Using Simulation to Present Complex Topics

Ryan Honea

9/30/2017

- 1 Introduction: Why Simulate?
- 2 The "Traditional" Statistics Course
- 3 Elevating the Statistics Course
- 4 Conclusion

☐Introduction: Why Simulate?

Introduction: Why Simulate?

└Why Simulate?

Why Simulate?

Common Questions:

- Is it worthwhile to teach programming?
- Wouldn't writing a simulation be hard?
- Why not just use theorems and proofs and other such nonsense?

└ Motivation

Why We Love Math

The Big Questions

- Why do we love math?
- What drives students to love math?
- How can we utilize this information to enhance student's learning?

Motivation

Why We Love Math: GRAPHS

Power versus Number of Samples for Sign Test

Why We Love Math: FUNctions and Equations!

└ Motivation

Senior Research Project

Assignment: Find the probability that a percolating cluster appears in Mat'ern II Point Process distributed $Poisson(\lambda)$

- What does it mean?
- How do I solve this?
- What's a Mat'ern?
- What's a percolating cluster?

Senior Research Project

Introduction: Why Simulate?

└Motivation

Senior Research Project

Senior Research Project

Matern II, a = (4/5)r

The "Traditional" Statistics Course

- Measures of Center
- Sampling
- Regression
- Hypothesis Testing

Context of this Presentation

More Intense Problems

- Non-Normal Distributions
 - Poisson
 - Binomial
 - Exponential
- Central Limit Theorem

The "Traditional" Statistics Course

Measures of Center

- Measures of center usually taught in respect to a symmetric distribution, left skewed distribution, and a right skewed distribution.
- How can we improve this information through simulation?
- More specifically, how can we show this without having data on hand?

Measures of Center on a Symmetric Distribution

The Simulation

```
sim <- rbeta(10000,5,5)
hist(sim, main = "Symmetric Distribution")
abline(v = mean(sim), col = "red", lwd = 3)
abline(v = median(sim), col = "blue", lwd = 3, lty = 2)
legend(0.05, 1200, c("Mean", "Median"), col = c("red", "blue")</pre>
```

Measures of Center

Measures of Center on a Symmetric Distribution

 $sim \leftarrow rbeta(10000, 5, 2)$

Measures of Center on a Left-Skewed Distribution

```
hist(sim, main = "Left-Skewed Distribution")
abline(v = mean(sim), col = "red", lwd = 3)
abline(v = median(sim), col = "blue", lwd = 3, lty = 2)
legend(0.05, 1200, c("Mean", "Median"), col = c("red", "blue")
```

0.2

The "Traditional" Statistics Course

Measures of Center

Measures of Center on a Left-Skewed Distribution

0.6

0.8

1.0

0.4

 $sim \leftarrow rbeta(10000, 2, 5)$

Measures of Center on a Right-Skewed Distribution

```
hist(sim, main = "Right-Skewed Distribution")
abline(v = mean(sim), col = "red", lwd = 3)
abline(v = median(sim), col = "blue", lwd = 3, lty = 2)
legend(0.05, 1200, c("Mean", "Median"), col = c("red", "blue")
```

The "Traditional" Statistics Course

0.0

0.2

Measures of Center

Measures of Center on a Right-Skewed Distribution

0.6

0.8

0.4

Sampling in R

The true bueaty of simulation lies in sampling (which is the core of most statistics).

- R can simulate from any notable distribution (and some non-notable!)
- R can then randomly sample from any of these distributions
- We can show elements of sampling empiracally to students through these two easily understandable parts of R

Sampling Examples

```
sim \leftarrow rnorm(10000)
cat("Mean of Simulation is:", mean(sim), "\n")
## Mean of Simulation is: 0.006586892
sim sample <- sample(sim, 1000)</pre>
cat("Mean of Sim Sample is:", mean(sim sample), "\n")
## Mean of Sim Sample is: -0.008006949
cat("Difference between Sample and Pop Mean:",
  abs(mean(sim) - mean(sim_sample)),"\n")
```

Difference between Sample and Pop Mean: 0.01459384

Elevating the Statistics Course

Elevating the Statistics Course

Using Simulation to Present Complex Topics

Conclusion

Conclusion

Using Simulation to Present Complex Topics

Conclusion

Conclusion

Using Simulation to Present Complex Topics
Conclusion
Acknowledgement

Acknowledgements