Elementary Differential Geometry

Hassium

1 Calculus on Euclidean Space 6 Geometry of Surfaces in \mathbb{R}^3

2 Frame Fields 7 Riemannian Geometry

3 Euclidean Geometry 8 Global Structure of Surfaces

4 Calculus on a Surface Alphabetical Index

5 Shape Operators

1 Calculus on Euclidean Space

Definition 1.1. The Euclidean 3-space, denoted \mathbb{R}^3 , is the set of ordered triples of the form $p = (p_1, p_2, p_3)$, where $p_i \in \mathbb{R}$. An element of \mathbb{R}^3 is called a *point*.

Let $p=(p_1,p_2,p_3), q=(q_1,q_2,q_3) \in \mathbb{R}^3$ and let $a \in \mathbb{R}$. Define the addition to be $p+q=(p_i+q_i)$ and define the scalar multiplication to be $ap=(ap_i)$. The additive identity 0=(0,0,0) is called the *origin* of \mathbb{R}^3 . It is trivial that \mathbb{R}^3 is a vector space over \mathbb{R} .

Definition 1.2. Let x, y, and z be real-valued functions on \mathbb{R}^3 such that for all $p = (p_1, p_2, p_3) \in \mathbb{R}^3$, $x(p) = p_1$. $y(p) = p_2$, and $z(p) = p_3$. We call x, y, and z the natural coordinate functions of \mathbb{R}^3 .

Let x, y, and z be the natural coordinate functions, rewrite $x = x_1$, $y = x_2$, and $z = x_3$. Then we have $p = (p_i) = (x_i(p))$.

Definition 1.3. A real-valued function f on \mathbb{R}^3 is differentiable if all partial derivatives exist and continuous.

Let $p = (p_1, p_2, p_3), q = (q_1, q_2, q_3) \in \mathbb{R}^3$. Recall that the dot product is defined to be $p \cdot q = \sum p_i q_i$ and the norm is defined to be $||p|| = \sqrt{p \cdot p} = \sqrt{\sum p_i^2}$.

Definition 1.4. A subset $O \subset \mathbb{R}^3$ is open if for all $p \in O$, there exists $\varepsilon > 0$ such that $\{x \in \mathbb{R}^3 \mid ||x - p|| < \varepsilon\} \subset O$.

Let $f: O \to \mathbb{R}$ be a function defined on an open set. The differentiability of f at p can be determined entirely from values of f on O. This means that differentiation is a local operation. We will discuss this later.

Definition 1.5. A tangent vector v_p is an ordered pair $v_p = (v, p)$, where $v, p \in \mathbb{R}^3$. Here v is called the vector part and p is called its point of application. Two tangent vectors are said to be parallel if they have the same vector part and different points of application.

Definition 1.6. Let $p \in \mathbb{R}^3$. The tangent space at p, denoted $T_p(\mathbb{R}^3)$, is the set of all tangent vectors that have p as point of application.

Fix a tangent space $T_p(\mathbb{R}^3)$ and let $T_p(\mathbb{R}^3)$ adapt the operations from $\mathbb{R}^3 \times \mathbb{R}^3$. We have a natural linear map $f: T_p(\mathbb{R}^3) \to \mathbb{R}^3$ defined by $v_p \to v$ and it is trivially an isomorphism.

Definition 1.7. A vector field V on \mathbb{R}^3 is a function $V: \mathbb{R}^3 \to \bigsqcup_{p \in \mathbb{R}^3} T_p(\mathbb{R}^3)$ such that for all $p \in \mathbb{R}^3$, $V(p) \subset T_p(\mathbb{R}^3)$.

Let V and W be vector field. Let f be a real-valued function. For all $p \in \mathbb{R}^3$, define V + W by (V + W)(p) = V(p) + W(p) and (fV)(p) = f(p)V(p).

Definition 1.8. Let U_1 , U_2 , and U_3 be vector fields on \mathbb{R}^3 such that $U_1(p) = (1,0,0)_p$, $U_2(p) = (0,1,0)_p$, and $U_3(p) = (0,0,1)_p$ for all $p \in \mathbb{R}^3$. We call (U_1,U_2,U_3) the natural frame field on \mathbb{R}^3 .

Proposition. Let V be a vector field on \mathbb{R}^3 . There are three uniquely determined real-valued functions v_1 , v_2 , and v_3 on \mathbb{R}^3 such that $V = v_1U_1 + v_2U_2 + v_3U_3$.

Proof. For all
$$p \in \mathbb{R}^3$$
, $V(p) = (v_1(p), v_2(p), v_3(p))_p = v_1(p)(1, 0, 0)_p + v_2(p)(0, 1, 0)_p + v_3(p)(0, 0, 1)_p = v_1(p)U_1(p) + v_2(p)U_2(p) + v_3U_3(p)$, hence $V = \sum v_iU_i$.

The functions v_1 , v_2 , and v_3 are called the *Euclidean coordinate functions* on V.

Definition 1.9. A vector field V is differentiable if its Euclidean coordinate functions are differentiable.

Definition 1.10. Let f be a differentiable real-valued function on \mathbb{R}^3 and let v_p be a tangent vector on \mathbb{R}^3 . The directional derivative of f with respect to v_p , denoted $v_p[f]$, is defined to be (d/dt)f(p+tv) at t=0.

Remark. We will not write the restriction every time for convenience.

Proposition. Let $v_p = (v_1, v_2, v_3)_p$ be a tangent vector, then $v_p[f] = \sum v_i(\partial f/\partial x_i)(p)$.

Proof. Let
$$p = (p_1, p_2, p_3)$$
. Then $v_p[f] = (\mathrm{d}/\mathrm{d}t)f(p+tv)|_{t=0} = \sum (\partial f/\partial z)(p) \cdot (\mathrm{d}/\mathrm{d}t)(p_i+tv_i) = \sum (\partial f/\partial x_i)(p)v_i$. \square

Example. Consider $f = x^2yz$ with p = (1, 1, 0) and v = (1, 0, -3). By the definition, p + tv = (1 + t, 1, -3t), so $v_p[f] = (d/dt)(-3t^3 - 6t^2 - 3t) = -3$. Since $(\partial f/\partial x) = 2xyz$, $(\partial f/\partial y) = x^2z$, and $(\partial f/\partial z) = x^2y$, we have $(\partial f/\partial x)(p) = (\partial f/\partial y)(p) = 0$ and $(\partial f/\partial z)(p) = 1$, so $v_p[f] = -3$.

Proposition. Let f and g be functions on \mathbb{R}^3 . Let v_p and w_p be tangent vectors. For all $a, b \in \mathbb{R}$, the following properties hold.

- 1. $(av_p + bw_p)[f] = av_p[f] + bw_p[f]$.
- 2. $v_p[af + bg] = av_p[f] + bv_p[g]$.
- 3. $v_p[fg] = v_p[f]g(p) + f(p)v_p[g]$.

Proof. (i) We have $(av_p+bw_p)[f] = \sum (av_i+bw_i)(\partial f/\partial x_i)(p) = \sum av_i(\partial f/\partial x_i) + \sum bw_i(\partial f/\partial x_i)(p) = av_p[f] + bw_p[f]$. (ii) We have $v_p[af+bg] = \sum v_i(\partial (af+bg)/\partial x_i)(p) = \sum v_i(\partial (af)/\partial x_i)(p) + \sum v_i(\partial (bg)/\partial x_i)(p) = av_p[f] + bv_p[g]$. (iii) We have $v_p[fg] = \sum v_i(\partial (fg)/\partial x_i)(p) = \sum v_i(\partial f/\partial x_i)(p)g(p) + f(p)\sum v_i(\partial g/\partial x_i)(p) = v_p[f]g(p) + f(p)v_p[g]$.

Let V be a vector field, we define V[f] at $p \in \mathbb{R}^3$ to be V(p)[f]. By the convention, $U_i(p)[f] = (\partial f/\partial x_i)(p)$.

Proposition. Let V and W be vector fields. Let f, g, and h be real-valued functions. For all $a, b \in \mathbb{R}$, the following properties hold.

- 1. (fV + gW)[h] = fV[h] + gW[h].
- 2. V[af + bg] = aV[f] + bV[g].
- 3. V[fg] = V[f]g + fV[g].

Proof. (i) For all $p \in \mathbb{R}^3$, (fV + gW)(p)[h] = (f(p)V(p) + g(p)W(p))[h] = fV[h] + gW[h]. (ii) For all $p \in \mathbb{R}^3$, V(p)[af + bg] = aV(p)[f] + bV(p)[g]. (iii) For all $p \in \mathbb{R}^3$, V(p)[f]g(p) + f(p)V(p)[g] = V[f](p)g(p) + f(p)V[g](p) = (V[f]g + fV[g])(p). □

Example. Let $V = xU_1 - y^2U_3$ and let $f = x^2y + z^3$. Then $V[f] = xU_1[x^2y] + xU_1[z^3] - y^2U_3[x^2y] - y^2U_3[z^3] = 2x^2y - 3y^2z^2$.

