Solution:

(i) $\{a, b, c\}, \{1, 2, 3\}$

Given sets are equivalent.

(ii) The set of the first 10 whole members, $\{0, 1, 2, 3, \dots, 9\}$

The given sets are equivalent and also equal.

- (iii) Set of angles of a quadrilateral ABCD set of the sides of the same quadrilateral The given sets are equivalent.
- (iv) Set of the sides of a hexagon ABCDEF, Set of the angles of the same hexagon The given sets are equivalent.
- $(v) \qquad \{1,2,3,4,\ldots\ldots\},\ \{2,4,6,8,\ldots\ldots\}$

The given sets are equivalent.

(vi) $\{1, 2, 3, 4, \ldots\}, \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$

The given sets are equivalent.

(vii) {5, 10, 15, 20, 55555}, {5, 10, 15, 20,}

The given sets are not equivalent.

VENN DIAGRAMS

Venn diagrams are used to describe a relation among the sets. In these diagrams, a rectangular region represents the universal set and circular closed curves represent the subsets.

EXERCISE 2.2

- Q.1 Exhibit $A \cup B$ and $A \cap B$ by Venn diagrams in the following cases.
- (i) $A \subseteq B$ (ii) $B \subseteq A$ (iii) $A \cup A'$
- (iv) A and B are disjoint sets.
- (v) A and B are overlapping sets.

Solution:

(i) $A \subseteq B$

AUB

A\cap B

 $(ii) \qquad B\subseteq A$

(iii) AUA'

(iv) A and B are disjoints

(v) A and B are overlapping sets.

Q.2 Show A - B and B - A by Venn Diagram when

- (i) A and B are overlapping sets
- (ii) $A \subseteq B$ (iii) $B \subseteq A$

Solution:

(i) A and B are overlapping sets

B - A

(ii) $A \subseteq B \\$

A - B

B - A

(iii) $B \subseteq A$

B - A

Q.3 Under what conditions on A and B are the following statements true?

- $A \cup B = A$ (i)
- (ii) $A \cup B = B$ (iii) $A \phi = \phi$
- (iv)
- $A \cap B = B$ (v) $n(A \cup B) = n(A) + n(B)$
- (vi)
- $n(A \cup B) = n(A)$ (vii) A B = A
- (viii) $n(A \cap B) = 0$
- (ix) $A \cup B = U$
- $A \cup B = B \cup A$ (**x**)
- (xi) $n(A \cap B) = n(B)$
- $\mathbf{U} \mathbf{A} = \mathbf{\phi}$ (xii)

Solution:

- (i) $A \cup B = A$ if $B \subseteq A$
- $A \cup B = B$ (ii) if $A \subseteq B$

- (iii) A B = Aif $A \cap B = \phi$
- (iv) $A \cap B = B$ if $B \subseteq A$
- (v) $n(A \cup B) = n(A) + n(B)$ if $A \cap B = \phi$
- (vi) $n(A \cap B) = n(A)$ if $A \subset B$
- (vii) A B = Aif $A \cap B = \phi$ or $B = \phi$
- (viii) $n(A \cap B) = 0$ if $A \cap B = \phi$
- (ix) $A \cup B = U$ if $A = B^C$
- $(x) A \cup B = B \cup A$ it holds always.
- (xi) $n(A \cap B) = n(B)$ if $B \subseteq A$
- (xii) $U A = \phi$ if A = U
- Q.4 Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{2, 4, 6, 8, 10\}$, $B = \{1, 2, 3, 4, 5\}$ and $C = \{1, 3, 5, 7, 9\}$ List the members of the following sets
 - (i) A^{C} (ii) B^{C} (iii) $A \cup B$ (iv) A B(v) $A \cap C$ (vi) $A^{C} \cup C^{C}$ (vii) $A^{C} \cup C$ (viii) U^{C}

Solution:

(i) A^{C} $A^{C} = U - A$ $= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{2, 4, 6, 8, 10\}$ $= \{1, 3, 5, 7, 9\}$

(ii)
$$B^{C}$$

 $B^{C} = U - B$
 $= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{1, 2, 3, 4, 5\}$
 $= \{6, 7, 8, 9, 10\}$

- (iii) $A \cup B$ $A \cup B = \{2, 4, 6, 8, 10\} \cup \{1, 2, 3, 4, 5\}$ $= \{1, 2, 3, 4, 5, 6, 8, 10\}$
- (iv) A B $A - B = \{2, 4, 6, 8, 10\} - \{1, 2, 3, 4, 5\}$ $= \{6, 8, 10\}$
- (v) $A \cap C$ $A \cap C = \{2, 4, 6, 8, 10\} \cap \{1, 3, 5, 7, 9\}$ $= \{\}$

- (viii) U^{C} $U^{C} = U U$ $= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $= \{\}$

(ii)
$$(A-B)^{C} \cap B = B$$

As the shaded portion in above two figures is same $\Rightarrow (A - B)^{C} \cap B = B$

