Mandatory assignment STK4500 1 of 1

andreksl

Exercise 1

a)

We start by showing that $\mu_{m m-1}(t) = m\mu(t)$ for $m \in S \setminus \{0\}$. We have that $Z = \{Z_t\}_{t \geq 0}$ represents the number of people alive at time t, with state space $S = \{0, \ldots, N\}$. We can define Z_t as:

$$Z_t = \sum_{i=1}^{N} X_t^{(i)} \quad X_t^{(i)} = \begin{cases} 1, & \text{person i is alive at time t} \\ 0, & \text{person i is dead at time t} \end{cases}$$

Since every person in the group have same age and mortality μ , we get that:

$$\mu(t) = \lim_{h \to 0} \frac{P(X_{t+h}^{(i)} = 0 | X_t^{(i)} = 1)}{h}$$

Now by following the definition we get:

$$\mu_{m \ m-1}(t) = \lim_{h \downarrow 0} \frac{P(Z_{t+h} = m - 1 | Z_t = m)}{h}$$

By definition of conditional probability we have:

$$P(Z_{t+h} = m - 1 | Z_t = m) = \frac{P(Z_{t+h} = m - 1, Z_t = m)}{P(Z_t = m)}$$

Now let's work a bit with the sets:

$$\{Z_{t+h} = m - 1, Z_t = m\} = \bigcup_{i=1}^{m} \{X_{t+h}^{(i)} = 0, X_{t+h}^{(j)} = 1, j = 1, \dots, m, j \neq i\}$$

$$= \bigcup_{i=1}^{m} \{X_{t+h}^{(i)} = 0, X_t^{(i)} = 1, X_{t+h}^{(j)} = 1, j = 1, \dots, m, j \neq i\}$$

$$= \bigcup_{i=1}^{m} \{A^{(i)}, B^{(i)}, C^{(j)}\}$$

We have that $A^{(i)} \cap B^{(i)}$ is independent of $C^{(j)} = \{X_{t+h}^{(j)} = 1, j = 1, \dots, m, j \neq i\}$ furthermore $\alpha_{i,j} = \{A^{(i)}, B^{(i)}, C^{(j)}\}$ is a disjoint sequence of sets, thus:

$$P(\lbrace Z_{t+h} = m-1, Z_t = m \rbrace) = P\left(\bigcup_{i=1}^m \alpha_{i,j}\right)$$

$$= \sum_{i=1}^m P(\alpha_{i,j})$$

$$= \sum_{i=1}^m P(X_{t+h}^{(i)} = 0, X_t^{(i)} = 1) P(X_{t+h}^{(j)} = 1, j = 1, \dots, m, i \neq j)$$

$$= \sum_{i=1}^m P(X_{t+h}^{(i)} = 0 | X_t^{(i)} = 1) P(X_t^{(i)} = 1) P(X_{t+h}^{(j)} = 1, j = 1, \dots, m, i \neq j)$$

Now the last two sets are independent, meaning that we get:

$$P(X_t^{(i)} = 1)P(X_{t+h}^{(j)} = 1, j = 1, \dots, m, i \neq j) = P((X_t^{(i)} = 1, X_{t+h}^{(j)} = 1, j = 1, \dots, m, i \neq j)$$
$$= P(Z_t = m)$$

This leaves us with:

$$P(\{Z_{t+h} = m - 1, Z_t = m\}) = \sum_{i=1}^{m} P(X_{t+h}^{(i)} = 0 | X_t^{(i)} = 1) P(Z_t = m)$$

This gives us the desired result:

$$\mu_{m m-1}(t) = \lim_{h \downarrow 0} \frac{P(\{Z_{t+h} = m - 1, Z_t = m\})}{P(\{Z_t = m\})}$$

$$= \sum_{i=1}^{m} \lim_{h \downarrow 0} P(X_{t+h}^{(i)} = 0 | X_t^{(i)} = 1) P(Z_t = m) \frac{1}{P(Z_t = m)}$$

$$= \sum_{i=1}^{m} \mu(t)$$

$$= m\mu(t)$$

We are now asked to show that $\mu_{mn}(t) = 0$ for $|m - n| \ge 2$, let's assume that N = 2, so that i can manage this exercise:

$$\mu_{20}(t) = \lim_{h \downarrow 0} \frac{p_{20}(t, t+h)}{h}$$

Let's work with the probability in this case:

$$p_{20}(t, t+h) = P(Z_{t+h} = 0 | Z_t = 2)$$

$$= P(X_{t+h}^{(2)} = \dagger, X_{t+h}^{(1)} = \dagger | X_t^{(2)} = *, X_t^{(1)} = *)$$

$$= P(X_{t+h}^{(2)} = \dagger | X_t^{(2)} = *, X_t^{(1)} = *) \times P(X_{t+h}^{(1)} = \dagger | X_t^{(2)} = *, X_t^{(1)} = *)$$

$$= P(X_{t+h}^{(2)} = \dagger | X_t^{(2)} = *) \times P(X_{t+h}^{(1)} = \dagger | X_t^{(1)} = *)$$