Let $I \subset \mathbb{R}$ be an open interval. Let $\alpha : I \to \mathbb{R}^3$ be a function. We can rewrite $\alpha(t)$ as $(\alpha_1(t), \alpha_2(t), \alpha_3(t))$, where $\alpha_i : I \to \mathbb{R}$. We say α is differentiable if α_i are differentiable.

Definition 1.11. A curve in \mathbb{R}^3 is a differentiable function $\alpha: I \to \mathbb{R}^3$, where $I \subset \mathbb{R}$ is an open interval.

Example. A curve $\alpha: \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = p + tq$, where $\alpha(0) = p$ and $q \neq 0$, is called a *straight line*.

Example. Here are some examples of curves.

- 1. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (a \cos t, a \sin t, bt)$.
- 2. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (1 + \cos t, \sin t, 2\sin(t/2))$.
- 3. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (e^t, e^{-t}, \sqrt{2}t)$.
- 4. The cruve $\alpha: \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (3t t^3, 3t^2, 3t + t^3)$.

Definition 1.12. Let $\alpha: I \to \mathbb{R}^3$ be a curve with $\alpha = (\alpha_1, \alpha_2, \alpha_3)$. For all $t \in I$, the velocity vector of α at t is the tangent vector $\alpha'(t) = ((\mathrm{d}\alpha_1/\mathrm{d}t)(t), (\mathrm{d}\alpha_2/\mathrm{d}t)(t), (\mathrm{d}\alpha_3/\mathrm{d}t)(t))_{\alpha(t)}$ at the point $\alpha(t) \in \mathbb{R}^3$. The curve α is said to be regular if $\alpha_i \neq 0$ for all i.

Consider the velocity vector $\alpha'(t)$, we can rewrite it by the natural frame fields, so $\alpha'(t) = \sum (d\alpha_i/dt)(t)U_i(\alpha(t))$.

Definition 1.13. Let $\alpha: I \to \mathbb{R}^3$ be a curve and let $h: J \to I$ be differentiable, where J is an open interval of \mathbb{R} . The reparametrization of α by h is the composition $\alpha \circ h: J \to \mathbb{R}^3$.

The composition of differentiable functions is differentiable, so any reparametrization is differentiable, which means it is a curve.

Proposition. Let β be the reparametrization of α by h, then $\beta'(s) = (dh/ds)(s)\alpha'(h(s))$.

Proof. Rewrite
$$\beta(s) = \alpha(h(s))$$
, then we have $\beta'(s) = (d(\alpha_i h_i)/ds)(s)_{\alpha(h(s))} = (d\alpha_i/ds)(h(s)) \cdot (dh/ds)(s)_{\alpha(h(s))} = (dh/ds)(s)\alpha'(h(s))$.

Proposition. Let α be a curve and let f be a differentiable function on \mathbb{R}^3 , then $\alpha'(t)[f] = (\mathrm{d}(f\alpha)/\mathrm{d}t)(t)$.

Proof. We have
$$\alpha'(t)[f] = \sum (d\alpha_i/dt)(t) \cdot (\partial f/\partial x_i)(\alpha(t)) = (d(f\alpha)/dt)(t)$$
 by the chain rule.

Now we show a general idea of parametrizations. The proofs will be included in other sections when we have enough tools. Assume every result is correct for now.

Definition 1.14. A 1-form φ on \mathbb{R}^3 is a function $\varphi: \coprod_{p \in \mathbb{R}^3} T_p(\mathbb{R}^3) \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$, $\varphi(av + bw) = a\varphi(v) + b\varphi(w)$.

Given a 1-form φ , for any point p, denote the restriction $\varphi|_{T_p(\mathbb{R}^3)}:T_p(\mathbb{R}^3)\to\mathbb{R}$ by φ_p , then φ_p is linear. Let φ and ψ be 1-forms. Define the addition and scalar multiplication by $(\varphi+\psi)(v)=\varphi(v)+\psi(v)$ and $(f\varphi)(v_p)=f(p)\varphi(v_p)$. Given any 1-form φ and point p, φ_p is a linear functional in $T_p^*(\mathbb{R}^3)$, the dual space of $T_p(\mathbb{R}^3)$.

Definition 1.15. Let φ be a 1-form and let V be a vector field. For all $p \in \mathbb{R}^3$, define $\varphi(V)(p) = \varphi_p(V(p))$. We say φ is differentiable if for every differentiable vector field V, the function $\varphi(V)$ is differentiable.

Now let V and W be vector fields, we have $\varphi(fV+gW)(p)=\varphi((fV+gW)(p))=\varphi(fV(p)+gW(p))=(f\varphi(V)+g\varphi(W))(p)$. Similarly, $(f\varphi+g\psi)(V)=f\varphi(V)+g\psi(V)$.

Definition 1.16. If $f: \mathbb{R}^3 \to \mathbb{R}$ is differentiable. The differential of f, denoted df, is the function $df(v_p) = v_p[f]$ for all tangent vectors v_p .

Let $v_p, w_p \in T_p(\mathbb{R}^3)$ and let $a, b \in \mathbb{R}$, then $df(av_p + bw_p) = (av_p + bw_p)[f] = av_p[f] + bw_p[f] = adf(v_p) + bdf(w_p)$. Hence df is a 1-form.

Example. Consider the natural coordinate functions x_i . We have $dx_i(v_p) = v_p[x_i] = \sum v_i(\partial x_i/\partial x_j)(p) = v_i$.

Proposition. If φ is a 1-form on \mathbb{R}^3 , then $\varphi = \sum f_i dx_i$, where $f_i = \varphi(U_i)$.

Proof. Let
$$v_p \in T_p(\mathbb{R}^3)$$
, then $\varphi(v_p) = \varphi(\sum v_i U_i(p)) = \sum v_i \varphi(U_i(p)) = \sum v_i f_i(p) = \sum f_i(p) dx_i(v_p) = (\sum f_i dx_i)(v_p)$, hence $\varphi = \sum f_i dx_i$.

The functions f_1 , f_2 , and f_3 are called the Euclidean coordinate functions of the 1-form φ .

Proposition. Let f be a differentiable function on \mathbb{R}^3 , then $df = \sum (\partial f/\partial x_i) dx_i$.

Proof. Let
$$v_p \in T_p(\mathbb{R}^3)$$
, then $\mathrm{d}f(v_p) = v_p[f] = \sum v_i(\partial f/\partial x_i)(p) = \sum (\partial f/\partial x_i)(p)\mathrm{d}x_i(v_p) = (\sum (\partial f/\partial x_i)\mathrm{d}x_i)(v_p)$, hence $\mathrm{d}f = \sum (\partial f/\partial x_i)\mathrm{d}x_i$.

Let f and g be differentiable functions on \mathbb{R}^3 , then $d(f+g) = \sum (\partial (f+g)/\partial x_i) dx_i = \sum (\partial f/\partial x_i) dx_i + \sum (\partial g/\partial x_i) dx_i = df + dg$. Now we denote the multiplication to be fg.

Proposition. Let f and g be differentiable functions on \mathbb{R}^3 , then d(fg) = gdf + fdg.

Proof. We have
$$d(fg) = \sum (\partial (fg)/\partial x_i) dx_i = \sum ((\partial f/\partial x_i)g + (\partial g/\partial x_i)f) dx_i = gdf + fdg.$$

Proposition. Let $f: \mathbb{R}^3 \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ be differentiable, then d(h(f)) = (dh(f)/dx)df.

Proof. We have $d(h(f)) = \sum (\partial h(f)/\partial x_i) dx_i$, by the chain rule, $(\partial h(f)/\partial x_i) dx_i = (dh(f)/df)(\partial x/\partial x_i)$, so d(h(f)) = (df(h)/df) df.

Example. Consider the function $f = (x^2 - 1)y + (y^2 + 2)z$. We have $df = d((x^2 - 1)y) + d((y^2 + 2)z) = yd(x^2 - 1) + (x^2 + 1)dy + zd(y^2 + 2) + (y^2 + 2)dz = 2xydx + (x^2 + 2yz - 1)dy + (y^2 + 2)dz$. Since $v_p[f] = df(v_p)$, $v_p[f] = 2p_1p_2v_1 + (p_1^2 + 2p_2p_3 - 1)v_2 + (p_2^2 + 2)v_3$.

Definition 1.17. Let V be the vector space \mathbb{R}^3 and denote the space of all p-linear forms on V by $\Lambda^p(V^*)$. Every element of Λ^p is called a p-form. Define the wedge product to be a function $\Lambda: \Lambda^a(V^*) \times \Lambda^b(V^*) \to \Lambda^{a+b}(V^*)$ such that for $\omega \in \Lambda^m(V^*)$, $\eta \in \Lambda^n(V^*)$, and $v_1, \ldots, v_{m+n} \in V$, the following properties hold.

