无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

Echo

Multipath Propagation

Transmitter

Introduction

$$y[n] = 0.8 x[n-1] + 0.6 x[n-2]$$

$$h1[n] = 0.8 \delta[n-1] + 0.6 \delta[n-2]$$

$$y[n] = 0.8 x[n-1] + 0.6 x[n-2]$$

$$h1[n] = 0.8 \delta[n-1] + 0.6 \delta[n-2]$$

Impulse response: $h2[n] * h1[n] = \delta[n]$ or $\delta[n-k]$

Difference Equation: 0.8z[n-1] + 0.6z[n-2] = y[n]

$$h2[n] * h1[n] = \delta[n] \text{ or } \delta[n-k]$$

Difference Equation:

$$z[n-?] + z[n-?] = y[n]$$

$$x[n]*h1[n]=t[n]$$

Frequency Selective Channel

Channel Model

AWGN Frequency Selective Channel

$$z(t) = \alpha_0 e^{j\varphi_0} x(t - \tau_0) + \alpha_1 e^{j\varphi_1} x(t - \tau_1) + v(t)$$

Receiver

Channel estimate Equalization

Frequency Offset Correction

Zero Pad Frame Synchronization Payload Zero Pad

Step1: h1[n] Step3: y[n]*h2[n]=x[n]*h1[n]*h2[n]

Step2: h2[n] $\delta[n]$ or $\delta[n-k]$

Lab 13: Channel Estimation and Equalization

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

Channel Estimation

Ax = b

$$Ax = b$$

$$N = M \qquad \qquad \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

$$\min ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$$

$$N > M \qquad x_{LS} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \mathbf{b}$$

$$s[n] = t[n], n = 0,1,...,N_t - 1$$

$$y[n] = \sum_{l=0}^{L} s[l]h[n-l] + v[n]$$

$$y[0] = s[0]h[0] + v[0]$$
$$y[1] = s[0]h[1] + s[1]h[0] + v[1]$$

. . .

$$s[n] = t[n], n = 0,1,...,N_t - 1$$

$$y[n] = \sum_{l=0}^{L} s[l]h[n-l] + v[n]$$

$$y[n] = \sum_{l=0}^{L} h[l]t[n-l] + v[n]$$

$$s[n] = t[n], n = 0,1,...,N_t - 1$$

$$\{\hat{h}[0], \hat{h}[1], \dots, \hat{h}[L]\}$$

$$= \underset{\{h[0], h[1], \dots, h[L]\}}{\operatorname{argmin}} \sum_{n=L}^{N_t-1} ||y[n] - \sum_{l=0}^{L} h[l]t[n-l]||^2$$

$$\underbrace{\begin{bmatrix} y[L] \\ y[L+1] \\ \vdots \\ y[N_t-1] \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} t[L] & \cdots & t[0] \\ t[L+1] & \cdots & t[1] \\ \vdots & \ddots & \vdots \\ t[N_t-1] & \cdots & t[N_t-1-L] \end{bmatrix}}_{\mathbf{T}} \underbrace{\begin{bmatrix} h[0] \\ h[1] \\ \vdots \\ h[L] \end{bmatrix}}_{\mathbf{h}} + \underbrace{\begin{bmatrix} v[L] \\ v[L+1] \\ \vdots \\ v[N_t-1] \end{bmatrix}}_{\mathbf{v}}$$

$$\underbrace{ \begin{bmatrix} y[L] \\ y[L+1] \\ \vdots \\ y[N_t-1] \end{bmatrix} }_{y} = \underbrace{ \begin{bmatrix} t[L] & \cdots & t[0] \\ t[L+1] & \cdots & t[1] \\ \vdots & \ddots & \vdots \\ t[N_t-1] & \cdots & t[N_t-1-L] \end{bmatrix} }_{T} \underbrace{ \begin{bmatrix} h[0] \\ h[1] \\ \vdots \\ h[L] \end{bmatrix} }_{h} + \underbrace{ \begin{bmatrix} v[L] \\ v[L+1] \\ \vdots \\ v[N_t-1] \end{bmatrix} }_{v}$$

$$\mathbf{y} = \mathbf{T}\mathbf{h} + \mathbf{v}$$
 $\mathbf{h}_{\mathrm{LS}} = (\mathbf{T}^*\mathbf{T})^{-1}\mathbf{T}^*\mathbf{y}$

