Homework 8

- 1. Complete the proof from the text of Kripke completeness for the positive fragement of IPC as follows:
 - (a) Show that for any poset I, the exponential poset $\mathbf{2}^I$ is a Heyting algebra. (Hint: the limits and colimits are "pointwise", and the Heyting implication $p \Rightarrow q$ is defined at $i \in I$ by $(p \Rightarrow q)(i) = \top$ iff $p(j) \leq q(j)$ for all $j \geq i$.
 - (b) Show that for any poset CCC **A**, the map $y: \mathbf{A} \to \mathbf{2}^{\mathbf{A}^{\text{op}}}$ defined in the text is indeed (i) monotone, (ii) injective, and (iii) preserves CCC structure.
- 2. Verify the claim in the text that the products $A \times B$ in categories \mathbf{Sets}^I of I-indexed sets (I a poset) can be computed "pointwise",

$$(A \times B)_i = A_i \times B_i$$

Show, moreover, that the same is true for all limits.

- 3. Let I be a poset and G a "Kripke model" over I of the theory of monoids, i.e. a monoid in the category \mathbf{Sets}^I of I-indexed sets. Show that G is the same thing as a functor $G: I \to \mathbf{Mon}$.
- 4. Consider the forgetful functors:

$$\mathbf{Groups} \overset{U}{\longrightarrow} \mathbf{Monoids} \overset{V}{\longrightarrow} \mathbf{Sets}$$

Say whether each is faithful, full, injective on objects, surjective on objects, injective on arrows, surjective on arrows.

5. * Recall that a reflexive domain is a model of the λ -theory with one basic type D, two terms $s:(D\to D)\to D$ and $r:D\to (D\to D)$, and one equation r(s(x))=x:D. Verify that all reflexive domains in **Sets** are trivial, in the sense that for arbitrary terms t,t':D, one has $[\![t]\!]=[\![t']\!]$ when interpreted in the domain.