Requirements for a language for multiscale cell model development Upi Bhalla **NCBS** Bangalore

Levels of description

Behaviour

Systems

Areas

Circuits

Neurons

Dendrites

Synapses

Molecules

$$g = g_{\text{max}} \cdot t/\tau_{\text{p}} \cdot \exp(1-t/\tau_{\text{p}})$$

$$g = g_{max} \cdot m^x \cdot h^y$$

$$1-m < \frac{\alpha(V)}{\beta(V)} m$$

$$\tau_m \frac{\partial V}{\partial t} = E - V + \lambda^2 \frac{\partial^2 V}{\partial x^2}$$

E = RT/zF . ln([out]/[in])

$$\frac{\partial \phi}{\partial t} = D \nabla^2 \phi(\vec{r}, t)$$

$$dA/dt = - kf.A.B + kb.C$$

Stochastic forms

Brownian motion

Mechanics:

Tensegrity
Bending moments
Motors
Bulk flow

Problem sizes

A typical multiscale model

Biophysically-detailed network model

The Multiscale Object-Oriented Simulation Environment

http://moose.ncbs.res.in,
http://sourceforge.net/projects/moose/

LGPL but uses GPL modules C++/Python/Qt/GSL/OpenGL and many many more...

MOOSE supports standards

Modelling across scales

Multiscale language requirements

- Composition specification:
 - Single NeuroML model
 - Multiple SBML models
 - Diffusion specification
 - Entity mapping
- Interface specification
 - Molecules -> channel properties
 - Ion flux (Ca) -> Signaling effects
 - Synaptic input -> Ligand molecules
 - Molecular gradients/junctions
- Geometry specification
 - Spines
 - Junctions
 - Caps
 - Mapping to detailed morphology
 - Spatial transforms and writhing
- Mechanics specification
- Control specifications:
 - Solvers
 - Runtime
 - Output variables

1. Composition specification

1. Composition specification

- a. Identify model sources
- b. Identify where each one goes
- c. Diffusion along compartments
- d. Diffusion into spines

1. Composition specification

- a. Identify model sources
- b. Identify where each one goes
- c. Diffusion along compartments
- d. Diffusion into spines
- e. Entity mapping: Unique
- f. Entity mapping: complex ---

2. Interface specification

- a. Molecules->Channel conductance
- b. Molecules-> Channel kinetics
- c. Ion flux (Ca) -> Signaling effects
- d. Synaptic input -> Ligand molecules

2. Interface specification

- a. Molecules->Channel conductance
- b. Molecules-> Channel kinetics
- c. Ion flux (Ca) -> Signaling effects
- d. Synaptic input -> Ligand molecules
- e. Molecular gradients/junctions

All involve scaling, offset, unit conversion and so on.

Geometry specification

- a. Spines
- b. Junctions

Geometry specification

- a. Spines
- b. Junctions
- c. Caps
- d. Detailed morphology: meshes
- e. Detailed morphology: mappings

Geometry specification

- a. Spines
- b. Junctions
- c. Caps
- d. Detailed morphology: meshes
- e. Detailed morphology: mappings
- f. Spatial transforms
- g. Writhing

4. Mechanics specification

5. Control

a. Solvers

b. Runtime control

c. Output variables and formats

Vs.

Multiscale language requirements

- Composition specification:
 - Single NeuroML model
 - Multiple SBML models
 - Diffusion specification
 - Entity mapping
- Interface specification
 - Molecules -> channel properties
 - Ion flux (Ca) -> Signaling effects
 - Synaptic input -> Ligand molecules
 - Molecular gradients/junctions
- Geometry specification
 - Spines
 - Junctions
 - Caps
 - Mapping to detailed morphology
 - Spatial transforms and writhing
- Mechanics specification
- Control specifications:
 - Solvers
 - Runtime
 - Output variables

Multiscale language requirements

- Composition specification:
 - Single NeuroML model
 - Multiple SBML models
 - Diffusion specification
 - Entity mapping
- Interface specification
 - Molecules -> channel properties
 - Ion flux (Ca) -> Signaling effects
 - Synaptic input -> Ligand molecules
 - Molecular gradients/junctions
- Geometry specification
 - Spines
 - Junctions
 - Caps
 - Mapping to detailed morphology
 - Spatial transforms and writhing
- Mechanics specification
- Control specifications:
 - Solvers
 - Runtime
 - Output variables

Ease of use: Sensible defaults

Options

- Will SEDML handle arbitrary model control?
- NeuroML vs composition ML?
- Problem-specific compositionML, or are there generic ways to assemble MLs?
- Forget the compositionML.
 - Use Python or script, local to simulator
 - Push for modularity in other MLs.

Thank

INCF
SBCNY
NCBS/TIFR
DAE
DBT
EU-India Grid

