warmXtrophic Project: Plant Composition Diversity Data Analyses

Moriah Young, Pat Bills

January 12, 2022

Load in packages & data

```
# Clear all existing data
rm(list = ls())
# Load packages
library(tidyverse)
library(ggplot2)
library(lme4)
library(olsrr)
library(predictmeans)
library(car)
library(fitdistrplus)
library(ggpubr)
library(rstatix)
library(vegan)
library(interactions)
library(sjPlot)
library(effects)
library(glmmTMB)
library(labdsv) # used with Vegan package, the matrify() and matrify2() functions
library(agricolae) # HSD.test() function
library(bbmle)
library(jtools) # summ() function
# Set working directory
Sys.getenv("L1DIR")
```

[1] "/Volumes/GoogleDrive/Shared drives/SpaCE_Lab_warmXtrophic/data/L1"

```
LO_dir <- Sys.getenv("LODIR")
L1_dir <- Sys.getenv("L1DIR")
L2_dir <- Sys.getenv("L2DIR")
list.files(L1_dir)
```

```
## [1] "ANPP" "climate_data" "CN"

## [4] "Greenness" "herbivory" "HOBO_data"

## [7] "PAR" "phenology" "plant_composition"

## [10] "SLA"
```

```
# read in plant comp data
comp <- read.csv(file.path(L1_dir, "plant_composition/final_plantcomp_L1.csv"))</pre>
comp <- comp %>% select(-X) # get rid of 'X' column that shows up
# read in meta data
meta <- read.csv(file.path(LO_dir, "plot.csv")) # dataframe above already has meta data in it
# adding sequential year variable starting at 1: this is because the years (e.g.
# 2015, 2016, etc) are large numbers compared with other values in the dataset.
# We can always label axes with these real years.
comp$year_factor[comp$year == 2015] <- 1</pre>
comp$year_factor[comp$year == 2016] <- 2</pre>
comp$year_factor[comp$year == 2017] <- 3</pre>
comp$year_factor[comp$year == 2018] <- 4</pre>
comp$year_factor[comp$year == 2019] <- 5</pre>
comp$year factor[comp$year == 2020] <- 6</pre>
comp$year_factor[comp$year == 2021] <- 7</pre>
# Remove non-plant data
comp <- comp[!(comp$species == "Bare_Ground" | comp$species == "Unknown" | comp$species ==</pre>
    "Brown" | comp$species == "Litter" | comp$species == "Vert_Litter" | comp$species ==
    "Animal_Disturbance"), ]
# Function to get data in wide format to work in Vegan package - taken from link
\# https://stackoverflow.com/questions/50691393/transform-community-data-into-wide-format-for-vegan-pack
matrify2 <- function(data) {</pre>
    # Data must have columns: plot, SPEC, abundance measure, Year
    if (ncol(data) != 4)
        stop("data frame must have four column format")
    plt <- factor(data[, 1])</pre>
    spc <- factor(data[, 2])</pre>
    abu <- data[, 3]
    yrs <- factor(data[, 4])</pre>
    plt.codes <- sort(levels(factor(plt))) ##object with sorted plot numbers</pre>
    spc.codes <- levels(factor(spc)) ##object with sorted SPEC names</pre>
    yrs.codes <- sort(levels(factor(yrs))) ##object with sorted sampling Years</pre>
    taxa <- matrix(0, nrow = length(plt.codes) * length(yrs.codes), ncol = length(spc.codes)) ##Create</pre>
    plt.list <- rep(plt.codes, length(yrs.codes)) ##Create a list of all the plot numbers (in order of
    yrs.list <- rep(yrs.codes, each = length(plt.codes)) ##Create a list of all the Year numbers (in o
    col <- match(spc, spc.codes) ##object that determines the alphabetical order ranking of each SPEC
    row.plt <- match(plt, plt.codes) ##object that determines the rank order ranking of each plot of t
    row.yrs <- match(yrs, yrs.codes) ##object that determines the rank order ranking of each Year of t
    for (i in 1:length(abu)) {
        row <- (row.plt[i]) + length(plt.codes) * (row.yrs[i] - 1) ##Determine row number by assuming
        if (!is.na(abu[i])) {
            ## ONly use value if !is.na .. [ignore all is.NA values]
            taxa[row, col[i]] <- sum(taxa[row, col[i]], abu[i]) ##Add abundance measure of row i to th
        }
    }
    taxa <- data.frame(taxa) ##Convert to data.frame for easier manipulation
    taxa <- cbind(yrs.list, plt.list, taxa) ##Add ID columns for plot and Year to each row already rep
```

```
names(taxa) <- c("Year", "Plot", spc.codes)</pre>
    taxa
}
# diversity_by_year <- function(comp, site, div_index = 'shannon'){</pre>
comp_kbs <- subset(comp, site == "kbs") %>% dplyr::select(plot, species, cover, year)
comp_umbs <- subset(comp, site == "umbs") %>% dplyr::select(plot, species, cover,
    year)
# convert the abundance (cover) data to wide format for each species in columns
# for the vegan package
comp_kbs$cover <- as.numeric(comp_kbs$cover)</pre>
comp wide kbs <- matrify2(comp kbs)</pre>
comp_umbs$cover <- as.numeric(comp_umbs$cover)</pre>
## Warning: NAs introduced by coercion
comp_wide_umbs <- matrify2(comp_umbs)</pre>
# comp_wide_data is assumes to have columns Year, Plot, and columns for each
# species found, e.g. for Vegan
# first, split up the wide data into a list of years. Each list item is a year
comp_wide_by_year_kbs <- dplyr::group_by(comp_wide_kbs, Year) %>% dplyr::group_split()
comp_wide_by_year_umbs <- dplyr::group_by(comp_wide_umbs, Year) %>% dplyr::group_split()
# we need to add plot names. Get those Plot names by taking a column from any
# one of the years since we are assuming the Plot column is the exact same across
# years and IN THE SAME ORDER
plot_names <- comp_wide_by_year_kbs[[1]]$Plot</pre>
plot_names <- comp_wide_by_year_umbs[[1]]$Plot</pre>
# remove the plot and year columns from each item in the list so that Vegan will
# work. This assumes row order is the exact same for all years (each row a plot)
comp_wide_by_year_kbs <- lapply(comp_wide_by_year_kbs, dplyr::select, c(-Year, -Plot))</pre>
comp_wide_by_year_umbs <- lapply(comp_wide_by_year_umbs, dplyr::select, c(-Year,</pre>
    -Plot))
# apply the diversity function to each year - in this case the main index is
# plot, each year considered separately
diversity_by_year_list_kbs <- lapply(comp_wide_by_year_kbs, vegan::diversity, index = "shannon")</pre>
diversity_by_year_list_umbs <- lapply(comp_wide_by_year_umbs, vegan::diversity, index = "shannon")</pre>
# each item in the list is a year of diversity, so name those with the years we
# know we have
names(diversity_by_year_list_kbs) <- as.character(2015:2021)</pre>
names(diversity_by_year_list_umbs) <- as.character(2015:2021)</pre>
# 'unlist' and create a new data frame, each year a column, each row a plot, and
# add a new row with the plot names
x_kbs <- do.call(cbind, diversity_by_year_list_kbs) %>% cbind(Plot = plot_names) %>%
```

```
as.data.frame()
x_umbs <- do.call(cbind, diversity_by_year_list_umbs) %>% cbind(Plot = plot_names) %>%
    as.data.frame()
# an alternative tidyverse way x<- diversity_by_year(diversity_by_year_list)
## optional step!
x_kbs
##
                  2015
                                    2016
                                                      2017
                                                                        2018
