

4 exercices corrigés d'Electronique de puissance sur le hacheur

Exercice Hach01 : hacheur série

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur.

L'interrupteur électronique K et la diode sont supposés parfaits.

La période de hachage est T, le rapport cyclique α .

L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue.

Le hacheur est alimenté par une tension continue $E = 220 \text{ V}$.

La f.e.m. E' du moteur est liée à sa vitesse de rotation n par la relation :

$$E' = 0,20 n \quad \text{avec } E' \text{ en V et } n \text{ en tr/min}$$

L'induit a pour résistance $R = 2,0 \Omega$.

1- Etude de la tension u pour $\alpha = 0,80$.

1-1- Représenter, en la justifiant, l'allure de la tension u .

On prendra comme instant origine celui où l'interrupteur K se ferme.

1-2- Déterminer l'expression littérale de la valeur moyenne $\langle u \rangle$ de la tension u , en fonction de E et du rapport cyclique α .

Calculer sa valeur numérique.

2- Fonctionnement du moteur pour $\alpha = 0,80$.

Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est $\langle I \rangle = 10 \text{ A}$.

Déterminer E' et en déduire n .

3- Le dispositif de commande du hacheur est tel que le rapport cyclique α est proportionnel à une tension de commande u_C : $\alpha = 100\% \text{ pour } u_C = 5 \text{ V}$.

Tracer la caractéristique $\langle u \rangle$ en fonction de u_C .

Exercice Hach02 : hacheur série

Un moteur à courant continu travaillant à couple constant est inclus dans le montage ci-dessous :

Le hacheur fonctionne à une fréquence $f = 500 \text{ Hz}$.

L'interrupteur K est fermé lorsque $0 < t < \alpha T$ et ouvert entre αT et T .

La diode est supposée parfaite.

L'inductance de la bobine de lissage L est de valeur suffisante pour que le courant dans le moteur soit considéré comme constant : $i = I = \text{cte}$.

La résistance de l'induit du moteur est : $R = 1 \Omega$.

1- Représenter les allures de u et u_K en fonction du temps.

2- Exprimer la valeur moyenne de u en fonction de V et α .

3- Représenter les allures de i_K et i_D en fonction du temps.

4- Exprimer les valeurs moyennes des courants i_K et i_D en fonction de I et α .

5- Déterminer l'intensité I du courant dans le moteur en fonction de V , E , R et α .

6- Application numérique :

Calculer $\langle u \rangle$, I et $\langle i_D \rangle$ pour $V = 220 \text{ V}$, $E = 145 \text{ V}$ et $\alpha = 0,7$.

7- Établir la relation liant la vitesse n du moteur (en tr/min) à α pour $E = 0,153 n$, sachant que $R = 1 \Omega$, $V = 220 \text{ V}$ et $I = 9 \text{ A}$.

8- Tracer n en fonction de α .

Exercice Hach03 : hacheur parallèle

Les deux interrupteurs électroniques sont supposés parfaits.

- 1- On donne les séquences de conduction de K_1 et K_2 .
Compléter les chronogrammes :

- 2- Donner la relation entre $\langle u \rangle$, α et E .

Exercice Hach04 : module convertisseur DC/DC

Un convertisseur DC/DC possède les caractéristiques suivantes :

Puissance utile (max.) :	2 watts
Tension d'entrée (continue) :	4,5 à 9 V
Tension de sortie (continue) :	12 V
Rendement :	75 %

1- Calculer le courant de sortie maximal.

2- A puissance utile maximale, calculer la puissance thermique dissipée par le convertisseur.

3- On applique 5 V en entrée.

Calculer le courant d'entrée maximal.

Corrigés

Exercice Hach01 : hacheur série

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur.

L'interrupteur électronique K et la diode sont supposés parfaits.

La période de hachage est T, le rapport cyclique α .

L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue.

Le hacheur est alimenté par une tension continue $E = 220 \text{ V}$.

La f.e.m. E' du moteur est liée à sa vitesse de rotation n par la relation :

$$E' = 0,20 n \quad \text{avec } E' \text{ en V et } n \text{ en tr/min}$$

L'induit a pour résistance $R = 2,0 \Omega$.

1- Etude de la tension u pour $\alpha = 0,80$.

1-1- Représenter, en la justifiant, l'allure de la tension u .

