DEFINITION		
DEFINITION		
	Sistema inerziale Equazione di Newton come equazione differenziale	
	Principio di determinismo laplaciano	
		Meccanica Analitica
DEFINITION		
	Spazio degli stati e variabili dinamiche	
		Meccanica Analitica
DEFINITION		
	Teorema dell'energia cinetica	
		Meccanica Analitica

Un sistema di riferimento si dice inerziale se rispetto ad esso un punto non soggetto a forze si muove di moto rettilineo uniforme

$$m\vec{a} = \vec{F} \rightarrow \ddot{\vec{x}} = \frac{1}{m}\vec{F}(\vec{x}, \dot{\vec{x}}, t)$$

 $|\vec{x} = \vec{x}(t)|$ sol dell'equazione di newton se l'equazione vale in un certo intervallo di t

Ogni soluzione dell'equazione di Newton a \vec{F} fix è univocamente determinata dalle coordinate iniziali

$$\vec{x}(0) = \vec{x_0} \quad \vec{v}(0) = \vec{v_0}$$

Allora è un problema di Cauchy

Ogni soluzione è individuata da una coppia $(\vec{x_0}, \vec{v_0})$ allora consideriamo lo spazio prodotto cartesiano $I = \mathbf{R}^3 \times \mathbf{R}^3$

Fix $\vec{F} = \vec{F}(\vec{x}, \vec{v}, t)$ il teorema di Esistenza e unicità garantisce l'esistenza di una soluzione unica dell'equazione di Newton che parte al tempo t_0 da $(\vec{x_0}, \vec{v_0}) \in I$ almeno in un intorno di t_0

Le quantità di interesse fisico dette variabili dinamiche sono funzioni:

$$f: I \times \mathbf{R} \to \mathbf{R}, \quad f(\vec{x}, \vec{v}, t)$$

Le equazioni di Newton naturali in I diventano

$$\dot{\vec{x}} = \vec{v}$$
 $m\dot{\vec{v}} = \vec{F}(\vec{x}, \vec{v}, t)$

e per N punti materiali lo spazio delle fasi è $\mathbf{R}^{3N} \times \mathbf{R}^{3N}$ Il sistema delle N equazioni di secondo ordine diventa un sistema di un unica equazione di secondo grado in $X=(\vec{x_1}....\vec{x_N}) \in \mathbf{R}^{3N}$ detto spazio delle configurazioni

Dato un punto materiale soggetto a forza generica \vec{F} , definiamo l'energia cinetica $T = \frac{1}{2}mv^2$. Allora lungo ogni soluzione $\vec{x} = \vec{x}(t)$ dell'equazione di Newton si ha

$$\dot{T} = \vec{F}\vec{v}$$

o equivalentemente

$$T(t_1) - T(t_0) = \int_{t_0}^{t_1} \vec{F} \vec{v} dt$$

con $\vec{F}\vec{v}$ potenza della forza

e $\int \vec{F} \vec{v} dt$ lavoro della forza

DEFINITION	
Teorema energia cinetica:	
Caso forza posizionale	
	Meccanica Analitica
	MECCANICA ANALITICA
Deplaymon	
DEFINITION	
Forza conservativa	
	MECCANICA ANALITICA
Definition	
Teorema di conservazione dell'energia	Meccanica Analitica

 $\vec{F} = \vec{F}(\vec{x})$ allora l'integrale dipende da $\vec{x} = \vec{x}(t)$ solo attraverso la traiettoria in (t_0, t_1) γ e non dalla legge oraria

Abbiamo quindi un integrale curvilineo della forma differenziale:

$$\vec{F}(\vec{x})d\vec{x} = F_x(\vec{x})dx + F_y(\vec{y})dy + F_z(\vec{z})dz$$

Allora

$$T(t_1) - T(t_0) = \int_{\gamma} \vec{F}(\vec{x}) d\vec{x}$$

Forza che ammette potenziale cioè esiste una funzione scalare

$$V = V(\vec{x})$$
 tc $\vec{F} = -gradV$

cioè $F_x=-\frac{\partial V}{\partial x}$ $F_y=-\frac{\partial V}{\partial y}$ $F_z=-\frac{\partial V}{\partial z}$ Analogamente si può dire che la forma differenziale è esatta cioè

