

Slides By:

T.A. Sarah Osama Talaat

E-mail: SarahOsama.fci@gmail.com

Slides were prepared based on set of references mentioned in the last slide

Artificial Neural Networks &

Deep Learning

Agenda

- □Python Libraries
- □ Data Preprocessing.
 - □Data cleaning
 - Dealing with missing data.
 - Dealing with categorical data.
 - ☐ Feature scaling
 - Rescaling
 - Mean normalization
 - Standardization
 - Scaling to unit length
 - □Dimensionality reduction
 - Feature selection
 - Feature extraction
 - ☐Partitioning a dataset in training and testing sets

Python Libraries

Library	Uses
numpy	numpy is a library that contains a mathematical tools. Basically, we need this library to include any type of mathematical operations.
pandas	pandas considers as one of the best libraries that is used to import and manage the datasets.
matplotlib.pyplot	matplotlib.pyplot is a sub library which is actually used to plot a set of charts
xlsxwriter	xlsxwriter is a library that is used to write in Excel files.

Python Libraries

sklearn.preprocessing	This a package/library provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.
Uses	 Standardization, or mean removal and variance scaling Non-linear transformation Normalization Binarization Encoding categorical features Imputation of missing values Generating polynomial features Custom transformers

Python Libraries

Class	Imputer	Imputer			
Uses	The imputer class provides basic strategies for imputing missing values, either using the mean, the median or the most frequent value of the row/column.				
Instruction	from sklearn.prepro	cessing import Imputer			
Some of the Imputer parameters	missing_valuesstrategyaxis				
	Parameter	Values			
	missing_values	integer or "NaN", optional (default="NaN")			
The possible values for each parameter	strategy	string, mean, median or most_frequent, optional (default="mean")			

Deep Learning

Data Preprocessing

Why we need to the data preprocessing process?

- The main objectives of data preprocessing are to **manipulate** and **transform** raw data into **cleaned** and **scaled format**.
- In addition it is important to **compress** the data onto a **smaller dimensional** subspace while retaining most of the **relevant** information.

Types of data preprocessing?

Data cleaning: missing data

□In real-world applications are **familiar** that the collected data samples contain one or more missing values for various reasons.

These reasons include:

- There could have been an error in the data collection process,
- certain measurements are not applicable and
- particular fields could have been simply left blank in a survey, for instance. We typically see *missing values* as the blank spaces in our data table or as placeholder strings such as NaN (Not A Number).

Data cleaning: missing data

Deep Learning

Data cleaning: missing data

□There are several available solutions to avoid the problem of missing data:

- Eliminate/Remove: you can simply eliminate/remove the corresponding features (columns) or samples (rows) that contain missing data from the used dataset (BUT it's quite dangers, because we might lose too much valuable data).
- Mean/Median/Most frequent value: you can take the mean/median/most frequent value from the column/row that contains missing data.
 - Mean is used to replace the missing values using the mean/average along the axis (i.e. column or row).
 - Median is used to replace missing values using the median along the axis.
 - Most frequent value is used to replace missing values using the most frequent value along the axis.

Back to data cleaning: missing data

\Box Example(2.1):

■ In this dataset, we have 5 columns which includes 4 features (independent variables) and one response (dependent variable).

Back to data cleaning: missing data

\square Example(2.1):

■ In this dataset, we have 5 columns which includes 4 features (independent variables) and one response (dependent variable).

	Α	В	C	D	E
1	Faculty	Name	Age	year	Score
2	FCI	Sarah	21	4	1.3
3	Medicine	Ahmed	23	6	2.5
4	Science	Mohamma	19	2	4
5	Alsun	Moataz		4	3.7
6	Alsun	Hagar	19	2	4
7	Engineerin	Emy	19	3	3
8	Medicine	Yomna		2	2.5
9	Medicine	Faisal	22	6	2.75
10	Pharmacy	Khaled		5	4.2
11	Pharmacy	Aly	18	2	3
12	Medicine	Osama	17	1	4.5

Back to data cleaning: missing data

\square Example(2.1):

■ In this dataset, we have 5 columns which includes 4 features (independent variables) and one response (dependent variable).

