MODULE 11: The Internet Protocol Suite

Lecture 11.2 User Datagram Protocol (UDP)

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- · Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

Lecture 11.2 Objectives

- Discuss the basic features of the User Datagram Protocol (UDP)
- Discuss the UDP segment (or datagram) format
- Discuss advantages of UDP over TCP
 - Lack of reliability is an obvious disadvantage

IP Layering

Best-effort Datagram Service

- UDP offers "best-effort" service
 - Packets may be lost or delivered out of order
- Users exchange datagrams (not byte streams)
- UDP is connectionless
- UDP is not buffered
 - UDP accepts data and transmits immediately
 - There is no buffering before transmission
- UDP is full duplex
 - Concurrent transfers can take place in both directions

UDP Segment Format

0 4 8	16 24	31
Source Port	Destination Port	
Message Length	Checksum	
Data		

- UDP has a simple (low overhead) 8-byte header
- · Of course, UDP's service is also simple

UDP: Header Fields

- UDP Destination Port: identifies destination process
- UDP Source Port (optional): identifies source process for replies, or zero
- Message Length: length of datagram in bytes, including header and data
- · Checksum (optional): 16-bit checksum over header and data, or zero
 - Note that many link layers also do an error check, but some may not
 - This is an end-to-end error check

Why UDP?

- Required for IP multicast and broadcast
 - Multicast and broadcast not supported by TCP
- No connection establishment
 - No packet or delay overhead for "handshake" to establish a connection, as with TCP
 - Especially important for short transmissions
- No connection state
 - Does not add memory and processing load to the server to maintain state, as with TCP

Why UDP? (cont'd)

- Low packet overhead
 - 8 bytes for UDP header versus 20 bytes of TCP header
 - Important when sending short units of data
- No buffering or automatic retransmissions
 - Increased application layer control over when data is sent and how many bytes are sent
 - In particular, allows low packetization delay for applications like interactive voice

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

- Discuss the basic features of the User Datagram Protocol (UDP)
- Discuss the UDP segment (or datagram) format
- Discuss advantages of UDP over TCP

If you have any difficulties, please review the lecture video before continuing.

Summary

- UDP properties
 - Connectionless
 - Best-effort (unreliable)
 - Datagram delivery
- UDP is used for efficiency by applications that:
 - Can more efficiently recover from errors at the application layer
 - Can tolerate loss, often more so than delay
- UDP must also be used for broadcast (one-to-all) and multicast (one-to-many) communication

MODULE 11: The Internet Protocol Suite

Lecture 11.2 User Datagram Protocol (UDP)

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

