

형태소 분석 (Morphological Analysis)

건국대학교 컴퓨터공학부 / KAIST 전산학부 (겸직)

김학수

Core Layers of NLU

단계	설명	예제: 나는 그 과자를 먹었다.
형태소 분석	문장을 형태소열로 분리하고 품사를 부착하는 단계	나/대명사+는/조사 그/대명사 과자/명사+를/ 조사 먹/동사+었/선어말어미+다/어미+./기호
구문 분석	문장의 문법적 적합성과 어절의 구문 적 역할(주어, 목적어 등)을 찾는 단계	[SUBJ: 나는 [[MOD: 그 [OBJ: 과자를]] 먹었다]]
의미 분석	문장을 구성하는 술어와 논항들 사이의 의미적 적합성을 분석하는 단계	PREDICATE: 먹다 AGENT: 나/ANIMATE OBJECT: 그 과자/EATABLE
담화 분석	대화 문맥을 파악하여 상호참조를 해 결하고 의도를 파악하는 단계	SPEECH ACT: STATEMENT PREDICATE: 먹다 AGENT: 홍길동/ANIMATE OBJECT: 꼬깔콘/EATABLE

형태소 분석

- 형태소 분석이란?
 - 입력 어절을 모든 가능한 형태소의 조합으로 분리하는 과정
 - 형태소 분석 = 형태소 분리 + 품사 부착
- 어절
 - 띄어쓰기 단위
 - 영어에서는 1어절이 1단어
 - 한국어에서는 1어절이 1~n 단어
 - 예) 감기는, 나는
- 형태소
 - 의미를 갖는 최소 단위
 - 사전에 등록되어 있는 단일 품사를 갖는 단위

영어에서 형태소 분석

• FST (Finite State Transducers): A FST is a two-tape automaton that recognizes or generates pairs of strings.

영어에서 형태소 분석

FST Table

	Input									
State	h:h	a:a	p:p	у:у	i:y	ε:+	e:e	r:r	s:s	t:t
0	1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	2	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
2	Ø	Ø	3	Ø	Ø	Ø	Ø	Ø	Ø	Ø
3	Ø	Ø	4	Ø	Ø	Ø	Ø	Ø	Ø	Ø
4	Ø	Ø	Ø	5	6	Ø	Ø	Ø	Ø	Ø
5:	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
6	Ø	Ø	Ø	Ø	Ø	7	Ø	Ø	Ø	Ø
7	Ø	Ø	Ø	Ø	Ø	Ø	8	Ø	Ø	Ø
8	Ø	Ø	Ø	Ø	Ø	Ø	10	9	Ø	Ø
9:	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

한국어의 특성

- 음절의 특징으로 한글은 모아 쓰기
 - 한글 = 초/중/종성의 조합
 - 완성형 코드 사용 불가능
 - 풀어쓰기 코드, 조합형 코드
- 띄어쓰기가 일정하지 않고 복잡(맞춤법)
 - 띄어쓰기 오류가 포함된 경우가 빈번(할 수 있다)
- 첨가어로 첨용과 활용이 자유로움
 - 조사나 접사가 붙어서 문법적 관계를 형성
 - 들 : 낱말 + 들, 나무 + 들
 - 이 : 본인 + 들 + 이, 처리 + 하 + ㅁ + 이
- 불규칙 용언 활용과 음운 현상이 발달
 - 고맙다(ㅂ불규칙 활용): 고맙게도, 고마운, 고마워서
 - 오다 : 오면, 온, 올, 와서

한국어에서 형태소 분석

형태소 분석과 사전

- 형태소 분석에서 사전의 정의
 - 언어의 어휘적 정보를 저장하는 장소
 - 표제어 + 어휘정보(품사)
 - 표제어: 형태소 수준
- 형태소 분석에서 사전의 쓰임
 - 어절 내에 있는 모든 형태소(사전 표제어)를 사전을 이용하여 찾아내고, 찾아낸 형태소들 사이의 결합관계의 적합성을 검사

접속 정보 (1/2)

