

FIG. 2

FIG. 4

4 Harmonics - Full Rate	4 Harmonics - ¼ rate
$i_{f_i}(j)$	$i_{f_1}(m)$
i _{f2} (j)	$i_{ff}(j) = i_{f_1}(m) + i_{f_2}(m-1)$
i _{f3} (j)	$+i_{f_3}(m-1)+i_{f_4}(m-1)$
i _{f4} (j)	
$i_{ff}(j) = i_{f_1}(j) + i_{f_2}(j) + i_{f_3}(j) + i_{f_4}(j)$	
Sector j + 1	Sector j + 1
$i_{f_1}(j+1)$	$i_{f_2}(m)$
$i_{f_2}(j+1)$	$i_{ff}(j+1) = i_{f_1}(m) + i_{f_2}(m)$
$i_{f_3}(j+1)$	$+i_{f_3}(m-1)+i_{f_4}(m-1)$
$i_{f_4}(j+1)$	
$i_{ff}(j+1) = i_{f_1}(j+1) + i_{f_2}(j+1)$	
$+i_{f_3}(j+1)+i_{f_4}(j+1)$	
Sector j + 2	Sector j + 2
$i_{f_i}(j+2)$	i _{f3} (m)
$i_{f_2}(j+2)$	$i_{ff}(j+2) = i_{f_1}(m) + i_{f_2}(m)$
$i_{f_3}(j+2)$	$+i_{f_3}(m)+i_{f_4}(m-1)$
$i_{f_4}(j+2)$	
$i_{ff}(j+2) = i_{f_1}(j+2) + i_{f_2}(j+2)$	
$+i_{f_3}(j+2)+i_{f_4}(j+2)$	
Sector j + 3	Sector j + 3
$i_{f_1}(j+3)$	i _{f4} (m)
$i_{f_2}(j+3)$	$i_{ff}(j+3) = i_{f_1}(m) + i_{f_2}(m)$
$i_{f_3}(j+3)$	$+i_{f_3}(m)+i_{f_4}(m)$
$i_{f_4}(j+3)$	
$i_{ff}(j+3) = i_{f_1}(j+3) + i_{f_2}(j+3)$	
$+i_{f_3}(j+3)+i_{f_4}(j+3)$	

FIG. 5

4 Harmonics - Full Rate	4 Harmonics - 1/4 rate
Terms computed and accumulated:	Terms computed and accumulated:
$ sin(f_1 \cdot \theta_j)pes(j), cos(f_1 \cdot \theta_j)pes(j) $ $ sin(f_2 \cdot \theta_j)pes(j), cos(f_2 \cdot \theta_j)pes(j) $ $ sin(f_3 \cdot \theta_j)pes(j), cos(f_3 \cdot \theta_j)pes(j) $ $ sin(f_4 \cdot \theta_j)pes(j), cos(f_4 \cdot \theta_j)pes(j) $	$\sin(f_1 \cdot \theta_m) pes(j), \cos(f_1 \cdot \theta_m) pes(j)$
Terms computed and accumulated:	Sector j + 1 Terms computed and accumulated:
The above at k=j+1	$\sin(f_2 \cdot \theta_m) pes(j+1), \cos(f_2 \cdot \theta_m) pes(j+1)$
Terms computed and accumulated: The above at k=j+2	Terms computed and accumulated: $\sin(f_3 \cdot \theta_m)pes(j+2), \cos(f_3 \cdot \theta_m)pes(j+2)$
Terms computed and accumulated:	Terms computed and accumulated:
The above at k=j+3	$\sin(f_4 \cdot \theta_m) pes(j+3), \cos(f_4 \cdot \theta_m) pes(j+3)$

FIG. 6

FIG. 7