Here we used the fact that lives are independet, as well as the Markov property. Now letting $h \to 0$, we get:

$$\lim_{h \downarrow 0} P(X_{t+h}^{(2)} = \dagger | X_t^{(2)} = *) = 0$$

This leaves us with:

$$\mu_{20}(t) = 0$$

b)

We are asked to argue for why $p_{mn}(t,s) = 0$ for $n \ge m+1$, this follows from the fact that if this were not the case we would let the transition $\dagger \to *$ to be allowed. Hence this needs to be zero.

We were also asked to argue for $n \leq m$ that:

$$p_{mn}(t,s) = \binom{m}{n} p(t,s)^n [1 - p(t,s)]^{m-n}$$

This follows from the fact that we have a group of friends with same age, same mortality μ and the fact that they have independent lives. We thus get a sequence of independent Bernoulli trials where we have the same probability of success(survival) and failure(death), when we then sum up the number of success in [t, s] we get a Binomial-distribution, and hence the probability is as above.

 $\mathbf{c})$

We assume that $\int_0^\infty \mu(u)du = \infty$, this means that

$$p(0,\infty) = \lim_{s \to \infty} p(0,s) = \lim_{s \to \infty} e^{\int_0^s \mu(u)du} = 0$$

Now, lets look at the sets again:

$$\{Z_s = 0\} = \bigcap_{i=0}^{N} \{X_s^{(i)} = \dagger\}$$

$$\downarrow \downarrow$$

$$P(\{Z_s = 0\}) = P\left(\bigcap_{i=0}^{N} \{X_s^{(i)} = \dagger\}\right) = \prod_{i=1}^{N} P(\{X_s^{(i)} = \dagger\}) = (1 - p(0, s))^N$$

Now, if we apply the limit on the sets:

$$P(\lim_{s \to \infty} Z_s = 0) = \left(1 - \lim_{s \to \infty} p(0, s)\right)^N = (1 - p(0, \infty))^N = 1$$

Exercise 2

In this exercise we are considering a so-called Tontine of Friends in Continuous time. We are dealing with a regular continuous markov chain X consisting of a total of N friends. We focus on one of the participants called the chosen one referred to as C1.

Our state space S looks like the following:

$$S = \{0, 1, \dots, N-1\} \times \{*, \dagger\}$$

We also use the convention that (m,*) means: m participants in the group except C1 are alive and the chosen one, C1 is alive. (m,\dagger) means that m participants in the group except C1 are alive, while C1 is dead.

a) Transition Probabilities

We are asked to argue for the following:

$$\mu_{(m,*)(m-1,\dagger)}(t) = 0$$

$$\mu_{(m,*)(m-1,*)}(t) = \mu_{(m,\dagger)(m-1,\dagger)}(t) = m\mu(t)$$

 $\mu_{(m,*)(m-1,\dagger)}(t) = 0$ means that the group consisting of m persons goes to m-1 i.e one has died, and also at the same time C1 have gone from * to \dagger . This is zero as it represents instantanoius jumps of size two immideately.

 $\mu_{(m,*)(m-1,*)}(t) = \mu_{(m,\dagger)(m-1,\dagger)}(t) = m\mu(t)$: $\mu_{(m,*)(m-1,*)}(t)$: the group goes from $m \to m-1$, while $*\to *$. From **Exercise 1** we have that the lives are assumed to be stochastically independent, same age and have the same force of mortality $\mu(t)$. Now: if the group goes from $m \to m-1$ and C1 remains in * we have that there are $\binom{m}{m-1}$ ways to go from m to m-1, and given the fact that all have same force of mortality we get: $\mu_{(m,*)(m-1,*)}(t) = \binom{m}{m-1} \mu(t) = m\mu(t)$. Exact same argument applies for $\mu_{(m,\dagger)(m-1,\dagger)}(t)$.

 $\mu_{(m,*)(m,\dagger)}(t)$: the group remians of m people, while C1 has gone from $*\to \dagger$, given the fact that all were assumed to have the same mortality rate we get: $\mu_{(m,*)(m,\dagger)}(t) = \mu(t)$

We also have that $p_{(m,j)(n,j)}(t,s)=0$ for $m,n\in\{0,\ldots,N-1\}$ $n\geq m+1, j\in\{*,\dagger\}$, if this probability was non-zero we would allow for the transition $\dagger\to *$, which is not reasonable, hence this probability is zero.

