Sorting

Selection Sort

- Given is a list L of n value {L[0], ..., L[n-1]}
- Divide list into unsorted (left) and sorted part (right initially empty):

```
Unsorted: {L[0], ..., L[n-1]} Sorted: {}
```

- In each pass find largest value and place it to the right of the unsorted part using a single swap (only one exchange for every pass through the list)
- Reduce size of unsorted part by one and increase size of sorted part by one. After ith pass:

```
Unsorted: {L[0], ..., L[n-1-i]} Sorted: {L[n-i],...,L[n-1]}
```

Repeat until unsorted part has a size of 1 – then all elements are sorted

Selection Sort

Insertion Sort

- Given is a list L of n value {L[0], ..., L[n-1]}
- Divide list into sorted (left initially only one element) and sorted part (right):

```
Sorted: {L[0]} Unsorted: {L[1], ..., L[n-1]}
```

- In each pass take left most element from unsorted part and place it into correct position of sorted part
- Reduce size of unsorted part by one and increase size of sorted part by one. After ith pass::

```
Sorted: {L[0],...,L[i]} Unsorted: {L[i+1], ..., L[n-1-i]}
```

Repeat until unsorted part is an empty list – then all elements are sorted

Insertion Sort

54	26	93	17	77	31	44	55	20	Assume 54 is a sorted list of 1 item
26	54	93	17	77	31	44	55	20	inserted 26
26	54	93	17	77	31	44	55	20	inserted 93
17	26	54	93	77	31	44	55	20	inserted 17
17	26	54	77	93	31	44	55	20	inserted 77
17	26	31	54	77	93	44	55	20	inserted 31
17	26	31	44	54	77	93	55	20	inserted 44
17	26	31	44	54	55	77	93	20	inserted 55
17	20	26	31	44	54	55	77	93	inserted 20

Remember:

- Insertion sort has fewer comparisons than Selection sort
- Selection sort has fewer moves-swaps than Insertion sort
- => IDEA: compare/shift non-neighbouring elements

Shell Sort (diminishing increment sort)

- On average shell sort has fewer comparisons than Selection sort and Bubble sort, and fewer moves than Insertion sort
- Shell sort is based on the Insertion sort algorithm,
- BUT: instead of shifting elements many times by one step, it makes larger moves

- Divide the list into lots of smaller sublists, e.g., gap (increment) used below is 3
- Instead of breaking the list into sublists of contiguous items, the Shell sort uses an increment i (gap) to create a sublist by choosing all items that are i items apart

```
Sublist 1
Sublist 2
Sublist 2
Sublist 2
Sublist 3

Insertion Sort 3, 19, 47
Insertion Sort 58, 58
Insertion Sort 72, 72

Sublist 1
Sublist 2
Sublist 3

ONE ITERATION
(with 3 sublists)
```

- Each of which is sorted using an insertion sort
- Then repeat sorting with reduced gap (=> fewer, but larger sublists) until gap is 1.

- list of 9 items
- increment of 3
- 3 sublists
- Sort each by an Insertion sort

- list not completely sorted
- But by sorting sublists, we have moved items closer to where they actually belong

- final insertion sort
 using an increment
 of one (standard
 Insertion sort)
- sorting with gap 1
 very efficient
 because list almost
 sorted due to
 previous steps
- reduced number of shifting operations necessary to put list in its final order

 Choose a gap size, do an Insertion sort on all sublists using this chosen gap size (this is a total of one pass of the collection), repeat using smaller gap sizes until finally gap size is one

 In practice, the final insertion sort needs to move few elements

- A default option for gap sizes is 2^k-1, i.e. [..., 31, 15, 7, 3,1]
- Research in the optimal gap sequence is ongoing
- A often quoted empirical derived gap sequence is [701, 301, 132, 57, 23, 10, 4, 1]

