Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по радиотехническим сигналам и цепям $N_{\rm P}$ 16

Шумы в электронных схемах

Автор:

Баранников Андрей Б01-001

Преподаватель:

Григорьев Иван Александрович

Долгопрудный, 2021

Задание 1.1

- 1. Исследую модель резистора как источника шумового напряжения. Для этого установлю $\{E_s/ne\}$. Убедимся, что графики шумовых напряжений на выходе и входе равны. С помощью варьирования резистора убедимся, что шум растёт как \sqrt{R} .
- 2. Подключим график корня из интеграла от спектральной плотности и измерим эффективное напряжение шума σ на выводах резисторов:

R [1k, 16k Log2]		R [1k, 1000k Log10]	
R, кОм	σ , мкВ	R, кОм	σ , мк B
1	4	1	4
2	5,7	10	13
4	8	100	40
8	11,5	1000	130
16	16,2		

Таблица 1: Зависимость эффективного напряжения σ от R

3. Перейдём к модели источника тока. Варьируя R_1 проверим, что шумовое напряжение растёт как \sqrt{R} , а ток падает как $1/\sqrt{R}$:

R, кОм	1	2	4	8
е, нВ	4,00	5,80	8,00	10,00
І, пА	4,00	2,90	2,00	1,25

Таблица 2: Зависимость шумового напряжения e и тока i от R

Как видим, предположение зависимости подтверждается данными.

Задание 1.2

1. Проверим закон сложения шумовых токов для последовательного соединения варьируя R_1 и R_2 :

$$e_1 = \sqrt{4ktR_2} = 5,8 \; \mathrm{HB}$$
 $e_2 = \sqrt{4ktR_1} = 4 \; \mathrm{HB}$ $e_{\mathrm{o6\ эксп}} = 7 \; \mathrm{HB}$ $e_{\mathrm{o6\ теор}} = \sqrt{4kt(R_1 + R_2)} = \sqrt{5,8^2 + 4^2} \approx 7,05 \; \mathrm{HB}$ \Rightarrow $e_{\mathrm{o6\ эксп}} = e_{\mathrm{o6\ теор}}$

2. Проверим закон сложения шумовых токов для параллельного соединения:

$$e_3 = \sqrt{4kTR_3} \approx 5,8 \text{ HB}$$
 $e_4 = \sqrt{4kTR_4} \approx 4,1 \text{ HB}$ $e_{o6 \text{ эксп}} = 3,35 \text{ HB}$ $e_{o6 \text{ теор}} = \sqrt{4kT(R_3||R_4)} = \sqrt{4kT\frac{R_3R_4}{R_3 + R_4}} = \sqrt{\frac{e_3^2 \cdot e_4^2}{e_3^2 + e_4^2}} = \sqrt{\frac{5,8^2 \cdot 4^2}{5,8^2 + 4^2}} = 3,30$ $e_{o6 \text{ эксп}} = e_{o6 \text{ теор}}$

Задание 1.3

1. Изучу зависимость приведённого ко входу напряжения от сопротивления R. Построю графики зависимости от R коэффициента шума K_n делителя и шумовой температуры T_n .

R, кОм	K_n, дБ	T_n, K
2	7,04	1219
4	4,80	606
8	3,02	302
16	1,89	163
32	0,96	74

Таблица 3: Данные о сопротивлении R, коэффициенте шума K_n , и шумовой температуре T_n

Рис. 1: Зависимость коэффициента шума K_n от сопротивления R

Рис. 2: Зависимость шумовой температуры T_n от сопротивления R

2. При исключении из схемы резистора R и установке вместо него нешумящего резистора H, отношение сигнал/шум не ухудшается, так как по анализу схемы видно, что $e=e_n$

Задание 2

1. Изучим зависимость дробового тока от I_0 в области микротоков и умеренных токов. Проверим выполнение закона $\sqrt{I_0}$.

I_0 [1u, 1m Log10]		I_0 [1m, 32m Log2]	
і, пА	I_0 , MKA	і, пА	I_0 , мА
0,606	1	17,6	1
1,817	10	25,2	2
5,700	100	35,0	4
17,811	1000	49,0	8
		67,5	16
		90,5	32

Таблица 4: Измерения дробового тока в зависимости от I_0

Напряжение пробоя диода: $U_{\rm np} = 100,6~{\rm B}$

2. Измерим значения дифференциального сопротивления диода r_d при варьировании I_1 :

I_1 , мк A	K	r_d , кОм
1000	0,008	0,08
100	0,050	0,53
10	0,341	5,17
1	0,838	51,73

