

(11)Publication number:

07-164829

(43)Date of publication of application: 27.06.1995

(51)Int.CI.

B60C 11/11 B60C 9/08 B60C 11/03

B60C 11/04 B60C 11/113 B60C 11/12

(21)Application number: 05-318638

(71)Applicant: YOKOHAMA RUBBER CO LTD:THE

(22)Date of filing:

17.12.1993

(72)Inventor: SHIRAI KENICHI

MAMA RIICHIRO SUZUKI TOSHIHIKO

(54) PNEUMATIC RADIAL TIRE FOR PASSENGER CAR

(57)Abstract:

PURPOSE: To suppress the pattern noise and improve the wet performance without deteriorating the steering stability which is improved by the block pattern having the less number of pitches.

CONSTITUTION: As for a radial tire, a plurality of main grooves 1 and a plurality of subgrooves 2 and 3 which are inclined in the opposite directions for the tire circumferential direction, toward the shoulder regions on the left and right sides from the center region are formed on a tread surface, and a tread pattern having a shoulder block row 5L on the outside of the main groove A 1 positioned on the lelt and right outermost sides in the tire width direction and having the second block row 6L on the inside is provided, and each pitch of the block row 5L and the block row 6L is set to 30-45. Accordingly, the subgroove 2 for dividing the block row

5L and the subgroove 3 for dividing the block row 6L are offset each other in the tire circumferential direction. and the subgroove 2 of the block row 5L is bent to a

chevron shape at the grounded edge, and the inner end of the subgroove 2 is extended to the near center of the block width in the block of the block row 6L, and the outer end of the subgroove 3 of the block row 6L is extended to the near grounded end (e) in the block of the block row 5L.

LEGAL STATUS

[Date of request for examination]

21.09.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number] 3471396 [Date of registration] 12.09.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-164829

(43)公開日 平成7年(1995)6月27日

(51) Int.Cl. ⁶ B 6 0 C 11/ 9/	08 C	庁内整理番号 8408-3D 8408-3D 8408-3D	F I	技術表示箇所		
		8408-3D	B 6 0 C	11/ 04 D		
		8408-3D		11/ 08 D		
		審査請求	未請求 請求項	頁の数1 OL (全 5 頁) 最終頁に続く		
(21)出願番号 特願平5-318638		(71)出願人	000006714 横浜ゴム株式会社			
(22)出願日 平成5年(1993)12月17日			東京都港区新橋 5 丁目36番11号			
			(72)発明者	白井 顕一		
				神奈川県平塚市追分2番1号 横浜ゴム株 式会社平塚製造所内		
			(72)発明者	真間 理一郎		
				神奈川県平塚市追分2番1号 横浜ゴム株 式会社平塚製造所内		
			(72)発明者	鈴木 俊彦		
				神奈川県平塚市迫分2番1号 横浜ゴム株		
				式会社平塚製造所内		
			(74)代理人	弁理士 小川 信一 (外2名)		

(54) 【発明の名称】 乗用車用空気入りラジアルタイヤ

(57)【要約】

【目的】 ビッチ数の少ないブロックパターンにより向上した操縦安定性を損なうことなく、パターンノイズの 低減とウェット性能を向上する。

【構成】 トレッド面に複数の主溝1 と、センター域から左右両側のショルダー域に向け、それぞれタイヤ周方向に対して互いに反対方向に傾斜する複数のサブ溝2,3を設け、タイヤ幅方向左右最外側に位置する主溝1 の外側にショルダーブロック列5Lを、その内側に第2 ブロック列6Lを形成した方向性トレッドパターンを有し、ブロック列5Lとブロック列6Lのビッチ数をそれぞれ30~45にしたラジアルタイヤにおいて、ブロック列5Lを区分するサブ溝2 とブロック列6Lを区分するサブ溝3 とをタイヤ周方向に互いにオフセットさせ、かつブロック列5Lのサブ溝2 をほぼ接地端で「へ」の字状に屈曲させると共に、そのサブ溝2 の内端をブロック列6Lのブロック内に該ブロック幅のほぼ中心まで延長し、ブロック列6Lのサブ溝3 の外端をブロック列5Lのブロック内にほぼ接地端eまで延長する。

1

【特許請求の範囲】

【請求項1】 トレッド面にタイヤ周方向に延びる複数 本の主溝を設けると共に、トレッドセンター域から左右 両側のショルダー域に向け、それぞれタイヤ周方向に対 して互いに反対方向に傾斜する複数のサブ溝を設け、タ イヤ幅方向の左右最外側に位置する主溝の外側にショル ダーブロック列を形成し、その内側に第2ブロック列を 形成した方向性トレッドパターンを有し、前記ショルダ ーブロック列及び第2ブロック列のピッチ数をそれぞれ 30~45の範囲にした乗用車用空気入りラジアルタイ ヤにおいて

