EXPLORING PERFORMANCE CHARACTERISTICS OF THE CLARK Y AIRFOIL

Airfoil Lab Report AER303

Aerospace Laboratory 1 Felix Hlady, Rodrigo Salazar, Sritejas Murugan, Sahil Swali Prof. Philippe Lavoie Due Date: 4 December 2023

Abstract

This report explores the characteristics of a Clark Y airfoil, by measuring the pressure distribution over the surface of the airfoil and in the wake caused by it. Subsequently, this data is used to generate a C_P distribution and velocity profile at various angles of attack, along with a set of C_L , C_M , and C_D curves against increasing angles of attack.

Data collected is used to characterize the conditions for stall and the effects such flow separation has on various other forces acting on the airfoil. A wind tunnel with a freestream velocity of 30.31 \pm 0.01 m/s was used and it was found that the Clark Y airfoil stalled at $\alpha=14^{\circ}$. The experimental data measured closely to other data sources for the C_L and C_D Total but varied significantly for the C_D Pressure and C_M . Additionally, differences between the pressure and total drag at different flow regimes are discussed.

These results for C_P when compared to theoretical data from XFOIL and other reference experiments showed that our results displayed a high degree of concurrence, lest errors caused due to inconsistencies in the setup. This lab report also delves deeper into exploring the potential reasons for discrepancies and possible steps to mitigate them in the future.

Contents

1	Non	menclature	3				
2	Intr 2.1 2.2	Motivation and Background	4 4 4				
		2.2.2 Aerodynamic Forces on an Airfoil & Dimensionless Coefficients	4				
3	Exp	Experimental Setup 6					
	3.1 3.2	Equipment	6 7				
4	Res	Results and Discussion					
	4.1	Pressure over the Airfoil and Velocities in the Wake	7				
	4.2	Comparing the Angle of Attack to the Coefficients of Lift, Drag, and Moment					
	4.3	Comparison of Pressure Drag and Total Drag	11				
5	Unc	Uncertainty Analysis and Sources of Error 1					
	5.1	· ·	13				
	5.2	Qualitative Uncertainties	13				
6	Con	nclusion	14				
Aı	pen	dices	16				
${f A}$	Unc	certainty Propagation Formulas	16				
		• • •	16				
	A.2	Lift, and Pressure, and Total Drag	16				
	A.3	Pressure	16				
	A.4	9					
	A.5	v					
	A.6	Freestream Dynamic Pressure					
		Normal and Axial Force					
	A.8	Leading Edge Moment	18				
\mathbf{B}	Cod	le	19				
	B.1	$filter.m \dots \dots$	19				
	B.2	Main.py					
	B.3		24				
	B.4	10	25				
	B.5		30				
	B.6		33				
	B.7		33				
	B.8 B.9	0 10	34 36				
	ъ.9	Graphing.py	9 0				
\mathbf{C}	Gra	phs	42				

1 Nomenclature

Symbol	Name
AOA	Angle of Attack
C_L	Coefficient of Lift
C_D	Coefficient of Drag
C_M	Coefficient of Moment
C_p	Coefficient of Pressure
\mathbf{c}	Chord Length
α	Angle of Attack
U_{∞}	Freestream Velocity
q_{∞}	Freestream Dynamic Pressure
N'	Normal Force
TE	Trailing Edge
LE	Leading Edge
A'	Axial Force
P_u	Pressure on the Airfoil Upper Surface
P_l	Pressure on the Airfoil Lower Surface
L'	Lift Force
D'	Drag Force
u	Velocity at a Point After the Airfoil
ho	Freestream Density
P_{∞}	Freestream Pressure
P_T	Total Pressure
P_S	Static Pressure

2 Introduction

2.1 Motivation and Background

This report explores the characteristics of a Clark Y airfoil at various angles of attacks to characterize pressure distribution and velocity profile, and C_L , C_M , and C_D curves in near stall conditions.

2.2 Concepts and Theory

2.2.1 Airfoils & The Clark Y Airfoil

An airfoil is the cross-sectional shape of the wing. The wings create lift through a pressure difference between the upper and lower surfaces of the wing: the pressure below the wing is higher than that of the pressure below the wing resulting in a net force upwards i.e. lift (1). Airfoils, while known for their use on aircraft, also have other uses such as on Formula 1 cars on which they are inverted and used to create down-force.

The Clark Y airfoil is a specific type of airfoil used in aircraft design such as with model aircraft. The Clark Y airfoil is known for a near-flat lower surface, good overall performance and lift-to-drag ratio at medium Reynolds' number airflows, and a gentle stall (2). This lab will utilize a model of the Clark Y airfoil to explore question about pressure, lift, drag, and moment distributions for the airfoil at various angles of attack. The wake caused by the airfoil will also be studied for further insight. These attributes will subsequently be compared to the characteristic stall angle of the airfoil to discuss implications.

2.2.2 Aerodynamic Forces on an Airfoil & Dimensionless Coefficients

Figure 1: A diagram showing the pressure and shear stresses on an airfoil.

A fluid exerts forces on an airfoil through pressure differences as well as shear stresses caused by skin friction and viscosity. These result in normal and axial forces (N' and A' respectively) which can be quantified as lift, L and drag, D. A moment, M, is also produced.

The normal force, N, and axial force, A, as well as moment, M, can be calculated by the following formulas, assuming that shear stress is neglected:

$$N' = \int_{LE}^{TE} -p_u \cos\theta ds_u + \int_{LE}^{TE} p_\ell \cos\theta ds_\ell \tag{1}$$

Figure 2: A diagram showing the forces of lift and drag and moment about the leading edge for an airfoil.

$$A' = \int_{LE}^{TE} -p_u \sin\theta ds_u + \int_{LE}^{TE} p_\ell \sin\theta ds_\ell \tag{2}$$

$$M'_{LE} = \int_{LE}^{TE} p_u(x\cos\theta - y\sin\theta) \, ds_u + \int_{LE}^{TE} p_\ell(y\sin\theta - x\cos\theta) \, ds_\ell \tag{3}$$

From these, lift, L, and drag, D can be found as shown below. Note that α is the angle of attack.

$$L = N\cos(\alpha) - A\sin(\alpha) \tag{4}$$

$$D = N\sin(\alpha) + A\cos(\alpha) \tag{5}$$

Dimensionless coefficients can be used to for comparison purposes, and are given below. Note that $q_{\infty} = \frac{1}{2} \cdot \rho_{\infty} \cdot U_{\infty}^2$ is the free stream dynamic pressure, where ρ_{∞} is the free stream density and U_{∞} is the free stream velocity.

$$C_p = \frac{\Delta P}{q_{\infty}} \tag{6}$$

$$C_L = \frac{L'}{q_{\infty} \cdot c} \tag{7}$$

$$C_D = \frac{D'}{q_{\infty} \cdot c} \tag{8}$$

$$C_M = \frac{M'}{q_{\infty} \cdot c^2} \tag{9}$$

Figure 3: A schematic showing the layout of the test section in the subsonic wind tunnel.

2.2.3 Calculating Total Drag

The experimental setup used does not measure the shear stress along the airfoil so the above equations can only provide the "pressure drag." The total drag can be obtained from a momentum balance after which the drag per unit span can be found by the following:

$$D = \rho \int_{c}^{d} u \left(U_{\infty} - u \right) \, dS \tag{10}$$

3 Experimental Setup

The following section describes the equipment and procedures used.

3.1 Equipment

This experiment was conducted using an open-return, Eiffel wind tunnel (ELD Model 402B) with a maximum speed of approximately 50 m/s with a 0.61 m long test section with a cross section of 304.8 mm by 304.8 mm. A model Clark Y airfoil was used with 19 pressure taps distributed along the surface and connected via PVC tubes to a pressure measurement device. The coordinates were this airfoil were provided in a .csv file. A table listing the location of the pressure taps numbered clockwise starting from the leading edge tap is given below.

The wind tunnel speed was monitored by using the outermost ports of the rake to measure the speed of undisturbed air. This rake of total pressure tubes was located at 27 cm downstream of the model's trailing edge, with the relative location of each pressure tube given in the appendix. Pressure differences were measured using a pressure sensor mounted on a mult-channel Scanivalve system. The signal from the pressure transducer connected to the Scanivalve was sampled using a PC via a DAQ and the processed in MATLAB.

Table 1: Static pressure tap locations

T	op	Bottom	
Tap	x/c	Tap	x/c
1	0	13	0.90
2	0.03	14	0.60
3	0.06	15	0.40
4	0.10	16	0.30
5	0.15	17	0.20
6	0.20	18	0.10
7	0.30	19	0.05
8	0.40		
9	0.55		
10	0.70		
11	0.85		
12	1.00		

3.2 Procedure

The following procedures where followed during the lab ¹.

- 1. In the initial step, the sampling frequency and sampling time required for precise measurements from the pressure transducer was determined by setting the wind tunnel speed to the specified value and capturing representative samples of the pressure transducer output. Utilizing MATLAB routines, the frequency content and time constant of the signal was analyzed. The sampling time was set to ensure $\pm 1\%$ accuracy on the transducer signal (3).
- 2. The pressure transducers were calibrated by developing a calibration curve of the pressure transducer output against the readings from the Betz manometer (prior to lab). These differences were achieved by adjusting the wind tunnel speed (3).
- 3. A number of angles of attack to investigate for the airfoil was predetermined. 12 angles of attack were chosen with high concentration near the predicted stall angle to better characterize the behaviour of and characteristics of the airflow near stall. The following angles of attack were used: 0°, 4°, 6°, 8°, 9°, 10°, 11°, 12°, 13°, 14°, 15°, and 17°.
- 4. Subsequently, pressure distribution data was collected using the pressure transducer. Measurements were taken over the airfoil and from the wake rake for all designated angles of attack. When deemed necessary, the wake rake was translated to acquire a more precise wake profile.

4 Results and Discussion

4.1 Pressure over the Airfoil and Velocities in the Wake

Experimental data collected during the lab was analyzed and processed to develop a measured distribution of pressure coefficient over and under the airfoil. Subsequently, this data was plotted against corresponding theoretical predictions from the XFOIL airfoil analysis software as well as data

¹Note: Steps 1-3 were omitted during the lab trial as calibration steps had already been completed by the lab TA or previous groups.

collected by the University of Illinois at Urbana-Champaign (UIUC) (4). In addition to this, pressure data collected from the rakes was utilized to approximate the velocity distribution in the wake of the airfoil.

Figure 4

Figure 5

Perhaps the most noticeable attribute of the pressure distribution graphs is that the pressure over the top of the airfoil is consistently lower than that below it. This confirms the generation of positive lift. However, increasing the angle of attack does not maintain a similar pressure distribution. One observes a shift in the center of pressure towards the leading edge of the airfoil, accompanied by a decrease in the minimum pressure over the airfoil (seen as a peak in the graphs).

This suggests that the lift close to the leading edge is rapidly increasing but decreasing in other regions. In fact, this trend continues until one can start to see the formation of a plateau in the pressure distribution over the airfoil around an angle of attack of 14°. This points to the separation of flow from the surface of the airfoil. The turbulent flow of air in this region disturbs the smooth pressure gradient and causes a sudden drop in lifting forces. This phenomenon is reconfirmed by observing that the minimum measured pressure coefficient stops decreasing after the critical stall angle.

Figure 6

Figure 7

When compared to the theoretical XFOIL data, there is a high degree of agreeance between them. Although the theoretical data rarely falls within the plotted uncertainty errorbars, this is likely due to the high degree of error that is difficult to quantify and account for in the measurements. Despite this, the data continuously follows the predicted trends without much deviation and is also able to demonstrate the minimum pressure coefficient peaks with considerable accuracy. However, this does not hold for the higher angles of attack after stall since the predicted minimum continues decreasing but the measurements stagnate. This is likely due to the idealizations and assumptions of the XFOIL software. Since XFOIL implements the panel method of simulating using vortex sheets, it assumes tangential flow and is best suited for attached flow scenarios. It is unable to confidently recognize the stall conditions.

Another way of observing and confirming the occurrence of stall is by analyzing the wake produced by the airfoil. Placing an array of pressure taps allows us to measure pressure values and thereby approximate a Velocity field in this wake region. We measure an average freestream velocity of

 30.31 ± 0.01 m/s and see that for most low angles of attack, the drag (lower-velocity region) is restricted to a small region of the cross-sectional area. However, closer to the stall angle, this region becomes larger due to an increase in turbulent flow. At high angles like 17° , the region of low velocity is rather large and apparently inconsistent (spikes). However, such 'spikes' may also have been the result of mismeasurement of the two rakes' realtive positions and errors therefore.

4.2 Comparing the Angle of Attack to the Coefficients of Lift, Drag, and Moment

Figure 8: Coefficient of Lift vs. Angle of Attack.

In Figure 8, it can be seen that the lift slope of the experimental data represents a considerable concurrence with the patterns of the UIUC and especially XFOIL theoretical data. All three sets of data seem to level off at a similar angle of attack confirming our prediction and measurement for the critical angle of stall. Visibly, the XFOIL prediction doesn't have a drastic downtrend like the experimental data which can likely be attributed to unaccounted 3D effects and the fact the panel method of XFOIL fails to capture flow separation adequately. It is also note-worthy that the experimental C_L lift slope is greater than the predicted values. A possible explanation for such a phenomenon is discrepancies in the airfoil model's aspect ratio used (causing steeper slope) or potential errors in the measured angle of attack which would result in lower lift coefficients being observed. This would be an interesting characteristic to further explore by repeated experiments.