	Α	В	C	D	Е
1	Faculty	Name	Age	year	Score
2	FCI	Sarah	21	4	1.3
3	Medicine	Ahmed	23	6	2.5
4	Science	Mohamma	19	2	4
5	Alsun	Moataz		4	3.7
6	Alsun	Hagar	19	2	4
7	Engineerin	Emy	19	3	3
8	Medicine	Yomna		2	2.5
9	Medicine	Faisal	22	6	2.75
10	Pharmacy	Khaled		5	4.2
11	Pharmacy	Aly	18	2	3
12	Medicine	Osama	17	1	4.5

Solution by using python:

• From "scikit-learn" package we use "Imputer" class for data missing treatment. It is included in "preprocessing" module.

Data Preprocessing

Back to data cleaning: missing data

Artificial Neural Networks &

Deep Learning

\square Example(2.1):

• We can solve the missing data problem in Python by using the following instructions;

```
△27 import numpy as np
 28 import pandas as pd
△29 import matplotlib.pyplot as plt
 30
 31# Importing the dataset
 32 dataset = pd.read csv('Dataset 1.csv')
 33
 34 # Create a matrix to store the predictor (independent) variables
 35 X = dataset.iloc[:, :-1].values
 36
 37 # Create a victore to store the response (dependent) variable
 38 y = dataset.iloc[:, 3].values
 39 # Dealing with missing data by the eliminating method
 40 # Remove the rows that have missing cells
 41 dataset.dropna()
 41 # Remove the columns that have missing cells
 43 dataset.dropna(axis=1)
 44 # Dealing with missing data by using mean, median or most frequent
 45
```

&

Deep Learning

Data Preprocessing

Back to data cleaning: missing data

\square Example(2.1):

• We can solve the missing data problem in Python by using the following instructions;

```
23 # Data Preprocessing
24 # Importing the libraries
125 import numpy as np
26 import pandas as pd
27 import matplotlib.pyplot as plt
28
29 # Importing the dataset
30 dataset = pd.read csv('Dataset 1.csv')
31 # Create a matrix to store the predictor (independent) variables
32 X = dataset.iloc[:, :-1].values
33 # Create a victore to store the response (dependent) variable
34 y = dataset.iloc[:, 3].values
35 # Dealing with missing data by using mean, median or most frequent
36 from sklearn.preprocessing import Imputer
37
38 # strategy can be "mean", "median" or "most frequent"
39 #If "mean", then replace missing values using the mean along the axis.
40 #If "median", then replace missing values using the median along the axis.
41 #If "most frequent", then replace missing using the most frequent value along
43 imputer = Imputer(missing values = 'NaN', strategy = 'mean', axis = 0)
44 imputer = imputer.fit(X[:, 2:3])
45 X[:, 2:3] = imputer.transform(X[:, 2:3])
```

Back to data cleaning: missing data

 \Box Example(2.1):

• We can solve the missing data problem in Python by using the following instructions;

```
23 # Data Preprocessing
24# Importing the libraries
125 import numpy as np
26 import pandas as pd
27 import matplotlib.pyplot as plt
29 # Importing the dataset
30 dataset = pd.read csv('Dataset 1.csv')
31# Create a matrix to store the predictor (independent) variables
32 X = dataset.iloc[:, :-1].values
33# Create a victore to store the response (dependent) variable
34 y = dataset.iloc[:, 3].values
35# Dealing with missing data by using mean, median or most frequent
36 from sklearn.preprocessing import Imputer
38# strategy can be "mean", "median" or "most frequent"
39#If "mean", then replace missing values using the mean along the axis.
40 #If "median", then replace missing values using the median along the axis.
41 #If "most frequent", then replace missing using the most frequent value along
43 imputer = Imputer(missing values = 'NaN', strategy = 'mean', axis = 0)
44 imputer = imputer.fit(X[:, 2:3])
45 X[:, 2:3] = imputer.transform(X[:, 2:3])
```

