

SICHUAN UNIVERSITY

基于生成式 AI 的个性化文创图像作品设计系统 系 统 设 计 文 档

任课教师		杨波
学	院	计算机学院
专	业	计算机科学与技术
组	别	第一组
组	长	<u> </u>
成	员	陈奕嘉,苏泳豪

2025年6月3日

目录

1	引言		2					
	1.1	目的	2					
	1.2	项目范围	2					
	1.3	文档概览	2					
	1.4	参考资料	2					
	1.5	术语与缩略语	2					
2	系统	概览	2					
3	关键	技术设计	3					
	3.1	系统架构与模型设计	3					
	3.2	训练流程与数据处理	4					
	3.3	测试方式	4					
4	数据设计							
	4.1	数据说明	5					
	4.2	数据字典	5					
5	组件设计 5							
	5.1	Text-control Diffusion Pipeline	5					
	5.2	Auxiliary Latent Module	6					
	5.3	Text Embedding Module	6					
	5.4	Gradio UI	6					
6	人机	界面设计	6					
	6.1	界面概览	6					
	6.2	界面截图	7					
	6.3	界面控件与操作	7					
7	需求	矩阵	9					
8	APP	ENDICES	9					

1 引言

1.1 目的

本软件设计文档描述了"基于生成式 AI 的个性化文创图像作品设计系统"的架构与系统设计。面向开发、测试、维护本项目的工程人员及项目管理者,作为技术实现和系统集成的参考依据。

1.2 项目范围

该软件旨在利用生成式 AI 技术解决个性化文创产品供给不足的问题,核心功能包括:根据用户输入的文本和指定的位置生成创意图像,或编辑现有图像中的文本。重点目标是实现中文字符的高精度渲染,便于游客与文创从业者快速创作独特图像作品,助力文旅融合与传播。

1.3 文档概览

第1章介绍目的、范围、参考资料和术语;第2章提供系统概览;第3章详细阐述系统架构;第4章描述数据设计;第5章介绍各组件设计;第6章讲解人机界面设计;第7章为需求矩阵;第8章为附录。

1.4 参考资料

信息来源于网页https://www.sohu.com/a/823541100_234564。技术细节参考了AnyText、TextDiffuser、DDPM等文献。文档结构参考与https://github.com/SPM-PSP/SPM-PSP-Course-github/blob/main/SDD Template.pdf。

1.5 术语与缩略语

AI(人工智能)、SDD(软件设计文档)、VAE(变分自编码器)、UNet(网络结构)、Stable Diffusion(SD,扩散模型)、AnyText(生成式模型)、Text-control Diffusion Pipeline、Auxiliary Latent Module、Text Embedding Module、Gradio(UI库)、Prompt(文本提示)、OCR(光学字符识别)、FID(图像质量指标)、CFG-Scale(无分类引导因子)、eta(扩散采样参数)文字控制框架、扩散模型部分等术语在文中根据需要进一步解释。

2 系统概览

本系统是一个利用生成式 AI 的图像创作工具,支持文本生成图像和图像内文字编辑,专注于中文字符的精准渲染。系统基于 AnyText 并通过 Google 提出的 Dreambooth 方法微调 Stable Diffusion 模型,通过 Web 界面(Gradio)与用户交互,

后端使用 Python 与深度学习框架实现,支持 Docker 部署。系统的目的是解决文创产品同质化问题,赋能个体创作。

3 关键技术设计

本系统基于阿里云开源的 AnyText 模型框架进行开发与扩展,整体架构由三个核心模块组成:辅助潜在模块(Auxiliary Latent Module)、文本嵌入模块(Text Embedding Module)以及文本控制扩散生成模块(Text-control Diffusion Pipeline)。在此基础上,我们对文字控制能力和图文融合性能进行定向增强,并完成了多项训练与优化工作。

3.1 系统架构与模型设计

本系统使用 AnyText 模型,结合了 SD1.5 的图像扩散模型与文本控制机制,能够实现图像中文字的精确生成与编辑。模型架构如下 (图1):