- 현재 형태소의 왼쪽이나 오른쪽에 붙을 수 있는 품사에 대한 정보
- 좌접속, 우접속을 분리
 - 좌 접속 범주 : 좌측에 붙을 수 있는 것을 기준
 - 우 접속 범주 : 우측에 붙을 수 있는 것을 기준

접속 정보 (2/2)

• 좌접속 범주의 예

대범주	소범주	세부범주	예	좌측에 접속가능
명사고유명사			김유신	접속불가
	보통명사	한자형	분석,설계	한자형접두사
		순한글형	자랑,노래	순한글형접두사
	의존명사	단위성	개, 분, 마리	숫자,양수사
		기타	것,등,뿐	접속불가
접미사	인간고유명사형		씨, 군, 양	인명고유명사
	지명고유명사형		도,시,군	지명고유명사
	한자보통명사형		국,실,군	한자고유명사
숫자			1,2,3,4	숫자
기호	(특수문자)		@ , #, \$	용언어간,제외

세종 품사 태그 (1/3)

대분류	소분류	세분류 45개
		일반명사NNG
	명사NN	고유명사NNP
(1) 체언		의존명사NNB
	대명사NP	대명사NP
	수사NR	수사NR
	동사VV	동사VV
	형용사VA	형용사VA
(2) 용언	보조용언VX	보조용언VX
	지정사VC	긍정지정사VCP 부정지정사VCN
	관형사MM	
(3) 수식언	H 11	일반부사MAG
	부사MA	접속부사MAJ
(4) 독립언	감탄사IC	감탄사IC

세종 품사 태그 (2/3)

		주격조사JKS	
		보격조사JKC	
		관형격조사JKG	
	격조사JK	목적격조사JKO	
(5) 관계언		부사격조사JKB	
		호격조사JKV	
		인용격조사JKQ	
	보조사JX	보조사JX	
	접속조사JC	접속조사JC	
		선어말어미EP	
		종결어미EF	
	어미E	연결어미EC	
		명사형전성어미ETN	
		관형형전성어미ETM	
(6) 의존형태	접두사XP	체언접두사XPN	
	71-111	명사파생접미사XSN	
	접미사 XS	동사파생접미사XSV	
		형용사파생접미사XSA	
	어근XR	어근XR	

세종 품사 태그 (3/3)

	마침표,물음표, 느낌표	SF
	쉼표, 가운뎃점, 콜론, 빗금	SP
	따옴표, 괄호표, 줄표	SS
	줄임표	SE
	붙임표(물결, 숨김, 빠짐)	SO
	외국어	SL
(7) 기호	한자	SH
	기타 기호(논리 수학기호, 화폐 기호) 등)	SW
	명사추정범주	NF
	용언추정범주	NV
	숫자	SN
	분석불능범주	NA

형태소 분석 방법 (1/2)

- 최장 일치법
 - 부분 문자열 중에서 가장 긴 형태소를 우선적으로 선택하는 방법
 - 결혼식에서만 → 결혼식/명사 vs. 결혼/명사+식/접사
 - 좌 최장 일치
 - 좌방향으로 최장 일치 지점을 찾은 후에 품사를 부여
 - 감기는 → 감기 + 는 → 감기(명사/동사) + 는(조사/어미)
 마이크로는 → 마이크+로는 → 마이크(명사) + 로는(조사)
 - 우 최장 일치
 - 우방향으로 최장 일치 지점을 찾은 후에 품사를 부여
 - 마이크로는 → 마이크로 + 는 → 마이크로(명사) + 는(조사)
 - 좌우 최장 일치
 - 좌방향 최장일치의 끝을 구한 후에 이 위치값과 중첩 정보를 이용하여 우방 향 최장일치의 끝 위치를 계산

한국어 형태소 분석 방법 (2/2)

