3.8.2 Nguyên tắc arccos

Điện đồng bộ đạng sin u_{db} vượt trước điện áp khóa (thu được ở thứ cấp biến áp đồng bộ) một góc $\pi/2$

Khi
$$\theta = \alpha$$
 thì $u_c = u_{db} = U_m \cos \alpha \Rightarrow$

$$\alpha = \arccos\left(\frac{u_c}{U_m}\right)$$

71

3.9 BỘ LỌC MỘT CHIỀU

3.9.1 Sóng hài bậc cao của điện áp chỉnh lưu

$$U_{\scriptscriptstyle d} = \frac{p.U_{\scriptscriptstyle m}}{\pi}.\sin\frac{\pi}{m}.\cos\alpha = \frac{p.\sqrt{2}U_{\scriptscriptstyle 2}}{\pi}.\sin\frac{\pi}{m}.\cos\alpha = U_{\scriptscriptstyle d0}.\cos\alpha \qquad \qquad \begin{array}{l} \text{M: pha} \\ \text{p: số xung đập mạch} \end{array}$$

Trị hiệu dụng của điện áp chỉnh lưu:

$$U_{d(RMS)} = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} u_{d}^{2} . d\theta} = U^{2} \sqrt{\frac{1}{2} \left(1 + \frac{p}{2\pi} \sin \frac{2\pi}{p} \cos 2\alpha \right)} = \sqrt{U_{d}^{2} + U_{\sigma}^{2}}$$

Trị hiệu dụng của thành phần bậc cao :
$$U_{\sigma} = \sqrt{U_{d(RMS)}^2 - U_{d}^2}$$

72

Khai triển Fourier của điện áp triên tải

$$u_d(\theta) = U_d + \sum_{1}^{n} \left(a_{(n)} \cos n\theta + b_{(n)} \sin n\theta \right)$$

$$a_{(n)} = \frac{1}{\pi} \int_{0}^{2\pi} u_d \cos n\theta d\theta; \quad b_{(n)} = \frac{1}{\pi} \int_{0}^{2\pi} u_d \sin n\theta d\theta \qquad \text{(n): là bậc của sóng hài; n=1,2,3...}$$

Biên độ của sóng hài bậc n:

$$\begin{split} U_{\sigma(n)m} &= \sqrt{a_{(n)}^2 + b_{(n)}^2} \\ U_{\sigma(n)m} &= \sqrt{2}.U_{\sigma(n)} = \frac{2U_{d0}\cos\alpha}{n^2p^2 - 1}\sqrt{1 + n^2p^2tg^2\alpha} \end{split}$$

Giá trị tương đối:

$$U_{\sigma(n)m}^* = \frac{U_{\sigma(n)m}}{U_{\sigma(n)m}} = \frac{2\cos\alpha}{n^2p^2 - 1}\sqrt{1 + n^2p^2tg^2\alpha}$$

ightarrow Biên độ của sóng hài bậc (n) phụ thuộc vào tích np và góc điều khiển lpha

Tần số thành phần xoay chiều bậc 1: $f_{\sigma(1)} = p.f_1$

73

Bảng liệt kê giá trị hiệu dụng của ba sóng hài 1, 2, 3 ứng với α

Sơ đồ	Tần số sóng hài	Giá trị hiệu dụng tương đối của sóng hài					
	f _{o(n)} =n.p.f [Hz]	α =0 º	α=300	α =60 °	α=900		
p=2	1.2.50 = 100	0.472	0.625	0.851	0.968		
	2.2.50 = 200	0.094	0.203	0.334	0.392		
	3.2.50 = 300	0.041	0.142	0.234	0.266		
p=3	1.3.50 = 150	0.176	0.31	0.47	0.53		
	2.3.50 = 300	0.041	0.41	0.21	0.25		
	3.3.50 = 450	0.017	0.08	0.14	0.16		
p=6	1.6.50 = 300	0.041	0.11	0.21	0.25		
	2.6.50 = 600	0.011	0.06	0.11	0.12		
	3.6.50 = 900	0.004	0.04	0.07	0.08		

Chức năng: Để hạn chế thành phần xoay chiều của điện áp chỉnh lưu để làm giảm độ nhấp nhô của dòng điện và điện áp tải