 $\vec{F}(\vec{x})d\vec{x} = -dV$ (lavoro infinitesimo)

In generale F_x , F_y , F_z sarebbero funzioni indipendenti di \vec{x} ma così richiediamo che siano derivate parziali della stessa funzione e quindi per Schwarz siccome \vec{F} ammette potenziale valgono:

$$\frac{\partial F_x}{\partial y} - \frac{\partial F_y}{\partial x} = 0 \quad \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0 \quad \frac{\partial F_y}{\partial z} - \frac{\partial F_z}{\partial y} = 0$$

Cioè il campo $\vec{F}(\vec{x})$ deve essere irrotazionale cioè $rot(\vec{F}) = 0$.

Per un punto materiale soggetto a forze posizionali conservative $\vec{F}(\vec{x})$ to $\vec{F} = -qradV$, lungo ogni soluzione $\vec{x} = \vec{x}(t)$ dell'equazione di Newton si ha

$$\dot{E} = 0$$

Dove

$$E := T + V$$

Energia del sistema

Ha lo stesso valore per ogni punto in una stessa orbita nello spazio delle fasi corrispondente ad una soluzione dell'equazione di Newton

DEFINITION		
	Proprietà di simmetria e leggi di conservazione	
		Magging
		Meccanica Analitica
Drawayes		
DEFINITION		
	Problema a N c orpi	
) (
		Meccanica Analitica
Danasana		
DEFINITION		
	m	
	Teorema equazioni cardinali della dinamica	
		Meccanica Analitica

- **Prop 1** Se V invariante per traslazione lungo un asse $\frac{\partial V}{\partial x_k} = 0$ allora \vec{p} lungo quell'asse è costante del moto
- **Prop 2** Se V invariante per rotazioni attorno ad un asse alllora la componente di \vec{L} lungo quell'asse è costante del moto
- Prop 3 (CNS Conservazione energia) Se V simmetrico per traslazioni temporali allora E=T+V costante del moto

Sistema a N punti materiali, ognuno con soluzione $\vec{x_k}(t)$ che soddisfa $m_k \vec{a_k} = \vec{F_k}$ equivalenti a un sistema di 2N equazioni

$$\dot{\vec{x_k}} = \vec{p_k}/m_k \quad \dot{\vec{p_k}} = \vec{F_k}$$

Definiamo $\vec{p}=\sum_k \vec{p_k}=\sum_k m_k \vec{v_k}$ $\vec{L}=\sum_k \vec{L_k}=\sum_k \vec{x_k} \times \vec{p_k}$ Allora dal sistema otteniamo

$$\dot{\vec{p}} = \vec{R} = \sum_k \vec{F_k} \quad \dot{\vec{L}} = \vec{M} = \sum_k \vec{M_k} = \sum_k \vec{x_k} \times \vec{F_k}$$

Definiamo forze di tipo classico: forze interne a 2 corpi che rispettanzo azione e reazione e sono centrali:

$$\vec{F_k} = \vec{F_k}^{int} + \vec{F_k}^{ext}, \qquad \vec{F_k}^{int} = \sum_{k \neq j} \vec{F_{kj}} \text{ to } \vec{F_{kj}} = -\vec{F_{jk}}$$

$$\vec{F_{kj}} = f_{kj}(r_{kj}) \frac{\vec{x_k} - \vec{x_j}}{r_{kj}} \qquad (f_{kj} = -f_{jk}, \quad r_{kj} = ||\vec{x_k} - \vec{x_j}||)$$

