Chapitre 14: Arithmétique et dénombrement

Axiomes de Péano:

- \mathbb{N} est un ensemble non vide, il existe $0 \in \mathbb{N}$, et il existe une application $f : \mathbb{N} \to \mathbb{N}$ tel que
- $f(\mathbb{N}) \subset$
- N n'est pas majoré;
- toute partie non vide de N admet un plut petit élément;
- toute partie non vide et majorée de N admet un plus grand élément .

1 Rudiments d'arithmétique dans N

1.1 Divisibilité dans ℕ

Définition

Soit $(a, b) \in \mathbb{N}^2$. On dit que a divise b si et seulement si il existe $c \in \mathbb{N}$ tel que b = ac. On note a|b. On dit aussi dans ce cas que a est un diviseur de b ou que b est un multiple de a.

Notation : On notera $\mathcal{D}(b)$ l'ensemble des diviseurs de b dans \mathbb{N} .

Remarque:

- $\mathcal{D}(0) = \mathbb{N}$
- $\forall b \in \mathbb{N}, (0|b \iff b=0)$

Proposition

Soit $(a, b, c, d) \in \mathbb{N}^4$, soit $n \in \mathbb{N}^*$,

- 1. Si a|b et b|c, alors a|c
- 2. Si a|b et a|c, alors: $\forall (p,q) \in \mathbb{N}^2$, a|(pb+qc)
- 3. Si a|b et b|a, alors a = b (la réciproque est vraie)
- 4. Si $a \neq 0$ et si $b \mid a$, alors $b \leq a$
- 5. Si a|b et c|d, alors : ac|bd
- 6. $an|bn \iff a|b$.

Démonstration.

- 1. Supposons que a|b et b|c. Alors, il existe $k_1, k_2 \in \mathbb{N}$ tels que $b=k_1a$ et $c=k_2b$. Ainsi, $c=(k_2k_1)a$ avec $k_1k_2 \in \mathbb{N}$. Ainsi, a divise c.
- 2. Supposons que a|b et a|c. Alors il existe $k_1, k_2 \in \mathbb{N}$ tels que $b=k_1a$ et $c=k_2a$. Soient $p,q \in \mathbb{R}$, par somme $pb+qc=(pk_1+qk_2)a$ avec $pk_1+qk_2 \in \mathbb{N}$. Donc a|(pb+qc).
- 3. Supposons que a|b et b|a. Alors, il existe $(p,q) \in \mathbb{N}^2$ tel que a=bp et b=aq. On en déduit donc que a=bp=apq. D'où a(1-pq)=0. Ainsi, a=0 ou 1-pq=0.
 - Si a = 0 alors b = 0 car $a \mid b$ et on a bien le résultat annoncé.
 - 1 = pq alors p = q = 1 car (car p et q sont des entiers naturels) d'où b = a.
- 4. Supposons que $a \neq 0$ et que $b \mid a$, alors il existe $n \in \mathbb{N}$ tel que a = bn. Puisque $a \neq 0$, on a n > 0 donc $n \geq 1$. Ainsi, $bn \geq b$, donc $a \geq b$.
- 5. Supposons que a|b et c|d. Alors il existe $k_1, k_2 \in \mathbb{N}$ tels que $b=k_1a$ et $d=k_2c$. D'où par produit : $bd=(k_1a)(k_2c)=(k_1k_2)ac$ avec $k_1k_2\in \mathbb{N}$ et donc ac|bd.
- 6. $an|bn \iff \exists k \in \mathbb{N}, \ bn = kan$ $\iff \exists k \in \mathbb{N}, \ b = ka \quad (\operatorname{car} n \neq 0)$ $\iff a|b$

Exemple: Montrer que pour tout entier naturel impair n, $n^2 - 1$ est multiple de 8.

Soit $n \in \mathbb{N}$ impair. Il existe $k \in \mathbb{N}$ tel que n = 2k + 1. D'où $n^2 - 1 = 4k(k + 1)$. Or, 2|k(k + 1) car les entiers k et k + 1 sont deux entiers consécutifs donc l'un d'eux est pair. Ainsi, 2|4k(k + 1). Ainsi, $8|n^2 - 1$.

Théorème de division euclidienne dans $\mathbb N$

Soient $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$. Alors il existe un unique couple $(q, r) \in \mathbb{N}^2$ tel que

$$n = pq + r$$
 et $0 \le r < p$.

On dit que q est le **quotient** et r le **reste** dans la **division euclidienne** de n par p.

Démonstration. Raisonnons par analyse synthèse :

Analyse:

Supposons qu'il existe $(q,r) \in \mathbb{N}^2$ tel que n = pq + r et $0 \le r < p$. On a alors : $\frac{n}{p} = q + \frac{r}{p}$.

On a alors:
$$\frac{n}{p} = q + \frac{r}{p}$$
.

Or,
$$0 \le r .$$

Ainsi,
$$q \le \frac{n}{p} < q + 1$$
 donc $q = \left\lfloor \frac{n}{p} \right\rfloor$.

On a alors :
$$r = a - p \left\lfloor \frac{n}{p} \right\rfloor$$

Synthèse:

Posons
$$q = \left| \frac{n}{p} \right|$$
 et $r = n - pq$

On a
$$q \in \mathbb{N}$$
 et $r \in \mathbb{Z}$

De plus,
$$\left\lfloor \frac{n}{p} \right\rfloor \le \frac{n}{p} < \left\lfloor \frac{n}{p} \right\rfloor + 1$$

Ainsi:
$$q \le \frac{n}{n} < q + 1$$

D'où :
$$pq \leq n < pq + p$$
.

Donc
$$0 \le r < p$$
.

Ainsi, q et r conviennent.

Finalement, on a prouvé qu'il existe un unique $(q, r) \in \mathbb{N}^2$ tel que n = pq + r et $0 \le r < n$.

Remarque: Soient $(a, b) \in \mathbb{N} \times \mathbb{N}^*$. b divise a si et seulement si le reste de la division euclidienne de a par b est nul.

