

CSC3100 Data Structures Lecture 19: Graphs, BFS, DFS

Li Jiang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

Examples of graphs

Graph: a fundament data structure to represent objects

and their relationships

Social networks

Protein interaction networks

Financial networks

Road networks

Graph: definition

- A graph G is defined as a pair of (V, E) where:
 - \circ V is the set of objects, each of which is called a node (or a vertex)
 - \circ *E* is the set of edges, where each edge connects two nodes u and v
 - n = |V|, m = |E|
- A graph is an undirected graph, if there is no order in an edge
 - We use (u, v) to represent an edge
 - (u, v) and (v, u) are the same edge
 - In many social networks, e.g., Facebook
- A graph is a directed graph, if there is an order in an edge
 - We use $\langle u, v \rangle$ to represent an edge
 - $\langle u, v \rangle$ and $\langle v, u \rangle$ represent two different edges
 - In some social networks, e.g., Twitter

Terminologies

- Neighbor: v is called a neighbor of u, if there is an edge between v and u
 - In directed graphs, v is called the out-neighbor of u is there is an edge $\langle u, v \rangle$; v is called the in-neighbor of u is there is an edge $\langle v, u \rangle$
- Degree: the degree d(v) of a node v is the number of neighbors of this node v
 - In directed graphs, the out-degree $d_{out}(v)$ of a node v is the number of out-neighbors of this node; the in-degree $d_{in}(v)$ of a node v is the number of in-neighbors of this node
- A graph is connected if there is a path from every vertex to every other vertex
 - A tree is a connected, acyclic "undirected" graph

An example

- In G_1 , the degree of v_1 is 3, the out-degree of v_1 is 2, and the in-degree of v_1 is 1
- In G_2 , the degree of V_3 is 2
- The number of edges in G_1 is 5
 - The degrees of v_1, v_2, v_3 and v_4 are 3, 2, 2, and 3, respectively
 - In G_1 , $\sum_{v \in V} d(v) = 3 + 2 + 2 + 3 = 10 = 2 \cdot 5 = 2 \cdot m$
 - In G_1 , $\sum_{v \in V} d_{out}(v) = 2 + 1 + 1 + 1 = 5 = m$, $\sum_{v \in V} d_{in}(v) = 1 + 1 + 1 + 2 = 5 = m$
- How about G_2 ?

Terminologies

- A path from node u to node v in a graph G is a sequence of nodes, $(u, v_1, ..., v_k, v)$ such that there exist a sequence of edges
 - $((u, v_1), (v_1, v_2), \dots, (v_k, v))$ if G is an undirected graph
 - $(\langle u, v_1 \rangle, \langle v_1, v_2 \rangle, \dots, \langle v_k, v \rangle)$ if G is a directed graph
- A simple path is a path in which all nodes except the first and last are distinct
- A cycle is a simple path in which the first and the last nodes are the same
- Example:
 - \circ (v_1, v_3) is not a path
 - \circ $(v_1, v_2, v_3, v_4, v_1, v_4)$ is a path but not a simple path
 - (v_1, v_2, v_3, v_4) is a simple path but not a cycle
 - $(v_1, v_2, v_3, v_4, v_1)$ is a simple path and a cycle

Graph representation: adjacency list

- Adjacency list for undirected graph
 - Each node $v \in V$ is associated with a linked list that stores all neighbors of v; we map an ID for each node

• Space cost: O(n + m), where n is the number of nodes and m is the number of edges

Graph representation: adjacency list

- Adjacency list for directed graph
 - \circ Each node $v \in V$ is associated with a linked list that stores all out-neighbors of v

• Space cost: O(n + m), where n is the number of nodes and m is the number of edges

Graph representation: adjacency matrix

- Adjacency matrix for undirected graph
 - A $n \times n$ two dimensional matrix A where A[u][v] = 1 if $(u, v) \in E$, or 0 otherwise

	v_1	v_2	v_3	v_4
v_1	0	1	0	1
v_2	1	0	1	0
v_3	0	1	0	0
v_4	1	0	0	0

- A is symmetric
- Space cost: $O(n^2)$ where n is the number of nodes

Graph representation: adjacency matrix

- Adjacency matrix for directed graph
 - A $n \times n$ two dimensional matrix A where A[u][v] = 1 if $\langle u, v \rangle \in E$, or 0 otherwise

	v_1	v_2	v_3	v_4
v_1	0	1	0	1
v_2	0	0	1	0
v_3	0	0	0	0
v_4	1	0	0	0

- A may not be symmetric
- Space cost: $O(n^2)$ where n is the number of nodes

Adjacency list vs adjacent matrix

Adjacency list:

- Space: O(n+m), save space if the graph is sparse, i.e., $m \ll n^2$
- Check the existence of an edge $(u,v)\colon O(k)$ time where k is the number of neighbors of u
- Retrieve the neighbors of a node: O(k) time
- Add a node: O(n)
- Delete a node: O(n+m)
- Add an edge: O(1)
- Delete an edge: O(k)

Adjacency matrix:

- Space consumption: $O(n^2)$
- Check the existence of an edge (u, v): O(1) time
- Retrieve the neighbors of a node: O(n) time
- Add/delete a node: $O(n^2)$, (create a new matrix)
- Add/delete an edge: 0(1)

Breadth-first search (BFS)

- Intuition of BFS
 - \circ Given a source node s, always visit nodes that are closer to the source s first before visiting the others

The result is not unique, if we do not define an order among out-going edges from a node

