Advanced Digital Signal Processing (ADSP)

徐林

ADSP

Advanced digital signal processing

Main content ADSP course

- ➤ Part A: Stochastic Signal Processing
- ➤ Part B: Adaptive Signal Processing
- ➤ Part C: Array Signal Processing (ASP) (including DOA)
- ➤ Part D: Adaptive Array Signal Processing (AASP) 依賴 數集

ADSP

Contents

- Direction of Arrival (DOA) estimation 通域 数据储藏
- Optimum (data-dependent) beamforming
 - Minimum mean squared error (MMSE) (本文章)
 - Multiple sidelobe canceller (MSC)
 - Linearly constrained minimum variance (LCMV)
 - Minimum variance distortionless response (MVDR)
 - Generalized sidelobe canceller (GSC)
- Adaptive beamforming Adaptive versions of the MMSE, MSC, MVDR, LCMV and GSC

ADSP

Contents

- Direction of Arrival estimation
- Optimum (data-dependent) beamforming
 - Minimum mean squared error (MMSE)
 - Multiple sidelobe canceller (MSC)
 - Linearly constrained minimum variance (LCMV)
 - Minimum variance distortionless response (MVDR)
 - Generalized sidelobe canceller (GSC)
- Adaptive beamforming
 Adaptive versions of the MMSE, MSC, MVDR,
 LCMV and GSC

ADSP

Introduction to DoA estimation

- Estimate direction of arrival of sources (desired and/or interfering) from noisy observations
- Applications

E.g., Tracking and presence detection for smart lighting;

Detecting active talker in an video-conference to automatically steer a video camera;

Surveillance applications, etc.

ADSP

Techniques to DoA estimation

- Maximize steered response power
- Using high resolution spectral estimation concepts
- Using time difference of arrival

ADSP

Techniques to DoA estimation

- Maximize steered response power
- Using high resolution spectral estimation concepts
- Using time difference of arrival

Part C: Array signal processing

ADSP

Data independent beamforming

For ULA choose: $\tau_i = (i-1)\tau \leftrightarrow w_i^* = \mathrm{e}^{\mathrm{j}(i-1)\omega\tau}$

ADSP

(DoA) Maximizing steered response power

- Consider one source located at θ^* and J sensors
- Input signals: $\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta^*) \cdot s[k] + \underline{\mathbf{n}}[k]$ Autocorrelation: \mathbf{P}
- Autocorrelation: $\mathbf{R}_{\mathsf{x}} = \sigma_{\mathsf{s}}^2 \mathbf{a}(\theta^*) \mathbf{a}^h(\theta^*) + \sigma_{\mathsf{p}}^2 \mathbf{I}$
- We know that a beamformer steered towards θ^* maximizes the SNR, with weights $\underline{\mathbf{w}} \equiv \underline{\mathbf{a}}(\theta^*)$ (matched filter) [* 12 In ?

$$P_y = \sigma_s^2 \cdot \underline{\mathbf{w}}^h (\underline{\mathbf{a}}(\theta^*) \cdot \underline{\mathbf{a}}^h(\theta^*)) \underline{\mathbf{w}} + \sigma_n^2 \cdot \underline{\mathbf{w}}^h \underline{\mathbf{w}}$$
$$= P_s + P_n \qquad \text{Mars.} = \int_{-1}^{2} \delta_s^2 + \int_{-1}^{2} \delta_n^2$$

Maximum SNR \longrightarrow Maximum P_u

 $\underline{\alpha}(\theta) \leq \underline{\omega}(\theta)$

ADSP

(DoA) Maximizing steered response power

• Steer the beamformer to a number of candidate directions θ .

