(10 Punkte) Vertiefung Integrale mit Schnitten und Residuensatz

12.1 (10 Punkte) Residuensatz mit erweiterter Kontur Im Folgenden wollen wir das reelle Integral

$$I = \int_0^\infty \frac{\ln x}{1+x^3} dx \tag{1}$$

mithilfe des Residuensatzes berechnen. Dazu betrachten wir das Integral als geschlossenes Wegintegral in der komplexen Ebene

$$\oint_{\gamma} \frac{\ln z}{1+z^3} dz,\tag{2}$$

wobei die Kontur aus vier Teilen $\gamma = \gamma_A + \gamma_B + \gamma_r + \gamma_R$ besteht (siehe Abb. 1). Für $R \to \infty$ und $r \to 0$ enspricht das Wegintegral entlang γ_A dem Integral I.

Abbildung 1: Integrationsweg zur Aufgabe, mit z = x + iy. Die Kurvenanteile γ_R und γ_r sind Kreisbögen mit Radien R und r mit Mittelpunktswinkel $\theta = 2\pi/3$.

- (a) (2 Punkte) Skizzieren Sie auftretende Singularitäten und Verzweigungspunkte in der komplexen Ebene (als Verzweigungspunkte bezeichnet man unter anderem Endpunkte von Schnitten, siehe z.B. Lang und Pucker, Mathematische Methoden in der Physik, 3. Auflage, Kapitel 2.4). Führen Sie gegebenenfalls einen geeigneten Schnitt ein, der die Kontur γ nicht kreuzt.
- (b) (3 Punkte) Berechnen Sie das Integral Gl. (2) mithilfe des Residuensatzes.
- (c) (2 Punkte) Zeigen Sie, dass

$$\lim_{r \to 0} \int_{\gamma_r} \frac{\ln z}{1 + z^3} dz = \lim_{R \to \infty} \int_{\gamma_R} \frac{\ln z}{1 + z^3} dz = 0$$
 (3)

 $\mathit{Hinweis}$: Falls $\lim_{R \to \infty} z f(z) = 0$ für alle $z = Re^{i\phi}$ im Bereich $\phi_1 \le \phi \le \phi_2$ erfüllt ist, gilt

$$\lim_{R \to \infty} \int_C f(z)dz = 0,\tag{4}$$

wobei C den Kreisbogen mit Radius R in der oberen Halbebene mit Mittelpunkt im Ursprung und Winkelbereich von ϕ_1 bis ϕ_2 bezeichnet.

(d) (3 Punkte)Berechnen Sie das Integral

$$\lim_{R \to \infty} \int_{\gamma_B} \frac{\ln z}{1 + z^3} dz,\tag{5}$$

und verwenden Sie die Resultate aus (b)-(c), um das Integral I [Gl. (1)] zu berechnen. Hinweis:

$$\int_0^\infty \frac{dx}{1+x^3} = \frac{2\pi}{3\sqrt{3}} \tag{6}$$