Example 7

(1992 China Middle School Math Contest) As shown in the figure, in $\triangle ABC$, AB = AC.D is a point on BC.E is a point on AD. $\angle BED = 2\angle CED = \angle A$. Show that BD = 2CD.

Solution: We draw the circumcircle of $\triangle ABC$. Extend AD to meet

the circle at F. Connect BF, CF (figure 1). Since both angles $\angle AFB$ and $\angle AFC$ face the $\mathrm{arcs}(AB=AC)$ of the same length, $\angle AFB = \angle AFC = \angle ABC = \theta$. Thus, DF is the angle bisector of $\angle BFC$. So by the angle bisector theorem, $\frac{FB}{FC} = \frac{BD}{CD}$. Now we only need to prove that $\frac{FB}{FC} = 2$ or BF = 2CF.

We know that in $\triangle ABC$, $\angle A+\angle B+\angle C=180^\circ$, or $\angle A+\theta+\theta=180^\circ$. We also know that in $\triangle EBF$, $\angle BEF+\angle BFE+\angle EBF=180^\circ$, or $\angle BEF+\theta+\angle EBF=180^\circ$. Since $\angle BED=\angle A$, $\angle EBF=\theta$.

We take the line segment BD out of the figure and redraw

the figure (2).

Since EB = EF, we draw EG, the perpendicular bisector of BF. So BG = GF, $\angle GEB = \angle GEF = CEF = \alpha$ (figure 3). Since $\angle GEF = \angle CEF = \alpha$, EF = EF, $\angle EFG = \angle EFC = \theta$, $\triangle EFG \cong \triangle EFC$. So GF = CF. So we proved that BF = 2CF and we are done.

