Written Homework

- Available today*, due Sunday*
- Get an email from GradeScope
- Upload PDF (please use template PDF)
- Traditional problem: 2 balls collide vertically
- Modelling problem: steel ball and ping pong ball dropped off a tall tower
 - Do not need to know much about air resistance except that objects have a terminal speed

An Olympic sprinter can run 100 m in 10 s, starting from rest. Estimate their top speed assuming exponential decay of

$$V(t) = \int a(t) dt + C = a_0 \int e^{-t/7} dt + C$$

= $a_0(-1)e^{-t/7} + C$

$$V(t) = a_0 T \left(1 - e^{-\tau A/\tau}\right) \qquad V_{max} = V\left(\xi = 10_5\right)$$

Chapter 4 – Kinematics in 2D

- Mathematics
- Projectile motion
- Relative motion
- Circular motion (next class)

MODEL 4.1

Projectile motion

For motion under the influence of only gravity.

- Model the object as a particle launched with speed v_0 at angle θ :
- Mathematically:
 - Uniform motion in the horizontal direction with $v_x = v_0 \cos \theta$.
 - Constant acceleration in the vertical direction with $a_v = -g$.
 - Same Δt for both motions.
- Limitations: Model fails if air resistance is significant.

A projectile follows a parabolic trajectory.

Demo: will the projectile hit the falling figure, go too high,

Team Up Questions

Does the round trip from Chicago to Cleveland and back take more time, less time, or the same time if there is a cross-wind versus if there is no wind?

-) any wind direction is slower