 \Rightarrow Si b divise a, alors il existe $q \in \mathbb{N}$ tel que a = bq. Par unicité dans la division euclidienne, on en déduit que le reste de la division euclidienne de *a* par *b* est égal à 0.

 \leftarrow Supposons que le reste de la division euclidienne de a par b soit nul. Alors il existe q tel que a = bq + 0 = bq, et donc b divise a.

1.2 PGCD,PPCM

1.2.1 PGCD

Définition

Soient $a, b \in \mathbb{N}^*$. Il existe un unique $d \in \mathbb{N}^*$ tel que $\begin{cases} d \text{ divise } a \text{ et } b \\ \forall n \in \mathbb{N}, \left(n | a \text{ et } n | b \right) \implies n | d \end{cases}$. d est appelé Plus Grand Commun Diviseur de a et b et est noté pgcd (a,b) ou $a \wedge b$.

Remarque: pgcd (a, b) est le plus grand entier naturel qui divise de a et b pour la relation \leq .

- On sait déjà que pgcd (a, b) est un diviseur de a et b.
- De plus, soit d un diviseur de a et b. Alors d|a et d|b. On a alors d|pgcd(a, b). Or, $pgcd(a, b) \neq 0$. Donc $d \leq pgcd(a, b)$.

Exemple: $\mathcal{D}(6) = \{1, 2, 3, 6\} \text{ et } \mathcal{D}(8) = \{1, 2, 4, 8\} \text{ donc pgcd } (6, 8) = 2.$

Remarque:

- $a \wedge b = b \wedge a$
- On a : $\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a \wedge b)$, c'est à dire :

$$\forall n \in \mathbb{N}, (n|a \text{ et } n|b) \iff n|\operatorname{pgcd}(a,b)$$

• Soient $a, b \in \mathbb{N}^*$.

On dit que a et b sont premiers entre eux si et seulement si leur seul diviseur commun est 1. Ainsi, a et b sont premiers entre eux si et seulement si pgcd(a, b) = 1.

Lemme

Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$. Si r désigne le reste de la division de a par b, alors :

$$\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(b) \cap \mathcal{D}(r)$$

 \Box

Démonstration. On effectue la division euclidienne de a par b: a = bq + r avec $0 \le r < b$. Alors:

- \subseteq si d est un diviseur de a et b, alors d|a-bq=r, donc d|b et d|r.
- \supseteq si d est un diviseur de b et r, alors d|bq+r=a, donc d|a et d|b.

Algorithme d'Euclide

Soit $(a, b) \in \mathbb{N} \times \mathbb{N}^*$.

- On pose $r_0 = a$ et $r_1 = b$.
- Soit $k \ge 1$, on suppose r_k et r_{k-1} construits. Si $r_k > 0$, on effectue alors la division euclidienne de r_{k-1} par r_k : $r_{k-1} = r_k \times q_k + r_{k+1} \text{ avec } 0 \le r_{k+1} < r_k.$

Sous l'hypothèse $r_k > 0$, on a donc défini r_{k+1} , avec $0 \le r_k < r_{k+1}$.

• La suite $(r_k)_{k\geq 1}$ est une suite strictement décroissante d'entiers naturels et est donc finie.

Ainsi, il existe donc $N \in \mathbb{N}$ tel que $r_N > 0$ et $r_{N+1} = 0$.

Avec ces notations, on a : $a \land b = r_N$.

Proposition

Soient $(a, b) \in \mathbb{N} \times \mathbb{N}^*$.

Le PGCD de a et b est le dernier reste non nul quand on effectue les divisions euclidiennes successives.

Démonstration. En utilisant les notations précédentes, on a :

```
\mathscr{D}(a)\cap\mathscr{D}(b)=\mathscr{D}(b)\cap\mathscr{D}(r_2)=\mathscr{D}(r_N)\cap\mathscr{D}(r_{N+1})=\mathscr{D}(r_N)\cap\mathscr{D}(0)=\mathscr{D}(r_N)\cap\mathbb{N}=\mathscr{D}(r_N).
```

Ainsi, $r_N \in \mathcal{D}(r_N) = \mathcal{D}(a) \cap \mathcal{D}(b)$ donc $r_N | a$ et $r_N | b$.

De plus, soit $n \in \mathbb{N}$ tel que $n \mid a$ et $n \mid b$ alors $n \in \mathcal{D}(a)$ et $n \in \mathcal{D}(b)$ donc $n \in \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(r_N)$. Donc $n \mid r_N$. Ainsi, $r_N = a \wedge b$.

Algorithme

Exemple: Calculons le pgcd de 164 et 36.

```
164 = 4 \times 36 + 2036 = 20 + 1620 = 16 + 416 = 4 \times 4 + 0.
```

Ainsi, pgcd(16, 36) = 4.

Proposition: Homogénéité du PGCD

 $\forall (a, b, c) \in \mathbb{N}^*, \operatorname{pgcd}(ca, cb) = c \times \operatorname{pgcd}(a, b)$

Démonstration. Soient $a, b, c \in \mathbb{N}^*$.

- c|ac et c|bc donc c|pgcd(ac,bc). Ainsi, il existe $k \in \mathbb{N}$ tel que pgcd(ac,bc) = kc.
- Montrons que k = pgcd(a, b).
 - kc|pgcd(ac,bc) donc kc|ac et kc|bc. D'où k|a et k|b car $c \neq 0$.
 - Soit $d \in \mathbb{N}$ tel que d|a et d|b. Alors, dc|ac et dc|bc donc dc|pgcd(ac,bc). Donc dc|kc d'où d|k car $c \neq 0$.

Ainsi, $k = \operatorname{pgcd}(a, b)$.

1.2.2 PPCM

Définition

Soient $a,b\in\mathbb{N}^*$. Il existe un unique entier $m\in\mathbb{N}^*$ tel que : $\begin{cases} a \text{ et } b \text{ divise } m \text{ (i.e } m \text{ est un multiple de } a \text{ et } b) \\ \forall n\in\mathbb{N}, \left(a|n \text{ et } b|n\right) \Longrightarrow m|n \end{cases}$ m est appelé Plus Petit Commun Multiple de a et b et noté ppcm(a,b) ou $a\vee b$.

