

Überblick

- 1. Empirische Daten
- 2. Visualisierung empirischer Daten

Mathe III

Überblick

- 1. Empirische Daten
- 2. Visualisierung empirischer Daten

Mathe III

Wahrscheinlichkeitstheorie vs. Statistik

- Wahrscheinlichkeitstheorie: Wir haben uns bis jetzt hauptsächlich mit den Grundlagen der Wahrscheinlichkeitstheorie beschäftigt.
- **Statistik**: Statt nur Modelle zu beschreiben, wollen wir in der Statistik nun auch lernen, wie man reale Zufallsversuche, für die kein Modell bekannt ist, beschreiben kann.

Stochastik

Wahrscheinlichkeitstheorie

- Beschreibung zufälliger Vorgänge
- Untersuchung von Modellen für Zufälligkeit

Statistik

- Modellierung von Beobachtungen (Daten)
- Schlussfolgerungen aus Beobachtungen (Daten)

Mathe III

Population, Stichprobe und Modell

- Eine Population beschreibt eine Grundgesamtheit von Objekten, welche Merkmale tragen.
- Wir wollen Aussagen über die Merkmalsausprägung in der Population treffen.
- In der Regel ist die Population zu groß, um sie vollständig zu vermessen.
- Daher möchte man zumindest eine "zuversichtliche" Aussage treffen können.

Mathe III

Population, Stichprobe und Modell

- Die **Stichprobe** ist eine Auswahl von Objekten aus einer Population.
- Die Auswahl der Stichprobe ist ein Zufallsexperiment.
- Wir können die Objekte der Stichprobe mit Kennzahlen charakterisieren (Deskriptive Statistik)
- Wir wollen damit Aussagen über die Population treffen (**Inferenz**).

Mathe III

Population, Stichprobe und Modell

- Das stochastische Modell beschreibt das Zufallsexperiment der Stichprobenwahl.
- Wir nutzen dieses, um von Stichprobenmerkmalen auf die Populationsmerkmale zu schließen.
- Beim Aufstellen eines Modells trifft man Annahmen stimmen diese nicht, sind die Ergebnisse hinfällig.

Mathe III

Probleme von Stichproben

- Damit die Eigenschaften einer Stichprobe generalisierbar auf die Population sind, muss sie **repräsentativ** sein.
- □ Nicht-repräsentative Stichproben besitzen nur eine eingeschränkte Aussagekraft.

Mathe III

Statistiken: Mittelwert

■ **Definition (Mittelwert)**. Für eine Sequenz x von Beobachtungen $x_1, ..., x_n \in \mathbb{R}$ ist der **Mittelwert** \overline{x} definiert als

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

■ **Beispiel (Mittelwert)**. Wir betrachten die Neupreise einer zufälligen Stichprobe von 4 Neuwagen:

x	Gezogenes Modell	Neupreis in 1000 €
x_1	BMW i5	72
x_2	smart #1	42
x_3	VW ID.3	40
x_4	Mercedes EQA	50

Mathe III

Unit 8 – Explorative Datenanalyse

Hier beträgt der Mittelwert

$$\overline{x} = \frac{1}{4} \cdot (72 + 42 + 40 + 50) = \frac{204}{4} = 51$$

Statistiken: Quantile und Median

- **Definition (Quantil)**. Für eine Sequenz x von Beobachtungen $x_1, ..., x_n \in \mathbb{R}$ und ein $p \in (0,1)$ bezeichnen wir die Beobachtung an der Position $[n \cdot p]$ nach Sortieren der Werte $x_1, ..., x_n$ als p-Quantil.
- **Definition (Median)**. Für eine Sequenz x von Beobachtungen $x_1, ..., x_n \in \mathbb{R}$ bezeichnen wir das $\frac{1}{2}$ Quantil als Median \tilde{x} von x.
- **Beispiel (Median und Quantil).** Sei x = (1, 2, 3, 4, 5).
 - Der Median \tilde{x} von x ist 3.
 - Das 0.25-Quantil von x ist 2.
 - Das 0.99-Quantil von x ist 5.

Mathe III

Statistiken: Quantile und Median

Bemerkungen (Quantile)

- Es existieren verschiedene Definitionen des Quantils, z. B. als arithmetisches Mittel zwischen dem größten Wert der $[n \cdot p]$ kleinsten Werte und dem kleinsten Wert der $[n \cdot (1-p)]$ größten Werte.
- Die von uns verwendete Definition wird auch Untermedian genannt.
- Während der Mittelwert ausreißeranfällig ist, sind Quantile robust.
- **Beispiel (Robustheit des Medians).** Sei x = (1, 2, 3, 4, 5) und y = (1, 2, 3, 4, 100)
 - Für die Mittelwerte der Stichproben gilt $\overline{x} = 3$ und $\overline{y} = 22$.
 - Der Median für beide Stichproben hingegen ist unverändert 3.
 - Der Ausreißer in y hat demnach starken Einfluss auf den Mittelwert, jedoch kaum (bzw. hier keinen) Einfluss auf den Median.

