АлГем

Сергей Григорян

25 сентября 2024 г.

Содержание

1	Лекция 6					
	1.1	Векто	рное произведение векторов	5		
	1.2	Запис	ъ векторного произведения в произвольном базисе	7		
	1.3	Биорт	гогональный базис	8		
2	Лекция 7					
	2.1	Поня	Понятие ур-я мн-ва. Задание прямой на пл-ти			
		2.1.1	Случай ПДСК	12		
		2.1.2	Признаки параллельности/перпендикулярности пря-			
			мых на плоскости	13		

1 Лекция 6

Определение 1.1. A - матрица размера 3×3

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

 a_{ii} - главная диагональ Определителем такой матрицы наз-ся число, равное:

 $|A| = \det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$ (слагаемые, параллельные главной диагонали) —

$$-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}$$
 (слагаемые, \parallel побочной диагонали)

Таким образом, **определитель матрицы** - это сумма произведений эл-ов матрицы, взятых по одному и ровно по одному слагаемому из каждой строки и из каждого столбца. Произведение имеет знак +, если оно || главной диагонали, иначе - побочной.

<u>Утверждение</u> 1.1. Пусть G - базис в V_3 , $\overline{a} \longleftrightarrow_G \alpha, \overline{b} \longleftrightarrow_G \beta, \overline{c} \longleftrightarrow_G \gamma$, тогда:

$$V\left(\overline{a}, \overline{b}, \overline{c}\right) = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} V\left(\overline{e_1}, \overline{e_2}, \overline{e_3}\right)$$

Доказательство.

$$V\left(\sum_{i} \alpha_{i} \overline{e_{i}}, \sum_{j} \beta_{j} \overline{e_{j}}, \sum_{k} \gamma_{k} \overline{e_{k}}\right) = \sum_{i} \sum_{j} \sum_{k} \alpha_{i} \beta_{j} \gamma_{k} V\left(\overline{e_{i}}, \overline{e_{j}}, \overline{e_{k}}\right) =$$

Рассм.:

	i	j	k
1)	1	2	3
2)	2	3	1
3)	3	1	2
4)	2	1	3
5)	3	2	1
6)	1	3	2

$$\Rightarrow$$

$$\begin{split} &=\alpha_{1}\beta_{2}\gamma_{3}V\left(\overline{e_{1}},\overline{e_{2}},\overline{e_{3}}\right)+\alpha_{2}+\beta_{3}\gamma_{1}V\left(\overline{e_{2}},\overline{e_{3}},\overline{e_{1}}\right)+\alpha_{3}\beta_{1}\gamma_{2}V\left(\overline{e_{3}},\overline{e_{1}},\overline{e_{2}}\right)\left(\square \mathsf{И}\mathsf{K}\Pi\right)+\\ &+\alpha_{2}\beta_{1}\gamma_{3}V\left(\overline{e_{2}},\overline{e_{1}},\overline{e_{3}}\right)+\alpha_{3}\beta_{2}\gamma_{1}V\left(\overline{e_{3}},\overline{e_{2}},\overline{e_{1}}\right)+\alpha_{1}\beta_{3}\gamma_{2}V\left(\overline{e_{1}},\overline{e_{3}},\overline{e_{2}}\right)\left(\mathsf{TPAHCHO3ИЦИЯ}\right)\Rightarrow\\ &=V\left(\overline{e_{1}},\overline{e_{2}},\overline{e_{3}}\right)\left(\alpha_{1}\beta_{2}\gamma_{3}+\alpha_{2}\beta_{3}\gamma_{1}+\alpha_{3}\beta_{1}\gamma_{2}-\alpha_{2}\beta_{1}\gamma_{3}-\alpha_{3}\beta_{2}\gamma_{1}-\alpha_{1}\beta_{3}\gamma_{2}\right)=\\ &=V\left(\overline{e_{1}},\overline{e_{2}},\overline{e_{3}}\right)\ast\det\left(\alpha^{\uparrow},\beta^{\uparrow},\gamma^{\uparrow}\right)\end{split}$$

Следствие 1.1. *Если* G - *ОНБ*, *то:*

$$V(\overline{a}, \overline{b}, \overline{c}) = |\alpha^{\uparrow} \quad \beta^{\uparrow} \quad \gamma^{\uparrow}|$$
$$S(\overline{a}, \overline{b}) = |\alpha^{\uparrow}, \beta^{\uparrow}|$$

