계산이론

2022년 1학기 이은주

3장 정규 언어와 정규 문법 정규 표현 정규 표현과 정규 언어의 관계 정규문법 정규문법(G3), 정규표현(RE), 유한 오토마타(FA) 간의 변환

문법(Grammar)

- [정의] 문법 G = (N , ∑ , P , S), G = (N , ∑ , S, P)
 - N : nonterminal 기호의 집합(variable이라고도 한다)
 - 5 : terminal 기호의 집합
 - P: α → β 형태의 생성규칙(production)의 집합 (단, α∈(N∪∑)*N(N∪∑)* and β∈(N∪∑)*)
 - S : 시작 기호(start symbol) ∈ N

•
$$\alpha \rightarrow \beta 1$$
 \Rightarrow $\alpha \rightarrow \beta 1 \mid \beta 2$ $\alpha \rightarrow \beta 2$

Chomsky Hierarchy(촘스키의 분류)

- [정의] 문법 $G = (N, \Sigma, S, P)$ 의 분류 • $(\alpha \in (N \cup \Sigma)^* N(N \cup \Sigma)^*$ and $\beta \in (N \cup \Sigma)^*$)
- <u>Type 3</u> : 정규(regular) 문법 (언어 예 : a^n)
 - a) **우선형**(right-linear) 문법 : 생성규칙: $\mathbf{A} \to xB$ 또는 $\mathbf{A} \to x \ (A, B \in N \ and \ x \in \Sigma^*)$
 - b) **좌선형**(left-linear) 문법 : 생성규칙: $\mathbf{A} \to Bx$ 또는 $\mathbf{A} \to x$
- Type 2 : 문맥자유(context-free) 문법 (언어 예 : aⁿbⁿ)
 생성규칙: A → β(A ∈ N)
- <u>Type 1</u> : 문맥연관(의존)(context-sensitive) 문법 (언어 예 : $a^nb^nc^n$) 생성규칙: $\alpha A\beta \rightarrow \alpha \gamma \beta$ (항상 $\alpha \rightarrow \beta$ 에서 $|\alpha| \leq |\beta|$, non-contracting(줄어들지 않는) 문법, S $\rightarrow \lambda$ 은 허용)
- Type 0 : 무제한(unrestricted) 문법 생성규칙: α → β (α ≠ λ)
 (모든 종류의 형식 문법 포함)

- 정규 언어를 표현하는 두 가지 방법
 - 정규 표현(regular expression)
 - 정규 문법(regular grammar)

- 임의의 언어가 정규 언어가 되기 위해서
 - 유한 인식기 존재
 - 모든 정규 언어의 기술 : dfa, nfa
 - 특정 문자열이 주어진 언어에 속하는지를 결정할 때 : 논리적인 판단 과정에 사용
 - 대부분의 경우 : 정규 언어를 기술하는 보다 정교한 방법이 필요함

- 정규 표현(regular expression)
 - 표기법 : 알파벳 심벌들의 문자열, 괄호, 연산자 +, ·, * 등 사용예1) 언어 {a} : 정규 표현 a 예2) 언어 {a, b, c} : 정규 표현 a+b+c
 - 기호 · : 접합(concatenation)의 의미
 - 기호 * : 스타-폐포(star-closure)의 의미
 - 정규 표현 (a+b·c)*
 - {a} U {bc}의 스타-폐포라는 뜻
 - 언어{λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, ...}

정규 표현의 정의

- [정의 3.1] (84page) Σ를 주어진 알파벳이라 할 때 정규 표현의 정의:
 - (1) ϕ , λ 와 $a \in \Sigma$: 모두 정규 표현
 - 기본 정규 표현(primitive regular expression)
 - (2) r_1 과 r_2 가 정규 표현 $\rightarrow r_1 + r_2, r_1 \cdot r_2, r_1^*, (r_1)$ 등은 모두 정규 표현
 - (3) 특정 문자열의 정규 표현
 - 기본 정규 표현에서 시작하여 위 규칙 (2)를 유한 횟수만큼 반복함으로써 해당 문자열이 유도될 수 있어야 함

• 예제 3.1(84page) Σ = {a, b, c}에 대하여, 다음 문자열은 [정의3.1] 규칙에 따라 구성되기 때문에 정규 표현

$$(a+b\cdot c)^*\cdot (c+\emptyset)$$

예) $r_1 = c$ 라 하고 $r_2 = \emptyset$ 이라 하면

- $c + \emptyset$ 과 $(c + \emptyset)$ 은 정규 표현
- 이러한 과정을 반복 : 위의 식 전부가 생성될 수 있음

예) (a + b +)

