Atrial Fib

Tuesday, 8 April 2025 11:28

Detection of Atrial Fibrillation (AF)

- · Research on detecting AF episodes has spanned over 30 years.
- Despite extensive work, a fully robust AF detector for continuous long-term ECG recordings and handheld device recordings remains undeveloped.
- A major challenge is the **high false alarm rate**, caused by:
 - Ectopic beats,
 - Noisy signal segments,
 - Non-AF arrhythmias that mimic AF rhythm patterns (see [1]).
- Human detection of AF relies on three core features:
 - 1. Highly irregular rhythm
 - 2. Absence of P waves
 - 3. Presence of f waves
- These characteristics are often incorporated into the design of AF detection algorithms, but with varying effectiveness.

RR interval: tid mellan QRS komplex

Characterizing Rhythm Irregularity for AF Detection

- Translating "highly irregular rhythm" into a usable detection parameter is difficult due to the limited knowledge on effective features for characterizing irregularity
- Numerous detection parameters have been proposed, each targeting a specific aspect of rhythm
- Early research questioned whether RR intervals during AF were random or deterministic [2].
 - · Results showed nonzero correlation between observed and predicted RR intervals, suggesting some predictability.
 - · However, these findings were not consistent across all patients, making correlation-based parameters unreliable for AF detection
- Another study found that RR intervals during AF show a white noise-like spectrum when analyzed minute-by-minute [3], suggesting randomnes
- Heart rate tends to be higher during AF episodes than during sinus rhythm.
 - Though heart rate alone is not a reliable detector, integrating it with rhythm irregularity parameters can boost detection accuracy.
 - . Heart rate is usually represented by the mean RR interval within the detection window
- Confounding arrhythmias complicate AF detection as they may present RR interval patterns similar to AF, increasing false alarms.
 - Important sources of false alarms include:
 - Ventricular premature beats (VPBs)
 - Atrial premature beats (APBs)
 - Atrial flutter

 - Trigeminy
- These are illustrated in Fig. 4.1 showing representative RR interval series.
- QRS detection inaccuracies (due to muscle noise, motion artifacts, or large T waves) also contribute to false alarms
- Shorter detection windows, necessary for detecting brief AF episodes, increase the risk of misclassifying non-AF rhythms

Incorporating Waveform and Signal Quality in AF Detection

- When using information about P waves and/or f waves for AF detection, it is crucial to also include signal quality indicators.
 - This ensures that unreliable or noisy wave measurements do not disrupt detection
 - Continuous long-term ECG recordings, often used in clinical studies, tend to have variable noise levels, making signal quality assessment essential for trustworthy analysis.
- The clinical definition of an AF episode is a minimum duration of 30 seconds:
 - . This criterion was published in the ACC/AHA/ESC 2006 guidelines for AF patient
 - . Although the reasoning behind the 30-second threshold was not thoroughly explained, the guidelines noted shorter episodes may still be relevant in cases involving:
 - Symptomatic patients
 - Pre-excitation
 - · Assessment of therapeutic interventions
- - The 2014 guidelines [5] did not mention a minimum duration.
 - The 2016 guidelines [6] reinstated the 30-second minimum, aligning again with the 2006 definition.

(a) 3

(b) 3

Atrial flutter

Fig. 4.1 – RR Interval Patterns Confounding AF Detection

- This figure presents RR interval patterns that can lead to false AF detections, illustrating the challenge of distinguishing AF from similar arrhythmias.
- All examples are from the MIT-BIH Arrhythmia Database

(a)

- Multiple ventricular premature beats
 - Includes bigeminy and trigeminy patterns.
 - · Irregular but structured rhythm may resemble AF.

(b)

- Atrial flutter surrounded by AF episodes
 - Clear alternation between AF and atrial flutter, making transitions difficult to classify.

(c)

- Second degree atrioventricular (AV) block
 - Regular interruptions in RR intervals due to dropped beats.

(d)

- Ventricular flutter (VFL) episode
 - Sudden shift into VFL with rapid, very short RR intervals.

(e)

- Sinus bradycardia
 - Slow, fairly regular rhythm with occasional outliers.

(F)

- Composite arrhythmia episode
 - Involves a mix of:
 - AF
 - Atrial flutter
 - Atrial bigeminy
 - Supraventricular tachycardia
 - · Atrioventricular junctional rhythm
 - Atrial premature beats
 - Complex and irregular rhythm presents significant detection challenges.

These diverse patterns emphasize the need for **robust AF detectors** that can handle rhythm variability and differentiate AF from other irregular arrhythmias.

Clinical Significance of AF Episodes Shorter Than 30 Seconds

- Recent clinical research has increased focus on AF episodes shorter than 30 seconds, particularly regarding their relation to stroke risk.
- These short episodes might be linked to atrial thrombus formation and may act as biomarkers for longer, undetected episodes [12–14].
- AF burden is a key concept, defined as:
 - The proportion of the total recording time that a patient is in AF.
- A patient with many short AF episodes can have a higher AF burden than someone with fewer but longer episodes.
- This may lead to a higher thromboembolic risk, even if no individual episode exceeds 30 seconds [15, 16].
- There is currently no established minimum episode duration that consistently conveys clinically significant information.

Challenges in Detecting Short AF Episode

- . Long-term AF monitoring demands automated event detection for practical use.
- Detector design often imposes a lower detection limit, preventing recognition of very brief episodes:
 - For example, RR interval histogram analysis requires a large number of intervals, excluding episodes under two minutes.
 - Many ECG-based detectors cannot detect episodes <2 minutes.
 - Some implantable devices only detect episodes ≥6 minutes [17, 18].
- Despite clinical studies showing that episodes <30s are relevant, most detectors:
 - Are commercially developed and proprietary.
 - Lack published performance data for short episodes [12, 13, 19, 20].
- . Consequently, there is a pressing need to design and validate new AF detectors capable of:
 - Identifying very brief episodes,
 - . Enabling further study of their clinical impact.

Variability in AF Episode Duration and Challenges in Mobile Detection

- AF episode durations vary widely, from <30 seconds to over 7 days.
 - Episodes longer than 7 days are termed persistent AF [4].
- AF detection should avoid rigid assumptions regarding:
 - Episode duration
 - Minimum distance between AF episodes
 - Similar to QRS detection strategies, a least-informative approach is recommended to preserve clinically relevant data [21].
- Merging episodes separated by just a few seconds could cause important information loss.

Impact of Handheld and Smartphone Devices:

- These devices enable detection of previously unidentified AF [22–29].
- However, they introduce challenges due to lower signal quality, often inferior to clinical modalities.
 - Refer to Fig. 4.2 for examples of poor signal quality.
- Handheld/smartphone devices typically:
 - Use a single lead, which may not reliably capture atrial activity.
 - Depend primarily on rhythm-based detection.
 - Consider f and P wave morphology as supplementary information, rather than core
 detection criteria.

Overview of AF Detection Design Principles and Chapter Structure

- The chapter reviews main design principles in AF detection, focusing on:
 - Rhythm-only analysis using RR interval series (see Sect. 4.2),
 - Combined use of rhythm and atrial wave morphology (see Sect. 4.3).
- Additional topics covered:
 - Detector implementation aspects (Sect. 4.4),
 - Performance measures used in AF detection (Sect. 4.5).
- While performance is mentioned throughout the chapter, Sect. 4.6 is dedicated to it as the main theme, discussing:
 - Key considerations when evaluating detector performance.

- The chapter concludes in Sect. 4.7 with:
 - A discussion on ECG-derived information types that may enhance detection performance.

RR Interval-Based Detection and Design Limitations

- Due to low SNR, detecting P and f waves is difficult, especially in non-invasive recordings.
- As a result, most AF detectors rely solely on RR interval irregularity, characterized by:
 - Randomnes
- Variability
- Complexity
- Rhythm-based detectors dominate because:
 - . They consume less power than those using morphological features.
 - This is crucial for implantable devices, which often cannot use morphology-based information.

Detector Design Trends:

- · Detector designs have historically followed ad hoc principles, using:
 - One or a few simple parameters fed into a basic classifier
 - These often lack statistical or physiological grounding
- Despite this, performance (sensitivity/specificity) has improved, as shown in Table 4.1.
- Continued performance improvement is needed to reduce false alarms from:
 - Ectopic beats
 - Non-AF arrhythmias
 - Noisy signals

Input Data and Processing Techniques:

- Besides the RR interval series $x(0),\dots,x(N-1)$, detectors may also use the **first difference**:

$$\Delta x(n) = x(n) - x(n-1), \quad n = 1, ..., N-1$$
 (4.1)

- N: Number of RR intervals (not ECG samples)
- . A sliding time window approach is commonly used:
 - Typical ECG recordings are short (10–20s),
 - Detection parameters are recalculated as the window slides forward in time.
 - One-RR interval sliding offers best onset/offset resolution,
 - But larger "slides" (e.g., 50 intervals) may be used to reduce computation time [36].

Performance of Rhythm-Based AF Detectors (Table 4.1 Overview)

- This section outlines key rhythm-based AF detection methods, evaluated using the MIT-BIH Atrial Fibrillation Database (AFDB) or its subset AFDB₁.
- Performance metrics include:
 - Sensitivity (Se) the ability to correctly detect AF episodes,
 - Specificity (Sp) the ability to correctly reject non-AF episodes.
- Summary of methods and results:

Method by	Year	Database	Se (%)	Sp (%)
Tateno and Glass [31]	2001	AFDB	94.4	97.2
Dash et al. [32]	2009	AFDB ₁	94.4	95.1
Lian et al. [33]	2011	AFDB	95.8	96.4
Lake and Moorman [34]	2011	AFDB	91.0	94.0
Huang et al. [35]	2011	AFDB	96.1	98.1
Shouldice et al. [36]	2012	AFDB	92.0	96.0
Lee et al. [37]	2013	AFDB ₁	98.2	97.7
Zhou et al. [38]	2014	AFDB	96.9	98.3
Asgari et al. [39]	2015	AFDB	97.0	97.1
Petrénas et al. [40]	2015	AFDB	97.1	98.3
Zhou et al. [41]	2015	AFDB	97.4	98.4

- Notes:
 - AFDB₁ excludes records 4936 and 5091 due to incorrect annotations.
 - All detectors listed use fixed-window computations, but these can be replaced with sliding windows for improved temporal resolution.
 - Additional rhythm-based detectors not listed were not evaluated on AFDB [42–47].

4.2.1 Irregularity Parameters

- Table 4.2 lists parameters used in AF detector design, grouped into five categories:
 - 1. Statistical dispersion
 - 2. Entropy
 - 3. Symbolic dynamics
 - 4. Poincaré plot-based parameters
 - 5. Time-varying coherence function
- Among these, statistical dispersion parameters are the most commonly used:
 - Examples:
 - Root mean square of successive differences
 - Mean of absolute successive differences
 - Coefficient of variation
- Detector decision strategies:
 - Some use a single parameter with simple thresholding.
 - Others use a combination of parameters fed into a classifier.
- Certain parameters are tied to **specific statistical tests**, such as:

 Number of turning points, which may be described alongside the parameter instead of being placed in Sect. 4.2.6, where classifiers are generally discussed.

Statistical Dispersion Parameters in Rhythm-Based AF Detection

- One commonly used measure is the **Coefficient of Variation (CV)** of the RR interval series x(n), defined as:

$$P_{\rm CV} = \frac{\sigma_x}{m_x} \tag{4.2}$$

where:

- σ_x : standard deviation of x(n)
- m_x: mean of x(n)
- Interpretation:
 - Reflects dispersion in RR intervals.
 - Also captures changes in **heart rate**, since AF episodes are associated with **RR interval** shortening, reducing m_x .
 - Using \(\Delta x(n) \) instead of \(x(n) \) makes \(m_{\Delta x} \) small and unstable, so \(m_x \) is used to ensure stability.
- Performance Note:
 - Detectors using either x(n) or $\Delta x(n)$ in P_{CV} showed **comparable performance** [31].
- Another key parameter is the Root Mean Square of Successive Differences (RMSSD):

$$P_{\text{RMSSD}} = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N-1} \Delta x^2(n)}$$
 (4.3)

Table 4.2 – Parameters Used in Rhythm-Based AF Detection

Detection Parameter	Publication
Coefficient of variation	[31, 48]
Root mean square of successive differences	[32, 37]
Normalized mean of absolute successive differences	[48]
Number of turning points	[32]
Histogram-based parameters	[31, 35]
Entropy	
Shannon entropy	[32, 37, 38]
Sample entropy	[34, 49]
Simplified sample entropy	[40]
Symbolic Dynamics	[38, 41]
Poincaré Plot-Based	
x(n) vs $x(n-1)$ + bin count	[50]
$\Delta x(n)$ vs $\Delta x(n-1)$ + bin count	[51]
$x(n)$ vs $\Delta x(n-1)$ + bin count	[33]
Time-Varying Coherence Function	[37]

 $These \ parameters \ form \ the \ \textbf{core set} \ used \ to \ quantify \ RR \ interval \ irregularity \ and \ classify \ AF \ episodes.$

Normalized Dispersion Measures for AF Detection

- The RMSSD parameter (from Eq. 4.3) does not reflect heart rate changes.
 - To address this, a **heart rate-dependent threshold** can be used [32].
 - Alternatively, RMSSD can be interpreted as heart rate-normalized, using $\Delta x(n)$ in place of x(n).
 - This makes the test equivalent to P_{CV} , but with mean and standard deviation computed over $\Delta x(n)$.
- A related parameter is the Normalized Mean of Absolute Successive Differences (NMASD)

 [40] defined as:

 [40] defin

$$P_{\rm NMASD} = \frac{1}{N-1} \sum_{n=1}^{N-1} \frac{|\Delta x(n)|}{m_x} \tag{4.4}$$

where:

- m_x : mean of x(n)
- $\Delta x(n) = x(n) x(n-1)$

Key Insights:

- The use of $P_{
 m NMASD}$ instead of $P_{
 m CV}$, when based on $\Delta x(n)$, is somewhat redundant:
 - + P_{NMASD} is effectively an approximation of P_{CV} .
 - Their detection performance is nearly identical [48].
- Conclusion:
 - The three parameters $P_{\rm CV}, P_{\rm RMSSD}$, and $P_{\rm NMASD}$ (Eqs. 4.2–4.4) convey similar information.
 - All reflect RR interval dispersion.

