CS & IT

ENGINERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Basics of COA

Lecture No.- 05

Recap of Previous Lecture

Topic CPU Registers

Topic Memory Addressing

Topic Memory Access

Topics to be Covered

(default)

Byte addressable mem.

word addressable mem.

Topic: Storing Content in Memory

Assume an instruction, size = 4 bytes starting add = 500

ex:-2 word addressable sword = 2 bytes

500	Inst
501	T. 600
502	Next
	11000

byte addressable

Topic: Storing Content in Memory

sword = 2 Bytes memory => word addressable

Byte addressable 2B 500 I1 4B 502 12 Bugram 4B 506 13 83 I4 510 23 15 518

Inst^h size = 1Byte.

memory word addressable,

1 word = 2B

[NAT]

#Q. A CPU has 4 bytes instructions. A program (Instructions I_1 to I_{200}) starts at address 200 (in decimal). Find the address of following instructions:

2.
$$I_5 \Rightarrow 216$$

3.
$$I_{120} \Rightarrow 676$$

1

200	T1	
204	12	
208	I 3	
212	IY	
216	15 :	

#Q. A CPU has 4 bytes instructions. A program (Instructions I_1 to I_{200}) starts at address 500 (in decimal). What should be the <u>PC</u> value when instruction I_6 will be executing in CPU?

#Q. A CPU has 4 bytes instructions. A program (Instructions I_1 to I_{200}) starts at address 500 (in decimal). What should be the PC value when instruction i will be executing in CPU?

Ans:- PC will point to (i+1)

add of instr i+1 =
$$500 + 4 \times (i+1-1)$$

= $500 + 4 \times i$

Topic: Architecture Type (Based on Size of Input)

Topic: Micro Operation

- The operations executed on values stored in registers
- Symbolic Notation to describe the micro-ops: Register Transfer Language (RTL)

Topic: Micro Operation

content of Register R1 copied to Registers R5

- Register Transfer:
- Comma: $R6 \leftarrow R1$, $PC \leftarrow PC+1 \leftarrow both$ can be performed parallely parallely

Read:
$$CPU \leftarrow removy from one address$$
 $R1 \leftarrow M[address]$
 $R3 \leftarrow \#500$
 $R1 \leftarrow M[500]$
 $R1 \leftarrow M[83]$
 $R1 \leftarrow M[83]$
 $R1 \leftarrow M[83]$

cuite:M[address]
Reg

Civen 1

$$R1 = $13$$
 $R2 = 8 | 1000 | 121$

12

$$RI \leftarrow RI + R2$$

$$R2 \leftarrow M[1000]$$

$$R1 \leftarrow RI - R2$$

$$M[1000] \leftarrow R1$$

[NAT]

#Q. Consider the following program segment. Here R1 and R2 are the general purpose register. Assume that the content of memory location 2000 is 37. All numbers are in decimal. After the execution of this program the value of

memory	location	2000	is?
--------	----------	------	-----

Instructions	Operations
MOV R1, #12	R1 ← #12
MOV R2, (2000)	R2 ← M[2000]
SUB R2, R1	R2 ← R2 – R1
MOV (2000), R2	M[2000] ← R2
HALT	Stop

$$R1 = 12$$

 $R2 = 37 = 25$

#Q. Consider the following program segment. Here R1 and R2 are the general purpose register. Assume that the content of memory location 3000 is 13. All numbers are in decimal. After the execution of this program the value of memory location 3000 is?

Instructions	Operations
MOV R1, #7	R1 ← #7
MOV R2, (3000)	R2 ← M[3000]
ADD R2, R1	R2 ← R2 + R1
ADD R1, R2	R1 ← R1 + R2
MOV (3000), R1	M[3000] ← R1
HALT	Stop

$$Ans = 27$$

3000 1827

[NAT]

LOOP:

#Q. Consider the following program segment. Here R1 and R2 are the general-purpose register. Assume that the content of memory location 1000 is 5. All the numbers are in decimal.

Instructions	Operations	
MOV R1, (1000)	R1 ← M[1000]	
MOV R2, #8	R2 ← #8	
ADD R2, R1	R2 ← R2 + R1	
DEC R1	R1 ← R1 – 1	
BNZ LOOP	Branch on not zero	
HALT	Stop	

 $R1 = 5 \times 32$ R2 = 8 13 14 20 23 23 23mem 1000

The value of R2 at the end of program execution is?

