1 Experiment No. 2

2 Experiment Title

3 Objective

The objectives of this lab are as follows:

- content...
- 4 Theory
- 5 Required Apparatus
- 6 Circuit Diagram

7 Data Table

No of Obs.	Voltmeter Reading in Volts (V)	Ammeter Reading in Ampere (A)	Wattmeter Reading in Watt (W)	Resistance $R = rac{W}{I^2} \ (\Omega)$	Impedance $Z = rac{V}{I} \ (\Omega)$	Reactance $X_L = \sqrt{Z^2 - R^2} \ (\Omega)$	Inductar $L = \frac{X}{2\pi}$ (H)
1.	100	0.2	2	50	502	499.5	1.589
1.	100 150	0.2 0.45	2 4.4	50 21.72	502 333.33	499.5 332.6	1.589 1.058

8 Calculations

The following calculations were performed for each observation to determine the electrical parameters: Resistance (R), Impedance (Z), Reactance (X_L) , and Inductance (L). The frequency of the circuit was maintained at $f=50\,\mathrm{Hz}$.

1. For
$$V=100\,\mathrm{V}$$
 , $I=0.2\,\mathrm{A}$, $W=2\,\mathrm{W}$ and $f=50\,\mathrm{Hz}$

(a)
$$X_L = \sqrt{Z^2 - R^2} = \sqrt{500^2 - 50^2} = \sqrt{250000 - 2500} = \sqrt{247500} \approx 497.5 \,\Omega$$

(b)
$$L = \frac{X_L}{2\pi f} = \frac{497.5 \,\Omega}{2\pi \times 50 \,\mathrm{Hz}} \approx \frac{497.5}{314.16} \approx 1.585 \,\mathrm{H}$$

2. for $V=150\,\mathrm{V}$, $I=0.45\,\mathrm{A}$ $W=4.4\,\mathrm{W}$ and $f=50\,\mathrm{Hz}$

(a)
$$X_L = \sqrt{Z^2 - R^2} = \sqrt{333.33^2 - 21.72^2} \approx \sqrt{110639.33} \approx 332.6 \,\Omega$$

(b)
$$L = \frac{X_L}{2\pi f} = \frac{332.6\,\Omega}{2\pi\times50\,\mathrm{Hz}} \approx \frac{332.6}{314.16} \approx 1.058\,\mathrm{H}$$

3. For $V=200\,\mathrm{V}$, $I=0.625\,\mathrm{A}$, $W=7\,\mathrm{W}$ and $f=50\,\mathrm{Hz}$

(a)
$$X_L = \sqrt{Z^2 - R^2} = \sqrt{320^2 - 17.92^2} \approx \sqrt{102078.8736} \approx 319.49 \,\Omega$$

(b)
$$L = \frac{X_L}{2\pi f} = \frac{319.49\,\Omega}{2\pi\times 50\,\mathrm{Hz}} \approx \frac{319.49}{314.16} \approx 1.017\,\mathrm{H}$$

8.0.1 Average Inductance

$$\bar{L} = \frac{L_1 + L_2 + L_3}{3} = \frac{1.585 \,\mathrm{H} + 1.058 \,\mathrm{H} + 1.017 \,\mathrm{H}}{3} = \frac{3.66 \,\mathrm{H}}{3} = 1.22 \,\mathrm{H}$$

9 Result

The average inductance is approximately $\bar{L}=1.22\,\mathrm{H}.$

9.1 Discussion

$$R=rac{W}{I^2}(\Omega)$$

$$Z = \frac{V}{I}(\Omega)$$

$$Z = \sqrt{X^2 - R^2}$$

$$L=rac{X}{2\pi f}(H)$$