$$p(x) = \frac{1}{\sqrt{\det(2\pi \pm)}} e^{-\frac{1}{2}(x-M)^{T} - \frac{1}{2}(x-M)}$$

$$= \sum_{i=1}^{n} \frac{1}{1 - \frac{1}{$$

$$= -\frac{1}{2} \ln \det(2\pi \xi) - \frac{1}{2} \sum_{i=1}^{n} \frac{1}{j=1} \frac{1}{3j^2} (X_{ij} - M_{j})^2$$
(b) Mix is the M and  $\Xi = \frac{n!}{2} \ln \det(Z^{-1}) - \frac{1}{2} \frac{n!}{2} \operatorname{tr} \left[ (X_{i} - M_{i}) (X_{i} - M_{i}) Z^{-1} \right]$ 

$$= -\frac{n}{2} \operatorname{Tr} \left( \sum_{i=1}^{-1} \begin{bmatrix} 2b_{1} \\ 2b_{2} \\ 2b_{3} \end{bmatrix} + \sum_{i=1}^{2} \begin{bmatrix} x_{1} - M_{1} \\ 6_{1} \end{bmatrix} \times \begin{bmatrix} x_{11} - M_{1} \\ 6_{1} \end{bmatrix} \times \begin{bmatrix} x_{12} - M_{1} \\ 2b_{2} \end{bmatrix} \right)$$

$$= -\frac{n}{2} \operatorname{Tr} \left( \sum_{i=1}^{-1} \begin{bmatrix} 2b_{1} \\ 2b_{2} \\ 2b_{3} \end{bmatrix} + \sum_{i=1}^{2} \begin{bmatrix} x_{1} - M_{1} \\ 2b_{3} \end{bmatrix} + \sum_{i=1}^{3} \begin{bmatrix} x_{11} - M_{1} \\ 2b_{3} \end{bmatrix} \times \begin{bmatrix} x_{12} - M_{1} \\ 2b_{3} \end{bmatrix} \right)$$

$$= -\frac{n}{2} \operatorname{Tr} \left( \sum_{i=1}^{-1} \begin{bmatrix} 2b_{1} \\ 2b_{2} \\ 2b_{3} \end{bmatrix} + \sum_{i=1}^{3} \begin{bmatrix} x_{1} - M_{1} \\ 2b_{3} \end{bmatrix} + \sum_{i=1}^{3} \begin{bmatrix} x_{11} - M_{1} \\ 2b_{3} \end{bmatrix} \right)$$

$$= -\frac{0}{2} \sqrt{1} r \left( \frac{16}{2161}, \frac{16}{2163} \right) + \frac{0}{2} \left( \frac{1}{1} - \frac{1}{1} \right) r \left( \frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) r \left( \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) r \left( \frac{1}{1} - \frac{1}{1} -$$

$$= -\frac{1}{2} \frac{1}{16} \frac{2}{16} + \frac{2}{5} (X_1 - M_1)^T \sum_{i=1}^{-1} (X_i - M_1)^T$$

$$\frac{\partial \ln P(X_1, X_2, X_3) \leq \frac{N}{2} \geq -\frac{1}{2} \sum_{i=1}^{n} (N_i X_i - M_i) (X_i - M_i)^T$$

Sitting the derivative to zero, we get

Setting the derivative to zero yields.

$$M = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Thus, 
$$\tilde{z} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \frac{1}{n} \sum_{i=1}^{n} x_i) (x_i - \frac{1}{n} \sum_{i=1}^{n} x_i)^T$$

3) (b) ~ exp \{-\frac{1}{2} \left(-2 \left( \times \tau \right) \right) \width + w \tau \tau \right) \right\} d exps (xTY) W = WT (XTX + 5-1) W3 p(w|x,Y) = ( · exp \ (xTY)TW - 1 WT (XTX + E-1) W } Where Lis a constant, with M= (xTX+5-1), p(w1x,x) = (. exp } = {(w-14-(xTx))}TM(w-14-(xTx))} + constant } mean is  $M^{-1}(X^TY)$  and variance is 3) (c)

