

decsai.ugr.es

Fundamentos de Bases de Datos

Grado en Ingeniería Informática

Seminario 6: Cálculo relacional

Departamento de Ciencias de la Computación e Inteligencia Artificial

Indice del tema

- Esquema general del tema:
 - Introducción: los modelos lógicos y las bases de datos relacionales. Nota histórica.
 - El cálculo de predicados como lenguaje para la representación de información.
 - Las bases de datos relacionales como un modelo de cálculo de predicados. Analogías intuitivas.
 - El cálculo relacional orientado a tuplas.

Introducción: los modelos lógicos y las bases de datos relacionales.

Nota histórica.

Inicialmente:

- Elementos lógicos en el modelo relacional (Codd 1971).
 - Cálculo relacional orientado a tuplas. Lenguaje Alpha.
 - Equivalencia entre enfoques de consulta.
- Extensiones e implementaciones iniciales:
 - Lacroix y Pirrotte (1977). Primera versión del cálculo de dominios.
 - Implementaciones: QUEL(1980), QUERY_BY_EXAMPLE (1985).

Introducción: los modelos lógicos y las bases de datos relacionales.

Nota histórica.

- Conexión de los datos existentes en la base de datos con información "inteligente":
 - Formalización de los modelos lógicos de Bases de Datos:
 - Desarrollos teóricos.
 - Lógica y Bases de Datos (Gallaire Minker y Nicolas 78,81,84)
 - Inteligencia Artificial y Bases de Datos (Brodie t. al. 81,84,86)
 (Reiter 1984)
 - Implementaciones:
 - Basadas en acoplamientos con PROLOG: Educe, PRO_SQL, QUINTUS_PROLOG etc.. (1986,87..)
 - Basadas en DATALOG: Nail

• Idea básicas:

- El cálculo de predicados surge como sistema de representación del conocimiento en I.A.
- Elementos de un sistema de representación del conocimiento:
 - Una Base de Conocimiento donde se almacena conocimiento a distintos niveles.
 - Un mecanismo de inferencia que permite derivar un conocimiento de otro.

- Para representar la información en la base de conocimiento los formalismos de la Lógica son muy adecuados ya que incluyen:
 - Mecanismos de representación
 - Mecanismos de derivación de conocimiento
- Entre los formalismos basados en la Lógica:
 - Cálculo de Proposiciones
 - Cálculo de Predicados
 - Formalismos Lógicos más avanzados:
 - Redes semánticas
 - Lógica multivaluada
 - Razonamiento por defecto, basado en casos etc..

- Definición formal: ideas básicas
 - Un lenguaje de Cálculo de Predicados se define para describir un "mundo". Debe tener símbolos y frases.
 - Este lenguaje debe incluir un alfabeto donde haya:
 - Símbolos para describir los objetos del mundo (constantes)
 - Juan, José,Seat,..... Rojo,....etc, GR-150-A....
 - Símbolos para describir funciones que nos dan unos objetos en función de otros:
 - Color, Padre, Madre, Propietario etc...
 - Símbolos para describir variables: x, y, z,
 - Símbolos de predicados que describan relaciones entre objetos:
 - Casados, Conduce, Prefiere.
 - Los predicados describen relaciones binarias, ternarias etc...

- El lenguaje además de símbolos tendrá que generar "frases"
 (fórmulas, expresiones...) por ello debe tener
 - Símbolos de puntuación: (),.;[]
 - Conectores: \land , \lor , \neg , \rightarrow
 - Cuantificadores: ∀, ∃

- Definición formal: Un lenguaje de Cálculo de Predicados se define como L=(S, W) donde
 - S es un conjunto de símbolos incluyendo:
 - Constantes
 - Funciones
 - Variables
 - Predicados
 - Símbolos adicionales
 - W un conjunto de frases "correctas" o fórmulas bien formadas (Well formed formulae) o "wff"
 - W se define de forma recursiva:
 - Un átomo a se define cómo:
 - Un símbolo de constante (Jose) ó
 - Un símbolo de variable (x) ó
 - f(a) donde f es un símbolo de función y a un átomo: Padre(José), Color(x)

