Linear Algebra Midterm Exam

You may NOT use any automatic computing device such as calculators or computers.

- 1. Please determine if the following statements are true or false. Explanations are required. (30% totally, 3% each)
 - (a) If the rank of an $m \times n$ matrix A is m, then the rows of A are linearly independent.
 - (b) If the nullity of an $n \times n$ matrix A is zero, then the columns of A span \mathbb{R}^n .
 - (c) If a set of vector S is linearly independent, then 0 is not contained in S.
 - (d) Let R be the reduced row echelon form of a matrix A. Then the rank of A and the rank of R are always equal.
 - (e) Let $T: V \rightarrow W$ be a linear transformation, where V and W are subspaces of \mathbb{R}^n . If T is one-to-one, then $\dim(V) \geq \dim(W)$.
 - (f) Let A be an $n \times n$ matrix. Ax=0 has infinite number of solutions if and only if A is not invertible.
 - (g) If A and B are $n \times m$ matrices such that $A\mathbf{x}=\mathbf{0}$ if and only if $B\mathbf{x}=\mathbf{0}$, then A and B have the same reduced row echelon form.
 - (h) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if it is onto.
 - (i) The determinant of an upper triangular $n \times n$ matrix or a lower triangular $n \times n$ matrix equals to the sum of its diagonal entries.
 - (j) The columns of any matrix form a basis for its column space.
- 2. (a) Let **u** be a solution to the A**x**= **b** and **v** be a solution to A**x**= **0**, show that **u v** is a solution to A**x**=**b**. (5%)
 - (b) Let \mathbf{u} be a solution to the $A\mathbf{x} = \mathbf{b}$ and \mathbf{v} be a solution to $A\mathbf{x} = \mathbf{0}$, show that $\mathbf{u} + \mathbf{v} = \mathbf{u}$ if all columns of A are linearly independent. (6%)
- Please solve the general solution of the following system of linear equations.
 (12%)

$$x_1 + 2 x_2 + x_4 + x_5 = 3$$

 $x_3 + 3x_4 = 7$

- 4. Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation that is onto. Furthermore, let V be a finite subset of \mathbf{R}^n and T(V) be the image of V. Prove that if T(V) is linearly independent, then V is linearly independent. (8%)
- 5. Let $A = \begin{bmatrix} ab & a^2 \\ -b^2 & -ab \end{bmatrix}$ where $ab \neq 0$. Find the column space and null space of A

and show that they are equal. (8%)

Linear Algebra Midterm Exam

You may NOT use any automatic computing device such as calculators or computers.

6. Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
. Use Gaussian elimination to find A^{-1} (if it exists). Please

show your work. (7%)

7. Determine the values of a, b, and c for which the following matrix is not invertible. (6%)

$$M = \begin{bmatrix} 4 & a & 3 & 9 & 5 \\ 3 & -6 & 2 & b & 0 \\ 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 0 & 4 \\ 0 & 0 & 2 & 1 & c \end{bmatrix}$$

8. For the matrix

$$A = \begin{bmatrix} 3 & 1 & -2 & 1 & 5 \\ 1 & 0 & 1 & 0 & 1 \\ -5 & -2 & 5 & -5 & -3 \\ -2 & -1 & 3 & 2 & -10 \end{bmatrix}$$

its reduced row echelon form is

$$R = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -5 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Please find (a) a basis for the column space of A (6%) and (b) a basis for the null space of A, (6%) and determine (c) the dimension of the column and null spaces of A, respectively. (6%) For every answer, you need to justify (or, provide a brief proof) why the sets of vectors you choose are bases for them and how to determine their dimensions.