GEOMETRÍA DE CURVAS Y SUPERFICIES.

Curso 2016-17.

Universidad Autónoma de Madrid. Departamento de Matemáticas.

Hoja 6

- 1. Decide, razonadamente, si las siguientes afirmaciones son verdaderas o falsas. Justifica tus respuestas.
 - V(a) Sean S_1 y S_2 dos superficies isométricas, y sea $h:S_1\to S_2$ una isometría entre ellas. Sea $\alpha(s)$ una curva en S_1 , y sea $\beta(s) = h \circ \alpha(s)$. Si α está parametrizada por longitud de arco, entonces β también lo está.
- \digamma (b) Sean S_1 y S_2 dos superficies isométricas, y sea $h:S_1\to S_2$ una isometría entre ellas. Sea $\alpha(s)$ una curva en S_1 , y sea $\beta(s) = h \circ \alpha(s)$ la correspondiente curva en S_2 . Entonces las curvaturas normales de α y β son iguales.
- \bigvee (c) Sea S una superficie regular. Si todos los puntos de S son elípticos, entonces S no puede contener ninguna recta afín.
- ${\sf F}$ (d) Sea S una superficie regular. Si por un punto ${f p}\in S$ pasan dos rectas contenidas en S, entonces p tiene que ser plano.
- $\mathbf{V}(\mathbf{e})$ Sea S una superficie regular. Si por un punto $\mathbf{p} \in S$ pasan tres rectas contenidas en S, entonces p tiene que ser plano.
- 2. Sea S el helicoide parametrizado por: $\mathbf{X}(u, v) = (u \cos v, u \sin v, v).$
 - (a) Elige un campo normal unitario y halla las formas fundamentales primera y segunda.
 - (b) Calcula la matriz del endomorfismo de Weingarten W = dN en la base $\{X_u, X_v\}$.
 - (c) Calcula las curvaturas gaussiana y media.
- 3. Demuestra que si la curvatura media se anula en un $p \in S$ y p no es un punto plano, entonces existen dos direcciones asintóticas ortogonales en p.
- 4. Demuestra que una curva biregular contenida en una superficie S es asintótica si y sólo si su plano osculador es tangente a la superficie en cada punto.

 Sea S la superficie parametrizada por: $\langle Ncx \rangle = 0$ $\langle Ncx \rangle = 0$
- 5. Sea S la superficie parametrizada por:

$$\mathbf{X}(u, v) = (\cos u, \sin u - v^2, v), \quad 0 < u < 2\pi, \quad -\infty < v < \infty$$

Clasifica sus puntos en elípticos, hiperbólicos, parabólicos o planos. Determina si hay algún punto umbilical.

- 6. El paraguas de Whitney es la superficie S parametrizada por $\mathbf{X}(u,v) = (u,uv,v^2)$.
 - (a) Comprueba que X es regular en todos los puntos excepto en (u, v) = (0, 0).
 - (b) Calcula la segunda forma fundamental y comprueba que todos los puntos con $v \neq 0$ son hiperbólicos.
 - $\mathbf{x}(c)$ Las líneas $v = cte_1$ son rectas afines, y por lo tanto líneas asintóticas de S. Halla la otra familia de líneas asintóticas, expresándola como $u \cdot h(v) = \text{cte}_2$ donde h(v) es cierta función solamente de v. Demuestra que, aparte de la semirrecta u=0 y las reglas $v = \text{cte}_1$, el paraguas de Whitney no contiene ningún trozo de recta afín.

- 7. Sea $\alpha(u)$ una curva birregular en \mathbb{R}^3 , parametrizada por arco, y sea $\{\mathbf{t}(u), \mathbf{n}(u), \mathbf{b}(u)\}$ su triedro de Frenet. Sea S la parte de la supercie tangencial de α dada por la siguiente parametrización: $\Phi(u, v) = \alpha(u) + v\mathbf{t}(u)$, con v > 0.
 - (a) Halla una normal unitaria N(u, v) y utilizala para calcular directamente el endomorfismo de Weingarten W = dN (sin pasar por la segunda forma fundamental).
 - (b) Clasifica sus puntos en elípticos, hiperbólicos, parabólicos o planos.
 - (c) Demuestra que si la torsión de α no se anula, entonces las reglas u=cte son los únicos elementos rectilíneos contenidos en S. Sugerencia: Determina las líneas asintóticas. Deduce que S no es ni un cilindro ni un cono (sin embargo es localmente isométrica al plano, según se vió en el ejercicio 9 de la hoja 5).
- 8. Sea $\alpha(u) = (r(u), z(u) \text{ con } u \in J$, un perfil en el plano rz, y sea S la superficie de revolución que se obtiene al rotar α alrededor del eje z. Tenemos para S la parametrización:

$$\mathbf{X}(u,\theta) = (r(u)\cos\theta, \ r(u)\sin\theta, \ z(u))$$

- (a) Eligiendo la normal unitaria $N = (X_u \times X_\theta)/\ell \text{ con } \ell = ||X_u \times X_\theta||$, calcula la segunda forma fundamental.
- (b) Halla la matriz del endomorfismo de Weingarten W = dN en la base $\{X_u, X_\theta\}$ y comprueba que es una matriz diagonal ¿cuáles son las líneas de curvatura?
- \mathbf{x} (c) Comprueba que si α está parametrizada por longitud de arco entonces entonces $N = (-z'(u)\cos\theta, -z'(u)\sin\theta, r'(u))$. Demuestra que en este caso las curvaturas principales vienen dadas por las siguientes fórmulas:

$$r'(u)z''(u) - r''(u)z'(u)$$
 y $\frac{z'(u)}{r(u)}$

9. Sea S la esfera unidad menos un meridiano con parametrización:

$$\Phi(u,v) \equiv \left(\cos u \cos v, \cos u \sin v, \sin u\right), \quad -\frac{\pi}{2} < u < \frac{\pi}{2}, \quad 0 < v < 2\pi.$$

(a) Para cada c>1, encuentra funciones suaves $r_c(u)$ y $z_c(u)$), tales que si S_c es la superficie de revolución parametrizada por

$$\mathbf{X}_c(u,\mu) \equiv (r_c(u)\cos(\mu), r_c(u)\sin(\mu), z_c(u)), \quad -\frac{\pi}{2} < u < \frac{\pi}{2}, \quad -\infty < \mu < +\infty$$
, entonces la aplicación $h_c: S \to S_c$ dada por $\Phi(u,v) \mapsto \mathbf{X}_c(u,cv)$ es una isometría local. (Deja $z_c(u)$ indicada como una integral indefinida).

- (b) Haz dibujos de S_2 y S_4 . ¿Cuántas preimágenes por h_c tiene el punto $\mathbf{X}_c(0, \pi/2)$ para c=2? ¿Qué le ocurre al ecuador de S_c a medida que c aumenta?
- (c) Demuestra que $z_c(\pi/2) z_c(-\pi/2)$ es una función creciente de c. Explica por qué S_c se va afilando a medida que c aumenta. ¿A qué tiende S_c cuando $c \to \infty$?
- \times (d) Aplica el ejercicio anterior al perfil $(r_c(u), z_c(u))$ ¿conserva la isometría h_c el par no ordenado de curvaturas principales? ¿conserva h_c el producto de las curvaturas principales?
- 10. (a) Sea $\alpha(u)$ una curva birregular en el espacio, parametrizada por longitud de arco, con torsión constante $\tau \equiv 1$ y curvatura arbitraria k(u) > 0, y sea $\{\mathbf{t}(u), \mathbf{n}(u), \mathbf{b}(u)\}$ su triedro de Frenet. Definimos una superficie S mediante la parametrización:

$$\Phi(u, v) \equiv \alpha(u) + v \mathbf{b}(u)$$
.

Demuestra que S contiene a α y calcula I_{Φ} .

(b) Sean $\alpha_1(u)$, $\alpha_2(u)$ dos curvas birregulares parametrizadas por longitud de arco, ambas con torsión constante 1 pero con curvaturas $k_1(u)$, $k_2(u)$ distintas. A partir de α_1, α_2 , construimos parametrizaciones respectivas $\Phi_1(u, v)$, $\Phi_2(u, v)$ igual que en el apartado (a) y llamamos S_1, S_2 a las superficies resultantes. Demuestra que la aplicación

$$h: S_1 \longrightarrow S_2$$
 definida por $\Phi_1(u,v) \longmapsto \Phi_2(u,v)$

es una isometría local que lleva α_1 a α_2 .

