File Copy 255434"

MEMORANDUM REPORT NO. 1322 FEBRUARY 1961

AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND VICE VERSA

A. Roberta Wooten

Department of the Army Project No. 503-06-011
Ordnance Management Structure Code No. 5210.11.143
BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from ASTIA.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1322

FEBRUARY 1961

AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND VICE VERSA

A. Roberta Wooten

Ballistic Measurements Laboratory

Department of the Army Project No. 503-06-011 Ordnance Management Structure Code No. 5210.11.143

ABERDEEN PROVING GROUND, MARYLAND

TABLE OF CONTENTS

	PAG	Ę
ABSTRA	CT	5
I.	MATHEMATICAL BASIC OF COORDINATE TRANSFORMATION	7
II.	FORMULAS USED IN THE PROGRAMMING PHASE	3
	A. Direct Transformation	3
	B. Inverse Transformation	4
III.	RASTER	7
IV.	FLOW CHART	3
v.	THE CODE	7
	A. Program	7
,	B. Option	1
VI.	CONSTANTS	3
VII.	DATA	5
	A. Format	5
٠.	B. Input and Output	5
VIĮI.	SAMPLES	7
	A. Direct Transformation 4	8
· .	1. Input (S10-S2)	8
	2. Output (88-S2)	8
	3. Input (S10-S2)	9
,	4. Output (S10-S2)	9
	B. Inverse Transformation	
	1. Input (S10-S2)	0
	2. Output (\$8-\$2) 5	Ю
,	3. Input (S10-S2)	1
	4. Output (810-S2)	1
	C. Direct Transformation (Option For the Photogrammetric	_
		2
		2
	2. Output (S8-S2)	2

TABLE OF CONTENTS (Cont'd)

		LINGI
D.	Direct Transformation	
•	1. Input (S10-S2) for $(\lambda) = \lambda_0$, $\alpha = 90 - \emptyset_0$ and $\gamma = 0$	÷ 55
	2. Output (S10-S2)	• 53
E.	Inverse Transformation	
	1. Input (S10-S2)	. 54
	2. Output (S10-S2)	. 54

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1322

ARWooten/bjk Aberdeen Proving Ground, Md. February 1961

AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND VICE VERSA

ABSTRACT

The transformation of geodetic ellipsoidal coordinates into Cartesian coordinates and vice versa is programmed for the ORDVAC using a pseudo code - "The One Address Floating Binary Double Precision Code (OFBDP)."

I. THE MATHEMATICAL BASIS OF THE COORDINATE TRANSFORMATION 1

With reference to Fig. 1, the following notation for the constants of the reference ellipsoid becomes self-explanatory.

Major axis

8.

Minor axis

Eccentricity

$$e^{2} = \frac{a^{2} - b^{2}}{a^{2}} = 1 - (b/a)^{2}$$
 (1)

The null meridian is denoted by $(\lambda)_{0}$

Fig. 2 presents the plane of the meridian λ_1

$$\frac{s^2}{\frac{p}{a^2}} + \frac{z^2}{\frac{p}{b^2}} = 1 \tag{2}$$

Furthermore,

$$\frac{s_p}{a} = \cos \psi, \text{ where } \psi \text{ is the "reduced latitude".}$$
 (3)

From the fundamental identity

$$\sin^2 \psi + \cos^2 \psi = 1 \tag{4}$$

and from (2) and (3) it follows that

$$\frac{z_p}{b} = \sin \psi \tag{5}$$

and again with (2), we obtain

$$\tan \Psi = \frac{Z_p}{S_p} \cdot \frac{a}{b} \tag{6}$$

^{1.} Schmid, H. Some Remarks on the Problem of Transforming Geodetic Ellipsoidal Coordinates into Cartesian Coordinates with the Help of The Reduced Latitude, Ordnance Computer Research Report, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Vol. VI, No. 2, 15 April 1959

FIGURE I

FIGURE 2

which is conveniently written by introducing the geocentric latitude γ , as

$$\tan \psi = \frac{a}{b} \tan \gamma. \tag{7}$$

From
$$\tan \phi = \frac{a^2}{b^2} \tan \gamma$$
. (8)

follows
$$\tan \phi = \frac{a}{b} \tan \psi$$
. (9)

Furthermore from Fig. 2

$$\tan \phi = \frac{Z_1 - Z_p}{S_1 - S_p} \tag{10}$$

Substituting (3) and (5) into (10), we obtain with (9) and (1)

$$\tan \psi - \frac{ae^2}{S_1} \sin \psi - \frac{b}{a} \cdot \frac{Z_1}{S_1} = 0$$
 (11)

which leads to an expression of fourth degree explicit in terms of $\tan \psi$.

In order to avoid a cumbersome solution a well known series is considered.

$$\tan (\psi^{\circ} + \Delta \psi^{\circ}) = \tan \psi^{\circ} + (1 + \tan^{2} \psi^{\circ}) \Delta \psi + (1 + \tan^{2} \psi^{\circ}) \tan \psi^{\circ} \Delta \psi^{2} + \dots$$
 (12)

where,

$$\psi = \psi^{\circ} + \Delta \psi^{\circ}. \tag{13}$$

By neglecting all terms higher than first order

$$\Delta\psi^{\circ} = -\frac{\tan\psi^{\circ} - \sin\psi^{\circ} \frac{ae^{2}}{\overline{S}_{1}} - \frac{b}{a} \cdot \frac{\overline{Z}_{1}}{\overline{S}_{1}}}{1 + \tan^{2}\psi^{\circ} - \cos\psi^{\circ} \frac{ae^{2}}{\overline{S}_{1}}}$$

$$(14)$$

where,

$$\tan \psi^{\circ} = \frac{a}{b} \cdot \frac{Z_{1}}{S_{1}} \tag{15}$$

With the above derived formulas geodetic ellipsoidal coordinates can readily be converted into geocentric Cartesian coordinates and vice versa. The transformation here is based on formula (9) using the reduced latitude, ψ , as an auxiliary angle. Thus, fewer iterations are required in determining the value of $\Delta \psi^0$ by formula (14) than would be required if similar expressions for $\Delta \gamma$ corrections were derived.

The second phase of coordinate transformation is concerned with the transformation of the geocentric Cartesian coordinates (XYZ), as obtained in the first step, into a system of local Cartesian coordinates (xyz) and vice versa. In order to obtain a high degree of flexibility it is desirable to provide for the possibility of referring the geocentric coordinate system to an arbitrarily chosen meridian, denoted by (λ) . For a coordinate transformation to be suited for geodetic and photogrammetric purposes, particular attention should be given to the fact that generally the position of any local point of origin will be given by geodetic ellipsoidal coordinates denoted by ϕ_o , λ_o , H_o . By introducing (λ) = λ_{O} the geocentric Cartesian system becomes oriented in such a way that its X-axis is situated in the meridian plane of the arbitrarily chosen point of origin of the local Cartesian system. During the computations, first the Cartesian geocentric coordinates of the point of origin $(X_OY_OZ_O)$ are computed. In case the above described rotation $(\lambda_1 - \lambda_2)$ is applied, $Y_2 = zero$. Next the geocentric system is translated parallel to itself, into the origin of the local system. by the translations, $X_{\Omega}Y_{\Omega}Z_{\Omega}$. The $x^{\dagger}y^{\dagger}z^{\dagger}$ - system thus obtained must now be oriented by three additional rotations. These rotations should be made in such a way that the orientation of the local system can be made to be significant in terms of commonly used geodetic parameters. First, we rotate around the y-axis for an angle α . With Y_0 = zero and $\alpha = (90 - \phi_0)$ the xy-plane becomes parallel to a plane tangent to the ellipsoid at the sub-origin point. Second, we rotate around the once rotated z' - axis (β - rotation). If the xy-plane is tangent to the ellipsoid at the sub-origin point, this step corresponds to the conventional azimuth rotation. The third rotation, denoted by γ , is

executed around the twice rotated x! - axis. In most geodetic problems γ will equal zero. The necessary computations, described above are made by the following well known formulas which transfer one set of Cartesian coordinates into another:

A. Direct Transformation

$$x_{1} = + x_{1}^{\prime} (\cos \alpha \cos \beta)$$

$$+ y_{1}^{\prime} (\sin \beta)$$

$$- z_{1}^{\prime} (\sin \alpha \cos \beta)$$

$$y_{1} = + x_{1}^{\prime} (\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma)$$

$$+ y_{1}^{\prime} (\cos \beta \cos \gamma)$$

$$+ z_{1}^{\prime} (\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma)$$

$$z_{1} = + x_{1}^{\prime} (\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma)$$

$$- y_{1}^{\prime} (\cos \beta \sin \gamma)$$

$$+ z_{1}^{\prime} (\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma)$$

B. Inverse Transformation.

$$x_{1}^{*} = + x_{1} (\cos \alpha \cos \beta)$$

$$+ y_{1} (\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma)$$

$$+ z_{1} (\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma)$$

$$y_{1}^{*} = + x_{1} (\sin \beta)$$

$$+ y_{1} (\cos \beta \cos \gamma)$$

$$- z_{1} (\cos \beta \sin \gamma)$$

$$z_{1}^{*} = - x_{1} (\sin \alpha \cos \beta)$$

$$+ y_{1} (\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma)$$

$$+ z_{1} (\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma)$$

II. FORMULAS USED IN THE PROGRAMMING PHASE

A. 1. Direct Transformation

a. Given: The ellipsoidal coordinates of the point of origin O (ϕ_0, λ_0, H_0) and I, (ϕ_1, λ_1, H_1) where longitudes λ_0 and λ_1 are referred to the null meridian denoted by $(\lambda)_0$.

b. Compute the Cartesian geocentric coordinates (X_0,Y_0,Z_0) and X_1,Y_1,Z_1 , whereby the + X-axis passes through the point $\emptyset=0$, $\lambda=(\lambda)$ and the + Z-axis passes through the point $\emptyset=+90^{\circ}$.

(1) From (9)
$$\tan \psi = \frac{b}{a} \tan \emptyset$$
 (16)

$$(3) S_{p} = a \cos \Psi \qquad (17)$$

$$(5) Z_{p} = b \sin \Psi$$
 (18)

(2) From Fig. 2

$$S_{1} = S_{p} + H \cos \emptyset$$
 (19)

$$X_{1} = S_{1} \cos \left[\lambda_{1} - (\lambda)\right] \tag{20}$$

$$Y_{i} = S_{i} \sin \left[\lambda_{i} - (\lambda)\right]$$
 (21)

$$Z_{i} = Z_{p} + H \sin \emptyset$$
 (22)

c. Transform the Cartesian geocentric coordinates x_1, y_1, z_1 to local Cartesian coordinates x_1, y_1, z_1 .

(1) Translations

$$x_1^* = X_1 - X_0$$
 (23)

$$y_i^* = Y_1 - Y_0 \tag{24}$$

$$\mathbf{z}_{\mathbf{i}}^{*} = \mathbf{Z}_{\mathbf{i}} - \mathbf{Z}_{\mathbf{0}} \tag{25}$$

(2) Rotations

$$x_{1} = + x_{1}^{!} (\cos \alpha \cos \beta)$$

$$+ y_{1}^{!} (\sin \beta)$$

$$- z_{1}^{!} (\sin \alpha \cos \beta)$$
(26)

$$y_{1} = + x_{1}^{*} \left(\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma \right)$$

$$+ y_{1}^{*} \left(\cos \beta \cos \gamma \right)$$

$$+ z_{1}^{*} \left(\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma \right)$$

$$z_{1} = + x_{1}^{*} \left(\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \right)$$

$$- y_{1}^{*} \left(\cos \beta \sin \gamma \right)$$

$$+ z_{1}^{*} \left(\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma \right)$$

B. 2. Inverse Transformation

- a. Given: The local Cartesian coordinates of point I (x_1,y_1,z_1) and the Cartesian geocentric coordinates of the corresponding point of Origin O (X_0,Y_0,Z_0)
- b. Transform the local Cartesian coordinates x_1, y_1, z_1 into Cartesian geocentric coordinates X_1, Y_1, Z_1 .

