省选 2023 模拟赛

2023.5

题目名称	括号序列	简单	中等	困难
题目类型	传统型	传统型	传统型	传统型
可执行文件名	bracket	easy	medium	hard
输入文件名	bracket.in	easy.in	medium.in	hard.in
输出文件名	bracket.out	easy.out	medium.out	hard.out
每个测试点时限	1.0 秒	1.0 秒	8.0 秒	3.0 秒
内存限制	512 MB	1024 MB	1024 MB	1024 MB
比对方式	全文比较	SPJ	全文比较	SPJ

提交源程序文件名

对于 C++ 语言	bracket.cpp	easy.cpp	medium.cpp	hard.cpp
\'\'\'\'\'\ \ \ \ \ \ \ \ \ \ \ \ \		J J F F		

编译选项

对于 C++ 语言	-lm -02 -std=c++17
-----------	--------------------

注意事项与提醒(请选手务必仔细阅读)

- 1. 出题人太菜了, 如果 AK 了请不要大声喧哗。
- 2. 出题人不会造数据,请自觉只拿自己该拿的分,谢谢。

1 括号序列 (bracket)

【题目描述】

定义一个合法括号序列为仅由(和)构成的字符串且:

- 空串 S 是一个合法括号序列。
- 如果 A 是一个合法序列,那么 (A) 也是合法括号序列。
- 如果 A, B 都是合法括号序列, 那么 AB 也是合法括号序列。

例如(())()是合法括号序列,而)())不是。

定义一个长度为 2n 的合法括号序列是优秀的,当且仅当其满足:对于从左到右的第i 个左括号,与其匹配的右括号和这个左括号之间的距离在 $[L_i, R_i]$ 之间。

给出 n 和 $L_{1\cdots n}$, $R_{1\cdots n}$, 请求出有多少长度为 2n 的优秀的合法括号序列。由于答案可能很大,你只需要回答其对 998244353 取模后的结果。

你可以通过阅读样例解释以更好地理解题意。

【输入格式】

从文件 bracket.in 中读入数据。

第一行一个正整数 n。

接下来 n 行, 第 i 行两个整数 L_i, R_i 。

【输出格式】

输出到文件 bracket.out 中。

一行一个整数表示答案。

【样例 1 输入】

3

1 5

1 1

1 5

【样例 1 输出】

3

DIV2模拟赛 括号序列(bracket)

【样例1解释】

三种优秀的合法括号序列分别为: (())(), (()()) 和 ()()()。

对于第一种优秀的合法括号序列,第一个左括号位于位置 1,与其匹配的右括号位于位置 4,距离 d=4-1=3,满足 $L_1=1\leq d\leq R_1=5$ 。

【样例 2、3】

见 $/ex_bracket2.in \cdot /ex_bracket3.in = /ex_bracket2.out \cdot /ex_bracket3.out$ 。

【测试点约束】

对于所有测试点, $1 \le n \le 700$, $1 \le L_i$, $R_i \le 2n - 1$ 。 每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊限制
$1 \sim 4$	5	
$5 \sim 8$	10	
$9 \sim 10$	700	$L_i = 1, R_i = 2n - 1$
$11 \sim 16$	50	
$17 \sim 20$	700	

省选 2023 模拟赛 简单 (easy)

2 简单

2.1 Statement

距离考试还有 t 天, 你决定开始复习。

有 n 个知识点,第 i 个知识点需要学习 a_i 天。但知识点之间有联系,只有学了足够多的知识点才能彻底理解一个知识点。因此第 i 个知识点需要一共学习至少 b_i 个知识点(包括自己)才能被彻底掌握。

求出你需要学习哪些知识点,才能最大化考试时彻底掌握的知识点个数。 形式化地,你需要选择子集 S ,使得 $\sum_{i \in S} a_i \leq t$,且最大化 $\sum_{i \in S} [|S| \geq b_i]$ 。

