CLASS TEST/MID TERM SCRIPT

Course Code:	MATH - 207
C	

Course Title:

Student Cr Hr Group: L-2 T-1

Term/Semester:

Koll No							
2	0	2	2	1	4	0	

Date: 30. 10. 2023

Signature of Invigilator

9

20 Ans. to the Ques. No: 1

here,
$$n = 50$$

mean, $\bar{\chi} = 28$

$$k = \frac{34 - 28}{3} = 2$$
 or $\frac{22 - 28}{3} = (-2) \times$

$$\frac{22-28}{3}=(-2)\times$$

As, we know, chebyshev's inequality theorem

states, $S_x = \{i; 1 \leq i \leq n; |x_i - \overline{x}| < ks \}$

if N_(5x) is the number of elements that lie within K std. d., so.

$$\frac{N(s_k)}{n} \geq \frac{1-\frac{n-1}{nk^{-1}}}{1-\frac{1}{nk^{-1}}} > 1-\frac{1}{k^{-1}}$$

So,
$$N_{(s_k)} = n \times \left(1 - \frac{1}{k^*}\right)$$

$$= 50 \times \left(1 - \frac{1}{2^{r}}\right)$$

here,
$$k=2$$

So, we can say at least 75% on 37.5 no of observations lie in the interval (22, 34).

The no. of observation that lie outside that interval (k=2),

$$\frac{N_{(S_k)}}{n} \leq \frac{1}{k^{\nu}}$$

So,
$$N_{(SK)} = n \times \frac{1}{2^{r}}$$

= $50 \times \frac{1}{4}$
= 12.5

50, at most 25% on 12.5 numbers of observations lie outside the interval.

(Ans)

Ans to the Bres. No:2

here,
$$n=24$$
.

smallest value = 350, largest value = 2550

24 diff of group = $\frac{2550-350+1}{7} \approx 315$

group	Tally	freq	rel. f
350 - 664	1111	4	0.167
665 - 989	M 111	8	0.333
980 - 1294	uri	5	0 - 208
1295 - 1609	W1 1	6	0.25
1610 - 1924		0	Ö
1925 - 2239		0	0
2240 - 2554		1	0.042
		n=24	

Ans. to the Bues, No: 3

Stem and leaf plot of given values:

Stem	leaf	(frica)
1	1 , 5	(2)
2	3 ,5 , 7	
3	2, 3, 3, 5,8	(3)
4	0, 2, 5, 5, 7,8	(5)
5	5, 6	(6)
6		(2)
	5, 7	(2)
12	3	(1)

herce, n = 21

concentration:

$$\Rightarrow \text{ median} = \frac{21+1}{2} + \text{h value}$$

$$= 11 + \text{h value}$$

$$= 4.0$$

mode can be 3.3, 4.5 as two of them has freq = 2.

5

 \rightarrow mean = 4.31 $\left(0\pi, \frac{90.5}{21}\right)$

So, we can say in the 4th stem the data seem to have concentration of values.