Отчёт по лабораторной работе №1 Методы нулевого порядка

Введение

В данной лабораторной работе были исследованы методы оптимизации: метод градиентного спуска, метод одномерного поиска с использованием золотого сечения и метод Нелдера-Мида. Целью работы было сравнить эффективность этих методов на различных функциях и проанализировать их сходимость.

Описание используемых методов:

Метод градиентного спуска.

Метод градиентного спуска (Gradient Descent) — это метод поиска минимума функции, который использует информацию о градиенте функции для определения направления движения. Основное уравнение метода:

$$x_new = x_cur - eta * nabla f(x_cur)$$

, где eta — шаг или learning rate, nabla f(x) — градиент функции.

Метод одномерного поиска с использованием золотого сечения.

Этот метод использует принцип золотого сечения для минимизации функции одной переменной. На каждом шаге определяется новый интервал, в котором находится минимум функции.

Метод Нелдера-Мида.

Метод Нелдера-Мида (Nelder-Mead) — это метод оптимизации, который не требует вычисления производных и используется для минимизации многомерных нелинейных функций. Он работает, манипулируя простыми многоугольниками в пространстве параметров.

Исследование

$$f(x, y) = x^2 + y^2$$

- Метод градиентного спуска показал быструю сходимость и высокую точность.
- Метод золотого сечения продемонстрировал хорошую производительность, но потребовал больше итераций.

$$f(x, y) = x^2 + 100 * y^2$$

- Из-за большого числа обусловленности (отношение максимального и минимального собственных значений гессиана), метод градиентного спуска испытывал трудности с сходимостью по переменной **у**.
- Появлялись предупреждения об переполнении:

RuntimeWarning: overflow encountered in scalar multiply

return x ** 2 + 100 * y ** 2

RuntimeWarning: overflow encountered in scalar power

 $return \ x ** 2 + 100 * y ** 2$

3. Метод Нелдера-Мида

• Метод продемонстрировал стабильную работу на всех тестируемых функциях, однако время выполнения было значительно больше по сравнению с методами, использующими информацию о градиенте.

Графики и анализ

На рисунке 1 приведены результаты работы методов на функции $x^2 + y^2$. Видно, что метод градиентного спуска нашёл минимум за несколько шагов. Метод золотого сечения также продемонстрировал хорошую сходимость, но потребовал больше времени на выполнение.

На рисунке 2 показаны результаты работы методов на функции ($x^2 + 100 * y^2$). Заметно, что из-за разного масштаба переменных метод градиентного спуска испытывал трудности.

Дополнительное задание 1

Метод одномерного поиска и покоординатный спуск

Для выполнения дополнительного задания 1 был выбран метод покоординатного спуска, который сочетался с методом одномерного поиска золотого сечения. Метод покоординатного спуска позволяет эффективно минимизировать функции, оптимизируя каждую переменную отдельно, что особенно полезно для функций с разными масштабами переменных.

Исследование

Метод покоординатного спуска (Coordinate Descent) оптимизирует функцию последовательно по каждой из переменных. Это позволяет избежать переполнений и улучшить сходимость для плохо обусловленных функций.

$$f_1(x, y) = x^2 + y^2$$

• Целевая функция для проверки сходимости и эффективности методов на простой квадратичной функции.

$$f_2(x, y) = x^2 + 1000 * y^2$$

• Целевая функция с высоким числом обусловленности для проверки устойчивости методов.

Реализация

Метод покоординатного спуска был реализован в файле coordinate_descent.py и использовался для оптимизации функций f_1 и f_2 . В качестве метода одномерного поиска применялся метод золотого сечения, реализованный в golden_section_search.py.

Результаты

$$f_1(x, y) = x^2 + y^2$$

• Метод покоординатного спуска показал быструю сходимость и точность при минимизации функции. Оптимальные значения были достигнуты за небольшое количество итераций.

$$f_2(x, y) = x^2 + 1000 * y^2$$

• Метод покоординатного спуска показал лучшую устойчивость к разнице в масштабах переменных и избежал переполнения по переменной у. Время выполнения было увеличено из-за необходимости адаптивного выбора шага.

Дополнительное задание 2

Исследование сложных случаев

Исследование на функциях п переменных

$$f(x, y, z) = x^3 * y^3 * z^3$$

Функция высокой размерности для проверки сходимости методов на многомерных задачах. Метод градиентного спуска был использован для оптимизации функции f с использованием файла gradient_descent_multiple_variable.py. Использовался шаг eta = 0.1.

Результаты:

• Метод градиентного спуска показал хорошую сходимость и высокую точность при минимизации функции с тремя переменными. Оптимальные значения были достигнуты за разумное количество итераций, несмотря на высокую размерность пространства.

Исследование плохо обусловленных функций

$$f_{bad}(x, y) = x^3 + y^3 + \sqrt{x^4 + y^4}$$

• Функция с высоким числом обусловленности для проверки устойчивости методов к переполнению.

Результаты

• Метод градиентного спуска столкнулся с проблемами из-за высокой обусловленности функции, что привело к переполнению. Время выполнения было увеличено из-за необходимости адаптивного выбора шага.

