

Cesa

Fig. 1: Sliding window in use during Satellite operation¹

Satellite Imagery

- Nadir Tracking in LEO (500km)
 - Ground speed ~7km/s
 - Orbit time 90 min
 - Avg. min. 2 overpasses / day
- i.e. CARBONITE-2 (5.2² km, 30fps)
- => 240m «new» per picture

Sliding Window

- Proof of concept
- No anchor boxes dataset
- Easy to implement

Motivation

- Detection of Planes and Vessels using Machine Learning
- Comparison of two microcontrollers
 - MCU compareable to COTS Satellite OBC
 - Optimized Neural Network Accelerator
- Realtime eligibility
- Why should we use microcontrollers?
 - Limited power (mWs)
 - Onboard processing (on the edge)
 - Avoid unnecessary downlink

Fig. 2: Augmented pictures of two scenes from datasets [1] and [2] $\,$

STM32 / MAX78000

	STM32L475	MAX78000
Flash Memory	1 MB	512 KB
SRAM	128 KB	128 KB
CPU	Arm® Cortex®-M4 80MHz	Arm® Cortex®-M4 100MHz
Neural Network Accelerator	X	✓ RISC-V Co-Processor @60MHz

Fig. 3: STM32 https://estore.st.com/en/b-l475e-iot01a2-cpn.html

Fig 4: MAX78000 https://www.analog.com/en/products/max78000.html#product-overview

Dataset

- Merge of 2 datasets
- Resized all data to 20x20px

Plane

20x20 px [1]

Ship

Data Set & Augmentation

- 36'000 Images
 - 8000 Planes^[1]
 - 1000 Ships^[2]
 - 27000 None^{[1],[2]}
- Class weights
- Generated more augmentated data
- Split into:
 - 80% Training Set
 - 10% Validation Set
 - 10% Test Set

- Horizontal flip
- Vertical flip
- Random rotation
- Random crop

```
train_transform = transforms.Compose([
    transforms.ToPILImage(mode="RGB"),
    transforms.RandomHorizontalFlip(),
    transforms.RandomVerticalFlip(),
    transforms.RandomRotation(360),
    transforms.RandomResizedCrop((20,20), scale=(0.8, 1.0)),
    transforms.Resize((20,20)),
    transforms.ToTensor(),
    ai8x.normalize(args=args)
])
```


CNN Network – STM32

- 60'395 parameters
- 3 Convolutions (kernel_size: 3x3), 2 Maxpool layers (pool_size: 2)

STM32 Training

Training:

- 15 Epochs
- 32 Batch Size
- Adam Optimizer

Confusion Matrix on Test Set

• 2700 samples per class:

STM32

- CMSIS-NN Library
- Post-Quantized:

STM32

Operations (macc):

Hardware: 1'500'166 macc

Layer 0: 290'336 Layer 1: 935'720

Layer 2: 230'440

Layer 3: 41'024

Layer 4: 195

Estimated Latency:

Startup1Layer 01'487'38418.6msLayer 12'203'82027.5msLayer 2492'1146.2msLayer 3126'6621.6msLayer 42'7170.02ms

Total 4'328'305 cycles

Cylces/macc: 2.89

• MOps per sec: 27.68

Inference Time: 67ms (reality)

Resource Usage:

Weight memory: 60,968 bytes out of $\sim 1'000'000$ bytes total (6.1%)

CNN Network – MAX78000

- Use of fused layers
- Same number of convolutions and maxpools as STM32 model

MAX78000 Training

Quantization aware training:

- 15 Epochs
- 32 Batch Size
- Adam Optimizer
- Start @epoch 5

MAX78000

Operations:

Hardware: 1,329,192 ops (1,302,592 macc; 26,600 comp)

Layer 0: 268,800 ops (259,200 macc; 9,600 comp)

Layer 1: 704,000 ops (691,200 macc; 12,800 comp)

Layer 2: 292,200 ops (288,000 macc; 4,200 comp)

Layer 3: 64,000 ops (64,000 macc; 0 comp)

Layer 4: 192 ops (192 macc; 0 comp)

Estimated	Latency	/
Lottillatea	Latericy	•

Startup	1
Layer 0	10,652
Layer 1	3,832
Layer 2	1,197
Layer 3	1,651
Layer 4	5
Total	17,338 cycles

