## 1. Rapport de projet

### 2. Sommaire

- 1. Rapport de projet
- 2. Sommaire
- 3. Introduction
- 4. Instalation physique
  - 4.1. Nidus
  - 4.2. Volt
- 5. Shéma de principe
- 6. Systèmes d'exploitation (OS)
  - o 6.1. Ubuntu
  - o 6.2. Raspbian
  - 6.3. Première installation
  - 6.4. Seconde instalation Ubuntu Server
    - 6.4.1. Configuration post instalation
    - 6.4.2. Instalation Apache
    - 6.4.3. Script MQTT
- 7. Node-RED
  - 7.1. Instalation
  - 7.2. Configuration
    - 7.2.1. Installation des plugins
    - 7.2.2. Sécurisation de Node-Red
    - 7.2.3. Suivi Git
- 8. Gatling
  - 8.1. Installation
    - 8.1.1. Prerequis
    - 8.1.2. Download
  - 8.2. Vérification de l'installation
  - 8.3. Configuration
- 9. Apache et Site Web
  - 9.1. Installation
  - 9.2. Mise en place d'un site Web
- 10. MQTT
  - 10.1. Installation de Mosquitto sur Nidus
  - 10.2. Ouverture des port sur Nidus
  - 10.3. Script MQTT
    - 10.3.1. Script MQTT
    - 10.3.2. Descriptiono détaillée du script
    - 10.3.3. Conclusion
  - 10.4. Installation
  - 10.5. Utilisation du script
    - 10.5.1. Vérification

- 11. INA219
  - 11.0.1. Installation physique
    - 11.0.1.1. Branchement SANS VOLT
    - 11.0.1.2. Branchement AVEC VOLT
  - 11.0.2. Vérification de la présence du INA219
  - 11.1. Obtention des données
    - 11.1.1. Test avec le script python A vide
- 12. Noeud Node-Red
  - o 12.1. INA219
  - 12.2. Monitoring
  - 12.3. Dashboard
  - 12.4. PDF
    - 12.4.1. Base
  - 12.5. Images de graphiques et de tableaux
- 13. Stress Test V1.0
  - 13.1. Écran d'Accueil
  - 13.2. En Exécution
  - 13.3. Résultat
  - 13.4. Purge
- 14. Sources

## 3. Introduction

Le système sera conçu pour simuler des requêtes HTTP réalistes à l'aide de Gatling, mesurer la consommation électrique en utilisant l'INA219 connecté via le bus I2C, et collecter les mesures de performance à l'aide de Node-RED. Les rapports générés fourniront des informations détaillées sur les performances du système testé, y compris le temps de réponse, la consommation d'énergie par requête, l'utilisation du processeur, etc.

## 4. Instalation physique

#### **4.1. Nidus**



## 4.2. Volt



# 5. Shéma de principe



## 6. Systèmes d'exploitation (OS)

Dans le cadre de ce projet, plusieurs systèmes d'exploitation seront utilisés. Pour commencer, nous utiliserons Ubuntu.

#### 6.1. Ubuntu

Ubuntu est un système d'exploitation largement utilisé pour les serveurs et les ordinateurs de bureau. Il est livré avec un ensemble d'outils de développement et de productivité, notamment un navigateur Web, un éditeur de texte, des logiciels de programmation, des outils de calcul, des jeux et des logiciels de productivité. Ubuntu propose un environnement de bureau léger et réactif, conçu tant pour les ordinateurs de bureau que pour les serveurs.

### 6.2. Raspbian

Raspbian est un système d'exploitation libre basé sur Debian, spécialement optimisé pour le Raspberry Pi. Depuis 2015, Raspbian est livré avec un ensemble d'outils appelé Pixel. Pixel offre un environnement de bureau comprenant un navigateur Web, un éditeur de texte, des logiciels de programmation, des outils de calcul, des jeux et des logiciels de productivité. Pixel est un environnement de bureau léger et réactif, conçu spécifiquement pour les ordinateurs monocarte Raspberry Pi.

#### 6.3. Première installation

Dans un premier temps, nous allons installer la version bureau d'Ubuntu sur Volt. Cette décision est motivée par le fait qu'il est plus simple de travailler dans un environnement de bureau pour tester rapidement tous les concepts du projet.

Sur Nidus, Raspbian en version bureau sera installé pour des raisons similaires à celles de Volt.

Un élément crucial à noter est que, étant donné que l'INA219 sera connecté à Nidus, il est plus pratique d'installer Raspbian sur Nidus afin d'avoir accès aux broches GPIO.

Dans un second temps, pour obtenir des mesures plus précises, nous installerons les versions « core » d'Ubuntu et de Raspbian.

Adresse IP de Volt: 157.26.228.77 Adresse IP de Nidus: 157.26.251.185

#### 6.4. Seconde instalation Ubuntu Server



{width=100%}

#### 6.4.1. Configuration post instalation

```
toblerc@LPT-UNIX-USB-CT:~$ ssh tobby@157.26.228.77
The authenticity of host '157.26.228.77 (157.26.228.77)' can't be established.
ED25519 key fingerprint is
SHA256:/5rallKqk0A4AnFWnLP9bagNS3zKE9rFPqn5vA5pc+M.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes Warning: Permanently added '157.26.228.77' (ED25519) to the list of known hosts.
tobby@157.26.228.77's password:
```

```
Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-1034-raspi aarch64)
 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
            https://ubuntu.com/advantage
 * Support:
 System information as of Wed Aug 23 09:29:06 CEST 2023
                                 Temperature:
 System load: 2.43994140625
                                                      39.4 C
 Usage of /: 4.0% of 58.36GB Processes:
                                                       158
                             Users logged in:
 Memory usage: 7%
 Swap usage: 0%
                               IPv4 address for eth0: 157,26,228,77
Expanded Security Maintenance for Applications is not enabled.
25 updates can be applied immediately.
12 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable
Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status
Last login: Wed Aug 23 09:29:10 2023
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.
tobby@Volt:~$ ls -la
total 28> 2022 .bash_logout
-rw-r--r-- 1 tobby tobby 3771 Jan 6 2022 .bashrc
drwx----- 2 tobby tobby 4096 Aug 23 09:29 .cache
-rw-r--r-- 1 tobby tobby 807 Jan 6 2022 .profile
drwx----- 2 tobby tobby 4096 Aug 23 09:30 .ssh
tobby@Volt:~$ cd .ssh/
tobby@Volt:~/.ssh$ ls -la
total 8
drwx----- 2 tobby tobby 4096 Aug 23 09:30 .
drwxr-x--- 4 tobby tobby 4096 Aug 23 09:30 ...
-rw----- 1 tobby tobby 0 Aug 23 09:30 authorized_keys
tobby@Volt:~/.ssh$ sudo vi authorized_keys
[sudo] password for tobby:
tobby@Volt:~/.ssh$ exit
logout
Connection to 157.26.228.77 closed.
toblerc@LPT-UNIX-USB-CT:~$ ssh tobby@157.26.228.77
Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-1034-raspi aarch64)
 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support:
                https://ubuntu.com/advantage
 System information as of Wed Aug 23 09:31:44 CEST 2023
```

```
System load: 0.490234375
                                  Temperature:
                                                         40.9 C
  Usage of /:
               4.1% of 58.36GB
                                  Processes:
                                                         153
  Memory usage: 6%
                                  Users logged in:
                                                         1
                                  IPv4 address for eth0: 157.26.228.77
  Swap usage: 0%
Expanded Security Maintenance for Applications is not enabled.
25 updates can be applied immediately.
12 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable
Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status
Last login: Wed Aug 23 09:30:02 2023 from 157.26.215.31
tobby@Volt:~$ sudo apt update && sudo apt upgrade -y && sudo apt dist-
upgrade -y && sudo apt autzo-remove -y
[sudo] password for tobby:
tobby@Volt:~$ sudo apt update && sudo apt upgrade -y && sudo apt dist-
upgrade -y && sudo apt auto-remove -y
Hit:1 http://ports.ubuntu.com/ubuntu-ports jammy InRelease
Get:2 http://ports.ubuntu.com/ubuntu-ports jammy-updates InRelease [119 kB]
Hit:3 http://ports.ubuntu.com/ubuntu-ports jammy-backports InRelease
Get:4 http://ports.ubuntu.com/ubuntu-ports jammy-security InRelease [110
kB]
Fetched 229 kB in 2s (100 kB/s)
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
All packages are up to date.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Calculating upgrade... Done
# You can verify the status of security fixes using the `pro fix` command.
# E.g., a recent Ruby vulnerability can be checked with: `pro fix USN-6219-
# For more detail see: https://ubuntu.com/security/notices/USN-6219-1
O upgraded, O newly installed, O to remove and O not upgraded.
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Calculating upgrade... Done
# You can verify the status of security fixes using the `pro fix` command.
# E.g., a recent Ruby vulnerability can be checked with: `pro fix USN-6219-
# For more detail see: https://ubuntu.com/security/notices/USN-6219-1
```

```
O upgraded, O newly installed, O to remove and O not upgraded.

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

O upgraded, O newly installed, O to remove and O not upgraded.
```

