Дрогобицький державний педагогічний університет імені Івана Франка

АКТУАЛЬНІ ПРОБЛЕМИ ФІЗИКИ, МАТЕМАТИКИ ТА ІНФОРМАТИКИ

ЩОРІЧНИЙ НАУКОВИЙ ЖУРНАЛ

Видається з 2009 року

№ 5, 2013

Головний редактор

БОЙЧУК Василь, д.ф-м.н., професор

Заступники головного редактора

ВИННИЦЬКИЙ Богдан, д.ф-м.н., професор ЛАЗУРЧАК Ігор, д.ф-м.н., доцент ПЕЛЕЩАК Роман, д.ф-м.н., професор

Редакційна колегія

БОКАЛО Микола, д.ф.-м.н., професор БЛОНСЬКИЙ Іван, д.ф.-м.н., професор ВІРТ Ігор, д.ф.-м.н., професор ГАЛЬ Юрій, к.ф.-м.н., доцент ГРИГОРОВИЧ Віктор, к.ф.-м.н., доцент ЗАБОЛОЦЬКИЙ Микола, д.ф.-м.н., професор ЗАРІЧНИЙ Михайло, д.ф.-м.н., професор КОВАЛЕНКО Олександр, д.ф.-м.н., професор КОМАРНИЦЬКА Леся, к.ф-м.н., професор КОРБУТЯК Дмитро, д.ф.-м.н., професор ПАСІЧНИК Роман, д.ф.-м.н., професор СКАСКІВ Олег, д.ф.-м.н., професор СТАСЮК Ігор, д.ф.-м.н., професор ТКАЧ Микола, д.ф.-м.н., професор

Відповідальний секретар

ЛЕШКО Роман, к.ф-м.н.

Посилання на публікації журналу обов'язкові

Адреса радакції: Україна, 82100, Дрогобич, вул. Стрийська, 3. Тел. 03-244-3-54-65 Свідоцтво про державну реєстрацію друкованого засобу масової інформації: Серія КВ №16403-4875 Р від 14.11.2008 р.

Редакція приймає замовлення на випуск тематичного номера або окремого розділу за кошти замовника.

Редакція приймає замовлення на розміщення реклами.

Редакція розглядає рукописи, що подані в першому примірнику машинопису. Редакція зберігає за собою право скорочувати і виправляти матеріали. Статті, що підписані авторами, висловлюють їх власні погляди, а не погляди редакції. Рукописи авторам не повертаються.

За достовірність фактів, цитат, власних імен, експериментальних даних та інших відомостей відповідають автори публікацій.

Надруковано у поліграфічній фірмі "КОЛО" Свідоцтво ДК № 489 від 20.06.2001 р. 82100, Львівська обл., м. Дрогобич, вул. Бориславська, 8. Підписано до друку 25.12.2013 р. Папір офсетний. Друк офсетний. Наклад 100 прим. Формат 60 х 84 1/8.

АКТУАЛЬНІ ПРОБЛЕМИ ФІЗИКИ, МАТЕМАТИКИ ТА ІНФОРМАТИКИ

Зміст

Дорошенко М.В., Когут У.П.
Розв'язування задач лінійного програмування за допомогою
інтегрованого середовища Word та Matlab2
Вдовичин $T.Я.$
Фундаменталізація підготовки бакалаврів інформатики6
Шавала О.В.
Обмеженість розв'язків лінійного неоднорідного диференціального
рівняння другого порядку11
Шевчук І.С., Шаклеіна І.О.
Problems of Developing Information Security Policy13
Лазурчак І.І., Лазурчак Л.В., Мельник М.Б.
Оптимальна схема реалізації кубатурних формул для обчислення
кратних інтегралів20
Іваник Є. Г., Сікора О.В.
Аналіз впливу термообробки на граничні напруження і циклічну
довговічність зварних з'єднань27
Іваник Є. Г., Сікора О.В., Угрин Л.Є.
Осесиметрична квазістатична задача термопружності для шару
скінченної товщини з урахуванням фрикційного розігріву32
Винницький Б.В., Хаць Р.В.
Зауваження про узагальнені власні вектори лінійних
диференціальних операторів38
Цмоць В.М., Павловський Ю.В., Яким Р.С.
Магнітні властивості тонких ниток SiGe42
Пелещак Р.М., Кузик О.В., Даньків О.О., Кульчицький О.Р.
Вплив ультразвуку на ступінь поруватості кремнію
Пелещак Р.М., Дорошенко М.В., Кулик Н.Я., Мацько М.Б., Галь Ю.М.
Математичне моделювання просторово-часового розподілу дефектів у
тришарових напружених наногетеросистемах
Британ В.Б., Пелещак Р.М., Шуптар Д.Д., Штим В.С.
Вплив ступеня пасивації воднем електричних центрів на роздільну
здатність оптичного запису зображень на n-p-i-m наноструктурах62
Бойчук В.І., Лешко Р.Я.
Поглинання і люмінесценція набору квантових точок
Бойчук В.І., Білинський І.В., Сокольник О.А.
Міжзонне поглинання світла у квантових точках різної форми70
Бойчук В.І., Білинський І.В., Пазюк Р.І.
Дослідження прямих міжпідзонних переходів в надгратках сферичних
квантових точок 78

