# 山东大学<u>计算机科学与技术</u>学院 计算机组成与设计课程实验报告

学号: 202300130183 姓名: 宋浩宇 班级: 23 级人工智能

实验题目: 控制器实验

实验学时: 2 实验日期: 2024/12/24

实验目的:

掌握控制器的工作原理和实现方式。

硬件环境:

13th Gen Intel(R) Core(TM) i9-13980HX 2.20 GHz

32.0 GB(31.6 GB 可用)

康芯 KX-CDS FPGA 平台

芯片 Cyclong IV E EP4CE6E22C8

软件环境:

Windows 11 家庭中文版 23H2 22631.4317

Intel Quartus II 13.0sp1(64 bit)

实验内容与设计:

1、实验内容

设计控制存储器并初始化; 利用采用微程序实现, 读取并验证控制存储器的内容。

2、实验原理图

必做实验原理图:





#### 3、实验步骤

## 必做实验步骤:

- (1) 原理图输入:从元件库中选取合适的元件以及使用 MegaWizard Plug-In Manager 编辑
- (2) RAM 存储器完成原理图的输入
- (3) 管脚锁定: 用单脉冲驱动  $\mu$  PC 的计数脉冲 CPPC、 $\mu$  RD、CP  $\mu$  IR。将  $\mu$  PC 的 8 位输出锁定在 A7—A0 上。实验平台工作于模式 5,将单脉冲锁定于键 8,将  $\mu$  PC 的复位端 CLR 锁定在键 7,输出 UIR 的 24 位接数显 3—数显 8。
- (4)原理图编译、适配和下载:在 Quartus || 环境中选择 Cyclong IV E EP4CE6E22C8 器件,进行原理图的编译和适配,无误后完成下载。
- (5) 功能测试: 利用开关与指示灯和 In-System Memory Content Editor 工具测试结果,并分析结果的正确性。
- 4、实验结果

必做实验结果:

RAM 的初始化文件为:

| Addr | +0     | +1     | +2     | +3     | +4     | +5     | +6     | +7     | ASCII  |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0    | 0A3B1F | 1CDA2E | 3F4B5C | 6E7D8A | 9F2C3B | 4F5E1D | 2A3B4C | 7C8D9E |        |
| 8    | 8E9F0A | 1B2C3D | 3E4F5A | 5A6B7C | 8C9D0B | 2F3E1A | 4B5C6D | 3A1B2C | 1      |
| 16   | 5E7D8F | 7B8A9C | 6D4C3B | 9A8B7C | 0F1E2D | 1C2B3A | 4E3D2C | 7F5E4D | ****** |
| 24   | 4A3B2C | 2D1C0B | 9E8F7A | 3C2D1E | 1A2B3C | 5C4D9E | 7E6F0A | 8D9C8B |        |
| 32   | 2F3E4D | 0C1B2A | 5F6E0D | 4C3B7A | 2D1E3F | 9A8B57 | 6C9D0E | 1E2F4A |        |
| 40   | 5B6C3D | 0A1B4E | 3C7D1F | 9E5F2A | 6F8B0C | 8D3E9A | 1C4D7B | 2A3B8F |        |
| 48   | 5E1C6D | 0F2E3B | 4C6D8A | 3A5F0D | 9B8C2F | 6D0E7B | 1A2B3F | 4F8D6C |        |
| 56   | 5E0C9B | 3D2A4E | 7A1F9C | 6C9D8E | 2B3A5F | 0E1C9D | 4C5B6A | 7D8F3A |        |
| 64   | 1F2C8E | 8B4A0D | 9C5E3B | 3E2D1A | 5A4B8C | 6F0C7D | 0D2A3E | 1E9C5F |        |
| 72   | 7B8A1D | 3D4C6B | 9A2F8E | 4A5B0C | 6F8D2E | 1C5B3A | 3E7D4A | 2B1A6C | 1      |
| 80   | 0A4C5F | 5E7D2B | 6B8A0F | 7D4C1E | 9E3B2A | 1A5C4D | 4F1E3A | 8C3D9E | ****** |
| 88   | 2C6B7F | 5D0E1A | 7E4F2C | 3A1B8D | 9B5C6E | 0E2A4F | 1C9B7D | 6B3A2E |        |
| 96   | 5F7D8C | 3C9F4B | 8D1A0E | 2F3B5C | 6A5C2D | 1E0A9F | 9B2D3A | 4C8F7E |        |
| 104  | 0A2E1F | 8D5B9C | 1F0E3D | 3C2B4A | 5E1C7D | 6B8A0F | 2F4D3C | 9D8C5E |        |
| 112  | 4A0B3F | 1C6D5A | 7E2F8D | 3B1A4C | 5F9E0B | 6C7D2A | 9A1B8F | 0E4C3D | *****  |
| 120  | 1D2C6A | 8B4F5E | 3C2F1A | 6E1D3B | 9F8C5A | 0A2B7D | 2D4C8E | 5E3A4F |        |
| 128  | 4B7D8C | 3D1F0E | 6E3A2B | 7C9D1E | 8F5B4A | 2C3B9D | 1A7E0D | 5F3C2A | ****** |
| 136  | 4E2D8B | 0A5F9C | 9A1C7E | 6D8B3F | 1B5C2D | 3E4F1A | 8D6B9E | 7C0A5D |        |
| 144  | 0E4F2A | 1C8B3D | 5E3A1F | 4C7D9E | 2A1E8B | 6F8D0D | 9B3C1F | 3F0E8D | ****** |
| 152  | 7D4A9C | 2B5E3A | 0C6D0D | 8A2B1E | 1F4C3A | 5E0B7D | 3D8F1C | 7E5B2A |        |
| 160  | 9C3B4D | 2D0E8C | 4B9D5F | 1A5C2E | 8F3E1D | 6D1A4F | 0C7B3A | 9E5F1C |        |
| 168  | 5A2B4D | 1F0C8B | 3C6D2E | 7D1E3A | 6E4C9B | 2F3B1D | 4B8A5C | 8C5D2B |        |
| 176  | 0E3A9F | 1A2F6B | 6C4B8E | 7D1E3C | 5F9C8A | 2B4D6E | 1E5F9D | 9D3A4C | *****  |
| 184  | 4C6D8B | 3F0B1E | 8E2A7D | 6B5C9F | 5A4F1E | 2D1C0A | 0E8A3B | 7D4B6C |        |
| 192  | 9B2F0E | 1E3C5A | 4B5E6D | 8D1A2F | 3C9F4A | 2F1D8B | 5E3B0C | 6B8C4D |        |
| 200  | 9A5C1E | 0E8A3B | 4F2D6C | 1A0B9E | 8D3E5F | 7C4B2A | 3F1E0D | 2B8A6C |        |
| 208  | 5A3E9D | 1B9C2E | 6D0A4B | 0C3F9E | 7E2D1A | 4C5B2D | 3A8D0F | 1E0F2A | *****  |
| 216  | 9B3A4F | 5F6C1D | 2C1B3E | 7D9E0C | 8D5F2B | 6B3A4D | 1C7D5A | 0E4F8C | ****** |
| 224  | 4A3B0E | 8D5F7A | 1F0C4E | 9A1B8C | 3E7D2A | 5A5C9D | 0E1F3B | 6F2C8D |        |
| 232  | 2B4D1A | 7E9F6C | 1C5B4D | 3F2A9E | 5A3C8B | 9E1B3F | 0C5D2A | 4F7A1E |        |
| 240  | 6B2D5C | 3C4E9A | 1F0C8B | 5A3A2E | 2E4C9B | 7F1A0D | 9D8B5F | 4C8A1E | ****** |
| 248  | 1B3F0D | 0E2A6C | 8D7F9E | 5B4C3A | 3E5F1D | 2D1C7B | 6C9E4A | 1F3B8D |        |





#### 效果描述为:

CPU 随着时钟从第一条指令开始依次读出 RAM 中的指令,此处展示的是抓拍到的部分指令。

## 结论分析与体会:

根据结果分析,实验平台的实验结果与预测结果一致,故成功完成了控制器的设计。

主要体会是,通过结构化的设计电路,将一条指令拆分成多个部分,用这些控制信息去调控计算原件的计算行为,用这种方式去设计指令集,这是当前 CPU 架构设计的主要模式,这种方式非常灵活且高效,并且能让同一架构的 CPU 共享一套相同的指令集,对软件开发也有着重要的意义。