- increments are chosen is unique feature of Shell sort
- we begin with n/2 sublists
- on next pass, n/4 sublists are sorted
- eventually, a single list is sorted with the basic Insertion sort


```
def shellSort(alist):
                                      Eg. 8//2 \rightarrow 4 i.e gap of 4
    sublistcount = len(alist)//2
    while sublistcount > 0:
      for startposition in range(sublistcount):
        gapInsertionSort(alist,startposition,sublistcount)
      print("After increments of size", sublistcount, "The list is", alist)
      sublistcount = sublistcount // 2
def gapInsertionSort(alist,start,gap):
    for i in range(start+gap,len(alist),gap):
        currentvalue = alist[i]
        position = i
        while position>=gap and alist[position-gap]>currentvalue:
            alist[position]=alist[position-gap]
            position = position-gap
        alist[position]=currentvalue
```

```
alist = [54,26,93,17,77,31,44,55,20]
shellSort(alist)
print(alist)
```

[54, 26, 93, 17, 77, 31, 44, 55, 20]

[20, 26, 44, 17, 54, 31, 93, 55, 77]

[20, 26, 44, 17, 54, 31, 93, 55, 77]

[20, 17, 44, 26, 54, 31, 77, 55, 93]

After increments of size 1 the list is [17, 20, 26, 31, 44, 54, 55, 77, 93]

After increments of size 2 the list is

After increments of size 4 the list is

Quiz

Suppose you have the following list of numbers to sort

Which answer illustrates the contents of the list after all swapping is complete for a gap size of 3?

- A. [5, 3, 8, 7, 16, 19, 9, 17, 20, 12] \(\sqrt{1}\)
- B. [3, 7, 5, 8, 9, 12, 19, 16, 20, 17]
- C. [3, 5, 7, 8, 9, 12, 16, 17, 19, 20]
- D. [5, 16, 20, 3, 8, 12, 9, 17, 20, 7]

- this is an improvement on all the previous sorting algorithms
- a general analysis of shell sort is beyond the scope of this module
- Big-O for Shell sort depends on the gap sequence and input values
- we can say that it tends to fall somewhere between O(n) and $O(n^2)$

- Gap sequence n/2, n/4, ..., $1 => worst case O(n^2)$
- Gap sequence $2^{k}-1$ (..., 31, 15, 7, 3, 1) => worst case $O(n^{1.5})$
- Gap sequence ..., 109, 41, 19, 5, 1 => worst case $O(n^{1.333})$

This is a divide and conquer algorithm:

- Cut the list in half
- Sort each half
- Merge the two sorted halves

Merge sort is a recursive algorithm

- continually splits a list in half
- If list is empty or has one item, it is sorted (base case)
- If list has more than one item, we split the list and recursively invoke a merge sort on both halves
- Once the two halves are sorted, the fundamental operation, called a merge, is performed
- Merging is the process of taking two smaller sorted lists and combining them together into a single, sorted, new list

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Merge

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge


```
def mergeSort(alist):
                                    Merge Sort
    print("Splitting ",alist)
    if len(alist)>1:
        mid = len(alist)//2
        lefthalf = alist[:mid]
        righthalf = alist[mid:]
                                    mergeSort function
        mergeSort(lefthalf)
                                    is invoked on left
        mergeSort(righthalf)
                                    half and right half
        i=0
        j=0
        k=0
        while i < len(lefthalf) and j < len(righthalf):</pre>
            if lefthalf[i] <= righthalf[j]:</pre>
                 alist[k]=lefthalf[i]
                 i=i+1
            else:
                 alist[k]=righthalf[j]
                 j=j+1
            k=k+1
        while i < len(lefthalf):</pre>
            alist[k]=lefthalf[i]
            i=i+1
            k=k+1
        while j < len(righthalf):</pre>
            alist[k]=righthalf[j]
            j=j+1
            k=k+1
    print("Merging ",alist)
```

