

Durée : 01h30

EXAMEN FINAL DE PHYSIQUE 2

Exercice 1: (08 points)

Dans l'assemblage de charges ponctuelles de la figure ci-contre (q > 0):

- **1.** Déterminer les distances *OA*, *OB*, *OC* et *OD* en fonction de la longueur *a*;
- **2.** Représenter puis déterminer le champ total résultant au centre *O* du carré ;
- **3.** Déduire la résultante des forces appliquée sur un électron $(q_e = -e)$ placé en O;
- **4.** Déterminer le potentiel électrostatique résultant au point *O*;
- 5. Déduire l'énergie potentielle électrostatique de l'électron placé en O;
- **6.** On enlève l'électron, Calculer l'énergie interne du système formé par les quatre charges.

Exercice 2: (06 points)

Soit une distribution uniforme de charges, de densité volumique $\rho > 0$, répartie entre deux sphères concentriques, S_1 et S_2 , de centre O, de rayons R_1 et R_2 , respectivement, tel que $R_1 < R_2$ (Figure ci-contre).

A l'aide du théorème de Gauss, déterminer l'expression du champ électrostatique en tout point M de l'espace tel que OM = r. Distinguer les régions : $r < R_1$, $R_1 < r < R_2$ et $r > R_2$.

Traiter au choix soit l'exercice 3 soit l'exercice 4

Exercice 3: (06 points)

Soit un fil fini de longueur L, assimilé à un segment de droite porté par l'axe (YY') et symétrique par rapport à l'axe (X'X), uniformément chargé avec une densité linéique λ constante est négative (Figue ci-contre).

- **1.** Donner l'expression du champ électrique élémentaire \overrightarrow{dE} crée par un élément de charge $dq = \lambda dl = \lambda dy$ en un point $M(x_i)$, tel que x > 0;
- **2.** Déterminer le champ électrique total crée par le fil au point M;
- **3.** Déduire le champ électrique créé par un fil infini au point M.

Exercice 4: (06 points)

Soit le groupement de condensateurs de la Figure ci-contre.

- **1.** Calculer la capacité équivalente entre les points A et B;
- **2.** Une tension $U_{AB} = 220 V$ est appliquée entre les points A et B. A l'équilibre, calculer la charge portée par chaque condensateur et la différence de potentiel entre ses bornes.

On donne:

 $C_1 = C_2 = 1 \,\mu F$; $C_3 = 220 \,n F$; $C_4 = 70 \,n F$; $C_5 = 720 \,n F$ avec $1nF = 10^{-9} \,F$

Année universitaire 2020/2021 Session normale

Durée: 01h30

Corrigé examen Physique 2

Exercice 1: (08 points)

1-
$$AD = BC = \sqrt{2} \ a \Rightarrow OA = OB = OC = OD = \frac{\sqrt{2}}{2} \ a \ (0.5 \text{ pts})$$

2-
$$\vec{E}_A = K \frac{|q_A|}{(OA)^2} \left(\cos \frac{\pi}{4} \vec{i} - \sin \frac{\pi}{4} \vec{j} \right) = \sqrt{2} K \frac{q}{a^2} (\vec{i} - \vec{j})$$
 (0.5 pts)
 $\vec{E}_B = K \frac{|q_B|}{(OB)^2} \left(\cos \frac{\pi}{4} \vec{i} + \sin \frac{\pi}{4} \vec{j} \right) = \sqrt{2} K \frac{q}{a^2} (\vec{i} + \vec{j})$ (0.5 pts)

$$\vec{E}_C = 2 \vec{E}_B = 2 \sqrt{2} K \frac{q}{a^2} (\vec{i} + \vec{j}); (0.5 \text{ pts}) \vec{E}_D = 2 \vec{E}_A = 2 \sqrt{2} K \frac{q}{a^2} (\vec{i} - \vec{j}) (0.5 \text{ pts})$$

D'après le principe de superposition, on a :

$$\vec{E}(0) = \vec{E}_A + \vec{E}_B + \vec{E}_C + \vec{E}_D$$
 (0.5 pts) $\vec{E}(0) = 6\sqrt{2} K \frac{q}{a^2} \vec{i}$ (0.5 pts)

3-
$$\vec{F} = q_e \vec{E}(0) = -e \vec{E}(0)$$
 (0.25 pts) $d'ou \vec{F} = -6\sqrt{2} K \frac{eq}{a^2} \vec{i}$ (0.5 pts)

4- D'après le principe de superposition, on a le potentiel créé en \mathcal{O}

$$V_O = V_A + V_B + V_C + V_D$$
 (0.25 pts) = $K \frac{q}{OA} - K \frac{q}{OB} + K \frac{2q}{OC} - K \frac{2q}{OD} = 0$ (0.5 pts)

- 5- $E_p = -e V_0$ (0.25 pts) d'où $E_p = 0$ (0.25 pts)
- 6- L'énergie interne

$$U = \sum_{i} \sum_{j>i} K \frac{q_{i}q_{j}}{r_{ij}} \text{ ou bien } U = \frac{1}{2} \sum_{i} \sum_{i\neq j} K \frac{q_{i}q_{j}}{r_{ij}}$$
 (0.25 pts)

$$U = K \frac{q_{A}q_{B}}{AB} + K \frac{q_{A}q_{C}}{AC} + K \frac{q_{A}q_{D}}{AD} + K \frac{q_{B}q_{C}}{BC} + K \frac{q_{B}q_{D}}{BD} + K \frac{q_{C}q_{D}}{CD}$$
 (0.5 pts)

$$d'ou \quad U = (-1 - 2\sqrt{2}) K \frac{q^{2}}{a} \quad J \quad (0.75 \text{ pts})$$

d'ou
$$U = (-1 - 2\sqrt{2}) K \frac{q^2}{a}$$
 J (0.75 pts)

