

AMENDMENT TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

1. (Original) A compound of the formula

wherein the bond of atoms C₂₂ and C₂₃ is a single or double bond;

m is 0 or 1;

n is 0, 1 or 2;

p is 0 or 1;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

R₂ is H₁, C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, -N₃, SCN, NO₂, CN, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halo-cycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂alkynyl, C₃-C₁₂haloalkynyl, -P(=O)(OC₁C₆alkyl)₂, -Si(C₁-C₆alkyl)₃, -(CH₂)-Si(C₁-C₆alkyl)₃, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two

substituents R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -NR₉C(=X)R₇, -(CH₂)-NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, aryl, heterocyclyl, aryloxy or heterocyclyoxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyoxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, SCN, -N₃, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₆alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂alkynyloxy, C₃-C₁₂haloalkynyloxy and phenoxy;

or, when p is 1, R₂ together with R₃ is a bond;

or R₂ together with R₄ is =O or =S;

or R₂ together with R₄ form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₆alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂alkynyloxy, C₃-C₁₂haloalkynyloxy, phenoxy, phenyl-C₁-C₆alkyl, -N(R₉)₂ wherein the two R₉ are independent of each other, C₁-C₆alkylsulfinyl, C₃-C₈cycloalkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₃-C₈cycloalkylsulfonyl, C₁-C₆haloalkylsulfonyl and C₃-C₈halocycloalkylsulfonyl; or

R₂ together with R₄ is =NN(R₁₂)₂, wherein the two substituents R₉ are independent of each other;

or, when p is 0, R₂ together with R₄ and R₆ is ≡N;

or when p is 0, R₂ together with R₆ is =NOR₁₂ or =NN(R₁₂)₂, wherein the two substituents R₉ are independent of each other;

R₃ is H, C₁-C₁₂-alkyl, halogen, halo-C₁-C₂alkyl, CN, -N₃, SCN, NO₂, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆-alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₃-C₈cycloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₁₂alkylsulfinyl, C₃-C₈cycloalkylsulfinyl, C₁-C₁₂haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁-C₁₂alkylsulfonyl, C₃-C₈cycloalkylsulfonyl, C₁-C₁₂haloalkylsulfonyl, C₃-C₈halocycloalkylsulfonyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, -N(R₉)₂, wherein the two substituents R₉ are independent of each other, aryl, heterocyclyl, aryloxy or heterocyclyoxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyoxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

or when p is 1, R₃ together with R₂ is a bond;

R₄ is H, C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, NO₁₂, CN, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -Si(C₁-C₆alkyl)₃, -(CH₂)--Si(C₁-C₆alkyl)₃, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituent R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -NR₉C(=X)R₇, -(CH₂)-NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, aryl, heterocyclyl, aryloxy or heterocyclyoxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyoxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl,

C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy and phenoxy;

or R₄ together with R₂ forms =O or =S;

or when p is 1, R₄ together with R₅ is a bond;

or, when p is 0, together with R₂ and R₆ is ≡N;

R₅ and R₆ independently of each other are H, C₁-C₁₂-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylthio, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NR₉-heterocyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heterocyclyl and -CH₂-NR₉-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy and -NR₉-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₁₂alkyl), N(C₁-C₁₂alkyl)₂ and C₁-C₆alkylsulfinyl; or

R₅ and R₆ are, together with the carbon atom to which they are bound, a five- to seven-membered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR₈ and S; and which is optionally substituted with one to three substituents selected from C₁-C₁₂-alkyl, CN, NO₂, OH, halogen, halo-C₁-C₂alkyl, C₃-C₈cycloalkyl C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₃-C₈cycloalkylthio, C₁-C₁₂haloalkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

or when p is 1, R₅ together with R₄ is a bond;

or, when p is 0, R₆ together with R₂ and R₄ is ≡N;

R₇ is H, OH, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₈alkenyloxy, C₃-C₈alkinyloxy, --N(R₈)₂ wherein the two R₈ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyoxy or heterocyclmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyoxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₈alkynyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, hydroxy and cyano, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group

consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, and C₁-C₁₂haloalkylthio;

R₉ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₂-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, benzyl, aryl or heteroaryl;

R₁₀ H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, NO₂, hydroxy and cyano, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂alkynyl, C₃-C₈cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₃-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

R₁₁ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy and cyano, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, C₃-C₈cycloalkyl, C₃-C₈halocycloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

R₁₂ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, -C(=O)C₁-C₆alkyl, -C(=O)OC₁-C₆alkyl, --SO₂C₁-alkyl, benzyl, aryl, heteroaryl;

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;

with the proviso, that the group $R_6-[C(R_3)(R_5)]_p-C(R_2)(R_4)-[CH_2]_{n-}$, which is attached to the ε -position of the compound of the formula (1), is not NC-CH₂- or HOOC-CH₂- when m is 1 and the bond between atoms 22 and 23 is a single bond.