(c) Elige la normal unitaria N de S que cumple $N \cdot \mathbf{n}(u) > 0$, y demuestra que

$$II_S \equiv \sqrt{1+v^2} k(u) (du)^2 - 2 \frac{1}{\sqrt{1+v^2}} du dv.$$

- (d) Deduce que una familia de líneas asintóticas es la $u = \text{cte y la otra viene dada por la ecuación } (1 + v^2) k(u) u' 2 v' = 0.$
- (e) Deduce también que las líneas de curvatura de S vienen dadas por:

$$u'^2 + k(u) u' v' - \frac{v'^2}{1 + v^2} = 0.$$

- (f) Halla la matriz de -W=-dN en la base $\{\Phi_u,\Phi_v\}$ y utilízala para calcular la pareja k_1,k_2 de curvaturas principales de S.
- (g) En vista del resultado en (d) dí, razonadamente, si la isometría h del apartado (b) lleva o no líneas asintóticas de S_1 a líneas asintóticas de S_2 (recuerda que $k_1 \neq k_2$). Misma pregunta para líneas de curvatura.
- (h) ¿Preserva la isometría h del apartado (b) la pareja de curvaturas principales? ¿Preserva el producto de esas dos curvaturas?

$$M I = \begin{pmatrix} I (V_{1}/V_{1}) \\ I (V_{2}/V_{2}) \end{pmatrix} = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}$$

$$uatriz de (dN)_{p}$$

$$use $\int V_{1}/V_{2}$

$$V_{3} = M_{1}V_{1} + M_{2}V_{2}$$

$$V_{3} = M_{1}V_{1} + M_{2}V_{2}$$

$$V_{4} = V_{4} + M_{2}V_{2}$$

$$V_{5} = V_{4}V_{1} + M_{2}V_{2}$$

$$V_{7} = V_{7} + M_{2}V_{2}$$

$$V_{8} = V_{1} + M_{2}V_{2}$$

$$V_{9} = V_{1} + V_{2} + M_{2}V_{2}$$

$$V_{9} = V_{1} + V_{2} + M_{2}V_{2}$$

$$V_{1} = V_{2} + V_{3} + V_{4}V_{2}$$

$$V_{1} = V_{2} + V_{3} + V_{4}V_{2}$$

$$V_{1} = V_{2} + V_{3} + V_{4}V_{2}$$

$$V_{1} = V_{2} + V_{3} + V_{4}V_{4}$$

$$V_{2} = V_{3} + V_{4}V_{4}$$

$$V_{3} = V_{4}V_{4}$$

$$V_{3} = V_{4}V_{4}$$

$$V_{3} = V_{4}V_{4}$$

$$V_{3} = V_{4}V_{4}$$

$$V_{4} = V_{4}V_{4}$$

$$V_{5} = V_{4}V_{4}$$

$$V_{5} = V_{4}V_{4}$$

$$V_{6} = V_{6}V_{4}$$

$$V_{6} = V_{6}V_{4}$$

$$V_{7} = V_{8}V_{4}$$

$$V_{8} = V_{8}V_{4}$$

$$V_{9} = V_{9}V_{4}$$

$$V_{9} = V_{9}V$$$$

$$X_{\nu}(u,v) = (u,v) =$$

$$\times_{uv}(u,v) = (0,0,0)$$
 matrit de la campo $\times_{uv}(u,v) = (-senv, cosv, 0)$ en la base unitario normal

$$||Xux \times V|| \qquad ||(SeW, -CosV, u)|| \qquad ||V|| \times ||V|| \times$$

 $= \begin{pmatrix} 0 & \frac{-4}{\sqrt{1+u^2}} \\ \frac{-4}{\sqrt{1+u^2}} & 0 \end{pmatrix} \text{ respecto } a \left\{ \frac{1}{2} \right\}_{u_1} \times v_{v_1}^{2}$

c)
$$K = det W = \frac{-1}{(1+u^2)^2} = \frac{eg - 7}{EG - F^2} = \frac{1}{1+u^2} = \frac{-1}{(1+u^2)^2}$$

 $H = trW = 0 \implies superficie minimal$

parametrizado por arco.

