Silicate glass suitable for working with short wave solid body lasers - contains iron oxide and opt. vanadium and titanium oxide(s)

Patent number: DE4306004 Publication date: 1993-09-23

Inventor: HORST HANS-JUERGEN [DE]; STRAUBE BERIT [DE];

HUELSENBERG DAGMAR PROF DR DR [DE];

SCHMIDT KRISTINA [DE]

Applicant: HORST HANS JUERGEN [DE]

Classification:

- international: C03C3/091; C03C4/08

- european: C03C3/083; C03C3/087; C03C3/091; C03C4/08;

C03C23/00B8

Application number: DE19934306004 19930226

Priority number(s): DE19934306004 19930226; DE19924208856 19920319

Abstract of DE4306004

Technically homogeneous silicate glass which is suitable for working with solid body lasers contains in addition to the basic component 0.2-1.5 wt.% FeO or 0.2-1.9 wt.% Fe2O3, VO2, Ti2O3 or mixt. of these with a max. total of 1.9. ADVANTAGE - Glass has low thermal expansion and high chemical resistance and the transmission of the short wave radiation of the laser beam is greatly reduced.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift (1) DE 43 06 004 A 1

(51) Int. Cl.5:

// B23K 26/00

Aktenzeichen: Anmeldetag:

P 43 06 004.8

26. 2.93

PATENTAMT

Offenlegungstag: 23. 9.93

3 Innere Priorität: 3 3 3

19.03.92 DE 42 08 856.9

(7) Anmelder:

Horst, Hans-Jürgen, 98693 Ilmenau, DE

(74) Vertreter:

Liedtke, K., Dr.-Ing., Pat.-Anw., 99094 Erfurt

② Erfinder:

Horst, Hans-Jürgen, O-6327 Ilmenau, DE; Straube. Berit, O-6300 Ilmenau, DE; Hülsenberg, Dagmar, Prof. Dr.Dr., O-6300 Ilmemau, DE; Schmidt, Kristina, O-6900 Jena, DE

(6) Homogenes technisches Silikatglas, das für die Bearbeitung mit Festkörperlasern geeignet ist

Der Erfindung liegt die Aufgabe zugrunde, technische Silikatgläser anzugeben, die eine Bearbeitung mit kurzwelligen Festkörperlasern ermöglichen und die eine niedrige thermische Dehnung und hohe chemische Beständigkeit

Erfindungsgemäß gelingt die Lösung der Aufgabe dadurch, daß dem Grundbestandteil des Glases 0,2 bis 1,5 Masseprozent FeO, oder 0,2 bis 1,9 Masseprozent Fe₂O₃, VO₂, Ti₂O₃ oder ein Gemisch davon, das in der Summe 1,9 Masseprozent nicht übersteigt, zugegeben ist.

Die Erfindung betrifft ein homogenes technisches Silikatglas, das für die Bearbeitung mit Festkörperlasern geeignet ist. Die Gläser der vorliegenden Erfindung umfassen SiO, und B₂O₃ und/oder Al₂O₃, Alkali- und Erdalkalioxide sowié Metalloxide, die eine für die Bearbeitung des Glases notwendige Wechselwirkung mit der Laserstrahlung unterschiedlicher Festkörperlaser ermöglichen, in dem die Transmission im Wellenlängenbereich der vom Festkörperlaser emittierten Strahlung stark vermindert ist.

Die Erfindung betrifft ein homogenes technisches Silikatglas, das für die Bearbeitung mit Festkörperlasern geeignet ist. Die Gläser der vorliegenden Erfindung umfassen SiO₂ und B₂O₃ und/oder Al₂O₃, Alkali- und Erdalkalioxide sowie Metalloxide, die eine für die Bearbeitung des Glases notwendige Wechselwirkung mit der Laserstrahlung unterschiedlicher Festkörperlaser ermöglichen, in dem die Transmision im Wellenlängenbereich der vom Festkörperlaser emittierten Strahlung stark vermindert ist.

Im Stand der Technik ist es bekannt, Gläser im infraroten Spektralbereich mit Hilfe von CO₂-Lasern zu bearbeiten. Diese Strahlung wird von den meisten Gläsern aufgrund der vorhandenen Schwingungsbande innerhalb der Glasstruktur absorbiert, wodurch die Glasbearbeitung möglich ist.

