This function can be defined with fundamental sequences. The fundamental sequences for the Veblen functions $\varphi_{\beta}(\gamma) = \varphi(\beta, \gamma)$ are :

- 1. $(\varphi_{\beta_1}(\gamma_1) + \varphi_{\beta_2}(\gamma_2) + \dots + \varphi_{\beta_k}(\gamma_k))[n] = \varphi_{\beta_1}(\gamma_1) + \dots + \varphi_{\beta_{k-1}}(\gamma_{k-1}) + (\varphi_{\beta_k}(\gamma_k)[n])$, where $\varphi_{\beta_1}(\gamma_1) \ge \varphi_{\beta_2}(\gamma_2) \ge \dots \ge \varphi_{\beta_k}(\gamma_k)$ and $\gamma_m < \varphi_{\beta_m}(\gamma_m)$ for $m \in \{1, 2, ..., k\}$,
- 2. $\varphi_0(0) = 1$,
- 3. $\varphi_0(\gamma+1)[n] = \varphi_0(\gamma)n$
- 4. $\varphi_{\beta+1}(0)[0] = 0$ and $\varphi_{\beta+1}(0)[n+1] = \varphi_{\beta}(\varphi_{\beta+1}(0)[n]),$
- 5. $\varphi_{\beta+1}(\gamma+1)[0] = \varphi_{\beta+1}(\gamma)+1 \text{ and } \varphi_{\beta+1}(\gamma+1)[n+1] = \varphi_{\beta}(\varphi_{\beta+1}(\gamma+1)[n]),$
- 6. $\varphi_{\beta}(\gamma)[n] = \varphi_{\beta}(\gamma[n])$ for a limit ordinal $\gamma < \varphi_{\beta}(\gamma)$,
- 7. $\varphi_{\beta}(0)[n] = \varphi_{\beta[n]}(0)$ for a limit ordinal $\beta < \varphi_{\beta}(0)$,
- 8. $\varphi_{\beta}(\gamma+1)[n] = \varphi_{\beta[n]}(\varphi_{\beta}(\gamma)+1)$ for a limit ordinal β .

These fundamental sequences can be reformulated to get a definition of the function φ .

- 1. This does not concern the definition of the φ function but the definition of addition
- 2. and
- 3. are equivalent to $\varphi_0(\gamma) = \omega^{\gamma}$.
- 4. $\varphi_{\beta+1}(0) = \lim(n \mapsto \varphi_{\beta}^{n}(0)) = \varphi_{\beta}^{\omega}(0)$ which is the least fixed point of φ_{β} .
- 5. $\varphi_{\beta+1}(\gamma+1) = \lim(n \mapsto \varphi_{\beta}^{n}(\varphi_{\beta+1}(\gamma)+1))$, which is the least fixed point of φ_{β} strictly greater than $\varphi_{\beta+1}(\gamma)$, so $\varphi_{\beta+1}(\gamma)$ is the $1+\gamma$ -th fixed point of φ_{β} .