STAT 231 Online Spring 2020

Linxuntian

July 2020

Contents

1	Week 7	2
	1.1 Test of Hypothesis Part I	2
	1.2 Test of Hypothesis Part II	2
2	Week 8	3
3	Week 9	4
	3.1 Gaussian Response Models Part I	4
	3.2 Gaussian Response Models Part II	
4	Week 10	4
	4.1 Gaussian Response Models Part III	4
	4.2 Comparing Means of Two Populations	
5	Week 11	6
	5.1 Gaussian Response Models Part IV	6
	5.2 Multinomial Models and Goodness of Fit	
6	Week 12	7
	6.1 Two-Way Tables and Tests of Hypothesis	7
	6.2. Cause and Effect	7

1.1 Test of Hypothesis Part I

Definition

A test statistic or discrepancy measure is a function of the data D = g(Y) that is constructed to measure the degree of "agreement" between the data Y and the null hypothesis H_0 .

Summary (Steps of a Statistical Test of Hypothesis)

- 1. Assume that the null hypothesis H_0 will be tested using data Y
- 2. Adopt a test statistic or discrepancy measure D(Y) for which large value of D are less consistent with H_0 . Let d = D(y) be the corresponding observed value of D
- 3. Calculate

$$p$$
-value = $P(D \ge d; assuming H_0 is true)$
= $P(D \ge d; H_0)$

4. Draw a conclusion based on the p-value

1.2 Test of Hypothesis Part II

Summary (Hypothesis Test for Binomial Model)

- 1. Test H_0 : $\theta = \theta_0$ using $Y \sim Bi(n, \theta)$
- 2. Test statistic $D(Y) = |Y n\theta_0|$. Let $d = |y n\theta_0|$ be the observed value of D
- 3. Calculate

$$p$$
-value = $P(D \ge d; \theta = \theta_0)$
= $P(|Y - n\theta_0| \ge d)$

where $Y \sim \text{Bi}(n, \theta)$

If n is large, we can approximate

$$p$$
-value $\approx P\left(|Z| \geqslant \frac{d}{\sqrt{n\theta_0(1-\theta_0)}}\right)$ where $Z \sim N(0,1)$
= $2\left[1 - P\left(Z \leqslant \frac{d}{\sqrt{n\theta_0(1-\theta_0)}}\right)\right]$

4. Draw a conclusion

Summary (Hypothesis Test for Gaussian Model)

When the **variance** is unknown

1. 123

When the **mean** is unknown

Summary (Likelihood Ratio Test of Hypothesis)

- 1. To test H_0 : $\theta = \theta_0$
- 2. Likelihood ratio test statistic $\Lambda(\theta_0) = -2\log\left[\frac{L(\theta_0)}{L(\tilde{\theta})}\right]$, with the observed value $\lambda(\theta_0) = -2\log\left[\frac{L(\theta_0)}{L(\hat{\theta})}\right]$
- 3. Calculate

$$p$$
-value $\approx P(W \le \lambda(\theta_0))$ where $W \sim \chi^2(1)$
= $2[1 - P(Z \le \sqrt{\lambda(\theta_0)})]$ where $Z \sim G(0, 1)$

4. Draw a conclusion

3.1 Gaussian Response Models Part I

Confidence Interval for beta β

A 100p% Confidence Interval for β is given by

$$\hat{\beta} \pm a \frac{s_e}{\sqrt{S_{xx}}}$$

where
$$P(T \le a) = \frac{(1+p)}{2}$$
 and $T \sim t(n-2)$

3.2 Gaussian Response Models Part II

Summary (Hypothesis testing of No Relationship for beta β)

- 1. Test H_0 : $\beta = 0$
- 2. Test statistic $D = \frac{|\tilde{\beta} 0|}{S_e/\sqrt{S_{xx}}}$, with observed value $d = \frac{|\hat{\beta} 0|}{s_e/\sqrt{S_{xx}}}$
- 3. Calculate

$$p\text{-value} = P\left(|T| \ge \frac{|\hat{\beta} - 0|}{s_e/\sqrt{S_{xx}}}\right)$$
$$= 2\left[1 - P\left(T \le \frac{|\hat{\beta} - 0|}{s_e/\sqrt{S_{xx}}}\right)\right]$$

where
$$T \sim t(n-2)$$

4. Draw Conclusion

Confidence Interval for Mean $\mu(x) = \alpha + \beta x$

A 100p% Confidence Interval for $\mu(x) = \alpha + \beta x$ is given by

$$\hat{\mu}(x) \pm as_e \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}$$
$$= \hat{\alpha} + \hat{\beta}x \pm as_e \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}$$

where
$$P(T \le a) = \frac{(1+p)}{2}$$
 and $T \sim t(n-2)$

4 Week 10

4.1 Gaussian Response Models Part III

Prediction Interval For Future Response Y

A 100p% Prediction Interval for a future response Y is given by

$$\hat{\mu}(x) \pm as_e \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}$$

$$= \hat{\alpha} + \hat{\beta}x \pm as_e \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}$$

where
$$P(T \le a) = \frac{(1+p)}{2}$$
 and $T \sim t(n-2)$

Definition

For the simple linear regression model, let

$$\hat{\mu}_i = \hat{\alpha} + \hat{\beta}x_i$$

and let

$$\hat{r}_i = y_i - \hat{\mu}_i \quad i = 1, 2, \dots, n$$

The \hat{r}_i 's are called **residuals** since \hat{r}_i represents what is "left" after the model has been "fitted" to the data

