PART 3 - PREDICTIVE MODELING USING LOGISTIC REGRESSION

The steps to fit a logistic regression model are the same as the steps to build a decision tree model except that the Variable Clustering node is used to reduce redundancy and the Regression node is used to select relevant inputs.

CATALOG CASE STUDY: FITTING A LOGISTIC REGRESSION MODEL

A mail-order catalog retailer wants to increase revenue by targeting customers who are most likely to purchase a product from the catalog. Use the **CATALOG2010** data from the previous chapter and fit a logistic regression model in SAS Enterprise Miner by simply adding the Variable Clustering node and the Regression node to the decision tree diagram. The steps that are added to the model-building process include eliminating redundant variables using the Variable Clustering node, eliminating irrelevant variables using the Regression node, and generating model assessment statistics and plots using the Model Comparison node.

1. Review the CATALOG2010 data set.

Select the **CATALOG2010** data source in the decision tree diagram. From the panel on the left, click the ellipsis next to **Variables**.

2. Compute some basic statistics.

Select **Statistics** in the upper right corner.

3. Inspect the results.

- a. Scroll down the list of variables. Notice that none of the variable have missing values. Therefore, the Imputation node is not necessary.
- b. Make sure that State has been assigned the role **Rejected**.
- c. Close the Variables window.

The next step is variable clustering. The Variable Clustering node enables you to group variables according to their similarity. The cluster representatives can be automatically selected (by default) or interactively chosen by the user.

- 4. Cluster variables according to their similarities.
 - a. Click the **Explore** tab and drag the **Variable Clustering** node into the diagram.
 - b. Connect the **Data Partition** node to the **Variable Clustering** node.
 - c. In the Properties panel, change the Includes Class Variables property to **Yes** and the Variable Selection property to **Best Variables**. (class variables are like categorical variables)

The Variable Selection property specifies whether you would like the rotated cluster components or the lowest $1-R^2$ ratio variables to be the cluster representatives. **Best Variables indicates the** $1-R^2$ **ratio.**

5. Right-click and run the **Variable Clustering** node. View the results.

The output features several interpretations of the same idea: representing variable clusters.

- The Selected Variables window shows one input for each cluster, chosen according to the $1-R^2$ ratio. (If you want to override these decisions or add variables to the list of selected inputs, you can select the Interactive Selection property.)
- The Dendrogram window shows the hierarchical nature of the variable clusters.
- The Variable Frequency Table window reports how many inputs fall in each cluster.
- The Cluster Plot window offers an alternative to the tree diagram in the Dendrogram window.
- The Variable Selection window shows the variables that were (and were not) selected in each cluster.

Using the $1-R^2$ ratio, the following variables were chosen from the clusters:

Cluster	Variable	Label	R-Square	Next	R-Square	Туре	1-R2 Ratio	Variable
Ciustei	Variable	Lauci	With Own Cluster Component	Closest	with Next Cluster Component	Туре	I-RZ Kalio	Selected
CLUS1	DOLINDET	total \$ demand	0.923851	CLUGGG	0.529512	Variable	0.161852	VEC
CLUS10	DOLLARQ10		0.923631		0.077855		0.129399	
CLUS10	DOLLARQ10		0.881598		0.077833		0.123519	
CLUS11		tot orders 98Q2	0.863458		0.043322		0.142725	
CLUS12 CLUS13		tot orders 94Q2	0.803436		0.045522		0.132699	
CLUS13 CLUS14		tot orders 94Q2	0.874679		0.042882		0.130936	
CLUS14 CLUS15		tot orders 97Q3	0.872366		0.042882		0.137902	
CLUS15 CLUS16	DOLLARQ04		0.876755		0.074455		0.13035	
CLUS 16 CLUS 17		tot orders 94Q1	0.870755		0.054508		0.13033	
CLUS17 CLUS18	DOLLARQ16		0.871852		0.082009		0.139590	
CLUS18 CLUS19		tot orders 97Q2	0.800402		0.084269		0.145827	
CLUS 19 CLUS2		CCPAYM=0		CLUS1 CLUS28		Variable Variable		YES
CLUS20		tot orders 96Q2		CLUS28	0.057243		0.164613	
CLUS20 CLUS21		tot orders 98Q1	0.860266		0.057243		0.146084	
CLUS21 CLUS22	DOLLARQ09		0.800200		0.043466		0.136597	
CLUS22 CLUS23	DOLLARQ09		0.869018		0.074566		0.144333	
CLUS23 CLUS24		tot orders 93Q1	0.875695		0.105666		0.138991	
CLUS25		tot orders 94Q3	0.869525		0.082185		0.142158	
CLUS26		tot orders 96Q1	0.809323		0.070058		0.166366	
CLUS20 CLUS27	DOLLARQ08		0.853544		0.070038		0.161764	
CLUS28		METHPAYM=CK		CLUS2		Variable Variable		YES
CLUS29		womens underwear	0.473772		0.200941		0.658559	
CLUS29 CLUS3	DOLLARQ17		0.473772		0.200941		0.008008	
CLUS3		avg units/order		CLUS1	0.078702			YES
CLUS30 CLUS31	DEPT12	mens misc	0.367295		0.090206		0.695438	
CLUS31 CLUS32		number of catalogs received	0.367295		0.090206		0.095438	
CLUS32 CLUS33		light		CLUS1	0.010229			YES
CLUS33 CLUS34		window	0.532576		0.010229		0.480159	
CLUS34 CLUS35		months since 1st		CLUS7	0.192899			YES
CLUS35 CLUS4		avg \$ demand	0.912853		0.192899		0.118089	
CLUS4 CLUS5		avg 5 demand BOTHPAYM=0		CLUS30	0.262021		5.36E-16	
CLUSS CLUS6		tot orders 95Q4	0.732581		0.171641		0.290021	
CLUS6 CLUS7	MONLAST	months since last		CLUS32 CLUS35	0.077932		0.29002	
CLUS7		tot orders 96Q3	0.95065		0.197535		0.061498	
CLUS8 CLUS9		tot orders 97Q4	0.872407			Variable Variable	0.130453	

