Chapitre 3: Limites de fonctions

I. <u>Limites d'une fonction et asymptotes</u>

1. Limites en l'infini pour une fonction f au voisinage de $+\infty$ ou $-\infty$.

Définition:

- $\overline{(1) \lim_{x \to \infty} f(x)} = L$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x et assez grand.
- (2) $\lim_{x \to +\infty} f(x) = +\infty$ si tout intervalle]A; $+\infty$ [contient toutes les valeurs f(x) dès que x est assez grand.
- (3) $\lim_{x \to +\infty} f(x) = -\infty$ si tout intervalle $]-\infty$; B[contient toutes les valeurs f(x) dès que x est assez grand.

On peut énoncer des définitions similaires pour les limites en $-\infty$, en remplaçant « dès que x est assez grand » par « dès que x est négatif et assez grand en valeur absolue »

Interprétation graphique:

Définition:

La droite d'équation y = L est une asymptote horizontale à la courbe représentative de f en $+\infty$ ou en $-\infty$ si $\lim_{x \to +\infty} f(x) = L$ ou $\lim_{x \to +\infty} f(x) = L$.

2. Limite infinie en un réel a

Définition:

- $1) \lim_{x \to a} f(x) = +\infty \text{ si tout intervalle]A ; } +\infty [\text{ contient toutes les valeurs } f(x) \text{ dés que } x \text{ est suffisamment proche de } a.$
- (2) $\lim_{x \to u} f(x) = -\infty$ si tout intervalle $]-\infty$; B[contient toutes les valeurs f(x) dés que x est suffisamment proche de a.

Interprétation graphique:

Définition:

La droite d'équation x = a est une asymptote verticale à la courbe représentative de f si $\lim_{x \to a} f(x) = +/-\infty$.

Remarque:

Certaines fonctions admettent des limites différentes en un réel A selon x > A ou x < A.

Considérons la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

- Si x < 0: Lorsque x tend vers 0, f(x) tend vers $-\infty$ et on note : $\lim_{x\to 0} f(x) = -\infty \text{ ou } \lim_{x\to 0^-} f(x) = -\infty.$
- Si x > 0: Lorsque x tend vers 0, f(x) tend vers $+\infty$ et on note : $\lim_{x\to 0} f(x) = +\infty \text{ ou } \lim_{x\to 0^+} f(x) = +\infty.$

On parle de limite à gauche de 0 et de limite à droite de 0.

Vidéo https://youtu.be/9nEJCL3s2eU

La fonction f est définie que $]-\infty;-4[\cup]-4;5[\cup]5;+\infty[$ Déterminer les limites suivantes :

$$\lim_{\substack{x \to -\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty}^{\infty} \lim_{\substack{x \to +\infty \\ x \to -4}} f(x) = \int_{-\infty$$

$$\lim_{x\to 5^+} f(x) = -\infty \qquad \lim_{x\to 5^-} f(x) = +\infty$$

Limites de fonctions de référence II.

III. Opérations sur les limites

 α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1) Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-∞	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+∞	-∞	+∞	∞	-∞
$\lim_{x \to \alpha} f(x) + g(x) =$	L + L'	+∞	-∞	+∞	-∞	F.I.

2) Limite d'un produit

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

Exemple:
$$\lim_{x\to-\infty}(x-5)(3+x^2)$$
?

 $\lim_{x\to-\infty}(x-5)(3+x^2)$?

 $\lim_{x\to-\infty}(3+x^2) = +\infty$
 $\lim_{x\to-\infty}(x-5)(3+x^2) = -\infty$

3) Limite d'un quotient

∞ désigne +∞ ou -∞

L	$L \neq 0$	L	∞	∞	0	
$L' \neq 0$	0	∞	L	00	0	
$\frac{L}{L'}$	∞ 🔭	0	00	F.I.	F.I.	
	L	$ \begin{array}{c c} L & L \neq 0 \\ L' \neq 0 & 0 \\ L \end{array} $	$ \begin{array}{c cccc} L & L \neq 0 & L \\ L' \neq 0 & 0 & \infty \\ L & & & & \\ \end{array} $	$ \begin{array}{c cccc} L & L \neq 0 & L & \infty \\ L' \neq 0 & 0 & \infty & L \\ L & & & & \\ \end{array} $	$ \begin{array}{c ccccc} L & L \neq 0 & L & \infty & \infty \\ L' \neq 0 & 0 & \infty & L & \infty \\ L & & & & & & & \\ \end{array} $	

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

Exemple:
$$\lim_{x\to 3^{+}} \frac{1-2x}{x-3}$$
?

Exemple:
$$\lim_{x \to 3^{+}} \frac{1-2x}{x-3}$$
?

 $\lim_{x \to 3^{+}} \frac{1-2x}{x-3}$?

Remarque:

Comme pour les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture :

"
$$\infty - \infty$$
", " $0 \times \infty$ ", " $\frac{\infty}{\infty}$ " et " $\frac{0}{0}$ ".

