Eléments de Théorie des Ensembles Opérations Ensemblistes

MPSI 2

iiiiiii HEAD

1 Complémentaire : ${}^cF, F^c, \bar{F}, C_EF, E \setminus F$

Soit E un ensemble. =======

2 Complementaire: ${}^cF, F^c, \bar{F}, C_EF, E \setminus F$

Définition 2.0.1

Soit F un sous-ensemble de E.

$$(x \in {}^{c}F) \iff non(x \in F)$$

iiiiiii HEAD

3 Réunion

======

4 Runion

 $\label{eq:condition} $\xi(\xi) = \frac{1}{2} (\xi) + \frac{1}{2} (\xi) +$

Définition 4.0.2

Soit F et G deux sous-ensembles de E.

$$(x \in F \cup G) \iff ((x \in F) \ ou \ (x \in G))$$

5 Intersection

Définition 5.0.3

Soit F et G deux sous-ensembles de E.

$$(x \in F \cap G) \iff ((x \in F) \ et \ (x \in G))$$

Propriété 5.0.1

$${}^{c}(F \cup G) = {}^{c}F \cap {}^{c}G$$

$${}^{c}(F \cap G) = {}^{c}F \cup {}^{c}G$$

$${}^{c}({}^{c}F) = F$$

$$x \in {}^{c}(F \cup G) \iff \neg (x \in F \cup G)$$

 $\iff \neg ((x \in F) \text{ ou } (x \in G))$
 $\iff \neg (x \in F) \text{ et } \neg (x \in G)$
 $\iff (x \in {}^{c}F) \text{ et } (x \in {}^{c}G)$
 $\iff x \in {}^{c}F \cap {}^{c}G$

6 Différence symétrique

Définition 6.0.4

Soit F et G deux sous-ensembles de E.

$$x \in F\Delta G \iff (x \in F) \quad \boxed{ou} \quad (x \in G)$$
$$F\Delta G = C_{F \cup G} F \cap G$$