DATA MANIPULATION AND VISUALIZATION IN PYTHON

UTSC DataFest, April 30 2019

Moshe Gabel

(with many thanks to Sotirios Damouras, Irv Lustig)

FOLLOW ALONG

Find slides here:

https://tinyurl.com/PyDataVizSlides

All workshop material:

https://tinyurl.com/PyDataViz

WHAT IS THIS ABOUT?

- Learn basic tools of data science in Python
- pandas for data manipulation
 - Load datasets.
 - Slice, filter, group, and aggregate data.
- matplotlib and seaborn for visualization.
- Python glues it together.

WHO IS THIS FOR?

- I assume you:
 - Have some ability with Python programming.
 - Are comfortable looking things up.
 - Know how to work with files (just the basics).
- You want to learn basics of:
 - Working with tabular data in Python.
 - Visualizing data.

WHY PYTHON?

- Intuitive, easy to learn and use.
- General purpose.
- Vibrant, mature ecosystem.

- Huge amount of tooling.
- Industrial strength.

- R is a very popular alternative.
- Better stats support.
- Less general.

An objective, scientific comparison!

Sort an array in Python:np.sort(x)

• Filter values in Python:
 df[df.month == "January"]

An objective, scientific comparison!

Sort an array in R: sort(x)

• Filter values in R:
 filter(df, month == "January")

An objective, scientific comparison!

Sort an array in COBOL:

```
IDENTIFICATION DIVISION.
PROGRAM-ID. SORT01.
AUTHOR. SHIBU.T.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TBL.
02 WS-TBL OCCURS 10.
05 WS-FLD PIC 99.
05 WS-FLD1 PIC X(3).
05 WS-FLD2 PIC 99.
01 WS-TAB-HLD.
05 WK-FLD PIC 99.
05 WK-FLD1 PIC X(3).
05 WK-FLD2 PIC 99.
```

R or Python? STOP WORRYING ABOUT IT!

Choose the tool that works for you.

• I prefer Python.

(with thanks to Rob Story: https://medium.com/@oceankidbilly/python-vs-r-vs-cobol-which-is-best-for-data-science-7b2979c6a000)

LOW LEVEL TOOLS

- numpy fast numerical computation for Python
 - matrices, arrays, linear algebra, basic stats, etc.
- matplotlib basic plotting and visualization
 - Supports many basic plotting
 - A bit low-level focuses on plotting, not data.
- In theory, those are enough...

HIGHER LEVEL TOOLS

- pandas very popular tool for data wrangling in Python
 - Arrange data in tables (DataFrames)
 - Uses numpy internally
- seaborn –beautiful plots from pandas tables
 - Uses matplotlib internally
- Jupyter for notebooks. What are those?

NOTEBOOKS

- You are used to coding Python scripts, running them inside an IDE or from command line.
- An alternative is a notebook: code, visualization, comments, explanations in a single page!

USING NOTEBOOKS

- We will use a Juptyer Python notebook
 - You don't have to, but it's easier to follow along.
- Option 1: run Jupyter locally by installing the needed packages and running it.
 - This is faster
- Option 2: go to https://utoronto.syzygy.ca/ and sign in with UTorID to get your very own notebook without installing anything.

START YOUR ENGINES!

Open Jupyer

Get "worksheet.ipynb" notebook and data from https://tinyurl.com/PyDataViz

PANDAS BASICS

Let's dig in...

DATAFRAMES

- Our basic data object is a
 DataFrame.
- A DataFrame is like a table: a collection of columns with an index.

Index	Α	В	С	D
4	3	Slow	0.3	Jan 1
7	5	Fast	0.6	Jan 2
1		Fast	NaN	Jan 2
3	5	Fast	NaN	Mar 3
10	1		3.1	Mar 4

Each column is a Series (like array with index).