Remarque: ppcm (a, b) est le plus petit entier naturel qui est un multiple de a et b pour la relation \leq .

- On sait déjà que ppcm (a, b) est un multiple de a et b.
- De plus, soit m un multiple non nul de a et b. Alors a|m et b|m. On a alors $\operatorname{ppcm}(a,b)|m$. Or, $m \neq 0$. Donc $\operatorname{ppcm}(a,b) \leq m$.

Exemple : Les multiples de 6 dans \mathbb{N} sont : 0,6,12,24,30 ...

Les multiples de 8 dans N sont : 0,8,16,24,32 ...

Ainsi, ppcm (6, 8) = 24.

Remarque:

- $a \lor b = b \lor a$.
- Ainsi: $\forall n \in \mathbb{N}$, $(a|n \text{ et } b|n) \iff \operatorname{ppcm}(a,b)|n$.

Proposition

Pour tout $(a, b) \in (\mathbb{N}^*)^2$, $(a \land b) \times (a \lor b) = a \times b$.

Remarque : On sait calculer en pratique le PGCD de deux nombres. Grâce à cette formule, on obtient également un moyen de calculer leur PPCM.

Proposition : Homogénéité du PPCM

 $\forall (a, b, c) \in \mathbb{N}^*$, ppcm $(ac, bc) = c \times \text{ppcm}(a, b)$

Démonstration. Soient $a, b, c \in \mathbb{N}^*$.

On a : $ppcm(ac, bc) \times pgcd(ac, bc) = acbc$.

Or, par homogénéité du pgcd, on a pgcd $(ac, bc) = c \times \operatorname{pgcd}(a, b)$.

Donc ppcm $(ac, bc) \times pgcd(a, b) \times c = abc^2$.

Comme $c \neq 0$, on en déduit que ppcm (ac, bc)pgcd (a, b) = abc.

Or, ab = ppcm(a, b)pgcd(a, b).

Donc ppcm (ac, bc)pgcd (a, b) = pgcd (a, b)ppcm (a, b)c.

Or, $\operatorname{pgcd}(a, b) \neq 0$ donc $\operatorname{ppcm}(ac, bc) = c \times \operatorname{ppcm}(a, b)$.

1.3 Nombres premiers

Définition

Un élément $p \in \mathbb{N}$ est dit premier si $p \ge 2$ et si ses seuls diviseurs dans \mathbb{N} sont 1 et lui même.

№ 1 n'est pas premier.

Crible D'Eratosthène

L'objectif est de faire la liste des nombres premiers inférieurs à un entier n donné. Le principe est le suivant :

- On écrit tous les nombres de 2 à n
- On conserve le nombre premier 2 et on raye tous les multiples de 2 (qui ne sont donc pas premiers)
- Pour chaque nombre suivant *p* non rayé, on conserve *p* et on raye tous les multiples de *p*.
- Lorsque l'algorithme s'arrête (on est arrivé à *n*), tous les nombres non rayés sont les nombres premiers inférieurs ou égaux à *n*.

1	2	3	Ą	5	Ø	7	8	9	Ж
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	16	27	28	29	,30
31	32	33	34	35	36	37	38	39	<i>4</i> 0
41	42	43	44	45	46	47	48	49	,50

Proposition

Tout nombre entier $n \ge 2$ possède au moins un diviseur premier.

Démonstration. On le montre par récurrence sur $n \ge 2$.

- Pour n = 2, la propriété est vraie puisque 2 est premier.
- Soit $n \ge 2$, supposons que tout nombre premier $k \in [2, n]$ admet au moins un diviseur premier.
 - Si n + 1 est premier, le résultat est établi.
 - Sinon il existe $a, b \in \mathbb{N}$ tels que n+1=ab avec $2 \le a, b < n+1$. On applique l'hypothèse de récurrence à a ou b: il existe donc p premier divisant a ou b, et donc n+1.

Ceci prouve la propriété au rang n + 1.

• Ainsi, tout entier naturel $n \ge 2$ admet au moins un diviseur premier.

Proposition (Théorème d'Euclide)

Démonstration. Par l'absurde, supposons que l'ensemble des nombres premiers est fini : $\mathbb{P} = \{p_1, p_2, \dots, p_k\}$.

Considérons alors l'entier $N = \left(\prod_{i=1}^{k} p_i\right) + 1$. Par la proposition précédente, N est divisible par un nombre premier.

Ainsi, il existe $l \in [1, k]$ tel que p_l divise N. De plus, p_l divise le produit $\prod_{i=1}^k p_i$, donc p_l divise $N - \prod_{i=1}^k p_i$. Ainsi, $p_l | 1$. Ce qui est impossible puisque $p_l \ge 2$.

Théorème: Décomposition en facteurs premiers

Tout entier supérieur ou égal à 2 admet une décomposition en produit de nombres premiers, unique à l'ordre des facteurs près. Autrement dit , si $n \in \mathbb{N}$ et $n \ge 2$, alors il existe $r \in \mathbb{N}^*$, des nombres premiers deux à deux distincts p_1, \ldots, p_r , et des entiers naturels non nuls $\alpha_1, \ldots, \alpha_r$ tels que $n = \prod_{i=1}^r p_i^{\alpha_i}$.

Exemple:

Ainsi: $2016 = 2^5 \times 3^2 \times 7$.

De plus, 67 est premier car 67 n'admet aucun diviseur premier inférieur ou égal à sa racine carrée ($\sqrt{67} \approx 8$). On a donc $4020 = 2^2 \times 3 \times 5 \times 67$.

