České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka teorie a příkladů

Teorie grafů

Jakub Adamec Praha, 2025

Obsah

			S	Strana
L	Neo	prientované grafy		2
	1.1	Základní pojmy a definice		. 2
		1.1.1 Základní typy grafů		. 2
		1.1.2 Sled, tah, cesta		. 2
		1.1.3 Kružnice a cyklus		. 2
		1.1.4 Stupně vrcholů		. 3
	1.2	Skóre		. 3
	1.3	Hledání grafu ke skóre		. 4
	1.4	Příklad hledání grafu pro skóre		. 5
	1.5	Další pojmy založené na stupních vrcholů		. 5
	1.6	Tvrzení o podgrafech		. 5
	1.7	Souislý graf		. 6
	1.8	Pojmy založené na vzdálenosti		. 6
		1.8.1 Vzdálenost		. 6
		1.8.2 Průměr		. 6
		1.8.3 Excentricita		. 6
		1.8.4 Centrum		. 6
		1.8.5 Poloměr		. 7
	1.9	k-souvislost		. 7
	1.10	Souvislost v grafu		. 7
	1.11	Vrcholový řez		. 7
	1.12	Vztah neúplnosti a vrcholového řezu		. 7
	1.13	Věta o vztahu podgrafu a souvislosti		. 8
		1.13.1 Pomocné lemma 1		. 8
		1.13.2 Pomocné lemma 2		. 9

Úvod

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné poznámky řešitelů, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Autor velmi ocení, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/XP01TGR.

Poděkování. Rád bych poděkoval profesorce Marii Demlové nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Teorie grafů.

Text je vysázen makrem LATEX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek. Grafy byly nakresleny pomocí maker TikZ Tilla Tantaua.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 Neorientované grafy

1.1 Základní pojmy a definice

Graf je soubor vrcholů, hran a vztahů incidence. Zapíšeme jako $G = (V, E, \varepsilon)$, kde V je neprázdná množina vrcholů, E množina hran a ε říká "co hrany představují", respektive

$$\varepsilon: E \to \{\{u, v\} \mid u, v \in V\}. \tag{1}$$

Jestliže pro dvě hrany $e_1, e_2 \in E$ platí, že $\varepsilon(e_1) = \varepsilon(e_2)$, pak se hrany e_1, e_2 nazývají **paralelní**. Pokud graf nemá paralelní hrany, nazýváme jej **prostý**. V takovém případě také stačí chápat graf jako dvojici G = (V, E), kde hrany jsou neprázdné maximálně dvouprvkové podmnožiny V.

Smyčkou nazveme takovou hranu, která je $e \in E$ a pro $\varepsilon(e) = \{u, v\}$ platí u = v.

 \mathcal{S} ... je množina všech neorientovaných prostých grafů bez smyček.

1.1.1 Základní typy grafů

Rozlišujeme 2 základní typy grafů, orientované a neorientované.

- (a) Orientovaný graf: $\varepsilon: E \to \{(u,v) \mid u,v \in V\}; u \in P_V(\varepsilon), v \in K_V(\varepsilon)$
- (b) Neorientovaný graf: $\varepsilon: E \to \{(u,v) \mid u,v \in V\}; u,v$ jsou krajní vrcholy ε

1.1.2 Sled, tah, cesta

- (a) Sled je taková posloupnost, která začíná a končí vrcholem a kde po každém vrcholu následuje hrana, tedy $v_1, e_1, v_2, e_2, \ldots, v_k$. V orientovaném případě vždy platí $P_V(e_1) = v_i$, $K_V(e_i) = v_{i+1}$. Neorientovaný pouze říká, že v_i a v_{i+1} jsou krajní vrcholy.
- (b) Tah je sled, ve kterém se nesmí opakovat hrany.
- (c) Cesta je sled, ve kterém se nesmí opakovat vrcholy, s výjimkou počátečeního, ve kterém cesta může končit.

1.1.3 Kružnice a cyklus

Kružnice je uzavřená neorientovaná cesta v grafu, cyklus uzavřená orientovaná cesta.

