

FCC PART 15.231

TEST REPORT

For

GUARDIAN SHANGHAI CORP.

368, Min Shen Rd, SongJiang, Shanghai, China

FCC ID: YJFRTX01-CC

Report Type: **Product Type:** Original Report Remote control Ada. Yu **Test Engineer:** Ada Yu Report Number: RKS170426003-00A 2017-06-19 **Report Date:** Gscar. Ye Oscar Ye **Reviewed By:** RF Leader **Prepared By:** Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	
Measurement Uncertainty	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
ANTENNA CONNECTED CONSTRUCTION	
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.231(A) (2) - DEACTIVATION TESTING	
APPLICABLE STANDARD	21
TEST PROCEDURE	
TEST DATA	
FCC §15.231(C) - 20DB EMISSION BANDWIDTH TESTING	24
APPLICABLE STANDARD	
Test Procedure	
TEGEDATA	

Report No.: RKS170426003-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	GUARDIAN SHANGHAI CORP.
Tested Model	R1BCC, R2BCC, R3BCC
Product Type	Remote control
Dimension	$75 \text{ mm(L)} \times 73 \text{ mm(W)} \times 13.35 \text{ mm(H)}$
Power Supply	DC 12V from battery

Report No.: RKS170426003-00A

Objective

This test report is prepared on behalf of GUARDIAN SHANGHAI CORP. All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

No related submittal(s)/grant(s)

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.231 Page 3 of 25

^{*} Note: The difference between tested model and series model was explained in the declaration letter.

^{*}All measurement and test data in this report was gathered from production sample serial number: 20170425001. (Assigned by the BACL. The EUT supplied by the applicant was received on 2017-04-25)

Measurement Uncertainty

	Item	Uncertainty	
AC Power Line	es Conducted Emissions	3.19 dB	
RF conducte	ed test with spectrum	0.9dB	
RF Output Po	wer with Power meter	0.5dB	
	30MHz~1GHz	6.11dB	
Radiated emission	1GHz~6GHz	4.45dB	
	6GHz ~18GHz	5.23dB	
Оссир	pied Bandwidth	0.5kHz	
Te	emperature	1.0℃	
]	Humidity	6%	

Report No.: RKS170426003-00A

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.231 Page 4 of 25

SYSTEM TEST CONFIGURATION

Justification

The system was configured in testing mode which was provided by manufacturer, 2 channels are provided for testing:

Report No.: RKS170426003-00A

Channel 1: 303MHz, Channel 2: 390MHz

Three buttons triggered the same RF parameters (Contain bandwidth, power level, duty cycle).

EUT Exercise Software

No exercise software.

Equipment Modifications

No modification was made to the EUT.

Block Diagram of Test Setup

For Radiated Emissions (Below 1GHz):

FCC Part 15.231 Page 5 of 25

For Radiated Emissions (Above 1GHz):

FCC Part 15.231 Page 6 of 25

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conducted Emissions Not Applicat (See Note1	
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliance
§15.231 (a)(2)	Deactivation	Compliance
§15.215 (c)	20dB Emission Bandwidth	Compliance

Report No.: RKS170426003-00A

Note1: The EUT is powered by battery only.

FCC Part 15.231 Page 7 of 25

TEST EQUIPMENT LIST

Manufacturer	Description	iption Model		Calibration Date	Calibration Due Date							
	Radiated Emission Test											
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24							
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-24							
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08							
ETS-LINDGREN	Horn Antenna	3115	6229	2016-01-11	2019-01-10							
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-11							
Narda	Pre-amplifier	AFS42-00101800	2001270	2016-12-12	2017-12-11							
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/							
Haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-11							
Haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-11							
Haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-11							
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-11							
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-11							
ETS-LINDGREN	PASSIVE LOOP	6512	108100	2016-01-09	2019-01-08							
		RF Conducted	Γest		•							
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2016-09-21	2017-09-20							
ADKFP	RF Cable	N/A	N/A	2017-04-27	2018-04-26							

Report No.: RKS170426003-00A

FCC Part 15.231 Page 8 of 25

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: RKS170426003-00A

Antenna Connected Construction

The EUT has a PCB loop antenna arrangement which was permanently attached and the antenna gain is 0 dBi; fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.

