SEG12 - Atividades - Semana 1

Francisco Marcelo, Marcelo Karam e Felipe Scarel

06-08-2018

Configuração preliminar das máquinas

1) Topologia geral de rede

A figura abaixo mostra a topologia de rede que será utilizada durante este curso. Nos tópicos que se seguem, iremos verificar que a importação de máquinas virtuais, configurações de rede e conectividade estão funcionais antes de prosseguir.

Figura 1: Topologia de rede do curso

2) Configuração do Virtualbox

1. Primeiramente, verifique se todas as máquinas virtuais foram importadas. Você deve ter três VMs, com as seguintes configurações:

Table 1. VMs disponíveis no Virtualbox

Nome VM	Memória
Server_Linux_	512 MB
Client_Linux_	512 MB
Win7-padrao	1024 MB

2. Agora, configure as redes do Virtualbox. Acesso o menu *File > Host Network Manager* e crie as seguintes redes:

Table 2. Redes host-only no Virtualbox

Rede	Endereço IPv4	Máscara de rede	Servidor DHCP
Virtualbox Host-Only Ethernet Adapter	192.168.0.254	255.255.255.0	Desabilitado
Virtualbox Host-Only Ethernet Adapter #2	172.16.0.254	255.255.255.0	Desabilitado

3. Finalmente, configure as interfaces de rede de cada máquinas virtual. Para cada VM, acesse *Settings > Network* e faça as configurações que se seguem:

Table 3. Interfaces de rede das máquinas virtuais

VM Nome	Interface	Conectado a	Nome da rede
Server_Linux_	Adapter 1	Bridged Adapter	Placa de rede física do <i>host</i>
	Adapter 2	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter
	Adapter 3	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter #2
Client_Linux_	Adapter 1	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter
Win7-padrao	Adapter 1	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter #2

3) Configuração da máquinas virtuais

Agora, vamos configurar a rede de cada máquina virtual de acordo com as especificações da topologia de rede apresentada no começo deste capítulo.

1. Primeiramente, ligue a máquina Server_Linux e faça login como usuário root e senha rnpesr. A seguir, edite o arquivo /etc/network/interfaces como se segue, reinicie a rede e verifique o

funcionamento:

```
# hostname
servidor
# whoami
root
# cat /etc/network/interfaces
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
auto eth0 eth1 eth2
iface eth0 inet dhcp
iface eth1 inet static
  address 192.168.0.10
  netmask 255.255.255.0
iface eth2 inet static
  address 172.16.0.10
  netmask 255.255.255.0
# systemctl restart networking
# ip a s | grep '^ *inet '
    inet 127.0.0.1/8 scope host lo
    inet 10.0.0.204/24 brd 10.0.0.255 scope global eth0
    inet 192.168.0.10/24 brd 192.168.0.255 scope global eth1
    inet 172.16.0.10/24 brd 172.16.0.255 scope global eth2
```

2. Faça o mesmo para a máquina *Client_Linux*:

```
# hostname
cliente
# whoami
root
# cat /etc/network/interfaces
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
       address 192.168.0.20
        netmask 255.255.255.0
       gateway 192.168.0.10
# systemctl restart networking
# ip a s | grep '^ *inet '
   inet 127.0.0.1/8 scope host lo
   inet 192.168.0.20/24 brd 192.168.0.255 scope global eth0
```

3. A máquina *Win7-padrao* será muito pouco usada neste curso, apenas em uma atividade de configuração do servidor DHCP. Verifique apenas que a configuração IPv4 da interface de rede está ajustada para obter endreço IP e servidor DNS automaticamente, como mostra a imagem a seguir:

Figura 2: Configuração de rede da máquina Win7-padrao

4) Configuração de firewall e NAT

O passo final é garantir que as máquinas *Client_Linux* e *Win7-padrao* consigam acessar a internet através da máquina *Server_Linux*, que está atuando como um firewall/roteador na topologia de rede do curso.

1. Na máquina *Server_Linux*, verifique que o firewall de host está limpo e permitindo qualquer tipo de conexão:

```
# hostname
servidor
# iptables -L -vn
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target
                      prot opt in
                                      out
                                                                   destination
                                              source
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target
                    prot opt in
                                    out
                                                                   destination
                                              source
Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target
                                                                   destination
                     prot opt in
                                      out
                                              source
# iptables -L -vn -t nat
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)
                                                                   destination
pkts bytes target prot opt in
                                      out
                                              source
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
                                                                   destination
pkts bytes target
                      prot opt in
                                      out
                                              source
Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
                                                                   destination
pkts bytes target
                      prot opt in
                                      out
                                              source
Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target
                      prot opt in
                                      out
                                              source
                                                                   destination
```

2. A seguir, habilite o repasse de pacotes entre interfaces descomentando a linha net.ipv4.ip_forward=1 no arquivo /etc/sysctl.conf. A seguir, execute # sysctl -p:

```
# sed -i 's/^#\(net.ipv4.ip_forward\)/\1/' /etc/sysctl.conf

# grep 'net.ipv4.ip_forward' /etc/sysctl.conf
net.ipv4.ip_forward=1

# sysctl -p
net.ipv4.ip_forward = 1
```

3. Finalmente, habilite IP *masquerading* no firewall através do comando # iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE:

```
# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

# iptables -L POSTROUTING -vn -t nat
Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
    0 0 MASQUERADE all -- * eth0 0.0.0.0/0 0.0.0.0/0
```

4. Acesse a máquina *Client_Linux* e faça um teste de conectividade. Você deve conseguir ping com um *host* da internet, como 8.8.8.8, por exemplo:

```
$ ping -c3 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=113 time=31.9 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=113 time=32.1 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=113 time=33.2 ms
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 31.982/32.482/33.291/0.595 ms
```

5. Torne permanente a configuração de *masquerading* na máquina *Server_Linux* editando o arquivo /etc/rc.local e adicionando a linha iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE antes da linha exit 0 ao final do arquivo.

```
# cat /etc/rc.local | grep -v '^# \|^#$\|^$'
#!/bin/sh -e
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
exit 0
```

Introdução ao sistema operacional Linux

As atividades desta sessão serão realizadas na máquina virtual Client_Linux.

1) Identificando bits de permissão

1. Verifique as permissões do diretório /tmp. O que você percebe de diferente em relação às permissões de *outros*?

```
$ ls -lha / | grep 'tmp$'
drwxrwxrwt 7 root root 4,0K Ago 7 01:01 tmp
```

O sticky bit está definido: t.

2. Considerando que há permissão de escrita no diretório para todos, o que o impediria de remover um arquivo de outra pessoa?

```
$ rm -f /tmp/file_root
rm: não foi possível remover "/tmp/file_root": Operação não permitida
```

Com o sticky bit definido somente o dono de um arquivo pode removê-lo.

2) Identificando e entendendo hard links

O número de *links* (*link counter*) que apontam para um arquivo é mantido em seu *inode*. Esse contador é utilizado pelo sistema para controlar a liberação dos blocos do disco alocados ao arquivo quando o contador atingir o valor zero ,ou seja, quando nenhum outro arquivo estiver apontando para o *inode*.

1. Qual o número de links do seu diretório home?

```
$ ls -lha /home/ | egrep ' aluno$'
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 01:45 aluno
```

Como visto acima, 2. Esse número não é fixo, mas depende do conteúdo do diretório. Um diretório recém criado, que não tenha nenhum conteúdo possui dois *links* (um referente ao próprio diretório e outro referente à entrada especial ".").

2. Crie o arquivo arqses1ex3 no seu diretório home. Utilize o comando touch.

```
$ touch ~/arqses1ex3
$ ls /home/aluno
arqses1ex3
```

3. Verifique o número de *links* do arquivo arqses1ex3 e anote o resultado. Você pode utilizar o redirecionamento de saída para registrar esse resultado no próprio arquivo criado. Essa informação será necessária para uma atividade posterior.

```
$ mytemp=$(mktemp) && ls -lha ~/arqses1ex3 | tee nlinks && awk '{print $2}' nlinks
> $mytemp && mv $mytemp nlinks
-rw-r--r-- 1 aluno aluno 0 Ago 7 01:52 /home/aluno/arqses1ex3
$ cat nlinks
1
```

O arquivo arqses1ex3 possui apenas um link.

4. Verifique se mudou o número de links do seu diretório home.

```
$ ls -lha /home/ | egrep ' aluno$'
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 02:05 aluno
```

O número de links continuou o mesmo.

5. Crie um diretório com o nome de dirses1ex3, também no seu diretório *home*.

```
$ mkdir /home/aluno/dirses1ex3
$ ls ~
arqses1ex3 dirses1ex3 nlinks
```

6. Mais uma vez, verifique o número de *links* do seu diretório *home*. Ele mudou? Você saberia dizer por quê?

```
$ ls -lha /home/ | egrep ' aluno$'
drwxr-xr-x 3 aluno aluno 4,0K Ago 7 02:11 aluno
```

O número de *links* aumentou em uma unidade, por conta de entrada especial ".." presente no diretório /home/aluno/dirses1ex3, que aponta para o diretório /home/aluno.

7. Qual o número de links do diretório dirses1ex3?

```
$ ls -lha ~ | egrep ' dirses1ex3$'
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 02:11 dirses1ex3
```

Como visto acima, 2.

8. Verifique qual opção deve ser passada ao comando ls para que ele liste as informações do diretório direselex3 e não o seu conteúdo.

```
$ ls -dl ~/dirses1ex3/
drwxr-xr-x 2 aluno aluno 4096 Ago 7 02:11 /home/aluno/dirses1ex3/
```

Devem ser passadas as opções -d e -l.

9. Você saberia explicar por que o número de links do diretório dirses1ex3 é maior que um?

Os dois *links* são relativos ao próprio diretório. Um aponta o caminho direto /home/aluno → /home/aluno/dirses1ex3 e o outro corresponde à entrada especial ".", presente no próprio diretório /home/aluno/dirses1ex3.

3) Conhecendo diferenças entre *hard link* e *symbolic link*

Foi explicada a importância dos *links* criados com o comando ln. Para criar um *symbolic link*, a opção -s deve ser informada na linha de comando. Consulte as páginas do manual para conhecer outras opções.

1. No seu diretório de trabalho, crie um *hard link* para o arquivo arqses1ex3. O nome do arquivo criado deverá ser hosts.hard.

```
$ ln /home/aluno/arqses1ex3 /home/aluno/hosts.hard
$ ls ~
arqses1ex3 dirses1ex3 hosts.hard nlinks
```

2. Verifique agora o número de links do arquivo arqses1ex3 e compare com aquele obtido na atividade 2. Explique a diferença.

```
$ ls -lha /home/aluno/arqses1ex3 | awk '{print $2}'
2
$ cat nlinks
1
```

O número de links foi aumentado de 1 para 2 devido à criação do link hosts.hard.

3. Crie um symbolic link para o arquivo arqses1ex3, que deverá se chamar hosts.symbolic.

```
$ ln -s /home/aluno/arqses1ex3 /home/aluno/hosts.symbolic
$ ls
arqses1ex3 dirses1ex3 hosts.hard hosts.symbolic nlinks
```

4. O número de *links* do arquivo arqses1ex3 aumentou?

```
$ ls -lha /home/aluno/arqses1ex3
-rw-r--r- 2 aluno aluno 0 Ago 7 01:52 /home/aluno/arqses1ex3
```

Não, não aumentou.

5. Caso não tenha aumentado, por que isso aconteceu, considerando que foi criado um *link* para ele?

Porque o symbolic link aponta para outro inode.

6. Qual o tamanho do arquivo hosts.symbolic?

```
$ du -sb ~/hosts.symbolic
22 /home/aluno/hosts.symbolic
```

Como mostrado acima, 22 bytes.

7. Você percebe alguma correlação entre o tamanho e o arquivo para o qual ele aponta?

```
$ ls -d /home/aluno/arqses1ex3 | tr -d '\n' | wc -c
22
```

Esse tamanho representa o número de caracteres presentes no *path* completo do arquivo original linkado, sendo cada caractere representado por 1 byte.

4) Trabalhando com hard link e symbolic link

1. Se o arquivo original arqses1ex3 fosse removido, o que aconteceria se tentássemos acessá-lo pelo *hard link*? E pelo *symbolic link*?

Pelo *hard link* conseguiríamos acessar o conteúdo do arquivo normalmente. Já pelo *symbolic link* não conseguiríamos acessar o conteúdo do arquivo, uma vez que o mesmo é somente uma referência para o arquivo original.

2. Depois de responder a essas questões, remova o arquivo criado (arqses1ex3) e verifique se as suas respostas estão corretas.

```
$ rm arqses1ex3

$ ls -l hosts.hard
-rw-r--r-- 1 aluno aluno 0 Ago 7 01:52 hosts.hard
$ ls -l hosts.symbolic
lrwxrwxrwx 1 aluno aluno 22 Ago 7 02:38 hosts.symbolic -> /home/aluno/arqses1ex3

$ cat hosts.hard
$ cat hosts.symbolic
cat: hosts.symbolic: Arquivo ou diretório não encontrado
```

As respostas acima estão corretas.

5) Conhecendo algumas limitações do hard link

1. Crie um arquivo chamado arqses1ex6. Em seguida, crie um *hard link* para esse arquivo com o nome link-arqses1ex6 no diretório /tmp. O que aconteceu? Por quê? Como resolver esse problema?

Para que esta atividade tenha efeito, o diretório /tmp deverá ter sido criado numa partição diferente da partição onde se encontra o *home* do usuário. Caso essa situação não ocorra, verifique se existe o diretório /var/tmp e veja se ele está em outra partição. Se for o caso, use este último para fazer o exercício.

```
$ touch ~/arqses1ex6
$ ln ~/arqses1ex6 /tmp/link-arqses1ex6
ln: failed to create hard link "/tmp/link-arqses1ex6" => "/home/aluno/arqses1ex6":
Link entre dispositivos inválido

$ df -h | sed -n '1!p' | egrep -v '^tmpfs |^udev ' | awk '{printf "%s\t mounted on:
%s\n", $6, $1}'
/ mounted on: /dev/sda1
/tmp mounted on: /dev/sda6
```

Não foi possível criar o hard link, porque o diretório /tmp está em outra partição.

6) Criando links para diretórios

Crie, no seu diretório *home*, um *link* simbólico para o diretório /usr/bin com o nome de link-bin. Com o *link* criado, execute o seguinte:

1. Mude para o diretório link-bin.

```
$ ln -s /usr/bin /home/aluno/link-bin ; cd link-bin
$ pwd
/home/aluno/link-bin
```

2. Agora, vá para o diretório pai (utilize a notação ".."). Você saberia explicar por que se encontra no seu diretório *home* e não no diretório /usr?

```
$ cd ..
$ pwd
/home/aluno
```

Porque o *link* simbólico é apenas uma referência para o diretório.

7) Alterando permissões de arquivos e diretórios

O comando chmod é utilizado para modificar as permissões de um arquivo. Utilizando a notação octal, execute a seguinte sequência:

1. Modifique a permissão do seu diretório *home* de modo a retirar a permissão de escrita do seu dono.

```
$ chmod 555 /home/aluno
$ ls -ld /home/aluno
dr-xr-xr-x 3 aluno aluno 4096 Ago 7 03:38 /home/aluno
```

2. Verifique as permissões associadas ao arquivo arqses1ex6. Você tem permissão para escrever nesse arquivo? O grupo tem?

```
$ ls -lha ~/arqses1ex6
-rw-r--r-- 1 aluno aluno 0 Ago 7 02:55 /home/aluno/arqses1ex6
```

Somente o dono do arquivo tem permissão para escrever no mesmo.

3. Tente remover o arquivo arqses1ex6. Você conseguiu? Em caso negativo, você sabe explicar o motivo?

```
$ rm ~/arqses1ex6
rm: não foi possível remover "/home/aluno/arqses1ex6": Permissão negada
```

Não, porque o diretório /home/aluno está sem permissão de escrita para o dono.

4. Modifique as permissões do arquivo arqses1ex6 de forma a retirar a permissão de escrita para o dono e colocá-la para o grupo.

```
$ chmod 464 ~/arqses1ex6
$ ls -ld ~/arqses1ex6
-r--rw-r-- 1 aluno aluno 0 Ago 7 02:55 /home/aluno/arqses1ex6
```

5. Com o uso de redirecionamento, tente copiar o conteúdo do seu diretório *home* para dentro do arquivo arqses1ex6.

```
$ ls -lha /home/aluno > /home/aluno/arqses1ex6
-bash: /home/aluno/arqses1ex6: Permissão negada
```

Apresentou erro de permissão de gravação no diretório por parte do dono.

6. Torne a colocar a permissão para escrita no seu diretório *home* para o dono.

```
$ chmod 755 /home/aluno
$ ls -ld ~
drwxr-xr-x 3 aluno aluno 4096 Ago 7 03:38 /home/aluno
```

8) Atribuindo as permissões padrão

1. Crie arquivos (arq1ses1ex9, arq2ses1ex9, etc.) e diretórios (dir1ses1ex9, dir2ses1ex9, etc.) em seu diretório *home*, após definir cada uma das seguintes *umasks*: 000; 002; 003; 023; 222; 022. Em seguida, observe as permissões que foram associadas a cada um dos arquivos e diretórios.

```
$ umask 000 ; touch arq1ses1ex9 ; mkdir dir1ses1ex9
$ umask 002 ; touch arq2ses1ex9 ; mkdir dir2ses1ex9
$ umask 003 ; touch arg3ses1ex9 ; mkdir dir3ses1ex9
$ umask 023 ; touch arq4ses1ex9 ; mkdir dir4ses1ex9
$ umask 222 ; touch arg5ses1ex9 ; mkdir dir5ses1ex9
$ umask 022 ; touch arq6ses1ex9 ; mkdir dir6ses1ex9
$ ls -lha /home/aluno | egrep 'arg[1-6]ses1ex9|dir[1-6]ses1ex9'
-rw-rw-rw- 1 aluno aluno
                           0 Ago 7 03:50 arg1ses1ex9
-rw-rw-r-- 1 aluno aluno
                           0 Ago 7 03:50 arg2ses1ex9
-rw-rw-r-- 1 aluno aluno
                           0 Ago 7 03:50 arg3ses1ex9
-rw-r--r-- 1 aluno aluno
                           0 Ago 7 03:52 arg4ses1ex9
-r--r--r-- 1 aluno aluno
                           0 Ago 7 03:52 arg5ses1ex9
-rw-r--r-- 1 aluno aluno
                           0 Ago 7 03:52 arq6ses1ex9
drwxrwxrwx 2 aluno aluno 4,0K Ago 7 03:50 dir1ses1ex9
drwxrwxr-x 2 aluno aluno 4,0K Ago 7 03:50 dir2ses1ex9
drwxrwxr-- 2 aluno aluno 4,0K Ago 7 03:50 dir3ses1ex9
drwxr-xr-- 2 aluno aluno 4,0K Ago 7 03:52 dir4ses1ex9
dr-xr-xr-x 2 aluno aluno 4,0K Ago 7 03:52 dir5ses1ex9
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 03:52 dir6ses1ex9
```

9) Entendendo as permissões padrões

1. Na execução do exercício anterior, você saberia explicar por que, ainda que utilizando a mesma *umask*, as permissões associadas ao arquivo criado diferem das do diretório?

O comando umask trabalha de forma diferente com arquivos e diretórios. Por motivos de segurança um um novo arquivo nunca recebe a permissão de execução quando da sua criação.

Usuários e grupos

As atividades desta sessão serão realizadas na máquina virtual Client_Linux.

1) Criando contas de usuários

Uma das atividades que fazem parte da rotina diária de um administrador de sistemas é o gerenciamento de contas de usuários. Frequentemente, usuários são criados, modificados, desabilitados ou excluídos do sistema.

1. Descubra se o sistema faz uso de *shadow passwords* ou se ainda utiliza o esquema tradicional.

```
$ ls -ld /etc/gshadow /etc/shadow
-rw-r---- 1 root shadow 666 Ago 5 16:52 /etc/gshadow
-rw-r---- 1 root shadow 1125 Ago 5 16:51 /etc/shadow
```

O aluno deve verificar se os arquivos /etc/shadow e /etc/gshadow existem.

- 2. Crie uma conta para você no sistema, seguindo os passos descritos na aula teórica e no material didático.
 - Editar o arquivo /etc/group e inserir uma nova linha com os parâmetros relativos ao grupo do novo usuário:
 - Nome do grupo;
 - Senha ("x");
 - GID;
 - Membros do grupo.

```
marcelo:x:1001:
```

- Editar o arquivo /etc/gshadow e inserir uma nova linha com os parâmetros relativos ao grupo do novo usuário:
 - Nome do grupo;
 - Senha criptografada do grupo ("!");
 - Administradores do grupo;
 - Membros do grupo.

```
marcelo:!::
```

 Editar o arquivo /etc/passwd e inserir uma nova linha com os parâmetros relativos à conta do novo usuário:

- Nome do usuário;
- Senha ("x");
- UID;
- GID;
- GECOS: campo com comentários informativos do usuário;
- Diretório *home*;
- Shell de login.

```
marcelo:x:1001:1001:,,,:/home/marcelo:/bin/bash
```

- Editar o arquivo /etc/shadow e inserir uma nova linha os parâmetros relativos à conta do novo usuário:
 - Nome do usuário;
 - Senha criptografada: inserir valor "*", que será alterado a seguir;
 - *last_change*: número de dias desde a última alteração de senha;
 - minimum: número mínimo de dias até que senha possa ser alterada novamente;
 - maximum: número máximo de dias até que a senha deva ser alterada;
 - warning: número de dias para aviso de expiração de senha;
 - inactive: número de dias após expiração em que a senha será aceita;
 - *expire*: data para expiração da senha.

```
marcelo:*:16846:0:99999:7:::
```

• Definir uma senha para a nova conta, utilizando o comando passwd:

```
# passwd marcelo
```

 Copiar os arquivos de inicialização contidos no diretório /etc/skel para o diretório home do usuário.

```
# cp -r /etc/skel /home/marcelo
```

• Alterar o usuário e grupo donos dos arquivos na pasta *home* do novo usuário:

```
# chown -R marcelo /home/marcelo
```

- Configurar a *quota* de disco para o usuário, se o sistema utilizar *quotas*.
- · Testar se a conta foi criada corretamente, fazendo login no sistema e verificando se o

diretório corrente é o diretório home do usuário, definido no arquivo /etc/passwd.

