

CMP266 - Fundamentos Matemáticos para Processamento Gráfico

Aula Prática 3

- 1. Considere os sinais de tempo discreto $x_1[n]$ e $x_2[n]$, para n = 0, ..., 100, contidos no arquivo ex1.mat. Ambos são amostragens de um mesmo sinal de tempo contínuo $x_c(t)$, com períodos de amostragem T_1 e T_2 , respectivamente, satisfazendo o Teorema de Nyquist.
- a) Calcule suas transformadas discretas de Fourier $X_i[m]$, plote $|X_i[m]|$ e avalie seus componentes de frequência (i = 1, 2).
- b) Considere agora os sinais $y_i[n] = x_i[2n]$, para n = 0, ..., 50. Calcule suas transformadas discretas de Fourier $Y_i[m]$, plote $|Y_i[m]|$ e avalie seus componentes de frequência (i = 1, 2).
- c) Observe que $y_i[n]$ são amostragens de $x_c(t)$ com período de amostragem $2T_i$. Compare os gráficos de $|X_1[m]|$ e $|Y_1[m]|$, e faça o mesmo para $|X_2[m]|$ e $|Y_2[m]|$.
- d) Com base nos resultados anteriores, você acha que $y_1[n]$ e $y_2[n]$ correspondem a amostragens de $x_c(t)$ satisfazendo o Teorema de Nyquist? Justifique! Analisando apenas $|X_1[m]|$ e $|X_2[m]|$ você poderia chegar a mesma conclusão?
- 2. Considere a imagem noisy_square.bmp anexa, contendo um quadrado ruidoso. Filtre a imagem diretamente no domínio de frequências simplesmente eliminando componentes de frequências maiores do que um limiar. Avalie as características da imagem filtrada com o filtro ideal (redução do ruído, borramento das bordas e a produção dos ringing artifacts) à medida que o limiar é variado. Dica: Lembre que a DFT produz resultados da DTFT discretizados no intervalo $[0, 2\pi]$. Dica: use os comandos fftshift e ifftshift para que o centro da imagem corresponda à origem.
- **3.** Implemente os métodos de Euler explícito e implícito * para resolver as equações diferenciais abaixo nos intervalos I solicitados, e compare com as soluções exatas (fornecidas). Varie o passo h na discretização e avalie os resultados.

a)
$$\begin{cases} y' = \frac{e^{-x}}{y^2} \\ y(1) = 2 \end{cases}$$
, solução exata: $y = (8 - 3e^{-x} + 3e^{-1})^{1/3}, \ I = [1, 4]$

b)
$$\begin{cases} y' = \frac{y}{x+1} - 2xy \\ y(0) = 1 \end{cases}$$
, solução exata: $y = (x+1)e^{-x^2}$, $I = [0, 5]$

c)
$$\begin{cases} \frac{du}{dt} = -\frac{\sin t}{t} - \frac{u}{t} \\ u(\pi/2) = 0 \end{cases}$$
, solução exata: $u = \frac{\cos t}{t}, I = [\pi/2, 2\pi]$

^{*}Para o Euler implícito, possivelmente vocês terá que implementar uma rotina para achar raízes de equações, como Newton-Raphson.