Уравнение плоской гармонической волны. Характеристики волны: период, частота, длина волны, волновое число и волновой вектор, Единицы измерения этих величин в СИ.

 $\xi = A \cos(\omega(t - \Delta t) + \alpha) = A \cos(\omega t - \omega L v + \alpha).$

Поэтому колебания в координате x>0 будут иметь вид $\xi = A\cos(\omega t - kx + \alpha)$ - волна, бегущая в положительном направлении оси X, а если x < 0, то $\xi = A\cos(\omega t + kx + \alpha)$ - волна, бегущая в отрицательном направлении оси X. Здесь величина $k = \omega v$ называется волновым числом. Так как ω - циклическая частота по времени, то временной период $T = 2\pi \omega$. k - циклическая частота колебаний по координате X, поэтому пространственный период $\lambda = 2\pi k$ называется длиной волны. Из соотношения $k = \omega v$ получаем $2\pi \lambda = 2\pi v T$, X x=0 x L=x, откуда получаем $\lambda = v T$ - то есть длина волны – это расстояние, проходимое волной за время, равное периоду колебаний.

В случае соударения двух одинаковых шаров минимальное расстояние между центрами шаров равно их диаметру. Поэтому эффективным диаметром молекулы d называют минимальное расстояние, на которое сближаются при соударении центры двух молекул.

Ясно, что эффективный диаметр молекулы зависит от скорости их сближения (кинетической энергии на большом расстоянии), а значит - от температуры.

Если в лабораторной системе отсчета средняя скорость молекул равна $\langle \upsilon \rangle$, то длина свободного пробега λ и расстояние L будут связаны соотношением

$$\lambda = \frac{\langle v \rangle}{\langle v_{\text{OTH}} \rangle} L,$$

где $\langle v_{\text{отн}} \rangle$ — средняя относительная скорость молекулы 2 в системе отсчета, связанной с молекулой l.

По правилу сложения векторов, относительную скорость молекул можно определить по формуле (рис. 2.3):

$$v_{\text{oth}}^2 = v_1^2 + v_2^2 - 2v_1v_2\cos\varphi,$$
 (2.24)

Рис. 2.3. К определению относительной скорости молекул

где v_1, v_2 — скорости молекул 1 и 2; ϕ — угол между направлени-

ями векторов этих скоростей.

Так как скорости молекул могут иметь любые произвольные направления, а их средние значения в равновесном газе одинаковые, то усреднение соотношения (2.24) по всем возможным углам ф дает

$$\left\langle v_{\text{отн}}^{2} \right\rangle = \left\langle v_{1}^{2} \right\rangle + \left\langle v_{2}^{2} \right\rangle = \left\langle 2v^{2} \right\rangle.$$
 (2.25)

Считая, что средние квадраты скоростей молекул пропорциональны квадратам их средних скоростей, из соотношения (2.25) получаем

 $\langle v_{\text{отн}} \rangle = \sqrt{2} \cdot \langle v \rangle.$

Тогда выражение для длины свободного пробега принимает вид

$$\lambda = \frac{1}{\sqrt{2} \cdot \pi d^2 n}.\tag{2.26}$$

Из этой формулы следует обратная пропорциональная зависимость длины свободного пробега λ молекулы идеального газа от его концентрации n.

1. 8M60° 0,910 == 2 trop t== 1,83e Ombem: 1.83 c