• 기본 정규 표현으로부터 이를 형성하는 방법이 없으므로 정규 표현이 아님

- [정의 3.2] (85page) 정규 표현 r에 의해 묘사되는 언어 L(r) 정의
 - 1. Ø: 공집합을 나타내는 정규 표현
 - 2. λ : {λ}를 나타내는 정규 표현
 - 3. 모든 a ∈ Σ에 대해 a : {a}를 나타내는 정규 표현

 r_1 과 r_2 가 정규 표현일 경우

- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- 5. $L(r_1 \cdot r_2) = L(r_1)L(r_2)$
- 6. $L((r_1)) = L(r_1)$
- 7. $L(r_1^*) = (L(r_1))^*$

• 예제 3.2 (85page) 언어 $L(a^* \cdot (a+b))$ 를 집합 형태로 표현하면?

$$L(a^* \cdot (a+b)) = L(a^*)L(a+b)$$

$$= (L(a))^* (L(a) \cup L(b))$$

$$= \{\lambda, a, aa, aaa, \dots\} \{a, b\}$$

$$= \{a, aa, aaa, \dots, b, ab, aab, \dots\}$$

- [정의 3.2] (85page) 정규 표현 r에 의해 묘사되는 언어 L(r) 정의
 - 1. Ø: 공집합을 나타내는 정규 표현
 - 2. λ : {λ}를 나타내는 정규 표현
 - 3. 모든 a ∈ Σ에 대해 a : {a}를 나타내는 정규 표현

 r_1 과 r_2 가 정규 표현일 경우

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1)L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

• 모호성(ambiguity) 예 : 정규 표현 $a \cdot b + c$ 에서

$$r_1 = a \cdot b, \quad r_2 = c$$
:

$$L(a \cdot b + c) = \{ab, c\}$$

$$r_1 = a$$
, $r_2 = b + c$:

$$L(a \cdot b + c) = \{ab, ac\}$$

- 해결
 - 연산자 우선순위 부여 기법을 사용
 - 스타-폐포 : 접합보다 우선
 - 접합: 합집합 연산보다 우선
 - 접합 연산자는 생략 가능 : $r_1r_2 = r_1 \cdot r_2$

- [정의] 정규 표현 및 그 정규표현이 나타내는 정규 집합
 - (1) 정규표현 λ ⇒ 정규집합 {λ}(정규표현 λ : 정규집합 {λ}을 나타냄)
 - (2) 정규표현 **a** ⇒ 정규집합 {a}
 - (3) 정규표현 p, q 가 각각 정규집합 P, Q 를 나타내면
 - (a) 정규표현 **(p+q)** ⇒ 정규집합 PUQ
 - (b) 정규표현 **(pq)** ⇒ 정규집합 PQ
 - (c) 정규표현 **(p)*** ⇒ 정규집합 P*

• 예제 3.3 (86page) $\Sigma = \{a, b\}$ 에 대해, 다음의 정규 표현이 묘사하는 언어? $r = (a+b)^*(a+bb)$

$$L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}$$

- (a + b) : 문자 a와 b로 이루어지는 모든 문자열
- $(a + bb) : a \ \Xi \vdash bb$
- L(r) : a 또는 bb로 끝나는 알파벳 $\{a,b\}$ 에 대한 모든 문자열들의 집합

• 예제 3.4 (86page) Σ = {a, b}에 대해, 다음의 정규 표현이 묘사하는 언어? $r = (aa)^*(bb)^*b$

$$L(r) = \{b, aab, bbb, aabbb, \dots\}$$

• 짝수 개의 a와 이어서 홀수 개의 b를 갖는 모든 문자열들로 이루어지는 언어

$$L(r) = \{a^{2n}b^{2m+1} : n \ge 0, m \ge 0\}$$

• 예제 3.5 (87page) Σ = {0, 1}에 대해, 다음 언어에 대한 정규 표현은?

- L(r)에 속하는 모든 문자열
 - 어디엔가 00을 갖게 되며, 그 앞의 문자열이나 그 뒤에 오는 문자열은 어떤 형태를 갖든 상관없음
- 알파벳 $\{0,1\}$ 에 대한 모든 문자열 : $(0+1)^*$ $r = (0+1)^*00(0+1)^*$

- 예제 3.6 (87page) 다음 언어를 묘사하는 정규 표현은? $L = \left\{ w \in \{0,1\}^* : w \leftarrow \text{ 연속된 0들의 쌍을 갖지 않는다} \right\}$
 - 이 언어에 속하는 문자열에 0이 나타날 경우
 - 뒤에는 반드시 1
 - 부문자열 : 앞이나 뒤에 임의의 개수의 1 (1*011*)*
 - 0으로 끝나는 문자열이나 완전히 1로만 구성되는 문자열 고려 $r = (1*011*)*(0 + \lambda) + 1*(0 + \lambda)$
 - 언어 L이 1과 01의 반복으로 이루어짐을 고려하면 $r = (1 + 01)^*(0 + \lambda)$

```
[ex]
    ① 정규표현 01: 집합 {01}
    ② \mathbf{0}^* \Rightarrow \{ \lambda, 0, 00, 000, \cdots \}
    (3) (a+b)^* $\diaphi$ { \lambda, a, b, aa, ab, ba, bb, aaa, \ldots }
    4 (0+1)*011
    (5) (a+b)(a+b+0+1)*
    6 (a+bc)^*(c+\lambda)
    ⑦ a*
        (aa)*
        (bb)*b
    8 (aa)*(bb)*b
    9 (0+1)*00(0+1)*
```

