TARGET: DEVELOP CURVE NUMBER GRIDS OVER INDIA

DATASETS

LULC from ISRO's NRSC (56 m)

Soil Data from ISRIC's SoilGrids (250 m)

METHODOLOGY:

Step 1: Reclassify LULC classes to the five major classes depending upon the following table obtained from literature.

LULC Categories	Class Recategories		Reclass	
Build up	1	Buildup	1	
Kharif	2	Agri	2	
Rabi	3	Agri	2	
Zaid	4 Agri		2	
Double/triple	5	Agri	2	
Current fallow	6	Agri	2	
Plantation/orchad	7	Agri	2	
Evergreen forest	8	Forest	3	
Decidious forest	9	Forest	3	
Scrub/deg forest	10	Forest	3	
Littoral swamp	11	Forest	3	
Grassland	12	Forest	3	
Shifting cultivation	13	Agri	2	
Wasteland	14	WasteLand	4	
Rann	15	WasteLand	4	
Water bodies max	16	Water	5	
Water bodies min	17	Water	5	
Snow Cover	18	Snow	6	

Step 2: Reclassify the soil texture classes into Hydrological Soil Groups (HSG) using following table (USDA, 2009):

Texture Class	Runoff Potential	HSG Group	
Sand	Low	Α	
Sandy Ioam	Moderately Low	В	
Loamy sand	Moderately Low	В	
Loam	Moderately High	С	
Silt loam	Moderately High	С	
Sandy Clay Loam	Moderately High	С	

Clay Loam	Moderately High	С
Sandy Clay	High	D
Silty Clay loam	Moderately High	С
Clay	High	D
Silty Clay	High	D
Silt	Moderately High	С

Step 3: Assign Curve Numbers (CN) to each pixel corresponding to the lookup table showing below (Ranjan et al., 2018)

S. No.	LULC Class	LULC Code	Hydrological soil group			
			A	В	C	D
1	Built-up	1	63	75	88	90
2	Agricultural	2	50	69	78	85
3	Evergreen Broadleaf Forest	3	34	60	73	79
4	Shrubland/Wasteland	4	48	68	75	80
5	Water Bodies	5	97	98	99	100
6	Snow and Ice/Glacier	6	67	77	82	84

Step 4: The CN Grid assigned corresponding to the above table is considered as average CN or class II (CNII). To estimate CNI and CNII i.e., Curve Numbers corresponding to AMCI and AMCIII

CN is a dimensionless run-off coefficient that depends on land use, soil and antecedent moisture condition (AMC). Antecedent moisture is the relative dryness or wetness of a catchment which changes continuously and has a significant effect on the run-off process28. AMC can be divided into three classes.

AMC_I is considered for the dry condition with five-day antecedent rainfall, i.e. AMC is less than 13 mm. When AMC is more than 28 mm, it may be a wet condition (AMC_{III}) and when 13 mm \leq AMC < 28 mm, it can be considered as average (AMC_{II})29. For AMC_{II} CNs have been proposed based on a combination of LULC and soil group conditions. For AMC_I and AMC_{III}, CN can be derived by the following equations (Amutha et al 2009, Mishra et al 2006):

$$CN_{I} = \frac{CN_{II}}{2.281 - 0.0128 * CN_{II}}$$

$$CN_{III} = \frac{CN_{II}}{0.427 - 0.00573 * CN_{II}}$$