DATA ENCRYPTION STANDARD (DES)

Outline

- History
- Encryption
- Key Generation
- Decryption
- Strength of DES
- Ultimate

History

In 1971, IBM developed an algorithm, named LUCIFER which operates on a block of 64 bits, using a 128-bit key

Walter Tuchman, an IBM researcher, refined LUCIFER and reduced the key size to 56-bit, to fit on a chip.

History

In 1977, the results of Tuchman's project of IBM was adopted as the Data Encryption Standard by NSA (NIST).

м

A Simplified DES-Type Algorithm

- Suppose that a message has 12 bits and is written as L₀R₀, where L₀ consists of the first 6 bits and R₀ consists of the last 6 bits.
- The key K has 9 bits. The *i*th round of the algorithm transforms an input L_{i-1}R_{i-1} to the output L_iR_i using an 8-bit key K_i derived from K.
- The main part of the encryption process is a function f(R_{i-1},K_i) that takes a 6-bit input

4

R_{i-1} and an 8-bit input K_i and produces a 6-bit output which will be described later.

The output of the *i*th round is defined as:

$$L_i = R_{i-1}$$
 and $R_i = L_{i-1} XOR f(R_{i-1}, K_i)$

The decryption is the reverse of encryption.

$$[L_n][R_n XOR f(L_n, K_n)] = ... = [R_{n-1}][L_{n-1}]$$

M

The Operations of f Function

- $= E(L_i) = E(011001) = E(01010101)$ (Expander)
- S-boxes
- S₁ 101 010 001 110 011 100 111 000 001 100 110 010 000 111 101 011 S₂ 100 000 110 101 111 001 011 010 101 011 010 011 010 011 010 011 010 The input for an S-box has 4 bits. The first bit specifies which row will be used: 0 for 1st

м

- The other 3 bits represent a binary number that specifies the column: 000 for the 1st column, 001 for the 2nd column, ... 111 for the 7th column. For example, an input 1010 for S₁ box will yield the output 110.
- The key K consists of 9 bits. K_i is the key for the ith round starting with the ith bit of K. Let K=010011001, then K_4 =01100101.

M

R_{i-1} =100110 and K_i =01100101

 $E(R_{i-1})$ XOR $K_i = 10101010$ XOR 01100101 = 11001111

 $S_1(1100)=000$ $S_2(1111)=100$ Thus, $R_i = f(R_{i-1}, K_i)=000100$, $L_i = R_{i-1}=100110$

$$L_{i-1}R_{i-1} = 011100100110 \rightarrow (?) L_iR_i$$

100110011000

Encryption

.

Encryption (cont.)

Encryption (cont.)

- Plaintext: X
- Initial Permutation: IP()
- Round_i: 1≤ i ≤ 16
- 32-bit switch: SW()
- Inverse IP: IP⁻¹()
- Ciphertext: Y
- $\blacksquare Y = IP^{-1}(SW(Round_i(IP(X), Key_i)))$

Encryption (IP, IP⁻¹)

IP

Bit	0	1	2	3	4	5	6	7
1	58	50	42	34	26	18	10	2
9	60	52	44	36	28	20	12	4
17	62	54	46	38	30	22	14	6
25	64	56	48	40	32	24	16	8
33	57	49 41		33	25	17	9	1
41	59	51	43	35	27	19	11	3
49	61	53	45	37	29	21	13	5
57	63	55	47	39	31	23	15	7

■ IP⁻¹

Bit	0	1	2	3	4	5	6	7
1	40	8	48	16	56	24	64	32
9	39	7	47	15	55	23	63	31
17	38	6	46	14	54	22	62	30
25	37	5	45	13	53	21	61	29
33	36	4	44	12	52	20	60	28
41	35	3	43	11	51	19	59	27
49	34	2	42	10	50	18	58	26
57	33	1	41	9	49	17	57	25

■ Note: IP(IP⁻¹) = IP⁻¹(IP) = I

Encryption (Round)

- Separate plaintext as L₀R₀
 - \square L_n: left half 32 bits of plaintext
 - □ R₀: right half 32 bits of plaintext
- Expansion/permutation: E()Substitution/choice: S-box()
- Permutation: P()
- $\blacksquare R_i = L_{i-1} \sim P(S _box(E(R_{i-1}) \sim Key_i))$
- $\blacksquare L_{i} = R_{i-1}$

■ E

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	45	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1 。

