Rapport TDP9: Convertisseurs continu-continu Forward

Schéma alimentation à découpage Forward + sondes de mesures

Partie 4: Travail demandé

2. Etude du fonctionnement en régime nominal

Ve=60V et le = 1.38A.

Vs=42.8V et IL=1.71A.

Quand on observe le primaire, on peut clairement voir les trois "moments" qui se déroulent dans le transformateur:

- de 0 à αT, V1=53.7V
- de αT à $2\alpha T$, V1 = -66.25 V
- de 2αT à T, V1=0V.

Comme durant le TP, on mesure une tension moyenne nulle. On peut donc conclure que le relevé est conforme à la théorie.

On peut observer que le courant l1 est crooissant de 0 à αT puisque les transistors sont fermés et que la tension est positive. De αT à T, le courant est nul (les transistors sont ouverts).

De 0 à αT, on peut observer que V2=mV1 avec m=2. Le courant iL est croissant.

Quand les transistors sont bloqués, alors la tension V2 devient nulle. Le courant iL se décharge dans la charge, donc le courant est décroissant.

$$\Delta i_L = 780 \text{mA}$$

 $\mathsf{Vert} \Longrightarrow i_L(t)$

 $\Delta v_s = 100 \text{mA}$

3. Etude de l'induction dans me circuit magnétique

Orange $\implies v_1(t)$; Rose \implies intégrale de $v_1(t)$

L'allure de la courbe est similaire à celle théorique.

On peut voir sur l'intégrale de V1 (ce qui correspond à B sans le produit de $\frac{1}{n_1 \times S_{\text{FER}}}$) qu'une partie de la courbe est

plate, c'est à dire qu'il n'y a plus aucune évolution de la magnétisation en fonction du temps. C'est provoqué par la : on a donc une démagnétisation complète.

On calcul $B_{
m MAX}$.

$$S_{\text{FER}} = \pi \times r^2 = 173 \text{mm}^2 \& n_1 = 35$$

$$B_{\text{MAX}} = \frac{1.16 \times 10^{-3}}{n_1 \times S_{\text{FER}}} = \frac{1.16 \times 10^{-3}}{35 \times 173 \times 10^{-6}} = 0.1916 \, T$$

$$V_e = 60V \& I_e = 1.38A \longrightarrow P_e = 60 \times 1.38 = 82.8W$$

$$V_e = 60V \& I_e = 1.38A \longrightarrow P_e = 60 \times 1.38 = 82.8W$$
 $V_s = 42.8V \& I_L = 1.71A \longrightarrow P_S = 42.8 \times 1.71 = 73.19W$

$$\eta = \frac{P_S}{P_e} = \frac{73.19}{82.8} = 0.884$$
. Le rendement de ce convertisseur forward est de 88.4%.

4. Variation de la tension de sortie

 $B_{
m MAX}$ est linéaire en fonction du rapport cyclique.

La courbe est

Tout comme la courbe précédente, on peut observer que V_S est linéaire en fonction du rapport cyclique, ce qui est normal puisque $V_S = \alpha \frac{n_2}{n_1} \times V_e$. Or, on sait que B_{MAX} est proportionnel à la tension V_S .

5. Rendement

On peut observer grâce à cette courbe que le rendement entre le primaire et le secondaire du convertisseur reste stable qu'importe la tension en sortie. Plus I_S est petit, plus le rapport cyclique doit l'être également.