Příklad kružnice:

1.1.4 Stupně vrcholů

Pokud $G = (V, E, \varepsilon)$, pak

- vstupní stupeň v $d^-(v) = \|\{e \mid K_V(e) = v\}\|$
- výstupní stupeň v $d^+(v) = \|\{e \mid P_V(e) = V\}\|$
- stupeň v $d(v) = d^{-}(v) + d^{+}(v)$

Příklad

Pro G = (V, E) je pouze $d(v) = \|\{e \mid v \text{ je krajní vrchol } e, \text{ smyčku počítáme } 2\times\}\|.$

Z toho máme důsledek

$$\sum_{v \in V} d(v) = 2\|E\| \tag{2}$$

Tedy každý graf má sudý počet vrcholů lichého stupně.

1.2 Skóre

Skóre grafu $(G\in\mathcal{S})$ je $D=(d_1,d_2,\ldots,d_n),$ kde d_i je stupeň vrcholu $v_i.$ G=(V,E) $\|V\|=d$

Mějme příklad skóre (1,1,1,2,2,3). Jak by mohl vypadat graf s takovým skóre?

Jak vidíme, skóre jednoznačně neurčuje graf. Můžeme ze skóre ale říct, jestli je takové skóre validním skóre nějakého grafu?

1.3 Hledání grafu ke skóre

Tvrzení. Máme $D = (d_1, d_2, ..., d_n), d_1 \le d_2 \le ... \le d_n$.

Pak D je skóre některého grafu G=(V,E) právě tehdy, když $D'=(d'_1,\ldots,d'_{n-1})$ definovaná tak, že

$$d_i = \begin{cases} d_i & \text{pokud } i < n - d_n \\ d_i - 1 & \text{pokud } i \ge n - d_n \end{cases}$$

je skóre nějakého $G' \in \mathcal{S}$.

Důkaz.

"⇐": Existuje G' pro D'. G vytvoříme tak, že k G' přidáme vrchol v_n a spojíme se všemi vrcholy $v_{n-d_n}, v_{n-d_1+1}, \ldots, v_{n-1}$. Pak G má skóre D.

" \Rightarrow ": Máme G s $D=(d_1,d_2,\ldots,d_n)$, kde d_1 je stupeň v_1,d_2 je stupeň v_2 a tak dále.

Mějme $\mathcal{G} = \{G \mid G \text{ má } D\} \neq \emptyset.$

Cíl: Chceme dokázat, že mezi všemi grafy \mathcal{G} existuje jeden, který má vlastnost, že poslední vrchol je spojen hranami s d_n předcházejícími vrcholy.

 $\forall G \in \mathcal{G}$ mějme j_G , což bude největší index vrcholu, tak že $\{v_{j_G}, v_n\} \notin E$, tedy není mezi nimi hrana. To znamená, že pro ideální G chceme docílit $j_G = n - d_n - 1$.

Jako G_1 označíme ten $G_1 \in \mathcal{G}$, že j_{G_1} je nejmenší. (Může být j_{G_1} menší jak $n - d_n - 1$? Ne. v_n má stupeň d_n , a kdyby bylo j_{G_1} menší, tak by bylo vrcholů více, tzn. ne všechny by měly hranu s v_n .)

Označme $j_1 = j_{G_1}$.

Víme $j_1 \ge n - d_n - 1$. Teď nás ale zajímá, jestli $j_1 = n - d_n - 1$. Dokažme sporem. Kdyby $j_1 > n - d_n - 1$, tak

Protože mezi d_n předcházejícími vrcholy je nějaký, který není spojen hranou s v_n , v našem případě v_{j_1} , nutně to znamená, že v_n musí mít hranu s nějakým vrcholem, řekněme v_k , který má ještě nižší index.

$$d(v_k) \le d(v_{j_1})$$

 v_k je v pořadí dříve, než v_{j_1} , tudíž musí mít nutně menší roven stupeň. To ale nutně znamená, že v_{j_1} musí být spojen s alespoň jedním vrcholem, označme si ho v_ℓ , se kterým není spojen v_k , protože v_k je spojen s v_n , zatímco v_{j_1} není.

