Association Rules Mining

Lecturer: Dr. Nguyen Ngoc Thao

Department of Computer Science, FIT, HCMUS

Many slides adapted from Bing Liu

Outline

- What is Association Rule Mining?
- Basic Concepts of Association Rules
- The Apriori Algorithm
- The FP-Growth Algorithm
- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

Outline

What is Association Rule Mining?

- Basic Concepts of Association Rules
- The Apriori Algorithm
- The FP-Growth Algorithm
- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

Association Rule Mining

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Association rule mining generate (strong) association rules from frequent patterns that represent inherent regularities in data
 - What products were often purchased together?
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

Applications:

 Market basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (clickstream) analysis, and DNA sequence analysis, etc.

Applications: Market Basket Data Analysis

- Discover how items purchased by customers in a supermarket (or a store) are associated
 - Plan marketing or advertising strategies, design new catalogs, and design different store layouts

Applications: Finding Linguistic Patterns

- Discover the co-occurrence relationships of words (or linguistic patterns) in text documents
 - Group documents according to topics, and infer the writing style

Applications: Web Usage Mining

- Discover patterns in clickstreams, user transactions and other user interactions with Web resources
 - Provide personalization to visitors, effectively arrange the site content and optimize the space for storing

Association Rule Mining

- First introduced by Agrawal et al in 1993
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

```
Bread \rightarrow Milk [sup = 5%, conf = 100%]
```

- It is an important data mining model studied extensively by the database and data mining community
- Assume all data are categorical
- No good algorithm for numeric data

Outline

What is Association Rule Mining?

Basic Concepts of Association Rules

- The Apriori Algorithm
- The FP-Growth Algorithm
- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

The Model: Data

- $I = \{i_1, i_2, ..., i_m\}$: a set of items
- Transaction t: a set of items and $t \subset I$
- Transaction database T: a set of transactions, $T = \{t_1, t_2, ..., t_n\}$

Transaction Data: Market Basket Data

Market basket transactions:

TID	Transaction
t1	{Bread, Cheese, Milk}
t2	{Milk, Bread, Yogurt}
tn	{Biscuit, Eggs, Milk}

Concepts:

- An item: an item/article in a basket
- I: the set of all items sold in the store
- A transaction: a set of items purchased in a basket by a customer; it may have TID (transaction ID)
- A transactional dataset: a set of transactions
- This is a simplistic view of shopping baskets
 - The quantity and price of each item, for example, are not considered in the model

Transaction Data: A Set of Documents

A text document dataset

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

 Each document is treated as a "bag" of keywords (transaction), without considering word sequence and the number of occurrences of each word

The Model: Rules

- A transaction t contains X, a set of items (itemset) in I, if $X \subset t$
- An association rule is an implication of the form:
 - $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y = \emptyset$
 - E.g., given a transaction {Milk, Bread, Cereal}, an association rule may be Milk, Bread → Cereal

- An itemset is a set of items
 - E.g., X = {Milk, Bread, Cereal} is an itemset
- A k-itemset is an itemset with k items.
 - E.g., {Milk, Bread, Cereal} is a 3-itemset

Rule Strength Measures

- The support count of X in T (denoted by X.count) is the number of transactions in T that contain X
 - E.g., in the transaction database T, {Bread}.count = 4, {Milk, Eggs}.count = 0

Transaction database T

TID	Transaction
10	{Bread, Cheese, Juice}
20	{Milk, Bread, Yogurt}
30	{Bread, Juice, Milk}
40	{Eggs, Bread, Cheese, Juice}
50	{Cheese, Juice, Milk}

Rule Strength Measures

- The strength of a rule is measured by its support and confidence
- Assume the transaction database T has n transactions
- Support: The rule holds with support sup in T if sup% of transactions contain $X \cup Y$

$$support = \Pr(X \cup Y) = \frac{(X \cup Y).count}{n}$$

- Support determines how frequent the rule is applicable in T
- Confidence: The rule holds in T with confidence conf if conf% of transactions that contain X also contain Y.

$$confidence = Pr(Y \mid X) = \frac{(X \cup Y).count}{X.count}$$

Confidence thus determines the predictability of the rule

Goal and Key Features

- Goal: Find all rules that satisfy the user-specified minimum support (minsup) and minimum confidence (minconf)
- Key Features
 - Completeness: find all rules.
 - No target item(s) on the right-hand-side
 - Mining with data on hard disk (not in memory)

Association Rules Mining Algorithms

- In general, association rule mining can be viewed as a two-step process:
 - 1. Find all frequent itemsets: a frequent itemset is an itemset that has transaction support above minsup
 - Generate strong association rules from the frequent itemsets: a confident association rule is a rule with confidence above minconf

