочастотный фильтр

Так как у нас есть только амплитуда и нет фазы, с помощью специальных методов из обработки сигналов сконструируем сигнал с данной амплитудой и минимальной групповой задержкой

Minimum-phase ideal low-pass filter obtained by the windowing the real cepstrum of the impulse response

Сгладим и обрежем его окном Хемминга, оставив 80 членов последовательности h(n), что и будет нашей стартовой точкой.

Итак, у нас задано $\{h_K(n)\}_0^{79}$. Рассмотрим приближение с 6 нулями и 7 полюсами (M=6,N=7).

Посмотрим на собственные значения Ганкелевой матрицы:

Singular values of Hankel matrix of windowed minimum-phase filter

Видим, что числа убывают достаточно быстро, $|\lambda_8| = 0.0050862.$

Покажем ошибку аппроксимации $|H_k(e^{iw_k})| - |R_{CF}(e^{iw_k})|$, то есть ошибку между амплитудами частотных характеристик:

Ошибка аппроксимации Чебышева: 0.0050862320 Ошибка аппроксимации CF: 0.0060291201

Сравним амплитуды частотных характеристик для приближения Чебышева и Каратеодори-Фейера (truncated).

Итоговая ошибка аппроксимации в данном примере: 0.006059869

Пример 2. Рекурсивный низкочастотный фильтр с линейной фазой

В этом примере попробуем приблизить фильтр с линейной фазой. Создадим с помощью алгоритма ParksMcClellan-Rabiner (PMR) оптимальный FIR-фильтр, как то что можно подать на вход алгоритму Каратеодори-Фейера. Рассмотрим низкочастотный FIR - фильтр длины 21 с полосой пропускания $[0,\frac{1}{10}]$ и полосой задержки $[\frac{1}{5},\frac{1}{2}]$:

Итак, у нас задано $\{h_K(n)\}_0^{20}$. Рассмотрим приближение с 6 нулями и 7 полюсами (M=6,N=7). Посмотрим на собственные значения Ганкелевой матрицы. Видим, что числа убывают достаточно быстро, $|\lambda_8|=0.01110982668$.

Singular values of Hankel matrix of windowed minimum-phase filter

Сравним сразу амплитуды приближенных частотных характеристик для оптимального приближения Чебышева и близкого к оптимальному Каратеодори-Фейера:

Ошибка аппроксимации Чебышева: 0.01110982

Ошибка аппроксимации СF: 0.01229475

Итоговая ошибка аппроксимации в данном примере: 0.01643010

Заключение

В итоге данной работы была сделана программная реализация алгоритма аппроксимации, работоспособность проверена на нескольких примерах, все результаты и графики приведены в данной работе. Алгоритм Каратеодори-Фейера - альтернативный итеративным алгоритм спектральной аппроксимации, который особенно хорош при приближении достаточно гладких функций, а также когда сингулярные значения Ганкелевой матрицы убывают достаточно быстро.

End

The end!