

July 2024

Traffic Forecasting

Network Data Analysis Lab Professor Musumeci Francesco Project 8, Group G

Directed By
Mohammad Amirifard
Dorsa Moadeli
Sajjad Salari

TABLE OF CONTENTS

1. General overview

4. Predicting By Original Traffic

2. Exploratory Data Analysis

5. Conclusions

3. Predicting By residual Traffic

6. Further Recommendation

1. GENERAL OVERVIEW

1_GEANT Dataset of 1 Month with 15ms Intervals captured in html files

3_Considering on MAE, MSE, MAPE, Training time

2_Traffic forecasting of dataset with Kbits/s metric

4_Compare Local models vs a global model

2. Exploratory Data Analysis

Generate a data frame Including all traffics captured during 1 month with 15ms interval

Reduce training computations by decreasing bits of numbers to store

Remove those traffics including more than 25% NaN values

Fill those traffics including less than 25% NaN values by forward filling method

2. Exploratory Data Analysis

- Set a window size W and a threshold
- Detector will compare a value to the median or mean of its preceding time window. If it greater or lower, it is recognized as Anomaly

First Set Anomalies to NaN and then fill them with forward filling method

Save two data frames

1_clean_traffic_datafr
 ame_with_outliers

2_clean_traffic_datafr
 ame_without_outliers

Traffic_5 and Traffic_73 will be selected to work on

2. Exploratory Data Analysis

- How to check stationary???
- 1 Augmented Dickey-Fuller
- •Null Hypothesis (H0): The series has a unit root, meaning it is non-stationary. It contains a structure that may generate trends or random walks.
- Alternative Hypothesis (H1): The series does not have a unit root, meaning it is stationary.

KPSS

- •Null Hypothesis (H0): The time series is stationary around a deterministic trend (or level, depending on the version of the test used).
- •Alternative Hypothesis (H1): The time series has a unit root, meaning it is non-stationary and exhibits a stochastic trend.

$$ext{Decision} = egin{cases} ext{"Stationary"} & ext{if p-value} \leq 0.05 \\ ext{"Non-stationary"} & ext{if p-value} > 0.05 \end{cases}$$

$$Decision = \begin{cases} "Non-stationary" & \text{if } p\text{-value} \leq 0.05 \\ "Stationary" & \text{if } p\text{-value} > 0.05 \end{cases}$$

Augmented Dickey-Fuller

2

KPSS

Obtained Stationary

Data frame

traffic_0 traffic_1	12	12	1	0	_
traffic 1	12			0	0
trarric_1	12	13	1	1	1
traffic_2	12	19	1	0	0
traffic_3	12	23	1	0	0
traffic_4	12	8	1	0	0
traffic_5	12	18	1	0	0
traffic_6	12	4	1	0	0
traffic_7	12	1	1	0	0
traffic_8	12	5	1	0	0
traffic_9	12	3	1	0	0
traffic_10	12	22	1	1	1
traffic_11	12	7	1	0	0
traffic_12	12	2	1	0	0
traffic_438	15	21	1	1	1

After Setting up models We ran them on

Why???

1_clean_traffic_dataframe_with_outliers

2_clean_traffic_dataframe_without_outliers

4. Predicting By Original Traffic

Except decomposing, residual and recomposing section, other steps are similar to predicting by residuals

Evidence 1

Effect of outliers

Traffic_id ▼ S	rc_id 🔽 Ds	t_id 🔻 Model	▼ Prediction_type	▼ Input	▼	Training_time[s] 🔻	MAE 🔻	MSE 🔻	MAPE[%]
5	12	18 Model_2: C	CONV_LSTM Prediction_on_res	sidual with outliers		111	0.107067	0.025806	13.890752
5	12	18 Model_2: C	CONV_LSTM Prediction_on_res	sidual without_outliers		75	0.103827	0.026435	9.96549412
5	12	18 Model_2: C	CONV_LSTM Prediction_on_res	sidual normalized_withou	ut_outliers	77	0.017821	0.000823	9.20582459

Prediction on residual traffic by Local CONV_LSTM

Effect of Normalization

	Traffic_id 🔻 Src_id	▼ Dst_id	▼ Model ▼ Prediction_type ▼ Input	¥	Training_time[s]	MAE -	MSE 🔻	MAPE[%] ▼
	5	12	18 Model_2: CONV_LSTM Prediction_on_residual with_outliers		111	0.107067	0.025806	13.890752
	5	12	18 Model_2: CONV_LSTM Prediction_on_residual without_outliers		75	0.103827	0.026435	9.96549412
٦	5	12	18 Model_2: CONV_LSTM Prediction_on_residual_normalized_without_outlier	rs	77	0.017821	0.000823	9.20582459

