

Proprietà strutturali e leggi di controllo

Osservabilità e rilevabilità

Osservabilità e rilevabilità

- Definizioni ed esempi introduttivi
- Analisi dell'osservabilità di sistemi dinamici LTI
- Esempi di studio dell'osservabilità
- Osservabilità e realizzazione
- ➤ Il principio di dualità

Osservabilità e rilevabilità

Definizioni ed esempi introduttivi

- Le proprietà di **osservabilità** e di **rilevabilità** descrivono le possibilità di stimare lo stato del sistema $x(\cdot)$ tramite la misura del movimento dell'uscita $y(\cdot)$ e dell'ingresso $u(\cdot)$
- ▶ La proprietà di osservabilità descrive la possibilità di stimare lo stato iniziale del sistema mediante la misura dell'uscita y(·) e dell'ingresso u(·) su un dato intervallo di tempo
- La proprietà di **rilevabilità** descrive la possibilità di stimare lo stato finale del sistema mediante la misura dell'uscita $y(\cdot)$ e dell'ingresso $u(\cdot)$ su un dato intervallo di tempo

© 2007 Politecnico di Torino

Definizione di stato non osservabile

- Per studiare la proprietà di osservabilità è opportuno definire dapprima il concetto di stato non osservabile
- Uno stato $x^* \neq 0$ si dice **non osservabile** (nell'intervallo $[t_0, t^*]$) se, qualunque sia $t^* \in [t_0, \infty)$, detto $y_\ell(t)$ il movimento libero dell'uscita conseguente allo stato iniziale $x(t_0) = x^* \neq 0$, risulti: $y_\ell(t) = 0, \forall t \in [t_0, t^*]$
- ightharpoonup Senza perdere generalità, si può assumere: $t_0=0$

5

y(t) = Cx(t)

Lo spazio di non osservabilità

- ightharpoonup L'insieme di tutti gli stati non osservabili (nell'intervallo $[t_0,t^*]$) è dato dall'insieme di non osservabilità $X_{NO}(t^*)$ al tempo t^*
- ightharpoonup L'insieme $X_{NO}(t^*)$ costituisce un sottospazio lineare dello spazio di stato X
- Il sottospazio di non osservabilità X_{NO} è definito come l'insieme di non osservabilità $X_{NO}(t)$ di dimensione minima:

$$X_{NO} = \min_{t \in [t_0, \infty)} X_{NO}(t)$$

La completa osservabilità

Si definisce il sottospazio di osservabilità X_O come il complemento ortogonale di X_{NO} :

$$X_O = X_{NO}^{\perp}$$

e quindi $X_O \cap X_{NO} = \emptyset, X_O + X_{NO} = X$

Un sistema è completamente osservabile se

$$X_O = X$$

7

La completa rilevabilità

Si definisce il sottospazio di non rilevabilità X_{ND} come l'insieme di non rilevabilità $X_{ND}(t)$ di dimensione minima:

$$X_{ND} = \min_{t \in [t_{\circ}, \infty)} X_{ND}(t)$$

- ightharpoonup Si definisce il sottospazio di rilevabilità X_D come il complemento ortogonale di X_{ND} :
- **>** Un sistema è $X_D = X_{ND}^{\perp}$ completamente rilevabile se

$$X_D = X$$

Relazioni tra osservabilità e rilevabilità

Per i sistemi LTI TC si ha:

$$X_O = X_D$$

> Per i sistemi LTI TD si ha in generale:

$$X_{\mathcal{O}} \subseteq X_{\mathcal{D}}$$

● Se la matrice A è non singolare

$$X_O = X_D$$

9

y(t) = Cx(t)

Studio dell'osservabilità

> Per i sistemi LTI si ha quindi in generale:

$$X_{\mathcal{O}} \subseteq X_{\mathcal{D}}$$

- Quindi, se un sistema LTI è completamente osservabile è anche completamente rilevabile
- Pertanto, si studieranno sempre le proprietà di osservabilità

Parte osservabile e non osservabile

- ➤ In un sistema LTI con dimensione finita n e non completamente osservabile sono stati definiti:
 - **⑤** Il sottospazio di osservabilità X_O (dim(X_O) = O < n) → parte osservabile
 - **●** Il sottospazio di non osservabilità X_{NO} (dim(X_{NO}) = n o) → parte non osservabile
 - Al sottospazio di osservabilità sono associati
 o degli n autovalori della matrice A
 - Al sottospazio di non osservabilità sono associati n – o degli n autovalori della matrice A