前記ショルダーブロック列を区分するサブ溝と前記第2 ブロック列を区分するサブ溝とをタイヤ周方向に互いに オフセットさせ、かつ前記ショルダーブロック列のサブ 溝をほぼ接地端で「へ」の字状に屈曲させると共に、そ のサブ溝内端を前記第2ブロック列のブロック内に該ブ ロック幅のほぼ中心まで延長させ、前記第2ブロック列 のサブ溝の外端を前記ショルダーブロック列のブロック 内にほぼ接地端まで延長させた乗用車用空気入りラジア ルタイヤ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ビッチ数の少ないブロ ックパターンにより向上した操縦安定性、特にコーナリ ング時の限界性能と低騒音性及びウェット性能とを両立 可能にする乗用車用空気入りラジアルタイヤに関する。 [0002]

【従来の技術】乗用車用空気入りラジアルタイヤに使用 されるブロックパターンは、そのピッチ数(ブロック 数)を60~80にするのが標準的である。しかし、こ 30 のブロックパターンを使用する場合の操縦安定性、特に コーナリング時の限界性能を向上させるために、そのピ ッチ数を30~45のレベルまで下げてブロック剛性を 増大し、かつそのピッチ数の低減に伴うウェット性能 (特に排水性)の低下を方向性パターンにして補うよう にしたものがある。

【0003】しかし、上述のようにブロックパターンの ピッチ数を低減したタイヤは、ブロック剛性が増大して いるため路面を打撃するときに発生するパターンノイズ れば低くなっている。そのため、近年のように騒音に対 する環境保全や安全性への要求が高まるにつれ、上記タ イヤではこの要求に対応することが難しくなってきてい

[0004]

【発明が解決しようとする課題】本発明の目的は、ビッ チ数の少ないブロックバターンにより向上した操縦安定 性、特にコーナリング時の限界性能を損なうことなく、 パターンノイズの低減とウェット性能の向上を可能にし た乗用車用空気入りラジアルタイヤを提供することにあ 50 にはリブ4が形成されている。

る。

[0005]

【課題を解決するための手段】上記目的を達成するため の本発明は、トレッド面にタイヤ周方向に延びる複数本 の主溝を設けると共に、トレッドセンター域から左右両 側のショルダー域に向け、それぞれタイヤ周方向に対し て互いに反対方向に傾斜する複数のサブ溝を設け、タイ ヤ幅方向の左右最外側に位置する主溝の外側にショルダ ーブロック列を形成し、その内側に第2ブロック列を形 成した方向性トレッドパターンを有し、前記ショルダー ブロック列及び第2ブロック列のピッチ数をそれぞれ3 0~45の範囲にした乗用車用空気入りラジアルタイヤ において、前記ショルダーブロック列を区分するサブ溝 と前記第2ブロック列を区分するサブ溝とをタイヤ周方 向に互いにオフセットさせ、かつ前記ショルダーブロッ ク列のサブ溝をほぼ接地端で「へ」の字状に屈曲させる と共に、そのサブ溝内端を前記第2ブロック列のブロッ ク内に該ブロック幅のほぼ中心まで延長させ、前記第2 ブロック列のサブ溝の外端を前記ショルダーブロック列 20 のブロック内にほぼ接地端まで延長させたことを特徴と している。

2

【0006】 このようにショルダーブロック列と第2ブ ロック列をそれぞれ区分するサブ溝をタイヤ周方向に互 いにオフセットさせると共に、それぞれの端部を隣りの ブロック列のブロック内に一部延長させたので、直進時 のブロック剛性を低減させ、パターンノイズを低減する と共に、排水性も改善する。しかも、ショルダーブロッ ク列のサブ溝を接地端付近で「へ」の字状に屈曲させる と共に、第2ブロック列のサブ溝のショルダーブロック 側への延長はほぼ接地端までにしてあるので、コーナリ ング時のブロック剛性を大きい状態に保持することがで き、ピッチ数を30~45にしたことによる操縦安定 性、特にコーナリング時の限界性能を実質的に損なわな いようにする。

【0007】本発明において、「接地端」とは、タイヤ にJATMA規定の正規空気圧を充填し、設計常用荷重 を負荷したときにトレッドが接地する左右の両端部をい う。以下、本発明の構成について添付の図面を参照して 詳細に説明する。図1は本発明の実施例からなる乗用車 が大きく、かつウェット性能も標準ピッチのものに比べ 40 用空気入りラジアルタイヤのトレッドバターンの一例を 示すものである。