Output power:

$$P_y(\theta) = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_x \cdot \underline{\mathbf{w}}$$

• Spatial spectrum: $P(\theta) = \frac{P_y(\theta)}{|\underline{\mathbf{w}}|^2} = \frac{\underline{\mathbf{a}}^h(\theta)\mathbf{R}_x\underline{\mathbf{a}}(\theta)}{J}$

$$w = \alpha(0^{\circ})$$
 (RELL when match. $p(0) = \frac{\int_{0}^{2} \int_{0}^{\infty} + \int_{0}^{\infty} \int_{0}^{\infty}$

• Clearly $P(\theta)$ attains its maximum when $\theta = \theta^*$. Thus, the peak in $P(\theta)$ is the DoA estimate

ADSP

(DoA) Maximizing steered response power

ULA,
$$d/\lambda = 1/2$$
, $P = 3$ source, $J = 8$ sensors

Figure: DoA estimation by steered response power method: sources at -20, 0 and 40 degrees

ADSP

(DoA) Maximizing steered response power

- In practice, the search space is discretized depending on the desired accuracy
- Efficient search strategies may be implemented

The autocorrelation matrix may be computed as $\hat{\mathbf{R}}_{x} = \frac{1}{T} \sum_{t=1}^{T} \underline{\mathbf{x}}[t] \cdot \underline{\mathbf{x}}^{h}[t]$

ADSP

Techniques to DoA estimation

- Maximize steered response power
- Using high resolution spectral estimation concepts
- Using time difference of arrival

ADSP

(DoA) Multiple Signal Classification: MUSIC

DoA based on high-resolution spectral estimation

- MUSIC: MUltiple SIgnal Classification
- Employs signal subspace method

15

ADSP

(DoA) Multiple Signal Classification: MUSIC

- Consider J sensors and P sources, P < J
- $x_i[k] = \sum_{p=1}^P a_i[\theta_p] s_p[k] + n_i[k]$, $i = 1 \dots J$ $\underline{\mathbf{x}}[k] = \mathbf{A}\underline{\mathbf{s}}[k] + \underline{\mathbf{n}}[k]$ $\underline{\mathbf{x}}[k] = \mathbf{A}\underline{\mathbf{s}}[k] + \underline{\mathbf{n}}[k]$ $\underline{\mathbf{x}}[k] = \mathbf{a}[k] + \underline{\mathbf{n}}[k]$ • $\underline{\mathbf{x}}[k] = \mathbf{A}\underline{\mathbf{s}}[k] + \underline{\mathbf{n}}[k]$
- $\begin{array}{cccc}
 \overline{J_{x}} & \overline{J_{x}P}, P^{x} \\
 \bullet & \mathbf{R}_{x} = E\{\underline{\mathbf{x}}\underline{\mathbf{x}}^{h}\} = \mathbf{A}\mathbf{R}_{s}\mathbf{A}^{h} + \mathbf{R}_{n} & a_{J}^{(\theta_{1})} & \cdots & a_{J}^{(\theta_{p})}
 \end{array}$
- $\mathbf{AR}_s \mathbf{A}^h$ is a $J \times J$ matrix of rank P, and has

ADSP

(DoA) Multiple Signal Classification: MUSIC

- Let $\underline{\mathbf{u}}_i$ be an eigenvector of $\mathbf{AR}_s\mathbf{A}^h$ corresponding to one of the zero eigenvalues
- Then $\mathbf{AR}_{s}\mathbf{A}^{h}\underline{\mathbf{u}}_{i}=\underline{\mathbf{0}}$
- $\bullet \Rightarrow \underline{\mathbf{u}}_{i}^{h} \mathbf{A} \mathbf{R}_{s} \mathbf{A}^{h} \cdot \underline{\mathbf{u}}_{i} = \underset{i \in I}{0} \text{ or } (\mathbf{A}^{h} \underline{\mathbf{u}}_{i})^{h} \mathbf{R}_{s} (\mathbf{A}^{h} \underline{\mathbf{u}}_{i}) = 0$ $\underset{\mathcal{R}_{s}}{\mathcal{R}_{s}} \stackrel{\mathcal{L}}{\mathcal{L}} \stackrel{$
- $\Rightarrow \mathbf{A}^h \underline{\mathbf{u}}_i = 0$, as \mathbf{R}_s is positive definite
- So, the eigenvectors corresponding to the J-P eigenvalues that are zero are orthogonal to the steering vectors.

