AR20

CODE: 20BST107 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, February-2022 CHEMISTRY

(Common to CE, EEE & ECE)

Time: 3 Hours Max M			
		Answer ONE Question from each Unit	
		All Questions Carry Equal Marks	
		All parts of the Question must be answered at one place	
		<u>UNIT-I</u>	
1.	a)	Define temporary and permanent hardness of water and mention which constituents	6M
		are responsible for it. How to determine permanent hardness in water by EDTA	
		method?	
	b)	One litre ground water sample having the following compositions in ppm units.	4M
		$Ca(HCO_3)_2 = 24.3$, $CaCl_2 = 16.6$, $MgSO_4 = 18$ and $NaCl = 5.85$. Calculate temporary	
		and permanent hardness of water	
_		(OR)	
2.	a)	Explain the procedure for getting of softening water by ion exchange process. List out	6M
	• `	any two advantages of this method compared to zeolite method	43.5
	b)	Discuss briefly any four disadvantages of hard water	4M
2	,	<u>UNIT-II</u>	43.6
3.	a)	What is spectroscopy and electronic transition?	4M
	b)	Explain various types of stretching and bending vibrations in IR spectroscopy.	6M
4	۵)	(OR) What is the weathing main sinks involved in NMP anestroscopy and what is an	4М
4.	a)	What is the working principle involved in NMR spectroscopy and what is an equivalent proton?	4M
	b)	Explain the terms Chemical shift and Coupling constant.	6M
	U)	UNIT-III	OIVI
5.	a)	List out any four differences between thermoplastics and thermosetting plastics	4M
5.	b)	Suggest and explain best moulding method in the fabrication of plastic sitting chair	6M
	U)	(OR)	0111
6.	a)	Write about the preparation, properties and engineering applications of PVC polymer	6M
	b)	Define polymer and polymerization. List out any four advantages of polymers over	4M
	,	metals and alloys	
		<u>UNIT-IV</u>	
7.	a)	Explain the reaction and mechanism of Claisen rearrangement.	6M
	b)	Explain SN ¹ mechanism with example	4M
		(OR)	
8.	a)	Explain the reaction and mechanism of Pinacol Pinacolone rearrangement	6M
	b)	Explain SN^2 mechanism with example	4M
		<u>UNIT-V</u>	
9.	a)	Suggest and explain suitable corrosion mechanism, if an Iron rod is continuously	6M
	1.	exposed to sea water	43.6
	b)	How the factors like nature of oxide and solubility of corrosion products to influence	4M
		the rate of corrosion in metals?	
10	۵)	(OR) Which metallic coating is good in the aspect of prevention of corrosion on metallic	4M
10.	a)	surface? Justify your answer	4111
	b)	Explain in detail how the underground Iron pipe line is protected against corrosion	6M
	U)	UNIT-VI	OIVI
11.	a)	Write any six principles followed in green chemistry	6M
11.	b)	Write any four differences between primary and secondary batteries	4M
	٠,	(OR)	.111
12.	a)	Explain the construction and working of led acid battery with discharging and	6M
	,	charging reactions	

1 of 1

4M

Explain briefly how the solar energy is convert into electrical energy

b)

AR20

CODE: 20BST106 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, February-2022

ENGINEERING PHYSICS (ME Branch)