2. (Previously Presented): A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
3. (Previously Presented): A method for controlling pests comprising applying a composition as described in claim 2 to the pests or their habitat.
4. (Previously Presented): A process for preparing a composition as described in claim 2 comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
5. (canceled)
6. (canceled)
7. (Previously Presented): A method for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
8. (Previously Presented): Plant propagation material treated in accordance with the method described in claim 7.
9. (New): The compound of claim 1, wherein

R₁ is C₁-C₆-alkyl, C₅-C₆-cycloalkyl or C₂-C₆-alkenyl;

R₂ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, OH, halogen, -N₃, SCN, NO₂, CN, C₅-C₆cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halo-cycloalkyl, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, -(CH₂)_nN(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -NR₉C(=X)R₇, -(CH₂)-NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁,

or, when p is 1, R₂ together with R₃ is a bond;

or R₂ together with R₄ is =O or =S; or

R₂ together with R₄ is =NN(R₁₂)₂, wherein the two substituents R₉ are independent of each other;

or, when p is 0, R₂ together with R₄ and R₆ is ≡N;

or when p is 0, R₂ together with R₆ is =NOR₁₂ or =NN(R₁₂)₂, wherein the two substituents R₉ are independent of each other;

R₃ is H, C₁-C₆-alkyl, halogen, halo-C₁-C₂alkyl,

or when p is 1, R₃ together with R₂ is a bond;

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, OH, halogen, NO₁₂, CN, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halo-cycloalkyl, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆alkynyloxy, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituent R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -NR₉C(=X)R₇, -(CH₂)-NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁,

or R₄ together with R₂ forms =O or =S;

or when p is 1, R₄ together with R₅ is a bond;

or, when p is 0, together with R₂ and R₆ is ≡N;

R₅ and R₆ independently of each other are H, C₁-C₆-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₆haloalkylthio, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆haloalkynyl, C₃-C₆haloalkynyoxy, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NR₉-heterocyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heterocyclyl and -CH₂-NR₉-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy and -NR₉-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO₂, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆haloalkynyl, C₃-C₆haloalkynyoxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ and C₁-C₆alkylsulfinyl; or

when p is 0, R₆ together with R₂ and R₄ is ≡N;

R₇ is H, OH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₂-C₆haloalkenyloxy, C₂-C₆haloalkynyl, C₃-C₆haloalkynyoxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₈alkenyloxy, C₃-C₈alkinyloxy, -N(R₈)₂ wherein the two R₈ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl,

heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₈alkynyl, C₂-C₆haloalkynyl and C₃-C₆haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, hydroxy and cyano, C₃-C₈cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, and C₁-C₆haloalkylthio;

R₉ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₂-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, benzyl, aryl or heteroaryl;

R₁₀ H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, NO₂, hydroxy and cyano, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkynyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₃-C₈cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₃-C₆haloalkynyl and C₃-C₆haloalkynyloxy;

R₁₁ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy and cyano, -N(R₉)₂ wherein the two

substituents R₉ are independent of each other, C₃-C₈cycloalkyl, C₃-C₈halocycloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₃-C₆haloalkynyl, C₃-C₆haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl and C₃-C₆haloalkynyloxy;

R₁₂ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, -C(=O)C₁-C₆alkyl, -C(=O)OC₁-C₆alkyl, --SO₂C₁-alkyl, benzyl, aryl, heteroaryl;

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;

with the proviso, that the group R₆-[C(R₃)(R₅)]_p-C(R₂)(R₄)-[CH₂]_n-, which is attached to the ε-position of the compound of the formula (1), is not NC-CH₂- or HOOC-CH₂- when m is 1 and the bond between atoms 22 and 23 is a single bond.