An Example

- The transaction database
 T has seven transactions.
 Let minsup = 30% and minconf = 80%.
- {Chicken, Clothes, Milk}
 is a frequent 3-itemset

TID	Transaction	
t1	Beef, Chicken, Milk	
t2	Beef, Cheese	
t3	Cheese, Boots	
t4	Beef, Chicken, Cheese	
t5	Beef, Chicken, Clothes, Cheese, Milk	
t6	Chicken, Clothes, Milk	
t7	Chicken, Milk, Clothes	

- Chicken, Clothes → Milk [sup = 3/7, conf = 3/3] is valid
 - sup > 30% and conf > 80%
 - As well as Clothes, Milk → Chicken, Clothes → Milk, Chicken

An Example

- The transaction database
 T has seven transactions.
 Let minsup = 30% and minconf = 80%.
- {Chicken, Clothes, Milk} is a frequent 3-itemset

TID	Transaction	
t1	Beef, Chicken, Milk	
t2	Beef, Cheese	
t3	Cheese, Boots	
t4	Beef, Chicken, Cheese	
t5	Beef, Chicken, Clothes, Cheese, Milk	
t6	Chicken, Clothes, Milk	
t7	Chicken, Milk, Clothes	

- Chicken → Clothes, Milk [sup = 3/7, conf = 3/5] is invalid
 - sup > 30% but conf < 80%
 - As well as Chicken, Milk → Clothes, Milk → Chicken, Clothes

Association Rules Mining Algorithms

- There are a large number of them!!
 - Apriori, FP-Growth, ECLAT,...
- They use different strategies and data structures
- Their resulting sets of rules are all the same
 - Given a transaction data set T, and a minimum support and a minimum confident, the set of association rules existing in T is uniquely determined
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different

Outline

- What is Association Rule Mining?
- Basic Concetps of Association Rules

The Apriori Algorithm

- The FP-Growth Algorithm
- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

The Apriori Algorithm

- Proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association rules
 - Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. In Proceedings of International Conference on Very Large Data Bases (VLDB-1994), 1994
- The best known algorithm
- Designed to operate on transaction databases
- It uses prior knowledge of frequent itemset properties

Step 1: Mining all frequent itemsets

- A frequent itemset is an itemset whose support is ≥ minsup
- The apriori property (downward closure property): any subsets of a frequent itemset are also frequent itemsets
 - If an itemset has at least one infrequent subset, can this itemset be frequent?

Illustrating Apriori Principle

Figure from the book Introduction to Data Mining, Tan, Steinbach, Kumar

Step 1: Mining all frequent itemsets

- Assume that the items in I are sorted in lexicographic order (a total order)
- Let $\{w[1], w[2], ..., w[k]\}$ be a k-itemset w consisting of items w[1], w[2], ..., w[k], where $w[1] < w[2] < \cdots < w[k]$
- The Apriori is based on levelwise search, making multiple passes over the data.

Apriori algorithm for Step 1

- Input: Transaction database T
- Output: The set F of all frequent itemsets (line 13)

```
Algorithm Apriori(T)
     C_1 \leftarrow \text{init-pass}(T);
                                                         // the first pass over T
    F_1 \leftarrow \{f | f \in C_1, f.\text{count}/n \ge minsup\}; // n \text{ is the no. of transactions in } T
     for (k = 2; F_{k-1} \neq \emptyset; k++) do
                                                         // subsequent passes over T
        C_k \leftarrow \text{candidate-gen}(F_{k-1});
        for each transaction t \in T do
                                                    // scan the data once
            for each candidate c \in C_k do
                 if c is contained in t then
8
                    c.count++;
            endfor
10
        endfor
        F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}
12
     endfor
     return F \leftarrow \bigcup_k F_k;
```

Step 1: Pseudo Code

```
Algorithm Apriori(T)
     C_1 \leftarrow \text{init-pass}(T);
                                                        // the first pass over T
     F_1 \leftarrow \{f | f \in C_1, f.\text{count}/n \ge minsup\}; // n \text{ is the no. of transactions in } T
     for (k=2; F_k] The first pass
        C_k \leftarrow \text{cand}
        for each tra - Count the supports of individual items (line 1)
            for eacl - Determine the set of frequent 1-itemsets F_1 (line 2)
                if c is contained in t then
                   c.count++;
9
            endfor
10
        endfor
        F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}
     endfor
     return F \leftarrow \bigcup_k F_k;
```

Step 1: An Example

Transaction database *T*

TID	Transaction
10	{Bread, Cheese, Juice}
20	{Milk, Bread, Yogurt}
30	{Bread, Juice, Milk}
40	{Eggs, Bread, Cheese, Juice}
50	{Cheese, Juice, Milk}

