

Nanyang Technological University School of Computer Engineering

- Artificial Intelligence
- II Problem Solving
- Knowledge and Reasoning
- IV Acting Logically
- Uncertain Knowledge and Reasoning
- VI Learning
- VII Communicating, Perceiving and Acting
- VIII Conclusions

Dr Chai Quek Profile of Lecturer

- Ph.D. H.W. Edinburgh 1990
- An Intelligent Supervisory Control Schema
- Softcomputing, Computational Intelligence Area of Research: Learning Systems, Neural Network, Fuzzy System, Hybrid Fuzzy Neural Systems,
- Application Areas: Computational Finance, Biomedical Engg, Intelligent Control, Intelligent Education, Soft modelling, (cognitive) sentiment mining
- Students groomed: over 12 gold medalists, 30 Ph.D.s, MSc, MEng etc.
- Hall 7 Senior Hall Fellow, Binjai Hall SFiR, Northhill and Yunnan RE Lead, Assoc Chair (Students) SCSE

Residential Education

RE@Northill and Yunnan

Part III – Knowledge and Reasoning

Agents that Reason Logically

- Knowledge-based Agents. Representations
- Propositional Logic. The Wumpus World.

7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Part III – Knowledge and Reasoning

Inference in First-Order Logic

- Inference Rules. Generalised Modus Ponens
- Forward and Backward Chaining. Resolution.

10 Example classes - Prolog as KBS

- Starting week 10 intro
- Starting week 12 assignment Wk 14 (Venue TBA) (marks to be part of continuous assessments)

new representations to deduce what to do." new representations about the world, and use these tions of the world, use a process of inference to derive "In which we design agents that can form representa-

Brain Inspired Representation

- Learning memory construction of knowledge from data
- Hippocampus fuzzy rule learning using neural network
- Cerebellum calibration of motion action
- Supervised and unsupervised learning
- Reinforcement learning
- Long term association
- Parallel firing of rules
- Compactness of rules
- Forgetting of rules

Human Inspired Representation

- cognitive structure of human reasoning Expert representation modelled around the
- Symbolic Logic
- Semantic "Lingusitic", fuzzy logic
- Cognitive structure
- Long Term
- Short Term
- Inference Mechanism
- Soundness and Completeness

The Knowledge-Based Approach

Agents that know

- Achieve competence by being told new knowledge or by learning
- Achieve adaptability by updating their knowledge
- > Knowledge representation
- State of the world, properties and evolution of the world; goals of the agent, actions and their effect

Agents that reason

Logic

- Use knowledge to deduce course of actions
- > Knowledge inference

Part III – Knowledge and Reasoning

Agents that Reason Logically

- Knowledge-based Agents. Representations
- Propositional Logic. The Wumpus World.

7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Knowledge-Based Agents

- Knowledge base (KB)
- Set of <u>sentences</u> i.e., representations of facts (DB)
- Knowledge representation language
- Adding and querying knowledge
- Tell: add a sentence to the KB
- **Ask**: retrieve knowledge from the KB
- Answers must follow from what has been Tell'ed (told)
- Inference mechanism
- Role: determine what follows from the KB

Problem Formulation of KBS

Knowledge Based System

States

Instances of the KB (sets of sentences) —> Use **Tell** to build the KB

Tell(KB, "Smoke ⇒ Fire") Tell(KB, "Smoke") Tell(KB, "Fire ⇒ Call_911")

Operators:

Add / Infer a new sentence

Goal:

Answer a query -> Use **Ask** to query the KB

e.g. Ask(KB, "? Call_911")

A Generic Knowledge-Based Agent

```
function KB-Agent (percept) returns action
                                                                                                                                                                    Tell (KB, Make-Percept-Sentence (percept, t))
return action
                                             ↑ † + 1
                                                                              Tell (KB, Make-Action-Sentence (action, t))
                                                                                                                           action ← Ask (KB, Make-Action-Query (percept, t))
                                                                                                                                                                                                                                                                               static | KB,
                                                                                                                                                                                                                                    // a time counter, initially 0
                                                                                                                                                                                                                                                                            // a knowledge base
```

- > 3 steps: interpretation, inference, execution
- > KB: background knowledge (observed) + acquired information (deduced)

Example: the Wumpus World

Problem description (PAGE)

- Environment
- Grid of squares, walls;
- Agent, gold, pits, wumpus.
- Goal
- Find the gold, return to S at [1,1].
- Percepts
- A list of 5 symbols, e.g. [Stench, Breeze, Glitter, Bump, Scream];
- Agent's location not perceived.
- Actions
- Go-Forward, Turn-Left, Turn-Right,
 Grab, Shoot (1 arrow only), Climb.

