Rec'd BETTER 37 AP3 9 % BUNDESREPUBLIK DEUTSCHLAND 155, 01. 2004

EP03/13966

REC'D 11 FEB 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 57 463.4

Anmeldetag:

09. Dezember 2002

Anmelder/Inhaber:

Infineon Technologies AG,

München/DE

Bezeichnung:

IR-Speicher

IPC:

H 04 L 1/00

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 09. Januar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

1- house

BEST AVAILABLE COPY

15

20

30

35

IR-Speicher

Die Erfindung betrifft einen IR (Incremental Redundancy)-Speicher für einen EGPRS (Enhanced General Packet Radio Service)-Empfänger einer Mobilstation, der von einer Feststation (BS) über einen Datenübertragungskanal Daten empfängt.

Im Rahmen der Weiterentwicklung des GSM wurde in den letzten Jahren bei der ETSI ein Paket-orientiertes Dienstkonzept zur Datenübertragung entwickelt. Die Standardisierung des neuen Dienstes General Packet Radio Service (GPRS) ist weitgehend seit 1997 abgeschlossen. Der GPRS-Standard wird derzeit im Rahmen der Standardisierung von Enhanced Data Rates for GSM Evolution (EDGE) zum Enhanced EPRS-Standard (GPGRS) erweitert.

EDGE ermöglicht die Erhöhung von Datenübertragungsraten und Spektraleffizienz und ermöglicht so neue Anwendungen für Mobilstationen.

Figur 1 zeigt schematisch eine Feststation (Base Station) und eine Mobilstation nach dem Stand der Technik. Die Feststation (BS) sendet Datenpakete über den Übertragungskanal zu der Mobilstation (BS), die den Empfang der Daten mit einem Acknowledgement-Signal ACK quittiert. Die Daten werden als Datenblöcke kodiert von der Feststation BS an die Mobilstation MS übertragen. Als Kanalkodierung werden bei EDGE MCS (Modulation and Coding Scheme)-Kodierung eingesetzt. Man unterscheidet dabei MCS-1 bis MCS-9 als Kodierschemata. Die unteren vier Kodierschemata (MCS-1 bis MCS4) verwenden GMSK-Modulation während die weiteren fünf Kodierschemata (MCS-5 bis MCS-9) 8 PSK-Modulation einsetzen. Die Basiseinheit zur Datenübertragung ist ein 20 ms langer Datenblock, der in vier GSM Datenburst aufgeteilt ist und über vier TDMA-Rahmen übertragen wird.

Bei EDGE wird ferner eine dynamische Verbindungsanpassung (Dynamic Link Adaption) eingesetzt. Dabei wird durch die Mobilstation (MS) bei einer Down-Link-Verbindung oder durch die Feststation (BS) einer Up-Link-Verbindung die Verbindungsqualität gemessen und das am besten geeignete Modulations- und Kodierschema für die Datenübertragung der nächsten Sequenz von Datenpaketen selektiert. Die Adaption des Modulations- und Kodierschemas hängt dabei von den Signal- zu Interferenzund Rauschverhältnis (SINR) ab.

10

15

20

Figur 2 zeigt ein Blockdiagramm eines Senders innerhalb der Feststation nach dem Stand der Technik. Die von einer Datenquelle stammenden Daten werden als Datenblöcke, beispielsweise als RLC-Datenblöcke, einem Faltungskodierer zugeführt. Der Faltungskodierer führt eine Faltungskodierung der Datenblöcke durch, die an eine Punktierungsschaltung abgegeben werden.

Die Punktierung (puncturing) ist eine Methode zur Verkürzung der generierten Faltungscodes. Dabei werden aus dem Ausgangsbitstrom des Faltungskodierers eine oder mehrere Stellen nach einem vorgegebenen Schema der sogenannten Punktiertabelle, herausgestrichen. Eine Punktiertabelle besteht dabei aus den Datenelementen 0 und 1 und wird periodisch abgearbeitet. Bei einer 0 wird das empfangene Bit im Ausgangsbitstrom nicht gesendet und bei einer 1 in der Punktiertabelle wird das von dem Faltungskodierer empfangene Bit in dem Ausgangsbitstrom gesendet. Hierdurch wird die kodierte Datensequenz verkürzt. Durch die Punktierung wird ein Teil der durch den Faltungskodierer hinzugefügten Redundanz wieder entfernt, d.h. die Kodierrate wird kleiner. Durch die Punktierungseinrichtung ist es möglich, verschiedene Kodierraten zu implementieren. Ausgehend von einem Muttercode der Rate 1/n können durch periodisches Punktieren Codes mit einer höheren Coderate erreicht werden.

35

30

Bei der in Figur 2 dargestellten Ausführungsform wird der vom Faltungskodierer abgegebene Bitstrom mit drei unterschiedli-

35

chen Punktiertabellen P1, P2, P3 punktiert. Die unterschiedlich punktierten Datenströme werden in einem Zwischenspeicher (Buffer) gespeichert.

Die durch einen Header-Generator erzeugten Headerdaten werden in gleicher Weise durch einen Faltungskodierer kodiert und anschließend punktiert. Die punktierten Headerdaten werden in einem Bufferspeicher abgespeichert und anschließend mit den zwischengespeicherten punktierten Daten P1, P2 oder P3 zu einem Datenblock zusammengesetzt. Der Datenblock wird durch eine Interleaver-Schaltung verwürfelt und nach Modulation durch einen Modulator über den Datenübertragungskanal an die Mobilstation MS gesendet.

