MATRIX ANALYSIS USING PYTHON

V.GOKULKUMAR

velicharlagokulkumar@gmail.com
FWC22034 IITH Future Wireless Communication (FWC)

Assignment

September 23, 2022

1

1

1

Contents

- 1 Problem
- 2 Construction
- 3 Solution

1 Problem

Let A be the centre of the circle $x^2+y^2-2x-4y-20=0$. Suppose the tangents at the points B(1,7) and D(4.-2) on the circle meet at the point C. Find the area of the quadrilateral ABCD.

2 Construction

Figure of construction

3 Solution

Circle equation : $x^2 + y^2 - 2x - 4y - 20 = 0$ The standard equation of the conics is given as :

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0$$

The given circle can be expressed as conics with parameters

$$\mathbf{V} = \mathbf{I}, \mathbf{u} = -\begin{pmatrix} 1\\2 \end{pmatrix}, f = -20$$

Radius and Centre are

$$r = \sqrt{\mathbf{u}^{\top}\mathbf{u} - f}, \mathbf{A} = -u$$

The steps for constructing above figure are:

- 1. Generate a circle of radius r with centre ${\bf A}$
- 2. Locate B,D on the circle
- 3. Find the Normal vectors to AB, AD say m_1 , m_2
- 4. Find the equations of the tangents and use them to find the intersection C

The input parameters for this construction are

Symbol	Value	Description
A	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	Centre
В	$\begin{pmatrix} 1 \\ 7 \end{pmatrix}$	Point B
D	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	Point D

 ${\bf C}$ is obtained as the point of intersection of the tangents at ${\bf B}$ and ${\bf D}$ The equation of both tangents are respectively

$$\mathbf{x} = \mathbf{B} + \lambda_1 \mathbf{m}_1$$

$$\mathbf{x} = \mathbf{D} + \lambda_2 \mathbf{m}_2$$
(4)

and their intersection is given by

$$\mathbf{B} + \lambda_1 \mathbf{m}_1 = \mathbf{D} + \lambda_2 \mathbf{m}_2 \tag{5}$$

$$\implies (\mathbf{m}_1 \quad \mathbf{m}_2) \begin{pmatrix} \lambda_1 \\ -\lambda_2 \end{pmatrix} = \mathbf{D} - \mathbf{B} \tag{6}$$

which can be used to obtained λ_1, λ_2 and consequently C, using (4)

$$\therefore$$
 Coordinates of C is $\mathbf{C} = \begin{pmatrix} 16 \\ 7 \end{pmatrix}$

Letting,

$$v1 = A - B \tag{7}$$

$$\mathbf{v2} = \mathbf{A} - \mathbf{C} \tag{8}$$

Area of the ΔABC is given by

$$=\frac{1}{2}\|\mathbf{v1}\times\mathbf{v2}\|\tag{9}$$

Area of the of quadrilateral ABCD is given by

(1)
$$= 2 \times \frac{1}{2} \| \mathbf{v} \mathbf{1} \times \mathbf{v} \mathbf{2} \| \tag{10}$$

∴The area of quadrilateral ABCD=75 sq.units **termux commands**:

(2) bash sh2.sh.....using shell command

Below python code realizes the above construction :

(3) https://github.com/velicharlagokulkumar/
FWC_module1/blob/main/matrices/circle/codes/
matrix.py