Scilab Textbook Companion for Electrical Engineering by R. Anandanatarajan¹

Created by
Vinay V
B.Tech
Mechanical Engineering
SASTRA UNIVERSITY
College Teacher
Sriranjani .r
Cross-Checked by
Mukul R. Kulkarni

October 9, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical Engineering

Author: R. Anandanatarajan

Publisher: Scitech Publications (India) Pvt. Ltd., Chennai

Edition: 1

Year: 2009

ISBN: 9788183712200

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	DC Machines	7
2	Transformers	43
3	Three Phase Induction Motor	85
5	Synchronous and Special Machines	92

List of Scilab Codes

Exa 1.1	To find generated emf
Exa 1.2	To calculate induced emf and armature current 8
Exa 1.3	To calculate induced emf and armature current 8
Exa 1.4	To calculate the total power delivered
Exa 1.5	To calculate the emf generated
Exa 1.6	To calculate the speed
Exa 1.7	To calculate the flux per pole
Exa 1.8	To calculate the terminal voltage
Exa 1.9	To calculate the speed
Exa 1.10	To calculate the properties of shunt generator 14
Exa 1.11	To calculate the back emf and total mechanical power 15
Exa 1.12	To find the change in back emf
Exa 1.13	To find the speed of the motor
Exa 1.14	To find the armature resistance and maximum armature
	current
Exa 1.15	To find the back emf
Exa 1.16	To find the total power developed
Exa 1.17	To find the armature torque and armature current 21
Exa 1.18	To calculate the current taken and diameter of the motor
	pulley
Exa 1.19	To calculate the armature torque and horse power 22
Exa 1.20	To find the armature torque
Exa 1.21	To determine the speed and electro magnetic torque . 24
Exa 1.22	To calculate the speed of the motor
Exa 1.23	To calculate the speed of a motor
Exa 1.24	To calculate the speed
Exa 1.25	To find the speed and torque
Exa 1.26	To find the efficiency of the motor

Exa 1.27	To calculate the properties of shunt motor
Exa 1.28	To find the speed and load current and speed regulation
Exa 1.29	To find the change in speed
Exa 1.30	To find the resistance to be included
Exa 1.31	To find the resistance required
Exa 1.32	To find the additional field resistance to be included .
Exa 1.33	To find the speed
Exa 1.34	To find the properties of shunt motor
Exa 1.35	To find the torque and power and speed
Exa 1.36	To find the series resistance required
Exa 1.37	To find the series resistance to be added
Exa 1.38	To calculate the Resistance
Exa 2.1	Number of turns and full load current
Exa 2.2	Properties of an ideal transformer
Exa 2.3	Number of turns and induced emf
Exa 2.4	Number of turns
Exa 2.5	Magnetising and iron loss components
Exa 2.6	Core and iron loss and magnetising current
Exa 2.7	Properties of a transformer
Exa 2.8	Primary current
Exa 2.9	No load current and phase angle
Exa 2.10	Primary current and power factor
Exa 2.11	Properties of an ideal step up transformer
Exa 2.12	Primary current and peak value of flux
Exa 2.13	Secondary voltage and primary and secondary current
Exa 2.14	Primary current
Exa 2.15	Power delivered and current taken
Exa 2.16	Parameters of a transformer
Exa 2.17	Parameters of a transformer
Exa 2.18	Parameters of a transformer
Exa 2.19	Priamary and secondary resistance and reactance
Exa 2.20	Primary voltage and power factor and efficiency
Exa 2.21	Primary induced emf and current
Exa 2.22	Induced emf in the secondary
Exa 2.23	Primary currrent
Exa 2.24	Secondary voltage and primary current
Exa 2.25	Efficiency and regulation
Exa 2 26	Secondary terminal voltage at full load

Exa 2.27	Voltage regulation	69
Exa 2.28	Voltage regulation	70
Exa 2.29	Power factor and regulation	72
Exa 2.30	Parameters of a transformer	72
Exa 2.31	Primary voltage and power factor	73
Exa 2.32	Equivalent resistance and leakage reactance	74
Exa 2.33	Efficiency of transformer	75
Exa 2.34	Parameters of a transformer	76
Exa 2.35	Efficiency at full load	77
Exa 2.36	Secondary current and maximum efficiency	78
Exa 2.37	Constant losses and full load copper losses	79
Exa 2.38	All day efficiency	80
Exa 2.39	All day efficiency	81
Exa 2.40	Current and output of transformer	82
Exa 2.41	Parameters of an ideal transformer	83
Exa 3.1	Frequency of rotor current	85
Exa 3.2	Full load speed of the motor	86
Exa 3.3	Slip and speed of rotor	86
Exa 3.4	Shaft output and torque	87
Exa 3.5	Parameters of induction motor	88
Exa 3.6	Slip and torque	89
Exa 3.7	Maximum torque and starting torque	90
Exa 5.1	Emf generated and line voltage	92
Exa 5.2	Induced emf per phase	93
Exa 5.3	Number of conductors	94
Exa 5.4	Synchronous reactance	94

Chapter 1

DC Machines

Scilab code Exa 1.1 To find generated emf

1 / Chapter -1, Example 1.1, Page 1.14

17 mprintf('Generated emf is %3.1 f V', Eg)

18

19 / =

```
3 clc
4 clear
5
6 //INPUT DATA
7 I=450;//Load current in A
8 V=250;//Terminal voltage in V
9 Ra=0.04;//Armature resistance in ohm
10 Rf=50;//Shunt field resistance in ohm
11
12 //CALCULATIONS
13 Ia=(V/Rf)+I;//Total current in A
14 Eg=(V+(Ia*Ra));//Generated emf in V
15
16 //OUTPUT
```

END OF PROGRAM

Scilab code Exa 1.2 To calculate induced emf and armature current

```
1 / Chapter -1, Example 1.2, Page 1.15
3 clc
4 clear
6 //INPUT DATA
7 Il=40; //Load current in A
8 V=400; // Terminal voltage in V
9 Ra=0.04; //Armature resistance in ohm
10 Rse=0.02; // Series field resistance in ohm
11 Rsh=300; //Shunt field resistance in ohm
12 V1=2; // Voltage drop across the brushes in V
13
14
  //CALCULATIONS
    Ia=Il+(V/Rsh); // Armature current in A
15
    Eg=V+(Ia*Ra)+(Ia*Rse)+V1; // Generated emf in V
16
17
  //OUTPUT
18
  mprintf('Induced emf is %3.3 f V \n Armature current
      is \%3.2 \, \text{f A', Eg, Ia}
20
21
                             END OF PROGRAM
```

Scilab code Exa 1.3 To calculate induced emf and armature current

```
1 / Chapter -1, Example 1.3, Page 1.15
```

```
2 / /
```

```
3 clc
4 clear
6 //INPUT DATA
7 V=250; // Terminal voltage in V
8 IL=40; //Load current in A
9 Ra=0.04; //Armature resistance in ohm
10 Rse=0.03; // Series field resistance in ohm
11 Rsh=100; //Shunt field resistance in ohm
12 Vbr=2; // Voltage drop across brushes in V
13
14 //CALCULATIONS
15 Vsh=(V+(IL*Rse));//Voltage across shunt field in V
16 Ia=(IL+(Vsh/Rsh)); // Armature current in A
17 Eg=(V+(IL*Rse)+(Ia*Ra)+Vbr);//Generated emf in V
18
19 //OUTPUT
20 mprintf('Induced emf is %3.1f V \nArmature current
     is \%3.3 \, f \, A', Eg, Ia)
21
        END OF PROGRAM
```

Scilab code Exa 1.4 To calculate the total power delivered

```
1 //Chapter -1, Example 1.4, Page 1.16
2 //
```

```
3 clc
4 clear
5
```

```
6 //INPUT DATA
7 Ed=25000; //Power delivered by the generator in W
8 V=250; // Terminal voltage in V
9 Rsh=75; //Shunt field resistance in ohm
10 Ra=0.03; // Armature resistance in ohm
11
12 //CALCULATIONS
13 IL=(Ed/V); //Load current in A
14 If=(V/Rsh);//Field current in A
15 Ia=(IL+If);//Armature current in A
16 Eg=(V+(Ia*Ra));//Generated emf in V
17 Pg=(Eg*Ia)/1000;//Generated power in kW
18
19 //OUTPUT
20 mprintf ('Total power delivered by the armature is \%3
     .2 f kW', Pg)
21
                     END OF PROGRAM
```

Scilab code Exa 1.5 To calculate the emf generated

1 / Chapter -1, Example 1.5, Page 1.17

```
3 clc
4 clear
5
6 //INPUT DATA
7 n=48; //Number of slots
8 z=16; //Number of conductors per slot
9 q=0.018; //Flux per pole in Wb
10 P=4; //Number of poles
11 N=1000; //Speed of armature in rpm
```

```
12 A=2;//Number of parallel paths
13
14 //CALCULATIONS
15 Z=(n*z);//Number of conductors
16 Eg=(q*Z*N*P)/(60*A);//Generated emf in V
17
18 //OUTPUT
19 mprintf('Generated emf is %3.1 f V', Eg)
20
21 //_______END OF PROGRAM
```

Scilab code Exa 1.6 To calculate the speed

1 / Chapter -1, Example 1.6, Page 1.18

```
2 / /
3 clc
4 clear
5
6 //INPUT DATA
7 P=4; //Number of poles
8 Z=400; //Number of conductors
9 q=0.03; //Flux per pole in Wb
10 Eg=250; // Generated emf in V
11 A1=4; // Number of parallel paths in lap wound
12 A2=2; // Number of parallel paths in wave wound
13
14 //CALCULATIONS
15 N1 = (60 \times Eg \times A1)/(q \times Z \times P); //Speed reqired in lap wound
16 N2 = (60 \times Eg \times A2)/(q \times Z \times P); //Speed regired in wave wound
      in rpm
17
```

```
18 //OUTPUT
19 mprintf('Speed regired in lap wound is \%3.0 f rpm \
     nSpeed regired in wave wound is %3.0 f rpm', N1, N2)
20
21 // END OF PROGRAM
  Scilab code Exa 1.7 To calculate the flux per pole
1 / Chapter -1, Example 1.7, Page 1.18
2 //
3 clc
4 clear
5
6 //INPUT DATA
7 Eg1=250; // Existing generated emf in V
8 N1=800; //Existed rated speed in rpm
9 q1=0.03; //Existing flux in Wb
10 Eg2=300; //New generated emf in V
11 N2=1000; //New rated speed in rpm
12
13 //CALCULATIONS
14 q2=(q1*N1*Eg2)/(Eg1*N2);/New flux per pole in Wb
15
16 //OUTPUT
17 mprintf('New flux per pole is %3.4 f Wb',q2)
18
             END OF PROGRAM
19 //=
```

Scilab code Exa 1.8 To calculate the terminal voltage

```
1 / Chapter -1, Example 1.8, Page 1.19
2 / /
3 clc
4 clear
6 //NPUT DATA
7 n=200; //Number of turns
8 P=6;//Number of poles
9 A=P; // Since lap wound turns
10 Ra=0.0112; //Armature resistance in ohm
11 Ia=40; //Armature current in A
12 N=1000; //Armature speed in rpm
13 q=0.03; //Flux per pole in Wb
14
15 //CALCULATIONS
16 Z=(n*2);//Total number of conductors
17 Eg=(q*Z*N*P)/(60*A); // Generated emf in V
18 IaRa=(Ia*Ra); // Armature drop in VI
19 V=(Eg-IaRa); // Terminal voltage in V
20
21 //OUTPUT
22 mprintf ('Terminal voltage is %3.3 f V', V)
23
                          END OF PROGRAM
24 / =
```

Scilab code Exa 1.9 To calculate the speed

3 clc

```
4 clear
5
6 //INPUT DATA
7 P=4; //Number of poles
8 A=2; //Number of parallel paths for wave wound
9 Z=400; //Number of conductors
10 q=(20*10^-3);//Flux per pole in Wb
11 Ra=0.04; // Armature resistance in ohm
12 Rsh=75; //Shunt field resistance in ohm
13 V=250; // Terminal voltage in V
14 PL=(600*100); // Total load on the generator in W
15 Vld=10; //Line drop in V
16
17 //CALCULATIONS
18 IL=(PL/V); //Load current in A
19 Ish=(V/Rsh);//Shunt field current in A
20 Ia=(IL+Ish); // Armature current in A
21 Eg=(V+(Ia*Ra)+Vld); // Generated emf in V
22 N = (60 \times Eg \times A)/(q \times Z \times P); //Speed at which the generator
      should be driven in rpm
23
24 //OUTPUT
25 mprintf('Speed at which the generator should be
      driven is %i rpm',N)
26
                         END OF PROGRAM
27
```