Следствие 1.2. В произвольном базисе $V_2: \overline{a}||\overline{b}\iff S\left(\overline{a},\overline{b}\right)=0\iff V_3: \overline{a},\overline{b},\overline{c}-\kappa o m n .\iff |\alpha^{\uparrow} \quad \beta^{\uparrow} \quad \gamma^{\uparrow}|=0$

Теорема 1.1 (Крамера, 1750 г.). Пусть дана СЛУ (система линейных \overline{yp} -ий): 3-х yp-ий с 3-мя неизвестными:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

Замечание.

$$\iff AX = B,$$

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Введём ОНБ G:

$$\overline{a_1} \overset{\longleftarrow}{\longleftrightarrow} \begin{pmatrix} \overline{a_{11}} \\ \overline{a_{21}} \\ \overline{a_{31}} \end{pmatrix}, \overline{a_2} \overset{\longleftarrow}{\longleftrightarrow} A_{*2}, \overline{a_3} \overset{\longleftarrow}{\longleftrightarrow} A_{*3}$$

Эта система явл. определённой $\iff |A| = \Delta \neq 0$ В этом случае, система имеет решение:

$$x = \frac{\triangle_x}{\wedge}, y = \frac{\triangle_y}{\wedge}, z = \frac{\triangle_z}{\wedge}$$
 (Формула Крамера)

 \mathcal{A} оказательство. а) **Необходимое:** Пусть система опр. $\Rightarrow x_0\overline{a_1} + y_0\overline{a_2} + z_0\overline{a_3} = \overline{b}$ - имеет. ед. реш. Пусть $\det A = 0 \Rightarrow \overline{a_1}, \overline{a_2}, \overline{a_3}$ - компл. $\Rightarrow \Im 3 \Rightarrow$

 \exists нетрив. ЛК $\lambda_1\overline{a_1} + \lambda_2\overline{a_2} + \lambda_3\overline{a_3} = \overline{o}$, тогда:

 $(\lambda_1+x_0)\overline{a_1}+(\lambda_2+y_0)\overline{a_2}+(\lambda_3+z_0)\overline{a_3}=\overline{b}$ — другое реш. системы \Rightarrow противореичие!!!

- b) Достаточное: Пусть $\det A \neq 0 \Rightarrow \overline{a_1}, \overline{a_2}, \overline{a_3}$ не компл. $\Rightarrow \overline{a_1}, \overline{a_2}, \overline{a_3}$ $\Rightarrow \overline{b}$ однозначно выр-ется черз $x\overline{a_1} + y\overline{a_2} + z\overline{a_3} = \overline{b}$
- с) Формулы:

$$\begin{split} V(\overline{a_{11}},\overline{a_{21}},\overline{b}) &= V(\overline{a_{11}},\overline{a_{21}},x\overline{a_1} + y\overline{a_2} + z\overline{a_3}) = \\ &= xV(\overline{a_{11}},\overline{a_{21}},\overline{a_1}) + yV(\overline{a_{11}},\overline{a_{21}},\overline{a_2}) + zV(\overline{a_{11}},\overline{a_{21}},\overline{a_3}) = \dots \end{split}$$

<u>Определение</u> **1.2.** СЛУ наз-ся **несовместной**, если она не имеет ни одного решения.

Определение 1.3. СЛУ наз-ся **совместной**, если она имеет хотя бы одно решение.

Также она наз-ся:

- Определённой, если имеет единственное решение
- Неопределённой, если имеет более одного решения

1.1 Векторное произведение векторов

 V_3 : $\overline{a},\overline{b}\in V_3:[\overline{a},\overline{b}]$ - мат., $\overline{a} imes\overline{b}$ - физ.