Lungo le soluzioni del sistema di equazioni di Newton per N punti con forze di tipo classico si hanno relazioni (I e II equazioni canoniche)

$$\dot{\vec{p}} = \vec{R}^{ext} = \sum_{k} \vec{F_k}^{ext}$$

$$\dot{\vec{L}} = \vec{M}^{ext}$$

Riscrivibili in termini del CM:

$$m\vec{a}_{CM} = \vec{R}^{ext}$$
 $m = \sum_k m_k$ $\vec{a}_{CM} = \ddot{\vec{x}}_{CM}$ $m\vec{x}_{CM} = \sum_k m_k \vec{x}_k$

Corollario [CN Condizioni di Equilibrio]

Sistema in equilibrio $(\vec{a}_{CM}=0,\frac{\partial \vec{L}}{\partial t}=0) \Leftrightarrow \vec{R}^{ext}=0 \quad \vec{M}^{ext}=0$

DEFINITION		
	To an area of an internal	
	Teorema potenziale forze interne	
		Meccanica Analitica
		MECCANICA ANALITICA
DEFINITION		
DEFINITION		
	Problema a 2 corpi	
	r roblema a 2 corpr	
		Meccanica Analitica
		MECCANICA ANALITICA
DEFINITION		
DEFINITION		
	Punto vincolato	
	Punto vincolato	
		3.5 A
		Meccanica Analitica

Per forze interne di tipo classico il lavoro elementare è un differenziale esatto

 $\sum_{k} \vec{F_k}^{int} d\vec{x_k} = -dV^{int}$

Dove

$$V^{int} = \frac{1}{2} \sum_{1 \le k, j \le N}^{k \ne j} V_{kj}(r_{kj})$$

con
$$V_{kj}$$
 to $f_{kj} = -\frac{dV_{kj}}{dr_{kj}}$

No forze esterne, allora $\vec{R}^{ext} = 0 \Rightarrow \vec{a}_{CM} = 0$

$$m_1\ddot{\vec{x_1}} = \vec{F}_{12}(\vec{x_1}, \vec{x_2}), \quad m_2\ddot{\vec{x_2}} = \vec{F}_{21}(\vec{x_1}, \vec{x_2}), \quad \vec{F}_{12} = -\vec{F}_{21}$$

Vogliamo il moto dei 2 pti rispetto al sdr del CM e il moto relativo cioè

$$(\vec{x_1}, \vec{x_2}) \to (\vec{r}, \vec{x}_{CM}) \text{ con } \vec{r} = \vec{x_1} - \vec{x_2} \quad m\vec{x}_{CM} = m_1\vec{x_1} + m_2\vec{x_2}$$

Teor [Problema a 2 corpi]

Per sistema a 2 corpi soggetto solo a forze interne che soddisfano azione e reazione si ha

$$\ddot{\vec{x}}_{CM} = 0 \quad \mu \ddot{\vec{r}} = \vec{F}_{12}(\vec{r})$$

 $con \frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$

Oss[Significato massa ridotta]

Sistema non inerziale allora forze apparenti, massa ridotta per avere forma inerziale

Punto vincolato a muoversi su linea o superficie liscia (No impedimenti per spostamenti lungo la superficie cioè \vec{F}^v perpendicolare alla superficie)

Abbiamo fix solo la direzione di \vec{F}^v ma non l'intensità allora il numero di incognite rimane 3.

Se z=f(x,y) abbiamo 1) Esistenza di \vec{F}^v segue dall'aver postulato validità equazioni di Newton. 2) \vec{F}^v non è noto a priori ma è determinato dal movimento cioè dai dati iniziali

Per moto vincolato postuliamo quindi $m\vec{a} = \vec{F} + \vec{F}^v$.

Per det eq pura proiettiamo su sp tangente alla sup/linea e risolviamo $\vec{x}(t)$, ricaviamo $\vec{a}(t)$ e quindi \vec{F} da cui $\vec{F}^v = m\vec{a} - \vec{F}$ (**Principio** di **D'Alembert**)

Basra scrivere la lagrangiana L in termini di coordinate libere e fare le derivate secondo

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \quad i = 1...n$$

con n numero di GDL

DEFINITION		
	Rappresentazione parametrica locale	
	_	
		Meccanica Analitica
DEFINITION		
	Linee e vettori coordinati	
	Pinice e verroit coolainari	
		Magazyra, Asserta
		Meccanica Analitica
DEFINITION		
DELIMITION		
	Movimenti su carta locale	
		Meccanica Analitica

Una superficie in \mathbb{R}^3 viene definita attraverso un eq in forma implicita.

