Parallel identical processor scheduling with weighted completion time

A column generation approach

Simone Cavana 219833{at}studenti.unimore.it

25 febbraio 2021

$P||\sum w_j C_j$

M = set di m macchine identiche

J = set di n job

 $p_j = \text{tempo d'esecuzione di un job}$

 $w_j = \text{peso di un job}$

 C_j = tempo di completamento di un job in una schedula

- Ogni macchina è disponibile dall'istante 0 e può elaborare al più un job per istante;
- Non è ammessa preemption;
- ▶ I job devono essere eseguiti in modo contiguo (no idle).

$P||\sum w_j C_j$

Esempio

job	Wj	p_{j}		
1	1	<i>p_j</i> 8		
2	4	7		
3	7	8		
4	5	5		
5	5	5		
6	6	4		
7	7	4		
8	7	3		
9	9	3		

- $H_{min} = \left(\sum_{j \in J} p_j (m-1)p_{max} \right) / m$
- $ightharpoonup H_{max} = (\sum_{j \in J} p_j + (m-1)p_{max})/m$

Set-covering formulation

- ▶ Definiamo **schedula** $s \in S$, un insieme di job ammissibili assegnabile ad una qualsiasi macchina m;
- ▶ L'**ordinamento di Smith** ci indica di effettuare un ordinamento in ordine decrescente sulla base del rapporto w_j/p_j per avere la condizione di ottimalità.

$$\begin{aligned} a_{js} &= \begin{cases} 1 & \text{se il job j è assegnato alla schedula s,} \\ 0 & \text{altrimenti} \end{cases} \\ C_j(s) &= \sum_{k=1}^j a_{ks} p_k \\ c_s &= \sum_{j \in J} w_j a_{js} C_j(s) = \sum_{j \in J} w_j a_{js} \left[\sum_{k=1}^j a_{ks} p_k \right] \\ x_s &= \begin{cases} 1 & \text{se la schedula s è selezionata,} \\ 0 & \text{altrimenti} \end{cases} \end{aligned}$$

Set-covering model

min
$$\sum_{s \in S} c_s x_s$$

s.t. $\sum_{s \in S} x_s = m$ (1)

$$\sum_{s \in S} a_{js} x_s = 1, \quad j \in J \tag{2}$$

$$x_s \in \{0,1\}, \qquad s \in S \tag{3}$$

Costi ridotti (si ricavano dal duale):

$$ar{c_s} = c_s - \sum_{j \in J} a_{js} \lambda_j = \sum_{j \in J} \left[w_j \left(\sum_{k=1}^j a_{ks} p_k \right) - \lambda_j \right] a_{js}$$

Column Generation Approach

- Rilasso set-covering $\Rightarrow x_s \ge 0$
- ► Risolvo RLP su \$\bar{S}\$
- Ricavo le variabili duali:
 - \triangleright λ_0 è costante, relativa ad (1)
 - $\triangleright \lambda_i$ relative a (2)
- ▶ **se** F^* < 0 ⇒ aggiungo le n schedule con costi ridotti più negativi tramite backtracing su $F_i(t)$

Pricing algorithm

Programmazione dinamica

$$P(j) = \sum_{k=1}^{j} p_k$$

Inizializzazione:

$$F_j(t) = egin{cases} -\lambda_0 & ext{se } j=0, \ ext{e} \ t=0, \ \infty & ext{altrimenti} \end{cases}$$

per i successivi step $j = 1, ..., n, t = 0, ..., min\{P(j), H_{max}\}$:

$$F_j(t) = \begin{cases} \min\{F_{j-1}(t), F_{j-1}(t-p_j) + w_j t - \lambda_j\} & \text{se } r_j + p_j \le t \le d_j \\ F_{j-1}(t) & \text{altrimenti} \end{cases}$$

$$F^* = \min_{H_{min} \le t \le H_{max}} F_n(t)$$

 $ightharpoonup F_j(t)$ rappresenta i costi ridotti minimi dati dalla schedula composta dai job $\leq j$ che termina in t

- La strategia per risalire alla schedula dato il costo ridotto $F_i(t)$ è di ripercorrere a ritroso la matrice dove:
 - ▶ salgo in verticale se $F_i(t) == F_{i-1}(t)$ e non inserisco j in \bar{S}
 - ▶ altrimenti salgo al job precedente e mi sposto nel tempo tanto quanto p_i , in modo da inserire j in \bar{S}

- $ar{S} o ext{schedule iniziali}$
- ▶ $2000 \le N \le 5000$
- Estrazione basata su c_s
- NS migliorativo finale

Algorithm 1: Heuristic

Input: n, m, w, p, N **Output:** \bar{S}

- $\bar{S}, s \leftarrow \{\}$
- 2 $jobs \leftarrow smith_order(n, w, p)$
- 3 $n_iter \leftarrow 0$
- 4 while $n_iter < N$ do

$$5 \quad | \quad s \leftarrow \mathsf{create_rand_sched}(jobs)$$

- $\mathbf{6} \quad \bar{S} \leftarrow \bar{S} \cup s$
- 7 $n_iter + +$
- 8 $\bar{S} \leftarrow \text{extract_best}(\bar{S}, 10)$
- 9 **return** neighborhood_search(\bar{S})

