```
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams
import saborn as ns
import numpy as np
from sklearn.preprocessing import LabelEncoder
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeclassifier
from sklearn.tree import DecisionTreeclassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
```

df=pd.read_csv('winequality-red.csv')
df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8

sns.histplot(df['quality'])

sns.scatterplot(x='fixed acidity',y='quality',data=df)

sns.scatterplot(x='volatile acidity',y='quality',data=df)

sns.scatterplot(x='citric acid',y='quality',data=df)

sns.heatmap(df.corr(),annot=True)

df.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	dens
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997

```
df.isnull().any()

fixed acidity volatile acidity False citric acid False residual sugar False free sulfur dioxide total sulfur dioxide density False pH sulphates False quality False dtype: bool

df.value_counts(df['quality'])

quality 5 681 6 638 7 199 4 53 8 18 3 10 dtype: int64
```

```
x=df.iloc[:,0:11]
y=df.iloc[:,11]
smt=SMOTE()
x_resampled,y_resampled=smt.fit_resample(x,y)
```

 $x_train, x_test, y_train, y_test=train_test_split(x_resampled, y_resampled, test_size=0.2, random_state=42)$