Exercice 2: (06 points)

La distribution de charges est invariante pour toute rotation autour du point O. Par conséquent, le champ électrostatique est radial, $\vec{E} = E(r) \vec{e}_r$. (0.5 pts) La surface de Gauss est une sphère de centre O et rayon r. (0.5 pts)

D'après le théorème de Gauss $\oiint_S \vec{E}.\vec{ds} = \frac{Q_{int}}{\varepsilon_0} \implies E.S_G = \frac{Q_{int}}{\varepsilon_0} (\mathbf{0.5 pts})$ avec $S_G = 4\pi r^2 (\mathbf{0.5 pts})$

•
$$r < R_1$$

 $Q_{int} = 0 \Rightarrow E_I = 0$ (0.5 pts)

•
$$R_1 < r < R_2$$

 $Q_{int} = \rho V = \frac{4}{3}\pi\rho(r^3 - R_1^3)$ (01 pts)
 $E_{II}(r) = \frac{\rho}{3\varepsilon_0} \frac{(r^3 - R_1^3)}{r^2} \Longrightarrow \vec{E}_{II}(r) = \frac{\rho}{3\varepsilon_0} \frac{(r^3 - R_1^3)}{r^2} \vec{e}_r$ (0.5 pts)

•
$$r > R_2$$

 $Q_{int} = \rho V = \frac{4}{3}\pi\rho(R_2^3 - R_1^3)$ (01 pts)
 $E_{III}(r) = \frac{\rho}{3\varepsilon_0} \frac{(R_2^3 - R_1^3)}{r^2} \Longrightarrow \vec{E}_{III}(r) = \frac{\rho}{3\varepsilon_0} \frac{(R_2^3 - R_1^3)}{r^2} \vec{e}_r$ (0.5 pts)

Durée: 01h30

Exercice 3: (06 points)

1. Une charge élémentaire dq, contenue dans l'élément de longueur dl entourant le point P, va créer au point M un champ électrostatique élémentaire :

$$d\vec{E} = K \frac{dq}{r^2} \vec{u} = K \frac{\lambda dl}{r^2} \vec{u} = K \frac{\lambda dy}{r^2} \vec{u}$$
 (0.5 pts)

$$x = OM$$
; $r = PM$; $\vec{u} = \vec{r}/r$; $y = OP$

D'après la figure, on a :

$$\tan \theta = \frac{y}{x} \Rightarrow y = x \tan \theta \Rightarrow dy = \frac{x}{\cos^2 \theta} d\theta$$
 (0.5 pts)

(0.5 pts)

$$\cos \theta = \frac{x}{r} \Rightarrow r = \frac{x}{\cos \theta}$$
 (0.5 pts) et $\vec{u} = \cos \theta \vec{i} - \sin \theta \vec{j}$ (0.5 pts)

Ce qui nous donne :

$$d\vec{E} = K\frac{\lambda}{x}(\cos\theta\,\vec{\imath} - \sin\theta\,\vec{\jmath})d\theta \quad \text{ou bien} \quad d\vec{E} = K\frac{|\lambda|}{x}(-\cos\theta\,\vec{\imath} + \sin\theta\,\vec{\jmath})d\theta \,\,(\mathbf{0.5 \,\, pts})$$

Le champ électrique total en M s'obtient en intégrant sur tout le fil :

$$\vec{E} = K \frac{\lambda}{r} \int_{-\alpha}^{\alpha} [(\cos\theta \,\vec{t}) d\theta] = 2 K \frac{\lambda}{r} \int_{0}^{\alpha} [(\cos\theta \,\vec{t}) d\theta]; \, (\mathbf{01 \, pts}) \, \vec{E} = 2 K \frac{\lambda}{r} [\sin\theta \,\vec{t}]_{0}^{\alpha} = 2 K \frac{\lambda}{r} [\sin\alpha \,\vec{t}] \, (\mathbf{01 \, pts})$$

3. Pour obtenir le champ créé par un fil infini, on fait tendre l'angle $\alpha \to \frac{\pi}{2}$ soit $\sin \alpha = 1$ (0.5 pts) $\vec{E} = 2 K \frac{\lambda}{\pi} \vec{i} \quad (0.5 \text{ pts})$ Donc on obtient

Exercice 4: (06 points)

1. Capacité équivalente :

$$C_1$$
, C_2 en série alors $\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2}$ d'où $C_{12} = 0.5 \,\mu F$ (0.5 pts)

$$C_4$$
, C_5 en parallèle alors $C_{45} = C_4 + C_5$ d'où $C_{45} = 0.79 \,\mu\text{F}$ (0.5 pts)

$$C_3$$
, C_{45} en série alors $\frac{1}{C_{345}} = \frac{1}{C_3} + \frac{1}{C_{45}}$ d'où $C_{345} = 0.17 \,\mu\text{F}$ (0.5 pts)

$$C_{12}$$
, C_{345} en parallèle alors $C_{AB} = C_{eq} = C_{12} + C_{345}$ d'où $C_{AB} = 0.67 \,\mu\text{F}$ (0.5 pts)

2. Charge et d.d.p aux bornes de chaque condensateur

$$Q_3 = Q_{45} = Q_{345} = C_{345} \ U_{AB} = 38 \ \mu C \ (\textbf{0.5 pts})$$
 alors $V_3 = \frac{Q_3}{C_3} = 172 \ V \ (\textbf{0.5 pts})$

$$V_4 = V_5 = V_{AB} - V_3 = 48 V$$
 (0.5 pts) $alors Q_4 = C_4 V_4 = 3.5 \mu C$ (0.5 pts); $Q_5 = C_5 V_5 = 34.5 \mu C$ (0.5 pts)