CREATING A DATAFRAME

We can represent empty numerical data as NaN

	group	drug_X	drug_Y
0	А	130	NaN
1	В	140	150
2	С	135	135

DATAFRAME BASICS

- Shape: df.shape → (#rows, #columns)
 - Does not include index, headers
 - len(df) is the number of rows
- Each column has a type (like numpy dtype)
- Examine with df.dtypes
 - int64, float64, etc numerical
 - object string or mixed type
 - Others: bool, datetime64[ns]...

group	object
drug_X	int64
drug_Y	float64

BASIC STATISTICS

Column statistics: df.describe()

0		
1		
2		

Only numerical columns!

	drug_X	drug_Y
count	3.0	2.000000
mean	135.0	142.500000
std	5.0	10.606602
min	130.0	135.000000
25%	132.5	138.750000
50%	135.0	142.500000
75%	137.5	146.250000
max	140.0	150.000000

SELECTING A COLUMN

A little like dictionary, column name as key:

df["drug_X"]

	group	drug_X	drug_Y
0			
1			
2			

- This returns a Series
 - A little like a 1D array of values, with an index.

SLICING DATAFRAMES

- Picking subset of rows, columns....
- By integer position:df.iloc[0:2, 1:]

	group	drug_X	drug_Y
0			
1			
2			

.iloc matches Python behaviour

By index/namedf.loc[0:1, "drug_X":]

.loc index is INCLUSIVE

COMPLEX SLICING

- Slices can be non-contiguous slices df[["group", "drug_Y"]]
 - This creates a copy

	group	drug_X	drug_Y		group	drug
0				0		
1				1		
2				2		

Also works with rows.

SELECTING ROWS

group

drug_X

drug_Y

- With list of indices: df.loc[[0,2]]
- ...Or a list Booleans:df[[True, False, True]
- Useful methods:
 - iloc[] by position
 - sample() sample randomly
 - drop_duplicates() remove duplicated rows
 - nsmallest() , nlargest()
 - head(), tail()

ADDING COLUMNS

- Add a new column: df["colname"] = [130, 150,200]
- You can treat columns as vectors: df["colname"] = df["drug X"] * 10

	group	drug_X	drug_Y
0			
1			
2			

	group	drug_X	drug_Y	colname
0				
1				
2				

INPUT/OUTPUT

- Usually you'd use pandas to read existing data.
- Pandas supports many I/O schemes:
 - SQL, JSON, HTML tables, Parquet, HDF5, Excel, ...
 - Some of these are industrial strength.
- We will use the humble CSV file: pd.read_csv(filename, ...)
- There is also a .to_csv(...) method

pd.read_csv

- Reading a CSV sounds simple...
- But there are many possible configurations:
 - With header? Is there an index column?
 - What are the datatypes? Should we parse dates?
 - Missing data?
- TIP: always examine the source file and the resulting DataFrame and dtypes carefully.
 - Be ready to adjust read_csv() arguments

DO TASKS IN BLOCK 1

Photo by Petr Kratochvil

WORKING WITH DATA

OUR DATAFRAME

• Quick reminder:

	group	drug_X	drug_Y
0	А	130	NaN
1	В	140	150.0
2	С	135	135.0

AGGREGATING DATA

Manually by computing over columns:
 df["drug_X"] + df["drug_Y"]

sumNaN290.0270.0

drug_Y has missing number, so the sum cannot be computed

DataFrames provides aggregation:
 df[["drug_X", "drug_Y"]].sum(1)

axis=0 → sum over rows axis=1 → sum over columns

	sum
0	130.0
1	290.0
2	270.0

AGGREGATING DATA

- pandas provides many aggregate operations: sum, count, mean, median, std, min, max
 - These are fast, and ignore NaNs
- Aggregate over Series: df['drug_X'].mean()
- User-defined aggregation: df.agg(lambda s: len(s))
- Aggregate over: sliding windows (rolling), groupings (GroupBy), cumulative windows (expanding), exponentially weighted windows (ewm)

COUNTING VALUES

- Number of unique (distinct) values in Series:
 df['group'].nunique() → 3
- Get array of unique values:
 df['group'].unique() → ['A', 'B', 'C']
- Count values in a series: df['group'].value_counts()
 - (more on this later)

