

SEQUENCE LISTING

<110> Rittershaus, Charles W.
Thomas, Lawrence J.

<120> MODULATION OF CHOLESTERYL ESTER TRANSFER PROTEIN (CETP) ACTIVITY

<130> TCS-411.1P US-1; Tcs-411.1P US-2

<140> not yet assigned
<141> 2001-08-30

<150> 08/432,483

<151> 1995-05-01

<150> PCT/US96/06147

<151> 1996-05-01

<150> 08/945,289

<151> 1997-10-17

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 26

<212> PRT

<213> Artificial Sequence

<220>

<223> C - terminal 26 amino acids of Human CETP

<400> 1

Arg Asp Gly Phe Leu Leu Leu Gln Met Asp Phe Gly Phe Pro Glu His
1 5 10 15

Leu Leu Val Asp Phe Leu Gln Ser Leu Ser
20 25

<210> 2

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> vaccine peptide of the invention

<400> 2

Cys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Phe
1 5 10 15

Gly Phe Pro Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser
20 25 30

<210> 3
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> helper T cell epitope of tetanus toxin

<400> 3

Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser
1 5 10 15

Ala Ser His Leu Glu
20

<210> 4
<211> 476
<212> PRT
<213> Homo Sapiens

<400> 4

Cys Ser Lys Gly Thr Ser His Glu Ala Gly Ile Val Cys Arg Ile Thr
1 5 10 15

Lys Pro Ala Leu Leu Val Leu Asn His Glu Thr Ala Lys Val Ile Gln
20 25 30

Thr Ala Phe Gln Arg Ala Ser Tyr Pro Asp Ile Thr Gly Glu Lys Ala
35 40 45

Met Met Leu Leu Gly Gln Val Lys Tyr Gly Leu His Asn Ile Gln Ile
50 55 60

Ser His Leu Ser Ile Ala Ser Ser Gln Val Glu Leu Val Glu Ala Lys
65 70 75 80

Ser Ile Asp Val Ser Ile Gln Asn Val Ser Val Val Phe Lys Gly Thr
85 90 95

Leu Lys Tyr Gly Tyr Thr Thr Ala Trp Trp Leu Gly Ile Asp Gln Ser
100 105 110

Ile Asp Phe Glu Ile Asp Ser Ala Ile Asp Leu Gln Ile Asn Thr Gln
115 120 125

Leu Thr Cys Asp Ser Gly Arg Val Arg Thr Asp Ala Pro Asp Cys Tyr
130 135 140

Leu Ser Phe His Lys Leu Leu Leu His Leu Gln Gly Glu Arg Glu Pro
145 150 155 160

Gly Trp Ile Lys Gln Leu Phe Thr Asn Phe Ile Ser Phe Thr Leu Lys
165 170 175

Leu Val Leu Lys Gly Gln Ile Cys Lys Glu Ile Asn Val Ile Ser Asn
180 185 190

Ile Met Ala Asp Phe Val Gln Thr Arg Ala Ala Ser Ile Leu Ser Asp
195 200 205

Gly Asp Ile Gly Val Asp Ile Ser Leu Thr Gly Asp Pro Val Ile Thr
210 215 220

Ala Ser Tyr Leu Glu Ser His His Lys Gly His Phe Ile Tyr Lys Asn
225 230 235 240

Val Ser Glu Asp Leu Pro Leu Pro Thr Phe Ser Pro Thr Leu Leu Gly
245 250 255

Asp Ser Arg Met Leu Tyr Phe Trp Phe Ser Glu Arg Val Phe His Ser
260 265 270

Leu Ala Lys Val Ala Phe Gln Asp Gly Arg Leu Met Leu Ser Leu Met
275 280 285

Gly Asp Glu Phe Lys Ala Val Leu Glu Thr Trp Gly Phe Asn Thr Asn
290 295 300

