Esame Scritto di Teoria dei Sistemi (Modulo A) del 23/04/2021: Soluzioni

Esercizio 1 [4 pti].

- - (i) <u>Calcolo autovalori di F</u>: F è triangolare a blocchi e il primo blocco diagonale è a sua volta triangolare, quindi gli autovalori di F sono gli elementi sulla diagonale di F: $\lambda(F) = \{0, \alpha, 1-\alpha\}$. Distinguiamo ora i casi:
 - $\alpha = 0$: gli autovalori di F sono $\lambda_1 = 0$ con molteplicità algebrica $\nu_1 = 2$ e molteplicità geometrica da calcolare, $\lambda_2 = 1$ con molteplicità algebrica e geometrica $\nu_2 = g_2 = 1$.
 - $\underline{\alpha = 1}$: gli autovalori di F sono $\lambda_1 = 0$ con molteplicità algebrica $\nu_1 = 2$ e molteplicità geometrica da calcolare, $\lambda_2 = 1$ con molteplicità algebrica e geometrica $\nu_2 = g_2 = 1$.
 - $\underline{\alpha} = 1/2$: gli autovalori di F sono $\lambda_1 = 0$ con molteplicità algebrica e geometrica $\nu_1 = g_1 = 1$, $\lambda_2 = 1/2$ con molteplicità algebrica $\nu_2 = 2$ e molteplicità geometrica da calcolare.
 - $\underline{\alpha} \in \mathbb{R} \setminus \{0, 1/2, 1\}$: gli autovalori di F sono $\lambda_1 = 0$, $\lambda_2 = \alpha$, $\lambda_3 = 1 \alpha$, tutti con molteplicità algebrica e geometrica pari a uno, $\nu_i = g_i = 1$, i = 1, 2, 3.
 - (ii) <u>Calcolo molteplicità geometriche degli autovalori di F</u>: Le molteplicità geometriche mancanti sono date da:
 - $\underline{\alpha} = \underline{0}$: $g_1 = 3 \text{rank}(\lambda_1 I F) = 3 \text{rank}\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & -1 \end{bmatrix} = 3 2 = 1.$
 - $\underline{\alpha = 1}$: $g_1 = 3 \text{rank}(\lambda_1 I F) = 3 \text{rank}\begin{bmatrix} 0 & -2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 3 1 = 2.$
 - $\underline{\alpha = 1/2}$: $g_2 = 3 \text{rank}(\lambda_2 I F) = 3 \text{rank}\begin{bmatrix} \frac{1}{2} & -\frac{3}{2} & 0\\ 0 & 0 & 0\\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} = 3 2 = 1.$
 - (iii) Calcolo della forma di Jordan di F, modi elementari del sistema e loro carattere: Utilizzando le informazioni trovate ai punti (i) e (ii), possiamo concludere:
 - $\alpha = 0$: La forma di Jordan di F è (a meno di una permutazione dei blocchi diagonali):

$$F_J = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

I modi elementari sono: 1 (limitato), t (divergente), e^t (divergente).

• $\alpha = 1/2$: La forma di Jordan di F è (a meno di una permutazione dei blocchi diagonali):

$$F_J = \begin{bmatrix} \frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

I modi elementari sono: 1 (limitato), $e^{\frac{1}{2}t}$ (divergente), $te^{\frac{1}{2}t}$ (divergente).

• $\underline{\alpha} \in \mathbb{R} \setminus \{0, 1/2\}$: La matrice è diagonalizzabile e quindi forma di Jordan di F è (a meno di una permutazione degli elementi diagonali):

$$F_J = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 - \alpha \end{bmatrix}.$$

I modi elementari sono: 1 (limitato), $e^{\alpha t}$ (convergente se $\alpha < 0$, divergente se $\alpha > 0$), $e^{(1-\alpha)t}$ (convergente se $\alpha > 1$, limitato se $\alpha = 1$, divergente altrimenti).

1

2. Per $\alpha = 1$, la matrice F può essere partizionata in blocchi diagonali come:

$$F = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} F_{11} & 0 \\ \hline 0 & F_{22} \end{bmatrix}$$

con $F_{22} = 0$. L'ingresso richiesto esiste se e solo se lo stato $x(2) - e^{2F}x(0)$ è raggiungibile al tempo 2, cioè

$$x(2) - e^{2F}x(0) \in X_R(2). \tag{1}$$

A tempo continuo $X_R(t) = X_R = \operatorname{im}(\mathcal{R}), \forall t > 0$, dove \mathcal{R} è la matrice di raggiungibilità del sistema

$$\mathcal{R} = \begin{bmatrix} G & FG & F^2G \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{e} \quad X_R = \text{im}(\mathcal{R}) = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}.$$

