Κανονικές Μορφές (Normal Forms)

- Παρέχουν ένα τυπικό πλαίσιο για ανάλυση σχεσιακών σχημάτων βασισμένη στον ορισμό κλειδιών και συναρτησιακών εξαρτήσεων.
- Σχεσιακά σχήματα που ανήκουν σε συγκεκριμένες κανονικές μορφές έχουν ορισμένες επιθυμητές ιδιότητες (π.χ. έλλειψη ανωμαλιών ενημέρωσης).
- Οι κανονικές μορφές καθορίζονται με βάση κάποιες συνθήκες, οι οποίες αν δεν πληρούνται έχουν ως αποτέλεσμα την αποσύνθεση σχημάτων σε σχέσεις οι οποίες πληρούν τις κανονικές μορφές.

Κανονικές Μορφές (Normal Forms)

ightharpoonup Ορισμός: Δεδομένης μια καθολικής σχέσης R, ενός συνόλου F από Σ Ε και μιας αποσύνθεσης $\{R_1,...,R_k\}$ της R, η Σ Ε X \longrightarrow Y του F διατηρείται σε κάποια σχέση R_i της αποσύνθεσης αν και μόνο αν $X \cup Y \subseteq Head(R_i)$

Η διατήρηση των ΣΕ είναι μια επιθυμητή ιδιότητα:
 αν μια ΣΕ Χ →Υ διατηρείται σε μια σχέση R_i, τότε η επαλήθευση της ΣΕ μετά από κάποια ενημέρωση της σχέσης μπορεί να γίνει τοπικά, δηλαδή χωρίς να χρειάζεται να υπολογιστεί κάποιο ⋈.

Μας ενδιαφέρουν αποσυνθέσεις σε κανονικές μορφές χωρίς απώλεια πληροφορίας και με διατήρηση των ΣΕ.

Παράδειγμα

- Παράδειγμα: Κάθε μια από τις ΣΕ
- 1. emp_id \longrightarrow emp_name emp_phone dept_name
- 2. $dept_name \rightarrow dept_phone dept_mgrname$
- 3. $skill_id \rightarrow skill_name$
- emp_id skill_id → skill_date skill_lvl

διατηρείται σε κάποια από τις σχέσεις του σχήματος

```
emps
 emp_id
                                  dept_name
          emp_name
                      emp_phone
depts
                           dept_mgrname
 dept_name
             dept_phone
emp-skills
          skill_id
                      skill_date
                                   skill_lvl
 emp_id
skills
 skill_id
            skill_name
```

3

Κανονική μορφή Boyce-Codd

Μια σχέση R σε ένα σχεσιακό σχήμα με ΣΕ F είναι σε κανονική μορφή Boyce-Codd (BCNF) αν ισχύει η παρακάτω ιδιότητα:

για οποιαδήποτε ΣΕ $X \longrightarrow A$ του F^+ η οποία διατηρείται στην R και για την οποία $A \notin X$, το X είναι κλειδί της R.

- Ένα σχεσιακό σχήμα είναι σε κανονική μορφή BCNF αν κάθε σχέση του είναι σε κανονική μορφή BCNF.
- Αν μια σχέση είναι σε BCNF αυτό σημαίνει ότι κανένα γνώρισμα της σχέσης δεν εξαρτάται συναρτησιακά από κανένα υποσύνολο των γνωρισμάτων της σχέσης, το οποίο δεν είναι κλειδί.

Παράδειγμα BCNF

 Παράδειγμα: Η συναρτησιακή εξάρτηση emp_id skill_id → skill_date skill_lvl

διατηρείται στη σχέση

emp-skills

emp_id	skill_id	skill_date	skill_lvl
--------	----------	------------	-----------

ightarrow Από την emp_id skill_id ightarrow skill_date skill_lvl εξάγονται με την χρήση του κανόνα της αποσύνθεσης οι ΣΕ

```
Emp_id skill_id → skill_date
Emp_id skill_id → skill_lvl
```

Και οι δύο διατηρούνται στη σχέση emp-skills. Δεν υπάρχει άλλη εξάρτηση η οποία διατηρείται στη σχέση αυτή. Το μοναδικό κλειδί της σχέσης είναι το ζεύγος (emp_id, skill_id). Άρα η σχέση είναι σε BCNF.

