## Tipos de recorridos de los arboles

Un árbol se puede recorrer por niveles: se empieza por la raíz y se continua con cada uno de los demás niveles hasta llegar a la base. Este método es valido para cualquier tipo de árbol. Para arboles binarios existen además tres maneras básicas de recorrerlos: PRE-ORDEN, IN-ORDEN Y POST-ORDEN. A continuación se describe la manera como se deben efectuar estos recorridos; la forma como se especifica se basa en la naturaleza recursiva de los árboles.

#### Recorrido en PRE-ORDEN:

Se denomina también Jerárquico

Se visita la raíz, se visita el subárbol izquierdo y por ultimo se visita el subárbol derecho.

#### Recorrido en IN-ORDEN:

Se denomina también Simétrico

Se visita el subárbol izquierdo, luego se visita la raíz y por ultimo se visita el subárbol derecho.

#### Recorrido en POST-ORDEN

Se visita el subárbol izquierdo, luego se visita el subárbol derecho y por ultimo se visita la raíz.



Figura 8.7 Árbol binario.

| Recor | rido e  | n pre_or | den  |   |   |   |   |   |   |   |
|-------|---------|----------|------|---|---|---|---|---|---|---|
| A     | В       | С        | D    | F | G | Н | I | K | М | N |
| Recor | rido er | n in_ord | en   |   |   |   |   |   |   |   |
| С     | В       | D        | А    | Н | G | I | F | М | К | N |
| Recor | rido en | post_o   | rden |   |   |   |   |   |   |   |
| C     | D       | В        | Н    | I | G | М | N | К | F | A |

#### Método para recorrer un árbol en PRE-ORDEN

Para el desarrollo de este método de recorrido del árbol se supone que el método hace parte de la clase *árbol binario* y, por tanto, se tiene como base la estructura de esta clase presentada en la figura 8.6; es decir, se tiene un árbol al cual se accede por la raíz y además cada nodo tiene la estructura predefinida donde se encuentra la clave y la información.

Este algoritmo se puede desarrollar de forma recursiva o a través de procesos iterativos, como se muestra a continuación. Para desarrollar este algoritmo es necesario tener una pila auxiliar de apuntadores para guardar en ésta las direcciones de los nodos que se visitan; para ello se usará la clase pila encadenada con sus operaciones básicas: insertar, eliminar y consultar.

#### Condiciones iniciales

- Para este caso, la pila auxiliar PILA debe estar desocupada, en los nodos se almacenarán apuntadores que tienen direcciones de los nodos del árbol.
- El apuntador de recorrido P debe indicar la raíz del árbol.

PRECONDICIÓN: Este método pertenece a la clase ARBOL\_BINARIO, en ella se define la estructura de los nodos. Se debe importar la clase PILA\_ENCADENADA para almacenar temporalmente las direcciones de los nodos.

postcondición: El algoritmo lista en pre-orden, los campos de clave e información de los nodos del árbol.

```
INCLUIR PILA_ENCADENADA
 ARBOL_BINARIO.RECORRE_PREORDEN()
      PILA_ENCADENADA: PILA (Nodo: TANODO)
      P = RAIZ
     MIENTRAS((P < > \Lambda) \lor (PILA.ESTADO < > VACIA))
            SI(P < > \Lambda)
                     ESCRIBIR (P->Clave, P->Informacion)
                     PILA. INSERTAR(P)
                     P = P->IENLACE
             SI_NO
                     P = PILA.ELIMINAR()
                     P = P->DENLACE
             FIN_SI
     FIN_MIENTRAS
     RETORNAR(Exito)
FIN RECORRE_PREORDEN
```

Figura 8.8 Método para recorrer un árbol en pre\_orden.

### Método para recorrer un árbol en IN-ORDEN

Como en el caso del recorrido en pre-orden, se supone que este método hace parte de la clase *árbol binario* presentada en la figura 8.6; es decir, que las características de los nodos y el sistema de acceso están perfectamente predefinidos

Este algoritmo se puede desarrollar de forma recursiva o a través de procesos iterativos, como se muestra a continuación. Este algoritmo requiere una pila auxiliar PILA de apuntadores para almacenar en ésta la dirección de los nodos que se van a visitar a medida que se van extrayendo de la pila.

## Condiciones iniciales

rpol pinario

N

A

jue el

ase la árbol finida

roce-

ritmo a las rade-

El indicador de recorrido P debe indicar la raíz del árbol.

PRECONDICIÓN: Este método hace parte de la clase ARBOL\_BINARIO, en ella se define la estructura de los nodos y se hace uso de la clase PILA\_ENCADENADA para almacenar temporalmente las direcciones de los nodos.

# Bibliografía:

Libro: Estructura de Datos y Algoritmos

Autor: Alberto Jaime Sisa