2.2 Input Format

多组数据。第一行一个正整数 T ,表示数据组数。每组数据的格式如下。第一行两个正整数 n,t 。

接下来 n 行, 每行两个正整数 a_i, b_i 。

2.3 Output Format

对每组数据输出两行。

第一行输出一个非负整数,表示最多能彻底掌握的知识点个数。

第二行首先是一个非负整数 k , 然后 k 个正整数 p_1, \cdots, p_k , 表示应该被学习的知识点。如有多种方案可以任意输出一种。

2.4 Sample 1 Input

```
2
4 100
20 1
40 4
60 3
30 3
1 5
10 1
```

2.5 Sample 1 Output

省选 2023 模拟赛 简单 (easy)

```
2
3 1 2 4
0
0
```

2.6 Constraints

本题采用子任务捆绑测试。

对于所有数据,保证 $\sum n \le 2 \times 10^5, 1 \le t \le 2 \times 10^{14}, 1 \le a_i \le 10^9, 1 \le b_i \le n$ 。

Subtask 1 (20 points) : $\sum n \le 20$. Subtask 2 (20 points) : $\sum n \le 300$.

Subtask 3 (20 points) : $\sum n \le 5000$.

Subtask 4 (40 points): 无特殊限制。

省选 2023 模拟赛 中等 (medium)

3 中等

3.1 Statement

有 n 个选手, 第 i 个选手初始有 a_i 分。

进来了m个评委,每个评委会选择恰好v个选手,给他们每人加一分。

操作结束后,把选手按照分数排序,选出分数最高的若干位选手作为优胜者。特别地,如果有分数相同的选手,你可以把他们任意排序。

求出有多少个非空选手集合 S ,使得存在一种加分和排序的方案,让优胜者集合恰好为 S 。模 $10^9+7=1\,000\,000\,007$ 。

3.2 Input Format

多组数据。第一行一个正整数 T ,表示数据组数。每组数据的格式如下。

第一行三个正整数 n, m, v 。

第二行 n 个非负整数 a_1, a_2, \dots, a_n 。

3.3 Output Format

对每组数据输出一行一个非负整数,表示答案。

3.4 Sample 1 Input

```
6
3 1 2
1 2 3
3 2 1
1 2 3
10 1 1
0 0 0 0 0 0 0 0 0 0 0
6 1 2
2 1 1 3 0 2
6 1 5
2 1 1 3 0 2
10 4 8
7 2 3 6 1 6 5 4 6 5
```

省选 2023 模拟赛 中等 (medium)

3.5 Sample 1 Output

```
5
6
1023
23
19
240
```

3.6 Constraints

本题采用子任务捆绑测试。

对于所有数据, 保证 $T \le 50, m, a_i, \sum n \le 200$ 。 TODO

Subtask 1 (20 points) : $T \leq 5, n \leq 16$.

Subtask 2 (30 points) : $m, a_i, \sum n \le 50$.

Subtask 3 (20 points) : $m, a_i, \sum n \leq 100$.

Subtask 5 (30 points): 无特殊限制。

请注意常数因子对算法效率的影响。

4 困难

4.1 Statement

给定一个简单连通图 G = (V, E)。

称一个点集 S 合法, 当且仅当对任意 $x \notin S$, 存在 $y \in S$ 使得 $(x,y) \in E$ 。

称一个点 x 是叶子,当且仅当 x 在图中只有唯一一个相邻点。保证每个非叶子节点至多与两个叶子相邻。

你需要找到一个点集 S ,使得 $|S| = \lfloor n/2 \rfloor$,且 S 和 $V \setminus S$ 都合法。可以证明,在题目条件下必定存在一个合法点集。

4.2 Input Format

多组数据。第一行一个正整数 T ,表示数据组数。每组数据的格式如下。第一行两个正整数 n, m ,表示图的点数和边数。接下来 m 行,每行两个正整数 u_i, v_i ,表示图中的一条边。

4.3 Output Format

对每组数据输出一行, |n/2| 个不同的正整数, 表示你找到的点集。

4.4 Sample 1 Input

```
2
6 7
1 2
1 3
2 3
3 4
4 5
4 6
5 6
3 2
1 2
2 3
```

4.5 Sample 1 Output

2 3 6

2

4.6 Sample 2

见下发文件。

4.7 Constraints

本题采用子任务捆绑测试。

对于所有数据,保证 $1 \leq \sum n \leq 2 \times 10^5, 1 \leq \sum m \leq 5 \times 10^5$ 。

Subtask 1 (30 points) : $\sum n \le 20$.

Subtask 2 (20 points) : $m = n - 1, \sum n \le 3000$.

Subtask 3 (30 points) : $\sum n, \leq 3000, \sum m \leq 7000$.

Subtask 4 (20 points): 无特殊限制。

希望大家素质高一点,别写调整。