Relatório de consultoria Estatística
ANÁLISE SOBRE A INFLUÊNCIA DE UM PROGRAMA DE EXERCÍCIOS RESISTIDOS EM PACIENTES QUE FAZEM HEMODIÁLISE
Consultores: Luiz Fernando Coelho Passos, Lyncoln Sousa de Oliveira

Sumário

Apresentação	3
Luiz Fernando Coelho Passos	3
Lyncoln Sousa de Oliveira	3
Resumo	4
Metodologia	5
Resultados	7
Perda de Energia Protéica - PEW	7
Marcadores de Inflamação	7
Marcadores Antropométricos	8
Marcadores de Capacidade Física	8
Conclusão	10
Apêndice	11
Perda de Energia Protéica - PEW	11
Marcadores de Inflamação	12
Marcadores Antropométricos	13
Marcadores de Capacidade Física	14
Teste de normalidade para os Marcadores	16
Referências	17

Apresentação

Luiz Fernando Coelho Passos

Estudante do curso Bacharel em Estatística na Universidade Federal Fluminense.

Lyncoln Sousa de Oliveira

Estudante do curso Bacharel em Estatística na Universidade Federal Fluminense.

Resumo

Pacientes submetidos à hemodiálise apresentam inflamação persistente e perda de energia protéica (PEW), o que contribui para altas taxas de mortalidade. Este estudo teve como objetivo avaliar os efeitos de um programa de treinamento de exercícios resistidos (RETP) sobre inflamação e PEW em pacientes em hemodiálise. Foi coletado dados dos paciêntes antes da realização do RETP e depois de 6 meses da prática dos exercícios. Foi utilizado a linguagem de programação R para auxiliar na análise para avaliar o resultado desse programa de treinamento.

Metodologia

Com o banco de dados em mãos foi percebido que havia muitos valores faltantes, pois por alguma razão alguns pacientes tiveram dados coletados antes do RETP e mas não depois, e dentre esses que foram coletados havia exercícios sem dados preenchidos. Por se tratar de amostra dependente, mesmo paciente antes e depois da intervenção, foi necessário um tratamento na base de dados para que assim pudesse utilizar métodos aconselhados para tal amostra.

Aplicando a correção em todo o banco de dado, excluindo os indivíduos que não respoderam pelo menos 1 questão, teríamos no final uma amostra pouco informativa, com apenas 2 indivíduos dentre o total de 54, devido a isso, foi decido realizar o estudo de maneira focada nas variáveis, ou seja, comparar a variável antes com a variável depois para todas as variáveis do banco de dados. Assim, pode-se obter uma amostra para cada comparação de pelo menos 20 pacientes, ainda não é muito representativa, porém foi a melhor maneira encontrada. A hipótese de fazer o estudo dividindo os pacientes por sexo foi levantada, porém como o tamanho da amostra é de 54 pacientes, dividi-la deixaria muito pouco representativa, devido a isso o estudo baseado nesta hipótese não foi realizado.

As variáveis do banco de dados, para a análise, foram separadas nos seguintes grupos:

- PEW: Perda de Energia Protéica. Para a Análise, 1 representa **sim**, ou seja, há presença do PEW no paciente e 2 representa **não**.
- Inflamação:
 - TNFa
 - Albumina
 - ICAM: Níveis de moléculas de adesão plasmática
 - PCR: Proteína C-reativa
 - IL6: Interleucina-6
 - VCAM: Níveis de moléculas de adesão plasmática
- Antropométricos:
 - IMC: Índice de Massa CorporalAMB: Área Muscular do Braço
 - Mas Magra: Massa Magra
- Capacidade física:
 - SL10: Sentar e Levantar 10 vezes
 - SL60: Sentar e Levantar durante 60s
 - Torque extensor Esquerdo
 - Torque extensor Direito
 - Torque flexor Esquerdo
 - Torque flexor Direito

Ao decorrer das análises foram utilizados testes de hipóteses estatísticos, metodologia estatística que nos auxilia a tomar decisões sobre uma ou mais populações baseado na informação obtida da amostra, são eles:

- Shapiro-Wilk: teste para verificar se a distribuição de probabilidade associada a um conjunto de dados pode ser aproximada pela distribuição normal. O teste foi utilizado para verificar normalidade das variáveis referentes aos marcadores inflamatórios, antropométricos e capacidade física.
- McNemar: teste apropriado para comparar frequências oriundas de amostras pareadas. O teste foi utilizado para verificar se o estudo teve efeito sobre PEW.
- Teste-t: usado para verificar se houve diferença da média das variáveis antes do REPT para a mesma variável depois do REPT.

Em todos os testes de hipótese aplicados adotou-se um nível de significância de 5%. Considerou-se normalidade para todas as variáveis quantitativas da base de dados. Foi definido a hipótese nula como a igualdade entre as médias das variáveis coletadas antes e depois do REPT e a hipótese alternativa a diferença. Para mais detalhes sobre os testes utilizados é aconselhado a leitura do livro Estatística Básica escrito por Bussab e Morettin.

