COMP5338 – Advanced Data Models

Week 9: Spatial Data Model and Query

Dr. Ying Zhou School of Computer Science

Motivation

- Many entities represent physical objects, and some physical features also matter for business purposes
 - ▶ Eg. A store has a name, business category, contact number and is located at a particular place (geo-spatial)
 - The geo-spatial feature can help find a store that is close to a customer
 - ▶ Eg. A toy has name, category, material, and shape
 - The shape feature helps to find a box that can fit the toy
- There are large amount of geospatial data:
 - Businesses and homes have addresses
 - Both the logic aspect and physical aspect
 - ► Google Maps, Google Earth
 - Weather and Climate Data

Outline

- Motivation
- Spatial Data Model
- Spatial Data Queries
- Spatial Query in MongoDB

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

Spatial Data and Object Concept

- Spatial feature could refer to a
 - ▶ Point, a 2d shape, a 3d shape, or shape in higher dimension
- Spatial features of an entity cannot be represented as simple value type
 - ▶ A point in 2d space has two coordinate values
- It is natural to use object to represent spatial features (spatial data)
- There are also spatial related operations we need to perform on spatial data
 - Compute distance between points
 - Compute area of 2d shape or volume of 3d shapes
 - Compute various relationships among spatial objects

Spatial Data as Object Example

Consider a spatial data representing census block:

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-5

Spatial Database Management System

- A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization
 - ▶ Many RDBMS and NoSQL storage systems have support for spatial data
 - Oracle, SQL Server, MongDB, Neo4j, ...
- SDBMS components
 - spatial data model
 - query language
 - query processing
 - ▶ file organization and indices
 - query optimization
 - etc.

Spatial Data in Purely Relational Form

Census_blocks					Polygon
	Name	Area	Population	boundary-ID	boundary
	340	1	1 839	1050	1050
					1050
					1050
					1050

boundary-ID	edge-name
1050	A
1050	В
1050	С
1050	ם

Edge

edge-name	endpoint
A	1
A	2
В	2
В	3
С	3
С	4
D	4
D	1

Point			
endpoint	<i>x</i> -coor	y-000r	
1	0	1	
2	0	0	
3	1	0	
4	1	1	

From Shekhar-Chawla, Fig 1.4

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

Outline

- Motivation
- Spatial Data Model
 - ► Field vs. Object Models
 - ▶ Coordinate System
 - ► Topological Operations
- Spatial Data Queries
- Spatial Query in MongoDB

09-7

Models of Spatial Information

- Two common models
 - ► Field based (also: space-based)
 - Model properties of underlying space
 - Good for expressing values vary continuously over space (e.g. temperature, rainfall, elevation, depth, etc.
 - Fields are actually **functions** that map spatial locations to values
 - ▶ Object based (also: entity-based)
 - Model <u>boundaries</u> of spatial feature (e.g. the census block is modelled by a polygon)
 - Good for expressing discrete spatial entities

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-9

OpenGIS Geometry Model

From Shekhar-Chawla, Fig 2.2

Examples of Field and Object Models

- (a) forest stand map
- (b) Object model has 3 polygons defining the boundaries
- (c) Field model uses a function to calculate the property "tree species"

Object Viewpoint of Forest Stands

Area-1D	Dominant Tree Species	Area/Boundary
FS1	Pine	[(0,2),(4,2),(4,4),(0,4)]
FS2	Fir	[(0,0),(2,0),(2,2),(0,2)]
FS3	Oak	[(2,0),(4,0),(4,2),(2,2)]
		(b)

From Shekhar-Chawla, Fig 2.1

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-10

Example Spatial Objects

- **Point**: represented by its coordinates eg (-10, 30)
- Collection of several points
- Line String
 - ▶ Simplest form is piece-wise linear, given by points (and implying the straight segments between them)
 - ► Eg (0,1), (1,1), (2,2)

Polygon

- ► A 2-d region whose boundary is given
- ▶ Simplest form: boundary is a **line string** that returns to its start
- ▶ More complicated: region with holes
- Collection of polygons

Coordinate Systems

- Points from a 2-d space are represented by pairs of numbers
 - The numbers could refer to a dot on a drawing area, a piece of land in a game setting, or a location
- There are many ways to associate numbers with points
- Simple 2d Cartesian coordinate
 - ► Choose a point as origin (0,0)
 - ► Choose a direction for the x-axis, and a scale (how far is (1,0)) from (0,0)?)

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

Operations on Spatial Objects in the Object Model

- Classifying operations
 - Set based:
 - a set operation (e.g. intersection) of 2 polygons produce another polygon
 - ▶ Topological operations: Boundary of USA touches boundary of Canada
 - ▶ *Directional*: New York city is to east of Chicago
 - ▶ *Metric*: Chicago is about 700 miles from New York city.

