

47.
$$y_{xx}^{"} = f(y)(y_x^{'})^2 + g(x)y_x^{'}$$
.

Dividing by y'_x , we obtain an exact differential equation. Its solution follows from the equation:

$$\ln|y_x'| = \int f(y) \, dy + \int g(x) \, dx + C.$$

Solving the latter for y'_x , we arrive at a separable equation. In addition, $y = C_1$ is a singular solution, with C_1 being an arbitrary constant.

Reference

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition,* Chapman & Hall/CRC, Boca Raton, 2003.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0347.pdf