1st scan

C_1	
Item	Sup
Bread	4
Cheese	3
Eggs	1
Juice	4
Milk	3
Yogurt	1

F_1	
Item	Sup
Bread	4
Cheese	3
Juice	4
Milk	3

Minsup = 40%

Step 1: Pseudo Code (cont.)

```
Algorithm Apriori(T)

1 C_1 \leftarrow \text{init-pass}(T);  // the first pass over T

2 F_1 \leftarrow \{f | f \in C_1, f.\text{count}/n \ge minsup}\};  // n is the no. of transactions in T

3 \mathbf{for} (k = 2; F_{k-1} \ne \emptyset; k++) \mathbf{do}  // subsequent passes over T

4 C_k \leftarrow \text{candidate-gen}(F_{k-1});

5 \mathbf{for} each transaction t \in T \mathbf{do}  // scan the data once

6 \mathbf{for} each candidate c \in C_k \mathbf{do}

7 \mathbf{if} c is contained in t \mathbf{then}

8 c.count++;

9 \mathbf{endfor}

10 \mathbf{endfor}
```

In each subsequent pass k (k > 2)

- 1. Generate candidate itemsets C_k from the frequent itemsets F_{k-1} using the function candidate-gen (line 4)
- 2. Scan the database again to count the actual support of each candidate itemset c in C_k (line 5-10)

Step 1: An Example (cont.)

Transaction database T

TID	Transaction	
10	{Bread, Cheese, Juice}	
20	{Milk, Bread, Yogurt}	
30	{Bread, Juice, Milk}	
40	{Eggs, Bread, Cheese, Juice}	
50	{Cheese, Juice, Milk}	

1st scan

C_1		
Item	Sup	
Bread	4	
Cheese	3	
Eggs	1	
Juice	4	
Milk	3	
Yogurt	1	

_ 1	
Item	Sup
Bread	4
Cheese	3
Juice	4

3

F

Milk

Minsup = 40%

U 2	

Item	Sup
Bread, Cheese	2
Bread, Juice	3
Bread, Milk	2
Cheese, Juice	3
Cheese, Milk	1
Juice, Milk	2

Item
Bread, Cheese
Bread, Juice
Bread, Milk
Cheese, Juice
Cheese, Milk
Juice, Milk

Step 1: Pseudo Code (cont.)

```
Algorithm Apriori(T)
     C_1 \leftarrow \text{init-pass}(T);
                                                        // the first pass over T
                                                      // n is the no. of transactions in T
     F_1 \leftarrow \{f | f \in C_1, f.\text{count}/n \ge minsup\};
     for (k = 2; F_{k-1} \neq \emptyset; k++) do
                                                        // subsequent passes over T
        C_k \leftarrow \text{candidate-gen}(F_{k-1});
        for each transaction t \in T do
                                                       // scan the data once
            for each candidate c \in C_k do
                if c is contained in t then
                   c.count++;
9
            endfor
        endfor
10
        F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}
```

In each subsequent pass k (k > 2)

3. Build the frequent itemset F_k by determines which of the candidate itemsets c are actually frequent (line 11)

Step 1: An Example (cont.)

Transaction database T

TID	Transaction
10	{Bread, Cheese, Juice}
20	{Milk, Bread, Yogurt}
30	{Bread, Juice, Milk}
40	{Eggs, Bread, Cheese, Juice}
50	{Cheese, Juice, Milk}

C_1		
Item	Sup	
Bread	4	
Cheese	3	
Eggs	1	
Juice	4	
Milk	3	
Yogurt	1	

1	
Item	Sup
Bread	4
Cheese	3
Juice	4
Milk	3

Minsup = 40%

F ₂		
Item	Sup	
Bread, Cheese	2	
Bread, Juice	3	
Bread, Milk	2	
Cheese, Juice	3	
Juice, Milk	2	

2	
Item	Sup
Bread, Cheese	2
Bread, Juice	3
Bread, Milk	2
Cheese, Juice	3
Cheese, Milk	1
Juice, Milk	2

Item
Bread, Cheese
Bread, Juice
Bread, Milk
Cheese, Juice
Cheese, Milk
Juice, Milk

Step 1: An Example (cont.)

|--|

Item	Sup
Bread, Cheese	2
Bread, Juice	3
Bread, Milk	2
Cheese, Juice	3
Juice, Milk	2

3rd scan

-3	
Item	Sup
Bread, Cheese, Juice	2
Bread, Juice, Milk	1
F ₃	
ltem	Sup
Bread Cheese Juice	2