(1) Rotations

$$x_{1}^{i} = + x_{1} (\cos \alpha \cos \beta)$$

$$+ y_{1} (\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma)$$

$$+ z_{1} (\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma)$$

$$y_{1}^{i} = + x_{1} (\sin \beta)$$

$$+ y_{1} (\cos \beta \cos \gamma)$$

$$- z_{1} (\cos \beta \sin \gamma)$$

$$z_{1}^{i} = - x_{1} (\sin \alpha \cos \beta)$$

$$+ y_{1} (\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma)$$

$$+ z_{1} (\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma)$$

$$(29)$$

(2) Translations

$$X_{1} = X_{1}^{*} + X_{0}$$
 (32)

$$Y_{1} = y_{1}^{t} + Y_{0} \tag{33}$$

$$Z_{1} = Z_{1}^{\dagger} + Z_{0} \tag{34}$$

c. Compute the corresponding ellipsoidal coordinates ϕ_1, λ_i, H_1 .

From Fig. 2

$$\tan \Delta \lambda = \frac{Y_1}{X_4} \tag{35}$$

and
$$\lambda_1 = (\dot{\lambda}) + \Delta \lambda$$
 (36)

Furthermore,

$$s_1 = (x_1^2 + y_1^2)^{\frac{1}{2}} \tag{37}$$

From (15)

$$\tan \psi^{\circ} = \frac{Z_1}{S_1} \cdot \frac{a}{b} \tag{38}$$

From (14)

$$\Delta \psi^{\circ} = -\frac{\tan \psi^{\circ} - \sin \psi^{\circ} \frac{ae^{2}}{\overline{S}_{1}} - \frac{b}{a} \cdot \frac{\overline{S}_{1}}{\overline{S}_{1}}}{1 + \tan^{2} \psi^{\circ} - \cos \psi^{\circ} \cdot \frac{ae^{2}}{\overline{S}_{1}}}$$
(39)

From (13)

$$\Psi = \Psi^{\circ} + \Delta \Psi^{\circ} \tag{40}$$

From (9).

$$\tan \phi_{i} = \tan \Psi \cdot \frac{a}{b} \tag{41}$$

From Fig. 2

$$H = \frac{S_1 - a \cos \psi}{\cos \phi_i} \tag{42}$$

III. RASTER
(Memory Display)

ORDBG-1457 28 Mar 52 IV. FLOW CHART

INVERSE TRANSFORMATION

DIRECT TRANSFORMATION

PRINT:

xį, yį, zį, WEIGHTS, PT. TYPE, PT. #

A. PROGRAM

"The One Address Floating Binary Double Precision (OFBDP)" devised by Lloyd Campbell, Computing Laboratory, Ballistic Research Laboratories, was applied to this problem. Instruction on the use of the code may be found in BRL Report No. 997, October 1956, "Programming and Coding for ORDVAC", by Tadeusz Leser and Michael Romanelli.

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
12.1	K40600	600	+600		Enter OFB
.2	NOO040	•	U OFB		
•3	NN0604	601	fU 13.1		
.4	6002FS		M 2FS	<u>ት</u>	
•5	K80781	602	+ 182		
.6	6002FN	·	m 2FN	· 1 .	Unused
.7	NN0604	603	fU 13.1		
8	SN0262		U* IBMC	· 🕠	
13.1	000783	604	f + W2		Read a,b, $+ .1, + .1$
.2	SN0262	•	UN IBMC	•	
3	NNO70K	605	fU 87.1		
. 4	SNO2FJ		U* IBMC	1	Unused
-5	NN0700	606	fV 83.1		
14.1	441004		ISA	14	
.2	000784	607	f + W3		
	SN0262		U* IBMC	÷	
3	0007F0	608	f + TO		
	6807NO		fxKl	• =	
<u>.5</u>	1007J0	609	fM Pl		
.7	0007F1		f + Tl		Read α , β , γ , (λ) in
<u>. 8</u>	6807N1	60K	f x K2		
.9	fno7jo	-	f(+)MP1		degrees, minutes,
10	0007F2	60S	f + T2		
.11	6807N2	•	f x K3		seconds. Convert to
.12	FN07J0	60N	f(+)MP1		
	0007J0		f + Pl	1	radians. Compute
<u>.13</u>	0007J0	60J	f + Pl		
.15	SNOILL		U* sin-cos	5	sin and cos.
.16	1017J1	60F	fM P2	1	
.17	000017		f + 017	- 1 _a	
.18	1017J2	60T	fM P3	·)	,
.19	F81001		IIA	1	·
14.20	F01607	610	IfC 14.	7 14	
.21	6407NK		f[-1 C3		
.22	1007NJ	611	fm Sl		Set S1(-)
.23	6407NK		£1-103		
.23	1007NF	612	fM S2		Set S2(-)
15.1 .2	0007NK	:	f + C3		· =
.5	2N069N	613.	fC 16.1		<u>> 0</u>
<u>.3</u>	NN0614		fU_38.1		<u> </u>
38.1	0007119	614	f + C2	7	
.2	7807n8		f ÷ Cl	ĺ	· 1000-1000-1000-1000-1000-1000-1000-100
.3	1007J7	615	fm p8		/r/-\ ²
.4	6807J7		f x P8		(b/a) ²
.3 .4 .5 .6	1007J7	616 .	fM P8		
- /	0007N3	- -	f + K4	l l	•

BEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
38.7	0407J 7	617	<u>f(-)</u> P8		2 , , ,2
.8	1007J7		fM P8		e = 1 - (b/a)
9.1	000784	61 8	f + W3	-	Read Xo, Yo, Zo, or Xi, Yi, Zi
.2	SN0262	·	U*IBMC	 	<u> </u>
0.1	0007F4	619	f + T4		~ 0 .
.2	4N061K		fC'41.1	·	<u>≥</u> 0
- 3	NN0604	61K	fU 13.1	59	۷ 0
1.1 .2	0007NJ	Special Con-	f + Sl		
.2	2N067N	618	fC 69.1		Test Sl
.2 2.1 .2	F407NK		f + C3		
.2	1007NJ	61N	fM Sl		Set Sl (+)
.4	1007NL		fM S3		Set S3 (+)
• 4	441005	61J	ISA	1个	$X_0 \rightarrow X_1$
•5	0017F0		f + TO	1	$Y_0 \longrightarrow Y_1$
.6	1017KO	61F	fM Do	ı	$Z_0 \longrightarrow Z_1$
.7	L0161J		IfC' 42.5	1√	
3.1	3007L0	61L	<u>о</u> м т16	A	
.2	0007F0		f + TO		· · · · · · · · · · · · · · · · · · ·
-3	0407L0	620	f(~)T16		
. 4	4 NO6 22		fC' 45.1		
4.1	6407NK	621	f - C3		
.2 .3	1007NL		fM S3		Set S3 (-)
	110628	6 22	fU' 46.1] -	
5.1	0007L0	1,700,000	f + T16		
•2	040 7F 0	623	f(-)TO		
•3	4N0624		fC' 47.1		<u> </u>
<u>.</u> 4	11/0628	624	fu 46.1		Test for quadrant of
	000 7 F1		f + T1		Δλ angle
7.1 .2	0407L0	6 25	f(-)T16		
•3	4N0626		fC 49.1	ļ	
.4	NN062N	626	fu 48.1		
9.1	0007L0		f + T16		
.2	0407F1	627	f(-)Tl		
-3	2 N0631		fC 51.1	·	<u> </u>
.4	NN062L	628	fU 50.1	V	
6.1	0007F1		f + Tl		
.2	7807 F 0	629	f + TO		
•3	1007LF	••	fM P18	92	$tan \Delta \lambda = Y/X$
.4	0007LF	62K	f + P18		
	SNO3NO_		U* arctan	٠.	
• <u>5</u>	1007LF	6 28	fM Pl8		Δλ
.7	NN0636	-	fU 52.1	•	

	SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION	
	48.1	0007N5	62N	f + K6	1		
	. 2	7807N7		. f 🗜 K8			
	•3	1007LF	62J	fM P18		$\pi + \frac{\pi}{2}$	
	•4.	N407N5		f(+)K6		* † 2	
,	•5	1007LF	62 F	fM P18	·		٠.
	.6	NN0636		fU 52.1	<u> </u>	<u> </u>	
	50.1	0007N5	62L	f + K6	1		
	2	7807N7		f ÷ K 8	·	,	
	•3	1007LF	630	fM P18		π	
	4	NN0636		fU 52.1	. 🕨	<u>π</u> 2	•
	51.1	443002	631	ISA	3 Å	· · · · · · · · · · · · · · · · · · ·	
	.2	3007F0		OT MO	-	- 8	
	•3	3007F1	632	OM Tl	· N		
,	.4	3007F2		OM T2		If X and $Y = 0$, set	
	•5	2407N8	633	f - Cl			
	.6	1007F3		fm T3]	$ \phi_0, \lambda_0, \text{ or } \phi_1, \lambda_1 = 0, $	'
	•7	000784	634	f + W3		H or H = -a and	
	.8	SNO2FJ		U*IBMR		print.	•
	•9	L03631	635	IfC' 51.1	3 ₩		
	.10	NN0702		fC 84.1			
	52.1	0007F0	636	f + TO			
	2	6807F0		f x TO		<u> </u>	
•	•3	1007J8	637	fM P9		· ·	
	•4	0007Fl		f + Tl			
	•5	6807Fl	638	f x Tl		$s = (x^2 + y^2)^{1/2}$	
	<u>.6</u>	fno7j8		f(+)M P9	· .	D = (X + Y) '	
	.7	0007J8	639	f + P9	· [•	•
	.8	SN0229	4	υ* /		8	
	•9	700100	63K	fM P9	1		
	10	0007F2	·	f + T2	^		
	.11	7807JB	6 3 S	f • P9			
	12	1007J9	· · · · · · · · · · · · · · · · · · ·	fM PlO			•
	.13	0007N8	63N	f + Cl	.	$\tan \psi^{\circ} = \frac{2}{5} \cdot \frac{a}{b}$	•
	.14	7807N9	•	f : C2		S D	
	.15	6807J9	6 3 J	f x PlO			
. * * •	.16	-1007JS		fM P12	1	82	
•	.17	0007JS	63年	f + P12		· · · · · · · · · · · · · · · · · · ·	
	.18	SNO3NO	. •	U* arctan			٠
•	.19	1007JN	63L	fM P13		Ψ°	
	.20	1007JN		fM P13		Ψ .	
	53.1	0007JN	- 640	f + P13	, ,		٠.
	.2	SNOILL		U*sin-cos			
	•3	1007JJ	641	fM P14		sin v°	
	4	000017		f +017		சார் க	