11

y(t) = Cx(t)

Parte osservabile e non osservabile

- L'uscita è influenzata dalla sola parte osservabile
- Gli stati osservabili possono influenzare la parte non osservabile, ma non il viceversa

© 2007 Politecnico di Torino

Esempio introduttivo 1

Consideriamo il seguente sistema dinamico:

- **>** Supponiamo $x_1(0) ≠ 0$, $x_2(0) = 0$
- A causa del circuito aperto su y(t), la corrente nella resistenza R è sempre pari all'ingresso u(t) $y(t) = R u(t), \forall t \ge 0$
- **>** L'effetto di $x_1(0) ≠ 0$ non compare su y(t)
- ightharpoonup Lo stato $x_1(0)$ non è osservabile dall'uscita y(t)

13

Esempio introduttivo 2

Consideriamo il seguente sistema dinamico:

- Supponiamo $u(t) = 0 \ \forall t, x(0) \neq 0$ $y(t) = u(t) = 0, \ \forall t \geq 0$ $\Rightarrow x(0) \neq 0$ non ha nessun effetto su y(t)
- \rightarrow Lo stato x(0) non è osservabile dall'uscita y(t)

Osservabilità e rilevabilità

Analisi dell'osservabilità di sistemi dinamici LTI

Determinazione di X_o per sistemi LTI TD (1/7)

Consideriamo un sistema dinamico LTI TD descritto dalle equazioni di ingresso – stato – uscita :

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- Vogliamo trovare:
 - ullet L'insieme di non osservabilità $X_{NO}(\ell)$ al tempo ℓ
 - lacktriangle Il sottospazio di non osservabilità X_{NO}
 - ullet Il sottospazio di osservabilità $X_{\mathcal{O}}$
 - Una condizione necessaria e sufficiente per la completa osservabilità del sistema

Determinazione di X_o per sistemi LTI TD (2/7)

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- Consideriamo, per semplicità, il caso in cui:
 - Il sistema abbia una sola uscita ($q = 1 \rightarrow C \in \mathbb{R}^{1 \times n}$)
 - L'ingresso sia nullo: u(k) = 0, $\forall k$
- ➤ Si ha:

$$y(0) = y_{\ell}(0) = Cx(0)$$

$$y(1) = y_{\ell}(1) = Cx(1) = CAx(0)$$

$$y(2) = y_{\ell}(2) = Cx(2) = CAx(1) = CA^{2}x(0)$$

$$\vdots$$

$$y(\ell) = y_{\ell}(\ell) = Cx(\ell) = CAx(\ell - 1) = \dots = CA^{\ell}x(0)$$

y(t) = Cx(t)

Determinazione di X_o per sistemi LTI TD (3/7)

➤ Si può compattare l'espressione

$$y(0) = Cx(0)$$

$$y(1) = CAx(0)$$

$$y(2) = CA^{2}x(0)$$

$$\vdots$$

$$y(\ell) = CA^{\ell}x(0)$$

nella forma matriciale:

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(\ell) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{\ell} \end{bmatrix} x(0) = M_{o}(\ell)x(0)$$

Determinazione di X_o per sistemi LTI TD (4/7)

La matrice

$$M_{O}(\ell) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{\ell} \end{bmatrix} \in \mathbb{R}^{\ell \times n}$$

rappresenta il legame tra la sequenza $[y(0), y(1), ..., y(\ell)]$ e lo stato iniziale x(0)

▶ L' insieme di non osservabilità $X_{NO}(\ell)$ al tempo ℓ corrisponde allo spazio nullo $\mathcal{N}(\cdot)$ della matrice $M_O(\ell)$, che è proprio l'insieme degli stati iniziali che danno risposta libera nulla

19

Determinazione di X_o per sistemi LTI TD (5/7)

$$X_{NO}(\ell) = \mathcal{N}(M_{O}(\ell)) = \mathcal{N}\begin{pmatrix} C \\ CA \\ \vdots \\ CA^{\ell} \end{pmatrix}$$

■ La dimensione di $\mathcal{N}(M_O(\ell))$ è minima quando il rango di $M_O(\ell)$ è massimo e cioè quando: $\ell = n - 1$

Determinazione di X_0 per sistemi LTI TD (6/7)

