Логические алгоритмы классификации

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

ШАД Яндекс ● 25 февраля 2020

Содержание

- 🚺 Понятия закономерности и информативности
 - Понятие закономерности
 - Поиск и отбор закономерностей
 - Критерии информативности
- Решающие деревья
 - Жадный метод обучения решающего дерева
 - Усечение дерева (pruning)
 - CART: деревья регрессии и классификации
- Решающие списки, таблицы и леса
 - Решающие леса
 - Решающие таблицы
 - Решающие списки

Логическая закономерность

$$X^\ell = (x_i, y_i)_{i=1}^\ell \subset X \times Y$$
 — обучающая выборка, $y_i = y(x_i)$.

Логическая закономерность (правило, rule) — это предикат $R: X \to \{0,1\}$, удовлетворяющий двум требованиям:

- **1** интерпретируемость:
 - 1) R записывается на естественном языке;
 - 2) R зависит от небольшого числа признаков (1-7);
- ② информативность относительно одного из классов $c \in Y$: $p_c(R) = \#\{x_i \colon R(x_i) = 1 \text{ и } y_i = c\} \to \max;$ $n_c(R) = \#\{x_i \colon R(x_i) = 1 \text{ и } y_i \neq c\} \to \min;$

Если R(x) = 1, то говорят «R выделяет x» (R covers x).

Требование интерпретируемости

- 1) R(x) записывается на естественном языке;
- 2) R(x) зависит от небольшого числа признаков (1–7);

Пример (из области медицины)

Если «возраст > 60» **и** «пациент ранее перенёс инфаркт», **то** операцию не делать, риск отрицательного исхода 60%.

Пример (из области кредитного скоринга)

Если «в анкете указан домашний телефон» и «зарплата > \$2000» и «сумма кредита < \$5000» то кредит можно выдать, риск дефолта 5%.

Обучение логических классификаторов

Основные шаги индукции правил (rule induction):

- 🚺 Выбор семейства правил для поиска закономерностей
- ② Порождение правил (rule generation)
- Отбор правил-закономерностей (rule selection)
- Построение классификатора из правил как из признаков, пример: взвешенное голосование (weighted voting) правил

$$a(x) = \arg\max_{y \in Y} \sum_{j=1}^{n_y} w_{yj} R_{yj}(x)$$

Двойственная трактовка понятия «закономерности» R(x):

- высокоинформативный интерпретируемый признак
- одноклассовый классификатор с отказами

Часто используемые виды закономерностей

1. Пороговое условие (решающий пень, decision stump):

$$R(x) = [f_j(x) \leqslant a_j]$$
 или $[a_j \leqslant f_j(x) \leqslant b_j]$.

2. Конъюнкция пороговых условий:

$$R(x) = \bigwedge_{j \in J} \left[a_j \leqslant f_j(x) \leqslant b_j \right].$$

3. $\mathit{Cиндром}$ — выполнение не менее d условий из |J|, (при d=|J| это конъюнкция, при d=1 — дизъюнкция):

$$R(x) = \left[\sum_{i \in I} \left[a_j \leqslant f_j(x) \leqslant b_j \right] \geqslant d \right],$$

Параметры J, a_j, b_j, d настраиваются по обучающей выборке путём оптимизации *критерия информативности*.

Часто используемые виды закономерностей

4. Полуплоскость — линейная пороговая функция:

$$R(x) = \Big[\sum_{j \in J} w_j f_j(x) \geqslant w_0\Big].$$

5. Шар — пороговая функция близости:

$$R(x) = \left[\rho(x, \mathbf{x_0}) \leqslant \mathbf{w_0} \right],$$

АВО — алгоритмы вычисления оценок [Ю. И. Журавлёв, 1971]:

$$\rho(x,x_0) = \max_{j \in J} w_j |f_j(x) - f_j(x_0)|.$$

SCM — машины покрывающих множеств [М. Marchand, 2001]:

$$\rho(x,x_0) = \sum_{i \in J} \mathbf{w}_i |f_i(x) - f_i(x_0)|^{\gamma}.$$

Параметры J, w_j, w_0, x_0 настраиваются по обучающей выборке путём оптимизации *критерия информативности*.