PROPERTIES OF UNION AND INTERSECTION

- (i) $A \cup B = B \cup A$ Commutative property of union
- (ii) $A \cap B = B \cap A$ Commutative property of intersection
- (iii) $A \cup (B \cup C) = (A \cup B) \cup C$ Associative property of union
- (iv) $A \cap (B \cap C) = (A \cap B) \cap C$ Associative property of intersection
- (v) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributivity of union over intersection
- (vi) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributivity of intersection over union
- (vii) $(A \cup B)' = A' \cap B'$

De Morgan's Laws

(viii) $(A \cap B)' = A' \cup B'$

PROOFS OF DE MORGAN'S LAWS AND DISTRIBUTIVE LAWS

- (i) $(A \cup B)' = A' \cap B'$ Let $x \in (A \cup B)'$
- \Rightarrow $x \notin A \cup B$
- \Rightarrow $x \notin A$ and $x \notin B$
- \Rightarrow $x \in A'$ and $x \in B'$
- \Rightarrow $x \in A' \cap B'$
- $\Rightarrow (A \cup B)' \subseteq A' \cap B' \qquad \dots \dots \dots (1)$

Now suppose that

$$x \in A' \cap B'$$

- \Rightarrow $x \in A'$ and $x \in B'$
- \Rightarrow $x \notin A$ and $x \notin B$
- \Rightarrow $x \notin A \cup B$
- \Rightarrow $x \in (A \cup B)'$
- $\Rightarrow A' \cap B' \subseteq (A \cup B)' \qquad \dots \dots \dots \dots (2)$

From (1) and (2), we conclude that $(A \cup B)' = A' \cap B'$

40

(ii)
$$(A \cap B)' = A' \cup B'$$

Let $x \in (A \cap B)'$

- \Rightarrow $x \notin A \cap B$
- \Rightarrow $x \notin A$ and $x \notin B$
- \Rightarrow $x \in A'$ and $x \in B'$
- \Rightarrow $x \in A' \cup B'$
- $\Rightarrow (A \cap B)' \subseteq A' \cap B' \qquad \dots (1)$ Now suppose that

$$x \in A' \cup B'$$

- \Rightarrow $x \in A'$ or $x \in B'$
- \Rightarrow $x \notin A$ or $x \notin B$
- \Rightarrow $x \notin A \cap B$
- \Rightarrow $x \in (A \cap B)'$
- \Rightarrow $A' \cup B' \subseteq (A \cap B)'$ (2)

From (1) and (2), it is verified that $(A \cap B)' = A' \cup B'$

- (iii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Let $x \in A \cup (B \cap C)$
- \Rightarrow $x \in A$ or $x \in B \cap C$
- $\Rightarrow \qquad \text{if } x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ and if $x \in B \cap C$
- \Rightarrow $x \in B$ and $x \in C$
- \Rightarrow $x \in A \cup B$ and $x \in A \cup C$
- \Rightarrow $x \in (A \cup B) \cap (A \cup C)$

Now suppose that

$$x \in (A \cup B) \cap (A \cup C)$$

 \Rightarrow $x \in A \cup B$ and $x \in A \cup C$

Now there are two cases either $x \in A$ or $x \notin A$

if $x \in A$ then $x \in A \cup (B \cap C)$

if $x \notin A$ then $x \in B$ and $x \in C$

$$\Rightarrow$$
 $x \in B \cap C$

$$\Rightarrow$$
 $x \in A \cup (B \cap C)$

$$\Rightarrow \qquad \text{In both cases } x \in A \cup (B \cap C) \qquad \qquad \dots \dots \dots (2)$$

From (1) and (2)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Hence proved.

(iv)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Let $x \in A \cap (B \cup C)$

$$\Rightarrow$$
 $x \in A$ and $x \in B \cup C$

$$\Rightarrow$$
 if $x \in A$ and $x \in B$

$$\Rightarrow \qquad x \in A \cap B \implies x \in (A \cap B) \cup (A \cap C)$$
If $x \in A$ and $x \in C$

$$\Rightarrow \qquad x \in A \cap C \, \Rightarrow \, x \in (A \cap B) \cup (A \cap C)$$

$$\Rightarrow A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
Now suppose that
$$x \in (A \cap B) \cup (A \cap C)$$

$$\Rightarrow \qquad x \in A \cap B \quad \text{or} \quad x \in A \cap C$$

There are two cases.

Case I if
$$x \in A \cap B$$

$$\Rightarrow$$
 $x \in A$ and $x \in B$

$$\Rightarrow$$
 $x \in A$ and $x \in B \cup C$

$$\Rightarrow x \in A \cap (B \cup C)$$

Case II if
$$x \in A \cap C$$

$$\Rightarrow$$
 $x \in A$ and $x \in C$

$$\Rightarrow$$
 $x \in A$ and $x \in B \cup C$

$$\Rightarrow$$
 x \in A \cap (B \cup C)

 \Rightarrow In both cases

$$x \in A \cap (B \cup C)$$

From (1) and (2) we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Hence proved.