

AI ACADEMY

Applicare l'Intelligenza Artificiale nello sviluppo software

AI ACADEMY

Hackaton agentic RAG 26/06/2025

Prof/ce

INTRODUZIONE DELL'ISTRUTTORE

Tamas Szakacs

Formazione

- Laureato come programmatore matematico
- MBA in management

Principali esperienze di lavoro

- Amministratore di sistemi UNIX
- Oracle DBA
- Sviluppatore di Java, Python e di Oracle PL/SQL
- Architetto (solution, enterprise, security, data)
- Ricercatore tecnologico e interdisciplinare di IA

Dedicato alla formazione continua

- Teorie, modelli, framework IA
- Ricerche IA
- Strategie aziendali
- Trasformazione digitale
- Formazione professionale

email: tamas.szakacs@proficegroup.it

MOTIVI E RIASSUNTO DEL CORSO

L'Intelligenza Artificiale (AI) è oggi il motore dell'innovazione in ogni settore, grazie alla sua capacità di analizzare dati, automatizzare processi e generare nuove soluzioni. Questo corso offre una panoramica completa e pratica sullo sviluppo di applicazioni AI moderne, guidando i partecipanti dall'ideazione al rilascio in produzione.

Attraverso una combinazione di teoria chiara ed esercitazioni pratiche, saranno affrontate le tecniche e gli strumenti più attuali: machine learning, deep learning, reti neurali, Large Language Models (LLM), Transformers, Retrieval Augmented Generation (RAG) e progettazione di agenti Al. Le competenze acquisite saranno applicate in progetti concreti, dallo sviluppo di chatbot all'integrazione di modelli generativi, fino al deploy di soluzioni Al in ambienti reali e collaborativi.

Il percorso è pensato per chi vuole imparare a progettare, valutare e integrare sistemi AI di nuova generazione, con particolare attenzione alle best practice di programmazione, collaborazione in team, sicurezza, valutazione delle performance ed etica dell'AI.

DURATA: 17 GIORNI

Il percorso formativo è progettato per **giovani consulenti junior**, con una conoscenza base di programmazione, che stanno iniziando un percorso professionale nel settore AI.

L'obiettivo centrale è fornire una panoramica pratica, completa e operativa sull'intelligenza artificiale moderna, guidando ogni partecipante attraverso tutte le fasi fondamentali.

- Allineare conoscenze AI, ML, DL di tutti i partecipanti
- Saper usare e orchestrare modelli LLM (closed e open-weight)
- Costruire pipeline RAG complete (retrieval-augmented generation)
- Progettare agenti Al semplici con strumenti moderni (LangChain, tool calling)
- Capire principi di valutazione, robustezza e sicurezza dei sistemi GenA
- Migliorare la produttività come sviluppatori usando tool GenAl-driven
- Padroneggiare best practice di sviluppo, versioning e deploy Al
- Introdurre i fondamenti di Graph Data Science e Knowledge Graph
- Ottenere capacità di valutazione dei modelli e metriche
- Comprensione dell'etica e dei bias nei modelli di intelligenza artificiale
- Approfondire le normative di riferimento: Al Act, compliance e governance Al

Il corso è **estremamente pratico** (circa il 40% del tempo in esercitazioni hands-on, notebook, challenge e hackathon), con l'utilizzo di Google Colab, GitHub, e tutti gli strumenti necessari per lavorare su progetti reali e simulati.

STRUTTURA DELLE GIORNATE – PROGRAMMA BREVE

Tutte le giornate sono di 8 ore (9:00-17:00), con 1 ora di pausa suddivisa (mezz'ora pranzo, due pause da 15 min durante la mattina e il pomeriggio).