$$\begin{bmatrix} y[L] \\ y[L+1] \\ \vdots \\ y[N_t-1] \end{bmatrix} = \begin{bmatrix} t[L] & \cdots & t[0] \\ t[L+1] & \cdots & t[1] \\ \vdots & \ddots & \vdots \\ t[N_t-1] & \cdots & t[N_t-1-L] \end{bmatrix} \begin{bmatrix} h[0] \\ h[1] \\ \vdots \\ h[L] \end{bmatrix} + \begin{bmatrix} v[L] \\ v[L+1] \\ \vdots \\ v[N_t-1] \end{bmatrix}$$

$$y = Th + v$$
 $h_{LS} = (T^*T)^{-1}T^*y$

$$N_t - L \ge L + 1$$
 $N_t \ge 2L + 1$

Programming for Channel Estimation

OF SCIENCE AND TECHNOLOGY

Transmitter

Receiver

Test your block diagram with these parameters!

Set the channel model: ISI

TRANSMITTER
TX oversample factor TX sample rate AM
TX channel model parameters
channel model
ISI 🔽
noise power (dB)
ਰ ਹੈ-Inf
channel response
0 \$1+0i \$0+0i \$0+0i =
frequency offset delay (sec)
÷ 0

Simulation setup

Demo: Linear Equalization

$$z[n] = \sum_{l=0}^{L_f} f_{n_d}[l] y[n-l] \approx \hat{s}[n-n_d]$$

$$f_{n_d}(n) * \hat{h}_c(n) = \delta(n - n_d)$$

$$\sum_{l=0}^{L_f} f_{n_d}[l] \hat{h} [n-l] \approx \delta[n-n_d]$$

$$z[n] = \sum_{l=0}^{L_f} f_{n_d}[l] y[n-l] \approx \hat{s}[n-n_d]$$

$$f_{n_d}(n) * \hat{h}_c(n) = \delta(n - n_d)$$

$$\sum_{l=0}^{L_f} f_{n_d}[l] \hat{h} [n-l] \approx \delta[n-n_d]$$


```
egin{aligned} \widehat{h}[0] \ \widehat{h}[1] \end{aligned}
                             0 \ \widehat{h}[0]
   \widehat{h}[L]
                                  \widehat{h}[L]
                                                  \hat{H}
```


$$n_d+1$$

$$\begin{bmatrix} \hat{h}[0] & 0 & \cdots & \cdots \\ \hat{h}[1] & \hat{h}[0] & 0 & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \hat{h}[L] & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots \\ f[L_f] \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

$$n_d+1$$

$$\widehat{f}n_d = (\widehat{H}^*\widehat{H})^{-1}\widehat{H}^*e_{n_d}$$

$$J_f[n_d] = ||\widehat{\boldsymbol{H}}\widehat{\boldsymbol{f}} - \boldsymbol{e_{n_d}}||^2$$

Programming for Equalization

Equalizer.vi

Indirect_equalizer.vi

Channel response:

Sample rate: 2M

Noise power: -Inf

 $h[0] = 1, h[1] = 0.35e^{j\pi/4}$

Oversample factor: 20

Channel est. length: 4

column

1 -5.39022E-15 7 0.24745 +0.247 7 -3.51021E-15 + 7 -8.36831E-15 + 7 0 +0 i 7 0 +0 i 7 0 +0 i

Toeplitz matrix

Length=1

Length=4

Length=2

Length=5

Length=3

Length=6

Measured channel impairements				
SNR(dB)	freq. offset	delay		
17.8897	-3.75422	0.001978		
channel estimate	•			
	1 -0.0760347 i	0.00611528 +0.000331755 i	-0.000283157 -0.000255807 i	

channel estimation/equalizer parameters	
Equalization Method	
Direct	
channel estimate length	
(f) 3	
equalizer length	
ਹ <u>ੈ</u> 1	
equalizer delay	
ਹੈ -1	
(set delay to -1 for equalizer to choose optimal delay)	

channel estimation/equalizer parameters		
Equalization Method		
Direct T		
channel estimate length		
(a) 4		
equalizer length		
<u>\$</u> 1		
equalizer delay		
(a) -1		
(set delay to -1 for equalizer to choose optimal delay)		

Question ?

