Learning objectives:

- 1. Understand the concept of limits at infinity.
- 2. Find horizontal asymptotes to a curve.

Intuitive definition of a limit at infinity.

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

Horizontal asymptote.

The line y = L is called a horizontal asymptote of the curve y = f(x) if

either
$$\lim_{x \to -\infty} f(x) = L$$
 or $\lim_{x \to \infty} f(x) = L$.

Example 1. Find $\lim_{x\to\infty} \frac{1}{x}$ and $\lim_{x\to-\infty} \frac{1}{x}$

Theorem

If r > 0 is a rational number, then

$$\lim_{x\to\infty}\frac{1}{x^r}=0.$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x\to-\infty}\frac{1}{x^r}=0.$$

The limit laws are valid for limits at infinity as well (with the exception of direct substitution).

Example 2. Evaluate

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \ .$$

Example 3. Find the horizontal and vertical asymptotes to the graph of the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5} \ .$$

Example 4. Compute $\lim_{x\to\infty} (\sqrt{x^2+1} - x)$.

Example 5. Evaluate $\lim_{x\to\infty} \sin \frac{1}{x}$.

Example 6. Evaluate $\lim_{x\to\infty} \sin x$.

Infinite Limits at Infinity

We write

$$\lim_{x \to \infty} f(x) = \infty$$

when values of f(x) become arbitrarily large as x becomes large.

Similarly, we can define

$$\lim_{x \to -\infty} f(x) = \infty , \quad \lim_{x \to \infty} f(x) = -\infty , \quad \lim_{x \to -\infty} f(x) = -\infty .$$

Example 7. Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

Example 8. Find $\lim_{x\to\infty} (x^2 - x)$.

Example 9. Find $\lim_{x\to\infty} \frac{x^2+x}{3-x}$.

Example 10. Find $\lim_{x\to\infty} \frac{x}{x^2+1}$.