Definition

Define the **standardized residuals** as

$$\hat{r}_i = \frac{\hat{r}_i}{s_e} = \frac{y_i - \hat{\mu}_i}{s_e} \quad i = 1, 2, \dots, n$$

4.2 Comparing Means of Two Populations

Definition

Pooled estimate of variance is defined as

$$s_p^2 = \frac{1}{n_1 + n_2 - 2} \left[\sum_{i=1}^{n_1} (y_{1i} - \bar{y}_1)^2 + \sum_{i=1}^{n_2} (y_{2i} - \bar{y}_2)^2 \right]$$
$$= \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

C.I. for Difference in Means $\mu_1 - \mu_2$

A 100p% C.I. for $\mu_1 - \mu_2$ is given by

$$\bar{y}_1 - \bar{y}_2 \pm a s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

where
$$P(T \le a) = \frac{(1+p)}{2}$$
 and $T \sim t(n_1 + n_2 - 2)$

Summary (Hypothesis testing of Difference in Means $\mu_1 - \mu_2$)

- 1. Test H_0 : $\mu_1 \mu_2 = 0$
- 2. Test statistic $D = \frac{|\overline{Y_1} \overline{Y_2} 0|}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ and observed value $d = \frac{|\overline{y}_1 \overline{y}_2 0|}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$
- 3. Calculate

$$p$$
-value = $P(|T| \ge d)$
= $2[1 - P(T \le d)]$

where $T \sim t(n_1 + n_2 - 2)$

4. Draw a conclusion

C.I. for σ

A 100p% Confidence Interval for σ is given by

5.1 Gaussian Response Models Part IV

Summary (Hypothesis testing of Difference in Means $\mu = \mu_1 - \mu_2$ within-pair)

- 1. Test H₀: $\mu = 0$ using $Y_i = Y_{1i} Y_{2i} \sim G(\mu_1 \mu_2, \sigma), i = 1, 2, ..., n$, independently
- 2. Test statistic $D = \frac{|\overline{Y} 0|}{S/\sqrt{n}}$, with observed value $d = \frac{|\overline{y} 0|}{s/\sqrt{n}}$
- 3. Calculate

$$p$$
-value = $2[1 - P(T \leq d)]$

where $T \sim t(n-1)$

4. Draw a conclusion

5.2 Multinomial Models and Goodness of Fit

Summary (Hypothesis testing of θ)

- 1. Test H_0 : $\theta = \theta_0 = \left(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}\right)$ using $f(y_1, y_2, \dots, y_k; \theta_1, \theta_2, \dots, \theta_k)$
- 2. Likelihood ratio test statistic $\Lambda = 2 \sum_{j=1}^{k} Y_i \log \left(\frac{Y_j}{E_j} \right)$ and observed value $\lambda = 2 \sum_{j=1}^{k} y_i \log \left(\frac{y_j}{e_j} \right)$
- 3. Calculate

$$p$$
-value = $P(\Lambda \ge \lambda; H_0) \approx P(W \ge \lambda)$

where
$$W \sim \chi^2(k-1-p)$$

4. Draw a conclusion

6.1 Two-Way Tables and Tests of Hypothesis

Definition

An example of Two-way table...

Let θ_{ij} be the probability a randomly selected individual is combined type (A_i, B_j) and note that $\sum_{i=1}^{a} \sum_{j=1}^{b} \theta_{ij} = 1$. The $a \times b$ frequencies $(Y_{11}, Y_{12}, \dots, Y_{ab})$ follow a Multinomial distribution with k = ab classes.

Summary (Hypothesis testing of Dependence of A and B class)

1. Test H_0 : $\theta_{ij} = \alpha_i \beta_j$

Note that the expected frequencies under the hypothesis H_0 are given by $e_{ij} = \frac{r_i c_j}{n}$

- 2. Likelihood ratio statistic $\Lambda = 2\sum_{i=1}^{a}\sum_{j=1}^{b}Y_{ij}\log\left(\frac{Y_{ij}}{E_{ij}}\right)$, with observed value $\lambda = 2\sum_{i=1}^{a}\sum_{j=1}^{b}y_{ij}\log\left(\frac{y_{ij}}{e_{ij}}\right)$
- 3. Calculate

$$p$$
-value $\approx P(W \ge \lambda)$

where
$$W \sim \chi^2((a-1) \times (b-1))$$

Note:

(a) If
$$((a-1) \times (b-1)) = 1$$
, then

$$p$$
-value = $2[1 - P(Z \le \sqrt{\lambda})]$, where $Z \sim G(0, 1)$

(b) If
$$((a-1) \times (b-1)) = 2$$
, then

$$p$$
-value = $P(W \ge \lambda) = e^{-\lambda/2}$, where $W \sim \chi^2(2) = Exponential(2)$

4. Draw a conclusion

6.2 Cause and Effect

Definition

Let be y a response variate and let be x an explanatory variate associated with units in a population or process. Then, if all other factors that affect are held constant, let us change x (or observe different values of x) and see if y changes. If it does, we say that x has a **causal effect** on y.

Definition

x has a **causal effect** on Y if, when all other factors that affect are held constant, a change in x (or observing different values of x) induces a change in a property of the distribution of Y.

Reasons two variates could be related include the following:

- 1. The explanatory variate is the direct cause of the response variate
- 2. The response variate is causing a change in the explanatory variate
- 3. The explanatory variate is a contributing but not sole cause of the response variate

- 4. Confounding variates may exist
- 5. Both variates may result from a common cause
- 6. Both variates are changing with time
- 7. The association may be due to coincidence