Many-Stage Optimal Stabilized Runge-Kutta Methods for Hyperbolic Partial Differential Equations

Springer Journal of Scientific Computing, 2024

Daniel Doehring¹

in collaboration with $M.\ Torrilhon^1,\ G.\ Gassner^2$

¹Applied & Computational Mathematics RWTH Aachen University

²Division of Mathematics: Numerical Simulation University of Cologne

15.05.2024

Contents

- Motivation
- Stabilized Explicit Runge-Kutta Methods
- Optimization of the Stability Polynomial
- Many Stage Runge-Kutta Methods
- Summary & Outlook

Contents

- Motivation
- Stabilized Explicit Runge-Kutta Methods
- Optimization of the Stability Polynomial
- Many Stage Runge-Kutta Methods
- Summary & Outlook

Motivation

Many interesting physical phenomena are localized in space, for instance

- Shocks
- Flamefronts
- Fluid-Structure Interactions
- Interference of Waves
- ..

Motivation

Many interesting physical phenomena are localized in space, for instance

- Shocks
- Flamefronts
- Fluid-Structure Interactions
- Interference of Waves
- ..

and typically require a fine resolution in these regions of interest.

 Computational costs of uniformly refined grids are usually too high, especially in 2D/3D

- Computational costs of uniformly refined grids are usually too high, especially in 2D/3D
- Meshes are conventionally only refined in relevant regions

- Computational costs of uniformly refined grids are usually too high, especially in 2D/3D
- Meshes are conventionally only refined in relevant regions

For the 1D system of conservation laws

$$\partial_t \mathbf{u}(t,x) + \partial_x \mathbf{f}(\mathbf{u}(t,x)) = \mathbf{0}$$
 (1)

- Computational costs of uniformly refined grids are usually too high, especially in 2D/3D
- Meshes are conventionally only refined in relevant regions

For the 1D system of conservation laws

$$\partial_t \mathbf{u}(t,x) + \partial_x \mathbf{f}(\mathbf{u}(t,x)) = \mathbf{0}$$
 (1)

the CFL Condition

$$\Delta t \stackrel{!}{\leq} C_t \cdot C_x \min_{\substack{i=1,\ldots,N\\l=1,\ldots,L}} \frac{\Delta x_i}{|\mu_l(\mathbf{u}_i)|}$$
 (2)

demands a reduction in timestep Δt for reduced mesh-width Δx_i . Here, μ_I are the eigenvalues of the Jacobian $\partial_{\bf u} {\bf f}({\bf u})$.

For an <u>efficient</u> treatment of locally varying mesh widths Δx_i there are now two options:

For an <u>efficient</u> treatment of locally varying mesh widths Δx_i there are now two options:

- Take multiple smaller timesteps where required.
 - \rightarrow Local Time Stepping¹

¹ For instance: Grote et. al. SISC 2015

For an <u>efficient</u> treatment of locally varying mesh widths Δx_i there are now two options:

- Increase the temporal solver stability constant C_t locally.

$$\Delta t \stackrel{!}{\leq} C_t \cdot C_x \min_{\substack{i=1,\ldots,N\\l=1,\ldots,L}} \frac{\Delta x_i}{|\mu_l(\mathbf{u}_i)|}$$
 (2)

 $\rightarrow Multirate^2$

¹ For instance: Grote et. al. SISC 2015

For an <u>efficient</u> treatment of locally varying mesh widths Δx_i there are now two options:

- Increase the temporal solver stability constant C_t locally.

$$\Delta t \stackrel{!}{\leq} C_t \cdot C_x \min_{\substack{i=1,\ldots,N\\l=1,\ldots,L}} \frac{\Delta x_i}{|\mu_l(\mathbf{u}_i)|}$$
 (2)

- \rightarrow Multirate²
- Use different schemes in different partitions of the domain
 ⇒ Partitioned Runge-Kutta Methods

² For instance: Constantinescu & Sandu J. Sci. Comp. 2007

¹ For instance: Grote et. al. SISC 2015

Contents

- Motivation
- Stabilized Explicit Runge-Kutta Methods
- Optimization of the Stability Polynomial
- Many Stage Runge-Kutta Methods
- Summary & Outlook

Stabilized Explicit Runge-Kutta Methods: Motivation

The conventional treatment of time-dependent PDEs

$$\partial_t \mathbf{u}(t, \mathbf{x}) + \partial_i \mathbf{f}_i(\mathbf{u}(t, \mathbf{x}), \nabla \mathbf{u}(t, \mathbf{x})) = \mathbf{0}$$
(3)

Stabilized Explicit Runge-Kutta Methods: Motivation

The conventional treatment of time-dependent PDEs

$$\partial_t \mathbf{u}(t, \mathbf{x}) + \partial_i \mathbf{f}_i(\mathbf{u}(t, \mathbf{x}), \nabla \mathbf{u}(t, \mathbf{x})) = \mathbf{0}$$
(3)

follows a *Method of Lines* like approach of constructing a *Semi-Discretization*

$$\mathbf{U}(t_0) = \mathbf{U}_0 \tag{4a}$$

$$\mathbf{U}'(t) = \mathbf{F}\big(\mathbf{U}(t)\big) \tag{4b}$$

which is then solved with an ODE integrator \rightarrow Runge-Kutta.

For the Initial Value Problem (4) a Runge-Kutta Method (RKM) computes approximations \mathbf{U}_n through (Butcher form)

$$\mathbf{U}_0 = \mathbf{U}(t_0) \tag{5a}$$

$$\mathbf{U}_{n+1} = \mathbf{U}_n + \Delta t \sum_{i=1}^{S} b_i \mathbf{k}_i$$
 (5b)

$$\mathbf{k}_i = \mathbf{F}\left(t_n + c_i \Delta t, \mathbf{U}_n + \Delta t \sum_{j=1}^S a_{i,j} \mathbf{k}_j\right), \quad i = 1, \dots, S. \quad (5c)$$

where S denotes the number of stages k_i .