Figur 3 zeigt ein von einer Datenquelle abgegebenes Datenpaket mit zwei aus 612 Bits bestehenden RLC-Blöcken, die jeweils 592 Datenbits enthalten gemäß dem Modulations- und Kodierungsschema MCS-9. Die Headerdaten USF (Up Link State Flag), der RLC-Header und die Header-Prüfdatensequenz HCS (Header Check Sequence) werden gefolgt von zwei RLC-Datenblöcken innerhalb von 20 ms. Die RLC-Datenblöcke umfassen neben den 592 Datenbits einen Final Block Indicator FBI, eine Blockprüfdatensequenz BCS (Block Check Sequence) und 6 TB-Datenbits.

Figur 4 zeigt die Kodierung und Punktierung der RLC-Datenblöcke gemäß dem MCS-9-Standard nach dem Stand der Technik. Jeder der beiden RLC-Datenblöcke wird drei Mal durch den Faltungskodierer mit einer Kodierrate 1/3 zu 1.836 Datenbits kodiert. Diese Datenbits werden anschließend durch die Punktiervorrichtung mit drei unterschiedlichen Punktierschemata P1, P2, P3 punktiert, so dass drei unterschiedlich punktierte Datenblöcke P1, P2, P3 mit jeweils 612 Bits entstehen. Wenn drei Datenbits ein zu übertragendes Datensymbol darstellen, entspricht dies 204 Datensymbolen pro punktiertem Datenblock. Die punktierten Datenblöcke werden in einem Zeitschlitz innerhalb eines Rahmens (Frame) übertragen. Wie in Figur 4 dar-

10

15

20

30

gestellt werden die entsprechend dem Punktierungsschema P1 punktierten Datenbits in einem Zeitschlitz n innerhalb von vier aufeinanderfolgenden Datenrahmen übertragen. Die entsprechend den Punktierschemata P2, P3 punktierten Datenbits werden auf ein Anforderungssignal der Mobilstation (ARQ = Automatic Request) hin übertragen.

Figur 5 zeigt den Empfänger eine Mobilstation MS nach dem Stand der Technik. Der Empfänger enthält ein IR (Incremental Redundancy)-Speicher. Bei der inkrementellen Redundanz handelt es sich um ein Kodierschema, bei der die übertragene Redundanz schrittweise inkremental erhöht wird. Zunächst werden die Datenbis mit geringem Fehlerschutz ohne Berücksichtigung der aktuellen Qualität des Funk-Datenübertragungskanal übertragen. Werden die Information seitens des Empfängers nicht fehlerfrei empfangen, wird zusätzliche Information übertragen und in dem Empfänger mit den zuvor empfangenen Informationen verknüpft. Die Verknüpfung der Softoutputs der unterschiedlich punktierten Versionen des RLC-Datenblocks erhöht signifikant die Dekodier-Performance. Der Vorgang wird solange wiederholt, bis die übertragene Information ausreichend für die Dekodierung durch den Empfänger ist. Mittels inkrementeller Redundanz wird die effektive Kodierrate wirkungsvoll an das Signal- zu Interferenz- und Rauschverhältnis (SINR) des Datenübertragungskanals angepasst.

Die empfangenen RLC-Datenblöcke werden in einen Incremental Redundancy-Speicher des Empfängers zwischengespeichert. Der IR-Speicher dient hauptsächlich zur Pufferung der Soft-Information der nicht korrekt dekodierten RLC-Blöcke während der Empfänger auf die erneute Übertragung der zusätzlich benötigten Information bzw. Daten wartet.

Figur 6 zeigt schematisch einen IR-Speicher nach dem Stand der Technik. Der IR-Speicher nach dem Stand der Technik umfasst einen ersten Speicherbereich SB_A und einen zweiten Speicherbereich SB_B. Der erste Speicherbereich SB_A dient zum

Zwischenspeichern einer bestimmten Anzahl von RLC-Datenblöcken mit einer vorgegebenen Datenauflösung R (Resolution). Der notwendige Speicherplatz für den ersten Speicherbereich SBA ergibt sich aus der internen Zeitverzögerung innerhalb des Empfängers der Mobilstation, genauer gesagt der Zeitverzögerung zwischen dem Kanalentzerrer und der Kanaldekodierung. Bei einem derzeitigen Edge-Empfänger beträgt die Zeitverzögerung von dem Equaliser bis zum Start der Kanaldekodierung der korrespondierenden RLC-Daten etwa 8 RLC-

- Datenblöcke. Daher kann eine Zeitverzögerung von X_D von etwa zwölf RLC-Datenblöcken als ausreichend angesehen werden. Der erste Speicherbereich SB_A berücksichtigt die interne Zeitverzögerung innerhalb des Empfängers der Mobilstation.
- Der zweite Speicherbereich SB_B innerhalb des IR-Speichers nach dem Stand der Technik dient zum Abspeichern der fehlerhaft dekodierten RLC-Datenblöcke. Die Anzahl der fehlerhaft dekodierten RLC-Datenblöcke hängt von der Schleifenlaufzeit (Round Trip Delay) und der Polling-Zeitdauer des Datenübertragungskanals ab. Da zwei RLC-Datenblöcke von 612 Bit bzw. 204 Datensymbolen jeweils innerhalb von 20 ms für den Fall eines 1 Zeitschlitz(MCS-9) zu übertragen sind, entspricht eine realistisch angenommene Schleifenlaufzeit von 120 ms einer Speicherplatzanforderung von (120 ms : 20 ms x 2 x N_{Ts}) = 12 x N_{TX} RLC-Datenblöcken, wobei N_{TS} die Anzahl der gebündelten Zeitschlitze TS/TDMA-Rahmen darstellt.
- Darüber hinaus ist die Polling-Zeitdauer (Acknowledgement Polling Period) zu berücksichtigen, die einem Speicherplatzbedarf von 32 RLC-Datenblöcken entspricht.

