# EEE104 – Digital Electronics (I) Lecture 12

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

#### In This Session

- Functions of Combinational Logic Gates
  - Encoders
  - Multiplexers
  - Demultiplexers

2

#### **Encoders**

- *Encoding* is the process of converting from familiar symbols or numbers to a coded format.
- An encoder performs a "reverse" decoder function.



The Decimal-to-BCD Encoder:

If any input is high, it will output a BCD code for that decimal digit, e.g. 4 to 0100.

#### **Encoders**

The Decimal-to-BCD Encoder

| ۸       |    | CODE           | BCD |     |               |
|---------|----|----------------|-----|-----|---------------|
| $A_3 =$ | Ao | A <sub>1</sub> | Az  | A 3 | DECIMAL DIGIT |
| $A_2 =$ | 0  | 0              | 0   | 0   | 0             |
| $A_1 =$ | 1  | 0              | 0   | 0   | 1             |
| _       | 0  | 1              | 0   | 0   | 2             |
| $A_0 =$ | 1  | 1              | 0   | 0   | 3             |
| 9       | 0  | 0              | 1   | 0   | 4             |
| So a    | 1  | 0              | 1   | 0   | 5             |
| used    | 0  | 1              | 1   | 0   | 6             |
| 3.300   | 1  | 1              | 1   | 0   | 7             |
|         | 0  | 0              | 0   | 1   | 8             |
|         | 1  | 0              | 0   | 1   | 9             |

$$A_3 = 8 + 9$$
 $A_2 = 4 + 5 + 6 + 7$ 
 $A_1 = 2 + 3 + 6 + 7$ 
 $A_0 = 1 + 3 + 5 + 7 + 9$ 

So an OR gate can be used for each output.

3

#### **Encoders**

An MSI Decimal-to-BCD Encoder - 74HC147



- Active-LOW inputs and outputs.
- A priority encoder:
   when more than one
   inputs are active, the
   highest-order decimal
   digit input will be active.

5

#### **Encoders**

Applications: A keyboard encoder



## Multiplexers

- A multiplexer (MUX), also known as a data selector, outputs one of its multiple data inputs.
- The *data select* inputs will decide which data input is to be switched to the output line.



## Multiplexers

**DATA-SELECT INPUTS** 



7

## Multiplexers

MSI 8-Input Multiplexers

- When EN is LOW, the selected data input appears in Y.
- Whwn EN is HIGH, Y is LOW and /Y is HIGH.



9

### Multiplexers

Application Examples: A Logic Function Generator

| $A_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inputs A <sub>1</sub> | $A_0$                                                 | Output<br>Y                                                           | EN MUX                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
| $ \begin{array}{cccc} 0 & & & & & & & & & \\ 0 & & & & & & & & & \\ 0 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & \\ 1 & & & & & \\ 1 & & & &$ | 1                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} $ | Input Variables $ \begin{bmatrix} A_0 & & & & & & & & & & & & & & & & & & &$ |

# Multiplexers

| Decimal |       | Inp   | outs  |       | Output |
|---------|-------|-------|-------|-------|--------|
| Digit   | $A_3$ | $A_2$ | $A_1$ | $A_0$ | Ŷ      |
| 0       | 0     | 0     | 0 ,   | 0     | 0      |
| 1       | 0     | 0     | 0     | 1     | 1      |
| 2       | 0     | 0     | 1     | 0     | 1      |
| 3       | 0     | 0     | 1     | 1     | 0      |
| 4       | 0     | 1     | 0     | 0     | 0      |
| 5       | 0     | 1     | 0     | 1     | 1      |
| 6       | 0     | . 1   | 1     | 0     | 1      |
| 7       | 0     | 1     | 1     | 1     | 1      |
| 8       | 1     | 0     | 0     | 0     | 1      |
| 9       | 1     | 0     | 0     | 1     | 0      |
| 10      | . 1   | 0     | 1     | 0     | 1      |
| 11      | 1     | 0     | 1     | 1     | 0      |
| 12      | 1     | 1     | 0     | 0     | 1      |
| 13      | 1     | 1     | 0     | 1     | 1      |
| 14      | 1     | 1     | 1     | 0     | 0      |
| 15      | 1     | 1     | 1     | 1     | 1      |

**Application Examples:** 

A 4-Variable Logic Function Generator

The  $A_3A_2A_1$  are used as data select inputs.

For each pair of rows:

1. 
$$A_0$$
 01 Y 00 : Y = 0

2. 
$$A_0$$
 01 Y 11 : Y = 1

3. 
$$A_0$$
 01 Y 01:  $Y = A_0$ 

4. 
$$A_0$$
 01 Y 10 :  $Y = \overline{A_0}$ 

# Multiplexers

Application Examples: 4-Variable Logic Function Generator

| . •         |                  |
|-------------|------------------|
| $A_3A_2A_1$ | Υ                |
| 000         | $A_0$            |
| 001         | $\overline{A}_0$ |
| 010         | $A_0$            |
| 011         | 1                |
| 100         | $\overline{A}_0$ |
| 101         | $\overline{A}_0$ |
| 110         | 1                |
| 111         | $A_0$            |
|             |                  |



### **Demultiplexers**

- A demultiplexer (DEMUX) takes data from one line and distributes them to one of the output lines.
- It reverses the multiplexering function.



13

## Demultiplexers

• MUXs and DEMUXs are often used when data from *multiple sources* are to be transmitted *over one line* and redictributed to *multiple destinations*.



### **Demultiplexers**



74HC154 (a 4-line-to-16-line decoder) can also be used as an MSI demultiplexer.

The data is input to chip select pins.

14