For the Initial Value Problem (4) a Runge-Kutta Method (RKM) computes approximations \mathbf{U}_n through (Butcher form)

$$\mathbf{U}_0 = \mathbf{U}(t_0) \tag{5a}$$

$$\mathbf{U}_{n+1} = \mathbf{U}_n + \Delta t \sum_{i=1}^{S} b_i \mathbf{k}_i$$
 (5b)

$$\mathbf{k}_i = \mathbf{F}\left(t_n + c_i \Delta t, \mathbf{U}_n + \Delta t \sum_{j=1}^S a_{i,j} \mathbf{k}_j\right), \quad i = 1, \dots, S. \quad (5c)$$

where S denotes the number of stages \mathbf{k}_i .

Butcher Tableau:

For the Initial Value Problem (4) a Runge-Kutta Method (RKM) computes approximations \mathbf{U}_n through (Butcher form)

$$\mathbf{U}_0 = \mathbf{U}(t_0) \tag{5a}$$

$$\mathbf{U}_{n+1} = \mathbf{U}_n + \Delta t \sum_{i=1}^{S} b_i \mathbf{k}_i$$
 (5b)

$$\mathbf{k}_i = \mathbf{F}\left(t_n + c_i \Delta t, \mathbf{U}_n + \Delta t \sum_{j=1}^S a_{i,j} \mathbf{k}_j\right), \quad i = 1, \dots, S. \quad (5c)$$

where S denotes the number of stages \mathbf{k}_i .

Butcher Tableau:

For $a_{i,j} = 0, j \ge i$ the method is *explicit*.

Runge-Kutta Methods come in two flavours: Implicit & Explicit.

- Runge-Kutta Methods come in two flavours: Implicit & Explicit.
- Implicit methods are usually *A-stable*, i.e., for the test equation

$$u'(t) = \lambda u(t), \quad \text{Re}(\lambda) < 0$$
 (6)

they produce iterates u_n that decrease in magnitude for all timesteps Δt :

$$|u_{n+1}| \le |u_n| \quad \forall \ \Delta t. \tag{7}$$

- Runge-Kutta Methods come in two flavours: Implicit & Explicit.
- Implicit methods are usually *A-stable*, i.e., for the test equation

$$u'(t) = \lambda u(t), \quad \operatorname{Re}(\lambda) < 0$$
 (6)

they produce iterates u_n that decrease in magnitude for all timesteps Δt :

$$|u_{n+1}| \le |u_n| \quad \forall \ \Delta t. \tag{7}$$

• This comes at the expense that at each timestep a <u>system</u> of (non)linear equations has to be <u>solved</u> (!)

- Runge-Kutta Methods come in two flavours: Implicit & Explicit.
- Implicit methods are usually *A-stable*, i.e., for the test equation

$$u'(t) = \lambda u(t), \quad \text{Re}(\lambda) < 0$$
 (6)

they produce iterates u_n that decrease in magnitude for all timesteps Δt :

$$|u_{n+1}| \le |u_n| \quad \forall \ \Delta t. \tag{7}$$

- This comes at the expense that at each timestep a <u>system</u> of (non)linear equations has to be <u>solved</u> (!)
- In contrast, explicit methods require only <u>evaluations</u> of F.
 Drawback: Restriction on timestep (CFL).

• The central idea of **Stabilized** Explicit Runge-Kutta methods is to use additional stages S to increase the maximum admissible timestep Δt .

- The central idea of **Stabilized** Explicit Runge-Kutta methods is to use additional stages S to increase the maximum admissible timestep Δt .
- In particular: One settles for a moderate order of accuracy p = 2, 3, 4 and uses the additional stages for stability improvement!

- The central idea of **Stabilized** Explicit Runge-Kutta methods is to use additional stages S to increase the maximum admissible timestep Δt .
- In particular: One settles for a moderate order of accuracy p = 2, 3, 4 and uses the additional stages for stability improvement!
- First successful applications for parabolic PDEs already in the 1960s which led to the development of Runge-Kutta Chebyshev (RKC).³

³ Review: Abdulle, Explicit stabilized Runge-Kutta methods, Tech. Rep. 2011.

- The central idea of **Stabilized** Explicit Runge-Kutta methods is to use additional stages S to increase the maximum admissible timestep Δt .
- In particular: One settles for a moderate order of accuracy p = 2, 3, 4 and uses the additional stages for stability improvement!
- First successful applications for parabolic PDEs already in the 1960s which led to the development of Runge-Kutta Chebyshev (RKC).³ Key to success: The eigenvalues λ_m of the Jacobian $\partial_{\mathbf{U}}\mathbf{F}(\mathbf{U})$ lie on the negative real axis.

³ Review: Abdulle, Explicit stabilized Runge-Kutta methods, Tech. Rep. 2011.

- The central idea of **Stabilized** Explicit Runge-Kutta methods is to use additional stages S to increase the maximum admissible timestep Δt .
- In particular: One settles for a moderate order of accuracy p = 2,3,4 and uses the additional stages for stability improvement!
- First successful applications for <u>parabolic</u> PDEs already in the 1960s which led to the development of Runge-Kutta Chebyshev (RKC).³
 Key to success: The eigenvalues λ_m of the Jacobian $\partial_{\mathbf{U}}\mathbf{F}(\mathbf{U})$ lie on the negative real axis.
- This is, however, not the case for right-hand-sides F
 corresponding to semi-discretizations of hyperbolic PDEs.

³ Review: Abdulle, Explicit stabilized Runge-Kutta methods, Tech. Rep. 2011.

