ACM ICN 2020

Multi-Worker NFD : an NFD-compatible High Speed NDN Forwarder

<u>Sung Hyuk Byun</u>, Jongseok Lee, Dong Myung Sul and Namseok Ko ETRI, Korea

Motivation

- ▶ NDN Forwarding Daemon (NFD)
 - is a default NDN forwarder
 - is designed for modularity and feature extensibility
 - but has low forwarding performance
- Main bottleneck of NFD performance
 - ▶ Single-Thread Forwarding Architecture

Multi-Worker NFD (MW-NFD)

Design Goals

- High-speed NDN Forwarding
- ▶ Full compatibility with NFD and existing NDN applications
- ▶ Keep NFD's Forwarding Plane Architecture for easy porting of any new NFD features

Design Principles

- Support multiple forwarding threads running on different cores
- ▶ Keep NFD's forwarding plane in forwarding threads
- Support all the management features of NFD with same API
- Based on NFD v0.7.0

MW-NFD Architecture

Input Threads

- Allocate one input thread to each input port
- Receive packets from faces associated to the port
 - register associated faces to the thread's io_service
- Packet parsing and distribution to workers based on
 - Interest *
 - hash of name prefix of pre-configured length (default = 2)
 - Data/Nack without PIT token *
 - same to Interest.
 - Data/Nack with PIT token *
 - worker-id of matching Interest encoded in PIT token
 - First fragment Interest/Data/Nack
 - same to Interest/Data/Nack
 - store selected worker-id with its fragment_index
 - Subsequent fragments:
 - stored worker-id for its fragment_index

(*): adopted from NDN-DPDK

Management Thread

- Launches input and forwarding worker threads on configured cpu cores
- ▶ Receives and distributes packets from local application faces and internal face
- Processing all management commands (nfdc commands) by interacting with input and worker threads
 - under development

Forwarding Demo Configuration

- NDN Pktgen: based on DPDK pktgen 19.12
- ► FIB: IOK (avg prefix length = 4.26)
- ▶ Interest Stream: IOM with unique names (adding 2~4 words to FIB entries)
- Platform
 - MW-NFD: Xeon Gold 6242 (2.8GHz, 16 cores) with two 10GE ports NIC

Forwarding Throughput

- Interest + Data Forwarding Throughput
- ▶ 16.4 Gbps (for 10 workers, 8192 B Data)
- ▶ MW-NFD can yields about 13 times of NFD throughput

Forwarding Throughput (Kpps)

Forwarding Throughput (Gb/s)

Future Work

- Develop management features fully compatible with NFD
 - nfdc command processing
- Compatibility tests with existing NDN applications
- Enhancing some forwarding logic implementations
 - Packet receiving in input threads
 - some NFD forwarding logics (CS lookup/insert, etc)
- Source release after compatibility testing

