```
1 from google.colab import drive
 2 drive.mount('/content/drive')
    Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.a
     Enter your authorization code:
     . . . . . . . . . .
     Mounted at /content/drive
 1 #IMPORTING THE DATA FROM THE DATASETS.
 2 import pandas as pd
 3 import numpy as np
 4 import csv
 5 import matplotlib.pvplot as plt
 6 from skimage import data, io, filters
 7 # Import the necessary modules and libraries
 8 import numpy as np
 9 from sklearn.tree import DecisionTreeRegressor
10 import matplotlib.pyplot as plt
11 from sklearn.model selection import KFold
12
13
```

# Data Preparation

14 path\_users = "/content/drive/My Drive/ML Project /users.dat"
15 path\_ratings = "/content/drive/My Drive/ML Project /ratings.dat"
16 path movies = "/content/drive/My Drive/ML Project /movies.dat"

```
17: "technician/engineer", 18: "tradesman/craftsman", 19: "unemployed", 20: "writer" }
 6
 7
 8 ratings = pd.read csv(path ratings,sep = '::', engine='python', names=['user id', 'movie id', 'rating', 'timestamp'])
 9 max userid = ratings['user id'].drop duplicates().max()
10 # Set max movieid to the maximum movie id in the ratings
11 max movieid = ratings['movie id'].drop duplicates().max()
12
13 # Process ratings dataframe for Keras Deep Learning model
14 # Add user emb id column whose values == user id - 1
15 ratings['user emb id'] = ratings['user id'] - 1
16 # Add movie emb id column whose values == movie id - 1
17 ratings['movie emb id'] = ratings['movie id'] - 1
18
19 users = pd.read csv(path users,
                       sep='::',
20
21
                      engine='python',
                      names=['user id', 'gender', 'age', 'occupation', 'zipcode'])
22
23 users['age desc'] = users['age'].apply(lambda x: AGES[x])
24 users['occ desc'] = users['occupation'].apply(lambda x: OCCUPATIONS[x])
25
26 movies = pd.read csv(path movies, sep='::',
27
                        engine ='python',
                        names = ['movie id', 'title', 'genres'])
28
29
30 dataset = pd.merge(pd.merge(movies, ratings), users)
31
```

### EXPLORATION

```
1 #computing the number of unique users and movies in this dataset:
2 noOfUsers = ratings.user_id.unique().shape[0]
3 noOfMovies = ratings.movie_id.unique().shape[0]
4 print("The no. of unique users is : {0}\nThe no. of unique movies is: {1}".format(noOfUsers,noOfMovies))
```

```
The no. of unique users is: 6040
    The no. of unique movies is: 3706
1 print(users.info())
2 print(users.head())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6040 entries, 0 to 6039
    Data columns (total 7 columns):
         Column
                    Non-Null Count Dtype
       user id
                 6040 non-null int64
        gender 6040 non-null object
     1
     2 age
                 6040 non-null int64
     3 occupation 6040 non-null int64
     4 zipcode 6040 non-null object
     5 age desc 6040 non-null object
     6 occ desc
                  6040 non-null
                                   object
    dtypes: int64(3), object(4)
    memory usage: 330.4+ KB
    None
       user id gender
                      age occupation zipcode age desc
                                                                  occ desc
                                                              K-12 student
    0
            1
                       1
                                  10 48067 Under 18
                                                             self-employed
    1
             2
                 M 56
                                  16
                                      70072
                                                  56+
    2
            3 M 25
                                 15 55117
                                                25-34
                                                                 scientist
               M 45
                                       02460
                                              45-49 executive/managerial
                     25
                                  20
                                      55455
                                                25-34
                                                                   writer
1 import wordcloud
2 from wordcloud import WordCloud, STOPWORDS
 3
4 movies['title'] = movies['title'].fillna("").astype('str')
5 title_list = ' '.join(movies['title'])
6 title_cloud = WordCloud(stopwords=STOPWORDS, height=2000, width=4000).generate(title_list)
8 plt.figure(figsize=(16,8))
9 plt.axis('off')
10 plt.imshow(title_cloud)
```



- 1 import seaborn as sns
- 2 import pandas.util.testing as tm
- 3 ratings['rating'].describe()

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/\_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use t import pandas.util.testing as tm