• One can subsume the application of the RKM (5) to the test equation $u'(t) = \lambda u(t)$ as

$$u_{n+1} = P(\underbrace{\lambda \Delta t}_{-1}) u_n \tag{8}$$

• One can subsume the application of the RKM (5) to the test equation $u'(t) = \lambda u(t)$ as

$$u_{n+1} = P(\underbrace{\lambda \Delta t}_{=:z}) u_n \tag{8}$$

where the amplification function P(z) is a

- Rational function for implicit RKMs
- Polynomial for explicit RKMs.

• One can subsume the application of the RKM (5) to the test equation $u'(t) = \lambda u(t)$ as

$$u_{n+1} = P(\underbrace{\lambda \Delta t}_{=:z}) u_n \tag{8}$$

where the amplification function P(z) is a

- Rational function for implicit RKMs
- Polynomial for explicit RKMs.
- Absolute/linear stability (7) is now asserted when

$$|P(z)| \le 1 \quad \forall z \in \mathcal{S} \subset \mathbb{C}.$$
 (9)

For the ODE system $\mathbf{U}'(t) = \mathbf{F}(\mathbf{U}(t))$ with spectrum $\lambda_m \in \sigma\left(\partial_{\mathbf{U}}\mathbf{F}(\mathbf{U})\right)$ the (linear) stability requirement (9) corresponds to

$$|P_S(\Delta t \lambda_m)| \le 1, \quad m = 1, \dots, M$$
 (10)

For the ODE system $\mathbf{U}'(t) = \mathbf{F}(\mathbf{U}(t))$ with spectrum $\lambda_m \in \sigma\left(\partial_{\mathbf{U}}\mathbf{F}(\mathbf{U})\right)$ the (linear) stability requirement (9) corresponds to

$$|P_S(\Delta t \lambda_m)| \le 1, \quad m = 1, \dots, M$$
 (10)

and we search now the optimal stability polynomial P_S of degree S in the sense that the admissible timestep Δt is maximal:

$$\max_{P_S \in \mathcal{P}_S} \Delta t$$
 such that $|P_S(\Delta t \lambda_m)| \le 1, \quad m = 1, \dots, M.$ (11)

Stabilized Explicit RKM: Optimal Timestep

Practical results indicate that for a general spectrum σ the maximum stable timesteps scales (asymptotically) linear in the polynomial degree S:

$$\Delta t_{\mathsf{Exp}} \coloneqq \Delta t_{\mathsf{Ref}} \frac{S}{S_{\mathsf{Ref}}}.\tag{12}$$

Stabilized Explicit RKM: Optimal Timestep

Practical results indicate that for a general spectrum σ the maximum stable timesteps scales (asymptotically) linear in the polynomial degree S:

$$\Delta t_{\mathsf{Exp}} \coloneqq \Delta t_{\mathsf{Ref}} \frac{S}{S_{\mathsf{Ref}}}.\tag{12}$$

This is not proven, but

- Observed in practice
- Theoretical results indicating this available⁴⁵⁶

⁶Kinnmark Math. Comput. Simul. 1987

⁴Vichnevetsky Math. Comp. Simul. 1983

⁵Kinnmark & Gray Math. Comput. Simul. 1984

Contents

- Motivation
- Stabilized Explicit Runge-Kutta Methods
- Optimization of the Stability Polynomial
- Many Stage Runge-Kutta Methods
- Summary & Outlook

• Write $P_S(z)$ as

$$P_{S}(z; \boldsymbol{\alpha}) = \sum_{j=0}^{S} \alpha_{j} z^{j}, \quad \boldsymbol{\alpha} \in \mathbb{R}^{S+1}, z \in \mathbb{C}$$
 (13)

• Write $P_S(z)$ as

$$P_{S}(z; \alpha) = \sum_{j=0}^{S} \alpha_{j} z^{j}, \quad \alpha \in \mathbb{R}^{S+1}, z \in \mathbb{C}$$
 (13)

For fixed Δt

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{S+1}} |P_{\mathcal{S}}(\Delta t \lambda_m; \boldsymbol{\alpha})|, \quad m = 1, \dots, \widetilde{M}.$$
 (14)

is a **convex** optimization problem⁷ \rightarrow Unique solution for α , many solvers available.

⁷Ketcheson & Ahmadia, Comm. App. Math. Comp. Sci., 2013

• Write $P_S(z)$ as

$$P_{\mathcal{S}}(z; \alpha) = \sum_{j=0}^{S} \alpha_j z^j, \quad \alpha \in \mathbb{R}^{S+1}, z \in \mathbb{C}$$
 (13)

• For fixed Δt

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{S+1}} |P_{\mathcal{S}}(\Delta t \lambda_m; \boldsymbol{\alpha})|, \quad m = 1, \dots, \widetilde{M}.$$
 (14)

is a **convex** optimization problem⁷ \rightarrow Unique solution for α , many solvers available.

Compute Δt through bisection (outer optimization)

• Write $P_S(z)$ as

$$P_{\mathcal{S}}(z; \alpha) = \sum_{j=0}^{S} \alpha_j z^j, \quad \alpha \in \mathbb{R}^{S+1}, z \in \mathbb{C}$$
 (13)

For fixed Δt

$$\min_{\alpha \in \mathbb{R}^{S+1}} |P_{S}(\Delta t \lambda_{m}; \alpha)|, \quad m = 1, \dots, \widetilde{M}.$$
 (14)

is a **convex** optimization problem⁷ \rightarrow Unique solution for α , many solvers available.

Compute Δt through bisection (outer optimization)

• Issue: $\alpha_j \sim \frac{1}{i!} \rightarrow \text{Limited to 16-20 stages}$.