Мета-эвристики для поиска информативных закономерностей

```
Вход: обучающая выборка X^{\ell};
Выход: множество закономерностей Z;
 1: начальное множество правил Z;
 повторять
   Z':=\, множество локальных модификаций правил R\in Z;
     удалить слишком похожие правила из Z \cup Z';
    Z:= наиболее информативные правила из Z\cup Z';
 6: пока правила продолжают улучшаться
 7: вернуть Z.
Частные случаи:
— стохастический локальный поиск (stochastic local search)
— генетические (эволюционные) алгоритмы
— поиск в ширину
```

— поиск в глубину (метод ветвей и границ)

Локальные модификации правил

Пример. Семейство конъюнкций пороговых условий:

$$R(x) = \bigwedge_{i \in J} \left[\underset{j \in J}{a_j} \leqslant f_j(x) \leqslant \underset{j}{b_j} \right].$$

Локальные модификации конъюнктивного правила:

- варьирование одного из порогов a_i и b_i
- ullet варьирование обоих порогов a_i , b_i одновременно
- ullet добавление признака f_j в J с варьированием порогов a_j , b_j
- ullet удаление признака f_i из J

При удалении признака (pruning) информативность обычно оценивается по контрольной выборке (hold-out)

Вообще, для оптимизации множества J подходят те же методы, что и для отбора признаков (feature selection)

Отбор закономерностей по паре критериев $p o \max, \ n o \min$

Парето-фронт — множество неулучшаемых закономерностей (точка неулучшаема, если правее и ниже неё точек нет)

UCI:german

Отбор закономерностей по паре пороговых критериев

$$\underbrace{\begin{array}{c} \rho_{c}(\varphi) \rightarrow \max \\ \varphi(x_{i})=1 \\ y_{i}=c \end{array} \begin{array}{c} n_{c}(\varphi) \rightarrow \min \\ \varphi(x_{i})=1 \\ y_{i}=c \end{array}}_{P_{c}} \underbrace{\begin{array}{c} \varphi(x_{i})=1 \\ \varphi(x_{i})=1 \\ y_{i}\neq c \end{array}}_{Q_{c}(\varphi)} \underbrace{\begin{array}{c} \varphi(x_{i})=0 \\ y_{i}\neq c \end{array}}_{Q_{c}(\varphi)}$$

Определение

Предикат $\varphi(x)$ — логическая $arepsilon,\delta$ -закономерность класса $c\in Y$

$$E_c(\varphi, X^{\ell}) = \frac{n_c(\varphi)}{p_c(\varphi) + n_c(\varphi)} \leq \varepsilon;$$
$$D_c(\varphi, X^{\ell}) = \frac{p_c(\varphi)}{\ell} \geq \delta.$$

Если $n_c(\varphi)=0$, то φ — непротиворечивая закономерность.

Проблема: хотелось бы иметь один скалярный критерий.

Отбор закономерностей по критерию информативности

Проблема: хотелось бы иметь один скалярный критерий:

$$\begin{cases} p(R) \to \max & \stackrel{?}{\Longrightarrow} & I(p,n) \to \max \end{cases}$$

Очевидные, но не всегда адекватные свёртки:

- $I(p, n) = \frac{p}{p+n} \to \max$ (precision); $I(p, n) = p n \to \max$ (accuracy);
- $I(p, n) = p Cn \rightarrow \max$ (linear cost accuracy);
- $I(p, n) = p/P n/N \rightarrow \max$ (relative accuracy); где $P = \#\{x_i : y_i = c\}, N = \#\{x_i : y_i \neq c\}.$

J. Fürnkranz, P. Flach. ROC 'n' rule learning – towards a better understanding of covering algorithms // Machine Learning, 2005.

Нетривиальность проблемы свёртки двух критериев

Пример:

при P=200, N=100 и различных p и n.