	Α	В	С	D	E
1	Faculty	Name	Age	year	Score
2	FCI	Sarah	21	4	1.3
3	Medicine	Ahmed	23	6	2.5
4	Science	Mohammad	19	2	4
5	Alsun	Moataz	19.75	4	3.7
6	Alsun	Hagar	19	2	4
7	Engineering	Emy	19	3	3
8	Medicine	Yomna	19.75	2	2.5
9	Medicine	Faisal	22	6	2.75
10	Pharmacy	Khaled	19.75	5	4.2
11	Pharmacy	Aly	18	2	3
12	Medicine	Osama	17	1	4.5

Data cleaning: categorical data

\Box Example(2.2):

- In this dataset, we have three independent variables and one dependent variable.
- In this dataset all input variables consider as categorical features.

		Α	В		С	D	
Nominal	1	Country	Color		Size	Prise	Ordinal
Features	2	Egypt	red		S	150.75	feature
	3	USA	black	Ш	M	200	
	4	KSA	blue		L	170	
	5	Canda	white		S	300	
	6	Egypt	green		M	120	
	7	China	green	Ш	ΧI	200.5	
	8	Germany	blue		2XL	499.99	

Deep Learning

Data cleaning: categorical data

\Box Example(2.2):

• At the first, we deal with the ordinal feature (feature number 3 at column 2).

```
1# Data Preprocessing
 3# Importing the libraries
4 import numpy as np
5 import matplotlib.pyplot as plt
 6 import pandas as pd
8# Importing the dataset
9 dataset = pd.read csv('Dataset 2.csv')
10 X = dataset.iloc[:, :-1].values
11 Y = dataset.iloc[:, 3].values
  # Dealing with categorical data
  # Mapping ordinal feature/independent variable
16# Define a new dictionary to store the sizes and its values
17 size mapping = {'S':1,'M':2,'L':3,'XL':4,'2XL':5}
18 dataset['Size'] = dataset['Size'].map(size mapping)
19 X[:,2] = dataset.iloc[:,2].values
```

Data cleaning: categorical data

\Box Example(2.2):

• At the first, we deal with the ordinal feature (feature number 3 at column 2).

```
1# Data Preprocessing
3# Importing the libraries
4 import numpy as np
5 import matplotlib.pyplot as plt
 6 import pandas as pd
8# Importing the dataset
9 dataset = pd.read_csv('Dataset_2.csv')
10 X = dataset.iloc[:, :-1].values
11 Y = dataset.iloc[:, 3].values
1 # Dealing with categorical data
 # Mapping ordinal feature/independent variable
 # Define a new dictionary to store the sizes and its values
 size_mapping = {'S':1,'M':2,'L':3,'XL':4,'2XL':5}
 dataset['Size'] = dataset['Size'].map(size mapping)
 X[:,2] = dataset.iloc[:,2].values
```

	Country	Color	S	ize	Prise
0	Egypt	red		1	150.75
1	USA	black		2	200.00
2	KSA	blue		3	170.00
3	Canda	white		1	300.00
4	Egypt	green		2	120.00
5	China	green		4	200.50
6	Germany	blue		5	499.99

Data Preprocessing

Data cleaning: categorical data

Deep Learning

\square Example(2.2):

• If we want to transform the integer values back to the original string representation at a later stage, we can simply define a reverse-mapping dictionary.

```
1# Data Preprocessing
 3# Importing the libraries
 4 import numpy as np
 5 import matplotlib.pyplot as plt
 6 import pandas as pd
 7# Importing the dataset
 8 dataset = pd.read csv('Dataset 2.csv')
 9 X = dataset.iloc[:, :-1].values
10 Y = dataset.iloc[:, 3].values
11 # Dealing with categorical data
12 # Mapping ordinal feature/independent variable
13 # Define a new dictionary to store the sizes and its values
14 size mapping = {'S':1,'M':2,'L':3,'XL':4,'2XL':5}
15 dataset['Size'] = dataset['Size'].map(size mapping)
16 X[:,2] = dataset.iloc[:,2].values
 # If we want to transform the integer values back to the original
  # string representation at a later stage, we can simply define
  #a reverse-mapping dictionary
 int_size_mapping = {v: k for k, v in size_mapping.items()}
  dataset['Size'] = dataset['Size'].map(int_size_mapping)
 X[:,2] = dataset.iloc[:,2].values
```