As seen in Figure ??, the coefficient of total drag experimental data agrees with the UIUC and XFOIL data trends. The variation from the XFOIL data is considerable but represents the pattern well. However, specifically at high angles of attack, the deviation increases and the drag slope increases drastically close to the stall angle. This profile and inconsistency with data from theoretical sources is expected due to the flow separation from the airfoil and XFOIL's inability to thoroughly model separated flow turbulence.

In Figure 10, it can be seen that the experimental data for the coefficient of moment varies significantly from both the UIUC and XFOIL data. Even post-stall, the experimental values don't drop as seen by the XFOIL data. The very large difference here is likely attributed to the fact the measurements taken do not particularly include skin friction effects on the airfoil as a result of the limitations of the measurement equipment used.

It is also important to note that the moment in the airfoil becomes positive as the angle of attack continues to increase. This is rather averse to the theoretical predictions and seems to suggest a 'nose-

Figure 9: Coefficient of Drag vs. Angle of Attack.

Figure 10: Coefficient of Moment vs. Angle of Attack.

up moment'. This would lock the airfoil in a positive feedback loop to continue stalling. This does not occur in reality as it is expected that the moment would remain negative and reduce more after stall. The discrepancies in this data don't seem to explained by theory and would warrant further exploration into the experiment.

There is an extensive degree of concurrence between the theoretical and experimental data for 11 as it also depicts that theoretical values fall within the uncertainty ranges of the experiment.

4.3 Comparison of Pressure Drag and Total Drag

Pressure drag refers to the drag forces acting on an airfoil directly due to the pressure distribution over its surface. However, total drag is more holistic as it accounts for the drag due to counteracting stress forces of the viscous fluid flow. For the purpose of this lab, those forces were approximated by analyzing the pressure distribution profile in the wake of the airfoil by using data from the rake and comparing it to the experimental freestream velocity. Loss in momentum of the fluid would directly represent the drag enforced upon the airfoil. From Figures ?? and ??, differences between the

Figure 11: Coefficient of Lift vs. Coefficient of Drag.

coefficients of drag and total drag versus angle of attack can be seen. Note that neither graph indicates experimental agreement with the theory.

It is expected that total drag would be greater than pressure drag, as total drag includes pressure drag as well as skin friction drag (and thus a similar relation would hold between their respective coefficients). In this case, it should be noted that there was a sharp increase in C_{Dt} at around $\alpha = 12^{\circ}$, possibly due to increased cross-sectional area obstructing the flow and increased boundary layer thickness which develops prior to a stall and due to turbulent flow.

Meanwhile, the C_D Pressure graph does not agree with the proposed theory at all and presents a rapid increase in value quite contrary to that observed in the total pressure plot. In fact, barring the first measurement, the Pressure drag is consistently much higher than the total drag. It is unclear what might have caused such behavior but it could possibly be attributed to discrepancies due to the apparatus. It would be a very important phenomenon to explore in additional controlled experiments or by comparing it to other trials of this lab.

Figure 12: Coefficient of Total Drag vs. Angle of Attack.

5 Uncertainty Analysis and Sources of Error

5.1 Quantitative Uncertainties

Various quantifiable uncertainties that are propagated throughout the analysis are presented in Appendix A. The measurement of the angle of attack can be measured up to $\pm 0.5^{\circ}$ on the protractor used, which is the bias error. The measurement of the vertical position of the rake can be up to $\pm 1mm$, the bias error. On the 36 pressure measurements the bias error is assumed to be zero. The precision is of the pressure measurements is calculated by finding the standard deviation across a sample size of a around 90000 points per transducer. Additionally, the integral time constant was found using the statsmodels.api.tsa.acf function to find B_{xx} and then integrating as follows:

$$T = \int_0^\infty \frac{\overline{(x(t) - \bar{x}) \cdot (x(t - \tau) - \bar{x})}}{\overline{(x(t) - \bar{x})^2}} d\tau = \int_0^\infty B_{xx} d\tau \tag{11}$$

Where T is the integral time constant. The integral time constant was then used to find the number of independent samples which is given by:

$$N_i = \frac{N}{2T} \frac{1}{f} \tag{12}$$

where N_i is the number of independent samples, N is the total number of samples, and f is the sample frequency which in this experiment was 30kHz. Finally, the 95% confidence interval (the precision uncertainty of the measurement) for pressure measurements was found using the following formula:

$$P = 1.96 * \frac{\sigma}{\sqrt{N_i}} \tag{13}$$

5.2 Qualitative Uncertainties

A number of possible uncertainties are visible in this experiment that likely have affected the data but cannot be meaningfully quantified. Firstly, the airfoil itself. The pressure taps on the Clark Y airfoil were arranged in line with each other with respect to the incoming airflow. With this setup an up-stream tap's effect on the airflow may impact the pressure on the down-stream taps, giving inaccurate measurements not representative of the actual airfoil. With respect to the airflow through the wind tunnel, not much information is known about the consistency and stability of the flow. The flow is very likely not completely linear and the speed may fluctuate with time and the frequency of the pump system may align with measurement frequencies, adding uncertainties to the measurements. Additionally, the pressure transducer (Scanivalve CTLR10 P/S2-S6) is quite an old product with little information known about its errors and tolerances. In addition to errors in measurement present at manufacturing, over its significant life these error have likely increased due to aging components. It was also discovered that one or more of the pressure taps were giving erratic values likely a result of clogging or damage to the pressure tubes. Lastly, the distance of the trailing edge of the airfoil to the rake was larger than would be optimal. The large distance may present loses in resolution and increased turbulence.

6 Conclusion

This experiment investigated the pressure distribution and nondimensional coefficients of flow around a Clark Y airfoil, using a Scanivalve pressure transducer system. In addition, a rake of pressure taps was utilized to characterize the wake caused downstream of the airfoil. Data was collected at several different positive angles of attack ranging from 0° to 17°. The results were subsequently analyzed to identify the critical stall angle and study the effects such stall would have on various properties and force coefficient distributions around the airfoil. The results were compared with simulations from XFOIL and existing literature, giving a stall angle of $\alpha \approx 14 \,\mathrm{deg}$. The dimensionless coefficients demonstrated visible trends:

Although the data for pressure distribution was relatively consistent with simulated numbers, inconsistencies could be attributed to the mathematical model used by XFOIL. Since it uses a panel approach, it was insufficient in predicting the detached flow and was less accurate at higher angles of attack following stall. Further sources of error due to the short-falls of the setup itself likely resulted in bias in the measurements. For the coefficient of lift and total drag, the trend of the experimental data generally matched that of other sources though the magnitude and slopes varied. However, post-stall characteristics and the magnitude of the values and their slopes vary significantly. The exaggerated measurements in the moment coefficient do not agree with the values for the corresponding theory. This could potentially be explained by the contribution of turbulent flow and by factors not included in the theoretical simulations, akin to skin friction or inconsistencies in test apparatus.

In the future, it would be beneficial to explore a more consistent, repeatable, and reliable experimentation method for collecting experimental data. Difficulties in ensuring accurate angles of attack and rake positions likely contributed to larger discrepancies. Furthermore, researching alternative sources of theoretical data would be beneficial if it would be possible to predict flow separation and stall more accurately. An increase in the number of pressure taps and staggering them relative to each other over the airfoil would also allow for a more refined and less noisy collection of pressure data over the airfoil surface. Future iterations should focus on higher angle resolution to reduce stall uncertainty, with cleaning of pressure taps, re-calibration or replacement of the protractor for precise angle measurements, and exploring alternative moment measurement devices to account for skin friction effects. It would also be very interesting to explore the specific source of error resulting in the discrepancies in Pressure Drag and Moment data.

References

- [1] M. Nakamura, "Air Foil," 1999.
- [2] "Clark Y Airfoil," 2023.
- [3] P. Lavoie and S. Bansal, "AER303F Aerospace Labratory 1: Aerodynamic Forces on Airfoils," 2022.
- [4] C. A. Lyon, A. P. Broeren, P. Giguere, A. Gopalarathnam, and M. S. Selig, Summary of Low-Speed Airfoil Data, 1997.

Appendices

A Uncertainty Propagation Formulas

A.1 Lift, Drag, Moment, and Pressure Coefficients

These are the equations used for the relevant dimensionless coefficients:

$$\delta C_L = \sqrt{\left(\frac{\delta L}{q_{\infty}c}\right)^2 + \left(\frac{L}{q_{\infty}^2c} + \delta q_{\infty}\right)^2} \tag{14}$$

$$\delta C_{Dp} = \sqrt{\left(\frac{\delta D_p}{q_{\infty}c}\right)^2 + \left(\frac{D_p}{q_{\infty}^2c} + \delta q_{\infty}\right)^2} \tag{15}$$

$$\delta C_{Dt} = \sqrt{\left(\frac{\delta D_t}{q_{\infty}c}\right)^2 + \left(\frac{D_t}{q_{\infty}^2c} + \delta q_{\infty}\right)^2} \tag{16}$$

$$\delta C_M = \sqrt{\left(\frac{\delta M}{q_{\infty}c}\right)^2 + \left(\frac{M}{q_{\infty}^2c} + \delta q_{\infty}\right)^2} \tag{17}$$

$$\delta C_p = \sqrt{\left(\frac{\delta(P_s - P_\infty)}{q_\infty}\right)^2 + \left(\frac{(P_s - P_\infty) \times \delta q_\infty}{q_\infty^2}\right)^2}$$
 (18)

A.2 Lift, and Pressure, and Total Drag

The lift, pressure drag, and total drag along the airfoil were calculated using the error equations below:

$$\delta D_t = \sqrt{\sum_{i=0}^{N} \left[\left(\frac{\partial D_t}{\partial v_i} \delta v_i \right)^2 + \left(\frac{\partial D_t}{\partial v_{i+1}} \delta v_{i+1} \right)^2 + \left(\frac{\partial D_t}{\partial U_\infty} \delta U_\infty \right)^2 \right]}$$
 (19)

$$\delta L = \sqrt{(\cos(\alpha)\delta N)^2 + (\sin(\alpha)\delta A)^2 + ((-N\sin(\alpha) - A\cos(\alpha))\delta\alpha)^2}$$
 (20)

$$\delta D_p = \sqrt{(\sin(\alpha)\delta N)^2 + (\cos(\alpha)\delta A)^2 + ((-N\cos(\alpha) - A\sin(\alpha))\delta\alpha)^2}$$
 (21)

A.3 Pressure

Pressure measurements were taken for 3 seconds at a sampling rate of 30000 Hz and a time average was taken. The precision error of the measurements was found with a confidence interval of 95% as follows:

$$\delta(P_S - P_{\infty}) = \delta(P_T - P_{\infty}) = 1.96 \frac{\sigma}{\sqrt{N}}$$
(22)

where $N = \frac{t_s}{2\tau}$

A.4 Angle Of Attack

The uncertainty of the angle of attack based on the measurement technique used (protractor) is:

$$\delta \alpha = 1 \deg \tag{23}$$

A.5 Freestream Flow and Wake Velocity

The freestream velocity was calculated using an average of the top and bottom wake velocities using the error propogation below:

$$\delta U_{\infty} = \sqrt{\left(\frac{1}{2}\delta v_{top}\right)^2 + \left(\frac{1}{2}\delta v_{bottom}\right)^2}$$
 (24)

$$\delta v = \frac{\delta(P_t - P_{\infty})}{\sqrt{2\rho(P_t - P_{\infty})}} \tag{25}$$

A.6 Freestream Dynamic Pressure

The freestream dynamic Uncertainty was calculated using the equation below where density is considered constant due to the low speeds of the tunnel:

$$q_{\infty} = \frac{1}{2}\rho U_{\infty}^2 \tag{26}$$

$$\delta q_{\infty} = \rho U_{\infty} \times \delta U_{\infty} \tag{27}$$

A.7 Normal and Axial Force

The normal and axial forces along the airfoil were calculated by integrating the pressure distribution measured and error propagated with the following formulas:

$$\delta N = \sqrt{\sum_{i=0}^{N} \left[\left(\frac{\partial N}{\partial p_{u,i}} \delta p_{u,i} \right)^2 + \left(\frac{\partial N}{\partial p_{u,i+1}} \delta p_{u,i+1} \right)^2 + \left(\frac{\partial N}{\partial p_{l,i}} \delta p_{l,i} \right)^2 + \left(\frac{\partial N}{\partial p_{l,i+1}} \delta p_{l,i+1} \right)^2 \right]}$$
(28)

$$\delta A = \sqrt{\sum_{i=0}^{N} \left[\left(\frac{\partial A}{\partial p_{u,i}} \delta p_{u,i} \right)^2 + \left(\frac{\partial A}{\partial p_{u,i+1}} \delta p_{u,i+1} \right)^2 + \left(\frac{\partial A}{\partial p_{l,i}} \delta p_{l,i} \right)^2 + \left(\frac{\partial A}{\partial p_{l,i+1}} \delta p_{l,i+1} \right)^2 \right]}$$
(29)

where using the trapezoidal integration rule we use the substitutions:

$$\begin{split} \frac{\partial N}{\partial p_{u,i}} &= -\frac{1}{2} (x_{u,i+1} - x_{u,i}) \times cos(\theta_{u,i}) \times \Delta S \\ \frac{\partial N}{\partial p_{u,i+1}} &= -\frac{1}{2} (x_{u,i+1} - x_{u,i}) \times cos(\theta_{u,i+1}) \times \Delta S \\ \frac{\partial N}{\partial p_{l,i}} &= -\frac{1}{2} (x_{l,i+1} - x_{l,i}) \times cos(\theta_{l,i}) \times \Delta S \\ \frac{\partial N}{\partial p_{l,i+1}} &= -\frac{1}{2} (x_{l,i+1} - x_{l,i}) \times cos(\theta_{l,i+1}) \times \Delta S \\ \frac{\partial A}{\partial p_{u,i}} &= -\frac{1}{2} (x_{u,i+1} - x_{u,i}) \times sin(\theta_{u,i}) \times \Delta S \\ \frac{\partial A}{\partial p_{u,i+1}} &= -\frac{1}{2} (x_{u,i+1} - x_{u,i}) \times sin(\theta_{u,i+1}) \times \Delta S \\ \frac{\partial A}{\partial p_{l,i}} &= -\frac{1}{2} (x_{l,i+1} - x_{l,i}) \times sin(\theta_{l,i}) \times \Delta S \\ \frac{\partial A}{\partial p_{l,i+1}} &= -\frac{1}{2} (x_{l,i+1} - x_{l,i}) \times sin(\theta_{l,i+1}) \times \Delta S \end{split}$$

