

计算机网络

第六章 物理层

谢瑞桃

xie@szu.edu.cn rtxie.github.io

计算机与软件学院 深圳大学

第六章讲解内容

- 1. 物理层概述/服务
- 2. 带宽
- 3. Nyquist定理和Shannon定理
- 4. 双绞线与光纤

物理层概述

- 所有网络的基础
- 服务: 在一条链路上传 输比特流

物理层概述

- 核心问题:用模拟信号 发送数字比特
- 物理信道(电线,光纤, 无线电)的物理属性限 制了上层网络的传输能 力

物理层

- ■介质: 电线wires, 光纤fiber, 无线电
- 信号传播: 衰减, 噪声, 带宽
- 调制:如何将比特表达成电压信号
- 速率限制: Nyquist, Shannon

第六章知识点汇总

■ 了解物理层服务

第六章讲解内容

- 1. 物理层概述/服务
- 2. 带宽
- 3. Nyquist定理和Shannon定理
- 4. 双绞线与光纤

链路的抽象模型

发送端

带宽,时延,误码率

接收端

- 带宽(bits/sec)
- 时延(delay): 一比特从发送端传到接收端所需的时间
- 误码率(bit error rate): 一比特发生错误的概率

电线上的信号传播

- 信号传播速率有限,大约为2/3光速
- 信号会衰减
- 截止频率以上的频率能量大幅降低
- 噪声混入了信号

信道的带宽

- 信号的截止频率 (Hz) (EE领域)
- 低于该截止频率的信号,传输时不会发生剧烈衰 减

■ 对于数据传输,是最大数据速率(bits/sec) (CS领域)

傅里叶变换

■ 一个时变周期信号可以被表示为一系列 谐波的和

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Jean-Baptiste Joseph Fourier 1768~1830

截止频率

■ 会引起信号的部分频率信息丢失, 使得波形畸变

第六章知识点汇总

■ 理解信道带宽(截止频率)对信号传输的影响

第六章讲解内容

- 1. 物理层概述/服务
- 2. 带宽
- 3. Nyquist定理和Shannon定理
- 4. 双绞线与光纤

Nyquist采样率

- 对信号采样之后,能否原样恢复出原信号?
- ■由采样率决定
- 只要采样率 > 信号最高频率的两倍
- 注意是严格大于

Harry Nyquist 1889~1976

Nyquist采样率

- 信号频率 *f*_o
- 采样率f_s
- 回复信号的频率 f_r
- $f_{s} < 2 f_{o}$
 - 无法恢复原信号的频率
- $f_s = 2 f_o$
 - 无法恢复原信号的相位
- $f_s > 2 f_o$
 - 完美恢复

信道的最大数据速率一Nyquist

Max. data rate = $2B \log_2 V$ bits/sec

带宽

信号中电平 的个数

信道的最大数据速率一Nyquist

Max. data rate = $\frac{2B}{\log_2 V}$ bits/sec

- 任何信号通过带宽为B的信<mark>道,信</mark>号的最高频率 <B
- 对于这样的信号,采样<mark>率=</mark>2B就足够恢复原信号 了

symbols/sec * bits/symbol = bits/sec

Nyquist容量: 举例

- 电话线 3 kHz 信道
- 2电平信号, 最大速率 = 6 kbps
- 4电平信号,最大速率 = 12 kbps
- 16电平信号,最大速率 = 48 kbps

信道的最大数据速率一Shannon

Max. data rate = $B \log_2(I + S/N)$ bits/sec

带宽

信噪比,信号 功率与噪声功 率的比值

Claude Shannon (1916–2001)

Shannon容量: 举例

- 链路带宽 = 1 MHz
- 信噪比 = 40 dB (10 log₁₀ S/N dB)
- ■最大数据速率
- \blacksquare = Blog₂(1+S/N) = 10⁶*log₂(1+10⁴) = 13.3 Mbps
- 这是最早ADSL技术(通过电话线上网)的极限速率,实际技术能达到12Mbps

Nyquist vs Shannon

- Nyquist
 - 无噪信道
 - 取决于表示一个符号所需的信号电平数
- Shannon
 - 有噪信道
 - 取决于信噪比

第六章知识点汇总

- 理解带宽作为最大数据速率的含义
- 理解无噪信道的Nyquist极限
- 理解有噪信道的Shannon容量

习题

- ■【2017年考研34题】若信道在无噪声情况下的极限数据传输速率不小于信噪比为30 dB条件下的极限数据传输速率,则信号状态数至少是
- A. 4
- B. 8
- C. 16
- **D.** 32

第六章讲解内容

- 1. 物理层概述/服务
- 2. 带宽
- 3. Nyquist定理和Shannon定理
- 4. 双绞线与光纤

有线传输介质

传输介质	传输速率	距离	安全
光纤	10 Gbps, 40 Gbps, 100 Gbps	~10s km	很难窃听
双绞线	100Mbps, 1 Gbps	~100 m	容易窃听

双绞线

- Cat 3: Home telephone lines
- Cat 5: Fast Ethernet (100 Mbps)
- Cat 5e: Gigabit Ethernet (1 Gbps)
- Cat 6: 10-Gigabit Ethernet (10 Gbps) up to 100 m

第六章知识点汇总

■ 了解双绞线与光纤的特征

If you shut your door to all errors truth will be shut out.

如果你把所有的错误都关在门外,真理也要被关在门外了。

---Tagore