Quiz -3

G has enactly one odd lengter ycle, say C. Goal & Find man mothy in O(mn) time.

Soln: Use Edmonds Algo.

Number of odd cycle contractions = 1 So, time to find any path will be O(m) only.

ALTERNATE
Find the cycle C in O(m) time.

Let H be obtained from Grby remove a verten of C.

|MH| > IMG | - 1 as one verten semond.

So first find a matchy of H in O (m sn) time,

then add back removed verten.

Finally find an aug path in O(m) time.

Quiz -3 <u>04</u> G= (V, E) LG = Court of vertices free lender some man matching Find size of FG = { S \ V | S is fee under some man motely} in poly (n) · LG time

Sol^N: Let Y = V extices free under some mon motify

Time to find $Y = n - T_{IME} (MAX - MATCHING)$

Possible choices for $S \leq \frac{|Y|}{dq}(G) \leq \frac{|Y|}{dq}(G)$ Time to verify any given S = poly(n) PS 4

843 Given: G is 2k-edge-com

Using Minor DBA we can find a subgeath H of Gr g.t.

- H is ∂k -edge-com - H has O(nk) edges - wolking space = $O(nk^2 \log n)$

Lamna: Let H be 2R-edge—con with O(nR) edges, then we can find an orientation of H that is strongly R-edge—conn in O(nR) sp.

Proof: We need to "IMPLICITLY" store the sequence $H_0 \rightarrow H_1 \rightarrow H_2 \rightarrow ---- \rightarrow H_R \equiv H$ and then sold directions

Space needed to stole each 0/p is O(1) & O(dog)
for edge for verten

So, total space needed to find seq. $D_0 \rightarrow D_1 \rightarrow --- \rightarrow D_R$ is O(nk).

<u>lemma</u>: Let H be a directed graph with O(nk) edges such that man-flow $(s,v,H) \ni k \quad \forall \ v \in V(H)$. Then in

O(nk) space we can find a tree rooted at "8" such that man-flow $(s, v, H-T) \ge k-1$ $\forall v \in V(H)$.

Proof: Recall we defined a tree T as NICE if $\forall X \subseteq V$ containing s, size of (X,X^c) at in G_1-T is $\geqslant k-1$.

Also any NICE tree of $SIZE \not\in N$ can be entended.

So, we can just trey greedy appeared. Space used remains O(nk).

<u>Dues 6</u> Let us fiest consider Multiway Cut Prob (where k = |x|)

hat
$$A = opt sol^n$$
, and $A_i = (v_i, v_i^c)$

Observe: wt
$$(A) = \sum_{i=1}^{K} wt (A_i)$$

Assume:
$$\omega t(A_1) \leq \cdots \leq \omega t(A_k)$$

Let $B_i = \min(x_i, X - x_i)$, then $wt(B_i) \leq wt(A_i)$

Our sol" "C" comprises of k-1 lightest cuts from B1---Bk.

Then,
$$wt(C) \leq \sum_{i=1}^{R-1} wt(A_i) \leq \left(1-\frac{1}{R}\right) \sum_{i=1}^{R} wt(A_i) = 2\left(1-\frac{1}{R}\right) wt(A)$$

Now consider Stiener Cut Prob with $X = (x_1 ... x_n)$, $k \leq n$.

Fix an oft sol A and let V_i . V_R be corresp partetion, such that V_i contains verten $z_i \in X$.

Define cut $A_i = (v_i, v_i^c)$, and assume $wt(A_i) \le -- \le wt(A_k)$ Note $wt(A) = \frac{1}{2} \left(\sum_{i=1}^{R} wt(A_i) \right)$

$$V_{1} = Partition of V$$

$$V_{2} = X_{2}$$

$$X_{k+4} = X_{k+3}$$

$$X_{k+4} = X_{k+3}$$

We need GHT at x_R het $e_i = First$ ancestor edge of x_i not in $G_i[v_i]$ Then, by G_iHT dy^n $c(e_i) \leq c(A_i)$

Note that $U_{i=1}^{(k-1)}$ also separate x_{i-1} x_{i-1}

Now let $f_1 ext{...} f_{k-1}$ be edges of our sol^M in $G_7 HT$.

So, $U ext{ cut } (f_i)$ separate some k vertices in X. i=1

CLAIM: For $i \leq k-1$, we have

Buy $e_1 \dots e_i$ is some partition of $(x_1, x_2 \dots x_i, x_k)$

 $wt(A_i) \leq \cdots \leq wt(A_k)$ and $C(e_i) \leq wt(A_i)$

and $(f,...f_i)$ is greedy partition obtained by choosing edges of least wt.

Thus, $\text{wt}\left(\begin{array}{c} \frac{k-1}{U} \text{cut}(f_i) \end{array}\right) \leq \sum_{i=1}^{k-1} \text{wt}(A_i) \leq 2(\frac{k-1}{k}) \text{wt}(A)$

There are at most two (=) Gf has at most distinct (s,t) - certs three superiodes

If Gs has ">4" supermodes then at least 3 cuts

PS5

<u>86</u> To Prove: Boidgeless cubic graph has perfect matching

By Tutle Berge Thm

 $\exists R \leq \vee st. def(G) = oc(G-R) - |R|$

CLAIM: For any odd component C in G-R, no. of edges leaving C is odd, but not one.

REASON: $\sum deg(\omega) = 3|C|$ and edges with both endpoints in C are counted twice

 \Rightarrow oc (G-R) \leq No of edges leaving R $\leq \frac{31R1}{3} = 1R1$

=> def (G) = zero.

$$\Omega 3 (a) P = A \text{ Shortest aug-path wot } M$$

$$\Omega = \text{ an aug fath wot } M \oplus P$$
Then, $|0| \ge |P| + 2|P|Q|$

$$|P|+|Q|-2|PDQ| = |PDQ| = |MDN| > 2|P|$$

$$\Rightarrow 101 \geqslant 1P1 + 2|PDQ|$$

(b) Let $C = (P_1 ... P_k)$ be collection of shortest M-and path that is inclusion maximal. Let Q = A by path wat $M \oplus P_1 \oplus --- \oplus P_k$.

Assume WLG (QNPR) is not empty

and let Mo:= M + P, + ··· + Pk-1

Q is any wot Mo A PR

> 1Q1 > 1P1 + 21QnR/ > 1P1