Levels of Knowledge

Epistemological level

- Declarative description of knowledge
- e.g. facts: "there is smoke in the kitchen", "it is not warm enough" rules: "if there is smoke then there must be a fire"

Logical level

- Logical encoding of knowledge (into sentences)
- e.g. facts: Smoke; rules: Implies(Smoke, Fire)

Implementation level

- Physical representation of knowledge (sentences)
- e.g. the string "Implies(Smoke, Fire)", or - a "1" entry in a 2-dimensional array: Implies[X,Y]

The Wumpus World

Problem description (cont'd)

- Initial state
- Agent at [1,1]; gold, pits and wumpus in <u>random</u> squares
- Path-cost
- Climbing out with the gold: +1000 (without: 0) Each action: -1
- Getting killed (pit or wumpus): -10000

Knowledge

- "In all squares adjacent to the one where the wumpus is, the agent will perceive a stench."
- "In all squares adjacent to a pit, the agent will perceive a breeze."
- In the square where the gold is, the agent will perceive a glitter."
- When walking into a wall, the agent will perceive a <u>bump</u>."
- When the wumpus is killed, the agent will perceive a scream."

Acting and Reasoning in the Wumpus World

(1) after {F}
[nil, Breeze, nil, nil, nil]

Acting and Reasoning in the Wumpus World

(1) after {F}
[nil, Breeze, nil, nil, nil]

(6) after {F, L, L, F, R, F}
[Stench , nil, nil, nil, nil]

N

Acting and Reasoning in the Wumpus World

(6) after {F, L, L, F, R, F} [Stench, nil, nil, nil, nil]

(10) after {F, L, L, F, R, F, R, F, L, F} [Stench, Breeze, Glitter, nil, nil]

Wi S A P? V OK OK OK OK OK OK P?		N	<u>ω</u>	4
	V OK	S V OK	Wi	
Pi OX P?	OK B	V OK	A S G B	P?
	P!	ОК	P?	

B = Breeze A = Agent

N

G = Glitter, Gold OK = Safe square

S = Stench P = Pit

N

V = Visited W = Wumpus

Part III – Knowledge and Reasoning

Agents that Reason Logically

- Knowledge-based Agents. Representations.
- Propositional Logic. The Wumpus World.

7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Knowledge Representations

- Knowledge representation (KR)
- KB: set of sentences -> need to
- Express knowledge in a (computer-) tractable form

Knowledge representation language

- Syntax implementation level
- Possible configurations that constitute sentences (example)

Language Representation

- Facts of the world the sentences refer to

Semantics – knowledge level

- e.g. 1 language of arithmetics: x, y numbers sentence: "x ≥ y", semantics: "greater or equal"
- e.g. 2 language of genomics: x, y chromosones x.x means female and x.y means male

Reasoning and Logic

Logic

- Representation + Inference = Logic
- Where representation = syntax + semantics

Reasoning

- Construction of new sentences from existing ones
- Entailment as logical inference

Deduction and Induction

Mechanical reasoning

- Example
- If a chord sequence is tonal, then it can be generated by a context-sensitive grammar.
- The twelve-bar blues has a chord sequence that is tonal. |-
- The twelve-bar blues has a chord sequence that can be generated

by a context-sensitive grammar.

Deductive inference

– KB: Monday ⇒ Work, Monday |- Work sound (MP)

Inductive inference

- KB: Monday ⇒ Work, Work - Monday unsound!
- Generalization e.g., "all swans are white ..." discovered counnter example by William de Vlamingh

Entailment and Inference

Entailment

- Generate sentences that are necessarily true, given that the existing sentences are true
- Notation: KB $|= \alpha$
- e.g. Wumpus world:

$$\{ \text{``}\neg S(1,1)\text{''}, \text{``}\neg B(1,1)\text{''} \} \mid = \text{``}OK(2,1)\text{''}$$

Arithmetics:
 $\{ \text{``}x \ge y\text{''}, \text{``}y \ge z\text{''} \} \mid = \text{``}x \ge z\text{''}$

- Inference
- **Tell**, given KB: (KB \mid = α)!
- **Ask**, given KB and α : (KB |= α) ?

