Лабораторная работа 2.3

Определение температурной зависимости давления насыщенных паров и теплоты испарения жидкого азота

Составитель: В. Т. Астрелин, канд. физ.-мат. наук (Институт ядерной физики СО РАН, Новосибирский государственный университет)

Рецензент: Г. И. Сухинин, д-р физ.-мат. наук, профессор (Институт теплофизики СО РАН, Новосибирский государственный университет)

ОГЛАВЛЕНИЕ

1.	Введение	3
2.	Теоретическая часть	
	2.1. Условия равновесия фаз	
	2.2. Уравнение Клапейрона–Клаузиуса	
3.	Экспериментальная часть	
	3.1 Оборудование	
	3.2 Описание метода	
	3.3 Измерение теплоты испарения жидкого азота	ПО
	зависимости $T(p)$	9
	3.3.1. Описание установки	9
	3.3.2. Порядок выполнения работы	10
	3.3.3. Задания	11
	3.4 Прямое измерение теплоты испарения жидкого азота	12
	3.4.1. Описание установки	12
	3.4.2. Порядок выполнения работы	12
	3.4.3. Задание	
4.	Контрольные вопросы	13
5.	Литература	13
	Приложение 1. Параметры фазовых переходов для различ	ных
	веществ при нормальном давлении	15
	Приложение 2. Калибровочная кривая для термопары м	едь-
	константан, второй спай поддерживается при 0 °C (273,15 K)).16

Приложение	3.	Кривая	равновесия	«жидкость	– I	пар»
для азота						17
Приложение	4.	Зависимост	ъ теплоты	испарения	азота	ОТ
температуры.						18

ЛАБОРАТОРНАЯ РАБОТА 2.3

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ И ТЕПЛОТЫ ИСПАРЕНИЯ ЖИДКОГО АЗОТА

Цель работы: экспериментальное изучение температурной зависимости давления насыщенных паров над поверхностью жидкого азота и расчет по полученным данным теплоты испарения азота, а также непосредственное измерение теплоты испарения калориметрическим методом.

1. ВВЕДЕНИЕ

В зависимости от термодинамических условий одно и тоже вещество может находиться в газообразном, жидком и твердом состояниях, причем эти состояния (фазы) могут существовать одновременно, находясь в контакте друг с другом. Напомним, что фазой называется «термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний (других фаз) того же вещества...» [1, с. 263], или же, по другому определению, «фаза – часть гетерогенной системы, ограниченная поверхностью раздела и характеризующаяся, в отсутствие поля внешних сил, одинаковыми физическими свойствами во всех своих точках» [2, с. 13].

Фазовым переходом $(\Phi\Pi)$, или фазовым превращением, называется «переход между различными макроскопическими состояниями (фазами) многочастичной системы, происходящий при значениях внешних параметров (температуры, определенных давления, магнитного поля и т. д.) в так называемой точке перехода. отличать от постепенных превращений одного (например, ионизации атомарного состояния другое молекулярного газа и превращение его в плазму), происходящих в целом интервале параметров» [1, с. 271].

Важнейшим вопросом учения о фазах является выяснение условий, при которых система, состоящая из нескольких фаз, находится в равновесии. Детальный качественный анализ фазовых переходов и равновесия в двухфазной системе приведен в методическом описании лабораторной работы 2.4, с которым

рекомендуется ознакомиться до выполнения данной работы. Настоящая работа посвящена экспериментальному исследованию таких условий и их параметров на примере испарения жидкого азота.

2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1. Условия равновесия фаз

Условием механического равновесия в случае плоской границы раздела фаз является постоянство и равенство давлений. Наличие теплового равновесия означает равенство температур фаз. И, наконец, равновесие по отношению к взаимным превращениям фаз достигается при равенстве их химических потенциалов. Для двухфазных систем эти условия имеют вид:

$$p_1=p_2=p,\ T_1=T_2=T, \qquad \mu_1(p,\,T)=\mu_2(p,\,T),$$
 где $p_{\rm i},\ T_{\rm i},\ \mu_{\rm i}$ — давление, температура и химический потенциал i -й

фазы вещества [3-5].