- 1. $(\omega \wedge \eta)(v_1, \dots, v_{m+n}) = (\sum_{\sigma \in \mathfrak{S}_{m+n}} \operatorname{sgn}(\sigma)\omega(v_{\sigma(1)}, \dots, v_{\sigma(m)})\eta(v_{\sigma(m+1)}, \dots, v_{\sigma(m+n)}))/(m!n!).$
- 2. $\omega \wedge \eta = (-1)^{mn} \eta \wedge \omega$.

Generally, a p-form is of the form $\sum f(x, y, z) dx^i \wedge \cdots dy^j \wedge \cdots dz^k \wedge \cdots$. We have $dx_i \wedge dx_j = -dx_j \wedge dx_i$. If i = j, then $dx_i \wedge dx_i = -dx_i \wedge dx_i$, so $dx_i \wedge dx_i = 0$. It is trivial that \wedge is bilinear and associative, that is,

- 1. for $\omega_1, \omega_2 \in \Lambda^m(V^*)$, $\eta \in \Lambda^n(V^*)$, and $a, b \in \mathbb{R}$, $(a\omega_1 + b\omega_2) \wedge \eta = a(\omega_1 \wedge \eta) + b(\omega_2 \wedge \eta)$ and $\eta \wedge (a\omega_1 + b\omega_2) = a(\eta \wedge \omega_1) + b(\eta \wedge \omega_2)$;
- 2. for $\omega \in \Lambda^m(V^*)$, $\eta \in \Lambda^n(V^*)$, and $\theta \in \Lambda^l(V^*)$, $\omega \wedge (\eta \wedge \theta) = (\omega \wedge \eta) \wedge \theta$.

Now given a space of p-forms $\Lambda^p(V^*)$ with basis $\{e_1, e_2, e_3\}$, the basis of its dual space is denoted by $\{e^1, e^2, e^3\}$. The basis of $\Lambda^k(V^*)$ is of the form $e^{i_1} \wedge \cdots \wedge e^{i_k}$, where $1 \leq i_1 \leq \cdots \leq i_k \leq 3$. In this case, the dimension of $\Lambda^p(V^*)$ is 3!/(p!(3-p)!). If p > 4, then $\dim(\Lambda^p(V^*)) = 0$, so there are no p-forms on \mathbb{R}^3 if $p \geq 4$.

Example. Let $\varphi = x dx - y dy$, $\psi = z dx + x dz$, $\theta = z dy$, and $\eta = y dx \wedge dz + x dy \wedge dz$.

- 1. $\varphi \wedge \psi = xz dx \wedge dx + x^2 dx \wedge dz yz dy \wedge dx yx dy \wedge dz = yz dx \wedge dy + x^2 dx \wedge dz yx dy \wedge dz$
- 2. $\theta \wedge (\varphi \wedge \psi) = yz^2 dx \wedge (dy \wedge dy) + x^2 z dx \wedge dz \wedge dy xyz dy \wedge dz \wedge dy = -x^2 z dx \wedge dy \wedge dz$
- 3. $\varphi \wedge \eta = xy dx \wedge dx \wedge dz + x^2 dx \wedge dy \wedge dz y^2 dy \wedge dx \wedge dz xy dy \wedge dy \wedge dz = (x^2 + y^2) dx \wedge dy \wedge dz$

Proposition. Let φ and ψ be 1-forms, then $\varphi \wedge \psi = -\psi \wedge \varphi$.

Proof. Rewrite
$$\varphi = \sum f_i dx_i$$
 and $\psi = \sum g_i dx_i$, then $\varphi \wedge \psi = \sum f_i g_i dx_i dx_j = \sum -g_i f_i dx_j dx_i = -\psi \wedge \varphi$.

Definition 1.18. Let $\varphi = \sum f_i dx_i$ be a 1-form on \mathbb{R}^3 . The exterior derivative of φ is the 2-form $d\varphi = \sum df_i \wedge dx_i$. Let $\psi = \sum f_{i,j} dx_i \wedge dx_j$ be a 2-form. The exterior derivative of ψ is the 3-form $d\psi = \sum df_{i,j} \wedge dx_i \wedge dx_j$.

Let $a, b \in \mathbb{R}$. Let $\varphi = \sum f_i dx_i$ and $\psi = \sum g_i dx_i$ be 1-forms. Then $d(a\varphi + b\psi) = d(\sum (af_i + bg_i)dx_i) = \sum d(af_i + bg_i) \wedge dx_i$, since the differential is linear, the exterior derivative is linear.

Proposition. Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be functions and let φ and ψ be 1-forms. Then $d(f\varphi) = df \wedge \varphi + fd\varphi$ and $d(\varphi \wedge \psi) = d\varphi \wedge \psi - \varphi \wedge d\psi$.

Proof. (i) Let $\varphi = \sum g_i dx_i$, then $f\varphi = \sum fg_i dx_i$, so $d(f\varphi) = \sum (fdg_i + g_i df) \wedge dx_i = \sum fdg_i \wedge dx_i + \sum g_i df \wedge dx_i = fd\varphi + df \wedge \varphi$. (ii) Since $dx_i \wedge dx_i = 0$, without lose of generality, let $\varphi = fdx$ and let $\psi = gdy$. Then $d(\varphi \wedge \psi) = d(fgdx \wedge dy) = d(fg) \wedge dx \wedge dy = (fdg + gdf) \wedge dx \wedge dy = fdg \wedge dx \wedge dy + gdf \wedge dx \wedge dy$. For the right hand side, $d\varphi \wedge \psi = df \wedge dx \wedge gdy = gdf \wedge dx \wedge dy$ and $\varphi \wedge d\psi = fdx \wedge dg \wedge dy = -fdg \wedge dx \wedge dy$, hence $d(\varphi \wedge \psi) = d\varphi \wedge \psi - \varphi \wedge d\psi$.

Definition 1.19. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ and let $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ such that $F(p) = (f_1(p), \ldots, f_m(p))$ for all $p \in \mathbb{R}^n$. The functions f_i are called the *Euclidean coordinate functions* of F and we denote $F = (f_1, \ldots, f_m)$.

Definition 1.20. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ and $F = (f_1, \dots, f_m)$, we say F is differentiable if all f_i are differentiable. If F is differentiable, we say F is a mapping from \mathbb{R}^n to \mathbb{R}^m .

Definition 1.21. Let $\alpha: I \to \mathbb{R}^n$ be a curve and let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. Then the composite function $\beta = F(\alpha): I \to \mathbb{R}^m$ is a curve in \mathbb{R}^m called the *image* of α under F.

To examine the effect of a mapping, it suffices to take a proper α and check the image of it.

Example. The function $F: \mathbb{R}^3 \to \mathbb{R}^3$ defined by F = (x - y, x + y, 2z) is a mapping. Trivially, F is a linear map, so F is determined by $F(u_i)$.

Example. Consider the mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F = (u^2 - v^2, 2uv)$. Let $\alpha: I \to \mathbb{R}^2$ defined by $\alpha(t) = (r\cos t, r\sin t)$, where $0 \le t \le 2\pi$. The image is $\beta(t) = (r^2\cos 2t, r^2\sin 2t)$. This curve takes two counterclockwise trips around the circle of radius r^2 centered at the origin. Therefore, F wraps \mathbb{R}^2 around itself twice.

Definition 1.22. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping and let $v_p \in T_p(\mathbb{R}^n)$. The tangent map of F, denoted $F_*(v_p)$, is defined to be (d/dt)F(p+tv) at t=0.

Fix some mapping $F: \mathbb{R}^n \to \mathbb{R}^m$. For every $p \in \mathbb{R}^n$, it induces a tangent map of F at p, denoted F_{*p} .

Proposition. Let $F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. If $v_p \in T_p(\mathbb{R}^n)$, then $F_{*p}(v_p) = (v[f_1], \ldots, v[f_m])_{F(p)}$.

Proof. Fix $v_p \in T_p(\mathbb{R}^n)$. We have $F_{*p} = (d/dt)F(p+tv)|_{t=0} = (d/dt)(f_i(p+tv))|_{t=0} = (v_p[f_1], \dots, v_p[f_m])_{F(p)}$.

Proposition. Let $F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. For all $p \in T_p(\mathbb{R}^n)$, the tangent map $F_{*p} : T_p(\mathbb{R}^n) \to T_{F(p)}(\mathbb{R}^m)$ is a linear map.

Proof. Fix $p \in \mathbb{R}^n$. Let $a, b \in \mathbb{R}$ and let $v_p, w_p \in T_p(\mathbb{R}^n)$. We have $F_{*p}(av_p + bw_p) = ((av_p + bw_p)[f_i])_{F(p)} = (av_p[f_i])_{F(p)} + (bw_p[f_i])_{F(p)} = aF_{*p}(v_p) + bF_{*p}(w_p)$.

