Graph Theory

Judith Stumpp

6. November 2013

Bei dem folgenden Skript handelt es sich um einen Mitschrieb der Vorlesung Graph Theory vom Wintersemester 2011/2012. Sie wurde gehalten von Prof. Maria Axenovich Ph.D. . Der Mitschrieb erhebt weder Anspruch auf Vollständigkeit, noch auf Richtigkeit!

Kapitel 1

Definitions

The *graph* is a pair V, E. V is a finite set and $E \subseteq \binom{V}{2}$ a pair of elements in V. V is called the set of vertices and E the set of edges.

Visualize:
$$G = (V, E), \ V = \{1, 2, 3, 4, 5\}, \ E = \{\{1, 2\}, \{1, 3\}, \{2, 4\}\}$$

 $\textbf{History:} \quad \text{word: Sylvester (1814-1897) and Cayley (1821-1895)}$

Euler - developed graph theory

Königsberg bridges (today Kaliningrad in Russia):

Problem: Travel through each bridge once, come back to the original point.

Impossible!

Notations:

• $K_n = (V, \binom{V}{2})$ - complete graph on n vertices |V| = n

- C_n cycle on n vertices $V = \{v_1, v_2, \dots, v_n\}, E = \{\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\}$
- P_n path on n vertices (Note: P^n . path on n edges (Diestel)) $V=\{v_1,v_2,\ldots,v_n\},\ E=\{\{v_1,v_2\},\{v_2,v_3\},\ldots,\{v_{n-1},v_n\}\}$

- Let P be a path from v_1 to v_n . The subpath of P from v_i to v_j is $\overset{\circ}{v_i} P v_j$ and the subpath from v_{i+1} to v_j is $\overset{\circ}{v_i} P v_j$.
- $E_n = (V, \emptyset), |V| = n$ isolated vertices

- $K_{n,m} = (A \cup B, A \times B), A \cap B = \emptyset$ complete bipartite graph
- Peterson graph: $V = {\{1,2,3,4,5\} \choose 2}$, $E = {\{\{\{i,j\},\{k,l\}: \{i,j\} \cap \{k,l\} = \emptyset\}}$

- Kneser Graph $K(n, k) = {V \choose k}, E$ $|V| = n, E = \{\{A, B\} : A, B \in {V \choose k} \text{ and } A \cap B = \emptyset\}.$ ${V \choose k}$ is the set of k-element subsets of $V, |{V \choose k}| = {|V| \choose k}$
- Q_n hypercube of dimension n. $Q_n = \{2^{\{1,2,\dots,n\}}, E\}, \ E = \{\{A,B\}: |A\triangle B| = 1\} \qquad (A\triangle B := (A\cup B) (A\cap B))$

Parameter: Let G = (V, E) be a graph. The *order* of G ist the number of vertices (|V|) and the *size* of G is the number of edges (|E|).

If the order of G is n, then $0 \le \text{size}(G) \le \binom{n}{2}$.

If $e = \{x, y\} \in E$, x is adjacent to y and x is incident to e.

There is a $n \times n$ matrix A of $G = (\{v_1, \dots, v_n\}, E)$ which is called the *adjacent matrix*.

For
$$v_3$$
 v_2 v_4 $A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

Subgraph: $H \subseteq G$, H = (V', E'), G = (V, E), $V' \subseteq V$, $E' \subseteq E$

$$v_3$$
 v_2 v_4 v_3 v_2 v_4

 $H \subseteq H$ is an *induced subgraph* of G if $H \subseteq G$ and for $v_1, v_2 \in V(H)$: $\{v_1, v_2\} \in E(H) \Leftrightarrow \{v_1, v_2\} \in E(G)$.

In the upper example it is no induced subgraph.

An induced subgraph is obtained from G by deleting vertices. E.g.:

Let G = (V, E) and G' = (V', E') be graphs. Then we define $G \cup G' := (V \cup C', E \cup E')$ and $G \cap G' := (V \cap C', E \cap E')$.

