Bound and Unbound Trajectory (Black Holes)

 $E = mv^2/2 - GMm/r$ · $\cong E = 0$ · $v = \sqrt{2GM/r} \equiv v_{esc}$ · escape velocity · $v < v_{esc}$ · elliptical orbit ; $v = v_{esc}$ · parabolic ; $v > v_{esc}$ · hyperbolic ° 若 $v_{esc} = \sqrt{2GM/r} = c$ (光速),則 $r = 2GM/c^2 \equiv R_S$,Schwarzchild radius (古典 的結果正好與相對論的相同)。當 $r < R_s$ 時,連光也無法逃逸。若星球的半徑 $R < R_S$,就是黑洞。例: M87 的 $M = 3 \times 10^9$ 太陽質量,

 $R_{\rm s} \approx 10^{10} \, km \approx$ 冥王星軌道半徑,應是黑洞。

Tidal Force (潮力)

月-地總質心與地心的距離

$$\Delta = (mr + M \cdot 0)/(m + M)$$

=4500km · 而地球半徑 R = 6400km 。

地球小公轉的離心力 = 月球吸引力,即

$$4\pi^2 \Delta M/T^2 = GmM/r^2 \quad \circ$$

下二式會用到 $Gm/(r \mp R)^2 = (Gm/r^2)(1 \mp R/r)^{-2} \approx (Gm/r^2)(1 \pm 2R/r)$ 。

A: $a_A = +4\pi^2 (R-\Delta)/T^2 + Gm/(r-R)^2 \approx +4\pi^2 (R-\Delta)/T^2 + Gm/r^2 + 2GmR/r^3$

B: $a_R = -4\pi^2 (R + \Delta)/T^2 + Gm/(r + R)^2 \approx -4\pi^2 (R + \Delta)/T^2 + Gm/r^2 - 2GmR/r^3$

 $=-a_A$ (向左為負),故一天有二次漲落潮。 註:地球重力場也是 $g_B=-g_A$ 。

H.W.: Ex. 27; Prob. 9, 15, 17

Ch. 14 Solids and Fluids

Elastic moduli (彈性係數) ≡ (stress 應力)/(strain 應變)

Young's modulus Y (材料的性質)

 $\Delta L \propto \Delta F_n/A$ $\Delta L \propto L$

無其它因素,故 $\Delta L = (1/Y)(\Delta F_n/A)L$,

$$Y \equiv \frac{\Delta F_n}{A} / \frac{\Delta L}{L} \left(= -\Delta P / \frac{\Delta L}{L} \right) \cdot \frac{\Delta F_n}{A} = Y \frac{\Delta L}{L}$$

 $\Delta F_n = Y(A/L)\Delta L = k\Delta L$ · 故彈簧常數 k = Y(A/L) 。

 $P \equiv F/A$ 即壓力或張力,1 pascal (Pa) $\equiv 1 \text{ N/m}^2$,1 psi $\equiv 1 \text{ lb/in}^2 = 6871 \text{ Pa}$ 。

<mark>Shear modulus S (材料的性質)</mark>

$\Delta x \propto F_{\star}/A$.

 $\Delta x \propto h$

無其它因素,故 $\Delta x = (1/S)(F_t/A)h$,

$$S = \frac{F_t}{A} / \frac{\Delta x}{h} = \frac{F_t}{A} / \tan \phi \approx \frac{F_t}{A} / \phi \quad \text{if} \quad \phi \quad \text{is small} \quad .$$

$$\frac{F_t}{A} = S \frac{\Delta x}{h} \approx S \phi \circ$$

Bulk modulus B (材料的性質・固体或流体)

 $\Delta V \propto V$ · $\Delta V \propto \Delta P$ when ΔP or V''(P) is small ° (Taylor 展開 $V(P + \Delta P) = V(P) + V^{(1)}(P)\Delta P + \cdots$ °) 無其它因素 · 故 $\Delta V = -(1/B)V\Delta P$ ·

$$B = -\Delta P / \frac{\Delta V}{V} \cdot \Delta P = -B \frac{\Delta V}{V} \cdot$$