Последнее уравнение в (1) позволяет В принципе выразить один из аргументов химического потенциала через другой, то есть найти p = p(T), зависимость T = T(p), которая определяет плоскости pT кривую равновесия фаз. На рис. 1 для примера приведена фазовая диаграмма, представляющая собой совокупность кривых равновесия фаз для воды. Для

Рис. 1. Фазовая диаграмма для воды [6]

того чтобы найти уравнение кривой p=p(T) в конкретном случае, надо иметь аналитические выражения для химических потенциалов обеих фаз, что не всегда возможно.

2.2. Уравнение Клапейрона-Клаузиуса

Мы можем, однако, не зная конкретного выражения для химических потенциалов $\mu_1(T,p)$ и $\mu_2(T,p)$, найти дифференциальное уравнение кривой фазового перехода. В общем случае химический потенциал, представляющий собой энергию, приходящуюся на один моль вещества, можно выразить через термодинамический потенциал Гиббса Φ (см. [3, c. 111]):

$$\mu_{i} (T,p) = \Phi_{i} (T,p,N_{i}) / N_{i},$$
 (2)

где $N_{\rm i}$ — количество молей вещества i-й фазы. Соответственно, дифференциал химического потенциала выражается через частные производные от Φ в собственных переменных, т. е. через удельную энтропию s и объем v, приходящиеся на один моль вещества [3]:

$$d\mu_{i} = \frac{1}{N} \left(\frac{\partial \Phi_{i}}{\partial T} \right)_{p,N} \cdot dT + \frac{1}{N} \left(\frac{\partial \Phi_{i}}{\partial p} \right)_{T,N} \cdot dp = -s_{i} dT + v_{i} dp.$$
 (3)

Как следует из (1), при фазовом переходе химический потенциал изменяется непрерывно, без скачка. Но молярный объем и молярная энтропия при этом могут изменяться скачком (так называемый фазовый переход первого рода): $v_1 \neq v_2$, $s_1 \neq s_2$. При постоянной температуре перехода T скачок энтропии $s_2 - s_1$ связан с молярной теплотой фазового перехода q формулой

$$q = T(s_2 - s_1). (4)$$

Теплоты и температуры фазовых переходов для различных веществ при атмосферном давлении приведены в приложении 1.

Для получения дифференциального уравнения кривой фазового перехода p=p(T) вычислим производную давления насыщенного пара по температуре dp/dT. При смещении вдоль кривой p(T) в силу уравнения (1) выполняется равенство

$$d\mu_1(p, T) = d\mu_2(p, T),$$
 (5)

и, следовательно, с учетом (3) и (4) имеем

$$\frac{dp}{dT} = \frac{s_2 - s_1}{v_2 - v_1} = \frac{q}{T(v_2 - v_1)},\tag{6}$$

где dp/dT — производная вдоль кривой равновесия. Это уравнение называется уравнением Клапейрона—Клаузиуса. Оно является точным, поскольку выведено без приближений.

Полученное уравнение справедливо, как ясно из его вывода, и для других фазовых превращений, сопровождающихся выделением или поглощением тепла, — для плавления, сублимации и т. д. Тогда величина q будет представлять теплоту соответствующего фазового перехода.

Если считать, что пары жидкости подчиняются уравнению состояния Менделеева–Клапейрона (для одного моля вещества):

$$pv = RT \tag{7}$$

(R -универсальная газовая постоянная), а удельным объемом жидкости можно пренебречь по сравнению с удельным объемом пара, то уравнение (6) легко преобразовать:

$$\frac{dp}{dT} = \frac{q}{Tv} = \frac{q}{RT^2} p. (8)$$

Предполагая, что молярная теплота парообразования q не зависит от температуры и интегрируя (8), получим

$$\ln p = -\frac{q}{RT} + C.$$
(9)

Постоянную интегрирования C можно определить, если известно давление насыщенного пара p_0 при какой-либо одной температуре T_0 . Исключая таким образом C, окончательно получим

$$p = p_0 \exp \left[\frac{q}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right) \right]. \tag{10}$$

Отметим сразу схожесть полученной зависимости давления от теплоты фазового перехода q с формулой Больцмана для распределения плотности газа (или его давления при постоянной температуре) по потенциальной энергии частиц во внешнем поле.