10. (New) The compound of claim 9, wherein

n = 1;

p = 1;

m = 0;

R₂ is H or OH;

R₃ is H, C₁-C₆-alkyl, or halo-C₁-C₂alkyl;

R₄ is H;

R₅ is H or C₁-C₆-alkyl; and

R₆ is H, C₁-C₆-alkyl, -N₃, OH, halogen, halo-C₁-C₂alkyl, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, or -S (=O)₂R₁₁.

11. (New) The compound of claim 9, wherein

n = 1;

p = 1;

m = 1;

R₂ is H or OH;

R₃ is H, C₁-C₆-alkyl, or halo-C₁-C₂alkyl;

R₄ is H;

R₅ is H or C₁-C₆-alkyl; and

R₆ is H, C₁-C₆-alkyl, -N₃, OH, halogen, halo-C₁-C₂alkyl, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, or -S (=O)₂R₁₁.

12. (New) The compound of claim 9, wherein

n = 1;

p = 0;

m = 1;

R₂ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₇ is H, OH, or C₁-C₆alkoxy;

X is O; and

R₆ is H, C₁-C₆-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S (=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, or -CH₂-NR₉-C₁-C₂alkyl.

13. (New) The compound of claim 9, wherein

n = 1;

p = 0;

m = 0; and

R₂ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₇ is H, OH, or C₁-C₆alkoxy;

X is O; and

R₆ is H, C₁-C₆-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, or -CH₂-NR₉-C₁-C₂alkyl.

14. (New) The compound of claim 9, wherein

n = 0;

p = 0;

m = 1;

R₂ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₇ is H, OH, or C₁-C₆alkoxy;

X is O; and

R₆ is H, C₁-C₆-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, or -CH₂-NR₉-C₁-C₂alkyl.

(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, or -CH₂-NR₉-C₁-C₂alkyl.

15. (New) The compound of claim 9, wherein

n = 0;

p = 0;

m = 0;

R₂ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₇ is H, OH, or C₁-C₆alkoxy;

X is O; and

R₆ is H, C₁-C₆-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, or -CH₂-NR₉-C₁-C₂alkyl.

16. (New) The compound of claim 9, wherein

p = 0;

R₂ together with R₄ is =O;

R₆ is H, C₁-C₆-alkyl, CN, OH, F, Cl, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylthio, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, pyrrolidinyl, morpholinyl, aryl, aryloxy, or benzyloxy; and

R₉ is H or C₁-C₆alkyl.

17. (New) The compound of claim 9, wherein

n = 1;

p = 1;

m = 0;

R₂ together with R₃ is a bond;

R₄ is H or C₁-C₆ alkyl;

R₅ is H, F, Cl, Br or C₁-C₆ alkyl;

R₆ is H, C₁-C₆-alkyl, CN, OH, F, Cl, Br, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -C(=X)-R₇, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, thiopheneyl, pyridyl, or -CH₂-NR₉-C₁-C₂alkyl; and

R₇ is H, OH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₁₂alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, aryl, furanylmethoxy, or 1,3,2-dioxaborolyl; and wherein the aryl, furanylmethoxy, 1,3,2-dioxaborolyl are unsubstituted or depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen and C₁-C₆alkyl.

18. (New) The compound of claim 9, wherein

n = 1;

p = 1;

m = 1;

R₂ together with R₃ is a bond;

R₄ is H or C₁-C₆ alkyl;

R₅ is H, F, Cl, Br or C₁-C₆ alkyl;

R₆ is H, C₁-C₆-alkyl, CN, OH, F, Cl, Br, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -C(=X)-R₇, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, thiopheneyl, pyridyl, or -CH₂-NR₉-C₁-C₂alkyl; and

R₇ is H, OH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₁₂alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, aryl, furanylmethoxy, 1,3,2-dioxaborolyl; and

wherein the aryl, furanylmethoxy, or 1,3,2-dioxaborolyl are unsubstituted or depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen and C₁-C₆alkyl.

19. (New) The compound of claim 9, wherein

m is 0 or 1;
n is 0 or 1;
p is 0;
R₁ is sec-butyl or isopropyl;
R₂ and R₄ is H;
R₆ is hydroxy; and

the bond between atoms 22 and 23 is a double bond.

20. (New) The compound of claim 9, wherein

m is 0 or 1;
n is 1;
p is 1 and R₂ together with R₃ is a bond;
R₁ is sec-butyl or isopropyl;
R₄, R₅ and R₆ are H;
the bond between atoms 22 and 23 is a double bond.