Lecture 10 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

Memoryless

A memoryless system output depends only on the current input.

The output of the system is given by:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

Thus, memoryless implies $h(t - \tau)$ is non-zero only at $t = \tau$

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

Causal

A causal system output depends only on previous or current input.

The output of the system is given by:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

Thus, Causality implies $h(t - \tau)$ is zero for $t - \tau < 0$

$$h(t) = 0 t < 0 \text{For CT system}$$

$$h[n] = 0 n < 0 \text{For DT system}$$

Causality and Linearity

A causal and linear system satisfies condition of initial rest, that is,

if
$$x(t) = 0$$
 for $t < t_o$
then $y(t) = 0$ for $t < t_o$

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

Starting from def.:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Starting from def.:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Since convolution is commutative:

$$y[n] = \sum_{k=-\infty} h[k]x[n-k]$$

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]||x[n-k]|$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$$

Let
$$|x[n-k]| \leq M_x$$

$$|y[n]| \le \sum_{k=-\infty} |h[k]| |x[n-k]|$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$$

Let
$$|x[n-k]| \leq M_x$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]| M_{x}$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$$

Let
$$|x[n-k]| \leq M_x$$

$$|y[n]| \le M_x \sum_{k=-\infty}^{\infty} |h[k]|$$

$$|y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$$

Let
$$|x[n-k]| \leq M_x$$

$$|y[n]| \le M_x \sum_{k=-\infty}^{\infty} |h[k]|$$

$$\sum_{k=-\infty}^{\infty} |h[k]| \le M_h \qquad |y[n]| \le M_{\chi} M_h$$

$$\sum_{k=-\infty}^{\infty} |h[k]| \le M_h \qquad |y[n]| \le M_x M_h$$

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty \qquad |y[n]| < \infty$$

Sufficient condition for stability is that, h[n] is absolutely summable, that is, $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$

Is this (absolutely summable, that is, $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$) also a necessary condition for stability?

Is this (absolutely summable, that is, $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$) also a necessary condition for stability?

Assuming input
$$x[-n] = \begin{cases} \frac{\overline{h[n]}}{|h[n]|} & |h[n]| \neq 0 \\ 0 & |h[n]| = 0 \end{cases}$$

Assuming input
$$x[-n] = \begin{cases} \frac{\overline{h[n]}}{|h[n]|} & |h[n]| \neq 0 \\ 0 & |h[n]| = 0 \end{cases}$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

Assuming input
$$x[-n] = \begin{cases} \frac{\overline{h[n]}}{|h[n]|} & |h[n]| \neq 0 \\ 0 & |h[n]| = 0 \end{cases}$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k]$$

Assuming input
$$x[-n] = \begin{cases} \frac{\overline{h[n]}}{|h[n]|} & |h[n]| \neq 0 \\ 0 & |h[n]| = 0 \end{cases}$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} h[k] \frac{\overline{h[k]}}{|h[k]|}$$

Assuming input
$$x[-n] = \begin{cases} \frac{\overline{h[n]}}{|h[n]|} & |h[n]| \neq 0 \\ 0 & |h[n]| = 0 \end{cases}$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} h[k] \frac{\overline{h[k]}}{|h[k]|} = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

Stability Summary

 $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$ (that is, absolute summability) is both a necessary and sufficient condition for stability

Stability Summary

 $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$ (that is, absolute summability) is both a necessary and sufficient condition for stability

Similarly, $\int_{-\infty}^{\infty} |h(t)| dt < \infty$ (that is, absolute integrability) is both a necessary and sufficient condition for stability (to be proved).

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

Invertible

A system is said to be invertible if distinct inputs lead to distinct outputs.

$$x(t) * h(t) * h_{inv}(t) = x(t)$$

Invertible

A system is said to be invertible if distinct inputs lead to distinct outputs.

$$x(t) * h(t) * h_{inv}(t) = x(t)$$

$$h(t) * h_{inv}(t) = ?$$

$$x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau = x(t)$$

Invertible

A system is said to be invertible if distinct inputs lead to distinct outputs.

$$x(t) * h(t) * h_{inv}(t) = x(t)$$

$$h(t) * h_{inv}(t) = \delta(t)$$

$$x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau = x(t)$$

Summary of Invertible

The relation between invertible and inverse system

$$h(t) * h_{inv}(t) = \delta(t)$$

$$h[n] * h_{inv}[n] = \delta[n]$$