1.
$$\sqrt{2} < 2 < \sqrt{5}$$

(for $2 < 4 < 5$)
 $\Rightarrow \frac{\sqrt{2}}{3} < \frac{2}{3} < \frac{\sqrt{5}}{3}$ Svar: (tex.) $\frac{2}{3}$

2.
$$|16-x| \le 7$$

 $\Rightarrow -7 \le 16-x \le 7$
 $\Rightarrow x \le 23$ (1)
 $och \quad 16-x \le 7$
 $\Rightarrow zc \ge 9$ (2)
(1) $och(2) ger \quad 9 \le x \le 23$

3,
$$2x^2 - 6x - 20 = 2(x^2 - 3x - 10)$$

$$= \frac{2(x - 5)(x + 2)}{x - 5}$$

$$= 2(x + 2)$$

4.
$$i^{19} = i^{16}i^3 = (i^4)^4 i^2 i$$

$$= i^4 (-1)i$$

$$= -i \qquad \text{Svar} : -i$$

5,
$$|5-x|=|2x|$$

 $x < 0$: $5-x = -2x$
 $x = -5$
 $0 < x < 5$: $5-x = 2x$
 $3x = 5$
 $x = 5/3$
 $x > 5$: $-5+x = 2x$

$$x = -5$$

Svar: $x_1 = -5, x_2 = \frac{5}{3}$

6.
$$\frac{11+2i}{1+2i} \cdot \frac{(1-2i)}{(1-2i)} = \frac{11+2i-22i+4}{5}$$
$$= \frac{15-20i}{5}$$
$$= 3-4i$$

7.
$$\frac{6}{\sum_{k=1}^{2} \frac{2k-1}{2}} = \frac{6 \cdot \left(\frac{2 \cdot 6-1}{2} + \frac{2 \cdot 1-1}{2}\right)}{2}$$
$$= 3 \cdot \left(\frac{1}{2} + \frac{1}{2}\right)$$
$$= 3 \cdot 6$$
$$= 18 \qquad \text{Svav}: 18.$$

8. Av Binomialsatsen
$$\left(\frac{2}{2} + \chi\right)^{10} = \sum_{k=0}^{10} {10 \choose k} \left(\frac{z}{\chi}\right)^k \chi^{10-k}$$

$$2^{2}$$
 sker om x^{-R} . $x^{10-R} = x^{2}$
 $x^{10-2R} = x^{2}$
 $10-2R = 2$
 $2R = 8$
 $R = 4$

Om
$$k = 4$$
 $\binom{10}{k} \cdot 2^k = \binom{10}{4} \cdot 16$

$$= \frac{10!}{6!4!} \cdot 16$$

$$= \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2} \cdot 16$$

$$= \frac{5 \cdot 3 \cdot 2 \cdot 7 \cdot 16}{160 \cdot 21}$$

$$= \frac{3360}{160 \cdot 21}$$

9.
$$p(n)$$
: $\sum_{k=1}^{n} q^{k} = \frac{q^{n+1} - q}{8}$

Basfall P(1): VL av P(n) =
$$\frac{9}{81-9} = \frac{72}{8} = 9$$

HL av P(n) = $\frac{81-9}{8} = \frac{72}{8} = 9$

Antag P(m) ar Sant.

Betvaketa $\sum_{k=1}^{m+1} q^k = q^{m+1} + \sum_{k=1}^{m} q^k$ (Induktions)

-antagandet) $= q^{m+1} + q^{m+1} - q$ as P(m) $= 8.9^{m+1} + 9^{m+1} - 9$ $= \frac{q.9^{m+1}-q}{8}$ $= \frac{q^{m+2}-q}{9}$

Så P(m+1) ar saut.

P(m) => P(m+1) och P(1) ar sant så P(n) ar sant for alla heltal n >1.

Sant for all a herrar 10. Av multiplications principen
$$\binom{6}{2} \cdot \binom{k}{2} = 90 \implies \binom{k}{2} = \frac{90}{\binom{6}{2}} \stackrel{\text{(4)}}{\cancel{2}} = \frac{6.5}{\cancel{2}} = 15$$

$$(2)^{2}$$
 $4!2!$ 2 $5å (*) ger $(k) = 90/15 = 6$$

Alltså R=4