#### 6.4.2. Instalation Apache

```
tobby@Volt:~$ sudo apt install apache2
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
   apache2-bin apache2-data apache2-utils bzip2 libapr1 li
[...]
```

```
toblerc@LPT-UNIX-USB-CT:~$ scp -r /home/toblerc/Documents/ES_2024/banc-de-mesures-de-la-consommation-electrique/siteWeb/www/html tobby@157.26.228.77://home/tobby
[...]
toblerc@LPT-UNIX-USB-CT:~$
tobby@Volt:~$ sudo cp -r /home/tobby/html /var/www/
```

#### 6.4.3. Script MQTT

```
tobby@Volt:/usr/<mark>local</mark>/bin$ sudo ./mqtt.sh
Installation de mosquitto-clients...
Hit:1 http://ports.ubuntu.com/ubuntu-ports jammy InRelease
Get:2 http://ports.ubuntu.com/ubuntu-ports jammy-updates InRelease [119 kB]
```

```
Hit:3 http://ports.ubuntu.com/ubuntu-ports jammy-backports InRelease Get:4 http://ports.ubuntu.com/ubuntu-ports jammy-security InRelease [110 kB]
Fetched 229 kB in 2s (133 kB/s)
Reading package lists... Done
Reading package lists... Done
Building dependency tree... Done
[...]
```

## 7. Node-RED

**Node-RED** est un outil de programmation visuelle open source conçu pour faciliter la connexion de périphériques, d'API et de services en ligne. Il propose un éditeur de flux basé sur un navigateur, permettant ainsi de connecter des nœuds à l'aide de simples glisser-déposer. Ces nœuds peuvent être exécutés dans un environnement Node.js. Ils peuvent être des fonctions JavaScript ou des modules npm, tels que node-red-contrib-gpio, node-red-contrib-sqlite, node-red-contrib-modbustcp, etc. En plus des nœuds de base fournis, Node-RED offre plus de 2000 nœuds supplémentaires créés par la communauté et prêts à être utilisés.

#### 7.1. Instalation

```
tobby@Nidus:~ $ bash <(curl -sL https://raw.githubusercontent.com/node-
red/linux-installers/master/deb/update-nodejs-and-nodered)
Running Node-RED install for user tobby at /home/tobby on debian
This can take 20-30 minutes on the slower Pi versions - please wait.
  Stop Node-RED
  Remove old version of Node-RED
  Remove old version of Node.js
                                                     Npm 9.6.7
  Install Node.js 18 LTS
                                         v18.17.1
  Clean npm cache
  Install Node-RED core
                                          3.0.2
  Move global nodes to local
  Npm rebuild existing nodes
  Install extra Pi nodes
  Add shortcut commands
  Update systemd script
Any errors will be logged to /var/log/nodered-install.log
All done.
You can now start Node-RED with the command node-red-start
  or using the icon under Menu / Programming / Node-RED
Then point your browser to localhost:1880 or http://{your_pi_ip-
address \ : 1880
```

```
Started: mer 16 aoû 2023 14:12:19 CEST
Finished: mer 16 aoû 2023 14:16:01 CEST
*****
### WARNING ###
DO NOT EXPOSE NODE-RED TO THE OPEN INTERNET WITHOUT SECURING IT FIRST
Even if your Node-RED doesn't have anything valuable, (automated) attacks
happen and could provide a foothold in your local network
Follow the guide at https://nodered.org/docs/user-guide/runtime/securing-
node-red
to setup security.
### ADDITIONAL RECOMMENDATIONS ###
 - Remove the /etc/sudoers.d/010_pi-nopasswd file to require entering your
password
   when performing any sudo/root commands:
     sudo rm -f /etc/sudoers.d/010_pi-nopasswd
 - You can customise the initial settings by running:
     node-red admin init
 - After running Node-RED for the first time, change the ownership of the
settings
   file to 'root' to prevent unauthorised changes:
     sudo chown root:root ~/.node-red/settings.js
*******************
 Would you like to customise the settings now (y/N) ? y
Node-RED Settings File initialisation
_____
This tool will help you create a Node-RED settings file.
✓ Settings file · /home/tobby/.node-red/settings.js
User Security
_____
✓ Do you want to setup user security? · Yes
✓ Username · Tobby
✓ Password · ********
✓ User permissions · full access
✓ Add another user? · Yes
✓ Username · FMA
✓ Password · ******* (Pa$$w.rd)
✓ User permissions · read-only access
```

- ✓ Add another user? · Yes
- ✓ Username · BVI
- ✓ Password · \*\*\*\*\*\*\* (Pa\$\$w.rd)
- ✓ User permissions · read-only access
- ✓ Add another user? · No

#### **Projects**

=======

The Projects feature allows you to version control your flow using a local git repository.

✓ Do you want to enable the Projects feature? · No

#### Flow File settings

\_\_\_\_\_

- ✓ Enter a name for your flows file · flows.json
- ✓ Provide a passphrase to encrypt your credentials file ·

#### Editor settings

==========

- ✓ Select a theme for the editor. To use any theme other than "default", you will need to install @node-red-contrib-themes/theme-collection in your Node-RED user directory. · dark
- $\checkmark$  Select the text editor component to use in the Node-RED Editor  $\cdot$  monaco (default)

#### Node settings

=========

- ✓ Allow Function nodes to load external modules? (functionExternalModules)
- Yes

Settings file written to /home/tobby/.node-red/settings.js To use the 'dark' editor theme, remember to install @node-red-contribthemes/theme-collection in your Node-RED user directory

tobby@Nidus:~ \$ sudo systemctl enable nodered.service Created symlink /etc/systemd/system/multi-user.target.wants/nodered.service → /lib/systemd/system/nodered.service.



## 7.2. Configuration

### 7.2.1. Installation des plugins



{width=30%}





#### {width=30%}



{width=30%}





#### 7.2.2. Sécurisation de Node-Red

Pour sécuriser Node-Red, il convient de modifier le fichier settings . js. Dans notre cas, nous utilisons la commande node-red admin init, ce qui permet, par exemple, de créer des paires utilisateur/mot de passe.

De plus, il est recommandé, si nécessaire, d'ajouter un login au Dashboard.

#### 7.2.3. Suivi Git

Afin de suivre le projet sur Git, il est nécessaire de configurer un utilisateur, générer des clés SSH, puis effectuer un *clone* du projet.



