Problem 4

October 11, 2019

1 4.1

Let Σ be a finite set of alphabets. Then Σ^* is the set of all words that can be created out of the symbols in Σ i.e. Σ^* is the kleene closure of Σ

```
a): Let \preceq\subseteq \Sigma^* \times \Sigma^*: \{p, w \in \Sigma^*, \exists q \in \Sigma^*: p \preceq w \Rightarrow w = pq \lor w = p\} For the relation \preceq on \Sigma^* to be a partial order it must be reflexive, antisymmetric and transitive on \Sigma^*
```

Checking for reflexivity:

for $p \leq p$

This signifies that:

 $p=p\epsilon$ where ϵ is an empty set.

Which is true because we allow such cases to occour in this relation. (w = p) Thus the relation is reflexive.

Checking for antisymmetry:

if
$$(p,q) \in \preceq q = pa$$

if $(q,p) \in \preceq p = qb$

The only way this can be true is if a, b is \emptyset and p = q. p = q is allowed for this relation. Thus The relation is antisymmetric.

Checking for transitivity:

```
\begin{array}{l} \text{for } (p,q) \in \preceq q = pa \\ \text{for } (q,r) \in \preceq r = qb \\ \text{if } (p,q) \in \preceq \land (q,r) \in \preceq \\ r = qb \\ r = (pa)b \\ r = pab \\ \text{Thus } (p,r) \in \preceq^* \\ \text{b)} \\ \text{Let } \prec \subset \Sigma^* \times \Sigma^* : \{p,w \in \Sigma^*, \exists q \in \Sigma^* : p \prec w \Rightarrow w = pq \lor w \neq p\} \end{array}
```

For the relation \prec on Σ^* to be a partial order it must be reflexive, antisymmetric and transitive on Σ^*

Checking for reflexivity:

for $p \leq p$

This signifies that:

p = pa

where a is \emptyset Which is false because we do not allow such cases to occour in this relation. $(w \neq p)$

Thus the relation is ireflexive.

Checking for asymmetry:

if
$$(p,q) \in \preceq q = pa$$

if $(q,p) \in \preceq p = qb$

The only way this can be true is if a, b is \emptyset and p = q. but p = q is explicitely not allowed for this relation. Thus The relation is asymmetric.

Checking for transitivity:

```
for (p,q) \in \prec q = pa
for (q,r) \in \prec r = qb
if (p,q) \in \prec \land (q,r) \in \prec
r = qb
r = (pa)b
r = pab
Thus (p,r) \in \prec^*
```

c)

The relation \leq is not total because for $(a,b) \in \leq$ and $(b,a) \in \leq$ if and only if a=b The relation does not allow for all other cases of a and b thus it is not total

The relation \prec is not total because it does not allow for the case where $a=b\epsilon$ where ϵ is an empty set.

2 4.2

Let A, B and C be sets and let $f: A \to B$ and $g: B \to C$ be two functions a)

For $g \circ f$ if f is not injective, it means that: f(a) = f(b) which implies that $g \circ f(a) = g \circ f(b)$

Thus $g \circ f$ is not injective thus it is also not bijective.

For $g \circ f$ if g is not surjective, it means that: $\forall a \not\exists g \circ f(a)$

```
Because if f(a) exists for a, if g is not surjective then \exists y such that y = f(a) \not\exists g(y)

b)

Let f: A \to B\{ \forall a \in A, a = f(a) \}

Let g: B \to C\{ \forall b \in B, b^2 = g(b) \}
g \circ f(a) = g(f(a))
g \circ f(a) = g(b)
g \circ f(a) = b^2

Here, f is injective and g is surjective but g \circ f is not a bijective. c)

Let f: A \to B\{ \forall a \in A, \sqrt{a} = f(a) \}

Let g: B \to C\{ \forall b \in B, b^2 = g(b) \}
g \circ f(a) = g(f(a))
g \circ f(a) = g(\sqrt{a})
g \circ f(a) = (\sqrt{a})^2
g \circ f(a) = a
```

Here f is not surjective and g is not injective but $g \circ f$ is bijective.