                                          1.46457885369235 1.79022612402249
##
     1.74982308774477 1.89484825550382
  1
      1.90662337874857 1.84725215309623
                                          1.13716030470414 1.36198444330393
                                          1.71072749310064 1.67233412309495
  .3
     1.98749299359934 1.61377593556905
```

```
1.76205160229741 1.77517711389533
                                         1.32874743973109 1.03860433128686
## 5
     1.75210718809553 1.66227443462069
                                         1.69192914802754 1.90695858866473
       1.6900850428406 1.43660622202068
                                         1.39873211536317 1.8571841570528
## 7
     1.49086543230336 1.47097168973964
                                         1.21337363817196 1.28050329701639
     1.80821328729531 1.9254070243331
                                         1.14986934861213 1.2616299180373
## 9
       2.1087845075131 1.80236101080512
                                         1.56273408513826 1.83756938558579
## 10 1.98196568606134 1.90616309802705
                                         1.91936048574866 1.96655841609062
## 11 1.84296460180767 1.8965200697777
                                         1.25355451781611 1.26874311894322
## 12 1.76762986966693 1.34098707770158
                                         1.28659495811355 1.56199705257429
## 13 1.43883353670948 1.44641730798802
                                         1.26464841035831 1.49328461093835
## 14 1.75673653952927 1.6273811911906
                                         1.59862659873349 1.57746303850457
## 15 1.93644517652882 1.9750616592266
                                         1.60757066797302 1.53493741382157
## 16 1.58409303017981 1.79057866130084
                                         1.84017946573311 1.96848518019582
## 17 1.60506299754593 1.91996670439262
                                         1.83507553957834 1.61808366536974
      1.4247004760432 1.27334741927488 0.988243173382032 1.46588240243596
## 19 1.72885447960798 1.50003663417278
                                          0.7586338108316 1.21791312632341
## 20 2.14484946283764 1.92315942970564
                                        1.01772685103368 1.68252998651447
## 21 2.10055052731924 1.81252205715579
                                         1.57077556615872 1.86767543214417
## 22 1.89362827233848 1.86514077199398
                                         2.13631841372597 2.17843467691095
  23 1.73593769273967 2.12071598624058
                                          1.7062450650214 1.9415443800649
  24 2.03965289235968 1.56767987740433
                                         1.60740329659913 1.52284566334068
##
                   2019
                                     2020
                                                        2021 Plot
## 1
       1.63141828218805
                         1.40619117164602 0.780282286358405
## 2
       1.03501044156779
                        1.30464181679929 0.761966098342232
## 3
       1.40564143802668
                         1.52023377614068 1.46818923776404
                                                               A3
     0.807186457770002
                         1.10403362311013 0.522975735072191
                                                               A4
## 4
## 5
      1.29530398546089
                         1.47867329613074
                                          1.12613740316083
## 6
       1.56587400893309
                           1.776898556231
                                           1.59272035502521
                                                              A6
##
     0.966220584181466 0.903368616352641 0.787741797532107
## 8
       0.6001886754368
                        1.32028023954065 0.804089503088995
                                                              R2
## 9
       1.55079429713458
                         1.75134927146181
                                           1.50101684634471
                                                               ВЗ
## 10
       1.9076117928339
                         1.85066103391479
                                           1.82018142958166
                                                               R4
## 11
       1.07712923504737
                         1.51478024391315
                                           1.63669387518496
                                                               B5
## 12
                                                               B6
       1.70747374757789
                         1.35162942534084
                                           1.17907511874716
       1.46913677234012
                         1.55507473988238
                                           1.50836959659867
                                                               C2
## 14
       1.27508655116576
                         1.55732962234086 0.950411775293582
## 15 0.883992796139038
                         1.72599963232697 0.996523451248442
                                                               C4
## 16
       1.59775101771005
                         1.56782535025894
                                           1.25369833009911
## 17
       1.72425066783732
                         1.70780555305176
                                           1.47888650241859
                                                               C5
                                                               C6
## 18
       1.59762443325548
                         1.56141444142399
                                           1.48024946913317
       1.25325132142148 1.78617517426128
## 19
                                           1.13570812589948
```

```
1.34286442427345
                          1.61533909948124
                                             1.36264400396897
                                                                  D2
## 20
                                                                  D3
##
  21
       1.94852371633076
                           1.7075032751265
                                              1.86430302721765
                                               2.3134678596367
##
       2.27772535378833
                          2.07864562723304
                                                                  D4
##
  23
       1.98707494159271
                          2.36198520777061
                                                              0
                                                                  D5
##
   24
       1.02058088927649
                          1.28140861968835
                                             1.14514426526423
                                                                  D6
```

