

Inter-Individual Variability in PK & PD A General Overview

Division of Pharmacokinetics & Drug Therapy
Department of Pharmaceutical Biosciences
Uppsala University, Sweden

PKPD relationships

Effects of a drug involves PK and PD processes

PKPD relationships

In each step is variability present

Outline

- Parameters of PK and PD
- Measurements of variability
 - Magnitude of variability PK and PD
- Covariates explaining variability
- Contributing to PD variability

Parameters

PK mainly depends on bioavailability and elimination rate

Treatment	Exposure measurement		
Repeated (chronic)	$C_{av} = \frac{Dose\ rate \cdot F}{CL}$		
Single	$AUC = \frac{Dose \cdot F}{CL}$		

Bioavailability (F)

- Measurement of fraction absorbed Clearance (CL)
- Measurement of elimination capacity

Parameters

PD depends on maximum effect and potency

Shape and magnitude of variability is equally important

Two components of variability

Shape

Magnitude

Shape informs about what the variability looks like

Two components of variability

- Shape
 - CL and EC₅₀ log-normally distributed
 - Individual F bounded between 0 and 1
 - Emax depends on effect
 - Consider bimodal and other distributions
 - Determination of shape requires a large sample
- Magnitude

Magnitude informs about how large the variability is

Two components of variability

- Shape
 - CL and EC₅₀ log-normally distributed
 - Individual F bounded between 0 and 1
 - Emax depends on effect
 - Consider bimodal and other distributions
 - Determination of shape requires a large sample
- Magnitude
 - Standard deviation (SD)
 - Coefficient of variation (CV = SD/mean)
 - Interquartile or percentil range
 - Range or max/min-ratio

most
- common in
life-science

Comparison of max/min ratio and CV

Max/min ratio and CV are unit less

• unlike SD, percentiles and range

CV may not have any meaning on variable that ranges across zero.

CV ranges $[0, \infty)$ commonly expressed in %

Max/min ratio ranges $(-\infty, \infty)$ in our area commonly $[0, \infty)$

Max/min ratio increases with increasing no of studied subjects

Max/min ratio increases with increasing CV

Increase in max/min with no of subjects is dependent on CV

Increase in max/min with no of subjects is dependent on CV

Everolimus is considered a drug with high PK variability

"There was evidence for longitudinal stability in AUC of everolimus during the course of the study. The interindividual pharmacokinetic variability for AUC was **85.4%** and intraindividual, interoccasion variability was **40.8%**. Age (range, 17-69 years), weight (range, 49-106 kg), and sex (65 men and 36 women) were **not significant contributors** to variability."

^{*} Kovarik JM et al., Clin Pharmacol Ther 2001 69:48-56

ThioTEPA is considered a drug with low PK variability

"Clearance of thioTEPA was 34 L/h with an IIV and IOV of 18 and 11%, respectively. CL of thioTEPA was correlated with alkaline phosphatase and serum albumin."

*Huitema et al., Br J Clin Pharmacol 2001 51:61-70

Effect variability of the same drug could be vary

SR33671 – a calcium antagonist metabolite Has 1 PK (AUC) and 4 PD measurements

• Heart rate, PR interval, Artery flow, Vascular resistance

Subject	AUC (CL/F)	Heart rate (slope)	PR interval (slope)	Artery flow (C ₅₀)	Vascular resistance (C ₅₀)
1	587	-0.18	0.40	10	4.3
2	517	-0.18	0.46	1.5	1.9
3	459	-0.18	0.67	5.3	4.7
4	513	-0.16	0.49	14	6.0
5	368	-0.30	0.62	2.4	2.0
Mean	535	-0.20	0.53	9	5.8
CV	25%	28%	22%	82%	88%

^{*}Bellisant, Giudicelli, Br J Clin Pharmacol 1999 48:801-10

Variability of parameters describing the same effect could vary

SR33671 – a calcium antagonist metabolite For artery flow and vascular resistance potency and maximum effect has been estimated.

