EE203 - Electrical Circuits Laboratory

Experiment - 9 Simulation Feedback Circuits

Objectives

1. Observe operation of simple voltage regulator and oscillator circuits with feedback configurations.

Preliminary Work

- 1. Consider the voltage regulator on the right.
- **1.a)** Describe the feedback mechanism of the regulator. What happens if v_0 drops?
- **1.b)** Determine the zener voltage V_z to obtain **4 V DC** output.

- 2. Consider the Wien bridge oscillator on the right.
- **2.a)** Express the oscillation frequency in terms of circuit parameters.
- **2.b)** Determine R_1 and R_2 to obtain **16 kHz** oscillation frequency when $C_1 = C_2 = 1$ nF.
- **2.c)** Describe the oscillation criterion and determine R_3 accordingly when $R_4 = 10 \text{ k}\Omega$.

- 3. Consider the **Schmitt trigger oscillator** on the right.
- **3.a)** Determine the value of R_3 to obtain **4 Vp-p** amplitude at ν_n . Assume that ν_0 changes between **-9 V** and **+9 V** in your calculation.
- **3.b)** Determine the value of R_1 to obtain **1 kHz** oscillation frequency.

Hint: Express period of the oscillation waveform at v_n in terms of the τ = R₁C₁ time constant and the peak values of v_n and v_0 .

Procedure

AD795 operational amplifier model will be used instead of **LM741** to obtain the simulation results on LTspice. Although **AD795** has much better characteristics compared to **LM741**, both of the devices satisfy the basic requirements of an operational amplifier. You should keep in mind that **AD795** has much higher output slew rate compared to **LM741** and this significantly changes the high-frequency response.

1. Build the voltage regulator circuit given on the right using BC547B transistor as Q1. Connect a 10 $k\Omega$ resistor in place of R_L .

1.1 Determine line regulation when middle value of v_{in} is V_{inDC} = **6.0** V. Set v_{in} source to obtain **1 kHz 1 Vp-p** sinusoidal voltage with **6.0** V DC offset and measure peak-to-peak AC component of v_{O} . Repeat line regulation measurement when V_{inDC} is **8.0** V.

V _{inDC} value of v_{in} (V)	AC component of v_{O} (Vp-p)	line regulation (V/V)
6.0		
8.0		

1.2 Determine load regulation when $i_{\rm L}$ increases by **100 mA** for $v_{\rm in}$ = **6.0V** and $v_{\rm in}$ = **8.0V**.

It is possible to measure load regulation and line regulation in the same simulation run. Add a **100 mA** pulsed current source I_L as an active load as shown on the right. Set simulation time to **10 ms** and turn on the I_L pulse at **5 ms**. Measure the step change in ν_O when I_L turns on.

V _{inDC} value of ν _{in} (V)	v_{O} (V) measured for i_{L} = 100 mA	
6.0		
8.0		

- 2. Build the **Wien bridge oscillator** given on the right. Set the opamp DC supplies to **+12 V** and **-12 V**.
- **2.1** Find the lowest R_3 value that enables oscillations. First change R_3 in 10 k Ω steps and then reduce step size to 1 k Ω . Set simulation time to 20 ms since it may take several milliseconds to start the oscillations.

$$R_3 =$$

Does this result agree with your R₃ prediction in the preliminary work?

2.2 Plot ν_n , ν_p and ν_o waveforms below. Indicate units of amplitude and time axes on your plot. Measure and record the peak-to-peak output voltages and the oscillation frequency.

v_n :	1/ •	1/0 :	F =
٧n ·	<i>r</i> p .	<i>V</i> O •	Fosc

2.3 Measure the oscillation frequency obtained with the R_2 resistance values listed in the following table. How does R_2 affect the oscillation frequency?

$R_{2}\left(k\Omega\right)$	F _{osc} (Hz)
10	
20	
30	
40	

- **3.** Build the **Schmitt trigger oscillator** circuit given on the right. Use a standard resistor value closest to the **R**₃ calculated in the preliminary work.
- **3.1** Adjust R_1 to obtain 1 kHz oscillation frequency at ν_0 . Plot ν_n , ν_p and ν_0 waveforms below indicating all critical amplitude and timing information. Compare your measurements with the results obtained in the preliminary work.

Questions

- **Q1.** List the steps in designing a Wien bridge oscillator.
- **Q2.** List the steps in designing a Schmitt trigger oscillator.
- **Q3.** Modify the circuit used in step-3 so that the opamp works with a single positive supply without significant change in the oscillation frequency.

Hint: Input waveforms should be centered around half the positive supply voltage. There is no DC level control on the negative opamp input. DC level of the positive opamp input depends on where R_3 is connected to.