PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-012902

(43) Date of publication of application: 15.01.2003

(51)Int.Cl.

CO8L 67/00 C08J 5/18 CO8L 77/06 // (CO8L 67/00 CO8L 23:00 (C08L 67/00 CO8L 77:00 (C08L 67/00 CO8L 59:00 (C08L 67/00 CO8L 67:02)

(21)Application number: 2002-121059

(22)Date of filing:

23.04.2002

(71)Applicant: TOYOBO CO LTD

(72)Inventor: HARA ATSUSHI

NAKAYAMA SEIJI MATSUI YOSHINAO YOSHIDA HIDEKAZU

SUZUKI KENTA

(30)Priority

Priority number : 2001126199

Priority date: 24.04.2001

Priority country: JP

(54) POLYESTER COMPOSITION AND MOLDED BODY THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a polyester composition which gives a molded body excellent in gas barrier property and flavor maintenance and which moreover hardly causes gelation and mold deposit at the time of molding.

SOLUTION: The polyester composition which comprises (A) a polyester having the main repeating unit of ethylene terephthalate and (B) a m-xylylene group-containing polyamide, is characterized in that the above m-xylylene group- containing polyamide (B) has a gelation time when heat-treated at 260° C under a nitrogen atmosphere, of 3 hours or longer. In addition, it is preferable that the m-xylylene group-containing polyamide has a content of a m-xylylene group- containing cyclic amide dimer of 1.5 wt.% or less.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-12902 (P2003-12902A)

(43)公開日 平成15年1月15日(2003.1.15)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
COSL 67/00		C08L 67/00	4 F 0 7 1
CO8J 5/18	CFD	C08J 5/18	CFD 4J002
C08L 77/06		C08L 77/06	•
// (C08L 67/00		23: 00	
23: 00)		C08L 77:00	
	審査請求	未請求 請求項の数10 OL	(全 15 頁) 最終頁に続く
(21)出願番号	特願2002-121059(P2002-121059)	(71) 出願人 000003160	
		東洋紡績株式	会社
(22)出願日	平成14年4月23日(2002.4.23)	大阪府大阪市	7北区堂島浜2丁目2番8号
		(72)発明者 原 厚	
(31)優先権主張番号	特願2001-126199(P2001-126199)	滋賀県大津市	京堅田二丁目1番1号 東洋紡
(32)優先日	平成13年4月24日(2001.4.24)	績株式会社 編	合研究所内
(33)優先権主張国	日本 (JP)	(72)発明者 中山 誠治	
$\forall v v = v$		滋賀県大津市	軍田二丁目1番1号 東洋紡
		續株式会社 約	合研究所内
		(72)発明者 松井 義直	
		滋賀県大津市	京堅田二丁目1番1号 東洋紡
		績株式会社約	合研究所内
			最終頁に続く

(54) 【発明の名称】 ポリエステル組成物及びそれからなる成形体

(57) 【要約】

【課題】 ガスバリヤー性および/または香味保持性に優れた成形体を与え、さらには成形時でのゲル化および 金型汚れを発生させにくいポリエステル組成物を提供することを目的とする。

【解決手段】 主たる繰り返し単位がエチレンテレフタレートであるポリエステル(A)と、メタキシリレン基含有ポリアミド(B)とからなるポリエステル組成物であって、前記メタキシリレン基含有ポリアミド(B)を260℃で窒素雰囲気下に加熱処理した際のゲル化時間が3時間以上であることを特徴とするポリエステル組成物。メタキシリレン基含有ポリアミド(B)が含有するメタキシリレン基含有環状アミド2量体の含有量は1.5重量%以下であることが好ましい。

【特許請求の範囲】

【請求項1】 主たる繰り返し単位がエチレンアリレー トであるポリエステル(A)と、メタキシリレン基含有 ポリアミド(B)とからなるポリエステル組成物であっ て、前記メタキシリレン基含有ポリアミド(B)を26 0℃で窒素雰囲気下に加熱処理した際のゲル化時間が3 時間以上であることを特徴とするポリエステル組成物。

【請求項2】 前記のメタキシリレン基含有ポリアミド (B) が含有するメタキシリレン基含有環状アミド2量 体の含有量が、1.5重量%以下であることを特徴とす る請求項1記載のポリエステル組成物。

【請求項3】 ポリエステル(A)が主たる繰り返し単 位がエチレンテレフタレートであることを特徴とする請 求項1または2に記載のポリエステル樹脂組成物。

【請求項4】 290℃の温度で60分間溶融した時の 環状エステル3量体の増加量が、0.50重量%以下で あることを特徴とする請求項1~3のいずれかに記載の ポリエステル樹脂組成物。

【請求項5】 前記の主たる繰り返し単位がエチレンア リレートであるポリエステル (A) を290℃の温度で 20 60分間溶融した時の環状エステル3量体の増加量が、 0.50重量%以下であることを特徴とする請求項1~ 4のいずれかに記載のポリエステル樹脂組成物。

【請求項6】 前記の主たる繰り返し単位がエチレンア リレートであるポリエステル(A)が、ポリオレフィン 樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチ レンテレフタレート樹脂からなる群から選ばれた少なく とも一種の樹脂0. 1ppb~100ppmを配合し たポリエステルであることを特徴とする請求項1~5の いずれかに記載のポリエステル組成物。

【請求項7】 請求項1~6のいずれかに記載のポリエ ステル組成物を成形してなることを特徴とする成形体。

請求項7に記載の成形体が、中空成形体 【請求項8】 であることを特徴とする成形体。

請求項7に記載の成形体が、シート状物 【請求項9】 であることを特徴とする成形体。

【請求項10】 請求項9に記載のシート状物を少なく とも1方向に延伸してなることを特徴とする延伸フイル

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、飲料用ボトルをは じめとする中空成形容器、フィルム、シートなどの成形 体の素材として好適に用いられるポリエステル組成物お よびそれからなる成形体に関するものである。特に、成 形体を成形する際の熱安定性に優れ、ゲル化が抑制され たポリエステル組成物に関するものである。また、本発 明のポリエステル組成物から得られた成形体は、ガスバ リヤー性および/または香味保持性に優れており、また

性に優れたシート状物および延伸フイルムを与える。 [0002]

【従来の技術】ポリエチレンテレフタレート(以下、P ETと略称することがある) などのポリエステルは、機 械的性質及び化学的性質が共に優れているため、工業的 価値が高く、繊維、フイルム、シート、ボトルなどとし て広く使用されている。

【0003】調味料、油、飲料、化粧品、洗剤などの容 器の素材としては、充填内容物の種類およびその使用目 的に応じて種々の樹脂が採用されている。これらのうち でポリエステルは機械的強度、耐熱性、透明性およびガ スバリヤー性に優れているので、特にジュース、清涼飲 料、炭酸飲料などの飲料充填用容器等の成形体の素材と して最適である。

【0004】このようなポリエステルは、例えば、射出 成形機械などの成形機に供給して中空成形体用プリフォ ムを成形し、このプリフォームを所定形状の金型に挿 入し延伸ブロー成形した後ボトルの胴部を熱処理(ヒー トセット)して中空成形容器に成形され、さらには必要 に応じてボトルの口栓部を熱処理(口栓部結晶化)させ るのが一般的である。

【0005】しかしながら、PETは、溶融重縮合時の 副生物としてアセトアルデヒド(以下、AAと略称する ことがある)を含有する。また、PETは、中空成形体 等の成形体を熱成形する際に熱分解によりアセトアルデ ヒドを生成し、得られた成形体の材質中のアセトアルデ ヒド含有量が多くなり、中空成形体等に充填された飲料 等の風味や臭いに影響を及ぼす。

【0006】したがって、従来よりポリエステル成形体 中のアセトアルデヒド含有量を低減させるために種々の 方策が採られてきた。一般的には、溶融重縮合したポリ エステルを固相重合することによってAA含有量を低下 させる方法、融点がより低い共重合ポリエステルを使用 して成形時のAA生成を低下させる方法、熱成形時にお ける成形温度を可及的に低くする方法および熱成形時に おけるせん断応力を可及的に小さくする方法等がとられ ている。

【0007】近年、ポリエチレンテレフタレートを中心 とするポリエステル製容器は、ミネラルウオータやウー 40. ロン茶等の低フレーバー飲料用の容器として使用される ようになってきた。このような飲料の場合は、一般にこ れらの飲料を熱充填したり、あるいは充填後加熱して殺 菌されるが、前記の方法によるポリエステル成形体材質 中のAA含有量低減だけでは、これらの容器内容物の風 味や臭いが改善されないことがわかってきた。

【0008】また、例えば、ポリエステル樹脂100重 量部に対して、メタキシリレン基含有ポリアミド樹脂 0.05重量部以上、1重量部未満を添加したポリエス テル組成物を用いる方法(特公平6-6662号公報) 耐熱寸法安定性に優れた中空成形体や成形後の寸法安定 50 や、熱可塑性ポリエステルに、末端アミノ基濃度をある

.3

範囲に規制した特定のポリアミドを含有させたポリエステル組成物からなるポリエステル製容器(特公平4-71425号公報)が提案されているが、ミネラルウオータ等の低フレーバー飲料用の容器の材料としては不十分な場合があることが判ってきた。

【0009】一方、PETを主体とするポリエステル成形体は前記のとうり通りガスバリヤー性に優れているが、ビタミンC等のように酸素に非常に敏感な化合物を含有する内容物用の中空成形体等としては不満足である。

