

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

Отчет по практической работе №4

по дисциплине

«Архитектура процессоров и микропроцессоров»

Выполнил: студент группы ИВБО-02-19 К. Ю. Денисов Принял: старший преподаватель кафедры ВТ Ю. М. Скрябин

Работа выполена «____» ______ 202___ «Зачтено» «____» _____ 202___

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

МКП — микропрограмма

МПА — микропрограммный автомат

УАПЛ — управляющий автомат на программируемой логике

ГСА — граф-схема автомата

АЛУ — арифметико-логическое устройство

УУ — устройство управления

КС1 — первая комбинационная схема

КС2 — вторая комбинационная схема

ОП — операционное поле

 $A\Pi$ — адресное поле

БП — безусловный переход

УП — условный переход

СЧАМК — счетчик адреса микрокоманд

ОЗУ — оперативное запоминающее устройство

РК — регистр команд

РС — распределитель сигналов

DC — дешифратор

КОП — код операции

РОН — регистр общего назначения

Задание

Для заданного в таблице 4 закодированного графа разработать три микропрограммных автомата (МПА):

- 1. МПА Мили на жесткой логике;
- 2. Управляющий автомат на программируемой логике (УАПЛ) с принудительной адресацией с 2-я адресными полями;
- 3. УАПЛ с естественной адресацией.

Для УАПЛ выбрать смешанный способ микропрограммирования.

Ход работы

В ходе данной лабораторной работы нам было предложено разработать три микропрограммных автомата (МПА). Приведем абстрактный граф-схему автомата (ГСА) (см. рисунок 1). Где $a_1...a_5$ — состояния автомата, причем a_1' — конечное состояние автомата.

Рисунок 1 — Граф-схема автомата

Получим закодированный граф на базе Φ CA, заменив микрооперации управляющими сигналами $\{y\}$, а логические условия — осведомительными сигналами $\{x\}$.

Рассмотрим реализацию блока управления на базе МПА с жесткой логикой (автомат Мили), приведенного на рисунке 2.

Рисунок 2 — МПА на жесткой логике на базе автомата Мили

В состав 2 МПА входят следующие структурные элементы:

- 2-х ступенчатая память автомата;
- дешифратор состояния (ДСсост.);
- две комбинационные схемы КС1 и КС2.

Память служит для запоминания состояния автомата.

Во второй ступени фиксируется текущее состояние, по которому комбинационная схема КС1 формирует набор управляющих сигналов. Первая ступень предназначена для формирования следующего состояния в зависимости от предыдущего и значений осведомительных сигналов. Переключение первой ступени памяти осуществляет схема КС1.

Двухступенчатая память применяется для исключения «гонок» из-за разницы в величине задержек в КС1 при переключении различных разрядов памяти.

Для ГСА (рисунок 1) выходы операторных вершин, отмеченные символами $a_1...a_5$ соответствуют состояниям памяти МПА. Присвоим

состояниям следующие двоичные коды:

$$a1(a1') = 000$$

$$a2 = 001$$

$$a3 = 010$$

$$a4 = 011$$

$$a5 = 100$$

Для кодирования пяти состояний потребовалось три двоичных разряда, соответственно память автомата будет строиться на трех триггерах. Выход вершины «начало» и вход в вершину «конец» отмечен одним и тем же символом а1. Это соответствует одному и тому же состоянию памяти и означает, что после выполнение своих функций по генерации {у} в соответствии заданной ГСА, МПА возвращается в исходное положение до следующей инициализации. Для этого в ГСА после вершины «Начало» необходимо поставить ждущую вершину:

Рисунок 3 — Ждущая вершина

Начало работы автомата обеспечивает сигнал «В», устанавливаемый извне в «1» (интерпретируется как осведомительный сигнал). После этого он сбрасывается в «0», а МПА после завершения работы снова переходит в состояние покоя «а1». Для реализации МПА необходимо по ГСА построить таблицу состояний и переходов автомата (Таблица 1).

В таблице отмечаются состояния МПА, управляющие сигналы, формируемые в каждом состоянии при наличии определенных значений осведомительных сигналов. Кроме того, в правой колонке таблицы записываются сигналы возбуждения памяти, формируемые по кодам состояния текущего и следующего состояния памяти.

Значения сигналов определяются таблицами переключения триггеров, выбранных для построения памяти. В данном случае память реализована на

Таблица 1 — Таблица состояний

Текущее	Код текущего	Управляющие	Осведомительные	Следующее	Код следующего	Сигналы
состояние	состояния	сигналы (вход.	сигналы	состояние	состояния	возбуждения
		набор)	(условие)			памяти
a1	000	y3, y1	В	a2	001	S1
			!B	al	000	
a2	001	y2, y4	1	a3	010	S2 R1
a3	010	y1, y5, y6	x1	a5	100	S3 R2
		у6	!x1	a4	011	S1
a4	011	-	x3	a2	001	R2
		_	!x3	a5	100	S3 R2 R1
a5	100	y3, y5	x2	a1	000	R3
		_	!x2	a1	000	R3

RS-триггерах. Таблица позволяет описать логическую организацию схем КС1 и КС2, т.е. произвести их абстрактный синтез.

