An Introduction to Process Mining and Conformance Checking

Thomas Chatain

LSV, ENS Paris-Saclay, Cachan, France chatain@lsv.fr

Collaborations with:

Mathilde Boltenhagen, Josep Carmona, Boudewijn van Dongen

June 6, 2019

Process Mining

Process Mining

Discovery of process models from real process executions

Input: Event Logs Data recorded from process executions, e.g.:

- analyze usage of an e-commerce web site
- analyze medical processes in hospitals
- improve user interface
- detect deviant behavior

Output: Process Models

Process Mining

- At the interface between
 - Data science
 - Business Process Management
 - Machine learning
 - Formal models: models used as representation for data
- Young and very active research domain
- New conference ICPM
 - ▶ 50 submissions...

Many (Industrial) Process Mining Tools

- Celonis
- Disco
- Minit
- ProM
- ..

patient	activity	timestamp	doctor	age	cost
5781	make X-ray	23-1-2014:10.30	Dr. Jones	45	70.00
5541	blood test	23-1-2014:10.18	Dr. Scott	61	40.00
5833	blood test	23-1-2014:10.27	Dr. Scott	24	40.00
5781	blood test	23-1-2014:10.49	Dr. Scott	45	40.00
5781	CT scan	23-1-2014:11.10	Dr. Fox	45	1200.00
5833	surgery	23-1-2014:12.34	Dr. Scott	24	2300.00
5781	handle payment	23-1-2014:12.41	Carol Hope	45	0.00
5541	radiation therapy	23-1-2014:13.57	Dr. Jones	61	140.00
5541	radiation therapy	23-1-2014:13.08	Dr. Jones	61	140.00

¹Acknowledgements to Wil van der Aalst

patient	activity	timestamp
5781	make X-ray	23-1-2014:10.30
5541	blood test	23-1-2014:10.18
5833	blood test	23-1-2014:10.27
5781	blood test	23-1-2014:10.49
5781	CT scan	23-1-2014:11.10
5833	surgery	23-1-2014:12.34
5781	handle payment	23-1-2014:12.41
5541	radiation therapy	23-1-2014:13.57
5541	radiation therapy	23-1-2014:13.08

¹Acknowledgements to Wil van der Aalst

patient	activity	timestamp
5781	make X-ray	23-1-2014:10.30
5541	blood test	23-1-2014:10.18
5833	blood test	23-1-2014:10.27
5781	blood test	23-1-2014:10.49
5781	CT scan	23-1-2014:11.10
5833	surgery	23-1-2014:12.34
5781	handle payment	23-1-2014:12.41
5541	radiation therapy	23-1-2014:13.57
5541	radiation therapy	23-1-2014:13.08

¹Acknowledgements to Wil van der Aalst

patient	activity	timestamp
5781	make X-ray	23-1-2014:10.30
5781	blood test	23-1-2014:10.49
5781	CT scan	23-1-2014:11.10
5781	handle payment	23-1-2014:12.41
5541	blood test	23-1-2014:10.18
5541	radiation therapy	23-1-2014:13.57
5541	radiation therapy	23-1-2014:13.08
5833	blood test	23-1-2014:10.27
5833	surgery	23-1-2014:12.34

¹Acknowledgements to Wil van der Aalst

patient	activity	timestamp
5781	make X-ray	23-1-2014:10.30
5781	blood test	23-1-2014:10.49
5781	CT scan	23-1-2014:11.10
5781	handle payment	23-1-2014:12.41
5541	blood test	23-1-2014:10.18
5541	radiation therapy	23-1-2014:13.08
5541	radiation therapy	23-1-2014:13.57
5833	blood test	23-1-2014:10.27
5833	surgery	23-1-2014:12.34

¹Acknowledgements to Wil van der Aalst

activity	timestamp
make X-ray	
blood test	
CT scan	
handle payment	
blood test	
radiation therapy	
radiation therapy	
blood test	
surgery	
	make X-ray blood test CT scan handle payment blood test radiation therapy radiation therapy blood test

¹Acknowledgements to Wil van der Aalst

patient	activity	timestamp
	Х	
	В	
	C	
	Р	
	В	
	R	
	R	
	B S	
	S	

¹Acknowledgements to Wil van der Aalst

patient	activity	timestamp
	Х	
	В	
	C	
	Р	
	В	
	R	
	R	
	В	
	S	

$$\langle X, B, C, P \rangle$$

 $\langle B, R, R \rangle$

 $\langle B, S \rangle$

Introduction

¹Acknowledgements to Wil van der Aalst

Process Discovery

Automatic construction of a model N from an event log L that represents a partial observation of a system S.