Παράδειγμα BCNF

Παρόμοια, η εξάρτηση emp_id \rightarrow emp_name emp_phone dept_name διατηρείται στη σχέση

emps

emp_id	emp_name	emp_phone	dept_name
		1 1	1

Από αυτή την εξάρτηση, εξάγονται οι ακόλουθες ΣΕ

emp_id → emp_name

emp_id → emp_phone

emp_id → dept_name

- Οι οποίες όλες διατηρούνται στη σχέση emps. Καμία άλλη ΣΕ δεν διατηρείται στη σχέση αυτή.
- Το μοναδικό κλειδί της σχέσης είναι το γνώρισμα emp_id. Άρα η σχέση είναι σε BCNF.
- Με παρόμοιο τρόπο μπορούμε να δείξουμε ότι ολόκληρο το σχήμα σε
 BCNF.

6

Παράδειγμα BCNF

- ightharpoonup Έστω τώρα ότι θέλουμε να προσθέσουμε την εξάρτηση $dept_mgrname \longrightarrow dept_name$. Συνεχίζει το σχήμα να είναι σε BCNF;
- Οι ΣΕ οι οποίες διατηρούνται είναι

```
dept_name → dept_phone
dept_mgrname → dept_name
dept_mgrname → dept_phone
```

Άρα, το σχήμα συνεχίζει να είναι σε BCNF.

Συμπεράσματα BCNF

- Η κανονική μορφή BCNF είναι πολύ περιοριστική: δεν είναι πάντα δυνατόν να βρεθεί μια αποσύνθεση σε BCNF η οποία ταυτόχρονα να μην πάσχει από απώλεια πληροφορίας και να διατηρεί τις συναρτησιακές εξαρτήσεις.
- Λιγότερο περιοριστικές κανονικές μορφές μας επιτρέπουν να ορίζουμε αποσυνθέσεις σχημάτων χωρίς απώλεια πληροφορίας και με διατήρηση των εξαρτήσεων.

Όλες οι κανονικές μορφές

Τρίτη Κανονική Μορφή

Ορισμός: Ένα γνώρισμα *Α* μιας σχέσης *R* λέγεται *πρωτεύον*, αν και μόνο αν το *Α* είναι *μέρος κάποιου κλειδιού της σχέσης R*

Ορισμός: Έστω μια σχέση *R* και ένα *σύνολο συναρτησιακών* εξαρτήσεων *F*. Η *R* είναι σε **τρίτη κανονική μορφή (3NF)** αν

- ightharpoonup για κάθε συναρτησιακή εξάρτηση της μορφής $X \to A$
 - που διατηρείται στην R
 - ανήκει στο F⁺
- μία από τις παρακάτω προτάσεις είναι αληθής:
 - ➤ X → A είναι τετριμμένη συναρτησιακή εξάρτηση ή
 - Χ είναι ένα υπερκλειδί για την R ή
 - Α είναι ένα πρωτεύον γνώρισμα της R

Τρίτη Κανονική Μορφή

Ορισμός: Ένα σχήμα βάσης δεδομένων *D* είναι σε *Τρίτη Κανονική Μορφή* αν *όλες οι σχέσεις στη D* είναι σε Τρίτη
Κανονική Μορφή

Παράδειγμα (1)

Σχήμα σε BCNF και σε 3NF

- Συναρτησιακές Εξαρτήσεις
 - 1. emp_id → emp_name emp_phone dept_name
 - dept_name → dept_phone dept_mgrname
 - 3. $skill_id \rightarrow skill_name$
 - emp_id skill_id → skill_date skill_level

Παράδειγμα (2)

Σχήμα 3NF αλλά όχι σε BCNF

```
    emps
    emp_id
    emp_name
    emp_phone
    dept_name
    emp_city
    emp_straddr

    empadds
    emp_city
    emp_zip
    emp_straddr
```

- > Συναρτησιακές Εξαρτήσεις
 - emp_id → emp_name emp_phone dept_name emp_city emp_straddr
 - 2. emp_city emp_straddr → emp_zip
 - 3. emp_zip → emp_city
- ightharpoonup Η συναρτησιακή εξάρτηση emp_zip ightharpoonup emp_city διατηρείται στην σχέση empadds αλλά emp_zip δεν είναι κλειδί. Το σχήμα δεν είναι σε BCNF
- > Το κλειδί της empadds είναι το emp_straddr emp_city. Το γνώρισμα emp_city είναι πρωτεύον. Άρα το σχήμα είναι σε 3NF

Δεύτερη Κανονική Μορφή

Ορισμός: Έστω μια σχέση *R* και ένα *σύνολο συναρτησιακών* εξαρτήσεων *F*. Η *R* είναι σε δεύτερη κανονική μορφή (2NF) αν

