

Dată o formulă chimică, există un compus chimic cu această formulă? Dar unul aciclic? Ce structuri poate avea un astfel de compus?

C_mH_n - poate exista moleculă aciclică cu această formulă?

Din studii empirice, chestionare, analize ⇒ informații despre numărul de interacțiuni ale unui nod

Este realizabilă o rețea de legături între noduri care să respecte numărul de legături?

Dacă da, să se construiască un model de rețea.

Din studii empirice, chestionare, analize ⇒ informații despre numărul de interacțiuni ale unui nod

Este realizabilă o rețea de legături între noduri care să respecte numărul de legături? Dacă da, să se construiască un model de rețea.

Exemplu: Într-o grupă de studenți, fiecare student este întrebat cu câți colegi a colaborat în timpul anilor de studii. Este realizabilă o rețea de colaborări care să corespundă răspunsurilor lor (sau este posibil ca informațiile adunate să fie incorecte)?

- Studentul 1 cu 3
- Studentul 2 cu 3
- Studentul 3 cu 2
- Studentul 4 cu 3
- Studentul 5 cu 2

- Dată o secvenţă de numere s, se poate construi un graf neorientat având secvenţa gradelor s?
- Dar un multigraf neorientat?
- Dar un arbore?
 - Condiţii necesare
 - Condiţii suficiente

Construcția de grafuri cu secvența gradelor dată

Aplicații:

- chimie studiul structurii posibile a unor compuși cu formula chimică dată
- proiectare de rețele
- biologie rețele metabolice, de interacțiuni între gene/proteine
- studii epidemiologice în care prin chestionare anonime persoanele declară numărul de persoane cu care au interacționat
- studii bazate pe simulări de rețele...

Construcția de grafuri neorientate cu secvența gradelor dată.

Algoritmul Havel-Hakimi

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale. Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale. Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Condiții necesare pentru existența lui G:

- \circ d₁ + ... + d_n număr par
- \cdot d_i ≤ n 1, \forall i

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale. Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Condiții necesare pentru existența lui G:

- \circ d₁ + ... + d_n număr par
- d_i ≤ n 1, ∀i

Pentru s₀ = {3, 3, 1, 1} - nu există G

⇒ condițiile nu sunt și suficiente
... totusi puteam crea un multigraf

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari

Exemplu algoritm

$$s_0 = \{ 3, 4, 2, 1, 3, 4, 2, 1 \}$$

etichete vârfuri x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

- Pasul 1 construim muchii pentru vârful de gradul maxim
 - alegem ca vecini următoarele vârfuri cu cele mai mari grade

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența s_o și reluăm până când
 - secvenţa conţine doar 0 ⇒ G
 - secvența conține numere negative ⇒

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența so și reluăm până când
 - secvenţa conţine doar 0 ⇒ G
 - secvenţa conţine numere negative ⇒

G nu se poate construi prin acest procedeu

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența so și reluăm până când
 - secvența conține doar 0 ⇒ G
 - secvenţa conţine numere negative ⇒

G nu se poate construi prin acest procedeu

Teorema Havel-Hakimi ⇒ NU

⇒ Algoritmul anterior= Algoritmul Havel-Havimi

$$s_0 = \{ 3, 4, 2, 1, 3, 4, 1, 2 \}$$

etichete vârfuri x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

- **Pasul 1** construim muchii pentru vârful de gradul maxim = x_2
 - alegem ca vecini următoarele vârfuri cu cele mai mari grade

$$s_0 = \{ 3, 4, 2, 1, 3, 4, 1, 2 \}$$

etichete vârfuri x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

- Pasul 1 construim muchii pentru vârful de gradul maxim = x₂
 - alegem ca vecini următoarele vârfuri cu cele mai mari grade
 - ⇒ ar fi utilă sortarea descrescătoare a elementelor lui s₀

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$

etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

Exemplu algoritm Havel-Hakimi Pasul 1.

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$

etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3

Exemplu algoritm Havel-Hakimi Pasul 1.

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$

etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

- Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3
- Secvenţa rămasă:

$$s'_0 = \{ 3, 2, 2, 1, 2, 1, 1 \}$$

etichete vârfuri $x_6 x_1 x_5 x_3 x_8 x_4 x_7$

Exemplu algoritm Havel-Hakimi Pasul 1.

