PROBABILITY THEORY (STA2CO2)

STUDY MATERIAL

II SEMESTER COMPLEMENTARY COURSE FOR B.SC. MATHEMATICS CBCSS (2019 ADMISSION)

UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

CALICUT UNIVERSITY P.O, MALAPPURAM KERALA, INDIA 673 635.

19556

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

STUDY MATERIAL

II Semester

PROBABILITY THEORY (STA2C02)

Complementary Course for B.Sc. Mathematics

Prepared by:

KISHOR R,
Assistant Professor,
School of Distance Education,
University of Calicut.

Srutinized by:

Dr.C.Chandran,
Head, Dept. of Statistics,
University of Calicut.

Table of Contents

SYLLABUS	2
MODULE 1 - INTRODUCTION TO PROBABILITY	5
MODULE 2 - RANDOM VARIABLES	13
MODULE 3 - MATHEMATICAL EXPECTATIONS	19
MODULE 4 - BIVARIATE RANDOM VARIABLES	26
REFERENCES	33

<u>SYLLABUS</u>

Module 1

Introduction to Probability

Random experiment, Sample space, events, classical definition of probability, statistical regularity, field, sigma field, axiomatic definition of probability and simple properties, addition theorem (two and three events), conditional probability of two events, multiplication theorem, independence of events-pair wise and mutual, Bayes theorem and its applications.

Module 2

Random variables

Discrete and continuous, probability mass function (pmf) and probability density function (pdf)-properties and examples, Cumulative distribution function

and its properties, change of variables (univariate case only)

Module 3

Mathematical expectations (univaraite)

Definition, raw and central moments(definition and relationships), moment generation function and properties,

characteristic function (definition and use only), Skewness and kurtosis using moments

Module 4

Bivariate random variables

Joint pmf and joint pdf, marginal and conditional probability, independence of random variables, function of random variable. Bivariate Expectations, conditional mean and variance, covariance, Karl Pearson Correlation coefficient, independence of random variables based on expectation.

MODULE 1 - INTRODUCTION TO PROBABILITY

Random Experiments

We are all familiar with the importance of experiments in science and engineering. Experimentation is useful to us because we can assume that if we perform certain experiments under very nearly identical conditions, we will arrive at results that are essentially the same. In these circumstances, we are able to control the value of the variables that affect the outcome of the experiment.

However, in some experiments, we are not able to ascertain or control the value of certain variables so that the results will vary from one performance of the experiment to the next even though most of the conditions are the same. These experiments are described as *random*. The following are some examples.

EXAMPLE 1.1 If we toss a coin, the result of the experiment is that it will either come up "tails," symbolized by T (or 0), or "heads," symbolized by H (or 1), i.e., one of the elements of the set $\{H, T\}$ (or $\{0, 1\}$).

EXAMPLE 1.2 If we toss a die, the result of the experiment is that it will come up with one of the numbers in the set {1, 2, 3, 4, 5, 6}.

EXAMPLE 1.3 If we toss a coin twice, there are four results possible, as indicated by $\{HH, HT, TH, TT\}$, i.e., both heads, heads on first and tails on second, etc.

EXAMPLE 1.4 If we are making bolts with a machine, the result of the experiment is that some may be defective. Thus when a bolt is made, it will be a member of the set {defective, nondefective}.

EXAMPLE 1.5 If an experiment consists of measuring "lifetimes" of electric light bulbs produced by a company, then the result of the experiment is a time t in hours that lies in some interval—say, $0 \le t \le 4000$ —where we assume that no bulb lasts more than 4000 hours.

Sample Spaces

A set S that consists of all possible outcomes of a random experiment is called a *sample space*, and each outcome is called a *sample point*. Often there will be more than one sample space that can describe outcomes of an experiment, but there is usually only one that will provide the most information.

EXAMPLE 1.6 If we toss a die, one sample space, or set of all possible outcomes, is given by {1, 2, 3, 4, 5, 6} while another is {odd, even}. It is clear, however, that the latter would not be adequate to determine, for example, whether an outcome is divisible by 3.

EXAMPLE 1.7 If we toss a coin twice and use 0 to represent tails and 1 to represent heads, the sample space (see Example 1.3) can be portrayed by points as in Fig. 1-1 where, for example, (0, 1) represents tails on first toss and heads on second toss, i.e., *TH*.

If a sample space has a finite number of points, as in Example 1.7, it is called a *finite sample space*. If it has as many points as there are natural numbers 1, 2, 3, ..., it is called a *countably infinite sample space*. If it has as many points as there are in some interval on the x axis, such as $0 \le x \le 1$, it is called a *noncountably infinite sample space*. A sample space that is finite or countably infinite is often called a *discrete sample space*, while one that is noncountably infinite is called a *nondiscrete sample space*.

Events

An *event* is a subset A of the sample space S, i.e., it is a set of possible outcomes. If the outcome of an experiment is an element of A, we say that the event A has occurred. An event consisting of a single point of S is often called a *simple* or *elementary event*.

EXAMPLE 1.8 If we toss a coin twice, the event that only one head comes up is the subset of the sample space that consists of points (0, 1) and (1, 0), as indicated in Fig. 1-2.

Fig. 1-2

The Concept of Probability

In any random experiment there is always uncertainty as to whether a particular event will or will not occur. As a measure of the *chance*, or *probability*, with which we can expect the event to occur, it is convenient to assign a number between 0 and 1. If we are sure or certain that the event will occur, we say that its probability is 100% or 1, but if we are sure that the event will not occur, we say that its probability is zero. If, for example, the probability is $\frac{1}{4}$, we would say that there is a 25% chance it will occur and a 75% chance that it will not occur. Equivalently, we can say that the *odds* against its occurrence are 75% to 25%, or 3 to 1.

There are two important procedures by means of which we can estimate the probability of an event.

1. CLASSICAL APPROACH. If an event can occur in h different ways out of a total number of n possible ways, all of which are equally likely, then the probability of the event is h/n.

EXAMPLE 1.10 Suppose we want to know the probability that a head will turn up in a single toss of a coin. Since there are two equally likely ways in which the coin can come up—namely, heads and tails (assuming it does not roll away or stand on its edge)—and of these two ways a head can arise in only one way, we reason that the required probability is 1/2. In arriving at this, we assume that the coin is *fair*, i.e., not *loaded* in any way.

2. FREQUENCY APPROACH. If after n repetitions of an experiment, where n is very large, an event is observed to occur in h of these, then the probability of the event is h/n. This is also called the *empirical probability* of the event.

EXAMPLE 1.11 If we toss a coin 1000 times and find that it comes up heads 532 times, we estimate the probability of a head coming up to be 532/1000 = 0.532.

Both the classical and frequency approaches have serious drawbacks, the first because the words "equally likely" are vague and the second because the "large number" involved is vague. Because of these difficulties, mathematicians have been led to an *axiomatic approach* to probability.

The Axioms of Probability

Suppose we have a sample space S. If S is discrete, all subsets correspond to events and conversely, but if S is nondiscrete, only special subsets (called *measurable*) correspond to events. To each event A in the class C of events, we associate a real number P(A). Then P is called a *probability function*, and P(A) the *probability* of the event A, if the following axioms are satisfied.

Axiom 1 For every event A in the class C,

$$P(A) \ge 0 \tag{1}$$

Axiom 2 For the sure or certain event S in the class C,

$$P(S) = 1 \tag{2}$$

Axiom 3 For any number of mutually exclusive events A_1, A_2, \ldots , in the class C,

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$
 (3)

In particular, for two mutually exclusive events A_1 , A_2 ,

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) \tag{4}$$

Some Important Theorems on Probability

From the above axioms we can now prove various theorems on probability that are important in further work.