A.8 Leading Edge Moment

As with normal and axial force, the moment was calculated by integrating the pressure distribution and using the follow error formulas:

$$\delta M_{LE} = \sqrt{\sum_{i=0}^{N} \left[\left(\frac{\partial M_{LE}}{\partial p_{u,i}} \times \delta p_{u,i} \right)^2 + \left(\frac{\partial M_{LE}}{\partial p_{u,i+1}} \times \delta p_{u,i+1} \right)^2 + \left(\frac{\partial M_{LE}}{\partial p_{l,i}} \times \delta p_{l,i} \right)^2 + \left(\frac{\partial M_{LE}}{\partial p_{l,i+1}} \times \delta p_{l,i+1} \right)^2 \right]}$$
(30)

where using the trapezoidal integration rule we use the substitutions:

$$\begin{split} &\frac{\partial M_{LE}}{\partial p_{u,i}} = \frac{1}{2}(x_{u,i+1} - x_{u,i}) \times (x_{u,i}cos(\theta_{u,i}) - y_{u,i}sin(\theta_{u,i})) \times \Delta S \\ &\frac{\partial M_{LE}}{\partial p_{u,i+1}} = \frac{1}{2}(x_{u,i+1} - x_{u,i}) \times (x_{u,i+1}cos(\theta_{u,i+1}) - y_{u,i+1}sin(\theta_{u,i+1})) \times \Delta S \\ &\frac{\partial M_{LE}}{\partial p_{l,i}} = \frac{1}{2}(x_{l,i+1} - x_{l,i}) \times (-x_{l,i}cos(\theta_{l,i}) + y_{l,i}sin(\theta_{u,i})) \times \Delta S \\ &\frac{\partial M_{LE}}{\partial p_{l,i+1}} = \frac{1}{2}(x_{l,i+1} - x_{l,i}) \times (-x_{l,i+1}cos(\theta_{l,i+1}) + y_{l,i+1}sin(\theta_{l,i+1})) \times \Delta S \end{split}$$

B Code

All code utilized for this lab can be found at the following Github repository: https://github.com/Gigigo16/AER303-Airfoil

B.1 filter.m

```
clear
nums = [0,4,6,8,9,10,11,12,13,14,15,17];
for j = 1:length(nums)
    clear data
    data = load(".\data\Unfiltered\Experimental_data_"+nums(j)+".mat");
    data.wpdata2;
    spdatafilt = zeros(19, 90090);
    wpdatafilt = zeros(19, 90090);
    wpdata2filt = zeros(19, 90090);
    for i = 1:19
        spdatafilt(i, :) = SigFilt(data.spdata(i, :));
        if i<18
            wpdatafilt(i, :) = SigFilt(data.wpdata(i, :));
            wpdata2filt(i, :) = SigFilt(data.wpdata2(i, :));
        end
    end
    data.spdata = spdatafilt;
    data.wpdata = wpdatafilt;
    data.wpdata2 = wpdata2filt;
    data.wpdata2;
    save(".\data\Filtered\Experimental_data_"+nums(j)+".mat","-struct","data")
end
%%
function [Sig_filt] = SigFilt(Sig)
[zF1, pF1, kF1]
                        = cheby2(4, 20, (30 / (30000 / 2)), 'low');
                        = zp2tf(zF1, pF1, kF1);
[bF1, aF1]
Sig_filt
                        = filtfilt(bF1, aF1, Sig);
end
B.2
     Main.py
11 11 11
Main script for running all data processing and plotting.
    {Depenancies}: scipy, matplotlib, numpy
# IMPORTS
####################
# Dependancies
from scipy import io
```

```
import matplotlib.pyplot as plt
import numpy as np
import csv
# Custom Functions/libraies
from ReynoldsNumber import *
from Forces import *
from Velocity import *
from Coefficients import *
from PressuretoCSV import *
from Uncertainty import *
from Graphing import *
# DEFINITIONS
##########################
# airfoil tap positions:
air_top_tap_pos = [0, 0.03, 0.06, 0.10, 0.15, 0.20, 0.30, 0.40, 0.55, 0.70, 0.85, 1.00]
air_bot_tap_pos = [0.90, 0.60, 0.40, 0.30, 0.20, 0.10, 0.05]
# airfoil cord length
c = 0.1 \# m
# Angles of Attack
alpha = [0, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17] #12
dalpha = 1 #deq uncertainty in AoA
# calibration data
gain = 115 # From in lab calibration code
offset = 50 # From in lab calibration code
Hg2Pa = 9.80665 #inHq to Pa convertion factor
# baselines of rake positions:
y_0 = \text{np.array}([12, 12, 11.5, 11, 11.5, 11, 11.5, 12.5, 11.5, 12, 12.4, 12]) - 3.33 # inital posture of the property of t
dir = [1, -1, -1, 1, 1, 1, -1, -2, 1, -1, 1] #direction rake was moved -1 = down 1 = up
print("Loading Clark Y Airfoil Coordinates...")
# LOADING CLARK_Y_AIRFOIL COORDINATES
###################################
with open(".\data\Clark_Y_Airfoil.csv", newline='') as f:
          points = csv.reader(f, delimiter=';')
         data = list(points)
          data.pop(0)
# Converting to float
i = 0
for row in data:
         data[i] = list(map(float, row))
          i += 1
```

```
is_top = True
airfoil_top = []
airfoil_bot = []
for i in range(0,len(data)):
    if i != 0 and float(data[i][0]) == float(0.0):
       is_top = False
   if is_top and float(data[i][0]) in air_top_tap_pos:
       airfoil_top.append([float(data[i][0]), float(data[i][1])])
    elif not is_top and float(data[i][0]) in air_bot_tap_pos:
       airfoil_bot.append([float(data[i][0]), float(data[i][1])])
# Convert to np.array
airfoil_top = np.array(airfoil_top)*0.1 # Multiplying values by cord length (values given are p
airfoil_bot = np.array(airfoil_bot)*0.1 # Multiplying values by cord length (values given are pe
print("Loading Experimental Data...")
# Data array initialization
pressure_data = []
rake_press = []
rake_press_err = []
y_rake_pos = []
Cl_list = []
dCl_list = []
Cd_list = []
dCd_list = []
Cm_list = []
dCm_list = []
Cdt_list = []
dCdt_list = []
# PROCESSING DATA
##############################
print("======="")
print("Beginning Analysis...")
print("======="")
for i,a in enumerate(alpha):
   print("Processing AoA = %d..."%a)
    # this data was pre-filtered in matlab
    # errors were calculated in errcalc.py
   data_raw = io.loadmat(".\data\Filtered\Experimental_data_%d.mat"%a)
    # ['__header__', '__version__', '__globals__', 'AoA', 'ask', 'None',
    # 'f_s', 'i', 'k', 'p_airfoil', 'p_rake1', 'p_rake2', 'prompt', 'spdata', 'sptime',
    \# 't_s', 'wpdata', 'wpdata2', 'wptime1', 'wptime2', 'x', 'y', 'y2', '__function_workspace__'
    # data calibration:
```

```
p_top = (data_raw['p_airfoil'][0][0:12]*gain + offset)*Hg2Pa
p_bot = (data_raw['p_airfoil'][0][12:19]*gain + offset)*Hg2Pa
p_r1 = (data_raw['p_rake1']*gain + offset)*Hg2Pa
p_r2 = (data_raw['p_rake2']*gain + offset)*Hg2Pa
p = (data_raw['p_airfoil'][0]*gain + offset)*Hg2Pa
pressure_data.append(list(map(float, p)))
# Initializing error arrays
p_r1_err = np.zeros_like(p_r1) #temp
p_r2_err = np.zeros_like(p_r2) #temp
p_top_err = np.zeros_like(p_top) #temp
p_bot_err = np.zeros_like(p_bot) #temp
# Parsing error data from CSV files
with open('data\CSV\dP_airfoil.csv') as f:
         reader = csv.reader(f)
         data_err_a = list(reader)
         data_err_a = [eval(e) for e in data_err_a[i]]
         p_top_err = data_err_a[0:12]
         p_bot_err = data_err_a[12:19]
with open('data\CSV\dP_rakepos1.csv') as f:
         reader = csv.reader(f)
         data_err_r1 = list(map(np.float64,reader))
         p_r1_err = np.array(data_err_r1)[i]
with open('data\CSV\dP_rakepos2.csv') as f:
         reader = csv.reader(f)
         data_err_r2 = list(map(np.float64,reader))
         p_r2_err = np.array(data_err_r2)[i]
# finding the wake velocity distribution:
pos_r1 = y_0[i]
pos_r2 = y_0[i] + dir[i]*0.5
U_inf, U_inf_err, V_r, V_r_err, V_pos, P_comb, P_comb_err = Velocity(p_r1, p_r2, p_r1_err, p_r2, p_r1_err, p_r2, p_r1_err, p_r2, p_r1_err, p_r2, p_r1_err, p_r2, p_r1_err, p_r2, p_r3_err, p_r3_err,
rake_press.append(list(map(float, P_comb)))
rake_press_err.append(list(map(float, P_comb_err)))
y_rake_pos.append(list(map(float, V_pos)))
# Plotting velocity distribution
VelGraph(a, V_r, V_r_err, V_pos)
#finding the dynamic freestream pressure
q_inf, q_inf_err = DynPressure(U_inf, U_inf_err)
```

```
#finding the lift and total drag
    Dt, Dt_err = TotalDrag(V_pos/100, V_r, V_r_err, U_inf, U_inf_err)
    # Finding normal, axial forces and moment forces
    N, dN = NormalForce(p_top, p_bot, p_top_err, p_bot_err, airfoil_top, airfoil_bot, a)
    A, dA = AxialForce(p_top, p_bot, p_top_err, p_bot_err, airfoil_top, airfoil_bot, a)
   M, dM = MomentLE(p_top, p_bot, p_top_err, p_bot_err, airfoil_top, airfoil_bot, a)
    # Finding lift and drag forces
    L, dL = LiftForce(a, dalpha, N, dN, A, dA)
    D, dD = PressureDragForce(a, dalpha, N, dN, A, dA)
    # Finding pressure coefficients
    Cp_top, Cp_bot, Cp_top_err, Cp_bot_err = Cpressure(p_top, p_bot, p_top_err, p_bot_err, q_inf
    # total drag coefficient
    Cdt, dCdt = Ctotaldrag(Dt, Dt_err, q_inf, q_inf_err, c)
    # finding remaining Coefficients
    Cl, dCl, Cd, dCd, Cm, dCm = Coefficients(L, dL, D, dD, M, dM, q_inf, q_inf_err, c)
    # Plotting Cp distribution
    CpGraph(a, Cp_top, Cp_bot, Cp_top_err, Cp_bot_err)
    # Storing data
    Cl_list.append(Cl)
    Cd_list.append(Cd)
    Cm_list.append(Cm)
    Cdt_list.append(Cdt)
    dCl_list.append(dCl)
    dCd_list.append(dCd)
    dCm_list.append(dCm)
    dCdt_list.append(dCdt)
print("Analysis Complete...")
print("======="")
# Plotting data
CoeffGraph(alpha, Cl_list, dCl_list, Cd_list, dCd_list, Cm_list, dCm_list, Cdt_list, dCdt_list)
print("Saving Data CSVs...")
# Saving data raw data to CSV
PressuretoCSV(alpha, np.array(pressure_data))
RakePressuretoCSV(alpha, np.array(rake_press), np.array(y_rake_pos))
RakeUncertaintytoCSV(alpha, np.array(rake_press_err), np.array(y_rake_pos))
```

