Concursul Județean de Informatică "Future for Future" Ediția a II-a, 2025 Clasele VII-VIII Descrierea soluțiilor

1. Problema Ursus

Propusă de: Ștefan Patrichi, CNMB

Având în vedere faptul că g, numărul de generații, este relativ mic față de q, putem precalcula numărul de urși din fiecare generație într-un vector, fie acesta gen[], astfel încât gen[i] reprezintă numărul de urși din generația i.

Pentru cerința 1, este suficient să afișăm elementul corespunzător din vectorul gen[], complexitate timp $\mathcal{O}(g+q)$.

Pentru cerința 2, ținem cont de faptul că elementele vectorului gen[] sunt sortate crescător și căutăm binar cea mai mare valoare din vector mai mică sau egală cu n, complexitate timp $\mathcal{O}(g + q \log g)$.

Exemplu de implementare: https://kilonova.ro/pastes/AOUDzvy2QHO8

2. Problema Tenu

Propusă de: George-Mihai Tega, CNMB

Restul pe care curierul trebuie să i-l dea lui David este $r = 5^k - (ab \% 5^k)$, cu mențiunea că atunci când $5^k \mid ab$, restul este 0.

Pentru primul subtask calculăm direct r, pentru cel de-al doilea ne folosim de distributivitatea % față de · pentru produsul ab, iar pentru cel de-al treilea putem stoca cifrele numerelor într-un vector, aplicând apoi algoritmul clasic de înmulțire "de mână".

Pentru 100 de puncte este necesară observația că este suficient să luăm în considerare doar ultimele k cifre ale lui a. Într-adevăr, $a=10^ka_1+a_2$, unde a_1 și a_2 sunt numerele formate din primele n-k, respectiv ultimele k cifre ale lui a. Văzând această egalitate modulo 5^k , cum $5^k \mid 10^k$, constatăm că $a \equiv a_2 \pmod{5^k}$.

O soluție alternativă, dar mai greu de implementat, constă în folosirea unei metode similare cu cea de la subtaskul 2 pentru a calcula $a \% 5^k$ si $b \% 5^k$.

Exemplu de implementare: https://kilonova.ro/pastes/1njbB34570JM