Math 725 – Advanced Linear Algebra Paul Carmody All about Matrices/Transformations

Important terms:

- (1) minimum polynomial: The polynomial, p, with lowest degree such that $p(T) = 0, \forall x \in F$.
 - i) The roots of the minimum polynomial are eigenvalues.
 - ii) If the roots have singular multiplicity, then the matrix is diagonalizable.
- (2) characteristic polynomial

det(xI - T) forms a polynomial.

- i) the characteristic polynomial is divided by the minimum polynomial.
- ii) the characteristic polynomial and the minimum polynomial have the same roots, i.e, the same eigenvalues
- iii) if all of the factors of the characteristic polynomial are simple (i.e., have degree one) then it is the minimum polynomial.
- (3) triangularizable: a matrix that has zeros below the diagonal. All matrices over the complex numbers are triangulizable.
- (4) diagonalizable: a matrix that has zeros everywhere except the diagonal.
- (5) **Inner Product Space** defines an inner product. The primary ability of the Inner Product is define orthogonality, orthonormal basis and norm. An inner product $\langle \ \rangle$ has the following properties.
 - i) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
 - ii) $\langle cv, w \rangle = c \langle v, w \rangle$ and $\langle v, dw \rangle = \overline{d} \langle w, w \rangle$
 - iii) $\langle w, v \rangle = \overline{\langle v, w \rangle}$
 - iv) $\langle v, v \rangle > 0$ and $\langle v, v \rangle = 0$ if v = 0
- (6) norm: is a function $||\cdot||:F\to\mathbb{R}$ with the following properties:
 - i) $||\cdot|| \ge 0$.
 - ii) ||cv|| = |c| ||v||.
 - iii) $||v+w|| \le ||v|| + ||w||$ (triangular inequality).
- (7) orthogonal: u, v are orthogonal is $\langle u, v \rangle = 0$ and $u \neq 0$ and $v \neq 0$.

if Q is an orthogonal matrix if $QQ^T = I$.

(8) orthonomal. u, v are said to be orthonormal if they both have length one.

Every finite dimensional inner product space has an orthonormal basis. Every linear operator T has an upper triangular matrix $[T]_B^B$ w.r.t. an orthonormal basis.

- (9) orthogonal compliment. Given any set $S \subseteq V$ then $S^{\perp} = \{v \in V : \langle v, w \rangle = 0, \forall w \in S\}$ Any subspace $W \subseteq V$, then $V = W \oplus W^{\perp}$.
- (10) adjoint: $T^* \in \mathcal{L}(W, V) \to \langle Tv, w \rangle_W = \langle v, T^*w \rangle_V$

Properties (analogous to complex arithmetic):

- i) Additive: $(S+T)^* = S^* + T^*, \forall S, T \in \mathcal{L}(V, W)$.
- ii) Scalar Multiplication: $(\lambda T)^* = \overline{\lambda} T^*, \forall T \in \mathcal{L}(V, W) \& \lambda \in F$
- iii) Multiplication anti-commutative: $(S \circ T)^* = T^* \circ S^*, \forall T \in \mathcal{L}(U,V) \& S \in \mathcal{L}(V,W)$
- iv) Inverse: $(T^*)^* = T, \forall T \in \mathcal{L}(V, V)$
- v) If $T = U_1 + iU_2$ then
 - a) $U_1 = \frac{1}{2}(T + T^*), U_1^* = U_1$
 - b) $U_2 = \frac{1}{2}(T T^*), U_2^* = U_2$

c) Note: U_1 , U_2 "look" like real numbers.

Matrices:

Given orthonormal bases B,B' on V,W, respectively. then $[T]_{B'}^B=A,[T^*]_{B'}^{B'}=A^* \implies A^*=\overline{A^T},$ i.e, if W = V then T is an operator and A is Hermitian/Symmetric.

