Feuille d'exercice n° 18 : Analyse asymptotique - correction

Exercice 5 1)
$$\frac{1}{n}$$
; 2) $\left(\pi - \frac{\pi^2}{2}\right) \frac{1}{n^2}$; 3) 4; 4) $\frac{e^{-n}}{2}$; 5) $\frac{\pi}{\sqrt{n}}$; 6) $-\frac{1}{n}$; 7) $\frac{8}{n^2}$; 8) ne^{1-n} ; 9) 1; 10) $\frac{1}{4n^2}$; 11) e^{1-n}

Exercice 14

1) 0

2) $\frac{1}{6}$

3) e e -1

4) e ⁻¹

5) $\frac{2}{3}$

6) $\frac{a^3}{b^3}$

7) -1

8) $-\frac{1}{2\sqrt{2}}$

9) √e

10) $\frac{1}{\pi}$

11) 1

12) $\frac{\sqrt{2}}{8x^3}$

13) $\frac{x^2}{2}$

14) $-\frac{3}{2}(x-\frac{\pi}{4})$

15) −*x*

Exercise 15
$$\lim_{x \to 1} \frac{x^x - 1}{\ln x} = 1$$

$$\lim_{x \to 0} \left(\frac{x^2}{\ln(\cos x)} + \frac{2}{x^2} \sin^2 x \right) = 0$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\ln(\sin^2 x)}{(\frac{\pi}{2} - x)^2} = -\frac{16 \ln 2}{\pi^2}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin^2 x)}{(\frac{\pi}{2} - x)^2} = -1$$

$$\lim_{x \to +\infty} \sin \frac{1}{x} \tan \left(\frac{2\pi x}{4x + 3} \right) = \frac{8}{3\pi}$$

$$\lim_{x \to 0^+} \ln x \tan(\ln(1+x)) = 0$$
$$\lim_{x \to e} (\ln x)^{\tan \frac{\pi x}{2e}} = e^{-\frac{2}{\pi}}$$

Exercice 17

1)
$$\ln(\cos x) = -\frac{1}{2}x^2 - \frac{1}{12}x^4 - \frac{1}{45}x^6 + o(x^6)$$

2)
$$\tan(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$

3)
$$\sin(\tan(x)) = x + \frac{1}{6}x^3 - \frac{1}{40}x^5 + o(x^5)$$

4)
$$(\ln(1+x))^2 = x^2 - x^3 + \frac{11}{12}x^4 + o(x^4)$$

5)
$$\exp(\sin(x)) = 1 + x + \frac{1}{2}x^2 + o(x^3)$$

6)
$$\sin^6(x) = x^6 - x^8 + o(x^9)$$

Exercice 18

1)
$$\sqrt{x+1} = \sqrt{x} + \frac{1}{2\sqrt{x}} - \frac{1}{8x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right)$$
;

2)
$$x \ln(x+1) - (x+1) \ln x = 1 - \ln(x) - \frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right)$$
;

3)
$$\left(\frac{x+1}{x}\right)^x = e^{-\frac{1}{2}} \frac{e^1}{x} + \frac{11}{24} \frac{e}{x^2} + o\left(\frac{1}{x^2}\right)$$
;

4) Arctan
$$x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} + o\left(\frac{1}{x^4}\right)$$
.

Exercice 19

1)
$$\frac{\arctan x - x}{\sin x - x} = 2 - \frac{11}{10}x^2 + o(x^2)$$
;

2)
$$\ln \sin x = \ln(\sqrt{2}/2) + (x - \pi/4) - (x - \pi/4)^2 + \frac{2}{3}(x - \pi/4)^3 + o((x - \pi/4)^3)$$
;

3)
$$(1+x)^{\frac{1}{x}} = e\left(1 - \frac{1}{2}x + \frac{11}{24}x^2 - \frac{7}{16}x^3\right) + o(x^3)$$
;

4)
$$x(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2}) = \frac{\sqrt{2}}{8x^2} + o\left(\frac{1}{x^2}\right).$$

Exercice 22

1)
$$\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2} = x\left(\sqrt{1 + \frac{1}{x}} - \sqrt{1 - \frac{1}{x}}\right) = 1 + \frac{1}{8x^3} + o(1/x^3).$$

2)
$$\ln(\sqrt{1+x}) = \frac{1}{2}\ln x + \frac{1}{2x} + o(1/x)$$
.

