MOwNiT - podsumowanie interpolacji i aproksymacji

Paweł Podedworny

08.05.2024

1 Przydzielona funkcja

$$f(x) = e^{-k \cdot sin(mx)} + k \cdot cos(mx)$$

$$k = 2, m = 2$$

$$x \in [-\pi, 2\pi]$$

2 Wykres funkcji

Rys. 1: Wykres funkcji f(x) dla $x \in [-\pi, 2\pi], k = 2, m = 2$

3 Dane techniczne

Komputer z systemem Windows 10×64 Procesor: AMD Ryzen $5 \times 3600 \times 3.60 \text{GHz}$

Pamięć RAM: 16GB 3200MHz Środowisko: DataSpell 2023.3.4

Język: Python 3.11

4 Interpolacja

4.1 Zagadnienie Lagrange'a

4.1.1 5 węzłów

Rys. 2: Wykresy funkcji f(x) oraz wielomianów interpolacyjnych dla 5 węzłów

	Metoda	Lagrange'a	Newtona
Węzły równoodległe	Maksymalna różnica	10.82196771586059	10.821967715860593
węziy rownoodiegie	Średni błąd kwadratowy	23.675605514145005	23.675605514145005
Węzły wg zer wielomianu Czebyszewa	Maksymalna różnica	9.354852240912068	9.354852240912068
węziy wg zer wieloinianu Czebyszewa	Średni błąd kwadratowy	13.594786709150872	13.594786709150874

Tabela 1: Porównanie błędów i maksymalnych różnic przy użyciu obu metod i rozkładów węzłów dla n=5

4.1.2 10 węzłów

Rys. 3: Wykresy funkcji f(x) oraz wielomianów interpolacyjnych dla 10 węzłów

	Metoda	Lagrange'a	Newtona
Węzły równoodległe	Maksymalna różnica	9.130733689673296	9.130733689673301
węziy rownoodiegie	Średni błąd kwadratowy	8.412687362178366	8.412687362178309
Węzły wg zer wielomianu Czebyszewa	Maksymalna różnica	3.646291076525155	3.6462910765251433
	Średni błąd kwadratowy	2.399210328243638	2.399210328243664

Tabela 2: Porównanie błędów i maksymalnych różnic przy użyciu obu metod i rozkładów węzłów dla n=10

4.1.3 20 węzłów

Rys. 4: Wykresy funkcji f(x) oraz wielomianów interpolacyjnych dla 20 węzłów

	Metoda	Lagrange'a	Newtona
Węzły równoodległe	Maksymalna różnica	2500.879794356098	2500.8797943424574
węziy townoodiegie	Średni błąd kwadratowy	230142.5547129364	230142.55471269364
Węzły wg zer wielomianu Czebyszewa	Maksymalna różnica	1.610729103232626	1.6107291032279436
węziy wg zer wielomianu Czebyszewa	Średni błąd kwadratowy	0.20866032298472917	0.20866032294099604

Tabela 3: Porównanie błędów i maksymalnych różnic przy użyciu obu metod i rozkładów węzłów dla n=20

4.1.4 50 węzłów

Rys. 5: Wykresy funkcji f(x) oraz wielomianów interpolacyjnych dla 50 węzłów

Metoda	Lagrange'a	Newtona
Maksymalna różnica	0.007789427147282035	2169.3190277280746
Średni błąd kwadratowy	6.5239303658950075e-06	13137.33132360544

Tabela 4: Porównanie błędów i maksymalnych różnic dla obu metod i rozmieszczeniem węzłów zgodnie z zerami wielomianu Czebyszewa dla n=50

4.2 Zagadnenie Hermite'a

4.2.1 5 węzłów (wielomian 9. stopnia)

Rys. 6: Wykresy funkcji f(x) oraz wielomianu interpolacyjnego dla 5 węzłów

Sposób rozmieszczenia węzłów	Maksymalna różnica	Średni błąd kwadratowy
Równoodległe	8.601023312831462	7.464246116213026
Wg zer wielomianu Czebyszewa	6.758748184177296	5.436193875773504

Tabela 5: Porównanie błędów i maksymalnych różnic dla interpolacji Hermite'a przy obu sposobach rozmieszczenia 5 węzłow

4.2.2 10 węzłów (wielomian 19. stopnia)