[ex]

- ⑩ (1+10)* ⇒ { 1로 시작하고 연속된 두 개의 0을 가지지 않는 스트링 }
- ① $(a+b)(a+b) = (a+b)^2 \Leftrightarrow \{ w \mid |w| = 2, w \in \{a,b\}^* \}$ $((a+b)^2)^* \Leftrightarrow \{ w \mid |w| \mod 2 = 0, w \in \{a,b\}^* \}$ $((a+b)^3)^*(a+b) \Leftrightarrow \{ w \mid |w| \mod 3 = 1, w \in \{a,b\}^* \}$
- ① { 1로 시작하면서 하나의 0 만을 포함하는 스트링 } 11*01*
- ① $\{a^nb \mid n \ge 0\}$ a^*b
- (4) { awa | $w \in \{a,b\}^*$ } $a(a+b)^*a$
- (15) { a^nb^m , $n \ge 0$, $m \ge 0$ } a*b*
- $(ab)^n$, n≥0} (ab)*
- 17) { $aw1aaw2a \mid w1,w2 \in \{a,b\}^* \} a(a+b)^*aa(a+b)^*a$

• 임의의 주어진 언어에 대하여 : 무한히 많은 정규 표현

- 정규 표현들 사이의 동치 관계(equivalence relation)
 - 두 개의 정규 표현이 같은 언어를 묘사하는 경우

- 정규 표현의 항등 관계
 - a) $r\lambda = \lambda r = r$
 - b) $a \cdot a^* = a^* \cdot a$ $(r^*)^* = r^*$
 - c) $(rs)^*r = r(sr)^*$
 - d) $(r^* + s^*)^* = (r + s)^*$ $(r^*s^*)^* = (r + s)^*$ $r^*(sr^*)^* = (r^*s)^*r^* = (r + s)^*$

[정의] **어떤 정규 집합을 정의하는 정규 표현은 유일하지 않다.** 서로 다른 정규 표현이 동일한 정규 집합을 정의하는 경우 : **동치**

[ex] {a,b}* 중 두 개 이상의 b를 포함하는 스트링의 집합을 나타내는 정규표현들

- a*ba*b(a+b)*
- (a+b)*ba*ba*
- $(a+b)^*b(a+b)^*b(a+b)^*$

정규 표현과 정규 언어의 관계

- 정규 언어와 정규 표현
 - 두 개념은 본질적으로 같음
 - 어떤 정규 언어에 대해서 이에 대응하는 정규 표현 존재
 - 어떤 정규 표현에 대해서 이에 대응하는 정규 언어 존재

- r이 정규 표현일 경우 L(r)은 정규 언어
 - 정의 (53page) : dfa에 의해 인식되는 언어는 정규 언어
 - dfa와 nfa의 동치성을 고려하면 nfa에 의해 인식되는 언어도 정규 언어

- 주어진 정규 표현 r에 대해 L(r)을 인식하는 nfa를 구성할 수 있음
 - nfa의 구성 : L(r)에 대한 재귀적 정의에 따름
 - 정의 3.2(85page) 의 (1), (2)와 (3)에 대한 간단한 오토마타 구성
 - (4), (5)와 (7)을 구현하기 위하여 이들이 결합되는지 보임

• [정리 3.1] (gopage) r이 정규표현일 때 언어 L(r)을 인식하는 nfa가 존재하며, 결과적으로 L(r)은 정규 언어

증명

1. 우선 간단한 정규 표현인 \emptyset , λ 와 $a \in \Sigma$ 에 대한 언어를 인식하는 오토마타를 구성

• [정리 3.1] (90page) 증명 계속

2. 정규 표현 r_1 과 r_2 에 의해 묘사 되는 언어를 인식하는 오토마타 $M(r_1)$ 과 $M(r_2)$ 가 주어져 있다고 가정

L(r)을 인식하는 nfa의 도식적인 표현 형태

• [정리 3.1] (90page) 증명 계속

3. 오토마타 $M(r_1)$ 과 $M(r_2)$ 를 사용하여 정규 표현 $r_1 + r_2$, $r_1 r_2$, r_1^* 등에 대한

오토마타 구성

 $L(r_1 + r_2)$ 에 대한 오토마타

 $L(r_1r_2)$ 에 대한 오토마타

• [정리 3.1] (9opage) 증명 계속 $L(r_1^*)$ 에 대한 오토마타

- 더 엄밀하게 논증
 - 합성된 오토마타의 상태와 전이를 구성하는 공식적인 방법 제시
- 주어진 정규 표현에 의해 묘사되는 언어를 인식하는 오토마타 증명
 - 연산자의 수를 기반으로한 귀납적 증명법