【0010】このような問題点を解決するために、例えば、我々は、ポリエステル樹脂100重量部に対して、メタキシリレン基含有ポリアミド樹脂1~100重量部を含有させたポリエステル中空成形体(特公平4-54702号公報)を提案した。しかしながら、このようなポリエステル組成物を用いて中空成形体を製造する際にメタキシリレン基含有ポリアミドの熱劣化による焼けすじ、ゲル化による未溶融物が発生し、中空成形体の外観を損ねるという問題があった。

【0011】また、このようなポリエステル組成物を用いて耐熱性中空成形体を製造する際に前記の中空成形体の胴部を熱処理するが、金型内面や金型のガスの排気口、排気管に異物が付着する金型汚れが、ポリエステル樹脂のみを用いて成形する場合に比べて非常に発生しやすいと言う問題があり、未解決である。

[0012]

【発明が解決しようとする課題】本発明は、前記の従来技術の問題点を解決することにあり、成形体を成形する際のゲル化およびアセトアルデヒド等の増加が抑制されたポリエステル組成物、およびガスバリヤー性および/30または香味保持性に優れた成形体を提供することを目的としている。また、本発明は、成形時の金型汚れを発生させにくいポリエステル組成物を提供することも目的としている。

[0013]

【課題を解決するための手段】上記目的を達成するため、本発明のポリエステル組成物は、主たる繰り返し単位がエチレンアリレートであるポリエステル(A)と、メタキシリレン基含有ポリアミド(B)とからなるポリエステル組成物であって、前記メタキシリレン基含有ポ 40リアミド(B)を260℃で窒素雰囲気下に加熱処理した際のゲル化時間が3時間以上であることを特徴とするポリエステル組成物である。

【0014】この場合において、前記のメタキシリレン 基含有ポリアミド(B)が含有するメタキシリレン基含 有環状アミド2量体の含有量が、1.5重量%以下であ ることができる。

【0015】ポリエステル(A)は、主たる繰り返し単位がエチレンテレフタレートであることが出来る。

【0016】この場合において、前記の主たる繰り返し

単位がエチレンアリレートであるポリエステル (A) が 含有する環状エステル3量体の含有量が、0.5重量% 以下であることができる。

【0017】この場合において、前記の主たる繰り返し単位がエチレンアリレートであるポリエステル(A)を290℃の温度で60分間溶融した時の環状エステル3量体の増加量が、0.50重量%以下であることができる。この場合において、前記の主たる繰り返し単位がエチレンアリレートであるポリエステル(A)が、ポリオレフィン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂からなる群から選ばれた少なくとも一種の樹脂0.1ppb~1000ppmを配合したポリエステルであることができる。この場合において、本発明の成形体は、上記のいずれかに記載のポリエステル組成物を成形してなることを特徴とする成形体である。

【0018】この場合において、成形体が中空成形体であることができる。この場合において、成形体がシート状物であることができる。この場合において、成形体は上記シート状物を少なくとも1方向に延伸してなる延伸フイルムであることができる。

[0019]

【発明の実施の形態】以下、本発明のポリエステル組成物およびそれからなる成形体の実施の形態を具体的に説明する。まず、本発明のポリエステル組成物は、主たる繰り返し単位がポリエチレンアリレートであるポリエステル(A)とメタキシリレン基含有ポリアミド(B)からなる組成物である。組成物としては、ポリエステル(A)とポリアミド(B)の個々のチップが混合されたドライブレンド物であっても、ポリエステル(A)とポリアミド(B)が溶融混合されたブレンド体であっても良い。また、ブレンド体としては、チップ形状であっても中空成形体やシート状物、フィルム等の成形体であっても良く、その形状を問わないものである。

【0020】本発明に用いられるポリエステル(A)は、主たる繰り返し単位がエチレンアリレートであるポリエステルである。ポリエチレンアリレートの中でも、ポリエチレンテレフタレートおよびポリエチレン2,6ーナフタレートが好ましい。より好ましくはエチレンテレフタレート単位もしくはエチレン2,6ーナフタレート単位を85モル%以上含む線状ポリエステルであり、さらに好ましくは90モル%以上、特に好ましくは95%以上含む線状ポリエステルである。以下、ポリエステル(A)がポリエチレンテレフタレートの場合を中心に説明する。

【0021】前記ポリエステルが共重合体である場合に使用される共重合成分としてのジカルボン酸としては、イソフタル酸、2,6ーナフタレンジカルボン酸(ポリエステル(A)がポリエチレン2,6ーナフタレートの場合はテレフタル酸)、ジフェニールー4,4'ージカ

ルボン酸、ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸及びその機能的誘導体、p-オキシ安息香酸、オキシカプロン酸等のオキシ酸及びその機能的誘導体、アジピン酸、セバシン酸、コハク酸、グルタル酸等の脂肪族ジカルボン酸及びその機能的誘導体、シクロヘキサンジカルボン酸等の脂肪族ジカルボン酸及びその機能的誘導体などが挙げられる。

【0022】前記ポリエステルが共重合体である場合に使用される共重合成分としてのグリコールとしては、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA、アルキレンオキサイド付加物等の芳香族グリコールなどが挙げられる。

【0023】さらに、前記ポリエステルが共重合体である場合に使用される共重合成分としての多官能化合物としては、酸成分として、トリメリット酸、ピロメリット酸等を挙げることができ、グリコール成分としてグリセリン、ペンタエリスリトールを挙げることができる。以上の共重合成分の使用量は、ポリエステルが実質的に線状を維持する程度でなければならない。また、単官能化合物、例えば安息香酸、ナフトエ酸等を共重合させてもよい。

【0024】前記のポリエステルは、テレフタール酸とエチレングリコールおよび必要により上記共重合成分を直接反応させて水を留去しエステル化した後、重縮合触媒としてSb化合物、Ge化合物、Ti化合物またはA1化合物から選ばれた1種またはそれ以上の化合物を用いて減圧下に重縮合を行う直接エステル化法、またはテレフタル酸ジメチルとエチレングリコールおよび必要により上記共重合成分をエステル交換触媒の存在下で反応させてメチルアルコールを留去しエステル交換させた後、重縮合触媒としてSb化合物、Ge化合物、Ti化合物またはA1化合物から選ばれた1種またはそれ以上の化合物を用いて、主として減圧下に重縮合を行うエステル交換法により製造される。

【0025】さらにポリエステルの極限粘度を増大させ、アセトアルデヒド含有量を低下させるために固相重合を行ってもよい。前記のエステル化反応、エステル交40換反応、溶融重縮合反応および固相重合反応は、回分式反応装置で行っても良いし、また連続式反応装置で行っても良い。これらいずれの方式においても、溶融重縮合反応は1段階で行っても良いし、また多段階に分けて行っても良い。固相重合反応は、溶融重縮合反応と同様、回分式装置や連続式装置で行ってとが出来る。溶融重縮合と固相重合は連続で行っても良いし、分割して行ってもよい。

【0026】本発明に係るポリエステル(A)の製造に 使用されるSb化合物としては、三酸化アンチモン、酢 50

酸アンチモン、酒石酸アンチモン、酒石酸アンチモンカリ、オキシ塩化アンチモン、アンチモングリコレート、五酸化アンチモン、トリフェニルアンチモン等が挙げられる。Sb化合物は、生成ポリマー中のSb残存量として50~250ppmの範囲になるように添加する。

【0027】本発明に係るポリエステル(A)の製造に使用されるGe化合物としては、無定形二酸化ゲルマニウム、結晶性二酸化ゲルマニウム、塩化ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラー
nーブトキシド、亜リン酸ゲルマニウム等が挙げられる。Ge化合物を使用する場合、その使用量はポリエステル中のGe残存量として5~150ppm、好ましくは10~100ppm、更に好ましくは15~70ppmである。

【0028】本発明に係るポリエステル(A)の製造に使用されるTi化合物としては、テトラエチルチタネート、テトライソプロピルチタネート、テトラーnープロピルチタネート、テトラーnープロピルチタネート、テトラーnーブチルチタネート等のテトラアルキルチタネートおよびそれらの部分加水分解物、蓚酸チタニル、蓚酸チタニルアンモニウム、蓚酸チタニルナトリウム、蓚酸チタニルカリウム、蓚酸チタニルカルシウム、蓚酸チタニルストロンチウム等の蓚酸チタニル化合物、トリメリット酸チタン、硫酸チタン、塩化チタン等が挙げられる。Ti化合物は、生成ポリマー中のTi残存量として0.1~10ppmの範囲になるように添加する。

【0029】また、本発明に係るポリエステル(A)の 製造に使用されるA1化合物としては、蟻酸アルミニウ ム、酢酸アルミニウム、プロピオン酸アルミニウム、蓚 酸アルミニウム等のカルボン酸塩、酸化物、水酸化アル ミニウム、塩化アルミニウム、水酸化塩化アルミニウ ム、炭酸アルミニウム等の無機酸塩、アルミニウムメト キサイド、アルミニウムエトキサイド等のアルミニウム アルコキサイド、アルミニウムアセチルアセトネート、 アルミニウムアセチルアセテート等とのアルミニウムキ レート化合物、トリメチルアルミニウム、トリエチルア ルミニウム等の有機アルミニウム化合物およびこれらの 部分加水分解物等があげられる。これらのうち酢酸アル ミニウム、塩化アルミニウム、水酸化アルミニウム、水 酸化塩化アルミニウム、およびアルミニウムアセチルア セトネートが特に好ましい。A1化合物は、生成ポリマ -中のA1残存量として5~200ppmの範囲になる ように添加する。

