Contents

Contents		i
1	Euclidean Domains, PIDs, UFDs	1
	1.1 Euclidean Domains	1

Last update: 2024 August 20

Euclidean Domains, PIDs, UFDs

1.1 Euclidean Domains

Definition 1.1.1. Let R be an integral domain. Any function $N: R \to \mathbf{Z}^+ \cup \{0\}$ with N(0) = 0 is called a *norm* on the integral domain R. If N(a) > 0 for $a \neq 0$ define N to be a *positive norm*.

Definition 1.1.2. The integral domain R is said to be a <u>Euclidean Domain</u> (or possess a <u>Division Algorithm</u>) if there is a norm N on R such that for any two elements a and b of R with $b \neq 0$ there exist elements a and b of a with

$$a = qb + r$$
 with $r = 0$ or $N(r) < N(b)$.

The element q is called the *quotient* and the element r is called the remainder of the division.

Example 1.1.1 (Euclidean Algorithm). Let a and b be any two elements of the Euclidean domain R. By successive "divisions" (these actually are divisions in the field of fractions of R) we can write

$$a = q_0b + r_0$$

$$b = q_1r_0 + r_1$$

$$r_0 = q_2r_1 + r_2$$

$$\vdots$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n$$

where r_n is the last nonzero remainder. Such an r_n exists since $N(b) > N(r_0) > N(r_1) > ... > N(r_n)$ is a decreasing sequence of nonnegative integers if the remainders are nonzero, and such a sequence cannot continue indefinitely. Note also that there is no guarentee that these elements are unique.

Example 1.1.2.

- (1) Fields are trivial examples of Euclidean Domains where any norm will satisfy the defining condition (e.g., N(a) = 0 for all a). This is because for every a, b with $b \neq 0$ we have a = qb + 0, where $q = ab^{-1}$.
- (2) The integers ${\bf Z}$ are a Euclidean Domain with norm given by N(a)=|a|, the usual absolute value.
- (3) If F is a field, then the polynomial ring F[x] is a Euclidean Domain with norm given by $N(p(x)) = \deg p(x)$. The Division Algorithm for polynomials is simply "long division" of polynomials. The proof is very similar to that for $\mathbf Z$ and is given in the next chapter. We will prove in Section $\mathbf R$ that R[x] is not a Euclidean Domain if R is not a field.

Proposition 1.1.1. Every ideal in a Euclidean Domain is principle. More precisely, if I is any nonzero ideal in the Euclidean Domain R then I=(d), where d is any nonzero element of I of minimum norm.

Proof. If I is the zero ideal there is nothing to prove. Otherwise let $d \in I$ be any nonzero element of minimum norm (such a d exists since the set $\{N(a) \mid a \in I\}$ has a minimum element by the well-ordering of \mathbf{Z}). Clearly $(d) \subseteq I$ since d is an element of I. To show the reverse inclusion let $a \in I$ and use the Division Algorithm to write a = qd + r with r = 0 or N(r) < N(d). Then r = a - qd and note that $a \in I$ and $qd \in I$, so r is an element of I. By the minimality of the norm of d, it must be the case that r = 0. Hence $a = qd \in (d)$, showing $I \subseteq (d)$ which establishes the proposition that I = (d).

Example 1.1.3. Let $R = \mathbf{Z}[x]$. Since the ideal (2, x) is not principle, it follows that the ring $\mathbf{Z}[x]$ of polynomials with integer coefficients is not a Euclidean Domain.

Definition 1.1.3. Let R be a commutative ring and let $a, b \in R$ with $b \neq 0$.

- (1) a is said to be a <u>multiple</u> of b if there exists an element $x \in R$ with a = bx. In this case b is said to *divide* a or be a *divisor* of a, written $b \mid a$.
- (2) A greatest common divisor of a and b is a nonzero element d such that
 - (i) $d \mid a$ and $d \mid b$, and
 - (ii) if $d' \mid a$ and $d' \mid b$, then $d' \mid d$.

A greatest common divisor of a and b will be denoted by gcd(a,b), or (abusing the notation) simply (a,b).

Definition 1.1.4. If I is the ideal of R generated by a and b (that is, I = (a, b)), then d is the greatest common divisor of a and b if

- (i) I is contained in the principial ideal (d), and
- (ii) if (d') is any principical ideal containing I then $(d) \subseteq (d')$.

Proposition 1.1.2. If a and b are nonzero elements in the commutative ring R such that the ideal generated by a and b is a principal ideal (d), then d is a greatest common divisor of a and b.

Proof. This follows directly from the previous definition.

Proposition 1.1.3. Let R be an integral domain. If two elements d and d' of R generate the same principal ideal; i.e. (d) = (d'), then d' = ud for some unit $u \in R$. In particular, if d and d' are both greatest common divisors of a and b, then d' = ud for some unit u.

Proof. If either d or d' are 0 then we are done. Assume d and d' are nonzero. Since $d \in (d')$ there is some $x \in R$ such that d = xd'. Since $d' \in (d)$ there is some $y \in R$ such that d' = yd. Thus d = xyd and so d(1 - xy) = 0. Since $d \neq 0$, it must be the case that xy = 1, that is, both x and y are units. This proves the first assertion.

The second assertion follows from the first since any two greatest common divisors of a and b generate the same principle ideal (they divide eachother).

Theorem 1.1.4. Let R be a Euclidean Domain and let a and b be nonzero elements of R. Let $d = r_n$ be the last nonzero remainder in the Euclidean Algorithm for a and b described in Example 1.1.1. Then

- (1) d is the greatest common divisor of a and b, and
- (2) the principal ideal (d) is the ideal generated by a and b. In particular, d can be written as an R-linear combination of a and b; i.e., there are elements x and y in R such that

$$d = ax + by$$
.

Proof. By Proposition 1.1.1, the ideal generated by a and b is principal so a, b do have a greatest common divisor, namely any element which generates the (principal) ideal (a, b). Both parts of the theorem will follow once we show $d = r_n$ generates this ideal; i.e., once we show that

- (i) $d \mid a$ and $d \mid b$ (which means $(a, b) \subseteq (d)$)
- (ii) d is an R-linear combination of a and b (which means $(d) \subseteq (a,b)$.)

To prove that d divides both a and b, simply keep track of the divisibilities in the Euclidean Algorithm. Recall the following set of equations from Example 1.1.1

$$a = q_{0}b + r_{0} \qquad (0)$$

$$b = q_{1}r_{0} + r_{1} \qquad (1)$$

$$r_{0} = q_{2}r_{1} + r_{2} \qquad (2)$$

$$\vdots$$

$$r_{k-1} = q_{k+1}r_{k} + r_{k+1} \qquad (k+1)$$

$$\vdots$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n} \qquad (n)$$

$$r_{n-1} = q_{n+1}r_{n} \qquad (n+1)$$

We proceed with induction with n as the base case. Equation (n+1) gives $r_n \mid r_{n-1}$ and clearly $r_n \mid r_n$. Assume $r_n \mid r_{k+1}$ and $r_n \mid r_k$ as our inductive hypothesis. By Equation (k+1) we see that r_n divides both terms on the right hand side —hence $r_n \mid r_{k-1}$. From Equation (1) $r_n \mid b$ and from Equation (0) $r_n \mid a$, which establishes (i).