x_umbs

```
##
                    2015
                                       2016
                                                          2017
                                                                             2018
##
       1.79750600753516
                          1.09884956681657
                                             1.65427009762925
                                                                1.72338781506085
   1
##
   2
       1.03103412684858
                           1.0510661759467
                                             1.01847657461102 0.926553867333551
##
  3
       1.23108760738823 0.832986567666689
                                             1.05822294906718
                                                                  1.1308760877669
##
       1.11379164827808
                          1.09649945437462
                                             1.58403466753454
                                                                1.26981056014349
##
   5
       1.41499122544575
                          1.54066354734953
                                             1.75670820671366
                                                                1.83315130300093
                                            0.921037312752463
##
   6
        1.3233120828513
                          1.11575480079886
                                                                1.22171569425616
##
   7
                          1.03279159363802
                                            0.876057255954377
       1.08343195035589
                                                                1.24419243607285
##
   8
       1.09147272846172
                          1.24329181475844
                                             1.29855975285605
                                                                1.23947894561033
##
  9
        0.9085145936062 0.959769287477707 0.649404154675513
                                                                0.83871658655578
## 10
         1.318924658555 0.450107654438585
                                              1.5725829367254
                                                                1.57921265075159
       1.26789311388011 0.770745734585134
                                             1.18646068972002 0.773638703559191
##
  11
##
   12
       1.30080601995319
                          1.20839564977282
                                              1.4044265373131
                                                                1.38328133173653
##
   13
       1.36610720736298 0.842368707930785
                                             1.26913274303141
                                                                1.11918161689174
       1.37712670393695
                                                                1.45297259997684
##
   14
                          1.50441888100153
                                             1.69244837402528
##
   15
       1.50594110744263
                           1.4028839310817
                                             1.48760307705478
                                                                1.44909606234782
##
   16
       0.80322481868332
                          0.83389395416706
                                             1.14271822258295
                                                                1.51638798771447
##
      0.627025432024711 0.606005414459172
                                             1.16938338399709
                                                                1.09757402522846
##
   18
      0.973444495419564
                          1.35315156462733
                                              1.1423956505593
                                                                1.23956352450531
##
   19
       1.07986059255333 0.879465952690604
                                             1.24184224778392
                                                                1.31578039164066
##
   20
       1.44773174456628
                          1.00905352578159
                                              1.4126219798077
                                                                1.40929473472627
##
       1.69964939346275
                          1.46688269951968
                                             1.45944936854917
                                                                1.75936201800645
##
   22
      0.486356026733479 0.588197569441821
                                             1.56011268630929
                                                                1.49990768246823
##
   23
       1.03086631184147
                          1.07092560439311
                                            0.907225455933764
                                                                1.10551205477812
##
       1.21191539524654
                                             1.21986566532071
                                                                1.35947699709629
   24
                           1.1042823781343
                    2019
##
                                       2020
                                                          2021 Plot
##
  1
        2.0145918118242
                          1.96581039743491
                                             1.62531304044023
                                                                 A 1
##
   2
      0.691995913183193  0.974169862064642
                                              1.2163860305222
                                                                  A2
                                                                 A3
                          1.06768390565336 0.627765100792579
##
   3
        0.9724493832543
   4
      0.915646292742865
                          1.33900551463997
                                             1.50133902689179
                                                                  A4
##
   5
       1.94764990159352
                          1.89835885910774
                                             1.44706286625285
                                                                  A5
##
  6
                          1.37183773873638
                                              0.9114708169835
       1.45054061735534
                                                                  A6
##
  7
       1.43250053727084
                          1.60608516148779
                                             1.81536751087183
                                                                 B1
##
   8
                          1.18251733489018 0.699678505406374
                                                                  B2
       1.11587149404342
##
  9
      0.857420615656224 0.863774981807558
                                            0.845161671782528
                                                                  B3
                          1.49837008041475
                                                                  B4
##
   10
       1.50784697421321
                                             1.26916283332234
##
      0.705571885627956
                         0.785670252458899
                                            0.749093258816757
                                                                  B5
##
   12
       1.51929284719405
                          1.26323616766899
                                             1.48810325489543
                                                                 B6
##
   13
       1.22897033192299
                                             1.50648093715665
                                                                  C1
                          1.42548312428012
##
                                                                  C2
   14
       1.55447238564657
                          1.84837077356116
                                             1.53050384901037
                                                                  C3
##
   15
       1.47245049389592
                          1.58772129323631
                                             1.41124646634374
##
  16
       1.66601534933355
                          1.58346400146614
                                              1.6069039235169
                                                                  C4
                                                                  C5
##
   17
       1.36933451043502
                          1.19760885543397
                                             1.14167338748084
##
   18
         1.430726166755
                                             1.43036518013435
                                                                  C6
                           1.4500169349134
##
  19
       1.47812095926711
                          1.58341388787888
                                             1.48823193587079
                                                                 D1
##
  20
        1.5069193093977
                          1.56477969632959
                                              1.6541529758687
                                                                 D2
```

```
## 21 1.86897728881615 1.68447529694085 1.35856632476605
                                                              D3
## 22 1.53228686591738 1.61076832230645 0.99499394631327
                                                              D4
D5
## 24 1.20925855258584 1.57780388206066 1.32789605853908
                                                             D6
# comp$cover <- as.numeric(comp$cover)</pre>
# this output has a column for each year 2015, 2016, and Plot, but if you need it
# narrow use 'melt' from reshape2:
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
# calculate shannon diversity
shannon_by_plot_year_kbs <- reshape2::melt(x_kbs, id = "Plot", variable.name = c("Year"),
   value.name = "shannon")
shannon by plot year kbs\site <- "kbs" # adding site column
shannon_by_plot_year_umbs <- reshape2::melt(x_umbs, id = "Plot", variable.name = c("Year"),</pre>
   value.name = "shannon")
shannon_by_plot_year_umbs$site <- "umbs" # adding site column</pre>
# calculate simpson diversity
simpson_by_plot_year_kbs <- reshape2::melt(x_kbs, id = "Plot", variable.name = c("Year"),</pre>
    value.name = "simpson")
simpson_by_plot_year_kbs$site <- "kbs" # adding site column</pre>
simpson_by_plot_year_umbs <- reshape2::melt(x_umbs, id = "Plot", variable.name = c("Year"),
    value.name = "simpson")
simpson_by_plot_year_umbs$site <- "umbs" # adding site column</pre>
# combine umbs and kbs shannon diversity measures into 1 dataframe
shannon_diversity <- full_join(shannon_by_plot_year_kbs, shannon_by_plot_year_umbs,</pre>
    by = c("Plot", "Year", "shannon", "site"))
# combine umbs and kbs simpson diversity measures into 1 dataframe
simpson_diversity <- full_join(simpson_by_plot_year_kbs, simpson_by_plot_year_umbs,</pre>
   by = c("Plot", "Year", "simpson", "site"))
# combine simpson and shannon diversity data frames into 1
comp_diversity <- full_join(simpson_diversity, shannon_diversity, by = c("Plot",</pre>
    "Year", "site"))
# Looks like diversity and simpson diveristy measures are the same?? Need to look
# into this
names(comp_diversity) <- tolower(names(comp_diversity)) # column names to lower case so I can combine
# merge meta data with comp_diversity
comp_diversity <- full_join(comp_diversity, meta, by = "plot")</pre>
```

```
comp_diversity$simpson <- as.numeric(comp_diversity$simpson)
comp_diversity$shannon <- as.numeric(comp_diversity$shannon)

# write a new csv with diversity indices and upload to the shared google drive L2

# data folder
write.csv(comp_diversity, file.path(L2_dir, "plant_composition/final_plant_comp_diversity_L2.csv"))

# create separate data frames for kbs and umbs
kbs_diversity <- subset(comp_diversity, site == "kbs")
umbs_diversity <- subset(comp_diversity, site == "umbs")</pre>
```

