

Machine Learning and Data Mining

Basic Matrix Analysis and Singular Value Decomposition

Nguyen Hoang Tran

What is Machine Learning?

Informally: Making predictions from data

Formally: The construction of a statistical model that is an underlying distribution from which the data is drawn from, or using which we can classify the data into different categories.

Review

Elements of Machine Learning

Neural Networks

Source: http://playground.tensorflow.org/

REGENERATE

This is the output

from one **neuro** Hover to see it

Neural Networks

Common representation

data, neuron and

☐ Show test data ☐ Discretize output

Is there a common way to represent data of different modalities?

Text to matrix

- Document-Word Matrix
- Document I: "AACCBBAAA"
- Document 2:"CCAABBDD"

$$\left[\begin{array}{ccccc} A & B & C & D \\ 5 & 2 & 2 & 0 \\ 2 & 2 & 2 & 2 \end{array}\right]$$

Network data

Image data

	[0	1	0	0
Nodes	1	0	1	1
Š	0	1	0	0
	0	1	0	0

						700 x 500			
						4	45	6	
					\Longrightarrow	6	12	33	
						22	17	44	
ww	w.sydney.visito	rsbureau.com.au							
	4	45	6	6	12	33	22	17	44

Similarity Computation

- We can now represent most data types as a matrix.
- A special case of a matrix is a vector.
- Now lets compute similarities with these objects.

Similarity Computation

How can we quantify similarity between A, B and C?

П

Similarity Computation

Similarity Computation

Dot product

$$x = (x_1, x_2, ..., x_n);$$
 $y = (y_1, y_2, ..., y_n);$
 $x.y = (x_1y_1 + x_2y_2 + ... + x_ny_n);$

• Norm (length) of a vector

$$||x|| = (x.x)^{1/2} = (x_1.x_1 + x_2.x_2 + x_n.x_n)^{1/2}$$

 The similarity between two vectors x and y is given by

$$sim(x, y) = x.y/(||x|| ||y||)$$

13

Similarity Computation

- Can sim(x,y) > 1? $sim(x,y) = x.y/(\|x\| \|y\|)$
- No! Because of Cauchy-Schwarz inequality:

$$|x \cdot y| \le ||x|| ||y||.$$

Image search engine

Matrix Algebra

Why Matrix Algebra?

- In database management, the fundamental entity is a *relation*.
 - SQL (relational algebra) is a collection of operations on relations – Select, project, join, group-by
- In machine learning and data mining, the fundamental entity is a matrix
 - We therefore need to know the basic operations on matrices
 - One important application is to summarise data or extract patterns from data or compress data
 - In SIT several people apply data mining for different domains: Chinese medicine, bioinformatics, student learning, multimedia, image processing, quality of cloud computing service, text analysis, medical imaging, robotics

Why Matrix Algebra?

- Data Mining: Computation for large data sets
- Key idea: Data Reduction leads to "Knowledge Discovery"
- Matrix algebra provides simple algorithms with great power for data management, e.g., data reduction or data summarisation.

18

Suggested book

http://math.mit.edu/~gs/linearalgebra/

Numbers vs Matrices

Numbers

- Can add and subtract numbers
- Multiply numbers
- Divide two numbers a/b as long as b is not equal to 0.
- Can factorise positive numbers into product of primes

Matrices

- Can add and subtract compatible metrics
- Multiply and divide matrices
- Division of matrices is complicated
- Can factorise any matrix to get data patterns (using a technique called Singular Value Decomposition)

Linear Algebra

- Area in maths that deals with vector spaces and linear mappings between these spaces
- The generalisation of LA to infinite dimensions is known as functional analysis

Linear algebra

Functional analysis

21

Definition for vector space: 8 Axioms

- Associativity of addition: (u+v)+w=u+(v+w)
- Commutativity of addition: u+v=v+u
- Identity element of addition: $\exists 0, v+0=v$
- Inverse elements of addition: $\forall v,\exists -v,v+(-v)=0$
- ullet Compatibility of scalar multiplication with field multiplication: (a and b are scalars) a(bv)=(ab)v
- Identity element of scalar multiplication: $\exists 1, 1v = v$
- Distributivity of scalar multiplication with respect to vector addition: (a is a scalar) a(u+v)=au+av
- Distributivity of scalar multiplication with respect to field addition: (a and b are scalers)

$$(a+b)v = av + bv$$

Basics I

$$S = \left[\begin{array}{rrr} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- This is a 3 x 3 matrix.
- In general $m \times n$.
 - m rows and n columns
 - Square matrix when m=n
- Each row or column could represent one object. If rows are objects then columns are features/attributes/components