- Una formula atómica se define como p(a₁,a₂,..a_n) donde:
 - p es un símbolo de predicado n-ario
 - $-a_1,a_2,...a_n$ son átomos
- Toda formula atómica es wff (∈W)
- Si $f_1, f_2 \in W$ entonces:

-
$$f_1 \lor f_2 \in W$$
 ; $f_1 \land f_2 \in W$; $\neg f_1 \in W$; $f_1 \rightarrow f_2 \in W$

- Si $f_1(x) \in W$ entonces:
 - \forall x f₁(x)∈W; \exists x f₁(x)∈W
- Algunos ejemplos de wffs:
 - casados(Juan,Ana), casados(padre(x),madre(x)),prefiere(Ana,Honda,rojo)
 - conduce(Juan,GR-150-A)∧¬conduce(propietario(GR-150-A),GR-150-A)
 - $\forall x \text{ coche}(x) \rightarrow \text{prefiere}(\text{propietario}(x), \text{marca}(x), \text{color}(x))$
 - ∃y (persona(y) ∧¬casados(padre(y),madre(y)))
- Toda variable en una wff que no esté cuantificada se denomina variable libre
- En caso contrario se denomina variable ligada

Interpretación de un lenguaje

- Idea básica: un lenguaje L=(A,W) es una abstracción formal que puede describir muchas realidades. Para describir una concreta es necesario asociar
 - Símbolos de constantes con objetos del mundo
 - Predicados con relaciones concretas entre objetos
- Formalmente:
 - Sea L=(A,W) un lenguaje de CP ;C⊂A es el conjunto de constantes
 - Llamaremos interpretación I de L al triple I=(D,K,E), donde
 - D un "universo de discurso": conjunto de objetos asociados a una realidad
 - K:C→D y permite asociar las constantes de A a objetos reales.
 - E se denomina "función extensión" y asocia a todo predicado n-ario p∈A un conjunto E(p)⊆Dⁿ. E(p) se denomina extensión de p en I.
 - A partir de ahora cuando hablemos de una interpretación identificaremos cada objeto con su nombre es decir, $\forall c \in C$ identificaremos c y K(c)

Interpretación de un lenguaje

- Valor de verdad: toda interpretación I=(D,K,E) de un lenguaje L=(A,W) permite asociar valores de verdad a ciertas wffs de W.
 - Toda wff que no incluya variables tiene un valor de verdad:
 - Toda fórmula atómica de la forma $P(c_1,...c_n)$ con $c_i \in C$ o $c_i = f(d_i)$ con $d_i \in C$ es cierta sii $(c_1,c_2...c_n) \in E(P)$, en caso contrario es falsa.
 - Sean $f_1, f_2 \in W$, \forall el valor de verdad de:

$$f_1 \lor f_2$$
, $f_1 \land f_2$, $\neg f_1$, $y f_1 \rightarrow f_2$

se calculan de acuerdo con las reglas del "or" "and" y "not", y not(f₁ or f₂) supuestos c<mark>onocidos l</mark>os valores de verdad de f₁ y f₂

- Toda wff que tenga todas sus variables ligadas tiene un valor de verdad de acuerdo con:
 - $\forall x f_1(x)$ es cierta si $f_1(c)$ es cierta $\forall c \in C$
 - $\exists x f_1(x)$ es cierta si $\exists c \in C$ para la que $f_1(c)$ es cierta
- Una wff que tenga alguna variable libre genera un conjunto de constantes que son aquellas que hacen cierta la formula sustituyendo la variable por ellas.
- Modelo: dada una interpretación I=(D,K,E) de un lenguaje L=(A,W) y $M\subset W$, I es un modelo de M si toda $f\in M$ es cierta con respecto a I.