KBS Simpson's Index

```
# Data exploration
hist(kbs_diversity$simpson)
```

Histogram of kbs_diversity\$simpson

qqnorm(kbs_diversity\$simpson) # this looks good

Normal Q-Q Plot

shapiro.test(kbs_diversity\$simpson) # not normal

```
##
## Shapiro-Wilk normality test
##
## data: kbs_diversity$simpson
## W = 0.96985, p-value = 0.001019

# Exploring distributions for these slightly left-skewed data:
```

Exploring distributions for these slightly left-skewed data:

descdist(kbs_diversity\$simpson, discrete = FALSE) # log normal looks like a good fit

Cullen and Frey graph


```
## summary statistics
## min: 0
           max: 2.361985
## median: 1.580778
## mean: 1.546083
## estimated sd: 0.376504
## estimated skewness: -0.7403559
## estimated kurtosis: 4.15561
# KBS State-only model
kbs_diversity <- kbs_diversity[-167, ] # remove row with zero - won't be able to take the log of the s
fit_state_kbs <- lm(log(simpson) ~ state, data = kbs_diversity)</pre>
outlierTest(fit_state_kbs) # yes row 148
       rstudent unadjusted p-value Bonferroni p
                                        0.010645
## 148 -4.104478
                         6.3743e-05
```

qqPlot(fit_state_kbs, main = "QQ Plot")

[1] 104 148

hist(fit_state_kbs\$residuals)

Histogram of fit_state_kbs\$residuals

fit_state_kbs\$residuals

leveragePlots(fit_state_kbs)

ols_test_normality(fit_state_kbs)

```
##
         Test
                          Statistic
                                         pvalue
## Shapiro-Wilk
                            0.911
                                          0.0000
## Kolmogorov-Smirnov
                          0.1184
                                          0.0185
## Cramer-von Mises
                                          0.0000
                          33.0384
## Anderson-Darling
                           3.9793
                                          0.0000
```

```
# KBS State and year model
fit_stateyear_kbs <- lm(log(simpson) ~ state + year, data = kbs_diversity)
outlierTest(fit_stateyear_kbs) # no outliers</pre>
```

```
qqPlot(fit_stateyear_kbs, main = "QQ Plot")
```


[1] 104 148

hist(fit_stateyear_kbs\$residuals)

Histogram of fit_stateyear_kbs\$residuals

fit_stateyear_kbs\$residuals

Leverage Plots

ols_test_normality(fit_stateyear_kbs)

```
##
          Test
                            Statistic
                                             pvalue
##
## Shapiro-Wilk
                              0.9685
## Kolmogorov-Smirnov
                              0.0646
                                              0.4880
## Cramer-von Mises
                             35.0287
                                              0.0000
## Anderson-Darling
                              1.3398
                                              0.0017
```

```
# Interaction plot (ignore for now the repeated measures with species); see:
# https://cran.r-project.org/web/packages/interactions/vignettes/interactions.html
# and: https://interactions.jacob-long.com/
# I can't get these to work fit3 <- lm(log(simpson) ~ state + year, data =
# kbs_diversity) interact_plot(fit3, pred = year, modx = state)</pre>
```

```
par(mfrow = c(1, 2))
plot(mod1)
                                                     0
      0.4
                                  0
                                                           0
resid(., type = "pearson")
      0.2
                            0
      0.0
                                  80
                                                                    00
                                                                    \bigcirc
                                                     0
     -0.2
                                                                                  0
                                                                        0
                                       00
                                 00
     -0.4
                                                     0
                                     0
               0
                        0
            -0.2
                         0.0
                                      0.2
                                                   0.4
                                                               0.6
                                                                            8.0
                                             fitted(.)
# Homogeneity of variance is ok here (increasing variance in resids is not
# increasing with fitted values) Check for homogeneity of variances (true if
# p>0.05). If the result is not significant, the assumption of equal variances
# (homoscedasticity) is met (no significant difference between the group
# variances). *****Levene's Test - tests whether or not the variance among two
\# or more groups is equal - If the p-value is less than our chosen significance
# level, we can reject the null hypothesis and conclude that we have enough
# evidence to state that the variance among the groups is not equal (which we
# want).
leveneTest(residuals(mod1) ~ kbs_diversity$state)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
          Df F value Pr(>F)
## group
           1 0.0478 0.8271
         165
# Assumption not met
leveneTest(residuals(mod1) ~ kbs_diversity$insecticide)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
```

```
## Levene's Test for Homogeneity of Variance (center = median)
          Df F value Pr(>F)
           1 2.5965 0.109
## group
##
         165
# Assumption not met
leveneTest(residuals(mod1) ~ kbs_diversity$plot)
## Warning in leveneTest.default(y = y, group = group, \dots): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
          Df F value Pr(>F)
## group 23 1.2707 0.1979
##
         143
# Assumption not met
# (3) Normality of error term: need to check by histogram, QQplot of residuals,
# could do Kolmogorov-Smirnov test. Check for normal residuals
qqPlot(resid(mod1))
```

[1] 104 148

hist(residuals(mod1))

Histogram of residuals(mod1)


```
shapiro.test(resid(mod1)) # ormally distributed resids bc p>0.05
##
## Shapiro-Wilk normality test
## data: resid(mod1)
## W = 0.97032, p-value = 0.0012
outlierTest(mod1) # no outliers
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
       rstudent unadjusted p-value Bonferroni p
## 104 -3.342862
                          0.0010585
                                         0.17678
# (4) Normality of random effect: Get the estimate of random effect (e.g., random
# intercepts), and check them as you would check the residual.
require(lme4)
r_int <- ranef(mod1)$plot$'(Intercept)'</pre>
qqnorm(r_int)
qqline(r_int)
shapiro.test(r_int)
##
## Shapiro-Wilk normality test
## data: r_int
## W = 0.98308, p-value = 0.9451
# Normally distributed random effect pualue > 0.05
```

