What is Logistics Regression?

- Used to predict the probability of an outcome
- Can be binary Yes/No or Multiple
- Supervised learning method
- Must provide a dataset that already contains the outcomes to train the model.

Understanding the Logistic Regression

$$y = b_0 + b_1 x$$

No of claims = 18 + b1(age)

Simple Linear Regression

- Outcome is categorical
- Will this customer buy my product?
- What is the probability of this customer buying this product?

- Probability needs to satisfy two basic conditions
 - Always positive i.e. > 0
 - Always less than or equal to 1

$$y = b_0 + b_1 x$$
Always Positive
 e^y
Make it less than 1
 e^y
 e^y

$$y = b_0 + b_1 x$$

$$P = \frac{e^y}{e^y + 1}$$
Always Positive
$$e^y \text{ Make it less than 1}$$

$$e^y + 1$$

$$P = \frac{e^y}{e^y + 1}$$

$$Q = 1 - P = 1 - \frac{e^{y}}{e^{y} + 1} = \frac{e^{y} + 1 - e^{y}}{e^{y} + 1} = \frac{1}{e^{y} + 1}$$
Probability of Failure

$$P = \frac{e^y}{e^y + 1}$$

$$1 - P = \frac{1}{e^y + 1}$$

$$Odds = \frac{P(Success)}{P(Failure)}$$

$$P = \frac{e^y}{e^y + 1}$$

$$1 - P = \frac{1}{e^y + 1}$$

Odds =
$$\frac{\frac{e^{y}}{e^{y}} = \frac{e^{y}}{1} = e^{y}$$

$$\frac{1}{e^{y}} = \frac{1}{1}$$

$$P = \frac{e^y}{e^y + 1}$$

$$1 - P = \frac{1}{e^y + 1}$$

$$\frac{P}{1-P} = e^{y}$$

$$P = \frac{e^y}{e^y + 1}$$

$$1 - P = \frac{1}{e^y + 1}$$

$$\log\left(\frac{P}{1-P}\right) = y = (b_0 + b_1 x)$$

Plotting Logistic Regression

$$\log\left(\frac{P}{1-P}\right) = (b_0 + b_1 x)$$

Stratification (stratify)

Split without Stratification

Index	Status
1	Yes
2	No
3	No
4	Yes
5	Yes
6	Yes
7	No
8	No
9	Yes
10	Yes

No = 4

Yes = 6

Index	Status
1	Yes
4	Yes
5	Yes
6	Yes
9	Yes
10	Yes

Index	Status
2	No
3	No
7	No
8	No

All Nos

Split without Stratification

Index	Status
1	Yes
2	No
3	No
4	Yes
5	Yes
6	Yes
7	No
8	No
9	Yes
10	Yes

Index	Status
1	Yes
2	No
3	No
5	Yes
7	No
8	No

Index	Status
4	Yes
6	Yes
9	Yes
10	Yes

All Yes

Split without Stratification

Index	Status
1	Yes
2	No
3	No
4	Yes
5	Yes
6	Yes
7	No
8	No
9	Yes
10	Yes

No = 4

Yes = 6

Index	Status
1	Yes
2	No
3	No
5	Yes
7	No
9	Yes

Index	Status
4	Yes
6	Yes
8	No
10	Yes

Imbalanced

Stratification (stratify) with split at 50%

Index	Status
1	Yes
2	No
3	No
4	Yes
5	Yes
6	Yes
7	No
8	No
9	Yes
10	Yes

No = 4

Yes = 6

Index	Status
1	Yes
2	No
3	No
5	Yes
9	Yes

Yes = 6 * 0.5 = 3
No = 4 * 0.5 = 2

Index	Status
4	Yes
6	Yes
7	No
8	No
10	Yes

Yes =
$$6 * 0.5 = 3$$

No =
$$4 * 0.5 = 2$$

Understanding the results

Accuracy – Proportions of total number of correct results

Accuracy = (8 + 4) / 15 = 0.8 or 80%

Precision – Proportion of correct positive results out of all predicted positive results

Precision = 8 / 9 = 0.889 or 88.9%

Recall – Proportion of actual positive cases

Recall = 8 / (8 + 2) = 0.8 or 80%

F1-Score – Weighted Average (Harmonic Mean) of Precision and Recall

F1Score = 2 * Precision * Recall / (Precision + Recall) = 0.84

Support Vector Machine

What is SVM?

