### CSC 211: Computer Programming

Number Systems, Further look into DataTypes

### Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Spring 2023



Original design and development by Dr. Marco Alvarez

# Administrative Notes

### Administrative notes

- A01 due 02/05
- MC01 due 02/03

Number Systems

3

## Number systems

- A way to represent numbers
  - √ numbers are expressed in a certain base
- Why study number systems in CS?
  - ' to understand data representation
- Examples of number systems
  - √ binary
  - √ decimal
  - √ octal
  - √ hexadecimal

## Positional number systems

assuming base **b**:

$$\dots d_2b^2 + d_1b^1 + d_0b^0 + d_{-1}b^{-1} + d_{-2}b^{-2}\dots$$

$$43.23 = 4 \cdot 10^{1} + 3 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$$

6

# Decimal number system

- Base 10
- Symbols

0123456789

$$456 = 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0$$

# Binary number system

- Base 2
- · Symbols

0 1

Most Significant Bit Least Significant Bit

$$1010 = (1 \cdot 2^3) + (0 \cdot 2^2) + (1 \cdot 2^1) + (0 \cdot 2^0)$$



## Binary to Decimal?

100101000

| 20 | 21 | 22 | 23 | 24 | 2 <sup>5</sup> | 2 <sup>6</sup> | 27  | 28  |
|----|----|----|----|----|----------------|----------------|-----|-----|
| 1  | 2  | 4  | 8  | 16 | 32             | 64             | 128 | 256 |

Try these ..

What is a **bit**? What is a **byte**?

10

Our World in Data

# Bits and computers

- · A bit can only have two values (states)
  - ✓ easy to embed into physical devices
- **Transistor** 
  - processors have billions of transistors
  - √ transistors can be switched **on** and **off**



# Moore's Law — The number of transistors on integrated circuit chips (1971-2018) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are linked to Moore's law. 50,000,000,000 Traccore Moor Pix County 2000 — OCC PIV 1994 — OCC P



Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor\_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this to

Licensed under CC-BY-SA by the author Max Roser

### Decimal to other bases

- Repeatedly divide by base
  - √ collect remainders
  - ✓ output in reverse order

57<sub>10</sub>

```
57 / 2 = 28 R 1

28 / 2 = 14 R 0

14 / 2 = 7 R 0

7 / 2 = 3 R 1

3 / 2 = 1 R 1

1 / 2 = 0 R 1
```

111001<sub>2</sub>

## Hexadecimal number system

- Base 16
- Symbols

0123456789ABCDEF

$$4A1C = (4 \cdot 16^3) + (10 \cdot 16^2) + (1 \cdot 16^1) + (12 \cdot 16^0)$$

### Hexadecimal to decimal

1 D Bx16

A 0 1 0 F

# Binary to hexadecimal

| Hex | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | Α    | В    | С    | D    | E    | F    |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Bin | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| Dec | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| 0ct | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   |

10011101 11010011 1111111

Humans think in base 10. Computers think in base 2. Humans use base 16 to easily manipulate data in base 2.

### Color codes

#### Shades of yellow color chart

| Color | HTML / CSS<br>Color Name | Hex Code<br>#RRGGBB | Decimal Code<br>(R,G,B) |
|-------|--------------------------|---------------------|-------------------------|
|       | lightyellow              | #FFFFE0             | rgb(255,255,224)        |
|       | lemonchiffon             | #FFFACD             | rgb(255,250,205)        |
|       | lightgoldenrodyellow     | #FAFAD2             | rgb(250,250,210)        |
|       | papayawhip               | #FFEFD5             | rgb(255,239,213)        |
|       | moccasin                 | #FFE4B5             | rgb(255,228,181)        |
|       | peachpuff                | #FFDAB9             | rgb(255,218,185)        |
|       | palegoldenrod            | #EEE8AA             | rgb(238,232,170)        |
|       | khaki                    | #F0E68C             | rgb(240,230,140)        |
|       | darkkhaki                | #BDB76B             | rgb(189,183,107)        |
|       | yellow                   | #FFFF00             | rgb(255,255,0)          |
|       | olive                    | #808000             | rgb(128,128,0)          |
|       | greenyellow              | #ADFF2F             | rgb(173,255,47)         |
|       | yellowgreen              | #9ACD32             | rgb(154,205,50)         |

What is the color code of 'greenyellow' in **binary**?

https://www.rapidtables.com/web/color/Yellow\_Color.html

# Forensic Analysis



31 oct = 25 dec?

Going back to C++ ...