Process Discovery

Automatic construction of a model N from an event log L that represents a partial observation of a system S.

```
\langle A, B, D, E, I \rangle

\langle A, C, D, G, H, F, I \rangle

\langle A, C, G, D, H, F, I \rangle

\langle A, C, H, D, F, I \rangle

\langle A, C, D, H, F, I \rangle
```

Process Discovery

Automatic construction of a model N from an event log L that represents a partial observation of a system S.

$$\langle A, B, D, E, I \rangle$$

 $\langle A, C, D, G, H, F, I \rangle$
 $\langle A, C, G, D, H, F, I \rangle$
 $\langle A, C, H, D, F, I \rangle$
 $\langle A, C, D, H, F, I \rangle$

One Process Discovery Technique: Inductive Mining

Credits: Wil van der Aalst

Process Discovery: Several Solutions

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

A Metric for Precision

Conformance Checking

Define quality criteria to evaluate models:

- ightharpoonup N fits L if $L \subseteq \mathcal{L}(N)$
- ightharpoonup N is precise if $\mathcal{L}(N)\backslash L$ is small
- N generalizes L with respect to S if $\mathcal{L}(N)$ contains some unobserved behavior in $\mathcal{L}(S) \setminus L$
- simplicity...

Conformance Checking: Example

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Conformance Checking: Example

$$\langle A, B, D, E, I \rangle$$

 $\langle A, C, D, G, H, F, I \rangle$
Log: $\langle A, C, G, D, H, F, I \rangle$
 $\langle A, C, H, D, F, I \rangle$
 $\langle A, C, D, H, F, I \rangle$

Conformance Checking: Example

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Conformance Checking: Example

 $\langle A, B, D, E, I \rangle$ $\langle A, C, D, G, H, F, I \rangle$ $\langle A, C, G, D, H, F, I \rangle$ $\langle A, C, H, D, F, I \rangle$ $\langle A, C, D, H, F, I \rangle$

Conformance Checking: Example

```
 \langle A, B, D, E, I \rangle 
 \langle A, C, D, G, H, F, I \rangle 
 \langle A, C, G, D, H, F, I \rangle 
 \langle A, C, H, D, F, I \rangle 
 \langle A, C, D, H, F, I \rangle
```


fitting very precise not simple not generalizing

Measuring Precision – State of the Art

Alignment-based precision metrics [Adriansyah et al.]

- ▶ Build a representation $A_{\Gamma(N,L)}$ of the part of the behaviour of the model which is covered by the log
- Count escaping points in $A_{\Gamma(N,L)}$

Measuring Precision – State of the Art

Alignment-based precision metrics [Adriansyah et al.]

- ▶ Build a representation $A_{\Gamma(N,L)}$ of the part of the behaviour of the model which is covered by the log
- ightharpoonup Count escaping points in $\mathcal{A}_{\Gamma(N,L)}$

Drawbacks of alignment-based precision:

► Short sighted: only a step ahead of log behavior is considered

Measuring Precision – State of the Art

Alignment-based precision metrics [Adriansyah et al.]

- ▶ Build a representation $A_{\Gamma(N,L)}$ of the part of the behaviour of the model which is covered by the log
- Count escaping points in $\mathcal{A}_{\Gamma(N,L)}$

Drawbacks of alignment-based precision:

- Short sighted: only a step ahead of log behavior is considered
- Non-monotonic: observing a new trace may unveil new imprecisions

Measuring Precision – State of the Art

Alignment-based precision metrics [Adriansyah et al.]

- ▶ Build a representation $A_{\Gamma(N,L)}$ of the part of the behaviour of the model which is covered by the log
- Count escaping points in $\mathcal{A}_{\Gamma(N,L)}$

Drawbacks of alignment-based precision:

- Short sighted: only a step ahead of log behavior is considered
- Non-monotonic: observing a new trace may unveil new imprecisions

Measuring Precision - State of the Art

Alignment-based precision metrics [Adriansyah et al.]