- Possible results
 - $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$
 - $v_1, v_3, v_2, v_7, v_6, v_5, v_4, v_8$
- If we impose an order by going from smaller id to larger id, then the result will be unique

BFS steps

- At the beginning, color all nodes to be white
- Create a queue Q, enqueue the source s to Q, and color the source to be gray (meaning s is in the queue)
- ightharpoonup Repeat the following until queue Q is empty
 - Dequeue from Q, let the node be v
 - \circ For every out-neighbor u of v that is still white
 - Enqueue u into Q, and color u to gray (to indicate u is in queue)
 - Color v to be black (meaning v has finished)
- Example:
 - Assume the source is v_1

$$Q = (v_1)$$
After dequeuing v_1
 $Q = (v_2, v_3)$

Now Q is empty

BFS finishes

- Given the following graph G, show the process of the BFS if the source is v_2
 - Assume that smaller vertex ids should be visited before larger vertex ids

BFS: implementation

Algorithm 1: BFS(V, E, s)

```
color[] \leftarrow allocate an array of size G.n., initialize with all zeros
   // Use 0 : white, 1 : gray, and 2: black
   Q ← an empty queue
                                      //adjacency matrix to store the graph
   Q.enqueue(s)
                                      for u = 0 to G.n-1
   color[s] \leftarrow 1
                                        if G.adjmatrix[v][u]==1 and color[u]==0
   while !Q.isEmpty()
   v \leftarrow Q.dequeue
   for u \in \text{out-neighbor of } v
                                      //adjacency list to store the graph
        if color[u]=0
                                      linkedlist node = G[v].head.next
                                     while linkedlist_node != G[v].tail
10
           Q.enqueue(u)
                                         u =linkedlist node.element
11
           color[u]=1
12
    color[v] \leftarrow 2
                                         linkedlist_node = linkedlist_node.next
13
    print v
   free the array color if necessary
```


BFS: time complexity

- \triangleright When a node v is dequeued,
 - We examine all of its neighbors (check their color), enqueue them and color them to gray if they are white
 - \circ After that, we color v as black
 - This incurs $c(1 + d_{out}(v))$ costs for node v where c is a constant (if we use adjacency list to represent the graph)
- ▶ Each node is dequeued at most once
 - Why? we enqueue a node at most once
 - If it is in the queue, its color is gray and we will not further enqueue it
- Therefore, the total running time with adjacency list representation is:
 - $\sum_{v \in V} c(1 + d_{out}(v)) = c(n+m) = O(n+m)$

Depth-first search (DFS)

Going along one path until we cannot go further

Imposing an order to make the traversal unique:

from smaller id to larger id

• Visiting order: $v_1, v_2, v_4, v_8, v_5, v_3, v_6, v_7$

- We still focus on directed graph
 - Extension to undirected graph will be straightforward

Depth-first search (DFS)

Initialization:

- At the beginning, color all nodes to be white
- Create a stack S, push the source s to S, and color the source to be gray (meaning s is in the stack)

Example:

• Assume that v_1 is the source

$$S = v_1$$

Depth-first search (DFS)

- Repeat the following until S is empty
 - \circ Get the top node, denoted as v, on stack S, do not pop v
 - \circ If v still has white out-neighbors
 - Let u be such a white out-neighbor of v
 - Push u to S, and color u to gray
 - Otherwise (v has no white out-neighbors)

• Pop v and color it as black (meaning that v has finished)

$$S = \begin{bmatrix} v_1 \\ \\ S = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

- Given the following graph G, show the process of the DFS if the source is v_2
 - Assume that smaller vertex ids should be visited before larger vertex ids

□ DFS: implementation

Algorithm 1: DFS(V, E, s)

```
color[]\leftarrow initialize an array of size n with all zero values
   // Use 0 : white, 1 : gray, and 2: black
   S \leftarrow an empty stack
   S.push(s) and print(s)
   color[s] \leftarrow 1
   while !S.isEmpty()
      v \leftarrow S.top()
      if v still has white-neighbor u
               S.push(u) and print(u)
10
               color[u]=1
      else
11
12
           color[v] \leftarrow 2
13
           S.pop()
14 Free color array if necessary
```


DFS: complexity analysis

- When a node v gets popped from the stack?
 - None of its out-neighbors is a white node
 - \circ We may need to repeatedly check if node v has white out-neighbor
 - We need to check $d_{out}(v)$ times in the worst case
 - Cost: $d_{out}(v) \cdot d_{out}(v)$?
 - Can we do better?
 - We record the position checked last time
 - All nodes in previous positions will not be white
 - Cost: $O(d_{out}(v))$
- > As each node is popped at most once, DFS's time cost is
 - $\sum_{u \in V} c(1 + d_{out}(u)) = c(n+m) = O(n+m)$

Properties of DFS

- Let u.d and u.f to indicate their first discovery time and their finish time, respectively, and denote I(u) as the interval [u.d,u.f]
- lacktriangle We will only have three cases for two nodes u and v
 - $I(u) \subset I(v)$, u is the descendant of v
 - $I(v) \subset I(u)$, v is the descendant of u
 - $I(u) \cap I(v) = \emptyset$, neither one is the descendant of the other
 - Example:
 - $I(v_2)$: [2,7], $I(v_4) = [3,4]$
 - v_4 is a descendant of v_2 in the DFS tree

- We can check if a node u is a descendant of another node v in O(1) time
 - If there is no such property, we need to retrieve the path

Recommended reading

- Reading materials
 - Textbook Chapters 22.1-22.3
- Next lecture
 - Minimum spanning trees, Textbook Chapter 23