I. Introduction

Il existe deux types de graphes : Graphe orienté (GO)

Graphe non orienté (GNO)

1) Définition d'un graphe

a) Graphe non orienté (GNO)

U) est un ensemble fini X appelée ensemble

Par définition un graphe non orienté G = (X, U) est un ensemble fini X appelée <u>ensemble de</u> <u>sommets</u>, une partie U de X * X appelé <u>ensemble des arêtes</u> tel que :

Exemple :

Figure 1 : Graphe non orienté

b) Graphe orienté (GO)

On défini un graphe orienté G = (X, U) par un ensemble fini X appelée ensemble de sommets et une partie U de X * X appelé ensemble des arcs tel que :

- Avec u un arc allant du sommet x au sommet y.
- L'arc (x, y) ≠ l'arc (y, x).
- x est appelé extrémité initiale ou prédécesseur
- y est appelé extrémité finale ou successeur.
- Si x = y, on parle alors d'une boucle.

Exemple:

Figure 2 : Graphe orienté

2) Application Initiale, Terminal et Successeur (GO)

Pour un graphe G = (X, U) ont défini les deux applications suivantes :

- L'application I: U→ X

 $u \rightarrow I(u) = x$, extrémité initiale de l'arc.

- L'application T: U→ X

u → T (u) = x, extrémité terminale de l'arc.

Exemple:

Figure 3:

$$I(u1) = a$$
 $T(u1) = b$
 $I(u3) = a$ $T(u3) = c$
 $I(u2) = b$ $T(u2) = a$

Exercice:

Déterminer le graphe G = (X, U) représenté par la figure suivante :

Figure 4

L'application multivoque (successeur)

Un graphe G peut être défini par la donnée d'un ensemble fini X appelé l'ensemble des sommets et d'une application « multivoque » Γ tel que :

$$\Gamma: X \to X$$

 $x \to \Gamma(x)$
 $\Gamma(x) = \{y/(x, y) \in U\}$ autrement dit :
 $U = \{(x, y) / y \in \Gamma(x)\}$

Exemple:

$$\Gamma(a) = \{b, c, d\}$$

$$\Gamma$$
 (a) = {b, c, d} Γ (b) = {c} Γ (c) = {a, d}

$\Gamma(d) = \emptyset$

Remarque :

Si $x \in \Gamma(x)$ on dit qu'on a affaire à des boucles.

Par exemple, si on rajoute une boucle dans la figure 4

 $de(a) \rightarrow (a) on à$:

$$\Gamma$$
 (a) = {a, b, c, d} \supset {a} Rq: (\supset : contient)

Remarque importante:

Pour pouvoir parler d'application multivoque, il faut que G soit un 1-Graphe c.à.d. ne possède pas d'arc multiple.

II. Graphes simples, complets, partiels et sous graphes

1) Graphes simples

Un graphe est dit simple s'il ne possède ni boucle ni deux arêtes (arcs) identiques.

Exemple:

Figure 5: Graphe non simple

2) Graphes complets

Un graphe est dit complet s'il existe une arête pour chaque paire de sommets c.à.d. il à le maximum d'arête.

Exemple:

Figure 6 a : graphe NO complet

Tournoi Les sommets : les équipes

Les arcs à gagné.

e1→ e2 : e1 à gagné e2

Figure 6 b : graphe orienté non complet

3) Graphes partiels

Soit G = (X, U) et soit $U' \subset U$, alors G'(X, U') est un graphe partiel

Exemple:

Le graphe G' est un graphe partiel du graphe présent à la figure 4.

Figure 7 : G' est un graphe partiel du graphe de la figure 4

4) Sous graphes

Soit G = (X, U); $X' \subset X$ et $U' = \{(x, y) \in U \mid x \in X' \text{ et } y \in X'\}$, alors G'(X', U')

est appelé un sous graphe.

Exemple:

Dans un sous graphe on enlève quelque sommets mais on **garde** les arcs qui relient les sommets restants

Le graphe G' est un sous graphe du graphe présent à la figure 4.

Figure 8: G' n'est pas un sous graphe du graphe de la figure 4 (page 3) car il manque l'arc a->c

III. Ordre, taille, adjacence degré et incidence dans un graphe

1) Ordre, taille et adjacence

- On appelle ordre d'un graphe le nombre de ces sommets.
- On appelle la taille d'un graphe le nombre de ces arêtes (arcs).
- Deux sommets reliés par une arête (un arc) sont dits adjacents.
- Deux <u>arêtes</u> (arcs) ayant une extrémité commune sont dits <u>adjacentes</u>.

2) Degré et incidence

Soit $u = (x, y) \in U / x \neq y$

- On dit que l'arc u est incident vers l'intérieur à y.
- On dit que l'arc u est incident vers l'extérieur à x.
- le <u>demi-degré intérieur</u> d'(x) du sommet x est le nombre d'arc (on parle obligatoirement de graphe orienté) incident vers l'intérieur à x.
- le <u>demi-degré extérieur</u> d[†](x) du sommet x est le nombre d'arc incident vers l'extérieur à x.