УДК 539

Вплив ультразвуку на ступінь поруватості кремнію

Пелещак Р.М., Кузик О.В., Даньків О.О., Кульчицький О.Р.

email: peleshchak@rambler.ru

кафедра загальної фізики Дрогобицького державного педагогічного університету імені Івана Франка, вул. Стрийська, 3, Дрогобич, Львівська обл., 82100

Побудовано нелінійну дифузійно-деформаційну модель формування нанокластерів вакансій та їх періодичних утворень під впливом ультразвуку в поруватих матеріалах. Встановлено критерії їх формування за величиною амплітуди деформації, середньої концентрації вакансій та температури. Досліджено зміну ступеня поруватості кремнію під впливом ультразвуку.

Ключові слова: вакансія, деформація, поруватий кремній, ультразвук

вступ

Наноструктуровані матеріали останнім часом викликають значний інтерес дослідників. Це пов'язано з нетиповістю їх властивостей порівняно з об'ємним матеріалом. Одним з таких матеріалів є поруватий кремній (ПК), який отримують зазвичай за допомогою електролітичного анодування [1]. При достатньо високій поруватості (≥ 50%) він представляє собою систему взаємопов'язаних між собою кремнієвих нанокристалітів, поверхня яких відкрита для взаємодії з іншими молекулами [2].

У рівноважному стані кристал завжди містить певну кількість вакансій. Цей факт пояснюється тим, що при утворенні вакансії поряд із зростанням енергії відбувається збільшення ентропії [3]. В результаті мінімум вільної енергії спостерігається не для ідеального кристалу, а для кристалу з вакансіями. У роботі [3] показано, що навіть при низьких температурах рівноважна концентрація вакансій може досягати великих значень, якщо об'ємна деформація перевищує деяке критичне значення.

Відомо, що концентрація дефектів, зокрема вакансій, у твердому тілі, яке піддається ультразвуковій обробці, нелінійно залежить як від температури, так і від інтенсивності створюваних акустичних коливань [4]. Причому в певному інтервалі потужності ультразвуку та температури спостерігається значне (більше, ніж на порядок) збільшення дефектності зразків,

тобто акустичний вплив у цьому випадку носить яскраво виражений синергетичний характер. При великих концентраціях вакансій, які взаємодіють між собою та з кристалічної матриці атомами деформаційне поле, можливе виникнення процесів їх самоорганізації в окремі кластери та періодичні структури [5]. Утворення періодичної ґратки пор при опроміненні металів та діелектриків високоенергетичними пучками нейтронів та електронів спостерігали у роботах [6, 7].

В роботах [8-12] було показано, що за допомогою ультразвукової хвилі можна керувати транспортними властивостями напівпровідників та змінювати їх структуру.

У даній роботі досліджено вплив ультразвукової обробки на ступінь поруватості кремнію.

1. МОДЕЛЬ ПОРУВАТОЇ СТРУКТУРИ

Виділимо у поруватому середовищі деякий об'єм у вигляді циліндра радіусом R_0 , який містить одну циліндричну пору радіусом r_0 (рис. 1). Нехай така система містить вакансії із середньою концентрацією N_{d0} .

