iARPP $H = 100$	Emis. Reg.	Global	Tropics	NHML	NHHL	SHML	SHHL
SO_2	NHML US East Asia India Europe	$\begin{array}{c} -3.6\text{e-}04 \pm 1.5\text{e-}04 \\ -4.1\text{e-}04 \pm 1.9\text{e-}04 \\ -2.0\text{e-}04 \pm 1.1\text{e-}04 \\ -1.2\text{e-}04 \pm 8.0\text{e-}05 \\ -4.6\text{e-}04 \pm 2.1\text{e-}04 \end{array}$	$\begin{array}{c} -3.7\mathrm{e}\text{-}04 \pm 1.6\mathrm{e}\text{-}04 \\ -4.1\mathrm{e}\text{-}04 \pm 1.9\mathrm{e}\text{-}04 \\ -1.3\mathrm{e}\text{-}04 \pm 7.1\mathrm{e}\text{-}05 \\ -8.2\mathrm{e}\text{-}05 \pm 5.3\mathrm{e}\text{-}05 \\ -5.3\mathrm{e}\text{-}04 \pm 2.4\mathrm{e}\text{-}04 \end{array}$	$\begin{array}{c} -3.7\text{e-}04 \pm 1.6\text{e-}04 \\ -4.7\text{e-}04 \pm 2.2\text{e-}04 \\ -4.0\text{e-}04 \pm 2.1\text{e-}04 \\ -2.4\text{e-}04 \pm 1.6\text{e-}04 \\ -5.2\text{e-}04 \pm 2.4\text{e-}04 \end{array}$	$-7.4e-04 \pm 3.1e-04$ $-1.1e-03 \pm 5.0e-04$ $-1.1e-03 \pm 6.0e-04$ $-6.9e-04 \pm 4.5e-04$ $-8.6e-04 \pm 3.9e-04$	$\begin{array}{c} -1.6\text{e-}04 \pm 6.7\text{e-}05 \\ -1.0\text{e-}04 \pm 4.8\text{e-}05 \\ 1.7\text{e-}05 \pm 8.8\text{e-}06 \\ 1.0\text{e-}05 \pm 6.5\text{e-}06 \\ -7.6\text{e-}05 \pm 3.5\text{e-}05 \end{array}$	$\begin{array}{c} -3.5\mathrm{e}\text{-}04 \pm 1.5\mathrm{e}\text{-}04 \\ -4.0\mathrm{e}\text{-}04 \pm 1.9\mathrm{e}\text{-}04 \\ 6.5\mathrm{e}\text{-}05 \pm 3.4\mathrm{e}\text{-}05 \\ 3.9\mathrm{e}\text{-}05 \pm 2.6\mathrm{e}\text{-}05 \\ -4.3\mathrm{e}\text{-}04 \pm 2.0\mathrm{e}\text{-}04 \end{array}$
BC	Global Asia	$4.0e-03 \pm 1.2e-03$ $7.2e-03 \pm 2.4e-03$	$5.9e-03 \pm 1.7e-03$ $6.1e-03 \pm 2.0e-03$	$1.5e-02 \pm 4.4e-03$ $7.3e-03 \pm 2.4e-03$	$-1.0e-02 \pm 3.1e-03$ $-8.1e-04 \pm 2.7e-04$	-3.3e-03 ± 1.0e-03 1.3e-02 ± 4.3e-03	$-6.8e-03 \pm 2.0e-03$ $5.9e-03 \pm 2.0e-03$
CH_4	Global	$1.6e-05 \pm 2.2e-05$	$1.5 \text{e-}05 \pm 2.0 \text{e-}05$	$1.6e-05 \pm 2.2e-05$	$3.0e-05 \pm 4.1e-05$	$8.9e-06 \pm 1.2e-05$	$2.8e-05 \pm 3.8e-05$
CO_2	Global	3.7e-07 ± 5.6e-07	3.0e-07 ± 4.5e-07	$3.2\text{e-}07 \pm 4.8\text{e-}07$	8.2e-07 ± 1.2e-06	2.8e-07 ± 4.2e-07	8.5e-07 ± 1.3e-06