- ▶ Build a representation $A_{\Gamma(N,L)}$ of the part of the behaviour of the model which is covered by the log
- Count escaping points in $A_{\Gamma(N,L)}$

Drawbacks of alignment-based precision:

- Short sighted: only a step ahead of log behavior is considered
- Non-monotonic: observing a new trace may unveil new imprecisions

Alignments

Alignment

Given a trace σ and a model N, an alignment is a full run u of N which minimizes its distance to σ .

Alignments

Alignment

Given a trace σ and a model N, an alignment is a full run u of N which minimizes its distance to σ .

Example:

For trace $\langle a, f, c, h \rangle$, best alignment: $\langle a, f, g, h \rangle$

Alignments

Alignment

Given a trace σ and a model N, an alignment is a full run u of N which minimizes its distance to σ .

Example:

For trace $\langle a, f, c, h \rangle$, best alignment: $\langle a, f, g, h \rangle$

Important notion in process mining:

- for computing fitness and precision,
- for detecting deviations,
- for model enhancement techniques.

Anti-alignments and Precision

Anti-alignments - Motivation

Log *L*:

```
\langle A, C, D, G, H, F, I \rangle

\langle A, C, G, D, H, F, I \rangle

\langle A, C, D, H, F, I \rangle

\langle A, C, H, D, F, I \rangle
```


Motivation

In order to measure precision, find the run of N which is most misaligned with the log L.

Anti-alignments – Motivation

Log *L*:

 $\langle A, C, D, G, H, F, I \rangle$ $\langle A, C, G, D, H, F, I \rangle$ $\langle A, C, D, H, F, I \rangle$ $\langle A, C, H, D, F, I \rangle$

Motivation

In order to measure precision, find the run of N which is most misaligned with the log L.

Here: $\langle A, B, D, E, I \rangle$

Anti-alignments

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

 $\langle A, C, G, D, H, F, I \rangle$
 $\langle A, C, D, H, F, I \rangle$
 $\langle A, C, H, D, F, I \rangle$

A Metric for Precision

- ▶ $L \subset \Sigma^*$: a log (set of traces) of an observed system
- N: a (labeled) Petri net model (constructed by process discovery)

Definition (Anti-alignment)

An (n, m)-anti-alignment of a model N w.r.t. a log L is a run $\gamma \in \mathcal{L}(N)$ such that

- $|\gamma| < n$ and
- for every $\sigma \in L$, $dist(\gamma, \sigma) \geq m$.

A Metric for Precision

Definition (Levenshtein's edit distance $dist(\gamma, \sigma)$)

Number of letter replacements/deletions/insertions needed to edit γ to σ .

Example: $dist_{Levenshtein}(\langle ababababab \rangle, \langle bababababa \rangle) = 2$

Definition (Hamming distance)

For two traces $\gamma = \gamma_1 \dots \gamma_n$ and $\sigma = \sigma_1 \dots \sigma_n$, of same length n, define $dist(\gamma, \sigma) \stackrel{\text{def}}{=} |\{i \in \{1 \dots n\} \mid \gamma_i \neq \sigma_i\}|.$

Pad when different lengths

Example: $dist_{\text{Hamming}}(\langle abababababab \rangle, \langle bababababab \rangle) = 10$

Anti-alignments: Example

Log *L*:

$$\langle A, C, D, G, H, F, I \rangle$$

 $\langle A, C, G, D, H, F, I \rangle$
 $\langle A, C, D, H, F, I \rangle$
 $\langle A, C, H, D, F, I \rangle$

(5, 3)-anti-alignment
$$\langle A, B, D, E, I \rangle$$

ntroduction Process Discovery Conformance Checking Anti-alignments A Metric for Precision Implementati

NP-completeness

Lemma

The problem of existence of (n, m)-anti-alignment is NP-complete. (with n and m represented in unary.)

Proof.

The problem is clearly in NP: checking that a run γ is a (n, m)-anti-alignment for a net N and a log L takes polynomial time.

For NP-hardness, reduction from the problem of reachability of a marking M in a safe acyclic Petri net N, known to be NP-complete a.

^aCheng, A., Esparza, J., Palsberg, J.: Complexity results for safe nets. Theor. Comput. Sci. 147(1&2) (1995) 117–136

Anti-alignments to Measure Precision

- ▶ $L \subset \Sigma^*$: a log (set of traces) of an observed system
- ▶ *N*: a (labeled) Petri net model (constructed by process discovery)

Anti-alignment-based precision metrics

$$P^{n}(N,L) = 1 - \frac{\max^{n}(N,L)}{n}$$

with

- n: (in the order of) the maximal length for a trace in the log
- $ightharpoonup max^n(N, L)$: the largest m for which there exists a (n, m)-anti-alignment

Clearly, $max^n(N, L) \in [0 ... n]$ which implies $P^n(N, L) \in [0 ... 1]$.