Properties of Inference

Can be described by the sentences it derives, KB |= α_I

Soundness

- Generate only entailed sentences
- Proof: sequence of operations of a sound inference
- Record of operations that generate a specific entailed sentence e.g. "Smoke ⇒ Fire" and "Smoke" |= "Fire" "Fire ⇒ Call_911" and "Fire" |= "Call_911"

Completeness

A proof can be found for any entailed sentence

Proof theory

Specify the reasoning operations that are sound

An Example of Sound Inference

- Sentence: x

Semantics: the concatenation of 2 expressions, etc an expression; can be a single symbol or number,

Sentence: x y

Semantics: an expression which refers to a quantity that is the

product of the quantities referred to by each of the

expressions

– Sentence: x = y

Semantics: the 2 expressions on each side of "=" refer to the same quantity

A sound inference: from E = mc

 $n \quad E = mc^2$ $T_1 \ge T_2$

 $\models E T_1 \ge mc^2 T_2$

Is this a Sound Inference?

– Sentence: x

Semantics: an expression; can be a single symbol or number,

the concatenation of 2 expressions, etc.

Sentence: x y

Semantics: an expression which refers to a quantity that is the

product of the quantities referred to by each of the

expressions

– Sentence: x = y

Semantics: the 2 expressions on each side of "=" refer to the

same quantity

A sound inference? from $E = mc^2$

$$T_1 > T_2 \models ET_1 \ge mc^2 T_2$$

Knowledge Representation Languages

Formal (programming) languages

- Good at describing algorithms and data structures
- e.g. the Wumpus world as a 4x4 array, World[2,2] ← Pit
- Poor at representing incomplete / uncertain information
- e.g. "there is a pit in [2,2] or [3,1]", or "...a wumpus somewhere"
- > not <u>expressive</u> enough

Natural languages

- Very expressive (too much, thus very complex)
- More appropriate for communication than representation
- Suffer from ambiguity
- e.g. "It's hot!" fantastic figure or fast selling S6
- e.g. "small cats and dogs" compared to "-x + y".

Properties of Representations

KR languages should combine the advantages of both programming and natural languages

Desired properties

- Expressive
- Can represent everything we need to.
- Concise
- Unambiguous
- Sentences have a unique interpretation.
- Context independent
- Interpretation of sentences depends on semantics only.
- Effective
- An inference procedure allows to create new sentences

Properties of Semantics

Interpretation (meaning)

- Correspondence between sentences and facts Arbitrary meaning, fixed by the writer of the sentence

uno

- e.g. Natural languages: meaning fixed by usage (cf. dictionary) LOL, OMG, ATM etc
- exceptions: encrypted messages, codes (e.g. Morse) chat
- Systematic relationship: compositional languages
- The meaning of a sentence is a function of the meaning of its parts.

Truth value

- A sentence make a claim about the world -> TRUE or FALSE
- Depends on the interpretation and the state of the world
- e.g. Wumpus world: S(1,2) true if means "Stench at [1,2]" and the world has a wumpus at either [1,3] or [2,2].

CSC304/SC430 Artificial Intelligence =

©1996-2005 Michel Pasquier. All rights reserved

Properties of Inference

Definition

- Inference (reasoning) is the process by which conclusions are reached
- Logical inference (deduction) is the process that implements entailment between sentences

Useful properties

- Valid sentence (tautology)
- iff TRUE under all possible interpretations in all possible worlds. e.g. "S or ¬ S" is valid, "S(2,1) or ¬ S(2,1)", etc.
- Satisfiable sentence
- iff there is some interpretation in some world for which it is TRUE
- e.g. "S and ¬ S" is unsatisfiable

Inference and Agent Programs

Inference in computers

- Does not know the interpretation the agent is using tor the sentences in the KB
- Does not know about the world (actual facts)
- Knows only what appears in the KB (sentences)
- e.g. Wumpus world: doesn't know the meaning of "OK", what a wumpus or a pit is, etc. - can only see: KB |= "[2,2] is OK"
- > Cannot reason informally
- does not matter, however, if KB |= "[2,2] is OK" is a valid sentence

