Homework Assignment: Robust MPC and CBF-Based Safety Filtering for the Dubins Car Model

MAE 248: Safety for Autonomous Systems Designer: Girish Krishnan

February 19, 2025

1 Introduction and Problem Statement

In this assignment, you will implement several control strategies for the Dubins car model. The objectives are to:

- (a) Implement a **Standard Model Predictive Control (MPC)** method for trajectory planning.
- (b) Develop a **Robust MPC** formulation that accounts for bounded disturbances. You will consider different robust MPC methods (e.g., min-max formulation, tube-based MPC).
- (c) Implement a **Safety Filter** using Control Barrier Functions (CBF) that modifies a nominal control input to ensure safety with respect to obstacles.
- (d) Compare the performance of these controllers under various scenarios.

The dynamics of the Dubins car are given by:

$$x_{k+1} = x_k + v\cos(\theta_k)\,\Delta t,\tag{1}$$

$$y_{k+1} = y_k + v\sin(\theta_k)\,\Delta t,\tag{2}$$

$$\theta_{k+1} = \theta_k + u_k \, \Delta t,\tag{3}$$

where $x_k, y_k \in \mathbb{R}$ denote the position, $\theta_k \in \mathbb{R}$ the heading, v > 0 is a constant speed, and u_k is the steering control input subject to

$$u_k \in \mathcal{U} = \{ u \in \mathbb{R} \mid -w_{\max} \le u \le w_{\max} \}.$$

Obstacles in the environment are modeled as circles with centers (o_x, o_y) and radii r. To guarantee safety, a margin $\delta > 0$ is added so that the safety condition for each obstacle is:

$$(x - o_x)^2 + (y - o_y)^2 \ge (r + \delta)^2$$
.

2 Part I: Standard MPC for the Dubins Car

Objective: Develop an MPC formulation that minimizes a cost function over a finite horizon while ensuring dynamic feasibility and obstacle avoidance.

2.1 Decision Variables and Dynamics Constraints

Define the state trajectory over a prediction horizon N:

$$X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{bmatrix}, \quad Y = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_N \end{bmatrix}, \quad \Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_N \end{bmatrix},$$

and the control inputs:

$$U = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}.$$

The dynamics (1)–(3) are enforced as equality constraints:

$$x_{k+1} - x_k - v\cos(\theta_k) \Delta t = 0,$$

$$y_{k+1} - y_k - v\sin(\theta_k) \Delta t = 0,$$

$$\theta_{k+1} - \theta_k - u_k \Delta t = 0, \quad \forall k = 0, \dots, N-1.$$

2.2 Cost Function

Construct the cost function to penalize the final state error and control effort:

$$J = (x_N - x_{\text{goal}})^2 + (y_N - y_{\text{goal}})^2 + \alpha \sum_{k=0}^{N-1} u_k^2,$$

where $\alpha > 0$ is a small weight on the control effort.

2.3 Obstacle Avoidance Constraints

For each time step k and each obstacle (o_x, o_y, r) , enforce:

$$(x_k - o_x)^2 + (y_k - o_y)^2 \ge (r + \delta)^2$$
.

2.4 Task

- 1. Formulate the full nonlinear programming problem (NLP) for the standard MPC.
- 2. Use CasADi to define the decision variables, cost function, and constraints.
- 3. Solve the NLP and return the first control input u_0 .

3 Part II: Robust MPC Formulations

Objective: Extend the standard MPC formulation to account for disturbances d_k that satisfy $||d_k|| \le d_{\text{max}}$. Two common robust MPC approaches are:

- (a) **Min-Max MPC:** Formulate a min-max optimization problem that minimizes the worst-case cost over all admissible disturbance sequences.
- (b) **Tube-Based MPC:** Design a nominal MPC controller and an ancillary feedback controller to keep the system in a "tube" around the nominal trajectory.

3.1 Min-Max MPC

1. Write the disturbed dynamics:

$$x_{k+1} = x_k + v \cos(\theta_k) \Delta t + d_k^x,$$

$$y_{k+1} = y_k + v \sin(\theta_k) \Delta t + d_k^y,$$

$$\theta_{k+1} = \theta_k + u_k \Delta t,$$

with $||d_k|| \leq d_{\max}$.

