Álgebra Linear

SISTEMAS LINEARES Aulas 2 e 3

Revisão da aula anterior

1. Considere o sistema de equações lineares
$$\begin{cases} x_1 + 3x_2 - 2x_3 + 2x_5 = 0 \\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1 \\ 5x_3 + 10x_4 + 15x_6 = 5 \\ 2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6 \end{cases}.$$

- a. Escreva este sistema na forma matricial AX = B
- b. Verifique se $X = \begin{bmatrix} 2 \\ 0 \\ 2 \\ -1 \\ 1 \\ \frac{1}{3} \end{bmatrix}$ é uma solução deste sistema.
 - 2. Indique as equações de um sistema linear não-homogêneo, onde $\begin{bmatrix} 2 & 5 \ -3 & 7 \end{bmatrix}$ é a matriz dos coeficientes
- a. $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ é a matriz dos termos independentes.
- b. $\begin{bmatrix} -3 \\ 12 \end{bmatrix}$ é uma solução deste sistema

Resumo: Soluções

Possível: Quando admite solução

Sistema linear

Impossível: Quando não admite solução

Odeterminado: admite uma única solução

Indeterminado: admite infinitas soluções

Resolvendo um sistema de equações lineares

Qual sistema é mais fácil de resolver algebricamente?

$$\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$$
 ou
$$\begin{cases} x - 2y + 3z = 9 \\ y + 3z = 5 \\ z = 2 \end{cases}$$

- □ O sistema da direita é claramente mais fácil de resolver. Esse sistema está na forma escalonada por linhas, o que significa que ele está em um padrão "degraus de escada" com coeficientes principais iguais a 1.
- Note que ambos os sistemas admitem a mesma solução: x = 1, y = -1 e z = 2. Tais sistemas são chamados de sistemas equivalentes, pois admitem a mesma solução.
- Para resolver um sistema que não esteja na forma escalonada por linhas, primeiro o reescreva como um sistema equivalente que esteja na forma escalonada por linhas usando as operações elementares com as linhas de uma matriz.

Operações elementares

Operações Elementares sobre as linhas de uma matriz é uma das três operações:

- 1. Trocar a posição de duas linhas da matriz $(L_r \leftrightarrow L_s)$;
- 2. Multiplicar uma linha da matriz por um escalar diferente de zero $(L_r \leftarrow kL_s)$, $k \in \mathbb{R}^*$;
- 3. Somar a uma linha da matriz um múltiplo escalar de outra linha $(L_r \leftarrow L_r + kL_s)$.

Teorema (Sistemas Equivalentes): Se dois sistemas lineares AX = B e CX = D, são tais que a matriz aumentada [C|D] é obtida de [A|B] apliando-se uma operação elementar, então os dois sistemas possuem as mesmas soluções.

Exemplo: usando operações elementares para resolver um sistema

Matriz ampliada associada Sistema linear $\begin{cases} x - 2y + 3z = 9 \\ -x + 3y = -4 \\ 2x - 5y + 5z = 17 \end{cases}$ $\begin{pmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & 5 & 5 & 17 \end{pmatrix}$ Some a 1^a eq. à 2^a eq.: $\begin{cases} x - 2y + 3z = 9 \\ y + 3z = 5 \\ 2x - 5y + 5z = 17 \end{cases}$ $L_2 \leftarrow L_2 + L_1 \begin{pmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 2 & 5 & 5 & 17 \end{pmatrix}$ Some a 1ª eq. Multiplicada por -2 à 3ª eq.: $\begin{cases} x - 2y + 3z = 9 \\ y + 3z = 5 \\ -y - z = -1 \end{cases}$ $L_3 \leftarrow L_3 - 2L_1 \begin{pmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 1 & 3 & 5 \end{pmatrix}$ Some a 2 eq. À $3^{\underline{a}}$ eq.: $\begin{cases} x - 2y + 3z = 9 \\ y + 3z = 5 \\ 2z = 4 \end{cases}$ $L_3 \leftarrow L_3 + L_2 \begin{pmatrix} 1 & -2 & 3 & 5 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{pmatrix}$ Multiplique a 3ª linha por ½: $\begin{cases} x - 2y + 3z = 9 \\ y + 3z = 5 \end{cases}$ $L_3 \leftarrow \frac{1}{2}L_3$ $\begin{pmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 3 & 5 \end{pmatrix}$

z = 2Substituindo z=2 na 2ª eq, obtém-se y=-1. Da 1ª eq. Obtém-se x=1. A últim

A última matriz está na forma escalonada por linhas

Matriz escalonada por linhas

Matriz escalonada por linhas: Uma matriz $m \times n$ na forma escalonada por linhas tem as propriedades abaixo:

- a) Toda linha nula ocorre abaixo de todas as linhas não nulas.
- b) O primeiro elemento não nulo de uma linha não nula é 1. Chamamos este número de pivô.
- c) Para duas linhas sucessivas (diferentes de zero), o 1 pivô na linha mais acima, está mais à esquerda do que o 1 pivô na linha inferior.
- Uma matriz na forma escalonada por linhas está na forma escalonada reduzida (forma escada) quando cada coluna que contêm um 1 pivô tem zeros em todas as posições acima e abaixo de seu 1 pivô.