Это не случайно, поскольку именно теплота q является энергетическим барьером, который должны преодолеть молекулы при испарении. Таким же «барьером» для газа в поле, например тяжести, является потенциальная энергия молекул $\varepsilon = mgh$, которую они должны преодолеть. Соответственно, их плотность уменьшается пропорционально $exp(-\varepsilon/kT)$, как и в нашем случае.

Рис. 2. Схема установки: 1 и 13 — сосуды Дьюара; 2 — кожух; 3 — форвакуумный насос; 4 — вентили; 5 — балластный объем; 6 — датчик; 7 и 8 — термопары; 9 — пробирка; 10 и 11 — цифровые вольтметры; 12 — клапан; 14 — патрубок; 15 — баллон с кислородом (резиновая камера); 16 — блок питания

Эксперимент по нахождению кривой равновесия фаз и теплоты парообразования проводится на установке, схема которой представлена на рис. 2.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1. Оборудование

- 1. Экспериментальная установка (см. рис. 2), включающая откачиваемый сосуд Дьюара, термопары, датчики давления, резиновую камеру с кислородом, соединенную с пробиркой, помещаемой в сосуд с жидким азотом, блок питания датчика давления, вольтметр для регистрации показаний датчика давления, цифровой вольтметр для регистрации показаний дифференциальной термопары.
- 2. Весы, секундомер, сосуд для жидкого азота, нагреватель, вольтметр и амперметр (или ваттметр) для измерения мощности, потребляемой нагревателем (см. рис. 3).

3.2. Описание метода

Для измерения теплоты парообразования жидкого азота в данной работе используются два метода. В первом производится измерение температуры испарения азота при различных давлениях насыщенного пара. Отсюда с помощью соотношения (9) можно найти кривую равновесия фаз T = T(p) и удельную теплоту испарения жидкого азота по наклону зависимости $\ln p = f(1/T)$. Во втором методе в сосуд с жидким азотом погружается нагреватель, сосуд ставится на весы и измеряется зависимость массы испарившегося азота от энергии, выделяемой в нагревателе.

Следует обратить особое внимание на поддержание равновесного состояния системы «жидкость – пар» во время измерений. Нужно избегать бурного кипения азота (или кислорода), перегретой происходящего В жидкости, что может неконтролируемую погрешность результаты измерений. Равновесный фазовый переход соответствует «ВЯЛОМУ»

поверхностному кипению, сопровождающемуся появлением отдельных мелких пузырьков в жидкости.

3.3. Измерение теплоты испарения жидкого азота по зависимости T(p)

3.3.1. Описание установки

Рабочий объем установки (сосуд Дьюара) 1, защищенный кожухом 2, служит для определения искомой зависимости. С помощью форвакуумного насоса 3 и системы вентилей 4 через балластный объем 5 сосуд может быть откачан до требуемого давления, которое регистрируется датчиком 6, преобразующим величину давления в напряжение. Датчик питается от блока питания 16. Температура в рабочем объеме измеряется медьконстантановой термопарой 7, включенной навстречу такой же термопаре 8, устанавливаемой в пробирке 9, приспособленной для дифференциальная сжижения кислорода (так называемая Таким образом, данной работе используется В термопара). достаточно точный компенсационный метод измерения разности калибровки термопары причем для температур, эталонной разности температур используются температуры кипения жидкого кислорода и азота. Выбор материала для термопары связан с тем, что при комнатных температурах и выше ее вольттемпературная характеристика U(T) близка к линейной в широком температур (см. Приложение 2). Но интересующий нас интервал температур далек от комнатной, чувствительность термопары следует находить для наших условий. В пределах этого интервала зависимость U(T) также можно считать линейной (после проведения измерений оцените точность такого приближения!).