We now let $n \leq m$, we then have:

$$p_{(m,*)(n,*)}(t,s) = \binom{m}{n} p(t,s)^{n+1} [1 - p(t,s)]^{m-n}$$

We here have that all individuals have the same survival-probability p(t,s)

$$\begin{split} p_{(m,*)(n,*)}(t,s) &= P[\text{Group goes from m to n in [t,s], C1 remains in * for [t,s]}] \\ &\stackrel{indep.lives}{=} P[\text{Group goes from m to n in [t,s]}] P[\text{C1 remains in * for [t,s]}] \\ &= \binom{m}{n} p(t,s)^n [1-p(t,s)]^{m-n} \times p(t,s) \\ &= \binom{m}{n} p(t,s)^{n+1} [1-p(t,s)]^{m-n} \end{split}$$

We also have:

$$\begin{split} p_{(m,*)(n,*)}(t,s) &= P[\text{Gruop goes from m to n in [t,s]}, \text{C1 goes from alive to dead in [t,s]}] \\ &\stackrel{indep.lives}{=} P[\text{Gruop goes from m to n in [t,s]}] P[\text{C1 goes from alive to dead in [t,s]}] \\ &= \binom{m}{n} p(t,s)^n [1-p(t,s)]^{m-n} \times [1-p(t,s)] \\ &= \binom{m}{n} p(t,s)^n [1-p(t,s)]^{m-n+1} \end{split}$$

b)

We have that the contract starts at t = 0, and that all participants pay a single premium π_0 at this time. These premiums are invested into a fund, which we will regard as a stocastich process $S = \{S(t), t \ge 0\}$, which looks like

$$S(t) = S(0)e^{\rho t}$$

Furthermore the fund will not start paying out until we reach $t = T_0$, where after $t \ge T_0$ will have the value: $S(t) = S(0)e^{\rho T_0}$ with a constant interest rate r > 0, we are asked to derive $a_{(m,*)}(s)$, when we do not consider premiums.

$$a_{(m,*)}(t) = \begin{cases} 0 & , t \in [0, T_0) = 0\\ \frac{\rho t S(0)e^{\rho T_0}}{m+1} & , t \ge T_0 \end{cases}$$

 $\mathbf{c})$

In this exercise we are asked to calcualte the reserves, we first start off by remembering the formula applicable to our situation, and then translate it into our setting:

$$V_i^+(t,A) = \frac{1}{v(t)} \left[\sum_{j \in S} \int_t^\infty v(s) p_{ij}^x(t,s) da_j(s) \right]$$

Now translating this into our setting:

$$\begin{split} V_{(m,*)}^{+}(t) &= \sum_{n=0}^{m} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{(m,*)(n,*)}(t,s) da_{(n,*)}(s) \\ &= \sum_{n=0}^{m} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{(m,*)(n,*)}(t,s) \mathbb{1}_{[t \ge T_0]} \frac{\rho S(0) e^{\rho T_0}}{n+1} ds \\ &= \rho S(0) e^{\rho T_0} \sum_{n=0}^{m} \int_{t \lor T_0}^{\infty} \binom{m}{n} \frac{p(t,s)^{n+1} [1-p(t,s)]^{m-n}}{n+1} e^{-r(s-t)} ds \end{split}$$

d)

By Fubini we have:

$$V_{(m,*)}^{+} = \rho S(0)e^{\rho T_0} \int_{t \vee T_0}^{\infty} \sum_{n=0}^{m} {m \choose n} \frac{p(t,s)^{n+1} (1 - p(t,s))^{m-n}}{n+1} e^{-r(s-t)} ds$$

Let $X \sim Bin(m, p)$, then:

$$E\left[\frac{1}{1+X}\right] = \sum_{n=0}^{m} \binom{m}{n} \frac{p^n (1-p)^{m-n}}{n+1}$$

We also have:

$$E\left[\frac{1}{1+X}\right] = \frac{1 - (1-p)^{m+1}}{(m+1)p}$$

This means that we can rewrite $V_{(m,*)}^+(t)$:

$$\begin{split} V_{(m,*)}^+(t) &= \rho S(0) e^{\rho T_0} \int_{t \vee T_0}^{\infty} pE\left[\frac{1}{1+X}\right] e^{-r(s-t)} ds \\ &= \frac{\rho S(0) e^{\rho T_0}}{m+1} \int_{t \vee T_0}^{\infty} (1 - (1-p(t,s))^{m+1}) e^{-r(s-t)} ds \end{split}$$

e)