- Tabular Parsing
 - _ 가정
 - 음소의 결합 관계 규명이 곧, 형태소 분석 결과
 - 예: '¬ㅏㅁ¬ㅣㄴ¬ㄴ' => '¬ㅏㅁ¬ㅣ + ㄴ¬ㄴ', '¬ㅏㅁ + ¬ㅣ + ㄴ—ㄴ'
 - 결합 제한 규칙
 - 음소간 결합 관계를 기술
 - 원형 복원 규칙
 - 음소간 결합 관계에 따른 복원 규칙을 사용
 - bottom-up 방식
 - _ 장점
 - 구현이 용이
 - 높은 정확도
 - _ 단점
 - 사전 탐색 부담
 - 옳은 분석 결과들을 생성하기 위해 백트래킹(backtracking)을 수행하는 비효 율성

Byte Pair Encoding

• 워드피스(WordPiece) 단위: Byte Pair Encoding

확인 문제: Byte Pair Encoding

다음과 같은 문자열이 주어졌을 때 7개의 subunit이 될 때까지 BPE를 수행하시오.

lo w lo wer n e w est w i d est

Sequence Labeling

HMM (Hidden Markov Model)

- What is the HMM?
 - Hidden + Markov Model
- Markov Model: Example
 - Training

		Tomorrow State (내일 상태)			
		Rainy	Cloudy	Sunny	
Today	Rainy	0.4	0.3	0.3	
State (오늘 상태)	Cloudy	0.2	0.6	0.2	
	Sunny	0.1	0.1	0.8	

- Assumption: Tomorrow weather depends only on today one.
- Problem: P(Rainy, Rainy, Sunny, Cloudy)?

마코프 모델 (Markov Model)

- Markov Model: Sequence Probability
 - 결합 확률(joint probability) 계산 모델
 - 연쇄 규칙과 마코프 가정을 이용하여 결합 확률을 단순화하여
 결합 확률을 근사화시키는 모델

$$P(y_1, y_2, ..., y_t)$$

= $P(y_1)P(y_2|y_1)P(y_3|y_1,y_2) \dots P(y_t|y_1,y_2,\dots,y_{t-1})$

=
$$P(y_1)P(y_2|y_1)P(y_3|y_2) \dots P(y_t|y_{t-1}) \circ o_t$$

1'st-order Markov Assumption

마코프 모델 (Markov Model)

마코프 모델: 학습데이터로 부터 얻어진 전이 확률분포 (상태 간 이동 확률 분포)

		Tomorrow State (내일 상태)			
		Rainy	Cloudy	Sunny	
Today	Rainy	0.4	0.3	0.3	
Today State (오늘 상태)	Cloudy	0.2	0.6	0.2	
	Sunny	0.1	0.1	0.8	

State = $\{S_1: Rainy, S_2: Cloudy, S_3: Sunny\}$

$$P(S_1, S_1, S_3, S_2 | model)$$

= $P(S_1)P(S_1|S_1)P(S_3|S_1) P(S_2|S_3)$
=1 * 0.4 * 0.3 * 0.1
=0.012

What is Hidden?

- Hidden Markov Model
 - 상태(풀고자 하는 레이블)를 직접 관측할 수 없고 상태를 예측하는데 도움이 되는 특징(자질)만을 관측할 수 있음
 - 상태가 감춰져 있고(직접 관찰할 수 없고) 관측에 대한 확률로만존재
 - 예제
 - 상태(State): Rainy, Cloudy, Sunny
 - 관측(Observation): B (Rain Boots), S (Sports Shoes)
 - 문제(problem): P(B, B, S, S, Rainy, Rainy, Sunny, Cloudy)?

What is Hidden?

- 상태(State): Rainy, Cloudy, Sunny
- 관측(Observation): B (Rain Boots), S (Sports Shoes)
- 문제(problem): "B, B, S, S"를 관측했을 때 날씨를 어떻게 예측하는 게 최적일까?
 - P(Rainy, Rainy, Sunny, Cloudy) vs. P(Rainy, Rainy, Sunny, Sunny) vs. ...