(n 4) (a) Since (A+A) = 3+3  $\left(\begin{array}{c} \left(A_{1}+\hat{A}_{1}\right) \left[A_{2}+\hat{A}_{2}\right] \cdots \left[A_{l}+\hat{A}_{d}\right] \right) \gamma \begin{pmatrix} \omega_{1} \\ \omega_{d} \end{pmatrix}$ twhere . [A; +A; ] represent the column vectors of (A+A) Thus,  $\vec{y} + \vec{y} = w_1 \left[ A_1 + \vec{A}_1 \right] + w_2 \left[ A_2 + A_2 \right] + w_4 \left[ A_1 + A_2 \right]$ Thus In other words,  $\vec{j}$  +  $\vec{j}$  is a linear combination of the column vectors of  $(A + \hat{A})$ . Therefore, an adding a column of  $(\vec{j} + \vec{j})$  to  $(A + \hat{A})$  (annot increase its rank.

Tank  $(E + A + \hat{A})$  = d (b) [A+A, 3+7] R = 0 U ( Z1, ... d D) VT = D  $\begin{bmatrix} \lambda_1 & \lambda_2 & 0 \\ 0 & \lambda_4 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 & V_3 & V_4 & V_4 \\ \vdots & V_4 & V_4 & V_4 \end{bmatrix} \vec{\chi} = \vec{0}$ ン, v, 式 -XJ Va7 X 0 Uisan orthonormal matrix, thus, Ui exist, So,

Qn 4) (b) Y V, X = 0 X4 V4 \$7 =0 Thus since Vari is orthogonal to  $\vec{V_1}$ ,  $\vec{V_2}$ ,  $\vec{V_3}$ ...  $\vec{V_d}$ ,  $\vec{X} = \alpha \vec{V_{d+1}}$  will be a solution to all the equations above where & GR. Sigm (e)

where  $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ where  $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ where  $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ (ompute  $\frac{\partial}{\partial A} = \frac{\partial}{\partial A} = \frac{$  $\frac{\partial f(\vec{x})}{\partial A} = \begin{bmatrix} x_2 & x_1 \\ x_1 & 3x_2 \end{bmatrix}$ 

| A WIND AND AND AND AND AND AND AND AND AND A                                                                                                 |   |
|----------------------------------------------------------------------------------------------------------------------------------------------|---|
| Done by : Nothanoel Raj                                                                                                                      | 9 |
| In 1) (a) Xin (hen Xinchen. zhu @ berkeley edu. Jun Yu phangjuny u @ berkeley edu                                                            |   |
| (b) I certify that all solutions are entirely in my words and I have not looked at another student's solutions. I have credited all external | A |
| sources in this write up.                                                                                                                    |   |
| Nathanaul Ray                                                                                                                                |   |

# **Question 4e**

We could rescale it by dividing the vsp (f(n)) values by 384 and multiplying the coefficients of the TLS by 384

#### Coefficients=

[[ 209.38212459 169.03666402 155.36677288] [ -30.26805402 -20.30443706 -15.20472049] [ -5.753416 -5.07881542 -4.78144904] [ -1.05630713 0.46377951 1.19195587] [ -7.90569522 -8.20316831 -8.05137623] [ 54.96251667 52.62398401 50.09265545] [ -3.8491927 0.55663535 1.80236903] [ 7.32655583 3.83064183 1.07500107] [ -10.90665749 -6.8522162 -5.87526417]]

#### The relit sphere:



# **Question 3d**

Sigma = [[1 0] [0 1]]

-20



-10

0.000

20

10

ó



Sigma = [[ 1. 0.25] [ 0.25 1. ]]







Sigma = [[ 1. 0.9] [ 0.9 1. ]]







Sigma = [[ 1. -0.25] [-0.25 1. ]]







Sigma = [[ 1. -0.9] [-0.9 1. ]]







Sigma = [[ 0.1 0. ]

[0. 0.1]]





Observation: As the number of training samples increase, the variation of the posterior w increases and this leads to a more spread out distribution. This is because sigma prime was computed using XTranspose \* X + sigma which meant that as the size of X increased, the size of the posterior variance would increase also.

