	Anch Sochalla OTU (2K16) MG13 Page No.
	Oryptography & Notwork Security
	Class Test - III
<u></u>	Explain Mos has Function
	Message Dinet Algo is the (MDS) is cryptic raphic. Hash algogithm that can be used to wate 128-bit string value from an arbitrary length string.
	Although their have jons quistics identified life MDS it is slike bridge fiscal. MDS is most commonly used to verify the integrity of files.
	Some applications such as SSH SSL and PSec. Tome applications strengthen the Mor algorithm by adding a salt value to the praintext or by applying the hash jundion multiple turner.
	A MOS hash is typically empressed as a 32 lite hurselimal number. Mos greates on 32 lite pord let M be the mesage to be hashed. The missage M is padded no that it's length (in billy is equal to 448 module 512 that in the
	padded message is 64 Lits less than a multiple of 512. The padaing consists of a single wit, followed by enough zeroes to pad the message to the required length padding is always used, even if the length of M happens to equal 448 mod 512.

		CLAS	s Fun
Date			
Page N	jo.		

	As a result, there is at least one sit
	of padding and at most 512 bits of predding. Then the length (in bits) of the message (before prodding) is appended as a 64-bit 6lock.
	Then the length (in bits) of the message (
	before podding is appended as a by-bit
	block.
	The holded message is a miltiple of \$12 bits
	The housed message is a multiple of 5/2 bits and therefore it is also a multiple of 32 bits Let M be the mosage and N the number of 32-bit words in the holded message
	bits let M se the mosege and N the
	number of 32-but words in the holded message
	One to padding, N is a multiple of 16.
,	