- 예제 3.7 (92page) 다음 정규 표현 r에 대해 L(r)을 인식하는 nfa를 구성하면? $r = (a+bb)^*(ba^* + \lambda)$
- 1. 정규 표현 (a + bb)와 $(ba^* + \lambda)$ 에 대한 오토마타를 주어진 규칙대로 직접 구성

2. 정리 3.1에서 언급한 방법으로 합성

• 예제 3.7 (92page) 계속

 $L((a+bb)^*(ba^*+\lambda))$ 를 인식하는 오토마타

- 모든 정규 언어에 대해 대응하는 정규 표현 존재
 - 정규 언어에 대응하는 nfa
 - nfa의 초기 상태 q_0 로 부터 승인 상태까지의 모든 보행에 대한 라벨들을 생성시킬 수 있는 정규 표현을 찾는 일 : 복잡
 - 전이 그래프에 사이클들이 존재, 임의의 순서로 몇 번이나 순회할 지 모름
 - 기록하는(bookkeeping) 문제 발생
 - 일반 전이 그래프(generalized transition graph, GTG)인 우회 기법 사용하여 해결

- 일반 전이 그래프(generalized transition graph, GTG)
 - 간선의 라벨에 정규 표현을 부여하는 전이 그래프
 - 초기 상태로부터 승인 상태까지의 임의의 보행에 대한 라벨
 - 여러 정규 표현들의 접합
 - 정규 표현
 - 정규 표현들이 묘사하는 문자열들은 해당 일반 전이 그래프에 의하여 인식되는 언어의 부분집합
 - 이와 같이 생성되는 모든 부분집합들의 합집합이 해당 언어가 됨

• 예제 3.8 (93page) 일반 전이 그래프

- 인식되는 언어 : L(a*+a*(a+b)c*)
- 그래프에서 라벨 a인 간선 (q_0,q_0) 은 임의의 개수만큼의 a를 생성시킬 수 있는 사이클 : $L(a^*)$ 를 표현
 - 이 간선의 라벨을 a*로 변경하여도 이에 의해 인식되는 언어에는 아무런 영향을 미치지 않음
- 단일 문자 a를 라벨로 갖는 간선 : 정규 표현 a를 라벨로 갖는 것으로 해석할 수 있음
- 여러 문자 a, b, . . . 를 라벨로 갖는 간선 : 정규 표현 a+b+ . . . 을 라벨로 갖는 것으로 해석

- 완전 GTG(complete GTG)
 - 모든 간선을 포함하는 그래프
 - nfa로부터 변환된 GTG에 몇몇 간선이 존재하지 않을 경우, 그 간선들을 추가하고 ϕ 를 라벨로 함
 - |V|개 정점을 갖는 완전 GTG : 정확히 |V|²개의 간선

- 예제 3.9 (95page)
 - 그림(a)의 GTG : 완전 GTG 아님, 그림(b)의 GTC : 완전 GTC

• 상태의 수가 두 개인 완전 GTG

• 주어진 그래프에 대한 올바른 정규 표현

$$r = r_1^* r_2 (r_4 + r_3 r_1^* r_2)^*$$

- GTG가 2개보다 더 많은 상태를 가질 경우 : 매 단계마다 상태 하나씩을 줄임
 - 동치인 그래프를 만들어 낼 수 있음

- 예제 3.10 (95page) 완전 GTG에서 상태 줄인 동치 그래프 만들기
- q₂ 제거 : 우선 몇 개의 간선을 추가
 - q_1 에서 q_1 으로 가는 간선 : 라벨 $e + af^*b$
 - q_1 에서 q_3 으로 가는 간선 : 라벨 $h + af^*c$
 - q_3 에서 q_1 으로 가는 간선 : 라벨 $\mathbf{i} + df^*b$
 - q_3 에서 q_3 으로 가는 간선 : 라벨 $g + df^*c$
- 상태 q_2 와 이에 연결된 모든 간선들을 제거

정규 표현에 대한 정규 언어

- 완전 GTG에서 상태 줄인 동치 그래프 만들기
 - 1) 임의의 GTG에 대하여, 두 개의 상태가 남을 때 까지 매 단계마다 한 상태씩 제거
 - 2) 결과의 정규 표현을 얻기 위해 식 $r = r_1 r_2 (r_4 + r_3 r_1 r_2)$ 을 적용