Anti-alignments to Measure Precision – Exercise Sort the models by decreasing precision.

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Anti-alignments to Measure Precision – Exercise

Sort the models by decreasing precision.

For each model, find the best anti-alignment of length ≤ 7 .

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Anti-alignments to Measure Precision – Exercise

Sort the models by decreasing precision.

For each model, find the best anti-alignment of length ≤ 7 .

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Anti-alignment $\langle A, C, G, H, D, F, I \rangle$ $P^{7}(N_{1}, L) = 0.857$

Anti-alignments to Measure Precision - Exercise

Sort the models by decreasing precision.

For each model, find the best anti-alignment of length ≤ 7 .

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Anti-alignment $\langle A, C, G, H, D, F, I \rangle$ $P^{7}(N_{1}, L) = 0.857$

Anti-alignment $\langle I, I, I, A, A, A, A \rangle$ $P^{7}(N_{2}, L) = 0$

Anti-alignments to Measure Precision - Exercise

Sort the models by decreasing precision.

For each model, find the best anti-alignment of length ≤ 7 .

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Anti-alignment $\langle A, C, G, H, D, F, I \rangle$ $P^{7}(N_{1}, L) = 0.857$

Anti-alignment $\langle I, I, I, A, A, A, A \rangle$ $P^{7}(N_{2}, L) = 0$

No (7,1)-anti-alignment $P^7(N_3,L)=1$

Handling Models with Loops

A model with an executable loop has

- arbitrary long runs
- runs arbitrary far from any finite log

Drop the bound n, but penalize long runs when looking for the optimal.

$$P^{\epsilon}(\textit{N},\textit{L}) \stackrel{ ext{def}}{=} 1 - \sup_{\gamma \in \mathcal{L}(\textit{N})} rac{\textit{dist}(\gamma,\textit{L})}{(1+\epsilon)^{|\gamma|}}$$

with some $\epsilon \geq 0$ which is a parameter of this definition.

ntroduction Process Discovery Conformance Checking Anti-alignments A Metric for Precision Implementatio

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

ntroduction Process Discovery Conformance Checking Anti-alignments A Metric for Precision Implementation

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

Best anti-alignment
$$\max^{7}(N, L)$$
 $P^{7}(N, L)$ $\langle A, B, D, E, I \rangle$ 4 $\frac{3}{7}$

troduction Process Discovery Conformance Checking Anti-alignments A Metric for Precision Implementation

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, B, D, E, I \rangle$$

Best anti-alignment $max^{7}(N, L)$ $P^{7}(N, L)$

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, B, D, E, I \rangle$$

Best anti-alignment $\max^{7}(N, L)$ $P^{7}(N, L)$ $\langle A, C, H, D, F, I \rangle$ 2 $\frac{5}{7}$

ntroduction Process Discovery Conformance Checking Anti-alignments A Metric for Precision Implementation

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

Best anti-alignment $max^{7}(N, L)$ $P^{7}(N, L)$

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

$\mathsf{Theorem}$

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

 $\max^{7}(N, L) \quad P^{7}(N, L)$ 2 $\frac{5}{7}$ Best anti-alignment $\langle A, C, H, D, F, I \rangle$

Monotonicity w.r.t. New Observations

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

$$\langle A, B, D, E, I \rangle$$

$$\langle A, C, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

Best anti-alignment $max^7(N, L)$ $P^7(N, L)$

Monotonicity w.r.t. New Observations

 $\max^{7}(N, L) \quad P^{7}(N, L)$ 1 $\frac{6}{7}$

Observing a new trace which happens to be already a run of the model, can only increase the precision measure.

Theorem

For every N, L and for every $\sigma \in \mathcal{L}(N)$,

$$P^n(N, L \cup {\sigma}) \geq P^n(N, L)$$

Hint: every (n, m)-anti-alignment for $(N, L \cup \{\sigma\})$ is also a (n, m)-anti-alignment for (N, L).