Theorem 1-1 If A_1 (A_2 , then $P(A_1) \le P(A_2)$ and $P(A_2 - A_1) = P(A_2) - P(A_1)$.

Theorem 1-2 For every event A,

$$0 \le P(A) \le 1,\tag{5}$$

i.e., a probability is between 0 and 1.

Theorem 1-3
$$P(\emptyset) = 0 \tag{6}$$

i.e., the impossible event has probability zero.

Theorem 1-4 If A' is the complement of A, then

$$P(A') = 1 - P(A) \tag{7}$$

Theorem 1-5 If $A = A_1 \cup A_2 \cup \cdots \cup A_n$, where A_1, A_2, \ldots, A_n are mutually exclusive events, then

$$P(A) = P(A_1) + P(A_2) + \dots + P(A_n)$$
 (8)

In particular, if A = S, the sample space, then

$$P(A_1) + P(A_2) + \cdots + P(A_n) = 1$$
 (9)

Theorem 1-6 If A and B are any two events, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
(10)

More generally, if A_1 , A_2 , A_3 are any three events, then

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$

$$- P(A_1 \cap A_2) - P(A_2 \cap A_3) - P(A_3 \cap A_1)$$

$$+ P(A_1 \cap A_2 \cap A_3)$$
(11)

Generalizations to n events can also be made.

Theorem 1-7 For any events A and B,

$$P(A) = P(A \cap B) + P(A \cap B') \tag{12}$$

Theorem 1-8 If an event A must result in the occurrence of one of the mutually exclusive events A_1, A_2, \ldots, A_n , then

$$P(A) = P(A \cap A_1) + P(A \cap A_2) + \dots + P(A \cap A_n)$$
(13)

Assignment of Probabilities

If a sample space S consists of a finite number of outcomes a_1, a_2, \ldots, a_n , then by Theorem 1-5,

$$P(A_1) + P(A_2) + \dots + P(A_n) = 1$$
 (14)

where A_1, A_2, \ldots, A_n are elementary events given by $A_i = \{a_i\}$.

It follows that we can arbitrarily choose any nonnegative numbers for the probabilities of these simple events as long as (14) is satisfied. In particular, if we assume *equal probabilities* for all simple events, then

$$P(A_k) = \frac{1}{n}, \quad k = 1, 2, \dots, n$$
 (15)

and if A is any event made up of h such simple events, we have

$$P(A) = \frac{h}{n} \tag{16}$$

This is equivalent to the classical approach to probability given on page 5. We could of course use other procedures for assigning probabilities, such as the frequency approach of page 5.

Assigning probabilities provides a *mathematical model*, the success of which must be tested by experiment in much the same manner that theories in physics or other sciences must be tested by experiment.

EXAMPLE 1.12 A single die is tossed once. Find the probability of a 2 or 5 turning up.

The sample space is $S = \{1, 2, 3, 4, 5, 6\}$. If we assign equal probabilities to the sample points, i.e., if we assume that the die is fair, then

$$P(1) = P(2) = \cdots = P(6) = \frac{1}{6}$$

The event that either 2 or 5 turns up is indicated by $2 \cup 5$. Therefore,

$$P(2 \cup 5) = P(2) + P(5) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

Conditional Probability

Let A and B be two events (Fig. 1-3) such that P(A) > 0. Denote by $P(B \mid A)$ the probability of B given that A has occurred. Since A is known to have occurred, it becomes the new sample space replacing the original S. From this we are led to the definition

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \tag{17}$$

or

$$P(A \cap B) \equiv P(A) P(B \mid A) \tag{18}$$

Fig. 1-3

In words, (18) says that the probability that both A and B occur is equal to the probability that A occurs times the probability that B occurs given that A has occurred. We call $P(B \mid A)$ the *conditional probability* of B given A, i.e., the probability that B will occur given that A has occurred. It is easy to show that conditional probability satisfies the axioms on page 5.

EXAMPLE 1.13 Find the probability that a single toss of a die will result in a number less than 4 if (a) no other information is given and (b) it is given that the toss resulted in an odd number.

(a) Let B denote the event {less than 4}. Since B is the union of the events 1, 2, or 3 turning up, we see by Theorem 1-5 that

$$P(B) = P(1) + P(2) + P(3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

assuming equal probabilities for the sample points.

(b) Letting A be the event {odd number}, we see that $P(A) = \frac{3}{6} = \frac{1}{2}$. Also $P(A \cap B) = \frac{2}{6} = \frac{1}{3}$. Then

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{1/3}{1/2} = \frac{2}{3}$$

Hence, the added knowledge that the toss results in an odd number raises the probability from 1/2 to 2/3.

Theorems on Conditional Probability

Theorem 1-9 For any three events A_1 , A_2 , A_3 , we have

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2)$$
(19)

In words, the probability that A_1 and A_2 and A_3 all occur is equal to the probability that A_1 occurs times the probability that A_2 occurs given that A_1 has occurred times the probability that A_3 occurs given that both A_1 and A_2 have occurred. The result is easily generalized to n events.

Theorem 1-10 If an event A must result in one of the mutually exclusive events A_1, A_2, \ldots, A_n , then

$$P(A) = P(A_1) P(A \mid A_1) + P(A_2) P(A \mid A_2) + \dots + P(A_n) P(A \mid A_n)$$
(20)

Independent Events

If $P(B \mid A) = P(B)$, i.e., the probability of B occurring is not affected by the occurrence or non-occurrence of A, then we say that A and B are independent events. This is equivalent to

$$P(A \cap B) = P(A)P(B) \tag{21}$$

as seen from (18). Conversely, if (21) holds, then A and B are independent.

We say that three events A_1 , A_2 , A_3 are *independent* if they are pairwise independent:

$$P(A_i \cap A_k) = P(A_i)P(A_k) \qquad j \neq k \quad \text{where} \quad j, k = 1, 2, 3$$
(22)

and

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3) \tag{23}$$

Note that neither (22) nor (23) is by itself sufficient. Independence of more than three events is easily defined.

Bayes' Theorem or Rule

Suppose that A_1, A_2, \ldots, A_n are mutually exclusive events whose union is the sample space S, i.e., one of the events must occur. Then if A is any event, we have the following important theorem:

Theorem 1-11 (Bayes' Rule):

$$P(A_k | A) = \frac{P(A_k) P(A | A_k)}{\sum_{i=1}^{n} P(A_i) P(A | A_i)}$$
(24)

This enables us to find the probabilities of the various events A_1, A_2, \ldots, A_n that can cause A to occur. For this reason Bayes' theorem is often referred to as a theorem on the probability of causes.

Combinatorial Analysis

In many cases the number of sample points in a sample space is not very large, and so direct enumeration or counting of sample points needed to obtain probabilities is not difficult. However, problems arise where direct counting becomes a practical impossibility. In such cases use is made of *combinatorial analysis*, which could also be called a *sophisticated way of counting*.

Fundamental Principle of Counting: Tree Diagrams

If one thing can be accomplished in n_1 different ways and after this a second thing can be accomplished in n_2 different ways, . . . , and finally a kth thing can be accomplished in n_k different ways, then all k things can be accomplished in the specified order in $n_1 n_2 \dots n_k$ different ways.

