União Pioneira de Integração Social – UPIS Sistema de Informação

Matheus Reis de Souza Teixeirense Matheus Sena Vasconcelos

Projeto Final de Lógica Álgebra booleana, Circuitos lógicos e Mapa de Karnaugh

> Brasília - DF 6 de junho de 2018

Sumário

1. Introdução:

- a. Objetivo geral do projeto.
- **b.** Projeto.
- c. Definicão das variáveis.
 - Entradas.
 - Saídas
 - Variáveis booleanas.

2. Tabela verdade:

- a. Tabela verdade.
- **b.** Tabela verdade geral do projeto.
- c. Tabela verdade para função S (subir).
- d. Tabela verdade para função D (descer).

3. Função original:

- a. Soma de mintermos.
- **b.** Função original S através da soma de mintermos.
- c. Função original D através da soma de mintermos.
- d. Produto de maxtermos.
- e. Função original S através do produto de maxtermos.
- f. Função original D através do produto de maxtermos.

4. Representação da função original em Circuitos Lógicos:

- **a.** Circuitos lógicos.
- **b.** Circuito lógico da função S.
 - **b1.** Soma de mintermos.
 - **b2.** Produto de maxtermos.
- c. Circuito lógico da função D.
 - c1. Soma de mintermos.
 - c2. Produto de maxtermos.

5. Mapa de Karnaugh com argumentos:

- a. Mapa de Karnaugh.
- **b.** Mapa de Karnaugh da função S.
- c. Mapa de Karnaugh da função D.

6. Simplificação da função:

- a. Função simplificada.
- **b.** Função S simplificada.
- c. Função D simplificada.

- 7. Representação da função simplificada em Circuitos Lógicos:
 - a. Circuito lógico da função S.
 - **b.** Circuito lógico da função D.
- 8. Implementação do circuito lógico no simulador digital.
- 9. Conclusões do grupo sobre o projeto.

1. Introdução

- **a. Objetivo geral do projeto:** Demonstrar, utilizando os conceitos básicos da lógica, aplicação da tabela verdade e álgebra booleana, o funcionamento de um sistema de elevadores.
- **b. Projeto:** Este projeto envolve o controle de um elevador em um prédio com 2 pavimentos, onde cada andar tem apenas 1 botão de chamada do elevador. Naturalmente que cada andar tem, também, um sensor para indicar a posição corrente do elevador. Ainda, dentro do elevador, existem 2 botões indicando, cada um deles, o andar de destino do elevado. Projete o circuito de controle do motor do elevador. Seu circuito deve ligar/desligar o motor controlando seu sentido de giro (subir e descer).

C. Definição das variáveis:

Entradas

A1 (P): Sensor de presença do elevador no andar 1;

A2 (Q): Sensor de presença do elevador no andar 2;

B1 (A): Botão no andar 1 para acionar o elevador para este andar:

B2 (B): Botão no andar 2 para acionar o elevador para este andar:

C1 (X): Botão dentro do elevador para conduzi-lo até o andar 1:

C2 (Y): Botão dentro do elevador para conduzi-lo até o andar 2:

Saídas

S: Função para subir o elevador;

D: Função para descer o elevador;

Variáveis booleanas

0: Desligado; não acionado;

1: Ligado; acionado;

x: Don't care;

2. Tabela verdade

a. Tabela verdade: Tabela verdade apresenta todas as possíveis combinações de preposição composta, visto que seu valor lógico já é conhecido, ou seja, podem assumir "verdadeiro" ou "falso". Através dela, é possível determinar o resultado final dessa preposição para cada combinação.

b. Tabela verdade geral do projeto:

P	Q	A	В	X	Y	S	D
A	A	В	В	С	C	SUB	DESC
1	2	1	2	1	2	IR	ER
0	0	0	0	0	0	X	Х
0	0	0	0	0	1	Х	Х
0	0	0	0	1	0	Х	Х
0	0	0	0	1	1	Х	X
0	0	0	1	0	0	Х	X
0	0	0	1	0	1	Х	X
0	0	0	1	1	0	Х	X
0	0	0	1	1	1	Х	X
0	0	1	0	0	0	X	X
0	0	1	0	0	1	Χ	X
0	0	1	0	1	0	X	X
0	0	1	0	1	1	Х	X
0	0	1	1	0	0	Х	Х
0	0	1	1	0	1	Х	Х
0	0	1	1	1	0	Х	Х
0	0	1	1	1	1	Х	Х
0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0
0	1	0	0	1	0	0	1
0	1	0	0	1	1	0	1
0	1	0	1	0	0	0	0
0	1	0	1	0	1	0	0
0	1	0	1	1	0	0	1
0	1	0	1	1	1	0	1
0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1
0	1	1	0	1	0	0	1
0	1	1	0	1	1	0	1
0	1	1	1	0	0	0	1
0	1	1	1	0	1	0	1
0	1	1	1	1	0	0	1

0	1	1	1	1	1	0	1
1	0	0	0	0	0	0	0
1	0	0	0	0	1	1	0
1	0	0	0	1	0	0	0
1	0	0	0	1	1	1	0
1	0	0	1	0	0	1	0
1	0	0	1	0	1	1	0
1	0	0	1	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	0	0	0	0
1	0	1	0	0	1	1	0
1	0	1	0	1	0	0	0
1	0	1	0	1	1	1	0
1	0	1	1	0	0	1	0
1	0	1	1	0	1	1	0
1	0	1	1	1	0	1	0
1	0	1	1	1	1	1	0
1	1	0	0	0	0	Χ	Х
1	1	0	0	0	1	Χ	Х
1	1	0	0	1	0	Χ	Х
1	1	0	0	1	1	Χ	Х
1	1	0	1	0	0	Χ	Х
1	1	0	1	0	1	Χ	Х
1	1	0	1	1	0	Χ	Х
1	1	0	1	1	1	Х	Х
1	1	1	0	0	0	Х	Х
1	1	1	0	0	1	Х	Х
1	1	1	0	1	0	Х	Х
1	1	1	0	1	1	Х	Х
1	1	1	1	0	0	Х	Х
1	1	1	1	0	1	Х	Х
1	1	1	1	1	0	Χ	Х
1	1	1	1	1	1	Χ	Х

c. Tabela verdade para função S (subir):

P	Q	A	В	X	Y	S
A1	A2	B1	B2	C1	C2	SUBIR
1	0	0	0	0	1	1
1	0	0	0	1	1	1
1	0	0	1	0	0	1
1	0	0	1	0	1	1
1	0	0	1	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	1	1
1	0	1	0	1	1	1
1	0	1	1	0	0	1
1	0	1	1	0	1	1
1	0	1	1	1	0	1
1	0	1	1	1	1	1

d. Tabela verdade para função D (descer):

P	Q	A	В	X	Y	D
S1	S2	A1	A2	E1	E2	DESCE R
0	1	0	0	1	0	1
0	1	0	0	1	1	1
0	1	0	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	0	1
0	1	1	0	0	1	1
0	1	1	0	1	0	1
0	1	1	0	1	1	1
0	1	1	1	0	0	1
0	1	1	1	0	1	1
0	1	1	1	1	0	1
0	1	1	1	1	1	1

3. Função original

a. Soma de mintermos: Com a tabela verdade, é possível extrair as funções originais através da soma de mintermos para cada "1" nas colunas das saídas, por meio da soma de produto das entradas.

b. Função original S através da soma de mintermos:

```
S = b:bbb1 c, b:bbb1 c, b:bbb1 c, b:bbb1 c, b:bbb1 c,
b:bbb1 c, b:bbb1 c, b:bbb1 c, b:bbb1 c,
b:bbb1 c, b:bbb1 c
```