\square Example(2.2):

• If we want to transform the integer values back to the original string representation at a later stage, we can simply define a reverse-mapping dictionary.

```
1# Data Preprocessing
 3# Importing the libraries
 4 import numpy as np
 5 import matplotlib.pyplot as plt
 6 import pandas as pd
 7# Importing the dataset
 8 dataset = pd.read csv('Dataset 2.csv')
 9 X = dataset.iloc[:, :-1].values
10 Y = dataset.iloc[:, 3].values
11# Dealing with categorical data
12 # Mapping ordinal feature/independent variable
13 # Define a new dictionary to store the sizes and its values
14 size mapping = {'S':1, 'M':2, 'L':3, 'XL':4, '2XL':5}
15 dataset['Size'] = dataset['Size'].map(size mapping)
16 X[:.2] = dataset.iloc[:.2].values
1 # If we want to transform the integer values back to the original
1 # string representation at a later stage, we can simply define
1 #a reverse-mapping dictionary
 int_size_mapping = {v: k for k, v in size_mapping.items()}
 dataset['Size'] = dataset['Size'].map(int_size_mapping)
2 X[:,2] = dataset.iloc[:,2].values
```

	Country	Color	Size	Prise
0	Egypt	gypt red		150.75
1	USA	black	М	200.00
2	KSA	KSA blue		170.00
3	Canda	white	S	300.00
4	Egypt	green	М	120.00
5	China	green	XL	200.50
6	Germany	blue	2XL	499.99

Data cleaning: categorical data

\square Example(2.2):

• Now, we deal with the nominal features (feature number 1 and 2 at column 0 and 1).

```
1# Data Preprocessing
 3# Importing the libraries
4 import numpy as np
 5 import matplotlib.pyplot as plt
 6 import pandas as pd
7# Importing the dataset
8 dataset = pd.read csv('Dataset 2.csv')
9 X = dataset.iloc[:, :-1].values
10 Y = dataset.iloc[:, 3].values
11 # Dealing with categorical data
12
13 # Encoding nominal features/independent variable
14 from sklearn.preprocessing import LabelEncoder
15 Country_labelencoder = LabelEncoder()
16 X[:, 0] = Country_labelencoder.fit_transform(X[:, 0])
17 Color labelencoder = LabelEncoder()
18 X[:, 1] = Color labelencoder.fit transform(X[:, 1])
```

Data Preprocessing

Data cleaning: categorical data

Deep Learning

\Box Example(2.2):

• Now, we deal with the nominal features (feature number 1 and 2 at column 0 and 1).

```
In [38]:
         # Importing the libraries
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
          # Dealing with categorical data
         # Encoding nominal features/independent variable
         from sklearn.preprocessing import LabelEncoder
         Country labelencoder = LabelEncoder()
         X[:, 0] = Country labelencoder.fit transform(X[:, 0])
         Color labelencoder = LabelEncoder()
         X[:, 1] = Color labelencoder.fit transform(X[:, 1])
         X
         array([[2, 3, 1],
Out[38]:
                 [5, 0, 2],
                 [4, 1, 3],
                 [0, 4, 1],
                 [2, 2, 2],
                 [1, 2, 4],
                 [3, 1, 5]], dtype=object)
```