Scilab code Exa 1.10 To calculate the properties of shunt generator

3 clc

```
4 clear
5
6 //INPUT DATA
7 IL=180; //Load current in A
8 V=220; // Terminal voltage in V
9 Ra=0.01; // Armature resistance in ohm
10 Rsh=40; // Shield field resistance in ohm
11 Wc=1000; // Constant losses in W
12 x=185; //Load current in A
13
14 //CALCULATIONS
15 Ia=(IL+(V/Rsh));//Armature current in A
16 Eg=(V+(Ia*Ra));//Generated emf in V
17 Pm = (V*x) + Wc + (Ia^2*Ra) + (V^2/Rsh); //Output of the
     prime mover in W
18 nm = ((V*Ia)/Pm)*100; //Mechanical efficiency
19 ne=((V*IL)/(Eg*Ia))*100;//Electrical efficiency
20 no=((V*IL)/(Pm))*100; //Overall efficiency
21
22 //OUTPUT
23 mprintf('a) Generated emf is %3.3 f V \n b) Output of
     the prime mover is %3.2 f W \n c) Mechanical
      efficiency is %3.2f percent \n d) Electrical
      efficiency is %3.2f percent \n e)Overall
      efficiency is %3.2f percent', Eg, Pm, nm, ne, no)
24
         END OF PROGRAM
25 //====
```

Scilab code Exa 1.11 To calculate the back emf and total mechanical power

```
1 //Chapter -1, Example 1.11, Page 1.33
2 //
```

```
3 clc
4 clear
6
7 //INPUT DATA
8 IL=15; //Load current in A
9 V=220; // Terminal voltage in V
10 Rsh=180; // Field resistance in ohm
11 Ra=0.03; //Armature resistance in ohm
12
13 //CALCULATIONS
14 Ish=(V/Rsh); // Field current in A
15 Ia=(IL-Ish);//Armature current in A
16 Eb=(V-(Ia*Ra)); //Back emf in V
17 Pm=(Eb*Ia)/1000;//Total mechanical power in kW
18
19 //OUTPUT
20 mprintf('i)Back emf is %3.2 f V \nii)Total mechanical
      power developed in the armature is \%3.2 f kW', Eb,
     Pm)
21
                              END OF PROGRAM
```

Scilab code Exa 1.12 To find the change in back emf

1 / Chapter -1, Example 1.12, Page 1.34

7 V=220; // Terminal voltage in V

```
2 //

3 clc
4 clear
5
6 //INPUT DATA
```

```
8 IaFL=25; // Full load armature current in A
9 IaNL=5; //No load armature current in A
10 Ra=0.5; // Armature resistance in ohm
11
12 //CALCULATIONS
13 EbNL=(V-(IaNL*Ra)); //Back emf at no load in V
14 Eb=(V-(IaFL*Ra));//Back emf at full load in V
15 E=(EbNL-Eb); // Change in back emf from no load to
      full load in V
16
17 //OUTPUT
18 mprintf ('Change in back emf from no load to full
     load is %3.0 f V', E)
19
                          END OF PROGRAM
20 //=
```

Scilab code Exa 1.13 To find the speed of the motor

1 / Chapter -1, Example 1.13, Page 1.34

```
3 clc
4 clear
5
6 //INPUT DATA
7 P=4; //Number of poles
8 V=500; //Terminal voltage in V
9 Ia=80; //Armature current in A
10 Ra=0.4; //Armature resistance in ohm
11 A=2; //Number of parallel paths
12 Z=522; //Number of conductors
13 q=0.025; // Useful flux per pole in Wb
```

```
//CALCULATIONS
Eb=(V-(Ia*Ra));//Back emf in V
N=(Eb*60*A)/(P*q*Z);//Speed of the motor in rpm
//OUTPUT
mprintf('Speed of the motor is %3.1 f rpm',N)
//END OF PROGRAM
```

Scilab code Exa 1.14 To find the armature resistance and maximum armature current

```
3 clc
4 clear
5
6 //INPUT DATA
7 Eb=225; //Back emf in V
8 IL=40; //Line current in A
9 Rsh=150; // Field resistance in ohm
10 Ish=1.67; // Field current in A
11
12 //CALCULATIONS
13 V=(Ish*Rsh); // Terminal applied voltage in V
14 Ia=(IL-Ish);//Armature current in A
15 Ra=(V-Eb)/Ia;//Armature resistance in ohm
16 Ia=(V/Ra); //Maximum armature current in A
17
18 //OUTPUT
19 mprintf('i) Armature resistance is %3.2 f ohm \nii)
     Armature current will be maximum at the moment of
```

```
start up and it is %3.2 f A',Ra,Ia)

20
21 //______END OF PROGRAM
```

Scilab code Exa 1.15 To find the back emf

1 / Chapter -1, Example 1.15, Page 1.36

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=400; // Terminal voltage in V
8 P=8000; //Motor output power in W
9 n=0.9; //Motor efficiency
10 Rsh=180; // Field resistance in ohm
11 Ra=0.6;//Armature resistance in ohm
12
13 //CALCULATIONS
14 If=(V/Rsh);//Field current in A
15 Pi=(P/n); //Input power in W
16 IL=(Pi/V); //Load current in A
17 Ia=(IL-If);//Armature current in A
18 Eb=(V-(Ia*Ra)); //Back emf in V
19
20 //OUTPUT
21 mprintf('Back emf is %3.0 f V', Eb)
22
23 // END OF PROGRAM
```

Scilab code Exa 1.16 To find the total power developed

```
1 / Chapter -1, Example 1.16, Page 1.37
3 clc
4 clear
6 //INPUT DATA
7 P=30000; //Power rating of the dc machine in W
8 V=300; // Terminal voltage in V
9 Ra=0.04; // Armature resistance in ohm
10 Rsh=120; //Shunt field resistance in ohm
11
12 //CALCULATIONS
13 IL=(P/V); //Load current in A
14 Ia=(IL+(V/Rsh));//Armature current in A
15 Eg=(V+(Ia*Ra));//Generated emf in V
16 P=(Eg*Ia); //Power developed in the armature in W
17 Ish=(V/Rsh); // Field current in A
18 Ia2=(IL-Ish); // Armature current in motor in A
19 Eb=(V-(Ia2*Ra));//Back\ emf\ in\ V
20 P1=(Eb*Ia2); // Power developed in the armature in W
21
22 //OUTPUT
23 mprintf('Total power developed in the armature when
     \ni)the dc machine is operated as a generator is
     %3.0 f W \ nii ) when the dc machine is operated as a
      motor is %3.1 f W', P, P1)
24
                      END OF PROGRAM
```

Scilab code Exa 1.17 To find the armature torque and armature current

```
1 / Chapter -1, Example 1.17, Page 1.43
3 clc
4 clear
6 //INPUT DATA
7 P=4;//Number of poles
8 Z=726; //Number of conductors
9 A=2;//Number of parallel paths
10 q = (30*10^{-3}); //Flux per pole in Wb
11 Ia=45; // Total armature current in A
12
13 //CALCULATIONS
14 Ta=(0.159*Z*q*Ia*P)/A;//Armature toque in N.m
15
16 //OUTPUT
17 mprintf('Armature torque is %3.2 f N.m', Ta)
18
              END OF PROGRAM
19 //=
```

Scilab code Exa 1.18 To calculate the current taken and diameter of the motor pulley

```
3 clc
4 clear
6 //INPUT DATA
7 N=(1800/60); //Speed of the motor in rps
8 V=200; // Terminal voltage in V
9 N1=(900/60); //Lathe speed in rps
10 F=300; //Force exerted in N
11 r=0.2; //Radius of the shaft in m
12 n=0.9; // Efficiency of the motor
13 Dp=0.3; // Diamter of the Lathe pulley in m
14
15 //CALCULATIONS
16 Tsh=(F*r); // Shaft torque in N.m
17 Psh=(Tsh*2*3.14*N1); // Shaft power in W
18 Pi=(Psh/n);//Input power in W
19 I=(Pi/V);//Current taken by the motor in A
20 Dm = ((N1*Dp)/N)*100; //Diameter of the motor pulley in
      cm
21
22 //OUTPUT
23 mprintf ('Current taken by the motor is \%3.1\,\mathrm{f} A \
      nDiameter of the motor pulley is \%3.0\,\mathrm{f} cm',I,Dm)
24
     END OF PROGRAM
```

Scilab code Exa 1.19 To calculate the armsture torque and horse power

3 clc
4 clear

```
5
6 //INPUT DATA
7 N=(300/60); //Speed of the motor in rps
8 P=4; //Number of poles
9 Z=732; //Number of conductors
10 I=80; // Current through each conductor in A
11 1=0.35; //Length of the conductor in m
12 n=0.8; // Efficiency of flux distribution
13 B=0.8; //Flux densty in Wb/m<sup>2</sup>
14 D=0.8; // Diameter of the armature in m
15
16 //CALCULATIONS
17 Ze=(Z*n); //Number of effective conductors
18 q=(B*1*2*3.14*(D/2))/4; // Flux per pole in Wb
19 Ta=(0.159*q*Ze*I*P); //Armature torque in N.m
20 F=(B*I*1); //Force on each conductor in N
21 T=(F*(D/2)); //Torque due to on econductor in N.m.
22 T1=(T*Ze); // Torque due to all conductors in N.m.
23 Br=(2*3.14*N*60*T1)/(60*746); //Brake Horse power in
     HP
24
25 //OUTPUT
26 mprintf('Armature torque is %3.0 f N.m \n Horse power
       output is %3.1 f HP', Ta, Br)
27
                           END OF PROGRAM
28
```

Scilab code Exa 1.20 To find the armature torque

3 clc

```
4 clear
5
7 //INPUT DATA
8 IL=50; //Load current in A
9 V=220;//Terminal voltage in V
10 Ra=0.3; //Armature resistance in ohm
11 Rsh=220; // Field resistance in ohm
12 N=1200; //Speed of the motor in rpm
13
14 //CALCULATIONS
15 Ish=(V/Rsh); // Field current in A
16 Ia=(IL-Ish); // Armature current in A
17 Eb=(V-(Ia*Ra)); //Back emf in V
18 Ta=(9.55*Eb*Ia)/N;//Armature torque in N.m
19
20 //OUTPUT
21 mprintf('Armature torque is %3.0 f N.m', Ta)
22
                         END OF PROGRAM
23 //=
```

 ${f Scilab\ code\ Exa\ 1.21}$ To determine the speed and electro magnetic torque

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=220;//Terminal voltage in V
8 P=(10*746);//Rating of the motor in W
9 Iao=5;//No load armature current in A
```

1 //Chapter -1, Example 1.21, Page 1.49

```
10 No=1200; //No load speed in rpm
11 Ra=0.3; //Armature resistance in ohm
12 Ial=35; // Armature load current in A
13
14 //CALCULATIONS
15 Nl=(No*((V-(Ial*Ra))/(V-(Iao*Ra))));//Speed at load
     in rpm
16 Ebo=218.5; //Back emf at no load in V
17 EbL=209.5; //Back emf at full load in V
18 Tao=(9.55*Ebo*Iao)/No;//No load torque in N.m
19 TaL = (9.55 * EbL * Ial) / N1; //Load torque in N.m.
20
21 //OUTPUT
22 mprintf('Load speed is %3.0 f rpm \n Load torque is
     \%3.2 \, f \, N.m', Nl, TaL)
23
24 //=____END OF PROGRAM
```

Scilab code Exa 1.22 To calculate the speed of the motor

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=220; // Terminal voltage in V
8 Io=4; //No load current in A
9 No=800; //No load speed in rpm
10 IL=24; //Load current in A
11 Ra=0.25; // Armature resistance in ohm
12 Rsh=220; // Shunt field resistance in ohm
```

1 / Chapter -1, Example 1.21, Page 1.49

Scilab code Exa 1.23 To calculate the speed of a motor

1 / Chapter -1, Example 1.21, Page 1.49

