PROJECT REPORT Writer Identification Project Report

TEAM MEMBERS:

SUBHAN 22K-4316

JUNAID ASIF 22K-4369

MUHAMMAD SADIQ 22K-4303

Writer Identification Project Report

Project Objective

The aim of this project is to identify the author of a handwritten document using deep learning. Specifically, we tackle *handwritten writer identification*, which is the task of determining the author of a handwritten document by comparing it to known handwriting samples 1. This problem is important in domains like forensics (e.g. linking anonymous letters to suspects) 2. By training a convolutional neural network (CNN) to classify handwriting images by writer, we attempt to automatically recognize who wrote each sample.

Datasets Used

The dataset comprises handwritten samples from over 2000 different writers. Initially, the dataset was used in its raw form, with some writers having fewer than five images. This imbalance resulted in poor generalization and low model performance.

To address this, we applied a filtering criterion and retained only those writers who had at least 5 images. After this cleaning process, the dataset was reduced to 94 writers. This made the dataset more balanced and allowed for effective training and evaluation.

Model(s) Used

We used a modified version of the ResNet-18 architecture:

- i. The first convolution layer was adjusted to support grayscale input.
- ii. The default linear classification head was replaced with a Cosine Similarity-based Classifier to improve separation in high-dimensional embedding space.
- iii. We applied label smoothing in the loss function to avoid overconfidence and improve generalization.
- iv. Data augmentation techniques such as random horizontal flips and slight rotations were used to increase sample diversity and reduce overfitting.

The model was trained using CrossEntropyLoss (with label smoothing) and the Adam optimizer.

Results

We conducted experiments on two versions of the dataset:

Configuration	Writers	Accuracy	Notes
Full Dataset (Unfiltered)	~2000+	31.73%	Many classes with too few images
Filtered Dataset (≥5	94	94.07%	Balanced data, significantly better
images)			performance

The training loss decreased steadily across 50 epochs for both experiments. However, the filtered dataset resulted in dramatically higher test accuracy due to better per-class representation and generalization.

Graph of loss per epoch for unfiltered 2000+ writers dataset: *Training Loss Table:*

Epoch	Training Loss
1.0	330.9981
2.0	278.0735
3.0	247.3800
4.0	224.1148
5.0	202.4938
6.0	186.3491
7.0	171.6436
8.0	157.3038
9.0	145.3284
10.0	138.5014
11.0	128.7659
12.0	114.8371
13.0	111.4543
14.0	105.4068
15.0	97.2125
16.0	91.5564
17.0	89.1958
18.0	84.6637
19.0	84.1990
20.0	76.3286
21.0	74.1647
22.0	70.4612
23.0	70.0201
24.0	68.4598

66 6704
66.6794
66.5441
66.3502
65.0952
64.6833
64.0297
63.1153
63.4145
63.1432
60.7572
61.9915
60.5402
61.4156
61.5982
61.9691
60.6198
62.5544
62.0561
60.5431
60.8718
61.1190
62.0247
63.5571
60.5348
58.8951
60.4404

Graph of loss per epoch for filtered dataset (94 writers) :

Training Loss Table:

Epoch	Training Loss	
1	152.2293	
2	133.7400	
3	118.2322	
4	107.5771	
5	98.1402	
6	90.8059	
7	83.7735	
8	77.4287	
9	71.5851	
10	65.5415	
11	62.6328	
12	58.4772	
13	53.8903	
14	50.9874	
15	48.3827	
16	46.0183	

17	44.5621
18	40.9699
19	38.9780
20	37.6482
21	37.3112
22	35.6680
23	34.9793
24	33.7629
25	33.0882
26	32.5056
27	31.1142
28	30.9407
29	30.0808
30	30.1789
31	29.6610
32	30.0566
33	29.1341
34	28.7008
35	28.9085
36	28.8656
37	28.8036
38	29.1012
39	28.9769
40	28.1066
41	27.8779
42	27.7346
43	27.5495
44	27.9538
45	27.9659
46	28.1343
47	27.7927
48	27.5545
49	27.3119
50	27.4303

Discussion on Results

Training on the unfiltered dataset with over 2000 classes led to poor performance due to extreme class imbalance — many writers had only a few examples. The model showed overfitting, as training loss decreased but test accuracy remained low (31.73%).

To address this, we filtered the dataset to include only writers with at least 5 images, which resulted in 94 well-represented classes. This cleaned version allowed the model to learn meaningful patterns and generalize better to unseen data.

The use of a cosine classifier helped the model perform well on a fine-grained classification task, while label smoothing and augmentation further boosted robustness. The final model achieved a test accuracy of 94.07%, clearly demonstrating the importance of dataset balancing and architectural adjustments in high-class-count classification problems.