Practical-1

Objective:

Design a character recognition system using basic python

Description:

Given a set of 10 characters, identify the features which will distinguish each character in the character set most accurately.

Character set:

Features:

- _1. Number of vertical lines
- 2. Number of horizontal lines
- 3. Number of diagonals
- 4. Number of curves

Alpha	V Lines	H Lines	Diagonal	Curve
В	1	0	0	2
D	1	0	0	1
E	1	3	0	0
F	1	2	0	0
Н	2	1	0	0
K	1	0	2	0
L	1	1	0	0
М	2	0	2	0
N	2	0	1	0
Р	1	0	0	1

Algorithm:

- 1. Read the dataset which is hardcoded in csv file using pandas.
- 2. Define a function which will calculate Euclidean distance for unknown/new character by using below formula .

 $dist(new,compare) = square root(\sum (new[i]-compare)^2).$

3. For new character calculate the Euclidean distance for each character present in dataset and output the one which has least distance.

Modified dataset after preprocessing:

Alpha	V Lines	H Lines	Curve	closed region
В	1	0	2	2
D	1	0	1	1
Е	1	3	0	0
F	1	2	0	0
Н	2	1	0	0
К	1	0	0	0
L	1	1	0	0
М	2	0	0	0
N	2	0	0	0
Р	1	0	1	1

Implementation:

```
# 1 import dataset

import pandas as pd

features = pd.read_csv('features.csv')

# 2 calculate Euclidean distance
```

```
import math
def predict(new_char,features):
    min_dist = 99
    best_char = []
    count = features.shape[0]
    for i in range(count):
```

```
s = [(features.loc[i][j+1]-new\_char[j])**2 for j in range(features.shape[1]-1)]
     eDist = math.sqrt(sum(s))
     #print(eDist)
     if( eDist <= min_dist ):</pre>
       if(eDist == min_dist):
          best_char.append(i)
          best_char.clear()
          best_char.append(i)
       min_dist = eDist
  return [features.loc[i][0] for i in best_char]
# 3 input new char
input_data = list()
for i in features_new.columns[1:]:
  input_data.append(int(input(str(i)+':')))
# 4 output
print(predict(input_data,features_new))
```

Output:

Actual Char	Before post-processing		After post-processing	
0.16.	Input(V,H,D,C) Output		Input(V,H,D,C) Output	
F	[1,2,0,1]	F	[1,2,0,0]	F
L	[1,1,0,1]	D,L,P	[1,1,0,0]	L
М	[2,0,0,2]	В	[2,0,0,0]	M,N