S là tập các mẫu thuộc lớp âm và lớp dương P_{\oplus} là tỷ lệ các mẫu thuộc lớp dương trong S

 p_{\ominus} là tỷ lệ các mẫu thuộc lớp âm trong S

$$Entropy(S) = -p_{\oplus} log_2 p_{\oplus} - p_{\ominus} log_2 p_{\ominus}$$

$$Gain(S,A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Value(A) là tập các giá trị có thể cho thuộc tính A, và S_v là tập con của S mà A nhận giá trị v.

Định lí Naive Bayes

Record	A	В	C	Class
1	0	0	0	+
2	0	0	1	-
3	0	1	1	-
4	0	1	1	-
5	0	0	1	+
6	1	0	1	+
7	1	0	1	-
8	1	0	1	-
9	1	1	1	+
10	1	0	1	+

Úng dụng định lý Naive Bayes để tiên đoán nhãn phân lớp cho dữ liệu X = (A=0, B=1, C=0)

Xác suất tiền định :
$$P(+) = \frac{1}{2}$$
; $P(-) = \frac{1}{2}$

Xác suất có điều kiện:

P(A = 0|+) =
$$\frac{2}{5}$$
; P(B = 1|+) = $\frac{1}{5}$; P(C = 0|+) = $\frac{1}{5}$;
P(A = 0|-) = $\frac{3}{5}$; P(B = 1|-) = $\frac{2}{5}$; P(C = 0|-) = 0;

Với
$$X = (A = 0, B = 1, C = 0)$$
 ta có :

$$P(X|+) = P(A = 0|+) * P(B = 1|+) * P(C = 0|+) = \frac{2}{5} * \frac{1}{5} * \frac{1}{5} = \frac{2}{125}$$

$$P(X|-) = P(A = 0|-) * P(B = 1|-) * P(C = 0|-) = \frac{3}{5} * \frac{2}{5} * 0 = 0$$

$$P(X|-) = P(A = 0|-) * P(B = 1|-) * P(C = 0|-) = \frac{3}{5} * \frac{2}{5} * 0 = 0$$

$$P(+|X) = P(+) * P(X|+) = \frac{1}{2} * \frac{2}{125} = 0.008$$

$$P(-|X) = P(-) * P(X|-) = \frac{1}{2} * 0 = 0$$

$$P(-|X) = P(-) * P(X|-) = \frac{1}{2} * 0 = 0$$

Vậy nếu X = (A=0, B=1, C=0) thì thuộc vào lớp +

Cây quyết định:

Cho tập dữ liệu huấn luyện như sau:

RID	age	income	student	credit_rating	Class: bugs_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Sử dụng công thức tính Entropy (Độ hỗn tạp dữ liệu) và Gain (Độ lợi dữ liệu)

Entropy(S) =
$$\sum_{i=1}^{c} -p_i \log_2 p_i$$

$$\begin{array}{l} \text{Entropy}(S) = \sum_{i=1}^{c} -p_{i}log_{2}p_{i} \\ \text{Entropy}([a+,b-]) = 0 \text{ if } a=0 \text{ or } b=0 \end{array}$$

Entropy(
$$[a+,b-]$$
) = 1 if $a = b$

$$Gain(S,A) = Entropy(S) - \sum_{V \in Value(A)} \frac{|S_V|}{|S|} * Entropy(S_v)$$

Với E(S) = E([9+, 5-]) = 0.940

Age				
youth	middle_aged	senior		
[2+,3-]	[4+,0-]	[3+,2-]		
E=0.971	E=0	E=0.971		
Gain(S,Age) = $0.940 - \frac{5}{14} * 0.971 - \frac{4}{14} * 0 - \frac{5}{14} * 0.971 = 0.246$				

	Income		
high	medium	low	
[2+, 2 -]	[4+, 2 -]	[3+, 1 -]	
E=1	E=0.918	E=0.811	
Gain(S, Income) = $0.940 - \frac{4}{14} * 1 - \frac{6}{14} * 0.918 - \frac{4}{14} * 0.811 = 0.029$			

