Formularium V	${f Wiskunde~1}$	e bachelor	en schakelprog	gramma IIW
---------------	------------------	------------	----------------	------------

1	Gor	Goniometrische en hyperbolische functies					
	1.1	Goniometrische cirkel	2				
	1.2	Goniometrische formules omvormen m.b.v. de TI-Nspire					
	1.3	Hyperbolische formules omvormen m.b.v. de TI-Nspire					
	1.4	Grondformules	•				
2	Drie	ehoeksmeting	3				
3	Afg	eleiden	4				
	3.1	Impliciet afleiden met de TI-Nspire	4				
	3.2	Kromming	4				
4	Ree	ksen en methode van Newton-Raphson	4				
	4.1	Reeksontwikkeling volgens Taylor	4				
	4.2	Reeksontwikkeling volgens Maclaurin	4				
	4.3	Reeksontwikkeling met de TI-Nspire	4				
	4.4	Numeriek oplossen van vergelijkingen $f(x) = 0 \dots \dots \dots$	4				
5	Fun	cties met meer veranderlijken					
6	\mathbf{Kro}	ommen en oppervlakken	6				
7	Inte	Integralen					
	7.1	Enkelvoudige integralen	7				
	7.2	Cilinder- en bolcoördinaten	7				
	7.3	Meervoudige integralen	8				
	7.4	Lijnintegralen	8				
	7.5	Oppervlakintegralen	Ć				
8	Diff	erentiaalvergelijkingen	6				
	8.1	Eerste orde	Ć				
	8.2	Tweede orde	10				
	8.3	Hogere orde	11				
9	Alg	ebra en meetkunde	11				
	9.1	Meetkunde met vectoren	11				
	9.2	Lineaire transformaties	12				
	9.3	Eigenwaarden en eigenvectoren	12				

1 Goniometrische en hyperbolische functies

1.1 Goniometrische cirkel

1.2 Goniometrische formules omvormen m.b.v. de TI-Nspire

• Aanverwante hoeken:

$$\sin\left(\frac{\pi}{2} - a\right) = \cos(a)$$

• Som- en verschilformules:

$$tExpand(\sin(a+b)) = \cos(a) \cdot \sin(b) + \sin(a) \cdot \cos(b)$$

• Dubbele hoek:

$$tExpand(\sin(2a)) = 2 \cdot \sin(a) \cdot \cos(a)$$

• Formules van Simpson:

$$tCollect(sin(a) \cdot cos(b)) = \frac{sin(a-b) + sin(a+b)}{2}$$

• Machten van goniometrische functies:

$$tCollect((sin(a))^2) = \frac{-(cos(2 \cdot a) - 1)}{2}$$

1.3 Hyperbolische formules omvormen m.b.v. de TI-Nspire

expand(
$$\cosh(2x)$$
) = $\frac{(e^x)^2}{2} + \frac{1}{2 \cdot (e^x)^2} = \frac{e^{2x} + e^{-2x}}{2}$

1.4 Grondformules

$$\sin^2 a + \cos^2 a = 1 \Leftrightarrow 1 + \operatorname{tg}^2 a = \frac{1}{\cos^2 a} \Leftrightarrow 1 + \operatorname{cotg}^2 a = \frac{1}{\sin^2 a}$$
$$(\cosh x)^2 - (\sinh x)^2 = 1$$

2 Driehoeksmeting

- Sinusregel: $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$
- Cosinusregel:

$$* a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos(\alpha)$$

$$* b^2 = c^2 + a^2 - 2 \cdot c \cdot a \cdot \cos(\beta)$$

$$* c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\gamma)$$

* Merk op dat wanneer b
vb. $\alpha=90^\circ$ dit de stelling van Pythagoras oplevert!

3 Afgeleiden

3.1 Impliciet afleiden met de TI-Nspire

Voorbeeld: we zoeken y'' voor de cirkel $x^2 + y^2 = a^2$

impDif
$$(x^2 + y^2 = a^2, x, y, 2) = \frac{-x^2}{y^3} - \frac{1}{y}$$

3.2 Kromming

Ogenblikkelijke kromming in een punt (x, y) van een kromme: $\kappa = \frac{y''}{\left(1 + (y')^2\right)^{3/2}}$

4 Reeksen en methode van Newton-Raphson

4.1 Reeksontwikkeling volgens Taylor

$$f(x) = f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2!} \cdot (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} \cdot (x - a)^n + \dots$$

