Title

Text

Exercise 13: Bayes Inference

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory/ Recap
- 4. Exercises
- 5. Further proceeding wrt. Exam

Information

General

- Lecture material & problem sets available here
- Tutorial material available here

Goals

Goals of Today

- Understand probability basics (again)
- Understand Bayes Rule (again)
- Understand Change of Variables (again)
- Understand Maximum Likelihood ("Parameter Estimation")

Theory / Recap

Probability Review

- Discrete Random Variables
 - $p: \Omega \to \mathbb{R}$, where eg. $\Omega = \{0, 1, 2, ...\}$
- **Continuous Random Variables**
 - $p: \Omega \to \mathbb{R}$, where eg. $\Omega = [0, 1]$
 - $\int_{\Omega} p = 1, p \ge 0$

Marginalization, Conditional Probability, and Bayes Rule (again)

Marginalization:

$$p(x) = \int_{\mathcal{Y}} p(x, y) dy$$

Conditional Probability

$$p(x \mid y) = \frac{p(x,y)}{p(y)}$$

Bayes Rule:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

Venn Diagram of Bayes Rule: Have a look at https://oscarbonilla.com/2009/05/visualizing-bayes-theorem/ for more info

Example 1: Marbles

- We have two jars (A, B) with red (R) and white (W) marbles.
- Drawing a marble from A or B is equally likely: $P(A) = P(B) = \frac{1}{2}$
- Write out Bayes Rule with the appropriate random variables for $P(A \mid R)$
- Compute the normalization factor P(R)
- Compute $P(A \mid R)$
- Tipps:
 - $p(x \mid y) = \frac{p(y|x)p(x)}{p(y)}$

Expectation value and variance (again)

Expectation value:

$$\mathbb{E}[f(x)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

Variance:

$$Var(f(x)) = \sigma^2 = \mathbb{E}[f^2(x)] - \mathbb{E}^2[f(x)]$$

Change of random variables (again)

We can infere the probability distribution of on random varibales from another:

$$p(x) = \frac{p(f(x))}{\left|\frac{f^{-1}(y)}{dy}\right|}$$

Where the variables are related by y = f(x)

Example 2: Mean and variance of Gaussian distribution

- Given $x = \mu + \sigma y$, where $y \sim \mathcal{N}(0, 1)$
- Show that $x \sim \mathcal{N}(\mu, \sigma^2)$
- Tipps:
 - $p(x) = \frac{p(f(x))}{\left|\frac{f^{-1}(y)}{dy}\right|}$
 - $\mathcal{N}(\mu, \sigma^2) = 1/\sqrt{2\pi\sigma^2} \cdot \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$

Maximum Likelihood

Assume we have some data D and a parametrized model, then

$$p(D \mid \theta)$$

We want our model to describe the data as well as possible

$$\theta^* = \arg\max p(D \mid \theta)$$

Maximum Log-Likelihood

We are interested in finding

$$\theta^* = \arg\max p(D \mid \theta)$$

We assume that the sample are independent

$$p(D \mid \theta) = p(x_1 \mid \theta) \cdot p(x_2 \mid \theta) \cdot \dots$$

For convenience solve the following

$$\theta^* = \arg \max \underbrace{\log p(D \mid \theta)}_{Log-likelihood\ function} = \arg \max \log p(x_1 \mid \theta) + \log p(x_2 \mid \theta) + \cdots$$

Example 3: Maximum log-likelihood for Gauss

Given some data $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ and a model

$$p(y \mid x; \theta) = 1/\sqrt{2\pi} \cdot \exp{-\frac{(y - \theta x)^2}{2}}$$

- Write down the log-likelihood function $l(\theta) = \log p(D \mid \theta)$
- Find $\kappa(\theta)$ such arg max $\kappa(\theta)$ contains no unnecessary terms, in other words: Strap $l(\theta)$ from all terms which don't affect the arg max.
- What does the resulting term compare to? (seen in one of the first lectures)

Exercises

Q1

 Compute a few things from the Gaussian distribution (similar to what was done in examples)

Q2

Use Bayes Rule (similar to examples)

Q3

- Compute Maximum Log Likelihood
- Compute the variance of the data (see lecture notes)

Further Proceedings

Exam Information (disclaimer: Not official, "my experience")

- PVK (2 x halfday) by me
- Release of all material on AMIV (probably ~1 week before the PVK)
- Questions: Email or (better) Piazza
- Tipps:
 - Able to manually use the algorithms ("you have this and this data, compute one iteration...")
 - Know about attributes of methods ("to what order accurate, etc ...")
 - Solve all hand-exercises, all in-class examples, & examples from TA slides
 - Study lecture notes (some things are not covered in exercises might still be on exam but focus on main concepts)

"Future" Information (disclaimer: Not official, "my experience")

- Computational Methods for Engineering Application (HS19)
- Stochastik (HS19)
- Introduction to Machine Learning (master)

 At least one course of coding per semester! (Highly beneficial for almost all masters)

Questions?

