Shukai Du Curriculum Vitae

Post-doctoral researcher Email: shukaidu@udel.edu
Department of Mathematics Website: https://shukaidu.github.io

University of Wisconsin-Madison

RESEARCH INTERESTS

- Numerical simulation of atmospheric dynamics
- Finite element and (hybridizable) discontinuous Galerkin methods
- Elastic/viscoelastic and electromagnetic waves
- Inverse and ill-posed problems

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

May 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

1. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement.

Peer-reviewed articles

1. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput.* 85, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

2. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp.*, *appeared online*.

DOI: 10.1090/mcom/3573

3. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

4. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math.*, appeared online.

DOI: 10.1515/cmam-2019-0173

5. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018)*, *55-96*. DOI: 10.21042/AMNS.2018.1.00006

6. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89* (2020), 1745-1782.

DOI: 10.1090/mcom/3499

Books

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

PRESENTATIONS

Invited talks

1. New analysis techniques of HDG+ method	
SIAM sectional meeting, Iowa State U	Oct 2019
2. Uniform-in-time optimal convergent HDG method for	
transient elastic waves with strong symmetric stress formulation	
WAVES2019, TU Wien	Aug 2019
3. Hybridizable Discontinuous Galerkin schemes for elastic waves	
ICIAM2019, Valencia	July 2019
4. HDG for transient elastic waves	
WONAPDE2019, U of Concepcion	Jan 2019

Contributed talks

1.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) me	ethods
	Wenbo Li Prize Talk, U of Delaware	Feb 2020
2.	Projection-based analysis of HDG methods with reduced stabilization	
	DelMar Num Day 2019, U of Maryland	May 2019
3.	Projection-based error analysis of HDG methods for transient elastic waves	
	FEM Circus, U of Delaware	Nov 2018
4.	Devising a tailored projection for a new HDG method in linear elasticity	
	FEM Circus, U of Tennessee	Mar 2018
5.	A new HDG projection and its applications	
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2017
4 .		

Poster presentation

1.	Hybridizable Discontinuous Galerkin methods in transient elastodynamics	
	FACM2018, New Jersey Institute of Technology	Aug 2018
2.	Building a computational code for 3D viscoelastic wave simulation	
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2016

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009-2011

TEACHING EXPERIENCE

Teaching Assistant

2018 Fall
2016&2017 Fall
2017 Spring
2018 Spring

International Teaching Assistant (ITA) training program

• Graduated with the highest category of scores (category I) Summer 2015

Graduate mentor

• GEMS summer research project

Fall 2016

CODING PROJECTS

Hybridizable Discontinuous Galerkin (HDG) methods 2016 - current (based on HDG3D library)

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentations with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

ACTIVITIES

MSRI Summer School on Harmonic Analysis, Park City	Jul 2018
Nonlocal School on Fractional Equations, Iowa State U	Aug 2017
Finite Element Circus, Rutgers U	Apr 2017
Summer School on Applied Mathematics in Beijing University	Jul 2014
Second Pacific Rim Mathematical Association Congress	Jun 2013
International Conference on Mathematical Modeling & Computation	May 2013
Summer School on Statistical Learning and Inference for	
Massive Data in Fudan University	Jul 2012

Last update: October 16, 2020