【0030】また、本発明に用いられるポリエステル(A)の製造において、アルカリ金属化合物またはアルカリ土類金属化合物を併用してもよい。アルカリ金属化合物またはアルカリ土類金属化合物は、これら元素の酢酸塩等のカルボン酸塩、アルコキサイド等があげられ、粉体、水溶液、エチレングリコール溶液等として反応系に添加される。アルカリ金属化合物またはアルカリ土類

金属化合物は、生成ポリマー中のこれらの元素の残存量 として1~50ppmの範囲になるように添加する。前 記の触媒化合物は、前記のポリエステル生成反応工程の 任意の段階で添加することができる。

【0031】また、安定剤として種々のリン化合物を使 用することができる。本発明で使用されるリン化合物と しては、リン酸、亜リン酸、ホスホン酸およびそれらの 誘導体等が挙げられる。具体例としてはリン酸、リン酸 トリメチルエステル、リン酸トリエチルエステル、リン 酸トリブチルエステル、リン酸トリフェニールエステ ル、リン酸モノメチルエステル、リン酸ジメチルエステ ル、リン酸モノブチルエステル、リン酸ジブチルエステ ル、亜リン酸、亜リン酸トリメチルエステル、亜リン酸 トリエチルエステル、亜リン酸トリブチルエステル、メ チルホスホン酸、メチルホスホン酸ジメチルエステル、 エチルホスホン酸ジメチルエステル、フェニールホスホ ン酸ジメチルエステル、フェニールホスホン酸ジエチル エステル、フェニールホスホン酸ジフェニールエステル 等であり、これらは単独で使用してもよく、また2種以 上を併用してもよい。リン化合物は、生成ポリマー中の リン残存量として5~100ppmの範囲になるように 前記のポリエステル生成反応工程の任意の段階で添加す

【0032】本発明に係るポリエステル(A)の極限粘 度は、好ましくは0.55~1.50デシリットル/グ ラム、より好ましくは0.58~1.10デシリットル /グラム、さらに好ましくは0.60~0.90デシリ ットル/グラムの範囲である。極限粘度が0.55デシ リットル/グラム未満では、得られた成形体等の機械的 特性が悪い。また1.50デシリットル/グラムを越え る場合は、成型機等による溶融時に樹脂温度が高くなっ て熱分解が激しくなり、保香性に影響を及ぼす遊離の低 分子量化合物が増加したり、成形体が黄色に着色する等 の問題が起こる。なお、ポリエステル(A)がポリエチ レン2, 6-ナフタレートの場合は上記より0.2デシ リットル/グラム少ないものが好ましい。

【0033】本発明に係るポリエステル(A) のチップ の形状は、シリンダー型、角型、球状または扁平な板状 等の何れでもよい。その平均粒径は通常1.3~5m m、好ましくは1. $5\sim4$. 5mm、さらに好ましくは 1. 6~4. 0 mmの範囲である。例えば、シリンダー 型の場合は、長さは1. 3~4mm、径は1. 3~4m m程度であるのが実用的である。球状粒子の場合は、最 大粒子径が平均粒子径の1.1~2.0倍、最小粒子径 が平均粒子径の0. 7倍以上であるのが実用的である。 また、チップの重量は10~30mg/個の範囲が実用 的である。本発明に係るポリエステル(A)の密度は、 1. 33~1. 43g/cm³、好ましくは1. 37~

1. 42g/cm³の範囲である。

【0034】一般的にポリエステルは、製造工程中で発 50

生する、共重合成分及び前記の共重合成分含量がポリエ ステルのチップと同一のファインをかなりの量含んでい る。このようなファインはポリエステルの結晶化を促進 させる性質を持っており、多量に存在する場合には、こ のようなファインを含むポリエステル組成物から成形し た成形体の透明性が非常に悪くなったり、またボトルの 場合には、ボトル口栓部結晶化時の収縮量が規定値の範 **囲内に収まらずキャップで密栓できなくなるという問題** が生じる。

【0035】したがって、本発明に係るポリエステル (A) 中のファインの含有量は500ppm以下、好ま しくは300ppm以下が望ましい。含有量が500p pmを超える場合は、結晶化速度が早くなり、例えば、 中空成形容器の口栓部の結晶化が過大となり、このため 口栓部の収縮量が規定値の範囲内に収まらず、口栓部の キャッピング不良となり、内容物の漏れが生じたり、ま た中空成形用予備成形体が白化し、このため正常な延伸 が不可能となる場合がある。

【0036】また、本発明に係るメタキシリレン基含有 ポリアミド(B)は、メタキシリレンジアミン、もしく はメタキシリレンジアミンと全量の30%以下のパラキ シリレンジアミンを含む混合キシリレンジアミンとジカ ルボン酸とから生成された構成単位を好ましくは分子鎖 中に少なくとも70モル%以上、さらに好ましくは75 モル%以上、特に好ましくは80モル%以上含有したポ リアミド樹脂である。

【0037】共重合成分としてのジカルボン酸として は、アジピン酸、セバシン酸、マロン酸、コハク酸、グ ルタル酸、ピメリン酸、スペリン酸、アゼライン酸、ウ ンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダ イマー酸等の脂肪族ジカルボン酸、1,4-シクロヘキ サンジカルボン酸等の脂環式ジカルボン酸、テレフタル 酸、イソフタル酸、オルソフタル酸、キシリレンジカル ボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン 酸類が使用できる。

【0038】また、共重合成分としてのジアミン成分と しては、エチレンジアミン、1-メチルエチレンジアミ ン、1,3-プロピレンジアミン、テトラメチレンジア ミン、ペンタメチレンジアミン、ヘキサメチレンジアミ ン、ヘプタメチレンジアミン、オクタメチレンジアミ ン、ノナメチレンジアミン、デカメチレンジアミン、ウ ンデカメチレンジアミン、ドデカメチレンジアミン等の 脂肪族ジアミン類、シクロヘキサンジアミン、ビスー (4, 4 '-アミノヘキシル) メタン等の脂環式ジアミ ン類、パラービスー (2-アミノエチル) ベンゼンのよ うな芳香族ジアミン類が使用できる。これらのジカルボ ン酸やジアミンは、1種もしくは2種以上を任意の割合 で組み合わせても使用できる。

【0039】前記、ジアミン及び、ジカルボン酸以外に も、ε-カプロラクタムやラウロラクタム等のラクタム

類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラーアミノメチル安息香酸のような芳香族アミノカルボン酸等も共重合成分として使用できる。とりわけ、ε-カプロラクタムの使用が望ましい。【0040】これら重合体の例としてはポリメタキシリレンアジパミド、ポリメタキシリレンセバカミド、ポリメタキシリレンスペラミド等のような単独重合体、及びメタキシリレンジアミン/アジピン酸/イソフタル酸共重合体、メタキシリレン/パラキシリレンアジパミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体等が挙げられる。

【0041】前記のメタキシリレン基含有ポリアミドは、ジアミンとジカルボン酸から生成するアミノカルボン酸塩の水溶液を加圧下および常圧下に加熱し、水および重縮合反応で生ずる水を除去しながら溶融状態で重縮合させる方法、あるいはジアミンとジカルボン酸を加熱し、溶融状態で常圧下に、あるいは引き続き真空下に直接反応させて重縮合させる方法等により製造することができる。また、これらの溶融重縮合反応により得られた前記ポリアミドのチップを固相重合することによって、さらに高粘度のメタキシリレン基含有ポリアミドを得ることができる。前記のメタキシリレン基含有ポリアミドを得ることができる。前記のメタキシリレン基含有ポリアミドの重縮合反応は、回分式反応装置で行っても良いしまた連続式反応装置で行っても良い。

【0042】本発明に係るメタキシリレン基含有ポリアミド(B)の相対粘度は、下限は好ましくは1.3、より好ましくは1.4、さらに好ましくは1.5、最も好ましくは1.6であり、上限は好ましくは4.0、より好ましくは3.7、特に好ましくは3.5、最も好ましくは3.0である。相対粘度が1.3以下では分子量が小さすぎて、本発明のポリエステル組成物からなる成形体の機械的性質が劣ることがある。逆に相対粘度が4.0以上では、前記ポリアミドの重合に長時間を要し、ポリマーの劣化や好ましくない着色の原因となることがあるだけでなく、生産性が低下しコストアップ要因となることがある。

【0043】本発明に係るメタキシリレン基含有ポリアミド(B)のチップの形状は、シリンダー型、角型、球状または扁平な板状等の何れでもよい。その平均粒径は通常1. $0\sim 5\,\mathrm{mm}$ 、好ましくは1. $2\sim 4.5\,\mathrm{mm}$ 、さらに好ましくは1. $5\sim 4.0\,\mathrm{mm}$ の範囲である。例えば、シリンダー型の場合は、長さは1. $0\sim 4\,\mathrm{mm}$ 、径は1. $0\sim 4\,\mathrm{mm}$ 、径は1. $0\sim 4\,\mathrm{mm}$ をは1. $0\sim 4\,\mathrm{mm}$ をなが平均粒子径の1. $0\sim 4\,\mathrm{mm}$ をなが平均粒子径の3. $0\,\mathrm{mg}$ が実用的である。また、チップの重量は10~30 $0\,\mathrm{mg}$ を使の範囲が実用的である。

