

HÖHERE TECHNISCHE BUNDESLEHRANSTALT HOLLABRUNN

Höhere Abteilung für Elektronik – Technische Informatik

Klasse / Jahrgang:	Übungsbetreuer:
4BHEL	Dipl. Ing. Josef Reisinger
Übungsnummer:	Übungstitel:
ASM_Z80/1	2er-Lauflicht-Zeit
Datum der Vorführung:	Gruppe:
11.10.2019	Platajs Martin
Datum der Abgabe:	Unterschrift:
23.10.2019	

Beurteilungskriterien

Programm:	Punkte
Programm Demonstration	
Erklärung Programmfunktionalität	
Protokoll:	Punkte
Pflichtenheft	
(Beschreibung Aufgabenstellung)	
Beschreibung SW Design (Flussdiagramm,	
Blockschaltbild,)	
Dokumentation Programmcode	
Testplan (Beschreibung Testfälle)	
Kommentare / Bemerkungen	
Summe Punkte	

Note:			

Inhaltsverzeichnis

1	Produktanforderungen	3
	Softwaredesign	
	Speicher / Registerbelegung	
	Berechnung der verwendeten Warteschleife	
5	Programmlistung	6
6	Testdaten	8
7	Abschließende Bemerkungen	8
	7.1 Probleme	8
	7.2 Erkenntnisse	8
8	Zeitaufwand	8

1 Produktanforderungen

Es ist ein mit Unterprogrammen strukturiertes Programm für den "Microprofessor" μ PF1 zu schreiben, welches ein links / rechts umschaltbares Lauflicht mit Dunkelphase (1 oder 2 Bit rotieren) und mit einstellbarer Zeit realisiert.

8 LED des μPF1 (L7,L6, L5, L4, L3, L2, L1, L0)

8 Schalter des μPF1 (S7, S6, S5, S4, S3, S2, S1, S0)

Schalter: oben => "1" unten => "0"

Schalter - Belegung:

S7	S6	S5	S4	S3	S2	S1	S0
0Linkslauf	01 Bit	Zoit 0.1 his 6.2 Sakundan sinatallhar					
1Rechtslauf	12 Bit	Zeit 0,1 bis 6,3 Sekunden einstellbar					

LED - Belegung:

L7	L6	L5	L4	L3	L2	L1	L0
LED 7	LED 6	LED 5	LED 4	LED 3	LED 2	LED 1	LED 0

Mit S7 wird entschieden ob das Lauflicht nach links oder nach rechts läuft. Mit S6 wird bestimmt ob 1 oder 2 Bits durchlaufen. Die restlichen Schalter S5-S0 sind für die einstellbare Zeit zuständig. Die Dunkelphase ist jene Zeit, in welcher keine LED leuchtet. Sie tritt zwischen den Durchläufen der LEDs auf, außerdem ist sie so lang wie die eingestellte Zeit.

Wenn die Schalter S5-S0 alle 0 sind liegen 0,1 Sekunden zwischen dem Weiterschalten der LEDs. Die Richtung der LEDs wird erst nachdem einem vollständigen durchlauf geändert, während die Zeit sofort übernommen wird, wenn die Schalter geändert werden.

2 Softwaredesign

3 Speicher / Registerbelegung

Der RAM Speicher wurde lediglich für den Programmcode verwendet.

Verwendete Register:

Α	Diverses
В	Zählregister für Warteschleife
С	Zählregister für Lauflicht
D	Hilfsregister zum Zwischenspeichern vom A Register
L	Zählregister für Warteschleife

I/O-Bausteine:

LED/Schalter Die LED/Schalter Platine wurde unter der Adresse CO_H angesprochen.

4 Berechnung der verwendeten Warteschleife

Label	Programmcode	Taktzyklen	Anzahl der Durchläufe
Wait:	LD D,A	4	1
	IN A,(C0)	11	1
Loop:	LD L, #32	7	A
outer:	LD B, #00	7	A*50
inner:	DEC B	4	A*50*256
	JP NZ, inner	10	A*50*256
	DEC L	4	A*50
	JP NZ, outer	10	A*50
	AND #3F	7	A
	JP Z, skip	10	A
	DEC A	4	A-1
	JP NZ, Loop	10	A-1
skip:	LD A,D	4	1
	RET	10	1

¹ Taktzyklus des μ PF1 dauert 1 / 1,79MHz = 0,56 μ s

Dauer Warteschleife:

 $0.56 \mu s * (4+11+7*A+7*A*50+4*A*50*256+10*A*50*256+4*A*50+10*A*50+7*A+10*A+4*(A-1)+10*(A-1)+4+10) = ? (von A Register abhängig)$