Zur erfolgreichen Dekodierung sind alle Datensubblöcke von allen unterschiedlich punktierten Punktierschemata P1, P2 und P3 nötig. Zwischen zwei Datensubblöcken mit der selben Blocksequenznummer BSN und unterschiedlichen Punktierschemata können maximal (32 + N_{TS} x 12) Datensubblöcke übertragen werden.

30

Im Worst-Case können alle Datensubblöcke während dieses Zeitraums nicht korrekt empfangen werden und müssen in dem zweiten Speicherbereich SB_B des IR-Speichers abgelegt werden.

6

Bei einer Worst-Case-Annahme beträgt der notwendige Speicherplatz des IR-Speichers nach dem Stand der Technik: $IR = SB_A + SB_B = 2 \times (32 + N_{TS} \times 12) + X_D RLC-Datensubblöcke.$

Bei einem derzeitigen Edge-Empfänger wird eine interne MS
Verzögerung von 48 RLC-Datenblöcken angenommen, so dass der notwendige Speicherplatz für den IR-Speicher 42.432 K-Words zu jeweils 16 Bit beträgt.

Bei dem IR-Speicher nach dem Stand der Technik werden die Softoutputs des Kanalentzerrers in den beiden Speicherbereichen SB_A und SB_B mit der gleichen Datenauflösung R abgespeichert.

Figur 7 zeigt den Vorgang der Datenkanaldekodierung bei einem 20 IR-Speicher nach dem Stand der Technik.

In einem Schritt S1 werden die aktuellen Datensubblöcke von dem IR-Speicher mit einer vorbestimmten Datenauflösung R von beispielsweise 5 Bit ausgelesen und mit dem entsprechenden Punktierschema P depunktiert.

In einem Schritt S2 wird geprüft, ob es weitere Datensubblöcke mit der selben Blocksequenz BSN, TFI und unterschiedlichen Punktierschemata P gibt.

In einem weiteren Schritt S3 wird überprüft, ob es einen weiteren Datensubblock mit der selben BSN-Nummer, TFI und gleichem Punktierschema P gibt. s

Falls im Schritt S2 oder Schritt S3 die Antwort ja lautet, wird dieser Datensubblock von dem IR-Speicher ausgelesen und die Daten werden in einem Schritt S4 mit dem entsprechenden

Punktierschema P depunktiert. Die Softoutputs des depunktierten Subblock wird denen der den vorangehenden Subblöcken zusammengesetzt in einem Schritt S5.

5 Anschließend wird in einem Schritt S6 überprüft, ob die Anzahl der kombinierten Datensubblöcke einen Grenzwert überschritten hat oder nicht. Falls dies nicht der Fall ist, kehrt der Vorgang zum Schritt S2 zurück. Falls die Grenze überschritten worden ist, erfolgt in einem Schritt S7 eine Kanaldekodierung des RLC-Datenblocks.

In einem Schritt S8 wird geprüft, ob der Dekodiergang erfolgreich abgeschlossen wurde.

15 Falls die Dekodierung erfolgreich war, wird der zugewiesene Speicherplatz für die Daten und die Steuerinformation in einem Schritt S9 freigegeben. Falls die Dekodierung nicht erfolgreich abgeschlossen werden konnte, wird der aktuelle Datensubblock in dem IR-Speicher mit einer festgelegten Datenauflösung R abgelegt. Die Datenauflösung R beträgt beispielsweise 5 Bit.

Figur 8 zeigt schematisch den Zeitraum der notwendig ist, bis ein nicht quittierter RLC-Block erneut übertragen werden kann. Falls die Dekodierung des RLC-Datenblocks x (der mit einem Punktierschema Pl punktiert ist) fehlschlägt, kann dieser Datenblock frühestens dann erneut übertragen werden, nachdem die Quittierzeitdauer (Acknowledgement Period) und die Schleifenlaufzeit (Round Trip Delay) abgelaufen ist. Dabei hängt die Quittierzeitdauer von der Zeitdauer der unterstützten Zeitschlitze TS ab. Bei einem Zeitschlitz beträgt die Quittierzeitdauer 32 RLC-Datenblöcke, bei zwei Zeitschlitzen TS 32/2 RLC-Datenblöcke und bei vier Zeitschlitzen 32/4 RLC-Datenblöcke.

Der in Figur 6 dargestellte IR-Speicher nach dem Stand der Technik hat den Nachteil, dass er einen relativ großen Spei-

35

cherplatz benötigt. Dies ist um so gravierender, da in der Mobilstation der Speicherplatz besonders knapp ist.

Es ist daher die Aufgabe der vorliegenden Erfindung, einen 5 IR-Speicher zu schaffen, der eine minimale Speichergröße aufweist.

Diese Aufgabe wird erfindungsgemäß durch einen IR-Speicher mit den im Patentanspruch 1 angegebenen Merkmalen gelöst.