Определение 1.4. Векторное произведение вект. $\overline{a}, \overline{b}$ наз-ся вектор \overline{c} , т. ч.:

- 1) $\overline{c} \perp \overline{a}, \overline{c} \perp \overline{b}$
- 2) $|\overline{c}| = S_{\parallel \text{Ma, ofpas.}\overline{a},\overline{b}} = |S(\overline{a},\overline{b})|$
- 3) Тройка $(\overline{a},\overline{b},\overline{c})$ правая тройка

Замечание. Eсли $\overline{a}||\overline{b}, mo \ \overline{c} = \overline{o}$

Теорема 1.2 (О связи векторного произв. с ориент. объёмом).

$$V(\overline{a}, \overline{b}, \overline{c}) = ([\overline{a}, \overline{b}], \overline{c}) = (\overline{a}, [\overline{b}, \overline{c}])$$

Доказательство. $\overline{a}||\overline{b}\Rightarrow 0=0$ - верно

1) Пусть $\overline{a}\not ||\overline{b},$ тогда они образ. пл-ть $\alpha.$ Пусть \overline{n} - вектор нормали к $\alpha:$

$$\begin{cases} \overline{n} \perp \overline{a} \\ \overline{n} \perp \overline{b} \end{cases} \Rightarrow (\overline{a}, \overline{b}, \overline{n}) - \text{правая} \\ |\overline{n}| = 1 \end{cases}$$

Было: $V(\overline{a}, \overline{b}, \overline{c}) = S(\overline{a}, \overline{b})(\overline{n}, \overline{c}) = (S(\overline{a}, \overline{b})\overline{n}, \overline{c}) = ([\overline{a}, \overline{b}]\overline{c})$

2)
$$(\overline{a}, [\overline{b}, \overline{c}]) = ([\overline{b}, \overline{c}], \overline{a}) = V(\overline{b}, \overline{c}, \overline{a}) = V(\overline{a}, \overline{b}, \overline{c})$$

<u>Замечание</u>. Сочетание скалярного и векторного произведений также назыв. смешанным:

$$(\overline{a}, \overline{b}, \overline{c}) \colon \colon = ([\overline{a}, \overline{b}], \overline{c}) = (\overline{a}, [\overline{b}, \overline{c}]) = V(\overline{a}, \overline{b}, \overline{c})$$

<u>Лемма</u> 1.3. Если $\forall \overline{c}=V_3\Rightarrow (\overline{a},\overline{c})=(\overline{b},\overline{c}),\ mo\ \overline{a}=\overline{b}$

Доказательство.

$$(\overline{a} - \overline{b}, \overline{c}) = 0, \forall \overline{c}$$
$$\overline{c} = \overline{a} - \overline{b} \Rightarrow$$
$$(\overline{a} - \overline{b}, \overline{a} - \overline{b}) = \overline{o} \Rightarrow \overline{a} = \overline{b}$$

 ${ {
m \bf Teopema} \ \, 1.4 \ ({
m O} \ {
m cb}$ -вах вект. произведения). $a) \ [\overline{a},\overline{b}] = -[\overline{b},\overline{a}]$ - $\kappa oco-cum mempuuhocmb$

b)
$$[\overline{a}, \overline{b_1} + \overline{b_2}] = [\overline{a}, \overline{b_1}] + [\overline{a}, \overline{b_2}]$$

 $c) \quad [\overline{a}, \lambda \overline{b}] = \lambda [\overline{a}, \overline{b}]$

(b), (c) - линейность по II аргументу.

 $\ensuremath{\mathcal{A}}$ оказательство. а) Пусть \overline{a} $\ensuremath{/\!|} \overline{b}$ (иначе очев.)

 $(\overline{a},\overline{b},[\overline{a},\overline{b}])$ - правая тройка

 $(\overline{b},\overline{a},[\overline{a},\overline{b}])$ - левая тройка \Rightarrow

 $(\overline{b},\overline{a},-[\overline{a},\overline{b}])$ - правая тройка, при этом:

 $(\overline{b},\overline{a},[\overline{b},\overline{a}])$ - правая тройка

Ч. Т. Д.

b) Докажем эквив. утв: $([\overline{a}, \overline{b_1} + \overline{b_2}], \overline{c}) = ([\overline{a}, \overline{b_1}] + [\overline{a}, \overline{b_2}], \overline{c}), \forall \overline{c}$

$$([\overline{a}, \overline{b_1} + \overline{b_2}], \overline{c}) = (\overline{a}, \overline{b_1} + \overline{b_2}, \overline{c}) = (\overline{a}, \overline{b_1}, \overline{c}) + (\overline{a}, \overline{b_2}, \overline{c}) =$$

$$= ([\overline{a}, \overline{b_1}], \overline{c}) + ([\overline{a}, \overline{b_2}], \overline{c}) = ([\overline{a}, \overline{b_1}] + [\overline{a}, \overline{b_2}], \overline{c})$$

