PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-237144

(43) Date of publication of application: 21.09.1989

(51)Int.CI.

B41J 3/00 G06F 15/66 HO4N 1/46

(21)Application number : 63-064413

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

17.03.1988

(72)Inventor: MORIKAWA HARUICHIRO

(54) COLOR CORRECTION METHOD DEPENDING ON CHROMA

(57)Abstract:

PURPOSE: To perform natural color correction with respect to a hue signal, by a method wherein the hue signal is detected from a color image signal to be converted to a function on the basis of a hue signal conversion table, and the hue of the max, value and the complementary color of the min. value are multiplied by a correction coefficient while predetermined operation is applied to the function data to output a color image signal.

CONSTITUTION: Color image signals Y, M, C are inputted and a comparator 1 outputs not only the max, value signals as color signals DAY, DAM, DAC but also the complementary colors of the min. values as color signals DAB, DAG, DAR. The color signals are inputted to correction devices and multiplied by a correction coefficient at every color to output a coefficient signal DAA while the latter color signals are inputted to correction devices to output a coefficient signal DBB and both signals DAA, DBB are inputted to multipliers 5A, 5B. The comparator 1 outputs binary signals D1WD3 to input the same to an operator 3 and the differences between the binary signals D2, D1, D3 are calculated by subtractors 31, 32 to calculate hue signals H1, H2 which are, in

turn, inputted to hue signal conversion tables 4A, 4B. The hue signals H1, H2 are calculated on the basis of function values to be inputted to the multipliers 5A, 5B. The coefficient signals DAA, DBB are multiplied by the hue signals H1, H2 to obtain coefficient hue signals MP1, MP2 which are, in turn, inputted to an adder 6 to output an added color corrected color image signal Y.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

19日本国特許庁(JP)

(1) ₩

夏公 開

⑫公開特許公報(A) 平1-237144

@Int. Cl. 4

識別記号

43公開 平成1年(1989)9月21日

B 41 J G 06 F 3/00 15/66 H 04 N

1/46

3 1 0

庁内整理番号 B-7612-2C

8419-5B 6940-5C審査請求 未請求 請求項の数 2 (全4頁)

60発明の名称

彩度に依存した色修正方法

頭 昭63-64413 创特

頭 昭63(1988)3月17日 20世

700発明 者 森川 晴一郎 神奈川県足柄上郡開成町宮台798番地 富士写真フィルム

株式会社内

ወස 頭 富士写真フィルム株式

神奈川県南足柄市中沼210番地

会計

弁理士 安形 雄三 の代 理

明

1. 発明の名称 彩度に依存した色像正方法

2. 特許請求の範囲

3原色のカラー画像信号をデジタル処理に より色修正する場合の色像正方法において、前 記カラー画像信号より色相信号を検出し、この 検出された色相信号を色相信号変換テーブルの テーブルデータに基づいて関飲化すると共に、 前記カラー画像信号の最大値の色相及び最小値 の補色に対して修正係数を乗じた後に、前記関 数化データに対して所定の演算をすることによ り色條正されたカラー面像信号を出力するよう にしたことを特徴とするが関に依存した色修正

請求項しに配載の色修正を前記3原色につ いてそれぞれ行なうようにしたことを特徴とす る彩度に依存した色像正方法。

3. 発明の詳細な説明

発明の目的:

(産業上の利用分野)

この発明は、カラースキャナ等のカラー画像処 理芸匠において使用されるカラー画像信号に対し て選択的色像正を行なう際、色相信号を検出して 各色相毎に必要強度の変換を行なうと共に、影度 が高くなった場合に過傷正とならない色祭正をす るようにした彩度に依存した色修正方法に関す

(従来の技術)

従来より、カラースキャナ等のカラー圏像処理 装置における色佐正方法では、使用されるカラー 画像信号の色相信号に対して影度に依存した色像 正を行なうようにしている。色修正は例えば色を 彩やかにしたり、色の樹りをとったりすることに より行なうが、彩やかにするには必要な色を増加 すれば良く、色の濁りをとるには不必要色を除去 **すればない。**

これら色像正方法の中には、例えば特別図

58-181045 号公報に記載の修正方法のように、色相信号の演算の前に入力される画像信号の色色に入力される画像信号につる色相信号につる色相信号につる色を判別し、少なくとも1つの色相信号につる色度を行なう方法がある。この方法では、カラー値をできたがある。この方法では、カラー値像の表別([J-1~6]を求め、プロットに合いをでは、クラー(「・1~6]を求め、プロットに合いをできませる。(J-1~6)を表類して原信の正面を表別、(J-1~6)を表類して原信の正面を表別、(イエロー)、M(マゼンタ)、C・をアン)の各修正されたカラー画像信号?・34・50

$$R_{*} - R_{*} + \sum_{i=1}^{2} p_{i}^{2} + 2^{2}$$

$$R_{*} - R_{*} + R_{*} + 2^{2$$

のようにして求めている。又、色修正される色相 信号は色相弁別回路で

発明の構成:

(課題を解決するための手段)

(作用)

この発明の影度に依存した色修正方法は、カラー関係信号より比较器で色相信号を検出し、この色相信号を色相信号変換テーブルに記憶されたテーブルデータに基づいて関数化すると共に、前記カラー画像信号の最大値の色相及び最小値数を乗じた後に、前記関数化データに対して乗算器、加算器により所定の演算

のようにして求めている。

(発明が解決しようとする課題)