Com a análise exploratória dos dados, examinar os dados previamente, pode-se obter um resumo dos dados e confeccionou-se:

- Gráfico de barras: utilizado para realizar comparações entre as categorias de uma variável qualitativa ou quantitativa discreta. O gráfico foi utilizado para comparar a PEW antes e depois do RETP.
- Boxplot: gráfico utilizado para avaliar a distribuição empírica das idades dos paciente em relação ao sexo e as variáveis referentes aos marcadores inflamatórios, antropométricos e capacidade física. As linhas cinzas que ligam alguns boxplots feitos na análise representam a posição do mesmo pacinte antes e depois do RETP.

Figura 1: Explicação sobre o boxplot.

Resultados

Perda de Energia Protéica - PEW

	Presença de perda antes do RETP		Presença de perda depois do RETP			
Marcador	Apresentou perda	Não apresentou perda	Apresentou perda	Não apresentou perda	Tamanho da amostra	P-valor (Teste de McNemar)
PEW	25	8	16	17	33	0,027

Tabela 1: Marcador PEW

Pode-se observar pela Figura 3 e pela Tabela 1 uma diminuição na quantidade de pacientes que apresentaram perda e um aumento na quantidade de pacientes que não apresentaram perda antes e depois RETP. Pelo teste de McNemar, obtivemos de fato que houve diferença entre os pacientes na coleta dos dados antes e depois do RETP.

Marcadores de Inflamação

	Antes	do RETP	Depois do RETP			
Marcador Inflamatorio	Media	Desvio Padrao	Media	Desvio Padrao	Tamanho da amostra	P-valor (Teste t)
Albumina	3,7	0,3	3,9	0,2	34	0,478
ICAM	2205	1460,4	1653,1	1193,6	20	0,045
IL6	81,3	9,4	78,7	10,4	26	<0,001
PCR	2,3	0,9	1,7	0,6	37	0,403
TNFa	25,7	6,5	24,3	8,7	26	<0,001
VCAM	5500,9	1553,9	3367,3	1998,6	23	0,001

Tabela 2: Marcadores de Inflamação

Para as variáveis ICAM e PCR pode-se observar pelas Figuras 5, 7 e pela Tabela 2 uma diminuição de sua média e desvio padrão para a coleta de dados depois do RETP. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do RETP.

Já para as variáveis IL6, TNFa e VCAM pode-se observar pelas Figuras 6, 8, 9 e pela Tabela 2 uma diminuição de sua média mas um crescimento no desvio padrão para a coleta de dados depois do RETP. Diferente da variável Albumina que pela Figura 4 e pela Tabela 2 pode-se observar que teve um aumento em sua média mas uma diminuição no desvio padrão. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do RETP.

Marcadores Antropométricos

	Antes	do RETP	Depois do RETP			
Marcador Antropometrico	Madia	Desvio Padrao	Madia	Desvio Padrao	Tamanho da amostra	P-valor (Teste t)
AMB	27,2	6,6	28,6	6,1	39	0.006
IMC	23,4	3,9	23,9	4,3	41	0.002
Massa Magra	45,2	11,1	46,8	10,8	41	0.010

Tabela 3: Marcadores Antropométricos

Para a variável AMB pode-se observar pela Figura 11 e pela Tabela 3 uma diminuição de sua média e desvio padrão para a coleta de dados depois do RETP. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do RETP.

Já para as variáveis IMC e Massa Magra pode-se observar pelas Figuras 10, 12 e pela Tabela 3 um aumento de sua média, porém um aumento e uma dimunuição, respectivamente, ppara o desvio padrão para a coleta de dados depois do RETP. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do RETP.

Marcadores de Capacidade Física

	Antes	do RETP	Depois do RETP			
Marcador Capac. Fisica	Media	Desvio Padrao	Media	Desvio Padrao	Tamanho da amostra	P-valor (Teste t)
SL10	25,7	6,5	20	5	28	<0.001
SL60	28,5	7,4	31,7	7,8	28	0.008
Torque Extensor Direito	90,1	37,2	91,1	43,9	28	0.693
Torque Extensor Esquerdo	96,6	43,7	94,9	41,8	28	0.748
Torque Flexor Direito	49,3	22,7	53,8	27,9	28	0.625
Torque Flexor Esquerdo	51,1	24,4	52,2	25,3	28	0.151

Tabela 4: Marcadores de Capacidade Física

Para as variáveis SL10 e Torque Extensor Esquerdo pode-se observar pelas Figuras 13, 15 e pela Tabela 4 uma diminuição de sua média e desvio padrão para a coleta de dados depois do RETP. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do RETP para a variável SL10, já para a variável Torque Extensor Esquerdo obteve-se, pelo teste-t, que não houve diferença entre as médias de antes e depois do RETP.

