Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №6 з дисципліни: «Твердотільна електроніки-1»

«ІНТЕГРАЛЬНІ СХЕМИ СТАТИЧНОЇ ЛОГІКИ НА МДН – ТРАНЗИСТОРАХ»

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканог		
Превірив:	(підпис)	Л.М. Королевич		

1. МЕТА РОБОТИ

Вивчення будови, методів виготовлення, основних характеристик і технічних параметрів інтегральних МДН-транзисторів.

2. ЗАВДАННЯ

- 1.Виконати вимірювання сімейства характеристик передачі залежності струму стоку від напруги затвор-виток інтегрального МДН-транзистора: Іс(Езв), при Ec=const. Побудувати характеристики передачі на одному малюнку.
- 2.Виконати вимірювання вихідних характеристик залежності струму стоку від напруги сток-виток: -Ic(EcB), при E3= const Побудувати сімейство вихідних характеристик.
- 3.Побудувати графік залежності $\sqrt{I_C\left(E_{3B}\right)}$ у пологій області вихідних характеристик та графічно визначити порогову напругу МДН-транзистора.
- 4.Визначити крутизну, динамічний опір стоку, коефіцієнт підсилення напруги для крутої для пологої областей вихідних характеристик транзистора (S1; S2, rc1; rc2; μ_1 ;
- 5.3апропонуйте заходи щодо підвищення частоти $\Gamma_{\text{верх}}$, зниження порогової напруги та зменшення паразитних ємностей інтегрального МДН-транзистора.

2.1. Установка і Таблиці

Рис. 1: ДОСЛІДНА УСТАНОВКА К168КТ2А.

Табл. 1: Значення для сімейства характеристик передачі.

Δ <u>U</u> 3=±0,2 B											
<u>Uc</u> =0,3 B			<u>Uc</u> =0,6 B			<u>Uc</u> =0,9 B			<u>Uc</u> =1,2 B		
<u> </u>	Jc, MA	Δ Jc, MA	<u>U</u> з, В	Jc, MA	Δ Jc, MA	<u>U</u> з, В	Jc, MA	Δ Jc, MA	<u>U</u> з, В	Jc, MA	Δ Jc, MA
3,3	25	0,03	3,4	0,1	0,03	3,4	0,06	0,03	3,4	0,08	0,03
3,4	45	0,03	3,5	0,15	0,03	3,5	0,12	0,03	3,5	0,14	0,03
3,5	0,12	0,03	3,6	0,2	0,03	3,6	0,27	0,03	3,6	0,28	0,03
3,6	0,22	0,03	3,7	0,25	0,03	3,7	0,41	0,06	3,7	0,42	0,06
3,7	0,32	0,06	3,8	0,5	0,06	3,8	0,59	0,06	3,8	0,64	0,06
3,8	0,37	0,06	3,9	0,7	0,06	3,9	0,82	0,06	3,9	0,96	0,06
3,9	0,39	0,06	4	0,8	0,06	4	0,96	0,06	4	1,2	0,06
4	0,5	0,06	4,1	1,1	0,06	4,1	1,3	0,06	4,1	1,5	0,06
4,1	0,62	0,06	4,2	1,2	0,06	4,2	1,6	0,06	4,2	1,7	0,06
4,2	0,69	0,06	4,3	1,4	0,06	4,3	1,9	0,06	4,3	2	0,06
4,3	0,76	0,06	4,4	1,5	0,06	4,4	2,1	0,06	4,4	2,3	0,06
4,4	0,82	0,06	4,5	1,6	0,06	4,5	2,3	0,06	4,5	2,7	0,06
4,5	0,88	0,06	4,6	1,9	0,06	4,6	2,5	0,06	4,6	3	0,2
4,6	0,92	0,06	4,7	2	0,06	4,7	2,8	0,06	4,7	3,2	0,2
4,7	0,99	0,06	4,8	2,2	0,06	4,8	2,9	0,06	4,9	4	0,2
5	1,25	0,06	4,9	2,3	0,06	4,9	3,2	0,2	5	4,3	0,2
5,5	1,6	0,06	5	2,5	0,06	5	3,5	0,2	5,5	5,4	0,2
6	2	0,06	5,2	2,6	0,06	5,2	3,6	0,2	5,8	6,4	0,2
6,6	2,3	0,06	5,5	3,1	0,2	5,5	4,3	0,2			
			6	3,8	0,2	5,8	5	0,2			
			6,6	4,4	0,2	6,2	6	0,2			
						6,4	6,4	0,2			

Табл. 2:Вихідні характеристики, залежності струму стоку від напруги сток-виток.

