# ML EVALUATION



### In this session

- ML train and evaluation circle
- How to read Histogram
- How to read Box Plot
- Adding Evaluate Model
- How to read ROC curve
- Area Under the Curve (AUC)
- How to read Evaluation metrics

### ML Evaluation ML evaluation circle



#### How to read Scoring results

| Titanic Evaluate > Score Model > Scored dataset |               |                 |        |     |               |             |           |                 |                  |                         |
|-------------------------------------------------|---------------|-----------------|--------|-----|---------------|-------------|-----------|-----------------|------------------|-------------------------|
| rows<br>267                                     | columns<br>10 |                 |        |     |               |             |           |                 |                  |                         |
|                                                 | Survived      | Passenger Class | Gender | Age | SiblingSpouse | ParentChild | FarePrice | PortEmbarkation | Scored<br>Labels | Scored<br>Probabilities |
| view as                                         |               | l <sub>m</sub>  | L      |     |               | les-        |           | L               | 1.               | L                       |
|                                                 | 1             | 3               | male   | 20  | 1             | 1           | 15.7417   | C               | 0                | 0.128143                |
|                                                 | 1             | 2               | female | 25  | 1             | 1           | 30        | S               | 1                | 0.999319                |
|                                                 | 0             | 3               | male   | 28  | 0             | 0           | 7.8958    | C               | 0                | 0.40695                 |
|                                                 | 1             | 3               | female | 28  | 1             | 1           | 22.3583   | C               | 1                | 0.993964                |
|                                                 | 0             | 3               | male   | 28  | 0             | 0           | 9.5       | S               | 0                | 0.000195                |
|                                                 | 0             | 1               | male   | 29  | 0             | 0           | 30        | 5               | 1                | 0.97861                 |
|                                                 | 1             | 1               | male   | 49  | 1             | 0           | 56.9292   | C               | 1                | 0.932772                |

- This table = Scored dataset
- Row = 267 / Columns = 10
- Total column = 10 / Left 8 = features / Right 2 = prediction results
- Scored Label 0 = dead 1 = survived
- Scored Probabilities (SP) SP <= 0.5 == dead / SP > 0.5 == survived

GreatFriends.Biz Microsoft ML.NET

### ML Evaluation How to read Scoring Statistics

| Mean               | 28.8265         |
|--------------------|-----------------|
| Median             | 28              |
| Min                | 0.42            |
| Max                | 80              |
| Standard Deviation | 12.3791         |
| Unique Values      | 61              |
| Missing Values     | 0               |
| Feature Type       | Numeric Feature |

#### Show Statistics of the Scored dataset

- Mean = Sum of all the values divided by the number of values
- Median = The midpoint of the data after being ranked
- Standard Deviation = The square root of the variance
- Unique Values
- Missing Value

**GreatFriends.Biz** 

## ML Evaluation How to read Score Histogram

#### Histogram

- Representation: distribution of numerical data
- Bin: series of intervals (bin) • • • • • • • •
- Count: values fall into each interval



#### How to read Box Plot

#### **Box Plot**

Box Plot (whisker) is a standardized way of displaying the distribution of data

- Median: marks the mid-point of the data
- Box: middle 50% of scores for the group.
- Upper quartile: 75% of the scores fall below the upper quartile.
- Lower quartile: 25% of scores fall below the lower quartile.
- Whiskers: scores outside the middle 50%

0 = dead



### ML Evaluation **Box Plot Definitions**



GreatFriends.Biz Microsoft ML.NET

# ML Evaluation **Histogram option**

#### **Histogram options**

- Cumulative distribution function (cdf): shows "How common are samples that are less than or equal to this value?"
- Probability density function (pdf): shows "How common are samples at exactly this value?"
- Scale: scaling the distribution
- bins: number of bin



#### Receiver Operating Characteristic (ROC) Curve



| True Positive  | False Negative | Accuracy | Precision |
|----------------|----------------|----------|-----------|
| 64             | 34             | 0.805    | 0.780     |
| False Positive | True Negative  | Recall   | F1 Score  |
| 18             | 151            | 0.653    | 0.711     |
| Positive Label | Negative Label |          |           |
| 1              | 0              |          |           |



- True Positive Rate (TPR)
- 10 False Positive Rate (FPR)

### ML Evaluation How to read ROC curve

ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.