HMM (Hidden Markov Model)

Let
$$P(x_{1,t}) = P(x_1, x_2, ..., x_t)$$

HMM = $\underset{y_{1,t}}{\operatorname{argmax}} P(x_{1,t}, y_{1,t})$
= $\underset{y_{1,t}}{\operatorname{argmax}} P(y_{1,t}) P(x_{1,t}|y_{1,t})$

= $\underset{y_{1,t}}{\operatorname{argmax}} \prod_{i=1}^{t} P(y_i|y_{i-1}) P(x_i|y_i)$

1'st-order Markov Assumption
 $\Rightarrow \text{전이 확률 (Transition Probability)}$

Independent Assumption
 $\Rightarrow \text{ 恐측 확률 (Observation Probability)}$
 y_i
 y_i

Sequence Labeling Problem

- Segmentation or path analysis problem
 - Application: Part-of-speech tagging

Viterbi Algorithm

 모든 경로를 고려하지 않고도 빠른 시간 내에 최적의 경로를 찾는 알고리즘
 Output: 1, 1, 2, 3

Graphical Models for Sequence Labeling

HMM: 결합확률 모델

$$p(x, y) = \frac{p(x \mid y)p(y)}{\sum_{y} p(x \mid y)p(y)}$$

1st order Markov Model

$$\hat{y} = \arg \max_{y \in S} \prod_{t=1}^{T} p(x_t | y_t) p(y_t | y_{t-1})$$

MEMM: 방향성 조건부 확률 모델

Feature function $p(y \mid x) = \frac{1}{Z(x)} \exp \left[\sum_{i=1}^{k} \lambda_i f_i(x, y) \right]$ $Z(x) = \sum_{i=1}^{k} \exp \left[\sum_{i=1}^{k} \lambda_i f_i(x, y) \right]$

CRFs: 무방향성 조건부 확률 모델

$$F_j(\boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^n f_j(y_{i-1}, y_i, \boldsymbol{x}, i)$$
 Global feature function
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\lambda}) = 1 \exp{(\sum_j \lambda_j F_j(\boldsymbol{y}, \boldsymbol{x}))}$$
 Global normalization

Uniform Model

Two possible distributions that Aldo enjoys sports are:

	Yes	No	
Sunny	1/10	3/10	
Cloudy	1/10	1/10	
Rainy	3/10	1/10	
Total 😜	리가 계산하	고 싶은 것	1.0

	Yes	No	
Sunny	1/6	1/6	
Cloudy	1/6	1/6	
Rainy	1/6	1/6	
Total			1.0

우리가 아는 것

- Intuitively, we think the right one is better
 - Since the probability distribution is more uniform than the left one

Uniform Model

- Now we re-examine the data and find that Aldo enjoys sports 70% of the days
- So, we can add a new constraint to the model:

$$- P_{SY} + P_{CY} + P_{RY} = 0.7$$

	Yes	No	
Sunny	7/30	1/20	
Cloudy	7/30	1/20	
Rainy	7/30	1/5	
Total	0.7		1.0

	Yes	No	
Sunny	7/30	1/10	
Cloudy	7/30	1/10	
Rainy	7/30	1/10	
Total	0.7		1.0

- Again, which one is better this time?
 - The right one

Uniform Model

- Now we find that 50% of the days are Sunny
- So, we can add a new constraint to the model:

$$- P_{SY} + P_{SN} = 0.5$$

What is the best distribution this time?

	Yes	No	
Sunny	?	?	0.5
Cloudy	?	?	
Rainy	?	?	
Total	0.7		1.0

- Two questions:
 - What does uniform mean?
 - How can we find the most uniform model subject to a set of constraints like the above example?

 We can approach the modeling problem from an entirely different point of view. Begin with some fixed feature expectations:

$$\sum_{\mathbf{x}} p(\mathbf{x}) f_{\mathbf{0}}(\mathbf{x}) = o_{\mathbf{0}}$$

- Assuming expectations are consistent, there may exist many distributions which satisfy them. Which one should we select? The most uncertain or flexible one: i.e. the one with maximum entropy.
- This yields a new optimization problem:

Objective Function

$$\max_{\mathbf{x}} \mathcal{H}[p(\mathbf{x})] = -\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x})$$
subject to
$$\sum_{\mathbf{x}} p(\mathbf{x}) f_i(\mathbf{x}) = \alpha_i$$
$$\sum_{\mathbf{x}} p(\mathbf{x}) = 1$$
Constraints

