See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41577031

Pd(II)-Catalyzed ortho-Trifluoromethylation of Arenes Using TFA as a Promoter

ARTIC	LE	in	JOL	JRNAL	OF.	THE	AME	RICA	AN (CHE	MIC	CAL	SO	CI	ET'	Y •	FEE	3Rl	JAI	RY	20.	10
-------	----	----	-----	-------	-----	-----	-----	------	------	-----	-----	-----	----	----	-----	-----	-----	-----	-----	----	-----	----

Impact Factor: 12.11 · DOI: 10.1021/ja909522s · Source: PubMed

CITATIONS READS

284 154

3 AUTHORS, INCLUDING:

Xisheng Wang

University of Science and Technology...

SEE PROFILE

Jin-Quan Yu

The Scripps Research Institute

222 PUBLICATIONS 15,608 CITATIONS

SEE PROFILE

Literature Report

Mu-Wang Chen Checker: Qing-An Chen

Pd(II)-Catalyzed *ortho*-Trifluoromethylation of Arenes Using TFA as a Promoter

Yu, J.-Q. * et al J. Am. Chem. Soc. **2010**, 132, 3648-3649.

Pd(II)-Catalyzed C-H Trifluoromethylation

Table 1. Pd(II)-Catalyzed C-H Trifluoromethylation^a

Entry	Catalyst	Additive (eq.)	Oxidant (eq.)	Yield (%) ^b
1	Pd(OAc) ₂			0
2	Pd(OAc) ₂	TFA (10)		50
3	Pd(OTFA) ₂			0
4	Pd(OTFA) ₂	TFA (10)		52
5	Pd(OAc) ₂	AcOH (10)		5
6	Pd(OAc) ₂	TsOH (10)		0
7	Pd(OAc) ₂	TfOH(10)		0

^a Unless otherwise noted, the reaction conditions were as follows: **2a** (0.2 mmol), Pd(II) catalyst (0.02 mmol, 10 mol%), **1a** (0.3 mmol, 1.5 eq.), DCE (1 mL), 110 °C, 48 h. ^b Isolated yield.

Entry	Catalyst	Additive (eq.)	Oxidant (eq.)	Yield (%) ^b		
8	Pd(OAc) ₂	TFA (10)	Cu(OAc) ₂ (1)	70		
9	Pd(OAc) ₂	TFA (10)	$Cu(OTFA)_2(1)$	71		
10	Pd(OAc) ₂	TFA (10)	$Cu(OTf)_2(1)$	47		
11	Pd(OAc) ₂	TFA (10)	AgOAc (2)	43		
12	Pd(OAc) ₂	TFA (10)	$Ag_2CO_3(1)$	45		
13	Pd(OAc) ₂	TFA (10)	Ag ₂ O (1)	44		
14	Pd(OAc) ₂	TFA (10)	BQ (1)	30		
15 ^c		TFA (10)	Cu(OAc) ₂ (1)	0		
16 ^d	Pd(OAc) ₂	TFA (10)	Cu(OAc) ₂ (1)	86		
17 ^e	Pd(OAc) ₂	TFA (10)	Cu(OAc) ₂ (1)	11		

^a Unless otherwise noted, the reaction conditions were as follows: **2a** (0.2 mmol), Pd(II) catalyst (0.02 mmol, 10 mol%), **1a** (0.3 mmol, 1.5 eq.), DCE (1 mL), 110 °C, 48 h. ^b Isolated yield. ^c No Pd(OAc)₂ was added. ^d **1b** was used instead of **1a**. ^e **1c** was used instead of **1a**.

Table 2. C-H Trifluoromethylation of Pyridine Derivatives^{a,b}

^a Unless otherwise noted, the reaction conditions were as follows: substrate (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol%), Cu(OAc)₂ (0.2 mmol, 1.0 eq.), **1b** (0.3 mmol, 1.5 eq.),TFA (2 mmol, 10 equiv), DCE (1 mL), 110 °C, 48 h. ^b Isolated yield. ^c Pd(OAc)₂ (15 mol%) was used .

^a Unless otherwise noted, the reaction conditions were as follows: substrate (0.2 mmol), Pd(OAc)₂ (0.02 mmol, 10mol%), Cu(OAc)₂ (0.2 mmol, 1.0 eq.), **1b** (0.3 mmol, 1.5 equiv),TFA (2 mmol, 10 eq.), DCE (1 mL), 110 °C, 48 h. ^b Isolated yield. ^c Pd(OAc)₂ (15 mol%) was used. ^d Pd(OAc)₂ (20 mol%) was used.

