Simple Linear Rergression on Real Estate Dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
estate_data = pd.read_excel("Linear Regression.xlsx", sheet_name= "Linear Regression")
estate_data.head(2)
Out[130]:
  price sqft_living bedrooms bathrooms floors
0 221900
             1180
                      3
                          1.00 1.0
1 538000
             2570
                     3
                          2.25 2.0
estate_data.isnull().sum()
Out[131]:
price
         0
sqft_living 0
bedrooms 0
bathrooms 0
floors
         0
dtype: int64
Model 1: price vs sqft_living
```

```
data = estate_data[["price", "sqft_living"]]
```

data.hist()

Out[133]:

data.corr()

Out[134]:

price sqft_living

price 1.000000 0.702035

sqft_living 0.702035 1.000000

sns.pairplot(data)

Out[135]: <seaborn.axisgrid.PairGrid at 0x20d72605548>

data.boxplot()

Out[136]: <matplotlib.axes._subplots.AxesSubplot at 0x20d72a56c48>

Y = data.iloc[:,:1]

X = data.iloc[:,1:]

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,Y, test_size = 0.2, random_state = 2)
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)
Out[144]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
print(lin_reg.coef_, lin_reg.intercept_)
[[280.67382569]] [-42568.70358496]
from sklearn.metrics import mean_squared_error,r2_score
y_pred= lin_reg.predict(X_test)
RMSE = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test,y_pred)
print("RMSE:",RMSE)
RMSE: 263380.00189817196
print("r2:", r2)
r2: 0.5031163723285275
estate_data.columns
Out[152]: Index(['price', 'sqft_living', 'bedrooms', 'bathrooms', 'floors'], dtype='object')
```

Model 2: price vs 'bedrooms'

data = estate_data[['price','bedrooms']]

data.corr()

Out[154]:

price bedrooms

price 1.00000 0.30835

bedrooms 0.30835 1.00000

sns.pairplot(data)

Out[155]: <seaborn.axisgrid.PairGrid at 0x20d72baa208>

Y = data.iloc[:,:1]

X = data.iloc[:,1:]

X_train,X_test,y_train,y_test = train_test_split(X,Y, test_size = 0.2, random_state =2)

```
lin_reg.fit(X_train,y_train)
Out[159]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
print(lin_reg.coef_, lin_reg.intercept_)
[[118660.62797868]] [139952.87593386]
y_pred= lin_reg.predict(X_test)
RMSE = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test,y_pred)
print("RMSE:",RMSE)
RMSE: 352717.9654187645
print("r2:", r2)
r2: 0.10886345250291574
Model 3: price vs 'bathrooms'
data = estate_data[['price','bathrooms']]
data.corr()
Out[167]:
       price bathrooms
      1.000000 0.525138
price
bathrooms 0.525138 1.000000
sns.pairplot(data)
Out[168]: <seaborn.axisgrid.PairGrid at 0x20d72db3988>
```


Y = data.iloc[:,:1]

X = data.iloc[:,1:]

X_train,X_test,y_train,y_test = train_test_split(X,Y, test_size = 0.2, random_state = 2)

lin_reg.fit(X_train,y_train)

Out[172]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

print(lin_reg.coef_, lin_reg.intercept_)

[[249143.95803858]] [13073.99575289]

y_pred = lin_reg.predict(X_test)

RMSE = np.sqrt(mean_squared_error(y_test, y_pred))

r2 = r2_score(y_test,y_pred)

print("RMSE:",RMSE)

RMSE: 316774.90190998075

print("r2:", r2)

r2: 0.28122887124177365

Model 4: price vs 'floors'

data = estate_data[['price','floors']]

data.corr()

Out[180]:

price floors

price 1.000000 0.256794

floors 0.256794 1.000000

sns.pairplot(data)

Out[181]: <seaborn.axisgrid.PairGrid at 0x20d727e9188>


```
Y = data.iloc[:,:1]

X = data.iloc[:,1:]

X_train,X_test,y_train,y_test = train_test_split(X,Y, test_size = 0.2, random_state = 2)

lin_reg.fit(X_train,y_train)

Out[185]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

print(lin_reg.coef_, lin_reg.intercept_)

[[171376.44562902]] [283309.93245029]
```

y_pred = lin_reg.predict(X_test)

RMSE = np.sqrt(mean_squared_error(y_test, y_pred))

r2 = r2_score(y_test,y_pred)

print("RMSE:",RMSE)

RMSE: 359677.77234107786

print("r2:", r2)

r2: 0.0733487976687478

Index	price	sqft_living	bedrooms	pathrooms	floors
price	1	0.702035	0.30835	0.525138	0.256794
sqft_living	0.702035	1	0.576671	0.754665	0.353949
bedrooms	0.30835	0.576671	1	0.515884	0.175429
bathrooms	0.525138	0.754665	0.515884	1	0.500653
floors	0.256794	0.353949	0.175429	0.500653	1

Inference:

DV	IDV	RMSE	R2
price	sqft_living	263380.0019	0.503116
price	bedrooms	352717.9654	0.108863
price	bathrooms	316774.9019	0.281229
price	floors	359677.7723	0.073349

Large RMSE values are observed in all the models as there many outliers in the target(price) feature.

Also the model accuracy is low for the price vs bedrooms , price vs floors as the have a low positive correlation

The model accuracy for price vs sqft_living, price vs bathrooms is higher than the other two models as the have moderate positive correlation.

These models are not efficient enough to accurately predict the price.