• O *script shell* abaixo mostra uma maneira como os comandos executados manualmente nesta atividade poderiam ser automatizados por um administrador de sistemas:

```
#!/bin/bash
usage() {
 echo " Usage: $0 -u USER -p PASSWORD"
 exit 1
}
if [[ $EUID -ne 0 ]]; then
 echo " [*] Not root!" 1>82
 exit 1
fi
while getopts ":u:p:" opt; do
 case "$opt" in
   u)
     user=${OPTARG}
     ;;
   p)
     pass=${OPTARG}
   *)
     usage
     ;;
 esac
done
[ -z $user ] && { echo " [*] No user?"; usage; }
[ -z $pass ] && { echo " [*] No password?"; usage; }
if egrep "^${user}:" /etc/passwd &> /dev/null; then
 echo " [*] User exists!"
 exit 1
fi
lastgid=$( getent group | grep -v 'nogroup' | cut -d':' -f3 | sort -n | tail -n1
((lastgid++))
echo "$user:x:$lastgid:" >> /etc/group
echo "$user:!::" >> /etc/gshadow
lastuid=$( getent passwd | grep -v 'nobody' | cut -d':' -f3 | sort -n | tail -n1
((lastuid++))
```

```
echo "$user:x:$lastuid:$lastgid:,,,:/home/$user:/bin/bash" >> /etc/passwd

salt="$( cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 8 | head -n 1 )"

hpass="$( mkpasswd -m sha-512 -S $salt -s <<< $pass )"

echo "$user:$hpass:16842:0:999999:7:::" >> /etc/shadow

cp -r /etc/skel /home/$user

chown -R ${user}.${user} /home/$user
```

3. Agora, crie uma conta para o instrutor, utilizando, desta vez, o comando useradd. Faça com que a conta criada tenha sete dias de duração e com que o seu diretório de trabalho seja /NOME, onde NOME é o nome de usuário para o qual a conta deve ser aberta.

Consulte a página de manual do comando useradd e procure as informações necessárias para incluir a data de expiração (*expire date*) e criar o diretório de trabalho (*homedir*) em um local diferente do padrão, que é /home/NOME. Ainda, não se deve esquecer de escolher e atribuir uma senha para as contas que obedeça aos padrões de segurança apresentados no texto. Observe, ainda, que o diretório *home* não é criado automaticamente pelo comando useradd.

```
# useradd instrutor -d /instrutor -m -e 2018-08-07
# passwd instrutor
Digite a nova senha UNIX:
Redigite a nova senha UNIX:
passwd: senha atualizada com sucesso
```

Ao usar o comando useradd, o shell escolhido pelo sistema é o /bin/sh, por padrão. Para alterar o shell do usuário, pode-se editar o arquivo /etc/passwd diretamente, ou executar o comando chsh, mostrado abaixo:

```
\Omega
```

4. O comando useradd não é uma boa opção para informar a senha do usuário. Por quê?

Porque a senha criptografada deve ser digitada diretamente na linha de comando, podendo ser lida posteriormente via logs ou histórico do shell.

5. Faça um script que simule o comando newusers. Para isso, você deve criar um arquivo texto

contendo as informações a respeito dos usuários, mantendo o mesmo padrão dos arquivos lidos pelo comando newusers (para descobrir o formato, consulte a página de manual: \$ man 8 newusers). Como este arquivo conterá as senhas dos usuários, é importante removê-lo logo após a criação das contas.

Utilize a variável de sistema IFS (*Internal Field Separator*) em seu *script* para definir o caractere ":" como campo que separa as informações sobre as contas.

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash
TFS=':'
useradd="$( which useradd )"
groupadd="$( which groupadd )"
usage() {
  echo " Usage: $0 -f NEWUSERS FILE"
  echo " File syntax: username:password:uid:gid:gecos:homedir:shell"
  exit 1
}
if [[ $EUID -ne 0 ]]; then
  echo " [*] Not root!" 1>82
  exit 1
fi
while getopts ":f:" opt; do
  case "$opt" in
    f)
     file=${OPTARG}
    *)
      usage
      ;;
  esac
done
[ -z $file ] && { echo " [*] No file?"; usage; }
while read username password uid gid gecos homedir shell; do
  if egrep "^${username}:" /etc/passwd &> /dev/null; then
    echo " [*] User $username already exists, skipping..."
  elif getent passwd | cut -d':' -f3 | grep "$uid" &> /dev/null; then
    echo " [*] UID $uid already exists, skipping..."
  elif getent group | cut -d':' -f3 | grep "$gid" &> /dev/null; then
    echo " [*] GID $gid already exists, skipping..."
  else
    hpass="$( mkpasswd -m sha-512 -s <<< $pass )"
    $groupadd $username -g $gid
    $useradd $username -p $( mkpasswd -m sha-512 -s <<< $password) -u $uid -g $gid</pre>
-c "$gecos" -d $homedir -s $shell
    cp -r /etc/skel $homedir
    chown -R $username:$username $homedir
  fi
done < "$file"</pre>
```

Um arquivo de entrada com sintaxe válida para o script acima seria como se segue:

```
usuario1:rnpesr:1101:1101::/home/usuario1:/bin/bash
usuario2:rnpesr:1102:1102::/home/usuario2:/bin/bash
usuario3:rnpesr:1103:1103::/home/usuario3:/bin/bash
```

2) Verificando e modificando informações de contas de usuário

Após a criação de uma conta, é fundamental que o administrador verifique se ela foi criada corretamente.

1. Entre no sistema com o usuário criado no item 3 da atividade 1 e execute os comandos indicados para verificação de uma conta.

```
$ ssh instrutor@localhost
instrutor@localhost's password:

$ id
uid=1002(instrutor) gid=1002(instrutor) grupos=1002(instrutor)
$ pwd
/instrutor
$ ls -la
total 8
drwxr-xr-x 2 instrutor instrutor 4096 Ago 7 14:42 .
drwxr-xr-x 23 root root 4096 Ago 7 14:42 ..
```

2. Seria possível inserir o número de telefone de trabalho desse mesmo usuário, junto com a informação de quem ele é? Faça isso e torne a checar se a sua mudança surtiu efeito.

```
# chfn -w 6198765432 instrutor
# finger -l instrutor
Login: instrutor Name:
Directory: /instrutor Shell: /bin/sh
Office Phone: 619-876-5432
Last login Tue Aug 7 14:44 (-03) on pts/1 from localhost
No mail.
No Plan.
```

3) Criando grupos de usuários

O recurso de grupos de usuários é muito útil para compartilhar informações. No momento em que a conta instrutor foi criada, no item 3 da atividade 1 deste roteiro, o grupo primário ficou sendo o seu próprio nome de usuário. Isso ocorre sempre que não é atribuído um valor para o grupo primário, no momento da criação de um novo usuário. Como o usuário criado não faz parte de outro grupo, a não ser do seu próprio, ele somente poderá acessar seus arquivos ou aqueles

arquivos para os quais haja permissão de acesso para outros usuários.

1. Use o comando apropriado para criar um grupo chamado grupoteste.

```
# addgroup grupoteste
Adicionando grupo 'grupoteste' (GID 1003) ...
Concluído.
```

2. Liste o arquivo /etc/group e anote o GID que foi atribuído ao grupo criado.

```
# getent group | egrep '^grupoteste:' | cut -d':' -f3
1003
```

3. Aproveite para observar, no arquivo /etc/group, quais são os outros grupos existentes no sistema. Qual o grupo associado ao usuário root?

```
# getent group | grep root
root:x:0:
```

O grupo root, que é o grupo primário do superusuário do sistema.

4. Altere o grupo primário do usuário instrutor, de modo que este passe a ser o grupo criado no item 1 da atividade 3, grupoteste.

```
# usermod -g grupoteste instrutor
# getent passwd | egrep '^instrutor:'
instrutor:x:1002:1003:,,6198765432,:/instrutor:/bin/sh
```

5. Se autentique no sistema utilizando a sua conta e inclua seu usuário como administrador do grupo grupoteste. Em seguida inclua o usuário instrutor no grupo grupoteste. Você conseguiu executar as tarefas propostas? Por quê? Como você deve fazer para realizar as tarefas?

```
$ gpasswd -a instrutor grupoteste
gpasswd : Permissão negada.
```

Não, porque somente o usuário root pode cadastrar administradores em um grupo. Os comandos para viabilizar essa tarefa seriam:

```
# gpasswd -A aluno grupoteste
# logout
$ whoami
aluno
$ gpasswd -a instrutor grupoteste
Adicionando usuário instrutor ao grupo grupoteste
```

6. Altere novamente o grupo primário do usuário instrutor para o grupo instrutor.

```
# usermod -g instrutor instrutor
# getent passwd | egrep '^instrutor:'
instrutor:x:1002:1002:,,6198765432,:/instrutor:/bin/sh
```

4) Incluindo usuários em grupos secundários

1. Editando o arquivo /etc/group, inclua, no grupo grupoteste, o usuário criado no terceiro item da atividade 1 desse roteiro (instrutor). Note que o grupo primário do usuário não deve mudar; continua sendo o nome do usuário.

Inserir após o último caractere ":" na linha referente ao grupo grupoteste, o *username* do usuário instrutor.

```
# getent group | egrep '^grupoteste:'
grupoteste:x:1003:instrutor
# groups instrutor
instrutor : instrutor grupoteste
```

2. Agora, utilize um comando apropriado para inserir nesse mesmo grupo o usuário criado para você no primeiro item da atividade 1.

```
# groups marcelo
marcelo : marcelo

# usermod -a -G grupoteste marcelo
# groups marcelo
marcelo : marcelo grupoteste
```

5) Bloqueando contas de usuários

No Linux, é possível impedir temporariamente o acesso ao sistema mesmo que o usuário esteja utilizando uma conta com acesso liberado a este.

1. Utilizando um comando apropriado, bloqueie a conta criada para o instrutor e teste se obteve

sucesso no bloqueio.

```
# passwd -l instrutor
passwd: informação de expiração de senha alterada.
# ssh instrutor@localhost
instrutor@localhost's password:
Permission denied, please try again.
```

2. Agora desbloqueie a conta e faça o teste de acesso para verificar se sua alteração surtiu efeito.

```
# passwd -u instrutor
passwd: informação de expiração de senha alterada.

# ssh instrutor@localhost
instrutor@localhost's password:
$ pwd
/instrutor
```

Também pode-se utilizar o comando # usermod -U USERNAME para atingir o mesmo objetivo.

6) Removendo uma conta de usuário manualmente

No Linux, é possível executar uma mesma tarefa de diversas maneiras. Para um administrador de sistemas, é importante conhecer essas alternativas, porque elas podem ser úteis em situações específicas em que não seja possível utilizar um dado recurso ou ferramenta do sistema.

1. Sem utilizar o comando userdel, remova a conta criada para você no segundo item da atividade 1.

Em ordem, deve-se executar as atividades espelho das que foram feitas anteriormente, quais sejam:

- Remover entradas referente à conta nos arquivos:
 - /etc/group
 - /etc/gshadow
 - /etc/passwd
 - /etc/shadow
- Remover o diretório *home* do usuário;
- Remover as configurações de *quota*, caso tenham sido configuradas anteriormente.
- O *script shell* abaixo mostra uma maneira como os comandos executados manualmente nesta atividade poderiam ser automatizados por um administrador de sistemas:

```
#!/bin/bash
BACKUP_DIR="/root/user_backups"
usage() {
 echo " Usage: $0 -u USER [-b]"
 echo " Use [-b] to backup user dir to /root before deletion."
 exit 1
}
if [[ $EUID -ne 0 ]]; then
 echo " [*] Not root!" 1>82
 exit 1
fi
backup=false
while getopts ":u:b" opt; do
 case "$opt" in
   u)
     user=${OPTARG}
     ;;
   b)
     backup=true
     ;;
     usage
 esac
done
[ -z $user ] && { echo " [*] No user?"; usage; }
if ! egrep "^${user}:" /etc/passwd &> /dev/null; then
 echo " [*] User does not exist!"
 exit 1
fi
homedir=$( getent passwd | egrep "^$user:" | cut -d':' -f6 )
if $backup; then
 [ ! -d $BACKUP_DIR ] && mkdir $BACKUP_DIR
 tar czf $BACKUP_DIR/${user}.tar.gz $homedir
fi
rm -rf /home/$user
sed -i "/^$user:/d" /etc/group
sed -i "/^$user:/d" /etc/gshadow
sed -i "/^$user:/d" /etc/passwd
sed -i "/^$user:/d" /etc/shadow
```

```
# remove user from secondary groups
sed -r -i "s/,?${user},?/,/ ; s/:,/:/ ; s/,$//" /etc/group
```

2. Certifique-se de que esse usuário foi realmente excluído do sistema, utilizando um dos comandos que fornecem informações sobre os usuários.

```
# finger marcelo
finger: marcelo: no such user.
```

3. Faça um backup de seus dados de modo que o instrutor possa ter sobre eles o mesmo tipo de acesso que você.

O *script* apontado no primeiro item desta atividade já faz o backup de arquivos (via opção -b). Caso o usuário tenha sido removido sem que seu *home* tenha sido apagado (por exemplo, via comando userdel), pode-se fazer o backup dos dados da seguinte forma:

```
# tar czf /instrutor/marcelo.tar.gz /home/marcelo && rm -rf /home/marcelo
tar: Removendo `/' inicial dos nomes dos membros
# ls /instrutor/
marcelo.tar.gz
```

7) Obtendo informações sobre usuários

Muitas vezes, é necessário obter informações sobre os usuários de um sistema. Dois comandos que fornecem informações sobre usuários são finger e id.

1. Verifique os parâmetros do usuário criado na atividade 1 utilizando esses comandos, e descreva a diferença entre os dois a partir dos resultados obtidos. Consulte as páginas de manual para verificar as opções disponíveis nestes comandos.

O comando id mostra os grupos do usuário e seu UID enquanto o comando finger mostra informações como: diretório *home*, shell, *username*, GECOS, terminal utilizado pelo usuário, etc.

8) Removendo contas de usuários

1. Utilizando os comandos apropriados, remova a conta criada para o instrutor. Não se esqueça de que um grupo foi especialmente criado para ele e que ele também possui um grupo secundário.

```
# userdel -r instrutor
# getent passwd | egrep '^instrutor:'
# getent group | egrep ',?instrutor,?'
#
```

9) Alterando o grupo a que um arquivo pertence

O arquivo /etc/passwd contém informações importantes sobre os usuários do sistema. Esse arquivo pertence ao usuário root e ao grupo root. As permissões de acesso desse arquivo definem que ele só poderá ser modificado pelo usuário root.

1. Faça com que esse arquivo pertença ao grupo grupoteste, criado na atividade 3. Com isso, os usuários desse grupo, incluindo o usuário criado na atividade 1 poderão acessar esse arquivo por meio das permissões definidas para os usuários do grupo.

```
# chgrp grupoteste /etc/passwd
# ls -ld /etc/passwd
-rw-r--r-- 1 root grupoteste 1612 Ago 7 16:12 /etc/passwd
```

10) Alterando permissões de acesso de arquivos

É muito comum o administrador ter que modificar a permissão de arquivos para possibilitar ou impedir que eles sejam lidos ou modificados por diferentes categorias de usuários. A melhor forma de fazer isso é utilizando o comando chmod.

1. O arquivo /etc/passwd tem apenas permissão de leitura para os usuários do seu grupo proprietário. Use o comando chmod para atribuir permissão de escrita ao grupo proprietário desse arquivo. A permissão de escrita nesse arquivo é inicialmente atribuída apenas ao usuário proprietário do arquivo.

```
# chmod 664 /etc/passwd
# ls -ld /etc/passwd
-rw-rw-r-- 1 root grupoteste 1612 Ago 7 16:12 /etc/passwd
```

Alternativamente, pode-se usar também o comando # chmod g+w /etc/passwd para atingir o mesmo objetivo.

2. O setor de controladoria de uma empresa só possuía um funcionário, que pediu demissão. Como não há um diretório específico para armazenar os arquivos do setor, todos os seus arquivos de trabalho estão armazenados em seu diretório *home*. Que passos você deve fazer para disponibilizar estes arquivos para o novo funcionário que será contratado e para que este tipo de problema não volte a ocorrer?

• Crie o grupo controladoria:

```
# addgroup controladoria
Adicionando grupo 'controladoria' (GID 1002) ...
Concluído.
```

• Crie a conta do novo funcionário e defina o grupo controladoria como seu grupo primário:

```
# useradd -m -g controladoria funcionario
# ls -lha /home/ | egrep ' funcionario$'
drwxr-xr-x 2 funcionario controladoria 4,0K Ago 7 16:22 funcionario
```

• Crie o diretório /home/controladoria:

```
# mkdir /home/controladoria
# chgrp controladoria /home/controladoria
# chmod g+w /home/controladoria/
# ls -lha /home/ | egrep ' controladoria$'
drwxrwxr-x 2 root controladoria 4,0K Ago 7 16:24 controladoria
```

 Habilite o sticky bit para o diretório /home/controladoria, de forma que todos os membros do grupo controladoria possam criar arquivos ali, mas apenas o dono de cada arquivo possa apagá-los:

```
# chmod +t /home/controladoria/
# ls -lha /home/ | egrep ' controladoria$'
drwxrwxr-t 2 root controladoria 4,0K Ago 7 16:24 controladoria
```

• Mova os arquivos do antigo funcionário para o diretório /home/controladoria:

```
# cp -a /home/antigo_funcionario /home/controladoria
# ls /home/controladoria
antigo_funcionario
```

Redefina as permissões dos arquivos do antigo funcionário:

```
# chown -R root.controladoria /home/controladoria
```

Remova a conta do antigo funcionário:

```
# userdel -r antigo_funcionario
```

 Oriente o novo funcionário para que ele só armazene os arquivos relacionados ao setor de controladoria no diretório /home/controladoria, e seus arquivos pessoais em /home/funcionario.

Por motivos de segurança, ao final das atividades, retorne a permissão e o grupo do arquivo /etc/passwd para os valores originais.


```
# chown root.root /etc/passwd
# chmod 644 /etc/passwd
# ls -lh /etc/passwd
-rw-r---- 1 root root 1,7K Ago 7 16:22 /etc/passwd
```

Processos

As atividades desta sessão serão realizadas na máquina virtual Client_Linux.

1) Descobrindo o número de processos em execução

1. Quantos processos estão sendo executados na máquina no momento? Use o comando we para contá-los.

```
# ps aux | sed -n '1!p' | wc -l
71
```

2. Faça um script que liste o número de processo que cada usuário está executando.

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash

users=( $( ps aux | awk '{ if (NR>1) print $1 }' | sort | uniq ) )

for (( i=0; i<${#users[@]}; i++ )); do
    nproc=$( ps aux | grep "${users[$i]}" | wc -l )
    echo "User ${users[$i]} has $nproc active processes"
done</pre>
```

2) Descobrindo o PID e o PPID de um processo

1. Quais os valores de PID e PPID do shell que você está utilizando no sistema?

```
$ echo -e "PID: $$\nPPID: $PPID"
PID: 1016
PPID: 1015
```

2. Faça um *script* que liste todos os processos que foram iniciados pelo processo init. A lista não deve conter mais de uma ocorrência do mesmo processo.

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash

pinit=( $( ps -eo ppid,comm | egrep -e "^ *1 " | sort | uniq | awk {'print $2'} ) )
pinit_count=${#pinit[@]}

echo "$pinit_count processes started by init (1):"

for (( i=0; i<$pinit_count; i++ )); do
    echo " ${pinit[$i]}"
    done</pre>
```

3) Estados dos processos

1. Qual o status mais frequente dos processos que estão sendo executados no sistema? Você saberia explicar por quê?

```
$ ps aux | awk '{print $8}' | sort | uniq -c | sort -n | tac
24 S
23 S<
16 Ss
4 S+
1 STAT
1 Ssl
1 Ss+
1 SN
1 R+
1 D+</pre>
```

O estado mais frequente é *sleep*, porque apenas um processo pode estar sendo executado pela CPU em um dado momento.

4) Alternando a execução de processos

1. Execute o comando \$ sleep 1000 diretamente do terminal.

```
$ sleep 1000
```

2. Pare o processo e mantenha-o em memória.

Basta digitar a combinação de teclas CTRL + Z.

```
$ sleep 1000
^Z
[1]+ Parado
```

3. Liste os processos parados.

```
$ jobs
[1]+ Parado sleep 1000
```

4. Coloque-o em background.

5. Verifique se o comando sleep 1000 está rodando.

```
$ ps ax | egrep 'sleep 1000$'
2178 pts/0  S     0:00 sleep 1000
```

6. É possível cancelar a execução desse comando quando ele está rodando em *background?* Caso seja possível, faça-o.

```
$ kill 2178
$ ps ax | egrep 'sleep 1000$'
[1]+ Terminado sleep 1000
```

5) Identificando o RUID e o EUID de um processo

1. Logado como o usuário aluno, execute o comando passwd no seu terminal. Antes de mudar a senha, abra uma segunda console e autentique-se como root. Verifique o RUID e o EUID associados ao processo passwd. Esses valores são iguais ou diferentes? Você saberia explicar por quê? Por fim, cancele a execução do processo passwd.

Na primeira console, execute:

```
$ passwd
Mudando senha para aluno.
Senha UNIX (atual):
```

Antes de digitar a senha, abra uma segunda console como root e execute:

```
# ps -eo user,ruser,comm | egrep '^USER | passwd$'
USER    RUSER    COMMAND
root    aluno    passwd

# which passwd
/usr/bin/passwd
# ls -lh /usr/bin/passwd
-rwsr-xr-x 1 root root 53K Mai 17 2017 /usr/bin/passwd
```

Os valores são diferentes porque o binário passwd possui o bit *SUID* ativado. O RUID (*real uid*) é do usuário que está executando o comando e o EUID (*effective uid*) é o do usuário root, que é o dono do arquivo.

6) Definindo a prioridade de processos

1. Verifique as opções do comando nice e em seguida, execute o comando abaixo, verificando sua prioridade, utilizando o comando ps:

```
# nice -n -15 sleep 1000 &
[1] 2289
```

Basta executar o comando # ps lax e buscar o processo relevante, verificando o valor da quinta coluna. Em uma única linha e de forma mais específica, podemos fazer:

```
# ps lax | egrep ' sleep 1000$' | awk '{print $5}'
2289 5
```

2. Repita o comando do primeiro item, passando para o comando nice o parâmetro -n -5. Verifique como isso afeta a prioridade do processo. Ela aumentou, diminuiu ou permaneceu a mesma?

```
# nice -n -5 sleep 1000 &
[2] 2312
# ps lax | egrep ' sleep 1000$' | awk '{print $3, $5}'
2289 5
2312 15
```

A prioridade diminuiu, porque quanto maior o valor na coluna PRI, menor a prioridade do processo.

7) Editando arquivos crontab para o agendamento de tarefas

Neste exercício, trabalharemos com o comando crontab, utilizado para editar os arquivos cron do agendador de tarefas do sistema. Esses arquivos serão verificados pelo *daemon* cron periodicamente em busca de tarefas para serem executadas pelo sistema.

Para entender o funcionamento do crontab, o primeiro passo é ler as páginas do manual relevantes. Para o comando crontab em si, consulte a seção 1 do manual:


```
$ man 1 crontab
```

Para o formato de um arquivo de configuração crontab, consulte a seção 5:

```
$ man 5 crontab
```

1. Existe alguma entrada de crontab para o seu usuário?

```
$ crontab -l
no crontab for aluno
```

2. Que opção deve ser usada para editar o seu arquivo de crontab?

8) Agendando uma tarefa no daemon cron

Neste exercício, será necessário enviar mensagens de correio eletrônico. Para isso, você deverá utilizar o comando mail; o instrutor pode fornecer as informações básicas sobre ele. Um exemplo do uso desse comando para enviar uma mensagem ao endereço fulano@dominio com o assunto Mensagem de teste é:

```
$ mail fulano@dominio -s "Mensagem de teste" < /dev/null</pre>
```

1. Configure o crontab para que uma mensagem de correio eletrônico seja enviada automaticamente pelo sistema, sem interferência do administrador às 20:30 horas.

Utilize o comando \$ crontab -e para editar o crontab e inserir a linha:

```
30 20 * * * mail fulano@dominio -s "Mensagem de teste" < /dev/null
```

2. Como verificar se a configuração foi feita corretamente?