Proposition

Soient $a,b\in\mathbb{N}\setminus\{0,1\}$ tels que $a=p_1^{\alpha_1}\times p_2^{\alpha_2}\times...\times p_r^{\alpha_r}$ et $b=p_1^{\beta_1}\times p_2^{\beta_2}\times...\times p_r^{\beta_r}$ où $p_1,\ p_2,...,\ p_r$ est sont des nombres premiers distincts deux à deux, et $\alpha_1,...,\alpha_r\in\mathbb{N},\ \beta_1,...,\beta_r\in\mathbb{N}$ (éventuellement nuls pour tenir compte d'un nombre premier qui pourrait ne diviser qu'un seul des deux entiers a ou b). Soit $d\in\mathbb{N}$. Alors:

$$d|a \text{ si et seulement si } d = \prod_{i=1}^r p_i^{\gamma_i} \text{ où, pour tout } i \in \llbracket 1,r \rrbracket, \, \gamma_i \in \llbracket 0,\alpha_i \rrbracket.$$

$$\operatorname{pgcd}(a,b) = p_1^{\min(\alpha_1,\beta_1)} \times p_2^{\min(\alpha_2,\beta_2)} \times \dots \times p_r^{\min(\alpha_r,\beta_r)}$$

$$\operatorname{ppcm}\left(a,b\right) = p_1^{\max(\alpha_1,\beta_1)} \times p_2^{\max(\alpha_2,\beta_2)} \times ... \times p_k^{\max(\alpha_r,\beta_r)}$$

Démonstration. • Supposons que $d = \prod_{i=1}^r p_i^{\gamma_i}$ avec $\gamma_i \le \alpha_i$ pour tout $i \in [1, r]$. En posant $c = \prod_{i=1}^r p_i^{\alpha_i - \gamma_i}$, on obtient dc = a, donc d divise a.

Réciproquement, si d divise a alors, il existe $c \in N^*$ tel que a = dc. Les diviseurs premiers de d et c divisent a donc sont inclus dans $\{p_1, ..., p_r\}$. Ainsi, pour tout $i \in [0, r]$, il existe des entiers naturels γ_i , δ_i tels que $c = \prod_{i=1}^r p_i^{\delta_i}$ et $d = \prod_{i=1}^r p_i^{\gamma_i}$. On a alors :

$$\prod_{i=1}^r p_i^{\alpha_i} = \prod_{i=1}^r p_i^{\gamma_i + \delta_i}.$$

Par unicité de la décomposition en produit de facteurs premiers de a, on obtient $\alpha_i = \gamma_i + \delta_i$ pour tout $i \in [1, r]$, et donc pour tout $i \in [1, r]$, $\gamma_i \le \alpha_i$.

- Posons $d = \prod_{i=1}^{r} p_i^{\min(\alpha_i, \beta_i)}$.
 - Pour tout $i \in [1, r]$, $\min(\alpha_i, \beta_i) \le \alpha_i$ et $\min(\alpha_i, \beta_i) \le \beta_i$. Ainsi, avec le premier point, d divise a et b.
 - Soit n∈ N tel que n divise a et n divise b.
 Avec le premier point, il existe δ₁,...δ_r ∈ N tel que n =
 ^r
 _{i=1} p_i^{δ_i} et pour tout i ∈ [[1, r]], δ_i ∈ [[0, α_i]] et δ_i ∈ [[0, β_i]].
 Ainsi, pour tout i ∈ [[1, r]], δ_i ∈ [[0, min(α_i, β_i)]]. Ainsi, Donc n divise d.

On obtient $d = \operatorname{pgcd}(a, b)$.

• On a : $\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b) = ab = \prod_{i=1}^r p_i^{\alpha_i + \beta_i}$ D'où $\operatorname{ppcm}(a,b) \prod_{i=1}^r p_i^{\min(\alpha_i,\beta_i)} = \prod_{i=1}^r p_i^{\alpha_i + \beta_i}$. Ainsi, $\operatorname{ppcm}(a,b) = \prod_{i=1}^r p_i^{\alpha_i + \beta_i - \min(\alpha_i,\beta_i)}$. Soit $i \in [1,r]$, on a : $\alpha_i + \beta_i - \min(\alpha_i,\beta_i) = \max(\alpha_i,\beta_i)$. En effet :

- Si $\alpha_i \ge \beta_i$. Alors, $\min(\alpha_i, \beta_i) = \beta_i$ et $\max(\alpha_i, \beta_i) = \alpha_i$. Ainsi, $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \alpha_i + \beta_i - \beta_i = \alpha_i = \max(\alpha_i, \beta_i)$.
- Si $\alpha_i < \beta_i$. Alors, $\min(\alpha_i, \beta_i) = \alpha_i$ et $\max(\alpha_i, \beta_i) = \beta_i$. Ainsi, $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \alpha_i + \beta_i - \alpha_i = \beta_i = \max(\alpha_i, \beta_i)$.

Exemple : Posons a = 756 et b = 350.

On a: $756 = 2^2 \times 3^3 \times 7^1$ et $350 = 2^1 \times 5^2 \times 7^1$.

D'où : $pgcd(756, 350) = 2^1 \times 7^1 = 14$ et $ppcm(756, 350) = 2^2 \times 3^3 \times 5^2 \times 7^1 = 18900$.

2 Ensembles finis

2.1 Définition et premières propriétés

Définition

Un ensemble E non vide est dit fini, s'il existe un entier naturel non nul n et une bijection de [1, n] dans E. L'entier n, s'il existe, est unique et est appelé cardinal de E. On le note Card(E) (ou |E| ou #E). Un ensemble qui n'est pas fini est dit infini.

Remarque : Le cardinal de E représente le nombre d'éléments de E.

Exemple:

- Par convention Ø est fini de cardinal 0.
- [1, n] est fini de cardinal n (prendre $h = id_{[1,n]}$).
- $\llbracket p,q \rrbracket$ est fini de cardinal q-p+1 (prendre $egin{array}{ccc} h \colon & \llbracket 1,q-p+1 \rrbracket & \to & \llbracket p,q \rrbracket \\ i & \mapsto & p-1+i \end{array}$).

Remarque : Soit E un ensemble fini de cardinal $n \ge 1$.

Une bijection $\begin{bmatrix} \mathbb{I} & \mathbb{I} & \to & E \\ i & \mapsto & a_i \end{bmatrix}$ permet de numéroter les éléments de E et d'écrire $E = \{a_1, ..., a_n\}$.

