Assignment 7

Experiment 13:

Aim: Implement a Program for Pattern storage of 10 digits with Hamming Neural Network.

Objective: Students will be able to understand practical aspects of Hamming Neural Network model

*Theory:
V
A Hamming Neural Network
serognizes patterns by salculating the Hamming distance - The
number of different differing hits
detolen tinary vectors. This method
i effective for classifying digits
i effective for classifying digit and handling noisy inputs by identifying the closest stored pattern.
the closest stored pattern.
* Procedure:
i) Define Binary patterns for digits 0-9.
ii) Prepare a binary input (possibly noisy)
iii) Compute Hamming distance bet "
input and stored putterns.
on the smallest distance.
) Display the reacquired digit and distance.
-agrance.

Code:

```
% Hamming Neural Model
% Binary representations of digits (simplified example)
patterns = [
   0 0 0 0; % Digit 0 (binary pattern)
   0 0 0 0 1; % Digit 1 (binary pattern)
  0 0 0 1 0; % Digit 2 (binary pattern)
  0 0 0 1 1; % Digit 3 (binary pattern)
  0 0 1 0 0; % Digit 4 (binary pattern)
  0 0 1 0 1; % Digit 5 (binary pattern)
  0 0 1 1 0; % Digit 6 (binary pattern)
  0 0 1 1 1; % Digit 7 (binary pattern)
  0 1 0 0 0; % Digit 8 (binary pattern)
  0 1 0 0 1; % Digit 9 (binary pattern)
];
% Input pattern (example: input for which you want to find the closest
input pattern = [0 0 0 1 0]; % Input could be a noisy version of digit
2
% Initialize variables
min_hamming_distance = inf; % Start with a large number
closest digit = -1;
% Compute Hamming distance for each stored pattern
for digit = 1:10
  % Calculate Hamming distance (number of differing bits)
  hamming_distance = sum(input_pattern ~= patterns(digit, :));
  % If the current pattern is closer, update the closest digit
   if hamming distance < min hamming distance
       min hamming distance = hamming distance;
       closest digit = digit - 1; % Because digit index is 1-based
   end
End
```

```
% Output the recognized digit
disp("Recognized Digit:")
disp(closest_digit)
disp("Hamming Distance:")
disp(min_hamming_distance)
```

Output:

Command Window

>> Experiment_13
Recognized Digit:
 2

Hamming Distance:

>>

* Consusion:		<u> </u>	
The network of noisy pattern, smallest Hand demonstrating in digita and	fective	ly closs	ifies
noisy pattern,	ley ;	finding	the
smallest Han	ming	distance)
demonstrating	Cits	potenti	al
in digete and	d imal	p recogn	ition.