 $G[X]:=(X,\{\{x,y\}:x,y\in X,\ \{x,y\}\in E(G)\})$ is called the subgraph of G induced by a vertex set $X\subseteq V(G)$. E.g.:

A degree $d(v) = \deg v$ of a vertex is the number of edges incident to that vertex.

$$v_3$$
 v_2 v_4 deg $v_1 = 2$, deg $v_2 = 3$, deg $v_3 = 2$, deg $v_4 = 1$

In this example the degree sequence is (2,3,2,1), the minimum degree $\delta(G)$ is 1 and the maximum degree $\Delta(G)$ is 3.

Apparently $|E(G)| = \frac{1}{2} \sum_{i=1}^{n} \deg v_i$ is true.

Thus $\sum_{i=1}^{n} \deg v_i$ is even and therefore the number of vertices with odd degree is even.

 $d(G) := \frac{1}{n} \sum_{i=1}^{n} \deg v_i$ is called the *average degree* of G.

Extremal graph theorem: We'll prove that if G has n vertices and $> \left\lfloor \frac{n^2}{4} \right\rfloor$ edges \Rightarrow G has a triangle.

Let $A, B \subseteq V$, $A \cap B = \emptyset$. P is an A-B-path if $P = v_1 \dots v_k$, $V(P) \cap A = \{v_1\}$ and $V(P) \cap B = \{v_k\}$.

A graph is *connected* if any two vertices are linked by a path. A maximal connected subgraph of a graph is a connected component.

A connected graph without cycles is called a *tree*. A graph without cycles (*acyclic* graph) is called a forest.

Other "special named" graphs:

star

caterpillar

spider

broom

Proposition: If a graph G has a minimum degree $\delta(G) > 2$ then G has a path of length $\delta(G)$ and a cycle with at least $\delta(G) + 1$ vertices.

proof: Let $P = (x_0, \ldots, x_k)$ be a longest path in G. Then all neighbors of x_k are in V(P) (y is a neighbor of x if $\{x,y\} \in E$). In particular $k \geq \delta(G)$.

Let $i = \min\{j \in \{0, \dots, k\} : \{x_k, x_j\} \in E\}$. Then $x_i x_k x_{k-1} \dots x_i$ is a cycle of length at least $\delta + 1$.

The *girth* of a graph G is the length of a smallest cycle in G.

The distance $d_G(v, w)$ of $v, w \in G$ is the length of the smallest path between them $(\min \emptyset = \infty)$. The *diameter* of G is $\max\{d_G(v, w) : v, w \in G\}$.

Proposition: Every nontrivial tree T has a leaf.

proof: Assume T has no leaves. T has no isolated vertices $\Rightarrow \delta(T) \geq 2 \Rightarrow C_n \subseteq T$

- A tree T of order n > 1 has n - 1 edges.

proof: $T = K_1 \checkmark$

Assume it holds for all trees of order < n.

Let v be a leaf of T, T' := T - v.

 $\Rightarrow |T'| = n - 1 < n.$

T' is acyclic.

Let $v', w \in T'$. $\exists P \ v' = v_0, v_1, \dots, v_n = w \subseteq T$.

To show: $v_i \neq v$ for all $i = 0, \ldots, n$

 $v_0, v_n \neq v$ because $v_0, v_n \in T', v \notin T'$

 $v_i \neq v$ (i = 1, ..., n-1) because $d_T(v_i) \geq 2$, v_i is not a leaf.

 $\Rightarrow P \subseteq T'$ connecting v_0 and $w \Rightarrow T'$ connected $\Rightarrow T$ is a tree.

With induction hypothesis T' has (n-1)-1 edges. Thus T has (n-1)-1+2=n-1 edges.

A walk is an alternating sequence $v_0e_0v_1e_1\dots v_n$ of vertices and edges so that $e_i=v_iv_{i+1}$ for all $n=0,\ldots,n-1$. Compared to a path it is allowed to pass edges and vertices more than once. If $v_0 = v_n$, then the walk is a *closed walk*.

If G has a u-v-walk (between vertices u, v > G has a u-v-path.

proof: Consider the shortest walk between u and v is W. Then W is a path. If not, W has a repeated vertex $W = ue_0v_1e_1...v_i...v_j$, then $W' = W_1W_2$ is a shorter u-v-walk. ξ $=:W_1$ $=:\tilde{W}$ $=:W_2$

If G has an odd <u>closed</u> walk (i.e. odd # edges) then G has an odd cycle.

proof: If there are no repeated vertices (except for first and last) \Rightarrow we have an odd cycle.

