```
Customer Service Request Analysis
```

```
import pandas as pd
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
%matplotlib inline
from matplotlib import style
style.use('ggplot')
mpl.rcParams['lines.linewidth'] = 2
import warnings
warnings.filterwarnings("ignore")
import scipy.stats as stats
import statsmodels.api as sm
from statsmodels.formula.api import ols
```

Import Customer Request data

```
# read data from dataset.
# df =
pd.read_csv('Project1/311_Service_Requests_from_2010_to_Present.csv')
df = pd.read_csv("311_Service_Requests_from_2010_to_Present.csv",
header=0,
    sep=',', parse_dates=['Created Date', 'Closed Date', 'Resolution
Action Updated Date'],index col='Unique Key')
```

convert the columns 'Created Date' and Closed Date' to datetime datatype and create a new column 'Request_Closing_Time' as the time elapsed between request creation and request closing.

Remove null and junk data like closed date < create date

```
#function prepare data
def prepareData(df):
    df['Resolution Time'] = (df['Closed Date'] - df['Created
Date']).dt.total seconds() #days/3600
    df clean=df[df['Resolution Time'].notnull()]
    df perfect = df clean[df clean['Closed Date'] >= df clean['Created
Date'll
    df perfect['Day of Week'] = df perfect['Created
Date'].dt.dayofweek
    df perfect['Day of Month'] = df perfect['Created Date'].dt.day
    df perfect['Month'] = df perfect['Created Date'].dt.month
    df perfect['Year'] = df perfect['Created Date'].dt.year
    df perfect=df perfect[df perfect.Borough!='Unspecified']
    return df perfect
df perfect = prepareData(df)
df perfect.shape
(298068, 57)
```

Major Insights Patterns.

```
#Most frequent Complaints
```

(df_perfect['Complaint Type'].value_counts()).head().plot(kind='bar',
figsize=(8,5), title = 'Most common Complaints')

<AxesSubplot:title={'center':'Most common Complaints'}>

#Least frequent Complaints

(df_perfect['Complaint Type'].value_counts()).tail().plot(kind='bar',
figsize=(8,5), title = 'Least frequent Complaints')

<AxesSubplot:title={'center':'Least frequent Complaints'}>

Least frequent Complaints

Complaints Distribution across Boroughs

Borough

#Analysis for Brooklyn borough which has highest number of complains
df_Brooklyn = df_perfect[df_perfect['Borough']=='BROOKLYN']

df_Brooklyn.shape
(98295, 57)
(df_Brooklyn['Complaint
Type'].value_counts()).head(20).plot(kind='bar', figsize=(10,5),title
= 'Most Frequent Complaints in Brooklyn')

<AxesSubplot:title={'center':'Most Frequent Complaints in Brooklyn'}>

#location type vs complaints
(df_Brooklyn['Location Type'].value_counts()).head().plot(kind='bar',
figsize=(8,5),title = 'Location Type vs # Complaints')

<AxesSubplot:title={'center':'Location Type vs # Complaints'}>

Blocked driveway issues concentration across Brooklyn

df_Brook_blocked['Month'].value_counts().plot(kind =
'bar',figsize=(10,5), title = 'Volume of Blocked driveway issues by
Month\n')

<AxesSubplot:title={'center':'Volume of Blocked driveway issues by
Month\n'}>

Volume of Blocked driveway issues by Month

'Request_Closing_Time' in Seconds, grouping them for different locations, order by complaint type

df_avg_res_time_city = df_perfect.groupby(['City','Complaint
Type']).Resolution_Time.mean()

```
#df_perfect.sort_values('Complaint Type').groupby('City')
df_avg_res_time_city.head(25)
```

Citv	Complaint Type	
	Animal Abuse	7753.052632
	Blocked Driveway	9093.485714
	Derelict Vehicle	10685.592593
	Disorderly Youth	12928.500000
	Drinking	859.000000
	Graffiti	5520.000000
	Homeless Encampment	6533.250000
	Illegal Parking	8338.913793
	Noise - Commercial	8234.000000
	Noise - House of Worship	5623.909091
	Noise - Park	4620.000000
	Noise - Street/Sidewalk	7172.620690
	Noise - Vehicle	6695.571429
	Panhandling	3720.000000
	Urinating in Public	2491.000000
	Vending	1740.000000
ASTORIA	Animal Abuse	18000.608000
	Bike/Roller/Skate Chronic	6261.533333
	Blocked Driveway	17338.024064
	Derelict Vehicle	34881.299145
	Disorderly Youth	10449.333333
	Drinking	17000.714286
	Graffiti	50742.250000
	Homeless Encampment	17703.312500
	Illegal Fireworks	9984.500000
Name: Recolution Time dtype: float64		

Name: Resolution_Time, dtype: float64

Average response time across complaint types in seconds

#Average response time in seconds across complaint types
df_avg_res_time = df_perfect.groupby('Complaint
Type').Resolution_Time.mean().sort_values(ascending=True)
df avg res time.head(21)

Complaint Type	
Posting Advertisement	7112.891975
Illegal Fireworks	9940.101190
Noise - Commercial	11291.632884
Noise - House of Worship	11495.874058
Noise - Park	12246.158157
Noise - Street/Sidewalk	12377.738882
Traffic	12415.252002
Disorderly Youth	12810.902098
Noise - Vehicle	12918.914430
Urinating in Public	13055.991554
Bike/Roller/Skate Chronic	13523.545024
Drinking	13879.309748
Vending	14449.060358

```
Squeegee
                             14564.250000
Homeless Encampment
                             15716.052536
                             15741.963934
Panhandling
Illegal Parking
                             16149.479466
                             17057.298659
Blocked Driveway
Animal Abuse
                             18768.513712
Graffiti
                             25744.504425
Derelict Vehicle
                             26445.913579
Name: Resolution Time, dtype: float64
```