Α	1
В	1
C	1

THE INDEX

- DataFrames have an index
 - Each row has a label: df.loc[label]
- Index can be unsorted, have duplicates.
- Labels are not just numbers:
 - Strings, times, ranges,...
- Index carries into series: df["drug_X"] is indexed the same as df

	Group	drug_X	drug_Y
test A	А	130	NaN
test B	В	140	150
control	С	135	135

	drug_X
test A	130
test B	140
control	135

USING INDEXING

Change index to column: df.set_index('group')

Group	drug_X	drug_Y
Α	130	NaN
В	140	150
С	135	135

Reset index to numbers: df.reset_index()

Get the index object: df.index

	group	drug_X	drug_Y
0	А	130	NaN
1	В	140	150
2	С	135	135

ONE USE OF INDEXING

Count the number of rows with each value: df["group"].value_counts()

NaNs are not included!

```
    Result: a series with original values as the index, and the count as the value:
    df["group"].value_counts().loc["B"] → 1
```

SORTING ROWS

- You can order rows by index: df.sort_index()
- Order rows by columns: df.sort_values('drug_X')

sorted by drug_X

index is no longer sorted: row labels are preserved, row position is not!

	group	drug_X	drug_Y
0	А	130	NaN
2	С	135	135.0
1	В	140	150.0

ITERATING OVER DATAFRAME

- Iterate over column name, series pairs for col_name, series in df.items(): print (col_name, series.tolist())
 - Like dictionary.
- Iterate over rows as tuples:
 for index, group, x, y in df.itertuples():
 print(group, x, y)

MULTI-INDEX

intervention

- You can have sub indexes (levels)
- df["intervention"]
- df[("intervention", "drug_Y")]
- Beyond the scope of this workshop.

- 1			drug_X	drug_Y
Tests	test A	А	130	NaN
	test B	В	140	150
control		С	135	135

group

FILTERING DATA

- Filtering is just indexing with Boolean array
 - df.loc[df["drug_X"]>132]
 - Other algebraic operators:

	group	drug_X	drug_Y
1	В	140	150
2	С	135	135

- Complex expressions:
 - df.loc[(df["drug X"]>132) & (df["group"]!="C")]
 - Other logic operators:

	group	drug_X	drug_Y
1	В	140	150

 Use query expression engine: df.query("drug X > 132 and group != 'C'")

USEFUL METHODS FOR SELECTION

- Return Booleans for later indexing:
 - .isin(seq) is value is one of seq?
 - .isna() / .notna() find missing values.
 - .duplicated() value is duplicated.
 - .between(...) values between some range.
- Others
 - .idxmin() / .idxmin() row index (not position!) of minimum / maximum value

• ...

SHORTCUTS

- Since filtering is just indexing, combine:
 df.loc[(df['drug_X']>132), ['group','drug_Y']]
- For filtering can use [] as shortcut df[df["drug_X"]>132]

	group	drug_Y
1	В	150
2	С	135

- Careful! [] is not the same as .loc:
 df[(df['drug_X']>132), ['group', 'drug_Y']]
 → results in error
 - Pandas has to guess what you mean

PUTTING IT TOGETHER

 We want the mean blood pressure for groups A and C.

	group	drug_X	drug_Y
0	А	130	NaN
1	В	140	150
2	С	135	135

```
df[df['group'].isin(['A','C'])][['drug_X','drug_Y']].mean()
```

Select rows from group A and C

Select columns

Compute the mean

drug_X	132.5
drug_Y	135.0

USEFUL METHODS

- head() / tail() get first/last few rows
- diff() compute differences between rows
- rank()
- •nsmallest() / nlargest()
- str.method() ... call string methods!
- Many more...
- pandas user guide is your friend
 https://pandas.pydata.org/pandas-docs/stable/user guide/index.html

DO TASKS IN BLOCK 2

Photo by Larisa Koshkina

BASIC VISUALIZATION

• Let's say we have some data

	group	drug_X	drug_Y
0	А	130	NaN
1	В	140	150
2	С	135	135
3	А	132	142
4	А	126	144
5	В	143	151
6	С	133	132

WHY USE VISUALIZATION?