(a) asintotica
$$\Rightarrow$$
 plano osculador de α es fangente a S

(a) asintotica \Rightarrow plano osculador de α es fangente a S

(a) asintotica \Rightarrow plano osculador de α es fangente a S

(a) asintotica \Rightarrow plano osculador en α (s) \Rightarrow spanoftx(s), α (s) \Rightarrow \Rightarrow α (nox) = dN(a(s))

(b) \Rightarrow spanoftx(s), α (a(s)) \Rightarrow α (a(s))

$$\begin{array}{lll} & \begin{array}{l} \sum \left| \begin{array}{l} \left(\left(u_{N} \right) \right) \right. = \left(\cos u_{1} , \, \operatorname{senu} - \operatorname{v}^{2}, \, \operatorname{v} \right) \\ \left(\left(u_{1} \right) \right) = \left(-\operatorname{senu}, \, \operatorname{cosu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(-\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(-\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(-\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{senu}, \, \operatorname{o} \right) \\ & \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, \operatorname{senu}, \, -\operatorname{o} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{o} \right) \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{o} \right) \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{o} \right) \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{o} \right) \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \left(\operatorname{cosu}, \, -\operatorname{o} \right) \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \begin{array}{l} \left(\left(u_{1} \right) \right) = \ell \\ & \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left(\left(u_{1} \right) \right) = \ell \end{array} \right) \\ & \left(\left(u_{1} \right) \left$$

N=0 | 2 Senu = 1 → u ∈ { = , 5 = } $\begin{bmatrix} \cos u = 0 \end{bmatrix} \rightarrow u \in \left\langle \frac{\pi}{2}, \frac{3\pi}{2} \right\rangle \Rightarrow \left\langle \begin{array}{c} \text{bien} & 2 = 4 + 4v^2 \\ \text{o} & \text{hien} & -2 = 1 + 4v^2 \\ \text{imposible} \end{array} \right\rangle$ (d) => v= ± == Los puntos umbilicos de S son: $X(\Xi, 0), X(\Xi, 0), X(\Xi, \frac{1}{2}, \frac{1}{2}), X(\Xi, -\frac{1}{2}, 0)$ a) $\alpha: I \longrightarrow \mathbb{R}^3$ birregular con C = 1. $\Phi(u,v) = \alpha(u) + vb(u)$ $S = \Phi(I \times IR)$ $\alpha(u) = \Phi(u,0) \Rightarrow \alpha(I) \subset S$ T=1 $\Phi_{u}(u,v) = \mathcal{H}(u) - \nabla v m(u) = \mathcal{H}(u) - v m(u) | sieupre | lin. indep.$ \Rightarrow S = \sqrt{IxR} es superficie regular $\underline{T}_{\Phi} = \begin{pmatrix} 4 + \sqrt{2} & 0 \\ 0 & 1 \end{pmatrix}$ b) $\alpha_1, \alpha_2: I \longrightarrow \mathbb{R}^3$ birregulares, por arco, $C_1 = C_2 = 1$, $K_1 \neq 1$ $\downarrow \rightarrow \Phi_1, \Phi_2$ parametrizaciones $\Phi_i(u,v) = \alpha_i(u) + v \Phi_{\alpha_i}(u)$, i=1,2in h: $S_1 \longrightarrow S_2$ isometria local/ $h(\alpha_1(u)) = \alpha_2(u)$ fue I $h(\Phi_1(u,v)) = \Phi_2(u,v)$ $I_{\Phi_1}(u,v) = \begin{pmatrix} 1+v^2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ have para $\Phi_2(u,v)$ $\Phi_2(u,v)$

