Section 21.2 – Contrôle du 24 avril Durée : 1h

La présentation et la clarté des raisonnements seront pris en compte dans l'appréciation des copies. Pensez à justifier tous vos résultats.

Questions du cours :

- (Q1) Donner la définition d'une application linéaire $F: \mathbb{R}^2 \to \mathbb{R}^2$.
- (Q2) Donner la définition d'une application linéaire $P: \mathbb{R}^3 \to \mathbb{R}^3$ qui est une projection dans \mathbb{R}^3 .

Exercice 1:

1. Soient
$$A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$. Calculer $\det(A)$, A^{-1} , $\det(B)$, $\det(A+B)$, $\det(AB)$, $Tr(AB)$ et $Tr(A+B)$.

Que remarquez-vous?

Exercice 2:

- 1. Déterminer si le système suivant peut admettre une unique solution $\begin{cases} 2x y + z = 2 \\ 3x + y + z = 6 \\ 4x + y 2z = 11 \end{cases}$
- 2. Résoudre le système par la méthode d'élimination de Gauss
- 3. Soient

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 2 \end{pmatrix}.$$

Montrer que matrice M est inversible. Calculer M^{-1} .

Exercice 3:

1. Parmi les applications suivantes lesquelles sont linéaires? (Justifiez votre réponse!) Lorsque c'est possible, donner la matrice de l'application (dans les bases canoniques).

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
; $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x \\ -7y + 5x \end{pmatrix}$

(b)
$$f: \mathbb{R}^3 \to \mathbb{R}; \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \sin(xyz)$$

2. Soit $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ et g l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 dont la matrice associée dans la base

g est elle une isométrie, une projection, une homothétie?

Exercice 4:

On considère l'application suivante : $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} y+z \\ x+y+z \\ x \end{pmatrix}$

- (a) Montrez que f est linéaire.
- (b) Donner l'expression de F, la matrice de f dans la base canonique de \mathbb{R}^3 .
- (c) Déterminer l'ensemble $\ker(f) = \{x \in \mathbb{R}^3 \mid f(x) = 0\}$
- (d) Déterminer l'ensemble $\operatorname{im}(f) = \{f(x), x \in \mathbb{R}^3 \}$