Mathe III

Statistiken: Median Absolute Deviation

■ **Definition** (*Median Absolute Deviation* – **MAD**). Für eine Sequenz x von Beobachtungen $x_1, ..., x_n \in \mathbb{R}$ ist die *median absolute deviation* (MAD) definiert als

$$MAD(\mathbf{x}) = median(|x_1 - \widetilde{\mathbf{x}}|, |x_2 - \widetilde{\mathbf{x}}|, ..., |x_n - \widetilde{\mathbf{x}}|)$$

- **Beispiel** (*Median Absolute Deviation*). Sei x = (1, 2, 3, 4, 5).
 - Der Median \tilde{x} von x ist 3.
 - Die absoluten Abweichungen zum Median betragen (2, 1, 0, 1, 2).
 - Folglich gilt MAD(x) = 1.
- Bemerkungen (Median Absolute Deviation)
 - Der MAD gilt ebenso wie der Median als besonders robustes Maß einer Stichprobe.
 - Es gibt andere Definitionen für "MAD", welche stattdessen den Mittelwert (Mean) nutzen – hier besteht Verwechslungsgefahr!

$$\overline{(|x_i - \overline{x}|)}$$

Mathe III

Statistiken: Empirische Varianz, Kovarianz und Korrelation

■ **Definition (Empirische Varianz und Standardabweichung).** Für eine Sequenz x von Beobachtungen $x_1, ..., x_n \in \mathbb{R}$ heißt

$$V[x] = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2$$

die empirische Varianz von x, und $\sqrt{V[x]}$ die empirische Standardabweichung von x.

■ **Definition (Empirische Kovarianz und Korrelation)**. Für die Sequenzen x und y von Beobachtungen $x_1, ..., x_n \in \mathbb{R}$ und $y_1, ..., y_n \in \mathbb{R}$ heißt

$$Cov[x, y] = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})$$

die empirische Kovarianz von x und y. Die empirische Korrelation ergibt sich als

$$Corr[x, y] = \frac{Cov[x, y]}{\sqrt{V[x] \cdot V[y]}}$$

Mathe III

Statistiken: Empirische Varianz, Kovarianz und Korrelation

■ **Beispiel (Empirische Korrelation)**. Wir betrachten die Neupreise und Reichweiten einer zufälligen Stichprobe *x* und *y* von 4 Neuwagen:

Gezogenes Modell	Neupreis in 1000 €	Reichweite in km	$(x_i-\overline{x})$	$(y_i - \overline{y})$
BMW i5	$x_1 = 72$	$y_1 = 570$	21	45
smart #1	$x_2 = 42$	$y_2 = 440$	- 9	-85
VW ID.3	$x_3 = 40$	$y_3 = 560$	-11	35
Mercedes EQA	$x_4 = 50$	$y_4 = 530$	-1	5

- Es gilt $\overline{x} = \frac{1}{4} \cdot (72 + 42 + 40 + 50) = 51$ und $\overline{y} = \frac{1}{4} \cdot (570 + 440 + 560 + 530) = 525$.
- Daher gilt

$$Cov[x, y] = \frac{1}{4} \cdot (21 \cdot 45 + (-9) \cdot (-85) + (-11) \cdot 35 + (-1) \cdot 5) = 330$$

Es gilt $V[x] = \frac{1}{4} \cdot (21^2 + 9^2 + 11^2 + 1^2) = 161$ und $V[y] = \frac{1}{4} \cdot (45^2 + 85^2 + 35^2 + 5^2) = 2625$.

Daher gilt

Mathe III

Empirische Kenngrößen

Bemerkungen (Empirische Kenngrößen)

- Die neu eingeführten Kenngrößen können genutzt werden, um gezogene Stichproben aus einer Population mit einer unbekannten Verteilung zu beschreiben.
- Die Kenngrößen sind die äquivalenten Momente von ein- und mehr-dimensionalen Zufallsvariablen wenn die **empirische Verteilung** benutzt wird mit

$$p_{\{x_1,\dots,x_n\}}(x) = \frac{|\{x_i \in \{x_1,\dots,x_n\} \mid x_i = x\}|}{n}$$

- Mithilfe dieser Kenngrößen können Rückschlüsse auf die tatsächliche Verteilung getroffen werden, z. B.
 - Mittelwert, Median → Erwartungswert
 - Empirische Varianz → Varianz
 - Empirische Standardabweichung, MAD → Standardabweichung
 - Empirische Kovarianz → Kovarianz
 - Empirische Korrelation → Korrelation

Mathe III

Überblick

- 1. Empirische Daten
- 2. Visualisierung empirischer Daten

Mathe III

Stichprobenvisualisierung

- Problem: Wie können wir einen schnellen Überblick über charakteristische Eigenschaften der Stichprobe bekommen?
 - Mittelwert
 - Streuung
 - Symmetrie oder Schiefe
 - Ausreißer
 - Verteilungsannahmen
- Lösung: Mittels Visualisierung der Stichprobe ("ein Bild sagt mehr als tausend Worte")
 - Schnelle Qualitätskontrollen für automatisierte Verfahren
 - Eigenschaften der Stichprobe an Endnutzer kommunizieren
- Während es sehr viele Visualisierungsarten gibt, werden wir nur eine Auswahl davon behandeln.

