

2012年10月全国自考数据结构导论考前密押试卷 (一)

一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.

下列算法的时间复杂度是()

for(i=0, j=0; i<n; i++)
c[i][j]=i+j;

A.0(1)

B.0(n)

 $C.0(log_2n)$

 $D. O(n^2)$

A. A

В. В

C. C

D. D

答案: B

解析: (P28)

- 2. 下列说法正确的是()
 - A. 数据是数据元素的基本单位
 - B. 数据元素是数据项中不可分割的最小标识单位
 - C. 数据可由若干个数据元素构成
 - D. 数据项可由若干个数据元素构成

答案: C

解析: (P24)

3.

设有一顺序栈 s_1 , r_2 , r_3 , r_4 , r_5 , r_5 , r_6 依次进栈,如果 r_6 个元素 出栈的顺序是 r_5 , r_6 , r_8

- A. 2
- B. 3
- C.5
- D. 6

答案: B

(P60) 栈的出入原则是后进先出。从出栈顺序可知,在 s。出栈前,栈中 的元素应为 s₄、s₅、s₄,此时需 3 个位置才能满足需要。所以栈的容量 至少应该是3。

- 4. 设有一个5阶上三角矩阵A[1..5,1..5],现将其上三角中的元素按列优先顺序存放在一维数 组B[1..15]中。已知B[1]的地址为100,每个元素占用2个存储单元,则A[3,4]的地址为()
 - A. 116
 - B. 118
 - C. 120
 - D. 122

答案: A

解析: (P83)

5. .

对于一个具有 n 个元素的线性表, 建立其单链表的最小时间复杂度为()

A. $O(\log_2 n)$ B. O(1) C. $O(n^2)$

D. 0(n)

- A. A
- **B.** B
- C. C
- D. D

答案: D

解析: (P49)无论采用什么方式建立单链表,都需要扫描这n个元素,边扫描边创建单链表中的结 点并链接起来,其时间复杂度为0(n)。本题答案为D。

- 6. 在循环链表的一个结点中有()个指针。
 - **A.** 1
 - B. 2
 - C.0
 - D. 3

答案: A

解析: (P51)

- 7. 一棵完全二叉树上有1001个结点,其中叶子结点的个数是()
 - A. 250
 - B. 500
 - C. 501
 - D. 505

答案: C

(P98)由二叉树结点的公式: $n=n_0+n_1+n_2=n_0+n_1+(n_0-1)=2n_0+n_1-1$,因为 n=1001,所以 $1002=2n_0+n_1$,在完全二叉树中, n_1 只能取 0 或 1,在本题中只能取 0 (如果取 1 则 $n_0=500$. 5 是不可能的),故 n=501。

- 8. 按照二叉树的定义,具有3个结点的二叉树有()
 - A. 3种
 - B. 4种
 - C. 5种
 - D. 6种

答案: C

(P96) 非空二叉树的判定条件是: ①有且只有一个根结点;

②其余结点分为两个互不相交的集合 T_1 、 T_2 , T_1 与 T_2 都是二叉树,并且 T_3 与 T_3 有顺序关系 $(T_4$ 在 T_3 之前)。由此可知,3 个结点的二叉树有 5 种。

9.

设有一个10阶的对称矩阵A,采用压缩存储方式以行序为主序存储, a₀₀为第一个元素,其存储地址为0,每个元素占有1个存储地址空间,则a₄₅的地址为()

- A. 13
- B. 19
- C. 17
- D. 36

答案: B

解析: (P82)

10. .

在一个具有 n 个顶点的无向图中, 要连通全部顶点至少需要()

A. n 条边 B. n+1 条边 C. n-1 条边

- **A.** A
- В. В
- *C*. C
- D. D

答案: C

解析: (P132)

11. .

设图 G 采用邻接表存储,则拓扑排序算法的时间复杂度为()

A. O(n) B. O(n+e) C. $O(n^2)$ D. O(n*e)

- **A.** A
- В. В
- C. C
- D. D

答案: B

解析: (P154)

- 12. 任何一个带权的无向连通图的最小生成树()
 - A. 只有一棵
 - B. 一定有多棵
 - C. 有一棵或多棵
 - D. 可能不存在

答案: C

解析: (P144)

- 13. 采用二分查找法, 若当前取得的中间位置MID的元素值小于被查找值, 则表明待查元素可 能在表的后半部分,下次查找的起始位置通常应()
 - A. 从MID/2位置开始
 - B. 从MID位置开始
 - C. 从MID-1位置开始

D. 从MID+1位置开始

答案: D

解析: (P165)

- **14**. 一组记录的键值为(46, 74, 18, 53, 14, 20, 40, 38, 86, 65),利用堆排序的方法建立的初始堆为()
 - A. (14, 18, 38, 46, 65, 40, 20, 53, 86, 74)
 - *B*. (14, 38, 18, 46, 65, 20, 40, 53, 86, 74)
 - *C*. (14, 18, 20, 38, 40, 46, 53, 65, 74, 86)
 - *D*. (14, 86, 20, 38, 40, 46, 53, 65, 74, 18)

