#### Üzleti Elemzések Módszertana

4. Gyakorlat: Osztályozás

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 2.félév

Bevezetés

Tanítás

Oöntési fák tulajdonságai

Bevezetés

2 Tanítás

3 Döntési fák tulajdonságai

## Döntési fák a gépi tanulásban

A döntési fák olyanok, mint a svájci bicska: nagyon sok mindenre jó, de szinte semmire sem a legalkalmasabb.

A döntési fák kifejezetten hasznosak gyors taníthatóságuk, jól értelmezhetőségük és pontosságuk miatt.



# Döntési fák alapjai

A döntési fák képesek mind regressziós és osztályozási problémákat is végrehajtani. Könnven illeszthetők komplex adathalmazokra

Az algoritmus alapja, hogy mintaegyedeket osztályoz változóikban felvett értékeik alapján.



# Egy kezdeti döntési fa

A folyamat a fa gyökerénél kezdődik.

A mintaegyedek a csomópontok kérdéseire válaszolnak változóikban felvett értékeik alapján.

A végső osztály lehet folytonos és diszkrét változó is.



#### A döntési fa komponensei

#### Gyökér csomópont

Csak outputja van.

#### Internális csomópont

Van inputja és outputja is.

#### Levél csomópont

Csak inputja van.



#### Döntési fa az Írisz adathalmazon

Az első szeparálási változó szirom hossz, aminek a küszöbértéke 2.45 cm. Ha az adott virág szirom hossza kevesebb mint ez az érték akkor a modell szerint a becsült osztály Setosa.

Ha viszont nagyobb akkor a következő szeparálási ponthoz ér az osztályozás, ami szerint a következő kérdés, hogy a szirom szélesség kisebb-e mint 1.75 cm. Ha igen, a becsült osztály versicolor, egyébként pedig Virginica.



#### A fa ábrázolása





A vastag vonal a gyökérből származó határ. Mivel a bal oldali halmaz teljesen tiszta, nem lehet tovább bontani. De a jobb oldali részhalmaz továbbra is kevert, ezért a jobb oldali első szintű belső nódus tovább bontja 1.75cm küszöbnél.

1 Bevezetés

2 Tanítás

3 Döntési fák tulajdonságai

# Tisztátalanság

Azok a változók, amelyek nem képesek 1 : 0 arányban szeparálni az egyedeket tisztátalannak számítanak. Ennek egyik mutatószáma a Gini-index.

#### Gini

$$G(x) = 1 - P(A)^{2} - P(B)^{2}$$

ullet  $P\left(\cdot\right)$ : adott levélbe kerülés valószínűsége

Egy változó Gini-indexe leveleinek Gini-indexeinek súlyozott átlaga.



$$G(A) = 1 - \left(\frac{98}{98 + 30}\right)^2 - \left(\frac{30}{98 + 30}\right)^2 = 0.35$$

$$G(B) = 1 - \left(\frac{22}{22 + 123}\right)^2 - \left(\frac{123}{22 + 123}\right)^2 = 0.25$$

$$G(x) = \left(\frac{128}{128 + 145}\right) \cdot 0.35 \left(\frac{145}{128 + 145}\right) \cdot 0.25 = 0.3$$

## Szeparáció folytonos változó esetén

A folytonos változónak minden értékéhez tartozik egy Gini-index.

Egy adott x változóra a  $t_x$  küszöbérték menti szeparáció, hogy az egyik partícióba azon mintaegyedek kerülnek, amelyekre  $x \leq t_x$  a másikba pedig amelyekre  $x > t_x$ .



### Szeparáció folytonos változó esetén

Ennek megfelelően a szeparáció ott a legjobb, ahol a  $G(t_x)$  függvénynek minimuma van.



### Mikor érdemes szeparálni?

Amikor egy csomópontnak magasabb a tisztátalansága tovább bontáskor, felesleges a szeparáció és levélcsomópont válik belőle.

Gyökércsomópont abból a változóból válik, amelynek a legalacsonyabb a tisztátalansága.

Ebben az esetben szeparációval G=0.29



### Mikor érdemes szeparálni?

Amikor egy csomópontnak magasabb a tisztátalansága tovább bontáskor, felesleges a szeparáció és levélcsomópont válik belőle

Gyökércsomópont abból a változóból válik, amelynek a legalacsonyabb a tisztátalansága.