Student		
no	yes	
[3+,4-]	[6+,1 –]	
E=0.985	E=0.592	
Gain(S, Student) = $0.940 - \frac{7}{14} * 0.985 - \frac{7}{14} * 0.592 = 0.152$		

Credit_rating		
fair	excellent	
[6+, 2 -]	[3+,3-]	
E=0.811	E=1	
Gain(S, Credit_rating) = $0.940 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1 = 0.048$		

Ta có Gain(S,Age) lớn nhất nên ta chọn Age làm thuộc tính đầu tiên

Age			
youth	middle_aged	senior	
{1,2,8,9,11}	{3,7,12,13}	{4,5,6,10,14}	
[2+,3-]	[4+,0-] . E=0	[3+,2-]	
E=0.971	<yes></yes>	E=0.971	

<u>Với</u> $E(S_{Youth}) = Entropy([2+, 3-]) = 0.971$

Income			
high	medium	low	
[0+, 2 -]	[1+,1 -]	[1+, 0 -]	
E=0	E=1	E=0	
Gain(S, Income) = $0.971 - \frac{2}{5} * 0 - \frac{2}{5} * 1 - \frac{1}{5} * 0 = 0.571$			

Student		
no	yes	
[0+, 3 -]	[2+,0-]	
E=0	E=0	
Gain(S, Student) = $0.971 - \frac{3}{5} * 0 - \frac{2}{5} *$	0 = 0.971	

Credit_rating		
fair	excellent	
[1+,2-] E=0.918	[1+,1 -] E=1	
Gain(S, Credit_rating) = $0.971 - \frac{3}{5} * 0.918 - \frac{2}{5} * 1 = 0.0202$		

Ta có Gain(S, Student) lớn nhất nên ta chọn Age làm thuộc tính

youth		
{1,2,8,9,11}		
[2+	-,3-]	
Student		
no yes		
{1,2,8} {9,11}		
[0+,3-] . E=0 [2+,0-] . E=0		
<no> <yes></yes></no>		

 $\frac{\langle \text{NO} \rangle | \langle \text{YES} \rangle}{\text{V\'oi E}(S_{Senior}) = Entropy}([3+,2-]) = 0.971$

Income				
high	medium	low		
[0+, 0-]	[2+, 1 -]	[1+, 1 -]		
E=0	E=0.918	E=1		
Gain(S, Income) = $0.971 - \frac{0}{5} * 0 - \frac{3}{5} * 0.918 - \frac{2}{5} * 1 = 0.0202$				

Student				
no	yes			
[1+, 1 -]	[2+,1 -]			
E=1 E=0.918				
Gain(S, Student) = $0.971 - \frac{3}{5} * 0.918 - \frac{2}{5} * 1 = 0.0202$				

Credit_rating				
fair	excellent			
[3+,0-]	[0+, 2 -]			
E=0	E=0			
Gain(S, Credit_rating) = $0.971 - \frac{3}{5} * 0 - \frac{2}{5} * 0 = 0.971$				

Ta có Gain(S, Credit_rating) lớn nhất nên ta chọn Credit_rating làm thuộc tính

senior				
{4,5,6,	10,14}			
[3+	,2-]			
Credit	_rating			
fair	excellent			
{4,5,10}	{6,14}			
[3+,0-]. E=0 [0+,2-] . E=0				
<yes></yes>	<no></no>			

Tóm lại ta có cây quyết định là

Age					
youth	middle_aged	senior			
Student	<yes></yes>	Credit_rating			

no	yes	fair	excellent
< NO>	<yes></yes>	<yes></yes>	<no></no>

b. Vây Nếu age=senior, income = high, student = yes, credit_rating = fair sẽ có giá trị dự đoán Class: bugs_computer = **YES**