P-value

From the above data null hypothesis can be rejected. Since the average response time across complaint type are not equal. Null Hypothesis: Average response time across complaint type are equal. Alternate Hypothesis: Average response time across complaint type are equal

Following complains have resolution times which are very close. Disorderly Youth 12810.902098 Noise - Vehicle 12918.914430 One group can be formed for these complaints and one way Anova for this can be performed

```
Anova for this can be performed
df dis youth = df perfect[df perfect['Complaint Type']=='Disorderly
df dis youth = df dis youth.loc[:,['Resolution Time']]
df dis youth.head()
            Resolution Time
Unique Key
32274507
                      713.0
32244468
                     4605.0
32225263
                     2345.0
32227341
                    19415.0
32191432
                     6849.0
df noise veh = df perfect[df perfect['Complaint Type'] == 'Noise -
Vehicle'
df noise veh = df noise veh.loc[:,['Resolution Time']]
df noise veh.head()
            Resolution Time
Unique Key
32307159
                    22949.0
32308722
                     7254.0
32308107
                    11319.0
32308108
                    10937.0
32306622
                     2615.0
df type res = df perfect.loc[:, ['Complaint Type', 'Resolution Time']]
df type res.head()
df type res.columns
Index(['Complaint Type', 'Resolution Time'], dtype='object')
# stats f oneway functions takes the groups as input and returns F and
```

```
fvalue, pvalue = stats.f oneway(df dis youth, df noise veh)
pvalue
array([0.91269878])
Null hypothesis to be accepted for Disorderly Youth and Noise - Vehicle p-value close to 1
One Way Anova for Posting Advertisement and Derelict Vehicle
df post ad = df perfect[df perfect['Complaint Type'] == 'Posting'
Advertisement'l
df post ad = df post ad.loc[:,['Resolution Time']]
df post ad.head()
             Resolution Time
Unique Key
32306752
                      7596.0
32307464
                      7745.0
32308949
                      7834.0
32307323
                      8042.0
32306034
                      8137.0
df der veh = df perfect[df perfect['Complaint Type']=='Derelict
Vehicle'
df der veh = df der veh.loc[:,['Resolution Time']]
df_der_veh.head()
             Resolution Time
Unique Key
32309424
                     37763.0
32306497
                     14221.0
32305124
                      4913.0
32308002
                     14879.0
                      2712.0
32305798
# stats f oneway functions takes the groups as input and returns F and
fvalue, pvalue = stats.f oneway(df post ad, df der veh)
pvalue
array([7.28776953e-35])
Null hypothesis for Posting Advertisement and Derelict Vehicle to be rejected p-value <
0.05
Anova table for complain type and resolution time
# get ANOVA table for complain type and resolution time
# reshape the d dataframe suitable for statsmodels package
df perfect['Complaint Type']=df perfect['Complaint Type']
df type res = df perfect.loc[:, ['Complaint_Type', 'Resolution_Time']]
#Complaint Type
```

```
# Ordinary Least Squares (OLS) model
model = ols('Resolution Time ~ Complaint_Type',
data=df_type_res).fit()
anova table = sm.stats.anova lm(model, typ=2)
anova table
                                                      PR(>F)
                       sum_sq
                                     df
Complaint_Type 3.784839e+12
                                   20.0
                                         410.258598
                                                         0.0
                1.374816e+14 298047.0
Residual
                                                 NaN
                                                         NaN
Null Hypothesis to be rejected since p-value < 0.05
Crosstab and Chi Sauare test for Location and Complaint type
df city type = pd.crosstab(df_perfect.City ,
df perfect.Complaint Type)
# chi-squared test with similar proportions
from scipy.stats import chi2 contingency
from scipy.stats import chi2
# contingency table
table = df city type
#print(table)
stat, p, dof, expected = chi2 contingency(table)
print('dof=%d' % dof)
print(expected)
# interpret test-statistic
prob = 0.95
critical = chi2.ppf(prob, dof)
print('probability=%.3f, critical=%.3f, stat=%.3f' % (prob, critical,
stat))
if abs(stat) >= critical:
    print('Dependent (reject H0)')
else:
    print('Independent (fail to reject H0)')
# interpret p-value
alpha = 1.0 - prob
print('significance=%.3f, p=%.3f' % (alpha, p))
if p <= alpha:</pre>
    print('Dependent (reject H0)')
else:
    print('Independent (fail to reject H0)')
dof=1040
[[5.73350737e+00 3.11515400e-01 5.66574169e+01 ... 3.31741755e+00
  4.37007385e-01 2.80068584e+00]
 [1.64968644e+02 8.96314763e+00 1.63018841e+03 ... 9.54511504e+01
  1.25738943e+01 8.05833700e+011
```

```
[1.86599603e+01 1.01384103e+00 1.84394139e+02 ... 1.07966862e+01 1.42226040e+00 9.11495938e+00]
...
[6.41892211e+01 3.48755650e+00 6.34305536e+02 ... 3.71399974e+01 4.89249632e+00 3.13549511e+01]
[9.23615914e+01 5.01822989e+00 9.12699480e+02 ... 5.34405809e+01 7.03979170e+00 4.51165029e+01]
[3.12736765e+00 1.69917491e-01 3.09040456e+01 ... 1.80950048e+00 2.38367665e-01 1.52764682e+00]]
probability=0.950, critical=1116.137, stat=110425.867
Dependent (reject H0)
significance=0.050, p=0.000
Dependent (reject H0)
```