Szeparáció nélkül G=0.20, tehát a szeparáció felesleges.



# A CART tanító algoritmus

A Classification And Regression Trees egy döntési fák tanítására használt algoritmus.

Az eljárás x változóra és  $t_x$  küszöbértékre olyan  $(x,t_x)$  párokat keres, amelyekre a létrejövő részhalmazoknak a lehető legalacsonyabb a tisztátalansága.

Ezt rekurzívan ismétli kilépésig.

#### A CART költségfüggvénye

$$J\left(x,t_{x}\right) = \frac{m_{A}}{m}G_{A} + \frac{m_{B}}{m}G_{B}$$

#### Ahol.

- G<sub>A</sub>: Bal oldali nódus Gini-indexe
- G<sub>B</sub>: Jobb oldali nódus Gini-indexe
- m<sub>A</sub>: Bal oldali nódusba bekerült egyedek száma
- $m_B$ : Jobb oldali nódusba bekerült egyedek száma
- m: Egyedek száma a teljes halmazban

#### Korai leállás döntési fák esetén

Túltanulás esetén a tanító pontosság nagyon magas lesz, viszont a teszt pontosság alacsony.

Döntési fák esetén annyi változót érdemes meghagyni a modellezés során, amennyivel a lehető legmagasabb a teszt pontosság.

Korai leállás esetén a modell kiszáll a tanításból, ha a validációs pontosság elkezd csökkenni.



## Döntési fák regularizálása

A döntési fák meglehetősen kevés előfeltételezéssel élnek az adathalmaz irányába. Ha megkötések nélkül van tanítva, könnyen túltanulhat a modell.

A bal oldali ábrán egy regularizáció nélküli, a jobb oldalon pedig egy min\_samples\_leaf=4 paraméterrel tanított döntési fa látható.



## Regresszió döntési fákkal

Regresszió esetén a döntési fák leveleikben folytonos változókhoz tartozó értékékeket vesznek fel. Ebben az esetben a predikció a levelekbe bekerült mintaegvedek célváltozóikban felvett értékeinek az átlaga.



# Regresszió döntési fákkal

Regresszió esetén a döntési fák leveleikben folytonos változókhoz tartozó értékékeket vesznek fel. Ebben az esetben a predikció a levelekbe bekerült mintaegyedek célváltozóikban felvett értékeinek az átlaga.



## Regularizáció regresszor fák esetén

Az osztályozó fákhoz hasonlóan a regresszor fák is hajlamosak a túltanulásra. A regularizáció olyan paraméterek állításával érhető el, mint a min\_samples\_leaf, min\_samples\_split, max\_leaf\_nodes, max\_depth.



# CART tanító algoritmus regressziós fákra

A regresszor fák a tisztátalanság helyett az MSE mutatót minimalizálják.

Egy V nódus becsült értéke a bele került mintaegyedek célváltozóikban felvett értékeinek átlaga:

$$\hat{y}_V = \frac{1}{m_V} \sum_{i \in m_A} y_i$$

#### A CART regresszor algoritmus költségfüggvénye

$$J(x, t_x) = \frac{m_A}{m} MSE_A + \frac{m_B}{m} MSE_B$$

#### Ahol:

- $MSE_A = \sum_{i \in m_A} (\hat{y} y_i)^2$ : A csomópont átlagos négyzetes hibája
- $MSE_B = \sum_{i \in m_B} (\hat{y} y_i)^2$ : B csomópont átlagos négyzetes hibája

2 Tanítás

3 Döntési fák tulajdonságai

#### Instabilitás: rotáció az adathalmazon

Az alábbi példában egy lineárisan szeparálható adathalmazon történt  $45^{\circ}$ -os forgatás után látható ugyanannak a modellnek a predikciója. A létrejövő döntési határ jóval komplexebb a transzformált adathalmaz esetén.



#### Instabilitás: rotáció az adathalmazon

Az következő példában az Írisz adathalmazon egy  $180^{\circ}$ -os forgatás után láthatóak hasonló módon paraméterezett modellek döntési határai. Érdemes megfigyelni, mennyire különbözik a predikció a torzított adathalmazon.





#### Instabilitás: variációk az adathalmazban

Ebben az esetben a legszélesebb Versicolor (kék) nem került bele a minta adathalmazba. Egyetlen minta adatpont változása is nagy torzítást képes bevinni a modellbe.