答案: B

解析: (P193)

- 15. 下列排序方法中,属于稳定的排序方法是()
 - A. 直接选择排序法
 - B. 快速排序法
 - C. 冒泡排序法
 - D. 堆排序法

答案: C

解析: (P188)

- 二、填空题(本大题共13小题,每小题2分,共26分)请在每小题的空格中填上正确答案。错填、不填均无分。
 - 1. 从逻辑关系上讲,数据结构主要分为两大类,它们是_____和___。

答案:线性结构 非线性结构 (P25)

2.___

设某非空双链表,其结点形式为 prior data next ,若要删除指针 q 所指向的结点,则需执行下述语句段: q->prior->next=q->next; _______。

答案: q->next->prior=q->prior; (P53)

3. 在顺序表中插入和删除一个元素,需要移动元素,具体移动的元素个数与______有关

答案:该元素在表中的位置 (P38~39)

4. 双向循环链表是一种对称结构,它既有前向链又有后向链,设指针p指向某一结点,则双向循环链表结构的对称性可描述为。

答案: p->prior->next=p=p->next->prior (P52)

5. 判定一个栈ST(最多元素个数为m)为空的条件是。。

百米:	31 /	/top—0 (F01)			
6. 7	有一个:	100×90的稀疏矩阵,	非0元素有10个,	设每个整型数占2字节,	则用三元组表示该矩
阵时,	所需	的字节数是	. 0		
答案:	66	(P84)			

7. 具有256个结点的完全二叉树的深度为____。

答案: 9 (P98)

答案: 先序 (P102)

9. 前序序列为xyz且后序序列为zyx的二叉树共有______棵。

答案: 4 (P102)

10. 一个图的最小生成树是图所有生成树中 最小的生成树。

答案: 权总和 (P144)

11. 对n个元素进行冒泡排序时,第一趟排序的比较次数为____。

答案: n-1 (P187)

12. 散列查找是由键值的 确定散列表中的位置,进行存储式查找。

答案: 散列函数值 (P172)

答案: 8 (P191)

三、应用题(本大题共5小题,每小题6分,共30分)

1. .

用二分查找法对一个长度为 10 的有序表进行查找,填写查找每一元素需要的比较次数。

元素下标: 1 2 3 4 5 6 7 8 9 10 比较次数:

2.500	- 7			1)				
	_	_				 		-
1		1	l .	l .	l .			
1		1	l .	l .	l .			
.1.								

答案: (P165)

(P165) 元素下标: 1 2 3 4 5 6 7 8 9 10 比较次数如下:

NO SEC 10 70 10 75 11 27 24 27 EST 25 EST 10 EST 15 75 10 75 24 25 EST	3	2	3	4	1	3	4	2	3	4
--	---	---	---	---	---	---	---	---	---	---

2. .

分别写出题 30 图中树的先序、后序和层次遍历的结点访问序列。

题 30 图

后序序列: EKLFBGCHIJDA 层次序列: ABCDEFGHIJKL

3. .

已知二叉树如下:

题 31 图 请画出该二叉树对应的森林。

答案: (P116)

转换后的森林如答 31 图所示:

答31图

4.

试写出下图的拓扑序列。

答案: (P151)

(P151) 有以下三个拓扑序列:

V₁ V₅ V₂ V₃ V₆ V₄

V₁ V₅ V₆ V₂ V₃ V₄

V₅ V₆ V₁ V₂ V₃ V₄

5. 已知一组键值序列(32, 44, 38, 65, 53, 42, 29, 57), 试采用堆排序法对该组序列作升序排序, 给出建立的初始堆以及第一次输出堆元素后筛选调整的堆。

答案: (P193) 所求初始堆如答33图(a) 所示:

答33图(a)

输出堆顶后的调整堆如答 33图(b)所示:

答33图(b)

四、算法设计题(本大题共2小题,每小题7分,共14分)

1. 对于循环队列,试写出求队列含有多少个元素的算法。 假定循环队列的类型定义如下: const int maxsize=....: typedef struct cycqueue { DataType[maxsize]; int front, rear; } CycqueueTp; 答案:解法一:计数器初始化为0,从队首开始沿着队列顺序搜索,每走过一个元素,计数器加 1,直到队尾,计数器的最终值即队列长度。算法描述如下: int que_length(CycqueueTp *cq) { int n, k; n=0; //计数器 $k=cq-\rangle front;$ while $(k! = cq \rightarrow rear)$ $\{n++;$ k = (k+1)% maxsize; return n; 解法二: 利用队首和队尾的关系求出队列的长度。 int que_length(CycqueueTp *cq) return (maxsize+cq->rear-cq->front)% maxsize; 2. 试写出二分查找的递归算法。 答案: 算法描述如下: int binsearch 2 (Sqtable R, KeyType k, int low, int high) { int mid=(low+high)/2; if(R.elem[mid].key==k) return mid; else if (R. elem[mid]. key>k) return binsearch_2 (R, K, low, mid-1); else return binsearch 2(R, K, mid+1; high);