Sub-tema: Pengelolaan Sumberdaya Alam dan Lingkungan di Wilayah *Wetlands*

USULAN PENELITIAN TAHUN ANGGARAN 2020

SKEMA PENELITIAN UNGGULAN PERGURUAN TINGGI

PENENTUAN JARAK OPTIMAL SIGNAL WIFI UNTUK INTER-VEHICULAR COMMUNICATION (IVC) DI LINGKUNGAN LEMBAB

TIM PENGUSUL

KETUA : DR. DRS. MOH DANIL HENDRY GAMAL, M.SC, (NIDN: 0004066502)

ANGGOTA: 1. DRS. DEFRIANTO, DEA (NIDN: 0010066701)

2. DR. ARI SULISTYO RINI, M.SC (NIDN:0017107607)

Sumber Dana DIPA Universitas Riau

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS RIAU MARET 2020

HALAMAN PENGESAHAN USULAN PENELITIAN

Penentuan Jarak Optimal Signal Wifi untuk Inter-1. Judul Penelitian

Vehicular Communication (IVC) di Lingkungan

Lembab

2. Ketua Peneliti

: Dr. Drs. Moh Danil Hendry Gamal, M.Sc a. Nama Lengkap

: Laki-laki b. Jenis Kelamin : 0004066502

c. NIDN : Ketua Program Studi S1 Matematika d. Jabatan Struktural

: Pembina IVB / Lektor Kepala e. Jabatan Fungsional

: FMIPA / Matematika FMIPA Universitas Riau f. Fakultas / Jurusan : Kampus Bina Widya Simpang Baru, Pekanbaru g. Alamat Kantor

: 0761 63273 h. Telp / Fax

: Jl. Merpati Sakti, Komplek Persada Cendrawasih i. Alamat Rumah No. A-13, Panam, Pekanbaru 28293, Indonesia

: 0813 6550 8105/ dgamal02@yahoo.co.uk

j. HP/Telp/Email 3. Anggota (1)

: Drs. Defrianto, DEA a. Nama Lengkap

: Lektor b. Jabatan Fungsional 0010066701

c. NIDN

4. Anggota (2) Dr. Ari Sulistyo Rini, M.Sc a. Nama Lengkap

: Asisten Ahli b. Jabatan Fungsional 0017107607

c. NIDN : Tahun ke 1 dari rencana 2 tahun 5. Jangka Waktu Penelitian

6. Pembiayaan

: Rp. 48.000.000,- (Empat Puluh Delapan Juta a. Dana Diusulkan

DIPA LPPM Universitas Riau Tahun 2020 b. Sumber Dana

Pekanbaru, 13 Maret 2020

MengetahunsITAS Ketua Tim Pengusul Delan FMIPA Universitas Riau

Dr. Syamsudhuha, M.Sc NIP 19630512 198903 1 002 Dr. Drs. Moh Danil Hendry Gamal, M.Sc

NIP. 19650604 199103 1 002

Menyetujui: Ketua LPPM Universitas Riau,

Prof. Dr. Almasdi Syahza, SE., MP NIP. 196008221990021002

DAFTAR ISI

HALAMAN PENGESAHAN	i
DAFTAR ISI	
RINGKASAN	iii
A. LATAR BELAKANG	
B. RUMUSAN MASALAH	
C. MAKSUD DAN TUJUAN PENELITIAN	3
D. LUARAN/MANFAAT PENELITIAN	4
E. TINJAUAN PUSTAKA	5
E.1 Kecelakaan Lalu Lintas	5
E.2 Faktor Kecelakan Lalu Lintas	5
E.3 Inter Vehicle Communication (IVC)	6
E.4 Penerapan Teknologi IVC	8
E.5 Peta Rencana	10
F. METODE PENELITIAN	
F.1 Waktu dan Lokasi Penelitian	
F.2. Jenis dan Sumber Data	12
F.3. Teknik Pengumpulan Data	12
F.4 Teknik Analisis Data	12
F.5 Rancangan Purwarupa Lab	13
F.6 Keberlanjutan	13
G. JADWAL KEGIATAN	16
H. DAFTAR PUSTAKA	17
G. REKAPITULASI BIAYA	19
J. SUSUNAN ORGANISASI TIM PENGUSUL DAN PEMBAGIAN TUGAS	20
Lampiran 1. Justifikasi Rencana Anggaran dan Biaya	21
Lampiran 2. Biodata Ketua Peneliti dan Anggota Peneliti	21

RINGKASAN

Peningkatan teknologi pendukung ketertiban dan keselamatan lalu lintas kendaraan sangat diperlukan untuk meredam, mengurangi bahkan meniadakan jumlah kecelakan sesama lalu lintas di jalanan. Interaksi dan komunikasi terhubung (konektivitas) antar kendaraan di jalan perlu dibangun agar masing-masing pengendara dapat berkomunikasi dan berbagi informasi lalu lintas secara langsung (real time). Jaringan konektivitas antar kendaraan ini dikenal dengan sistem inter vehicular communication (IVC), yang merupakan bagian dari konsep pengembangan Internet of Thing (IoT). Dengan sistem ini, setiap pengendara akan dengan mudah mengetahui posisinya, seberapa jauh jaraknya dengan kendaraan lainnya, prediksi laju kendaraan disekitarnya, dan mengetahui keberadaan serta jenis kendaraan yang terhalang oleh kendaraan lain walaupun di daerah terhalang seperti lereng dan perbukitan. Di wilayah lahan basah (wetland) yang kelembabannya tinggi, tentunya kualitas sinyal gelombang elektromagnetik akan lebih terdisipasi pada lingkungan. mengoperasikan IVC, tiap kendaraan harus memiliki perangkat komunikasi portabel yang dapat diakses secara terbuka, namun tidak berinteferensi dengan jaringan komunikasi yang telah ada. Dalam kajian ini diusulkan sistem IVC berbasis Wifi mendistribusikan informasi lalu lintas secara real time. Jarak antar kendaraan dan lajunya dapat diprediksi dengan menganalisis kuat daya sinyal Wifi yang ditangkap oleh receiver. Selain jenis kendaraan dapat dikenali melalui jenis frekuensi jaringannya. Sebagai tahap awal, penelitan tahun pertama diorientasikan untuk menentukan distribusi dan jarak optimal dari wifi yang ada dalam perlakuan kondisi lingkungan yang lembab dengan target jurnal internasional, hak cipta, dan TKT 4. Selanjutnya tahun kedua dirancang untuk membangun *prototype (P2)* produk portabel IVC dengan TKT 5.

Kata kunci: Inter-Vehicular Communication (IVC), Keselamatan lalu lintas, Wifi, Lingkungan lembab, Jarak optimal, Distribusi signal

A. LATAR BELAKANG

Sistem Inter-vehicular communication (IVC) atau yang dapat diterjemahkan sebagai sistem komunikasi antar-kendaraan merupakan suatu sistem transportasi cerdas yang acuan dasar pada pembangunan sistem komunikasi antar kendaraan. Ini bermakna setiap kendaran dapat 'berbicara' satu sama lain melalui jaringan komunikasi dengan mekanisme nirkabel. Informasi yang dibagikan dalam protokol jaringan IVC mencakup laju kendaraan, posisi kendaraan, dan juga jenis kendaraan. Informasi lalu lintas lainnya, seperti kemacetan atau kecelakaan juga data disalurkan ke dalam sistem jaringan. Penyebaran informasi lalu lintas ini dapat menurunkan secara signifikan angka kecelakaan karena masing-masing pengendara mengetahui informasi kendaraan lainnya dan membantu mereka membuat keputusan berkendaraan yang hati-hati dan cermat. Pengendara dapat dengan nyaman mendahului kendaraan di depannya dengan mengirimkan sinyal dan menerima informasi kendaraan-kendaraan di depannya pada arah berlawanan. Informasi kemacetan yang diperoleh berguna untuk pengendara dengan memilih jalan alternatif, sehingga perjalanannya menjadi lebih efisien.

Indonesia merupakan salah satu negara berkembang di dunia, tentunya memiliki kepentingan usaha dan mobilisasi dalam interaksi sesamanya. Jalan darat khususnya adalah suatu alat untuk mencapai tujuan, dan ada beragam alat kendaraan yang digunakan seperti mobil dan sepeda motor. Keberadaan kendaraan semakin banyak dan padat sehingga potensi kecelakaan semakin besar disamping ketersediaan jalan yang juga tebatas. Ilmu Pengetahuan dan Teknologi (IPTEK) di Indonesia harus selalu aplikatif dalam menghadapai situasi dan kondisi lokal yang senantiasa menuntut perbaikan yang cepat dan tepat dalam membenahi persoalan kendaraan bermotor. Produk IPTEK kendaraan bermotor sudah banyak memberikan kontribusi keluasan waktu dan ruang yang lebih cepat dan ringkas dalam menghubung suatu tempat ke tempat lain, berinteraksi memenuhi ruang jalan di perkotaan. Dengan perkembangan ruas jalan, kendaraan bermotor, jumlah penduduk dan interaksi kepentingan hidup maka banyak efek yang telah ditimbulkan dari keberadaan jalan dengan kendaraan bermotor. Pada tahun 2016 jumlah kendaraan bermotor di Indonesia terjadi peningkatan sebesar 124.348.224 unit dengan total jumlah pertumbuhan kendaraan sebesar 6 juta per tahun dimana 15% diantaranya di dominasi oleh jenis Mobil (BPS, 2016). Namun sayangnya, peningkatan penggunaan kendaraan bermotor di Indonesia tidak diikuti dengan

tingkat keselamatan yang tinggi bagi para penggunanya. Upaya tata tertib jalan raya, tata tertib kendaraan bermotor, pemakaian peralatan keselamatan berkendaraan, kepedulian pihak berwajib hingga sampai asuransi keselamatan berkendaraan telah memberikan hasil yang baik bagi pertumbuhan dan perkembangan pemakai jalan dengan kendaraan. Namun demikian, kecerobahan, kelalaian dan kurang peduli menyebabkan bencana kecelakaan tetap terjadi baik jumlah dan tingkat bahaya kecelakaan bahkan dianggap musibah biasa. Pada tahun 2010, cedera akibat kecelakaan lalu lintas membunuh setidaknya 1,24 juta orang tiap tahunnya. Ini berart irata-rata di seluruh dunia 3.397 orang terbunuh tiap harinya di jalan. Hampir 90% dari kematian tersebut terjadi pada negara-negara berpenghasilan rendah dan menengah. Jika tidak segera dilakukan tindakan, diperkirakan korban yang mengakibatkan kematian akan meningkat menjadi 1,9 juta orang pada tahun 2020 (WHO, 2013).