Предостережение: **ПРОБКУ ИЗ ПРОБИРКИ НЕ ВЫНИМАТЬ!** В противном случае кислород из пробирки и баллона уйдет в атмосферу и будет утерян.

3.3.2. Порядок выполнения работы

- 1. Включите приборы и после прогрева подготовьте их к работе, пользуясь инструкциями. Проверьте, что камера 15 не пуста. При необходимости заполнить ее кислородом обратитесь к дежурному инженеру или ассистенту.
- 2. Залейте азот в сосуды Дьюара 1 и 13 и дождитесь, когда в пробирке сконденсируется 5-7 см³ жидкого кислорода (жидкий кислород имеет слабо-голубой цвет).
- 3. Проверьте «0» дифференциальной термопары при кипении азота в сосудах при атмосферном давлении. Если измеряемая на ней разность потенциалов отлична от нуля (где-то на контактах набирается дополнительная ЭДС), ее следует учесть в дальнейших измерениях.
- 4. Проведите калибровку дифференциальной термопары. Выньте пробирку 9 из жидкого азота и, дождавшись начала закипания кислорода, определите чувствительность термопары, пользуясь тем, что температура кипения азота при нормальном атмосферном давлении составляет (–195,81 °C), или 77,35 K, а кислорода
- (-182,96 °C), или 90,2 К. Следите, чтобы давление в объемах не превышало атмосферного.
- 5. Поместите пробирку в сосуд Дьюара 13, включите блок питания датчика давления 16, закройте клапан 12 и начните откачку системы. Для этого закройте воздушный вентиль b, проверьте, закрыт ли вентиль a, включите форвакуумный насос и, медленно открывая вентиль a, подключите насос к системе.
- 6. Давление в рабочем объеме для используемого датчика (авиационный альтиметр) определяется по формуле

$$p_{\it pa6} = P_{\it amm} - rac{U - U_{\it amm}}{0.0064}$$
 (мм. pm. cm.),

где P_{amm} — текущее атмосферное давление (определите его по образцовому барометру!), U_{amm} — показания датчика давления (цифрового вольтметра 10) при атмосферном давлении (при открытом

клапане 12), U – текущие показания датчика давления.

- 7. По мере уменьшения давления в системе снимите зависимость температуры кипения азота от давления насыщенных паров. Увеличивать скорость откачки (открывать кран a) нужно очень медленно, чтобы в рабочем объеме успевала устанавливаться равновесная температура кипения азота (см. выше). Откачку вести до давления 150-200 мм. рт. ст., что соответствует напряжению на датчике давления ~ 3.5 В.
- 8. Медленно закрывая клапан a, снимите зависимость температуры азота от давления при его возрастании за счет испарения азота в замкнутом объеме.
- 9. Когда давление в объеме станет близким к атмосферному, закройте вентиль a, откройте вентиль b и снимите клапан 12. По окончании работы выключите форвакуумный насос и напустите в него воздух, открыв вентиль a.

3.3.3. Залания

- 1. По результатам измерений постройте зависимость температуры закипания азота от давления T(p). Оцените погрешности измерения и сравните результат с табличными данными (Приложение 3)
- 2. Постройте зависимость логарифма давления насыщенных паров от обратной температуры lnP = f(1/T) и найдите теплоту испарения азота. Сравните значения, полученные при уменьшении и увеличении давления. Объясните причину различия. Сравните с табличными данными (Приложение 4).
- 3. Составьте перечень источников ошибок. Оцените точность метода.

3.4. Прямое измерение теплоты испарения жидкого азота

3.4.1. Описание установки

Теплоту испарения можно определить, измеряя количество азота, испарившегося из сосуда Дьюара при выделении в нем определенного количества тепла.