HTBL – Hollabrunn Platajs / 4BHEL Seite 5 von 8

5 **Programmlistung**

Adresse 1800 1802 1805	OP-Code DB CO CD 10 18 C3 00 18	Label Main:	Mnemonik IN A,(CO) CALL singledualdetect JP Main	Kommentare aktuelle Schalterstellungen einlesen überprüfen ob single or dual Modus
1810 1812 1814 1817 181A 181B 181E	DB C0 E6 40 C2 1B 18 CD 30 18 C9 CD 90 18 C9	Single_dual_detect: D:	IN A, (CO) AND #40 JP NZ, D CALL single RET CALL dual RET	aktuelle Schalterstellungen einlesen 7. und 50. Schalter maskieren wenn 6. Schalter 1 => dual sonst single eine LED läuft zwei LEDs laufen
1830 1832 1834 1837 183A 183B 183E	DB C0 E6 80 CA 3B 18 CD 50 18 C9 CD 70 18 C9	single: L:	IN A, (CO) AND #80 JP Z, L CALL singleRight RET CALL singleLeft RET	aktuelle Schalterstellungen einlesen 6 0. Schalter maskieren wenn 7. Schalter 0 => Linkslauf sonst Rechtslauf 1 Bit Rechtslauf 1 Bit Linkslauf
1850 1852 1854 1856 1859 185B 185C 185F	0E 09 3E 80 D3 C0 CD EF 18 CB 3F 0D C2 54 18 C9	singleRight: Loop:	LD C, #09 LD A, #80 OUT (C0), A Call Wait SRL A DEC C JP NZ, Loop RET	Zähler setzten damit LEDs durchlaufen + Dunkelzeit 1. LED setzen Ausgabe auf LEDs Warteschleife aufrufen Register weiterschieben Zähler um eins verringern Solange LEDs nicht durchgelaufen => wiederholen
1870 1872 1874 1876 1879 187B 187C	0E 09 3E 01 D3 C0 CD EF 18 CB 27 OD C2 74 18 C9	singleLeft: Loop:	LD C, #09 LD A, #01 OUT (C0), A Call Wait SLA A DEC C JP NZ, Loop RET	Zähler setzten damit LEDs durchlaufen + Dunkelzeit 1. LED setzen Ausgabe auf LEDs Warteschleife aufrufen Register weiterschieben Zähler um eins verringern Solange LEDs nicht durchgelaufen => wiederholen

1890 1892 1894 1897 189A 189B 189E	DB CO E6 80 CA 9B 18 CD BO 18 C9 CD DO 18 C9	dual: L:	IN A, (CO) AND #80 JP Z, L CALL dualRight RET CALL dualLeft RET	aktuelle Schalterstellungen einlesen 6 0. Schalter maskieren wenn 7. Schalter 0 => Linkslauf sonst Rechtslauf 2 Bit Rechtslauf 2 Bit Linkslauf
18B0 18B2 18B4 18B6 18B9 18BB 18BC 18BF	0E 09 3E C0 D3 C0 CD EF 18 CB 3F OD C2 B4 18 C9	dualRight: Loop:	LD C, #09 LD A, #C0 OUT (C0), A Call Wait SRL A DEC C JP NZ, LoopRe2 RET	Zähler setzten damit LEDs durchlaufen + Dunkelzeit 1. 2 LEDs setzen Ausgabe auf LEDs Warteschleife aufrufen Register weiterschieben Zähler um eins verringern Solange LEDs nicht durchgelaufen => wiederholen
18D0 18D2 18D4 18D6 18D9 18DB 18DC 18DF	0E 09 3E 03 D3 C0 CD EF 18 CB 27 OD C2 D4 18 C9	dualLeft: Loop:	LD C, #09 LD A, #03 OUT (CO), A Call Wait SLA A DEC C JP NZ, Loop RET	Zähler setzten damit LEDs durchlaufen + Dunkelzeit 1. 2 LEDs setzen Ausgabe auf LEDs Warteschleife aufrufen Register weiterschieben Zähler um eins verringern Solange LEDs nicht durchgelaufen => wiederholen
18EF 18F0 18F2 18F4 18F6 18F7 18FA 18FB 18FE 1900 1903 1904 1907 1908	57 DB C0 2E 19 06 00 05 C2 F6 18 2D C2 F4 18 E6 3F CA 07 19 3D C2 F2 18 7A C9	Wait: Loop: outer: inner:	LD D,A IN A,(CO) LD L, #19 LD B, #00 DEC B JP NZ, inner DEC L JP NZ, outer AND #3F JP Z, skip DEC A JP NZ, Loop LD A,D RET	Registerstand zwischenspeichern aktuelle Schalterstellungen einlesen 25 bzw 50 * 4ms bzw 2ms 2ms Schleife variable Zeit einlesen (A Register) * 100ms wenn A 0 soll nur 100ms gewartet werden Vorheriger Registerstand wiederherstellen

6 Testdaten

Schalter	Wirkung	Anmerkung
Linkslauf mit 1Bit	1 Bit läuft beginnend von rechts	
	nach links durch	
Linkslauf mit 2 Bit	2 Bits laufen beginnend von	
	rechts nach links durch	
Rechtslauf mit 1Bit	1 Bit läuft beginnend von links	
	nach rechts durch	
Rechtslauf mit 2 Bit	2 Bits laufen beginnend von links	
	nach rechts durch	
Einstellbare Zeit auf 0	Jede LED leuchtet einzeln 0,1s	
gestellt	auf und sind nach dem	
	Durchlauf (nach 0,8s) 0,1s	
	dunkel (Dunkelphase).	
Einstellbare Zeit auf 25	Jede LED leuchtet einzeln 2,5s	
gestellt	auf und sind nach dem	
	Durchlauf (nach 20s) 2,5s	
	dunkel (Dunkelphase).	

7 Abschließende Bemerkungen

7.1 Probleme

Beim Erstellen des Programms wurde zuerst nicht berücksichtigt, dass Register in Unterprogrammen überschrieben wurden, ohne den Inhalt zwischenzuspeichern.

7.2 Erkenntnisse

- Umgang mit der Hardware μPF1
- > Grundsätze der Assemblerprogrammierung kennengelernt
- > Übersetzung in den OP-Code
- > Richtiges setzen von Adressen
- > Fehlersuche in einem Assemblerprogramm

8 Zeitaufwand

Tätigkeit	Aufwand	
Erstellung des Pflichtenhefts	0,5h	
Erstellung des Systemdesign (Flussdiagramm bzw.	3h	
Struktogramm und ev. UI Design)		
Programmcodierung (incl. Fehlersuche)	4h	
Testen der Software	2h	
Dokumentation (Protokoll)	3h	
Gesamt:	12,5h	

HTBL – Hollabrunn Platajs / 4BHEL Seite 8 von 8