· isometria local def. ((dh)(p) v, (dh)(p) w> EL = $\langle V_1 W \rangle$ $\forall p \in S_1$ YVINE TPS1 $E_1 = \langle (\Phi_1)_n, (\Phi_1)_n \rangle$, $E_2 = \langle (\Phi_2)_n, (\Phi_2)_n \rangle$ $\langle (dh)(p)(\Phi_1)u, (dh)(p)(\Phi_1)u \rangle \stackrel{?}{=} \langle (\Phi_1)u, (\Phi_1)u \rangle$ (3, (hoΦ1)(uo,vo), 3, (hoΦ1)(uo,vo)> $\langle (\Phi_z)_{\mathfrak{u}} (\mathfrak{u}_{\mathfrak{o}}, \mathfrak{v}_{\mathfrak{o}}) , (\Phi_z)_{\mathfrak{u}} (\mathfrak{u}_{\mathfrak{o}}, \mathfrak{v}_{\mathfrak{o}}) \rangle$ Falta haver lo mismo con $\frac{2}{3v}, \frac{2}{3v}$ y $\frac{2}{3v}, \frac{2}{3u}$ $\langle (\Phi_1)_n, (\Phi_1)_n \rangle$ Shora falta ver que $h(x_1(u)) = x_2(u)$ $\forall u \in I$: $h(\alpha_1(u)) = h(\Phi_1(u,0)) \stackrel{\text{def. h}}{=} \Phi_2(u,0) = \alpha_2(u)$:) N normal unitario tal que <N, M>>0 Probav $I = \sqrt{1 + v^2} K(u) (du)^2 - 2 \frac{1}{\sqrt{1 + v^2}} du dv$ Por a) Tourn S = spanf (u) - vm(u), b(u) In campo normal unitario es: $\frac{\overline{\Phi}_{u} \times \overline{\Phi}_{v}}{\|\overline{\Phi}_{u} \times \overline{\Phi}_{v}\|} = \frac{-m(u) - v \mathcal{H}(u)}{\sqrt{1+v^{2}}}$ considerances el opuesto: $\int (u,v) = \frac{m(u) + v + (u)}{\sqrt{1 + v^2}} \quad que \quad cumple \quad \langle N, m \rangle > 0$ $\Phi_{uu}(u_1v) = K(u) \Pi(u) + V K(u) H(u) - V E(u) H(u)$ $\Psi_{uv}(u_{|V}) = -1M(u)$ $\Phi_{...}(u...) = 0$

$$e = \langle \Phi_{uv}, N \rangle = \frac{\Delta}{\sqrt{1+v^2}} \left(R(u) + v^2 K(u) \right) = K(u) \sqrt{1+v^2}$$

$$f = \langle \Phi_{uv}, N \rangle = \frac{-1}{\sqrt{1+v^2}} \qquad \frac{Remerde}{II} = \begin{pmatrix} e & f \\ f & g \end{pmatrix} = edu^2 + 2f dudv + gc$$

$$g = \langle \Phi_{vv}, N \rangle = 0$$

$$V \in T_pS$$
 dirección asintótica si $T_p(v_iv) = 0$

$$\alpha: I \longrightarrow S$$
 curva es LiNEA ASINTÓTICA SI $I_{\alpha(t)}(\alpha'(t), \alpha'(t)) = 0$ HE

$$\frac{1}{8}$$

e.d.
$$0 = \prod_{\Phi \circ \beta(E)} \left((\Phi \circ \beta)'(E), (\Phi \circ \beta)'(E) \right)$$
 $\beta(E) = (u(E), v(E)) \in \mathbb{R}$

$$B(t) = (u(t), v(t)) \in \mathbb{R}$$

$$(\Phi \circ \beta)'(t) = \Phi_{\alpha}(\beta(t)) \cdot \alpha'(t) + \Phi_{\gamma}(\beta(t)) \cdot \gamma'(t)$$

$$\Rightarrow 0 = (u', v') \begin{cases} K(u)\sqrt{1+v^2} u' - \frac{v'}{\sqrt{1+v^2}} \\ \frac{-u'}{\sqrt{1+v^2}} \end{cases} = K(u)\sqrt{1+v^2} (u')^2 - \frac{2u'v'}{\sqrt{1+v^2}}$$

$$= u' \left(K(u) \sqrt{1+v^2} u' - 2 \frac{v'}{\sqrt{1+v^2}} \right)$$

•
$$u'=0 \Rightarrow u=cta$$
.

e) linear de aurvatura de S.