# **Question 2C**

```
import numpy as np
import matplotlib.pyplot as plt
def MLE_mu(X):
  n = X.shape[0]
  tot = np.sum(X,0)
  return tot/n
def MLE_sigma(X):
  mu = MLE_mu(X)
  mu = np.matrix(mu).T
  n = X.shape[0]
  tot = np.matrix([[0,0],[0,0]],dtype='float')
  for xi in X:
     m = (xi - mu).T.dot((xi - mu))
     tot = tot + m
  return tot/n
sigma_list = [ [[20, 0], [0, 10]], [[20,14],[14,10]], [[20,-14],[-14,10]] ]
mu = [15, 5]
print ("Sigma \t\t\t\t Mu\n")
for sigma in sigma_list:
  samples = np.random.multivariate_normal(mu, sigma, size=100)
  print(MLE_sigma(samples), '\t', MLE_mu(samples), '\n')
<u>Output</u>
Sigma
                                     Mu
[[ 139.96850145 -5.23621416]
[ -5.23621416 110.37464612]]
                                     [14.86386061 5.09534284]
[[ 136.40485397 25.1262464 ]
[ 25.1262464 119.45532448]]
                                     [ 15.3745544    5.31787646]
[[ 131.67869995 -24.50694813]
[-24.50694813 114.40296349]]
                                     [14.96190147 5.12444096]
```

## **Question 3d**

```
import numpy as np
import matplotlib.mlab as mlab
def gen data(n):
  X = np.zeros((n,2))
  Z = np.zeros((n,1))
  Y = np.zeros((n,1))
  for i in range (n):
     X[i][0] = np.random.normal(0,2.236068)
     X[i][1] = np.random.normal(0,2.236068)
     Z[i] = np.random.normal(0,5)
     Y[i] = X[i][0] + X[i][1] + Z[i]
  return X, Y
def posterior w(X, Y, sigma):
  var = X.T.dot(X) + np.linalg.inv(sigma)
  mu = np.linalg.inv(var).dot(X.T).dot(Y)
  return mu, var
import math
import matplotlib.pyplot as plt
def plot(mu, var, n):
  delta = 2.5
  x = np.arange(-25.0, 25.0, delta)
  y = np.arange(-25.0, 25.0, delta)
  X, Y = np.meshgrid(x, y)
  Z1 = mlab.bivariate_normal(X, Y, math.sqrt(var[0,0]), math.sqrt(var[1,1]), mu[0,0], mu[1,0],
math.sqrt(abs(var[1,0])))
  \#Z1 = mlab.bivariate_normal(X, Y, 1, 1, 0, 0, 0.5)
  plt.figure()
  CS = plt.contour(X, Y, Z1)
  plt.clabel(CS, inline=1, fontsize=10)
  plt.title("Number of samples: "+ str(n))
  plt.show()
sigma = [np.matrix([[1,0],[0,1]]),
      np.matrix([[1,0.25],[0.25,1]]),
      np.matrix([[1,0.9],[0.9,1]]),
      np.matrix([[1,-0.25],[-0.25,1]]),
      np.matrix([[1,-0.9],[-0.9,1]]),
      np.matrix([[0.1,0],[0,0.1]])
for sigmai in sigma:
  print(sigmai)
```

X,Y = gen\_data(5) mu, var = posterior\_w(X,Y,sigmai) plot(mu, var, 5) X,Y = gen\_data(50) mu, var = posterior\_w(X,Y,sigmai) plot(mu, var, 50) X,Y = gen\_data(500) mu, var = posterior\_w(X,Y,sigmai) plot(mu, var, 500)

