1

i

We first have that I, F is the ultra filter, so we have 2 scenarios $N \subset U, N \in F$ or $M/N \in F$. (every set is either large or co-large)

o F is ultrafiler, so that there exists $N\subset U$ such taht $N\not\in F$ $M/\mathbb{N}\not\in F$. Since $F
eq\emptyset$ So for $G\in F$, we have $G\subset N$ or M or both empty.

we have $\emptyset \not\in F$ So there;s no $H_1, H_2 \in F$ $H_1 \subset N$ or M / N Suppose the latter, let $B = \{N \cap H | H \in F\}$, so that $\emptyset \in A$. But $F' = F \cup B \cup \{N\}$ does not contain \emptyset and $F \subset F'$ which is contradiction. So \square

 $\leftarrow (M/N) \cap N = \emptyset$ and F' does not exists. So F is ultra filter.

ii

Let $\mathcal{F}=\{N\subset M|m_0\in N\}$. We have $\forall N\in F,m_0\in N$, so $\emptyset\notin F'$

let $N_1,N_2\in F,m_0\in (N_1\cap N_2)$ we have $(N_1\cap N_2)\in F$ so F is a filter. and for $H\in P(U)/F,\{m_0\}\in F,H\cup\{m_0\}=\emptyset$ so

iii

Take X to be any infinite set, choose $\mathbb N$ a countable subset of X and enumerate N as a sequence, $N=\{x_n\}_{n\in\mathcal N}$. Set $B_1=N$ and $B_n=N/\{x_1,\dots,x_{n-1}\}$, $n\in\mathcal N$ Then $\mathcal B=\{B_n:n\in\mathcal N\}$ is a filter base that can be extended to a non principal ultrafilter on X. $F\subset F'$. F is ultrafilter.

iv

Let $R=\mathcal{F}(I,\mathbb{R})$ and let $U=\left\{f^{-1}(0):f\in J\right\}$. First, note that if $f\in J$, then we can multiply f by a function to assume f only takes the values 0 and 1 without changing its zero set (just multiply by a function that is 1/f when f doesn't vanish). So, $A\in U$ iff the function $1_{I\setminus A}$ which is 1 on $I\setminus A$ and 0 on A is in J.

We now see easily that U is a filter: it is closed under supersets since J is closed under multiplication by elements of R, and it is closed under intersections since $1_{I\setminus A}+1_{I\setminus B}$ vanishes only on $A\cap B$. To see that it is an ultrafilter, it suffices to show that for any $A\subseteq I$, exactly one of $e=1_A$ and $f=1_{I\setminus A}$ is in J. This follows from the fact that e+f=1 and ef=0: since e+f=1, they cannot both be in J, and since ef=0, at least one must be in J since J is prime.

2

Since R has no zero-divisor. The closure under the calculation is trivial, and the associativity under plus and mul is satisfied.

For $(\mathbb{Q}(\mathbb{R}),+)$ we have $[(O_R,I_R)]$ is the unit and $\forall (r,s)\in\mathbb{Q}(\mathbb{R}),$ $(-r,s)+(r,s):=(-rs+rs,ss)=(O_R,SS)=(O_R,I_R),$ which is invertible.

Also, for $\forall (r_i,s_i)\in \mathbb{Q}(\mathbb{R}), i\in\{1,2,3\}$ we have $(r_3,s_3)((r_1,s_1)+(r_2,s_2))=(r_3,s_3)(r_1s_2+r_2s_1,s_1s_2)=(r_3(r_1s_2+s_1r_2),s_1s_2s_3)=(r_1r_2,s_3s_1)+(r_3r_2,s_3s_2)=(r_3,s_3)(r_1,s_1)+(r_3,s_3)(r_2,s_2)$ the distribution holds, too.

So, it's a ring and the commutativity of $\mathbb{Q}(\mathbb{R}), \cdot$ is deducted from (R,\cdot) .

To prove that (O_R, I_R) is not invertible, $\forall (r_1, s_1), (r_2, s_2) \neq (O_R, I_R)$ we have $(r_1, s_1) \cdot (r_2, s_2) = (r_1 r_2, s_1 s_2) = (O_R, I_R)$. $r_1 r_2 = O_R$. so that $r_1 = O_R r_2 = O_R$.