ROC curve prediction result who have disease who don't

## ML Evaluation Distribution score



Left distribution = patient who do NOT have disease (survived) / Right = have disease (dead) x axis = score / y axis = number of patient

## ML Evaluation **Cutoff line**



### ML Evaluation Area where the test is positive



## ML Evaluation Area where the test is negative



True Negative (TN), False Negative (FN) / True Positive (TP), False Positive (FP)



**GreatFriends.Biz** 

### ML Evaluation ROC Specificity / Sensitivity

Specificity = True Negative Rate Sensitivity (Recall) = True Positive Rate



ML Evaluation

Move cutoff to the left Sens++ / Spec--



### ML Evaluation Move cutoff to right Sens-- / Spec++



# ML Evaluation Chart proportion of Sens / Spec



## ML Evaluation ROC curve = proportion of Sens / (1 – Spec)



# ML Evaluation Area Under the Curve (AUC)

AUC is used to determine which of the used models predicts the classes best.



### **AUC** score



### ML Evaluation PRECISION/RECALL

Precision: the number of items correctly predicted as belonging to that class divided by the total number of items predicted as belonging to the class. TP / (TP + FP)

Recall: the number of items correctly predicted as belonging to that class divided by the total number of items that actually belong to the class. TP / (TP + FN)

**GreatFriends.Biz** 

### ML Evaluation **Evaluation metrics**

| Score Bin     | Positive Examples | Negative Examples | Fraction Above Threshold |
|---------------|-------------------|-------------------|--------------------------|
| (0.900,1.000] | 59                | 8                 | 0.251                    |
| (0.800,0.900] | 3                 | 4                 | 0.277                    |
| (0.700,0.800] | 0                 | 1                 | 0.281                    |
| (0.600,0.700] | 0                 | 1                 | 0.285                    |

| Accuracy | F1 Score | Precision | Recall | Negative Precision | Negative Recall | Cumulative AUC |
|----------|----------|-----------|--------|--------------------|-----------------|----------------|
| 0.824    | 0.715    | 0.881     | 0.602  | 0.805              | 0.953           | 0.023          |
| 0.820    | 0.721    | 0.838     | 0.633  | 0.813              | 0.929           | 0.038          |
| 0.816    | 0.717    | 0.827     | 0.633  | 0.813              | 0.923           | 0.041          |
| 0.813    | 0.713    | 0.816     | 0.633  | 0.812              | 0.917           | 0.045          |

### Evaluation metrics variable

- True Positive (TP): Correctly identified e.g. Sick people correctly diagnosed as sick
- False Positive (FP): Incorrectly identified e.g. healthy people incorrectly identified as sick
- True Negative (TN): Correctly rejected e.g. healthy people correctly identified as healthy
- False Negative (FN): Incorrectly rejected e.g. Sick people incorrectly identified as healthy
- Accuracy: The proportion of the total number of predictions that is correct. (TP + TN) / (TP + TN + FP + FN)

- Precision: is the proportion of positive cases that were correctly identified. TP / (TP + FP)
- Recall: Sensitivity or Recall is the proportion of actual positive cases which are correctly identified. TP / (TP + FN)
- F1 Score: is the harmonic mean of precision and Recall. 2TP / (2TP + FP + FN)
- Threshold: Threshold is the value above which it belongs to first class and all other values to the second class. E.g. if the threshold is 0.5 then any patient scored more than or equal to 0.5 is identified as sick else healthy.

#### Sentiment evaluation results

- Positive Label: 1 = Good Text (GT)
- Negative Label: 0 = Bad Text (BT)
- True Positive (TP): correctly predict GT
- True Negative (TN): correctly predict BT
- False Positive (FP): incorrectly predict GT
- False Negative (FN): incorrectly predict BT

AUC 0.761



| True Positive  | False Negative           | Accuracy 0.690      | Precision 0.693       | Threshold — 0.5 |
|----------------|--------------------------|---------------------|-----------------------|-----------------|
| False Positive | True Negative <b>101</b> | Recall <b>0.697</b> | F1 Score <b>0.695</b> |                 |
| Positive Label | Negative Label           |                     |                       |                 |

### **Metrics for Binary Classification**

| METRICS  | DESCRIPTION                                  | LOOK FOR                       |
|----------|----------------------------------------------|--------------------------------|
| Accuracy | proportion of correct predictions with a     | The closer to 1.00, the better |
|          | test data set                                |                                |
| AUC      | Area under the curve: This is                | The closer to 1.00, the better |
|          | measuring the area under the curve           |                                |
|          | created by sweeping the true positive        |                                |
|          | rate vs. the false positive rate.            |                                |
| AUCPR    | Area under the curve of a Precision-Recall   | The closer to 1.00, the better |
|          | curve: Useful measure of success of          |                                |
|          | prediction when the classes are very         |                                |
|          | imbalanced (highly skewed datasets).         |                                |
| F1-score | the harmonic mean of the precision and       | The closer to 1.00, the better |
|          | recall. F1 Score is helpful when you want to |                                |
|          | seek a balance between Precision and         |                                |
|          | Recall.                                      |                                |

### Next Step

Create Sentiment model using AutoML