→ Bộ lọc nhằm chủ yếu hạn chế thành phần sóng hài bậc 1

75

Hệ số đập mạch của điện áp chỉnh lưu q

$$q = \frac{U_{\sigma(1)}}{U_d}$$

 $q = \frac{U_{\sigma(\mathbf{l})}}{U_{_d}} \qquad \qquad U_{_{\sigma(\mathbf{l})}} \text{: giá trị hiệu dụng của thành phần xoay chiều bậc 1.} \\ U_{_d} \qquad \qquad \text{: giá trị trung bình của điện áp chỉnh lưu.}$

→ Hệ số đập mạch của chỉnh lưu phụ thuộc vào số xung đập mạch p và góc điều khiển α . q tốt nhất khi α = 0 (Van diode).

Hệ số san bằng → đánh giá hiệu quả của khâu lọc

$$k_{sb} = \frac{q_{in}}{q_{out}}$$

$$k_{sb} = \frac{q_{\it in}}{q_{\it out}} \qquad \qquad {\rm V\acute{o}i} \quad q_{\it in} = \frac{U_{\sigma(1)\it in}}{U_{\it d/\it in}}; \quad q_{\it out} = \frac{U_{\sigma(1)\it out}}{U_{\it d/\it out}}$$

$$k_{sb} = \frac{U_{\sigma(1)in}}{U_{\sigma(1)out}}.\frac{U_{d/out}}{U_{d/in}}$$

Giả sử độ sụt áp một chiều trên bộ lọc không đáng kể, $U_{d/out} pprox U_{d/in}$

$$k_{\rm sb} = \frac{U_{\sigma(1)\it{in}}}{U_{\sigma(1)\it{out}}} \qquad {\rm ,k_{sb}\,cang\,l\'on\,hon\,1\,thi\,cang\,t\'ot.}$$

3.9.2 Lọc điện cảm

Điện cảm L mắc nối tiếp với tải

 u_d : điện áp trước bộ lọc

$$u_{df}$$
: điện áp sau bộ lọc $u_d = U_d + u_\sigma$; $U_d = U_{d0} \cos \alpha$ $u_{df} = U_{df} + u_{\sigma f}$;

Quy tắc phân tích:

- ightharpoonup Thành phần U_d không bị điện cảm cản trở $\rightarrow U_d = U_{df}$
- ➤ Thành phần xoay chiều bị sụt áp trên L → X₁ càng lớn hơn R thì thành phần xoay chiều trên R càng nhỏ

Thành phần xoay chiều bậc 1 trên tải:

$$U_{\sigma f(1)} = \frac{U_{\sigma(1)}}{Z}R; Z = \sqrt{X_{L\sigma(1)}^2 + R^2}$$

Bản chất vật lý: Cuộn kháng sinh ra sức điện động phản kháng, hạn chế sự biến thiên của dòng điện xoay chiều

77

78

Chọn điện cảm L_f sao cho

$$X_{L\sigma(1)} = p.2\pi.f.L_f \gg R$$

Sóng hài bậc 1 của dòng điện

$$I_{\sigma(1)} = \frac{U_{\sigma(1)}}{\sqrt{X_{L\sigma(1)}^2 + R^2}} \approx \frac{U_{\sigma(1)}}{X_{L\sigma(1)}} = \frac{U_{\sigma f(1)}}{R}$$

Từ đó L_f được xác định bởi

$$L_f = \frac{k_{sb}.R}{2\pi f.p} \left[H \right]$$

Nhận xét: Lọc bằng điện cảm rất phù hợp với tải công suất lớn vì dễ dàng thực hiện điều kiện lọc tốt khi $X_{L\sigma}\gg R$. Vì R thường nhỏ để hạn chế tổn hao công suất.