 A different detection parameter, discussed next, will provide similar information within the Poincaré plot framework.

Number of Turning Points

- The turning point test is a nonparametric statistical test used to evaluate whether a time series behaves like a sequence of independent and identically distributed (i.i.d.) random variables.
 - In a fully random series, any 3-sample combination is equally likely to occur.
 - A turning point is when the middle value is a local maximum or minimum
 - Probability of a turning point in a random 3-sample sequence is 2/3.
- For a series with ${\cal N}$ samples:
 - The expected number of turning points m_{TP} and the standard deviation σ_{TP} are:

$$m_{\rm TP} = \frac{2(N-2)}{3} \tag{4.5}$$

$$\sigma_{TP} = \sqrt{\frac{16N - 29}{90}}$$
(4.6)

- If the observed number of turning points N_{TP} falls outside the 95% confidence range:

$$m_{\mathrm{TP}} \pm 1.96 \sigma_{\mathrm{TP}}$$
,

then the series is not completely random.

Use in AF Detection

- Turning point analysis is used to characterize RR interval irregularity [32].
- Instead of a strict statistical test, optimized limits are applied to enhance sensitivity and specificity.
- If turning points fall outside optimized limits, the RR intervals may be periodic, e.g., due to respiratory-modulated sinus rhythm.
- However, limitations exist:
 - RR intervals in AF are not fully random—they exhibit correlations [2].
 - The test may lose power in detecting randomness in these cases.
 - It can also cause false alarms in the presence of ectopic beats or rapid rhythm changes.
 - Therefore, it's less suitable as a standalone method for AF detection.

Histogram-Based Parameters

- RR interval histograms differ in shape between sinus rhythm and AF, making them useful for AF detection.
- For histograms to be representative, they require a large number of RR intervals:
 - ~100 beats minimum is often cited [31, 35].
- · This large requirement creates a trade-off:
 - More data improves histogram accuracy,
 - But it reduces temporal resolution, limiting the ability to detect short AF episodes.
- If fewer or wider bins are used to shorten the detection window:
 - Discrimination decreases between rhythm types,
 - Accuracy of AF onset and end detection suffers.

Detection Approaches

- 1. Heuristic Feature-Based:
 - Uses simple descriptors like:
 - Height of histogram
 - Number of non-empty bins
 - In AF:
 - Histogram is broader, with lower peak and more non-empty bins than in sinus rhythm.
 - Problems arise if heart rate changes within the window:
 - Sinus rhythm histogram may broaden, resembling AF.
 - Mitigated by using a ΔRR interval histogram:
 - Removes slow trends,
 - Narrows histogram spread for better resolution.

2. Template Comparison Approach:

- Detection window's RR histogram is compared with template histograms, each
 corresponding to a mean RR interval length range [31].
- Example template intervals: 350–399 ms, 1100–1149 ms, in 50 ms steps.
- Windows outside the predefined ranges are excluded.
- Templates are ideally built from large databases, ensuring histograms reflect the true underlying probability distribution (PDF).
- The same procedure can also be applied to ΔRR histograms.

Key Limitation:

 The need for long windows in histogram-based detection inherently limits its use for identifying brief AF episodes.

Statistical Comparison of Histograms in AF Detection

- In AF detection, the observed RR interval histogram (from a sliding window) is compared to template histograms [31].
- The Kolmogorov-Smirnov (K-S) test, a nonparametric method, is used to assess whether:
 - The observed RR intervals and template intervals belong to the same distribution [55].

- The K-S statistic is:
 - The maximum vertical distance between the cumulative histograms of the observed and template data (see Fig. 4.3).
 - Suitable for detecting global distribution differences, but less sensitive to local differences, such as:
 - · Changes in the number of peaks
- If the difference between distributions is localized (e.g., bimodal vs unimodal), the Anderson-Darling test may be more appropriate than K-S, as it uses squared deviations across the entire range [55].

Performance Evaluation:

- Using RR series with the K–S test (from [31]):
 - Sensitivity: 66.3%
 - Specificity: 99.0%
- Using ∆RR series instead:
 - Sensitivity improved to 94.4%
 - Specificity slightly decreased to 97.2%
- Authors did not explain the improvement, but a possible reason:
 - The ΔRR histogram may be more unimodal than the RR histogram,
 - Making it more suitable for the K-S test's global difference metric.

Fig. 4.3 Insight:

- . Illustrates two cumulative histograms of RR intervals in AF.
- The maximum distance between them, which is used in the K–S test, is marked with an arrow.

Advanced Histogram-Based Approaches in AF Detection

- The multi-template histogram approach enhances characterization of RR interval distributions better than a single-template histogram.
 - It addresses intra-patient and inter-patient variability,
 - Accounts for unimodal and bimodal RR histogram shapes observed in AF [56–58].
 - In contrast, detectors relying on one merged template are less effective under high variability conditions.

Alternative Strategy: Comparing Start and End Histograms

- Another method compares two ARR histograms:
 - One from the **first**, and one from the **last** part of the detection window [35].
 - Instead of matching with template histograms, this method detects transitions in rhythm
- Detection Parameter:
 - The sum of squared differences between corresponding bin counts of the two histograms.
 - A small value indicates consistent rhythm (e.g., stable sinus or AF),
 - A large value suggests a rhythm transition (e.g., sinus to AF or vice versa).
- Limitations
 - The squared difference method alone showed insufficient performance.
 - To improve discrimination between sinus rhythm and AF, the following were also used:
 - Number of non-empty bins
 - Histogram height
 - Standard deviation of ΔRR intervals

These enhancements help overcome the shortcomings of earlier histogram-based techniques and better capture dynamic rhythm changes.

Shannon Entropy

- Shannon entropy (ShEn) measures the uncertainty or unpredictability of information content in signals like the RR interval series [59].
 - Higher entropy → more uniform probability distribution (PDF) → less predictable signal.
 - Lower entropy \rightarrow more concentrated PDF \rightarrow more predictable signal.

Definition:

$$I_{\mathrm{ShEn}} = -\sum_{i=1}^{B} p(x_i) \log_2 \left(p(x_i) \right) \tag{4.7} \label{eq:shen}$$

Whe

- B: number of different values or bins
- n(x_i): probability of the i-th bi
- Shannon entropy values range from **0** (fully predictable) to $\log_2(B)$ (fully uniform).
- Often, the entropy value is $\operatorname{\mathbf{normalized}}$ by $\log_2(B)$ for easier interpretation.

Estimation

• Probabilities $p(x_i)$ are **estimated from histogram counts**:

$$\hat{p}(x_i) = \frac{N(i)}{N}$$
(4.8)

- · Where:
 - N(i): count of entries in the i-th bin,
 - N: total number of samples.

In the context of AF detection, Shannon entropy helps **quantify RR interval variability**, where **high entropy may indicate AF** due to increased unpredictability.

Shannon Entropy in AF Detection

- Shannon entropy I_{ShEn} is typically larger in AF than in sinus rhythm, making it useful for AF detection [32].
- Computation method:
 - Based on a modified RR interval series, where the longest and shortest RR intervals are removed to reduce outlier influence.
 - Histogram is constructed from the remaining intervals using equal-width bins, spaced between the new minimum and maximum values.
 - At least 16 bins are recommended for reliable $I_{
 m ShEn}$ estimation.

Limitations at High Heart Rates [49]:

- $I_{
 m ShEn}$ performance **degrades** at heart rates above **90 bpm**.
- · Why?
 - As heart rate increases, the **probability distribution** $\hat{p}(x_i)$ becomes **narrower**, even if heart rate variation remains constant.
 - Example
 - At 60 bpm: 5 bpm variation → RR intervals: 1090 ms to 923 ms → 167 ms spread.
 - At 120 bpm: 5 bpm variation \rightarrow RR intervals: 521 ms to 480 ms \rightarrow 41 ms spread.
- Since I_{ShEn} is based on RR intervals, not heart rate directly, its power to distinguish AF from sinus rhythm decreases as heart rate increases.

Symbolic Dynamics and Shannon Entropy

- Instead of computing $I_{\rm ShEn}$ directly from RR intervals, it can be applied to a **symbolic series** derived from Δ RR intervals [38].
- This symbolic series is constructed using an alphabet (typically 10 symbols), mapped by a quantization function.

Symbol Mapping Process:

- Changes in RR intervals are quantized by comparing them to a reference RR series, which is
 obtained via lowpass filtering of the RR intervals.
- The quantization grid is dynamic, adapting to the filtered RR series.
- This approach employs:
 - Linear or time-invariant lowpass filters,
 - Often ad hoc in design.
- Advantage:
 - Symbolic dynamics helps improve separation between normal beats and AF beats when combined with I_{ShEn} ,
 - Likely due to the quantization step reducing variability and enhancing signal interpretation.

Follow-up Study [41]:

- Investigated symbolic series vs. Shannon entropy in more detail.
- Key difference: This version uses instantaneous heart rate (instead of RR intervals) to generate
 the symbolic sequence.
- A fixed-step quantization grid is used.
- Findings:
 - Slightly better performance observed with instantaneous heart rate.
 - Although not explicitly explained, this improvement likely results from bypassing the limitation seen when using RR intervals at high heart rates [49].
- · Conclusion

- Symbolic dynamics combined with Shannon entropy offers a robust alternative to traditional RR interval-based entropy measures,
- Particularly effective at mitigating heart rate sensitivity issues in AF detection.

Sample Entropy

- Sample entropy (I_{Samplen}) measures the self-similarity or complexity of a time series, unlike Shannon entropy which measures symbol probability [60, 61].
 - It is useful for AF detection, as increased entropy indicates irregularity, typically found in AF.

Definition

$$I_{\text{SampEn}} = -\ln \left(\frac{B(m+1,r)}{B(m,r)} \right) \qquad (4.9)$$

- + B(m,r): probability that pairs of sequences of length m match within tolerance r.
- A low I_{SampEn} : signal is regular.
- A high I_{SampEn} : signal is irregular, suggesting AF.

Estimation Procedure:

1. Segment RR series $x(0),\dots,x(N-1)$ into overlapping m-length vectors:

$$\mathbf{x}(i) = \begin{bmatrix} x(i) \\ \vdots \\ x(i+m-1) \end{bmatrix}, \quad i = 0, \dots, N-m-1$$
 (4.10)

2. Compare vectors $\mathbf{x}(i)$ and $\mathbf{x}(i)$ using maximum norm:

$$\|\mathbf{x}(i) - \mathbf{x}(j)\|_{\infty} = \max_{k=0,...,m-1} |x(i+k) - x(j+k)|$$
 (4.11)

3. Two sequences are similar if:

$$\|\mathbf{x}(i) - \mathbf{x}(j)\|_{\infty} \le r$$

4. Compute average number of similar subsequences (excluding self-matches):

$$\hat{B}(m,r) = \frac{1}{N-m-1} \sum_{\substack{j=0\\j \neq i}}^{N-m-1} H(r - ||\mathbf{x}(i) - \mathbf{x}(j)||_{\infty})$$
(4.12)

• H(z): Heaviside step function:

$$H(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases} \tag{4.13}$$

In Summary

- Regular signals (sinus rhythm) ightarrow low I_{SampEn}
- Irregular signals (AF) ightarrow high $I_{
 m SampEn}$
- Sample entropy effectively captures **transitions** from regular to irregular rhythm.

