

CHROMA INTERVAL CONTENT AS A KEY-INDEPENDENT HARMONIC PROGRESSION FEATURE

Marcelo Queiroz, Rodrigo Borges June 28, 2019

Computer Music Research Group, University of São Paulo, Brazil

Presentation

Uses for a Key Independent Harmonic Progression Feature

- Musicological studies (e.g. harmonic idioms)
- Models for automatic harmonization
- Harmonic similarity and diversity
- Harmony-based MIR tasks
 (e.g. browsing and classification, version/cover song identification)

1

Directional Interval Content (DIC)

DIC vectors¹ count melodic displacement (in semitones) between **every pair of notes** from subsequent chords:

$$\mathsf{DIC} = (1,\,0,\,1,\,1,\,1,\,0,\,0,\,3,\,0,\,0,\,1,\,1)$$

In this chord progression there are 3 occurrences of an ascending perfect 5th and 1 occurrence of each of the following (ascending) intervals: unison, major 2nd, minor 3rd, major 3rd, minor 7th and major 7th.

¹Cambouropoulos, A directional interval class representation of chord transitions, 2012.

Directional Interval Content (DIC)

Two (equivalent) mathematical models for DIC are:

$$\mathsf{DIC}_{A \mapsto B}[n] = \sum_{a \in A} \sum_{b \in B} \delta_{n,(b-a)\%N}, \quad \delta_{i,j} = \left\{ \begin{array}{ll} 1 & \text{if } i = j, \\ 0 & \text{otherwise,} \end{array} \right. \tag{1}$$

and

$$DIC_{A \mapsto B}[n] = \sum_{m=0}^{N-1} I_m^A I_{(m+n)\%N}^B, \quad I_i^X = \begin{cases} 1 & \text{if } i \in X, \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

4

Chroma Feature

Chroma vectors indicate the **amount of energy** in a given audio segment **for each pitch class**.

5

Dynamic Chroma (DC)

Dynamic chroma² is an audio feature that expresses changes between two subsequent chroma vectors, by **considering all possible transpositions** of the 2nd chord.

Given two chroma vectors $X, Y \in \mathbb{R}_+^N$,

$$DC_{X \mapsto Y}[n] = Z - ||Y^{(n)} - X||, \quad n = 0, 1, \dots, N - 1,$$
(3)

where $Y_k^{(n)} = Y_{(k-n)\%N}$ and $Z = \max_n \{ ||Y^{(n)} - X|| \}.$

 $^{^2}$ Kim and Narayanan, *Dynamic chroma feature vectors with applications to cover song identification*, 2008.

Dynamic Chroma (DC)

In this example, the 2nd chord transposed +7 semitones becomes identical do the 1st chord (and analogously for the 3rd chord transposed +5 semitones with respect to the 2nd chord).

Chroma Interval Content (CIC)

Chroma Interval Content vectors extend CIC vectors from the symbolic domain to chroma vectors: given $X, Y \in \mathbb{R}^N_+$,

$$CIC_{X \mapsto Y}[n] = \sum_{m=0}^{N-1} X_m Y_{(m+n)\%N}.$$
 (4)

This definition is mathematically equivalent to

$$CIC_{X\mapsto Y} = \overleftarrow{\mathcal{F}^{-1}\left(\mathcal{F}(X)\mathcal{F}\left(\overleftarrow{Y}\right)\right)}$$
 (5)

which allows the computation in time $\mathcal{O}(N \log N)$ (instead of $\mathcal{O}(N^2)$).

Chroma Interval Content (CIC)

Similarly to DIC, CIC captures melodic/intervallic motions between the chords.

Unlike DC, it does not consider transpositions of either chord.

