Wireless Communication Final Project Channel Emulator

108064535 陳文遠

I. 實驗介紹

在本次實驗中,我們要實做的是 COST 207 Channel Emulator。其中有三種具有不同 Scattering 狀況的 Doppler Spectrum。第一個是 Classical Doppler Spectrum (CLASS),他可以用來說明一個複雜的地區 (周圍很多建築物或障礙物) 的 Doppler Spectrum,故可以將其 Doppler Spectrum 假設為 Isotropic Scattering。而第二與第三個分別為 Gaussian 1 Doppler Spectrum (GAUS1) 以及 Gaussian 2 Doppler Spectrum (GAUS2),他們可以用來說明 Non-isotropic Scattering 的 Doppler Spectrum,而他們入射角 (正負頻) 的訊號強度不同。

此外,基於這些 Doppler Spectrum,又有數種 Channel Model 可以選擇,不同的 Channel Model 針對不同的場景又會具有不同的 delay 以及 fractional power。在這個 Project 中我們採用的是 6 taps Reduced Typical Urban (TU) Channel Model,下面 Fig 1. 和 Fig 2. 是我們為此 Model 假設的 Delay、Fractional Power 以及 Doppler Spectrum 的對照圖。

Reduced Typical Urban (TU) Power Delay Profiles					
Delay (μs)	Fractional Power	Doppler Spectrum			
0.0	0.189	CLASS			
0.2	0.379	CLASS			
0.5	0.239	CLASS			
1.6	0.095	GAUS1			
2.3	0.061	GAUS2			
5.0	0.037	GAUS2			

Fig 1. TU power delay profile assumption.

Fig 2. 6-rays Reduced Typical Urban

II. 輸入參數

(1) Number of oscillator: M = 16

Oscillator 的數量越多,也就是 M 越大,會使自相關越來越趨近理想狀態 (相關性越低越好),在本次實驗中我們將固定 M 值為 16。並且能從 $M=\frac{1}{2}\times(\frac{N}{2}-1)$ 式子中推得 $N=4M+2=4\times16+2=66$,此 N 值在計算 CLASS Doppler Spectrum 的 incoming wave 的入射角 θ 時會用到。

(2) Doppler Spectrum Parameters

GAUS1 與 GAUS2 並非全向性反射,而是來自特定方向,在實驗中我們假設 a_1 及 a_2 兩個反射體的強度 (dB) 如下,而 $v_{11}, v_{21}, v_{12}, v_{22}$ 的值則是根據講義第二章的 P162 與 P163 而定。

	a_1	v ₁₁	v ₂₁	$\mathbf{a_2}$	v ₁₂	v ₂₂
GAUS1	10	-0.8f _m	$0.05f_{\rm m}$	1	0.4f _m	0.1f _m
GAUS2	1	0.7f _m	0.1f _m	15	-0.4f _m	0.15f _m

Fig 3. Doppler Spectrum Parameters table

(3) MS velocity

在本實驗中測試當 MS 速度為 90 (km/hr) 時的結果。我們假設載波頻 $f_c=2$ (GHz),並可以套用下述的公式來求出其對應的 f_m 值。

1.
$$v = 20 \text{ (km/hr)} \rightarrow f_m = \frac{v}{c} \times f_c = \frac{20 \times 1000}{3600 \times 3 \times 10^8} \times 2 \times 10^9 = 37.0370 \text{ (Hz)}$$

2.
$$v = 90 \text{ (km/hr)} \rightarrow f_m = \frac{v}{c} \times f_c = \frac{90 \times 1000}{3600 \times 3 \times 10^8} \times 2 \times 10^9 = 166.6667 \text{ (Hz)}$$

(4) 6 taps power delay profiles

已在 Part I 的實驗介紹中說明。

III. 輸出結果

(1) Fading gain distribution

下面的 Fig 4. 與 Fig 5. 分別是 MS 速度為 20 (km/hr) 以及 90 (km/hr) 的 Fading gain 分佈 狀況。雖然兩張圖的差距很微小,但是仍然可以發現當 MS 移動速度越快時,其分佈範圍會變廣。

Fig 4. Fading Gain Distribution when v = 20(km/hr)

Fig 5. Fading Gain Distribution when v = 90(km/hr)

(2) Time-domain strength profile

下圖 Fig 6. 和 Fig 7. 是將 6 個 tap 合併後的 time-domain strength profile。分別是 MS 速度為 20 (km/hr) 以及 90 (km/hr) 的狀況。速度越快(環境變動快)會使強度曲線變動得更為劇烈。

Fig 6. Time domain Strength Profile when v = 20(km/hr)

Fig 7. Time domain Strength Profile when v = 90(km/hr)

(3) Time-domain auto-correlation

下圖 Fig 9. 和 Fig 10. 是三種不同 Doppler Spectrum 在 v = 20 (km/hr) 與 v = 90 (km/hr) 的 time-domain auto-correlation。觀察 CLASS、GAUS1、GAUS2 的相關性可以發現 <u>CLASS < GAUS1 < GAUS2</u>。其中 CLASS 的相關性越小;而 GAUS2 的相關性越大,是為三者中最糟糕的一種情況。此外,可以發現 CLASS 在 v = 90 (km/hr) 的高速環境下,當 Time Delay($f_m \tau$) > 6.2 就會變得不可用,或許可以透過增加 M 值來使其相關性趨近於理想狀態。

Auto-Correlation of each type of Doppler Spectrum

CLASS
GAUS1

GAUS2

0.4

0.4

0.6

-0.8

-1

0

1

2

3

4

5

6

7

8

Time Delay, f_m τ

Fig 9. Comparison in Auto-Correlation when v = 20(km/hr)

Fig 10. Comparison in Auto-Correlation when v = 90(km/hr)

下面的 Fig 11.(v = 20(km/hr)) 和 Fig 12.(v = 90(km/hr)) 則是將 6 個 tap 合併後的自相關結果圖。也可以發現當 MS 速度增加後其自相關會越偏離理想值。

Fig 11. Time-domain Auto-Correlation of the 6 taps combination when v = 20(km/hr)

Fig 12. Time-domain Auto-Correlation of the 6 taps combination when v = 90(km/hr)

(4) Level crossing rate (LCR)

LCR 是對訊號衰落快慢的一種度量,結果請看下圖 Fig 13. 和 Fig 14.。

Fig 13. Level Crossing Rate when v = 20(km/hr)

Fig 14. Level Crossing Rate when v = 90(km/hr)

(5) Average fade duration

下圖 Fig 15. 與 Fig 16. 為不同 MS 速度下的 Average fade duration 圖形。我們可觀察到 fade duration 會隨著 level (dB) 的增加而增加,而最終會到達實驗總運行時間,在本實驗中我們設定 的運行時間為 8 秒。

Fig 15. Average Fade Duration when v = 20(km/hr)

Fig 16. Average Fade Duration when v = 90(km/hr)

(6) Coherence time (T_c)

1.
$$v = 20 (km/hr) \rightarrow f_m = 37.0370 (Hz) \rightarrow T_c = \frac{1}{f_c} = \frac{1}{27.0370} = 0.027 (sec)$$

1.
$$v = 20 (km/hr) \rightarrow f_m = 37.0370 (Hz) \rightarrow T_c = \frac{1}{f_m} = \frac{1}{37.0370} = 0.027 (sec)$$

2. $v = 90 (km/hr) \rightarrow f_m = 166.6667 (Hz) \rightarrow T_c = \frac{1}{f_m} = \frac{1}{166.6667} = 0.006 (sec)$