EXAMPLE 1.14 If a man has 2 shirts and 4 ties, then he has $2 \cdot 4 = 8$ ways of choosing a shirt and then a tie.

A diagram, called a *tree diagram* because of its appearance (Fig. 1-4), is often used in connection with the above principle.

EXAMPLE 1.15 Letting the shirts be represented by S_1 , S_2 and the ties by T_1 , T_2 , T_3 , T_4 , the various ways of choosing a shirt and then a tie are indicated in the tree diagram of Fig. 1-4.

Permutations

Suppose that we are given n distinct objects and wish to arrange r of these objects in a line. Since there are n ways of choosing the 1st object, and after this is done, n-1 ways of choosing the 2nd object, . . . , and finally n-r+1 ways of choosing the rth object, it follows by the fundamental principle of counting that the number of different arrangements, or permutations as they are often called, is given by

$$_{n}P_{r} = n(n-1)(n-2)\cdots(n-r+1)$$
 (25)

where it is noted that the product has r factors. We call ${}_{n}P_{r}$ the number of permutations of n objects taken r at a time. In the particular case where r = n, (25) becomes

$$_{n}P_{n} = n(n-1)(n-2) \cdot \cdot \cdot \cdot 1 = n!$$
 (26)

which is called n factorial. We can write (25) in terms of factorials as

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 (27)

If r = n, we see that (27) and (26) agree only if we have 0! = 1, and we shall actually take this as the definition of 0!.

EXAMPLE 1.16 The number of different arrangements, or permutations, consisting of 3 letters each that can be formed from the 7 letters A, B, C, D, E, F, G is

$$_{7}P_{3} = \frac{7!}{4!} = 7 \cdot 6 \cdot 5 = 210$$

Suppose that a set consists of n objects of which n_1 are of one type (i.e., indistinguishable from each other), n_2 are of a second type, ..., n_k are of a kth type. Here, of course, $n = n_1 + n_2 + \cdots + n_k$. Then the number of different permutations of the objects is

$$_{n}P_{n_{1},n_{2},\ldots,n_{k}} = \frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$$
 (28)

EXAMPLE 1.17 The number of different permutations of the 11 letters of the word M I S S I S S I P P I, which consists of 1 M, 4 I's, 4 S's, and 2 P's, is

$$\frac{11!}{1!4!4!2!} = 34,650$$

Combinations

In a permutation we are interested in the order of arrangement of the objects. For example, *abc* is a different permutation from *bca*. In many problems, however, we are interested only in selecting or choosing objects without regard to order. Such selections are called *combinations*. For example, *abc* and *bca* are the same combination.

The total number of combinations of r objects selected from n (also called the *combinations of n things taken* r at a time) is denoted by ${}_{n}C_{r}$ or $\binom{n}{r}$. We have (see Problem 1.27)

$$\binom{n}{r} = {}_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$\tag{29}$$

It can also be written

$$\binom{n}{r} = \frac{n(n-1)\cdots(n-r+1)}{r!} = \frac{{}_{n}P_{r}}{r!}$$
(30)

It is easy to show that

$$\binom{n}{r} = \binom{n}{n-r} \quad \text{or} \quad {}_{n}C_{r} = {}_{n}C_{n-r}$$
(31)

EXAMPLE 1.18 The number of ways in which 3 cards can be chosen or selected from a total of 8 different cards is

$$_{8}C_{3} = {8 \choose 3} = \frac{8 \cdot 7 \cdot 6}{3!} = 56$$

Binomial Coefficient

The numbers (29) are often called binomial coefficients because they arise in the binomial expansion

$$(x+y)^n = x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{n} y^n$$
 (32)

They have many interesting properties.

EXAMPLE 1.19
$$(x + y)^4 = x^4 + {4 \choose 1} x^3 y + {4 \choose 2} x^2 y^2 + {4 \choose 3} x y^3 + {4 \choose 4} y^4$$
$$= x^4 + 4x^3 y + 6x^2 y^2 + 4xy^3 + y^4$$

MODULE 2 - RANDOM VARIABLES

Random Variables

Suppose that to each point of a sample space we assign a number. We then have a *function* defined on the sample space. This function is called a *random variable* (or *stochastic variable*) or more precisely a *random function* (*stochastic function*). It is usually denoted by a capital letter such as X or Y. In general, a random variable has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is $S = \{HH, HT, TH, TT\}$. Let X represent the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1. Thus, for example, in the case of HH (i.e., 2 heads), X = 2 while for TH (1 head), X = 1. It follows that X is a random variable

Table 2-1

Sample Point	НН	HT	TH	TT
X	2	1	1	0

It should be noted that many other random variables could also be defined on this sample space, for example, the square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a *discrete random variable* while one which takes on a noncountably infinite number of values is called a *nondiscrete random variable*.

Discrete Probability Distributions

Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x_1, x_2, x_3, \ldots , arranged in some order. Suppose also that these values are assumed with probabilities given by

$$P(X = x_k) = f(x_k)$$
 $k = 1, 2, ...$ (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by

$$P(X = x) = f(x) \tag{2}$$

For $x = x_k$, this reduces to (1) while for other values of x, f(x) = 0. In general, f(x) is a probability function if

1.
$$f(x) \ge 0$$

$$2. \sum_{x} f(x) = 1$$

where the sum in 2 is taken over all possible values of x.

EXAMPLE 2.2 Find the probability function corresponding to the random variable *X* of Example 2.1. Assuming that the coin is fair, we have

$$P(HH) = \frac{1}{4}$$
 $P(HT) = \frac{1}{4}$ $P(TH) = \frac{1}{4}$ $P(TT) = \frac{1}{4}$

Then

$$P(X = 0) = P(TT) = \frac{1}{4}$$

$$P(X = 1) = P(HT \cup TH) = P(HT) + P(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$P(X = 2) = P(HH) = \frac{1}{4}$$

The probability function is thus given by Table 2-2.

Table 2-2

х	0	1	2	
f(x)	1/4	1/2	1/4	

Distribution Functions for Random Variables

The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

$$F(x) = P(X \le x) \tag{3}$$

where x is any real number, i.e., $-\infty < x < \infty$.

The distribution function F(x) has the following properties:

- 1. F(x) is nondecreasing [i.e., $F(x) \le F(y)$ if $x \le y$].
- 2. $\lim_{x \to \infty} F(x) = 0$; $\lim_{x \to \infty} F(x) = 1$.
- 3. F(x) is continuous from the right [i.e., $\lim_{h\to 0^+} F(x+h) = F(x)$ for all x].

Distribution Functions for Discrete Random Variables

The distribution function for a discrete random variable X can be obtained from its probability function by noting that, for all x in $(-\infty, \infty)$,

$$F(x) = P(X \le x) = \sum_{u \le x} f(u) \tag{4}$$

where the sum is taken over all values u taken on by X for which $u \le x$.

If X takes on only a finite number of values x_1, x_2, \ldots, x_n , then the distribution function is given by

$$F(x) = \begin{cases} 0 & -\infty < x < x_1 \\ f(x_1) & x_1 \le x < x_2 \\ f(x_1) + f(x_2) & x_2 \le x < x_3 \\ \vdots & \vdots \\ f(x_1) + \dots + f(x_n) & x_n \le x < \infty \end{cases}$$
 (5)

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

$$F(x) = \begin{cases} 0 & -\infty < x < 0 \\ \frac{1}{4} & 0 \le x < 1 \\ \frac{3}{4} & 1 \le x < 2 \\ 1 & 2 \le x < \infty \end{cases}$$

(b) The graph of F(x) is shown in Fig. 2-1.