Простые эвристики не всегда адекватны:

р	n	p-n	p-5n	$\frac{p}{P} - \frac{n}{N}$	$\frac{p}{n+1}$	$IStat{\cdot}\ell$	$IGain{\cdot}\ell$	\sqrt{p} - \sqrt{n}
50	0	50	50	0.25	50	22.65	23.70	7.07
100	50	50	-150	0	1.96	2.33	1.98	2.93
50	9	41	5	0.16	5	7.87	7.94	4.07
5	0	5	5	0.03	5	2.04	3.04	2.24
100	0	100	100	0.5	100	52.18	53.32	10.0
140	20	120	40	0.5	6.67	37.09	37.03	7.36

Часто используемые критерии информативности

Более адекватные, но менее очевидные свёртки:

• энтропийный критерий прироста информации:

$$\mathsf{IGain}(p,n) = h\left(rac{P}{\ell}
ight) - rac{p+n}{\ell} h\left(rac{p}{p+n}
ight) - rac{\ell-p-n}{\ell} h\left(rac{P-p}{\ell-p-n}
ight) o \mathsf{max},$$
где $h(q) = -q\log_2 q - (1-q)\log_2 (1-q)$

- ullet критерий Джини (Gini impurity): IGini(p,n)= IGain(p,n) при h(q)=4q(1-q)
- точный статистический тест Фишера (Fisher's Exact Test): $\mathsf{IStat}(p,n) = -\tfrac{1}{\ell} \log_2 \tfrac{C_p^p C_N^n}{C_{p+N}^{p+n}} \to \mathsf{max}$
- критерий бустинга: $\sqrt{p} \sqrt{n} \to \max$
- ullet нормированный критерий бустинга: $\sqrt{p/P}-\sqrt{n/N}
 ightarrow$ max

Где находятся закономерности в (p, n)-плоскости

Логические закономерности: $\frac{n}{p+n} \leqslant 0.1, \ \frac{p}{P+N} \geqslant 0.05.$ Статистические закономерности: $|\text{Stat}(p,n)| \geqslant 3.$

$$P = 200$$

 $N = 100$

Вывод: неслучайность — ещё не значит закономерность.

Композиции закономерностей

Взвешенное голосование (линейный классификатор с весами w_{yt}):

$$a(x) = \arg\max_{y \in Y} \sum_{t=1}^{T_y} w_{yt} R_{yt}(x)$$

Простое голосование (комитет большинства)

$$a(x) = \arg\max_{y \in Y} \frac{1}{T_y} \sum_{t=1}^{n_y} R_{yt}(x)$$

Pешающий список (комитет старшинства), $c_t \in Y$:

$$x \longrightarrow \boxed{R_1(x)} \xrightarrow{0} \cdots \xrightarrow{0} \boxed{R_T(x)} \xrightarrow{0} c_0$$

$$\downarrow^1 \qquad \downarrow^1 \qquad$$

Определение решающего дерева (Decision Tree)

Решающее дерево — алгоритм классификации a(x), задающийся деревом (связным ациклическим графом):

- 1) $V=V_{ exttt{BHYTP}}\sqcup V_{ exttt{ЛИСТ}},\ \ v_0\in V$ корень дерева;
- 2) $v \in V_{\mathsf{внутр}}$: функции $f_v \colon X \to D_v$ и $S_v \colon D_v \to V$, $|D_v| < \infty$;
- 3) $v \in V_{\mathsf{лист}}$: метка класса $y_v \in Y$.

1:
$$v := v_0$$

2: пока
$$v \in V_{\mathsf{внутр}}$$

3:
$$v := S_v(f_v(x));$$

Частный случай: $D_{\nu} \equiv \{0,1\}$ — бинарное решающее дерево

Пример:
$$f_{\nu}(x) = [f_j(x) \geqslant a_j]$$

Пример решающего дерева

Задача Фишера о классификации цветков ириса на 3 класса, в выборке по 50 объектов каждого класса, 4 признака.

На графике: в осях двух самых информативных признаков (из 4) два класса разделились без ошибок, на третьем 3 ошибки.