Candidate-gen Function

The candidate generation function consists of two steps:
 the join step and the pruning step

```
Function candidate-gen(F_{k-1})
                                               // initialize the set of candidates
     C_k \leftarrow \emptyset;
     forall f_1, f_2 \in F_{k-1}
                                               // find all pairs of frequent itemsets
        with f_1 = \{i_1, \ldots, i_{k-2}, i_{k-1}\}
                                               // that differ only in the last item
        and f_2 = \{i_1, \ldots, i_{k-2}, i'_{k-1}\}
        and i_{k-1} \le i'_{k-1} do
                                               // according to the lexicographic order
                                               // join the two itemsets f_1 and f_2
          c \leftarrow \{i_1, ..., i_{k-1}, i'_{k-1}\};
           C_k \leftarrow C_k \cup \{c\};
                                               // add the new itemset c to the candidates
          for each (k-1)-subset s of c do
               if (s \notin F_{k-1}) then
                  delete c from C_k;
                                         // delete c from the candidates
10
           endfor
     endfor
                                               // return the generated candidates
     return C_k;
```

Candidate-gen Function

- Join step (lines 2–6): Two frequent (k-1) itemsets are joined to produce a possible candidate c (line 6)
 - The two frequent itemsets f_1 and f_2 have exactly the same items except the last one (lines 3–5)
 - c is added to the set of candidates C_k (line 7)
- Pruning step (lines 8–11): A candidate c from the join step will be deleted from C_k if any of its k-1 subsets (there are k of them) is not in F_{k-1}
 - Explain why?

Candidate-gen Function: Example

Let the set of frequent itemsets at level 3 be

$$F_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$$

 The join step (which generates candidates for level 4) will produce two candidate itemsets

$$C_4 = \{\{1, 2, 3, 4\}, \{1, 3, 4, 5\}\}$$

- {1, 2, 3, 4} is generated by joining {1, 2, 3} and {1, 2, 4}
- {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}
- After the pruning step: $C_4 = \{\{1, 2, 3, 4\}\}$
 - $\{1, 4, 5\}$ is not in F_3 and thus $\{1, 3, 4, 5\}$ cannot be frequent

Exercise 1

A database has seven transactions. Let minsup = 30%.
 Find all frequent itemsets using Apriori algorithm.

TID	Transaction
t1	Beef, Chicken, Milk
t2	Beef, Cheese
t3	Cheese, Boots
t4	Beef, Chicken, Cheese
t5	Beef, Chicken, Clothes, Cheese, Milk
t6	Chicken, Clothes, Milk
t7	Chicken, Milk, Clothes

Algorithm Efficiency

- Apriori is theoretically an exponential algorithm
 - Let the number of items in I be m. The space of all itemsets is $O(2^m)$ because each item may or may not be in an itemset
- The sparseness of the data and the high minimum support value make the mining possible and efficient
 - Sparseness: the store sells a lot of items, but each shopper only purchases a few of them

Transaction data

TID	Transaction		
10	{Juice}		
20	{Milk, Yogurt}		
30	{Bread, Juice, Milk}		
40	{Eggs, Bread, Cheese}		
50	{Cheese}		

Binaries data

В	С	Е	J	M	Y
0	0	0	1	0	0
0	0	0	0	1	1
1	0	0	1	1	0
1	1	1	0	0	0
0	1	0	0	0	0

Algorithm Efficiency

- The algorithm can scale up to large data sets as it does not load the entire data into the memory
 - It only scans the data K times, where K is the size of the largest itemset. In practice, K is often small (e.g., < 10)
- The algorithm is based on level-wise search. It has the flexibility to stop at any level
 - Long frequent itemsets or long association rules may not be meaningful in some applications
- Given a transaction database T and a minsup, any algorithm should find the same set of frequent itemsets
 - This property does not hold for many other data mining tasks, e.g., classification or clustering

Algorithm Efficiency

- The interestingness problem: a huge number of itemsets (and rules), tens of thousands, or more, are produced
 - It is hard for the user to analyze them to find those useful ones

Exercise 2

 A database has four transactions. Let minsup = 50%. Find all frequent itemsets using Apriori algorithm.