Khi không cho trước giá trị của k_{sh} mà cho điều kiện về giá trị cho phép của dòng điện tải $I_{\sigma f(1)cp}$, L_f có thể được xác định:

$$L_f = \frac{U_{\sigma(1)}}{2\pi f.p.I_{\sigma f(1)cp}} [H]$$

3.9.3 Loc điện dung

Điện dung C được đấu song song với tải

$$X_{C\sigma} = \frac{1}{2\pi f.p.C_f}$$

$$i_d = I_d + i_\sigma$$

Quy tắc phân tích:

- $ightharpoonup X_C$ không cho thành phần I_d di qua
- $ightharpoonup X_{
 m C}$ càng nhỏ hơn $m R_t$ thì dòng xoay chiều càng bị hút vào đường đi qua tụ điện, càng ít dòng xoay chiều qua tải > hiệu quả lọc càng tốt.

$$ightarrow$$
 chọn $X_{C\sigma(1)} = \frac{1}{2\pi f.p.C_f} \ll R$

Giả sử dòng xoay chiều chỉ qua tụ, dòng một chiều qua tải R. Giá trị tụ lọc tính gần đúng:

$$I^{2} = I_{d}^{2} + I_{\sigma(1)}^{2} \Rightarrow \frac{U_{d}^{2} + U_{\sigma(1)}^{2}}{Z} = \left(\frac{U_{d}}{R}\right)^{2} + \left(\frac{U_{\sigma(1)}}{X_{c}}\right)^{2}, Z \approx X_{c}$$

$$C_{f} = \frac{10^{6}}{2\pi f.p.R.q_{out}} [\mu F]$$

$$C_f = \frac{10^6}{2\pi f.p.R.q_{out}} \left[\mu F\right]$$

Bản chất vật lý: Tụ điện giảm độ nhấp nhô của điện áp

Nhận xét: Lọc điện dung rất khó thực hiện với tải công suất lớn, R càng nhỏ ta càng khó thực hiện điều kiện lọc tốt do giá trị C phải rất lớn → chỉ dùng cho tải công suất nhỏ

3.9.4 Loc LC

Mac loc LC là kết hợp của hai loại loc điện cảm và điện dung

$$X_{L\sigma} \gg R$$
; $X_{C\sigma} \ll R$

→ Thành phần U_d được đưa toàn bộ ra tải, còn thành phần xoay chiều bị giữ (lọc) lại toàn bộ ở khâu loc.

Xét thành phần bậc 1

$$U_{\sigma(\mathbf{l})} = I_{\sigma(\mathbf{l})} \big(X_{L\sigma(\mathbf{l})} - X_{C\sigma(\mathbf{l})} \big)$$

$$X_{L\sigma(1)}$$
 ; $X_{C\sigma(1)}$ lệch pha nhau π

$$U_{\sigma(\mathbf{l})} = I_{\sigma(\mathbf{l})} (X_{L\sigma(\mathbf{l})} - X_{C\sigma(\mathbf{l})})$$

$$U_{\sigma f(1)} = I_{\sigma(1)}.X_{C\sigma(1)}$$

Nếu cho trước
$$k_{sb}=\frac{U_{\sigma(1)in}}{U_{\sigma(1)out}}=\frac{X_{L\sigma(1)}}{X_{C\sigma(1)}}-1$$
 , L_p C_f có thể được xác định :

$$L_f.C_f = \frac{k_{sb} + 1}{(p.2\pi f)^2}$$

3.9.5 Lọc hình π (lọc CLC)

Tương đương hai mạch lọc C và và mạch lọc LC mắc nối tiếp nhau.

Hệ số san bằng : $k_{sb\pi}=k_{sbC}.k_{sbLC}$

Lọc dạng π ứng dụng khi cần có k_{sb} >50

81

3.10 MÁY BIẾN ÁP ĐỘNG LỰC

Chức năng:

- Chuyển điện áp của lưới điện xoay chiều u_1 sang điện áp u_2 thích hợp với tải.
- Biến đổi số pha của nguồn lưới (1, 2, 3, 6, 12... Pha).
- Cách ly với điện áp lưới.
- Tác dụng lọc các sóng hài bậc cao

3.10 MÁY BIẾN ÁP ĐỘNG LỰC

Sử dụng biến áp động lực cho bộ chỉnh lưu cần quan tâm:

- Công suất của máy biến áp ?
- Hệ số sử dụng của máy biến áp ?