Rys. 7: Wykresy funkcji f(x) oraz wielomianu interpolacyjnego dla 10 węzłów

Sposób rozmieszczenia węzłów	Maksymalna różnica	Średni błąd kwadratowy
Równoodległe	522.4823629510852	16448.683903891968
Wg zer wielomianu Czebyszewa	2.2837075983778226	0.5989220429477424

Tabela 6: Porównanie błędów i maksymalnych różnic dla interpolacji Hermite'a przy obu sposobach rozmieszczenia 10 węzłow

4.2.3 20 węzłów (wielomian 39. stopnnia)

Rys. 8: Wykresy funkcji f(x) oraz wielomianu interpolacyjnego dla 20 węzłów

Sposób rozmieszczenia węzłów	Maksymalna różnica	Średni błąd kwadratowy
Równoodległe	445435.6168432821	4781364106.34861
Wg zer wielomianu Czebyszewa	0.38626778551509444	0.002085340951845285

Tabela 7: Porównanie błędów i maksymalnych różnic dla interpolacji Hermite'a przy obu sposobach rozmieszczenia 20 węzłow

4.3 Funkcje sklejane

4.3.1 2. stopnia, n = 5, 15, 20, 50

Rys. 9: Wykresy interpolacji funkcją sklejaną 2. stopnia dla dwóch warunków brzegowych dla kolejno 5, 15, 20 i 50 węzłów

Liczba węzłów	Metoda	Maksymalna różnica	Błąd średni kwadratowy	
5	Natural spline	14.334544894577931	34.81563214783479	
3	Clamped boundary	13.302202992565025	30.107091518445483	
15	Natural spline	4.324986133559379	2.805985296340989	
10	Clamped boundary	3.7220867758649323	1.8991573290559358	
20	Natural spline	3.9200613287116353	2.858034661628057	
20	Clamped boundary	4.349415103586513	3.7382618618598453	
50	Natural spline	0.20691882387666283	0.01826294860106171	
50	Clamped boundary	0.03866456038935251	0.0001894900847401843	

Tabela 8: Porównanie błędów i maksymalnych różnic dla interpolacji funkcją sklejaną 2. stopnia dla różnych warunków brzegowych i liczby węzłów

4.3.2 3. stopnia, n = 5, 15, 20, 50

Rys. 10: Wykresy interpolacji funkcją sklejaną 3. stopnia dla dwóch warunków brzegowych dla kolejno 5, 15, 20 i $50~\rm wezłów$

Liczba węzłów	Metoda	Maksymalna różnica	Błąd średni kwadratowy	
	Cubic function	9.983076043313151	21.10236363125399	
5	Natural Spline	9.30175695687594	17.858709984188437	
	Clamped boundary	9.233241712952461	16.909041303062544	
	Cubic function	2.8364406139068983	0.5689442879126848	
15	Natural Spline	1.7457015976091288	0.321074952635678	
	Clamped boundary	2.8936202976111325	0.5087973349188912	
	Cubic function	0.77479158964079	0.05554694188249451	
20	Natural Spline	0.7325055874803548	0.048304261457774576	
	Clamped boundary	0.5082219221074427	0.03065166596511985	
	Cubic function	0.028910290014262152	1.4072356038706349e-05	
50	Natural Spline	0.01444570706316739	8.330569817766636e-06	
	Clamped boundary	0.16275509849790915	0.0002875036663231031	

Tabela 9: Porównanie błędów i maksymalnych różnic dla interpolacji funkcją sklejaną 3. stopnia dla różnych warunków brzegowych i liczby węzłów

5 Aproksymacja

5.1 Średniokwadratowa wielomianami algebraiczynymi

5.1.1 15 węzłów przy m = 3, 6, 11, 13

Rys. 11: Wykresy aproksymacji dla 15 węzłów i różnych stopni wielomianów

5.1.2 Porównanie błędów

$m\backslash n$	5	10	15	20	30	50	100
2	6.1473	5.4795	5.6498	5.6652	5.6992	5.7238	5.7409
3	7.6054	5.3914	5.5129	5.5422	5.5833	5.6180	5.6458
4	10.8220	5.4512	5.5164	5.4447	5.4055	5.3731	5.3485
5	X	5.7269	5.6414	5.6044	5.5606	5.5117	5.4670
6	X	5.8497	5.6880	5.7025	5.6760	5.6465	5.6197
7	X	7.1219	4.2514	4.1125	4.0431	4.0113	4.6953
8	X	6.6174	6.1450	4.4480	4.0522	4.0035	4.4903
9	X	9.1307	3.8236	2.8533	2.5709	2.5746	2.5610
10	X	X	3.7846	2.4431	2.4684	2.4749	2.4658
11	X	X	7.2633	2.0552	2.1092	2.1134	2.1133
15	X	X	X	18.5805	3.1992	1.9952	2.0018
24	X	X	X	X	40.9339	11.5081	1.0880
30	X	X	X	X	X	2.2377	3.8813