10

20

30

35

Die Erfindung schafft einen IR-Speicher für einen EGPRS-Empfänger einer Mobilstation (MS), der von einer Feststation (BS) über einen Datenübertragungskanal Daten empfängt, wobei der IR-Speicher aufweist:

einen ersten Speicherbereich zum Zwischenspeichern einer bestimmten Anzahl von Datenblöcken mit einer vorgegebenen ersten Datenauflösung,

einen zweiten Speicherbereich zum Zwischenspeichern von fehlerhaft-dekodierten Datenblöcken, wobei der zweite Speicherbereich die nicht dekodierten Datenblöcke mit einer zweiten Datenauflösung speichert (R_2) , die niedriger ist als die erste Datenauflösung (R_1) .

Die Grundidee des erfindungsgemäßen IR-Speichers besteht darin, unterschiedliche Datenauflösungen für die tatsächlich übertragene und die zuvor falsch dekodierten Datensubblöcke
einzusetzen. Die nicht korrekt dekodierten Datensubblöcke
enthalten eine weniger zuverlässige Information und können
daher mit einer niedrigeren Datenauflösung abgespeichert werden, um Speicherplatz einzusparen.

Bei einer bevorzugten Ausführungsform der erfindungsgemäßen IR-Speicher wird die Anzahl der in dem ersten Speicherbereich des IR-Speichers abgespeicherten Datenblöcke in Abhängigkeit von der internen Signalverzögerung innerhalb der Mobilstation vorgesehen.

Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen IR-Speichers wird die Anzahl der in dem zweiten Speicherbereich des IR-Speichers speicherbaren Datenblöcke in Abhängigkeit von der Polling-Zeitdauer des Datenübertragungskanals und von der Schleifenlaufzeit vorgesehen.

Bei einer besonders bevorzugten Ausführungsform des erfindungsgemäßen IR-Speicher ist die zweite Datenauflösung adaptiv einstellbar.

10

5

- Dabei wird die zweite Datenauflösung (R_2) mit der die nicht kodierten Datenblöcke in den zweiten Speicherbereich des IR-Speichers abgespeichert werden in Abhängigkeit von einer durch den Empfänger gemessenen Burst-
- 15 Datenübertragungssignalqualität eingestellt.

Die zweite Datenauflösung (R_2) ist vorzugsweise zwischen verschiedenen Auflösungsstufen umschaltbar.

20 Dabei beträgt die zweite Datenauflösung (R_2) vorzugsweise 2 Bit, 3 Bit oder 4 Bit.

Bei einer besonders bevorzugten Ausführungsform des erfindungsgemäßen IR-Speichers beträgt die Datenauflösung (R_1) für den ersten Speicherbereich 5 Bit.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen IR-Speichers ist dieser eingangsseitig an einen Empfangs-Pufferspeicher für die empfangenen Datenblöcke angeschlossen.

30 _

Der IR-Speicher ist vorzugsweise ausgangsseitig an einen Dekoder angeschlossen.

Bei den Datenblöcken handelt es sich vorzugsweise um RLC (Ra-35 dio Link Control)-Datenblöcke.

Die Datenblöcke sind vorzugsweise MCS-kodiert.

Im weiteren werden bevorzugte Ausführungsformen des erfindungsgemäßen IR-Speichers unter Bezugnahme auf die beigefügten Figuren zur Erläuterung erfindungswesentlicher Merkmale beschrieben.

Es zeigen:

5

Figur 1 eine Feststation und eine Mobilstation nach dem Stand 10 der Technik;

- Figur 2 ein Blockschaltbild eines Senders innerhalb der Feststation (BS) nach dem Stand der Technik;
 - 15 Figur 3 ein zu übertragendes Datenpaket nach dem Stand der Technik;

Figur 4 ein Kodier- und Punktierschema zur Datenübertragung nach dem Stand der Technik;

Figur 5 einen Empfänger innerhalb einer Mobilstation (MS) mit einem IR-Speicher nach dem Stand der Technik;

Figur 6 einen IR-Speicher nach dem Stand der Technik;

- Figur 7 ein Ablaufdiagramm einer Kanaldekodierung nach dem Stand der Technik;
- Figur 8 ein Zeitdiagramm zur Erläuterung der Berechnung des notwendigen Speicherplatzes bei einem IR-Speicher nach dem Stand der Technik;

Figur 9 eine bevorzugte Ausführungsform des erfindungsgemäßen IR-Speichers;

Figur 10 ein Ablaufdiagramm zur Erläuterung der Kanaldekodierung bei einem Empfänger mit dem erfindungsgemäßen IR-Speicher;

5 Figur 11 ein Ablaufdiagramm zur Darstellung der Header-Dekodierung gemäß der Erfindung;

Figur 12 ein Ablaufdiagramm zur Erläuterung des Abspeicherns eines neuen Datensubblocks gemäß der Erfindung;

Figur 13 ein Ablaufdiagramm zur Darstellung des Abspeicherns eines neuen Datensubblocks bei einer bevorzugten Ausführungsform gemäß der Erfindung;

- 15 Figur 14 eine Tabelle für die notwendige IR-Speichergröße in Abhängigkeit von der internen Signalverzögerung der Mobilstation (MS) gemäß der Erfindung;
- Figur 15 ein Diagramm der notwendigen zusätzlichen Anzahl von 20 Datenübertragungen pro RLC-Datenblock in Abhängigkeit von dem Signalrauschverhältnis SNR und der zweiten Datenauflösung;

Figur 16 ein Diagramm des verfügbaren Datendurchsatzes in Abhängigkeit von dem Signalrauschverhältnis SNR und der zweiten Datenauflösung (R_2) des IR-Speichers gemäß der Erfindung.

