DIO programming

By: Yehia M. Abu Eita

Outlines

- Introduction
- The Data Direction Register (DDRx)
- The Port Register (PORTx)
- The Port INput Register (PINx)
- Configuring the Pin

Introduction

- AVR ATmega32 has 32 programmable I/O pins.
- These pins are grouped into 4 ports.
 - Port A, Port B, Port C, and Port D
- Each port contains 8 pins.
- Ecah pin can be configured as general-purpose inputs/outputs.
- Each pin has special function.
- Each pin can be configured using three I/O registers for each port:
 - DDRxn, PORTxn, PINxn

The Data Direction Register (DDRx)

- It can be called also a **control/configuration** register.
- It is used to configure each pin, if it is an input or an output pin.
- It is an 8-bit register, each bit controls its mapped pin.
- Input or Output depends on the connected device if it is input or output device.

DDRA – Port A Data Direction Register									
Bit	7	6	5	4	3	2	1	0	
	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	-04							
Initial Value	0	0	0	0	0	0	0	0	

Example:

- Configuring Pin2 in Port A as an input pin, DDRA &=~ (1<<2); // clear bit</p>
- Configuring Pin6 in Port A as an output pin, DDRA |= (1<<6); // set bit

The Port Register (PORTx)

- It can be called also a data register.
- It is used to pull each pin high or low, writing 1 or 0.
- It is an 8-bit register, each bit controls its mapped pin.
- Set to 1 means 5 volts and 0 means ground.

- Example:
 - Pull Pin3 in Port A <u>low</u>, <u>PORTA &=~(1<<3); // clear bit</u>
 - Pull Pin5 in Port A high, PORTA |= (1<<5); // set bit

The Port INput Register (PINx)

- It can be called also a status register.
- It is used to store each pin state, high-level or low level.
- It is an 8-bit register, each bit stores its mapped pin status.
- If the bit stores 1, this means high-level, and if 0, this means low-level.

PINA – P	ort A Inp	ut Pins A	ddress						
Bit	7	6	5	4	3	2	1	0	
	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	R	R	R	R	R	R	R	R	
Initial Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Example:

- Read state of Pin7 in Port A, (PINA&(1<<7))>>7; // if pin7 connected to the vcc the result is 1
- Read state of Pin2 in Port A, (PINA&(1<<2))>>2; // if pin2 connected to the ground the result is 0

Configuring the Pin

I/O pins:

- Each pin has selectable pull-up resistors.
- Each pin has protection diodes to both VCC and Ground.

Current:

- Each pin can sink or source a maximum current of 40mA.
- All the ports combined, should not exceed 200mA.

Pin states:

 Each pin has four different states depending on the state of the bits corresponding to this pin in DDRx and PORTx of that specific port.

DDxn	PORTxn	PUD (in SFIOR)	1/0	Pull-up	Comment
0	0	Х	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	Х	Output	No	Output Low (Sink)
1	1	Х	Output	No	Output High (Source)

Summary

- Now you are familiar with the DIO in ATmega32
- Remember that DDRx register is used to configure pin direction
- Remember that the PORTx register is used to control pin output
- Remember that the PINx register is used to get pin state
- Remember floating pins will not be considered a 0 or 1 unless it is pulled up or down externally
- Remember to use set-bit, clear-bit, and read-bit macros