World Health Organisation (WHO), lembaga kesehatan dunia di bawah naungan PBB pada tahun 2016 memberitakan *The Global Report on Road Safety* menampilkan angka kasus kecelakaan lalu lintas yang terjadi sepanjang tahun di 180 negara. Dari survey yang dilakukan, Indonesia merupakan negara dengan peringkat ketiga kecelakaan lalu lintas paling banyak, dimana Indonesia memiliki 38.279 total kematian dibawah Tiongkok dan India (**Situmorang,2017**).

Permasalahan keselamatan lalulintas perlu ditemukan solusi yang tepat sebagai upaya pencegahannya. Pembanguan sistem IVC merupakan alterrnatif solusi yang tepat untuk keperluan ini. Karateristik jaringan dan jangkauan wifi yang digunakan sebagai upaya menjadikan sensor pada kendaraan bermotor sangat penting untuk diteliti. Penelitian ini mengusulkan suatu penyelidikan daya jangkau optimal dan sebaran sinyal wifi dari produk-produk yang sudah ada, menjadikan suatu pilot riset terutama yang telah terinstalasi di lingkungan Kampus Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau (FMIPA UNRI). Pemilihan lokasi ini juga mempertimbangan kondisi kelembaban udara di wilayah Riau yang tergolong lahan basah. Hasil yang harapkan terpetakannya distribusi signal wifi dalam kondisi kelembaban yang berbeda dalam lab uji coba, serta di tahun kedua diproyeksikan beroperasi pada kendaraan yang bergerak. Lingkungan kampus FMIPA UNRI dipilih karena fasilitas wifi sudah banyak terinstalasi. Jumlah kendaraan yang cukup banyak dan keberadaan mahasiswa, staf, dosen dan tamu kampus akan sangat membantu penelitian ini. Disipasi dan distribusi signal wifi pada lingkungan belum sepenuhnya dikaji. Dengan mengetahui distribusi sinyal wifi, maka

kemudian akan diperoleh rentang jarak optimal penggunaan Wifi untuk IVC dalam kondisi kelembaban yang bervariasi.

B. RUMUSAN MASALAH

Kendaraan bermotor yang bergerak di jalan merupakan sarana pengendara menggunakan fasilitas jalan. Tidak ada interaksi antara satu kendaraan dengan kendaraan lain kecuali bergerak mengikuti jalur aturan yang telah ditetapkan. Namun demikian, pengendara memiliki kelemahan untuk tertib sepenuhnya, maka timbul kelalaian atau melanggar aturan jalan raya. Pelanggaran aturan berakibat pada terjadinya kecelakaan lalu lintas. Untuk itu perlu dikaji beberapa persoalan dari munculnya kecelakaan antara tertib jalan raya dengan pengguna kendaraan, diantaranya:

- 1. Bagaimana keselamatan lalu lintas dapat dibantu dengan IVC?
- 2. Bagaimana cara kerja IVC mengurangi angka kecelakaan lalu lintas?
- 3. Bagaimana distribusi signal dan jangkauan wifi yang digunakan dalam IVC?
- 4. Apa keberlanjutan penggunaan sistem IVC dalam lalu lintas?

C. MAKSUD DAN TUJUAN PENELITIAN

Maksud dan tujuan dari penelitian adalah:

- 1. Menginvestigasi karakteristik signal dan jangkauan sinyal wifi eksisting untuk IVC,
- 2. Mengetahui distribusi sinyal dan jarak optimal IVC dalam kondisi kelembaban berbeda,
- 3. Membangun sistem IVC berbasis wifi untuk alat navigasi lalu lintas.

D. LUARAN/MANFAAT PENELITIAN

Rencana target capaian tahunan yang dijanjikan diperlihatkan pada Tabel 1 berikut:

Tabel 1. Target Luaran Penelitian

No.		Jenis Luaran	Indikator (Capaian
			Tahun ke-1	Tahun ke-2
1	Publikasi Ilmiah	Internasional	Submitted (JESTEC, Scopus Q2)	Accepted/ Published (JESTEC, Scopus Q2)
		Nasional Terakreditasi	Accepted (JAPS, Sinta 4)	Accepted/ Published (Indonesian Journal of Applied Physics, Sinta 2)
2		Paten		
		Paten Sederhana		
		Hak Cipta	Terdaftar	Terdaftar
		Merek Dagang		
		Rahasia Dagang		
	Hak	Desain Produk Industri		
	Kekayaan Intelektual	Indikasi Geografis		
	(HKI)	Perlindungan Varietas Tanaman		
		Perlindungan Topografi Sirkuit Terpadu		
3	Teknologi Tepa	at Guna	Draf	Tersedia
4	Model/Purwaru	upa (Prototipe) /Desain	P1	P2
5	Tingkat Kesiapan Teknologi (TKT)		4	5
6	Materi Ajar		Draf	Draf
7	Ringkasan Eksekutif		Terlaksana	Terlaksana
8	Skripsi Mahasiswa		Terlaksana	Terlaksana

Bersamaan dengan maksud dan tujuan penelitian, manfaat dari kajian ini adalah:

- 1. Memberikan informasi distribusi dan kualitas signal wifi di lingkungan.
- 2. Mengidentifikasi pengunaan wifi eksisting untuk IVC.
- 3. Sebagai bahan penelitian dan tugas akhir mahasiswa S1.

E. TINJAUAN PUSTAKA

E.1 Kecelakaan Lalu Lintas

Kecelakaan lalu lintas adalah suatu peristiwa di jalan yang tiba-tiba dan tidak disengaja melibatkan kendaraan dengan atau tanpa pemakai jalan lainnya, mengakibatkan korban manusia atau kerugian harta benda (Samosir et al., 2014). Pertumbuhan jumlah penduduk yang semakin hari semakin besar, pengguna jalan yang juga bertambah menyebabkan peluang terjadinya kecelakaan lalu lintas semakin tinggi, karena hampir setiap orang melakukan kegiatan di jalan raya yang mejadi tempat terjadinya kecelakaan lalu lintas. Peristiwa kecelakaan lalu lintas sudah sering terjadi sehingga menjadi hal biasa yang didengar, bahkan hampir setiap hari baik melalui media cetak, TV, radio atau bahkan disaksikan sendiri, seperti Gambar E.1.

Gambar E.1 Kecelakaan Kendaraan Bermotor (Liputan6.com, 2020)

E.2 Faktor Kecelakan Lalu Lintas

Faktor resiko adalah segala sesuatu yang dapat menimbulkan kerugian/kehilangan harta benda dan nyawa, sedangkan kecelakaan lalu lintas adalah kejadian yang tidak terduga dan sengaja yang melibatkan sedikitnya satu kendaraan yang menyebabkan kerugian. Hal dapat disimpulkan bahwa faktor risiko kecelakaan adalah suatu kejadian yang tidak terduga dan sengaja yang dapat menimbulkan kerugian/kehilangan materi dan nyawa yang terjadi di jalan raya. Faktor-faktor yang berhubungan dengan terjadinya kecelakaan lalu lintas dibagi menjadi 3 yaitu, fakto rmanusia; faktor kendaraan; faktor lingkungan dan jalan (Dewar, 2007).

i. Faktor Manusia

Manusia sebagai pengendara memiliki faktor-faktor yang mempengaruhi dalam berkendara, yaitu faktor psikologis dan faktor fisiologis. Keduanya adalah faktor dominan yang mempengaruhi manusia dalam berkendara di jalan raya. Faktor psikologis dapat berupa mental, sikap, pengetahuan, dan keterampilan. Sedangkan faktor fisiologis mencakup penglihatan, pendengaran, sentuhan, penciuman, kelelahan, dan sistem saraf (Manurung, 2012).

ii. Faktor Kendaraan

Faktor kendaraan merupakan faktor yang memiliki pengaruh terhadap terjadinya kecelakaan lalu lintas. Kendaraan yang mengalami perawatan secara berkala dan terus-menerus akan menciptakan rasa aman, nyaman dan selamat bagi pengemudi dan penumpangnya. Kondisi fisik dan mesin yang meliputi rem, ban, kaca spion, lampu utama, lampu *sign* dan sebagainya juga akan mempengaruhi terjadinya kecelakaan lalu lintas.

iii. Faktor Lingkungan dan Jalan

Lingkungan fisik merupakan faktor dari luar yang berpengaruh terhadap terjadinya kecelakaan lalu lintas. Lingkungan fisik yang dimaksud terdiri dari dua 6nstru, yakni faktor jalan dan faktor lingkungan. Faktor jalan meliputi kondisi jalan yang rusak, berlubang, licin, gelap, tanpa marka/rambu, dan tikungan/tanjakan/turunan yang tajam. Sedangkan faktor lingkungan berasal dari kondisi cuaca, yakni berkabut, mendung,dan hujan.Interaksi antara faktor jalan dan faktor lingkungan inilah yang akhirnya menciptakan faktor lingkungan fisik yang menjadi salah satu sebab terjadinya kecelakaan lalu lintas (**Rifal, 2015**).

