Assignment 1

MTH 301A, 2022

- 1. Show that following sets are countable by producing a bijection from \mathbb{N} .
 - (a) $\{2^n : n \in \mathbb{Z}\}$
 - (b) $\{1, \frac{1}{4}, \frac{1}{3}, \frac{1}{16}, \ldots\}$
 - (c) $\{0, 4, 0, 8, 0, 12, 0, \ldots\}$
- 2. (a) Show that \mathbb{N} contains two pairwise disjoint infinite subsets.
 - (b) Show that N contains three pairwise disjoint infinite subsets.
 - (c) Show that N contains 100 pairwise disjoint infinite subsets.
 - (d) Show that \mathbb{N} contains infinitely many pairwise disjoint infinite subsets.
- 3. Show that following sets are countable
 - (a) Set of all functions $f: \{0,1\} \to \mathbb{N}$.
 - (b) The set of all points in the plane with rational co-ordinates.
 - (c) Set of all words (a finite string of letters in the alphabets).
 - (d) Set of all finite subsets of \mathbb{N} .
- 4. If A is an infinite set then it has countably infinite subset.
- 5. Show that A is infinite if and only if there is a proper subset B of A such that |A| = |B|.
- 6. Let B be a set of positive real numbers with the property that adding together any finite subset of elements from B always gives a sum of 2 or less. Show B must be finite or countable.

7. A real number $x \in \mathbb{R}$ is called **algebraic** if there exist integers $a_0, a_1, a_2, \ldots a_n \in \mathbb{Z}$, not all zero, such that

$$a_n x^n + a_{n11} x^{n11} + \dots + a_1 x + a_0 = 0.$$

Real numbers that are not algebraic are called **transcendental** numbers.

- (a) Show that $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt{3} + \sqrt{2}$ are algebraic.
- (b) Fix $n \in \mathbb{N}$, and let A_n be the algebraic numbers obtained as roots of polynomials with integer coefficients that have degree n. Using the fact that every polynomial has a finite number of roots, show that A_n is countable.
- (c) What do you conclude about the set of transcendental numbers?
- 8. (a) Give an example of a countable collection of disjoint open intervals.
 - (b) Give an example of an uncountable collection of disjoint open intervals, or argue that no such collection exists.
- 9. Give an explicit one-to-one correspondence between
 - (a) the points of two open intervals;
 - (b) the points of two closed intervals;
 - (c) the points of a closed interval and the points of an open interval;
 - (d) the points of the closed interval [0,1] and the set \mathbb{R} .
- 10. On the closed interval $[0,1] \subset \mathbb{R}$ describe the sets of numbers $x \in [0,1]$ whose ternary representation $x = 0.\alpha_1\alpha_2...,\alpha_i \in \{0,1,2\}$, has the property:
 - (a) $\alpha_1 \neq 1$
 - (b) $\alpha_1 \neq 1$ and $\alpha_2 \neq 1$
 - (c) $\forall i \in \mathbb{N}, \ \alpha_i \neq 1 \ \text{(the Cantor set)}.$
 - (d) the Cantor set has the same cardinality as the closed interval [0, 1].