merging the two smaller sorted lists into a larger sorted list

```
alist = [54,26,93,17,77,31,44,55,20]
mergeSort(alist)
print(alist)
```

```
Splitting [54, 26, 93, 17, 77, 31, 44, 55, 20]
                                               Merging [77]
Splitting [54, 26, 93, 17]
                                               Splitting [31]
Splitting [54, 26]
                                               Merging [31]
Splitting [54]
                                               Merging [31, 77]
Merging [54]
                                               Splitting [44, 55, 20]
Splitting [26]
                                               Splitting [44]
                                               Merging [44]
Merging [26]
Merging [26, 54]
                                               Splitting [55, 20]
Splitting [93, 17]
                                               Splitting [55]
Splitting [93]
                                               Merging [55]
Merging [93]
                                               Splitting [20]
Splitting [17]
                                               Merging [20]
Merging [17]
                                               Merging [20, 55]
Merging [17, 93]
                                               Merging [20, 44, 55]
                                               Merging [20, 31, 44, 55, 77]
Merging [17, 26, 54, 93]
Splitting [77, 31, 44, 55, 20]
                                               Merging [17, 20, 26, 31, 44, 54, 55, 77, 93]
Splitting [77, 31]
                                               [17, 20, 26, 31, 44, 54, 55, 77, 93]
```

Splitting [77]

```
alist = [54,26,93,17,77,31,44,55,20] Splitting [54, 26, 93, 17, 77, 31, 44, 55, 20]
mergeSort(alist)
                                               Splitting [54, 26, 93, 17]
print(alist)
                                               Splitting [54, 26]
                                               Splitting [54]
                                               Splitting [26]
                                               Merging [26, 54]
                                               Splitting [93, 17]
                                               Splitting [93]
                                               Splitting [17]
                                               Merging [17, 93]
                                               Merging [17, 26, 54, 93]
                                               Splitting [77, 31, 44, 55, 20]
                                               Splitting [77, 31]
                                               Splitting [77]
                                               Splitting [31]
                                               Merging [31, 77]
                                               Splitting [44, 55, 20]
                                               Splitting [44]
                                               Splitting [55, 20]
                                               Splitting [55]
                                               Splitting [20]
                                               Merging [20, 55]
Modified Output
                                               Merging [20, 44, 55]
                                               Merging [20, 31, 44, 55, 77]
                                                Merging [17 20 26 31 44 54 55 77 93]
```


Suppose you have the following list of numbers to sort

which answer illustrates the list to be sorted after 3 recursive calls to mergesort?

- A. [16, 49, 39, 27, 43, 34, 46, 40]
- B. [21,1]
- C. [21, 1, 26, 45]
- D. [21]

Quiz

Suppose you have the following list of numbers to sort

which answer illustrates the first two lists to be merged?

- A. [21, 1] and [26, 45]
- B. [[1, 2, 9, 21, 26, 28, 29, 45] and [16, 27, 34, 39, 40, 43, 46, 49]
- C. [21] and [1] $\sqrt{}$
- D. [9] and [16]

- The time for sorting a list of size 1 is constant, i.e. T(1)=1
- The time for sorting a list of size n is the time of sorting the two halves plus the time for merging, i.e. T(n) = 2*T(n/2)+n
- Can prove: T(n) = n + n log n
- => Big-O is O(n log(n))

Summary

	Best	Worst
Bubble Sort (lecture)	O(n^2)	O(n^2)
Bubble Sort (optimised)	O(n)	O(n^2)
Selection Sort	O(n^2)	O(n^2)
Insertion Sort	O(<i>n</i>)	O(n^2)
Shell Sort (best gap sequence)	O(<i>n</i>)	O(n (log n)^2)
Merge Sort	O(n log n)	$O(n \log n)$
Tim Sort (used in Python, hybrid of Merge Sort and Insertion Sort)	O(<i>n</i>)	O(n log n)

Note: A comparison based sorting algorithm can NOT be better than O(n log n) in the average and worst case