1.000209e+06 count 3.581564e+00 mean 1.117102e+00 std min 1.000000e+00 25% 3.000000e+00 50% 4.000000e+00 75% 4.000000e+00 5.000000e+00 max

Name: rating, dtype: float64

1 sns.set(style="white", palette="muted", color\_codes=True)
2 sns.distplot(ratings['rating'])

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fb783d2e0f0>



1 dataset[['title','genres','rating']].sort\_values('rating', ascending=False).head(20)

| rating | genres                           | title                               |        |
|--------|----------------------------------|-------------------------------------|--------|
| 5      | Animation Children's Comedy      | Toy Story (1995)                    | 0      |
| 5      | Comedy Drama                     | American Beauty (1999)              | 489283 |
| 5      | Comedy                           | Election (1999)                     | 489259 |
| 5      | Action Sci-Fi Thriller           | Matrix, The (1999)                  | 489257 |
| 5      | Drama Thriller                   | Dead Ringers (1988)                 | 489256 |
| 5      | Comedy                           | Rushmore (1998)                     | 489237 |
| 5      | Crime Thriller                   | Simple Plan, A (1998)               | 489236 |
| 5      | Documentary                      | Hands on a Hard Body (1996)         | 489226 |
| 5      | Comedy                           | Pleasantville (1998)                | 489224 |
| 5      | Comedy Drama Romance             | Say Anything (1989)                 | 489212 |
| 5      | Comedy Fantasy                   | Beetlejuice (1988)                  | 489207 |
| 5      | Comedy Documentary               | Roger & Me (1989)                   | 489190 |
| 5      | Action Comedy Drama              | Buffalo 66 (1998)                   | 489172 |
| 5      | Action Crime Romance             | Out of Sight (1998)                 | 489171 |
| 5      | Action Comedy Crime              | I Went Down (1997)                  | 489170 |
| 5      | Comedy Drama                     | Opposite of Sex, The (1998)         | 489168 |
| 5      | Drama                            | Good Will Hunting (1997)            | 489157 |
| 5      | Documentary                      | Fast, Cheap & Out of Control (1997) | 489152 |
| 5      | Crime Film-Noir Mystery Thriller | L.A. Confidential (1997)            | 489149 |
| 5      | Drama Sci-Fi                     | Contact (1997)                      | 489145 |
|        |                                  |                                     |        |

```
- counce [O)O)O)O)
 2 for i in dataset['rating']:
 3 count[i-1] = count[i-1]+1
 4
 5 print("USER RATINGS\n
 6 print("\n1 Star:{0}\n2 Star:{1}\n3 Star:{2}\n4 Star:{4}\n \nTotal:{5} ratings".
        format(count[0],count[1],count[2],count[3],count[4],sum(count)))
    USER RATINGS
     1 Star:56174
     2 Star:107557
     3 Star:261197
     4 Star:348971
     5 Star:226310
    Total:1000209 ratings
 1 genre labels = set()
 2 for s in movies['genres'].str.split('|').values:
      genre labels = genre labels.union(set(s))
 3
 4
 5 def count word(dataset, ref col, census):
      keyword count = dict()
      for s in census:
 7
 8
          keyword count[s] = 0
      for census keywords in dataset[ref col].str.split('|'):
 9
          if type(census keywords) == float and pd.isnull(census keywords):
10
              continue
11
12
          for s in [s for s in census keywords if s in census]:
              if pd.notnull(s):
13
                  keyword_count[s] += 1
14
      keyword occurences = []
15
      for k,v in keyword_count.items():
16
17
          keyword_occurences.append([k,v])
18
      keyword occurences.sort(key = lambda x:x[1], reverse = True)
      return keyword_occurences, keyword_count
19
```

```
1 keyword_occurences, dum = count_word(movies, 'genres', genre_labels)
2 print("Movie\t\tNumber of Entries\n-----\t----------")
3 keyword_occurences = np.array(keyword_occurences)
4 for i in range (len(keyword_occurences)):
5  print("{0}\t\t\t\1}\n".format(keyword_occurences[i][0],keyword_occurences[i][1]).ljust(10))
```

| Movie       | Number of Entries |  |
|-------------|-------------------|--|
| Drama       | 1603              |  |
| Comedy      | 1200              |  |
| Action      | 503               |  |
| Thriller    | 492               |  |
| Romance     | 471               |  |
| Horror      | 343               |  |
| Adventure   | 283               |  |
| Sci-Fi      | 276               |  |
| Children's  | 251               |  |
| Crime       | 211               |  |
| War         | 143               |  |
| Documentary | 127               |  |
| Musical     | 114               |  |
| Mystery     | 106               |  |
| Animation   | 105               |  |
| Western     | 68                |  |
| Fantasy     | 68                |  |
| Film-Noir   | 44                |  |