Gln Glu Ile Phe Gln Glu Val Val Gly Gly Phe Pro Ser Gln Ala Gln
305 310 315 320

Val Thr Val His Cys Leu Lys Met Pro Lys Ile Ser Cys Gln Asn Lys
325 330 335

Gly Val Val Val Asn Ser Ser Val Met Val Lys Phe Leu Phe Pro Arg

340

345

350

Pro Asp Gln Gln His Ser Val Ala Tyr Thr Phe Glu Glu Asp Ile Val
 355 360 365

Thr Thr Val Gln Ala Ser Tyr Ser Lys Lys Leu Phe Leu Ser Leu
 370 375 380

Leu Asp Phe Gln Ile Thr Pro Lys Thr Val Ser Asn Leu Thr Glu Ser
 385 390 395 400

Ser Ser Glu Ser Ile Gln Ser Phe Leu Gln Ser Met Ile Thr Ala Val
 405 410 415

Gly Ile Pro Glu Val Met Ser Arg Leu Glu Val Val Phe Thr Ala Leu
 420 425 430

Met Asn Ser Lys Gly Val Ser Leu Phe Asp Ile Ile Asn Pro Glu Ile
 435 440 445

Ile Thr Arg Asp Gly Phe Leu Leu Leu Gln Met Asp Phe Gly Phe Pro
 450 455 460

Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser
 465 470 475

<210> 5
<211> 1428
<212> DNA
<213> Homo Sapiens

<400> 5	
tgctccaaag gcacctcgca cgagggcaggc atcgtgtgcc gcatcaccaa gcctgccctc	60
ctggtgttga accacgagac tgccaagggtg atccagaccg cttccagcgc agccagctac	120
ccagatatca cggcgagaa gccatgatg ctcttggcc aagtcaagta tgggttgcac	180
aacatccaga tcagccactt gtccatcgcc agcagccagg tggagctggt ggaagccaa	240
tccattgatg tctccattca gaacgtgtct gtggtcttca aggggaccct gaagtatggc	300
tacaccactg cctggggct gggattatgt cagtccattg acttcgagat cgactctgcc	360
attgacctcc agatcaaacac acagctgacc tgtgactctg gttagagtgcg gaccgatgcc	420
cctgactgct acctgtctt ccataagctg ctccatgcattc tccaaaggga gcgagagcct	480

ggtggatca agcagctgtt cacaatttc atcccttca ccctgaagct gtcctgaag 540
 ggacagatct gcaaagagat caacgtcatc tctaacatca tggccgattt tgtccagaca 600
 aggctgccatca gcatccccc agatggagac attggggtgg acatccccct gacaggtgat 660
 cccgtcatca cagccttca cctggagtcc catcacaagg gtcatttcat ctacaagaat 720
 gtctcagagg acctccccct ccccacccatc tcgccccacac tgctggggga ctcccgatg 780
 ctgtacttctt gttctctga gcgagtcttc cactcgctgg ccaaggtgc ttccaggat 840
 gccgcctca tgctcagcct gatgggagac gagttcaagg cagtgctgga gacctgggc 900
 ttcaacacca accaggaaat cttccaagag gttgtcgccg gttccccag ccaggccaa 960
 gtcaccgtcc actgcctcaa gatgcccag atctctgcc aaaacaaggg agtcgtggc 1020
 aattcttcag tgatggtaa attcctcttt ccacgcccag accagcaaca ttctgttagct 1080
 tacacattt aagaggatat cgtgactacc gtccaggcct cctattctaa gaaaaagctc 1140
 ttcttaagcc tcttgattt ccagattaca ccaaagactg tttccaaactt gactgagagc 1200
 agctccgagt ccatccagag cttcctgcag tcaatgatca cgcgtgtggg catccctgag 1260
 gtcatgtctc ggctcgaggt agtgtttaca gcccctcatga acagcaaagg cgtgagcctc 1320
 ttgcacatca tcaaccctga gattatcaact cgagatggct tccctgtgtgc gcagatggac 1380
 ttggcttcc ctgagcacct gctggtggtt ttccctccaga gcttgagc 1428