Решающее дерево \rightarrow покрывающий набор конъюнкций

$$\begin{array}{|c|c|c|c|} \hline \textbf{setosa} & r_1(x) = \left[PL \leqslant 2.5\right] \\ \hline \textbf{virginica} & r_2(x) = \left[PL > 2.5\right] \land \left[PW > 1.68\right] \\ \hline \textbf{virginica} & r_3(x) = \left[PL > 5\right] \land \left[PW \leqslant 1.68\right] \\ \hline \textbf{versicolor} & r_4(x) = \left[PL > 2.5\right] \land \left[PL \leqslant 5\right] \land \left[PW < 1.68\right] \\ \hline \end{array}$$

Обучение решающего дерева: стратегия «разделяй и властвуй»

```
v_0 := \text{TreeGrowing } (X^{\ell});
 1: ФУНКЦИЯ TreeGrowing (U \subseteq X^{\ell}) \mapsto корень дерева v;
 2: если StopCriterion (U) то
       вернуть новый лист v, взяв y_v := Major(U);
 4: найти признак, наиболее выгодный для ветвления дерева:
    f_{\nu} := \arg\max_{f \in F} \operatorname{Gain}(f, U);
 5: если Gain (f_{\nu}, U) < G_0 то
       вернуть новый лист v, взяв y_v := Major(U);
 6:
 7: создать новую внутреннюю вершину v с функцией f_v;
 8: для всех k \in D_{\nu}
       U_k := \{x \in U : f_v(x) = k\}, S_v(k) := \text{TreeGrowing } (U_k),
 9: вернуть v;
```

Мажоритарное правило: Major $(U) := \arg \max_{y \in Y} P(y|U)$.

Неопределённость распределения по классам в вершине

Частотная оценка вероятности класса y в вершине $v \in V_{\mathtt{внутр}}$:

$$p_y \equiv P(y|U) = \frac{1}{|U|} \sum_{x_i \in U} [y_i = y]$$

 $\Phi(U)$ — мера неопределённости (impurity) распределения p_y :

- 1) минимальна, когда $p_{V} \in \{0,1\}$,
- 2) максимальна, когда $p_y = \frac{1}{|Y|}$ для всех $y \in Y$,
- 3) симметрична: не зависит от перенумерации классов.

$$\Phi(U) = \mathsf{E}\mathscr{L}(p_y) = \sum_{y \in Y} p_y \mathscr{L}(p_y) = \frac{1}{|U|} \sum_{x_i \in U} \mathscr{L}(p(y_i|U)) \to \mathsf{min},$$

где $\mathscr{L}(p)$ убывает и $\mathscr{L}(1)=0$, например: $-\log p$, 1-p, $1-p^2$

Критерий ветвления

Неопределённость распределений $P(y_i|U_k)$ после ветвления вершины v по признаку f и разбиения $U=\coprod_{k\in D_v}U_k$:

$$\begin{split} \Phi(U_1, \dots, U_{|D_v|}) &= \frac{1}{|U|} \sum_{x_i \in U} \mathcal{L}\big(P(y_i|U_{f(x_i)})\big) = \\ &= \frac{1}{|U|} \sum_{k \in D_v} \sum_{x_i \in U_k} \mathcal{L}\big(P(y_i|U_k)\big) = \sum_{k \in D_v} \frac{|U_k|}{|U|} \Phi(U_k) \end{split}$$

Выигрыш от ветвления вершины v:

$$\begin{aligned} \mathsf{Gain}\,(f,U) &= \Phi(U) - \Phi(U_1,\ldots,U_{|D_v|}) = \\ &= \Phi(U) - \sum_{k \in D_v} \frac{|U_k|}{|U|} \, \Phi(U_k) \to \max_{f \in F} \end{aligned}$$

Критерий Джини и энтропийный критерий

Два класса,
$$Y=\{0,1\}$$
, $P(y|U)=\left\{egin{array}{l} q, & y=1 \\ 1-q, & y=0 \end{array}
ight.$

- ullet Если $\mathscr{L}(p) = -\log_2 p$, то $\Phi(U) = -q\log_2 q (1-q)\log_2(1-q)$ энтропия выборки.
- Если $\mathcal{L}(p) = 2(1-p)$, то $\Phi(U) = 4q(1-q)$ неопределённость Джини (Gini impurity).