Prediction on residual traffic by Local CONV_LSTM

冬

T	7

Prediction on residual traffic by Local CONV_LSTM	
	-

Traffic_id <a> Src_ic	Dst_id	▼ Model ▼ Prediction_type ▼ Input	▼ Training_time[s] ▼	MAE 🔻	MSE 🔻	MAPE[%]
5	12	18 Model_2: CONV_LSTM Prediction_on_residual with_outliers	111	0.107067	0.025806	13.890752
5	12	18 Model_2: CONV_LSTM Prediction_on_residual without_outliers	75	0.103827	0.026435	9.96549412
5	12	18 Model_2: CONV_LSTM Prediction_on_residual normalized_without_outliers	77	0.017821	0.000823	9.20582459

Evidence 2

Prediction or original traffic by Local CONV_LSTM

Traffic_id ▼ Src	_id 🔻 Dst_id	▼ Model	▼ Prediction_type	▼ Input ▼	Training_time[s] 🔻	MAE -	MSE MA	PE[%] 🔽
5	12	18 Model_2: CON	NV_LSTM Prediction_on_Origina	l with_outliers	97.0	129941.104045	2.188556e+10	96.448757
5	12	18 Model_2: CON	NV_LSTM Prediction_on_Origina	l without_outliers	238.0	93226.757085		64.668856
5	12	18 Model_2: CON	NV_LSTM Prediction_on_Origina	l normalized_without_outliers	77.0	0.055139	4.539699e-03	14.349007

Prediction on residual traffic by Local RNN

Traffic_id	Src_id	▼ Dst_id	▼ Model	▼ Prediction_type ▼ Input	Training_time[s]	MAE 🔻	MSE 🔻	MAPE[%] ▼
	5	12	18 Model_1: RNN	Prediction_on_residual with_outlie	rs 9:	0.121585	0.026951	15.5907099
	5	12	18 Model_1: Rnn	Prediction_on_residual without_out	tliers 91	0.101539	0.021906	10.5894383
	5	12	18 Model_1: Rnn	Prediction_on_residual normalized_	without_outliers 89	0.086909	0.008859	67.7297785

Prediction on residual traffic by Local CONV_LSTM

Traffic_id 🔽 Src_id	▼ Dst_id	▼ Model	▼ Prediction_type	✓ Input	▼ Training_t	ime[s] 💌	MAE 💌	MSE 🔻	MAPE[%]
5	12	18 Model_2: CONV_LS	TM Prediction_on_res	sidual with_outliers		111	0.107067	0.025806	13.890752
5	12	18 Model_2: CONV_LS	TM Prediction_on_res	sidual without_outliers		75	0.103827	0.026435	9.96549412
5	12	18 Model_2: CONV_LS	TM Prediction_on_res	sidual normalized_withou	t_outliers	77	0.017821	0.000823	9.20582459

Better Generalization

Global vs Local

Better MAE, MSE, MAPE, Training time

Worse generalization

Evidence 3

Traffic_id	Src_ic	d 🔽 Dst_id	▼ Model	▼ Pre	ediction_type	-	Input	▼ 1	Training_time[s]	▼ MAE	▼ MSE	▼ MAPE[%]
	5	12	18 Model_2: CONV_	LSTM Pre	ediction_on_O	riginal	normalized_withou	t_outliers 7	77.0	0.0551	39 4.53969	99e 14.349 00
	_		_		_		_		_		_	
Traffic_id	▼ Src_id	▼ Dst_id	▼ Model	7	Prediction_ty	ype	✓ Input		▼ Training_time[
	5	12	18 Model 1: Global Tr	ansformer	Prediction o	n Origin	nal Without_outlie	ers normalized		1705 0.71	8665 1.064	684 83.24397

Our Prediction Graph

6. Future Recommendation

- 1_ Use more advanced anomaly detection models such as decision-based trees_XGBoost
- 2_Use more advanced models with deeper layers
- 3_Extend data set and use data augmentation models for more generalization
- **4_Incorporate Advanced Feature Engineering**