{width=30%}





{width=30%}

Comme il s'agit d'un clone, il faudra ajouter les fichiers manquants et ajuster les droits d'accès.

tobby@Nidus:~/.node-red/projects/banc-de-mesures-de-la-consommation-electrique \$ touch ~/.node-red/projects/banc-de-mesures-de-la-consommation-electrique/flows\_cred.json tobby@Nidus:~/.node-red/projects/banc-de-mesures-de-la-consommation-electrique \$ chmod 600 ~/.node-red/projects/banc-de-mesures-de-la-

```
consommation-electrique/flows_cred.json
```

## 8. Gatling

**Gatling** est un outil de test de charge open source basé sur Scala, conçu pour évaluer les performances des applications et des sites Web. Gatling simule des utilisateurs virtuels qui envoient des requêtes HTTP vers le système cible. Il enregistre les temps de réponse des requêtes et les présente sous forme de graphiques. Gatling est doté d'un éditeur de scénarios basé sur navigateur, permettant aux utilisateurs de créer des scénarios de test de charge à l'aide d'un langage de domaine spécifique (DSL) appelé *Gatling DSL*. Ce langage, basé sur Scala, permet de définir des scénarios de test de charge à l'aide de mots-clés tels que exec, pause, feed, etc.

La version la plus récente de Gatling est la 3.9.5, compatible avec Java 8 et Java 11. Dans ce projet, nous opterons pour Java 11 pour exécuter Gatling.

#### 8.1. Installation

#### 8.1.1. Prerequis

```
tobby@Nidus:~ $ sudo apt install default-jdk
tobby@Nidus:~/.node-red $ java -version
openjdk version "11.0.18" 2023-01-17
OpenJDK Runtime Environment (build 11.0.18+10-post-Debian-1deb11u1)
OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Debian-1deb11u1, mixed
mode)
tobby@Nidus:~/.node-red $
```

#### 8.1.2. Download

```
tobby@Nidus:~ $ mkdir .gatling
tobby@Nidus:~ $ ls -la
total 104
drwxr-xr-x 18 tobby tobby 4096 16 aoû 15:10 .
drwxr-xr-x 3 root root 4096 16 aoû 13:58 ..
-rw------ 1 tobby tobby 453 16 aoû 14:26 .bash_history
-rw-r--r-- 1 tobby tobby 220 3 mai 04:53 .bash_logout
-rw-r--r-- 1 tobby tobby 3523 3 mai 04:53 .bashrc
drwxr-xr-x 2 tobby tobby 4096 3 mai 05:02 Bookshelf
drwxr-xr-x 4 tobby tobby 4096 16 aoû 13:58 .cache
drwx----- 5 tobby tobby 4096 16 aoû 13:58 .config
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Desktop
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Documents
drwxr-xr-x 2 tobby tobby 4096 16 aoû 15:10 .gatling
```

```
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Images
drwxr-xr-x 3 tobby tobby 4096 3 mai 05:02 .local
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Modèles
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Musique
drwxr-xr-x 4 tobby tobby 4096 16 aoû 15:05 .node-red
drwxr-xr-x 4 tobby tobby 4096 16 aoû 14:15 .npm
-rw----- 1 tobby tobby 22 16 aoû 14:15 .npmrc
-rw-r--r-- 1 tobby tobby 807 3 mai 04:53 .profile
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Public
drwxr-xr-x 2 tobby tobby 4096 16 aoû 14:06 .ssh
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Téléchargements
drwxr-xr-x 2 tobby tobby 4096 16 aoû 13:58 Vidéos
-rw----- 1 tobby tobby 106 16 aoû 14:27 .Xauthority
-rw----- 1 tobby tobby 2521 16 aoû 14:27 .xsession-errors
-rw----- 1 tobby tobby 2521 16 aoû 14:02 .xsession-errors.old
tobby@Nidus:~ $ wget -0 ~/.gatling/gatling-charts-highcharts-bundle-3.9.5-
bundle.zip https://repo1.maven.org/maven2/io/gatling/highcharts/gatling-
charts-highcharts-bundle/3.9.5/gatling-charts-highcharts-bundle-3.9.5-
bundle.zip
--2023-08-16 15:12:41--
https://repo1.maven.org/maven2/io/gatling/highcharts/gatling-charts-
highcharts-bundle/3.9.5/gatling-charts-highcharts-bundle-3.9.5-bundle.zip
Résolution de repo1.maven.org (repo1.maven.org)... 146.75.116.209,
2a04:4e42:8d::209
Connexion à repo1.maven.org (repo1.maven.org)|146.75.116.209|:443...
connecté.
requête HTTP transmise, en attente de la réponse... 200 OK
Taille: 77080673 (74M) [application/zip]
Sauvegarde en : « /home/tobby/.gatling/gatling-charts-highcharts-bundle-
3.9.5-bundle.zip »
/home/tobby/.gatling/gatling-charts-highcharts-bundl 100%
2023-08-16 15:12:47 (12.8 MB/s) - « /home/tobby/.gatling/gatling-charts-
highcharts-bundle-3.9.5-bundle.zip » sauvegardé [77080673/77080673]
tobby@Nidus:~ $ unzip ~/.gatling/gatling-charts-highcharts-bundle-3.9.5-
bundle.zip -d ~/.gatling/
Archive: /home/tobby/.gatling/gatling-charts-highcharts-bundle-3.9.5-
bundle.zip
[...]
  inflating: /home/tobby/.gatling/gatling-charts-highcharts-bundle-
3.9.5/LICENSE
tobby@Nidus:~ $ cd .gatling/
tobby@Nidus:~/.gatling $ ls -la
total 75288
                          4096 16 aoû 15:12 .
drwxr-xr-x 3 tobby tobby
drwxr-xr-x 18 tobby tobby
                          4096 16 aoû 15:10 ...
drwxr-xr-x 7 tobby tobby 4096 10 mai 11:19 gatling-charts-highcharts-
bundle-3.9.5
```

```
-rw-r--r-- 1 tobby tobby 77080673 10 mai 11:19 gatling-charts-highcharts-bundle-3.9.5-bundle.zip
tobby@Nidus:~/.gatling $ cd gatling-charts-highcharts-bundle-3.9.5 /
tobby@Nidus:~/.gatling/gatling-charts-highcharts-bundle-3.9.5 $ ls -la
total 48
drwxr-xr-x 7 tobby tobby 4096 10 mai 11:19 .
drwxr-xr-x 3 tobby tobby 4096 16 aoû 15:12 ..
drwxr-xr-x 2 tobby tobby 4096 10 mai 11:19 bin
drwxr-xr-x 2 tobby tobby 4096 10 mai 11:19 conf
drwxr-xr-x 2 tobby tobby 12288 10 mai 11:19 lib
-rw-r--r-- 1 tobby tobby 11367 10 mai 11:19 LICENSE
drwxr-xr-x 2 tobby tobby 4096 10 mai 11:19 results
drwxr-xr-x 5 tobby tobby 4096 10 mai 11:19 user-files
```