```
3 clc
4 clear
5
6 //INPUT DATA
7 P=6;//Number of poles
8 A=6;//Number of parallel paths for lap wound
9 Z=600;//Number of conductors
10 IL=100;//Load current in A
11 V=120;//Terminal voltage in V
12 Ra=30;//Armature resistance in ohm
13 Rsh=0.06;//Shunt field resistance in ohm
14 q=(30*10^-3);//Flux per pole in Wb
```

```
//CALCULATIONS
Ish=(V/Ra);//Field current in A
Ia=(IL-Ish);//Armature current in A

Eb=(V-(Ia*Rsh));//Back emf in V
N=(60*Eb*A)/(q*Z*P);//Speed of the motor in rpm

//OUTPUT
mprintf('Speed of the lap wound shunt motor is %3.0 f rpm',N)
//
// END OF PROGRAM
```

Scilab code Exa 1.24 To calculate the speed

```
1 / Chapter -1, Example 1.21, Page 1.49
2 / /
3 clc
4 clear
6 //INPUT DATA
7 Pg=120000; //Power delivered when generator in W
8 Ng=1000; // Prime mover speed in rpm
9 Vg=600; // Terminal voltage given by the generator in
     V dc
10 Pm=120000; //Power taken as motor in W
11 Vm=600; // Terminal voltage when motor in V dc
12 Ra=0.05; //Armature resistance in ohm
13 Rsh=200; // Field resistance in ohm
14 Vb=1; //Brush drop in V
15 Ng=1000; //Speed of the generator in rpm
16
17 //CALCULATIONS
```

```
18
19 //When operated as a generator
20 IL1=(Pg/Vg);//Load current in A
21 If1=(Vg/Rsh);//Filed current in A
22 Ia1=(IL1+If1);//Armature current in A
23 Eg=(Vg+(Ia1*Ra)+Vb); // Generated emf in V
24
25 //When operated as a motor
26 IL2=(Pm/Vm); //Load current in A
27 If2=(Vm/Rsh);//Field current in A
28 Ia2=(IL2-If2);//Armature current in A
29 Eb=(Vm-(Ia2*Ra)-Vb); //Back emf in V
30
31 Nm=(Ng*Eb)/Eg;//Speed of the motor in rpm
32
33 //OUTPUT
34 mprintf('Speed of the dc machine when operated as a
     motor is %3.0 f rpm', Nm)
35
                    END OF PROGRAM
36 / =
```

Scilab code Exa 1.25 To find the speed and torque

1 / Chapter -1, Example 1.21, Page 1.49

2 //

```
3 clc
4 clear
5
6 //INPUT DATA
7 R=0.05;//Total resistance of the motor in ohm
8 IL1=120;//Load current in A
9 V=220;//Terminal voltage in V
```

```
10 N=1200; //Speed in rpm
11 IL2=60; // Half load current in A
12
13 //CALCULATIONS
14 / \text{Tnew} = 0.25 * \text{Told}
15 //Hence percentage change in torque is 75\% since it
      is (Told-Tnew)/Told*100
16 Ebnew=(V-(IL1*R)); //New back emf in V
17 Ebold=(V-(IL2*R)); //Old back emf in V
18 Nnew=(N*Ebnew*IL1)/(Ebold*IL2);//New speed in rpm
19 Pspeed=(Nnew/N)*100; // Percentage change in speed in
20 / Ianew = (Iaold / sqrt(2))
21 I=sqrt(2)*100; // Percentage in current
22 N1new=(sqrt(2)*Ebnew*N)/Ebold;//New speed in rpm
23 P1speed=(N1new/N)*100;//Percentage change in speed
      in %
24
  //OUTPUT
25
26 mprintf('i) Percentage in speed is \%3.2 f and
      Percentage in torque is 75\nii) New speed is %3.0 f
       rpm and new current is (1/\operatorname{sqrt}(2)) times old
      current ', Pspeed , N1new)
27
                                     END OF PROGRAM
```

Scilab code Exa 1.26 To find the efficiency of the motor

3 clc

4 clear

```
5
6 //INPUT DATA
7 V=220; // Terminal voltage in V
8 ILo=5; //No load current in A
9 Ra=0.3; //Armature resistance in ohm
10 Rsh=220; // Field resistance in ohm
11 IL=50; //Load current in A
12
13 //CALCULATIONS
14 Lo=(ILo*V); //No load losses in W
15 Ish=(V/Rsh);//Shunt current in A
16 Iao=(ILo-Ish);//No load armature current in A
17 Lco=((Iao^2*Ra)+(Ish^2*Rsh));//No load copper losses
       in W
18 Ifl=(Lo-Lco);//Iron and friction losses in W
19 Ia=(IL-Ish);//Armature current in A
20 V1=(Ia^2*Ra); // Variable losses in W
21 Tl=(Vl+Lco+If1); // Total losses in W
22 P=(V*IL); //Input power in W
23 n = ((P-T1)/P)*100; // Efficiency
24
25 //OUTPUT
26 mprintf ('Efficiency of the motor is \%3.1\,\mathrm{f} percent',n
     )
27
                                   END OF PROGRAM
28
```

Scilab code Exa 1.27 To calculate the properties of shunt motor

3 clc

```
4 clear
5
6 //INPUT DATA
7 V=250; // Terminal voltage in V
8 IL=50; //Load current in A
9 N=1000; //Speed in rpm
10 Wi=1200; //Iron and friction losses in W
11 Ra=0.05; // Armature resistance in ohm
12 Rsh=125; // Field resistance in ohm
13
14 //CALCULATIONS
15 Ish=(V/Rsh); // Field current in A
16 Ia=(IL-Ish); // Armature current in A
17 Eb=(V-(Ia*Ra)); //Back emf in V
18 Cu=((V*IL)-(Eb*Ia));//Copper losses in W
19 Ta=(9.55*Eb*Ia)/N;//Armature torque in N.m
20 Ts=(9.55*((Eb*Ia)-Wi))/N;//Shaft torque in N.m.
21 n=(((Eb*Ia)-Wi)/(V*IL))*100; //Efficiency of the
     motor
22
23 //OPUTPUT
24 mprintf('(i) Copper loss is %3.1 f W\n(ii) Armature
      torque is %3.1 f N.m\n(iii) Shaft torque is %3.2 f N
      .m \ n (iv) Efficiency is \%3.1f percent', Cu, Ta, Ts, n)
25
26
                                   END OF PROGRAM
```

Scilab code Exa 1.28 To find the speed and load current and speed regulation

```
3 clc
4 clear
6 //INPUT DATA
7 A=2; //Number of parallel paths
8 Z=926; //Number of conductors
9 P=4; //Nmber of poles
10 V=220; //Line voltage in V
11 Io=3; //No load ine current in A
12 If=0.8; //No load field current in A
13 q=(6*10^-3); //No load field flux in Wb
14 Ra=0.9; // Armature resistance in ohm
15 T=30; //Load torque in N.m
16
17 //CALCULATIONS
18 Ebo=(V-((Io-If)*Ra)); //No load back emf in V
19 No=(Ebo*60*A)/(q*Z*P);//No load speed in rpm
20 Ia=(A*T)/(0.159*q*Z*P);//Armature current in A
21 IL=(Ia+If);//Load current in A
22 Eb=(V-(Ia*Ra)); //Back emf in V
23 N=(Eb*60*A)/(q*Z*P); //Speed at load in rpm
24 R=((No-N)/No)*100;//Speed regulation in percent
25
26 //OUTPUT
27 mprintf('No load speed is \%3.0 f rpm\nSpeed at load
     is %3.1f rpm\nSpeed regulation is %3.2f percent',
     No, N, R)
28
29
                                   END OF PROGRAM
```

Scilab code Exa 1.29 To find the change in speed

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=250; // Terminal voltage in V dc
8 N1=800; // Existing speed in rpm
9 Ra=0.05; //Armature resistance in ohm
10 Ia1=40; // Existing armature current in A
11 R=0.1; // Reduction in field flux
12
13 //CALCULATIONS
14 Ia2=(Ia1/(1-R));//New armature current in A
15 N2=(N1*(V-(Ia1*Ra)))/((V-(Ia2*Ra))*(1-R)); //New
     speed in rpm
16
17 //OUTPUT
18 mprintf('New speed is %3.0 f rpm', N2)
19
             END OF PROGRAM
20 //====
```

Scilab code Exa 1.30 To find the resistance to be included

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=300;//Terminal voltage in V
8 N1=600;//Existing speed in rpm
```

2 //

1 / Chapter -1, Example 1.21, Page 1.49

```
9 IL=30; //Load current in A
10 N2=800; //New speed in rpm
11 Ra=0.5; // Armature resistance in ohm
12 Rsh=125; // Field resistance in ohm
13
14 //CALCULATIONS
15 Ish1=(V/Rsh); // Field current in A
16 Ia1=(IL-Ish1);//Armature current in A
17 Ia2=(V-sqrt((V^2)-(4*Ra*(V-(Ia1*Ra))*Ia1*(N2/N1))));
     //New armature current in A
18 Ish2=(Ish1*Ia1)/Ia2;//New field current in A
19 Rsh2=(V/Ish2);//New field resistance in ohm
20 FR=(Rsh2-Rsh); // Field rheostat in ohm
21
22 //OUTPUT
23 mprintf('The value of resistance to be included in
     the field is %3.2 f ohm', FR)
24
                              END OF PROGRAM
25
```

Scilab code Exa 1.31 To find the resistance required

1 / Chapter -1, Example 1.21, Page 1.49

```
3 clc
4 clear
5
6 //INPUT DATA
7 N1=1000; // Initial speed in rpm
8 N2=600; // Final speed in rpm
9 Ia1=40; // Initial armature current in A
10 Ia2=30; // Final armature current in A
```

```
11 V=250; // Terminal voltage in V
12 Ra=0.5; // Armature resistance in ohm
13
14 // CALCULATIONS
15 R=(V-((N2/N1)*(V-(Ia1*Ra))))/30; // Total resistance in ohm
16 Rs=(R-Ra); // Series resistance in ohm
17
18 // OUTPUT
19 mprintf('Resistance required in series is %3.2 f ohm', Rs)
20
21 // END OF PROGRAM
```

Scilab code Exa 1.32 To find the additional field resistance to be included

1 / Chapter -1, Example 1.21, Page 1.49

```
3 clc
4 clear
5
6 //INPUT DATA
7 N1=1200; // Initial speed in rpm
8 N2=1500; // Final speed in rpm
9 Ia1=80; // Initial armature current in A
10 Ia2=100; // Final armature current in A
11 V=220; // Terminal voltage in V
12 Ra=0.05; // Armature resistance in ohm
13 Rsh1=220; // Initial shunt resistance in ohm
14
15 //CALCULATIONS
16 Rsh2=((N2/N1)*(V-(Ia1*Ra))*Rsh1)/(V-(Ia2*Ra)); // New
```

```
shunt resistance in ohm

17 Rs=(Rsh2-V); // Field resistance in ohm

18
19 //OUTPUT
20 mprintf('Additional field resistance to be included in the field is %3.2 f ohm', Rs)

21
22 // END OF PROGRAM
```

Scilab code Exa 1.33 To find the speed

```
1 //Chapter -1, Example 1.21, Page 1.49
2 //
```

```
3 clc
4 clear
6 clc
7 clear
8 //INPUT DATA
9 N1=1500; // Initial speed in rpm
10 N2=1200; // Final speed in rpm
11 Ia1=30; // Initial armature current in A
12 V=300; //Terminal voltage in V
13 Ra1=0.5; // Initial armature resistance in ohm
14
15 //CALCULATIONS
16 R=(V-((N2/N1)*(V-(Ia1*Ra1))))/Ia1;//Total resistance
      in ohm
17 Rs=(R-Ra1); // Resistance to be added in ohm
18 n=((V-(Ia1*R))/V)*100;//Armature circuit efficiency
19 Nn2=(N2*(V-((Ia1/2)*R)))/(V-(Ia1*R)); //New speed at
     half of the full load torque in rpm
```

Scilab code Exa 1.34 To find the properties of shunt motor

