Problem Set 22: 布尔代数引论

提交截止时间: 5月27日10:00

Problem 1

设 B 是布尔代数,B 中的表达式 f 是 (a \wedge b) \vee (a \wedge b \wedge c) \vee (b \wedge c).

1. 化简 f;

a	b	с	(a ∧ b)	(a ∧ b ∧ c)	(b ∧ c)	$(a \land b) \lor (a \land b \land c) \lor (b \land c)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	1	1	1

 $f = (\neg a \wedge b \wedge c) \vee (a \wedge b \wedge \neg c) \vee (a \wedge b \wedge c)$

- $=(a\wedge b)\vee(b\wedge c)$
- $=b \wedge (a \vee c)$
 - 2. 求 f 的对偶式 f * .

 $f*=(a \lor b) \land (a \lor b \lor c) \land (b \lor c)$

Problem 2

设 < b, \land , \lor , ¹, 0, 1 > 是布尔代数, 证明 \forall a, b \in b 有以下命题成立

- 1. a ∨ (a' ∧ b) = a ∨ b
 - $a \lor (a' \land b)$
 - $=(aee a')\wedge(aee b)$
 - $=1\wedge(a\wedge b)$
 - $=(a \wedge b)$
- 2. $a \wedge b' = 0 \Leftrightarrow a' \vee b = 1 \Leftrightarrow a \leq b$

根据德摩根律

 $(a \land b')' = 0' \leftrightarrow a' \lor b = 1$

逆向同理可证 a ∧ b' = 0

ab\expr	a∧b	a∨b
00	a	b
01	a	b
11	a	b
10	b	a

根据真值表,当ab符合前三组时a ≤ b,同时当a≤ b时,符合前三组数据。

Problem 3

设 B 是布尔代数, \forall a, b, c \in B,若 a \leq c,则 a \vee (b \wedge c) = (a \vee b) \wedge c,称这个等式为模律。证明布尔代数适合模律。

ac\expr	a ∨ (b ∧ c)	(a ∨ b) ∧ c
00	0	0
01	b	b
11	1	1
10	1	0
根据真值表,当a \leq c, 则a \vee (b \wedge c) = (a \vee b) \wedge c		

Problem 4

设 B 是布尔代数, a1 , a2 , \cdots , an \in B, 证明:

1. (a1 \vee a2 $\vee \cdots \vee$ an)' = a'1 \wedge a'2 $\wedge \cdots \wedge$ a'n

```
      当n = 2时, 显然成立

      假设当n = k时, 原式成立。

      根据结合律,

      原式= ((a1 ∨ a2) ∨ (a3 ... ak + 2))'

      = (a1 ∨ a2)' ∧ (a3 ... ak + 2)'

      = a'1 ∧ a'2 ∧ (a3 ... ak + 2)'

      根据假设, (a3 .. ak + 2)' = a'3 ∧ a'4 .. a'k+2

      所以, 原式最终可化为a'1 ∧ a'2 ∧ · · · ∧ a'k+2

      故原命题得证
```

2. (a1 \wedge a2 $\wedge \cdots \wedge$ an)' = a'1 \vee a'2 $\vee \cdots \vee$ a'n

```
1 当n = 2时,显然成立
2 假设当n = k时,原式成立。
3 根据结合律,
4 原式= ((a1 ∧ a2) ∧ (a3 ... ak + 2))'
5 = (a1 ∧ a2)' ∨ (a3 ... ak + 2)'
6 = a'1 ∨ a'2 ∨ (a3 ... ak + 2)'
7 根据假设,(a3 ... ak + 2)' = a'3 ∨ a'4 .. a'k+2
8 所以,原式最终可化为a'1 ∨ a'2 ∨ ... ∨ a'k+2
9 故原命题得证
```

Problem5

设 (B, \lor , \land , \neg , 0, 1) 和 (S, +, *, \neg , 0, 1) 是两个布尔代数,f 是 B 到 S 的映射。证明: 如果对于任意的 a, b \in B, 有

```
    f (a ∧ b) = f (a) * f (b)
    f (ā) = ¬f (a)
    则 f 是一个同态映射。
```

```
f(a' \lor b') = f((a \land b)') = \neg f(a \land b) = \neg (f(a) * f(b)) = \neg f(a) + \neg f(b) = f(a') + f(b')
f(0) = f(1') = \neg f(1) = \neg f(a \lor a') = \neg (f(a) * f(a')) = \neg f(a) + f(a) = 0^{\circ}
f(1) = f(a \lor a') = f(a) * \neg f(a) = 1^{\circ}
所以f是一个同态映射。
```

Problem 6

```
设 < B, \wedge, \vee, ', 0, 1 > 是布尔代数, 在 B 上定义二元运算 \oplus, \forallx, y \in B 有 x \oplus y = (x \wedge y') \vee (x' \wedge y) 证明 < B, \oplus > 是交换群, 并且 \forallx, y, z \in B 有 x \oplus y. \wedgez = (x \wedge z) \oplus (y \wedge z) x \wedge (y \oplus z) = (x \wedge y) \oplus (x \wedge z) 注记: 这个练习给出了布尔代数上的环结构。
```

Problem 7

设 S 是命题逻辑中的全体公式,在其上定义定价关系 ~ 如下: 称 ϕ ~ ψ , 如果 ϕ \leftrightarrow ψ 是重言式。记 S 在 ~ 下的全体等价类为 S/ ~, 试在 S/ ~ 上定义 \wedge , \vee , ', 0, 1 使其成为一个布尔代数。

```
1 \forall a, b \in S, [a] \land [b] = [a \land b]

2 \forall a, b \in S, [a] \lor [b] = [a \lor b]

3 \forall a \in S, \neg[a] = [\nega]

4 0 = [\bot]

5 1 = [T]
```

Problem 8

设 (B, \vee , \wedge , \neg , 0, 1) 是一个布尔代数,n 元集合 A \subseteq B。记 A^{*} = \cap {X | A \subseteq X \subseteq B X是B的子布尔代数} 证明 A* 的基数不超过 2^{2^{n}}

A*是所有包含A的子布尔代数的交集。这意味着A*包含了所有子布尔代数共有的元素。由于每个子布尔代数至少包含A中元素的补元素,A*也必须包;所以,除了A本身的n个元素外,A*还可能包含最多n个补元素。这意味着A*的基数最多是 2^{2n} 。

又因为 2^2n 总是小于 2^{2^n} ,因为 2^{2n} 是多项式级别的增长,而 2^{2^n} 是指数级别的增长。所以A*的基数不超过 2^{2^n} 。