La progettazione sintetica delle giornate:

Giorno	Tema	Breve descrizione
1	Git & Python clean-code	Collaborazione su progetti reali, versionamento, codice pulito e
		testato
2	Machine Learning Supervised	Modelli supervisionati per predizione e classificazione
3	Machine Learning Unsupervised	Clustering, riduzione dimensionale, scoperta di pattern
4	Prompt Engineering avanzato	Scrivere e valutare prompt efficaci per modelli generativi
5	LLM via API (multi-vendor)	Uso pratico di modelli LLM via API, autenticazione, deployment
6	Come costruire un RAG	Pipeline end-to-end per Retrieval-Augmented Generation
7	Tool-calling & Agent design	Progettare agenti Al che usano strumenti esterni
8	Hackathon: Agentic RAG	Challenge pratica: chatbot agentico RAG in team

STRUTTURA DELLE GIORNATE – PROGRAMMA BREVE

Tutte le giornate sono di 8 ore (9:00-17:00), con 1 ora di pausa suddivisa (mezz'ora pranzo, due pause da 15 min durante la mattina e il pomeriggio).

La progettazione sintetica delle giornate:

Giorno	Tema	Breve descrizione
9	Hackathon: Rapid Prototyping	Da prototipo a web-app con Streamlit e GitHub
10	Al Productivity Tools	Workflow con IDE AI-powered, automazione e refactoring assistito
11	Docker & HF Spaces Deploy	Deployment di app GenAl containerizzate o su HuggingFace Spaces
12	Al Act & ISO 42001 Compliance	Fondamenti di compliance e governance Al
13	Knowledge Base & Graph Data Science	Introduzione a Knowledge Graph e query con Neo4j
14	Model evaluation & osservabilità	Metriche avanzate, explainability, strumenti di valutazione
15	Al bias, fairness ed etica applicata	Analisi dei rischi, metriche e mitigazione dei bias
16-17	Project Work & Challenge finale	Lavoro a gruppi, POC/POD, presentazione e votazione progetti

METODOLOGIA DEL CORSO

1. Approccio introduttivo ma avanzato

Il corso è introduttivo nei concetti base dell'Al applicata allo sviluppo, ma affronta anche tecnologie, modelli e soluzioni avanzate per garantire un apprendimento completo.

2. Linguaggio adattato

Il linguaggio utilizzato è chiaro e adattato agli studenti, con spiegazioni dettagliate dei termini tecnici per favorirne la comprensione e l'apprendimento graduale.

3. Esercizi pratici

Gli esercizi pratici sono interamente svolti online tramite piattaforme come Google Colab o notebook Python, eliminando la necessità di installare software sul proprio computer.

4. Supporto interattivo

È possibile porre domande in qualsiasi momento durante le lezioni o successivamente via email per garantire una piena comprensione del materiale trattato.

Il corso segue un **approccio laboratoriale**: ogni giornata combina sessioni teoriche chiare e concrete con molte attività pratiche supervisionate, per sviluppare *competenze reali* immediatamente applicabili.

I partecipanti lavoreranno spesso in gruppo, useranno notebook in Colab e versioneranno codice su GitHub, vivendo una vera simulazione del lavoro in azienda AI.

Nessun prerequisito avanzato richiesto: si partirà dagli strumenti e flussi fondamentali, con una crescita graduale verso le tecniche più attuali e richieste dal mercato.

ORARIO TIPICO DELLE GIORNATE

Orario	Attività	Dettaglio
09:00 - 09:30	Teoria introduttiva	Concetti chiave, schema della giornata
09:30 - 10:30	Live coding + esercizio guidato	Esempio pratico, notebook Colab
10:30 – 10:45	Pausa breve	
10:45 – 11:30	Approfondimento teorico	Tecniche, best practice
11:30 – 12:30	Esercizio hands-on individuale	Sviluppo o completamento di codice
12:30 – 13:00	Discussione soluzioni + Q&A	Condivisione e correzione
13:00 – 14:00	Pausa pranzo	
13:30 – 14:15	Teoria avanzata / nuovi tools	Nuovi strumenti, pattern, demo
14:15 – 15:30	Esercizio a gruppi / challenge	Lavoro di squadra su task reale
15:30 – 15:45	Pausa breve	
15:45 – 16:30	Sommario teorico e pratico	
16:30 – 17:00	Discussioni, feedback	Riepilogo, best practice, domande aperte

DOMANDE?