## Data pre-processing

```
1 # Creating a train, test and validation dataset
2 import pandas as pd
3 from sklearn import datasets, linear model
4 from sklearn.model selection import train test split
6 data train, data test = train test split(ratings, test size=0.2)
7 data test, data valid = train test split(ratings, test size = 0.5)
1 # Fill NaN values in user id and movie id column with 0
2 ratings['user id'] = ratings['user id'].fillna(0)
3 ratings['movie id'] = ratings['movie id'].fillna(0)
4
5 # Replace NaN values in rating column with average of all values
6 ratings['rating'] = ratings['rating'].fillna(ratings['rating'].mean())
7 print(ratings.info())
8 data subset = ratings.sample(frac= 0.02)
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 1000209 entries, 0 to 1000208
   Data columns (total 6 columns):
    # Column
                    Non-Null Count
                                        Dtype
    0 user_id 1000209 non-null int64
    1 movie_id 1000209 non-null int64
2 rating 1000209 non-null int64
    3 timestamp
                     1000209 non-null int64
    4 user emb id 1000209 non-null int64
       movie emb id 1000209 non-null int64
   dtypes: int64(6)
   memory usage: 45.8 MB
   None
1 ratings = ratings.drop(labels=[ 'user emb id',
```

```
movie emb id [,axis =1)
 1 dataset in = dataset.drop(labels=['title', 'genres', 'user emb id', 'movie emb id', 'gender', 'age desc', 'occ desc', 'zipcode'], axis=
 1 # Convert titles to string value
 2 dataset['title'] = dataset['title'].fillna("").astype('str')
 3 # Convert genres to string value
 4 dataset['genres'] = dataset['genres'].fillna("").astype('str')
 5 # Convert occupation description to string value
 6 dataset['occ desc'] = dataset['occ desc'].fillna("").astype('str')
 1 from sklearn.feature extraction.text import TfidfVectorizer
 3 tf = TfidfVectorizer(analyzer='word',ngram range=(1, 2),min df=0, stop words='english')
 4 tfidf matrix genres = tf.fit transform(dataset['genres'])
 5 print(tfidf matrix genres.shape)
 7 tf = TfidfVectorizer(analyzer='word',ngram range=(1, 2),min df=0, stop words='english')
 8 tfidf matrix occ = tf.fit transform(dataset['occ desc'])
 9 print(tfidf matrix occ.shape)
10
11 tf = TfidfVectorizer(analyzer='word',ngram range=(1, 2),min df=0, stop words='english')
12 tfidf matrix title = tf.fit transform(dataset['occ desc'])
13 print(tfidf matrix title.shape)
    (1000209, 127)
     (1000209, 46)
     (1000209, 46)
 1 #pearson's r between features vs ratings
 2 from scipy.stats import pearsonr
 4 print(dataset in)
 5 dataset in = dataset in.drop(labels=['rating'],axis=1)
 6 target = dataset.rating
 7 for i in dataset in.columns:
    nlt coatton/datacot in[i] tangot)
```

```
pri.scatter(uataset_in[i],target)

corr,p = pearsonr(dataset_in[i],target)

plt.title("Ratings v.s. " + i + ", r=" + str(format(corr, '.2f')))

plt.show()
```

|         | movie_id | user_id | rating | timestamp | age | occupation |
|---------|----------|---------|--------|-----------|-----|------------|
| 0       | 1        | 1       | 5      | 978824268 | 1   | 10         |
| 1       | 48       | 1       | 5      | 978824351 | 1   | 10         |
| 2       | 150      | 1       | 5      | 978301777 | 1   | 10         |
| 3       | 260      | 1       | 4      | 978300760 | 1   | 10         |
| 4       | 527      | 1       | 5      | 978824195 | 1   | 10         |
|         |          |         |        |           |     |            |
| 1000204 | 3513     | 5727    | 4      | 958489970 | 25  | 4          |
| 1000205 | 3535     | 5727    | 2      | 958489970 | 25  | 4          |
| 1000206 | 3536     | 5727    | 5      | 958489902 | 25  | 4          |
| 1000207 | 3555     | 5727    | 3      | 958490699 | 25  | 4          |
| 1000208 | 3578     | 5727    | 5      | 958490171 | 25  | 4          |

