BIOS 621/821 Session 1 - multiple linear regression review

Levi Waldron

Outline - session 1

- multiple regression terminology and notation
 - continuous & categorical predictors
 - interactions
 - ANOVA tables
 - ► Model formulae

Multiple Linear Regression Model (sec. 4.2)

Systematic part of model:

$$E[y|x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- \triangleright E[y|x] is the expected value of y given x
- ▶ *y* is the outcome, response, or dependent variable
- x is the vector of predictors / independent variables
- \triangleright x_p are the individual predictors or independent variables
- \triangleright β_p are the regression coefficients

Multiple Linear Regression Model (cont'd)

Random part of model:

$$y_i = E[y_i|x_i] + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \epsilon_i$$

 \triangleright x_{ji} is the value of predictor x_j for observation i

Assumption: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

- Normal distribution
- Mean zero at every value of predictors
- Constant variance at every value of predictors
- Values that are statistically independent

Continuous predictors

- ► **Coding:** as-is, or may be scaled to unit variance (which results in *adjusted* regression coefficients)
- ▶ Interpretation for linear regression: An increase of one unit of the predictor results in this much difference in the continuous outcome variable
 - additive model

Binary predictors (2 levels)

- ► **Coding:** indicator or dummy variable (0-1 coding)
- ▶ Interpretation for linear regression: the increase or decrease in average outcome levels in the group coded "1", compared to the reference category ("0")
 - e.g. $E(y|x) = \beta_0 + \beta_1 x$
 - ▶ where x={ 1 if male, 0 if female }

Multilevel Categorical Predictors (Ordinal or Nominal)

- ▶ **Coding:** K-1 dummy variables for K-level categorical variables *
- ▶ Interpretation for linear regression: as above, the comparisons are done with respect to the reference category
- Testing significance of multilevel categorical predictor: partial F-test, a.k.a. nested ANOVA
- * STATA and R code dummy variables automatically, behind-the-scenes

Inference from multiple linear regression

- Coefficients are t-distributed when assumptions are correct
- Variance in the estimates of each coefficient can be calculated
- ▶ The t-test of the null hypothesis H_0 : $\beta_1 = 0$ and from confidence intervals tests whether x_1 predicts y, holding other predictors constant
 - often used in causal inference to control for confounding: see section 4.4

Interaction (effect modification)

Interaction is modeled as the product of two covariates:

$$E[y|x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 * x_2$$

Interaction (effect modification)

ANOVA table

Source of Variation	Sum Sq	Deg Fr	Mean Sq	F
Model Residual Total	MSS RSS TSS	k n-(k-1) n-1	MSS/k RSS/(n-k-1)	(MSS/k)/MSE

- \triangleright k = Model degrees of freedom = coefficients 1
- ightharpoonup n = Number of observations
- ▶ **F** is F-distributed with k numerator and n (k 1) denominator degrees of freedom

Regression in R: model formulae

Model formulae tutorial

- regression functions in R such as aov(), lm(), glm(), and coxph() use a "model formula" interface.
- ► The formula determines the model that will be built (and tested) by the R procedure. The basic format is:

 response variable ~ explanatory variables
- ► The tilde means "is modeled by" or "is modeled as a function of."

Model formula for simple linear regression:

$$y \sim x$$

- where "x" is the explanatory (independent) variable
- "y" is the response (dependent) variable.

Additional explanatory variables would be added as follows:

$$y \sim x + z$$

Note that "+" does not have its usual meaning, which would be achieved by:

$$y \sim I(x + z)$$

Types of standard linear models

```
lm(y \sim u + v)
```

u and v factors: **ANOVA**u and v numeric: **multiple regression**one factor, one numeric: **ANCOVA**

symbol	example	meaning
+	+ x	include this variable
-	- X	delete this variable
:	x : z	include the interaction
	x * z	include these variables and their interactions
/	x / z	nesting: include z nested within x
	x z	conditioning: include x given z
^	$(u + v + w)^3$	include these variables and
		all interactions up to three way
1	-1	intercept: delete the intercept

How to interpret the following model formulae?

$$y \sim u + v + w + u:v + u:w + v:w$$

 $y \sim u * v * w - u:v:w$
 $y \sim (u + v + w)^2$

How to interpret the following model formulae?

$$y \sim u + v + w + u:v + u:w + v:w + u:v:w$$

 $y \sim u * v * w$
 $y \sim (u + v + w)^3$