Recitation 3

2D Fourier Transform

Agenda

- 1. Reminder
- 2. 2D Fourier Transform
- 3. Derivatives
- 4. Filtering

Reminder

2D Fourier Transform

Derivatives

Filtering

Complex Numbers

$$i^2 = -1$$

 $R_1 e^{i\alpha_1} \cdot R_2 e^{i\alpha_2} = R_1 R_2 e^{i(\alpha_1 + \alpha_2)}$

$$c = a + bi = R \cdot e^{i\alpha}$$
$$e^{i\alpha} = \cos(\alpha) + i \cdot \sin(\alpha)$$

Absolute Value:
$$|c| = R = \sqrt{a^2 + b^2}$$

Phase:
$$\alpha = \tan^{-1} \left(\frac{b}{a} \right)$$

Conjugate:
$$\bar{c} = c^* = a - bi$$

Complex Numbers

$$(R, \alpha)$$

$$(R \cdot cos(\alpha), R \cdot sin(\alpha))$$

$$R \cdot \cos(\alpha) + i \cdot R \cdot \sin(\alpha)$$

$$= R \cdot (\cos(\alpha) + \sin(\alpha))$$

$$= R \cdot e^{\alpha}$$

1D Fourier Transform

- Moving from the time domain to the frequency domain
- Discrete Fourier transform (DFT):

$$F(\omega) = \sum_{x=0}^{N-1} f(x) e^{-\frac{2\pi i x \omega}{N}}$$

Inverse Discrete Fourier transform (IDFT):

$$f(x) = \frac{1}{N} \sum_{\omega=0}^{N-1} F(\omega) e^{\frac{2\pi i x \omega}{N}}$$

In a Nutshell

• We want to decompose a function f(x) to a set of sin and cos functions of different frequencies –

$$f(x) = \sum_{\omega} a_{\omega} \cos\left(\frac{2\pi\omega x}{N}\right) + b_{\omega} \sin\left(\frac{2\pi\omega x}{N}\right)$$

$$a_{\omega}$$

$$F(\omega) = \sum_{x=0}^{N-1} f(x) e^{-\frac{2\pi i x \omega}{N}}$$

$$= \sum_{x=0}^{N-1} f(x) \cos\left(\frac{2\pi x \omega}{N}\right) - i \sum_{x=0}^{N-1} f(x) \sin\left(\frac{2\pi x \omega}{N}\right)$$

1D Fourier Transform

Any function (signal) f(x) can be decomposed into F - a set of sin and cos periodic functions of different frequencies. f can be reconstructed from F without any loss of data!

$$F(\omega) = \sum_{x=0}^{N-1} f(x) e^{-\frac{2\pi i x \omega}{N}}$$

1D DFT: Examples

$$\frac{1}{\sin(ax)} = \frac{\delta(u)}{2} \left(\frac{\delta(u - \frac{a}{2\pi}) + \delta(u + \frac{a}{2\pi})}{2} \right)$$

$$\frac{1}{\sin(ax)} = \frac{1}{2} \left(\frac{\delta(u - \frac{a}{2\pi}) + \delta(u + \frac{a}{2\pi})}{2\pi} \right)$$

$$\frac{1}{\sin(ax)} = \frac{1}{2} \frac{\sin(u - \frac{a}{2\pi}) + \sin(u - \frac{a}{2\pi})}{|a|}$$

$$\frac{1}{|a|} \frac{\sin(u - \frac{a}{2\pi}) + \sin(u - \frac{a}{2\pi})}{|a|}$$

1D DFT: Examples

 $\delta(u)$ Fourier $\overrightarrow{Fourier} \quad \frac{1}{2} \left(\delta(u - \frac{a}{2\pi}) + \delta(u + \frac{a}{2\pi}) \right)$ $\sin(ax)$ rect(ax)Fourier 10

Stationary vs. Non-Stationary

Stationary:

 $\cos(2\pi \cdot 5t) + \cos(2\pi \cdot 25t) + \cos(2\pi \cdot 50t)$

Non-stationary

 $cos(2\pi \cdot 5t)$ then $cos(2\pi \cdot 25t)$ then $cos(2\pi \cdot 50t)$

STFT

DFT:
$$F(\omega) = \sum_{x=0}^{N-1} f(x) e^{-\frac{2\pi i x \omega}{N}}$$

IDFT:
$$f(x) = \frac{1}{N} \sum_{\omega=0}^{N-1} F(\omega) e^{\frac{2\pi i x \omega}{N}}$$

STFT for time *t*:

$$F(\omega, t) = \sum_{x = -\infty}^{\infty} f(x) W(t - x) e^{-\frac{2\pi i x \omega}{N}}$$

ISTFT: (K is a normalization constant)

$$f(x) = K \sum_{p=-\infty}^{\infty} \sum_{u=0}^{N-1} F(u, pL) e^{\frac{2\pi i ux}{N}}$$

Spectrograms

Spectrograms

Spectrograms – Log Compression

Reminder

2D Fourier Transform

Derivatives Filtering

2D Discrete Fourier Transform

2D Fourier Transform:

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-\frac{2\pi i(ux+vy)}{N}}$$

2D Inverse Fourier Transform:

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{\frac{2\pi i(ux+vy)}{N}}$$

2D Fourier Basis

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{\frac{2\pi i(ux+vy)}{N}}$$
Basis

$$e^{-\frac{2\pi i(ux+vy)}{N}} = \cos\left(\frac{2\pi i(ux+vy)}{N}\right) - i\cdot\sin\left(\frac{2\pi i(ux+vy)}{N}\right)$$

What does the basis look like?

2D Fourier Basis

black = -1; white = 1; grey = 0

2D Discrete Fourier Transform

Low frequency

Low frequency

Medium frequency

Low frequency

Medium frequency

High frequency

2D rect

Gaussian

Real Example

Visualization

- FT produces complex numbers
- Can Be presented as two images in two ways:
 - -Real and imaginary part
 - Magnitude and phase
 - Magnitude: $\sqrt{R(u)^2 + I(u)^2}$
 - Phase: $tan^{-1}(\frac{I(u)}{R(u)})$
- In image processing we use only the magnitude
 - Contains most relevant information

Importance of Phase

Computing the 2D Fourier Transform

Repeat the 1D Fourier twice:

- Compute the 1D Fourier for each row
- On the result, compute the 1D Fourier for each column
- (Multiply by N, application dependent)
- The 1D Fourier transform is sufficient for computing any multi-dimensional Fourier transform.

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{\frac{-2\pi i(ux+vy)}{N}}$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{\frac{-2\pi i(ux+vy)}{N}}$$

$$= \frac{1}{N} \sum_{x=0}^{N-1} \sum_{v=0}^{N-1} f(x,y) e^{-\frac{2\pi i \cdot ux}{N}} \cdot e^{-\frac{2\pi i \cdot vy}{N}}$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{\frac{-2\pi i (ux+vy)}{N}}$$

$$= \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-\frac{2\pi i \cdot ux}{N}} \cdot e^{-\frac{2\pi i \cdot vy}{N}}$$

$$= \frac{1}{N} \sum_{x=0}^{N-1} e^{-\frac{2\pi i \cdot ux}{N}} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-\frac{2\pi i \cdot vy}{N}}$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{\frac{-2\pi i (ux+vy)}{N}}$$

$$= \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-\frac{2\pi i \cdot ux}{N}} \cdot e^{-\frac{2\pi i \cdot vy}{N}}$$

$$= \frac{1}{N} \sum_{x=0}^{N-1} e^{-\frac{2\pi i \cdot ux}{N}} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-\frac{2\pi i \cdot vy}{N}} = \frac{1}{N} \sum_{x=0}^{N-1} e^{-\frac{2\pi i \cdot ux}{N}} \cdot F(x,v)$$

Decomposition Example

Image Translation

$$F(u-u_0,v-v_0) \Leftrightarrow f(x,y) \cdot e^{-\frac{2\pi i(u_0x+v_0y)}{N}}$$

Fourier is Non-Local!

