FINM3133 Time Series for Finance and Macroeconomics

Chapter 9 Exercises

- 1. For an AR(1) model with $Y_t = 12.2, \phi = -0.5$, and $\mu = 10.8$,
 - (a) Find $\hat{Y}_t(1)$.
 - (b) Calculate $\hat{Y}_t(2)$ in two different ways.
 - (c) Calculate $\hat{Y}_t(10)$.
- 2. Suppose that annual sales (in millions of dollars) of the Acme Corporation follow the AR(2) model $Y_t = 5 + 1.1Y_{t-1} 0.5Y_{t-2} + e_t$ with $\sigma_e^2 = 2$.
 - (a) If sales for 2005, 2006, and 2007 were \$9 million, \$11 million, and \$10 million, respectively, forecast sales for 2008 and 2009.
 - (b) Show that $\psi_1 = 1.1$ for this model.
 - (c) Calculate 95% prediction limits for your forecast in part (a) for 2008.
- 3. Simulate an ARMA(1,1) process with $\phi = 0.7, \theta = -0.5$, and $\mu = 100$. Simulate 50 values but set aside the last 10 values to compare forecasts with actual values.
 - (a) Using the first 40 values of the series, find the values for the maximum likelihood estimates of ϕ , θ , and μ .
 - (b) Using the estimated model, forecast the next ten values of the series. Plot the series together with the ten forecasts. Place a horizontal line at the estimate of the process mean.
 - (c) Compare the ten forecasts with the actual values that you set aside.
 - (d) Plot the forecasts together with 95% forecast limits. Do the actual values fall within the forecast limits?
 - (e) Repeat parts (a) through (d) with a new simulated series using the same values of the parameters and same sample size.
- 4. Simulate an IMA(1,1) process with $\theta = 0.8$ and $\theta_0 = 0$. Simulate 35 values, but set aside the last five values to compare forecasts with actual values.
 - (a) Using the first 30 values of the series, find the values for the maximum likelihood estimate of θ .

- (b) Using the estimated model, forecast the next five values of the series. Plot the series together with the five forecasts. What is special about the forecasts?
- (c) Compare the five forecasts with the actual values that you set aside.
- (d) Plot the forecasts together with 95% forecast limits. Do the actual values fall within the forecast limits?
- (e) Repeat parts (a) through (d) with a new simulated series using the same values of the parameters and same sample size.
- 5. Consider the model $Y_t = \beta_0 + \beta_1 t + X_t$, where $X_t = \phi X_{t-1} + e_t$. We assume that β_0, β_1 , and ϕ are known. Show that the minimum mean square error forecast l steps ahead can be written as $\hat{Y}_t(l) = \beta_0 + \beta_1(t+l) + \phi^l(Y_t \beta_0 \beta_1 t)$.
- 6. The data file named **deere3** contains 57 consecutive values from a complex machine tool process at Deere & Co. The values given are deviations from a target value in units of ten millionths of an inch. The process employs a control mechanism that resets some of the parameters of the machine tool depending on the magnitude of deviation from target of the last item produced.
 - (a) Using an AR(1) model for this series, forecast the next ten values.
 - (b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.
- 7. The time series in the data file **robot** gives the final position in the "x-direction" after an industrial robot has finished a planned set of exercises. The measurements are expressed as deviations from a target position. The robot is put through this planned set of exercises in the hope that its behavior is repeatable and thus predictable.
 - (a) Use an IMA(1,1) model to forecast five values ahead. Obtain 95% forecast limits also.
 - (b) Display the forecasts, forecast limits, and actual values in a graph and interpret the results.
 - (c) Now use an ARMA(1,1) model to forecast five values ahead and obtain 95% forecast limits. Compare these results with those obtained in part (a).