Towards General Purpose Vision Systems: An End-to-End Task-Agnostic Vision-Language Architecture

Tanmay Gupta¹ Amita Kamath¹ Aniruddha Kembhavi¹ Derek Hoiem²
¹PRIOR @ Allen Institute for AI ²University of Illinois at Urbana-Champaign

CVPR 2022 Oral Presented by Yujin Lee

2022.11.07

N-purpose systems

- Most of the computer vision architectures
- limited to N predefined set of task(s) and challenging to adapt to new tasks.
 - Modification on architecture or learning process required.
 - <u>Lack of Generality</u> even though N is larger than 1.

Mask R-CNN :Detection, InstSeg (multi-purpose, N = 2)

https://towardsdatascience.com/convolutional-neural-network-a-step-by-step-guide-a8b4c88d6943 He, Kaiming, et al. "Mask r-cnn." *Proceedings of the IEEE international conference on computer vision*. 2017.

General purpose systems

Designed to carry out many vision tasks.
 → not limited to predefined tasks at the

- Constrained only by its input modalities, memory/instructions, and output modalities.
 - → Highly Flexible

time of design.

Gupta, Tanmay, et al. "Towards general purpose vision systems." arXiv preprint arXiv:2104.00743 (2021).

GPV-1: Towards General Purpose Vision Systems

- An end-to-end trainable task-agnostic vision-language architecture.
- Task Query: task given in a natural language.
- Each query drawing out a different response using <u>output heads that are shared across tasks</u>.
- Generality of Architecture, Concepts across Skills, and Learning.

https://cocodataset.org/#explore

Generality of Architecture

- Learn any task within a broad domain without change to network architecture
- Leveraging Encoder-Decoder Architecture
 - Applicable to a wide range of tasks
- Learning from Task-Description
 - Task Description → Sequence of text tokens (eventually fed into a text encoder)
 - Enables GPV-1 to be task-agnostic

Templated Task Description

Natural Language Task Description

https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html
Mishra, Swaroop, et al. "Natural instructions: Benchmarking generalization to new tasks from natural language instructions." (2021).

Terms

Concepts

- Nouns
- e.g. car, person, dog, ...

Skills

- Operations that we wish to perform on the given inputs
- e.g. classification, object detection, image captioning, ...

Tasks

- Predefined combinations of a set of skills performed on a set of concepts
- e.g. COCO Object Detection task involves the skill of object detection across 80 concepts

- ✓ Concepts: dog, bicycle, car
- ✓ Skills: object detection
- ✓ Tasks: object detection on dog, bicycle, car

https://machinethink.net/blog/object-detection-with-yolo/

Generality of Concepts Across Skills

- Ability to perform tasks in skill-concepts combinations not seen during training
- If well generalized, should perform well on unseen tasks

Generality of Learning

- General purpose architecture should be able to learn new tasks...
 - with sample-efficiency: to learn with a smaller number of samples
 - without catastrophic forgetting: not to forget previous tasks

GPV-1: Architecture

- Input: Image, Text (indicates which task to be performed)
- Output: Image, Text, Object Boxes, Relevance Scores
 - # of output heads corresponds to the # of output modalities (<< # of classes)
- 3 modules: Vision, Language, Cross-Modal **Object Boxes** Task-agnostic Box Object bounding boxes and Head Queries corresponding scores. **DETR DETR Objectness Relevance Scores** Encoder Decoder Head score that how relevant to the task the 0.0 Rol given region is. **Image** Relatedness Head Linear Layer Vision Decoder Vision Encoder Relevance VILBERT Generated Text Co-Attention Conditioning Describe this A dog and a cat sitting Text BERT Linear Layer image. on a bed. Decoder : input Language Decoder Language Encoder Cross-Modal Module Text relevant to the **Task Description** : output task and image.

Vision Modules

- Encoder: CNN Backbone + DETR + Rol pooling on features from CNN
- Decoder
 - Box Head: predict R(=100) bounding boxes from region descriptors
 - Objectness Head: binary objectness classification layer (*objectness: whether it has an object or not)
- Vision Encoder and Decoder initialized with pre-trained DETR and finetuned

Language Modules

- Encoder: encode the given task description.
 - Sub-word tokenization : robust to out-of-vocabulary words
 - Pre-trained BERT: handling paraphrases and zero-shot generalization to novel task descriptions.
- Decoder: outputs words to classify, describe, or answer the input.

Cross-Modal modules

Co-attention from VilberT

cross-contextualize representations from the visual and language encoders

Relatedness head

• learns to indicate <u>relevance of regions to the task</u> description..

Relevance Conditioning

- modulates the co-attended visual features with relevance scores.
- enables supervision from the text decoder to affect the relatedness and objectness heads.

Tasks in GPV-1

- Jointly Trained on 4 tasks (VQA, Captioning, Localization, and Classification).
 - Each mini-batch consists of a mix of samples from all 4 tasks
- Referring Expressions (a.k.a. RefExp) to test the learning ability of GPV-1

Skills	VQA (text)	Captioning (text)	Localization (boxes)	Classification (text)	RefExp (box)
	What meal is this?	Generate a description.	Find person.	What is this object?	Kid sitting
	Breakfast	A man and a woman playing a game with remote controllers.		Truck *image patch given	
Loss	NLL of the ground truth answer text	NLL of the annotated caption	DETR's Hungarian Loss	NLL of text output	DETR's Hungarian Loss
Evaluation Metrics	Annotator-agreement weighted answer accuracy	CIDEr-D	mAP	Accuracy	mAP