To solve the maxent problem, we use <u>Lagrange multipliers</u>:

$$\begin{split} L &= -\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x}) - \sum_{i} \theta_{i} \left(\sum_{\mathbf{x}} p(\mathbf{x}) f_{i}(\mathbf{x}) - \alpha_{i} \right) - \mu \left(\sum_{\mathbf{x}} p(\mathbf{x}) - 1 \right) \\ \frac{\partial L}{\partial p(\mathbf{x})} &= 1 + \log p(\mathbf{x}) - \sum_{i} \theta_{i} f_{i}(\mathbf{x}) - \mu \quad \text{최대값 = 정점} \\ \mathbf{p}(\mathbf{x}) &= \mathbf{p}(\mathbf{x}) = e^{\mu - 1} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}) \right\} \end{split}$$
 모든 \mathbf{x} 에 대해서 편미분하였 때 기울기가 0인 곳!
$$P(\mathbf{x}) = e^{\mu - 1} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}) \right\}$$
 모든 \mathbf{x} 에 대한 $\mathbf{p}(\mathbf{x}) = 1$
$$P(\mathbf{x}) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}) \right\}$$

- So feature constraints + maxent implies exponential family.
- Problem is convex, so solution is unique.

• Can be used to find the extremum (maximum, minimum) of a multivariate function $f(x_1,...,x_n)$ subject to the constraint $g(x_1,...,x_n)=0$

- Constrained Optimization Problem
 - Finding a set of parameters $\lambda = {\lambda_1,...,\lambda_k}$ on an exponential model which maximizes its log likelihood
 - There exists many algorithms
 - ✓ Generalized Iterative Scaling (Darroch and Ratcliff, 1972)
 - ✓ Improved Iterative Scaling (Della Pietra et al., 1997)
 - ✓ L-BFGS

우리가 계산하고 싶은 것
$$p(y \mid x) = \frac{1}{Z(x)} \exp \left[\sum_{i=1}^{k} \lambda_i f_i(x, y) \right]$$
우리가 아는 것
$$Z(x) = \sum_{y} \exp \left[\sum_{i=1}^{k} \lambda_i f_i(x, y) \right]$$

$$|\Omega|$$

Label Bias Problem of MEMM

Global Normalization of CRFs

Local normalization: 전이가 많은 상태는 항상 불리

→ Global normalization (모든 상태를 기준으로 정규화)

Graphical Models

HMM
$$P(\vec{s}, \vec{o}) \propto \prod_{t=1}^{|\vec{o}|} P(s_t \mid s_{t-1}) P(o_t \mid s_t)$$

MEMM

$$\begin{split} P(\vec{s} \mid \vec{o}) &\propto \prod_{t=1}^{|\vec{o}|} P(s_t \mid s_{t-1}, o_t) & \mathbf{s_{t-1}} & \mathbf{s_t} & \mathbf{s_{t+1}} \\ &\propto \prod_{t=1}^{|\vec{o}|} \frac{1}{Z_{s_{t-1}, o_t}} \exp \begin{bmatrix} \sum_{j} \lambda_j f_j(s_t, s_{t-1}) \\ j \end{bmatrix} & \mathbf{o_{t-1}} & \mathbf{o_t} & \mathbf{o_{t+1}} & \dots \\ & & \mathbf{o_{t+1}} & \dots \\ & & & \mathbf{o_{t+1}} & \dots \\ \end{split}$$

$$S_{t-1}$$
 S_t
 S_{t+1}
 \cdots
 O_{t-1}
 O_t
 O_{t+1}
 \cdots
 O_{t+1}
 \cdots

