

MATEMÁTICAS

Computación Científica 2

Tarea 1

Alexander Mendoza 28 de agosto de 2024 1. Sea $S_n = \{f : [n] \to [n] : f \text{ es biyectiva}\}$. Demostrar que (S_n, \circ) es un grupo.

Para demostrar que (S_n, \circ) es un grupo, debemos demostrar que la operación dentro del grupo es asociativa, tiene elemento neutro y tiene elementos inversos.

- a) **Asociatividad**. La asociatividad se puede concluir de la asociatividad de la composición de funciones.
- b) **Elemento neutro**. Construyamos la función identidad para el conjunto S_n asignando cada elemento de [n] a si mismo. Así

$$I_n:[n]\to[n];k\mapsto k$$

o

$$I_n(k) = k$$

para cada $k \in [n]$. Sabemos que la función identidad es biyectiva, por tanto, $I \in S_n$. Luego, sea $f \in S_n$, así $f(k) \in [n]$, con esto

$$(I \circ f)(k) = I(f(k)) \qquad \qquad = f(k)$$

Además

$$(f \circ I)(k) = f(I(k)) \qquad \qquad = f(k)$$

Con esto demostramos que I es el elemento neutro de (S_n, \circ) .

c) Elemento inverso.

Dado que $f \in S_n$ es biyectiva, existe una función inversa f^{-1} : $[n] \to [n]$ también biyectiva, tal que para todo $k \in [n]$ se cumple que $f(f^{-1}(k)) = k$ y $f^{-1}(f(k)) = k$.

Con esto, para demostrar que es es la inversa,

$$(f \circ f^{-1})(k) = f(f^{-1}(k))$$

= k

Luego,

$$(f^{-1} \circ f)(k) = f^{-1}(f(k))$$

= k

Por lo tanto, f^{-1} es la inversa f en (S_n, \circ) para todo $(f \in S_n)$.

2. Código para verificar si es una permutación.

```
def verificar_permutacion(lista):
    n = len(lista)
    if set(lista) != set(range(1, n + 1)):
        return False

    verificados = [False] * n
    for i in lista:
        if verificados[i - 1]:
            return False
        verificados[i - 1] = True
    return True

print(verificar_permutacion([2, 1, 3]))
```