Proposition. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping and let β be the image of some curve α in \mathbb{R}^n , then $\beta' = F_*(\alpha')$.

Proof. Let
$$F = (f_1, \ldots, f_m)$$
. We have $F_*(\alpha'(t)) = (\alpha'(t)[f_i])_{F(\alpha(t))} = (\mathrm{d}f_i(\alpha(t))/\mathrm{d}t)_{F(\alpha(t))} = \beta'(t)$.

Let $\{U_j\}$ and $\{\overline{U_i}\}$ be the natural frame fields of \mathbb{R}^n and \mathbb{R}^m , respectively.

Proposition. Let $F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. Then $F_*(U_j(p)) = \sum_{i=1}^m (\partial f_i / \partial x_j)(p) \overline{U_i}(F(p))$, where $1 \leq j \leq n$.

Proof. Recall that $U_j[f_i] = \partial f_i/\partial x_j$, so the proposition trivially holds.

Definition 1.23. Let $F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. The Jacobian matrix of F at $x \in \mathbb{R}^n$ is the matrix

$$J_F(x) = \begin{pmatrix} \partial f_1/\partial x_1(x) & \cdots & \partial f_1/\partial x_n(x) \\ \vdots & \ddots & \vdots \\ \partial f_m/\partial x_1(x) & \cdots & \partial f_m/\partial x_n(x) \end{pmatrix}.$$

Definition 1.24. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. We say F is regular if for all $p \in \mathbb{R}^n$, F_{*p} is injective.

Notice that $J_F(p) \cdot v = F_{*p}$, so $J_F(p)$ is the matrix representation of F_{*p} .

Definition 1.25. A mapping is a diffeomorphism if it has a differentiable inverse mapping.

Definition 1.26. A topological space (X, \mathcal{T}) consists of two sets X and \mathcal{T} , where $\mathcal{T} \subset \mathscr{P}(X)$, that satisfies the following properties.

- 1. $\varnothing, X \in \mathcal{T}$.
- 2. Any union of elements in \mathcal{T} is also in \mathcal{T} .
- 3. Any finite intersection of elements in \mathcal{T} is also in \mathcal{T} .

The collection \mathcal{T} is called a topology on X.

Definition 1.27. Let (X, \mathcal{T}) be a topological space. A subset $U \subset X$ is said to be open if $U \in \mathcal{T}$. Let $x \in X$, a neighborhood of x is an open set U_x that contains x.

Let $U \subset \mathbb{R}$. We say U is open in the standard topology \mathcal{T} on \mathbb{R} if for every $x \in U$, there exists $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subset U$. Trivially, $\varnothing, \mathbb{R} \in \mathcal{T}$. Let $\{U_i\}_{i \in I}$ be open sets, then for each U_i and $x \in U_i$, there exists a corresponding $\varepsilon_{i,x}$. For any $x \in \bigcup_{i \in I} U_i$, $x \in U_i$ for some $i \in I$. Pick $\varepsilon = \varepsilon_{i,x}$, then $(x - \varepsilon, x + \varepsilon) \subset U_i \subset \bigcup_{i \in I} U_i$. For any $x \in \bigcap_{i=1}^n U_i$, pick $\varepsilon = \min\{\varepsilon_{i,x}\}$, then $(x - \varepsilon, x + \varepsilon) \subset U_i$ for $1 \le i \le n$, so $(x - \varepsilon, x + \varepsilon) \subset \bigcap_{i=1}^n U_i$. The standard topology on \mathbb{R} is indeed a topology.

Definition 1.28. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A subset $W \subset X \times Y$ is open in the product topology on $X \times Y$ if for all $(x, y) \in W$, there exist neighborhoods $U_x \in \mathcal{T}_X$ and $V_y \in \mathcal{T}_Y$ such that $U_x \times V_y \subset W$.

Denote the product topology by \mathcal{T} . We have $\varnothing \in \mathcal{T}$ vacuously. For all $(x,y) \in X \times Y$, $U_x \subset X$, and $V_Y \subset Y$, $U_X \times V_Y \subset X \times Y$, so $X \times Y \in \mathcal{T}$. Let $\{W_i\}_{i \in I}$ be open sets. For all $(x,y) \in \bigcup_{i \in I} W_i$, there exist W_i and W_j such that $x \in W_i$ and $y \in W_j$. Pick the corresponding neighborhood in each set, then $U_x \times V_y \subset W_i \cup W_j \subset \bigcup_{i \in I} W_i$. For all $(x,y) \in \bigcap_{i=1}^n W_i$, $(x,y) \in W_i$. For each W_i , we have a corresponding pair $(U_{i,x},V_{i,y})$. Now consider $U = \bigcap_{i=1}^n U_{i,x} \in \mathcal{T}_X$ and $V = \bigcap_{i=1}^n V_{i,y} \in \mathcal{T}_Y$, we have $U \times V \subset W_i$, so $U \times V \subset \bigcap_{i=1}^n W_i$. The standard topology on \mathbb{R}^n is the product topology of n copies of the standard topology on \mathbb{R} .

Theorem 1.1 (inverse function theorem). Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a mapping. If F_{*p} is injective at some $p \in \mathbb{R}^n$, then there exists a neighborhood U of p such that $F|_U: U \to V$, where V is open, is a diffeomorphism.

We will discuss more on the proof of this theorem and its application later.

2 Frame Fields

Definition 2.1. Let $p, q \in \mathbb{R}^3$. The Euclidean distance from p to q is the number d(p,q) = ||p-q||.

Definition 2.2. Let $v_p, w_p \in T_p(\mathbb{R}^3)$ be tangent vectors. The dot product of v_p and w_p is defined to be $v_p \cdot w_p = v \cdot w$.

Equivalently, the norm on every tangent space $T_p(\mathbb{R}^3)$ is the composition of the canonical isomorphism $T_p(\mathbb{R}^3) \to \mathbb{R}^3$ with the norm on \mathbb{R}^3 .

Definition 2.3. A set of three pairwise orthogonal unit vectors tangent to \mathbb{R}^3 at p is called a *frame* at p.

By the definition, $\{e_1, e_2, e_3\}$ is a frame at p if and only if $e_i \in T_p(\mathbb{R}^3)$ and $e_i \cdot e_j = \delta_{i,j}$.

Proposition. Let $\{e_1, e_2, e_3\}$ be a frame at $p \in \mathbb{R}^3$. If $v_p \in T_p(\mathbb{R}^3)$, then $v_p = \sum (v \cdot e_i)e_i$.

Proof. Let $c_1, c_2, c_3 \in \mathbb{R}$ such that $\sum c_i e_i = 0$. For all $1 \leq j \leq 3$, $0 = (\sum c_i e_i) \cdot e_j = \sum c_i (e_i \cdot e_j) = c_j$, so $\{e_1, e_2, e_3\}$ is a basis of $T_p(\mathbb{R}^3)$. Rewrite $v_p = \sum a_i e_i$. For all $1 \leq j \leq 3$, $v_p \cdot e_j = \sum a_i e_i \cdot e_j = a_j$. Hence $v_p = \sum (v_p \cdot e_i) e_i$. \square

For any frame $\{e_1, e_2, e_3\}$ at p and $a, b \in T_p(\mathbb{R}^3)$, if $a = \sum a_i e_i$ and $b = \sum b_i e_i$, we always have $a \cdot b = \sum a_i b_i$.

Definition 2.4. Let $\{e_1, e_2, e_3\}$ be a frame at $p \in \mathbb{R}^3$ with $e_i = (a_{i,1}, a_{i,2}, a_{i,3})_p$, then the attitude matrix of the frame is defined to be the matrix

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}.$$

Consider the transpose A^{\top} of A, for each column of $A^{\top}A$, we have $e_ie_i=1$, so $A^{\top}A=I$ and A is orthogonal.

Definition 2.5. Let $v_p = (v_1, v_2, v_3)_p$, $w_p = (w_1, w_2, w_3)_p \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$. The cross product of v_p and w_p , denoted $v_p \times w_p$, is the tangent vector

$$v_p \times w_p = \begin{vmatrix} U_1(p) & U_2(p) & U_3(p) \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

Example. Let $v_p = (1, 0, -1)_p$ and let $w_p = (2, 2, -7)_p$, then $v_p \times w_p = 2U_1(p) + 5U_2(p) + 2U_3(p) = (2, 5, 2)_p$.

It is trivial that \times is linear and $v_p \times w_p = -w_p \times v_p$.

Proposition. Let $v_p, w_p \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$. Then $v_p \times w_p$ is orthogonal to both v_p and w_p . Moreover, $\|v_p \times w_p\|^2 = (v_p \cdot v_p)(w_p \cdot w_p) - (v_p \cdot w_p)^2$.

