title: "GEOL 456 Class 1 notes"

date: 24 Aug 2017 author: Dr. Steen

Introductions

Personal introductions

- My scientific background
- My personal background
- Student introductions

Syllabus review

(See syllabus)

- Class overview
 - Goals
 - * Climate physics and chemistry
 - * Paleoclimatology
 - * Human and environmental responses
 - Role of numeracy

Exercise: Students group selves into groups of four, and come up with a single question they would like to have answered by the end of the semester.

How to read and equation

Using the example of the Stefan-Bolzmann equation, $I = \sigma \epsilon T^4$

- 1. What is the equation talking about?
 - It relates "intensity" (whatever that is) to temperature, "emissivity", and something called the Stefan-Bolzmann constant.
- 2. Label the variables: $I \rightarrow$ intensity, etc.

- 3. Identify what the variables mean (e.g., I is intensity, a measure of the amount energy coming from an object; σ is the Stefan-Bolzmann constant, a universal constant)
- 4. Figure out what the variables do. Here, increases in ϵ , σ , and T all cause I to increase, but T is by far the most important because it is raised to the fourth power.
- 5. Work out the units.
 - I: intensity: How much radiation the it emitting (per unit surface area)?: $\frac{W}{m^2}$ ϵ : emissivity: How good of a blackbody is it? dimensionless

 - σ : the Stefan-Bolzmann constant: A basic fact of the universe $\frac{W}{m^2K^4}$
 - \bullet T: temperature: How hot is it? K