Reinforcement learning Episode 10

Trust Region Policy Optimization

Let \mathcal{Z} be a trajectory $(s_0, a_0, s_1, a_1, ...)$

Recall:

$$J(\Theta) = E_{z \sim \pi(\Theta)} \Big[\sum_{t=0}^T \gamma^t r(s_t) \Big]$$
 - goodness of Θ

Policy gradient theorem:

$$\nabla_{\Theta} J(\Theta) = E_{(s,a) \sim \pi(\Theta)} \left[Q^{\Theta}(s,a) \nabla_{\Theta} log \, \pi(a|s,\Theta) \right]$$

Let \mathcal{Z} be a trajectory $(s_0, a_0, s_1, a_1, ...)$

Recall:

$$J(\Theta) = E_{z \sim \pi(\Theta)} \Big[\sum_{t=0}^T \gamma^t r(s_t) \Big]$$
 - goodness of Θ

Policy gradient theorem:

$$\nabla_{\Theta} J(\Theta) = E_{(s,a) \sim \pi(\Theta)} \left[Q^{\Theta}(s,a) \nabla_{\Theta} \log \pi(a|s,\Theta) \right]$$

Problem: even if we change weights by small vector, our policy sometimes may change dramatically and thus become broken.

Let's define ρ_{π} as

$$\rho_{\pi}(s) = p(s_0 = s) + \gamma p(s_1 = s|\pi) + \gamma^2 p(s_2 = s|\pi) + \dots$$

Suppose we have these uniformly distributed trajectories that may be generated by policy π

$$s^{0} \rightarrow s^{1} \rightarrow s^{2}$$

$$s^{1} \rightarrow s^{2}$$

$$s^{0} \rightarrow s^{2}$$

$$s^{2}$$

$$s^{2}$$

Suppose $\gamma = 0.8$

so
$$\rho_{\pi}(s^2) = 1/4 + \gamma 1/2 + \gamma^2 1/4 = 0.81$$

There is a theorem...

$$J(\tilde{\pi}) = J(\pi) + E_{z \sim \tilde{\pi}} \left[\sum_{t=0}^{T} \gamma^t A_{\pi}(s_t, a_t) \right]$$

Then we obtain...

$$J(\tilde{\pi}) = J(\pi) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Trust Region trick:

If
$$E_sig[KL(\pi\,||\, ilde{\pi})ig]$$
 is small,
$$J(ilde{\pi}) pprox J(\pi) + \sum_s \rho_\pi(s) \sum_a ilde{\pi}(a|s) A_\pi(s,a)$$

The TRPO Problem

Find policy $ilde{\pi}$ that

1)
$$E_s[KL(\pi || \tilde{\pi})] < \alpha$$

2) maximizes
$$\sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

We can see that:

$$\sum_{a} \pi_{\theta}(a|s_n) A_{\theta_{\text{old}}}(s_n, a) = E_{a \sim \pi_{old}} \left[\sum_{i=0}^{N} \frac{\pi_{\theta}(s_i, a_i)}{\pi_{\theta_{old}}(s_i, a_i)} A_{\theta_{old}(s_i, a_i)} \right] \text{ - can be sampled from on-policy distribution!}$$

So let's optimize this function!

Vanilla implementation

Linear search

Constrained optimization

We can't compute constrained update analytically but there is a **trick**.

We can approximate KL by $\frac{1}{2}(\theta - \theta_{\text{old}})^T F(\theta - \theta_{\text{old}})$ where F is the **Hessian** matrix of KL.

Then we obtain that if \mathbf{g} is the gradient of $\mathbb{E}_{a \sim \pi_{\theta_{old}}} \left[\frac{\pi_{\theta}(a|s_n)}{\pi(a|s_n)} A_{\theta_{old}}(s_n, a) \right]$ our constrained update has the same direction as the solution of Fx = g. We don't want to compute F^{-1} because of complexity.

But we can find approximate solution of $\,Fx\,=\,g$ using conjugate gradients!

Constrained optimization Then we do linesearch!

Sampling

Single path (naive approach)

Sample (state, action, return) from on-policy distribution

$$L = -\sum_{i=0}^{T} \frac{\pi_{\theta}(s_i, a_i)}{\pi_{\theta_{old}}(s_i, a_i)} A_{\theta_{old}(s_i, a_i)}$$

Sampling

Vine (works only if we may use checkpoints)
Sample (state, returns for all a) from on-policy distribution

$$L = -\sum_{i=0}^{T} \sum_{j=0}^{n} \frac{\pi_{\theta}(s_i, a_j)}{\pi_{\theta_{old}}(s_i, a_j)} A_{\theta_{old}(s_i, a_j)} \Big]$$

Sampling

Vine (works only if we may use checkpoints)
Sample (state, returns for all a) from on-policy distribution

$$L = -\sum_{i=0}^{T} \sum_{j=0}^{n} \frac{\pi_{\theta}(s_i, a_j)}{\pi_{\theta_{old}}(s_i, a_j)} A_{\theta_{old}(s_i, a_j)} \Big]$$

TRPO

Advantages

- Very stable training
- Good result

Disadvantages

- Cheap sampling is necessary
- Not easy to implement

Thank you for your attention!

Questions?