N=9

Relación Modulación 1

Relación Sobremodulación

Relación Poca Modulación

Amplitud de la Señal Portadora	Amplitud del Mensaje	Potencia de la Señal [dBm]	Indice de Modulación	Frecuencia del Mensaje [kHz]
0,5713	0,5713	22,13	1,0000	70
0,5495	1,0612	25,52	1,9312	70
0,5726	0,0742	19,20	0,1295	70

En este punto del laboratorio tenemos que empezar teniendo en cuenta que el valor para "N" es de 9, este dato va a afectar a ka para así lograr los 3 casos de la Modulación en Amplitud (AM). Podemos ver en los datos obtenidos en la tabla, tenemos la misma relación de que a medida que el índice de modulación aumenta la potencia de la señal también aumenta. Teniendo en cuenta la fórmula de modulación, tenemos que la relación que podemos obtener es casi la misma, con pequeñas diferencias las cuales se pueden deber al ruido y como este afecta la amplitud de la señal.