13thAnnual Harvard-MIT Mathematics Tournament

Saturday 20 February 2010

Algebra Subject Test

1. [3] Suppose that x and y are positive reals such that

$$x - y^2 = 3$$
, $x^2 + y^4 = 13$.

Find x.

- 2. [3] The rank of a rational number q is the unique k for which $q = \frac{1}{a_1} + \dots + \frac{1}{a_k}$, where each a_i is the smallest positive integer such that $q \ge \frac{1}{a_1} + \dots + \frac{1}{a_i}$. Let q be the largest rational number less than $\frac{1}{4}$ with rank 3, and suppose the expression for q is $\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}$. Find the ordered triple (a_1, a_2, a_3) .
- 3. [4] Let $S_0 = 0$ and let S_k equal $a_1 + 2a_2 + \ldots + ka_k$ for $k \ge 1$. Define a_i to be 1 if $S_{i-1} < i$ and -1 if $S_{i-1} \ge i$. What is the largest $k \le 2010$ such that $S_k = 0$?
- 4. [4] Suppose that there exist nonzero complex numbers a, b, c, and d such that k is a root of both the equations $ax^3 + bx^2 + cx + d = 0$ and $bx^3 + cx^2 + dx + a = 0$. Find all possible values of k (including complex values).
- 5. [5] Suppose that x and y are complex numbers such that x + y = 1 and that $x^{20} + y^{20} = 20$. Find the sum of all possible values of $x^2 + y^2$.
- 6. [5] Suppose that a polynomial of the form $p(x) = x^{2010} \pm x^{2009} \pm \cdots \pm x \pm 1$ has no real roots. What is the maximum possible number of coefficients of -1 in p?
- 7. [5] Let a, b, c, x, y, and z be complex numbers such that

$$a = \frac{b+c}{x-2}, \quad b = \frac{c+a}{y-2}, \quad c = \frac{a+b}{z-2}.$$

If xy + yz + zx = 67 and x + y + z = 2010, find the value of xyz.

- 8. [6] How many polynomials of degree exactly 5 with real coefficients send the set $\{1, 2, 3, 4, 5, 6\}$ to a permutation of itself?
- 9. [7] Let f(x) = cx(x-1), where c is a positive real number. We use $f^n(x)$ to denote the polynomial obtained by composing f with itself n times. For every positive integer n, all the roots of $f^n(x)$ are real. What is the smallest possible value of c?
- 10. [8] Let p(x) and q(x) be two cubic polynomials such that p(0) = -24, q(0) = 30, and

$$p(q(x)) = q(p(x))$$

for all real numbers x. Find the ordered pair (p(3), q(6)).