B.3 errorcalcs.py

```
11 11 11
Script for calculating all measured data uncertainties at all AoAs and ports.
    {Depenancies}: scipy, matplotlib, numpy
# IMPORTS
######################
# Dependancies
from scipy import io
import matplotlib.pyplot as plt
import numpy as np
import csv
# Custom Functions/libraies
from Uncertainty import *
# DEFINITIONS
#############################
# airfoil tap positions:
air_top_tap_pos = [0, 0.03, 0.06, 0.10, 0.15, 0.20, 0.30, 0.40, 0.55, 0.70, 0.85, 1.00]
air_bot_tap_pos = [0.90, 0.60, 0.40, 0.30, 0.20, 0.10, 0.05]
gain = 115 # From in lab calibration code
offset = 50 # From in lab calibration code
Hg2Pa = 9.80665 #inHg to Pa convertion factor
# Angles of Attack
alpha = [0, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17]
dP_a = np.zeros((len(alpha), 19))
dP_r1 = np.zeros((len(alpha), 17))
dP_r2 = np.zeros((len(alpha), 17))
for i, a in enumerate(alpha):
    data = io.loadmat(".\data\Filtered\Experimental_data_%d.mat"%a)
    # ['__header__', '__version__', '__globals__', 'AoA', 'ask', 'None',
    \# 'f_s', 'i', 'k', 'p_airfoil', 'p_rake1', 'p_rake2', 'prompt', 'spdata', 'sptime',
    \# 't_s', 'wpdata', 'wpdata2', 'wptime1', 'wptime2', 'x', 'y', 'y2', '__function_workspace__'
    #error calcs:
    for k in range(1, 20):
        dP_a[i, k-1] = DataErr((data['spdata'][k-1]*gain + offset)*Hg2Pa)
        \# Bxx = DataErr((data['spdata'][0]*gain + offset)*Hg2Pa)
        if (k < 18):
            dP_r1[i, k-1] = DataErr((data['wpdata'][k-1]*gain + offset)*Hg2Pa)
            dP_r2[i, k-1] = DataErr((data['wpdata2'][k-1]*gain + offset)*Hg2Pa)
```

```
# Saving data to CSV files
np.savetxt("data\CSV\dP_airfoil.csv", dP_a, delimiter=",")
np.savetxt("data\CSV\dP_rakepos1.csv", dP_r1, delimiter=",")
np.savetxt("data\CSV\dP_rakepos2.csv", dP_r2, delimiter=",")
B.4 Forces.py
import numpy as np
def NormalForce(p_top: np.array, p_bot: np.array, p_err_top: np.array, p_err_bot: np.array, top_
    Returns the Normal force for pressure distribution.
    Parameters:
     ------
    p\_top : np.array
        top airfoil pressure distribution
    p\_bot : np.array
        bottom airfoil pressure distribution
    p_err_top : np.array
        top airfoil perssure error
    p_{err_bot} : np.array
        bottom airfoil perssure error
    top\_p\_pos : list
        top airfoil pressure tap positions [x; y]
    bot_p_{pos}: list
        bottom airfoil pressure tap positions [x; y]
    Returns:
    n: Normal Force
    dn: Normal Force uncertainty
    x_upper = [row[0] for row in top_p_pos]
    x_lower = [row[0] for row in bot_p_pos]
    y_upper = [row[1] for row in top_p_pos]
    y_lower = [row[1] for row in bot_p_pos]
    theta_upper= np.arctan(np.diff(y_upper)/np.diff(x_upper))
    theta_lower= np.arctan(np.diff(y_lower)/np.diff(x_lower))
    ds_upper = np.sqrt(np.diff(x_upper)**2 + np.diff(y_upper)**2)
    ds_lower = np.sqrt(np.diff(x_lower)**2 + np.diff(y_lower)**2)
    x_upper = np.diff(x_upper)
    x_lower = np.diff(x_lower)
```

y_upper = np.diff(y_upper)

```
y_lower = np.diff(y_lower)
         n = 0
          dn = 0
          # Trapezoidal numerical integration
          for i in range(len(ds_upper)):
                    n \leftarrow -0.5 * (p_top[i] + p_top[i+1]) * np.cos(theta_upper[i]) * ds_upper[i]
                     dn += (-0.5*p\_err\_top[i]*np.cos(theta\_upper[i])*ds\_upper[i])**2 + (-0.5*p\_err\_top[i+1]*np.cos(theta\_upper[i])**2 + (-0.5*p\_err\_top[i+1])**2 
          for i in range(len(ds_lower)):
                    n += 0.5 * (p_bot[i] + p_bot[i+1]) * np.cos(theta_lower[i]) * ds_lower[i]
                     dn += (0.5*p\_err\_bot[i]*np.cos(theta\_lower[i])*ds\_lower[i])**2 + (0.5*p\_err\_bot[i+1]*np.
          # Calculating error (position error assumed to be 0)
          dn = np.sqrt(dn)
          return n, dn
def AxialForce(p_top: np.array, p_bot: np.array, p_err_top: np.array, p_err_bot: np.array, top_p
          Returns the Axial force for pressure distribution.
          Parameters:
          p\_top : np.array
                     top airfoil pressure distribution
          p\_bot : np.array
                     bottom airfoil pressure distribution
          p_err_top : np.array
                     top airfoil perssure error
          p_{err_bot} : np.array
                     bottom airfoil perssure error
          top\_p\_pos : list
                     top airfoil pressure tap positions [x; y]
          bot_p_{pos}: list
                     bottom airfoil pressure tap positions [x; y]
          Returns:
           _____
          a: Axial Force
          da: Axial Force uncertainty
           111
          x_upper = [row[0] for row in top_p_pos]
          x_lower = [row[0] for row in bot_p_pos]
          y_upper = [row[1] for row in top_p_pos]
          y_lower = [row[1] for row in bot_p_pos]
          theta_upper= np.arctan(np.diff(y_upper)/np.diff(x_upper))
          theta_lower= np.arctan(np.diff(y_lower)/np.diff(x_lower))
```

```
ds_upper = np.sqrt(np.diff(x_upper)**2 + np.diff(y_upper)**2)
                  ds_lower = np.sqrt(np.diff(x_lower)**2 + np.diff(y_lower)**2)
                  x_upper = np.diff(x_upper)
                  x_lower = np.diff(x_lower)
                  y_upper = np.diff(y_upper)
                 y_lower = np.diff(y_lower)
                  a = 0
                  da = 0
                  # Trapezoidal numerical integration
                  for i in range(len(ds_upper)):
                                    a \leftarrow -0.5 * (p_top[i] + p_top[i+1]) * np.sin(theta_upper[i]) * ds_upper[i]
                                    da += (-0.5*p\_err\_top[i]*np.sin(theta\_upper[i])*ds\_upper[i])**2 + (-0.5*p\_err\_top[i+1]*np.sin(theta\_upper[i])**2 + (-0.5*p\_err\_top[i+1]*np.sin(theta\_upper[i])**3 + (-0.5*p\_err\_top[i+
                  for i in range(len(ds_lower)):
                                    a += 0.5 * (p_bot[i] + p_bot[i+1]) * np.sin(theta_lower[i]) * ds_lower[i]
                                    da += (0.5*p\_err\_bot[i]*np.sin(theta\_lower[i])*ds\_lower[i])**2 + (0.5*p\_err\_bot[i+1]*np.sin(theta\_lower[i])*ds\_lower[i])**2 + (0.5*p\_err\_bot[i+1]*np.sin(theta\_lower[i])*ds\_lower[i])**2 + (0.5*p\_err\_bot[i+1]*np.sin(theta\_lower[i])**2 + (0.5*p\_err\_bot[i+1]*np.sin(theta\_
                  # Calculating error (position error assumed to be 0)
                  da = np.sqrt(da)
                  return a, da
def LiftForce(alpha: float, dalpha: float, n: float, dn: float, a: float, da: float):
                  Returns the Lift force for given normal and axial forces at given AoA.
                  Parameters:
                   -----
                  alpha: float
                                    angle of attack (degrees)
                  dalpha : float
                                    angle of attack uncertainty (degrees)
                  n : float
                                  Normal force (Newtons)
                  dn : float
                                  Normal force uncertainty (Newtons)
                  a : float
                                   Axial force (Newtons)
                   da : float
                                   Axial force uncertainty (Newtons)
                  Returns:
                   _____
                  l: Lift Force
                  dl: Lift Force uncertainty
```

```
1 = n * np.cos(np.deg2rad(alpha)) - a * np.sin(np.deg2rad(alpha))
                dl = np.sqrt((np.cos(np.deg2rad(alpha)) * dn)**2 + (np.sin(np.deg2rad(alpha)) * da)**2 + ((da)**2 + ((da)**2
                return 1, dl
def PressureDragForce(alpha: float, dalpha: float, n: float, dn: float, a: float, da: float):
                Returns the Pressure drag force for given normal and axial forces at given AoA.
                Parameters:
                 _____
                 alpha: float
                                 angle of attack (degrees)
                 dalpha : float
                                 angle of attack uncertainty (degrees)
                 n : float
                                Normal force (Newtons)
                 dn : float
                                Normal force uncertainty (Newtons)
                 a : float
                                Axial force (Newtons)
                 da : float
                                Axial force uncertainty (Newtons)
                Returns:
                 dp: Pressure Drag Force
                 ddp: Pressure Drag Force uncertainty
                 dp = n * np.sin(np.deg2rad(alpha)) + a * np.cos(np.deg2rad(alpha))
                ddp = np.sqrt((np.sin(np.deg2rad(alpha)) * dn)**2 + (np.cos(np.deg2rad(alpha)) * da)**2 + (np.cos(np.deg2r
                return dp, ddp
def MomentLE(p_top: np.array, p_bot: np.array, p_err_top: np.array, p_err_bot: np.array, top_p_p
                Returns the Moment about the leading edge
                 acting on the airfoil for given pressure distribution.
                Parameters:
                 _____
                p\_top : np.array
                                 top airfoil pressure distribution
                p\_bot : np.array
                                 bottom airfoil pressure distribution
                p_err_top : np.array
                                 top airfoil perssure error
                p_{err_bot} : np.array
                                 bottom airfoil perssure error
```

```
top\_p\_pos : list
                   top airfoil pressure tap positions [x; y]
         bot\_p\_pos : list
                  bottom airfoil pressure tap positions [x; y]
         Returns:
         m: Moment
         dm: Moment uncertainty
         x_upper = [row[0] for row in top_p_pos]
         x_lower = [row[0] for row in bot_p_pos]
         y_upper = [row[1] for row in top_p_pos]
         y_lower = [row[1] for row in bot_p_pos]
         theta_upper= np.arctan(np.diff(y_upper)/np.diff(x_upper))
         theta_lower= np.arctan(np.diff(y_lower)/np.diff(x_lower))
         ds_upper = np.sqrt(np.diff(x_upper)**2 + np.diff(y_upper)**2)
         ds_lower = np.sqrt(np.diff(x_lower)**2 + np.diff(y_lower)**2)
         x_upper = np.diff(x_upper)
         x_lower = np.diff(x_lower)
         y_upper = np.diff(y_upper)
        y_lower = np.diff(y_lower)
        m = 0
         dm = 0
         for i in range(len(ds_upper)):
                  m += 0.5*(p_top[i] + p_top[i+1])*np.cos(theta_upper[i]-np.deg2rad(alpha))*x_upper[i]*ds_
                  m += -0.5*(p_top[i] + p_top[i+1])*np.sin(theta_upper[i]-np.deg2rad(alpha))*y_upper[i]*ds
                  dm += (0.5*np.cos(theta_upper[i])*x_upper[i]*ds_upper[i]-0.5*np.sin(theta_upper[i])*y_up
         for i in range(len(ds_lower)):
                  m += 0.5*(p_bot[i] + p_bot[i+1])*np.cos(theta_lower[i]-np.deg2rad(alpha))*x_lower[i]*ds_
                  m += 0.5*(p_bot[i] + p_bot[i+1])*np.sin(theta_lower[i]-np.deg2rad(alpha))*y_lower[i]*ds_
                  dm += (0.5*np.cos(theta_lower[i])*x_lower[i]*ds_lower[i]+0.5*np.sin(theta_lower[i])*y_lower[i]*ds_lower[i]+0.5*np.sin(theta_lower[i])*y_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lower[i]*ds_lo
         dm = np.sqrt(dm)
         return m, dm
def TotalDrag(y: np.array, v:np.array, v_err: np.array, u_inf: float, u_inf_err: float, rho: flo
         Returns the total drag force as a result of momentum loss of air.
         Parameters:
         y: np.array
```

```
air velocity at measurement points (m/s)
    v_{err}: float
        air velocity uncertainty (m/s)
    u\_inf : float
        free stream air velocity (m/s)
    u\_inf\_err : float
        free stream air velocity uncertainty (m/s)
    rho: float
        air density (kg/m^3)
    Returns:
    _____
    dt: total drag
    ddt: total drag uncertainty
    111
    dt = 0
    ddt = 0
    delta_y = np.diff(y)
    for i in range(len(y)-1):
        dt += rho * 0.5 * ((v[i]*(u_inf-v[i]))+(v[i+1]*(u_inf-v[i+1])))*delta_y[i]
        ddt += (rho*0.5*delta_y[i]*(u_inf-2*v[i])*v_err[i])**2 + (rho*0.5*delta_y[i]*(v[i+1]+v[i
    ddt = np.sqrt(ddt)
    return dt, ddt
B.5 Coefficents.py
    import numpy as np
def Cpressure(p_top: np.array, p_bot: np.array, p_top_err: np.array, p_bot_err: np.array, q_inf:
    111
    Returns the Coefficient of pressure distribution.
    Parameters:
    _____
    p\_top : np.array
        top airfoil pressure distribution
    p\_bot : np.array
        bottom airfoil pressure distribution
    p\_top\_err : np.array
        top airfoil perssure error
    p_bot_err : np.array
        bottom airfoil perssure error
    q_inf: np.float64
        Dynamic Pressure
    q\_inf\_err: np.float64
        Dynamic Pressure error
                                          30
```