Formal inference

Can handle arbitrarily complex sentences, KB |= P

Different Logics

Formal logic

- Syntax
- A set of rules for writing sentences
- Semantics
- A set of rules (constraints) for relating sentences to facts
- Proof theory / inference procedure
- A set of rules for deducing entailments of sentences

Propositional logic

- Symbols, representing propositions (facts P, J, ¬C, -Peter, Jane, ¬Catherine)
- Boolean connectives, combining symbols
- e.g. "Hot" or "Hot and Humid"

Different Logics

First-order logic

- Objects and <u>predicates</u> (unary, binary, or n-ary) representing properties of and relations between objects
- Variables, Boolean connectives and quantifiers
- e.g. "Hot(x)", "Hot(Air)" or "Hot(Air) and Humid(Air)"

Temporal logic (Allen's work)

- World ordered by a set of time points (intervals)
- Probabilistic and fuzzy logic (IRIS) (Rules)
- Degrees of <u>belief</u> and <u>truth</u> in sentences
- e.g. "Washington is a state" with belief degree 0.4, "a city" 0.6, "Washington is a large city" with truth degree 0.6

Different Degrees of Truth

Q: Is there a tuna sandwich in the refrigerator?

- A: 0.5!

Probabilities

There is or there isn't (50% chance either way).

Measures

There is *half* a tuna sandwich there.

Fuzzy answer

There is something there, but it isn't really a tuna sandwich. Perhaps it is some other kind of sandwich. or a tuna salad with no bread...12-3-2015

The Commitments of Logics

Formal (KR) Language	Ontological commit- ment (what exists in the world)	Epistemological com- mitment (what an agent believes about facts)
Propositional logic facts	facts	true / false / unknown
First-order logic	facts, objects, relations	true / false / unknown
Temporal logic	facts, objects, rel., times	true / false / unknown
Probability logic	facts	degree of belief 01
Fuzzy logic	degrees of truth 01	degree of belief 01

Part III – Knowledge and Reasoning

Agents that Reason Logically

- Knowledge-based Agents. Representations
- Propositional Logic. The Wumpus World.

7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Elements of Propositional Logic

Symbols

– Logical constants:

– Propositional symbols:

Logical connectives:Parentheses:

TRUE, FALSE

P, Q, etc. ∧, ∨, ⇔, ⇒,

Sentences

- Atomic sentences: constants, propositional symbols
- Combined with connectives, e.g. P A Q V R also wrapped in parentheses, e.g. (P ∧ Q) ∨ R

Logical Connectives

- Conjunction
- Binary op., e.g. P Λ Q, "P and Q", where P, Q are the conjuncts
- Disjunction
- Binary op., e.g. P ∨ Q, "P or Q", where P, Q are the disjuncts
- Implication ⇒
- Binary op., e.g. P \Rightarrow Q, "P implies Q", where P is the premise (antecedent) and Q the conclusion (consequent)
- Conditionals, "if-then" statements, or <u>rules</u>
- Equivalence ←
- Binary op., e.g. P ⇔ Q, "P equivalent to Q" Biconditionals
- Negation
- Unary op., e.g. ¬ P, "not P"

Syntax of Propositional Logic (Backus-Naur Form)

Sentence

 \downarrow

AtomicSentence | ComplexSentence

AtomicSentence

 \downarrow

LogicalConstant | PropositionalSymbol

ComplexSentence | -

(Sentence)
| Sentence LogicalConnective Sentence

→ TRUE | FALSE

L

Propositional Symbol

LogicalConstant

P|Q|R|..