```
3 clc
4 clear
6 //INPUT DATA
7 Pi=8800; //Input power in W
8 Ra=0.5; // Armature resistance in ohm
9 No=1260; //Speed of the motor at no load in rpm
10 V=240; //Line voltage in V
11 Pm=18800; // Gross mechanical power in W
12 V=240; //treminal voltage in V
13
14 //CALCULATIONS
15 K=(V/No); // Constant of proportionality
16 Eb1=(240-sqrt((V^2)-(4*(Pi/2))))/2;//Back emf in V
17 Eb2=(240+sqrt((V^2)-(4*(Pi/2))))/2;//Back emf in V
18 I=(Pi/V); //Rated current in A
19 Ia=(V-Eb1)/Ra;//Armature current in A
20 Nn=(Eb2/K); //New speed in rpm
21 Ia2=(V-Eb2)/Ra;//Armature current in A
22 T = (60*Pi)/(2*3.14*Nn); //Torque developed in N.m.
```

Scilab code Exa 1.35 To find the torque and power and speed

1 / Chapter -1, Example 1.21, Page 1.49

```
2 / /
3 clc
4 clear
5
6 //INPUT DATA
7 N1=1500; // Initial speed in rpm
8 V1=270; // Terminal voltage in V
9 T=300; // Full load torque in N.m
10 N2=1200; //New speed in rpm
11 V2=(2*V1); //New terminal voltage in V
12 Ra=0.31; // Armature resistance in ohm
13
14 //CALCULATIONS
15 Ia=(T*2*3.14*N1)/(V1*60);//Full load current in A
16 Eb=(V1*(N2/N1)); //Back emf in V
17 Pm=(Eb*Ia)/1000;//Mechanical power developed in kW
```

Scilab code Exa 1.36 To find the series resistance required

1 / Chapter -1, Example 1.21, Page 1.49

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=200; //Terminal voltage in V
8 Ra=0.05; //Armature resistance in ohm
9 Rse=0.03; // Field resistance in ohm
10 N1=1000; // Present speed in rpm
11 N2=800; // Required speed in rpm
12 Ia=40; // Armature current in A
13
14 //CALCULATIONS
15 R=(V-((N2/N1)*(V-(Ia*(Ra+Rse)))))/Ia; // Total resistance in ohm
```

```
16 R1=(R-Ra-Rse); // Series resistance required to be connected in series with armature and field resistance in ohm

17
18 //OUTPUT
19 mprintf('Series resistance required to be connected in series with armature and field resistance is %3.3 f ohm', R1)

20
21 // END OF PROGRAM
```

Scilab code Exa 1.37 To find the series resistance to be added

1 / Chapter -1, Example 1.21, Page 1.49

```
2 / /
3 clc
4 clear
5
6 //INPUT DATA
7 V=500; // Terminal voltage in V dc
8 I=30; //Line current in A
9 N1=600; // Initial speed in rpm
10 N2=500; // Required speed in rpm
11 R=0.5; // Total resistance in ohm
12
13 //CALCULATIONS
14 Eb1=(V-(I*R)); //Back emf in V
15 Ka=(Eb1*60)/(I*N1);//Proportionality constant
16 T1=(Ka*I^2)/(2*3.14);//Torque developed at speed 600
17 T2=(T1*(N2/N1)^2);//Torque developed at speed 500
     rpm
```

Scilab code Exa 1.38 To calculate the Resistance

```
3 clc
4 clear
5
6 //INPUT DATA
7 V=200; // Terminal voltage in V dc
8 I1=25; //Line current in A
9 Ra=0.5; // Armature resistance in ohm
10 Rse=0.3; // Field resistance in ohm
11
12 //CALCULATIONS
13 / N2 = 0.75 * N1
14 I2=sqrt((I1^2*(0.75)^3));//New line current in A
15 Eb1=(V-(I1*(Ra+Rse))); //Back emf in V
16 X=(V*I2); //X value for Resistance
17 R=(X-(0.75*Eb1))/I2^2;//Total resistance in ohm
18 Rs=(R-Ra-Rse); // Resistance to be connected in ohm
19
20 //OUTPUT
```

21 mprintf('Resistance to be connected is %3.1f ohm', Rs
)
22
23 //=_____END OF PROGRAM

Chapter 2

17

18 //OUTPUT

Transformers

Scilab code Exa 2.1 Number of turns and full load current

1 / Chapter -2, Example 2.1, Page 2.4

```
3 clc
4 clear
5
6 //INPUT DATA
7 V1=1000; // Voltage in primary circuit in V
8 V2=100; // Voltage in secondary ciricut in V
9 N2=60; // Number of turns in secondary
10 R=10000; // Rating of transformer in VA
11
12 //CALCULATIONS
13 K=(V2/V1); // Voltage transformation ratio
14 N1=(N2/K); // Number of turns in primary
15 I1=(R/V1); // Current in the primary in A
16 I2=(R/V2); // Current in the secondary in A
```

19 mprintf('a) Number of turns in the primary is %3.0 f

```
turns \nb)Current in the primary is %3.0 f A and Current in the secondary is %3.0 f A', N1, I1, I2)

20
21 // END OF PROGRAM
```

Scilab code Exa 2.2 Properties of an ideal transformer

1 / Chapter -2, Example 2.2, Page 2.5

```
2 //
3 clc
4 clear
6 //INPUT DATA
7 N1=400; //Number of turns in the primary
8 N2=30; // Number of turns in the secondary
9 Q=20000; // Rating of the transformer in VA
10 V1=2000; //Primary voltage in V
11 f=50; //Power supply frequency in Hz
12
13 //CALCULATIONS
14 K=(N2/N1);//Voltage transformation ratio
15 I1=(Q/V1); // Current in the primary in A
16 I2=(I1/K); // Current in the secondary in A
17 V2=(K*V1); //Secondary voltage in V
18 q=(V1/(4.44*f*N1));//Maximum flux in the core in Wb
19
20 //OUTPUT
21 mprintf('(a) Full load primary current is \%3.0 f A and
       secondary current is %3.2 f A \n(b) Induced emf in
       the secondary is \%3.0 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n(c)} \,\mathrm{Maximum} flux in
```

the core is $\%3.3 \,\mathrm{f}$ Wb', I1, I2, V2, q)

22

```
23 //————END OF PROGRAM
```

Scilab code Exa 2.3 Number of turns and induced emf

```
1 / Chapter -2, Example 2.3, Page 2.6
2 / /
3 clc
4 clear
6 //INPUT DATA
7 A=(40*10^-4); // Area of cross section of the core A
8 B=8; //Maximum flux density in the core B in Wb/m<sup>2</sup>
9 V1=2000; //Primary voltage in V
10 V2=200; //Secondary voltage in V
11 f=50; // Frequency in Hz
12
13 //CALCULATIONS
14 N1 = (V1/(4.44*B*A*f)); //Number of turns in the
     primary
15 N2=(V2/(4.44*f*A*B)); //Number of turns in the
     secondary
16
17 //OUTPUT
18 mprintf('Number of turns in the primary is %3.0 f \
     nNumber of turns in the secondary is \%3.0 f', N1, N2)
19
               END OF PROGRAM
20 / =
```

Scilab code Exa 2.4 Number of turns

```
1 / Chapter - 2, Example 2.4, Page 2.7
2 //
3 clc
4 clear
6 //INPUT DATA
7 V1=2500; //primary voltage in V
8 V2=200; // Secondary voltage in V
9 e=(30*0.9); // Effective side of magnetic core in cm
10 A = (30*30*0.9*0.9*10^-4); //Area of cross section of
     the limb in m<sup>2</sup>
11 B=1; //Maximum flux density in Wb/m<sup>2</sup>
12 q=(B*A); //Maximum flux in Wb
13 f=50; //Frequency of power supply in Hz
14
15 //CALCULATIONS
16 N1=(V1/(4.44*f*q));//Number of turns in the primary
17 N2=(V2/(4.44*f*q)); //Number of turns in the
     secondary
18
19 //OUTPUT
20 mprintf('Number of turns in the primary are %3.0 f
     turns and Number of turns in the secondary are \%3
     .0 f turns', N1, N2)
21
           END OF PROGRAM
22 / =
```

Scilab code Exa 2.5 Magnetising and iron loss components

```
1 / Chapter -2, Example 2.5, Page 2.10
```

```
2 //
```

```
3 clc
4 clear
6 //INPUT DATA
7 Io=0.8; //No load primary current in A
8 Wo=75; //No load primary poewr in W
9 V1=220; //Primary voltage in V
10 f=50; //Supply frequency in Hz
11
12 //CALCULATIONS
13 Iw=(Wo/V1); //Iron loss component in A
14 Im=sqrt(Io^2-Iw^2); // Magnetising component in A
15
16 //OUTPUT
17 mprintf('Iron loss component is %3.2 f A \
     nMagnetising component is %3.3 f A', Iw, Im)
18
19 //———END OF PROGRAM
```

Scilab code Exa 2.6 Core and iron loss and magnetising current

```
2 //
3 clc
4 clear
5
6 //INPUT DATA
7 Io=6;//No load primary current in A
8 cosq=0.3;//Power factor
```

1 / Chapter - 2, Example 2.6, Page 2.11

```
9 V1=220; // Primary voltage in V
10 V2=2200; // Secondary voltage in V
11
12 // CALCULATIONS
13 Wo=(V1*Io*cosq); // Core loss in W
14 Iw=(Io*cosq); // Iron loss current in A
15 Im=sqrt(Io^2-Iw^2); // Magnetsising current in A
16
17 // OUTPUT
18 mprintf('(a) Core loss is %3.0 f W\n(b) Iron loss current is %3.1 f A\n(c) Magnetising current is %3.2 f A', Wo, Iw, Im)
19
20 // END OF PROGRAM
```

Scilab code Exa 2.7 Properties of a transformer

1 / Chapter -2, Example 2.7, Page 2.12

```
2 //
3 clc
4 clear
5
6 //INPUT DATA
7 V1=200; //Primary voltage in V
8 V2=2000; //Secondary voltage in V
9 Io=7; //Primay no load current in A
10 Wo=180; //Primary no load power in W
11 R1=0.05; //Primary winding resistance in ohm
12
13 //CALCULATIONS
14 Fe=(Wo-(Io^2*R1)); //Iron loss or core loss alone in
```

Scilab code Exa 2.8 Primary current

```
1 //Chapter -2, Example 2.8, Page 2.14
2 //
```

```
3 clc
4 clear
5
6 //INPUT DATA
7 Io=6; //No load prmary current in A
8 cosqo=0.2; //Primary no load power factor
9 I2=125; // Secondary load current in A
10 cosq2=0.8; // Secondary load power factor
11 V1=400; //Primary terminal voltage in V
12 V2=100; //Secondary terminal voltage in V
13
14 //CALCULATIONS
15 K=(V2/V1);//Voltage transformation ratio
16 I2i=(K*I2);//Secondary current in A
17 q=(acos(cosqo)-acos(cosq2)); // Value of angle in
     degees
```

Scilab code Exa 2.9 No load current and phase angle

```
3 clc
4 clear
6 //INPUT DATA
7 N1=760; //Number of turns in the primary
8 N2=180; // Number of turns in the secondary
9 I2=70; // Secondary load current in A
10 cosq=0.8; //Secondary load power factor
11 I1=30; //Primary current in A
12 cosq1=0.71; // Primary current power factor
13
14 //CALCULATIONS
15 K=(N2/N1); // Ratio of turns
16 I2i=(K*I2);//Secondary current in A
17 Ili=complex((I1*cosq1),(I1*sind(acosd(cosq1))));//
     Primary current in A
18 I2c=complex((I2i*cosq),(I2i*sind(acosd(cosq))));//
     Secondary current in A
19 A1=sqrt((real(I1i))^2+(imag(I1i))^2);
20 A2=(atand(imag(I1i)/real(I1i)));
```