[1000209 rows x 6 columns]





#### Ratings v.s. user\_id, r=0.01





```
1 for i in dataset in.columns:
 2 for j in dataset in.columns:
       corr, p = pearsonr(dataset in[i], dataset in[j])
 3
       print(format(corr, '.2f'), end = ',')
 4
     print()
\vdash 1.00, -0.02, 0.04, 0.03, 0.01,
     -0.02,1.00,-0.49,0.03,-0.03,
     0.04, -0.49, 1.00, -0.06, 0.02,
     0.03,0.03,-0.06,1.00,0.08,
     0.01, -0.03, 0.02, 0.08, 1.00,
 1 data train, data test, target train, target test = train test split(dataset in, target, test size=0.2)
 2 data test, data valid, target test, target valid = train test split(data test, target test, test size = 0.5)
 1 from sklearn.linear model import LinearRegression
 2 from sklearn.linear model import Ridge
 4 lr = LinearRegression()
 5 lr.fit(data train, target train)
 6
 7 train score, train score p = pearsonr(lr.predict(data train), target train)
 8 print("r=" + format(train score, '.2f') + ", p=" + format(train score p, '.2f'))
 9
10 test score, test score p = pearsonr(lr.predict(data test),target test)
11 print("r=" + format(test score, '.2f') + ", p=" + format(test score p, '.2f'))
```

```
r=0.09, p=0.00
    r=0.09, p=0.00
1 # Randomly sample 1% of the ratings dataset
2 small data = dataset in.sample(frac=0.02)
3 # Check the sample info
4 print(small_data.info())
<class 'pandas.core.frame.DataFrame'>
    Int64Index: 20004 entries, 671785 to 527272
    Data columns (total 5 columns):
     # Column
                   Non-Null Count Dtype
     0 movie id 20004 non-null int64
     1 user id 20004 non-null int64
     2 timestamp 20004 non-null int64
                    20004 non-null int64
     3 age
     4 occupation 20004 non-null int64
    dtypes: int64(5)
    memory usage: 937.7 KB
    None
1 data train, data test= train test split(small data, test size=0.2)
2 # data test, data valid= train test split(data test, test size = 0.5)
1 # Create two user-item matrices, one for training and another for testing
2 train data matrix = np.array(data train.drop(labels=['age', 'occupation'],axis=1))
3 test data matrix = np.array(data_test.drop(labels=['age', 'occupation'],axis=1))
5 # Check their shape
6 print(train data matrix.shape)
7 print(test data matrix.shape)
   (16003, 3)
    (4001, 3)
1 from sklearn.metrics.pairwise import pairwise distances
```

```
2 # Item Similarity Matrix
3 item correlation = 1 - pairwise distances(train data matrix.T, metric='correlation')
4 item correlation[np.isnan(item correlation)] = 0
5 print(item correlation)
[ 1. -0.01479626 0.03406019]
     [-0.01479626 1.
                             -0.48371933]
     [ 0.03406019 -0.48371933 1.
1 # Function to predict ratings
2 def predict(ratings, similarity):
      pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
     return pred
1 from sklearn.metrics import mean squared error
2 from math import sgrt
3
4 # Function to calculate RMSE
5 def rmse(pred, actual):
      # Ignore nonzero terms.
     pred = pred[actual.nonzero()].flatten()
      actual = actual[actual.nonzero()].flatten()
      return sqrt(mean squared error(pred, actual))
1 item prediction = predict(train data matrix, item correlation)
1 # RMSE on the test data
2 print('Item-based CF RMSE: ' + str(rmse(item prediction, test data matrix)))
   Item-based CF RMSE: 264455589.246584
1 # RMSE on the train data
2 print('Item-based CF RMSE: ' + str(rmse(item prediction, train data matrix)))
```