Estimation of Similarity Probability for Sample Entropy

The probability of two m-length subsequences being similar is estimated by:

$$\hat{B}(m, r) = \frac{1}{N - m} \sum_{i=0}^{N-m-1} \hat{B}_i(m, r)$$

Expanded form:

$$\hat{B}(m,r) = \frac{1}{(N-m)(N-m-1)} \sum_{i=0}^{N-m-1} \sum_{\substack{j=0\\j \neq i}}^{N-m-1} H\left(r - \|\mathbf{x}(i) - \mathbf{x}(j)\|_{\infty}\right) \quad (4.14)$$

Where

- + $\hat{B}_i(m,r)$ is the proportion of subsequences similar to $\mathbf{x}(i)$,
- + $H(\cdot)$ is the **Heaviside function**, returning 1 if the argument is \ge 0, 0 otherwise.

Handling Issues in Short Detection Windows:

- For short windows, which are common in brief AF episode detection, the risk arises that no
 matches are found, especially with small r.
- This leads to $\hat{B}(m,r)=0$, making I_{SampEn} undefined.
- Solution:
 - Convert probabilities to **densities** by dividing by the volume of the matching region [62]:

$$-\ln\left(\frac{B(m+1,r)}{(2r)^{m+1}}\right) + \ln\left(\frac{B(m,r)}{(2r)^m}\right) = -\ln\left(\frac{B(m+1,r)}{B(m,r)}\right) + \ln(2r) \quad (4.15)$$

- This ${f normalization}$ allows comparison across different r values and reduces dependence on scale

Practical Implications

- $\it r$ is usually set as a **fraction of the standard deviation** of the RR interval data [60],
- But it can also be **dynamically increased** until $\hat{B}(m,r)>0$, especially in **AF analysis**, where the likelihood of matches can be low.

Refinements of Sample Entropy for AF Detection

• Coefficient of Sample Entropy (CSampEn) enhances regular sample entropy by incorporating the mean RR interval length \tilde{m}_x , improving detection independent of heart rate [34].

$$I_{\text{CSampEn}} = I_{\text{SampEn}} + \ln(2r) - \ln(\tilde{m}_x)$$
 (4.16)

- This modification ensures:
 - Higher CSampEn in AF (where heart rate is higher),
 - Lower CSampEn in sinus rhythm (where heart rate is lower).

Subsequence Length Choice (m):

- Shortest possible subsequence, m=1, is often chosen because:
 - Autocorrelation in RR intervals during AF is nearly zero [3],
 - + Empirical results show better performance at m=1 than at larger values [34],
 - Further discussion on selecting m and r is found in **Sect. 6.4.4**.

Alternative Entropy Measures:

- 1. Approximate Entropy (ApEn) [63]:
 - Similar to SampEn, but includes self-matches in (4.12).
 - Has known limitations
 - . Bias due to sample size
 - Lack of relative consistency [60],
 - Therefore, less commonly used than SampEn.

2. Fuzzy Entropy:

- Replaces the Heaviside function H(z) with a fuzzy function to allow gradual similarity scoring [64].
- Applied in:
 - Heart rate variability studies [65],
- f wave analysis [66].
- While promising, it is still under investigation the therefore the strong outperforms SampEn in AF detection tasks.

Probability of Pairs of Matching RR Interval Subsequences

- A simplified approach for AF detection is to compute only the probability B(m,r), part of the definition of sample entropy I_{SampEn} [40, 67].
 - Advantages:
 - No need for B(m+1,r),
 - Avoids computing logarithms or ratios,
 - Avoids undefined values when no matches are found.

Revised Estimator $\hat{C}(m,r)$:

Instead of using the maximum norm from (4.12), this estimator uses the Euclidean norm:

$$\hat{C}(m,r) = \frac{2}{(N-m)(N-m-1)} \sum_{i=0}^{N-m-1} \sum_{j=i+1}^{N-m} H(r - ||\mathbf{x}(i) - \mathbf{x}(j)||)$$
(4.17)

- Where:
 - | |: Euclidean norm,
 - ullet $H(\cdot)$: Heaviside function
- Self-matches excluded, and normalization uses the total number of unique pairs.
- This estimator is similar to $\hat{B}(m,r)$ but:
 - Computes pairwise distances only once,
 - Reduces computational complexity.

Simplified AF Detector: B(m=1,r)

A very efficient approach uses only scalar differences between RR intervals:

$$\hat{B}(m=1,r) = \frac{2}{(N-1)(N-2)} \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} H(r-|x(i)-x(j)|) \tag{4.18}$$

- This version:
 - Avoids constructing subsequences,
 - Bypasses both max and Euclidean norms,
 - Makes real-time AF detection more feasible.

These estimators allow entropy-inspired analysis while avoiding the computational burdens of traditional sample entropy, especially useful in **short windows** or **low-power devices**.

Simplified Sample Entropy (SSampEn)

- Before thresholding, the probability $\hat{B}(m=1,r)$ (see Eq. 4.18) is normalized by the **mean RR** interval length in the detection window.
- This leads to a new parameter:

Simplified Sample Entropy, denoted $I_{
m SSampEn}$ [40]:

$$I_{\text{SSampEn}} = \frac{\hat{B}(m=1,r)}{\tilde{m}_x} \tag{4.19}$$

Key Elements

- \(\tilde{n}_{x} \): Mean RR interval, computed using exponential averaging, excluding ectopic beat intervals (see Sect. 4.2.5).
- Purpose: Reflect that AF is typically accompanied by increased heart rate, i.e., lower RR intervals.

Relation to Other Measures:

- Structurally similar to the coefficient of variation (Eq. 4.2):
 - Numerator: a dispersion measure (though threshold-based),
 - Denominator: mean of RR intervals (same as in Eq. 4.2).

Heart Rate Adaptation of r:

An alternative to fixed r is to define it as a function of the heart rate:

$$r \rightarrow r(\tilde{m}_x)$$

- This adjusts sensitivity dynamically with respect to heart rate.
- If a fixed r is still used, it can be defined as a fraction of the standard deviation over a large dataset [60].

4.2.2 Poincaré-Based Parameter

- The Poincaré plot visualizes pairs of successive RR intervals, (x(n),x(n+1)), and is used to characterize cardiac rhythms.
 - Originally applied in heart rate variability studies over long recordings (up to several days) [69–72].
 - In AF detection, used with ${\bf shorter\ detection\ windows\ }$ (typically 60–120 s).
- AF detection relevance:
 - AF produces a highly scattered Poincaré plot, compared to more concentrated patterns from normal sinus rhythm or ectopic beats (illustrated in Fig. 4.4).

Main challenge:

Translating scattering patterns into quantifiable detection parameters.

Two main approaches:

- Density-based parameters
 - Reflect how densely points populate different regions of the plot [33, 51, 73].
- 2. Geometric-based parameters:
 - Analyze the shape and distribution of points [50].

Variations in plotting axes:

- Instead of just (x(n),x(n+1)), other pairings can be used:
 - $(\Delta x(n), \Delta x(n+1))$
 - (x(n), Δx(n))
- These variations also reflect beat-to-beat irregularity, and may offer better sensitivity to AF
 patterns.

 $\Delta \chi(n)$ (s)

Fig. 4.4 – Poincaré Plots in RR Interval Analysis

Poincaré plots are shown for three rhythm conditions:

 $\chi(n)$ (s)

- Left column: (x(n),x(n+1))
- Right column: $(\Delta x(n), \Delta x(n+1))$
- All based on 128 RR intervals

(a) Normal Sinus Rhythm

- Left (x, x+1):
 - Clustered near the diagonal \rightarrow very regular pattern
- Right (Δx, Δx+1)
- Tight cluster around (0, 0) → minimal beat-to-beat variability

(b) Sinus Rhythm with Ectopic Beats

- Left (x, x+1):
 - Multiple clusters \rightarrow reflects irregular insertions due to ectopic beats
- Right (Δx, Δx+1):
 - Distinct scattered regions in multiple quadrants ightarrow sign of pattern breaks

(c) Atrial Fibrillation (AF

- Left (x, x+1):
 - Widely scattered across the plot → high irregularity
- Right (Δx, Δx+1)
 - Broad, diffuse spread across all quadrants \rightarrow strong beat-to-beat variability

Key Takeaways

- AF detection via Poincaré plot:
 - The plot based on $(\Delta x(n), \Delta x(n+1))$ offers better sensitivity to irregularity than (x(n), x(n+1)),
 - It captures positive and negative changes, allowing all four quadrants to be analyzed.
- Binning strategy:
 - The scatter area is divided into small square cells, treated as 2D histogram bins.
 - Recommended bin size is 25 ms for precise characterization [51, 76].

Advanced Use of Poincaré Plots in AF Detection

- The **Poincaré plot** defined by $(\Delta x(n), \Delta x(n+1))$ is divided into **12 regions** (see Fig. 4.5), allowing the **population of each region** to be correlated with **different rhythm types**.

Detection Steps:

- 1. Count "nonzero bins":
 - Bins (cells) with at least one point are tallied across all regions.
 - Region 0 (central circular zone) is typically populated by normal sinus rhythm.

2. Apply corrections

- Subtract:
 - Points in region 0,
 - A factor accounting for atrial premature beats (APBs), which tend to cluster near region 0.

3. Detection rule:

- An AF episode is flagged when the corrected total number of nonzero bins exceeds a fixed threshold,
- But only if the number of points in regions associated with atrial tachycardia falls below another threshold.

Region-based rhythm classification (from Fig. 4.5):

- Region 0: Normal sinus rhythm.
- Regions 6, 7, 9, 11: Atrial tachycardia.
- Regions 1–4: Atrial and ventricular premature beats.
- All other regions: Associated with AF.

Simplified Non-Region-Based Method:

- Using only the total number of nonzero bins (parameter $P_{
 m NZPP}$) provides a simpler detection rule:
 - All bins in the plot space (grid of $\Delta x(n)$ vs. $\Delta x(n+1)$) are treated equally.
 - An AF episode is detected when the count exceeds a threshold.
 - This method avoids region segmentation, making it ideal for real-time applications [33].

Use Cases:

- Region-based method: More accurate classification (e.g., distinguishes AF from tachycardia).
- Non-region-based (grid-only): Easier to implement, especially in implantable or portable devices.

This dual-method approach to Poincaré analysis balances **detection accuracy** with **computational efficiency**.

Geometrical Characterization in Poincaré-Based AF Detection

- Limitation of histogram-based detectors
 - Require many RR intervals for sufficient bin population in 2D histograms.

- A 2-minute detection window is often needed [51], though shorter windows (e.g., 64 beats) are possible with region-based or grid-only methods [33].
- Advantage of Poincaré plot using $(\Delta x(n), \Delta x(n+1))$:
- Better detection of AF and other rhythms (e.g., APBs), even with shorter data segments.
- The benefit of using this form over (x(n),x(n+1)) is still under investigation.

Second Approach: Geometrical Poincaré Analysis

- Focuses on how the points populate the Poincaré plot, rather than where
- Conceptually related to statistical dispersion, but uses geometric spread as the quantification metric [50,77].

Elliptical Shape Analysis (in Sinus Rhythm)

- In sinus rhythm
 - Points in (x(n),x(n+1)) plot align along the **identity line** x(n)=x(n+1), forming an **elliptical cloud**.
- To analyze dispersion:
- Apply a 45° rotation to obtain axes aligned with and perpendicular to the line of identity:

$$\begin{bmatrix} y(n+1) \\ y(n) \end{bmatrix} = \begin{bmatrix} \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \\ \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \end{bmatrix} \begin{bmatrix} x(n+1) \\ x(n) \end{bmatrix}, \quad n = 0, \dots, N-2 \tag{4.20}$$

- This transforms the data such that:
 - y(n+1): along the line of identity,
 - y(n): perpendicular to it.

Quantifying Ellipse Shape

• Use standard deviations along both axes:

$$\sigma_y = \sqrt{\frac{1}{N-1} \sum_{n=0}^{N-2} (y(n+j) - \tilde{m}_y)^2}, \quad j = 0, 1$$
 (4.21)

- Where:
 - m
 _n: mean of the transformed data,
 - $\sigma_{y,1}$: dispersion along line of identity,
 - σ_y : dispersion perpendicular to it.
- In AF, the cloud becomes more circular, increasing σ_y relative to $\sigma_{y,1}$, reflecting higher RR variability.

Conclusion

Geometrical Poincaré parameters offer a continuous way to measure RR variability, especially useful in AF detection where scatter increases and symmetry shifts from elliptical (sinus) to circular (AF).

AF Detection Using Poincaré Plot Dispersion

- In AF, the RR interval pattern deviates significantly from sinus rhythm:
 - The elliptic cluster assumption in sinus rhythm no longer holds.
 - Therefore, while σ_y (perpendicular dispersion) is still useful [50, 79], its counterpart $\sigma_{y,1}$ becomes less meaningful.

Transformation for AF Analysis

• The transformation in Eq. (4.20) leads to a simplified expression for AF:

$$y(n) = \frac{1}{\sqrt{2}}(x(n+1) - x(n)) = \frac{\Delta x(n)}{\sqrt{2}}$$
 (4.22)

- Since successive RR intervals are highly irregular in AF:
 - The mean value of y(n) is approximately zero ,
 - Making the **standard deviation** $\sigma_{y,0}$ an effective measure of **dispersion** along the diagonal.