Wie man aus Figur 9 erkennen kann, weist der erfindungsgemäße IR-Speicher 1 einen ersten Speicherbereich la und einen zweiten Speicherbereich 1b auf. Der erste Speicherbereich la dient zum Zwischenspeichern einer bestimmten Anzahl von Datenblöcken, vorzugsweise RLC-Datenblöcken mit einer vorgegebenen ersten Datenauflösung R₁. Diese erste Datenauflösung beträgt vorzugsweise 5 Bit.

35 Der IR-Speicher 1 weist ferner einen zweiten Speicherbereich 1b auf zum Zwischenspeichern von fehlerhaft dekodierten Datenblöcken. In den zweiten Speicherbereich 1b des IR-

10

15

20

30

35

Speichers 1 werden die fehlerhaft dekodierten Datenblöcke mit einer zweiten Datenauflösung R_2 gespeichert, wobei die zweite Datenauflösung R_2 niedriger ist als die erste Datenauflösung (R_1) . Bei einer bevorzugten Ausführungsform beträgt die zweite Datenauflösung beispielsweise 3 Bit.

Die Anzahl der in dem ersten Speicherbereich 1a des IR-Speichers 1 abgespeicherten RLC-Datenblöcke hängt von der internen Signalverzögerung innerhalb der Mobilstation MS ab. Bei einer bevorzugten Ausführungsform des erfindungsgemäßen IR-Speichers beträgt die Anzahl der in dem ersten Speicherbereich 1a des IR-Speichers abspeicherbaren RLC-Datenblöcke 12 RLC-Datenblöcke. Jeder RLC-Datenblock weist 612 Soft-Outputs und jeweils 5 Bit Datenauflösung (gemäß MCS-9) auf, um die Signalverzögerung Δ_t zwischen dem Equaliser-Ausgang bis zur Kanaldekodierung zu überbrücken.

Der erste Speicherbereich 1a weist beispielsweise daher 2.448 Datenwörter mit jeweils 16 Bit auf bzw. 12 RLC-Datenblöcke mit 204 Datensymbolen zu je 3 Bits mit jeweils 5 Bit Datenauflösung R_1 + 1 Bit auf.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen IR-Speichers 1 hängt die Anzahl von RLC-Datenblöcken, die in dem zweiten Speicherbereich 1b des IR-Speichers 1 abgespeichert sind, einerseits von der Polling-Zeitdauer des Datenübertragungskanals und andererseits von der Schleifenlaufzeit (Round Trip Delay) ab. Bei einer bevorzugten Ausführungsform des erfindungsgemäßen IR-Speichers 1 beträgt die Speichergröße des zweiten Speicherbereichs 19.680 Datenwörter zu je 16 Bit bzw. 160 RLC-Datenblöcke von 123 x (5 x 3 Bit + 1 Bit).

Figur 10 zeigt den Vorgang der Datenkanaldekodierung unter Verwendung einer inkrementellen Redundanz gemäß der Erfindung.

In einem Schritt S1 werden die aktuellen Datensubblöcke von dem ersten Speicherbereich 1a des IR-Speichers 1 mit einer Datenauflösung R_1 von 5 Bit ausgelesen und mit der entsprechenden Punktiervorschrift depunktiert.

5

In einem weiteren Schritt S2 wird geprüft, ob ein weiterer Datensubblock mit der selben Blocksequenznummer BSN, der gleichen TFI (Temporary Frame Identity) und einem unterschiedlichen Punktierschema P vorhanden ist. Falls dies nicht der Fall ist, wird in einem Schritt S3 geprüft, ob es einen weiteren Datensubblock gibt, der die gleiche Blocksequenznummer BSN, die gleiche temporary Frame Identitiy TFI und das gleiche Punktierschema P aufweist.

10

15 Falls dies der Fall ist, werden in einem Schritt S4 dieser Datensubblock von dem zweiten Speicherbereich 1b des IR-Speichers 1 mit der zweiten Datenauflösung R_2 ausgelesen. Der ausgelesene Datenblock wird um 5 Bit nach oben skaliert und mit der entsprechenden Punktiervorschrift P depunktiert.

20

In einem Schritt S5 wird der ausgelesene und depunktierte Datensubblock mit zuvor zusammengesetzten Datensubblöcken kombiniert bzw. zusammengesetzt.

Anschließend wird in einem Schritt S6 geprüft, ob die Anzahl der kombinierten Datensubblöcke einen bestimmten Grenzwert überschritten hat oder nicht. Falls dies nicht der Fall ist, kehrt der Vorgang zu Schritt S2 zurück.

30

Im umgekehrten Fall erfolgt die Kanaldekodierung des RLC-Datenblocks in einem Schritt S7.

In einem Schritt S8 wird überprüft, ob die Dekodierung erfolgreich vorgenommen werden konnte.

Falls die Dekodierung des RLC-Datenblocks erfolgreich war, wird der zugewiesene Speicherbereich für die Daten und die Steuerinformation in einem Schritt S9 freigegeben.

Falls die Dekodierung des RLC-Datenblocks nicht erfolgreich abgeschlossen werden konnte, wird der aktuelle Datensubblock in dem zweiten Speicherbereich 1b des IR-Speichers 1 mit der zweiten Datenauflösung R_2 von beispielsweise 3 Bit in einem Schritt S10 abgespeichert.