Lemme

Si *E* est fini non vide et $a \in E$, alors $E \setminus \{a\}$ est fini et Card $(E \setminus \{a\}) = \text{Card}(E) - 1$.

Démonstration. Comme *E* est fini, il existe $n \in \mathbb{N}^*$ et $h : [1, n] \to E$ bijection.

- Supposons que h(n) = a. On pose alors $g: [1, n-1] \rightarrow E \setminus \{a\}$ $i \mapsto h(i)$
 - g est bien définie. soit $i \in [1, n-1]$. Par l'absurde, si h(i) = a alors h(i) = h(n) donc i = n car h est injective. Absurde.

Ainsi, h(i) ∈ [1, n-1].

• g est injective:

Soit $i, j \in [1, n-1]$. Supposons que g(i) = g(j). Alors h(i) = h(j) donc i = j par injectivité de h. Ainsi g est injective.

• g est surjective:

Soit $x \in E \setminus \{a\}$. Comme h est surjective, il existe $i \in [1, n]$ tel que h(i) = x.

Montrons par l'absurde que $i \neq n$. Supposons que i = n.

Alors x = h(i) = h(n) = a. Absurde.

Ainsi, $i \in [1, n-1]$ et g(i) = x donc g est surjective.

Ainsi, g est bijective donc $E \setminus \{a\}$ est fini de cardinal n - 1.

• Supposons désormais que $h(n) \neq a$.

Posons
$$t: \left\{ \begin{array}{ccc} E & \rightarrow & E \\ & & \left\{ \begin{array}{ccc} a & \text{si } x = h(n) \\ h(n) & \text{si } x = a \\ x & \text{sinon} \end{array} \right. \right.$$

l'application t échange a et h(n).

On a $t \circ t = i d_E$ donc t est bijective.

Posons $h_1 = t \circ h$. h_1 est bijective comme composée de fonctions qui le sont.

De plus, $h_1(n) = t(h(n)) = a$.

On peut donc appliquer le premier point avec h_1 .

Ainsi $E \setminus \{a\}$ est fini de cardinal n-1.

Théorème : Partie d'un ensemble fini

Soit *E* un ensemble fini et *F* est un sous-ensemble de *E*, alors :

- F est fini et Card $(F) \leq$ Card (E).
- Card(F) = Card(E) si et seulement si F = E.

Démonstration. On raisonne par récurrence.

Pour tout $n \in \mathbb{N}$, on pose :

 $\mathcal{P}(n)$: « Si E est un ensemble fini de cardinal n, tout sous-ensemble F de E est fini de cardinal inférieur ou égal à n, avec égalité si et seulement si F = E »

• Pour n = 0, soit E un ensemble de cardinal 0.

Alors $E = \emptyset$ et le seul sous-ensemble de E est $F = \emptyset$. Il est fini de cardinal 0, donc $\mathcal{P}(0)$ est vraie.

• Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie.

Soient E un ensemble de cardinal n+1 et F un sous-ensemble de E.

Si F = E, alors F est fini de cardinal n + 1.

Supposons $F \neq E$. On a alors $a \in E \setminus F$. D'après le lemme précédent, $E_1 = E \setminus \{a\}$ est fini de cardinal n, et $F \subset E_1$ (puisque $a \notin F$). Par hypothèse de récurrence, on a donc F fini de cardinal \leq Card $(E_1) = n < n + 1$. Ainsi, on a Card $(F) \leq$ Card (E) avec égalité si et seulement si F = E.

On a donc montré que $\mathcal{P}(n+1)$ est vraie.

En conclusion : $\forall n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie.

Remarque:

- Ainsi si *E* et *F* sont deux ensembles de même cardinaux, il suffit de montrer une inclusion pour avoir l'égalité.
- Si F est un sous-ensemble d'un ensemble fini E, si $\mathbf{1}_F: E \to \{0,1\}$ est sa fonction indicatrice, on a :

Card
$$(F) = \sum_{x \in E} \mathbf{1}_F(x)$$
.

Proposition

Soient *E* et *F* deux ensembles.

- Soit $h: E \to F$ une application bijective. E est fini de cardinal n si et seulement si F est fini de cardinal n. On a alors: Card (E) = Card (F).
- Soit $h: E \to F$ une application injective. Si F est fini, alors E est fini et Card $(E) \le \text{Card}(F)$.
- Soit $h: E \to F$ une application surjective. Si E est fini, alors F est fini et Card $(F) \le \text{Card}(E)$.

Démonstration. • Comme E est fini de cardinal n, il existe $g : [1, n] \to E$ bijective. Alors $h \circ g$ est bijective (comme composée de fonctions bijectives) de [1, n] dans F, donc F est fini de cardinal n.

 $h^{-1}: F \to E$ est une bijection. Si F est fini de cardinal n alors d'après le sens précédent (en échangeant E et F), E est fini de cardinal n.

• Supposons F fini. Posons $g: E \rightarrow h(E)$. $x \mapsto h(x)$

g est toujours injective (car h l'est) et surjective, donc bijective. Comme $h(E) \subset F$, h(E) est fini de cardinal plus petit que celui de F. Ainsi, Card $(E) = \operatorname{Card}(h(E)) \leq \operatorname{Card}(F)$.

• Supposons *E* fini.

On pose $g: F \rightarrow E$

 $x \mapsto \text{un antécédent de } x \text{ par } h$

- *g* est bien définie car *h* est surjective.
- \bullet Montrons que g est injective.

Soient $x, y \in F$, supposons que g(x) = g(y).

g(x) et g(y) sont respectivement des antécédents de x et de y par h, donc h(g(x)) = x et h(g(y)) = y.

D'où x = h(g(x)) = h(g(y)) = y et g est injective.

Théorème

Soient E et F ensembles finis de même cardinal n. On considère Soit $f: E \to F$. Alors :

f est injective si et seulement si f est surjective si et seulement si f est bijective.

Démonstration. • Si *f* est bijective, elle est injective et surjective.

• Supposons *f* injective.