Proof. Let $v_p = (v_1, v_2, v_3)_p$, $w_p = (w_1, w_2, w_3)_p$. Then $(v_p \times w_p) \cdot v_p = v_1(v_2w_3 - v_2w_2) + v_2(v_3w_1 - v_1w_3) + v_3(v_1w_2 - v_2w_1) = 0$. Similarly, $(v_p \times w_p) \cdot w_p = 0$. We have $(v_p \cdot v_p)(w_p \cdot w_p) - (v_p \cdot w_p)^2 = (\sum v_i^2)(\sum w_i^2) - (\sum v_iw_i)^2 = \sum v_i^2w_j^2 - \sum v_i^2w_i^2 - 2\sum_{i < j}v_iw_iv_j - w_j = (v_2w_3 - v_2w_2)^2 + (v_3w_1 - v_1w_3)^2 + (v_1w_2 - v_2w_1)^2 = ||v_p \times w_p||^2$. \square

Definition 2.6. Let $\alpha: I \to \mathbb{R}^3$ be a curve. The speed of α at t is the tangent vector $\|\alpha'(t)\|$. The arc length of α from t = a to t = b is defined to be $\int_a^b \|\alpha'(t)\| dt$.

Proposition. Let $\alpha: I \to \mathbb{R}^3$ be a regular curve, then there exists a reparametrization β of α such that $\|\beta'\| = 1$.

Proof. Fix some $\alpha \in \mathbb{R}$ and consider the function $s : \mathbb{R} \to \mathbb{R}$ defined by $s(t) = \int_a^t \|\alpha'(x)\| dx$. Since α is regular, $\|\alpha'(x)\| > 0$ for all x. By the inverse function theorem, s(t) has an inverse t(s). Define $\beta(s) = \alpha(t(s))$, then $\|\beta'\| = \|(\mathrm{d}t/\mathrm{d}s)(s)\alpha'(t(s))\| = (\mathrm{d}t/\mathrm{d}s)(s)\|\alpha'(t(s))\| = (\mathrm{d}t/\mathrm{d}s)(s)\cdot(\mathrm{d}s/\mathrm{d}t)(t(s)) = 1$.

Such reparametrization β of α is called the arc-length reparametrization of α .

Example. Consider the curve $\alpha: I \to \mathbb{R}^3$ defined by $\alpha(t) = (a\cos t, a\sin t, bt)$ for some $a, b \in \mathbb{R}$. We have $\|\alpha'\| = \sqrt{a^2\sin^2 t + a^2\sin^2 t + b^2} = c$, where $c^2 = a^2 + b^2$. Now measure the arc length from t = 0, then $s(t) = \int_0^c c du = ct$, so t(s) = s/c, the arc-length reparametrization is therefore $\beta(s) = \alpha(t(s)) = (a\cos(s/c), a\sin(s/c), bs/c)$.

Definition 2.7. A vector field Y on a curve $\alpha: I \to \mathbb{R}^3$ is a function $Y: I \to \bigsqcup_{p \in \operatorname{ran}(\alpha)} T_p(\mathbb{R}^3)$ such that for all $t \in I$, $Y(t) \in T_{\alpha(t)}(\mathbb{R}^3)$.

Fix $t \in I$, then we can rewrite Y(t) as $\sum y_i(t)U_i(\alpha(t))$. The functions y_1, y_2 , and y_3 are called the Euclidean coordinate functions on Y.

We define the addition, scalar multiplication, dot multiplication, and cross product on vector fields pointwisely. For a vector $Y = \sum y_i U_i$ on α , the derivative of Y is defined to be $Y' = \sum (\mathrm{d}y_i/\mathrm{d}t)U_i$. Let Y and Z be vector fields on a curve α . Fix t, rewrite $Y = (y_1, y_2, y_3)_{\alpha(t)}$ and $Z = (z_1, z_2, z_3)_{\alpha(t)}$. Consider Y as a function $Y_t : I \to T_{\alpha(t)}(\mathbb{R}^3) \approx \mathbb{R}^3$, then for $a, b \in \mathbb{R}$ and a differentiable $f : \mathbb{R} \to \mathbb{R}$, (aY + bZ)' = aY' + bZ' and $(fY)' = (\mathrm{d}f/\mathrm{d}t)Y + Y'f$. We also have $(Y \cdot Z)' = (\sum y_i z_i)' = \sum y_i z_i' + \sum y_i' z_i = Y \cdot Z' + Y' \cdot Z$.

Definition 2.8. Let Y be a vector field on a curve $\alpha: I \to \mathbb{R}^3$. We say Y is *parallel* if for all $t \in I$, Y(t) have the same vector part.

Proposition. A curve α is constant if and only if $\alpha' = 0$. A nonconstant curve α is a straight line if and only if $\alpha'' = 0$. A vector field Y on α is parallel if and only if Y' = 0.

Proof. Rewrite $\alpha: I \to \mathbb{R}^3$ as $\alpha = (\alpha_i)$. (i) The velocity $\alpha' = (\alpha'_i)$, then $\alpha' = 0$ if and only if $\alpha'_i = 0$. Hence $\alpha' = 0$ if and only if α_i is a constant function. (ii) We have $\alpha'' = (\alpha''_i)$, so $\alpha'' = 0$ if and only if $\alpha_i = p_i t + q_i$ for some $p_i, q_i \in \mathbb{R}$. Hence $\alpha'' = 0$ if and only if $\alpha = pt + q$, where $p = (p_i)$ and $q = (q_1)$. (iii) Fix t and let $Y = (y_i)_{\alpha(t)}$, then $Y' = \sum y'_i U_i = 0$, which means y_i are constant functions. Hence Y is parallel if and only if Y' = 0.

Definition 2.9. Let $\beta: I \to \mathbb{R}^3$ be a curve. Then we call $T = \beta'$ the unit tangent field of β . The function $\kappa(s) = ||T'(s)||$ is called the *curvature* of β .

Remark. We shall only consider the cases where $\kappa \neq 0$.

Definition 2.10. Let $\beta: I \to \mathbb{R}^3$ be a curve. Then we call $N = T'/\kappa$ the principal normal vector field of β . The vector field $B = T \times N$ on β is called the binormal vector field of β .

Proposition. Let β be a curve in \mathbb{R}^3 with $\kappa > 0$ and $\|\beta'\| = 1$. Then the three vector fields T, N, and B on β are unit vector fields that are mutually orthogonal at each point.

Proof. Since $T = \beta'$, $||T|| = \sqrt{T \cdot T} = 1$, then $(T \cdot T)' = T \cdot T' + T' \cdot T = 2T' \cdot T = 0$, so $T \cdot T' = 0$. For all $s \in \text{dom}(\beta)$, $||N|| = ||T'(s)||/\kappa(s) = ||T'(s)||/||T'(s)|| = 1$. Since $B = T \times N$, B is orthogonal to T and N. Moreover, $||B||^2 = ||T|| ||N|| - (T \cdot N)^2 = 1 - 0 = 1$.

Definition 2.11. Let β be a curve in \mathbb{R}^3 with $\kappa > 0$ and $\|\beta'\| = 1$. Then (T, N, B) is called the *Frenet frame field* of β .

Now we claim that B' can be written as a scalar multiple of N. Consider $B' = B' \cdot NN + B' \cdot TT + B' \cdot BB$. Differentiate $B \cdot T$, $B' \cdot T + T' \cdot B = 0$, then $B' \cdot T = -B \cdot T' = -B \cdot \kappa N = 0$. Similarly, $B \cdot B' = 0$, so $B' = B' \cdot NN$.

Definition 2.12. Let β be a curve in \mathbb{R}^3 with $\kappa > 0$ and $\|\beta'\| = 1$. Then the *torsion* of β is a function $\tau : I \to \mathbb{R}$ such that $B' = -\tau N$.

Theorem 2.1 (Frenet formulas). Let $\beta: I \to \mathbb{R}^3$ be a curve with $\kappa > 0$ and $\|\beta'\| = 1$. Then $T' = \kappa N$, $N' = -\kappa T + \tau B$, and $B' = -\tau N$.

Proof. Rewrite $N' = N' \cdot TT + N' \cdot NN + N' \cdot BB$. Differentiate $T \cdot N$, we have $T' \cdot N + N' \cdot T = 0$, so $N' \cdot T = -T' \cdot N = -(\kappa N) \cdot N = -\kappa$. Similarly, $N' \cdot B = -B' \cdot N = -(-\tau N) \cdot N = \tau$. Hence $N' = -\kappa T + \tau B$.

Example. Consider the curve $\beta: \mathbb{R} \to \mathbb{R}^3$ defined by $\beta(s) = (a\cos(s/c), a\sin(s/c), bs/c)$, where a > 0 and $c = \sqrt{a^2 + b^2}$. It is trivial that $\|\beta'\| = 1$. Here $T(s) = \beta'(s) = (-a\sin(s/c)/c, a\cos(s/c)/c, b/c)$, then $T'(s) = (-a\cos(s/c)/c^2, -a\sin(s/c)/c^2, 0)$, so $\kappa(s) = \|T'(s)\| = a/c^2 > 0$. We also have $N(s) = (-\cos(s/c), -\sin(s/c), 0)$. Now $\beta(s) = T(s) \times N(s) = (b\sin(s/c)/c, -b\cos(s/c)/c, a/c)$, then $B'(s) = (b/\cos(s/c)/c^2, b\sin(s/c)/c^2, 0)$, so $\tau(s) = -B'(s)/N(s) = (-b/\cos(s/c)/c^2, -b\sin(s/c)/c^2, 0)/(-\cos(s/c), -\sin(s/c), 0) = b/c^2$.

