Reinforcement Learning (Tabular Methods) Reference Sheet

Jian W Dong, based on Sutton & Barto: Reinforcement Learning - An Introduction $2\mathrm{E}$

Algorithm	On/Off Policy	Model- Free/ Model- Based	Control/ Predic- tion	Policy Update	Objective	Bootstrap	Target	Update Rule	When to Use
		Based			DYNA	 MIC PROGRA	MMING (Chapter 4)		
Policy Eval	On	Model	Pred	None	V^{π}	Yes	$\sum_{a} \pi(a s) \sum_{s',r} p(s',r s,a)[r + \gamma V(s')]$	$V(s) \leftarrow \text{Target}$	Known environment, need policy evaluation
Policy Iter	On	Model	Ctrl	Greedy	V*	Yes	Same as Policy Eval	Policy Eval $+ \pi(s) \leftarrow \arg \max_{a} \sum_{s',r} p(s',r s,a)[r + \gamma V(s')]$	Known environment, guaranteed optimal policy
State-Value Iter	On	Model	Ctrl	Greedy	V*	Yes	$\max_{a} \sum_{s',r} p(s',r s,a)[r+\gamma V(s')]$	$V(s) \leftarrow \text{Target}$	Known environment, faster than policy iteration
Action-Value Iter	On	Model	Ctrl	Greedy	Q*	Yes	$\sum_{s',r} p(s',r s,a)[r + \gamma \max_{a'} Q(s',a')]$	$Q(s, a) \leftarrow \text{Target}$	Known environment, directly learns action values
	1				MONT	E CARLO ME	CTHODS (Chapter 5)		Taraco
First-Visit MC	On	Free	Pred	None	V ^π	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$ (from first	$V(S_t) \leftarrow V(S_t) + \alpha[\text{Target} - V(S_t)]$	Episodic tasks, unbiased estimates
Every-Visit MC	On	Free	Pred	None	V^{π}	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1} \text{ (from each visit)}$	$V(S_t) \leftarrow V(S_t) + \alpha[\text{Target} - V(S_t)]$	Episodic tasks, more data per episode
MC Exploring	On	Free	Ctrl	Greedy	Q*	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	$\begin{aligned} &Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \\ &\alpha[\text{Target} - Q(S_t, A_t)] \end{aligned}$	Episodic, can ensure exploring starts
On-policy MC	On	Free	Ctrl	ϵ -gr	Q^{π}	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[\text{Target} - Q(S_t, A_t)]$	Episodic, practical exploration
Off-policy MC Pred	Off	Free	Pred	None	V^{π}	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	Weighted IS: $C(S_t) \leftarrow C(S_t) + \rho_{t:T-1},$ $V(S_t) \leftarrow V(S_t) \leftarrow V(S_t) + \frac{\rho_{t:T-1}}{C(S_t)} [G_t - V(S_t)]$	Learn about different policy than behavior
Off-policy MC Ctrl	Off	Free	Ctrl	Greedy	Q*	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	$ \begin{aligned} & \text{Weighted IS: } C(S_t, A_t) \leftarrow \\ & C(S_t, A_t) + \rho_{t+1:T-1}, \\ & Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \\ & \frac{\rho_{t+1:T-1}}{C(S_t, A_t)} [G_t - Q(S_t, A_t)] \end{aligned} $	Learn optimal policy from suboptimal data
	•		•		TEMPORAL	-DIFFERENC	E LEARNING (Chapter 6)		•
TD(0)	On	Free	Pred	None	V^{π}	Yes	$R_{t+1} + \gamma V(S_{t+1})$	$V(S_t) \leftarrow V(S_t) + \alpha[\text{Target} - V(S_t)]$	Online learning, fast updates
SARSA	On Off	Free	Ctrl	ε-gr	Q^{π} Q^*	Yes	$R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$	$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[\text{Target} - Q(S_t, A_t)]$	Safe online control, conservative
Q-learning	Off	Free	Ctrl	ε-gr	Q"	Yes	$R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$	$\begin{array}{c} Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \\ \alpha[\mathrm{Target} - Q(S_t, A_t)] \end{array}$	Learn optimal policy, explo- ration/exploitation
Expected SARSA	On/Off	Free	Ctrl	ε-gr	Q^{π}	Yes	$R_{t+1} + \gamma \sum_{a'} \pi(a' S_{t+1}) Q(S_{t+1}, a')$	$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[\text{Target} - Q(S_t, A_t)]$	Lower variance than SARSA
Double Q-learning	Off	Free	Ctrl	ε-gr	Q^*	Yes	$ \begin{aligned} & \text{Alternate: } R_{t+1} + \\ & \gamma Q_B(S_{t+1}, \operatorname{argmax}_{a'} Q_A(S_{t+1}, a')) \\ & \text{or } R_{t+1} + \\ & \gamma Q_A(S_{t+1}, \operatorname{argmax}_{a'} Q_B(S_{t+1}, a')) \end{aligned} $	Randomly update $Q_A(S_t, A_t)$ or $Q_B(S_t, A_t)$	Avoid overestimation bias
							PPING (Chapter 7)		
n-step TD	On	Free	Pred	None	V^{π}	Yes	$G_{t:t+n} = \sum_{i=0}^{n-1} \gamma^{i} R_{t+i+1} + \gamma^{n} V(S_{t+n})$	$ V(S_t) \leftarrow V(S_t) + \alpha[\text{Target} - V(S_t)] $	Bridge MC and TD, tune bias/variance
n-step SARSA	On	Free	Ctrl	ε-gr	Q^{π}	Yes	$G_{t:t+n} =$	$\begin{aligned} &Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \\ &\alpha[\text{Target} - Q(S_t, A_t)] \end{aligned}$	Multi-step lookahead, on-policy
n-step Tree Backup	Off	Free	Ctrl	Any	Q^{π}	Yes	$\begin{array}{l} \sum_{i=0}^{n-1} \gamma^{i} R_{t+i+1} + \gamma^{n} Q(S_{t+n}, A_{t+n}) \\ G_{t:t+n}^{tree} = R_{t+1} + \\ \gamma[\sum_{a \neq A_{t+1}} \pi(a S_{t+1}) Q(S_{t+1}, a) + \\ \pi(A_{t+1} S_{t+1}) G_{t}^{tree} \\ \end{array}$	$\begin{aligned} &Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \\ &\alpha[\text{Target} - Q(S_t, A_t)] \end{aligned}$	Off-policy without importance sampling
n-step $Q(\sigma)$	On/Off	Free	Ctrl	Any	Q^{π}	Yes	σ-weighted combination of SARSA and Tree Backup	$ \begin{aligned} &Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \\ &\alpha[\text{Target} - Q(S_t, A_t)] \end{aligned} $	Unify on/off-policy methods
Off-policy n-step	Off	Free	Ctrl	Any	Q^{π}	Yes	$G_{t:t+n} = \sum_{i=0}^{n-1} \gamma^{i} R_{t+i+1} + \gamma^{n} Q(S_{t+n}, A_{t+n})$	$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \rho_{t+1:t+n-1}[\text{Target} - Q(S_t, A_t)]$	Off-policy with multi-step returns