LogicalConnective

Precedence (from highest to lowest): \neg , Λ , \vee , \Rightarrow , \Leftrightarrow

e.g.: $\neg P \land Q \lor R \Rightarrow S$ (not ambiguous), eq. to: $(((\neg P) \land Q) \lor R) \Rightarrow S$

Semantics of Propositional Logic

Interpretation of symbols

- Logical constants have fixed meaning
- True: always means the fact is the case; valid
- False: always means the fact is not the case; unsatisfiable
- Propositional symbols mean "whatever they mean"
- e.g.: **P** "we are in a pit", etc.
- Satisfiable, but not valid (true only when the fact is the case)

Interpretation of sentences

- Meaning derived from the meaning of its parts
- Sentence as a combination of sentences using connectives
- Logical connectives as (boolean) functions TruthValue f (TruthValue, TruthValue)

Semantics of Propositional Logic

- Interpretation of connectives
- Truth-table
- Define a mapping from input to output

				9		
True	True	True	True	False	True	True
False	False	True	False	False	False	True
False	True	True	False	True	True	False
True	True	False	False	True	False	False
$P \Rightarrow Q \mid P \Leftrightarrow Q \mid$	$P \Rightarrow Q$	PVQ	PAQ	чP	Q	P

- Interpretation of sentences by decomposition
- e.g.: $\neg P \land Q \lor R \Rightarrow S$, with $P \leftarrow T$, $Q \leftarrow T$, $R \leftarrow F$, $S \leftarrow F$: $(\neg P) \land Q \leftarrow F$ 」P↑F $(((\cap P) \land Q) \lor R) \Rightarrow S \leftarrow T$ $((\neg P) \land Q) \lor R) \leftarrow F$

Formulation of the chain problem:

Representation

(k, l, c), k>1

Permissible representation

- (O O X X) array W (pointer)
- Operations are if-than rules (mask to check for matching antecedent)
- ops:
- MR: $(0-) \rightarrow (-0)$
- -JR: $(OX-) \rightarrow (-XO)$
- -ML: $(-X) \rightarrow (X-)$
- -JL: $(-0X) \rightarrow (XO-)$

Moorse Code

<base>back

International Morse Code

- The length of a dot is one unit
- A dash is three units.
- The space between parts of the same letter is one unit.
 The space between letters is three units.
- The space between words is seven units.

Page 1 of 1

Wumpus World

N

ယ

4

Fuzzy Rules

Fuzzy Rules generated by learning using a hippocampal like fuzzy neural learning network implementing

a sound inference based on Compositional Rule Inference.

_	•	00	_	-	00	_	•	00	_	-	00	_	-	00	_	-	00		•	00	_	-	00	_	•	00	-	Q
L	_	_	•			60	600	60	_	_			-		00	600	8		_	_		-		60	00	60	2 3	B.
-	_	-	_		_	_	_	_	*	~		8	~	~	~	*			00	00	8	00		00	00	8	3	80
00	40	80	00	-	8	00	8	00	80	00	-	50	00	80	40	Ç6	8		8	00	8	9 8	8 7	8	8	8 1	•	Н
Ö	0	0	0	0	Ö	O	O	0	Ö	0	Ö	Ö	0	0	0	0	Ö	2.498	334	20.73	0.28	0.451	198	4.075	982.8	19.05	SE	ç
Ö	0	0	0	Ö	Ö	0	0	0	0	O	O	0	0	0	0	O	O	Ö	Ö	Ü	O	O	Ö	Ö	O	0	VE	THE SEC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	W	Sugne
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Н	H	Н	Н	Н	Н	H	Н	Н	۲	D
sietad	nietze:	sieted	pietac	nietzc	sieted	sietad	sietad	sietad	sietaci	nietoc	nietzci	sietaci	nietze:	sieted	sietac.	Deleted	Deleted	88	88	M	SΕ	M	88	88	M	88	ruie	Derived
_	E	60	_	¥	60	_	E	60	_	E	80	_	E	60	_	×	60	-	E	60	_	E	80	_	E	60	1	O
_	_	_	E	×	ĸ	00	00	00	_	_	-	ĸ	E	E	00	00	00	۰	_	_	ĸ	E	×	00	00	00	2	ĝ
_	_	_	_	_	_	_	_	_	E	E	×	×	E	×	E	×	×	00	00	00	00	00	00	60	00	00	3 4	
M	E	M	E	М	M	E	K	E	M	E	М	W	E	M	E	M	W	М	M	E	W	E	М	W	E	M	4	Ц
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	38	ç
27	2.288	0	2901	2.3	0	2 901	23		16.15	18.11	3.69	17.	ä	4.5	17.19	18.4	4.21		0	0	0	0		0	0	0	×	
71	8		9	88			98	Ц	15	=		48	8	29	ĕ	*	_	Ц	Ц		Ц		Ц	Ц		Ц	E	equence
2771 1.309	188.0	•	1.842	1.41	0	1.829	2 398 1.452	•	0	•	0.224	17.48 0.128	18.89 0.128	4.529 0.224	•	•	0.224	•	0	0	0	0	0	•	•	0	¥	8
Г	П	De			De	П	Г	D	1		П	П	П	Г	П		П	De	De	De	De	Da	De	De	De	De		P
Æ	á	Deleted	á	Æ	Deleted	á	Æ	Deleted	VΕ	á	Æ	VE.	á	Æ	á	VE	VE.	Deleted	Deleted	Deteted	Deleted	Deteted	leted.	Deleted	beted	Deleted	ė	Derived
L	s	600	_	V	00	_	M	60	L	s	80	L	s	60	_	W	(0)	F	¥	60	L	Z	80	L	×	60	1	
-	_	-	s	×	×	600	600	600	-	_	-	×	s	s	00	600	00	Н	_	_	×	s	×	600	00	60	1 2 3 4	ğ
r	_	-	_	۰	_	_	-	_	×	s	×	×	s	s	s	×	×	00	600	600	600	60	00	600	60	600	3	ř
L	_	L	_		L	_	L	_	L	r		L	_	L	_	L	L		L	_	L	_		L	_	L	4	Ľ
O	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	a	Ö	0	0	0	0	0	ū	O	0	0	8E	S
1.7	1823	0	¢	18	0	Ċ	1.823	_	2.686	2841	0.4	2.	2.488	0.444	2.688	2841	0.444		O	_	0	_	0		_		V	ě
1.796			1.798	1823		ė				-	0.444					41		Ô)	_)		1	O	_)	VE	SUMPER
18.43	12.08	0.401	19.28	12.79	0.401	20.55	13.38	0.401	1.793	1.793	0.643	1.921	1201	0.85	1.793	SEL	0.85	0	Ö	0	0	0	0	Ö	0	0	V	8
Г	П	Γ	Г	П	Г	П		П	Г	П	П	Г	П	Γ	П	П	П	D	D	0	D	0	D	D	0	D	Г	0
M	4	W	ś	¥	M	×	W	×	WE	×	M	WE	ř	W	×	VE.	W	Deleted	rule	Derived								