Continuous Random Variables

A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution function may be represented as

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du \qquad (-\infty < x < \infty)$$
 (7)

where the function f(x) has the properties

1.
$$f(x) \ge 0$$

2.
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

It follows from the above that if *X* is a continuous random variable, then the probability that *X* takes on any one particular value is zero, whereas the *interval probability* that *X* lies *between two different values*, say, *a* and *b*, is given by

$$P(a < X < b) = \int_{a}^{b} f(x) dx \tag{8}$$

EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height X is precisely 58 inches (i.e., 68.000... inches) would be zero. However, there is a probability greater than zero than X is between 67.000... inches and 68.500... inches, for example.

A function f(x) that satisfies the above requirements is called a *probability function* or *probability distribution* for a continuous random variable, but it is more often called a *probability density function* or simply *density function*. Any function f(x) satisfying Properties 1 and 2 above will automatically be a density function, and required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant c such that the function

$$f(x) = \begin{cases} cx^2 & 0 < x < 3\\ 0 & \text{otherwise} \end{cases}$$

is a density function, and (b) compute P(1 < X < 2).

(a) Since f(x) satisfies Property 1 if $c \ge 0$, it must satisfy Property 2 in order to be a density function. Now

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{3} cx^{2} dx = \frac{cx^{3}}{3} \Big|_{0}^{3} = 9c$$

and since this must equal 1, we have c = 1/9.

(b)
$$P(1 < X < 2) = \int_{1}^{2} \frac{1}{9} x^{2} dx = \frac{x^{3}}{27} \Big|_{1}^{2} = \frac{8}{27} - \frac{1}{27} = \frac{7}{27}$$

In case f(x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal to any particular value is zero. In such case we can replace either or both of the signs < in (8) by \le . Thus, in Example 2.5,

$$P(1 \le X \le 2) = P(1 \le X < 2) = P(1 < X \le 2) = P(1 < X < 2) = \frac{7}{27}$$

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to find $P(1 \le x \le 2)$.

(a) We have

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

If x < 0, then F(x) = 0. If $0 \le x < 3$, then

$$F(x) = \int_0^x f(u) du = \int_0^x \frac{1}{9} u^2 du = \frac{x^3}{27}$$

If $x \ge 3$, then

$$F(x) = \int_0^3 f(u) \, du + \int_3^x f(u) \, du = \int_0^3 \frac{1}{9} u^2 \, du + \int_3^x 0 \, du = 1$$

Thus the required distribution function is

$$F(x) = \begin{cases} 0 & x < 0 \\ x^3/27 & 0 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It should also be noted that F(x) in this case is continuous.

(b) We have

$$P(1 < X \le 2) = P(X \le 2) - P(X \le 1)$$

$$= F(2) - F(1)$$

$$= \frac{2^3}{27} - \frac{1^3}{27} = \frac{7}{27}$$

as in Example 2.5.

The probability that X is between x and $x + \Delta x$ is given by

$$P(x \le X \le x + \Delta x) = \int_{x}^{x + \Delta x} f(u) du$$
 (9)

so that if Δx is small, we have approximately

$$P(x \le X \le x + \Delta x) = f(x)\Delta x \tag{10}$$

We also see from (7) on differentiating both sides that

$$\frac{dF(x)}{dx} = f(x) \tag{11}$$

at all points where f(x) is continuous; i.e., the derivative of the distribution function is the density function.

It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown that the random variable X with the following distribution function is an example.

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{x}{2} & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

In order to obtain (11), we used the basic property

$$\frac{d}{dx} \int_{a}^{x} f(u) du = f(x)$$
 (12)

which is one version of the Fundamental Theorem of Calculus.

Change of Variables

Given the probability distributions of one or more random variables, we are often interested in finding distributions of other random variables that depend on them in some specified manner. Procedures for obtaining these distributions are presented in the following theorems for the case of discrete and continuous variables.

1. DISCRETE VARIABLES

Theorem 2-1 Let X be a discrete random variable whose probability function is f(x). Suppose that a discrete random variable U is defined in terms of X by $U = \phi(X)$, where to each value of X there corresponds one and only one value of U and conversely, so that $X = \psi(U)$. Then the probability function for U is given by

$$g(u) = f[\psi(u)] \tag{31}$$

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f(x, y). Suppose that two discrete random variables U and V are defined in terms of X and Y by $U = \phi_1(X, Y)$, $V = \phi_2(X, Y)$, where to each pair of values of X and Y there corresponds one and only one pair of values of U and V and conversely, so that $X = \psi_1(U, V)$, $Y = \psi_2(U, V)$. Then the joint probability function of U and V is given by

$$g(u, v) = f[\psi_1(u, v), \psi_2(u, v)]$$
(32)

2. CONTINUOUS VARIABLES

Theorem 2-3 Let X be a continuous random variable with probability density f(x). Let us define $U = \phi(X)$ where $X = \psi(U)$ as in Theorem 2-1. Then the probability density of U is given by g(u) where

$$g(u)|du| = f(x)|dx| \tag{33}$$

or

$$g(u) = f(x) \left| \frac{dx}{du} \right| = f[\psi(u)] |\psi'(u)|$$
(34)

Theorem 2-4 Let X and Y be continuous random variables having joint density function f(x, y). Let us define $U = \phi_1(X, Y)$, $V = \phi_2(X, Y)$ where $X = \psi_1(U, V)$, $Y = \psi_2(U, V)$ as in Theorem 2-2. Then the joint density function of U and V is given by g(u, v) where

$$g(u, v)|du dv| = f(x, y)|dx dy|$$
(35)

or

$$g(u, v) = f(x, y) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| = f[\psi_1(u, v), \psi_2(u, v)] |J|$$
 (36)

In (36) the Jacobian determinant, or briefly Jacobian, is given by

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
(37)

MODULE 3 - MATHEMATICAL EXPECTATIONS

Definition of Mathematical Expectation

A very important concept in probability and statistics is that of the mathematical expectation, expected value, or briefly the expectation, of a random variable. For a discrete random variable X having the possible values x_1, \ldots, x_n the expectation of X is defined as

$$E(X) = x_1 P(X = x_1) + \dots + x_n P(X = x_n) = \sum_{j=1}^n x_j P(X = x_j)$$
 (1)

or equivalently, if $P(X = x_i) = f(x_i)$,

$$E(X) = x_1 f(x_1) + \dots + x_n f(x_n) = \sum_{j=1}^n x_j f(x_j) = \sum x f(x)$$
 (2)

where the last summation is taken over all appropriate values of x. As a special case of (2), where the probabilities are all equal, we have

$$E(X) = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 (3)

which is called the *arithmetic mean*, or simply the *mean*, of x_1, x_2, \ldots, x_n . If X takes on an infinite number of values x_1, x_2, \ldots , then $E(X) = \sum_{j=1}^{\infty} x_j f(x_j)$ provided that the infinite series converges absolutely.

For a continuous random variable X having density function f(x), the expectation of X is defined as

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx \tag{4}$$

provided that the integral converges absolutely.

The expectation of X is very often called the *mean* of X and is denoted by μ_X , or simply μ , when the particular random variable is understood.

The mean, or expectation, of X gives a single value that acts as a representative or average of the values of X, and for this reason it is often called a measure of central tendency. Other measures are considered on page 83.

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this game a player wins \$20 if a 2 turns up, \$40 if a 4 turns up; loses \$30 if a 6 turns up; while the player neither wins nor loses if any other face turns up. Find the expected sum of money to be won.

