Theorem (3.2.1f). Let f be the function defined by $f(x) = \lceil \frac{x}{2} \rceil$. f(x) is $\mathcal{O}(x)$.

Proof. Let g be the function defined by g(x) = x. By the properties for ceiling functions there exists an integer $\lceil \frac{x}{2} \rceil = n$ such that $(2n-2) < x \le 2n$. Clearly, $n \le (2n-2)$ for all $n \ge 2$. Also, $n = \lceil \frac{x}{2} \rceil \ge 2$ whenever x > 2. So we have $\lceil \frac{x}{2} \rceil \le (2n-2) < x$, for all x > 2. From that, obviously $\lceil \frac{x}{2} \rceil \le x$, for all x > 2, and since x > 2 we know that $|\lceil \frac{x}{2} \rceil| \le 1|x|$ holds. By the definitions for f and g that is, $|f(x)| \le 1|g(x)|$, for all x > 2. Therefore f(x) is $\mathcal{O}(x)$ with constant witnesses C = 1, and k = 2.