Ecuaciones Diferenciales

Ejercicios

MATERIA: La Transformada de Laplace

* Estudiar fracciones

- 1. Defina la transformada de Laplace para una función $\ f:[0,\infty)\to\mathbb{R}$.
 - $\ensuremath{\mathbb{k}}$ Qué condiciones debe cumplir f para que $\ensuremath{\mathcal{L}}\left[f\left(t\right)\right]$ exista ?
- 2. Determine $\mathcal{L}[f(t)]$ en cada uno de los siguientes casos;

a)
$$f(t) = e^{at-b}$$

a)
$$f(t) = e^{at-b}$$
 b) $f(t) = b \operatorname{sen} at$ c) $f(t) = \cos^2 t$

c)
$$f(t) = \cos^2 t$$

d)
$$f(t) = 3e^{-t} + 5\cos 3t$$
 e) $f(t) = (1 + te^{-t})^2$

e)
$$f(t) = (1 + te^{-t})^2$$

- (3) Señale el primer Teorema de traslación y dé un ejemplo.
- 4. Pruebe que si $\mathcal{L}[f(t)] = \varphi(s)$ entonces $\mathcal{L}[f(at)] = \frac{1}{a}\varphi\left(\frac{s}{a}\right)$
- 5. Basándose en lo anterior, determine $\mathcal{L}[f(2t)]$ si $\mathcal{L}[f(t)] = \frac{s^2 s + 1}{(2s + 1)^2(s 1)}$
- 6) Como se sabe, $\cosh at = \frac{e^{at} e^{-at}}{2}$. Determine $\mathcal{L}\left[\cosh at\right]$ y con este resultado y los anteriores, determine $\mathcal{L}\left[e^{4t}\cosh 5t\right]$ Determine $\mathcal{L}\left[e^{-t}\sinh at\right]$.
- 7 Del primer Teorema de traslación, se tiene que

$$\mathcal{L}^{-1}\left[\varphi\left(s-a\right)\right] = e^{at}f\left(t\right) \text{ donde } f\left(t\right) = \mathcal{L}^{-1}\left[\varphi\left(s\right)\right]$$

Aprovechando este resultado, determine;

a)
$$\mathcal{L}^{-1} \left[\frac{6s-4}{s^2-4s+20} \right]$$

b)
$$\mathcal{L}^{-1} \left[\frac{4s+12}{s^2+8s+16} \right]$$

a)
$$\mathcal{L}^{-1}\left[\frac{6s-4}{s^2-4s+20}\right]$$
 b) $\mathcal{L}^{-1}\left[\frac{4s+12}{s^2+8s+16}\right]$ c) $\mathcal{L}^{-1}\left[\frac{3}{s^2-4s+18}\right]$

- 8. Mediante inducción, se prueba que si $\mathcal{L}[f(t)] = \varphi(s)$, entonces $\mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n \varphi}{ds^n}$ Utilizando este resultado, determine
 - a) $\mathcal{L}[t^n]$
- b) $\mathcal{L}[t^2\cos at]$ c) $\mathcal{L}[te^{-3t}]$
- 9. Determine una expresión para $\mathcal{L}^{-1}\left[(-1)^n \frac{d^n \varphi}{ds^n}\right]$ y según esto, determine

a)
$$\mathcal{L}^{-1}\left[\frac{2s}{\left(s^2+1\right)^2}\right]$$

a)
$$\mathcal{L}^{-1} \left[\frac{2s}{(s^2+1)^2} \right]$$
 b) $\mathcal{L}^{-1} \left[\frac{2s^2-2s+2}{s^3} \right]$ c) $\mathcal{L}^{-1} \left[\frac{2s}{(s-1)^3} \right]$

c)
$$\mathcal{L}^{-1}\left[\frac{2s}{\left(s-1\right)^3}\right]$$

10. Demuestre que $\mathcal{L}[f''(t)] = s^2 \mathcal{L}[f(t)] - sf(0) - f'(0)$. Calcule $\mathcal{L}[f''(t)]$ $f(t) = e^{2t} \operatorname{sen} 3t$. Generalice estos resultados para $\mathcal{L}\left[f^{(n)}(t)\right]$