y position of measurement points (m)

v:float

```
Returns:
    Cp_top: Coefficient of pressure top
    Cp_top_err: Coefficient of pressure top error
    Cp_bot: Coefficient of pressure bottom
    Cp_bot_err: Coefficient of pressure bottom error
   Cp_top = p_top/q_inf
   Cp_bot = p_bot/q_inf
   Cp_top_err = Cp_top * (np.sqrt((np.square((p_top_err/p_top)) + np.square((q_inf_err/q_inf)))
   Cp_bot_err = Cp_bot * (np.sqrt((np.square((p_bot_err/p_bot)) + np.square((q_inf_err/q_inf)))
   Cp_top_err = abs(Cp_top_err)
   Cp_bot_err = abs(Cp_bot_err)
    # it was found that one port in the airfoil was outputting abnormally high. interpolating or
   k = 5 #index of bad port
   Cp_{top}[k] = 0.5*(Cp_{top}[k+1] + Cp_{top}[k-1])
   return Cp_top, Cp_bot, Cp_top_err, Cp_bot_err
def Coefficients(L: np.array, L_err: np.array, D: np.array, D_err: np.array, M: np.array, M_err:
    Return the lift, drag, and moment coefficients.
    Parameters
    _____
   L: np.array
        Array containg lift force for each AoA in Newtons.
   L\_err: np.array
        Array containg lift force uncertainty for each AoA in Newtons.
        Array containg drag force for each AoA in Newtons.
   D_{err}: np.array
       Array containg drag force uncertainty for each AoA in Newtons.
   M : np.array
       Array containg moment for each AoA in Newtons.
   M_{err}: np.array
        Array containg moment uncertainty for each AoA in Newtons.
    q\_inf : np.array
        Array containing the dynamic pressure at a given AoA.
    q\_inf\_err : np.array
       Array containing the dynamic pressure uncertainty at a given AoA.
    c:float
       chord length in meters
```

```
Returns
    _____
    cl: np.array
    dcl : np.array
    cd: np.array
    dcd : np.array
    cm : np.array
    dcm : np.array
    cl = L / (q_inf*c)
    cd = D / (q_inf*c)
    cm = M / (q_inf*c**2)
    dcl = np.sqrt((L_err/(q_inf*c))**2+(q_inf_err*L/(q_inf**2*c))**2)
    dcd = np.sqrt((D_err/(q_inf*c))**2+(q_inf_err*D/(q_inf**2*c))**2)
    dcm = np.sqrt((M_err/(q_inf*c**2))**2+(q_inf_err*M/(q_inf**2*c**2))**2)
    return cl, dcl, cd, dcd, cm, dcm
def Ctotaldrag(Dt: np.array, Dt_err: np.array, q_inf: np.array, q_inf_err: np.array, c: float):
    returns total drag. (note can also be used for pressure drag)
    Parameters
    _____
    Dt : np.array
        Array containg total drag force for each AoA in Newtons.
    Dt\_err: np.array
        Array containg total drag force uncertainty for each AoA in Newtons.
    q_inf : np.array
        Array containing the dynamic pressure at a given AoA.
    q_inf_err: np.array
        Array containing the dynamic pressure uncertainty at a given AoA.
    c: float
        chord length in meters
    Returns
    cdt: np.array
    dcdt : np.array
    cdt = Dt / (q_inf*c)
    dcdt = np.sqrt((Dt_err/(q_inf*c))**2+(q_inf_err*Dt/(q_inf**2*c))**2)
    return cdt, dcdt
```

B.6 PressuretoCSV.py

B.7 Uncertainty.py

```
11 11 11
Functions related to finding the autocorrelation
    and resultant uncertainties in the measured data
    {Depenancies}: scipy, matplotlib, numpy, pandas
11 11 11
# IMPORTS
#####################
# Dependancies
from scipy import io
import matplotlib.pyplot as plt
import numpy as np
import csv
import statsmodels.api as sm
def DataErr(raw_p: np.array):
    Returns the uncertainty in measured pressure data.
    Parameters:
    -----
    raw_p : np.array
        raw, filtered pressure data for single AoA and single port
    Returns:
    dP: uncertainty in measurements for input series
    111
    # METHOD 1
    # mu = raw_p.mean()
    # var = np.var(raw_p)
    \# x = raw_p - mu
    # we use the correlate function to determine self correlation for xp
    # it is subsequently normalized
    # first half is also truncated since it is symmetric
    \# Bxx = np.correlate(x, x, mode='full')[len(raw_p)-1:]/var/len(raw_p)
    # METHOD 2
    #calculate autocorrelations:
    Bxx = sm.tsa.acf(raw_p, nlags=30000) #we know the crossing is before 30000
    # determined by now depricated code
    #find index of first root:
```

```
#finding the integral time scale:
    dt = 1/30000
    T = np.trapz(Bxx[:lim], dx=dt)
    N = len(raw_p)/(2*T)*dt
    std = np.std(raw_p)
    dP = 1.96*std/np.sqrt(N)
    return dP
B.8 Velocity.py
import numpy as np
def Velocity(p_r1: np.array, p_r2: np.array, p_r1_err: np.array, p_r2_err: np.array, pos_r1: np.
    Returns the Velocity Distribution over the rake and the free stream velocity.
    Parameters:
    _____
    p_r1 : np.array
        pressure from rake in config 1
    p_r2: np.array
        pressure from rake in config 2
    p_r1_{err} : np.array
        error in pressure from rake in config 1
    p_r2_{err} : np.array
        error in pressure from rake in config 2
    pos_r1 : np.array
        positions of the pressure taps in config 1
    pos_r2 : np.array
        positions of the pressure taps in config 2
    Returns:
    U_inf: Freestream Velocity
    U_inf_err: Freestream Velocity error
    V_r: velocity distribution in combined config
    V_r_err: velocity distribution error in combined config
    V_pos: y-axis positions of the velocities
    P_combined: combined pressure distribution
    P_combined_err: combined pressure distribution error
    rake_pos = np.array([0, 1.67, 3.33, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.67, 18.33, 20]
    pos_r1 = pos_r1 + rake_pos
    pos_r2 = pos_r2 + rake_pos
    V_pos = np.sort(np.concatenate((pos_r1, pos_r2)))
```

lim = np.where(Bxx < 0)[0][0]

```
rho = 1.225
v_r1 = np.sqrt(2*p_r1/rho)
v_r2 = np.sqrt(2*p_r2/rho)
#using the most stable and largest measurements points
U_inf = np.average([v_r1[0][1], v_r1[0][-2], v_r2[0][1], v_r2[0][-2]])
v_r1_{err} = 0.5*U_{inf}*p_r1_{err}/p_r1
v_r2_err = 0.5*U_inf*p_r2_err/p_r2
# it was found that one port in the rake was outputting abnormally high. interpolating over
k = 14 #index of bad port
v_r1[0][k] = 0.5*(v_r1[0][k+1] + v_r1[0][k-1])
v_r2[0][k] = 0.5*(v_r2[0][k+1] + v_r2[0][k-1])
U_inf_err = 0.5*np.sqrt(np.sum(np.square([v_r1_err[0][1], v_r1_err[0][-2], v_r2_err[0][1], v
V_r = []
P_combined = []
P_combined_err = []
V_r_{err} = []
if pos_r1[0]<pos_r2[0]:
    for i in range(len(V_pos)):
        if i\%2 == 0:
            P_{combined.append}(p_r1[0][int(i/2)])
            P_combined_err.append(p_r1_err[int(i/2)])
            V_r.append(v_r1[0][int(i/2)])
            V_r_{err.append}(v_r1_{err}[0][int(i/2)])
        else:
            V_r.append(v_r2[0][int((i-1)/2)])
            P_{combined.append(p_r2[0][int((i-1)/2)])}
            P_combined_err.append(p_r2_err[int((i-1)/2)])
            V_r_{err.append}(v_r_{err}[0][int((i-1)/2)])
else:
    for i in range(len(V_pos)):
        if i\%2 == 0:
            V_r.append(v_r2[0][int(i/2)])
            P_{combined.append}(p_{r2}[0][int(i/2)])
            P_combined_err.append(p_r2_err[int(i/2)])
            V_r_{err.append}(v_r_{err}[0][int(i/2)])
        else:
            V_r.append(v_r1[0][int((i-1)/2)])
            P_{combined.append(p_r1[0][int((i-1)/2)])}
            P_{\text{combined\_err.append}}(p_{\text{r1\_err[int((i-1)/2)]}})
            V_r_{err.append}(v_r_{err}[0][int((i-1)/2)])
```

```
return U_inf, U_inf_err, V_r, V_r_err, V_pos, P_combined, P_combined_err
 def DynPressure(U_inf: np.float64, U_inf_err: np.float64):
               Returns the Dynamic pressure and error.
               Parameters:
               U\_inf : np.float
                            the freestream velocity
               U\_inf\_err : np.float
                             the freestream velocity error
               Returns:
               _____
               q_inf: Dynamic Pressure
               q_inf_err: Dynamic Pressure error
              rho = 1.293# 1.225
               q_{inf} = 0.5*rho*(U_{inf}**2)
              q_inf_err = rho*U_inf*U_inf_err
               return q_inf, q_inf_err
B.9
                  Graphing.py
 Functions related to plotting results
  HHHH
  # IMPORTS
 ######################
 # Dependancies
 from scipy import io
 import matplotlib.pyplot as plt
 import numpy as np
 import csv
 def CpGraph(a: np.int32, Cp_top: np.array, Cp_bot: np.array, Cp_top_err: np.array, Cp_bot_err: np.array, Cp_bo
               PLots the Coefficient of pressure distribution.
               Parameters:
               _____
               a:np.int32
                            angle of attack
```

```
p\_top : np.array
        top airfoil pressure distribution
    p\_bot : np.array
        bottom airfoil pressure distribution
    p_top_err : np.array
        top airfoil perssure error
    p\_bot\_err : np.array
        bottom\ airfoil\ perssure\ error
    , , ,
    air_top_tap_pos = [0, 0.03, 0.06, 0.10, 0.15, 0.20, 0.30, 0.40, 0.55, 0.70, 0.85, 1.00]
    air_bot_tap_pos = [0.90, 0.60, 0.40, 0.30, 0.20, 0.10, 0.05]
    Xfoil_parsed = []
    with open("data\XFOIL\\a%d.txt"%a) as X:
        data = (X.read())
        data = data.replace('-', ' -').split('\n')[3:]
        for i in data:
            Xfoil_parsed.append(i.strip().split(' '))
   xfoil_x = []
   xfoil_cp = []
    for line in Xfoil_parsed[:-1]:
        xfoil_x.append(float(line[0]))
        xfoil_cp.append(float(line[2]))
   plt.rcParams['mathtext.fontset'] = 'stix'
   plt.rcParams['font.family'] = 'STIXGeneral'
   plt.rcParams.update({'font.size': 12})
   plt.plot(xfoil_x, xfoil_cp, color = 'r')
   plt.errorbar(air_top_tap_pos, Cp_top, yerr=Cp_top_err, color = 'c', marker = 'o', capsize=2,
   plt.errorbar(air_bot_tap_pos, Cp_bot, yerr=Cp_bot_err, color = 'c', marker = 'o', capsize=2,
   params = {'mathtext.default': 'regular' }
   plt.rcParams.update(params)
   plt.title('C_{P} vs x/c: $$ = ' + str(a) + u'\N{DEGREE SIGN}')
   plt.xlabel('x/c')
   plt.ylabel('$C_{P}$')
   plt.legend(['Theoretical XFoil Data', 'Experimental $C_{P}$'])
   plt.grid()
   plt.ylim(-7.5, 1.5)
   plt.gca().invert_yaxis()
   plt.savefig('results\C_p-graphs\C_p-a\langled.png'\langlea)
    # plt.show()
   plt.clf()
def VelGraph(a: np.int32, V_r: np.array, V_r_err: np.array, V_pos: np.array):
```

