

Problem BinSearch

Girdi dosyası stdin Çıktı dosyası stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Çok iyi bilindiği üzere, p dizisinin sıralı olduğu durumda, verilen kod parçası sadece target değerinin p dizisi içinde olması halinde true sonucunu verecektir. Ancak, p dizisi sıralı değilse bu doğru olmayabilir.

Size pozitif tamsayı olan n değeri ve bir $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$ serisi veriliyor. Bir pozitif tamsayı olan k için $n = 2^k - 1$ olduğu garanti ediliyor. $\{1, \ldots, n\}$ için aşağıdaki şartları sağlayan p permütasyonunu oluşturmanız gerekmektedir. binary_search(n, p, i) fonksiyonunun b_i sonucunu vermediği pozisyon $i \in \{1, \ldots, n\}$ olsun ve S(p) kaç adet böyle pozisyon olduğu bilgisini versin. Siz S(p) değerinin küçük olduğu p değerini vermelisiniz ("Kısıtlar" bölümünde verilen detayları görebilirsiniz)

(Not: $\{1,\ldots,n\}$ değerlerinin bir permütasyonu, her bir değerin 1 ile n arasında olduğu n tamsayı değerinden oluşan ve her bir değerin kesin olarak sadece bir defa geçtiği dizi olarak ifade edilebilir.)

Girdi

Girdi birden fazla test içermektedir. İlk satır, verilen girdide kaç adet test olduğunu gösteren T değeridir. Bunu testler izleyecektir.

Her bir test için ilk satır n tamsayı değeri olacaktır. Testin ikinci satırı n uzunluğunda boşlukla ayrılmamıs, sadece '0' ve '1' karakterlerinden oluşan bir string olacaktır. Eğer ininci karakter '1' ise bu durumda $b_i = \mathtt{true}$ olacaktır, eğer '0' ise, $b_i = \mathtt{false}$ olacaktır.

Çıktı

Çıktı her bir T testi için cevap bilgisi içerecektir. Her cevap, verilen özel test durumu için üretilebilecek p permütasyonunu içerecektir.

Kısıtlar

- $\sum n$ bir girdide verilen n değerlerinin tamamının toplamı olsun.
- $1 \le \sum n \le 100000$.
- $1 \le T \le 7000$.
- $n=2^k-1$, bazı $k\in\mathbb{N}, k>0$ değerleri için.
- Eğer altgörev içindeki tüm testler için $S(p) \le 1$ ise, o alt görev için 100% puan verilecektir.
- Eğer altgörev içindeki tüm testler için $0 \le S(p) \le \lceil \log_2 n \rceil$ (örneğin, $1 \le 2^{S(p)} \le n+1$) ise, o alt görev için 50% puan verilecektir.

#	Puanlar	Kısıtlar
1	3	$b_i = { t true}.$
2	4	$b_i = \mathtt{false}.$
3	16	$1 \le n \le 7.$
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ ve her $b_i,$ {true,false} arasından bağımsız ve homojen olarak rastgele seçilmiştir.
6	30	Başka ek kısıt yoktur.

Örnekler

Girdi dosyası	Çıktı dosyası
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Açıklamalar

Örnek 1. İlk iki test için S(p)=0 olackatır. Üçüncü testte S(p)=1 olacaktır. Çünkü binary_search(n, p, 2) sonucu true olacaktır, fakat $b_2=$ false durumundadır. Dördüncü testte S(p)=1 olacaktır. Çünkü binary_search(n, p, 4) sonucu true olacaktır, fakat $b_4=$ false durumundadır.

Örnek 2. Her iki test için de S(p) = 0 olacaktır.