Data cleaning: categorical data

&
Deep Learning

```
\squareExample(2.2):
          1# Data Preprocessing
          3# Importing the libraries
        4 import numpy as np
        5 import matplotlib.pyplot as plt
          6 import pandas as pd
          7 # Importing the dataset
          8 dataset = pd.read csv('Dataset 2.csv')
          9 X = dataset.iloc[:, :-1].values
         10 Y = dataset.iloc[:, 3].values
         11 # Dealing with categorical data
         12 # Mapping ordinal feature/independent variable
         13 # Define a new dictionary to store the sizes and its values
         14 size_mapping = {'S':1,'M':2,'L':3,'XL':4,'2XL':5}
         15 dataset['Size'] = dataset['Size'].map(size mapping)
         16 X[:,2] = dataset.iloc[:,2].values
         18 # Encoding nominal features/independent variable
         19 from sklearn.preprocessing import LabelEncoder, OneHotEncoder
         20 Country labelencoder = LabelEncoder()
         21 X[:, 0] = Country labelencoder.fit transform(X[:, 0])
         22 Color labelencoder = LabelEncoder()
           X[:, 1] = Color labelencoder.fit transform(X[:, 1])
         25 Country color onehotencoder = OneHotEncoder(categorical features = [0,1])
         26 X = Country_color_onehotencoder.fit_transform(X).toarray()
```

Data cleaning: categorical data

```
In [78]: # Data Preprocessing
         # Importing the libraries
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         # Importing the dataset
         dataset = pd.read csv('Dataset 2.csv')
         X = dataset.iloc[:, :-1].values
         Y = dataset.iloc[:, 3].values
         # Dealing with categorical data
         # Mapping ordinal feature/independent variable
         # Define a new dictionary to store the sizes and its values
         size mapping = \{'S':1,'M':2,'L':3,'XL':4,'2XL':5\}
         dataset['Size'] = dataset['Size'].map(size mapping)
         X[:,2] = dataset.iloc[:,2].values
         # Encoding nominal features/independent variable
         from sklearn.preprocessing import LabelEncoder, OneHotEncoder
         Country labelencoder = LabelEncoder()
         X[:, 0] = Country labelencoder.fit transform(X[:, 0])
         Color labelencoder = LabelEncoder()
         X[:, 1] = Color labelencoder.fit transform(X[:, 1])
         Country color onehotencoder = OneHotEncoder(categorical features = [0,1])
         X = Country color onehotencoder.fit transform(X).toarray()
Out[78]: array([[ 0.,
                                 0., 0.,
                                          0.,
                                                0.,
                       0., 0.,
                                 0., 0., 1., 1.,
                                0., 1.,
                                 0., 0.,
                                 0., 0.,
                           0., 0., 0.,
                                          0.,
                                               0.,
                                                    0.,
                       0., 0., 1., 0., 0., 0., 1.,
```

Data cleaning: categorical data

```
In [78]: # Data Preprocessing
           # Importing the libraries
           import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           # Importing the dataset
    Out[78]: array([
                                                                                              Color feature
Country feature after
                                                                                              after dummy
  dummy encoding
                                                                                                encoding
                                      0.,
                                                     0.,
                             0.,
                                  0.,
                                           0.,
                                                              0.,
```

Feature scaling: rescaling

\Box Example(2.3):

• In the following dataset, we have three independent variables and one dependent variable.

	Α	В	С	D
1	High temp	Solar radiation	Wind speed	Rain
2	13	192	35	18.00
3	39	178	56	12.00
4	9	199	74	23.00
5	14	100	57	12.00
6	1	187	54	25.00
7	-4	139	57	14.00
8	46	156	58	13.00
9	6	195	51	24.00
10	-4	166	38	10.00
11	11	163	68	12.00
12	29	178	42	22.00

Feature scaling: rescaling

```
1# Data Preprocessing
  2# Importing the libraries
 3 import numpy as np
4 import matplotlib.pyplot as plt
  5 import pandas as pd
  6# Importing the dataset
  7 dataset = pd.read csv('Dataset 3.csv')
  8 X = dataset.iloc[:, :-1].values
  9Y = dataset.iloc[:, 3].values
 10# Feature scaling: rescaling
 11 #The min-max scaling procedure is implemented in scikit-learn and can be used
  !# as follows:
 1 from sklearn.preprocessing import MinMaxScaler
 14 Here we scale all input features
 1 minMaxScaled_rescaling = MinMaxScaler()
 1 X_scaled = minMaxScaled_rescaling .fit_transform(X)
```