PLots the velocity wake distribution.

```
Parameters:
    _____
    a: np.int32
        angle of attack
    V_r: np.array
        vel dist
    V_r_{err} : np.array
        error in vel dist
    V_{pos}: np.array
        tap positions
    plt.errorbar(V_r, V_pos, xerr=V_r_err, color = 'c', marker = 'o', capsize=2, elinewidth=1, m
    params = {'mathtext.default': 'regular' }
   plt.rcParams.update(params)
   plt.title('Wake velocity profile: $$ = ' + str(a) + u'\N{DEGREE SIGN}')
   plt.xlabel('velocity (m/s)')
   plt.ylabel('tap y-pos (cm)')
   plt.legend(['Experimental velocity'])
    # plt.gca().invert_xaxis()
   plt.grid()
   plt.ylim(5,30)
   plt.savefig('results\\vel-graphs\\vel-a\%d.png'\%a)
    # plt.show()
    plt.clf()
def CoeffGraph(a: np.int32, Cl: np.array, dCl: np.array, Cd: np.array, dCd: np.array, Cm: np.arr
    PLots the Coefficient of L and D and M distribution.
    Parameters:
    a:np.int32
        angle of attack
    Cl: np.array
        lift coefficient
    dCl : np.array
        lift coefficient error
    Cd: np.array
        drag coefficient
    dCd: np.array
        drag coefficient error
    Cm : np.array
        moment coefficient
    dCm : np.array
        moment coefficient error
    Cdt : np.array
```

```
total drag coefficient
dCdt : np.array
    total drag coefficient error
Xfoil_parsed = []
with open("data\XFOIL\clarky_coeff.txt") as X:
    data = (X.read())
    data = data.split('\n')[12:]
    for i in data:
        Xfoil_parsed.append(i.strip().split(' '))
xfoil_a = []
xfoil_cl = []
xfoil_cd = []
xfoil_cdp = []
xfoil_cm = []
for line in Xfoil_parsed[:-1]:
    xfoil_a.append(float(line[0]))
    xfoil_cl.append(float(line[1]))
    xfoil_cd.append(float(line[2]))
    xfoil_cdp.append(float(line[3]))
    xfoil_cm.append(float(line[4]))
uiuc_a = []
uiuc_al = []
uiuc_cl = []
uiuc_c12 = []
uiuc_cd = []
uiuc_am = []
uiuc_cm = []
with open(r"data\UIUC_Data\UIUC_Data.csv", newline='') as U:
    reader = csv.reader(U, delimiter=';')
    reader = list(reader)
    reader = reader[1:]
    for row in reader:
        uiuc_a.append(float(row[0]))
        uiuc_cl2.append(float(row[1]))
        uiuc_cd.append(float(row[2]))
with open(r"data\UIUC_Data\UIUC_DataCm.csv", newline='') as U:
    reader = csv.reader(U, delimiter=';')
    reader = list(reader)
    reader = reader[1:]
    for row in reader:
```

```
uiuc_al.append(float(row[0]))
        uiuc_cl.append(float(row[1]))
        uiuc_am.append(float(row[2]))
        uiuc_cm.append(float(row[3]))
print(" Saving C_l-a.png..")
plt.plot(xfoil_a, xfoil_cl, color = 'r')
plt.errorbar(a, Cl, xerr=1, yerr=dCl, color = 'c', marker = '.', capsize=2, elinewidth=1, ma
plt.plot(uiuc_al, uiuc_cl, color = 'g')
params = {'mathtext.default': 'regular' }
plt.rcParams.update(params)
plt.rcParams.update({'font.size': 12})
plt.title('$C_{L}$ vs $$')
plt.xlabel('$$')
plt.ylabel('$C_{L}$')
plt.legend(['Theoretical XFoil Data', 'UIUC Data', 'Experimental $C_{L}$'])
plt.grid()
plt.savefig('results\C_l-graphs\C_l-a.png')
plt.clf()
print(" Saving C_d-a.png..")
plt.plot(xfoil_a, xfoil_cdp, color = 'r')
plt.errorbar(a, Cd, xerr=1, yerr=dCd, color = 'c', marker = '.', capsize=2, elinewidth=1, ma
plt.plot(uiuc_a, uiuc_cd, color = 'g')
params = {'mathtext.default': 'regular' }
plt.rcParams.update(params)
plt.rcParams.update({'font.size': 12})
plt.title('$C_{D}$ vs $$')
plt.xlabel('$$')
plt.ylabel('$C_{D}$')
plt.legend(['Theoretical XFoil Data', 'UIUC Data', 'Experimental $C_{D}$'])
plt.grid()
plt.savefig('results\C_d-graphs\C_d-a.png')
plt.clf()
print(" Saving C_m-a.png..")
plt.plot(xfoil_a, xfoil_cm, color = 'r')
plt.errorbar(a, Cm, xerr=1, yerr=dCm, color = 'c', marker = '.', capsize=2, elinewidth=1, ma
plt.plot(uiuc_am, uiuc_cm, color = 'g')
params = {'mathtext.default': 'regular' }
plt.rcParams.update(params)
plt.rcParams.update({'font.size': 12})
plt.title('$C_{M}$ vs $$')
plt.xlabel('$$')
plt.ylabel('$C_{M}$')
plt.legend(['Theoretical XFoil Data', 'UIUC Data', 'Experimental $C_{M}$'])
plt.grid()
plt.savefig('results\C_m-graphs\C_m-a.png')
```

```
plt.clf()
print(" Saving C_Dt-a.png..")
plt.plot(xfoil_a, xfoil_cd, color = 'r')
plt.errorbar(a, Cdt, xerr=1, yerr=dCdt, color='c', marker='.', capsize=2, elinewidth=1, mark
params = {'mathtext.default': 'regular'}
plt.rcParams.update(params)
plt.rcParams.update({'font.size': 12})
plt.title('Total Drag ($C_{Dt}$) vs $$')
plt.xlabel('$$')
plt.ylabel('$C_{Dt}$')
plt.legend(['Theoretical XFoil Data', 'Experimental $C_{Dt}$'])
plt.grid()
plt.savefig('results\C_Dt-graphs\C_Dt-a.png')
plt.clf()
print(" Saving C_1-C_d.png..")
plt.plot(xfoil_cdp, xfoil_cl, color='r')
plt.plot(uiuc_cd, uiuc_cl2, color='g')
plt.errorbar(Cdt, Cl, xerr=dCd, yerr=dCl, color='c', marker='.', capsize=2, elinewidth=1, ma
params = {'mathtext.default': 'regular'}
plt.rcParams.update(params)
plt.rcParams.update({'font.size': 12})
plt.title('$C_{Dt}$ vs $C_{L}$')
plt.xlabel('$C_{Dt}$')
plt.ylabel('$C_{L}$')
plt.legend(['Theoretical XFoil Data', 'UIUC Data', 'Experimental $C_{L}$ vs $C_{Dt}$'])
\verb|plt.savefig('results\C_l-vs-C_d-graphs\C_l-C_d.png')|
plt.clf()
print(" Saving C_d-C_dt.png..")
plt.plot(xfoil_a, xfoil_cdp, color='r')
plt.plot(xfoil_a, xfoil_cd, color='g')
plt.errorbar(a, Cd, xerr=1, yerr=dCd, color='c', marker='.', capsize=2, elinewidth=1, marker
plt.errorbar(a, Cdt, xerr=1, yerr=dCdt, color='m', marker='.', capsize=2, elinewidth=1, mark
params = {'mathtext.default': 'regular'}
plt.rcParams.update(params)
plt.rcParams.update({'font.size': 12})
plt.title('Pressire Drag ($C_{D}$) vs Total Drag ($C_{Dt}$)')
plt.xlabel('$$')
plt.ylabel('$C_{D}$')
plt.legend(['Theoretical XFoil $C_{D}$ Data', 'Theoretical XFoil $C_{Dt}$ Data', 'Experiment
plt.grid()
plt.savefig('results\C_d-vs-C_dt-graphs\C_d-C_dt.png')
```

C Graphs

Figure 13: Velocity profile for an alpha of 0° .

Figure 14: Velocity profile for an alpha of 4°.

Figure 15: Velocity profile for an alpha of 6° .

Figure 16: Velocity profile for an alpha of 8°.

Figure 17: Velocity profile for an alpha of 9°.

Figure 18: Velocity profile for an alpha of 10° .

Figure 19: Velocity profile for an alpha of 11°.

Figure 20: Velocity profile for an alpha of 12° .

Figure 21: Velocity profile for an alpha of 13°.

Figure 22: Velocity profile for an alpha of 14°.

Figure 23: Velocity profile for an alpha of 15°.

Figure 24: Velocity profile for an alpha of 17° .

Figure 25: Coefficient of pressure over chord for an alpha of 0° .

Figure 26: Coefficient of pressure over chord for an alpha of 4° .

Figure 27: Coefficient of pressure over chord for an alpha of 6° .

Figure 28: Coefficient of pressure over chord for an alpha of 8° .

Figure 29: Coefficient of pressure over chord for an alpha of 9° .

Figure 30: Coefficient of pressure over chord for an alpha of 10° .

Figure 31: Coefficient of pressure over chord for an alpha of 11° .

Figure 32: Coefficient of pressure over chord for an alpha of 12° .

Figure 33: Coefficient of pressure over chord for an alpha of 13° .

Figure 34: Coefficient of pressure over chord for an alpha of 14° .

Figure 35: Coefficient of pressure over chord for an alpha of 15° .

Figure 36: Coefficient of pressure over chord for an alpha of 17° .

Figure 37: Coefficient of Drag vs. Angle of Attack.

 $\begin{tabular}{ll} \bf Figure~38:~ Coefficient~of~ Total~ Drag~vs.~ Angle~ of~ Attack. \end{tabular}$

 ${\bf Figure~39:~Coefficient~of~Lift~vs.~Angle~of~Attack.}$

 $\begin{tabular}{ll} \bf Figure~40:~Coefficient~of~Lift~vs.~Coefficient~of~\\ Drag. \end{tabular}$

Figure 41: Coefficient of Moment vs. Angle of Attack.

D Raw Pressure Measurements

Table 2: Scanivalve airfoil pressure data in pascals from angle of attack 0 to 10 degrees (columns).

	Angle of Attack							
Tap #	0°(Pa)	4°(Pa)	6°(Pa)	8°(Pa)	9°(Pa)	10°(Pa)		
1	532.9035682	340.8428824	-118.0891819	-873.2776504	-1288.638426	-1658.593267		
2	117.8630552	-542.8765287	-890.7856597	-1306.123145	-1479.769344	-1627.78351		
3	-100.977744	-654.308017	-922.2238733	-1232.29287	-1351.519361	-1459.80888		
4	-204.8456448	-644.9190854	-848.9436297	-1076.565209	-1177.458159	-1272.768652		
5	-205.5408773	-539.2325226	-685.1525432	-847.1152394	-919.9248999	-1001.098771		
6	-342.4246142	-645.293306	-772.2527427	-921.1814044	-999.1857869	-1034.088034		
7	-317.5447473	-536.609937	-647.4073784	-763.1696371	-721.0541572	-751.4383699		
8	-308.0369561	-473.0224947	-552.6879514	-578.2709612	-610.5750725	-627.3914994		
9	-262.5054993	-393.9555404	-394.1783692	-437.3724553	-446.1828707	-447.1521672		
10	-203.8999689	-232.3343146	-260.8423349	-274.3526416	-275.1147448	-265.4806642		
11	-127.5357169	-117.7566046	-122.4512079	-119.0154006	-115.353482	-104.2628018		
12	43.2740797	48.88133552	41.93789756	31.67029425	21.46942776	4.086570075		
13	28.45719863	52.17141413	60.88204168	68.28019989	69.04691871	65.03845873		
14	-14.00614968	57.91410482	88.76972522	116.8324737	128.4694068	134.6946893		
15	-44.87517107	65.93995188	112.5089286	154.3569688	173.2677102	185.6897343		
16	-100.9878605	61.1222409	121.5841062	174.8304045	196.6791258	211.796811		
17	-156.989528	56.20379694	136.6767107	206.7180611	233.9623806	254.5937162		
18	-251.4109283	82.98294878	199.8034958	293.7613469	329.4820105	357.0653116		
19	-362.7563795	125.6674027	283.4808135	399.0008799	439.2845054	466.5315197		

	Angle of Attack							
Tap #	11°(Pa)	12°(Pa)	13°(Pa)	14°(Pa)	15°(Pa)	17°(Pa)		
1	-1982.958656	-2231.643322	-2446.403958	-2540.391459	-2520.873011	-2416.720063		
2	-1731.425351	-1818.438057	-1907.982043	-1902.605731	-1848.995697	-1665.71629		
3	-1580.040813	-1670.781228	-1746.322555	-1695.995559	-1593.285689	-1341.08484		
4	-1371.230199	-1405.982962	-1395.504303	-1360.101323	-1249.329267	-989.8248244		
5	-1008.654389	-1017.975678	-1044.819119	-1011.127293	-887.620742	-589.9233604		
6	-1041.87476	-1058.304908	-1076.039351	-1009.370806	-864.4739774	-468.7534448		
7	-775.4321019	-778.2227323	-771.7460524	-682.3218937	-502.5960348	-295.7933885		
8	-629.0496515	-622.02666	-598.447053	-459.9707256	-320.4546491	-282.6070096		
9	-430.5679994	-405.5003636	-356.862682	-222.611725	-257.0863425	-286.290312		
10	-238.7186314	-209.5259873	-171.8791428	-185.4906279	-268.7958233	-295.2914274		
11	-93.52886861	-95.48676574	-119.655342	-181.0118439	-250.6447261	-300.9595505		
12	-28.78350575	-52.2603426	-94.85539535	-150.9359428	-210.9848543	-248.7933359		
13	53.85043615	48.60754768	30.60348788	-11.18206683	-25.64082838	-59.66490149		
14	141.7029314	146.6481378	143.5418955	114.2966637	132.0591612	114.2359278		
15	195.9758842	207.0897092	210.9097004	211.4613507	212.8357907	205.3146648		
16	226.9802637	241.4652489	248.2304762	251.5646958	254.1783507	252.7471381		
17	274.5924732	291.0866925	301.7374972	308.2772759	313.8601182	315.0064139		
18	381.611126	402.3294237	415.6779919	424.2984827	430.2571482	434.3441358		
19	491.332711	509.5248313	520.0496436	526.2332633	530.3437106	533.939004		

Table 4: Scanivalve wake rake pressure data in pascals and rake position from bottom of test section. From angle of attack 0 to 6 degrees.