【0044】本発明に係るメタキシリレン基含有ポリアミド(B)の密度は、 $1.20\sim1.24\,\mathrm{g/c\,m^3}$ 、

好ましくは1. $20\sim1$. $23 \,\mathrm{g/cm^3}$ の範囲であ

【0045】本発明のポリエステル組成物を構成するメタキシリレン基含有ポリアミド(B)のゲル化時間が3時間(180分)以上、好ましくは5時間以上、さらに好ましくは7時間以上である。ゲル化時間が3時間未満のメタキシリレン基含有ポリアミド(B)を含むポリエステル組成物を用いて得た成形体は、ゲル化物による着色した異物状物を含み、また色も悪くなる。特に延伸成形して得た延伸フイルムや二軸延伸中空成形体では、ゲル状物の存在する個所は正常に延伸されずに肉厚となって、厚み斑の原因となり、商品価値のない成形体が多く発生し、歩留まりを悪くする場合があり、最悪の場合は商品価値のない成形体しか得られないことがある。

【0046】ゲル化時間は理想的には無限大であるが、500時間以下、さらには200時間以下、特には100時間以下であることが好ましい。ゲル化時間が500時間以上のメタキシリレン基含有ポリアミドを製造しようとする際には、高度に精製した原料を用いる、劣化防止剤を大量に必要とする、重合温度を低く保つ必要がある等の生産性に問題が起こることがある。

【0047】本発明のポリエステル組成物を構成するポリエステル(A)とメタキシリレン基含有ポリアミド(B)との混合割合は、前記ポリエステル(A)100重量部に対して前記メタキシリレン基含有ポリアミド(B)0.01重量部~100重量部であることが好ま

しい。前記のポリエステル組成物からAA含有量が非常に少なく香味保持性に優れた成形体を得たい場合のメタキシリレン基含有ポリアミド(B)の添加量は、前記ポリエステル(A)100重量部に対して、好ましくは0.01~5重量部、下限はより好ましくは0.1重量部、さらに好ましくは0.5重量部であり、上限はより好ましくは4重量部、さらに好ましくは3重量部である。またガスバリヤー性が非常に優れ、かつ実用性を損なわない透明性を持ち、かつAA含有量が非常に少なく香味保持性に優れた成形体を得たい場合は、前記ポリエステル(A)100重量部に対して好ましくは1~100重量部、下限はより好ましくは3重量部、さらに好ましくは5重量部であり、上限はより好ましくは60重量部、さらに好ましくは30重量部である。

【0048】メタキシリレン基含有ポリアミド(B)の混合量が、ポリエステル(A)100重量部に対して0.01重量部未満の場合は、得られた成形体のAA等の含有量が低減されにくく、成形体内容物の香味保持性が非常に悪くなる場合がある。また、メタキシリレン基含有ポリアミド(B)の混合量が、ポリエステル(A)100重量部に対して100重量部を超える場合は、得られた成形体の透明性が非常に悪くなり易く、また成形体の機械的特性も低下することがある。

【0049】本発明に係る、ゲル化時間が3時間以上の

メタキシリレン基含有ポリアミド(B)は、前述したように、例えば、次のようにして製造することが可能である。すなわち、原料投入工程からポリマーの取り出し工程までが連続である連続重縮合装置を用い、原料投入から重縮合終了までに要する滞留時間を少なくとも210分以下、望ましくは200分以下とすることにより得ることができる。また、原料のメタキシリレンジアミンとアジピン酸の等モル塩の濃度が少なくとも75重量%以上、好ましくは80重量%以上の水溶液をアミド化反応工程に投入して反応を進めることによっても製造することができる。

【0050】さらには熱劣化によるゲル化を防止するため、リン系の安定剤(C)を添加して重合することも効果的である。リン系の安定剤(C)はメタキシリレン基合有ポリアミド中のリン原子含有量をXとすると、0~ $X \le 400ppm$ の範囲であることが好ましい。下限は好ましくは0.01ppmであり、より好ましくは0.1ppmであり、さらにより好ましくは、1ppmであり、特に好ましくは3ppmであり、最も好ましくは5ppmで添加することが好ましい。上限は好ましくは30ppmであり、特に好ましくは230ppmである。

【0051】前記、メタキシリレン基含有ポリアミド (B) 中のリン系の安定剤(C) としては、ジメチルホ スフィン酸、フェニルメチルホスフィン酸、次亜リン 酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜 リン酸リチウム、次亜リン酸エチル、上記ホスフィン酸 化合物の縮合物などのホスフィン酸化合物、フェニル亜 ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニ ル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウ ム、フェニル亜ホスホン酸エチルなどの亜ホスホン酸化 合物、フェニルホスホン酸、エチルホスホン酸、フェニ ルホスホン酸ナトリウム、フェニルホスホン酸カリウ ム、フェニルホスホン酸リチウム、フェニルホスホン酸 ジエチル、エチルホスホン酸ナトリウム、エチルホスホ ン酸カリウムなどのホスホン酸化合物、亜リン酸、亜リ ン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸ト リエチル、亜リン酸トリフェニル、ピロ亜リン酸などの 亜リン酸化合物が挙げられる。また、下記化学式(D) で表されるアルカリ化合物を添加すると、熱安定性が更 に向上する。

Z - ORg (D)

(ただし、Zはアルカリ金属、 R_8 は水素、アルキル基、アリール基、シクロアルキル基、-C (O) CH_3 または-C (O) OZ'、(Z'は水素、アルカリ金属))

【0052】化学式(D)で表されるアルカリ化合物としては、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキ

シド、酢酸ナトリウム、炭酸ナトリウム、およびアルカリ土類金属を含むアルカリ土類化合物などが挙げられるが、いずれもこれらの化合物に限定されるものではない。

12

【0053】本発明に用いられるメタキシリレン基含有ポリアミド(B)中の全アルカリ金属の含有量(リン系安定剤(C)に含まれるアルカリ金属原子の量と化学式(D)で表される化合物のアルカリ金属原子の量との合計量)が、同ポリアミド(B)中のリン原子の含有量の1.0~6.0倍モルであることが好ましい。下限はより好ましくは1.5、さらに好ましくは2.5倍モルであり、上限はより好ましくは、5.5倍モル、更に好ましくは5.0倍モルである。全アルカリ金属の含有量がリン原子含有量の1.0倍モルより少ないと、ゲル化が促進されやすくなる。一方、全アルカリ金属の含有量がリン原子含有量の6.0倍モルより多いと、重合速度が遅くなり、粘度も充分に上がらず、かつ特に減圧系ではかえってゲル化が促進され不経済である。

【0054】本発明で使用するリン系の安定剤(C)及び化学式(D)で表される化合物はそれぞれ単独で用いてもよいが、特に併用して用いる方が、ポリエステル組成物の熱安定性が向上するので好ましい。上記の手段を単独あるいは組み合わせて用いることで、本発明に用いるメタキシリレン基含有ポリアミド(B)を得ることができる。

【0055】また、本発明に係るメタキシリレン基含有 ポリアミド (B) が含有するメタキシリレン基含有環状 アミド2量体の含有量が、1.5重量%以下、好ましく は1. 0重量%以下, さらに好ましくは0. 8重量%以 下であることが望ましい。メタキシリレン基含有環状ア ミド2量体の含有量が1.5重量%を超える場合は、得 られた成形体内容物の香味保持性が悪くなることがあ り、また本発明のポリエステル組成物から耐熱性の中空 成形体等を成形する場合には、成形体成形時の金型内面 や金型のガスの排気口、排気管に異物が付着するために 生じる金型汚れが非常に激しくなる場合があることが判 った。なお、メタキシリレン基含有環状アミド2量体の 含有量は経済的な製造の面から0.001重量%以上が 好ましく、より好ましくは0.01重量%以上である。 【0056】また、本発明に用いられるメタキシリレン 基含有ポリアミド(B)の末端アミノ基濃度(μmo1 /g) をAEG、またメタキシリレン基含有ポリアミド の末端カルボキシル基濃度(μ mol/g)をCEGと した場合、CEGに対するAEGの比(AEG/CE G) が、1.05以上であることが好ましい。メタキシ リレン基含有ポリアミド中の末端カルボキシル基濃度に 対する末端アミノ基濃度の比(AEG/CEG)が1. 05より小さい場合は、本発明のポリエステル組成物か ら得られる中空成形体の風味保持性が乏しくなり、この

ようなポリエステル組成物は低フレーバー飲料用の容器の原材料としては実用性に乏しい場合がある。また、メタキシリレン基含有ポリアミド中の末端カルボキシル基 濃度に対する末端アミノ基濃度の比(AEG/CEG)が20を超える場合は、得られた成形体の着色が激しくなり商品価値がなくなるので好ましくない。