Definition 2.13. Let $p, q \in \mathbb{R}^3$ with $q \neq 0$. The plane through p orthogonal to q is the set $\{r \in \mathbb{R}^3 \mid (r-p) \cdot q = 0\}$. A curve $\beta: I \to \mathbb{R}^3$ is said to be a plane curve if $\operatorname{ran}(\beta) \subset P$, where P is a plane in \mathbb{R}^3 .

Proposition. Let $\beta: I \to \mathbb{R}^3$ be a curve with $\|\beta'\| = 1$ and $\kappa > 0$. Then β is a plane curve if and only if $\tau = 0$.

Proof. (\Rightarrow) Let β be a plane curve, then there exists $p,q \in \mathbb{R}^3$ such that for all $s \in I$, $(\beta(s)-p) \cdot q=0$. Consider q as a constant vector field, so $((\beta-p) \cdot q)' = (\beta-p)' \cdot q + q' \cdot (\beta-p) = \beta' \cdot q - p' \cdot q = \beta' \cdot q + q' \cdot \beta = \beta' \cdot q = \beta'' \cdot q = 0$. Rewrite $q = q \cdot TT + q \cdot NN + q \cdot BB$, then $q = q \cdot BB$. We have $B = B \cdot BB = (B \cdot B)/(q \cdot B)q = (B \cdot B)/(q \cdot B)\|q\|$. Since $\|B\| = 1$, $B = \pm q/\|q\|$, which is a point, then B' = 0, hence $\tau = 0$. (\Leftarrow) Let $\tau = 0$, then B' = 0, so B is constant. Define $f: I \to \mathbb{R}$ by $f(s) = (\beta(s) - \beta(0)) \cdot B$, then $df/ds = T(s) \cdot 0 = 0$ and $f(0) = 0 \cdot B = 0$, so f(s) = 0 for all s. Hence $\operatorname{ran}(\beta) \subset \{r \mid (r - \beta(0)) \cdot B = 0\}$.

Proposition. Let β be a curve in \mathbb{R}^3 with $\kappa > 0$, $\kappa' = 0$, $\|\beta'\| = 1$, and $\tau = 0$. Then β lies in a circle of radius $1/\kappa$.

Proof. Define $\gamma: I \to \mathbb{R}^3$ by $\gamma(s) = \beta(s) + N(s)/\kappa$, then $\gamma' = T + N'/\kappa$. By the Frenet formulas, $\gamma' = T + (-\kappa T + \tau B)/\kappa = T - T = 0$. Fix $t \in I$. For any $s \in I$, the distance $\|\beta(s) - (\beta(t) + N(t)/\kappa)\| = \|\beta(s) - (\beta(s) + N(s)/\kappa)\| = \|N(s)\|/\kappa = 1/\kappa$.

We have shown the properties of curves with unit speed. Now given a curve $\alpha: I \to \mathbb{R}^3$ with $\|\alpha'\| \neq 1$, let $\overline{\alpha}$ be the arc-length reparametrization of α , so $\|\overline{\alpha}'\| = 1$. Let \overline{T} , \overline{k} , \overline{N} , \overline{B} , and $\overline{\tau}$ be the corresponding functions of $\overline{\alpha}$. Define the T, λ , N, B, and τ of α to be those of $\overline{\alpha}$. We denote the speed of α by v.

Theorem 2.2 (Frenet formulas). Let α be a regular curve on \mathbb{R}^3 with $\kappa > 0$, then $T' = \kappa v N$, $N' = -\kappa v T + \tau v B$, and $B' = -\tau v N$.

Proof. Apply the Frenet formulas on $\bar{\alpha}$, then $\bar{T}' = \bar{\kappa} \bar{N}$. Since $T' = \bar{T}' \mathrm{d}s/\mathrm{d}t = \bar{T}'v$, $T' = \bar{\kappa}v\bar{N}$. Similarly, $N' = -\kappa vT + \tau vB$ and $B' = -\tau vN$.

Proposition. Let $\alpha: I \to \mathbb{R}^3$ be regular. Then $\alpha' = vT$ and $\alpha'' = (\mathrm{d}v/\mathrm{d}t)T + \kappa v^2N$.

Proof. We have $\alpha' = \overline{\alpha}' ds/dt = v\overline{T} = vT$, then $\alpha'' = (dv/dt)T + T'v = (dv/dt)T + (\kappa vN)\kappa = (dv/dt)T + v^2\kappa N$. \square

Proposition. Let $\alpha: I \to \mathbb{R}^3$ be a regular curve. Then $T = \alpha'/\|\alpha'\|$, $N = B \times T$, $B = \alpha' \times \alpha''/\|\alpha' \times \alpha''\|$, $\kappa = \|\alpha' \times \alpha''\|/\|\alpha'\|^3$, and $\tau = (\alpha' \times \alpha'') \cdot \alpha'''/\|\alpha' \times \alpha''\|^2$.

Proof. Since $\|\alpha'\| = v$, $\alpha'/\|\alpha'\| = vT/v = T$. We have $\alpha' \times \alpha'' = vT \times ((\mathrm{d}v/\mathrm{d}t)T + \kappa v^2N) = vT \times (\mathrm{d}v/\mathrm{d}t)T + vT \times \kappa v^2N$, since $T \times T = 0$, $\alpha' \times \alpha'' = \kappa v^3T \times N = \kappa v^3B$. The norm $\|\alpha' \times \alpha''\| = \|\kappa v^3\| = \kappa v^3$, hence $B = \kappa v^3B/(\kappa v^3) = \alpha' \times \alpha''/\|\alpha' \times \alpha''\|$. Consider a lemma: for $w_p, v_p, u_p \in T_p(\mathbb{R}^3)$, $(u \times v) \times w = (u \cdot w)v - (v \cdot w)u$. (lemma) Rewrite $u = \sum u_i, v = \sum v_i$, and $w = \sum w_i$, then $(u \cdot w)v - (v \cdot w)u = (\sum u_i w_j) \sum v_i - (\sum v_i w_j) \sum u_i = u \times v \times w$. By the lemma, $B \times T = T \times N \times T = (T \cdot T)N - (N \cdot T)T = N - 0 = N$. We have shown $\|\alpha' \times \alpha''\| = \kappa v^3$, so $\|\alpha' \times \alpha''\|/\|\alpha'\|^3 = \kappa v^3/v^3 = \kappa$. Differentiate α'' , then $\alpha''' = (\mathrm{d}v/\mathrm{d}t)T' + (\mathrm{d}^2v/\mathrm{d}t^2)T + 2\kappa(\mathrm{d}v/\mathrm{d}t)vN + N'\kappa v^2$. Since $B \cdot T = B \cdot N = 0$, $\kappa v^3 B \cdot \alpha''' = \kappa v^3 B \cdot ((\mathrm{d}v/\mathrm{d}t)T' + N'\kappa v^2)$, by the Frenet formulas, T' term becomes 0 and N' term becomes $\tau v B$. Now $(\alpha' \times \alpha'') \cdot \alpha''' = \kappa^2 v^6 \tau B \cdot B = \kappa^2 v^6 \tau$. Hence $(\alpha' \times \alpha'') \cdot \alpha''' / \|\alpha' \times \alpha''\|^2 = \kappa^2 v^6 \tau / (\kappa^2 v^6) = \tau$. \square

Example. Consider the curve $\alpha: \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (3t - t^3, 3t^2, 3t + t^3)$, then $\alpha' = (3 - 3t^2, 6t, 3 + 3t^2)$, $\alpha'' = (-6t, 6, 6t)$, and $\alpha''' = (-6, 0, 6)$. We have $\alpha' \cdot \alpha' = 18(1 + t^2)^2$, so $\|\alpha'\| = 3\sqrt{2}(1 + t^2)$ and $T = (1 - t^2, 2t, 1 + t^2)/(\sqrt{2}(1 + t^2))$. The cross product $\alpha' \times \alpha'' = (18t^2 - 18, -36t, 18t^2 + 18) = 18(t^2 - 1, -2t, t^2 + 1)$ and its norm $\|\alpha' \times \alpha''\| = 18\sqrt{2}(1 + t^2)$, hence $B = (t^2 - 1, -2t, t^2 + 1)/(\sqrt{2}(1 + t^2))$. Now $N = B \times T = (-2t, 1 - t^2, 0)/(1 + t^2)$. By our computation, $\kappa = \|\alpha' \times \alpha''\|/\|\alpha'\|^3 = 1/(3(1 + t^2)^2)$ and $\tau = (\alpha' \times \alpha'') \cdot \alpha'''/\|\alpha' \times \alpha''\|^2 = 18(t^2 - 1, -2t, t^2 + 1) \cdot 6(-1, 0, 1)/(18\sqrt{2}(1 + t^2))^2 = 216/(648(1 + t^2)^2) = 1/(3(1 + t^2)^2)$.