ADSP

(DoA) Multiple Signal Classification: MUSIC

ui & Jx

• Let \mathbf{U}_n denote the $J \times (J - P)$ matrix containing the J-P eigenvectors corresponding to the eigenvalues that are zero noise space. Tact-p)

eigenvalues that are zero noise
$$Space \cdot J_{A}(J-p)$$

1. Let $\underline{a}^{h(\theta)}$ with $\underline{a}^{h(\theta)}$ discretion then the eigenvalues that are zero noise $Space \cdot J_{A}(J-p)$

1. Let $\underline{a}^{h(\theta)}$ discretion then the

ullet If heta corresponds to a source direction, then the denominator of $P_{SM}(\theta)$ becomes zero

• So, the P largest peaks of $P_{SM}(\theta)$ provide the source directions. $P_{SM}(\theta)$ is referred to as the pseudo-spectrum 你该

ADSP

(DoA) Multiple Signal Classification: MUSIC

• The analysis so far involved the EVD of \mathbb{R}^h \mathbb{R}^h , which is not available in practice; only \mathbb{R}_{\times} is. This turns out not to be a problem.

• For any
$$\underline{\mathbf{u}}_i \in \mathbf{U}_n$$
, $\mathbf{AR}_s \mathbf{A}^h \underline{\mathbf{u}}_i = \lambda \underline{\mathbf{u}}_i$.

$$\Rightarrow \mathbf{R}_{x}\underline{\mathbf{u}}_{i} = (\mathbf{A}\mathbf{R}_{s}\mathbf{A}^{h} + \mathbf{R}_{n})\underline{\mathbf{u}}_{i} = \lambda\underline{\mathbf{u}}_{i} + \sigma_{n}^{2}\underline{\mathbf{u}}_{i} = (\lambda + \sigma_{n}^{2})\underline{\mathbf{u}}_{i} = \zeta_{n}^{2}\underline{\mathbf{u}}_{i}$$

极之人30,1=0时对在Ui 所以Ui是Rx最小的特征但对应的特征向是

• So the eigen vectors of \mathbf{R}_{\times} are also the eigen vectors of $\mathbf{A}\mathbf{R}_{\times}\mathbf{A}^{h}!$ (note that we assumed the noise to be spatially white)

ADSP

(DoA) Multiple Signal Classification: MUSIC

- Compute/Estimate $\mathbf{R}_{x} \stackrel{\text{JaJ}}{\underset{l=1}{\overset{\times}}} \underbrace{x^{h}[h]} \stackrel{\text{N}}{\underset{\sim}{\overset{\times}}} \underbrace{x^{h}[h]} \stackrel{\text{N}}{\underset{\sim}{\overset{\times}}} \underbrace{x^{h}[h]} \stackrel{\text{N}}{\underset{\sim}{\overset{\times}}} \underbrace{x^{h}[h]} \stackrel{\text{N}}{\underset{\sim}{\overset{\times}}}$
- Perform EVD of \mathbf{R}_{x} ; determine \mathbf{U}_{n} as the matrix containing the eigenvectors corresponding to the J-P smallest eigenvalues
- Evaluate pseudo-spectrum: $P_{SM}(\theta) = \frac{1}{\mathbf{a}^h(\theta)\mathbf{U}_n\mathbf{U}_n^h\mathbf{a}(\theta)}$
- Locate P sharpest peaks in $P_{SM}(\theta)$

ADSP

(DoA) Multiple Signal Classification: MUSIC

- The pseudo spectrum exhibits sharp peaks in the vicinity of the true DoAs
- P_{SM} averages J-P pseudo spectra of individual noise sources. A large value of J-P results in sharper peaks
- The name pseudo is used because P_{SM} contains no information about power
- In practice, $\hat{\mathbf{R}}_{x} = \frac{1}{T} \sum_{k=1}^{T} \underline{\mathbf{x}}[k]\underline{\mathbf{x}}^{h}[k]$

ADSP

(DoA) Multiple Signal Classification: MUSIC

ULA, $d/\lambda = 1/2$, P = 3 sources, J = 4 sensors

$$sin(8) = sin(z-8)$$
 $-90 - 90$
 $-180 - 180 + 116$

Figure: DoA estimation by Spectral MUSIC: sources at -20, 0 and 70 degrees

ADSP

(DoA) Multiple Signal Classification: MUSIC

ULA,
$$d/\lambda = 1/2$$
, $P = 3$ sources, $J = 4$ sensors $P(\theta) = \underline{\mathbf{a}}^h(\theta)\mathbf{R}_{\times}\underline{\mathbf{a}}(\theta)/J$

