ПРАКТИЧЕСКАЯ РАБОТА №7

ТЕМА: «Расчет роликового неприводного конвейера» (4 часа)

Цель работы: Ознакомление с устройством и методикой расчета гравитационного роликового конвейера.

7.1 Основные теоретические сведения

Роликовые конвейеры **предназначены** для транспортировки штучных и массовых грузов, заключенных в тару, непрерывным потоком без остановок для их загрузки и разгрузки. **Они состоят** из последовательно расположенных на раме вращающихся роликов, по которым перемещается груз. **Трасса** роликового конвейера может быть как прямолинейной, так и криволинейной.

Роликовые конвейеры различают

- -по приводу они бывают приводные (ролики приводятся во вращение от двигателя) и неприводные;
 - -по степени сложности бывают стационарные и передвижные;
- -по направлению трассы прямолинейные, прямолинейные с криволинейными участками и разветвляющиеся (с переводными стрелками или с поворотными кругами);
 - -по конструкции рамы со сплошной рамой или секционные.

Привод роликов приводных конвейеров бывает:

- -индивидуальный;
- -групповой через продольный вал с коническими колесами, через цепи или через ремни.

Неприводные конвейеры обычно – гравитационные (рис.7.1), у которых движущей силой является продольная составляющая веса груза, находящегося на роликах наклонно (вниз) установленного конвейера. Неприводные роликовые конвейеры бывают однорядные и многорядные.

Рисунок 7.1 – Схема гравитационного роликового конвейера

					МиТОМ.ПТУМЦ.Пр.№7.2022.Отчет					
Изм.	Лист	№ докум.	Подпись	Дата						
Выпо	лнил	Магомедов Н.О.			Практическая работа №7	ſ	lum.	Лист	Листов	
Пров	ерил	Астапенко И.В.			1			1	6	
					«Расчет роликового не-	ГГТУ им. П.О. Сухог		•		
					приводного конвейера»		гр. МЛ-41			

Обычно роликовые конвейеры собирают из отдельных секций длиной 2–3 м. В ряде случаев вместо цилиндрических роликов используют дисковые ролики, устанавливаемые на шарикоподшипниках с неподвижными осями. Такие ролики удобны при движении грузов по криволинейным в плане участкам.

Установка (рис.7.1) состоит из основания 1, наклонной рамы 2, на которой с определенным шагом установлены ролики 3. Угол наклона конвейера может изменяться с помощью винтовой стойки 5.

7.2 Методика расчета

Рассчитать гравитационный роликовый конвейер с прямолинейной трассой для транспортирования штучных грузов массой m (кг) со скоростью v (м/с) с заданной производительностью Z (шт./ч), заданными габаритами груза (длинна -l, ширина -b) и длинной конвейера L. При определенных условиях работы.

Расчет транспортирующей машины состоит в определении угла наклона гравитационного роликового конвейера, который будет обеспечивать движение грузов за счет продольной составляющей силы тяжести груза.

Для этого рассчитываются:

№ варианта	Масса груза, кг	Производитель- ность Z, шт/ч	Длинна груза <i>l</i> , м	Ширина груза b, \mathbb{M}	Длинна роль- ганга <i>L</i> , м	р/м, а
10	170	170	0,7	0,7	14	1,5

1. Производительность роликового конвейера, т/ч по формуле:

$$Q = Z \cdot m \cdot 10^3 = 170 \cdot 0.17 = 28.9 \text{ T/Y}$$
 (1)

2. В зависимости от производительности определяется расстояние между грузами, м:

$$t_{\Gamma} = \frac{3.6 \cdot v \cdot m}{Q} = \frac{3.6 \cdot 1.5 \cdot 0.17}{28.9} = 0.03 \text{ M}$$
 (2)

3. Из табл. 1 выбирается угол наклона роликового конвейера: Таблица 7.1 - Рекомендуемый угол наклона роликового конвейера.