$\alpha = 0$		α	=4	α	$\alpha = 6$	
y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	
8.67	557.0874069	8.17	560.008693	7.67	552.8708145	
9.17	558.3791119	8.67	559.9901598	8.17	560.3613694	
10.34	559.6737966	9.84	561.6714594	9.34	563.204516	
10.84	559.8214676	10.34	560.8320629	9.84	562.0621551	
12	560.2245558	11.5	561.1144258	11	561.211788	
12.5	559.7512818	12	560.5379947	11.5	561.7484651	
13.67	560.1895349	13.17	561.3622659	12.67	560.4020371	
14.17	560.6976857	13.67	558.917353	13.17	562.1080169	
14.67	559.9997207	14.17	560.641693	13.67	562.3843112	
15.17	560.1640851	14.67	507.5694927	14.17	551.6031867	
15.67	555.5877558	15.17	509.7968123	14.67	549.2803777	
16.17	543.2050249	15.67	535.9464952	15.17	493.4432441	
16.67	499.9531275	16.17	529.6501535	15.67	496.1641716	
17.17	497.941288	16.67	559.3292138	16.17	547.369625	
17.67	532.9550417	17.17	561.4040325	16.67	549.9959746	
18.17	547.7359843	17.67	558.8104094	17.17	560.0160376	
18.67	557.6340729	18.17	559.8187224	17.67	560.6098433	
19.17	557.8662258	18.67	558.2711249	18.17	558.8033632	
19.67	557.5608929	19.17	559.1677674	18.67	559.882177	
20.17	557.2282848	19.67	558.6331173	19.17	558.6683111	
20.67	558.8601276	20.17	560.8755252	19.67	558.3925745	
21.17	558.5766554	20.67	558.1320949	20.17	560.3344977	
21.67	558.9084424	21.17	561.7892583	20.67	559.3785575	
22.17	559.2143433	21.67	560.421873	21.17	561.1926888	
22.67	557.1662317	22.17	559.9456295	21.67	559.6341435	
23.17	558.5974935	22.67	560.5143045	22.17	560.7260186	
23.67	559.9109646	23.17	560.9886424	22.67	560.8987894	
24.17	560.3340326	23.67	563.3713787	23.17	562.1775977	
25.34	804.0764393	24.84	805.4912318	24.34	805.3145695	
25.84	805.3385108	25.34	805.933825	24.84	805.6286093	
27	565.6289387	26.5	566.7864332	26	566.3353431	
27.5	564.8374453	27	560.3702471	26.5	566.8856907	
28.67	557.8607375	28.17	554.3557559	27.67	562.5388493	
29.17	555.810461	28.67	548.214191	28.17	554.9290323	

Table 5: Scanivalve wake rake pressure data in pascals and rake position from bottom of test section. From angle of attack 8 to 10 degrees.

α	= 8°	α	= 9°	α	$\alpha = 10^{\circ}$	
y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	
7.67	552.6227789	7.67	546.0771402	7.67	547.4064343	
8.17	557.9606432	8.17	558.4231277	8.17	557.5692396	
9.34	562.0254941	9.34	560.3565561	9.34	560.7676884	
9.84	561.6391014	9.84	561.0538935	9.84	561.4870142	
11	560.204899	11	560.1279695	11	559.2640739	
11.5	561.0589476	11.5	560.1792743	11.5	560.4352121	
12.67	560.2961863	12.67	558.7541738	12.67	559.4557155	
13.17	560.5019366	13.17	558.5863912	13.17	556.9763558	
13.67	561.0487652	13.67	560.5274954	13.67	560.7168816	
14.17	529.8482671	14.17	510.1580968	14.17	509.5704996	
14.67	514.4286714	14.67	528.8692025	14.67	521.3321828	
15.17	496.2595561	15.17	501.9386592	15.17	496.5889683	
15.67	505.1126029	15.67	488.3788589	15.67	486.3938088	
16.17	551.0073704	16.17	552.921786	16.17	547.6440796	
16.67	555.8218122	16.67	544.2560923	16.67	539.0538955	
17.17	559.5941384	17.17	559.3499819	17.17	558.9213802	
17.67	559.328827	17.67	559.3461069	17.67	559.0271467	
18.17	558.2125023	18.17	557.5533466	18.17	558.8226187	
18.67	558.64523	18.67	557.8277127	18.67	558.353693	
19.17	558.1935534	19.17	557.9651355	19.17	558.5203438	
19.67	557.8026108	19.67	557.1581196	19.67	556.6474128	
20.17	558.6596577	20.17	558.8856473	20.17	559.4920637	
20.67	558.8783809	20.67	558.4008039	20.67	558.4506271	
21.17	560.0392504	21.17	559.4043036	21.17	559.4468851	
21.67	559.1193066	21.67	558.1283969	21.67	559.3258348	
22.17	559.0371562	22.17	558.4686232	22.17	559.4241642	
22.67	559.5619882	22.67	559.5900082	22.67	559.3828338	
23.17	559.5423952	23.17	559.8479586	23.17	560.31239	
24.34	803.2395925	24.34	802.4437324	24.34	802.9875523	
24.84	803.3965219	24.84	803.2180116	24.84	803.5620614	
26	565.1802028	26	564.4641346	26	564.4900576	
26.5	565.802473	26.5	565.2270667	26.5	565.6991204	
27.67	562.0367815	27.67	564.1000967	27.67	563.9770276	
28.17	553.012172	28.17	551.4833134	28.17	550.7025231	

Table 6: Scanivalve wake rake pressure data in pascals and rake position from bottom of test section. From angle of attack 11 to 13 degrees.

$\alpha = 11^{\circ}$		α	= 12°	α	$\alpha = 13^{\circ}$	
y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	
8.17	557.8589615	8.67	560.7664805	7.17	540.5427181	
8.67	560.8686971	9.17	560.5396986	8.17	556.3575345	
9.84	560.744881	10.34	560.0177435	8.84	560.5251886	
10.34	562.1471762	10.84	560.9970262	9.84	561.3705262	
11.5	560.8472459	12	560.5612981	10.5	561.8461009	
12	562.3262956	12.5	553.4317066	11.5	561.0689201	
13.17	553.5156021	13.67	528.4236234	12.17	560.8593276	
13.67	514.81734	14.17	474.9606712	13.17	553.2116376	
14.17	506.6112354	14.67	477.855948	13.17	558.1018689	
14.67	479.3725971	15.17	494.6582686	14.17	525.6244844	
15.17	480.4198102	15.67	493.4814794	14.17	535.2408399	
15.67	525.273123	16.17	543.3596947	15.17	476.8229095	
16.17	529.1819788	16.67	541.4532883	15.17	490.4184386	
16.67	559.1240006	17.17	559.38405	16.17	468.5567477	
17.17	558.1473047	17.67	559.2595548	16.17	464.9430527	
17.67	561.1458702	18.17	558.3539441	17.17	506.7590709	
18.17	558.4538518	18.67	558.3572799	17.17	490.7167707	
18.67	561.2936626	19.17	558.9892386	18.17	541.5136025	
19.17	558.4556339	19.67	558.6174734	18.17	525.5072946	
19.67	561.2439155	20.17	559.2187183	19.17	556.1106843	
20.17	559.4676079	20.67	559.6412472	19.17	551.9492511	
20.67	562.0642006	21.17	559.953793	20.17	557.6184413	
21.17	560.1651244	21.67	560.6755657	20.17	558.6529614	
21.67	563.4188786	22.17	562.3424437	21.17	558.4021621	
22.17	557.5884787	22.67	560.8659128	21.17	558.0407788	
22.67	561.9284056	23.17	560.1039746	22.17	558.9375345	
23.17	559.9711059	23.67	562.2940014	22.17	558.8473832	
23.67	565.7954331	24.17	563.2642396	23.17	560.6546391	
24.84	803.3156845	25.34	803.7629696	23.84	804.1070811	
25.34	812.3927878	25.84	803.2307869	24.84	802.7786205	
26.5	566.8053574	27	564.9892259	25.5	564.7303124	
27	565.2791783	27.5	552.495483	26.5	565.4495126	
28.17	550.8947429	28.67	547.175728	27.17	566.2551868	
28.67	549.568122	29.17	543.7351641	28.17	553.1932422	

Table 7: Scanivalve wake rake pressure data in pascals and rake position from bottom of test section. From angle of attack 14 to 17 degrees.

$\alpha = 14^{\circ}$		α	= 15°	α	$\alpha = 17^{\circ}$	
y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	y Pos (cm)	Pressure (Pa)	
8.67	559.29615	8.57	555.8673468	8.67	557.2925646	
9.17	559.6950215	9.07	560.1522194	9.17	561.0168085	
10.34	561.5211626	10.24	563.8172233	10.34	563.4241879	
10.84	560.1675691	10.74	562.5368737	10.84	562.2851792	
12	559.8382064	11.9	561.9066004	12	558.7935348	
12.5	556.1623822	12.4	555.979787	12.5	549.1901172	
13.67	544.2858121	13.57	551.1584924	13.67	540.9494918	
14.17	526.1370658	14.07	529.7161041	14.17	522.8087794	
14.67	522.5959356	14.57	535.0384088	14.67	523.9756044	
15.17	496.1138791	15.07	507.7330278	15.17	493.074656	
15.67	487.5423268	15.57	511.3803752	15.67	497.4641696	
16.17	461.6848944	16.07	483.1885913	16.17	466.097524	
16.67	458.644235	16.57	479.6759853	16.67	466.2342388	
17.17	443.3856635	17.07	463.5984436	17.17	438.204971	
17.67	440.6080374	17.57	462.1073883	17.67	440.7889511	
18.17	442.1351571	18.07	437.4208243	18.17	416.1175206	
18.67	445.4039112	18.57	439.701591	18.67	413.9250592	
19.17	467.4336977	19.07	432.1903499	19.17	399.3534511	
19.67	473.1329885	19.57	436.3057342	19.67	400.476005	
20.17	499.6280387	20.07	447.2388927	20.17	404.5613011	
20.67	514.4765662	20.57	445.6015615	20.67	398.7977406	
21.17	534.0492339	21.07	464.2962191	21.17	414.0318771	
21.67	555.7326692	21.57	495.1979539	21.67	446.4062788	
22.17	559.9612158	22.07	522.4190672	22.17	477.0924617	
22.67	543.3624728	22.57	467.0983914	22.67	415.7534145	
23.17	554.4307284	23.07	496.183404	23.17	439.1386324	
23.67	559.7610032	23.57	520.1950897	23.67	471.5087822	
24.17	562.1418956	24.07	546.1264117	24.17	502.8987929	
25.34	803.1542587	25.24	800.147824	25.34	802.1153554	
25.84	802.0293177	25.74	803.8491101	25.84	803.0109771	
27	564.7039428	26.9	563.9676806	27	557.4313558	
27.5	556.3224992	27.4	563.0816527	27.5	563.2954719	
28.67	548.1323741	28.57	558.2961877	28.67	558.3107698	
29.17	545.6985222	29.07	548.072992	29.17	550.9261008	

Table 8: Airfoil pressure data uncertainties in pascals from angle of attack 0 to 10 degrees.

	Angle of Attack								
Tap #	0°(Pa)	4°(Pa)	6°(Pa)	8°(Pa)	9°(Pa)	10°(Pa)			
1	0.2877822	0.821539414	0.892489337	23.35070395	1.578263738	3.006472342			
2	0.720298076	1.400454681	1.635520021	1.99652191	1.416550253	3.458252492			
3	0.983215107	1.933804133	1.724845605	1.835345075	1.824530133	2.44040358			
4	0.960942125	2.749560157	1.497908797	2.538687007	2.057682683	2.043439264			
5	0.890878239	1.406557861	2.004043616	2.477837802	1.628083905	1.975977193			
6	1.383792257	1.830531151	2.674370279	1.507817845	2.259403355	1.918005502			
7	0.919551669	1.477276521	1.885135206	1.576410458	1.158648122	1.707917318			
8	1.076203463	1.432017687	1.74441717	1.832483499	1.995271469	1.716500306			
9	1.706740738	1.072183637	1.427782935	1.020278451	1.20371086	2.327049647			
10	0.853070754	1.266756871	1.03349001	1.562716168	1.398561052	1.243895431			
11	1.411742673	0.759903732	0.58090892	0.805421807	0.670345951	0.91768258			
12	0.89566707	0.429026374	0.655714631	0.864204794	0.772436864	0.764452461			
13	0.474818164	0.788874192	0.709633505	1.257620615	0.802701635	0.829784139			
14	0.997370078	1.374139908	0.729451316	0.570364206	0.417040819	0.418229324			
15	0.705929945	1.426097728	0.59514055	0.568075402	0.37087995	0.421639802			
16	1.217486786	0.668106713	0.700940752	0.725732929	0.380080796	0.676863984			
17	0.810169658	0.656837283	0.56197886	0.385877604	0.502680053	0.43977576			
18	0.959493064	1.218039364	0.380079212	0.576730464	0.312386888	0.340594732			
19	1.310414729	1.411419452	0.361529619	0.333285519	0.299089308	0.286988505			

Table 9: Airfoil pressure data uncertainties in pascals from angle of attack 11 to 17 degrees.