정규 표현에 대한 정규 언어

- procedure : nfa-to-rex
 - 1. 상태가 q_0, q_1, \dots, q_n 이고 승인 상태(초기 상태와는 다른)가 하나인 nfa로 부터 시작
 - 2. nfa를 완전 GTG로 변환
 - r_{ij} : q_i 에서 q_j 로의 간선의 라벨
 - 3. GTG가 오직 두 개의 상태 q_i (초기 상태)와 q_i (승인 상태)를 가짐
 - 연관된 정규 표현 : 식 $r = r_{ii} r_{ij} (r_{jj} + r_{ji} r_{ii} r_{ij})^*$
 - 4. GTG가 3개의 상태 q_i (초기 상태), q_i (승인 상태) 와 q_k (제3의 상태)를 가짐
 - 다음과 같은 라벨을 갖는 새 간선들을 추가

$$r_{pq} + r_{pk}r^*_{kk}r_{kq}$$
, $p = i, j$, $q = i, j$

• 정점 q_k 와 그에 연결된 간선들을 제거

정규 표현에 대한 정규 언어

- procedure : nfa-to-rex 계속
 - 5. 만일 GTG가 오직 4개 이상의 상태를 가지고 있다면, 제거할 상태 q_k 를 선택
 - 모든 상태들의 쌍 (q_i,q_i) 에, $i \neq k,j \neq k$, 규칙 4를 적용
 - 각 단계에서, 가능한 경우 아래와 같은 단순화 하는 규칙을 적용

$$r + \emptyset = r$$

 $r\emptyset = \emptyset$
 $\emptyset^* = \lambda$

- 정점 q_k 와 그것과 연결된 간선들을 제거
- 6. 올바른 정규 표현을 얻을 때까지 단계 3에서 5까지 반복

우선형 문법과 좌선형 문법

- 정규 언어를 묘사하는 세 번째 방법
 - 간단한 문법을 사용하는 방법

[정의 3.3] 문법 G = (V, T, S, P)에서 모든 생성규칙들이 다음의 형태를 갖는 경우 : 우선형(right-linear) 문법

$$A \rightarrow xB$$

$$A \rightarrow x \quad (A, B \in V \cap | \exists x \in T^*)$$

또한 한 문법의 생성규칙들이 모두 다음의 형태를 갖는 경우 이 문법을 좌선형(leftlinear)문법이라 한다.

$$A \rightarrow Bx$$
 또는 $A \rightarrow x$

• 정규 문법(regular grammar) : 우선형 문법이거나 좌선형 문법

정규문법(Regular Grammar)

[정의] 문법 G가 우선형 문법(RLG, Right Linear Grammar)이거나 좌선형 문법(LLG, Left Linear Grammar)일 때 G : 정규문법

• 예제 3.13 (103 page) $G_1 = (\{S\}, \{a, b\}, S, P_1)$ $S \rightarrow abS \mid a$

(RLG ⇒ 정규문법)

• 문법 *G*₁에 대한 과정

$$S \Longrightarrow a$$

$$S \Rightarrow abS \Rightarrow aba$$

$$S \Longrightarrow abS \Longrightarrow ababS \Longrightarrow ababa$$

• $L(G_1)$ 은 정규표현 $r=(ab)^*a$ 으로 묘사

정규문법(Regular Grammar)

• 예제 3.13 (103 page) 계속

$$G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$$

$$S \to S_1 ab$$

$$S_1 \to S_1 ab \mid S_2$$

$$S_2 \to a$$

(LLG ⇒ 정규문법)

• 문법 G_2 에 대한 하나의 유도 과정

$$S \Longrightarrow S_1 ab \Longrightarrow S_2 ab \Longrightarrow aab$$

$$S \Longrightarrow S_1ab \Longrightarrow S_1abab \Longrightarrow S_2abab \Longrightarrow aabab$$

• $L(G_2)$: 정규표현 $r=aab(ab)^*$ 에 의해 묘사되는 언어

정규문법(Regular Grammar)

• 예제 3.14 (104 page) $G = (\{S, A, B\}, \{a, b\}, S, P)$ $P : S \to A$ $A \to aB \mid \lambda$ $B \to Ab$

RLG도 LLG도 아님 ⇒ 정규문법 아님

- 선형문법(linear grammer)
 - 각 생성규칙의 우변에 하나 이하의 변수, 변수의 위치 제한 없음
- 모든 정규 문법: 선형 문법, 모든 선형 문법: 정규 문법이 되지는 않음

