Automated validation and annotation of SARS-CoV-2 sequences for GenBank using VADR

Eric Nawrocki Staff Scientist

Computational Biology Branch National Center for Biotechnology Information National Library of Medicine

GenBank indexers handle incoming sequence submissions

SOFTWARE Open Access

VADR: validation and annotation of virus sequence submissions to GenBank

Alejandro A. Schäffer^{1,2}, Eneida L. Hatcher², Linda Yankie², Lara Shonkwiler^{2,3}, J. Rodney Brister², Ilene Karsch-Mizrachi² and Eric P. Nawrocki^{2*}

- general tool for reference-based annotation of viral sequences
- used for Norovirus and Dengue virus submissions since 2018
- used for SARS-CoV-2 submissions since March 2020

VADR assists GenBank indexers: Each sequence PASSes or FAILs

Indexers decide fate of some FAILing sequences but some are sent directly back to submitter with error reports

VADR proceeds over four stages to validate and annotate sequences

- For each sequence *S*:
 - 1. Classification: compare S to all models to find best matching model M
 - 2. Coverage determination: search M against S to find 'hits'
 - 3. Alignment: align S to M and map features from M to S
 - 4. **Protein validation**: compare predicted CDS in S to proteins from M using BLASTX

Different types of alerts are identified and reported at each stage

Stage 3: Alignment and feature mapping

Align each sequence to its best-matching model

Stage 3: Alignment and feature mapping

Align each sequence to its best-matching model

l		
NC_001477 S		early stop codon in CDS (cdsstopn alert)

code	S/F	error message	description					
Fatal alerts	Fatal alerts detected in the annotation stage							
unexdivg*	S	UNEXPECTED_DIVERGENCE	sequence is too divergent to confidently assign nucleotide-based annotation					
noftrann*	S	NO_FEATURES_ANNOTATED	sequence similarity to homology model does not overlap with any features					
mutstart	F	MUTATION_AT_START	expected start codon could not be identified					
mutendcd	F	MUTATION_AT_END	expected stop codon could not be identified, predicted CDS stop by					
			homology is invalid					
mutendns	F	MUTATION_AT_END	expected stop codon could not be identified, no in-frame stop codon					
			exists 3' of predicted valid start codon					
mutendex	F	MUTATION_AT_END	expected stop codon could not be identified, first in-frame stop codon					
	_		exists 3' of predicted stop position					
unexleng	F	UNEXPECTED_LENGTH	length of complete coding (CDS or mat_peptide) feature is not a multiple					
.	_	6D6 1146 6T0D 60D011	of 3					
cdsstopn	F	CDS_HAS_STOP_CODON	in-frame stop codon exists 5' of stop position predicted by homology					
	_	DEDTIDE TOANICI ATION DOOD EAR	to reference					
peptrans	F	PEPTIDE_TRANSLATION_PROBLEM	mat_peptide may not be translated because its parent CDS has a problem					
pepadjcy	F F	PEPTIDE_ADJACENCY_PROBLEM	predictions of two mat_peptides expected to be adjacent are not adjacent					
indfantn	Г	INDEFINITE_ANNOTATION	nucleotide-based search identifies CDS not identified in protein-based					
indfacen	F	INDEFINITE_ANNOTATION_START	search					
indf5gap indf5loc	F	INDEFINITE_ANNOTATION_START	alignment to homology model is a gap at 5' boundary alignment to homology model has low confidence at 5' boundary					
indf3gap	F	INDEFINITE_ANNOTATION_START	alignment to homology model is a gap at 3' boundary					
indf3loc	F	INDEFINITE_ANNOTATION_END	alignment to homology model has low confidence at 3' boundary					
lowsim5f	F	LOW_FEATURE_SIMILARITY_START	region within annotated feature at 5' end of sequence lacks significant					
IOWSIIIOI	'	LOWER LATORICES IN ILLARE	similarity					
lowsim3f	F	LOW_FEATURE_SIMILARITY_END	region within annotated feature at 3' end of sequence lacks significant					
10003111131	'	EOVE EATORESIMILARITY LEND	similarity					
lowsimif	F	LOW_FEATURE_SIMILARITY	region within annotated feature lacks significant similarity					

VADR used for Norovirus and Dengue virus sequences since 2018

	Norovirus	Dengue virus
length	7.6Kb	10.7Kb
# seqs	44,936	113,211
% seqs full length	5.1%	8.4%
% Ns	0.5%	0.2%
% seqs with stretch of $>= 50$ Ns	1.0%	0.4%
average % identity	81.6%	94.4%
VADR v1.0 performance		
seconds per sequence	42.4	92.6
required RAM	8Gb	8Gb

1.1

10.2

total running time, CPU days

SARS-CoV-2 sequence submissions have increased since early 2020

		#new	#cumulative
month	year	seqs	seqs
Jan	2020	32	32
Feb	2020	58	90
Mar	2020	332	422
Apr	2020	1541	1963
May	2020	2974	4937
Jun	2020	3394	8331
Jul	2020	3604	11,935
Aug	2020	3818	15,753
Sep	2020	6731	22,484
Oct	2020	11,939	34,423
Nov Dec	2020 2020	4274 4530	38,697 43,227
Dec	2020	4550	43,227
Jan	2021	8775	52,002
Feb	2021	26,078	78,080
Mar	2021	42,607	120,687
Apr	2021	97,095	217,782
May	2021	104,729	322,511
Jun	2021	46,187	368,698
Jul	2021	43,336	412,034
Aug	2021	141,958	553,992
Sep	2021	267,562	821,554
Oct	2021	239,296	1,060,850
Nov	2021	267,270	1,328,120
Dec	2021	288,771	1,616,891
Jan	2022	258 522	1 275 /112
Feb	2022	258,522 230,185	1,875,413 2,105,598
ı CD	2022	250,105	2,100,090