The labels are expanded for easier interpretation. <u>These variables are used as candidates</u> <u>in logistic regression models.</u>

The bottom of the results in the Output window shows the complete list of which variables were in each cluster. Variables in the same cluster were similar in the analysis. The procedure selects the variable with the lowest $1-R^2$ ratio as the cluster representative.

R-squared with	
35 Clusters	
Own Next 1-R**2 Variable Cluster Variable Cluster Closest Ratio Label	
Cluster 1 DEPT14 0.4011 0.1668 0.7188 bedding	
DEPT15 0.1769 0.0788 0.8935 bath DEPT16 0.1757 0.0805 0.8965 floor	
DEPT16 0.1757 0.0805 0.8965 floor DEPT17 0.1476 0.0563 0.9032 table	
DOLINDET 0.9239 0.5295 0.1619 total \$ demand	
DOLNETDT 0.9163 0.5244 0.1760 avg \$ net demand	
FREQPRCH 0.7492 0.5167 0.5190 lifetime orders UNITSIDD 0.8436 0.6278 0.4202 tot units demand	
Cluster 2 CCPAYM0 1.0000 0.3108 0.0000 CCPAYM=0	
CCPAYM1 1.0000 0.3108 0.0000 CCPAYM=1	
METHPAYMCC 1.0000 0.3108 0.0000 METHPAYM=	CCC
Cluster 3 DOLL24 0.4767 0.3047 0.7526 \$ last 24 months	
DOLLARQ17 0.8124 0.0787 0.2037 tot \$ 97Q1 TOTORDQ17 0.7392 0.0625 0.2782 tot orders 97Q1	
Cluster 4 DOLINDEA 0.9129 0.2620 0.1181 avg \$ demand DOLNETDA 0.9039 0.2546 0.1290 tot \$ net demand	
UNITSLAP 0.4720 0.1137 0.5957 avg price/unit	
Cluster 5 BOTHPAYM0 1.0000 0.1716 0.0000 BOTHPAYM BOTHPAYM1 1.0000 0.1716 0.0000 BOTHPAYM=1 METHPAYMXBOT 1.0000 0.1716 0.0000 METHPAYM	
Cluster 6 ACTBUY 0.4676 0.3380 0.8042 num qrtrs w/buy	
DEPT25 0.3441 0.2087 0.8289 food DOLLARQ12 0.6580 0.0974 0.3789 tot \$ 95Q4	
TOTORDQ12 0.7326 0.0779 0.2900 tot orders 95Q4	
Cluster 7 DAYLAST 0.9506 0.1976 0.0615 days since last	
MONLAST 0.9506 0.1975 0.0615 months since last	
METHPAYMDK 0.7497 0.1181 0.2838 METHPAYM=	-DK
Cluster 8 DOLLARQ15 0.8724 0.0862 0.1396 tot \$ 96Q3	
TOTORDQ15 0.8724 0.0649 0.1365 tot orders 96Q3	
Cluster 9 BUYPROP 0.5388 0.1214 0.5250 % quarters w/bu	y
DEPT26 0.1761 0.0493 0.8666 gift DOLLARQ20 0.7222 0.0645 0.2969 tot \$ 97Q4	
TOTORDQ20 0.8213 0.0545 0.1890 tot orders 97Q4	
Cluster 10 DOLLARQ10 0.8807 0.0779 0.1294 tot \$ 95Q2	
TOTORDQ10 0.8807 0.0810 0.1298 tot orders 95Q2	
Cluster 11 DOLLARQ03 0.8816 0.0414 0.1235 tot \$ 93Q3	
TOTORDQ03 0.8816 0.0436 0.1238 tot orders 93Q3	

(Continued on the next page.)