Approximated Dispersion Formula:

$$\sigma_{y,0} pprox \sqrt{\frac{1}{2(N-1)} \sum_{n=1}^{N-1} \Delta x^2(n)}$$
 (4.23)

 This is mathematically identical to the RMSSD measure from earlier (Eq. 4.3), but derived within the Poincaré plot framework.

Key Insights:

- Dispersion along the identity line, $\sigma_{y,0}$, is a direct representation of beat-to-beat variability.
- When using short-term ECG data:
 - The Poincaré plot loses its elliptical shape,
 - It begins to resemble $\mbox{\bf dot-like}$ scatter in AF (as seen in Fig. 4.4),
 - Therefore, ellipse-based analysis becomes less reliable for AF detection in short windows.

OneNote

Conclusion:

• While ellipse-fitting works well in long-term ECG, for short-term AF detection, simpler measures like **RMSSD** or $\sigma_{y,0}$ derived from ΔRR intervals are more effective and interpretable within a geometric framework.

Geometrical RR Dispersion Parameters from the Poincaré Plot

- Another geometrical detection parameter, denoted σ_c , is based on the Euclidean distance
 - $\bullet \ \ (x(n),x(n+1)) \text{ and }$
 - (x(n+1), x(n+2))
 - measuring local rate of change in RR intervals [50].

Definition of σ_c :

$$\sigma_{c} = \frac{1}{N-2} \sum_{n=1}^{N-2} \sqrt{\Delta x^{2}(n) + \Delta x^{2}(n+1)}$$
(4.24)

Can be equivalently written as:

$$\sigma_c = \frac{1}{N-2} \sum_{n=1}^{N-2} \sum_{k=0}^{1} \Delta x^2 (n+k)$$
(4.25)

- Like $\sigma_{y,0}$, it represents a measure of **RR interval dispersion**, especially the **local variation**

Normalization by Mean RR Length:

- For consistent interpretation, both $\sigma_{y,0}$ and σ_c are **normalized** by the **mean RR interval** \tilde{m}_x :

$$\sigma'_{v,0} = \frac{\sigma_{y,0}}{\tilde{\gamma}}$$
(4.26)

- · This aligns with:
 - Coefficient of sample entropy (Eq. 4.16),
 - Simplified sample entropy (Eq. 4.19).

Purpose of Normalization:

- Ensures that higher heart rates (i.e., shorter RR intervals) lead to increased normalized dispersion.
- Enhancing the ability to discriminate AF, which is often accompanied by both higher heart rate and greater irregularity.

Conclusion

Parameters σ_c and $\sigma_{u,0}$, especially in their **normalized forms**, are efficient and interpretable geometrical tools for RR irregularity assessment, aiding in robust AF detection.

4.2.3 Time-Varying Coherence Function

- This method uses a linear systems approach to detect AF by analyzing the spectral coherence of RR intervals in two adjacent windows [37].
- Key Concept:
 - During sinus rhythm, spectral coherence remains high and stable.
 - . At the onset or end of AF, coherence drops abruptly.

Definition of Time-Varying Coherence Function (TVCF)

- Let x(n) and y(n) be two successive windows of RR data (input/output of a linear system):

$$C_{xy}(\omega, n) = \frac{|S_{xy}(\omega, n)|^2}{S_x(\omega, n)S_y(\omega, n)}$$

$$C_{yx}(\omega, n) = \frac{|S_{yx}(\omega, n)|^2}{S_y(\omega, n)S_x(\omega, n)}$$
(4.28)

$$C_{yx}(\omega, n) = \frac{|S_{yx}(\omega, n)|^2}{S_y(\omega, n)S_x(\omega, n)}$$
(4.28)

- - $S_{xy}(\omega,n)$: Time-varying cross-spectrum
 - $S_x(\omega,n), S_y(\omega,n)$: Time-varying spectra of x(n) and y(n).

Overall TVCF Measure:

• To consider both directions (x \rightarrow y and y \rightarrow x), use:

$$C^{2}(\omega, n) = C_{xy}(\omega, n)C_{yx}(\omega, n) \qquad (4.29)$$

Time-Varying Transfer Functions:

When viewing either signal as input:

$$H_{x \to y}(\omega, n) = \frac{S_{xy}(\omega, n)}{\sigma} \tag{4.30}$$

$$H_{y\rightarrow x}(\omega,n) = \frac{S_{yx}(\omega,n)}{S_y(\omega,n)} \tag{4.31}$$

• So, the TVCF can also be expressed as:

$$C^{2}(\omega, n) = |H_{x \to y}(\omega, n)H_{y \to x}(\omega, n)|^{2}$$
(4.32)

Application in AF Detection:

- When $C^2(\omega,n)$ drops, it indicates a loss of coherence—a likely sign of AF onset or
- This method detects AF by monitoring coherence changes over time, leveraging frequencydomain analysis of RR series.

Model-Based Estimation of Time-Varying Coherence Function

- The transfer functions $H_{x o y}(\omega,n)$ and $H_{y o x}(\omega,n)$ are estimated using a **model-based** approach:
 - Assumes both windows follow an ARMA model (autoregressive moving average) [81].
 - Preferred over spectrogram-based methods due to better frequency resolution, if the model fits well
- Model tuning:
 - · Parameters and order are optimized using a specialized technique.
 - Longer detection windows \rightarrow require higher model orders for accurate TVCF estimation.

Fig. 4.6: Behavior of $C^2(\omega,n)$ in AF vs. NSR

- Shows C²(ω, n) computed over an RR interval series containing a transition from:
 - Normal sinus rhythm (NSR) → Atrial fibrillation (AF)
 - Detection windows: 128 beats, sliding by 128 beats per step

Observations:

- During NSR:
 - $C^2(\omega, n)$ is **high** and **uniform** across frequencies
 - Implies high coherence between adjacent RR segments
- At AF onset:
 - Coherence drops abruptly,
 - Variation across frequency increases, especially at higher frequencies.

Detection Strategy:

- Use the variance of $C^2(\omega,n)$ across frequency for each beat n,
- Higher variance → indicates a transition to AF,
- This variance is used as a **detection parameter** for identifying AF onset.

Conclusion:

By leveraging ARMA models and the time-varying coherence function, this method provides a sensitive frequency-domain metric for detecting dynamic changes in rhythm, especially the transition from regularity (NSR) to irregularity (AF).

4.2.4 Parameter Time Series Exemplified

- An 80-minute ambulatory ECG with two AF episodes and several ectopic beat runs was analyzed.
- Detection parameters were computed using:
 - A 128-beat sliding detection window (sliding by one beat),
 - Exception: I_{SampEn} , which used an **8-beat window** [40].

Key Observations from Fig. 4.7:

- Clear distinction between normal sinus rhythm and AF episodes across all detection parameters.
- 2. Impact of ectopic beats:
 - Strongest for:
 - P_{CV}
 - P_{NMASD}
 - These parameters spike during ectopic runs—even outside AF episodes.
 - In contrast, I_{SSampEn} is **less affected**, showing robustness.
- → This indicates the need to **mitigate ectopic influence** in AF detection (see Sect. 4.2.5).
- 3. Background fluctuations:
 - I_{ShEn} shows more pronounced fluctuations during sinus rhythm, suggesting higher baseline variability compared to other parameters.

Conclusion

This section demonstrates how different parameters behave over time and under various cardiac events. It highlights the **robustness of some measures** (like I_{SSampEn}) and the **sensitivity of others to ectopic beats**, which must be considered when designing **reliable AF detectors**.

Handling Ectopic Beats in Rhythm-Based AF Detection

- Ectopic beats (VPBs and APBs) are common and can trigger false AF detections, especially in rhythm-based detectors.
- Properly excluding or flagging RR intervals linked to ectopic beats is critical:
 - It increases specificity,
 - But must be done carefully to **preserve sensitivity** to actual AF episodes.

Current Practices and Challenges

- Many detectors do not implement ectopic beat filtering explicitly.
- When the ARR interval histogram is used for detection (e.g., with the Kolmogorov-Smirnov test) [31], rhythms with frequent VPBs may be misclassified as AF.
- The problem arises from the compensatory pause:
 - Negative ΔRR followed by positive ΔRR mimics AF.
 - This creates a shoulder in the histogram around 400–600 ms—similar to that seen in AF histograms.

Fig. 4.7 – Time Series Comparison of Detection Parameters

- $\,$ Top panel: RR interval series x(n) with two annotated AF episodes.
- Detection parameters plotted:
 - 1. $P_{
 m CV}$: Coefficient of variation
 - 2. P_{NMASD} : Normalized mean absolute successive differences
 - 3. $I_{
 m ShEn}$: Shannon entropy
 - 4. $I_{
 m CSampEn}$: Coefficient of sample entropy
 - 5. $I_{
 m SSampEn}$: Simplified sample entropy
 - 6. $P_{
 m NZPP}$: Number of nonzero Poincaré bins

Insights from Fig. 4.7:

- All parameters clearly detect both AF episodes.
- Ectopic beats before the second AF episode cause:
 - Minimal change in $I_{
 m SSampEn}$,
 - Pronounced spikes in $P_{
 m CV}$ and $P_{
 m NMASD}$,
 - Highlighting their sensitivity to ectopic beats.
- I_{ShEn} shows more background fluctuation even during sinus rhythm.

Mitigation Strategy (Preliminary):

- Reducing false alarms from VPBs:
 - Possible through analyzing **shoulder height and width** in the ΔRR histogram.
 - However, no formal method exists yet to detect or quantify such a shoulder [31].

Conclusion:

Robust AF detection requires **handling ectopic beat influence**, particularly in histogram- and entropy-based methods. Among tested parameters, I_{SSampEn} and I_{CSampEn} show **greater robustness**, making them strong candidates for reliable, real-world AF detection.

Ectopic Beat Identification Using Poincaré Plots and Ratio Conditions

- When using Poincaré plots for AF detection, ectopic beats can be spotted by their distinct clustering in specific bins:
 - Bigeminy: tightly clustered points in a few bins [33, 51].
 - AF: widely scattered points.
 - $\mbox{ Problem:}$ when using (x(n),x(n+1)), variable heart rate can \mbox{smear} ectopic clusters, increasing false alarms.
 - Solution: using $(\Delta x(n), \Delta x(n+1))$ reduces this effect by focusing on beat-to-beat variability.

RR Ratio-Based Ectopic Beat Filtering ([32], [37])

To detect and remove **ventricular premature beats (VPBs)** from the RR series, a method based on **three RR interval ratios** is used:

An RR interval x(n), and its surrounding intervals x(n-1), x(n+1), x(n+2), must satisfy all of the following to be classified as a VPB and excluded:

1. Preceding short RR (VPB trigger):

$$\frac{x(n)}{x(n-1)}<\gamma_1 \tag{4.33}$$

2. Compensatory pause:

$$\frac{x(n)}{x(n+1)} > \gamma_{99}$$
 (4.34)

3. Ratio of next two beats:

$$\frac{x(n+1)}{x(n+2)} > \gamma_{25}$$
 (4.35)

- Thresholds
 - γ₁, γ₂₅, γ₉₉:

1st, 25th, and 99th **percentiles** of the RR interval ratio distribution.

Practical Considerations:

- Thresholds adapt to the current ECG segment,
- As the Poincaré plot and RR ratios reflect local irregularity, these rules offer automated VPB
 exclusion,
- Visual examples are referenced in Fig. 4.8a and 4.8b.

Conclusion:

These RR ratio-based rules are an effective way to **exclude ectopic beats** without affecting genuine AF intervals, helping to **reduce false positives** in rhythm-based AF detectors.

Median Filtering and Ad Hoc Tests for Ectopic Beat Removal

- . Median filtering is commonly used to suppress ectopic beats in RR interval sequences:
 - . It preserves sharp transitions at the onset/offset of AF episodes,
 - · Filters of lengths 3 to 17 have been used:
 - Longer filters remove ectopic beats more effectively,
 - But may miss short AF episodes—making shorter filters preferable when detecting brief AF.

Fig. 4.8 Summary:

- Shows an RR interval series $\boldsymbol{x}(n)$ with:
 - Ectopic beats, bigeminy, and an AF episode starting around sample 500.

Panels:

- (a): Original x(n).
- (b): Output after applying the three ratio-based ectopic filtering conditions (Eqs. 4.33-4.35).
- (c): Output after 3-point median filtering.
- (d): Output after 17-point median filtering—more effective at flattening ectopic patterns and clarifying AF.
- (e): Function b(n) (Eq. 4.36, not shown here), used to ${f flag}$ bigeminy, not replace RR intervals.