If there is a repeated vertex v_i , $W = \underbrace{v_0 e_0 v_1 \dots v_i}_{\text{1'st part of } W_2} \underbrace{v_i \dots v_i}_{\text{2'nd part of } W_2} \dots v_n = v_0$. W is a union of two closed walks W_1 and W_2 . Either W_1 or W_2 is an odd closed walk

 \Rightarrow by induction it contains an odd cycle.

- If G has a closed walk with a non-repeated edge $W = v_0 e_0 v_1 \dots e_i \dots e_i$ is unique, then G contains a cycle.

proof: Induction on # vertices.

Basis:

Step:
$$W = \underbrace{v_0 e_0 v_1 \dots}_{\text{1'st part of } W_2} \underbrace{v_i \dots v_i}_{W_1} \underbrace{\dots v_n = v_0}_{\text{2'nd part of } W_2}$$

(note, there is a repeated vertex v_i , otherwise W is a cycle)

So, W is a union of two closed walks W_1 and W_2 and either W_1 or W_2 has a non-repeated edge.

By induction, that walk contains a cycle.

Definition: An *Eulerian tour* is a closed walk containing all edges of a graph and repeating no edge. e.g.: Eulerian tour $v_1e_1v_2e_2\dots e_8v_9=v_1$ in

Theorem: A connected graph G has an Eulerian tour iff (i.e. if and only if) each degree of vertex in G is even.

proof:

"⇒": If there is an Eulerian tour then clearly the number of edges entering the vertex is the number of edges leaving the vertex.

"←": Assume that each degree is even.

Consider a walk with longest number of edges and no repeated edge, $W = v_0 \dots v_k$. Thus, there is no edge incident to v_0 that is not in W. Since $\deg v_0$ is even, v_0 must be v_n , i.e. W is a closed walk.

If all edges are in W, done. Otherwise, there is an edge e, not in W. Since G is connected, there is such e incident to a vertex in W. Say $e = v_i u$. Then $W' = u e v_i W v_i$ is a longer walk with no repeated edges. f

Other idea: all edges in G are even, $\delta(G) \geq 2 \Rightarrow G$ has a cycle C. Delete C from G (problem: G - C maybe isn't connected).

Connectivity:

We say that a Graph G is vertex k-connected if |V(G)| > k and deleting $\underline{\text{any}} (k-1)$ vertices does not disconnect the graph.

Any connected graph is 1-connected. If a graph is 2-connected then there exists no *cut-vertex* which is a vertex whose deletion disconnects a graph. Trees are not 2-connected.

If G is connected, $X \subseteq V$, G - X disconnected $\Rightarrow X$ is called a *cut-set*.

$$\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}\$$

e.g.:
$$\kappa(v_3) = 1, \ \kappa(C_n) = 2, \ \kappa(K_{n,m}) = \min\{m, n\}.$$

G is called *l*-edge connected if $G \neq E_n$ and G does not become disconnected after deleting <u>any</u> (l-1) edges.

$$\lambda(G) \, (=\kappa'(G)) = \max\{l: \, G \text{ is } l\text{-edge-connected}\}$$

e.g.:
$$\lambda(\text{tree}) = 1$$
, $\lambda(C_n) = 2$.

If
$$\lambda(G) = 1$$
 there exists a so called *bridge* (cut edge)

Clearly $\lambda(G) \leq \delta(G)$. But it could be that $1 = \lambda(G) << \delta(G) = 99$

Lemma: For any connected $G: \kappa(G) \leq \lambda(G) \leq \delta(G)$.

proof: Idea: want to find the set of at most $\lambda := \lambda(G)$ vertices that disconnects the graph.

Let \tilde{E} be a set of λ edges disconnecting G. Then \tilde{E} is a cut, i.e. $\exists S \subseteq V : \forall e \in \tilde{E}$, one endpoint of e is in S, another is in $\bar{S} := V - S$.

