

ECC 2nd homework

CRC simulation (1 / 3)

Objective: Verify the error detection capability of CRC (Cyclic Redundancy Check)

Appendix III DATA FOR SOME REPRESENTATIVE CODES

Detection Capabilities	$k_{ m max}$	n-k	P(X)	Reference
Any odd number of errors	any value	1	1+X	Theorem 2
Two errors, a burst of length 4 or less, 88 per cent of the bursts of length 5, 94 per cent of longer bursts*	11	4	1+X+X4	Theorems 3, 5, 6
Two errors, a burst of 9 or less, 99.6 per cent of the bursts of length 10, 99.8 per cent of longer bursts	502	9	1+X4+X9	Theorems 3, 5, 6
Two bursts of length 2 or less, any odd number of errors, a burst of 5 or less, 93.8 per cent of the bursts of length 6, 96.9 per cent of longer bursts†	10	5	$(1+X+X^4)(1+X) = 1+X^2 +X^4+X^5$	Theorems 2, 5, 6, 7
Two bursts of combined length 12 or less, any odd number of errors, a burst of 22 or less, 99.99996 per cent of the bursts of length 23, 99.99998 per cent of longer bursts		22	$(1+X^2+X^{11})(1+X^{11})=1+X^2 +X^{13}+X^{22}$	Theorems 2, 5, 6, 8
Any combination of 6 or fewer errors, a burst of length 11 or less, 99.9 per cent of bursts of length 12, 99.95 per cent of longer bursts	12	11	1+X2+X4+X5+X6+X10+X11	Theorems 5, 6, and footnote 1
Any combination of 7 or fewer errors, any odd number of errors, a burst of length 31 or less, all but about 1 in 109 of longer bursts	992	31	$ \begin{array}{c} (1+X)(1+X^3+X^{10}) \\ (1+X+X^2+X^3+X^{10}) \\ (1+X^2+X^3+X^8+X^{10}) \end{array} $	Theorems 2, 5, 6, and footnotes 9, 12, 18

^{*} Note: $1+X+X^4$ belongs to e=15 and 11+4=15. † Note: This is the code used in all examples.

CRC simulation (2 / 3)

- 1. Write CRC encode and decode codes
 - In this assignment, polynomials are represented as arrays, like the example on the right e.g. $x^5 + x^4 + x^2 + 1 \rightarrow [1,1,0,1,0,1]$
 - The `encode` function takes a message as input and returns a codeword
 - The `decode` function takes `receive` as input and returns 1 if an error is detected, otherwise 0
 - After writing the `encode` and `decode` functions, verify their functionality using the `test_functionality` function
- Implement the `get_period` function
 - Write a code to find the minimum value of e such that g(x)| xe + 1
- **3.** Write the Monte-Carlo simulation code
 - Iterate for the given number of iterations (the more iterations, the more accurate the results)
 - Measure the occurrence and the detection rate of CRC for each error type
 - Refer to the `test functionality` code for guidance
 - Note: When generating errors randomly, set the error occurrence probability to 0.5
 - Use p=0.5 in `np.random.binomial` input
 - If a specific error belongs to multiple types, count it for each type

CRC simulation (3 / 3)

- Generator polynomials $: x + x^4 + x^2 + 1$, $x^8 + x^7 + x^6 + x^4 + x^2 + 1$
- Display the output as shown in the illustration below ('tqdm' is an option)

Example: $x^5 + x^4 + x^2 + 1$ result