Таблицы

Общая таблица входных данных при learning rate = 0.99

1	Method	Function	Learning Rate	Initial Point
0	Gradient Descent	x^2 + y^2	0.99	(0.1, 0.1)
1	Gradient Descent	$x^2 + 100 * y^2$	0.99	(0.1, 0.1)
2	Gradient Descent	x^2 + y^2	Golden section search	(0.1, 0.1)
3	Gradient Descent	$x^2 + 100 * y^2$	Golden section search	(0.1, 0.1)
4	Scipy Minimize	x^2 + y^2	Nelder-Mead	(0.1, 0.1)
5	Scipy Minimize	$x^2 + 1000 * y^2$	Nelder-Mead	(0.1, 0.1)
6	Coordinate Descent	x^2 + y^2	Golden section search	(0.1, 0.1)
7	Coordinate Descent	$x^2 + 1000 * y^2$	Golden section search	(0.1, 0.1)
8	Gradient Descent	$x^3 * y^3 * z^3$	0.1	(1, 1, 1)
9	Gradient Descent	x**3 + y**3 + np.sqrt(x**4 + y**4)	Golden section search	(0.1, 0.1)
10	Gradient Descent	$x^2 * y^2 * \log(x^2 + y^2)$ with noise	Golden section search	(0.1, 0.1)

Результаты работы и гиперпараметры

Execution Time	Iterations	Function Value	Optimal Point
0.000270	167	2.347142e-05	(-0.0034257419087928617, -0.0034257419087928617)
0.001215	69	inf	(-0.02480842668343483, -2.0805090302657592e+157)
0.000077	2	5.183958e-30	(1.6099624430392533e-15, 1.6099624430392533e-15)
0.000139	4	8.667371e-09	(9.263681513643177e-06, 9.263668355432861e-06)
113.000000	61	3.270427e-17	(-1.552281980928567e-09, 5.504060914521181e-09)
131.000000	70	5.196757e-17	(4.650769607971084e-11, -7.20870340531329e-10)
0.000089	2	1.393183e-19	(1.3931831859930762e-18, -3.732536918432672e-10)
0.000175	4	9.051291e-09	(9.466615411015083e-06, 9.466612170847069e-06)
0.002333	1000	5.299731e-05	$ (0.33490149885113785,\ 0.3349014988511379,\ 0.3349014988511376) $
0.000146	2	2.628531e-18	(-1.3633238326486213e-09, -1.3633238326486213e-09)
0.001001	2	-3.059638e-07	(4.65524463517063e-05, 4.65524463517063e-05)

Общая таблица входных данных при learning rate = 0.1

	Method	Function	Learning Rate	Initial Point
0	Gradient Descent	x^2 + y^2	0.1	(0.1, 0.1)
1	Gradient Descent	$x^2 + 100 * y^2$	0.1	(0.1, 0.1)
2	Gradient Descent	x^2 + y^2	Golden section search	(0.1, 0.1)
3	Gradient Descent	$x^2 + 100 * y^2$	Golden section search	(0.1, 0.1)
4	Scipy Minimize	x^2 + y^2	Nelder-Mead	(0.1, 0.1)
5	Scipy Minimize	$x^2 + 1000 * y^2$	Nelder-Mead	(0.1, 0.1)
6	Coordinate Descent	x^2 + y^2	Golden section search	(0.1, 0.1)
7	Coordinate Descent	$x^2 + 1000 * y^2$	Golden section search	(0.1, 0.1)
8	Gradient Descent	$x^3 * y^3 * z^3$	0.1	(1, 1, 1)
9	Gradient Descent	x**3 + y**3 + np.sqrt(x**4 + y**4)	Golden section search	(0.1, 0.1)
10	Gradient Descent	$x^2 * y^2 * log(x^2 + y^2)$ with noise	Golden section search	(0.1, 0.1)

Результаты работы и гиперпараметры

Optimal Point	Function Value	Iterations	Execution Time
(0.0009223372036854776, 0.0009223372036854776)	1.701412e-06	21	0.000045
(1.5030672529752546e-13, 1.0184490707224479e+155)	inf	122	0.001382
(1.6099624430392533e-15, 1.6099624430392533e-15)	5.183958e-30	2	0.000079
(9.263681513643177e-06, 9.263668355432861e-06)	8.667371e-09	4	0.000141
(-1.552281980928567e-09, 5.504060914521181e-09)	3.270427e-17	61	113.000000
(4.650769607971084e-11, -7.20870340531329e-10)	5.196757e-17	70	131.000000
(1.3931831859930762e-18, -3.732536918432672e-10)	1.393183e-19	2	0.000089
(9.466615411015083e-06, 9.466612170847069e-06)	9.051291e-09	4	0.000175
(0.33490149885113785, 0.3349014988511379, 0.3349014988511376)	5.299731e-05	1000	0.002360
(-1.3633238326486213e-09, -1.3633238326486213e-09)	2.628531e-18	2	0.000148
(0.00029250418033015734, 0.00029250418033015734)	-1.524902e-07	3	0.001355

Реализация

Код был написан на Python и включал следующие файлы:

- main.py основной файл для запуска экспериментов.
- gradient_descent.py реализация метода градиентного спуска.
- golden_section_search.py реализация метода золотого сечения.
- coordinate_descent.py реализация метода покоординатного спуска.
- plot_graphs.py скрипт для построения графиков.
- gradient_descent_multiple_variable.py метод градиентного спуска для многомерных функций.