МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашнее задание №1-1 «Погрешности при решении СЛАУ» *Группа*: ФН11-52Б

Вариант №7

Студент: Зеликова В.И.

Преподаватель: Кутыркин В.А.

Оценка:

Задание 1.1

Дана СЛАУ (N — номер студента в журнале, $\alpha = (n-50)/100$, где n — номер группы):

$$\begin{cases} 50(1+\theta,5N+\alpha)x^{1} + 5\theta(1+\theta,5N)x^{2} + 5\theta(1+\theta,5N)x^{3} = 5\theta(3+1,5N+\alpha); \\ 50,1\cdot(1+\theta,5N)x^{1} + 49,9\cdot(1+\theta,5N+\alpha)x^{2} + 5\theta(1+\theta,5N)x^{3} = 5\theta(3+1,5N+\alpha); \\ 49,9\cdot(1+\theta,5N)x^{1} + 5\theta\cdot(1+\theta,5N)x^{2} + 5\theta,1\cdot(1+\theta,5N+\alpha)x^{3} = 5\theta(3+1,5N+\alpha). \end{cases}$$

Предполагается, что ошибка в матрице этой СЛАУ достаточно мала и относительная ошибка в её правой части равна 0,01. Приближённая СЛАУ имеет вид:

$$\begin{cases} 50(1+\theta,5N+\alpha)x^{1}+5\theta(1+\theta,5N)x^{2}+5\theta(1+\theta,5N)x^{3}=5\theta(3+1,5N+\alpha)(1+\theta,0I);\\ 50,1\cdot(1+\theta,5N)x^{1}+49,9\cdot(1+\theta,5N+\alpha)x^{2}+5\theta(1+\theta,5N)x^{3}=5\theta(3+1,5N+\alpha)(1-\theta,0I);\\ 49,9\cdot(1+\theta,5N)x^{1}+50\cdot(1+\theta,5N)x^{2}+50,1\cdot(1+\theta,5N+\alpha)x^{3}=5\theta(3+1,5N+\alpha)(1+\theta,0I). \end{cases}$$

Требуется найти число обусловленности матрицы, рассматриваемой СЛАУ и относительную погрешность в решении приближённой СЛАУ. Затем, прокомментировать получившиеся результаты.

Решение:

$$N = 10$$

$$n = 52$$

$$\alpha = \frac{n - 50}{100} = \frac{2}{100} = 0.02$$

Исходная СЛАУ:

$$\begin{cases} 226x^{1} + 225x^{2} + 225x^{3} = 676\\ 225,45x^{1} + 225,548x^{2} + 225x^{3} = 676\\ 224,55x^{1} + 225x^{2} + 226,452x^{3} = 676 \end{cases}$$

Приближенная СЛАУ:

$$\begin{cases} 226x^{1} + 225x^{2} + 225x^{3} = 682,76\\ 225,45x^{1} + 225,548x^{2} + 225x^{3} = 669,24\\ 224,55x^{1} + 225x^{2} + 226,452x^{3} = 682,76 \end{cases}$$

Соответственно:

$$A = \begin{pmatrix} 226 & 225 & 225 \\ 225,45 & 225,548 & 225 \\ 224,55 & 225 & 226,452 \end{pmatrix} > b = \begin{pmatrix} 676 \\ 676 \\ 676 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 0,837447 & -0,606914 & -0,229056 \\ -0,984314 & 1,215689 & -0,229892 \\ 0,147589 & -0,606078 & 0,459965 \end{pmatrix}$$

$$> b + \Delta b = \begin{pmatrix} 682,76 \\ 669,24 \\ 682,76 \end{pmatrix}$$

$$||A|| = \max \left\{ \sum_{j=1}^{n} |a_{j}^{i}| : i = \overline{1,n} \right\} = 676,002$$

$$||A^{-1}|| = 2,429894$$

Число обусловленности:

$$cond(A) = ||A|| \cdot ||A^{-1}|| = 1642,613242$$

Найдем относительную погрешность в решении приближенной СЛАУ:

$$A \cdot {}^{>}x = {}^{>}b \Rightarrow {}^{>}x = A^{-1} \cdot {}^{>}b = \begin{pmatrix} 0,999244 \\ 1,002891 \\ 0,997868 \end{pmatrix}$$
$${}^{>}\Delta x = A^{-1} \cdot {}^{>}\Delta b = \begin{pmatrix} 8,215466 \\ -16,426084 \\ 8,204150 \end{pmatrix}$$
$$\|{}^{>}x\| = \max\{|x^{1}|, \dots, |x^{n}|\} = 1,002891$$
$$\|{}^{>}\Delta x\| = 16,426084$$