1. Nếu (cột cuối) của hàng này = hàng kia (vd yes = yes thì ra lamda)

Ngược lại kết quả là các thuộc tính khác nhau của 2 hàng

- 2. Hàm phân biệt là các giá trị của giao của tất cả các ô và hợp của của mỗi giá trị trong ô
- 3. Rút gọn hàm phân biệt theo luật hút P && (P || Q) = P

VD1

Ví dụ: về ma trận phân biệt Xét một hệ quyết định

	a	b	С	d
u1	a0	bl	cl	Υ
u2	al	bl	с0	N
u3	a0	b2	cl	N
u4	al	bl	cl	Y

d: là thuộc tính quyết định

Tìm ma trận phân biệt

	u1	u2	u3	u4
u1	λ			
u2	a,c			
u3	b	λ		
u4	λ	С	a,b	λ

VD2

Ma	trân	phân	biêt

	u1	u2	u3	u4	u5	u6	u7
u1							
u2	λ						
u3	b,c,	b,					
u4	b	b,c	С				
u5	a,b,c	a,b	λ	a,b,c			
u6	a,b,c	a,b	λ	a,b,c,	λ		
u7	λ	λ	a,b,c	a,b	C,	C,	

Hàm phân biệt: $f(A) = (b \lor c) \land b \land c \land (a \lor b \lor c) \land (a \lor b)$

Rút gọn hàm phân biệt: f(A) = b∧c

Vậy:

Hệ thống có 1 rút gọn là: {b,c} Nhân của hệ thống: Core = {b,c}

VD3

TABLE I. A DECISION SYSTEM "PLAY SPORT"

	Wind	Temperature	Humidity	Outlook	Play Sport
\mathbf{x}_1	Strong	Hot	Normal	Sunny	Yes
\mathbf{x}_2	Strong	Mild	Normal	Rain	No
X3	Weak	Hot	Normal	Rain	No
X4	Weak	Cool	High	Rain	Yes

DISCERNIBILITY MATRIX OF DECISION SYSTEM "PLAY SPORT"

	X ₁	x ₂	X3	x_4
X ₁	Ø	Ø	Ø	Ø
X ₂	b,d	Ø	Ø	Ø
X3	a,d	Ø	Ø	Ø
X ₄	Ø	a,b,c	b,c	Ø

Hàm phân biệt: $f = (b \lor d) \land (a \lor d) \land (a \lor b \lor c) \land (b \lor c).$

Rút gọn hàm phân biệt: $f = d \wedge (b \vee c)$.

Các rút gọn tập thuộc tính:

d∧b và d∧c

Xét một hệ quyết định

	Vóc dáng	Quốc tịch	Gia cảnh	Nhóm
01	Nhỏ	Đức	Độc thân	Α
02	Lớn	Pháp	Độc thân	Α
O3	Lớn	Đức	Độc thân	Α
04	Nhỏ	Ý	Độc thân	В
O5	Lớn	Đức	Có gia đình	В
O6	Lớn	Ý	Độc thân	В
07	Lớn	Ý	Có gia đình	В
08	Nhỏ	Đức	Có gia đình	В

- a. Tìm ma trận phân biệt
- b. Tìm hàm phần biệt của hệ thống
- c. Tìm các rút gọn của tập thuộc tính điều kiện.

Ký hiệu: Q: Quốc tịch, V: Vóc dáng, G: Gia cảnh

Ma trận phân biệt

	01	02	O3	04	O5	06	07	O8
01								
02	λ							
O3	λ	λ						
04	Q	V,Q	V,Q					
O5	V,G	Q,G	G	λ				
O6	V,Q	Q	Q	λ	λ			
07	V,Q,G	Q,G	Q,G	λ	λ	λ		
08	G	V,Q,G	V,G	λ	λ	λ	λ	