Quindi resta da verificare se $x(2) - e^{2F}x(0) \in X_R(2) = X_R$. Il vettore $x(2) - e^{2F}x(0)$ si può calcolare facilmente sfruttando la particolare forma di F e quella di x(0):

$$x(2) - e^{2F}x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} e^{2F_{11}} & 0 \\ 0 & e^{2F_{22}} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ e^{2F_{22}} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

Il vettore $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$ appartiene a X_R , la condizione (1) è quindi verificata e l'ingresso richiesto esiste. In alternativa, si arrivava allo stesso risultato calcolando esplicitamente e^{2F} tramite diagonalizzazione di F.

3. Per $\alpha = 0$, la matrice F è triangolare a blocchi:

$$F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} F_{11} & 0 \\ \hline F_{21} & F_{22} \end{bmatrix}$$

con $F_{22} = 1$. Sia $x(0) = \begin{bmatrix} x_{0,1} & x_{0,2} & x_{0,3} \end{bmatrix}^{\top}$ con $x_{0,i} \in \mathbb{R}$ e $H = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} H_1 & 0 \end{bmatrix}$, l'evoluzione libera dell'uscita è data da:

$$y_{\ell}(t) = He^{Ft}x(0) = \begin{bmatrix} H_1 & 0 \end{bmatrix} \begin{bmatrix} e^{F_{11}t} & 0 \\ \star & e^{F_{22}t} \end{bmatrix} \begin{bmatrix} x_{0,1} \\ x_{0,2} \\ x_{0,3} \end{bmatrix},$$
 (2)

dove \star indica un generico blocco 1×2 . Qui si è sfruttato il fatto che F è triangolare a blocchi e quindi i blocchi diagonali di e^{Ft} sono gli esponenziali dei blocchi diagonali di Ft. Inoltre, dal fatto che F_{11} è in forma "quasi diagonale" segue che $e^{F_{11}t} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$. Quest'ultima espressione sostituita in (2) porge

$$y_{\ell}(t) = He^{Ft}x(0) = \begin{bmatrix} H_1e^{F_{11}t} & 0 \end{bmatrix}x(0) = \begin{bmatrix} 1 & t+1 & 0 \end{bmatrix} \begin{bmatrix} x_{0,1} \\ x_{0,2} \\ x_{0,3} \end{bmatrix} = x_{0,1} + (t+1)x_{0,2}.$$

L'uscita in evoluzione libera è quindi limitata se e solo se $x_{0,2}=0$. Questo implica che tutte e sole le condizioni iniziali che generano un'evoluzione libera dell'uscita limitata sono della forma $x(0)=\begin{bmatrix} x_{0,1} & 0 & x_{0,3} \end{bmatrix}^{\top}$ con $x_{0,1}, x_{0,3} \in \mathbb{R}$ scalari reali arbitrari.

Esercizio 2 [4 pti].

1. $\bar{x} = (\bar{x}_1, \bar{x}_2, \bar{x}_3)$ è un punto di equilibrio del sistema se e solo se

$$\begin{cases}
0 = \alpha \bar{x}_1 + \bar{x}_2 \\
0 = -\bar{x}_1 + \alpha \bar{x}_2 \\
0 = \bar{x}_3^3 (\bar{x}_3 - 2)
\end{cases}$$
(3)

Dalla prima equazione in (3) abbiamo $\bar{x}_2 = -\alpha \bar{x}_1$, che sostituita nella seconda porge $(1 + \alpha^2)\bar{x}_1 = 0$. Quest'ultima equazione è verificata se e solo se $\bar{x}_1 = 0$, per ogni $\alpha \in \mathbb{R}$. Quindi abbiamo anche che $\bar{x}_2 = -\alpha \bar{x}_1 = 0$ per ogni $\alpha \in \mathbb{R}$. Infine, l'ultima equazione di (3) è verificata per $\bar{x}_3 = 0$ o $\bar{x}_3 = 2$. Concludiamo quindi che, per ogni $\alpha \in \mathbb{R}$, il sistema ammette due punti di equilibrio:

$$\bar{x}^{(1)} = (0, 0, 0), \quad \bar{x}^{(2)} = (0, 0, 2).$$

2. La matrice Jacobiana del sistema è:

$$J_f(x) = \begin{bmatrix} \alpha & 1 & 0 \\ -1 & \alpha & 0 \\ 0 & 0 & 3x_3^2(x_3 - 2) + x_3^3 \end{bmatrix}.$$