Vytvořme

$$G_{0} = (V_{0}, E_{0})$$

$$V_{0} = V_{1} = V$$

$$E_{0} = (E_{1} \setminus \{\{v_{n}, v_{k}\}, \{v_{\ell}, v_{j_{1}}\}\}) \cup \{\{v_{k}, v_{\ell}\}, \{v_{n}, v_{j_{1}}\}\}$$

 G_0 má skóre D a zároveň $j_{G_0} < j_1$. To ale znamená, že G_1 nebyl graf s nejmenším j_G , což je spor. A proto nejmenší j_G je $j_{G_0} = n - d_n - 1$.

Ověřili jsme, že takový graf určitě existuje, takže G' dostaneme z G_0 odstraněním v_n . G' pak má skóre D'.

1.4 Příklad hledání grafu pro skóre

Mějme
$$D = (1, 1, 2, 3, 3); n = 5, d_n = 3; n - d_n = 2.$$

$$D_1 = (1, 0, 1, 2) \stackrel{\text{uspo.}}{\rightarrow} (0, 1, 1, 2); n_1 = 4, d_{n_1} = 2; n_1 - d_{n_1} = 2.$$

 $D_2 = (0,0,0)$. . . tento graf je určitě existuje, jedná se o diskrétní graf.

Kresleme postupně, začněme u D_2 .

$$x$$
 y z

Pak přidejme vrchol a hrany tak, aby skóre odpovídalo D_1 .

A nakonec tak, aby odpovídalo D.

1.5 Další pojmy založené na stupních vrcholů

Definice. Je dán neorientovaný prostý graf bez smyček. Pak definujme

- $\delta(G) = \min \{ d(v) \mid v \in V \}$ je minimální stupeň grafu G.
- $\Delta(G) = \max\{d(v) \mid v \in V\}$ je maximální stupeň grafu G.
- $d(G) = \frac{2|E|}{|V|} = \frac{\sum_{v \in V} d(v)}{|V|}$ je průměrný stupeň grafu G.
- $\varepsilon(G) = \frac{|E|}{|V|} = \frac{1}{2}d(G)$ je poměr počtu hran ku počtu vrcholů.

Označme
$$n=|V|$$
 a $m=|E|.$ Pak $d(G)=\frac{2m}{n}$ a $\varepsilon(G)=\frac{m}{n}.$

Zřejme platí
$$\delta(G) \leq d(G) \leq \Delta(G)$$
.

1.6 Tvrzení o podgrafech

Tvrzení. Pro každý $G \in \mathcal{S}$ s $|E| \ge 1$ existuje podgraf H takový, že $\delta(H) > \varepsilon(H) \ge \varepsilon(G)$.

5

Důkaz. Máme dvě situace

1. Bud
$$\delta(G) > \varepsilon(G)$$
, pak $H = G$.

2. Nebo
$$\delta(G) \leq \varepsilon(G)$$
, tj. $v_1 \in V$, $d(v_1) = \delta(G) \leq \frac{m}{n}$.

Dokažme tedy ještě platnost pro 2.

Označme $G_1 := G \setminus v_1$. A tedy $m_1 = m - \delta(G)$ a $n_1 = n - 1$.

$$\text{Chceme }\underbrace{\frac{m_1}{n_1}}_{\varepsilon(G_1)} \geq \underbrace{\frac{m}{n}}_{\varepsilon(G)}.$$

$$\frac{m_1}{n_1} - \frac{m}{n} = \frac{m - \delta(G)}{n - 1} - \frac{m}{n} = \frac{nm - n\delta(G) - nm + m}{(n - 1)n} = \frac{m - n\delta(G)}{(n - 1)n}, \delta(G) \le \frac{m}{n}, m \ge n\delta(G) \quad (3)$$

A tedy

$$m - n\delta(G) \ge 0$$
$$n(n-1) \ge 0$$

Což dává

$$m \geq n\delta(G)$$
, tj. $\varepsilon(G_1) \geq \varepsilon(G)$

Algoritmus dále pokračuje:

Pokud
$$\begin{cases} \delta(G_1) > \varepsilon(G_1), & \text{tak } H := G_1, \\ \delta(G_1) \le \varepsilon(G_1), & \text{tak } v_2 \in V \setminus \{v_1\}, d_{G_1}(v_2) = \delta(G_1). \end{cases}$$

A tedy $G_2 := G_1 \setminus v_2$, $\varepsilon(G_2) \ge \varepsilon(G_1)$na konci určitě kladné

1.7 Souislý graf

Graf nazýváme souvislým, jestliže každé jeho dva vrcholy jsou spojeny neorientovanou cestou.