⁷Ketcheson & Ahmadia, Comm. App. Math. Comp. Sci., 2013

Optimization of the Stability Polynomial:

Nonconvex, but Numerically Stable

For an order p (linearly) consistent RKM the coefficients α_j of the corresponding stability polynomial need to match

$$\alpha_j \stackrel{!}{=} \frac{1}{j!}, \quad j = 0, \dots, p. \tag{15}$$

Optimization of the Stability Polynomial:

Nonconvex, but Numerically Stable

For an order p (linearly) consistent RKM the coefficients α_j of the corresponding stability polynomial need to match

$$\alpha_j \stackrel{!}{=} \frac{1}{j!}, \quad j = 0, \dots, p.$$
 (15)

Consequently, any first order accurate method has a stability polynomial of form

$$P_S(z) = 1 + z\widetilde{P}_{S-1}(z) \tag{16}$$

with Lower Degree Polynomial

$$\widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}) = \prod_{j=1}^{S-1} \left(1 - \frac{z}{\widetilde{r}_j} \right). \tag{17}$$

$$P_{S}(z;\widetilde{\mathbf{r}}) = 1 + z\widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}), \quad \widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}) = \prod_{j=1}^{S-1} \left(1 - \frac{z}{\widetilde{r}_{j}}\right)$$

• The roots $\tilde{\mathbf{r}}$ of the Lower Degree Polynomial \widetilde{P}_{S-1} are called *Pseudo Extrema* and will be the optimization variables.

$$P_{S}(z;\widetilde{\mathbf{r}}) = 1 + z\widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}), \quad \widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}) = \prod_{j=1}^{S-1} \left(1 - \frac{z}{\widetilde{r}_{j}}\right)$$

- The roots $\tilde{\mathbf{r}}$ of the Lower Degree Polynomial \widetilde{P}_{S-1} are called *Pseudo Extrema* and will be the optimization variables.
- Advantage of the parametrization of the polynomial in roots: Roots r are of same order as the eigenvalues, regardless of the stage count S!

$$P_{S}(z;\widetilde{\mathbf{r}}) = 1 + z\widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}), \quad \widetilde{P}_{S-1}(z;\widetilde{\mathbf{r}}) = \prod_{j=1}^{S-1} \left(1 - \frac{z}{\widetilde{r}_{j}}\right)$$

- The roots $\tilde{\mathbf{r}}$ of the Lower Degree Polynomial \widetilde{P}_{S-1} are called *Pseudo Extrema* and will be the optimization variables.
- Advantage of the parametrization of the polynomial in roots: Roots r are of same order as the eigenvalues, regardless of the stage count S!
- Issue: Highly nonlinear optimization problem

$$\max_{\widetilde{\mathbf{r}} \in \mathbb{C}^{S-1}} \Delta t \text{ such that } \left| P_{\mathcal{S}}(\Delta t \lambda_m; \widetilde{\mathbf{r}}) \right| \leq 1, \quad m = 1, \dots, \widetilde{M}.$$

$$\tag{18}$$

As a consequence, we need a **good initial guess** to have reasonable hope to find the global optimum.

As a consequence, we need a **good initial guess** to have reasonable hope to find the global optimum.

Central observation: The Pseudo Extrema \tilde{r} lie <u>necessarily</u> on the stability boundary:

$$P_{S}(\widetilde{r}_{j};\widetilde{\mathbf{r}}) = 1 + \widetilde{r}_{j}\underbrace{\widetilde{P}_{S-1}(\widetilde{r}_{j};\widetilde{\mathbf{r}})}_{=0} = 1 \quad \forall j = 1, \dots, S-1$$
 (19)

As a consequence, we need a **good initial guess** to have reasonable hope to find the global optimum.

Central observation: The Pseudo Extrema \tilde{r} lie <u>necessarily</u> on the stability boundary:

$$P_{\mathcal{S}}(\widetilde{r}_{j};\widetilde{\mathbf{r}}) = 1 + \widetilde{r}_{j}\underbrace{\widetilde{P}_{\mathcal{S}-1}(\widetilde{r}_{j};\widetilde{\mathbf{r}})}_{=0} = 1 \quad \forall j = 1, \dots, S-1$$
 (19)

Question: Where do we place the pseudo extrema initially on the stability boundary?

Question: Where do we place the pseudo extrema initially on the stability boundary?

Consider proven optimal stability polynomials:

• Parabolic Spectra: Shifted Chebyshev polynomials

$$P_{S,1}(z) = T_S \left(1 + \frac{z}{S^2} \right) \tag{20}$$

Question: Where do we place the pseudo extrema initially on the stability boundary?

Consider proven optimal stability polynomials:

• Parabolic Spectra: Shifted Chebyshev polynomials

$$P_{S,1}(z) = T_S \left(1 + \frac{z}{S^2} \right) \tag{20}$$

- Disks/Circular Spectra:
 - First order:

$$P_{S,1} = \left(1 + \frac{z}{S}\right)^S \tag{21}$$

Question: Where do we place the pseudo extrema initially on the stability boundary?

Consider proven optimal stability polynomials:

• Parabolic Spectra: Shifted Chebyshev polynomials

$$P_{S,1}(z) = T_S \left(1 + \frac{z}{S^2} \right) \tag{20}$$

- Disks/Circular Spectra:
 - First order:

$$P_{S,1} = \left(1 + \frac{z}{S}\right)^S \tag{21}$$

Second order:

$$P_{S,2} = \frac{S-1}{S} \left(1 + \frac{z}{S-1} \right)^S + \frac{1}{S}$$
 (22)

Optimization of the Stability Polynomial:

Pseudo Extrema for Optimal Polynomials

For all the previous cases one can immediately show that the pseudo extrema \tilde{r}_j are given by the positive *Chebyshev Extreme Points*, i.e., the points

$$x_j = \cos\left(\frac{2\pi j}{S} - 1\right), j = 0, \dots, \begin{cases} S/2, & S \text{ even} \\ (S - 1)/2 & S \text{ odd} \end{cases}$$
 (23)

such that

$$T_S(x_j) = 1 (24)$$

when projected onto the spectrum.

