UČINSKA ELEKTRONIKA 1. MI 2012 / 2013

Međuispit iz Učinske elektronike, akademska godina 2012./2013.

l. Na slici je prikazan istosmjerni pretvarač bez galvanskog odvajanja s IGBTom i porednom diodom, opterećen djelatno-induktivnim trošilom. Za faktor vođenja D = 0,3 izračunajte gubitke vođenja tranzistora i diode. U za to predviđen prostor nacrtajte valne oblike struje i napona diode s označenim vremenima u sekundama. Prilikom crtanja valnih oblika zanemarite pad napona diode u vođenju. Podaci sklopa su: $U_{\rm DC} = 200\,{\rm V},~R = 10\,\Omega,~f = 10\,{\rm kHz},~U_D = 0,7\,{\rm V},~U_{ce,s} = 1,5\,{\rm V},~r_d = 10{\rm m}\Omega.$ Pretpostavite da je induktivitet dovoljno velik da je struja tereta nevalovita ($\omega \cdot L >> R$). Na priloženoj slici obavezno označite referentni smjer struje i referentni polaritet napona diode.

2. Uzevši u obzir postojanje komutacijskog induktiviteta koncentriranog u induktivitetu L_k izračunajte snagu predanu izvoru E. Podaci sklopa su: $u_S = 230 \cdot \sqrt{2} \cdot \sin(\omega \cdot t)$, $L_k = 10 \, \text{mH}$, $R_d = 15 \Omega$, $E = 50 \, \text{V}$, $\alpha = 30^\circ$, $\omega \cdot L_d >> R$. Izračunajte vrijeme trajanja komutacije u sekundama. Nacrtajte valne oblike napona i struje trošila te napona u_{sk} i struje i_S .

3. Za izmjenični pretvarač na slici izračunajte snagu koju izvor preda trošilu otpora $R=10\Omega$ uz kut upravljanja $\alpha=30^{\rm o}$. Napon izvora je $u_s=230\cdot\sqrt{2}\cdot\sin(\omega\cdot t)$.

4. Nacrtajte silazno-uzlazni pretvarač bez galvanskog odvajanja (tranzistor i dioda su idealni). Za fakto vođenja D=0,6 izračunajte vrijednost induktiviteta da bi struja bila granično isprekidana. Frekvencij sklopke je $f=15\,\mathrm{kHz}$, napon izvora $U_B=60\,\mathrm{V}$, otpor trošila $R_d=10\,\Omega$. Izračunajte snagu koja predaje trošilu u tom slučaju faktora vođenja i iznosa struje. U za to predviđen prostor ucrtajte valtoblike napona i struje induktiviteta.

Silazno-uzlazni istosmjerni pretvarač bez galvanskog odvajanja

RJEŠENJA:

1.

Prvo izračunamo srednju vrijednost napona i struje trošila. Zbog velikog induktiviteta struja je nevalovita i konstantna.

$$U_d = D * U_{DC} = 0.3 * 200 = 60 V$$

$$I_d = \frac{U_d}{R} = \frac{60}{10} = 6 A$$

Za proračun gubitaka na diodi potrebno je znati srednju i efektivnu vrijednost struje diode. Znamo da dioda vodi kada tranzistor ne vodi što znači da dioda vodi u vremenu 0.3T do T.

$$I_{D_{avg}} = \frac{1}{T} \int_{0.3T}^{T} I_d dt = \frac{(1 - 0.3)T}{T} = (1 - 0.3) * 6 = 4.2 A$$

$$I_{D_{rms}} = \sqrt{\frac{1}{T} \int_{0.3T}^{T} I_d^2 dt} = (\sqrt{1 - 0.3})I_d = 5.02$$

Gubitke na diodi računamo preko sljedeće formule (nalazi se na slajdovima u predavanju o DC DC pretvaračima):

$$P_D = I_{Dava} * U_D + I_{Drms}^2 r_d = 4.2 * 0.7 + 5.02^2 * 0.01 = 3.192 W$$

Tranzistor vodi u vremenu 0 do 0.3 T. Za proračun njegovih gubitaka treba nam samo srednja vrijednost struje.

$$I_{T_{avg}} = \frac{1}{T} \int_{0}^{0.3T} I_d dt = \frac{(0.3 - 0)T}{T} I_d = 0.3 I_d = 1.8 A$$

Gubici se računaju prema sljedećoj formuli (isto sa slajdova):

$$P_T = I_{T_{avg}} U_{ce,s} = 1.8 * 1.5 = 2.7 W$$

Na kraju treba nacrtati valne oblike napon i struje diode.

Slika 1: napon i struja diode

Na slici se vidi da napon izvora zaporno blokira diodu dok tranzistor vodi a kada dioda vodi na njoj je napon 0 V i struja jednaka struji trošila I_d .

2.