Tabela 10: Porównanie maksymalnej różnicy dla różnych kombinacji liczby węzłów (n) i stopni wielomianu (m)

m n	5	10	15	20	30	50	100
2	9.9090	7.8613	7.7894	7.7822	7.7751	7.7718	7.7706
3	15.8282	7.7346	7.4866	7.4153	7.3478	7.3070	7.2879
4	23.6756	7.5859	7.2748	7.1999	7.1236	7.0770	7.0549
5	X	7.3345	7.1898	7.1518	7.1038	7.0654	7.0423
6	X	7.3275	7.1496	7.0727	6.9942	6.9253	6.8807
7	X	6.7681	4.7508	4.5362	4.3848	4.2386	4.1359
8	X	5.4909	3.4145	2.9572	2.7897	2.6322	2.5151
9	X	8.4127	1.5792	1.2924	1.2225	1.1682	1.1231
10	X	X	1.5605	0.9818	0.9573	0.9479	0.9388
11	X	X	2.6888	0.8720	0.8437	0.8400	0.8361
15	X	X	X	11.0334	0.8379	0.7027	0.6929
24	X	X	X	X	25.2773	2.2773	0.1780
30	X	X	X	X	X	0.2496	1.1994

Tabela 11: Porównanie średniego błędu kwadratowego dla różnych kombinacji liczby węzłów (n) i stopni wielomianu (m)

5.2 Średniokwadratowa trygonometryczna

5.2.1 15 węzłów przy m = 3, 6

Rys. 12: Wykresy aproksymacji dla 15 węzłów i różnych stopni wielomianów

5.2.2 Porównanie błędów

$m \backslash n$	5	10	15	20	30	50	100
2	9.3685	5.8017	5.7266	5.5217	5.4297	5.3560	5.3007
3	X	2.8322	2.6060	2.3515	2.2100	2.0971	2.0126
4	X	2.8304	2.9689	2.5040	2.1844	2.0817	2.0049
5	X	3.0532	3.4739	2.7928	2.3382	1.9843	1.9545
6	X	X	2.7211	1.8830	1.3769	0.9928	0.7272
7	X	X	3.0266	2.2106	1.5091	1.0514	0.7462
8	X	X	X	2.4775	1.6527	1.1094	0.7600
9	X	X	X	2.7025	1.7074	0.9874	0.4539
10	X	X	X	3.0517	1.9067	1.1060	0.5083
11	X	X	X	X	2.1031	1.2252	0.5660
15	X	X	X	X	3.0000	1.8031	0.9031
24	X	X	X	X	X	2.8800	1.4400
30	X	X	X	X	X	X	1.8000

Tabela 12: Porównanie maksymalnej różnicy dla różnych kombinacji liczby węzłów (n) i stopni wielomianu (m)

m n	5	10	15	20	30	50	100
2	16.7802	8.4620	8.3020	8.1876	8.1379	8.1121	8.1013
3	X	1.7483	1.3129	1.1715	1.1025	1.0665	1.0512
4	X	1.9306	1.3938	1.2180	1.1233	1.0741	1.0531
5	X	2.1137	1.5550	1.2645	1.1441	1.0818	1.0551
6	X	X	0.7224	0.3797	0.2222	0.1412	0.1071
7	X	X	0.8044	0.4596	0.2427	0.1486	0.1089
8	X	X	X	0.5060	0.2632	0.1560	0.1108
9	X	X	X	0.4622	0.1935	0.0730	0.0222
10	X	X	X	0.5905	0.2142	0.0804	0.0241
11	X	X	X	X	0.2344	0.0879	0.0259
15	X	X	X	X	0.3130	0.1129	0.0282
24	X	X	X	X	X	0.1826	0.0457
30	X	X	X	X	X	X	0.0576

Tabela 13: Porównanie średniego błędu kwadratowego dla różnych kombinacji liczby węzłów (n) i stopni wielomianu (m)