IN THE CLAIMS:

A complete listing of the claims and their status is as follows:

CLAIM 1. (Canceled)

CLAIM 2. (Canceled)

CLAIM 3. (Canceled)

CLAIM 4. (Canceled)

CLAIM 5. (Canceled)

CLAIM 6. (Canceled)

CLAIM 7. (Canceled)

CLAIM 8. (Canceled)

CLAIM 9. (Canceled)

CLAIM 10. (Canceled)

CLAIM 11. (Canceled)

Claim 12. (Currently amended) A multilateral reference point orientation device as claimed in claim 29 wherein said orientation profile has an orientation opening therein.

Claim 13. (Currently amended) A multilateral reference point orientation device as claimed in claim 29 wherein said opening is a slot.

- Claim 14. (Currently amended) A multilateral reference point orientation device as claimed in claim 29 wherein a surface of said orientation profile is positioned proximate the wellbore casing.
- Claim 15. (Currently amended) A multilateral reference point orientation device as claimed in claim 29 wherein said orientation slot extends along a wall of said tubular member from said orientation profile and is configured to receive a pin on a separate tool and to orient said separate tool.
- Claim 16. (Currently amended) A multilateral reference-point orientation device as claimed in claim 29 wherein said tubular member is anchorable within said wellbore.
- Claim 17. (Currently amended) The multilateral reference point orientation device sleeve of claim 16 wherein said downhole end of said tubular member is radially expandable to engage an inner surface of said casing.
- Claim 18. (Currently amended) The multilateral reference point orientation device sleeve of claim 17 wherein said downhole end of said tubular member has a lesser thickness than said uphole end of said tubular member.
- Claim 19. (Currently amended) A method for orienting a tool in a wellbore, comprising: running a multilateral reference point <u>orientation device</u> sleeve as defined in claim 29 into a tubing string in said wellbore;

anchoring said multilateral reference point sleeve to an inner surface of said casing; running said tool into said casing;

- causing a pin on said tool to engage an orientation profile on said multilateral reference point sleeve.
- Claim 20. (Previously presented) A method for orienting a tool in wellbore as claimed in claim 49 26 further including causing said pin on said tool to engage an orientation opening on said orientation profile.

- Claim 21. (Previously presented) A method for orienting a tool in wellbore as claimed in claim 19 26 wherein said opening is a slot.
- Claim 22. (Previously presented) The method of claim 49 26 wherein said causing of said pin on said tool to engage said orientation profile rotates said tool into a desired orientation.
- Claim 23. (Previously presented) The method of claim 22 wherein said causing of said pin on said tool to engage said orientation slot causes said tool to be retained in position.
- Claim 24. (Canceled)
- Claim 25. (Currently amended) A multilateral reference point sleeve, comprising:

 a tubular member at least a portion of which is circumferentially closed, said member having a wall thickness selected to minimize restriction of a borehole in which said sleeve is installable, said member configured to be received in a casing of a wellbore, said tubular member having an uphole end and a downhole end, said uphole end defining an orientation profile configured to cause a pin on a separate tool to ride along said orientation profile causing said separate tool to orientate.
- Claim 26. (Currently amended) A method for orienting a tool in a wellbore, comprising:

 running a multilateral reference point sleeve orientation device comprising a

 circumferentially closed single piece sleeve, said sleeve having a material thickness insufficient
 to divert another tool and sufficient to orient a tool, the sleeve further including at least a portion
 thereof configured to expand radially into interference contact with said wellbore as defined in
 elaim-29-into a tubing string in-said wellbore;

expanding said multilateral reference point sleeve orientation device to achieve an interference fit with an inner surface of said easing string to permanently anchor said multilateral reference point orientation device in said wellbore;

running said tool into said wellbore;

causing a pin on said tool to engage an orientation profile on said multilateral reference point orientation device sleeve such that said tool is oriented by an interaction between said pin

BOT 284-20947-US Cantor Colburn LLP BAO 0021 and said orientation profile.

- Claim 27. (Previously presented) A method for orienting a tool in wellbore as claimed in claim 19 wherein said opening is an orientation slot.
- Claim 28. (Previously presented) The method of claim 22 wherein said causing of said pin on said tool to engage said orientation slot causes said tool to be retained in an orientated position.
- Claim 29. (Currently amended) A multilateral reference point orientation device comprising:

a non-diverter tubular sleeve composed of a single piece of material at least a portion of which is circumferentially closed, said sleeve having a wall thickness selected to minimize restriction of a borchole in which the sleeve is installable, said thickness being insufficient to divert a tool and sufficient to orient a tool; and

an expandable section of the sleeve, said section being radially expandable to assume a larger circumferential dimension such that an interference fit with a wellbore in which the device is to be deployed is achievable; and

an orientation profile disposed at an axial end of said sleeve.