Part III – Knowledge and Reasoning

Agents that Reason Logically

- Knowledge-based Agents. Representations
- Propositional Logic. The Wumpus World.

7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Validity and Inference

Testing for validity

- Using truth-tables, checking all possible configurations
- e.g.: $((P \lor Q) \land \neg Q) \Rightarrow P$

True	False	False	True	True	True
True	True	True	True	False	True
True	False	False	True	True	False
True	False	True	False	False	False
	(P∨Q) ∧ ¬Q	D L	P < Q	۵	P

A method for sound inference

Build and check a truth-table for *Premises* ⇒ *Conclusion*

Rules of Inference

Sound inference rules

- Pattern of inference, that occur again and again
- Soundness proven once and for all (truth-table)

Classic rules of inference

Implication-Elimination, or Modus Ponens

$$\alpha \Rightarrow \beta, \alpha$$
 β

e.g. Cloudy ∧ Humid ⇒ Rain |= Rain Cloudy ∧ Humid

Rules of Inference

Classic rules of inference

And-Elimination

 $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$

$$\alpha_1, \alpha_2, \dots, \alpha_n$$

$$\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n$$

$$\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n$$

The resolution rule of inference Rules of Inference

Unit Resolution

Resolution

same as MP: $\stackrel{\bullet}{\longrightarrow}$ Q, P

 $\neg \beta \Rightarrow \alpha, \neg \beta$

 $\alpha \vee \beta$, $\neg \beta$

 $\alpha \vee \beta$, $\neg \beta \vee \gamma$ $\alpha \vee \gamma$

e.g. monday ∨ tuesday, ¬ monday |= tuesday

Truth-tabl resolutio for the

			3	5	Č	D		
True	True	True	True	False	False	False	False	α
True	True	False	False	True	True	False	False	β
True	False	True	False	True	False	True	False	γ
True	True	True	True	True	True	False	False	ανβ
<u>True</u>	False	True	<u>True</u>	True	False	True	True	¬ β∨γ
True	True	True	True	True	False	True	False	$\alpha \vee \gamma$