COCO-SCE

- Splitting 80 classes of COCO dataset to test unseen combinations of concepts skills
 - 3 disjoint sets $\mathcal{H}_{vqa,cap}$, $\mathcal{H}_{cls,loc}$, \mathcal{S} specifying which tasks can use them for training and validation
 - $\mathcal{H}_{vqa,cap}$: 10 classes held-out from the VQA and captioning tasks in the train/val sets
 - $\mathcal{H}_{cls,loc}$: 10 different classes held-out from the classification and localization tasks in the train/val sets
 - S: 60 remaining classes not held out from any tasks
- When a category is held out, any <u>annotations</u> containing that word are <u>not used</u> for training or validation.

https://cocodataset.org/#explore

Experiments

- 1. Effectiveness compared to specialized models (→ Generality of Architecture)
- 2. Ability to apply learned skills to unseen concepts for that skill
 - (→ Generality of Concepts across Skills)
- 3. Efficiency at learning new skills and retention of previously learned skills
 - (→ Generality of Learning)
- 4. Ablations

Models in Experiments

Specialized Models (Baseline)

• Vilbert (VQA), VLP (captioning), Faster-RCNN (localization), Resnet-50 (classification)

1-Task GPV-1

trained only on individual task data (no joint training)

Multitask GPV-1

joint training on all 4 tasks

Generality vs. Effectiveness

- Test if the **general-purpose architecture is effective** compared to single specialized models
- In general, Multitask GPV-1 <u>improved performance (at least, comparable)</u> compared to single-task models.
 - ∴ Generality of GPV-1 is not at the cost of effectiveness.

Split	Model	VQA	Cap.	Loc.	Class.
Coco-sce	[a] Specialized Model[b] 1-Task GPV-1[c] Multitask GPV-1	55.9	0.832 0.855 0.908	64.8	75.3
COCO No Held-out	[d] Specialized Model [e] Multitask GPV-1		0.961 1.023		83.3 83.6

Table 1: Comparison to special purpose baselines

Skill-Concept Generalization

- Handling unseen skill-concept combinations during training
- 1-Task GPV-1: no access to held-out concepts
 - A baseline to account for learned priors and dataset biases by the GPV-1 architecture
- Multitask GPV-1 Oracle: trained on the COCO training split
 - Model exposed to held-out concepts for all tasks
 - <u>a loose upper bound for the "unseen" split.</u>
- General-purpose architecture > Specialized models (especially for "Unseen")
 - ✓ Multitask GPV-1 is more beneficial to <u>VQA and Captioning</u> compared to Localization and Classification

	VQA			Captioning			Localization			Classification		
Model	Test	Seen	Unseen	Test	Seen	Unseen	Test	Seen	Unseen	Test	Seen	Unseen
[a] Specialized Model	56.6	57.2	45.2	0.832	0.867	0.501	62.4	68.1	7.4	75.2	83.0	0.0
[b] 1-Task GPV-1	55.9	56.5	41.9	0.855	0.891	0.524	64.8	69.8	16.4	75.3	83.1	0.0
[c] Multitask GPV-1	58.8	59.3	47.7	0.908	0.944	0.560	64.7	68.8	25.0	75.4	82.6	5.4
[d] Multitask GPV-1 Oracle	61.4	61.3	64.0	1.018	0.997	0.939	73.0	72.7	76.0	83.6	83.4	85.7

Table 2: Skill-Concept Generalization (Results on COCO-SCE, Test is Full COCO-SCE test split)

Learning Generalization

- Test if GPV-1 learn new skills sample-efficiently without forgetting previous-learned skills.
 - New task: Referring Expressions (fine-tuned on RefCOCO+ dataset)
 - GPV-1 (Multi-task) vs. GPV-1-Loc (pre-trained only on the localization task)
- Multitask GPV-1: <u>Better zero-shot performance and better sample-efficiency (left figure)</u>
 - Better starting point with the learning of attributes and additional nouns
- Multitask GPV-1 <u>alleviates forgetting (right figure)</u>

Ablations

- Factors To Test
 - Rol features helps for <u>VQA and Captioning</u>
 - Finetuning contributes to <u>performance across all tasks.</u>
 - Modality-specific Output Heads works better in most cases compared to Task-specific output heads.

		VQA	Cap.	Loc.	Class.
[a] Multitask GPV-1		58.8	0.908	64.7	75.4
[b]	w/o RoI features	54.9	0.898	65.3	76.6
[c]	w/o Fine-Tuning	56.4	0.883	63.4	71.5

Table 3 (Top): Ablations for RoI features, Fine-tuning **Table 4** (Bottom): Ablations for modality-specific heads

		VQA		Captioning		Localization			Classification				
Model	Params	Test	Seen	Unseen	Test	Seen	Unseen	Test	Seen	Unseen	Test	Seen	Unseen
[a] Head per Task	311M	57.67	58.20	45.86	0.884	0.922	0.533	62.05	65.76	26.13	74.26	81.93	0.00
[b] Head per Modality	236M	57.73	58.22	46.91	0.881	0.915	0.547	62.53	66.13	27.75	74.58	81.76	5.10

Example of GPV-1's works on 5 tasks

Contributions

- ✓ Trained to perform **any image task** that can **be performed using words or boxes**
- ✓ Higher (at least, comparable) performance than the previous specialized models
 - comparable results to specialized systems when trained on individual tasks
 - outperforms when trained jointly
- ✓ Learn new tasks sample-efficiently

Things to be discussed

- ✓ Slower than specialized systems
 - GPV-1 for detection requires a separate localization inference per object category
- ✓ Still far to go in skill-concept generalization
 - Huge gap between Multitask GPV-1 and GPV-1 Oracle (Table 2)
- ✓ Catastrophic forgetting is remained
- ✓ Skills and concepts outside COCO unexplored
- ✓ Limited coverage of task
 - Currently not available for Image Manipulation or generation tasks (colorization, segmentation)
- ✓ Non-Image inputs (videos, point clouds...) should be handled as well.