【0057】また本発明に係る、主たる繰り返し単位が エチレンアリレートであるポリエステル(A)の環状エ ステル3量体の含有量は好ましくは0.50重量%以 下、より好ましくは0.45重量%以下、さらに好まし くは0. 40重量%以下である。本発明のポリエステル 組成物から耐熱性の中空成形体等を成形する場合、環状 エステル3量体の含有量が0.50重量%を超える含有 量のポリエステルを使用する場合には、請求項2記載の ような、環状アミド2量体の含有量が1.5重量%以下 のメタキシリレン基含有ポリアミド (B) を用いたとし ても、加熱処理条件によっては加熱金型表面へのオリゴ マー付着が急激に増加し、得られた中空成形体等の透明 性が非常に悪化する場合がある。特に、主たる繰り返し 単位がポリエチレンテレフタレートの場合は、環状エス テル3量体が発生しやすく、これらの問題が顕著であ る。なお、環状エステル3量体の含有量の下限は経済的 な製造の面から0.01重量%が好ましく、より好まし くは0.1重量%である。なお、環状エステル3量体と は、ジカルボン酸とエチレングリコールとから構成され る環状3量体のことであり、PETの場合はテレフタル 酸とエチレングリコールからなる環状3量体である。

【0058】また、本発明に係る、主たる繰り返し単位がエチレンアリレートであるポリエステル(A)を290℃の温度で60分間溶融した時の環状エステル3量体の増加量が0.50重量%以下であることが望ましい。環状エステル3量体の増加量は好ましくは0.3重量%以下、より好ましくは0.1重量%以下であることが望ましい。

【0059】290℃の温度で60分間溶融した時の環状エステル3量体の増加量が0.50重量%を越えるポリエステルを用いると、ポリエステル組成物を成形する際の樹脂溶融時に環状エステル3量体量が増加し、加熱処理条件によっては加熱金型表面へのオリゴマー付着が急激に増加し、得られた中空成形体等の透明性が非常に悪化する。なお、290℃の温度で60分間溶融した時の環状エステル3量体の増加量の下限は経済的な製造の面から0.01重量%以上である。

【0060】290℃の温度で60分間溶融した時の環状エステル3量体の増加量が0.50重量%以下である、本発明に係るポリエステル(A)は、溶融重縮合後や固相重合後に得られたポリエステルに残存する重縮合触媒を失活処理することにより製造することができる。ポリエステル中の重縮合触媒を失活処理する方法としては、溶融重縮合後や固相重合後にポリエステルチップを

14

水や水蒸気または水蒸気含有気体と接触処理する方法が 挙げられる。

【0061】前記の目的を達成するためにポリエステルチップを水や水蒸気または水蒸気含有気体と接触処理する方法を次に述べる。熱水処理方法としては、水中に浸ける方法やシャワーでチップ上に水をかける方法等が挙げられる。処理時間としては5分~2日間、好ましくは10分~1日間、さらに好ましくは30分~10時間で、水の温度としては20~180℃、好ましくは40~150℃、さらに好ましくは50~120℃である。また処理方法は連続方式、バッチ方式のいずれであっても差し支えないが、工業的に行うためには連続方式の方が好ましい。

【0062】ポリエステルのチップをバッチ方式で水処理する場合は、サイロタイプの処理槽が挙げられる。すなわちバッチ方式でポリエステルのチップをサイロへ受け入れ水処理を行う。ポリエステルのチップを連続方式で水処理する場合は、塔型の処理槽に継続的又は間欠的にポリエステルのチップを上部より受け入れ、水処理させることができる。

【0063】またポリエステルのチップと水蒸気または水蒸気含有ガスとを接触させて処理する場合は、50~150℃、好ましくは50~110℃の温度の水蒸気または水蒸気含有ガスあるいは水蒸気含有空気を好ましくは粒状ポリエチレンアリレート1kg当り、水蒸気として0.5g以上の量で供給させるか、または存在させて粒状ポリエチレンアリレートと水蒸気とを接触させる。

【0064】この、ポリエステルのチップと水蒸気との接触は、通常10分間~2日間、好ましくは20分間~10時間行われる。また処理方法は連続方式、バッチ方式のいずれであっても差し支えない。ポリエステルのチップをバッチ方式で水蒸気と接触処理をする場合は、サイロタイプの処理装置が挙げられる。すなわちポリエステルのチップをサイロへ受け入れ、バッチ方式で、水蒸気または水蒸気含有ガスを供給し接触処理を行なう。

【0065】ポリエステルのチップを連続的に水蒸気と接触処理する場合は塔型の処理装置に連続で粒状ポリエチレンアリレートを上部より受け入れ、並流あるいは向流で水蒸気を連続供給し水蒸気と接触処理させることができる。上記の如く、水又は水蒸気で処理した場合は、粒状ポリエチレンアリレートを必要に応じて振動篩機、シモンカーターなどの水切り装置で水切りし、コンベヤーによって次の乾燥工程へ移送する。

【0066】水又は水蒸気と接触処理したポリエステルのチップの乾燥は、通常用いられるポリエステルの乾燥処理を用いることができる。連続的に乾燥する方法としては、上部よりポリエステルのチップを供給し、下部より乾燥ガスを通気するホッパー型の通気乾燥機が通常使用される。バッチ方式で乾燥する乾燥機としては大気圧下で乾燥ガスを通気しながら乾燥してもよい。乾燥ガス

としては大気空気でも差し支えないが、ポリエステルの 加水分解や熱酸化分解による分子量低下を防止する点か らは乾燥窒素、除湿空気が好ましい。

【0067】また重縮合触媒を失活させる別の手段とし て、リン化合物を溶融重縮合後または固相重合後のポリ エステルの溶融物に添加、混合して重合触媒を不活性化 する方法が挙げられる。

【0068】また、本発明に係る、主たる繰り返し単位 がエチレンアリレートであるポリエステル(A)は、ポ リオレフィン樹脂、ポリアミド樹脂、ポリアセタール樹 脂、ポリブチレンテレフタレート樹脂からなる群から選 ばれた少なくとも一種の樹脂0.1ppb~1000p pmを配合してなることを特徴とするポリエステルであ

【0069】本発明に係るポリエステル(A)中での前 記のポリオレフィン樹脂等の配合割合は、0.1ppb ~1000ppm、好ましくは0.3ppb~100p pm、より好ましくは0.5ppb~1ppm、さらに 好ましくは0.5ppb~45pbbである。配合量が 0.1ppb未満の場合は、結晶化速度が非常におそく なり、中空成形体の口栓部の結晶化が不十分となるた め、サイクルタイムを短くすると口栓部の収縮量が規定 値範囲内におさまらないためキャッピング不良となった り、また、耐熱性中空成形体を成形する延伸熱固定金型 の汚れが激しく、透明な中空成形体を得ようとすると頻 繁に金型掃除をしなければならない。また1000pp mを超える場合は、結晶化速度が早くなり、中空成形体 の口栓部の結晶化が過大となり、このため口栓部の収縮 収縮量が規定値範囲内におさまらないためキャッピング 予備成形体が白化し、このため正常な延伸が不可能とな る。また、シート状物の場合、1000ppmを越える と透明性が非常に悪くなり、また延伸性もわるくなって 正常な延伸が不可能で、厚み斑の大きな、透明性の悪い 延伸フイルムしか得られない。

【0070】本発明に係るポリエステル(A)に配合さ れるポリオレフィン樹脂としては、ポリエチレン系樹 脂、ポリプロピレン系樹脂、またはα-オレフィン系樹 脂が挙げられる。本発明に係るポリエステル(A)に配 合されるポリエチレン系樹脂としては、例えば、エチレ ンの単独重合体、エチレンと、プロピレン、ブテンー 1、3-メチルブテン-1、ペンテン-1、4-メチル ペンテン-1、ヘキセン-1、オクテン-1、デセン-1等の炭素数 $2 \sim 20$ 程度の他の α -オレフィンや、酢 酸ビニル、塩化ビニル、アクリル酸、メタクリル酸、ア クリル酸エステル、メタクリル酸エステル、スチレン等 のビニル化合物との共重合体等が挙げられる。具体的に は、例えば、低・中・高密度ポリエチレン等(分岐状又 は直鎖状)のエチレン単独重合体、エチレンープロピレ ン共重合体、エチレン-ブテン-1共重合体、エチレン 16

- 4 - メチルペンテン - 1 共重合体、エチレン - ヘキセ ン-1共重合体、エチレン-オクテン-1共重合体、エ チレン一酢酸ビニル共重合体、エチレンーアクリル酸共 重合体、エチレンーメタクリル酸共重合体、エチレンー アクリル酸エチル共重合体等のエチレン系樹脂が挙げら れる。

【0071】また本発明に係るポリエステル(A)に配 合されるポリプロピレン系樹脂としては、例えば、プロ ピレンの単独重合体、プロピレンと、エチレン、ブテン -1、3-メチルブテン-1、ペンテン-1、4-メチ ルペンテン-1、ヘキセン-1、オクテン-1、デセン -1等の炭素数 $2 \sim 20$ 程度の他の α -オレフィンや、 酢酸ビニル、塩化ビニル、アクリル酸、メタクリル酸、 アクリル酸エステル、メタクリル酸エステル、スチレン 等のビニル化合物との共重合体等が挙げられる。具体的 には、例えば、ブロピレン単独重合体、プロピレンーエ チレン共重合体、プロピレンーエチレンーブテンー1共 重合体等のプロピレン系樹脂が挙げられる。