Implication rewrite rule

Equivalence Rules

Inference as implication

Equivalent notations, e.g. MP:

$$\alpha \Rightarrow \beta, \alpha$$

$$\alpha \Rightarrow \beta, \beta \mid -\beta$$
 $\alpha \Rightarrow \beta, \beta \mid =\beta$

$$((\alpha \Rightarrow \beta) \land \alpha) \Rightarrow \beta$$

Equivalence rules

– Associativity:

$$\alpha \wedge (\beta \wedge \gamma) \Leftrightarrow (\alpha \wedge \beta) \wedge \gamma$$

$$\alpha \lor (\beta \lor \gamma) \Leftrightarrow (\alpha \lor \beta) \lor \gamma$$

 $\alpha \land (\beta \lor \gamma) \Leftrightarrow (\alpha \land \beta) \lor (\alpha \land \gamma)$

$$\alpha \vee (\beta \wedge \gamma) \Leftrightarrow (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

$$\neg (\alpha \vee \beta) \Leftrightarrow \neg \alpha \wedge \neg \beta$$

$$\neg (\alpha \wedge \beta) \Leftrightarrow \neg \alpha \vee \neg \beta$$

Complexity of Inference

Proof by truth-table

- Complete
- The truth-table can always be written.
- Exponential time complexity
- A proof involving N proposition symbols requires 2^N rows.
- In practice, a proof may refer only to a small subset of the KB.

Monotonicity

Knowledge always increases

if
$$KB_1 = \alpha$$
 then $(KB_1 \cup KB_2) = \alpha$

Allows for local rules,

e.g. Modus Ponens $\alpha \Rightarrow \beta, \alpha / - \beta$

What is an issue with a monotonically increasing knowledge base? Propositional and first-order logic are monotonic.

Horn Sentences

- A particular sub-class of sentences
- Implication: $P_1 \wedge P_2 \wedge ... \wedge P_N \Rightarrow Q$ where $P_1, ... P_N$, Q are non-negated atoms
- Particular cases:
- $Q \Leftrightarrow (True \Rightarrow Q)$
- $(P_1 \lor P_2 \lor \ldots \lor P_N \Rightarrow Q) \Leftrightarrow (P_1 \Rightarrow Q) \land \ldots \land (P_N \Rightarrow Q)$
- $(P \Rightarrow Q_1 \land \dots \land Q_N) \Leftrightarrow (P \Rightarrow Q_1) \land \dots \land (P \Rightarrow Q_N)$
- (P⇒Q₁ ∨ . . . ∨ Q_N) cannot be represented
- Prolog, a logic programming language
- Horn sentences + Modus-Ponens Q:-P₁, P₂, ..., P_N
- Inference of polynomial time complexity

Part III – Knowledge and Reasoning

Agents that Reason Logically

- Knowledge-based Agents. Representations
- Propositional Logic. The Wumpus World.

7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

Building a Knowledge Base

Knowledge Engineering. – General Ontology.

An Agent for the Wumpus World

A reasoning agent

- Propositional logic as the "programming language"
- Knowledge base (KB) as problem representation
- Percepts
- Knowledge
- sentences
- Actions
- Rule of inference (e.g. Modus Ponens) as the algorithm that will find a solution

The Knowledge Base

TELLing the KB: percepts

- Syntax and semantics
- Symbol S11, meaning "there is a stench at [1,1]"
- Symbol B12, meaning "there is a breeze at [1,2]"

Percept sentences

– Partial list:

[Stench, nil, nil, nil, nil]

		2	ω	4
•	0 <	A S OK	W!	
	0K	ОК		
	Pi			
•				

The Knowledge Base

TELLing the KB: knowledge

- Rules about the environment
- "All squares adjacent to the wumpus have a stench."
 S12 ⇒ W11 ∨ W12 ∨ W22 ∨ W13
- "A square with no stench has no wumpus and adjacent squares have no wumpus either."
 ¬S11 ⇒ ¬W11 ∧ ¬W21 ∧ ¬W12
- $\neg S21 \Rightarrow \neg W11 \land \neg W21 \land \neg W22$ $\land \neg W31$ $\neg S12 \Rightarrow \neg W11 \land \neg W12 \land \neg W22$ $\land \neg W13$

[Stench , nil, nil, nil, nil]