In generale del tipo $f(\vec{x}) = 0$, questa rappresentazione è globale cioè descrive tutta la superficie. Questo impone un vincolo sulle coordinate: in gen 2 libere su un aperto di \mathbf{R}^2 e l'altra determinata, allora nozione di rappresentazione parametrica locale o carta locale.

Si ha una carta locale quando è assegnata una funzione

$$F: U \to \mathbf{R}^3 \quad \vec{x} = F(q) \quad q = (q_1, q_2)$$

dove U aperto $U \subset \mathbf{R}^2$

Con abuso di notazione chiamiamo F con $\vec{x} = \vec{x}(q)$, la rappresentazione \vec{x} è detta formula di immersione.

Per descrivere parametricamente una superficie si deve avere un insieme di carte locali (Atlante)

Def [Linee coordinate] $\forall q \in U$ Esiste unico $P \in M$ superficie

Allora \forall linea $\subset U$ corrisponde linea $\subset M$

Linea corrisp a $q_1 = cost$ o $q_2 = cost$ è detta linea coordinata

Def [Vettori coordinati] Dato $P \in M$ di coord $q = (q_1, q_2)$ nella carta $\vec{x}(q)$ sono detti vettori coord i vettori $\frac{\partial \vec{x}}{\partial q_i}$ spiccati da P e tangenti alle linee coordinate .

Questi sottendono il piano T
g alla varietà M nel pto P $T_{P}M$

Per un adeguata definizione di carta locale richiediamo $\frac{\partial \vec{x}}{\partial q_i}$ LI (Allora matrice Jacobiana $\frac{\partial \vec{x_l}}{\partial q_j}$ ha rango max).

Facile dim che LI di vett coordinati comporta che, introdotta la matrice

$$g_{ik} = \frac{\partial \vec{x}}{\partial q_i} \frac{\partial \vec{x}}{\partial q_k}$$
 si ha la $det(g_{ik}) \neq 0$

 g_{ik} definisce la metrica naturale (prod scalare) sulla varietà M

Un movimento $\vec{x}(t)$ è per definizione una funzione che ad ogni $t \in I \subset \mathbf{R}$ aperto associa un pto $P \in \mathbf{R}^3$

Fix la carta locale mediante la funzione di immersione $\vec{x}(q)$ per assegnare il movimento basta assegnare q(t) e avremo $\vec{x}(t) = \vec{x}(q(t))$. Allora

$$\vec{v} = \frac{d\vec{x}}{dt} = \frac{\partial \vec{x}}{\partial q} \dot{q} = \sum_{i} \frac{\partial \vec{x}}{\partial q_{i}} \dot{q}_{i}$$

Se il p
to mobile passa per $P \in M$ allora \vec{v} giace in $T_P M$ perchè c
l di $\frac{\partial \vec{x}}{\partial q_i}$

Inoltre se il moto è espresso nella carta da q(t) allora le componenti di \vec{v} sulla base dei vettori coordinati sono le derivate $\dot{q}(t)$

Analogamente per l'accelerazione otteniamo $\vec{a} = \frac{d\vec{v}}{dt} = \sum_i a^i \frac{\partial \vec{x}}{\partial q_i}$

DEFINITION	
	Formula del Binomio Lagrangiano
	Meccanica Analitica
DEFINITION	
	Equazioni di Lagrange per un punto
	Meccanica Analitica
DEFINITION	
	Spazio ambiente e carta, invarianza delle coordinate di Lagrange Spazio degli Stati
	Meccanica Analitica