Normal Q-Q Plot

Theoretical Quantiles

anova(mod2)

```
## Data: kbs_diversity
## Models:
## mod2: log(simpson) ~ state * year + insecticide + year + (1 | plot)
## mod1: log(simpson) ~ state * year + insecticide * year + (1 | plot)
                        BIC logLik deviance Chisq Df Pr(>Chisq)
                AIC
## mod2
         17 -28.256 24.750 31.128 -62.256
         23 -37.258 34.456 41.629 -83.258 21.002 6
## mod1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(mod1)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: log(simpson) ~ state * year + insecticide * year + (1 | plot)
      Data: kbs_diversity
##
##
##
        AIC
                 BIC
                       logLik deviance df.resid
      -37.3
##
                34.5
                         41.6
                                 -83.3
##
## Scaled residuals:
                     Median
       Min
                  10
                                    30
                                            Max
## -2.93439 -0.46009 0.05937 0.58195 2.45210
##
## Random effects:
## Groups
                        Variance Std.Dev.
             (Intercept) 0.01991 0.1411
## plot
## Residual
                         0.02746 0.1657
## Number of obs: 167, groups: plot, 24
##
## Fixed effects:
##
                                  Estimate Std. Error t value
                                              0.07695
## (Intercept)
                                   0.56061
                                                       7.285
## statewarmed
                                   0.01463
                                              0.08885
                                                        0.165
## year2016
                                              0.08286 -0.687
                                  -0.05695
                                              0.08286
## year2017
                                  -0.21499
                                                      -2.595
## year2018
                                 -0.06251
                                              0.08286
                                                      -0.754
## year2019
                                 -0.09392
                                              0.08286
                                                      -1.134
## year2020
                                  -0.04152
                                              0.08286
                                                      -0.501
## year2021
                                  -0.19385
                                              0.08615
                                                      -2.250
## insecticideno_insects
                                              0.08885
                                   0.02893
                                                       0.326
## statewarmed:year2016
                                  -0.06684
                                              0.09568 -0.699
## statewarmed:year2017
                                  -0.12632
                                              0.09568
                                                      -1.320
## statewarmed:year2018
                                  -0.06268
                                              0.09568 -0.655
## statewarmed:year2019
                                  -0.14113
                                              0.09568 - 1.475
## statewarmed:year2020
                                  -0.13665
                                              0.09568 -1.428
## statewarmed:year2021
                                  -0.15061
                                              0.09696
                                                      -1.553
                                              0.09568
## year2016:insecticideno_insects  0.08898
                                                       0.930
## year2017:insecticideno_insects 0.09540
                                              0.09568
                                                       0.997
## year2018:insecticideno_insects -0.04480
                                              0.09568 -0.468
## year2019:insecticideno_insects -0.23494
                                              0.09568 - 2.456
```

```
## year2020:insecticideno_insects -0.07393
                                              0.09568 -0.773
## year2021:insecticideno_insects -0.21572
                                              0.09696 - 2.225
##
## Correlation matrix not shown by default, as p = 21 > 12.
## Use print(x, correlation=TRUE) or
##
       vcov(x)
                     if you need it
summary(mod2)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: log(simpson) ~ state * year + insecticide + year + (1 | plot)
##
      Data: kbs_diversity
##
##
        AIC
                       logLik deviance df.resid
##
      -28.3
                24.7
                        31.1
                                -62.3
                                            150
##
## Scaled residuals:
      Min
               1Q Median
                                3Q
                                      Max
## -3.2592 -0.4062 0.0534 0.6898 1.9171
## Random effects:
## Groups Name
                        Variance Std.Dev.
             (Intercept) 0.01906 0.1381
## plot
## Residual
                        0.03186 0.1785
## Number of obs: 167, groups: plot, 24
##
## Fixed effects:
##
                         Estimate Std. Error t value
## (Intercept)
                         0.58749
                                    0.07230
                                              8.125
## statewarmed
                                    0.09212
                                              0.159
                         0.01463
## year2016
                         -0.01246
                                    0.07287 -0.171
                                    0.07287 -2.296
## year2017
                        -0.16729
## year2018
                        -0.08492
                                    0.07287 -1.165
## year2019
                                    0.07287 -2.901
                        -0.21139
                                    0.07287 -1.077
## year2020
                        -0.07849
## year2021
                        -0.31052
                                    0.07472 - 4.156
## insecticideno_insects -0.02481
                                    0.06277 - 0.395
## statewarmed:year2016 -0.06684
                                     0.10305 -0.649
## statewarmed:year2017 -0.12632
                                    0.10305 -1.226
## statewarmed:year2018 -0.06268
                                    0.10305 -0.608
## statewarmed:year2019 -0.14113
                                    0.10305 -1.370
## statewarmed:year2020 -0.13665
                                     0.10305 -1.326
## statewarmed:year2021 -0.14180
                                     0.10436 -1.359
##
## Correlation matrix not shown by default, as p = 15 > 12.
## Use print(x, correlation=TRUE) or
##
       vcov(x)
                     if you need it
AICctab(mod1, mod2, weights = T) # model 1
```

```
## dAICc df weight
## mod1 0.0 23 0.937
## mod2 5.4 17 0.063

# Plot the fixed effects estimates for different models these are the fixed
# effects estimates from summary(mod1)
plot_model(mod1, sort.est = TRUE)
```

log(simpson)


```
# these are the fixed predicted values:
plot_model(mod1, type = "pred", terms = c("year", "state", "insecticide"))
```

Model has log-transformed response. Back-transforming predictions to original response scale. Standa

Predicted values of simpson


```
# these are the random effects estimates
plot_model(mod1, type = "re", terms = c("species"))
```

Random effects


```
## Models:
## mod2: log(simpson) ~ state * year + insecticide + year + (1 | plot)
## mod3: log(simpson) ~ state + year + insecticide * year + (1 | plot)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mod2 17 -28.256 24.7497 31.128 -62.256
## mod3 17 -45.253 7.7528 39.627 -79.253 16.997 0
```

```
AICctab(mod1, mod3, weights = T) # going with mod3
```

```
## mod3 0.0 17 0.997
## mod1 11.6 23 0.003
```

```
# Do we need to include insecticide? (dropping insecticide from the model)
mod5 <- lmer(log(simpson) ~ state + year + (1 | plot), kbs_diversity, REML = FALSE)
anova(mod3, mod5)</pre>
```

```
## Data: kbs_diversity
## Models:
```

```
## mod5: log(simpson) ~ state + year + (1 | plot)
## mod3: log(simpson) ~ state + year + insecticide * year + (1 | plot)
## mpar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mod5   10 -38.795 -7.6155 29.398 -58.795
## mod3   17 -45.253   7.7528 39.627 -79.253 20.458   7   0.004662 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

# Yes, p<0.05 so insecticide*year does strongly improve model fit so we will
# stick with the more complex mod3

# Plot the fixed effects estimates for different models these are the fixed
# effects estimates from summary(mod5)
plot_model(mod3, sort.est = TRUE)</pre>
```

log(simpson)


```
# these are the fixed predicted values:
plot_model(mod3, type = "pred", terms = c("year", "state"))
```

Model has log-transformed response. Back-transforming predictions to original response scale. Standa

Predicted values of simpson

these are the random effects estimates
plot_model(mod3, type = "re", terms = c("species"))

Random effects


```
# If we wanted to include plots nested within year it would look like this: mod6
# <- lmer(log(simpson) ~ state + year + insecticide*year + (1 + year/plot),
# kbs_diversity, REML=FALSE) anova(mod5, mod6) anova(mod5) cant get mod6 to work

# the best model fit appears to be = mod3 <- lmer(log(simpson) ~ state + year +
# insecticide*year + (1/plot), kbs_diversity, REML = FALSE)
summ(mod3)</pre>
```

Observations	167
Dependent variable	$\log(\text{simpson})$
Type	Mixed effects linear regression