Valutando la matrice Jacobiana nel punto di equilibrio $\bar{x}^{(1)}$, otteniamo:

$$J_f(\bar{x}^{(1)}) = \begin{bmatrix} \alpha & 1 & 0 \\ -1 & \alpha & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Gli autovalori di questa matrice sono $\lambda(J_f(\bar{x}^{(1)})) = \{0, \alpha \pm i\}$. Per il teorema di linearizzazione possiamo concludere che $\bar{x}^{(1)}$ è un equilibrio instabile se $\alpha > 0$. Se $\alpha \le 0$, siamo nel caso critico della linearizzazione. Valutando la matrice Jacobiana nel punto di equilibrio $\bar{x}^{(2)}$, otteniamo:

$$J_f(\bar{x}^{(1)}) = \begin{bmatrix} \alpha & 1 & 0 \\ -1 & \alpha & 0 \\ 0 & 0 & 8 \end{bmatrix}.$$

Dalla forma diagonale a blocchi della matrice si osserva che un autovalore sarà sempre in 8. Per il teorema di linearizzazione possiamo quindi concludere che $\bar{x}^{(2)}$ è un equilibrio instabile per ogni $\alpha \in \mathbb{R}$.

3. I casi critici della linearizzazione riguardano l'equilibrio $\bar{x}^{(1)}=(0,0,0)$ e i valori $\alpha \leq 0$. Osserviamo innanzitutto che $V(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2$ è una funzione definita positiva in un intorno di $\bar{x}^{(1)}$ (in realtà, è definita positiva in $\mathbb{R}^3\setminus\{\bar{x}^{(1)}\}$). Calcoliamo ora $\dot{V}(x_1,x_2,x_3)$:

$$\dot{V}(x_1, x_2, x_3) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2 + 2x_3\dot{x}_3$$

$$= 2x_1(\alpha x_1 + x_2) + 2x_2(-x_1 + \alpha x_2) + 2x_3^4(x_3 - 2)$$

$$= 2\alpha(x_1^2 + x_2^2) - 2x_3^4(2 - x_3)$$

Osserviamo che $\dot{V}(x_1, x_2, x_3)$ è definita negativa se $\alpha < 0$ e semidefinita negativa se $\alpha = 0$ in un intorno di $\bar{x}^{(1)} = (0, 0, 0)$. Per il teorema di Lyapunov, concludiamo quindi che $\bar{x}^{(1)} = (0, 0, 0)$ è asintoticamente stabile se $\alpha < 0$ e (almeno) semplicemente stabile se $\alpha = 0$. Verifichiamo se in quest'ultimo caso ($\alpha = 0$) abbiamo solo stabilità semplice oppure anche stabilità asintotica, usando il teorema di Krasowskii. Se $\alpha = 0$ abbiamo

$$\mathcal{N} = \{(x_1, x_2, x_3) : \dot{V}(x_1, x_2, x_3) = 0)\} = \{(x_1, x_2, x_3) : x_1, x_2 \in \mathbb{R}, x_3 = 0\}.$$

Affinché una traiettoria $x(t) = (x_1(t), x_2(t)), x_3(t))$ sia interamente contenuta in \mathcal{N} , deve essere $x_3(t) = 0$ per ogni t, il che implica $\dot{x}_3(t) = 0$ per ogni t. Sostituendo questa condizione nelle equazioni della dinamica:

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -x_1(t) \\ 0 = 0 \end{cases}$$
 (4)

Le prime due equazioni di (4) descrivono il sistema lineare $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ che è semplicemente stabile (gli autovalori di $F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ sono $\pm i$, quindi i modi del sistema sono limitati ma non convergenti). Possiamo quindi concludere che per ogni scelta di un intorno \mathcal{I} di $\bar{x}^{(1)}$ esistono traiettorie interamente contenute in $\mathcal{N} \cap \mathcal{I}$ diverse da $\bar{x}^{(1)}$ e, per Krasowskii, $\bar{x}^{(1)}$ è solo semplicemente stabile se $\alpha = 0$.

Esercizio 3 [4 pti + 0.5 pti extra].

1. Per studiare la raggiungibilità possiamo usare, ad esempio, il criterio del rango. La matrice di raggiungibilità del sistema è data da:

$$\mathcal{R} = \begin{bmatrix} G & FG & F^2G \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 4 & 1 + \alpha \\ 0 & 0 & 0 & \alpha & 2\alpha & \alpha(1 + \alpha) \end{bmatrix}.$$

Il rango di \mathcal{R} è sempre maggiore o uguale a 2 (ci sono sempre due colonne linearmente indipendenti, ad esempio, le prime due). Inoltre, rank(\mathcal{R}) = 3 se e solo se $\alpha \neq 0$ (per $\alpha = 0$ l'ultima riga di \mathcal{R} si annulla). Quindi il sistema è raggiungibile se e solo se $\alpha \neq 0$.