- Auxiliary Latent Module: 处理输入的文字渲染特征,与图像潜变量融合,指导扩散过程。
- **Text Embedding Module**: 将文字内容编码为向量特征,结合 OCR 与 Tokenizer 保持语义一致性。
- **Text-control Diffusion Pipeline**: 基于 UNet 和控制网络实现文字引导的图像 生成,并引入 Text Perceptual Loss 实现图文融合感知优化。

该架构支持文字生成图与图像中指定区域的文字编辑,包括添加、修改与删除,具有良好的图文融合能力。

图 1: 模型示意图

3.2 训练流程与数据处理

1. 文本控制框架训练

为了增强系统对多语言(尤其是中文)的文字控制能力,选用 AnyWord-3M 开源数据集进行训练。我们对数据进行了如下处理:

- 数据筛选标准包括水印清晰度、语言有效性等,确保中文数据远大于英文占比。
- 最终保留约 40 万张高质量图文对,利用 8 张 V100 GPU 进行训练,以提升控制文本生成位置与内容的能力。

2. 图像扩散模型训练

针对扩散模型部分,我们使用如下流程进行扩展训练:

- 通过 Google、Edge、百度等搜索引擎爬取图像,筛选出约 1000 张图像用于 微调;
- 对图像进行水印去除与分辨率调整(统一至512×512);
- 使用 wd14-convnextv2-v2 对图像进行标注与初步修改;
- 基于 HuggingFace 平台下载 Realistic_Vision_V4.0 作为基础权重,采用 DreamBooth 方法进行少量样本微调训练,提升模型对图文细节的生成质量 与鲁棒性。

3.3 测试方式

本系统从文字生成与编辑两个方面对模型性能进行评估。

- 文字生成与编辑评估:采用 OCR 模型对生成图像中的文字进行识别,提取 生成文本后与真实文本进行比对,计算准确率(仅完全匹配计为正确)与编 辑距离,以衡量系统在控制文字内容与位置方面的精度。
- 生成图像质量评估:对于图像整体质量,使用 FID (Fréchet Inception Distance)指标对 SD1.5 扩散模型生成的图像进行评估,并与原有模型进行对比,验证 微调是否保留了原有模型的图像生成能力,避免过度遗忘 (catastrophic forgetting) 现象。
- 基准测试工具: 所有测试均采用 AnyText 官方发布的 AnyText-benchmark 工具链完成,确保结果的客观性和可比性。

4 数据设计

4.1 数据说明

输入数据包括提示词(文本)、需渲染文本、位置坐标、参考图像(可选)、控制参数;训练后的权重以 ckpt 文件存储,约 5.73GB,训练数据包含两类:

- 1. AnyWord-3M 标注数据(JSON 格式),筛选后约 400k 张,用于文字渲染的训练;
- 2. 文创图像 + 文本描述(TXT 格式),约 1k 张,用于风格微调和物品的学习。 输出图像保存在服务器并将图像、debug 信息(可选)返回给用户。

4.2 数据字典

user_prompt: 字符串

text_to_render:字符串列表position_data:坐标列表edit_mask:掩码图像/张量reference image:上传图像

control_params: 参数字典,如 {'cfg_scale': 7.5}

generated_image: 最终生成图像

training_data_1: AnyWord-3M JSON 结构

training data 2: TXT 列表与对应图像

model weights: 模型权重文件

glyph_image、text_embedding、auxiliary_latent、image_latent: 中间张量

hehe98/wenchuang: 项目镜像,详情见 dockerhub

wenchuang.ckpt: 模型权重文件

strength: 文字渲染控制强度,可以为0即不使用文字渲染

CFG-Scale: 文字控制强度,低的话会导致生成图像与描述不符合,高的话图像会不自然

eta: 风格多样性, 1表示启用(更具变化), 0不启用(更保守)

5 组件设计

主要功能以组件化方式组织,核心组件具体阐述如下:

5.1 Text-control Diffusion Pipeline

在这一部分,本项目通过变分自编码器(VAE)来生成潜在层特征 z_0 ,潜在层的扩散算法逐步给 z_t 增加噪音并生成新的潜在层特征 z_t ,其中 t 代表时间步。辅

