Redes y Comunicaciones de Datos I Marcelo T. Gentile, Franco Cian, Gabriel Filippa

Resumen de Formulas

Ganancia y Perdida relativa (dB) e = entrada; s = salida

para potencia
$$G(dB) = 10 \times log(Ps/Pe)$$
 (1)

para tensión
$$G(dB) = 20 \times log(Vs/Ve)$$
 (2)

para potencia
$$Pe o L (dB) = -G (dB) = 10 \times log (Pe / Ps)$$
 (3)

Ganancia absoluta → Nivel de Señal en un punto

para potencia
$$dBm = 10 \times log Pi$$
; $\forall Pi en mW$; $dBW = 10 \times log Pi$; $\forall Pi en W$ (5,6)

para tensión dBmV =
$$20 \times \log Vi$$
; $\forall Vi en mV$; dB μ V = $20 \times \log Vi$; $\forall Vi en \mu$ V (7,8)

Ruido Térmico

Densidad de Potencia de ruido térmico
$$N_0 (W/Hz) = \kappa \times T$$
; $\forall \kappa = 1,38 \times 10^{-23} \text{ J/K}$ (9)

(Ten grados Kelvin y K = C + 273)
$$N_0$$
 (dBm) = 10 x log (k x T x 10³) (10)

Potencia de ruido térmico
$$P_N(W) = \kappa \times T \times B = N_0 \times B$$
 (11)

$$P_N (dBm) = 10 \times log (\kappa \times T \times B \times 10^3) = 10 \times log (N_0 \times B \times 10^3)$$
 (12)

Relación señal-a-ruido (adimensional)
$$S/N = (P_S/P_N) = S/N = (V_S/V_N)^2$$
 (Solo mW, W, mV, etc) (13, 14)

para potencia
$$S/N (dB) = 10 \times log (P_S/P_N)$$
 _S = señal; _N = ruido (15)

para tensión
$$S/N (dB) = 20 \times log (V_S / V_N)$$
 (16)

Factor de ruido
$$F = (S/N)e / (S/N)s$$
 Si $F=1 \Rightarrow IDEAL$; Sino existe Ni (Ruido Interno). (17)

Sino
$$F = \frac{\frac{P_{Se}}{P_{Ne}}}{\frac{P_{Ss}}{P_{Ne} + P_{Ne}}}$$
 Se = señal entrada; Ne = ruido entrada; Ss = señal salida; Ns = ruido salida; (18)

Índice de ruido
$$N (dB) = 10 \times log F$$
 Si F=1; N=0 => IDEAL (19)