Regular Expressions

A regular expression (RE) is a language for specifying text search strings. RE helps us to match or find other strings or sets of strings, using a specialized syntax held in a pattern. Regular expressions are used to search texts in UNIX as well as in MS WORD in identical way. We have various search engines using a number of RE features.

Properties of Regular Expressions

Followings are some of the important properties of RE -

- American Mathematician Stephen Cole Kleene formalized the Regular Expression language.
- RE is a formula in a special language, which can be used for specifying simple classes of strings, a sequence of symbols. In other words, we can say that RE is an algebraic notation for characterizing a set of strings.
- Regular expression requires two things, one is the pattern that we wish to search and other is a corpus of text from which we need to search.

Mathematically, A Regular Expression can be defined as follows –

- E is a Regular Expression, which indicates that the language is having an empty string.
- Φ is a Regular Expression which denotes that it is an empty language.
- If X and Y are Regular Expressions, then
 - o X, Y
 - X.Y(Concatenation of XY)
 - X+Y (Union of X and Y)
 - X*, Y* (Kleen Closure of X and Y)

are also regular expressions.

 If a string is derived from above rules then that would also be a regular expression.

Examples of Regular Expressions

The following table shows a few examples of Regular Expressions –

Regular Reg	gular Set
-------------	-----------

Expressions	
(0 + 10*)	{0, 1, 10, 100, 1000, 10000, }
(0*10*)	{1, 01, 10, 010, 0010,0100 00100,000100,0001000}
$(0+\epsilon)(1+\epsilon)$	{ε, 0, 1, 01}
(a+b)*	It would be set of strings of a's and b's of any length which also includes the null string i.e. $\{\epsilon, a, b, aa, ab, bb, ba, aaa\}$
(a+b)*abb	It would be set of strings of a's and b's ending with the string abb i.e. {abb, aabb, babb, aaabb, ababb,}
(11)*	It would be set consisting of even number of 1's which also includes an empty string i.e. $\{\epsilon, 11, 1111, 111111, \dots \}$
(aa)*(bb)*b	It would be set of strings consisting of even number of a's followed by odd number of b's i.e. {b, aab, aabbb, aaabbbb, aaaab, aaaabbb,}
(aa + ab + ba + bb)*	It would be string of a's and b's of even length that can be obtained by concatenating any combination of the strings aa, ab, ba and bb including null i.e. {aa, ab, ba, bb, aaab, aaba,}

Regular Sets & Their Properties

It may be defined as the set that represents the value of the regular expression and consists specific properties.

Properties of regular sets

- If we do the union of two regular sets then the resulting set would also be regular.
- If we do the intersection of two regular sets then the resulting set would also be regular.

- If we do the complement of regular sets, then the resulting set would also be regular.
- If we do the difference of two regular sets, then the resulting set would also be regular.
- If we do the reversal of regular sets, then the resulting set would also be regular.
- If we take the closure of regular sets, then the resulting set would also be regular.
- If we do the concatenation of two regular sets, then the resulting set would also be regular.