Таблица 5: Измерение дифференциального сопротивления r_d при варьировании I_1

3. Измерим уровени шумового напряжения e(f) для варьирования I_1 . По результатам измерений проверим выполнение равенства $e(f) = i(f)r_d$

r_d , кОм	$e(f)_{$ эксп $,$ нВ	$e(f)_{\text{теор}}$, нВ
0,08	1,0	1,4
0,53	3,0	3,0
5,17	9,3	9,4
51,73	30,0	31,3

Таблица 6: Проверяем соотносимость теоритического и экспериментального e(f)

4. При $I_1 < 100$ нА не получается сохранить полосу шума не хуже 100 к Γ ц. Максимальное напряжение в таком режиме u=332 мкВ. Искомые значения вне диапозона:

$$I = 270 \text{ нA}$$
 $u = 60 \text{ нA}$ $\sigma = 19.2$

Задание 3

1. Интегрирующая цепь

$$f_h=10$$
 к Γ ц $n_1=13$ н A $\sigma=1,6$ мк B
$$\sigma_{\rm reop}=13$$
 н A $\sqrt{\frac{\pi\cdot 10}{2}}$ $\approx 1,63$ мк B

R_1 [2k, 16k 4k]		
R_1 , кОм	n_1 , нВ	
2	5,9	
6	9,8	
10	12,8	
14	15,3	
16	16,3	

C_1 [0.8n, 2.4n 0,4n]			
C_1 , н Φ	n_1 , нВ	σ , мкВ	
0,8	2,3	0,28	
1,2	1,9	0,23	
1,6	1,6	0,20	
2,0	1,5	0,18	
2,4	1,3	0,16	

Таблица 7: Зависимость шумового напряжения n_1 от R_1

Таблица 8: Зависимость уровня шума σ от ёмкости C

Уровень шума не зависит от R_1 , потому что выражается формулой $P=\frac{kT}{C}$

2. Полосовой LC-фильтр

$$f_0 = 100 \; \mathrm{к}\Gamma$$
ц $\Delta f = 18 \; \mathrm{k}\Gamma$ ц $Q = \frac{f_0}{\Delta f} = 5.5$ $n_2 = 10.2 \; \mathrm{HB}$ $\sigma_{\mathrm{эксп}} = 1.8 \; \mathrm{mkB}$ $\sigma_{\mathrm{теор}} = 10.2 \; \mathrm{HB} \cdot \sqrt{\frac{\pi \cdot 100 \; \mathrm{k}\Gamma$ ц}{2 \cdot 5.5}} pprox 1,73 \; \mathrm{mkB}

R_2 [2.3k, 10.3k 4k]		
$n_2(f_0)$, нВ	R_2 , кОм	
6,3	2,3	
10,0	6,3	
12,9	10,3	

$C_2 [0.75n, 1.75n 0.5n]$		
C_2 , н Φ	σ , мкВ	
0,75	2,34	
1,25	1,8	
1,75	1,53	

Таблица 9: Зависимость шумового напряжения $n_2(f_0)$ от R_2

Таблица 10: Зависимость уровня шума σ от C_2

3. LC-фильтр нижних частот

$$f_0=100$$
 к Γ ц $n_3(f_0)=10,3$ нВ $n_3(f_0/10)=2$ нВ $\sigma_{ ext{вых}}=1,8$ мкВ $F_{n ext{ эксп}}=\left(rac{\sigma}{n}
ight)^2pprox 30540$ $F_{n ext{ теор}}=rac{\pi}{2}rac{f_0}{Q}pprox 31415$

R_3 [100, 400 150]				
R_3 , Ом $n_3(f_0)$, нВ $n_3(f_0/10)$, нВ σ , мкВ				
100	16,2	1,3		
250	10,5	2,0	1,8	
400	8,3	2,6		

Таблица 11: Зависимость величин при варьировании R

$C_3 [0.75n, 1.75n 0.5n]$			
C_3 , н Φ	$n_3(f_0)$, нВ	$n_3(f_0/10)$, нВ	σ , мкВ
0,75	13,3		2,3
1,25	10,3	2	1,8
1,75	8,8		1,5

Таблица 12: Зависимость величин при варьировании C

$L_3[1 \text{m}, 3 \text{m} 1 \text{m}]$					
L_3 , м Γ н	$n_3(f_0)$, нВ	$n_3(f_0/10)$, нВ	σ , MKB		
1	7,4				
2	10,4	2	1,8		
3	12,6				

Таблица 13: Зависимость величин при варьировании L

4. LC-фильтр верхних частот

R_4 [100, 400 150]					
R_4 , OM	$n_3(f_0)$, нВ	$n_3(10f_0)$, нВ	σ , мкВ		
100	16,3	1,3	2,2		
250	10,4	2,0	2,7		
400	8,3	2,6	3,0		

Таблица 14: Зависимость величин при варьировании R

$C_4[0.75n, 1.75n 0.5n]$					
C_4 , н Φ	$n_3(f_0)$, нВ	$n_3(10f_0)$, нВ	σ , мкВ		
0,75	13,3		3		
1,25	10,3	2	2,7		
1,75	8,8		2,5		