助层特征 z_{α} 、文字嵌入层特征 ct_e 和时间步被作为条件预测噪音 ϵ_t ,并将它加入到 z_t 。更详细地说,为了控制生成的文字,将 z_{α} 加入到 z_t 并将他输入到可训练的 TextControlNet 里(一个可训练的 UNet 编码层),这样就能使 TextControlNet 控制 文字的生成并且保证在模型没有文字生成需求时正常地生成图片。通过这些模块的绑定,很多基础模型都可以生成文字。

5.2 Auxiliary Latent Module

该部分生成 z_{α} ,由三个因素决定——glyph l_{g} 、位置 l_{p} 和掩码后的图像 l_{m} 。glyph l_{g} 使用 glyph render(使用 Arial Unicode)生成到相应的位置上,考虑到生成不规律的文本框有一定难度,所以该模块使用位置 l_{p} ,glyph render 文本框使用矩形,通过和 l_{g} 结合,该模块可以告知模型将文本生成到不规则的文本框上。此外该模块将掩码后的图像作为信息,告诉模型不要修改这些地方,并使用 VAE 下采样。为了合并这些条件,该模块使用卷积层下采样 glyph l_{g} 和位置 l_{p} ,使他们跟 z_{t} 有相同的空间大小,最后使用卷积融合层来合并他们。

5.3 Text Embedding Module

文本编码器善于从描述中提取语义信息,但却会忽略需要渲染的文本的语义信息。此外,大多数预训练的文本编码器都是在基于拉丁字母的数据上训练的,因此无法很好地理解其他语言。在 AnyText 中,提出了一种新颖的方法来解决多语言文本生成的问题。具体而言,该模块将字形线条渲染为图像,编码字形信息,并用它们替换 token 的嵌入。然后,将替换后的嵌入作为 token 输入到基于 transformer 的文本编码器中,得到融合后的中间表示,这些表示随后通过交叉注意力机制映射到 UNet 的中间层。由于该模块的做法使用图像渲染文本,而不是仅依赖于特定语言的文本编码器,因此显著提升了多语言文本生成的效果。

5.4 Gradio UI

Gradio 是一个开源的 Python 库,允许用户快速创建和共享机器学习模型的 Web 应用程序。它提供了一个简单的界面,可以轻松地与模型进行交互。用户可以通过 Gradio UI 上传图像、输入文本、调整参数等操作,并实时查看生成的结果。 Gradio 还支持将应用程序部署到云端,方便用户访问和使用。

6 人机界面设计

6.1 界面概览

提供 Web 端界面,两种主要操作模式:

- 1. 文到图像的生成:输入提示词,并将需要渲染的文本用""标注,可以通过画布绘制文本位置、拖框选择文本位置或随机选择文本位置;
- 2. 图片文字编辑, 手动掩盖需要修改区域, 输入文本并进行编辑。

界面上有说明、参数设置、文本输入框、模式选择、文字位置标注、样例(点击即可)、运行按钮、图片结果展示和加强训练的物品,用户可调整 CFG-Scale、Steps 等参数,查看结果并保存。

6.2 界面截图

详情见图 2, 图 3.

图 2: 这是图片的标题

6.3 界面控件与操作

包括:

图 3: 这是图片的标题

说明文本框

文本输入框 (Prompt)

位置选择方式(单选按钮)

绘制画布(支持自由绘制、矩形、掩码)

参数调节控件(滑动条/输入框)

"运行"按钮

图像展示区域

图片上传控件

示例加载按钮

参考生成物品展区

加强训练物品展区

操作:

用户可点击说明查看使用须知,点击参数调整控件调整参数,在文本输入框输入文字进行提示词输入,点击运行进行生成,点击样例进行生成,在模式选择框选择模式。

7 需求矩阵

详情见表 1。

需求	组件
文本输入(提示词)	文本输入框
图像上传	图片上传控件(或者绘制画布)
指定文字位置	绘制画布
参数调节	参数调节控件
结果预览	图像展示区域
保存分享	图像展示区域
Debug	图像展示区域和参数调节控件
模式选择	图片上传控件
示例与指导	说明文本框

表 1: 功能与需求表

8 APPENDICES

详见材料中的"项目注意事项"文档。