Dimensiones de paracaídas cruciforme inflado

Leonel Gerardo González Pérez

20de septiembre de 2023

1. Introducción

Con este escrito se muestra como obtener la geometría de un paracaídas cruciforme basándose en el paracaídas militar T11 [1] con la ayuda de la bibliografía recomendada en los cursos de ENMICE [2]

2. Desarrollo

Las dimensiones que sugiere la tabla para los paracaídas solidos se muestra en la figura 2 Donde D_c es el diámetro construido que se muestra en cada representación del paracaídas, D_p es el diámetro proyectado del canopy inflado, D_o es el diámetro que tomaría un paracaídas hemisférico o también llamado diámetro nominal. Las medidas de la geometría del paracaídas cruciforme se muestran en figura 1

Figura 1: Diagrama transversal del paracaídas cruciforme

Se puede obtener la altura h aproximando la forma del canopy a una semielipse de la forma:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{1}$$

Donde el eje menor b representa la altura h, el eje mayor a representa la mitad del diámetro de proyección $(D_p/2)$ y se puede obtener aproximadamente como

$$b = \frac{3L - 2\pi a + \sqrt{3L^2 + 6\pi La - 5\pi^2 a^2}}{3\pi}$$

$$h = \frac{3L - \pi D_p + \sqrt{3L^2 + 3\pi W D_p - \frac{5}{4}\pi^2 D_p^2}}{3\pi}$$

Teniendo en cuenta los datos del paracaídas T11 [2] donde $D_p=6.2m$ y $D_o=8.72m$ la relación D_p/D_o es la siguiente

$$\frac{D_p}{D_o} = 0.711$$

Que es un valor que si figura en los rangos establecidos en figura 2. Como no tenemos el diámetro D_o debido a que este se tiene calcular en función de el peso al cual esta diseñado se divide D_p/D_o entre D_c/D_o eliminando así D_o y para D_c/D_o tomando el valor de 1.19

$$\frac{D_p}{D_c} = \frac{0.711}{1.19} = 0.597$$

Despejando ${\cal D}_p$ y sabiendo que ${\cal D}_c = {\cal L}$

$$D_p = 0.597L$$

3. Dimensiones

Con esto ya se puede calcular los datos necesarios para los modelos de paracaídas con relaciones LWR de 3, 3.4 y 3.8 que se eligieron conforme a la información proporcionada en [3]

LWR	W	$D_c = L$	D_p	h
3	15	45	26.9	15.2
3.4	15	51	30.5	17.2
3.8	15	57	34	19.2

Tabla 1: Medidas para paracaídas cruciformes en cm

El valor para h podría se mas pequeño debido a que se tomo como base una elipse pero es una buena referencia, las demás mediciones si se deberían respetar dado por los datos obtenidos del paracaídas T11 y la figura 2

TABLE 5-1. Solid Textile Parachutes.

TYPE	CONST	PROFILE	D _C	$\frac{\text{INFLATED}}{\text{SHAPE}} \frac{D_p}{D_o}$	DRAG COEF $^{C}D_{_{\mathcal{O}}}$ RANGE	OPENING FORCE COEF CX (INF MASS)	AVERAGE ANGLE OF OSCILLATION, DEGREES	GENERAL APPLICATION
FLAT CIRCULAR	٠		1.00	0.67 TO 0.70	0.75 TO 0.80	~1.7	:10 TO :40	DESCENT, OBSOLETE
CONICAL	\odot	F-D _c -1	0.93 TO 0.95	0.70	0.75 TO 0.90	~1.8	: 10 TO : 30	DESCENT. M < 0.5
BICONICAL	\odot	FD,-	0.90 TO 0.95	0.70	0 75 TO 0 92	~1.8	: 10 TO : 30	DESCENT, M < 0.5
TRICONICAL POLYCONICAL	\odot	F- D _c -	0.90 TO 0.95	0.70	0 80 TO 0.96	~1.8	*10 TU *20	DESCENT, M < 0.5
EXTENDED SKIRT 10% FLAT	<u>.</u>	H-0.10.	0.86	0.66 TO 0.70	0.78 TO 0.87	~1.4	:10 TO :15	DESCENT, M < 05
EXTENDED SKIRT 14.3% FULL	اِ ن	\$ 143 D _c	0.81 TO 0.85	0.66 TO 0.70	0 75 TO 0 90	~1.4	:10 TO :15	DESCENT, M < 0.5
HEMISPHERICAL	\odot	-De-	0.71	0.66	0.62 TO 0.77	- 1.6	:10 TO :15	DESCENT. M < 05. OBSOLETE
GUIDE SURFACE (RIBBED)		\Leftrightarrow	0.63	C 62	0 28 TO 0 42	~12	0 TO • 2	STABILIZATION DROGUE. 0.1 < M < 1.5
GUIDE SURFACE (AIBLESS)	() - D _C -	€	0 66	0.63	0 30 TO 0 34	~14	0 TO : 3	PILOT. DROGUE, 0.1 < M < 15
ANNULAR	\bigcirc	F-0-H	1.04	0.94	0 85 TO 0 95	~14	<.6	DESCENT, M < 05
CROSS		_	1 15 TO 1 19	0 66 TC 0 72	0 60 TO 0 85	1.1 TO 1.2	0 †0 ·3	DESCENT, DECELERATION

Figura 2: Relaciones y datos de interés de paracaídas solidos

Referencias

- [1] Sistema de Paracaídas de Tropa no Orientable. (s.f.). Airbone Systems. recuperado Septiembre 19, 2023, de https://airborne-sys.com/wp-content/uploads/2016/09/ ASG-T-11-20170202-Spanish-1.pdf
- [2] Knacke, T. W. (1991). Parachute recovery systems: design manual. https://apps.dtic.mil/sti/pdfs/ADA247666.pdf
- [3] Cheng, H., Ouyang, Y., Zhang, Y., & Pan, J. J. (2022b). Research on the influence of length-width ratio on cruciform parachute airdropping performance. Journal of Industrial Textiles, 51(5_suppl), 7694S-7713S. https://doi.org/10.1177/15280837211070023