

CS 372 Lecture #13

The Application Layer:

Domain Name Services (dns)

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach,* 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Addresses in an internet

- Every host that is connected to any network has a unique <u>hardware</u> address
 - 12 hexadecimal digits, assigned by the manufacturer of the network interface device
 - e.g., 90e612a73d
 - used at the physical layer
 - not practical for internet addressing
- IANA assigns internet protocol (IP) network addresses to service providers, etc., to be managed hierarchically
 - e.g., 128.192.0.0 (IP version 4)
- Service providers assign IP addresses to individual subscribers, and bind these IP addresses to subscriber hardware addresses.
 - e.g., 128.192.35.172 (IPv4 dotted-decimal notation)
- Much more later about IP addressing (IPv4 and IPv6)

The need for naming

- All applications use IP addresses through the TCP/IP protocol software
- Numeric addresses are easy for computers to manage
- ... but difficult for humans to remember:
 - e.g., 128.192.35.172 (dotted-decimal)
 - binary form is 1000000011000000010001110101100
- The computer needs binary addresses
- Humans "need" mnemonics
- Domain Name System (DNS) provides translation between symbolic names and IP addresses

- Each name consists of a sequence of alphanumeric components separated by periods
- Examples:
 - comcast.com
 - www.oregonstate.edu
 - www.cnn.com
 - classes.engr.oregonstate.edu
- Note: There is <u>not</u> a correspondence between the DNS name's individual components and the fields of an IP address in dotted-decimal notation

- Names are hierarchical, with most significant component on the right
 - Top-Level Domain (TLD)
- Second from right is the domain name within the TLD
 - Approved by a global authority

- Other names may be added by the organization that owns the name
 - hierarchical structure
- Left-most component is computer name

- NOTE: www does not necessarily imply web services.
 - It's just a computer name in a domain.

- Organizations apply for names in a TLD. E.G.:
 - oregonstate.edu
 - mozilla.com
- Organizations determine own internal structure. E.G.:
 - eecs.oregonstate.edu
 - classes.eecs.oregonstate.edu
 - www.mozilla.com
 - en-US.www.mozilla.com

IP/DNS authority

- IP addresses and "root zone" TLDs coordinated by IANA (Internet Assigned Numbers Authority)
 - http://www.iana.org
- Information database (whois), dispute resolution, etc., managed by InterNIC (Internet Network Information Center)
 - http://www.internic.net
- High-level management of Internet names and addresses handled by ICANN (Internet Corporation for Assigned Names and Numbers)
 - http://www.icann.org
- .com TLD managed by Network Solutions
 - http://www.networksolutions.com
- .edu TLD managed by Educause
 - http://www.educause.edu

"Traditional" top-level domains (TLD)

TLD	Assigned to	
aero	Air transport industry	
arpa	Infrastructure domain	
biz	Businesses	
com	Commercial organization	
coop	Cooperative associations	
edu	Educational institution	
gov	United States Government	
info	Information	
int	International treaty organizations	
mil	United States military	
museum	Museums	
name	Individuals	
net	Major network support center	
org	Non-commercial organizations	
pro	Credentialed professionals	
country code	A country	

New gTLD (generic TLD)

- In 2012, ICANN started taking applications for new TLD names.
 - Application fee: US\$185,000.00
 - Additional fees may apply
 - Approval process: 9 20 months
 - 1,930 applications submitted
 - mostly company names (e.g., .canon, .progressive, ...)
 - ... and professions (e.g., .attorney, .doctor, ...)
- These should be showing up soon.

Geographic structure

http://www.iana.org/domains/root/db#

- TLDs are USA-centric
- Geographic TLDs (ccTLD)
 are used for organizations
 in other countries.

Examples:

- Note: some countries sell their ccTLDs
 - e.g., <u>www.verisign.tv</u>
 - .tv was once owned by Tuvalu

TLD	Country
.uk	United Kingdom
.cn	China
.in	India
.jp	Japan
.pg	Papua New Guinea
.cl	Chile
.ke	Kenya

 Π

Geographic structure

- Countries define their own internal hierarchy:
- ac.jp and .edu.au are used for academic organizations in Japan and Australia, respectively
- DNS domains are <u>logical concepts</u> and need not correspond to physical location of organizations
 - E.G., chinatoday.com is hosted partly in Beijing, partly in San Francisco

DNS: Domain Name System

- distributed database: implemented in hierarchy of many name servers
- application-layer protocol: running at host, routers, & name servers to resolve names (address/name translation)

DNS services

- hostname to IP address translation
- Web server aliasing
 - Canonical, alias names
- mail server aliasing
- load distribution

Discussion question: Lookups would be faster if there were one massive central database instead of having to search a hierarchical distributed database. Why not centralize DNS?

DNS: a distributed, hierarchical database

Example: Client wants IP for www.amazon.com

1st approximation:

- client queries root server to find .com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- Contacted by local name server that can not resolve name
- Root name server:
 - gets mapping from authoritative name server if name mapping not known, and returns mapping to local name server

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

<u>type=A</u>

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

ttl=<seconds to remain in cache>

DNS protocol, messages

query and reply messages, both with same
 message format
 2 bytes

message header

- identification: I 6 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

NOTE: All multi-byte numeric values must be in <u>big-endian</u> order (network order).

Discussion question: Why does DNS use UDP instead of (reliable) TCP?

identification	flags		
# questions	# answer RRs		
# authority RRs	# additional RRs		
questions (variable # of questions)			
answers (variable # of RRs)			
authority (variable # of RRs)			
additional info (variable # of RRs)			

Domain name ⇔ IP address Lookup, Reverse lookup

- http://remote.12dt.com/rns/
- http://www.dnsstuff.com/
- ... and many others

Summary Lecture #13

- Definitions
 - IP address
 - Domain name
 - TLD
- DNS
 - Structure
 - Management
 - Lookups
 - Protocol, messages
- This concludes our coverage of the Application Layer
 - Next: the Transport Layer