 $\mathbb{Q}(\mathbb{R})$ has no zero-divisor, we have (I_R,I_R) is unit and (O_R,I_R) is not invertible. Thus $(\mathbb{Q}(\mathbb{R}),+,\cdot)$ is a field.

3

i

The closure of +, \cdot is trivial.

As for associativity, in $(R_W,+)$, it follows directly from the associativity of + in R and W. Now $orall (r_i,w_i)\in R_W$

 $(r_3,w_3)*((r_1,w_1)*(r_2,w_2))=(r_1r_2r_3,r_3(r_1w_2+r_2w_1)+r_1r_2w_3)=((r_1,w_1)+(r_2,w_2))*(r_3,w_3)\\ \text{ and }(O,O_W),(I,O_W)\text{ are respectively units for + and *}.$

 $\forall (r,w) \in R_W \ (r,w) + (-r,-w) = (O,O_w)$, so every element's invertible.

commutativity is from (R,+) (W,+)

The distribution is $\forall (r_1,w_1)(r_2,w_2)(r_3,w_3) \in R_W$, we ahve $(r_3,w_3)*((r_1,w_1)+(r_2,w_2))=(r_3,w_3)(r_1w_2+r_2w_1,w_1w_2)=(r_3(r_1w_2+w_1r_2),w_1w_2w_3)=(r_1r_2,w_3w_1)+(r_3r_2,w_3w_2)=((r_1,w_1)+(r_2,w_2))*(r_3,w_3)$

Thus, because $(O, O_w) \neq (I, I_W)$. $(R_W, +, *)$ is a non-zero communitative unitary ring.

ii

The R_W 's maximal ideal is $m \leftrightarrow d(R_W) \ge \dim R_W \leftrightarrow R_W$ is finite demensional. W is finite dimensional as R-vector space. d is depth, h is height

Suppose the maximal prime is m, deduction proof on $d(R_W)$

 $d(R_W)=0$ \forall big enough n $l(R_W/m^n)$ is constant. So that there exist $m^{n+1}=m^n$ so that $m^n=0$ So that dim R_W =0

If d(A)>0. let $p_0\subset p_1\cdots p_r$ be R_W 's prime ideal chain. let $x\in p_1/p_0$, π is the homomorphism from R_W to $R_W'=R_W/p_0$. So $x'=\pi(x)\neq 0$ R_W' is integer ring. So that $d(R_W'/<\!x\prime\!>)\leq d(R_W')-1$ if m' is the maximal ideal, R_W'/m'^n is the homomorphism image of R_W/m^n . So $l(R_W/m)^n\geq l(R_W'/m'^n)$ So that $d(R_W)\geq d(R_W')$ and $d(R_W'/<\!x\prime\!>)\leq d(R_W)-1$.

So that the length of $d(R_W'/\langle x\prime \rangle)$ is no bigger than $d(R_W)-1$, but p1...pr construct a chain of length r-1. So that dim $R_W \leq d(R_W)$

4

Let height p be the sup of the length r of prime ideal chain $p_0 \subset p_1 \cdots p_r = p$ whose destination is p and depth p be the sup of the length p of prime ideal chain $p = p_0 \subset p_1 \cdots p_s$ who starts with p

We have height p = dim R_p , depth p = dim R/p because $S^{-1}p_0\subset S^{-1}p_1\cdots S^{-1}p_r=S^{-1}p, S=R/p$ and $p/p=q_o/p\subset q_1/p\ldots q_s/p$ are the prime ideal chain of $S^{-1}R$ and R/p

For a as maximal prime of d-dim commutative non-zero unitary ring R, for all p_i , we have $0 \le$ height $p_i \le$ height $a = \dim R$. $\forall t, 0 \le t \le d$ exists prime ideal p_i such that height $p_i = t$ height $p_i = d$ if and only if $p_i = a$

Because $p_0 \subset \cdots p_r = p \subset a$ and R have prime ideal chain $p_0 \subset \cdots p_{dim(R)}$