1 Ideal (Semigroups)

Consider a semigroup (S, \otimes) and two subsets A and B.

Notation fixing

$$AB := \{a \otimes b \mid a \in A; b \in B\}$$

Notation fixing

Left coset of $a \in A \subset S$:

$$[a]_L = aS$$

Right coset of $a \in A \subset S$:

$$[a]_R = Sa$$

Definition 1: SubSemigroup

A is a *semigroup of S* iff:

$$AA \subset A$$

Definition 2: Normal SubSemigroup

A is a *normal semigroup of S*, $A \triangleleft S$ iff:

$$aS = Sa \quad \forall a \in A$$

 \triangle

 $Coni\,gruppi\,si\,legge\,come\,coniugazione\,https://en.wikipedia.org/wiki/Normal_subgroup$

Definition 3: Right Ideal

A is a *right ideal of S* iff:

$$SA \subset A$$

Definition 4: Left Ideal

A is a *left ideal of S* iff:

$$SA \subset A$$

Definition 5: Two-sided (Bilateral) Ideal

A is a bilateral ideal of S if it is both a left and a right ideal. i.e.:

$$SAS \subset A$$

Proposition 1.1 *If* S *is a monoid (unital semigroup) and* $A \subset S$ *a submonoid, then*

 $SAS \subset A$

 \Leftrightarrow

A two-sided ideal

Proof:

Existence of unital element in S guarantees that both SA = SA1 and AS = 1AS are subsets of SAS.

The converse hold true for every semigroups.

2 Ideal (Rings)

Consider an arbitrary ring (R, \oplus, \otimes) , let (R, \oplus) be its *additive group*.

Definition 6: Right Ideal

Subset $I \subset R$ such that:

- 1. (I, \oplus) is an additive subgroup of (R, \oplus) .
- 2. *I* absorbs multiplication on the right:

$$(x \otimes r) \in I \qquad \forall x \in I, \forall r \in R$$

Definition 7: Left Ideal

Subset $I \subset R$ such that:

- 1. (I, \oplus) is an additive subgroup of (R, \oplus) .
- 2. *I* absorbs multiplication on the left:

$$(r \otimes x) \in I \qquad \forall x \in I, \forall r \in R$$

Definition 8: Two-sided (Bilateral) Ideal

A is a bilateral ideal of S if it is both a left and a right ideal.

Consider a generic subset $I' \subset R$:

Definition 9: Generated (Two-sided) Ideal

The two-sided ideal generated by I' is the ideal:

$$I = \operatorname{span} \left(a \otimes x \otimes b \in A \mid a, b \in R; x \in I' \right)$$

Definition 9: Generated (Two-sided) Ideal

Span non ÃÍ termine giusto!

••

Consider an arbitrary ring (R, \oplus, \otimes) and a two-sided ideal $I \subset R$:

Proposition 2.1 (*a* congruent *b* modulo *I*) Consider $a, b \in R$:

$$a \sim b \qquad \Leftrightarrow (a - b) \in I$$

is a Congruence Relation

https://en.wikipedia.org/wiki/Quotient_ring

Definition 10: Ring quotient by an ideal

Is the set

$$R/I := \{[a]\}$$

where:

$$[a] = a \oplus I = \{a+r \mid r \in I\}$$

endowed with operations:

- (a+I) + (b+I) = (a+b) + I
- (a+I)(b+I) = (ab) + I