If in G there are all edges between S and \bar{S} . $\lambda = |\tilde{E}| = |S| \cdot |\bar{S}| \ge |V(G)| - 1 \ge \kappa(G)$. Otherwise $\exists x \in S, y \in \bar{S}, \ x \not\sim y$ (i.e. $xy \notin E(G)$).

$$T := (N(x) \cap \bar{S}) \cup (\{z \in S : z \sim \bar{S}\} - \{x\})$$

T is a vertex cut, in particular after deleting T, x and y are in different connected components. We have $|T| \leq |\tilde{E}| = \lambda$ because

 $|N(x)| \leq \#(\text{edges incident to } x) \text{ and } |\{z \in S: \, z \sim \bar{S}\} - \{x\}| \leq \#(\text{edges incident to this set}).$

Definition: A graph G is d-degenerate if there is a vertex order v_1, v_2, \ldots, v_n :

$$|N(v_i) \cap \{v_{i+1}, \dots, v_n\}| \le d.$$

I.e. we eliminate the graph by deleting a vertices sequence, s.t. at most d edges are gone at a time.

Let T be a graph. T is a tree if it is connected and acyclic.

- T is a tree iff T is connected and has |V(T)| 1 edges.
- \bullet T is 1-degenerate.
- ullet A leaf in a nontrivial tree is a vertex of degree 1.
- If G is a graph with $\delta(G) \geq |V(T)| 1$ (T tree) then G contains T as a subgraph.

Lemma: A graph is bipartite if and only if it has no odd cycles.

proof:

" \Rightarrow ": Let G be a bipartite graph, then any cycle has a form $u_1v_1u_2v_2\ldots u_kv_ku_1$, where $u_i\in U,\ v_i\in V,\ 1\leq i\leq k,\ U,V$ are partite sets of G.

" \Leftarrow ": Assume that G is connected and has no odd cycles. We shall prove that G is bipartite with partite sets U, V defined as follows.

Fix $x \in V(G)$.

Let $U = \{u : dist(x, u) \text{ is even}\}, V\{v : dist(x, v) \text{ is odd}\}$

We need to verify that G[U], G[V] are empty graphs.

Assume that $u, u' \in U$ and $\{u, u'\} \in E(G)$.

Consider a walk formed by shortest x-u-path, shortest x-u'-path and u, u'.

This is an odd closed walk that contains an odd cycle, a contradiction.

Thus G[U] is an empty graph.

Similarly G[V] is an empty graph.

Matchings:

A *matching* is a graph that is a disjoint (vertex) union of edges.

Philip Hall (Apr. 1904 - Dec. 1982) Cambridge, UK

Recall that N(S) for a set S of vertices is a set of neighbors of vertices in S.

Hall's matching theorem 1935: Let G be a bipartite graph with partite sets A, B. Then G has a matching containing all vertices of A if and only if $|N(S)| \ge |S|$ for any $S \subseteq A$.

proof:

"⇒": obvious

 $,,\Leftarrow$ ": Assume that $|N(S)| \ge |S|$ for any $S \subseteq A$.

We shall proof that there is a matching containing all elements of A by induction on |A|.

If |A| = 1, clear.

Assume that |A| > 1

Case 1: $|N(S)| \ge |S| + 1$, for any $S \subset A$, $S \ne A$.

Let $\{x, y\} =: e \in E(G)$. Consider $G' = G - \{x, y\}$.

 $|N_{G'}(S)| \ge |N_G(S)| - 1 \ge |S| + 1 - 1 = |S|$, for any $S \subseteq A - \{y\}$.

Thus, Hall's condition is true for G', and there is a matching M', containing all elements of $A - \{y\}$, by induction.

So, $M' \cup \{x, y\}$ is a matching saturating A in G.

Case 2: $\exists S \subset A, S \neq A \text{ such that } |N(S)| = |S|.$

By induction, there is a matching containing all vertices of S. Let apply induction to G[A-S,B-N(S)].

Assume that there is $S' \subseteq A - S$ such that $|N(S') \cap (B - N(S))| < |S'|$.

Then $|N(S' \cup S)| = |N(S) \cup (N(S') \cap (B - N(S)))| < \neq |S| + |S'|$.

A contradiction to Hall's condition applied to $S \cup S'$.

Thus for any $S' \subseteq A - S$, $|N(S') \cap (B - N(S))| \ge |S'|$, and there is a matching saturating A - S in G[A - S, B - N(S)]. Together with a matching between S and N(S), it gives a matching saturating A.