We start with the single premium π_0 : According to the equivalence principle, we have that:

$$\pi_0 = V_{(N-1,*)}^+(0) = \frac{\rho S(0)e^{\rho T_0}}{N} \int_{T_0}^{\infty} (1 - (1 - p(0,s))^N)e^{-rs} ds$$

We also want the yearly premiums, from lecture notes we have: $V_*^+(t,A) = V_*^+(t,A_*) + V_*^+(t,\tilde{A}_*)$ Where we in the first expression do not consider premiums, and in the other we only care about premiums, i.e $a_{(m,*)}(t)$ remains, while:

$$\tilde{a}_{(m,*)}(t) = \begin{cases} -\pi t & , t \in [0, T_0) = 0 \\ -\pi T_0 & , t \ge T_0 \end{cases}$$

with $\dot{\tilde{a}}_{(m,*)}(t) = -\pi$ for $t \in (0, T_0)$ Now, we get the following:

$$V_{(m,*)}^{+}(t,\tilde{A}) = \frac{1}{v(t)} \int_{t}^{T_0} v(s) p_{(m,*)(n,*)}(t,s) (-\pi ds)$$
$$= -\pi \int_{t}^{T_0} \sum_{n=0}^{m} {m \choose n} p(t,s)^{n+1} (1 - (p(t,s))^{m-n}) ds$$

Now translating the above idea, we get:

$$V_{(m,*)}^+(t,A) = V_{(m,*)}^+(t,A_*) + V_{(m,*)}^+(t,\tilde{A}_*)$$

And by the equivalence principle we will set

$$V_{(m,*)}^+(0,A) = V_{(m,*)}^+(0,A_*) + V_{(m,*)}^+(0,\tilde{A}_*) = 0$$

and solve for π , leading to:

$$0 = \frac{\rho S(0)e^{\rho T_0}}{m+1} \int_{T_0}^{\infty} (1 - (1 - p(0,s))^{m+1})e^{-rs}ds - \pi \int_0^{T_0} \sum_{n=0}^m \binom{m}{n} p(0,s)^{n+1} (1 - p(0,s))^{m-n}ds$$

$$\downarrow \downarrow$$

$$\pi = \frac{\frac{\rho S(0)e^{\rho T_0}}{m+1} \int_{T_0}^{\infty} (1 - (1 - p(0,s))^{m+1})e^{-rs}ds}{\int_0^{T_0} \sum_{n=0}^m \binom{m}{n} p(0,s)^{n+1} (1 - p(0,s))^{m-n}ds}$$

f) Thiele's equation

$$\begin{split} \frac{d}{dt}V_{i}^{+}(t) &= r(t)V_{i}^{+}(t) - \dot{a}_{i}(t) - \sum_{j \neq i} \mu_{ij}^{x}(t)(a_{ij}(t) + V_{j}^{+}(t) - V_{i}^{+}(t)) \\ & \Downarrow \\ \frac{d}{dt}V_{(m,*)}^{+}(t) &= r(t)V_{(m,*)}^{+}(t) - \frac{\rho S(0)e^{\rho T_{0}}}{m+1} - \left(\mu_{(m,*)(m,\dagger)}^{x}(t)(-V_{(m,*)}^{+}(t)) + \mu_{(m,*)(m-1,*)}[V_{(m-1,*)}^{+}(t) - V_{(m,*)}^{+}(t)]\right) \\ &= r(t)V_{(m,*)}^{+}(t) - \frac{\rho S(0)e^{\rho T_{0}}}{m+1} + \mu^{x}(t)V_{(m,*)}^{+}(t) - m\mu^{x}(t)[V_{(m-1,*)}^{+}(t) - V_{(m,*)}^{+}(t)] \\ &= [r(t) + (m+1)\mu^{x}(t)]V_{(m,*)}^{+}(t) - \frac{\rho S(0)e^{\rho T_{0}}}{m+1} - m\mu^{x}(t)V_{(m-1,*)}^{+}(t) \end{split}$$

With final condition: $V_{(m,*)}^+(T) = 0$

g) Numerical example:

We start off by the contractual information:

```
<- 0.03
             \#interest-rate
rho <- 0.07
SO <- 100000
   <- 10
             #number of person
  <- 30
             #age of insured
TO <- 40
             #withdrawal
           #length of contract
Т
  <- 90
G
  <- 0
             \#Gender = male
Y <- 2022 #Year
```

We were also asked to use the mortalities proposed by Finanstilsynet:

```
w <- function(G, x){
  if(G==0){
    return( min(2.671548-0.17248*x+0.001485*x^2,0) )
  }
  if(G==1){
    return( min(1.287968-0.10109*x+0.000814*x^2,0) )
  }
}</pre>
```