З врахуванням нелокального закону Гука [13] енергію взаємодії вакансії з атомами матриці $U_{da}^{\rm int}$ через пружне поле можна визначити так:

$$U_{da}^{\rm int}(r) = -\int \lambda \left(|r' - r| \right) \varepsilon(r') \Delta \Omega_d dr', \qquad (1)$$

Рисунок 1. Геометрична модель поруватої структури

де λ – оператор пружних модулів [11]. Ввівши змінну, $\tau = r' - r$ та розклавши $\varepsilon(r + \tau)$ в ряд Тейлора по τ , отримаємо:

$$U_{da}^{\text{int}}(r) = -\int \lambda \left(|\tau| \right) \varepsilon(r+\tau) \Delta \Omega_{d} d\tau =$$

$$= -K \varepsilon(r) \Delta \Omega_{d} - K \frac{\partial^{2} \varepsilon(r)}{\partial r^{2}} r_{da}^{2} \Delta \Omega_{d} , \qquad (2)$$

де $K = \int \lambda(|\tau|)d\tau$ — модуль пружності [11], $2r_{da}^2 = \frac{\int \lambda(|\tau|)\tau^2d\tau}{\int \lambda(|\tau|)d\tau}$ — середнє значення квадрату

відстані між вакансією та атомами матриці, $\Delta\Omega_d$ — зміна об'єму кристалу одним дефектом; $\varepsilon(r)$ — радіальна компонента тензора деформації.

Пружне поле, що виникає в твердому тілі, діє на вакансію із силою

$$\vec{F} = Kgrad \left(\varepsilon(r) \Delta \Omega_d + \frac{\partial^2 \varepsilon(r)}{\partial r^2} r_{da}^2 \Delta \Omega_d \right)$$
 (3)

Під дією цієї сили дефекти у пружному полі отримують швидкість

$$\vec{v} = \mu \vec{F} = \frac{DK}{k_B T} \operatorname{grad} \left(\varepsilon(r) \Delta \Omega_d + \frac{\partial^2 \varepsilon(r)}{\partial r^2} r_{da}^2 \Delta \Omega_d \right), (4)$$

де μ , D — рухливість та коефіцієнт дифузії вакансії; T — температура; k_B — стала Больцмана. Тут для визначення рухливості домішок використано співвідношення Ейнштейна.

Як бачимо з формули (4), швидкість вакансій у пружному полі визначається

градієнтами деформації та зміною об'єму кристалу цими дефектами. Отже, дефекти, які ϵ центрами стиску ($\Delta\Omega_d < 0$), а такими ϵ вакансії, будуть рухатися в область, що зазнає відносного стиску.

З врахуванням (4) стаціонарний потік вакансій можна записати у вигляді:

$$j = -D\frac{\partial N_d}{\partial r} + N_d \frac{DK}{k_B T} \left(\frac{\partial \varepsilon}{\partial r} \Delta \Omega_d + \frac{\partial^3 \varepsilon}{\partial r^3} r_{da}^2 \Delta \Omega_d \right). \tag{5}$$

Густина потенціальної енергії пружного континууму без дефектів з врахуванням ангармонічних доданків може бути представлена у вигляді:

$$U_{a} = \frac{1}{2} E \varepsilon^{2}(r) + \frac{1}{3} E \alpha \varepsilon^{3}(r) + \frac{1}{4} E \beta \varepsilon^{4}(r) + E a_{0}^{2} \frac{\partial^{2} \varepsilon(r)}{\partial r^{2}} \varepsilon(r),$$
 (6)

де E – модуль Юнга, α , β – константи пружного ангармонізму; a_0 – характеритична відстань взаємодії атомів кристалічної матриці між собою, яка приблизно дорівнює параметру кристалічної ґратки матриці.

Тоді з врахуванням (2) та (6) вираз для густини вільної енергії кристалу з вакансіями матиме вигляд:

$$\Phi = U_a + NU_{da}^{\text{int}} - TS = \frac{1}{2} E \varepsilon^2 (r) + \frac{1}{3} E \alpha \varepsilon^3 (r) + \frac{1}{4} E \beta \varepsilon^4 (r) + E a_0^2 \frac{\partial^2 \varepsilon(r)}{\partial r^2} \varepsilon(r) - KN(r) \varepsilon(r) \Delta \Omega_d - KN(r) \frac{\partial^2 \varepsilon(r)}{\partial r^2} r_{da}^2 \Delta \Omega_d - TS ,$$
 (7)

де S – густина ентропії.