	f		₩. •	
SEQUENCE :	CODE	ADDRESS		INDEX DESCRIPTION
53-5	1007JF	642	£M P15	cos ∜ ^o
6	0007N8	·	f + Cl	
•7	6807J7	643	f x P8	
.8	78 0 7J8		f ÷ P9	
•9	1007F6	644	fM T6	
.10	0007N9		f + C2	
.11	7807N8	645	f : Cl	
.12	1007F7	•	fM T7	
.13	0007N8	646	f + Cl	
.14	78 07n9		f : C2	
•15	1007JK	647	fM Pll	
<u>.16</u> .17	0007Jr		f + P15	
.17	6807F6	648	f x T6	.0
.18	1007F9		fM T9	$\Delta \psi^{\circ} = 0$ as 2 . 0 b 2
.19	0007JS	649	f + P12	$\tan \psi - \frac{1}{S} \sin \psi - \frac{1}{a} \sin \psi$
.20	6807JS	67020	f x Pl2	2.0 0 ee ²
.21	N407N3	64K	f(+)K4	$1 + \tan \psi - \cos \psi \cdot \frac{1}{S}$
.22	0407F9		f(-)T9	
.23	1007F9	648	fM T9	
.24	0007F6		f + T6	
.25	68 0 7JJ	64N	f x P14	
.26	1007FK		fM TlO	
.27	0007F7	6 4J	f + T7	
.28	6807J9		f x P10	<u> </u>
.29	1007FS	64F	fM Tll	
.30	2407JS	(1) =	f - P12	
31	N407FK	64L	f(+)T10	
. 32	N4O7FS	756	f(+)Tll	
•33	7807F9	650	f : T9	1 0
.34	1007JL		fM P16	V∆ V°
•35	0007JN	651	f + P13	$ \uparrow \psi = \psi^{\circ} + \Delta \psi^{\circ} $
.36	N407JL		f(+) P16	
•37	1007JN	652	fM P13	\checkmark
. 38	NN0655	7	fu 56.1	
54.1	F407JL	653	f(+(P16	
.2	0407N4	ZCh.	f(-)K5	
.3	2N0640	654	fC 53.1	e e e
.4 56.1	NNO65S 0007JN	655	fU 55.1 f + Pl3	
56.1 .2	SNOLLL	• ,	U* sin-co	g.
<u> </u>	1007JJ	656	fM P14	
·3	000017	0,0	f + 017	sin ¥
•5	1007JF	657	fM P15	
.6	0007JJ	971	f + P14	cos ∜
	200100		T + LT+	<u> </u>

SEQUENCE	CODE	ADDRESS	ORDER IN	DEX	DESCRIPT	ION
56.7	7807JF	658	f ÷ P15			,
.8	1007JS	٠.,	fM Pl2		tan ψ	100
.9	0007JS	659	f + Pl2			
.10	SNO3NO		U* arctan		•	
.11	1007JN	65K	fM Pl3		Ψ .	
.12	NN0653		fu 54.1		_ <u> </u>	
55.1	. 0007JS	65s	f + P12			
.2	6807JK		f x Pll	· 		<u>.</u>
-3	1007JS	65N	fM Pl2		$tan \phi = tan \psi$	8.
4	0007JS	·	f + P12			D
. 5	0007JS	65J .	f + P12	•	· ·	
. 6.	SNO3NO	b 6:	U* arctan			
.7	1007FF	65F	fM Tl4		ø	
8	0007F1	·	f + T1		· · · · · · · · · · · · · · · · · · ·	<u> </u>
.9	7807F0	65L	f + TO	-	$\tan \Delta \lambda = \frac{Y}{Y}$	4
.10	1007FN	·	fM T12		Tan Ax - X	
.11	0007FN	660	f + T12			
.12	SNO3NO		. U* arctan		<u> </u>	·
13	1007LF	661	fM Pl8	. <u>-</u>	Δλ	· · · · · · · · · · · · · · · · · · ·
<u>57.1</u>	0007NL	·	f + S3			<u> </u>
.2	4 NO 664	662	fC' 59.1		•	
3	NN0663		fu 58.1			•
58.1	0007LF	663	f + P18	-		, , , , , , , , , , , , , , , , , , , ,
2.	n407n5		f(+)K6		-	100 <u>— -</u>
-3	1007LF	· 664	fM Pl8		π + Δλ	
<u>59.1</u> .2	0007J0		f + Pl		·	
.2	N4O7LF	665	f(+)P18			
	1007FL		fM T15		$(\lambda) + \Delta \lambda = \lambda$	
60.1	0007FF	666	F + T14		Yes .	
.2	SNOILL		U* sin-cos			
•3	000017	. 667	f + 017			
4	1007FN		fM T12		cos Ø	
-5	2407N8	668	f - Cl	不	,	
6	6807JF		f x P15			
.7	N407J8	669	f(+)P9	- 88	π S - & cos	Ÿ.
.8	7807FN		f ÷ T12		$H = \frac{D - Q \cos \theta}{\cos \theta}$	
-9	1007F3	66K	fM T3	1		
:10	4 <u>41002</u>		ISA	11		
61.1	0017FF	. 66s	f + T14.	1		
. 2	.7807NO		$f \in KL$			
.3	1017FF	66N	fM T14	1	<u></u>	
14-	- 0007N6		f + K7		•	
5	6807N6	· 66J	f x K7			
.6	1007FK		fM TO	. 1	,	,

**

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
61.7	6817FF	66F	f x Tl4	1	
.8	1007FS		fM Tll	_	
-9	3007F0	66L	OM TO		
1.10	3007F1		OM Tl		
62.1	0007FS	670	f + T11		
.2	0407FK		f(-)T10		
62.3	1007FS	671	fM Tll		
.4	4N0672	Laure A	fC' 64.1		
-5	NNO6LS	672	fU 81.1		
64.1	0007F0	giora yea	f + TO_		
.2	N407N3	673	f(+) K4		Convert Øo, λo
3	1007F0		fM TO		
.4	NN0670	674	fU 62.1		or \emptyset , λ , to degrees,
63.1	0007FS		f + T11		minutes and seconds.
.2	0407N6	675	f(-) K7		
.4	1007FS		fM Tll		
. 4	210677	676	fC 65.1		
5	NN0679		fu 66.1	<u>.</u>	
<u>.5</u> 65.1	0007F1	677	f + T1		
2	N407N3		f(+)K4		
.2 .3 .4	1007F1	678	fM Tl		
.4	110674		fu' 63.1		
66.1	N407N6	679	f(+)K7		
2.	1007F2		fM T2		<u>/</u>
67.1	000784	67K	f + W3	1	Print Ø, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
.2	SNO2FJ	:	U*IBMR		Print Ø, \lambda, H, o, or Ø ₁ , \lambda ₁ , H ₁
68.1	F0166S	67S	IfC 61.1	1 \	/
.2	NN0702	MONE.	fU 84.1		Ň.
69.1	2407J2	67N	f-P3		·
.2	6807J3		fxP4		'
•3	6807J6	67J	f x P7		
•4	1007FK		fM T10		
•5	0007J1	67F	f + P3		
.6	6807J5		f x P6	-	
.7	FNO7FK	67L	f(+)MTlO		
.8	0007F1		f + T1		
•9	6807FK	680	f x T10	• • • • • • • • • • • • • • • • • • • •	
10	1007FK		fM T10		
.11	0007J2	681	f + P3		x' = x (cos (cos 6)
12	6807J4		f x P5	- 8	$x_1' = x_1(\cos \alpha \cos \beta)$
.13	6807F0	682	f x TO		+ $y_i(\sin \alpha \sin \gamma - \cos \alpha)$
.14	FN07FK		f(+)MT10		$\sin \beta \cos \gamma$
•15	JN09TN	683	fU'69A.1		$+ z_{i}(\sin \alpha \cos \gamma + \cos \alpha)$
.16	N40/L1		f(+)T17		$\alpha \sin \beta \sin \gamma$

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
69.17	6807F2	684	f x T2		
.18	FNO7EK		f(+)MT10	. ↓	
.19	2407J4	685	f-P5	1	
.20	6807J5		f x P6	·	E 1 Naj No
.21	6807F2	686	f x T2	1.	
.22	1007FS		fM Tll		·
.23	0007J4	687	f + P5		The state of the s
24	6807J6		f x P7		$y_1 = x_1(\sin \beta)$
.25	6807F1	688	f x Tl		+ y ₁ (cos β cos γ)
.26	FNO7FS		f(+)MTll		1
. 27	-0007J3	689	f + P4		- $z_i(\cos \beta \sin \gamma)$
.28	6807F0		f x TO	•	1
.29	FNO7FS	68K	f(+)MT11	V	
. 30	2407F0		f - TO	本	
.30 .31	6807ਹ੍1	68s	f x P2		
* . <u>3</u> 2	6807J4		f x P5	- 1	
.33	1007FN	68n	fM Tl2		
- 34	0007J1		f + P2	İ	
•35	6807J3	68J	fxP4		
36	6807J6		f x P7	∫ 6	
.37	1007FJ	68F	fM T13		
- 38	1007J2		f + P3	[·	20
.39	6807J5	68L	f x P6		9-1
40	FNO7FJ	.50	f(+)MT13	ļ	•
.41	0007F1	690	f + T1		
42	6807FJ		f x T13		· ·
43	FNO7FN	691	f(+)MT12		-1 - /-1 - 0 - 0
. 44	2407J1	50	f - P2		$z_{1}' = -x_{1}(\sin \alpha \cos \beta)$
.45	6807J3	692	f x P4		+ y , (cos α sin γ +
.46	6807J5		f x P6		sin α sin β cos γ
.47	1007FJ	693	fM T13		$+ z_{\star}(\cos \alpha \cos \gamma -$
.48	0007J2	,	f + P3		sinα sinβ sinγ
.49	6807J6	694	f x P7		
.50	FNO7FJ	iiu	f(+)MT13		,
.51	0007FJ	695	f + T13	•	49
.52	6807F2		f x T2	ŀ	
•53	FNO FN	696	f(+)MT13	V	·····
70.1	0007FK	579	f + T10	•	
.2	N407KO	697	f(+)DO	ν	- with V - A V
_ •3	1007F0	2 <u>1915</u> -	fM TO	Λ	$1 = \mathbf{x_1^t} + \mathbf{X_0} \longrightarrow \mathbf{X}$
· h	0007FS	698	f + T11	,	
.5	N407K1		f(+)Dl		
.6	1007F1	699	fM Tl		V Seed IV V
.7	0007FN	-	f + T12		$Y_1 = Y_1 + Y_0 \longrightarrow Y$

,773

			123		:,
SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
70.8	N407K2	· 69K	f(+)D2		7
•9.	1007F2		fM T2		$Z_{i} = z_{i}^{\dagger} + Z_{o} \longrightarrow Z$
.10	NN061L	698	fU 43.1		
	NN061T		fu 43.1	SH sol	
16.1	442002	69N	ISA	2	
.2	000784	-25	f + W3		<u> </u>
17.1	000784	69J	f + W3		Read \emptyset_0 , λ_0 , H_0 or
.2	sn0262		U*IBMC		ϕ_1, λ_1, H_1
17.3	0007F0	69F	f + TO	<u> </u>	
4	6807NO		f x Kl		
• 5	1027KO	69L	fM DO	2	
	0007F1		f + D1		
• 7	6807N1	6ко	fxK2		
8_	FN27KO	· ·	f(+) MDO	2	
•9	0007F2	6 <u>k</u> a	f + T2		Convert angles to radians
.10	6807N2		f x K3		0071010 0008701 00 10070000
.11	FN27KO	6K2	f (+)MDO	2	
.12	0007F3		f + T3		<u> </u>
.13	0007F3	6K3	f + T3		
.14	1007K2		fM D2		
.15	0007F4	6 K 4	f + T4		
.16	1007K3		fM D3	<u> </u>	
18.1	0007F4	6 K 5	f + T4		122-100
	4N06K6	 	fC'18A.1		Next case?
.3	NN0604	6K6	fu 13.1		
18A.1	F0269J		IfC 17.1	2	
19 .1	0007KI	6к7	f + D1		
2	040750		f(-)Pl	·	
	1007L0	6 K 8	fm T16		Δ\
20.1	0007N3		f + K4		
.5	N407N3	6K9	f(+)K4	}	•
.3	1007FK	7.25	fM T10		·
- 4	0007115	6KK	f + K6	1	
• 5	7807 FK	·	f ÷ TlO	· · _	
.6	1007FK	6KS .	fM T10	•	Test for
<i>-</i> 7	0007ко		f + DO		$\phi = \frac{\pi}{2}$
					$\phi = \frac{\pi}{2}$?
.8	0407FK	6KN	f(-)T10		
.9	71000 KJ		fC'21.1		<u></u>
.10	NNO6S1	6KJ	fU 23.1	<u> </u>	
21.1	0007FK		f + T10		
.2	O407KO	6кт	f(-)DO		
.3	4NO6KL		fC'22.1	j	