Mathematical and musical properties

Key Transposition

Transposing one of the chords produces a corresponding rotation of the CIC vector. This is also true for DIC. In the following examples we consider symbolic examples with binary chroma vectors, for which CIC = DIC.

$$CIC(A) = (1, 0, 1, 1, 1, 0, 0, 3, 0, 0, 1, 1)$$

$$CIC(B) = (0, 0, 3, 0, 0, 1, 1, 1, 0, 1, 1, 1)$$

Commutativity

Changing the order of the chords changes the signs of the intervals between corresponding notes, flipping the CIC/DIC vectors:

$$CIC(A) = (1, 0, 1, 1, 1, 0, 0, 3, 0, 0, 1, 1)$$

$$CIC(B) = (1, 1, 1, 0, 0, 3, 0, 0, 1, 1, 1, 0)$$

Pitch Class Inversion

Inverting the chords (mirroring with respect to C) and changing their sequence produces the exact same intervallic motions:

$$CIC(A) = (1, 0, 1, 1, 1, 0, 0, 3, 0, 0, 1, 1)$$

$$CIC(B) = (1, 0, 1, 1, 1, 0, 0, 3, 0, 0, 1, 1)$$

Experiments

Indexing Harmonic Progression

- a dataset $\mathcal S$ of all three-note chords that may be obtained from a given diatonic scale $\{0,2,4,5,7,9,11\}$;
- for every chord A in S a set of pseudo-chroma vectors C(A) was built based on geometric progressions of amplitudes ϱ^k , $k=0,1,\ldots,K-1$ with several amplitude decaying factors and number of harmonics
- for every chord progression $A \mapsto B \in \mathcal{S} \times \mathcal{S}$ a binary archetype $\text{CIC}_{I_A \mapsto I_B}$ and $\text{DC}_{I_A \mapsto I_B}$ were used as a search item within the set
- \bullet both methods did retrieve 100% of correct results for a large number of progressions in $\mathcal{S}\times\mathcal{S}$
- Taking all searches combined the overall scores were 96.9% for CIC and 97.3% for DC.

Genre Classification - "500 Greatest Songs of All Time" by Rolling Stone

(Clercq and Temperley, "A corpus analysis of rock harmony", http://rockcorpus.midside.com)

Genre Classification

Genre	# of items
Rock	85
Slow	33
Dance	10

Average	CIC performance	DC performance
Macro	0.30 (± 0.10)	0.24 (± 0.04)
Weighted	0.54 (± 0.10)	0.47 (± 0.09)
Micro	0.59 (± 0.09)	0.52 (± 0.12)

Metric	CIC performance	DC performance
F-measure	0.74 (± 0.02)	0.72(± 0.07)
Precision	0.68 (± 0.06)	$0.70~(\pm~0.16)$
Recall	0.81 (± 0.05)	$0.75~(\pm~0.09)$

(Chen et al., "Xgboost: A scalable tree boosting system", 2016)

Conclusion

- CIC extends Directional Interval Content (DIC) vectors to chroma features
- Dynamic Chroma considers differences between chromas of rotated chords and this reflects a musical model based on harmonic functions which are obtained by rotation
- Chroma Interval Content views chord progressionsas multi-layered displacements of chroma energy in many simultaneous directions, similarly to the harmonic flows in voice-leading
- Reduces the theoretical complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(NlogN)$ for a chord progression between N-dimensional chroma vectors

References

- Emilios Cambouropoulos. A directional interval class representation of chord transitions. In Proceedings of the Joint Conference ICMPC-ESCOM 2012, 2012.
- Emilios Cambouropoulos, Andreas Katsiavalos, and CostasTsougras. Idiom-independent harmonic pattern recognition based on a novel chord transition representation.
 InProceedings of the 3rd International Workshop on Folk MusicAnalysis (FMA), 2013
- Samuel Kim and Shrikanth Narayanan. Dynamic chromafeature vectors with applications to cover song identification. In Multimedia Signal Processing, 2008 IEEE 10th Workshopon, pages 984987. IEEE, 2008
- Maximos Kaliakatsos-Papakostas, Marcelo Queiroz, CostasTsougras, and Emilios Cambouropoulos. Conceptual blending of harmonic spaces for creative melodic harmonisation. Journal of New Music Research, 46(4):305328, 2017.

References

Thank you!