Условие. Точки A_1 , B_1 , C_1 — середины сторон соответственно BC, AC, AB треугольника ABC, а BH — его высота. Докажите, что если описанные окружности треугольников AHC_1 и CHA_1 проходят через точку M, то $\angle ABM = \angle CBB_1$.

Pewenue. Ясно, что изначальное условие равносильно тому, что точка M находится на симедиане треугольника ABC – это и будем доказывать. Сперва покажем, что обе окружности (AHC_1) и (CHA_1) касаются прямой A_1C_1 . Действительно, для окружности (CHA_1) имеем: $P=BH\cap (CHA_1), T$ — середина PC; тогда T — центр нашей окружности, кроме того TA_1 — средняя линия треугольника CPB, а следовательно прямая TA_1 перпендикулярна C_1A_1 , что и означает касание. Аналогично доказывается и для (AHC_1) . Далее, пусть L — середина отрезка A_1C_1 , тогда, так как окружности касаются его в точках A_1 и C_1 , то MH проходит через L. Пусть $\Gamma = (A_1C_1B)$, тогда $M \in \Gamma$. Так как треугольник BA_1C_1 гомотетичен BCA с центром гомотетии в вершине B, то прямые BM и BL для треугольника BA_1C_1 — симедиана и медиана соответственно. А значит осталось доказать, что четырёхугольник A_1BC_1M — гармонический.

Теперь заметим, что Γ симметрична окружности Эйлера треугольника ABC относительно прямой A_1C_1 . А значит, отразив B_1 относительно A_1C_1 ,

мы получим точку $B_1' \in \Gamma$. Так как $HBB_1'B_1$ – прямоугольник, то это означает, что B_1' симметрична B относительно серединного перпендикуляра к A_1C_1 . Просуммируем вышесказанное в лемму.

Лемма. Пусть дан треугольник ABC, M – середина его стороны AC, B'симметрична B относительно серединного перпендикуляра ℓ к отрезку AC(очевидно лежит на (ABC)), D – вторая точка пересечения прямой B'M с окружностью (ABC). Тогда четырёхугольник ABCD – гармонический.

Доказательство.

Первый способ. Пусть W – середина дуги ABC. Тогда $\smile WB = \smile WB'$, ведь B и B' симметричны относительно ℓ . Отсюда следует, что DB – симедиана треугольника DAC, а это равносильно тому, что ABCD – гармонический.

Второй способ.

Условие задачи равносильно тому, что $AB \cdot DC = AD \cdot BC$.

Условие задачи равносильно тому, что \overline{AD} из подобия треугольников \overline{ADM} и $\overline{B'MC}$ получаем, что $\overline{B'C} = \overline{\frac{AM}{MB'}}$, а из подобия реугольников DMC и AMB': $\frac{CD}{AB'} = \frac{CM}{MB'}$. Откуда $\frac{AD}{B'C} = \frac{MB}{AB'}$. Так как из симметрии CB = AB' и B'C = AB, то это равносильно следующему $\frac{AD}{AB} = \frac{CD}{BC}$, что и требовалось.