3. Krappi og vindingur Stærðfræðigreining IIB, STÆ205G

12. janúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Einingarsnertivigur

Skilgreining 3.1

Látum $\mathcal C$ vera feril í plani eða rúmi. Látum $\mathbf r$ vera stikun á $\mathcal C$ og gerum ráð fyrir að $\mathbf r$ sé þjáll stikaferill (þ.e.a.s. $\mathbf r$ er samfellt diffranlegur stikaferill og $\mathbf r'(t) \neq \mathbf 0$ fyrir öll t). Einingarsnertivigurinn $\mathbf T$ við ferilinn $\mathcal C$ í punktinum $\mathbf r(t)$ er skilgreindur með formúlunni

$$\mathsf{T} = rac{\mathsf{r}'(t)}{|\mathsf{r}'(t)|} = rac{\mathsf{v}(t)}{|\mathsf{v}(t)|}.$$

Krappi

Skilgreining 3.2

Látum $\mathcal C$ vera feril í plani eða rúmi og $\mathbf r$ stikun á $\mathcal C$ með bogalengd. (Þegar fjallað er um stikanir með bogalengd er venja að tákna stikann með s.) Lengd hraðavigurs er alltaf 1 og því er $\mathbf T(s) = \mathbf v(s)$. Krappi (e. curvature) ferilsins $\mathcal C$ í punktinum $\mathbf r(s)$ er skilgreindur sem talan

$$\kappa(s) = \left| \frac{d\mathsf{T}}{ds} \right|.$$

Krappageisli (e. radius of curvature) í punktinum $\mathbf{r}(s)$ er skilgreindur sem

$$\rho(s) = \frac{1}{\kappa(s)}.$$

Meginbverill

Skilgreining 3.3

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd. *Meginþverill* (e. unit principal normal) í punkti $\mathbf{r}(s)$ er skilgreindur sem vigurinn

$$N(s) = \frac{\mathsf{T}'(s)}{|\mathsf{T}'(s)|} = \frac{1}{\kappa(s)}\mathsf{T}'(s).$$

Umræða 3.4

Táknum með θ hornið sem **T** myndar við grunnvigurinn **i**. Þá er $\kappa = \frac{d\theta}{ds}$.

Hjúfurplan

Skilgreining 3.5

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd. Hjúfurplanið (e. osculating plane) við ferilinn í punkti $\mathbf{r}(s)$ er planið sem spannað er af vigrunum $\mathbf{T}(s)$ og $\mathbf{N}(s)$ og liggur um punktinn $\mathbf{r}(s)$.

Hjúfurhringur (e. osculating circle) við ferilinn í punkti $\mathbf{r}(s)$ er hringur sem liggur í hjúfurplaninu, fer í gegnum punktinn $\mathbf{r}(s)$, hefur geisla $\rho(s)$ og hefur miðju í punktinum $\mathbf{r}(s) + \rho(s)\mathbf{N}(s)$.

Tvíþverill

Skilgreining 3.6

Látum $\mathcal C$ vera feril í plani eða rúmi og $\mathbf r$ stikun á $\mathcal C$ með bogalengd. Vigurinn

$$\mathsf{B}(s)=\mathsf{T}(s)\times\mathsf{N}(s)$$

kallas tvipverill (e. binormal) við ferilinn í r(s).

 $\{T(s), N(s), B(s)\}$ er þverstaðlaður grunnur og kallast **Frenet** ramminn.

Vindingur

Setning og skilgreining 3.7

Látum $\mathcal C$ vera feril í plani eða rúmi og $\mathbf r$ stikun á $\mathcal C$ með bogalengd. Vigurinn $\mathbf B'(s)$ er samsíða vigrinum $\mathbf N(s)$, þ.e.a.s. $\mathbf B'(s)$ er margfeldi af $\mathbf N(s)$. Talan $\tau(s)$ þannig að

$$\mathsf{B}'(s) = -\tau(s)\mathsf{N}(s)$$

kallast *vindingur* ferilsins í punktinum $\mathbf{r}(s)$.

Frenet-Serret jöfnurnar

Jöfnur 3.8

Látum $\mathcal C$ vera feril í plani eða rúmi og $\mathbf r$ stikun á $\mathcal C$ með bogalengd. Þá gildir

$$\mathbf{T}'(s) = \kappa \mathbf{N}$$
 $\mathbf{N}'(s) = -\kappa \mathbf{T} + \tau \mathbf{B}$
 $\mathbf{B}'(s) = -\tau \mathbf{N}$.

Setning 3.9

Látum $\mathcal C$ vera feril í plani eða rúmi. Gerum ráð fyrir að $\mathbf r$ sé þjáll stikaferill sem stikar $\mathcal C$. Ritum $\mathbf v=\mathbf r'(t)$ og $\mathbf a=\mathbf r''(t)$. Þá gildir í punktinum $\mathbf r(t)$ að

$$T = \frac{v}{|v|}, \qquad B = \frac{v \times a}{|v \times a|}, \qquad N = B \times T,$$

einnig er

$$\kappa = rac{|\mathbf{v} imes \mathbf{a}|}{|\mathbf{v}|^3}, \qquad \qquad au = rac{(\mathbf{v} imes \mathbf{a}) \cdot rac{d}{dt} \mathbf{a}}{|\mathbf{v} imes \mathbf{a}|^2}.$$