МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Программирование графических процессоров»

Работа с матрицами. Метод Гаусса.

Выполнил: А.Ю. Гришин

Группа: 8О-408Б

Преподаватель: А.Ю. Морозов

Условие

- 1. **Цель работы:** использование объединения запросов к глобальнйо памяти. Реализация метода Гаусса с выбором главного элемента по столбцу. Ознакомление с библиотекой алгоритмов для параллельных расчетов Thrust. Использование двухмерной сетки потоков. Исследование производительности программы с помощью утилиты nyprof.
- 2. Вариант 2: вычисление обратной матрицы.

Программное и аппаратное обеспечение

- Графический процессор
 - o Compute capability: 7.5
 - о Объем графической памяти: 15,83 ГБ
 - о Объем постоянной памяти: 65536 байт
 - о Разлеляемая память на блок: 49152 байт
 - о Количество регистров на блок: 65536
 - о Максимальное количество потоков на блок: 1024
 - о Количество мультипроцессоров: 40
- Процессор
 - о Количество физических ядер: 2
 - о Количество логических ядер: 4
 - о Частота: 2000 МГц
- Оперативная память
 - о Тип оперативной памяти: DDR4
 - о Объем: 32 ГБ
- Жесткий лиск
 - Объем: 1 ТБ
- Программное обеспечение
 - o OC: Ubuntu 22.04.4 LTS
 - o IDE: Visual Studio Code
 - Компилятор: nvcc

Метод решения

Решение данной задачи я начал с определения алгоритма вычисления обратной матрицы с использованием метода Гаусса. Пусть A – исходная матрица. Перед использованием метода Гаусса необходимо построить блочную матрицу $(A \mid E)$.

На следующем этапе, который называется прямым ходом, согласно методу Гаусса, используя элементарные преобразования, необходимо привести левую часть блочной матрицы к верхнетреугольной матрице.

$$(A \mid E) \to (A_2 \mid E_2) = \begin{pmatrix} a_{11}^{(2)} & \cdots & a_{1n}^{(2)} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn}^{(2)} \end{pmatrix} e_{11} & \cdots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{n1} & \cdots & e_{nn} \end{pmatrix}$$

После данного этапа происходит обратный ход. На этом этапе необходимо повторно выполнить метод Гаусса, однако, в этот раз в обратном направлении. В результате получится блочная матрица, левый компонент котороый представляет собой диагональную матрицу.

$$(A_2 \mid E_2) \to (A_3 \mid E_3) = \begin{pmatrix} a_{11}^{(3)} & \cdots & 0 & e_{11}^{(3)} & \cdots & e_{1n}^{(3)} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn}^{(3)} & e_{n1}^{(3)} & \cdots & e_{nn}^{(3)} \end{pmatrix}$$

Заключительным этапом является нормализация значений. Для этого необходимо выполнить элементарное преобразование для каждой строки, разделив элементы правой компоненты на соответствующие значения диагональных элементов.

$$(A_3 \mid E_3) \to (A_4 \mid E_4) = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} e_{n_1}^{(4)} & \cdots & e_{n_n}^{(4)}$$

Метод Гаусса состоит из двух основных этапов на каждом шаге:

- 1. Вычисление коэффициентов;
- 2. Обновление значений элементов ниже текущей строки.

Вычисление коэффициентов

На произвольном шаге метода, когда текущая строка имеет номер i, для всех строк с номерами $j=\overline{\iota+1,n}$ вычисляются коэффициенты по следующей формуле:

$$k_j = -\frac{a_{ii}}{a_{ji}}$$

Эти коэффициенты используются для последующего обновления значений элементов в строках ниже текущей. Поскольку вычисление каждого коэффициента k_j зависит только от значений элементов текущей строки и не зависит от других коэффициентов, данный этап можно распараллелить.

Для этого этапа достаточно использовать одномерную сетку потоков, так как вычисление каждого коэффициента требует работы с данными, относящимися к одной строке, и не требует доступа к другим строкам.