<210> 6
 <211> 496
 <212> PRT
 <213> rabbit

 <400> 6

Cys Pro Lys Gly Ala Ser Tyr Glu Ala Gly Ile Val Cys Arg Ile Thr
 1 5 10 15

Lys Pro Ala Leu Leu Val Leu Asn Gln Glu Thr Ala Lys Val Val Gln
 20 25 30

Thr Ala Phe Gln Arg Ala Gly Tyr Pro Asp Val Ser Gly Glu Arg Ala
 35 40 45

Val Met Leu Leu Gly Arg Val Lys Tyr Gly Leu His Asn Leu Gln Ile
 50 55 60

Ser His Leu Ser Ile Ala Ser Ser Gln Val Glu Leu Val Asp Ala Lys

65

70

75

80

Thr Ile Asp Val Ala Ile Gln Asn Val Ser Val Val Phe Lys Gly Thr
85 90 95

Leu Asn Tyr Ser Tyr Thr Ser Ala Trp Gly Leu Gly Ile Asn Gln Ser
100 105 110

Val Asp Phe Glu Ile Asp Ser Ala Ile Asp Leu Gln Ile Asn Thr Glu
115 120 125

Leu Thr Cys Asp Ala Gly Ser Val Arg Thr Asn Ala Pro Asp Cys Tyr
130 135 140

Leu Ala Phe His Lys Leu Leu His Leu Gln Gly Glu Arg Glu Pro
145 150 155 160

Gly Trp Leu Lys Gln Leu Phe Thr Asn Phe Ile Ser Phe Thr Leu Lys
165 170 175

Leu Ile Leu Lys Arg Gln Val Cys Asn Glu Ile Asn Thr Ile Ser Asn
180 185 190

Ile Met Ala Asp Phe Val Gln Thr Arg Ala Ala Ser Ile Leu Ser Asp
195 200 205

Gly Asp Ile Gly Val Asp Ile Ser Val Thr Gly Ala Pro Val Ile Thr
210 215 220

Ala Thr Tyr Leu Glu Ser His His Lys Gly His Phe Thr His Lys Asn
225 230 235 240

Val Ser Glu Ala Phe Pro Leu Arg Ala Phe Pro Pro Gly Leu Leu Gly
245 250 255

Asp Ser Arg Met Leu Tyr Phe Trp Phe Ser Asp Gln Val Leu Asn Ser
260 265 270

Leu Ala Arg Ala Ala Phe Gln Glu Gly Arg Leu Val Leu Ser Leu Thr
275 280 285

Gly Asp Glu Phe Lys Lys Val Leu Glu Thr Gln Gly Phe Asp Thr Asn
290 295 300

Gln Glu Ile Phe Gln Glu Leu Ser Arg Gly Leu Pro Thr Gly Gln Ala
305 310 315 320

Gln Val Ala Val His Cys Leu Lys Val Pro Lys Ile Ser Cys Gln Asn
325 330 335

Arg Gly Val Val Val Ser Ser Ser Val Ala Val Thr Phe Arg Phe Pro
340 345 350

Arg Pro Asp Gly Arg Glu Ala Val Ala Tyr Arg Phe Glu Glu Asp Ile
355 360 365

Ile Thr Thr Val Gln Ala Ser Tyr Ser Gln Lys Lys Leu Phe Leu His
370 375 380

Leu Leu Asp Phe Gln Cys Val Pro Ala Ser Gly Arg Ala Gly Ser Ser
385 390 395 400

Ala Asn Leu Ser Val Ala Leu Arg Thr Glu Ala Lys Ala Val Ser Asn
405 410 415

Leu Thr Glu Ser Arg Ser Glu Ser Leu Gln Ser Ser Leu Arg Ser Leu
420 425 430

Ile Ala Thr Val Gly Ile Pro Glu Val Met Ser Arg Leu Glu Val Ala
435 440 445

Phe Thr Ala Leu Met Asn Ser Lys Gly Leu Asp Leu Phe Glu Ile Ile
450 455 460

Asn Pro Glu Ile Ile Thr Leu Asp Gly Cys Leu Leu Leu Gln Met Asp
465 470 475 480

Phe Gly Phe Pro Lys His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser
485 490 495