E.3 Inter Vehicle Communication (IVC)

Inter Vehicle Communication (IVC) merupakan sistem komunikasi kendaraan dengan menggunakan teknologi komunikasi mobile dan nirkabel. IVC adalah aplikasi dari jaringan sensor nirkabel jaringan pada sisi jalan yang dapat digunakan untuk memantau kegiatan kendaraan jalan seperti kendaraan mengebut, kecelakaan, dan banyak lagi (Böhm, 2007).

Dengan adanya IVC, kendaraan dapat memiliki kemampuan berkomunikasi satu dengan yang lainnya menggunakan akses nirkabel dan *gateway* internet yang terdapat pada sisi jalan. Dengan demikian, hal ini dapat mengingatkan para pengendara untuk potensi masalah yang ada di depan dan kondisi lalu lintas atau menyediakan akses internet yang berguna dan praktis.

Aplikasi IVC dapat dikategorikan dalam tiga kelompok utama. Kategori pertama adalah bantuan sistem koperasi fokus pada koordinat kendaraan di titik-titik kritis seperti persimpangan tanpa lampu lalu lintas. Kategori kedua adalah komunikasi kendali berbasis longitudinal yang mencoba untuk mengeksploitasi tampilan melalui kemampuan jalan. Sementara kategori ketiga informasi dan peringatan fungsi memberikan dukungan dengan *real time* pesan peringatan untuk menghindari tabrakan.

Komunikasi jenis ini dapat dikategorikan sebagai berikut.

- Komunikasi yang terjadi antar kendaraan, hal ini disebut kendaraan berkomunikasi dengan 7nstru kendaraan (V2V). Ini terjadi desentralisasi dan kendaraan saling berbagi data kendaraan masing masing.
- Kendaraan untuk komunikasi dengan infrastruktur (V2I), maka kendaraan dapat berkomunikasi dengan menggunakan infrastruktur yang terdapat di sepanjang jalan untuk memberikan dukungan beberapa layanan seperti akses internet, komunikasi antar kendaraan, ponsel adversiting, dan lain lain (Nekovee, 2009).

IVC menggunakan teknologi VANET (Vehicular Ad-Hoc Network) yang terdiri dari dua basis teknologi. Pada jangkauan jarak yang jauh, IVC akan menggunakan sistem teknologi selular dan Wi-Max sedangkan untuk jarak dekat sampai jarak menengah akan menggunakan sistem Wi-Fi , DSRC dan WAVE. (Böhm, 2007). Tujuan dasar VANET adalah untuk mengembangkan sistem komunikasi kendaraan sehingga memungkinkan pertukaran data yang cepat dan efisien untuk kepentingan keamanan dan kenyamanan pengendara serta dapat digunakan sebagai sistem informasi trafik lalu lintas yang cerdas.VANET merupakan suatu jaringan ad-hoc yang bersifat self-organizing yang bekerja pada sistem IVC dan *vehicle-to-infrastructure communication* (Anisia, 2016). Gambar E.2 menunjukkan karakteristik *query* sistem IVC VANET.

Gambar E.2 Waktu tanggapan (a) dan akurasi (b) terhadap jarak dari suatu tipikal IVC VANET (Dikaiakos, 2007)

Permasalahan utama yang biasa terjadi pada lalu lintas di kota-kota besar adalah kemacetan dan kecelakaan. Hal tersebut biasanya disebabkan oleh kepadatan jumlah kendaraan dan kecepatan kendaraan. VANET yang menggunakan kendaraan sebagai *node*-nya tentu akan memerlukan implementasi *routing protocol* yang sesuai dengan karakteristik jaringannya. Ketersediaan jaringan internet, kehandalah kecepatan pengaksesan jaringan internet, keamanan akses dan akun, integritas serta keamanan adalah persyaratan utama yang wajib untuk dimiliki oleh sistem IVC.

E.4 Penerapan Teknologi IVC

Semenjak hadirnya gagasan untuk mengurangi angka kecelakaan lalu lintas berbasis nirkable, sejumlah penelitan pun berkembang untuk menemukan dan mengembangkan teknologi Intelligent Transportation Systems (ITS) (https://en.wikipedia.org/.org, 2017¹). Teknologi berkembang hingga dikenallah inter vehicle communication (IVC) sebagai solusi untuk mencegah terjadinya kecelakaan dengan menyediakan informasi peringatan dini kecelakaan dan semua informasi tentang sistem lalu lintas, baik antar kendaraan maupun kendaraan dengan lingkungan sekitar. Teknologi IVC berbasis VANET (Vehicle Ad Hoc Network) telah diuji-coba agar dapat menjangkau jarak yang jauh hingga 5000 m, namun karena kendala di lapangan, seperti resistansi jalan, udara dan temperatur lingkungan mereduksi kemapuan IVC nerbasis VANET menjadi sekitar 250 m saja, seperti yang dilaporkan oleh Dikaiakos dkk. (2007).

8

¹https://en.wikipedia.org/wiki/Vehicular communication systems

Gambar E.3 Penentuan rugi sistem dengan perbandingan hasil perhitungan secara teoritis (Mangel *dkk.*, 2011).

Survei komprehensif tentang penerapan IVC VANET telah dilakukan oleh Al-Sultan *dkk.* (2012). Dalam laporan mereka, karakteristik dan keunggulan topologi VANET untuk IVC dibahas secara mendalam. Mereka juga menyajikan berbagai macam konfigurasi teknologi IVC nirkabel, seperti *Cellular systems* (2/2.5/2.75/3G), WLAN/Wi-Fi, WiMAX, DSRC/WAVE hingga kombinasi beberapa teknologi nirkabel yang telah tersedia. Gambar mengilustrasikan distribusi informasi teknologi IVC, dari *vehicle to vehicle* (V2V) dan *Vehicle to Infrastructure* (V2I).

Gambar E.4 Distribusi informasi pada teknologi IVC (Faezipour, 2012).

Mangel *dkk.* (2011) melakukan penelitian dan pengamatan sistem IVC menggunakan frekuensi radio 5,9 GHz pada daerah *non-line-of-sight* (NLOS). Hasilnya menunjukkan adanya keterkaitan antara pelemahan daya dengan ukuran media jalan dan interseksi-interseksinya yang secara teori dapat ditentukan karakteristiknya. Gambar E.3 menujukkan rugi daya sistem yang dibandingkan dengan hasil perhitungan secara teoritis.

Toyota Corporation dengan resmi telah meluncurkan teknologi Intelligent Transportasi System (ITS) pertama mereka pada September 2015 dengan nama 'ITS Connect'². Produk ini merupakan satu paket pengembangan dari sistem Communicating Radar Cruise Control pada akhir 2014³. ITS Connect bekerja pada frekuensi 780 MHz untuk mengumpulkan informasi dari jalan ke kendaraan maupun informasi antar kendaraan, seperti yang ditunjukkan pada Gambar E.4.

E.5 Peta Rencana

Gambar E.5 menunjukkan rencana peta jalan penelitian ini. Penelitian ini telah dirancang pada tahun 2018-2019 untuk mengatasi gangguan (noise) signal berbasis Arduino (Zaid dkk., 2019). Usulan tahun pertama (2020) kami tujukan untuk membangun tahap awal sistem IVC. Sehingga, akan diperoleh bukti-bukti analitis, kendala dan observasi yang memadai dan memenuhi TKT 4. Penelitian tahap awal mengkaji pengembangan langkah pertama teknologi IVC. Penelitian ini mencakup mempelajari prinsip-prinsip sistem sensor dan detektor posisi yang telah ada saat ini untuk navigasi, seperti sensor ultrasound, sensor, infrared, sensor suhu, Wifi tracker, dan GPS tracker. Fokus penelitian tahap awal ini adalah mengkaji dan mengembangkan WiFi dan infrared sebagai sensor navigasi, yang meliputi memperoleh profil kekuatan sinyal WiFi dan infrared terhadap jarak, suhu dan kecepatan gerak, serta kondisi lingkungan lain yang dapat disimulasikan di laboratorium. Usulan tahun kedua akan membangun IVC dengan TKT 5. Tujuan utama penelitian tahun kedua ini adalah untuk menghasilkan purwarupa teknologi IVC yang siap pakai pada semua jenis kendaraan.

2

² sumber daring: http://techon.nikkeibp.co.jp/atclen/news_en/15mk/100300075/?ST=msbe

Gambar E.5 Peta jalan (*road map*) pengembangan dan penerapan teknologi IVC berbasis Wifi.