Optimization of the Stability Polynomial:

Pseudo Extrema for Optimal Polynomials

For all the previous cases one can immediately show that the pseudo extrema \tilde{r}_j are given by the positive *Chebyshev Extreme Points*, i.e., the points

$$x_j = \cos\left(\frac{2\pi j}{S} - 1\right), j = 0, \dots, \begin{cases} S/2, & S \text{ even} \\ (S - 1)/2 & S \text{ odd} \end{cases}$$
 (23)

such that

$$T_{\mathcal{S}}(x_j) = 1 \tag{24}$$

when projected onto the spectrum. For disks with radius R:

$$\tilde{r}_j = x_j \pm \sqrt{R^2 - (x_j + R)^2}$$
 (25)

$$= R \left[\cos \left(\frac{2\pi j}{S} - 1 \right) \pm i \sin \left(\frac{2\pi j}{S} \right) \right] \tag{26}$$

Optimization of the Stability Polynomial: Pseudo Extrema for Optimal Polynomials

Optimization of the Stability Polynomial: Pseudo Extrema for Optimal Polynomials

• Significance of the Chebyshev Extreme Points: Partition the circle into segments with equal arc length

 Generalize this idea to other spectra: Place pseudo extrema initially with equal arc length on the convex hull of the spectrum

 Generalize this idea to other spectra: Place pseudo extrema initially with equal arc length on the convex hull of the spectrum

Deviation from initial value: Courtesy of the optimizer!

Algorithm:

• Find reference timestep for small number of stages S^8

Algorithm:

- \bullet Find reference timestep for small number of stages S^8
- Distribute Pseudo Extrema with equal arc length on spectrum enclosing, scaled hull

⁸Ketcheson & Ahmadia, Comm. App. Math. Comp. Sci., 2013

Algorithm:

- Find reference timestep for small number of stages S^8
- Distribute Pseudo Extrema with equal arc length on spectrum enclosing, scaled hull
- Optimize real part of Pseudo Extrema

⁸Ketcheson & Ahmadia, Comm. App. Math. Comp. Sci., 2013

Algorithm:

- Find reference timestep for small number of stages S^8
- Distribute Pseudo Extrema with equal arc length on spectrum enclosing, scaled hull
- Optimize real part of Pseudo Extrema
- Correct imaginary part of Pseudo Extrema

Algorithm:

- Find reference timestep for small number of stages S^8
- Distribute Pseudo Extrema with equal arc length on spectrum enclosing, scaled hull
- Optimize real part of Pseudo Extrema
- Correct imaginary part of Pseudo Extrema

Software:

- Optimizer: Ipopt: Interioir Point OPTimizer
- Derivatives: Via dco/c++

⁸Ketcheson & Ahmadia, Comm. App. Math. Comp. Sci., 2013

Optimization of the Stability Polynomial: Results

 Generate stability polynomials with degrees S > 100 for p = 2,3

Optimization of the Stability Polynomial: Results

- Generate stability polynomials with degrees S > 100 for p = 2, 3
- For moderate number (100-300) of constraining eigenvalues λ very fast: $P_{128,2}$ for spectrum on the right generated in \sim 12.6s.

S	2 nd Order	3 rd Order
16	15.346	15.076
32	0.879	1.183
64	2.869	2.276
128	8.845	8.549

• S = 16: Generated with approach from Ketcheson & Ahmadia

Contents

- Motivation
- Stabilized Explicit Runge-Kutta Methods
- Optimization of the Stability Polynomial
- Many Stage Runge-Kutta Methods
- Summary & Outlook

Task: Stability Polynomial →RKM

- Task: Stability Polynomial \rightarrow RKM
- Inspired from many stage Runge-Kutta Chebyshev: Directly Read-off:

$$P_S(z) = 1 + z \prod_{j=1}^{S-1} \left(1 - rac{z}{\widetilde{r_j}}
ight)$$

$$= 1 + z \left[\prod_{j=1}^{S_{\mathsf{Real}}} \left(1 - rac{z}{\widetilde{r_j}}
ight) \cdot \prod_{j=1}^{S_{\mathsf{Complex}}/2} \left(1 - rac{z}{\widetilde{r_j}}
ight) \left(1 - rac{z}{\widetilde{r_j}^\star}
ight) \right]$$

- Task: Stability Polynomial →RKM
- Inspired from many stage Runge-Kutta Chebyshev: Directly Read-off:

$$P_S(z) = 1 + z \prod_{j=1}^{S-1} \left(1 - rac{z}{\widetilde{r_j}}
ight)$$

$$= 1 + z \left[\prod_{j=1}^{S_{\text{Real}}} \left(1 - rac{z}{\widetilde{r_j}}
ight) \cdot \prod_{j=1}^{S_{\text{Complex}}/2} \left(1 - rac{z}{\widetilde{r_j}}
ight) \left(1 - rac{z}{\widetilde{r_j}^\star}
ight) \right]$$
Forward Euler

- Task: Stability Polynomial →RKM
- Inspired from many stage Runge-Kutta Chebyshev: Directly Read-off:

$$P_S(z) = 1 + z \prod_{j=1}^{S-1} \left(1 - \frac{z}{\widetilde{r_j}}\right)$$

$$= 1 + z \left[\prod_{j=1}^{S_{\text{Real}}} \left(1 - \frac{z}{\widetilde{r_j}}\right) \cdot \prod_{j=1}^{S_{\text{Complex}}/2} \left(1 - \frac{z}{\widetilde{r_j}}\right) \left(1 - \frac{z}{\widetilde{r_j}^{\star}}\right) \right]$$
Forward Euler