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
21.4	NNO6S1	6KL	fu 23.1		
22.1	0007KO		f + DO		<u> </u>
.2	0407SL	680	f(-)KO	ſ	
<u>.3</u>	1007KO		fM DO		
23.1	0007KO	6S1	f + DO		
2	SNOILL		U* sin-cos	·	
-3	1007J7	682	fM P8		sin Ø
<u> 4</u>	000017	,	f + 017		
-5	1007J8	683	fM P9		cos Ø
6	0007J7		f + P8		
-7	7807J8	6S4	f + P9		
.8	1007J9		fM PlO		tan Ø
•9	0007L0	6S5	f + T16		
.10	SNOIL1		U* sin-cos		
.11	1007JK	6\$6	fM Pll		
.12	000017		f + 017		sin Δλ
.13	1007JS	687	fM P12		43
24.1	0007119	-	f. + C2.		cos ∆λ
.2	7807N8	6s8	f + Cl		
.3	, 6807J9		f x PlO		
-4	1007FN	689	fM T12		$\tan \psi = \tan \phi \cdot \frac{b}{a}$
	1007FN	5.00	fM T12		$\tan \psi = \tan \phi \cdot \frac{b}{a}$
<u>.5</u>	0007FN	6sk	f + T12		
.7	SNO3NO		U* arctan		
.8	1007FN	6SS	fM Tl2	,	
	0007FN		f + T12		,
<u>.9</u> .10	0007FN	6sn	f + T12		
	SNOIL1	:	U* sin-cos		
.12	1007JN	6SJ	fM Pl3		sin V
	000017		f + 017		
.13	1007JJ	6SF	fM Pl4		cos ¥
15	1007JJ		fM Pl4		20.00
25.1	0007N8	6SL	f + Cl		
• .2	_6807JJ		f x Pl4		
	1007FK	6NO	fM TlO		S = a cos ¥
	0007N9		f + C2	٠.	
•5 •6	6807JN	6N1	f x Pl3		Z = b sin ψ
.6	1007FS		fM Pll		<u> </u>
-7	0007K2	6N2	f + D2		
8	6807.58		f x P9		
• • 9	FN07FK	6N3	f + MT10		$S = S_+ + H \cos \phi$
.10	0007K2		f + D2	, ,	pp
.11	6807.17	6N4	fxP8	, .	$Z = Z + H \sin \phi$
.12	FNO7FS		f + MT11		р д ддр

			80		
SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
25.13	0007FK	6N5	f + T10		
<u>.14</u>	6807JS		f x P12		· · · · · · · · · · · · · · · · · · ·
.15	1007FN	6N6	fM T12		X = S cos Δλ
.16	0007FK	=	f + T10		A - D COS ZA
.17	6807JK	6N7	f x Pll		V - C -4- A)
.18	1007FJ		fM T13		$Y = S \sin \Delta \lambda$
26.1	OOO7NF	6 n 8	f + S2		
2	2N06J1		fC 29.1		Test S2
•3	1N06N9	6N9	fU'27.1		
27.1	0007FN		f + T12		·
.2	1007K5	6nk	fM D5	.,,,	
	1007F0	- 1377	fM TO	•	$x \longrightarrow x_o$
<u>.3</u>	0007FJ	6NS	f + T12		
	1007K6		fm D6		
·5	1007F1	6NS	fM Tl		
	0007FS	01,2	f + Tll		$Y \longrightarrow Y_o$
.8 .	1007K7	6NJ	fM D7	<u> </u>	
	1007F2	0110	fm T2		$z \longrightarrow z_o$
<u>.9</u>	NN0706	6NF	fU 86.1		
	1007NF	ONE	fm S2	•	
<u>.11</u> 28.1	000784	6NL	f + W2		
	SNO2FJ	CIVI	U*IBMR		Print x ₁ , y ₁ , z ₁ , id.
•2	NNO69N	6J0	fU 16.1		
• 5 • 4	NNO69N	000	fu 16.1		• .
29.1	0007FN	6J1	f + T12		
	0407K5	001	f(-)D5		$x_1 = X_1 - X_0 \longrightarrow X$
.2	CALIONO		1 (11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 1 0
•3	1007K8	6J2	fM D8		
. 4	0007FJ	- 2000	f +_T13		·
.5	0407K6	6J3	f(-)D6		vi - V - V - V
<u>.</u> 6	1007K9		fM D9		$y_i' = Y_i - Y_0 \longrightarrow Y$
.7	0007FS	6J4	f + T11		
.8	0407K7_	·	f(-)D7		<u> </u>
.9	1007KK	6J5	fM D10		zi - 7 - 7 \ \ 7
.10	1007KK		fM Dio		$z_i^t = Z_i - Z_0 \longrightarrow Z$
30.1	0007J2	6J6	f + P3	小	·
2	6807J4		f x P5		$x_{\underline{i}} = x_{\underline{i}}(\cos \alpha \cos \beta)$
-3	6807KB	6J7	f x D8	•	+ $y_1'(\sin \beta)$
•3 •4	1007FO		fm To	•]	$-z_{1}^{\prime}(\sin\alpha\cos B)$
					- 21(322 & 608 2)
• 5	0007J3	6 J8	f + P4	Ĭ.	
.6	6807K9		f x D9		
•7	FN07F0	6J9	f(+) MTO	_ Ă	· · · · · · · · · · · · · · · · · · ·
.8	2407J1		f - P2	T	

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
30. 9	6807J4	бјк	fxP5		
.10	6807KK	·	f x DlO		
<u>.11</u>	FN07F0	6JS	f(+)MTO		1.2W
12	0007J2		f + P3	<u> </u>	
.13	6807J3	6JN	f x Pl	_	
.14	6807J6		fxP7	<u>. '</u>	
.15	1007Fl	6JJ	fM Tl	•	
.16	0007J1	·	f + P2		
-17	6807J5	6JF	f x P6		
.18	0407Fl -		f(-)Tl		
.19	6807K8	6JL	f x D8		
.20	1007F1_		fM Tl		<u> </u>
.21	0007J4	6F0	f + P5		
.22	6807J6		fxP7		
.22	6807k9	6Fl	f x D9		$y_i = x_i^i (\sin \alpha \sin \gamma)$
.24	FNO7F1		f x MTl		1 1
.25	0007J1	6 F 2	f + P2		$-\cos \alpha \sin \beta \cos \gamma$
.26	6807J3		f x P4		
.27	6807J6	6F3	f x P7	٠	+ y' ₁ (cos β cos γ)
.28	1007L0		fM T16		$+z_{i}^{\dagger}(\cos\alpha\sin\gamma+$
	•	•			$\begin{array}{c} + z_{1}(\cos \alpha \sin \gamma + \alpha \sin \beta \cos \gamma) \end{array}$
.29	0007J2	6F4	f + P3		sin a sin p cos //
	6807J5	OP"	f x P6		
.30 .31	N407L0	6F5	f(+)T16		
.32	6807KK	Or)	f x D10		
•33	FNO7F1	.6F6	f(+)MT1		
・フノ・	0007J2	.020	f + P3		
• 3 ¹ 4	6807J3	6F 7	f x P4		
. • 37	6807J5	OF 1	f x P6		
<u>.36</u> .37	1007L0	6F8	fM T16		
<u>.38</u>	0007J1 _	010	f + P2		
•39	6807J6	6F9	f x P7		
.40	N407LO		f(+)T16		$z_1 = x_1^* (\sin \alpha \cos \gamma)$
-41	6807K8	6FK	f x D8	-	$+\cos\alpha\sin\beta\sin\gamma$
42	1007F2		fM T2	• •	$-y_i'(\cos\beta\sin\gamma)$
-43	0007J4	6FS	f + P5		+ 2 (cos α cos γ
. 44	6807J5		f x P6		$\frac{1}{-\sin\alpha}\sin B\sin\gamma$
•45	1007L0	6FN	fM T16		
.46	2407K9	*h	f - D9		
.47	6807L0	6FJ	f x T16		
.48	FN07F2	:	$\dot{\mathbf{f}}$ + MT2	•	
.49	0007J1	6FF	f + P2		
.50	6807J3	•	f x P4_		
.51	6807J5	6FL	f x P6		
.52	1007LO -	•	fm T16		

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
30.53	000752	6T0	f + P3		
54	6807J6		f x P7		
• 55	0407I.0	61.1	f(-)T16		
.56	6807KK		f x D10		<u> </u>
•57	FN07F2	6 <u>1</u> 2	$f(+)MT^2$		
. 58	NNOGNL		fu 28.1		<u></u>
80.1	0007F4	6L3	f + T4.	<u> </u>	
.2	1007F5		fM T5		·
•3	1007FS	6 <u>1</u> .4	fM Tll		
• 4	0007NK		f + C3		
•5 •6 •7	1007F4	6 <u>L</u> 5	fM T4		
.6	1007FK		fM TlO		132
•7	3007F9	6L6	OM T9		
.ė	443003		ISA	3	Unused
. <u>8</u>	0007N3	6L7	f + K4		· · · · · · · · · · · · · · · · · · ·
.10	1037F6	·	fm T6	3	
.11	F036L7	6L8	IfC 80.9	3	
.12	000785		f + W4		
.13	000785	6L9	f + W4		
14:	SNO2FJ	 /	U*IBMR		
.14 .15	NNO69N	6LK	fU 16.1		
.16	NNO69N	0141	fu 16.1	₩	
. <u>1</u> 6 B1.1	N407FK	6LS	f(+)T10	 	
.2	1007FS	OLLO	fM Tll		ø" - 3600
.2 .3	1NO674	6LN	fU'63.1	441	<i>y</i> - 2000
9A.1	0007J2	<u> </u>	f + P3	^	· ·
.2	6807J3	6LJ	f x P4		
. 3	6807J5	OLDO	f x P6		Part of Box 69
<u> 1</u>	1007L1	6LF	fM T17		Tare or box oy
• •	0007J1	ÇIII.	f + P2		
 -	6807 J 6	6LL	f x P7		
•7	110683	. 01111	fu ² 69.16		
33.1	6407NK	700	f - C3	<u> </u>	
. •2	1007NN	100	fM S4		Set 4(-)
-3	100606	701	fu' 14.6	 	DE0 4(4)
1.	TN0909	ìΩπ	fu 14.6	•	
<u>.4</u> 34.1	0007NN	702	f + S4		
.2	2N0618	. 106	fC 39.1		Test S4
•3	1N0703	703	fu 85.1		TEBO NA
ر. 35 1	F407NK	. 100	f + C3		
7) • ±		704	fM S4		
• -	1007NN	104	u*24L	•	Dudne blank
35.1 .2 .3 .4	SNO24L	705			Print blank
• 4	NN0618	705	fU 39.1	•	
•5	NN0618		fU 39.1		

