STAT430 Homework #6: Due Friday, March 25, 2022.

Name: **KEY**

Submit this homework as a pdf file to Canvas.

Question 1

Let $Y_1,...,Y_n \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\operatorname{mean} = \theta)$. Note that $E[Y^k] = \theta^k(k!)$ for k = 1, 2, Consider estimators

$$\widehat{\theta}_1 = \overline{Y}, \quad \widehat{\theta}_2 = \left(\frac{1}{2n} \sum_{i=1}^n Y_i^2\right)^{1/2}, \quad \widehat{\theta}_3 = \left(\frac{n}{n-1}\right) \left(\frac{1}{2n} \sum_{i=1}^n Y_i^2\right)^{1/2}.$$

Which of these estimators are consistent for θ ?

Short answer: All three estimators are consistent estimators for θ

Shout-out to Kara for suggesting using the properties of convergence in probability. It's easy to think these problems more complicated than they are and harder to take a step back. Convergence in probability leads to the following properties:

- 1. If $X_n \xrightarrow{p} a$ and $Y_n \xrightarrow{p} b$, then $X_n + Y_n \xrightarrow{p} a + b$. 2. If $X_n \xrightarrow{p} a$ and $Y_n \xrightarrow{p} b$, then $X_n Y_n \xrightarrow{p} ab$.
- 3. If $X_n \stackrel{p}{\to} a$ and g is a continuous function at a, then $g(X_n) \stackrel{p}{\to} g(a)$.

Recall that consistency of an estimator $\hat{\theta}$ means that the estimator converges in probability to its expected value. In particular, if $\hat{\theta}$ is an unbiased estimator for θ , then

$$\lim_{n \to \infty} P\left(|\hat{\theta} - \theta| \ge \epsilon\right) = 1.$$

Okay let's actually start now. It's straightforward to show that $\hat{\theta}_1$ is consistent, using Theorem 9.1 in the book. We just need to show that it is unbiased (it is), and that the limit of the variance goes to zero as ngoes to ∞ . You can do that.

For $\hat{\theta}_2 = \left(\frac{1}{2n}\sum_{i=1}^n Y_i^2\right)^{1/2}$, it is a little less straightforward, but not as hard as I made it seem in

Consider the estimator $\hat{\theta_2}' = \frac{1}{2n} \sum_{i=1}^{\infty} Y_i^2$. Utilizing the provided formula for the moments of X_i , the expectation is

$$E\left[\frac{1}{2n}\sum_{i=1}^{\infty}Y_i^2\right] = \frac{1}{2n}\sum_{i=1}^{\infty}EY_i^2 = \frac{1}{2n}\sum_{i=1}^{\infty}2\theta^2 = \theta^2.$$

So $\hat{\theta}_2$ is an unbiased estimator of θ^2 . Next, the variance of $\hat{\theta}_2$ is

$$V\left[\frac{1}{2n}\sum_{i=1}^{\infty}Y_{i}^{2}\right] = \frac{1}{4n^{2}}\sum_{i=1}^{\infty}(EX_{i}^{4} - (EX_{i}^{2})^{2}) = \frac{n(4!\theta^{4} - 4\theta^{4})}{4n^{2}} = \frac{20\theta^{4}}{4n}.$$

This goes to zero as $n \to \infty$. Therefore, $\hat{\theta_2}'$ is a consistent estimator for θ^2 . By definition, this means $\hat{\theta_2}' \xrightarrow{p} \theta^2$ and by the third property listed above, since \sqrt{x} is a continuous function for x > 0, $\sqrt{\hat{\theta_2}'} = \hat{\theta_2} \xrightarrow{p} \theta$. So $\hat{\theta}_2$ is a consistent estimator for θ .

Using the fact that $\hat{\theta}_2'$ is consistent, it can be seen that $\hat{\theta}_3$ is also a consistent estimator for θ . This is again applying the third property, where $g(x) = \frac{n}{n-1} \sqrt{x}$, which is continuous for x > 0 and also using the fact that $\lim_{n \to \infty} \frac{n}{n-1} = 1$.

Question 2

Prove that if $Y_n \sim \text{Binomial}(n, p)$ and $\hat{p}_n = Y_n/n$,

$$\frac{\hat{p}_n - p}{\sqrt{\hat{p}_n(1 - \hat{p}_n)/n}} \rightarrow_d N(0, 1).$$

Answer:

Question 3

The odds of success (for, e.g., a Bernoulli experiment with probability p) are defined as

$$\frac{\text{probability of success}}{\text{probability of failure}} = \frac{p}{1-p}$$

For reasons we won't get into, it is common to want to estimate the log-odds,

$$\log\left(\frac{p}{1-p}\right)$$

(recalling that here, as in almost every case in statistics, "log" refers to natural log, rather than \log_{10}). Suppose that $W_n \sim \text{Binomial}(n, p)$, so that $\hat{p}_n = W_n/n$.

a) We can always express an Binomial random variable as the sum of iid Bernoulli random variables, so that $W_n = \sum_{i=1}^n X_i$, where $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bern}(p)$. Then $\hat{p}_1 = X_1$.

If $Y = \log\left(\frac{X_1}{1-X_1}\right)$, use the first-order Taylor series technique to approximate EY and VarY.

Answer:

b) Use the fact that you proved in Question 2 and the delta method to construct an approximate $(1 - \alpha) \times 100\%$ confidence interval for the log-odds based on \hat{p}_n .

Answer:					
joint d confide	isease), 54 of nce interval t	l Journal reported that the patients had the Al technique from part (b) cloarthropathies having t	BO secretor state to report a 95% of	(a genetic feature). confidence interval	Use your computed
${f Answer:}$					