Feature scaling: rescaling

```
C:\Users\sarah\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarning: Data with input dt
ype int64 was converted to float64 by MinMaxScaler.
warnings.warn(msg, DataConversionWarning)
```

```
array([[ 0.34
                , 0.92929293, 0.
      0.86
              , 0.78787879, 0.53846154],
      [ 0.26
                 , 1. , 1. ],
      [ 0.36
                        , 0.56410256],
      [ 0.1
                , 0.87878788, 0.487179491,
      [ 0. , 0.39393939, 0.56410256],
      [ 1.
                , 0.56565657, 0.589743591,
      [ 0.2
                , 0.95959596, 0.41025641],
                , 0.66666667, 0.07692308],
      [ 0.
                 , 0.63636364, 0.84615385],
      [ 0.3
      0.66
                 , 0.78787879, 0.1794871811)
                                , U.39393939, U.5641UZ56],
                                , 0.56565657, 0.58974359],
                       [ 0.2
                                , 0.95959596, 0.41025641],
                       [ 0.
                                , 0.66666667, 0.07692308],
                       0.3
                                , 0.63636364, 0.84615385],
                                 , 0.78787879, 0.17948718]])
                       [ 0.66
```

Artificial Neural Networks &

Deep Learning

Feature scaling: mean normalization

```
1 # Data Preprocessing
 2 # Importing the libraries
 3 import numpy as np
 4 import matplotlib.pyplot as plt
 5 import pandas as pd
 6# Importing the dataset
7 dataset = pd.read_csv('Dataset_3.csv')
 8 X = dataset.iloc[:, :-1].values
 9Y = dataset.iloc[:, 3].values
11 # Feature scaling mean normalization
12 from sklearn.preprocessing import Normalizer
13 # Here we scale all input features
14 normailzation = Normalizer()
15 X scaled = normailzation.fit_transform(X)
```

Artificial Neural Networks &

Feature scaling: mean normalization

Deep Learning

```
In [8]: runfile('C:/Users/sarah/OneDrive/Machine Learning and Pattern Recognation/Part
1 - Data Preprocessing/Feature scaling rescaling.py', wdir='C:/Users/sarah/OneDrive/
Machine Learning and Pattern Recognation/Part 1 - Data Preprocessing')
C:\Users\sarah\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475:
DataConversionWarning: Data with input dtype int64 was converted to float64 by
MinMaxScaler.
  warnings.warn(msg, DataConversionWarning)
In [9]: X_scaled
Out[9]:
array([[ 0.06646335, 0.98161254,
                                  0.17893979],
       0.20458141, 0.93373054,
                                  0.29375792],
        0.04235212, 0.93645244, 0.34822855],
       [ 0.12073902, 0.86242154,
                                  0.49158028],
       [ 0.0051376 , 0.96073194, 0.27743061],
       [-0.02661585, 0.92490076,
                                  0.379275851,
                                  0.33589482],
        0.26639934, 0.90344123,
       [ 0.02975479,
                     0.96703066,
                                  0.25291571],
       [-0.02348233, 0.97451677,
                                  0.22308215],
       [ 0.06216178, 0.92112449,
                                  0.38427279],
       [ 0.1566104 ,
                     0.96126381,
                                  0.22681506]])
```

Feature scaling: standardization

```
1# Data Preprocessing
 2# Importing the libraries
 3 import numpy as np
4 import matplotlib.pyplot as plt
 5 import pandas as pd
 6# Importing the dataset
7 dataset = pd.read_csv('Dataset_3.csv')
8 X = dataset.iloc[:, :-1].values
 9 Y = dataset.iloc[:, 3].values
11 # Feature scaling standardization
12 from sklearn.preprocessing import StandardScaler
13 # Here we scale all input features
14 standardization = StandardScaler()
15 X scaled = standardization.fit_transform(X)
```