0X 8	WI	
Ж		
	0	

Finding the Wumpus

- Checking the truth-table
- Exhaustive check: every row for which KB is true also has W13 true
- 12 propositional symbols, i.e. S11, S21, S12, W11, W21, W12, W22, W13, W31, B11, B21, B12
- $2^{12} = 4096$ rows
- > possible, but lengthy impossible for the
- Reasoning by inference complete problem

KB ⇒ W13

- Application of a sequence of inference rules (proof)
- Modus Ponens, And-Elimination, and Unit-Resolution

Proof for "KB ⇒ W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

\(\lambda \neg W22 \lambda \neg W31\)

R3:
$$\neg S12 \Rightarrow \neg W11 \land \neg W12$$

\(\lambda \neg W22 \lambda \neg W13\)

R4:
$$S12 \Rightarrow W11 \lor W12 \lor W22$$
 $\lor W13$

Inferences

Proof for "KB ⇒ W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

\(\lambda \neg W22 \lambda \neg W31\)

R3:
$$\neg S12 \Rightarrow \neg W11 \land \neg W12$$

 $\land \neg W22 \land \neg W13$

R4:
$$S12 \Rightarrow W11 \lor W12 \lor W22$$
 $\lor W13$

Inferences

< W11

Proof for "KB ⇒ W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

\(\lambda \neg W22 \lambda \neg W31\)

R3:
$$\neg S12 \Rightarrow \neg W11 \land \neg W12$$

\(\lambda \neg W22 \lambda \neg W13\)

R4:
$$S12 \Rightarrow W11 \lor W12 \lor W22$$
 $\lor W13$

nferences

From Knowledge to Actions

- TELLing the KB: actions
- Additional rules
- e.g. "if the wumpus is 1 square ahead then do not go forward"

A12 ∧ East ∧ W22 ⇒ ¬Forward

A12 ∧ North ∧ W13 ⇒ ¬Forward

:

- ASKing the KB
- Cannot ask "which action?" but "should I go forward?"

[Stench, nil, nil, nil, nil]

	<u>N</u>	<u>ω</u>	4
% <	A S OK	W!	
OK B	ОК		
Pi			

The Limits of Propositional Logic

A weak logic

- Too many propositions to TELL the KB
- e.g. the rule "if the wumpus is 1 square ahead then do not go forward" needs 64 sentences (16 squares x 4 orientations)!
- Result in increased time complexity of inference
- Handling change is difficult
- Need time-dependent propositional symbols e.g. A11 means "the agent is in square [1,1]" - when? at t = 0: A11-0; at t = 1: A21-1; at t = 2: A11-2
- Need to rewrite rules as time-dependent A12-0 \land East-0 \land W22-0 \Rightarrow ¬Forward-0 A12-2 \wedge East-2 \wedge W22-2 \Rightarrow ¬Forward-2

Summary

- Intelligent agents need ...
- Knowledge about the world, so as to take good decisions.
- Knowledge can be ...
- Defined using a knowledge representation language.
- Stored in a knowledge base in the form of sentences.
- Inferred, using an inference mechanism and rules.
- A representation language is defined by ...
- A syntax, which specify the structure of sentences, and
- A semantics, which specifies how the sentences relate to facts in the world.

Summary

Inference is ...

- The process of deducing new sentences from old ones.
- Sound if it derives true conclusions from true premises.
- Complete if it can derive all possible true conclusions.

· Logics ...

- Make different commitments about what the world is made of and what kind of beliefs we can have about facts.
- Are useful for the commitments they do not make

Propositional logic ...

- Commits only to the existence of facts.
- Has simple syntax and semantics and is therefore limited.

References

- Newell, A. (1982). The knowledge level. Artificial Intelligence. 18(1):82-127
- Quine, W. V. (1960). Word and Object. MIT Press, Cambridge Massachusetts
- Rosenschein, S. J. (1985). Formal theories of knowledge in Al and robotics. New Generation Computing, 3(4):345-357.
- Tarski, A. (1956). Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Oxford University Press, Oxford

Announcements

Example Classes starts next week. edventure – logbook (jotter book) And assignment for knowledge Download the worksheets from for introduction to prolog based system

logbook/jotter book and assignment 1 week after the lab session (5pm) Software project lab for submission.