Let X be the random variable giving the amount of money won on any toss. The possible amounts won when the die turns up 1, 2, ..., 6 are $x_1, x_2, ..., x_6$, respectively, while the probabilities of these are $f(x_1), f(x_2), ..., f(x_6)$. The probability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is

$$E(X) = (0)\left(\frac{1}{6}\right) + (20)\left(\frac{1}{6}\right) + (0)\left(\frac{1}{6}\right) + (40)\left(\frac{1}{6}\right) + (0)\left(\frac{1}{6}\right) + (-30)\left(\frac{1}{6}\right) = 5$$

Table 3-1

x_{j}	0	+20	0	+40	0	-30
$f(x_j)$	1/6	1/6	1/6	1/6	1/6	1/6

It follows that the player can expect to win \$5. In a fair game, therefore, the player should be expected to pay \$5 in order to play the game.

EXAMPLE 3.2 The density function of a random variable X is given by

$$f(x) = \begin{cases} \frac{1}{2}x & 0 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

The expected value of X is then

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{2} x \left(\frac{1}{2}x\right) dx = \int_{0}^{2} \frac{x^{2}}{2} dx = \frac{x^{3}}{6} \Big|_{0}^{2} = \frac{4}{3}$$

Functions of Random Variables

Let X be a discrete random variable with probability function f(x). Then Y = g(X) is also a discrete random variable, and the probability function of Y is

$$h(y) = P(Y = y) = \sum_{\{x | g(x) = y\}} P(X = x) = \sum_{\{x | g(x) = y\}} f(x)$$

If X takes on the values $x_1, x_2, ..., x_n$, and Y the values $y_1, y_2, ..., y_m$ $(m \le n)$, then $y_1h(y_1) + y_2h(y_2) + ... + y_mh(y_m) = g(x_1)f(x_1) + g(x_2)f(x_2) + ... + g(x_n)f(x_n)$. Therefore,

$$E[g(X)] = g(x_1)f(x_1) + g(x_2)f(x_2) + \dots + g(x_n)f(x_n)$$

= $\sum_{j=1}^{n} g(x_j)f(x_j) = \sum_{j=1}^{n} g(x_j)f(x_j)$ (5)

Similarly, if X is a continuous random variable having probability density f(x), then it can be shown that

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx \tag{6}$$

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function of Y = g(X).

Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$$
 (7)

EXAMPLE 3.3 If X is the random variable of Example 3.2,

$$E(3X^2 - 2X) = \int_{-\infty}^{\infty} (3x^2 - 2x)f(x)dx = \int_{0}^{2} (3x^2 - 2x) \left(\frac{1}{2}x\right) dx = \frac{10}{3}$$

Some Theorems on Expectation

Theorem 3-1 If c is any constant, then

$$E(cX) = cE(X) \tag{8}$$

Theorem 3-2 If X and Y are any random variables, then

$$E(X+Y) = E(X) + E(Y) \tag{9}$$

Theorem 3-3 If X and Y are independent random variables, then

$$E(XY) = E(X)E(Y) \tag{10}$$

Generalizations of these theorems are easily made.

The Variance and Standard Deviation

We have already noted on page 75 that the expectation of a random variable X is often called the *mean* and is denoted by μ . Another quantity of great importance in probability and statistics is called the *variance* and is defined by

$$Var(X) = E[(X - \mu)^2]$$
 (11)

The variance is a nonnegative number. The positive square root of the variance is called the *standard deviation* and is given by

$$\sigma_X = \sqrt{\operatorname{Var}(X)} = \sqrt{E[(X - \mu)^2]}$$
 (12)

Where no confusion can result, the standard deviation is often denoted by σ instead of σ_{χ} , and the variance in such case is σ^2 .

If X is a discrete random variable taking the values x_1, x_2, \ldots, x_n and having probability function f(x), then the variance is given by

$$\sigma_X^2 = E[(X - \mu)^2] = \sum_{j=1}^n (x_j - \mu)^2 f(x_j) = \sum_j (x - \mu)^2 f(x_j)$$
 (13)

In the special case of (13) where the probabilities are all equal, we have

$$\sigma^2 = [(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2]/n \tag{14}$$

which is the variance for a set of n numbers x_1, \ldots, x_n .

If X takes on an infinite number of values x_1, x_2, \ldots , then $\sigma_X^2 = \sum_{j=1}^{\infty} (x_j - \mu)^2 f(x_j)$, provided that the series converges.

If X is a continuous random variable having density function f(x), then the variance is given by

$$\sigma_X^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$
 (15)

provided that the integral converges.

The variance (or the standard deviation) is a measure of the *dispersion*, or *scatter*, of the values of the random variable about the mean μ . If the values tend to be concentrated near the mean, the variance is small; while if the values tend to be distributed far from the mean, the variance is large. The situation is indicated graphically in Fig. 3-1 for the case of two continuous distributions having the same mean μ .

Fig. 3-1

EXAMPLE 3.4 Find the variance and standard deviation of the random variable of Example 3.2. As found in Example 3.2, the mean is $\mu = E(X) = 4/3$. Then the variance is given by

$$\sigma^{2} = E\left[\left(X - \frac{4}{3}\right)^{2}\right] = \int_{-\infty}^{\infty} \left(x - \frac{4}{3}\right)^{2} f(x) \, dx = \int_{0}^{2} \left(x - \frac{4}{3}\right)^{2} \left(\frac{1}{2}x\right) dx = \frac{2}{9}$$

and so the standard deviation is $\sigma = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3}$

Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has units cm² while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the standard deviation is often used.

Some Theorems on Variance

Theorem 3-4

$$\sigma^2 = E[(X - \mu)^2] = E(X^2) - \mu^2 = E(X^2) - [E(X)]^2$$
(16)

where $\mu = E(X)$.

Theorem 3-5 If c is any constant,

$$Var(cX) = c^2 Var(X)$$
 (17)

Theorem 3-6 The quantity $E[(X-a)^2]$ is a minimum when $a=\mu=E(X)$.

Theorem 3-7 If X and Y are independent random variables,

$$Var(X + Y) = Var(X) + Var(Y)$$
 or $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$ (18)

$$Var(X - Y) = Var(X) + Var(Y)$$
 or $\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$ (19)

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In words, the variance of a sum of independent variables equals the sum of their variances.

Standardized Random Variables

Let X be a random variable with mean μ and standard deviation $\sigma(\sigma \ge 0)$. Then we can define an associated *standardized random variable* given by

$$X^* = \frac{X - \mu}{\sigma} \tag{20}$$

An important property of X^* is that it has a mean of zero and a variance of 1, which accounts for the name *standardized*, i.e.,

$$E(X^*) = 0, \quad Var(X^*) = 1$$
 (21)

The values of a standardized variable are sometimes called *standard scores*, and X is then said to be expressed in *standard units* (i.e., σ is taken as the unit in measuring $X - \mu$).

Standardized variables are useful for comparing different distributions.