- Supervised Learning Algorithm
- Can be used for both Regression as well as Classification
- The observations are separated by a hyperplane in the space

Vectors

Hyperplane

Hyperplane

Choosing a Hyperplane

Select the right hyperplane

What comes first?

Orthogonal Projection of Vector

$$\|\mathbf{w}\| = \overrightarrow{\mathbf{v}}_1 \cdot \overrightarrow{\mathbf{u}}$$

Normal Vector of a plane

Select the right hyperplane

Determine Class

C = Magnitude of Normal

Determine Class

 χ_1

Determine Class

SVM Kernel

Linearly Separable

Linearly Separable

Change the dimensions

Change the dimensions

Change the dimensions

Let's see it Graphically

Change of perspective

Gaussian Transformation

Radial Basis Function

$$K(x,l) = e^{-\gamma \|\overrightarrow{x} - \overrightarrow{l}\|^2}$$

$$K(x,l) = e^{-\gamma \|\overrightarrow{x} - \overrightarrow{l}\|^2}$$

Radial Basis Function

Types of Kernel Functions

Decision Tree Classifier

What is Decision Tree?

- Supervised learning method
- Decision support tool that uses a tree-like graph or model of decisions and their possible consequences
- Various variations such as Boosted Decision Tree, Random Forest
- Can be used for categorical as well as continuous variables

Loan ID	Income Level	Credit Score	Employment	Approved?
L1	Medium	Low	Self-Employed	No
L2	High	Low	Self-Employed	Yes
L3	High	High	Salaried	Yes
L4	Medium	Low	Salaried	Yes
L5	Low	High	Salaried	No
L6	Low	Low	Self-Employed	No
L7	High	Low	Salaried	Yes
L8	Medium	Low	Self-Employed	No
L9	High	High	Self-Employed	Yes
L10	Medium	High	Self-Employed	Yes
L11	High	Low	Salaried	Yes
L12	Medium	High	Salaried	Yes
L13	Medium	High	Self-Employed	Yes
L14	Low	Low	Self-Employed	No
L15	Low	High	Self-Employed	No
L16	Medium	High	Salaried	???

LID	IL	CS	ET	Status
L2	High	Low	SE	Yes
L3	High	High	Salaried	Yes
L7	High	Low	Salaried	Yes
L9	High	High	SE	Yes
L11	High	Low	Salaried	Yes

LID	IL	CS	ET	Status
L5	Low	High	Salaried	No
L6	Low	Low	SE	No
L14	Low	Low	SE	No
L15	Low	High	SE	No

LID	IL	CS	ET	Status
L1	Medium	Low	SE	No
L4	Medium	Low	Salaried	Yes
L8	Medium	Low	SE	No
L10	Medium	High	SE	Yes
L12	Medium	High	Salaried	Yes
L13	Medium	High	SE	Yes

Pure Subset Pure Subset Split Further

Split Further

Pure Subset

Decision Tree Terms

Parameter of Decision Tree Classifier

max_depth

• splitter

criterion

• min_samples_split

• max_features

• min_impurity_decrease

• min_samples_leaf

presort

• max_leaf_nodes

max_depth – max depth of the tree

- min_samples_split
- min_samples_leaf
- max_leaf_nodes

- max_depth
- min_samples_split Min Samples required for the split
- min_samples_leaf
- max_leaf_nodes

- max_depth
- min_samples_split
- min_samples_leaf Min samples required at the leaf

• max_leaf_nodes

- max_depth
- min_samples_split
- min_samples_leaf
- max_leaf_nodes max number of leaf nodes

- max_depth
- plitر min_samr
- . __ples_leaf
- max_leaf_nodes

- splitter
- max_features
- presort

- criterion
- min_impurity_decrease

Highly Impure Less Impure

Parameters of Decision Tree relation to splitting

- splitter Split strategy for Best feature or Random feature
- max_features
- presort

Yes = 7 No	0 = 1
Credit Score	Approved?
High	Yes
High	Yes
High	No
High	Yes
88%	12%

How to decide which Feature has the Best Split?