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
86.1	F407NK	706	f + C3		
2	1007NK		fm s2	· · · · · · · · · · · · · · · · · · ·	<u> </u>
- 3	000784	707	f + W3		Print X . Y . Z . id
.4	SNO2FJ		U* IBMR		Print X _o , Y _o , Z _o , id.
-5	000784	708	f + W3	•	
.6	SNO24L		U* 24L		Print blank
•7	NN069N	709 .	fU 16.1		
.8	NN069N		#U 16.1	·	
87.1	2407NS	70K	f C4		
.2	4N070J	:	fC189.1		≧0
88.1	к80780	70S	+ Bl .	小	Set field words for
.2	6003SF		M3SF		10 digit
.3	к80781	70N	+ B2		Floating decimal
.4	6003SL	,	M3SL	· · · · · · · · · · · · · · · · · · ·	output (S10-S2)
-5	NNO710	70J	fU 90.1		
89.1	к80786		+B4	· • •	Set Field words
.2	6003SF	70F	M.3SF		for 8 digit
-3	к80787		+ B 5		floating decimal
.4	6003SL	. 70L	M 3SL		output (S8-S2)
-5	NNO710		fU 90.1	`	
90.1	000783	710	f + W2		
.2	SNO2FJ		U*IBMR		Print a,b, + .1,+ .1
•3	NN0700	711	fu 83.1		
4	NN0700		_fu 83.1		<u> </u>

B. OPTION

SEQUENCE	CODE	ADDRESS	ORDER	INDEX	DESCRIPTION
	800300		Key		
F	200711	,	word		•
90.3	NN0717	711	fU 91.11		
. 4	NN0717		fU 91.11		•
91.1	0007F4	712	f + T4		
.2	1007K3		fM D3		Point number
•3	1007F5	713	fM T5		Point number
.4	00078K	19000	f + W7		
•5	1007F3	714	fM T3		Weighting factor
.6	F407NK		f + C3		
.7	1007F4	715	fM T4		Point type
. 8	0007K3	P	f + D3		
9	4N06K6	716	fC' 18A	l	,
•10	NN0604		fU 13.1		
.11	0007NN	717	f + C5		Temporary storage
<u>.12</u>	_10078K	5.949A	fM W7		of weights
.13	NN0700	718	fu 83.1		
.14	NN0700		fu 83.1		
	800003		Кеу		
	2006k4	•	word		
17.15	NN0712	6K4	fU 91.1		
.16	NN0712		fU 91.1_		·
	800003		Key		
	2006NL		word		
28.1	000789	6NL	f + W6		Print for camera
.2	SNO2FJ		U*IBMR		orientation input
	800003		Key		
	200783		word		
	050005	783	W2		Control word - Print
	1007N8	לסו	WZ		a, b, ± .1, ± .1
		•			weights
	800003		Key		
	200789		word	· · · · · · · · · · · · · · · · · · ·	
	060006	789	WG		Control word to
	1007F0			,	print for cemera
	5-307 - 595 WI				orientation
	800001	-			
	· 000III				

SEQUENCE	CODE	ADDRESS	ORDER.	INDEX	DESCRIPTION
	K20K2K -	780	Bl	不	Field words for format
. (22.	2K02K2			1	of 10 digit floating
	J20F7N	781	B2		decimal numbers
. ,	000000	0.000000	N		(S10 - S2)
}	050009	782	Wl	· · · · ·	Unused
	1007SL				
	050004	783	W2		Read a, b, \pm .1, \pm .1
	1007N8		•		
	050005	784	W3		Control word for input
	1007F0		t.		and output
·	050005	785	W4 ·		Unused
	1007F0				
	820828	786	B3	1	Field words for format
	280282			1	of 8 digit floating
	820F7N	. 787	B4		binary numbers
	000000				(S8S2)
•	,	788	W5		Available
		789	w6		Available
			,,,,		TI A AMERICAN AND AND AND AND AND AND AND AND AND A
		78K	w7	,	Temporary storage
				•	for weighting factor

A 40 31 21

VI. CONSTANTS

The following floating decimal constants with 22 decimal digits were converted to sexadecimal form for input with the program in order to maintain maximum accuracy, especially in converting degrees, minutes, and seconds to radians:

```
+ .1000 0000
              0000 0000 0000 00 - 16 constant
                           5769 00 - 01 \text{ radians} = 1^{\circ}
        3292
8820
               5199 4329
+ .1745
              8665
+ .2908
                     7215 9615 00 - 03 \text{ radians} = 1^{\circ}
+ .4848
        1368
               1109
                    5359 9359 00 - 05 radians = 1"
+ .1000
        0000
               0000
                     0000
                          0000 00 + 01 constant .
              0000
                    0000 0000
+ .5000 0000
                                 00 - 06 iterative constant
+ 3141 5926
               5358
                     9793
                           2384 60 + 01 \pi
+ .6000 0000 0000 0000 0000 00 + 02 constant
+ .2000 0000 0000 0000 0000 00 + 01 constant
```

A. FORMAT

The data cards are punched using standard floating decimal form (S8-S2) - [coefficient (sign and 8 digits) with exponent (sign and 2 digits)] or (S10-S2) - [coefficient (sign and 10 digits) with exponent (sign and 2 digits)] . The sign is in a separate column using "0" punch or no punch for plus and "X" for minus.

B. INPUT AND OUTPUT

The data input has 10 (S10-S2) decimal digits while the output may either be with 8 (S8-S2) or 10 (S10-S2) decimal digits. The input cards contain five 10-digit floating decimal numbers. Card No. 1 contains information designating form of output and signal for direct or inverse transformation.

The option card placed before "transfer to program" card is used to print six (S8-S2) numbers which include information such as weight, point type, and point number, in addition to the local Cartesian coordinates. This form of output is prepared for use with the photogrammetric camera orientation program.

Card No. 1:

See sample input for remainder of cards.

If a minus angle is used minus must be punched with all three values, i.e. degrees, minutes, and seconds.

Follow each case by a card with ~.1 punches in columns 57 and 58.

As many cases as desired may be run by stacking one after the other.

For output see samples.

A. Roberta Woolen

A. ROBERTA WOOTEN

VIII. SAMPLES

DIRECT TRANSFORMATION

A.1. INPUT (S10-S2):

```
.1000000000
                                                      ` O
                                                                             wt..1000000000
.6378206400
              07
                  b 6356583800
                                  07
              020
                                                      00"
.3000000000
                    .00
                                  0.0
                                       • 00
              020
                   •00
•6000000000
                                                      00"
                                  00
                                       •00
              020
                                                      00"
                    .00
.1100000000
                                  00
                                        .00
              020
                   .00
                                                      00"
.3000000000
                                  00
                                        .00
              020
                                                      00"H
                    .1500000000
.3300000000
                                  021
                                       .00
                                                           .00
                                                                          00 1d. 888
              03.0
                    .2000000000
                                                                          00 1d. 888
.1120000000
                                  01'
                                        •300000000
                                                            .00
              020
.3300000000
                    •2900000000
                                  0.21
                                       •4090500000
                                                           •3457050000
                                                                          03pt# • 1000000000
              039
•1120000000
                    .2000000000
                                  011
                                        •5300600000
                                                           ..3457050000
                                                                          03pt#.1000000000
              020
                                                      02"
.3300000000
                    .2,900000000
                                        4231700000
                                                           .3601830000
                                                                          03
                                                                                •2000000000
                                                                                              -01
                                  021
              030
                                                      02"
                    .0000000000
                                                                          03
                                                                                ·2000000000
                                                                                              01
•1120000000
                                  00
                                        4722400000
                                                           3601830000
              020
                    .2900000000
                                                      02."
                                                           3682910000
                                                                          03
                                                                                300000000
                                                                                              01
.3300000000
                                  021
                                        4044500000
              030
                                                      02"
                                                                          03
                                                                                              01
•1110000000
                    •5900000000
                                  021
                                        •4135600000
                                                           3682910000
                                                                                •300000000
              020
                                                      02"
                                                           .3781970000
                    £2900000000
                                                                          03
                                                                                •400000000
                                                                                              01
.3300000000
                                  02
                                        •3708100000
              030
.1110000000
                    .5800000000
                                  021
                                        •3929200000
                                                      02,
                                                            .3781970000
                                                                          03
                                                                                •400000000
                                                                                              0.1
              020
                                                                                $5000000000
.3300000000
                    .2800000000
                                                      02
                                                           .3352810000
                                                                          03
                                                                                             0.1
                                  021
                                        4854400000
              030
·1120000000
                                        •5177300000
                                                      02" .3352810000
                                                                          03

→ •5000000000
                                                                                              01
                    3000000000
                                  01'
```

2. OUTPUT (S8 -S2):

```
.63782064
             07
                  ъ •63565838
                                07
                                        •10000000
                                                    00
                                                            ·10000000
                                                         H .000.00000
 .73926119
                    •52880168
                                      Z .34769959
                                                                              11. 88800000
             06
                                07
-.19331433
                                                                       ·03 pt #
                                                                                .10000000
             05
                    .80909770.
                                04
                                                    05
                                                            •34570500
                                                                                           -01
                                      2. 17258366
                                                            .36018300
                                                                                •20000000
                                                                                            0.1
             05
                     .58307076
                                 04
                                        19373897
                                                    05
                                                                        03
-.18350873
                                                    05
                                                            ·36829100
                                                                                .30000000
                                                                                            01
-.17780251
                     .46251237
                                04
                                        •20430183
                                                                        03
             05
                                                   `.05
                                                            .37819700
                                                                        03
                                                                                .40000000
                                                                                            01
-.17206358
             05
                    34769590
                                04
                                        •21394716
-.18653961
                                                    05
                                                            •33528100·
                                                                        03
                                                                                ▲50000000 ·
                    87096000
                                04
                                        15242694
```

3. INPUT (\$10-\$2):

```
b.6356583800
                                   0.7
                                         •1000000000
.6378206400
               07
              020
                    • 00
                                   001
                                                        0.01
•3000000000
                                         • 00
              020
.6000000000
                                                       0.0"
                    •00
                                   00t
                                         • 00
                                                        0.0"
.1100000000
                    .00
                                   001
                                         •00
              020
.3000000000
                    .00
                                   001
                                         .00
                                                       00"
              020
.3300000000
                    .1500000000
                                   021
                                         • 00
                                                        0.011
                                                           H •00
                                                                               14.888
              030
                                                           HO 00
.1120000000
                    .2000000000
                                   011
                                         3900000000
                                                       02"
                                                                            00 id 888
               020
.3300000000
                    •2900000000
                                   02 •
                                         ·• 4090500000
                                                             -3457050000
                                                                            03 bt# • 1000000000
              030
•1120000000
                    .2000000000
                                   01
                                         •5300600000
                                                       02"
                                                           н 3457050000
                                                                            03 pt# 1000000000
                                                                                                 01
              0.20
•3300000000
                    •2900000000
                                   021
                                         •4231700000
                                                       02"
                                                             *•3601830000
                                                                                  ·2000000000
                                                                                                 01
               030
•1120000000
                    ·•0000000000
                                   יסמ
                                         4722400000
                                                       02"
                                                             ·3601830000
                                                                            03
                                                                                  •2000000000
                                                                                                 01
              020
•33000000C
                    ·2900000000
                                   02 1
                                         •4044500000
                                                       02"
                                                             .3682910000
                                                                            03
                                                                                  •3000000000
              030
•1110000000
                    •5900000000
                                   02
                                         4135600000
                                                       02"
                                                             •3682910000.
                                                                            03
                                                                                  •300000000
                                                                                                 01
               020
                    .290000000
•3300000000
                                   021
                                         •3708100000
                                                       02"
                                                             •3781970000
                                                                            03
                                                                                  •4000000000
                                                                                                 01
              030
•1110000000
                    •5800000000
                                   02
                                         •3929200000
                                                       02"
                                                             •3781970000
                                                                            03
                                                                                  •4000000000
                                                                                                 01
              0.20
.33000000000
                    2800000000
                                   02 1
                                         4854400000
                                                       02"
                                                             •3352810000
                                                                            03
                                                                                  •5000000000
.1120000000
              030.
                    •300000000
                                   01'
                                         •5177300000
                                                       0.2"
                                                            *.3352810000
                                                                            03
                                                                                ₩ •500000000
```

