		Note	2
Name Vorname		I	II
Name			
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
Fakultät für Mathematik	6		
Klausur Mathematik 4 für Physiker	7		
(Analysis 3)	8		
Prof. Dr. S. Warzel	_		
15. Februar 2016, 11:00 – 12:30 Uhr	\sum		
Hörsaal: Platz:	I	 Erstkorrek	$ ext{tur}$
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II	Zweitkorre	ktur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt Erreichbare Gesamtpunktzahl: 56 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			
201 Manager enouge Pragason and Serieu die Zustenenden Aussagen anzuntenzen.			
Nur von der Aufsicht auszufüllen:			
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

 $Musterl\ddot{o}sung \qquad ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Mehrdimensionales Integral

[4 Punkte]

Bestimmen Sie $\int_{0 < y < x} e^{-x} d(x, y)$.

LÖSUNG:

Der Integrationsbereich ist unbeschränkt, der Integrand ist nichtnegativ. Als ausschöpfende Folge können die Normalbereiche $A_n := \{(x,y) \in \mathbb{R}^2 | 0 < y < x < n\}, n \in \mathbb{N},$ genommen werden. Somit ist

$$\int_{0 < y < x} e^{-x} d(x, y) = \lim_{n \to \infty} \int_{0}^{n} \int_{0}^{x} e^{-x} dy dx = \lim_{n \to \infty} \int_{0}^{n} x e^{-x} dx = \lim_{n \to \infty} \left(\left[-x e^{-x} \right]_{0}^{n} + \int_{0}^{n} e^{-x} dx \right)$$
$$= \lim_{n \to \infty} \left(-n e^{-n} + 1 - e^{-n} \right) = 1.$$

Alternative: Da der Integrand positiv ist kann alternativ auch direkt Fubini angewendet werden:

$$\int_{0 < y < x} \mathrm{e}^{-x} \mathrm{d}(x, y) = \int_{0}^{\infty} \int_{0}^{x} \mathrm{e}^{-x} \mathrm{d}y \mathrm{d}x = \int_{0}^{\infty} x \mathrm{e}^{-x} \mathrm{d}x = \left[-x \mathrm{e}^{-x} \right]_{0}^{\infty} + \int_{0}^{\infty} \mathrm{e}^{-x} \mathrm{d}x = 1.$$

2. Volumenberechnung

[7 Punkte]

Berechnen Sie das Volumen der Menge

$$A := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 \le e^{y^2 + z^2}, y^2 + z^2 \le 1 \right\}.$$

LÖSUNG:

A ist ein Normalbereich, $A = \{y \in [-1, 1], z \in [-\sqrt{1 - z^2}, \sqrt{1 - z^2}], x \in [-e^{\frac{1}{2}(y^2 + z^2)}, e^{\frac{1}{2}(y^2 + z^2)}]\} \subset \mathbb{R}^3$.

Somit ist

$$\begin{aligned} \operatorname{Vol}\left(A\right) &= \int_{A} \operatorname{d}(x,y,z) \overset{[\mathbf{1}]}{=} \int\limits_{y^{2}+z^{2} < 1} \int\limits_{-\mathrm{e}^{\frac{1}{2}(y^{2}+z^{2})}} \operatorname{d}z \operatorname{d}(y,z) \overset{[\mathbf{1}]}{=} \int\limits_{y^{2}+z^{2} < 1} 2\mathrm{e}^{\frac{1}{2}(y^{2}+z^{2})} \operatorname{d}(y,z) \\ \overset{\operatorname{Polarkoord}\left[\mathbf{2}\right]}{=} \int\limits_{0}^{1} \int\limits_{0}^{2\pi} 2\mathrm{e}^{\frac{1}{2}r^{2}} r \mathrm{d}\phi \mathrm{d}r \overset{[\mathbf{1}]}{=} 2\pi \left[2\mathrm{e}^{\frac{1}{2}r^{2}} \right]_{0}^{1} = 4\pi (\sqrt{\mathrm{e}} - 1). \\ [\mathbf{1}] \end{aligned}$$

3. Fluss eines Vektorfeldes durch eine Fläche

[12 Punkte]

Sei $\Phi: V \to M \subset \mathbb{R}^3$ eine Karte der Mannigfaltigkeit $M = \Phi(V)$, wobei $V = \{(u,v) \in \mathbb{R}^2 | u^2 + v^2 < 1\}$ und $\Phi(u,v) = \begin{pmatrix} u \\ v \\ \frac{u^2 + v^2}{2} \end{pmatrix}$.