	DOLLARQ22 OTORDQ22			tot \$ 98Q2 ot orders 98Q2
Cluster 13	DOLLARQ06	0.8788 0.0	25 0.1336	tot \$ 94Q2

	TOTORDQ06	0.8788	0.0865	0.1327	tot orders 94Q	2
-	4 DOLLARQ19 TOTORDQ19	0.8747	0.0429	0.1309	tot orders 97Q	3
Cluster 1	5 DOLLARQ11 TOTORDQ11	0.87 0.8724	0.0745	754 0.13 0.1379	tot \$95Q3 tot orders 95Q	3
Cluster 1	6 DOLLARQ04 TOTORDQ04	0.87 0.8768	768 0.05 0.0673	545 0.13 0.1321	tot \$93Q4 tot orders 93Q	4
Cluster 1	7 DOLLARQ05 TOTORDQ05	0.87 0.8719	0.0820	831 0.13 0.1396	398 tot \$ 94Q tot orders 94Q	1
Cluster 1	 8 DOLLARQ16 TOTORDQ16	0.86 0.8665	0.0874	843 0.14 0.1463	458 tot \$ 96Q4 tot orders 96Q	4
Cluster 1	 9 DOLLARQ18 TOTORDQ18	0.87 0.8798	798 0.06 0.0589	601 0.12 0.1277	279 tot \$ 97Q2 tot orders 97Q	2
Cluster 2	O DOLLARQ14 TOTORDQ14	0.84 0.8448	0.0572	663 0.16 0.1646	tot \$ 96Q2 tot orders 96Q	2
Cluster 2	1 DOLLARQ21 TOTORDQ21	0.8603	0.0435	475 0.14 0.1461	467 tot \$ 98Q tot orders 98Q	1
Cluster 2	2 DOLLARQ09 FOTORDQ09	0.87 0.8736	736 0.07 0.0761	746 0.13 0.1368	366 tot \$ 95Q tot orders 95Q	1
Cluster 2	3 DOLLARQ02 TOTORDQ02	0.86 0.8690	0.0978	925 0.14 0.1452	tot orders 93Q2	2
Cluster 2	4 DOLLARQ01 TOTORDQ01	0.87	757 0.10 0.1057	086 0.13 0.1390	tot orders 93Q	1
Cluster 2	5 DOLLARQ07 TOTORDQ07	0.86 0.8695	0.0822	824 0.14 0.1422	tot \$94Q3 tot orders 94Q	3
Cluster 2	6 DOLLARQ13 TOTORDQ13	0.84 0.8453	0.0701	930 0.1° 0.1664	706 tot \$ 96Q tot orders 96Q	1
Cluster 2	7 DOLLARQ08 TOTORDQ08	0.85 0.8535	0.1106	946 0.16 0.1647	618 tot \$ 94Q4 tot orders 94Q	4
Cluster 2	8 PCPAYM0	1.000 1.0000	0 0.310 0.3108	0.000 0.0000		0
]]]	DEPT03 0.4 DEPT04 0.3	3687 0. 4738 0. 3702 0.	0.1594 1327 0.2009 0.1596 0.21479 0.21	7279 wo 6586 wo 7494 wo	womens appa omens sleepwea omens underwea omens hosiery omens footwear	r ar

(Continued on the next page.)

Cluster 30 U	UNTLANF	PO 1	.0000).1238 (0.0000 avg units/ord
Cluster 31 D	DEPT07	0.11	85 0.02	31 0.90	24 mens apparel
DEP	T08	0.2880	0.0951	0.7868	mens sleepwear
DEP	T09	0.2913	0.0482	0.7446	mens underwear
DEP	T10	0.3128	0.0804	0.7473	mens hosiery
DEP	T11	0.2010	0.0474	0.8388	mens footware
DEP.	T12	0.3673	0.0902	0.6954	mens misc

Cluster 32 CATALO	OGCNT	0.7897	0.6117	0.5416 number of catalogs received				
DEPT06	0.3359	0.1902	0.8201	womens misc				
DEPT13	0.4801	0.2840	0.7261	kitchen				
DEPT20	0.0326	0.0169	0.9841	furniture				
DEPT22	0.5862	0.3539	0.6406	household				
DEPT23	0.4425	0.2303	0.7243	beauty				
DEPT24	0.3272	0.1334	0.7764	health				
DEPT27	0.2906	0.1364	0.8214	outdoor				
Cluster 33 DEPT21	1.000	0 0.01	02 0.00	000 light				
Cluster 34 DEPT18								
Cluster 35 TENURE	E 1.000	00 0.1	929 0.0	000 months since 1st				

There are 35 clusters and, therefore, 35 variables selected.

