Moving averages

Time series decomposition

Contents

PRACTICAL CONSIDERATIONS

Consider window of size 3

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	
2020-02-14	70	
2020-02-15	30	
2020-02-16	25	
2020-02-17	22	

Consider window of size 3

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	
2020-02-14	70	
2020-02-15	30	
2020-02-16	25	
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	
2020-02-14	70	
2020-02-15	30	
2020-02-16	25	
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	
2020-02-15	30	
2020-02-16	25	
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean
- Move window and iterate

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	
2020-02-15	30	
2020-02-16	25	
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean
- Move window and iterate

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	43.3
2020-02-15	30	
2020-02-16	25	
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean
- Move window and iterate

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	43.3
2020-02-15	30	41.7
2020-02-16	25	
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean
- Move window and iterate

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	43.3
2020-02-15	30	41.7
2020-02-16	25	25.7
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean
- Move window and iterate
- 3-MA is a shorter time series

Date	y	3-MA
2020-02-12	23	
2020-02-13	30	41.0
2020-02-14	70	43.3
2020-02-15	30	41.7
2020-02-16	25	25.7
2020-02-17	22	

- Consider window of size 3
- Compute at center of window
- Compute mean
- Move window and iterate
- 3-MA is a shorter time series

Date	y	3-MA
2020-02-12	23	NaN
2020-02-13	30	41.0
2020-02-14	70	43.3
2020-02-15	30	41.7
2020-02-16	25	25.7
2020-02-17	22	NaN

Moving average

Moving average of order m (denoted m-MA):

$$Z_t = \frac{1}{m} \sum_{j=-k}^{j=k} y_{t+j}$$

- where m=2k+1 is the size of the window where k datapoints either side of t are included in the average
- Each data point in the window receives equal weight and the window is symmetric

- Often the window size is selected to be the same as the seasonality to smooth out seasonal variation
- Example: Monthly data, yearly seasonality T=12
- With an even window, where do we compute the mean value?
- An odd window size would double count specific months

2020						20	21						
JAN	FEB	MAR	APR	MAR	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows

Time index	y	4-MA
1	23	
2	30	
3	70	
4	30	
5	25	
6	22	

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows

Time index	y	4-MA
1	23	
1.5		
2	30	
2.5		
3	70	
3.5		
4	30	
4.5		
5	25	
5.5		
6	22	

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows

Time index	y	4-MA
1	23	
1.5		
2	30	
2.5		38.25
3	70	
3.5		
4	30	
4.5		
5	25	
5.5		
6	22	

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows

Time index	y	4-MA
1	23	
1.5		
2	30	
2.5		38.25
3	70	
3.5		38.75
4	30	
4.5		
5	25	
5.5		
6	22	

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows

Time index	y	4-MA
1	23	
1.5		
2	30	
2.5		38.25
3	70	
3.5		38.75
4	30	
4.5		36.75
5	25	
5.5		
6	22	

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows
- Apply another moving average of window size 2 to the 4-MA (aka 2 X 4-MA)

Time index	y	4-MA
1	23	
1.5		
2	30	
2.5		38.25
3	70	
3.5		38.75
4	30	
4.5		36.75
5	25	
5.5		
6	22	

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows
- Apply another moving average of window size 2 to the 4-MA (aka 2 X 4-MA)

Time index	у	4-MA	2 X 4- MA
1	23		
1.5			
2	30		
2.5		38.25	
3	70		
3.5		38.75	
4	30		
4.5		36.75	
5	25		
5.5			
6	22		

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows
- Apply another moving average of window size 2 to the 4-MA (aka 2 X 4-MA)

Time index	y	4-MA	2 X 4- MA
1	23		
1.5			
2	30		
2.5		38.25	
3	70		38.5
3.5		38.75	
4	30		
4.5		36.75	
5	25		
5.5			
6	22		

- Problem: Where should the average value go as there is no obvious centre?
- We could think of the value belonging half way between two rows
- Apply another moving average of window size 2 to the 4-MA (aka 2 X 4-MA)