F. METODE PENELITIAN

Skematik diagram penelitian ini dapat dilihat pada Gambar F.1. Rangkaian RSSI wifi dirancang dan dimodifikasikan. Sinyal pemancar akan beresonansi dengan beberapa penerima dengan intensitas interferensi sinyal beragam. Kuat sinyal dari pemancar diukur oleh beberapa penerima (receiver) yang terkoneksi langsung dengan laptop. Masing-masing penerima sinyal berada pada radius yang berbeda dari pemancar. Kuat sinyal yang terukur dianalisis menggunakan wifi analyzer. Propagasi intensitas sinyal dipetakan dimana distribusi intensitas sinyalnya dioperasikan dengan menggunakan metode interpolasi.

Gambar F.1. Skematik pengukuran RSSI wifi. P adalah sumber sinyal wifi dan R1-R4 adalah antena penerima (receiver). Semua antenna ini dihubungkan oleh hub mikrokontroler dan personal computer (PC).

F.1 Waktu dan Lokasi Penelitian

Penelitian tahun pertama direncanakan terlaksana pada bulan Februari sampai Oktober 2020, termasuk masa pembuatan proposal penelitian ini hingga laporan akhirnya. Tahun kedua direncanakan mulai Februari hingga Oktober 2020. Lokasi penelitian tahun pertama sepenuhnya dilakukan di lingkungan kampus FMIPA Universitas Riau dan pengolahan hingga analisisnya, termasuk administrasinya dilakukan di Laboratorium Plasma dan Fotonik Jurusan Fisika FMIPA Universitas Riau. Pembuatan purwarupa di tahun kedua akan melibatkan institusi luar untuk fabrikasi dan karakterisasi beberapa komponen IVC, seperti antenna dan assembly komponen elektroniknya.

F.2. Jenis dan Sumber Data

Data yang diperoleh melalui pengukuran RSSI oleh penerima signal wifi (antenna). Data ini bersifat primer dan kuantitatif termasuk jarak dan sebarannya.

F.3. Teknik Pengumpulan Data

Data dikoleksi menggunakan alat ukur intensitas jaringan Wifi eksisting dengan receiver (antenna) sebagai perbandingan dapat menggunakan sistem antenna embedded pada ponsel pintar maupun laptop. Signal wifi yang terukur berupa received signal strength indication (RSSI) dalam desible (dB). I Selanjutnya, uji variasi kelembaban dilakukan dalam ruang uji yang dilengkapi dengan blower, dan sistem pengkabutan seperti ditunjukkan pada Gambar F.2. berikut.

Gambar F.2. Skema uji kelembaban

F.4 Teknik Analisis Data

Data RSSI dianalisis menggunakan program wifi analyzer. Untuk

memperoleh sebarannya, dilakukan *overlay* dengan memperoleh kontur dan koordinatnya. Grafik antara kekuantan signal wifi terhadap jarak juga akan disajikan untuk menentukan jarak optimalnya. Hubungan RSSI dengan jarak pengukuran dari sumber signal wifi diberikan oleh persamaan berikut.

$$RSSI = P_t(d_0) - P_R(d_0) - 10n_L \log\left(\frac{d}{d_0}\right) + X_G$$
 (1)

dimana P_t daya yang ditransmisikan sumber signal wifi (pemancar), P_R rugi daya pada jarak referensi d_0 , n_R faktor pangkat P_R yang bergantung pada kondisi pengukuran, d dan d_0 adalah jarak ukur dari sumber signal dan jarak acuan pengukuran, sementara X_G merupakan faktor berkas signal Gaussian yang digunakan. Gangguan (noise) yang muncul dapat diatasi oleh metode denoising yang telah dikembangkan oleh Zaid dkk. (2019).

F.5 Rancangan Purwarupa Lab

Gambar F.3. Rancangan purwarupa IVC.

Rancangan purwarupa P2 IVC (Gambar F.3) ini dibuat minimalis agar dapat digunakan pada semua jenis kendaraan. IVC ini terdiri atas layar (*display*), pemancar WiFi, penerima (*receiver*), dan sumber catu daya (*power supplay*). Perangkat ini menentukan lokasi dengan mendeteksi kekuatan sinyal (*signal strength*) Wi-Fi sumber pada suatu ruangan. Sebuah layar LCD akan ditambahkan untuk menampilkan kekuatan sinyal Wi-Fi dan posisinya. Antarmuka LCD dengan mikrokontroler bisa dilakukan dengan menggunakan Arduino.

F.6 Keberlanjutan

a. Kolaborasi dengan manufaktur dan keamanan kendaraan

Kerjasama antara peneliti dengan manufaktur dan keamaan kendaraan bertujuan untuk menjajaki kemungkinan fabrikasi IVC sekaligus melakukan uji kelayakannya sebagai alat navigasi kendaraan darat sesuai dengan permintaan pasar. Manufatur kendaraan yang terlibat diantaranya adalah pabrik kendaraan roda dua dan roda empat. Pihak indutri jasa keamanan kendaaran seperti perusahaan penyedia jasa GPS *tracer*. Kerjasama ini juga terbuka bagi peneliti dan pengembang transportasi darat dan penyedia jasa angkutan massa.

b. Penelitian dan pengembangan tahap kedua

Jika proyek IVC ini berjalan dan direspon para *stakeholder* dengan baik, maka penelitiannya akan berlanjut ke tahap persiapan produksi IVC secara massal. Termasuk dalam penelitian tahap ini adalah strategi pemasan piranti IVC agar tidak terjadi monopoli harga dan cepat ditanggapi positif oleh pasar.

c. Fabrikasi dan komersialisasi IVC

Fabrikasi dan pemasaran IVC dilakukan untuk memenuhi dan menyediakan piranti navigasi pada kendaraan sebelum teknologi ini hadir.

d. Pembangunan sistem basis data kondisi jalan dan lalu lintas darat

Tahap ini merupakan tanggungjawab pemerintah melalui kementerian perhubungan dan kementerian komunikasi dan Informasi untuk menghimpun dan menyediakan semua informasi jalan, jembatan, topologi jalan, dan semua keterangan terkait fasilitas di jalan raya. Basis data ini akan disimpan pada suatu pusat data yang dikelola oleh badan milik Negara yang berperan sebagai server center. Lembaga ini mirip dengan VICS (Vehicle Information and Communication System) di Jepang yang menangani tentang informasi transportasi jalan.

Gambar F.4 Mercusuar sebagai pemancar basis data lalu lintas di jalan raya (kiri) dan jalan di perkotaan (kanan)

e. Pengkajian dan penentuan pembangunan mercusuar jalan

Ini merupakan tahap perluasan sebaran data jalan di semua wilayah. Pengkajian ini bertujuan untuk membangun mercusuar jalan yang efisien, khususnya jumlahpemancar yang akan dipasang di suatu daerah yang akan berbeda antara daerah jalan raya dan jalan di perkotaan seperti Gambar F.4. Merancang daerah *pilot project* merupakan pilihan terbaik untuk mengimplementasikan teknologi IVC secara utuh.

f. Penyusunan navigasi kendaraan darat berbasis IVC

Pada tahap ini program penerapan teknologi IVC telah digunakan sebagai alat navigasi yang harus ada pada setiap kendaraan. Sehingga instrument hukum atau regulasi harus dibuat dan diwajibkan kepada vendor kendaraan untuk menyematkan IVC pada produk kendaraan terbarunya.

G. JADWAL KEGIATAN

Tabel 2. Jadwal pelaksanaan penelitian

No	Jenis Kegiatan	Tahun 1							Tahun 2																
140	ocilio regiatari	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
1	Studi identifikasi karakteristik lalulintas darat, daya tampung jalan, survei lapangan																								
2	Perancangan sistem ukur signal wifi berbasi RSSI																								
3	Kalibrasi sistem ukur																								
4	Pengukuran jarak optimal dan pemetaan distribusi (tahun 1) Pembuatan purwarupa (tahun 2)																								
5	Pemetaan dan akuisisi data																								
6	Perancangan uji kembaban																								
7	Pengukuran kualitas signal wifi dengan variasi kelembaban																								
8	Validasi dan koreksi																								
9	Analisis kualitas signal dalam kondisi lembab (uji lab)																								
10	Analisis kualitas signal dalam kondisi lembab ambient (alami)																								
11	Validasi model dan analisis statistik																								
12	Analisis nilai komersial																								
13	Penulisan dan publikasi karya ilmiah (KI) pada Jurnal																								
14	Penulisan laporan awal dan akhir tahunan, evaluasi dan presentasi.																								