10

20

Bei dem in Figur 10 dargestellten Ablaufdiagramm weist der zweite Speicherbereich 1b des IR-Speichers 1 eine feste zweite Datenauflösung R2 von beispielsweise 3 Bit auf.

te Datenauflösung R₂ von beispielsweise 3 Bit auf.

15 Bei einer bevorzugen Ausführungsform des erfindungsgemäßen

IR-Speichers 1 wird die zweite Datenauflösung Randantik einer

IR-Speichers 1 wird die zweite Datenauflösung R_2 adaptiv eingestellt. Dabei wird die zweite Datenauflösung R_2 vorzugsweise in Abhängigkeit von einer durch den Empfänger gemessenen Burst-Datenübertragungssignalqualität eingestellt. Für einen Datenübertragungs-Burst mit einer hohen Signalqualität werden die nicht korrekt dekodierten Datensubblöcke beispielsweise mit einer Datenauflösung von 4 Bit in dem zweiten Speicherbereich 1b abgespeichert, für einen Daten-Burst mittlerer Qualität wird eine Soft-Output-Datenauflösung R_2 von 3 Bit eingesetzt und für einen Daten-Burst niedriger Qualität wird die Datenauflösung R_2 des zweiten Speicherbereichs R_2 auf 2 Bit reduziert. Bei dieser bevorzugten zweiten Ausführungsform ist die Datenauflösung vorzugsweise zwischen verschiedenen Auflösungsstufen von 2 Bit, 3 Bit oder 4 Bit umschaltbar.

30

35

Eine weitere alternative Ausführungsform umfasst das Schalten zwischen zwei unterschiedlichen Soft-Datenauflösungen R_2 , beispielsweise einer Auflösung von R_2 von 3 Bit für Daten-Bursts mit hohe Qualität und einer Datenauflösung R_2 von 2 Bit für einen Daten-Burst mit niedriger Signalqualität.

Figur 11 zeigt den Ablauf der Dekodierung von Header-Daten bei dem erfindungsgemäßen Empfänger.

In einem Schritt S1 werden die Daten, die von dem Equaliser 5 des Empfängers empfangen werden, in einem Buffer-Speicher eines digitalen Signalprozessors DSP abgespeichert.

In einen Schritt S2 wird überprüft, ob alle vier Daten-Bursts eines RLC-Datenblocks empfangen wurden.

10

15

30

Falls alle vier Daten-Bursts, die zu dem gleichen RLC-Datenblock gehören für die Datenverarbeitung bereit sind, werden die Daten in einem Schritt S3 de-interleaved. Anschließend werden in einem Schritt S4 die Headerdaten dekodiert.

In einem Schritt S5 wird geprüft, ob die Dekodierung der Headerdaten erfolgreich abgeschlossen wurde.

Falls dies nicht der Fall ist, wird in einem Schritt S6 der derzeitige RLC-Datenblock gelöscht. Falls umgekehrt in einem Schritt S5 festgestellt wird, dass die Dekodierung der Header-Daten erfolgreich abgeschlossen werden konnte, werden in einem Schritt S7 die entsprechenden Datensubblöcke in dem ersten Speicherbereich 1a des IR-Speichers 1 mit einer Datenauflösung R1 von vorzugsweise 5 Bit abgespeichert.

Figur 12 zeigt ein Ablaufschema zum Abspeichern eines neuen Datensubblocks in den IR-Speicher 1. Zunächst wird in einem Schritt S1 ein Scan-IR-Mem durchgeführt, d.h. es wird in einer Steuerinformationstabelle nach freien Speicherplätzen gesucht.

Falls in einem Schritt S2 festgestellt wird, dass der IR
Speicher 1 voll ist, erfolgt in einem weiteren Schritt S3 eine Scan-4-Overwrite-Same-BSN-Prozedur, bei dem alle Datenblockeinträge zum Überschreiben einer Datensubblockversion

mit der gleich Blocksequenz BSN und der gleichen TFI-Nummer wie der derzeitige abzuspeichernde Datensubblock überschrieben wird. Falls kein Datensubblock mit der selben BSN-Nummer und der selben TFI-Nummer überschreibbar ist und dies im Schritt S4 festgestellt wird, werden in einer weiteren Scan-4-Overwrite-Other-BSN-Prozedur alle weiteren Datenblockeinträge in einem Schritt S5 gescannt bzw. abgesucht, und eine Datensubblockversion mit einer anderen BSN und TFI-Nummer als die des derzeitig abzuspeichernden Datensubblocks überschrieben.

- Wird im Schritt S6 festgestellt, dass diese ScanÜberschreibprozedur erfolgreich verlaufen ist, wird die Steuerinformationstabelle in einem Schritt S7 erneuert bzw. aktu15 alisiert. Konnte eine der drei im Schritt S1, S3, S5 durchgeführten Scan-Prozeduren erfolgreich abgeschlossen werden,
 wird die Kontrollinformation durch einen neuen BSN, TFI, RXQualitätswert und durch das neue Punktierschema sowie das
 neue Modulationskodierschema im Schritt S7 aktualisiert.
- Falls keine freier oder überschreibbarer Speicherplatz vorhanden ist, wird ein Anzeigesignal an die Basisstation BS übertragen, welcher der Basis anzeigt, dass kein verfügbarer Speicherplatz in der Mobilstation MS vorhanden ist.
 - Nach dem Updaten der Steuerinformationstabelle im Schritt S7 wird die Soft-Output-Datenauflösung beispielsweise um 3 Bit nach unten in einem Schritt S8 skaliert.
- Anschließend wird der Datensubblock in einem Schritt S9 abge-30 speichert. Die Information über die Speicherzuweisungsbedingungen werden in einem Schritt S10 an den Mikroprozessor der Mobilstation übertragen.
- Figur 13 zeigt die Prozedur zum Abspeichern eines neuen Da-35 tensubblocks bei einer alternativen Ausführungsform, bei der zwei unterschiedliche Soft-Output-Datenauflösungen R_2 für

30

nicht korrekt dekodierte Datensubblöcke in Abhängigkeit von der Qualität des Burst-Signals verwendet werden.