```
$ crontab -l | egrep -v '^#'
30 20 * * * mail fulano@dominio -s "Mensagem de teste" < /dev/null</pre>
```

3. Qual o requisito fundamental para garantir que a ação programada será executada?

O daemon do cron deve estar em execução e a sintaxe do crontab, incluindo a linha de comando utilizada, deve estar correta.

4. Há como confirmar se a mensagem foi efetivamente enviada, sem consultar o destinatário?

Verifique no arquivo /var/log/syslog se a tarefa foi executada no horário correto com sucesso. Você deve ver uma entrada do tipo:

```
/var/log/syslog:Aug 7 17:40:01 cliente CRON[2524]: (aluno) CMD (COMMAND)
```

Dependendo da distribuição Linux em uso, as mensagens relativas ao cron podem estar em /var/log/syslog, /var/log/cron.log, /var/log/daemon.log ou outros arquivos. Verifique na documentação do fabricante/mantenedor.

5. Dê dois exemplos de utilização desse mecanismo para apoiar atividades do administrador de sistemas.

Podemos, por exemplo, utilizar o cron para agendamento de backups e limpeza de diretórios temporários.

6. Faça um script que liste os arquivos sem dono do sistema e envie a lista por e-mail ao usuário root.

O *script shell* abaixo mostra um exemplo de solução para o problema proposto, com a característica adicional de guardar os logs enviados por e-mail em um diretório dentro do *home* do root:

```
#!/bin/bash

LOGDIR="/root/nouser_logs"

[ ! -d $LOGDIR ] && mkdir $LOGDIR

curlog="$LOGDIR/nouser_$( date +%Y%m%d ).log"
find / -nouser -print > $curlog
mail -s "Files without ownership for $( date )" root < $curlog</pre>
```

7. Agende no crontab do usuário root o script do item 6, de modo que ele seja executado de segunda a sexta às 22:30 horas.

Logado como usuário root, digite o comando # crontab -e para editar o crontab e insira a linha a seguir:

```
30 22 * * 1-5 /root/scripts/find_nouser.sh
```

9) Listando e removendo arquivos crontab

1. Liste o conteúdo do seu arquivo de crontab e, em seguida, remova-o. Quais as opções utilizadas para executar as ações demandadas?

```
$ crontab -l | egrep -v '^#'
30 20 * * * mail fulano@dominio -s "Mensagem de teste" < /dev/null
$ crontab -r
$ crontab -l
no crontab for aluno</pre>
```

10) Entendendo o comando exec

1. Execute o comando \$ exec ls -l. Explique o que aconteceu.

```
# whoami
root
# exec ls -l /mnt/
total 0
$ whoami
aluno
```

O shell corrente foi finalizado. Sempre que um comando é executado, um novo processo é criado. Já quando um comando é executado como argumento do comando exec, a imagem do

shell corrente é substituída pela do processo execução já não há mais shell de retorno.	invocado,	е	quando	esse	processo	encerra	sua

Sistema de arquivos

As atividades desta sessão serão realizadas na máquina virtual Client_Linux.

Em algumas atividades, você trabalhará com a conta root, o que lhe dará todos os direitos sobre os recursos do sistema. Seja cauteloso antes de executar qualquer comando.

1) Obtendo informações sobre sistemas de arquivos e partições

Verifique quais são as opções do comando df e responda:

1. Quais file systems foram definidos no seu sistema?

```
$ cat /etc/fstab | grep -v '^#' | awk '{print $3}' | sort | uniq
ext4
swap
udf,iso9660
```

Alternativamente, verifique no arquivo /etc/fstab o campo type de cada partição.

2. Qual partição ocupa maior espaço em disco?

```
$ df -m | awk 'NR>1' | awk '{print $2,$1}' | sort -n | tac | head -n1
29910 /dev/sda1
```

Alternativamente, verifique com o comando df -h a partição que possui o maior número de bytes em uso, na coluna "Used".

3. Qual é o device correspondente à partição raiz?

```
$ df -h | egrep ' /$' | awk '{print $1}'
/dev/sda1
```

Alternativamente, verifique através do comando df -h a linha que possui no campo "*Mounted on*" o caractere / e em seguida, nesta mesma linha, verificar o *device* correspondente no campo "*Filesystem*".

4. Os discos do computador que você está utilizando são do tipo IDE ou SCSI?

```
$ dmesg | egrep 'Attached.*disk'
[ 10.310957] sd 1:0:0:0: [sdb] Attached SCSI disk
[ 10.358641] sd 0:0:0:0: [sda] Attached SCSI disk
```

Alternativamente, verifique através do comando df -h, o campo "Filesystem". Discos IDE são representados pelos dispositivos /dev/hda, /dev/hdb, /dev/hdc, etc. Discos SCSI são representados pelos dispositivos /dev/sda, /dev/sdb, /dev/sdc, etc.

5. A que partição pertence o arquivo /etc/passwd?

```
$ df -T /etc/passwd | sed -n '1!p' | awk '{print $1}'
/dev/sda1
```

Alternativamente, verifique através do comando de em qual partição se encontra o diretório /etc.

6. Você faria alguma crítica em relação ao particionamento do disco do computador que você está utilizando? Como você o reparticionaria?

O aluno deve avaliar o esquema de particionamento adotado e responder à pergunta levando em conta as vantagens obtidas com o particionamento, como isolamento de falhas, ganho de performance, etc.

2) Determinando o espaço utilizado por um diretório

1. Que subdiretório do diretório /var ocupa maior espaço em disco?

```
# du -sm /var/* | sort -n | tac | head -n1
97 /var/lib
```

Alternativamente, verifique através do comando du -mcs /var/* qual diretório ocupa maior espaço em disco.

2. Faça um *script* para monitorar a taxa de utilização das partições de um servidor. Este script deve enviar um e-mail ao usuário root caso a taxa de utilização de um ou mais partições ultrapasse 90% de uso. O e-mail deve informar o(s) *filesystem(s)* e sua(s) respectiva(s) taxa(s) de utilização (somente se estiver acima de 90%).

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash

parts=( $( df -h | egrep -e "^/dev" | awk {'print $6'} ) )
partusage=( $( df -h | egrep -e "^/dev" | awk {'print $5'} | tr -d % ) )
out="$( mktemp )"

for (( i=0; i<${#parts[@]}; i++ )); do
    if [ ${partusage[$i]} -gt 90 ]; then
        echo -e "Filesystem ${parts[$i]} over ${partusage[$i]}% capacity." >> $out
    fi
done

if [ -e $out ]; then
    mail -s "Filesystem capacity report" root@localhost < $out
    rm -f $out
fi</pre>
```

3) Criando uma nova partição e definindo um novo sistema de arquivos

Você, como administrador de um sistema, pode, a qualquer instante, deparar-se com um problema gerado por uma aplicação que necessita de maior espaço em disco para armazenar informações (isso é muito comum em sistemas de banco de dados). Nessas situações, normalmente, um novo disco é adicionado ao sistema.

A execução desta atividade depende da existência de um espaço não alocado no sistema. Caso não exista este espaço e esta atividade esteja sendo executada em um ambiente virtualizado, pode-se ter a facilidade de adicionar um novo disco à máquina virtual. Consulte o instrutor sobre como proceder.

- 1. Faça login como usuário root. Deve haver um espaço não utilizado no disco do seu cliente. Você deve adicionar esse espaço ao sistema, criando uma partição do tipo utilizado pelo Linux.
 - Primeiro, vamos verificar quais discos foram conectados ao sistema durante o boot:

```
# dmesg | egrep 'Attached.*disk'
[ 10.310957] sd 1:0:0:0: [sdb] Attached SCSI disk
[ 10.358641] sd 0:0:0:0: [sda] Attached SCSI disk
```

• Vamos checar o estado de uso desses discos, começando pelo /dev/sda:

```
# fdisk -l /dev/sda
Disco /dev/sda: 40 GiB, 42949672960 bytes, 83886080 setores
Unidades: setor de 1 * 512 = 512 bytes
Tamanho de setor (lógico/físico): 512 bytes / 512 bytes
Tamanho E/S (mínimo/ótimo): 512 bytes / 512 bytes
Tipo de rótulo do disco: dos
Identificador do disco: 0x27232fb6
Device
           Boot
                                End Sectors Size Id Type
                    Start
/dev/sda1 *
                     2048 62500863 62498816 29,8G 83 Linux
/dev/sda2 62502910 83884031 21381122 10,2G 5 Extended
/dev/sda5 62502912 66406399 3903488 1,9G 82 Linux swap / Solaris
/dev/sda6
                 66408448 83884031 17475584 8,3G 83 Linux
```

 O disco /dev/sda já está sendo utilizado, e aparentemente está cheio. Vamos então verificar o dispositivo /dev/sdb:

```
# fdisk -l /dev/sdb

Disco /dev/sdb: 8 GiB, 8589934592 bytes, 16777216 setores
Unidades: setor de 1 * 512 = 512 bytes
Tamanho de setor (lógico/físico): 512 bytes / 512 bytes
Tamanho E/S (mínimo/ótimo): 512 bytes / 512 bytes
```

 Perfeito, parece estar vazio. Vamos formatá-lo e criar uma única partição Linux ocupando a totalidade do espaço livre:

```
# fdisk /dev/sdb
Bem-vindo ao fdisk (util-linux 2.25.2).
As alterações permanecerão apenas na memória, até que você decida gravá-las.
Tenha cuidado antes de usar o comando de gravação.
A unidade não contém uma tabela de partição conhecida.
Created a new DOS disklabel with disk identifier 0x4fa0acac.
Comando (m para ajuda): o
Created a new DOS disklabel with disk identifier 0xb33d8f79.
Comando (m para ajuda): n
Tipo da partição
   p primária (0 primárias, 0 estendidas, 4 livre)
       estendida (recipiente para partições lógicas)
Selecione (padrão p):
Usando resposta padrão p.
Número da partição (1-4, padrão 1):
Primeiro setor (2048-16777215, padrão 2048):
Último setor, +setores ou +tamanho{K,M,G,T,P} (2048-16777215, padrão 16777215):
Criada uma nova partição 1 do tipo "Linux" e de tamanho 8 GiB.
Comando (m para ajuda): t
Selecionou a partição 1
Código hexadecimal (digite L para listar todos os códigos): 83
O tipo da partição "Linux" foi alterado para "Linux".
Comando (m para ajuda): w
A tabela de partição foi alterada.
Chamando ioctl() para reler tabela de partição.
Sincronizando discos.
```

• Finalmente, vamos verificar se o procedimento produziu o resultado esperado:

```
# fdisk -1 /dev/sdb

Disco /dev/sdb: 8 GiB, 8589934592 bytes, 16777216 setores
Unidades: setor de 1 * 512 = 512 bytes
Tamanho de setor (lógico/físico): 512 bytes / 512 bytes
Tamanho E/S (mínimo/ótimo): 512 bytes / 512 bytes
Tipo de rótulo do disco: dos
Identificador do disco: 0xb33d8f79

Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 16777215 16775168 86 83 Linux
```

2. Formate a partição com o sistema de arquivos ext4.

3. Crie um *mount point* chamado /dados e monte nele a nova partição.

```
# mkdir /dados
# mount -t ext4 /dev/sdb1 /dados
# mount | egrep '^/dev/sdb1'
/dev/sdb1 on /dados type ext4 (rw,relatime,data=ordered)
```

4. Qual a quantidade de espaço em disco que foi reservada para armazenar os dados dos *inodes*? E da partição em si?

Para calcular o espaço solicitado, o primeiro passo é descobrir quantos *inodes* foram criados, e qual o tamanho de cada um deles:

```
$ sudo tune2fs -l /dev/sdb1 | egrep -i 'inode count|inode size'
Inode count: 524288
Inode size: 256
```

Feito isso, basta multiplicar os dois valores e, opcionalmente, mostrar o resultado em um formato mais legível, já que o tune2fs mostra o tamanho dos *inodes* em bytes:

```
# s=( $(tune2fs -l /dev/sdb1 | egrep -i 'inode count|inode size' | awk '{print $3}') ); echo "$(( ${s[0]} * ${s[1]} / 1048576 )) MB"
128 MB
```

5. Cheque a partição criada com o comando apropriado. Que tipos de checagens foram realizados?

```
# umount /dev/sdb1
# e2fsck /dev/sdb1 -fv
e2fsck 1.42.12 (29-Aug-2014)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
          11 inodes used (0.00%, out of 524288)
           0 non-contiguous files (0.0%)
           0 non-contiguous directories (0.0%)
             # of inodes with ind/dind/tind blocks: 0/0/0
             Extent depth histogram: 3
       70287 blocks used (3.35%, out of 2096896)
           0 bad blocks
           1 large file
           0 regular files
           2 directories
           O character device files
           0 block device files
           0 fifos
           0 links
           0 symbolic links (0 fast symbolic links)
           0 sockets
           2 files
```

6. Tome as medidas necessárias para que essa partição seja montada toda vez que o sistema for reiniciado, e verifique se isso acontece de fato.

Deve-se inserir a linha abaixo ao final do arquivo /etc/fstab.

```
/dev/sdb1 /dados/ ext4 defaults,errors=remount-ro 0 2
```

Feito isso, reinicie o sistema e verifique a montagem do filesystem.

Atualmente, é muito comum sistemas Linux indicarem os *filesystems* no arquivo /etc/fstab através de seu UUID (*Universally Unique Identifier*), em lugar de nome de dispositivo, já que a ordem em que os discos são detectados pelo kernel não é determinística—em uma instância de *boot* um disco pode ser detectado como /dev/sda, e na próxima, como /dev/sdb. Para identificar a partição que acabamos de criar através do seu UUID, siga os passos abaixo:


```
# ls -l /dev/disk/by-uuid/ | egrep 'sdb1$' | awk '{print $9}'
2464c725-9356-4abb-8a9f-a2de3d64e7ac

# uuid="$(ls -l /dev/disk/by-uuid/ | egrep 'sdb1$' | awk '{print $9}')"; echo "UUID=$uuid /dados ext4 defaults,errors=remount-
ro 0 2" >> /etc/fstab

# egrep ' /dados ' /etc/fstab
UUID=2464c725-9356-4abb-8a9f-a2de3d64e7ac /dados ext4
defaults,errors=remount-ro 0 2
```

4) Trabalhando com o sistema de quotas

Em sistemas compartilhados por muitos usuários, a competição por espaço em disco costuma gerar conflitos que acabam prejudicando o desempenho do sistema e os próprios usuários, caso não haja controle de uso dos recursos. Neste exercício, veremos como habilitar e configurar o sistema de *quotas* do Linux.

1. Faça login com a conta do usuário root. Verifique se o sistema de *quotas* está instalado. Se ainda não estiver, execute a instalação.

Verifique se o pacote quota está instalado no sistema com o comando dpkg -l | grep quota. Caso não esteja, instale-o usando o apt-get:

```
# dpkg -l | grep ' quota '
# apt-get -y install quota quotatool
```

2. O próximo passo é habilitar o sistema de *quotas* para a partição raiz. Faça isso seguindo os procedimentos descritos na parte teórica dessa sessão de aprendizagem.

Insira no arquivo /etc/fstab o suporte à *quota* de disco na partição raiz com as opções apropriadas:

```
# grep ' / ' /etc/fstab | grep -v '^#'
UUID=6d035549-c33d-4f72-a751-1e7ddc602dbe / ext4 errors=remount-
ro,usrquota,grpquota 0 1
```

Feito isso, reinicie o sistema e verifique se o suporte a *quotas* foi habilitado através do comando

mount:

```
# mount | egrep '^/dev/sda1'
/dev/sda1 on / type ext4 (rw,relatime,quota,usrquota,grpquota,errors=remount-
ro,data=ordered)
```

3. Crie uma conta de usuário para teste e configure o limite desse novo usuário para 200 MB, utilizando o comando edquota.

Primeiro, vamos criar o usuário. Em seguida, editar seu arquivo de quota:

```
# useradd -m pedro
# edquota -u pedro
```

O comando edquota irá invocar um editor (indicado pela variável de ambiente \$EDITOR) para que as *quotas* sejam ajustadas. Vamos editar os campos *soft* e *hard* da seção *block* do arquivo — note que os valores devem ser informados em kBytes. Pode-se, opcionalmente, também setar um limite para *inodes* que o usuário pode criar.

```
Disk quotas for user pedro (uid 1005):
Filesystem blocks soft hard inodes soft hard
/dev/sda1 16 100000 200000 4 0
```

4. Saia do sistema e entre novamente como o usuário de teste que acaba de ser criado. Como pode ser verificado, a partir dessa conta, as *quotas* de uso de disco? E o espaço efetivamente utilizado?

```
# su - pedro
$ quota -u
Disk quotas for user pedro (uid 1005):
     Filesystem blocks
                           quota
                                   limit
                                                    files
                                                                     limit
                                           grace
                                                            quota
                                                                             grace
      /dev/sda1
                     16 100000
                                  200000
                                                        4
                                                                0
                                                                         0
```

Na listagem acima, pode-se observar que o usuário pedro está utilizando 16 kB de espaço em disco, com um *soft limit* de 100 MB e um *hard limit* de 200 MB.

5. Crie dois arquivos no diretório, utilizando os comandos cp e ln (criando um link simbólico). Há diferença na forma como o espaço ocupado por esses dois arquivos é contabilizado no sistema de quotas?

```
$ pwd
/home/pedro
$ quota -u
Disk quotas for user pedro (uid 1005):
     Filesystem blocks
                          quota
                                  limit
                                           grace
                                                   files
                                                           quota
                                                                    limit
                                                                            grace
      /dev/sda1
                     16 100000
                                 200000
$ cp /boot/vmlinuz-3.16.0-6-amd64 ~
$ 1s
vmlinuz-3.16.0-6-amd64
$ quota -u
Disk quotas for user pedro (uid 1005):
     Filesystem blocks
                          quota
                                  limit
                                           grace
                                                   files
                                                           quota
                                                                   limit
                                                                            grace
      /dev/sda1
                   3116 100000 200000
$ ln -s /boot/vmlinuz-3.16.0-6-amd64 ~/kernel-link
kernel-link vmlinuz-3.16.0-6-amd64
$ quota -u
Disk quotas for user pedro (uid 1005):
     Filesystem blocks
                          quota
                                  limit
                                           grace
                                                   files
                                                           quota
                                                                    limit
                                                                            grace
      /dev/sda1
                   3116 100000
                                 200000
                                                       6
                                                                       0
```

A forma de contabilização é diferente: o tamanho do link simbólico corresponde apenas ao tamanho em bytes do *path* completo até o arquivo apontado; já o arquivo criado com o comando cp possui o mesmo tamanho do arquivo original.

6. Como determinar se o sistema de *quotas* está habilitado na inicialização do sistema? E, se não estiver como habilitá-lo?

Em sistemas com o sistema de *init* systemd, como é o caso do Debian e da maioria das distribuições Linux atuais, podemos usar o comando # systemctl is-enabled para determinar o estado de um *daemon* durante a inicialização do sistema:

```
# systemctl is-enabled quota enabled
```

Para desabilitar um serviço, basta usar a palavra-chave disable. Ao contrário, para habilitá-lo, utilize enable:

```
# systemctl disable quota
Synchronizing state for quota.service with sysvinit using update-rc.d...
Executing /usr/sbin/update-rc.d quota defaults
Executing /usr/sbin/update-rc.d quota disable
insserv: warning: current start runlevel(s) (empty) of script 'quota' overrides LSB
defaults (S).
insserv: warning: current stop runlevel(s) (0 6 S) of script 'quota' overrides LSB
defaults (0 6).
# systemctl is-enabled quota
disabled
# systemctl enable quota
Synchronizing state for quota.service with sysvinit using update-rc.d...
Executing /usr/sbin/update-rc.d quota defaults
insserv: warning: current start runlevel(s) (empty) of script 'quota' overrides LSB
defaults (S).
insserv: warning: current stop runlevel(s) (0 6 S) of script 'quota' overrides LSB
defaults (0 6).
Executing /usr/sbin/update-rc.d quota enable
# systemctl is-enabled quota
enabled
```

7. Teste a efetividade do sistema de *quotas*:

```
# su - pedro
$ quota -u
Disk quotas for user pedro (uid 1005):
    Filesystem blocks quota
                               limit
                                         grace
                                                 files
                                                         quota
                                                                 limit
                                                                        grace
     /dev/sda1
                    20 100000 200000
                                                    5
$ du -sk /boot/vmlinuz-3.16.0-6-amd64
3100
       /boot/vmlinuz-3.16.0-6-amd64
$ for i in {1..1000}; do cp /boot/vmlinuz-3.16.0-6-amd64 ~/kernel-$i; done
sda1: warning, user block quota exceeded.
sda1: write failed, user block limit reached.
cp: erro escrevendo "/home/pedro/kernel-65": Disk quota exceeded
```

Através do comando acima, o usuário pedro conseguiu copiar para seu diretório *home* a imagem do kernel Linux, copiada do /boot e com tamanho de 3100 kB, por 64 vezes até que o *hard limit* de *quota* fosse ativado, e novas cópias fossem desabilitadas.

8. Faça um *script* que defina o esquema de *quota* para todos os usuários do sistema baseado nas cotas de um usuário passado como parâmetro para esse *script*.

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash

if [[ $EUID -ne 0 ]]; then
    echo " [*] Not root!" 1>82
    exit 1

fi

for user in $( getent shadow | awk -F: '$2 != "*" 88 $2 !~ /^!/ { print $1 }' ); do
    edquota -u ${user} -p $1
done
```

Note, no entanto, que apesar de o *script* acima ser minimamente funcional, há alguns parâmetros importantes que não sendo testados no momento:

- O usuário passado como parâmetro para o script existe?
- Está sendo removido o usuário root da lista de usuários para aplicação de quota?
- Está sendo removido o próprio usuário passado como parâmetro da lista de usuários para aplicação de quota?

A resposta para todos esses itens, evidentemente, é não. Poderíamos estender o script para fazer essas funções, mas no intuito de mostrar uma abordagem diferente para o problema, veja abaixo uma solução equivalente, mais completa, usando a linguagem Python:

```
#!/usr/bin/python
import os, sys, subprocess, pwd, spwd
if os.geteuid() != 0:
 exit(' Not root?')
if len(sys.argv) <= 1:</pre>
 exit(' Usage: ' + sys.argv[0] + ' TEMPLATE_USER')
try:
 pwd.getpwnam(sys.argv[1])
except KeyError:
 exit('No such \'' + sys.argv[1] + '\' user')
qusers = []
for user in pwd.getpwall():
  if user[0] == 'root' or user[0] == sys.argv[1]:
    continue
 phash = spwd.getspnam(user[0]).sp_pwd
 if phash != '*' and not phash.startswith('!'):
    qusers.append(user[0])
for user in qusers:
  subprocess.call(['edquota', '-u', user, '-p', sys.argv[1]])
```

O que você achou da solução acima? Mais fácil, mais difícil ou apenas diferente? Lembre-se, ao atuar como um administrador de redes e sistemas não se deve ficar preso a um único tipo de ferramenta ou solução, mas sim utilizar a melhor alternativa possível para resolver o problema.

Registro de eventos

As atividades 1, 2 e 3 desta sessão serão realizadas na máquina virtual *Client_Linux*. As atividades 4, 5, 6 e 7 serão realizadas em ambas as máquinas *Server_Linux* e *Client_Linux*, de acordo com o enunciado de cada exercício.

Em algumas atividades, você trabalhará com a conta root, o que lhe dará todos os direitos sobre os recursos do sistema. Seja cauteloso antes de executar qualquer comando.

1) Registrando os eventos do kernel

1. Configure seu sistema de modo que os eventos gerados pelo kernel sejam registrados em um arquivo chamado kernel.log, no diretório /var/log.

Mesmo após reiniciar o *daemon* rsyslog, o arquivo não será criado de imediato. Para testar o funcionamento da diretiva, precisamos gerar alguma mensagem para a *facility* apropriada:

```
# modprobe lp
# cat /var/log/kernel.log
Aug 9 11:15:45 cliente kernel: [ 447.128333] lp: driver loaded but no devices
found
```

2) Analisando os arquivos de log do sistema

Para esta atividade você terá que ter acesso ssh à máquina em que está configurando o sistema de logs para que você possa acompanhar, em tempo real, os registros gravados nos arquivos de log.

1. Crie, em sua máquina, uma conta com senha para acesso via ssh.