- (a) Wie lautet die Gramsche Determinante $g^{\Phi}(u,v)$ von Φ bei $(u,v) \in V$?
- (b) Berechnen Sie die den Flächeninhalt von M.
- (c) Bestimmen Sie den Fluss des Vektorfelds $v: \mathbb{R}^3 \to \mathbb{R}^3$, v(x,y,z) = (1,0,0) durch die Oberfläche M. Die Orientierung der Fläche ist durch n(0,0,0) = (0,0,-1) festgelegt. Begründen Sie Ihre Antwort.

LÖSUNG:

(a)
$$g^{\Phi}(u,v) = \det(D\Phi(u,v)^{\mathrm{T}}D\Phi(u,v)) \stackrel{\text{hier}}{=} \|\partial_u\Phi(u,v) \times \partial_v\Phi(u,v)\|^2 = \left| \begin{pmatrix} 1\\0\\u \end{pmatrix} \times \begin{pmatrix} 0\\1\\v \end{pmatrix} \right| = \left| \begin{pmatrix} -u\\-v\\1 \end{pmatrix} \right| = 1 + u^2 + v^2.$$
 [2]

(b)
$$\operatorname{Vol}_{2}(M) = \int_{M} dS \stackrel{[1]}{=} \int_{V} \sqrt{g^{\Phi}(u, v)} d(u, v) \stackrel{[1]}{=} \int_{u^{2} + v^{2} < 1} \sqrt{1 + u^{2} + v^{2}} d(u, v)$$

$$\stackrel{\text{Polarkoord.[1]}}{=} \int_{0}^{1} \int_{0}^{2\pi} \sqrt{1 + r^{2}} r d\phi dr \stackrel{[1]}{=} 2\pi \left[\frac{1}{3} (1 + r^{2})^{3/2} \right]_{0}^{1} = \frac{2\pi}{3} (2\sqrt{2} - 1).$$
[1]

(c) ALTERNATIVE 1. Satz von Gauß: Mit dem Deckel $D=\{(x,y,\frac{1}{2})\in\mathbb{R}^3|x^2+y^2<1\}$ und der Menge $A=\{(x,y,z)\in\mathbb{R}^3|x^2+y^2<1,z\in(0,\Phi(x,y))\}$ gilt wegen $M\cup D=\partial A$ (mit $n(0,0,\frac{1}{2})=(0,0,1)$) nach dem Satz von Gauß für den Fluss durch M

$$\int_{M} \langle v(x), n(x) \rangle dS(x) = \int_{A} \underbrace{\operatorname{div} v(x, y, z)}_{=0} d(x, y, z) - \int_{D} \langle v(x), n(x) \rangle dS(x)$$

$$= 0 - \int_{D} \underbrace{\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix} \right\rangle}_{=0} dS(x) = 0$$

ALTERNATIVE 2. Ausrechnen: Wegen $\partial_u \Phi(0,0) \times \partial_v \Phi(0,0) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -n(0,0,0)$ gilt für den

Fluss F von v durch M mit der angegebenen Orientierung

$$F = \int_{M} \langle v(x), n(x) \rangle dS(x) = -\int_{V} \langle v(\Phi(u, v)), \partial_{u}\Phi(u, v) \times \partial_{v}\Phi(u, v) \rangle d(u, v)$$
$$= -\int_{V} \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} u \\ v \\ -1 \end{pmatrix} \right\rangle d(u, v) \stackrel{\text{Polarkoord.}}{=} -\int_{0}^{1} \int_{0}^{2\pi} r^{2} \cos \phi \, d\phi dr = 0$$