- Task: Stability Polynomial →RKM
- Inspired from many stage Runge-Kutta Chebyshev: Directly Read-off:

$$\begin{split} P_S(z) &= 1 + z \prod_{j=1}^{S-1} \left(1 - \frac{z}{\widetilde{r_j}}\right) \\ &= 1 + z \left[\underbrace{\prod_{j=1}^{S_{\text{Real}}} \left(1 - \frac{z}{\widetilde{r_j}}\right)}_{\text{Forward Euler}} \cdot \underbrace{\prod_{j=1}^{S_{\text{Complex}}/2} \left(1 - \frac{z}{\widetilde{r_j}}\right) \left(1 - \frac{z}{\widetilde{r_j}^\star}\right)}_{\text{2-Stage Submethod}} \right] \end{split}$$

Forward Fuler

Many Stage Runge-Kutta Methods: Internal Stability

Only overall, unperturbed update step $\mathbf{U}_n \to \mathbf{U}_{n+1}$ is stable.

Only overall, unperturbed update step $\mathbf{U}_n \to \mathbf{U}_{n+1}$ is stable.

 Employ for analysis of internal stability Modified Shu-Osher Form⁹ of the RKM:

$$\mathbf{Y}_{j} \coloneqq \nu_{j} \mathbf{U}_{n} + \sum_{k=1}^{J-1} \left(\alpha_{j,k} \mathbf{Y}_{k} + \Delta t \beta_{j,k} \mathbf{F}(\mathbf{Y}_{k}) \right)$$
 (27a)

$$\mathbf{U}_{n+1} \coloneqq \mathbf{Y}_{S+1} \tag{27b}$$

Only overall, unperturbed update step $\mathbf{U}_n \to \mathbf{U}_{n+1}$ is stable.

 Employ for analysis of internal stability Modified Shu-Osher Form⁹ of the RKM:

$$\mathbf{Y}_{j} := v_{j} \mathbf{U}_{n} + \sum_{k=1}^{J-1} \left(\alpha_{j,k} \mathbf{Y}_{k} + \Delta t \beta_{j,k} \mathbf{F}(\mathbf{Y}_{k}) \right)$$
(27a)

$$\mathbf{U}_{n+1} \coloneqq \mathbf{Y}_{S+1} \tag{27b}$$

with Round-off errors e

$$\mathbf{Y}_{j}^{(e)} := v_{j} \mathbf{U}_{n}^{(e)} + \sum_{k=1}^{J-1} \left(\alpha_{j,k} \mathbf{Y}_{k}^{(e)} + \Delta t \beta_{j,k} \mathbf{F} \left(\mathbf{Y}_{k}^{(e)} \right) \right) + \mathbf{e}_{j}$$
(28a)

$$\mathbf{U}_{n+1}^{(e)} := \mathbf{Y}_{S+1}^{(e)} \tag{28b}$$

Round-off errors may get significantly amplified:¹⁰

$$\left\| \mathbf{U}_{n+1}^{(e)} - \mathbf{U}(t_{n+1}) \right\| \leq \underbrace{\left\| \mathbf{U}_{n}^{(e)} - \mathbf{U}(t_{n}) \right\| + \mathcal{O}(\Delta t^{p+1})}_{\text{Usual estimate}} + \underbrace{\mathcal{M}(\alpha, \beta) \|\mathbf{e}_{i}\|_{\infty}}_{\text{Round-off Error Amplification}}$$
(29)

¹⁰Ketcheson et al., SINUM, 2014

Round-off errors may get significantly amplified:¹⁰

$$\left\| \mathbf{U}_{n+1}^{(e)} - \mathbf{U}(t_{n+1}) \right\| \leq \underbrace{\left\| \mathbf{U}_{n}^{(e)} - \mathbf{U}(t_{n}) \right\| + \mathcal{O}(\Delta t^{p+1})}_{\text{Usual estimate}} + \underbrace{\mathcal{M}(\alpha, \beta) \|\mathbf{e}_{i}\|_{\infty}}_{\text{Round-off Error Amplification}}$$
(29)

• Design RKM to minimize error amplification factor \mathcal{M} :

¹⁰Ketcheson et al., SINUM, 2014

• Round-off errors may get significantly amplified: 10

$$\left\| \mathbf{U}_{n+1}^{(e)} - \mathbf{U}(t_{n+1}) \right\| \leq \underbrace{\left\| \mathbf{U}_{n}^{(e)} - \mathbf{U}(t_{n}) \right\| + \mathcal{O}(\Delta t^{p+1})}_{\text{Usual estimate}} + \underbrace{\mathcal{M}(\alpha, \beta) \|\mathbf{e}_{i}\|_{\infty}}_{\text{Round-off Error Amplification}}$$
(29)

- Design RKM to minimize error amplification factor \mathcal{M} :
- Employ generalization of Lebedev's Idea:¹¹ Group pseudo extrema with Re $(\tilde{r}_j) \leq -0.5$ together with the ones with largest Re (\tilde{r}_k)

¹¹Lebedev, Russ. J. Numer. Anal. Math. Model., 1989

¹⁰Ketcheson et al., SINUM, 2014

Round-off errors may get significantly amplified:¹⁰

$$\left\| \mathbf{U}_{n+1}^{(e)} - \mathbf{U}(t_{n+1}) \right\| \leq \underbrace{\left\| \mathbf{U}_{n}^{(e)} - \mathbf{U}(t_{n}) \right\| + \mathcal{O}(\Delta t^{p+1})}_{\text{Usual estimate}} + \underbrace{\mathcal{M}(\alpha, \beta) \|\mathbf{e}_{i}\|_{\infty}}_{\text{Round-off Error Amplification}}$$
(29)