Fourier Transform supplies a **global representation** of the image in the frequency domain.

Local objects / features in the image cannot be assigned to specific frequencies!

In general:

- Low frequencies represent the coarse structure of the image (large homogenous parts like walls, sky, etc.)
- **High frequencies** represent the fine details in the image (fine texture, wrinkles, noise, etc.)

Real Example

Reminder 2D Fourier Transform

Derivatives

Filtering

Inverse DFT:

$$f(x,y) = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

Inverse DFT:

$$f(x,y) = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

$$\frac{\partial f}{\partial x} = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot \frac{2\pi iu}{N}$$

Inverse DFT:

$$f(x,y) = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

$$\frac{\partial f}{\partial x} = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot \frac{2\pi iu}{N}$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot u$$

Inverse DFT:

$$f(x,y) = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

$$\frac{\partial f}{\partial x} = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot \frac{2\pi iu}{N}$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot u$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} u \cdot F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

Inverse DFT:

$$f(x,y) = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

$$\frac{\partial f}{\partial x} = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot \frac{2\pi iu}{N}$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot u \qquad \hat{F}(u,v)$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} u \cdot F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

Inverse DFT:

$$f(x,y) = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}$$

$$\frac{\partial f}{\partial x} = \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot \frac{2\pi iu}{N}$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}} \cdot u \qquad \widehat{F}(u,v)$$

$$= \frac{2\pi i}{N} \cdot \frac{1}{N} \sum_{u,v} \underbrace{u \cdot F(u,v) \cdot e^{\frac{2\pi i(ux+vy)}{N}}}_{N} = \underbrace{\widehat{F}(u,v)}_{N}$$

Image derivatives by FT

To compute the x derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by u
- Compute the inverse Fourier transform

To compute the y derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by $v \in (\hat{F}(u, v))$
- Compute the inverse Fourier transform

To compute the x derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by u
- Compute the inverse Fourier transform

To compute the x derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by u
- Compute the inverse Fourier transform

$$(0,1,2,...,\frac{N}{2},...,N-1)$$

To compute the x derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by u
- Compute the inverse Fourier transform

The highest frequency is N/2

To compute the x derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by u
- Compute the inverse Fourier transform

(try to use Symmetric + Periodicity)

$$(0,1,2,...,N-1)$$

$$(0,1,...,\frac{N}{2}-1,-\frac{N}{2},...,-1)$$

To compute the x derivative of f (up to a constant):

- Compute the Fourier transform F
- Multiply each Fourier coefficient F(u, v) by u
- Compute the inverse Fourier transform

$$(0,1,2,...,N-1)$$

The highest frequency is N/2

$$(0,1,...,\frac{N}{2}-1,-\frac{N}{2},...,-1)$$

Or

$$(-\frac{N}{2},...,0,...,\frac{N}{2}-1)$$

In this option: should center Fourier Transform of the image (F) as well

Image derivative is the inverse FT of the **weighted** frequency domain. **High frequencies** affect the image derivative more than low frequencies.

Noise has more high frequency than normal image.

$$\frac{\partial f(x,y)}{\partial x} = \frac{2\pi i}{N} \cdot \Phi^{-1} (u \cdot \Phi(f(x,y)))$$

Effect of Noise on Derivatives

Reminder 2D Fourier Transform Derivatives

Filtering

Filtering in the frequency domain: General Scheme

Example

Reminder:
$$F(0,0) = \bar{f}$$

$$F(0,0) = 0$$

Multiply the Fourier transform by the filter:

Ideal Low-pass Filters

Ideal Low-pass Filters

Input

Cutoff = 40

Input

Ideal High-pass Filters

Ideal High-pass Filter

Input

Ideal High-pass Filter

Input

Ideal Band-pass Filter

Gaussian Filter

Gaussian Filter

Input DFT Output Filter

iDFT

Width = 40

Next week: Convolution