### 8.2. Vérification de l'installation

```
tobby@Nidus:~/.gatling/gatling-charts-highcharts-bundle-3.9.5/bin $
./gatling.sh
GATLING_HOME is set to /home/tobby/.gatling/gatling-charts-highcharts-
Do you want to run the simulation locally, on Gatling Enterprise, or just
package it?
Type the number corresponding to your choice and press enter
[0] <Quit>
[1] Run the Simulation locally
[2] Package and upload the Simulation to Gatling Enterprise Cloud, and run
it there
[3] Package the Simulation for Gatling Enterprise
[4] Show help and exit
1
août 16, 2023 4:28:28 PM java.util.prefs.FileSystemPreferences$1 run
INFO: Created user preferences directory.
computerdatabase.ComputerDatabaseSimulation is the only simulation,
executing it.
Select run description (optional)
InstallVerif
Simulation computerdatabase.ComputerDatabaseSimulation started...
______
2023-08-16 16:29:14
                                                      5s elapsed
----
> Global
                                                    (0K=23)
                                                             K0=0
)
> Home
                                                    (0K=6
                                                             K0=0
> Home Redirect 1
                                                    (0K=6)
                                                             K0=0
> Search
                                                    (0K=5)
                                                             K0=0
```

```
> Select
                           (0K=3
                                K0=0
)
> Page 0
                           (0K=3 K0=0
)
---- Users ------
[-----
    waiting: 5 / active: 5 / done: 0
---- Admins -----
0%
    waiting: 1 / active: 1 / done: 0
______
=====
_______
2023-08-16 16:29:19
                            10s elapsed
> Global
                           (0K=71 K0=0
)
                           (0K=12 K0=0
> Home
)
                           (0K=12
> Home Redirect 1
                                K0=0
)
> Search
                           (0K=11 K0=0
)
> Select
                           (OK=10
                                K0=0
                           (OK=9
> Page 0
                                K0=0
)
> Page 1
                           (0K=8
                                K0=0
                           (OK=5
> Page 2
                                K0=0
> Page 3
                           (OK=3
                                K0=0
)
                           (OK=1
                                K0=0
> Form
waiting: 0 / active: 8 / done: 2
---- Admins ------
「-----
-] 0%
```

```
waiting: 0 / active: 2 / done: 0
______
=====
______
2023-08-16 16:29:24
                             15s elapsed
---- Requests ------
> Global
                            (0K=101 K0=2
)
> Home
                            (0K=12 K0=0
> Home Redirect 1
                            (0K=12
                                K0=0
> Search
                            (0K=12 K0=0
> Select
                            (0K=12
                                 K0=0
> Page 0
                            (0K=12
                                 K0=0
)
                            (0K=12 K0=0
> Page 1
> Page 2
                            (OK=11
                                 K0=0
                            (OK=10
> Page 3
                                 K0=0
)
> Form
                            (0K=4)
                                 K0=0
)
                            (0K=3 K0=0
> Post
> Post Redirect 1
                            (OK=1
                                 K0=2
---- Errors ------
> status.find.is(201), but actually found 200
(100,0\%)
---- Users ------
- 70%
    waiting: 0 / active: 3 / done: 7
---- Admins ------
- ] 50%
    waiting: 0 / active: 1 / done: 1
______
=====
______
```

```
=====
2023-08-16 16:29:26
                                17s elapsed
> Global
                               (0K=105 K0=3
)
                               (0K=12
> Home
                                    K0=0
                               (0K=12 K0=0
> Home Redirect 1
)
                               (0K=12
> Search
                                    K0=0
> Select
                               (0K=12
                                     K0=0
)
> Page 0
                               (OK=12
                                    K0=0
                               (0K=12 K0=0
> Page 1
                               (OK=12
                                    K0=0
> Page 2
                               (0K=12
> Page 3
                                    K0=0
> Form
                               (0K=4 K0=0
> Post
                               (OK=4
                                    K0=0
                               (OK=1 KO=3
> Post Redirect 1
---- Errors ------
> status.find.is(201), but actually found 200
                                     3
(100,0\%)
---- Users ------
100%
     waiting: 0 / active: 0 / done: 10
---- Admins ------
100%
     waiting: 0 / active: 0 / done: 2
______
=====
Simulation computerdatabase. Computer Database Simulation completed in 17
seconds
Parsing log file(s)...
Parsing log file(s) done
Generating reports...
______
=====
```

```
---- Global Information ------
                                               108 (OK=105 KO=3
> request count
                                               108 (OK=108
> min response time
K0=111 )
                                              1563 (OK=1563
> max response time
K0=114 )
                                               162 (OK=163
> mean response time
K0=112 )
> std deviation
                                               168 (OK=170 KO=1
> response time 50th percentile
                                               115 (OK=115
K0=112 )
> response time 75th percentile
                                               120 (OK=121
K0=113 )
                                               351 (0K=352
> response time 95th percentile
K0=114 )
> response time 99th percentile
                                               620 (OK=620
K0=114 )
> mean requests/sec
                                             6.353 (OK=6.176
K0=0.176)
---- Response Time Distribution ------
> t < 800 \text{ ms}
                                               104 ( 96%)
> 800 ms <= t < 1200 ms
                                                 0 ( 0%)
> t >= 1200 ms
                                                 1 ( 1%)
> failed
                                                 3 ( 3%)
---- Errors ------
> status.find.is(201), but actually found 200
                                                            3
______
=====
Reports generated in Os.
Please open the following file: file:///home/tobby/.gatling/gatling-charts-
highcharts-bundle-3.9.5/results/computerdatabasesimulation-
20230816142907884/index.html
```

### 8.3. Configuration

## 9. Apache et Site Web

#### 9.1. Installation

```
sudo apt install apache2
sudo systemctl status apache2
sudo systemctl enable apache2
```

### 9.2. Mise en place d'un site Web

J'ai créee un site web très simple reprenant le readme du projet. Et il comporte trois pages ainsi que du CSS.

```
scp -r /home/toblerc/Documents/ES\_2024/banc-de-mesures-de-la-consommation-electrique/siteWeb/www/html tobby@Volt:/var/www/html/\\
```

## 10. MQTT

Dans notre cas, j'ai l'intention d'utiliser MQTT pour transmettre les données de consommation à Node-Red. En contournant le transfert de requêtes via SSH et l'utilisation de clés SSH, MQTT permet de gagner en performances et en sécurité. En termes de performances, MQTT est considérablement plus léger que SSH, environ dix fois plus léger.

### 10.1. Installation de Mosquitto sur Nidus

```
tobby@Nidus:~/.ssh $ sudo apt install mosquitto
Lecture des listes de paquets... Fait
tobby@Nidus:~/.ssh $ sudo systemctl status mosquitto

    mosquitto.service - Mosquitto MQTT Broker

     Loaded: loaded (/lib/systemd/system/mosquitto.service; enabled; vendor
preset: enabled)
    Active: active (running) since Tue 2023-08-22 16:01:58 CEST; 7s ago
       Docs: man:mosquitto.conf(5)
             man:mosquitto(8)
    Process: 22571 ExecStartPre=/bin/mkdir -m 740 -p /var/log/mosquitto
(code=exited, status=0/SUCCESS)
    Process: 22572 ExecStartPre=/bin/chown mosquitto /var/log/mosquitto
(code=exited, status=0/SUCCESS)
    Process: 22573 ExecStartPre=/bin/mkdir -m 740 -p /run/mosquitto
(code=exited, status=0/SUCCESS)
    Process: 22574 ExecStartPre=/bin/chown mosquitto /run/mosquitto
(code=exited, status=0/SUCCESS)
   Main PID: 22575 (mosquitto)
     Tasks: 1 (limit: 3933)
        CPU: 42ms
     CGroup: /system.slice/mosquitto.service
             └─22575 /usr/sbin/mosquitto -c /etc/mosquitto/mosquitto.conf
aoû 22 16:01:58 Nidus systemd[1]: Starting Mosquitto MQTT Broker...
aoû 22 16:01:58 Nidus systemd[1]: Started Mosquitto MQTT Broker.
```

### 10.2. Ouverture des port sur Nidus

Modifier le fichier de conf comme suit :

```
tobby@Nidus:~ $ sudo vim /etc/mosquitto/mosquitto.conf
tobby@Nidus:~ $ sudo cat /etc/mosquitto/mosquitto.conf
# Place your local configuration in /etc/mosquitto/conf.d/
#
# A full description of the configuration file is at
# /usr/share/doc/mosquitto/examples/mosquitto.conf.example

pid_file /run/mosquitto/mosquitto.pid

persistence true
persistence_location /var/lib/mosquitto/

log_dest file /var/log/mosquitto/mosquitto.log

include_dir /etc/mosquitto/conf.d

listener 1883
allow_anonymous true
```

### 10.3. Script MQTT

J'ai élaboré un script MQTT sophistiqué, conçu pour publier efficacement les données de consommation sur le broker MQTT. Ce script, au démarrage de la machine, entreprend un fonctionnement en boucle continue, garantissant la collecte et la publication régulières de ces données. L'objectif est d'optimiser les performances tout en garantissant la fiabilité du processus.