TID	Transaction
t1	Crab, Milk, Cheese, Bread
t2	Cheese, Milk, Apple, Pie, Bread
t3	Apple, Crab, Pie, Bread
t4	Bread, Milk, Cheese

Step 2: Generating association rules

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset X,

For each proper nonempty subset B of X

$$-$$
Let $A = X - B$

 $-A \rightarrow B$ is an association rule if

$$confidence\ (A \rightarrow B) \geq minconf$$

- $support(A \rightarrow B) = support(A \cup B) = support(X)$
- $confidence(A \rightarrow B) = \frac{support(A \cup B)}{support(A)}$

Step 2: An Example

- Suppose {2, 3, 4} is frequent, with sup = 50%
- Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4},
 with sup = 50%, 50%, 75%, 75%, 75%, 75% respectively
- These generate these (candidate) association rules:
 - $2.3 \rightarrow 4$, confidence=100%
 - $2,4 \rightarrow 3$, confidence=100%
 - $3.4 \rightarrow 2$, confidence=67%
 - $2 \rightarrow 3,4$, confidence=67%
 - $3 \rightarrow 2,4$, confidence=67%
 - $4 \rightarrow 2,3$, confidence=67%
 - All rules have support = 50%

Step 2: Generating association rules

- Such exhaustive rule generation strategy is inefficient
- Alternative strategy: If $X B \rightarrow B$ is valid then all rules $X B_{sub} \rightarrow B_{sub}$ must be valid
 - B_{sub} is a non-empty subset of B
- For example: Given a frequent itemset $\{A,B,C,D\}$. If $(A,B\to C,D)$ is valid then $(A,B,C\to D)$ and $(A,B,D\to C)$ are also valid

Rule Generation for Apriori Algorithm

Figure from the book Introduction to Data Mining, Tan, Steinbach, Kumar

Step 2: Generating association rules

- To recap, in order to obtain $A \rightarrow B$, we need to have support $(A \rightarrow B)$ and support (A)
- All the required information for confidence computation has already been recorded in itemset generation. No need to see the data T any more
- This step is not as time-consuming as frequent itemsets generation

```
Algorithm genRules(F)
                                         // F is the set of all frequent itemsets
     for each frequent k-itemset f_k in F, k \ge 2 do
         output every 1-item consequent rule of f_k with confidence \geq minconf and
2
             support \leftarrow f_k.count / n // n is the total number of transactions in T
        H_1 \leftarrow \{\text{consequents of all 1-item consequent rules derived from } f_k \text{ above}\};
3
4
         ap-genRules(f_k, H_1);
5
     endfor
Procedure ap-genRules(f_k, H_m) // H_m is the set of m-item consequents
     if (k > m + 1) AND (H_m \neq \emptyset) then
       H_{m+1} \leftarrow \text{candidate-gen}(H_m);
       for each h_{m+1} in H_{m+1} do
4
           conf \leftarrow f_k.count / (f_k - h_{m+1}).count;
5
           if (conf \ge minconf) then
6
               output the rule (f_k - h_{m+1}) \rightarrow h_{m+1} with confidence = conf and
               support = f_k.count / n; // n is the total number of transactions in T
           else
8
              delete h_{m+1} from H_{m+1};
9
       endfor
10
       ap-genRules(f_k, H_{m+1});
     endif
```

Step 2: An Example

Transaction database T

TID	Transaction
10	{Bread, Cheese, Juice}
20	{Milk, Bread, Yogurt}
30	{Bread, Juice, Milk}
40	{Eggs, Bread, Cheese, Juice}
50	{Cheese, Juice, Milk}

```
Minsup = 40%
Minconf = 60%
```

- F₁ = {{Bread}:4, {Cheese}:3, {Juice}:4, {Milk}:3}
- F₂ = {{Bread, Cheese}:2, {Bread, Juice}:3, {Bread, Milk}:2, {Cheese, Juice}:3, {Juice, Milk}:2}
- F₃ = {{Bread, Cheese, Juice}:2}
- Let's generate rules for F₃
- While rules for F₂ can be generated in a similar way

Algorithm genRules(F)

// *F* is the set of all frequent itemsets

- for each frequent k-itemset f_k in F, $k \ge 2$ do
- output every 1-item consequent rule of f_k with confidence $\geq minconf$ and support $\leftarrow f_k.count / n / / n$ is the total number of transactions in T

First generate all rules with one item in the consequent and output those whose conf ≥ minconf

- J CHUIUI
 - 1. Bread, Cheese → Juice
 - 2. Bread, Juice \rightarrow Cheese
 - 3. Cheese, Juice \rightarrow Bread

[sup =
$$2/5$$
, conf = 1]

[sup =
$$2/5$$
, conf = $2/3$]

[sup =
$$2/5$$
, conf = $2/3$]

Algorithm genRules(F) // F is the set of all frequent itemsets

- 1 **for** each frequent *k*-itemset f_k in F, $k \ge 2$ **do**
- output every 1-item consequent rule of f_k with confidence $\geq minconf$ and support $\leftarrow f_k.count / n / / n$ is the total number of transactions in T
- 3 $H_1 \leftarrow \{\text{consequents of all 1-item consequent rules derived from } f_k \text{ above} \};$

Add to H_1 the consequents of all valid 1-item consequent association rules

- 1. Bread, Cheese → Juice
- 2. Bread, Juice \rightarrow Cheese
- 3. Cheese, Juice \rightarrow Bread