Scilab code Exa 2.10 Primary current and power factor

```
1 //Chapter -2, Example 2.10, Page 2.17
2 //
```

```
3 clc
4 clear
5
6 //INPUT DATA
7 Io=12; //Primary no load current in A
8 cosqo=0.25; //No load power factor
9 I2=220; //Secondary load current in A
10 cosq2=0.8; //Secondary power factor
11 K=(1/5); //Turn ratio
12
13 //CALCULATIONS
14 qo=acosd(cosqo); //phase angle in degree
15 q2=acosd(cosq2); //Phase angle in degree
16 Ioc=complex((Io*cosqo),(Io*sind(qo))); //Io value in
```

Scilab code Exa 2.11 Properties of an ideal step up transformer

```
3 clc
4 clear
5
6 //INPUT DATA
7 K=(330/110);//Turn ratio
8 N1=110;//Number of turns in the primary
9 N2=330;//Number of turns in the secandary
10 V1=4000;//Primary voltage in V
11 f=50;//Supply frquency in Hz
12 Z2=complex(120,40);//Secondary load
13
14 //CALCULATIONS
15 q=(V1/(4.44*N1*f));//Flux in Wb
16 V2=(K*V1);//Secondary voltage in V
```

1 / Chapter - 2, Example 2.11, Page 2.18

```
17 I2=(V2/Z2); // Secondary current in A
18 I1=K*I2; //Primary current in A
19 S=(V1*I1)/1000;//Transformer rating
20 P1=(V1*sqrt((real(I1))^2+(imag(I1))^2)*cosd((atand(
      imag(I1)/real(I1)))))/1000;//Real power in kW
21 R1=(V1*sqrt((real(I1))^2+(imag(I1))^2)*sind(-(atand(
      imag(I1)/real(I1)))))/1000;//Reactive power in
     KVAR
22 Zeq=(V1/I1); // Transformer equivalent impedence
23 a1=sqrt((real(I1))^2+(imag(I1))^2);
24 a2=sqrt((real(I2))^2+(imag(I2))^2);
25 b1=real(Zeq);
26 b2 = imag(Zeq);
27
28 //OUTPUT
29 mprintf('a)Maximum flux in the core is %3.3 f Wb\n(b)
      Primary current is %3.2 f A and Secondary current
      is \%3.2 f A\n(c)Real power is \%3.0 f KW and
      Reactive power is %3.0 f KVAR\n(d) Value of
     impedence consumed is \%3.1 \, f + j\%3.1 \, f, q, a1, a2, P1, R1
      ,b1,b2)
30
                             END OF PROGRAM
31 //=
```

Scilab code Exa 2.12 Primary current and peak value of flux

```
1 //Chapter -2, Example 2.12, Page 2.20
2 //
3 clc
4 clear
5 6 //INPUT DATA
```

```
7 N1=100; //Number of turns in the primary
8 N2=2000; // Number of turns in the secondary
9 V1=220;//Primary volatge in V
10 f=50; //Supply frequency in Hz
11 I2=3; // Secondary current in A
12
13 //CALCULATIONS
14 K=(N2/N1); // Turn ratio
15 I1=(K*I2); // Primary current in A
16 q=(V1/(4.44*f*N1))*1000;//Peak vaue of flux linked
     with the secondary in m. Wb
17
18 //OUTPUT
19 mprintf('(a) The value of primary current is %3.0 f A
     \n(b) The peak value of flux linked with the
     secondary is %3.1 f m.Wb', I1,q)
20
                        END OF PROGRAM
21 / =
```

Scilab code Exa 2.13 Secondary voltage and primary and secondary current

```
1 //Chapter -2, Example 2.13, Page 2.21
2 //
```

3 clc

```
4 clear
5
6 //INPUT DATA
7 N1=1100;//Number of turns in the primary
8 N2=550;//Number of turns in the secandary
9 V1=200;//Primary voltage in V
10 R2=5;//Resistance in the secondary in ohm
```

Scilab code Exa 2.14 Primary current

4 clear

```
1 //Chapter -2, Example 2.16, Page 2.30
2 //
3 clc
```

```
5
6 //INPUT DATA
7 N1=400; //Number of turns in the primary
8 N2=100; //Number of turns in the secondary
9 Io=4; //No load current in A
10 qo=0.3; //No load current power factor
11 I2=120; //Secondary current in A
12 q2=0.8; //Secondary current power factor
13
14 //CALCULATIONS
15 K=(N2/N1); //Turn ratio
16 I2i=(K*I2); //Secondary current in A
```

Scilab code Exa 2.15 Power delivered and current taken

1 / Chapter -2, Example 2.15, Page 2.23

```
2 //
3 clc
4 clear
5
6 //INPUT DATA
7 V1=6000; //Primary volatge in V
8 V2=500; //Secondary voltage in V
9 Z2=complex(4,3)
10
11 //CALCULATIONS
12 K=(V2/V1); // Voltage transformation ratio
13 I2=(V2/Z2); //Secondary current in A
14 a1=sqrt((real(I2))^2+(imag(I2))^2);
15 a2=atand(imag(I2)/real(I2));
```

```
16 q=cosd(a2);//Phase angle in degree
17 P2=(V2*a1*q)/1000;//Power delivered in kW
18 I1=(K*a1);//Primary current in A
19
20 //OUTPUT
21 mprintf('Power delivered is %3.0 f kW \nCurrent taken by an ideal transformer is %3.2 f A',P2,I1)
22
23 //________END OF PROGRAM
```

Scilab code Exa 2.16 Parameters of a transformer

```
1 //Chapter -2, Example 2.1, Page 2.4
2 //
```

```
3 clc
4 clear
5
6 //INPUT DATA
7 Q=25; // Rating of a transformer in KVA
8 V1=2000; // Primary voltage in V
9 V2=200; // Secondary volatge in V
10 R1=0.15; // Primary winding resistance in ohm
11 X1=0.25; //Primary leakage reactance in ohm
12 R2=0.04; // Secondary winding resistance in ohm
13 X2=0.015; // Secondary leakage reactance in ohm
14
15 //CALCULATIONS
16 K=(V2/V1); // Voltage transformation ratio
17 Ro1=(R1+(R2/K^2)); // Resistance referred to primary
     in ohm
18 Xo1=(X1+(X2/K^2)); // Reactance referred to primary in
      ohm
```

```
19 Zo1=sqrt(Ro1^2+Xo1^2);//Impedence referred to
     primary in ohm
20 Ro2=(R2+(R1*K^2)); // Resistance referred to secondary
     in ohm
  Xo2=(X2+(X1*K^2)); // Reactance referred to secondary
  Zo2=sqrt(Ro2^2+Xo2^2); //Impedence referred to
     secondary in ohm
23
24 //OUTPUT
25 mprintf('(a) Resistance referred to primary is \%3.2 f
     ohm \n Reactance referred to primary is \%3.2 f ohm
      \n Impedence referred to primary is %3.1f ohm \n
     \n(b) Resistance referred to secondary is \%3.4 f ohm
      \n Reactance referred to secondary is \%3.4f ohm
     \n Impedence referred to secondary is \%3.3 f ohm',
     Ro1, Xo1, Zo1, Ro2, Xo2, Zo2)
26
                              END OF PROGRAM
27
```

Scilab code Exa 2.17 Parameters of a transformer

1 / Chapter -2, Example 2.17, Page 2.32

```
3 clc
4 clear
5
6 //INPUT DATA
7 R1=3.5; //Primary Resistance in ohm
8 X1=5.2; //Primary reactance in ohm
9 R2=0.01; //Secondary Resistance in ohm
```

10 X2=0.02; //Secondary reactance in ohm

```
11 Q=40000; // Rating of the transformer in VA
12 V1=4000; //Primary voltage in V
13 V2=200; //Secondary voltage in V
14
15 //CALCULATIONS
16 Z1=complex(R1, X1); // Primary impedence
17 Z2=complex(R2, X2); // Secondary impedence
18 I1=(Q/V1);//Primary current in A
19 I2=(Q/V2);//Secondary current in A
20 K=(I1/I2);//Current ratio
21 Ro1=(R1+(R2/K^2)); // Resistance referred to primary
22 Xo1=(X1+(X2/K^2)); //Reactance referred to primary in
  Zo1=(Z1+(Z2/K^2)); //Impedence referred to primary in
24 Ro2=(R2+(R1*K^2)); // Resistance referred to secondary
      in ohm
  Xo2=(X2+(X1*K^2)); // Reactance referred to secondary
25
      in ohm
  Zo2=(Z2+(Z1*K^2)); //Impedence referred to secondary
      in ohm
27 a1=real(Zo1);
28 \quad a2 = imag(Zo1);
29 a3=real(Zo2);
30 \quad a4 = imag(Zo2);
31
32 //OUTPUT
33 mprintf('(a) Resistance referred to primary is \%3.1 f
      ohm \n Reactance referred to primary is \%3.1f ohm
       \n Impedence referred to primary is \%3.1 \, \text{f+j}\%3.1 \, \text{f}
       ohm \n\n(b) Resistance referred to secondary is \%3
      .5f ohm \n Reactance referred to secondary is \%3
      .3 f ohm \n Impedence referred to secondary is \%3
      .5 f+j\%3.3 f ohm', Ro1, Xo1, a1, a2, Ro2, Xo2, a3, a4)
34
                                    END OF PROGRAM
```

Scilab code Exa 2.18 Parameters of a transformer

```
1 / Chapter -2, Example 2.18, Page 2.34
2 / /
3 clc
4 clear
6 //INPUT DATA
7 Q=(40*1000);//Transformer rating in VA
8 V1=1600; // Primary voltage in V
9 V2=160; //Secondary voltage in V
10 f=50; // Frequency in Hz
11 R=10;//Turn ratio
12
13 //CALCULATIONS
14 K=0.1; //Turn ratio
15 I2=(Q/V2); // Full load secondary current in A
16 Z2=(V2/I2);//Load impedence in ohm
17 Zo1=(Z2/K^2); //Impedence referred to high tension
      side in ohm
18 I2i=(K*I2); // Value of current referred to high
      tension side in A
19
20 //OUTPUT
21 mprintf('(a) Load impedence required for full load
      current is \%3.2 f ohm \n(b)Impedence referred to
      high tension side is %3.0 f ohm\n(c) Value of
      current referred to high tension side is %3.0 f A'
      , Z2, Zo1, I2i)
22
23 / =
                                    END OF PROGRAM
```

Scilab code Exa 2.19 Priamary and secondary resistance and reactance

1 / Chapter -2, Example 2.19, Page 2.35

```
2 / /
3 clc
4 clear
6 //INPUT DATA
7 Q=80; //Transformer rating in KVA
8 V1=11000; // Primart voltage in V
9 V2=440; //Secondary voltage in V
10 Pcu=0.75; // Primary copper loss in kW
11 Scu=0.5; //Secondary copper loss in kW
12
13 //CALCULATIONS
14 I2=(Q*1000)/V2;//Full load secondary current in A
15 I1=(Q*1000)/V1;//Full load primary current in A
16 R1=((Pcu)/I1^2)*1000;//Primary resistance in ohm
17 R2=(Scu*1000)/I2^2;//Secondary resistance in ohm
18 Xo1=(0.04*V1)/I1;// Equivalent primary reactance in
     ohm
19 K=(I1/I2);//Current ratio
20 X1=(Xo1/((R1+(R2/K))/(R2/K))); //Primary reactance in
      ohm
21 X2i=(Xo1/X1); // Equivalent secondary reactance in ohm
22 X2=(X2i*K);//Secondary reactance in ohm
23
24 //OUTPUT
25 mprintf('a) Primary resistance is \%3.2 f ohm and
      Secondary resistance in is %3.3 f ohm\nb) Primary
      reactance is %3.2f ohm and Secondary reactance is
      \%3.3 \text{ f ohm}', R1, R2, X1, X2)
```

```
26
27 //=_____END OF PROGRAM
```