FCC Part 15.231 Page 9 of 25

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

Applicable Standard

FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Report No.: RKS170426003-00A

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750 **	125 to 375 **
174-260	3750	375
260-470	3750 to 12500 **	375 to 1250**
Above 470	12500	1250

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

FCC Part 15.231 Page 10 of 25

EUT Setup

Below 1GHz:

Report No.: RKS170426003-00A

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
1000MHz – 5000MHz	1MHz	3MHz	/	PK

FCC Part 15.231 Page 11 of 25

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Report No.: RKS170426003-00A

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (b).

Test Data

Environmental Conditions

Temperature:	24.0 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-04-27&2017-04-28.

Test mode: Transmitting (Scan with X-Axis, Y-Axis and Z-Axis position, the worst case was recorded)

FCC Part 15.231 Page 12 of 25

Channel 1:

30MHz-5GHz (ASK modulation)

Report No.: RKS170426003-00A

	R	eceiver		Rx An	tenna	Corrected	Corrected	ed FCC Part 15		.231(b)/205/209	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (cm)	Polar (H/V)	Factor (dB)			Margin (dB)	Remark	
303.00	74.34	PK	311	108	Н	-4.73	69.61	94.87	25.26	Fundamental	
303.00	65.15	PK	352	207	V	-4.73	60.42	94.87	34.45	Fundamental	
606.00	48.66	PK	220	215	Н	0.65	49.31	74.87	25.56	Harmonic	
606.00	45.73	PK	34	197	V	0.65	46.38	74.87	28.49	Harmonic	
909.00	50.99	PK	324	135	Н	5.17	56.16	74.87	18.71	Harmonic	
909.00	51.54	PK	107	134	V	5.17	56.71	74.87	18.16	Harmonic	
1212.00	49.26	PK	289	187	Н	-11.18	38.08	74.00	35.92	Harmonic	
1212.00	48.34	PK	342	111	V	-11.18	37.16	74.00	36.84	Harmonic	
1515.00	52.39	PK	148	191	Н	-9.39	43.00	74.00	31.00	Harmonic	
1515.00	51.06	PK	336	215	V	-9.39	41.67	74.00	32.33	Harmonic	
1818.00	46.15	PK	31	203	Н	-7.95	38.20	74.87	36.67	Harmonic	
1818.00	43.05	PK	69	206	V	-7.95	35.10	74.87	39.77	Harmonic	
3030.00	42.17	PK	269	212	Н	-3.16	39.01	74.87	35.86	Harmonic	
3030.00	42.11	PK	246	196	V	-3.16	38.95	74.87	35.92	Harmonic	

Field Strength of Average Emission

Frequency	Peak	Polar	Duty Cycle	Corrected	FCC	FCC Part 15.231(b)/205/209		
(MHz)	Measurement@3m (dBμV/m)	(H/V)	Corrected Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment	
303.00	69.61	Н	-8.82	60.79	74.87	14.08	Fundamental	
303.00	60.42	V	-8.82	51.60	74.87	23.27	Fundamental	
606.00	49.31	Н	-8.82	40.49	54.87	14.38	Harmonic	
606.00	46.38	V	-8.82	37.56	54.87	17.31	Harmonic	
909.00	56.16	Н	-8.82	47.34	54.87	7.53	Harmonic	
909.00	56.71	V	-8.82	47.89	54.87	6.98	Harmonic	
1212.00	38.08	Н	-8.82	29.26	54.00	24.74	Harmonic	
1212.00	37.16	V	-8.82	28.34	54.00	25.66	Harmonic	
1515.00	43.00	Н	-8.82	34.18	54.00	19.82	Harmonic	
1515.00	41.67	V	-8.82	32.85	54.00	21.15	Harmonic	
1818.00	38.20	Н	-8.82	29.38	54.87	25.49	Harmonic	
1818.00	35.10	V	-8.82	26.28	54.87	28.59	Harmonic	
3030.00	39.01	Н	-8.82	30.19	54.87	24.68	Harmonic	
3030.00	38.95	V	-8.82	30.13	54.87	24.74	Harmonic	

