EE 660

MACHINE LEARNING FROM SIGNALS: FOUNDATIONS AND METHODS

Prof. B. Keith Jenkins

Lecture 14

Lecture 14 EE 660 Oct	oct 8, 2020
-----------------------	-------------

Announcements

- Homework 5 is due tomorrow
- Final project assignment will be posted soon

Today's Lecture

- Sparsity and regularization
- Bridge regression and p-norm

LI Regularization and Sparsity [Murphy 13.3.1]

Minimization problem: argmin J(w)

(i)
$$\Rightarrow$$
 min $\left(RSS\left(\underline{w}\right)\right)$ s.t. $\left\|\underline{w}\right\| \leq B$ (Lasso)

Compare with:

=> Lasso provides a sparser solution reg. (Generally true)

Example

Prostate cancerdata (regression)

Goal: predict PSA from common features (8 features)

N = 97 patients

[Hastie Table 3.3]

[Murphy Fig. 13.7- regularization paths]

Comment: Bayesian feature selection and lo regularization are covered in Murphy 13.2 (optional N.R.F.)

TABLE 3.3. Estimated coefficients and test error results, for different subset and shrinkage methods applied to the prostate data. The blank entries correspond to variables omitted. $f = RSS(\frac{N}{N})$

	\checkmark	Nevel				
Term	LS	Best Subset	Ridge	Lasso	PCR	PLS
Intercept	2.465	2.477	2.452	2.468	2.497	2.452
lcavol	0.680	0.740	0.420	0.533	0.543	0.419
lweight	0.263	0.316	0.238	0.169	0.289	0.344
age	-0.141		-0.046		-0.152	-0.026
lbph	0.210		0.162	0.002	0.214	0.220
svi	0.305		0.227	0.094	0.315	0.243
lcp	-0.288		0.000		-0.051	0.079
gleason	-0.021		0.040		0.232	0.011
pgg45	0.267		0.133		-0.056	0.084
Test Error	0.521	0.492	0.492	0.479	0.449	0.528
Std Error	0.179	0.143	0.165	0.164	0.105	0.152

From: T. Hastie, et al., The Elements of Statistical Learning, 2nd Ed. (Springer, 2013).

Bridge Regression [Murphy 13.6.1]

- Feneralize 12, 1, regularization and constraints,

Estimate w using MAP with an exponential power distribution as prior.

ExpPwr
$$(w_j | \mu_j, a, b) \stackrel{\triangle}{=} \frac{b}{2a\Gamma(b)} \exp \left\{ -\frac{|w_j - \mu_j|b}{ab} \right\}$$
[Murphy Eq. (13.132) \leftarrow may have errors]

Leads to an est .:

$$\hat{w} = \underset{w}{\operatorname{arg min}} \left\{ NLL(\underline{w}) + \lambda \underbrace{\sum_{j=1}^{b} |w_{j}|^{b}}_{j=1} \right\}, b \ge 0$$

Like an "l" regularizer or "p-norm" based regularizer.

$$p-norm \triangleq \left[\sum_{j=1}^{p} |w_{j}|^{p}\right]$$

Note:

2.
$$\sum_{j=1}^{2} |w_{j}|^{b}$$
 is convex for $b^{\geq 1}$

Example:

-log
$$p(w|D) \propto ||y-Xw||^2 + \lambda \stackrel{>}{\underset{j=1}{\sum}} |w_j|^b$$

one observation: $N=1$, (x_1,y_1) ; $D=2$.
-log $p(w|D) \propto [y_1-(w_1x_1+w_2x_2)]^2 + \lambda [|w_1|^b+|w_2|^b]$
Given

N=1 throughout

Note:

2 local maxima

Murphy Fig. 13.17.