OUTPUT (S10-S2):

```
07 Ъ .6356583800
                                       0.7
                                             •100000000
                                                                  •100000000
    •6378206400 ·
X
    •7392611900
                   06 Y • 5288016840
                                       07 Z<sub>0</sub> • 3476995877
                                                                H_0.0000000000
                                                                                   0 14..8880000000
                                                                                                      00
                   05 y<sub>4</sub> 68090977021
                                           z. •1725836610
                                                             05
                                                                H<sub>2</sub> 3457050000
                                                                                                       01
   -.1933143294
                                                                                 ·03pt#•1000000000
   -.1835087267
                                                                                                       01
                   05 /
                         •5830707593
                                        04
                                              1937389728
                                                            05
                                                                  -3601830000
                                                                                  03
                                                                                        •200000000
                                        04
   -.1778025115
                   05
                         •4625123712
                                              •2043018349
                                                            05
                                                                  ·•3682910000
                                                                                  03
                                                                                        •300000000
                                                                                                       01
   -.1720635834
                   05
                         3476958963
                                        04
                                             2139471566
                                                             05
                                                                  .3781970000
                                                                                  03
                                                                                                       01
                                                                                        •400000000
  -.1865396068
                   05

↓ .8709600040

                                        04

↓ • 1524269400

                                                            05
                                                                 ₩.3352810000
                                                                                  03.
                                                                                      ↓ .5000000000
```

÷

INVERSE TRANSFORMATION

B. 1. <u>INPUT (S10-S2)</u>:

```
ъ .6356583800
    6378206400
                   0.7
                                        07
                                             -.1000000000
                                                                  -.1000000000
                                                                                  00
                   020
                                                            00"
    .3000000000
α
                         .00
                                        00
                                              .00
                   020
    60000000000
                         .00
                                                             00"
                                        001
                                              •00
                   020
    .1100000000
                                                             0.0
                         .00
                                        001
                                              • 00
                   020
    .300000000
                         .00
                                        001
                                             • 00
                                                             0.011
    .7392611900
                       x • 5288016840
                   06
                                        07 Z •3476995877
                                                                   .00
                                                             07
                                                                                  001d. 9999
                       y 8090977022
                                            °•1725836606
                                        04 2
   -.1933143282
                   05
                                                             05
                                                                   .00
                                                                                  pt# .1000000000
                                                                                                       0.1
   -.1835087258
                   05
                        <del>1</del> 5830707560
                                        04
                                              1937389724
                                                             05
                                                                                        •200000000
                                                                                                       01
   ~.1778025108
                  .05
                         4625123691
                                        04
                                              2043018345
                                                             05
                                                                   .0
                                                                                        •300000000
   ~•1720635832
                   05
                         .3476958981
                                        04
                                             ·2139471564
                                                             05
                                                                   · 0
                                                                                        •400000000
                                                                                                       -01
  -.1865396065
                   0.5
                        J. 8709600028
                                        04
                                            V • 1524269402
                                                             05
                                                                   • Ö.
                                                                                        •5000000000
                                                                                                       01
    • 0
                                                                                        •6000000000
                                                                                                      01
```

2. OUTPUT (S8-S2):

```
63782064.
            07
                  ъ •63565838
                                 07
                                        -.10000000
                                                      00
                                                              .10000000
                                                                          00
            020
.33000000
                     .14000000
                                 021
                                                     0 2"
                                         •59999993
                                                           Ħ
                                                              •24955677
                                                                         -04
                                                                                1d. 99990000
                                                                                               00
                                                     0 2"
.11200000
                    .20000000
                                 011
                                         •29999999
                                                              ·24955677 -04
                                                                                1d. 99990000
                                                                                               00
            020
.33000000
                                                      02"
                     .29000000
                                 021
                                         40904989
                                                              .34570503
                                                                          03
                                                                               pt# •10000000
                                                                                               01
            030
.11200000
                                                      0.2"
                     .20000000
                                 011
                                         •53005999
                                                              .34570503
                                                                          03
                                                                                   .10000000
                                                                                               01
            020
.33000000
                                                      02"
                    .29000000
                                 021
                                         •42316990
                                                              .36018299
                                                                          03
                                                                                  •20000000
                                                                                               01
            030
.11200000
                     .00000000
                                 00 1
                                         47223998
                                                      0.2"
                                                              .36018299
                                                                          0.3
                                                                                  .20000000
                                                                                               01
            020
.33000000
                    •29000000
                                 021
                                         •40444990
                                                      0.211
                                                              .36829099
                                                                          0.3
                                                                                  .30000000
                                                                                               01
            030
•11100000
                     •59000000°
                                 021
                                         41355999
                                                      0.21
                                                              .36829099
                                                                          03
                                                                                  .30000000
                                                                                               01
            020
.33000000
                    .29000000
                                 021
                                                      0.211
                                         3.7080992
                                                              .37819699
                                                                          03
                                                                                  .40000000
                                                                                               01
            030
.111.00000
                    •58000000
                                 021
                                         •39292000
                                                      0.211
                                                              •37819699
                                                                          03
                                                                                  •40000000
                                                                                               01
            020
.33000000
                    ·28000000
                                 02'
                                         48543993
                                                     02"
                                                              .33528099
                                                                          03
                                                                                               01
                                                                                  •50000000
            030
.11200000
                    •30000000
                                 011
                                         51772998
                                                      0.2"
                                                              •33528099
                                                                          03
                                                                                  •50000000
                                                                                               01
            020
.33000000
                    ·14000000
                                 021
                                         •59999993
                                                     0 2"
                                                              •24955677
                                                                         -04
                                                                                  .60000000
                                                                                               01
.11200000
            030
                    •20000000
                                 01:
                                         •29999999
                                                     0.2"
                                                              ·24955677
                                                                                  •60000000
                                                                                               01
```

INVERSE TRANSFORMATION

3. INPUT (S10-S2):

```
ъ .6356583800
                                           -.1000000000
                                                           00
                                                                 •1000000000 ··00
   •6378206400
                                      07
                  020
                                      001
                                            •00
                                                           00"
   .3000000000
                        •00
                  020
                        .00
                                                           00"
   £6000000000
                                      001
                                            .00
                                                          00
                        .00
   .1100000000
                                      001
                                            .00
                                                           .00°
 · •3000000000
                        .00
                                      00' '•00
                      Y<sub>0</sub>•5288016840
   .7392611900
                                      07
                                         Z • 3476995877
                                                           0.7
                                                                                  1d. • 9999
                  06
                                                                 .00
                                                           05
                                                                 .00
                                                                                pt# .100000000
                  05
                      ÿ, 8090977022
                                      04
                                            1725836606
                                                                                                    01
x, -.1933143282
                                                                                                    01
                  05
                       T•5830707560
                                            1937389724
                                                           05
                                                                                     •200000000
  -.1835087258
                                      04
                  05
                                            .2043018345
                                                           05
                                                                 .0
                                                                                     •300000000
                                                                                                    01
                        •4625123691
  -.1778025108
                                      04
                                                                                                    01
                  05
                       1 3476958981
                                            2139471564
                                                         . 05
                                                                                     •400000000
  -.1720635832
                                      04
                                                                 •0
                                                                 .0
                                                                                     .5000000000
                                                                                                    01
                  05
                       J.8709600028
                                          V • 1524269402
                                                           05
  -.1865396065
                                      04.
                                                                                                    01
                                                                                     •6000000000
```

OUTPUT (S10-S2):

```
-.1000000000
                                                            .1000000000
•637.8206400
              07
                  b.6356583800
              020
.3300000000
                    .1400000000
                                        •5999999283
                                                      02"H-.2495567664 -04 1d.9999000000
                                                                                               00
                                  0.21
              0.30
                                        •2999999903
                                                      02"H~•2495567664
                                                                         -04 1d.9999000000
                                                                                               00
•1120000000
                    .2000000000
                                  01
             . 02<sup>0</sup>
                                  0.2
                                                                           03 pt#. 1000000000
                                                                                               01
.3300000000
                    .2900000000
                                        •4090498921
                                                            3457050293
              030
                                                      02"H: . 3457050293
                                                                                               01
                    .2000000000
                                  01'
                                        •5300599874
                                                                          03
                                                                                .100000000
•1120000000
                                  02,
              020
                                                                                               01
.3300000000
                    .2900000000
                                        4231698973
                                                      021
                                                            •3601829899
                                                                          03
                                                                                •20000000n
              030
                    .000000000
                                  ÒÓι
                                        •4722399807
                                                      0.2"
                                                            • 3601829899
                                                                          03
                                                                                •200000000
                                                                                               01
.1120000000
              020
                                                                          03
                                                                                               01
                    290000000
                                        4044499016
                                                      02"
                                                            .3682909896
                                                                                •3000000000
.3300000000
                                  02+
              030
                                                      0.211
                                                                          03
                                                                                               01
                    .5900000000
                                  02 :
                                        •4135599857
                                                            3682909896
                                                                                -3000000000
.1110000000
              020
                                                      0.2"
                                                            .3781969866
                                                                          03
                                                                                •400000000
                                                                                               01
.3300000000
                    ·290000000
                                  02:
                                        •3708099213
              030
                                                      021
                                                            3781969866
                                                                          03
                                                                                               01
•1110000000
                    .5800000000
                                  02:
                                        •3929199992
                                                                                • 400000000
              020
                                                      02"
                                                                          03
                                                                                •5000000000
                                                                                               01
.3300000000
                    .2800000000
                                  02:
                                        4854399250
                                                            •3352809909
              030
                                                                          €3
                    .3000000000
                                                      02"
                                                                                              01
.1120000000
                                  01:
                                        •5177299793
                                                            •3352809909
                                                                                •5000000000
              020
.3300000000
                    .1400000000
                                  02:
                                        •5999999283
                                                      0.211
                                                           -.2495567664
                                                                         -04
                                                                                •600000000
                                                                                               01
              .030
                                        •2999999903
                                                           -.2495567664 -04
                                                                                               01
-1120000000
                    .2000000000
                                  01:
                                                                                •600000000
```

DIRECT TRANSFORMATION

(Option For the Photogrammetric Camera Orientation Program Input)

