Si svolgano 3 esercizi a scelta sui 4 proposti. Il punteggio finale sarà la somma dei punti dei 3 esercizi riusciti meglio.

Problema 8.1 (12 punti). Edoardo è un lettore abbastanza veloce. Per leggere una pagina di un libro di narrativa impiega un tempo variabile, con media 75 secondi e deviazione standard 15 secondi. Ora si accinge a iniziare un libro di 342 pagine.

- (7 punti) Usare il teorema del limite centrale per calcolare approssimativamente la probabilità che il tempo totale T necessario per leggere il libro sia superiore alle 7 ore. Quali ipotesi si stanno facendo? Sono ragionevoli?
- (2 punti) Si determinino due reali a < b tali che la probabilità che T sia compreso tra a e b sia approssimativamente del 99%.
- (3 punti) Sia S il tempo necessario ad Edoardo per leggere il 20% di una pagina. Quali momenti e quali caratteristiche ci aspettiamo dalla distribuzione di S?

Problema 8.2 (12 punti). Sia X una variabile aleatoria continua con funzione di densità

$$f(t) = \begin{cases} \frac{1}{90} & 0 \le t \le 9\\ \frac{9}{10} & 9 < t \le 10\\ 0 & \text{altrimenti} \end{cases}$$

- (7 punti) Si verifichi che f sia una funzione di densità valida. Si determinino media e deviazione standard di X e la probabilità che X < 5.
- (2 punti) Si determinino la funzione di ripartizione e la mediana di X.
- (3 punti) Si chiarisca come sia possibile generare una v.a. con la distribuzione di X.

Problema 8.3 (12 punti). Si testa una variante di un programma per computer, che dovrebbe rendere più veloce l'esecuzione. Vengono testati 30 scenari casuali, e per ciascuno si misura la differenza $t_{\rm base}-t_{\rm new}$ del tempo di esecuzione tra il programma base e quello con la

nuova variante attiva. I dati seguenti rappresentano tali differenze, espresse in secondi.

- (6 punti) Stimare al 95% di confidenza, con un intervallo bilaterale, la differenza media di tempo di esecuzione tra le due versioni del programma.
- (3 punti) Testare, tramite calcolo del *p*-value, se vi sia evidenza statistica che la variante sia effettivamente più veloce.
- (3 punti) Qual è la minima numerosità del campione che darebbe al test del secondo punto una potenza dell'80% con differenza media dei tempi pari a 2 secondi?

Problema 8.4 (13 punti). Una macchina riempitrice di capsule di caffè è tarata per mettere 5 grammi di polvere per capsula, e la sua dosata ha idealmente una deviazione standard di 0.1 g o meno. Questi valori vengono periodicamente testati su un campione di 40 capsule.

- (7 punti) Per uno di questi campioni, si trovano media campionaria $\overline{X} = 5.034$ g e deviazione standard campionaria S = 0.137 g. Questi dati provano all'1% di significatività che la deviazione standard è superiore a 0.1 g? Qual è la regione di accettazione relativa a S, per questo test?
- (3 punti) Si determini la potenza del test del punto precedente, per deviazione standard pari a 0.2 g.
- (3 punti) Per un difetto noto della linea di produzione, una piccola frazione p=2.5% delle capsule risulta del tutto vuota. Che effetti possiamo prevedere che avrà questo problema sul test del primo punto?