Definition 2.14. Let $\alpha: I \to \mathbb{R}^3$ be regular. We say α is a cylindrical helix if there exists $u \in \mathbb{R}^3$ such that for all $t \in I$, $T(t) \cdot u = \cos \theta$, where θ is a constant angle.

If α has $\|\alpha'\| \neq 1$, take the arc-length reparametrization $\overline{\alpha}$ of α , by our definition, (T, N, B), κ , and τ are all invariant under this reparametrization, so it suffices to consider a curve with unit speed.

Proposition. A regular curve α on \mathbb{R}^3 with $\kappa > 0$ is a cylindrical helix if and only if τ/κ is constant.

Proof. Let α be a curve with $\|\alpha'\| = 1$. (\Rightarrow) Let α be a cylindrical helix with unit vector u and constant angle θ , then $T \cdot u = \cos \theta$, so $0 = (T \cdot u)' = T' \cdot u = \kappa N \cdot u$. Since $\kappa > 0$, $u \cdot N = 0$, then $u = (u \cdot T)T + (u \cdot B)B = \cos \theta T + (u \cdot B)B$. Since $\|u\| = 1$, $u \cdot B = \sin \theta$. Now $0 = u' = \cos \theta \kappa N - \sin \theta \tau N$, so $\cos \theta \kappa = \sin \theta \tau$, which implies $\tau/\kappa = \cot \theta$. (\Leftarrow) Let τ/κ be a constant and let $\cot \theta = \tau/\kappa$ for some angle θ . Consider $U = \cos \theta T + \sin \theta B$, here $U' = \cos \theta T' + \sin \theta B' = (\cos \theta \kappa - \sin \theta \tau)N$, since $\tau/\kappa = \cot \theta$, U' = 0. For all $s_1, s_2 \in I$, $U(s_1) = U(s_2)$, so pick U(0) = u. Now $T \cdot u = T \cdot U = T \cdot (\cos \theta T + \sin \theta B) = \cos \theta$.

Let $\tau=0$, $\kappa>0$, and $\kappa'=0$ for some α with $\|\alpha'\|=1$, then α lies in a circle of radius $1/\kappa$ as we proved before. Consider a circle α in \mathbb{R}^3 , define $R:I\to\mathbb{R}^3$ by $R(s)=\alpha(s)-c$, where c is the center. We have $(R\cdot R)'=2R'\cdot R=2T\cdot R=0$. Since $T\cdot N=0$, R=nN. We have $T=R'=n'N+N'n=n'N+n(-\kappa T+\tau B)$, then $(-\kappa n-1)T+\tau nB+n'N=0$, so $-\kappa n-1=\tau n=n'=0$. Since $n=-1/\kappa$, $n\neq 0$, this implies $\tau=0$. Moreover, since n'=0, n is a constant, then κ is a constant.

Definition 2.15. Let $u \in \mathbb{R}^3$ be a point with ||u|| = 1 and let V be a plane orthogonal to u. The projection map of $p \in \mathbb{R}^3$ onto V is a function $\operatorname{proj}: \mathbb{R}^3 \to V$ defined by $\operatorname{proj}(p) = p - (p \cdot u)u$.

Let α be a curve and let u be a unit vector. Let β be the curve $\beta = \operatorname{proj} \circ \alpha$. Then $\beta' = \alpha' - (\alpha' \cdot u)u$, $\beta'' = \alpha'' - (\alpha'' \cdot u)u$, and $\beta''' = \alpha''' - (\alpha''' \cdot u)u$. We have $\beta' \cdot u = \alpha' \cdot u - (\alpha' \cdot u)(u \cdot u) = 0$, similarly, $\beta'' \cdot u = 0 = \beta''' \cdot u$, then $(\beta' \times \beta'') \cdot u = (\beta' \cdot u)\beta'' - (\beta'' \cdot u)\beta' = 0$, it suffices to rewrite $\beta' \times \beta'' = nu$ for some $n \in \mathbb{R}$. Now $(\beta' \times \beta'') \cdot \beta''' = nu \cdot \beta''' = 0$. Hence every curve under a projection map has $\tau = 0$.

Definition 2.16. Let $\alpha: I \to \mathbb{R}^3$ be a cylindrical helix with axis direction given by the unit vector u. We call α a circular helix if for every plane orthogonal to u, the projection of α onto that plane is a circle.

Let α be a circular helix, then $\tau/\kappa=0$ and there exists a unit vector u such that $T\cdot u=\cos\theta$. Consider the projection $\beta=\operatorname{proj}\circ\alpha$ with $\beta=\alpha-(\alpha\cdot u)u$. We have $\beta'=T-(T\cdot u)u=T-\cos\theta u$ and $\beta''=T'-(T'\cdot u)u=\kappa N-(\kappa N\cdot u)u=\kappa N$, then $\beta'\times\beta''=(T-\cos\theta u)\times\kappa N=\kappa(T-\cos\theta u)\times N=\kappa(B-\cos\theta(u\times N))$. Since $u=\cos\theta T+\sin\theta B, u\times N=\cos\theta (T\times N)+\sin\theta (B\times N)=\cos\theta B-\sin\theta T$, then $\|\beta'\times\beta''\|=\kappa\sqrt{\sin^4\theta+\cos^2\theta\sin^2\theta}=\kappa\sin\theta\sqrt{\sin^2\theta+\cos^2\theta}=\kappa\sin\theta$. Similarly, $\|\beta'\|=\sin\theta$. The curvature $\kappa_\beta=\kappa/\sin^2\theta$, and κ_β is a constant if and only if κ is a constant. Hence $\kappa,\tau>0$ and $\kappa'=0=\tau'$ if and only if α is a circular helix.

Definition 2.17. Let W be a vector field on \mathbb{R}^3 and let $v \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$. Then the covariant derivative of W with respect to v is the tangent vector $\nabla_v W = W(p+tv)'(0)$ at p.

Proposition. Let $W = \sum w_i U_i$ be a vector field on \mathbb{R}^3 and let $v \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$. Then $\nabla_v W = \sum v[w_i]U_i(p)$.

Proof. We have $W(p+tv) = \sum w_i(p+tv)U_i$. Since $(d/dt)w_i(p+tv)$ at t=0 is v[f], $\nabla_v W = \sum v[w_i]U_i(p)$.

Proposition. Let $v, w \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$. Let Y and Z be vector fields on \mathbb{R}^3 . For any $a, b \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$, the following properties hold.

- 1. $\nabla_{av+bw}Y = a\nabla_vY + b\nabla_wY$.
- 2. $\nabla_v(aY + bZ) = a\nabla_v Y + b\nabla_v Z$.
- 3. $\nabla_v(fY) = v[f]Y(p) + f(p)\nabla_v Y$.
- 4. $v[Y \cdot Z] = \nabla_v Y \cdot Z(p) + Y(p) \cdot \nabla_v Z$.

Proof. Rewrite $Y = \sum y_i U_i$ and $Z = \sum z_i U_i$. (i) We have $\nabla_{av+bw} Y = \sum (av+bw)[y_i]U_i(p) = a \sum v[y_i]U_i + b \sum w[y_i]U_i = a \nabla_v Y + b \nabla_w Y$. (ii) Similarly, $\nabla_v (aY+bZ) = \sum v[ay_i+bz_i]U_i = a \sum v[y_i]U_i + b \sum v[z_i]U_i = a \nabla_v Y + b \nabla_v Z$. (iii) Similarly, $\nabla_v (fY) = \sum v[fy_i]U_i = \sum (v[f]y_i+fv[y_i])U_i = v[f]Y(p)+f(p)\nabla_v Y$. (iv) We have $Y \cdot Z = \sum y_i z_i$, then $v[Y \cdot Z] = \sum v[y_i]z_i U_i + \sum v[z_i]y_i U_i = \nabla_v Y \cdot Z + Y \cdot \nabla_v Z$.

Let V and $W = \sum w_i$ be vector fields. We define $\nabla_V W$ at some $p \in \mathbb{R}^3$ to be $\nabla_{V(p)} W$, hence $\nabla_V W = \sum V[w_i]U_i$.

Proposition. Let V, W, Y, and Z be vector fields on \mathbb{R}^3 . For all functions $f, g : \mathbb{R} \to \mathbb{R}$ and $a, b \in \mathbb{R}$. Then the following properties hold.

