MATH 570, Homework 3

Colin Roberts
September 7, 2017

Solutions

Problem 1. Let *X* be a topological space and let $A \subseteq X$ be a subset.

• The *interior of A in X*, denoted by Int*A*, is the largest open set in *X* contained inside of *A*:

 $Int A = \bigcup \{U \subseteq X \mid U \subseteq A \text{ and } U \text{ is open in } X\}.$

- The *boundary of A in X* is $\partial A = \overline{A} \cap \overline{X \setminus A}$ (this is equivalent to the slightly different definition on page 24 of our book).
- 1. Prove that a point $x \in X$ is in ∂A if and only if every neighborhood of x contains both a point of A and a point of $X \setminus A$.
- 2. Prove that *A* is open in *X* if and only if *A* contains none of its boundary points, i.e. $A \cap \partial A = \emptyset$.

:

Proof (Part (1)). For the forward direction, let $x \in \partial A$. Thus we have $x \in \bar{A} \cap X \setminus A$. Which means $x \in \bar{A}$ and $x \in X \setminus A$. By (4) on our last homework we have that all neighborhoods of x, N_x , necessarily satisfy $N_x \cap A \neq \emptyset$ and $N_x \cap X \setminus A \neq \emptyset$.

For the reverse direction, if for all neighborhoods of a point x, N_x , we have $N_x \cap A \neq \emptyset$ and $N_x \cap X \setminus A \neq \emptyset$, then we have $x \in \overline{A}$ and $x \in X \setminus A$. Thus $x \in \overline{A} \cap X \setminus A$.

:

Proof (Part (2)). For the forward direction, let $A \subseteq X$ be open. Suppose that $x \in \partial A$ and $x \in A$. But for all neighborhoods of the point x, N_x , $N_x \cap X \setminus A \neq \emptyset$ since $x \in \partial A$. Thus we contradict A being open.

For the reverse direction, suppose $A \cap \partial A = \emptyset$. Let $x \in A$ and consider an arbitrary neighborhood of x, N_x . If $N_x \subseteq A$ we have that A is open and we are done. Otherwise if $N_x \cap X \setminus A \neq \emptyset$ then also $N_x \cap A \neq \emptyset$ since we said $x \in A$. But this implies that $x \in \partial A$. Thus $N_x \subseteq A$ and we have that A is open. \square

Problem 2. Let X be a topological space and let $S \subseteq X$. Prove that the subspace topology on S is indeed a topology (i.e. satisfies the definition on page 20 of our book).

:

Proof. For the first requirement we have that *S* is an element since $S \cap X = S$. Also we have $\emptyset = S \cap \emptyset$ so the subset contains *S* and \emptyset .

For the second requirement, let $U_1, ..., U_n \subseteq S$, then each $U_i = S \cap V_i$ for $V_i \in X$. Then $U_1 \cap U_2 \cap ... \cap U_n = (S \cap V_1) \cap (S \cap V_2) \cap ... \cap (S \cap V_n) = S \cap (\bigcap_{i=1}^n V_i)$. Since $\bigcap_{i=1}^n V_i \subseteq X$ is open in X then we have that $S \cap (\bigcap_{i=1}^n V_i)$ is open in S.

Finally let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an arbitrary collection of open sets of S. Again we have that $U_{\alpha}=S\cap V_{\alpha}$. Then, $\cup_{{\alpha}\in A}U_{\alpha}=\cup_{{\alpha}\in A}(S\cap V_{\alpha})=S\cap (\cup_{{\alpha}\in A}V_{\alpha})$. And we have that $\cup_{{\alpha}\in A}V_{\alpha}$ is open in S.

Problem 3. Read and understand Proposition 2.44 and its proof in our book, which describes when a collection \mathcal{B} of subsets of a set X is a valid basis for some topology on X. Now, suppose that X_1, \ldots, X_n are topological spaces. Use Proposition 2.44 to prove that the basis $\mathcal{B} = \{U_1 \times \ldots \times U_n \mid U_i \text{ is open in } X_i \text{ for all } i\}$ is indeed a valied basis for some topology on $X_1 \times \ldots \times X_n$ (called the *product topology*).

: $Proof. \ \, \text{For the first requirement let} \, \mathscr{B} = \{U_1 \times ... \times U_n | U_i \text{ is open in } X_i \forall i\}. \, \text{Let} \, \mathscr{B}_i = \{U_i \subseteq X_i | U_i \text{ is open in } X_i\}, \\ \text{then we have that} \, X_i = \cup U_i \in \mathscr{B}_i U_i \text{ and thus we have } \cup U_1 \in \mathscr{B}_1 U_1 \times ... \cup U_n \in \mathscr{B}_n \, U_n = X_1 \times ... \times X_n. \\ \text{Let} \, A = A_1 \times A_2 \times ... \times A_n \in \mathscr{B} \text{ and } B = B_1 \times B_2 \times ... \times B_n \in \mathscr{B} \text{ then } A \cap B = (A_1 \cap B_1) \times ... \times (A_n \cap B_n). \text{ Then we have that there exists } C_i \subseteq A_i \cap B_i \text{ for } i = 1, ..., n \text{ since we contain every open set for each } X_i \text{ in } \mathscr{B}. \\ \text{Thus we have } C \subseteq A \cap B \text{ given by } C = C_1 \times ... \times C_n. \\ \square$

Problem 4. The above images are of a 2D surface which is a 2-holed torus. On the left the holes appear to be linked, but on the right they do not. However, there is a way to bend and stretch this shape in \mathbb{R}^3 to get from the surface on the left to the one on the right (imagine the shape is made of a very flexible rubber or play-doh which you are allowed to bend or stretch but not tear). Draw a deformation (a sequence of pictures) showing how to do this.

:

Proof.