4.2 Reeksontwikkeling volgens Maclaurin

$$f(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^n + \dots$$

4.3 Reeksontwikkeling met de TI-Nspire

Voorbeeld: 3e orde Taylorontwikkeling van $\frac{1}{x}$ rond x = 1:

$$taylor\left(\frac{1}{x}, x, 3, 1\right) = 1 - (x - 1) + (x - 1)^{2} - (x - 1)^{3}$$

Voorbeeld: 7^{e} orde Maclaurinontwikkeling van $\sin(x)$:

taylor(sin(x), x, 7) =
$$x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040}$$

4.4 Numeriek oplossen van vergelijkingen f(x) = 0

Algoritme van Newton-Raphson: $x_{n+1} = g(x_n)$ met $g(x) = x - \frac{f(x)}{f'(x)}$. Stop als $|x_{n+1} - x_n| < 5 \cdot 10^{-(m+1)}$.

5 Functies met meer veranderlijken

• De vergelijking van het **raakvlak** aan het oppervlak z = f(x, y) in een punt $P(x_0, y_0, z_0)$:

$$z = z_0 + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

• De **totale differentiaal** van een functie z = f(x, y) in (x_0, y_0) bij een toename van $(\Delta x, \Delta y)$:

$$df = \frac{\partial f}{\partial x}(x_0, y_0) \cdot \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \cdot \Delta y$$

• Gradiëntvector van f in (x_0, y_0) :

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

• De **richtingsafgeleide** van f in (x_0, y_0) in de richting van \vec{r} :

$$D_{\vec{r}}f(x_0, y_0) = \nabla f(x_0, y_0) \bullet \vec{r}$$

• De **Hessiaan** van f in het punt (x_0, y_0) :

$$H(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{vmatrix}$$

• De multiplicatorenmethode van Lagrange

De extrema van z = f(x, y) onder de randvoorwaarde g(x, y) = C moeten oplossingen zijn van het stelsel:

$$\begin{cases} g(x,y) = C \\ \frac{\partial f}{\partial x} = \lambda \cdot \frac{\partial g}{\partial x} \\ \frac{\partial f}{\partial y} = \lambda \cdot \frac{\partial g}{\partial y} \end{cases}$$

6 Krommen en oppervlakken

• Een KROMME C in \mathbb{R}^3 wordt gegeven door het beeld van een continue vectoriële functie

$$\vec{r}: I \subset \mathbb{R} \to \mathbb{R}^3 : \vec{r}(t) = (x(t), y(t), z(t))$$

Indien de raakvector $\vec{r}'(t) = (x'(t), y'(t), z'(t))$ nergens verdwijnt, is de kromme 'glad'.

• Een **parametrisch oppervlak** S in \mathbb{R}^3 wordt gegeven door het beeld van een continue functie

$$\vec{r}: D \subset \mathbb{R}^2 \to \mathbb{R}^3 : \vec{r}(s,t) = (x(s,t), y(s,t), z(s,t))$$

* OMWENTELINGSOPPERVLAKKEN

Voorbeeld: wenteling van een kromme $\begin{cases} y = \gamma_1(s) \\ z = \gamma_2(s) \end{cases} (s \in I) \text{ in het } yz\text{-vlak rond}$ de y-as. De coördinaten van de plaatsvector $\vec{r}(s,t)$ zijn dan:

$$\begin{cases} x(s,t) = \gamma_2(s) \cdot \cos(t) \\ y(s,t) = \gamma_1(s) & (s \in I, 0 \le t \le 2\pi). \\ z(s,t) = \gamma_2(s) \cdot \sin(t) \end{cases}$$

* REGELOPPERVLAKKEN

Algemene parametervoorstelling: $\vec{r}: I \times \mathbb{R} \to \mathbb{R}^3: \vec{r}(s,t) = \vec{\gamma}(s) + t \cdot \vec{\delta}(s)$ met $\vec{\gamma}(s)$ de grondcurve en $\vec{\delta}(s)$ de richtingscurve.

• Een **raakvlak** α aan een oppervlak $\vec{r}(s,t)$ in een punt $P(\vec{r}(s_0,t_0)) = P(x_0,y_0,z_0)$ heeft als vergelijking: $a \cdot (x-x_0) + b \cdot (y-y_0) + c \cdot (z-z_0) = 0$, met

$$(a,b,c) = \vec{n}(s_0,t_0) = \frac{\partial \vec{r}}{\partial s}(s_0,t_0) \times \frac{\partial \vec{r}}{\partial t}(s_0,t_0) = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial x}{\partial s}(s_0,t_0) & \frac{\partial y}{\partial s}(s_0,t_0) & \frac{\partial z}{\partial s}(s_0,t_0) \\ \frac{\partial x}{\partial t}(s_0,t_0) & \frac{\partial y}{\partial t}(s_0,t_0) & \frac{\partial z}{\partial t}(s_0,t_0) \end{vmatrix}$$