On pose alors
$$g: E \rightarrow f(E)$$

 $x \mapsto f(x)$

g est injective car f l'est, et g est surjective.

Ainsi g est bijective donc Card (f(E)) = Card(E) = Card(F).

De plus, $f(E) \subset F$ donc f(E) = F.

Ainsi f est surjective, donc bijective.

- Supposons f surjective et montrons par l'absurde que f est injective.

Supposons f non injective.

Alors il existe $x, y \in E$ tel que f(x) = f(y) et $x \neq y$.

Soient
$$E_1 = E \setminus \{y\}$$
 et $g : \begin{cases} E_1 & \to & F \\ u & \mapsto & h(u) \end{cases}$.

Montrons que *g* est encore surjective :

Soit $v \in F$. Il existe $u \in E$ tel que f(u) = v.

- si $u \neq y$ alors $u \in E_1$
- si u = y alors f(x) = f(y) = v et $x \in E_1$.

Ainsi, g est encore surjective, donc $Card(E_1) \ge Card(F)$ par la proposition précédente. Or, $Card(E_1) = Card(E) - 1$. Ainsi $Card(E) - 1 \ge Card(E)$ absurde.

Donc h est injective, donc bijective.

Remarque : Ceci devient faux pour des ensembles infinis : $f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ x & \mapsto & x+1 \end{array} \right.$ est injective non surjective par exemple.

2.2 Opérations sur les cardinaux

Proposition

Si A et B sont deux ensembles finis disjoints (c'est à dire que $A \cap B = \emptyset$), alors $A \cup B$ est fini et

$$Card(A \cup B) = Card(A) + Card(B)$$
.

Démonstration. Notons n le cardinal de A et p celui de B.

Il existe $f: A \rightarrow [1, n]$ et $g: B \rightarrow [1, p]$.

Posons
$$h: \left\{ \begin{array}{ccc} A \cup B & \rightarrow & [\![1, n+p]\!] \\ x & \mapsto & \left\{ \begin{array}{ccc} f(x) & \text{si } x \in A \\ g(x) + n & \text{si } x \in B \end{array} \right. \end{array} \right.$$

- h est bien défini car $A \cap B = \emptyset$ donc tout élément de $A \cup B$ admet bien une unique image et $h(A \cup B) \subset [1, n+p]$.
- h est surjective : Soit u[1, n + p].
 - si $u \in [1, n]$, posons $x = f^{-1}(u) \in A$. On a $h(x) = f(f^{-1}(u)) = u$.
 - si $u \in [n+1, n+p]$, $u-n \in [1, p]$. Posons $x = g^{-1}(u-n) \in B$. On a $h(x) = g(g^{-1}(u-n)) + n = u - n + n = u$.

Ainsi, h est surjective.

• *h* est injective :

Soient $x, x' \in A \cup B$ tel que h(x) = h(x').

• Si $x \in A$ et $x' \in B$ alors $h(x) \in [1, n]$ et $h(x') \in [n+1, n+p]$. Impossible.

- De même, il est impossible d'avoir $x \in B$, $x' \in A$ et h(x) = h(x').
- Si $x, x' \in A$, on a h(x) = h(x'). Donc f(x) = f(x'). Or, f est injective donc x = x'.
- Si $x, x' \in B$, on a h(x) = h(x'). Donc g(x) + n = g(x') + n. D'où g(x) = g(x'). Or, g est injective donc x = x'.

Ainsi, h est injective.

Donc h est bijective et $A \cup B$ est fini de cardinal n + p.

Corollaire

Si E est fini et $A \in \mathcal{P}(E)$, alors Card $(E \setminus A) = \text{Card}(E) - \text{Card}(A)$.

Proposition

Soient A et B deux ensembles finis. Alors $A \cup B$ est fini et on a: Card $(A \cup B) = \text{Card}(A) + \text{Card}(B) - \text{Card}(A \cap B)$.

Démonstration.

On pose $A' = A \setminus B$.

• On a:

$$A'\cap (A\cap B)=A\cap C_E^B\cap A\cap\cap B=\emptyset.$$

Et:

$$A' \cup (A \cap B) = (A \cap C_F^B) \cup (A \cap B) = A \cap (C_F^B \cup B) = A \cap E = A.$$

D'après la proposition précédente, on a $Card(A') = Card(A) - Card(A \cap B)$.

• De plus, on a:

$$A' \cap B = A \cap C_E^B \cap B = A \cap \emptyset = \emptyset.$$

Et:

$$A' \cup B = (A \cap C_E^B) \cup B = (A \cup B) \cap (C_E^B \cup B) = (A \cup B) \cap E = A \cup B.$$

Ainsi, d'après la proposition précédente, on a $Card(A \cup B) = Card(A') + Card(B)$

• Finalement, on obtient: $Card(A \cup B) = Card(A') + Card(B) = Card(A) + Card(B) - Card(A \cap B)$.

Corollaire

Soient A_1 , ..., A_n des ensembles finis deux à deux disjoints. Alors $\bigcup_{k=1}^n A_k$ est fini et on a :

Card
$$\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} \operatorname{Card}(A_k).$$

Démonstration. Ce résultat se prouve par récurrence.

Proposition: Produit cartésien

Soient E et F deux ensembles finis, alors $E \times F$ est fini et $Card(E \times F) = Card(E)Card(F)$.

Démonstration. Notons n = Card(E), p = Card(F) et $E = \{e_1, \dots, e_n\}$ où les e_i sont deux à deux distincts.

$$E \times F = (\{e_1\} \times F) \cup (\{e_2\} \times F) \cup \ldots \cup (\{e_n\} \times F).$$

Pour tout $i \in [1, n]$, on pose $F_i = \{e_i\} \times F\}$.

Les F_i avec $i \in [1, n]$ sont deux à deux disjoints et $E \times F = \bigcup_{i=1}^{n} F_i$.

Ainsi, Card
$$(E \times F) = \sum_{i=1}^{p} \text{Card}(F_i)$$
.

Soit $i \in [1, p]$, l'application f_i : $f \rightarrow F_i$ est bijective, donc Card $(F_i) = \text{Card}(F) = p$.