• 정규 문법: 정규 언어에 대한 또 다른 표현 방법

• 우선형 문법에 의해 생성되는 언어 : 정규 언어

- 우선형 문법의 유도 과정을 모방하는 nfa 구성
 - 우선형 문법의 문장형태(sentential form)
 - 하나의 변수만 존재, 변수가 가장 오른쪽에 있는 특별한 형태
 - 유도 과정에서 임의의 순간에 생성규칙 $D \to dE$ 를 사용, 다음의 유도를 진행하는 단계에 있다고 가정

$$db \cdots cD \implies ab \cdots cdE$$

• 이 문법에 해당하는 nfa : 이 단계를 심벌 d를 읽을 경우 상태 D에서 상태 E로 이동하는 것으로 모방할 수 있음

• [정리 3.3] (105 page) G = (V, T, S, P)가 우선형 문법이면, L(G)는 정규 언어

증명)
$$V = \{V_0, V_1, \dots\}, S = V_0$$

$$P: V_0 \Rightarrow v_1 V_i$$

$$\Rightarrow v_1 v_2 V_j$$

$$\stackrel{*}{\Rightarrow} v_1 v_2 \dots v_k V_n$$

$$\Rightarrow v_1 v_2 \dots v_k v_l = w$$

오토마타 초기 상태 : 1/0

각 변수 V_i 에 대응하는 비승인 상태를 생성하여 라벨 V_i 지정

 $V_i \rightarrow a_1 a_2 \cdots a_m V_i$ 에 대하여 오토마타에 상태 V_i 로 부터 V_i 로의 전이 추가

• [정리 3.3] (105 page) 계속

$$V_i \to a_1 a_2 \cdots a_m$$
 에 대하여 다음의 전이 추가
$$\delta^*(V_i, a_1 a_2 \ldots a_m) = V_f$$
 상태 V_f 는 승인 상태

Represents
$$V_i \longrightarrow a_1 a_2 \dots a_m$$

• [정리 3.3] (105 page) 계속

$$w \in L(G)$$
이고 $v_1v_2 ... v_k v_l = w$ 을 만족할 때
$$V_f \in \delta^*(V_0, w)$$
 $\therefore w \vdash M$ 에 의해 승인됨

- w가 M에 의해 승인된다고 가정
 - w를 승인하기위해 오토마타는 상태 $V_0, V_i, ...$ 등을 거처 상태 V_f 에 도달
 - $w = v_1 v_2 \dots v_k v_l$
 - 유도과정 $V_0 \Rightarrow v_1 V_i \Longrightarrow v_1 v_2 V_j \stackrel{*}{\Rightarrow} v_1 v_2 \dots v_k V_k \Longrightarrow v_1 v_2 \dots v_k v_l$ \therefore w는 L(G)에 속함

• 예제 3.15 (106 page) 문법에 의해 생성되는 언어 인식 : 유한 오토마타

$$V_0 \longrightarrow aV_1$$

$$V_1 \longrightarrow abV_0 \mid b$$

$$L((aab)^*ab)$$

정규 언어에 대한 우선형 문법

• 모든 정규 언어 : 우선형 문법에 의해 생성될 수 있음

증명)

- 주어진 언어의 dfa 구성
- 정리 3.3에서 보인 내용을 역으로 구성
- 구성된 dfa의 상태들 : 문법에서 변수
- 전이를 발생시키는 심벌들 : 단말 심벌들
- [정리 3.4] (107 page) L이 알파벳 Σ에 대한 정규 언어일 때, L = L(G)를 만족하는 우선형 문법 G = (V, Σ, S, P)가 항상 존재한다.

정규 언어에 대한 우선형 문법

• 예제 3.16 (108 page) $L(aab^*a)$ 에 대한 우선형 문법을 구성

$\delta(q_0, a) = \{q_1\}$	$q_0 \longrightarrow aq_1$
$\delta(q_1, a) = \{q_2\}$	$q_1 \longrightarrow aq_2$
$\delta(q_2, b) = \{q_2\}$	$q_2 \longrightarrow bq_2$
$\delta(q_2, a) = \{q_f\}$	$q_2 \longrightarrow aq_f$
$q_f \epsilon F$	$q_f \longrightarrow \lambda$

• 문자열 aaba의 유도 과정 $q_0 \Rightarrow aq_1 \Rightarrow aaq_2 \Rightarrow aabq_2 \Rightarrow aabaq_f \Rightarrow aaba$

정규 언어와 정규 문법간의 동치성

• [정리 3.5] (109 page) 언어 L이 정규언어이고 그럴 때에만 L = L(G)를 만족하는 좌선형 문법 G가 존재한다.

증명) 주어진 좌선형 문법 생성규칙 : $A \rightarrow Bv$ 또는 $A \rightarrow v$

• 우선형문법 \hat{G} 구성 : A $\rightarrow v^R B$ 또는 A $\rightarrow v^R$

$$L(G) = \left(L(\widehat{G})\right)^R$$

• [정리 3.6] (110 page) 언어 L이 정규언어이고 그럴 때에만 L = L(G)를 만족하는 정규 문법 G가 존재한다.