Ad Hoc Ratio Tests with Pattern Matching

- An extension of Eqs. 4.33–4.35:
- Detects common non-AF arrhythmias like bigeminy/trigeminy,
- Builds a template database of RR ratio sequences.
- During detection:
 - The RR ratio sequence in the detection window is compared to templates.
 - If matched, AF is ruled out.
- This approach allows classification of rhythm type before computing AF detection parameters.

Notes on Implementation:

- This method integrates ectopic filtering directly into the classifier,
- Several thresholds must be set (e.g., matching criteria, filtering length),
- However, performance sensitivity to these thresholds has not yet been well established.

Conclusion:

Median filtering and pattern-based ad hoc tests significantly improve detection performance by reducing false AF alarms caused by ectopic beats—especially bigeminy. Balancing filter length and sensitivity to AF transitions remains a key consideration.

Flag Function for AF Detection

A simple flag function b(n) has been introduced [40] to indicate whether the rhythm is likely AF, defined as:

$$b(n) = \left(\frac{\sum_{m=0}^{M-1} x_m(n-m)}{\sum_{m=0}^{M-1} x(n-m)} - 1\right)^2, \quad n = M, \dots, N-1$$
 (4.36)

- Where:
 - x(n): original RR interval,
 - $x_m(n)$: output of a **3-point median filter**,
 - ullet M: even integer specifying window length,
 - N: total number of RR intervals.

Interpretation:

- For regular rhythms and bigeminy:
 - Median-filtered signal $x_m(n) \approx \operatorname{original} \operatorname{signal} x(n)$,
 - \rightarrow ratio \approx 1 \rightarrow $b(n) \approx 0$ (no AF).
- For AF rhythms:
 - Median filtering smooths the signal (removes short-term irregularity),
 - So $x_m(n)$ deviates from x(n),
 - $\rightarrow b(n)$ becomes larger, flagging likely AF.

Why the Square?

- The squaring operation:
 - Emphasizes differences
 - Ensures positive output,
 - Improves separation between AF and non-AF rhythms.

Application:

- Used as a weighting function, not to exclude RR intervals.
- Helps highlight AF onset while tolerating ectopic beats (e.g., bigeminy).
- Refer to Fig. 4.8e:
 - b(n) stays near ${f 0}$ during bigeminy,
 - Rises sharply during AF.

Conclusion:

The b(n) flag is a lightweight, signal-based metric that enhances ${\bf real\text{-}time}$ AF ${\bf detection}$, especially useful in ${\bf implantable}$ ${\bf monitors}$ and ${\bf mHealth}$ ${\bf devices}$. Continued development of such tools is needed to refine ${\bf ectopic}$ ${\bf beat}$ ${\bf handling}$ in practical applications.

4.2.6 Classification

Threshold-Based Classification:

- The most common method for AF classification is to apply thresholds to one or more features
 derived from RR interval irregularity:
 - Could be a single feature [31, 33, 34, 38, 40],
 - Or multiple features with their own thresholds [35].
- Threshold determination:
 - Often optimized using a performance metric, e.g., area under the ROC curve (see Sect. 4.5),
 - Can also be determined via statistical assumptions [31].

Feature Correlation & Selection:

- In multi-feature classifiers, it's critical to ensure features are not **redundant**:
 - Use Principal Component Analysis (PCA) to reduce correlated features and retain only the most informative,
 - Reduces dimensionality and improves robustness, especially when training data is limited
 [82].
- · Feature selection in AF detection:
 - Methods like sequential forward floating selection have been used [46],
 - But not yet widely adopted across AF detection systems.

Feature Relevance & Simplicity:

- Important to assess **feature importance** for low-power, real-time devices.
- No current studies systematically quantify individual feature contributions, but initial results
 highlight the dominant role of rhythm irregularity over P-wave/f-wave morphology [83].

Histogram Overlap Method (Feature Comparison):

- A practical method to evaluate feature effectiveness:
 - Compare histograms of RR-based features between AF and non-AF windows using the same dataset [38, 40, 41, 49],
 - The less overlap \rightarrow the more discriminative the feature.
- Fig. 4.9 (referenced here):
 - Based on 128-beat detection windows (except SampEn: 8 beats),
 - I_{SSampEn} yields the least overlap ightarrow most suitable feature,
 - Number of nonzero bins in the Poincaré plot and I_{CSampEn} also rank high,
 - Shannon entropy (I_{ShEn}) has greatest overlap, suggesting lower effectiveness.

Canalinatan

Effective AF classifiers prioritize low-dimensional, uncorrelated, and highly discriminative

features. Current evidence suggests that features representing rhythm irregularity, especially $I_{
m SSampEn}$, are most effective. Further refinement in **feature selection and analysis** is essential for

real-time, resource-limited applications.

Pattern Classification Approaches in AF Detection

Beyond traditional threshold-based classifiers, more advanced pattern classification techniques have been explored for AF detection:

1. Support Vector Machines (SVMs)

- References: [39, 50, 84] Advantages:
- Can model nonlinear decision boundaries [85],
- Require only two design parameters, both related to penalizing misclassifications.

2. Linear Discriminant Analysis (LDA)

- Reference: [36]
- - · Simpler than nonlinear models, but requires:
 - Mean vectors and covariance matrices for both AE and non-AE data.
 - More computationally intensive during training than threshold tests.

Feature Vector Dimension

- In these studies, feature vectors ranged from 2 to 24 dimensions.
- Trade-off:
 - Higher dimensions \rightarrow potentially **better discrimination**,
 - But also lead to increased complexity and risk of overfitting with small datasets.

SVMs offer **flexibility and simplicity** in tuning, while LDA provides a **statistical approach** at the cost of $\mbox{\bf higher training effort}.$ These methods represent an evolution beyond simple thresholds toward more robust, adaptive AF classifiers.

Performance and Feature Distributions in AF Detection (Fig. 4.9)

Classifier Performance Insights (from Table 4.1)

- Surprisingly, a single-threshold detector [40] outperformed an SVM-based classifier [39].
- This may seem counterintuitive since
- SVMs offer flexible, nonlinear decision boundaries.
- Possible reasons:
 - SVM did not generalize well due to a small or unrepresentative training set.
 - Weaker feature selection may have hindered SVM performance.

Fig. 4.9 – Feature Distributions: AF vs Non-AF

- Thick line: AF
- Thin line: non-AF

(a) $P_{ m CV}$ – Coefficient of Variation

- Substantial overlap between AF and non-AF.
- Indicates limited discriminative power

(b) $P_{ m NMASD}$ – Normalized Mean of Absolute Successive Differences

- Strong peak for AF,
- But still noticeable overlap.

(c) $I_{ m ShEn}$ – Shannon Entropy

- Least effective feature

(d) $I_{ m CSampEn}$ – Coefficient of Sample Entropy

- Better separation between classes.
- More useful for AF detection.

(e) $I_{ m SSampEn}$ – Simplified Sample Entropy

- Best separation observed.
- · Strong candidate for robust detection.

(f) $P_{ m NZPP}$ – Nonzero Poincaré Bins

- Clear separation.
- Especially effective for capturing irregular rhythms.

Conclusion:

 Simple threshold detectors can outperform more complex classifiers (like SVMs) if well-chosen features are used.

- ullet $I_{
 m SSampEn}$ and $P_{
 m NZPP}$ provide the **clearest separation** between AF and non-AF.
- Detection performance hinges more on feature quality than on the complexity of the classifier itself.

Machine Learning Classifiers vs Threshold-Based AF Detection

Current Status of Machine Learning in AF Detection:

- Machine learning approaches (e.g., SVMs) have not yet outperformed traditional thresholdbased methods in AF detection.
- One key reason: many classifiers lack robustness to non-AF arrhythmias, such as:
 - Bigeminy and trigemin
 - APBs and VPBs
 - Supraventricular tachycardia
 - Atrioventricular junctional rhythms
- These confounding rhythms often mimic AF patterns and increase false positives when not handled properly.

Importance of Ectopic Beat Handling Before Classification

- Handling ectopic beats before classification can significantly boost performance
- Example from [40] (unpublished result):
 - Detector uses:
 - ullet $I_{
 m SSampEn}$: Simplified sample entropy (8-beat window),
 - b(n): Flag function indicating AF-likelihood (see Eq. 4.36),
 - These are **fused** and passed through a **simple threshold**.

Performance Gain (Using NSRDB Dataset)

- NSRDB includes frequent bigeminy (see Sect. 3.1).
- Incorporating b(n) into detection led to:
 - Specificity increase: from 93.2% → 98.6%
 - Sensitivity remained unchanged
- Demonstrates the value of handling ectopic beats before applying classifiers.

Conclusion:

While machine learning has potential, threshold-based detectors remain superior—especially when robust ectopic beat filtering is included. Future improvements depend on larger, well-annotated databases and the ability to distinguish AF from mimicking rhythms.

4.3 Rhythm and Morphology Based AF Detection

Why Rhythm-Based Detection Is Preferred

- Although AF affects both rhythm and atrial wave morphology, most detectors rely on rhythmbased analysis:
 - Rhythm measures (e.g., RR intervals) are more robust to noise, especially in wearable and ambulatory recordings [38, 86].
- Rhythm-based detectors:
 - Handle ectopic beats, atrioventricular block, and patients on ventricular rate-controlling medication better.
 - Less prone to **false alarms** in challenging scenarios.

Adding Morphology (P wave, f wave) Improves Specificity

- If P waves are absent and/or f waves are present, it improves AF detection accuracy.
- Morphological info must be integrated sensibly, as shown in the block diagram in Fig. 4.10a (not shown here)
- Important note
- Lead selection matters:
 - P waves are more sensitive to lead position.
 - f waves (weaker) are even more dependent on leads close to the atria

Challenges with Morphology-Based Approaches

- Only a few detectors use both rhythm and morphology
- Their performance is often inferior to rhythm-only methods—see Table 4.3 (not shown).
- Main reason: detectors fail to account for noise, which varies between leads and conditions.

Design Principle for Morphology Integration

- Noise level should guide how much morphological info influences detection:
 - If noise is high, morphology should contribute less

- If noise is low, morphology can be used more confidently.
- The system should reduce reliance on atrial activity metrics unless signal quality is high.

Conclusion

- Rhythm-based detection remains dominant due to its noise resilience.
- Morphology-based cues (P and f waves) can reduce false positives, but:
 - Must be adaptively weighted based on signal quality,
 - · Require smart integration to avoid hurting performance.

Fig. 4.10 – Integration of Atrial Wave Morphology and Noise Awareness in AF Detectors

(a) Traditional Morphology-Based AF Detector

- Structure
 - ECG → Preprocessing →
 - ightarrow RR irregularity
 - → Atrial information
 - → Classifier
- Limitation:
 - The classifier treats all inputs equally, regardless of signal noise level.
 - This can lead to misclassification when atrial signals are unreliable, especially in noisy recordings.

(b) Noise-Aware AF Detector

- Structure
 - ECG → Preprocessing
 - → Branches into:

 - Atrial information, which includes:
 - f wave presence
 - P wave absence
 - Noise level estimation \rightarrow All inputs go to a noise-adaptive classifier, which:
 - Reduces reliance on atrial info as noise increases.
- Advantage:
 - More robust to variable recording conditions, such as:
 - Ambulatory monitoring
 - Wearable ECGs
 - Ensures morphological cues are only used when they're trustworthy.

Conclusion

The (b) model demonstrates a **smart integration** of morphology with **adaptive noise handling**, aligning with current best practices for **reliable AF detection** in real-world noisy environments.

4.3.1 P Wave Detection Information

Use of P Wave Morphology in AF Detection

- P wave delineation is well-studied in diagnostic ECG interpretation, where precise measurement
 of amplitude and duration is crucial [91–93].
- A related application is **predicting risk of AF onset** using P wave morphology.

Relaxed Requirements for AF Detection

- In AF detection, precise P wave boundaries are not required.
- Simply detecting the absence of P waves can indicate AF.
- This makes the task less demanding than full P wave delineation [94–96].

Measuring P Wave Absence

- A straightforward approach
- Analyze similarity between consecutive PR intervals using:
 - Correlation coefficient
 - Mean square difference
- High similarity ightarrow normal sinus rhythm (consistent P waves),
- Low similarity → AF (P waves absent or desynchronized from QRS).
- In AF:
- P waves are replaced by **f waves**, which are not phase-locked with the QRS.
- So PR intervals vary more ightarrow lower similarity.
- The ${\bf average\ similarity\ }$ across all beats in the detection window can be:

Compared to a **threshold** to determine AF presence

Table 4.3 – Performance of Morphology-Inclusive Detectors

Method	Year	Database	Se (%)	Sp (%)
Dash et al. [32]	2009	AFDB ₁	94.4	95.1
Lian et al. [33]	2011	AFDB	95.8	96.4
Lake and Moorman [34]	2011	AFDB	91	94
Huang et al. [35]	2011	AFDB	96.1	98.1
Shouldice et al. [36]	2012	AFDB	92	96
Lee et al. [37]	2013	AFDB ₁	98.2	97.7
Zhou et al. [38]	2014	AFDB	96.9	98.3
Asgari et al. [39]	2015	AFDB	97.0	97.1
Petrénas et al. [40]	2015	AFDB	97.1	98.3
Zhou et al. [41]	2015	AFDB	97.4	98.4
Babuczki et al. [87]	2009	AFDB ₂	93	98
Carvalho et al. [83]	2015	AFDB ₂	93.8	96.1
Ladavich & Ghoraani [88]	2015	AFDB ₃	98.1	91.7
Ródenas et al. [89]	2015	AFDB4	96.5	94.2
Xia et al. [90]	2018	AFDB4	98.3	98.2

- . The best-performing detectors often use rhythm and morphology jointly.
- Database differences (AFDB₁-q) account for exclusions and dataset balancing decisions (see caption).

