

NTE4018B Integrated Circuit CMOS, Presettable Divide-By-N Counter 16-Lead DIP Type Package

Description:

The NTE4002B contains five Johnson counter stages which are asynchronously presettable and resettable. The counters are synchronous, and increment on the positive going edge of the clock.

Presetting is accomplished by a logic "1" on the preset enable input. Data on the Jam inputs will then be transferred to their respective \overline{Q} outputs (inverted). A logic "1" on the reset input will cause all \overline{Q} outputs to go to a logic "1" state.

Division by any number from 2 to 10 can be accomplished by connecting appropriate \overline{Q} outputs to the data input, as shown in the Function Selection table. Anti–lock gating is included in the NTE4018B to assure proper counting sequence.

Features:

- Fully Static Operation
- Schmitt Trigger on Clock Input
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

Note 1. Maximum Ratings are those values beyond which damage to the device may occur.

Electrical Characteristics: (Voltages referenced to V_{SS} , Note 2)

		V	-55	5°C		+25°C		+12	5°C	
Parameter	Symbol	V _{DD} Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage "0" Level	V_{OL}	5.0	_	0.05	_	0	0.05	_	0.05	Vdc
$V_{in} = V_{DD}$ or 0		10	_	0.05	-	0	0.05	-	0.05	Vdc
		15	_	0.05	-	0	0.05	-	0.05	Vdc
"1" Level	V _{OH}	5.0	4.95	-	4.95	5.0	_	4.95	_	Vdc
$V_{in} = 0$ or V_{DD}		10	9.95	_	9.95	10	_	9.95	_	Vdc
		15	14.95	_	14.95	15	_	14.95	_	Vdc
Input Voltage "0" Level (V _O = 4.5 or 0.5Vdc)	V _{IL}	5.0	_	1.5	_	2.25	1.5	_	1.5	Vdc
(V _O = 9.0 or 1.0Vdc)		10	_	3.0	-	4.50	3.0	-	3.0	Vdc
(V _O = 13.5 or 1.5Vdc)		15	_	4.0	-	6.75	4.0	-	4.0	Vdc
"1" Level (V _O = 0.5 or 4.5Vdc)	V _{IH}	5.0	3.5	_	3.5	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 9.0Vdc)		10	7.0	_	7.0	5.50	_	7.0	_	Vdc
(V _O = 1.5 or 13.5Vdc)		15	11.0	_	11.0	8.25	_	11.0	_	Vdc
Output Drive Current Source (V _{OH} = 2.5Vdc)	I _{OH}	5.0	-3.0	_	-2.4	-4.2	_	-1.7	_	mAdc
(V _{OH} = 4.6Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	mAdc
(V _{OH} = 9.5Vdc)		10	-1.6	_	-1.3	-2.25	_	-0.9	_	mAdc
(V _{OH} = 13.5Vdc)		15	-4.2	-	-3.4	-8.8	_	-2.4	-	mAdc
Sink (V _{OL} = 0.4Vdc)	l _{OL}	5.0	0.64	_	0.51	0.88	_	0.36	_	mAdc
(V _{OL} = 0.5Vdc)		10	1.6	-	1.3	2.25	_	0.9	_	mAdc
(V _{OL} = 1.5Vdc)		15	4.2	_	3.4	8.8	_	2.4	_	mAdc
Input Current	l _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance (V _{IN} = 0)	C _{in}	_	_	_	-	5.0	7.5	-	_	pF
Quiescent Current (Per Package)	I _{DD}	5.0	_	5.0	_	0.005	5.0	_	150	μAdc
(rei rackage)		10	_	10	_	0.010	10	_	300	μAdc
		15	_	20	_	0.015	20	-	600	μAdc
Total Supply Current (Dynamic plus Quiescent,	Ι _Τ	5.0			• `).3µA/kHz) f				μAdc
Per Package, C _L = 50pF on		10			$I_T = (0$).7µA/kHz) f	+ I _{DD}			μAdc
all buffers switching, Note 3, Note 4)		15			I _T = (1	.0μA/kHz) f	+ I _{DD}			μAdc

- Note 2. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 3. The formulas given are for the typical characteristics only at +25°C.
- Note 4. To calculate total supply current at loads other than 50pF:

$$I_T(C_L) = I_T(50pF) + (C_L -50) V_{fk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

