Ayudantía 11 Computación Científica II

Profesor: Ariel Sanhueza Ayudante: Javier Levio Silva

03 de diciembre de 2018

1. Considere la clásica ecuación de onda con condición de Dirichlet nula:

$$u_{tt} = 4u_{xx}, (x, t) \in [0, 1] \times [0, T] \tag{1}$$

$$u(x,0) = \sin(2\pi x) \tag{2}$$

$$u_t(x,0) = x (3)$$

$$u(0,t) = u(1,t) = 0 (4)$$

Se ha resuelto numéricamente la ecuación de onda mediante diferencias finitas para varios tiempos entre t=0 y t=1. Los resultados han variado en función de la elección de $\Delta x = (M+1)^{-1} \Delta t = (N+1)^{-1}$ como se puede ver en la Figura (1). La Figura (2) muestra para cada experimento p la cantidad de puntos M y N.

Figura 1: Dos soluciones numéricas de la ecuación de onda (1) para dos configuraciones distintas de parámetros ¡Note la diferencia entre ellas!

utilizados para discretizar el espacio y el tiempo respectivamente.

- a) Describa de forma precisa el fenómeno que se aprecia en las figuras. ¿A qué se debe este fenómeno? ¿Qué condición debe cumplirse?
- b) Encierre en la Figura (2) aquel o aquellos cuocientes que resulten en una resolución numérica estable de la ecuación (1).

M	200	230	260	290	320	350	380	410	440	470	500
100	0.5025	0.4372	0.3870	0.3471	0.3146	0.2877	0.2651	0.2457	0.2290	0.2144	0.2016
120	0.6020	0.5238	0.4636	0.4158	0.3769	0.3447	0.3176	0.2944	0.2744	0.2569	0.2415
140	0.7015	0.6104	0.5402	0.4845	0.4393	0.4017	0.3701	0.3431	0.3197	0.2994	0.2814
160	0.8010	0.6970	0.6169	0.5533	0.5016	0.4587	0.4226	0.3917	0.3651	0.3418	0.3214
180	0.9005	0.7835	0.6935	0.6220	0.5639	0.5157	0.4751	0.4404	0.4104	0.3843	0.3613
200	1.0000	0.8701	0.7701	0.6907	0.6262	0.5726	0.5276	0.4891	0.4558	0.4268	0.4012
220	1.0995	0.9567	0.8467	0.7595	0.6885	0.6296	0.5801	0.5377	0.5011	0.4692	0.4411
240	1.1990	1.0433	0.9234	0.8282	0.7508	0.6866	0.6325	0.5864	0.5465	0.5117	0.4810
260	1.2985	1.1299	1.0000	0.8969	0.8131	0.7436	0.6850	0.6350	0.5918	0.5541	0.5210
280	1.3980	1.2165	1.0766	0.9656	0.8754	0.8006	0.7375	0.6837	0.6372	0.5966	0.5609
300	1.4975	1.3030	1.1533	1.0344	0.9377	0.8575	0.7900	0.7324	0.6825	0.6391	0.6008

Figura 2: Tabla de cuocientes $\frac{M+1}{N+1}$

2. Considere el siguiente sistema no-lineal de ecuaciones diferenciales parciales definido en $(x,t) = [0,1] \times [0,T]$:

$$u_{tt}(x,t) = c(v(x,t))u_{xx}(x,t)$$

$$\tag{5}$$

$$v_{tt}(x,t) = v_{xx}(x,t) \tag{6}$$

$$u(x,0) = \sin(\pi x) \exp(-(x-0.5)^2)$$
(7)

$$v(x,0) = \sin(\pi x) \exp(-(x-0.5)^2)$$
(8)

$$u_t(x,0) = 0 (9)$$

$$v_t(x,0) = 0 (10)$$

$$u(1,t) - u(0,t) = 0 (11)$$

$$v(1,t) = 0 (12)$$

$$v(0,t) + v_x(0,t) = \frac{\pi}{\exp(1/4)}$$
(13)

$$c(x) = 1 + \varepsilon \cos(x) \tag{14}$$

a) Construya un algoritmo basado en diferencias finitas que encuentre una aproximación numérica de las funciones incógnitas u(x,t) y v(x,t) en la grilla (x_i,t_k) donde $x=\frac{i}{n}$ y $t_k=\frac{kT}{m}$ para $i\in\{0,...,n\}$ y $k\in\{0,...,m\}$. Considere ε,T,n y m como parámetros de su algoritmo.