```
# useradd -m aluno2
# passwd aluno2
Digite a nova senha UNIX:
Redigite a nova senha UNIX:
passwd: senha atualizada com sucesso
```

2. A partir de uma máquina remota, faça login via ssh utilizando a conta criada no passo anterior.

Utilize o comando tail com a opção -f para verificar em tempo real os registros gerados pelo syslog no arquivo /var/log/auth.log.

No servidor ssh, execute:

```
# tail -f -n0 /var/log/auth.log
```

De outra máquina, faça login via ssh com a conta criada anteriormente:

```
$ ssh aluno2@192.168.0.20
aluno2@192.168.0.20's password:
aluno2@cliente:~$
```

Monitore o que aconteceu no arquivo /var/log/auth.log:

```
# tail -f -n0 /var/log/auth.log
Aug 9 11:26:24 cliente sshd[1050]: Accepted password for aluno2 from 192.168.0.254
port 50325 ssh2
Aug 9 11:26:24 cliente sshd[1050]: pam_unix(sshd:session): session opened for user
aluno2 by (uid=0)
```

3. Faça um *script* que contabilize o número de tentativas de login mal sucedidas através do ssh, listando os IPs de origem e quantas tentativas foram feitas por cada IP.

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash

if [[ $EUID -ne 0 ]]; then
    echo " [*] Not root!" 1>&2
    exit 1

fi

while read -r line; do
    s=( $( echo $line ) )
    echo -e "Host ${s[1]}: ${s[0]} failed logins"

done < <( grep "(sshd.auth): authentication failure.*rhost=" /var/log/auth.log |
    awk '{print $14}' | cut -d'=' -f2 | sort -n | uniq -c )</pre>
```

3) Analisando os arquivos de log binários do sistema

Nesta atividade, você irá trabalhar com os arquivos de log binários armazenados no diretório /var/log.

1. Verifique quais foram os dois últimos usuários a efetuarem login em seu computador.

```
$ last | head -n2
aluno2 pts/1 192.168.0.254 Thu Aug 9 11:26 - 11:27 (00:01)
aluno pts/0 192.168.0.254 Thu Aug 9 11:10 still logged in
```

2. Como você poderia verificar as contas existentes em seu computador que nunca efetuaram login?

```
$ lastlog | grep '**Nunca logou**' | sort
                                             **Nunca logou**
avahi-autoipd
                                             **Nunca logou**
backup
bin
                                             **Nunca logou**
daemon
                                             **Nunca logou**
                                             **Nunca logou**
Debian-exim
                                             **Nunca logou**
funcionario
                                             **Nunca logou**
games
                                             **Nunca logou**
gnats
                                             **Nunca logou**
irc
                                             **Nunca logou**
list
                                             **Nunca logou**
lp
                                             **Nunca logou**
mail
                                             **Nunca logou**
man
                                             **Nunca logou**
marcelo
                                             **Nunca logou**
messagebus
                                             **Nunca logou**
news
nobody
                                             **Nunca logou**
                                             **Nunca logou**
pedro
                                             **Nunca logou**
ргоху
                                             **Nunca logou**
sshd
                                             **Nunca logou**
statd
                                             **Nunca logou**
sync
                                             **Nunca logou**
Sys
                                              **Nunca logou**
systemd-bus-proxy
                                             **Nunca logou**
systemd-network
                                             **Nunca logou**
systemd-resolve
                                             **Nunca logou**
systemd-timesync
                                             **Nunca logou**
uucp
                                             **Nunca logou**
www-data
```

3. Qual a maneira mais fácil de identificar um login remoto efetuado em seu computador?

Através do comando last. A terceira coluna mostra o *host* de origem do login, seja ele local ou remoto:

```
$ last | head -n20 | grep -v '^reboot'
aluno2
        pts/1
                     192.168.0.254
                                       Thu Aug 9 11:26 - 11:27 (00:01)
aluno
        pts/0
                     192.168.0.254
                                       Thu Aug 9 11:10 still logged in
                                      Thu Aug 9 03:25 - down
root
        tty1
                                                               (00:00)
aluno
        pts/0
                     192.168.0.254
                                       Thu Aug 9 02:32 - 03:25 (00:53)
                     192,168,0,254
                                       Thu Aug 9 02:25 - down
                                                                 (00:05)
aluno
        pts/0
aluno
                     192.168.0.254
                                       Thu Aug 9 01:47 - down
        pts/0
                                                                 (00:37)
root
        tty1
                                      Wed Aug 8 19:05 - down
                                                               (00:00)
aluno
                     192.168.0.254
                                       Wed Aug 8 18:19 - 19:05 (00:46)
        pts/0
                                      Tue Aug 7 18:18 - down
root
        tty1
                                                               (00:00)
aluno
        pts/0
                     192.168.0.254
                                      Tue Aug 7 17:56 - 18:17 (00:21)
aluno
        pts/1
                     192.168.0.254
                                       Tue Aug 7 17:07 - 17:15 (00:07)
instruto pts/1
                     localhost
                                      Tue Aug 7 15:45 - 16:01 (00:15)
instruto pts/1
                     localhost
                                      Tue Aug 7 14:44 - 14:46 (00:01)
                     localhost
                                      Tue Aug 7 14:42 - 14:42 (00:00)
instruto pts/1
instruto pts/1
                     localhost
                                      Tue Aug 7 14:39 - 14:39 (00:00)
```

4. Faça um *script* que mostre o tempo total que cada usuário ficou logado no sistema utilizando as informações obtidas com o comando last.

O script shell abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash
users=( $( last -w | egrep '(tty|pts)' | awk '{print $1}' | sort | uniq ) )
for user in "${users[@]}"; do
 times=( $( last -w | egrep "^$user " | egrep '(tty|pts)' | egrep -v 'still logged
in *$' | sed 's/ *$//' | awk -F '[ :()]' '{printf "%s:%s\n", $(NF-2), $(NF-1)}' )
)
 h=0
 m=0
 for time in "${times[@]}" ; do
    s=( $( echo $time | tr ':' ' '))
    ((h+=${s[0]}))
    ((m+=\$\{s[1]\}))
 done
 mh=\$((\$m/60))
 mr = \$((\$m\%60))
 ((h+=\$mh))
 echo "User \"$user\" logged time: $h hours, $mr minutes"
done
```

4) Servidor de log remoto

1. Este exercício deve ser feito utilizando duas máquinas virtuais Linux. Configure um servidor de logs na máquina virtual *Server_Linux*; posteriormente, configure a máquina virtual *Client_Linux* para enviar os registros dos eventos gerados para esse servidor de logs.

Na máquina *Server_Linux*, edite o arquivo /etc/rsyslog.conf e descomente as linhas que se seguem. Em seguida, reinicie o serviço do rsyslog.

```
# grep -A1 'imudp' /etc/rsyslog.conf
$ModLoad imudp
$UDPServerRun 514
# systemctl restart rsyslog.service
```

Na máquina *Client_Linux*, configure o envio de logs para o servidor remoto editando o arquivo /etc/rsyslog.conf e inserindo a linha que se segue ao final do arquivo, substituindo o endereço IP 192.168.0.10 pelo IP da máquina *Server_Linux*. Em seguida, reinicie o serviço do rsyslog.

```
# tail -n1 /etc/rsyslog.conf
*.* @192.168.0.10

# systemctl restart rsyslog.service
```

2. Após terminar a configuração, efetue um login na máquina *Client_Linux* em um terminal qualquer e verifique onde foi registrado esse evento no servidor de logs *Server_Linux*.

Tendo em vista que o evento gerado na máquina *Client_Linux* será de login, o registro deverá ser enviado para o arquivo onde eventos de autenticação são enviados, na *facility* authoriv:

```
# grep '^auth,authpriv' /etc/rsyslog.conf
auth,authpriv.* /var/log/auth.log
```

Sabendo que o arquivo a ser monitorado é o /var/log/auth.log, usaremos o comando tail para fazê-lo:

```
# tail -f -n0 /var/log/auth.log
```

Após gerar um evento de login via ssh na máquina *Client_Linux*, imediamente a mesma mensagem aparece replicada nos logs da máquina *Server_Linux*:

```
# tail -f -n0 /var/log/auth.log
Aug 9 15:18:07 cliente sshd[3285]: Accepted password for aluno from 192.168.0.254
port 50854 ssh2
Aug 9 15:18:07 cliente sshd[3285]: pam_unix(sshd:session): session opened for user
aluno by (uid=0)
```

Evidentemente, é muito confuso ter todas as mensagens de log de uma máquina remota sendo colocadas nos mesmos arquivos que registram os eventos do servidor local. Para tratar esses logs com mais clareza, é interessante separar os logs de cada *host* remoto em seus próprios arquivos e pastas para facilitar o processamento e entendimento. A seguinte configuração pode ser útil para atingir esse objetivo.

Primeiro, note que o rsyslog inclui arquivos customizados pelo usuário terminados com a extensão .conf no diretório /etc/rsyslog.d:

```
# grep '^\$IncludeConfig' /etc/rsyslog.conf
$IncludeConfig /etc/rsyslog.d/*.conf
```


Vamos criar um arquivo novo nessa pasta, /etc/rsyslog.d/client_linux.conf, indicando um arquivo específico para envio dos logs da máquina *Client_Linux*, e evitar a escrita desses registros em qualquer outro arquivo local (palavrachave stop). Feito isso, basta reiniciar o *daemon* rsyslog. Veja abaixo o conteúdo desse arquivo:

```
if $fromhost-ip == '192.168.0.25' then /var/log/client_linux.log
& stop
```

Pronto! Agora, novos eventos gerados pela máquina *Client_Linux* serão enviados exclusivamente para o arquivo /var/log/client_linux.log, sem se misturar com os eventos locais do servidor de logs.

```
# tail -f -n0 /var/log/client_linux.log
Aug 9 15:34:33 cliente sshd[3340]: Accepted password for aluno from
192.168.0.254 port 50902 ssh2
Aug 9 15:34:33 cliente sshd[3340]: pam_unix(sshd:session): session
opened for user aluno by (uid=0)
```

- 3. Cite três vantagens obtidas com o uso de um servidor de logs.
 - Facilita o gerenciamento dos arquivos de log, já que estão centralizados em um único servidor.
 - Aumenta a segurança no armazenamento dos arquivos de log, pois o servidor pode estar em outra rede, com regras diferenciadas, dificultando o acesso de possíveis invasores.

Facilita o backup dos arquivos de log.

5) Utilizando o logger

Nesta atividade, você irá verificar uma funcionalidade importante do comando logger.

1. Na máquina *Server_Linux*, inclua uma nova regra no arquivo /etc/rsyslog.conf, de modo que qualquer evento gerado pelo daemon cron seja registrado no arquivo /var/log/cron.log.

2. Utilize o comando logger para testar se a alteração feita no passo anterior produziu o efeito esperado.

```
# logger -p cron.info "teste"

# tail /var/log/cron.log
Aug 9 15:52:26 servidor aluno: teste
```

6) Rotacionando arquivos de log do sistema

Nesta atividade, você irá configurar o rotacionamento dos arquivos de log de seu computador.

1. Na máquina *Server_Linux*, realize o rotacionamento mensal do arquivo recém-criado /var/log/cron.log, mantendo uma cópia dos dois últimos arquivos compactados e criando, automaticamente, um novo arquivo vazio após o rotacionamento.

No arquivo /etc/logrotate.conf estão as configurações globais para o rotacionamento dos arquivos de log. Ao configurar o rotacionamento de um arquivo ou um grupo de logs podemos editar diretamente esse arquivo ou, opcionalmente, incluir novas configurações dentro do diretório /etc/logrotate.d.

```
# grep '^include' /etc/logrotate.conf
include /etc/logrotate.d

# ls /etc/logrotate.d/
apt aptitude dpkg exim4-base exim4-paniclog iptraf rsyslog
```

Vamos criar um arquivo /etc/logrotate.d/cron para configurar os aspectos de rotacionamento de logs desse arquivo de acordo com os parâmetro especificados no exercício, com o seguinte conteúdo:

```
/var/log/cron.log
{
  rotate 2
  monthly
  missingok
  notifempty
  delaycompress
  compress
  create 640 root adm
  postrotate
    systemctl reload cron.service > /dev/null
  endscript
}
```

7) Aplicativos para análise de arquivos de log

1. Na máquina Server_Linux, instale o pacote logwatch através do comando apt-get e configure-o para enviar um relatório diário do sistema para o usuário root. Um exemplo do arquivo de configuração está disponível em /usr/share/logwatch/default.conf/logwatch.conf.

Primeiro, vamos instalar o pacote:

```
# apt-get install logwatch
```

A seguir, vamos copiar o modelo do arquivo de configuração em /usr/share/logwatch/default.conf/logwatch.conf para o diretório /etc/logwatch/conf:

```
# cp /usr/share/logwatch/default.conf/logwatch.conf /etc/logwatch/conf/
```

Edite o arquivo para que o período e opções de envio fiquem de acordo com o solicitado pela atividade. Abaixo mostramos o conteúdo do arquivo /etc/logwatch/conf/logwatch.conf, excluídas linhas de comentário:

```
LogDir = /var/log
TmpDir = /var/cache/logwatch
Output = mail
Format = text
Encode = none
MailTo = root
MailFrom = Logwatch
Range = All
Detail = Low
Service = All
mailer = "/usr/sbin/sendmail -t"
```

Lembre-se de criar o diretório /var/cache/logwatch, que ainda não existe:

```
# mkdir /var/cache/logwatch
```

Finalmente, observe que por padrão o Debian já habilita a execução diária do logwatch através de um *script* instalado pelo próprio pacote no diretório /etc/cron.daily:

```
# ls /etc/cron.daily/ | grep 'logwatch'
00logwatch

# cat /etc/cron.daily/00logwatch | grep -v '^#' | sed '/^$/d'
test -x /usr/share/logwatch/scripts/logwatch.pl || exit 0
/usr/sbin/logwatch --output mail
```

2. Ainda na máquina *Server_Linux*, crie uma regra para o swatch que envie um e-mail de notificação ao administrador quando alguma tentativa de login via ssh, ou su para o usuário root, falharem.

Primeiro, vamos instalar o swatch via apt-get:

```
# apt-get install swatch
```

A configuração do swatch é um tanto quanto arcana, mas a página de manual do programa (\$ man 1p swatch) nos dá algum direcionamento através da seção *CONFIGURATION EXAMPLE*. Um dos requisitos é criar um arquivo de configuração com a expressão regular que casa com o erro de autenticação do daemon do sshd. Primeiro, precisamos conhecer o formato da mensagem:

```
Aug 9 16:39:56 servidor sshd[4113]: Failed password for aluno from 192.168.0.254 port 51230 ssh2
```

Outro ponto de atenção é a tentativa de su para o usuário root com falha, possivelmente por senha incorreta. Vamos verificar o formato da mensagem de log:

```
Aug 9 16:46:29 servidor su[4175]: FAILED su for root by aluno
```

Sabendo os formatos objetivados, vamos agora elaborar expressões regulares que casem com os padrões acima, extraiam informação relevante, e executem uma ação apropriada—enviar email de notificação ao usuário root em caso de violação desses padrões. Abaixo mostramos o conteúdo do arquivo /etc/swatch.conf:

```
watchfor /^(.*sshd\[[0-9]*\]\: Failed password for [A-Za-z0-9]* from ([0-9:.]*).*)/
    exec "echo '$1' | mail root -s '[swatch][ssh]:\ $2' "
    echo

watchfor /^(.*su\[[0-9]*\]\: FAILED su for root by ([A-Za-z0-9]*))/
    exec "echo '$1' | mail root -s '[swatch][su]:\ $2' "
    echo
```

Vamos rodar o swatch manualmente e testar se os padrões estão sendo capturados. Serão realizadas duas ações de violação — um login ssh com senha incorreta e uma tentativa de su para root com senha incorreta.

```
# swatch --tail-file=/var/log/auth.log --config-file=/etc/swatch.conf --pid
-file=/var/run/swatch.pid

*** swatch version 3.2.3 (pid:5011) started at Qui Ago 9 17:29:51 -03 2018

Aug 9 17:32:35 servidor sshd[5093]: Failed password for aluno from 192.168.0.254
port 51460 ssh2
Aug 9 17:32:43 servidor su[5117]: FAILED su for root by aluno
```

Aparentemente, tudo funcionou. Vamos verificar se os e-mails estão sendo de fato enviados:

```
$ mail
Mail version 8.1.2 01/15/2001. Type ? for help.
"/var/mail/aluno": 2 messages 2 new
>N 1 root@servidor.emp Thu Aug 09 17:32
                                            16/705
                                                     [swatch][ssh]: 192.168.0.254
N 2 root@servidor.emp Thu Aug 09 17:32
                                            16/663
                                                     [swatch][su]: aluno
8 1
Message 1:
From root@servidor.empresa.com.br Thu Aug 09 17:32:35 2018
Envelope-to: root@servidor.empresa.com.br
Delivery-date: Thu, 09 Aug 2018 17:32:35 -0300
To: root@servidor.empresa.com.br
Subject: [swatch][ssh]: 192.168.0.254
From: root <root@servidor.empresa.com.br>
Date: Thu, 09 Aug 2018 17:32:35 -0300
Aug 9 17:32:35 servidor sshd[5093]: Failed password for aluno from 192.168.0.254
port 51460 ssh2
8 2
Message 2:
From root@servidor.empresa.com.br Thu Aug 09 17:32:43 2018
Envelope-to: root@servidor.empresa.com.br
Delivery-date: Thu, 09 Aug 2018 17:32:43 -0300
To: root@servidor.empresa.com.br
Subject: [swatch][su]: aluno
From: root <root@servidor.empresa.com.br>
Date: Thu, 09 Aug 2018 17:32:43 -0300
Aug 9 17:32:43 servidor su[5117]: FAILED su for root by aluno
```

Excelente! Para que o swatch não tenha que ser iniciado manualmente, e continue operando mesmo após o reinício do sistema, é necessário que ele possua um *initscript* correspondente. Infelizmente, a versão instalada pelo apt-get não disponibiliza tal facilidade nem em formato legado (no diretório /etc/init.d) nem em arquivo de serviço para o systemd (que ficam no diretório /etc/systemd/system).

Felizmente, é relativamente fácil criar um arquivo de serviço para o systemd manualmente. Abaixo mostramos o conteúdo do arquivo /etc/systemd/system/swatch.service:

```
[Unit]
Description=Swatch Log Monitoring Daemon
After=syslog.target network.target auditd.service sshd.service

[Service]
ExecStart=/usr/bin/swatch --config-file=/etc/swatch.conf --tail-file
=/var/log/auth.log --pid-file=/var/run/swatch.pid --daemon
ExecStop=/bin/kill -s KILL $(cat /var/run/swatch.pid)
Type=forking
PIDFile=/var/run/swatch.pid

[Install]
WantedBy=multi-user.target
```

Uma vez criado, deve-se instruir o systemd a carregar o arquivo:

```
# systemctl daemon-reload
```

Pronto! Agora é possível habilitar/desabilitar o swatch durante o *boot* do sistema, e iniciar/parar/reiniciar e verificar o estado do serviço normalmente:

```
# systemctl enable swatch.service
Created symlink from /etc/systemd/system/multi-user.target.wants/swatch.service to
/etc/systemd/system/swatch.service.
# systemctl is-enabled swatch.service
enabled.
# systemctl start swatch.service
# systemctl status swatch.service
swatch.service - Swatch Log Monitoring Daemon
   Loaded: loaded (/etc/systemd/system/swatch.service; enabled)
   Active: active (running) since Qui 2018-08-09 17:37:57 -03; 4s ago
  Process: 5216 ExecStart=/usr/bin/swatch --config-file=/etc/swatch.conf --tail
-file=/var/log/auth.log --pid-file=/var/run/swatch.pid --daemon (code=exited,
status=0/SUCCESS)
Main PID: 5218 (/usr/bin/swatch)
   CGroup: /system.slice/swatch.service
           ├──5218 /usr/bin/swatch --config-file=/etc/swatch.conf --tail
-file=/var/log/auth...
           5219 /usr/bin/tail -n 0 -F /var/log/auth.log
Ago 09 17:37:57 servidor systemd[1]: Starting Swatch Log Monitoring Daemon...
Ago 09 17:37:57 servidor systemd[1]: PID file /var/run/swatch.pid not readable
(yet?) a...rt.
Ago 09 17:37:57 servidor systemd[1]: Started Swatch Log Monitoring Daemon.
Hint: Some lines were ellipsized, use -l to show in full.
```

3. Ainda na máquina *Server_Linux*, habilite o logcheck para enviar relatórios ao usuário root de 30 em 30 minutos (ex: 1:00, 1:30, etc.).

Primeiro, vamos instalar o logcheck via apt-get:

```
# apt-get install logcheck
```

O logcheck já vem com envio de e-mails habilitado por padrão, então a única configuração necessária é alterar a periodicidade de envio de relatórios. O arquivo /etc/cron.d/logcheck vem configurado para envios de hora em hora. Edite a linha:

```
2 * * * * logcheck if [ -x /usr/sbin/logcheck ]; then nice -n10 /usr/sbin/logcheck; fi
```

Alterando-a para:

```
0,30 * * * * logcheck if [ -x /usr/sbin/logcheck ]; then nice -n10 /usr/sbin/logcheck; fi
```

O logcheck fará um *scan* dos logs de sistema e enviará por e-mail linhas consideradas "interessantes" — note que o programa envia apenas os registros ocorridos desde a sua última execução.

8) Recomendações básicas de segurança

- 1. O que você faria para aumentar o nível de segurança em um servidor de logs centralizado? Cite duas opções.
 - Desabilitar o serviço sshd no servidor de logs, permitindo acesso somente pela console.
 - Configurar o firewall de *host* para permitir apenas tráfego de pacotes UDP na porta 514.
 - Utilizar uma rede isolada para a troca de mensagens de log.
 - Desinstalar todos os serviços que não estão sendo utilizados ou são desnecessários à função do servidor.
 - Manter o sistema operacional rigorosamente atualizado.

Segurança básica e procedimentos operacionais

As atividades desta sessão serão realizadas na máquina virtual Client_Linux.

1) Identificando senhas fracas

Uma das formas de verificar se o seu sistema atende às recomendações básicas de segurança é utilizar os programas "quebradores" de senha, ou *password crackers*. Neste exercício, utilizaremos um desses programas para mostrar seu funcionamento.

1. Obtenha e instale o *password cracker* John the Ripper, ou simplesmente john.