Vale

Equivalentemente in termini di T

$$\vec{a}\frac{\partial \vec{x}}{\partial q_i} = \frac{d}{dt}\frac{\partial v^2/2}{\partial \dot{q}_i} - \frac{\partial v^2/2}{\partial q_i}$$

$$\vec{a}\frac{\partial \vec{x}}{\partial q_i} = \frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i}$$

Su una superficie rappresentata localmente dalla carta $\vec{x} = \vec{x}(q)$ si ammette che valga l'equazione di Newton-D'Alembert $m\vec{a} = \vec{F} + \vec{F}^v$. Come ottenere l'equazione pura senza \vec{F}^v ? Proiettiamo sui vettori coord $\frac{\partial \vec{x}}{\partial q_i}$ che sono Tg alla sup

$$\vec{F}^v \frac{\partial \vec{x}}{\partial q_i} = 0 \quad \forall i = 1...n \qquad m\vec{a} \frac{\partial \vec{x}}{\partial q_i} = \vec{F} \frac{\partial \vec{x}}{\partial q_i} \quad \forall i = 1...n$$

Da $\vec{F} = -gradV \rightarrow \vec{F} \frac{\partial \vec{x}}{\partial q_i} = -\frac{\partial V}{\partial q_i} \frac{\partial \vec{x}}{\partial q_i} \Rightarrow \vec{F} \frac{\partial \vec{x}}{\partial q_i} = -\frac{\partial V}{\partial q_i}$ Allora le equazioni di Newton sulle linee coordinate diventano

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = -\frac{\partial V}{\partial q_i} \quad \forall i = 1...n$$

Teorema

Consideriamo un punto libero o su una sup liscia la cui pos sia rappresentata da una carta locale $\vec{x}(q)$. Allora i movimenti q(t) sulla carta corrispondenti alle sol dell'equazione di Newton-D'Alembert $m\ddot{\vec{x}} = -gradV + \vec{F}^v$ sono le soluzioni delle equazioni di Lagrange

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \forall i = 1...n$$

Con $L = L(q, \dot{q})$ Lagrangiana definita L=T-V

Le eq di Lagrange e l'eq di Newton vivono in sp
 diversi: le eq di Newton in ${\bf R}^3$ e quelle di Lagrange nella carta delle coordinate q
 Quando risolte q=q(t) allora $\vec x(t)=\vec x(q(t))$ ed eventualmente $\vec F^v(t)=m\vec x-\vec F(\vec x(t))$

Se si sceglie una diversa carta con coordinate $q' = (q'_1...q'_n)$ le equazioni del moto avranno la stessa forma di lagrange con coord q' invece di q

Per un punto libero oltre allo sp
 delle configurazioni \mathbf{R}^3 consideriamo lo spazio degli stati
 $(\vec{x}, \vec{v}) \in \mathbf{R}^6$

Qui le variabili dinamiche sono $f: \mathbf{R}^6 \to \mathbf{R}$

Se un punto è vincolato alla superficie 2D $M \subset \mathbf{R}^3$ allora M spazio delle configurazioni e lo spazio degli stati è TM o fibrato di M def da $(\vec{x}, \vec{v}) : \vec{x} \in M, \quad \vec{v} \in T_{\vec{x}}M$

 $L:TM\to\mathbf{R}$

Fix una carta locale $\vec{x}(q)$ per M, avendo fix $\vec{x} \in M$ sul piano Tg $T_{\vec{x}}M$ viene assegnata automaticamente la base $\frac{\partial \vec{x}}{\partial q_i}$ allora ogni $\vec{v} \in T_{\vec{x}}M$ è individuato da una coppia $(q, \dot{q}) \in \mathbf{R}^n \times \mathbf{R}^n$

L quindi è intrinsecamente definito su TM e quando scegliamo una carta per M essa è rappresentata analiticamente da una funzione $L = L(q, \dot{q})$.