Set theory based	Union, Intersection, Containment
Topological	Touches, Disjoint, Overlap, etc.
Directional	East,North-West, etc.
Metric	Distance

A Round World

- The surface of the earth is 2-dimensional, but curved
 - Cartesian systems work reasonably in small regions
- Traditional geographic coordinate system
 - ▶ 2d: longitude and latitude
 - 3d: longitude, latitude, elevation
 - ► The surface is a sphere
 - (-179,10) is very close to (179, 10)
 - A linestring might cross the (long = 180) line;
- Many SDBMS supports both flat space and sphere

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-14

Topological Relationships

- Topological Relationships
 - invariant under elastic deformation (without tear, merge).
 - Two countries which touch each other in a planar paper map will continue to do so in spherical globe maps.
- Example gueries with topological operations
 - ▶ What is the topological relationship between two objects A and B?
 - Find all objects which have a given topological relationship to object
 - E.g. find all rivers that cross a city
- Can we express topological relationship mathematically?
 - ▶ Metric operations may be expressed using various functions, e.g. distance function
 - Set operations can be express mathematically
 - ▶ The mathematical form helps to calculate such relationships

Topological Concepts

- Interior, boundary, exterior
 - ▶ Let A be an object in a "Universe" U.

Green is A interior (A°)

Red is boundary of $A^{(\partial A)}$

Blue - (Green + Red) is A exterior (A^{-})

Exterior is also referred to as the *complement* of an object

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

Specifying Topological Operations using the 9-Intersection Model

For disjoint relation: B's everything and vice

If A contains B A's interior intersects with B's everything and B's exterior intersects with A's everything

From Shekhar-Chawla, Fig 2.3

Nine-Intersection Model of Topological Relationships

- Many topological Relationship between A and B can be specified using 9 intersection model
 - ▶ Eight possible 2D topological relationships for objects without holes;
- Nine intersections
 - ▶ intersections between interior, boundary, exterior of A, B
 - ▶ A and B are spatial objects in a two dimensional plane.
 - ► Can be arranged as a 3 by 3 matrix
 - ▶ Matrix element take a value of 0 (false) or 1 (true)

$$\Gamma_{9}(A,B) = \begin{pmatrix} A^{0} \cap B^{0} & A^{0} \cap \partial B & A^{0} \cap B^{-} \\ \partial A \cap B^{0} & \partial A \cap \partial B & \partial A \cap B^{-} \\ A^{-} \cap B^{0} & A^{-} \cap \partial B & A^{-} \cap B^{-} \end{pmatrix}$$

From Shekhar-Chawla, p 28

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-18

Outline

- Motivation
- Spatial Data Model concepts
- Spatial Data Queries
 - Query type
 - General processing steps
- Spatial Query in MongoDB

Spatial Processing

- Find one or more entities, based on <u>non-spatial</u> aspects, then use <u>spatial operations</u> to get interesting data associated with these items
 - ▶ Eg find the *length* of the river called '*Mississipi*'
 - Find the river based on name (<u>non-spatial</u>), use <u>spatial operation</u> to compute the length (assuming it is not stored as a numeric value)
 - ► Eg find the total area of all counties whose population exceeds 1,000,000
 - Find the counties with population exceeds 1,000,000 (*non-spatial*), compute each county's area(*spatial operation*) and sum all up.
- To answer these: use conventional index or table scan to find the appropriate rows, then call spatial functions on the spatial attribute of each

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-21

Spatial Range Query

- A particular kind of spatial selection, in which the condition involves a topological or metric relationship to a given object
 - ▶ Eg find all bookshops whose location is <u>inside</u> a given region
 - ▶ Eg find all farms that contain (part of) a given curve
 - ▶ Eg find all rivers that flow through a given region
 - ► Eg find all bookshops within 100 km of a given point
 - Equivalent to: find all whose location is inside a circular region of radius 100 km!
- Simple processing: scan the appropriate table, apply appropriate spatial operation to each item's spatial attribute
- But often one can do better: <u>first filter</u> to find a small set where the condition might be feasible; then <u>refine</u> the list by checking in detail each that pass the filter

Spatial selection queries

- Find items whose spatial attribute has certain properties
 - ▶ Eg find rivers whose length is at least 10000
- WHERE clause will involve spatial operations
- Typical processing: scan all rows, apply appropriate spatial operation to the spatial attribute of each

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-22

Spatial Query Processing: Filter-Refine Strategy

- Eg find objects that intersect a query region
- **Filter Step**: made easy if each object has associated to it a simple shape that surrounds it (eg Minimum Bounding Rectangle)
 - ▶ If object's MBR doesn't intersect query {or MBR of query}, there is no possibility that the object itself will intersect the query
- Refine Step: Actually perform intersection method for those objects that get through the filter

Nearest neighbours

- Find entities that are as close as possible to given location, Always give a bound on how many to find (K Nearest Neighbours)
 - ▶ Eg find 5 closest restaurants to (100, 350) and return them ranked by closeness
- Simple processing: scan all, compute distance; keep track of the ones with lowest distances seen so far
- Many index based algorithms, see next week