Gemäß US-PS 87 93 601 sind Glaszusammensetzungen bekannt, die eine Wechselwirkung langwelliger Strahlen mit Borosilikatgläsern beinhalten.

Mit dem im Stand der Technik bekannten Gläsern ist es möglich, die in vielen Anwendungsfällen erforderliche Mikrostrukturierung für Leiterbahnen, Positionsmarken und ähnlichen durch die Nutzung von CO₂-Lasern zu realisieren. Nachteilig bei den angegebenen Gläsern ist, daß die Nutzung der Laserstrahlen kürzerer Wellenlängen, wie sie bei Festkörperlasern auftreten, nicht möglich ist, was zur Folge hat, daß in das Glas wesentlich kleinere Strukturen nicht eingebracht werden können und eine hohe thermische Belastung des Glases auftritt.

Der Erfindung liegt die Aufgabe zugrunde, technische Silikatgläser anzugeben, die eine Bearbeitung mit kurzwelligen Festkörperlasern ermöglichen und die eine niedrige thermische Dehnung und hohe chemische Beständigkeit aufweisen.

Erfindungsgemäß gelingt die Lösung der Aufgabe dadurch, daß dem Grundbestandteil des Glases 0,2 bis 1,5 Masseprozent FeO, oder 0,2 bis 1,9 Masseprozent Fe₂O₃, VO₂, Ti₂O₃ oder ein Gemisch davon, das in der Summe 1,9 Masseprozent nicht übersteigt, zugegeben ist.

Eine zweckmäßige Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß als Grundbestandteil Borosilikatglas mit dem Bestandteilen

	SiO ₂	65-87 Masse-%
30	B_2O_2	9-25 Masse-%
	Al ₂ O ₃	1-5 Masse-%
	Li₂O	0-5 Masse-%
	Na ₂ O	0-4 Masse-%
	K₂O	0-2 Masse-%
	FeO	0.2-1.5 Masse-%
35	Reduktionsmittel	0-1,5 Masse-%

verwendet wird.

Die erfindungsgemäßen Borosilikatgläser weisen eine thermische Ausdehnung von 2,7 bis 3,5 • 10⁻⁶K⁻¹ auf. Ferner ist es möglich, daß als Grundbestandteil Erdalkalialumosilikatglas mit der Zusammensetzung

40		
	SiO ₂	51-74 Masse-%
	B_2O_2	0-7 Masse-%
	Al ₂ O ₃	12-22 Masse-%
	MgO	0-12 Masse-%
45	CaO	5-12 Masse-%
	BaO	0-20 Masse-%
	SrO ·	0-3 Masse-%
	MnO	0-6 Masse-%
50	Li ₂ O	0-2 Masse-%
	Na ₂ O	0-2 Masse-%
	K₂O	0-2 Masse-%
	FeO	0.2-1.5 Masse-%
	Reduktionsmittel	0-1.5 Masse-%
55		- 1,5 1/14556 /0

verwendet wird.

Die erfindungsgemäßen Erdalkalialumosilikatgläser besitzen eine thermische Ausdehnung von 3,2 bis 5,0 • $10^{-6}K^{-1}$.

Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß als Grundbestandteil Lithiumborosilikat- oder Litiumalumosilikatgläser der Zusammensetzung

SiO ₂	62-76 Masse-%
B ₂ O ₃	0-12 Masse-%
Al ₂ O ₃	5-22 Masse-%
Li ₂ O	5-22 Masse-%
Na ₂ O	0-5 Masse-%
K₂O	0-5 Masse-%
Erdalkalioxide	0-1 Masse-%
FeO	0,2-1,9 Masse-%
Reduktionsmittel	0-1,5 Masse-%

10

20

25

eingesetzt werden.

Die erfindungsgemäßen Lithiumsilikatgläser mit einem Al₂O₃-Gehalt von mehr als 5 Masse-% gewährleisten eine gezielt eingeschränkte Transmission innerhalb eines Wellenlängenbereiches, der die Wellenlänge der Laserstrahlung von Festkörperlasern umfaßt.

Die Erfindung soll im folgenden anhand eines Ausführungsbeispieles näher erläutert werden.