The last table in the Output window shows a summary of the final cluster solution.

Number of Clusters	Total Variation Explained by Clusters	Proportion of Variation Explained by Clusters	Minimum Proportion Explained by a Cluster	Maximum Second Eigenvalue in a Cluster	Minimum R-squared for a Variable	Maximum 1-R**2 Ratio for a Variable
1	14.269655	0.1486	0.1486	5.075727	0.0043	
2	18.878088	0.1966	0.1578	3.699895	0.0106	0.9916
3	21.903078	0.2282	0.1877	2.748968	0.0111	0.9918
4	24.167157	0.2517	0.1877	2.623513	0.0111	0.9916
5	26.705701	0.2782	0.1893	2.073863	0.0113	0.9914
6	28.466963	0.2965	0.1958	2.023150	0.0113	0.9927
7	30.338115	0.3160	0.1958	1.906582	0.0113	1.0351
8	31.993414	0.3333	0.2145	1.829092	0.0117	1.0203
9	33.791416	0.3520	0.2145	1.734839	0.0117	1.1004
10	35.400976	0.3688	0.2252	1.661294	0.0119	1.0955
11	37.045861	0.3859	0.2333	1.645777	0.0120	1.0950
12	38.514796	0.4012	0.2333	1.641035	0.0120	1.0950
13	40.075066	0.4174	0.2462	1.578818	0.0122	1.0903
14	41.568625	0.4330	0.2462	1.555217	0.0122	1.0903
15	43.111311	0.4491	0.2462	1.548926	0.0122	1.0903
16	44.584612	0.4644	0.2462	1.545298	0.0122	1.0903
17	46.100224	0.4802	0.2538	1.537361	0.0124	1.0892
18	47.580873	0.4956	0.2538	1.522834	0.0124	1.0892
19	48.978020	0.5102	0.2538	1.518141	0.0124	1.0892
20	50.489323	0.5259	0.2538	1.507744	0.0124	1.0892
21	51.997062	0.5416	0.2538	1.501807	0.0124	1.0892
22	53.498395	0.5573	0.2538	1.499339	0.0124	1.0892
23	54.982973	0.5727	0.2615	1.482932	0.0126	1.0875
24	56.453832	0.5881	0.2693	1.480621	0.0125	1.0875
25	57.934102	0.6035	0.2693	1.474760	0.0125	1.0875
26	59.408841	0.6188	0.2693	1.400954	0.0125	1.0875
27	60.681938	0.6321	0.2693	1.327516	0.0125	1.0875
28	62.009454	0.6459	0.2693	1.255397	0.0125	1.0875
29	63.032289	0.6566	0.2862	1.237242	0.0133	1.0759
30	63.821130	0.6648	0.2862	1.203431	0.0133	1.0759
31	64.942290	0.6765	0.2631	1.137188	0.0138	1.0682
32	65.829529	0.6857	0.2631	1.043253	0.0167	1.0147
33	66.816439	0.6960	0.2631	1.043149	0.0326	1.0143
34	67.792590	0.7062	0.2631	1.014065	0.0326	1.0077
35	68.641746	0.7150	0.2631	0.984193	0.0326	0.9841

The clusters explained 71.5% of the variation in the data.

The next step in the model-building process is to eliminate the irrelevant predictor variables. This can be accomplished using the Regression node in SAS Enterprise Miner. The Regression node can create several types of regression models, including linear and logistic. The type of default regression type is determined by the target's measurement level.

- 6. Estimate a logistic regression model.
 - a. Click the **Model** tab and drag the **Regression** node into the diagram workspace. Connect the **Variable Clustering** node to the **Regression** node.

b. Select **Selection Model** ⇒ **Forward** and select **Selection Criterion** ⇒ **Validation Error** from the Regression node Properties panel.

The choices for the selection criterion have several model fit statistics that are useful for model selection.

AIC is the Akaike information criterion, and SBC is the Schwarz's Bayesian Criterion. These are goodness-of-fit measures that you can use to compare one model to another, and they are useful when you do not have validation data to use for selecting the best model. These measures adjust the -2 log likelihood statistic for the number of terms in the model and the number of observations. The difference between the two measures is that SBC uses a bigger penalty for extra variables. Therefore, SBC favors more parsimonious models. For both measures, lower values indicate a more desirable model.