Basics II

• Identity matrix *I*

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

- If A is a square matrix, AI = IA = A
- *I* is an example of a **diagonal** matrix.
- ullet If $A=[a_1,...a_m]$ is matrix where a_i are the columns, then
 - A is <u>orthogonal</u> if $a_i.a_j = 0$ for $i \neq j$
 - A is orthonormal if above and $a_i.a_i = 1$

25

27

Linear independence

- Intuitively, a set of vectors is linearly independent if any element of the set cannot be expressed as a linear combination of the others.
- The columns are not linearly independent:

$$S = \left[\begin{array}{rrr} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Basics III

- Every vector can be written as a linear combination of some finitely many "special" vectors.
- These are called basis-vectors.

$$S = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Exercise

Given v = (1, 2, 3), calculate:

- I. The length of $\it v$
- 2. A unit vector in the same direction as v
- 3. A set orthogonal bases for \boldsymbol{v}
- 4. A vector perpendicular to v

Solution

Given v = (1, 2, 3), calculate:

- I. The length of v is $\sqrt{14}$
- 2. A unit vector in the same direction $(1/\sqrt{14}, 2/\sqrt{14}, 3/\sqrt{14})$
- 3. A set orthogonal bases: (1, 0, 0); (0, 1, 0), (0, 0, 1)
- 4. A vector perpendicular to v = (-1, -1, 1)

29

Rank of a matrix I

- Given a matrix M, the **rank** of a matrix is the maximum number of linearly independent columns.
- A rank 2 matrix: $S = \left[\begin{array}{ccc} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right]$

Determinant

- Matrix A maps the unit n-cube to the ndimensional parallelotope defined by the column vectors
- The determinant gives the signed n-dimensional volume of this parallelotope
- For 2 by 2 matrix

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$= aei + bfg + cdh - ceg - bdi - afh.$$

Rank of a matrix II

• Can we automatically determine the rank of a matrix

$$S = \left[\begin{array}{rrr} 3 & 1 & 3.5 \\ 2 & 2 & 3 \\ 4 & 2 & 5 \end{array} \right]$$

• Why is rank important anyways...?

Transpose of a matrix

- The transpose of a matrix A, denoted A^T is another matrix B such that B(i, j) = A(j, i)(just flip the matrix)
- The transpose of S is S^T

$$S = \begin{bmatrix} 3 & 3 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix} \qquad S^T = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 4 & 0 \end{bmatrix}$$

$$S^T = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 4 & 0 \end{bmatrix}$$

33

Matrix Decompositions

Exercise

• What is the rank of the following matrix:

$$\begin{bmatrix}
1 & 2 & 3 \\
3 & 4 & 5 \\
5 & 4 & 3 \\
0 & 2 & 4 \\
1 & 3 & 5
\end{bmatrix}$$

Eigen Decomposition

ullet For any square matrix A we say that λ is an eigenvalue and u is its eigenvector if

$$A\mathbf{u} = \lambda \mathbf{u}, \quad \mathbf{u} \neq 0.$$

• Stacking up all eigenvectors/values gives

$$AU = U\Lambda = \begin{bmatrix} & | & & & & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \\ & | & & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

Eigen Decomposition

- If A is symmetric, all its eig-vals are real, and all its eig-vecs are orthonormal, $\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$
- $\bullet \ \ \text{Hence} \quad U^TU=UU^T=I, \quad |U|^2=1.$
- and $A = U\Lambda U^T = \sum_{i=1}^n \lambda_i \mathbf{u}_i \mathbf{u}_i^T$

$$A = \begin{bmatrix} & | & & & | & \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \\ & | & & | \end{bmatrix} \begin{bmatrix} & \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} & & \mathbf{u}_1^T & \dots \\ & & \mathbf{u}_2^T & \dots \\ & & \vdots & \\ & & & \mathbf{u}_n^T & \dots \end{bmatrix}$$

$$= \lambda_1 \begin{bmatrix} & | & \\ \mathbf{u}_1 & & \\ & | & \end{bmatrix} \begin{bmatrix} & & \mathbf{u}_1^T & \dots \end{bmatrix} + \dots + \lambda_n \begin{bmatrix} & | & \\ & \mathbf{u}_n & \\ & | & \end{bmatrix} \begin{bmatrix} & & \mathbf{u}_n^T & \dots \end{bmatrix}$$

Principal component

- Given a data matrix $X \in \mathbb{R}^{n \times d}$, the principle components of X are the eigenvectors of $X^{\top}X$
- Principal component analysis (PCA) for X is to find the eigenvectors and eigenvalues of the matrix $X^{\top}X$.

