# Архитектура операционной системы X86 protected mode

### Адреса

Логический адрес: Тот адрес, которым оперирует процесс (Селектор:смещение)

Линейный адрес: получается из (g/l)dt не является физическим адресом. (Таблица10:страница10:смещение12)

Физический адрес: адрес на шине памяти

### Регистры



Figure 2-4. Memory Management Registers

### Registers

- Cr0 Contains system control flags that control operating mode and states of the processor
- CR1 res
- CR2 Contains the page-fault linear address (the linear address that caused a page fault)
- CR3 Contains the physical address of the base of the page directory and two flags (PCD and PWT)
  - PCD Page-level Cache Disable
  - PWT Page-level Writes Transparent (L1,L2)
- CR4 Contains a group of flags that enable several architectural extensions (SIMD)



Figure 2-5. Control Registers

### Segmentation

a mechanism of isolating individual code, data, and stack modules so that multiple programs (or tasks) can run on the same processor without interfering with one another.

#### **Mandatory**

### Paging

Paging provides a mechanism for implementing a conventional demand-paged, virtual-memory system where sections of a program's execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation between multiple tasks

#### **Optional**

If paging is not used, the linear address space of the processor is mapped

#### directly into the physical address space

of processor. The physical address space is defined as the range of addresses that the processor can generate on its address bus.



#### Flat model



Figure 3-2. Flat Model

#### Protected Flat model



Figure 3-3. Protected Flat Model



| Visible Part     | Hidden Part                             | _  |
|------------------|-----------------------------------------|----|
| Segment Selector | Base Address, Limit, Access Information | cs |
|                  |                                         | SS |
|                  |                                         | DS |
|                  |                                         | ES |
|                  |                                         | FS |
|                  |                                         | GS |

Figure 3-7. Segment Registers



Figure 3-6. Segment Selector



Figure 3-8. Segment Descriptor



Figure 3-12. Linear Address Translation (4-KByte Pages)

### Paging options

Paging is controlled by three flags in the processor's control registers:

- PG (paging) flag, bit 31 of CR0 (available in all Intel Architecture processors beginning with the Intel386TM processor).
- PSE (page size extensions) flag, bit 4 of CR4 (4-MByte pages or 2-MByte).
- PAE (physical address extension) flag, bit 5 of CR4 (It relies on page directories and page tables to reference physicaladdresses above FFFFFFFH).

## backup

Table 3-3. Page Sizes and Physical Address Sizes

| PG Flag, CR0 | PAE Flag,<br>CR4 | PSE Flag, CR4 | PS Flag, PDE | Page Size | Physical<br>Address Size |
|--------------|------------------|---------------|--------------|-----------|--------------------------|
| 0            | Χ                | Х             | Х            | _         | Paging Disabled          |
| 1            | 0                | 0             | Х            | 4 KBytes  | 32 Bits                  |
| 1            | 0                | 1             | 0            | 4 KBytes  | 32 Bits                  |
| 1            | 0                | 1             | 1            | 4 MBytes  | 32 Bits                  |
| 1            | 1                | Х             | 0            | 4 KBytes  | 36 Bits                  |
| 1            | 1                | Х             | 1            | 2 MBytes  | 36 Bits                  |



Figure 3-13. Linear Address Translation (4-MByte Pages)



Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages and 32-Bit Physical Addresses