Data of the 07 Bus Test System

Wesley Peres^{a,*}

^a Department of Electrical Engineering, Federal University of São João del-Rei - UFSJ, São João del-Rei, Brazil

Abstract

This report presents the data from the Brazilian test system. It consists of seven buses and five generators, with generator 7 representing the Southeastern Brazil system (excluded from receiving stabilizers).

The test system consists of seven buses and five generators, with generator 7 representing the Southeastern Brazil system (excluded from receiving stabilizers). Figure 1 brings the single-line diagram of this system, as referenced in [1].

Figure 1: South-Southeastern Brazil equivalent system

^{*}Corresponding author
Email address: wesley.peres@ufsj.edu.br, wesleyperes.br@gmail.com (Wesley Peres)

URL: https://lkt.bio/profwperes (Wesley Peres)

Tables 1-3 present data [1, 2]. The base power is set at 100 MVA. In Table 3, the reactances are expressed in pu, time constants are listed in seconds, inertia constants in seconds, and gains are also provided in pu. The analysis incorporates a static excitation system. A third model represents generators, and the loads follow a constant impedance model in dynamic studies [3].

Table 1: Bus Data						
Node	Type	V (pu)	Gen (MW)	Load (MW)	Load (MVAr)	Shunt (MVAr)
01	PV	1.030	1658	2405	-467	179.2
02	PV	1.030	1332	692.3	-184	149.1
03	PV	1.029	1540	688.2	-235	114.2
04	PV	1.039	6500	62.6	24.3	36.8
05	PQ	_	_	845.8	-9.2	33
06	PQ	_	_	-4.9	79.8	2142
07	$V\theta$	0.966	_	2884	-196	42

From	То	Resistance (%)	Reactance (%)
01	03	0.0300	0.3800
02	03	0.0500	0.7600
04	06	0.0290	0.7340
05	01	0.1900	2.4500
05	02	0.1500	2.2500
06	05	0.0000	0.3900
06	07	0.0400	0.5700

- For nonlinear time-domain simulations, the following limits have been considered [4]:
 - Excitation systems: $E_{FD \min} = -5.0$ pu and $E_{FD \max} = 6.0$ pu.
 - MB-PSS: $V_{L\, {
 m max}} = -V_{L\, {
 m min}} = 0.075 {
 m pu}, \ V_{I\, {
 m max}} = -V_{I\, {
 m min}} = 0.60 {
 m pu},$ $V_{H\, {
 m max}} = -V_{H\, {
 m min}} = 0.60 {
 m pu},$ and $V_{ST\, {
 m max}} = -V_{ST\, {
 m min}} = 0.15 {
 m pu}.$

Table 3: Generator Data								
Gen	X_d	X_q	$X_{q}^{'}$	H	D	$T_{d0}^{'}$	K_A	T_A
01	0.044737	0.036842	0.0157890	85.50	0	5.0	30	0.05
02	0.060714	0.050000	0.0214290	63.00	0	5.0	30	0.05
03	0.045267	0.035494	0.0154320	87.48	0	5.0	30	0.05
04	0.013569	0.010252	0.0045228	336.29	0	7.6	30	0.05
07	0.016667	0.011667	0.0050000	300.00	0	8.0	30	0.05

Table 4: Controller parameter boundaries [4]

Parameter	\min	max
F_L (Hz)	0.01	0.1
F_I (Hz)	0.10	1.0
F_H (Hz)	1.00	10.0
K_L (pu)	0.01	30
K_I (pu)	0.01	40
K_H (pu)	0.01	120
K_G (pu)	0.01	20

15 References

20

- [1] C. Canizares, T. Fernandes, E. Geraldi, L. Gerin-Lajoie, M. Gibbard, I. Hiskens Tf Past Chair, J. Kersulis, R. Kuiava, L. Lima, F. Demarco, N. Martins, B. C. Pal, A. Piardi, R. Ramos Tf Chair, J. Dos Santos, D. Silva, A. K. Singh, B. Tamimi, D. Vowles, Benchmark Models for the Analysis and Control of Small-Signal Oscillatory Dynamics in Power Systems, IEEE Transactions on Power Systems 32 (1). doi:10.1109/TPWRS.2016.2561263.
- [2] G. E. Boukarim, S. Wang, J. H. Chow, G. N. Tarante, N. Martins, A comparison of classical, robust, and decentralized control designs for multiple power system stabilizers, IEEE Transactions on Power Systems 15 (4). doi:10.1109/59.898103.

- [3] P. W. Sauer, M. A. Pai, J. H. Chow, Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e, Wiley, Champaign, Illinois, 2017. doi:10.1002/9781119355755.
- URL https://onlinelibrary.wiley.com/doi/book/10.1002/
- 9781119355755
 - [4] IEEE Power Engineering Society, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies (IEEE Std 421.5-2005), Energy Development and Power Generating Committee.