Olimpiada Națională de Matematică 2007 Etapa finală, Pitești 11 aprilie 2007

CLASA A X-A, SOLUŢII ŞI BAREMURI

Subiectul 1. Demonstrați că ecuația $z^n+z+1=0$ are o soluție complexă de modul 1 dacă și numai dacă restul împărțirii lui n la 3 este 2.

Soluție Dacă $n = 3k + 2, k \in \mathbb{N}$ atunci avem ca soluție de modul 1 Reciproc, dacă avem o soluție de forma $\cos a + i \sin a$, $a \in [0, 2\pi)$, atunci $\sin na + \sin a = 0$ și $\cos na + \cos a + 1 = 0$. Din prima egalitate rezultă În primul caz avem $\cos na = \cos a$, deci $\cos a = -\frac{1}{2}$, adică $a = \frac{2\pi}{3}$ sau $a=\frac{4\pi}{3}$. Pentru $a=\frac{2\pi}{3}$ obţinem $\sin(2n\pi/3)+\sqrt{3}/2=0$, ceea ce este valabil doar pentru n=3k+2. Pentru $a=\frac{4\pi}{3}$ apare condiția $\sin(4n\pi/3)-\sqrt{3}/2=0$, ceea ce este valabil, de asemenea, doar pentru $n = 3k + 2 \dots 3$ puncte In al doilea caz avem $\cos na = -\cos a$, deci acest caz este imposibil....1 punct

Altă soluție pentru reciprocă. Dacă z este o soluție de modul 1, atunci avem și soluția 1/z, deci $z^n + z + 1 = 0 = z^n + z^{n-1} + 1$. Rezultă succesiv $z^{n-2} = 1$, $z^2 + z + 1 = 0$, $z^3 = 1$ și $z \neq 1$, n - 2 = 3k, $k \in \mathbb{N}$. Subjectul 2. Rezolvați ecuația $2^{x^2+x} + \log_2 x = 2^{x+1}$.

Funcția $f:(0,\infty)\to\mathbb{R},\,f(x)=2^x+\log_2x$ este strict crescătoare ca sumă de două funcții strict crescătoare. Egalitatea din ecuație devine $f(x^2 + x) =$ f(x), prin urmare $x^2 + x = x + 1$ ce implică $x = 1 \in (0, \infty) \dots 3$ puncte

Subiectul 3. Pentru ce numere naturale $n, n \ge 2$, numărul $a_n = (n-1)^{n^{n+1}} + (n+1)^{n^{n-1}}$ este divizibil cu n^n ?

Soluţie. Arătăm că $a_n = (n-1)^{n^{n+1}} + (n+1)^{n^{n-1}}$ este divizibil cu n^n , pentru n impar. 1 punct Avem

$$a_n = \sum_{k=1}^{n-1} (-1)^{k-1} n^k \binom{n^{n+1}}{k} + \sum_{k=1}^{n-1} n^k \binom{n^{n-1}}{k} + \mathcal{M}n^n.$$

Să arătăm că fiecare termen al sumelor de mai sus este divizibil cu n^n . Pentru aceasta observăm că dacă p este un număr prim care apare în n cu exponentul $r \ge 1$ atunci $p \ge 3$ şi $n^k \binom{n^{n-1}}{k}$ îl conține pe p la puterea cel puțin

$$kr + (n-1)r - \left\lfloor \frac{k}{p} \right\rfloor - \left\lfloor \frac{k}{p^2} \right\rfloor - \left\lfloor \frac{k}{p^3} \right\rfloor - \dots \ge nr + (k-1)r - \frac{k}{p-1}$$
$$\ge nr + (k-1) - \frac{k}{2}$$
$$\ge nr$$

pentru $k \geq 2$, iar în cazul k = 1, $n\binom{n^{n-1}}{1} = n^n$.

Pentru termenii primei sume raționăm analog (în acest caz nu mai este necesară analizarea separată a cazului k = 1)..............................4 puncte

Subiectul 4. a) Pentru o mulțime finită de numere naturale S se notează cu S+S mulțimea tuturor sumelor x+y cu $x,y\in S$. Fie m=|S|, cardinalul lui S. Arătați că

$$|S+S| \le \frac{m(m+1)}{2}.$$

b) Fie m un număr întreg strict pozitiv. Notăm cu C(m) cel mai mare număr întreg $k \geq 1$, pentru care există o mulțime S, formată din exact m numere întregi, astfel încât $\{1, \cdots, k\} \subseteq S \cup (S+S)$. De exemplu, C(3) = 8, cu $S = \{1, 3, 4\}$. Arătați că

$$\frac{1}{4}m(m+6) \le C(m) \le \frac{1}{2}m(m+3).$$

Soluție. a) Dacă S este o mulțime finită de numere, atunci

$$|S + S| \le |S| + {|S| \choose 2} = \frac{m(m+1)}{2}$$

b) Pentru inegalitatea de majorare, avem conform a)

$$|S \cup (S+S)| \le 2|S| + {|S| \choose 2}.$$