Die Hauptkomponente des erfindungsgemäßen Borosilikatglases wird durch ein Pyrexglas gebildet. Damit wird eine niedrige thermische Dehnung und hohe chemische Beständigkeit erreicht. Die Eigenschaften des erfindungsgemäßen Glases beruhen auf der Ausnutzung der Wirkung von Kationen von Übergangsmetallen entsprechender Wertigkeitsstufen. Dadurch wird im Glas eine starke Abnahme der Transmission in dem Wellenlängenbereich erreicht, der der Laserstrahlung von Festkörperlasern entspricht. Es wird ein Borosilikatglas mit folgenden Bestandteilen verwendet:

SiO ₂	65-87 Masse-%
B_2O_3	9-25 Masse-%
Al ₂ O ₃	1-5 Masse-%
Li ₂ O	0-5 Masse-%
Na ₂ O	0-4 Masse-%
K₂O	0-2 Masse-%
Alkalioxide	2-5 Masse-%
FeO	0-1,5 Masse-%
Titanoxid	0-1,9 Masse-%
Vanadiumoxid	0-1,9 Masse-%
Gehalt an FeO oder Ti ₂ O ₃ oder VO ₂ mindestens	0,2 Masse-%
Reduktionsmittel	0-1,5 Masse-%

35

65

30

Der Hauptbestandteil des Glasnetzwerkes wird durch SiO2 gebildet. Dadurch wird die Kristallisationsfestigkeit, die niedrige thermische Dehnung und die hohe chemische Beständigkeit gewährleistet. Der Maximalwert des SiO2-Anteiles ist dabei durch Einschmelzbedingungen des SiO2-Rohstoffes im Gemenge bei Schmelztemperaturen um 1600°C bedingt. Der untere Grenzwert wird durch die mit fallendem Anteil sinkende chemische Beständigkeit verursacht. Ein weiterer Bestandteil des Glasnetzwerkes ist B2O3. Dieser Bestandteil erhöht ebenfalls die Kristallisationsfestigkeit, wobei die thermische Dehnung und die chemische Beständigkeit nur in geringem Maße nachteilig beeinflußt werden. Der Einsatz von B2O3 in den angegebenen Grenzen gewährleistet ein gutes Einschmelzverhalten. Die dritte Hauptkomponente des beschriebenen Glastyps wird durch Alkalien gebildet. Alkalibestandteile im Rohstoffgemenge bewirken grundsätzlich eine Verbesserung des Einschmelzverhaltens. Dabei ist es wichtig, die unterschiedlichen Molmassen der Alkalikationen und die damit verbundene wachsende thermische Dehnung der Gläser bei gleichen Molverhältnissen zu beachten. Li2O als alleiniger Bestandteil kann bis zu 5 Masse-% eingesetzt werden und beeinflußt besonders im Falle hoher SiO2-Gehalte die thermische Ausdehnung nur wenig, während Na₂O₃ und besonders K₂O diese Eigenschaften deutlicher beeinflussen. Die üblicherweise bei der Verwendung dieser Bestandteile in den angegebenen Grenzzusammensetzungen auftretende B2O3-reiche Phase wird durch einen entsprechenden Al2O3-Anteil verhindert, ohne daß sich die thermische Dehnung dabei wesentlich erhöht. Um eine ausreichende Wechselwirkung des Glases mit der jeweiligen Laserstrahlung zu gewährleisten müssen die angegebenen Mindestwerte für die Oxide der aufgeführten Übergangsmetalle eingehalten werden. Eine Überschreitung der angegebenen Maximalwerte würde andererseits die thermische Dehnung im Falle von Glas-Silizium-Verbindungen für elektronische Anwendungen in ungerechtfertigter Weise erhöhen. Zur gezielten Beeinflussung des Redoxgleichgewichtes der polyvalenten Kationen der Übergangsmetalle werden zusätzlich Reduktionsmittel eingesetzt.