## **Question 4c**

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import imread,imsave
imFile = 'stpeters probe small.png'
compositeFile = 'tennis.png'
targetFile = 'interior.jpg'
# This loads and returns all of the images needed for the problem
# data - the image of the spherical mirror
# tennis - the image of the tennis ball that we will relight
# target - the image that we will paste the tennis ball onto
def loadImages():
  imFile = 'stpeters probe small.png'
  compositeFile = 'tennis.png'
  targetFile = 'interior.jpg'
  data = imread(imFile).astype('float')*1.5
  tennis = imread(compositeFile).astype('float')
  target = imread(targetFile).astype('float')/255
  return data, tennis, target
# This function takes as input a square image of size m x m x c
# where c is the number of color channels in the image. We
# assume that the image contains a scphere and that the edges
# of the sphere touch the edge of the image.
# The output is a tuple (ns, vs) where ns is an n x 3 matrix
# where each row is a unit vector of the direction of incoming light
# vs is an n x c vector where the ith row corresponds with the
# image intensity of incoming light from the corresponding row in ns
def extractNormals(img):
  # Assumes the image is square
  d = img.shape[0]
  r = d/2
  ns = []
  vs = []
  for i in range(d):
     for j in range(d):
```

```
# Determine if the pixel is on the sphere
       x = j - r
       y = i - r
        if x*x + y*y > r*r-100:
          continue
        # Figure out the normal vector at the point
        # We assume that the image is an orthographic projection
        z = np.sqrt(r*r-x*x-y*y)
        n = np.asarray([x,y,z])
        n = n / np.sqrt(np.sum(np.square(n)))
        view = np.asarray([0,0,-1])
        n = 2*n*(np.sum(n*view))-view
        ns.append(n)
        vs.append(img[i,j])
  return np.asarray(ns), np.asarray(vs)
# This function renders a diffuse sphere of radius r
# using the spherical harmonic coefficients given in
# the input coeff where coeff is a 9 x c matrix
# with c being the number of color channels
# The output is an 2r x 2r x c image of a diffuse sphere
# and the value of -1 on the image where there is no sphere
def renderSphere(r,coeff):
  d = 2*r
  img = -np.ones((d,d,3))
  ns = []
  ps = []
  for i in range(d):
     for j in range(d):
       # Determine if the pixel is on the sphere
        x = j - r
        y = i - r
        if x^*x + y^*y > r^*r:
          continue
       # Figure out the normal vector at the point
        # We assume that the image is an orthographic projection
       z = np.sqrt(r*r-x*x-y*y)
        n = np.asarray([x,y,z])
        n = n / np.sqrt(np.sum(np.square(n)))
```

```
ns.append(n)
       ps.append((i,j))
  ns = np.asarray(ns)
  B = computeBasis(ns)
  vs = B.dot(coeff)
  for p,v in zip(ps,vs):
     img[p[0],p[1]] = np.clip(v,0,255)
  return img
# relights the sphere in img, which is assumed to be a square image
# coeff is the matrix of spherical harmonic coefficients
def relightSphere(img, coeff):
  img = renderSphere(int(img.shape[0]/2),coeff)/255*img/255
  return img
# Copies the image of source onto target
# pixels with values of -1 in source will not be copied
def compositeImages(source, target):
  # Assumes that all pixels not equal to 0 should be copied
  out = target.copy()
  cx = int(target.shape[1]/2)
  cy = int(target.shape[0]/2)
  sx = cx - int(source.shape[1]/2)
  sy = cy - int(source.shape[0]/2)
  for i in range(source.shape[0]):
    for j in range(source.shape[1]):
       if np.sum(source[i,j]) >= 0:
         out[sy+i,sx+j] = source[i,j]
  return out
# Fill in this function to compute the basis functions
# This function is used in renderSphere()
def computeBasis(ns):
  # Returns the first 9 spherical harmonic basis functions
  B = np.ones((len(ns),9))
  # Compute the first 9 basis functions
  for i, nsi in enumerate(ns):
    x = nsi[0]
    y = nsi[1]
```