C.1. INPUT (S10-S2):

```
07
                                           .1000000000
                                                                                wt..1000000000 20
   •.6378206400
                 07_ Ъ.6356583800
                                                         00
                 020
   .3000000000
                       • 0ô
                                     00 #
                                           •00
                                                         0.011
                 02
                       .00
   .6000000000
                                     00 1
                                           •00
                                                         00"
                 02
                                     00'
                                                         0 0"
   .1100000000
                       • 00
                                           •00
                 02
                                                         0.0
(ኢ) •3000000000
                       • 00
                                     00 1
                                           •00
                                                         OO"H
   .3300000000
                 02
                       .1500000000
                                     02 1
                                           •00
                                                                                   •888
                       -2000000000
                                                         02"H
   .1120000000
                                                                                   888
                                           •3000000000
                 020
                       •2900000000
                                     02 1
                                                         ο2"H
                                                               .3457050000
   .3300000000
                                           •4090500000
                                                                             03Pt# 1000000000
                       .2000000000
   .1120000000
                 03
                                     01 '
                                           •5300600000
                                                               •3457050000
                                                                             03Pt# 1000000000
                                                                                                 01
                 020
                                                         02"
   .33000000.00
                       .2900000000
                                     021
                                           •4231700000
                                                               .3601830000
                                                                             03
                                                                                   •2000000000
                                                                                                 01
                 03°
   .1120000000
                       .0000000000
                                     ďO¹
                                           •4722400000
                                                         02"
                                                               .3601830000
                                                                             03
                                                                                   •2000000000
                                                                                                 01
                 020
   .3300000000
                       .2900000000
                                           •4044500000
                                                         0.2"
                                                               .3682910000
                                                                             03
                                                                                   .3000000000
                                     02
                                                                                                 01
                 33°
                                                         02"
   .1110000000
                       •5900000000
                                     021
                                           •4135600000
                                                               •3682910000
                                                                             03
                                                                                   •300000000
                                                                                                 01
                 0.2 0
   .3300000000
                       •2900000000
                                     021
                                           3708100000
                                                         02"
                                                               •3781970000
                                                                             03
                                                                                   •400000000
                 03°
                       .5800000000
                                     02
                                           .3929200000
                                                         02"
                                                               .3781970000
                                                                             03
                                                                                   •4000000000
   .1110000000
                                                                                                 01
                 020
   .3300000000
                       .2800000000
                                     021
                                           .4854400000
                                                         02"
                                                               .3352810000
                                                                             03
                                                                                   •5000000000
                                                                                                 01
                 03°
   .1120000000
                       .300000000 01
                                           •5177300000
                                                                                 √.5000000000
                                                               .3352810000
                                                                             03
```

2. OUTPUT (S8-S2):

```
ъ •63565838
                                         •10000000
                                                                              wt-10000000
a •63782064
                                                     00
                                                             .10000000
                                                                         00
              07
                   Y . 52880168
                                                          wt..10000000
                                       Z •34769959
                                                                         20pt type • 10000000
  •73926119
x,-.19331433
                                                     05
                                                          wt..10000000
                                                                         20pt type . 10000000 . 00pt #
                                                                                                    •10000000
              05
                    y. 80909770
                                       z. •17258366
                                                             ·10000000
                                                                         20
                                                                                                    .20000000
                                                                                                                01
 -.18350873
              05
                      •58307076
                                ..04
                                         19373897
                                                     05
                                                                                 •10000000 00
 -.17780251
              05
                      . 46251237
                                  04
                                         ·20430183
                                                     05
                                                             .10000000
                                                                         20
                                                                                 ·10000000
                                                                                            00
                                                                                                    .30000000
                                                                                                                01
                                                             .10000000
                                                                                                    •40000000
 -.17206358
              05
                                  04
                                         •21394716
                                                     .05
                                                                         20
                                                                                 •10000000
                                                                                            00
                                                                                                                01
                      •34769590
√ -.18653961
              05
                      87095000
                                       ↓ •15242694
                                                     05
                                                            ▶10000000
                                                                                •10000000
                                                                                            00
                                                                                                    •50000000
```

Ü

DIRECT TRANSFORMATION

```
D.1. INPUT (S10-S2) for (\lambda) = \lambda_0, \alpha = 90 = \emptyset_0 and \gamma = 0:
```

```
a .6378206400 07 b.6356583800
                                               •1000000000
                                                                     •1000000000
                                        07
                                                               0.0
                  020
α .5700000000 :
                         .3500000000
                                        024.
                                               •5843200000
                                                               0Z'
                  020
β •200000000
                        .1500000000
                                        0.2*
                                               •3000000000
                                                               02"
                  000
                         •00
                                                               00"
 7.00
                                         001
                                               •00
                  03°
(λ).1060000000
                                        021
                         .2200000000
                                               •3879000000
Ø<sub>0</sub>•3200000000
                                                               01" H • 0000000000
02" H • 0000000000
                                               •1568000000
                         2400000000
                                        021
                                                                                     00 id. .11110
                  030
\lambda_0^{\bullet} 1060000000 \phi_1^{\bullet} 3200000000
                        .2200000000
                                        02*
                                               •3879000000
                                                                                     00 id. .11110
                  020
                                                               02" H. 1123480000
                         ·2500000000
                                                                                     04pt •1000000000
                                        021
                                               •1076600000
                  03°
λ. 1060000000
                                        028
                                                              ·01" H, 1123480000
                         .2300000000
                                               •8003000000
                                                                                     04pt •1000000000
```

2. OUTPUT (S10 - S2):

. U

INVERSE TRANSFORMATION

E.1. INPUT (S10 - S2):

```
.6378206400 07 b .6356583800 07 -.1000000000
             020
α ...5700000000
                 .3500000000 02<sup>1</sup>
                                •5843200000
  .2000000000
                 •1500000000 02*···•3000000000
                                          004
  100
             00%
                 •.00
                       ..00
             030
(λ) .1060000000
                 .2200000000 021
                                •3879000000 · 02 m
  00 1d 11111000000
x,-.1735690094
                                                         .04 Pt: •1000000000
```

OUTPUT (S10 - S2):

```
-.1000000000 00.
.6378206400 07 b .6356583800
                                   07
                                                              .1000000000
•3200000000 02
•1060000000 03
                                         •1568001691 : Cl"H -.4321784430 -031d •1111000000
                     ·2400000000 02+1
                     .2200000000
                                                        0.2^{\circ} \dot{R}^{\circ} = .4321784430 - .031d .1111000000
                                   021
                                          •3879000000
.3200000000 02
.10.60000000 03
                                                        02"Hi .1123479568 04pt .1000000000
                     .2500000000
                                   02°
                                         •1076600171
                                                        01"H. .1123479568 04pt .1000000000
                     .2300000000 02f
                                         *8002999990
```

No. of		No. of	
Copies	Organization	Copies	Organization
OOPICE			
.1.	Chief of Ordnance	3	Chief, Bureau of Naval Weapons
. 4.	ATTN: ORDTB-Bal Sec		ATTN: DIS-33
	• · · · · · · · · · · · · · · · · · · ·		•
	Department of the Army		Department of the Navy
	Washington 25, D. C.	:	Washington 25, D. C.
_			
2	Commanding Officer	· 2	Commander
	Diamond Ordnance Fuze		Naval Ordnance Laboratory
	Laboratories	•	White Oak, Silver Spring 19,
	ATTN: Technical Information		Maryland
	Office, Branch 012		
	Mr. Francis E. Washer	1	Commander
	Washington 25, D. C.		U.S. Naval Ordnance Test Station
٠	110000011B1011 = 7,9 = 7 = 7		China Lake, California
10	Commander		"
10	Armed Services Technical	1	Commander
		-	U.S. Naval Weapons Laboratory
	Information Agency		
	ATTN: TIPCR		ATTN: Dr. W. A. Kemper
	Arlington Hall Station		Dahlgren, Virginia
	Arlington 12, Virginia	•	
		. 1	Commanding Officer
1	Office of Technical Services		U.S. Naval Photographic
	Department of Commerce		Interpretation Center
	Washington 25, D. C.		4301 Suitland Road
			Suitland, Maryland
10	Commander		
	British Army Staff	1	Hydrographer
	British Defence Staff (W)		U.S. Naval Hydrographic Office
	ATTN: Reports Officer		Washington 25, D. C.
	3100 Massachusetts Avenue, N.W.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Washington 8, D. C.	3	Commander
_	Washington C, D. C.		U.S. Naval Missile Center
	OP Interest to		ATTN: Mr. John A. Clement
	Of Interest to:		Point Mugu, California
	Prof. E. H. Thompson		
	University College	,	Character to a solution
	London, W. C. 1	1	Superintendent
	England		U.S. Naval Observatory
		•	ATIN: Dr. William Markowitz
5	Defence Research Member		34th and Massachusetts Avenue, N.W.
	Canadian Joint Staff		Washington 25, D. C.
	2450 Massachusetts Avenue, N.W.	•	
	Washington 8, D. C.	1	Director
* .	Of Interest to:		Air University Library
	National Research Council of		ATTN: AUL (3T-AUL-60-118).
	Canada		Maxwell Air Force Base, Alabama
	ATTN: Mr. T. J. Blachut	.*	
	TETTION THE TO OF DEGLINES		

Mr. G. H. Schut Ottawa 2, Ontario

No. of		No. of	
Copies	Organization	Copies	Organization
OOPICE	01 Baritago1		
7	Common 2011	1 .	Commander
- 3	Commander	-	
	Air Proving Ground Center	•	Aeronautical Chart and
	ATTN: PCTRI		Information Center
	PGEES-Mr. W. A. Brown		Air, Photographic and Charting
	(2 cys)		Service (MATS)
	Eglin Air Force Base, Florida	and the second	ATTN: Chief Photogrammetry
•	2621 1111 10100 2010, 12012		Research Branch
. 0			Mr. Edwin Roth
2	Commander		
•	Air Force Missile Test Center	1-7	Second & Arsenal Streets
	(AFMT Tech Lib. MU-135)		St. Louis 18, Missouri
	Patrick Air Force Base, Florida	•	
		3	Commanding General
2	Commander .		Army Rocket and Guided Missile
~	Air Force Cambridge Research		Agency
			ATTN: Dr. Ernst Stuhlinger
•	Center, ARDC	•	
	ATTN: Geophysics Research		Dr. Hellmut Holzer
	Directorate		Dr. Bruns
	L. G. Hanscom Field		Redstone Arsenal, Alabama
	Bedford, Massachusetts		
		3	Commanding General
1	Commander		White Sands Missile Range
_	•		ATTN: ORDBS-TS-TIB
1	Rome Air Development Center	30	
	ATTN: Library		Mr. Ted Durrenberger
'	Griffiss Air Force Base		New Mexico
•	Rome, New York		200
•		. 1	Commanding General
1	Commander		U.S. Army Signal Engineeering
_	Wright Air Development Division		Laboratories
	ATTN: Aeronautical Research		ATTN: Tech Document Center
	Laboratory	·	Fort Monmouth, New Jersey
		100	rol b Monmodon, New Delsey
	Wright-Patterson Air Force Base,	3.00	a managaran a managaran a
	Ohio	4	Commanding General
	25 22		Engineering Research & Development
1	Commander		Laboratories
. "	Holloman Air Development Center,	1	ATTN: Mr. William C. Cude
	SEB, FDL		Mr. D. Esten
	Holloman Air Force Base,	•	Mr. John T. Pennington
•	New Mexico		Mr. Matos
		٠	Fort Belveir, Virginia
•	Commondana Ossi		TOTO DOLLACTE TIBUILG
1	Commanding Officer		0
	Air Force Aeronautical Chart	Τ.	Commanding Officer
	Service ,		U.S. Army Research Office (Durham)
	ATTN: Division of Photogrammetry	у	ATTN: Dr. Theodore W. Schmidt
	Washington, D. C.		Box CM, Duke Station
	,		Durham, North Carolina
		·	· · · · · · · · · · · · · · · · · · ·