Corollaries of Hall's theorem:

1) Let G be bipartite with partite sets A, B, such that $|N(S)| \ge |S| - d$ for all $S \subseteq A$, and some fixed positive integer d.

Then G contains a matching of size at least |A| - d.

2) A k-regular bipartite graph has a perfect matching, i.e. matching containing all vertices of a graph. Here k-regular is a graph with all degrees equal to k.

G has partite sets A, B:

$$|E(G)|$$
 = #edges incident to $A = |A| \cdot k$
= #edges incident to $B = |B| \cdot k$
 $\Rightarrow |A| = |B|$

3) A k regular bipartite graph has a proper k-edge coloring.

proof:

1) Construct G'.

|C| = d, add all edges between A and C.

In $G' |N_{G'}(S)| \ge |N_G(S)| + d \ge |S| - d + d = |S|$.

By Hall's theorem, there is a matching in G' saturating A, with at most d edges not in G.

2) Let's verify Hall's condition.

Is it true that $|N(G)| \ge |S|$ for any $S \subseteq A$?

#edges from S to B is $|S| \cdot k = \#$ edges between S and N(S) = q

#edges from N(S) to A is $|N(S)| \cdot k \ge \#$ edges between S and N(S) = q.

 $|N(S)| \cdot \not k \geq q = |S| \cdot \not k \ \Rightarrow |N(S)| \geq |S|.$

Non-bipartite graphs:

A k-factor in a graph is a spanning (containing each vertex) subgraph in which each vertex has degree k

perfect matching = 1-factor

2-factor

Denes König (Sep. 1884 - Oct. 1944) Gyula König (Dec. 1849 - Apr. 1913)

Let $\nu(G)$ be the size of largest matching in G and $\tau(G)$ be the size of smallest *vertex cover*, i.e. set of vertices such that each edge is incident to some of this vertices, i.e. a set X of vertices such that G - X is an empty graph.

König's theorem '31: If G is a bipartite graph, then $\nu(G) = \tau(G)$.

Classical approach: Given a maximal matching M and want to find a vertex cover of size |M|

alternating path: starts with an unmatched vertex of M (alternating one point in A and one in B). Take the longest alternating path.

vertex cover: for any element of $\{a,b\} \in E(M)$, $a \in A, b \in B$ pick b if there is an alternating path ending in b, otherwise pick a.

proof: (by Romeo Rizzi '2000)

We want to prove that $\tau(G) \leq \nu(G)$ $(\tau(G) \geq \nu(G)$ trivial).

Assume that G is the smallest counterexample (#edges, #vertices).

Observe that G is connected, not a path, not a cycle, i.e. $\exists v : \deg(v) \geq 3$

Let $v : \deg v \ge 3$. $u \in N(v)$,

Case 1: $\nu(G \setminus u) < \nu(G)$:

Take a vertex cover X by König's theorem of G - u of size $\leq \nu(G) - 1$. Then $X \cup \{u\}$ is the vertex cover of G of size $\leq \nu(G)$.

Case 2: $\nu(G \setminus u) = \nu(G)$:

Then, in G there is a maximal matching, M, not containing u. There is $u' \in N(v) - \{u\}$, such that $f := \{v, u'\} \notin E(M)$.

Let W' be a cover of G-f of size $\nu(G-f)=\nu(G)$. Then W' does not contain u (W' contains vertices of M only and $u\notin V(M)$). Thus W' contains v. So, W' covers f too. Thus W' covers G.

Tutte's theorem

For a subset S of vertices of G, let q(S) = # odd components of G - S.

Theorem: (Bill Tutte May 1917- May 2002)

A graph G has a perfect matching (1-factor) if and only if $\forall S \subseteq V(G) \ q(S) \leq |S|$.

proof:

"⇒": trivial.

" \Leftarrow ": Consider G, such that $\forall S \subseteq V(G), \ q(S) \leq |S|$, and assume that G has no 1-factor. Add edge one-by-one, so the resulting graph G' is no 1-factor.

We shall show that in G' is a "bad" set S, q(S) > |S|.

We shall show that S is also a bad set in G.

Observation: If M_1, M_2 are perfect matchings in $G, M_1 \triangle M_2 = (M_1 \cup M_2) - (M_1 \cap M_2)$ are only cycles.