【0072】また本発明に係るポリエステル(A)に配 合される αーオレフィン系樹脂としては、4ーメチルペ ンテンー1等の炭素数2~8程度の α -オレフィンの単 独重合体、それらのαーオレフィンと、エチレン、プロ ピレン、ブテン-1、3-メチルブテン-1、ペンテン -1、ヘキセン-1、オクテン-1、デセン-1等の炭 素数2~20程度の他のαーオレフィンとの共重合体等 が挙げられる。具体的には、例えば、ブテン-1単独重 合体、4-メチルペンテン-1単独重合体、ブテン-1 - エチレン共重合体、ブテン-1-プロピレン共重合体 等のブテン-1系樹脂や4-メチルペンテン-1とC2 不良となり内容物の漏れが生じたり、また中空成形体用 30 ~С18のαーオレフィンとの共重合体、等が挙げられ

【0073】また、本発明に係るポリエステル(A)に 配合されるポリアミド樹脂としては、例えば、ブチロラ クタム、δ - \dot{N} \dot{N} ナントラクタム、ωーラウロラクタム等のラクタムの重 合体、6-アミノカプロン酸、11-アミノウンデカン 酸、12-アミノドデカン酸等のアミノカルボン酸の重 合体、ヘキサメチレンジアミン、ノナメチレンジアミ ン、デカメチレンジアミン、ドデカメチレンジアミン、 ウンデカメチレンジアミン、2,2,4-又は2,4, 4-トリメチルヘキサメチレンジアミン等の脂肪族ジア ミン、1,3-又は1,4-ビス(アミノメチル)シク ロヘキサン、ビス(p-アミノシクロヘキシルメタン) 等の脂環式ジアミン、m-又はp-キシリレンジアミン 等の芳香族ジアミン等のジアミン単位と、グルタル酸、 アジピン酸、スベリン酸、セバシン酸等の脂肪族ジカル ボン酸、シクロヘキサンジカルボン酸等の脂環式ジカル ボン酸、テレフタル酸、イソフタル酸等の芳香族ジカル ボン酸等のジカルボン酸単位との重縮合体、及びこれら の共重合体等が挙げられ、具体的には、例えば、ナイロ

ン4、ナイロン6、ナイロン7、ナイロン8、ナイロン9、ナイロン11、ナイロン12、ナイロン66、ナイロン69、ナイロン610、ナイロン611、ナイロン612、ナイロン6T、ナイロン6I、ナイロンMXD6、ナイロン6/66、ナイロン6/67、ナイロン6/67、ナイロン6/67等が挙げられる。

【0074】また、本発明に係るポリエステル(A)に配合されるポリアセタール樹脂としては、例えばポリアセタール単独重合体や共重合体が挙げられる。ポリアセタール単独重合体としては、ASTM-D792の測定法により測定した密度が1.40~1.42g/cm 3 、ASTMD-1238の測定法により、190 $^{\circ}$ で、荷重2160gで測定したメルトフロー比(MFR)が0.5~50g/10分の範囲のポリアセタールが好ましい。

【0075】また、ポリアセタール共重合体としては、ASTM-D792の測定法により測定した密度が1.38~1.43g/cm 3 、ASTMD-1238の測定法により、190 $^{\circ}$ 、荷重2160gで測定したメルトフロー比(MFR)が0.4~50g/10分の範囲のポリアセタール共重合体が好ましい。これらの共重合成分としては、エチレンオキサイドや環状エーテルが挙げられる。

【0076】また、本発明に係るポリエステル(A)に配合されるでポリブチレンテレフタレート樹脂としては、例えばテレフタル酸と1,4-ブタンジオールからなるポリブチレンテレフタレート単独重合体やこれにナフタレンジカルボン酸、ジエチレングリコール、1,4-シクロヘキサンジメタノール等を共重合した共重合体が挙げられる。

【0077】また、本発明において用いられる前記のポリオレフィン樹脂等を配合したポリエステルは、前記ポリエステルに前記のポリオレフィン等の樹脂を、その含有量が前記範囲となるように、直接に添加し溶融混練する方法、または、マスターバッチとして添加し溶融混練する方法等の慣用の方法によるほか、前記のポリオレフィン等の樹脂を、前記ポリエステルの製造段階、例えば、溶融重縮合時、溶融重縮合直後、予備結晶化直後、固相重合時、固相重合直後等のいずれかの段階、または、製造段階を終えてから成形段階に到るまでの間に粉粒体として直接に添加するか、或いは、ポリエステルチップの流動条件下に前記のポリオレフィン等の樹脂製の部材に接触させる等の方法で混入させた後、溶融混練する方法等によることもできる。

【0078】ここで、ポリエステルチップ状体を流動条件下に前記のポリオレフィン等の樹脂製の部材に接触させる方法としては、前記のポリオレフィン等の樹脂製の部材が存在する空間内で、ポリエステルチップを前記の部材に衝突接触させることが好ましく、具体的には、例

18

えば、ポリエステルの溶融重縮合直後、予備結晶化直 後、固相重合直後等の製造工程時、また、ポリエステル チップの製品としての輸送段階等での輸送容器充填・排 出時、また、ポリエステルチップの成形段階での成形機 投入時、等における気力輸送配管、重力輸送配管、サイ ロ、マグネットキャッチャーのマグネット部等の一部を 前記のポリオレフィン等の樹脂製とするか、または、前 記のポリオレフィン等の樹脂をライニングするとか、或 いは前記移送経路内に棒状又は網状体等の前記のポリオ レフィン等の樹脂製部材を設置する等して、ポリエステ ルチップを移送する方法が挙げられる。ポリエステルチ ップの前記部材との接触時間は、通常、0.01秒~数 分程度の極短時間であるが、ポリエステルに前記のポリ オレフィン等の樹脂を微量混入させることができる。

【0079】また、本発明に用いられる、主たる繰り返 し単位がエチレンアリレートであるポリエステル(A) のアセトアルデヒド含有量は50ppm以下、好ましく は30ppm以下、より好ましくは10ppm以下、で あることが望ましい。特に、本発明のポリエステル組成 物が、ミネラルウオータ等の低フレーバー飲料用の容器 の材料として用いられる場合には、ポリエステル(A) のアセトアルデヒド含有量は8 p pm以下、好ましくは 5ppm以下、より好ましくは4ppm以下、ホルムア ルデヒド含有量は6ppm以下、好ましくは5ppm以 下、より好ましくは4 p p m以下であることが望まし い。アセトアルデヒド含有量が8ppmを超え、および ホルムアルデヒド含有量が6ppmを超える場合は、こ のポリエステルから成形された成形体等の内容物の香味 保持性の効果が悪くなる。なお、これらの下限は製造上 の問題から、0.1ppbであることが好ましい。

【0080】また本発明に係る、主たる繰り返し単位がエチレンアリレートであるポリエステル(A)中に共重合されたジエチレングリコール量は前記ポリエステル(A)を構成するグリコール成分の好ましくは1.0~5.0 モル%、より好ましくは1.3~4.5 モル%、さらに好ましくは1.5~4.0 モル%である。ジエチレングリコール量が5.0 モル%を越える場合は、熱安定性が悪くなり、成型時に分子量低下が大きくなったり、またアセトアルデヒド含有量やホルムアルデヒド含有量の増加量が大となり好ましくない。またジエチレングリコール含有量が1.0 モル%未満の場合は、得られた成形体の透明性が悪くなる。

【0081】本発明のポリエステル組成物は、従来公知の方法により前記のポリエステル(A)と前記のポリアミド(B)を混合して得ることができる。例えば、前記のポリアミドチップと前記のポリエステルチップとをタンブラー、V型ブレンダー、ヘンシェルミキサー等でドライブレンドしたもの、さらにドライブレンドした混合物を一軸押出機、二軸押出機、二一ダー等で1回以上溶融混合したもの、さらには必要に応じて溶融混合物を高

真空下または不活性ガス雰囲気下で固相重合したものなどが挙げられる。

【0082】本発明のポリエステル組成物に飽和脂肪酸 モノアミド、不飽和脂肪酸モノアミド、飽和脂肪酸ビス アミド、不飽和脂肪酸ビスアミド等を同時に併用するこ とも可能である。飽和脂肪酸モノアミドの例としては、 ラウリン酸アミド、パルミチン酸アミド、ステアリン酸 アミド、ベヘン酸アミド等が挙げられる。不飽和脂肪酸 モノアミドの例としては、オレイン酸アミド、エルカ酸 アミドリシノール酸アミド等が挙げられる。飽和脂肪酸 ビスアミドの例としては、メチレンビスステアリン酸ア ミド、エチレンビスカプリン酸アミド、エチレンビスラ ウリン酸アミド、エチレンビスステアリン酸アミド、エ チレンビスベヘン酸アミド、ヘキサメチレンビスステア リン酸アミド、ヘキサメチレンビスベヘン酸アミド等が 挙げられる。また、不飽和脂肪酸ビスアミドの例として は、エチレンビスオレイン酸アミド、ヘキサメチレンビ スオレイン酸アミド等が挙げられる。好ましいアミド系 化合物は、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスア ミド等である。このようなアミド化合物の配合量は、1 $0ppb\sim1\times10^{5}ppm$ の範囲であることが好まし

【0083】また炭素数8~33の脂肪族モノカルボン酸の金属塩化合物、例えばナフテン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、モンタン酸、メリシン酸、オレイン酸、リノール酸等の飽和及び不飽和脂肪酸のリチュウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、及びコバルト塩等を同時に併用することも可能である。これらの化合物の配合量は、10ppb~300ppmの範囲であることが好ましい。