Le equazioni di Lagrange possono essere espresse più in gen usando $\vec{F}(\vec{x}, \vec{v}, t)$, introduciamo la forza generalizzata Q: $Q_i = \vec{F} \frac{\partial \vec{x}}{\partial q_i}$

Allora le eq di Lagrange: $\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i$. Il significato fisico di Q si capisce considerando il lavoro elementare di F $\delta W = \vec{F} d\vec{x} = Q dq$

DEFINITION	
Equazioni di Lagrange per punto vincolato a superficie mobile o trasform	azione di coordinate
dipendente dal tempo	
	l l
	Meccanica Analitica
DEFINITION	
Equazioni di Lagrange per N punti	
	Meccanica Analitica
DEFINITION	
BEIMION	
Condizione di perfezione del vincolo per N punti	
	Meccanica Analitica

$$\vec{x} = \vec{x}(q,t) \in \mathbf{R}^3 \quad q = (q_1...q_n)$$

- **n=1** Per ogni t fix $\vec{x}(q,t)$ è la funz di immersione di una linea ben def, quindi $\forall t$ si ha una diversa linea $\vec{x}(q,t)$ famiglia di linee parametrizzate in t
- n=2 famiglia di superfici parametrizzate in t
- n=3 $\vec{x}(q,t)$ descrive situa molto diversa: cambiamento di variabili dip dal tempo.

Per es una situa in cui un pto P è in coord q relative a un sdr il cui moto rispetto al sdr assoluto è assegnato (per es rotazione)

La condizione di vincolo liscio è \vec{F}^v perpendicolare alla sup. Per $\vec{x}(q,t)$ abbiamo $\vec{v} = \frac{\partial \vec{x}}{\partial q}\dot{q} + \frac{\partial \vec{x}}{\partial t}$

Oss che $\forall t \frac{\partial \vec{x}}{\partial a_i} \in T_{\vec{x}} M$. Infatti la \vec{v} ha una pt tg e una trasversa legata al trascinamento della sup. Allora possiamo ancora esprimere la condizione del vincolo liscio come $\vec{F} \frac{\partial \vec{x}}{\partial q_i} = 0$. Di conseguenza valgono ancora le formule del binomio lagrangiano perchè valgono ancora le eq di Lagrange. Unica differenza: $T = \frac{1}{2} m v^2 = \sum_{ik} a_{ik} \dot{q}_i \dot{q}_k + \sum_i b_i \dot{q}_i + c \text{ con coeff } a_{ik} = \frac{m}{2} \frac{\partial \vec{x}}{\partial q_i} \frac{\partial \vec{x}}{\partial q_k} \quad b_i = \frac{m}{2} \frac{\partial \vec{x}}{\partial q_i} \frac{\partial \vec{x}}{\partial t} \quad c = \frac{m}{2} ||\frac{\partial \vec{x}}{\partial t}||^2$

$$T = \frac{1}{2}mv^2 = \sum_{ik} a_{ik}\dot{q}_i\dot{q}_k + \sum_i b_i\dot{q}_i + c \text{ con coeff } a_{ik} = \frac{m}{2}\frac{\partial\vec{x}}{\partial q_i}\frac{\partial\vec{x}}{\partial q_k} \quad b_i = \frac{m}{2}\frac{\partial\vec{x}}{\partial q_i}\frac{\partial\vec{x}}{\partial t} \quad c = \frac{m}{2}||\frac{\partial\vec{x}}{\partial t}||$$

Oss: $det(a_{ik}) \neq 0 \Rightarrow$ gli n vettori coord sono LI

N punti: $\vec{x_1}...\vec{x_N} \in \mathbf{R}^3 \to X = (\vec{x_1},...,\vec{x_N}) \in \mathbf{R}^{3N}$

Se il sistema è vincolato allora X giace in una superficie $M \subset \mathbf{R}^{3N}$ con dimensione n < 3N cioè deve essere possibile esprimere localmente $\vec{x_1}...\vec{x_N}$ per ogni pto mediante le coordinate $q=(q_1,...,q_n)$ attraverso X(q).

Se il sistema non è vincolato allora n=3N e X(q) esprime le posizioni di tutti i pti mediante coord arbitrarie.

NB: q non appartengono a nessuno degli N pti singolarmente ma appartengono al sistema.