Scilab code Exa 2.20 Primary voltage and power factor and efficiency

```
1 / Chapter - 2, Example 2.20, Page 2.37
3 clc
4 clear
6 //INPUT DATA
7 K = (1/20); //Turn ratio
8 R1=30; // Primary resistance in ohm
9 R2=0.08; //Secondary resistance in ohm
10 X1=80; // Primary reactance in ohm
11 X2=0.3; //Secondary reactance in ohm
12 I=1.5; //No load current in A
13 cosqo=0.5; //Power factor
14 I2=200; //Load current in A
15 V2=500; // Secondary terminal voltage in V
16 cosq2=0.8; //Load power factor
17 q3=60; //Phase angle in degree
18
19 //CALCULATIONS
20 q2=(acosd(cosq2));//Phase angle in degree
I2i = complex((I2*cosd(q2)),(I2*sind(-q2))); //Load
      current in complex form
22 V2i=complex(V2,0);//Secondary terminal voltage in
     complex form
23 Z2=complex(R2, X2); //Impedence in complex form
24 E2=(V2i+(I2i*Z2));//Terminal voltage in V
25 E1=(sqrt((real(E2))^2+(imag(E2))^2)/K);//Primary
```

```
voltage in V
26 I2c=(K*I2); //Secondary current in A
27 I21c=complex((I2c*cosd(q2)),(I2c*sind(-q2))); //Load
     current in complex form
28 Io=complex((I*cosd(-q3)),(I*sind(-q3)));//No load
     current in A
29 I1c=(Io+I21c); // Total current
30 Z1=complex(R1,X1);//Primary impedence
31 V1=(E1+(I1c*Z1));//Primary applied voltage
32 V1i=(sqrt((real(V1))^2+(imag(V1))^2));//Primary
     applied voltage in V
33 A=((atand(imag(V1)/real(V1)))-((atand(imag(I1c)/real
     (I1c))))); // Angle between V1 and I1 in degree
34 p=cosd(A); //Power factor
35 Cu = (I2^2*(R2+(K^2*R1))); //Copper losses in W
36 C=(V1i*sqrt((real(Io))^2+(imag(Io))^2)*cosqo);//
     Constant losses in W
37 P=(V2*I2*cosq2);//Output power in W
38 n=(P/(P+Cu+C))*100; // Efficiency
39
40 //OUTPUT
41 mprintf('Primary applied voltage is %3.2 f V\nPrimary
      power factor is %3.2 f \nEfficiency is %3.2 f
     percent', V1i,p,n);
42
                          END OF PROGRAM
43
```

Scilab code Exa 2.21 Primary induced emf and current

3 clc

```
4 clear
5
6 //INPUT DATA
7 V1=1000; // Primary voltage in V
8 V2=300; // Secondary voltage in V
9 R1=0.2; // Primary resistance in ohm
10 X1=0.75; // Primary reactance in ohm
11 I1=50; // Primary current in A
12 cosq1=0.8; //Power factor
13
14 //CALCULATIONS
15 E1=(V1-(I1*sqrt(R1^2+X1^2))); // Primary induced emf
     in V
16
17 //OUTPUT
18 mprintf('Primary induced emf is %3.1 f V', E1)
19
              END OF PROGRAM
20 //====
```

Scilab code Exa 2.22 Induced emf in the secondary

1 / Chapter - 2, Example 2.22, Page 2.40

2 / /

```
3 clc
4 clear
5
6 //INPUT DATA
7 L2=7500; //Load on secondary in W
8 V2=220; //Secondary voltage in V
9 cosq=0.8; //Power factor
10 R2=0.05; //Secondary resistance in ohm
11 X2=0.75; //Secondary reactance in ohm
```

```
12 V2i=200; //Secondary voltage in V
13
14 //CALCULATIONS
15 I2=(L2/(V2*cosq));//Secondary current in A
16 q=acosd(cosq); // Phase angle in degree
17 I2c = complex((I2*cosd(q)),(I2*sind(-q)));//I2 in
     complex form
18 Z2 = complex(R2, X2);
19 E2=(V2i+(I2c*Z2)); //Induced imf in V
20 a1=real(E2);
21 a2=imag(E2);
22
23 //OUTPUT
24 mprintf ('Induced emf in the secondary is \%3.2 \text{ f+j}\%3.2
     f',a1,a2)
25
 //——END OF PROGRAM
```

Scilab code Exa 2.23 Primary currrent

2 / /

1 / Chapter - 2, Example 2.23, Page 2.40

```
3 clc
4 clear
5
6 //INPUT DATA
7 K=(1000/200);//Voltage transformation ratio
8 R1=2;//Primary resistance in ohm
9 R2=200;//Secondary resistance in ohm
10 Vo=360;//Volts in V
11
12 //CALCULATIONS
```

```
13 Z2i=(R2/K^2); // Equivalent secondary impedence in ohm
14 Zo1=(Z2i+R1); // Equivalent primary impedence in ohm
15 I1=(Vo/Zo1); // Primary current in A
16
17 //OUTPUT
18 mprintf('Primary current is %3.0 f A',I1)
19
20 // END OF PROGRAM
```

Scilab code Exa 2.24 Secondary voltage and primary current

1 / Chapter - 2, Example 2.24, Page 2.41

```
2 / /
3 clc
4 clear
6 //INPUT DATA
7 K=(500/10);//Turn ratio in step up transformer
8 Z1=complex(0,6);//Primary reactance in ohm
9 Z2=complex(20000,-10000);//Secondary impedence in
10 V1=100; //Primary voltage in V
11
12 //CALCULATIONS
13 Z2i=(Z2/K^2); // Equivalent secondary impedence in ohm
14 Zo1=(Z1+Z2i); // Equivalent primary impedence in ohm
15 I1=(V1/Zo1); // Primary current in A
16 V2i=(I1*Z2i); // Equivalent secondary voltage in V
17 V2=(K*V2i);//Secondary voltage in V
18 X=sqrt((real(V2))^2+(imag(V2))^2);//X value for
     secondary voltage
19 Y=-(45+atand(imag(V2)/real(V2)));//Phase angle in
```

```
degree

20
21 //OUTPUT

22 mprintf('Secondary volatge is %3.0 f V, %3.1 f degree', X,Y)

23

24 //_______END OF PROGRAM
```

Scilab code Exa 2.25 Efficiency and regulation

1 / Chapter - 2, Example 2.25, Page 2.44

21 Z1=complex(R1,X1);//Primary impedence

2 / /

```
3 clc
4 clear
6 //INPUT DATA
7 V1=2200; // Primary volatge in V
8 V2=220; // Secondary voltage in V
9 K=(V2/V1);//Voltage transformation ratio
10 R1=0.3; // Primary resistance in ohm
11 R2i=0.24; // Equivalent secondary resistance in ohm
12 Ro=300; //No load resistance in ohm
13 RL=0.4; //Load resistance in ohm
14 X1=0.8; // Primary reactance in ohm
15 X2i=0.9; // Equivalent secondary reactance in ohm
16 Xo=1100; //No load reactance in ohm
17 XL=0.3;//Load reactance in ohm
18
19 //CALCULATIONS
20 ZLi=(complex(RL,R1)/K^2);//Equivalent load impedence
```

```
22 Z2i=complex(R2i, X2i); // Equivalent secondary
      impedence
23 Zo=complex(Ro, Xo); //No load impedence
Z_{4} = Z_{eq} = ((Z_{o}*(Z_{1}+Z_{1}+Z_{1}))/(Z_{o}+Z_{1}+Z_{1}+Z_{1})); //Equivalent
       impedence
25 I1=(V1/Zeq);//Primary current in A
26 I2i=((I1*Zo)/(Zo+Z1+Z2i+ZLi));//Equivalent secondary
       current in A
27 \text{ Io} = ((I1*((Z1+Z2i+ZLi)/(Zo+Z1+Z2i+ZLi)))); //No load
      current in A
28 Pi=(V1*sqrt((real(I1))^2+(imag(I1))^2)*cosd(atand(
      imag(I1)/real(I1))))/1000;//Input power in kW
  Pcu1=(((real(I1))^2+(imag(I1))^2)*R1);//Primary
      copper losses in W
30 Pcu2=(((real(I1))^2+(imag(I1))^2)*R2i);//Primary
      copper losses in W
31 C=(((real(Io))^2+(imag(Io))^2)*Ro);//Constant losses
       in W
32 n = (((Pi*1000) - Pcu2 - C) / (Pi*1000)) *100; // Efficiency
33 R=((V1-(sqrt((real(I2i))^2+(imag(I2i))^2)*sqrt((real
      (ZLi))^2+(imag(ZLi))^2)))/((sqrt((real(I2i))^2+(
      imag(I2i))^2)*sqrt((real(ZLi))^2+(imag(ZLi))^2)))
      )*100; // Percentage Regulation
34
35 //OUTPUT
36 mprintf('Efficiency is %3.1f percent \nRegulation is
       \%3.2 f percent',n,R)
37
                             END OF PROGRAM
38 / =
```

Scilab code Exa 2.26 Secondary terminal voltage at full load

```
3 clc
4 clear
5
6 //INPUT DATA
7 R1=6; // Primary resistance in ohm
8 R2=0.3; // Secondary resistance in ohm
9 X1=10; // Primary reactance in ohm
10 X2=0.5; //Secondary reactance in ohm
11 E1=2220; //primary induced emf in V
12 E2=220; // Secondary induced resistance in V
13 V1=2220; //Primary voltage drop in V
14 R=8; //Rate of transformer in KVA
15 K=E2/E1; // Transformer voltage ratio
16 cosQ=0.8; //Power factor
17 \sin Q = 0.6; //\sin e \text{ of } Q
18
19 //CALCULATIONS
20 RO2=R2+(K^2*R1); // Resistance referred to the
      secondary in ohms
21 X02=X2+(K^2*X1); // Reactance referred to the secondary
      in ohms
22 I2=((R*1000)/E2);//Secondary full load current in A
V02=(I2*R02*cosQ)+(I2*X02*sinQ);//Secondary voltage
      drop in V
24 V2=E2-V02; //Secondary terminal voltage in V
25
26 //OUTPUT
27 mprintf('Secondary terminal voltage at full load is
     \%3.1 \, f \, V', V2)
28
                               END OF PROGRAM
29 //=
```

Scilab code Exa 2.27 Voltage regulation

```
1 / Chapter -2, Example 2.27, Page 2.49
2 //
3 clc
4 clear
6 //INPUT DATA
7 Tr=36; //Transformer rating in terms of KVA
8 E1=5000; // Primary induced emf in V
9 E2=500; // Secondary induced emf in V
10 R01=22; //Winding resistance referred to the primary
     in ohm
11 X01=36; //Winding reactance referred to primary in
     ohm
12 cosQ1=0.8; // Primary power factor
13 cosQ2=0.8; //Secondary power factor
14 \sin Q1 = 0.6; //\sin e of Q1
15
16 //CALCULATIONS
17 I1=((X01*1000)/E1);//Full load primary current in A
18 Vd=(I1*R01*cosQ1)+(I1*X01*sinQ1);//Secondary voltage
       drop in V
19 V=(Vd/E1)*100; // Percentage voltage regulation in %
20
21 //OUTPUT
22 mprintf('Percentage voltage regulation is %3.1 f
     percent', V)
23
24 / =
                              END OF PROGRAM
```

Scilab code Exa 2.28 Voltage regulation

```
1 / Chapter -2, Example 2.28, Page 2.51
2 / /
3 clc
4 clear
6 //INPUT DATA
7 Rp=1; // Percentage resistance drop in percentage
8 Xp=4; // Percentage reactance drop in percentage
9 cosQ1=0.8; //Lagging power factor
10 sinQ1=0.6; //Sine of Q1
11 cosQ2=1; //Power factor
12 sinQ2=0; // Sine of Q2
13 cosQ3=0.8; //Leading power factor
14 \sin Q3 = 0.6; // Sine of Q3
15
16 //CALCULATIONS
17 Vla=(Rp*cosQ1)+(Xp*sinQ1);//Percentage secondary
      voltage drop for lagging power factor in
     percentage
18 V=(Rp*cosQ2)+(Xp*sinQ2);//Percentage secondary
     voltage drop for unity power factor in percentage
19 Vle=(Rp*cosQ3)-(Xp*sinQ3);//Percentage secondary
      voltage drop for leading power factor in
     percentage
20
21 //OUTPUT
22 mprintf('Secondary voltage drop for lagging power
      factor is %3.1f percent\nSecondary voltage drop
     for unity power factor is %3.1f percent\
     nsecondary voltage drop for leading power factor
     is %3.1f percent', Vla, V, Vle)
23
                              END OF PROGRAM
24 / =
```

