

THE MANCHESTER METROPOLITAN UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING, MATHEMANTICS AND DIGITAL TECHNOLOGY

ACADEMIC YEAR 2015-2016:

MIDSEMESTER SESSION

Examination for MSc Computer and Network Security

UNIT 6G7Z1009: Introduction to Computer Forensics and Security

Duration: 3 hour(s)

Instructions to Candidates

Please answer **FOUR** questions (<u>Two</u> questions each from both **Section A** and **Section B**)

Each question carries 25 marks.

Students are permitted to use their own calculators subject to the standard Faculty conditions.

Section A Questions (1 - 3):

- 1. (a) You are a digital forensic investigator in a forensic team. The team has been asked to go to a suspect scene. Briefly describe the five steps of the forensic computing process you are going to conduct. [11]
 - (b) The following figure shows the main parts of FAT12 filesystem; what is the role of FAT1; what information can be found in the DOS Boot Record; what is the role of the Root Directory; and give an example how file slack could occur. [8]

(c) What is meant by the following terms: MD5 hash, search warrant, and hearsay evidence? [6]

2. Figure 2.1 shows a basic directory entry structure and the hexadecimal data associated from a windows OS based machine uses Intel processor, find out the following:

FIGURE 2.1: Basic directory entry structure and Hex. data associate.

- (a) What is the file system type this directory entry structure is part of? [2]
- (b) Briefly explain what the starting cluster section contains and how it is used? [4]
- (c) What is the status of the file; and how did you identify it? [2]
- (d) What is the logical file size and how did you identify it? [5]
- (e) When was the file created; including date and time; show your calculations? [12]

3. (a)		sk has 16 heads, 512 cylinders and 63 sectors per track, supporter contains 512 bytes and the block size is 2 sectors. Calculat:	
	(i)	Hard disk size in bytes.	
	(ii)	The minimum physical file size in bytes.	
	(iii)	The slack space size in bytes for a file size 912 bytes.	
	Full	y explain your answer and include all calculation details.	[6]
	incl	n the key features of the NTFS file system. Your answer should ude information concerning: the master file table, character sident and nonresident attributes, and \$Bitmap.	
	` '	ght the forensic importance of each of the following files in the adows XP Operating System:	
	(i)	FileName.LNK;	
	(ii)	FileName.SPL;	
	(iii)	Thumbs.DB;	
	(iv)	NTUSER.DAT;	
	(v)	PAGEFILE.SYS.	[10]
Section	on B Ques	tions (4 - 6):	
		following security related concepts: Security attacks/threats, rvices, security mechanism.	[16]
b) [now many types of security and give one example cryptographiused for each type of security.	c [9]
5. a) E	xplain the	block cipher and stream cipher.	[10]
,	•	use of public key cryptography as a means of authentication armajor problem associated with its use for this purpose.	nd [4]
ii) Ús		mmetric ciphers ric ciphers to encrypt message "secure" and decrypt message	[11]

The representation of characters in modulo 26 is described as follows:

Plaintext →	a	b	c	d	e	f	g	h	i	j	k	1	m	n	О	p	q	r	s	t	u	V	W	x	у	Z
Ciphertext →	A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z
Value →	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

The mathematical equations for encryption and decryption can be described as follows:

Encryption
$$E_{(k)}$$
: $i ! i + k \mod 26$

Decryption
$$D_{(k)}$$
: i! i - k mod 26

i represents the messages (plaintext or cipher), k represents a symmetric key. In this case k=10.

- **6.** a) Describe a method that can provide integrity.
 - b) Define KDC (key distribution center) and describe the types how the keys are distributed. [8]
 - c) i) Explain how Needham Schroeder Protocol operates and use the diagram to assist your analysis. [10]
 - ii) Explain the vulnerability in Needham-Shroeder protocol and how to overcome it? [5]

END OF QUESTIONS

[2]