椞

诚信应考. 考试作弊将带来严重后果!

华南理工大学期末考试

《线性代数与解析几何》(A)试卷(16-17年度第1学期)

注意事项: 1. 考前请将密封线内填写清楚;

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷:

4. 本试卷共 8 大题, 满分 100 分, 考试时间 120 分钟.

题	号	 =	三	四	五.	六	七	八	总分
得	分								
评	卷人								

一、(15分)填空题.

则当 $k = _{--}^{-\frac{5}{13}}$ ____时, 向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关.

2. 设A为m阶方阵, B为n阶方阵, |A|=a, |B|=b, ,分块矩阵 $C=\begin{pmatrix} O & A \\ B & O \end{pmatrix}$,

则
$$|C| = \underline{(-1)^{mn}ab}$$
.

则
$$|C|=$$
 $\frac{(-1)}{ab}$.
3. 设矩阵 $A=\begin{pmatrix}1&0&1\\0&2&1\\1&0&1\end{pmatrix},\ n\geq 2,\$ 则 $A^n-2A^{n-1}=\begin{pmatrix}0&0&0\\2^{n-2}&0&2^{n-2}\\0&0&0\end{pmatrix}$,此题难,大多数,元素正确时酌情给分

4.设4阶方阵 $A=(\alpha,\gamma_2,\gamma_3,\gamma_4),\,B=(\beta,\gamma_2,\gamma_3,\gamma_4)$,其中 $\alpha,\beta,\gamma_2,\gamma_3,\gamma_4$ 均为4维列向 量,且|A| = 4,|B| = 1,则 $|A + B| = _40$.

5. 设二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + (1 - k)x_3^2 + 2kx_1x_2 + 2x_1x_3$,则二次型f为 正 定时k的取值范围是 $-1 \le k \le 0$. 只算出 $-1 \le k \le 0$ 酌情给分

二、(15分)选择题:

1. 设A是2阶可逆方阵, 若 $|\lambda A| = 4|A|$, 则必有(D).

$$(A)\lambda = \pm 1,$$
 $(B)\lambda = 4,$ $(C)\lambda = \pm \sqrt{2},$ $(D)\lambda = \pm 2$

2. 矩阵A一个r级子式不为零, 且有一个r + 1级子式等于零, 则r(A)一定(A).

$$(A) > r$$
, $(B) < r$, $(C) = r$, $(D) = r + 1$.

- 3. 设A为n可逆方阵, λ 为A的一个特征值, 则A*的特征值之一是(B).
 - $(A) \lambda^{-1} |A|^n, \qquad (B) \lambda^{-1} |A|, \qquad (C) \lambda |A|, \qquad (D) \lambda |A|^n,.$
- 4. 已知 β_1, β_2 是非齐次方程组AX = b的两个不同的解, α_1, α_2 是齐次方程组AX = b0的基础解系, 设 k_1, k_2 为数域P中的任意数, 则AX = b的通解为(B).
 - (A) $k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 \beta_2}{2}$, (B) $k_1\alpha_1 + k_2(\alpha_1 \alpha_2) + \frac{\beta_1 + \beta_2}{2}$,
- - (C) $k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 \beta_2}{2}$, (D) $k_1\alpha_1 + k_2(\beta_1 \beta_2) + \frac{\beta_1 \beta_2}{2}$.
- 5. m阶可逆方阵P和n阶可逆方阵Q, 使得A = PBQ是A与B (C)的充分必要 条件.