Conclusion:

P wave absence can be detected without full delineation, offering a practical way to enhance rhythmbased AF detection. Feature comparisons based on **PR interval similarity** provide a reliable method for detecting the **disruption of atrial activity** that defines AF.

Template-Based P Wave Detection and PQRST Cancellation

Template Matching Approach

- A PR interval template is created by averaging many annotated P waves from a high-quality database [83, 97, 98].
- In a detection window:
 - All beats are compared to the template via correlation.
 - A P wave is considered **present** if correlation > fixed threshold.
 - P wave absence is defined when the occurrence ratio (detected P waves / total beats) falls below a second threshold.

Quantifying P Wave Absence via PQRST Cancellation

- An alternative to detecting P waves directly:
 - Construct a residual signal by subtracting the PQRST components from the ECG.
 - This residual contains:
 - f waves in AF,
 - Minimal residuals in normal sinus rhythm.
- This concept forms the basis of an **echo state network** [100]:
 - Effectively handles:
 - P wave morphology variability
 - Ectopic beats
 - The network creates an "imaginary" PR interval signal for further analysis.

All-Pair PR Interval Comparison Method

- Builds on [87] by:
 - $\bullet \ \ \ \ \, \text{Evaluating all pairwise combinations of PR intervals in the window (not just adjacent ones),}$
 - Computing squared errors between intervals,
 - Averaging all results to form a global similarity score.
- The analysis uses:
 - Fixed PR interval length = 250 ms,
 - P wave window = 250 ms as well.

Conclusion

Template-based detection and PQRST cancellation offer powerful alternatives for assessing **P wave presence** or absence, enabling **morphology-based AF detection** even in noisy or ectopic conditions. These techniques prioritize **signal similarity** and **residual analysis** over direct waveform detection,

increasing rodustness.

Morphology-Only and Wavelet-Based Approaches for AF Detection

P Wave-Only Detection Approaches

- Some detectors exclude rhythm features entirely and focus solely on P wave analysis [88, 89].
- Motivation
- Rhythm irregularity may be unreliable in:
 - Patients with rate-controlled AF,
- Those with a pacemaker.

Findings:

 Table 4.3 shows that such morphology-only detectors still perform worse than rhythmbased systems.

Complex Morphology Description Using P Waves

- Example system [88] uses
 - 6 amplitude-based features (e.g., sampled every 20 ms),
 - · 3 shape-based features (variance, skewness, kurtosis),
 - Sampling window is fixed from QRS fiducial point.
- Classifier
- Based on a Gaussian mixture model.
- Trained using 30 minutes of sinus rhythm ECG
- Tests involve computing Mahalanobis distance between patient-specific P wave features and candidate waveforms.
- This novelty detection setup is well-suited to spotting deviations from the normal patient profile [102, 103].

Wavelet Entropy as Morphology Feature

- Introduced in [89], this method evaluates entropy across wavelet scales:
 - Each TQ segment undergoes wavelet decomposition:

$$E_{i} = \frac{\sum_{k=0}^{K_{i}-1} w_{i,k}^{2}}{\sum_{l=1}^{J} \sum_{k=0}^{K_{l}-1} w_{l,k}^{2}}, \quad i = 1, \dots, J$$

$$(4.37)$$

- E_i represents **relative energy** at each scale.
- Then, Shannon entropy of the energy distribution is computed.
- Results:
 - Lower entropy in intervals with P waves (energy more concentrated),
 - Higher entropy in f wave intervals (energy spread across scales).

Conclusion

- Pure morphology-based detectors, especially those relying on P wave similarity or wavelet entropy, can be useful alternatives in rate-controlled or paced patients.
- However, rhythm-based methods still offer superior overall performance in typical AF detection settings.

Challenges of Using P Wave Absence in AF Detection

1. PR Interval Variability as a Surrogate

- In AF, the onset of f waves (instead of P waves) leads to high PR interval variability.
- This has been considered as a surrogate marker for P wave absence [87].
- Howeve
- Determining the PR interval requires detection of P wave onset and QRS onset,
- Since this is **not possible in AF**, the **value of PR interval variability** is questionable.

2. Comparison of P Wave Absence Detection Techniques

- Techniques vary greatly:
 - From simple similarity measures (e.g., correlation, mean square error),
 - To advanced statistical modeling.

Similarity-Based Approaches:

- Don't favor specific P wave morphology (polarity or shape),
- Work well across varied rhythms.

Template-Based Approaches:

- Can struggle when P wave morphology differs from the template,
- The correlation drops when P wave and template are "orthogonal."

Statistical Modeling:

- More flexible and accurate,
- But requires extensive sinus rhythm training data per patient,
- Often infeasible in practical settings.

OneNote

3. Sensitivity to Noise Levels

- All P wave absence detection becomes increasingly unreliable as noise increases,
- Each technique has a noise "breakdown" threshold, which varies by design.

Example:

- Template-based detection is more robust to noise than similarity measures.
- Using multiple ECG leads:
 - Enhances P wave visibility,
 - Improves performance: e.g., sensitivity rose from 91.7% to 94.6% in [88].

Conclusion:

P wave absence is a valuable cue for AF detection, but it's **highly sensitive to noise** and **P wave morphology variations**. Simpler similarity-based methods offer robustness across morphologies, while template-based and statistical models can improve accuracy if clean, long-duration training data are available. Using **multi-lead analysis** provides a practical way to improve reliability.

4.3.2 f Wave Detection Information

Challenges in Detecting f Waves

- f waves have low amplitude and can be easily masked by noise.
- The TQ interval (used for f wave analysis) becomes shorter at higher heart rates, making detection more difficult.
- At very high heart rates:
 - f waves may become indistinguishable from baseline fluctuations or muscle noise,
 - Or be entirely buried, especially in wearable ECGs.

Approach Described in [104]

- Method:
 - Count the number of f waves in the TQ interval.
 - A wave is identified if:
 - A signal fluctuation exceeds a fixed threshold,
 - The width between two zero-crossings exceeds a second threshold.
- Noise Mitigation:
 - The method includes:
 - Adaptive thresholding based on TQ duration and peak amplitude.
 - Preprocessing steps to remove baseline wander and muscle noise.
- Limitation
 - Even after filtering, f wave analysis based on level crossings remains noise-sensitive.
 - Muscle noise can **mimic the frequency content** of f waves.
 - High heart rates result in short TQ intervals, increasing the chance of false negatives (zero f waves counted).

Conclusion

- While f wave presence can be a useful signal for AF detection, it is:
 - Highly susceptible to noise,
 - Sensitive to heart rate increases,
 - Difficult to extract without complex processing,
- Therefore, f wave detection may be impractical for low-power or wearable devices, unless
 advanced signal extraction methods are applied.

Spectral Characterization of f Waves

1. Dominant Frequency Analysis

- f wave presence can be inferred by analyzing spectral content of the extracted atrial signal.
- This approach assumes successful f wave extraction across the entire detection window (not
 just TQ interval) [83, 100].
- The dominant atrial frequency (DAF), typically near 6 Hz, is the most prominent feature in the spectrum (see Fig. 4.11a, not shown).
- Additional info may come from:
 - Second and third harmonics,
 - More commonly seen in paroxysmal AF than in permanent AF.

2. Normalized Spectral Concentration (Fs.)

Used to quantify the presence of concentrated spectral energy around DAF:

$$F_{SC} = \int_{\Omega_a} P'_j(\omega) d\omega \qquad (4.38)$$

- Where
 - $P_j^{\prime}(\omega)$ = **normalized power spectrum** of the extracted f wave signal $\hat{d}(n)$:

$$P'_{j}(\omega) = \frac{1}{\sigma_{\tilde{d}}^{2}} P_{j}(\omega) \qquad (4.3)$$

- + $\sigma_{\hat{d}}^2$: variance of the extracted signal $\hat{d}(n)$,
- + Ω_a : frequency range centered around DAF (e.g., 4–12 Hz),

- If **f waves are present**, $F_{\rm SC} pprox 1$; otherwise, it is lower (e.g., during sinus rhythm).
- Power spectrum estimation can use:
 - Welch's method (nonparametric),
 - Burg's method (parametric) [107].

3. Spectral Entropy (Fse)

Measures distribution of spectral power to assess regularity/complexity:

$$F_{\rm SE} = -\int_{\Omega_a} P_j'(\omega) \ln \left(P_j'(\omega) \right) d\omega \tag{4.40}$$

- Lower entropy → sharp peak (f wave present),
- Higher entropy → flat spectrum (f wave absent or buried in noise) [83].

Conclusion:

Spectral concentration and spectral entropy are reliable tools for identifying **f wave presence**, especially when a clear DAF can be extracted. They provide a **quantitative spectral signature** of AF, particularly effective when noise levels are manageable and f wave extraction is successful.

Fig. 4.11 & KL Divergence for f Wave Analysis

Fig. 4.11: Spectral Comparison of f Wave vs. Sinus Rhythm

- (a): Power spectrum of an extracted f wave signal:
 - Shows a **prominent peak at ~6 Hz** (the dominant atrial frequency),
 - Spectral content is concentrated, supporting AF presence.
- (b): Spectrum of a QRST-cancelled sinus rhythm signal:
 - · Contains multiple small peaks, none dominant,
 - Reflects a broader, noisier spectral distribution typical of sinus rhythm.

Vertical dashed lines indicate the two largest peaks in each case.

Kullback–Leibler (KL) Divergence

- The KL divergence quantifies the difference between:
 - The observed spectrum $P_i'(\omega)$ and
 - A template spectrum $P_j^r(\omega)$ from known f wave data [83].

$$F_{\rm KL} = \int_{\Omega_{\rm d}} P_j'(\omega) \ln \left(\frac{P_j'(\omega)}{P_j^r(\omega)} \right) d\omega \eqno(4.41)$$

- Interpretation
 - $F_{
 m KL}pprox 0$: Observed spectrum matches the template ightarrow **f waves likely present**,
 - High F_{KL} : Spectral distribution deviates ightarrow **f waves likely absent**.

Limitations of KL Divergence

- The template spectrum $P_j^r(\omega)$ must:
 - Be representative across patients, despite:
 - Variability in DAF (dominant atrial frequency),
 - Differences in **f wave morphology**.
- In [83], the **template** was built from AFDB data and used with **spectral entropy** for detection.
- However:
 - DAF may vary between 4 and 12 Hz,
 - A mismatch in DAF or morphology may limit effectiveness of KL divergence.

Conclusion

KL divergence provides a powerful, relative measure of spectral similarity to known f wave profiles, but its success depends heavily on the generalizability of the spectral template. When paired with spectral entropy and robust f wave extraction, it adds an extra layer of confirmation for AF detection.

Spectral Structure Tests for f Wave Detection

Heuristic Spectral Tests (proposed in [108]):

These tests determine if the extracted power spectrum $P_j'(\omega)$ resembles a typical **AF spectrum**, based on 5 heuristic checks:

- 1. Signal-to-Noise Ratio (SNR):
 - "Signal": average of the **two largest harmonics**.
 - "Noise": average around midpoint between the harmonics.
- 2. Second Harmonic Deviation
 - Chack if the excent neck is where expected based on first harmonic

- and the second peak to their corperate of the second of th
- Helps exclude "ringing" spectra (e.g., due to slow P waves).

3. Magnitude Ratio:

- · Ratio of second to first harmonic magnitude,
- · Validates presence of multiple harmonic structure

4. Spectral Sharpness:

- Compare the sliding window spectrum to an exponentially averaged background,
- Helps suppress muscle artifacts or poor f wave extraction.

5. Total Residual Energy:

- · Check for excess power outside harmonic bands,
- High residuals → likely non-AF signal.

Interpretation of Fig. 4.11a vs. 4.11b

- Fig. 4.11a: Passes all tests → classified as AF spectrum.
- Fig. 4.11b: Fails at least one test → not AF.

Fuzzy Logic Combination of P and f Wave Info

- Introduced in [100], tested in Fig. 4.12:
 - Uses both P wave absence and f wave presence,
 - In example with APBs and respiratory sinus arrhythmia:
 - Detector based on fuzzy logic correctly rejects non-AF rhythms.
 - Detector using $I_{
 m CSampEn}$ (coefficient of sample entropy) falsely detects AF.