- 2. Develop the robust constraints by ensuring that the obstacle avoidance constraint holds for all disturbances.
- 3. Formulate the min-max problem:

$$\min_{U} \max_{d_k \in \mathcal{D}} J(U, d),$$

and discuss possible relaxations or approximations.

3.2 Tube-Based MPC

- 1. Define a nominal system and an error dynamics for the deviation due to disturbances.
- 2. Design a feedback controller to keep the error bounded, and tighten the constraints accordingly.
- 3. Formulate the nominal MPC with tightened constraints to guarantee that the actual state remains within a tube around the nominal trajectory.

3.3 Task

- 1. Implement a robust MPC controller using one of the approaches above (or both for comparison).
- 2. Analyze the performance of your robust MPC in simulation under different disturbance bounds d_{max} .
- 3. Compare your results with the standard MPC from Part I.

4 Part III: CBF-Based Safety Filtering

Objective: Design a safety filter using Control Barrier Functions (CBF) that modifies a nominal control input u_{nom} to ensure safety with respect to obstacles.

4.1 Barrier Function and its Derivatives

For each obstacle (o_x, o_y, r) , define the barrier function:

$$h(x,y) = (x - o_x)^2 + (y - o_y)^2 - (r + \delta)^2.$$

Its time derivative is:

$$\dot{h}(x, y, \theta) = 2v \left[(x - o_x) \cos(\theta) + (y - o_y) \sin(\theta) \right].$$

A simplified second derivative approximation can be written as:

$$L_f^2 h(x, y, \theta) = 2v^2 + 2\lambda \dot{h}(x, y, \theta) + \lambda^2 h(x, y),$$

and the control-dependent term:

$$L_q L_f h(x, y, \theta) = 2v \left[(y - o_y) \cos(\theta) - (x - o_x) \sin(\theta) \right].$$

4.2 CBF Constraint

The safety condition is enforced by:

$$L_f^2 h(x, y, \theta) + L_q L_f h(x, y, \theta) u \ge 0.$$

4.3 QP Formulation

Formulate the following Quadratic Program (QP) to obtain the safe control input u_{safe} :

$$\min_{u} \frac{1}{2}(u - u_{\text{nom}})^{2}$$
s.t. $L_{f}^{2}h(x, y, \theta) + L_{g}L_{f}h(x, y, \theta) u \geq 0$, \forall obstacles, $u \in [-w_{\text{max}}, w_{\text{max}}].$

You are required to solve this QP using CVXPY.

4.4 Task

- 1. Derive the expressions for h, \dot{h} , $L_f^2 h$, and $L_g L_f h$.
- 2. Implement the QP in CVXPY that outputs u_{safe} .
- 3. Validate your safety filter by comparing the trajectories generated using the nominal controller versus the safety-filtered control.

5 Part IV: Simulation and Comparative Analysis

Objective: Evaluate and compare the performance of the Standard MPC, Robust MPC, and CBF-based Safety Filter under various scenarios.

5.1 Simulation Setup

- 1. Define the simulation parameters: time step Δt , prediction horizon N, constant speed v, control bounds w_{max} , and safety margin δ .
- 2. Set up initial conditions and goal positions.
- 3. Consider multiple scenarios by varying:
 - Disturbance bounds d_{max} for the robust MPC.
 - Obstacle configurations.
 - Presence or absence of disturbances in the simulation.

5.2 Performance Metrics

Compare the methods based on:

- 1. Goal Convergence: Distance to goal over time.
- 2. Constraint Violation: Minimum distance to obstacles.
- 3. Control Effort: Magnitude and smoothness of the control input.

5.3 Task

- 1. Simulate each control method and plot the resulting trajectories.
- 2. Provide a quantitative and qualitative comparison of the controllers.
- 3. Discuss the trade-offs between performance and robustness for each method.

6 Submission Instructions

- Submit your annotated code files (in Python) along with a brief report (PDF) summarizing your results and observations.
- Include plots comparing the trajectories and control inputs for the different methods.
- Provide detailed explanations of your implementation choices and any assumptions made.

7 Bonus

For extra credit, implement both min-max MPC and tube-based MPC, and compare their performance in environments with high disturbance levels.