C. Função original D através da soma de mintermos:

d. Produto de maxtermos: Com a tabela verdade, também é possível extrair as funções originais através do produto de maxtermos para cada "0" nas colunas das saídas, por meio do produto da soma das entradas.

e. Função original S através do produto de maxtermos:

```
S = )\dot{b} \cdot , \  \  \dot{b} \cdot , \  \
```

f. Função original D através do produto de maxtermos:

```
 D = )\dot{b} \cdot , \  \  \dot{b} \cdot , \  \ \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \  \dot{b} \cdot , \  \
```

Ѓ*)Ь·, :Ь, Ь, Ь, Т, Ѓ*)Ь·, :Ь, Ь, Ь, Б, Т, Ѓ*)Ь·, :Ь, Ь, Ь, Т, Ѓ*)Ь·, :Ь, Ь, Б, Т, Ѓ*

4. Representação da função original em Circuitos Lógicos

a. Circuitos lógicos: Representação das funções booleanas em circuitos, por meio da utilização de portas lógicas (NOR, AND, OR), onde o resultado final (saída) dependerá, exclusivamente, dos valores lógicos das entradas.

b. Circuito lógico da função S:b1. Soma de mintermos:

b2. Produto de maxtermos:

c. Circuito lógico da função D:

c1. Soma de mintermos:

c2. Produto de maxtermos:

5. Mapa de Karnaugh com argumentos

a. Mapa de Karnaugh: método criado por Edward Veitch e aperfeiçoado pelo engenheiro de telecomunicações Maurice Karnaugh. Tem como finalidade simplificar as equações booleanas de forma mais efetiva.

b. Mapa de Karnaugh da função S:

S	PQA							
BXY	000	001	011	010	110	111	101	100
000	X	X			X	X		
001	X	X			X	X	1	1
011	X	X			Х	X	1	1
010	X	X			X	X		
110	X	X			X	X	1	1
111	X	X			Х	X	1	1
101	X	X			X	X	1	1
100	Х	X			Х	Х	1	1

c. Mapa de Karnaugh da função D:

D	PQA	5						
BXY	000	001	011	010	110	111	101	100
000	X	X	1		X	X		
001	X	X	1		X	X		
011	X	X	1	1	X	X		
010	X	Χ	1	1	X	Х		
110	X	X	1	1	X	Х		
111	X	X	1	1	Х	X		
101	X	X	1		X	X		
100	Х	X	1		Χ	Х		

6. Simplificação da função

a. Função simplificada: Utilizada para economizar componentes/portas lógicas. Torna o circuito mais rápido, mais simples de fabricar, além de diminuir o tamanho da equação e dos circuitos lógico e eletrônico.

b. Função S simplificada:

$$S = b \cdot b$$
, $b \cdot \mathring{\Gamma}$

c. Função D simplificada:

7. Representação da função simplificada em Circuitos Lógicos

a. Circuito lógico da função S:

b. Circuito lógico da função D:

8. Implementação do circuito lógico no simulador digital

9. Conclusões do grupo sobre o projeto

Ao finalizar o projeto, percebe-se que com a utilização dos conceitos básicos da lógica é possível montar um sistema de funcionamento de um elevador, neste caso, somente de dois andares. Incialmente, com a aplicação da tabela verdade, podese mostrar todas as combinações possíveis entre os sensores e os botões do elevador (entradas) com a finalidade de visualizar quando o sistema irá subir ou descer (saídas) e extrair a função original.

Através da função original, juntamente com os conceitos da álgebra booleana e mapa de Karnaugh, é possível simplificar as funções e os circuitos com a finalidade de utilizar o menor número de portas lógicas no protoboard, como demostrado no **item 8**.

Nota-se que, com a aplicação desses conceitos lógicos, foi possível evoluir o sistema de elevadores, visto que antigamente eram utilizadas força humana ou tração animal para a realização desse trabalho.