Moments

The rth moment of a random variable X about the mean μ , also called the rth central moment, is defined as

$$\mu_r = E[(X - \mu)^r] \tag{22}$$

where $r = 0, 1, 2, \ldots$ It follows that $\mu_0 = 1, \mu_1 = 0$, and $\mu_2 = \sigma^2$, i.e., the second central moment or second moment about the mean is the variance. We have, assuming absolute convergence,

$$\mu_r = \sum (x - \mu)^r f(x)$$
 (discrete variable) (23)

$$\mu_r = \int_{-\infty}^{\infty} (x - \mu)^r f(x) dx \qquad \text{(continuous variable)}$$
 (24)

The rth moment of X about the origin, also called the rth raw moment, is defined as

$$\mu_r' = E(X') \tag{25}$$

where $r = 0, 1, 2, \ldots$, and in this case there are formulas analogous to (23) and (24) in which $\mu = 0$. The relationship between these moments is given by

$$\mu_r = \mu_r' - \binom{r}{1} \mu_{r-1}' \mu + \dots + (-1)^j \binom{r}{j} \mu_{r-j}' \mu^j + \dots + (-1)^r \mu_0' \mu^r$$
 (26)

As special cases we have, using $\mu'_1 = \mu$ and $\mu'_0 = 1$,

$$\mu_{2} = \mu'_{2} - \mu^{2}$$

$$\mu_{3} = \mu'_{3} - 3\mu'_{2}\mu + 2\mu^{3}$$

$$\mu_{4} = \mu'_{4} - 4\mu'_{3}\mu + 6\mu'_{2}\mu^{2} - 3\mu^{4}$$
(27)

Moment Generating Functions

The moment generating function of X is defined by

$$M_X(t) = E(e^{tX}) \tag{28}$$

that is, assuming convergence,

$$M_X(t) = \sum e^{ix} f(x)$$
 (discrete variable) (29)

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx \qquad \text{(continuous variable)}$$
 (30)

We can show that the Taylor series expansion is [Problem 3.15(a)]

$$M_X(t) = 1 + \mu t + \mu_2' \frac{t^2}{2!} + \dots + \mu_r' \frac{t^r}{r!} + \dots$$
 (31)

Since the coefficients in this expansion enable us to find the moments, the reason for the name *moment generating function* is apparent. From the expansion we can show that [Problem 3.15(b)]

$$\mu_r' = \frac{d^r}{dt^r} M_X(t) \bigg|_{t=0} \tag{32}$$

i.e., μ'_r is the rth derivative of $M_X(t)$ evaluated at t = 0. Where no confusion can result, we often write M(t) instead of $M_X(t)$.

Some Theorems on Moment Generating Functions

Theorem 3-8 If $M_X(t)$ is the moment generating function of the random variable X and a and b ($b \ne 0$) are constants, then the moment generating function of (X + a)/b is

$$M_{(X+a)/b}(t) = e^{at/b} M_X \left(\frac{t}{b}\right)$$
 (33)

Theorem 3-9 If X and Y are independent random variables having moment generating functions $M_X(t)$ and $M_Y(t)$, respectively, then

$$M_{X+Y}(t) = M_X(t) M_Y(t)$$
(34)

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In words, the moment generating function of a sum of independent random variables is equal to the product of their moment generating functions.

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment generating functions $M_X(t)$ and $M_Y(t)$, respectively. Then X and Y have the same probability distribution if and only if $M_X(t) = M_Y(t)$ identically.

Characteristic Functions

If we let $t = i\omega$, where i is the imaginary unit, in the moment generating function we obtain an important function called the *characteristic function*. We denote this by

$$\phi_X(\omega) = M_X(i\omega) = E(e^{i\omega X}) \tag{35}$$

It follows that

$$\phi_{X}(\omega) = \sum e^{i\omega x} f(x)$$
 (discrete variable) (36)

$$\phi_X(\omega) = \int_{-\infty}^{\infty} e^{i\omega x} f(x) dx \qquad \text{(continuous variable)}$$
 (37)

Since $|e^{i\omega x}| = 1$, the series and the integral always converge absolutely.

The corresponding results (31) and (32) become

$$\phi_{\chi}(\omega) = 1 + i\mu\omega - \mu_2' \frac{\omega^2}{2!} + \dots + i\mu_r' \frac{\omega^r}{r!} + \dots$$
(38)

where

$$\mu_r' = (-1)^r i^r \frac{d^r}{d\omega^r} \phi_X(\omega) \bigg|_{\omega=0}$$
(39)

When no confusion can result, we often write $\phi(\omega)$ instead of $\phi_X(\omega)$.

Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows.

Theorem 3-11 If $\phi_X(\omega)$ is the characteristic function of the random variable X and a and b (b \neq 0) are constants, then the characteristic function of (X + a)/b is

$$\phi_{(X+a)/b}(\omega) = e^{ai\omega/b}\phi_X\left(\frac{\omega}{b}\right) \tag{40}$$

Theorem 3-12 If X and Y are independent random variables having characteristic functions $\phi_X(\omega)$ and $\phi_Y(\omega)$, respectively, then

$$\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \tag{41}$$

More generally, the characteristic function of a sum of independent random variables is equal to the product of their characteristic functions.

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having characteristic functions $\phi_X(\omega)$ and $\phi_Y(\omega)$, respectively. Then X and Y have the same probability distribution if and only if $\phi_X(\omega) = \phi_Y(\omega)$ identically.

Skewness and Kurtosis

1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails longer than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be *skewed to the right*, while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be *skewed to the left*. Measures describing this asymmetry are called *coefficients of skewness*, or briefly *skewness*. One such measure is given by

$$\alpha_3 = \frac{E[(X - \mu)^3]}{\sigma^3} = \frac{\mu_3}{\sigma^3}$$
 (63)

The measure σ_3 will be positive or negative according to whether the distribution is skewed to the right or left, respectively. For a symmetric distribution, $\sigma_3 = 0$.

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that the distribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the distribution may be

relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a distribution are called *coefficients of kurtosis*, or briefly *kurtosis*. A measure often used is given by

$$\alpha_4 = \frac{E[(X - \mu)^4]}{\sigma^4} = \frac{\mu_4}{\sigma^4} \tag{64}$$

MODULE 4 - BIVARIATE RANDOM VARIABLES

Joint Distributions

The above ideas are easily generalized to two or more random variables. We consider the typical case of two random variables that are either both discrete or both continuous. In cases where one variable is discrete and the other continuous, appropriate modifications are easily made. Generalizations to more than two variables can also be made.

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint probability function of X and Y by

$$P(X = x, Y = y) = f(x, y)$$
 (13)

where 1. $f(x, y) \ge 0$

2.
$$\sum_{x} \sum_{y} f(x, y) = 1$$

2. $\sum_{x} \sum_{y} f(x, y) = 1$ i.e., the sum over all values of x and y is 1.

Suppose that X can assume any one of m values x_1, x_2, \ldots, x_m and Y can assume any one of n values y_1, y_2, \ldots, y_n . Then the probability of the event that $X = x_i$ and $Y = y_k$ is given by

$$P(X = x_i, Y = y_k) = f(x_i, y_k)$$
 (14)

$$P(X = x_j) = f_1(x_j) = \sum_{k=1}^{n} f(x_j, y_k)$$
 (15)

Table 2-3

X	y ₁	<i>y</i> ₂		y_n	Totals	_=
<i>x</i> ₁	$f(x_1, y_1)$	$f(x_1, y_2)$	550	$f(x_1, y_n)$	$f_1(x_1)$	
<i>x</i> ₂	$f(x_2, y_1)$	$f(x_2, y_2)$		$f(x_2, y_n)$	$f_1(x_2)$	
i	i	:		1	÷	
χ_m	$f(x_m, y_1)$	$f(x_m, y_2)$		$f(x_m, y_n)$	$f_1(x_m)$	
Totals →	$f_2(y_1)$	$f_2(y_2)$		$f_2(y_n)$	1	← Grand Total
1.5				•		

For $i = 1, 2, \dots, m$, these are indicated by the entry totals in the extreme right-hand column or margin of Table 2-3. Similarly the probability that $Y = y_t$ is obtained by adding all entries in the column corresponding to y_t and is given by

$$P(Y = y_k) = f_2(y_k) = \sum_{j=1}^{m} f(x_j, y_k)$$
 (16)

For $k = 1, 2, \dots, n$, these are indicated by the entry totals in the bottom row or margin of Table 2-3.