Наименование груза	Масса единицы груза, кг	Угол наклона конвейера
Контейнеры из листо-	до 30	2-3
вого металла	30-150	2-2,5
	150-500	1,5-2
	500-1000	1-1.5

150-500	1,5-2
500-1000	1-1,5

Изм.	Лист	№ докум.	Подпись	Дата

4. Шаг роликов определятся по формуле:

$$0.2l_z \le t_p \le 0.45l_z, \,\text{MM} \tag{3}$$

где

 l_{z} – длинна груза, мм.

По ГОСТ 8324-71 шаг роликов выбирается из ряда: 50; 60; 80; 100;125; 160; 200; 250; 315; 400; 500; 630.

5. Число роликов, на которых лежит груз, рассчитывается по формуле:

$$z' = \frac{l_{\rm r}}{t_{\rm p}} = \frac{0.7}{0.2} = 3.5$$
 (4)

Число роликов, на которых лежит груз необходимо округлять до ближайшего целого числа.

$$z' = 3$$

6. По табл. 7.2 определяется средняя нагрузка на ролик.

Таблица 7.2 - Средняя нагрузка F на ролик, Н

Соотношение между длиной груза и шагом ролика	F_p
$2t_p \le l_{\varepsilon} \le 3t_p$	0.5 · mg
$3t_p \le l_{\varepsilon} \le 4t_p$	0.33 · mg
$4t_p \le l_{\varepsilon} \le 5t_p$	0.25 · mg

$$F = 0.33 \cdot mg = 0.33 \cdot 170 \cdot 9.81 = 550.341 \text{ H}.$$

7. Из табл. 7.3 при нагрузке, приходящейся на один ролик и рассчитанной длине ролика, выбирается диаметр ролика. Из табл. 7.4 определяется масса одного ролика.

Таблица 7.3 - Основные размеры роликовых конвейеров (ГОСТ 22281-76).

Диаметр	Ст	Статическая нагрузка, Н, на ролик при длине ролика, мм									
ролика, мм	160	200	250	320	400	500	650	800	1000	1200	
42	980	930	980	980	980	784	588				
60		2940	2940	1960	1960	1568	980	980			
76		4900	4900	4900	4900	4900	3920	3920	2940		
108				9800	9800	9800	9800	9800	7840	7840	
159				19600	19600	19600	19600	19600	19600	15680	

Изм.	Лист	№ докум.	Подпись	Дата

$$l_{\rm p}=l_{\rm r}+(50\dots100{\rm mm})=0.7+0.1=0.8{\rm m}$$
 При $l_{\rm p}=0.8{\rm m}$ и F = 550,341 H что меньше допустимой F = 980 H $D_{\rm p}=60$ мм

8. Диаметр цапфы, мм ролика рассчитывается по формуле:

$$d \mu = (0.2...\,0.25) \cdot D p = 0.2 \cdot 60 = 12 \text{ мм} \tag{5}$$
 где D_p - диаметр ролика, мм.

9. Число роликов в конвейере определятся:

$$z_{\rm p} = \frac{L}{t_{\rm p}} = \frac{14000}{200} = 70 \text{шт}$$
 (6)

- 10. Коэффициент трения качения груза по роликам определяется в зависимости от материала груза:
 - -для металлических деталей $\mu \approx 5 \cdot 10^{-4} \text{м};$
 - -для остальных материалов $\mu \approx 5 \cdot 10^{-3} \text{м}$
- 11. Из табл. 7.4 определяется коэффициент трения f в цапфах роликах при различных подшипниках:

Таблица 7.4 - Коэффициент трения в цапфах роликах при различных подшипниках.

Условия работы конвейера	Подшипники				
	качения	скольжения			
Хорошие	0.03	0.15			
Средние	0.04	0.20			
Тяжелые	0.06	0.25			

12. По формуле (7) определяется сопротивление одного груза, Н:

$$F = \left[m \cdot \frac{2\mu}{D} + (m + m_p \cdot z') \cdot f \cdot \frac{d}{D} \right] \cdot g + k \cdot \frac{m_p \cdot z \cdot v^2}{L}$$
 (7)

где

 $k=0,8 \dots 0,9$ - коэффициент, учитывающий распределение нагрузки по сечению ролика.