- Extract meaning from lots of data.
 - Huge tables of data are hard to read.
- Sometimes to make a point, tell a story.
- In science, clarity is key.
 - What does the data show?
 - What do I want the reader to see?
 - The point is not "look at this cool figure"
- There are books on this.

TYPES OF FIGURES

Show relationship between variables X and Y:

PLOTTING IN MATPLOTLIB

- matplotlib is a lower level plotting library import matplotlib.pyplot as plt
- It doesn't really know about DataFrames
- Just tell it what to do.

MATPLOTLIB PLOT

- plt.plot is the workhorse of matplotlib
- You then add things like labels, legends, and adjust parameters.
- There are many was to call it.
- We will only cover a couple.

 Want a line plot? Set format to have lines plt.plot(df.index, df["drug_X"], "-")

 Want a line plot? Set format to have lines plt.plot(df.index, df["drug_Y"], "-")

matplotlib
will create
and adjust
axes for you!

• axis labels: plt.xlabel('index') plt.xlabel('blood pr.')

• Add a legend: plt.legend(['drug_X', 'drug_Y'])

CONTROL LINE STYLE, COLOR, FORMAT

matplotlib is highly configurable:

plt.plot(df.index, df['drug_Y'], 'k--', linewidth=5,

label='drug Y')

plt.legend(loc='upper left')

 Control alpha, markersize, and more.

- How about a scatterplot, with colors?
- For every group we want a different color and marker.

• Get and draw group A in red with circle marker:
a = df[df['group'] == 'A']
plt.plot(a['drug_X'], a['drug_Y'], 'ro')

Add group B in green with triangles:b = df[df['group'] == 'B']

```
plt.plot(b['drug_X'], b['drug_Y'], 'g^')
```


Add group C in blue with squares:
 c = df[df['group'] == 'C']

```
plt.plot(c['drug_X'], c['drug_Y'], 'bs')
```


MATPLOTLIB CUSTOMIZATION

 Get or set X and Y axis edges (limits): plt.xlim(xmin, xmax), plt.ylim(...)

- Control ticks and tickmarks
 plt.xticks(...), plt.tickparams(...)
- Annotate figure with text and arrows plt.annotate(...)

SUBPLOTS

- A matplotlib axes object is one plot
 - Axes, data visualization, legend, labels, ticks...
- A figure contains one or more axes
- Create multiple figures:
 fig, axs = plt.subplots(2, 3, ...)
 Or...
 plt.subplot(2,3,1)
 plt.subplot(2,3,2)
 plt.subplot(2,3,3)
 plt.subplot(2,3,4)

FIGURES AND SUBPLOTS

- Control layout: plt.subplots_adjust(...)
- Or...
 plt.tight_layout()

wasted space

- Save the current figure plt.savefig("figure1.png")
 - Can also save .pdf, .eps, etc.

OBJECT ORIENTED API

- You can work with the "MATLAB-like" API:
 - plt.command() works on current figure/axes.
- It is a thin shell over an object oriented API:

LOW VS HIGH LEVEL

- Lots of work.
- matplotlib does not understand the data...
- But pandas does!
- It can do this for you.

```
a = df[df['group'] == 'A']
plt.plot(a['drug X'],
         a['drug Y'], 'ro')
b = df[df['group'] == 'B']
plt.plot(b['drug_X'],
         b['drug Y'], 'go')
c = df[df['group'] == 'C']
plt.plot(c['drug X'],
         c['drug Y'], 'bo')
plt.xlabel('drug_X')
plt.ylabel('drug Y')
plt.legend(['A', 'B', 'C'],
           title='group')
```