19

# Integer literals in C++

```
int d = 42;
int o = 052;
int x = 0x2a;
int X = 0X2A;
int b = 0b101010; // C++14
```

- decimal-literal is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- octal-literal is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3, 4, 5, 6, 7)
- hex-literal is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F)
- **binary-literal** is the character sequence **0b** or the character sequence **0B** followed by one or more binary digits (0, 1)

https://en.cppreference.com/w/cpp/language/integer\_literal

|  | _ | п |
|--|---|---|

| DISPLAY 2.2 Some Number Types |   |      |        |      |     |    |       |  |
|-------------------------------|---|------|--------|------|-----|----|-------|--|
|                               | S | Type | Number | Some | 2 2 | ΔΥ | DTSPL |  |

| Type Name                           | Memory Used | Size Range                                                 | Precision Precision |
|-------------------------------------|-------------|------------------------------------------------------------|---------------------|
| short (also<br>called short<br>int) | 2 bytes     | -32,768 to 32,767                                          | (not applicable)    |
| int                                 | 4 bytes     | -2,147,483,648 to 2,147,483,647                            | (not applicable)    |
| long (also called long int)         | 4 bytes     | -2,147,483,648 to 2,147,483,647                            | (not applicable)    |
| float                               | 4 bytes     | approximately<br>10 <sup>-38</sup> to 10 <sup>38</sup>     | 7 digits            |
| doub1e                              | 8 bytes     | approximately<br>10 <sup>-308</sup> to 10 <sup>308</sup>   | 15 digits           |
| long double                         | 10 bytes    | approximately<br>10 <sup>-4932</sup> to 10 <sup>4932</sup> | 19 digits           |

These are only sample values to give you a general idea of how the types differ. The values for any of these entries may be different on your system. Precision refers to the number of meaningful digits, including digits in front of the decimal point. The ranges for the types float, double, and long double are the ranges for positive numbers. Negative numbers have a similar range, but with a negative sign in front of each number.

from: Problem Solving with C++, 10th Edition, Walter Savitch

22

| Tuno              | Size in | Format         | Value range                                                                                                                                                                                                                         |                                                                                                                                             |  |  |  |
|-------------------|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Туре              | bits    | Format         | Approximate                                                                                                                                                                                                                         | Exact                                                                                                                                       |  |  |  |
|                   | 8       | signed         |                                                                                                                                                                                                                                     | -128 to 127                                                                                                                                 |  |  |  |
| character         | 8       | unsigned       |                                                                                                                                                                                                                                     | <b>0</b> to <b>255</b>                                                                                                                      |  |  |  |
| cnaracter         | 16      | unsigned       |                                                                                                                                                                                                                                     | <b>0</b> to <b>65535</b>                                                                                                                    |  |  |  |
|                   | 32      | unsigned       |                                                                                                                                                                                                                                     | <b>0</b> to <b>1114111</b> ( <b>0x10</b> ffff)                                                                                              |  |  |  |
|                   | 16      | signed         | ± 3.27 · 10 <sup>4</sup>                                                                                                                                                                                                            | -32768 to 32767                                                                                                                             |  |  |  |
| integer           | 10      | unsigned       | 0 to 6.55 · 10 <sup>4</sup>                                                                                                                                                                                                         | <b>0</b> to <b>65535</b>                                                                                                                    |  |  |  |
|                   | 32      | signed         | ± 2.14 · 10 <sup>9</sup>                                                                                                                                                                                                            | -2,147,483,648 to 2,147,483,647                                                                                                             |  |  |  |
|                   |         | unsigned       | <b>0</b> to <b>4.29</b> · <b>10</b> <sup>9</sup>                                                                                                                                                                                    | 0 to 4,294,967,295                                                                                                                          |  |  |  |
|                   | 64      | signed         | ± 9.22 · 10 <sup>18</sup>                                                                                                                                                                                                           | -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807                                                                                     |  |  |  |
|                   |         | unsigned       | <b>0</b> to <b>1.84</b> · <b>10</b> <sup>19</sup>                                                                                                                                                                                   | 0 to 18,446,744,073,709,551,615                                                                                                             |  |  |  |
| floating<br>point | 32      | IEEE-<br>754 ₽ | <ul> <li>min subnormal:</li> <li>± 1.401,298,4 · 10<sup>-45</sup></li> <li>min normal:</li> <li>± 1.175,494,3 · 10<sup>-38</sup></li> <li>max:</li> <li>± 3.402,823,4 · 10<sup>38</sup></li> </ul>                                  | <ul> <li>min subnormal:         ±0x1p-149</li> <li>min normal:         ±0x1p-126</li> <li>max:         ±0x1.fffffep+127</li> </ul>          |  |  |  |
|                   | 64      | IEEE-<br>754 @ | <ul> <li>min subnormal:</li> <li>± 4.940,656,458,412 · 10<sup>-324</sup></li> <li>min normal:</li> <li>± 2.225,073,858,507,201,4 · 10<sup>-308</sup></li> <li>max:</li> <li>± 1.797,693,134,862,315,7 · 10<sup>308</sup></li> </ul> | <ul> <li>min subnormal:         ±0x1p-1074</li> <li>min normal:         ±0x1p-1022</li> <li>max:         ±0x1.ffffffffffffp+1023</li> </ul> |  |  |  |

https://en.cppreference.com/w/cpp/language/types

### **Memory Locations and Bytes**



from: Problem Solving with C++, 10th Edition, Walter Savitch

.