[MCQ]

#Q. Consider the following program segment. Here R1, R2 and R3 are the general-purpose registers.

LOOP:

Instruction	Operation	Instruction Size (no. of words)
MOV R1, (3000)	$R1 \leftarrow M[3000]$	2
MOV R2, (R3)	$R2 \leftarrow M[R3]$	1
ADD R2,R1	R2 ← R1 + R2	1
MOV (R3),R2	M [R3] ← R2	1
INC R3	R3 ← R3 + 1	1
DEC R1	R1 ← R1 – 1	1
BNZ LOOP	Branch on not zero	2
HALT	Stop	1

Assume that the content of memory location 3000 is 10 and the content of the register R3 is 2000. The content of each of the memory locations from 2000 to 2010 is 100. The program is loaded from the memory location 1000. All the numbers are in decimal.

Assume that the memory is word addressable. The number of memory reference for accessing the data in executing the program completely is

A 10

B 11

C 20

D

21

[MCQ]

#Q. Consider the following program segment. Here R1, R2 and R3 are the general purpose registers.

LOOP:

Instruction	Operation	Instruction Size (no. of words)
MOV R1, (3000	$R1 \leftarrow M[3000]$	2
MOV R2, (R3)	$R2 \leftarrow M[R3]$	1
ADD R2,R1	R2 ← R1 + R2	1
MOV (R3),R2	M [R3] ← R2	1
INC R3	R3 ← R3 + 1	1
DEC R1	R1 ← R1 – 1	1
BNZ LOOP	Branch on not zero	2
HALT	Stop	1

Assume that the content of memory location 3000 is 10 and the content of the register R3 is 2000. The content of each of the memory locations from 2000 to 2010 is 100. The program is loaded from the memory location 1000. All the numbers are in decimal.

Assume that the memory is word addressable. After the execution of this program, the content of memory location 2010 is:

A 100

B 101

C 102

D 110

[MCQ]

#Q. Consider the following program segment. Here R1, R2 and R3 are the general-purpose registers.

LOOP:

Instruction	Operation	Instruction Size (no. of words)
MOV R1, (3000)	$R1 \leftarrow M[3000]$	2
MOV R2, (R3)	$R2 \leftarrow M[R3]$	1
ADD R2,R1	R2 ← R1 + R2	1
MOV (R3),R2	M [R3] ← R2	1
INC R3	R3 ← R3 + 1	1
DEC R1	R1 ← R1 – 1	1
BNZ LOOP	Branch on not zero	2
HALT	Stop	1

Assume that the content of memory location 3000 is 10 and the content of the register R3 is 2000. The content of each of the memory locations from 2000 to 2010 is 100. The program is loaded from the memory location 1000. All the numbers are in decimal.

Assume that the memory is byte addressable and the word size is 32 bits. If an interrupt occurs during the execution of the instruction "INC R3", what return address will be pushed on the stack?

A 1005

B 1020

C 1024

D 1040

#Q. Consider the following instruction sequence where registers R1, R2 and R3 are general purpose and MEMORY [X] denotes the content at the memory location X.

Instruction	Semantics	Instruction Size (bytes)
MOV R1, (5000)	R1 ← MEMORY[5000]	4
MOV R2, (R3)	R2 ← MEMORY[R3	4
ADD R2, R1	R2 ← R1 + R2	2
MOV (R3), R2	MEMORY[R3] ← R2	4
INC R3	R3 ← R3 + 1	2
DEC R1	R1 ← R1 – 1	2
BNZ 1004	Branch if not zero to the given absolute address	2
HALT	Stop	1

Assume that the content of the memory location 5000 is 10, and the content of the register R3 is 3000. The content of each of the memory locations from 3000 to 3010 is 50. The instruction sequence starts from the memory location 1000. All the numbers are in decimal format. Assume that the memory is byte addressable.

After the execution of the program, the content of memory location 3010 is .

2 mins Summary

Topic

Architecture Type (Based on Size of Input)

Topic

Micro Operation

Topic

Memory Access

Happy Learning THANK - YOU