Ejemplos:

- casados(Juan,Ana) será cierta si (Juan,Ana)∈E(casados)
- prefiere(Ana, Honda, rojo) es cierta si (Ana, Honda, rojo) ∈ E(prefiere)
- conduce(Juan,GR-150-A), ¬conduce(propietario(GR-150-A),GR-150-A) sera cierta si conduce(Juan,GR-150-A) es cierta y conduce(propietario(GR-150-A),GR-150-A) es falsa
- ∃y (persona(y) ∧¬casados(padre(y),madre(y))) será cierta si podemos encontrar una constante c tal que
 - (persona(c) ∧¬casados(padre(c),madre(c)))
- x | casados(padre(x), madre(x)) define un conjunto de constantes

Analogías intuitivas entre el calculo de predicados y el modelo relacional

Ideas básicas:

- Un lenguaje de calculo de predicados y un modelo relacional son estructuras formales para describir la realidad: ambas pueden identificarse.
- Una instancia de una base de datos se identificaría entonces con una interpretación de su lenguaje asociado.
- Las reglas de integridad serían wffs y la interpretación debería ser un modelo para ellas.
- Las consultas se generarían mediante wffs con variables libres. Los conjuntos de constantes que las hacen ciertas serán la solución de la consulta.

Analogías intuitivas entre el calculo de predicados y el modelo relacional

• Identificación en el caso del calculo relacional orientado a tuplas

- Cambio de notación:
 - Operadores de comparación: notación de operador
 - =(a,b) se sustituye por a=b, etc...
 - Funciones: notación de atributo
 - f(x) se sustituye por x.f

El calculo relacional orientado a tuplas

- Definición de una consulta:
 - Consideremos una base de datos con relaciones R(A₁,...A_n),
 S(B₁,...B_m) etc... y le asociamos un lenguaje de Cálculo de Predicados.
 - Supongamos que R_x, R_yS_x, S_y.. etc.. son variables que toman valores en R, S etc.. Son variables tupla.
 - Una consulta en C.R. orientado a tuplas (lenguaje QUEL) tiene la forma:

Select
$$R_x.A_i$$
, $R_x.A_i$..., $R_y.A_h$, $S_x.B_l$,... Where wff($R_x,R_y.S_x...$)

- $R_x.A_i$, $R_x.A_i$..., $R_v.A_h$, $S_x.B_i$,... se denomina "lista objetivo".
- wff(R_x,R_y,S_x...) es una fórmula cuyas variables libres aparecen en la lista objetivo.
- La particularización de la lista objetivo para las tuplas que hacen cierta esta fórmula nos da la solución a la consulta.

El calculo relacional orientado a tuplas

• Ejemplo:

- Modelo relacional
 - S(S#,nombres,ciudad,status)
 - P(P#,tipop,peso,color,ciudad)
 - J(J#,nombre,ciudad,director,presupuesto)
 - E(S#,P#,J#,cantidad,fecha)

Lenguaje

- Constantes: s₁,s₂,..., p₁,p₂..., Madrid,..., 24, 25 ,..., etc.....
- Variables:
 - Range S_x , S_y ... in S, Range P_x , P_y , ... in P
- Funciones: S#, nombres,....P#,......

Consultas

- Select S_x.S#,S_x.nombres,S_x.ciudad where S_x.status=25
- Select $S_x.S\#, S_x.nombres$ where $\exists E_v(E_v.s\#=S_x.S\# \land E_v.p\#= 'p_1' \land E_v.cantidad >= 200)$

Trabajadores (<u>id_trabajador</u>, nombre, trf_hr, tipo_de_oficio, id_supv)
Edificios (<u>id_edificio</u>, dir_edificio, tipo, nivel_calidad, categoria)
Asignaciones (<u>id_trabajador, id_edificio, fecha_inicio</u>, num_dias)
Oficios (<u>tipo_de_oficio</u>, prima, horas_por_sem)