P

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
9	13	30	6	22	11	4	25

Expansion

Expansion

S-box

s_1	14 0 4 15	4 15 1 12	13 7 14 8	1 4 8 2	2 14 13 4	15 2 6 9	11 13 2 1	8 1 11 7	3 10 15 5	10 6 12 11	6 12 9 3	12 11 7 14	5 9 3 10	9 5 10 0	0 3 5 6	7 8 0 13	S ₅	2 14 4 11	12 11 2 8	4 2 1 12	1 12 11 7	7 4 10 1	10 7 13 14	11 13 7 2	6 1 8 13	8 5 15 6	5 0 9 15	3 15 12 0	15 10 5 9	13 3 6 10	0 9 3 4	14 8 0 5	9 6 14 3
\mathbf{s}_2	15 3 0 13	1 13 14 8	8 4 7 10	14 7 11 1	6 15 10 3	11 2 4 15	3 8 13 4	4 14 1 2	9 12 5 11	7 0 8 6	2 1 12 7	13 10 6 12	12 6 9 0	0 9 3 5	5 11 2 14	10 5 15 9	s ₆	12 10 9 4	1 15 14 3	10 4 15 2	15 2 5 12	9 7 2 9	2 12 8 5	6 9 12 15	8 5 3 10	0 6 7 11	13 1 0 14	3 13 4 1	4 14 10 7	14 0 1 6	7 11 13 0	5 3 11 8	11 8 6 13
s_3	10 13 13 1	0 7 6 10	9 0 4 13	14 9 9	6 3 8 6	3 4 15 9	15 6 3 8	5 10 0 7	1 2 11 4	13 8 1 15	12 5 2 14	7 14 12 3	11 12 5 11	4 11 10 5	2 15 14 2	8 1 7 12	s ₇	4 13 1 6	11 0 4 11	2 11 11 13	14 7 13 8	15 4 12 1	0 9 3 4	8 1 7 10	13 10 14 7	3 14 10 9	12 3 15 5	9 5 6 0	7 12 8 15	5 2 0 14	10 15 5 2	6 8 9 3	1 6 2 12
s_4	7 13 10 3	13 8 6 15	14 11 9 0	3 5 0 6	0 6 12 10	6 15 11 1	9 0 7 13	10 3 13 8	1 4 15 9	2 7 1 4	8 2 3 5	5 12 14 11	11 1 5 12	12 10 2 7	4 14 8 2	15 9 4 14	S ₈	13 1 7 2	2 15 11 1	8 13 4 14	4 8 1 7	6 10 9 4	15 3 12 10	11 7 14 8	1 4 2 13	10 12 0 15	9 5 6 12	3 6 10 9	14 11 13 0	5 0 15 3	0 14 3 5	12 9 5 6	7 2 8 11

Key Generation

Key Generation (cont.)

Key Generation (cont.)

- Original Key: Key₀
- Permuted Choice One: PC_1()
- Permuted Choice Two: PC_2()
- Schedule of Left Shift: SLS()
- $(C_0, D_0) = PC_1(Key_0)$
- $(C_i, D_i) = SLS(C_{i-1}, D_{i-1})$
- $Key_i = PC_2(SLS(C_{i-1}, D_{i-1}))$

Decryption

- The same algorithm as encryption.
- Reversed the order of key (Key₁₆, Key₁₅, ... Key₁).
- For example:
 - □ IP undoes IP⁻¹ step of encryption.
 - ☐ 1st round with SK16 undoes 16th encrypt round.

M

Strength of DES

- Criticism
 - □ Reduction in key size of 72 bits
 - Too short to withstand with brute-force attack
 - □ S-boxes were classified.
 - Weak points enable NSA to decipher without key.
- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
 - □ Brute force search looks hard.
 - A machine performing one DES encryption per microsecond would take more than a thousand year to break the cipher.

Strength of DES (cont.)

- Avalanche effect in DES
 - If a small change in either the plaintext or the key, the ciphertext should change markedly.
- DES exhibits a strong avalanche effect.

(a) Chan	ige in Plaintext	(b) Change in Key					
Round	Number of bits that differ		Round	Number of bits that differ			
0	1		0	0			
1	6		1	2			
2	21		2	14			
3	35		3	28			
4	39		4	32			
5	34		5	30			
6	32		6	32			
7	31		7	35			
8	29		8	34			
9	42		9	40			
10	44		10	38			
11	32		11	31			
12	30		12	33			
13	30		13	28			
14	26		14	26			
15	29		15	34			
16	34		16	35			

Ultimate

- DES was proved insecure
 - □ In 1997 on Internet in a few months
 - □ in 1998 on dedicated h/w (EFF) in a few days
 - □ In 1999 above combined in 22hrs!

References

[1] William Stallings, Cryptography and Network Security, 1999.