Обработка пропущенных значений

На стадии обучения:

- ullet $f_{
 u}(x_i)$ не определено $\Rightarrow x_i$ исключается из U для $\mathsf{Gain}\ (f_{
 u},U)$
- ullet $q_{vk}=rac{|U_k|}{|U|}$ оценка вероятности k-й ветви, $v\in V_{ exttt{BHYTP}}$
- ullet $P(y|x,v)=rac{1}{|U|}\sum\limits_{x:\in U}[y_i=y]$ для всех $v\in V_{ extsf{nuct}}$

На стадии классификации:

- ullet $f_{
 u}(x)$ определено \Rightarrow из дочерней $s=S_{
 u}(f_{
 u}(x))$ взять P(y|x,v)=P(y|x,s).
- $f_{v}(x)$ не определено \Rightarrow пропорциональное распределение: $P(y|x,v) = \sum_{k \in D_{v}} q_{vk} P(y|x,S_{v}(k)).$
- Окончательное решение наиболее вероятный класс: $a(x) = \arg\max_{v \in Y} P(y|x,v_0).$

Жадная нисходящая стратегия: достоинства и недостатки

Достоинства:

- Интерпретируемость и простота классификации.
- ullet Гибкость: можно варьировать множество F.
- Допустимы разнотипные данные и данные с пропусками.
- ullet Трудоёмкость линейна по длине выборки $O(|F|h\ell)$.
- Не бывает отказов от классификации.

Недостатки:

- Жадная стратегия переусложняет структуру дерева, и, как следствие, сильно переобучается.
- Фрагментация выборки: чем дальше v от корня, тем меньше статистическая надёжность выбора f_v , y_v .
- Высокая чувствительность к шуму, к составу выборки, к критерию информативности.

Жадная стратегия переусложняет структуру дерева

Оптимальное дерево для задачи ХОК:

Усечение дерева (pruning)

```
X^q — независимая контрольная выборка, q \approx 0.5\ell.
 1: для всех v \in V_{\mathtt{BHVTD}}
 2:
       X_{\nu}^{q} := подмножество объектов X^{q}, дошедших до \nu;
       если X_{\nu}^{q} = \emptyset то
 3:
          вернуть новый лист v, y_v := Major(U);
 4:
       число ошибок при классификации X_{\nu}^{q} разными способами:
 5:
          Err(v) — поддеревом, растущим из вершины v;
          \operatorname{Err}_k(v) — дочерним поддеревом S_v(k), k \in D_v;
          \operatorname{Err}_c(v) — классом c \in Y.
 6:
       в зависимости от того, какое из них минимально:
          сохранить поддерево v;
          заменить поддерево v дочерним S_v(k);
          заменить поддерево v листом, y_v := \arg\min_{c \in Y} \operatorname{Err}_c(v).
```

CART: деревья регрессии и классификации

Обобщение на случай *регрессии*: $Y = \mathbb{R}$, $y_v \in \mathbb{R}$,

$$C(a) = \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{a}$$

Пусть U — множество объектов x_i , дошедших до вершины v Мера неопределённости — среднеквадратичная ошибка

$$\Phi(U) = \min_{y \in Y} \frac{1}{|U|} \sum_{y:\in U} (y - y_i)^2$$

Значение y_v в терминальной вершине $v - \mathsf{MHK}$ -решение:

$$y_{\nu} = \frac{1}{|U|} \sum_{\mathbf{x}_i \in U} y_i$$

Дерево регрессии a(x) — это кусочно-постоянная функция.

Пример. Деревья регрессии различной глубины

Чем сложнее дерево (чем больше его глубина), тем выше влияние шумов в данных и выше риск переобучения.

scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html

CART: критерий Minimal Cost-Complexity Pruning

Среднеквадратичная ошибка со штрафом за сложность дерева:

$$C_{lpha}(a) = \sum_{i=1}^{\ell} ig(a(x_i) - y_iig)^2 + lpha |V_{ extsf{JNCT}}|
ightarrow \min_{a}$$

При увеличении lpha дерево последовательно упрощается. Причём последовательность вложенных деревьев единственна.

Из этой последовательности выбирается дерево с минимальной ошибкой на тестовой выборке (Hold-Out).

Для случая классификации используется аналогичная стратегия усечения, с критерием Джини.