7 Integralen

7.1 Enkelvoudige integralen

	CARTESISCH	PARAMETERVORM	POOLKROMME
OPPERVLAKTE	$dA = y \ dx$	of $dA = x dy$	$dA = \frac{1}{2}r^2d\theta$
VOLUME	Algemeen: $dV = A(h) dh$ $dV = \pi y^2 dx$ of $dV = \pi x^2 dy$		
BOOGLENGTE	ds =	$\sqrt{(dx)^2+(dy)^2}$	$ds = \sqrt{r^2 + (r')^2} d\theta$
ZIJDELINGSE OPPERVLAKTE	d	$dS = 2\pi y ds$ of $dS = 2\pi x ds$	

7.2 Cilinder- en bolcoördinaten

7.3 Meervoudige integralen

	DUBBELINTEGRALEN	DRIEVOUDIGE INTEGRALEN	
OPPERVLAKTE	$A = \iint 1 \ dS$		
VOLUME	$V = \iint (z_1 - z_2) dS$	$V = \iiint 1 \ dV$	
MASSA	$m = \iint \rho(x, y) dS$	$m = \iiint \rho(x, y, z) \ dV$	
ZWAARTEPUNT	$x_{zw} = \frac{1}{m} \iint \rho(x, y) x dS$ $y_{zw} = \frac{1}{m} \iint \rho(x, y) y dS$	$x_{zw} = \frac{1}{m} \iiint \rho(x, y, z) x dV$ $y_{zw} = \frac{1}{m} \iiint \rho(x, y, z) y dV$ $z_{zw} = \frac{1}{m} \iiint \rho(x, y, z) z dV$	
TRAAGHEIDS- MOMENT		$I = \iiint r_{\perp}^{2}(x, y, z) \cdot \rho(x, y, z) dV$	
DRUKKRACHT op vert. wand	$F = \rho \cdot g \cdot \iint h dS$		
OPPERVLAKTE- OF VOLUME- ELEMENT	dS = dx dy (cartesisch) = $r dr d\theta$ (polair)	$dV = dx \ dy \ dz$ (cartesisch) = $r \ dr \ d\theta \ dz$ (cilinder) = $r^2 \sin \varphi \ dr \ d\theta \ d\varphi$ (bol)	

7.4 Lijnintegralen

De **lijnintegraal** van een continue functie f over een continue gladde kromme C met parametrisatie $\vec{r}(t) = (x(t), y(t), z(t)) \ (t \in [a, b])$:

$$\int_C f(x,y,z) \, \mathrm{d}s = \int_a^b f(x(t),y(t),z(t)) \, \|\vec{r}'(t)\| \, \mathrm{d}t$$
met $\|\vec{r}'(t)\| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$.

7.5 Oppervlakintegralen

De **oppervlakteintegraal** van een continue functie g m.b.t. een 3D-oppervlak S met parametrisatie $\vec{r}(s,t) = (x(s,t),y(s,t),z(s,t)) \ ((s,t) \in D)$:

$$\iint\limits_{S} g \, dS = \iint\limits_{D} g(\vec{r}(s,t)) \left\| \frac{\partial \vec{r}}{\partial s}(s,t) \times \frac{\partial \vec{r}}{\partial t}(s,t) \right\| \, ds \, dt$$

- * Speciaal geval: $opp(S) = \iint_S 1 dS$.
- * Speciaal geval: indien $\vec{r}=(x,y,f(x,y))$ de grafiek van een functie $f:D\subset\mathbb{R}^2\to\mathbb{R}$ is, dan

$$\iint_{S} g \, dS = \iint_{D} g(x, y, f(x, y)) \sqrt{1 + \left(\frac{\partial f}{\partial x}(x, y)\right)^{2} + \left(\frac{\partial f}{\partial y}(x, y)\right)^{2}} \, dx \, dy$$

8 Differentiaalvergelijkingen

8.1 Eerste orde

1. Scheiden van veranderlijken: f(y) dy = g(x) dx

2. Exacte DV:
$$P(x,y) dx + Q(x,y) dy = 0$$
 met $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

Oplossing: $F(x,y) = c$, waarbij $dF = P dx + Q dy$

3. Lineaire DV:
$$y' + P(x)y = Q(x)$$
.

Oplossing: $y = \frac{1}{\mu(x)} \left(\int \mu(x) Q(x) \, dx + c \right)$ met $\mu(x) = e^{\int P(x) dx}$.