[sup =
$$2/5$$
, conf = 1]

[sup =
$$2/5$$
, conf = $2/3$]

[sup =
$$2/5$$
, conf = $2/3$]

$$H_1 = \{\{Bread\}, \{Cheese\}, \{Juice\}\}\}$$

```
Procedure ap-genRules(f_k, H_m) // H_m is the set of m-item consequents
     if (k > m + 1) AND (H_m \neq \emptyset) then
       H_{m+1} \leftarrow \text{candidate-gen}(H_m);
Generate H_{m+1} from H_m using candidate-gen function
           conj \leftarrow J_k.count / (J_k - n_{m+1}).count
           if (conf \ge minconf) then
               output the rule (f_k - h_{m+1}) \rightarrow h_{m+1} with confidence = conf and
6
               support = f_k.count / n; // n is the total number of transactions in T
           else
              delete h_{m+1} from H_{m+1};
       endfor
       ap-genRules(f_k, H_{m+1});
     endif
          H_1 = \{\{Bread\}, \{Cheese\}, \{Juice\}\}\}
          \rightarrow H_2 = \{\{Bread, Cheese\}, \{Bread, Juice\}, \{Cheese, Juice\}\}\}
```

Generate a candidate rule having its consequent $h_{m+1} \in H_{m+1}$

- If $conf(f_k h_{m+1} \rightarrow h_{m+1}) \ge minconf$ then output the rule
- Otherwise, delete h_{m+1} from H_{m+1}

```
    conf ← f<sub>k</sub>.count / (f<sub>k</sub> - h<sub>m+1</sub>).count;
    if (conf ≥ minconf) then
    output the rule (f<sub>k</sub> - h<sub>m+1</sub>) → h<sub>m+1</sub> with confidence = conf and support = f<sub>k</sub>.count / n; // n is the total number of transactions in T
    else
    delete h<sub>m+1</sub> from H<sub>m+1</sub>;
```

 $H_2 = \{\{Bread, Cheese\}, \{Bread, Juice\}, \{Cheese, Juice\}\}\}$

```
Procedure ap-genRules(f_k, H_m) // H_m is the set of m-item consequents
     if (k > m + 1) AND (H_m \neq \emptyset) then
       H_{m+1} \leftarrow \text{candidate-gen}(H_m);
        for each h_{m+1} in H_{m+1} do
           conf \leftarrow f_k.count / (f_k - h_{m+1}).count;
           if (conf \ge minconf) then
6
                output the rule (f_k - h_{m+1}) \rightarrow h_{m+1} with confidence = conf and
                support = f_k.count / n; // n is the total number of transactions in T
            else
              delete h_{m+1} from H_{m+1};
        endfor
10
        ap-genRules(f_k, H_{m+1});
```

Recursively call the function with H_{m+1}

Exercise 1 (cont.)

 A database has seven transactions. Let minsup = 30% and minconf = 80%. Find all association rules from the set of frequent itemsets found in the first step of Apriori.

TID	Transaction
t1	Beef, Chicken, Milk
t2	Beef, Cheese
t3	Cheese, Boots
t4	Beef, Chicken, Cheese
t5	Beef, Chicken, Clothes, Cheese, Milk
t6	Chicken, Clothes, Milk
t7	Chicken, Milk, Clothes

Exercise 1 (cont.) - Solution

Beef → Cheese	$= \frac{\text{sup} = 3/7, conf} = 3/4}{\text{sup}}$
Cheese → Beef	$= \frac{1}{5} [sup = 3/7, conf = 3/4]$
■ Beef → Chicken	= [sup = 3/7, conf = 3/4]
Chicken → Beef	= [sup = 3/7, conf = 3/5]
Chicken → Clothes	$= \frac{1}{5} = \frac{3}{7}, \text{ conf} = \frac{3}{5}$
 Clothes → Chicken 	[sup = 3/7, conf = 3/3]
2. Chicken \rightarrow Milk	[sup = 4/7, conf = 4/5]
3. Milk \rightarrow Chicken	[sup = 4/7, conf = 4/4]
4. Clothes \rightarrow Milk	[sup = 3/7, conf = 3/3]
Milk → Clothes	$= \frac{1}{5} [sup = 3/7, conf = 3/4]$
5. Chicken, Clothes \rightarrow Milk	[sup = 3/7, conf = 3/3]
Chicken, Milk → Clothes	$= \frac{1}{5} [sup = 3/7, conf = 3/4]$
6. Clothes, Milk \rightarrow Chicken	[sup = 3/7, conf = 3/3]
7. Clothes → Milk, Chicken	[sup = 3/7, conf = 3/3]

Exercise 2 (cont.)