Srednja vrijednost napona na trošilu kada postoji komutacija se računa prema sljedećoj formuli (iz slajdova, predavanje usmjerivači):

$$U_d = \frac{2U_s}{\pi} (\cos(\alpha) - \frac{X_k I_d}{U_s})$$

U gornjoj formuli $X_k = 2\pi f L_k$ je impedancija koju stvara komutacijski induktivitet i kad se uvrste vrijednosti dobiva se $X_k = 3.14 \,\Omega$. Struja trošila je nevalovita zbog velikog induktiviteta pa se računa prema sljedećoj formuli :

$$\frac{U_d - E}{R} = I_d$$

$$\frac{2U_s}{\pi} \cos(\alpha) - \frac{2X_k I_d}{\pi} - E = I_d R$$

$$\frac{2U_s}{\pi} \cos(\alpha) - E = \left(R + \frac{2X_k I_d}{\pi}\right) I_d$$

$$129.33 = 17I_d$$

$$I_d = 7.607 A$$

Snaga koju prima DC izvor u krugu trošila računa se kao umnozak struje i napona tog izvora:

$$P_{DC} = E * I_d = 50 * 7.607 = 380.38 W$$

Kako bi se dobilo vrijeme komutacije računa se kut komutacije u prema formuli (isto sa slajdova):

$$u = \arccos(\cos(\alpha) - \frac{2I_d X_k}{U_s}) - \alpha$$

Uvrštavanjem brojeva dobiva se:

$$u = 14.02^{\circ}$$

Dobiveni kut govori nam koliko stupnjeva traje komutacija a vrijeme u ms dobivamo na sljedeći način:

$$\frac{14.02}{360} = \frac{t_k}{20~ms} \rightarrow t_k = \textbf{0.7789}~\textbf{ms}$$
 U gornjoj formuli 20 ms predstavlja jedan period jer je f=50 Hz (T=1/f).

Slike:

Slika 2: napon i struja trošila(gore); napon i struja komutacije (ulaz u usmjerivač)- dolje

Napon trošila isti je kao i kod usmjerivača bez komutacije, uz razliku da je napon trošila nula u razdoblju dok traje komutacija (na slici 2 to je razdoblje između α i $\alpha + u$).

Napon komutacije je napon na ulazu u usmjerivač i on je jednak naponu izvora uvijek osim dok traje komutacija (tada je napon 0 i to se vidi na slici 3 u ovim "propadima" napona). Struja tijekom komutacije raste po kosinusnom pravilu, zato je blago zaobljena na slici 3.

3.

Kul gotova formula koju si napišete na šalabahter (a napisana je u slideovima sa predavanja)

$$U_{d_{rms}} = \frac{U_{Smax}}{\sqrt{2}} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin(2 \cdot \alpha)}{2 \cdot \pi}}$$
$$P_d = \frac{U_{d_{rms}}^2}{R}$$

Uvrštavanjem brojeva dobiva se:

$$U_{d_{rms}} = 226.66 V$$

$$P_d = \frac{226.66^2}{10} =$$
5137.46 *W*

Ovdje ne smijete koristiti pojednostavljenje Udsrednje=Udrms jer struja trošila nije konstantna (trošilo je čisto radno). Inače gdje god vam u zadacima piše $\omega L \gg R$ vrijedi pojednostavljenje srednja vrijednost struje trošila jednaka je efektivnoj vrijednosti struje trošila, isto vrijedi za napon. Ali pazite jer iako za trošilo to vrijedi za poredne diode i tranzistorske sklopke to ne vrijedi općenito. (npr pogledajte 1. zadatak Irms tranzistora i poredne diode, a trošilo je izraženo induktivno).

Slika 2: napon i struja tiristora T2

Dok vodi prvi tiristor T2 je zaporno blokiran i počinje voditi u $\pi + \alpha$. Struja je sinusna kao i napon jer se radi o R trošilu. Nacrtana je pozitivna struja jer je na slici u zadatku referentni smjer struje kada ulazi u tiristor. Da je bilo potrebno nacrtati struju trošila tada bi ova struja bila negativna (jer je suprotna referentnoj struji trošila sa slike) dok bi struja prvog tiristora bila pozitivna.

4.

Srednja vrijednost izlaznog napona silazno uzlaznog pretvarača dobiva se preko sljedeće formule :

$$U_d = U_B \frac{D}{1 - D} = 60 * \frac{0.6}{1 - 0.6} = 90 V$$

Snaga koju uzima trošilo je:

$$P_d = \frac{U_d^2}{R} = \frac{90^2}{10} = 810W$$

Induktivitet pri kojem je struja granična se računa preko formule sa slajdova (predavanje DC DC pretvarači):

$$L_{min} = R_d \frac{(1-D)^2}{2f} = 53,33 \mu H$$

Slika:

Slika 3: napon i struja induktiviteta

Dok je uključen tranzistor napon zavojnice je napon izvora a kad vodi dioda onda je napon zavojnice napon trošila ali negativan. Važno je da je srednja vrijednost napona zavojnice jednaka nuli!