Subject	Artery flow (C ₅₀)	Vascular resistance (C ₅₀)	Artery flow (Emax)	Vascular resistance (Emax)
1	10	4.3	40	-34
2	1.5	1.9	43	-31
3	5.3	4.7	49	-26
4	14	6.0	49	-23
5	2.4	2.0	35	-29
Mean	9	5.8	42	-28
CV	82%	88%	14%	14%

^{*}Bellisant, Giudicelli, Br J Clin Pharmacol 1999 48:801-10

PK variability is usually lower than PD variability

Fentanyl, alfenanil and trefentanil are PK and PD for 3 anesthetic agents

Drug	CV(CL)	$CV(C_{50}, EEG)$
Fentanyl	20	85
Alfentanil	17	47
Trefentanil	16	73

^{*}Lemmens et al., Clin Pharm Ther 56:261-71 (1994)

Variability may be unidentified patients characteristics

- Sex (Gender)
- Age
- Race
- Body size (WT, BSA, BMI, IBW, LBW, HT)
- Genotype (mainly fast and slow metabolisers)
- Renal function (creatinine-, inulin-, CrEDTA CL)
- Hepatic function (bilirubin, albumin, ASAT, ALAT, ALKP)
- Disease parameters
 - Baseline, etiology, common complications, sub-diagnosis
- Therapy related
 - Co-medication, pre-treatment, dialysis
- Habits / Environmental factors
 - Smoking, alcohol, food, diet

For PK variability some major covariates can be identified

Major

- Renal function (CrCL) renally eliminated compounds
- Size/age in pediatric studies
- Geno-/phenotype for compounds eliminated mainly via polymorphic enzymes (e.g. CYP2D6, CYP2C19)

Sometimes clinically significant

- Drug interactions
- Body size (in adults)
- Hepatic function (via lab values)
- Age
- Feeding status
- Race
- Sex

PD covariates are highly correlated to the effect used as PD

Major

None

Sometimes clinically significant

- Disease severity / subtype
- Performance status
- Drug interactions
- Genotype
- Age
- Race
- Sex

Example of covariate for PD of remifentanil for anesthesia

Remifentanil C_{50} for adequate anesthesia in abdominal surgery (n=40)

- 4.1 ng/ml in men
- 7.5 ng/ml in women
- CV of unexplained variability in C50 was 57%

*Drover et al., Anesthesiology 89:869-77, 1998

Example of impact of remifentanil sex difference

Example of impact of remifentanil sex difference

Depends on:

- Who we study
- What we study
- How we perform the study
- PD processes we can't affect

Who – What population is studied?

Study population

- Healthy volunteers (male, young, average sized, non-smoking,...)
- Patient population (or "healthy" part of it)
- Adults and/or children
- General population

What – Which measurement is used to assess effect?

Remifentanil

	Adequate anestesia (Clinical endpoint)*	EEG spectral edge (Biomarker)**
CV(EC ₅₀)	66%	25%

^{*}Drover et al., Anesthesiology, 89:869-77, 1998

^{**}Egan et al., Anesthesiology, 81:821-33, 1996

How – What does the study design look like?

Small study

- Experimental
- Rich data
- Not representative
- Well-controlled conditions
- Too small for detecting covariate effects
- Often too small for reliable determination of variability

Large study

- Observational
- Sparse data
- Varying data quality
- Methodological difficulties to determine parameter values
- Representative

Determinants of PD variability – things we can't affect

Measured conc ≠ "Active" conc

- free fraction, metabolites, isomeres

Transporters

influx and efflux

Level of endogenous agonist

production/elimination

Receptor characteristics

density, heterogeneity

Post-receptor events

Homeostasis and feedback mechanisms

A drug is not just a chemical substance

Selection bias towards

- Low between-subject variability
 - Avoiding polymorphic metabolism pathways
 - Avoiding low (= more variable) bioavailability
- Specific targets
- Low toxicity
- Stability (or not)
- "One dose fits all"

Activity assured by special delivery

Promising compounds exist with characteristics very different from those of drugs

Summary

Between-subject variability is an important measurement of PK and PD

PD variability is larger than PK variability

Part of the variability can be predicted using covariates

Think: who, what, how to estimate variability