<210> 7
<211> 1488
<212> DNA
<213> rabbit

<400> 7
tgccccaaag ggcgcctccta cgaggctggc atcgtgtgtc gcatcaccaa gcccgccctc 60

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ttggtgttga accaagagac ggccaagggtg gtccagacgg cttccagcg cgccggctat	120
ccggacgtca gcggcgagag ggccgtatgc tcctcggcc gggtaagta cgggctgcac	180
aacctccaga tcagccaccc tccatcgcc agcagccagg tggagctggt ggacgccaag	240
accatcgacg tcgccccatcca gaacgtgtcc gtggtcttca aggggaccct gaactacagc	300
tacacgagtg cctgggggtt gggcatcaat cagtcgtcg acttcgagat cgactctgcc	360
attgacctcc agatcaacac agagctgacc tgccgacgtg gcagtgtcg caccaatgcc	420
cccgactgct acctggctt ccataaaactg ctccctgcacc tccaggggga gcgcgagccg	480
gggtggctca agcagcttt cacaacttc atcttcttca ccctgaagct gattctgaag	540
cgacaggctc gcaatgagat caacaccatc tccaacatca tggctgactt tgccagacg	600
agggcccaca gcataccttc agatggagac atcggggtgg acatttccgt gacgggggcc	660
cctgtcatca cagccaccta cctggagtc catcacaagg gtcacttcac gcacaagaac	720
gtctccgagg cttccccct ccgcgccttc ccgcgggtc ttctggggga ctcccgcatg	780
ctctacttct gtttctccga tcaagtgcctc aactccctgg ccagggccgc cttccaggag	840
ggccgtctcg tgctcagcct gacagggat gagttcaaga aagtgctgga gacccagggt	900
ttcgacacca accaggaaat cttccaggag cttccagag gccttcccac cggccaggcc	960
caggttagccg tccactgcct taaggtgccc aagatctctt gccagaaccg gggtgctgt	1020
gtgtcttctt ccgtcgccgt gacgttccgc ttccccccgc cagatggccg agaagctgt	1080
gcctacaggt ttgaggagga tatcatcacc accggtccagg ctcctactc ccagaaaaag	1140
ctcttcctac acctcttggta tttccagtgc gtgcggcca gcggaaaggc aggcaagtc	1200
gcaaatctct ccgtggccct caggactgag gctaaggctg tttccaacct gactgagagc	1260
cgctccgagt ccgtcgagag ctcttcgcgc tccctgatcg ccacgggtgg catccggag	1320
gtcatgtctc ggctcgaggt ggcgttcaca gcccctatga acagcaaagg cctggacctc	1380
ttcgaaatca tcaaccccgaa gattatcact ctcgatggct gcctgctgct gcagatggac	1440
ttcggttttc ccaagcacct gctgggtggat ttccctgcaga gcctgagc	1488

<210> 8
<211> 50
<212> PRT
<213> Artificial Sequence

<220>
<223> vaccine peptide of the invention

<400> 8

Cys Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu
1 5 10 15

Phe Pro Arg Pro Asp Gln Gln His Ser Val Ala Tyr Thr Phe Glu Glu
20 25 30

Asp Ile Phe Gly Phe Pro Glu His Leu Leu Val Asp Phe Leu Gln Ser
35 40 45

Leu Ser
50

<210> 9

<211> 56

<212> PRT

<213> Artificial Sequence

<220>

<223> vaccine peptide of the invention

<400> 9

Met Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Arg
1 5 10 15

Phe Pro Arg Pro Asp Gly Arg Glu Ala Val Ala Tyr Arg Phe Glu Glu
20 25 30

Asp Ile Phe Gly Phe Pro Lys His Leu Leu Val Asp Phe Leu Gln Ser
35 40 45

Leu Ser
50