```
z = nsi[2]
    B[i][0] = 1
    B[i][1] = y
    B[i][2] = x
    B[i][3] = z
    B[i][4] = x*y
    B[i][5] = y*z
    B[i][6] = 3 * z**2 -1
    B[i][7] = x * z
    B[i][8] = x^{**}2 - y^{**}2
  # This line is here just to fill space
  return B
if __name__ == '__main__':
  data,tennis,target = loadImages()
  ns, vs = extractNormals(data)
  B = computeBasis(ns)
  # reduce the number of samples because computing the SVD on
  # the entire data set takes too long
  Bp = B[::50]
  vsp = vs[::50]
  # Solve for the coefficients using least squares
  # or total least squares here
  print(Bp)
  solution = np.linalg.lstsq(Bp, vsp)[0]
  print(solution)
  coeff = np.zeros((9,3))
  coeff[0,:] = 255
  coeff = solution.reshape(9,3)
  img = relightSphere(tennis,coeff)
  output = compositeImages(img,target)
  print('Coefficients:\n'+str(coeff))
  plt.figure(1)
  plt.imshow(output)
  plt.show()
  imsave('output.png',output)
```

#### **Question 4d**

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import imread,imsave
imFile = 'stpeters probe small.png'
compositeFile = 'tennis.png'
targetFile = 'interior.jpg'
# This loads and returns all of the images needed for the problem
# data - the image of the spherical mirror
# tennis - the image of the tennis ball that we will relight
# target - the image that we will paste the tennis ball onto
def loadImages():
  imFile = 'stpeters probe small.png'
  compositeFile = 'tennis.png'
  targetFile = 'interior.jpg'
  data = imread(imFile).astype('float')*1.5
  tennis = imread(compositeFile).astype('float')
  target = imread(targetFile).astype('float')/255
  return data, tennis, target
# This function takes as input a square image of size m x m x c
# where c is the number of color channels in the image. We
# assume that the image contains a scphere and that the edges
# of the sphere touch the edge of the image.
# The output is a tuple (ns, vs) where ns is an n x 3 matrix
# where each row is a unit vector of the direction of incoming light
# vs is an n x c vector where the ith row corresponds with the
# image intensity of incoming light from the corresponding row in ns
def extractNormals(img):
  # Assumes the image is square
  d = img.shape[0]
  r = d/2
  ns = []
  vs = []
  for i in range(d):
     for j in range(d):
```