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-25

Outline

- Motivation
- Spatial Data Model concepts
- Spatial Data Queries
- Spatial Query in MongoDB

Spatial Join Query

Spatial join example

SELECT S.name

> FROM Senator S. Business B WHERE S.district.Area() > 300

> > AND Within (B.location, S.district)

Non-Spatial Join example

```
SELECT S.name
```

```
FROM
       Senator S, Business B
       S.soc-sec = B.soc-sec AND S.gender = 'Female'
WHERE
```

Similar to non-spatial join, spatial join are usually very expensive to process

From Shekhar-Chawla, Fig 1.7

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-26

Spatial data: GeoJSON

- Spatial data in MongoDB can be stored as **GeoJSON** object or as legacy coordinate pairs
 - ► GeoJSON data assumes earth-like sphere
 - ▶ Legacy coordinate pairs assumes flat plane
- GeoJSON object uses JSON format to represent spatial objects in OpenGIS
 - ▶ Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, **Geometry Collection**
 - General format

{ type: "<GeoJSON type>", coordinates: <coordinates>}

▶ The coordinate reference system for all GeoJSON coordinates is a geographic coordinate reference system, using the World Geodetic System 1984 (WGS 84) [WGS84] datum, with longitude and latitude units of decimal degrees.

Point and LineString

(40,5){type: "Point", coordinates: [40,5]} {type: "LineString", coordinates: [(20,20)[10,10], [20,20], [30,10], [40,10]]} (10,10)(30.10)(40.10)A closed LineString is called a linear ring, with at least four coordinate pairs and specify the same position as the first and last coordinates. {type: "LineString", coordinates: [**[5,5]**,[9,8], [15,-1], **[5,5]**]

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

(15,-1)

09-29

Model multiple disjoint objects

MultiPoints, MultiPolygon

```
{ type: "MultiPoint",
           [ -73.9498, 40.7968 ],
                        [ -73.9737, 40.7648 ],
                        [ -73.9814, 40.7681 ] ] }
{ type: "MultiPolygon",
   coordinates. [ [ [ -73.95, 40.80 ], [ -73.9498, 40.79 ], [ -73.97, 40.76 ], [ -73.95, 40.80 ] ] ],
                [[[-73.95, 40.80], [-73.94, 40.79], [-73.97, 40.76], [-73.95, 40.80]]]]]
```

Geometry collection

```
{ type: "GeometryCollection",
geometries: [ { type: "MultiPoint",
         { type: "MultiLineString",
          coordinates: [... ] }
```

Polygon

- Polygon is used to model two dimensional surface
 - ▶ Triangle, Rectangle, Pentagon, ...
 - ▶ A polygon is represented as one or many linear rings, the first is the exterior ring bounds the surface, the others are interior rings bound holes within the surface

```
type: "Polygon",
coordinates:[
 [[0,0],[3,6],[6,1],[0,0]],
 [[2,2],[3,3],[4,2],[2,2]]
```


COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-30

Spatial Queries

\$near and \$nearSphere

- ▶ Specifies a point for which a <u>geospatial</u> guery returns the documents from nearest to farthest
- ► Can be used to run queries like find all car parks/restaurants within certain distance
- \$qeoWithin
 - ▶ Find all geo objects contained in a query shape
- \$geoIntersects
 - ▶ Find all geo objects intersects with a query shape. Here intersect includes relationships such as cover, equal, overlap, touch and so on.
- Others

Spatial Index

- 2dsphere indexes supports all MongoDB geospatial queries
- Eg.

```
db.places.insert(
   loc: { type: "Point", coordinates: [ -73.97, 40.77 ] },
   name: "Central Park",
   category: "Parks"
```

db.places.createIndex({ loc : "2dsphere" })

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-33

Spatial Query -- \$geoIntersects

```
db.places.find({
    loc: {$geoIntersects:
            {$geometry:{
                       type: "Polygon",
                       coordinates:[[[10,7], [10,10], [17,10], [17,7], [10,7]]]}
})
                     (20.30)
               (20,20)
                           (30.10)
                                         (40.10)
```

MongoDB Spatial Index

"MongoDB's 2dsphere index actually combines the strength of discrete global grids and B+ -tree structures, which first partitions the Earth surface into cells at multiple resolution levels and then applies a B+ -tree to index geographical features approximated as one or multiple cells."

L. Xiang, J. Huang, X. Shao and D. Wang: MongoDB-Based Management of Planar Spatial Data with a Flattened R-Tree

MongoDB Blog: Geospatial Performance Improvements in MongoDB 3.2

COMP5338 "Advanced Data Models" - 2020 (Y. Zhou)

09-34

References

- S. Shekhar and S.Chawla: Spatial Databases: A Tour. Prentice Hall, 2002. [http://www.spatial.cs.umn.edu/Book/]
 - ► Chapter 1-3
- MongoDB document on geospatial query
 - https://docs.mongodb.com/manual/geospatial-queries/