#### 10.3.1. Script MQTT

```
#!/bin/bash
### BEGIN INIT INFO
# Provides:
                    mqtt
# Required-Start:
                   $remote_fs $syslog
# Required-Stop: $remote_fs $syslog
# Default-Start:
                   2 3 4 5
# Default-Stop:
                   0 1 6
# Short-Description: Script MQTT de collecte de données
# Description: Ce script collecte la charge CPU, la charge RAM
                   et le nombre de processus, puis publie ces données
                    sur un broker MQTT.
### END INIT INFO
# Pour ajouter les droits d'exécution :
# chmod +x mqtt.sh
# Pour le copier depuis Nidus vers Volt :
# scp ./mqtt.sh tobby@volt:/usr/local/bin/mqtt.sh
# Emplacement du script (doit être dans /usr/local/bin)
INSTALL_DIR="/usr/local/bin"
# Nom du script
SCRIPT_NAME="mqtt.sh"
```

```
# Adresse du broker MQTT
MQTT_BROKER="nidus"
# Sujets MQTT pour les différentes données
MQTT_TOPIC_CPU="benchmark/cpu"
MQTT_TOPIC_RAM="benchmark/ram"
MQTT_TOPIC_PROCESSES="benchmark/processes"
# Vérification si le script est dans le bon dossier d'installation
if [ "$(dirname "$(readlink -f "$0")")" != "$INSTALL_DIR" ]; then
    echo "Erreur : Le script doit être installé dans $INSTALL_DIR"
    exit 1
fi
# Vérification et installation des dépendances (mosquitto-clients)
if ! command -v mosquitto_pub &> /dev/null; then
    echo "Installation de mosquitto-clients..."
    sudo apt-get update
    sudo apt-get install mosquitto-clients
    echo "Installation terminée."
fi
# Vérification si le lien symbolique vers init.d existe
if [ ! -e "/etc/init.d/$SCRIPT_NAME" ]; then
    echo "Création du lien symbolique dans /etc/init.d..."
    sudo ln -s "$INSTALL_DIR/$SCRIPT_NAME" "/etc/init.d/$SCRIPT_NAME"
   echo "Lien symbolique créé."
fi
# Vérification et activation du service init.d
if ! sudo service "$SCRIPT_NAME" status &> /dev/null; then
    echo "Activation du service..."
    sudo update-rc.d "$SCRIPT NAME" defaults
    echo "Service activé."
fi
# Boucle principale pour la collecte et la publication des données
while true; do
    # Collecte des données
    CPU_LOAD = \$(top -bn1 \mid grep "Cpu(s)" \mid awk '{print $2 + $4}')
    RAM_LOAD=$(free | awk '/Mem/{printf("%.2f\n", $3/$2*100)}')
    PROCESS_COUNT=$(ps aux | wc -1)
    # Publication des données sur MQTT
    mosquitto_pub -h $MQTT_BROKER -t $MQTT_TOPIC_CPU -m "$CPU_LOAD"
    mosquitto_pub -h $MQTT_BROKER -t $MQTT_TOPIC_RAM -m "$RAM_LOAD"
    mosquitto_pub -h $MQTT_BROKER -t $MQTT_TOPIC_PROCESSES -m
"$PROCESS_COUNT"
    echo "Données publiées sur MQTT"
    sleep 1 # Attente d'une seconde
done
```

#### 10.3.2. Descriptiono détaillée du script

Le script commence par vérifier si l'emplacement d'installation est correct, s'assurant qu'il est placé dans le répertoire défini par **INSTALL\_DIR**. Ensuite, il vérifie la présence et l'installation des dépendances requises, notamment **mosquitto-clients**, en l'installant si nécessaire.

Une autre vérification importante concerne l'existence d'un lien symbolique vers **/etc/init.d**, qui est nécessaire pour exécuter le script au démarrage de la machine. Si le lien symbolique n'existe pas, le script le crée.

Ensuite, le script s'assure que le service init.d correspondant est activé. Si ce n'est pas le cas, il active le service en utilisant la commande **update-rc.d**.

La section la plus importante du script est la boucle principale, où les données de consommation sont collectées et publiées en continu sur le broker MQTT. Pour chaque itération de la boucle, les taux de charge CPU, de charge RAM et le nombre de processus en cours sont mesurés et enregistrés.

Ces données sont ensuite publiées sur le broker MQTT à l'aide de la commande **mosquitto\_pub**. Chaque type de données est publié sur un sujet MQTT spécifique (\$MQTT\_TOPIC\_CPU, \$MQTT\_TOPIC\_RAM, \$MQTT\_TOPIC\_PROCESSES), ce qui permet de les organiser de manière claire.

Le script affiche également un message indiquant que les données ont été publiées sur MQTT, et ensuite attend une seconde avant de reprendre une nouvelle itération de la boucle.

#### 10.3.3. Conclusion

Ce script MQTT élaboré et bien structuré offre un moyen efficace de collecter et de publier les données de consommation sur le broker **MQTT**. Son fonctionnement en boucle continue, combiné à des vérifications et des actions préliminaires, garantit une gestion fiable et optimisée des données, contribuant ainsi à la réussite globale du projet.

#### 10.4. Installation

```
toblerc@LPT-UNIX-USB-CT:~/Documents/ES_2024/banc-de-mesures-de-la-consommation-electrique$ scp ./mqtt.sh tobby@volt:/usr/local/bin/mqtt.sh mqtt.sh 100% 2526 2.1MB/s 00:00
```

### 10.5. Utilisation du script

```
tobby@Volt:/usr/local/bin$ sudo ./mqtt.sh
Installation de mosquitto-clients...
[...]
Il est nécessaire de prendre 136 ko dans les archives.
Après cette opération, 568 ko d'espace disque supplémentaires seront utilisés.
Souhaitez-vous continuer ? [0/n] 0
[...]
```

```
Installation terminée.
Création du lien symbolique dans /etc/init.d...
Lien symbolique créé.
Activation du service...
Service activé.
```

#### 10.5.1. Vérification



{width=100%}

## 11. INA219

Dans ce chapitre, nous explorerons la puce **INA219**, qui joue un rôle essentiel dans la mesure de la consommation. Il est important de noter que nous utilisons deux puces INA219 dans ce projet : l'une pour la mesure proprement dite et l'autre en tant que pièce de rechange en cas de problème. Pour les différencier, nous avons effectué des soudures pour attribuer des adresses I2C spécifiques à chaque puce. L'adresse de la puce de mesure est réglée sur *0x40*, tandis que l'adresse de la puce de remplacement est réglée sur *0x41*.

#### 11.0.1. Installation physique

L'installation physique du **INA219** implique des branchements spécifiques en fonction des scénarios : avec ou sans le dispositif Volt. Voici les détails de chaque configuration :

#### 11.0.1.1. Branchement SANS VOLT



#### 11.0.1.2. Branchement AVEC VOLT

Le branchement avec le dispositif Volt ajoute une complexité supplémentaire. Voici un aperçu détaillé de ce branchement :



{width=100%}



#### 11.0.2. Vérification de la présence du INA219

Avant de pouvoir commencer à utiliser le **INA219** pour mesurer la consommation, il est crucial de vérifier la présence de la puce et de s'assurer qu'elle est correctement détectée par le système. Cette étape est essentielle pour garantir des mesures précises et fiables tout au long du projet.