1.2 Запись векторного произведения в произвольном базисе

 $\underline{\textbf{Теорема}} \ \textbf{1.5.} \ \varPiусть \ G \ \textbf{-} \ \textit{базис в V}_3, \ \overline{a} \overset{}{\longleftrightarrow} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}, \overline{b} \overset{}{\longleftrightarrow} \overset{}{\longleftrightarrow} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}. \ \textit{Тогда:}$

$$[\overline{a},\overline{b}] = egin{array}{cccc} [\overline{e_2},\overline{e_3}] & \overline{[\overline{e_3},\overline{e_1}]} & [\overline{e_1},\overline{e_2}] \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \end{array}$$

Доказательство.

$$[\overline{a}, \overline{b}] = \left[\sum_{i=1}^{3} \alpha_{i} \overline{e_{i}}, \sum_{i=1}^{3} \beta_{i} \overline{e_{i}}\right] = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} [\overline{e_{i}}, \overline{e_{j}}] =$$

Рассм.:

$$= (\alpha_2\beta_3 - \alpha_3\beta_2)[\overline{e_2}, \overline{e_3}] + (\alpha_3\beta_1 - \alpha_1\beta_3)[\overline{e_3}, \overline{e_1}] + (\alpha_1\beta_2 - \alpha_2\beta_1)[\overline{e_1}, \overline{e_2}]$$

Замечание. В упрощ. виде:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$$

1.3 Биортогональный базис

 V_3 : $G = (\overline{e_1}, \overline{e_2}, \overline{e_3})$

Определение 1.5. Векторы

$$f_1 = \frac{[\overline{e_2}, \overline{e_3}]}{(\overline{e_1}, \overline{e_2}, \overline{e_3})}, f_2 = \frac{[\overline{e_3}, \overline{e_1}]}{(\overline{e_1}, \overline{e_2}, \overline{e_3})}, \overline{f_3} = \frac{[\overline{e_1}, \overline{e_2}]}{(\overline{e_1}, \overline{e_2}, \overline{e_3})}$$

наз-ся векторами **биортогонального** (к G) базиса

 ${ {f Teopema}\over \it suc} \ {f 1.6} \ ({
m O} \ {
m c}$ в-вах биортогонального базиса). $a) \ (\overline{f_1},\overline{f_2},\overline{f_3})$ - $\it \delta a$ -

b)
$$(\overline{f_i}, \overline{e_j}) = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

c) Ecnu
$$\overline{v} \longleftrightarrow_{G} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
, mo $\alpha = (\overline{v}, \overline{f_1}), \beta = (\overline{v}, \overline{f_2}), \gamma = (\overline{v}, \overline{f_3})$

2 Лекция 7

Определение 2.1. Пусть $\overline{a}, \overline{b}, \overline{c} \in V_3$

Двойным векторным произв. наз-ся выр-е: $[\overline{a}, [\overline{b}, \overline{c}]]$

Теорема 2.1 (Тождество БАЦ-ЦАБ).

$$[\overline{a}, [\overline{b}, \overline{c}]] = \overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b})$$

Доказательство. Выделим правый ОНБ след. образом:

$$\overline{e_1}||\overline{a}$$

$$\overline{e_2}$$
, т. ч. $(\overline{a},\overline{b},\overline{e_2})$ — компланарная сист.

$$\overline{e_3} = [\overline{e_1}, \overline{e_2}]$$

Тогда:

$$\overline{a} \overset{}{\longleftrightarrow} \begin{pmatrix} \alpha \\ 0 \\ 0 \end{pmatrix}$$

$$\bar{b} \stackrel{\longleftarrow}{\longleftrightarrow} \begin{pmatrix} \beta_1 \\ \beta_2 \\ 0 \end{pmatrix}$$

$$\overline{c} \overset{}{\longleftrightarrow} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}$$

$$[\overline{b},\overline{c}] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \beta_1 & \beta_2 & 0 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix} = \beta_2 \gamma_3 \overline{e_1} - \overline{e_2} \beta_1 \gamma_3 + \overline{e_3} (\beta_1 \gamma_2 - \beta_2 \gamma_1) \longleftrightarrow_G \begin{pmatrix} \beta_2 \gamma_3 \\ -\beta_1 \gamma_3 \\ \beta_1 \gamma_2 - \beta_2 \gamma_1 \end{pmatrix}$$

