

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14110098703

FCC REPORT (WIFI)

Applicant: Cellacom Incorporation

Address of Applicant: 20955 pathfinder road, suite 200 Diamond Bar, CA 91765

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: JM 10

Trade mark: Cellacom

FCC ID: 2AC343396993JM10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 Nov., 2014

Date of Test: 25 Nov., to 09 Dec., 2014

Date of report issued: 10 Dec., 2014

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Dec., 2014	Original

Prepared by: Yoyo Luo Date: 10 Dec., 2014

Report Clerk

Reviewed by: Date: 10 Dec., 2014

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	40
7	TES	T SETUP PHOTO	46
R	FUT	CONSTRUCTIONAL DETAILS	47

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Cellacom Incorporation	
Address of Applicant: 20955 pathfinder road, suite 200 Diamond Bar, CA 91765		
Manufacturer:	Shenzhen Joinhold Communication Technology Ltd	
Address of Manufacturer:	3F, Unit 3, Bldg. D2, TCL International E City, 1001 Zhongshanyuan Park Rd., Nanshan, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	JM 10
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g)
Channel numbers:	11 for 802.11b/802.11g
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.25 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1300mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.15A Output: DC 5.0V, 750mA

Operation Frequency each of channel For 802.11b/g							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCIS14110098703

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, and 6Mbps for 802.11g. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14110098703

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015		
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.25 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7					
·							
Test Method:	ANSI C63.4: 2003						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz						
Limit:	Frequency range (MHz)	Frequency range (MHz)					
	0.15-0.5	Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46*					
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
Test setup:	Reference Plane						
	AUX Equipment E.U Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed		,				

Measurement Data

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 987RF Job. no : Mobile Phone : JM 10 EUT Model Test Mode : WIFI mode

Power Rating: AC120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark:

CMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∀	dB		
1	0.150	34.24	0.25	10.78	45.27	66.00	-20.73	QP	
2	0.170	31.62	0.25	10.77	42.64	64.94	-22.30	QP	
2	0.274	16.60	0.26	10.74	27.60	50.98	-23.38	Average	
4	0.375	26.89	0.25	10.72	37.86	58.39	-20.53	QP	
4 5 6	0.375	16.80	0.25	10.72	27.77	48.39	-20.62	Average	
6	0.440	33.58	0.27	10.74	44.59	57.07	-12.48	QP	
7	0.440	22.15	0.27	10.74	33.16	47.07	-13.91	Average	
8 9	0.541	26.28	0.26	10.76	37.30	56.00	-18.70	QP	
9	0.541	15.51	0.26	10.76	26.53	46.00	-19.47	Average	
10	0.739	24.57	0.19	10.79	35.55	56.00	-20.45	QP	
11	0.751	13.75	0.19	10.79	24.73	46.00	-21.27	Average	
12	1.184	11.33	0.24	10.89	22.46	46.00	-23.54	Average	

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition : 987RF

Job. no : Mobile Phone : JM 10 FIIT Model

: WIFI mode Test Mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.150	34.35	0.27	10.78	45.40	66.00	-20.60	QP
1 2 3	0.150	16.73	0.27	10.78	27.78	56.00	-28.22	Average
3	0.165	32.48	0.27	10.77	43.52	65.21	-21.69	QP
4	0.165	17.95	0.27	10.77	28.99	55.21	-26.22	Average
4 5 6 7	0.185	29.06	0.28	10.77	40.11	64.24	-24.13	QP
6	0.185	14.85	0.28	10.77	25.90	54.24	-28.34	Average
7	0.280	28.45	0.26	10.74	39.45	60.81	-21.36	QP
8	0.296	14.97	0.26	10.74	25.97	50.37	-24.40	Average
8	0.375	28.15	0.28	10.72	39.15	58.39	-19.24	QP
10	0.379	14.43	0.28	10.72	25.43	48.30	-22.87	Average
11	0.444	33.01	0.28	10.74	44.03	56.98	-12.95	QP
12	0.444	19.19	0.28	10.74	30.21	46.98	-16.77	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.