#### 11.1. Obtention des données

#### 11.1.1. Test avec le script python A vide

Instalation de la bibliothèque python

```
tobby@Nidus:~ $ sudo pip3 install pi-ina219
Looking in indexes: https://pypi.org/simple,
https://www.piwheels.org/simple
Collecting pi-ina219
  Downloading pi_ina219-1.4.1-py2.py3-none-any.whl (10 kB)
Collecting Adafruit-GPIO
  Downloading https://www.piwheels.org/simple/adafruit-gpio/Adafruit_GPIO-
1.0.3-py3-none-any.whl (38 kB)
Collecting mock
  Downloading https://www.piwheels.org/simple/mock/mock-5.1.0-py3-none-
any.whl (30 kB)
Collecting adafruit-pureio
  Downloading https://www.piwheels.org/simple/adafruit-
pureio/Adafruit_PureIO-1.1.11-py3-none-any.whl (10 kB)
Requirement already satisfied: spidev in /usr/lib/python3/dist-packages
(from Adafruit-GPIO->pi-ina219) (3.5)
Installing collected packages: adafruit-pureio, mock, Adafruit-GPIO, pi-
ina219
Successfully installed Adafruit-GPIO-1.0.3 adafruit-pureio-1.1.11 mock-
5.1.0 pi-ina219-1.4.1
```

#### Vérification de la présence de l'INA219

#### Création du script python

```
tobby@Nidus:~/Documents $ mkdir py
tobby@Nidus:~/Documents/py $ touch my_ina219.py
tobby@Nidus:~/Documents/py $ ls -la
total 8
drwxr-xr-x 2 tobby tobby 4096 22 aoû 10:19 .
drwxr-xr-x 3 tobby tobby 4096 22 aoû 10:18 ..
-rw-r--r-- 1 tobby tobby 0 22 aoû 10:19 my_ina219.py
tobby@Nidus:~/Documents/py $ sudo vi ./my_ina219.py
```

```
#!/usr/bin/env python
from ina219 import INA219
from ina219 import DeviceRangeError
SHUNT_OHMS = 0.1
def read():
    ina = INA219(SHUNT_OHMS)
    ina.configure()
    print("Bus Voltage: %.3f V" % ina.voltage())
    try:
        print("Bus Current: %.3f mA" % ina.current())
        print("Power: %.3f mW" % ina.power())
        print("Shunt voltage: %.3f mV" % ina.shunt_voltage())
    except DeviceRangeError as e:
        # Current out of device range with specified shunt resistor
        print(e)
if __name__ == "__main__":
    read()
```

#### Execution du script

```
tobby@Nidus:~/Documents/py $ python ./my_ina219.py
Bus Voltage: 0.888 V
Bus Current: -0.195 mA
Power: 0.000 mW
Shunt voltage: -0.010 mV
```

# 12. Noeud Node-Red

#### 12.1. INA219

Dans cette section, nous explorons le composant **INA219**, un élément clé de notre projet. L'**INA219** est équipé de deux sorties qui fournissent des valeurs en milliampères et en volts, offrant ainsi des informations cruciales sur la consommation.



{width=100%}

Pour tirer le meilleur parti de l'INA219, j'ai mis en place une configuration sophistiquée. J'ai configuré des nœuds de fonctions spécifiques pour exclure les valeurs négatives. Ces valeurs négatives sont généralement des erreurs de lecture et doivent être traitées correctement pour garantir des données précises. Ensuite, j'ai élaboré une séquence de traitement pour afficher ces valeurs de manière compréhensible dans un libellé.

En plus de cela, j'ai mis en place un nœud "join" qui joue un rôle crucial. Ce nœud fusionne les deux valeurs obtenues à partir des sorties de l'INA219 en un seul message cohérent. Ce message est ensuite acheminé vers un autre nœud de fonction spécialisé. Ce nœud effectue des calculs complexes pour obtenir les données de consommation en watts. Ces données sont ensuite affichées à la fois dans un libellé, offrant une visualisation claire des résultats, et dans un graphique, permettant une compréhension visuelle de l'évolution de la consommation.

```
// Récupérer les valeurs de courant (mA) et de tension (V) depuis les
propriétés msg.payload
var current_mA = msg.payload.miliamps;
var voltage_V = msg.payload.voltage;

// Calculer la puissance en watts (W)
var power_W = (current_mA / 1000) * voltage_V; // Convertir le courant en
ampères

// Vérifier si la tension est négative
if (voltage_V < 0.5) {
    // Si la tension est négative, ne rien faire et retourner le message
inchangé
    return null;
}

// Créer un nouvel objet msg avec la puissance en watts comme payload
msg.payload = power_W;</pre>
```

```
msg.topic = "Watt";
// Renvoyer le message modifié
return msg;
```

### 12.2. Monitoring



{width=100%}

Dans cette section, nous abordons le **Monitoring**, une étape cruciale de notre projet. Pour cette tâche, j'ai choisi d'utiliser le protocole **MQTT**, qui présente des avantages significatifs en termes de rapidité et de légèreté par rapport au **SSH**.

En commençant par la réception des données via le nœud MQTT, celles-ci sont dirigées vers un nœud de type "gauge" (*jauge*) qui affiche la valeur en temps réel. Cette représentation visuelle offre une vue instantanée de la consommation, permettant une surveillance efficace.

#### 12.3. Dashboard

Le **Dashboard**, en tant que centre de contrôle essentiel, rassemble tous les éléments nécessaires pour une visualisation optimale des données générées.

Il met à disposition un ensemble complet de nœuds spécifiques, créant une interface utilisateur intuitive et interactive. Ces nœuds proposent une gamme variée de fonctionnalités pour présenter, ajuster et transmettre les données. Voici quelques exemples des nœuds qui contribuent à cette expérience :

 Bouton (Button): Permet aux utilisateurs d'interagir et de déclencher des actions de manière directe.

- **Liste déroulante (***Dropdown***) :** Offre un moyen de sélectionner parmi plusieurs options, permettant un contrôle structuré des paramètres ou des valeurs.
- Interrupteur (Switch): Fournit une transition immédiate entre deux états, souvent utilisé pour activer ou désactiver des fonctionnalités.
- **Curseur (Slider):** Permet un réglage précis d'une valeur numérique en glissant un curseur. Utile pour ajuster des paramètres continus.
- **Champ numérique (***Numeric***) :** Fournit une interface pour entrer des valeurs numériques avec précision.
- Champ de texte (*Text input*): Permet aux utilisateurs d'entrer du texte, généralement pour des commentaires, des descriptions ou des valeurs personnalisées.
- **Sélecteur de date (***Date picker***) :** Facilite la sélection de dates et d'heures, souvent utilisé pour des enregistrements horodatés.
- **Sélecteur de couleur (***Colour picker***) :** Permet de choisir précisément une couleur pour des éléments visuels ou des codes couleur.
- **Formulaire (***Form***) :** Regroupe plusieurs champs de saisie et de contrôle en une entité logique, simplifiant ainsi la collecte de données.
- **Texte** (*Text*): Affiche du texte ou des instructions pour guider l'utilisateur dans l'interprétation des données ou l'utilisation de l'interface.
- **Jauge (***Gauge***) :** Présente graphiquement une valeur numérique, offrant une visualisation rapide d'un état ou d'une mesure.
- **Graphique (***Chart***) :** Permet la création de divers types de graphiques pour illustrer visuellement les tendances et les relations entre les données.
- Sortie audio (Audio out): Peut être utilisée pour fournir des commentaires auditifs ou des alertes sonores.
- **Notification (***Notification***) :** Affiche des messages d'information ou d'alerte à l'utilisateur pour des événements spécifiques.
- **Contrôle d'interface utilisateur (***UI control***) :** Offre des éléments interactifs personnalisables pour répondre aux besoins spécifiques de l'application.
- Modèle (Template): Permet d'intégrer du contenu HTML personnalisé, offrant une flexibilité avancée pour inclure graphiques, widgets et plus encore.

Ces nœuds apportent un ensemble puissant d'outils pour la création d'interfaces visuelles riches, éliminant la nécessité d'une programmation manuelle pour chaque élément. Cela encourage la collaboration efficace entre les développeurs et les utilisateurs non techniques dans la conception d'interfaces utilisateur conviviales et informatives.