Per descrivere il moto del sist è importante stabilire eq per gli n coord ricavate dalle eq valide per gli N pti del sist. Assegnata la varietà M e una carta X(q) sono def le linee coord e i vett coord $\frac{\partial X}{\partial q_i}$ e quindi T_XM . L'unione di tutti i T_XM cioè l'insieme di (X, V) $X \in M$ $V \in T_X M$ è lo spazio degli stati.

Moto del sist: $m_1\vec{a_1} = \vec{F_1} + \vec{F_1}^v$,..., $m_N\vec{a_N} = \vec{F_N} + \vec{F_N}^v$. def $F = (\vec{F_1}, ..., \vec{F_N})$ $F^v = (\vec{F_1}^v, ..., \vec{F_N}^v)$ $P = (m_1\vec{v_1}, ..., m_N\vec{v_N})$ Ammetteremo che l'idealità del vincolo si esprima: $F^v \frac{\partial X}{\partial q_i} = 0$. Allora le eq di Newton in \mathbf{R}^{3N} : $\dot{P} = F + F^v$

Per la perfezione del vincolo otteniamo n eq pure: $\dot{P}\frac{\partial X}{\partial q_i} = F\frac{\partial X}{\partial q_i}$.

Vale ancora la formula del binomio lagrangiano: $\dot{p_1} \frac{\partial \vec{x_1}}{\partial q_i} = \frac{d}{dt} \frac{\partial T_1}{\partial q_i} \dots \dot{p_N} \frac{\partial \vec{x_N}}{\partial q_i} = \frac{d}{dt} \frac{\partial T_N}{\partial q_i} - \frac{\partial T_N}{\partial q_i} = \dot{p_1} \frac{\partial \vec{x_1}}{\partial q_i} + \dots + \dot{p_N} \frac{\partial \vec{x_N}}{\partial q_i}$ Allora $\dot{P}\frac{\partial X}{\partial q_i} = \frac{d}{dt} \frac{\partial T}{\partial q_i} - \frac{\partial T}{\partial q_i}$. Infine se esiste $V(\vec{x_1}, ..., \vec{x_N})$ to $F_j = -grad_j V = -\frac{\partial V}{\partial x_j}$ allora $F\frac{\partial X}{\partial q_i} = -\frac{\partial V}{\partial q_i}$ allora valgono le eq di lagrange.

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \quad L = T - V$$

La F^{v} deve essere perpendicolare alla superficie delle configurazioni.

Se consideriamo il lavoro totale delle condizioni vincolari, gli spostamenti infinitesimi compatibili coi vincoli sono

$$dX = \frac{\partial X}{\partial q} dq \left(= \sum_{i} F^{v} \frac{\partial X}{\partial q_{i}} dq_{i} \right)$$

Allora il lavoro totale elementare dei vincoli è

$$\delta W = F^v \frac{\partial X}{\partial q} dq$$

Quindi la condizione di perfezione dei vincoli è equivalente al fatto che

$$\delta W = 0$$

Teorema dell'energia generalizzata o di Jacobi Meccanica Analitica	DEFINITION		
DEFINITION Punti di Equilibrio			
DEFINITION Punti di Equilibrio			
DEFINITION Punti di Equilibrio			
DEFINITION Punti di Equilibrio			
DEFINITION Punti di Equilibrio			
DEFINITION Punti di Equilibrio			
Definition Punti di Equilibrio		Teorema dell'energia generalizzata o di Jacobi	
Definition Punti di Equilibrio			
Definition Punti di Equilibrio			
Definition Punti di Equilibrio			
Definition Punti di Equilibrio			
Definition Punti di Equilibrio			
DEFINITION Punti di Equilibrio			
Punti di Equilibrio			Meccanica Analitica
Punti di Equilibrio			
	DEFINITION		
Meccanica Analitica		Punti di Equilibrio	
Meccanica Analitica) f
			MECCANICA ANALITICA