ところが、上記色像正方法では画像の彩度が高い場合、色像正される色相信号((S,)) は第1 図の破線10のように影度S,が高くなるに従って値が大きくなり過ぎてしまい、結果として不自然な色像正が行なわれてしまう欠点があった。

この発明は上述のような事情からなされたものであり、この発明の目的は、国像の彩度が高い場合でも色相信号に対して自然な色像正ができるように、彩度に依存した色像正方法を提供することにある。

を行なって色修正用の色相信号を出力することで、色相信号の色像正を自然な条件で行なうようにしている。

(実施領)

$$R_{i} = A + \sum_{j=1}^{i} p_{ij}^{2} - L(2^{i})$$

$$R_{i} = A + \sum_{j=1}^{i} p_{ij}^{2} - L(2^{i})$$

$$\dots \dots (2)$$

のようにして色相信号Y、M、Cを抑出して、色相信号を色体正している。そして、この発明では、関数 f(S₂) のデータは第 1 図の実線 21で示すように舒度 S₂が大きくなると飽和するようになっており、この関数 f(S₂) は例えばルックアップテーブル(LBT) にテーブルデータとして持つようにして

いる。このため、色相信号を色像正する場合、第一1 図に示す実線 21 の色相信号のように、画像の彩度 5. が高くなってもテーブルより 順次修正用の飽和したデータが供給されて色像正が行なわれるので、従来の修正方法の破線 20のように過修正になることはない。

第2図は、この発明の色像正方法を実現するカラー画像処理装置のブロック構成例を示している。

この色像正装置はY色についての修正を示しており、スキャナ等によりカラー原国を光電走達して得られた色分解信号に基本的なマスキング演算処理が施され、かつデジタル化されたカラー画像 サY.M.C が比較器 1 に入力される。比較器 1 に入力される。比較器 1 に入力される。比較器 1 に入力される。比較器 1 に入力される。比較器 1 に入力される。比較器 2 に使用された比較器と同様な動作をし、入力されたカラー画像信号 7.M.C の大小の比較結果に基づき名 3 ピットの 2 値信号 01~03を出力する。 2 値信号 01は最小値のカラー画像信号を、 2 値信号 02は中

は演算器 3 に入力され、 2 値信号 D2と 2 値信号 D1 及びDJとの差が減算器11及び12で求められ、それ 5の値が正となる色相信号<u>HI及びH2</u>が算出され、 それぞれLUT で成る色相信号変換テーブル4A及び 48に入力される。色相信号変換テーブル4A及び4B にはそれぞれ前記(3) 式の陽数!(S」) が記憶され ており、関数 f (S,) の値に基づいて色相信号(H)及 びllzの関数化が行なわれて色相信号(ll'及びHz' が算出され、各々乗算器5A及び5B及に入力され る。また、乗算器5A及び5Bにはそれぞれ上記係 改信号DAA 及びDBB が入力されており、色相信号 H1'及びH2'との乗算が行なわれた係数化色相信 号SPL)及びSPR が加算器6に入力され、再信号の 加算が行なわれて色像正の施されたカラー画像信 号ヤ゙が出力される。つまり、上述において、前記 (3) 式で色体正されたY色のカラー画像信号!)が

又、他の色相M及びCについては修正器の修正器の修正 器の修正係数をMではbサー~bセ゚、bサロ~bサルに、Cでは bサ~bピ、b。~b。にそれぞれ変更して、同様に構成 間のカラー距像信号をそれぞれ示している。そし て、 2 値信号D1~D3は資算器 3 に入力される。更 に、この比较器!は入力されたカラー餌像信号! M.C の中の最大値の信号を色信号DAY.DAW,DAC と して出力すると共に、カラー顕像信号Y.N.C の中 の最小値の補色B(青)、G(緑)、R(赤)を 色信号DAB,DAG,DAR として出力する。色信号DAM. DAY.DAC はそれぞれ修正係数by,bi.beで乗算する 修正器 2AY, ZAM, ZAC に入力され、各色毎に修正 係数を乗算された係数信号DAA が出力される。 また、色信号DAB.DAG.DAR はそれぞれ修正係数 b.b.b.a.b.で乗算する修正器288.28G.28R に入力さ れ、各色毎に修正係数値を乗算された係数信号 DBB が出力される。比較器しからは色信号DAY。 DAM,DAC の中の1つ、色信号DAB.DAG,DAR の中の 1つがそれぞれ出力されるので、修正器2AY ~ 2AC 及び288 ~286 の各1つが出力され、係数信 号DAA 及びD88 がそれぞれ乗算器5A及び58に入力 されることになる。

一方、比較毎1から出力される2値信号01~03

することにより得られる。したがって、実際の国 像処理装置ではY、M、Cの3色について色像正 回路を併設して3色について同時に色像正するこ とになる。

歌明の効果:

この発明の影度に依存した色修正方法によれば、値像の彩度が高い場合でも色相信号に対して 自然な条件で色修正が行なわれる利点がある。 又、この色修正方法を使用したカラー値像処理装 世は構成が簡単で、コストも安価であるといった 利点がある。

4. 図面の簡単な説明

第1図はこの発明の色像正方法の原理を説明するための図、第2図はこの発明の色像正方法を実現するカラー国像処理装置のブロック構成例を示す図である。

1 …比較器、2AY、2AM、2AC、286、288 … 修正器、3 … 演算器、31、22 … 成算器、4A、48 … 色相信号変換テーブル、5A、58 … 乗算器、 8 … 加算器。

LIMSCOLL

第1回

第2回