CRF

$$P(\vec{s} \mid \vec{o}) \propto \frac{1}{Z_{\vec{o}}} \prod_{t=1}^{|\vec{o}|} \exp \begin{bmatrix} \sum_{j} \lambda_{j} f_{j}(s_{t}, s_{t-1}) \\ + \sum_{k} \mu_{k} g_{k}(s_{t}, x_{t}) \end{bmatrix} \qquad \mathbf{S_{t-1}} \qquad \mathbf{S_{t}} \qquad \mathbf{S_{t+1}} \qquad \cdots$$

$$\mathbf{O_{t-1}} \qquad \mathbf{O_{t}} \qquad \mathbf{O_{t+1}} \qquad \cdots$$

Random Fields

Let G = (Y, E) be a graph where each vertex Y_v is a random variable Suppose $P(Y_v | \text{all other } Y) = P(Y_v | \text{neighbors}(Y_v))$ then Y is a

random field

Example:

• $P(Y_5 | all other Y) = P(Y_5 | Y_4, Y_6)$

Conditional Random Fields

Suppose $P(Y_v | X, all other Y) = P(Y_v | X, neighbors(Y_v))$ then X with Y is a **conditional** random field

- $P(Y_3 | X, all other Y) = P(Y_3 | X, Y_2, Y_4)$
- Think of X as observations and Y as labels

Empirical Results of Graphical Models

- Part-Of-Speech Tagging
 - Using same set of features: HMM >= < CRF > MEMM
 - Using additional overlapping features: CRF+ > MEMM+ >> HMM

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

확인 문제

• 다음 HMM을 바탕으로 "Time files like an arrow"라는 문장의 품사를 결정하는 최적의 경로를 비터비 알고리즘 을 이용하여 구하시오.

HMM 만들기

- 상태(State): Rainy, Cloudy, Sunny
- 관측(Observation): B (Boots), S (Shoes)
- 문제(problem): "B, B, S, S"를 관측했을 때 날씨를 어떻게 예측하는 것이 최적일까?

HMM 만들기

구글 colab 연결

```
from google.colab import drive
drive.mount("/gdrive", force_remount=True)
```

라이브러리 설치

- [7] !pip install hmmlearn
 - Collecting hmmlearn

 Downloading hmmlearn-0.2.6-cp37-cp37m-manylinux_2_5_x86_64.manylinu

 | 374 kB 5.2 MB/s

Requirement already satisfied: scipy>=0.19 in /usr/local/lib/python3
Requirement already satisfied: scikit-learn>=0.16 in /usr/local/lib/p
Requirement already satisfied: numpy>=1.10 in /usr/local/lib/python3
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3
Installing collected packages: hmmlearn
Successfully installed hmmlearn-0.2.6

확률 설정

```
import numby as no
from hmmlearn import hmm
states = ["Rainy", "Cloudy", "Sunny"]
n_states = len(states)
observations = ["Boots", "Shoes"]
n_observations = len(observations)
# 시작 확률
start_probability = np.array([0.2, 0.5, 0.3])
#전이 확률
transition_probability = np.array([
  [0.4, 0.3, 0.3],
  [0.2, 0.6, 0.2]
  [0.1, 0.1, 0.8]
])
# 관측 확률
emission_probability = np.array([
  [0.8, 0.2],
  [0.5, 0.5],
  [0.1, 0.9]
```

HMM 만들기

모델 구성 및 디코딩

```
#모델 만들기
model = hmm.MultinomialHMM(n components=n states)
model.startprob_ = start_probability
model.transmat_ = transition_probability
model.emissionprob_ = emission_probability
# 관측 입력
input = [0, 0, 1, 1]
                                             2차원으로 만들어서 트랜스포즈
# HMM 모델 호출
hmm_input = np.atleast_2d(input).T
logprob, sequence = model.decode(hmm_input)
                                                                               Input : Boots, Boots, Shoes, Shoes
print("Input :", ", ".join(map(lambda x: observations[x], input)))
print("Output:", ", ".join(map(lambda x: states[x], sequence)))
                                                                               Output: Rainy, Rainy, Sunny, Sunny
                                                                               Prob.: -4.609853133892472
print("Prob. :", logprob)
```

RNN 응용 구조

Many-to-Many Model (Sequence Labeling)

- 순차적 레이블 부착
 - 연속된 입력에 대해 문맥을 반영하여 분류를 수행하는 것

BIO Notation for Segmentation: B(Beginner), I(Inner), O(outer)

