Distance to default package

Benjamin Christoffersen

April 26, 2018

This package is provides fast functions to work with the Merton's distance to default model. We will denote the observed market values by S_t and unobserved asset values by V_t . We assume that V_t follows a geometric Brownian motion

$$dV_t = \mu V_t \, \mathrm{d}t + \sigma V_t \, \mathrm{d}W_t$$

We assume that we observe the assets over increaments of dt in time. Thus, we will let V_k and V_{k+1} be the value at $t_0 + k \cdot dt$. Thus,

$$V_{k+1} = V_k \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma W_t\right)$$

We further let r denote the risk free rate, D_t denote debt due at time t+T. Then

$$C(V_t, D_t, T, \sigma, r) = V_t N(d_1) - D_t \exp(-rT) N(d_1 - \sigma\sqrt{T})$$

$$d_1 = \frac{\log(V_t) - \log D_t + \left(r + \frac{1}{2}\sigma^2\right) T}{\sigma\sqrt{T}}$$

$$S_t = C(V_t, D_t, T, \sigma, r)$$
(1)

where C is a European call option. Equation (1) can be computed with the BS_call function. Further, the get_underlying can be used to invert the equation (1)

```
library(DtD)
(S <- BS_call(100, 90, 1, .1, .3))
## [1] 22.51008
get_underlying(S, 90, 1, .1, .3)
## [1] 100</pre>
```