Случайный лес (Random Forest)

Голосование деревьев классификации, $Y = \{-1, +1\}$:

$$a(t) = \operatorname{sign} \frac{1}{T} \sum_{t=1}^{I} b_t(x).$$

Голосование деревьев регрессии, $Y=\mathbb{R}$:

$$a(t) = \frac{1}{T} \sum_{t=1}^{T} b_t(x).$$

- каждое дерево $b_t(x)$ обучается по случайной выборке с возвращениями $(1-1/e \approx 63.2\%$ объектов)
- в каждой вершине признак выбирается из случайного подмножества \sqrt{n} признаков (|n/3| для регрессии)
- признаки и пороги выбираются по критерию Джини
- усечений (pruning) нет

Разновидности решающих лесов

- Случайный лес (Random Forest)
- Использование большого числа простых решающих деревьев в качестве признаков, в любом классификаторе.
- Oblique Random Forest, Rotation Forest $f_{\nu}(x)$ линейные комбинации признаков, выбираемые по энтропийному критерию информативности.
- Решающий список из решающих деревьев:
 - при образовании статистически ненадёжного листа этот лист заменяется переходом к следующему дереву;
 - следующее дерево строится по объединению подвыборок, прошедших через ненадёжные листы предыдущего дерева.

Небрежные решающие деревья (Oblivious Decision Tree, ODT)

Решение проблемы фрагментации в деревьях:

строится сбалансированное дерево глубины H, $D_v = \{0,1\}$; для всех узлов уровня h условие ветвления $f_h(x)$ одинаково; на уровне h ровно 2^{h-1} вершин; X делится на 2^H ячеек.

Классификатор задаётся *таблицей решений* $T: \{0,1\}^H \to Y:$

$$a(x) = T(f_1(x), \ldots, f_H(x)).$$

Пример: задача XOR, H = 2.

Алгоритм обучения ODT

Вход: выборка X^{ℓ} ; множество признаков F; глубина дерева H; **Выход:** признаки f_h , $h=1,\ldots,H$; таблица $T\colon\{0,1\}^H\to Y$;

- 1: для всех h = 1, ..., H
- 2: предикат с максимальным выигрышем определённости: $f_h:=rg\max_{f\in F} {\sf Gain}\ (f_1,\ldots,f_{h-1},f);$
- 3: классификация по мажоритарному правилу: $T(\beta) := Major(U_{H\beta});$

Выигрыш от ветвления на уровне h по всей выборке X^ℓ :

$$\mathsf{Gain}\;(f_1,\ldots,f_h) = \Phi(X^\ell) - \sum_{\beta \in \{0,1\}^h} \frac{|U_{h\beta}|}{\ell} \, \Phi(U_{h\beta}),$$

$$U_{h\beta} = \{x_i \in X^{\ell} : f_s(x_i) = \beta_s, \ s = 1..h\}, \ \beta = (\beta_1, \dots, \beta_h) \in \{0, 1\}^h.$$

Определение решающего списка

Решающий список (Decision List, DL) — алгоритм классификации $a: X \to Y$, который задаётся закономерностями $R_1(x), \ldots, R_T(x)$ классов $c_1, \ldots, c_T \in Y$:

$$x \longrightarrow \boxed{R_1(x)} \xrightarrow{0} \cdots \xrightarrow{0} \boxed{R_T(x)} \xrightarrow{0} c_0$$

$$\downarrow^1 \qquad \downarrow^1 \qquad$$

- 1: для всех t = 1, ..., T
- 2: если $R_t(x) = 1$ то
- 3: **вернуть** c_t ;
- 4: **вернуть** c_0 отказ от классификации объекта x.

$$E(R_t,X^\ell)=rac{n(R_t)}{n(R_t)+p(R_t)} o {\sf min}$$
 — доля ошибок R_t на X^ℓ

