PRIMER EJERCICIO (5 PUNTOS)

APARTADO (1) (2'5 PUNTOS)

Sean (V, g) un espacio vectorial métrico euclídeo de $\dim(V) \ge 2y$ $B = \{\overrightarrow{u_1}, \dots, \overrightarrow{u_n}\}$ una base de V. Sea $B' = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ la base ortogonal que se obtine a partir de B por el método de Gram — Schmidt. Prueba por inducción sobre $n = \dim(V)$ que se verifican las siguientes igualdades :

$$||\overrightarrow{v_{1}}||^{2} = \alpha_{1}, \ ||\overrightarrow{v_{2}}||^{2} = \frac{\alpha_{2}}{\alpha_{1}}, \ ||\overrightarrow{v_{3}}||^{2} = \frac{\alpha_{3}}{\alpha_{2}}, \ \dots, \ ||\overrightarrow{v_{n}}||^{2} = \frac{\alpha_{n}}{\alpha_{n-1}};$$

donde $\alpha_1, \alpha_2, \ldots, \alpha_n$ son los menores angulares de la matriz de g en la base B.

APARTADO (2) (2'5 PUNTOS)

Sea (V, g) un espacio vectorial métrico euclídeo de dim $(V) \ge 2$.

Si $B = \{\overrightarrow{u_1}, \dots, \overrightarrow{u_n}\} y B' = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ son dos bases (no necesariamente ortonormales) de V se dice que B y B' son recíprocas si sus vectores verifican

 $g(\overrightarrow{u_i}, \overrightarrow{v_j}) = \left\{ \begin{array}{l} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{array}, \ \forall i, j \in \{1, 2, ..., n\} \right.$ Prueba que dada cualquier base B de V existe una única B' base de V tal que B y B' son recíprocas.

SEGUNDO EJERCICIO (5 PUNTOS)

En el espacio S_2 ($\mathbb R$) de las matrices cuadradas simétricas de orden dos con coeficientes reales se considera la métrica euclídea g que verifica :

$$\left\| \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\| = 1, \ \left\| \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\| = \sqrt{7}, \ \left\| \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\| = \sqrt{7},$$

$$< \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) = < \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) = \arccos \left(\frac{1}{\sqrt{7}} \right),$$

$$\triangleleft$$
 $\left(\begin{pmatrix}0&1\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right) = \arccos\left(\frac{4}{7}\right).$

Sea $f: \mathcal{S}_2$ (\mathbb{R}) $\longrightarrow \mathcal{S}_2$ (\mathbb{R}) el endomorfismo dado por

$$f(X) = A.X + X.A^t, \forall X \in S_2(\mathbb{R}),$$

donde
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
. Se pide :

- (a) Comprueba que f es autoadjunto para la métrica g. (2'5 PUNTOS)
- (b) Encuentra una base ortonormal para g formada por vectores propios de f. (2 ' 5 PUNTOS)