Δ Uc=±0,02 B Δ Jc=±0,06 мA											
<u>U</u> 3=3,5 B		<u>U</u> 3=4 B		<u>U</u> 3=4,5 B		<u>U</u> 3=5 B		<u>U</u> 3=5,6 B		<u>U</u> 3=6 B	
<u>Ų</u> с, В	<u>Jc</u> , мА	Uc, B	јс, мА	Uс, В	<u>Jc</u> , мА	Uc, B	<u>Jc</u> , мА	Uс, В	јс, мА	Uc, B	<u>јс,</u> мА
0,06	25	0,06	0,11	0,06	0,18	0,06	0,18	0,2	0,8	0,06	0,3
0,12	0,05	0,12	0,2	0,12	0,38	0,12	0,43	0,4	2	0,12	0,56
0,18	0,08	0,18	0,29	0,18	0,52	0,18	0,62	0,6	3,2	0,18	0,88
0,24	0,09	0,24	0,38	0,24	0,7	0,24	0,82	0,8	4	0,24	1,6
0,3	0,1	0,3	0,46	0,3	0,91	0,3	1,2	1	5	0,3	2
0,9	0,11	0,36	0,54	0,36	1,2	0,36	1,4	1,2	5,8	0,36	2,4
2,7	0,12	0,42	0,6	0,42	1,4	0,42	1,6	1,4	6,2	0,42	2,8
5	0,13	0,48	0,66	0,6	1,8	0,48	1,8			0,48	3,2
8	0,14	0,54	0,7	0,84	2,2	0,54	2			0,54	3,4
10	0,15	0,6	0,75	1,2	2,5	0,6	2,2			0,6	3,8
		0,66	0,78	1,8	2,6	0,66	2,3			0,66	4,2
		0,72	0,8	2,4	2,8	0,72	2,5			0,72	4,6
		0,78	0,83	3	3	0,78	2,6			0,78	4,9
		0,84	0,85	8,3	3,4	0,9	2,8			0,84	5,2
		0,9	0,86			0,96	3			0,9	5,4
		0,96	0,87			1,2	3,4			0,96	5,8
		1,2	0,9			1,5	3,7			1,02	6,1
		1,5	0,92			2,1	3,9			1,08	6,4
		1,8	0,94			3	4,1				
		2,1	0,96			6	4,4				
		2,4	0,97								
		2,7	0,98								
		3	0,99								
		10	1								

3. Графіки

Рис. 2: Сімейство характеристик передачі.

Рис. 3: Сімейство вихідних характеристик транзистора.

Рис. 4: .Графік для визначення порогової напруги.

Рис. 5: Графік з точками для розрахунку параметрів

4. Розрахунки

Взявши корінь з I_C та побудувавши график (рис.4) можу визначити порогову напругу, яка $=3.2~\mathrm{B}.$

За допомогою точок T1 та T2 на рис.5 крутизну характеристики, використовуючи наступну формулу:

$$S = \frac{\triangle I_C}{\triangle U_3} = 0.81 \frac{\text{MA}}{\text{B}} \tag{1}$$

За допомогою точок Т5 та Т4 знайду внутрішній диференційний опір:

$$r_i = \frac{\triangle U_{BC}}{\triangle I_{C_2}} = 1000 \text{Om} \tag{2}$$

За допомогою S та r_i знайду граничний кофіцієнт підсилення за напругою:

$$\mu_1 = S \cdot r_i = 0.81 \tag{3}$$

ТЕПЕР ДЛЯ ПОЛОГОЇ ОБЛАСТІ

$$S = \frac{\Delta I_C}{\Delta U_3} = 3 \frac{\text{MA}}{\text{B}} \tag{4}$$

За допомогою точок Т5 та Т4 знайду внутрішній диференційний опір:

$$r_i = \frac{\triangle U_{BC}}{\triangle I_{C_2}} = 6000 \text{Om} \tag{5}$$

За допомогою S та r_i знайду граничний кофіцієнт підсилення за напругою:

$$\mu_1 = S \cdot r_i = 18 \tag{6}$$

5. Висновок

У даній лабораторній роботі було виміряно характеристики передачі та вхідні характеристики МДН-транзистора. За отриманими даними з графіку я (як показанов прикладі) визначив порогову напруга Uпор, потім за формулами розрахував крутизну S, динамічний опір r_i та коефіцієнт підсилення напруги для лінійної та пологої ділянок ВАХ. На мою думку для зниження порогової напруги потрібно як підзасліний шар використовувати Si_3N_4 (нітрид кремнію), а для зменшення паразитних ємностей до металічних елементів можна додати ще один заземлений екран та скоби з нікелевого сплаву.