AIC	-45.25
BIC	7.75
Pseudo-R ² (fixed effects)	0.31
Pseudo-R ² (total)	0.59

UMBS Simpson's Index

```
# Data exploration
hist(umbs_diversity$simpson)
```

Fixe	ed Effec	ts			
	Est.	S.E.	t val.	d.f.	p
(Intercept)	0.61	0.07	8.63	62.69	0.00
statewarmed	-0.08	0.06	-1.31	23.97	0.20
year2016	-0.09	0.07	-1.32	142.97	0.19
year2017	-0.28	0.07	-4.05	142.97	0.00
year2018	-0.09	0.07	-1.37	142.97	0.17
year2019	-0.16	0.07	-2.40	142.97	0.02
year 2020	-0.11	0.07	-1.60	142.97	0.11
year2021	-0.27	0.07	-3.86	143.34	0.00
insecticideno_insects	0.03	0.09	0.32	83.14	0.75
$year 2016: in sectic ideno_in sects$	0.09	0.10	0.92	142.97	0.36
year2017:insecticideno_insects	0.10	0.10	0.98	142.97	0.33
year2018:insecticideno_insects	-0.04	0.10	-0.46	142.97	0.65
year2019:insecticideno_insects	-0.23	0.10	-2.42	142.97	0.02
$year 2020: insectic ideno_insects$	-0.07	0.10	-0.76	142.97	0.45
$year 2021 : in sectic ideno_in sects$	-0.21	0.10	-2.17	143.16	0.03

p values calculated using Satterthwaite d.f.

Random Effects			
Group	Parameter	Std. Dev.	
plot	(Intercept)	0.14	
Residual		0.17	

Grouping Variables			
Group # groups ICC			
plot	24	0.41	

Histogram of umbs_diversity\$simpson

Normal Q-Q Plot

shapiro.test(umbs_diversity\$simpson) # not normal

```
##
## Shapiro-Wilk normality test
##
## data: umbs_diversity$simpson
## W = 0.98934, p-value = 0.2377
```

 $\begin{tabular}{ll} \# \end{tabular} \begin{tabular}{ll} \# \end{tabular} Exploring \ distributions for these slightly left-skewed data: \\ \begin{tabular}{ll} \begin{tabular}{ll} desc dist (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality with umbs_diversity (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we can assume normality (umbs_diversity\$simpson, discrete = FALSE) & in think we c$

Cullen and Frey graph

```
Observation
                                                                                             Theoretical distributions
                                                                                              * normal

Uniform

exponential

logistic

beta

common lognormal

--- gamma

(Weibull is close to gamma and lognormal)
                                                                                              4
2
9
/
\infty
10
             0
                                              1
                                                                              2
                                                                                                               3
                                                                                                                                                4
                                                            square of skewness
```

```
## summary statistics
## -----
## min: 0.4501077
                    max: 2.014592
## median: 1.269487
## mean: 1.264579
## estimated sd: 0.3273682
## estimated skewness: -0.1779162
## estimated kurtosis: 2.548224
# UMBS State-only model
fit_state_umbs <- lm(log(simpson) ~ state, data = umbs_diversity)</pre>
outlierTest(fit_state_umbs) # no outliers
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
       rstudent unadjusted p-value Bonferroni p
## 202 -3.49748
                        0.00060365
qqPlot(fit_state_umbs, main = "QQ Plot")
```


190 202 ## 22 34

hist(fit_state_umbs\$residuals)

Histogram of fit_state_umbs\$residuals

leveragePlots(fit_state_umbs)

ols_test_normality(fit_state_umbs)

```
##
          Test
                           Statistic
                                            pvalue
##
## Shapiro-Wilk
                             0.9546
                                             0.0000
## Kolmogorov-Smirnov
                            0.0837
                                             0.1897
## Cramer-von Mises
                            30.1203
                                             0.0000
## Anderson-Darling
                             2.196
                                             0.0000
```

```
# UMBS State and year model
fit_stateyear_umbs <- lm(log(simpson) ~ state + year, data = umbs_diversity)
outlierTest(fit_stateyear_kbs) # no outliers</pre>
```


190 202 ## 22 34

hist(fit_stateyear_umbs\$residuals)

Histogram of fit_stateyear_umbs\$residuals

Leverage Plots

ols_test_normality(fit_stateyear_umbs)

```
##
##
          Test
                            Statistic
                                             pvalue
##
                              0.9505
## Shapiro-Wilk
                                              0.0000
## Kolmogorov-Smirnov
                              0.0978
                                              0.0806
## Cramer-von Mises
                             31.4482
                                              0.0000
## Anderson-Darling
                              2.6352
                                              0.0000
```

```
# Interaction plot (ignore for now the repeated measures with species); see:
# https://cran.r-project.org/web/packages/interactions/vignettes/interactions.html
# and: https://interactions.jacob-long.com/

# I can't get these to work
fit3 <- lm(log(simpson) ~ state + year, data = umbs_diversity)
# interact_plot(fit3, pred = year, modx = state)</pre>
```

```
# values.
par(mfrow = c(1, 2))
plot(mod1u)
```



```
# Homogeneity of variance is ok here (increasing variance in resids is not
# increasing with fitted values) Check for homogeneity of variances (true if
# p>0.05). If the result is not significant, the assumption of equal variances
# (homoscedasticity) is met (no significant difference between the group
# variances). *****Levene's Test - tests whether or not the variance among two
# or more groups is equal - If the p-value is less than our chosen significance
# level, we can reject the null hypothesis and conclude that we have enough
# evidence to state that the variance among the groups is not equal (which we
# want).

leveneTest(residuals(mod1u) ~ umbs_diversity$state)
```

```
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 5.6029 0.01908 *
## 166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
# Assumption
leveneTest(residuals(mod1u) ~ umbs_diversity$insecticide)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
## group 1 0.5045 0.4785
##
        166
# Assumption not met
leveneTest(residuals(mod1u) ~ umbs_diversity$plot)
## Warning in leveneTest.default(y = y, group = group, \dots): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
## group 23 0.805 0.7209
        144
# Assumption not met
# (3) Normality of error term: need to check by histogram, QQplot of residuals,
# could do Kolmogorov-Smirnov test. Check for normal residuals
qqPlot(resid(mod1u))
## 202 190
## 34 22
hist(residuals(mod1u))
```

Histogram of residuals(mod1u)

##

data: r_int_u

W = 0.96292, p-value = 0.4999

shapiro.test(resid(mod1u)) # not normally distributed resids bc p<0.05</pre>

```
##
##
    Shapiro-Wilk normality test
##
## data: resid(mod1u)
## W = 0.95075, p-value = 1.313e-05
outlierTest(mod1u) # no outliers
        rstudent unadjusted p-value Bonferroni p
## 202 -4.372478
                                        0.0039319
                         2.3404e-05
## 190 -4.014368
                         9.5531e-05
                                        0.0160490
# (4) Normality of random effect: Get the estimate of random effect (e.g., random
# intercepts), and check them as you would check the residual.
require(lme4)
r_int_u <- ranef(mod1u)$plot$'(Intercept)'</pre>
qqnorm(r_int_u)
qqline(r_int_u)
shapiro.test(r_int_u)
##
    Shapiro-Wilk normality test
```

