# The modelling approach

**Christophe Pradal** 

christophe.pradal@cirad.fr

#### Modelling: a scientific approach

- A model is a simplified representation of a system
  - Simplified => hypothesis
  - **System**: a set of entities with their interactions / relationships

- A model of simulation
  - A numerical model => use of computer (not only equations)
  - A dynamic model => evolves through time

#### What is the purpose of a model?

- Integrate knowledge on isolated entities of the system
  - What are the emerging properties of the system?

- Understanding system behaviour
  - What are the main factors / parameters (sensitivity analysis)
- Test of scenarios to find levers to adapt the (real) system



- •Identify an issue
- Define 1 question
- Formulate hypotheses



- What are the main objectives of the model?
- => criteria for simplification

# Main points for specification

- Description of the system
  - 1. Limits
  - 2. entities / interactions
- Questions asked
  - Point of view on the system?
- Usage of the model
  - For who?
  - State Variables
  - Usage of the model
- Inputs and Outputs





Questions &

hypothesis

- Lsystem
- Ecophy. Model
- Topology / Geometry
- •



- Python
- Lsystems



Finding parameter values of the model based on:

- Available knowledge (papers, data)
- Or to reproduce documented situations



Confront model predictions with known realities to know

- Accuracy
- Domain of validity
- => Sensitivity analysis

# Modelling steps

- Specifications
  - What are the scales of interest?
  - For which users? Limits, ...
- Conceptual model
  - Hypotheses and simplifications
  - System definition: components and interactions
- Formalism
  - Mathematical expression of the model
- Implementation
  - To be able to simulate and/or solve the model
- Calibration / Sensitivity Analysis / Validation