H. DAFTAR PUSTAKA

- Anisia, R; Munadi, R; Negara, R. 2016. Analisis Performansi Routing Protocol OLSR dan AOMDV pada Vehicular Ad Hoc Network (VANET). Jurnal Nasional Teknik Elektro. 5 (1), 1-2.
- Arianto, D & Arifin, S. 2016. Pengaruh Usia, Pendidikan Dan Budaya Terhadap Kepatuhan Lalu Lintas Di Wilayah Hukum Polres Jepara. The 3rd University Research Colloquium (2)
- Böhm, A. 2007. State-of-the-art in Networks Aspect for Inter-VehicleCommunication. Technical Report, IDE0748.
- Conrad, Nathan. 2014. Position Tracking Using Wi-Fi. Honors Theses. Paper 2405
- Dewar,R. 2007. Human Factorsin Traffic Safety(2nd ed). WashingonDC: Author.
- Dikaiakos, M. D., Florides, A., Nadeem, T., dan Ittode, L. 2007. Location-Aware Services over Vehicular Ad-Hoc Networks using Car-to-Car Communication. IEEE Journal on Selected Areas in Communications. 25(8):1590-1602.
- Manurung, J. 2012. Hubungan Faktor-Faktor Penyebab dan Akibat Kecelakaan Lalu Lintas pada Pengendara SepedaMotor di Kota Medan Tahun 2008-2010. Skripsi Sarjana pada FKM Universitas Sumatera Utara.
- Menteri Perhubungan Republik Indonesia. 2014. Peraturan Menteri Perhubungan Republik Indonesia Nomor Pm 13 Tahun 2014 Tentang Rambu Lalu Lintas.
- Nekovee, M. 2009. Quantifying Performance Requirements of Vehicle-toVehicleCommunication Protocols for Rear-end Collision Avoidance. IEEE Journal VTC Spring.
- Rifal, et al. 2015. Faktor Risiko yang Berhubungan dengan Kecelakaan Lalu LintaspadaPengemudi Bus PO Jember Indah. Artikel Ilmiah Hasil Penelitian Mahasiswa Fakultas Kesehatan Masyarakat, Universitas Jember.
- Samosir, N; Siagian, P; Bangun, P. 2014. "Analisa Metode Backward Dan Metode Forward Untuk Menentukan Persamaan Regresi Linier Berganda (Studi Kasus:

- Jumlah Kecelakaan Lalu Lintas di Kotamadya Medan). Jurnal Saintia Matematika. 2 (4), 345–360.
- Shinkawa, T., Terauchi, T., Kitani, T., Shibata, N., Yasumoto, K., Ito, M., dan Higashino, T. 2006. A Technique for Information Sharing using Inter-Vehicle Communication with Message Ferrying. 7th International Conference on Mobile Data Management (MDM'06), 10-12 May 2006, Nara, Jepang
- Situmorang, R. 2016. WHO: Angka Kecelakaan Lalu Lintas di Indonesia Tertinggi se-Asia. http://ragam.analisadaily.com/read/who-angka-kecelakaan-lalu-lintas-di-indonesia-tertinggi-se-asia/240063/2016/05/29
- World Health Organization. 2013. *Global Status Reporton RoadSafety*. Switzerland: WHO.
- Zaid, Z., Mustaffa, I., Aminuddin, M.M.M., Gamal, M.D.H. 2019. Denoising small signals using averaging methods in Arduino. International Journal of Integrated Engineering, 11(4): 292-298.

G. REKAPITULASI BIAYA

Tabel 1. Rincian biaya penelitian (sudah termasuk pajak)

No	Jenis Pengeluaran	Biaya yang	ı diusulkan
		Tahun ke-1	Tahun ke-2
1	Honorarirum untuk pelaksana, petugas	-	-
	laboratorium, pengumpul data, pengolah data, penganalisis data, honor operator, dan honor		
	pembuat sistem.		
2	Pembelian bahan habis pakai untuk ATK,		
	fotokopy, surat menyurat, penyusunan laporan,	37.800.000	38,300,000
	cetak, penjilidan laporan, publikasi, pulsa, internet, bahan laboratorium, langganan jurnal.		
3	Perjalanan untuk biaya survey/ sampling data,		
	seminar/workshop, biaya akmodoasi-	2.000.000	2,000,000
	konsumsi, perdiem/lumpsum, transport		
4	Lain-lain: sewa untuk peralatan/mesin/ruang		
	laboratorium, kendaraan, kebun percobaan,	8,200,000	8,200,000
	peralatan penunjang penelitian lainnya.		
	Jumlah (Rp)	48,000,000	48,500,000

Jumlah total anggaran selama 2 tahun adalah Rp. 96,500,000,-

J. SUSUNAN ORGANISASI TIM PENGUSUL DAN PEMBAGIAN TUGAS

No	Nama	Instansi Asal	Bidang Tugas	Uraian Tugas	Alokasi Waktu (jam/ming gu)
1	Dr. Drs. Moh Danil Hendry Gamal, M.Sc	Jurusan Matematika FMIPA, Universitas Riau	Fisika Fotonik dan Optik Integrasi	 Melakukan pengukuran besaran intensitas signal wifi Menulis artikel ilmiah jurnal internasional Melakukan survey Memfabrikasi antenna array 	8 jam /minggu
2	Drs.Defrianto, DEA	Jurusan Fisika, FMIPA, Universitas Riau	Material dan Komputasi	 Merancang case box, modeling and optimation design Menulis karya ilmiah dan pemakalah pada seminar nasional Merancang program komputasi perhitungan jarak optimal signal wifi Menginterpolasi dan membuat kontur kekuatan signal 	6 jam /minggu
3	Dr. Ari Sulistyo Rini, M.Si	Jurusan Fisika, FMIPA, Universitas Riau	Material dan Instrumentasi	 Karakteristik antenna array Penyusunan laporan hasil riset Perancangan ruang uji kelembaban Menulis karya ilmiah dan pemakalah pada seminar internasional 	6 jam /minggu
4	Mahasiswa I (Tugas Akhir)	Jurusan Fisika, FMIPA, Universitas Riau	Optik dan Komputasi	Perancangan alat optik Perancangan alat dengan komputasi Validasi rancangan alat Menyiapkan skripsi	6 jam /minggu
5	Mahasiswa II (Tugas Akhir)	Jurusan Fisika, FMIPA, Universitas Riau	Optik dan Elektronika	 Pengoperasian alat elektronika Pengukuran jarak dan optimal signal wifi Interpolasi dan kontur kekuatan signal Menyiapkan skripsi 	6 jam /minggu
6	Mahasiswa III (Tugas Akhir)	Jurusan Fisika, FMIPA, Universitas Riau	Fisika Teori dan Komputasi	 Pemodelan distribusi signal wifi Simulasi jarak dan optimal signal wifi Uji kelembaban Menyiapkan draf skripsi 	6 jam /minggu

Lampiran 1. Justifikasi Rencana Anggaran dan Biaya

1. Honorarium

		Waktu		Honor per	Tahun (Rp)
		(jam/		Tahun ke-	Tahun ke-
Honor	Honor/jam (Rp)	minggu)	Minggu	1	2
Ketua Peneliti					
Anggota Peneliti 1					
Anggota Peneliti 2					
Pengumpul Data					
Honor Programmer					
		Su	btotal (Rp)		

2. Pembelian Bahan Habis Pakai

			Harga	Harga P Penu	njang
Material	Justifikasi Pembelian	Kuantitas	Satuan (Rp)	Tahun ke- 1	Tahun ke- 2
Kertas A4	Keperluan alat tulis	10	50,000	500,000	500,000
Log Book	Memonitor riset	4	25,000	100,000	100,000
Alat Tulis	Perangkat administrasi	8	50,000	400,000	400,000
Pembuatan Laporan proposal	Pelaporan Penelitian	1000	500	500,000	500,000
Pembuatan Laporan Progress	Pelaporan Penelitian	1000	500	500,000	500,000
Pembuatan Laporan Akhir	Pelaporan Penelitian	1000	500	500,000	500,000
Kabel listrik	Peralatan listrik	6	100,000	600,000	600,000
Jumper	Konektor rangkaian	20	50,000	1,000,000	1,000,000
Mikro-kontroler	Komponen elektronik	4	500,000	2,000,000	2,000,000
ACS723	Sensor arus dan tegangan listrik	4	300,000	1,200,000	1,200,000
Meteran laser	Alat ukur jarak presisi	2	850,000	1,700,000	
Wifi Shield V 2.2	Jaringan kommunikasi IVC	6	600,000	3,600,000	3,600,000
ESP-12f esp8266	Jaringan kommunikasi IVC	8	50,000	400,000	400,000
PCB Board	Komponen system sensor	10	40,000	400,000	400,000
Breadboard	Komponen system sensor	4	50,000	200,000	200,000
Multitester	Inspeksi kinerja rangkaian elektronik	1	3,000,000	3,000,000	
Humidity meter	Pengukur kelembaban	4	500,000	2,000,000	
Wifi reciever	penerima signal wifi	8	200,000	1,600,000	1,600,000
Wifi antenna	sumber signal wifi	2	900,000	1,800,000	1,800,000
Reuter	Penguat signal wifi	1	800,000	800,000	800,000
Fabrikasi piranti komunikasi IVC R.1	Purwarupa lab	2	1,500,000	3,000,000	3,000,000
Fabrikasi antena reciever R.1	Purwarupa lab	2	1,000,000	2,000,000	2,000,000

Fabrikasi casing	Pelindung piranti	6	250,000	1,500,000	1,500,000
Memory SD card	Penyimpan data host	8	100,000	800,000	800,000
Methanol	Cairan pembersih	2	400,000	800,000	800,000
Tissu	Pembersih	2	50,000	100,000	100,000
Sarung Tangan Plastik	Proteksi operator	6	50,000	300,000	300,000
Inverter	Pengendali tegangan listrik	2	900,000		1,800,000
Stabilizer	Pengendali tegangan listrik	1	1,400,000	1,400,000	1,400,000
Resistor, Kapasitor, Trsnsistor, Dioda,	Komponen elektronik	6	150,000	900,000	900,000
IC	Komponen elektronik	7	150,000	1,050,000	1,050,000
LED	Indikator kerja sensor	50	5,000	250,000	250,000
Fuse	Pemutus arus	10	50,000	500,000	500,000
Full set screwdriver	Alat instalasi	1	1,500,000		1,500,000
APC Jurnal Sinta 2/4	Biaya publikasi	1	1,500,000	1,500,000	
APC Jurnal Internasional	Biaya publikasi	1	3,000,000		3,000,000
Proof Reading	Perbaikan artikel	1	2,400,000		2,400,000
Pendaftaran Haki	Biaya pengurusan Hak Cipta	1	900,000	900,000	900,000
		Sı	ıbtotal (Rp)	37,800,000	38,300,000