Conclusion:

The proposed spectral structure tests are **non-model-based**, computationally light, and effective for screening AF-like spectra. When combined with **morphological features** (e.g., in fuzzy logic detectors), they greatly enhance AF specificity—especially in challenging cases like APBs or respiratory sinus rhythm.

Fig. 4.12 – Avoiding False AF Detections with Morphology-Based Detection

Overview of Figure 4.12

- Compares two detection methods on **non-AF rhythms** that commonly trigger false alarms:
 - (a) Frequent Atrial Premature Beats (APBs),
 - (b) Respiratory Sinus Arrhythmia.

For each case:

- Top trace: ECG signal.
 - In (a), * indicates each APB.
- Middle trace: Rhythm-based AF detection output Q_R (from [34]).
- ${f Bottom\,trace}$: Rhythm + morphology-based AF detection output Q (from [100]).

AF is detected whenever the decision function (thicker line) exceeds the threshold.

Key Observations

- Rhythm-only detection (Q_R):
 - Triggers false positives in both (a) and (b),
 - Misclassifies non-AF rhythms as AF due to rhythm irregularity alone.
- Rhythm + Morphology detection (Q):
 - Remains below threshold in both examples,
 - Correctly identifies that **AF is not present**, despite irregularities.

Conclusion

This figure highlights the **importance of incorporating atrial morphology** (e.g., P wave presence, f wave absence) in AF detectors. While rhythm-based methods alone can misinterpret **benign irregular rhythms**, the combination with morphology **substantially reduces false alarms**, especially in complex or noisy clinical scenarios.

4.3.3 Noise Level Estimation

Problem Addressed

- Many AF detectors ignore noise levels entirely.
- Most ECG signals are processed **uniformly**, regardless of noise.
- This can lead to discarding morphology information (e.g., f waves, P waves) under noisy
 conditions (as shown in Fig. 4.10).
- The challenge lies in:
 - Designing a noise estimator that doesn't confuse noise with cardiac activity,
 - Integrating noise estimation into decision logic.

OneNote

Noise-Adaptive Detection ([100])

- An innovative detector adjusts to noise using the extracted **f wave signal** $\hat{d}(n)$.
- It estimates noise based on **spectral entropy** from $\hat{d}(n)$ as follows:

$$\hat{N}_{\rm RMS} = R_d \cdot \frac{\int_{\Omega_n} P_{\hat{d}}(\omega) \log_2 P_{\hat{d}}(\omega) d\omega}{\int_{\Omega_a} P_{\hat{d}}(\omega) \log_2 P_{\hat{d}}(\omega) d\omega}$$

(4.42)

Details of the Formula

- ullet R_d : Root mean square (RMS) of the extracted atrial signal $\hat{d}(n)$,
- $P_{\hat{d}}(\omega)$: Power spectrum of $\hat{d}(n)$,
- + Ω_n : Frequency range **dominated by noise** (e.g., outside f wave range),
- + Ω_a : Frequency range **dominated by f waves** (e.g., around 4–12 Hz),
- The ratio of entropies compares:
 - Broad, high-entropy noise-like spectra in Ω_n
 - Focused, low-entropy **f wave spectra** in Ω_a .

Interpretation:

- Low \hat{N}_{RMS} ightarrow Low noise (f waves dominate),
- High \hat{N}_{RMS} ightarrow High noise (muscle/motion artifacts dominate).

Purpose

- Enables AF detectors to discard unreliable morphology features when noise is high,
- While preserving sensitivity during clean recordings.

Conclusion:

This approach introduces a dynamic, data-driven method to estimate noise that doesn't rely on visual inspection or fixed thresholds. It allows morphology-based detectors to adapt their behavior depending on signal quality—ensuring reliable AF detection even in wearable or ambulatory settings.

Fig. 4.13 – Noise Estimation Using Spectral Entropy

Description of Subfigures

- (a) ECG segment with:
 - Two AF episodes,
 - Middle section (15–25 s): contaminated by myoelectric noise,
 - Two atrial premature beats (APBs) marked by "*" before second AF episode.
- (b) Extracted **f wave signal** $\hat{d}(n)$ from echo state network.
- (c) Noise level estimate \hat{N} computed using Eq. (4.42) with a **5-beat sliding window**.

Key Observations

- The first 15 seconds are noise-free.
- Myoelectric noise significantly increases the value of \hat{N} starting around 15 s.
- Second AF episode remains undistorted by noise, and thus noise estimator returns to low levels.

Interpretation

- The estimator \hat{N}_{RMS} clearly tracks the onset and offset of the noise burst,
- It remains low during clean AF segments, suggesting good specificity,
- Shows that noise levels can be estimated **independently** of cardiac activity using the power spectrum and entropy of $\tilde{d}(n)$.

Conclusion

This figure validates the **noise estimator** from Eq. (4.42) as an effective tool for detecting **myoelectric noise contamination**. Such an estimator can inform AF detectors to **adjust sensitivity** or **discard unreliable morphology features**, especially in wearable/ambulatory ECG monitoring.

4.3.4 Ectopic Beat Handling

Challenge

- Ectopic beats (especially APBs and VPBs) pose a major issue for AF detection, leading to false alarms.
- Particularly problematic for rhythm-based detectors, which may confuse irregularity from ectopic beats with AF.

Indirect Handling through Morphology

- Detectors using:
 - P wave absence ([87], [88]) or
- P wave absence + f wave presence ([100])

can reduce false detections of APBs.

- Key condition: APB must be preceded by a detectable P wave, even if its morphology differs from normal sinus beats.
- If APB's P wave is **hidden in a T wave**, the risk of false AF detection **increases**.

VPBs and Risk of Misclassification

- VPBs are not preceded by P waves, increasing their risk of false AF detection, particularly in rhythm-only detectors.
- Morphology-aware detectors (checking for f waves and P wave absence) perform better in ectopic conditions.

Built-in Morphology Classifiers

- · For automated ECG systems (holter/implantable):
 - Morphology classification is often available,
 - Can be leveraged to flag or exclude segments with VPBs before running AF detection,
 - May also assist by augmenting the feature vector used for classification ([83]).

Conclusion

Incorporating beat morphology into AF detection systems—especially those already designed for long-term ECG monitoring—offers a **reliable strategy** for managing **ectopic rhythms**. Rather than relying solely on rhythm irregularity, using **P wave presence/absence and f wave analysis** significantly **reduces false positives** from APBs and VPBs.

4.3.5 Classification

Rhythm and Morphology-Based AF Detection

- Principles from rhythm-only classification (see Sect. 4.2.6) also apply here.
- Now, morphology-derived features like P wave absence and f wave presence are included.
- Noise level should ideally be included in the feature vector to help assess reliability, but:
 - Many classifiers still do not explicitly use noise estimates,
 - Instead, they are trained on datasets with varied noise levels to generalize.

Early Detector Examples

- One of the first combined rhythm + morphology AF detectors was from [87]:
 - Feature vector:
 - One rhythm parameter (Markov-based),
 - Two P wave-related parameters (P wave similarity, PR interval variability).
 - Classifier: regression decision tree using threshold tests only.

Multivariate Mixture Model Approach

- Described in [88] using 9-dimensional P wave amplitude features:
 - Each class (AF vs. non-AF) modeled using sum of Gaussians (PDF),
 - Parameters estimated via expectation-maximization,
 - Requires a patient-specific training phase.
- Classification:
 - For each beat, compute likelihood of P wave features,
 - Decision based on **combined likelihood** from all beats in the detection window.

Additional Methods

- Other approaches:
 - SVM-based classification using P wave features ([83], [121]),
 - ANNs and regression tree classifiers used for P wave absence + f wave presence,
 - Decision fusion strategies considered to merge multiple feature outcomes.

Summary

Classification methods for AF detection with rhythm and morphology features range from:

- Simple threshold-based rules (e.g. regression trees),
- To complex probabilistic models (e.g. Gaussian mixtures),
- And machine learning models (e.g. SVMs, ANNs).

Patient-specific models improve accuracy but demand more computation and training data. Inclusion of noise robustness remains a key future direction.

4.3.5 Classification (continued)

Rhythm vs. Rhythm and Morphology-Based Detection

- Performance comparison (Table 4.3):
 - Detectors using only rhythm can outperform detectors using rhythm + morphology.
 - Example: detector in [31] (rhythm-only) outperforms [83] (which includes P and f wave info).
 - · Reason: decision boundaries not adapted to varying noise levels.

Impact of Noise

- Studies ([83], [87]–[89]) all emphasize noise as a major issue degrading performance.
- None of the detectors were explicitly designed to account for noise.
- Most classifier structures (ANNs, regression trees, Gaussian mixtures) do not generalize well
 from low to high noise conditions.

First Noise-Aware AF Detector

- Introduced in [100]:
 - Four parameters used: RR irregularity, P wave absence, f wave presence, and noise level (from Eq. 4.42).
 - Classifier: Mamdani-type fuzzy logic inference system.
 - Each parameter is fuzzified into levels (e.g., "low", "high").
 - 16 if-then rules combine the fuzzified values.
 - The fuzzy inference yields a decision value $O \in [0,1]$,
 - Closer to 1 = AF likely,
 - Closer to 0 = non-AF.
- This fuzzy logic system is visualized in Fig. 4.10b, reflecting:
 - Noise-dependent behavior,
 - Balanced weighting of all four parameters.

Summary

- Many advanced AF detectors do not surpass rhythm-only ones, mainly due to:
 - Lack of adaptation to noise,
 - Overfitting to clean training data,
 - Inflexible decision boundaries.
- Fuzzy logic-based detectors show promise by incorporating noise estimates and interpreting features in a non-binary fashion.

This concludes the section on classification within AF detection using both rhythm and atrial wave morphology.

Final Remarks on Noise-Aware Classification

Advantages of the Fuzzy Logic Classifier

- No training phase required.
- Rules and membership functions are based on **prior knowledge of AF**.
- However, its performance has not been validated on AFDB, as f wave extraction demands highquality signals (which many AFDB recordings lack).

Alternative Approach: Beat Exclusion

- Suggested in [89]: Exclude beats if their estimated noise level exceeds a fixed threshold.
- Thresholds are tuned to match manual annotations of noisy segments.
- In noisy ECG segments:
 - Detector operation is suspended when P wave absence can't be determined.
 - This contrasts with the fuzzy logic system in [100], which continues to operate, relying more
 on rhythm irregularity under high noise conditions.

Figure 4.14

This figure extends Fig. 4.13 and illustrates **noise-aware fuzzy logic AF detection** using the system in [100]. It shows:

- Top trace: ECG signal with marked AF and noise segments.
- Second trace: Extracted f wave.
- 3. Bottom five traces: Trends of the input parameters:
 - \hat{N} : Estimated noise level
 - R: Rhythm irregularity
 - F: f wave presence
 - P: P wave absence
 - . Or Einst output decision (AE likelihood)

This shows how **noise level affects the contribution** of morphology-based parameters (P, F), with the system relying more on R under high noise.

Comment on the Most Recent Rhythm and Morphology-Based Detector (Table 4.3)

- Best performance among detectors in Table 4.3 is achieved by the most recent model, which slightly outperforms all others.
- This detector is based on a deep convolutional neural network (CNN).
 - Input: either short-term Fourier transform (STFT) or stationary wavelet transform of 5second ECG segments.
 - The input includes both atrial and ventricular activity.
- Unlike previous methods, the design is not physiology-based.
 - No explicit modeling of rhythm irregularity, P wave absence, or f wave presence.
 - Instead, general signal properties and possibly visual features (e.g., color vs. greyscale) of the time-frequency representations are emphasized.

Caveats

- Despite promising performance, the results must be questioned due to:
 - . Use of only a subset of the AFDB.
 - · Application of tenfold cross-validation, which may limit generalizability.
 - These concerns are expanded on in Section 4.6.

4.5 Performance Measures

- Detection performance for AF (atrial fibrillation) is quantified by comparing detected beats to annotated beats. Four key counts used:
 - N_{TP}: Beats correctly identified as AF (true positive)
 - N_{TN} : Beats correctly identified as non-AF (true negative)
 - N_{FP} : Beats incorrectly identified as AF (false positive)
 - N_{FN} : Beats incorrectly identified as non-AF (false negative)
- Common performance measures include:

Sensitivity:

Sensitivity =
$$\frac{N_{TP}}{N_{TP} + N_{FN}}$$
 (4.43)

Specificity:

Specificity =
$$\frac{N_{TN}}{N_{FP} + N_{TN}}$$
 (4.44)

- Performance is often visualized via ROC (Receiver Operating Characteristic) curves, plotting sensitivity vs. (1-specificity) at varying detection thresholds (see references [34, 37]).
- ROC performance is summarized using the Area Under the Curve (AUC), where
 - AUC = 1.0 → perfect performance
 - AUC = 0.5 → random performance
- In AF detection, parameters can be optimized by maximizing AUC (see references [39, 41, 51, 88]).
- Additional measures include:

Positive Predictive Value (PPV):

Positive predictive value =
$$\frac{N_{TP}}{N_{TP} + N_{FP}}$$
 (4.45)

Detection Accuracy:

$$\mbox{Detection accuracy} = \frac{N_{TP} + N_{TN}}{N_{TP} + N_{FN} + N_{FP} + N_{TN}} \quad (4.46)$$

Sensitivity and Specificity: Episode-Based Comparison

- Traditional sensitivity and specificity, based on beat-to-beat comparison, don't reflect the
 episodic nature of paroxysmal AF accurately.
- Example given:

Two AF episodes—one hour-long and another brief 10-beat duration.