Compressibility
$$k \equiv \frac{1}{B} = -\frac{1}{V} \frac{\Delta V}{\Delta P} \cdot \frac{\Delta V}{V} = -k\Delta P$$

水的
$$k = 46.4 \times 10^{-6} atm^{-1}$$
 , $\Delta P = 1 atm$ ⇒ $\Delta V/V = 4.64/10$ 萬 。

- oa 是 proportional;
- ab 是 not proportional 但 elastic(可逆);
- bf 是 plastic change (塑變、不可逆)。
- a 是 propotional limit; b 是 yield point; f 是 breaking point。

遲滯 hysteresis, 有內摩擦, 可作吸震器

Fluids (液体與氣体)

流体內的壓力P必垂直物体表面,否則表面的流体會流動。

$$P \equiv \Delta F / \Delta A$$
 · 1 pascal (Pa) = 1 N/m² · 1 psi = 1 ℓ b/in² ·

$$1 \text{ atm} = 1.013 \times 10^5 \text{ Pa} = 10.13 \text{ N/cm}^2 = 1.033 \text{ kgw/cm}^2$$

壓力與高度的關係

$$\Sigma F_y = 0 \implies P(H)A = P_0A + \rho(AH)g \text{ if } \rho = const.$$
 $\Leftrightarrow P(H) = P_0 + \rho gH$ °

若
$$\rho(h)$$
可變,則 $P(H)A = P_0A + \int_0^H \rho(h)(Adh)g$ ·

故
$$P(H) = P_0 + \int_0^H \rho(h)gdh$$
 · $\left(AdP = \rho(h)(Adh)g\right)$

For air : $\Delta H = 3 \, m \implies \Delta P = \rho g \Delta H = (1.2 \, kg / m^3)(9.8 \, m/s^2)(3 \, m) = 35 \, Pa$ $\approx 0.00035~atm$,定温下 $-\Delta V/V \approx \Delta P/P \approx 3.5/10^4$, ρ is almost constant 。

 $\Sigma F_{x} = 0$ · 故 P 只與深度有關。

$$F_1/A_1 = P_1 \approx P_2 = F_2/A_2$$
 $P = P_0 + \rho gh$ · 絕對壓力 $F_2 = (A_2/A_1)F_1$ · 流体重可略 $P - P_0 = \rho gh$ · 相對壓力

 $P=P_0+
ho gh$ · 絕對壓力

Archimedes' principle: 浮力 = 排開的流体重

細柱 $df = P(h_2)dA_2\cos\theta_2 - P(h_1)dA_1\cos\theta_1$ $= (P(h_2) - P(h_1)) dA = \left(\int_{h_1}^{h_2} \rho_f(h) g dh \right) dA$

細柱排開的流体重 \cdot $ho_{\scriptscriptstyle f}$ 是流体密度 \cdot

表面張力

液体表面分子間距離較遠,Van der Waals 力是吸力,且吸力 大到即使是受擠壓的內層分子也無法將表面分子分開,而形 成表面張力。實驗可作到(右圖)分子間均為吸力,壓力是 負的, 水的 tensile stress $F/A = Y(\Delta L/L)$ 可達 300 atm。

film

表面張力 $T \equiv (F/2)/L = F/2L$ (因薄膜有二表面) · 即 force per unit length •

毛細現象

吸附力 > 內聚力 上拉的力=液柱重 $(T2\pi R)\cos\theta$ $= \rho(\pi R^2 h)g$ h > 0, $\cos \theta > 0$

吸附力 < 内聚力 下拉力=空液柱重 $(T2\pi R)\cos\theta$ $= \rho(\pi R^2 h)g$ $h < 0, \cos \theta < 0$

故 $h = 2T\cos\theta/(\rho gR)$ $\propto 1/R \cdot T$ 是分子吸力最高時的張力。 水能到達幾十米高的樹 頂就是靠毛細現象,靠大氣壓力僅能升到 10.33 米 (需樹頂抽真空!)。