 A database has four transactions. Let minsup = 50% and minconf = 80%. Find all association rules from the set of frequent itemsets found in the first step of Apriori.

TID	Transaction
t1	Crab, Milk, Cheese, Bread
t2	Cheese, Milk, Apple, Pie, Bread
t3	Apple, Crab, Pie, Bread
t4	Bread, Milk, Cheese

Outline

- What is Association Rule Mining?
- Basic Concetps of Association Rules
- The Apriori Algorithm

The FP-Growth Algorithm

- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

The FP-Growth Algorithm

- Encodes the data set using a compact data structure called an FP-tree and extracts frequent itemsets directly from this structure
- Idea: Recursively grow frequent patterns by pattern and database partition
- The FP-Growth Approach
 - Depth-first search (Apriori: Breadth-first search)
 - Avoid explicit candidate gen

The FP-Growth Algorithm

FP-tree construction:

- Scan DB once, find frequent 1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- Scan DB again, construct FP-tree

FP-Growth approach:

- For each frequent item, construct its conditional patternbase, and then its conditional FP-tree
- Repeat the process on newly created conditional FP-trees
- Until the resulting FP-tree is empty, or it contains only one path. A single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Construct FP-tree from a Transaction Database

TID	Transaction	(ordered frequent items)
100	{f, a, c, d, g, i, m, p}	{f, c, a, m, p}
200	{{a, b, c, f, I, m, o}	{f, c, a, b, m}
300	{b, f, h, j, o, w}	{f, b}
400	{b, c, k, s, p}	{c, b, p}
500	{a, f, c, e, l, p, m, n}	{f, c, a, m, p}

Minsup = 60%

- Scan DB once, find frequent1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases			
<u>item</u>	cond. pattern base		
f			
C	f:3		
a	fc:3		
b	fca:1, f:1, c:1		
m	fca:2, fcab:1		
p	fcam:2, cb:1		

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Conditional pattern bases

Conditional FP-trees

a

Mining Frequent Itemsets from Conditional FP-Trees

- If the conditional FP-tree T has one single prefix path P
 - Generate frequent itemsets that are subpaths of P

m-conditional FP-tree

- If the conditional FP-tree has multiple prefix paths
 - Recursively apply the process (find the conditional pattern-bases and build conditional FP-trees) for T

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node-links and the count field)

Outline

- What is Association Rule Mining?
- Basic Concetps of Association Rules
- The Apriori Algorithm
- The FP-Growth Algorithm

Which Patterns Are Interesting?

- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

Pattern Evaluation

- Association rule algorithms tend to produce a large number of rules
 - Many of them are uninteresting or redundant
 - Redundant if A, B, C → D and A, B → D have same support and confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Application of Interestingness Measure

Figure from Lecture Notes for Chapter 6, Introduction to Data Mining, Tan, Steinbach, Kumar

Computing Interestingness Measure

• Given a rule $A \rightarrow B$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $A \rightarrow B$

	В	В	
Α	f ₁₁	f ₁₀	f ₁₊
Ā	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 f_{11} : support of A and B f_{10} : support of A and B f_{01} : support of A and B f_{00} : support of A and B

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule:

Tea → Coffee

- Confidence = P(Coffee | Tea) = 0.75 but P(Coffee) = 0.9
 - ⇒ Although confidence is high, rule is misleading
 - \Rightarrow P(Coffee | $\overline{\text{Tea}}$) = 0.9375

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
- $P(S \land B) = 420/1000 = 0.42$
- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
- $P(S \land B) = P(S) \times P(B) \Rightarrow$ Statistical independence
- $P(S \land B) > P(S) \times P(B) \Rightarrow$ Positively correlated
- $P(S \land B) < P(S) \times P(B) \Rightarrow$ Negatively correlated

Statistical-based Measures

Measures that take into account statistical dependence

•
$$Lift = \frac{P(B|A)}{P(B)} = \frac{sup(A \cup B)}{sup(A)sup(B)}$$
 (also called $Interest$)

• Leverage =
$$P(A,B) - P(A)P(B)$$

= $sup(A \cup B) - sup(A)sup(B)$

• Conviction =
$$\frac{P(A)P(\neg B)}{P(A\neg B)} = \frac{1-sup(B)}{1-conf(A\rightarrow B)}$$

Statistical-based Measures: An Example

TID	Transaction
t1	Milk, Bread
t2	Butter
t3	Beer, Diapers
t4	Milk, Bread, Butter
t5	Bread

Association Rule:

Bread, Milk → **Butter**

- Sup(Bread, Butter, Milk) = 0.2, sup(Bread, Milk) = 0.4, sup(Butter) = 0.4
- Support = 0.2, confidence = 0.2 / 0.4 = 0.5
- Lift = 0.2 / (0.4 * 0.4) = 1.25
- Leverage = 0.2 0.4*0.4 = 0.04
- Conviction = (1 0.4) / (1 0.5) = 1.2

Drawback of Lift & Interest

• Contingency tables for the word pairs $\{p, q\}$ and $\{r, s\}$

	р	р	
q	880	50	930
q	50	20	70
	930	70	1000

	r	r	
S	20	50	70
S	50	880	930
	70	930	1000

- The lift factor for $\{p, q\}$ is 1.02 and for $\{r, s\}$ is 4.08.
- p and q appear together in 88% of the documents, their interest factor is close to 1 (independence)
- The lift for $\{p, q\}$ is higher than for $\{r, s\}$ even though r and s seldom appear together in the same document.
- Confidence is perhaps the better choice in this situation

	#	Measure	Formula
There are lots of	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
measures proposed in	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
the literature	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
Some measures are	6	Kappa (κ)	$\dot{P}(A,B)+P(\overline{A},\overline{B})-\dot{P}(A)P(B)-P(\overline{A})P(\overline{B})$
good for certain applications, but not	7	Mutual Information (M)	$\frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i})P(B_{j})}}$ $\overline{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
for others	8	J-Measure (J)	$\max\left(P(A,B)\log(rac{P(B A)}{P(B)})+P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}), ight.$
			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
What criteria should		, ,	$-P(B)^2-P(\overline{B})^2$,
we use to determine			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure is			$-P(A)^2-P(\overline{A})^2$
good or bad?	10	Support (s)	P(A,B)
9	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	$\operatorname{Laplace} \left(L \right)$	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
Read Chapter 6,	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})}, rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
Introduction to Data	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
Mining, Tan,	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
Steinbach, Kumar	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Comparing Different Measures

10 examples of contingency tables:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

Rankings of contingency tables using various measures:

#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Subjective Interestingness Measure

- Objective measure: Based on statistics
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc.)
- Subjective measure: Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Outline

- What is Association Rule Mining?
- Basic Concetps of Association Rules
- The Apriori Algorithm
- The FP-Growth Algorithm
- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns
- Summary

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Closed Frequent Itemset

 An frequent itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A, B, C}
2	{A, B, C, D}
3	{B, C, E}
4	{A, C, D, E}
5	{D, E}

Itemset	Support		
{A}	3		
{B}	3		
{C}	4		
{D}	3		
{E}	3		
{A, B}	2		
{A, C}	3		
{A, D}	2		

Itemset	Support
{B, C}	3
$\{C, D\}$	2
{C, E}	2
{D, E}	2
{A, B, C}	2
{A, C, D}	2

Maximal vs Closed Frequent Itemsets

TID	Items
1	{A, B, C}
2	{A, B, C, D}
3	{B, C, E}
4	{A, C, D, E}
5	{D, E}

Not supported by any transactions

Figure from Lecture Notes for Chapter 6, Introduction to Data Mining, Tan, Steinbach, Kumar

Maximal vs Closed Frequent Itemsets

Figure from Lecture Notes for Chapter 6, Introduction to Data Mining, Tan, Steinbach, Kumar

Maximal vs Closed Frequent Itemsets

Figure from Lecture Notes for Chapter 6, Introduction to Data Mining, Tan, Steinbach, Kumar

Mining Algorithms for Maximal/Closed Itemsets

- Mining maximal frequent itemsets
 - MaxMiner (1998), Mafia (2001), GenMax (2005), etc.
- Mining closed frequent itemsets
 - Close (1999), Closet (2000), Mafia (2001), Pascal (2000), CHARM (2002), etc.

 Reference: Zaki, Mohammed J. "Mining Closed & Maximal Frequent Itemsets." NSF CAREER Award IIS-0092978, DOE Early Career Award DE-FG02-02ER25538, NSF grant EIA-0103708 (1).

Outline

- What is Association Rule Mining?
- Basic Concetps of Association Rules
- The Apriori Algorithm
- The FP-Growth Algorithm
- Which Patterns Are Interesting?
- Maximal Frequent Patterns and Closed Frequent Patterns

Summary

- Basic concepts: items, transaction, transaction database, frequent pattern, itemset, k-itemset
- Association rule mining problem: goal and key features, rule strength measures (support count, support, confidence)
- The Apriori algorithm: the apriori property, mining all frequent itemsets and generating association rules, algorithm efficiency
- The FP-growth algorithm: mining all frequent itemsets (espcially the FP-tree), algorithm efficiency
- Interestingness measures: Confidence, Lift, Leverage, Conviction
- Closed frequent pattern and maximal frequent pattern