Parallel Speedup and Scaling

Troels Henriksen

Gotta go fast!

Parallelism is about speed.

- How do we quantify whether parallelisation made a program faster, and by how much?
- How can we estimate the potential benefit of parallelising a program?
- Are there limits to the potential gains of parallelism?

Latency

Latency (often called runtime)

How long it takes for a program to run on some workload.

- Easy to measure, but:
 - May need multiple measurements to eliminate noise.
 - Especially if the runtime is low.

Latency

Latency (often called runtime)

How long it takes for a program to run on some workload.

- Easy to measure, but:
 - May need multiple measurements to eliminate noise.
 - Especially if the runtime is low.
- Measure the right thing:
 - Wall time is the time it takes in the real world.
 - CPU time is the total amount of time spent executing code counting all processors.
 - When we parallelise a program, CPU time remains constant (or increases slightly), while wall time goes down. Consider:
 - 16 processors that that run for 60 seconds simultaneously.
 - 1 processor that runs for 960 seconds.
 - Both take 960 seconds of CPU time, but the former only takes 60 seconds in wall time.

With measurements for two programs, we can compute the speedup in latency.

Speedup in latency

If T_1 , T_2 are the runtimes of two programs P_1 , P_2 , then the *speedup in latency* of P_2 over P_1 is

$$\frac{T_1}{T_2}$$

- Suppose a sequential program runs in 25s and we write a parallel version that runs in 10s.
- The speedup is then:

$$\frac{25s}{10s} = 2.5$$

- Speedup greater than one means P_2 is faster than P_1 , else it is slower.
- P_1 and P_2 must solve the same problem for their latencies to be comparable.

This is typically what I will expect you to report for your own programs.

Throughput

- Sometimes latency is inappropriate—what is the running time of a potentially-infinite web server?
- Can measure latency for individual requests, but is that really useful?

Throughput

- Sometimes latency is inappropriate—what is the running time of a potentially-infinite web server?
- Can measure latency for individual requests, but is that really useful?

Throughput

The workload W processed in some time-span T:

$$Q = \frac{W}{T}$$

- E.g. web requests served per second, or number of bytes processed per clock cycle.
- Using throughput we can compare programs that have different workloads.

Speedup in throughput

If Q_1, Q_2 are the throughputs of two programs P_1, P_2 , then the speedup in throughput of P_2 over P_1 is

Suppose

- P_1 sums 1MiB in $69\mu s$
- P_2 sums 1GiB in 28, 489 μ s
- Cannot compare these latencies meaningfully, but...

$$Q_1 = rac{2^{10}B}{69\mu s} = 15196 \mathrm{B}/\mu \mathrm{s} = 14.2 \mathrm{GiB/s}$$

$$Q_1 = \frac{2^{10}B}{69\mu s} = 15196$$
B/ μ s = 14.2GiB/s $Q_2 = \frac{2^{30}}{28589} = 37558$ B/ μ s = 35.0GiB/s

Speedup in throughput of P_2 over P_1 is then

$$\frac{35.0 {\rm GiB/s}}{14.2 {\rm GiB/s}} = 2.46$$

Scalability

Scalability

- How the system improves in its capacity (runtime or throughput) as we add more resources, such as more processors
- How the system throughput changes as we add more workload.

Scalability

Scalability

- How the system improves in its capacity (runtime or throughput) as we add more resources, such as more processors
- How the system throughput changes as we add more workload.

With respect to parallelism, there are two sorts of scalability that we are interested in.

Example: rendering Mandelbrot fractals.

- Each pixel can be computed independently.
- The image size corresponds to the workload.

Strong scaling

How the runtime varies with the number of processors for a fixed problem size.

Speedup graph for rendering a 10⁴ pixel Mandelbrot fractal as we use more threads:

This shows sub-linear strong scalability—8 threads barely gets us $4 \times$ speedup.

Weak scaling

How the runtime varies with the number of processors for a fixed problem size *relative* to the number of processors.

Performance graph for rendering a Mandelbrot fractal with 10⁴ pixels per thread:

Pretty decent weak scalability! By far more common than strong scalability.

Amdahl's Law

If p is the proportion of execution time that benefits from parallelisation, then S(N) is maximum theoretical speedup achievable by execution on N processors, and is given by

$$S(N) = \frac{1}{(1-p) + \frac{p}{N}}$$

Why is $p \neq 1$?

- Reading input data.
- Writing output data.
- Fundamentally sequential algorithms.

Plotting Amdahl's law

Amdahl's Law predicts strong scalability

- Amdahl's Law predicts strong scalability.
- For a fixed problem size, there will always come a point of diminishing returns.
- Makes parallelisation seem pointless...

But!

Amdahl's Law predicts strong scalability

- Amdahl's Law predicts strong scalability.
- For a fixed problem size, there will always come a point of diminishing returns.
- Makes parallelisation seem pointless...

But!

Often it is time that is fixed, not the problem!

- You have a simulation that runs in 1 hour.
- Then you get a computer that is ten times faster.
- Usually you don't decide to run the simulation in six minutes, *instead you make a simulation that is ten times as precise* and still runs in 1 hour.
- Consider weather forecasting...
- Bigger machines let us solve bigger problems in the same time!

Gustafson's Law

If s is the proportion of execution time that must be sequential, then S(N) is maximum theoretical speedup achievable by execution on N processors, and is given by

$$S(N) = N + (1 - N) \times s$$

- Assumes that parallel workload increases just as fast as number of processors.
- Predicts weak scalability.
- In practice often more relevant than Amdahl's Law.

Plotting Gustafson's law

The fine print

Both Amdahl's and Gustafson's Laws are idealised abstractions and ignore important real-world concerns:

- Locality.
- Communication.
- Synchronisation.

But they are still a good theoretical framework for estimating the value of parallelising some program.

Summary

- Parallelism is about speedup.
- Describe performance differences with speedup.
 - Latency for programs that compute the same thing.
 - Throughput if not.
- Strong scaling is solving the same problem faster.
- Weak scaling is solving a bigger problem in the same time.
- Use Amdahl's Law to predict strong scaling.
- Use Gustafson's Law to predict weak scaling.
- Measure the real-world scaling of your code for various problem sizes parallelisation degrees.