פתרון תרגיל 1 –

שאלה 3

- נתון

$$err(h^*, D) = 0$$

$$\forall x, x' \in X, |\eta(x) - \eta(x')| \le c \cdot ||x - x'||$$

 $y_1=1,y_2=0$ בלי הגבלת הכלליות נגדיר כי $y_1\neq y_2$ ש- פך ש- $y_1\neq y_2$ בלי הגבלת הכלליות נגדיר כי $y_1\neq y_2$ אחד – כלומר התיוג הוא אנחנו יודעים כי $y_1=r(h^*,D)=0$ ולכן לכל $x\in X$ קיים בדיוק אחד – כלומר התיוג הוא $y_1=r(h^*,D)=0$ דטרמיניסטי. מכאן נקבל כי $y_1=1,\eta(x_2)=0$ אנחנו יודעים כי $y_2=1,\eta(x_2)=0$ בפרט נכון גם עבור $y_1=1,\eta(x_2)=0$ ולכן זה בפרט נכון גם עבור $y_2=1,\eta(x_2)=0$

$$|\eta(x_1) - \eta(x_2)| \le c \cdot ||x_1 - x_2|| \to |1 - 0| \le c \cdot ||x_1 - x_2|| \to \frac{1}{c} \le ||x_1 - x_2|| \leftarrow$$

 $.err(f_S^{nn},D) \neq 0$ ב. נניח בשלילה כי

כלומר קיים $X \in X$ ו-y הינו התיוג היחידי שלו מכך שהתיוג הוא דטרמיניסטי (מסעיף א) כך $f_S^{nn}(x) \neq y + y$

 $y \neq y'$ את הדוגמא הכי קרובה ל-x אשר לפיה נקבע ($x',y' \in S$. כלומר לפי נסמן ב- $\frac{1}{c} \leq ||x-x'||$ לפי סעיף א נקבל כי

 $x\in B$ כך ש $B\in\mathcal{B}$ לפי ההנחה כי כל $x\in X$ נמצא בלפחות כדור אחד מתוך פוע גמצא מכי כל $x\in X$ לפי ההנחה כי עבור כל $x\in B$ קיימת נקודה $x\in B$

 $x'' \in B$ -פר עך $(x'', y'') \in S$ מתקיים כי קיימת

$$\left| |x - x''| \right| \le \frac{2}{3c}$$
 ולכן ולכן הכדורים הינו הרדיוס של הכדורים הינו

 $||x - x''|| \le \frac{2}{3c} < \frac{1}{c} \le ||x - x'||$ מחיבור התוצאות נקבל

 $f_S^{nn}(x)$ אינה הנקודה הכי קרובה ל-x ולכן לא לפיה נקבע (\mathbf{x}

<u>שאלה 4</u>

א.

$$X = [0,42] \times [0,5]$$
$$Y = \{black, white\}$$

ב.

$$h_{bayes}((8,4)) = black$$

 $h_{bayes}((15,1)) = black$
 $h_{bayes}((15,2)) = white$

٦.

$$err(h_{bayes}, D) = \mathbb{P}_{(X,Y) \sim D}[h_{bayes}(X) \neq Y] = \mathbb{P}(X = (8,4), Y = white) + \mathbb{P}(X = (15,1), Y = white) = 0.06 + 0.07 = 0.13 \rightarrow 13\%$$

ד. המחלקה ${\mathcal H}$ מכילה את הפונקציות שמחזירות אותו הערך עבור כל הדוגמאות. יש לנו רק שתי תוויות- שחור ולבן ולכן קיימות רק שתי פונקציות במחלקה הנ"ל.

$$err(h_{black}, D) = \mathbb{P}_{(X,Y) \sim D}[h_{black}(X) \neq Y]$$

= $\mathbb{P}[X = (8,4), Y = white] + \mathbb{P}[X = (15,1), Y = white] + \mathbb{P}[X = (15,2), Y = white]$
= $0.06 + 0.07 + 0.20 = 0.33 \rightarrow 33\%$

$$err(h_{white}, D) = \mathbb{P}_{(X,Y) \sim D}[h_{white}(X) \neq Y]$$

= $\mathbb{P}[X = (8,4), Y = black] + \mathbb{P}[X = (15,1), Y = black] = 0.42 + 0.21 = 0.63 \rightarrow 63\%$

$$approximation\; error - \inf_{h \in \mathcal{H}} err(h, D) = 33\%$$

ה. מכיוון שהמדגם שלנו נדגם רנדומלית מהמדגם וכן התוויות הן דטרמיניסטיות בהתפלגות "D ניתן להשתמש בנוסחה הבאה -

$$k = |Y| = 2 \to \mathbb{E}_{S \sim D^m} [err(\hat{h}_s, D)] = \frac{2-1}{2} \sum_{x \in X} p_x (1 - p_x)^m = \frac{1}{2} (\mathbb{P}(X = (8,4)) (1 - \mathbb{P}(X = (8,4)))^m + \mathbb{P}(X = (8,5)) (1 - \mathbb{P}(X = (8,5)))^m + \mathbb{P}(X = (9,2)) (1 - \mathbb{P}(X = (9,2)))^m) + \mathbb{P}(X = (11,6)) (1 - \mathbb{P}(X = (11,6)))^m) = \frac{1}{2} (0.08 \cdot 0.92^m + 0.15 \cdot 0.85^m + 0.47 \cdot 0.53^m + 0.24 \cdot 0.76^m) = \frac{1}{2} (0.08 \cdot 0.92^3 + 0.15 \cdot 0.85^3 + 0.47 \cdot 0.53^3 + 0.24 \cdot 0.76^3) = 0.0808$$

By a property of the property of the

לא היה ניתן להשתמש בנוסחה בהתפלגות D שכן התוויות לא היו דטרמיניסטיות.

– 5 שאלה

א.

The hypothesis class of rectangular thresholding function can achieve a minimal empirical error of

$$\widehat{\text{emp}}(h,S) = \frac{2}{20} = \frac{1}{10}$$

due to having two wrong predicted labels; for example, consider the rectangular thresholding function $f_{ au_h au_v}^{
m rec}$ with $au_h= au_v=5$, which is illustrated by the purple dashed rectangle in the following figure:

Let us consider the function

$$g(x_h, x_v) = \sqrt{x_h^2 + x_v^2}$$

which computes the ℓ_2 -norm of the vector $x = [x_h, x_v]^T$.

Then, the corresponding thresholding function is

$$f_{g,\tau}(x) = f_{\tau}^{\text{abs}} \left(g(x_h, x_v) \right) = \mathbb{I} \left[\left| \sqrt{x_h^2 + x_v^2} \le \tau \right| \right]$$

which is a circular thresholding function of radius τ in the two-dimensional input space of x. Accordingly, the hypothesis class is

$$\mathcal{H}_g = \left\{ \mathbb{I} \left[\left| \sqrt{x_h^2 + x_v^2} \le \tau \right| \right] \quad \middle| \quad \tau \in \mathbb{R} \right\}$$

Then, zero empirical error on the sample from the figure in the question is achievable by the radius threshold $\tau = 6$, as illustrated by the purple dashed-line circle in the following figure:

The feature $g(x_h, x_v) = \sqrt{x_h^2 + x_v^2}$ measures the (Euclidean) distance of a given apple from the tree trunk at $[0,0]^T$. Therefore, it is reasonable to assume that such distance-based thresholding would generalize better to new apples than the rectangular thresholding that does not have the geometrical meaning of the usual distance.