Programas Cálculo

Luis Eduardo Galindo Amaya

14 de diciembre de 2021

$\mathbf{\acute{I}ndice}$

1.	Con	versión Entre Sistemas De Coordenadas	2
	1.1.	Rectangulares a Cilíndricas (o Polares)	2
	1.2.	Rectangulares a Esféricas	3
	1.3.	Cilíndricas a Rectangulares	4
		Cilíndricas a Esféricas	5
		Esfericas a Rectangulares	6
		Esfericas a Cilidnricas	7
2 .	Mod	dulo del Vector	8
	2.1.	Modulo	8
	2.2.	Modulo del Vector Fuera Del Origen	8
	2.3.	Producto Punto	8
		Producto Cruz	8
	2.5.	Producto Mixto	9
3.	Aplicaciones De Vectores		
	3.1.	Vector Unitario	9
	3.2.	Angulo entre vectores	9
	3.3.	Angulos Directores	9

1. Conversión Entre Sistemas De Coordenadas

1.1. Rectangulares a Cilíndricas (o Polares)

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 1
y = 0
z = 0
# Añadir 1*10^-100 para evitar la divicion entre 0
# 'and' regresa 1 = True y 0 = False
x = x + and(x=0)*float(10^{-100})
r = sqrt(x^2+y^2)
theta = arctan(y/x)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x>0,y>0) * 0
   and(x <= 0, y > 0) * pi + # II
   and(x<0 ,y<=0) * pi + # III
   and(x>0,y<0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Cilindrica (r,theta,z):"
float((r,theta,z))
```

1.2. Rectangulares a Esféricas

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 4
y = -5
z = 2
# Añadir 1*10^-100 para evitar la divicion entre 0
# 'and' regresa 1 = True y 0 = False
x = x + and(x=0)*float(10^{-100})
rho = sqrt(x^2+y^2+z^2)
theta = arctan(y/x)
phi = arccos(z/rho)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x>0, y>0) * 0
   and(x <= 0, y > 0) * pi + # II
   and(x<0 ,y<=0) * pi + # III
   and(x>0,y<0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Esféricas (rho,theta,phi):"
float((rho,theta,phi))
```

1.3. Cilíndricas a Rectangulares

```
# Sustituye el valor de 'r', 'theta' y 'z'.
r = 4
theta = 2
z = 4

x = r * cos(theta)
y = r * sin(theta)
z = z

"Cilíndrica (r,theta,z):"
float((r,theta,z))
"Rectangular (x,y,z):"
float((x,y,z))
```

1.4. Cilíndricas a Esféricas

```
# Sustituye el valor de 'r', 'theta' y 'z'
# theta es el angulo de los ejes 'x' y 'y'
r = 1
theta = 1
z = 1

rho = sqrt(r^2+z^2)
theta = theta
phi = arccos(z/rho)

"Cilindrica (r,theta,z):"
float((r,theta,z))

"Esferica (rho,theta,phi):"
float((rho,theta,phi))
```

1.5. Esfericas a Rectangulares

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

x = rho * sin(phi) * cos(theta)
y = rho * sin(phi) * sin(theta)
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Rectangular (x,y,z):"
float((x,y,z))
```

1.6. Esfericas a Cilidnricas

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

r = rho * sin(phi)
theta = theta
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Cilindrica (r,theta,z):"
float((r,theta,z))
```

2. Modulo del Vector

2.1. Modulo

```
# Sustituye los valores por los de tu vector (x,y,z). v = (1,3,5) abs(v)
```

2.2. Modulo del Vector Fuera Del Origen

```
# Sustituye 'v' por los valores por los de tu vector.
# Sustituye 'g' los valores por los de el origen.

v = (1,3,5) # Vector
g = (0,0,0) # Origen

abs(v-g)
```

2.3. Producto Punto

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
dot(A,B)
```

2.4. Producto Cruz

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
cross(A,B)
```

2.5. Producto Mixto

```
# Reemplaza 'A', 'B' y 'C' con tus vectores
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)
dot(A,cross(B,C))
```

3. Aplicaciones De Vectores

3.1. Vector Unitario

```
# Sustituye 'v' por los valores por los de tu vector.
v = (1,3,5) # Vector

vu = v/abs(v)

"Vector unitario:"
float(vu)
```

3.2. Angulo entre vectores

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
arccos(dot(A,B)/(abs(A)*abs(B)))
```

3.3. Angulos Directores

```
# Reemplaza 'A' con tu vector
A = (1,2,2)
alpha = float(arccos(A[1]/abs(A)))
beta = float(arccos(A[2]/abs(A)))
gamma = float(arccos(A[3]/abs(A)))
```

```
"Angulos Directores (rad):"
alpha
beta
gamma
```