```
Wrapping up El Gamal ...
                Ricall DD1-1: (9,56,56) (3,56,56)
                                                                                                     for a, b, c & Zz
                                                        where 1<3>1=9
               Note: DOH not true with \langle g \rangle = \mathbb{Z}_p^*!
        Assumption has held up 30 for w/ \gamma = g^{\frac{p-1}{2}} as the senator where g is prime and p-1=N_3.
       Practical issu: plaintext space is...? <75
           How to encode nessesses in <1>?
   (Encoliny in Zo is easy enough:
                                                                             Thi!" > (int) 'h' + (int) 'i' + 256 + (int) !! + 2562
                                                                                (Just use characters to expressed an intestr
     Reminder on El Gard: Sk = a & Zq
                                                                                                   PK = A = 12
                       <1>= { 1°, 1', 1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ... 1°-1°, ...
           How to encode (text) massage in 475?
            Treat m & Zy (buse 256 as before)
                            Then send ym?
```

Ambying	for recipient	! Alice	Would have	to conside	
		a discol	e by h fi	nd n	×_\
Botter Vea	: don't and	e assures	$\gamma < \gamma$	Hall.	
instead we	e "hished E	(Gara)			
Sy n	$\mathbb{Z}_{\rho} \longrightarrow \{$	0,1}.			
Now For	M & {0,1}t,	encypt	tike soc		
Epk(~	J = (B,H($A) \oplus M $	(P	K = A = 7"	
H Serves	as a rawlon	noss extract	75		
	as a "rawlon (See the "	loftour had	leans" for	M 018	
				, ,	
To beally	F1 60.1	((A)	500 000	7	
+3 (V~V(,((a)	El Ganal	C(N 2	sec are		
not had	hed				
No:	1	00	Chilleyer (sk, px) < 6	eysen (1)
Attad	uer E		•		
		0			
	∠ D _{Sk}	(0)		6 < 80,13	
		y ^1 >			
	< a.,	= EAK(Mb)			
		0			
	Dsk	(4)			
		:			
	1	'			
deservation	about El Con	6 4			
Observation		(o) (o) (i)		6 < x /0,1 }	

Say
$$G = E_{pk}(n)$$
, $G' = E_{pk}(n')$
 $E_{pk}(n') = (B', A^{b}, n')$
 $E_{pk}(n') = (B^{b}, A^{b}, A^{b}, n')$
 $E_{pk}(n') = E_{pk}(n') = E_{pk}(n')$

("Homeorphic encryption")

(an use this to win C(A 2 Same wy probability I.

(homeorphic any n, to an $E_{pk}(n')$, be (0,1)

from $G = E_{pk}(n')$ wins forth vandamess.

Now set $G = G_{pk}(n')$

Now set $G = G_{pk}(n')$

(and if $G = G_{pk}(n')$)

Line forth vandamess.

(homeorphic forth for as a decryption query.

Profit.

Why is C(A2 even important?

(unonical example: silent audians / bidding.

Early) A

Early) A

Say E(m) E(n') = E(m+n') then could produce a slightly higher bit to 0=E(b) by firming o'= o E(1) = E(6+1) A few works about the project. First book at symmetric encryption (e.g. AES).
Assuming AES is IND-CPA, how to set CCA2 security? Ida: add a MAC to "neutralize" the decryption quiries: New key is k = (kyEs, kmc). $E_k(m) = (C_1, C_2)$ Ekass MAC(C) Dr (C): Parce C= (C, C2). If MACKMAC (C) & C2, octput Else decept as worned: oatput m= D ((i). What about public key encryption? "Key Encupsolation Mothal" (KEM). Brown Strokes: use any public key schene to choose vandon k for a sy metric key school


```
Then \times p has 2 squire roots in \mathbb{Z}p, as does \times q in \mathbb{Z}q:

\pm yp an \pm yq.
      So, y'= (± yp, ± yx) will all satisfy y = x.
     So × hus 4 squre rads.
    How would this hypothetical madine enable us to factor in?
     Sny we droose y ER Zn, and set x = y2.
       On input x, black box will sive some TX:
                   (\pm \gamma_{\rho}, \pm \gamma_{\alpha}).
      Strategy: say box sives y' = \sqrt{x}.

we will compute gcd (y + y', n) until
           we set a result other than 1 or n.
       what are the possible values of gcd(y+y', n)?
         g(d(2,n)) \in \{1,p,p,n\}
      Say 1'=4. Then y+y'=2y ...
                       probaby g(d(2y, n) = 1
      Say y' = -y Than y+y' = 0, and g \cdot d = n.
     Otherwise either y = (-1/p, 1/4) or
                  Y ERT (YP, - YS)
  Hence y + y' \equiv (0, 2y_1)
               or (zyp, o) in this case.
141' = (0,242) => gcd (441', n) = P
```