Normal Q-Q Plot

Theoretical Quantiles

```
# Do we need to include plot as a random effect with the UMBS models?
mod1u <- lmer(log(simpson) ~ state * year + insecticide * year + (1 | plot), umbs_diversity,
    REML = FALSE)
mod2u <- lmer(log(simpson) ~ state * year + insecticide + year + (1 | plot), umbs_diversity,
    REML = FALSE)
# Run analysis of variance on each model (see this for more explanation on how
# anova on a linear mixed effects model is similar to an anove on a regular
# linear model: https://m-clark.github.io/docs/mixedModels/anovamixed.html)
anova(mod1u)</pre>
```

anova(mod2u)

```
## Data: umbs_diversity
## Models:
## mod2u: log(simpson) ~ state * year + insecticide + year + (1 | plot)
## mod1u: log(simpson) ~ state * year + insecticide * year + (1 | plot)
                AIC
                       BIC logLik deviance Chisq Df Pr(>Chisq)
## mod2u
          17 11.246 64.354 11.377 -22.754
          23 14.557 86.408 15.721 -31.443 8.6891 6
## mod1u
                                                          0.1918
summary(mod1u)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: log(simpson) ~ state * year + insecticide * year + (1 | plot)
##
      Data: umbs_diversity
##
##
                       logLik deviance df.resid
       AIC
                BIC
##
       14.6
                         15.7
                                 -31.4
##
## Scaled residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -3.8348 -0.4337 0.1201 0.6064 2.3817
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
             (Intercept) 0.02926 0.1710
## plot
                        0.03715 0.1928
## Number of obs: 168, groups: plot, 24
##
## Fixed effects:
##
                                  Estimate Std. Error t value
                                              0.09111
                                                       1.532
## (Intercept)
                                  0.13958
## statewarmed
                                  0.04840
                                              0.10521
                                                       0.460
## year2016
                                 -0.26894
                                              0.09638 -2.791
## year2017
                                 -0.04981
                                              0.09638 -0.517
## year2018
                                  0.04748
                                              0.09638
                                                      0.493
                                              0.09638
                                                       0.785
## year2019
                                  0.07569
## year2020
                                  0.12848
                                              0.09638
                                                      1.333
## year2021
                                 -0.04939
                                              0.09638 -0.513
## insecticideno_insects
                                  -0.05952
                                              0.10521 -0.566
## statewarmed:year2016
                                  0.17915
                                              0.11129
                                                       1.610
## statewarmed:year2017
                                              0.11129 -0.416
                                 -0.04630
## statewarmed:year2018
                                 -0.03285
                                              0.11129 -0.295
                                              0.11129 -0.701
## statewarmed:year2019
                                  -0.07803
## statewarmed:year2020
                                 -0.06528
                                              0.11129 -0.587
## statewarmed:year2021
                                  0.09060
                                              0.11129 0.814
## year2016:insecticideno_insects   0.09326
                                              0.11129
                                                      0.838
## year2017:insecticideno_insects  0.31547
                                              0.11129
                                                       2.835
## year2018:insecticideno_insects 0.16942
                                              0.11129
                                                       1.522
## year2019:insecticideno_insects 0.16902
                                              0.11129
                                                      1.519
## year2020:insecticideno_insects 0.18592
                                              0.11129
                                                      1.671
## year2021:insecticideno_insects 0.13103
                                              0.11129
                                                       1.177
```

```
##
## Correlation matrix not shown by default, as p = 21 > 12.
## Use print(x, correlation=TRUE) or
       vcov(x)
                     if you need it
##
summary(mod2u)
## Linear mixed model fit by maximum likelihood ['lmerMod']
  Formula: log(simpson) ~ state * year + insecticide + year + (1 | plot)
##
      Data: umbs_diversity
##
##
       AIC
                      logLik deviance df.resid
##
       11.2
                64.4
                        11.4
                                -22.8
                                           151
##
## Scaled residuals:
               1Q Median
                               3Q
## -3.8057 -0.3803 0.1170 0.5764 2.1386
## Random effects:
## Groups Name
                        Variance Std.Dev.
## plot
             (Intercept) 0.02893 0.1701
## Residual
                        0.03946 0.1987
## Number of obs: 168, groups: plot, 24
## Fixed effects:
                        Estimate Std. Error t value
## (Intercept)
                         0.06357
                                    0.08449
                                              0.752
                                    0.10676
                                              0.453
## statewarmed
                         0.04840
## year2016
                        -0.22231
                                    0.08110 -2.741
## year2017
                         0.10792
                                    0.08110
                                             1.331
## year2018
                         0.13219
                                    0.08110
                                             1.630
## year2019
                         0.16020
                                    0.08110
                                             1.975
## year2020
                         0.22144
                                    0.08110
                                             2.730
## year2021
                                    0.08110
                                             0.199
                         0.01612
## insecticideno insects 0.09250
                                    0.07590
                                             1.219
## statewarmed:year2016
                         0.17915
                                    0.11469
                                             1.562
                                    0.11469 -0.404
## statewarmed:year2017 -0.04630
## statewarmed:year2018 -0.03285
                                    0.11469 -0.286
## statewarmed:year2019 -0.07803
                                    0.11469 -0.680
## statewarmed:year2020 -0.06528
                                    0.11469 -0.569
                                             0.790
## statewarmed:year2021
                         0.09060
                                    0.11469
##
## Correlation matrix not shown by default, as p = 15 > 12.
## Use print(x, correlation=TRUE) or
##
      vcov(x)
                     if you need it
AICctab(mod1u, mod2u, weights = T) # model 2u
        dAICc df weight
## mod2u 0.0 17 0.969
## mod1u 6.9 23 0.031
```

```
# Plot the fixed effects estimates for different models these are the fixed
# effects estimates from summary(mod1)
plot_model(mod2u, sort.est = TRUE)
```

log(simpson)


```
# these are the fixed predicted values:
plot_model(mod2u, type = "pred", terms = c("year", "state", "insecticide"))
```

Model has log-transformed response. Back-transforming predictions to original response scale. Standa

Predicted values of simpson


```
# these are the random effects estimates
plot_model(mod2u, type = "re", terms = c("species"))
```