$$m_p = m_6 + 2m_{\text{II}} = \left(\frac{\Pi \cdot D_p^2}{4} \cdot l_p + 2\frac{\Pi \cdot d_{\text{II}}^3}{4}\right) \rho_{\text{CT}}$$
 (8)

Лист

					МиТОМ.ПТУМЦ.Пр.№7.2022.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	` •

$$m_p \! = \! \left(\! \frac{\Pi \! \cdot \! D_p^2}{4} \! \cdot \! l_p \! + \! 2 \frac{\Pi \! \cdot \! d_{_{\mathrm{I\hspace{-.1em}I}}}^3}{4} \right) \rho_{\scriptscriptstyle{\mathrm{CT}}} \! = \! \left(\! \frac{\Pi \! \cdot \! 0,\! 06^2}{4} \! \cdot \! 0,\! 8 \! + \! 2 \frac{\Pi \! \cdot \! 0,\! 012^3}{4} \right) \! \cdot \! 7800 \! = \! 17,\! 66 \; \text{kg}.$$

$$F = \left[170 \cdot \frac{2 \cdot 5 \cdot 10^{-4}}{0,06} + (170 + 17,66 \cdot 3) \cdot 0,03 \cdot \frac{0,012}{0,06}\right] \cdot 9,81 + 0,8 \cdot \frac{17,66 \cdot 70 \cdot 1,5^2}{14} = 199,859 \text{ H}$$

13. По зависимости (8) определяется коэффициент сопротивления движению груза на конвейере:

$$\omega = \frac{F}{m \cdot g} = \frac{199,859}{170 \cdot 9,81} = 0,1198 \tag{8}$$

14. При принятом угле наклона гравитационного конвейера β проверяется условие (9), при выполнении которого, обеспечивается движение грузов за счет продольной составляющей силы тяжести груза:

$$(1 - tg \alpha) > \omega => (1 - tg 2 = 0.9650) > 0.1198 \tag{9}$$

Вывод: В ходе практической работы ознакомились с устройством и методикой расчета гравитационного роликового конвейера, определили производительность роликового конвейера $Q=28,9\,\mathrm{T/Y}$; расстояние между грузами $t_{\rm r}=0.03\,\mathrm{m}$; шаг роликов $t_{\rm p}=200$; число роликов $z^{'}=3$; диаметр цапфы $du=12\,\mathrm{mm}$; число роликов в конвейере $z_{\rm p}=70\,\mathrm{m}$ т; сопротивление одного груза $F=199,859\,\mathrm{H}$; коэффициент сопротивления движению груза на конвейере $\omega=0.1198$; так же убедились в выполнении условия (9), при выполнении которого, обеспечивается движение грузов за счет продольной составляющей силы тяжести груза

Изм.	Лист	№ локум.	Полпись	Дата

Задание

Рассчитать время цикла шагающего конвейера по исходным данным из таблицы 7.5.

Таблица 7.5 – Исходные данные

№ варианта	Масса груза, кг	Производитель- ность Z, шт/ч	Длинна груза l, м	Ширина груза b, \mathtt{M}	Длинна роль- ганга <i>L</i> , м	v , M/c
1	160/240/200	200/150/120	0,45	0,45	15	2
2	180/210/140	90/130/170	0,4	0,3	17	0,5
3	145/150/190	160/110/150	0,55	0,55	16	1
4	130/185/110	130/100/180	0,6	0,6	18	2
5	215/170/125	155/170/140	0,7	0,7	14	1,5

7.3 Структура отчета

- 1. Название работы;
- 2. Цель работы;
- 3. Краткие теоретические сведения;
- 4. Порядок выполнения работы;
- 5. Расчет согласно индивидуального задания по вариантам из таблицы 7.5. Объем отчета 4-7 стр. Отчет подписывается студентом.

7. 4 Контрольные вопросы.

- 1. Назначение роликового конвейера.
- 2. Приведите классификацию роликовых конвейеров.
- 3. Конструкция и работа роликового конвейера.
- 4. Последовательность расчета роликового конвейера.
- 5. Приведите расчет роликового конвейера.
- 6. При каком условии обеспечивается движение грузов за счет продольной составляющей силы тяжести груза.

Изм.	Лист	№ докум.	Подпись	Дата