Insights from Discrete Mathematics from Integer Partitions to Rooted Trees

Ethan Li

May 11, 2024

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Agenda

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change

Rooted Trees

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Ramanuian's

Rooted Trees

Definition

A partition of a positive integer n is a way of expressing n as a sum of positive integers. Different orders of the same partitions do not count as separate partitions.

Example

Let P(n) output the number of partitions for any number n.

$$P(0) = 1 \tag{1}$$

$$P(1) = 1 \tag{2}$$

$$P(4) = 5 \tag{3}$$

P(4) as 4 can be written as 1+1+1+1, 1+1+2, 1+3, 2+2 and 4

5=2+2+1 can be illustrated as follows:

$$2 \ 2 \ 1$$

If a partition's reverse is just itself, it's called

self-conjugate.10 = (4, 3, 2, 1) can be shown as:

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Figure: Young diagram for all partitions of 4

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Rooted Trees

$$\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}, \quad \text{where } |x| < 1$$
 (4)

Example

To find the number of partitions of 7, we examine the coefficient of x^7 :

$$(1+x^{1\cdot(1)}+x^{1\cdot(2)}+x^{1\cdot(3)}+\ldots)(1+x^{2\cdot(1)}+x^{2\cdot(2)}+x^{2\cdot(3)}+\ldots)\ldots$$
(5)

Expanding above to get

$$1+x+2x^2+3x^3+5x^4+7x^5+11x^6+15x^7+22x^8+\dots$$
 (6)

$$P(7) = 15 \tag{7}$$

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Rooted Trees

Definition

Godfrey Hardy and Srinivasa Ramanujan proved an asymptotic formula for partitioning a number n using the circle method and modular functions

$$p(n) pprox rac{1}{4n\sqrt{3}}e^{\pi\sqrt{rac{2n}{3}}} \quad \text{as} \quad n o \infty$$
 (8)

Click here for animations demo using Python Manim

Figure: Click here for animation demo using Python Manim

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Interpret the coins change problem in mathematical form as follows:

Let P_n denote the number of ways of paying n cents with cents, nickels, dimes, quarters, and half dollars. Given $P_4=1$, $P_6=2$, and $P_{10}=4$, what is P_{100} ?

Proof.

Please visit the section 4 of my research paper available on the GitHub (link) for complete derivation for the generating function based on the coins change problem.

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Statement of Result

If P_n is the number of ways to change n dollars with cents, nickels, dimes, quareters, and half dollars, then

$$1 + P_1 x + P_2 x^2 + \dots = \frac{1}{1 - x} \cdot \frac{1}{1 - x^5} \cdot \frac{1}{1 - x^{10}} \cdot \frac{1}{1 - x^{25}} \cdot \frac{1}{1 - x^{50}}$$

Question

How many rooted trees with n knots?

Figure: A rooted tree

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem

Let there be T_n such trees, we look for a generating function with T_n as coefficient.

$$T_1 x + T_2 x^2 + T_3 x^3 + \cdots {9}$$

$$=x(1-x)^{-T_1}(1-x^2)^{-T_2}(1-x^3)^{-T_3}\cdots$$
 (10)

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Ramanujan's Asymptotic Expression

The Coins Change Problem

Rooted Trees

A Visual Proof

Figure: Convert trees into algebra

$$T_1x + T_2x^2 + T_3x^3 + \cdots$$
= $\underbrace{x}_{\text{this } x \text{ accounts for the root}} (1-x)^{-T_1} (1-x^2)^{-T_2} (1-x^3)^{-T_3} \cdots$

Proof.

Please visit the section 5 of my research paper available on the GitHub (link) for details.

4 D > 4 A > 4 B > 4 B > 4 B > 4 A A A

Insights from Discrete Mathematics

Ethan Li

Introduction

Visualization of the Partitions

Euler's Generating Function

Hardy-Ramanujan's Asymptotic Expression

The Coins Change Problem