> Definendo la matrice di osservabilità M_O come la matrice $M_O(n-1)$

$$M_{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \text{ si ha } \Rightarrow X_{NO} = \mathcal{N}(M_{O})$$

> Quindi, essendo $X_O = X_{NO}^{\perp}$, come proprietà dell'algebra lineare, si ottiene:

$$X_{O} = X_{NO}^{\perp} = (\mathcal{N}(M_{O}))^{\perp} = \mathcal{R}(M_{O}^{T})$$

21

y(t) = Cx(t)

Determinazione di X_o per sistemi LTI TD (7/7)

ightharpoonup Pertanto, la dimensione del sottospazio di osservabilità X_O è pari al rango o della matrice di osservabilità M_O

$$\dim(X_o) = \rho(M_o) = o$$

■ Un sistema dinamico LTI TD è quindi completamente osservabile (e anche rilevabile) se e soltanto se il rango della matrice di osservabilità M_O è pari alla dimensione n del sistema:

$$\rho(M_o)=n$$

Generalizzazione

- Il risultato appena enunciato vale anche:
 - Nel caso di sistemi dinamici LTI TC del tipo

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

per cui la matrice di osservabilità M_O è definita allo stesso modo

Per i sistemi LTI TC e TD a più uscite (q > 1) nei quali la matrice M_O assume la forma più generale

$$M_O = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-c} \end{bmatrix}, c = \rho(C)$$

- ▶ La matrice di osservabilità M_O di un sistema dinamico LTI può essere calcolata in MatLab mediante l'istruzione: M_O = obsv(A,C)
 - A, C: matrici della rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t) \quad x(k+1) = Ax(k) + Bu(k)$$

$$y(t) = Cx(t) + Du(t) \quad y(k) = Cx(k) + Du(k)$$

- Il rango o della matrice di osservabilità può essere calcolato con l'istruzione: o = rank(M_O)
- ➤ Per maggiori dettagli sulle istruzioni, digitare help obsv, help rank al prompt di MatLab

Osservabilità e rilevabilità

Esempi di studio dell'osservabilità

Esempio 1: formulazione del problema

➤ Si consideri il seguente sistema LTI TC:

$$\dot{x}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x(t)$$

> Studiarne le proprietà di osservabilità

- Per analizzare le proprietà di osservabilità occorre:
 - ullet Calcolare la matrice di osservabilità M_O a partire dalle matrici A e C delle equazioni di stato
 - Valutare il rango o di M_O e confrontarlo con la dimensione n del sistema; in particolare
 - Se o = n allora il sistema risulta completamente osservabile
 - Se o < n allora il sistema non è completamente osservabile

27

➤ Le matrici A e C del sistema dato sono:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -3 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

- ightharpoonup Il sistema è a un'uscita q=1 e di ordine n=3
- > La matrice di osservabilità è quindi del tipo:

$$M_{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^{2} \end{bmatrix}$$

- Per calcolare M_O conviene procedere alla sua costruzione "per righe" come segue:
 - Si calcola la terza riga CA² eseguendo il prodotto (CA)A:

$$M_{O} = \begin{bmatrix} C \\ CA \\ CA^{2} \end{bmatrix}$$

29

Nel terzo passaggio costruisco la terza riga di M_O con il prodotto righe per colonne CA² eseguito tramite il prodotto (CA)A

$$C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -3 \end{bmatrix} M_o = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -2 & -3 \end{bmatrix} CA^2$$

Esempio 1: analisi dell'osservabilità

Si ottiene la matrice di osservabilità:

$$M_{\mathcal{O}} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -2 & -3 \end{bmatrix}$$

Poiché:

$$\det(\mathcal{M}_{_{\mathcal{O}}})=1\neq0$$

➤ Si ha:

$$\rho(M_o) = 3 = n$$

■ Il sistema risulta completamente osservabile 31

\ x₁

Esempio 2: formulazione del problema

Si consideri il seguente sistema LTI TD:

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x(k)$$

> Studiarne le proprietà di osservabilità

- Per analizzare le proprietà di osservabilità occorre:
 - ullet Calcolare la matrice di osservabilità M_O a partire dalle matrici A e C delle equazioni di stato
 - Valutare il rango o di M_O e confrontarlo con la dimensione n del sistema; in particolare
 - lacktriangle Se o = n allora il sistema risulta completamente osservabile
 - Se o < n allora il sistema non è completamente osservabile

