UNIVERSITÉ DE MONTRÉAL

RECOMMENDING WHEN DESIGN TECHNICAL DEBT SHOULD BE SELF-ADMITTED

CÉDRIC NOISEUX
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL
ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L'OBTENTION DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES (GÉNIE INFORMATIQUE) AÔUT 2017

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

RECOMMENDING WHEN DESIGN TECHNICAL DEBT SHOULD BE SELF-ADMITTED

présenté par: <u>NOISEUX Cédric</u> en vue de l'obtention du diplôme de: <u>Maîtrise ès sciences appliquées</u> a été dûment accepté par le jury d'examen constitué de:

M. <u>NOM Prénom,</u> Doct., président Mme <u>NOM Prénom,</u> Ph. D., membre et directrice de recherche M. NOM Prénom, Ph. D., membre

DEDICATION

À tous mes amis du labos, vous me manquerez... FACULTATIF

ACKNOWLEDGEMENTS

Texte. FACULTATIF

RÉSUMÉ

Technical Debt (TD) are temporary solutions, or workarounds, introduced in portions of software systems in order to fix a problem rapidly at the expense of quality. Such practices are widespread for various reasons: rapidity of implementation, initial conception of components, lack of system's knowledge, developer inexperience or deadline pressure. Even though technical debts can be useful on a short term basis, they can be excessively damaging and time consuming in the long run. Indeed, the time required to fix problems and design code is frequently not compatible with the development life cycle of a project. This is why the issue has been tackled in various studies, specifically in the aim of detecting these harmful debts.

One recent and popular approach is to identify technical debts which are self-admitted. The particularity of these debts, in comparison to TD, is that they are explicitly documented with comments and intentionally introduced in the source code. Self-Admitted Technical Debt (SATD) are not uncommon in software projects and have already been extensively studied concerning their diffusion, impact on software quality, criticality, evolution and actors. Various detection methods are currently used to identify SATD but are still subject to improvement. For example, using keywords (e.g.: hack, fixme, todo, ugly, etc.) in comments linking to a technical debt or using Natural Language Processing (NLP) in addition to machine learners. Therefore, this study investigates to what extent previously self-admitted technical debts can be used to provide recommendations to developers writing new source code. The goal is to be able to suggest when to "self-admit" technical debts or when to improve new code being written.

To achieve this goal, a machine learning approach was conceived, named TEchnical Debt Identification System (TEDIOUS), using various types of method-level input features as independent variables to classify design technical debts using self-admitted technical debts as oracle. The model was trained and assessed on nine open source Java projects which contained previously tagged SATD. In other words, our proposed machine learning approach aims to accurately predict technical debts in software projects.

TEDIOUS works at method-level granularity, in other words, it can detect whether a method contains a design debt or not. It was designed this way because developers are more likely to self-admit technical debt for methods or block. TD can be classified in different types: design, requirement, test, code or documentation. Only design debts were considered because they represent the largest fraction and each type would require its own analysis.

TEDIOUS is trained with labeled data, projects with labeled SATD, and tested with

unlabeled data. The labeled data contain methods tagged as SATD which were obtained from nine projects analyzed by another research group using a NLP approach and manually validated. Projects are of various sizes (e.g.: number of classes, methods, comments, etc.) and contain different proportions of design debts. From the labeled data are extracted various kinds of metrics: source code metrics, readability metrics and warnings raised by static analysis tools. Nine source code metrics were retained to capture the size, coupling, complexity and number of components in methods. The readability metric takes in consideration indentation, line length and identifier lengths just to name a few features. Two static analysis tools are used to check for poor coding practices.

Feature preprocessing is applied to remove unnecessary features and keep the ones most relevant to the dependent variable. Some features are strongly correlated between each others and keeping all of them is redundant. Other features undergo important or no variations in our dataset, they would not be useful to build a predictor and thus are removed as well. Additionally, to achieve good cross-project predictions, metrics are normalized because the source code of different projects can differ in terms of size and complexity. Finally, the dataset is unbalanced, which means the amount of methods labeled as SATD is small. Over-sampling was applied on the minority class to generate artificial instances from the existing ones.

Machine learnings models are built based on the training set and predictions are evaluated from the test set. Five kinds of machine learners were tested: Decision Trees (J48), Bayesian classifiers, Random Forests, Random Trees and Bagging with Decision Trees. These models were retained to gather a wide variety of results, from different algorithms which were considered the most appropriate and accurate for the context of this study.

