Lecture 12

Last time introduced two concepts

Equivalence relation: Let X be a set, and let \sim be a binary relation on X. It is an equivalence relation if it is \circ reflexive: $\forall x \in X$, $x \sim x$.

• Symmetric! $\forall x, y \in X$, $x \sim y \Rightarrow y \sim x$.

• transitive: $\forall x, y, z \in X$, $x \sim y$ and $y \sim z \Rightarrow z \sim z$.

Partition: Let X be a set, and let SZ be a set of subsets of X. SZ is a partition if $YA,B \in SZ$, either $A \cap B = \emptyset$ or A = B. X = UA

Today, the slogan is "equivalence relations are essentially the same as partitions." More precisely, each equivalence relation determines a partition and vice versa.

A) From equivalence relation to partition:

(et X be a set and let n denote an equivalence relation on X. Pick some $x \in X$. Define the equivalence class of x to be the set $[x] = \{ y \in X \mid x \neq y \} \subseteq X, \text{ a subset of } X.$

(We sometimes also write $[x]_n$ or $[x]_R$ to emphasize) dependence on the relation or or $R \subseteq X \times X$

Proposition With notation as above, we have $\forall x,y \in X$, $x \sim y$ iff [x] = [y].

Proof Suppose $x \sim y$. Take $z \in [x]$. Then $z \sim x$ Now $z \sim x$ and $y \sim y$ implies $z \sim y$ by transitivity.

So $z \in [y]$. Thus $[x] \subseteq [y]$.

Also, if $w \in [y]$, $w \sim y$. Now $y \sim x$ by symmetry,

So $w \sim y$ and $y \sim x \implies w \sim x$, by transitivity.

Thus $[y] \subseteq [x]$ and [x] = [y].

Conversely, suppose [x]=[y]. By reflexivity, $x \sim x$ so $x \in [x]$, and so $x \in [y]$. Thus $x \sim y$.

Cerollary With notation as above, we have: $\forall x,y \in X$, either $[x] \cap [y] = \emptyset$ or [x] = [y]

Proof: If $[x] \cap [y] \neq \emptyset$, take $z \in [x] \cap [y]$. Then $z \in [x]$ so $z \wedge x$ and $z \in [y]$ so $z \wedge y$. By symmetry $x \wedge z$, which ambited with $z \wedge y$ yields $x \wedge y$. By previous proposition [x] = [y]

Corollary let ~ be an equivalence relation on X. Then the set of equivalence classes

52~= {[z]~|x+X} is a partition of X.

Proof: Since $x \in [x]$, we see $X = \bigcup [x] = \bigcup A$.

The other property of a partition was proved in the previous arollary.

(B) From partitions to equivalence relations.

Now let X be a set, and let 52 be a partition of X. Define a binary relation ~ on X by

 $x \sim y$ iff $\exists A \in SZ$ such that $x \in A$ and $y \in A$.

(x and y lie in same part of the partition)

Proposition Let 52 be a partitier of X, and let ~ be defined as above. Then ~ is an equivalence relation.

Proof For reflexivity, since $X = \bigcup_{A \in SZ} A$, for any $z \in X$, there is some $A \in SZ$ such that $z \in A$. Since $z \in A$ and $z \in A$, $z \in Z$.

For symmetry, suppose $x \sim y$, meaning $\exists A \in S2$ such that $x \in A$ and $y \in A$. Then $y \in A$ and $x \in A$, so $y \sim x$.

For transitivity, suppose $x \sim y$ and $y \sim z$. This means $\exists A \in xz$ such that $x \in A$ and $y \in A$ and $\exists B \in xz$ such that $y \in B$ and $z \in B$.

Notice that $y \in A$ and $y \in B$, so $y \in A \cap B$, and $A \cap B \neq \emptyset$.

Thus A = B (property of a partition), so $z \in B = A$.

Now $x \in A$ and $z \in A$, so $x \sim z$.

Proposition If 52 is a partition of X, and ~ is the equivalence relation defined from 52, then the equivance classes of ~ are precisely the elements of 52.

{[x]_n | x \in X \in S = S2.

Proof Take $X \in X$. Since SZ is a partition, there is a unique $A \in SZ$ such that $X \in A$. Then x zy > y EA so

[x]={yeX|x~ey}= {yeX|yeA}=A

Thus [x] = 52, so each equiv. class is in 52.

Also, if A & SZ, then A = [7] for any ZEA, So A is an equiv. class

Proposition: let ~ be an equivalence relation on X, let sz= {[z], |zfX} be the partition into equivalence classes. Further, let ~ se the equivalence relation constructed from 52. Then ~= ~ x, ie. Yx,yEX xny (=) x~ xy.

Proof: Suppose $x \sim y$ (original equiv. rel.) Thu [x]=[y], so $x,y \in [x]=[y] \in SZ$, 50 x ~ 52 y.

Consulty, if $x \sim_{sz} y$, thu there is some $A \in SZ$ such that. $x,y \in A$. This A = [=] for some $z \in X$

Restatement: Each equivalence relation on X determines a partition on X, and each partition of X is determined by a unique equivalence relation. There is a bijective correspondence

? equivalence relations on X > > ? partitions of X ?

An important example of equivalence relation/partition.

Let X and Y be sets and let $f: X \rightarrow Y$ be a function. for each $y \in Y$, consider $f^{-1}(y) = \{x \in X \mid f(x) = y\}$, the set of presinces of y. We also call this set the fiber of f at y.

If we sot $SZ = \{f^{-1}(y) | y \in Y\}$, thun SZ is a partition of X.

The corresponding equivalence relation is $x \sim_f y \iff f(x) = f(y)$.

Every equivalence relation/partition also arises this way:

let n be an equivalence relation with set of equivalence classes $SL = \{ (x) | x \in X \}$. Define a function. $\pi: X \to SL$ $\pi(x) = [x]$.

Observe that π is surjective and $\pi(x) = \pi(y) \iff [x] = [y] \iff x \sim y$. Thus $\pi^{-1}([x]) = \{y \in X \mid \pi(y) = [x]\} = \{y \in X \mid y \sim x\} = [x]$ $\pi^{-1}([x]) = [x]$ element of $x \in X$.

We call π the "canonical projection".

Example: G a group, H = G a subgroup.

Let _sz = {aH | a ∈ G } be the set of left cosets.

Notation In this case, we write G/H "G mod H" for the set of left cosets. G/H=-12 above.

The function $\pi: G \rightarrow G/H$ $\pi(a) = aH$ is the canonical projection or quotient map of G outo G/H.

Example G a group. Suy $a \in G$ is conjugate to $b \in G$ if $\exists g \in G$ such that b = gag!

Suy and if a is conjugable to b. This is an equivalence relation.

Reflexive: since $a = eae^{-1}$, we have $a \sim a$. Symmetrie: if $b = gag^{-1}$, then $a = g^{-1}bg = hbh^{-1}$ with $h = g^{-1}$ so $a \sim b \implies b \sim a$.

Transitive: if $b = gag^{-1}$ and $c = hbh^{-1}$ thu $c = hbh^{-1} = h(gag^{-1})h^{-1} = (hg)a(g^{-1}h^{-1}) = (hg)a(hg)^{-1}$ so $a \wedge b$ and $b \wedge c \Rightarrow a \wedge c$.

In this untext, the equivalence classes one called the conjugacy classes in G.

Ex In S3, conjugacy clusses are { e3, {(12), (13), (233, 3(123), (132)}

Ex if G is abelian (commutative: ab=ba). Thu gag-1=gg-a=a for any a,ge6. We can then see conjugacy cusses me ? ?a ? | a = 6}. (singleton sets).