给学习大学物理的同学们:

"科学是一种方法。它教导们:一些事物是怎样被了解的,什么事情是已知的,现在了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪和表面现象"。

——R. P费曼

"我从不迷信权威,但命运捉弄了我——我自己变成了权威"

——A. 爱因斯坦

以上是两位著名物理学家的话,希望它们能成为 大家学习物理的座右铭。学习课程除了掌握基本知识外, 更重要的是学习一种科学的思维方法。正如一个古老的故 事所讲的那样,学生从老师那里得到的,应该是一个点石 成金的法则,而不是一堆金子。

物理量纲

1、量纲: 导出量对基本量依赖的幂次关系

基本量	长度	质量	时间	电流	温度	物质的量	发光强度
单位符号	m	kg	S	A	K	mol	cd
量纲符号	L	M	Т	I	Θ	N	J

物理量**Q**的量纲式: $\dim \mathbf{Q} = L^{\alpha} M^{\beta} T^{\gamma} I^{\delta} \Theta^{\varepsilon} N^{\xi} J^{\eta}$

 $\alpha\beta\gamma$ ··· 称为量纲指数 力学中有三个基本量 LMT

物理量 $\dim \mathbf{Q} = L^{\alpha} M^{\beta} T^{\gamma}$

如: 力; $\dim F = L M T^{-2}$

速度: $\dim v = M L^{-1}$

无量纲量: 所有量纲指数为零的物理量

如: 折射率
$$n = \frac{c}{v}$$

量纲说明物理量由哪些基本量组成,以及如何组成, 反映物理特性。**单位是量度量纲的尺度**。

2、量纲应用: (量纲分析)

•检验物理方程的正确性。量纲相同的量才能相加、减,相等

指数函数、对数函数、三角函数宗量应是无量纲的

•为推导某些复杂关系提供线索。