MT404 – MÉTODOS COMPUTACIONAIS DE ÁLGEBRA LINEAR – 2º SEM/2012 PROVA 2

1. Seja $A: n \times n$, simétrica, definida positiva e banda com amplitude 2p+1 (ou seja, $a_{ij}=0$ se i>j+p, ou, pela simetria, se j>i+p). Considere sua fatoração de Cholesky $A=GG^T$, onde $G: n \times n$ é matriz triangular inferior, com diagonal positiva.

(a) Mostre que o fator de Cholesky G tem banda inferior de largura p.

(b) Escreva um algoritmo para obter G, armazenando—o na parte triangular inferior de A e levando em conta sua estrutura.

Lembrete: Se $B = GG^T$ é a fatoração de Cholesky de $B: n \times n$, matriz simétrica definida positiva, então: $g_{kk} = \sqrt{b_{kk} - \sum_{j=1}^{k-1} g_{kj}^2}; \ g_{ik} = (b_{ik} - \sum_{j=1}^{k-1} g_{kj}g_{ij})/g_{kk}, \ k = 1, \dots, n; \ i = k+1, \dots, n.$

2. Mostre que, se

$$A = \left(egin{array}{cc} R & w \ 0 & v \end{array}
ight), \qquad \qquad b = \left(egin{array}{c} c \ d \end{array}
ight),$$

onde A é uma matriz $m \times n$, com posto-coluna completo, R é uma matriz $k \times k$, w e c são vetores de k posições, e v e d com m-k componentes, com k=n-1; então

$$Min\|Ax - b\|_2^2 = \|d\|_2^2 - (\frac{v^T d}{\|v\|_2})^2.$$

3. Considere a matriz de reflexão de Householder $H = I - \beta vv^T$, onde:

 $\beta = 1/(||x||_2[||x||_2 + |x_1|]), \ v = x + \sigma e_1, \sigma = sign(x_1)||x||_2, \ x \in e_1$ são vetores de \mathbb{R}^n e $e_1 = (1; 0; \dots, 0)^T$.

(a) Sejam H a reflexão que transforma (3 0 -4) T em (- σ 0 0) T , e $a = (1 1 1)^T$. Determine Ha de forma eficiente.

(b) Suponha que, conhecido x, foram calculados β e v. Descreva os passos para que, dado $y \in \mathbb{R}^n$, obtenha—se o produto HDHy da forma mais eficiente possível, onde $D \in \mathbb{R}^{n \times n}$ é uma matriz diagonal. Qual o número de operações gasto pelo seu procedimento? Justifique.

4. Seja $A \in \mathbb{R}^{m \times n}$. Escreva sobre a decomposição SVD de A (definição , propriedades, aplicações) e sobre A^+ , a pseudo-inversa de A.