

Expected Value of Perfect Information (EVPI)

- EVPI places an upper bound on what you should pay for additional information.
 - EVPI = EVwPI Maximum EMV
- **EVwPI** is the long run average return if we have perfect information before a decision is made.
 - EVwPI = (best payoff for first state of nature)
 - x (probability of first state of nature)
 - + (best payoff for second state of nature)
 - x (probability of second state of nature)
 - + ... + (best payoff for last state of nature)
 - x (probability of last state of nature)

Expected Value of Perfect Information (EVPI)

- Suppose Scientific Marketing, Inc. offers analysis that will provide certainty about market conditions (favorable).
- Additional information will cost \$65,000.
- Should Thompson Lumber purchase the information?

Expe	ected Valu	e of Perfec	et e
	nformatio	n (FVPI)	
	mormatio	II (LVII)	
	- 11 14 5		
Decision	Table with Po	erfect Informat	tion
	STATE C	F NATURE	
	FAVORABLE		
ALTERNATIVE	MARKET (\$)	MARKET (\$)	EMV (\$)
Construct a large plant	200,000	-180,000	10,000
Construct a small plant	100,000	-20,000	40,000
Do nothing	0	0	0
With perfect information	200,000	0	100,000
Probabilities	0.5	0.5	EVwPI
Table 3.10			

Expected Value of Perfect Information (EVPI) The maximum EMV without additional information is

EVPI = EVwPI - Maximum EMV

So the maximum Thompson

should pay for the additional

information is \$60,000.

= \$100,000 **-** \$40,000

= \$60,000

\$40,000.

Expected Value of Perfect Information (EVPI)

			16	IIIa.	XIII	luli	IVI V	VV	ILIIC	Jul	au	aiti	OH	ai i	1110		alı
		TI	00	ma	vi.		N // X	7	:4h	~4	مط	نه: لہ	o n	al i	nfo	r ma	~ 4;

The maximum EMV without additional information is \$40,000.

EVPI = EVwPI – Maximum EMV

= \$100,000 - \$40,000

= \$60,000

Copyright © 2012 Pearson Education

So the maximum Thompson should pay for the additional information is \$60,000.

Therefore, Thompson should not pay \$65,000 for this information.

Expected Opportunity Loss

- Expected opportunity loss (EOL) is the cost of not picking the best solution.
- First construct an opportunity loss table.
- For each alternative, multiply the opportunity loss by the probability of that loss for each possible outcome and add these together.
- Minimum EOL will always result in the same decision as maximum EMV.
- Minimum EOL will always equal EVPI.

Expected Opportunity Loss

3-8

	STATE O	F NATURE	
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	EOL
Construct a large plant	0	180,000	90,000
Construct a small plant	100,000	20,000	60,000
Do nothing	200,000	0	100,000
Probabilities	0.50	0.50	
Table 3.11		Mir	nimum EOI
EOL (large plant)	= (0.50)(\$0) + (0.50)(\$0)	+ (0.50)(\$180,000)	
EOL (small plant)) = (0.50)(\$100 = \$60,000),000) + (0.50)(\$20	,000)
EOL (do nothing)) = (0.50)(\$200)	(0.50)(0.50)	

= \$100,000

Sensitivity Analysis

Sensitivity analysis examines how the decision
might change with different input data.
For the Thompson Lumber example:
P = probability of a favorable market
probability of a factor along manner
(1-P) = probability of an unfavorable market

Sensitivity Analysis

EMV(Large Plant) = \$200,000P - \$180,000)(1-P)

3-10

= \$380,000P - \$180,000 EMV(Small Plant) = \$100,000P - \$20,000)(1-P)

= \$200,000P - \$180,000 + \$180,000P

- = \$100,000P \$20,000 + \$20,000P
- = \$120,000P \$20,000
- EMV(Do Nothing) = \$0P + 0(1-P)
 - = \$0

Selis	sitivity Analysis
	Substitute P once= 0 and
EMV Values	once =1 in each equation
\$300,000	
\$200,000	Point 2 EMV (large plant)
\$100,000 Point 1	EMV (small plant)
0	EMV (do nothing)
-\$100,000	Values of P
-\$200,000	

Sensitivity Analysis

3-12

Point 1:

EMV(do nothing) = EMV(small plant)

 $0 = \$120,000P - \$20,000 \qquad P = \frac{20,000}{120,000} = 0.167$

EMV(small plant) = EMV(large plant)

120,000P - 20,000 = 380,000P - 180,000

 $P = \frac{160,000}{260,000} = 0.615$

Solution

EVPI = EVwPI - Maximum EMV

	S			
ALTERNATIVE	GOOD MARKET (\$)	AVERAGE MARKET (\$)	BAD MARKET (\$)	EMV (\$)
Small shop	75,000	25,000	-40,000	15,500
Medium-sized shop	100,000	35,000	-60,000	19,500
No shop	0	0	0	0
Probabilities	0.20	0.50	0.30	

b.
$$EVwPI = (0.2)\$100,000 + (0.5)\$35,000 + (0.3)\$0 = \$37,500$$

 $EVPI = \$37,500 - \$19,500 = \$18,000$