Step-1

Let us consider the following vectors

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, and c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Therefore, the corresponding primal of the LPP is as follows

Minimize: *4 * *5

Subject to following constraints, along with non-negativity constraints

x₁≥1

 $x_2 \ge -1$

Step-2

Solving the above constraints, we get the following vector

 $x_1 = 1$

 $x_2 = 0$

Therefore, the feasible vector is

$$x^{\bullet} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

Step-3

Now, the corresponding dual of the LPP is as follows

Maximize: $y_1 - y_2$

Subject to following constraints, along with non-negativity constraints

 $y_1 \le 1$

y₂ ≤1

Step-4

Solving the above constraints, we get the following vector

 $y_1 = 1$

 $y_2 = 0$

Therefore, the feasible vector is

$$y^{\bullet} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Step-5

Let us calculate the following terms,

$$cx = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$$

And

$$yb = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$= 1 - 0$$
$$= 1$$

Now, $\mathbf{cx} = \mathbf{yb}$, thus the value of vectors x and y are optimal.

Since, the second inequality in both $Ax^* \ge b$ and $y^*A \le c$ are strict, so the second components of y^* and x^* are zero