Operations per clock cycle: 76

• MOps per sec: 3765.42

Inference Time: 353us

Resource Usage:

Weight memory: 83,272 bytes out of 442,368 bytes total (18.8%)

Bias memory: 67 bytes out of 2,048 bytes total (3.3%)

Comparison

Latency
Operations/cycle

Inference Time

STM32

4,328,305 cycles

0.35

67ms

MAX78000

17'338 cycles

76

353us

~249x fewer cycles

~190x faster

Power Estimate

Total Energy Avg. Power STM32 MAX78000

11mA * 3V¹
X 67ms 4.02 pJ/MAC ²
X 1.3M MAC

2211 uJ
33mW (67ms) 5.23 uJ
14.83mW (353us)

~440x less energy ~2x less avg. power

¹ CubeIDE power calculator

² CNN Active Energy in MAX78000 Datasheet

Realtime

Inference

- Inference time 67ms / 353us
- Allows for 15 / 2833 Fps

Overhead: UART

- 115'200 baud ~ 14'400 bytes/s
- 1200 bytes / picture
- => 12 pictures/s | 83ms / picture

=> UART adds overhead of 123% / 23'500%

SOLUTION:

DMA

Different communication (SPI, USB, ..., I2C)

Conclusion

- Neural Network Accelerator speeds up inference nearly 200 times
 - MAX78000 needs less layers for the same operations (fused layers)
 - 249x fewer cycles
- Uses around 400x less power

Future Work

- Image preprocessing OR
- Yolo network detection instead of sliding window -> more energy efficent
- Different communication protocol
- (Better python script)

Demo

Fig. 5: Augmented pictures of two scenes from datasets [1] and [2]

Additional Slides

Num of Parameters

 W_c = Number of weights of the Conv Layer.

 B_c = Number of biases of the Conv Layer.

 P_c = Number of parameters of the Conv Layer.

K = Size (width) of kernels used in the Conv Layer.

N = Number of kernels.

C = Number of channels of the input image.

$$W_c = K^2 \times C \times N$$
$$B_c = N$$
$$P_c = W_c + B_c$$

In a Conv Layer, the depth of every kernel is always equal to the number of channels in the input image. So every kernel has $K^2 \times C$ parameters, and there are N such kernels. That's how we come up with the above formula.

Network YAML

```
arch: planeshipnet
dataset: planeships
layers:
  - pad: 1
   activate: ReLU
   out_offset: 0x2000
   processors: 0x0000.0000.0000.0007
   data_format: HWC
   op: conv2d
  - pad: 1
   max_pool: 2
   pool_stride: 2
   activate: ReLU
   out_offset: 0
   in_channels: 24
   processors: 0xffff.ff00.0000.0000 #24 processors (6x4) (f = 1111.)
   op: conv2d
   kernel_size: 3x3
  - pad: 1
   max_pool: 2
   pool_stride: 2
   activate: ReLU
   out_offset: 0x2000
   processors: 0xffff.ffff.0000.0000 #32 processors (8x4)
   in_channels: 32
   op: conv2d
   kernel_size: 3x3
  - op: mlp
   out_offset: 0
   flatten: true
   output_width: 8
   processors: 0x0000.00ff.ffff.ffff #40 processors (10x4)
  - op: mlp
   out_offset: 0x2000
   output_width: 32
   processors: 0xffff.ffff.ffff.ffff #64 processors (16x4)
```

STM32 Network Layers

c id	m id	type	dur (ms)	%	counters	name
0	0	NL (0×107)	0.063	0.1%	[5,045]	ai node 0
1	2	Conv2dPool (0x109)	18.592			ai node 1
2	3	Pad (0x116)	0.071	0.1%	[5,648]	ai node 2
3	4	Conv2dPool (0x109)	27.548	50.9%		ai_node_3
4	5	Pad (0x116)	0.032	0.1%	[2,534]	ai_node_4
5	5	Conv2D (0x103)	6.151	11.4%	[492,114]	ai_node_5
6	7	Dense (0x104)	1.583	2.9%	[126,662]	ai_node_6
7	8	Dense (0x104)	0.034	0.1%	[2,717]	ai_node_7
8	9	NL (0x107)	0.023		[1,831]	ai_node_8
9	10	NL (0x107)	0.007	0.0%	[550]	ai_node_9
total			54.104		[4,328,305]	

Difference due to timer overhead