Other choices in the selection criterion include validation error, validation misclassification, profit/loss, and validation profit/loss. When validation data is available, you should select the model based on the validation performance. In this example, you use validation error.

7. Right-click the **Regression** node and click **Run**. View the results.

The Results window contains four sub-windows: Score Rankings Overlay, Fit Statistics, Effects Plot, and Output.

The Score Rankings Overlay window shows a cumulative lift chart where, for a given percentile, you can see the lift of the model.

By positioning the mouse cursor over a point along the lift curve for the validation data, you can see a pop-up flag with information about the percentile and lift. For example, at the 5th percentile, the lift is 3.43 on the validation data set. This means that if the catalog company mailed to the top 5 percent of its customers based on the predicted probabilities, then you would obtain 3.43 times more responders compared to a 5-percent random sample of the customers.

Other graphs that are available in the Score Rankings Overlay window include the Gains chart, the %Response chart, and the Cumulative %Response chart.

The Effects Plot window shows a bar chart of the absolute values of the coefficients in the final model. The bars are color-coded to indicate the algebraic signs of the coefficients.

The Fit Statistics window shows a table of model fit statistics. If the decision predictions are of interest, model fit can be judged by misclassification. If estimate predictions are the focus, model fit can be assessed by average squared error. If there is a large discrepancy between the values of these two statistics on the training and validation data sets, then there is evidence of overfitting the model.

The Output window gives the standard output for logistic regression.

Variable	Summary				
Role	Measuremen Level	t Frequency Count			
INPUT	INTERVAL	35			
TARGET	BINARY	1			
	. 1				
Model Ev	ents				
	1	Measurement	Number of		
Target	Event	Level	Levels	Order	Label
RESPOND	1	BINARY	2	Descending	response target

The initial lines of the Output window summarize the roles of the variables used (or not) by the Regression node. The model has 35 inputs that predict a binary target.

The DMREG Procedure										
Model Information										
Training Data Set DMDB Catalog Target Variable Target Measurement Level Number of Target Categories Error Link Function Number of Model Parameters Number of Observations	2 MBernoulli Logit									
Target Profile										
Ordered Value RESPOND Fre	Total guency									
1 1 2 0	1825 30410									

The Model Information table shows the training data set name, the target variable name, the number of target categories, the number of model parameters, and the number of observations. The Target Profile table shows the number of observations for each target category.

The output of the forward selection method shows the results of each model fitted in each step. The output below shows the results of the final model.

	Effect		Number	Score		Validation	
Step	Entered	DF	In	Chi-Square	Pr > ChiSq	Error Rate	
1	DOLINDET	1	1	418.2287	<.0001	6878.3	
2	TOTORDQ20	1	2	178.2565	<.0001	6847.2	
3	MONLAST	1	3	113.3610	<.0001	6781.4	
4	TOTORDQ22	1	4	47.4870	<.0001	6751.4	
5	CATALOGCNT	1	5	36.9828	<.0001	6727.5	
6	TOTORDQ18	1	6	19.9779	<.0001	6719.0	
7	TOTORDQ21	1	7	14.9769	0.0001	6712.7	
8	TOTORDQ12	1	8	13.5709	0.0002	6701.1	
9	TOTORDQ19	1	9	11.8344	0.0006	6702.1	
10	DEPT03	1	10	10.4403	0.0012	6701.4	
11	CCPAYM1	1	11	9.3003	0.0023	6709.1	
12	TOTORDQ05	1	12	6.4600	0.0110	6716.5	
13	DOLLARQ09	1	13	5.3211	0.0211	6717.9	
select	ed model, base	d on the	error rat	e for the vali	dation data, i	s the model train	ed in Step 8. It consists of the following eff

The Summary of Forward Selection table shows the variables that were selected in the forward selection method. This model has 13 inputs.

Likelihoo	d Ratio Test fo	r Global Null	Hypothesis:	BETA=0	
-2 Log Li Intercept	Intercept &	Likelihood Ratio			
Only	Covariates	Chi-Square	DF	Pr > ChiSq	
14025.546	13354.783	670.7623	8	<.0001	

The likelihood ratio test tests the null hypothesis that all regression coefficients of the model are 0. A significant *p*-value for the likelihood ratio (for this example, the *p*-value is less than .0001) provides evidence that at least one of the regression coefficients for an explanatory variable is nonzero. The final model contains 8 terms plus an intercept.