Рис. 3. Схема установки прямого измерения теплоты испарения жидкого $I-\cos$ д Дьюара; 2-нагревательный элемент; 3-электронные весы; 4-источник постоянного тока

Схема установки для такого эксперимента приведена на рис. 3. В сосуд Дьюара 1, защищенный теплоизолирующей рубашкой, заливается жидкий азот и помещается нагревательный элемент 2. Зная мощность, рассеиваемую нагревательным элементом, по уменьшению массы испарившегося азота нетрудно определить его теплоту испарения.

3.4.2. Порядок выполнения работы

1. Калибровка весов. В работе используются цифровые весы BЛ 9144. Перед началом измерений необходимо провести калибровку весов. Для этого включите питание весов тумблером на задней панели. Нажать кнопку K на левой боковой панели весов, при этом на цифровом индикаторе появляется символ C-калибровка. Затем осторожно установите на чашку весов калибровочный груз (1 кг).

После этого происходит автокалибровка весов, о завершении которой указывают цифры $1\ 000\ 000$ на индикаторе. Откалиброванные таким образом весы обеспечивают точность до $0.005\ \Gamma$.

- 2. Налейте в сосуд Дьюара жидкий азот и поместите в него нагревательный элемент. Питание элемента должно быть выключено. После установления «спокойного» кипения азота аккуратно установите стакан на весы и включите секундомер. Измерьте среднюю скорость изменения массы азота dm/dt за счет тепла, поступающего из окружающей среды.
- 3. Включите нагревательный элемент. Мощность, подводимую к нагревательному элементу, легко определить по показаниям источника питания. Измерьте среднюю скорость испарения *dm/dt* при нескольких значениях мощности источника.

3.4.3. Залание

Обработайте полученные результаты. Определите теплоту испарения жидкого азота. Определите точность метода измерения и проанализируйте возможные источники погрешностей. Сравните полученный результат с результатами, полученными в первой части работы.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое кипение жидкости? В чем различие понятий «кипение» и «испарение» жидкости?
- 2. Как температура кипения жидкости зависит от внешнего давления? Почему?

5. ЛИТЕРАТУРА

1. Физическая энциклопедия / Под ред. А. М. Прохорова. М.: Советская энциклопедия, 1988. Т. 5.

- 2. Бажин Н. М., Иванченко В. А., Пармон В. Н. Термодинамика для химиков: Учебник для вузов. М.: Химия, 2001. 408 с.
- 3. Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика. Новосибирск: Изд-во НГУ, 2000. 608 с.
- 4. Сивухин Д. В. Общий курс физики. М.: Наука, 1979. Т. 2. Термодинамика и молекулярная физика.
- 5. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. М.: Наука, 1964. С. 309.
 - 6. Кухлинг К. Справочник по физике. М.: Мир, 1985. С. 171.
- 7. Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. М.: Наука, 1980.
- 8. Таблицы физических величин. Справочник / Под ред. И. К. Кикоина. М.: Атомиздат, 1976. 1008 с.
- 9. Бабичев А. П., Бабушкина Н. А., Братковский А. М. и др. Физические величины. Справочник / Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.

приложение 1

ПАРАМЕТРЫ ФАЗОВЫХ ПЕРЕХОДОВ ДЛЯ РАЗЛИЧНЫХ ВЕЩЕСТВ ПРИ НОРМАЛЬНОМ ДАВЛЕНИИ [7, С. 64, 68; 8, ГЛ. 11; 10, ГЛ. 12]