Méthode: Lever une forme indéterminée sur les fonctions polynômes et rationnelles

Calculer:

1)
$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1$$

$$e^{3} \left(-3 + \frac{2}{\infty} - \frac{6}{\infty^2} + \frac{7}{\infty^3}\right)$$

2)
$$\lim_{x \to +\infty} \frac{2x - 3x + 1}{6x^2 - 5}$$

= $\frac{2e^2(2 - \frac{5}{2e} + \frac{1}{2e^2})}{2e^2(6 - \frac{5}{2e}x)}$
= $\frac{2 - \frac{5}{2e} + \frac{1}{2e^2}}{2e^2}$

Calculer:
$$\infty - \infty$$

1) $\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1$

2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$

3) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$

3) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$

3) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{4x - 1}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to +\infty} \frac{3x^2 + 2}{x^2 - 2}$

2) $\lim_{x \to$

Méthode: Déterminer une asymptote

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{-2}{1-x}$

Démontrer que la courbe représentative de la fonction f admet des asymptotes dont on précisera les équations.

lim - 1-2 = 20

20-31 - 1-2 = 20

asymptote (vorticale)

y=0 (forizontal)

4) Limite d'une fonction composée

Certaines fonctions ne peuvent pas être écrites comme somme, produit ou quotient de fonctions usuelles. Une autre opération sur les fonctions existe: la composition.

Exemple: Soit f la fonction définie sur $]-\infty$; 1] par $f(x) = \sqrt{1-x}$.

Pour calculer f(x), on calcule d'abord 1-x, puis la racine carrée de ce réel. Ainsi, la fonction f est

l'enchainement de deux fonctions :

$$f: u(x) = 1 - x$$
 définie sur]— ∞ ; 1] suivie de $v: v(X) = \sqrt{X}$ définie sur [0; + ∞ [,

On a:
$$f(x) = \sqrt{1-x} = v(1-x) = v(u(x))$$
.

Définition: Soit ν une fonction définie sur un intervalle J et soit u une fonction définie sur un intervalle I tel que, pour tout réel x de I, $u(x) \in J$.

La fonction composée u suivie de v est la fonction f définie sur I par

$$f(x) = v(u(x)).$$

Pour calculer la limite en -∞ de la fonction de l'exemple précédent, on procède de la façon

suivante.

$$\lim_{x \to -\infty} (1-x) = +\infty \text{ et } \lim_{X \to +\infty} \sqrt{X} = +\infty$$

$$\lim_{x \to -\infty} f(x) = +\infty.$$

Exemple: On a: $f(x) = e^{-x^2+3}$; $\lim_{x \to +\infty} f(x) = ?$ $\lim_{x \to +\infty} -x^2 + 3 = -\infty$ $\lim_{x \to +\infty} -x^2 + 3 = 0$ $\lim_{x \to +\infty} e^{-x^2+3}$ $\lim_{x \to +\infty} f(x) = ?$ $\lim_{x \to +\infty} -x^2 + 3 = 0$ $\lim_{x \to +\infty} e^{-x^2+3}$ $\lim_{x \to +\infty} e^{-x^2+3}$ $\lim_{x \to +\infty} f(x) = ?$ $\lim_{x \to +\infty} e^{-x^2+3}$ $\lim_{x \to +\infty} e^{-x^2+3}$ $\lim_{x \to +\infty} f(x) = ?$ $\lim_{x \to +\infty} e^{-x^2+3}$ $\lim_{x \to +\infty} e^{-x^2+3}$

Démonstration au programme : Limite en -∞ de la fonction exponentielle

lim - 22 = 100 X = - 20 lim e = +00

Méthode: Lever une forme indéterminée sur les fonctions avec des radicaux

Calculer: $\lim_{x\to +\infty} \sqrt{x+1} - \sqrt{x}$

Levons l'indétermination à l'aide de l'expression conjuguée

III. Théorèmes de comparaison

1. Théorèmes de comparaison : Limite infinie

<u>Théorème 1</u>: Soit f et g deux fonctions définies sur un intervalle]A; $+\infty$ [, où A est un réel.

Si pour tout x de]A; $+\infty$ [, g(x) < f(x) et si $\lim_{x \to +\infty} g(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = +\infty$

Démonstration:

De $\lim_{x \to +\infty} g(x) = +\infty$, on déduit que tout intervalle de la forme $]\alpha$; $+\infty$ [où α est un réel, contient toutes les valeurs g(x) pour x assez grand, autrement dit, il existe un réel M tel que pour tout x > M, $g(x) > \alpha$.

Or, pour x > A, g(x) < f(x).

Donc, pour tout $x > \max(M, A)$, $f(x) > \alpha$. Finalement, tout intervalle $]\alpha$; $+\infty[$ contient toutes les valeurs f(x) pour x assez grand, ce qui prouve que $\lim_{x \to +\infty} f(x) = +\infty$

<u>Théorème 2</u>: Soit f et h deux fonctions définies sur un intervalle]A; $+\infty$ [, où A est un réel. Si pour tout x de]A; $+\infty$ [, f(x) < h(x) et si $\lim_{x \to +\infty} h(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$

2. Théorème des gendarmes: Limite réelle

Théorème :

Soit f, g et h trois fonctions définies sur un intervalle]A; $+\infty[$ où A est un réel.