【0084】本発明のポリエステル組成物には、必要に応じて他の添加剤、例えば、公知の紫外線吸収剤、酸化防止剤、酸素吸収剤、酸素捕獲剤、外部より添加する滑剤や反応中に内部析出させた滑剤、離型剤、核剤、安定剤、帯電防止剤、顔料などの各種の添加剤を配合してもよい。また、紫外線遮断性樹脂、耐熱性樹脂、使用済みポリエチレンアリレートボトルからの回収品等を適当な割合で混合することも可能である。

【0085】また、本発明のポリエステル組成物をフイルム用途に使用する場合には、滑り性、巻き性、耐ブロッキング性などのハンドリング性を改善するために、ポリエステル組成物中に炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等の無機粒子、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等の有機塩粒子やジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体等の架橋高分子

20

粒子などの不活性粒子を含有させることが出来る。

【0086】本発明のポリエステル組成物は、一般的に用いられる溶融成形法を用いてフィルム、シート、容器、その他の包装材料を成形することができる。本発明のポリエステル組成物からなる延伸フィルムは射出成形もしくは押出成形して得られたシート状物を、通常PETの延伸に用いられる一軸延伸、逐次二軸延伸、同時二軸延伸のうちの任意の延伸方法を用いて成形される。また圧空成形、真空成形によリカップ状やトレイ状に成形することもできる。

【0087】延伸フィルムを製造するに当たっては、延伸温度は通常は80~130℃である。延伸は一軸でも二軸でもよいが、好ましくはフィルムの実用物性の点から二軸延伸である。延伸倍率は一軸の場合であれば通常1.1~10倍、好ましくは1.5~8倍の範囲で行い、二軸延伸であれば縦方向および横方向ともそれぞれ通常1.1~8倍、好ましくは1.5~5倍の範囲で行えばよい。また、縦方向倍率/横方向倍率は通常0.5~2、好ましくは0.7~1.3である。得られた延伸フィルムは、さらに熱固定して、耐熱性、機械的強度を改善することもできる。熱固定は通常緊張下、120℃~240、好ましくは150~230℃で、通常数秒~数時間、好ましくは数十秒~数分間行われる。

【0088】中空成形体を製造するにあたっては、本発 明のPETから成形したブリフォームを延伸ブロー成形 してなるもので、従来PETのブロー成形で用いられて いる装置を用いることができる。具体的には例えば、射 出成形または押出成形で一旦プリフォームを成形し、そ のままあるいは口栓部、底部を加工後、それを再加熱 し、ホットパリソン法あるいはコールドパリソン法など の二軸延伸ブロー成形法が適用される。この場合の成形 温度、具体的には成形機のシリンダー各部およびノズル の温度は通常260~290℃の範囲である。延伸温度 ば通常70~120℃、好ましくは90~110℃で、 延伸倍率は通常縦方向に1.5~3.5倍、円周方向に 2~5倍の範囲で行えばよい。得られた中空成形体は、 そのまま使用できるが、特に果汁飲料、ウーロン茶など のように熱充填を必要とする飲料の場合には一般的に、 さらにブロー金型内で熱固定処理を行い、耐熱性を付与 して使用される。熱固定は通常、圧空などによる緊張 下、100~200℃、好ましくは120~180℃ で、数秒~数時間、好ましくは数秒~数分間行われる。 【0089】また、口栓部に耐熱性を付与するために、 射出成形または押出成形により得られたプリフォームの 口栓部を遠赤外線や近赤外線ヒータ設置オーブン内で結 晶化させたり、あるいはボトル成形後に口栓部を前記の ヒータで結晶化させる。

【0090】また、本発明のポリエステル組成物は、積層成形体や積層フイルム等の一構成層としても用いることが出来る。特に、PETとの積層体の形で容器等の製

造に使用される。積層成形体の例としては、本発明のポリエステル組成物からなる外層とPET内層との二層から構成される二層構造あるいは本発明のポリエステル組成物からなる内層とPET外層との二層から構成される二層構造の成形体、本発明のポリエステル組成物を含む中間層とPETの外層および最内層から構成される三層構造あるいは本発明のポリエステル組成物を含む外層および最内層とPETの中間層から構成される三層構造の成形体、本発明のポリエステル組成物を含む中間層とPETの最内層、中心層および最内層から構成される五層構造の成形体等が挙げられる。PET層には、他のガスバリアー性樹脂、紫外線遮断性樹脂、耐熱性樹脂、使用済みポリエチレンアリレートボトルからの回収品等を適当な割合で混合使用することができる。

【0091】また、その他の積層成形体の例としては、ポリオレフィン等のポリエステル以外の樹脂との積層成形体、紙や金属板等の異種の基材との積層成形体が挙げられる。前記の積層成形体の厚み及び各層の厚みには特に制限は無い。また前記の積層成形体は、シート状物、フイルム状物、板状物、中空体、容器等、種々の形状で20使用可能である。

【0092】前記の積層体の製造は、樹脂層の種類に対応した数の押出機と多層多種ダイスを使用して共押出しにより行うこともできるし、また樹脂層の種類に対応した数の射出機と共射出ランナーおよび射出型を使用して共射出により行うこともできる。

【0093】本発明のポリエステル組成物は、中空成形体、トレー、二軸延伸フイルム等の包装材、金属缶被覆用フイルム等として好ましく用いることが出来る。また、本発明の組成物は、電子レンジおよび/またはオーブンレンジ等で食品を調理したり、あるいは冷凍食品を加熱するためのトレイ状容器の用途にも用いることができる。この場合は、ポリエステル組成物からのシート状物をトレイ形状に成形後、熱結晶化させて耐熱性を向上させる。なお、本発明における、主な特性値の測定法を以下に説明する。

[0094]

【実施例】以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定させるものではない。なお、本明細書中における主な特性値の測定法を以下に説明する。

(評価方法)

【0095】(1)ポリエステルの極限粘度(IV) 1,1,2,2ーテトラクロルエタン/フェノール (2:3重量比)混合溶媒中30℃での溶液粘度から求 めた。

【0096】(2)ポリエステル中に共重合されたジエチレングリコール含有量(以下[DEG含有量]という)

メタノールにより分解し、ガスクロマトグラフィーによ50し、さらにクロロフォルム20m1を加えて希釈し、メ

22

りDEG量を定量し、全グリコール成分に対する割合 (モル%)で表した。

【0097】(3)ポリエステルの環状エステル3量体の含有量(以下「CT含有量」という)(重量%)試料300mgをヘキサフルオロイソプロパノール/クロロフォルム混合液(容量比=2/3)3m1に溶解し、さらにクロロフォルム30m1を加えて希釈する。これにメタノール15m1を加えてポリマーを沈殿させた後、濾過する。濾液を蒸発乾固し、ジメチルフォルムアミド10m1で定容とし、高速液体クロマトグラフ法により環状エステル3量体を定量した。

【0098】(4)ポリエステルのアセトアルデヒド含有量(以下「AA含有量」という)(ppm)試料/蒸留水=1グラム/2ccを窒素置換したガラスアンプルに入れた上部を溶封し、160℃で2時間抽出処理を行い、冷却後抽出液中のアセトアルデヒドおよびホルムアルデヒドを高感度ガスクロマトグラフィーで測定し、濃度をppmで表示した。なお、試料がボトルの場合はボトル胴部を切り取り、約3mm角に切ったものを用いた。

【0099】(5)ポリエステルのホルムアルデヒド含有量(以下「FA含有量」という)(ppm)試料1gを蒸留水2mlとともにガラスアンプルに入れ、窒素置換後上部を溶封し、160度C、1時間加熱処理した。冷却後、シクロヘキサンー1、3ージオンとの蛍光誘導体に変換し液体クロマトグラフ法にて測定しFAを求める。詳細は、分析化学、Vol.34、p.314(1985)に記載されている。

【0100】(6) ポリエステルの溶融時の環状エステル3量体増加量(△CT量)(重量%)

乾燥したポリエステルチップ3gをガラス製試験管に入れ、窒素雰囲気下で290℃のオイルバスに60分浸漬させ溶融させる。溶融時の環状エステル3量体増加量は、次式により求める。

溶融時の環状エステル3量体増加量(重量%)=溶融後の環状エステル3量体含有量(重量%)-溶融前の環状エステル3量体含有量(重量%)

【0101】(7) メタキシリレン基含有ポリアミドの 相対粘度(Rv)

試料0.25gを96%硫酸25m1に溶解し、この溶液10m1をオストワルド粘度管にて20℃で測定、下式より求めた。

Rv = t / tn

t n:溶媒の落下秒数

t :試料溶液の落下秒数

【0102】(8) メタキシリレン基含有ポリアミドの 環状アミド2量体の含有量(CD含有量)(重量%) 試料100mgをヘキサフルオロイソプロパノール/クロロフォルム混合液(容量比=2/3)3mlに溶解し、さらにクロロフォルム20mlを加えて発乳し、メ

タノール10mlを加える。これをエバポレータにより 濃縮し、ジメチルフォルムアミド20mlに再溶解す る。遠心濾過後、高速液体クロマトグラフ法により定量 した。なお、環状アミド2量体の含有量は環状アミド1 量体換算値として求めた。

【0103】(9)ゲル化時間

内容量約20m1の枝付き試験管に100℃で24時間減圧乾燥したポリアミド樹脂3gを入れ、減圧窒素置換を3回行なった後、30m1/分の窒素ガスを流しながら、260℃恒温のオイルバス中に浸漬して加熱し、

