APLICACIONES DE LA PROGRAMACION LINEAL

DOCENTE: ING. WILBER MARLON ALVARADO MARTINEZ

El problema de transporte consiste en colocar de manera optima productos situados en las fabricas en varios destinos (Clientes, proveedor, distribuidor, consumidor final, etc.) con el objetivo de poder reducir costos o maximizar las ganancias

ORIGENES		SUMINISTRO			
URIGENES	1	2	3	 n	(OFERTA)
01	C11	C ₁₂	C ₁₃	 C _{1n}	S ₁
02	C21	C ₂₂	C23	 C _{2n}	S ₂
03	C31	C32	C33	 Сзп	S₃
Om	C _{m1}	C _{m2}	C _{m3}	 Cmn	Sm
DEMANDA	D ₁	D ₂	D3	 Dn	Total

Procedimiento para resolver el problema del transporte (Método de Vogel):

- Obtener las penalizaciones restando el menor costo de cada fila o columna de su inmediato superior
- 2. Seleccionar la fila o columna con mayor penalización y ubicar su menor costo
- 3. Obtener el menor valor entre la oferta y demanda en la intersección encontrada en el paso anterior y restarlo del otro.
- 4. Eliminar aquella fila o columna con menor oferta o demanda. Regresar al paso 1 hasta que ya no se pueda hacer mas reducciones.
- 5. Luego que se ha obtenido la primera solución básica
- 6. validar el resultado mediante la técnica de los signos (método del eslabón, paso secuencial)

Para evaluar los resultados asignar un signo positivo (+) a la celda vacía que se desea evaluar e ir asignando alternadamente con signos negativos o positivos a aquellas celdas llenas. Se debe tener en cuenta que en cada fila o columna debe tener un positivo y un negativo o viceversa (Nota: Este método se aplicara mejor cuando se analice los problemas de transporte a profundidad)

Caso Practico:

La empresa WA que produce robots tiene 4 plantas (A,B,C,D) en diferentes ciudades que se pueden suministrar 400, 900, 200 y 500 unidades al mes. Tres centros de consumo (X, Y, Z) requieren para su distribución 500, 700 y 800 unidades respectivamente. La compañía debe decidir cuantos robots enviara de cada planta a cada centro. Para esto tiene en cuenta el costo de transporte en miles de \$ por unidad que esta resumido en la siguiente tabla:

Centros Plantas	X	Y	Z	SUMINISTROS
Α	12	6	10	400
В	13	4	9	900
С	4	10	12	200
D	6	11	4	500
DEMANDA	500	700	800	2000

Se observa en el problema que esta balanceado en su oferta y demanda, ya que el numero producido de robots en la empresa es igual al numero requerido por los centros de consumo.

El objetivo de WA consiste en minimizar los costos de transporte de las maquinas a los centros de consumo.

Solución del caso practico, Aplicar el procedimiento

- 1. Obtener las penalizaciones restando el menor costo de cada fila o columna de su inmediato superior
- 2. Seleccionar la fila o columna con mayor penalización y ubicar su menor costo

Paso 1:

Centros Plantas	X	Y	Z	SUMINISTROS (Oferta)	Diferencia
Α	12	6	10	400	10 - 6 = 4
В	13	4	9	900	9 – 4 = 5
С	4	10	12	200	10 – 4 = 6
D	6	11	4	500	6 – 4 = 2
DEMANDA	500	700	800	2000	
Diferencia	6-4=2	6-4=2	9-4=5		

Paso 2:

Centros Plantas	Х	Υ	Z	SUMINISTROS (Oferta)	Diferencia
Α	12	6	10	400	10 - 6 = 4
В	13	4	9	900	9 – 4 = 5
С	4	10	12	200	10 – 4 = 6
D	6	11	4	500	6 – 4 = 2
DEMANDA	500	700	800	2000	
Diferencia	6-4=2	6-4=2	9-4=5		

Solución del caso practico, Aplicar el procedimiento

- Obtener las penalizaciones restando el menor costo de cada fila o columna de su inmediato superior
- 2. Seleccionar la fila o columna con mayor penalización y ubicar su menor costo

Paco 1			
	_	-	-
	a S	•	

Centros	×	Y	Z	SUMINISTROS (Oferta)	Diferencia
A	12	6	10	400	10 - 6 = 4
В	13	4	9	900	9 – 4 = 5
С	4	10	12	200	10 – 4 = 6
D	6	11	4	500	6 – 4 = 2
DEMANDA	500	700	800	2000	
Diferencia	6-4=2	6-4=2	9-4=5		

Paso 2

Centros	×	Y	Z	SUMINISTROS (Oferta)	Diferencia
Α	12	6	10	400	10 - 6 = 4
В	13	4	9	900	9 – 4 = 5
С	4	10	12	200	10 – 4 = 6
D	6	11	4	500	6 – 4 = 2
DEMANDA	500	700	800	2000	
Diferencia	6-4=2	6-4=2	9-4=5		

3. Obtener el menor valor entre la oferta y demanda en la intersección encontrada en el paso anterior y restarlo del otro.

El menor valor entre oferta y demanda: min(200,500) = 200 Luego la diferencia será: 500 – 200 = 300

Solución del caso practico, Aplicar el procedimiento

4. Eliminar aquella fila o columna con menor oferta o demanda. Regresar al paso 1 hasta que ya no se pueda hacer mas reducciones.

Se elimina la fila C por tener menor oferta igual a 200 y se regresa al paso 1:

Centros Plantas	Х	Υ	Z SUMINISTROS (Oferta)		Diferencia
Α	12	6	10	400	10 - 6 = 4
В	13	4	9	900	9 – 4 = 5
D	6	11	4	500	6 – 4 = 2
DEMANDA	300	700	800	1800	
Diferencia	12-6=6	6-4=2	9-4=5		

Hallando el mínimo: Min (500,300) = 300 , entonces, la diferencia = 500 – 300 = 200 y se elimina la columna X.

Centros Plantas	Υ	Z	SUMINISTROS (Oferta)	Diferencia
Α	6	10	400	10 - 6 = 4
В	4	9	900	9 – 4 = 5
D	11	4	200	11 – 4 = 7
DEMANDA	700	800	1500	
Diferencia	6-4=2	9-4=5		

Hallando el mínimo: Min (200,800) = 200, entonces, la diferencia = 800 - 200 = 600 y se elimina la fila D

Solución del caso practico, Aplicar el procedimiento

Centros Plantas	Υ	Z	SUMINISTROS (Oferta)	Diferencia
Α	6	10	400	10 - 6 = 4
В	4	9	900	9 – 4 = 5
DEMANDA	700	600	1300	
Diferencia	6-4=2	10-9=1		

Hallando el mínimo: Min (900,700) = 700, entonces, la diferencia = 900 - 700 = 200 y se elimina la columna Y.

Centros Plantas	Z	SUMINISTROS (Oferta)
Α	10	400
В	9	200
DEMANDA	600	600

Solución del caso practico, Aplicar el procedimiento

5. Luego que se ha obtenido la primera solución básica

Centros	×	Y	z	SUMINISTROS
	12	6	10	400
A		+	400-] 400
В	13	4	9	900
В		700-	200+] 900
С	4	10	12	200
	200] 200
D	6	11	4	500
	300		200] 500
DEMANDA	500	700	800	2000

RUTA	UNIDADES	COSTO	TOTAL (\$)
AZ	400	10	4000
BY	700	4	2800
BZ	200	9	1800
CX	200	4	800
DX	300	6	1800
DZ	200	4	800
Total	2000		12000