Використавши співвідношення $\sigma = \frac{\partial \Phi}{\partial \varepsilon}$, отримаємо вираз для механічної напруги:

$$\sigma = E\varepsilon + E\alpha\varepsilon^{2} + E\beta\varepsilon^{3} + Ea_{0}^{2}\frac{\partial^{2}\varepsilon}{\partial r^{2}} - KN\Delta\Omega_{d}.$$
 (8)

Механічна напруга у твердому тілі, яка зазнає впливу ультразвуку з врахуванням ангармонічних доданків

$$\tilde{\sigma} = \sigma + E\varepsilon_0 \cos \omega t + E\alpha (\varepsilon_0 \cos \omega t)^2 + E\beta (\varepsilon_0 \cos \omega t)^3,$$
(9)

де ϵ_0 — амплітуда деформації, створеної ультразвуком. Тут враховано, що довжина хвилі $\lambda >> R_0$. Усереднивши за часом, отримаємо:

$$\tilde{\sigma} = E\varepsilon + E\tilde{\alpha}\varepsilon^2 + E\beta\varepsilon^3 + Ea_0^2 \frac{\partial^2 \varepsilon}{\partial r^2} - \theta_d N, \quad (10)$$

де
$$\tilde{\alpha} = \alpha (1 + \frac{\varepsilon_0^2}{2\varepsilon^2})$$
, де $\theta_v = K\Delta\Omega_d$ – дефор-

маційний потенціал вакансії.

3 умови рівноваги деформованого тіла $\frac{\partial \tilde{\sigma}}{\partial r} = 0$ отримаємо рівняння для деформації:

$$\frac{\partial \varepsilon}{\partial r} + \tilde{\alpha} \frac{\partial \varepsilon^2}{\partial r} + \beta \frac{\partial \varepsilon^3}{\partial r} + a_0^2 \frac{\partial^3 \varepsilon}{\partial r^3} - \frac{\theta_v}{E} \frac{\partial N}{\partial r} = 0. \quad (11)$$

З врахуванням (5) стаціонарне рівняння дифузії для вакансій можна записати у вигляді:

$$\operatorname{div} D \left[\frac{\partial N}{\partial r} + \frac{N \theta_{v}}{k_{E} T} \left(\frac{\partial \varepsilon}{\partial r} + \frac{\partial^{3} \varepsilon}{\partial r^{3}} r_{da}^{2} \right) \right] + G_{d} - \frac{N}{\tau_{d}} = 0, (12)$$

де G_d , τ_d — швидкість генерації та час життя вакансій.

Для знаходження розподілу концентрації вакансій та деформації в досліджуваній структурі необхідно розв'язати систему нелінійних диференціальних рівнянь (11) та (12).

Представимо концентрацію вакансій та деформацію у вигляді:

$$N(r) = N_1(r) + N_0, (13)$$

$$\varepsilon(r) = \varepsilon_1(r) + N_0 \Delta \Omega_A \,, \tag{14}$$

де $N_1(r)$, $\varepsilon_1(r)$ — просторово неоднорідні складові концентрації вакансій та деформації, $N_1(r)$ << N_0 .

Підставивши (13) і (14) у (11) та (12) з врахуванням того, що $N_1(r) << N_0$ та при $r \to R_0$ повинні виконуватись умови $\frac{\partial N_1}{\partial r} = 0$

та $\frac{\partial \varepsilon_1}{\partial r}=0$, отримаємо, що $N_0=G_d au_d$ та рівняння для $N_1(r)$ та $\varepsilon_1(r)$:

$$D\frac{\partial N_1}{\partial r} - N_0 \frac{D\theta_v}{k_B T} \left(\frac{\partial \varepsilon_1}{\partial r} + \frac{\partial^3 \varepsilon_1}{\partial r^3} r_{da}^2 \right) = 0 ; \quad (15)$$

$$\frac{\partial \varepsilon_1}{\partial r} + \tilde{\alpha} \frac{\partial \varepsilon_1^2}{\partial r} + \beta \frac{\partial \varepsilon_1^3}{\partial r} + a_0^2 \frac{\partial^3 \varepsilon_1}{\partial r^3} - \frac{\theta_v}{E} \frac{\partial N_1}{\partial r} = 0.$$
 (16)

Проінтегрувавши рівняння (15) отримаємо:

$$N_{1} = \frac{N_{0}\theta_{v}}{k_{B}T} \left(\varepsilon_{1} + \frac{\partial^{2} \varepsilon_{1}}{\partial r^{2}} r_{da}^{2} \right). \tag{17}$$

Підставимо (17) у (16) та отримаємо рівняння для деформації, яке після інтегрування можна записати у вигляді:

$$\frac{\partial^2 \varepsilon_1}{\partial r^2} - a\varepsilon_1 + f\varepsilon_1^2 - c\varepsilon_1^3 = 0, \qquad (18)$$

$$\begin{split} \text{де} \quad & a = \frac{1 - \frac{N_0}{N_c}}{r_{da}^2 \bigg(\frac{N_0}{N_c} - \frac{a_0^2}{r_{da}^2}\bigg)} \,; \qquad \qquad f = \frac{\left|\widetilde{\alpha}\right|}{r_{da}^2 \bigg(\frac{N_0}{N_c} - \frac{a_0^2}{r_{da}^2}\bigg)} \,; \\ c &= \frac{\beta}{r_{da}^2 \bigg(\frac{N_0}{N_c} - \frac{a_0^2}{r_{da}^2}\bigg)} \,; \qquad N_c = \frac{E \cdot kT}{\theta_v^2} \;. \end{split}$$

Тут враховано, що $\alpha < 0$, $\beta > 0$ [5].