Falls eine der in den Schritten S1, S3, S6 durchgeführten

5 Scan-Prozeduren erfolgreich abgelaufen ist, wird in einem
Schritt S11 geprüft, ob die Empfangssignalqualität über einem
bestimmten Schwellenwert liegt.

In einem Schritt S12 wird die Informationstabelle upgedatet und anschließend eine Herunterskalierung der Datenauflösung auf 3 Bit in einem Schritt S12 vorgenommen.

Ist umgekehrt die Datensignalempfangsqualität unterhalb des Schwellenwertes wird in einem Schritt S14 die Tabelle entsprechend upgedatet und in einem Schritt S15 erfolgt eine Herunterskalierung der Datenauflösung auf lediglich 2 Bit.

In einem Schritt S16 wird der Datensubblock anschließend gespeichert.

In einem Schritt S17 werden schließlich der Datenverarbeitungseinheit die Speicherzuweisungsbedingungen gemeldet.

Figur 14 zeigt die gesamte notwendige Speichergröße in Abhängigkeit von der internen Signallaufzeit X_D der Mobilstation MS und der eingesetzten Datenauflösung R_2 des zweiten Speicherbereichs 1b. Für den Ausgleich der internen Signallaufzeit innerhalb des mobilen Telefons ist Speicherplatz für 12 RLC-Datenblöcke vorzusehen.

Für einen herkömmlichen IR-Speicher mit einer gleichmäßigen Datenauflösung von beispielsweise 5 Bit beträgt die Speichergröße

35 $S_{IR} = 3 \times 204 \times \{2 \times (32 + N_{TS} \times 12) \times 5 + X \times 5\}$ Bits

Die Speichergröße für einen IR-Speicher 1 gemäß der Erfindung beträgt:

 $S_{IR} = 3 \times 204 \times \{2 \times (32 + N_{TS} \times 12) \times R_2 + X_D R_1\}$ Bits

Hiermit ergibt sich für vier Zeitschlitze und eine Datenauflösung des zweiten Speicherbereichs 1b von $R_2=2$ oder $R_2=3$ die erforderliche IR-Speichergröße zu:

10 $S_{IR,2} = (12.320 + 304 \times X_D)$ zu jeweils 16 Bit

oder

5

15

20

 $S_{IR,3} = (19.860 + 204 \times X_D)$ Datenwörter mit jeweils 16 Bits.

Je niedriger die gewählte zweite Datenauflösung R_2 des zweiten Speicherbereichs 1b ist, desto höher ist die erreichte Einsparung des Speicherplatzes des IR-Speichers 1. Bei einer angenommenen Signallaufverzögerung X_D von 12 RLC-Datenblöcken beträgt beispielsweise die Einsparung des Speicherplatzes bei Verwendung einer Datenauflösung $R_2=3$ Bit 47,85% und bei einer Verwendung einer zweiten Datenauflösung $R_2=2$ Bit 65,196%.

Bei einer adaptiven Anpassung der zweiten Datenauflösung R_2 in Abhängigkeit von der gemessenen Daten-Burst-Qualität können noch bessere Ergebnisse erzielt werden.

Figur 5 zeigt die notwendige Anzahl N von Datenübertragungen pro RLC-Datenblock in Abhängigkeit von dem Signalrauschverhältnis SNR für unterschiedliche zweite Datenauflösungen R_2 des IR-Speichers 1.

Wie man aus Figur 15 erkennen kann, ist die Anzahl der not-35 wendigen Datenübertragungen pro RLC-Datenblöcke beispielsweise bei einem angenommenen Signalrauschverhältnis SNR von 12,5

15

dB bei einer Datenauflösung von 3 Bit, nahezu genauso hoch wie für eine Datenauflösung von 5 Bit.

Figur 16 zeigt den verfügbaren Datendurchsatz D in Kilobit 5 pro Zeitschlitz TS in Abhängigkeit von dem Signalrauschverhältnis und der eingesetzten Datenauflösung.

Wie man der Figur 16 entnehmen kann, liegt der Datendurchsatz pro Zeitschlitz bei einem angenommenen Signalrauschverhältnis von 12,5 dB bei einer verwendeten Datenauflösung von 5 Bit nur sehr geringfügig höher als bei einer verwendeten Datenauflösung von nur 3 Bit.

Mit dem erfindungsgemäßen IR-Speicher 1 kann daher eine signifikante Speicherplatzreduzierung erreicht werden, ohne dass die Anzahl der notwendigen Datenübertragungen pro RLC-Block ansteigt und ohne dass der Datendurchsatz pro Zeitschlitz signifikant verringert wird.