Já para as variáveis SL60, Torque Extensor Direito, Torque Flexor Direito e Torque Flexor Esquerdo pode-se observar pelas Figuras 14, 16, 18, 17 e pela Tabela 4 um aumento de sua média e desvio padrão para a coleta de dados depois do RETP. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do RETP.

Conclusão

O foco do estudo foi verificar se os pacientes submetidos à hemodiálise apresentaram melhoras nas variáveis com respeito a inflamação e perda de energia proteica (PEW) depois do programa de treinamento de exercícios resistidos (RETP). A base de dados tratada para o estudo possui poucos indivíduos aptos para realizar as análises, o que pode gerar um problema de representividade da amostra para a população alvo. Porém, com os dados obtidos é possível visualizar alteração nas variáveis ICAM e TNFa ligados a inflamação, o que pode significar melhoria dos pacientes em questão a inflamação.

Sobre o PEW, analisando os dados obtidos, foi notado uma redução dos pacientes que possuíam essa perda de energia proteica. Logo, foi concluído que o programa de treinamento de exercícios resistidos (RETP) trouxe benefícios para os pacientes de hemodiálise, o que pode gerar diminuição da taxa de mortalidade dos mesmos.

Apêndice

Figura 2: Idade dos pacientes por Sexo.

Perda de Energia Protéica - PEW

Figura 3: Presença da PEW antes e depois do RETP.

Marcadores de Inflamação

Figura 4: ?? Figura 5: ??

Figura 6: ?? Figura 7: ??

Figura 8: ?? Figura 9: ??

Marcadores Antropométricos

Figura 10: ?? Figura 11: ??

Figura 12: ??

Marcadores de Capacidade Física

Figura 13: ??

Figura 14: ??

Figura 15: ??

Figura 16: ??

Figura 17: ??

Figura 18: ??

Teste de normalidade para os Marcadores

Marcador	P-valor (Teste de Shapiro) Antes do RETP	P-valor (Teste de Shapiro) Depois do RETP	Tamanho da amostra
TNFa	<0,001	<0,001	26
ICAM	0,092	0,021	20
PCR	<0,001	<0,001	37
IL6	0,885	<0,001	26
VCAM	0,105	0,002	23
Albumina	0,027	0,076	34
IMC	0,129	0,257	41
AMB	0,067	0,82	39
Massa Magra	0,189	0,104	41
SL10	0,03	0,03	28
SL60	0,039	0,01	28
Torque Extensor Esquerdo	0,007	0,041	28
Torque Extensor Direito	0,266	0,119	28
Torque Flexor Esquerdo	0,218	0,073	28
Torque Flexor Direito	0,051	0,371	28

Tabela 5: Teste de normalidade para os Marcadores

Referências

- 1. http://www.portalaction.com.br/inferencia/64-teste-de-shapiro-wilk
- 2. http://www.portalaction.com.br/tabela-de-contingencia/teste-de-mcnemar-para-frequencias-correlacionadas
- 3. https://www.inf.ufsc.br/andre.zibetti/probabilidade/teste-de-hipoteses.html
- 4. http://www.portalaction.com.br/estatistica-basica/14-grafico-de-barras
- 5. http://www.portalaction.com.br/estatistica-basica/31-boxplot
- 6. BUSSAB, W; MORETTIN, P. Estatística Básica: 9. ed. Editora Saraiva, 2017.
- 7. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/.
- 8. Hadley Wickham and Evan Miller (2018). haven: Import and Export 'SPSS', 'Stata' and 'SAS' Files. R package version 1.1.2. https://CRAN.R-project.org/package=haven
- 9. Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2018). dplyr: A Grammar of Data Manipulation. R package version 0.7.6. https://CRAN.R-project.org/package=dplyr
- 10. Stefan Milton Bache and Hadley Wickham (2014). magrittr: A Forward-Pipe Operator for R. R package version 1.5. https://CRAN.R-project.org/package=magrittr
- 11. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
- 12. Baptiste Auguie (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra
- 13. Hadley Wickham and Lionel Henry (2018). tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions. R package version 0.8.1. https://CRAN.R-project.org/package=tidyr
- 14. Alboukadel Kassambara (2018). ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.2. https://CRAN.R-project.org/package=ggpubr
- 15. Lionel Henry and Hadley Wickham (2018). purrr: Functional Programming Tools. R package version 0.2.5. https://CRAN.R-project.org/package=purrr
- 16. David Gohel (2018). flextable: Functions for Tabular Reporting. R package version 0.4.4. https://CRAN.R-project.org/package=flextable
- 17. Hadley Wickham (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr
- 18. David Robinson and Alex Hayes (2018). broom: Convert Statistical Analysis Objects into Tidy Tibbles. R package version 0.5.0. https://CRAN.R-project.org/package=broom
- 19. Luiz Passos (2019). pacotin: Trying to make your life easier. R package version 0.0.0.9000.