Относительная погрешность приближенного решения:

$$\frac{\| > \Delta x \|}{\| > x \|} = 16,378730$$

$$\| > b \| = 676 \quad \| > \Delta b \| = 6,76$$

$$\frac{\| > \Delta x \|}{\| > x \|} = 16,378730 \le cond(A) \cdot \frac{\| > \Delta b \|}{\| > b \|} = 16,426132$$

Результаты:

Число обусловленности приближенной СЛАУ $cond(A) > 10^2$, следовательно, СЛАУ является плохо обусловленной, то есть относительная погрешность в правой части СЛАУ оказывает сильное влияние на относительную погрешность в ее решении, что и получилось в результате вычислений: $\frac{\|\Delta x\|}{\|\Delta x\|} = 16,378730$.

Задание 1.2

Согласно выданным условиям задания, на отрезке [a;b] выбрана центральная равномерная сетка с десятью узлами $s_1= au_1=a+\frac{h}{2}, s_2= au_2= au_1+h,\ s_3= au_3= au_2+h,...,s_{10}= au_{10}= au_9+h$, имеющая шаг $h=\frac{b-a}{10}$.

Требуется решить приближённую СЛАУ:

$$(E + \lambda A)^{>} x = {}^{>} b + {}^{>} \Delta b,$$

где $\lambda \in \mathbb{R}$ - ненулевое число, $E \in GL(\mathbb{R}; \mathbf{10})$ — единичная матрица, $A = (a_j^i)_{10}^{10} \in GL(\mathbb{R}; \mathbf{10})$ и $^>b = [b^1, ..., b^{10}] \in \mathbb{R}^{10}$ — матрица и вектор, соответственно, которые с помощью выданной таблицы с данными определяются соотношениями:

$$a_j^i=F(s_i\cdot au_i)rac{b-a}{10}$$
 для $i,j=\overline{1,10},\,^>b=(E+\lambda A)^>x_*\,$ и $^>x_*$ $=[1,1,...,1
angle\in\,^>\mathbb{R}^{10}$

Согласно данной СЛАУ, приближенная СЛАУ определяется только погрешностью ${}^{>}\Delta b = [\Delta b^1,...,\Delta b^{10}\rangle = 0,01*$ $[b^1,-b^2,b^3,-b^4,b^5,-b^6,b^7,-b^8,b^9,-b^{10}\rangle,\in{}^{>}\mathbb{R}^{10}$ в правой части данной СЛАУ.

Требуется найти число обусловленности матрицы, рассматриваемой СЛАУ и относительную погрешность в решении приближённой СЛАУ. Затем, прокомментировать получившиеся результаты. Коме того, найти решение СЛАУ, которая получается из исходной делением каждого её і -го уравнения ($i = \overline{1,10}$) на число $b^i + \Delta b^i$. После этого сравнить абсолютную погрешность в решении получившейся СЛАУ с абсолютной погрешностью в решении приближённой СЛАУ.

Решение:

N = 7; n = 52;
$$\alpha$$
 = 0,08; λ = -0,32; $F(x) = arctg(x)$; $a = -\frac{\pi}{4}$; $b = \frac{\pi}{4}$; $b = \frac{\pi}{2}$

Матрица А:

0,137877	0,145367	0,151067	0,154906	0,156838	0,156838	0,154906	0,151067	0,145367	0,137877
0,145367	0,149959	0,153433	0,155764	0,156933	0,156933	0,155764	0,153433	0,149959	0,145367
0,151067	0,153433	0,155216	0,156408	0,157005	0,157005	0,156408	0,155216	0,153433	0,151067
0,154906	0,155764	0,156408	0,156838	0,157053	0,157053	0,156838	0,156408	0,155764	0,154906
0,156838	0,156933	0,157005	0,157053	0,157077	0,157077	0,157053	0,157005	0,156933	0,156838
0,156838	0,156933	0,157005	0,157053	0,157077	0,157077	0,157053	0,157005	0,156933	0,156838
0,154906	0,155764	0,156408	0,156838	0,157053	0,157053	0,156838	0,156408	0,155764	0,154906
0,151067	0,153433	0,155216	0,156408	0,157005	0,157005	0,156408	0,155216	0,153433	0,151067
0,145367	0,149959	0,153433	0,155764	0,156933	0,156933	0,155764	0,153433	0,149959	0,145367
0,137877	0,145367	0,151067	0,154906	0,156838	0,156838	0,154906	0,151067	0,145367	0,137877