$$[\overline{a}, [\overline{b}, \overline{c}]] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \alpha & 0 & 0 \\ \beta_2 \gamma_3 & -\beta_1 \gamma_3 & \beta_1 \gamma_2 - \beta_2 \gamma_1 \end{vmatrix} \longleftrightarrow_G \begin{pmatrix} 0 \\ -\alpha(\beta_1 \gamma_2 - \beta_2 \gamma_1) \\ -\alpha \beta_1 \gamma_3 \end{pmatrix}$$

$$\overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b}) = \begin{pmatrix} \alpha \beta_1 \gamma_1 \\ \alpha \beta_2 \gamma_1 \\ 0 \end{pmatrix} - \begin{pmatrix} \alpha \beta_1 \gamma_1 \\ \alpha \beta_1 \gamma_2 \\ \alpha \beta_1 \gamma_3 \end{pmatrix} = [\overline{a}, [\overline{b}, \overline{c}]]$$

Следствие 2.1 (Тождество Якоби).

$$[\overline{a}, [\overline{b}, \overline{c}]] + [\overline{b}, [\overline{c}, \overline{a}]] + [\overline{c}, [\overline{a}, \overline{b}]] = \overline{o}, \forall \overline{a}, \overline{b}, \overline{c}$$

2.1 Понятие ур-я мн-ва. Задание прямой на пл-ти

 V_2 или V_3 с фикс. ДСК.

Определение 2.2. Ур-ем мн-ва $M\subset V_i$ наз-ся высказывание, верное $\forall x\in M$ и неверное $\forall x\in V_i\backslash M$

 V_2 с фикс. ДСК

Определение 2.3. Ненулевой вектор \overline{a} , кот. || данной прямой l наз-ся её направляющим вектором.

Picture(2)

Векторное параметрическое ур-е прямой:

$$\overline{r} = \overline{r_0} + t\overline{a}, t \in \mathbb{R}$$

$$\overline{a} \longleftrightarrow_G \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

$$\overline{r} \longleftrightarrow_G \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\overline{r_0} \longleftrightarrow_G \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
(1)

Коорд. параметрическое ур-е прямой:

$$\begin{cases} x = x_0 + \alpha_1 t \\ y = y_0 + \alpha_2 t \end{cases}, t \in \mathbb{R}$$
 (2)

Каноническое ур-е прямой:

$$t = \frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2} = \frac{z - z_0}{\alpha_3} \tag{3}$$

Если $\alpha_2 = 0$:

 $l: y - y_0 = 0$

<u>Замечание</u>. Если одна из коор-т напр. вектора равна θ , то соотв. коор-т можно приравнять к начальной

$$\alpha_2(x - x_0) - \alpha_1(y - y_0) = 0$$

При $A = \alpha_2, B = -\alpha_1$, имеем <u>общее ур-е прямой на пл-ти:</u>

$$Ax + By + C = 0$$

$$\overline{a} = \begin{pmatrix} -B \\ A \end{pmatrix}$$
(4)

<u>Утверждение</u> **2.1.** Пусть l задана общ. ур-ем (4), $X_0 \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in l$ Тогда $X_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \in l \iff A(x_1 - x_0) + B(y_1 - y_0) = 0$

Доказательство. а) Необходимое:

$$\begin{cases} Ax_0 + By_0 + C = 0 \\ Ax_1 + By_1 + C = 0 \end{cases} \Rightarrow A(x_1 - x_0) + B(y_1 - y_0) = 0$$

b) Достаточное:

$$X_0 \in l$$
 и $A(x_1 - x_0) + B(y_1 - y_0) = 0$
 $\Rightarrow Ax_1 + By_1 + C = 0$

 ${f \underline{C}}$ ледствие ${f 2.2.}$ Вектор ${ar b} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ явл. направляющим вектором l :

$$Ax + By + C = 0 \iff Ap_1 + Bp_2 = 0$$

Теорема 2.2. Пусть l: Ax + By + C = 0.