Let S be a set of vertices of degree |V(G)| - 1. We shall show that S is bad in G'.

Claim: All components of G' - S are complete.

Assume not, i.e. there is a non-complete component in G' - S.

Then there is an induced path a, b, c in this component. Since $b \notin S$, $\deg b < |V(G')| - 1$, there is $d \notin \{a, b, c\}$, such that $b \not\sim d$.

By maximality of G', there is a perfect matching M, in $G' \cup \{\{a,c\}\}$, there is a perfect matching M_2 in $G' \cup \{\{b,d\}\}$. Note $ac \in E(M_1), bd \in E(M_2)$. We shall create a perfect matching of G'.

Consider $M_1 \triangle M_2$, $ac, bd \in E(M_1 \triangle M_2)$. If ac, bd belong to different cycles of $M_1 \triangle M_2$:

Take the edges of M_2 in a component containing ac, take edges of M_1 in a component with bd, otherwise take edges of M_1 .

If ac, bd belong to the same cycle of $M_1 \triangle M_2$, then

A contradiction, since G' has no 1-factor, so all components of G'-S are complete. \Box Claim

If S is not bad, i.e. $|q(S)| \leq |S|$, we can construct a perfect matching, a contradiction to the fact that G' has no perfect matching. Thus S is bad in G'.

G is obtained from G' by deleting edges, so $q_G(S) \ge q_{G'}(S) > |S|$.

k-factor - spanning subgraph,

all degrees = k

f-factor: If $f:V\to\mathbb{N}$, an f-factor is a spanning subgraph H of G such that $\deg_H(v)=f(v)$.

Let $e(v) = \deg(v) - f(v) \ge 0$ (excess).

Replace each vertex of G with

For adjacent u and v, put an edge between A(u) and A(v), such that these edges form a matching.

An *f-factor*, in a graph G, for $f:V(G)\to\mathbb{N}\cup\{0\}$, such that $\forall v\in V\ f(v)\leq \deg(v)$, is a spanning subgraph H of G such that $\deg_H(v)=f(v)$.

1-factor or matching $\approx f$ -factor, $f \equiv 1$. $B(v_1) \atop A(v_1)$

 $f(v_1) = 3, \ f(v_2) = 1.$

For a graph G and a function $f: V(G) \to \mathbb{N} \cup \{0\}$, construct an auxiliary graph T(G, f) by replacing each vertex v with vertex sets $A(v) \cup B(v)$, $|A(v)| = \deg(v)$, $|B(v)| = \deg(v) - f(v)$, and for adjacent vertices u, v placing an edge between A(u) and A(v), so that these edges are disjoint, and placing a

complete bipartite graph between $A(u)\triangle B(u)$ for each vertex u.

Claim: G has an f-factor if and only if T(G, f) has 1-factor.

proof:

- Assume that M is an f-factor of G, to create a 1-factor in T, take the edges corresponding to M, and take missing edges between A(u) and $B(u) \forall u \in V$.
- Assume that M is a 1-factor in T, create an f-factor in G by deleting B(u), $u \in V(G)$, contracting A(u) into a single vertex, $u \in V(G)$.

H-factor: Given a graph G, and a graph H, such that |V(G)|:|V(H)| (:= divisible). An H-factor of G is a spanning subgraph of G that is a vertex-disjoint union of copies of H.

$$H = \langle \langle \rangle \rangle G = \langle \langle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle$$

 $H = K_2 H$ -factor \approx perfect matching.

Hajnal & Szemerédi '70: If G satisfies $\delta(G) \geq \frac{k-1}{k}n$, n:k, then G has a K_k -factor.

Alon-Yuster '95: If G satisfies $\delta(G) \ge \frac{\chi(H)-1}{\chi(H)} n$. Then G contains at least $(1-o(1))\frac{n}{|V(H)|}$ (H is fixed, G is large, n = |V(G)|) copies of H vertex-disjoint.

 $\chi(H)$ -chromatic number of a graph $H := \min \# \text{parts}$ into which vertex sets can be partitioned, so that no two adjacent vertices are in same part.

 $\chi(G) := \min \# \text{ colors assigned to } V(G) \text{ such that no two adjacent vertices get the same color.}$

 $\chi(K_k) = k, \ \chi(C_3) = 3, \ \chi(C_4) = 2, \ \chi(K_{m,n}) = 2, \ \chi(C_{2k+1}) = 3$

There are graphs with large |V(G)| and small $\chi(G)$.