Globally, the goal of this study is to assess the SATD prediction performance of our approach. The quality focus is understandability and maintainability of the source code, achieved by tracking existing TD. The perspective is to be able to suggest when to admit those TD. Three research questions are aimed to be addressed:

- **RQ1**: How does TEDIOUS work for recommending SATD with-project?
- RQ2: How does TEDIOUS work for recommending SATD across-project?
- RQ3: How would a method-level smell detector compare with TEDIOUS?

To address **RQ1**, 10-fold cross validation was performed on all projects, which means a machine learner is trained with 90% of a project's methods and tested with 10% of them. The process is repeated 10 times to reduce the effect of randomness. A similar approach is used for **RQ2**, a machine learner is trained with 8 projects and is tested with 1 project.

To assess the performance of TEDIOUS, standard metrics such as precision, recall and F1 score are computed for the SATD category. These metrics are based on the amount of True Positive (TP), False Positive (FP) and False Negative (FN). To complement the evaluation, accuracy, Matthews Correlation Coefficient (MCC) and Receiving Operating Characteristics (ROC) Area Under the Curve (AUC) are computed, partly to take into account the amount of True Negative (TN). What is aimed for in a machine learning model performance is a balance between precision and recall, to suggest as many *correct* TD to admit as possible. MCC and AUC are useful indicators to reduce the effect of chance. The importance of feature metrics is also taken into account to evaluate the models.

To address RQ3, the performance of a smell detector, DEtection & CORrection (DECOR), was computed and evaluated in classifying as TD methods labeled as SATD. Only method-level smells were analyzed, similarly to TEDIOUS. Finally, some FP and FN were qualitatively discussed in order to explain the limits of our approach.

For **RQ1**, results showed that Random Forest classifiers achieved the best performance recommending design debts. The average precision obtained is 49.97% and the recall 52.19%. The MCC and AUC values of each project generally indicated healthy classifiers. Balancing the dataset increased recall at the expense of precision and code readability, complexity and size played a significant role in building the predictors.

For **RQ2**, cross-project prediction increased the performance of predictors compared to the standard cross-validation on singular projects because of a larger and more diverse training set. The average precision obtained is 67.22% and the recall 54.89%. The MCC and AUC values still indicated healthy classifiers. Similarly to within project predictions, code readability, size and complexity played the most important role in recommending when to self-admit design TD.

For **RQ3**, Long Method (LM) and Long Parameter List (LP) were the specific smells targeted and evaluated by DECOR, similar to Lines Of Code (LOC) and number of parameters metrics, which played an important role in training machine learners in the context of our study. However, the detectors of DECOR were unable to achieve similar performance as TEDIOUS. The F_1 score for the union of LM and LP couldn't surpass 22% and the MCC value leaned towards a low prediction correlation.

As for the qualitative analysis of correctly classified or misclassified SATD, several observations were made. When analyzing TP, TEDIOUS was able to correctly identify a wide variety of methods labeled as SATD even though their defining features were significantly different. FP targeted intrinsically complex and long methods that weren't initially labeled as SATD, which isn't necessarily bad because it may lead the developer to review these pieces

of code. As an example of FN, some comments mention the presence of a problem in a block of code which isn't trivial when manually analyzed, or when using TEDIOUS.

Some threats can affect the validity of our study. For construct validity threats, the measurement errors of labeled design SATD and metrics represent an issue. For internal validity threats, default parameters only were applied for the machine learners. Some kind of optimization could be applied obtain better machine learner configurations. The proper use of performance diagnostics (AUC, MCC) allowed us to reduce the conclusion validity threats. For reliability validity threats, all necessary details are provided to replicate our study. For external validity threats, it cannot be guaranteed that our results can be generalized to all Java projects considering the small amount of projects analyzed. Our approach would need to be extended to more projects, domains or programming languages.

This paper describes TEDIOUS, a method-level machine learning approach designed to recommend when a developer should self-admit a design technical debt based on size, complexity, readability metrics, and static analysis tools checks. Within-project performance values based on 9 open source Java projects lead to promising results: about 50% precision, 52% recall and 93% accuracy. Cross-project performance was even more promising: about 67% precision, 55% recall and 92% accuracy. Highly unbalanced data represented the biggest issue in obtaining higher performance values. For bigger projects, precision and recall above 88% were obtained.