^a Unless otherwise noted, the reaction conditions were as follows: substrate (0.2 mmol), $Pd(OAc)_2$ (0.04 mmol, 20 mol%), $Cu(OAc)_2$ (0.2 mmol, 1.0 eq.), **1b** (0.3 mmol, 1.5 eq.), TFA (2 mmol, 10 eq.), DCE (1 mL), 110 °C, 48 h. ^b Isolated yield. ^c $Pd(OAc)_2$ (10 mol%) was used.

The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides

Buchwald, S. L. et al Science 2010, 328, 1679-1681.

Buchwald, S. L. et al Science 2010, 328, 1679-1681.

Aryl-CF₃ Bond-Forming Reductive Elimination from Palladium(IV)

Sanford, M. S. et al J. Am. Chem. Soc. 2010, 132, 2878-2879.

Facile Ar-CF₃ Bond Formation at Pd. Strikingly Different Outcomes of Reductive Elimination from [(Ph₃P)₂Pd(CF₃)Ph] and [(Xantphos)Pd(CF₃)Ph]

$$[L_{2}Pd(Ph)I] \xrightarrow{20 \text{ °C, ultrasound}} [L_{2}Pd(Ph)I] \xrightarrow{2. \text{ CF}_{3}\text{SiMe}_{3}} [L_{2}Pd(Ph)CF_{3}]$$

$$= 1 \text{ (L = PPh}_{3}), 82\%$$

$$= 2 \text{ (L}_{2} = \text{Xantphos}), 88\%$$

$$[L_{2}Pd(Ph)CF_{3}] + \text{Xantphos} \xrightarrow{\text{benzene}} Ph-CF_{3}$$

$$= 80 \text{ °C, 3 h}$$

$$= 100\%$$

Grushin, V. V. et al J. Am. Chem. Soc. 2006, 128, 12644-12645.

Active trifluoromethylating Agents from Well-Defined Copper(I)-CF₃ Complexes

$$R - X \xrightarrow{25 \text{ °C, DMF}} R - CF_3$$
(5 eq.)

Vicic, D. A. et al J. Am. Chem.Soc. **2008**, 130, 8600-8601; Organometallic **2008**, 27, 6233-6235.

Aromatic Trifluoromethylation Catalytic in Copper

Amii, H. et al Chem. Commum. 2009, 1909-1911.

Copper-Mediated Aerobic Trifluoromethylation of Terminal Alkynes with Me₃SiCF₃

Qing, F.-L. et al J. Am. Chem. Soc. 2010, 132, 7262-7263.

N Cu^I CF₃ path II path I N N

Zinc-Mediated Formation of Trifluoromethyl Ethers from Alcohols and Hypervalent Iodine Trifluoromethylation Reagent

Togni, A. et al Angew. Chem. Int. Ed. 2009, 48, 4332-4336.1

Enantioselective a-Trifluoromethylation of Aldehydes via Photoredox organocatalysis

MacMillan, D. W. C. *et al J. Am. Chem. Soc.* **2009**, *131*, 10877-10875.

Benzoyl peroxide (BPO)-promoted oxidative trifluoromethylation of tertiary with trimethyl(trifluoromethyl)silane

Qing, F.-L. et al Chem. Commun. 2010, ASAP

Summary:

Fluorinated compounds possess unique physical properties that make them indispensible for application as pharmaceuticals, agrochemicals, and organic materials. In medicinal chemistry, for example, the incorporation of CF_3 groups into drug candidates often improves their binding selectivity, lipophilicity, and metabolic stability. Notably, many biologically active aromatics, including the commercially successful antidepressant Prozac and the herbicide Fusilade, contain CF_3 groups as the essential motif. As a consequence, the development

of new methods for the introduction of trifluoromethyl groups onto aromatic

rings has received intensive attention. Recent findings concerning the stoichiometric and catalytic coupling of Arl with in situ-generated $CuCF_3$ provides an alternative to the century-old Swarts reaction. Moreover, a single example of Pd(0)-catalyzed coupling of Arl with CF_3I using Zn power and a Pd(0) catalyst under ultrasonic irradiation has also been reported. Generally speaking, the challenge of developing cross-coupling reactions to forge carbon- CF_3 bonds is largely rooted in the inert nature of the metal- CF_3 species. Herein we report a Pd(II)-catalyzed arene trifluoromethylation reaction via C-H activation.

In summary, we have developed a new Pd(II)-catalyzed trifluoromethylation reaction of arenes through C-H functionalization. The use of TFA was found to be crucial for the success of this Ar-CF₃ bond-forming protocol, and Cu(OAc)₂ was found to be effective for enhancing the catalytic turnover. Subsequent studies to apply this catalytic transformation to other broadly useful classes of substrates are currently underway in our laboratory.