Homomorphic Encryption

Louis Goubin Université de Versailles-St-Quentin-en-Yvelines

Université Paris-Saclay
M1 informatique – Site de Versailles
UE « Calcul Sécurisé »

4ème partie

Introduction

Common notations:

pk – public key

sk – secret key

m – message

c – ciphertext

 $c = Encrypt_{pk}(m)$

m=Decrypt_{sk}(c)

 $E_m(pk)$ - encryption algorithm as a circuit

D_m(sk) - decryption algorithm as a circuit

f – is the function or circuit that we want to

evaluate on plaintext

F – is the function or circuit that corresponds to f and operates on ciphertext in the cryptosystem

Partially HE

Multiplicative Partially HE Unpadded RSA

$$pk=(n,e)$$

 $c=E_{pk}(m)=m^e \mod n$

$$c_1*c_2=m_1^e m_2^e \mod n = E_{pk}(m_1*m_2)$$

Additive Partially HE Paillier scheme

$$c_1*c_2=(g^{m_1}r_1^n)*(g^{m_2}r_2^n) \mod n =$$

$$g^{m_1+m_2}(r_1r_2)^n \mod n = E_{pk}(m_1+m_2)$$

Does FHE Ever Exists?

Fully Homomorphic Encryption (FHE). Some Properties.

FHE property (simplified):

- Decrypt_{sk} $(c_1*c_2)=m_1*m_2$
- Decrypt_{sk} $(c_1+c_2)=m_1+m_2$

I.e.:

Decrypt_{sk}
$$(F(c_1,...,c_n))=F(m_1,...,m_n)$$

FHE may support another set of operations to support a ring of plaintexts. Examples: AND, XOR

FHE can be:

- Public key schemes
- Symmetric key schemes

"Holy Grail" for 30 years

Types of HE Schemes

Homomorphic Encryption (HE) = type of computation for a set of functions $f(m_1,...,m_n)$ carried on ciphertexts $Enc(m_1)...Enc(m_n)$ with a corresponding function F such that

$$f(m_1,...,m_n) = Dec(F(Enc(m_1),...,Enc(m_n)))$$

Partially HE (PHE) = HE scheme where only one type of operations is possible (multiplication or addition)

Somewhat HE (SHE) = HE scheme that can do a **limited** number of additions and multiplications

Fully HE (FHE) = HE scheme that can perform an **infinite** number of additions and multiplications

SHE over the INTEGERS – SYMMETRIC KEY SCHEME

2009. Dijk-Gentry-Halevi-Vaikuntanathan. Second FHE scheme based on integers.

KeyGen: key is an odd integer $p \in [2^{\eta-1}, 2^{\eta})$.

Encrypt(p, m): to encrypt one bit $m \in [0,1]$

c = pq+2r+m

q, r – are chosen random, such that |2r| < p/2.

Decrypt(p, c):

 $m = (c \mod p) \mod 2$

Proposed constraint: $p\sim2^{\eta}$, $q\sim2^{\eta^{3}}$, $r\sim2^{\text{sqrt}(\eta)}$.

ADDITION:

```
Decrypt(c_1+c_2,p) = ((pq<sub>1</sub>+2r<sub>1</sub>+m<sub>1</sub>)+(pq<sub>2</sub>+2r<sub>2</sub>+m<sub>2</sub>) mod p) mod 2

= (p(q<sub>1</sub>+q<sub>2</sub>)+2(r<sub>1</sub>+r<sub>2</sub>)+(m<sub>1</sub>+m<sub>2</sub>) mod p) mod 2

= 2(r<sub>1</sub>+r<sub>2</sub>)+(m<sub>1</sub>+m<sub>2</sub>) mod 2

= m<sub>1</sub> \oplus m<sub>2</sub>
```

MULTIPLICATION:

```
Decrypt(c_1*c_2,p) =((pq<sub>1</sub>+2r<sub>1</sub>+m<sub>1</sub>)*(pq<sub>2</sub>+2r<sub>2</sub>+m<sub>2</sub>) mod p) mod 2

=(p(pq<sub>1</sub>q<sub>2</sub>+2q<sub>1</sub>r<sub>2</sub>+q<sub>1</sub>m<sub>2</sub>+2q<sub>2</sub>r<sub>1</sub>+q<sub>2</sub>m<sub>1</sub>)+

2(2r<sub>1</sub>r<sub>2</sub>+r<sub>1</sub>m<sub>2</sub>+m<sub>2</sub>r<sub>1</sub>)+m<sub>1</sub>m<sub>2</sub>) mod p) mod 2

= 2(2r<sub>1</sub>r<sub>2</sub>+r<sub>1</sub>m<sub>2</sub>+m<sub>2</sub>r<sub>1</sub>)+m<sub>1</sub>m<sub>2</sub> mod 2

= m<sub>1</sub> \otimes m<sub>2</sub>
```

- The scheme is both additively and multiplicatively homomorphic for shallow arithmetic circuits.
- The number of ADD and MUL is limited since the noise grows.
- The noise r must be sufficiently smaller than p to allow more ADDs and MULs.

