Párhuzamos képstílus átruházás konvolúciós neuronhálókkal

Szerző: Szilágyi Ervin Témavezető: Dr. Iclănzan Dávid

Sapientia Eredélyi Magyar Tudományegyetem Műszaki és Humántudományok kar Szoftverfejlesztés szak

2017. július 2.

Mi értünk stílusátruházás alatt?

A dolgozat célja

- Grafikus felhasználói felülettel rendelkező alkalmazás fejlesztése
- Gépi tanulást (deep learning) alkalmazó rendszer tervezése és megvalósítása
- Híres magyar festők ismertebb műveinek művészeti stílusát átruházni képekre / mozgóképekre
- Párhuzamos gépi tanítási folyamat ami kihasználja a GPU által biztosított párhuzamosítási lehetőségeket

A Tensorflow könyvtár bemutatása

ábra. Tensorflow számítási gráf

Forrás: Google.com

Párhuzamos tanítás a Tensorflow segítségével

(a) Adatpárhuzamos megközelítés

(b) Feladatpárhuzamos megközelítés

ábra. Párhuzamos tanítás

Forrás: Google.com

A rendszer tanítása

- "Deep learning" tanítási metódus
- Előre betanított neuronháló (VGG19: 16 konvolúciós réteg, 5 pooling réteg)
- Statikus kép esetében külön tanításra kerül a bemeneti kép és a stílus kép is
- Mozgókép esetében minden képkocka tanításra kerül
- Temporális összefüggések a képkockák között

A tanításhoz használt neuronháló

ConvNet Configuration							
A	A-LRN	В	C	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
			pool		conv3-256		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
	FC-4096						
	FC-4096						
	FC-1000						
	soft-max						

ábra. VGG-19 háló szerkezete

A bemeneti kép tanítása

- A konvolúciós szűrök tartalmazzák a kép sajátosságait
- Egy adott betanított réteg válasza egy bemeneti képre vizualizálható, ha fehér zaj képre értékeljük ki azt

A bemeneti kép veszteségfüggvénye felírható mint:

$$L_{content}(\vec{x}, \vec{r}, l) = \frac{1}{2} \sum_{ij} R_{ij}^{l} - W_{ij}^{l}$$
 (1)

Ahol:

- \vec{x} a bemeneti képet
- R^I az l-edik réteg válasza a bemeneti képre
- \bullet W^{I} az l-edik réteg válasza a fehér zaj bemenetre
- \vec{r} pedig azt a kimeneti képet jelenti amit a rendszer generál a rétegek tulajdonságaiból

Kiértékelt réteg: conv4_2

A stílus kép tanítása

A Gramm-matrix ismertetése

- A Gramm mátrix egy szorzatot jelen egy adott vektorhalmaz összes elemei között.
- Hogyha adott egy vektorhalmazunk $v_1...v_n$, akkor a G Gramm mátrixot a következő eljárás szerint határozzuk meg:

$$G_{ij} = v_i \cdot v_j \tag{2}$$

 A Gramm mátrix ij pozíciójában elhelyezkedő elem megadja, hogy egy adott réteg i-dik tulajdonsága mennyire teljesül a j-dik tulajdonság jelenlétében,

A stílus kép tanítása

A veszteségfüggvény meghatározása

Ha az / rétegnek N szűrője van, akkor felírható $G \in R^{N_l * N_l}$ Gramm-mátrix, ahol:

$$G'_{ij} = \sum_{k} F'_{ik} \cdot F'_{jk} \tag{3}$$

A veszteségfüggvény egyetlen rétegre felírható mint a fehér zaj kép Gramm mátrixa és a stílus kép Gramm mátrixának átlagos négyzetes hibájaként:

$$E_{I} = \frac{1}{4N_{I}^{2}M_{I}^{2}} \sum_{i,j} (G_{ij} - A_{Ij})^{2}$$
 (4)

A stilizált kép tisztítása

Total Variation Denoising

A stilizált képet és eltoljuk X koordináta mentén egy pixellel, majd az Y koordináta mentén is eltoljuk egy pixellel.

$$L_{tv}(\vec{a}, \vec{x}) = \sum_{i,j} |(X_{ij} - A_{i+1j})| + \sum_{i,j} |(X_{ij} - A_{ij+1})|$$
 (5)

Mozgókép tanítása

Naív megközelítés

A videót feldaraboljuk képkockákra, majd az összes képkockára átruházzuk a stílust.

Előnyei:

• Gyors.

Hátrányai:

- Nincs folyamatos átmenet a képkockák között
- Artifacts, pop-ins

Mozgókép tanítása

Optical flow bevezetése

For rás: $http://www.scholarpedia.org/article/Optic_flow$

ábra. Optical flow szemléltetése

A szoftvet architektúrája

A szoftver komponensei

A szoftvet architektúrája

Többszálas megvalósítás

A rendszer tesztelése

A tesztkonfiguráció meghatározása

- Alaplap: MSI Z170A-G45 GAMING
- Processzor: Intel(R) Core(TM) Skylake i7-6700 ("non-K") CPU @ 3.40GHz (Turbo Boost: 3.90GHz)
- Videokártya: GIGABYTE GeForce GTX 1080 G1 GAMING 8GB DDR5X 256-bit
- RAM Memória: Corsair Vengeance LPX Black 32GB DDR4 3000MHz
- Merev lemez: HyperX Savage SSD, 240GB, 2.5", SATA III
- Operációs rendszer: Ubuntu 17.04 LTS

Egy képkockára történő stílusátruházási idő

Felbontás(pixel)	Idő(másodperc)	
320×240	23.126104	
640×480	82.640347	
720×480	93.487573	
800×600	127.973041	
1024×764	203.892024	
1280×720	245.769916	
1366×768	279.945757	

Videókártya memóriahasználata és kihasználtsága

ábra. Memóriahasználat

ábra. Kihasználtság

CPU - GPU összehasonlítás

Felbontás(pixel)	GPU Idő(sec.)	CPU Idő(sec.)	Gyorsulás
320×240	23.126104	862.980290	37.316285
640×480	82.640347	3487.931886	42.206162
800×600	127.973041	5446.849902	42.562479
1024×768	203.892024	8935.804122	43.826158

Az Optical flow időigénye

Idő(másodperc)	
3.700949	
71.693549	
75.388477	
186.4160516	
371.140060	
466.996901	
481.25628	

Egy perces videóra történő stílusátvitel

24 FPS, 60 másodperc, 1440 képkocka

ábra. Optical flow használatával

ábra. Optical flow használata nélkül

Összefoglaló

- Grafikus felhasználói felülettel rendelkező szoftver fejlesztése
- Magyar festők híres műveinek stíluást alkalmazni mindennapi képekre/mozgóképekre
- Képkockák közötti temporális összefüggések kihasználása mozgóképek esetében
- Tesztek, mérések elvégzése

Továbbfejlesztési lehetőségek:

- Saját háló betanítása, más tanítási eljárás használata
- Optical flow algoritmus gyorsítása (párhuzamosítás, más algoritmusok kipróbálása)
- Teljes Windows-os támogatás
- Grafikus felület úrjatervezése, szépítése
- Cloud alapú szolgáltatás készítése