2. ФОРМУВАННЯ НАНОКЛАСТЕРІВ ВАКАНСІЙ ПІД ВПЛИВОМ УЛЬТРАЗВУКУ

Розв'язок рівняння (18) має вигляд:

$$r = \int \frac{d\varepsilon_1}{\sqrt{a\varepsilon_1^2 - \frac{2f\varepsilon_1^3}{3} + \frac{c\varepsilon_1^4}{2}}} + r_c,$$

де r_c – стала інтегрування

Ввівши заміну $\varepsilon_1 = \frac{1}{z}$, цей інтеграл можна записати наступним чином:

$$r - r_c = -\int \frac{dz}{\sqrt{a\left(z - \frac{f}{3a}\right)^2 + \Delta}},$$
 (19)

$$\text{де } \Delta = -\frac{f^2}{9a} + \frac{c}{2}.$$

Інтеграл (19) виражається через аналітичні функції, тип яких визначається знаками коефіцієнтів a і Δ .

Якщо виконуються умови

$$\frac{N_0}{N_c} < \frac{a_0^2}{r_{da}^2}, \frac{2\tilde{\alpha}^2}{9\beta} < 1 - \frac{N_0}{N_c} \quad (a < 0 \text{ i } \Delta < 0), \quad (20)$$

то $\varepsilon_1 = 0$, а $N(r) = N_0$, тобто процеси самоорганізації не відбуваються.

Враховуючи, що
$$\frac{2\alpha^2}{9\beta} = \frac{4}{9}$$
 [5] та

$$\varepsilon^2 \approx \frac{\varepsilon_0^2}{2} + \left(\frac{\theta_v}{K}N_0\right)^2$$
, умови (20) можна записати

у вигляді:

$$\frac{N_0}{N_c} < \frac{a_0^2}{r_{da}^2}$$
,

$$\varepsilon_0^2 < \left(\frac{\sqrt{2}k_B T N_0}{\theta_v N_c}\right)^2 \left(\frac{1}{\frac{3}{2}\sqrt{1 - \frac{N_0}{N_c} - 1}} - 1\right)^{-1}.$$
 (21)

При перевищенні середньої концентрації дефектів значення $N_0 = N_c \frac{a_0^2}{r_{da}^2}$, незалежно

від амплітуди деформації ультразвукової хвилі, просторово однорідний розв'язок стає нестійким і виникає новий просторово неоднорідний стаціонарний стан (утворюються кластери або періодичні вакансійні структури). Окрім цього, при невиконанні 2-ої умови (21) завжди виникатимуть кластери вакансій. В інших випадках, залежно від величин N_0 та ε_0 розв'язок рівняння (2.18) матиме вигляд

$$a > 0$$
 i $\Delta > 0$:

$$\varepsilon_1(r) = -\frac{A}{B + \sinh(-\sqrt{a(r - r_0)})}$$

$$\alpha^2 \qquad N_1 \qquad 2\tilde{\alpha}^2$$
(22)

при

$$\frac{a_0^2}{r_{da}^2} < \frac{N_0}{N_c} < 1 - \frac{2\tilde{\alpha}^2}{9\beta}$$
 Ta

$$\varepsilon_{0}^{2} < \left(\frac{\sqrt{2}k_{\scriptscriptstyle E}T}{\theta_{\scriptscriptstyle V}}\right)^{2} \left(\frac{N_{\scriptscriptstyle 0}}{N_{\scriptscriptstyle c}}\right)^{2} \left(\frac{1}{\frac{3}{2}\sqrt{1-\frac{N_{\scriptscriptstyle 0}}{N_{\scriptscriptstyle c}}}-1}-1\right)^{-1};$$

$$a > 0$$
 i $\Delta < 0$:

$$\varepsilon_1(r) = -\frac{A}{B + \cosh(\sqrt{a(r - r_0)})}$$
(23)