Time: 3	Ноп	(ME DIANCH) Mov Mork	Iax Marks: 60	
Fime: 3 Hours		Answer ONE Question from each Unit		
		All Questions Carry Equal Marks		
		All parts of the Question must be answered at one place		
		•		
	,	<u>UNIT-I</u>	53.f	
1.	a)	What are the characteristics of Simple Harmonic Oscillator?	5M	
	b)	Derive Differential Equation of Wave Motion	5M	
2	۵)	(OR)	6M	
2.	a)	What are forced oscillations? Obtain an expression for the amplitude of forced oscillations.	6M	
	b)	Explain resonance and quality factor.	4M	
	0)	UNIT-II	1171	
3.	a)	What is the interference of light waves?	2M	
	b)	With ray diagram discuss the theory of thin films and the condition for constructive	8M	
		and destructive interference in the case of reflected system.		
		(OR)		
4.	a)	What are the difference between interference and diffraction?	3M	
	b)	Obtain the condition for primary maximum, Secondary minima and maxima in	7M	
		Fraunhofer diffraction due to single slit.		
5.	۵)	With the help of suitable diagrams, explain the principle, construction and working of	8M	
5.	a)	a Ruby laser.	OIVI	
	b)	Mansion Merits and demerits of Ruby laser	2M	
	- /	(OR)		
6.	a)	Describe the Principle of Laser. Explain the characteristics of a Laser beam.	5M	
	b)	Mention the applications of Laser each in the field of scientific research, industry and medicine.	5M	
		UNIT-IV		
7.	a)	Write differences between Step Index & Graded index optical fibers.	5M	
	b)	Differences between Single Mode Fibers and Multimode Fibers	5M	
0		(OR)	->-	
8.	a)	Derive an expression for acceptance angle for an optical fiber.	7M	
	b)	Calculate the numerical aperture and acceptance angle for an optical fiber with core and cladding refractive indices being 1.48 and 1.45 respectively.	3M	
		and cladding refractive indices being 1.48 and 1.43 respectivery.		
		UNIT-V		
9.	a)	Define Unit cell	2M	
	b)	Show that FCC is closely packed than SC, BCC by working out the packing factors. (OR)	8M	
10.	a)	Explain the terms,(i)Free Volume (ii)Lattice Parameters (iii)Unit Cell and (iv) Primitive Cell	8M	
	b)	Give pacing Packing Fraction values for SC, BCC & FCC	2M	
11.	۵)	<u>UNIT-VI</u> Write the properties of Anti ferro and ferri magnetic materials	5M	
11.	a) b)	Differentiate the Soft and Hard Magnetic Materials	5M	
	0)	(OR)	J1 V1	
12.	a)	Explain the Meissner Effect	4M	
	b)	Distinguish between Type-I & Type-II Superconductors	6M	
		- *		

AR20

CODE: 20BST105 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, February-2022

APPLIED PHYSICS (Common to CSE & IT)

Time: 3 Hours

Answer ONE Question from each Unit

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

		UNIT-I				
1.	a)	Derive an expression for condition of maximum and minima for reflected light in	7M			
		case of thin transparent film of uniform thickness				
	b)	A parallel beam of light (λ =5890Å), is incident on a glass plate (μ =1.50) such that angle of refraction into plate is 60°. Calculate the smallest thickness of the plate which will make it appear dark by reflection (OR)	3M			
2.		Obtain the condition for primary maxima in Fraunhofer diffraction due to single slit and derive an expression for width of the central maxima	10M			
		<u>UNIT-II</u>				
3.	a)	Describe the construction and working of Ruby Laser	7M			
	b)	Write the merits and demerits of Ruby Laser (OR)	3M			
4.	a)	Distinguish between Spontaneous and stimulated emissions	5M			
	b)	Explain the characteristics of Laser beam	5M			
		<u>UNIT-III</u>				
5.	a)	With a neat diagram, explain the structure of an optical fiber.	4M			
	b)	Comment on single mode and multimode fibres.	6M			
_		(OR)				
6.	a)	Explain the principal of optical fiber as a wave guide for light. Using ray	6M			
		theory, derive the condition for transmission of light with in optical fiber	43.5			
	b)	Mention Advantages of optical fibers	4M			
7	,	UNIT-IV	43.6			
7.	a)	Define Wave Function? What are the limitations?	4M			
	b)	Derive the time dependent Schrodinger wave equation.	6M			
		(OR)	403.5			
8.		Show that the energies of a particle in a potential box are quantized	10M			
0	,	<u>UNIT-V</u>	23.5			
9.	a)	State and explain Lenz's law in electrostatics	2M			
	b)	Derive an expression for electric field in a vacuum from appropriate Maxwell equations	8M			
10	(۵	(OR) Define electric field intensity. With the application of Course law obtain on	714			
10.	. a)	Define electric field intensity. With the application of Gauss law obtain an expression for electric field intensity at a point which is at a distance 'R' from a	7M			
		point charge Q.				
	b)	State and explain Biot-Savart law.	3M			
	b)	UNIT-VI	3111			
11.	a)	What do you understand by drift and diffusion currents in the case of a	6M			
11,	<i>a)</i>	semiconductor?	01 V1			
	b)	Deduce Einstein's Relations.	4M			
		(OR)				
12.		What is Hall Effect? Obtain an expression for Hall voltage and Hall coefficient.	10M			