# PCA Implementation

```
1 Ratings = ratings.pivot(index = 'user id', columns = 'movie id', values = 'rating').fillna(0)
 1 # Data Preprocessing for zero mean
 2 R = Ratings.to numpy()
 3 user ratings mean = np.mean(R, axis = 1)
 4 Ratings demeaned = R - user ratings mean.reshape(-1, 1)
 1 from numpy import mean
 2 from numpy import cov
 3 from numpy.linalg import eig
 5 V = cov(Ratings demeaned.T)
 6 values, vectors = eig(V)
 7 new_vectors=np.argsort(values)[-50:]
 8 new values = []
 9 Vt = []
10 U = []
11
12 for i in new vectors:
13   new values.append(values[i])
14 Vt.append(vectors[i])
15 U.append(R.T[i])
16 sigma= np.diag(new values)
17
18 Vt = np.array(Vt)
19 U = np.array(U)
20 P = np.dot(np.dot(U.T, sigma), Vt)
21 P = P + user ratings mean.reshape(-1, 1)
22 P = pd.DataFrame(P, columns = Ratings.columns)
23 P.head()
```

| 7 | movie_id | 1                    | 2                   | 3                   | 4                   | 5                   | 6                   |
|---|----------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|   | 0        | -54.567852+0.000000j | 15.089488+0.000000j | 28.505553+0.000000j | 48.413456+0.000000j | 47.102674+0.000000j | 51.276238+0.000000j |
|   | 1        | -0.210675+0.000000j  | 0.192335+0.000000j  | 0.314633+0.000000j  | -0.025535+0.000000j | -0.025579+0.000000j | 0.014184+0.000000j  |
|   | 2        | 0.053697+0.000000j   | 0.053697+0.000000j  | 0.053697+0.000000j  | 0.053697+0.000000j  | 0.053697+0.000000j  | 0.053697+0.000000j  |
|   | 3        | 0.023745+0.000000j   | 0.023745+0.000000j  | 0.023745+0.000000j  | 0.023745+0.000000j  | 0.023745+0.000000j  | 0.023745+0.000000j  |
|   | 4        | -7.530086+0.000000j  | 0.809984+0.000000i  | 6.014066+0.000000j  | -9.423351+0.000000i | 0.393749+0.000000i  | 1.785977+0.000000j  |

5 rows × 3706 columns

```
1 # SVD for dimensionality reduction
 2 sigma_list = []
 3 U list = []
 4 Vt list = []
 5 for i in range (1,11):
 6 from scipy.sparse.linalg import svds
 7 U, sigma, Vt = svds(Ratings_demeaned, k=i*10)
 8 sigma list.append(sigma)
 9 U_list.append(U)
10 Vt_list.append(Vt)
11 s= []
12 for i in range(len(sigma_list)):
13 Lambda_d_sum = sum(sum(U_list[i]))
14 Lambda_k_sum = sum(sigma_list[i])
15 sk = Lambda_k_sum/Lambda_d_sum
   s.append(sk)
16
17
18
 1 k = [10,20,30,40,50,60,70,80,90,100]
 2 plt.plot(k,s)
```

```
[<matplotlib.lines.Line2D at 0x7fb7921a35c0>]
      600
      400
      200
        0
    -200
               20
                        40
                                 60
                                          80
                                                  100
1 def reconstruct data(U,sigma,Vt):
2 sigma = np.diag(sigma)
   all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.reshape(-1, 1)
   preds = pd.DataFrame(all user predicted ratings, columns = Ratings.columns)
1 sigma = np.diag(sigma)
1 all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.reshape(-1, 1)
1 preds = pd.DataFrame(all user predicted ratings, columns = Ratings.columns)
```

1 preds.head()

| movie_i | d 1      | 2        | 3        | 4         | 5         | 6         | 7         | 8         | 9         | 10          | 11        | 1         |
|---------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|
| 0       | 5.157608 | 0.184833 | 0.348341 | -0.022609 | 0.139622  | -0.156937 | -0.061122 | 0.072117  | 0.018278  | -0.372566   | -0.275992 | -0.069150 |
| 1       | 0.557186 | 0.296927 | 0.078853 | -0.013888 | 0.028675  | 1.092160  | -0.054492 | 0.114191  | 0.090106  | 1.695371    | 0.611882  | 0.08798   |
| 2       | 2.176318 | 0.396428 | 0.302057 | -0.117164 | -0.006330 | 0.077833  | 0.000836  | 0.064654  | -0.018309 | 1.062417    | -0.231946 | 0.04593   |
| 2       | N 10/105 | N 1555N7 | U U1K0K3 | O 047477  | _೧ ೧1//೧೯ | N 2/7765  | _N N575QN | ⁻U UUƘ330 | N NN72Q7  | ⁻U \\333\\U | _∩ 26765/ | 0 00010   |

