```
Input: an array B[1, n] of n bits SM-2a Output: B[1] or B[2] or ... or B[n] Model: ERCW, W-PRAM PEs: O(n) Time: O(1) Mark = 0 (a variable in W-PRAM) (P_1 performs)

EW

for 1 \le i \le n parado

if B[i] = 1 then Mark = 1 (P_i performs)

ER CW

return Mark
```


Input: an array A[1, n] of n numbers Output: maximum of A Model: CRCW, W-PRAM PEs: $O(n^2)$ Time: O(1)for $1 \le i \le n$ parado begin mark[i] = 0(P_{i,1} performs) for $1 \le j \le n$ parado if A[j] > A[i] then mark[i] = 1 (P_{i,j} performs) if mark[i] = 0 then max = A[i](P_{i,1} performs) end

SM-2d

Input: an array A[1, n] of n numbers

Output: maximum of A

Model: CRCW PRAM (dynamic priority)

PEs: O(n) Time: O(1) for $1 \le i \le n$ parado begin pri[i] = A[i] P_i performs max = A[i]end

sequential

goal: O(nk) polynomial

perfect: O(n) (linear)

parallel

goal: $O(\lg^k n)$ poly-logrithmic

perfect: O(lg n)

better than O(lg n) ???!!!

SM-6a