Die die Transmission im gewünschten Wellenlängenbereich beeinflussenden Oxide ermöglichen die Bearbeitung mit Festkörperlasern in folgender Weise:

- 1. FeO (Bande ca. 1100 nm) für Nd-YAG-Laser (1060 nm).
- 2. TiO2 verstärkt die Wirksamkeit des Eisenoxids und ist ohne Eisenoxid wirkungslos.
- 3. VO₂ kann die Funktion von FeO übernehmen.
- 4. Titanoxid mit einem hohen Anteil von Ti³⁺-kationen erhöht die Absorption im gesamten Wellenlängenbereich von 400-800 nm mit einem Maximum von 580 nm und ermöglicht somit die Wechselwirkung mit

Rubin- und Ti - Saphirlaser.

Beispiele für modifizierte Borosilikatgläser

5	================	######################################	========	
	Oxide /	Glas 1	Glas 2	Glas 3
	Eigenschaften			
10	sio ₂	68,5	80,6	71,5
15	B ₂ O ₃	23,5	12,8	24,7
13	Al ₂ O ₃	4,7	1,9	1,1
20 ·	Li ₂ o	2,6	-	0,4
	Na ₂ O	-	3,8	0,5
25	к ₂ о	-	-	0,9
	Fe0		0,5	0,9
30	TiO ₂	0,1	0,4	-
35	Ausdehnungs- koeffizient *10 ⁻⁶ K ⁻¹	3,5	3,4	3,35
		==========		========

Beispiel 2 Erdalkalialumosilikatgläser

Die Hauptkomponenten der Erdalkalialumosilikatgläser sind SiO2, Al2O3 und die Erdalkalioxide. Sie zeichnen sich durch einen nur sehr geringen Alkaligehalt, der teilweise an der Nachweisgrenze naßchemischer Untersuchungsverfahren liegt, aus. Derartige Gläser weisen eine hohe Transformationstemperatur von 650 bis 800° C auf, sind chemisch sehr beständig und besitzen einen niedrigen thermischen Ausdehnungskoeffizient. Sie werden deshalb häufig für Lampengläser eingesetzt. Für das erfindungsgemäße Glas wird folgende Zusammensetzung verwendet:

	SiO ₂	47-74 Masse-%
50	B ₂ O ₂	0-7 Masse-%
	Al ₂ O ₃	12-22 Masse-%
	MgO	0-12 Masse-%
	CaO	5-12 Masse-%
	BaO	0-20 Masse-%
55	SrO	0-3 Masse-%
33	MnO	0-6 Masse-%
	Na ₂ O	0-2 Masse-%
	K ₂ O	0-2 Masse-%
	FeO	0-1.5 Masse-%
60	Titanoxid	0-1.9 Masse-%
	Vanadiumoxid	0-1.9 Masse-%
	FeO, Ti ₂ O ₃ oder VO ₂ mindestens	0,2 Masse-%
65	Reduktionsmittel	0-1,5 Masse-%

Der Hauptbestandteil des Glasnetzwerkes wird durch SiO₂ gebildet. Charakteristisch für die Erdalkalialumosikatgläser ist der verhältnismäßig hohe Anteil an Al₂O₃. Dieses Oxid wird meist zu gleichen Molprozenten wie

die Summe der Erdalkali- und Alkalioxide eingesetzt. Dadurch wird eine optimale Glasstruktur mit sehr wenigen Trennstellensauerstoffen gebildet und es werden die angestrebten physikalischen und chemischen Eigenschaften erreicht. Der niedrige Alkaligehalt der Glaser gewährleistet die verhältnismäßig hohen Werte für die Transformationstemperatur und damit eine hohe Kristallisationsfestigkeit. Die erfindungsgemäß in das Glas eingebrachten Übergangsmetalle und ihre Verbindungen bewirken die Absorption der gewählten Laserstrahlung. Die angegebene Zusammensetzung bewirkt, daß die übrigen Glaseigenschaften nur in geringfügigem Maße beeinflußt werden.