Жадный алгоритм построения решающего списка

```
Вход: выборка X^{\ell}; семейство правил \mathscr{R};
    параметры: T_{\text{max}}, I_{\text{min}}, E_{\text{max}}, \ell_0;
Выход: решающий список \{R_t, c_t\}_{t=1}^T;
 1: U := X^{\ell}
 2: для всех t := 1, \ldots, T_{\text{max}}
 3: выбрать класс c_t;
 4: максимизация информативности I(R, U) при
       ограничении на число ошибок E(R, U):
       R_t := \operatorname{arg\,max} I(R, U):
               R \in \mathcal{R}: E(R,U) \leq E_{\text{max}}
       если I(R_t, U) < I_{\min} то выход;
 5:
       оставить объекты, не покрытые правилом R_t:
 6:
       U := \{x \in U : R_t(x) = 0\};
 7:
       если |U| \leqslant \ell_0 то выход;
```

Замечания к алгоритму построения решающего списка

- Стратегии выбора класса c_t :
 - 1) все классы по очереди
 - 2) на каждом шаге определяется оптимальный класс
- Параметр E_{max} управляет сложностью списка: $E_{\text{max}} \downarrow \Rightarrow p(R_t) \downarrow, T \uparrow$
- Преимущества:
 - хорошая интерпретируемость классификации
 - простой обход проблемы пропусков в данных
- Недостаток: низкое качество классификации
- Другие названия:

комитет с логикой старшинства (Majority Committee) голосование по старшинству (Majority Voting) машина покрывающих множеств (Set Covering Machine, SCM)

Вспомогательная задача бинаризации вещественного признака

Цель: сократить перебор предикатов вида $\left[\alpha \leqslant f(x) \leqslant \beta \right]$.

Дано: выборка значений вещественного признака $f(x_i)$, $x_i \in X^{\ell}$. **Найти:** наилучшее (в каком-то смысле) разбиение области значений признака на относительно небольшое число зон:

$$\zeta_0(x) = [f(x) < d_1];$$

$$\zeta_s(x) = [d_s \le f(x) < d_{s+1}], \qquad s = 1, \dots, r-1;$$

$$\zeta_r(x) = [d_r \le f(x)].$$

Способы разбиения области значений признака на зоны

- 🚺 Жадная максимизация информативности путём слияний
- Разбиение на равномощные подвыборки
- Разбиение по равномерной сетке «удобных» значений
- Объединение нескольких разбиений

Повышение «удобства» пороговых значений

Задача: на отрезке [a,b] найти значение x^* с минимальным числом значащих цифр.

Если таких x^* несколько, выбрать

$$x^* = \arg\min_{\mathbf{x}} \left| \frac{1}{2}(a+b) - \mathbf{x} \right|.$$

Алгоритм разбиения области значений признака на зоны

Вход: выборка X^{ℓ} ; класс $c \in Y$; параметры r и δ_0 .

```
Выход: D = \{d_1 < \cdots < d_r\} — последовательность порогов;

1: D := \varnothing; упорядочить выборку X^\ell по возрастанию f(x_i);

2: для всех i = 2, \ldots, \ell

3: если f(x_{i-1}) \neq f(x_i) и [y_{i-1} = c] \neq [y_i = c] то

4: добавить порог \frac{1}{2}(f(x_{i-1}) + f(x_i)) в конец D;

5: повторять

6: для всех d_i \in D, i = 1, \ldots, |D| - 1

7: \delta I_i := I(\zeta_{i-1} \vee \zeta_i \vee \zeta_{i+1}) - \max\{I(\zeta_{i-1}), I(\zeta_i), I(\zeta_{i+1})\};

8: i := \arg\max \delta I_s;
```

слить зоны ζ_{i-1} , ζ_i , ζ_{i+1} , удалив d_i и d_{i+1} из D_i ;

если $\delta l_i > \delta_0$ то

11: пока |D| > r + 1.

9:

10:

Резюме в конце лекции

- Основные требования к логическим закономерностям:
 - интерпретируемость, информативность, различность.
- Преимущества решающих деревьев:
 - интерпретируемость,
 - допускаются разнотипные данные,
 - возможность обхода пропусков;
- Недостатки решающих деревьев:
 - переобучение,
 - фрагментация,
 - неустойчивость к шуму, составу выборки, критерию;
- Способы устранения этих недостатков:
 - редукция,
 - композиции (леса) деревьев.

Yandex MatrixNet = голосование (градиентный бустинг) над ODT.