Folha 11A – Séries Numéricas (parte II).

1. Estude a natureza das seguintes séries numéricas (em caso de convergência, especifique se é absoluta ou simples):

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{n}{n^3 + 5}$$
; (b) $\sum_{n=1}^{+\infty} \frac{\cos n}{(2n)!}$; (c) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{3^n n^2}$;

(b)
$$\sum_{n=1}^{+\infty} \frac{\cos n}{(2n)!};$$

(c)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{3^n n^2}$$

(d)
$$\sum_{n=1}^{+\infty} \frac{n \, \operatorname{sen} n}{e^n}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{n^2 \cos(n\pi)}{1 + n^3}$$

(d)
$$\sum_{n=1}^{+\infty} \frac{n \operatorname{sen} n}{e^n}$$
; (e) $\sum_{n=1}^{+\infty} \frac{n^2 \cos(n\pi)}{1+n^3}$; (f) $\sum_{n=1}^{+\infty} (-1)^n \frac{4+\cos n}{n^3}$.

2. Em cada uma das alíneas seguintes, apresente um exemplo nas condições indicadas:

(a) uma série alternada divergente;

(b) uma sucessão $(u_n)_n$ tal que $u_n > 0$, $\forall n \in \mathbb{N}$, $\lim_n u_n = 0$ e $\sum_{n \ge 1} u_n^3$ seja divergente;

(c) uma sucessão $(u_n)_n$ tal que $u_n < 0$, $\forall n \in \mathbb{N}$, $\lim_n u_n = 0$ e $\sum_{n \ge 1} u_n^2$ seja divergente;

(d) uma sucessão $(u_n)_n$ tal que $\sum_{n\geq 1} u_n$ seja convergente e $\sum_{n\geq 1} u_n^2$ seja divergente;

(e) uma sucessão $(u_n)_n$ tal que $\sum_{n\geq 1}u_n$ seja divergente e $\sum_{n\geq 1}u_n^2$ seja convergente.