Transformer

Many-to-Many Model (Sequence-to-Sequence)

Seq2Seq for Machine Translation

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

확인 문제

 Luong attention 수식에 기초하여 attention scores, attention distribution, attention output을 계산 하시오. (소수점 이하 2자리 반올림)

$$egin{aligned} \overline{ ext{Softmax}} \ \sigma(\mathbf{z})_i &= rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} ext{ for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K \end{aligned}$$

Attention Models

Attention Models in Detail

Decoder Formula

The context vector c_i is, then, computed as a weighted sum of these annotations h_i :

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j \longrightarrow \frac{\text{Attention}(\text{Query}, \text{Source})}{\text{Attention vector}} = \frac{\sum_{i=1}^{L_x} a_i \cdot Value_i}{\text{Attention}}$$
Attention score state

The weight α_{ij} of each annotation h_j is computed by

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_s} \exp(e_{ik})}, \quad \underbrace{\boldsymbol{a_i} = Softmax(Sim_i)}_{\text{Attention}} = \frac{e^{Sim_i}}{\sum_{j=1}^{L_x} e^{Sim_j}}.$$

where
$$e_{ij} = a(\underline{s_{i-1}}, h_j)$$
 \iff Similarity(Query, Key_i) = Query $\cdot Key_i$ dot Stage 1

is an alignment model which scores how well the inputs around position j and the output at position i match. The score is based on the RNN hidden state s_{i-1} (just before emitting y_i , Eq. (4)) and the j-th annotation h_j of the input sentence.

그림 출처: Ta-Chun (Bgg/Gene) Su's blog

Problems of Attention-Based Models

그림 출처: Ta-Chun (Bgg/Gene) Su's blog

Transformer

Attentions in Transformer

Scaled Dot-Product Attention

Calculation of Attentions

Calculation of Attentions

확인 문제

• 다음과 같이 단어 임베딩이 주어졌을 때, self-attention score를 계산하시오. (소수점 이하 두 자리에서 반올림)

– are: [1,1], you: [2,1]

root(2)=1.4로 계산

Scaled dot product

Attention
$$(q_t, K, V) = \sum_{s=1}^{m} \frac{1}{Z} \exp\left(\frac{(q_t, k_s)}{\sqrt{d_k}}\right) v_s$$

Scaled dot-product					
	are	you			
are	?				
you					

Self-attention score			
	are	you	
are	2		
you]		

Multi-Head Attention

Layer Norm. & Residual Conn.

그림 출처: Ta-Chun (Bgg/Gene) Su's blog

Position Encoding

Problem

The multi-head attention network **cannot** naturally **make use of** the position of the words in the input sequence.

The output of the multi-head attention network would be **the same** for the same sentences in different order.

Sol

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

 $if\ shape\ of\ enc, dec\ = [T,\ d_{model}]\ \ {\it pos:}\ {\it position}\ {\it of}\ {\it the}\ {\it word}$

 \rightarrow $then~pos \in [0,~T),~i \in [0,~d_{model})~$ i: Element i in $~d_{model}$ Advantage:

PE[pos+k] can be represented as a linear function of PE[pos], so the relative positon between different embeddings can be easily inferred

$$sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$$

 $cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$... Trigonometric
Periodicity

Learned the relation between relative and absolute position

Then Word embedding + positional encoding

(sum, concat...

짝수 차원 홀수 차원

→ Three plots are the same by doing linear transformation

그림 출처: Ta-Chun (Bgg/Gene) Su's blog

Linear & Softmax

그림 출처: Ta-Chun (Bgg/Gene) Su's blog

질의응답

Homepage: http://nlp.konkuk.ac.kr E-mail: nlpdrkim@konkuk.ac.kr

품사 부착 (Part-Of-Speech Tagging)

품사 부착 (Part-Of-Speech Tagging)