Switching Characteristics: ($C_L = 50pF$, $T_A = +25^{\circ}C$, Note 2)

Parameter	Symbol	V _{DD} Vdc	Min	Тур	Max	Unit
Output Rise and Fall Time t _{TLH} , t _{THL} = (1.35ns/pf) C _L + 32ns	t _{TLH} , t _{THL}	5.0	_	100	200	ns
t_{TLH} , $t_{THL} = (0.60 \text{ns/pf}) C_L + 20 \text{ns}$		10	_	50	100	ns
t_{TLH} , $t_{THL} = (0.40 \text{ns/pf}) C_L + 20 \text{ns}$		15	_	40	80	ns
Propagation Delay Time Clock to Q	t _{PLH} . t _{PHL}					
t_{PLH} , $t_{PHL} = (0.90 \text{ns/pf}) C_L + 265 \text{ns}$		5.0	_	310	620	ns
t_{PLH} , $t_{PHL} = (0.36ns/pf) C_L + 102ns$		10	_	120	240	ns
t_{PLH} , $t_{PHL} = (0.26 \text{ns/pf}) C_L + 72 \text{ns}$		15	_	85	170	ns
Reset to \overline{Q} $t_{PLH} = (0.90 \text{ns/pf}) C_L + 325 \text{ns}$		5.0	_	370	740	ns
$t_{PLH} = (0.36 \text{ns/pf}) C_L + 132 \text{ns}$	-	10	-	150	300	ns
$t_{PLH} = (0.26 \text{ns/pf}) C_L + 81 \text{ns}$		15	-	100	200	ns
Preset Enable to \overline{Q} t_{PLH} , t_{PHL} = (0.90ns/pf) C_L + 325ns	-	5.0	_	370	740	ns
t_{PLH} , $t_{PHL} = (0.36 \text{ns/pf}) C_L + 132 \text{ns}$	-	10	_	150	300	ns
t _{PLH} , t _{PHL} = (0.26ns/pf) C _L + 81ns	-	15	_	100	200	ns
Setup Time Data (Pin1) to Clock	t _{su}	5.0	200	0	_	ns
		10	100	0	_	ns
		15	80	0	_	ns
Jam Inputs to Preset Enable	-	5.0	200	0	_	ns
		10	100	0	_	ns
		15	80	0	_	ns
Data (Jam Inputs)-to-Preset	t _h	5.0	540	270	_	ns
Enable Hold Time		10	500	250	_	ns
		15	480	240	_	ns
Clock Pulse Width	t _{WH}	5.0	400	200	_	ns
		10	200	100	_	ns
		15	160	80	_	ns
Reset or Preset Enable	t _{WH}	5.0	290	145	_	ns
Pulse Width		10	130	65	_	ns
		15	110	55	_	ns
Clock Rise and Fall Time	t _{TLH} ,	5.0	No Limit			ns
	t _{THL}	10				ns
		15				ns
Clock Pulse Frequency	f _{CL}	5.0	_	2.5	1.25	MHz
		10	_	6.5	3.25	MHz
		15	_	8.0	4.0	MHz

Note 2. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.

Note 3. The formulas given are for the typical characteristics only at +25°C.

Functional Truth Table

Clock	Reset	Preset Enable	Jam Input	Q _n
	0	0	Х	\overline{Q}_n
	0	0	Х	Ū _n *
Х	0	1	0	1
Х	0	1	1	0
Х	1	Х	Х	1

^{*} D_n is the Data Input for the stage. Stage 1 has Data brought out to Pin1.

Functional Selection

Counter Mode	Connect Data Input (Pin1) to:	Comments
Divide by 10	\overline{Q}_{5}	No external
Divide by 8	\overline{Q}_4	components needed
Divide by 6	\overline{Q}_3	
Divide by 4	\overline{Q}_2	
Divide by 2	\overline{Q}_1	
Divide by 9	$\overline{Q}_5 \bullet \overline{Q}_4$	Gate package needed
Divide by 7	$\overline{Q}_4 \bullet \overline{Q}_3$	to provide AND function. Counter Skips all 1's state
Divide by 5	$\overline{Q}_3 \bullet \overline{Q}_2$	Outrier Onips air 13 state
Divide by 3	$\overline{Q}_2 \bullet \overline{Q}_1$	

