Tanım 5.35: V bir vektör uzayı T'de V'nin bir alt kümesi olsun. Eğer

i-) T, V 'nin bir lineer bağımsız alt kümesi

ii-)
$$\langle T \rangle = V$$

şartları sağlanıyorsa T'ye V'nin bir tabanı veya bazı denir.

Örnek 5.36:
$$T = \left\{ \begin{bmatrix} 1\\0\\0\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix} \right\}$$
 kümesi R^n ' nin bir tabanıdır.

Bu tabana R^n , nin **standart tabani** denir.

Direction
$$B = \begin{cases} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix}$$
 kinesi R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. $R^3 = R^3$

Cozim. R^3 is per datini posserelia. R^3 is posserelia. R^3 is per datini. R^3 is p

Örnek 5.39: $T = \{x^2 + 1, x + 2, -x^2 + x\}$ nin $V = P_2$ için bir taban olduğunu gösteriniz.

T kümesinin P_2 yi gerdiğini gösterelim. P_2 de keyfi bir polinom $ax^2 + bx + c$ olsun.

$$c_1(x^2+1)+c_2(x+2)+c_3(-x^2+x)=ax^2+bx+c$$

eşitliğini sağlayacak şekilde c_1, c_2, c_3 sayılarını bulmak için polinom eşitliğinden yararlanırız.

$$(c_1-c_3)x^2+(c_2+c_3)x+(c_1+2c_2)=ax^2+bx+c$$

$$c_1-c_3=a$$
 Buradan
$$c_2+c_3=b$$
 lineer denklem sistemi elde edilir.
$$c_1+2c_2=c$$

Bu sistem çözülürse,

 $c_1=2a+2b-c,$ $c_2=c-a-b,$ $c_3=a+2b-c$ tek çözümü elde edilir. Şu halde, $\langle T \rangle = P_2$ dir.

Lineer bağımsızlığı göstermek için

$$c_1(x^2+1)+c_2(x+2)+c_3(-x^2+x)=0x^2+0x+0$$
 dan
 $(c_1-c_3)x^2+(c_2+c_3)x+(c_1+2c_2)=0x^2+0x+0$ elde edilir.

Buradan
$$c_1 - c_3 = 0$$

 $c_2 + c_3 = 0$ lineer denklem sistemi elde edilir.
 $c_1 + 2c_2 = 0$

Bu sistem çözülürse, $c_1 = c_2 = c_3 = 0$ bulunur. T kümesi lineer bağımsızdır ve T, P_2 için bir tabandır.

Teorem 5.42: V vektör uzayı, n tane vektörden oluşan bir tabana sahip ise V 'nin her tabanında n vektör bulunur.

Tanım 5.43: V vektör uzayı olsun. V 'nin herhangi bir tabanındaki vektör sayısına V 'nin **boyutu** denir ve boy(V) ile gösterilir.

Örnek 5.44 : Daha önce verilen Örnek 5.38 daki vektör uzayının boyutu boy(W) = 3 dür . Örnek 5.39 daki vektör uzayı için de boy(V) = 3 dür.

Teorem 5. 45: *V*, *n* boyutlu bir vektör uzayı olsun. Aşağıdakiler sağlanır.

i.) Eğer
$$T = \{v_1, v_2, \dots, v_n\}$$
 lineer bağımsız ise $\langle T \rangle = V$ dir ve T, V 'nin bir tabanıdır.

ii.)
$$T = \{v_1, v_2, \dots, v_n\}$$
 ve $\langle T \rangle = V$ ise T , lineer bağımsızdır ve

V'nin bir tabanıdır.

Örnek 5.46: R^3 'de a = (-1,1,1), b = (0,2,3), c = (1,-1,0) olmak üzere $T = \{a,b,c\}$ kümesi veriliyor. T'nin R^3 'ün bir tabanı olduğunu gösteriniz.

 $boy(R^3) = 3$ ve T'de üç vektör vardır. Teorem 5. 45 a göre T'nin taban olduğunu göstermek için lineer bağımsız olduğunu göstermemiz yeterlidir.

$$k_{1}a + k_{2}b + k_{3}c = 0 \text{ dan } k_{1} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} + k_{2} \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} + k_{3} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = 0 \text{ ve } k_{1} + 2k_{2} - k_{3} = 0$$
 lineer
$$k_{1} + 3k_{2} = 0$$

homojen sistemi elde edilir. Bu sistemi

çözersek $k_1 = k_2 = k_3 = 0$ buluruz. Buradan T lineer bağımsızdır ve \mathbb{R}^3 'ün bir tabanıdır.

Örnek 5.47: $V = R^3$ 'de $u_1 = (2,0,0), u_2 = (4,0,-6), u_3 = (0,2,0)$ olmak üzere $T = \{u_1, u_2, u_3\}$ kümesi veriliyor. T'nin R^3 'ün bir tabanı olduğunu gösteriniz.

 $\langle T \rangle$ = V ise T, V 'nin bir tabanı olacağından a, b, c reel sayılar olmak üzere

$$u_1, u_2, u_3$$
 vektörlerinin V 'yi gerip germediğini görmek için V 'den herhangi bir $u = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

vektörü alınır ve $k_1u_1 + k_2u_2 + k_3u_3 = u$ dan

$$2k_1+4k_2=a \\ 2k_3=b \\ -6k_2=c$$
 lineer denklem sistemi elde edilir. Bu eşitliği sağlayan k_1,k_2,k_3

sabitlerini bulmak için denklem sistemi çözülürse

$$k_1 = \frac{3a + 2c}{2}$$
, $k_2 = -\frac{c}{6}$, $k_3 = \frac{b}{2}$ bulunur ve u_1, u_2, u_3 vektörleri V 'yi gerer. Yani, $\langle T \rangle = V$

dir ve böylece T, V 'nin bir tabanıdır ve boy(V) = 3 dür.

Teorem 5. 48: V, n boyutlu bir vektör uzayı ve $T = \{v_1, v_2, \dots, v_n\}$, V 'nin bir tabanı olsun. V 'nin her v vektörü

$$v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$$

biçiminde tek türlü yazılabilir.

İspat: $\langle T \rangle = V$ olduğundan V 'nin her vektörü v_1, v_2, \dots, v_n vektörlerinin bir lineer kombinezonu olarak yazılabilir. Şimdi bu yazılışın tek türlü olduğunu görelim.

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$
 ve $v = d_1 v_1 + d_2 v_2 + \dots + d_n v_n$

olduğunu kabul edelim. Bu durumda

$$(c_1-d_1)v_1+(c_2-d_2)v_2+\ldots+(c_n-d_n)v_n=0$$

elde edilir. T, lineer bağımsız olduğundan

 $\forall i = 1, 2, ..., n$ için $c_i - d_i = 0$ ve böylece $c_i = d_i$ elde edilir.