- 품사 부착이란?
 - 형태소 분석 결과에서 좌우 문맥을 보고 가장 적당한 후보를 1개 선택하는 과정
 - 예제
 - 어절 "감기는"의 품사 후보는?
 - 감기/명사+는/조사, 감기/동사+는/어미, 감/동사+기/명사형전성어미+는/조사
 - 문장 "감기는 자주 걸리는 병이다"에서 "감기는"의 품사는?
 - 감기/명사+는/조사
- 형태소 분리 vs 품사 태깅
 - 입력 단위: 어절 vs 문장
 - 출력 단위: 모든 가능한 후보 vs 정답 1개

HMM for POS tagging

Hidden Markov Model for POS tagging

$$POS(S) = \arg_{T_{1,n}} \max P(M_{1,n}, T_{1,n})$$
 Chain rule
$$POS(S) = \arg_{T_{1,n}} \max P(T_{1,n}) P(M_{1,n} | T_{1,n})$$
 Independent Assumption
$$POS(S) = \arg_{T_{1,n}} \max \prod_{i=1}^{n} P(T_i | T_{i-1}) P(M_i | T_i)$$

1st Markov Assumption

한국어 품사 태깅 개념

확률 계산

- 전이확률 $P(T_i | T_{i-1})$ 과 관측확률 $P(M_i | T_i)$ 의 계산
 - 말뭉치에서 출현 횟수를 계산
 - 데이터 희소성 문제를 줄이기 위해서 말뭉치에 나타나지 않는 경우에 매우 작은 확률(예: 0.0001)을 부여

$$P(V \mid N) = \frac{\text{# of "V" at position } i}{\text{# of "N" at position } i-1}$$

$$P(the \mid ART) = \frac{\# of "the \mid ART"}{\# of "ART"}$$

Viterbi Algorithm

- 비터비 알고리즘
 - 모든 경로를 다 고려하지 않고도 최대 확률값 경로를 찾는 알고리즘

Recent Morphological Analysis Models

- 형태소 분리, 품사 부착 동시 수행
 - 형태소 분리 → BIO Sequence Labeling
 - 품사 부착 → POS Sequence Labeling

$$POS(S) = \arg_{L_{1,n}} \max P(L_{1,n} | C_{1,n})$$

규칙 기반 원형 복원 원형 생성 모델

구분	田口	설명	에제
B-POS 형태소 분석 I O	B-POS	B: 형태소 경계의 시작 POS: 품사	=[청, 와, 대, 에, _, 갔, 다, .]
	l: 형태소 경계의 내부	=[B-NNP, I, I, B-JKB, O, B-VV+EP, B-EF, B-SF]	
	0	O: 형태소 경계 바깥	

RNN+CRFs 형태소 분석 모델

LAN 기반 형태소 분석 모델

LAN (Label Attention Network)

LAN 기반 형태소 분석 모델

• LAN 구조

- $-Q = \overleftrightarrow{H}, K = E(POS)$
 - Q는 양방향 문맥이 반영된 벡터, K는 가능한 모든 품사에 대한 임베딩
- $p^{POS} = softmax \left(\frac{Q * K^T}{\sqrt{d}} \right)$
 - 현재 입력에 대한 품사 확률 분포
- $y^{POS} = argmax(p^{POS})$
 - 최종 출력은 품사 확률 분포 중 가장 큰 값을 가지는 품사

DNN+CRFs vs LAN

• 메모리 사용량, 시간 복잡도

- L: 레이블 개수(품사 개수), n: 시퀀스 길이(문장 길이)

- CRFs의 시간 복잡도 : $O(|L|^2 * n)$

- LAN의 시간 복잡도 : O(|L|*n)

Model	Memory usage (Megabyte)	Prediction time (Millisecond)
Bi-GRU-CRFs	4,946	8.0
Bi-LSTM-LAN	4,276	4.8

 메모리 사용량 측면에서 LSTM보다 효율적인 GRU를 사용했음에도, CRFs를 사용한 모델보다 LAN을 사용한 모델이 메모리, 시간 비용이 적음

형태소 분석 시연 영상

```
형태소 분석할 문장을 입력하세요 :
```

질의응답

Homepage: http://nlp.konkuk.ac.kr E-mail: nlpdrkim@konkuk.ac.kr