Mathematics Methods for Computer Science

_. _ .

First-Order Approximations

Quasi-Newton

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Willitivariable Roo

First-Order Approximations

Quasi-Newton

Lecture

Nonlinear Systems II: Multiple Variables

Today's Root-Finding Problems

Multivariable Roots

First-Order Approximations

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

One "Easy" Instance

Multivariable Roots

First-Order Approximations

$$f(\vec{x}) = A\vec{x} - \vec{b}$$

Usual Assumption

Multivariable Roots

First-Order Approximations

Quasi-Newtor

For
$$f:\mathbb{R}^n \to \mathbb{R}^m$$
, assume

$$n \geq m$$
.

Examples (whiteboard)

Common Examples

Multivariable Roots

First-Order Approximations

Quasi-Newton

On whiteboard:

- Implicit integration (n = m)
- Projecting onto constraints (n > m)E.g., Robotics (inverse kinematics)

Jacobian

Multivariable Roots

First-Order Approximations

Quasi-Newton

$$(Df)_{ij} \equiv \frac{\partial f_i}{\partial x_j}$$

对于多变量问题,使用上述雅各比矩阵的形式表示各个导数

First-Order Approximations

Quasi-Newton

$$(Df)_{ij} \equiv \frac{\partial f_i}{\partial x_j}$$

How big is Df for $f: \mathbb{R}^n \to \mathbb{R}^m$?

First-Order Approximation of $f: \mathbb{R}^n \to \mathbb{R}^n$

Multivariable Roots

First-Order Approximations

$$f(\vec{x}) \approx f(\vec{x}_k) + \frac{Df(\vec{x}_k)}{(\vec{x} - \vec{x}_k)}$$

First-Order Approximations

Quasi-Newton

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

Newton's Method:

$$\vec{x}_{k+1} = \vec{x}_k - [Df(\vec{x}_k)]^{-1} f(\vec{x}_k)$$

First-Order Approximation of $f: \mathbb{R}^n \to \mathbb{R}^n$

Multivariable Roots

First-Order Approximations

Quasi-Newton

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

Newton's Method:

$$\vec{x}_{k+1} = \vec{x}_k - [Df(\vec{x}_k)]^{-1} f(\vec{x}_k)$$

Review: Do we explicitly compute $[Df(\vec{x}_k)]^{-1}$

First-Order Approximations

- $x_{k+1} = g(\vec{x}_k)$ converges when the maximum-magnitude eigenvalue of Dg is less than 1 (当最大的特征值<1时收敛)
- Extend observations about (quadratic) convergence in multiple dimensions

First-Order
Approximations

- Differentiation is hard
- $Df(\vec{x}_k)$ changes every iteration

Extend Secant Method?

Multivariable Roots

Approximations

 ${\sf Quasi-Newton}$

Extend Secant Method?

Multivariable Roots

First-Order Approximations

Quasi-Newton

Direct extensions are **not obvious**!

Observation: Directional Derivative

(方向导数)

First-Order

$$D_{\vec{v}}f = Df \cdot \vec{v}$$

Secant-Like Approximation

Multivariable Roots

First-Order Approximations

$$J \cdot (\vec{x}_k - \vec{x}_{k-1})$$

$$\approx f(\vec{x}_k) - f(\vec{x}_{k-1})$$
where $J \approx Df(\vec{x}_k)$

First-Order
Approximations

$$J \cdot (\vec{x}_k - \vec{x}_{k-1})$$

$$\approx f(\vec{x}_k) - f(\vec{x}_{k-1})$$
 where $J \approx Df(\vec{x}_k)$ "Broyden's Method"

Broyden's Method: Outline

Multivariable Roots

First-Order Approximations

- Maintain current iterate \vec{x}_k and approximation J_k of Jacobian near \vec{x}_k
- Update \vec{x}_k using Newton-like step
- Update J_k using secant-like formula

Deriving the Broyden Step

Multivariable Roots

First-Order Approximations

$$\begin{split} & \underset{\mathsf{Fro}}{\operatorname{minimize}_{J_k}} \left\| J_k - J_{k-1} \right\|_{\mathsf{Fro}}^2 \\ & \mathsf{such that } J_k \cdot (\vec{x}_k - \vec{x}_{k-1}) = f\left(\vec{x}_k\right) - f\left(\vec{x}_{k-1}\right) \end{split}$$

Deriving the Broyden Step

Multivariable Roots

First-Order Approximations

Quasi-Newton

$$\begin{aligned} & \text{minimize}_{J_k} \left\| J_k - J_{k-1} \right\|_{\text{Fro}}^2 \\ & \text{such that } J_k \cdot (\vec{x}_k - \vec{x}_{k-1}) = f\left(\vec{x}_k\right) - f\left(\vec{x}_{k-1}\right) \\ & J_k = J_{k-1} + \frac{(f\left(\vec{x}_k\right) - f\left(\vec{x}_{k-1}\right) - J_{k-1} \cdot \Delta \vec{x})}{\left\|\vec{x}_k - \vec{x}_{k-1}\right\|_2^2} (\Delta \vec{x})^\top \end{aligned}$$

(使用上面的式子对J_k进行更新)

The Newton Step

Multivariable Roots

First-Order
Approximations

$$\vec{x}_{k+1} = \vec{x}_k - J_k^{-1} f(\vec{x}_k)$$