15

Patentansprüche

- 1. IR (Incremental Redunancy)-Speicher für einen EGPRS (Enhanced General Packet Radio Service)-Empfänger einer Mobilstation (MS), der von einer Feststation (BS) über einen Datenübertragungskanal Daten empfängt, wobei der IR-Speicher (1) aufweist:
- a) einen ersten Speicherbereich (1a) zum Zwischenspeichern 10 einer bestimmten Anzahl von Datenblöcken mit einer vorgegebenen ersten Datenauflösung (R_1) ;
 - b) einem zweiten Speicherbereich (1b) zum Zwischenspeichern von fehlerhaft dekodierten Datenblöcken
 - dadurch gekennzeichnet, dass
- c) der zweite Speicherbereich (1b) die fehlerhaft dekodierten 20 Datenblöcke mit einer zweiten Datenauflösung (R_2) speichert, die niedriger ist als die erste Datenauflösung (R_1) .
 - 2. IR-Speicher nach Anspruch 1
 d a d u r c h g e k e n n z e i c h n e t ,
 dass die Anzahl der in dem ersten Speicherbereich (la) des
 IR-Speichers (1) abspeicherbaren Datenblöcke von der internen
 Signalverzögerung innerhalb der Mobilstation (MS) abhängt.
- 3. IR-Speicher nach Anspruch 1,
 30 dadurch gekennzeichnet, die in dem zweiten Speicherbereich (1b) des IR-Speichers (1) speicherbar sind von
 der Polling-Zeitdauer des Datenübertragungskanals und von der
 Schleifenlaufzeit (TRIP Round Delay) abhängt.

- 4. IR-Speicher nach Anspruch 1, dad urch gekennzeichnet, dass die zweite Datenauflösung (R_2) adaptiv einstellbar ist.
- 5 5. IR-Speicher nach Anspruch 4,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass die zweite Datenauflösung (R₂) mit der die fehlerhaft
 dekodierten Datenblöcke in den zweiten Speicherbereich (1b)
 des IR-Speichers (1) abgespeichert werden in Abhängigkeit von
 einer durch den Empfänger gemessenen BurstDatenübertragungssignalqualität einstellbar ist.
- 6. IR-Speicher nach Anspruch 4,
 d a d u r c h g e k e n n z e i c h n e t ,
 15 dass die zweite Datenauflösung (R₂) zwischen verschiedenen Auflösungsstufen umschaltbar ist.
- 7. IR-Speicher nach Anspruch 6,
 d a d u r c h g e k e n n z e i c h n e t ,
 20 dass die Auflösungsstufen der zweiten Datenauflösung 2 Bit, 3
 Bit oder 4 Bit betragen.
 - 8. IR-Speicher nach Anspruch 1, dad urch gekennzeichnet, dass die erste Datenauflösung (R₁) 5 Bit beträgt.
 - 9. IR-Speicher nach einem der vorangehenden Ansprüche, dad urch gekennzeich net, dass der IR-Speicher (1) eingangsseitig an einen Empfangs-Pufferspeicher für Datenblöcke angeschlossen ist.
- 10. IR-Speicher nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der IR-Speicher ausgangsseitig an einen Dekoder angeschlossen ist.

11. IR-Speicher nach einem der vorangehenden Ansprüche, dad urch gekennzeichnet, dass die Datenblöcke RLC (Radio Link Control)-Datenblöcke sind.

12. IR-Speicher nach einem der vorangehenden Ansprüche, dad urch gekennzeichnet, dass die Datenblöcke MCS-kodiert sind.

Zusammenfassung

IR (Incremental Redunancy)-Speicher für einen EGPRS (Enhanced General Packet Radio Service)-Empfänger einer Mobilstation (MS), der von einer Feststation (BS) über einen Datenübertragungskanal Daten empfängt, wobei der IR-Speicher (1) einen ersten Speicherbereich (1a) zum Zwischenspeichern einer bestimmten Anzahl von Datenblöcken mit einer vorgegebenen ersten Datenauflösung (R₁) und einen zweiten Speicherbereich (1b) zum Zwischenspeichern von fehlerhaft dekodierten Datenblöcken aufweist, wobei der zweite Speicherbereich (1b) die fehlerhaft dekodierten Datenblöcke mit einer zweiten Datenauflösung (R₂) speichert, die niedriger ist als die erste Datenauflösung (R₁).

Figur 9

10

FIG 9

FIG 1Stand der Technik

FIG 2 Stand der Technik

<u>В</u> BCS 12 612 bits Data 592 图 B 9 BCS 12 612 bits Data 692 哥 HCS 45 bits RLC Header 3 bits USF

FIG 3 Stand der Technik

FIG 4 Stand der Technik

FIG 5 Stand der Technik

FIG 6 Stand der Technik

FIG 8

FIG 9

FIG 7 Stand der Technik

FIG 10

FIG 11

FIG 12

FIG 14

	parung	535	343	151	459	992	074	382	689	266
R ₂ =2	Speichereinsparung [%]	67.11915535	65.19607843	63.27300151	61.34992459	59.42684766	57.50377074	55.58069382	53.65761689	51.73453997
	Speichergröße [words]	13952	14768	15584	16400	17216	18032	18848	19664	20480
R2=3	Speichereinsparung [%]	49.77375566	47.85067873	45.92760181	44.99452489	42.08144796	40.15837104	38.23529412	36.31221719	34 38914027
	Speichergröße [words]	21312	22128	22944	23760	24576	25392	26208	27024	27840
ρχ	[RLC-blocks]	8	12	16	20	24	28	32	36	ΔΩ

FIG 15

FIG 16

