

Nombre: Jose Ismael Font Fernandez

Curso : Técnico en ciberseguridad

Facilitador Kelvin Feliz

Modulo: CCNA1

1. Fundamentos de IPv4 (Internet Protocol versión 4)

IPv4 es el esquema de direccionamiento dominante, aunque en proceso de reemplazo. Una dirección IPv4 está compuesta por **32 bits**, lo que teóricamente permite unos 4.300 millones de direcciones únicas.

A. Estructura de la Dirección

Una dirección IPv4 se divide en cuatro secciones de 8 bits, llamadas octetos.

- 1. Formato: XXX.XXX.XXX.XXX (ejemplo: 192.168.1.10).
- 2. **Representación:** Cada octeto se representa en decimal (de 0 a 255) para facilitar la lectura, aunque la red opera con la representación binaria.

Octeto 1	Octeto 2	Octeto 3	Octeto 4
8 bits	8 bits	8 bits	8 bits
32 bits en total			

B. ID de Red vs. ID de Host

Cada dirección IP tiene dos partes cruciales que definen la estructura de la red:

- Identificador de Red (Network ID): Es la porción inicial de la dirección que identifica a la red completa. Todos los dispositivos de una misma red local (LAN) deben compartir el mismo ID de Red.
- Identificador de Host (Host ID): Es la porción restante que identifica a un dispositivo específico dentro de esa red. Debe ser único para cada dispositivo dentro del segmento de red.

2. La Máscara de Subred (Subnet Mask)

La **Máscara de Subred** es una segunda dirección de 32 bits que trabaja en conjunto con la Dirección IP para determinar cuál porción de la IP es el ID de Red y cuál es el ID de Host.

- Función: La máscara actúa como un filtro. Donde tiene un 1 binario, la Dirección IP corresponde al ID de Red. Donde tiene un 0 binario, corresponde al ID de Host.
- Ejemplo:

o **IP:** 192.168.1.10

o Máscara: 255.255.255.0

 Esto indica que los primeros tres octetos (192.168.1) son el ID de Red, y el último octeto (10) es el ID de Host.

Direcciones Especiales

Dentro de cualquier red definida por una máscara, existen dos direcciones reservadas que no se pueden asignar a ningún host:

- Dirección de Red (Network Address): El Host ID de esta dirección es siempre cero binario (ej: 192.168.1.0). Identifica a la red completa.
- 2. **Dirección de Broadcast:** El Host ID de esta dirección es siempre **uno** binario (ej: 192.168.1.255). Se usa para enviar datos a **todos** los dispositivos dentro de ese segmento de red simultáneamente.

3. CIDR y Notación Prefija

Históricamente, el direccionamiento se basaba en **Clases** (A, B, C), pero esto fue reemplazado por el método moderno y flexible conocido como **CIDR**.

A. Notación CIDR (Classless Inter-Domain Routing)

CIDR utiliza una barra inclinada (/) seguida de un número para indicar la longitud del prefijo de red.

• El número que sigue a la barra representa la cantidad de **bits de red** (bits puestos a '1' en la máscara).

Notación CIDR	Máscara de Subred Decimal	Bits de Red	Bits de Host	Hosts Posibles
/8	255.0.0.0	8	24	~16.7 millones
/16	255.255.0.0	16	16	65.534
/24	255.255.255.0	24	8	254

B. Subneteo (Subnetting)

El subneteo es el proceso de tomar una red grande y dividirla en subredes más pequeñas y manejables, prestando bits del Host ID para extender el Network ID.

• **Ejemplo:** Una red /24 se puede dividir en subredes /25 o /26, creando así múltiples subredes lógicas que permiten una mejor organización y limitan el tráfico de broadcast.

4. IPv6 (Internet Protocol versión 6)

IPv6 es el protocolo de nueva generación diseñado para superar el agotamiento de direcciones de IPv4.

Característica	IPv4	IPv6	
Longitud	32 bits	128 bits	
Formato	Decimal con puntos (ej: 192.168.1.1)	Hexadecimal con dos puntos (ej: 2001:0db8:85a3:0000:0000:8a2e:0370:7334)	
Direcciones	~4.3 mil millones	340 sextillones (esencialmente ilimitadas)	

Características Clave de IPv6

- **Mayor Espacio:** Su principal ventaja es el vasto espacio de direcciones, lo que garantiza direcciones IP únicas a nivel global para miles de millones de dispositivos.
- **Encabezado Simplificado:** El formato de encabezado del paquete es más eficiente, lo que acelera el procesamiento por parte de los *routers*.
- Autoconfiguración (SLAAC): Los dispositivos pueden autoconfigurarse sus direcciones IP sin necesidad de un servidor DHCP.
- **Direccionamiento Jerárquico:** Facilita el enrutamiento más eficiente en Internet al permitir resúmenes de red más grandes y mejor organizados.