#### 12.4. PDF

#### 12.4.1. Base

Pour generer un PDF, il faut passer un Json dans le payload du message :

Qui est reçu dans le noeud pdfmake qui le passe en Base64 qui est ensuite reçu dans le noeud write file qui l'ecrie dans un fichier PDF.



{width=100%}

## 12.5. Images de graphiques et de tableaux

Une fois que la génération de PDF est maîtrisée, il est temps de valoriser davantage les informations en y ajoutant des images.

En effet, bien que disposer des valeurs à un instant donné soit utile, pouvoir visualiser ces valeurs sous forme de graphique est encore plus puissant. Pour réaliser cela, nous utiliserons le nœud **node-red-contrib-chart-image**, qui nous permettra de générer des graphiques. Ce nœud repose sur le module **Chart.js**, qui permet de créer des graphiques en utilisant du code JavaScript.

En plus du nœud de graphique, nous aurons besoin du nœud **node-red-node-base64**, qui facilitera la conversion d'images en base64 et vice versa. Cette conversion est essentielle pour intégrer les images dans le document PDF.

Cette combinaison de nœuds nous permettra de créer des représentations visuelles attrayantes et informatives des données, offrant ainsi une compréhension plus approfondie et une présentation visuellement engageante.

## 13. Stress Test V1.0

J'ai créé une page qui permet de générer un rapport en fonction de la durée et de l'exécution d'un stress test sur Nidus et/ou sur Volt. Voici le flux complet pour la génération du rapport:



{width=100%}

Pour être honnête, il faut admettre que la lisibilité initiale n'est pas optimale. Par conséquent, j'ai décidé de décomposer le processus en plusieurs étapes afin d'obtenir une meilleure compréhension globale.

## 13.1. Écran d'Accueil



{width=50%}

Au premier abord, vous serez accueilli par un navigateur de fichiers et un formulaire. Ce formulaire vous permet de spécifier la durée du test et de décider si vous souhaitez exécuter un test de stress sur Nidus et/ou sur Volt. Voici le contenu de la page "file" qui contient le formulaire:



{width=100%}

Après avoir rempli le formulaire:



{width=100%}

Les nœuds responsables de cette section sont les suivants:



{width=100%}

Deux éléments se distinguent ici:

- Un formulaire de "Configuration du Test"
- Un bouton "Purge" dont nous discuterons ultérieurement

Le formulaire recueille les données saisies par l'utilisateur. Ensuite, il transmet ces données en sortie. Deux fonctions sont connectées à cette sortie. La première fonction ajoute les chemins des fichiers, tels que "chart.png" et "report.pdf", à un tableau. La seconde fonction gère l'exécution des tests de stress en fonction des entrées de l'utilisateur, et les envoie ensuite à un nœud "exec" qui exécute les commandes sur Nidus et/ou Volt.

La première fonction transmet ensuite les données à une fonction à sorties multiples, ce qui permet d'envoyer différents messages distincts.

### 13.2. En Exécution



{width=100%}

Pendant l'exécution, une **barre de progression** est affichée pour montrer l'avancement du test, accompagnée d'une **étiquette** en dessous pour indiquer le pourcentage d'avancement. Cela permet d'obtenir une meilleure visualisation de l'état d'avancement.

En arrière-plan, un certain nombre de tâches se déroulent :



{width=100%}

Pour en donner plus de détails :

- La première sortie du nœud **Activate** est connectée à un nœud **delay** qui ajuste la durée du test, ainsi qu'à une série d'autres nœuds qui gèrent la barre de progression.
- La deuxième sortie du nœud **Activate** est reliée à un nœud MQTT amélioré. Celui-ci permet de souscrire aux **topics** appropriés. Au début du test, il souscrit au topic #/benchmark/#, puis à la fin du test, il reçoit le topic / pour se désinscrire. Cela permet de filtrer uniquement les informations nécessaires et d'éviter d'être submergé par les messages superflus envoyés sur le broker MQTT.
- Les six autres sorties du nœud **Activate** ont la même fonction. Elles envoient toutes des messages pour modifier le topic MQTT.

Ensuite, ces messages sont acheminés vers un nœud **join**, qui les combine en un tableau de messages. Ce tableau est ensuite transmis à un nœud **function** chargé de traiter les données. Parmi les tâches effectuées par ce nœud figurent la personnalisation des **topics** pour chaque ensemble de données et le calcul de la moyenne des valeurs reçues :

```
// Définir le sujet du message
msg.topic = "volt/benchmark/cpu";

// Vérifier si le tableau payload existe et n'est pas vide
if (msg.payload && Array.isArray(msg.payload) && msg.payload.length > 0) {
    // Convertir les valeurs en chaînes de caractères en nombres entiers
    var numericValues = msg.payload.map(function (value) {
        return parseInt(value, 10); // 10 indique la base décimale
    }).filter(function (value) {
        return !isNaN(value); // Filtrer les valeurs non numériques
```

```
});
    // Vérifier si des valeurs numériques ont été trouvées
    if (numericValues.length > 0) {
        // Calculer la somme des valeurs numériques dans le tableau
        var sum = numericValues.reduce(function (acc, value) {
            return acc + value;
        }, ⊙);
        // Calculer la moyenne en divisant la somme par le nombre
d'éléments
        var moyenne = sum / numericValues.length;
        // Arrondir la moyenne à deux chiffres après la virgule et au
multiple de 0.05 le plus proche
        moyenne = Math.round(moyenne * 20) / 20;
        // Ajouter la moyenne au message
        msg.moyenne = moyenne.toFixed(2);
    } else {
        // Si aucune valeur numérique n'a été trouvée, définir la moyenne à
0
        msg.moyenne = "0.00";
} else {
    // Si le tableau est vide ou n'existe pas, définir la moyenne à 0
    msg.moyenne.volt.benchmark.cpu = "0.00";
}
// Renvoyer le message modifié
return msg;
```

La partie supérieure permet d'atteindre le même résultat à l'aide de l'INA219. Cependant, puisque je ne peux pas choisir le moment où je veux récupérer les valeurs et qu'elles sont envoyées de manière continue, j'ai utilisé une astuce consistant à détourner les messages de mise à jour de la **barre de progression**. Je les ai synchronisés avec les messages de l'INA219, puis les ai dirigés vers un nœud **join** qui les regroupe. Ensuite, ces messages sont envoyés dans un nœud **switch** qui rejette les messages ne provenant pas de la barre de progression. Cela a pour effet de ne conserver que les messages de l'INA219 pendant le test.

Une fois les ensembles de données collectés, il est temps de les utiliser :



{width=100%}

Après l'application des fonctions **rename**, deux nœuds **join** sont utilisés pour regrouper les données. L'un regroupe les tableaux de données, tandis que l'autre regroupe les moyennes calculées.

Intéressons-nous d'abord au nœud **Values**, car c'est le premier à être utilisé. Il permet de créer un tableau de données qui est ensuite transmis à une série de nœuds de fonctions. Ces nœuds de fonctions traitent les données et les formatent pour créer des **graphiques linéaires** sous forme d'images PNG:

```
// Données reçues du flux précédent
var rawData = msg.payload;
var delayInSeconds = msg.delay / 1000; // Conversion en secondes

// Extraction des données nécessaires
var voltWatt = rawData;
// Création du graphique
var chartData = {
    type: 'line', // Changement du type de graphique en "line"
    options: {
        title: {
```

```
display: true,
            text: 'Comparaison des performances'
        },
        legend: {
            display: true
        },
        chartArea: {
            backgroundColor: '#d3d7dd'
        },
        plugins: {
            datalabels: {
                display: false // Désactiver l'affichage des étiquettes de
données
            }
        }
    },
    data: {
        labels: Array.from({ length: voltWatt.length }, (_, i) => (i *
delayInSeconds).toFixed(1)), // Temps en secondes
        datasets: [
            {
                label: "Volt Watt",
                borderColor: 'rgba(0, 255, 255, 1)',
                fill: false,
                data: voltWatt,
                pointRadius: 0,
            },
        ]
   }
};
msg.payload = chartData;
return msg;
```

L'exemple ci-dessus est volontairement plus simple, car il ne contient qu'un seul ensemble de données, à savoir les watts de Volt. À la sortie de cette fonction, un nœud utilise ce qui a été créé pour générer un **tampon PNG**. Ce tampon est ensuite transmis à un nœud **write file** qui écrit le fichier dans le dossier spécifié par le nœud **Ajoute le nom du fichier**, situé après le formulaire. Simultanément, le nœud envoie également le tampon à un nœud **join** qui attend que tous les graphiques soient créés pour qu'ils puissent être réutilisés.