정규 언어와 정규 문법간의 동치성

- 정규 언어를 묘사하는 방법
 - dfa, nfa, 정규 표현, 정규 문법 등

$RE \Rightarrow G_3$

[알고리즘] *정규표현* ⇨ *정규문법*

- ② $x \cdot y$ $A \rightarrow xB$ 또는 $A \rightarrow xy$ $B \rightarrow y$
- $3 x^*y A \rightarrow xA \mid y$
- $4 yx^* A \rightarrow Ax | y$

[ex] <u>정규표현</u> ⇒ <u>정규문법</u>

$$\begin{array}{ccc}
\textcircled{1} \ a \cdot b & \Rightarrow & S \to aA \\
& A \to b & \text{or} & S \to ab
\end{array}$$

②
$$ac \cdot (a+b) \Rightarrow S \rightarrow acA, A \rightarrow a+b$$

 $\therefore S \rightarrow acA \text{ or } S \rightarrow aca \mid acb$
 $A \rightarrow a \mid b$

$$\exists a^*b \qquad \Rightarrow \\ S \to aS \mid b$$

[ex] *정규표현* ⇒ *정규문법*

⑤
$$(a + b)^*$$
 \Rightarrow $S \rightarrow (a + b)S \mid \lambda$
∴ $S \rightarrow aS \mid bS \mid \lambda$

정규문법(G₃), 정규표현(RE), 유한 오토마타(FA) 간의 변환

[ex] 정규표현
$$(ab)^{+}(a+d)$$

$$(ab)^{+}(a+d) = (ab)^{*}(ab)(a+d) = (ab)^{*}(aba+abd)$$

$$\therefore S \rightarrow abS \mid (aba + abd)$$

$$S \rightarrow abS \mid aba \mid abd$$

[ex]

① 예제3.16 (108 page) 정규표현 aab^*a $aab^*a = aa \cdot b^*a$

$$S \rightarrow aaA$$

$$A \rightarrow b^*a$$

$$\Rightarrow S \to aaA$$
$$A \to bA \mid a$$

①' $aab^*a = aab^* \cdot a$ $S \to Aa$ $A \to aab^*$ $S \to Aa$ $A \to Ab \mid aa$

[ex]

②
$$L = \{a^n | n \ge 0\} \cup \{b^n a | n \ge 1\}$$
, 정규표현 $a^* + b^+ a$

$$S \to S_1 \mid S_2$$
$$S_1 \to a^*$$

$$S \to S_1 \mid S_2$$

$$S_1 \to aS_1 \mid \lambda$$

$$S_2 \to bS_2 \mid ba$$

$$S_2 \rightarrow b^+ a$$

 $S_2 \rightarrow bc^*d$

•
$$a^* + bc^*d$$

 $S \rightarrow S_1 \mid S_2$
 $S \rightarrow S_1 \mid S_2$
 $S_1 \rightarrow aS_1 \mid \lambda$
 $S_2 \rightarrow bS_3d$
 $S_3 \rightarrow cS_3 \mid \lambda$

• *G, ⇔RE* [알고리즘]

• $G: S \rightarrow xS \mid y$

$$L(G) = \{y, xy, xxy, \dots, x^ny, \dots\}$$

∴ 정규표현 =*x***y*

[ex]
$$S \rightarrow S_1 ab$$
 $\Rightarrow S = S_1 ab \cdots 1$
 $S_1 \rightarrow S_1 ab \mid S_2$ $\Rightarrow S_1 = S_1 ab + S_2 \cdots 2$
 $S_2 \rightarrow a$ $\Rightarrow S_2 = a \cdots 3$
 $3 \rightarrow 2$ $S_1 = S_1 ab + a = a + S_1 ab = a(ab)^* \cdots 4$
 $4 \rightarrow 1$ $S = a(ab)^* ab = a(ab)^+$

[ex]
$$S \to aS \mid bR \mid \lambda \Rightarrow S = aS + bR + \lambda$$

 $R \to aS \Rightarrow R = aS$
 $\therefore S = aS + baS + \lambda$
 $= (a + ba)S + \lambda$
 $= (a + ba)^*\lambda$
 $= (a + ba)^*$

[ex]
$$S \rightarrow aA \mid bB \mid b$$
 $\Rightarrow S = aA + bB + b \cdots$ ① $A \rightarrow bA \mid \lambda$ $\Rightarrow A = bA + \lambda \cdots$ ② $B \rightarrow bS$ $\Rightarrow B = bS \cdots$ ③

from ②
$$A = b^* \lambda = b^* \cdots$$
 ④

③,④ → ① $S = ab^* + bbS + b$
 $= bbS + (b + ab^*)$

$$\therefore S = (bb)^*(ab^* + b)$$

정규문법(G₃), 정규표현(RE), 유한 오토마타(FA) 간의 변환

[ex]

A

B

$$A \rightarrow aB \mid bA$$

 $B \rightarrow \lambda$

[ex]

 $A \rightarrow aB \mid bA$

 $B \rightarrow aA$

 $A \rightarrow \lambda$

정규문법(G₃), 정규표현(RE), 유한 오토마타(FA) 간의 변환

$$A \rightarrow 1B$$

$$B \rightarrow oC \mid 1D$$

$$C \rightarrow oB$$

$$\mathsf{D}\to \lambda$$

• **G**₃ ♥ **FA** [알고리즘]