Randomized List Heuristic

Neighborhood Search

- Insert: spostare un job da una macchina ad un altra;
- Swap: scambiare due job schedulati su macchine differenti;

▶ Insert move: move one "object" to another "position"

▶ SWAP move: exchange two "objects"

Integralità della soluzione

- Caso speciale frazionario che rispetta Teorema 1
 - $C_j(s) = C_j \ \forall \ j \in J \ \text{and} \ \forall \ s \ \text{with} \ x_s^* > 0$
- ▶ Branch & Bound con LB dato da x*, soluzione ottima di RLP
 - 1. branching sugli **intervalli d'esecuzione** $[r_j, d_j]$
 - $\exists j t.c. \sum_{s \in S^*} C_j(s) x_s^* > \min\{C_j(s), s \in S^*\} \equiv C_j^{min}$

$\begin{array}{ll} \textbf{Left} & \textbf{Right} \\ C_j(s) \leq C_j^{min} & C_j(s) \geq C_j^{min} + 1 \\ d_j \leftarrow C_j^{min} & r_j \leftarrow C_j^{min} + 1 - p_j \\ d_k \leftarrow \min\{d_k, d_j - p_j + p_k\} & r_k \leftarrow \max\{r_k, r_j\} \\ \forall J_k \in \mathcal{P}_j & \forall J_k \in \mathcal{S}_j \end{array}$

Branch & Bound

Feasibility and Details

- Schedules:
 - ▶ **Left**: $max(C_j d_j) < 0$
 - ▶ **Right**: $min((C_i p_i) r_i) > 0$
- Nodes:
 - $\forall j \in J, \quad d_j r_j \geq p_j$

key: 1

Model

x

value: A

sc

r

di

job: k

parent: 0

children: [3,4]

visited: True

Benchmark

- ▶ 15 istanze "semplici" **fornite** da Barnes & Brennan;
- Istanze generate random con:
 - m estratto da [3,4,5];
 - ▶ n da [20, 30, 40, 50];
 - tempi d'esecuzione e pesi:
 - 1. p_j ricavati da [1, 10], w_j da [10, 100];
 - 2. sia p_j che w_j estratti da una distribuzione normale fra [1, 100];
 - 3. sia p_j che w_j estratti da una distribuzione normale fra [1, 20];

Risultati

Barnes & Brennan benchmark

m	n	HTime	CGTime	NB	MNN	MGAP	ILP	TOT
2	5	0.75	0.00	57	0	0	57	57
	8	1.00	0.11	27	0	0	27	27
	10	1.73	2.33	27	1	0	33	33
	12	1.82	0.24	30	1	0	33	33
3	6	0.89	0.00	28	0	0	28	28
	7	0.65	0.00	17	0	0	17	17
	9	1.68	0.52	21	2	0	25	25
	11	1.76	0.18	15	2	0	17	17
	13	2.60	8.55	10	2	0	20	20
	15	2.76	0.34	29	0	0	29	29
	20	4.19	0.89	26	2	0	36	36
	25	5.83	0.46	20	3	0	24	24
4	20	4.06	0.75	32	0	0	32	32
5	9	1.93	0.07	30	0	0	30	30

Risultati

Random benchmark

m	n	HTime	CGTime	NB	MNN	MGAP	ILP	TOT
3	20	4.03	0.22	35	1	0	36	36
	30	8.21	1.03	34	0	0	34	34
	40	17.62	3.14	29	0	0	29	29
	50	23.41	2.95	37	0	0	37	37
4	20	4.03	1.13	36	1	0	38	38
	30	9.60	0.87	29	1	4	29	30
	40	18.67	1.64	33	0	0	33	33
	50	27.00	2.58	43	0	0	43	43
5	20	3.56	1.50	33	1	2	35	36
	30	8.95	4.40	14	7	16	18	20
	40	20.89	3.61	25	1	0	28	28
	50	27.43	2.45	44	0	0	44	44

Conclusioni

Analisi risultati

- Le performance dell'euristica sono correlate ad *n*;
- ightharpoonup CG invece dipende molto da \bar{S} e dall'utilizzo di B&B.

Conclusioni

Considerazioni e Sviluppi futuri

- Performance migliori per la maggior parte delle istanze;
- Ottimizzazione di pricing come descritto in appendice [1,2];
- Sviluppo Branching sull'immediato successore [4] ed eventuale paragone fra i B&B.

Bibliografia

- [1] Marjan van den Akker, Han Hoogeveen, and Steef van de Velde. Parallel machine scheduling by column generation. Operations Research, 47(6):862–872, 1999.
- [2] Marjan van den Akker, Han Hoogeveen, and Steef van de Velde. Applying Column Generation to Machine Scheduling, pages 303–330. Springer US, Boston, MA, 2005.
- [3] J. Wesley Barnes and J. J. Brennan. An improved algorithm for scheduling jobs on identical machines. AIIE Transactions, 9(1):25–31, 1977.
- [4] Zhi-Long Chen and Warren B. Powell. Solving parallel machine scheduling problems by column generation. INFORMS Journal on Computing, 11(1):78–94, 1999.