- Una gramática posee los siguientes símbolos:
 - inicial.
 - ▶ no terminales (son estructuras intermedias), y
 - ▶ terminales (son elementos del alfabeto).

Definición: Gramática es una tupla: (N, T, P, σ) donde:

- N es un conjunto finito de símbolos llamados **no terminantes**.
- T es un conjunto finito de símbolos, llamados **terminantes** o **alfabeto**, tal que $N \cap T = \emptyset$
- P es un conjunto finito de reglas de producción, donde

$$P \subseteq ((N \cup T)^* - T^*) \times (N \cup T)^*$$

Obs.:

 $(N \cup T)^* - T^*$ es el conjunto de cadenas de no terminales y terminales que contienen al menos un no terminal. Dado que $\lambda \notin (N \cup T)^* - T^*$ no puede haber reglas del tipo $\lambda \to \beta$.

- (N∪T)* es el conjunto de cadenas sobre N∪T.
- ▶ A una producción de la forma (α, β) la notaremos $\alpha \to \beta$.
- ▶ Una regla del tipo $\alpha \to \lambda$ recibe el nombre de **regla** λ .
- $\sigma \in N$ es el símbolo inicial

$$G_1 = (N, T, P, \sigma)$$

donde:

- $N = {\sigma}$
- $T = \{a, b\}$
- ► P está dado por las reglas de producción:

$$\sigma \rightarrow a\sigma bb$$

$$\sigma
ightarrow abb$$

 $ightharpoonup \sigma$ es el símbolo inicial

Definición 1. Una gramática se dice:

(a) regular si cada producción es de la forma: $A \to a$ o $A \to aB$ o $A \to \lambda$ donde $A, B \in N$ y $a \in T$,

Gramáticas regulares (tipo 3)

- Las gramáticas regulares o de tipo 3, también llamadas lineales, pueden ser clasificadas como derechas o izquierdas.
- Las reglas de producción de una gramática regular derecha se adhieren a las siguientes restricciones:
 - ► El lado izquierdo debe consistir en un solo no terminal.
 - El lado derecho está formado por un símbolo terminal, que puede estar seguido (o no) por un símbolo no terminal, o la cadena vacía.
- Es decir, las producciones de una gramática regular derecha pueden tener la forma:

$$A \rightarrow a$$

A o aB

 $A \rightarrow \lambda$

donde $A, B \in N$ y $a \in T$.

Gramáticas regulares (tipo 3)

 Alternativamente, en una gramática regular izquierda las reglas de producción son de la forma:

$$A
ightarrow \hat{\epsilon}$$

$$A \rightarrow \lambda$$

• Por ejemplo, reglas de la forma:

$$yVV \rightarrow x$$

$$X \rightarrow xZy$$

$$YX \rightarrow WvZ$$

no están permitidas en una gramática regular. (¿Por qué?)

 Se puede convertir toda gramática regular derecha en izquierda y recíprocamente.

- (b) *libre* (o independiente) de contexto si cada producción es de la forma $A \to \delta$ donde $A \in N$ y $\delta \in (N \cup T)^*$. Otra definición:
 - Como en las regulares, el lado izquierdo debe consistir en un solo no terminal.
 - A diferencia de las regulares, no hay restricciones sobre la forma del lado derecho.
 - Es decir, las reglas de producción tienen la forma:

$$A \rightarrow \delta$$

donde $A \in N$ y $\delta \in (N \cup T)^*$.

- El término independiente del contexto hace referencia a que, debido a que en el lado izquierdo el no terminal aparece solo, la regla se puede aplicar sin importar el contexto en que aparezca dicho no terminal.
- En contraste, la regla xNy → xzy permite reemplazar el no terminal N por z sólo cuando se encuentre en el contexto de x e y.

Gramáticas independientes del contexto (tipo 2)

- Dado que no hay restricciones sobre la forma de δ en A → δ, podría ocurrir que δ contenga más de un no terminal, como en A → zXYz.
- Pero ¿cuál de los no terminales reemplazamos en el paso siguiente?
- El enfoque más común es el de la **derivación por la izquierda**, que consiste en reemplazar el no terminal situado más a la izquierda.
- Análogamente, se podría aplicar derivación por la derecha, o seguir algún otro patrón.
- Resulta ser que el orden en que se apliquen las reglas no afecta la determinación de si una cadena puede ser generada por la gramática o no
- Esto es consecuencia de que si existe una derivación que genera una cadena, entonces también existe una derivación por izquierda que la genera.
- (c) sensible al contexto si cada producción es de la forma $aA\beta \to \alpha\delta\beta$ donde $A \in N, \alpha, \beta \in (N \cup T)^*$ y $\delta \in (N \cup T)^+$.
 - Ubs.
 - La producción abA → baab no es sensible al contexto. Lo sería si fuese abA → abab.
 - ▶ La producción $aSb \rightarrow ab$ no es de tipo 1, pues $\delta = \lambda \not\in (N \cup T)^+$.
- (d) estructurada por frases o irrestricta si no tiene restricciones sobre la forma de sus producciones, es decir si son de la forma

$$\alpha \to \delta$$
 donde $\alpha \in (N \cup T)^* - T^*$ y $\delta \in (N \cup T)^*$

- 1. Clasifique cada una de las siguientes gramáticas (dando su tipo más restrictivo):
 - a) $T = \{a, b\}, N = \{\sigma, A\}$, símbolo inicial σ , y producciones

$$\sigma \to b\sigma, \sigma \to aA, A \to a\sigma,$$

$$A \to bA, A \to a, \sigma \to b$$

Regular.

b) $T = \{a, b, c\}, N = \{\alpha, A, B\}$, símbolo inicial σ , y producciones

$$\sigma \to AB, AB \to BA, A \to aA,$$

 $B \to Bb, A \to a, B \to b$

Sensible al contexto.

c) $T = \{a, b\}, N = \{\sigma, A, B\}$, simbolo inicial σ y producciones:

$$\begin{split} \sigma \to A, \quad \sigma \to AAB, \quad Aa \to ABa, \quad A \to aa, \\ Bb \to ABb, \quad AB \to ABB, \quad B \to b. \end{split}$$

Sensible al contexto.

d) $T = \{a, b, c\}, N = \{\sigma, A, B\}$, símbolo inicial σ , y producciones:

$$\sigma \to BAB, \quad \sigma \to ABA, \quad A \to AB, \quad B \to BA,$$

$$A \to aA, \quad Aab, \quad B \to b.$$

Independiente de contexto (libre).

- 2. Dé una derivación de las sigueintes cadenas en las gramáticas especificadas:
 - a) Cadena bbabbab en la gramática 1a.

$$\sigma$$

$$= < \sigma \rightarrow b\sigma >$$

$$b\sigma$$

$$= < \sigma \rightarrow b\sigma >$$

$$bb\sigma$$

$$= < \sigma \rightarrow aA >$$

$$bbaA$$

$$= < A \rightarrow bA >$$

$$bbabA$$

$$= < A \rightarrow bA >$$

$$bbabbA$$

$$= < A \rightarrow a\sigma >$$

$$bbabba\sigma$$

$$= < \sigma \rightarrow b >$$

$$bbabbab.$$

b) Cadena abab en la gramática 1b.

$$\sigma$$

$$= < \sigma \rightarrow AB >$$

$$AB$$

$$= < A \rightarrow aA, B \rightarrow Bb >$$

$$aABb$$

$$= < AB \rightarrow BA >$$

$$aBAb$$

$$= < A \rightarrow a, B \rightarrow b >$$

$$abab.$$