Cominciamo!

Obiettivi della giornata

- Analizzare la richiesta e il perimetro progettuale dell'hackathon sul chatbot agentico RAG.
- Pianificare i lavori e distribuire i compiti tra i partecipanti in modo collaborativo.
- Utilizzare e integrare gli elementi già sviluppati durante il corso (pipeline RAG, modelli, agenti, utility, notebook).
- Individuare, progettare e realizzare le componenti mancanti per completare il progetto.
- Integrare le diverse parti e testare il funzionamento end-to-end del chatbot agentico.
- Redigere una documentazione funzionale essenziale (architettura, flussi, setup, esempi d'uso).
- Preparare la consegna finale e la presentazione del progetto realizzato.

ANALISI DOCUMENTALE E PROTEZIONE DATI

SmartDocs Srl – Analisi documentale e protezione dati

Scenario:

SmartDocs Srl, media azienda europea, deve gestire email e documenti contenenti dati sensibili di clienti (es: IBAN, codice fiscale, indirizzi, nomi, numeri di telefono).

L'azienda vuole automatizzare:

- Estrazione di entità e dati sensibili (NER, pattern matching)
- Riepilogo automatico e risposta alle richieste clienti
- Tutelare la privacy (alcuni dati NON devono mai lasciare il server locale)
- Minimizzare i costi cloud e garantire risposte rapide

ANALISI DOCUMENTALE E PROTEZIONE DATI

Useremo due modelli LLM per la soluzione aziendale

Architettura semplificata

1. Modello locale open source (es: TinyLLaMA)

- 1. Viene eseguito localmente, direttamente sul vostro computer o su server aziendali.
- 2.Si occupa delle operazioni più "sensibili", come l'estrazione di dati personali e la protezione della privacy (Named Entity Recognition e masking dei dati).
- 3. È veloce, economico, e mantiene i dati riservati all'interno dell'azienda.

2. Modello cloud avanzato (es: Azure OpenAl GPT-3.5/4)

- 1. Viene utilizzato tramite API esterne, in cloud.
- 2. Si occupa di attività più complesse come il riepilogo automatico, l'analisi semantica e la generazione di risposte ai clienti.
- 3. Permette di gestire testi lunghi e offre maggiore potenza di calcolo e qualità delle risposte.

ANALISI DOCUMENTALE E PROTEZIONE DATI

L'obiettivo:

Sfruttare i punti di forza di entrambi i modelli:

- La privacy e la velocità del modello locale
- La potenza e la flessibilità del modello cloud

Garantire che i dati più delicati non escano dall'azienda, mentre sfruttiamo le migliori tecnologie disponibili per la produttività e l'automazione.

Distribuzione dei lavori

Tutti lavorano sullo stesso problema reale ma con strumenti diversi.

Lavoro locale autonomo

privacy, sicurezza, regex/NER, masking.

Lavoro cloud con l'aiuto dell'istruttore

prompt, parametri, API, gestione delle risposte.

Altri componenti futuri per i giorni successivi

- RAG, contestualizzazione, configurazione, deployment ecc.
- La collaborazione tra i modelli con una architettura Al.

Prof/ce

RUOLI DEI DUE MODELLI

1. Modello locale (TinyLLaMA o simili) — "Difensore/controllore" Viene eseguito localmente.

Obiettivi:

- NER (Named Entity Recognition): trova nomi, indirizzi, IBAN, codice fiscale, numeri, ecc.
- Pattern Detection: segnala se sono presenti dati sensibili o "red flag".
- **RAG** (Retrieval Augmented Generation) opzionale: usa una knowledge base aziendale locale per arricchire le risposte.
- Controlla l'output prima che venga inviato al modello cloud, mascherando o anonimizzando i dati sensibili (es. sostituendo "Mario Rossi" con "[NOME]").
- 2. Modello cloud (Azure GPT-3.5, GPT-4, ecc) "Analista/colloquio"

Viene usato tramite API cloud, guidato passo-passo.

