

VIDEO REPRESENTATION

Supervisor: Dr. A. Mansouri

Amir Hossein Bakhtiari

What is video representation?

- A video is composed of a sequence of frames, which reflects the evolution of the video content.
- A video can be represented by a sequence of frame-level features

First Person Video (Egocentric)

The main difference between conventional 3rd-person videos and 1st person videos is that, in 1st-person videos, the person wearing the camera is actively involved in the events being recorded.

Frame-level Features (Descriptors)

Types of Frame-level Features

Appearance Features:

CNN features of each video frame

Motion Features:

Histogram of Oriented Gradients (HOG) Histogram of Optical Flows (HOF) Improved Dense Trajectory (IDT)

Pooled Motion Features for First-Person Videos

- O1 Per-frame feature representation
- **02** Time series representation
- 03 Temporal pooling
- **04** Final representation

Pooled Motion Features for First-Person Videos

Figure 2. Overall representation framework of our pooled time series (PoT).

Pooling: pooled time series (PoT)

- Particularly designed to capture motion information in first-person videos
- Abstract a set of raw feature descriptors from each video into a single vector representing the video
- Result are served as an input vector for classifiers

Pipeline of PoT

Three Important abilities of PoT

Allows the representation to capture both *long-term* motion and *short-term* information with multiple temporal filters.

Explicitly imposes temporal structure of the activity by decomposing the entire time interval to multiple subintervals

Takes advantage of multiple types of pooling operators so that the representation captures different aspects of the data.

Temporal pooling operators

Max Pooling

Histogram of time series gradients

number of positive (and negative) gradients within the temporal filter.

Sum Pooling

Histogram of time series gradients

sum of the amount of positive (or negative) gradients.

Representation Implementation

HOF	МВН	Overfeat CNN	Café CNN
Optical flow based motion descriptor	Optical flow based motion descriptor	Descriptors from CNNs pre-trained on ImageNet	Descriptors from CNNs pre-trained on ImageNet
200-D	400-D	4096-D	4096-D
L1 normalization applied	L1 normalization applied	L1 normalization applied	L1 normalization applied

Experimental Settings

DogCentric Dataset

wearable cameras mounted on dogs' back. ego-actions of the dog & interactions between the dog and humans

UEC Park Dataset

a human wearing a camera. egoactions of the person (wearing a camera) involved in physical activities

Classifier

nonlinear SVM with a X² kernel

Evaluation setting

Repeated random training/testing splits 100 times was performed, and averaged the performance. randomly selected half of videos per class as training videos

Figure 3. Classification accuracies of feature representations with each descriptor (and their combination). Representations that utilize randomness are drawn with 95% confidence intervals. See text for details.

Figure 4. Feature performance using BoW and IFV compared with various PoT pooling operators with and without a temporal pyramid on the DogCentric dataset. Y-axis is classification accuracy, and X-axis shows different representations. PoT generally benefits

Frame-level representation

- Video frame represented by concatenating both the appearance features and the motion features.
- Appearance Features:
 4096-D activations of the second fully layer of AlexNet pre-trained on ImageNet
- Motion Features:

Improved dense trajectory (IDT), trajectories falling into a local neighborhood (10 frames) considered & encoded using Fisher vector coding

Order-aware Convolutional Pooling

Order-aware convolutional pooling action recognition

Fig. 2. Illustration of order-aware pooling.

1D Convolution for each Dimension

Fig. 3. Illustration of 1D convolution. In this figure, the number of filters are 3 and the interval size is 3 as well.

Temporal Pyramid Pooling

Fig. 4. Illustration of temporal pyramid pooling.

$$L(\mathbf{W}, \mathbf{b}) = -\sum_{i=1}^{N} \log(\mathbf{Y}(c_i)),$$

where c_i denotes the class label of the ith video and N is the total number of training videos. Recall that \mathbf{Y} is a c-dimensional vector and c equals to the number of classes.

Classification and model parameter learning

Classifier

classification layer on top of the outputs of the pooling layer. model parameters will be learned in a supervised fashion

Optimizer

Model parameters will be updated Using Stochastic Gradient Descent (SGD)

Final Classification

Final classification scores are calculated as sum of classification scores from appearance features and motion features.

Experimental setup

HMDB51 dataset

Collected from various sources such as YouTube 6766 video clips, 51 classes

UCF101 dataset

Realistic action videos collected from YouTube 13,320 videos, 101 classes.

Hollywood2 dataset

1707 videos with 823 training and 884 testing videos 69 movies, 12 classes

Comparisons

Table 1Comparison of the proposed pooling method to the baselines on HMDB51 using appearance information or motion information.

	AP	37.5%
	MP	36.5%
A n.n a n.a n.a a	PoT (no TP) [46]	36.5%
Appearance	TP	39.2%
	Ours (MP)	40.8%
	Ours (TP)	41.6%
	AP	50.9%
	MP	50.6%
Motion	TP	54.7%
	Ours (MP)	52.8%
	Ours (TP)	55.0%

Table 2Comparison of the proposed pooling method to the baselines on UCF101 using appearance information or motion information.

	AP	66.3%
	MP	67.4%
A 12 12 2 12 12 12 12 12 12 12 12 12 12 1	PoT (no TP) [46]	67.5%
Appearance	TP	68.5%
	Ours (MP)	69.3%
	Ours (TP)	70.4%
	AP	80.0%
	MP	80.2%
Motion	TP	81.6%
	Ours (MP)	81.0%
	Ours (TP)	82.1%

Conclusion

- Convolution operation constitutes the most important part of the proposed pooling method.
- Motion features can lead to better classification performance comparing to appearance features.
- On appearance features, the proposed pooling method can con- sistently outperform the baselines

Thank you I would like to express my sincere gratitude to

my supervisor <mark>Dr. A. Mansouri</mark>