(e) = $\Phi(u(t), v(t))$ linea de curvatura si $x'(t) = \Phi_u(u(t), v(t)) u'(t) + \Phi_v(u(t), v(t)) v'(t)$ es dirección de curvatura $\forall t$.

 $W_{\kappa(t)} \propto'(t) = \lambda(t)$, $\alpha'(t)$ para cierta $\lambda: I \longrightarrow \mathbb{R}$ $\forall t \in I$.

En le base $\{\bar{\Psi}_u, \bar{\Psi}_v\}$ esto equivale $\{\bar{I}_{\alpha(e)}\}^{-2} (\bar{I}_{\alpha(e)}) \begin{pmatrix} u'(e) \\ v'(e) \end{pmatrix} = \lambda(e) \begin{pmatrix} u'(e) \\ v'(e) \end{pmatrix}$

 \Leftrightarrow (I) $\binom{u'}{v'}$ proporcional a (I) $\binom{u'}{v'}$ (*)

Tentamos: $(I) \equiv \begin{pmatrix} \lambda + v^2 & 0 \\ 0 & 4 \end{pmatrix}$

 $(I) = \begin{pmatrix} \chi(u) \sqrt{1+v^2} & \frac{-1}{\sqrt{1+v^2}} \\ \frac{-1}{\sqrt{1+v^2}} & 0 \end{pmatrix}$

 $(*) \iff \det \left((\mathbb{I}) \binom{\mathsf{u}'}{\mathsf{v}'} \right) \left(\mathcal{I}) \binom{\mathsf{u}'}{\mathsf{v}'} \right) = 0$

 $\det \begin{pmatrix} k(u)\sqrt{1+v^2} u' - \frac{1}{\sqrt{1+v^2}} v' \\ \frac{-1}{\sqrt{1+v^2}} u' \end{pmatrix} = 0 \qquad \Longrightarrow$

 $\iff K(u) \sqrt{1 + v^2} u'v' - \frac{1}{\sqrt{1 + v^2}} v'^2 + \frac{(1 + v^2) u'^2}{\sqrt{1 + v^2}} = 0$

Dividiendo por $\sqrt{1+v^2}$:

 $0 = K(u) u'v' - \frac{v'^2}{1+v^2} + u'^2$

+) W = - dN La expresión matricial de W en la base 1 Iu, IV} viene dada por:

$$W = (I)^{-1} (II) = \begin{pmatrix} \frac{1}{1+v^2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{1+v^2} & -\frac{1}{1+v^2} \\ \frac{-1}{1+v^2} & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{1+v^2} & -\frac{1}{1+v^2} \\ -\frac{1}{1+v^2} & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{1+v^2} & -\frac{1}{1+v^2} \\ -\frac{1}{1+v^2} & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{1+v^2} & \frac{1}{1+v^2} \\ -\frac{1}{1+v^2} & 0 \end{pmatrix}$$

Calculamos los autovalores:

$$\det\begin{pmatrix} K(u) - \lambda & \frac{-1}{1+v^2} \\ -1 & -\lambda \end{pmatrix} = \lambda^2 - K(u)\lambda - \frac{1}{1+v^2} = 0 \iff$$

Las curvaturas principales:
$$\frac{K(u) \pm \sqrt{K(u)^2 + \frac{4}{1+v^2}}}{2\sqrt{1+v^2}}$$

g) θ devia que las lineas asintóticas de θ son $\theta = 0$.

 $h: S_1 \longrightarrow S_2$, $h(\overline{\Phi}_1(u,v)) = \overline{\Phi}_2(u,v)$ Vimos en b que h es isometria local.

La curva u=cte. en S1 es enviada por h en la curva u=cte. en S2, que por @ es linea asintótica de S2. Las curvas $\Phi_4(u(t), v(t))$ en S_1 que cumplen $(1+v^2)$ K(u)u'-2v'=0

son lineas asintóticas en 51.

for h, tales curvas van en curvas en S2 \$2 (u(t), v(t)) tales que $(1+v^2)$ $K_{\alpha,1}(u)u' - 2v' = 0$. Pero como $K_{\alpha,1} \neq K_{\alpha,1}$, la curva

en S_2 que cumple $(1+v^2) K_{K_2}(u) u' - 2v' = 0$ no cumple ni u=cte, ni que $(1+v^2) K_{K_2}(u) u' - 2v' = 0$, que son las condiciones de ser linea asintófice en S_2 .

