Defining syntax using CFGs

Roadmap

Last time

Defined context-free grammar

This time

- CFGs for syntax design
 - Language membership
 - List grammars
 - Resolving ambiguity

CFG Review

- $G = (N, \Sigma, P, S)$
- →+ means derives
 derives in 1 or more
 steps
- CFG generates a string by applying productions until no non-terminals remain

```
Example: Nested parens
N = \{Q\}
\Sigma = \{(,)\}
P = Q \rightarrow (Q)
\mid \epsilon
S = Q
```

Formal CFG Language Definition

Let $G = (N, \Sigma, P, S)$ be a CFG. Then

L(G) = $w\square S \Rightarrow + \bot w$ where S is the start nonterminal of G w is a sequence of terminals or ε

CFGs as Language Definition

CFG productions define the syntax of a language

- 1. Prog → begin Stmts end
- 2. Stmts \rightarrow Stmts semicolon Stmt
- 3. | *Stmt*
- 4. Stmt \rightarrow id assign Expr
- 5. Expr \rightarrow id
- 6. | Expr plus id

We call this notation "BNF" or "extended BNF" HTTP grammar using BNF:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html

List Grammars

Useful to repeat a structure arbitrarily often

Stmts → Stmts semicolon Stmt | Stmt

List Grammars

Useful to repeat a structure arbitrarily often

Stmts → Stmt semicolon Stmts | Stmt

List Grammars

What if we allowed both "skews"?

Stmts → Stmts semicolon Stmts | Stmt

Derivation Order

- Leftmost Derivation: always expand the leftmost nonterminal
- Rightmost Derivation: always expand the rightmost nonterminal

- 1. Prog → begin Stmts end
- 2. Stmts \rightarrow Stmts semicolon Stmt
- 3. | *Stmt*
- 4. Stmt \rightarrow id assign Expr
- 5. Expr \rightarrow id
- 6. | Expr plus id

Ambiguity

Even with a fixed derivation order, it is possible to derive the same string in multiple ways

For Grammar G and string w

- -G is ambiguous if
 - >1 leftmost derivation of w
 - >1 rightmost derivation of w
 - > 1 parse tree for w

Example: Ambiguous Grammars

 $Expr \rightarrow intlit$

| Expr minus Expr

| Expr times Expr

| Iparen Expr rparen

Derive the string 4 - 7 * 3

(assume tokenization)

Why is Ambiguity Bad?

Eventually, we'll be using CFGs as the basis for our parser

Parsing is much easier when there is no ambiguity in the grammar

Resolving Grammar Ambiguity: Precedence

```
Expr → intlit

| Expr minus Expr

| Expr times Expr

| Iparen Expr rparen
```

Intuitive problem

- "Context-freeness"
- Nonterminals are the same for both operators

To fix precedence

- 1 nonterminal per precedence level
- Parse lowest level first

Resolving Grammar Ambiguity: Precedence

 $Expr \rightarrow intlit$

| Expr minus Expr

| Expr times Expr

| Iparen Expr rparen

 $Expr \rightarrow Expr$ minus Expr

Term

Term → *Term* times *Term*

| Factor

 $Factor \rightarrow intlit$

| Iparen Expr rparen

lowest precedence level first

1 nonterm per precedence level

Derive the string 4 - 7 * 3

Resolving Grammar Ambiguity: Precedence

Fixed Grammar

 $Expr \rightarrow Expr$ minus ExprTerm Term \rightarrow Term times Term Factor $Factor \rightarrow intlit$ | Iparen Expr rparen Expr minus Expr Expr Term Term times Term Term **Factor Factor Factor** intlit intlit intlit

Derive the string 4 - 7 * 3

Let's try to re-build the wrong parse tree

Did we fix all ambiguity?

Fixed Grammar

Expr → Expr minus Expr | Term

Term → *Term* **times** *Term*

| Factor

 $Factor \rightarrow intlit$

| Iparen Expr rparen

Derive the string 4 - 7 - 3

These subtrees could have been swapped!

Where we are so far

Precedence

- We want correct behavior on 4-7*9
- A new nonterminal for each precedence level

Associativity

- We want correct behavior on 4 7 9
- Minus should be *left associative*: a b c = (a b) c
- Problem: the *recursion* in a rule like

 $Expr \rightarrow Expr$ minus Expr

Definition: Recursion in Grammars

- A grammar is recursive in (nonterminal) X if $X \Rightarrow + \angle \alpha X \gamma$ for non-empty strings of symbols α and γ
- A grammar is *left-recursive* in X if $X \Rightarrow + \angle X \gamma$ for non-empty string of symbols γ
- A grammar is *right-recursive* in X if $X \Rightarrow + \angle \alpha X$ for non-empty string of symbols α

Resolving Grammar Ambiguity: Associativity

Recognize left-assoc operators with left-associative productions Recognize right-assoc operators with right-associative productions

Resolving Grammar Ambiguity: Associativity

Expr → Expr minus Term | Term

 $Term \rightarrow Term times Factor$

| Factor

Factor → intlit | Iparen Expr rparen

Example: 4 - 7 - 9

Let's try to re-build the wrong parse tree again

Example

 Language of Boolean expressions bexp → TRUE

```
| FALSE
| bexp OR bexp
| bexp AND bexp
| NOT bexp
| LPAREN bexp RPAREN
```

- Add nonterminals so that OR has lowest precedence, then AND, then NOT. Then change the grammar to reflect the fact that both AND and OR are left associative.
- Draw a parse tree for the expression:
 - true AND NOT true

Another ambiguous example

```
Stmt →
  if Cond then Stmt |
  if Cond then Stmt else Stmt | ...

Consider this word in this grammar:
    if a then if b then s else s2
    How would you derive it?
```

Summary

To understand how a parser works, we start by understanding context-free grammars, which are used to define the language recognized by the parser. terminal symbol

- (non)terminal symbol
- grammar rule (or production)
- derivation (leftmost derivation, rightmost derivation)
- parse (or derivation) tree
- the language defined by a grammar
- ambiguous grammar