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$

etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

- Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3
- Secvenţa rămasă:

$$s'_0 = \{ 3, 2, 2, 1, 2, 1, 1 \}$$

etichete vârfuri $x_6 x_1 x_5 x_3 x_8 x_4 x_7$

Secvența rămasă ordonată descrescător:

$$s'_{0} = \{ 3, 2, 2, 2, 1, 1, 1 \}$$

etichete vârfuri x_{6} x_{1} x_{5} x_{8} x_{3} x_{4} x_{7}

Pasul 2.

$$s'_{0} = \{ 3, 2, 2, 2, 1, 1, 1 \}$$

etichete vârfuri $x_{6} x_{1} x_{5} x_{8} x_{3} x_{4} x_{7}$

- Muchii construite: x_6x_1 , x_6x_5 , x_6x_8
- Secvenţa rămasă:

$$s''_0 = \{ 1, 1, 1, 1, 1, 1 \}$$

etichete vârfuri $x_1 x_5 x_8 x_3 x_4 x_7$

(este ordonată descrescător)

Pasul 3.

$$s''_0 = \{ 1, 1, 1, 1, 1, 1 \}$$

te vârfuri $x_1 x_5 x_8 x_3 x_4 x_7$

- Muchii construite: x_1x_5
- Secvența rămasă:

Secvența rămasă ordonată descrescător:

Pasul 4.

Muchii construite: x₇x₃

Secvenţa rămasă:

$$s^{iv}_{0} = \{$$
etichete vârfuri

Secvența rămasă ordonată descrescător:

Pasul 5.

$$s^{iv}_{0} = \{$$
 etichete vârfuri

- Muchii construite: x_4x_8
- Secvenţa rămasă:

$$s^{iv}_{0} = \{$$
etichete vârfuri

STOP

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, c_{i_{d_k}}$ mai mari d_k numere din s_0

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k **cel mai mare număr** din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, d_{i_{d_k}}$ **ele mai mari d_k numere** din s_0 pentru $j \in \{i_1, \ldots, i_{d_k}\}$ ecută:

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k **cel mai mare număr** din secvența s_0 elimină d_k din s_0 fie d_{i_1}, \ldots, c ele mai mari d_k numere din s_0 pentru $j \in \{i_1, \ldots, i_{d_k}\}$ adaugă la G muchia $x_k x_j$ înlocuiește d_j în secvența s_0 cu d_j 1 dacă d_j 1 <0, atunci scrie NU, STOP.

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k **cel mai mare număr** din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, d_{i_{d_k}}$ **execută:** adaugă la G muchia $x_k x_j$ înlocuiește d_j în secvența s_0 cu d_j 1 dacă d_i 1 <0, atunci scrie NU, STOP.

Observație. Pentru a determina ușor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s₀ să fie ordonată descrescător.

Complexitate?

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k **cel mai mare număr** din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \dots, d_{i_{d_k}}$ **mai mari d_k numere** din s_0 pentru $f \in \{i_1, \dots, i_{d_k}\}$ adaugă la G muchia $f \in G$ în secvența $f \in G$ cu $f \in G$ în secvența $f \in G$ cu $f \in G$ dacă $f \in G$ atunci scrie NU, STOP.

Observație. Pentru a determina ușor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s_o să fie ordonată descrescător.

Algoritm Havel-Hakimi - Corectitudine

Teorema Havel-Hakimi

O secvență de n ≥ 2 numere naturale

$$S_0 = \{d_1 \ge \ldots \ge d_n\}$$

cu d₁ ≤ n-1 este secvența gradelor unui graf neorientat (cu n vârfuri) ⇔ secvența

$$s'_0 = \{d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Teorema Havel-Hakimi

O secvență de n ≥ 2 numere naturale

$$S_0 = \{d_1 \ge \ldots \ge d_n\}$$

cu d₁ ≤ n-1 este secvența gradelor unui graf neorientat (cu n vârfuri) ⇔ secvența

$$s'_0 = \{d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Observație: Secvența $s_0' = \{d_2 - 1, \dots, d_{d_1 + 1} - 1, d_{d_1 + 2}, \dots, d_n\}$ se obține din s_0 eliminând primul element (adică d_1) și scăzând 1 din primele d_1 elemente rămase – acestea au indicii $2, 3, \dots, d_1 + 1$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \implies s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

$$G, \ s(G) = s_0$$

Teorema Havel-Hakimi – Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \implies s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

$$G$$
, $s(G) = s_0$

$$G^*$$
, $s(G^*) = s_0$
 $N_{G^*}(x_1) = \{x_2, ..., x_{d_1+1}\}$

(cu gradele cele mai mari)