3. Perjalanan

Material	Justifikasi Perjalanan	Kuantitas	Harga Satuan (Rp)	Biaya per	Гаhun (Rp)
				Tahun ke- 1	Tahun ke- 2
Kunjungan ke Batam (PP)	Perancangan mikrostrip antenna dan kalibrasi rangkaian	1	2,000,000	2,000,000	2,000,000
	· •	Su	btotal (Rp)	2,000,000	2,000,000

4. Sewa

			Harga	Harga P	ertahun	
Material	Justifikasi Sewa	Kuantitas	Satuan (Rp)	Tahun ke- 1	Tahun ke- 2	
Sewa tesla meter dan optical power meter	Pengukuran medan listrik dan optik	1	1,000,000	1,000,000	1,000,000	
Sewa etching machine	Perakitan komponen	6	400,000	2,400,000	2,400,000	
Sewa perangkat dan komponen optik	Perakitan komponen	2	1,500,000	3,000,000	3,000,000	
Sewa repeater, modulator, amplifier optik	Perakitan dan pengukuran komponen	6	300,000	1,800,000	1,800,000	
		Su	btotal (Rp)	8,200,000	8,200,000	
Total Anggara	Total Anggaran Yang Diperlukan Setiap Tahun (Termasuk Pajak (Rp)					
Total	Anggaran Yang diper			48,000,000 96,50	48,500,000 0,000	

Lampiran 2. Biodata Ketua Peneliti dan Anggota Peneliti

2.1 Identitas Diri Ketua Peneliti

A. Biodata

1	Nama Lengkap	Dr. Drs. Moh Danil Hendry Gamal, M.Sc
2	Jenis Kelamin	Laki-Laki
3	NIP	19650604 199103 1 002
4	NIDN	0004066502
5	Tempat dan Tanggal Lahir	Pasirpengaraian, 4 Juni 1965
6	E-mail	mdhgamal@unri.ac.id / dgamal02@yahoo.co.uk
7	Nomor Telepon/HP	0813 6550 8105
8	Nama Institusi Tempat Kerja	Jurusan Matematika FMIPA, Universitas Riau
9	Alamat Kantor	Kampus Bina Widya Km 12,5 Simpang Baru – Panam,
9	Alamat Namoi	Pekanbaru 28293 Riau Indonesia
10	Nomor Telepon/Fax	Tel. +62 (0) 761 42061

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan Tinggi	Universitas Riau	Washington	University of
Nama Ferguruan Tinggi	Universitas Mau	University, USA	Birmingham, UK
Bidang Ilmu	Matematika	Systems Science	Management
_		and Mathematics	Mathematics
Tahun Masuk – Lulus	1984 - 1990	1992- 1994	1997- 2001
Judul	Stabilitas	Cutting-Stock	Constructive and
Skripsi/Tesis/Disertasi	Pembatasan Plasma	Problems	Genetic Algorithm
	oleh Medan		Based Heuristics
	Magnetik		for the Continuous
			Location-Allocation
			Problem

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No	Tahun	Judul		
1	2019	 Applications of Goal Programming in the Real World Problems 		
2	2018-Now	Heuristic Search Methods for Continuous Location-Allocation Problems		
3	2013 – 2017	Heuristic Methods to Solve the Location-Allocation Problems and Other Combinatorial Optimisation Problems.		
4	Apr 2009 – 2012	 Continuous location-allocation problems with the present of barriers. Supported by DIKTI through Program of Academic Recharging 2009, collaborating with Prof Salhi of University of Kent, UK. 		

D. Publikasi Artikel Ilmiah dan Pemakalah Seminar Ilmiah (*Oral Presentation*) dalam 5 Tahun Terakhir

No	Tahun	Judul
1	2020	M. D. H. Gamal, Zulkarnain, M. Imran.Rotary Heuristic for Continuous Location-Allocation Problems. To appear in International Journal of Operational Research.
2	2019	 Widiawati Putri, Ihda Hasbiyati, Moh Danil Hendry Gamal. Optimization of Parking Lot in the Forms of Parallelogram and Right Triangle for Cars and Motorbikes, Mathematical Modelling and Applications, 4(4) (2019), 64-71
3	2019	 Febrianto Afli, Ihda Hasbiyati, Moh Danil Hendry Gamal, Modification Goal Programming for Solving Multi-Objective De Novo Programming Problems, International Journal of Management and Fuzzy Systems, 5 (2019), 64-69.
4	2019	 Z. Zaid, I. Mustaffa, M. M. M. Aminuddin, M. D. H. Gamal, Denoising Small Signals Using Averaging Methods in Arduino, International Journal of Integrated Engineering, 11 (2019), 292-298.
5		 Eka Swastika Alwi Putri, Habibis Saleh, Moh Danil Hendry Gamal, Optimization of Portfolio Stock Selection with Meta GoalProgramming, International Journal of Management and Fuzzy Systems, 5 (2019), 33-39.
6	2019	 Adhe Afriani, Habibis Saleh, Moh Danil Hendry Gamal, An Application of Goal Programming: The Best Route to Discover a Wonderful West Sumatera, International Journal of Management and Fuzzy Systems, 5 (2019), 9-13.
7	2018	 Henny Sartika and Mohammad Daniel Hendri Gamal, Depot Location Problems by Considering Its Distribution Problems, Journal of Research in Mathematics Trends and Technology, 1 (2018), 21-31.
8	2018	 Fitra Anugrah, Syamsudhuha, Yosza Dasril, Moh Danil Hendry Gamal, Preemptive Goal Programming for Nutrition Management Optimization, International Journal of Theoretical and Applied Mathematics, 4 (2018), 45-54.
9	2018	 Defarima Defarima, Arisman Adnan, M.D.H. Gamal, Ordinal Logistic Regression Analysis and Outlier Detection for Sports Talent Identification, International Journal of Science and Applied Technology, 3 (2018), 7-15.
10		 Ilis Suryani, M. Imran, Zulkarnain, M. D. H. Gamal, Solving Initial Value Problems with Mendeleev's Quadratures, <i>Journal of Mathematical Extention</i>, 11 (2017), 75-84.
11	2017	 Iis Setiowati, Ihda Hasbiyati, M. D. H. Gamal. Scheduling Aircraft Landing at Single Runway. Applied Mathematical Sciences, 11 (46) (2017), 2265 - 2273.
12	2017	 Lusiana Sibuea, Habibis Saleh, Moh Danil Hendry Gamal. Stochastic Integer Programming in the Management of the Blood Supply Chain: A Case Study, World Journal of Operational Research, 1 (2)(2017), 41-48
13	2017	Muhamad Nizam Muhaijir, Rado Yendra, M. Imran, M. D. H. Gamal. Variants of Chebyshev Method with Ninth-Order Convergence for Solving Nonlinear Equations", to appear in Global Journal of Pure and Applied Mathematics (GJPAM), 13 (10) (2017), 7331–7338
14	2017	 Salam Ali Wiradinata, Rado Yendra, Suhartono, Moh Danil Hendry Gamal. Multi-Input Intervention Analysis for Evaluating of the Domestic Airline Passengers in an International Airport. Science Journal of Applied Mathematics and Statistics, 5 (3) (2017): 110-126. doi:10.11648/j.sjams.20170503.13
15	2017	Muhamad Nizam Muhaijir, M. Imran, Moh Danil Hendry Gamal, Variants of Chebyshev's Method with Eighth-Order Convergence for Solving Nonlinear Equations. Applied and Computational Mathematics, 5(6) (2016): 247-251. doi: 10.11648/j.acm.20160506.13

