Градиентный спуск и стохастическая оптимизация

Градиентный спуск. Алгоритм.

Градиентный спуск. Формула.

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$

 $Q(w^{(k)})$ - значение функционала ошибки для набора параметров

 $\nabla Q(w^{(k)})$ - вектор, своим направлением указывающий направление наибольшего возрастания

 η_k - длина шага, которая нужна для контроля скорости движения

Градиентный спуск. Градиент.

Градиент
$$\nabla f(x_1, \dots, x_d) = (\frac{\partial f}{\partial x_i})_{j=1}^d$$

Формула подсчета градиента для вектора единичной длины

$$\frac{\partial f}{\partial v} = \langle \nabla f, v \rangle = ||\nabla f|| \cos \phi$$

Минимум

$$cos\phi = -1 = > \phi = 180$$

Максимум

$$cos\phi = 1 = > \phi = 0$$

С помощью ряда Тейлора можно доказать, что градиент ортогонален линиям уровня

Стохастический градиентный спуск SGD

Обычный вид функционала

$$Q(w) = \frac{1}{l} \sum_{i=1}^{l} q_i(w)$$

Обычный градиентный спуск

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$
 Считается медленно

Крутой SGD функционал

$$Q(w) = q_{i_k}(w)$$

SGD

$$w^k = w^{(k-1)} - \eta_k \nabla q_{i_k}(w^{(k-1)})$$
 Считается быстро

Стохастический градиентный спуск SGD

Stochastic Gradient Descent

Gradient Descent

Средний стохастический градиент SAG

1. Найдем полный градиент для начальной точки

$$z_i^{(0)} = \nabla q_i(w^{(0)}), i = 1,...,l$$

2. На каждом следующем шаге будем обновлять только один случайный z

3. В качестве итогового градиента берем сумму:

$$\frac{1}{l} \sum_{i=1}^{l} z_i^k$$

Метод импульса Momentum

Движение при обычном градиентном спуске

Метод импульса Momentum

Введем вектор инерции:

$$h_0 = 0$$

$$h_k = \alpha h_{k-1} + \eta_k \nabla Q(w^{k-1})$$

Параметр, определяющий скорость затухания Можно использовать аппроксимацию

Шаг градиентного спуска:

$$w^k = w^{k-1} - h_k$$

Метод импульса Momentum

Ускоренные градиенты Нестерова

Метод имульса

$$h_k = \alpha h_{k-1} + \eta_k \nabla Q(w^{k-1})$$
$$w^k = w^{k-1} - h_k$$

Ускоренные градиенты Нестерова

$$h_p = \alpha * h_{p-1} + \eta * \nabla Q(w_{p-1} - \alpha h_{p-1})$$

$$w_p = w_{p-1} - h_p$$

AdaGrad

Движение при обычном градиентном спуске

AdaGrad

Движение при обычном градиентном спуске

AdaGrad

Сделаем свою длину шага для каждой компоненты вектора параметров

$$G_{k,j} = G_{k-1,j} + (\nabla_w Q(w^{k-1}))_j^2$$

$$w_j^k = w_j^{k-1} - \frac{\eta_t}{\sqrt{G_{k,j} + \varepsilon}} (\nabla_w Q(w^{k-1}))_j$$

RMSprop

$$G_{k,j} = \alpha G_{k-1,j} + (1 - \alpha)(\nabla_w Q(w^{k-1}))_j^2$$

Adam

Найдем первый и второй момент градиентов

$$m_p = \beta_1 m_{p-1} + (1 - \beta_1) \nabla Q(w_{p-1})$$

$$v_p = \beta_2 v_{p-1} + (1 - \beta_2)(\nabla Q(w_{p-1}))^2$$

Так как изначальные значения моментов равны 0, а коэффициенты близки к 1, то увеличим наши моменты:

$$\hat{m}_p = \frac{m_p}{1 - \beta_1^p} \qquad \hat{v}_p = \frac{v_p}{1 - \beta_2^p}$$

Итог:

 $w_p = w_{p-1} - \frac{\eta^* \hat{m}_p}{\sqrt{\hat{v}_p^* + \epsilon}}$ Регулирует шаг

Сравнение. Вывод.

Вопросы:

- 1.Чем SAG лучше и хуже SGD?
- 2. Формула для итерации в momentum.
- 3.Когда нужно использовать AdaGrad и RMSprop?

Источники:

- https://github.com/esokolov/ml-course-hse/blob/master/2019-fall/lecturenotes/lecture02-linregr.pdf
- https://ru.wikipedia.org/wiki/Градиент
- http://ruder.io/optimizing-gradient-descent/index.html#rmsprop
- http://www.machinelearning.ru/wiki/index.php?
 title=Изображение:Grad3.PNG
- https://d2l.ai/chapter_optimization/adagrad.html
- https://habr.com/ru/post/318970/
- https://medium.com/@congyuzhou/gradient-descent-with-momentume3354d7d280d
- https://datascience-enthusiast.com/DL/Optimization_methods.html
 - - %D0%BD%D0%B5%D1%81%D1%82%D0%B5%D1%80%D0%BE %D0%B2%D0%B0-nesterov-accelerated-gradient