Матрица $E + \lambda A$:

1,044121	0,046517	0,048341	0,04957	0,050188	0,050188	0,04957	0,048341	0,046517	0,044121
0,046517	1,047987	0,049099	0,049844	0,050219	0,050219	0,049844	0,049099	0,047987	0,046517
0,048341	0,049099	1,049669	0,05005	0,050242	0,050242	0,05005	0,049669	0,049099	0,048341
0,04957	0,049844	0,05005	1,050188	0,050257	0,050257	0,050188	0,05005	0,049844	0,04957
0,050188	0,050219	0,050242	0,050257	1,050265	0,050265	0,050257	0,050242	0,050219	0,050188
0,050188	0,050219	0,050242	0,050257	0,050265	1,050265	0,050257	0,050242	0,050219	0,050188
0,04957	0,049844	0,05005	0,050188	0,050257	0,050257	1,050188	0,05005	0,049844	0,04957
0,048341	0,049099	0,049669	0,05005	0,050242	0,050242	0,05005	1,049669	0,049099	0,048341
0,046517	0,047987	0,049099	0,049844	0,050219	0,050219	0,049844	0,049099	1,047987	0,046517
0,044121	0,046517	0,048341	0,04957	0,050188	0,050188	0,04957	0,048341	0,046517	1,044121

Матрица $(E + \lambda A)^{-1}$:

0,971193	-0,030905	-0,032503	-0,033579	-0,034121	-0,03412	-0,033579	-0,032503	-0,030905	-0,028807
-0,030905	0,967938	-0,032937	-0,033523	-0,033818	-0,03382	-0,033523	-0,032937	-0,032062	-0,030905
-0,032503	-0,032937	0,966738	-0,033479	-0,033587	-0,03359	-0,033479	-0,033262	-0,032937	-0,032503
-0,033579	-0,033523	-0,033479	0,966552	-0,033432	-0,03343	-0,033448	-0,033479	-0,033523	-0,033579
-0,034121	-0,033818	-0,033587	-0,033432	0,966645	-0,03335	-0,033432	-0,033587	-0,033818	-0,034121
-0,034121	-0,033818	-0,033587	-0,033432	-0,033355	0,966645	-0,033432	-0,033587	-0,033818	-0,034121
-0,033579	-0,033523	-0,033479	-0,033448	-0,033432	-0,03343	0,966552	-0,033479	-0,033523	-0,033579
-0,032503	-0,032937	-0,033262	-0,033479	-0,033587	-0,03359	-0,033479	0,966738	-0,032937	-0,032503
-0,030905	-0,032062	-0,032937	-0,033523	-0,033818	-0,03382	-0,033523	-0,032937	0,967938	-0,030905
-0,028807	-0,030905	-0,032503	-0,033579	-0,034121	-0,03412	-0,033579	-0,032503	-0,030905	0,971193

Вектор **b**:

Вектор $\Delta \boldsymbol{b}$:

$$^{>}\Delta b = \begin{pmatrix} 0,014775 \\ -0,014873 \\ 0,014948 \\ -0,014998 \\ 0,015023 \\ -0,015023 \\ 0,014998 \\ -0,014948 \\ 0,014873 \\ -0,014775 \end{pmatrix} \| ^{>}\Delta b \| = 0,015023393$$

$$||E + \lambda A|| = 1,5023393$$

 $||(E + \lambda A)^{-1}|| = 1,269916544$
 $cond(E + \lambda A) = 1,907845533$

Решение СЛАУ:

$$x = \begin{bmatrix} 1,014775 \\ 0,985127 \\ 1,014948 \\ 0,985002 \\ 1,015023 \\ 0,984977 \\ 1,014998 \\ 0,985052 \\ 1,014873 \\ 0,985225 \end{bmatrix} || x|| = 1,015023393$$

Погрешность решения:

$$^{>}\Delta x = \begin{pmatrix} 0,0147747 \\ -0,014873 \\ \hline 0,014948 \\ -0,014998 \\ \hline 0,0150234 \\ -0,015023 \\ \hline 0,0149982 \\ -0,0149982 \\ \hline -0,014975 \end{pmatrix} \parallel ^{>}\Delta x \parallel = \mathbf{0}, \mathbf{015023393}$$

