$\mathsf{tH}(\tau\tau)$ Review and plan

Christian Kirfel on behalf of the tH tau channels team

10th November 2021

Selection lepditau

- n-jets: 2-6 (b-jets: 1)
- b-jet WP: 70 DL1r
- nLeptons & nTaus: $1e/\mu \ 2\tau_{had}OS$
- E_{T,miss}: no cut (to 800 GeV)

• iets

• $p_T > 25 \,\text{GeV}$

- $|\eta| < 4.5$
 - EMPFlow

electrons:

- $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
- $|\eta| < 2.5$ not in 1.37 1.52

 WP: Tight; isolation: PLIVTight

• muons:

- $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
- $|\eta| < 2.5$
- WP: Tight; isolation: PLIVTight

taus:

- $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| <$ 2.5 not in 1.37 1.52
 - WP: RNNMedium
 - ASG recommended OLR (au_{had} remove jets)

Selection dileptau

- n-jets: 2-6 (b-jets: 1)
- b-jet WP: 70 DL1r
- nLeptons & nTaus: $2\mathbf{e}/\mu \ \mathbf{1} au_{\mathsf{had}} (1 \ \mathsf{OS} \ \mathsf{light} \ \mathsf{lepton})$
- $E_{T,miss}$: no cut (to 800 GeV)

• iet

• $p_T > 25 \,\text{GeV}$

- $|\eta| < 4.5$
 - EMPFlow
- electrons:
 - $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| <$ 2.5 not in 1.37 1.52
 - WP: Tight; isolation: PLIVTight
- muons:
 - $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| < 2.5$
 - WP: Tight; isolation: PLIVTight
- taus:
 - $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| <$ 2.5 not in 1.37 1.52
 - WP: RNNMedium
 - ASG recommended OLR (au_{had} remove jets)

Region definitions dileptau

- Cut on number ob b-jets
- Cut on MVA score
- Separate tZq

Region definitions lepditau

- ① Cut on number ob b-jets
- Out on MVA score
- Separate tZq

Lepditau Neural network

Setup

- Optimisation: Evolutionary + grid search
- Model: Categorical (currently binary for v34)
- Variables: final state kinematics
- Currently performance problems for v34
- Train on absolute, predict on full weights

Plans

- Validate categorical setup in lepditau
- Rerun the optimisation for v34⁶
- Rank and test variables

Dileptau Neural network

Setup

- Optimisation: Evolutionary + grid search
- Model: Categorical (Treating tZq separately)
- Variables: final state kinematics
- Train on absolute, predict on full weights

Plans

- Rerun the optimisation for v34
- Rank and test variables

Dileptau S/B

Dileptau BDT

- · Trained using v34
- PreBDT: n(b-jets) > 1
- Hyperparameters optimised using Genetic Algorithm (see Backup slides)
- These metrics and distribution include negative weights

max_depth	4
objective	binary:logistic'
learining_rate	0.1
n_estimators	1500
min_child_weight	3.39609×10^{-6}
tree_method	gpu_hist
n_jobs	-1
scale pos weight	534.3914

Hyperparameters of the BDT after first GA optimisation.

K-Fold	roc_auc	log_loss
0	0.727393864	0.4087744
1	0.731473309	0.4086942
2	0.728292148	0.4099594
3	0.732439999	0.4123000
4	0.732329792	0.4113235

Metrics for BDT. Using the set of 76 features and the first results form the GA.

AUC = 0.7304 + 0.0009

Dileptau BDT

Region	tHq	Total	S/B(%)	Significance
n(b-jets) ≥ 1	2.5	12565.9	0.020	0.022
BDT ≥ 0.10	2.2	2760.9	0.080	0.042
BDT ≥ 0.20	2.0	1412.5	0.142	0.053
BDT ≥ 0.40	1.7	563.1	0.303	0.072
BDT ≥ 0.50	1.6	380.7	0.422	0.082
BDT ≥ 0.60	1.5	245.9	0.614	0.096
BDT ≥ 0.65	1.4	196.1	0.719	0.100
BDT ≥ 0.70	1.3	152.3	0.861	0.106
BDT ≥ 0.75	1.2	117.3	1.034	0.111
BDT ≥ 0.80	1.0	82.9	1.221	0.110
BDT ≥ 0.85	0.9	51.8	1.768	0.126
BDT ≥ 0.87	8.0	40.5	2.015	0.127
BDT ≥ 0.90	0.7	26.6	2.703	0.137
BDT ≥ 0.92	0.6	16.8	3.704	0.148
BDT ≥ 0.95	0.3	6.7	4.688	0.118
BDT ≥ 0.97	0.2	2.1	10.526	0.143

Yields, S/B and significance depending on the BDT cut

Dileptau BDT

- BDT not using categorical approach
- tZq separation is still quite good

Fake estimation dileptau

Analysis goal: Estimate Fake τ abundance in lep-had SR and correct MC to data ratio

1-Bin Method:

- likelihood fit of one component
- ▶ jets faking taus
- normalization from data

Quark/Gluon Method:

- likelihood fit of two components
- quark and gluon jets faking taus
- normalization from data and shape from MC
- \blacktriangleright normalization of templates for truth $\tau,$ electron faking τ and μ faking τ are fixed
- fixed sources treated as nuisances in the likelihood fit
- determine the dependence on p_T , $|\eta|$ and prongs

One bin method dileptau Control Region

• fit only jet faking tau SF \rightarrow analogous to solving linear eq. for α_{had} :

$$N_{
m data} = N_{
m el} + N_{\mu} + N_{ au} + lpha_{
m had} N_{
m had}$$

Pre-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on loose

Post-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on loose

One bin method dileptau Signal Region

Pre-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on medium

Post-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on medium

Quark/gluon method dileptau Control Region

Pre-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on loose

Post-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on loose

Quark/gluon method dileptau Signal Region

Pre-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on medium

Post-Fit: for $p_T \in [20, 30)$ GeV, 1-prong and τ on medium

Fake Estimation Lepditau

• Using template fit method

Lepditau fake estimation fit results

Lepditau fake estimation fit results

Lepton Assigment Method

- Establish method for lepton assignment
- Tested promising variables for assignment
- $m_{pred,t}(lep(Higgs)) m_{pred,t}(lep(top)) > 0$
- Generality allows to expand to SS events

Lepton Assigment Results

OSSF+OSDF+SSDF="pdgAssign"

assignment correct:

- $m_{\text{pred},t}$: 75.2 %
- $m_{\text{vis},H}$: 73.3 %
- $m_{\text{vis},t}$: 60.5 %

First fit results dileptau

- Technically fitting is possible
- Much room for improvement left
- Separation for V+jets and $t\bar{t}$ already good
- Higher sensitivity expected from SS event inclusion

First fit results dileptau

First fit results lepditau

- Technically fitting is possible
- Much room for improvement left
- Separation for V+jets and tt
 already good
- Improvement in fake tau scale 22 factors to be expected

First fit results lepditau

Status of the Int Note

- https://gitlab.cern.ch/atlas-physics-office/HIGG/ANA-HIGG-2020-02/ANA-HIGG-2020-02-INT1
- Majority is finished
- For all the missing parts authors have been assigned and have accepted
- A first version is planned for next week

More information

- Checks on v34
- Lepditau Fakes
- Dileptau Fakes
- Categorical MVA
- Dileptau BDT, feature importance
- Lepton assignment