> 【0008】図1において、パターン展開幅がTWで、 接地幅がWのトレッド面に、4本の主溝1がタイヤ周方 向に延びるように設けられている。 これら主溝1のうち 左右の最外側に位置する主溝1,1のそれぞれ両側に は、外側に多数のサブ溝2によって区分されたブロック 5が並んだショルダーブロック列5 Lが、また内側に多 数のサブ溝3によって区分されたブロック6が並んだ第 2ブロック列6しが形成され、またトレッドセンター部

3

【0009】このリブ4を挟んで左右両側に位置するサブ溝2、3は、それぞれタイヤ周方向に対して互いに反対方向に傾斜し、それによって方向性パターンを形成している。すなわち、図に示す方向に指定されたタイヤ回転方向Rに対して、左右のサブ溝2、3がタイヤセンター側に矢筈状に収束するような配置の方向性パターンになっている。

【0010】ショルダーブロック列5 Lがサブ溝2 によって区分されるピッチ数 (ブロック数) 及び第2 ブロック列6 Lがサブ溝3 によって区分されるピッチ数 (ブロ 10ック数) は、それぞれ従来の標準ブロックバターンのそれより少ない30~45の範囲になっている。また、サブ溝2の位置とサブ溝3の位置とは、タイヤ周方向に対して半ピッチずつオフセットした関係になっている。

【0011】また、ショルダーブロック列5 Lのサブ溝2は、接地端 e 付近で「へ」の字状に屈曲すると共に、その内端が第2 ブロック列6 Lのブロック6 内のブロック幅の中心付近まで延びてサブ溝2 p を形成している。他方、第2 ブロック列6 Lのサブ溝3 は、その外端がショルダーブロック列5 Lのブロック5 内の接地端 e 付近 20まで延びてサブ溝3 p を形成している。

【0012】本発明に設けられているブロックバターンは、上述のようにピッチ数が30~45の少ない状態において、ショルダーブロック列5Lのサブ溝2内端を第2ブロック列6Lのブロック6内のほぼブロック幅中心まで延長してサブ溝2pを形成すると共に、第2ブロック列6Lのサブ溝3外端をショルダーブロック列5Lのブロック5内のほぼ接地端eまで延長してサブ溝2pを形成したため、ブロック5,6の剛性が単純にピッチ数30~45にしただけのブロックのそれに比べて低減し30でおり、直進時の路面に対するブロックの打撃によるバターンノイズが低減する。また、溝面積も増大するため排水性が向上する。

【0013】また、コーナリング時は、ショルダーブロック列5 L における接地端 e が外側に移動するが、この外側域にはサブ溝3の延長部分のサブ溝3 p は実質的に存在しておらず、しかもサブ溝2の方は「へ」の字状に屈曲しているので、コーナリング時のブロック5の剛性を高めることができ、コーナリング時の限界特性の低下を効果的に抑制することが可能になる。

【0014】本発明において、ショルダーブロック列のサブ溝2が「へ」の字状に屈曲する位置と、第2ブロック列のサブ溝3のショルダーブロック列への延長外端位置とは、それぞれほぼ接地端eとするが、さらに好ましくは接地端eとその接地端eからトレッド接地幅Wの5%の距離を隔てた位置の間にするのがよい。ショルダーブロック列のサブ溝3の第2ブロック列への延長内端位置は、第2ブロック列のほぼブロック幅中心とするするが、さらに好ましくは第2ブロック列のブロック幅W、の中心位置からW、の±10%の領域にするのがよい。

また、ショルダーブロック列と第2ブロック列のサブ溝の傾斜角度は、特に限定されるものではないが、それぞれラジアル方向に対して20~40°になるようにすることが望ましい。

[0015]

【実施例】タイヤサイズを225/502R16、ピッチ数を33、トレッドパターンを図1にする点を共通にし、ショルダーブロック列のサブ溝2の屈曲及び第2ブロック列のブロック内への延長の有無(サブ溝2pの有無)、及び第2ブロック列のサブ溝3のショルダーブロック列のブロック内への延長の有無(サブ溝3pの有無)をそれぞれ表1に示す通り異ならせた本発明タイヤ1、2及び比較タイヤ1~5を製作した。

【0016】但し、比較タイヤ3は、第2ブロック列のトレッドセンター側タイヤ周方向溝に接するブロックの略周方向中央部から外側に、ブロック内に延びるラグ溝が設けてある図3に示すトレッドパターンを有する。また、比較のため、同一のタイヤサイズで、下記のトレッドパターンを有する従来タイヤ1、2を製作した。

