Extended Phase Space Integrators with Symmetric Projection

Given an extended phase space integrator $\hat{\Phi}_{\Delta t} \colon T^* \mathbb{R}^{2d} \to T^* \mathbb{R}^{2d}$ and $z_n = (q_n, p_n) \in T^* \mathbb{R}^d$,

2 Symmetric projection onto
$${\cal N}$$

$$\hat{\zeta}_n := \zeta_n + A^T \mu$$

$$\hat{\zeta}_{n+1} := \hat{\Phi}_{\Delta t}(\hat{\zeta}_n)$$

3
$$\zeta_{n+1} := \hat{\zeta}_{n+1} + A^T \mu \in \mathcal{N}$$

3
$$z_{n+1} := (q_{n+1}, p_{n+1})$$

 $T^*\mathbb{R}^{2d}$ $\hat{\zeta}_1$ $\hat{\Phi}_{\Delta t}$ $\hat{\zeta}_2$ $\hat{\Phi}_{\Delta t}$ $\hat{\zeta}_0$ $\hat{\zeta}_0$ $\hat{\zeta}_0$ $\hat{\zeta}_0$ $\hat{\zeta}_0$ $\hat{\zeta}_0$

 $\mu \in \mathbb{R}^{2d}$ must be determined so that $\zeta_{n+1} \in \mathcal{N}$ where

semiexplicit: $\hat{\Phi}$ is **explicit** but finding μ is **implicit**.