Supervised Learning. Unsupervised Learning

Pattern Recognition

Collect data

Collect data

Data processing and feature exist

Design the classifier

Eval accuracy.

Supervised Learning

Unsupervised Learning

Features

Human - flei wege Skincol Ceneu

- Pattern recognition system should recognize familiar patterns quickly and accurate
- Feature can be defined as any distinctive aspect, quality or characteristic which, may be symbolic (i.e., color) or numeric (i.e., height).

• The combination of d features is represented as a d-dimensional column vector called a feature vector. The d-dimensional space defined by the feature vector is

called feature space.

(1) Temp =
2) Humidity. =>
3) Windrate:
3 fedures

Tenf.
Hum
- WK

3-d. fedure noto

Features

Often the features are obtained from Shape and Region

- Boundary:
- The shape of the object
- Region:
- Color
- Area/perimeter covered
- Texture

Features from shape

• Let the shape of an object be defined as a set of points linked a

particular manner,

Features from shape

Let us resample the boundary by selecting a larger grid spacing

Features from shape

• Then, as the boundary is traversed, a boundary point is assigned to a node of the coarser grid, depending on the proximity of the original boundary point to that node

Chain Code Features

• Then the resampled boundary obtained in this way can be represented by a 4- or 8-code.

Chain Codes

- Chain codes are used to represent a boundary by a connected sequence of straight line segments of specified length and direction.
- We assume in this section that all curves are closed, simple curves s (i.e., curves that are closed and not self intersecting).
- Typically, a chain code representation is based on 4- or 8-connectivity of the segments.

• boundary code formed as a sequence of such directional numbers is referred to as a Freeman chain code.

Chain Codes

• Typically, a chain code representation is based on 4- or 8-connectivity of the segments.

Direction numbers for (a) 4-directional chain code, and (b) 8-directional chain code.

 $\begin{array}{c} 2 \\ 3 \\ 4 \\ \hline \\ 5 \\ \hline \\ 6 \\ \end{array}$

We fix one starting point and start assigning directions

• the spacing of the resampling grid is determined by the application in which the chain code is used > Unan code = 076666453321212

The numerical value of a chain code depends on the starting point.

• The numerical value of a chain code depends on the starting point.

• The numerical value of a chain code depends on the starting point.

Normalize chain code

The code can be normalized with respect to the starting point by a straightforward procedure:

 We simply treat the chain code as a circular sequence of direction numbers and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum/ maximum magnitude.

Normalize chain code - invisione to starting point.

Form integer of minimum/ maximum magnitude

0766666454421212

7666664544212120

6666645442121207

Chain Codes —Invariant to translation

For the same starting point

chain code 7666664544212120

Chain Codes and rotation

Properties

- Chain Codes depend upon starting points
 - Chain Code are not affected by translations provided the starting point is fixed invover of SP -> max min.
- They change if the object is rotated.

 Then how to write a robust feature. invariant to rotation

How to write Normalized chain codes?

The code can be normalized with respect to the starting point by a straightforward procedure:

• We simply treat the chain code as a circular sequence of direction numbers and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude.

• We can normalize also for rotation (in angles that are integer multiples of the directions) by using the first difference of the chain code instead of the code itself.

Normalized chain codes

4 5 7

• First Difference of chain code:

This difference is obtained by counting the number of direction changes (in a counterclockwise direction) that separate two adjacent elements of the code.

chain code 0766666454421-212 6770000617067171

Normalized chain codes

 $\begin{array}{c} 3 \\ 4 \\ \hline \\ 5 \\ \hline \end{array}$

• First Difference of chain code:

This difference is obtained by counting the number of direction changes (in a counterclockwise direction) that separate two adjacent elements of the code.

chain code 0766666454421212 chain code 770000617067371

Normalized chain codes

• First Difference of chain code:

This difference is obtained by counting the number of direction changes (in a counterclockwise direction) that separate two adjacent elements of the code:

chain code 07666666454421212770 chain code 6770000617067371 70 min max. 740000617067371

Application of freeman chain code

Application of freeman chain code

Take simplified boundary

SHAPE NUMBERS

- The shape number of a Freeman chain-coded boundary is defined as the first difference of smallest magnitude.
- Again rearranged to form smallest magnitude number using circular shift
- The order, n, of a shape number is defined as the number of digits in its representation.
- Moreover, n is even for a closed boundary, and its value limits the number of possible different shapes

Shape Numbers

Four connectivity

Chain code: \ 0 3 2 \ 1

Difference: 3 3 3 3

Shape no.: 3 3 3 3

0 0 3 2 2 1

3 0 3 3 0 3

0 3 3 0 3 3

Shape Numbers

Eight connectivity