No. of		No. of	
Copies	Organization	Copies	Organization
Į.	Commanding Officer	<u>)</u>	Director
4 .	Army Map Service	. •	National Aeronautics & Space
	ATTN: Photogrammetric Division		Administration
	Col. F. O. Diercks	•	ATTN: Dr. John O'Keefe
	Mr. A. Nowicki		Mr. B. Milwitzky
	Mr. J. Theis		Mr. W. M. Kaula
	Mr. Soren W. Henricksen		Mr. L. N. Comer
	6500 Brooks Lane, N.W.		1520 H. Street, N.W.
	Washington 16, D. C.		Washington 25, D. C.
3	Director	1	NASA Goddard Space Flight Center
-	U.S. Geological Survey		Satellite Application Division
	ATTN: Chief, Topographic Eng.	,	ATTN: Dr. Nordberg
	Mr. Russel K. Bean		4555 Overlook Avenue, S. W.
	Mr. R. E. Altenhofen		Washington 25, D. C.
	Washington 25, D. C.		
	######################################	1.	Director
14	Director	- .	National Aeronautics & Space
7	U.S. Coast & Geodetic Survey	. •	Administration
	ATTN: Commander L. W. Swanson		Langley Research Center
	Mr. G. C. Tewinkel		ATTN: Mr. Richard M. Dickerson
	Mr. Charles Whitten		Langley Field, Virginia
			rangie, tierd, Alighnia
	Mr. L. G. Simmons	,	Coddleandan Tooldanka Astronomica
•	Department of Commerce	1	Smithsonian Institute Astrophysica
	Washington 25, D. C.		Observatory
•	8 <u>.</u>		ATTN: Dr. Fred Whipple
1	National Academy of Science		60 Garden Street
	ATTN: Dr. Pembroke J. Hart, Jr.		Cambridge 38, Massachusetts
	2101 Constitution Avenue, N.W.		,
	Washington 25, D. C.	1	Director
			Boston University
1	Director		Physical Research Laboratory
•	National Bureau of Standards		Boston, Massachusetts
	ATTN: Dr. Irvine C. Gardner		
	232 Dynamometer Building	1	Cornell University
·	Washington 25, D. C.	•	School of Civil Engineering
		•	ATTN: Prof. Arthur J. McNair
1	Director		Center of Aerial
-	National Science Foundation		Photographic Studies
	ATTN: Technical Library		Ithaca, New York
	Washington, D. C.		the second secon
	monthly out a De Ot		

No. of	No.	•	
Copies	Organization Copie	es Organization	
· 1 ·	Cincinnati Observatory 2 ATTN: Dr. Paul Herget Cincinnati, Ohio	University of Illinois Department of Civil Engineering ATTN; Dr. H. M. Karara Prof. Milton O. Schmid	5.
2·	Ohio State University Mapping and Charting Research	Urbana, Illinois	
	Laboratory 1 ATTN: Prof. A.J.Brandenberger Prof. A. R. Robbins Columbus, Ohio	University of Pennsylvania Computing Laboratory ATTN: Mr. John B. Crozier Philadelphia 4, Pennsylvania	
1	Princeton University 1 Department of Civil Engineering ATTN: Prof. Sumner B. Irish	University of Michigan ATTN: Prof. Edward Young Ann Arbor, Michigan	
	Princeton, New Jersey	. · · Lamount Geological Laboratory	
2	Syracuse University L. C. Smith College of Engineering Department of Civil Engineering ATTN: Prof. Arthur Faulds	(Columbia University) ATTN: Dr. W. M. Ewing Palisades, New York	
	Prof. Paul G. Brennan 3 Syracuse 10, New York	Autometric Corporation ATTN: Dr. Ulrich Heidelauf Mr. E. L. Merritt	
1 %	Syracuse University Department of Civil Engineering ATTN: Photogrammetric Department	Mr. Charles Spooner New York, New York	
	Syracuse, New York 1	Bausch & Lomb Optical Company ATTN: Mr. Heinz Gruner	
1	Massachusetts Institute of Technology Dept. of Civil & Sanitary	262 St. Paul Street Rochester, New York	
	Engineering 1 ATTN: C. L. Miller, Director Photogrammetry Lab.	Bendix Aviation Corporation Computer Division ATTN: V. A. van Praag	
	Cambridge 39, Massachusetts	5630 Arbor Vitae Street Los Angeles 45, California	
1	New Mexico School of Agriculture & Mechanic Arts 1 ATTN: Dr. George Gardiner State College, New Mexico	International Business Machine Corporation ATTN: Mr. John V. Sharp Endicott, New York	
	•	· · · · · · · · · · · · · · · · · · ·	

No. of Copies	Organization	No. of Copies	Organization
1.	Kern Instruments, Inc. ATTN: Hans J. Wehrli 120 Grand Street White Plains, New York	1.	Telecomputing Corporation Engineering Services Division Burbank, California
1	O.M.I. Corporation of America ATTN: Mr. S. J. Friedman 512 N. Pitt Street Alexandria, Virginia	1.	Volunteer Satellite Tracking Program ATTN: Mr. Norton Goodwin 826 Connecticut Avenue Washington 6, D. C.
1	Photogrammetry, Inc. ATTN: Mr. Gomer T. McNeil 922 Burlington Drive Silver Spring, Maryland	3	Wild Heerbrugg Instruments, Inc. ATTN: Mr. K. E. Reynolds Main & Covert Streets Port Washington, New York
1	Radio Corporation of America RCA Service Company ATTN: RCA Data Reduction Group Analysis Unit Mr. Duane Brown	1	Philco Corporation Western Development Laboratories ATTN: Mr. Eric Besag 3875 Fabian Way Palo Alto, California
	Patrick Air Force Base, Florida	5	Mr. Marshall S. Wright
1	Ramo-Wooldridge Corporation ATTN: Dr. E. Stern 5730 Arbor Vitae Street	,	929 Highgate Road Alexandria, Virginia
	P. O. Box 45067 Airport Station Los Angeles 45, California	. 1	Mr. Robert Zurlinden 2118 - 37th Street, N.W. Washington 7, D. C.
2 .	Smithsonian Institute ATTN: Dr. Karl G. Henize Dr. J. Allen Hynek Washington 25, D. C.		
1	Technical Operations, Inc. ATTN: Mr. Samuel S. Holland Burlington, Massachusetts		

Accession No. Ballistic Research Laboratories, APC AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND VICE VERSA A. Roberta Wooten

UNCLASSIFIED Geodetic data -Mathematical analysis Mathematical computers -Coding Photogrammetry -Mathematical analysis

BRIM Report No. 1322 February 1961

DA Proj No. 503-06-011, OMSC No. 5210.11.143 UNCLASSIFIED Report

The transformation of geodetic ellipsoidal coordinates into Cartesian coordinates and vice versa is programmed for the ORDVAC using a pseudo code . "The One Address Floating Binary Double Precision Code (OFBDP)."

Accession No. Ballistic Research Laboratories, APG AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND Mathematical computers -VICE VERSA A. Roberta Wooten

UNCLASSIFIED Geodetic data -Mathematical analysis Coding Photogrammetry -Mathematical analysis

BRIM Report No. 1322 February 1961

DA Proj No. 503-06-011, OMSC No. 5210.11.143 UNCLASSIFIED Report

The transformation of geodetic ellipsoidal coordinates into Cartesian coordinates and vice versa is programmed for the ORDVAC using a pseudo code -"The One Address Floating Binary Double Precision Code (OFEDP)."

Accession No. Ballistic Research Laboratories, APC AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC: ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND VICE VERSA A. Roberta Wooten

UNCLASSIFIED Geodetic data -Mathematical analysis Mathematical computers Coding Photogrammetry -Mathematical analysis

BRIM Report No. 1322 February 1961

DA Proj No. 503-06-011, OMSC No. 5210.11.143 UNCLASSIFIED Report

The transformation of geodetic ellipsoidal coordinates into Cartesian coordinates and vice yersa is programmed for the ORDVAC using a pseudo code -"The One Address Floating Binary Double Precision Code (OFBDP)."

Accession No. Ballistic Research Laboratories, APG AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND VICE VERSA . A. Roberta Wooten

UNCLASSIFIED Geodetic data - : Mathematical analysis. Mathematical computers Coding. Photogrammetry -· Mathematical analysis

BRIM Report No. 1322 February 1961

DA Proj No. 503-06-011, QMSC No. 5210.11.143 UNCLASSIFIED Report .

The transformation of geodetic ellipsoidal coordinates into Cartesian coordinates and vice versa is programmed for the QRDVAC using a pseudo code -"The One Address Floating Binary Double Precision Code (OFBDP)."

Accession No. UNCLASSIPTED Accession No. UNCLASSIFIED Ballistic Research Laboratories, APG Ballistic Research Laboratories, APG Geodetic fata -Geodetic data -AN ORDVAC PROGRAM FOR THE TRANSPORMENTON OF GROUNTS Mathematical analysis AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEOLEGIC Mathematical analysis RILLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND Mathematical commuters -ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND Mathematical computers . VICE VERSA Coding VICE VERSA Coding A. Roberta Wooten Photogrammetry -A. Roberta Wooten Photogrammetry -Mathematical analysis Mathematical analysis BRIM Report No. 1322 February 1961 BRIM Report No. 1322 Pehrnary 1961 DA Proj No. 503-06-011, OMBC No. 5210.11.143 DA Proj No. 503-06-011, OMSC No. 5210-11-143 UNCLASSIFIED Report UNCLASSIFIED Report The transformation of geodetic ellipsoidal coordinates into Cartesian The transformation of geodetic ellipsoidal coordinates into Cartesian coordinates and vice versa is programed for the ORDWAC using a pseudo code coordinates and vice versa is programmed for the OHDVAC using a regulo code -"The One Address Floating Binary Double Precision Code (OFEDP)." "The One Address Floating Binary Double Precision Code (OFEDP)." INCLASSIFIED AD Accession No. Accession No. UNCLASSIFIED Ballistic Research Laboratories, APG Geodetic data -Ballistic Research Laboratories, APG Geodetic data - . . . AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODETIC Mathematical analysis AN ORDVAC PROGRAM FOR THE TRANSFORMATION OF GEODIETIC Mathematical analysis ELLIPSOIDAL COORDINATES INTO CARTESIAN COORDINATES AND RILIPSOIDAL COORDINATES INFO CARTESIAN COORDINATES AND Mathematical computers Mathematical computers VICE VERSA Coding VICE VERSA . Coding A. Roberta Wooten Photogrammetry -A. Roberta Vooten Photogrammetry . Mathematical analysis Mathematical analysis BRIM Report No. 1322 February 1961 BRIM Report No. 1322 February 1961 DA Proj No. 503-06-011, OMSC No. 5210.11.143 DA Proj No. 503-06-011, OMSC No. 5210.11.143 UNCLASSIFIED Report UNCLASSIFIED Report

The transformation of geodetic ellipsoidal coordinates into Certesian

coordinates and vice versa is programmed for the ORDVAC using a pseudo code -

The One Address Floating Binary Double Precision Code (OFBDP).

The transformation of geodetic ellipsoidal coordinates into Cartesian

coordinates and vice versa is programmed for the ORDVAC using a pseudo code -

The One Address Floating Binary Double Precision Code (OFBDP).