Banknotes are one of the most important assets of a country. Some miscreants introduce fake notes which bear a resemblance to original notes to create discrepancies in the mointhe financial market. It is difficult for humans to tell true and fake banknotes apart especially because they have a lot of similar features. Hence, there is a dire need for banks a ATMs to implement a system that classifies a note as genuine or fake. Trying to come up with an efficient model that accurately predicts if a note is genuine or not. • VWTI: Variance of Wavelet Transformed Image • SWTI: Skewness of Wavelet Transformed Image • CWTI: Curtosis of Wavelet Transformed Image • EI: Entropy of Image • Class: Class (1: genuine, 0: forged)
Importing the nessesary libraries to read and visulaise the data import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score import math train=pd.read_csv('/content/train.csv')
train vwti swti cwti Ei Class 0 2.263400 -4.4862 3.65580 -0.612510 0 1 3.271800 1.7837 2.11610 0.613340 0 2 -3.941100 -12.8792 13.05970 -3.312500 1
3 0.519500 -3.2633 3.08950 -0.984900 0 4 2.569800 -4.4076 5.98560 0.078002 0 1091 1.640600 3.5488 1.39640 -0.364240 0 1092 -0.048008 -1.6037 8.47560 0.755580 0 1093 2.942100 7.4101 -0.97709 -0.884060 0 1094 1.964700 6.9383 0.57722 0.663770 0 1095 -0.126240 10.3216 -3.71210 -6.118500 0
test vwri swri cwri si 0 -0.40804 -0.52725 0.658600 1 -3.71810 -8.50890 12.36300 -0.955180 2 5.5040 10.367100 -4.41300 -4.021100
3 1.68490 8.748900 -1.26410 -1.385800 4 4.74320 2.108600 0.13680 1.654300 270 -1.00500 0.084831 -0.24620 0.456880 271 2.21230 -5.839500 7.76870 -0.853020 272 4.38460 -4.879400 3.36620 -0.029324 273 3.88400 10.027700 -3.92980 -4.081900
274 3.88460 -3.033600 2.53340 0.202140 275 rows × 4 columns Exploratory Data Analysis (EDA) Cleaning Data
Before running our data through our machine learning algorithm we must clean it: we need to decide what to do with missing data (i.e. NaNs) and convert categorical variables to numbers. train.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1096 entries, 0 to 1095 Data columns (total 5 columns): # Column Non-Null Count Dtype</class>
0 VWTI 1096 non-null float64 1 SWTI 1096 non-null float64 2 CWTI 1096 non-null float64 3 EI 1096 non-null float64 4 Class 1096 non-null int64 dtypes: float64(4), int64(1) memory usage: 42.9 KB Don't need to check numerical because all of them are float • check the null and missing values in the data
train.isnull().sum() VWTI
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 275 entries, 0 to 274 Data columns (total 4 columns): # Column Non-Null Count Dtype</class></pre>
• Describe the data to get the mean,std,min and max train describe() Twil swil cwil El Class count 1079.000000 1079.00000 107
25% -1.793100 -2.065150 -1.492500 -2.210100 0.000000 50% 0.570600 2.199600 0.676610 -0.556910 0.000000 75% 2.882500 6.670300 3.591600 0.410325 1.000000 max 6.563300 12.730200 17.927400 2.449500 1.000000 train.columns Index(['VWTI', 'SWTI', 'CWTI', 'EI', 'Class'], dtype='object')
Duplication check the duplicated data, I found items and then i droped them and check again test.isnull().sum() VWTI 0 SWTI 0 CWTI 0
<pre>EI 0 dtype: int64 train.duplicated().sum() 17 train=train.drop_duplicates() test.duplicated().sum() 2</pre>
test=test.drop_duplicates() Data Vizulisation Visulaize the data to get more description about the data • countplot form seaborn library
<pre>plt.figure(figsize=(6,6)) sns.countplot(x = 'Class', data = train) plt.show()</pre> 600 - 500 -
400 - tu 300 -
200 - 100 - 0 Class
After print the graph it shows that the data is almost balanced and the number of real notes is slightly larger than the fake notes by almost 100. Heat map: to represent the correlation between the attributes with the Class using correleation function to look for the correlation in numeric numbers plt.figure(figsize=(9,9)) sns.heatmap(train.corr(), annot=True, cmap='viridis') plt.show()
F - 1 0.28 -0.39 0.26 -0.73 - 0.75
E - 0.28 1 -0.8 -0.52 -0.45 -0.25 -0.25 -0.25 -0.25 -0.25
ш - 0.26 -0.52 0.34 1 -0.0350.25 0.50
VWTI SWTI CWTI EI Class Train.corr() VWTI SWTI CWTI EI Class
VWTI 1.000000 0.279529 -0.386030 0.261549 -0.733766 SWTI 0.279529 1.000000 -0.800012 -0.523369 -0.447665 CWTI -0.386030 -0.800012 1.000000 0.339566 0.167561 EI 0.261549 -0.523369 0.339566 1.000000 -0.035046 Class -0.733766 -0.447665 0.167561 -0.035046 1.000000
sns.heatmap(test.corr(),annot=True,cmap='viridis') plt.show() - 1
- 0.6 - 0.4 - 0.2
For the second s
U - 0.34 -0.54 0.23 10.6 WTI SWTI CWTI EI test.corr()
VWTI SWTI CWTI EI VWTI 1.000000 0.198733 -0.360863 0.335024 SWTI 0.198733 1.000000 -0.723929 -0.539445 CWTI -0.360863 -0.723929 1.000000 0.231048 EI 0.335024 -0.539445 0.231048 1.000000 The columuns VWTI and SWTI are highly negatively correlated with class while the EI is slightly negatively correlated with the class. in the other hand, CWTI is positively correlated with the class.
