Module 2 : AC Circuits 6 Hrs

Alternating voltages and currents, RMS, average, form factor, peak factor; Single phase RL, RC, RLC series and parallel circuits; Power and power factor; Balanced three phase systems

Course Outcome

Evaluate AC circuit parameters using laws

Poly-phase system

- Single phase two wire system
- Poly phase same frequency but different phases
- Two phase same frequency and the phase angle difference between the phases are 90°
- Three phase -same frequency and the phase angle difference between the phases are 120°

Different supply systems

Different supply systems

Three Phase Systems

Advantages of three phase system

- Three phase power distribution requires lesser amount of copper or aluminium for transferring the same amount of power.
- 3 phase alternator or electrical machines occupy less space and less cost compared to single phase machine having same rating.
- Three phase system gives steady output.
- 3 phase motors will have uniform torque whereas single phase motors will have pulsating torque.

Three phase connections

Star (wye) connection (Y)

Three similar ends of the three phase coils are joined together to form a common point called star point or neutral point.

Delta (mesh) connection (Δ)

➤ Dissimilar ends of the three phase coils are connected together to form a mesh. Wires are drawn from each junction for connecting load.

Three phase voltage sources

Balanced system

$$\mathbf{V}_{an} + \mathbf{V}_{bn} + \mathbf{V}_{cn} = 0$$

$$|\mathbf{V}_{an}| = |\mathbf{V}_{bn}| = |\mathbf{V}_{cn}|$$

Positive phase sequence

$$\mathbf{V}_{an} = V_p / \underline{0^{\circ}}$$

$$\mathbf{V}_{bn} = V_p / \underline{-120^{\circ}}$$

$$\mathbf{V}_{cn} = V_p / \underline{-240^{\circ}} = V_p / \underline{+120^{\circ}}$$

Negative phase sequence

Three phase load configurations

For a balanced star connected load

$$\mathbf{Z}_1 = \mathbf{Z}_2 = \mathbf{Z}_3 = \mathbf{Z}_Y$$

For a balanced delta connected load

$$\mathbf{Z}_a = \mathbf{Z}_b = \mathbf{Z}_c = \mathbf{Z}_{\Delta}$$

Identify the type of 3-phase connection

Identify the type of 3-phase connection

Balanced three phase systems Star (wye) connection (Y)

- Three wire system
- Four wire system
- The phase angle difference between each phase is 120°
- All the three phase voltages have the same amplitude, same period and frequency.

Voltage and current relationship

 E_R , E_Y , E_B : Phase voltages of R, Y and B phases

 I_R , I_Y , I_B : Phase currents V_{RY} , V_{YB} , V_{BR} : Line voltages I_{L1} , I_{L2} , I_{L3} : Line currents

In a balanced system,

$$E_R = E_Y = E_B = E_P$$
 $V_{RY} = V_{YB} = V_{BR} = V_L$
 $I_R = I_Y = I_B = I_P$ $I_{L1} = I_{L2} = I_{L3} = I_L$

Current Relationship Applying Kirchhoff's current law at nodes R_1 , Y_1 , B_1 we get $I_R = I_{L1}$; $I_Y = I_{L2}$; $I_B = I_{L3}$.

This means that in a balanced star connected system, phase current equals the line current

$$I_P = I_L$$
.

Voltage Relationship Let us apply Kirchhoff's voltage law to the loop consisting of voltages E_R , V_{RY} and E_Y . We have

$$\overline{E}_R - \overline{E}_Y = \overline{V}_{RY}$$

Using law of parallelogram,

$$|\overline{V}_{RY}| = V_{RY} = \sqrt{E_R^2 + E_Y^2 + 2E_R E_Y \cos 60^\circ}$$

= $\sqrt{E_P^2 + E_P^2 + 2E_P E_P (\%0)} = E_P \sqrt{3}$

Similarly,

٠.

Thus,

$$\overline{E}_Y - \overline{E}_B = \overline{V}_{YB}$$
 and $\overline{E}_B - \overline{E}_R = \overline{V}_{BR}$
 $\overline{V}_{YB} = E_P \sqrt{3}$ and $V_{BR} = E_P \sqrt{3}$
 $V_L = \sqrt{3} E_P$

Line voltage = $\sqrt{3}$ phase voltage

Power Relationship Let $\cos \phi$ be the power factor of the system.

Power consumed in one phase $=E_PI_P\cos\phi$ Power consumed in three phases $=3E_PI_P\cos\phi$ $=3\frac{V_L}{\sqrt{3}}I_L\cos\phi$ $=\sqrt{3}\ V_L\ I_L\cos\phi$ watts Reactive power in one phase $=E_PI_P\sin\phi$ Total reactive power $=3E_PI_P\sin\phi$ $=\sqrt{3}\ V_L\ I_L\sin\phi$ VAR Apparent power per phase $=3\ E_PI_P$ Total apparent power $=3E_PI_P=\sqrt{3}\ V_L\ I_L$ volt amp

24.03.22

Balanced three phase systems Delta (mesh) connection (Δ)

- Three wire system
- The phase angle difference between each phase is 120°
- All the three phase voltages have the same amplitude, same period and frequency.

$$E_R = E_Y = E_B = E_P$$
, phase voltage
 $I_R = I_Y = I_B = I_P$, phase current
 $V_{RY} = V_{YB} = V_{BR} = V_L$, line voltage
 $I_{L1} = I_{L2} = I_{L3} = I_L$, line current

line voltage line current

Voltage Relationship Applying Kirchhoff's voltage law to the loop consisting of E_R and V_{RY} , we have $E_R = V_{RY}$.

Similarly, $E_Y = V_{YB}$ and $E_B = V_{BR}$, Thus $E_P = V_L$.

Phase Voltage = Line Voltage

Current Relationship Applying Kirchhoff's current law at the junction of R_1 and R_2 , we have $\overline{I}_R - \overline{I}_B = \overline{I}_L 1$.

Referring to the phasor diagram and applying the law of parallelogram, we have

$$I_L I = \sqrt{I_R^2 + I_B^2 + 2I_R I_B \cos 60^\circ}$$

$$= \sqrt{I_P^2 I_P^2 + 2I_P I_P (\%0)}$$

$$= I_P \sqrt{3}$$

Similarly, we have

$$\overline{I}_Y - \overline{I}_R = \overline{I}_L 2$$
 and $\overline{I}_B - \overline{I}_Y = \overline{I}_L 3$
 $I_L 2 = I_P \sqrt{3}$ and $I_L^3 = I_P \sqrt{3}$

Hence,

Thus, line current = $\sqrt{3}$ phase current

$$I_L = \sqrt{3} I_P$$

Power Relationship Let $\cos \phi$ be the power factor of the system.

Power per phase = $E_P I_P \cos \phi$

Total power for all the three phases = $3 E_P I_P \cos \phi$

$$= 3 V_L \frac{I_L}{\sqrt{3}} \cos \phi$$

 $=\sqrt{3} V_L I_L \cos \phi$ watts

Reactive power in one phase = $E_P I_P \sin \phi$ Total reactive power = $3 E_P I_P \sin \phi$

 $=\sqrt{3} V_L I_L \sin \phi \text{ VAR}$

Apparent power per phase = $E_P I_P$

Total apparent power = $3 E_P I_P = \sqrt{3} V_L I_L$ volt amp