La isometría local h no preserva linear asintóficas

TEORÍA: las isometrías locales preservan las propiedades intrínsecas (las que dependen solo de le 1 = FF). Las lineas asintóticas & son $II(x^1, x^1) = 0$ y le 2 = FF depende de N, que es extrínseco a la superficie (se sale de elle). Las lineas de aurvatura tampoco se conservarían si dependiesen de otra cosa que no fuese de la 1 = FF

Las lineas de curvatura tampoco se preservan por h, ye que en su expresión $0 = K_{\alpha}(u) u'v' - \frac{v'^2}{1+v^2} + u'^2$ aparece la curvatura de α_i , $i \in \{1,2\}$.

h) Preserva h les curvaturas principales? $\{K_{i}^{S_{i}}, K_{i}^{S_{i}}\}$ curvaturas principales de S_{i} $\{K_{i}^{S_{i}}, K_{i}^{S_{i}}\}$ curvaturas principales de S_{i} $\{K_{i}^{S_{i}}, K_{i}^{S_{i}}\}$ curvaturas principales de S_{i} $\{K_{i}^{S_{i}}, K_{i}^{S_{i}}\}$ como dependen de $\{K_{i}\}$ no se preservan.

Preserva h el producto de las curvaturas principales? Tal producto es la curvatura de Gauss que es $K = \det W$. En ambos casos $(S_1 y S_2)$ $K_i = \det W^{S_i} = \det \left(\frac{K_{\alpha_i}(u)}{\sqrt{1+u^2}} - (1+v^2)^{-3/2}\right) = -(1+v^2)^{-2}$ Eomo no dependen de $K_{\alpha_i} = 0$ la curvatura de Eauss se preser

(6.)
$$\mathbb{X}(u,v) = (u, uv, v^2)$$
 $S = \mathbb{X}(\mathbb{R}^2)$

a) \mathbb{X} es regular en $(u,v) = (0,0)$?

 $\mathbb{X}_u(u,v) = (1,v,0)$
 $\mathbb{X}_v(u,v) = (0,u,2v)$

Sou linealmente independientes \Longrightarrow $(0,u,2v) \neq (0,0,0) \Longrightarrow (u,v) \neq (0,0,0)$

They que ver $S: \mathbb{X}$ en injectiva:

 $(u,uv,v^2) = (\overline{u}_1 \overline{u} \overline{v}, \overline{v}^2) \Longrightarrow \begin{cases} u = \overline{u} \\ uv = \overline{u} \overline{v} = u \overline{v} \end{cases}$

Para que \mathbb{X} sea injectiva la consideramas

definida en $(\mathbb{R}\setminus 10) \times \mathbb{R}$.

$$\mathbb{X}_{uv} = (0,0,0) \times \mathbb{R}$$
 $\mathbb{X}_{uv} = (0,0,0) \times \mathbb{R}$
 \mathbb

C) $V = V_0 = cte$ \Longrightarrow recta $x(u) = (u, uv_0, v_0^2) = (0, 0, v_0^2) + u(1, v_0, 0) \in S , \forall u \in IR$ Por fauto es línea asintótica.

Halla la otra familia, expresando tales líneas asintóticas

como $u \cdot h(v) = cte_2$ $x(t) = x(u(t), v(t)) \quad asintótica$ $I(x',a') = 0 \quad \Longleftrightarrow \quad (u',v') \quad \frac{1}{\ell} \begin{pmatrix} 0 & -2v \\ -2v & 2u \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = 0 \quad \Longleftrightarrow \quad \cdots$

 $h(v) = \frac{1}{\sqrt{v}} \implies \frac{u}{\sqrt{v}} = cte \implies \chi(c\sqrt{v}, v) = (c\sqrt{v}, c\sqrt{v}, v^2)$ $paso \atop dumigo \rightarrow preguntarselo!$