Per studiare l'osservabilità, possiamo notare, ad esempio, che la coppia (F, H) è in forma di Kalman di osservabilità, essendo

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & \alpha & \alpha \end{bmatrix} = \begin{bmatrix} F_{11} & 0 \\ F_{21} & F_{22} \end{bmatrix}, \quad H = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} H_1 & 0 \end{bmatrix},$$

con $(F_{11}, H_1) = (1, 2)$ osservabile. Non esiste quindi alcun $\alpha \in \mathbb{R}$ che rende osservabile il sistema.

2. Preso $\alpha=0$, come prima cosa verifichiamo l'esistenza di un controllore dead-beat usando il solo primo ingresso, il che è equivalente a verificare la controllabilità della coppia (F,g_1) . A tale fine, possiamo osservare, ad esempio, che la coppia è in forma di Kalman di raggiungibilità, essendo

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ \hline 0 & F_{22} \end{bmatrix}, \quad g_1 = \begin{bmatrix} 1 \\ 0 \\ \hline 0 \end{bmatrix} = \begin{bmatrix} g_{11} \\ \hline 0 \end{bmatrix},$$

con (F_{11}, g_{11}) raggiungibile (come si verifica facilmente tramite criterio del rango). L'unico autovalore non raggiungibile di (F, g_1) è quindi in zero, pertanto (F, g_1) è controllabile e un controllore dead-beat esiste.

Per il calcolo dei controllori dead-beat possiamo usare il "metodo diretto" applicato al solo sottosistema raggiungibile descritto dalla coppia (F_{11}, g_{11}) . Sia $p(\lambda) = \lambda^2$ il polinomio caratteristico desiderato e $K_{11} = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$, con k_1, k_2 . Imponendo

$$\Delta_{F_{11}+g_{11}K_{11}} = \det(\lambda I - F - g_{11}K_{11}) = \det\begin{bmatrix} \lambda - 1 - k_1 & -k_2 \\ -2 & \lambda - 1 \end{bmatrix}$$
$$= (\lambda - 1 - k_1)(\lambda - 1) - 2k_2$$
$$= \lambda^2 + (-2 - k_1)\lambda + (1 + k_1 - 2k_2) \stackrel{!}{=} \lambda^2.$$

otteniamo il sistema di equazioni lineari

$$\begin{cases} -2 - k_1 = 0 \\ 1 + k_1 - 2k_2 = 0 \end{cases} \implies \begin{cases} k_1 = -2 \\ k_2 = -\frac{1}{2} \end{cases}$$

Da questo segue che i controllori dead-beat richiesti hanno matrici di retroazione della forma:

$$K = \begin{bmatrix} K_{11} & k_3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1/2 & k_3 \\ 0 & 0 & 0 \end{bmatrix},$$

dove $k_3 \in \mathbb{R}$ è un qualsiasi scalare reale.

3. Il controllore dead-beat che porta a zero nel minor numero possibile di passi è associato alla matrice K che minimizza rank(F + GK). Usando le matrici K trovate al punto 2., abbiamo

$$F + GK = \begin{bmatrix} -1 & -1/2 & k_3 \\ 2 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Il rango di F + GK è il minimo possibile (pari a 1) quando F + GK ha una sola colonna (o riga) linearmente indipendente. Questo si verifica se e solo se $k_3 = -1/2$. Il controllore dead-beat richiesto è quindi

$$K_{\min} = \begin{bmatrix} -2 & -1/2 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}.$$

In questo caso lo stato del sistema retroazionato va a zero in 2 passi (perchè il massimo miniblocco di Jordan di $F + GK_{\min}$ associato all'autovalore 0 ha dimensione 2).

Consideriamo ora entrambi gli ingressi e una matrice di retroazione generica $K = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \end{bmatrix}$, con $k_{ij} \in \mathbb{R}$. Abbiamo:

$$F + GK = \begin{bmatrix} 1 + k_{11} & k_{12} & k_{13} \\ 2 + k_{21} & 1 + k_{22} & 1 + k_{23} \\ 0 & 0 & 0 \end{bmatrix}.$$

Dalla forma di F + GK, si osserva che prendendo $k_{11} = -1$, $k_{12} = 0$, $k_{13} = 0$, $k_{21} = -2$, $k_{22} = -1$, $k_{23} = -1$ si ottiene F + GK = 0. Quindi, usando entrambi gli ingressi, è possibile costruire un controllore dead-beat tale per cui lo stato del sistema retroazionato va a zero in un solo passo, cosa che non è invece possibile utilizzando il solo primo ingresso.