11.4 The comparison tests

- 1. comparison test $a_n \leq b_n$
- 2. limit comparison test $\lim \frac{a_n}{b_n} = c$
- 3. estimate sums 大估包小估

0.1 Comparison test

Recall: Comparison Theorem: Continuous $f(x) \ge g(x) \ge 0$ for $x \ge a$,

$$\int_{a}^{\infty} f(x) \ dx \ \text{converges} \implies \int_{a}^{\infty} g(x) \ dx \ \text{converges}; \,$$
 大收就小收 $\int_{a}^{\infty} g(x) \ dx \ \text{diverges} \implies \int_{a}^{\infty} f(x) \ dx \ \text{diverges}.$ 小發就大發 (Attention: 反向不保證。)

Theorem 1 (Comparison Test)

Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive** terms, and $a_n \leq b_n$ for all n, then

- (i) If $\sum b_n$ is convergent, then $\sum a_n$ is convergent.
- (ii) If $\sum a_n$ is divergent, then $\sum b_n$ is divergent.

Proof. Let $\{s_n\}$ and $\{t_n\}$ be partial sums of $\sum a_n$ and $\sum b_n$, resp., then they are increasing (: positive).

(i) Let $\sum b_n = t$, then $s_n \le t_n \le t$, bounded above by t.

By the Monotone Convergence Theorem, $\{s_n\}$, and hence $\sum a_n$, converges.

(ii)
$$t_n \ge s_n \to \infty$$
 as $n \to \infty$, so $\sum b_n$ diverges.

Note: 1. 非負級數也可以。(有負的不行, 不會遞增。)

- 2. 不用通通 $a_n \leq b_n$, 只要 ultimately $(\exists N \in \mathbb{N} \ni n > N \implies a_n \leq b_n)$ 。
- 3. 反過來跟瑕積分一樣不保證。

Skill: 會找知道收斂/發散的級數來比, 兩個常用來比較的級數:

1.
$$p$$
-series $\sum \frac{1}{n^p}$ converges $\iff p > 1$.

2. geometric series
$$\sum ar^{n-1}$$
 converges $\iff |r| < 1$.

Example 0.1 Determine whether the series $\sum \frac{5}{2n^2+4n+3}$ converges or diverges.

(找級數) Let
$$a_n = \frac{5}{2n^2 + 4n + 3}$$
 and $b_n = \frac{5}{2n^2}$.

(比大小)
$$\frac{5}{2n^2+4n+3} < \frac{5}{2n^2}$$
 for n , and

(驗收發)
$$\sum_{n=0}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=0}^{\infty} \frac{1}{n^2}$$
, a p-series with $p=2>1$, converges.

(做判斷) By the Comparison Test,
$$\sum \frac{5}{2n^2 + 4n + 3}$$
 converges.

[Integral Test]
$$\int_{1}^{\infty} \frac{5}{2x^2 + 4x + 3} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{5}{2(x+1)^2 + 1} dx$$

$$= \lim_{t \to \infty} \int_{1}^{t} \frac{5}{\sqrt{2}} \frac{d[\sqrt{2}(x+1)]}{[\sqrt{2}(x+1)]^{2} + 1} = \lim_{t \to \infty} \left[\frac{5}{\sqrt{2}} \tan^{-1}(\sqrt{2}(x+1)) \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{5}{\sqrt{2}} (\tan^{-1}(\sqrt{2}(t+1)) - \tan^{-1}2\sqrt{2}) \right] = \frac{5}{\sqrt{2}} (\frac{\pi}{2} - \tan^{-1}2\sqrt{2}).$$

Example 0.2 Test the series $\sum \frac{\ln n}{n}$ for convergence or divergence.

(Integral Tested: divergent.)

(找級數) Let
$$b_n = \frac{\ln n}{n}$$
 and $a_n = \frac{1}{n}$.

(打板數) Let
$$b_n = \frac{\ln n}{n}$$
 and $a_n = \frac{1}{n}$.

(比大小) $\therefore \ln n > 1$ for $n \ge 3$, $\frac{1}{n} < \frac{\ln n}{n}$, and

(驗收發) $\sum_{n=1}^{\infty}$ is a p-series with p=1 (harmonic series), diverges.

(做判斷) By the Comparison Test,
$$\sum \frac{\ln n}{n}$$
 diverges.

Skill: 使用技巧: 要證收斂, 找比他大且收斂; 要證發散, 找比他小且發散。

Theorem 2 (Limit Comparison Test)

Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive** terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both diverge. (比值極限存在而且正, 同收同餐。)

Proof. $\forall \ 0 < m < c < M \ \exists \ N > 0 \ \ni n > N \implies 0 < m < \frac{a_n}{b_n} < M$. If $\sum b_n$ converges, so does $\sum Mb_n$ and hence $\sum a_n$; if $\sum b_n$ diverges, so does $\sum mb_n$ and hence $\sum a_n$ by the Comparison Test.