1 ratings.head()

| $\qquad \qquad \Box \Rightarrow \qquad \qquad$ |   | user_id | movie_id | rating | timestamp | user_emb_id | movie_emb_id |
|------------------------------------------------|---|---------|----------|--------|-----------|-------------|--------------|
|                                                | 0 | 1       | 1193     | 5      | 978300760 | 0           | 1192         |
|                                                | 1 | 1       | 661      | 3      | 978302109 | 0           | 660          |
|                                                | 2 | 1       | 914      | 3      | 978301968 | 0           | 913          |
|                                                | 3 | 1       | 3408     | 4      | 978300275 | 0           | 3407         |
|                                                | 4 | 1       | 2355     | 5      | 978824291 | 0           | 2354         |

```
1 def recommend movies(predictions, userID, movies, original ratings, num recommendations):
 2
      # Get and sort the user's predictions
 3
      user row number = userID - 1 # User ID starts at 1, not 0
 4
       sorted user predictions = preds.iloc[user row number].sort values(ascending=False)
 6
       # Get the user's data and merge in the movie information.
 7
       user data = original ratings[original ratings.user id == (userID)]
 8
 9
      #adding information about the movie. This is not part of the prediction just for visualisation
       user full = (user data.merge(movies, how = 'left', left on = 'movie id', right on = 'movie id').
10
                       sort values(['rating'], ascending=False)
11
12
13
14
       print('User {0} has already rated {1} movies.'.format(userID, user_full.shape[0]))
       print('Recommending highest {0} predicted ratings movies not already rated.'.format(num recommendations))
15
16
```

```
17
      # Recommend the highest predicted rating movies that the user hasn't seen yet.
18
      recommendations = (movies['movie_id'].isin(user_full['movie_id'])].
           merge(pd.DataFrame(sorted_user_predictions).reset_index(), how = 'left',
19
                 left on = 'movie id',
20
                 right on = 'movie id').
21
22
           rename(columns = {user row number: 'Predictions'}).
23
           sort values('Predictions', ascending = False).
24
                         iloc[:num recommendations, :-1]
25
26
27
      return user full, recommendations
 1 already rated, predictions = recommend movies(preds, 65, movies, ratings, 50)
□ User 65 has already rated 121 movies.
    Recommending highest 50 predicted ratings movies not already rated.
 1 already rated.head(10)
```

|     | user_id | movie_id | rating | timestamp | user_emb_id | movie_emb_id | title                     | genres                       |
|-----|---------|----------|--------|-----------|-------------|--------------|---------------------------|------------------------------|
| 120 | 65      | 1246     | 5      | 987383453 | 64          | 1245         | Dead Poets Society (1989) | Drama                        |
| 100 | 65      | 1124     | 5      | 983853171 | 64          | 1123         | On Golden Pond (1981)     | Drama                        |
| 54  | 65      | 3252     | 5      | 977888608 | 64          | 3251         | Scent of a Woman (1992)   | Drama                        |
| 53  | 65      | 1573     | 5      | 986615241 | 64          | 1572         | Face/Off (1997)           | Action Sci-Fi Thriller       |
| 94  | 65      | 500      | 5      | 977888587 | 64          | 499          | Mrs. Doubtfire (1993)     | Comedy                       |
| 51  | 65      | 969      | 5      | 986615227 | 64          | 968          | African Queen, The (1951) | Action Adventure Romance War |
| 95  | 65      | 1036     | 5      | 986615095 | 64          | 1035         | Die Hard (1988)           | Action Thriller              |