Ex.:
$$\begin{pmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Exemplo: forma escalonada por linhas

Determine se cada matriz está na forma escalonada por linhas. Se for o caso, determine também se a matriz está na forma escada.

$$a. \ A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$b. \ B = \begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

c.
$$C = \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 2 & -4 \end{bmatrix}$$

$$d. D = \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix}$$

e.
$$E = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$f. F = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Método da Eliminação de Gauss

- □ O Método para reescrever um sistema de equações na forma escalonada por linhas utilizando as operações elementares é chamada do método da eliminação de Gauss, em homenagem ao matemático alemão Carl-Friedrich Gauss (1777-1855). Popularmente, este método também é chamado de método do escalonamento.
- ☐ Resumo do método:
 - ✓ Escreva a matriz ampliada do sistema
 - ✓ Utilize as operações elementares com as linhas da matriz ampliada até chegar na matriz escalonada por linhas
 - ✓ Escreva o sistema correspondente e utilize a substituição regressiva para encontrar a solução

Observação: para esse algoritmo, a ordem no qual executa as operações é importante. Opere da esquerda para à direita por colunas, usando as operações elementares para obter zero em todos os elementos abaixo dos pivôs.

Exemplos:

1. Utilize o método da eliminação de Gauss para encontrar a solução dos sistemas abaixo, se possível:

a)
$$\begin{cases} x + 2y - z + 2t = 1 \\ -x - 2y + 2z - t = 1 \\ 2x - z - t = 0 \end{cases}$$

b)
$$\begin{cases} x + y + z = 2 \\ 2x - y - z = 0 \\ -2x + 2y + 2z = 1 \end{cases}$$

c)
$$\begin{cases} 2x - 4y + 3z = -16 \\ -3x + 3y - 6z = 15 \\ 5x + y + 7z = 5 \end{cases}$$

Posto e nulidade de uma matriz

Definição 1: Dada uma matriz A de ordem $m \times n$, o posto da matriz, P(A), é definido pelo número de linhas não nulas da matriz reduzida de A à forma escalonada por linhas .

Definição 2: Dada uma matriz A de ordem $m \times n$, a nulidade da matriz, nul(A), é dada pela diferença entre o número de colunas e o seu posto.

$$nul(A) = n - P(A)$$

Caracterização das soluções de um sistema linear do tipo AX=B

Seja o sistema linear de m equações e n incógnitas AX = B. O sistema pode ser:

- a. Possível, se possui solução. Neste caso P(A) = P(A|B)
 - \triangleright Determinado: quando a solução é única. Neste caso P(A) = n.
 - \blacktriangleright Indeterminado: quando há infinitas soluções. Neste caso P(A) < n

b. Impossível, se não possui solução. Neste caso P(A) < P(A|B)

<u>Definição 3</u>. Considere o sistema linear indeterminado AX = B, com A de ordem $m \times n$. O grau de liberdade do sistema é definido por g = n - P(A) (que é o número de variáveis livres)

Exemplos:

- 2. Determine **todos** os valores de a (se existe) de forma que o sistema $\begin{cases} ax + y + z = 1 \\ x + ay + z = 1 \\ x + y + az = 1 \end{cases}$
- i) admita apenas uma solução. Exiba a solução.
- ii) admita infinitas soluções. Exiba duas soluções
- iii) não admita solução
- 3. Considere as matrizes

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -4 & 8 & -5 \\ 2 & -4 & k \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} e B = \begin{bmatrix} 1 \\ k-1 \\ -4 \end{bmatrix}$$

onde $k \in \Re$. Determine, se possível, o(s) valor(es) de k para os quais o sistema AX = B se torna:

i) impossível

ii) possível e indeterminado

iii) possível e determinado

Sistemas homogêneos de equações lineares: AX=0

Um sistema homogêneo tem a forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

e sempre tem solução, pois sempre admite a solução $x_1 = 0, x_2 = 0, \dots, x_n = 0$. Essa solução é denominada **solução trivial** ou **solução nula**; quaisquer outras soluções são ditas **não triviais**.

Exemplos:

a)
$$\begin{cases} 2x - y - 3z = 0 \\ -x + 2y - 3z = 0 \\ x + y + 4z = 0 \end{cases}$$

b)
$$\begin{cases} 2x + y - z = 0 \\ x - 2y - 8z = 0 \\ -4x - 7y - 13z = 0 \\ 6x + 8y + 12z = 0 \end{cases}$$

Exercícios de verificação da teoria:

1. Considere o sistema
$$\begin{cases} x - y + 3z = 0 \\ 2x + y + 3z = 0 \end{cases}$$

a. Verifique que
$$X_1=\begin{bmatrix} -2\\1\\1\\1\end{bmatrix}$$
 e $X_2=\begin{bmatrix} 6\\-3\\-3\\-3\end{bmatrix}$ são soluções deste sistema. b. Verifique se $X_3=-3X_1+5X_2$ é solução do sistema acima

- b. Verifique se $X_3 = -3X_1 + 5X_2$ é solução do sistema acima
- 2. VAMOS GENERALIZAR OS ACHADO DO EXERCÍCIO ANTERIOR: Dado um sistema homogêneo AX = 0, com solução diferente da trivial, mostre que se X_1 e X_2 são duas das suas soluções, então qualquer combinação destas soluções, $\alpha X_1 + \beta X_2$ ($\alpha, \beta \in \mathbb{R}$) também é solução do sistema.
- 3. Se AX = 0 é um sistema de 4 equações e 7 incógnitas, o que pode ser dito em relação ao conjunto solução? (Faça considerações em termos do posto e da nulidade)
- 4. Indique se a afirmação é verdadeira ou falsa. Justifique sua resposta usando argumentos relacionados ao posto e a nulidade.
 - a) Se o sistema AX = B tem infinitas soluções, então o sistema AX = 0 também tem infinitas soluções.
 - b) Se o sistemaAX = B é inconsistente, então o sistema AX = 0 possui somente a solução trivial.