

Introduction to Machine Learning

Bagging and Random Forest 1

Bernd Bischl, Christoph Molnar, Daniel Schalk, Fabian Scheipl

Department of Statistics - LMU Munich

BAGGING

- Bagging is based on Bootstrap Aggregation.
- Ensemble that improves instable / high variance learners by variance smoothing

Train on B bootstrap samples of data D:

- Draw *n* observations with replacement
- Fit the base learner on each of the B bootstrap samples

BAGGING

Aggregate the predictions of the *B* estimators:

- Aggregate via averaging (regression) or majority voting (classification)
- Posterior probabilities for x in classification can be estimated by calculating class frequencies over the ensemble

BAGGING

- Reduces variance of the predictor, but (slightly) increases its bias
- Bagging works best for unstable/high variance learners (learners where small perturbations of the training set can cause large changes in the prediction)
 - Classification and regression trees
 - Neural networks
 - Step-wise/forward/backward variable selection for regression
- For stable estimation methods bagging might degrade performance
 - k-nearest neighbor
 - discriminant analysis
 - naive Bayes
 - linear regression

RANDOM FORESTS

- Modification of bagging for trees proposed by Breiman (2001)
- Construction of bootstrapped decorrelated trees through randomized splits
- Trees are usually fully expanded, without aggressive early stopping or pruning, to increase variance

VARIANCE OF BAGGING

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2 = \left(\rho + (1-\rho)\frac{1}{B}\right)\sigma^2$$

 σ^2 is variance of a tree and ρ the correlation between trees

- If trees are highly correlated ($\rho \approx 1$), variance $\to \sigma^2$
- If trees are uncorrelated ($ho \approx$ 0), variance $ightarrow rac{\sigma^2}{B}$
- Variance can be reduced by increasing the number of trees B

RANDOM FEATURE SAMPLING

- From our variance analysis we can see that decorrelating trees further might reduce the variance of the predictor
- Simple randomized approach:
 Instead of all p features, draw mtry ≤ p random split candidates.
 Becommended values:
 - Classification: $\lfloor \sqrt{p} \rfloor$
 - Regression: $\lfloor p/3 \rfloor$

EFFECT OF ENSEMBLE SIZE

With 1 Tree on Iris

EFFECT OF ENSEMBLE SIZE

With 10 Trees on Iris

EFFECT OF ENSEMBLE SIZE

With 500 Trees on Iris

OUT-OF-BAG ERROR ESTIMATE

With the RF it is possible to obtain unbiased estimates of generalization error directly during training:

OUT-OF-BAG ERROR ESTIMATE

in-bag observations, used to build the trees (Remember: The same observation can enter the in-bag sample more than once.)

 \blacksquare out-of-bag observations (OOB $_m$), used to evaluate prediction performance (err $_m$)

- OOB size: $P(\text{not drawn}) = (1 \frac{1}{n})^n \stackrel{n \to \infty}{\longrightarrow} \frac{1}{n} \approx 0.37$
- Predict all x with trees that didn't see it, average error
- Similar to 3-CV, can be used for a quick model selection