```
# apt-get install john
```

2. Crie o arquivo /root/dicionario.txt com uma lista de senhas. Caso considere necessário, acrescente palavras que julgue impróprias para uso em senhas. Por exemplo:

```
123456
1234
rnpesr
senha
abacate
```

3. Rode o *password cracker* com o comando # john -wordlist=/root/dicionario.txt -rules /etc/shadow.

```
# john -wordlist=/root/dicionario.txt -rules /etc/shadow
Created directory: /root/.john
Loaded 5 password hashes with 5 different salts (crypt, generic crypt(3) [?/64])
Press 'q' or Ctrl-C to abort, almost any other key for status
123456
                 (aluno2)
senha
                 (marcelo)
                 (aluno3)
abacate
                 (root)
rnpesr
                 (aluno)
rnpesr
5g 0:00:00:01 100% 3.676g/s 70.58p/s 352.9c/s 352.9C/s 123456..Abacate9
Use the "--show" option to display all of the cracked passwords reliably
Session completed
```

4. Veja o resultado da verificação com o comando # john -show /etc/shadow.

```
# john -show /etc/shadow
root:rnpesr:16842:0:99999:7:::
aluno:rnpesr:16842:0:99999:7:::
aluno2:123456:17752:0:99999:7:::
marcelo:senha:17752:0:99999:7:::
aluno3:abacate:17752:0:99999:7:::
5 password hashes cracked, 0 left
```

2) Descobrindo a funcionalidade do bit SGID em diretórios

A utilidade do SUID e SGID foi vista desde a sessão de aprendizagem 1. Execute a sequência de comandos e depois responda as seguintes perguntas:

1. Crie o grupo corp e defina-o como grupo secundário do seu usuário.

```
# groupadd corp
# usermod -a -G corp aluno
# groups aluno
aluno : aluno cdrom floppy sudo audio dip video plugdev netdev bluetooth corp
```

2. Entre no sistema a partir da sua conta e crie um diretório chamado dir_corp.

```
$ mkdir dir_corp
$ ls
dir_corp
```

3. Verifique a qual grupo pertence o diretório criado no passo acima. Modifique-o para que passe a pertencer ao grupo corp e mude a sua permissão para 2755.

```
$ chgrp corp ~/dir_corp/
$ chmod 2755 ~/dir_corp/
$ ls -ld dir_corp/
drwxr-sr-x 2 aluno corp 4096 Ago 9 19:15 dir_corp/
```

4. Crie, no seu diretório *home* um arquivo chamado arq1. Em seguida, mude para o diretório criado no segundo item e crie um arquivo chamado arq2.

```
$ pwd
/home/aluno
$ touch arq1
$ touch dir_corp/arq2
```

5. Verifique os grupos aos quais pertencem os arquivos criados no item anterior. Você saberia explicar por que os arquivos pertencem a grupos distintos, embora tenham sido criados pelo mesmo usuário?

```
$ ls -ld arq1
-rw-r--r-- 1 aluno aluno 0 Ago 9 19:19 arq1
$ ls -ld dir_corp/arq2
-rw-r--r-- 1 aluno corp 0 Ago 9 19:19 dir_corp/arq2
```

O arquivo criado no diretório /home/aluno/dir_corp/ possui o mesmo grupo dono de seu diretório-pai, pois o mesmo está com o bit SGID definido—isso faz com que qualquer arquivo criado dentro dele tenha o mesmo grupo dono que o próprio diretório, independente do usuário que o tenha criado. Já o arquivo criado no diretório /home/aluno/ tem o mesmo grupo primário do usuário que o criou, já que este diretório não tem o bit SGID definido.

6. Quais as vantagens desse esquema?

Esse recurso é útil em diretórios compartilhados, nos quais diversos usuários criam arquivos que precisam ter permissão de escrita e/ou leitura para todos os usuários do grupo do diretório.

3) Obtendo informações sobre os recursos computacionais

1. Vimos, no texto teórico, que uma das importantes funções de um administrador de sistemas é acompanhar o uso dos recursos computacionais de sua instituição. Discuta com o seu colega quais comandos vistos em todo o módulo podem auxiliar na coleta desse tipo de informação.

Diversos comandos podem ser utilizados para verificar o uso dos recursos computacionais, dentre os quais podemos destacar: df, du, ps, top, htop, free, vmstat, iostat, lsof, etc.

4) Controlando os recursos dos usuários

Um dos grandes desafios de um administrador de sistema, nos tempos atuais, é controlar a ocupação do espaço em disco do seu sistema — aplicações do tipo P2P (*peer-to-peer*), por exemplo, são consumidoras vorazes desse tipo de recurso.

1. Que medidas podem ser tomadas para controlar a ocupação de disco de forma automática?

A instalação e configuração de *quotas* de disco para usuários é uma excelente maneira de implementar controles nesse sentido.

DNS e NFS

Nestas atividades, você deve trabalhar com duas máquinas virtuais (Server_Linux e Client_Linux). Ambas devem estar na mesma rede. Como estabelecido na topologia de rede de curso, o endereço 192.168.0.10 será o da máquina Server_Linux, e o endereço 192.168.0.20 será o da máquina Client_Linux. Teste o funcionamento da rede através do comando ping antes de prosseguir com os exercícios.

1) Servidor de DNS Primário

Esta configuração será realizada na máquina virtual Server_Linux.

Considerando a rede 192.168.0.0/24, cujo domínio é empresa.com.br, configure o servidor de DNS Primário de modo que ele tenha as seguintes máquinas registradas, com tipos de registro associados:

Table 4. Configuração DNS

Nome	Endereço IP	Tipo de registro
servidor.empresa.com.br	192.168.0.10	NS
email.empresa.com.br	192.168.0.15	MX
cliente.empresa.com.br	192.168.0.20	A
windows.empresa.com.br	192.168.0.25	A
www.empresa.com.br	192.168.0.10	CNAME
meusite.empresa.com.br	192.168.0.10	CNAME
pop.empresa.com.br	192.168.0.15	CNAME
smtp.empresa.com.br	192.168.0.15	CNAME

Não se esqueça de configurar a resolução de nomes reversa.

1. Instale os seguintes aplicativos:

```
# apt-get install bind9 bind9utils
```

- 2. Ajuste os arquivos de configuração da seguinte forma:
 - /etc/bind/named.conf.options opções do servidor bind:

```
options {
  directory "/var/cache/bind";

forwarders {
   8.8.8.8;
   8.8.4.4;
};

dnssec-validation auto;
  auth-nxdomain no;

allow-transfer { none; };
  allow-query { internals; };
  allow-recursion { internals; };
  listen-on { 127.0.0.1; 192.168.0.10; };
  listen-on-v6 { none; };

  version none;
};
```

• /etc/bind/named.conf.local — configurações locais do servidor bind:

```
acl internals { 127.0.0.0/8; 192.168.0.0/24; };

zone "empresa.com.br" {
   type master;
   file "/etc/bind/db.empresa.com.br";
};

zone "0.168.192.in-addr.arpa" {
   type master;
   file "/etc/bind/db.0.168.192";
};

include "/etc/bind/zones.rfc1918";
```

• /etc/bind/db.empresa.com.br — arquivo de zona do domínio empresa.com.br:

```
$TTL 86400 ; (1 day)
$ORIGIN empresa.com.br.
          TN
                               servidor.empresa.com.br. admin.empresa.com.br. (
                SOA
                2018080900
                               ;Serial (YYYYMMDDnn)
                               ;Refresh (4 hours)
                14400
                1800
                               ;Retry (30 minutes)
                               ;Expire (2 weeks)
                1209600
                3600
                               ;Negative Cache TTL (1 hour)
)
                               servidor.empresa.com.br.
0
          IN
                NS
                         10
0
          IN
                MΧ
                               email.empresa.com.br.
servidor
          IN
                               192.168.0.10
                Α
email
                               192.168.0.15
          IN
                Α
cliente
                               192.168.0.20
          IN
                Α
windows
                               192.168.0.25
          IN
                Α
          IN
                CNAME
                               servidor
www
meusite
                CNAME
                               servidor
          IN
          IN
                CNAME
                               email
pop
smtp
          IN
                CNAME
                               email
```

• /etc/bind/db.0.168.192 — arquivo de resolução reversa do domínio empresa.com.br:

```
$TTL 86400 ; (1 day)
$ORIGIN 0.168.192.in-addr.arpa.
                               servidor.empresa.com.br. admin.empresa.com.br. (
          IN
                SOA
                               ;Serial (YYYYMMDDnn)
                2018080900
                14400
                               ;Refresh (4 hours)
                               ;Retry (30 minutes)
                1800
                1209600
                               ;Expire (2 weeks)
                3600
                               ;Negative Cache TTL (1 hour)
)
                               servidor.empresa.com.br.
0
          IN
                NS
                         10
                               email.empresa.com.br.
          IN
                MΧ
0
10
          IN
                PTR
                               servidor.empresa.com.br.
15
          IN
                PTR
                               email.empresa.com.br.
20
                               cliente.empresa.com.br.
          IN
                PTR
25
          IN
                PTR
                               windows.empresa.com.br.
```

· /etc/resolv.conf — configuração de resolução de nomes para o Server_Linux:

```
domain empresa.com.br
search empresa.com.br
nameserver 127.0.0.1
```

3. Como a interface de rede eth0 da máquina Server_Linux está configurada para obter endereço via DHCP, o daemon dhclient irá sobrescrever as alterações que fizemos ao arquivo /etc/resolv.conf no próximo reboot. Para prevenir isso, podemos ativar o atributo immutable do arquivo, impedindo sua alteração:

```
# chattr +i /etc/resolv.conf
```

4. Reinicie o bind e verifique por possíveis erros:

```
# systemctl restart bind9.service
# systemctl status bind9.service
bind9.service - BIND Domain Name Server
   Loaded: loaded (/lib/systemd/system/bind9.service; enabled)
 Drop-In: /run/systemd/generator/bind9.service.d
           50-insserv.conf-$named.conf
  Active: active (running) since Qui 2018-08-09 21:23:48 -03; 5s ago
    Docs: man:named(8)
 Process: 14402 ExecStop=/usr/sbin/rndc stop (code=exited, status=0/SUCCESS)
Main PID: 14406 (named)
   CGroup: /system.slice/bind9.service
           14406 /usr/sbin/named -f -u bind
Ago 09 21:23:48 servidor named[14406]: zone 22.172.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: zone 16.172.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: zone 27.172.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: zone 127.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: zone 26.172.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: zone 25.172.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: zone localhost/IN: loaded serial 2
Ago 09 21:23:48 servidor named[14406]: zone 28.172.in-addr.arpa/IN: loaded serial 1
Ago 09 21:23:48 servidor named[14406]: all zones loaded
Ago 09 21:23:48 servidor named[14406]: running
```

5. Teste os registros com o uso das ferramentas nslookup e dig:

```
# nslookup servidor.empresa.com.br
                127.0.0.1
Server:
                127.0.0.1#53
Address:
Name:
        servidor.empresa.com.br
Address: 192.168.0.10
# dig -x 192.168.0.25 +noquestion
; <<>> DiG 9.9.5-9+deb8u15-Debian <<>> -x 192.168.0.25 +noquestion
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5625
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; ANSWER SECTION:
25.0.168.192.in-addr.arpa. 86400 IN
                                        PTR
                                                windows.empresa.com.br.
;; AUTHORITY SECTION:
0.168.192.in-addr.arpa. 86400
                                        NS
                                                 servidor.empresa.com.br.
                                ΙN
;; ADDITIONAL SECTION:
servidor.empresa.com.br. 86400 IN
                                        Α
                                                192.168.0.10
;; Query time: 3 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Aug 09 21:26:41 -03 2018
;; MSG SIZE rcvd: 129
```

2) Servidor de DNS Secundário

Esta configuração será realizada na máquina virtual Client_Linux.

Configure o servidor de DNS Secundário para o domínio empresa.com.br. Importante:

- Não se esqueça de informar o endereço IP do servidor secundário no parâmetro allow-transfer do servidor primário.
- Os arquivos de zona que forem transferidos devem ser gravados no diretório /etc/bind/sec do servidor secundário já que o *daemon* executa como usuário bind, que não tem permissão de escrita direta no diretório /etc/bind.
- 1. Antes de mais nada, configure o *Server_Linux* para permitir transferência de zona a partir do servidor secundário *Client_Linux*:

```
# egrep '^ *allow-transfer' /etc/bind/named.conf.options
allow-transfer { 192.168.0.20; };
# systemctl restart bind9.service
```

2. A seguir, instale o servidor DNS bind na máquina Client_Linux:

```
# apt-get install bind9 bind9utils
```

- 3. Ajuste os arquivos de configuração da seguinte forma:
 - /etc/bind/named.conf.options opções do servidor bind:

```
options {
  directory "/var/cache/bind";

forwarders {
   192.168.0.10;
};

dnssec-validation auto;
  auth-nxdomain no;

allow-transfer { none; };
  allow-query { internals; };
  allow-recursion { internals; };

listen-on { 127.0.0.1; 192.168.0.20; };
  listen-on-v6 { none; };

  version none;
};
```

• /etc/bind/named.conf.local — configurações locais do servidor bind:

```
acl internals { 127.0.0.0/8; 192.168.0.0/24; };

zone "empresa.com.br" {
   type slave;
   file "/etc/bind/sec/db.empresa.com.br";
   masters { 192.168.0.10; };
};

zone "0.168.192.in-addr.arpa" {
   type slave;
   file "/etc/bind/sec/db.0.168.192";
   masters { 192.168.0.10; };
};

include "/etc/bind/zones.rfc1918";
```

· /etc/resolv.conf — configuração de resolução de nomes para o *Client_Linux*:

```
domain empresa.com.br
search empresa.com.br
nameserver 127.0.0.1
```

4. Observe que iremos escrever os arquivos transferidos no diretório /etc/bind/sec, que ainda não existe. Vamos criá-lo e atribuir permissionamento:

```
# mkdir /etc/bind/sec
# chown bind.root /etc/bind/sec
```

5. Reinicie o bind e verifique se os arquivos de zona foram transferidos corretamente:

```
# systemctl restart bind9.service
# systemctl status bind9.service -l
bind9.service - BIND Domain Name Server
   Loaded: loaded (/lib/systemd/system/bind9.service; enabled)
 Drop-In: /run/systemd/generator/bind9.service.d
           50-insserv.conf-$named.conf
  Active: active (running) since Qui 2018-08-09 21:41:27 -03; 2s ago
     Docs: man:named(8)
 Process: 5549 ExecStop=/usr/sbin/rndc stop (code=exited, status=0/SUCCESS)
Main PID: 5553 (named)
   CGroup: /system.slice/bind9.service
           ___5553 /usr/sbin/named -f -u bind
Ago 09 21:41:27 cliente named[5553]: all zones loaded
Ago 09 21:41:27 cliente named[5553]: running
Ago 09 21:41:27 cliente named[5553]: zone empresa.com.br/IN: Transfer started.
Ago 09 21:41:27 cliente named[5553]: transfer of 'empresa.com.br/IN' from
192.168.0.10#53: connected using 192.168.0.20#48366
Ago 09 21:41:27 cliente named[5553]: zone empresa.com.br/IN: transferred serial
2018080900
Ago 09 21:41:27 cliente named[5553]: transfer of 'empresa.com.br/IN' from
192.168.0.10#53: Transfer completed: 1 messages, 12 records, 312 bytes, 0.001 secs
(312000 bytes/sec)
Ago 09 21:41:28 cliente named[5553]: zone 0.168.192.in-addr.arpa/IN: Transfer
Ago 09 21:41:28 cliente named[5553]: transfer of '0.168.192.in-addr.arpa/IN' from
192.168.0.10#53: connected using 192.168.0.20#35160
Ago 09 21:41:28 cliente named[5553]: zone 0.168.192.in-addr.arpa/IN: transferred
serial 2018080900
Ago 09 21:41:28 cliente named[5553]: transfer of '0.168.192.in-addr.arpa/IN' from
192.168.0.10#53: Transfer completed: 1 messages, 8 records, 261 bytes, 0.001 secs
(261000 bytes/sec)
# ls -lh /etc/bind/sec/
total 8,0K
-rw-r--r-- 1 bind bind 569 Ago 9 21:41 db.0.168.192
-rw-r--r-- 1 bind bind 720 Ago 9 21:41 db.empresa.com.br
```

6. Finalmente, teste a resolução de nomes no servidor secundário:

```
# nslookup pop.empresa.com.br 192.168.0.20
Server:
               192.168.0.20
               192.168.0.20#53
Address:
pop.empresa.com.br
                       canonical name = email.empresa.com.br.
Name:
       email.empresa.com.br
Address: 192.168.0.15
# dig -x 192.168.0.10 +noquestion @192.168.0.20
; <<>> DiG 9.9.5-9+deb8u15-Debian <<>> -x 192.168.0.10 +noquestion @192.168.0.20
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30045
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; ANSWER SECTION:
10.0.168.192.in-addr.arpa. 86400 IN
                                       PTR
                                               servidor.empresa.com.br.
;; AUTHORITY SECTION:
0.168.192.in-addr.arpa. 86400
                               IN
                                       NS
                                               servidor.empresa.com.br.
;; ADDITIONAL SECTION:
servidor.empresa.com.br. 86400 IN
                                       Α
                                               192.168.0.10
;; Query time: 2 msec
;; SERVER: 192.168.0.20#53(192.168.0.20)
;; WHEN: Thu Aug 09 21:52:36 -03 2018
;; MSG SIZE rcvd: 121
```

3) Configuração de servidor NFS

Esta configuração será realizada na máquina virtual Server_Linux.

Crie e exporte o diretório /dados via NFS na máquina *Server_Linux* (192.168.0.10), para a máquina *Client_Linux* (192.168.0.20).

1. Instale os pacotes abaixo no servidor:

```
# apt-get nfs-kernel-server
```

2. Crie o diretório a ser exportado:

```
# mkdir /dados
```

3. Edite o arquivo /etc/exports para configurar o compartilhamento da pasta:

```
/dados 192.168.0.20(rw,no_root_squash,async,no_subtree_check)
```

4. Finalmente, exporte o diretório e reinicie o serviço NFS. Teste se o *mapping* de pasta está correto.

```
# exportfs -a

# systemctl restart nfs-kernel-server.service
# systemctl restart nfs-common.service

# showmount -e
Export list for servidor:
/dados 192.168.0.20
```

4) Configuração de cliente NFS

Esta configuração será realizada na máquina virtual Client_Linux.

Instale e configure o cliente NFS na máquina *Client_Linux* (192.168.0.20), monte o diretório remoto /dados do servidor no diretório /mnt/remoto. Finalmente, realize as configurações necessárias para que sempre que a máquina for reiniciada o diretório /dados seja montado automaticamente.

1. Crie o diretório de montagem:

```
# mkdir /mnt/remoto
```

2. Execute a montagem temporária do diretório NFS e verifique seu funcionamento:

```
# mount -t nfs 192.168.0.10:/dados /mnt/remoto/

# mount | grep '^192.168.0.10:/dados '
192.168.0.10:/dados on /mnt/remoto type nfs4
(rw,relatime,vers=4.0,rsize=65536,wsize=65536,namlen=255,hard,proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=192.168.0.20,local_lock=none,addr=192.168.0.10)
```

3. Adicione a linha a seguir ao arquivo /etc/fstab para que a montagem se torne automática após o *boot*. Reinicie a máquina e verifique seu funcionamento.

```
# tail -n1 /etc/fstab
192.168.0.10:/dados /mnt/remoto nfs defaults 0 0
```

5) Testando o funcionamento do serviço NFS

Na máquina *Server_Linux*, crie um arquivo de nome teste no diretório /dados e verifique se este aparece no cliente. Depois, edite o arquivo teste a partir da máquina *Client_Linux* adicionando a data atual ao conteúdo do arquivo. Volte ao servidor e verifique se o arquivo foi alterado.

1. No servidor, execute:

```
# hostname
servidor

# touch /dados/teste
# ls /dados/
teste
```

2. No cliente, verifique e edite o arquivo:

```
# hostname
cliente

# ls /mnt/remoto/
teste
# echo "$( date )" >> /mnt/remoto/teste
```

3. De volta ao servidor, cheque se o arquivo foi editado com sucesso:

hostname
servidor

cat /dados/teste Sex Ago 10 14:35:52 -03 2018

LDAP

1) Instalação do servidor OpenLDAP

Esta configuração será realizada na máquina virtual Server_Linux.

Instale e configure um servidor LDAP na máquina *Server_Linux* (192.168.0.10). Você deverá instalar os seguintes pacotes: slapd, ldap-utils, migrationtools, attr, libpam-ldap, libnss-ldap, nscd.

Table 5. Configuração libpam-ldap e libnss-ldap

Parâmetro	Valor
LDAP URI	ldap://127.0.0.1
Search base	dc=empresa,dc=com,dc=br
LDAP Admin	<pre>cn=admin,dc=empresa,dc=com,dc=br</pre>
LDAP Admin como usuário root local	Sim
LDAP requer autenticação	Não
Versão do LDAP	3

Após a instalação e configuração inicial, execute o comando # dpkg-reconfigure slapd.

Table 6. Configuração do slapd

Parâmetro	Valor
Omitir configuração LDAP	Não
Nome DNS	empresa.com.br
Nome da Organização	Empresa
Backend	MDB
Remover base atual em caso de purge	Não
Mover base de dados antiga	Sim
Permitir LDAPv2	Não

Finalmente, edite o arquivo /etc/ldap/ldap.conf e edite os parâmetros BASE e URI de acordo com o configurado nesta atividade. Reinicie o servidor LDAP e verifique se está operacional — faça uma consulta-teste usando o comando ldapsearch.

1. Instale o OpenLDAP e programas auxiliares que serão utilizados:

apt-get install slapd ldap-utils migrationtools attr libpam-ldap libnss-ldap nscd

2. Reconfigure o pacote slapd, respondendo as perguntas de acordo com o exposto na tabela acima.

```
# dpkg-reconfigure slapd
```

3. Inicie o *daemon* slapd e verifique seu estado.