SARS-CoV-2 sequences differ from Norovirus and Dengue virus in several ways that impact VADR processing

	Norovirus	Dengue virus	SARS-CoV-2
length	7.6Kb	10.7Kb	29.9Kb
# seqs	44,936	113,211	1,616,891
% seqs full length	5.1%	8.4%	99.7%
% Ns	0.5%	0.2%	1.4%
% seqs with stretch of $>= 50$ Ns	1.0%	0.4%	38.7%
average % identity	81.6%	94.4%	99.4%

VADR v1.0 performance

seconds per sequence	42.4	92.6	331.8
required RAM	8Gb	8Gb	64Gb
total running time, CPU days	1.1	10.2	6187.6

Replacing Ns with expected nucleotides allows many 'good' sequences to pass

Seeded alignment using blastn makes alignment stage faster

Using glsearch instead of cmalign reduces memory requirement

lower memory requirement (2Gb max) allows for multi-threading

VADR is now 1000-fold faster in practice for SARS-CoV-2 processing

	seeded	Ν				secs	hours	speedup
VADR	align-	replace-		#	required	per	per 100K	VS
version	ment?	ment?	glsearch?	cpus	RAM	seq	seqs	v1.0
v1.0	_	_	_	1	64 Gb	329.91	9164.3	_

VADR is now 1000-fold faster in practice for SARS-CoV-2 processing

	seeded	Ν				secs	hours	speedup
VADR	align-	replace-		#	required	per	per 100K	VS
version	ment?	ment?	glsearch?	cpus	RAM	seq	seqs	v1.0
v1.0	_		_	1	64 Gb	329.91	9164.3	_
v1.4.1	+	+	+	1	2 Gb	2.51	69.8	131.4

VADR is now 1000-fold faster in practice for SARS-CoV-2 processing

	seeded	Ν				secs	hours	speedup
VADR	align-	replace-		#	required	per	per 100K	VS
version	ment?	ment?	glsearch?	cpus	RAM	seq	seqs	v1.0
v1.0	_	_	_	1	64 Gb	329.91	9164.3	_
v1.4.1	+	+	+	1	2 Gb	2.51	69.8	131.4
v1.4.1	+	+	+	8	16 Gb	0.33	9.3	986.8
v1.4.1	+	+	+	32	64 Gb	0.13	3.7	2462.2

VADR is now fast enough to handle hundreds of thousands of sequences per month

		#new	#cumulative
month	year	seqs	seqs
Jan	2020	32	32
Feb	2020	58	90
Mar	2020	332	422
Apr	2020	1541	1963
May	2020	2974	4937
Jun	2020	3394	8331
Jul	2020	3604	11,935
Aug Sep	2020 2020	3818 6731	15,753
Oct	2020	11,939	22,484 34,423
Nov	2020	4274	38,697
Dec	2020	4530	43,227
200	2020	1000	10,221
Jan	2021	8775	52,002
Feb	2021	26,078	78,080
Mar	2021	42,607	120,687
Apr	2021	97,095	217,782
May	2021	104,729	322,511
Jun	2021	46,187	368,698
Jul	2021	43,336	412,034
Aug	2021	141,958	553,992
Sep Oct	2021	267,562	821,554
Nov	2021 2021	239,296	1,060,850 1,328,120
Dec	2021	267,270 288,771	1,616,891
DCC	2021	200,111	1,010,091
Jan	2022	258,522	1,875,413
Feb	2022	230,185	2,105,598
		•	•

Besides getting faster, VADR has changed in other ways (work with Linda Yankie and Vince Calhoun and GenBank team)

- 14 releases since March 2020
- 3 additional models (all eventually dropped):
 - B.1.1.7 (alpha)
 - B.1.525
 - 28254-deletion
- allow some alerts for non-essential ORFs without failing sequence (they become a misc_feature instead)

Acknowledgements

NCBI - viral annotation

Alejandro Schäffer (now NCI)

Linda Yankie
Vincent Calhoun
Sergiy Gotvyanskyy
Susan Schafer
Ilene Mizrachi
Colleen Bollin
Beverly Underwood
Prakash Keranahalli
Vasuki Gobu
Alex Kotliarov

Rodney Brister Eneida Hatcher

Lara Shonkwiler Sophia Hu

Wratko Hlavina Ron Patterson

NCBI - leadership

David Landsman Kim Pruitt Steve Sherry Jim Ostell David Lipman

NLM - leadership

Patti Brennan Jerry Sheehan Valerie Florance

Software developers

Sean Eddy (HMMER/Infernal/Easel)
Travis Wheeler (HMMER)
Tom Madden and BLAST team
William Pearson (FASTA/glsearch)
Michael Farrar (HMMER/glsearch)

This research was supported by the Intramural Research Program of the NIH, National Library of Medicine.