 $\text{H\`{a}m ph\'{a}n bi\'{e}t: } f(V,Q,G) = Q \wedge (V \vee G) \wedge (V \vee Q) \wedge (V \vee Q \vee G) \wedge G \wedge (Q \vee G)$

Rút gọn hàm phân biệt:

Sử dụng luật hút: $p \land (p \lor q) = p$, ta có:

$$Q {\scriptstyle \wedge} (V {\scriptstyle \vee} Q) = Q; \ Q {\scriptstyle \wedge} (V {\scriptstyle \vee} Q {\scriptstyle \vee} G) = Q$$

$$G \land (V \lor G) = G; G \land (Q \lor G) = G$$

Vậy: **f**(V,Q,G) = Q∧G

Reduct: {Q,G}

Naive Bayes (Thuật toán phân lớp)

Ví du Xét tâp mẫu:

=>

Xác suất tiền đinh $P(C_1)=3/5$, $P(C_2)=2/5$. Xác xuất có điều kiên $P(A_1=1|C_1)=1/3, P(A_1=1|C_2)=1/2,$ $P(A_2=1|C_1)=1/3, P(A_2=1|C_2)=1/2$ $Với X = (A_1=1, A_2=1), ta có:$ $P(X|C_1) = P(A_1=1|C_1)x P(A_2=1|C_1)$ = (1/3)x(1/3)=1/9 $P(X|C_2) = P(A_1=1|C_2)x P(A_2=1|C_2)$ = (1/2)x(1/2)=1/4⇒ $P(C_1|X)=P(C_1)xP(X|C_1)=(3/5)x(1/9)=1/15$

 $P(C_2|X)=P(C_2)xP(X|C_2)=(2/5)x(1/4)=1/10$

 $X = (A_1=1, A_2=1)$ thuốc lớp C_2 .

Thuộ		
Aı	A ₂	Lóp
1	0	C ₁
0	0	\mathbf{C}_1
2	1	C ₂
1	2	C ₂
0	1	\mathbf{C}_1
1	1	??

```
B1: Tîm P(c1 | x) và P(c2 | x) //giả sử cái đầu lớn hơn => X thuộc C1

B2: Tîm P(c1) và P(x | c1) tương tự với c2 //vì P(c | x) = P(c) * P(x | c)

B3: Tîm P(x1 | c1) * P(x2 | c1) tương tự với c2 //vì x = x1 + x2

Giải

x = (A1 = 1, A2 = 2)

Ta có P(c1 | x) = P(c1) * P(x | c1)

P(c1) = 3/5

P(x | c1) = P(A1 = 1 | c1) * P(A2 = 1 | c1) = 1/3 * 1/3 = 1/9

P(c1 | x) = 3/5 * 1/9 = 1/15
```

Ta có P(c2 | x) = P(c2) * P(x | c2)
$$P(c2) = 2/5$$

$$P(x | c2) = P(A1 = 1 | c2) * P(A2 = 1 | c2) = 1/2 * 1/2 = 1/4$$

$$=> P(c1 | x) = 2/5 * 1/4 = 1/10$$

Vì $P(c1 \mid x) = 1/15 < P(c2 \mid x) = 1/10$ nên X thuộc lớp c2

Câu 1: Cho một tập dữ liệu như sau:

Record	A	В	C	Class
1	0	0	0	+
2	0	0	1	-
3	0	1	1	-
4	0	1	1	+
5	0	0	1	+
6	1	0	4	+
7	1	0	1	-
8	1	0	1	-
9	1	1	1	+
10	1	0	1	+

 Úng dụng định lý Naïve Bayes để tiên đoàn nhân phân lớp cho dữ liệu $X=(A=0,\,B=1,\,C=0)$.