Measurement Data

T . O.U.	Maximum Conducted	d Output Power (dBm)	1: ://15	5 "	
Test CH	802.11b	ted Output Power (dBm) 802.11g 5.89 4.60 30.00	Result		
Lowest	15.56	5.89			
Middle	14.84	4.60	30.00	Pass	
Highest	14.27	3.69			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Center 2.412 GHz

28.NOV.2014 13:42:07

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

T . O.	6dB Emission B	andwidth (MHz)		D 11	
Test CH	802.11b	802.11g	Limit(kHz) Result >500 Pass	Result	
Lowest	9.14	14.19			
Middle	8.66	13.95	>500	Pass	
Highest	7.70	13.47			

F 011	99% Occupy Ba	andwidth (MHz)		D 11
Test CH	802.11b	802.11g	Limit(kHz) Result N/A N/A	Result
Lowest	15.55	16.27		
Middle	15.47	16.35	N/A	N/A
Highest	15.15	16.35		

Test plot as follows:

6dB EBW

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

T 011	Power Spectral	Density (dBm)		5 "
Test CH	802.11b	802.11g	Limit(dBm) Results 6 8.00 Pas	Result
Lowest	6.83	-9.46		
Middle	7.02	-10.75	8.00	Pass
Highest	6.19	-10.79		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205		
Test Method:	ANSI C63.4: 20	03			
Test Frequency Range:	2.3GHz to 2.5G	Hz			
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency Above 1GHz	Detector Peak RMS	RBW 1MHz 1MHz	VBW 3MHz 3MHz	Remark Peak Value Average Value
Limit:	Freque Above 1		Limit (dBuV/ 54.0 74.0	0	Remark Average Value Peak Value
Test Procedure:	Δhove 1(÷Hz				
Test setup:	Sheet. > 3m EUT Turn Table 0.8m A	4m	Antenna Horn Ante Spectrum Analyzer	enna	
Test Instruments:	Refer to section	5.6 for details			
Test mode:	Refer to section	5.3 for details			
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 987RF Condition

Job No. EUT

: Mobile Phone

Model : JM 10

Test mode : B-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

1 2

	Freq		Antenna Factor					Over Limit	
93	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m		 -
	2390.000 2390.000								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. 987RF

EUT : Mobile Phone Model : JM 10
Test mode : B-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor						
MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBu∜/m	<u>dB</u>	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 987RF Condition

Job No. EUT : Mobile Phone Model : JM 10
Test mode : B-H mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBu√/m	dBu∜/m	<u>dB</u>	
1 2	2483.500 2483.500								

Vertical:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Job No. : 987RF : Mobile Phone

Model : JM 10

Test mode : B-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

1 2

	FT 1500		Antenna Factor						
	MHz	—dBu₹	$\overline{-dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
)	2483.500 2483.500								

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 987RF

Job No. EUT : Mobile Phone Model : JM 10
Test mode : G-L mode
Power Rating : AC 120V/60Hz

Lower Making: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK:

Liuno			lAntenna . Factor						
	MHz	dBu∜		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	 -
	2390.000 2390.000					52.64 40.57			

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 987RF Condition

Job No.

: Mobile Phone

Model : JM 10

Test mode : G-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

CIICAL	r :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
00	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390.000					52.82			
2	2390.000	7.31	27.58	5.67	0.00	40.56	54.00	-13.44	Average

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 987RF Condition

Job No.

EUT : Mobile Phone Model : JM 10
Test mode : G-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
RFMARY

REMARK

1 2

л.	Fred	Antenna Factor		Limit Line	Remark	
	10000000	 dB/m		 		
	2483.500 2483.500					

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 987RF Condition

Job No. : Mobile Phone

Model : JM 10

Test mode : G-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

1 2

mmr										
	334230		Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2483.500	20.30	27.52	5.70	0.00	53.52	74.00	-20.48	Peak	
2	2483.500	7.88	27.52	5.70	0.00	41.10	54.00	-12.90	Average	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 1.DEC.2014 20:26:08

30MHz~25GHz

Middle channel

Date: 1.DEC.2014 20:26:42

30MHz~25GHz

Date: 1.DEC.2014 20:27:06

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 1.DEC.2014 20:23:48

30MHz~25GHz

Date: 1.DEC.2014 20:24:24

30MHz~25GHz

Date: 1.DEC.2014 20:30:19

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	9 and 15.205						
Test Method:	ANSI C63.4:200	03							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	Above 1GHz Peak		1MHz	3MHz	Peak Value				
	7.5575 151.2	Peak	1MHz	10Hz	Average Value				
Limit:			1: :(/ID \/	/ @a \	Б				
	Freque		Limit (dBuV		Remark				
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHz	74.0)	Peak Value				
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the normal and to determine the normal and	at a 3 meter of the position was set 3 meter which was mountained and vertice to determine the antennent was pected emisted the rota table maximum reactiver system and width with sion level of the cified, then to would be reported to the position of the would be reported to the position of the would be reported to the terms of the position of the would be reported to the terms of the position of	camber. The softhe highest restaway from the highest restaway from the tried from one the maximum cal polarization was turned to was turned to was turned to was set to Parameter was turned to was turned to was turned to was set to Parameter was turned to was turned to was turned to was turned to was set to Parameter was turned to was turned to was turned to was set to Parameter was set to Parameter was turned to the turned to the turned to the was turned to the turned to turned	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights from 0 degreeak Detect old Mode. It is mode was the stopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 987RF Condition