Ainsi Card
$$(E \times F) = \sum_{i=1}^{n} \text{Card}(F_i) = \sum_{i=1}^{n} p = np$$
.

Corollaire

• Soient $E_1, ... E_p$ des ensembles finis. Alors $E_1 \times E_2 \times ... \times E_p$ est fini et $Card(E_1 \times ... \times E_p) = \prod_{i=1}^n Card(E_i)$.

П

П

• En particulier, si E est un ensemble fini, pour tout $p \in \mathbb{N}^*$, E^p est fini de cardinal $(Card(E))^p$.

Démonstration. • Le premier point se montre par récurrence avec la proposition précédente.

• Le deuxième découle du premier.

3 Dénombrement

3.1 Listes

Soit *E* un ensemble et $p \in \mathbb{N}^*$.

On rappelle qu'une p-liste d'éléments de E est un élément de E^p . L'ordre des éléments compte et il peut y avoir des répétitions.

Proposition Nombre de p-listes

Soit *E* un ensemble fini et $p \in \mathbb{N}^*$. Le nombre de *p*-liste (ou *p*-uplets) de *E* est égal à Card $(E)^p$.

Démonstration. En effet, $Card(E^p) = Card(E)^p$.

Exemple : Combien de mots de p lettres (ayant un sens ou non) peut-on former avec un alphabet de n lettres? Les mots de p lettres sont exactement les p-listes de lettres. Il y en a n^p .

Proposition: Nombre d'applications d'un ensemble fini dans un autre

Soient E et F sont deux ensembles finis. Alors l'ensemble $\mathscr{F}(E,F)$ des applications de E dans F est un ensemble fini et Card $(\mathscr{F}(E,F)) = \operatorname{Card}(F)^{\operatorname{Card}(E)}$.

Démonstration. Notons p le cardinal de E et $E = \{e_1, ..., e_p\}$ (les e_i étant deux à deux distincts).

Construire une application $f: E \to F$ revient à se donner les images par f de tous les éléments de E.

Or, on a:

Card(F) choix pour $f(e_1)$

Card(F) choix pour $f(e_2)$

:

Card(F) choix pour $f(e_p)$

Au total, cela fait $Card'F)^p = Card(F)^{Card(E)}$ choix.

Proposition: Nombre de parties d'un ensemble fini

Soit *E* un ensemble fini. Alors l'ensemble $\mathscr{P}(E)$ des parties de *E* est fini et Card $(\mathscr{P}(E)) = 2^{\operatorname{Card}(E)}$.

Démonstration. Notons p le cardinal de E et $E = \{e_1, ..., e_p\}$ (les e_i étant deux à deux distincts).

Définir une partie A de E revient à déterminer pour tout $i \in [1, p]$ si $e_i \in A$ ou non.

Ainsi, on a:

pour e_1 , on a 2 choix : $x_1 \in A$ ou $x_1 \notin A$ pour e_2 , on a 2 choix : $x_2 \in A$ ou $x_2 \notin A$

:

pour e_p , on a 2 choix : $x_p \in A$ ou $x_p \notin A$

Au total, cela fait 2^p choix.

Proposition : Nombre de p-listes d'éléments distincts

Soit E un ensemble fini de cardinal n et $p \in \mathbb{N}^*$. Le nombre de p-listes ou p-uplets d'éléments deux à deux distincts de E est égal à :

$$\begin{cases} \frac{n!}{(n-p)!} & \text{si } p \le n \\ 0 & \text{si } p > n \end{cases}$$

Démonstration.

• Supposons d'abord $p \le n$.

Pour construire un p-uplet $(e_1,...,e_p)$ d'éléments deux à deux distincts de E, on a :

- * n choix pour le premier élément $(e_1 \in E)$.
- * n-1 choix pour le deuxième élément $(e_2 \in E \setminus \{e_1\})$.

:

* n-p+1 choix pour le dernier $(e_p \in E \setminus \{e_1,...,e_{p-1}\})$.

Au total cela fait $n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}$ choix.

• Si p > n, on ne peut pas trouver p éléments distincts dans E.

Exemple:

• Une urne contient 40 boules numérotées de 1 à 40. On pioche successivement 5 boules. Combien y-a-t-il de tirages possibles?

Îl y a $\frac{40!}{35!}$ possibilités de tirer 5 boules numérotées entre 1 et 40 (en tenant compte de l'ordre).

• Une course de chevaux comporte 20 partants. Le nombre de résultats possibles de tiercés dans l'ordre est : $20 \times 19 \times 18 = 6840$

Proposition: Nombre d'injections

Le nombre d'injections d'un ensemble E de cardinal $p \in \mathbb{N}^*$ dans un ensemble F de cardinal $n \in \mathbb{N}^*$ est :

$$\begin{cases} \frac{n!}{(n-p)!} & \text{si } p \le n \\ 0 & \text{si } p > n \end{cases}$$

Démonstration. Notons p le cardinal de E et $E = \{e_1, ..., e_p\}$ (les e_i étant 2 à 2 distincts).

Construire une application $f: E \to F$ revient à se donner les images par f de tous les éléments de E.

De plus, f est injective si et seulement si les $f(e_i)$ avec $i \in [1, p]$ sont deux à deux distincts.

- Si n < p, comme pour tout $i \in [1, p]$, $f(e_i) \in F$, il ne peut pas y avoir p éléments distincts dans F.
- Supposons désormais $n \ge p$.

On a:

n choix pour $f(e_1): f(e_1) \in F$.

n-1 choix pour $f(e_2) : f(e_2) \in F \setminus \{f(e_1)\}.$

:

 $n-(p-1) \text{ choix pour } f(e_p): f(e_p) \in F \setminus \{f(e_1),...,f(e_{p-1})\}.$

Au total, cela fait : $n(n-1)...(n-p+1) = \frac{n!}{(n-p)!}$.