- Design RKM to minimize error amplification factor \mathcal{M} :
- Employ generalization of Lebedev's Idea:¹¹ Group pseudo extrema with Re $(\tilde{r}_j) \leq -0.5$ together with the ones with largest Re (\tilde{r}_k)
- This avoids large $\beta_{j,k}$

¹¹Lebedev, Russ. J. Numer. Anal. Math. Model., 1989

¹⁰Ketcheson et al., SINUM, 2014

• This $j \leftrightarrow k$ grouping leads to intermediate 4'th degree polynomials

$$Q_4^{j,k}(z) = \left(1 - \frac{z}{\widetilde{r}_j}\right) \left(1 - \frac{z}{\widetilde{r}_j^{\star}}\right) \cdot \left(1 - \frac{z}{\widetilde{r}_k}\right) \left(1 - \frac{z}{\widetilde{r}_k^{\star}}\right) \tag{30}$$

which are represented using four instances of the 2N storage scheme

$$\mathbf{U}_{l+1} := \alpha_{l+1,l-1} \mathbf{U}_{l-1} + \alpha_{l+1,l} \mathbf{U}_{l}
+ \Delta t \left[\beta_{l+1,l-1} \mathbf{F} (\mathbf{U}_{l-1}) + \beta_{l+1,l} \mathbf{F} (\mathbf{U}_{l}) \right]$$
(31)

• This $i \leftrightarrow k$ grouping leads to intermediate 4'th degree polynomials

$$Q_4^{j,k}(z) = \left(1 - \frac{z}{\widetilde{r}_j}\right) \left(1 - \frac{z}{\widetilde{r}_j^{\star}}\right) \cdot \left(1 - \frac{z}{\widetilde{r}_k}\right) \left(1 - \frac{z}{\widetilde{r}_k^{\star}}\right) \tag{30}$$

which are represented using four instances of the 2N storage scheme

$$\mathbf{U}_{l+1} := \alpha_{l+1,l-1} \mathbf{U}_{l-1} + \alpha_{l+1,l} \mathbf{U}_{l}
+ \Delta t \left[\beta_{l+1,l-1} \mathbf{F}(\mathbf{U}_{l-1}) + \beta_{l+1,l} \mathbf{F}(\mathbf{U}_{l}) \right]$$
(31)

- 12 parameters subject to 4 constraints
 - \Rightarrow Use additional freedom to minimize $|\beta|$

• This $j \leftrightarrow k$ grouping leads to intermediate 4'th degree polynomials

$$Q_4^{j,k}(z) = \left(1 - \frac{z}{\widetilde{r}_j}\right) \left(1 - \frac{z}{\widetilde{r}_j^{\star}}\right) \cdot \left(1 - \frac{z}{\widetilde{r}_k}\right) \left(1 - \frac{z}{\widetilde{r}_k^{\star}}\right) \tag{30}$$

which are represented using four instances of the 2N storage scheme

$$\mathbf{U}_{l+1} := \alpha_{l+1,l-1} \mathbf{U}_{l-1} + \alpha_{l+1,l} \mathbf{U}_{l}
+ \Delta t \left[\beta_{l+1,l-1} \mathbf{F}(\mathbf{U}_{l-1}) + \beta_{l+1,l} \mathbf{F}(\mathbf{U}_{l}) \right]$$
(31)

- 12 parameters subject to 4 constraints \Rightarrow Use additional freedom to minimize $|\beta|$
- Reduction of \mathcal{M} from $\mathcal{O}(10^7)$ to $\mathcal{O}(10^{-6})!$

Many Stage Runge-Kutta Methods: Results for linear systems: 1D Advection Equation

• 1D Advection Equation

$$\partial_t u + a \partial_x u = 0 \tag{32a}$$

$$u_0(x) = e^{-10x^2} (32b)$$

Construct (linear) third-order schemes

S			$\mathcal{M}\cdot 10^{-15}$	
26	$5.86 \cdot 10^{-2}$	1708	$3.94 \cdot 10^{-12}$	$1.28 \cdot 10^{-5}$
52	$1.17\cdot 10^{-1}$	854	$1.95 \cdot 10^{-10}$	$1.87 \cdot 10^{-4}$
104	$2.34 \cdot 10^{-1}$	427	$1.63 \cdot 10^{-6}$	$3.00 \cdot 10^{-3}$

Many Stage Runge-Kutta Methods: Results for linear systems: 1D Advection Equation

• Report error in terms of L^{∞} error

$$e_{\mathcal{S}}^{\infty} := \|u^{(h,\mathcal{S})}(t_f,x) - u(t_f,x)\|_{\infty}$$
 (33)

Many Stage Runge-Kutta Methods:

Results for linear systems: 2D Linearized Euler Equations

• 2D Linearized Euler Equations

$$\partial_{t} \begin{pmatrix} \rho' \\ u' \\ v' \\ \rho' \end{pmatrix} + \partial_{x} \begin{pmatrix} \bar{\rho}u' + \bar{u}\rho' \\ \bar{u}u' + \frac{\rho'}{\bar{\rho}} \\ \bar{u}v' \\ \bar{u}p' + c^{2}\bar{\rho}u' \end{pmatrix} + \partial_{y} \begin{pmatrix} \bar{\rho}v' + \bar{v}\rho' \\ \bar{v}u' \\ \bar{v}v' + \frac{\rho'}{\bar{\rho}} \\ \bar{v}p' + c^{2}\bar{\rho}v' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

			1	$\mathcal{M}\cdot 10^{-15}$	
32	$1.13 \cdot 10^{-2}$	1.0	928	$1.91 \cdot 10^{-11}$ $6.30 \cdot 10^{-9}$ $5.63 \cdot 10^{-5}$	$1.45 \cdot 10^{-6}$
64	$2.17 \cdot 10^{-2}$	0.96	484	$6.30 \cdot 10^{-9}$	$1.03\cdot10^{-5}$
128	$3.67 \cdot 10^{-2}$	0.81	287	$5.63 \cdot 10^{-5}$	$4.94\cdot10^{-5}$