33

▶ Le matrici A e C del sistema dato sono:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & -1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

- The sistema è a un'uscita q = 1 e di ordine n = 3
- > La matrice di osservabilità è quindi del tipo:

$$M_{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^{2} \end{bmatrix}$$

La matrice di osservabilità è:

$$M_{O} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -2 & 3 & 0 \end{bmatrix}$$

Si ha

$$\det(M_{\mathcal{O}}) = 0 \Rightarrow \rho(M_{\mathcal{O}}) < 3$$

Notiamo che M_O ha una colonna nulla mentre le altre due sono linearmente indipendenti

$$\rho(M_O) = 2$$

35

$$M_O = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -2 & 3 & 0 \end{bmatrix}, \rho(M_O) = 2$$

- Il sistema risulta non completamente osservabile
- **➤** Inoltre:

$$\dim(X_{\mathcal{O}}) = \rho(M_{\mathcal{O}}) = 2$$

Osservabilità e rilevabilità

Osservabilità e realizzazione

Richiami sul problema della realizzazione

- > Ricordiamo che la determinazione di una rappresentazione in variabili di stato a partire dalla funzione di trasferimento di un sistema dinamico SISO LTI va sotto il nome di problema della realizzazione
- ➤ La soluzione del problema della realizzazione non è unica
- > In precedenza è stata introdotta una possibile soluzione tramite la forma canonica di raggiungibilità
- Studieremo ora un'altra possibile soluzione

Richiami sul problema della realizzazione

Ricordiamo che, nel caso in cui la funzione di trasferimento H(s) non sia strettamente propria (cioè m = n), prima di procedere alla realizzazione occorre compiere la divisione (polinomiale) tra il numeratore e il denominatore:

$$H(s) = \frac{b_{n}s^{n} + b_{n-1}s^{n-1} + \dots + b_{0}}{a_{n}s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}} =$$

$$= \frac{b'_{n-1}s^{n-1} + \dots + b'_{1}s + b'_{0}}{s^{n} + a'_{n-1}s^{n-1} + \dots + a'_{1}s + a'_{0}} + b'_{n}$$

39

y(t) = Cx(t)

La forma canonica di osservabilità

Data la funzione di trasferimento:

$$H(s) = \frac{b'_{n-1}s^{n-1} + \ldots + b'_1s + b'_0}{s^n + a'_{n-1}s^{n-1} + \ldots + a'_1s + a'_0} + b'_n$$

la forma canonica di osservabilità

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases} A = \begin{bmatrix} 0 & \cdots & 0 & -a'_0 \\ 1 & \ddots & \ddots & -a'_1 \\ 0 & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & -a'_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} b'_0 \\ b'_1 \\ \vdots \\ b'_{n-1} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} b'_n \end{bmatrix}$$

costituisce una sua possibile realizzazione

Forma canonica di osservabilità: proprietà

Nella forma canonica di osservabilità

$$A = \begin{bmatrix} 0 & \cdots & 0 & -a'_0 \\ 1 & \ddots & \ddots & -a'_1 \\ 0 & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & -a'_{n-1} \end{bmatrix} B = \begin{bmatrix} b'_0 \\ b'_1 \\ \vdots \\ b'_{n-1} \end{bmatrix} C = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} D = \begin{bmatrix} b'_n \end{bmatrix}$$

- La matrice A è in forma compagna destra \rightarrow il polinomio caratteristico è: $\lambda^n + ... + a'_1\lambda + a'_0$
- Il sistema dinamico individuato dalle matrici A, B, C, D è sempre completamente osservabile
- Il medesimo procedimento si applica a sistemi TD₁

y(t) = Cx(t)

Esempio: formulazione del problema

Data la seguente funzione di trasferimento:

$$H(z) = \frac{z + 0.1}{z^2 - 0.5z + 0.06}$$

Determinarne la realizzazione secondo la forma canonica di osservabilità

Esempio: realizzazione

ightharpoonup La funzione di trasferimento data è di ordine n=2:

$$H(z) = \frac{z + 0.1}{z^2 - 0.5z + 0.06} = \frac{b_1'z + b_0'}{z^2 + a_1'z + a_0'} + b_2'$$

La sua realizzazione secondo la forma canonica di osservabilità è quindi della forma:

$$A = \begin{bmatrix} 0 & -a_0' \\ 1 & -a_1' \end{bmatrix} B = \begin{bmatrix} b_0' \\ b_1' \end{bmatrix} C = \begin{bmatrix} 0 & 1 \end{bmatrix} D = \begin{bmatrix} b_2' \end{bmatrix}$$