Exemple:

- Le degré de x est défini par d(x) = d'(x) + d⁺(x). Autrement dit, le degré d'un sommet est le nombre d'arêtes (arcs) dont il est une extrémité.
- x est appelé une entrée ou <u>une source</u> si d'(x) = 0 et d⁺(x) >0.
- x est appelé une sortie ou un puits si d⁺(x) = 0 et d⁻(x) > 0.
- x est un point isolé si $d^+(x) = 0$ et $d^-(x) = 0$.

Exercice: Soit le graphe G suivant :

- 1) Donner l'ordre et la taille du graphe G.
- Quels sont les sommets adjacents au sommet 3.
- Déterminer les demi-degrés intérieurs et extérieurs pour chaque sommet. En déduire leurs degrés.
- 4) Déterminer les sommets qui sont une source, un puits ou un point isolé.

Théorème:

Dans un graphe G = (X, U) on à :

$$\sum_{x \in X} d^+(x) = \sum_{x \in X} d^-(x) = |U|$$
Cardinal de U

Démonstration évidente :

On a « Autant d'extrémité initiale que d'extrémité finale ».

Corolaire 1:

Dans un graphe on à :
$$\sum_{x \in X} d(x) = 2 |U|$$

→ démonstration :

$$d(x) = d^{+}(x) + d^{-}(x)$$

$$\sum_{x \in X} d(x) = \sum_{x \in X} d^{+}(x) + \sum_{x \in X} d^{-}(x)$$

$$= |U| + |U|$$

$$= 2 |U|$$

Corolaire 2:

Dans un graphe, le nombre de sommet de degré impair est pair.

Démonstration :

IV. Graphes valués

Un graphe est dit graphe valué si à chaque arête (arc) ou sommet on associe des informations supplémentaires

Exemple 1:

Un ensemble de ville peut être modélisé par un graphe orienté (ou non – chemin d'aller diffèrent du chemin de retour-) dont les arêtes modélisent la distance ou le coût entre deux villes. Application : chercher le plus petit chemin ; le chemin le moins cher ; le chemin le plus rapide. . En utilisant des algorithmes dédiés.

Figure 9 : graphe valué

V. Graphes isomorphes

Soit deux graphe G = (X, U) et G' = (X', U'). G et G' sont dit <u>isomorphes</u> s'il $\exists 2$ bijections : $\begin{cases} B_{So} X \rightarrow X' \text{ et} \\ B_{Arc} U \rightarrow U' \text{ tel que} \end{cases}$

deux arc qui se correspondent dans la bijection B_{Arc} aient pour extrémités initiale et terminale respectivement des sommets qui se correspondent dans la bijection B_{So}.

Exercice:

Soit les deux graphes G et G' suivants :

Figure 11: Les deux graphes G et G' sont isomorphes

- a) Déterminer les degrés pour chaque sommet des deux graphes G et G':
- b) Les deux graphes G et G' sont ils isomorphes?

Remarque : bien évidemment pour que deux graphes soit isomorphes il faut qu'ils aient le même nombre de sommet et le même nombre d'arc!

Contre exemple :

Le graphe G'' <u>n'est pas isomorphe</u> au graphe G car le nombre de sommet n'est pas le même.

Le graphe G''' <u>n'est pas isomorphe</u> au graphe G car il n'y à pas de sommet de degré 1.

VI. Graphes particuliers

1) Graphes planaires

Un graphe planaire est un graphe qui peut être dessiné sans que ses arêtes ne se coupent.

Exemple 1:

Le graphe suivant est-il planaire ? (oui)

Figure 12: Graphe planaire

Exemple 2:

Le graphe suivant est-il planaire ? (oui)

Figure 13: Graphe planaire

2) Graphes biparties

Le graphe G = (X, U) est un graphe bipartie si l'ensemble X peut être partagé en deux sous ensemble A et B tel que :

- Les éléments de A ne sont reliés entre eux par aucune arête (aucun arc).
- Les éléments de B ne sont reliés entre eux par aucune arête (aucun arc).
- Les arêtes (arcs) relient uniquement des éléments de A à des éléments de B

Exemple 1:

Dans l'exemple1, A se compose des sommets 1, 2, 3 et 4. L'ensemble B se compose des sommets 5, 6 et 7.

Exemple 2: 8 personnes candidats pour 3 postes différents.

La modélisation d'une telle situation peut s'effectuer à l'aide d'un graphe bipartie tel que :

A : les personnes.

B: les postes

Les arcs : est candidat pour

3) Les arbres

Un arbre est un graphe non orienté, connexe et sans cycle.

(Cf chapitre 2)

Exemple:

Cycle pour (GNO)

(GNO).

Un graphe est connexe si

chaque deux sommet sont

reliés par une chaine

Le graphe G présente un arbre qui permet d'exprimé l'expression mathématique suivante : (a-b) * (c + d).

