# Basic Local Alignment Search Tool (BLAST)

Actualizado en: 24/01/2023

### Objetivos

- · Comprender el funcionamiento de BLAST.
- · Conocer los diferentes tipos de búsquedas posibles.
- · Capacidad de utilizar la interfaz web de NCBI BLAST.

## BLAST, el algoritmo

#### Contexto histórico

· Lipman & Pearson. 1985. Rapid and sensitive protein similarity searches. *Science* 227(4693):1435-1441.

"One of the most rigorous programs for comparing amino acid sequences, SEQHP (5), requires more than 8 hours to compare a 200-residue protein to the 500,000-residue NBRF (National Biomedical Research Foundation) protein library on the VAX 11/750 computer."

· Altschul et al. 1990. Basic Local Alignment Search Tool. *J. Mol. Biol.* 215:403-410.

### Para qué sirve

- · Comparar dos secuencias y encontrar similitudes locales (como Smith-Waterman).
- · Buscar secuencias parecidas a una *query* en una base de datos (*target*).
- Múltiples aplicaciones:
  - Localizar dominios proteicos en una secuencia.
  - Recopilar secuencias homólogas para crear una filogenia.
  - Mapear secuencias cortas en un genoma de referencia.
  - Identificar una especie.

## Qué meritos tiene

- · Rapidez.
- · Sensibilidad.
- · Estadístico.

#### Cómo funciona

- 1. Detecta e ignora regiones repetitivas o de *baja complejidad* de la *query*.
- 2. Hace una lista de palabras de k letras de la query (k = 11 para DNA):

```
PQGEFG
PQG
QGE
GEF
EFG
```

3. Añade a la lista palabras *vecinas* que alinearan con puntuación de al menos *T*.

#### Cómo funciona

- 4. Busca las palabras de la lista entre las secuencias de la base de datos (indexadas).
- 5. Alarga la *semilla* de los alineamientos encontrados (*High-scoring Segment Pair*, HSP).

#### Cómo funciona

- 6. Enumera HSPs con puntuación mayor de la que se produciría por azar.
- 7. Evalúa la significación de los HSPs.
- 8. Combina dos o más HSP en uno.
- 9. Muestra el alineamiento local Smith-Waterman de cada resultado.
- 10. Enumera los resultados con valor *E* menor o igual a un cierto umbral.

#### Evaluación estadística de los resultados

La distribución de puntuaciones de HSPs entre dos secuencias de longitudes m y n está descrita por los parámetros K y  $\lambda$ . El número esperado de HSPs con una puntuación de al menos S (valor E) es:

$$E = Kmne^{-\lambda S}$$

En una búsqueda en una base de datos, n es la longitud total de la base de datos entera. Los parámetros K y  $\lambda$  deben ser estimados mediante permutaciones. La probabilidad de observar al menos un HSP con una puntuación de al menos S por casualidad, es (distribución de Poisson):

$$P = 1 - e^{-E}$$

Este es el valor *p*.

#### **Test**

- El mismo HSP, en bases de datos de tamaños diferentes, ¿dónde tendrá un valor *E* mayor?
- · ¿Cómo afectará el tamaño de palabra, *k*, a la sensibilidad?¿Y al tiempo de ejecución?
- · ¿Para qué sirve conocer la distribución teórica de puntuaciones de HSPs?

## BLAST, los programas

## Principales programas

| Programa | Query    | Base.de.datos |
|----------|----------|---------------|
| blastn   | DNA      | DNA           |
| blastp   | proteína | proteína      |
| blastx   | DNA      | proteína      |
| tblastn  | proteína | DNA           |
| tblastx  | DNA      | DNA           |

#### **PSI-BLAST**

**GAGGTAAAC** 

**TCCGTAAGT** 

CAGGTTGGA

**ACAGTCAGT** 

**TAGGTCATT** 

**TAGGTACTG** 

**ATGGTAACT** 

CAGGTATAC

**TGTGTGAGT** 

AAGGTAAGT

#### **PSSM**

| Α | 0.25  | 1.23  | -1.24 | -4.70 | -4.70 | 1.23  | 1.45  | -0.31 | -1.24 |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| C | -0.31 | -0.31 | -1.24 | -4.70 | -4.70 | -0.31 | -1.24 | -1.24 | -0.31 |
| G | -1.24 | -1.24 | 1.45  | 1.96  | -4.70 | -1.24 | -1.24 | 0.97  | -1.24 |
| Т | 0.66  | -1.24 | -1.24 | -4.70 | 1.96  | -1.24 | -1.24 | -0.31 | 1.23  |

Ejemplo de *Position Specific Scoring Matrix* 

#### **PSI-BLAST**



El PSI-BLAST empieza como un BLASTP (1). A partir del alineamiento de las secuencias homólogas que superan el umbral de valor E, genera una PSSM (2). Y utiliza la PSSM como nueva consulta (query) para añadir secuencias homólogas al alineamiento y repetir el ciclo.

#### **PSI-BLAST**



(Humana Press, 2007)

El PSI-BLAST es capaz de detectar la homología entre las secuencias de la subunidad  $\beta$  de la DNA polimerasa III de E. coli (arriba, número de acceso NP\_002583) y la proteína humana PCNA (abajo, NP\_002583), de estructura y función similares, pero muy divergente en la secuencia aminoacídica.

#### BLAST en la web

#### NCBI BLAST

#### **EMBL-EBI BLAST**

Existe tamién un paquete de programas blast para línea de comandos que utilizaremos en prácticas.