43

Esempio: calcolo della realizzazione

$$H(z) = \frac{z + 0.1}{z^2 - 0.52 + 0.06} = \frac{b_1'z + b_0'}{z^2 + a_1'z + a_0'} + b_2'$$

$$A = \begin{bmatrix} 0 & -a_0' \\ 1 & 0.5 \end{bmatrix} B = \begin{bmatrix} b_0' \\ b_1' \end{bmatrix} C = \begin{bmatrix} 0 & 1 \end{bmatrix} D = \begin{bmatrix} b_2' \end{bmatrix}$$

$$a_1^{'} = -0.5$$

➤ La realizzazione secondo la forma canonica di osservabilità della funzione di trasferimento data è quindi:

$$x(k+1) = \begin{bmatrix} 0 & -0.06 \\ 1 & 0.5 \end{bmatrix} x(k) + \begin{bmatrix} 0.1 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(k)$$

49

Osservabilità e rilevabilità

Il principio di dualità

Introduzione

- Lo studio delle proprietà di raggiungibilità e di osservabilità svolto sino ad ora permette di mettere in evidenza una stretta analogia tra queste due proprietà
- Tale analogia va sotto il nome di principio di dualità
- Per definire il principio di dualità occorre definire il concetto di sistema duale di un sistema dinamico LTI

51

y(t) = Cx(t)

Il sistema duale

Si consideri il sistema LTI TC (sistema primale) $\rightarrow S^{P}(A,B,C,D)$

$$\dot{X}(t) = AX(t) + BU(t)$$

 $\dot{Y}(t) = CX(t) + DU(t)$, $X(t) \in \mathbb{R}^n$, $U(t) \in \mathbb{R}^p$, $Y(t) \in \mathbb{R}^q$

Operando la sostituzione

$$A \leftrightarrow A^{\mathsf{T}} \ B \leftrightarrow C^{\mathsf{T}} \ C \leftrightarrow B^{\mathsf{T}} \ D \leftrightarrow D^{\mathsf{T}}$$

si ottiene il **sistema duale** $S^{D}(A^{T}, C^{T}, B^{T}, D^{T})$ definito come il sistema dinamico LTI TC:

$$\dot{w}(t) = A^T w(t) + C^T v(t), w(t) \in \mathbb{R}^n, v(t) \in \mathbb{R}^q, z(t) \in \mathbb{R}^p$$
 $z(t) = B^T w(t) + D^T v(t)$

Sistema duale e spazi X_R e X_O

ightharpoonup Consideriamo il sottospazio di raggiungibilità X_R^P del sistema primale $S^P(A,B,C,D)$ definito come:

$$X_R^P = \mathcal{R}(M_R^P) = \mathcal{R}([B \quad AB \quad \cdots \quad A^{n-1}B])$$

Applichiamo quindi la definizione del sottospazio di osservabilità X_O

$$X_O = \mathcal{R}(M_O^T) = \mathcal{R}([C^T \quad A^T C^T \quad \cdots \quad (A^T)^{n-1} C^T])$$

al sistema duale $S^{D}(A^{T}, C^{T}, B^{T}, D^{T}) \rightarrow A^{T} \leftrightarrow A, C^{T} \leftrightarrow B$

$$X_{\mathcal{O}}^{\mathcal{D}} = \mathcal{R}\left(\left(M_{\mathcal{O}}^{\mathcal{D}}\right)^{T}\right) = \mathcal{R}\left(\left[B \quad AB \quad \cdots \quad A^{n-1}B\right]\right)$$

$\mathcal{L}x(t)$

Il principio di dualità

Possiamo quindi concludere che: Il sottospazio di raggiungibilità X_R^P del sistema primale $S^P(A,B,C,D)$ coincide con il sottospazio di osservabilità X_O^D del sistema duale $S^D(A^T,C^T,B^T,D^T)$

$$X_R^P = X_Q^D$$

In modo analogo si può dimostrare che: Il sottospazio di osservabilità X_O^P del sistema **primale** $S^P(A,B,C,D)$ coincide con il sottospazio di raggiungibilità X_O^P del sistema **duale** $S^D(A^T,C^T,B^T,D^T)$ $X_O^P = X_R^D$