$$k_{t} = \frac{S_{tN}}{P_{dN}}$$

Dòng điện trong máy biến áp:

$$i_S = I_{S(AV)} + i_{S\sigma}$$

 N_p : số vòng dây sơ cấp (Primary) N_c : số vòng dây thứ cấp (Secondary)

$$I_{S(AV)} = \frac{I_d}{3}$$

Giả sử N_P=N_S=N

$$\begin{split} i_{1P} &= i_{1S\sigma} = i_{1S} - \frac{I_d}{3} & i_{1L} = i_{3P} - i_{1P} \\ i_{2P} &= i_{2S\sigma} = i_{2S} - \frac{I_d}{3} & i_{2L} = i_{1P} - i_{2P} \\ i_{3P} &= i_{3S\sigma} = i_{3S} - \frac{I_d}{3} & i_{3L} = i_{2P} - i_{3P} \end{split}$$

83

Công suất máy biến áp:

$$S_{tN} = \frac{S_S + S_P}{2} = \frac{m_S U_S I_S + m_P U_P I_P}{2} = k_t . P_{dN}$$

$$P_{dN} = U_{di0}.I_d$$

k: Hệ số sử dụng máy biến áp

 S_p, S_s : Công suất biểu kiến định mức phía sơ cấp,

thứ cấp MBA

 m_S, m_P : Số pha phía sơ cấp, thứ cấp MBA $U_X, I_X\,$: Trị hiệu dụng điện áp và dòng điện

$$I_{_{S}}=\sqrt{\frac{1}{2\pi}}{\int_{_{0}}^{2\pi/3}I_{_{d}}^{2}d\theta}=\frac{I_{_{d}}}{\sqrt{3}}$$

$$I_{p} = \sqrt{\frac{1}{2\pi} \Biggl(\int_{0}^{4\pi/3} \biggl(-\frac{I_{d}}{3} \biggr)^{2} \, d\theta + \int_{4\pi/3}^{2\pi} \biggl(\frac{2I_{d}}{3} \biggr)^{2} \, d\theta \Biggr)} = \frac{\sqrt{2}}{3} \, I_{d}$$

$$N_{\scriptscriptstyle S} = N_{\scriptscriptstyle P} \Longrightarrow U_{\scriptscriptstyle S} = U_{\scriptscriptstyle P} = U$$

Trị hiệu trung bình điện áp chỉnh lưu:

$$U_{di0} = \frac{3\sqrt{6}}{2\pi}U$$

$$\begin{split} S_{S} &= \frac{\sqrt{2}}{3} \pi U_{di0} I_{dN} = \frac{\sqrt{2}}{3} \pi P_{dN} \\ S_{P} &= \frac{2\pi}{3\sqrt{3}} U_{di0} I_{dN} = \frac{2\pi}{3\sqrt{3}} P_{dN} \\ S_{tN} &= \frac{\frac{\sqrt{2}}{3} \pi + \frac{2\pi}{3\sqrt{3}}}{2} P_{dN} = 1.35 P_{dN} \\ \Rightarrow k_{t} = 1.35 \end{split}$$

	U _{do}	I _V	U _{RVmax}	I _{RMS/S}	I _{RMS/P}	S _{ba}	m _{đm}
Một pha một nửa chu kỳ	0,45U _{2f}	I _d	1,14U ₂	1,571 _d	1,211 _d k _{ba}	3,09P _d	1
Một pha có điểm giữa	0,9U _{2f}	I _d /2	2,83U ₂	0,581 _d	1,111 _d k _{ba}	1,48P _d	2
Một pha sơ đồ cầu	0,9U _{2f}	I _d /2	1,41U ₂	1,111 _d	1,111 _d k _{ba}	1,23P _d	2
Ba pha hình tia	1,17U _{2f}	I _d /3	2,45U ₂	0,581 _d	0,471 _d k _{ba}	1,35P _d	3
Ba pha sơ đồ cầu	2,34U _{2f}	I _d /3	2,45U ₂	0,816I _d	0,816I _d k _{ba}	1,05P _d	6
Sáu pha hình tia	1,35U _{2f}	I _d /6	2,83U ₂	0,291 _d	0,581 _d k _{ba}	1,56P _d	6
Sáu pha có cuộn kháng cân bằng	1,17U _{2f}	I _d /6	2,45U ₂	0,29I _d	0,41I _d k _{ba}	1,26P _d	6