4. Kurvenintegral

[4 Punkte]

Berechnen Sie für $f(z) = \overline{z}$ und $\gamma : [0,1] \to \mathbb{C}$, $\gamma(t) = t^2 + it$ das Kurvenintegral $\int_{\gamma} f(z) dz$. LÖSUNG:

$$\int_{\gamma} f(z) dz = \int_{0}^{1} (t^{2} - it)(2t + i) dt = \int_{0}^{1} (2t^{3} - it^{2} + t) dt = \left[\frac{1}{2}t^{4} - \frac{i}{3}t^{3} + \frac{1}{2}t^{2}\right]_{0}^{1} = 1 - \frac{i}{3}.$$

5. Holomorphe Funktionen

[7 Punkte]

Sei $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Weiter sei $g(x,y) := \operatorname{Re} f(x+iy)$ und $h(x,y) := \operatorname{Im} f(x+iy)$ für $x,y \in \mathbb{R}$ und $x+iy \in U$.

Geben Sie jeweils an, ob die folgenden Eigenschaften für jedes solche f gelten:

(a)
$$\int f(z) dz = 0$$
 für jede C^1 -Kurve $\gamma: [0,1] \to U$.

$$\square$$
 Ja \square Nein

(b)
$$\int f(z) dz = 0$$
 für jede geschlossene C^1 -Kurve $\gamma: [0,1] \to U$.

$$\square$$
 Ja \square Nein

□ Nein

(c)
$$\int f(z) dz = 0$$
 für jede geschlossene in U nullhomotope C^1 -Kurve $\gamma:[0,1] \to U$. \boxtimes Ja

(d)
$$\frac{\partial}{\partial x}g(x,y) = \frac{\partial}{\partial y}h(x,y).$$

(e)
$$\frac{\partial}{\partial y}g(x,y) = \frac{\partial}{\partial x}h(x,y)$$
.

$$\Box$$
 Ja $\hfill \square$ Nein

- (f) Für jedes $z_0 \in U$ gibt es ein $\varepsilon > 0$, so dass f sich als komplexe Potenzreihe um z_0 mit Konvergenzradius ε darstellen lässt.
- (g) f besitzt eine Stammfunktion auf U.

□ Ja ⊠ Nein

LÖSUNG:

- (a) und (b) gelten im allgemeinen nicht $(z \mapsto \frac{1}{z} \text{ auf } \mathbb{C}^{\times})$, (c) ist der Cauchy-Integralsatz.
- (d) ist die erste der Cauchy-Riemann-Differentialgleichungen, bei (e) fehlt das Vorzeichen.
- (f) folgt aus dem Potenzreihenentwicklungssatz, $z\mapsto \frac{1}{z}$ auf \mathbb{C}^{\times} ist wieder ein Gegenbeispiel zu (g).

6. Residuensatz

[8 Punkte]

Sei
$$f(z) = \frac{1}{z^3(z-2)}$$
.

- (a) Bestimmen und klassifizieren Sie alle isolierten Singularitäten von f.
- (b) Berechnen Sie alle Residuen von f.
- (c) Bestimmen Sie $\int\limits_{|z|=1} f(z) dz$. Begründen Sie das Ergebnis.

LÖSUNG:

(a)
$$f$$
 hat einen Pol erster Ordnung bei $z=2$ und einen Pol dritter Ordnung bei $z=0$. [2]

(b)
$$\operatorname{Res}_2(f) = \lim_{z \to 2} (z - 2) f(z) = \frac{1}{z^3}|_{z=2} = \frac{1}{8}.$$
 [1]

$$\operatorname{Res}_{0}(f) = \lim_{z \to 0} \frac{1}{2!} \frac{d^{2}}{dz^{2}} z^{3} f(z) = \frac{1}{2} \lim_{z \to 0} \frac{d^{2}}{dz^{2}} \frac{1}{z-2} = \frac{1}{2} \lim_{z \to 0} \frac{d}{dz} \frac{-1}{(z-2)^{2}} = \frac{1}{2} \lim_{z \to 0} \frac{-1(-2)}{(z-2)^{3}} = -\frac{1}{8}.$$
 [2]

(c)
$$f$$
 ist meromorphe Funktion. Der einzige Pol von f im Inneren der geschlossenen Kurve $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$ ist bei $z = 0$.