Obiettivi:

- Riceve documenti già "ripuliti" o parzialmente anonimizzati dal modello locale.
- Esegue:
 - Riepilogo (summary)
 - Analisi semantica
 - Generazione di risposte per i clienti
- Gestisce solo dati che non violano la privacy.

ESEMPIO DI PIPELINE COLLABORATIVA

Input:

L'utente carica un documento/email.

Passo 1 (locale):

Il modello locale fa NER, segnala dati sensibili e li anonimizza (es: "Mario Rossi" \rightarrow "[NOME]", "IT60X0542811101000000123456" \rightarrow "[IBAN]").

Passo 2 (controllo):

L'output ripulito viene controllato/validato (gli esperti possono anche vedere che i dati sono davvero rimossi).

Passo 3 (cloud):

Il testo anonimizzato viene inviato all'API Azure che fa il riepilogo, classifica la richiesta e prepara una risposta.

Passo 4 (output):

L'output finale può essere ricomposto localmente, reinserendo alcune entità dove permesso, oppure consegnato così.

RUOLI DI PROGETTO NEL TEAM AGENTIC RAG CHATBOT Prof/ce

Introduzione

Per lavorare in modo efficace su un progetto complesso come lo sviluppo di un chatbot agentico basato su RAG, è fondamentale definire chiaramente i ruoli all'interno del team. Ogni ruolo contribuisce con competenze specifiche per garantire qualità, sicurezza, organizzazione e successo della soluzione.

Principali ruoli di progetto:

Project Manager (PM)

Coordina le attività, pianifica tempi e risorse, facilita la comunicazione e monitora l'avanzamento del progetto.

Business Analyst (BA)

Raccoglie i requisiti del cliente, definisce il perimetro funzionale, traduce i bisogni in specifiche tecniche e funzionali.

Solution Architect

Progetta l'architettura generale del sistema, definisce le scelte tecnologiche e l'integrazione tra le componenti (LLM, RAG, agenti, API, interfacce).

RUOLI DI PROGETTO NEL TEAM AGENTIC RAG CHATBOT Prof/ce

Introduzione

Per lavorare in modo efficace su un progetto complesso come lo sviluppo di un chatbot agentico basato su RAG, è fondamentale definire chiaramente i ruoli all'interno del team. Ogni ruolo contribuisce con competenze specifiche per garantire qualità, sicurezza, organizzazione e successo della soluzione.

Principali ruoli di progetto:

Developer (Frontend/Backend)

Implementa le funzionalità del chatbot, gestisce l'integrazione tra moduli, scrive codice e risolve bug.

Prompt Engineer

Progetta, ottimizza e testa i prompt per LLM e agenti, curando l'efficacia e la sicurezza delle interazioni Al.

Security Specialist

Analizza rischi, implementa misure di sicurezza (es. controllo accessi, protezione dati, guardrail su input/output).

Tester / QA

Esegue test funzionali, di integrazione e sicurezza, valida i risultati, individua errori e propone correzioni.

DELIVERABLES E DOCUMENTI MINIMI PER IL PROGETTO Prof/ce

Per consegnare i lavori bisogna preparare questi deliverable:

Risposta progettuale

Breve descrizione di come il team ha risolto il problema proposto, con riferimento alle scelte principali.

Schema architetturale

Schema essenziale (testuale o diagramma semplice) dell'architettura della soluzione e dei principali componenti (modello, agenti, pipeline, API, ecc.).

Codice sorgente

Tutto il codice sviluppato, con commenti chiari e autoesplicativi (documentazione del codice generata direttamente dai commenti).

Dataset di test

File di dati usati per le prove e le demo, rappresentativi dei casi d'uso.

Metodo di test

Breve descrizione del metodo di test applicato: quali casi, quali dati, come è stato valutato il funzionamento.

(Opzionale – da aggiungere dopo lezione su etica/EU AI Act) Eventuali note su conformità etica, privacy e regole AI.

DOMANDE?

Lavoro in gruppi

DOMANDE?

PAUSA

GRAZIE PER L'ATTENZIONE