Homework Assignment 2

Matthew Tiger

February 13, 2017

Problem 2.10. Solve the Cauchy problem for the Klein-Gordon equation

$$u_{tt} - c^2 u_{xx} + a^2 u = 0, \quad -\infty < x < \infty, \quad t > 0,$$

$$u(x, 0) = f(x) \quad \text{for } -\infty < x < \infty,$$

$$\left[\frac{\partial u}{\partial t}\right]_{t=0} = g(x) \quad \text{for } -\infty < x < \infty.$$

Problem 2.12. Solve the equation

$$u_{tt} + u_{xxxx} = 0, \quad -\infty < x < \infty, \quad t > 0$$

 $u(x,0) = f(x), \quad u_t(x,0) = 0 \quad \text{for } -\infty < x < \infty.$

 \Box

Problem 2.14. Obtain the Fourier cosine transforms of the following functions:

a.
$$xe^{-ax}$$
, $a > 0$.

Problem 2.15. Find the Fourier sine transform of the following functions:

a.
$$xe^{-ax}$$
, $a > 0$.

b.
$$\frac{1}{x}e^{-ax}$$
, $a > 0$.

Problem 2.20. Apply the Fourier cosine transform to find the solution u(x,y) of the problem

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < \infty,$ $0 < y < \infty$
 $u(x, 0) = H(a - x),$ $x < a$
 $u_x(0, y) = 0,$ $0 < x,$ $y < \infty.$

 \square

Problem 2.22. Solve the diffusion equation in the semi-infinite line

$$u_t = \kappa u_x x, \qquad 0 \le x < \infty, \quad t > 0,$$

with the boundary and initial data

$$u(0,t) = 0$$
 for $t > 0$,
 $u(x,t) \to 0$ as $x \to \infty$ for $t > 0$,
 $u(x,0) = f(x)$ for $0 < x < \infty$.