Относительная погрешность решения:

$$\frac{\| > \Delta x \|}{\| > x \|} = 0,0148010$$

Выполняется неравенство:

$$\frac{\|{}^{>}\Delta x\|}{\|{}^{>}x\|} = 0,0148010 \le cond(E + \lambda A) \cdot \frac{\|{}^{>}\Delta b\|}{\|{}^{>}b\|} = 0,019078455$$

Найдем решение СЛАУ, которая получается делением каждого уравнения исходной на $m{b^i} + \Delta m{b^i}$ $m{i} = \overline{m{1,10}}$.

Получим матрицу В:

	•	1 .							
0,699696	0,031173	0,032395	0,033218	0,033632	0,033632	0,033218	0,032395	0,031173	0,0295665
0,031592	0,711726	0,0333446	0,033851	0,034105	0,034105	0,033851	0,0333446	0,03259	0,0315917
0,032019	0,032521	0,6952602	0,033151	0,033278	0,033278	0,033151	0,0328988	0,032521	0,0320194
0,033384	0,033569	0,0337081	0,707283	0,033847	0,033847	0,033801	0,0337081	0,033569	0,0333845
0,033076	0,033096	0,0331111	0,033121	0,692164	0,033126	0,033121	0,0331111	0,033096	0,0330758
0,033744	0,033765	0,03378	0,03379	0,033795	0,706148	0,03379	0,03378	0,033765	0,033744
0,032723	0,032905	0,0330406	0,033131	0,033177	0,033177	0,693277	0,0330406	0,032905	0,0327234
0,032666	0,033178	0,0335634	0,033821	0,03395	0,03395	0,033821	0,7093059	0,033178	0,0326663
0,030966	0,031944	0,0326843	0,033181	0,03343	0,03343	0,033181	0,0326843	0,697632	0,0309661
0,030164	0,031802	0,0330494	0,033889	0,034312	0,034312	0,033889	0,0330494	0,031802	0,713831

Обратная к ней матрица B^{-1} :

1,449262	-0,04551	-0,049071	-0,049859	-0,051774	-0,050749	-0,050867	-0,048099	-0,046426	-0,042136
-0,046118	1,425249	-0,049726	-0,049776	-0,051313	-0,050297	-0,050782	-0,048741	-0,048163	-0,045205
-0,048502	-0,0485	1,4595327	-0,04971	-0,050964	-0,049955	-0,050714	-0,049223	-0,049477	-0,047542
-0,050109	-0,04936	-0,050545	1,435157	-0,050729	-0,049724	-0,050668	-0,049544	-0,050359	-0,049117
-0,050917	-0,04979	-0,050708	-0,049641	1,466752	-0,049609	-0,050644	-0,049704	-0,050801	-0,049909
-0,050917	-0,04979	-0,050708	-0,049641	-0,050611	1,437707	-0,050644	-0,049704	-0,050801	-0,049909
-0,050109	-0,04936	-0,050545	-0,049664	-0,050729	-0,049724	1,46415	-0,049544	-0,050359	-0,049117
-0,048502	-0,0485	-0,050217	-0,04971	-0,050964	-0,049955	-0,050714	1,4306311	-0,049477	-0,047542
-0,046118	-0,04721	-0,049726	-0,049776	-0,051313	-0,050297	-0,050782	-0,048741	1,454041	-0,045205
-0,042987	-0,04551	-0,049071	-0,049859	-0,051774	-0,050749	-0,050867	-0,048099	-0,046426	1,420564

Решение СЛАУ с данной матрицей в точности соответствует решению исходной СЛАУ.

Результаты:

Число обусловленности приближенной СЛАУ $cond(A) < 10^2$, следовательно, СЛАУ является хорошо обусловленной, то есть относительная погрешность в правой части СЛАУ оказывает слабое влияние на относительную погрешность в ее решении, что и получилось в результате вычислений: $\frac{\| ^2 \Delta x \|}{\| ^2 x \|} = 0,0148010$

При делении каждого уравнения СЛАУ на $b^i + \Delta b^i$ $i = \overline{1,10}$ решение СЛАУ не изменяется, а, следовательно, не изменяется и относительная погрешность решения.