Artificial Neural Networks &

Feature scaling: standardization

Deep Learning

```
\squareExample(2.3):
```

```
In [24]: runfile('C:/Users/sarah/OneDrive/Machine Learning and Pattern
Recognation/Part 1 - Data Preprocessing/Feature scaling rescaling.py',
wdir='C:/Users/sarah/OneDrive/Machine Learning and Pattern Recognation/
Part 1 - Data Preprocessing')
C:\Users\sarah\Anaconda3\lib\site-packages\sklearn\utils\validation.py:
475: DataConversionWarning: Data with input dtype int64 was converted
to float64 by MinMaxScaler.
  warnings.warn(msg, DataConversionWarning)
In [25]: X scaled
Out[25]:
array([[ 0.06646335,
                     0.98161254, 0.17893979],
         0.20458141,
                      0.93373054,
                                  0.29375792],
         0.04235212,
                      0.93645244,
                                  0.34822855],
        0.12073902,
                     0.86242154,
                                  0.49158028],
        0.0051376 ,
                     0.96073194,
                                  0.27743061],
       [-0.02661585,
                     0.92490076,
                                  0.37927585],
        0.26639934,
                     0.90344123,
                                  0.33589482],
       [ 0.02975479, 0.96703066,
                                  0.25291571],
       [-0.02348233, 0.97451677,
                                  0.22308215],
        0.06216178, 0.92112449,
                                  0.38427279],
        0.1566104 ,
                     0.96126381,
                                  0.22681506]])
```

□Dimensionality Reduction:

- In machine learning and statistics, dimensionality reduction or dimension reduction is the process of **reducing** the number of **random variables** under consideration.
- There are two main categories of dimensionality reduction techniques: **feature** selection and feature extraction.
 - Feature Selection: we select a subset of the original feature set.
 - Feature Extraction: we derive information from the feature set to construct a new feature subspace

□Partitioning a dataset in training and testing sets:

- Partitioning is used to determine whether our machine learning algorithm **not only performs well** on the training set but also **generalizes** well to new data,
- We want to **randomly divide** the dataset into a separate **training and testing sets**.
- We use the **training** set to **train** and **optimize** our machine learning model, while we keep the **testing** set until the very end to **evaluate** the final model.

Artificial Neural Networks &

Deep Learning

□Partitioning methods:

Some of partitioning methods

Random splitting

Cross validation

K-Fold

Leave one out

□Random splitting

- Split arrays or matrices into random train and test subsets
- A convenient way to randomly partition the dataset into a separate testing and training dataset is to use the "train_test_split" function from scikit-learn's "cross_validation" submodule.
- Another way is to use the to use the "train_test_split" function from scikit-learn's "model_selection" submodule

Deep Learning

Data Preprocessing

Partitioning a dataset in training and testing sets

\square Example(2.3):

```
1# Data Preprocessing
 3# Importing the libraries
 4 import numpy as np
 5 import matplotlib.pyplot as plt
 6 import pandas as pd
 8# Importing the dataset
 9 dataset = pd.read csv('Dataset 3.csv')
10 X = dataset.iloc[:, :-1].values
11 Y = dataset.iloc[:, 3].values
12
13 # Feature scaling: standardization
14 from sklearn.preprocessing import StandardScaler
15 # Here we scale all input features
16 standardization = StandardScaler()
17 X scaled = standardization.fit transform(X)
  # Partitioning a dataset in training and testing sets
  # Splitting the dataset into the Training set and Test set
 from sklearn.model selection import train test split
22 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
```

File explorer

Help

Deep Learning

\square Example(2.3):

Profiler

Variable explorer

Name	Type	Size	Value
X	int64	(11, 3)	array([[13, 192, 35],
X_scaled	float64	(11, 3)	array([[-0.0970969 [-0.84888381, -1.65043736], [1 53641558
X_test	int64		array([[1, 187, 54],
X_train	int64	(8, 3)	array([[29, 178, 42],
Υ	float64	(11,)	array([18., 12., 23.,, 10., 12., 22.])
dataset	DataFrame	(11, 4)	Column names: High temp, Solar radiation, Wind speed , Rain
y_test	float64	(3,)	array([25., 12., 23.])
y_train	float64	(8,)	array([22., 13., 12., 24., 10., 12., 18., 14.])