Different applications could be made of TEDIOUS. It could be used as a recommendation system for developers to know when to document TD they introduced. Secondly, it could help customize warnings raised by static analysis tools, by learning from previously defined SATD. Thirdly, it could compliment existing smell detectors to improve their performance, like DECOR. As for our future work, a larger dataset will be studied to see if adding more information could be beneficial to our approach. Additionally, we plan to extend TEDIOUS to the recommendation of more types of technical debts.

ABSTRACT

TOTAL = 4 pages

VOIR PROPOSITION DE RECHERCHER

TABLE OF CONTENTS

DEDIC	ATION iii
ACKNO	OWLEDGEMENTS iv
RÉSUM	IÉ
ABSTR	ACT ix
TABLE	OF CONTENTS
LIST O	F TABLES xiii
LIST O	F FIGURES xiv
LIST O	F SYMBOLS AND ABBREVIATION xv
LIST O	F APPENDICES xvi
СНАРТ	TER 1 INTRODUCTION
1.1	Basic Concepts and Defintions
1.2	Éléments de la problématique
1.3	Objectifs de recherche
1.4	Plan du mémoire
CHAPT	TER 2 LITTERATURE REVIEW
2.1	Relationship Between Technical Debt and Source Code Metrics
2.2	Self-Admitted Technical Debt
2.3	Code Smell Detection and Automated Static Analysis Tools
СНАРТ	TER 3 THE APPROACH AND STUDY DEFINITION
3.1	The Approach
	3.1.1 Features
	3.1.2 Identification of Self-Admitted Technical Debt
	3.1.3 Feature Preprocessing
	3.1.4 Building and Applying Machine Learning Models
3.2	Study Definition

	3.2.1	Dataset	4
	3.2.2	Analysis Method	4
СНАРТ	TER 4	ANALYSIS OF STUDY RESULTS AND THREATS TO VALIDITY	5
4.1	Study	Results	5
	4.1.1	How does TEDIOUS work for recommending SATD within-project? .	5
	4.1.2	How does TEDIOUS work for recommending SATD across-project? .	5
	4.1.3	How would a method-level smell detector compare with TEDIOUS? .	5
	4.1.4	Qualitative discussion of false positive and false negatives	5
4.2	Threa	ts to Validity	5
	4.2.1	Construct validity	5
	4.2.2	Internal validity	5
	4.2.3	Conclusion validity	5
	4.2.4	External validity	6
СНАРТ	TER 5	CONVOLUTIONAL NEURAL NETWORK WITH COMMENTS AND	
SOU	IRCE (CODE	7
5.1		olutional Neural Network	7
5.2	The A	approach	7
	5.2.1	Features	7
	5.2.2	Identification of Self-Admitted Technical Debt	7
	5.2.3	Word Embeddings	7
	5.2.4	Building and Applying CNN	7
5.3	Study	Definition	7
	5.3.1	Dataset	7
	5.3.2	Analysis Method	8
5.4	Study	Results	8
	5.4.1	Source Code With Comments	8
	5.4.2	Source Code Without Comments	8
	5.4.3	Source Code Partially With Comments	8
СНАРТ	TER 6	CONCLUSION	9
6.1	Summ	nary of Work	9
6.2	Limita	ations of the Proposed Solution	9
6.3		e Work	9
BIBLIC)GRAP	·HY	10

															xii	
APPENDICES	 	 		 											11	

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS AND ABBREVIATION

TD Technical Debt

SATD Self-Admitted Technical Debt NLP Natural Language Processing

TEDIOUS TEchnical Debt IdentificatiOn System

TP True Positive
TN True Negative
FP False Positive
FN False Negative

MCC Matthews Correlation Coefficient ROC Receiving Operating Characteristics

AUC Area Under the Curve DECOR DEtection & CORrection

LOC Lines Of Code LM Long Method

LP Long Parameter List

LIST OF APPENDICES

annexe A	DÉMO	1.
annexe B	ENCORE UNE ANNEXE	12
annexe C	UNE DERNIÈRE ANNEXE	13

CHAPTER 1 INTRODUCTION

TOTAL = 8 pages

0.5 page

Base sur abstract de l'article VOIR PROPOSITION DE RECHERCHE

1.1 Basic Concepts and Defintions

environ 3 pages

Technical debt Defintion TD (Cunningham 15) Definition classes TD (3 et 22) Nature intentionnelle des TD (24) Awareness des TD est un probleme (17)