Connectivity: $A, B \subseteq V(G), A$ -B-path P is a path v_0, v_1, \ldots, v_k such that $V(P) \cap A = \{v_0\}, V(P) \cap B = \{v_k\}.$

 $C \subseteq V \cup E$, we say that X separates A and B if each A-B-path contains an element of X.

 $v \in A \cap B \Rightarrow v \text{ is an } A - B \text{ path}$

Note that a separating set must contain $A \cap B$.

Note $B' \supseteq B$ and X separates A and $B' \Rightarrow X$ separates A and B.

Menger's theorem (1927): (Karl Menger Jan. 1902 - Oct. 1985)

Let G be a graph, $A, B \subseteq V(G)$. Min #vertices separating A and B = Max #vertex-disjoint A-B-paths.

proof: Assume that $A \cap B = \emptyset$.

Let $k = k(G; A, B) = \min \# \text{vertices separating } A \text{ and } B, \ k(G; A, B) \ge \max \# \text{ vertex-disjoint } A\text{-}B\text{-} \text{path (easy)}.$

We shall prove that $\max \#$ vertex-disjoint A-B-path $\geq k(G;A,B)=k$ by stronger induction:

If P is any set of less than k disjoint A-B-paths then there is a set Q of disjoint A-B-paths that includes the endpoints of P and |Q| = |P| + 1.

Lets prove this by induction on |V(G) - B - A|.

Basis: |V(G) - B - A| = 0.

There is an edge between A and B, not adjacent to vertices of P, otherwise $|V(P) \cap A| < k$ is

a vertex separating A and B.

Step: We have P, a set of less than k A-B-path, vertex disjoint.

There is an A-v-path for $v \in B \setminus (V(P))$, otherwise $V(P) \cap B$ is a set of less than k vertices separating A and B, call it R.

Let x be the last vertex of R that also belongs to a path in P call it P.

Let $B' = B \cup (V(xP) \cup V(xR))$.

 $P' = P \setminus \{P\} \cup \{Px\}.$

note $k(G; A, B') \ge k(G; A, B)$.

By induction, there is a larger set of A-B'-paths, Q', $|Q'| \ge |P'| + 1$, Q' contains endpoints of P'.

Let y be an endpoint of a path in Q' in B' that is not an endpoint of P'.

Case: 1

Case: 2

Case: 3

Case 1: $y \in B$:

Take
$$Q = Q' - \{0\}$$

 $\{Q\} \qquad \cup \{Q \cup xP\}.$

path containing x

Case 2: $y \in xP$:

Take
$$Q = Q' - \{Q\} \cup \{Q \cup xR\} - \underbrace{\{Q_1\}}_{Q_1 \cup yP}$$

Case 3: $y \in xR$:

Take
$$Q = Q' - \{Q\} \cup \{Q \cup xP\} - \{Q_1\} \cup \{Q_1 \cup yR\}.$$

If G = (V, E) a graph, then a *line graph* L(G) of G is a graph L(G) = (E, E'), $E' = \{\{e, \tilde{e}\} : e, \tilde{e} \in E \text{ and } e, \tilde{e} \text{ are adjacent}\}.$

Corollary 1: If $a, b \in V(G)$, $\{a, b\} \notin E(G)$.

 $\min \# vertices \ separating \ a \ and \ b = \max \# independent \ a-b-paths$

(here independent means that they share only a and b)

Apply Menger's theorem to A = N(a) and B = N(b).

Corollary 2: (Global version of Menger's theorem)

Any graph G is k-connected if and only if for $\underline{any\ two}$ vertices a, b there are k independent paths between a and b.

outline of proof:

Suppose G contains k independent paths between any two vertices, thus we need $\geq k$ vertices to separate G. So $\kappa(G) \geq k$.

Let $\kappa(G) = k$, in particular |(G)| > k.

Assume that a and b are not connected by k independent paths. By corollary 1 a adjacent to b. Let $G' = G - \{a, b\}$, then G' contains $\leq (k - 2)$ independent a-b-paths.

By corollary 1, we can separate a and b in G' by $\leq k-2$ vertices, X.