16	2017	Ahmad Syakir, M. Imran, Moh Danil Hendry Gamal . Combination of Newton-Halley-Chebyshev Iterative Methods Without Second Derivatives. <i>International Journal of Theoretical and Applied Mathematics</i> , 3 (3) (2017): 106-109. doi: 10.11648/j.ijtam.20170303.12			
17	2016	Ilis Suryani, M. Imran, Zulkarnain, M. D. H. Gamal . Solving Initial Value Problems with Mendeleev's Quadrature. <i>Journal of Mathematical Extention</i> , 11 (2016): 75-84.			
18	2016	Ilis Suryani, M. Imran, M. D. H. Gamal . Composite Mendeleev's Quadratures for Solving a Linear Fredholm Integral Equation of the Second Kind. <i>Global Journal of Pure and Applied Mathematics</i> , 12 (4) (2016): 3493-3498			
19	2016	M. R. Fadhilla, S. Gemawati, I. Hasbiyati and M. D. H. Gamal. A New Relation Between the Fibonacci and Lucas Sequences for 7-Step. <i>Bulletin of Mathematics</i> , 8 (2) (2016): 159–168. file:///C:/Users/mdhgamal/Downloads/38-40-69-1-10-20170604%20(2).pdf			
20	2015	 M. D. H. Gamal, Sigit Sugiarto, Arif Sanjaya. Forecasting of Rice Stock using Winter's Exponential Smoothing and Autoregressive Moving Average Models. International Journal of Engineering Research & Technology, 4 (9) (2015): 99-103 			
21	2015	Bustami, Hadi Irawansyah, M. D. H. Gamal . Holt-Winters Forecasting Method That Takes into Account the Effect of Eid. <i>Science Journal of Applied Mathematics and Statistics</i> , 2015, 3(6): 257-262			
22	2015	Rida Agustina, Habibis Saleh, M. D. H. Gamal . Modeling Oil Palm Nutrient Management Using Linear Goal Programming. <i>Applied and Computational Mathematics</i> , 2015, 4(5): 374-378			
23	2015	 Elfira Safitri, Habibis Saleh, M. D. H. Gamal. Solving Linear Goal Programming Using Dual Simplex Method, Bulletin of Mathematics, 2015, 7 (1): 1–9. 			
24	2015	 Elfira Safitri, Habibis Saleh, M. D. H. Gamal. Solving Linear Goal Programming Using Dual Simplex Method, Bulletin of Mathematics, 7 (1) (2015): 1–9. 			
25	2015	Pratiwi Siregar, Habibis Saleh, M.D.H. Gamal , Optimisasi Penjadwalan Perawat dengan Program Gol Linear, <i>Jurnal Sains Matematika dan Statistika</i> , 1 (2) (2015): 17-26. http://ejournal.uin-suska.ac.id/index.php/JSMS/article/view/1955/1358			
26	2015	Jufri, Sri Gemawati, M. D. H Gamal, Alternatif Menentukan Koefisien Trinomial dengan Perkalian Model Anak Tangga dan Modifikasi Perkalian Bersusun, Jurnal Sains Matematika dan Statistika, 1 (1) (2015): 48- 51.http://ejournal.uin-suska.ac.id/index.php/JSMS/article/view/1972/1373			
27	2015	 Riska Yeni, Syamsudhuha, M.D.H. Gamal. Interpretasi Geometri Dari Sebuah Determinan. Jurnal Sains Matematika dan Statistika, 1 (2) (2015): 53-60. 			

E. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No	Tahun	Judul
1	May 2017	Applikasi Simulasi Monte Carlo dan Metode PERT/CPM pada Jaringan Kerja: Sebuah Kajian Survei. Paper presented at Seminar and Annual Meeting for Mathematics and Science Group of Indonesian Universities in Western Region, University of Jambi, Jambi, Indonesia

2	<i>May</i> 2016	 A Simple Method to Solve the Solid Transportation Problems. Paper presented at Seminar and Annual Meeting for Mathematics and Science Group of Indonesian Universities in Western Region, Sriwijaya University, Pelembang, Indonesia
3	<i>May</i> 2016	■ A Simple Method to Solve the Solid Transportation Problems. Paper presented at Seminar and Annual Meeting for Mathematics and Science Group of Indonesian Universities in Western Region, Sriwijaya University, Pelembang, Indonesia
4	Aug 2015	 A Rotary Heuristic Method to Solve the Continuous Location-Allocation Problems, paper presented at the 3rd International Seminar on Operational Research, Hotel Grand Aston Medan, August21st-23rd, 2015.

F. Karya Buku

- 2007 Program Linear dan Integer. Buku Ajar. Pusat Pengembangan Pendidikan Universitas Riau.
- 2003 On Mathematics Learning Process in Riau (in Indonesian). *Mosaik Pendidikan Riau*. Ed. Dr Firdaus LN, RiauUniversityEducationDevelopmentCenter.

G. Perolehan HKI dalam 10 TahunTerakhir

No	Judul/Tema HKI	Tahun	Jenis	Nomor I/ID
1				
2				

H. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

Workshop / Training / Short Course

	Workshop? Halling? Chart Coulds		
Okt 2018	 Lokakarya Pengembangan Kapasitas Kepemimpinan Perguruan Tinggi (16 jam). Hotel Premiere Pekanbaru, 15-16 Oktober 2018. Fasilitator dari SS Knowledge: Prof Dr Ir Satryo Soemantri Brodjonegoro. 		
Mar 2017	 Training of Trainer (TOT) Audit Mutu Akademik Internal (AMAI), Hotel Labersa, 5-7 Maret 2017. 		
May 2016	 Workshop Internasionalisasi Program Studi, Pekanbaru, 12 Me1 2016. 		

I. Penghargaan dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk dipergunakan sebagaimana mestinya. Biodata ini dibuat untuk pengajuan proposal penelitian skema Unggulan Perguruan Tinggi Universitas Riau.

Pekanbaru, 12 Maret 2020

мждамаг

(Dr. Drs. Moh Danil Hendry Gamal, M.Sc)

2.2 Identitas Diri Anggota Peneliti 1

A. Biodata

1	Nama Lengkap	Drs. Defrianto, DEA	
2	Jenis Kelamin	Laki-Laki	
3	NIP	196706101993031003	
4	NIDN	0010066701	
5	Tempat dan Tanggal Lahir Taluk Kuantan/ 10 Juni 1967		
6	6 E-mail defrianto@unri.ac.id		
7	Nomor Telepon/HP		
8	Nama Institusi Tempat Kerja Jurusan Fisika FMIPA Universitas Riau		
9	Alamat Kantor	Jalan Raya Bangkinang, Kampus Bina Widya km.	
9	Alamat Namoi	12,5 Simpang Baru, Panam Pekanbaru	
10	Nomor Telepon/Fax	Tel.: +62 761 63273	

B. Riwayat Pendidikan

Program	S1	S2	S3
Nama Perguruan Tinggi	Universitas Riau	Universite de Technologie de Compiegne	
Bidang Ilmu	Fisika	Applied Physics	
Tahun Masuk/Lulus	1992	1999	
Judul Skripsi/ Tesis/ Disertasi	PenentuanFrekwensi Natural akustik pada Ruang Berbentuk Sembarang	Propogation d'Ond Acoustiqe danks Milieu Ecoulement	
Nama Pembimbing/promotor	Dr. Dadang Iskandar	Dr. Mabruk Ben Tahar	

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pendanaan	
			Sumber	Jml (Juta Rp)
1	2015	Aplikasi Software ImageJ untuk Analisa Spektrum Judul Riset flourisensi pada daun dan buah	Universitas Riau	25
2	2015	Pemodelan dan Optimalisasi Elemen Peltier sebagai Sumber Energi Terbarukan Memanfaat Energi Panas Terbuang	Dikti	50
3	2014	Perancangan Perangkat Aktif dan Pasif	Dikti	50

		Sistem Komunikasi Optik		
4	2013	Model Pengendapan kotoran pada proses penjernihan air dengan menggunakan metode resoanansi gelombang akustik pada tabung berbeda diameter	Universitas Riau	15

D. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/ Nomor/ Tahun
1	Simplified Linear Configuration Model Of 3X3 Single Mode Fiber Coupler Using Matrix Transfer		Vol 13, No 3, 2015
2	Simulasi 3 Dimensi Distribusi Panas Plat Knalpot Mobil untuk Elemen Termoelektrik	Komunikasi Fisika Indonesia	Vol.13, No.12 (2016)
3	Pengolahan Isyarat Metode Diferensial untuk Linieriasi Sensor Koil Datar	Komunikasi Fisika Indonesia	Vol.13, No.12 (2016)
4	Perhitungan Parameter Kisi Kristal Berstruktur Hexagonal Berasarkan Pola Difraktsi Elektron dengan Bantuan Komputer		Vol.11, No.9 (2014)
5	Breakdown Voltage Effect On Coupling Ratio Fusion Fiber Coupling	Physics Procedia	Volume 19, 2011, Pages 477-481

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk dipergunakan sebagaimana mestinya. Biodata ini dibuat untuk pengajuan proposal penelitian skema Unggulan Perguruan Tinggi Universitas Riau.

Pekanbaru, 12 Maret 2020

DEFIANTO

(Drs. Defrianto, DEA)

2.3 Identitas Diri Anggota Peneliti 2

A. Identitas Diri

1. Nama Lengkap : Dr. Ari SulistyoRini, M.Sc.

2. Jenis Kelamin : Perempuan

3. Pangkat/Jabatan Fungsional : Penata Muda Tk. I IIIB / Asisten Ahli

4. NIP/NIK/Identitaslainnya : 197610172006042 002

5. NIDN : 0017107607

6. Tempat dan Tanggal Lahir : Pekanbaru, 17 Oktober 19767. Alamat e-mail : ari.sulistyo.rini@gmail.com

8. Alamat Rumah : Jl. Melati Indah, Pondok Daun Residence PHS 4,

Kel. Delima, Tampan, Pekanbaru

9. NomorTelepon/Faks/ HP : 0761-563249 / 0761-63279 / 0812-70464974

10. Alamat Kantor : Jurusan Fisika, FMIPA – Universitas Riau,

Kampus Bina Widya, Jl. Prof. Muchtar Lutfi Sp.