	Analysis of Maximum Likelihood Estimates										
			Standard	Wald		Standardized					
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)				
Intercept	1	-3.1029	0.0576	2903.87	<.0001		0.045				
CATALOGCNT	1	0.0529	0.0101	27.45	<.0001	0.0912	1.054				
DOLINDET	1	0.000109	0.000081	1.80	0.1800	0.0189	1.000				
MONLAST	1	-0.00586	0.000931	39.59	<.0001	-0.1300	0.994				
TOTORDQ12	1	0.1614	0.0461	12.28	0.0005	0.0363	1.175				
TOTORDQ18	1	0.2438	0.0581	17.62	<.0001	0.0440	1.276				
TOTORDQ20	1	0.3782	0.0427	78.56	<.0001	0.0963	1.460				
TOTORDQ21	1	0.2291	0.0583	15.43	<.0001	0.0417	1.257				
TOTORDQ22	1	0.3705	0.0580	40.79	<.0001	0.0642	1.448				
Odds Rati	o Esti	mates									
		Point									
Effect		Estimate									
CATALOGCNT		1.054									
DOLINDET		1.000									
MONLAST		0.994									
TOTORDQ12		1.175									
TOTORDQ18		1.276									
TOTORDQ20		1.460									
TOTORDQ21		1.257									
TOTORDQ22		1.448									

The parameter estimates measure the rate of change in the logit (log of the odds) corresponding to a one-unit change in the predictor variable, adjusted for the effects of the other predictors. For example, a one-unit change in **CATALOGCNT** (number of catalogs received) corresponds to a .054 increase in the log odds of purchasing a product from the catalog, adjusted for the other predictor variables. The Wald chi-square and its associated *p*-value test whether the parameter estimate is significantly different from 0.

The parameter estimates cannot generally be compared across different variables because the coefficients depend directly on the units the variable was measured in. One solution is to use standardized estimates, which convert the parameter estimates into standard deviation units. The

absolute value of the standardized estimates can be used to give an approximate ranking of the relative importance of the predictor variables. Therefore, **MONLAST** (months since last purchase) is the most important predictor variable followed by **TOTORDQ20** (total orders in the fourth quarter of 1997) and **CATALOGCNT** (number of catalogs received).

The odds ratio measures the effect of the predictor variable on the outcome, adjusted for the effects of the other predictor variables. For example, an increase of one month since the last order was placed yields a .6% decrease in the odds of purchasing a product from the catalog (calculated as 100(0.994-1)). This might not be as meaningful on a month-by-month basis, so computed as years, it translates to a 7.2% decrease in the odds of responding for every year increase since the last purchase. Furthermore, a one-catalog increase in the number of catalogs received yields a 5.4% increase in the odds of purchasing a product.

The output also shows the assessment statistics for the validation data set for the 5th percentile, the 10th percentile, and so on.

Data Role=VALIDATE Target Variable=RESPOND					
Posterior	Number		Mean		
Probability	of	Number of	Posterior		
Range	Events	Nonevents	Probability	Percentage	
0.95-1.00	1	1	0.98951	0.0124	
0.90-0.95	1	0	0.91630	0.0062	
0.85-0.90	0	1	0.86650	0.0062	
0.80-0.85	0	0		0.0000	
0.75-0.80	0	0		0.0000	
0.70-0.75	0	1	0.71097	0.0062	
0.65-0.70	1	2	0.67365	0.0186	
0.60-0.65	1	0	0.62780	0.0062	
0.55-0.60	2	1	0.59372	0.0186	
0.50-0.55	2	3	0.51951	0.0310	
0.45-0.50	2	2	0.48270	0.0248	
0.40-0.45	2	1	0.42371	0.0186	
0.35-0.40	4	9	0.36608	0.0806	
0.30-0.35	6	15	0.31939	0.1303	
0.25-0.30	15	24	0.27050	0.2419	
0.20-0.25	14	69	0.22243	0.5149	
0.15-0.20	41	163	0.17055	1.2654	
0.10-0.15	115	748	0.11918	5.3533	
0.05-0.10	383	5483	0.06734	36.3873	
0.00-0.05	324	8684	0.03636	55.8774	

Another useful table in the output shows the distribution of the posterior probabilities for the validation data set.