A detector might detect the long episode but miss the short one, thus sensitivity remains high despite missing a full episode.

Conversely, a short false-positive episode has negligible effect on specificity.

- This illustrates the limitation of beat-to-beat performance metrics in representing clinical relevance, as brief episodes can be overlooked, thus losing significant clinical information.
- The ROC curve might misleadingly indicate near-perfect performance, as depicted in Fig. 4.15.

Alternative Approach: Episode-to-Episode Comparison

- Suggestion: Replace beat-to-beat comparison with episode-based comparison.
- Challenges/questions arising:
 - How should "true negative" be defined in the absence of an annotated AF episode?
 - Should minimum duration criteria define a detected episode as correct?
 - Treatment of episodes labeled AF beats only partially?
- Inspired by performance measures in transient ischemia detection for long-term ECG (reference [126]), adapted for AF detection ([36]):
- Episodes of non-AF beats have limited clinical meaning, making true negatives (N_{TN}) undefined.
- Thus, counts are redefined as:
 - N_{TD} ΔF enisodes correctly detected (true positive)

- N_{FP} : Non-AF episodes falsely detected as AF (false positive).
- N_{FN} : AF episodes falsely detected as non-AF (false negative).

Episode Detection Criteria and Performance Illustration (Fig. 4.15)

 An AF episode is considered correctly detected if it overlaps at least 50% with the annotated episode; otherwise, it is labeled non-AF [33].

Figure 4.15 Description:

- (a) Shows an RR interval time series x(n).
- (b) Annotated episodes: single AF episode clearly marked; rest is non-AF.
- (c) Detector output based on coefficient of sample entropy (using a 12-beat window), detecting numerous false positives due to ectopic beats.
- (d) Corresponding ROC curve indicates near-perfect detection despite many brief false-positive episodes, illustrating a limitation of beat-based ROC metrics.

Performance Impact of Window Length:

- For a 100-beat window, sensitivity is high (0.92) using beat-based comparison ([36], Table 4.1).
- When using an episode-based sensitivity measure, sensitivity drops significantly (to 0.71), demonstrating reduced detection of short episodes.

This emphasizes the importance of choosing appropriate detection criteria (episode-based rather than beat-based) to avoid overstating detector performance.

Episode-Based vs. Beat-Based Performance Measures and Detection Delay

- Episode-based measures are not yet widely adopted in AF detection literature, despite
 providing complementary information to beat-based measures.
- The popularity of beat-based measures arises from their computational simplicity and wellestablished use in ECG applications.
- Neither beat-based nor episode-based measures provide insights on detecting episodes of varying durations effectively.

Detection Delay as an Additional Performance Measure:

- Delay between annotated episode onset and detector-produced onset has gained attention ([32, 35, 39, 89]).
- From an algorithmic perspective, defining and assessing this delay is crucial for comparing performance with annotated episode boundaries.
- Clinically, however, a short detection delay is typically less important than accuracy-based measures, as few ECG applications require immediate response upon episode initiation.

4.6.2 Training and Evaluation

- Approaches to classifier training and performance evaluation vary significantly, as evidenced by studies summarized in Table 4.3.
- Different studies may:
 - Use a proprietary database or LTADFB for training and evaluate performance using AFDB [38, 40, 41, 87].
 - Avoid using the same patients for training and evaluation.
 - Omit details about training dataset sources entirely [33, 37].
 - Train and evaluate using AFDB or other publicly available databases.

Usage of AFDB:

- AFDB commonly serves to:
 - Determine optimal detection thresholds ([32, 34]).
 - Select optimal feature sets for classifiers ([36]), followed by evaluation on other databases.
- Training on AFDB introduces a positive bias, yet some studies include these biased results in performance comparisons ([38, 88, 89, 128]), despite figures not being fully representative.
- Exception: Reference [35] uses AFDB explicitly for both training and evaluation, making its
 results clearly comparable.

Methods to Reduce Bias with AFDB:

- Partition AFDB into separate subsets for training and evaluation to avoid bias:
 - Random selection of non-AF/AF segments.
 - Stratified twofold cross-validation ([39]).
 - Tenfold cross-validation ([90]).
- Example: A subset of AFDB was used for training ([83]), and evaluation was conducted on the full
 dataset afterward, and vice versa.
- While cross-validation on AFDB can assess variability, it remains debatable if these figures generalize to separate datasets due to the limited size of AFDB ([129]).

Patient-based Training and Evaluation Considerations

Training and evaluation methods mentioned earlier are usually population-based; however, a

patient-based approach can also be employed ([88]).

- In patient-based training:
 - Training is based on the initial portion of an ECG recording, and evaluation on the remaining part.
 - Beats containing irregularities are manually excluded from training, inadvertently introducing positive bias.
 - Practical limitations exist, as manual review and good-quality signals aren't always feasible in routine clinical settings.
- Comparing detection performance is significantly challenged by positive bias when the same
 patient data is involved in both training and evaluation.
- Ideal evaluations involve
 - Independent datasets for training and evaluation.
 - Different patient populations for training vs. testing.
- Due to positive bias, comparisons of detection performance metrics (sensitivity and specificity) must be interpreted cautiously, as highlighted in Table 4.3.

Special Note on Adaptive Filtering-Based AF Detection:

- AF detectors using adaptive filtering for f-wave extraction ([100]) can't reliably train and
 evaluate using AFDB, because:
 - AFDB does not contain leads suitable as a pure reference, lacking leads with negligible atrial
 activity.
- · Solutions include:
 - Training on a proprietary multi-lead database.
 - · Evaluating using simulated multi-lead signals ([100]).

4.6.3 Simulated ECG Signals

- Typically, AF detector performance is evaluated using real ECG signals annotated for AF episodes.
 However, simulated ECG signals are used infrequently.
- In contrast, for f-wave extraction, simulated signals are preferred because manual annotations
 are irrelevant to the extraction process.
- Simulated ECG signals are advantageous for studying clinically and technically significant properties, such as:
 - Atrial ectopy
 - Episode duration
 - Noise levels

Detection Accuracy and Simulated ECG Studies ([100])

- Detection accuracy was studied using simulated signals with varying noise levels, both with and without Atrial Premature Beats (APBs).
- Findings highlighted:
 - Importance of properly handling APBs.
 - Detectors using both rhythm and morphology yield much higher accuracy compared to rhythm-only detection in presence of APBs.
 - Lower noise levels facilitate accurate morphology-based detection (due to reliable estimation of f-waves).
- Similar accuracy differences are noted in detecting episodes of varying lengths:
 - Rhythm and morphology-based detection is superior for brief episodes (5, 10, 20, 30 beats).

Simulated ECG Signals for SNR Evaluation

- Simulated signals help determine the minimum SNR (Signal-to-Noise Ratio) at which AF detection remains reliable.
- Example study ([114]):
 - Muscle noise was simulated and added to real ECGs from LTADFB at different SNRs.
 - Results showed minimal reduction in detection accuracy when SNR was expressed in terms
 of decibels (dB).
- Conclusion:
 - Noise level evaluations using simulated signals are essential, particularly for AF detectors analyzing both rhythm and morphology.

4.6.4 Brief AF Episodes

- Clinical importance exists for detecting brief Paroxysmal AF (PAF) episodes due to associated stroke risks, yet minimal attention is given to short episodes in detector evaluations.
- Typically, AFDB includes mostly longer AF episodes, with brief episodes having minimal effect
 on beat-based performance measures.
- However, some studies highlight missed brief episodes:
 - In [32], 30 out of 254 episodes were missed, all shorter than 75 beats.
 - In [35], 32 out of 299 episodes were missed, primarily due to their brief durations (4 to 62 hoats)

Detection Window Length and Brief Episodes

- Performance indirectly evaluated via detection window length analysis:
 - Window length defines minimum detectable AF duration
 - Shorter windows facilitate detection of brief episodes but increase false detections.
 - Longer windows improve rhythm estimation but miss shorter episodes (illustrated in Fig. 4.16).
- ---- . ..

rigure 4.16 Explanation:

- (a) Shows RR interval series from AFDB (record 4043), featuring a short AF episode (20 beats) followed by a longer one.
 - Detection window (sliding box) is too wide, missing the initial brief episode.
- (b) Depicts manual annotation vs. detector output, highlighting detection delay and missed brief
 episode.

Trends in Detection Window Length:

- Historically, detection window length has significantly decreased:
 - From **180 seconds** (1992) [130] to just **8 beats** (2015) [40].
- Further reduced lengths (down to 5 beats) for rhythm-and-morphology-based detectors have been studied ([100]).

Recommended Detection Window:

- · Currently recommended window length:
 - 8 beats for rhythm-based detectors.
 - · 5 beats for rhythm-and-morphology-based detectors.

Performance Degradation with Short Detection Windows

- Shorter detection windows lead to reduced performance in AF detectors based on time-varying coherence ([37], Sect. 4.2.3):
 - 128-beat window: Sensitivity 98.2%, Specificity 97.7% (Table 4.1).
 - 32-beat window: Sensitivity drops to 96.7%, Specificity to 96.1%.
 - Despite reductions, shorter windows may still provide more accurate AF burden estimations
- For simpler detectors using Poincaré plot population distribution ([33]):
 - 128-beat window: Sensitivity 95.9%, Specificity 95.4%.
 - 32-beat window: Sensitivity 94.4%, Specificity 92.6%.

Direct Evaluation with Simulated ECG Signals ([40]):

- Simulated ECGs allow controlled analysis of detector accuracy vs. episode length (**median duration** T_E).
- Results illustrated in Fig. 4.17
 - Detection accuracy decreases with shorter episode durations.

Figure 4.17 Explanation:

- Compares rhythm-only vs. rhythm-and-morphology-based detectors.
- Two types of signals analyzed:
 - (a) Synthetic components
 - (b) Real components
- Noise level fixed at 20 μV RMS.
- Rhythm-and-morphology consistently outperforms rhythm-only, particularly with shorter episode lengths.

Observations from Fig. 4.17:

- Detection accuracy difference between rhythm-only and rhythm-and-morphology-based detectors increases significantly for shorter episodes.
- Real ECG signals cause larger performance drops in rhythm-only detectors compared to synthetic signals, due to the presence of real pathological rhythms.

4.7 Additional Detector Information

- Prediction of AF Onset and Offset:
 - Certain ECG properties explored for predicting AF onset/end:
 - More than 90% of AF episodes are triggered by APBs (atrial premature beats) ([131– 135]).
 - Simple test: Detect increase in APBs not followed by regular RR intervals.
 - Additional tests include analyzing runs of atrial bigeminy/trigeminy and short runs of paroxysmal atrial tachycardia ([136]).

• Heart Rate Variability (HRV) Analysis:

- Paroxysmal AF onset can be preceded by changes in HRV.
- Significant reduction in low-to-high frequency ratio of HRV ([137–139]) indicates AF onset, not detectable after spontaneous recovery ([140]).
- HRV changes described by entropy measures suggest AF preceded by RR interval complexity ([141], [142]).
- AF onset prediction improved using spectral, bispectral, and nonlinear features, plus machine learning classification of preceding HRV patterns ([143]).
- Typically, 30-minute segments analyzed to evaluate APB- and HRV-based prediction.

P Wave Morphology Changes:

- Abnormal interatrial conduction changes P wave morphology prior to AF ([144–145]).
- Duration of minimum P wave may predict recurrent AF ([146–148]).
- Shortening of minimum P wave duration is also predictive ([147, 149])
- P wave morphology alone may predict AF onset ([96, 148])
- However, P wave properties change over longer durations (weeks-months) compared to short-term APB- and HRV-based predictors (minutes), reducing immediate predictive value

for AF detectors.

AF Episode Termination Prediction:

- Detection of AF termination (return to sinus rhythm) is complex, as it depends on cancellation of ventricular activity.
- Dominant atrial frequency (DAF) slows just before termination ([150, 151]).
- Studies using wavelet entropy (reflecting time-frequency unpredictability) suggest potential for termination prediction ([152]).

Role of Physical Activity:

- Physical activity information likely improves AF detection.
- ECG devices increasingly include accelerometers ([153]).
- Although combined ECG-accelerometer data improves accuracy, preliminary results indicate
 accuracy reduction when excluding accelerometer data ([153]).
- Accelerometers alone can detect AF episodes, demonstrated by studies with chest-mounted ([154]) and bed mattress sensors ([155]), without ECG signals.