Note: 如果極限是 0 或 ∞ , 只能保證一邊。 (Exercise 11.4.40 & 11.4.41) If c = 0 (想像 $a_n \ll b_n$), $\sum b_n$ converges $\Longrightarrow \sum a_n$ converges. If $c = \infty$ (想像 $a_n \gg b_n$), $\sum b_n$ diverges $\Longrightarrow \sum a_n$ diverges.

Example 0.3 Test the series $\sum \frac{1}{2^n-1}$ for convergence or divergence.

 $Let\ a_n=\frac{1}{2^n-1}.$ $(\int_1^\infty \frac{1}{2^x-1}\ dx=?\ \text{Tespip}$ 不會算就不要用 $Integral\ Test!)$ (找級數) $Let\ b_n=\frac{1}{2^n}.$ $(\sum b_n\ \text{收斂},\ \text{但是}\ \frac{1}{2^n-1}>\frac{1}{2^n}\ (\text{小收}),$ 大小方向相反不能用 $Comparison\ Test!)$ Dio: 無駄無駄 (沒用沒用)... $(求極限)\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{1/(2^n-1)}{1/2^n}=\lim_{n\to\infty}\frac{1}{1-1/2^n}=\frac{1}{1-0}=1(>0).$ (驗收發) $\therefore \sum \frac{1}{2^n}$ is a geometric series with $|r|=\left|\frac{1}{2}\right|<1$, converges. \blacksquare

Additional: 1.
$$\int \frac{dx}{2^x - 1} = \lg\left(\frac{2^x - 1}{2^x}\right) + C$$
, $\int_1^\infty \frac{dx}{2^x - 1} = 1$.
2. Choose $b_n = \frac{1}{2^{n-1}} \ge \frac{1}{2^n - 1}$ & $\sum \frac{1}{2^{n-1}} = 2$. (找對人就可比。)

Skill: 爲什麼找 $\frac{1}{2^n}$? 因爲當 n 很大, $2^n - 1 \approx 2^n$. 用這招找到的 b_n 得到的比值極限通常都是 1(>0)。

Example 0.4 Determine whether the series $\sum \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ converges or diverges.

$$Let \ a_n = \frac{2n^2 + 3n}{\sqrt{5 + n^5}}. \quad When \ n \ large, \ 2n^2 + 3n \approx 2n^2, \ \sqrt{5 + n^5} \approx \sqrt{n^5},$$

$$\frac{2n^2 + 3n}{\sqrt{5 + n^5}} \approx \frac{2n^2}{\sqrt{n^5}} = \frac{2}{\sqrt{n}}. \quad (找級數) \ Choose \ b_n = \frac{2}{\sqrt{n}}.$$

$$(求極限) \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{2n^2 + 3n}{\sqrt{5 + n^5}}}{2/\sqrt{n}} = \lim_{n \to \infty} \frac{2 + 3/n}{2\sqrt{5/n^5 + 1}} = \frac{2 + 3 \cdot 0}{2\sqrt{5 \cdot 0 + 1}} = 1.$$

$$(驗收發) : \sum \frac{1}{\sqrt{n}} \text{ is a p-series with } p = \frac{1}{2} < 1, \text{ diverges.}$$

(做判斷) By the Limit Comparison Test, $\sum \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ diverges.

0.2 Estimate sums

當 $a_n \leq b_n$ for n, 且是用 Comparison Test 以 $\sum_n b_n$ 收斂來證明 $\sum_n a_n$ 收斂。 Let $s_n = \sum_{i=1}^n a_n$, $s = \sum_i a_n$, $R_n = s - s_n$, $t_n = \sum_{i=1}^n b_n$, $t = \sum_i b_n$, $t = \sum_i b_n$, $t = \sum_i b_n$. Then $t = \sum_i b_n = \sum_$

- 1. 如果 $\sum b_n$ 剛好是 p-series (p > 1), 就可以用 T_n 的 Estimate for the Integral Test 去幫忙估計 R_n : $R_n \le T_n \le \int_n^\infty \frac{1}{x^p} dx = \frac{1}{(p-1)n^{p-1}}$.
 - 2. 如果剛好是 geometric series (|r| < 1) 怎麼估? 用積分? 錯!

直接算:
$$T_n = \sum_{i=n+1}^{\infty} ar^{i-1} = \frac{ar^n}{1-r}$$
.

Example 0.5 Use s_{100} to approximate $\sum \frac{1}{n^3+1}$. Estimate the error involved in the approximation.

$$a_n = \frac{1}{n^3 + 1} < \frac{1}{n^3} = b_n, \ R_{100} \le T_{100} \le \int_{100}^{\infty} \frac{1}{x^3} \ dx = \frac{1}{2(100)^2} = 0.00005.$$

$$\sum \frac{1}{n^3 + 1} \approx s_{100} \approx 0.6864538 \ \text{with error less than } 0.00005.$$

Additional: Series with ln n

Recall: p-series $\sum \frac{1}{n^p}$ converges $\iff p > 1$.