Une fois que le signal indiquant que les fichiers ont été créés est reçu, le nœud **join** appelé **Moyenne** peut transmettre ses données. Ces données sont réorganisées par un nœud **change**, puis envoyées à plusieurs autres nœuds pour récupérer les images en base64 des graphiques. Ces images sont envoyées en même temps que les moyennes à la fonction **Créer le contenu du fichier**:

```
msg.payload = {
   header: function (currentPage, pageCount, pageSize) {
```

```
return [
            {
                text: "Tobler Cyril",
                alignment: "left",
                fontSize: 10,
                margin: [15, 10, 0, 0]
            },
            {
                text: "Nom du projet : Confuse T-Rex",
                alignment: "center",
                fontSize: 10,
                margin: [0, 0, 0, 0]
            }
        ];
    },
    footer: function (currentPage, pageCount) {
        return {
            columns: [
                {
                    text: currentPage.toString() + " / " + pageCount,
                    alignment: "left",
                    fontSize: 10,
                    margin: [15, 0, 0, 10]
                },
                {
                    text: new Date().toLocaleDateString("fr-FR"),
                    alignment: "right",
                    fontSize: 10,
                    margin: [0, 0, 15, 10]
                }
            ],
            margin: [0, 0, 0, 10]
        };
    },
    content: [
        {
            text: "Rapport d'utilisation",
            style: "header",
            margin: [0, 10, 0, 0]
        },
        {
            text: "Les valeurs sont des moyennes sur les " +
Math.floor(msg.delay / (1000 * 60)) + " dèrnière minutes"
        },
        {
            text: "Nidus:",
            style: "header2"
        },
            text: "CPU:
msg.payload.moyenne["nidus/benchmark/cpu"]
        },
        {
            text: "RAM :
```

```
msg.payload.moyenne["nidus/benchmark/ram"]
        },
        {
            text: "Nombre de processus : " +
msg.payload.moyenne["nidus/benchmark/processes"]
            text: "Température CPU : " +
msg.payload.moyenne["nidus/benchmark/temp"]
        },
        {
            image: 'nidusImage',
            width: 500,
            pageBreak: 'after',
        },
        {
            text: "Volt",
            style: "header2"
        },
            text: "CPU :
msg.payload.moyenne["volt/benchmark/cpu"]
        },
            text: "RAM :
msg.payload.moyenne["volt/benchmark/ram"]
        },
        {
            text: "Nombre de processus : " +
msg.payload.moyenne["volt/benchmark/processes"]
        },
            text: "Température CPU : " +
msg.payload.moyenne["volt/benchmark/temp"]
        },
        {
            text: "MilliWatt:
msg.payload.moyenne["volt/benchmark/watt"]
        },
            image: 'voltImage',
            width: 500
        },
            image: 'wattImage',
            width: 500
        },
    ],
    images: {
        voltImage: 'data:image/png;base64,' +
msg.payload.voltGraph.toString('base64'), // Utilisation du buffer pour
l'image Volt
        wattImage: 'data:image/png;base64,' +
msg.payload.wattGraph.toString('base64'), // Utilisation du buffer pour
```

```
l'image Watt de volt
        nidusImage: 'data:image/png;base64,' +
msg.payload.nidusGraph.toString('base64'), // Utilisation du buffer pour
l'image Nidus
    },
    styles: {
        header: {
            fontSize: 22,
            bold: true,
            margin: [0, 30, 0, 0]
        },
        header2: {
            fontSize: 18,
            bold: true,
            margin: [0, 20, 0, 0]
        }
    }
};
return msg;
```

Cette fonction va créer, de manière similaire aux graphiques, une structure utilisée par PDFMake pour générer un fichier PDF. Cette structure est ensuite transmise à un nœud **pdfmake**, qui la convertit en base64 et l'envoie à un nœud **write file**. Ce dernier écrit le fichier PDF dans le dossier spécifié par le nœud **Ajoute le nom du fichier**, situé après le formulaire.

Le nœud final permet de mettre à jour le modèle HTML qui répertorie les fichiers PDF et PNG dans le dossier défini par le nœud **Ajoute le nom du fichier**. Ce modèle HTML permet de les télécharger en un seul clic.

### 13.3. Résultat



{width=100%}

Pour obtenir les résultats, il suffit de cliquer sur le nom du fichier, qui sera automatiquement téléchargé. Ce processus est géré par ces nœuds :



{width=100%}

La partie supérieure gère l'affichage des fichiers dans un modèle et ajoute aux noms de fichier des requêtes GET qui permettent de télécharger les fichiers en un seul clic. La partie inférieure gère la réception des requêtes GET et envoie le fichier demandé à un nœud **read file**, qui le lit et l'envoie ensuite à un nœud **http response**. Ce dernier envoie le fichier au client ayant effectué la requête.



{width=100%}

### 13.4. Purge

Au cours de mes tests, j'ai réalisé qu'un problème survient lorsque l'on génère un certain nombre de rapports, le dossier devient rapidement surchargé. Par conséquent, j'ai décidé de mettre en place un bouton permettant de purger le dossier de tous les fichiers .pdf et .png qui s'y trouvent. Cependant, pour éviter toute suppression accidentelle de fichiers importants, j'ai mis en place un système de confirmation demandant à l'utilisateur s'il est sûr de vouloir supprimer les fichiers.





Voici les nœuds qui gèrent cette partie :



{width=100%}

Ce que l'on peut observer, c'est qu'après avoir appuyé sur le bouton de purge, un message est envoyé dans un nœud show dialog qui affiche une fenêtre de confirmation. Si l'utilisateur appuie sur le bouton "Oui", un message est transmis à un nœud de fonction qui vérifie le contenu du message et redemande une confirmation s'il est à nouveau validé. À ce stade, deux flux sont créés :

• Le premier effectue la purge totale de tous les fichiers dans /home/NodeRed/.

• Le second commence par un délai de quelques secondes avant de recréer les dossiers de structuration.

# 14. Sources

1. Guide d'Installation Node-Red

Installer Node-Red

2. Guide de Sécurisation de Node-Red

Sécurisation de Node-Red

3. Tutoriel de Base Rototron

**Tutoriel Rototron** 

4. Documentation Technique de l'INA219

**Documentation INA219** 

5. Recherche de M. Lamber

Profil de Consommation par M. Lamber

6. Recherche de M. Pol J. Planas Pulido

Profil de Consommation par M. Pol J. Planas Pulido

7. Bibliothèque Python pour l'INA219

Bibliothèque pi-ina219

8. Forum Problème de Détection I2C

Forum Raspberry Pi

9. Tutoriel Mise en Place INA219

**Tutoriel INA219** 

10. Tutoriel Création d'un Enregistreur de Consommation

Tutoriel Enregistreur de Consommation

11. Tutoriel Complet avec Arduino

**Tutoriel Complet avec Arduino** 

12. Téléchargement Gatling

Téléchargement Gatling

13. Tutoriel Avancé Gatling

Tutoriel Avancé Gatling

14. Tutoriel de Démarrage Rapide Gatling

Tutoriel de Démarrage Rapide Gatling

15. Tutoriel sur l'utilisation de S1seven

**Tutoriel S1seven**