Because the probabilities (15) and (16) are obtained from the margins of the table, we often refer to $f_1(x_i)$ and $f_2(y_k)$ [or simply $f_1(x)$ and $f_2(y)$] as the marginal probability functions of X and Y, respectively. It should also be noted that

$$\sum_{j=1}^{m} f_1(x_j) = 1 \quad \sum_{k=1}^{n} f_2(y_k) = 1$$
 (17)

which can be written

$$\sum_{j=1}^{m} \sum_{k=1}^{n} f(x_j, y_k) = 1 \tag{18}$$

This is simply the statement that the total probability of all entries is 1. The *grand total* of 1 is indicated in the lower right-hand corner of the table.

The joint distribution function of X and Y is defined by

$$F(x, y) = P(X \le x, Y \le y) = \sum_{u \le x} \sum_{v \le y} f(u, v)$$
 (19)

In Table 2-3, F(x, y) is the sum of all entries for which $x_i \le x$ and $y_k \le y$.

- **2. CONTINUOUS CASE.** The case where both variables are continuous is obtained easily by analogy with the discrete case on replacing sums by integrals. Thus the *joint probability function* for the random variables X and Y (or, as it is more commonly called, the *joint density function* of X and Y) is defined by
- 1. $f(x, y) \ge 0$

$$2. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

Graphically z = f(x, y) represents a surface, called the *probability surface*, as indicated in Fig. 2-4. The total volume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 above. The probability that X lies between a and b while Y lies between a and b while b is given graphically by the shaded volume of Fig. 2-4 and mathematically by

$$P(a < X < b, c < Y < d) = \int_{x=a}^{b} \int_{y=c}^{d} f(x, y) dx dy$$
 (20)

Fig. 2-4

More generally, if A represents any event, there will be a region \mathcal{R}_A of the xy plane that corresponds to it. In such case we can find the probability of A by performing the integration over \mathcal{R}_A , i.e.,

$$P(A) = \iint_{\Re_A} f(x, y) \, dx \, dy \tag{21}$$

The *joint distribution function* of *X* and *Y* in this case is defined by

$$F(x, y) = P(X \le x, Y \le y) = \int_{u = -\infty}^{x} \int_{v = -\infty}^{y} f(u, v) \, du \, dv \tag{22}$$

It follows in analogy with (11), page 38, that

$$\frac{\partial^2 F}{\partial x \partial y} = f(x, y) \tag{23}$$

i.e., the density function is obtained by differentiating the distribution function with respect to x and y. From (22) we obtain

$$P(X \le x) = F_1(x) = \int_{u = -\infty}^{x} \int_{v = -\infty}^{\infty} f(u, v) du dv$$
 (24)

$$P(Y \le y) = F_2(y) = \int_{u = -\infty}^{\infty} \int_{v = -\infty}^{y} f(u, v) du dv$$
 (25)

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and Y, respectively. The derivatives of (24) and (25) with respect to X and Y are then called the marginal density functions, or simply the density functions, of X and Y and are given by

$$f_1(x) = \int_{v = -\infty}^{\infty} f(x, v) dv$$
 $f_2(y) = \int_{u = -\infty}^{\infty} f(u, y) du$ (26)

Independent Random Variables

Suppose that X and Y are discrete random variables. If the events X = x and Y = y are independent events for all x and y, then we say that X and Y are independent random variables. In such case,

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 (27)

or equivalently

$$f(x, y) = f_1(x)f_2(y)$$
 (28)

Conversely, if for all x and y the joint probability function f(x, y) can be expressed as the product of a function of x alone and a function of y alone (which are then the marginal probability functions of X and Y), X and Y are independent. If, however, f(x, y) cannot be so expressed, then X and Y are dependent.

If X and Y are continuous random variables, we say that they are *independent random variables* if the events $X \le x$ and $Y \le y$ are independent events for all x and y. In such case we can write

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y) \tag{29}$$

or equivalently

$$F(x, y) = F_1(x)F_2(y)$$
 (30)

where $F_1(z)$ and $F_2(y)$ are the (marginal) distribution functions of X and Y, respectively. Conversely, X and Y are independent random variables if for all x and y, their joint distribution function F(x, y) can be expressed as a product of a function of x alone and a function of y alone (which are the marginal distributions of X and Y, respectively). If, however, F(x, y) cannot be so expressed, then X and Y are dependent.

For continuous independent random variables, it is also true that the joint density function f(x, y) is the product of a function of x alone, $f_1(x)$, and a function of y alone, $f_2(y)$, and these are the (marginal) density functions of X and Y, respectively.

Functions of Random Variables

Let *X* be a discrete random variable with probability function f(x). Then Y = g(X) is also a discrete random variable, and the probability function of *Y* is

$$h(y) = P(Y = y) = \sum_{\{x | g(x) = y\}} P(X = x) = \sum_{\{x | g(x) = y\}} f(x)$$

If X takes on the values $x_1, x_2, ..., x_n$, and Y the values $y_1, y_2, ..., y_m$ $(m \le n)$, then $y_1h(y_1) + y_2h(y_2) + ... + y_mh(y_m) = g(x_1)f(x_1) + g(x_2)f(x_2) + ... + g(x_n)f(x_n)$. Therefore,

$$E[g(X)] = g(x_1)f(x_1) + g(x_2)f(x_2) + \dots + g(x_n)f(x_n)$$

$$= \sum_{j=1}^{n} g(x_j)f(x_j) = \sum_{j=1}^{n} g(x_j)f(x_j)$$
 (5)

Similarly, if X is a continuous random variable having probability density f(x), then it can be shown that

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx \tag{6}$$

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function of Y = g(X).

Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y)dxdy$$
 (7)

EXAMPLE 3.3 If X is the random variable of Example 3.2,

$$E(3X^2 - 2X) = \int_{-\infty}^{\infty} (3x^2 - 2x)f(x)dx = \int_{0}^{2} (3x^2 - 2x) \left(\frac{1}{2}x\right) dx = \frac{10}{3}$$

Probability Distributions of Functions of Random Variables

Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In practice one often needs to find the probability distribution of some specified function of several random variables. Either of the following theorems is often useful for this purpose.

- **Theorem 2-5** Let X and Y be continuous random variables and let $U = \phi_1(X, Y)$, V = X (the second choice is arbitrary). Then the density function for U is the marginal density obtained from the joint density of U and V as found in Theorem 2-4. A similar result holds for probability functions of discrete variables.
- **Theorem 2-6** Let f(x, y) be the joint density function of X and Y. Then the density function g(u) of the random variable $U = \phi_1(X, Y)$ is found by differentiating with respect to u the distribution

function given by

$$G(u) = P[\phi_1(X, Y) \le u] = \iint_{\mathfrak{R}} f(x, y) dx dy$$
(38)

Where \Re is the region for which $\phi_1(x, y) \leq u$.

