Zachary Seymour MATH 506 Homework 2 February 20, 2014

Prove the following statements:

1 Let (X,d) be a metric space. Then (X,d) is complete iff every nest of closed balls has a nonempty intersection.

Proof. We will first assume (X, d) is complete. Let $\{B_n\}$ be such a nest, where B_n is the ball with center at x_n and radius r_n . We have $\lim_{n\to\infty} r_n = 0$; therefore, the sequence $\{x_n\}$ is Cauchy, and its limit lies inside every B_n , so their intersection is nonempty.

If we have such a nest as described above with $\{x_n\}$ a Cauchy sequence.

And then I'm not sure where to really go from here.

2 Let X be a linear space and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on X. Let d_1 and d_2 be the metrics defined by $d_i(x,y) = \|x-y\|_i$, i=1,2. Suppose that there exists K>0 such that $\|x\|_1 \le K \|x\|_2$ for all $x \in X$. Let $\{x_n\}$ be a sequence in X.

2(a) If $\{x_n\}$ converges to x in the metric space (X, d_2) , then $\{x_n\}$ converges to x in the metric space (X, d_1) .

Proof. Suppose $\{x_n\}$ converges to x in (X, d_2) . Then, $\lim_{n\to\infty} \|x_n - x\|_2 = 0$. We also have $\lim_{n\to\infty} \|x_n - x\|_1 \le K \cdot 0$, so $\{x_n\}$ converges to x in (X, d_1) .

2(b) If $\{x_n\}$ is Cauchy in the metric space (X, d_2) , $\{x_n\}$ is Cauchy in the metric space (X, d_1) .

Proof. Suppose $\{x_n\}$ is Cauchy in w.r.t. $\|\cdot\|_2$ and let $\varepsilon > 0$. Then, $\exists N > 0$ such that $\|x_n - x_m\|_2 \le K\varepsilon$ when n, m > N. Therefore, $\|x_n - x_m\|_1 \le \varepsilon$ whenever n, m > N, so $\{x_n\}$ is Cauchy in (X, d_1) .

3 If X is a normed linear space and S is a linear subspace of X then \overline{S} is a linear subspace of X.

Proof. For \overline{S} to be a linear subspace, we must show that it is addition and scalar multiplication. Consider $a, b \in \overline{S}$. Then we consider three cases.

Case 1. $a, b \in S$.

Then, $a + b \in S$ since S is a linear subspace already, so clearly, $a + b \in \overline{S}$.

Case 2. $a \in \overline{S} \setminus S$, $b \in S$.

By definition of closure, then, $\exists a_0 \neq a \in S$ such that $||a_0 - a|| < \varepsilon$. We have, though, $a_0 + b \neq a + b \in S$ and $||a_0 + b - a - b|| = ||a_0 - a|| < \varepsilon$, so the distance between $a + b \in S$ and $a_0 + b$ is arbitrarily small, so we can conclude $a_0 + b \in \overline{S}$.

Case 3. $a \in \overline{S} \setminus S, b \in \overline{S} \setminus S$

This case is essentially the same as the previous case, where the distance between some $a_0 + b_0 \neq a + b \in S$ can be made arbitrarily small as well.

Now, if we have some $x \in \overline{S}$ and some scalar α , we consider two more cases:

Case 4. $x \in S$

That $\alpha x \in \overline{S}$ follows from the fact that S is also a linear subspace.

Case 5. $x \in \overline{S} \setminus S$

Again, a similar argument can be made to show that the distance between some $\alpha x_0 \neq \alpha x$ can be made arbitrarily small, so $\alpha x \in \overline{S}$.

Therefore, we have shown \overline{S} is a linear subspace of X.

4 Let \mathcal{P} be the linear space of polynomials with real coefficients defined on [0,1]. Then we can define the sup-norm $\|p\|_{\infty} = \sup\{|p(x)| : x \in [0,1]\}$ and L^1 -norm $\|p\|_1 = \int_0^1 |p(x)| \ dx$. Show that these two norms are not equivalent on \mathcal{P} .

(Hint: consider $p_n(x) = x^n$.)

Proof. Suppose the two norms are equivalent. Then $\exists c_1, c_2$ such that $c_1 ||p||_1 \leq ||p||_{\infty} \leq c_2 ||p||_1$. For $p_n(x) = x^n$, we have

$$||p_n||_{\infty} = \max_{x \in [0,1]} |x|^n = 1$$
$$||p_n||_1 = \int_0^1 |x|^n dx = \frac{1}{n+1}.$$

Then, for $c_2 > 0$ for all n, we have

$$\frac{\|p_n\|_{\infty}}{\|p_n\|_1} = n + 1 \le c_2.$$

This cannot hold for all n. Therefore, the norms are not equivalent.

5 If $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ are two normed linear spaces, then

$$\|(x,y)\| = \max\{\|x\|_1, \|y\|_2\}, \quad x \in X, y \in Y$$

is a norm on the product space $X \times Y$.

Proof. We must show the norm as defined meets the four criteria:

- 1. $||x|| \ge 0$,
- 2. ||x|| = 0 iff x = 0,
- 3. $\|\alpha x\| = |\alpha| \|x\|$,
- 4. $||x + y|| \le ||x|| + ||y||$.

That (1) holds follows from the fact that both $||x||_1$ and $||y||_2$ are also nonnegative, so their max must be as well. Next, $\max\{||x||_1, ||y||_2\}$ can only equal zero when x = 0 and y = 0, so the second property holds. If, we treat scalar multiplication and addition component-wise, the other properties hold as well.

- **6** The linear space $L^{1}(M,\mu)$ is complete in its metric $d(f,g) = \int |f-g| d\mu$. You can use the following procedure to prove.
 - (a) For any Cauchy sequence $\{f_n\} \subset L^1$, find a subsequence $\{f_{n_k}\}$ such that $\|f_{n_{k+1}} f_{n_k}\|_{L^1} \leq 2^{-k}$.
 - (b) Define

$$f(x) = f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x)),$$

then $f \in L^1$, $f_{n_k}(x) \to f(x)$ a.e. and $f_{n_k}(x) \to f(x)$ in L^1 .

(c) Show that $||f_n - f||_{L^1} \to 0$ as $n \to \infty$.

Proof. Suppose $\{f_n\}$ is Cauchy in L^1 and that we pick out a subsequence $\{f_{n_k}\}$ with $\|f_{n_{k+1}} - f_{n_k}\|_{L^1} \le 2^{-k}$. Then, we define the infinite series f(x) by

$$f(x) = f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x)),$$

so we have $f \in L^1$, $f_{n_k}(x) \to f(x)$ a.e. and $f_{n_k}(x) \to f(x)$ in L^1 . Since infinite series f(x) is dominated by $\sum 2^{-k} \le 1$, we can say, by the Dominated Convergence Theorem, that $||f_n - f||_{L^1} \to 0$.