0.5時間ないし1時間毎にサンプリングした。加熱処理した試料0.25gを96%硫酸25m1に室温で16時間溶解した時、不溶分を視認するまでに要した加熱処理時間をゲル化時間とした。

【0104】(10) ポリエステルチップおよびメタキシリレン基含有ポリアミドチップの平均密度(g/cm3)

硝酸カルシュウム/水混合溶液の密度勾配管で30℃で 測定した。

【0105】(11)ファインの含有量の測定(ppm)

樹脂約0.5 kgを、JIS-Z8801による呼び寸法1.7mmの金網をはった篩(直径30 cm)の上に乗せ、テラオカ社製揺動型篩い振トウ機SNF-7で1800 rpmで1分間篩った。この操作を繰り返し、樹脂を合計20 kg篩った。篩の下にふるい落とされたファインは、イオン交換水で洗浄し岩城硝子社製G1ガラスフィルターで濾過して集めた。これらをガラスフィルターごと乾燥器内で100℃で2時間乾燥後、冷却して秤量した。再度、イオン交換水で洗浄、乾燥の同一操作を繰り返し、恒量になったことを確認し、この重量からガラスフィルターの重量を引き、ファイン重量を求めた。ファイン含有量は、ファイン重量/篩いにかけた全樹脂重量、である。

【0106】(12)金型汚れの評価

窒素ガスを用いた乾燥機で乾燥したポリエステルの所定量および窒素ガスを用いた乾燥機で乾燥したメタキシリレン基含有ポリアミドチップの所定量を用いて、各機製作所製M-150C(DM)射出成型機により樹脂温度285℃でプリフォームを成形した。このプリフォームの口栓部を自家製の口栓部結晶化装置で加熱結晶化させた後、コーポプラスト社製LB-01E延伸ブロー成型機を用いて二軸延伸ブロー成形し、引き続き約145℃に設定した金型内で熱固定し、1000ccの中空成形体を得た。同様の条件で2000本の中空成形体を連続

24

的に延伸ブロー成形し、その前後における金型表面の状態を目視で観察し、下記のように評価した。

〇: 連続成形試験の前後において変化なし

△ : 連続成形試験後にかなり付着物あり

× : 連続成形試験後に付着物が非常に多い

【0107】(13)中空成形体の透明性

(12)の成形後に得られた中空成形体の外観を目視で 観察し、下記のように評価した。短期透明性は10本成 形後、連続成形透明性は2000本後で評価した。

○ ○ : 透明である

○ : 実用的な範囲で透明であり、未溶融物等の異物は見られない

△ : 実用的な範囲で透明であるが、未溶融物等の異物が認められる。

× : 透明性に劣る、着色が認められる、又は透明性 に劣りかつ未溶融物が見られる

【0108】(14)官能試験

上記の中空成形体に沸騰した蒸留水を入れ密栓後30分保持し、室温へ冷却し室温で1ヶ月間放置し、開栓後風味、臭いなどの試験を行った。比較用のブランクとして、蒸留水を使用。官能試験は10人のパネラーにより次の基準により実施し、平均値で比較した。

(評価基準)

0:異味、臭いを感じない

1:ブランクとの差をわずかに感じる

2:ブランクとの差を感じる

3:ブランクとのかなりの差を感じる

4:ブランクとの非常に大きな差を感じる

【0109】(15)酸素透過量(cc/容器1本・24hr・atm)

Modern Controls社製酸素透過量測定器OX-TRAN 100により、1000ccのボトル1本当りの透過量として20C、0%RHで測定した。

【0110】(実施例および比較例に使用したポリエチレンテレフタレート(PET))試験に用いたPET(チップの密度=1.398~1.420g/сm³、Ge残存量=約42ppm、P残存量=約36ppm)の特性を表1に示す。これらは、すべて連続溶融重縮合ー固相重合装置で重合したものである。PET(a)は、固相重合後イオン交換水中で約90℃で3時間、熱水処理したものである。なお、PET(a)、PET(b)のDEG含有量はすべて約2.5モル%、ファイ

ン含有量はすべて約30ppm以下であった。【0111】

【表1】

	IV (dl/g)	AA 含有量+ (ppm)	CT含有量(重量%)	△TC量 (重量%)	
PET (a)	0. 74	2. 5	0, 30	0. 04	
PET (b)	0. 74	3. 7	0.65	0.42	

【0112】 (実施例および比較例に使用したメタキシ リレン基含有ポリアミド(Ny-MXD6))試験に使 用したNy-MXD6 (c) ~Ny-MXD6 (f) (すべてリン原子含有化合物として次亜リン酸ナトリウ ムを (P残存量=170ppm)、 (f) 以外にはアル カリ化合物として酢酸ナトリウムを重合前に添加した。 なお、ナトリウム量としては次亜リン酸ナトリウムと酢 酸ナトリウムのナトリウム原子の合計量としてリン原子 の3. 5倍モルになるようにした。) の特性を表2に示 す。Ny-MXD6(c)は、メタキシリレンジアミン ーアジピン酸の等モル塩の80重量%水溶液を用いて、 原料調合工程、アミド化反応工程、初期重縮合反応工程 および後期重縮合反応工程から構成される連続製造装置 によって製造時間約140分間で得たものである。 Ny* 26

*-MXD6 (d) は、メタキシリレンジアミンーアジピ ン酸の等モル塩の80重量%水溶液を用いて、原料調合 工程、アミド化反応工程、初期重縮合反応工程および後 期重縮合反応工程から構成される連続製造装置によって 製造時間約110分間で得たものである。また、Ny-MXD6 (e) は、Ny-MXD6 (d) チップを加熱 槽中で50%エタノール溶液で加熱処理後、イオン交換 水で洗浄して得たものである。Ny-MXD6 (f) は、メタキシリレンジアミンーアジピン酸塩の50重量 %水溶液を用いて重合釜中で加圧下および常圧下に加熱 して重縮合する回分式方法により得たものである。製造 時間は約600分であった。

[0113] 【表2】

	Rv	環状アミド 2量体含有量 (重量%)	ゲル化時間 (時間)
Ny-MXD6 (c)	2. 10	1. 03	6
Ny-MXD6 (d)	2. 10	0. 98	10
Ny-MXD6 (e)	2. 10	0. 65	10
Ny-MXD6(f)	2. 10	1. 80	2 .

【0114】 (実施例1) PET (a) 100重量部に 対してNy-MXD6(c)2重量部を用いて、評価方 法(11)の方法により中空成形体を成形し、また金型 汚れ評価も行った。得られた中空成形体の特性及び金型 汚れ評価結果を表3に示す。中空成形体のAA含有量は 7 ppm、FA含有量は4 ppm、官能試験評価は0. 8、外観は実用的な範囲で透明であり、また金型汚れは 認められなかった。

【0115】(実施例2-5、比較例1-3)実施例1 と同様にして、評価方法(11)の方法により中空成形 体を成形し、また金型汚れ評価も行った。得られた中空 成形体の特性及び金型汚れ評価結果を表3に示す。

[0116]

【表3】

	PEI(重量部)		NY-N	(XD6	中空成形体特性					
		•	(重量	部)	AA含有量/ FA含有量 (ppm)	透明性 短期/ 連続成形	官能試験	酸素透過量 (cc/容器 l 本· 24hr-am)	金型 汚れ	
実施例1	(a)	100	(c)	2	7/4	0/0	0. 8		0	
実施例2	(a)	100	(d)	2	8/3	0/0	0.8		0	
実施例3	(a)	100	(c)	20	6/2	0/0	1. 0	0. 20	0	
実施例4	(a)	100	(d)	20	7/3	0/0	0. 9	0. 20	0	
実施例5	(a)	100	(e)	20	6/2	0/0	0. 7	0. 20	0	
比較例1	(b)	100	(f)	2	8/5	∆⁄×	1. 8		Δ	
比較例2	(a)	100	(f)	20	8/5	×/×	2. 7	0. 20	×	
比較例3	(a)	100	_		30/12	0/0	2. 5	0. 57	0	

[0117]

【発明の効果】本発明のポリエステル組成物によれば、 成形体成形時のゲル化およびアセトアルデヒド等の増加 が抑制され、透明性、ガスバリヤー性および/または香 味保持性に優れており、また耐熱寸法安定性に優れた中 空成形体や成形後の寸法安定性に優れたシート状物およ び延伸フイルムが得られる。

フロントページの続き

(51) Int. Cl. 7 (CO8L 67/00 77:00) 識別記号

FΙ

テーマコート* (参考)

C08L 59:00 67:02 (C 0 8 L 67/00

59:00)

(C 0 8 L 67/00

67:02)

(72) 発明者 吉田 秀和

大阪府大阪市北区堂島浜二丁目2番8号

東洋紡績株式会社本社内

(72) 発明者 鈴木 健太

福井県敦賀市東洋町10番24号 東洋紡績株

式会社つるが工場内

Fターム(参考) 4F071 AA14 AA15 AA15X AA20

AA20X AA21 AA21X AA40 AA45 AA45X AA46 AA46X

AA54 AA55 AA55X AE05

AE11 AF07 AF08 AF45 AF54

AH04 AH05 BA01 BB05 BB06

BB07 BB08 BC01 BC04

4J002 BB033 BB043 BB123 BB143

BB173 CB003 CF06W CF073

CF08W CL013 CL023 CL03X

CL033 FD030 FD170 GG01

GG02