Somit gilt nach dem Residuensatz
$$\int_{|z|=1}^{\pi} f(z)dz = 2\pi i \operatorname{Res}_0(f) = -i\frac{\pi}{2}.$$
 [2]

7. Differentialgleichung

[9 Punkte]

Sei $\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ zweimal stetig differenzierbar und eine Lösung der Differentialgleichung

$$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\partial^2}{\partial x^2}\psi(x,t)$$

mit der Anfangsbedingung $\psi(x,0) = \exp\left(-\frac{x^2}{2}\right)$.

- (a) Berechnen Sie $\widehat{\psi}(k,t) := \frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi(x,t) dx$.
- (b) Bestimmen Sie die L^2 -Norm von $f(x) := \psi(x,t)$ für beliebiges $t \in \mathbb{R}$.

HINWEIS: Für a>0 ist $\frac{1}{\sqrt{2\pi}}\int \mathrm{e}^{-\mathrm{i}kx}\mathrm{e}^{-\frac{x^2}{2a}}\mathrm{d}x=\sqrt{a}\mathrm{e}^{-\frac{ak^2}{2}}$. LÖSUNG:

(a) Wegen der Algebraisierung der Ableitung wird die partielle Differentialgleichung für $\widehat{\psi}$ zu [2]

$$i\frac{\partial}{\partial t}\widehat{\psi}(k,t) = k^2\widehat{\psi}(k,t)$$

Für $k \in \mathbb{R}$ hat diese gewöhnliche Differentialgleichung die Lösung

$$\widehat{\psi}(k,t) = \mathrm{e}^{-\mathrm{i}k^2t} \widehat{\psi}(k,0) \overset{\mathrm{Hinweis}}{=} \mathrm{e}^{-\mathrm{i}k^2t} \mathrm{e}^{-\frac{1}{2}k^2} = \mathrm{e}^{-k^2(\frac{1}{2}+\mathrm{i}t)}$$

(b) $||f||_2^2 \stackrel{[1]}{=} \int |\psi(x,t)|^2 dx \stackrel{\text{Plancherel [1]}}{=} \int |\widehat{\psi}(k,t)|^2 dk \stackrel{[1]}{=} \int e^{-k^2} dk \stackrel{[1]}{=} \sqrt{\pi}$, also $||f||_2 = \pi^{1/4}$.

8. Distributionen

[5 Punkte]

[3]

Zeigen Sie, dass die Ableitung der als Distribution aufgefassten Funktion sgn: $\mathbb{R} \to \mathbb{R}$,

$$sgn(x) = \begin{cases} 1, & \text{für } x > 0, \\ 0, & \text{für } x = 0, \\ -1, & \text{für } x < 0, \end{cases}$$

gleich 2δ ist, wobei δ , wie üblich, die Delta-Distribution im Ursprung bezeichnet.

Für sgn als Distribution gilt $(\operatorname{sgn}, \phi) = \int_{\mathbb{R}} \operatorname{sgn}(x) \phi(x) dx$ für jede Schwartzfunktion ϕ . Somit ist für $\phi \in \mathcal{S}(\mathbb{R})$ die Ableitung [1]

$$(\operatorname{sgn}', \phi) \stackrel{[1]}{=} - (\operatorname{sgn}, \phi') = \int_{-\infty}^{0} \phi'(x) dx - \int_{0}^{\infty} \phi'(x) dx \stackrel{[1]}{=} [\phi(x)]_{-\infty}^{0} - [\phi(x)]_{0}^{\infty} \stackrel{\phi(\pm \infty) = 0}{=} {}^{[1]} \phi(0) + \phi(0)$$
$$= 2\phi(0) \stackrel{[1]}{=} (2\delta, \phi).$$

Also $sgn' = 2\delta$.