 $\lim_{n\to\infty} a_n \neq 0 \text{ diverges}.$: Test for Divergence

 $\int_{\cdot}^{\infty} f(x) \ dx \iff \sum_{i=1}^{\infty} f(n).$: Integral Test IT

大收就小收, 小發就 CT: Comparison Test

 $\lim_{n \to \infty} \frac{a_n}{b_n} = \begin{cases} c > 0 & \sum b_n \iff \sum a_n \\ = 0 & \sum b_n \not\uparrow \sum a_n \not\uparrow \searrow \end{cases} .$ $= \infty \quad \sum b_n \not\downarrow \sum a_n \not\downarrow \searrow$: Limit Comparison Test

1.
$$\sum_{n=3}^{\infty} \frac{1}{\ln \ln n}$$
 diverges

 $\boxed{ 1. \sum_{n=3}^{\infty} \frac{1}{\ln \ln n} \text{ diverges} }$ $\mathbf{Proof.} \ \ln \ln n < \ln n < n, \ \frac{1}{\ln \ln n} > \frac{1}{\ln n} > \frac{1}{n}.$

$$\frac{\because \sum_{n=3}^{\infty} \frac{1}{n} \text{ diverges, } \therefore \sum_{n=3}^{\infty} \frac{1}{\ln \ln n} \text{ (also } \sum_{n=3}^{\infty} \frac{1}{\ln n} \text{) diverges by CT.}}{2. \sum_{n=2}^{\infty} \frac{1}{(\ln n)^p} \text{ diverges for all } p}$$

2.
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^p}$$
 diverges for all p

Proof. For $p \le 0$, $\lim_{n \to \infty} \frac{1}{(\ln n)^p} \ne 0$, diverges by T4D.

For
$$p > 0$$
, let $b_n = \frac{1}{n}$. $\lim_{n \to \infty} \frac{1/(\ln n)^p}{1/n} = \lim_{n \to \infty} \frac{n}{(\ln n)^p} \stackrel{l'H}{=} \lim_{n \to \infty} \frac{n}{p(\ln n)^{p-1}}$
 $\stackrel{l'H}{=} \cdots \stackrel{l'H}{=} \lim_{n \to \infty} \frac{n(\ln n)^{\lceil p \rceil - p}}{p(p-1)\cdots(p-\lceil p \rceil + 1)} = \infty$. (ℓ 'Hospital's Rule $\times \lceil p \rceil$)

$$\stackrel{l'H}{=} \cdots \stackrel{l'H}{=} \lim_{n \to \infty} \frac{n(\ln n)^{|p|-p}}{p(p-1)\cdots(p-\lceil p\rceil+1)} = \infty. \ (\ell'\text{Hospital's Rule} \times \lceil p\rceil)$$

$$\therefore \sum_{n=2}^{\infty} \frac{1}{n}$$
 diverges, $\therefore \sum_{n=2}^{\infty} \frac{1}{(\ln n)^p}$ diverges by LCT.

[Another proof]

$$p > 0, \frac{1}{p} \ln n = \ln n^{1/p} < n^{1/p}, \ln n < pn^{1/p}, \frac{1}{(\ln n)^p} > \frac{1}{p^p n}.$$

$$\therefore \sum_{n=2}^{\infty} \frac{1}{n}$$
 diverges, $\therefore \sum_{n=2}^{\infty} \frac{1}{(\ln n)^p}$ diverges by CT.

Skill: When n large (> e), $1 < \ln n = p \ln n^{1/p} < pn^{1/p}$ for p > 0.

$$\begin{array}{c} 3. \; (\text{In-series}) \displaystyle \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \; \text{converges} \; \Longleftrightarrow \; p > 1 \end{array} \text{(Exercise } 11.3.29) \\ \mathbf{Proof.} \; f(x) = \frac{1}{x(\ln x)^p} \; \bar{\mathbb{E}} \mathbb{E} \bar{\mathbb{E}} \bar{\mathbb{E}} \; \text{for} \; x > e^{-p}. \; (f' = -\frac{(p + \ln x)}{x^2(\ln x)^{p+1}}). \\ \int_{2}^{\infty} \frac{1}{x(\ln x)^p} \; dx = \begin{cases} \displaystyle \lim_{n \to \infty} \frac{(\ln x)^{1-p}}{1-p} \Big|_{2}^{t} = \infty & \text{if } p = 1, \\ \displaystyle \lim_{n \to \infty} \frac{1}{(p-1)(\ln x)^{p-1}} \Big|_{2}^{t} = \frac{1}{(p-1)(\ln 2)^{p-1}} & \text{if } p > 1. \end{cases} \\ \vdots \int_{2}^{\infty} \frac{1}{x(\ln x)^p} \; dx \; \left(\begin{array}{c} \displaystyle \lim_{n \to \infty} \int_{\ln x}^{\infty} \frac{du}{u^p} \right) \; \Longleftrightarrow \; \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \; \text{by IT.} \end{array} \right] \\ 4. \; \sum_{n=1}^{\infty} \frac{\ln n}{n^p} \; \text{converges} \; \Longleftrightarrow \; p > 1 \end{array} \text{(Exercise } 11.3.32) \\ \mathbf{Proof.} \; f(x) = \frac{\ln x}{x^p} \; \bar{\mathbf{E}} \; \bar{\mathbf{E}}$$