Giải

Ta có
$$P(+|X) = P(+) * P(X|+)$$

$$P(+) = 5/10 = 1/2$$

$$P(X|+) = P(A=0|+) * P(B=1|+) * P(C=0|+)$$

= 2/5 * 1/5 * 1/5 = 2/15

$$=> P(+|X) = 1/2 * 2/15 = 1/125$$

Ta có
$$P(-|X) = P(-) * P(X|-)$$

$$P(-) = 5/10 = 1/2$$

$$P(X|-) = P(A=0|-) * P(B=1|-) * P(C=0|-)$$

= 3/5 * 2/5 * 0/5 = 0

$$=> P(-|X) = 1/2 * 0/15 = 0$$

Vì
$$P(+ | x) = 1/125 > P(- | x) = 0$$
 nên X thuộc lớp +

```
Tính entropy
S là tổng số mẫu trong CSDL
x là số mẫu lớp 1
y là số mẫu lớp 2
Entropy(x+, y-) = -(x/S)*log2(x/S) - (y/S)*log2(y/S)
Ví dụ 14 mẫu, 9 dương, 5 âm:
Entropy(9+, 5-) = -(9/14)*log2(9/14) - (5/14)*log2(5/14) = 0.94
* Nếu e(x+,0) hoặc e(0, x-) thì entropy = 0
* Nếu e(x+, x-) thì entropy = 1
Tính Gain
A = [A1, A2]
Gian(S, A) = Entropy(S) - SUM(len(A[i]) / S * entropy(A[i]))
Ví du Wind = {Weak, Strong}
S_{\text{weak}} = (6+, 2-)
S_{strong} = (3+, 3-)
Gian(S, Wind) = entropy(S) - (len(S_weak) / S * entropy(S_weak) + len(S_strong) / S
* entropy(S_trong)
  Ta có entropy(S_week) = -6/8*\log 2(6/8) - 2/8*\log 2(2/8) = 0.81
```

$$entropy(S_strong) = 1$$

$$=>$$
 Gian(S, Wind) = 0.94 - $(8/14 * 0.81 + 6/14 * 1) = 0.048$

Xây dựng cây quyết định bằng ID3

B1: Xác định hệ số x, y của entropy(S) và entropy của từng ô thuộc tính

B2: Tính entropy

B3: Tinh Gain(S, từng thuộc tính) để chọn cái max làm root

B4: Vẽ root và nhánh

B5: Tính entropy(nhánh, các thuộc tính còn lại)

B6: Tinh Gain(nhánh, từng thuộc tính còn lại) để chọn cái max làm node của nhánh

B7: Lặp lại cho đến khi gặp điều kiện dừng

Điều kiện dừng:

- 1. Tất cả thuộc tính đã được đưa vào
- 2. Full Yes hoặc full No

Ví dụ sau:

Cây quyết định:

Cho tập dữ liệu huấn luyện như sau:

	•	<i>,</i> .			
RID	age	income	student	credit_rating	Class: bugs_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes

l	13	middle_aged	high	yes	fair	yes
ĺ	14	senior	medium	no	excellent	no

a. Xây dựng cây quyết đinh bằng thuật toán ID3

```
Giải
Xét tập hợp S
Gọi e(S) là viết tắt của entropy(S)
                          g(S) là viết tắt của gain(S)
                          len(S) là chiều dài của tập S
                          x là số thuộc tính phân lớp yes
                          y là số thuộc tính phân lớp no
                           A là tập thuộc tính điều kiện
Ta có công thức sau:
                          e(S) = e(x+, y-) = -x/S*log2(x/S) - y/S*log2(y/S)
                          g(S -> A) = e(S) - 1/len(S) * SUM(len(S -> A[i]) * e(S -> A[i]))
<1> Tìm node Root
e(S) = e(9+, 5-) = 0.940
lens(S) = 14
g(S \rightarrow age) = e(S) - 1/len(S) * SUM(len(S \rightarrow youth)*e(S \rightarrow youth)
                                                                             + len(S \rightarrow middle\_aged)* e(S \rightarrow middle\_aged) + len(S \rightarrow senior)* e(S \rightarrow middle\_aged)* e(
                     > senior)
len(S->youth) = 5
len(S->middle aged) = 4
```

.