при
$$1 - \frac{2\tilde{\alpha}^2}{9\beta} < \frac{N_0}{N_c} < 1$$
 та

$$\mathcal{E}_{0}^{2} < \left(\frac{\sqrt{2}k_{E}T}{\theta_{v}}\right)^{2} \left(\frac{N_{0}}{N_{c}}\right)^{2} \left(\frac{1}{\frac{3}{2}\sqrt{1-\frac{N_{0}}{N_{c}}}-1}-1\right)^{-1}$$

або при
$$\frac{a_0^2}{r_{da}^2} < \frac{N_0}{N_c} < 1 - \frac{2\tilde{\alpha}^2}{9\beta}$$
,

$$\varepsilon_{0}^{2} > \left(\frac{\sqrt{2}k_{\scriptscriptstyle B}T}{\theta_{\scriptscriptstyle V}}\right)^{2} \left(\frac{N_{\scriptscriptstyle 0}}{N_{\scriptscriptstyle c}}\right)^{2} \left(\frac{1}{\frac{3}{2}\sqrt{1-\frac{N_{\scriptscriptstyle 0}}{N_{\scriptscriptstyle c}}}-1}-1\right)^{-1};$$

$$a < 0$$
 i $\Delta > 0$:
$$\varepsilon_1(r) = -\frac{A}{B + \sin(\sqrt{|a|}(r - r_0))}$$
(24)

при
$$\frac{N_0}{N_c} > 1$$
 та

$$\mathcal{E}_{0}^{2} < \left(\frac{\sqrt{2}k_{\scriptscriptstyle E}T}{\theta_{\scriptscriptstyle V}}\right)^{2} \left(\frac{N_{\scriptscriptstyle 0}}{N_{\scriptscriptstyle c}}\right)^{2} \left(\frac{1}{\frac{3}{2}\sqrt{1-\frac{N_{\scriptscriptstyle 0}}{N_{\scriptscriptstyle c}}}-1}-1\right)^{-1}$$

або при

$$\varepsilon_{0}^{2} > \left(\frac{\sqrt{2}k_{B}T}{\theta_{v}}\right)^{2} \left(\frac{N_{0}}{N_{c}}\right)^{2} \left(\frac{1}{\frac{3}{2}\sqrt{1-\frac{N_{0}}{N_{c}}}-1}-1\right)^{-1}$$
 ta

$$\frac{N_0}{N_c} < \frac{a_0^2}{r_{da}^2};$$

де
$$A = 3\sqrt{2}|a|(9ca - 2f^2)|^{-\frac{1}{2}};$$

$$B = \sqrt{2} f \left(9ca - 2f^2 \right)^{-\frac{1}{2}}.$$

Стала інтегрування r_c вибрана з міркувань, що максимальне скупчення вакансій відбувається біля поверхні пори, тобто виконується умова $r_c = r_0$.

Таким чином, при певних значеннях концентрації дефектів N_0 та амплітуди ультразвукової хвилі ε_0 формуються кластери вакансій чи їх періодичні утворення.

На рис. 2 графічно зображені області можливого формування кластерів вакансій залежно від значення ε_0^2 та $\frac{N_0}{N}$.

Радіус кластера залежить від концентрації дефектів, пружних сталих та температури і може бути визначений наступним чином:

$$r_{cluster} = \frac{1}{\sqrt{a}} = r_{da} \sqrt{\frac{\frac{N_0}{N_c} - \frac{a_0^2}{r_{da}^2}}{1 - \frac{N_0}{N_c}}}.$$
 (25)

Підставивши формули (22) – (24) у формулу (17), можна знайти концентрацію вакансій.

На рис. З представлено залежність радіуса кластера вакансій від їх відносної концентрації $\frac{N_0}{N_c}$ у діапазоні $\frac{a_0^2}{r_{da}^2} < \frac{N_0}{N_c} < 1$. Як бачимо, при збільшенні концентрації вакансій радіус кластера монотонно збільшується та лежить у нанометровому діапазоні.

