

Implementation of Group Unlearning

23.12.22. Jungyeon Koh

1. Usage of ViT for Extracting Features from Images

What is ViT (Vision Transformer)?

✓ ViT lacks inductive bias inherent to CNNs. Need enough data to be well-generalized.

Lack spatial relations between the input patches

^{*} Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

What is Multi-Head Attention?

Scaled Dot-Product Attention

$$\left(Attention(Q, K, V) = softmax\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V\right)^h$$

^{*} Vaswani et al., "Attention Is All You Need", NeurIPS 2017

ViT is better than CNN-based feature extractor

- ✓ Uses KNN to clump data points within the same label to capture subgroup coherence
- ✓ Need an assumption that similar features have similar influences
- \checkmark Estimate l_2 -norm of the influence function of the nearest and farthest neighbors

Nearest, Farthest k = 100 of 1000 samples

(Left) CNN

Nearest, Farthest k = 1200 of 3000 samples

(Right) ViT

2. Composition of a priori Clusters

Normality test for feature distance

Feature distance shows a **bell-shaped** distribution

√ boxplot and probplot

- ✓ Shapiro-Wilk Test
- ✓ Normal Test: use skewness and kurtosis

ShapiroResult(statistic=0.9753623008728027, pvalue=2.278858353776583e-22) NormaltestResult(statistic=69.21552992201579, pvalue=9.333373517057439e-16)

✓ Anyway, let's assume the data follows normal distribution

Group Unlearning Baseline 1: 3-steps

- ✓ Assume previous works cannot capture generality well. (∵ Group IF tends to underestimate the true effect.) * Koh et al., NeurIPS 2019
- ✓ Proposal:
 - ✓ Fixed # of steps: 3 (near, moderate, far)
 - ✓ In which order?
 - \checkmark Or focus only on data within $\pm \sigma$ (aka moderate)
 - ✓ Unsupervised learning
 - ✓ Cosine similarity

Group Unlearning Baseline 2: |U| and eval metric

^{*} Basu et al., ICML 2020

Size of Group

Table 1: Update results for the four selection criteria. Crossentropy losses are computed on ResNet-18 with the MNIST dataset.

Cuitaria	Τ	Modification Ratio (MR%)						
Criteria	Loss	5	10	30	50			
Top-k outputs	Self-loss ↑ Test loss ↓	$\frac{6.23}{0.05}$	6.21 0.11	<u>5.13</u> <u>0.64</u>	4.89 0.69			
Top-k gradients	Self-loss ↑ Test loss ↓	$\frac{6.24}{0.04}$	6.29 0.12	$\frac{4.95}{1.02}$	<u>4.89</u> <u>0.81</u>			
Threshold	Self-loss ↑ Test loss ↓	4.42 0.09	4.81 0.65	3.71 1.78	4.33 1.18			
Random	Self-loss ↑ Test loss ↓	4.42 0.08	4.79 0.60	3.36 2.63	4.26 1.46			

^{*}Best: bold, second-best: underline.

^{* (}Left) random (Right) coherent; 100~3500 data from a specific class

^{*} |U| ranging from 1.6% to 60%

^{*} Lyu et al., preprint

3. Experiment Results

- Coherent Unlearning
 Random Unlearning

Performance Comparison: [1] coherent/retrain

✓ Mode: coherent

✓ Label: 0, 8

✓ Length of dataset: 5923, 5851

√ (Original) Self accuracy: 98.97%

✓ (Original) Test accuracy: 98.77%

✓ Average over 50 experiments for each label

Size	100	500	1000	1500	2000	2500	3000	3500
Ratio (%)	1.6	8.4	16.9	25.3	33.8	42.2	50.7	59.1
Self Acc (%)	98.68	98.65/ 98.73	98.66	98.65	98.68	98.62	98.63	98.62
Test Acc (%)	98.55	98.48/ 98.58	98.53	98.50	98.53	98.51	98.50	98.48

✓ Remarks

- ✓ For some cases, inter-label variance is large.
- ✓ Self-accuracy is preserved well. (maybe model is simple)
- ✓ Test-accuracy diminishes as the size of unlearned dataset grows.

Performance Comparison: [2] 1-step unlearning

✓ Mode: coherent

✓ Label: 0, 8

✓ Length of dataset: 5923, 5851
✓ (Original) Self accuracy: 98.97%
✓ (Original) Test accuracy: 98.77%

Size	100	500	1000	1500	2000	2500	3000	3500
Ratio (%)	1.6	8.4	16.9	25.3	33.8	42.2	50.7	59.1
Self Acc (%)								
Test Acc (%)								

Performance Comparison: [3] 3-step unlearning

✓ Mode: coherent

✓ Label: 0, 8

✓ Length of dataset: 5923, 5851
✓ (Original) Self accuracy: 98.97%
✓ (Original) Test accuracy: 98.77%

Size	100	500	1000	1500	2000	2500	3000	3500
Ratio (%)	1.6	8.4	16.9	25.3	33.8	42.2	50.7	59.1
Self Acc (%)								
Test Acc (%)								

Performance Comparison: [1] random/retrain

✓ Mode: random

✓ Length of dataset: 55000

✓ (Original) Self accuracy: 98.97%

✓ (Original) Test accuracy: 98.77%

✓ Average over 50 experiments

Size	1000	3000	5000	8000	10000	12000	15000	18000	20000	25000
Ratio (%)	1.8	5.5	9.1	14.6	18.2	21.8	27.3	32.7	36.4	45.5
Self Acc (%)	98.66	98.62	98.63	98.60	98.57	98.57	98.55	98.41	98.38	98.25
Test Acc (%)	98.52	98.49	98.53	98.44	98.42	98.41	98.39	98.27	98.26	98.08

TODO

- ✓ Incomplete training
- ✓ GPU out of memory
- ✓ Scaling factor
- ✓ More sophisticated dataset and model...
- ✓ Comparing schemes: Single step (Koh), Second-order (Basu), GIF (Lyu)...

```
scale_list = np.arange(1,20) * 1
for scale in scale_list:
    net = load_net(net, net_path)
    utils.update_network(net, influence / scale, index_list)

print(f"PIF scale: {scale}")
    evaluate(net, corrupt_dataloader)
    evaluate(net, relabel_dataloader)
    evaluate(net, clean_dataloader, label)
    evaluate(net, test_dataloader)
    print("")
```