- (11) self-adjoint: $T = T^*$
 - a) All $\lambda \in \mathbb{R}$ for eigenvalues of T.
 - b) $\langle Tv, v \rangle \in \mathbb{R}$ even if V is complex.
 - c) if $\langle Tv, v \rangle = 0$, $\forall v \in V$ then T = 0.
- (12) normal: If $TT^* = T^*T$ then T is said to be normal. Self-adjoint implies Normal but not visa versa.
 - a) If $Tv = \lambda v$ then $T^*v = \overline{\lambda}v$.
 - b) T normal \iff diagonalizable w.r.t. orthonormal basis.

 - c) $[T]_B^B$ is hermitian, i.e, $A=[T]_B^B=\overline{A^T}=A^*$ d) $\exists Q\to QQ^*=I$ and $A=Q^*\Lambda Q$ where Λ is a diagonal matrix consisting of eigenvalues and Qis a matrix consisting of orthonormal column eigenvectors (i.e., unitary).
 - e) iff $||Tv|| = ||T^*v||, \forall v \in V$.
 - f) eigenvectors from different eigenvalues are orthogonal to each other.
- (13) unitary: a matrix made up of orthonormal column vectors.
 - the conjugate transpose is the inverse
 - determinant is one
- (14) (semi-)positive definite when $\langle Tv, v \rangle > 0$, $\forall v \neq 0$ semi- implies $\langle Tv, v \rangle > 0$, $\forall v \neq 0$. The following are equivalent
 - i) T is (semi-)positive definite.
 - ii) eigenvalues of T are (semi-)positive.
 - iii) $\exists R \in \mathcal{L}(V) \implies T = RR^*$.
- (15) Theorem: Let $f(x_1,\ldots,x_n)$ be a polynomial in \mathbb{R} coefficients with degree 2d and X^T be the set of possible terms whose exponents that added up to less than or equal to 2d. Then f is a Sum of Squares if and only if there exists a positive semi-definite matrix \hat{A} such that $f = X^T A X$.

This is useful in positive-definite multi-variable polynomials. These all have even valued degrees (hence the 2d term), then bodes the question are they the sum of squares polynomials (i.e., equal to $\sum p_i^2$ where p_i are multivariable polynomials).

- (16) Definition: The **Singular Value Decomposition**, $\sigma_1, \sigma_2, \dots, \sigma_r$ of $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ are the positive square roots of eigenvalues $\sigma_i = \sqrt{\lambda_i}$ where $\lambda_i \neq 0$ of the matrix $K = A^T A$ (which is positive definite, hence all $\lambda_i \geq 0$).
- (17) Single Value Decomposition Theorem: $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ of rank r can be factored as $A = P \Sigma Q^T$ where
 - $P \in \mathcal{M}_{m \times r}(\mathbb{R})$ with ornormal columns (i.e, $P^T P = I_r$.
 - Σ is a diagonal matrix made up of $\sigma_1, \sigma_2, \ldots, \sigma_r$.
 - $Q^T \in \mathcal{M}_{r \times n}(\mathbb{R})$ orthonormal rows $(Q^T Q = I_r)$.
- (18) Pseudo-Inverse (not square): $A \in \mathcal{M}_{m \times n}(F)$ and $A = U \Sigma V^T$ then $A^+ \in \mathcal{M}_{n \times m}(F)$ and

$$A^+ = V \Sigma^{-1} U^T$$

if A is square then

$$A^{+} = (A^{T}A)^{-1}A^{T}$$

(19) Definition: Given $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ then we define the **norm** of A as

$$||A|| := \max_{||x||=1} ||Ax||$$

Remark: if A has an SVD of $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ then $||A|| = \sigma_1$.

(20) Eichart-Mintsky-Young: Let $A = \sum_{j=1}^r \sigma_j u_j v_j^T$ (the Single Value Decomposition of A as the sum of rank 1 matrices). For each $1 \le p \le r$ let $A_p = \sum_{j=1}^p \sigma_j u_j v_j^T$ (a rank p matrix). Then,

$$||A - A_p|| = \min_{B \in F^{n \times n}} ||A - B||$$
 where rank $(B) \le p$

hence A_p is the *closest* rank p matrix to A.

Important theorems:

• Fundamental Theorem of Algebra

Most notably that \mathbb{C} is algebraically closed (i.e., all polynomials have a zero).