```
# systemctl start slapd
# systemctl status slapd
• slapd.service - LSB: OpenLDAP standalone server (Lightweight Directory Access
Protocol)
   Loaded: loaded (/etc/init.d/slapd)
  Active: active (running) since Sex 2018-08-10 15:06:46 -03; 3s ago
 Process: 5095 ExecStop=/etc/init.d/slapd stop (code=exited, status=0/SUCCESS)
 Process: 6128 ExecStart=/etc/init.d/slapd start (code=exited, status=0/SUCCESS)
   CGroup: /system.slice/slapd.service
           └──6133 /usr/sbin/slapd -h ldap:/// ldapi:/// -g openldap -u openldap
-F /etc/ld...
Ago 10 15:06:46 servidor systemd[1]: Starting LSB: OpenLDAP standalone server
(Lightwei.....
Ago 10 15:06:46 servidor slapd[6132]: @(#) $OpenLDAP: slapd (Jun 14 2018 21:56:48)
                                              buildd@x86-csail-01:/build/openldap-
Yko3W...apd
Ago 10 15:06:46 servidor slapd[6133]: slapd starting
Ago 10 15:06:46 servidor systemd[1]: Started LSB: OpenLDAP standalone server
(Lightweig...1).
Ago 10 15:06:46 servidor slapd[6128]: Starting OpenLDAP: slapd.
Hint: Some lines were ellipsized, use -1 to show in full.
```

4. Edite o arquivo /etc/ldap/ldap.conf com os valores apropriados:

5. Finalmente, consulte a raiz da search base do diretório para verificar seu funcionamento.

```
# ldapsearch -x -b 'dc=empresa,dc=com,dc=br' -s base '(ObjectClass=*)'
# extended LDIF
# LDAPv3
# base <dc=empresa,dc=com,dc=br> with scope baseObject
# filter: (ObjectClass=*)
# requesting: ALL
# empresa.com.br
dn: dc=empresa,dc=com,dc=br
objectClass: top
objectClass: dcObject
objectClass: organization
o: Empresa
dc: empresa
# search result
search: 2
result: 0 Success
# numResponses: 2
# numEntries: 1
```

2) Usando o migrationtools

Esta configuração será realizada na máquina virtual Server_Linux.

O *migrationtools* é um conjunto de *scripts* que permite importar as contas locais de um sistema Linux para um diretório LDAP, que já foi instalado na máquina *Server_Linux* (192.168.0.10) durante a atividade 1.

1. Edite o arquivo /etc/migrationtools/migrate_common.ph, substituindo as variáveis \$DEFAULT_MAIL_DOMAIN e \$DEFAULT_BASE pelos valores configurados na atividade anterior.

```
# grep '^\$DEFAULT_' /etc/migrationtools/migrate_common.ph
$DEFAULT_MAIL_DOMAIN = "empresa.com.br";
$DEFAULT_BASE = "dc=empresa,dc=com,dc=br";
```

2. Entre no diretório /usr/share/migrationtools e execute os *scripts* migrate_base.pl, migrate_passwd.pl e migrate_group.pl para exportar as bases (respectivamente) geral, de usuários/senhas e de grupos. Atente-se para a sintaxe de uso de cada *script*.

```
# cd /usr/share/migrationtools
# ./migrate_base.pl > /root/base.ldif
# ./migrate_passwd.pl /etc/passwd /root/passwd.ldif
# ./migrate_group.pl /etc/group /root/group.ldif
```

3. Remova os registros dc=com,dc=br e dc=empresa,dc=com,dc=br do topo do arquivo gerado pelo script migrate_base.pl, que já foram incluídos no diretório LDAP na primeira atividade.

```
# sed -i '/dn: dc=com,dc=br/,/^$/d' /root/base.ldif
# sed -i '/dn: dc=empresa,dc=com,dc=br/,/^$/d' /root/base.ldif
# head -n1 /root/base.ldif
dn: ou=Networks,dc=empresa,dc=com,dc=br
```

4. Adicione os arquivos .ldif gerados anteriormente à base LDAP usando o comando ldapadd. Consulte sua página de manual para descobrir as opções apropriadas a passar para o comando. Lembre-se, apenas, que o diretório LDAP está utilizando autenticação simples, não SASL, e que é necessário informar um DN administrativo e senha para inserção de dados.

```
# ldapadd -x -W -D 'cn=admin,dc=empresa,dc=com,dc=br' < /root/base.ldif
# ldapadd -x -W -D 'cn=admin,dc=empresa,dc=com,dc=br' < /root/passwd.ldif
# ldapadd -x -W -D 'cn=admin,dc=empresa,dc=com,dc=br' < /root/group.ldif</pre>
```

5. Use o comando ldapsearch juntamente com um filtro de pesquisa apropriado para listar todos os grupos que foram adicionados ao diretório LDAP pelos arquivos .ldif incluídos no passo anterior.

```
# ldapsearch -x -b 'dc=empresa,dc=com,dc=br' '(&(cn=*)(objectClass=posixGroup))'
# extended LDIF
# LDAPv3
# base <dc=empresa,dc=com,dc=br> with scope subtree
# filter: (&(cn=*)(objectClass=posixGroup))
# requesting: ALL
# root, Group, empresa.com.br
dn: cn=root,ou=Group,dc=empresa,dc=com,dc=br
objectClass: posixGroup
objectClass: top
cn: root
gidNumber: 0
(\dots)
# openldap, Group, empresa.com.br
dn: cn=openldap,ou=Group,dc=empresa,dc=com,dc=br
objectClass: posixGroup
objectClass: top
cn: openldap
gidNumber: 117
# search result
search: 2
result: 0 Success
# numResponses: 58
# numEntries: 57
```

3) Configurança do cliente Linux para uso do LDAP

Esta configuração será realizada na máquina virtual Client_Linux.

Para que as clientes Linux possam se autenticar na base de dados do LDAP, é necessário configurar o PAM (*Pluggable Authentication Modules*) e NSS (*Name Service Switch*) para consultarem logins junto ao servidor LDAP.

Configure a máquina *Client_Linux* (192.168.0.20) para se autenticar na base LDAP que está instalada na máquina *Server_Linux* (192.168.0.10). Você deverá instalar os seguintes pacotes: ldap-utils, libpam-ldap, libnss-ldap, nscd.

Table 7. Configuração libpam-ldap e libnss-ldap no Client_Linux

Parâmetro	Valor
LDAP URI	ldap://192.168.0.10

Parâmetro	Valor
Search base	dc=empresa,dc=com,dc=br
LDAP Admin	cn=admin,dc=empresa,dc=com,dc=br
LDAP Admin como usuário root local	Sim
LDAP requer autenticação	Não
Versão do LDAP	3

Não se esqueça de editar os arquivos /etc/ldap/ldap.conf e /etc/nsswitch.conf para habilitar consulta às bases do LDAP durante procedimentos de login.

Se desejar que diretórios *home* sejam criados automaticamente para usuários LDAP inexistentes na máquina local, insira a linha a seguir ao final do arquivo /etc/pam.d/common-password:

```
session optional pam_mkhomedir.so skel=/etc/skel/ umask=022
```

Finalmente, para reiniciar a *cache* de usuários e grupos do LDAP, execute # systemctl restart nscd. Se houver algum registro de erro nos arquivos de log quanto à inexistência do arquivo /etc/netgroup, crie-o manualmente.

1. Instale os *plugins* LDAP para as bibliotes PAM e NSS, bem como programas auxiliares que serão utilizados:

```
# apt-get install ldap-utils libpam-ldap libnss-ldap nscd
```

- 2. Verifique se os arquivos das bibliotecas PAM e NSS foram configurados automaticamente de forma correta pelo gerenciador de pacotes:
 - /etc/libnss-ldap.conf:

```
# cat /etc/libnss-ldap.conf | grep -v '^#' | sed '/^$/d'
base dc=empresa,dc=com,dc=br
uri ldap://192.168.0.10
ldap_version 3
rootbinddn cn=admin,dc=empresa,dc=com,dc=br
```

• /etc/libnss-ldap.secret:

```
# cat /etc/libnss-ldap.secret
rnpesr
```

/etc/pam_ldap.conf:

```
# cat /etc/pam_ldap.conf | grep -v '^#' | sed '/^$/d'
base dc=empresa,dc=com,dc=br
uri ldap://192.168.0.10
ldap_version 3
rootbinddn cn=admin,dc=empresa,dc=com,dc=br
pam_password crypt
```

• /etc/pam_ldap.secret:

```
# cat /etc/pam_ldap.secret
rnpesr
```

3. Insira as informações sobre o servidor LDAP no arquivo /etc/ldap/ldap.conf:

4. Configure o nsswitch para consultar as bases LDAP em adição às bases locais de usuários e senhas. Se desejar que as bases do LDAP tenham preferência, coloque a palavra-chave ldap à frente da palavra compat.

```
# cat /etc/nsswitch.conf | grep -v '^#'
passwd:
                compat ldap
                compat ldap
group:
                compat ldap
shadow:
gshadow:
                files
hosts:
                files dns
networks:
                files
                db files
protocols:
                db files
services:
                db files
ethers:
                db files
rpc:
netgroup:
                nis
```

5. Para que diretórios *home* sejam criados de forma automática se usuários LDAP inexistentes na máquina local logarem no sistema, insira a linha a seguir ao final do arquivo /etc/pam.d/common-password:

```
# tail -n1 /etc/pam.d/common-session
session optional pam_mkhomedir.so skel=/etc/skel/ umask=022
```

6. Adiantando-se ao problema futuro que em que o *daemon* nscd irá apontar a inexistência do arquivo /etc/netgroup, crie-o, vazio:

```
# touch /etc/netgroup
```

7. Finalmente, reinicie o *daemon* nscd e verifique se os usuários e grupos remotos do servidor LDAP estão sendo utilizados pelos subsistemas de autenticação local:

```
# systemctl restart nscd

# grep '^openldap:' /etc/passwd
# getent passwd | grep '^openldap:'
openldap:x:111:117:OpenLDAP Server Account,,,:/var/lib/ldap:/bin/false

# grep '^openldap:' /etc/group
# getent group | grep '^openldap:'
openldap:x:117:
```

Observe, acima, que tanto o usuário quanto o grupo openldap estão disponíveis na máquina local, muito embora não existam nos arquivos /etc/passwd e /etc/group. Eles estão sendo obtidos, remotamente, no servidor LDAP Server_Linux.

4) Configurança do servidor Linux para uso do LDAP

Esta configuração será realizada na máquina virtual Server_Linux.

Agora que a máquina *Client_Linux* (192.168.0.20) está configurada para se autenticar na base LDAP remota localizada na máquina *Server_Linux* (192.168.0.10), faça com que o próprio servidor *Server_Linux* autentique-se usando sua base LDAP local.

1. Essencialmente, basta repetir os passos do exercício anterior, desta vez na máquina Server_Linux:

```
# hostname
servidor

# cat /etc/libnss-ldap.conf | grep -v '^#' | sed '/^$/d'
base dc=empresa,dc=com,dc=br
uri ldap://127.0.0.1
ldap_version 3
rootbinddn cn=admin,dc=empresa,dc=com,dc=br
```

```
# cat /etc/libnss-ldap.secret
rnpesr
# cat /etc/pam_ldap.conf | grep -v '^#' | sed '/^$/d'
base dc=empresa,dc=com,dc=br
uri ldap://127.0.0.1
ldap_version 3
rootbinddn cn=admin,dc=empresa,dc=com,dc=br
pam_password crypt
# cat /etc/pam_ldap.secret
rnpesr
# cat /etc/ldap/ldap.conf | grep -v '^#' | sed '/^$/d'
BASE
        dc=empresa,dc=com,dc=br
URI
        ldap://127.0.0.1
TLS CACERT
                /etc/ssl/certs/ca-certificates.crt
# cat /etc/nsswitch.conf | grep -v '^#'
                compat ldap
passwd:
group:
                compat ldap
shadow:
                compat ldap
gshadow:
                files
                files dns
hosts:
networks:
                files
protocols: db files
services: db files
ethers: db files
                db files
rpc:
netgroup:
                nis
# tail -n1 /etc/pam.d/common-session
session optional pam_mkhomedir.so skel=/etc/skel/ umask=022
# ls -ld /etc/netgroup
-rw-r--r-- 1 root root 0 Ago 12 17:20 /etc/netgroup
# systemctl restart nscd
```

5) Criação e remoção de usuários e grupos LDAP

Esta configuração será realizada na máquina virtual Server_Linux.

Agora que a máquina *Client_Linux* está conectada ao servidor LDAP, adicione um novo usuário e grupo associado, ambos com o mesmo nome, e faça login com o usuário. Para realizar essa tarefa,

crie arquivos LDIF manualmente e adicione-os via ldapadd. Não esqueça de definir a senha através do comando ldappasswd.

Observação: Para evitar confusões entre a base de usuários do LDAP e a base local dos clientes, é recomendável adotar um *buffer* numérico entre os usuários locais e os usuários do diretório. Faça com que o UID e GID dos novos usuários/grupos comece a partir de 5000.

1. Primeiro, vamos verificar o formato da entrada de diretório LDAP para um usuário existente:

```
# ldapsearch -x -LLL -b 'dc=empresa,dc=com,dc=br' '(uid=aluno)'
dn: uid=aluno,ou=People,dc=empresa,dc=com,dc=br
uid: aluno
cn: aluno
objectClass: account
objectClass: posixAccount
objectClass: shadowAccount
shadowMax: 99999
shadowWarning: 7
loginShell: /bin/bash
uidNumber: 1000
gidNumber: 1000
homeDirectory: /home/aluno
gecos: aluno,,,
```

2. Vamos adicionar o usuário esr. Para isso, basta processar a saída do comando acima, substituir com os dados do novo usuário, e enviar como entrada para o comando ldapadd, como se segue:

```
# ldapsearch -x -LLL -b 'dc=empresa,dc=com,dc=br' '(uid=aluno)' | sed 's/aluno/esr/
; s/1000/5000/' | ldapadd -x -W -D 'cn=admin,dc=empresa,dc=com,dc=br'
Enter LDAP Password:
adding new entry "uid=esr,ou=People,dc=empresa,dc=com,dc=br"
# ldapsearch -x -LLL -b 'dc=empresa,dc=com,dc=br' '(uid=esr)'
dn: uid=esr,ou=People,dc=empresa,dc=com,dc=br
uid: esr
cn: esr
objectClass: account
objectClass: posixAccount
objectClass: top
objectClass: shadowAccount
shadowMax: 99999
shadowWarning: 7
loginShell: /bin/bash
uidNumber: 5000
gidNumber: 5000
homeDirectory: /home/esr
gecos: esr,,,
```

3. Excelente! Vamos fazer o mesmo para o grupo:

```
# ldapsearch -x -LLL -b 'dc=empresa,dc=com,dc=br'
'(&(cn=aluno)(objectClass=posixGroup))' | sed 's/aluno/esr/; s/1000/5000/' |
ldapadd -x -W -D 'cn=admin,dc=empresa,dc=com,dc=br'
Enter LDAP Password:
adding new entry "cn=esr,ou=Group,dc=empresa,dc=com,dc=br"

# ldapsearch -x -LLL -b 'dc=empresa,dc=com,dc=br'
'(&(cn=esr)(objectClass=posixGroup))'
dn: cn=esr,ou=Group,dc=empresa,dc=com,dc=br
objectClass: posixGroup
objectClass: top
cn: esr
gidNumber: 5000
```

4. Ainda falta configurar a senha do novo usuário. Vamos fazer isso através do comando ldappasswd:

```
# ldappasswd -x -W -D 'cn=admin,dc=empresa,dc=com,dc=br' -S
"uid=esr,ou=People,dc=empresa,dc=com,dc=br"
New password:
Re-enter new password:
Enter LDAP Password:

# ldapsearch -x -LLL -W -D 'cn=admin,dc=empresa,dc=com,dc=br' -b
'dc=empresa,dc=com,dc=br' '(uid=esr)' userPassword
Enter LDAP Password:
dn: uid=esr,ou=People,dc=empresa,dc=com,dc=br
userPassword:: e1NTSEF9ZW1YWkFBQVNWWEh1a2kwQmVRbzdMdkNzSGp0cm9V0Ec=
```

5. De volta à máquina *Client_Linux*, vamos verificar se o novo usuário está sendo importado corretamente:

```
# hostname
cliente

# getent passwd | grep '^esr:'
esr:x:5000:5000:esr,,,:/home/esr:/bin/bash
# getent group | grep '^esr:'
esr:*:5000:
```

6. Agora, basta fazer login com o usuário e testar se a criação automática de diretório *home* está funcionando:

```
$ ssh esr@192.168.0.20
esr@192.168.0.20's password:
Creating directory '/home/esr'.

$ hostname
cliente

$ whoami
esr

$ pwd
/home/esr
```

6) Criação e deleção automática de usuários LDAP

Esta configuração será realizada na máquina virtual Server_Linux.

O esquema de criação de usuários manualmente acima funcionou, como visto. Não é, no entanto, muito conveniente do ponto de vista de manutenção do sistema proceder dessa forma. Seria mais interessante, se possível, automatizar essa tarefa para facilitar sua execução no dia-a-dia.

Crie um *script* que faça a adição e deleção automática de usuários na base LDAP. Atente-se para o fato de que os UIDs e GIDs desses usuários não devem se confundir com o dos sistemas locais. Use o valor mínimo de 5000 para ambos.

1. O *script shell* abaixo mostra um exemplo de solução para o problema proposto:

```
#!/bin/bash

tldap_user() {
    qlu=$( ldapsearch -x -LLL -b "dc=empresa,dc=com,dc=br" "(uid=${1})" | grep
"^uid:" | awk '{print $2}' )
    [! -z $qlu ] && return 1 || return 0
}

# $1 ldap_admin, $2 ldap_password, $3: user, $4: pass
r_adduser() {
    if ! tldap_user $3; then
        echo " [*] LDAP user exists!"
        exit 1
    fi

    lastuid=$( ldapsearch -x -LLL
'(&(objectClass=posixAccount)(uid=*)(!(uid=nobody)))' uidNumber | grep
'^uidNumber:' | awk '{print $2}' | sort -n | tail -n1 )
```

```
lastgid=$( ldapsearch -x -LLL '(&(objectClass=posixGroup)(cn=*)(!(cn=nogroup)))'
gidNumber | grep '^gidNumber:' | awk '{print $2}' | sort -n | tail -n1 )
 ((lastuid++))
 ((lastgid++))
 ldapadd -x -D $1 -w $2 << EOF
dn: uid=$3,ou=People,dc=empresa,dc=com,dc=br
uid: $3
cn: $3
objectClass: account
objectClass: posixAccount
objectClass: top
objectClass: shadowAccount
shadowMax: 99999
shadowWarning: 7
loginShell: /bin/bash
uidNumber: $lastuid
gidNumber: $lastgid
homeDirectory: /home/$3
gecos: $3,,,
EOF
 ldapadd -x -D $1 -w $2 << EOF
dn: cn=$3,ou=Group,dc=empresa,dc=com,dc=br
objectClass: posixGroup
objectClass: top
cn: $3
gidNumber: $lastgid
E0F
 ldappasswd -x -D $1 -w $2 -s $4 "uid=$3,ou=People,dc=empresa,dc=com,dc=br"
}
# $1 ldap_admin, $2 ldap_password, $3: user
r deluser() {
 if tldap_user $3; then
    echo " [*] LDAP user does not exist!"
    exit 1
 fi
 ldapdelete -x -D $1 -w $2 "uid=$3,ou=People,dc=empresa,dc=com,dc=br"
 ldapdelete -x -D $1 -w $2 "cn=$3,ou=Group,dc=empresa,dc=com,dc=br"
}
usage() {
 echo " Usage: $0 -1 LDAP_ADMIN -w LDAP_PASSWD -u USER [-a|-d] [-p PASSWD]"
```

```
exit 1
}
# - - - main() - - -
if [[ $EUID -ne 0 ]]; then
 echo " [*] Not root!" 1>82
  exit 1
fi
while getopts ":adu:p:l:w:" opt; do
  case "$opt" in
    1)
      ladmin=${OPTARG}
      ;;
    w)
      lpass=${OPTARG}
     ;;
    u)
      user=${OPTARG}
     ;;
    p)
      pass=${OPTARG}
     ;;
    a)
      uadd=1
     ;;
    d)
      udel=1
     ;;
      usage
      ;;
  esac
done
[ -z $ladmin ] && { echo " [*] No LDAP admin?"; usage; }
[ -z $lpass ] && { echo " [*] No LDAP password?"; usage; }
[ -z $user ] && { echo " [*] No user?"; usage; }
if [ -z $uadd ] && [ -z $udel ]; then
  echo " [*] Choose '-a' (add) or '-d' (delete)."
  usage
elif (($uadd)) && (($udel)); then
  echo " [*] Do not use '-a' (add) and '-d' (delete) simultaneously."
  usage
fi
if (($uadd)) && [ -z $pass ]; then
```

```
echo " [*] '-p' (password) mandatory with '-a' (add)."
usage
fi

(($uadd)) && r_adduser $ladmin $lpass $user $pass
(($udel)) && r_deluser $ladmin $lpass $user
```

Observe que apesar de o *script* ser relativamente complexo, ele ainda não está completo — falta tratar a adição de usuários a grupos secundários no LDAP, bem como sua remoção desses grupos quando de sua deleção.

DHCP, FTP e SSH

1) Configuração do servidor DHCP

Esta configuração será realizada na máquina virtual Server_Linux.

O objetivo do serviço *Dynamic Host Configuration Protocol* (DHCP) é automatizar a distribuição de endereços e configurações do protocolo TCP/IP para quaisquer dispositivos conectados a uma rede, como computadores, impressoras, hubs e switches.

Instale um servidor DHCP na máquina *Server_Linux*, usando o pacote isc-dhcp-server, e configure-o com as seguintes características:

- Escutar na interface eth1, com endereço IP 192.168.0.10/24;
- Distribuir endereços na faixa 192.168.0.200 até 192.168.0.250;
- Definir como roteador o próprio servidor DHCP, 192.168.0.10;
- Distribuir informações de servidor DNS conforme configurações realizadas no capítulo 7 DNS e NFS.

A seguir, teste seu funcionamento usando a máquina *Client_Linux* — altere as configurações de rede dessa máquina para obter IP de forma dinâmica, e não estática. Que informações podem ser encontradas no arquivo /var/lib/dhcp/dhcpd.leases?

1. Instale o servidor DHCP:

```
# apt-get install isc-dhcp-server
```

2. Edite o arquivo de configuração /etc/dhcp/dhcpd.conf de acordo com as especificações da atividade:

```
authoritative;
ddns-update-style none;
log-facility local7;

default-lease-time 43200;
max-lease-time 86400;

option domain-name "empresa.com.br";
option domain-search "empresa.com.br";
option domain-name-servers 192.168.0.10, 192.168.0.20;

subnet 192.168.0.0 netmask 255.255.255.0 {
   range 192.168.0.200 192.168.0.250;
   option routers 192.168.0.10;
}
```

3. Para garantir que o servidor DHCP irá escutar por requisições exclusivamente na interface eth1, edite o parâmetro INTERFACES no arquivo /etc/default/isc-dhcp-server como se segue:

```
# cat /etc/default/isc-dhcp-server | grep '^INTERFACES='
INTERFACES="eth1"
```

4. Reinicie o servidor DHCP e verifique que o arquivo /var/lib/dhcp/dhcpd.leases está vazio:

```
# systemctl restart isc-dhcp-server.service

# cat /var/lib/dhcp/dhcpd.leases

# The format of this file is documented in the dhcpd.leases(5) manual page.

# This lease file was written by isc-dhcp-4.3.1
```

5. Acesse a máquina *Client_Linux* e configure-a para obter configurações de rede via DHCP. Comente a configuração de rede antiga, possibilitando *rollback* rápido caso a atividade não funcione como esperado:

```
# hostname
cliente

# cat /etc/network/interfaces
source /etc/network/interfaces.d/*

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp
# iface eth0 inet static
# address 192.168.0.20
# netmask 255.255.255.0
# gateway 192.168.0.10
```

6. Reinicie a máquina *Client_Linux* e verifique se a configuração foi propagada corretamente:

```
# hostname
cliente

# ip a s eth0 | grep '^ *inet '
    inet 192.168.0.200/24 brd 192.168.0.255 scope global eth0

# ip r s
default via 192.168.0.10 dev eth0
169.254.0.0/16 dev eth0 scope link metric 1000
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.200

# cat /etc/resolv.conf
domain empresa.com.br
search empresa.com.br.
nameserver 192.168.0.10
nameserver 192.168.0.20
```

7. De volta à máquina Server_Linux, verifique o conteúdo do arquivo /var/lib/dhcp/dhcpd.leases:

```
# hostname
servidor

# cat /var/lib/dhcp/dhcpd.leases | grep -v '^#\|^$'
lease 192.168.0.200 {
    starts 6 2018/08/11 20:25:01;
    ends 0 2018/08/12 08:25:01;
    tstp 0 2018/08/12 08:25:01;
    cltt 6 2018/08/11 20:25:01;
    binding state active;
    next binding state free;
    rewind binding state free;
    hardware ethernet 08:00:27:e3:16:71;
    client-hostname "cliente";
}
```

2) Configuração de IP fixo por endereço MAC

Esta configuração será realizada na máquina virtual Server_Linux.

Configure o servidor DHCP para sempre fornecer o endereço 192.168.0.20 para o *host Client_Linux*, através da fixação de seu endereço físico (MAC). Verifique o funcionamento da sua configuração.

1. Edite o arquivo /etc/dhcp/dhcpd.conf, inserindo o excerto a seguir ao final do arquivo. A seguir, reinicie o servidor DHCP.

