Esercizi di Analisi Matematica II e Probabilità- Foglio 2

Esercizio 1 Calcolare le derivate parziali della funzione

$$f(x,y) = \frac{2xy}{x^2 + y^2}$$

nel punto (1,0) e nel generico punto (x,y).

Esercizio 2 Determinare il piano tangente al grafico della funzione

$$f(x,y) = e^{x-y^2} + \sqrt{1+x^2+y^4}$$

nel punto (1, 0, f(1, 0)). Calcolare poi $D_v f(1, 0)$ dove v è il versore che indica la direzione della retta y = -x.

Esercizio 3 Data la funzione

$$f(x,y) = \begin{cases} \sqrt[3]{x}e^{-\frac{x^2}{y^4}}, \ y \neq 0\\ 0, \ y = 0 \end{cases}$$

Verificare che in (0,0)

- a) f è continua;
- b) f ammette tutte le derivate direzionali;
- c) vale la formula del gradiente;
- d) f non è differenziabile.

Esercizio 4 Data

$$f(x,y) = x^4 + y^4 - 2(x - y)^2$$

determinare i punti critici di f e precisarne la natura.

Esercizio 5 Studiare massimi e minimi locali delle funzioni

- a) $f_1(x,y) = (x-1)^2 + 2y^2$;
- b) $f_2(x,y) = e^{x-y}(x^2 2y^2);$
- c) $f_3(x,y) = xy\sqrt{1-x^2-y^2}$

Esercizio 6 Verificato che l'origine è un punto critico di

$$f(x,y) = (y - x^2) \left(y - \frac{x^2}{2} \right),$$

considerare le restrizioni di f lungo y = mx, $g_m(x) = f(x, mx)$ e, dopo aver osservato che x = 0 è un punto di minimo per tutte le funzioni g_m , mostrare che l'origine è un punto di sella per f.

Esercizio 7 Determinare gli estremi vincolati della funzione $f(x,y)=x^2+y^2$ sull'insieme $A=\{(x,y)\in\mathbb{R}^2:2x+3y=1\}$ con il metodo delle curve di livello.

Esercizio 8 Sia $f(x,y) = g(\sqrt{x^2 + y^2})$ una funzione di due variabili, radiale e di classe C^2 .

a) Calcolare la matrice Hessiana di f, verificando che ha la seguente forma

$$H_f(x,y) = \frac{g''(\rho)}{\rho^2} \begin{pmatrix} x^2 & xy \\ xy & y^2 \end{pmatrix} + \frac{g'(\rho)}{\rho^3} \begin{pmatrix} y^2 & -xy \\ -xy & x^2 \end{pmatrix}$$

dove
$$\rho = \sqrt{x^2 + y^2}$$
.

b) Dedurne che f è convessa nell'insieme in cui g' e g'' sono ≥ 0 ed è concava nell'insieme in cui g' e g'' sono ≤ 0 .