Fluid Flow

steady 時 · $dm = \rho_1 A_1 v_1 dt = \rho_2 A_2 v_2 dt$ · 故 $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$ · continuity eq. · flow tube flow flow tube flow tu例:水龍頭(右圖)。

Ideal fluids:(1) non-viscous 無黏性;(2) steady 穩流;(3) irrotational 不旋轉。

Bernoulli's Eq. for Incompressible Ideal Fluids

被作功 $\Delta W = P_1 A_1 \Delta \ell_1 - P_2 A_2 \Delta \ell_2$ = $(P_1 - P_2)\Delta V$ if incompr.; 動能改變 $\Delta K = \rho_2 \Delta V_2 v_2^2 / 2 - \rho_1 \Delta V_1 v_1^2 / 2$ if irrot. $= \rho \Delta V (v_2^2 - v_1^2)/2$ if incompr. ; 位能改變 $\Delta U = \rho_2 \Delta V_2 g y_2 - \rho_1 \Delta V_1 g y_1$ = $\rho g \Delta V(y_2 - y_1)$ if incompr. •

 $\Delta W = \Delta K + \Delta U$ if non-visc. & incompr (no heat) $b(P_1 - P_2)\Delta V = \rho \Delta V (v_2^2 - v_1^2) / 2 + \rho g \Delta V (y_2 - y_1)$ $\mathbb{II} \rho v_1^2 / 2 + P_1 + \rho g y_1 = \rho v_2^2 / 2 + P_2 + \rho g y_2$ 故在同一流管(或流線) $\rho v^2/2 + P + \rho gy = const.$ 。

例:

$$\rho v_1^2/2 + P_1 + \rho g h = \rho v_2^2/2 + P_2$$
 $\therefore A_1 >> A_2 \cdot \therefore v_1 << v_2 \cdot \therefore v_1 \approx 0$
 $\rho v_2^2/2 = (P_1 - P_2) + \rho g h$
故 $v_2 = \sqrt{2(P_1 - P_2)/\rho + 2g h}$
若 $P_1 = P_2 = P_{air} \cdot \text{則 } v_2 = \sqrt{2g h} \cdot \text{(ii: 小液塊可快速變形 · 故液塊側面與前後面受的壓力都一樣。)}$

例: Venturi meter (量水流速 v_1) $\rho v_1^2/2 + P_1 + \rho g y_1 = \rho v_2^2/2 + P_2 + \rho g y_2$

 $\Rightarrow (P_1 + \rho g y_1) - (P_2 + \rho g y_2) = \rho(v_2^2 - v_1^2)/2,$ 但 $(P_1 + \rho g y_1) - (P_2 + \rho g y_2) = \rho g h$ (水平流動)、 $v_2 = (A_1/A_2)v_1 \cdot \text{故} \rho g h = \rho v_1^2 (A_1^2/A_2^2 - 1)/2 \cdot \text{得}$ $v_1 = \sqrt{2gh/(A_1^2/A_2^2 - 1)} \cdot \text{(註:各層液体均水平}$ 流動、無上下加速時、壓力來自重量疊加。)

例:飛機翼

例:棒球

例:噴霧器

例:土撥鼠洞(同煙囪)

例: popping window

Real Fluid has viscosity (η)

Steady 時 $dv/d\ell = const.$ $F = \eta A(v/L)$ $\eta \equiv (F/A) \div (v/L)$ 。

【下例僅供參考,不講也不考】

例:在長L、半徑R的圓管內,兩端有壓力 P_1 、 P_2 ,steady,v(R)=0,v(r)=?