			Angle of	f Attack		
Tap #	11°(Pa)	12°(Pa)	13°(Pa)	14°(Pa)	15°(Pa)	17°(Pa)
1	2.769474024	2.335740539	2.840193104	3.153594881	10.60998943	7.755622989
2	3.021138618	3.345851505	2.385927581	2.588747745	17.41945111	6.753406695
3	2.269458749	1.734386236	2.915954498	3.133069728	6.641119895	4.792829329
4	1.748889045	1.622547306	2.00154697	2.082301386	8.061889402	5.004638104
5	1.787639128	1.664833319	1.318765969	2.458932601	4.486892695	7.116275993
6	2.382446607	1.626952219	2.858815039	2.333386574	5.3411119	9.760411895
7	0.825901355	1.830633341	1.442871792	3.734233756	9.03805049	2.869267134
8	3.126187661	1.197119722	1.788395792	2.816142562	9.781049143	2.764557942
9	2.183989996	1.507194311	1.806769929	1.985187117	8.038256808	0.977271663
10	0.915035156	1.26591954	1.811500121	1.665531268	8.684808375	1.419813439
11	1.252285308	0.456813088	1.073168812	1.786785987	7.269404247	1.493713707
12	0.804966017	0.746972092	0.834996702	1.013008863	8.754630056	1.769719035
13	0.632530513	0.624549678	0.718292153	1.126074485	1.743716445	0.927059844
14	0.401201685	0.676397758	0.395094245	1.007617824	0.887507709	0.405794168
15	0.334161045	0.349859624	0.357057607	0.421359359	0.986449723	0.772523466
16	0.297163425	0.82407074	0.31853218	0.573501895	1.432581197	0.438675458
17	0.606861271	0.320316408	0.362552465	0.326787844	1.332709062	0.566833574
18	0.283367134	0.291986338	0.265420837	0.331482066	0.572185204	0.396086512
19	0.299604547	0.300705746	0.26410304	0.311200132	0.473103459	0.351365091

Table 10: Wake rake pressure data uncertainties in pascals from angle of attack 0 to 6 degrees.

	$\alpha = 0$		$\alpha = 4$		$\alpha = 6$
y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)
8.67	0.567045949	8.17	0.546520149	7.67	0.643534181
9.17	0.582713036	8.67	0.540846108	8.17	0.500078895
10.34	0.584292301	9.84	0.510611032	9.34	0.495044469
10.84	0.579334861	10.34	0.533237957	9.84	0.502217459
12	0.611026391	11.5	0.48878908	11	0.469011073
12.5	0.499981719	12	0.548054643	11.5	0.597599137
13.67	0.624527036	13.17	0.524595718	12.67	0.50931841
14.17	0.525405254	13.67	0.48546328	13.17	0.523882671
14.67	0.531766956	14.17	0.542969155	13.67	0.497892486
15.17	0.613207126	14.67	0.710230321	14.17	0.605988591
15.67	0.626798936	15.17	0.642551971	14.67	0.623803109
16.17	0.664918125	15.67	0.735962535	15.17	0.682308582
16.67	0.694199113	16.17	0.751698819	15.67	0.717246909
17.17	2.222763981	16.67	0.580073828	16.17	0.663774896
17.67	0.834381094	17.17	0.521101525	16.67	0.68351523
18.17	0.7192227	17.67	0.554917789	17.17	0.555556375
18.67	0.578952725	18.17	0.544102949	17.67	0.569823424
19.17	0.578466902	18.67	0.474707962	18.17	0.536308582
19.67	0.562011286	19.17	0.503234496	18.67	0.53640465
20.17	0.630319159	19.67	0.60159714	19.17	0.527249481
20.67	0.570869033	20.17	0.504188037	19.67	0.502694599
21.17	0.57165698	20.67	0.577947192	20.17	0.543095971
21.67	0.618520548	21.17	0.556589475	20.67	0.489232321
22.17	0.541851236	21.67	0.52191097	21.17	0.489211963
22.67	0.555395936	22.17	0.556417464	21.67	0.597363941
23.17	0.554435738	22.67	0.516038486	22.17	0.498940828
23.67	0.59483736	23.17	0.51201294	22.67	0.541445321
24.17	0.632008932	23.67	0.51542996	23.17	0.496572114
25.34	0.05500125	24.84	0.10176055	24.34	0.178282809
25.84	0.096686148	25.34	0.176037661	24.84	0.110436973
27	0.637858089	26.5	0.540823184	26	0.490815344
27.5	0.655458688	27	0.567897821	26.5	0.512439851
28.67	0.571066548	28.17	0.632190693	27.67	0.592928016
29.17	0.620454948	28.67	0.743943164	28.17	0.678623484

 $\begin{tabular}{ll} \textbf{Table 11:} Wake rake pressure data uncertainties in pascals from angle of attack 8 to 10 degrees. \\ \end{tabular}$

	$\alpha = 8$		$\alpha = 9$	α	= 10
y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Pressure (Pa)
7.67	0.622375234	7.67	0.676096795	7.67	547.4064343
8.17	0.51049718	8.17	0.541687592	8.17	557.5692396
9.34	0.501100287	9.34	0.530836211	9.34	560.7676884
9.84	0.529608172	9.84	0.526807329	9.84	561.4870142
11	0.516314856	11	0.546952658	11	559.2640739
11.5	0.520967147	11.5	0.515949265	11.5	560.4352121
12.67	0.526945874	12.67	0.532136335	12.67	559.4557155
13.17	0.47792289	13.17	0.585549425	13.17	556.9763558
13.67	0.538792493	13.67	0.484553863	13.67	560.7168816
14.17	0.765267213	14.17	0.720344344	14.17	509.5704996
14.67	0.888773825	14.67	0.873995273	14.67	521.3321828
15.17	0.818778831	15.17	0.840199849	15.17	496.5889683
15.67	0.861339805	15.67	0.682939351	15.67	486.3938088
16.17	0.560176215	16.17	0.590417652	16.17	547.6440796
16.67	0.628251088	16.67	0.771736084	16.67	539.0538955
17.17	0.52965672	17.17	0.51417895	17.17	558.9213802
17.67	0.513058971	17.67	0.552968528	17.67	559.0271467
18.17	0.53049946	18.17	0.494349179	18.17	558.8226187
18.67	0.514227605	18.67	0.530096788	18.67	558.353693
19.17	0.489016338	19.17	0.508193192	19.17	558.5203438
19.67	0.497066225	19.67	0.544443787	19.67	556.6474128
20.17	0.501316793	20.17	0.536248318	20.17	559.4920637
20.67	0.462407041	20.67	0.468586837	20.67	558.4506271
21.17	0.503052325	21.17	0.516407373	21.17	559.4468851
21.67	0.54332621	21.67	0.467647333	21.67	559.3258348
22.17	0.46715022	22.17	0.600956006	22.17	559.4241642
22.67	0.527536425	22.67	0.524477283	22.67	559.3828338
23.17	0.467908059	23.17	0.542610257	23.17	560.31239
24.34	0.102655598	24.34	0.253937286	24.34	802.9875523
24.84	0.07632178	24.84	0.081373307	24.84	803.5620614
26	0.562099131	26	0.484588581	26	564.4900576
26.5	0.522153641	26.5	0.53762418	26.5	565.6991204
27.67	0.487942716	27.67	0.522327467	27.67	563.9770276
28.17	0.752815186	28.17	0.663052728	28.17	550.7025231

Table 12: Wake rake pressure data uncertainties in pascals from angle of attack 11 to 13 degrees.

	$\alpha = 11$		$\alpha = 12$		$\alpha = 13$	
y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)	
8.17	0.492213667	8.67	0.511427041	7.17	0.779870053	
8.67	0.545491229	9.17	0.458651311	8.17	0.528261968	
9.84	0.502102091	10.34	0.527421341	8.84	0.476702931	
10.34	0.46350135	10.84	0.514472178	9.84	0.4642112	
11.5	0.486260271	12	0.493327149	10.5	0.530986917	
12	0.473102936	12.5	0.695121209	11.5	0.530005316	
13.17	0.589329503	13.67	1.166502001	12.17	0.500816827	
13.67	1.008251086	14.17	1.071588929	13.17	0.795691715	
14.17	0.877276686	14.67	1.105756454	13.17	0.637447327	
14.67	1.006200703	15.17	1.493278459	14.17	1.584266717	
15.17	0.866865085	15.67	1.434426267	14.17	1.35739211	
15.67	1.137179282	16.17	0.992409531	15.17	1.55168222	
16.17	1.04527784	16.67	1.009841512	15.17	1.780210014	
16.67	0.567656214	17.17	0.529341879	16.17	2.043796242	
17.17	0.478195459	17.67	0.495909634	16.17	1.356568965	
17.67	0.53052213	18.17	0.533332518	17.17	3.504218336	
18.17	0.522099315	18.67	0.491746825	17.17	2.629336628	
18.67	0.510366924	19.17	0.502481364	18.17	2.430771977	
19.17	0.524202946	19.67	0.516166324	18.17	3.647234786	
19.67	0.537245743	20.17	0.521348478	19.17	0.969139349	
20.17	0.504959276	20.67	0.551814992	19.17	1.816769374	
20.67	0.556412874	21.17	0.50410619	20.17	0.561961003	
21.17	0.520137265	21.67	0.468699734	20.17	0.495695257	
21.67	0.500074011	22.17	0.486314052	21.17	0.475041411	
22.17	0.495177218	22.67	0.511951153	21.17	0.571423776	
22.67	0.492586222	23.17	0.429596872	22.17	0.569183004	
23.17	0.55357182	23.67	0.488212101	22.17	0.511765903	
23.67	0.512816698	24.17	0.524475503	23.17	0.568193217	
24.84	0.33017399	25.34	0.168945453	23.84	0.22935531	
25.34	0.093712859	25.84	0.085442371	24.84	0.06988247	
26.5	0.510352726	27	0.472404485	25.5	0.51434972	
27	0.555470637	27.5	0.70318835	26.5	0.44598911	
28.17	0.633684919	28.67	0.701135775	27.17	0.532762077	
28.67	0.702880889	29.17	0.834139091	28.17	0.698136358	

 ${\bf Table~13:} \ {\bf Wake~rake~pressure~data~uncertainties} \\ {\bf in~pascals~from~angle~of~attack~14~to~17~degrees.}$

$\alpha = 14$			$\alpha = 15$	$\alpha = 17$	
y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)	y Pos (cm)	Uncertainty (Pa)
8.67	0.52855632	8.57	0.739371705	8.67	0.594624318
9.17	0.49048191	9.07	0.574925357	9.17	0.585896771
10.34	0.512876236	10.24	0.645577792	10.34	0.584164616
10.84	0.590691477	10.74	0.680860872	10.84	0.777441909
12	0.563309757	11.9	0.639344468	12	1.128779288
12.5	0.727173204	12.4	2.510412647	12.5	1.97348797
13.67	1.589289063	13.57	1.55264032	13.67	2.426186192
14.17	2.315903544	14.07	2.889981383	14.17	3.271530267
14.67	2.082905551	14.57	2.613344892	14.67	2.992531451
15.17	2.907505421	15.07	5.914599727	15.17	3.799718525
15.67	2.938243185	15.57	6.510569706	15.67	3.483817023
16.17	2.537901109	16.07	3.833763754	16.17	3.557676223
16.67	2.323491111	16.57	2.961520143	16.67	3.792371221
17.17	2.174794932	17.07	3.869680784	17.17	4.098140774
17.67	1.932710329	17.57	3.778450805	17.67	4.239713658
18.17	2.270826322	18.07	3.447983494	18.17	3.571055856
18.67	3.404591617	18.57	4.030600047	18.67	4.062700107
19.17	4.138179371	19.07	4.495655262	19.17	3.46461564
19.67	4.024560358	19.57	3.684699073	19.67	3.927239761
20.17	3.663477685	20.07	5.777217769	20.17	3.754687059
20.67	3.73031565	20.57	7.499370796	20.67	3.935233837
21.17	3.017133601	21.07	6.012141239	21.17	4.284118955
21.67	1.005131815	21.57	6.154575966	21.67	4.203264326
22.17	0.605697959	22.07	5.497899696	22.17	4.706482219
22.67	2.35649739	22.57	7.10615851	22.67	4.352139758
23.17	1.136825825	23.07	6.401692537	23.17	5.38260282
23.67	0.571107732	23.57	5.035178156	23.67	4.780959866
24.17	0.598815247	24.07	3.051120081	24.17	4.831814715
25.34	0.160188592	25.24	2.06301338	25.34	0.163324519
25.84	0.134981073	25.74	0.114413539	25.84	0.075323439
27	0.54439937	26.9	1.432366894	27	2.149731647
27.5	0.620595225	27.4	0.76330991	27.5	1.408533101
28.67	0.746708074	28.57	1.04288078	28.67	0.975332469
29.17	0.731769643	29.07	1.311182658	29.17	1.345792388