

Universidade Federal de Itajubá Campus Itajubá

Roteiro de laboratório

Laboratório de microcontroladores ELTD13

Prof. Dr. Gustavo Della Colletta

Versão 2021 1

Roteiro 04

Instruções aritméticas e lógicas

Gustavo Della Colletta Grupo de Microeletrônica gustavo.colletta@unifei.edu.br

Resumo

Esse documento apresenta o roteiro de laboratório 04 que aborda as instruções aritméticas para valores não sinalizados e as instruções lógicas disponíveis no microcontrolador.

Roteiro 04 Instruções aritméticas e lógicas

Atividades

Antes de iniciar as atividades, certifique-se de que a ligação entre o dispositivo ST-LINK e a placa de treinamento bluepill esteja correta. A Figura 1 mostra a ligação apropriada. Além disso, nunca se deve alimentar a placa bluepill através da entrada USB e do dispositivo ST-LINK ao mesmo tempo, uma vez que tal procedimento pode danificar a placa de treinamento.

Figura 1: Ligação correta entre o dispositivo ST-LINK e a placa bluepill.

```
EXPORT __main
1
           AREA MY_PROG, CODE, READONLY
2
   __main
3
                      R1,#27
           MOV
4
                      R2,#15
           VOM
5
                      R3, R1, R2
           SUBS
6
                      R1,#20
           MOV
7
8
           MOV
                      R2,#15
           SUBS
                      R3, R1, R2
9
                      R1,#95
           MOV
10
           MOV
                      R2,#95
11
                      R3, R1,
           SUBS
                                R2
12
           MOV
                      R1,#50
13
           MOV
                      R2,#70
14
                      R3, R1, R2
           SUBS
15
16
   Η
           В
                 Η
                               ; stay here forever
           END
17
```

Figura 2: Código para a atividade 2.

Atividade 1

Escreva um programa para realizar a somatória dos seguintes valores: 0x33322292, 0x55566623, 0x9998884B, 0xFF, 0xDDDEEE01. Execute uma seção de depuração (debug) para visualizar os indicadores C e Z após cada somatória, anotando os mesmos como comentários no código.

Atividade 2

Escreva e monte o programa mostrado na Figura 2. Em um seção de depuração (debug), execute-o passo-a-passo, examinando os indicadores C, Z e o conteúdo dos registros R1, R2 e R3 após a execução de cada instrução. Os valores devem ser anotados como comentários no código.

Atividade 3

Escreva um programa que multiplique o valor 0xFFFFFFF por ele mesmo. Antes de escrever o programa, confira o resultado dessa multiplicação na calculadora do sistema operacional para determinar quantos bytes são necessários para o resultado.

Atividade 4

Escreva um programa que, inicialmente, carregue os valores 0x4FCA e 0xC237 nos registros R1 e R2. Em seguida realize, bit-a-bit, as operações OR, AND e XOR sobre esses valores, armazenando os resultados, respectivamente, nos registros R3, R4 e R5.

Atividade 5

Considerando o valor 0xFFFFFFF, escreva um programa que limpe apenas o bit 0 desse valor, deixando os demais bits com seu valor original. Podem ser utilizados quaisquer registros da arquitetura.

Tarefas

Tarefa 1

Explique como funcionam as seguintes instruções:

- 1. MVN
- 2. RSB
- 3. MLA
- 4. UMLAL

Tarefa 2

Responda as seguintes questões

- 1. Explique a diferença entre as instruções ADDS e ADD.
- 2. Qual é a operação realizada em ADC Rd, Rn, Op2?
- 3. Explique porque Z=0 no seguinte código MOV R2, #0x4F MOV R4, #0xB1 ADDS R2, R4, R2

4. Explique porque Z=1 no seguinte código MOV R2, #0x4F LDR R4, =0xFFFFFB1 ADDS R2, R4, R2

- 5. Na multiplicação não sinalizada, MUL R2, R3, R4, o produto será armazenado no registro ____.
- 6. Na multiplicação não sinalizada, MUL R1, R2, R4, qual é o máximo valor de R2 se R4=0xFFFFFFFF, para que não ocorra a perda de bits?
- 7. Para fazer com que todos os bits de um operando sejam 0, devemos fazer uma operação AND com qual valor de máscara?
- 8. Para fazer com que todos os bits de um operando sejam 1, devemos fazer uma operação OR com qual valor de máscara?

Entrega

Deverá ser entregue através do SIGAA, um arquivo no formato PDF. O documento deve apresentar a identificação clara do aluno, incluindo nome, número de matrícula, turma e o número do roteiro de referência.

Para esse roteiro, o arquivo deve conter os códigos comentados das atividades 1, 2, 3, 4 e 5. Para as atividades 1 e 2, os códigos devem estar comentados, apresentando os respostas requisitadas. Além disso, o arquivo deve conter as tarefas respondidas.

O arquivo a ser entregue deve ser nomeado seguido o modelo:

NomeDoAluno_Turma_Matricula.pdf. GustavoDellaColletta_T1_xxxxxx.pdf

Não serão aceitos arquivos com conteúdo ou nomenclatura diferentes das orientações.