Figure: DoA estimation by beamsteering: sources at -20, 0 and 70 degrees

ADSP

(DoA) Multiple Signal Classification: MUSIC

ULA, $d/\lambda = 1/2$, P = 4 sources, J = 10 sensors Larger J - P in this case results in deeper minima

Figure: DoA estimation by Spectral MUSIC: sources at -20, 0, 40 and 70 degrees

ADSP

Techniques to DoA estimation

- Maximize steered response power
- Using high resolution spectral estimation concepts
- Using time difference of arrival

Direction of Arrival estimation 対数なよりの と part に policy p

ADSP

- - Minimum mean squared error (MMSE)
 - Multiple sidelobe canceller (MSC)
 - Linearly constrained minimum variance (LCMV)
 - Minimum variance distortionless response (MVDR)
 - Generalized sidelobe canceller (GSC)
- Adaptive beamforming Adaptive versions of the MMSE, MSC, MVDR, LCMV and GSC

ADSP

Data dependent beamforming

- The methods discussed so far compute beamformer weights regardless of data being processed
- Alternatively, weights can be based on the statistics of the data, obtained by optimizing a certain criterion

ADSP

Data dependent beamforming

- Optimum: Assume knowledge of array data statistics. Optimal with respect to a certain optimization criterion (e.g., min MSE, max SINR)
- Adaptive: Estimate the required statistics as data becomes available (when statistics are unknown or time-varying). The derivation is done assuming known statistics. These statistics are estimated on-line.

ADSP

Data dependent beamforming: MMSE

Short notation:
$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k]$$

$$\underline{\mathbf{x}}[k] = (\underline{\mathbf{x}}_1[k], \dots \underline{\mathbf{x}}_J[k])^t$$

$$\underline{\mathbf{w}} = (\underline{\mathbf{w}}_1, \dots, \underline{\mathbf{w}}_J)^t$$

$$\underline{\mathbf{x}}[k] \longrightarrow \underline{\underline{\mathbf{w}}^*} \longrightarrow y[k]$$

ADSP

Data dependent beamforming: MMSE

- Cost function: $\xi = E\{|r|^2\}$
- Solution: $\underline{\mathbf{w}}_{\mathrm{m}se} = \arg\min_{\underline{\mathbf{w}}} \xi = \mathbf{R}_{x}^{-1} \cdot \underline{\mathbf{r}}_{xe^{*}},$ where $\mathbf{R}_{x} = E\{\underline{\mathbf{x}} \cdot \underline{\mathbf{x}}^{h}\}$ and $\underline{\mathbf{r}}_{xe^{*}} = E\{\underline{\mathbf{x}} \cdot e^{*}\}$
- Need to know \mathbf{R}_{\times} and $\underline{\mathbf{r}}_{\times e^*}$ (from measurements)

ADSP

Data dependent beamforming: MMSE

Example: ULA, one source, narrowband, farfield With $\underline{\mathbf{x}} = \underline{\mathbf{a}} \cdot s + \underline{\mathbf{n}}$ and $e = s \Rightarrow$ $\mathbf{R}_x = E\{\underline{\mathbf{x}} \cdot \underline{\mathbf{x}}^h\} = (\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}^h) \cdot \sigma_s^2 + \sigma_n^2 \cdot \mathbf{I}$ and $\underline{\mathbf{r}}_{xe^*} = E\{\underline{\mathbf{x}} \cdot e^*\} = \underline{\mathbf{a}} \cdot \sigma_s^2$. Since it => E{(a · s + n) · s h] $\mathbf{\underline{w}}_{mse} = \mathbf{R}_{x}^{-1} \cdot \mathbf{\underline{r}}_{xe^{*}} = \left(\mathbf{\underline{a}} \cdot \mathbf{\underline{a}}^{h} \cdot \sigma_{s}^{2} + \sigma_{n}^{2} \cdot \mathbf{I} \right)^{-1} \cdot \mathbf{\underline{a}} \cdot \sigma_{s}^{2}$ $=\left(rac{(\sigma_s^2/\sigma_n^2)}{1+J\cdot(\sigma^2/\sigma^2)}
ight)\cdot \mathbf{\underline{a}}=eta\cdot \mathbf{\underline{a}}$ $J_{min} = \left(\frac{(\sigma_s^2/\sigma_n^2)}{1 + J \cdot (\sigma^2/\sigma^2)}\right) \cdot \sigma_n^2$