

Analisis dan Perancangan Sistem Prediksi Keterlambatan Material antar Seksi untuk Mencegah Downtime Lini Assembly di PT Astra Honda Motor (revisi)

Perbaikan dan Penyesuaian Proposal Proyek KPPM

Judul:

Analisis dan Perancangan Sistem Prediksi Keterlambatan Material Antar Seksi Inplant untuk Mencegah Downtime Lini Assembly di PT Astra Honda Motor (Plant 2)

Studi Kasus (Revisi):

Sistem produksi motor di PT Astra Honda Motor Plant 2 memiliki 13 seksi (tidak termasuk Assembly Unit), yang saling terhubung secara sekuensial dari proses awal hingga ke Assembly Unit. Alur ini diklasifikasikan menjadi dua model utama:

- Continuous Production: seluruh proses dilakukan terus menerus secara berurutan di dalam plant.
- Batch Production: proses berbasis minimal-maksimal stok dan melibatkan buffer internal.

Namun, seksi *Plastic Injection* dan *Casting Wheel* tidak berada di Plant 2 karena disuplai dari luar (outplant/supplier). Oleh karena itu, fokus utama sistem prediksi ini terbatas pada **11 seksi inplant** yang langsung mendukung *Assembly Unit* dan masih berada dalam area pantauan langsung.

Saat ini, keterlambatan aliran material antar seksi tidak terdeteksi secara real-time dan hanya bergantung pada pengalaman atau feeling operator, yang mengakibatkan downtime tidak terprediksi dengan baik.

Tujuan Penelitian:

Mengembangkan sistem prediksi keterlambatan material berbasis logika waktu (rule-based timer) untuk mendeteksi potensi downtime di *Assembly Unit*, berdasarkan stok saat ini, kecepatan konsumsi, dan lead time antar seksi.

Lingkup:

- Fokus: seksi inplant (11 seksi dari proses awal hingga tepat sebelum assembly)
- Target: mencegah downtime di Assembly Unit

- Excluded: Plastic Injection dan Casting Wheel (karena outplant)
- Platform prototyping: Streamlit (dengan data dummy terlebih dahulu)

Data yang Dibutuhkan (Data Dummy Sementara):

- 1. Stok aktual per seksi (unit)
 - Digunakan untuk menghitung waktu tersisa konsumsi sebelum kehabisan material
- 2. Laju konsumsi material per seksi (unit/jam)
 - Dapat dihitung dari target produksi harian dan pola penggunaan material
- 3. Lead time antar seksi (menit/jam)
 - · Waktu tempuh aktual material dari satu seksi ke seksi berikutnya
- 4. Status pengiriman antar seksi (Belum Jalan / Dalam Perjalanan / Sudah Tiba)
 - · Diperlukan untuk memicu sistem warning
- 5. Target produksi harian lini assembly (unit/hari)
 - Digunakan untuk kalibrasi laju konsumsi per seksi
- 6. Buffer stok minimum dan maksimum (jika tersedia)
 - Digunakan sebagai ambang batas peringatan dini
- 7. Riwayat downtime (opsional untuk validasi model)
 - · Untuk mengukur efektivitas sistem saat diuji

Sistem Prediksi yang Dirancang:

- Rule-based system:
 - Jika stok ≤ lead time × laju konsumsi → trigger warning
- · Warning Level:
 - Hijau: aman (stok > 3 jam konsumsi)
 - Kuning: waspada (stok ≤ 3 jam konsumsi)
 - o Merah: kritis (stok ≤ 1 jam konsumsi)

Tools yang Digunakan:

- Prototyping: Streamlit dengan input manual data dummy
- Visualisasi: flowchart logika prediksi, tabel per seksi, dan notifikasi berbasis warna

Gambaran Alur Produksi (berdasarkan diagram aktual):

- 1. Casting → Machining → Assy Engine → Assy Unit
- 2. Plastic Injection (Outplant) → Gensub Assy Unit / Assy Unit / Painting Plastic
- 3. Painting Plastic → Assy Unit / Gensub Assy Unit
- 4. Gensub Assy Unit → Assy Unit
- 5. Press → Welding → Painting Steel → Assy Unit
- 6. Casting Wheel (Outplant) → Machining Wheel → Painting Wheel → Assy Wheel → Assy Unit

Catatan: Untuk alur dengan simbol "/", artinya jalur material bercabang dan dikirimkan ke lebih dari satu seksi sesuai kebutuhan produksi.