Because of the number of features in data set is not larger enough so i decide not to drop the <i>EI</i> at this stage and i will calculate the accuracy from the model first and then as a second case i will drop the <i>EI</i> and see the difference in accuracy getting from the model. • plot the histogram and pairplot for the data to see the distribution of the numerical data in each columns train.hist(bins=25, figsize=(10, 10), layout=(2, 3)) plt.show() WTI SWTI CWTI
80 70 60 50 40
El Class 140
300 40 200 100 0 0 0 0 0 0 0 0 0 0 0 0
test.hist(bins=25, figsize=(9,9), layout=(2,3)) plt.show() SWTI CWTI
-5 0 5 -10 0 10 0 10 El 30 -25
train.skew() VWTI -0.184417 SWTI -0.398922 CWTI 1.030113 EI -1.032282 Class 0.192060 dtype: float64 From the above result, we can check which variable is normally distributed and which is not.
The variables with skewness > 1 such as CWTI are highly positively skewed. The variables with skewness < -1 such as EI are highly negatively skewed. The variables with -0.5 < skewness < 0.5 are normally distributed such as VWTI and SWTI. Normalize the Data
<pre>X = train.drop(['Class'], axis=1) Y = train['Class'] X_test = test min_max_scaler = preprocessing.MinMaxScaler() X_scaled = min_max_scaler.fit_transform(X) print(X_scaled) [[0.68382391 0.35040542 0.38520258 0.72157724]</pre>
[0.7579726 0.58697596 0.31887479 0.83304145] [0.22760061 0.03372788 0.79030736 0.47607227] [0.73372942 0.79926651 0.18562518 0.69688571] [0.66186019 0.78146495 0.25258233 0.83762696] [0.50811121 0.90912075 0.06780537 0.22092801]] min_max_scaler = preprocessing.MinMaxScaler() X_test = min_max_scaler.fit_transform(X_test) print(X_test)
[[0.47840974 0.5308244 0.20480625 0.87043254] [0.2397075 0.1886236 0.76786892 0.70576615] [0.9047516 0.90228549 0.0350717 0.39292675] [0.824027 0.32584737 0.37487715 0.80023836] [0.78792665 0.88945349 0.0561785 0.38672286] [0.78796991 0.39563319 0.33849937 0.82385641]] X_train, X_vald, y_train, y_vald = train_test_split(X,Y, test_size=0.25, random_state=2, stratify=Y) Decision Tree Classifier
I will use difrent models to train the data and get results and will evaluate each model decision_tree = tree.DecisionTreeClassifier(max_depth = 4, random_state=7) # Choose tree depth decision_tree.fit(X_train,y_train) y_pred=decision_tree.predict(X_vald) from sklearn import metrics # Print the model accuracy (how often is the classifier correct?) print("Accuracy on validation set:",np.round(metrics.accuracy_score(y_vald, y_pred),2))
<pre>Accuracy on validation set: 0.96 X_names = ['VWTI', 'SWTI', 'CWTI', 'EI'] y_names=['Real', 'Fake'] # Target labels # Print out the feature importances feature_importances_dict = {} for i, name in enumerate(X_names): feature_importances_dict.update({name : decision_tree.feature_importances_[i]}) # Sort features in descending order of importance (need to use reverse=True for descending) feature_importances_sorted = dict(sorted(feature_importances_dict.items(), key=lambda x:x[1], reverse=True)) # items() method returns (key, value) tuple print('Features in order of importance:') for key in feature_importances_sorted:</pre>
Features in order of importance: WMTI CWTI SWTI EI from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) _ = tree.plot_tree(decision_tree, feature_names=X_names, class_names=y_names, filled=True)
VWTI <= 0.76 gini = 0.495 samples = 809 value = [443, 366] class = Real
SWTI <= 5.334 gini = 0.316 samples = 417 value = [82, 335] class = Fake CWTI <= -4.625 gini = 0.146 samples = 392 value = [361, 31] class = Real
Samples = 417 Value = [82, 335] Value = [31, 31] Value = [
SWT <= 0.463
Sumples = 417 Value = [82, 335] Class = Fake Sumples = 392 Value = [361, 31] Class = Fake Sump