LINE CHART IN PANDAS

matplotlib

```
plt.plot(df.index, df['drug_X'], '-')
plt.plot(df.index, df['drug Y'], '-')
plt.legend(['drug_X', 'drug_Y'])
                                  150
                                              drug_X
                                              drug Y
                                  145
                                  140 -
                                  135 -
pandas
                                  130
df.plot.line()
                                  125 -
```

SCATTER IN PANDAS

matplotlib

```
plt.plot(df['drug_X'], df['drug_Y'], 'o')
plt.xlabel('drug X')
plt.ylabel('drug Y')
                                 150 -
                                 135 -
                                             135
                                                  140
                                       130
                                           drug X
pandas
df.plot.scatter('drug_X', 'drug_Y')
```

SCATTER WITH COLORS

matplotlib

```
a = df[df['group'] == 'A']
plt.plot(a['drug_X'], a['drug_Y'], 'ro')
b = df[df['group'] == 'B']
plt.plot(b['drug_X'], b['drug_Y'], 'go')
c = df[df['group'] == 'C']
plt.plot(c['drug_X'], c['drug_Y'], 'bo')
plt.xlabel('drug_X')
plt.ylabel('drug_Y')
```


pandas

```
colors = df['group'].map(dict(A='r', B='g', C='b'))
df.plot.scatter('drug_X', 'drug_Y', c=colors)
```

MORE PLOTTING

- Additional pandas plotting functions
 - Built on top of matplotlib!

df.plot.bar() df.plot.box() df.plot.hist() 150 2.0 150drug X drug X drug Y drug_Y 145 -1.5 -Frequency 100 140 -1.0 135 -50 0.5 -130 -125 -0.0 drug X drug Y 130 140 150

DO TASKS IN BLOCK 3

Photo by George Hodan

RESHAPING DATA

CONCATENATING

Concatenate rows: pd.concat([df1,df2])

CONCATENATING

Concatenate columns: pd.concat([df1,df2], axis=1)

COMBINING DATA

Say we have two DataFrames.

 We want to merge them based on common values and/or columns

LEFT JOIN

Join matching rows that appear on df1:
 pd.merge(df1, df2, on="X", how="left")

columns of X are from df1

df2 has no matching row for X == "C" so cell is empty!

RIGHT JOIN

Join matching rows that appear on df2:
 pd.merge(df1, df2, on="X", how="right")

X	Y	X	Z	X	Υ	Z
Α	1	А	Т	Α	1.0	Т
В	2	В	F	В	2.0	F
С	3	D	Т	D	NaN	Т

- 1. pandas coverted column Y to float to allow NaNs.
- 2. df1 has no matching row for X == "D".

INNER JOIN

Join matching rows that appear on both:
 pd.merge(df1, df2, on="X", how="inner")

OUTER JOIN

Join matching rows that appear on either:
 pd.merge(df1, df2, on="X", how="outer")

MORE COMBINING

3

Filtering "join", for example:
 all rows in df1 that do not have a match in df2
 df1[~df1['X'].isin(df2['X'])]

- Merge on several columns together pd.merge(df1, df2, on=[...], ...)
- Merge on all columns: pd.merge(df1, df2, ...)
- Merge on index

SET OPERATIONS

 Set operation on whole rows by merging on all columns

ļ	4	E	3
X	Υ	X	Υ
Α	1	В	2
В	2	С	3

Intersection:
pd.merge(A, B)

X	Υ
В	2

Union:

pd.merge(A, B, how="outer")

Х	Υ
Α	1
В	2
С	3

TIDY DATA

Column for each variable

Row for each observation

- Complements pandas columnar storage.
- Preserves observation when adding columns.
- Helps with visualization.

$$M * A$$

TIDY DATA

wide format

	group	drug_X	drug_Y
0	А	130	NaN
1	В	135	150
2	С	140	135

obs.	group	drug	blood pressure
0	А	X	130.0
1	В	Χ	135.0
2	С	X	140.0
3	А	Υ	NaN
4	В	Υ	150.0
5	С	Υ	135.0

long (or tidy) format

RESHAPING DATA

 Gather data to columns (tidy) df.melt(...)