```
# cat dhcpd.conf | awk '/^host Client_Linux/,/^$/'
host Client_Linux {
  option host-name "cliente.empresa.com.br";
  hardware ethernet 08:00:27:e3:16:71;
  fixed-address 192.168.0.20;
}
# systemctl restart isc-dhcp-server.service
```

2. Reinicie a máquina e/ou as interfaces de rede da máquina *Client_Linux* e verifique se a configuração foi propagada corretamente:

```
# hostname
cliente

# ip a s eth0 | grep '^ *inet '
   inet 192.168.0.20/24 brd 192.168.0.255 scope global eth0
```

3) Configuração do servidor DHCP para múltiplas subredes

Esta configuração será realizada na máquina virtual Server_Linux.

Expanda a configuração do servidor DHCP instalado na máquina *Server_Linux* para que, além de servir à rede 192.168.0.0/24, também atenda clientes da rede 172.16.0.0/24 com as seguintes características:

- Escutar na interface eth2, com endereço IP 172.16.0.10/24;
- Distribuir endereços na faixa 172.16.0.50 até 172.16.0.80;
- Definir como roteador o próprio servidor DHCP, 172.16.0.10;
- Distribuir informações de servidor DNS conforme configurações realizadas no capítulo 7 DNS e NFS.

Note que para o passo de distribução de informações DNS será necessário fazer ajustes também à configuração do serviço bind. Ele deve estar preparado para escutar requisições vindas da rede 172.16.0.0/24.

A seguir, teste seu funcionamento usando a máquina *Win7-padrao*. O IP obtido pela máquina está dentro da faixa estipulada? É possível resolver nomes e navegar normalmente?

1. Expanda o arquivo de configuração /etc/dhcp/dhcpd.conf, incluindo os novos requisitos:

```
authoritative;
ddns-update-style none;
log-facility local7;
default-lease-time 43200;
max-lease-time 86400;
option domain-name "empresa.com.br";
option domain-search "empresa.com.br";
option domain-name-servers 192.168.0.10, 192.168.0.20;
subnet 192.168.0.0 netmask 255.255.255.0 {
 range 192.168.0.200 192.168.0.250;
 option routers 192.168.0.10;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
 range 172.16.0.50 172.16.0.80;
 option routers 172.16.0.10;
}
host Client_Linux {
 option host-name "cliente.empresa.com.br";
 hardware ethernet 08:00:27:e3:16:71;
 fixed-address 192.168.0.20;
}
```

2. Inclua a nova interface de rede na lista de interfaces em que o servidor DHCP irá escutar por requisições:

```
# cat /etc/default/isc-dhcp-server | grep '^INTERFACES='
INTERFACES="eth1 eth2"
```

3. Edite a configuração do bind para atender a requisições de resolução de nomes oriundas da rede 172.16.0.0/24:

```
# cat /etc/bind/named.conf.local | grep '^ *acl ' acl internals { 127.0.0.0/8; 192.168.0.0/24; 172.16.0.0/24; };
```

4. Reinicie ambos os serviços de rede:

```
# systemctl restart bind9.service
# systemctl restart isc-dhcp-server.service
```

5. Verifique se a máquina *Win7-padrao* recebeu um endereço IP dentro da faixa esperada:

Figura 3: IP recebido via DHCP pelo Windows 7

6. Cheque se a resolução de nomes está operacional:

Figura 4: Resolução de nomes no Windows 7

7. Finalmente, tente navegar na internet. Na foto abaixo, acessamos o website https://esr.rnp.br/:

Figura 5: Navegação no Windows 7

4) Configuração do servidor FTP

Esta configuração será realizada na máquina virtual Server_Linux.

O protocolo *File Transfer Protocol* (FTP) permite a um usuário remoto transferir arquivos para um servidor ou vice-versa.

Instale e configure o pacote vsftpd na máquina *Server_Linux*. A seguir, crie um novo usuário ftpuser que não possua shell válido e, utilizando esse usuário, acesse a partir da máquina *Client_Linux* o serviço de FTP.

1. Instale o servidor FTP:

```
# apt-get install vsftpd
```

2. Edite o arquivo de configuração /etc/vsftpd.conf como se segue:

```
allow_writeable_chroot=YES
anonymous_enable=YES
chroot_local_user=YES
connect_from_port_20=YES
dirmessage_enable=YES
ftpd_banner=Servidor FTP SEG12
listen_ipv6=NO
listen=YES
local enable=YES
local_umask=022
pam_service_name=vsftpd
rsa_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
rsa_private_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
secure_chroot_dir=/var/run/vsftpd/empty
ssl_enable=NO
use localtime=YES
write enable=YES
xferlog_enable=YES
```

3. A diretiva pam_service_name=vsftpd irá processar o arquivo /etc/pam.d/vsftpd durante tentativas de login via FTP. A última linha desse arquivo exige que o shell do usuário conste no arquivo /etc/shells, que não é o caso do shell inválido /bin/false. Para solucionar essa questão, comente a última linha do arquivo /etc/pam.d/vsftpd:

```
# cat /etc/pam.d/vsftpd | tail -n1
#auth required pam_shells.so
```

4. Isso resolvido, crie o usuário ftpuser sem shell válido, e defina sua senha:

```
# useradd -m -s /bin/false ftpuser
# passwd ftpuser
Digite a nova senha UNIX:
Redigite a nova senha UNIX:
passwd: senha atualizada com sucesso
```

5. Na máquina *Client_Linux*, crie um arquivo de teste para ser enviado por *upload* para o servidor FTP. A seguir, logue no servidor e envie o arquivo:

```
$ hostname
cliente
$ echo "client linux : $( date )" > test
$ ftp 192.168.0.10
Connected to 192.168.0.10.
220 Servidor FTP SEG12
Name (192.168.0.10:aluno): ftpuser
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put test
local: test remote: test
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
45 bytes sent in 0.00 secs (1.0729 MB/s)
```

6. De volta à máquina Server_Linux, verifique que o arquivo foi enviado com sucesso.

```
# hostname
servidor

# cat /home/ftpuser/test
client_linux : Sáb Ago 11 18:55:30 -03 2018
```

5) Login remoto seguro usando SSH

O *Secure Shell* (SSH) é um protocolo criptográfico de rede para permitir operação remota de serviços de forma segura, mesmo operando sob uma rede insegura. Ele foi desenvolvido como um substituto seguro para aplicações de shell remoto como telnet, rlogin e rsh.

Se indisponível, instale o serviço openssh-server na máquina Server_Linux. Em seguida, acesse-o

remotamente a partir da máquina Client_Linux e execute o comando hostname.

1. Como pode ser visto abaixo, o servidor ssh já se encontra instalado na máquina *Server_Linux*:

2. Basta, então, acessá-la remotamente e executar o comando solicitado.

```
$ ssh aluno@192.168.0.10
The authenticity of host '192.168.0.10 (192.168.0.10)' can't be established.
ECDSA key fingerprint is 6f:65:6b:5b:8c:21:b7:00:17:e0:a9:f8:67:a4:e4:ea.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.10' (ECDSA) to the list of known hosts.
aluno@192.168.0.10's password:
No mail.
Last login: Sat Aug 11 19:05:14 2018 from cliente.empresa.com.br

$ hostname
servidor
```

6) Conexão SSH via chaves assimétricas

A partir da máquina *Client_Linux*, crie um par de chaves RSA de 4096 bits com o comando ssh-keygen. A seguir, utilize o comando ssh-copy-id para copiar a chave pública para pasta do usuário aluno na máquina *Server_Linux*. Finalmente, faça login na máquina *Server_Linux* e verifique que a senha não é solicitada.

Aponte em qual arquivo a chave pública RSA foi armazenada na máquina *Server_Linux*, e exiba seu conteúdo.

1. Primeiro, vamos gerar a chave RSA. Deixe o passphrase vazio para que não seja necessário digitar senha toda vez que for utilizar a chave.

```
$ hostname
cliente
$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/aluno/.ssh/id rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/aluno/.ssh/id rsa.
Your public key has been saved in /home/aluno/.ssh/id_rsa.pub.
The key fingerprint is:
10:5e:12:7d:a1:90:ab:48:46:d2:4a:91:e6:41:70:e9 aluno@cliente
The key's randomart image is:
+---[RSA 4096]----+
|+++. =+. ..
|.*+ ..=...
+=. 0...
|..E ..
| o . . S
  . .
```

2. A seguir, copie a chave para o diretório .ssh do usuário aluno, na máquina Server_Linux:

```
$ ssh-copy-id aluno@192.168.0.10
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out
any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted
now it is to install the new keys
aluno@192.168.0.10's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'aluno@192.168.0.10'"
and check to make sure that only the key(s) you wanted were added.
```

3. Finalmente, basta logar utilizando a chave privada RSA. O sistema remoto não irá solicitar senha.

```
$ ssh aluno@192.168.0.10
You have new mail.
Last login: Sat Aug 11 19:06:02 2018 from cliente.empresa.com.br
$ hostname
servidor
$ whoami
aluno
```

4. A chave pública RSA foi armazenada no arquivo /home/aluno/.ssh/id_rsa.pub, na pasta home do usuário aluno dentro da máquina Server_Linux. Vamos exibir seu conteúdo:

```
$ hostname
servidor

$ ls ~/.ssh
authorized_keys id_rsa id_rsa.pub known_hosts

$ cat ~/.ssh/id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvtAjoHfRfhxUDd67eZhncv8n034RXM0ZZUyNiDYvId27q8MKerFH
ZAnCMxf0Sm+2MMqfNZxcvH7EiF28VE3ikaMnqfi6xj8Nhqp+kzEXAQNLfuVGBjnmrz7EUOVtG2YvUMrkTqU
ibAOFPCKrlkhyJg06tmkJVhJuKB7jzOmOFTrWeInCkPukv4lmi4JaEuLA5He9Qepg9WYduH0Gydb6D5nDkc
HVt0zl5YT21imXOQFIMIHpfquKs6pc7kUFl/JiHHwAfJ+wkawyamTyKDSKbvwclzZvxeFpYBZ5VcwLy52bz
dmsFakU8cIU1nr+6sdvOuejy8kodfKIrE2zmQ4ZL aluno@cliente
```

7) Cópia remota de arquivos via SSH

A partir da máquina *Client_Linux*, crie um arquivo texto com conteúdo qualquer e transfira-o para a máquina *Server_Linux* usando o comando scp. Após a cópia, exiba seu conteúdo e verifique que a cópia foi completada com sucesso.

1. Primeiro, na máquina *Client_Linux*, vamos criar um arquivo contendo o *hostname* local e data corrente.

```
$ hostname
cliente

$ echo "$( hostname ) , $( date )" > scpfile.txt

$ cat scpfile.txt
cliente , Dom Ago 12 00:22:55 -03 2018
```

2. Agora, vamos copiar o arquivo usando scp:

```
$ scp /home/aluno/scpfile.txt aluno@192.168.0.10:~
scpfile.txt
00:00
100% 39 0.0KB/s
```

3. Basta logar via ssh na máquina remota e exibir o conteúdo do arquivo para verificar o funcionamento do processo:

```
$ ssh aluno@192.168.0.10 'hostname ; cat ~/scpfile.txt' servidor cliente , Dom Ago 12 00:22:55 -03 2018
```

8) FTP seguro via SSH

A partir da máquina *Client_Linux*, crie um arquivo texto com conteúdo qualquer e transfira-o para a máquina *Server_Linux* usando o comando sftp. Após a cópia, exiba seu conteúdo e verifique que a cópia foi completada com sucesso.

1. Primeiro, na máquina *Client_Linux*, vamos criar um arquivo contendo o *hostname* local e data corrente.

```
$ hostname
cliente

$ echo "$( hostname ) , $( date )" > sftpfile.txt

$ cat sftpfile.txt
cliente , Dom Ago 12 00:26:25 -03 2018
```

2. Agora, vamos copiar o arquivo usando scp:

```
$ sftp aluno@192.168.0.10
Connected to 192.168.0.10.
sftp> pwd
Remote working directory: /home/aluno
sftp> put sftpfile.txt
Uploading sftpfile.txt to /home/aluno/sftpfile.txt
sftpfile.txt
00:00
```

3. Basta logar via ssh na máquina remota e exibir o conteúdo do arquivo para verificar o funcionamento do processo:

\$ ssh aluno@192.168.0.10 'hostname ; cat ~/sftpfile.txt'
servidor
cliente , Dom Ago 12 00:26:25 -03 2018

Servidor Web

As atividades desta sessão serão realizadas na máquina virtual *Server_Linux*, com pequenas exceções apontadas pelo enunciado dos exercícios.

O objetivo de um servidor web é, em essência, servir conteúdo para a *world wide web*. Esse objetivo é atingido servindo requisições enviadas ao servidor através do protocolo HTTP, bem como protocolos relacionados. Nesta sessão iremos instalar e configurar o servidor web Apache, um dos mais populares servidores HTTP *open source* do mundo.

1) Instalação do servidor web Apache

Instale o servidor web Apache (pacote apache2). Teste o funcionamento da instalação acessando a página web a partir de qualquer navegador (seja na máquina física, *Client_Linux* ou *Win7-padrao*).

1. Instale o servidor web Apache:

apt-get install apache2

2. Vamos testar o funcionamento acessando o IP do servidor *Server_Linux* através de um navegador instalado na máquina *Win7-padrao*:

Figura 6: Apache instalado com sucesso

2) Configuração de virtualhosts

Virtualhosts, ou servidores virtuais, podem ser utilizados nos seguintes casos comuns:

- Hospedar múltiplos sites diferentes em um mesmo endereço IP;
- Hospedar múltiplos sites, cada um com seu IP específico.

Destes, o primeiro cenário é o mais usual, e o que será abordado nesta atividade.

No servidor web Apache instalado em nosso servidor Debian, os arquivos de configuração de todos os *sites* devem ser colocados no pasta /etc/apache2/sites-available. Esses *sites* podem estar ativos ou inativos:

- Para ativar um *site*, basta criar um *link* simbólico do arquivo original para a pasta /etc/apache2/sites-enabled e recarregar o servidor Apache. Esse *link* pode ser criado manualmente, ou através do comando a2ensite ("Apache 2 enable site").
- Para desabilitar um *site*, toma-se o caminho oposto: apague o *link* simbólico da pasta /etc/apache2/sites-enabled, ou use o comando a2dissite ("*Apache 2 disable site*").

Relembrando a sessão 7—DNS e NFS, criamos duas entradas CNAME apontando para a máquina Server_Linux, quais sejam:

```
# cat /etc/bind/db.empresa.com.br | grep 'CNAME *servidor'
www IN CNAME servidor
meusite IN CNAME servidor
```

- 1. Crie dois *virtualhosts* na máquina *Server_Linux*, um respondendo requisições enviadas para www.empresa.com.br e outro para meusite.empresa.com.br.
- 2. Crie pastas específicas para cada virtualhost dentro do diretório /var/www.
- 3. Crie arquivos index.html na raiz dessas pastas que identifiquem cada um dos virtualhosts.
- 4. Acesse os nomes de domínio a partir de um navegador (seja na máquina física, *Client_Linux* ou *Win7-padrao*) e verifique que suas configurações surtiram efeito.

Siga os passos abaixo:

1. Crie o arquivo de *virtualhost* /etc/apache2/sites-available/www.conf para o domínio www.empresa.com.br, como se segue:

```
<VirtualHost *:80>
   ServerAdmin webmaster@empresa.com.br
   ServerName www.empresa.com.br
   DocumentRoot /var/www/www

ErrorLog ${APACHE_LOG_DIR}/www-error.log
   CustomLog ${APACHE_LOG_DIR}/www-access.log combined
   </VirtualHost>
```

2. Faça o mesmo para o domínio meusite.empresa.com.br, editando o arquivo /etc/apache2/sites-available/meusite.conf:

```
<VirtualHost *:80>
   ServerAdmin webmaster@empresa.com.br
   ServerName meusite.empresa.com.br
   DocumentRoot /var/www/meusite

ErrorLog ${APACHE_LOG_DIR}/meusite-error.log
   CustomLog ${APACHE_LOG_DIR}/meusite-access.log combined
</VirtualHost>
```

3. Crie a pasta e arquivo index.html para o *virtualhost* www.empresa.com.br:

4. Faça o mesmo para o domínio meusite.empresa.com.br:

5. Habilite ambos os *virtualhosts* e recarregue a configuração do Apache:

a2ensite www
Enabling site www.
To activate the new configuration, you need to run:
 service apache2 reload

a2ensite meusite.conf
Enabling site meusite.
To activate the new configuration, you need to run:
 service apache2 reload

systemctl reload apache2

6. Vamos testar o funcionamento do *virtualhost* www.empresa.com.br através de um navegador instalado na máquina *Win7-padrao*:

Figura 7: Virtualhost www.empresa.com.br acessível

7. E, novamente, repetiremos o teste para o *virtualhost* meusite.empresa.com.br:

Figura 8: Virtualhost meusite.empresa.com.br acessível

3) Configuração de criptografia SSL

O protocolo HTTP não possui nenhum recurso de criptografia e, por consequência, todo o tráfego de rede gerado entre cliente e servidor poderia ser visualizado por um atacante. Para aumentar a segurança de aplicações web, é interessante habilitar o suporte a conexões cifradas através do *Secure Sockets Layer* (SSL).

- 1. Habilite o módulo SSL do Apache através do comando a2enmod ("Apache 2 enable module").
- 2. Crie um certificado auto-assinado RSA de 4096 bits para o *virtualhost* meusite.empresa.com.br, com validade de um ano. Armazene a chave pública na pasta /etc/ssl/certs, e a chave privada em /etc/ssl/private. Tenha atenção às permissões de arquivo e usuário/grupo dono.
- 3. Configure o *virtualhost* meusite.empresa.com.br para utilizar o protocolo HTTPS em qualquer conexão. Redirecione qualquer conexão sem criptografia direcionada à porta 80/HTTP para a porta 443/HTTPS.
- 4. Acesse o domínio meusite.empresa.com.br a partir de um navegador (seja na máquina física, *Client_Linux* ou *Win7-padrao*) e verifique que suas configurações surtiram efeito.

Siga os passos abaixo:

1. Habilite o módulo SSL no Apache:

```
# a2enmod ssl
Considering dependency setenvif for ssl:
Module setenvif already enabled
Considering dependency mime for ssl:
Module mime already enabled
Considering dependency socache_shmcb for ssl:
Module socache_shmcb already enabled
Enabling module ssl.
See /usr/share/doc/apache2/README.Debian.gz on how to configure SSL and create
self-signed certificates.
To activate the new configuration, you need to run:
    service apache2 restart
```

2. Gere o certificado auto-assinado usando o comando openss1. Para gerar um par de chaves com os parâmetros solicitados, basta usar as opções -days 365 e -newkey rsa:4096. Observe, ainda, que a permissão da chave privada gerada pelo comando é muito leniente — utilize o comando chmod 600 para corrigir isso.