Self admitted technical debt Definition SATD (Potdar 16 et 35) Presence des SATD (Potdar 16 et 35) Acteurs des SATD (Potdar 16 et 35) Correlation qualite/SATD (Bavota et Russo 8, 10) Taxonomie des SATD (Bavota et Russo 8)

Features Structural metrics of methods Method readability Warnings of static analysis tools (Checkstyle 1, PMD 2)

Dataset 9 java open source projects from (27), only design debts

Machine Learners 5 machine learners, with fold validation and cross project

Results 50% precision and 52% recall within project with RandomForest 67% precision, 55% recall, 92% accuracy cross project Can be applied on new projects and be good

1.2 Éléments de la problématique

environ 3 pages

1.3 Objectifs de recherche

0.5 page

TEDIOUS (TEchnical Debt Identification System) Supervised Machine Learning approach Method-level Using various features of code source (independent) Knowledge of previous SATD (dependent) To recommend developpers with TD to be admitted

Purpose 1) Encourage self admitting TD (mainly done by experienced, want new to do

too 35) 2) Alternative to smell detectors to give opportunities to improve source code

Difference 1) Method-level instead of class-level metrics (8) because SATD comments at method or block-level mainly 2) Only consider certain types of TD (design debt since largest 27) Other types for future since different analysis

1.4 Plan du mémoire

0.5 page

CHAPTER 2 LITTERATURE REVIEW

TOTAL = 4 pages

- 2.1 Relationship Between Technical Debt and Source Code Metrics
- 2.2 Self-Admitted Technical Debt
- 2.3 Code Smell Detection and Automated Static Analysis Tools

CHAPTER 3 THE APPROACH AND STUDY DEFINITION

TOTAL = 15 pages		

2 pages

3.1

3.1.1 Features

The Approach

3 pages

3.1.2 Identification of Self-Admitted Technical Debt

0.5 page

3.1.3 Feature Preprocessing

3 pages

3.1.4 Building and Applying Machine Learning Models

0.5 page

3.2 Study Definition

0.5 page

3.2.1 Dataset

2 pages

3.2.2 Analysis Method

3.5 pages

CHAPTER 4 ANALYSIS OF STUDY RESULTS AND THREATS TO VALIDITY

TOTAL = 18 pages

4.1 Study Results

- 4.1.1 How does TEDIOUS work for recommending SATD within-project?
- 4.5 pages
- 4.1.2 How does TEDIOUS work for recommending SATD across-project?
- 4 pages
- 4.1.3 How would a method-level smell detector compare with TEDIOUS?
- 1.5 pages
- 4.1.4 Qualitative discussion of false positive and false negatives
- 4 pages
- 4.2 Threats to Validity
- 4.2.1 Construct validity
- 1 page
- 4.2.2 Internal validity
- 1 page
- 4.2.3 Conclusion validity
- 1 page

4.2.4 External validity

1 page

CHAPTER 5 CONVOLUTIONAL NEURAL NETWORK WITH COMMENTS AND SOURCE CODE

TOTAL = 15 pages

5.1 Convolutional Neural Network

1 page

5.2 The Approach

1 page

5.2.1 Features

1 page

5.2.2 Identification of Self-Admitted Technical Debt

0.5 page

5.2.3 Word Embeddings

1 page

5.2.4 Building and Applying CNN

2 page

5.3 Study Definition

0.5 page

5.3.1 Dataset

1.5 page

5.3.2 Analysis Method

2 pages

5.4 Study Results

5.4.1 Source Code With Comments

1.5 pages

5.4.2 Source Code Without Comments

1.5 pages

5.4.3 Source Code Partially With Comments

1.5 pages

CHAPTER 6 CONCLUSION

TOTAL = 3 pages

6.1 Summary of Work

1 page

6.2 Limitations of the Proposed Solution

1 page

6.3 Future Work

1 page

BIBLIOGRAPHY

APPENDIX A DÉMO

Texte de l'annexe A. Remarquez que la phrase précédente se termine par une lettre majuscule suivie d'un point. On indique explicitement cette situation à LATEX afin que ce dernier ajuste correctement l'espacement entre le point final de la phrase et le début de la phrase suivante.

APPENDIX B ENCORE UNE ANNEXE

Texte de l'annexe B en mode «landscape».

APPENDIX C UNE DERNIÈRE ANNEXE

Texte de l'annexe C.