Тогда любой напр. вектор этой прямой коллинеарен вектору $\binom{-B}{A}$, а в кач-ве начальной точки X_0 этой прямой можно взять:

$$X \begin{pmatrix} -\frac{AC}{A^2+B^2} \\ -\frac{BC}{A^2+B^2} \end{pmatrix}$$

$$\lambda inom{-B}{A}$$
 — вектор $A(-\lambda B) + B(-\lambda A) = 0 \Rightarrow$ напр.

b)
$$-\frac{A^2C}{A^2+B^2} - \frac{B^2C}{A^2+B^2} + C = -C + C = 0$$

<u>Следствие</u> **2.3.** Все рассм. выше способы задания прямой l - эквивалентны.

2.1.1 Случай ПДСК

(O,G) - ПДСК

Утверждение2.2.
$$l: Ax + By + C = 0$$
Тогда вектор $\overline{n} \begin{pmatrix} A \\ B \end{pmatrix} \perp l$

Доказательство.

$$\overline{a} \begin{pmatrix} -B \\ A \end{pmatrix} \Rightarrow (\overline{n}, \overline{a}) = A(-B) + B(-A) = 0 \Rightarrow \overline{n} \perp \overline{a}$$

Определение 2.4. Вектор \overline{n} наз-ся вектором нормали к прямой l

<u>Ур-е прямой с угловым коэффициентом</u> (ПДСК): Picture (3) and (4)

<u>Замечание</u>. Если $B \neq 0$ (и только в этом случае), то ур-е l: Ax + By + C = 0 можно записать в виде:

$$y = -\frac{A}{B}x - \frac{A}{B}$$

2.1.2 Признаки параллельности/перпендикулярности прямых на плоскости

Утверждение 2.3. *а) Прямые:*

$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \end{cases} \iff k_1 = k_2$$

b) Прямые: $i=\overline{1,2}$: $A_ix+B_iy+C_i=0$ парамельны $\iff \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}=0$

Доказательство. a) Picture(5)

$$k_1 = \operatorname{tg} \phi = k_2$$

b) $l_1||l_2\iff \overline{n_1}||\overline{n_2}\iff S(\overline{n_1},\overline{n_2})=0\iff \begin{vmatrix} A_1 & A_2\\ B_1 & B_2 \end{vmatrix}$

Утверждение 2.4. *а)* Прямые:

$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \end{cases}$$

 $nepneн \partial uкулярны, npu k_1k_2 = -1$

$$l_1 \perp l_2 \iff A_1 A_2 + B_1 B_2 = 0$$

Доказательство. а)

$$\phi_1 = \phi_2 + \frac{\pi}{2} \iff \operatorname{tg} \phi_1 = \operatorname{tg}(\phi_2 + \frac{\pi}{2}) = -\operatorname{ctg} \phi_2 = -\frac{1}{\operatorname{tg} \phi_2} \iff \operatorname{tg} \phi_1 \operatorname{tg} \phi_2 = -1 \iff k_1 k_2 = -1$$

b)
$$l_1 \perp l_2 \iff (\overline{n_1}, \overline{n_2}) = 0 \iff A_1 A_2 + B_1 B_2 = 0$$

Утверждение 2.5. Прямые l_1 : $A_1x+B_1y+C_1=0$, l_2 : $A_2x+B_2y+C_2=0$

- а) Пересекаются по одной точке $\iff \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \neq 0$
- b) Параллельны (включая совпадение) $\iff \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = 0$
- c) Совпадают \iff ур-я пропорциональны

Доказательство.

$$\begin{cases} A_1 x + B_1 y + C_1 = 0 \\ A_2 x + B_2 y + C_2 = 0 \end{cases}$$

- а) Единственное решение при $\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \neq 0$
- b) Противоположность a): $\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = 0$
- c) Пусть $l_1 = l_2 \Rightarrow$

$$A_1B_2 = B_1A_2 \Rightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \lambda \Rightarrow \begin{cases} A_1 = \lambda A_2 \\ B_1 = \lambda B_2 \end{cases}$$
 (где $\lambda \neq 0, \lambda \neq \infty$)

Определение 2.5. Полупл-тью, определяемой прямой l и вектором нормали \overline{n} , наз-ся мн-во всех точек x пл-ти, т. ч. вектор $\overline{X_0X}$ составляет с вектором \overline{n} угол $\leq \frac{\pi}{2}$

$$\cos \phi \ge 0 \iff (\overline{X_0 X_1}, \overline{n}) \ge 0$$
$$A(x - x_0) + B(y - y_0) \ge 0$$
$$Ax_0 + By_0 = 0 \Rightarrow Ax + By + C \ge 0$$

Picture (7)