

60/

WHAT IS CLAIMED IS:

1	1. An isolated nucleic acid sequence encoding a microtubule motor
2	protein, wherein the protein has the following properties:
3	(i) the protein's activity includes plus end-directed microtubule motor activity; and
4	(ii) the protein has a tail domain that has greater than 60% amino acid sequence
5	identity to a TL- γ tail domain as measured using a sequence comparison algorithm.
1	2. An isolated nucleic acid sequence of claim 1, wherein the protein
2	specifically binds to polyclonal antibodies to TL- γ .
1	3. An isolated nucleic acid sequence of claim, 1, wherein the nucleic
2	acid encodes TL-γ.
1	4. An isolated nucleic acid sequence of claim 1, wherein the nucleic
2	acid encodes SEQ ID NO:1.
1	5. An isolated nucleic acid sequence of claim 1, wherein the nucleic
2	acid has a nucleotide sequence of SEQ ID NO:2.
1	6. An isolated nucleic acid sequence of claim 1, wherein the sequence
2	comparison algorithm is PILEUP.
1	7. An isolated nucleic acid sequence of claim 1, wherein the nucleic
2	acid is amplified by primers that selectively hybridize under stringent hybridization
3	conditions to the same sequence as the primer set:
4	5' ATGTCGGGCGGTGGAAATATC 3' (SEQ ID NO:3)
5	5' GAATTCCTGCTTCGCTGTTTTCA 3' (SEQ ID NO:4)
6	
1	8. An isolated nucleic acid sequence of claim 1, wherein the nucleic
2	acid has identity to a Tl- γ derived from a hyphal fungi.

2 acid sequence of SEQ ID NO:1.

1	9. An isolated nucleic acid sequence of claim 8, wherein the nucleic
2	acid has identity to a TL- γ derived from Thermomyces lanuginosus.
1	10. An isolated nucleic acid sequence of claim 1, wherein the nucleic
2	acid selectively hybridizes under stringent hybridization conditions to SEQ ID NO:2.
1	11. An expression vector comprising a nucleic acid encoding a
2	microtubule motor protein, wherein the protein has the following properties:
3	(i) the protein's activity includes plus end-directed microtubule motor activity; and
4	(ii) the protein has a tail domain that has greater than 60% amino acid sequence
5	identity to a TL- γ tail domain, as measured using a sequence comparison algorithm.
1	12. A expression vector of claim 11, wherein the protein specifically
	binds to polyclonal antibodies to TL-γ.
1	13. A host cell transfected with the vector of claim 11.
1	14. An isolated microtubule motor protein, wherein the protein has the
2	following properties:
3	(i) the protein's activity includes plus end-directed microtubule motor activity; and
4	(ii) the protein has a tail domain that has greater than 60% amino acid sequence
5	identity to a TL- γ core tail domain as measured using a sequence comparison algorithm.
1	15. An isolated protein of claim-14, wherein the protein specifically
2	binds to polyclonal antibodies to TL- γ .
	16 A industry of alains 14 subspice the protein in TV or
1	16. An isolated protein of claim 14, wherein the protein is $TL-\gamma$.
1	17 An included massin of claim 14 automic the acceptable to a continu
1	17. An isolated protein of claim 14, wherein the protein has an amino

- An isolated protein of claim 14, wherein the protein has identity to 1 18. 2 a TL- γ derived from a hyphal fungi.
- An isolated protein of claim 18, wherein the protein has identity to 1 19. a TL- γ derived from *Thermomyces lanuginosus*. 2
- An isolated protein of claim 14, wherein the protein specifically 1 20. 2 binds to polyclonal antibodies generated against a tail domain of TL-γ.
- 21. An isolated protein of claim 20, wherein the protein comprises an 1 2 amino acid sequence of a TL- γ motor domain of SEQ ID NO:1.
- An isolated protein of claim 14, wherein the sequence comparison 1 22. 2 algorithm is PILEUP.
- 1 23. An antibody which specifically binds to $TL-\gamma$.
- 1 24. An antibody of claim 23, wherein the antibody specifically binds to 2 a tail domain of TL- γ .
- 1 25. An antibody of claim 23, wherein the antibody specifically binds to 2 a motor domain of TL- γ .
- An antibody of claim 23, wherein the antibody specifically binds to 1 26. 2 a stalk domain of TL- γ .
- 1 27. An antibody of claim 23, wherein the antibody is a humanized 2
- 1 28. An antibody of claim 23, wherein the antibody is a chimeric
- 2 antibody.

antibody.