```
# openssl reg -x509 -nodes -days 365 -newkey rsa:4096 -keyout
/etc/ssl/private/meusite.key -out /etc/ssl/certs/meusite.crt
Generating a 4096 bit RSA private key
.....++
.......++
writing new private key to '/etc/ssl/private/meusite.key'
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [AU]:BR
State or Province Name (full name) [Some-State]:DF
Locality Name (eg, city) []:Brasilia
Organization Name (eg, company) [Internet Widgits Pty Ltd]:RNP
Organizational Unit Name (eg, section) []:ESR
Common Name (e.g. server FQDN or YOUR name) []:meusite.empresa.com.br
Email Address []:webmaster@empresa.com.br
# chmod 600 /etc/ssl/private/meusite.key
# ls -ld /etc/ssl/private/meusite.key
-rw----- 1 root root 3272 Ago 12 02:09 /etc/ssl/private/meusite.key
```

3. Edite o arquivo /etc/apache2/sites-available/meusite.conf, habilitando o redirecionamento de requisições da porta 80/HTTP para a porta 443/HTTPS, ativando a *engine* SSL e informando o caminho para as chaves pública e privada do *virtualhost*:

```
<VirtualHost *:80>
   ServerName meusite.empresa.com.br
   Redirect permanent / https://meusite.empresa.com.br/
</VirtualHost>

<VirtualHost *:443>
   ServerAdmin webmaster@empresa.com.br
   ServerName meusite.empresa.com.br
   DocumentRoot /var/www/meusite

SSLEngine On
   SSLCertificateFile /etc/ssl/certs/meusite.crt
   SSLCertificateKeyFile /etc/ssl/private/meusite.key

ErrorLog ${APACHE_LOG_DIR}/meusite-error.log
   CustomLog ${APACHE_LOG_DIR}/meusite-access.log combined
</VirtualHost>
```

4. Reinicie o Apache para que ele ative o módulo SSL e releia o arquivo de configuração do *virtualhost*:

```
# systemctl restart apache2
```

5. Agora, basta testar. Acessamos a URL http://meusite.empresa.com.br e, de fato, o redirecionamento para HTTPS funcionou. Somos apresentados a uma tela de certificado inválido:

Figura 9: Alerta de certificado inválido

6. Esse erro é esperado, já que o certificado SSL que estamos utilizando é auto-assinado, e não pode ser verificado pelas autoridades certificadoras raiz instaladas no navegador. Após clicar em "Continuar neste *site*", conseguimos acessar a página objetivada:

Figura 10: Acesso via HTTPS a meusite.empresa.com.br

4) Autenticação e acesso a conteúdo restrito usando LDAP

Autenticação de usuários, especialmente em áreas sensíveis de um *site*, é integral à configuração de segurança de servidores web. Em particular, estamos interessados em habilitar autenticação para uma área restrita do *virtualhost* meusite.empresa.com.br.

- 1. Habilite o módulo de autenticação LDAP do Apache, authnz_ldap, através do comando a2enmod.
- 2. Crie uma pasta /restrito dentro da raiz do *virtualhost*. Dentro dessa pasta, crie um arquivo index.html que possa ser usado para testar a configuração.
- 3. Configure o *virtualhost* para requerer autenticação quando um usuário tentar acessar a URL meusite.empresa.com.br/restrito. Exija que o cliente forneça uma combinação de usuário/senha válida e existente na base LDAP local.
- 4. Acesse a URL meusite.empresa.com.br/restrito a partir de um navegador (seja na máquina física, *Client_Linux* ou *Win7-padrao*) e verifique que suas configurações surtiram efeito.

Siga os passos abaixo:

1. Habilite o módulo de autenticação LDAP no Apache:

```
# a2enmod authnz_ldap
Considering dependency ldap for authnz_ldap:
Enabling module ldap.
Enabling module authnz_ldap.
To activate the new configuration, you need to run:
   service apache2 restart
```

2. Crie o diretório /var/www/meusite/restrito, e dentro dele edite um arquivo index.html que indique com clareza que foi possível obter acesso à área restrita:

3. Edite o arquivo /etc/apache2/sites-available/meusite.conf, habilitando autenticação via LDAP caso o cliente solicite acesso ao diretório /var/www/meusite/restrito. Tenha especial atenção ao configurar o filtro da URL LDAP:

```
<VirtualHost *:80>
 ServerName meusite.empresa.com.br
 Redirect permanent / https://meusite.empresa.com.br/
</VirtualHost>
<VirtualHost *:443>
  ServerAdmin webmaster@empresa.com.br
 ServerName meusite.empresa.com.br
 DocumentRoot /var/www/meusite
 SSLEngine On
 SSLCertificateFile /etc/ssl/certs/meusite.crt
 SSLCertificateKeyFile /etc/ssl/private/meusite.key
 <Directory /var/www/meusite/restrito>
   AuthType basic
   AuthBasicProvider ldap
   AuthName "meusite LDAP login"
   AuthLDAPURL ldap://127.0.0.1/ou=People,dc=empresa,dc=com,dc=br?uid?sub?
(objectClass=posixAccount)
   AuthLDAPBindDN cn=admin,dc=empresa,dc=com,dc=br
   AuthLDAPBindPassword rnpesr
    Require valid-user
 </Directory>
 ErrorLog ${APACHE LOG DIR}/meusite-error.log
 CustomLog ${APACHE_LOG_DIR}/meusite-access.log combined
</VirtualHost>
```

4. Reinicie o Apache para que ele ative o módulo de autenticação LDAP e releia o arquivo de configuração do *virtualhost*:

```
# systemctl restart apache2
```

5. Agora, basta testar. Acessamos a URL https://meusite.empresa.com.br/restrito e imediatamente fomos apresentados a uma tela de autenticação solicitando usuário e senha:

Figura 11: Autenticação LDAP no Apache

6. Ao informar uma combinação válida (por exemplo, usuário aluno e senha rnpesr), o Apache autoriza o acesso à área restrita do *virtualhost*:

Figura 12: Usuário autenticado no LDAP/Apache com sucesso

7. Refazendo o acesso, mas desta vez informando uma combinação de usuário/senha inexistente, o servidor web informa que não estamos autorizados a acessar a área restrita:

Figura 13: Usuário não autorizado pelo LDAP/Apache

5) Habilitando páginas pessoais de usuários

O módulo userdir do Apache permite a um usuário publicar seu próprio *site*, localizado dentro da sua pasta pessoal. Ele procura uma pasta com nome public_html dentro do diretório *home* do usuário e, caso existente, serve o conteúdo dessa pasta via HTTP.

- 1. Habilite o módulo páginas pessoais do Apache, userdir, através do comando a2enmod.
- 2. Crie a pasta public_html dentro do diretório *home* do usuário aluno e insira dentro dela um arquivo index.html que permita testar a configuração.
- 3. Configure o sistema para que todos os usuários criados futuramente já tenham a pasta public_html criada automaticamente eu seus diretórios *home*.
- 4. Teste o acesso à página pessoal do usuário aluno a partir de um navegador (seja na máquina física, *Client_Linux* ou *Win7-padrao*), verificando que suas configurações surtiram efeito.

Siga os passos abaixo:

1. Habilite o módulo de publicação de páginas pessoais no Apache:

```
# a2enmod userdir
Enabling module userdir.
To activate the new configuration, you need to run:
   service apache2 restart
```

2. Crie a pasta /home/aluno/public_html, e crie nela um arquivo index.html com conteúdo sugestivo:

3. Para que usuários criados no futuro possuam a pasta public_html criada automaticamente eu seus diretórios *home*, basta criar uma pasta de mesmo nome no diretório /etc/skel:

```
# mkdir /etc/skel/public_html
```

4. Reinicie o Apache para que ele ative o módulo de publicação de páginas pessoais:

systemctl restart apache2

5. Agora, basta testar. Acessamos a URL http://192.168.0.10/~aluno e logo podemos ver a página pessoal do usuário aluno, como esperado:

Figura 14: Acesso à página pessoal do usuário aluno

Correio Eletrônico — SMTP

As atividades desta sessão serão realizadas na máquina virtual Server_Linux.

Neste capítulo iremos realizar a configuração da primeira parte de um serviço de correio eletrônico: o envio e recebimento de emails entre domínios através do protocolo *Simple Mail Transfer Protocol* (SMTP). Iremos instalar e configurar o Postfix, uma dos servidores SMTP *open source* mais populares do mundo. Juntamente com o Postfix iremos instalar também o Cyrus SASL, um programa que provê módulos de autenticação plugáveis para verificarmos usuários e senhas via acesso cifrado, com criptografia TLS.

1) Instalação do servidor SMTP Postfix

Antes de instalar o Postfix, temos que corrigir alguns aspectos da nossa instalação atual. Como você se recorda da sessão 7 — DNS e NFS, configuramos a máquina *Server_Linux* com o nome de domínio servidor.empresa.com.br, no IP 192.168.0.10. Da mesma forma, inserimos uma entrada fictícia no DNS para uma máquina email.empresa.com.br no IP 192.168.0.15, que não existe em nossa topologia de rede.

Já que vamos instalar o Posfix + Cyrus na máquina *Server_Linux*, temos que apontar o nome email.empresa.com.br para o IP 192.168.0.10.

Contudo, não podemos tomar o caminho mais fácil, que seria criar um registro de *alias* CNAME do nome email.empresa.com.br para o nome servidor.empresa.com.br—a RFC 2181, seção 10.3 (https://tools.ietf.org/html/rfc2181) proíbe uso de CNAME para apontamentos MX, exigindo que esses apontamentos sejam feitos diretamente por registros A.

Isso exige uma série de alterações ao registro direto do domínio empresa.com.br, no arquivo /etc/bind/db.empresa.com.br, que fica como se segue:

```
$TTL 86400 ; (1 day)
$ORIGIN empresa.com.br.
          ΤN
                 SOA
                                email.empresa.com.br. admin.empresa.com.br. (
                                ;Serial (YYYYMMDDnn)
                 2018081200
                 14400
                                ;Refresh (4 hours)
                                ;Retry (30 minutes)
                 1800
                                ;Expire (2 weeks)
                 1209600
                 3600
                                ;Negative Cache TTL (1 hour)
)
0
          IN
                 NS
                                email.empresa.com.br.
                         10
0
          IN
                 MΧ
                                email.empresa.com.br.
email
          IN
                 Α
                                192.168.0.10
cliente
          IN
                 Α
                                192.168.0.20
windows
                                192.168.0.25
          IN
                 Α
meusite
          IN
                 CNAME
                                email
          IN
                 CNAME
                                email
pop
                                email
servidor
          IN
                 CNAME
          IN
                                email
smtp
                 CNAME
          ΤN
                 CNAME
                                email
www
```

Da mesma forma, surge um problema também na resolução de registros reversos do domínio. Não é recomendado que haja múltiplos apontamentos PTR para o mesmo endereço IP, sob pena de obter respostas diferentes em duas *queries* DNS distintas. Vamos alterar o registro reverso no arquivo /etc/bind/db.0.168.192, deixando-o assim:

```
$TTL 86400 ; (1 day)
$ORIGIN 0.168.192.in-addr.arpa.
          IN
                 SOA
                               email.empresa.com.br. admin.empresa.com.br. (
                 2018081200
                               ;Serial (YYYYMMDDnn)
                 14400
                               ;Refresh (4 hours)
                 1800
                               ;Retry (30 minutes)
                               ;Expire (2 weeks)
                 1209600
                 3600
                               ;Negative Cache TTL (1 hour)
)
          IN
                 NS
                               email.empresa.com.br.
0
          IN
                         10
                MΧ
                               email.empresa.com.br.
0
10
          IN
                 PTR
                               email.empresa.com.br.
20
                               cliente.empresa.com.br.
          IN
                 PTR
25
          IN
                 PTR
                               windows.empresa.com.br.
```

Agora, vamos testar. Reinicie o serviço bind e verifique se o DNS que responde pelo domínio

```
# systemctl restart bind9.service
# dig -t NS empresa.com.br
; <<>> DiG 9.9.5-9+deb8u15-Debian <<>> -t NS empresa.com.br
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35860
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 2
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
                                        ΤN
                                                NS
;empresa.com.br.
;; ANSWER SECTION:
                        86400
                                ΤN
                                        NS
empresa.com.br.
                                                 email.empresa.com.br.
;; ADDITIONAL SECTION:
email.empresa.com.br.
                        86400
                                ΙN
                                        Α
                                                192.168.0.10
;; Query time: 3 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Aug 12 14:50:45 -03 2018
;; MSG SIZE rcvd: 79
```

De igual forma, verifique o registro reverso do IP 192.168.0.10, que deve retornar o nome email.empresa.com.br. Finalmente, o nome servidor.empresa.com.br torna-se agora um *alias* do CNAME email.empresa.com.br.

```
# nslookup 192.168.0.10
Server:
               127.0.0.1
Address:
               127.0.0.1#53
10.0.168.192.in-addr.arpa
                          name = email.empresa.com.br.
# nslookup servidor.empresa.com.br
Server:
               127.0.0.1
                127.0.0.1#53
Address:
servidor.empresa.com.br canonical name = email.empresa.com.br.
Name:
       email.empresa.com.br
Address: 192.168.0.10
```

Ainda falta alterar os registros locais de nomes, nos arquivos /etc/hostname, /etc/mailname e /etc/hosts. Altere-os como mostrado a seguir:

```
# cat /etc/hostname
email

# cat /etc/mailname
email.empresa.com.br

# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 email.empresa.com.br email
192.168.0.10 email.empresa.com.br email

# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
```

Finalmente, reinicie a máquina *Server_Linux*. No próximo login, o nome mostrado pelo *prompt* do shell deve ser USERNAME@email:~\$.

```
# reboot

(...)

$ ssh aluno@192.168.0.10

You have new mail.
Last login: Sun Aug 12 18:00:53 2018 from 192.168.0.254
aluno@email:~$
```

Isso feito, podemos começar a atividade. Instale o Postfix + Cyrus SASL na máquina *Server_Linux* (pacotes postfix, sasl2-bin e mailutils). Em seguida, reconfigure o Postfix (comando dpkg-reconfigure postfix) de acordo com as informações da tabela abaixo:

Table 8. Configurações do Postfix

Parâmetro	Valor
Tipo geral de configuração de e-mail	Site da internet
Nome de e-mail do sistema	email.empresa.com.br
Destinatário das mensagens para root e postmaster	Em branco
Outros destinos para os quais deve aceitar mensagens	email.empresa.com.br, localhost.empresa.com.br, empresa.com.br, localhost
Forçar atualizações síncronas na fila de mensagem	Não
Redes locais	127.0.0.0/8, 192.168.1.0/24, 172.16.0.0/24, [::ffff:127.0.0.0]/104, [::1]/128

Parâmetro	Valor
Usar procmail para entrega local	Sim
Limite de tamanho da caixa postal	0
Caractere de extensão de endereço local	+
Protocolos de internet para usar	Todos

Crie um par de chaves RSA de 4096 bits e validade de dois anos para permitir conexões TLS ao seu servidor, com chave pública em /etc/ssl/certs/smtpd.crt e chave privada em /etc/ssl/private/smtpd.key. Feito isso, configure o Postfix, editando o arquivo /etc/postfix/main.cf, e:

- Habilite criptografia TLS em conexões oriundas dos clientes, de forma opcional;
- Use as chaves assimétricas criadas acima para implementar a cifragem TLS;
- Habilite autenticação SASL dos tipos PLAIN e LOGIN, comunicando-se com o *daemon* saslauthd do Cyrus deve-se consultar a base de usuários locais via PAM para autenticação.

Atente-se para o fato de que, por padrão, o Postfix opera dentro de um ambiente chroot. Será necessário editar opções padrão do saslauthd no arquivo /etc/default/saslauthd para adaptar-se a esse cenário. Mais além, adicione o usuário do postfix ao grupo sasl para permitir comunicação entre os dois daemons.

Ao final do processo, use o comando telnet para testar a configuração realizada, logando no servidor SMTP com usuário aluno e senha repesar pelo método PLAIN.

1. Instale o servidor SMTP Postfix e o Cyrus SASL:

```
# apt-get install postfix sasl2-bin mailutils
```

2. Reconfigure o Postfix de acordo com os dados apontados na tabela acima:

```
# dpkg-reconfigure postfix
```

3. Gere as chaves assimétricas usando o comando openss1. Para gerar um par de chaves com os parâmetros solicitados, basta usar as opções -days 730 e -newkey rsa:4096.

```
# openssl reg -x509 -nodes -days 730 -newkey rsa:4096 -keyout
/etc/ssl/private/smtpd.key -out /etc/ssl/certs/smtpd.crt
Generating a 4096 bit RSA private key
....++
.....++
writing new private key to '/etc/ssl/private/smtpd.key'
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [AU]:BR
State or Province Name (full name) [Some-State]:DF
Locality Name (eq, city) []:Brasilia
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Empresa
Organizational Unit Name (eg, section) []:TI
Common Name (e.g. server FQDN or YOUR name) []:email.empresa.com.br
Email Address []:postmaster@empresa.com.br
```

4. Observe que a permissão da chave privada gerada pelo comando acima é muito leniente — utilize o comando chmod 600 para corrigir isso.

```
# ls -ld /etc/ssl/private/smtpd.key
-rw-r--r-- 1 root root 3272 Ago 12 15:31 /etc/ssl/private/smtpd.key
# chmod 600 /etc/ssl/private/smtpd.key
```

5. Antes de editar o arquivo de configuração do Postfix, faça o *backup* da versão original em caso de necessidade de *rollback*:

```
# cp /etc/postfix/main.cf /etc/postfix/main.cf.orig
```

6. Edite o arquivo principal de configuração do Postfix, /etc/postfix/main.cf, da seguinte forma:

```
# TLS parameters
smtpd_tls_cert_file=/etc/ssl/certs/smtpd.crt
smtpd_tls_key_file=/etc/ssl/private/smtpd.key
smtpd_use_tls=yes
smtpd tls auth only = no
smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache
smtp use tls = yes
smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache
# SASL parameters
smtpd_sasl_path = smtpd
smtpd sasl auth enable = yes
smtpd_sasl_security_options = noanonymous
smtpd_sasl_local_domain = empresa.com.br
biff = no
append_dot_mydomain = no
readme_directory = no
smtpd_relay_restrictions = permit_mynetworks permit_sasl_authenticated
defer unauth destination
myhostname = email.empresa.com.br
alias_maps = hash:/etc/aliases
alias database = hash:/etc/aliases
myorigin = /etc/mailname
mydestination = email.empresa.com.br, localhost.empresa.com.br, empresa.com.br,
localhost
relayhost =
mynetworks = 127.0.0.0/8, 192.168.0.0/24, 172.16.0.0/24, [::ffff:127.0.0.0]/104,
[::1]/128
mailbox_command = procmail -a "$EXTENSION"
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
inet_protocols = all
```

7. A configuração de autenticação SASL fica no arquivo /etc/postfix/sasl/smtpd.conf, como se segue:

```
pwcheck_method: saslauthd
mech_list: plain login
```

8. Precisamos ativar o *daemon* saslauthd, bem como configurá-lo para operar com o Postfix sob chroot no diretório /var/spool/postfix:

```
# cat /etc/default/saslauthd | grep '^START=\|^OPTIONS='
START=yes
OPTIONS="-c -m /var/spool/postfix/var/run/saslauthd"
```

9. Para que o Postfix consiga se comunicar com o saslauthd e autenticar usuários, é necessário adicioná-lo ao grupo deste:

```
# adduser postfix sasl
```

10. Reinicie ambos os *daemons*—em caso de erros, verifique os arquivos /var/log/syslog e /var/log/daemon.log:

```
# systemctl restart postfix.service
# systemctl restart saslauthd.service
```

11. Agora, basta testar o funcionamento da conexão. O único impeditivo final é que, no método PLAIN, o servidor SMTP espera o envio da combinação usuário/senha em um formato específico — \Ousername\Opassword — e codificado em base64. Podemos fazer isso usando o comando openssl, como se segue:

```
# echo -ne '\000aluno\000rnpesr' | openssl base64
AGFsdW5vAHJucGVzcg==
```

12. Finalmente, basta conectar-se ao servidor SMTP via telnet e fornecer as informações de autenticação obtidas acima:

```
# telnet localhost 25
Trying ::1...
Connected to localhost.
Escape character is '^]'.
220 email.empresa.com.br ESMTP Postfix
EHLO localhost
250-email.empresa.com.br
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH PLAIN LOGIN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN
AUTH PLAIN AGFsdW5vAHJucGVzcg==
235 2.7.0 Authentication successful
```

2) Envio e recebimento de mensagens por telnet

Vamos agora testar o envio de mensagens usando o comando telnet, diretamente a partir do servidor SMTP. Este teste visa averiguar o funcionamento do servidor de e-mail sem a influência de configurações de clientes de e-mail (*Mail User Agents* — MUA).

Conecte-se ao servidor SMTP por telnet com um usuário qualquer existente na base local de usuários ou LDAP e envie email para outro usuário usando os comandos MAIL e RCPT TO do SMTP. Logue na conta do destinatário e verifique que a mensagem foi recebida.

1. Já que utilizamos o usuário aluno no teste da atividade anterior, vamos tentar logar com um usuário diferente. O usuário esr, que foi criado anteriormente na base LDAP, será nosso remetente:

```
# getent passwd | grep '^esr:'
esr:x:5000:5000:esr,,,:/home/esr:/bin/bash
```

2. Temos que gerar a *string* de autenticação base64, como feito anteriormente:

```
# echo -ne '\000esr\000rnpesr' | openssl base64
AGVzcgBybnBlc3I=
```

3. Agora, basta logar no servidor SMTP e enviar a mensagem. Usa-se, em ordem, os comandos EHLO, AUTH PLAIN, MAIL FROM, RCPT TO, DATA e QUIT, como mostrado abaixo:

```
# telnet localhost 25
Trying ::1...
Connected to localhost.
Escape character is '^]'.
220 email.empresa.com.br ESMTP Postfix
EHLO localhost
250-email.empresa.com.br
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH PLAIN LOGIN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN
AUTH PLAIN AGVzcgBybnBlc3I=
235 2.7.0 Authentication successful
MAIL FROM:esr@empresa.com.br
250 2.1.0 Ok
RCPT TO:aluno@empresa.com.br
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
Mensagem de teste
250 2.0.0 Ok: queued as C0465A075C
QUIT
221 2.0.0 Bye
Connection closed by foreign host.
```

4. Vamos finalmente entrar como o usuário aluno e verificar a caixa de entrada:

```
# su - aluno
$ mail
"/var/mail/aluno": 1 message 1 unread
     1 esr@empresa.com.br Dom Ago 12 17:29 14/475
Return-Path: <esr@empresa.com.br>
X-Original-To: aluno@empresa.com.br
Delivered-To: aluno@empresa.com.br
Received: from localhost (localhost [IPv6:::1])
        by email.empresa.com.br (Postfix) with ESMTPA id C0465A075C
        for <aluno@empresa.com.br>; Sun, 12 Aug 2018 17:29:34 -0300 (-03)
Message-Id: <20180812202940.C0465A075C@email.empresa.com.br>
Date: Sun, 12 Aug 2018 17:29:34 -0300 (-03)
From: esr@empresa.com.br
X-IMAPbase: 1534106068 10
Status: 0
X-UID: 9
Mensagem de teste
```

3) Análise do log de envio

Envie uma nova mensagem de email usando o telnet, e monitore ao mesmo tempo o arquivo /var/log/mail.log por alterações. Responda, apontando a excerto do log que identifica a informação:

- Qual é o IP de origem da conexão SMTP?
- Qual o nome do usuário que efetuou login?
- Qual o endereço do destinatário da mensagem?
- Qual o método de entrega da mensagem para a caixa do usuário?

Vamos abrir um terminal monitorando por mudanças no arquivo de log do servidor SMTP com o comando tail -f -n0 /var/log/mail.log. Em outro terminal, vamos executar uma nova sessão de envio de email usando o comando telnet, como feito anteriormente.

1. Assim que a conexão é aberta, visualiza-se a mensagem:

```
Aug 12 17:57:02 email postfix/smtpd[6039]: connect from localhost[::1]
```

Logo, o IP de origem da conexão é localhost, ou 127.0.0.1.

2. Assim que o comando RCPT TO é enviado, surge uma nova mensagem:

```
Aug 12 18:02:15 email postfix/smtpd[6079]: F0D56A0282: client=localhost[::1], sasl_method=PLAIN, sasl_username=esr@empresa.com.br
```

Assim, o usuário que efetuou login e deseja enviar a mensagem é o esr@empresa.com.br.

3. Quando o caractere ".", que delimita o final da mensagem, é enviado, vemos novas mensagens no log:

```
Aug 12 18:03:31 email postfix/cleanup[6082]: F0D56A0282: message-id=<20180812210215.F0D56A0282@email.empresa.com.br>
Aug 12 18:03:31 email postfix/qmgr[5983]: F0D56A0282: from=<esr@empresa.com.br>, size=333, nrcpt=1 (queue active)
Aug 12 18:03:31 email postfix/local[6091]: F0D56A0282: to=<aluno@empresa.com.br>, relay=local, delay=81, delays=81/0/0/0, dsn=2.0.0, status=sent (delivered to command: procmail -a "$EXTENSION")
Aug 12 18:03:31 email postfix/qmgr[5983]: F0D56A0282: removed
```

No campo to= da terceira linha do log acima pode-se observar que o endereço do destinatário é aluno@empresa.com.br. Na mesma linha, vê-se que o método de entrega é via *relay* local, usando o programa auxiliar procmail.