37

Geometric intuition

Exercise

 Find the eigenvectors and eigenvalues for the following matrix

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

50

Singular Value Decomposition

• Given any real matrix X of size (m, n) it can be expressed as:

$$X = U\Sigma V^{T}$$

$$m \times r \qquad r \times r \qquad r \times n$$

- r is the rank of matrix X
- U is a (m, r) column-orthonormal matrix
- V is a (n, r) column-orthonormal matrix
- Σ is diagonal $r \times r$ matrix

SVD in Python

• One line command:

>>> U, s,V = np.linalg.svd(a, full matrices = True)

$$X = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0.58 & 0.58 & 0.58 & 0.71 & 0.71 \end{bmatrix}$$

Singular Value Decomposition

$$X = \lambda_1 \mathbf{u}_1 \times \mathbf{v}_1^t + \lambda_2 \mathbf{u}_2 \times \mathbf{v}_2^t + \dots + \lambda_r \mathbf{u}_r \times \mathbf{v}_r^t$$

SVD as a sequence of operations THE UNIVERSITY OF SYDNEY

Qualitative use of SVD

$$X = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

- Two kinds of customers (businesses and individuals)
- Two kinds of days (weekday and weekends)
- *U* is a customer-pattern matrix
- V is a day-pattern matrix
- V(1,2) = 0 means Wednesday has zero similarity with the "weekend pattern."

45

Example: Users to Movies

• $A = U\Sigma V^T$ - example: Users to Movies

Data reduction with SVD

- Now how can we use an SVD decomposition...
- The first way is **qualitative**...
 - Customer-day pattern; or Customer-Pattern-day matrix...
- The second way is **quantitative**...
 - When X is very large, we can compress X into a smaller matrix but still retain important information...

Example: Users to Movies

ullet $A=U\Sigma V^T$ - example: Users to Movies

U is "user-to-concept" similarity matrix

Example: Users to Movies

• $A = U\Sigma V^T$ - example:

Data Reduction and Matrix compression

Interpretation

'movies', 'users' and 'concepts':

- **U**: user-to-concept similarity matrix
- V: movie-to-concept similarity matrix
- Σ: its diagonal elements: 'strength' of each concept

50

Spectral representation

• Matrix *X* can also be written as:

$$X = \lambda_1 \mathbf{u}_1 \times \mathbf{v}_1^t + \lambda_2 \mathbf{u}_2 \times \mathbf{v}_2^t + \dots + \lambda_r \mathbf{u}_r \times \mathbf{v}_r^t$$

• The above is called **spectral** representation.

$$X = 9.64 \times \begin{bmatrix} 0.18 \\ 0.36 \\ 0.18 \\ 0.90 \\ 0 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \end{bmatrix} + 5.29 \times \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0.53 \\ 0.80 \\ 0.27 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

Example: compression of X

$$X = U \Sigma V^{T}$$

$$m \times r$$

$$r \times r$$

$$r \times n$$

- Size of X = mn
- Size of $U + \Sigma + V$ is mr + r + nr
- Thus compression ratio is

$$\frac{mr+r+nr}{mn} = \frac{r(m+1+n)}{mn} \approx \frac{rm}{mn} = \frac{r}{n}$$

• Can we do better?

53

Example: compression of X

• Now a compact way of writing the spectral representation is:

$$X = \sum_{i=1}^{r} \lambda_i \mathbf{u}_i \times \mathbf{v}_i^t$$

• However, can approximate it as:

$$\hat{X} = \sum_{i=1}^{k} \lambda_i \mathbf{u}_i \times \mathbf{v}_i^t$$

• This new compression ratio is:

$$\frac{mk+k+nk}{mn} = \frac{k(m+1+n)}{mn} \approx \frac{km}{mn} = \frac{k}{n} \leqslant \frac{r}{n}$$

Example: compression of X

- To get better compression we should look at the λ values.
 - These are called **singular values**.
- We can arrange them in descending order:

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r > 0$$

Now recall....

$$X = \lambda_1 \mathbf{u}_1 \times \mathbf{v}_1^t + \lambda_2 \mathbf{u}_2 \times \mathbf{v}_2^t + \dots + \lambda_r \mathbf{u}_r \times \mathbf{v}_r^t$$

Thanks!