# Determine if the pixel is on the sphere

```
x = j - r
       y = i - r
       if x*x + y*y > r*r-100:
          continue
       # Figure out the normal vector at the point
       # We assume that the image is an orthographic projection
       z = np.sqrt(r*r-x*x-y*y)
       n = np.asarray([x,y,z])
       n = n / np.sqrt(np.sum(np.square(n)))
       view = np.asarray([0,0,-1])
       n = 2*n*(np.sum(n*view))-view
       ns.append(n)
       vs.append(img[i,j])
  return np.asarray(ns), np.asarray(vs)
# This function renders a diffuse sphere of radius r
# using the spherical harmonic coefficients given in
# the input coeff where coeff is a 9 x c matrix
# with c being the number of color channels
# The output is an 2r x 2r x c image of a diffuse sphere
# and the value of -1 on the image where there is no sphere
def renderSphere(r,coeff):
  d = 2*r
  img = -np.ones((d,d,3))
  ns = []
  ps = []
  for i in range(d):
     for j in range(d):
       # Determine if the pixel is on the sphere
       x = j - r
       y = i - r
       if x^*x + y^*y > r^*r:
          continue
       # Figure out the normal vector at the point
       # We assume that the image is an orthographic projection
       z = np.sqrt(r*r-x*x-y*y)
       n = np.asarray([x,y,z])
       n = n / np.sqrt(np.sum(np.square(n)))
       ns.append(n)
       ps.append((i,j))
```

```
ns = np.asarray(ns)
  B = computeBasis(ns)
  vs = B.dot(coeff)
  for p,v in zip(ps,vs):
     img[p[0],p[1]] = np.clip(v,0,255)
  return img
# relights the sphere in img, which is assumed to be a square image
# coeff is the matrix of spherical harmonic coefficients
def relightSphere(img, coeff):
  img = renderSphere(int(img.shape[0]/2),coeff)/255*img/255
  return img
# Copies the image of source onto target
# pixels with values of -1 in source will not be copied
def compositeImages(source, target):
  # Assumes that all pixels not equal to 0 should be copied
  out = target.copy()
  cx = int(target.shape[1]/2)
  cy = int(target.shape[0]/2)
  sx = cx - int(source.shape[1]/2)
  sy = cy - int(source.shape[0]/2)
  for i in range(source.shape[0]):
     for j in range(source.shape[1]):
       if np.sum(source[i,j]) >= 0:
          out[sy+i,sx+j] = source[i,j]
  return out
# Fill in this function to compute the basis functions
# This function is used in renderSphere()
def computeBasis(ns):
  # Returns the first 9 spherical harmonic basis functions
  B = np.ones((len(ns),9))
  # Compute the first 9 basis functions
  for i, nsi in enumerate(ns):
     x = nsi[0]
     y = nsi[1]
     z = nsi[2]
     B[i][0] = 1
```

```
B[i][1] = y
    B[i][2] = x
    B[i][3] = z
    B[i][4] = x*y
    B[i][5] = y*z
    B[i][6] = 3 * z**2 -1
    B[i][7] = x * z
    B[i][8] = x^{**}2 - y^{**}2
  # This line is here just to fill space
  return B
if __name__ == '__main__':
  data,tennis,target = loadImages()
  ns, vs = extractNormals(data)
  B = computeBasis(ns)
  # reduce the number of samples because computing the SVD on
  # the entire data set takes too long
  Bp = B[::50]
  vsp = vs[::50]
  # Solve for the coefficients using least squares
  # or total least squares here
  # Code adapted from: https://en.wikipedia.org/wiki/Total_least_squares
  m, n = Bp.shape
  print(m,n)
  Z = np.hstack((Bp, vsp))
  U,S,V = np.linalg.svd(Z)
  Vxy = V.T[:n,n:]
  Vyy = V.T[n:,n:]
  print(Vyy.shape)
  B = -Vxy.dot(np.linalg.inv(Vyy))
  print(B)
  coeff = np.zeros((9,3))
  coeff[0,:] = 255
  coeff = B.reshape(9,3)
  img = relightSphere(tennis,coeff)
  output = compositeImages(img,target)
```

```
print('Coefficients:\n'+str(coeff))
plt.figure(1)
plt.imshow(output)
plt.show()
imsave('output.png',output)
```

## **Question 4e**

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import imread,imsave
imFile = 'stpeters probe small.png'
compositeFile = 'tennis.png'
targetFile = 'interior.jpg'
# This loads and returns all of the images needed for the problem
# data - the image of the spherical mirror
# tennis - the image of the tennis ball that we will relight
# target - the image that we will paste the tennis ball onto
def loadImages():
  imFile = 'stpeters probe small.png'
  compositeFile = 'tennis.png'
  targetFile = 'interior.jpg'
  data = imread(imFile).astype('float')*1.5
  tennis = imread(compositeFile).astype('float')
  target = imread(targetFile).astype('float')/255
  return data, tennis, target
# This function takes as input a square image of size m x m x c
# where c is the number of color channels in the image. We
# assume that the image contains a scphere and that the edges
# of the sphere touch the edge of the image.
# The output is a tuple (ns, vs) where ns is an n x 3 matrix
# where each row is a unit vector of the direction of incoming light
# vs is an n x c vector where the ith row corresponds with the
# image intensity of incoming light from the corresponding row in ns
def extractNormals(img):
  # Assumes the image is square
  d = img.shape[0]
  r = d/2
  ns = []
  vs = []
  for i in range(d):
```