Percentile Gain Lift Lift Response % Response Observations Probability 5 243.140 3.43140 3.43140 19.4548 19.4548 807 0.16 10 164.623 1.86007 2.64623 10.5459 15.0031 806 0.10 15 125.304 1.46617 2.25304 8.3127 12.7739 806 0.06 20 99.622 1.22546 1.99622 6.9479 11.3178 806 0.07 25 80.710 1.05039 1.80710 5.9553 10.2456 806 0.06 30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.03 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806	Data Role=VALIDATE Target Variable=RESPOND							
Percentile Gain Lift Lift Response % Response Observations Probable 5								Mean
5 243.140 3.43140 19.4548 19.4548 807 0.18 10 164.623 1.86007 2.64623 10.5459 15.0031 806 0.10 15 125.304 1.46617 2.25304 8.3127 12.7739 806 0.08 20 99.622 1.22546 1.99622 6.9479 11.3178 806 0.06 25 80.710 1.05039 1.80710 5.9553 10.2456 806 0.06 30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.03 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.03 50 39.379 0.94098 1.339379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 <td< td=""><td></td><td></td><td></td><td>Cumulative</td><td>*</td><td>Cumulative</td><td>Number of</td><td>Posterior</td></td<>				Cumulative	*	Cumulative	Number of	Posterior
10 164.623 1.86007 2.64623 10.5459 15.0031 806 0.10 15 125.304 1.46617 2.25304 8.3127 12.7739 806 0.08 20 99.622 1.22546 1.99622 6.9479 11.3178 806 0.05 25 80.710 1.05039 1.80710 5.9553 10.2456 806 0.06 30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.03 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.03 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 <t< th=""><th>rcentile</th><th>Gain</th><th>Lift</th><th>Lift</th><th>Response</th><th>% Response</th><th>Observations</th><th>Probability</th></t<>	rcentile	Gain	Lift	Lift	Response	% Response	Observations	Probability
15 125.304 1.46617 2.25304 8.3127 12.7739 806 0.08 20 99.622 1.22546 1.99622 6.9479 11.3178 806 0.07 25 80.710 1.05039 1.80710 5.9553 10.2456 806 0.06 30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.03 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.03 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 70 19.097 0.76591 1.19097 4.3424 6.7523 8	5	243.140	3.43140	3.43140	19.4548	19.4548	807	0.18015
20 99.622 1.22546 1.99622 6.9479 11.3178 806 0.03 25 80.710 1.05039 1.80710 5.9553 10.2456 806 0.06 30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.03 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.03 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806	10	164.623	1.86007	2.64623	10.5459	15.0031	806	0.10221
25 80.710 1.05039 1.80710 5.9553 10.2456 806 0.06 30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.05 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.05 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.05 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.03 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806<	15	125.304	1.46617	2.25304	8.3127	12.7739	806	0.08419
30 66.643 0.96286 1.66643 5.4591 9.4480 806 0.06 35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.05 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.05 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.05 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.03 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 </td <td>20</td> <td>99.622</td> <td>1.22546</td> <td>1.99622</td> <td>6.9479</td> <td>11.3178</td> <td>806</td> <td>0.07390</td>	20	99.622	1.22546	1.99622	6.9479	11.3178	806	0.07390
35 59.719 1.18169 1.59719 6.6998 9.0555 806 0.03 40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.03 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.04 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03	25	80.710	1.05039	1.80710	5.9553	10.2456	806	0.06746
40 52.065 0.98474 1.52065 5.5831 8.6215 806 0.03 45 44.409 0.83156 1.44409 4.7146 8.1875 806 0.03 50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.04 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	30	66.643	0.96286	1.66643	5.4591	9.4480	806	0.06347
45	35	59.719	1.18169	1.59719	6.6998	9.0555	806	0.05996
50 39.379 0.94098 1.39379 5.3350 7.9022 806 0.04 55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.04 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	40	52.065	0.98474	1.52065	5.5831	8.6215	806	0.05518
55 33.472 0.74403 1.33472 4.2184 7.5674 806 0.04 60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.04 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	45	44.409	0.83156	1.44409	4.7146	8.1875	806	0.05136
60 27.639 0.63461 1.27639 3.5980 7.2366 806 0.04 65 22.366 0.59085 1.22366 3.3499 6.9377 806 0.04 70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	50	39.379	0.94098	1.39379	5.3350	7.9022	806	0.04757
65	55	33.472	0.74403	1.33472	4.2184	7.5674	806	0.04496
70 19.097 0.76591 1.19097 4.3424 6.7523 806 0.03 75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	60	27.639	0.63461	1.27639	3.5980	7.2366	806	0.04298
75 15.680 0.67838 1.15680 3.8462 6.5586 806 0.03 80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	65	22.366	0.59085	1.22366	3.3499	6.9377	806	0.04116
80 11.869 0.54708 1.11869 3.1017 6.3426 806 0.03 85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	70	19.097	0.76591	1.19097	4.3424	6.7523	806	0.03973
85 8.378 0.52520 1.08378 2.9777 6.1446 806 0.03	75	15.680	0.67838	1.15680	3.8462	6.5586	806	0.03797
	80	11.869	0.54708	1.11869	3.1017	6.3426	806	0.03586
l	85	8.378	0.52520	1.08378	2.9777	6.1446	806	0.03348
90 6.552 0.75497 1.06552 4.2804 6.0411 806 0.03	90	6.552	0.75497	1.06552	4.2804	6.0411	806	0.03016
95 2.268 0.25166 1.02268 1.4268 5.7982 806 0.02	95	2.268	0.25166	1.02268	1.4268	5.7982	806	0.02514
100 0.000 0.56896 1.00000 3.2258 5.6696 806 0.01	100	0.000	0.56896	1.00000	3.2258	5.6696	806	0.01863

