1. If $K \subseteq G$ and G/K are solvable, then G is solvable. **Problem 1** (6.1). 2. Prove that S_n is not solvable for $n \geq 5$. Proof. **Problem 2** (6.2). A finite group G is solvable if, and only if, every composition factor of a composition series of G is cyclic of prime order. Proof. 1. Let G be a group and $\phi: M(X) \to G$ a monoid homomorphism which **Problem 3** (6.3). satisfies $\phi(s^{-1}) = \phi(s)^{-1}$ for all $s \in S$ then for any $w \in M(X)$, $\phi(w) = \phi(r(w))$ 2. Let S be a set, R a subset of F(S), G a group, $\phi: S \to G$ a function and $\widetilde{\phi}: F(S) \to G$ the induced group homomorphism. If $\widetilde{\phi}(r) = e$ for all $r \in R$, then there exists a homomorphism $\overline{\phi}$ from $\langle S|R\rangle$ to G such that $\overline{\phi}\circ\pi\circ i=\phi$ where $i:S\to F(S)$ is the inclusion map, $\pi: F(S) \to \langle S|R \rangle$ is the natural surjection, and $\widetilde{\phi}: F(S) \to G$ is the homomorphism satisfying $\widetilde{\phi} \circ i = \phi$. Proof. **Problem 4** (6.5.1). Using the Todd-Coxeter algorithm to determine and identify the group $G = \langle x, y | x^2 = 1, y^2 = 1, xyx = yxy \rangle$ Proof. 1. Prove that R^X is a group under the multiplication of R. **Problem 5** (7.2). 2. Prove that $Z(R) \cap R^X = \emptyset$. Proof. 1. Find the set of all zero divisors of the commutative ring C([0,1]) defined **Problem 6** (7.3).

2. Let $D \in \mathcal{Q}$ such that the equation $x^2 = D$ has no solution $x \in \mathcal{Q}$. Prove that the set

in example 7.3. Determine the $C([0,1])^X$.

$$Q(\sqrt{D}) = \{a + b\sqrt{D} | a, b \in Q\}$$

forms a field under the ordinary addition and multiplication of complex numbers.

3. Prove \mathbb{Z}_n is an integral domain if, and only if, n is prime. Proof.	
Problem 7 (7.4). 1. Prove that the set	
$\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} a, b \in \mathbb{Z}\}$	
is a subring of $\mathcal{Q}(\sqrt{D})$ and $\mathbb{Z}[\sqrt{D}]$ is an integral domain.	
2. Define the norm function $N: \mathcal{Q}(\sqrt{D}) \to \mathcal{Q}$ by	
$N(a+b\sqrt{D}) = a^2 - Db^2$	
Prove that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in \mathcal{Q}(\sqrt{D})$.	
3. Show that for any $\alpha \in \mathbb{Z}[\sqrt{D}]$, α is a unit of $\mathbb{Z}[\sqrt{D}]$ if, and only if, $N(\alpha) = \pm 1$.	
Proof.	
Problem 8 (7.5). Let R be a ring. For any $a, b \in R$, if $1 - ab$ is a unit, then so is $1 - ba$.	
Proof.	
Problem 9. Compute the commutator subgroup of S_4 .	
Proof.	