1.8 Pojmy založené na vzdálenosti

1.8.1 Vzdálenost

Mějme $G \in \mathcal{S}$, G = (V, E), $x, y \in V$. Vzdálenost x, y je $d_G(x, y)$, což značí počet hran v nejméně početné cestě z x do y, když existuje cesta. Jinak $d_G(x, y) = \infty$.

1.8.2 Průměr

At G je souvislý. Průměr G je diam $(G) = \max \{d_G(x,y) \mid x,y \in V\}.$

1.8.3 Excentricita

At G je souvislý. Excentricita vrcholu $v \in V$ je $ex(V) = max \{d_G(v, x) \mid x \in V\}$.

1.8.4 Centrum

At $v \in V$ je centrální $\to \exp(v)$ je nejmenší mezi $\exp(x), x \in V$. Centrum (staře střed) grafu je $C(G) = \{v \mid v \text{ je centrální}\}.$

Uveďme si příklad.
$$5 - 2 - 1$$
 Zde $C(G) = \{2, 3, 5\}.$
$$4 - 3$$

1.8.5 Poloměr

Poloměr G je $\operatorname{rad}(G) = \operatorname{ex}(v), v \in C(G)$.

Platí $\operatorname{rad}(G) \leq \underbrace{\operatorname{diam}(G) \leq 2 \operatorname{rad}(G)}_{\star}$.

Zdůvodnění *. Chceme $d_G(x,y) \leq 2 \operatorname{rad}(G) \forall x,y \in V$.

 P_1, P_2 sled z x do y o $\leq 2 \operatorname{rad}(G)$.

 P_1, P_2 obsahuje cestu $P \ge x$ do y o $\le P_1, P_2 \le 2 \operatorname{rad}(G)$.

1.9 k-souvislost

 $G=(V,E)\in\mathcal{S}.$ Řekněme, že G je k-souvislý, pokud|V|>ka pro každou $X\subseteq V,\,|X|=k-1$ je $G\setminus X$ souvislý. Mějmě

 $\begin{bmatrix} 3 & 5 \\ 4 & \\ 2 & 1 \end{bmatrix}$

Je souvislý, ale ne 2-souvislý.

Je 2-souvislý.

Každý graf je 0-souvislý, i nesouvislý graf je 0-souvislý. 1-souvislý je každý souvislý graf.

1.10 Souvislost v grafu

Souvislost v grafu G je největší k takové, že G je k-souvislý. Značíme $\kappa(G)$. Úplný graf má $\kappa(G) = |V| - 1$.

1.11 Vrcholový řez

Vrcholový řez grafu $G \in \mathcal{S}$ je množina vrcholů $X \subsetneq V$, že $G \setminus X$ je nesouvislý.

1.12 Vztah neúplnosti a vrcholového řezu

Je-li $G \in S$, G není úplný, pak $\kappa(G) = k$ právě tehdy, když nemá vrcholový řez o k-1 vrcholech a má vrcholový řez o k vrcholech.

7

1.13 Věta o vztahu podgrafu a souvislosti

Mějme $G \in \mathcal{S}$, G = (V, E), splňující $d(G) \ge 4k$. Pak G obsahuje podgraf, který je k-souvislý.

Důkaz.

- Pro k = 0 triviální. Všechny grafy jsou 0-souvislé.
- Pro k=1: Pokud $\frac{2m}{n} \geq 4k$, tedy $m \geq 1$ (takže má hranu), tak sama hrana je 1-souvislý podgraf.
- Pro $k \ge 2$: tj. $\frac{2m}{n} \ge 4k$

$$2m \ge 4kn$$

 $m \ge 2kn$
 $m \ge 4n \text{ (dosazeno } k \ge 2\text{)}$

Průběh důkazu $d(G) \geq 4k, k \geq 2 \xrightarrow{\text{Lemma 1}}$ (i), (ii) $\xrightarrow{\text{Lemma 2}} G$ má k-souislost.