8. View model performance across the fitted models.

Select **View** ⇒ **Model** ⇒ **Iteration Plot** in the Results window.

The Iteration Plot window appears.

The Iteration Plot window shows the average squared error (training and validation) from the model selected in each step of the backward selection process. The smallest average squared error occurs in model 8.

If your iteration plot shows that the validation ASE is decreasing (so that the final model is selected), this suggests that you should change your *p*-values for forward selection to let more variables into the model. You can make this change in the Regression node's Properties panel.

9. View the misclassification rate.

From the Iteration Plot menu, select Misclassification Rate.

The iteration plot shows that the model with the smallest misclassification rate occurs in steps 6 and 7. If your analysis objective requires decision predictions, the predictions from the Step 6 model are as accurate as the predictions from the Step 7 model.

To compute an ROC curve, the Model Comparison node must be used. This node also is used later to collect assessment information from other modeling nodes and to compare model performance measures.

- 10. Run the Model Comparison node and view the results.
 - a. Connect the **Regression** node to the **Model Comparison** node that you added earlier Right-click the **Model Comparison** node and click **Run**. View the results.

The Results window contains four sub-windows: ROC chart, Score Rankings Overlay, Fit Statistics, and Output.

The ROC chart window shows that two of the three models have good predictive accuracy as the ROC curves deviate from the 45% angle. The logistic regression and Tree 2 models perform similarly on the validation data set. The logistic regression performs slightly better. The Score Rankings Overlay window illustrates the cumulative lift chart for the training and validation data sets. The Fit Statistics window shows the model fit statistics for the training and validation data sets. The Output window also shows various fit statistics for the selected models.

Data Role=Valid						
Statistics		Tree2	Tree	Reg		
Valid:	Kolmogorov-Smirnov Statistic	0.22	0.15	0.22		
Valid:	Average Squared Error	0.05	0.05	0.05		
Valid:	Roc Index	0.64	0.58	0.65		
Valid:	Average Error Function			0.21		
Valid:	Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff	0.05	0.09	0.06		
Valid:	Cumulative Percent Captured Response	24.16	22.63	26.48		
Valid:	Percent Captured Response	8.53	10.97	9.30		
Valid:	Divisor for VASE	32242.00	32242.00	32242.00		
Valid:	Error Function			6701.14		
Valid:	Gain	141.49	126.21	164.62		
Valid:	Gini Coefficient	0.28	0.15	0.31		
Valid:	Bin-Based Two-Way Kolmogorov-Smirnov Statistic	0.22	0.15	0.22		
Valid:	Kolmogorov-Smirnov Probability Cutoff	0.04	0.12	0.05		
Valid:	Cumulative Lift	2.41	2.26	2.65		
Valid:	Lift	1.71	2.20	1.86		
Valid:	Maximum Absolute Error	0.96	0.95	1.00		
Valid:	Misclassification Rate	0.06	0.06	0.06		
Valid:	Mean Square Error			0.05		
Valid:	Sum of Frequencies	16121.00	16121.00	16121.00		
Valid:	Root Average Squared Error	0.23	0.23	0.23		
Valid:	Cumulative Percent Response	13.69	12.83	15.00		
Valid:	Percent Response	9.67	12.45	10.55		
Valid:	Root Mean Square Error			0.23		
Valid:	Sum of Squared Errors	1676.25	1693.19	1674.73		
Valid:	Sum of Case Weights Times Freq	32242.00	32242.00	32242.00		

In general, if the type of prediction you want is a *decision*, then you want to minimize the misclassification rate and maximize the Kolmogorov-Smirov statistic. If the type of prediction is *ranking*, then you want to maximize the lift, the ROC index, and the Gini coefficient. If the type of prediction you want is *estimates*, then you want to minimize the average squared error (ASE). The three models are equal on ASE. The ROC and Gini favor the logistic regression model over the decision tree models. Lift is highest for the Tree model.