Any computer program can be represented in terms of AND-XOR gates

a x b

f(x, a, b): if(x==1) q=a; else q=b

Ciphertext and noise size expansion

$$c_i = pq_i + 2r_i + m_i$$

 $F(c_{a}, c_{x}, c_{b}, c_{1}): c_{q} = (c_{a}*c_{x})+(c_{x}+c_{1})*c_{b}$

Noise Count

Noise Magnitude

The degree of noise can be calculated by the evaluator internally.

Assume two arguments to an operation

- c_1 has the noise of degree n_1 bits
- c₂ has the noise of degree n₂ bits

The result of:

- ADD(c_1 , c_2) => noise of degree $log_2(2^{n_1}+2^{n_2})$ bits
- MUL(c_1 , c_2) => noise of degree (n_1+n_2) bits

Only when the noise would be larger than p-bits then the evaluator must do the "refreshment" step.

SHE over the INTEGERS – PUBLIC KEY SCHEME

KeyGen: $pk = \langle x_0, ..., x_t \rangle$, where:

 $x_i = pq_i + r_i$, unless x_o is the largest, q_o is odd and r_o is even

Encrypt(pk, m \in {**0,1**}): c = (m+2r+2 $\sum_{i \in S}(x_i)$) mod x_o

Where S is a random subset of pk, and r is a random noise.

Decrypt(sk=p, c): m = (c mod p) mod 2

Encryption can now be viewed as: adding m to a random subset sum of "encryptions of zero"

Bootstrapping

Bootstrapping

- Assume SHE can evaluate circuits F up to the depth d.
- Assume F=D_{sk}(m) is the decryption algorithm, that can be evaluated by SHE at most depth (d-1). I.e., to decrypt plus "a little more".

Then SHE is called **bootstrappable** and can be converted to FHE.

SHE -> **FHE** over the Integers

FHE over the INTEGERS – Convert SHE to FHE

F=D_{sk}(m) becomes simple if we use the technique called "squashing the decryption circuit".

Idea: add to pk some information about sk so that $D_{sk}(m)$ becomes simpler and SWH becomes bootstrappable.

Price:

- public key contains more information
- ciphertext is larger

New Recent Research

Found different ways to construct FHE without using the squashing step

2011. Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3 arithmetic circuits.

2011. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE.

Way to Evaluate on packed cipb

2011. N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations.

BGV scheme to construct a FHE of a desired depth D, based on Ring LWE. I.e., no bootstrapping is needed.

2012. Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan. Fully homomorphic encryption without bootstrapping. 2012. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.

2013. **HELib.** IBM.

2013. CryptDB. MIT.

2013. Jacob Alperinheriff and Chris Peikert. Practical bootstrapping in Quasilinear Time.

Performance

2010. SHE Performance

1 000 000 000 000X

[...] A simple string search using homomorphic encryption is about a **trillion** times slower than without encryption.

Dimension	KeyGen	Enc (amort)	Mult/Dec	Degree
2048 (800,000 bit ints)	1.25 s.	.060 sec	.023 s.	~200
8192 (3,200,000 bit ints)	10 s.	.7 sec	.12 s.	~200
32768 (13,000,000 bit ints)	95 s.	5.3 sec	.6 s.	~200

2010. FHE Performance

Dimension	KeyGen	PK size	ReCrypt
2048	40 s.	70 Mbyte	31 sec
8192	8 min.	285 Mbyte	3 min
32768	2 hrs	2.3 Gb	30 min

Evaluation of AES

2012. Homomorphic Evaluation of the AES Circuit

Gentry-Halevi-Smart AES-128, 10 rounds 256GB of RAM, D=60.

Variant 1: 36 hours, 54 blocks
(SIMD technique to use more plaintext slots in each ciphertext, so that operations are done in parallel for free)
First round – 7 hours
Last round – 30 min

Amortized speed ~ 40 min/block

Variant 2: 2,5 days, 720 blocks Amortized speed ~ 5 min/block

HElib

2013. HElib. IBM.

Based on BGV scheme, based on ideal lattices, SIMD operations on packed ciphertext, quasi-linear bootstrapping, and many other improvement technique.

- Does not support bootstrapping (reencrypt) operation.
- GPL licensed

λ =80 bits of security

Modulus	Number of Slots	Time for ADD (ms)	Time for MUL (ms)
257	44	0.7	39
8209	22	0.7	38
65537	2	2.9	177

