NAME	RANDOM NO;						
SIGNATURE	COMBINATION	 	 	 			
P525/3							
CHEMISTRY							
PRACTICAL							
Feb/mar 2024							
3 ¹ / ₄ Hours							

UGANDA ADVANCED CERTIFICATE OF EDUCATION

CHEMISTRY

PRACTICAL

PAPER 3

3Hours 15 minutes

Instructions to candidates;

.

- > Answers all questions
- > Record your answers on this question paper in the spaces provided.
- > Mathematical tables and silent non programmable calculators may be used.
- > Reference books (i.e textbooks, practical manuals etc) should not be used.
- > Candidates are **not** allowed to start working with the apparatus for the first 15minutes. This time is to enable candidates to read the questions and make sure they have all apparatus and chemicals they may need.
- Where necessary use; (0=16, H= 1, N=14, Na= 23)

QN 1	QN 2	TOTAL

Turn over

1. You are provided with the following;

BA1 which is a solution made by dissolving **0.8g** sodium nitrite in 500cm³ of distilled water.

BA2 which a solution of potassium manganate(vii) of **unknown** concentration.

BA3 is a 2M sulphuric acid

Solid Q is an acid of the formula, $X.2H_2O$.

You are required to determine the;

- (a) the concentration of potassium manganate(vii) in BA2 in moles per litre.
- (b) determine the value of X in $X.2H_2O$.

Theory,

Potassium manganate(vii) reacts with sodium nitrite according to the equation,

$$2MnO_{4(aq)}^{-} + 5NO_{2(aq)}^{-} + 6H_{(aq)}^{+} \rightarrow 5NO_{3(aq)}^{-} + 2Mn_{(aq)}^{2+} + 3H_{2}O_{(l)}$$

The reaction ratio of MnO_4^- and $X.2H_2O$ is 2:5.

Procedure 1;

- Pipette 25cm³(or 20cm³) of BA1 into a clean conical flask. Add equal volume of BA3.
- Titrate the resultant solution with BA2 from the burette until the end point is reached.
- Repeat the titration until you obtain consistent results.
- Record your results in the table below.

Table 1

Exp't	1	2	3
Final burette readings(cm³)			
Initial burette readings(cm³)			
Volume of BA2 used(cm³)			

Titre values used to calculate the average volume

.....

Que	stions,	
(a)	(i)	te the number of moles of; sodium nitrite in BA1 that reacted.
	(ii)	potassium manganate(vii) in BA2 that reacted.
(b)		ine the concentration of potassium manganate(vii) in BA2 in er litre.

Procedure 2

- Weigh accurately **0.60g** of Q into a clean beaker. Using a measuring cylinder, add 100cm³ of distilled water and stir to dissolve. Transfer the content into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution **BA4**.
- Pipette 25cm³(or 20cm³) of BA4 into a conical flask. Add equal volume of BA3 and heat the mixture up to about 60°c.
- Titrate the hot solution with BA2 from the burette until the end point is reached.
- Repeat the titrations until you obtain consistent results.
- Record your results in the table below.

Mass of weighing container + so	olid Q =			g
Mass of weighing container alon	ne =			g
Mass of solid Q =				g
Table II				
Exp't	1	2	3	
Final burette reading(cm³)				
Initial burette reading(cm³)				
Volume of BA2 used(cm ³)				
Titre values used to calculate th	he averag	ge volume of	BA2.	
Calculate the average volume of	BA2 use	ed.		

$\overline{}$		•	
<i>,</i> ,,		. ^	2
	$\nu \sim 1$	1()	115
vy c	ıest		

	(i)	e the number of moles of; potassium manganate(vii) that reacted with BA4.
	(ii)	acidic compound of the formula $X.2H_2\mathcal{O}$ in BA4 that reacted.
 (b)	Determi (i)	concentration of the acidic compound of the formula $X.2H_2O$ in BA4 in moles per litre.
		the value of X in $X.2H_2O$.
 	•••••	

2. You are provided with substance Z which contains two cations and two anions. You are required to carry out the following tests on Z to identify the cations and anions present in Z. Record your observations and deductions in the table below. (28 marks)

Tests	Observations	Deductions
(a). Heat a spatula		
endful of Z gently and		
then strongly in a dry test tube until there is		
no further change.		
no ful mer change.		
(b). Shake a spatula		
endfuls of Z with about		
5cm ³ of distilled water		
and filter.		
Keep both filtrate and		
the residue.		
Divide the filtrate into		
four portions.		
(i). To the $1st$ portion of		
the filtrate, sodium		
hydroxide solution		
dropwise until in excess and warm.		
excess and warm.		
(ii). To the 2 nd portion		
of the filtrate, add		
ammonia solution		
dropwise until in		
excess		

(iii). To the 3 rd portion of the filtrate, add 2-3 drops of lead(ii) nitrate solution, heat and allow to stand.	
(iv). To the 4 th portion of the filtrate, add about 1cm ³ od dil.HNO ₃ followed by 2-3 drops of silver nitrate solution.	
(c). Wash the residue with distilled water and dissolve in minimum dil.HNO₃ to dissolution. Divide the acidic solution into four portions.	
(i). To the 1 st portion of the acidic solution, add sodium hydroxide solution dropwise until in excess.	
(ii). To the 2 nd portion of the acidic solution, add ammonia solution dropwise until in excess.	
(iii). To the 3 rd portion of the acidic solution, add 2-3 drops of dilute sulphuric acid.	

(iv). To the 4 th portion of the acidic solution, add 2-3 drops of potassium chromate(vi) solution followed by about 1cm ³ of ethanoic acid.		
(d). Identify the;		
(i). cations in Z	and	
(ii). anions in Z	and	

CONFIDENTIAL

On additional to the common reagents and apparatus used in chemistry laboratory, each student should be provided with the following;

- 1 burette of 50cm³ capacity
- 1 pipette of 25cm³ (or 20cm³)
- 2 filter papers
- 1 thermometer
- 2 conical flasks
- 1 funnel
- 1 volumetric flask of 250cm³ capacity
- 6 test tubes
- 100cm³ of BA1
- 200cm³ of BA2
- 200cm³ of BA3
- 1.0g of Q
- 2.5g of Z

Easy access to:

Weighing scale

Heat source

Reagents to identify cations and anions, gases and the organic functional group

- BA1 is made by dissolving 1.60g of sodium nitrite; (NaNO2) in 1 litre of distilled water.
- BA2 is made by dissolving 3.20g of potassium manganate(vii); (KMnO₄) in 1 litre of distilled water
- BA3 is a 2M sulphuric acid
- Solid Q is Oxalic acid; (H₂C₂O₄.2H₂O)
- Substance Z is a solid mixture of ammonium carbonate, barium carbonate and sodium chloride in the ratio 1:2:1/2