Lecture 16 Part A: Moving Frames

Prof. Weiqing Gu Math 143

Moving Frame Continued

We have seen several kind of moving frames:

- UAV moving frames
- Moving frames on surfaces:
- Key: the derivatives of moving from can be written as a linear combination of this moving frame again. The coefficients are Christoffel symbols.
- Today: Moving frame on a 3D curve:
- Frenet Frame

Recall: Curvature of a 3D curve

Curvature

Geometric Meaning

Let $\alpha:I=(a,b)\to\mathbb{R}^3$ be a curve parametrized by arc length s. Since the tangent vector $\alpha'(s)$ has unit length, the norm $\|\alpha''(s)\|$ of the second derivative measures the rate of change of the angle which neighboring tangents make with the tangent at s. $\|\alpha''(s)\|$ gives, therefore, a measure of how rapidly the curve pulls away from the tangent line at s, in a neighborhood of s.

Definition

Let $\alpha: I \to \mathbb{R}^3$ be a curve parametrized by arc length $s \in I$. The number $\|\alpha''(s)\| = k(s)$ is called the *curvature* of α at s.

Today: We learn torsion of a 3D curve

Torsion

Geometric Meaning

Since b(s) is a unit vector, the length ||b'(s)|| measures the rate of change of the neighboring osculating planes with the osculating plane at s; that is b'(s) measures how rapidly the curve pulls away from the osculating plane at s, in a neighborhood of s.

Frenet Frame

Working out details with the students on the board.

Frenet Formula

Derive Frenet Formulas with students on the board.

$$\begin{cases} t' = kn, \\ n' = -kt - \tau b, \\ b' = \tau n \end{cases}$$

Fundamental Theorem of the Local Theory of Curves

Theorem

Given differentiable functions k(s) > 0 and $\tau(s), s \in I$, there exists a regular parametrized curve $\alpha: I \to \mathbb{R}^3$ such that s is the arc length, k(s) is the curvature, and $\tau(s)$ is the torsion of α Moreover, any other curve $\overline{\alpha}$ satisfying the same conditions differs from α by a rigid motion; that is, there exists an orthogonal map ρ of \mathbb{R}^3 , with positive determinant, and a vector c such that $\overline{\alpha} = \rho \circ \alpha + c$.