Таблица 15: Зависимость величин при варьировании C

$L_4 [1m, 3m 1m]$					
L_4 , м Γ н	$n_3(f_0)$, нВ	$n_3(10f_0)$, нВ	σ , мкВ		
1	7,3				
2	10,3	2	2,7		
3	12,6				

Таблица 16: Зависимость величин при варьировании L

Задание 4.3

$$f_0 = 100 \ \mathrm{к} \Gamma$$
ц $\Delta f = 34 \ \mathrm{k} \Gamma$ ц $K_{\mathrm{pes}} = 0.5$ $K_0 = 0.029$

Рис. 3: График шумового напряжения на выходе n_3

На низких частотах шум на выходе создаётся параллельным соединением r||R и отличен от нуля. Малый коэффициент передачи даёт высокий уроыень шума. Всё это возможно, так как на низких частотах индуктивный импеданс мал, а ёмкостный велик. Если же увеличить частоту, индуктивный импеданс "отключает" резистор r, это приводит к вырождению цепь в интегрирующую с нулевым коэффициентом шума. В резонансе же наблюдается выброс.

• Уровни шумового напряжения на разных частотах:

$$n(f_0) = 8.0 \; {
m HB} \qquad n(f_0/100) = 1.9 \; {
m HB}$$

• Оценим вклады шумов резисторов:

$$n_1(f)$$
 — вклад R_{s3} — $n_2(f)$ — вклад R_3 — в шумовое напряжение
$$\sigma_1$$
 — вклад R_{s3} — σ_2 — вклад R_3 — в уровень шума на выходе
$$n_1(f_0)=5,4~{\rm HB}$$
 — $n_1(f_0/100)=0,3~{\rm HB}$ — $n_2(f_0)=0,340~{\rm HB}$ — $n_2(f_0/100)=1,0~{\rm HB}$ — $\sigma_1=1,3~{\rm MKB}$ — $\sigma_2=230~{\rm HB}$

• Оценим значение коэффициента шума на различных частотах:

$$K_n = 20 \lg \frac{e_n(f)}{\sqrt{4kTR}} \implies K_n(f_0/100) \approx 16 \qquad K_n(f_0) \approx 3 \qquad K_n(10f_0) \approx 0$$

Вывод коэффициентов передачи

Рис. 4: LC Фильтр нижних частот

$$K_{1} = \frac{n}{e_{1}}$$

$$Z_{06} = R + Z_{||} \qquad Z_{||} = \frac{\rho(\rho p + r)}{p(\rho p + r) + \rho} \quad \Rightarrow \quad I = \frac{e_{1}}{Z_{06}}$$

$$e_{1} - IR = n \quad \Rightarrow \quad e_{1} - e_{1} \frac{R}{Z_{06}} = n \quad \Rightarrow \quad \frac{n}{e_{1}} = \frac{Z_{||}}{Z_{06}}$$

$$Z_{06} = \frac{(\rho p + r)(Rp + \rho) + R\rho}{p(\rho p + r) + \rho}$$

$$K_{1} = \frac{n}{e_{1}} = \frac{\rho^{2} p + \rho r}{(\rho p + r)(Rp + \rho) + R\rho} = \frac{\frac{\rho p}{R} + \frac{r}{R}}{p^{2} + \rho \frac{p}{R} + r \frac{p}{\rho} + \frac{r}{R} + 1}$$

$$K_{1} = \frac{\gamma + \alpha p}{p^{2} + 2\delta p + 1 + \gamma}$$

$$K_{2} = \frac{n}{e_{2}}$$

$$Z_{06} = r + \rho p + Z_{||} \qquad Z_{||} = \frac{R\rho}{Rp + \rho} \qquad I = \frac{e_{2}}{Z_{06}} = \frac{e_{2}}{r + \rho p + Z_{||}}$$

$$I \cdot Z_{||} = n \quad \Rightarrow \quad e_{2} \frac{Z_{||}}{r + \rho p + Z_{||}} = n \quad \Rightarrow \quad \frac{n}{e_{2}} = \frac{Z_{||}}{r + \rho p + Z_{||}}$$

$$K_{2} = \frac{n}{e_{2}} = \frac{R\rho}{Rp + \rho} \cdot \frac{1}{r + \rho p + \frac{R\rho}{Rp + \rho}} = \frac{R\rho}{Rrp + r\rho + Rp^{2}\rho + \rho^{2}p + R\rho} = \frac{1}{\frac{rp}{\rho} + \frac{r}{R} + p^{2}\frac{\rho p}{R} + 1}$$

$$K_{2} = \frac{1}{p^{2} + 2\delta p + 1\gamma}$$