```
for j in range(d):
        # Determine if the pixel is on the sphere
       x = i - r
        y = i - r
        if x*x + y*y > r*r-100:
          continue
        # Figure out the normal vector at the point
       # We assume that the image is an orthographic projection
        z = np.sqrt(r*r-x*x-y*y)
        n = np.asarray([x,y,z])
        n = n / np.sqrt(np.sum(np.square(n)))
        view = np.asarray([0,0,-1])
        n = 2*n*(np.sum(n*view))-view
        ns.append(n)
        vs.append(img[i,j])
  return np.asarray(ns), np.asarray(vs)
# This function renders a diffuse sphere of radius r
# using the spherical harmonic coefficients given in
# the input coeff where coeff is a 9 x c matrix
# with c being the number of color channels
# The output is an 2r x 2r x c image of a diffuse sphere
# and the value of -1 on the image where there is no sphere
def renderSphere(r,coeff):
  d = 2*r
  img = -np.ones((d,d,3))
  ns = []
  ps = []
  for i in range(d):
     for j in range(d):
       # Determine if the pixel is on the sphere
       x = j - r
        y = i - r
        if x^*x + y^*y > r^*r:
          continue
        # Figure out the normal vector at the point
        # We assume that the image is an orthographic projection
        z = np.sqrt(r*r-x*x-y*y)
        n = np.asarray([x,y,z])
```

```
n = n / np.sqrt(np.sum(np.square(n)))
       ns.append(n)
       ps.append((i,j))
  ns = np.asarray(ns)
  B = computeBasis(ns)
  vs = B.dot(coeff)
  for p,v in zip(ps,vs):
     img[p[0],p[1]] = np.clip(v,0,255)
  return img
# relights the sphere in img, which is assumed to be a square image
# coeff is the matrix of spherical harmonic coefficients
def relightSphere(img, coeff):
  img = renderSphere(int(img.shape[0]/2),coeff)/255*img/255
  return img
# Copies the image of source onto target
# pixels with values of -1 in source will not be copied
def compositeImages(source, target):
  # Assumes that all pixels not equal to 0 should be copied
  out = target.copy()
  cx = int(target.shape[1]/2)
  cy = int(target.shape[0]/2)
  sx = cx - int(source.shape[1]/2)
  sy = cy - int(source.shape[0]/2)
  for i in range(source.shape[0]):
     for j in range(source.shape[1]):
       if np.sum(source[i,j]) >= 0:
         out[sy+i,sx+j] = source[i,j]
  return out
# Fill in this function to compute the basis functions
# This function is used in renderSphere()
def computeBasis(ns):
  # Returns the first 9 spherical harmonic basis functions
  B = np.ones((len(ns),9))
  # Compute the first 9 basis functions
  for i, nsi in enumerate(ns):
    x = nsi[0]
```

```
y = nsi[1]
    z = nsi[2]
    B[i][0] = 1
    B[i][1] = y
    B[i][2] = x
    B[i][3] = z
    B[i][4] = x*y
    B[i][5] = y*z
    B[i][6] = 3 * z**2 -1
    B[i][7] = x * z
    B[i][8] = x^{**}2 - y^{**}2
 # This line is here just to fill space
 return B
if __name__ == '__main__':
 data,tennis,target = loadImages()
  ns, vs = extractNormals(data)
 B = computeBasis(ns)
 # reduce the number of samples because computing the SVD on
 # the entire data set takes too long
 Bp = B[::50]
 vsp = vs[::50]
 # Solve for the coefficients using least squares
 # or total least squares here
 # Code adapted from: https://en.wikipedia.org/wiki/Total_least_squares
 vsp = vsp /384
 m, n = Bp.shape
 print(m,n)
 Z = np.hstack((Bp, vsp))
 U,S,V = np.linalg.svd(Z)
 Vxy = V.T[:n,n:]
 Vyy = V.T[n:,n:]
 print(Vyy.shape)
 B = -Vxy.dot(np.linalg.inv(Vyy))
 print(B)
  coeff = np.zeros((9,3))
```

```
coeff[0,:] = 255
coeff = B.reshape(9,3) *384
img = relightSphere(tennis,coeff)

output = compositeImages(img,target)
print('Coefficients:\n'+str(coeff))

plt.figure(1)
plt.imshow(output)
plt.show()
imsave('output.png',output)
```