Many Stage Runge-Kutta Methods:

Results for linear systems: 2D Linearized Euler Equations

• Report error in terms of density L^{∞} error

$$e_{\mathcal{S}}^{\infty} := \|\rho^{(h,\mathcal{S})}(t_f,x) - \rho(t_f,x)\|_{\infty}$$
 (34)

Inviscid Burgers' Equation

$$\partial_t + \frac{1}{2}\partial_x u^2 = s(x, t) \tag{35a}$$

$$u(x,t) = 2 + \sin(2\pi(x-t))$$
 (35b)

Consider also error (increase) in Total Variation

$$e_{\mathsf{TV}} := \|\mathbf{u}^{(h,S)}(t_f)\|_{\mathsf{TV}} - \|\mathbf{u}^{(h,S)}(t_0)\|_{\mathsf{TV}}$$
 (36)

$$\|\mathbf{u}(t)\|_{\mathsf{TV}} := \sum_{j} |u_{j+1}(t) - u_{j}(t)|$$
 (37)

S	CFL	N_t	$\mathcal{M}\cdot 10^{-15}$	Δt^3	e_{TV}
28	0.72	1363	$1.41 \cdot 10^{-12}$	$4.95 \cdot 10^{-8}$	$1.30 \cdot 10^{-2}$
56	0.69	711	$1.39 \cdot 10^{-10}$	$3.48 \cdot 10^{-7}$	$5.18 \cdot 10^{-2}$
112	0.28	876	$4.79 \cdot 10^{-10}$	$1.86 \cdot 10^{-7}$	$6.09 \cdot 10^{-3}$

S	CFL	N_t	$\mathcal{M}\cdot 10^{-15}$	Δt^3	e_{TV}
28	0.72	1363	$1.41 \cdot 10^{-12}$	$4.95 \cdot 10^{-8}$	$1.30 \cdot 10^{-2}$
56	0.69	711	$1.39 \cdot 10^{-10}$	$3.48 \cdot 10^{-7}$	$5.18 \cdot 10^{-2}$
112	0.28	876	$4.79 \cdot 10^{-10}$	$1.86\cdot10^{-7}$	$6.09 \cdot 10^{-3}$

Attribute reduction in CFL due to lack of SSP property

S	CFL	N_t	$\mathcal{M}\cdot 10^{-15}$	Δt^3	e_{TV}
28	0.72	1363	$1.41 \cdot 10^{-12}$	$4.95 \cdot 10^{-8}$	$1.30 \cdot 10^{-2}$
56	0.69	711	$1.39 \cdot 10^{-10}$	$3.48 \cdot 10^{-7}$	$5.18 \cdot 10^{-2}$
112	0.28	876	$4.79 \cdot 10^{-10}$	$1.86 \cdot 10^{-7}$	$6.09 \cdot 10^{-3}$

- Attribute reduction in CFL due to lack of SSP property
- Reason: Compare to very many stage SSP methods¹² with higher \mathcal{M} : For these, no reduction in timestep is needed!

S	CFL	N_t	$\mathcal{M}\cdot 10^{-15}$	Δt^3	e_{TV}
28	0.72	1363	$1.41 \cdot 10^{-12}$	$4.95 \cdot 10^{-8}$	$1.30 \cdot 10^{-2}$
56	0.69	711	$1.39 \cdot 10^{-10}$	$3.48 \cdot 10^{-7}$	$5.18 \cdot 10^{-2}$
112	0.28	876	$4.79 \cdot 10^{-10}$	$1.86 \cdot 10^{-7}$	$6.09 \cdot 10^{-3}$

- Attribute reduction in CFL due to lack of SSP property
- Reason: Compare to very many stage SSP methods¹² with higher \mathcal{M} : For these, no reduction in timestep is needed!
- Difficulty for nonlinear problems: Small changes in u change the spectrum σ

Many Stage Runge-Kutta Methods:

Results for nonlinear Systems: 2D Compressible Euler Eq.

• Testcase: Isentropic Vortex Advection

S	Δt	CFL	N_t	$\widetilde{\mathcal{M}} \cdot 10^{-15}$	Δt^3
30	$5.92 \cdot 10^{-2}$	0.79	338	$1.80 \cdot 10^{-12}$	$2.08 \cdot 10^{-4}$
60	$9.75 \cdot 10^{-2}$	0.65	206	$3.21 \cdot 10^{-11}$	$9.26 \cdot 10^{-4}$
120	$1.20\cdot10^{-1}$	0.40	167	$1.80 \cdot 10^{-12}$ $3.21 \cdot 10^{-11}$ $6.50 \cdot 10^{-10}$	$1.72\cdot 10^{-3}$

Many Stage Runge-Kutta Methods:

Results for nonlinear Systems: 2D Compressible Euler Eq.

• Report error in terms of density L^{∞} error

$$e_{\mathsf{S}}^{\infty} \coloneqq \|\rho^{(h,\mathsf{S})}(t_{\mathsf{f}},x) - \rho(t_{\mathsf{f}},x)\|_{\infty} \tag{38}$$

Contents

- Motivation
- Stabilized Explicit Runge-Kutta Methods
- Optimization of the Stability Polynomial
- Many Stage Runge-Kutta Methods
- Summary & Outlook

Summary & Outlook

Summary:

- Different representation of stability polynomials
 - Motivated from theory
 - Enable very efficient optimization
- p = 2 Internal-stability optimized RKMs

Outlook/Future Work:

- Optimize p = 4 stability polynomials
- Construction of higher order (p = 3, 4) RKMs
- Improving internal stability

Thank you for your attention!

Questions?