1	29. A method for diagnosing hyphal fungal infections by detecting the
2	presence of TL- γ in a sample, the method comprising the steps of:
3	(i) obtaining a biological sample;
4	(ii) contacting the biological sample with a TL- γ specific reagent that selectively
5	associates with TL- γ ; and,
6	(iii) detecting the level of TL- γ specific reagent that selectively associates with the
7	sample.
1	30. A method of claim 29, wherein the TL- γ specific reagent is selected
2	from the group consisting of: TL- γ specific antibodies, TL- γ specific oligonucleotide
3	primers, and TL-γ nucleic acid probes.
1	31. A method of claim 29, wherein the sample is from a human.
1	32. A method of claim 29, wherein the sample is from an animal.
1	33. A method of claim 29, wherein the TL- γ specific reagent is part of
2	a gene or protein array.
1	34. A method for screening for modulators of $TL-\gamma$, the method
2	comprising the steps of:
3	(i) providing biologically active TL- γ , wherein the TL- γ has the following
4	properties
5	(a) the protein's activity includes plus end-directed microtubule motor
6	activity; and
7	(b) the protein has a tail domain that has greater than 60% amino acid
8	sequence identity to a TL- γ tail domain as measured using a sequence comparison
9	algorithm;
10/	(ii) contacting biologically active TL-γ with a candidate agent in a test and control
l 1	concentration; and
	,

- (iii) assaying for the level of TL-γ activity, wherein the TL-γ activity plus end-1 directed microtubule motor activity, binding activity or ATPase activity, and wherein a 2 change in activity between the test and control concentration indicates a modulator. 3 A method of claim 34, wherein the protein specifically binds to 1 35. polyclonal antibodies to TL- γ . A method of claim 34, further comprising the step of isolating 36. 1 2 biologically active TL- γ from a cell sample. A method of claim 34, wherein the biologically active $TL-\gamma$ is 1 37. 2 recombinant. A/method of claim 34, wherein the biologically active TL- γ has 38. 1 identity to a TL- γ derived from Thermonlyces lanuginosus. 2 112200 method of claim 34, wherein the candidate agent is selected from 39. 1 the group consisting of antibodies, proteins, oligonucleotides and small molecules. 2 A method of claim 34, wherein the screening occurs in a multi-well 1 40. 2 plate as part of a high-throughput screen. 1 A method of claim 34, wherein the biologically active $TL-\gamma$ 41. comprises a motor domain having identity to the motor domain of Thermomyces 2 3 lanuginosus A method of claim 34, wherein the biologically active TL- γ 1 42. 2 comprises an amino acid sequence of a TL- γ motor domain of SEQ ID NO:1. A kit for screening for modulators of TL- γ , the kit comprising; 43. 1
 - (i) a container holding biologically active $TL-\gamma$; and

1	(ii) instructions for assaying for $PL-\gamma$ activity, wherein the $TL-\gamma$ activity is
2	plus end-directed microtubule motor activity, bindig activity, or ATPase activity.
1	44. A kit of claim 43, wherein the biologically active TL- γ has identity
2	to a TL-γ derived from Thermorpyces lanuginosus.
	Il road
1	45. A kit of claim 43, wherein the biologically active TL- γ comprises a
2	motor domain that has identity to the motor domain of Thermomyces lanuginosus TL-γ.
1	46. A kit of claim 43, wherein the biologically active TL- γ is
2	recombinant.
1	47. In a computer system, a method of screening for mutations of
2	microtubule motor protein genes, the method comprising the steps of:
3	(i) entering at least 30 nucleotides of a first nucleic acid sequence encoding a plus
4	end-directed microtubule motor protein having a nucleotide sequence of SEQ ID NO:2
5	and conservatively modified versions thereof;
6	(ii) comparing the first nucleic acid sequence with a second nucleic acid sequence
7	having substantial identity to the first nucleic acid sequence; and
8	(iii) identifying nucleotide differences between the first and second nucleic acid
9	sequences.
1	48. In a computer system, a method for identifying a three-dimensional
2	structure of microtubule motor proteins, the method comprising the steps of:
3	(i) entering an amino acid sequence of at least 10 amino acids of a plus
4	end-directed microtubule motor protein or a nucleotide sequence of at least 30 nucleotides
5	of a gene encoding the motor protein, the protein having an amino acid sequence of SEQ
6	ID NO:1 and conservatively modified versions thereof; and
7	(ii) generating a three-dimensional structure of the protein encoded by the
8	amino acid sequence.

	Pol V
1	49. An isolated nucleic acid comprising a sequence which has greater
2	than 60% sequence identity with SEQ ID NO:2.
1	50. An isolated nucleic acid comprising a sequence which has greater
2	than 70% sequence identity with nucleotides 1-1071 of SEQ ID NO:2.
1	51. An isolated nucleic acid comprising a sequence which has greater
2	than 60% sequence identity with nucleotides 1327-1803 of SEQ ID NO:2.
1	52. An isolated nucleic acid comprising a sequence which has greater
2	than 60% sequence identity with nucleotides 1804-2352 of SEQ ID NO:2.
1	53. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of SEQ ID NO:2.
1	54. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of nucleotides 1-1071 of SEQ ID NO:2.
1	55. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of nucleotides 1327-1803 of SEQ ID NO:2.
1	56. An isolated nucleic acid sequence which hybridizes under stringent
2	conditions to a complement of nucleotides 1804-2352 of SEQ ID NO:2.
1	57. An method for identifying sequence changes among homologs
2	comprising: sequencing the nucleic acid of any one of claims 49-53 and identifying
3	sequence changes compared to the corresponding sequence of SEQ ID NO:2.
1	58. A method for identifying agents which binds to TL- γ or portions
2	thereof, wherein a portion refers to the stalk, motor, or tail domain of TL- γ , comprising:
3	adding a candidate agent to $TL-\gamma$ or a portion thereof and identifying any agents which
4	bind thereto.