- 1. $\nabla_{fV+gW}Y = f\nabla_V Y + g\nabla_W Y$.
- 2. $\nabla_V(aY + bZ) = a\nabla_V Y + b\nabla_V Z$.
- 3. $\nabla_V(fY) = V[f]Y + f\nabla_V Y$.
- 4. $V[Y \cdot Z] = \nabla_V Y \cdot Z + Y \cdot \nabla_V Z$.

Proof. Since $\nabla_V W(p) = \nabla_{V(p)} W$, those properties are direct consequences of the previous proposition.

Definition 2.18. Let E_1 , E_2 , and E_3 be vector fields on \mathbb{R}^3 . We say $\{E_1, E_2, E_3\}$ is a frame field on \mathbb{R}^3 if $E_i \cdot E_j = \delta_{i,j}$. If $\{E_1, E_2, E_3\}$ is a frame field on \mathbb{R}^3 , then for all $p \in \mathbb{R}^3$, $\{E_1(p), E_2(p), E_3(p)\}$ is trivially a frame at p.

Example. Consider a cylindrical coordinate system with coordinates (r, θ, z) . Define $E_1 = \cos \theta U_1 + \sin \theta U_2$, $E_2 = -\sin \theta U_1 + \cos \theta U_2$, and $E_3 = U_3$. For any p, $E_1(p) \cdot E_2(p) = -\cos \theta \sin \theta + \sin \theta \cos \theta = 0$, $E_1(p) \cdot E_3(p) = 0 = E_2(p) \cdot E_3(p)$, $E_1(p) \cdot E_1(p) = \cos^2 \theta + \sin^2 \theta = E_2(p) \cdot E_2(p) = 1 = E_3(p) \cdot E_3(p) = 1$. Hence $\{E_1, E_2, E_3\}$ is a frame field on \mathbb{R}^3 , known as the cylindrical frame field.

Example. Consider a spherical coordinate system with coordinates (ρ, θ, φ) . Define $F_1 = \cos \varphi E_1 + \sin \varphi E_3$, $F_2 = E_2$, and $F_3 = -\sin \varphi E_1 + \cos \varphi E_3$, where $\{E_1, E_2, E_3\}$ is the cylindrical frame field. It is trivial that $F_1 \cdot F_1 = F_2 \cdot F_2 = F_3 \cdot F_3 = 1$ and $F_1 \cdot F_2 = 0 = F_2 \cdot F_3$. Now $F_1 \cdot F_3 = \cos \varphi E_1 \cdot (-\sin \varphi E_1 + \cos \varphi E_3) + \sin \varphi E_3 \cdot (-\sin \varphi E_1 + \cos \varphi E_3) = -\cos \varphi \sin \varphi + \sin \varphi \cos \varphi = 0$. Hence $\{F_1, F_2, F_3\}$ is a frame field on \mathbb{R}^3 , called the *spherical frame field*.

Proposition. Let $\{E_1, E_2, E_3\}$ be a frame field on \mathbb{R}^3 . If V is a vector field on \mathbb{R}^3 , then $V = \sum f_i E_i$, where $f_i = V \cdot E_i$. If $V = \sum f_i E_i$ and $W = g_i E_i$, then $V \cdot W = \sum f_i g_i$.

Proof. (i) For any point p, $\{E_1(p), E_2(p), E_3(p)\}$ is a frame at p, so $V(p) = \sum (V(p) \cdot E_i(p)) E_i(p)$. (ii) For any p, $\{E_1(p), E_2(p), E_3(p)\}$ is a frame at p, so $V \cdot W = \sum f_i g_i$ as we shown before.

Definition 2.19. Let V be a vector field on \mathbb{R}^3 and let $\{E_1, E_2, E_3\}$ be a frame field on \mathbb{R}^3 . The functions $f_i = V \cdot E_i$ are called the *coordinate functions* of V with respect to the frame field.

Definition 2.20. Let $\{E_1, E_2, E_3\}$ be a frame field. For any $v_p \in T_p(\mathbb{R}^3)$, $\nabla_v E_i = \sum \omega_{i,j} E_j(p)$, where $\omega_{i,j}(v) = \nabla_v E_i \cdot E_j(p)$. These $\omega_{i,j}$ are called the *connection forms* of the frame field.

Proposition. Each connected form is a 1-form and $\omega_{i,j} = -\omega_{j,i}$.

Proof. Let $\{E_1, E_2, E_3\}$ be a frame field on \mathbb{R}^3 , for any $v_p, w_p \in T_p(\mathbb{R}^3)$ and $a, b \in \mathbb{R}$, $\omega_{i,j}(av + bw) = \nabla_{av + bw} E_i \cdot E_j(p) = a\nabla_v E_i \cdot E_j(p) + b\nabla_w E_i \cdot E_j(p)$, so $\omega_{i,j}$ is a 1-form. Moreover, $0 = v[E_i \cdot E_j] = \nabla_v E_i \cdot E_j(p) + E_i(p) \cdot \nabla_v E_j = \omega_{i,j}(v) + \omega_{j,i}(v)$, hence $\omega_{i,j} = -\omega_{j,i}$.

Let i = j, then $\omega_{i,i} = -\omega_{i,i}$, so $\omega_{i,i} = 0$.

Proposition. Let $\omega_{i,j}$ be connection forms of a frame field $\{E_1, E_2, E_3\}$. For any vector field V on \mathbb{R}^3 , $\nabla_V E_i = \sum_j \omega_{i,j}(V) E_j$.

Proof. Fix the index i. For all $p \in \mathbb{R}^3$, $V(p) \in T_p(\mathbb{R}^3)$, then the equation is a direct consequence of the definition. \square

Let $\{E_1, E_2, E_3\}$ be a frame field, E_i can be rewriten by the natural frame field $E_i = a_{i,1}U_1 + a_{i,2}U_2 + a_{i,3}U_3$.

Proposition. Let A be the attitude matrix of the frame field $\{E_1, E_2, E_3\}$. Let $\omega = (\omega_{i,j})$ be a matrix of the connected forms. Then $\omega = dA^{\top}A$, where dA is the matrix $(da_{i,j})$.

Proof. Equivalently, we shall show $\omega_{i,j} = \sum_k (\mathrm{d}a_{i,k})a_{j,k}$. For all $v_p \in T_p(\mathbb{R}^3)$, $\nabla_v E_i = \sum_k v[a_{i,k}]U_i(p)$ and $E_j(p) = \sum_k a_{j,k}U_i(p)$, so $\omega_{i,j} = \nabla_v E_i \cdot E_j(p) = \sum_k (\mathrm{d}a_{i,k})a_{j,k}$.

Definition 2.21. Let $\{E_1, E_2, E_3\}$ be a frame field. The *dual 1-forms* of the frame field $\{E_1, E_2, E_3\}$ are defined to be $\theta_i(v) = v \cdot E_i(p)$ for all $v_p \in T_p(\mathbb{R}^3)$.

For some $v_p, w_p \in T_p(\mathbb{R}^3)$, $\theta_i(av + bw) = (av + bw) \cdot E_i(p) = av \cdot E_i(p) + bw \cdot E_i(p)$, hence θ_i is a 1-form.

Proposition. Let θ_1 , θ_2 , and θ_3 be dual 1-forms of a frame field $\{E_1, E_2, E_3\}$. For any 1-form φ on \mathbb{R}^3 , $\varphi = \sum \varphi(E_i)\theta_i$.

Proof. Let V be any vector field on \mathbb{R}^3 , then $\varphi(V) = \sum$

- 3 Euclidean Geometry
- 4 Calculus on a Surface
- 5 Shape Operators
- 6 Geometry of Surfaces in \mathbb{R}^3
- 7 Riemannian Geometry
- 8 Global Structure of Surfaces

Alphabetical Index

1-form, 3 Euclidean coordinate functions, point of application, 1 2, 4, 5, 7 principal normal vector field, 8 arc length, 7 Euclidean distance, 6 product topology, 6 arc-length reparametrization, 7 exterior derivative, 4 projection map, 10 attitude matrix, 7 frame, 6 regular, 3, 6 binormal vector field, 8 frame field, 11 reparametrization, 3 Frenet frame field, 8 circular helix, 10 speed, 7 connection forms, 11 image, 5 spherical frame field, 11 coordinate functions, 11 straight line, 2 Jacobian matrix, 5 covariant derivative, 10 cross product, 7 tangent map, 5 mapping, 5 curvature, 8 tangent space, 1 curve, 2 natural coordinate functions, 1 tangent vector, 1 cylindrical frame field, 11 natural frame field, 1 topological space, 6 cylindrical helix, 9 neighborhood, 6 topology, 6 torsion, 8 diffeomorphism, 6 open, 1, 6 differentiable, 1-3, 5 origin, 1 unit tangent field, 8 differential, 3p-form, 4 directional derivative, 2 vector field, 1, 7 parallel, 1, 8 vector part, 1 dot product, 6 plane, 8 dual 1-forms, 11 velocity vector, 3 plane curve, 8 Euclidean 3-space, 1 point, 1 wedge product, 4