Assignment o: Minitutorial for the Nonadaptive Matlab Template

Method · October 2019							
0	NS .	READS 140					
1 author:							
	Jan Treur Vrije Universiteit Amsterdam 824 PUBLICATIONS 8,121 CITATIONS SEE PROFILE						
Some of the authors of this publication are also working on these related projects:							
Project	A Computational Analysis of Psychopathy based on a Network-Oriented Modeling Approach View project						
	Co. Evolution of Social Contagion and Adaptive Rending Recod on Hemophilis	y View project					

Minitutorial for the Nonadaptive Matlab Template

Use the Matlab file NOMEnonadaptivePainexamplev01 which is the nonadaptive template which has the pain example already in it. This pain example was taken from Book 1, Chapter 1, Section 1.3 (see Fig. 1.1) to explain the functional role of a mental state; it has the following graphical representation

The following states are used in the network model:

state		explanation				
nr	name	схріанацін				
X_1	tissue damage	The person burns a finger by touching a hot pot during cooking				
X_2	pain	The person feels pain				
X_3	winces	The person winces				
X_4	groans	The person groans				
X_5	escaping	The person escapes from the hot pot				
		(and perhaps holds the finger in cold water for a while)				

The role matrices and the initial values are as follows; see Book 2, Chapter 2, Section 2.4.1 for an explanation of the different types of role matrices. Here the stepmod combination function is used to generate out of the blue tissue damage at time point 20, and stop it at time point 50.

								_
mb	base connectivity	1	2	mcwv	connection weights	1	2	
X_1	tissue damage	X_1	X_5	X_1	tissue damage	1	0	
X_2	pain	X_1		X_2	pain	1		
X_3	winces	X_2		X_3	winces	1		
X_4	groans	X_2		X_4	groans	1		
X_5	escaping	X_2		X_5	escaping	0.7		
				mcfpv	combination	1		2
				on parameters	-1	-4.	step	
mcfwv		1	2		function	alogi	stic	mod
comb	ination function	alogistic	step		parameter	1	2	1 2
	weights	aiogistic	mod		parameter	σ	τ	
X_1	tissue damage	0.3	0.7	X_1	tissue damage	5	0.7	50 20
X_2	pain	1		X_2	pain	5	0.7	
X_3	winces	1		X_3	winces	5	0.6	
X_4	groans	1		X_4	groans	5	0.7	
X_5	escaping	1		X_5	escaping	5	0.8	
msv	speed factors	1		iv	initial values	1		
X_1	tissue damage	2		X_1	tissue damage	0		
X_2	pain	0.5		X_2	pain	0		
X_3	winces	0.5		X_3	winces	0		
X_4	groans	0.5		X_4	groans	0		
X_5	escaping	0.2		X_5	escaping	0		

Copied into the Matlab template these role matrices look like the following; here in matrix \mathbf{mb} the X_i are replaced by their index i and all empty cells are filled with NaN (Not a Number), as the Matlab template needs numbers and does not accept empty cells in matrices but NaN indications instead:

```
mb = [1
1
    NaN
2
    NaN
    NaN
    NaN
]
mcwv=[1 0
   NaN
1
    NaN
    NaN
0.7 NaN
]
msv=[2
    0.5
    0.5
    0.5
    0.2
    ]
mcfwv=[0.3 0.7
   NaN
1
    NaN
    NaN
1
    NaN
1
mcfpv = cat(3, [5]
    0.7
    0.6
   0.7
5
    0.8
],[50
        20
NaN NaN
NaN NaN
NaN NaN
NaN NaN
])
```

These are the questions:

Q1. Check whether you see that all role matrices are included and run a simulation with the file as is. What is the value of the pain threshold here?

Try a higher pain threshold value like 1, and after running the simulation again report how this changed value affects the pain level and the responses.

Try a lower pain threshold value like 0.2, and after running the simulation again report how this value affects the pain level and the responses.

After this, set the pain threshold back to its original value.

- Q2. Again, run a simulation with the file as is. Explain from the role matrices why from the three responses X_3 , X_4 , X_5 on pain, the escape response X_5 is the lowest.
- Q3. For the escaping state X_5 change one by one the values of the weight of its incoming connection, its speed factor, and the threshold of its combination logistic function, until a very strong (= close to 1) escaping response is obtained. For each change run the simulation again and report what is the result. Keep the values you found to use them in 4.
- Q4. In addition to 3., now make that the escaping negatively affects the tissue damage. Draw the new picture.

Next, in Matlab change the value 0 of the connection weight from escaping to tissue damage in role matrix **mcwv** for connection weight values (first row for X_1) into -0.7. Run the simulation again and report the results.