Beispiel für Erdalkalialumosilikatgläser

10

55

60

Oxide / Eigenschaften	Glas 4	Glas 5	Glas 6	15
sio ₂	59,5	73,4	52,0	1:
Al ₂ O ₃	15,7	12,2	19,8	20
B ₂ O ₃	3,4	1,6	4,5	
Mg0	2,5	5,6	12,2	25
CaO	9,3	5,8	8,3	
BaO	8,9	-	1,5	30
Na ₂ O	0,1	0,6	1,0	
FeO	0,4	-	0,3	35
TiO ₂	-		0,2	40
vo ₂		0,6	-	70
Transformations- temperatur	720°C	720C	700°C	45
*10 ⁻ /K ⁻¹ (20-400°C)	4,7	3,5	5,0	50
=======================================				

Beispiel 3 Lithium-Borosilikat- und Lithium-Alumosilikatgläser

Die erfindungsgemäßen Lithium-Borosilikat- und Lithium-Alumosilikatgläser weisen folgende Zusammensetzung auf:

	SiO ₂	62-76 Masse-%
	B ₂ O ₃	0-10 Masse-%
	Al ₂ O ₃	5-22 Masse-%
	Li ₂ O	5-22 Masse-%
5	Na₂O	0-5 Masse-%
	K ₂ O	0-5 Masse-%
	FeO	0-1,5 Masse-%
	Ti ₂ O ₃	0-1,9 Masse-%
10	VO ₂	0-1,9 Masse-%
	FeO, Ti ₂ O ₃ oder VO ₂ mindestens	0,2 Masse-%
	Reduktionsmittel	0-1,5 Masse-%

Der Hauptbestandteil des Glasnetzwerkes wird auch hierbei wiederum von SiO₂ gebildet, das von Al₂O₃ und/oder B₂O₃ ergänzt wird. Der hohe Anteil von Alkalioxiden verursacht jedoch eine hohe Zahl von Trennstellensauerstoffen, die nicht für jeden Anwendungsfall erwünscht sind. Durch die erfindungsgemäßen Zusätze von Übergangsmetallen beziehungsweise von Seltenen Erden und den angegebenen Verbindungen wird die Absorption der entsprechenden Strahlung der Festkörperlaser bewirkt, und damit die gewünschte Strukturierung ermöglicht.

Patentansprüche

 Homogenes technisches Silikatglas, das für die Bearbeitung mit Festkörperlasern geeignet ist, dadurch gekennzeichnet, daß dem Grundbestandteil des Glases 0,2 bis 1,5 Masseprozent FeO, oder 0,2 bis 1,9 Masseprozent Fe₂O₃, VO₂, Ti₂O₃ oder ein Gemisch davon, das in der Summe 1,9 Masseprozent nicht übersteigt, zugegeben ist.

2. Silikatglas nach Anspruch 1, dadurch gekennzeichnet, daß als Grundbestandteil Borosilikatglas mit den Bestandteilen

	SiO ₂	65-87 Masse-%
	B_2O_2	9-25 Masse-%
	Al ₂ O ₃	1-5 Masse-%
35	Li₂O	0-5 Masse%
	Na₂O	0-4 Masse-%
	K₂O	0-2 Masse-%
	FeO	0,2-1,5 Masse-%
40	Reduktionsmittel	0-1.5 Masse-%

verwendet wird.

3. Silikatglas nach Anspruch 1, dadurch gekennzeichnet, daß als Grundbestandteil Erdalkalialumosilikatglas mit der Zusammensetzung

	SiO ₂	51 - 74 Masse-%
	Al ₂ O ₃	12-22 Masse-%
	B_2O_2	0-7 Masse-%
	MgO	0-12 Masse-%
50	CaO	5-12 Masse-%
	BaO	0-20 Masse-%
	SrO	0-3 Masse-%
	MnO	0-6 Masse-%
55	Li ₂ O	0-2 Masse-%
	Na ₂ O	0-2 Masse-%
	K₂O	0-2 Masse-%
	FeO	0.2-1.5 Masse-%
	Reduktionsmittel	0-15

verwendet wird.

4. Silikatglas nach Anspruch 1, dadurch gekennzeichnet, daß als Grundbestandteil Lithiumborosilikat- oder Lithiumalumosilikatgläser der Zusammensetzung

65

60

15

30

SiO ₂	62-76 Masse-%
Al ₂ O ₃	5-22 Masse-%
B ₂ O ₃	0-12 Masse-%
Li ₂ O	5-22 Masse-%
Na _z O	0-5 Masse-%
K ₂ O	0-5 Masse-%
Erdalkalioxide	0-1 Masse-%
FeO	0,2-1,5 Masse-%
Reduktionsmittel	0-1,5 Masse-%

eingesetzt sind.

- Leerseite -