Scilab code Exa 2.29 Power factor and regulation

```
1 / Chapter -2, Example 2.29, Page 2.52
3 clc
4 clear
6 //INPUT DATA
7 Resistance=3;//% Resistance drop
8 Reactance=6;//% Reactance drop
9
10 //CALCULATIONS
11 q=atand(Reactance/Resistance);//Phase angle in
     degree
12 cosq=cosd(q);//Power factor
13 Regulation=((Resistance*cosq)+(Reactance*sind(q)));
     //% Regulation at the power factor
14
15 //OUTPUT
16 mprintf('Power factor is %3.2f \nPercentage
     regulation at this power factor is %3.1f percent'
     ,cosq,Regulation)
17
          END OF PROGRAM
```

Scilab code Exa 2.30 Parameters of a transformer

```
1 / Chapter -2, Example 2.30, Page 2.57
```

```
2 //
```

```
3 clc
4 clear
6 //INPUT DATA
7 V1=250; // Primary voltage in V
8 V2=100; //Secondary voltage in V
9 I1=0.4; //Primary current in A
10 Wo=36; //No load power input in W
11
12 //CALCULATIONS
13 K=(V2/V1); // Voltage transformation ratio
14 q=acosd(Wo/(V1*I1));//Phase angle in degree
15 Im=(I1*sind(q));//Magnetising current in A
16 Iw=(I1*cosd(q));//Working current in A
17 I=(I1*V1*cosd(q)); //Iron loss in W
18
19 //OUTPUT
20 mprintf('(a) Turns ratio is \%3.1 f \setminus n(b) Magnetising
      current is %3.3 f A \n(c) Working current is %3.3 f
      A \backslash n(d) Iron loss is \%3.0 \, f \, W', K, Im, Iw, I)
21
                                       END OF PROGRAM
```

Scilab code Exa 2.31 Primary voltage and power factor

3 clc

4 clear

```
5
6 //INPUT DATA
7 I2=400; // Full load secondary current in A
8 I1=(I2*0.2); // Full load secondary current in A
9 K=(I1/I2);//Turns ratio
10 Z1=complex(0.5,1.5);//Transformer parameter
11 Z2=complex(0.02,0.05);//Transformer parameter
12
13 //CALCULATIONS
14 Zo1=Z1+(Z2/K^2);//Transformer parameter
15 Vsc=(I1*Zo1);//Primary voltage under short circuit
     test in V
16
  [A B]=polar(Vsc); // Primary voltage under short
     circuit test in V in polar form
17 B=atand(imag(Zo1)/real(Zo1));//Phase angle in degree
18
19 //OUTPUT
20 mprintf ('Primary voltage under short circuit test is
      %3.1 f and %3.2 f degree V (polar form)', A, B)
21
22 //———END OF PROGRAM
```

Scilab code Exa 2.32 Equivalent resistance and leakage reactance

```
3 clc

4 clear

5 6 //INPUT DATA

7 Q=250*1000;//Rating of a transformer in VA

8 V1=11000;//Rated primary voltage in V
```

1 / Chapter -2, Example 2.32, Page 2.58

2 / /

```
9 V2=2200; //Rated secondary voltage in V
10 N1=1000; //Number of turns in the primary
11 N2=200; // Number of turns in the secondary
12 R1=1.5; // Primary resistance in ohm
13 R2=0.05; // Secondary resistance in ohm
14 Vsc=600; // Primary voltage when secondary is short
      circuited in V
15 n=0.99; // Efficiency of the transformer
16
17 //CALCULATIONS
18 K=(N2/N1); //Turn ratio
19 I1=(Q/(V1*n)); // Full load primary current in A
20 Zo1=(Vsc/I1); // Equivalent reactance in ohm
21 R2i=(R2/K^2); // Equivalent secondary resistance in
     ohm
22 Ro1=(R1+R2i); // Equivalent primary resistance in ohm
23 Xo1=sqrt(Zo1^2-Ro1^2); // Equivalent ractance in ohm
24
25 //OUTPUT
26 mprintf ('Equivalent resistance referred to primary
     is %3.2 f ohm \nEquivalent reactance referred to
     primary is %3.2 f ohm', Ro1, Xo1)
27
                         END OF PROGRAM
28 //==
```

Scilab code Exa 2.33 Efficiency of transformer

```
1 // Chapter -2, Example 2.33, Page 2.64
2 //
```

```
3 clc
4 clear
5
```

```
6 //INPUT DATA
7 L=400; // Constant or Iron losses in W
8 C=700; // Full load copper loss in W
9 Q=40000; // Rating of transformer in VA
10 cosq=0.85; //Load power factor
11
12 //CALCULATIONS
13 P=(Q*cosq); // Full load output in W
14 LC=(L+C); // Total full load losses in W
15 IP=(P+LC); // Full load input in W
16 n=(P/IP)*100; // Full load efficiency
17 P2=(0.5*Q*cosq); // Half load output in W
18 LC2=(L+(0.5^2*C)); //Total losses at half loads in W
19 IP2=(P2+LC2); // Half load input in W
20 n2=(P2/IP2)*100; // Half load efficiency
21
22 //OUTPUT
23 mprintf('Efficiency of the transformer at full load
     is %3.2f percent \nEfficiency of the transformer
     at half load is %3.2f percent',n,n2)
24
                             END OF PROGRAM
25
```

Scilab code Exa 2.34 Parameters of a transformer

1 / Chapter - 2, Example 2.34, Page 2.65

```
2 //
3 clc
4 clear
5
6 //INPUT DATA
7 Q=50000; // Rating of the transformer in VA
```

```
8 Pi=500; // Constat losses in W
9 Pcu=900; // Full load variable losses in W
10 cosq=0.8; //Power factor
11
12 //CALCULATIONS
13 nFL=((Q*cosq)/((Q*cosq)+Pi+Pcu))*100; //Full load
     efficiency
14 L=(Q*sqrt(Pi/Pcu))/1000;//Load at which transformer
     operates at maximum efficiency in KVA
15 n=((L*1000)/((L*1000)+Pi+Pi))*100;//Maximum
      efficiency
16
17 //OUTPUT
18 mprintf('a) Full load efficiency is \%3.2f percent \nb
     Load at which transformer operates at maximum
     efficiency is %3.2 f KVA \nc) Maximum efficiency is
      \%3.2 f percent', nFL,L,n)
19
                            END OF PROGRAM
20
```

Scilab code Exa 2.35 Efficiency at full load

```
1 // Chapter -2, Example 2.35, Page 2.66
2 //
```

```
3 clc
4 clear
5
6 //INPUT DATA
7 V1=5000; //Primary voltage in V
8 V2=200; //Secondary voltage in V
9 Q=60000; //Rating of transformer in VA
10 R1=8; //Primary resistance in ohm
```

```
11 R2=0.009; //Secondary resistance in ohm
12 Io=0.4; //No load primary current in A
13 cosq=0.29; //Power factor
14
15 //CALCULATIONS
16 K=(V2/V1); //Turn ratio
17 Cu = ((Q/V1)^2*(R1+(R2/K^2))); //Full load copper
     losses in W
18 C=(V1*Io*cosq); // Constant losses in W
19 I1=(Q/V1);//Primary current in A
20 nFL = ((V1*I1*0.8)/((V1*I1*0.8)+(Cu+C)))*100; //Full
     load efficiency of the transformer
21
22 //CALCULATIONS
23 mprintf ('Full load efficiency of the transformer is
     %3.2 f percent', nFL)
24
                    END OF PROGRAM
```

Scilab code Exa 2.36 Secondary current and maximum efficiency

```
3 clc
4 clear
5
6 //INPUT DATA
7 V1=500; //Primary voltage in V
8 V2=100; //Secondary voltage in V
9 K=(V2/V1); //Turn ratio
10 R1=0.04; //Primary resistance in ohm
11 R2=0.03; //Secondary resistance in ohm
```

1 / Chapter - 2, Example 2.36, Page 2.67

2 / /

```
12 Pi=200; //Iron or constant lossses in W
13
14 //CALCULATIONS
15 I2=sqrt(Pi/(R2+(R1*K^2)));//Secondary current in A
16 nmax1=((V2*I2)/((V2*I2)+Pi+Pi))*100;//Maximum
     efficiency at unit power factor
17 nmax8 = ((V2*I2*0.8)/((V2*I2*0.8)+Pi+Pi))*100;//
     Maximum efficiency at 0.8 power factor
18
19 //OUTPUT
20 mprintf ('Maximum efficiency at unit power factor is
     %3.2f percent \nMaximum efficiency at 0.8 power
     factor is %3.2 f percent', nmax1, nmax8)
21
                         END OF PROGRAM
22 / =
```

Scilab code Exa 2.37 Constant losses and full load copper losses

1 / Chapter - 2, Example 2.37, Page 2.68

```
13 L=((Q*1000*cosq)/nFL)-(Q*1000*cosq);//Full load
      losses in W
14 L2=((0.5*Q*1000*100)/99)-(0.5*Q*1000); //Half load
      losses in W
15 A = [0.25, 0.25;
16
      1,0.25]
17 B = [(0.25*L);
18
       L2]
19 A=inv(A)*B;//Soving for Pi and Pc
20
21
22 //OUTPUT
23 mprintf ('Constant losses are %3.2 f W\nFull load
      copper losses are \%3.2 \, \mathrm{f} \, \mathrm{W}, A(1), A(2))
24
                            END OF PROGRAM
25
```

Scilab code Exa 2.38 All day efficiency

```
1 //Chapter -2, Example 2.38, Page 2.71
2 //
3 clc
4 clear
5
```

```
7 T=4;//Total loss in kW
8 Q=120;//Rating of transformer in KVA
9 DF=4;//Duration of operation at full load in h
10 DH=4;//Duration of operation at half load in h
11 DN=16;//Duration of operation at no load in h
```

12 13 //CALCULATIONS

6 //INPUT DATA

```
14 EF=(Q*1*T); //Energy delivered for 4 hours full load
     in kWh
15 EH=(0.5*Q*1*T); //Energy delivered for 4 hours half
     load in kWh
16 EN=0; //Energy delivered for 16 hours
17 E24=(EH+EF+EN); // Total energy deliverd for 24 hours
     in kWh
18 C=(1.5*24); // Constant losses for 24 hours in kWh
19 C4=(1.5*4); // full load copper losses for 4 hours in
     kWh
20 Ch4 = (0.5^2*1.5*4); // Half load copper losses for 4
     hours in kWh
21 CN=0; //No load copper loss for 16 hours
22 TE=(C+C4+Ch4+CN); // Total energy losses for 24 hours
23 n = (E24/(E24+TE))*100; //All day efficiency
24
25 //OUTPUT
26 mprintf('All day efficiency is %3.1f percent',n)
27
                          END OF PROGRAM
28 / =
```

Scilab code Exa 2.39 All day efficiency

2 / /

```
3 clc
4 clear
5
6 //INPUT DATA
7 Q=10;//Rating of transformer in KVA
8 n=0.96;//Full load efficiency
9 DN=12;//Duration of no load in h
```

1 / Chapter - 2, Example 2.39, Page 2.72

```
10 DH=6; // Duration of half load in h
11 D4=4; // Duration of 1/4th load in h
12 DF=2; // Duration of full load in h
13
14 //CALCULATIONS
15 O=(Q*1); // Full load output in kW
16 L=((0/n)-0)*1000; //Full load total losses in W
17 Fcu=(L/2); // Full load copper; osses in W
18 Fc=Fcu; // Constant losses
19 LN=0; //No load energy delivered for 12 h
20 LF=(DF*0); // Full load energy delivered for 2 hours
21 L6=(DH*O*0.5); // Half load energy delivered for 6
     hours
22 L4=(D4*0*0.25); //1/4th load energy delivered for 4
     hours
  TE=(LN+LF+L6+L4); // Total energy delivered for 24
23
     hours in kWh
24 LLC=(Fc*24);//Constant losses for 24 h
25 LLF=(DF*Fc); // Full load copper losses delivered for
     2 hours
26 LL6=(DH*Fc*0.5^2); // Half load copper losses
      delivered for 6 hours
  LL4=(D4*Fc*0.25^2); //1/4th load copper losses
27
      delivered for 4 hours
  LTE=(LLC+LLF+LL6+LL4)/1000;//Total copper losses
      delivered for 24 hours in kWh
29 nall=((TE/(TE+LTE))*100);//All day efficiency
30
31 //OUTPUT
32 mprintf('All day efficiency is %3.1f percent', nall)
33
34 / =
                               END OF PROGRAM
```