Si pour tout x de]A; $+\infty$ [, g(x) < f(x) < h(x) et $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = L$, alors $\lim_{x \to +\infty} f(x) = L$

Méthode : Utiliser les théorèmes de comparaison et d'encadrement

- Vidéo https://youtu.be/OAtkpYMdu7Y
- ▶ Vidéo https://youtu.be/Eo1jvPphja0

Calculer:

1)
$$\lim_{x\to+\infty} x + \sin x$$

-1 & sin 2 & 1

It I & con thing & 1+x

lim xe-1 = +x

Dispres le theoreme de

Comporaison

lim x +rin xe = +x

$$2) \lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$$

$$-1 \leq \cos x \leq 1$$

$$\cos x \geq 0$$

$$-2c \leq 2e \cos x \leq \infty$$

$$2e^{2} + 1 > 0$$

$$2e^{2} + 1 \leq \frac{x}{2e^{2} + 1} \leq \frac{x^{2}}{2e^{2} + 1}$$

$$\frac{-x}{2e^{2} + 1} = \frac{x(-1)}{2e^{2}(1 + \frac{1}{2e^{2}})} = \frac{1}{2c(1 + \frac{1}{2e^{2}})}$$

$$\lim_{x \to +\infty} 1 + \frac{1}{2e^{2}} = 1 \quad \lim_{x \to +\infty} x(1 + \frac{1}{2e^{2}}) = +\infty$$

$$2e^{-2} + 1 = 1$$

$$\lim_{x \to +\infty} (1 + \frac{1}{2e^{2}}) = +\infty$$

 $\frac{x}{x^2+1} = \frac{1}{x(1+\frac{1}{2})} \qquad \lim_{x(1+\frac{1}{2})} \frac{1}{x(1+\frac{1}{2})} = 0$ D'apres le theoreme d'encouvement lim $\frac{x}{x^2+1} = 0$

V. Croissances comparées

Propriétés (croissances comparées):

(On dit que e l'emport)

- a) $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ et pour tout entier n, $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$
- b) $\lim_{x\to-\infty} x e^x = 0$ et pour tout entier n, $\lim_{x\to-\infty} x^n e^x = 0$

Démonstration au programme du a :

- On pose
$$f(x) = e^x - \frac{x^2}{2}$$
.

On a :
$$f'(x) = e^x - x$$

On calcul la dérivée de la dérivée $f': (f'(x))' = e^x - 1$.

Et on note
$$f''(x) = (f'(x))' = e^{x} - 1$$

Pour tout x strictement positif, $f''(x) = e^x - 1 > 0$ (car x > 0, $donc e^x > e^0$, $donc e^x > 1$.

On dresse alors le tableau de variations :

x	0	+∞
f''(x)		+
f'(x)	1	
Signe de $f'(x)$		+
f(x)	1	

On en déduit que pour tout x > 0, f(x) > 0 et donc

Soit encore:
$$\frac{e^x}{x} > \frac{x}{2}$$
.

Soit encore : $\frac{e^x}{x} > \frac{x}{2}$. Comme $\lim_{x \to +\infty} \frac{x}{2} = +\infty$, on en déduit par comparaison de limites que $\lim_{x\to +\infty} \frac{e^x}{r} = +\infty$.

- Dans le cas général, on a :

$$\frac{e^x}{x^n} = \frac{\left(e^{\frac{x}{n}}\right)^n}{x^n} = \left(\frac{e^{\frac{x}{n}}}{x}\right)^n = \left(\frac{1}{n} \times \frac{e^{\frac{x}{n}}}{\frac{x}{n}}\right)^n$$

Or: $\lim_{X \to +\infty} \frac{e^{\pi}}{X} = +\infty$ car on a vu que $\lim_{X \to +\infty} \frac{e^X}{X} = +\infty$.

Donc: $\lim_{x \to +\infty} \frac{1}{n} \times \frac{e^{\frac{\hat{n}}{n}}}{\frac{x}{n}} = +\infty$, car n est positif.

Et donc $\lim_{x\to+\infty} \left(\frac{1}{n} \times \frac{e^{\frac{x}{n}}}{x}\right)^n = +\infty$, comme produit de *n* limites infinies.

Soit: $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$

Remarque: Dans le cas de limites infinies, la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide.

Méthode: Calculer une limite par croissance comparée

Vidéo https://youtu.be/GoLYLTZFaz0

Calculer la limite suivante:
$$\lim_{x\to +\infty} \frac{e^x + x}{e^x - x^2}$$

Con Northquee $\frac{e^{-c}}{c} = 1 \times 2$
 $\frac{e^{-c}}{e^{-c}} = 1 \times 2$
 $\frac{e^{-c}}{e^{-c}} = 1 \times 2$
 $\frac{e^{-c}}{e^{-c}} = 1 \times 2$

Ber quotient lim & x = 1