Рисунок 2. Області можливого формування кластерів вакансій

залежно від значення $\, {arepsilon}_0^2 \,$ та $\, \frac{N_0}{N_c} \colon$

 D_0 – процеси самоорганізації не відбуваються; D_1 – утворюється асиметричний кластер; D_2 – утворюється симетричний кластер вакансій; D_3 – утворюється періодична ґратка вакансій

Очевидно, що концентрація дефектів N_0 може бути представлена у вигляді:

$$N_0 = N_0' + N_{0us}(\varepsilon_0), \tag{26}$$

де N_0' – рівноважна концентрація вакансій, які існують у твердому тілі без впливу ультразвуку, $N_{0\mathrm{us}}$ – концентрація вакансій, які утворюються під впливом ультразвуку. Отже, розмір кластера також залежатиме від амплітуди ультразвукової хвилі. Підставивши (26) у (25), формулу для розміру кластера можна записати у вигляді:

$$r_{cluster} = r_{da} \sqrt{\frac{\frac{N_0'}{N_c} + \frac{G_d}{G_{dc}} - \frac{a_0^2}{r_{da}^2}}{1 - \frac{N_0'}{N_c} - \frac{G_d}{G_{dc}}}},$$
 (27)

де $G_{dc} = \frac{N_c}{ au_d}$ — деяке критичне значення

швидкості генерації вакансій під впливом ультразвуку.

3. ВПЛИВ УЛЬТРАЗВУКУ НА СТУПІНЬ ПОРУВАТОСТІ КРЕМНІЮ

Ступінь поруватості структури α визначається як відношення об'єму пор V_p до об'єму всієї структури V:

$$\alpha = \frac{V_p}{V} = \frac{nH\pi r_0^2}{nH\pi R_0^2} = \frac{r_0^2}{R_0^2} \,, \tag{28}$$

де H – висота пори, n – концентрація пор.

Під діє ультразвуку радіус пор збільшується і становитиме

Рисунок 3. Залежність радіуса кластера вакансій від їх концентрації:

$$1 - r_{da} = 3 \text{ } \mu\text{M};$$
 $2 - r_{da} = 4 \text{ } \mu\text{M};$ $3 - r_{da} = 5 \text{ } \mu\text{M};$ $4 - r_{da} = 6 \text{ } \mu\text{M}$

$$r_0' = r_0 + r_{cluster},$$
 (29)

де r_0' — радіус пор після ультразвукової обробки.

Тоді ступінь поруватості матеріалу, що піддавався ультразвуковій обробці, можна обчислити за формулою:

$$\alpha = \frac{(r_0 + r_{cluster})^2}{R_o^2} \,. \tag{30}$$

Підставивши (27) в (30), отримаємо залежність ступеня поруватості кремнію від швидкості генерації вакансій під впливом ультразвуку:

$$\alpha = \frac{\left(r_0 + r_{da} \sqrt{\frac{\frac{N_0'}{N_c} + \frac{G_d}{G_{dc}} - \frac{a_0^2}{r_{da}^2}}{1 - \frac{N_0'}{N_c} - \frac{G_d}{G_{dc}}}\right)^2}{R_0^2} =$$

$$= \alpha_0 + 2\alpha_0 \frac{r_{da}}{R_0} \gamma + \frac{r_{da}^2}{R_0^2} \gamma^2, \qquad (31)$$

де
$$\gamma = \sqrt{\frac{\frac{N_0'}{N_c} + \frac{G_d}{G_{dc}} - \frac{a_0^2}{r_{da}^2}}{1 - \frac{N_0'}{N_c} - \frac{G_d}{G_{dc}}}}$$
, α_0 – ступінь порува-

тості кремнію до обробки ультразвуком.

На рис. 4 представлено залежність ступеня поруватості кремнію від швидкості генерації вакансій під впливом ультразвуку при різних значеннях α_0 . Розрахунки проводились при наступних значеннях параметрів: $\alpha_0 = 0.543 \ \text{нм}$ — параметр ґратки

Si;
$$r_{da} = 5 \text{ } \mu\text{M}; \ R_0 = 50 \text{ } \mu\text{M}; \ \frac{N_0'}{N_c} = 0.05 \text{ }.$$

Рисунок 4. Залежність ступеня поруватості кремнію від швидкості генерації вакансій під впливом ультразвуку при різних значеннях α :

$$1 - \alpha_0 = 0.2$$
; $2 - \alpha_0 = 0.3$; $3 - \alpha_0 = 0.4$; $4 - \alpha_0 = 0.5$

З рис. 4 бачимо, що при збільшенні швидкості генерації вакансій (збільшенні амплітуди акустичної хвилі) ступінь поруватості кремнію монотонно зростає. Причому, швидкість зростання у кремнії з більшим вихідним ступенем поруватості є більшою. Зокрема, при збільшенні відносної швидкості генерації вакансій від 0,1 до 0,7 при $\alpha_0 = 0,2$ ступінь поруватості зростає на 8%, при $\alpha_0 = 0,5$ — на 29 %.