Gehalt (in Tausend €)	Häufigkeit	
57	4	
58	1	
59	3	
60	5	
61	8	
62	10	
63	0	
64	5	
66	2	
67	3	
70	1	

Säulendiagramm (bar plot)

- Ein Säulendiagramm ist die Darstellung einer kontinuierlichen Metrik für verschiedene Objekte oder Objektkategorien in der Stichprobe.
- Es eignet sich zum Vergleich der Objekte bzw. Objektkategorien in dieser Metrik.
- Beispiel (Säulendiagramm)

```
data <- data.frame(
  continent = c("Afrika", "Antarktis", "Asien", "Australien"),
  landmass = c(30.37, 13.66, 44.58, 8.53)
)
barplot(height = data$landmass, names = data$continent,
        ylab = "Landmass in Mio km2")</pre>
```


Säulendiagramm

- Achtung: Säulendiagramme können den Betrachter täuschen, wenn der Achsenschnittpunkt schlecht platziert ist oder die Säulen unterschiedlich breit sind.
- Beispiel (Täuschung im Säulendiagramm)

Mathe III

Histogramm

- Ein Säulendiagramm kommt schnell an seine Grenzen, falls
 - die Objektkategorien aus einer zu großen Menge (>10 Kategorien) stammen.
 - die Objektkategorien aus dem Raum der Zahlen kommen (d.h. Distanzen haben Bedeutung)
- Hierbei können Histogramme helfen.
 - Es zählt, wie oft eine Größe vorkommt und bündelt die Ergebnisse in Klassen (*bins*).
 - Ein Histogramm wird durch Ursprung x_0 und Klassenbreite (*bin width*) h bestimmt.
 - □ Für alle $i \in \mathbb{Z}$ zählt die i-te Klasse die Vorkommen im Intervall

$$[x_0 + i \cdot h, x_0 + (i+1) \cdot h)$$

 Jede Klasse ist eine Säule über ihrem Intervall mit der Häufigkeit als Höhe. data <- rnorm(1000, mean = 0, sd = 1)
hist(data, xlab = "Normalverteilung",
 ylab = "Häufigkeit", breaks = 10)</pre>

Mathe III

Unit 8 – Explorative Datenanalyse

Histogramm

- **Achtung:** Ein Histogramm kann degenerieren, wenn
 - 1. die Klassenbreite zu schmal ist und viele Klassen kein oder wenige Vorkommen enthalten
 - 2. die Klassenbreite zu weit ist und eine zu starke Bündelung die Aussagekraft trübt.

Boxplot

- Für eine besonders kompakte Darstellung der Verteilung von Werten kann ein Boxplot verwendet werden.
- Ein Boxplot enthält weniger Detailstufen als ein Histogramm, allerdings sind Kenngrößen wie Median oder Quantil auf einen Blick ersichtlich.
- Damit können mehrere Verteilungen effizient bezüglich dieser Kenngrößen verglichen werden.

Mathe III

Boxplot

- Das untere Quartil entspricht dem 0.25-Quantil, das obere dem 0.75-Quantil.
- Die Whisker sind im Allgemeinen so lang wie die Wertspanne, jedoch nicht länger als der anderthalbfache Interquartilabstand.
- Werte außerhalb der Whisker (weiter als der anderthalbfache Interquantilabstand vom Median entfernt) werden als Ausreißer gekennzeichnet.
- Bemerkung. Die Definition der Whisker ist in der Literatur nicht konsistent.

Mathe III

Boxplot

Beispiel (Vergleich von Daten mit Boxplots)

- Im Vergleich dargestellt sind drei Boxplots der Messwerte von Kelchblattlänge in Zentimetern für die Schwertlilien-Spezien Iris setosa, Iris versicolor und Iris virginica.
- Auch wenn die Wertebereiche nicht disjunkt sind, ist eine Tendenz klar erkennbar.

Iris setosa

Iris versicolor

Iris virginica

data(iris)

Mathe III

Streudiagramm

- Ein Streudiagramm (scatter plot) stellt zwei (oder mehr) kontinuierliche
 Eigenschaften einer Zufallsbeobachtung dar, welche gleichzeitig aufgetreten sind.
- Damit können Korrelationen gut sichtbar gemacht werden.

Beispiel (Streudiagramm)

Mathe III

Streudiagramm

- **Achtung:** Überlagern sich mehrere Datenpunkte im Streudiagramm, kann die optische Wahrnehmung verfälscht werden.
 - Eine Darstellung der Messwert-Dichte statt der Einzelmesspunkte kann dies beheben.

Beispiel (Überlagerung in Streudiagrammen)

```
plot(data[, 1], data[, 2],
     xlab = "X", ylab = "Y", pch=19)
```


Mathe III

Viel Spaß bis zur nächsten Vorlesung!