Example

Log L:

$$\langle A, C, D, G, H, F, I \rangle$$

$$\langle A, C, G, D, H, F, I \rangle$$

 $\langle A, B, D, E, I \rangle$

$$\langle A, C, D, H, F, I \rangle$$

$$\langle A, C, H, D, F, I \rangle$$

Best anti-alignment
$$\langle A, C, G, H, D, F, I \rangle$$

Monotonicity w.r.t. Model Language

Theorem

Given two models N_1 and N_2 , if $\mathcal{L}(N_1) \subseteq \mathcal{L}(N_2)$, then N_1 is more precise than N_2 .

$$\mathcal{L}(N_1) \subseteq \mathcal{L}(N_2) \implies P^n(N_1, L) \ge P^n(N_2, L)$$

Implementation

Implementation

Formula $\Phi_m^n(N, L)$ states that γ is a (n, m)-anti-alignment:

- $ightharpoonup \gamma = \lambda(t_1) \ldots \lambda(t_n) \in \mathcal{L}(N)$, and
- for every $\sigma \in L$, $dist(\gamma, \sigma) \geq m$.

Encoding in SAT

 $\Phi^n_m(N,L)$ is coded using the following Boolean variables:

- $au_{i,t}$ for $i=1\ldots n$, $t\in T$ means that transition $t_i=t$.
- ▶ $m_{i,p}$ for i = 0 ... n, $p \in P$ means that place p is marked in marking M_i (safe Petri nets: Boolean variables)
- \triangleright $\delta_{i,j,\sigma}$ to encode the distances $dist(\gamma,\sigma)$.

Total size for the SAT encoding of the formula $\Phi_m^n(N, L)$:

$$O(n \times |T| \times (|N| + m^2 \times |L|))$$

Encoding in SAT (1)
$$\gamma = \lambda(t_1) \dots \lambda(t_n) \in \mathcal{L}(N)$$

Initial marking:

$$\left(\bigwedge_{p\in M_0} m_{0,p}\right) \wedge \left(\bigwedge_{p\in P\setminus M_0} \neg m_{0,p}\right)$$

One and only one t_i for each i:

$$\bigwedge_{i=1}^{n}\bigvee_{t\in\mathcal{T}}(\tau_{i,t}\wedge\bigwedge_{t'\in\mathcal{T}}\neg\tau_{i,t'})$$

The transitions are enabled when they fire:

$$\bigwedge_{i=1}^{n} \bigwedge_{t \in T} (\tau_{i,t} \implies \bigwedge_{p \in {}^{\bullet}_{t}} m_{i-1,p})$$

Token game (for safe Petri nets):

$$\bigwedge_{i=1}^{n} \bigwedge_{t \in T} \bigwedge_{\rho \in t^{\bullet}} (\tau_{i,t} \implies m_{i,p})$$

$$\bigwedge_{i=1}^{n} \bigwedge_{t \in T} \bigwedge_{\rho \in \bullet_{t} \setminus t^{\bullet}} (\tau_{i,t} \implies \neg m_{i,p})$$

$$\bigwedge_{i=1}^{n} \bigwedge_{t \in T} \bigwedge_{\rho \in P, \rho \notin \bullet_{t,p} \notin t^{\bullet}} (\tau_{i,t} \implies (m_{i,p} \iff m_{i-1,p}))$$

Implementation

Encoding in SAT (2)

$$dist(\gamma, \sigma) \geq m$$

$$dist(\gamma, \sigma) \geq m$$

► For Hamming distance: easy

Encoding in SAT (2)

$dist(\gamma, \sigma) > m$

► For Hamming distance: easy

► For Levenshtein's distance:

Use same relations as the classical algorithm:

$$\begin{aligned} dist(\langle u_1,\ldots,u_i\rangle,\epsilon) &= i \\ dist(\epsilon,\langle v_1,\ldots,v_j\rangle) &= j \\ dist(\langle u_1,\ldots,u_{i+1}\rangle,\langle v_1,\ldots,v_{j+1}\rangle) &= \\ & \begin{cases} dist(\langle u_1,\ldots,u_i\rangle,\langle v_1,\ldots,v_j\rangle) & \text{if } u_{i+1} = v_{j+1} \\ 1 + \min(dist(\langle u_1,\ldots,u_{i+1}\rangle,\langle v_1,\ldots,v_{j+1}\rangle)), & \text{if } u_{i+1} \neq v_{j+1} \end{cases} \end{aligned}$$