Для КС1

$$y_{1} = a_{3}x_{1} + a_{1}B$$

$$y_{2} = a_{2}$$

$$y_{3} = a_{1}B + a_{5}x_{2}$$

$$y_{4} = a_{2}$$

$$y_{5} = a_{3}x_{1} + a_{5}x_{2}$$

$$y_{6} = a_{3}$$

Для КС2

$$S_1 = a_1 B + a_3 \bar{x_1}$$
 $R_1 = a_2 + a_4 \bar{x_3}$
 $S_2 = a_2$ $R_2 = a_3 x_1 + a_4$
 $S_3 = a_3 x_1 + a_4 \bar{x_3}$ $R_3 = a_5$

По полученным логическим выражениям произведем структурный синтез схем КС1 и КС2 и построим электрическую функциональную схему МПА.

Приведем схему МПА, построенного на основе автомата Мили адресацией (рисунок 4).

Рисунок 4 — МПА на основе автомата Мили

Реализация блока управления на базе МПА с программируемой логикой.

В МПА с программируемой логикой ГСА реализуется посредством микропрограммы (МКП), хранимой в управляющей памяти. Микропрограмма состоит из микрокоманд (МК), последовательность которых описывает графсхему алгоритма управления. Микрокоманда представляет собой машинное слово, состоящее из двух полей (рисунок 5).

0

Рисунок 5 — Машинное слово МПА

В ОП микрокоманды записываются управляющие сигналы или их коды. В АП — коды номеров условных вершин ГСА и адрес или адреса перехода к следующей микрокоманде.

Организуем ОП смешанным горизонтально-вертикальным способом. В нашем случае ОП будет состоять из трех сегментов NY1-NY3, по которым распределяются управляющие сигналы (см. Таблицу 2).

Tаблица 2-Oрганизация $O\Pi$ смешанным способом

NY1		NY2		NY3		
01	y1	01	y6	1	у5	
10	y4	10	y2	0	отс.	
11	ук	11	y3			
00	отс.	00	отс.			

Способы перехода в микропрограммах к следующей микрокоманде определяются форматами адресных полей МК и правилами перехода.

Принудительный переход выполняется по адресу, указанному в самой МК. Это соответствует безусловному переходу команд БП. При естественной адресации микрокоманд следующая микрокоманда адресуется посредством инкремента счетчика адреса микрокоманд (СЧАМК).

Микропрограммный автомат с принудительной адресацией МК Форматы МК с двумя адресными полями при принудительной адресации могут иметь следующий вид (рисунок 6).

ОП	№X	A_0	-	МК безусловного перехода
ОП	№X	A_0	A_1	МК условного перехода

Рисунок 6 — Форматы микрокоманд. Принудительная адресация

В Таблице 3 представлена МКП, описывающая рассматриваемый алгоритм управления

Таблица 3 — Алгоритм управления. Принудительная адресация

Разряды	0:1	2:3	4	5:6	7:9	10:12	Прим.
Адрес в УП	NY1	NY2	NY3	NX	A0	A1	УП
1	<y1></y1>	<y3></y3>	-	00	2	-	БУ
2	<y4></y4>	<y2></y2>	-	NX1	3	4	УП
3	-	<y6></y6>	-	NX3	5	2	УП
4	<y1></y1>	<y6></y6>	<y5></y5>	NX2	7	6	УП
5	-	-	-	NX2	7	6	УП
6	-	<y3></y3>	<y5></y5>	00	7	-	БУ
7	<y<sub>K></y<sub>	-	-	-	-	-	-

Опишем структуру блока формирования сигналов перехода в виде следующей микрокоманды:

$$Z_1 = B\Pi + (NX1\bar{x_1} + NX2\bar{x_2} + NX3\bar{x_3})$$

 $Z_2 = NX1x1 + NX2x_2 + NX3x_3$

Приведем схему МПА с принудительной адресацией (рисунок 7).

МПА на с принудительной адресацией

Рисунок 7 — МПА с принудительной адресацией

Микропрограммный автомат с естественной адресацией Рассмотрим вариант, предлагающий наличие двух типов микрокоманд: операционной, которая выполняет полезную работу и обрабатывает операторные вершины ГСА, и управляющей МК условного и безусловного переходов (рисунок 8).

R	ОП	
R	NX	В

Рисунок 8 — Формат микрокоманд. Естественная адресация

В Таблице 4 представлена МКП, описывающая рассматриваемый алгоритм управления.

Опишем структуру блока формирования сигналов перехода в виде следующей микрокоманды:

$$Z_1 = R + \bar{R} (NX1\bar{x_1} + NX2\bar{x_2} + NX3\bar{x_3})$$

 $Z_2 = R [B\Pi + (NX1x_1 + NX2x_2 + NX3x_3)]$

Приведем схему МПА с естественной адресацией (рисунок 9).

Таблица 4 — Алгоритм управления. Естественная адресация

Адр. МКОП	R	NY1	NY2	NY3	доп
Разр.	0	1:2	3:4	5	6
Адр. МКОП	R	NX	В		
Разр.	0	1:2		3:6	
1	0	<y1></y1>	<y3></y3>	-	0
2	0	<y4></y4>	<y2></y2>	-	0
3	1	NX1		7	
4	-	-	<y6></y6>	-	0
5	1	NX3		2	
6	1	00		8	
7	0	<y1></y1>	<y6></y6>	<y5></y5>	0
8	1	NX2		10	
9	0	<y<sub>K></y<sub>	-	-	0
10	0	-	<y3></y3>	<y5></y5>	0
11	0	<y<sub>K></y<sub>	-	-	0

Рисунок 9 — МПА с естественной адресацией

Вывод: в ходе данной практической работы мы ознакомились, разработали три МПА Мили на жесткой логике, УАПЛ с принудительной адресацией с двумя адресными полями, УАПЛ с естественной адресацией.