При перевищенні швидкості генерації вакансій під дією ультразвуку деякого критичного значення у кремнії будуть формуватися періодичні утворення вакансійних деформаційних структур (формула (24)).

Таким чином, при незначній швидкості генерації вакансій під дією ультразвуку в кремнії ступінь поруватості не буде змінюватися, а при перевищенні деякого значення $G_d \approx 0.01 G_{d0}$ збільшується радіус пор або формуються нові пори і ступінь поруватості зростає.

висновки

- 1. Побудовано нелінійну дифузійнодеформаційну модель формування вакансійних нанокластерів та їх періодичних утворень в поруватому кремнії під дією ультразвуку.
- 2. Встановлено критерії формування кластерів вакансій за величиною

- амплітуди ультразвукової хвилі, середньої концентрації вакансій та температури.
- 3. Досліджено залежність розміру нанокластера від середньої концентрації вакансій і показано, що така залежність має монотонно зростаючий характер.
- 4. У межах побудованої моделі встановлено закономірності зміни ступеня поруватості кремнію під впливом ультразвуку. Показано, що при незначній швидкості генерації вакансій під дією ультразвуку в кремнії ступінь поруватості не буде змінюватися, а при перевищенні деякого значення $G_d \approx 0.01 G_{d0}$ збільшується радіус пор або формуються нові пори і ступінь поруватості зростає.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- [1]. Образцов А.Н. Поглощение света и фотолюминесценция пористого кремния / А.Н. Образцов, В.А. Караванский, Х. Окуши, Х. Ватанабе // ФТП. 2008. Т. 32. № 8. С. 1001 1005.
- [2]. Зубко Є.І. Особливості формування шарів пористого кремнію модифікованих HCl і HBr в контексті оптичних властивостей / Є.І. Зубко // Журнал нанота електронної фізики. 2012. Т. 4. № 2. С. 02036-1 02036-4.
- [3]. Булавин Л.А. Вакансии в сильно деформированном кристалле: низкие температуры / Л.А. Булавин, О.Ю. Актан, Ю.Ф. Забашта // ФТТ. 2008. T. 50. N 12. C. 2174 2179.
- [4]. Абрамов О.В. Воздействие мощного ультразвука на жидкие и твердые металлы / О.В. Абрамов. М. : Наука, 2000. 297 с.
- [5]. Emel'yanov V.I. A Hierarchy of the formation of nanometer clusters and periodic structures of laser-induced defects / V.I. Emel'yanov, I.M. Panin // Laser Physics – 1996. – V. 6. – P. 971 – 978.
- [6]. SikkaV.K. Damage in neutron-irradiated molybdenum (I). Characterization of asirradiated microstructure / V.K. Sikka, J. Moteff // J. Nucl. Mat. – 1974. – V. 54. – P. 325 – 345.
- [7]. Chadderton L.T. Observations of a regular void array in natural fluorite irradiated with 100 keV electrons / L.T. Chadderton,

- E. Johnson, T. Wohlenberg // Physica
 Scripta. 1976. V. 13. P. 127 128.
- [8]. Zaveryukhin B.N. Variation of the reflection coefficient of semiconductors in a wavelength range from 0.2 to 20 mm under the action of ultrasonic waves / B.N. Zaveryukhin, N.N. Zaveryukhina, O.M. Tursunkulov // Technical Physics Letters. 2002. –
- V. 28. P. 752 756.

 [9]. Olikh O.Ya. Ultrasound-stimulated increase in the electron diffusion length in p-Si crystals / O.Ya. Olikh, I.V. Ostrovskii

// Physics of the Solid State. - 2002. -

[10]. Ostapenko S. Ultrasound stimulated dissociation of Fe-B pairs in silicon /

V. 44. - P. 1249 - 1253.

- S. Ostapenko, R. Bell // J. Appl. Phys. 1995. V. 77. P. 5458 5460.
- [11]. Ostrovski I.V. Ultrasonically stimulated low-temperature redistribution of impurities in silicon / V. Ostrovski, A.B. Nadtochi**ĭ**, and A.A. Podolyan // Semiconductors. -2002 V. 36. P. 367 369.
- [12]. Кулемин А.В. Ультразвук и диффузия в металлах / А.В. Кулемин. М. : Металлургия, 1978. 264 с.
- [13]. Кунин И.А. Теория упругих сред с микроструктурой. Нелокальная теория упругости / И.А. Кунин. М. : Наука, 1975.-389 с.