Algorithm	On/Off Policy	Model- Free/ Model- Based	Control/ Predic- tion	Policy Update	Objective	Bootstrap	Target	Update Rule	When to Use
Dyna-Q	Off	Model	Ctrl	ε-gr	Q*	Yes	$r + \gamma \max_{a'} Q(s', a')$ (same as Q-learning)	Q-learning update + model learning + planning	Combine learning and planning
Dyna-Q+	Off	Model	Ctrl	ϵ -gr	Q^*	Yes	$r + \kappa \sqrt{\tau} + \gamma \max_{a'} Q(s', a')$	Same as Dyna-Q with exploration bonus	Handle changing environments
Prioritized Sweeping	Off	Model	Ctrl	ε-gr	Q*	Yes	$r + \gamma \max_{a'} Q(s', a')$	Updates prioritized by $ \text{Target} - Q(s, a) > \theta$	Efficient planning, focus important updates
Trajectory Sampling	Off	Model	Ctrl	ε-gr	Q*	Yes	$r + \gamma \max_{a'} Q(s', a')$	Sample long trajectories vs. uniform sweeping	Better state distribution for planning
Real-time DP	On	Model	Ctrl	Greedy	V*	Yes	$\max_{a} \sum_{s',r} p(s',r S_t,a)[r+\gamma V(s')]$	$V(S_t) \leftarrow \text{Target only for visited}$ states	Online DP, focus on relevant states
					ELIC	GIBILITY TRA	ACES (Chapter 12)		
Offline λ -return	On	Free	Pred	None	V ^π	Yes	$ G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t $	$ V(S_t) \leftarrow V(S_t) + \alpha [G_t^{\lambda} - V(S_t)] $ (offline at episode end)	Theoretical foundation for $TD(\lambda)$, offline learning
$\mathrm{TD}(\lambda)$	On	Free	Pred	None	V^{π}	Yes	$R_{t+1} + \gamma V(S_{t+1})$ (TD error: δ_t)	$V(s) \leftarrow V(s) + \alpha \delta_t e_t(s) \text{ where}$ $e_t(s) = \gamma \lambda e_{t-1}(s) + 1_{S_t = s}$	Credit assignment, faster learning
$\mathrm{SARSA}(\lambda)$	On	Free	Ctrl	ε-gr	Q^{π}	Yes	$R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$ (TD error: δ_t)	$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t e_t(s, a)$	On-policy with eligibility traces
$Q(\lambda)$	Off	Free	Ctrl	ε-gr	Q*	Yes	$R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$ (TD error: δ_t)	Watkins's $Q(\lambda)$: traces reset if non-greedy action	Off-policy with traces (limited)
True Online $TD(\lambda)$	On	Free	Pred	None	V^{π}	Yes	$R_{t+1} + \gamma V(S_{t+1})$ (TD error: δ_t)	Modified update with trace correction term	More accurate trace implementation

Notation: V(s): State value, Q(s,a): Action-value, $\pi(a|s)$: Policy, α : Learning rate, γ : Discount, ϵ : Exploration, G_t : Return, ρ : Importance ratio, $e_t(s)$: Eligibility trace, λ : Trace decay, δ_t : TD error, $C(\cdot)$: Cumulative sum of weights for IS. Abbreviations: Model = Model-based, Free = Model-free, Ctrl = Control, Pred = Prediction, ϵ -gr = ϵ -greedy, IS = Importance Sampling.