Exercice 23

1) a)
$$\frac{\cos x}{\sqrt{1+x}} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} + \frac{49x^4}{384} + o(x^4)$$

b)
$$\frac{\sqrt{1+x}}{\cos x} = 1 + \frac{x}{2} + \frac{3x^2}{8} + \frac{5x^3}{16} + \frac{41x^4}{384} + o(x^4)$$

c)
$$\frac{\ln(1+x)}{\cos x} = x - \frac{x^2}{2} + \frac{5x^3}{6} - \frac{x^4}{2} + o(x^4)$$

d)
$$\frac{1+\cos x}{2+\sin x} = 1 - \frac{x}{2} + \frac{x^3}{12} - \frac{x^4}{16} + o(x^4)$$

e)
$$\frac{\sin(x/2)}{e^{2x}} = \frac{x}{2} - x^2 + \frac{47x^3}{48} - \frac{5x^4}{8} + o(x^4)$$

f)
$$\frac{\ln(1+x)}{2-\cos x} = x - \frac{x^2}{2} - \frac{x^3}{6} + o(x^4)$$

2) a)
$$\frac{\sin(2x-\pi/4)}{\cos x} = 1 + 3(x-\frac{\pi}{4}) + \frac{3}{2}(x-\frac{\pi}{4})^2 + \frac{3}{2}(x-\frac{\pi}{4})^3 + \frac{19}{8}(x-\frac{\pi}{4})^4 + o((x-\frac{\pi}{4})^4)$$

b)
$$\frac{\cos(x-1)}{\ln(1+x)} = \frac{1}{\ln 2} - \frac{1}{2(\ln 2)^2}(x-1) + \frac{1}{\ln 2} \left(-\frac{1}{2} + \frac{1}{8\ln 2} + \frac{1}{4(\ln 2)^2} \right) (x-1)^2 + o((x-1)^2)$$

c)
$$\frac{e^{x-1}}{\ln x} = \frac{1}{x-1} + \frac{3}{2} + \frac{11}{12}(x-1) + \frac{3}{8}(x-1)^2 + \frac{71}{720}(x-1)^3 + \frac{41}{1440}(x-1)^4 + o((x-1)^4)$$

Exercice 24

2)
$$-\frac{1}{2}$$

3)
$$-\frac{e}{2}$$

4)
$$\frac{1}{12}$$

5)
$$-\frac{1}{6}$$

6)
$$-\frac{1}{2}$$

Exercice 28 En 0 : $\ln(1+x+x^2) = x + \frac{x^2}{2} + o(x^2)$.

En 1 : posons h = x - 1, donc $1 + x + x^2 = 1 + (1 + h) + (1 + h)^2 = 3 + 3h + h^2 = 3\left(1 + h + \frac{h^2}{3}\right)$. Et on développe quand $h \to 0$. On obtient :

$$\ln(1+x+x^2) = \ln 3 + (x-1) - \frac{(x-1)^2}{6}.$$

La tangente en 1 pour équation $y = \ln 3 + (x - 1)$ et au voisinage de 1 elle se trouve au-dessus du graphe de f.

Exercice 29

1) f est définie sur \mathbb{R} , donc elle n'a que deux branches infinies : une en $+\infty$, l'autre en $-\infty$. En $+\infty$ en $-\infty$, f est équivalente à $\frac{x^2\pi}{2}$. Donc le graphe de f est asymptotique à la parabole d'équation $y=\frac{x^2\pi}{2}$. Et comme $|\operatorname{Arctan}|<\frac{\pi}{2}$, il se trouve en-dessous. 2) Grâce à un tableau de signes, nous voyons que g est définie sur $]-\infty,-1/3[\cup[1,+\infty[$. En -1/3 elle tend vers $-\infty$ donc elle a une branche infinie d'asymptote d'équation x=-1/3.

En
$$\pm \infty$$
 : $g(x) = x\sqrt{\frac{1 - \frac{1}{x}}{3 + \frac{1}{x}}} = \frac{x}{\sqrt{3}}\sqrt{\frac{1 - \frac{1}{x}}{1 + \frac{1}{3x}}}$.

Nous cherchons un développement asymptotique de la forme ax + b + un terme non nul. On peut donc viser un développement en o(1/x). Mais en faisant cela on s'aperçoit que le terme en 1/x s'annule, donc il faut aller plus loin :

$$g(x) = \frac{x}{\sqrt{3}} \left(1 - \frac{1}{x} \right)^{1/2} \left(1 + \frac{1}{3x} \right)^{-1/2}$$

$$= \frac{x}{\sqrt{3}} \left(1 - \frac{1}{2x} - \frac{1}{8x^2} + \frac{1}{16x^3} + o\left(\frac{1}{x^3}\right) \right) \left(1 - \frac{1}{6x} + \frac{1}{24x^2} - \frac{5}{16x^3} + o\left(\frac{1}{x^3}\right) \right)$$

$$= \frac{x}{\sqrt{3}} \left(1 - \frac{2}{3x} - \frac{1}{4x^3} + o\left(\frac{1}{x^3}\right) \right)$$

$$= \frac{x}{\sqrt{3}} - \frac{2}{3\sqrt{3}} - \frac{1}{4\sqrt{3}x^2} + o\left(\frac{1}{x^2}\right)$$

Le graphe de g est donc asymptotique à la droite d'équation $y = \frac{x}{\sqrt{3}} - \frac{2}{3\sqrt{3}}$, et il se trouve en-dessous.