5. put $f: \mathbb{R} \to \mathbb{R}$ It is clear that \mathbb{R} is convex.

Then, f'(a) = \$1 >0.

By Taylor, we Bet $\{f(x_1) > f(\eta d_1 + (-\eta)d_2) + f'(\eta d_1 + (-\eta)d_2) (1-\eta)(d_2-d_1) \}$ $\{f(x_2) > f(\eta d_1 + (-\eta)d_2) + f'(\eta d_1 + (1-\eta)d_2) + (d_1-d_2) \}$

 $\Rightarrow \eta f(a_1) + (1-\eta)f(a_2) > f(\eta a_1 + (1-\eta)a_2), \quad \eta \in (0,1), \quad \forall a_1,a_2 \in \mathbb{R}$ $\therefore f(a) = -1094 \text{ is strictly convex.}$

Now, if $P \neq Q$, then r.v. $\frac{P_{I}}{q_{I}}$ is not constant when $P(I=i) = P_{i}$.

 $D_{KL}(P \| Q) = \mathbb{E}_{I} \left(\log \frac{P_{I}}{Q_{I}} \right)$ = $\mathbb{E}_{\mathbf{I}}\left(-\frac{1}{2}\frac{g_{\mathbf{I}}}{g_{\mathbf{I}}}\right)$ By Strict Jensen's $> - \log \mathbb{E}_{\mathbf{I}}(\frac{g_{\mathbf{I}}}{r_{\mathbf{I}}})$ = -/9 I / 1/2 82 = -109 1