Обновление значений элементов

После вычисления коэффициентов происходит обновление значений элементов строк ниже текущей по формуле:

$$a'_{it} = a_{jt} + k_j \cdot a_{it}, \ t = \overline{1,n}$$

Каждое новое значение элемента a_{jt}' зависит только от вычисленных ранее коэффициентов, что также позволяет распараллелить вычисления. Для этого этапа целесообразно использовать двумерную сетку потоков, так как каждому потоку необходимо работать с элементами конкретной строки и столбца, то есть с элементами матрицы в двумерной форме.

Оптимизация точности вычислений

При вычислении коэффициентов методом Гаусса может возникнуть ошибка, связанная с делением на малые значения знаменателя, что приводит к значительной потере точности. Чтобы уменьшить эту погрешность, можно использовать оптимизацию путем выбора строки с наибольшим по модулю элементом в качестве ведущей строки на кажлом шаге.

Таким образом, на каждом шаге метода выбирается строка с максимальным элементом по модулю в текущем столбце, что позволяет обеспечить максимально возможное значение знаменателя и, следовательно, повысить точность вычислений.

Описание программы

Программа состоит из одного файла, содержащего код, написанный на языке CUDA. Код программы состоит из:

- 1. Макроса EXIT_WITH_ERROR, который отвечает за вывод сообщения об ошибке в stderr и экстренный выход из программы с кодом возврата 0;
- 2. Макроса SAVE_CUDA, который проверяет, что CUDA функция сработала успешно. В противном случае происходит экстренный выход через EXIT_WITH_ERROR;
- 3. Функции-ядра swapRows, которая отвечает за смену двух строк матрицы местами;
- 4. Функции-ядра initCoefs, которая отвечает за вычисление коэффициентов на каждом шаге прямого хода метода Гаусса;
- 5. Функции-ядра updateRows, которая отвечает за вычисление новых значений элементов на каждом шаге прямого хода метода Гаусса;
- 6. Функции-ядра initCoefsReversed, которая отвечает за вычисление коэффициентов на каждом шаге обратного хода метода Гаусса;
- 7. Функции-ядра updateRowsReversed, которая отвечает за вычисление новых значений элементов на каждом шаге прямого хода метода Гаусса;
- 8. Функции-ядра mult, которая выполняет умножение элементов строки матрицы на переданный коэффициент;
- 9. Функции-ядра initEyeMatrix для инициализации единичной матрицы размера n;
- 10. Типа Comparator, содержащего логику по сравнению элементов, что необходимо при поиске максимального по модулю элемента в матрице.

Результаты

1. Зависимость времени выполнения программы от количества используемых потоков. В качестве единиц измерения времени были выбраны миллисекунды (мс). Тестирование производилось на матрице с размерами 500×500 .

Количество блоков / потоков	1×1	2 × 2	4 × 4	8 × 8	16 × 16	32 × 32
1 × 1	19255	6483	2536	830	353	232
2 × 2	6433	2501	817	368	164	119
4×4	2492	783	342	161	89	79
8 × 8	771	346	157	87	71	71
16 × 16	347	156	87	72	72	34
32×32	244	113	80	72	35	16

Производительность CUDA

2. Сравнение программы на CUDA с блоками (32 × 32) и потоками (32 × 32) и программы на CPU с одним потоком. В качестве единиц измерения времени были выбраны миллисекунды (мс).

Размер матрицы	Время на CUDA (мс)	Время на СРИ (мс)
100×100	12	10
200×200	40	84
400×400	83	670
600×600	136	2281
800×800	199	5484

