Aula 06 Dinâmica das Placas

Plano da Aula

Placa Ativa/Placa Passiva

Diagrama de Forças

 Arrastro, empurrão, tração, atrito, sucção ...

Qual a força motriz das placas?

- Correlações com a velocidade.
- Modelo proposto.

Placa Passiva/Placa Ativa

É aceito que os processos convectivos no manto são responsáveis pela movimentação das placas tectônicas.

Mas há duas teorias:

- As placas são passajeiras passivas de um manto em convecção.
- As placas fazem parte ativa desse processo de convecção.

Convecção Térmica

O processo de conveçção térmica e bem compreendido:

Há diferenças:

- A Terra é esquentada no interior (radioatividade)
- A viscosidade não é uniforme (litosfera/astenosfera)

Litosfera e astenosfera

Modelo de placa passiva (I)

As placas são transportadas pelas células de conveção. Assim,

- Onde o fluxo desce, há subducção
- Onde o fluxo sobe há uma dorsal.
- A distância dorsalfossa dá o tamanho da célula.

Modelo de placa passiva (II)

Se a convecção acontecer em camadas, devido a diferenças de densidade:

- Onde o fluxo desce, há subducção
- Onde o fluxo sobe há uma dorsal.
- A distância dorsalfossa dá o tamanho da célula.

Modelo de placa ativa

A placa é a parte superior, mais fria, da célula de convecção.

- A subducção resulta da maior densidade da litosfera.
- As dorsais são rachaduras preenchidas por astenosfera rasa.
- A convecção é gerada pela placa!!

Modelo de placa ativa/passiva

http://pt.wikipedia.org/wiki/Força_motriz_do_movimento_de_placas

Teste I - Segmentação das dorsais

As dorsais estão segmentadas ao longo de zonas de fratura, definindo segmentos de comprimento variável.

- Passivo A razão largura/ espessura não é ~1 para segmentos curtos.
- Ativo Segmentos curtos são formados quando a borda não é perpendicular à expansão.

Teste II - Dorsais propagantes

As posições das dorsais podem saltar de lugar ou migrar devido às mudanças na direção de movimento da placa.

- Passivo Implica que há uma mudança no padrão de convecção do manto.
- Ativo Quando a direção muda, uma rachadura diferente é usada para acomodar a expansão.

http://www.soest.hawaii.edu/HIGP/Faculty/hey/images/HeyPropagatingRifts.mov

Teste III - Sobreposição dorsal/fossa

O que acontece quando uma dorsal oceânica é subduzida?

- Passivo De novo, a razão largura/comprimento não bate e o fluxo vertical se torna indeterminado.
- Ativo Quando a dorsal é subduzida, ela é simplesmente apagada.

Teste III - Sobreposição dorsal/fossa

O que acontece quando uma dorsal oceânica é subduzida?

- Passivo De novo, a razão largura/comprimento não bate e o fluxo vertical se torna indeterminado.
- Ativo Quando a dorsal é subduzida, ela é simplesmente apagada.

Contrafluxo astenosférico

No modelo ativo, deve existir um fluxo de material astenosférico na direção oposta à movimentação da placa.

Oseanis-continental convergence

Diagrama de Forças

Qual seria o diagrama de forças para uma placa tectônica?

Força de arrastro do manto (F_{DF})

A força de arrastro do manto é devida ao acoplamento viscoso entre litosfera e astenosfera.

- É proporcional à àrea e à velocidade.
- É na direção do movimento da placa (passiva) ou contrària a ela (ativa).
- Nos continentes, devemos acrescentar uma força de arrastro continental (F_{CD}) , devido à maior viscosidade da astenosfera abaixo dos continentes.

Força de empurrão da dorsal (F_{RP})

A força de empurrão da dorsal é devida ao deslizamento gravitacional da litosfera acima da dorsal.

- É semelhanta à força que movimenta uma gelera.
- É proporcional ao comprimento da dorsal e é na direção do movimento da placa.
- Muda com o seno do coeficiente angular da topografia da mesma, sendo máxima no topo da dorsal.

Força de tração da placa (F_{SP})

A subducção da placa tira pressão litostática da placa superior criando uma força de tração.

- É proporcional ao comprimento da fossa oceânica e depende do contraste de densidades com a astenosfera.
- Acrescenta com a idade da litosfera e com a profundidade (máxima a 200-300 km)
- Se atingir a mesosfera, existe uma força resitiva, força de arrastro da placa (F_{SD}) .

Outras forças

Existem mais três forças nas placas:

- Atrito da falha transformante (F_{TF}) É uma força resistiva ao longo das falhas transformantes.
- Resistência de choque (F_{CR}) Na colisão de duas placas há uma resistência à movimentação das mesmas.
- Força de sucção (F_{SU}) Se a fossa retroceder, haverá uma sucção proporcional ao comprimento da fossa.

Qual a força motriz das placas?

Vamos ver algumas correlações:

- Se F_{RP} ou F_{SP} é dominante, V deveria se correlacionar com o comprimento da dorsal ou fossa, respectivamente.
- Se F_{TF} é importante, as placas com falhas transformantes deveriam ser mais lentas.
- Se F_{DF} é importante, V deveria se correlacionar com a área da placa.
- Também, F_{DF}, F_{CD} e F_{SU} deverião ser proporcionais à velocidade da placa.

Área da placa - Velocidade

Não há correlação entre velocidade e área das placas.

- Se F_{DF} fosse resistiva (ativa), PA deveria ser lenta
- O fluxo é lento em
 6 placas e rápido
 nas outras (passiva)
- Acoplamento com a astenosfera fraco.

Falhas Transformantes - Velocidade

Não há correlação entre a percentagem de borda transformante e a velocidade.

- As placas com maior percentagem não são mais lentas que as outras.
- A força de atrito F_{TF} não é uma força importante.

Dorsais - Velocidade

Não há correlação entre o comprimento efetivo da dorsal e a velocidade.

- Sem correlação com o comprimento total.
- Pequena correlação com o comprimento efectivo.
- A placa filipina (PH) está principalmente limitada por fossas.

Subducção - Velocidade

Há correlação entre o comprimento das zonas de subducção e a velocidade.

- As placas lentas tem comprimentos de fossa pequenos.
- As placas rápidas tem comprimentos de fossa grandes.

Área continental - Velocidade

Há correlação (aproximada) entre àrea continental e velocidade.

- Placas com continentes são mais lentas
- India e Antártica?
- A F_{CD} é importante, mas a F_{DF} não é (ativo)
- Correntes de convecção são lentos/rápidos (passivo)

Modelo passivo/Modelo ativo

Assim, devemos acreditar no modelo passivo ou no modelo ativo?

Modelo de acoplamento fraco

O modelo proposto para explicar as correlações inclui:

- O acoplamento litosfera/astenosfera é fraco => F_{DF} é desprezível.
- Placas com fossas oceânicas são mais rápidas devido à dominância de F_{SP}.
- F_{RP} é significativa:
 - Placas sem subducção (NA) são movimentadas por esta força.
 - Evita que grandes placas quebrem.