- > για κάθε συναρτησιακή εξάρτηση της μορφής X → A
 - που διατηρείται στην R
 - ανήκει στο κλείσιμο F⁺
 - με Α να είναι ένα γνώρισμα και δεν ανήκει στο σύνολο γνωρισμάτων Χ
 - > το *Α* να *μην είναι πρωτεύον* γνώρισμα
- το σύνολο των γνωρισμάτων Χ δεν είναι καθαρό υποσύνολο κανενός κλειδιού της R

Παράδειγμα (3)

Σχήμα σε 2NF

```
emps
emp_id
emp_name
emp_phone
dept_name
emp_city
emp_straddr

emp-skills
emp_id
skill_id
skill_date
skill_level

skills

skills
skill_id
skill_name
```

- Συναρτησιακές Εξαρτήσεις
 - emp_id → emp_name emp_phone dept_name emp_city emp_straddr
 - 2. $skill_id \rightarrow skill_name$
 - emp_id skill_id → skill_date skill_level

Παράδειγμα (3)

- > Συναρτησιακές Εξαρτήσεις
 - emp_id → emp_name emp_phone dept_name emp_city emp_straddr
 - 2. $skill_id \rightarrow skill_name$
 - 3. emp_id skill_id → skill_date skill_level
- Το υπερκλειδί για τη σχέση emp-skills είναι το σύνολο των γνωρισμάτων emp_id skill_id
- Οι συναρτησιακές εξαρτήσεις
 - \triangleright emp id skill id \rightarrow skill date K α l
 - \triangleright emp id skill id \rightarrow skill level

συνεπάγονται από το σύνολο F και διατηρούνται στην R.

- Κανένα από τα skill_date, skill_level είναι πρωτεύοντα γνωρίσματα και το emp_id skill_id δεν είναι καθαρό υποσύνολο του υπερκλειδιού της σχέσης.
- Η δεύτερη κανονική μορφή είναι ενδιαφέρουσα μόνο για ιστορικούς λόγους

Αλγόριθμος Αποσύνθεσης σε Τρίτη Κανονική Μορφή

- Έστω μία καθολική σχέση R και ένα σύνολο συναρτησιακών εξαρτήσεων
 F.
- Ο παρακάτω Αλγόριθμος παράγει μία αποσύνθεση της R η οποία διατηρεί τις εξαρτήσεις και δεν έχει απώλεια πληροφορίας.
- Το αποτέλεσμα του αλγορίθμου είναι ένα σύνολο από σχήματα σχέσεων σε 3NF
- Αλγόριθμος:
- 1. Έστω F το σύνολο συναρτησιακών εξαρτήσεων και F' η ελάχιστη του κάλυψη
- $S := \emptyset$
 - 3. Για όλες τις εξαρτήσεις $X \to Y$ στην F' αν δεν υπάρχει Z στην S έτσι ώστε $X \cup Y \subseteq Z$ $S := S \cup (X \cup Y)$
 - 4. Για όλα τα υποψήφια κλειδιά K της R αν το K δεν περιέχεται σε κανένα Z που ανήκει στην S $S := S \cup K$

Παράδειγμα (4)

Η αποσύνθεση σε Τρίτη Κανονική Μορφή αφαιρεί ανωμαλίες και δίνει τη δυνατότητα να ελέγξουμε επαρκώς ότι χρήσιμες συναρτησιακές εξαρτήσεις ικανοποιούνται όταν ενημερώνεται η βάση δεδομένων

Παράδειγμα

course	instructor	class_no	class_room	text
--------	------------	----------	------------	------

- > Συναρτησιακή εξάρτηση
 - 1. class_no → class_room text
- Η εφαρμογή του αλγορίθμου θα δημιουργήσει τις σχέσεις R1,R2 με σχήματα

18

Παράδειγμα (4)

 $S := \emptyset$ Για όλες τις εξαρτήσεις $X \rightarrow Y$ στην F'αν δεν υπάρχει Z στην S έτσι ώστε $X \cup Y \subseteq Z$ $S := S \cup (X \cup Y)$ Για όλα τα υποψήφια κλειδιά Κ της R αν το Κ δεν περιέχεται σε κανένα Ζ που ανήκει στην S $S := S \cup K$ instructor class no class room text course 1. class no \rightarrow class room text 2. Βήμα (1) R1 class no class room text 3. Βήμα (2) R2 class no instructor