Langkah Selanjutnya:

- 1. Simulasikan data dummy berdasarkan skenario keterlambatan
- 2. Bangun sistem perhitungan sederhana (Excel → Streamlit)
- 3. Uji logika prediksi
- 4. Lakukan evaluasi dan perbaikan sebelum validasi dengan data riil

6 Tujuan Dataset

Membuat dataset simulasi aliran material antar seksi produksi inplant yang dapat digunakan untuk:

- · Memprediksi waktu kehabisan material di setiap seksi tujuan
- Mengukur potensi downtime pada Assembly Unit
- · Memberikan peringatan (warna hijau, kuning, merah)
- Menyediakan saran tindakan berdasarkan status keterlambatan kiriman

📌 Struktur Dataset (Kolom dan Penjelasannya)

Kolom	Tipe Data	Deskripsi
tanggal	date	Tanggal produksi berjalan
seksi_asal	string	Nama seksi pengirim material (contoh: Press, Machining, Gensub)
seksi_tujuan	string	Nama seksi penerima material
nama_komponen	string	Nama part/material yang dikirim
stok_tersedia	integer	Stok aktual material di seksi tujuan (dalam unit)
konsumsi_per_jam	integer	Rata-rata material yang digunakan di seksi tujuan per jam
lead_time	float	Estimasi waktu pengiriman dari seksi asal ke seksi tujuan (jam)
status_pengiriman	enum string	Status pengiriman material: Belum Jalan / Dalam Perjalanan / Sudah Tiba
jam_mulai_konsumsi	string (HH:MM)	Jam saat material mulai dikonsumsi di seksi tujuan
jam_estimasi_habis	string (HH:MM)	Prediksi waktu stok habis (stok / konsumsi per jam + jam mulai)
warna_status	enum string	Output warna status risiko: Hijau / Kuning / Merah
saran_tindakan	string	Rekomendasi sistem berdasarkan status dan lead time

Bagaimana Dataset Ini Membantu Prediksi Downtime?

♦ 1. stok_tersedia + konsumsi_per_jam → Estimasi waktu habis stok

 $jam_estimasi_habis=jam_mulai_konsumsi+(stokkonsumsi/jam)\setminus text{jam_estimasi_habis} = \text{jam_mulai_konsumsi} + \text{stok}{\text{konsumsi/jam}}\setminus text{jam_estimasi_habis} = \text{jam_mulai_konsumsi} + \text{stok}}{\text{stok}}{\text{konsumsi/jam}}\setminus text{jam_estimasi_habis} = \text{jam_mulai_konsumsi}$

jam_estimasi_habis=jam_mulai_konsumsi+(konsumsi/jamstok)

Inilah inti perhitungan waktu habis bahan. Kalau sekarang jam 08:00 dan stok bisa tahan 3 jam, maka **downtime akan terjadi jam 11:00** jika tidak ada pasokan masuk.

- ◆ 2. lead_time + status_pengiriman → Prediksi apakah material akan datang tepat waktu
- Jika status_pengiriman = belum jalan , dan lead_time = 2 jam , maka pengiriman baru akan tiba 2 jam setelah dikirim
- Bandingkan:
 - Jika stok akan habis dalam 1 jam, tapi pengiriman baru bisa datang dalam 2 jam, maka → Downtime = 1 jam
- ◆ 3. warna_status → Visualisasi cepat risiko

Bisa langsung dijadikan sistem alert:

- Hijau = sistem aman (stok cukup)
- Kuning = perlu waspada
- **Merah** = potensi downtime dalam ≤1 jam

◆ 4. saran_tindakan → Tindak lanjut otomatis

Dataset juga bisa dipakai untuk generate rekomendasi:

• Jika sistem mendeteksi Merah , langsung sarankan: "Hubungi seksi sebelumnya" atau "Kirim manual lewat forklift".

tanggal	seksi_asal	seksi_tujuan	nama_komponen	stok_tersedia	konsumsi_per_jam	lead_time	status_p
2025-07-06	Press	Welding	Tangki Bensin	45	15	1.2	Dalam P€
2025-07-06	Welding	Painting Steel	Rangka Depan	60	10	0.9	Belum Ja
2025-07-06	Machining	Assy Engine	Cylinder Head	20	8	1.4	Belum Ja
2025-07-06	Gensub	Assy Unit	Bracket Plastik	80	20	0.7	Sudah Ti
2025-07-06	Painting Steel	Assy Unit	Rangka Body	25	10	0.8	Dalam Pe