1.13.1 Pomocné lemma 1

Pokud $k \geq 2$ a $d(G) \geq 4k$, pak

(i)
$$n \ge 2k - 1$$

(ii)
$$m > (2k-3)(n-k+1)+1$$

Důkaz. (i) Kdyby ne, tak n < 2k - 1.

$$n+1 < 2k$$
$$\frac{n+1}{2} < k$$

Teď použijme předpoklad $m \ge 2kn > (n+1)n$

(ii) Mějme

$$m \ge 2kn - ((2k-3)(n-k+1)+1) = 2kn - (2kn-2k^2+2k-3n+3k-3+1)$$
$$= 2k^2 - 5k + 3n + 2$$

Teď aplikujme již dokázané (i):

$$2k^2 - 5k + 3n + 2 \ge 2k^2 - 5k + 6k - 3 + 2 = 2k^2 + k - 1$$

Vyšetřeme průběh funkce

Funkce je očividně konvexní, a protože nás zajímá průběh funkce na $k \geq 2$, můžeme prohlásit, že $2k^2 + k - 1 > 0$.

1.13.2 Pomocné lemma 2

Pokud G splňuje (i) a (ii), tak G má k-souvislý podgraf.

Důkaz. G není k-souvislý.

Indukcí podle |V| = n.

Základní krok: n $\stackrel{\text{(i)}}{=} 2k - 1$, $m \ge (2k - 3)(n - k + 1) + 1$. Dosaďme $k = \frac{n+1}{2}$:

$$m \ge (n+1-3)\left(n-\frac{n+1}{2}+1\right)+1 = \frac{(n-2)(n+1)}{2}+1 = \frac{n(n-1)}{2}$$
 (4)

A tedy graf je úplný na n vrcholech. Teď potřebujeme n > k.

$$n = 2k - 1 = k + \underbrace{k - 1}_{\geq 1} \geq k + 1$$
 (5)

Indukční krok: Každý graf G' splňující (i) a (ii) s méně než n vrcholy (s alespoň 2k-1 vrcholy) má k-souvislý podgraf.

Vezmeme G splňující (i) a (ii) s n vrcholy.

(a) Kdyby $\delta(G) \leq 2k - 3$, tak $v \in V$ s $d_G(v) \leq 2k - 3$. $G \setminus v = G_1$, $n_1 = n - 1$,

$$m_1 \ge m - (2k - 3) \ge (2k - 3)(n - k + 1) + 1 - (2k - 3) = (2k - 3)(\underbrace{n - 1}_{n_1} - k + 1) + 1$$

Tudíž G_1 má k-souvislý podgraf, tedy i ho má G.

(b) At $\delta(G) > 2k - 3m$, $\delta(G) \ge 2k - 2$; $\forall v \in G, d_G(v) \ge 2k - 2$. G není k-souvislý, tj. $X \subseteq V$, |X| = k - 1 a X je vrcholový řez.

 G_1 graf indukovaný C_1 v X má alespoň 2k-1 vrcholů.

Kdyby G_1 i G_2 nesplňovaly (ii), G_i má n_i vrcholů a m_i hran, i = 1, 2.

$$m_i \ge (2k-3)(n_i-k+1)+1$$
, tj. $m_i \le (2k-3)(n_i-k+1)$ (6)

 $m_1+m_2\geq m$ víme. $n_1+n_2=n+(k-1),$ počítali jsme vrcholy v X dvakrát.

$$m \le n_1 + n_2 \le (2k - 3)(n_1 - k + 1) + (2k - 3)(n_2 - k + 1) = (2k - 3)(n_1 + n_2 - 2k + 2)$$

= $(2k - 3)(n + (k - 1) - 2k + 2)$
= $(2k - 3)(n - k + 1)$

Tedy spor s (ii).