Spread rows into columns df.pivot(...)

melt pivot

Pivoting is very powerful!

CHAINING

- Many DataFrame methods return the resulting data frame.
- Can therefore chain methods together!

```
df.set_index('group')
   .melt()
   .query('value < 150')
   .mean()</pre>
```

GROUPING

 We want a table of mean blood pressure for every type of drug.

Start with tidy data

 We need to group by value of "drug" columns

obs.	group	drug	blood pressure
0	А	Χ	130.0
1	В	Χ	135.0
2	С	Χ	140.0
3	А	Υ	NaN
4	В	Υ	150.0
5	С	Υ	135.0

Can group by multiple columns: ["drug", "v1"]

GROUPING

- Group rows by column value: grp = long.groupby("drug")
- Can now iterate over groups...

	v1	drug	v2		v1	drug	v2
1				3			
7				2			

	v1	drug	v2
5			
9			
4			

GROUPING

Can simply aggregate: long.groupby("drug").mean()

 Can use any aggregation function: median, agg, etc.

GROUPING

	v1	drug	v2
1			
5			
7			
3			
2			
9			
4			

Can also select a column first: long.groupby("drug")['v1'] .mean()

drug	v1

DO TASKS IN BLOCK 4

ADVANCED PLOTTING

TYPES OF VARIABLES

- Numeric: a number
 - Can be integers or continuous
 - Examples: weight, year, speed, memory, time
- Categorical:
 - Possible values with no ordering.
 - Can also be numeric with few values.
 - Examples: day of week, type of drug, colors, strings
- There are more...

WHEN TO USE WHICH?

- Bar chart
 - X is categorical or has few values.
 - Add color for categorical variable.
- Line plot
 - X is continuous, has many values, is time.
 - To emphasize Y as function of X.
 - Additional lines for for categorical variable.
- Scatter plot
 - Relationship between X and Y.
 - Add color for categorical variable.
 - Change point size for numeric variable.

WHEN TO USE WHICH?

- Histogram
 - Distribution of numeric values.
 - Can complement with density plot.
 - Or colors for categorical variable.
- Box plot
 - Compare distributions.
 - Usually between different values of categorical variable.
- Contour
 - Third variable as function of X and Y.

SEABORN

- Say we have some tidy data.
- From experiments or whatever.
- Let's explore it.

	group	sex	age	height	drug	bl. pressure
0	Α	M	31	180	Х	130.0
1	В	F	40	156	Χ	140.0
2	С	M	82	173	Χ	135.0
3	Α	F	50	164	Χ	132.0
4	Α	F	55	170	Χ	126.0
5	В	M	70	182	X	143.0
6	С	F	28	159	Х	133.0
7	Α	M	31	180	Υ	NaN
8	В	F	40	156	Υ	150.0
9	С	M	82	173	Υ	135.0
10	А	F	50	164	Υ	142.0
11	А	F	55	170	Υ	144.0
12	В	M	70	182	Υ	151.0
13	С	F	28	159	Υ	132.0

FACETS OF DATA

Is there a connection between group and height?

```
grp = df.groupby('group')
grp['height'].mean().plot.bar()
```

- Maybe a small one?
- What if we split by gender?
- Stop and think!

PLOTTING AGGREGATES

- We keep wanting to
 - Group or aggregate by some columns
 - Plot some variable on X or Y
 - Show others by color, etc.
- This will get unwieldy, quick.
- What we want is a way to just specify columns and have someone else do the grouping and plotting.

ENTER SEABORN

Seaborn helps explore facets of your data:

- 1. Put your data in tidy format.
- 2. Specify plot type, columns, axes.
- 3. Seaborn does the rest!

ENTER SEABORN

Does drug effect change by age?

FACETS AS SUBPLOTS

 Use subplots to explore additional facets for categorical variables

GO NUTS!