<u>FA</u>

$$A \rightarrow aB$$

$$\mathbf{A} \rightarrow \mathbf{B}$$

$$A \rightarrow Ba$$

$$\triangle \rightarrow a \bigcirc , C \in F$$

$$A \rightarrow aC$$

$$S \in F$$

 $S \rightarrow \lambda$

$$A \rightarrow 1B$$

$$A \rightarrow B1$$

$$B \rightarrow 0C \mid 1$$

$$C \rightarrow OB$$

$$C \rightarrow B0$$

$$A \rightarrow aA \mid aB \mid a \mid b$$

 $B \rightarrow bB \mid b$

$$A = a^* (ab^+ + a + b) = a^* (ab^* + b)$$

$$A \rightarrow aA \mid aB \mid a \mid b$$

 $B \rightarrow bB \mid b$

$$A = aA + aB + a + b$$
$$B = bB + b$$

$$A = aA + (ab^+ + a + b)$$

$$B = b^+$$

$$A = a^* (ab^+ + a + b) = a^* (ab^* + b)$$

• *RE ⇒ FA*

[알고리즘] 정규표현 ▷ NFA ▷ DFA ▷ 최소화된 DFA

[정리] r이 정규표현일 때 정규언어 L(r)을 인식하는 NFA가 존재한다.

정규문법(G₃), 정규표현(RE), 유한 오토마타(FA) 간의 변환

[ex] 정규표현으로 부터 NFA 만들기

(2) 01* + 1

 $(3) (a+b)^*abb$

- *FA ⇒ RE*
 - ✔ 직접 변환은 매우 어려움.

[알고리즘] *FA ⇨ G3 ⇨ 정규표현*

$$G_3: A \to aB \mid bA$$

 $B \to aB \mid bA \mid \lambda$
정규표현식: $A = bA + aB$
 $B = bA + aB + \lambda = A + \lambda$
 $\therefore A = bA + a(A + \lambda)$
 $= (a+b)A + a$
 $= (a+b)^*a$

$$G_3: A \rightarrow 0A \mid 1B$$
 \Rightarrow $A = 0A + 1B = 0*1B \cdots 1$
 $B \rightarrow 0A \mid 1C \mid \lambda$ \Rightarrow $B = 0A + 1C + \lambda \cdots 2$
 $C \rightarrow 0C \mid 1B$ \Rightarrow $C = 0C + 1B = 0*1B \cdots 3$
 $1 = 3 \therefore A = C$

②
$$B = 0A + 1A + \lambda = (1+0)A + \lambda \cdots 4$$

$$4 \rightarrow 1 \qquad A = 0^{*}1 ((1+0)A + \lambda)$$

$$= 0^{*}1 (1+0)A + 0^{*}1$$

$$= (0^{*}1 (1+0))^{*} 0^{*}1$$

$$= (0^{*} (11+10))^{*} 0^{*}1$$

$$= (0+11+10)^{*} 1 \qquad (r^{*}s)^{*}r^{*} = r^{*}(sr^{*})^{*} = (r+s)^{*}$$

[다른 풀이법] DFA를 최소 상태의 DFA로 바꾸면

최소 DFA	0	1
초기 A	А	В
최종 B	Α	Α

$$G_3: A \rightarrow aB \mid bA$$

$$B \rightarrow aB \mid bC$$

$$C \rightarrow aB \mid bD$$

$$D \rightarrow aB \mid bA \mid \lambda$$

$$B = aB + bC = a*bC \cdots (2)$$

$$C = aB + bD \cdots (3)$$

$$D = aB + bA + \lambda \cdots (4)$$

$$④$$
 → ③ C = aB + bD = aB + b(aB + bA + λ)
= aB + baB + bbA + b
= aB + baB + bbb*aB + b
= (a + ba + bbb*a)B + b = b*aB + b ⑤

$$\bigcirc$$
 3 B = a*b(b*aB + b) = a*bb*aB + a*bb
= (a*bb*a)* a*bb \bigcirc 6

$$(rs)^*r = r(sr)^*$$

$$r^*(sr^*)^* = (r^*s)^*r^* = (r+s)^*$$

$$r^*(sr^*)^* = (r^*s)^*r^* = (r+s)^*$$

$$A = bA + aB = b^*aB \cdots 1$$

$$B = aB + bC = a*bC \cdots (2)$$

$$C = aB + bD \cdots 3$$

$$D = aB + bA + \lambda \cdots (4)$$

정규언어와 정규문법

- [정리] 다음 문장들은 같은 의미다.
 - L은 정규집합(regular set)이다.
 - L은 좌선형 또는 우선형 언어(right/left-linear language(RLL/LLL))이다.
 - L은 유한 오토마타 언어(finite automata language)이다.
 - L은 NFA 언어(NFA language)이다.
 - L은 정규표현(regular expression)에 의해 나타낼 수 있다.