• Encontrar los datos de aquellos trabajadores que son electricistas:

```
RANGE Tx IN Trabajadores SELECT Tx.* WHERE Tx.tipo_de_oficio=' Electricista' \sigma_{\text{tipo_de_oficio=' Electricista'}} \text{ TRABAJADORES}
```

Encontrar el nombre de aquellos trabajadores que son electricistas:

```
RANGE Tx IN Trabajadores SELECT Tx.nombre WHERE Tx.tipo_de_oficio=' Electricista' \Pi_{nombre}(\sigma_{tipo\_de\_oficio=' Electricista'}, TRABAJADORES)
```


• Encontrar el número de horas semanales que trabaja cada trabajador:

RANGE Tx IN Trabajadores

RANGE Ox IN Oficios

SELECT Tx.nombre, Ox.horas_por_sem

WHERE Tx.tipo_de_oficio=Ox.tipo_de_oficio

 $\Pi_{\mathsf{nombre},\mathsf{horas_por_sem}} \text{ (TRABAJADORES | X | OFICIOS)}$

• Encontrar los nombres de trabajadores que han trabajado tanto en el edificio 312 como en el edificio 460:

```
RANGE Tx IN Trabajadores
RANGE Ax, Ay IN Asignaciones
SELECT Tx.nombre
WHERE (\existsAx,Ay ((Ax.id_trabajador=Tx.id_trabajador) \land (Ay.id_trabajador=Tx.id_trabajador) \land (Ax.id_edificio=312) \land (Ay.id_edificio=460 ))
\Pi_{nombre} (TRABAJADORES|X| ((\Pi_{id\_trabajador} \sigma_{id\_edificio=312} ASIGNACIONES) \cap (\Pi_{id\_trabajador} \sigma_{id\_edificio=469} ASIGNACIONES))
```


• Encontrar los nombres de trabajadores que han trabajado o en el edificio 312 o en el edificio 460:

 Π_{nombre} (TRABAJADORES | X | σ_{id} edificio=312 \vee id edificio=460 ASIGNACIONES)

• Encontrar el nombre de aquellos trabajadores que no han trabajado en el edificio 312:

```
RANGE Tx IN Trabajadores
RANGE Ax IN Asignaciones
SELECT Tx.nombre
WHERE \neg(\exists Ax ((Ax.id\_trabajador=Tx.id\_trabajador) \land (Ax.id\_edificio=312)))
\Pi_{nombre} (TRABAJADORES |X| (\Pi_{id\_trabajador}TRABAJADORES - \Pi_{id\_trabajador}(\sigma_{id\_edificio=312} ASIGNACIONES)))
```


 Encontrar parejas de trabajadores que tengan el mismo oficio:

```
RANGE Tx, Ty IN Trabajadores

SELECT Tx.nombre, Ty.nombre

WHERE (Tx.tipo_de_oficio=Ty.tipo_de_oficio) ^
Tx.nombre<Ty.nombre)}
```

```
A:= \Pi_{\text{nombre, tipo\_de\_oficio}} TRABAJADORES

B:= \Pi_{\text{nombre, tipo\_de\_oficio}} TRABAJADORES

\Pi_{\text{A.nombre, B.nombre}} (\sigma_{\text{A.tipo\_de\_oficio=B.tipo\_de\_oficio} \land \text{A.nombre} \land \text{A.nombre}
```


• Encontrar aquellos edificios en los que han trabajado todos los trabajadores de la empresa:

```
RANGE Tx IN Trabajadores
RANGE Ex IN Edificios
RANGE Ax IN Asignaciones
SELECT Ex.*
WHERE \forallTx (\existsAx ((Ax.id_trabajador=Tx.id_trabajador) \land (Ax.id_edificio=Ex.id_edificio)))

(\Pi_{id_edificio, id_trabajador} ASIGNACIONES)
\vdots
(\Pi_{id_trabajador} TRABAJADORES)
```