Scilab code Exa 2.40 Current and output of transformer

```
1 / Chapter -2, Example 2.40, Page 2.75
2 / /
3 clc
4 clear
6 //INPUT DATA
7 VLP=11000; // Primary line voltage in V
8 VLS=440; //Secondary line voltage in V
9 Vphp=11000; // Primary phase voltage in V
10 Vphs=(440/sqrt(3));//Secondary phase voltage in V
11 ILP=4; // Primary line current in A
12 q=0.8; //Power factor
13
14 //CALCULATIONS
15 Iphp=(ILP/sqrt(3));//Primary phase current in A
16 K=(Vphs/VLP);//Turn ratio
17 I2ph=(Iphp/K);//Secondary phase current in A
18 P=(sqrt(3)*VLS*VLP*q)/10^5; //Output of the
     transformer in kW
19
20 //OUTPUT
21 mprintf('Primary phase current is \%3.2 f A and
     Secondary phase current is %3.0 f A \nOutput of
     the transformer is %3.0 f kW', Iphp, I2ph, P)
22
      END OF PROGRAM
```

Scilab code Exa 2.41 Parameters of an ideal transformer

```
1 //Chapter -2, Example 2.41, Page 2.77 2 //
```

```
3 clc
4 clear
6 //INPUT DATA
7 VLP=2200; //Primary line voltage in V
8 Vphp=VLP; // Primary phase voltage in V
9 VLS=440; //Secondary line voltage in V
10 Vload=440; //Load line phase voltage in V
11 Z=complex(8,6);//Load impedence in complex form
12
13 //CALCULATIONS
14 X = sqrt((real(Z))^2 + (imag(Z))^2); //X value for load
      current
15 Y=atand(imag(Z)/real(Z));//Phase angle in degree
16 ILS=(VLS/X); //Load current in A
17 PS=(sqrt(3)*VLS*ILS*cosd(Y))/1000;//Power delivered
     by secondary in kW
18 K=((Vload/sqrt(3))/VLP);//Turn ratio
19 IPS=(sqrt(3)*ILS);//Secondary phase current in A
20 IPP=(K*IPS); // Primary phase current in A
21
22 //OUTPUT
23 mprintf('a)Load delivered by the secondary is \%3.1 f
     kW \nb) Current in primary is %3.1f A and Current
     in secondary is %3.2 f A', PS, IPP, IPS)
24
25 //=
                                    END OF PROGRAM
```

Chapter 3

Three Phase Induction Motor

Scilab code Exa 3.1 Frequency of rotor current

```
3 clc
4 clear
6 //INPUT DATA
7 N=900;//Rotor speed in rpm
8 f=50; //Power supply frequency in Hz
9 P=6;/No. of poles
10
11 //CALCULATIONS
12 Ns=(120*f)/P;//Synchronous speed in rpm
13 s = ((Ns - N) / Ns) * 100; // % slip
14 f1=(s*f)/100;//Frequency of rotor current in Hz
15
16 //OUTPUT
17 mprintf('Slip of a 3 phase motor is %i percent\
     nFrequency of rotor current is %i Hz',s,f1)
18
```

```
19 //————END OF PROGRAM
```

Scilab code Exa 3.2 Full load speed of the motor

```
1 / Chapter -3, Example 3.2, Page 3.6
2 / /
3 clc
4 clear
6 //INPUT DATA
7 N=600; //Speed of 12 pole 3 phase alternator in rpm
8 P=12; //No. of poles of alternator
9 n=6; //No. of poles in induction motor
10 s=2.5; //slip of the motor in %
11
12 //CALCULATIONS
13 f=(N*P)/120;//Alternator supply frequency in Hz
14 Ns=(120*f)/n;//Synchronous speed in rpm
15 N1=(Ns-((s*Ns)/100)); //Full load speed of the motor
     when the slip is 2.5%
16
17 //OUTPUT
18 mprintf('Full load speed of the motor when the slip
     is 2.5 \text{ percent} = \% \text{irpm}', N1)
19
20 // END OF PROGRAM
```

Scilab code Exa 3.3 Slip and speed of rotor

```
1 / Chapter -3, Example 3.3, Page 3.7
2 / /
3 clc
4 clear
6 //INPUT DATA
7 P=6;//Number of poles
8 f=50; //Supply frequency in Hz
9 f1=3;//Rotor current frequency in Hz
10
11 //CALCULATIONS
12 s=(f1/f)*100;//Slip of the motor in %
13 Ns=(120*f)/P;//Synchronous speed in rpm
14 N=(Ns-((s*Ns)/100));//Speed of the motor in rpm
15
16 //OUTPUT
17 mprintf('Slip of the motor is %i percent\nSpeed of
     the motor is %i rpm',s,N)
18
        END OF PROGRAM
```

Scilab code Exa 3.4 Shaft output and torque

1 / Chapter -3, Example 3.4, Page 3.12

```
3 clc
4 clear
5 6 //INPUT DATA
7 VL=440;//Supply line voltage in V
```

```
8 P=4; //Number of poles
9 IL=75; //Line current in A
10 cosx=0.8; //Power factor
11 n=0.8; // Efficiency of the motor
12 s=0.03; // slip of the motor
13 f=50; // Frequency in Hz
14
15 //CALCULATIONS
16 Pm=(sqrt(3)*VL*IL*cosx*n);//Output power in W
17 Ns=(120*f)/P;//Synchronous speed in rpm
18 N=(1-s)*Ns; // Actual speed in rpm
19
20 //OUTPUT
21 mprintf('Shaft output power is %3.0f W\nActual speed
      is %i rpm', Pm, N)
22
23 // END OF PROGRAM
```

Scilab code Exa 3.5 Parameters of induction motor

1 / Chapter -3, Example 3.5, Page 3.13

2 //

```
3 clc
4 clear
5
6 //INPUT DATA
7 P=6;//Number of poles
8 f=50;//Supply frequency in Hz
9 Tm=120;//Shaft torque in N.m
10 f1=2;//Rotor current frequency in Hz
11 L=5;//Amount of constant losses in N.m
12 C=500;//Amount of core losses in W
```

```
13
14 //CALCULATIONS
15 Ns=(120*f)/P;//Synchronous speed in rpm
16 s=(f1/f);//Slip of the motor
17 N=(1-s)*Ns; // Actual speed in rpm
18 P = (2*3.14*N*Tm)/60; //Shaft power in W
19 Pm = (2*3.14*N*(Tm+L))/60000; // Mechanical power output
       in kW
20 R=(s*Pm)/(1-s);//Rotor copper losses in kW
21 I = (Pm+R+(L/10)); //Motor input in kW
22 \text{ n=(Pm/I)}*100; // Machine efficiency}
23
24 //OUTPUT
25 mprintf('a) Mechanical power output is %3.3 f kW\nb)
      Rotor copper losses is %3.2fkW\nc) Motor input is
     %3.3 f kW\nd) Machine efficiency is %3.1 f percent',
      Pm, R, I, n)
26
                               END OF PROGRAM
27
```

Scilab code Exa 3.6 Slip and torque

```
3 clc
4 clear
5
6 //INPUT DATA
7 VL=11000; //Supply line voltage in V
8 P=12; //Number of poles
9 f=50; //Supply frequency in Hz
10 R2=0.2; //Rotor resistance in ohm
```

1 / Chapter -3, Example 3.6, Page 3.17

```
11 X2=1.2; //Rotor reactance at stand still in ohm
12 N=480; // Full load speed in rpm
13
14 //CALCULATIONS
15 s=(R2/X2);//Slip at maximum torque
16 Ns=(120*f)/P;//Synchronous speed in rpm
17 s1=(Ns-N)/Ns;//Slip at full load
18 T = ((R2^2 + (s1^2 * X2^2)) / ((2 * X2) * (s1 * R2))); // Ratio of
     maximum and full load torque
  T1 = ((R2^2 + X2^2)/(2 \times X2 \times R2)); //Ratio of maximum and
      starting torque
20
21 //OUTPUT
22 mprintf('a) Slip at maximum torque is %3.2 f \nb) Ratio
       of maximum and full load torque is \%3.2 f \nc)
      Ratio of maximum and starting torque is %3.2 f',s,
      T, T1)
23
                            END OF PROGRAM
24 / =
```

Scilab code Exa 3.7 Maximum torque and starting torque

```
3 clc
4 clear
5
6 //INPUT DATA
7 P=6; //Number of poles
8 f=50; //Supply frequency in Hz
9 R2=0.4; //Rotor reisitance in ohm
```

10 X2=4; // Rotor standstill reactance in ohm

1 / Chapter -3, Example 3.7, Page 3.18

```
11 T1=2; // Ratio of maximum torque to starting torque
12
13 //CALCULATIONS
14 Ns=(120*f)/P;//Synchronous speed in rpm
15 Sm=(R2/X2); // Slip at maximum torque
16 NTM=(Ns*(1-Sm)); //Speed of the motor at maximum
     torque in rpm
17 T=((R2^2+X2^2)/(2*R2*X2));//Ratio of maximum torque
     to starting torque
18 Rext = (sqrt(X2^2/((2*T1)-1))-R2); // Additional
     resistance required for the ratio of maximum
     torque to the statring torque to be 2 in ohm
19
20 //OUTPUT
21 mprintf('a) Speed of the motor at maximum torque is
     %i rpm \n b) Ratio of maximum torque to starting
     torque is %3.2 f \n c) Additional resistance
     required for the ratio of maximum torque to the
     starting torque to be 2 is %3.1f ohm', NTM, T, Rext)
22
23 // END OF PROGRAM
```

Chapter 5

Synchronous and Special Machines

Scilab code Exa 5.1 Emf generated and line voltage

```
17 //OUTPUT
18 mprintf('(i)Emf generated per phase is %3.1 f V \n(ii
     )Line voltage is %3.1f V', Eph, LV)
19
20 //———END OF PROGRAM
  Scilab code Exa 5.2 Induced emf per phase
1 / Chapter - 5, Example 5.2, Page 5.7
2 //
3 clc
4 clear
6 //INPUT DATA
7 P=8; //Number of poles
8 f=50;//Frequency in Hz
9 Z=(36*8);//Number of conductors
10 q=0.04; //Flux in Wb
11 kp=1; // Pitch factor
12 kd=1; // Distribution factor
13
14 //CALCULATIONS
15 Eph=(2.22*kp*kd*f*q*Z);/EMF generated per phase in
16
17 //OUTPUT
18 mprintf('Induced emf per phase is %3.1 f V', Eph)
19
20 //=____END OF PROGRAM
```

Scilab code Exa 5.3 Number of conductors

```
1 / Chapter -5, Example 5.3, Page 5.7
3 clc
4 clear
6 //INPUT DATA
7 P=8;//Number of poles
8 EL=11000; //Line voltage of the alternator in kV
9 Eph=(EL/sqrt(3));//Phase voltage per pole in V
10 kp=1; // Pitch factor
11 kd=0.98; // Distribution factor
12 q=0.17; // Flux in Wb
13 f=50; // Frequency in Hz
14
15 //CALCULATIONS
16 Z=(Eph/(2.22*kp*kd*f*q));/Number of conductors per
     phase
17
18 //OUTPUT
19 mprintf('Number of conductors per phase is %3.0 f', Z)
20
21 // END OF PROGRAM
```

Scilab code Exa 5.4 Synchronous reactance

```
1 / Chapter - 5, Example 5.3, Page 5.7
```

```
2 //
```

```
3 clc
4 clear
6 //INPUT DATA
7 Eph=(6.6*10^3)/sqrt(3);//Phase voltage in V
8 Isc=145; // Short circuit current in A
9 Ra=1;//Resistance of stator winding in ohm
10
11 //CALCULATIONS
12 Zs=(Eph/Isc);//Synchronous impedence in ohm
13 Xs=sqrt(Zs^2-Ra^2);//Synchronous reactance in ohm
14
15 //OUTPUT
16 mprintf('Synchronous reactance is %3.2 f ohm', Xs)
17
                        END OF PROGRAM
18 //=
```