FCC Part 15.231 Page 13 of 25

Note 1:

$$\label{eq:corrected} \begin{split} & Corrected \; Amplitude = Corrected \; Factor + Reading \\ & Corrected \; Factor = Antenna \; factor \; (Rx) + cable \; loss - amplifier \; factor \\ & Margin = Limit \; - \; Corr. \; Amplitude \end{split}$$

Note 2:

Calculate Average value based on Duty Cycle correction factor: $T_p \!\!=\!\! 54.71ms$ $T_{on} \!\!=\!\! T_{on1} N_1 + T_{on2} N_2 + \ldots + T_{onn} N_n = \!\! 0.501ms *18 + \!\! 0.982ms *11 = \!\! 19.82ms$ Duty Cycle Corrected Factor = 20*log(T_{on}/T_p) = 20*log(19.82ms/54.71ms)=-8.82dB

Report No.: RKS170426003-00A

Average = Peak + Duty Cycle Corrected Factor

FCC Part 15.231 Page 14 of 25

This duty cycle is the worst case for the EUT

Duty Cycle 1

Report No.: RKS170426003-00A

Duty Cycle 2

FCC Part 15.231 Page 15 of 25

Duty Cycle 3

Report No.: RKS170426003-00A

Duty Cycle 4

FCC Part 15.231 Page 16 of 25

Channel 2:

30MHz-5GHz (ASK modulation)

Report No.: RKS170426003-00A

_	R	eceiver		Rx An	tenna	Corrected	Corrected	ected FCC Part 15.231(b)/205/2		b)/205/209
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (cm)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)		Margin (dB)	Remark
390.00	67.28	PK	85	104	Н	-2.88	64.40	99.24	34.84	Fundamental
390.00	60.23	PK	184	130	V	-2.88	57.35	99.24	41.89	Fundamental
780.00	43.61	PK	311	161	Н	4.11	47.72	79.24	31.52	Harmonic
780.00	40.31	PK	360	194	V	4.11	44.42	79.24	34.82	Harmonic
1170.00	48.23	PK	165	129	Н	-11.43	36.80	74.00	37.20	Harmonic
1170.00	47.19	PK	24	225	V	-11.43	35.76	74.00	38.24	Harmonic
1560.00	46.16	PK	338	210	Н	-9.18	36.98	74.00	37.02	Harmonic
1560.00	45.93	PK	123	199	V	-9.18	36.75	74.00	37.25	Harmonic
1950.00	50.24	PK	144	156	Н	-7.33	42.91	79.24	36.33	Harmonic
1950.00	48.37	PK	243	191	V	-7.33	41.04	79.24	38.20	Harmonic
2340.00	45.39	PK	32	236	Н	-6.33	39.06	74.00	34.94	Harmonic
2340.00	44.68	PK	68	159	V	-6.33	38.35	74.00	35.65	Harmonic
3900.00	41.06	PK	149	145	Н	-0.63	40.43	74.00	33.57	Harmonic
3900.00	41.35	PK	265	210	V	-0.63	40.72	74.00	33.28	Harmonic