Job No. EUT : Mobile Phone Model

: JM 10 : WIFI mode Test mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK:

VENIENT.		Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor						Remark	
70	MHz	dBu₹	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>		
1	43.506	33.09	13.56	0.55	29.87	17.33	40.00	-22.67	QP	
2	109.796	37.29	12.25	1.04	29.46	21.12	43.50	-22.38	QP	
3	154.279	44.75	8.45	1.33	29.18	25.35	43.50	-18.15	QP	
4	191.745	44.79	10.56	1.37	28.89	27.83	43.50	-15.67	QP	
1 2 3 4 5	243.377	42.51	12.08	1.59	28.58	27.60	46.00	-18.40	QP	
6	300.367	35.81	13.06	1.77	28.45	22.19	46.00	-23.81	QP	

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 987RF Condition

Job No. : Mobile Phone : JM 10 : WIFI mode EUT Model Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

	Freq		Antenna Factor						Remark
=	MHz	dBu∇	— <u>dB</u> /m	<u>ab</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
1	38.212	43.81	13.15	0.51	29.92	27.55	40.00	-12.45	QP
2	43.353	43.19	13.56	0.55	29.87	27.43	40.00	-12.57	QP
2	50.586	39.78	13.23	0.61	29.82	23.80	40.00	-16.20	QP
4	103.080	40.29	12.87	0.99	29.51	24.64	43.50	-18.86	QP
4 5	191.745	40.51	10.56	1.37	28.89	23.55	43.50	-19.95	QP
6	290.017	41.94	12.86	1.74	28.47	28.07	46.00	-17.93	QP

Above 1GHz

Test mode: 80	02.11b		Test channe	el: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	59.36	31.53	8.90	40.24	59.55	74.00	-14.45	Vertical	
4824.00	65.36	31.53	8.90	40.24	65.55	74.00	-8.45	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: A	verage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	41.23	31.53	8.90	40.24	41.42	54.00	-12.58	Vertical	
4824.00	45.69	31.53	8.90	40.24	45.88	54.00	-8.12	Horizontal	

Test mode: 802.11b			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	54.66	31.58	8.98	40.15	55.07	74.00	-18.93	Vertical	
4874.00	65.60	31.58	8.98	40.15	66.01	74.00	-7.99	Horizontal	
Test mode: 802	Test mode: 802.11b			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	39.96	31.58	8.98	40.15	40.37	54.00	-13.63	Vertical	
4874.00	46.07	31.58	8.98	40.15	46.48	54.00	-7.52	Horizontal	

Test mode: 802.11b			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	57.64	31.69	9.08	40.03	58.38	74.00	-15.62	Vertical	
4924.00	61.64	31.69	9.08	40.03	62.38	74.00	-11.62	Horizontal	
Test mode: 802	Test mode: 802.11b			Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	40.90	31.69	9.08	40.03	41.64	54.00	-12.36	Vertical	
4924.00	44.04	31.69	9.08	40.03	44.78	54.00	-9.22	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.51	31.53	8.90	40.24	46.70	74.00	-27.30	Vertical
4824.00	47.73	31.53	8.90	40.24	47.92	74.00	-26.08	Horizontal
Test mode: 802.	Test mode: 802.11g		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	35.12	31.53	8.90	40.24	35.31	54.00	-18.69	Vertical
4824.00	36.00	31.53	8.90	40.24	36.19	54.00	-17.81	Horizontal

Test mode: 802.11g			Test chann	el: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.20	31.58	8.98	40.15	46.61	74.00	-27.39	Vertical	
4874.00	46.35	31.58	8.98	40.15	46.76	74.00	-27.24	Horizontal	
Test mode: 802	Test mode: 802.11g			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.45	31.58	8.98	40.15	36.86	54.00	-17.14	Vertical	
4874.00	35.89	31.58	8.98	40.15	36.30	54.00	-17.70	Horizontal	

Test mode: 802.11g			Test channe	el: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.34	31.69	9.08	40.03	46.08	74.00	-27.92	Vertical	
4924.00	45.92	31.69	9.08	40.03	46.66	74.00	-27.34	Horizontal	
Test mode: 8	Test mode: 802.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	35.35	31.69	9.08	40.03	36.09	54.00	-17.91	Vertical	
4924.00	35.90	31.69	9.08	40.03	36.64	54.00	-17.36	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.