MATH2033 Mathematical Statistics Assignment 1

Due Date: 1/Mar/2024(Friday), on or before 16:00, on iSpace.

- Write down your **CHN** name and **student ID**. Write neatly on **A4-sized** paper and **show your steps**. Hand in your homework in **one pdf file** on iSpace.
- Late submissions, answers without details, or unrecognizable handwritings will NOT be graded.
- 1. (a) If U is uniform on [0, 1], find the density function of \sqrt{U} .
 - (b) If U is uniform on [-1,1], find the density function of U^2 .
- 2. Let $f_{1|2}(x_1 \mid x_2) = c_1x_1/x_2^2$, $0 < x_1 < x_2$, $0 < x_2 < 1$, zero elsewhere, and $f_2(x_2) = c_2x_2^4$, $0 < x_2 < 1$, zero elsewhere, denote, respectively, the conditional pdf of X_1 , given $X_2 = x_2$, and the marginal pdf of X_2 . Determine:
 - (a) The constants c_1 and c_2 .
 - (b) The joint pdf of X_1 and X_2 .
 - (c) $\mathbb{P}\left(\frac{1}{4} < X_1 < \frac{1}{2} \mid X_2 = \frac{5}{8}\right)$.
 - (d) $\mathbb{P}\left(\frac{1}{4} < X_1 < \frac{1}{2}\right)$.
- 3. Let $f(x_1, x_2) = 21x_1^2x_2^3$, $0 < x_1 < x_2 < 1$, zero elsewhere, be the joint pdf of X_1 and X_2 .
 - (a) Find the conditional mean and variance of X_1 , given $X_2 = x_2$, $0 < x_2 < 1$.
 - (b) Find the distribution of $Y = \mathbb{E}(X_1 \mid X_2)$.
 - (c) Determine $\mathbb{E}(Y)$ and $\mathrm{Var}(Y)$ and compare these to $\mathbb{E}(X_1)$ and $\mathrm{Var}(X_1)$, respectively.
- 4. Suppose that X_1, X_2, X_3 , and X_4 are independent random variables, each with pdf $f_{X_i}(x_i) = 4x_i^3$, $0 \le x_i \le 1$. Find
 - (a) $\mathbb{P}(X_1 < \frac{1}{2})$.
 - (b) $\mathbb{P}\left(\text{exactly one } X_i < \frac{1}{2}\right)$
 - (c) $f_{X_1,X_2,X_3,X_4}(x_1,x_2,x_3,x_4)$
 - (d) $F_{X_2,X_3}(x_2,x_3)$.
- 5. Suppose that X_1, \ldots, X_{20} are independent random variables with density functions

$$f(x) = 2x, \quad 0 \le x \le 1$$

Let $S = X_1 + \cdots + X_{20}$. Use the central limit theorem to approximate $\mathbb{P}(S \leq 10)$.