Da eq di Lagrange
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q} \Rightarrow \dot{q} \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q} \dot{q} \Rightarrow \frac{d}{dt} (\frac{\partial L}{\partial \dot{q}} \dot{q}) - \frac{\partial L}{\partial \dot{q}} \ddot{q} = \frac{\partial L}{\partial q} \dot{q} \text{ ma } q = q(t) \quad L = L(q(t), \dot{q}(t))$$
Allora $\frac{dL}{dt} = \frac{\partial L}{\partial q} \dot{q} + \frac{\partial L}{\partial \dot{q}} \ddot{q} \Rightarrow \frac{d}{dt} (\dot{q} \frac{\partial L}{\partial \dot{q}}) = \frac{dL}{dt}$
Otteniamo conservazione $\dot{\varepsilon} = 0$ con $\varepsilon = \frac{\partial L}{\partial \dot{q}} \dot{q} - L$

Def $p := \frac{\partial L}{\partial \dot{q}}$ momento coniugato alla q. Allora $\varepsilon = p\dot{q} - L$

Ulteriore gen se considero il caso L=L(t) per $\vec{x}=\vec{x}(q,t)$ per esempio vincoli mobili o sdr non inerziali Allora $\frac{d}{dt}L=\frac{\partial L}{\partial q}\dot{q}+\frac{\partial L}{\partial \dot{q}}\ddot{q}+\frac{\partial L}{\partial t}\Rightarrow \frac{dL}{dt}-\frac{\partial L}{\partial t}=\frac{\partial L}{\partial q}\dot{q}+\frac{\partial L}{\partial \dot{q}}\ddot{q}\Rightarrow \dot{\varepsilon}=-\frac{\partial L}{\partial t}$

Per sist Lagrangiano con $L(q, \dot{q}, t)$ in carta assegnata $\vec{x}(q, t)$ $\forall q(t)$ soddisfacente le eq di Lagrange: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$ si ha: $\dot{\varepsilon} = 0 \text{ con } \varepsilon = p\dot{q} - L \quad (p = \frac{\partial L}{\partial \dot{q}})$. In particolare se la L dipende esplicitamente da t allora $\frac{\partial L}{\partial t} = 0$ allora ε cost del moto.

Nel caso L=T-V in gen $T = T_1 + T_2 + T_3$ con Oss Nella deduzione non usiamo L=T-V ma solo eq Lagrange.

 $T_2 = \sum_{ik} a_{ik} \dot{q}_{ik} \dot{q}_{k} \quad T_1 = \sum_{i} b_{i} \dot{q}_{i} \quad T_0 = c \text{ tc } det(a_{ik}) \neq 0$ $p\dot{q} = \frac{\partial L}{\partial \dot{q}} \dot{q} = \frac{\partial T}{\partial \dot{q}} \dot{q} = 2T_2 + T_1 \text{ per teorema di Eulero. Allora per L=T-V abbiamo } \varepsilon = 2T_2 + T_1 - (T_2 + T_1 + T_0 - V). \text{ Quindi vale:}$ $Prop: \text{ Nei sist naturali L=T-V dove } T = T_2 + T_1 + T_0, \ \varepsilon = p\dot{q} - L \text{ assume forma } \varepsilon = T_2 - V^* \text{ con } V^* = V - T_0$ $In \text{ partic per funz di immersione indip da t } x_k^{\dagger} = x_k^{\dagger}(q) \text{ si ha } T = T_2 \text{ allora l'energia generalizzata coincide con quella meccanica}$ $\varepsilon = E := T - V$

Trattazione significativa per caso particolare di sist naturale indipendente da t:

$$L(q, \dot{q}) = \sum_{ik} a_{ik} \dot{q}_i \dot{q}_k - V(q)$$

Cerchiamo se esiste sol particolare di equilibrio $q(t) = q^*$ (quindi $\dot{q} = \ddot{q} = 0$)

Proposizione

Per un sist Lagrangiano naturale indip da t i pti q^* di equilibrio sono pti stazionari di V cioè

$$\frac{\partial V}{\partial q_i}(q^*) = 0 \quad \forall i = 1...n$$