- blood pressure vs height
 - Scatter plot (relplot in seaborn)
 - X = blood pressure
 - **Y** = height
 - Color = drug
 - **Size** = age
 - **Subplot rows** = group
 - Subplot columns = sex

HIGHER LEVEL PLOTS

- Seaborn has lots of plotting functions.
- Common interface!
- Linear regression sns.lmplot()
- Matrix of variable pairs sns.pairplot()

PLOT CUSTOMIZATION

 Use Seaborn highlevel commands to set plot style, colors, and scale: sns.set(style='darkgrid', palette='husl')

• Can use matplotlib commands: plt.ylables, plt.xlim, etc.

WORKFLOW

- 1. Prepare tidy pandas DataFrame.
- 2. **Think**: what are you trying to say / show?
- 3. Control figure aesthetics (style, colors, size).
- 4. Use Seaborn to plot.
- 5. Customize plot using Seaborn or matplotlib.
- 6. Save plot.

Do not skip this step!

DIFFERENT DATA

- Seaborn comes with example datasets.
- Lets try the tips dataset
 tips = sns.load_dataset('tips')

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
	•••	•••	•••	•••	•••	•••	•••
223	15.98	3.00	Female	No	Fri	Lunch	2
	•••		•••	•••		•••	•••

TIPS DATA

Visualize the data:

```
sns.relplot(data=tips,
    x='total_bill',
    y='tip',
    hue='sex',
    size='size',
    row='time',
    col='smoker')
```

Not very helpful :(

TIPS DATA

What affects the tip?

- Smoking?
- Sex?

```
sns.lmplot(data=tips,
    x='total_bill',
    y='tip',
    row='sex',
    col='smoker')
```


MORE PLOTS

 Violin plot shows distribution sns.violinplot(data=tips, x='day', y='total_bill', inner=None)

Joint distribution:

```
sns.jointplot(data=tips,
    x='total_bill',
    y='tip', kind='kde',
    xlim=(0,40),
    ylim=(0,6))
```


DO TASKS IN BLOCK 5

FINAL COMMENTS

LIES, DAMN LIES, AND VISUALIZATIONS

Do women tip less than men?

```
sns.catplot(data=tips,
    x='sex',
    y='tip',
    kind='bar', ci=0)
```

- Yes?
 - 30 cents less on average.

LIES, DAMN LIES, AND VISUALIZATIONS

Shouldn't we normalize by the total bill?

tips['% tip'] = 100*tips['tip']/tips['total_bill']
sns.catplot(data=tips,

```
x='sex',
y='% tip',
kind='bar', ci=0)
```

So women give higher tips?

PERHAPS IT DIFFERS BY TIME?

Maybe it changers over time?

 Women give more at evening, men give less?

THE LIMITS OF VISUALIZATION

What about day of week? Smoking?

TAKEAWAY

Visualization is not statistical analysis!

- Also: we should have added error bars or confidence intervals
 - Seaborn actually does it automatically for us ©

GENERAL ADVICE FOR VISUALIZATION

- 1. Think about what you want to show.
- 2. Say "yes!" to error bars confidence intervals.
- 3. Bar charts > pie charts (usually).
- 4. Be thoughtful: aesthetics, colors, style.
- 5. Be judicious: don't overload the reader.
- 6. Visualization != analysis.
- 7. Experiment and iterate.

WHAT'S NEXT

- You know how to organize, manipulate, and visualize data.
 - Basics of data wrangling in Python.
 - There is a lot we haven't seen
- ... but not what to do, and when.
- Keep learning:
 - Start using this in your work, experiment.
 - Learn basic statistical analysis.

RESOURCES

- Anaconda Python/R distribution for data science: https://www.anaconda.com/distribution/
- Python for Data Analysis by Wes McKinney
 - Written by creator of pandas
- Pandas user guide: <u>http://pandas.pydata.org/pandas-</u> docs/stable/user guide/index.html
- Seaborn tutorial: https://seaborn.pydata.org/tutorial.html
- Google and Stack Overflow