8.2 Tweede orde

- 1. Standaardvorm: $ay'' + by' + cy = f(x) \text{ met } a \neq 0.$
- 2. Homogene vergelijking: f(x) = 0.

Oplossingsmethode: zoek nulpunten (zeg α en β) van de karakteristieke vergelijking: $ar^2 + br + c = 0$.

- (D > 0) $\alpha \neq \beta \in \mathbb{R} \rightarrow y = c_1 e^{\alpha x} + c_2 e^{\beta x}$.
- (D=0) $\alpha = \beta \in \mathbb{R} \rightarrow y = c_1 e^{\alpha x} + c_2 x e^{\alpha x}$.
- (D < 0) $\alpha, \beta = \gamma \pm \delta i \rightarrow y = e^{\gamma x} (c_1 \cos(\delta x) + c_2 \sin(\delta x)).$
- 3. Niet homogene vergelijking: $f(x) \neq 0$.

Oplossingsmethode: $y = y_H + y_P$ met y_H oplossing van de homogene DV en y_P een particuliere oplossing. De bepaling van y_P kan gebeuren via de methode van de onbepaalde coëfficiënten indien f(x) van de volgende speciale vorm is:

$$f(x) = e^{mx}(V_1(x)\cos(\theta x) + V_2(x)\sin(\theta x)),$$

met $m \in \mathbb{R}$, $\theta \in \mathbb{R}$, $V_1(x)$ een veelterm van graad p en $V_2(x)$ een veelterm van graad q.

 \implies Voorstel voor y_P :

$$y_P = x^s e^{mx} (W_1(x) \cos(\theta x) + W_2(x) \sin(\theta x)),$$

met $W_1(x)$ en $W_2(x)$ concreet te bepalen veeltermfuncties van graad $n = \max\{p, q\}$ en s = 0, 1 of 2 om ervoor te zorgen dat er geen enkele term van je voorstel y_P overeenkomt met y_H .

8.3 Hogere orde

Differentiaalvergelijking van de vorm: $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = g(x)$. Oplossingsmethode: analoog als bij tweede orde DV.

De termen van de homogene oplossing worden bepaald door de wortels r_1, r_2, \ldots, r_k van de karakteristieke vergelijking. Voor iedere **reële** wortel r_i met multipliciteit m, correspondeert een term $e^{r_i x}(c_1 + c_2 x + \ldots + c_m x^{m-1})$. Voor een **complexe** wortel a + bi en zijn toegevoegde a - bi met multipliciteit m, wordt een term van de vorm $e^{ax}(P_{m-1}(x)\cos(bx)+Q_{m-1}(x)\sin(bx))$ aan de homogene oplossing toegevoegd. Hierbij zijn $P_{m-1}(x)$ en $Q_{m-1}(x)$ willekeurige veeltermen van graad m-1.

De particuliere oplossing vind je opnieuw op basis van een gepast voorstel en de methode van de onbepaalde coëfficiënten.

9 Algebra en meetkunde

9.1 Meetkunde met vectoren

• Rechte in \mathbb{R}^3 :

* Parameter
vergelijking:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \text{punt} + k \cdot \text{richting}$$

* Cartesische vergelijking:
$$\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$$

• Vlak in \mathbb{R}^3 :

* Parametervergelijking:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \text{punt} + k \cdot \text{richting1} + \ell \cdot \text{richting2}$$

* Cartesische vergelijking: ax + by + cz + d = 0

- Scalair product van twee vectoren: $\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos(\theta)$
- Afstand van een punt $P(x_p, y_p, z_p)$ tot een vlak $\alpha : ax + by + cz + d = 0$ in \mathbb{R}^3 :

$$d(P, \alpha) = \frac{|ax_p + by_p + cz_p + d|}{\sqrt{a^2 + b^2 + c^2}}$$

9.2 Lineaire transformaties

Dan is $co(T(\vec{v}))_{\varepsilon'} = P \cdot A \cdot Q^{-1} \cdot co(\vec{v})_{\beta'}$ ofwel $A' = P \cdot A \cdot Q^{-1}$.

9.3 Eigenwaarden en eigenvectoren

- $T(\vec{v}) = \lambda \cdot \vec{v}$
- Eigenwaarden bepalen: $Det(A \lambda \cdot I_n) = 0$
- Eigenruimten bepalen: $(A \lambda \cdot I_n)X = \vec{0}$
- Als A diagonaliseer baar is, dan is $D = P^{-1} \cdot A \cdot P$