Entropy

Gini

Corrado Gini

Entropy - Measure of Impurity

 $Entropy = -1 * ② p_i \log_2 p_i$ i=1

Gini

Corrado Gini

Information Gain

$$Information \ Gain = PM - \frac{N \ Left \ Side}{N \ Before \ Split} * LSM - \frac{N \ Right \ Side}{N \ Before \ Split} * RSM$$

Metric → Entropy or Gini Value PM

→ Parent Metric value

N Left Side → Total number of observations on the left side of the split

N Right Side → Total number of observations on the right side of the split

→ Total number of observations before the split (Left + Right) N Before Split

LSM → Left Side Metric Value

RSM → Right Side Metric Value

Ensemble Learning

Ensemble Learning

- All algorithms have errors
- Collective wisdom is higher than the individual intelligence
- Generate a group of base learners and combined result gives higher accuracy

- Different base learners can use different,
 - Parameters
 - Sequence
 - Training sets etc
- Two major Ensemble Learning Methods
 - Bagging
 - Boosting

Bagging

- Various models are built in parallel
- All models vote to give the final prediction

Boosting

- Train the Decision Tree in a sequence
- Learn from the previous tree by focussing on incorrect observations
- Build new model with higher weight for incorrect observations from previous sequence

Boosted Model

Evaluation

How good is the model in predicting different classes?

- 1. Loan Approval Prediction
- 2. Adult Income Class Prediction
- 3. Fraud Prediction (Hypothetical)

Loan Approval Prediction

Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	CreditHistory	Property_Area	Status
LP001002	Male	No	0	No	\$5,849.00		60	1	Urban	Υ
LP001003	Male	Yes	1	No	\$4,583.00	\$128.00	120	1	Rural	N
LP001005	Male	Yes	0	Yes	\$3,000.00	\$66.00	60	1	Urban	Υ
LP001006	Male	Yes	2	No	\$2,583.00	\$120.00	60	1	Urban	Υ

- Automate loan eligibility process
- Identify customers whose loan will be approved

gender	married	ch	income	loanamt	status
		1	5849		Υ
		0	4583	128	N
		1	3000	66	Υ
		1	2583	120	Υ
		1	6000	141	Υ
		1	5417	267	Υ

Accuracy Score – Loan Approval Prediction

	Predicted Negatives	Predicted Positives	
Actual Negatives	29	20	49
Actual Positives	2	108	110
	31	128	159

Logistic Regression – Loan Approval prediction

$$Accuracy = \frac{TN + TP}{Total\ Observations}$$

$$=\frac{29+108}{159}$$

Accuracy Score – Adult Income Class Prediction

	Predicted Negatives	Predicted Positives
Actual Negatives	True Negatives	False Positives
Actual Positives	False Negatives	True Positives

	Predicted Negatives	Predicted Positives	
Actual Negatives	TN = 3814	FP = 559	4373
Actual Positives	FN = 800	TP = 764	1564
	4614	1323	5937

$$Accuracy = \frac{TN + TP}{Total \ Observations}$$

$$= \frac{3814 + 764}{5937}$$

$$= 0.77$$

Accuracy Score – Fraud Prediction

	Predicted Negatives	Predicted Positives
Actual Negatives	True Negatives	False Positives
Actual Positives	False Negatives	True Positives
	Predicted Negatives	Predicted Positives

$$Accuracy = \frac{TN + TP}{Total \, Observations}$$

$$= \frac{9500 + 80}{10000}$$

$$= 0.9580$$

Null Accuracy

Classification Measures & Reports

Classification Measures

$$Accuracy = \frac{TN + TP}{Total\ Observations}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Specificity\ or\ Selectivity = \frac{TN}{TN + FP}$$

True Negative Rate

$$Recall or Sensitivity = \frac{TP}{TP + FN}$$

True Positive Rate

$$F1Score = \frac{2 * Precision * Recall}{Precision + Recall}$$

Which metric to use?

- High Accuracy is nice to have
- High Precision when its OK to have false negatives

 High recall or sensitivity when cost of false negative is very high

AUC ROC

AUC – Area Under the Curve

ROC – Receiver Operating Characteristics

Provides a single number that lets you compare models of different types.