Teorema Havel-Hakimi - Demonstrație

$$S_0 = \{d_1 \geq \ldots \geq d_n\} \quad \Rightarrow \quad S_0' = \{d_2 - 1, \ldots, d_{d_1 + 1} - 1, d_{d_1 + 2}, \ldots, d_n\}$$

$$G, \ S(G) = S_0 \qquad \qquad G^*, \ S(G^*) = S_0$$

$$N_{G^*}(x_1) = \{x_2, \ldots, x_{d_1 + 1}\}$$
neadiacente x_1

$$x_1$$

$$x_2 \quad x_i \quad x_{d_1 + 1} \quad x_{d_1 + 2} \quad x_j \quad x_n$$
primele d_1
(cu gradele cele mai mari)
$$\begin{cases} 0 \cdot \cdot 0 \cdot \cdot 0 & 0 & \cdot \cdot 0 \\ x_2 \quad x_i \quad x_{d_1 + 1} \quad x_{d_1 + 2} \quad x_j \quad x_n \end{cases}$$

 $G' = G * -x_1, s(G') = s'_0$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \iff s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

Teorema Havel-Hakimi – Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \iff s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

Fie G' cu
$$s(G') = s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

$$\begin{bmatrix} \mathbf{O} \bullet & \mathbf{O} \bullet & \mathbf{O} & \mathbf{O} \bullet & \mathbf{O} \bullet & \mathbf{O} \bullet \\ \mathbf{X}_2 & \mathbf{X}_i & \mathbf{X}_{d_1+1} & \mathbf{X}_{d_1+2} & \mathbf{X}_j & \mathbf{X}_n \end{bmatrix}$$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \iff s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

Fie
$$G'$$
 cu $s(G') = s'_0$

G:
$$V(G) = V(G') \cup \{x_1\}$$

 $E(G) = E(G') \cup \{x_1 x_2,, x_1 x_{d_1+1}\}$

adăugăm un vârf

x₁ pe căre îl d'nim cu

Avem $s(G) = s_0$.

Teorema Havel-Hakimi

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Extindere a Teoremei Havel-Hakimi

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel: - eliminăm elementul d_i

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

- eliminăm elementul d_i
- scădem o unitate din primele d_i componente în ordine descrescătoare ale secvenței rămase.

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

- eliminăm elementul d_i
- scădem o unitate din primele d_i componente în ordine descrescătoare ale secvenței rămase.

Are loc echivalența:

s_o este secvența gradelor unui graf neorientat ⇔ este secvența gradelor unui graf neorientat

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Algoritmului Havel-Hakimi

La un pas vârful poate fi ales arbitrar (nu neapărat cel corespunzător elementului maxim).

Se păstrează însă criteriul de alegere al vecinilor (cu gradele cele mai mari)

dată

 Cu ajutorul transformării t pe pătrat putem obține pornind de la un graf G toate grafurile cu secvența gradelor s(G) (și mulțimea vârfurilor V(G))

dată

- Cu ajutorul transformării t pe pătrat putem obține pornind de la un graf G toate grafurile cu secvența gradelor s(G) (și mulțimea vârfurilor V(G))
- Mai exact, ar loc următorul rezultat (exercițiu):

Fie G_1 și G_2 două grafuri neorientate cu mulțimea vârfurilor $V=\{1,...,n\}$.

Atunci $s(G_1)=s(G_2) \Leftrightarrow există un şir de transformări t de interschimbare pe pătrat prin care se poate obține graful <math>G_2$ din G_1 .

dată

Teorema Erdös - Gallai (suplimentar)

O secvență de $n \ge 2$ numere naturale $\mathbf{s}_0 = \{d_1 \ge ... \ge d_n\}$ este secvența gradelor unui graf neorientat \Leftrightarrow

- $d_1 + ... + d_n$ par si
- $d_1 + ... + d_k \le k(k-1) + \sum_{i=k+1}^n \min\{d_i, k\}, \forall 1 \le k \le n$