Baru Pekanbaru, 28293

11. NomorTelepon/Faks : 0761-63273/63279

12. Lulusan yang Telah Dihasilkan : S-1 = 19 Orang

13. Mata KuliahygDiampu : 1. Elektronika Dasar I (S-1)

2. ElektronikaDasar II (S-1)

3. FisikaZatPadat I (S-1)

4. FisikaZatPadat II (S-1)

4. FisikaDasar I (S-1)

5. FisikaDasar II (S-1)

6. Aljabar Linear (S-1)

B. Riwayat Pendidikan

Deskripsi	Sarjana (S-1)	Magister (S-2)	Doktor (S-3)
Nama PT	Institut Teknologi Bandung (ITB)	Universiti Putra Malaysia(UPM), Malaysia	Universiti Kebangsaan Malaysia (UKM), Malaysia
Bidang Ilmu	Fisika	Fisika Dielektrik	Fisika Material
Tahun Masuk- Lulus	1994-1998	2000-2002	2009-2017
Judul Skripsi/ Thesis/ Disertasi	Determination of Minimum Phase Wavelet Resolution in Seismic	Effect of Alkaline Earth Metal (M= Sr, Ca, Mg) Substitution on Dielectric Properties of Ba _{1-x} M _x PbO ₃ Ceramics	Synthesis, Characterization and Potensial Application of Bimetallic nanoparticles
Pembimbin	Dr. SatriaBijaksana	Prof. Madya Dr. Wan	Prof. Dr.Shahidan

C. Pengalaman Penelitian

No.	Tahu Judul Penelitian		Pendanaan		
NO	n	Judui Penentian	Sumber	Jumlah (Rp)	
1.	2017	Alat Deteksi Sederhana Untuk Menentukan Mutu Rendemen Getah Karet Olahan Berbasis Mikrokontroler Arduino Uno	Dana PNBP LPPM UR 2017	18.000.000,-	
2.	2016	Multi Frekuensi Eddy Current Coil Untuk Deteksi Ketebalan Non Magnetik Material	Dana KBK LPPM UNRI 2016	22.500.000,-	
3.	2009- 2016	Synthesis, Characterization and Potensial Application of Bimetallic nanoparticles	UKM	-	
4.	2009	Pengembangan Lanjut Soil Moisture Sensor Dengan Neural Network Untuk Mereduksi Faktor Pengaruh Jenis Tanah, Ketua Peneliti	Hibah Kompetitif Penelitian Kerjasama Internasional DP2M	147.000.000,-	
5.	2008- 2009	Pengembangan Soil Moisture Sensor Untuk Pengukuran In-Situ Berdasarkan Prinsip Spektroskopi Impedansi	Hibah Kompetensi Perguruan Tinggi, DP2M Dikti	295.000.000,-	
6.	2006- 2007	Pengembangan dan Pembuatan Sistem Peringatan Dini Untuk Mendeteksi Ketinggian Permukaan Air Sungai Berbasis Sensor Kapasitif	Hibah Bersaing Perguruan Tinggi, DP2M Dikti Jakarta	72.500.000,-	

D. Pengalaman Pengabdian Kepada Masyarakat

No	Tahu	Judul Pengabdian Kepada Masyarakat	Pendanaan (Rp)
NO	n Judui Pengabulan Kepada Masyarakat –		Sumber Jumlah
1.	2018	Pelatihan Optimalisasi Praktikum Fisika Berbasis KIT IPA Bidang Mekanika Bagi Guru Smp Sederajad Se-Kecamatan Minas	BOPTN 3.000.000,- FMIPA Universitas Riau
2.	2018	Bimbingan Penggunaan Kit IPA Terpadu Untuk guru-guru Sains di SMAN Kuantan Hilir Sebarng Koto RajoKab. Kuantan Singingi	Universitas 10.000.000, Riau -
3.	2017	Pembuatan Alat Praktikum Sederhana di Kecamatan XIII Koto Kampar	Pasca Sarjana 10.000.000, Universitas - Riau
4.	2016	Penyuluhan Teknologi Ekohidro Untuk Pencegahan Kebakaran Lahan Di Desa Rimbo Panjang Kecamatan Tambang, Kampar, Riau	LPM 2.500.000,- Universitas Riau

5.	2008	Pelatihan	Pengelolaan	Laboratorium	Untuk	LPM	1.500.000,-
		Guru IPA	SMA, di SMA	1 Inuman Kab	upaten	Universitas	
		Kuansing				Riau	

E. Publikasi Artikel Ilmiah Dalam Jurnal

No	Judul Artikel Ilmiah	Volume/ Nomor/Tahun	Nama Jurnal
1.	XPS and TPR studies of 2% (Ru1/2-Sn1/2)/Al2O3 catalyst synthesized by microwave technique	Vo. 1120, No. 1(2018)	IOP Conf. Series: Journal of Physics: Conf. Series
No	JudulArtikelllmiah	Volume/ Nomor/Tahun	NamaJurnal
2.	Visualisasi Struktur Kristal Keramik Perovskite Menggunakan VESTA	Vol 15, No. 1 (2018)	Komunikasi Fisika Indonesia
3.	Pembelajaran Ultrasound Pada Sinyal Elektrokardiogram Janin Dengan resolusi pencitraan dan varisasi frekuensi	Vol. 10, No. 2	APTEK
4.	Catalytic activity of Ru-	983/2018	IOP Conf. Series: Journal
	Sn/Al2O3 in reduction reaction of pollutant 4-Nitrophenol	http://iopscience .iop.org/article/1 0.1088/1742- 6596/983/1/012 040/pdf	of Physics: Conf. Series
5.	Sintesis NanokatalisPd/C untuk Penguraian Metilen Biru menggunakanMetode Mikrowave	September 2017	Prosiding Seminar Nasional Fisika, Universitas Riau
6.	Struktur, Morfologi, dan Aktivitas Bimetalik Ru-Sn/Al2O3 yang disintesis dengan Metoda Konvensional dan Mikrowave	September 2017	Prosiding Seminar Nasional Fisika, Universitas Negeri Jakarta
7.	Pembuatan Detektor Frekuensi Tunggal Berbasis Prinsip Eddy Current untukPengukuran Ketebalan Logam Non magnetik Cu dan Al	April 2017	JurnalKomunikasiFisika Indonesia, UNRI
8.	Investigation of Gelation Mechanism between Amino Acid Surfactant based Microemulsion and Kappa-	43(2)(2014): 203–209	SainsMalaysiana, Malaysia

Carrageenan Gel Network

9.	SAXS and XPS Characterization of Ru/Alumina Catalyst Synthesized by Microwave Irradiation Technique	Vol. 364, 238 (2012), DOI: 10.4028/www.scie ntific.net/AMR.364. 283	Advanced Material Research Trans Tech Publications, Switzerland,
10.	Preparation of Ru Nanoparticles Supported on Al ₂ O ₃ by Using Conventional Microwave Oven: Effect of Irradiation Power	AIP Conf. Proc. 1400, 222-226 (2011)	AIP Conf. Proc.
11.	Microwave-assisted Synthesis of Ru-Sn/ZnO for Catalysis Application	1284, 129 (2010)	AIP Conf. Proc.
12.	Structural and Morphological Studies of TiO2 Films for Dye- Sensitized Solar Cell Applications	Vol. 293 (2009), pp 63-66	Diffusion and Defects Forum

F. PemakalahSeminar Ilmiah (Oral Presentation)

N	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
0	ilmian / Seminar		
1.	The 8th International Conference On Theoretical And Applied Physics	XPS and TPR studies of 2%(Ru1/2-Sn1/2)/Al2O3 catalyst synthesized by microwave techniques	20-21 Sept 2018, Medan
2.	3 rd Green and Sustainable Chemistry	Microwave-assisted synthesis of 2%(RuxSn1-x)/Al2O3 and its catalytic activity for reduction of 4-nitrophenol	13-16 Mei 2018, Berlin
3.	Seminar NasionalFisika, Universitas Riau	SintesisNanokatalisPd/C untukPenguraianMetilenBi rumenggunakanMetodeMi krowave	23 Sept 2017, UNRI
4.	3 rd International Conference of Science and Mathematical Education	Catalytic Activity of Ru-Sn for Reduction of Pollutant 4-Nitrophenol	18-20 Sept 2017, Semarang
5.	Kolokium Siswazah UKM 2011	Morphology and Catalytic Properties of Ru/Al ₂ O ₃ Catalyst Synthesized by	FST, UKM, July 4-6 th 2011

Microwave Oven

6.	The International Conference for Nanomaterial Synthesis and Characterization (INSC 2011)	SAXS and XPS Characterization of Ru/Alumina Catalyst Synthesized by Microwave Irradiation Technique	Seri Kembangan, Selangor, Malaysia, July 4-5 th , 2011
7.	Advances in Applied Physics & Materials Science Congress (APMAS2011)	Preparation of Ru Nanoparticles Supported on Al ₂ O ₃ by Using Conventional Microwave Oven: Effect of Irradiation Power	Antalya, Turkey, May 2011
8.	The 3 rd Nanoscience and Nanotechnology Symposium	Microwave-assisted Synthesis of Ru-Sn/ZnO for Catalysis Application	ITB Bandung, June16th 2010
9.	SeminarSemirata 2010 BKS PTN MIPA	Kajian Spektrum Serapan Sinar UV-Tampak (visible) pada Proses Pembentukan Bimetal Ru- Sn Menggunakan Radiasi Mikrowave	Universitas Riau, 10-11 Mei 2010

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk dipergunakan sebagaimana mestinya. Biodata ini dibuat untuk pengajuan proposal penelitian skema Unggulan Perguruan Tinggi Universitas Riau.

Pekanbaru, 12 Maret 2020

ARINI

(Dr. Ari Sulistyo Rini, M.Sc.)

Data Mahasiswa

No	Nama	NIM	Prodi	Bidang Ilmu
1	Zamri	1603122774	Fisika S1	Optik dan Komputasi
2	Velia Veriyanti	1603122646	Fisika S1	Optik dan Elektronika
3	Ramy Fitrah Izzah	1703110239	Fisika S1	Fisika Teori dan Elektronika