Corollaire

Si E est un ensemble fini de cardinal n. On note $\mathfrak{S}(E)$ l'ensemble des bijections de E sur E (appelées également permutations de E). Alors $\mathfrak{S}(E)$ est fini et :

$$Card(\mathfrak{S}(E)) = n!$$

Démonstration. Puisque E est fini, on peut dire, d'après le cours, qu'il revient au même de chercher les applications de E dans E qui sont bijectives ou celles qui sont qui sont injectives. Ainsi, d'après la proposition précédente, le nombre de bijections de E dans E est donc n!.

3.2 Dénombrement des parties d'une ensemble fini

Soient E un ensemble fini de cardinal n et $p \in [0, n]$. Le nombre de partie à p éléments de E est $\begin{bmatrix} n \\ p \end{bmatrix}$

Démonstration. Notons $\mathcal{A}(n,p)$ l'ensemble des p-listes d'éléments distincts de E, et $\mathcal{C}(n,p)$ l'ensemble des parties de p éléments de E.

Pour construire un *p*-uplet d'éléments de *E* deux à deux distincts, on a :

- Card $(\mathscr{C}(n,p))$ choix pour l'ensemble des éléments du p-uplet (qui est une partie de E à p éléments).
- p! choix pour ordonner ces éléments (nombre de bijections d'un ensemble de cardinal p dans lui même).

Ainsi, on a
$$p$$
!Card $(\mathscr{C}(n,p)) = \text{Card}(\mathscr{A}(n,p)) = \frac{n!}{(n-p)!} \text{ donc Card}(\mathscr{C}(n,p)) = \frac{n!}{(n-p)!p!} = \binom{n}{p}.$

Remarque : Un sous-ensemble à *p* éléments de *E* de cardinal *p* est aussi appelée *p*-combinaison de *E*.

Exemple : Soit E un ensemble fini de cardinal $n \in \mathbb{N}$.

Pour tout entier naturel $k \in [0, n]$, on pose $\mathcal{P}_k(E) = \{X \in \mathcal{P}(E), \operatorname{Card}(X) = k\}$

$$\begin{array}{cccc} \text{L'application} & h: & \mathscr{P}_k(E) & \to & \mathscr{P}_{n-k}(E) \\ & A & \mapsto & C_E^A \\ \text{En effet, soient } (A,B) \in \mathscr{P}_k(E) \times \mathscr{P}_{n-k}(E). \end{array} \text{ est bijective.}$$

On a:

$$h(A) = B \iff C_E^A = B$$
 $\iff C_E^{C_E^A} = C_E^B$
 $\iff A = C_E^B$

Ainsi, h est bijective.

De plus, $\mathscr{P}_k(E)$, $\mathscr{P}n-k(E)\subset \mathscr{P}(E)$ qui est fini. Ainsi, $\mathscr{P}_k(E)$ et $\mathscr{P}n-k(E)$ sont finis.

On a de plus : Card $(\mathscr{P}_k(E)) = \text{Card}(\mathscr{P}_k(E))$. Donc :

$$\binom{n}{k}$$
 = Card $(\mathscr{P}_k(E))$ = Card $(\mathscr{P}_{n-k}(E))$ = $\binom{n}{n-k}$.

Proposition

Si E est un ensemble fini à n éléments, alors l'ensemble $\mathcal{P}(E)$ des parties de E est fini de cardinal 2^n .

Démonstration. Pour tout entier naturel $k \in [0, n]$, on pose $\mathscr{P}_k(E) = \{X \in \mathscr{P}(E), \operatorname{Card}(X) = k\}$. $\mathscr{P}(E)$ est l'union disjointe des $\mathscr{P}_k(E)$ pour $k \in [0, n]$ et les $\mathscr{P}_k(E)$ avec $k \in [0, n]$ sont des ensembles finis. Ainsi :

Card
$$(\mathscr{P}(E)) = \sum_{k=0}^{n} \text{Card } (\mathscr{P}_k(E))$$
.

Or: $\forall k \in [0, n]$, Card $(\mathscr{P}_k(E)) = \binom{n}{k}$.

Ainsi, par la formule du binôme de Newton, on a :

Card
$$(\mathscr{P}(E)) = \sum_{k=0}^{n} {n \choose k} = 2^n$$

par la formule du binôme de Newton.

Démonstration combinatoire des formules de Pascal et du binôme de Newton.

Rappel : Formule de Pascal : Soient
$$n \in \mathbb{N}^*$$
 et $p \in [1, n-1]$ alors on a : $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$
Binôme de Newton : Soient $(a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}$ alors $(a+b)^n = \sum\limits_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Démonstration. Donnons ici des preuves combinatoires :

- Soient $n \in \mathbb{N}^*$ et $p \in [1, n-1]$. Considérons un ensemble E de cardinal n. Il y a $\binom{n}{p}$ parties à p éléments. Soit $a \in E$, pour avoir une partie de E à p éléments, on distingue :
 - Celles qui contiennent a. Il y en a $\binom{n-1}{p-1}$: choix de p-1 éléments parmi les n-1 éléments de $E\setminus\{a\}$.
 - Celles qui ne contiennent pas a. Il y en a $\binom{n-1}{p}$: choix de p éléments parmi les n-1 de $E\setminus\{a\}$.

Comme ces ensembles sont disjoints, on a : $\binom{n-1}{p-1} + \binom{n-1}{p} = \binom{n}{p}$ et on retrouve la formule de Pascal.

• Soit $n \in \mathbb{N}$. Commençons par écrire l'égalité :

$$(a+b)^n = \underbrace{(a+b) \times (a+b) \times \dots \times (a+b)}_{n \text{ fois}}$$

Pour développer ce produit, il faut additionner tous les produits possibles du type :

$$\underbrace{a \times a \times b \times a \times \dots \times b \times a}_{n \text{ termes}}$$

Tous ces produits seront de la forme a^kb^{n-k} avec $k \in [0, n]$. On prend un facteur dans chaque parenthèse. Pour k fixé dans [0, n], il a $\binom{n}{k}$ façons d'obtenir a^kb^{n-k} . On choisit pour cela k parenthèses où l'on prend le complexe a, et on prendra nécessairement b dans les n-k restantes. On obtient donc la formule annoncée.