Field Strength of Average Emission

Frequency	Peak	Polar	Duty Cycle	Corrected	FCC	Part 15.23	l(b)/205/209
(MHz)	Measurement@3m (dBμV/m)	(H/V)	Corrected Factor (dB)	Ampitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Comment
390.00	64.40	Н	-7.34	57.06	79.24	22.18	Fundamental
390.00	57.35	V	-7.34	50.01	79.24	29.23	Fundamental
780.00	47.72	Н	-7.34	40.38	59.24	18.86	Harmonic
780.00	44.42	V	-7.34	37.08	59.24	22.16	Harmonic
1170.00	36.80	Н	-7.34	29.46	54.00	24.54	Harmonic
1170.00	35.76	V	-7.34	28.42	54.00	25.58	Harmonic
1560.00	36.98	Н	-7.34	29.64	54.00	24.36	Harmonic
1560.00	36.75	V	-7.34	29.41	54.00	24.59	Harmonic
1950.00	42.91	Н	-7.34	35.57	59.24	23.67	Harmonic
1950.00	41.04	V	-7.34	33.70	59.24	25.54	Harmonic
2340.00	39.06	Н	-7.34	31.72	54.00	22.28	Harmonic
2340.00	38.35	V	-7.34	31.01	54.00	22.99	Harmonic
3900.00	40.43	Н	-7.34	33.09	54.00	20.91	Harmonic
3900.00	40.72	V	-7.34	33.38	54.00	20.62	Harmonic

FCC Part 15.231 Page 17 of 25

Note 1:

$$\label{eq:corrected} \begin{split} & Corrected \; Amplitude = Corrected \; Factor + Reading \\ & Corrected \; Factor = Antenna \; factor \; (Rx) + cable \; loss - amplifier \; factor \\ & Margin = Limit \; - \; Corr. \; Amplitude \end{split}$$

Note 2:

Calculate Average value based on Duty Cycle correction factor:

T_p=53.91ms

$$\begin{split} T_{on}^{^{F}} = & T_{on1}N_1 + T_{on2}N_2 + \ldots + T_{onn}N_n = & 0.522ms *13 + 1.023ms *16 = 23.15ms \\ \text{Duty Cycle Corrected Factor} = & 20*\log(T_{on}/T_p) = & 20*\log(23.15ms/53.91ms) = -7.34dB \end{split}$$

Report No.: RKS170426003-00A

Average = Peak + Duty Cycle Corrected Factor

FCC Part 15.231 Page 18 of 25

This duty cycle is the worst case for the EUT

Duty Cycle 1

Report No.: RKS170426003-00A

Duty Cycle 2

FCC Part 15.231 Page 19 of 25

Duty Cycle 3

Report No.: RKS170426003-00A

Duty Cycle 4

FCC Part 15.231 Page 20 of 25

FCC §15.231(a) (2) - DEACTIVATION TESTING

Applicable Standard

Per FCC §15.231(a) (2), a transmitter activated automatically shall cease transmission within 5 seconds after activation.

Report No.: RKS170426003-00A

Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer=operating frequency.
- 3. Set the spectrum analyzer as RBW=100k VBW=300k Span=0Hz.
- 4. Repeat above procedures until all frequency measured was complete.

Test Data

Environmental Conditions

Temperature:	24.1
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-04-28&2017-06-19.

Test mode: Transmitting

Channel Frequency (MHz)	Transmission Time (s)	Limit (s)	Result
303.00	0.26	<5	Pass
390.00	0.24	<5	Pass

FCC Part 15.231 Page 21 of 25

Press the key, The EUT will transmit in 303 MHz for 260 ms and then shift to 390 MHz for 240 ms, then stop transmitting.

FCC Part 15.231 Page 22 of 25

ASK Modulation

Channel 1:5s

Report No.: RKS170426003-00A

Channel 2:5s

FCC Part 15.231 Page 23 of 25

FCC §15.231(c) - 20dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: RKS170426003-00A

Test Procedure

With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	24.1 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-05-02.

Test Mode: Transmitting

Please refer to following table and plot.

ASK modulation:

Channel Frequency (MHz)	20dB Bandwidth (kHz)	Limit (kHz)	Result
303.00	62.12	757.5	Pass
390.00	56.11	975.0	Pass

Note: Channel 1 Limit = 0.25% * Center Frequency = 0.25% * 303.00 MHz = 757.5 kHz Channel 2 Limit = 0.25% * Center Frequency = 0.25% * 390.00 MHz = 975.0 kHz

FCC Part 15.231 Page 24 of 25

Channel 1: 20 dB Emission Bandwidth

Report No.: RKS170426003-00A

Channel 2: 20 dB Emission Bandwidth

***** END OF REPORT *****

FCC Part 15.231 Page 25 of 25