Time index	у	4-MA	2 X 4- MA
1	23		
1.5			
2	30		
2.5		38.25	
3	70		38.5
3.5		38.75	
4	30		37.75
4.5		36.75	
5	25		
5.5			
6	22		

 This gives a symmetric window where the weights still sum to one

$$z_{t} = \frac{1}{2} \left[\frac{1}{4} (y_{t-2} + y_{t-1} + y_{t} + y_{t+1}) + \frac{1}{4} (y_{t-1} + y_{t} + y_{t+1} + y_{t+2}) \right]$$

$$= \frac{1}{8} y_{t-2} + \frac{1}{4} y_{t-1} + \frac{1}{4} y_{t} + \frac{1}{4} y_{t+1} + \frac{1}{8} y_{t+2}$$

$$\uparrow \qquad \uparrow$$

 The edges of the window share half the weight, this mitigates the double counting discussed earlier

Time index	у	4-MA	2 X 4- MA
1	23		
1.5			
2	30		
2.5		38.25	
3	70		38.5
3.5		38.75	
4	30		37.75
4.5		36.75	
5	25		
5.5			
6	22		

 This gives a symmetric window where the weights still sum to one

$$z_{t} = \frac{1}{2} \left[\frac{1}{4} (y_{t-2} + y_{t-1} + y_{t} + y_{t+1}) + \frac{1}{4} (y_{t-1} + y_{t} + y_{t+1} + y_{t+2}) \right]$$

$$= \frac{1}{8} y_{t-2} + \frac{1}{4} y_{t-1} + \frac{1}{4} y_{t} + \frac{1}{4} y_{t+1} + \frac{1}{8} y_{t+2}$$

$$\uparrow \qquad \uparrow$$

 The edges of the window share half the weight, this mitigates the double counting discussed earlier

Time index	у	4-MA	2 X 4- MA
1	23		NaN
1.5			
2	30		NaN
2.5		38.25	
3	70		38.5
3.5		38.75	
4	30		37.75
4.5		36.75	
5	25		NaN
5.5			
6	22		NaN

- Any even order centered MA can be dealt with by applying an additional 2-MA
- Example: If we wanted m=6 we can compute a 2 x 6-MA to get:

$$z_{t} = \frac{1}{12}y_{t-3} + \frac{1}{6}y_{t-2} + \frac{1}{6}y_{t-1} + \frac{1}{6}y_{t} + \frac{1}{6}y_{t+1} + \frac{1}{6}y_{t+2} + \frac{1}{12}y_{t+3}$$

Time index	у	4-MA	2 X 4- MA
1	23		NaN
1.5			
2	30		NaN
2.5		38.25	
3	70		38.5
3.5		38.75	
4	30		37.75
4.5		36.75	
5	25		NaN
5.5			
6	22		NaN

Moving average implementation

pandas.DataFrame.rolling

DataFrame. rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)

[source]

Provide rolling window calculations.

Parameters: window : int, offset, or BaseIndexer subclass

Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes.

If a BaseIndexer subclass is passed, calculates the window boundaries based on the defined get_window_bounds method. Additional rolling keyword arguments, namely min_periods, center, and closed will be passed to get_window_bounds.

min_periods: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, *min_periods* will default to 1. Otherwise, *min_periods* will default to the size of the window.

center: bool, default False

Set the labels at the center of the window.

Moving average implementation

```
# Compute 3-MA
window_size = 3
df.rolling(window=window_size, center=True).mean()
        NaN
0
1 41.000000
2 43.333333
  41.666667
   25.666667
5
        NaN
```

Moving average implementation

у

- 0 NaN
- 1 NaN
- 2 38.50
- 3 37.75
- 4 NaN
- 5 NaN

Summary

Moving average computes the mean of the data over a window across a time series

The window size, m, defines the order of the moving average denoted as m-MA

An even ordered centered moving average can be obtained by applying an additional 2-MA