Convolutions

As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density function of the sum of two continuous random variables X and Y, i.e., of U = X + Y, having joint density function f(x, y) is given by

$$g(u) = \int_{-\infty}^{\infty} f(x, u - x) dx \tag{39}$$

In the special case where X and Y are independent, $f(x, y) = f_1(x)f_2(y)$, and (39) reduces to

$$g(u) = \int_{-\infty}^{\infty} f_1(x) f_2(u - x) dx$$
 (40)

which is called the *convolution* of f_1 and f_2 , abbreviated, $f_1 * f_2$.

The following are some important properties of the convolution:

1.
$$f_1 * f_2 = f_2 * f_1$$

2.
$$f_1 * (f_2 * f_3) = (f_1 * f_2) * f_3$$

3.
$$f_1 * (f_2 + f_3) = f_1 * f_2 + f_1 * f_3$$

These results show that f_1, f_2, f_3 obey the *commutative*, associative, and distributive laws of algebra with respect to the operation of convolution.

Conditional Distributions

We already know that if P(A) > 0,

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \tag{41}$$

If X and Y are discrete random variables and we have the events (A: X = x), (B: Y = y), then (41) becomes

$$P(Y = y \mid X = x) = \frac{f(x, y)}{f_1(x)}$$
(42)

where f(x, y) = P(X = x, Y = y) is the joint probability function and $f_1(x)$ is the marginal probability function for X. We define

$$f(y|x) = \frac{f(x,y)}{f_1(x)} \tag{43}$$

and call it the *conditional probability function of Y given X*. Similarly, the conditional probability function of X given Y is

$$f(x \mid y) \equiv \frac{f(x, y)}{f_2(y)} \tag{44}$$

We shall sometimes denote f(x|y) and f(y|x) by $f_1(x|y)$ and $f_2(y|x)$, respectively.

These ideas are easily extended to the case where X, Y are continuous random variables. For example, the conditional density function of Y given X is

$$f(y \mid x) \equiv \frac{f(x, y)}{f_1(x)} \tag{45}$$

where f(x, y) is the joint density function of X and Y, and $f_1(x)$ is the marginal density function of X. Using (45) we can, for example, find that the probability of Y being between c and d given that x < X < x + dx is

$$P(c < Y < d \mid x < X < x + dx) = \int_{c}^{d} f(y \mid x) dy$$
 (46)

Variance for Joint Distributions. Covariance

The results given above for one variable can be extended to two or more variables. For example, if X and Y are two continuous random variables having joint density function f(x, y), the means, or expectations, of X and Y are

$$\mu_X = E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy, \qquad \mu_Y = E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy$$
 (43)

and the variances are

$$\sigma_X^2 = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x, y) \, dx \, dy$$

$$\sigma_Y^2 = E[(Y - \mu_Y)^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y - \mu_Y)^2 f(x, y) \, dx \, dy$$
(44)

Note that the marginal density functions of *X* and *Y* are not directly involved in (43) and (44). Another quantity that arises in the case of two variables *X* and *Y* is the *covariance* defined by

$$\sigma_{XY} = \text{Cov}(X, Y) = E[(X - \mu_Y)(Y - \mu_Y)]$$
 (45)

In terms of the joint density function f(x, y), we have

$$\sigma_{XY} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f(x, y) dx dy$$
 (46)

Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are replaced by

$$\mu_X = \sum_{x} \sum_{y} x f(x, y) \qquad \mu_Y = \sum_{x} \sum_{y} y f(x, y)$$
 (47)

$$\sigma_{XY} = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y)$$
(48)

where the sums are taken over all the discrete values of X and Y.

The following are some important theorems on covariance.

Theorem 3-14
$$\sigma_{XY} = E(XY) - E(X)E(Y) = E(XY) - \mu_X \mu_Y$$
 (49)

Theorem 3-15 If X and Y are independent random variables, then

$$\sigma_{XY} = \text{Cov}(X, Y) = 0 \tag{50}$$

Theorem 3-16
$$\operatorname{Var}(X \pm Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \pm 2\operatorname{Cov}(X, Y) \tag{51}$$

or
$$\sigma_{X\pm Y}^2 = \sigma_Y^2 + \sigma_Y^2 \pm 2\sigma_{XY} \tag{52}$$

Theorem 3-17
$$|\sigma_{\chi \gamma}| \le \sigma_{\chi} \sigma_{\gamma}$$
 (53)

The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 reduces to Theorem 3-7.

Correlation Coefficient

If X and Y are independent, then $Cov(X, Y) = \sigma_{XY} = 0$. On the other hand, if X and Y are completely dependent, for example, when X = Y, then $Cov(X, Y) = \sigma_{XY} = \sigma_X \sigma_Y$. From this we are led to a *measure of the dependence* of the variables X and Y given by

$$\rho = \frac{\sigma_{XY}}{\sigma_{V}\sigma_{V}} \tag{54}$$

We call ρ the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that $-1 \le \rho \le 1$.

Conditional Expectation, Variance, and Moments

If X and Y have joint density function f(x, y), then as we have seen in Chapter 2, the conditional density function of Y given X is $f(y|x) = f(x, y)/f_1(x)$ where $f_1(x)$ is the marginal density function of X. We can define the conditional expectation, or conditional mean, of Y given X by

$$E(Y|X=x) = \int_{-\infty}^{\infty} y f(y|x) dy$$
 (55)

where "X = x" is to be interpreted as $x < X \le x + dx$ in the continuous case. Theorems 3-1 and 3-2 also hold for conditional expectation.

We note the following properties:

1. E(Y | X = x) = E(Y) when X and Y are independent.

2.
$$E(Y) = \int_{-\infty}^{\infty} E(Y|X=x) f_1(x) dx$$
.

EXAMPLE 3.5 The average travel time to a distant city is c hours by car or b hours by bus. A woman cannot decide whether to drive or take the bus, so she tosses a coin. What is her expected travel time?

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, Y, where $Y = Y_{car}$ if X = 0 and $Y = Y_{bus}$ if X = 1. Presumably, both Y_{car} and Y_{bus} are independent of X, so that by Property 1 above

$$E(Y | X = 0) = E(Y_{car} | X = 0) = E(Y_{car}) = c$$

and

$$E(Y | X = 1) = E(Y_{\text{bus}} | X = 1) = E(Y_{\text{bus}}) = b$$

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin,

$$E(Y) = E(Y | X = 0)P(X = 0) + E(Y | X = 1)P(X = 1) = \frac{c+b}{2}$$

In a similar manner we can define the conditional variance of Y given X as

$$E[(Y - \mu_2)^2 | X = x] = \int_{-\infty}^{\infty} (y - \mu_2)^2 f(y | x) dy$$
 (56)

where $\mu_2 = E(Y | X = x)$. Also we can define the rth conditional moment of Y about any value a given X as

$$E[(Y-a)^{r} | X = x] = \int_{-\infty}^{\infty} (y-a)^{r} f(y|x) dy$$
 (57)

The usual theorems for variance and moments extend to conditional variance and moments.

REFERENCES

- Rohatgi V. K. and Saleh, A.K. Md. E. (2009): An Introduction to Probability and Statistics. 2ndEdn. (Reprint) John Wiley and Sons.
- 2. S.C.Gupta and V. K. Kapoor, *Fundamentals of Mathematical Statistics*, Sultan Chand and Sons.
- 3. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): Introduction to the Theory of Statistics, 3rd Edn., (Reprint), Tata McGraw-Hill Pub. Co. Ltd.
- 4. John E Freund, *Mathematical Statistics*, Pearson Edn, New Delhi
- 5. Hoel P.G. *Introduction to mathematical statistics*, Asia Publishing house.