Il principio di dualità: enunciato

> Possiamo quindi enunciare il Principio di dualità

Il sistema **primale** $S^{P}(A,B,C,D)$ è completamente raggiungibile (osservabile) se e soltanto se il sistema **duale** $S^{D}(A^{T},C^{T},B^{T},D^{T})$ è completamente osservabile (raggiungibile)

55

Schema riassuntivo

➤ Il principio di dualità può essere schematicamente riassunto:

Sistema primale $S^{P}(A,B,C,D)$		Sistema duale $S^{D}(A^{T},C^{T},B^{T},D^{T})$
(<i>A,B</i>) raggiungibile	\Leftrightarrow	(A^T, B^T) osservabile
(<i>A,C</i>) osservabile	\Leftrightarrow	(A^T, C^T) raggiungibile

Osservazione finale

Grazie al principio è possibile trattare problematiche legate all'osservabilità (raggiungibilità) con tecniche simili (duali) viste per la raggiungibilità (osservabilità)

57

Esempio: formulazione del problema

Dato il seguente sistema dinamico LTI TC:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 2 \end{bmatrix} x(t)$$

Studiarne le caratteristiche di osservabilità applicando il principio di dualità e non il metodo diretto visto negli Esempi 1 e 2 visti in questa lezione

Esempio: procedimento di soluzione

- Per lo studio della proprietà di osservabilità tramite il principio di dualità ricordiamo che: "Il sistema primale S^P(A,B,C,D) è completamente osservabile se e soltanto se il sistema duale S^D(A^T,C^T,B^T,D^T) è completamente raggiungibile"
- Possiamo quindi procedere come segue:
 - Determinazione del sistema duale
 - Studio della raggiungibilità del sistema duale

59

y(t) = Cx(t)

Esempio: determinazione del sistema duale

A partire dal sistema primale:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

effettuando la sostituzione:

$$A \leftrightarrow A^{\mathsf{T}} \ B \leftrightarrow C^{\mathsf{T}} \ C \leftrightarrow B^{\mathsf{T}} \ D \leftrightarrow D^{\mathsf{T}}$$

si ottiene il sistema duale

$$\dot{w}(t) = A^{T}w(t) + C^{T}v(t)$$
$$z(t) = B^{T}w(t) + D^{T}v(t)$$

Esempio: calcolo del sistema duale

Poiché le matrici del sistema primale dato sono:

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 2 \end{bmatrix}, D = 0$$

> Le matrici del sistema duale sono quindi:

$$A^{T} = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}, C^{T} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 1 \end{bmatrix}, D^{T} = 0$$

61

y(t) = Cx(t)

Esempio: raggiungibilità del sistema duale

$$\dot{w}(t) = A^{T}w(t) + C^{T}v(t) = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}w(t) + \begin{bmatrix} 0 \\ 2 \end{bmatrix}v(t) \\
\Rightarrow w(t) \in \mathbb{R}^{2} \to n = 2$$

Si può procedere utilizzando la seguente matrice di raggiungibilità del sistema duale:

$$M_{R}^{D} = \begin{bmatrix} C^{T} & A^{T}C^{T} & \cdots & (A^{T})^{n-1}C^{T} \end{bmatrix} = \begin{bmatrix} C^{T} & A^{T}C^{T} \end{bmatrix}$$

Con i dati del problema si ha:

$$A^{T} = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}, C^{T} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \rightarrow M_{R}^{D} = \begin{bmatrix} 0 & -2 \\ 2 & 4 \end{bmatrix}$$

Esempio: conclusioni

$$M_R^D = \begin{bmatrix} 0 & -2 \\ 2 & 4 \end{bmatrix} \Rightarrow \rho(M_R^D) = 2 = n$$

➤ Il sistema duale è completamente raggiungibile e quindi, per il principio di dualità, il sistema di partenza (sistema primale) risulta completamente osservabile

63

Esempio: nota finale

- Questo esempio aveva lo scopo di illustrare, in un caso numerico, le reazioni tra il sistema primale e quello duale
- Lo studio dell'osservabilità condotto con l'applicazione del principio di dualità costituiva solo lo spunto per effettuare i calcoli
- È bene ricordare che per lo studio delle proprietà di raggiungibilità ed osservabilità di sistemi LTI bisogna sempre seguire i metodi diretti introdotti in questa e nella lezione precedente nei rispettivi Esempi 1 e 2