Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 15

23 stycznia 2018 r.

- Lista ta zawiera wybrane zadania egzaminacyjne z ostatnich lat.
- Podanymi zadaniami nie należy nadmiernie sugerować się podczas przygotowań do egzaminu.
- L15.1. (a) Podaj definicję zadania źle uwarunkowanego.
 - (b) Zbadaj uwarunkowanie zadania obliczania wartości funkcji $f(x) = \cos x$ dla $x \in \mathbb{R}$.
- **L15.2.** (a) Wytłumacz dokładnie kiedy występuje i na czym polega zjawisko utraty cyfr znaczących wyniku.
 - (b) Dla jakich wartości x obliczanie wartości wyrażenia $\frac{1}{\sqrt{x^2+2}+x}$ może wiązać się z utratą cyfr znaczących wyniku? Zaproponuj sposób obliczenia wyniku dokładniejszego.
- **L15.3.** Podaj efektywny algorytm wyznaczania wartości liczby naturalnej a, której cyframi dziesiętnymi (od najbardziej do najmniej znaczącej) są $a_n, a_{n-1}, \ldots, a_0$, gdzie $a_n \neq 0$.
- **L15.4.** Sformułuj i podaj interpretację geometryczną metody Newtona. Jak w wypadku tej metody powinien wyglądać warunek stopu?
- **L15.5.** Podaj postać Newtona wielomianu interpolacyjnego $L_4 \in \Pi_4$ dla danych

L15.6. Niech $L_n \in \Pi_n$ będzie wielomianem interpolującym funkcję $f(x) = \sin \frac{x}{2}$ w węzłach postaci

$$x_{nk} := \frac{1}{2}\cos\left(\frac{2k+1}{2n+2}\pi\right) + \frac{1}{2}$$
 $(k = 0, 1, \dots, n).$

Jak należy dobrać n, aby mieć pewność, że

$$\max_{x \in [0,1]} |f(x) - L_n(x)| \le 10^{-15} ?$$

- L15.7. (a) Podaj definicję naturalnej funkcji sklejanej trzeciego stopnia.
 - (b) Znajdź naturalną funkcję sklejaną trzeciego stopnia dla danych

- **L15.8.** Niech dane będą wektory $\mathbf{x} := [x_0, x_1, \dots, x_n]$ $(x_k < x_{k+1}, 0 \le k \le n-1), \mathbf{y} := [y_0, y_1, \dots, y_n]$ oraz $\mathbf{z} := [z_0, z_1, \dots, z_m]$. Niech s_n oznacza naturalną funkcję sklejaną trzeciego stopnia $(w \ skr\'ocie : NFS3)$ spełniającą warunki $s_n(x_k) = y_k \ (0 \le k \le n)$. Jak pamiętamy, w języku PW0++ procedura NSpline3 $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ wyznacza wektor $\mathbf{z} := [s_n(z_0), s_n(z_1), \dots, s_n(z_m)],$ z tym, że **musi być** m < 2n. Załóżmy, że wartości pewnej funkcji ciąglej f znane są **jedynie** w punktach $x_0 < x_1 < \dots < x_{100}$. Wiadomo, że NFS3 odpowiadająca danym $(x_k, f(x_k))$ $(0 \le k \le 100)$ bardzo dobrze przybliża funkcję f. Wywołując procedurę NSpline3 tylko raz, opracuj algorytm numerycznego wyznaczania przybliżonych wartości wszystkich **miejsc zerowych** funkcji f znajdujących się w przedziale $[x_0, x_{100}]$. W swoim rozwiązaniu możesz **użyć wielokrotnie** innej procedury języka PW0++, a mianowicie Solve3(a,b,c,d) znajdującej z dużą dokładnością wszystkie rzeczywiste miejsca zerowe wielomianu $\mathbf{a}x^3 + \mathbf{b}x^2 + \mathbf{c}x + \mathbf{d}$ albo informującej, że takich miejsc zerowych nie ma.
- **L15.9.** Dana jest postać Béziera wielomianu $p \in \Pi_n$, tj.

$$p(t) := \sum_{k=0}^{n} a_k B_k^n(t),$$
 gdzie $B_k^n(t) := \binom{n}{k} t^k (1-t)^{n-k}.$

Uzasadnij, że

$$p(t) = \sum_{k=0}^{n+1} a_k^{(1)} B_k^{n+1}(t) \qquad \text{dla} \qquad a_k^{(1)} := \frac{n-k+1}{n+1} a_k + \frac{k}{n+1} a_{k-1} \quad (0 \le k \le n+1),$$

gdzie przyjęto $a_{-1} = a_{n+1} := 0$. Jakie zastosowanie może mieć ta zależność?

L15.10. Wyznacz funkcję postaci $y(x)=\frac{ax^2-3}{x^2+1}$ najlepiej dopasowaną w sensie aproksymacji średniokwadratowej do danych

przy założeniu, że $s_2 = 10$, $s_4 = -3$, gdzie $s_m := \sum_{k=0}^n \frac{x_k^m}{(x_k^2 + 1)^2}$ (m = 2, 4).

L15.11. (a) Znajdź wielomiany P_0, P_1, P_2 ortogonalne względem iloczynu skalarnego

$$(f,g) := f(-2)g(-2) + f(-1)g(-1) + f(0)g(0) + f(1)g(1) + f(2)g(2).$$

(b) Wykorzystując wynik otrzymany w punkcie **a)**, wyznacz wielomian $w_2^* \in \Pi_2$ najlepiej dopasowany w sensie aproksymacji średniokwadratowej do danych

L15.12. Niech P_0, P_1, \dots, P_N będą wielomianami ortogonalnymi względem iloczynu skalarnego postaci

$$(f,g)_N := \sum_{k=0}^{N} f(x_k)g(x_k),$$

gdzie $x_k := -a + \frac{2ak}{N}$ $(k = 0, 1, \dots, N; \ a > 0)$. Udowodnij, że jeśli α jest miejscem zerowym wielomianu P_k $(0 \le k \le N)$, to także $-\alpha$ jest miejscem zerowym tego wielomianu.

- **L15.13.** Opisz metodę Romberga obliczania przybliżonej wartości całki $\int_0^1 f(x) dx$.
- **L15.14.** Niech dana będzie macierz nieosobliwa $A \in \mathbb{R}^{n \times n}$. Zaproponuj efektywny algorytm wyznaczania macierzy odwrotnej A^{-1} i podaj jego złożoność.
- **L15.15.** Niech dane będą macierze $A, B \in \mathbb{R}^{n \times n}$. Opracuj oszczędny algorytm wyznaczania takiej macierzy $X \in \mathbb{R}^{n \times n}$, aby zachodziła równość AX = B. Podaj jego złożoność.
- **L15.16.** Opracuj metodę wyznaczania rozkładu LU macierzy $A_n \in \mathbb{R}^{n \times n}$ postaci

$$A_n := \begin{bmatrix} a_1 & & & & c_1 \\ & a_2 & & & c_2 \\ & & a_3 & & c_3 \\ & & & \ddots & \vdots \\ & & & a_{n-1} & c_{n-1} \\ b_1 & b_2 & b_3 & \cdots & b_{n-1} & a_n \end{bmatrix},$$

gdzie zaznaczono jedynie niezerowe elementy. Podaj jej złożoność.

(-) Paweł Woźny