- (A) 相似 (B) 合同 (C) 等价 (D) 正交相似
- 三、 (8分)计算行列式:

$$D = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 + 1 & x_2 + 1 & x_3 + 1 & \cdots & x_n + 1 \\ x_1^2 + x_1 & x_2^2 + x_2 & x_3^2 + x_3 & \cdots & x_n^2 + x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^{n-1} + x_1^{n-2} & x_2^{n-1} + x_2^{n-2} & x_3^{n-1} + x_3^{n-2} & \cdots & x_n^{n-1} + x_n^{n-2} \end{vmatrix}.$$

解

$$D = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{n-1} & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_{n-1}^2 & x_n^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1^{n-2} & x_2^{n-2} & x_3^{n-2} & \cdots & x_{n-1}^{n-2} & x_n^{n-2} \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_{n-1}^{n-1} & x_n^{n-1} \end{vmatrix}$$
 (+4/\frac{1}{1})

$$=\prod_{1 \le i \ne n} (x_i - x_j) \tag{+4}$$

四、(15分)实数λ取何值时,线性方程组:

$$\begin{cases} \lambda x_1 + x_2 + x_3 = -2, \\ x_1 + \lambda x_2 + x_3 = -2, \\ x_1 + x_2 + \lambda x_3 = -2. \end{cases}$$

无解?有唯一解?有无穷多个解?若有唯一解求出解;有无穷多个解时求出通解. 解

$$D = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda + 2 & 1 & 1 \\ \lambda + 2 & \lambda & 1 \\ \lambda + 2 & 1 & \lambda \end{vmatrix} = (\lambda + 2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix}$$

$$= (\lambda + 2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^{2} (\lambda + 2)$$

$$(+5\%)$$

(1) 当D≠0, 即 λ ≠1且 λ ≠-2时, 方程组有唯一解。

$$\mathbf{D}_1 = \begin{vmatrix} -2 & 1 & 1 \\ -2 & \lambda & 1 \\ -2 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} -2 & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = -2(\lambda - 1)^2, \ \ D_2 = \begin{vmatrix} \lambda & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = -2(\lambda - 1)^2$$

$$D_{3} = \begin{vmatrix} \lambda & 1 & -2 \\ 1 & \lambda & -2 \\ 1 & 1 & -2 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & -2 \end{vmatrix} = -2(\lambda - 1)^{2}, \quad \stackrel{\text{Planck}}{=} \begin{cases} x_{1} = \frac{D_{1}}{D} = \frac{-2}{\lambda + 2} \\ x_{2} = \frac{D_{2}}{D} = \frac{-2}{\lambda + 2} \\ x_{3} = \frac{D_{3}}{D} = \frac{-2}{\lambda + 2} \end{cases}$$

此时的唯一解是:
$$(x_1, x_2, x_3) = \left(\frac{-2}{\lambda + 2}, \frac{-2}{\lambda + 2}, \frac{-2}{\lambda + 2}\right)$$
 (+3分)

(2) 当 2=-2时,

$$\tilde{A} = \begin{pmatrix} -2 & 1 & 1 & | & -2 \\ 1 & -2 & 1 & | & -2 \\ 1 & 1 & -2 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & 1 & | & -2 \\ 1 & -2 & 1 & | & -2 \\ 1 & 1 & -2 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & -2 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & -6 \end{pmatrix}$$

$$r(A) < r(\tilde{A})$$
,此时方程组无解

(+3分)

(3) 当*λ*=**1**时,

$$\tilde{A} = \begin{pmatrix} 1 & 1 & 1 & | & -2 \\ 1 & 1 & 1 & | & -2 \\ 1 & 1 & 1 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & -2 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

 $r(A)=r(\tilde{A})=1<3$,此时方程组有无穷多个解。

由
$$\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = -2$$
, 得
$$\begin{cases} x_1 = -k_1 - k_2 - 2 \\ x_2 = k_1 \\ x_3 = k_2 \end{cases}$$
 通解为
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}, \quad k_1, k_2$$
是任意常数)第 3 页 共 6 页

五、 (15 分) 在 \mathbb{R}^3 中,求由基 ε_1 = (1,1,1), ε_2 = (1,1,-1), ε_3 = (1,-1,1)到 基 η_1 = (1,1,0), η_2 = (2,1,3), η_3 = (0,1,-1)的过渡矩阵,并求向量 ξ = (3,5,0)在基 η_1 , η_2 , η_3 下的坐标.