<sup>1</sup> predictions.head(50)

| 3397 | 3578 | Gladiator (2000)                  | Action Drama                     |
|------|------|-----------------------------------|----------------------------------|
| 2485 | 2640 | Superman (1978)                   | Action Adventure Sci-Fi          |
| 1866 | 2002 | Lethal Weapon 3 (1992)            | Action Comedy Crime Drama        |
| 3232 | 3408 | Erin Brockovich (2000)            | Drama                            |
| 8    | 11   | American President, The (1995)    | Comedy Drama Romance             |
| 2260 | 2405 | Jewel of the Nile, The (1985)     | Action Adventure Comedy Romance  |
| 569  | 589  | Terminator 2: Judgment Day (1991) | Action Sci-Fi Thriller           |
| 3638 | 3827 | Space Cowboys (2000)              | Action Sci-Fi                    |
| 1176 | 1234 | Sting, The (1973)                 | Comedy Crime                     |
| 353  | 364  | Lion King, The (1994)             | Animation Children's Musical     |
| 3264 | 3441 | Red Dawn (1984)                   | Action War                       |
| 3272 | 3450 | Grumpy Old Men (1993)             | Comedy                           |
| 2719 | 2881 | Double Jeopardy (1999)            | Action Thriller                  |
| 154  | 161  | Crimson Tide (1995)               | Drama Thriller War               |
| 57   | 62   | Mr. Holland's Opus (1995)         | Drama                            |
| 2915 | 3082 | World Is Not Enough, The (1999)   | Action Thriller                  |
| 2158 | 2302 | My Cousin Vinny (1992)            | Comedy                           |
| 1212 | 1275 | Highlander (1986)                 | Action Adventure                 |
| 1077 | 1127 | Abyss, The (1989)                 | Action Adventure Sci-Fi Thriller |
| 1488 | 1584 | Contact (1997)                    | Drama Sci-Fi                     |
| 1745 | 1876 | Deep Impact (1998)                | Action Drama Sci-Fi Thriller     |
| 1047 | 1092 | Basic Instinct (1992)             | Mystery Thriller                 |
| 1577 | 1682 | Truman Show, The (1998)           | Drama                            |
|      |      |                                   |                                  |

| 2275 | 2424 | You've Got Mail (1998)       | Comedy Romance                |
|------|------|------------------------------|-------------------------------|
| 2934 | 3101 | Fatal Attraction (1987)      | Thriller                      |
| 3188 | 3363 | American Graffiti (1973)     | Comedy Drama                  |
| 2822 | 2985 | Robocop (1987)               | Action Crime Sci-Fi           |
| 2632 | 2791 | Airplane! (1980)             | Comedy                        |
| 887  | 924  | 2001: A Space Odyssey (1968) | Drama Mystery Sci-Fi Thriller |
| 283  | 292  | Outbreak (1995)              | Action Drama Thriller         |
| 43   | 47   | Seven (Se7en) (1995)         | Crime Thriller                |
| 459  | 474  | In the Line of Fire (1993)   | Action Thriller               |

```
1 #Evaluation of the model
 2 from surprise import SVD
 3 from surprise import Dataset, Reader
 4 from surprise.model selection import cross validate
 5
 6 reader = Reader()
 8 # Load the movielens-100k dataset (download it if needed),
 9 data = Dataset.load from df(ratings[['user id', 'movie id', 'rating']], reader)
10
11 # We'll use the famous SVD algorithm.
12 \text{ algo} = \text{SVD()}
13
14 # Run 5-fold cross-validation and print results
15 cross validate(algo, data, measures=['RMSE'], cv=5, verbose=True)
     Evaluating RMSE of algorithm SVD on 5 split(s).
                       Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
                                                                        Std
     RMSE (testset)
                       0.8753 0.8748 0.8714 0.8723 0.8741 0.8736 0.0015
     Fit time
                       59.14
                               59.48
                                       59.90
                                                57.42
                                                       58.90
                                                                58.97 0.85
     Test time
                       2.76
                               2.99
                                       2.78
                                                2.45
                                                        2.76
                                                                2.75
                                                                        0.17
     {'fit time': (59.143911838531494,
       59.48141026496887,
       59.902074337005615,
       57.41506791114807,
       58.90307545661926),
      'test rmse': array([0.87532321, 0.87482425, 0.87136265, 0.87230161, 0.87410427]),
      'test time': (2.758392333984375,
       2.9852092266082764,
       2.7836737632751465,
       2.4511756896972656,
       2.761986017227173)}
```