3. Результат исследования производительности с помощью nvprof (матрица 800×800 , сетка потоков $32 \times 32 \times 32 \times 32$)

```
==296== NVPROF is profiling process 296, command: ./a.out
==296== Profiling application: ./a.out
==296== Profiling result:
               Type Time(%)
                                         Time
                                                     Calls
                                                                                    Min
                                                                                                  Max Name
                                                                      Ave
 GPU activities: 32.43% 55.111ms
                                                     800 68.888us 31.904us 104.96us updateRows(double*, double*, double*, int, int)
                         23.17% 39.379ms
                                                       1600 24.611us 18.976us 26.272us swapRows(double*, int, int, int)
                                                     800 32.279us 21.919us 50.144us updateRowsReversed(double*, double*, double*, int, int) 800 24.257us 18.719us 25.920us initCoefs(double*, double*, int, int)
                         15.19% 25.823ms
                         11.42% 19.406ms
                                                     800 18.989us 18.879us 19.392us initCoefsReversed(double*, double*, int, int)
801 2.5990us 1.5350us 827.38us [CUDA memcpy DtoH]
                           8 94% 15 191ms
                           1.22% 2.0819ms
                                                       1 929.78us 929.78us 929.78us [CUDA memcpy Htol]
1 135.17us 135.17us 135.17us mult(double*, double*, int)
1 124.29us 124.29us 124.29us initEyeMatrix(double*, int)
                                   929.78us
                           0.08% 135.17us
                           0.07% 124.29us
        API calls: 42.60% 150.69ms
                                                      1602 94.060us 7.2280us 857.76us cudaDeviceSynchronize
                                                      1603 68.691us 2.7410us 104.49ms cudaMalloc
                         31.13% 110.11ms
                         11.67% 41.293ms
                                                      8002 5.1600us 3.4580us 2.5454ms cudaLaunchKernel
                          5.11% 18.078ms
                                                      4000 4.5190us 1.6290us 18.202us cudaStreamSynchronize
                           2.74% 9.6755ms
                                                        800 12.094us 11.102us 49.112us cudaMemcpyAsync
                                                      40005 198ns 146ns 697.77us cudaGetLastError
1603 3.6540us 2.2150us 296.61us cudaFree
                           2.25% 7.9588ms
                           1 66% 5 8589ms
                                                      8801 393ns 332ns 12.774us cudaGetDevice
4800 571ns 330ns 713.75us cudaDeviceGetAttribute
                           0.98% 3.4669ms
                           0.78% 2.7414ms
                           0.65% 2.3057ms
                                                         2 1.1529ms 1.1070ms 1.1987ms cudaMemcpy
                                                     2 1.1529ms 1.107/ms 1.198/ms cudaMemcpy
6400 169ns 145ns 13.473us cudaPeekAtLastError
228 1.7940us 155ns 94.941us cuDeviceGetAttribute
1 22.351us 22.351us 22.351us cudaFuncGetAttributes
2 7.2310us 3.9000us 10.563us cuDeviceGetName
2 6.8320us 2.3590us 11.305us cuDeviceGetPCIBusId
4 347ns 185ns 582ns cuDeviceGet
3 422ns 246ns 728ns cuDeviceGetCount
                           0.31% 1.0877ms
                           0.12% 409.04us
                          0.12% 409.04us

0.01% 22.351us

0.00% 14.463us

0.00% 13.664us

0.00% 1.3880us

0.00% 1.2680us
```

Выводы

В данной лабораторной работе был реализован алгоритм нахождения обратной матрицы методом Гаусса с выбором главного элемента по столбцу на языке CUDA.

В реализации алгоритма были применены оптимизации для эффективного использования глобальной памяти GPU, такие как объединение запросов к глобальной памяти. Данный подход позволил сократить общее количество обращений к памяти и повысить итоговую производительность программы. Основные вычислительные процессы распределялись с использованием двухмерной сетки потоков, что позволило более удобно отобразить вычисляемые элемены на потоки.

Для поиска максимального элемента по модулю в текущем столбце применялась библиотека Thrust, что упростило реализацию этой операции и обеспечило эффективный параллельный поиск.

Алгоритм был структурирован с помощью нескольких функций, каждая из которых выполняет отдельный этап, включая выбор главного элемента, вычисление коэффициентов для преобразования строк и нормализации элементов матрицы. Такая декомпозиция позволила выполнять некоторые

действия алгоритма параллельно, при этом сохраняя общее последовательное выполнение.

Для оценки производительности программы была использована утилита nvprof. С ее помощью было измерено время выполнения отдельных ядер и анализированы узкие места, связанные с доступом к памяти.

Таким образом, в ходе лабораторной работы были изучены возможности эффективного использования памяти, а также были использовани инструменты для анализа производительности программы, таких как nvprof, для достижения более высокой эффективности вычислений на графических процессорах.