On prendra comme instant origine celui où l'interrupteur K se ferme.

$$0 < t < \alpha T \quad \text{K fermé : } u = E$$

$$\alpha T < t < T \quad \text{K ouvert : phase de roue libre : D conduit et } u = 0 \text{ V}$$

1-2- Déterminer l'expression littérale de la valeur moyenne $\langle u \rangle$ de la tension u , en fonction de E et du rapport cyclique α .
 Calculer sa valeur numérique.

$$\langle u \rangle = \alpha E$$

$$A.N. 0,8 \times 220 = 176 \text{ V}$$

2- Fonctionnement du moteur pour $\alpha = 0,80$.

Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est $\langle I \rangle = 10 \text{ A}$.
 Déterminer E' et en déduire n .

$$E' = \langle u \rangle - R\langle I \rangle = 176 - 2,0 \times 10 = 156 \text{ V}$$

$$n = E' / 0,20 = 156 / 0,20 = 780 \text{ tr/min}$$

3- Le dispositif de commande du hacheur est tel que le rapport cyclique α est proportionnel à une tension de commande u_C : $\alpha = 100 \%$ pour $u_C = 5 \text{ V}$.

Tracer la caractéristique $\langle u \rangle$ en fonction de u_C .

$$\alpha = 0,2 u_C$$

$$\langle u \rangle = \alpha E = (0,2 \times 220)u_C$$

$$\langle u \rangle = 44 u_C$$

Exercice Hach02 : hacheur série

Un moteur à courant continu travaillant à couple constant est inclus dans le montage ci-dessous :

Le hacheur fonctionne à une fréquence $f = 500 \text{ Hz}$.

L'interrupteur K est fermé lorsque $0 < t < \alpha T$ et ouvert entre αT et T .

La diode est supposée parfaite.

L'inductance de la bobine de lissage L est de valeur suffisante pour que le courant dans le moteur soit considéré comme constant : $i = I = \text{cte}$.

La résistance de l'induit du moteur est : $R = 1 \Omega$.

1- Représenter les allures de u et u_K en fonction du temps.

2- Exprimer la valeur moyenne de u en fonction de V et α .

$$\langle u \rangle = \alpha V$$

3- Représenter les allures de i_K et i_D en fonction du temps.

4- Exprimer les valeurs moyennes des courants i_K et i_D en fonction de I et α .

$$\langle i_K \rangle = \alpha I$$

$$\langle i_D \rangle = (1 - \alpha)I$$

5- Déterminer l'intensité I du courant dans le moteur en fonction de V , E , R et α .

$$\langle u \rangle = E + RI = \alpha V$$

$$I = \frac{\alpha V - E}{R}$$

6- Application numérique :

Calculer $\langle u \rangle$, I et $\langle i_D \rangle$ pour $V = 220$ V, $E = 145$ V et $\alpha = 0,7$.

$$\langle u \rangle = 154$$
 V

$$I = 9$$
 A

$$\langle i_D \rangle = 2,7$$
 A

7- Établir la relation liant la vitesse n du moteur (en tr/min) à α pour $E = 0,153$ n, sachant que $R = 1$ Ω, $V = 220$ V et $I = 9$ A.

$$I = \frac{\alpha V - 0,153n}{R}$$

$$n = \frac{\alpha V - RI}{0,153}$$

$I = 9$ A = constante car le moteur travaille à couple constant.

D'où :

$$n = 1438\alpha - 59$$

8- Tracer n en fonction de α .

Exercice Hach03 : hacheur parallèle

Les deux interrupteurs électroniques sont supposés parfaits.

- On donne les séquences de conduction de K_1 et K_2 .
Compléter les chronogrammes :

- Donner la relation entre $\langle u \rangle$, α et E .

$$\langle u \rangle = (1 - \alpha)E$$

Remarque :

$$E = \langle u \rangle / (1 - \alpha)$$

Le hacheur parallèle est un élévateur de tension.

Exercice Hach04 : module convertisseur DC/DC

Un convertisseur DC/DC possède les caractéristiques suivantes :

Puissance utile (max.) :	2 watts
Tension d'entrée (continue) :	4,5 à 9 V
Tension de sortie (continue) :	12 V
Rendement :	75 %

1- Calculer le courant de sortie maximal.

$$2 / 12 = \mathbf{167 \text{ mA}}$$

2- A puissance utile maximale, calculer la puissance thermique dissipée par le convertisseur.

$$\begin{aligned} \text{Pu} / \text{Pa} &= 75 \% \\ \text{d'où : Pa} &= 2,67 \text{ W} \end{aligned}$$

$$\text{Pertes} = \text{Pa} - \text{Pu} = \mathbf{0,67 \text{ W}}$$

3- On applique 5 V en entrée.

Calculer le courant d'entrée maximal.

$$2,67 / 5 = \mathbf{533 \text{ mA}}$$