Ví dụ xây dựng cây quyết định từ bảng sau:

b. Vậy Nếu age=senior, income = high, student = yes, credit_rating = fair sẽ có giá trị dự đoán Class: bugs_computer = ?

Bảng dữ liệu huấn luyện (Training data)

Day	Outlook	Temp	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Giải:

```
Giả sử S là một tập hợp
len(S) là số mẫu của tập S
e(S) là entropy của tập S
g(S) là information gain của tập S
x là số hàng cho thuộc tính quyết định Yes
y________No
A là tập hợp các thuộc tính điều kiện
```

Ta có công thức tính

$$e(x+, y-) = -x/S * log2(x/S) - y/S * log2(y/S)$$

 $g(S, A) = e(S) - 1/len(S) * (len(A[i]*e(A[i]))$

$$S = \{D1 ... D14\}$$

entropy(S) = entropy(9+, 5-) = -9/14*log2(9/14) - 5/14*log2(5/14) = 0.94

Feature Outlook:

```
entropy(Sunny) = entropy(2+, 3-) = 0.97
```

entropy(Overcast) = entropy(
$$4+$$
, $0-$) = 0
entropy(Rain) = entropy($3+$, $2-$) = 0.97

Feature Temp:

$$entropy(Hot) = entropy(2+, 2-) = 1$$

$$entropy(Mild) = entropy(4+, 2-) = 0.91$$

entropy(Cool) = entropy
$$(3+, 1-) = 0.81$$

Feature Humidity:

entropy(High) = entropy
$$(3+, 4-) = 0.985$$

entropy(Normal) = entropy
$$(6+, 1-) = 0.59$$

Feature Wind:

entropy(Weak) = entropy
$$(6+, 2-) = 0.81$$

entropy(Strong) = entropy
$$(3+, 3-) = 1$$

$$gain(S,\,outlook)\,=entropy(S)\,\text{-}\,len(Sunny)\,/\,S\;*entropy(Sunny)$$

- len(Overcast) / S *entropy(Overcast)

- len(Rain) / S *entropy(Rain)

$$= 0.94 - 5 / 14 * 0.97 - 0 - 5/14 * 0.97 = 0.247$$

 $gain(S,\,windy)\,=entropy(S)\,\text{-}\,len(Weak)\,/\,S\,\,*entropy(Weak)$

- len(Strong) / S *entropy(Overcast)

$$= 0.94 - 8 / 14 * 0.81 - 6/14 * 1 = 0,048$$

• • •

Vì gain(S, outlook) lớn nhất nên ta chọn làm root

Outlook

```
(Sunny)
                          (Overcast 4+,0-)
                                                 (Rain)
                            YES
entropy(Sunny, Humidity)
entropy(Sunny, Temp)
entropy(Sunny, Humidity)
Gain(Sunny, Humidity) = 0.97
Gain(Sunny, Temp) = 0.57
Gain(Sunny, Humidity) = 0.019
Vì Gain(Sunny, Humidity) lớn nhất nên node tiếp theo của cạnh Sunny là Humidity
•••
Vì nhánh Overcaste có có 4+ và 0- nên node của nhánh là YES
                          Outlook
            (Sunny)
                          (Overcast)
                                           (Rain)
         Humidity
                               YES
Rain { D4, D5, D6, D10, D14 }
e(S, Rain) = 0.97
Gain(Rain, Temp) = e(S, Rain) - 1/len(S, Rain)
                  * (len(Rain, Hot)*e(Rain, Hot)
                    + len(Rain, Mild)*e(Rain, Mild)
                    + len(Rain, Cool) * e(Rain, Cool))
Gain(Rain, Wind) = e(S, Rain) - 1/len(S, Wind)
                  * (len(Rain, Week)*e(Rain, Week)
                     + len(Mild)*e(Rain, Mild)
```

+ len(Cool) * e(Rain, Cool))