Вещество	$t_{nлавления,} \mathrm{K}(^{\mathrm{o}}\mathbf{C})$	q_{n лавления,	t _{кипения,} K(°C)	$q_{\kappa u n e \mu u s,}$
	, ,	кДж/кг	, , ,	кДж/кг
Азот	63,2(-210)	258	77,3 (-195,8)	200
Алюминий	931,4 (658,3)	400	2 773 (2 500)	10 800
Аргон	83,8 (–189,3)	30	87,3 (-185,9)	165
Ацетон	178.9 (-94,3)	96	329,36 (56,2)	524
Водород	14 (-259,19)	58,7	20,4 (-252,8)	449
Вольфрам	3 689 (3 416)	192,5	5 933 (5 660)	4 350
Гелий	_		4,2 (-268,93)	22
Глицерин	_	176 (?)	563 (290)	825
Железо	1 803 (1 530)	293	3 323 (3 050)	6 300
Золото	1338 (1064,4)	66,6	3 073 (2 800)	1 575
Кислород	54,4 (-218,79)	14	90,2 (-183)	213
Лед (вода)	273,15 (0)	334	373,15 (100)	2 260
Тяж. вода	277 (3,81)	316	374,6 (101,4)	2 270
Медь	1 356 (1 083)	205	2 816 (2 543)	4 750
Неон	24,7 (-248,5)	164	27,1 (-245,9)	89
Никель	1 725 (1 452)	300	3 073 (2 800)	6 300
Олово	505,2 (232)	59	2 543 (2 270)	2 500
Ртуть	234,3 (-38,9)	11,73	629,9 (356,7)	285
Свинец	600,7 (327,5)	23	2 018 (1 745)	860
Серебро	1 235 (961,9)	64	2 457 (2 184)	1 700
Спирт этил.	159,2 (-114)	105	351,5 (78,3)	846
Сталь	(1 300–1 400)	205	_	
Тантал	3 269 (2 996)	180	5 673 (5 400)	4 050
Титан	1 933 (1 660)	315	3 560 (3 287)	8 550
Углекисл. газ			194,7 (-78,5)	
			(Сублим.)	
Чугун	(1 100–1 200)	96–138	_	_

ПРИЛОЖЕНИЕ 2

КАЛИБРОВОЧНАЯ КРИВАЯ ДЛЯ ТЕРМОПАРЫ МЕДЬ-КОНСТАНТАН, ВТОРОЙ СПАЙ ПОДДЕРЖИВАЕТСЯ ПРИ 0 °C (273,15 K) [10], С.181 И 183

<i>T, K</i>	U, мкВ
2	-6 029
25	-5 951
50	-5 724
75	-5 386
100	-4 958
125	-4 451
150	-3 872
175	-3 216
200	-2 492
225	-1 697
250	-844
273	0
323	2 035
373	4 277
423	6 702
473	9 286
523	12 011
573	14 860
623	17 816
673	20 869

приложение 3

КРИВАЯ РАВНОВЕСИЯ
«ЖИДКОСТЬ – ПАР» ДЛЯ АЗОТА
[9, C, 203, 210]

60	70	80
		60 70 T, K

^{*} Звездочкой в таблице отмечены: а) точка при нормальном давлении, б) критическая точка.

T, %	p, 10 ⁵ Па
47,06	0, 0013
51,86	0,0066
54,06	0,013
56,36	0,026
59,16	0,053
60,86	0,079
63,46 67,56	0,13 0,26
67,56	0,26
72,26	0,53
77,36*	1,01
78	1,09
80	1,36
82	1,69
84	2,07
86	2,51
88	3,02
90	3,6
92	4,25
94	4,99
96	5,82
98	6,74
100	7,77 8,91
102	8,91
104	10,16
106	11,53
108	13,03
110	14,67
112	16,45
114	18,36
116	20,47
118	22,72
120	25,15
122	27,77
124	30,57
126	33,57
126,25*	33.96

приложение 4

ЗАВИСИМОСТЬ ТЕПЛОТЫ ИСПАРЕНИЯ АЗОТА ОТ ТЕМПЕРАТУРЫ [9, с. 193]

<i>T, K</i>	q, қДж/кг
65,16	212
80,16	196
90,16	181
100,16	165
105,16	154
110,16	140
115,16	121
120,16	93

