Fondamenti dell'informatica

Andrea gullì handgull

September 16, 2022

Contents

1	Insiemistica di base			3
	1.1	Cos'è ı	un insieme	3
	1.2	Rappre	esentazione degli insiemi	4
		1.2.1	Diagrammi di Eulero-Venn	4
		1.2.2	Rappresentazione estensionale	4
		1.2.3	Rappresentazione intensionale	5

Introduzione

Questi appunti sono volti a guidare a 360 gradi, spiegando tutti i concetti passo passo ed i loro utilizzi pratici nel campo dell'informatica.

Perchè studiare insiemi? la teoria degli insiemi è un fondamento della matematica, che a sua volta è un fondamento dell'informatica.

Concretamente parlando il campo dell'informatica più influenzato dall'insiemistica a mio avviso è quello delle **basi di dati**.

Ad esempio con una SELECT * FROM che coinvolge più di una tabella verrà fatto il **prodotto cartesiano** tra le tuple delle tabelle del database.

Sempre nei database relazionali sono essenziali le operazioni di **unione**, **intersezione**, di **differenza** e così via.

Chapter 1

Insiemistica di base

1.1 Cos'è un insieme

Un **insieme** è una collezione non ordinata di oggetti distinti e ben definiti detti elementi dell'insieme. Per convenzione gli insiemi sono denominati con lettere maiuscole e sono delimitati da parentesi graffe, gli elementi sono indicati con lettere minuscole.

Per ogni oggetto (anche un insieme) esistente è possibile chiedersi se esso appartiene o meno ad un determinato insieme.

Se un elemento appartiene ad A si scrive:

$$a \in A$$

Se un elemento b non appartiene ad A si scrive:

$$b \notin A$$

L' **insieme universo** è l'insieme indicato con U che contiene tutti gli tutti gli elementi e tutti gli insiemi esistenti, compreso quindi anche se stesso.

L' **insieme vuoto**, ovvero l'insieme senza elementi viene denotato con ϕ . Per ogni oggetto x, esiste un insieme $\{x\}$ che viene detto **singoletto**.

$$A = \{1, 2, 3\}$$
$$B = \{3, 2, 1\}$$

$$C = \{1, 1, 2, 3\}$$

In questo caso abbiamo che A = B = C dato che ordine e numerosità degli elementi non contano, come detto sopra.

 $\{\phi\}$ non è l'insieme vuoto ma è un insieme, un singoletto, contenente l'insieme vuoto.

1.2 Rappresentazione degli insiemi

1.2.1 Diagrammi di Eulero-Venn

Un metodo di rappresentazione grafico estremamente facile da capire ma limitato se si tratta di dover rappresentare insiemi grandi. Molto semplicemente gli elementi dentro il cerchio appartengono all'insieme.

1.2.2 Rappresentazione estensionale

Consiste nell'elencare esplicitamente tutti gli elementi dell'insieme. Anche questo metodo risulta scomodo quando all'interno dell'insieme vi è un gran numero di elementi o addirittura c'è un numero infinito di elementi da elencare.

$$A = \{1, 2, 3\}$$

 $B = \{1, 2, 3, ..., 100\}$

1.2.3 Rappresentazione intensionale

Consiste nel formulare una proprietà caratteristica P che distingue precisamente gli elementi dell'insieme $S = \{x : P\}$. S è l'insieme di tutti e soli gli elementi per i quali la proprietà P è vera.

$$A = \{x : x \in \mathbb{N}, x > 3, x < 6\} = \{4, 5\}$$