Random effects

Data: umbs_diversity

Models:


```
## mod5u: log(simpson) ~ state + year + (1 | plot)
## mod3u: log(simpson) ~ state + year + insecticide * year + (1 | plot)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mod5u 10 6.6083 37.848 6.6959 -13.392
## mod3u 17 10.9566 64.064 11.5217 -23.043 9.6517 7 0.2092

# No, p>0.05 so insecticide*year doesn't strongly improve model fit so we will go
# with the more simple model mod5u

# Plot the fixed effects estimates for different models these are the fixed
# effects estimates from summary(mod5u)
plot_model(mod5u, sort.est = TRUE)
```

log(simpson)


```
# these are the fixed predicted values:
plot_model(mod5u, type = "pred", terms = c("year", "state"))
```

Model has log-transformed response. Back-transforming predictions to original response scale. Standa

Predicted values of simpson

these are the random effects estimates
plot_model(mod5u, type = "re", terms = c("species"))

Random effects


```
# If we wanted to include plots nested within year it would look like this: mod6
# <- lmer(log(simpson) ~ state + year + insecticide*year + (1 + year/plot),
# kbs_diversity, REML=FALSE) anova(mod5, mod6) anova(mod5) cant get mod6 to work

# the best model fit appears to be = mod5u <- lmer(log(simpson) ~ state + year +
# insecticide*year + (1/plot), umbs_diversity, REML = FALSE)
summ(mod5u)</pre>
```

Observations	168
Dependent variable	$\log(\mathrm{simpson})$
Type	Mixed effects linear regression

AIC	6.61
BIC	37.85
Pseudo-R ² (fixed effects)	0.12
Pseudo-R ² (total)	0.49

Code below is a function written by Pat but unsuccessfully subsets sites so you get the same values for both kbs and umbs - above is a clumsy fix by Moriah (no function)

```
#' function to calculate annual diversity index for a specific site

#'
#' after reading a comp file, this function should do all that's needed to prep it and
#' run the diversity function on for each year. diversity indexes are for the year only,
#' the diversity indexes use total abundances for a year, do not sum/count/pool abundances in other ye
```

Fixed Effects					
	Est.	S.E.	t val.	d.f.	p
(Intercept)	0.11	0.07	1.58	51.04	0.12
statewarmed	0.06	0.08	0.71	24.00	0.49
year2016	-0.13	0.06	-2.25	144.00	0.03
year2017	0.08	0.06	1.44	144.00	0.15
year2018	0.12	0.06	1.96	144.00	0.05
year2019	0.12	0.06	2.06	144.00	0.04
year2020	0.19	0.06	3.20	144.00	0.00
year 2021	0.06	0.06	1.04	144.00	0.30

p values calculated using Satterthwaite d.f.

Random Effects				
Group	Parameter	Std. Dev.		
plot	(Intercept)	0.18		
Residual		0.20		

Grouping Variables			
Group # groups ICC			
plot	24	0.42	

```
#'
#' Oparam comp plant composition data as read from project folder
#' Oparam site one of kbs or umbs as coded in the comp data
#' Cparam div_index is the same as 'index' for vegan::diversity function 'shannon', 'simpson' or 'invsi
#' Creturns a matrix (data frame) of diversity indices for one site with years in the columns, and plot
diversity_by_year <- function(comp, site, div_index = "shannon") {</pre>
    comp_site <- subset(comp, site == site) %>% dplyr::select(plot, species, cover,
        year)
    # remove non-species using 'not in' obs_to_exclude = c('Bare_Ground',
    {\it \# 'Unknown', 'Brown', 'Litter', 'Vert\_Litter', 'Animal\_Disturbance') \ comp\_site}
    # <-dplyr::filter(comp_site, !(species %in% obs_to_exclude))</pre>
    # convert the abundance data to abundance for each species in columns for the
    # vegan package
    comp_wide <- matrify2(comp_site)</pre>
    # comp_wide_data is assumes to have columns Year, Plot, and columns for each
    # species found, e.g. for Vegan
    # first, split up the wide data into a list of years. Each list item is a year
    # of data
    comp_wide_by_year <- dplyr::group_by(comp_wide, Year) %>% dplyr::group_split()
    # we need to add plot names. Get those Plot names by taking a column from any
```

```
# one of the years since we are assuming the Plot column is the exact same across
    # years and IN THE SAME ORDER
    plot names <- comp wide by year[[1]]$Plot</pre>
    # remove the plot and year columns from each item in the list so that Vegan will
    # work. This assumes row order is the exact same for all years (each row a plot)
    comp_wide_by_year <- lapply(comp_wide_by_year, dplyr::select, c(-Year, -Plot))</pre>
    # apply the diversity function to each year - in this case the main index is
    # plot, each year considered separately
    diversity_by_year_list <- lapply(comp_wide_by_year, vegan::diversity, index = div_index)</pre>
    # each item in the list is a year of diversity, so name those with the years we
    # know we have
    names(diversity_by_year_list) <- as.character(2015:2021)</pre>
    # 'unlist' and create a new data frame, each year a column, each row a plot, and
    # add a new row with the plot names
    x <- do.call(cbind, diversity_by_year_list) %>% cbind(Plot = plot_names) %>%
        as.data.frame()
    # an alternative tidyverse way x<- diversity_by_year(diversity_by_year_list)
    ## optional step!
    return(x)
}
comp$cover <- as.numeric(comp$cover)</pre>
# use the one function above to both matrify and calculate Shannon diversity
# index per year
diversity_by_year_kbs <- diversity_by_year(comp, site = "kbs", div_index = "shannon")</pre>
diversity_by_year_umbs <- diversity_by_year(comp, site = "umbs", div_index = "shannon")</pre>
# this output has a column for each year 2015, 2016, and Plot, but if you need it
# narrow use 'melt' from reshape2:
library(reshape2)
diversity_by_plot_year_kbs <- reshape2::melt(diversity_by_year_kbs, id = "Plot",</pre>
    variable.name = c("Year"), value.name = "shannon")
diversity_by_plot_year_umbs <- reshape2::melt(diversity_by_year_umbs, id = "Plot",</pre>
    variable.name = c("Year"), value.name = "shannon")
# To do just August (peak_comp):
peak_comp <- dplyr::filter(comp, month == 8)</pre>
peak_shannon_by_year_kbs <- diversity_by_year(peak_comp, site = "kbs", div_index = "shannon")</pre>
peak_shannon_by_year_umbs <- diversity_by_year(peak_comp, site = "umbs", div_index = "shannon")</pre>
peak_simpson_by_year_kbs <- diversity_by_year(peak_comp, site = "kbs", div_index = "simpson")</pre>
peak_simpson_by_year_umbs <- diversity_by_year(peak_comp, site = "umbs", div_index = "simpson")</pre>
# this output has a column for each year 2015, 2016, and Plot, but if you need it
# narrow use 'melt' from reshape2:
```

Calculating Diversity Indices

```
# species richness
sppr <- specnumber(comp1_wide)

sppr_aov <- aov(sppr ~ state, data = meta)
summary(sppr_aov)</pre>
```