【0017】<u>従来タイヤ1</u>:図2に示すトレッドパターンを有し、ピッチ数が33

<u>従来タイヤ2</u>:図2に示すトレッドパターンを有し、ピッチ数が66

これら9種類のタイヤについて、下記の試験方法により パターンノイズ、ウェット性能及び操縦安定性をそれぞ れ評価し、その結果を表1に示した。

【0018】バターンノイズ:8JJのリムにリム組みし、2.2kgf/cm²の空気圧を充填した試験タイヤを国産車(2.5リッター)に装着して実車走行試験を行い、60km/hの定常走行を行ったときの車内騒音を、車内中央にセットしたマイクを介して計測した。【0019】測定結果は、従来タイヤ1の測定値を基準とし、その基準に対するバターンノイズ(dB)の減少はーで、増加は+はで表示した。

ウェット性能:上記パターンノイズ試験と同じ試験タイヤを同じ車両に装着し、水深1mmの湿潤した半径

(R) 30mの円旋回路を走行し、走行ラインを維持できる最高速度で5周し、最高速度と最低速度を除いた3周分の平均速度を測定した。

40 【0020】測定結果は、従来タイヤ1の測定値を10 0とする指数で表示した。この指数が大きいほど操縦安 定性が優れている。

操縦安定性:上記パターンノイズ試験と同じ試験タイヤを同じ車両に装着し、実車走行試験を行い、実車官能評価を行い、その平均値で評価した。評価結果は、従来タイヤ2の測定値を100とする指数で表示した。この指数が大きいほど操縦安定性が優れている。

[0021]

【表1】

50

4

6

5

表 1

		比 較 タイヤ 1	比 較 イヤ 2	比 較 タイヤ 3	比 較 タイ 4	比 較 タイヤ 5	本発明 タイヤ 1	本発明 タイヤ 2
サブ溝 2	有無	有	有	有	有	有	有	有
	屈曲	無	有	有	有	無	有	有
サブ溝2ℓ(サブ溝2の内端延長部)		#	無	無	有 (fh)	無	有	有
サブ溝 3 ℓ (サブ溝 3 の外端延長部)		有 (つきぬけ)	有	有	有 (fh)	有	有	有
パターンノイズ(dB)		-1.3	-1.2	-1.8	-2. 2	-1.2	-2.0	-2. 1
ウェット性能(指数)		115	108	110	110	112	120	122
操縦安定性(指数)		106	123	121	121	123	121	120

注)(つきぬけ)はショルダーブロック5Lを貫通していることを示す。 (ずれ) はサブ溝 2ℓ (サブ溝 2の内端延長部) 又はサブ溝 3ℓ (サブ溝 3の 外端延長部)とがそれぞれサブ溝2と連通していないことを示す。

表1から、本発明タイヤ1,2はいずれも、従来タイヤ 2よりも高い操縦安定性を保有すると共に、従来タイヤ 1よりも優れたパターンノイズの低減効果とウェット性 能を示すことが判る。

[0022]

【発明の効果】本発明によれば、ショルダーブロック列 と第2ブロック列をそれぞれ区分するサブ溝をタイヤ周 方向に互いにオフセットさせると共に、それぞれの端部 を隣りのブロック列のブロック内に一部延長させること 30 【符号の説明】 により、直進時のブロック剛性を低減させ、パターンノ イズを低減すると共に、排水性も改善する。しかも、シ ョルダーブロック列のサブ溝を接地端付近で「へ」の字 状に屈曲させると共に、第2ブロック列のサブ溝のショ ルダーブロック側への延長はほぼ接地端までにしたた め、コーナリング時のブロック剛性を大きい状態に保持 することができ、ピッチ数を30~45にしたことによ る操縦安定性、特にコーナリング時の限界性能が実質的

に損なわれないようにすることができる。

【図面の簡単な説明】

【図1】本発明の実施例からなる乗用車用空気入りラジ アルタイヤのトレッドパターンを示す平面図である。

【図2】従来の乗用車用空気入りラジアルタイヤのトレ ッドパターンを示す平面図である。

【図3】比較のための乗用車用空気入りラジアルタイヤ のトレッドパターンを示す平面図である。

1 主溝

2,3 サブ溝

2p, 3p サブ溝2, 3の延長部分

5.6 ブロック

5し ショルダー

ブロック列

6L 第2ブロック列

₩ トレッド接地

幅

e 接地端

【図2】

[図3]

フロントページの続き

(51)Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

B60C 11/04

11/113

11/12

C 8408-3D