$$\left(\boldsymbol{\varepsilon}_{1}^{T} \quad \boldsymbol{\varepsilon}_{2}^{T} \quad \boldsymbol{\varepsilon}_{3}^{T} \mid \boldsymbol{\eta}_{1}^{T} \quad \boldsymbol{\eta}_{2}^{T} \quad \boldsymbol{\eta}_{3}^{T} \right) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 0 \\ 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 2 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

过渡矩阵
$$C = \begin{pmatrix} \frac{1}{2} & 2 & 0\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$
 (8分)

$$\diamondsuit \xi = x_1 \eta_1 + x_2 \eta_2 + x_3 \eta_3$$

$$\tilde{A} = (\eta_1^T, \eta_2^T, \eta_3^T \mid \xi^T) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 1 & 1 & 1 & 5 \\ 0 & 3 & -1 & 0 \end{pmatrix} \xrightarrow{\text{frinspars}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix} \tag{75}$$

得
$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 3$
 ξ 在 η_1 , η_2 , η_3 下的坐标是 $(1,1,3)$

此题有不同的计算方法

六、 (10分) 求过点(1,0,-1), 且平行于向量 $\alpha = 2i + j + k$ 和 $\beta = i - j$ 的平面方程.

$$\alpha \times \beta = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = \vec{i} + \vec{j} - 3\vec{k}$$

$$(+7\%)$$

平面的点法式方程:
$$(x-1)+(y-0)-3(z+1)=0$$

即: $x+y-3z-4=0$ (+3分)

七、
$$(15 分)$$
 设3阶实对称矩阵 $A = \begin{pmatrix} 3 & -2 & -4 \\ -2 & 6 & -2 \\ -4 & -2 & 3 \end{pmatrix}$

(1) 求矩阵A的特征值、特征向量; (2) 求正交矩阵T, 使得 $T^{-1}AT$ 为对角形.

$$|\lambda E - A| = \begin{vmatrix} \lambda - 3 & 2 & 4 \\ 2 & \lambda - 6 & 2 \\ 4 & 2 & \lambda - 3 \end{vmatrix} = (\lambda - 7)^2 (\lambda + 2) \stackrel{?}{=} 0$$
 (+5\(\frac{1}{2}\))

A的特征值: $\lambda = -2$, $\lambda = 7$ (2重)

対 $\lambda = -2$:

$$-2E - A = \begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 - 2x_2 = 0 \\ 2x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, 得对应\lambda = -2的特征向量 \alpha_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

$$7E - A = \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$2x_1 + x_2 + 2x_3 = 0 \quad \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 6 \\ -3 \end{pmatrix}, 得对应\lambda = 7的特征向量 \alpha_2 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ 6 \\ -3 \end{pmatrix}$$

《线性代数与解析几何》试卷 (A) 第 5 页 共 6 页

八、 $(7 \, f)$ 证明:与齐次线性方程组AX = 0的基础解系等价的线性无关的向量组仍然是该齐次线性方程组的基础解系.

证:设AX = 0的基础解系为 $\eta_1, \eta_2, \cdots, \eta_{n-r}$,其中r = r(A). 又设线性无关向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与 $\eta_1, \eta_2, \cdots, \eta_{n-r}$ 等价。

由于两个向量组均线性无关,所以s=n-r.

因为 α_1 , α_2 ,…, α_{n-r} 可由基础解系 η_1 , η_2 ,…, η_{n-r} 线性表示,因此 α_1 , α_2 ,…, α_{n-r} 每个向量都是AX=0的解。

对于AX=0 的任一解 η , η 可由 $\eta_1,\eta_2,\cdots,\eta_{n-r}$ 线性表示,而 $\eta_1,\eta_2,\cdots,\eta_{n-r}$ 可由 $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$ 线性表示,则 η 可由 $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$ 线性表示,而 $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$ 线性无关,所以由基础解系的定义知, $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$ 也是基础解系。