Encoding as SAT formula using variables $\delta_{i,j,d}$

$$\delta_{i,j,d} = ext{true means } dist(\langle u_1 \dots u_i \rangle, \langle v_1 \dots v_j \rangle) \geq d.$$
 $\delta_{0,0,0} \wedge \bigwedge_{d > 0} \neg \delta_{0,0,d}$

$$\bigwedge_{d} \bigwedge_{i=0}^{n} \left(\delta_{i+1,0,d+1} \Leftrightarrow \delta_{i,0,d} \right)$$

$$\bigwedge_{d} \bigwedge_{j=0}^{n} \left(\delta_{0,j+1,d+1} \Leftrightarrow \delta_{0,j,d} \right)
\bigwedge_{d} \bigwedge_{i,j \text{ s.t. } u_{i+1}=v_{i+1}} \delta_{i+1,j+1,d} \Leftrightarrow \delta_{i,j,d}$$

(5)

$$\bigwedge_{d} \bigwedge_{i,j \text{ s.t. } u_{i+1} \neq v_{j+1}}^{i+1} \delta_{i+1,j+1,d+1} \Leftrightarrow (\delta_{i+1,j,d} \wedge \delta_{i,j+1,d})$$

Experiments: Alignments (showing averages)

Mod	el		L	Size of run	Maximal	Formula	Total
Reference	T	P			number of editions	construction time (sec)	execution time (sec)
Fig. 2	8	7	100	7	5	0.239	0.349
M8 of [25]	15	17	100	PRE: 20	LIM:10	10.139	15.530
M1 of [25]	40	39	100	PRE: 7	LIM:10	4.924	7.16
Loan [10]	15	16	100	PRE: 19	LIM: 10	14.047	20.915

Experiments: Anti-alignments

Mode	el		L	Size of run	Maximal number of	Formula construction	Total execution
Reference	T	P			editions	time (sec)	time (sec)
Fig. 2	8	7	10	8	ым: 10	13.802	21.502
			100	8	ым: 10	137.213	243.842
M8 of [25]	15	17	10	18	LIM:10	103.812	148.271
			100	PRE: 10	ым: 10	343.529	496.733
M1 of [25]	40	39	10	39	ым:10	1337.806	2069.505
			100	PRE:13	LIM:5	680.556	995.361
Loan [10]	15	16	10	PRE: 19	LIM: 10	140.840	203.257
			100	PRE:19	LIM: 10	1526.048	2185.785

Experiments: Anti-alignments (Hamming distance)

benchmark	P	T	<i>L</i>	$ A_L $	n	m	$\Phi_m^n(N,L)$	$\min_m(N, L)$	$\max^n(N, L)$
prAm6	347	363	761	272	41	1	✓	3	39
						5	✓	7	
					21	1	✓	3	19
						5	✓	7	
			1200	363	41	1	/	4	19
						5	✓	8	
					21	1	/	4	15
						5	✓	8	
BankTransfer	121	114	989	101	51	1	✓	8	32
						10	✓	17	
					21	1	/	8	14
						10	✓	17	
			2000	113	51	1	√ .	15	16
						10	✓	37	
					21	1	/	15	5
						10	X	37	

Experiments: Multi-alignments

Mode	el		L	Size of run	Maximal number of	Formula construction	Total execution
Reference	T	P			editions	time (sec)	time (sec)
Fig. 2	8	7	10	8	7	10.101	15.362
			100	8	7	99.602	200.569
M8 of [25]	15	17	10	18	LIM:6	252.471	414.174
			100	PRE:15	LIM:6	516.391	741.162
M1 of [25]	40	39	10	PRE: 13	LIM:10	115.706	172.500
			100	PRE: 13	LIM: 5	681.95	1066.94
Loan [10]	15	16	10	PRE: 19	15	252.572	373.683
	10		100	PRE: 9	LIM:10	359.982	508.542

troduction Process Discovery Conformance Checking Anti-alignments A Metric for Precision Implementation

Conclusion

Anti-alignment

- Run of the model which maximizes its distance to the observed traces
- New metric for precision in process mining
 - monotonic w.r.t. new observations

Implementations

- DARKSIDER (using SAT encoding)
 www.lsv.ens-cachan.fr/~chatain/darksider
- Also available in ProM www.promtools.org

SAT-based approach for conformance checking

- Very flexible
- Good for prototyping
- Efficiency depends a lot on precise problem and encoding

Implementation

Thank you!