考慮半徑 r 的圓柱狀流体,圓柱側面受黏力 $F(r) = A\eta(dv/dr) = 2\pi r L\eta dv/dr$,向右為正。 因 steady,流体只變形而不加速,故受淨力為 0,須壓力差與黏力抵消: $F(r) + (P_1 - P_2)r^2\pi = 0$ 。 故 $2\pi r L\eta dv/dr + (P_1 - P_2)r^2\pi = 0$ 。 即 $dv/dr = -[(P_1 - P_2)/2L\eta]r$,且 v(R) = 0 。

其解 $v(r) = [(P_1 - P_2)/4L\eta](R^2 - r^2)$ 。 体積流率 $\frac{dV}{dt} = \int_0^R 2\pi r dr \frac{(P_1 - P_2)}{4Ln} (R^2 - r^2) = \frac{\pi (P_1 - P_2)}{2Ln} \left(R^2 \int_0^R r dr - \int_0^R r^3 dr \right)$ = $[\pi(P_1 - P_2)/2L\eta](R^4/2 - R^4/4) = [\pi(P_1 - P_2)/8L\eta]R^4$ Poiseuille's law ° 註:對有黏性的流体,前例 Venturi meter 的計算只適用於中線 (r=0)。因流入必 等於流出,故流率 $dV/dt = [\pi(P_1 - P_2)/8L\eta]R^4 = const.$ for all R,故必須 $(P_1 - P_2)/L \propto 1/R^4$,故 $v(r) \propto (1/R^4)(R^2 - r^2) = (1 - r^2/R^2)/R^2$ 。一條流線經過處 的 $r/R \equiv c$ 應均相等,因為如此則 $r_1 = r_2(R_1/R_2)$,流入環狀區 $2\pi rdr$ 的會等於流出 的: $v_1(r_1)2\pi r_1 dr_1 = [const.(1-c^2)/R_1^2]2\pi (R_1/R_2)^2 r_2 dr_2 = v_2(r_2)2\pi r_2 dr_2$ 。故流線上 $v \propto (1-c^2)/R^2 \propto 1/A$,符合 $A_1v_1 = A_2v_2$ 。但只有在 r = 0 處無黏力(因 dv/dr = 0), 才可用 Bernoulli's eq.,即前面 Venturi meter 的分析只適用於中線。

H.W. : Prob. 1, 2, 3, 4, 8, 9, 10

Ch. 15 Oscillations

Simple Harmonic Motion (SHM,簡單諧和運動)

 $x(t) = A\sin(\omega t + \phi)$, $x_0 \equiv x(0) = A\sin(\phi)$

A :amplitude • ω : angular frequency • ϕ : phase constant •

Period $T: \omega T = 2\pi \Rightarrow T = 2\pi/\omega$

 $v(t) = dx/dt = A\omega\cos(\omega t + \phi)$, $v_0 \equiv v(0) = A\omega\cos(\phi)$

$$a(t) = dv/dt = -A\omega^2 \sin(\omega t + \phi)$$
, $a_0 = a(0) = -A\omega^2 \sin(\phi)$

When x = 0, $v = \pm \omega A$, a = 0; when $x = \pm A$, v = 0, $a = \pm \omega^2 A$

x(t) 滿足 eq. of motion for SHM: $d^2x/dt^2 + \omega^2x = 0$ $\Leftrightarrow x(t) = A\cos(\omega t + \phi)$

 $x_0/v_0 = (\tan \phi)/\omega$,故 $\phi = \tan^{-1}(\omega x_0/v_0)$ 。故 $A \& \phi$ 完全由起始條件 $x_0 \& v_0$ 決定。

例: spring-block $md^2x/dt^2 = -kx \implies d^2x/dt^2 + (k/m)x = 0 \implies \omega = \sqrt{k/m}$ °

例: vertical spring-block

 $kx_0 = mg \cdot F = m d^2x/dt^2 = m d^2(x - x_0)/dt^2 = m d^2x'/dt^2$

 $\nabla F = mg - kx = -k(x - x_0) = -kx' \cdot \text{id} \, md^2x'/dt^2 + kx' = 0$

 $\therefore \omega = \sqrt{k/m} \cdot T = 2\pi \sqrt{m/k} \circ$

 $\Delta U = \left[k(x'+x_0)^2/2 - mg(x'+x_0)\right] - \left[kx_0^2/2 - mgx_0\right]$ $=kx'^2/2+kx_0x'+kx_0^2/2-mgx'-kx_0^2/2=kx'^2/2$ •

