MAT137 Lecture 30

Huan Vo

University of Toronto

February 12, 2018

Agenda

The monotone convergence theorem for sequences

The big theorem for sequences

The monotone convergence theorem for sequences

Theorem

IF a sequence is (eventually) monotonic and bounded, THEN it is convergent.

More specifically,

Theorem

IF a sequence is (eventually) increasing and bounded above, THEN it is convergent.

Theorem

IF a sequence is (eventually) decreasing and bounded below, THEN it is convergent.

The monotone convergence theorem for sequences

Exercise. Suppose that $\{a_n\}_{n=1}^{\infty}$ is eventually increasing, show that $\{a_n\}$ is bounded below.

Exercise. Suppose that $\{b_n\}_{n=1}^{\infty}$ is eventually decreasing, show that $\{b_n\}$ is bounded above.

True or False?

Decide whether the following statements are true or false. If a statement is false, provide a counterexample.

- (a) If $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} a_{n^2} = L$.
- (b) If $\lim_{n\to\infty} a_{2n} = L$, then $\lim_{n\to\infty} a_n = L$.
- (c) If $-1 < \alpha < 1$, then $\lim_{n \to \infty} \alpha^n = 0$.
- (d) If $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_nb_n\}$ is divergent.
- (e) If $\{a_n\}$ and $\{b_n\}$ are convergent and $b_n \neq 0$, then $\left\{\frac{a_n}{b_n}\right\}$ is convergent.
- (f) If $\{a_n\}$ is decreasing and $a_n > 0$ for all n, then $\{a_n\}$ is convergent.
- (g) If $\{a_n\}$ converges to 0, then $\{(-1)^n a_n\}$ converges to 0.

Limit of a sequence

Let $\{a_n\}$ be the sequence given by

$$\begin{cases} a_1 = 1, \\ a_{n+1} = \sqrt{2 + a_n} & n \ge 1. \end{cases}$$

- (a) Show that $\{a_n\}$ is increasing and bounded above by 3.
- (b) Find $\lim_{n\to\infty} a_n$.

The "Big Theorem" for sequences

Definition

Let $\{a_n\}$ and $\{b_n\}$ be positive sequences.

$$a_n \ll b_n$$
 means $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$.

We say that " $\{a_n\}$ is much smaller than $\{b_n\}$ ".

Theorem

We have

$$\ln n \ll n^a \ll c^n \ll n! \ll n^n$$

for every a > 0, c > 1.

The "Big Theorem" for sequences

Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{(-3)^n}{n!}$$
.
(b) $a_n = \frac{n!}{2^n}$.

(b)
$$a_n = \frac{n!}{2^n}$$
.

(c)
$$a_n = \frac{2^{n^2}}{n!}$$
.

(d)
$$a_n = \frac{2 \cdot 4 \cdot 6 \cdot \cdot \cdot (2n)}{n!}$$
.

(e)
$$a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!}$$
.

Next Class: Thursday February 15

Watch videos 12.1, 12.4, 12.7, 12.8 in Playlist 12.