Since |V(G)| > k, there is $v \notin \{a, b\}$ and $v \notin$ component of a in G' - X.

Observe that v and a are separated by $X \cup \{b\}$ in G.

So, v and a are separated by $\leq k-1$ vertices, a contradiction to the fact that $\kappa(G)=k$.

Edge-connectivity

1) min #edges separating a and b in $G = \max \#$ edge-disjoint a-b-paths.

Apply Menger's theorem to L(G) with $A = \{edges incident to a\}, B = \{edges incident to b\}.$

2) Global Menger's theorem (edge-connected)

A graph is k-edge-connected if and only if there are k edge-disjoint paths between any two vertices.

 $\kappa(G) = 1$ blocks

block-cut-vertex tree.

A block - either a bridge or maximal 2-connected subgraph.

 $B_i \sim v_j \text{ if } v_j \in V(B_i).$

Any two block intersect by at most 1 vertex.

Block-cut-vertex graph is a tree.

A block that is a leaf in a block-cut-vertex tree is a block leaf.

 $\kappa(G) \geq 2 \iff G$ can be constructed using ear-decomposition

G is created using ear-decomposition if there is a sequence of graphs $G_0 \subseteq G_1 \subseteq \ldots G$, such that G_0 is a cycle, G_{i+1} is created from G_i by adding a G_i -path (ear) (i.e. a path with endpoints in G_i and no other vertices in G_i).

outline of proof:

" \Rightarrow ": $\kappa(G) = 2$: We have that G has a cycle. Consider the largest subgraph H of G that is built as ear-decomposition.

Observe $H \subseteq G$. If $u, v \in V(H)$, $v \not\sim_H u$, $v \sim_G u$, then add uv as a ear. If $H \neq G \Rightarrow \exists x \in V(G) - V(H)$, such that x is adjacent to a vertex $w \in V(H)$.

G-w is connected, so in G-w there is a path from x to H, call it P, call the first vertex of P in H, w_1 .

So $wx \cup xPw$ is an H-ear. A contradiction to maximality of H, so G = H.

 $, \Leftarrow$ ": Show that an ear-decomposition is 2-connected ...

 $\kappa(G) = 3: |V(G)| \ge 5.$

Observation: If $\kappa(G) = 3$ then there is an edge e of G such that $\kappa(G \circ e) \geq 3$.

Let $e = \{x, y\} \in E(G)$, $G \circ e$ is obtained from G by identifying x and y, removing (if necessary) loops and multiple edges.

Tutte's theorem 1961: A graph G is 3-connected if and only if it exists a sequence of graphs G_0, G_1, \ldots, G_n , such that $G_0 = K_4$, $G_n = G$, G_{i+1} is obtained from G_i : G_{i+1} has two vertices x, y of degree ≥ 3 , $x \sim y$ and $G_i = G_{i+1} \circ \{x, y\}$.

Lemma: If G is 3-connected, then there exists an edge e such that $G \circ e$ is 3-connected. (without proof)

proof: We want to prove hat if G_i is 3-connected, then G_{i+1} is also 3-connected. Assume not, i.e. $G_i = G_{i+1} \circ \{x,y\}$ and G_{i+1} is not 3-connected, i.e. there exists a cut-set S with $|S| \leq 2$.

Let G_1 and G_2 be connected components of $G_{i+1} - S$. Observe, $\{x,y\} \neq S$, otherwise G_i is not 3-connected. But $\{x,y\} \cap S \neq \emptyset$, otherwise G_i is not 3-connected (disconnected by S). So, w.l.o.g. (without loss of generality) $x \in S$, $y \in V(G_2)$.

Assume that there exists a vertex $v \in V(G_2) \setminus \{y\}$, then in $G_i \{w, v_{xy}\}$ separates v from $V(G_1)$, a contradiction. So $V(G_2) = \{y\}$, so $\deg(y) \leq 2$, a contradiction.

A graph G is k-linked, if for any distinct vertices $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$, there are vertex-disjoint s_i - t_i -paths, $i = 1, \ldots, k$.

G is k-linked $\Rightarrow G$ is k-connected (Menger's theorem)

G is f(k)-connected $\Rightarrow G$ is k-linked. (Bollobás-Thomason '96)