Deep Learning

Partitioning a dataset in training and testing sets

\Box Example(2.3):

Artificial Neural Networks &

Deep Learning

K-Fold cross validation:

• The following figure shows the k-fold cross validation schema when k = 3.

Data Preprocessing

Partitioning a dataset in training and testing sets

&
Deep Learning

\square Example(2.3):

```
3 import numpy as np
 4 import matplotlib.pyplot as plt
 5 import pandas as pd
 6# Importing the dataset
 7 dataset = pd.read_csv('Dataset_3.csv')
 8 X = dataset.iloc[:, :-1].values
 9Y = dataset.iloc[:, 3].values
10 # Feature scaling: standardization
11 from sklearn.preprocessing import StandardScaler
12 standardization = StandardScaler()
13 X scaled = standardization.fit transform(X)
14 # Partitioning a dataset in training and testing sets
16 from sklearn.model selection import KFold
17 # shuffle is used to whether to shuffle the data before splitting into batches.
18 kfold = KFold(n_splits=3, shuffle=False, random_state=None)
19 # Returns the number of splitting iterations in the cross-validator
20 k = kfold.get_n_splits(X) # or # k = kfold.get_n_splits([X,Y,3])
21 # Generate indices to split data into training and test set.
22 indices = kfold.split(X)
23i = 1
24 for train_index, test_index in kfold.split(X):
      print("The fold number: ",i)
26
      i+=1
      print("TRAIN:", train index, "TEST:", test index)
27
28
      X train, X test = X[train index], X[test index]
29
      y_train, y_test = Y[train_index], Y[test_index]
      print("X_train:", X[train_index], "\n Y_train:",Y[train_index])
30
      print("X_test:", X[test_index], "\n Y_test:",Y[test_index])
```

\imath

Deep Learning

□Leave one out(LOO) cross validation:

- LOO is a simple method of cross-validation.
- Each learning set is created by taking all the samples except
 one, the test set being the sample left out.
- Thus, for samples, we have different training sets and different tests set.
- This cross-validation procedure does not waste much data as only one sample is removed from the training set

Data Preprocessing

Partitioning a dataset in training and testing sets

&
Deep Learning

\square Example(2.3):

```
1# Data Preprocessing
2# Importing the libraries
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import pandas as pd
6# Importing the dataset
7 dataset = pd.read csv('Dataset 3.csv')
8 X = dataset.iloc[:, :-1].values
9Y = dataset.iloc[:, 3].values
10# Feature scaling: standardization
11 from sklearn.preprocessing import StandardScaler
12 standardization = StandardScaler()
13 X scaled = standardization.fit transform(X)
14 # Partitioning a dataset in training and testing sets
16 from sklearn.model selection import LeaveOneOut
17
18 L00 = LeaveOneOut()
19
20 for train, test in LOO.split(X):
21
      print("%s %s" % (train, test))
```

Artificial Neural Networks &

Partitioning a dataset in training and testing sets

Deep Learning

\square Example(2.3):

In [4]: runfile('C:/Users/sarah/OneDrive/Machine Learning and Pattern Recognation/Part 1 - Data B&Preprocessing/Partitioning_dataset_LOO.py', wdir='C:/Users/sarah/OneDrive/Machine Learning and Pattern Recognation/Part 1 - Data Preprocessing')

C:\Users\sarah\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475:

DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler. warnings.warn(msg, DataConversionWarning)

Any Questions!?

Thank you