Learning distributions on Riemannian manifolds Autoencoder for SPD matrices

Charlotte BOUCHERIE, Florian YGER, Thibault DE SURREL

LITIS

2025

Table of contents

- Context
 - Use of SPD matrices
 - Problems
 - Works on SPD matrices
 - Objectives
- 2 Autoencoder
 - Metrics
 - Layers
 - Models
- Results
 - Synthetic data
 - BCI data

Table of contents

- Context
 - Use of SPD matrices
 - Problems
 - Works on SPD matrices
 - Objectives
- 2 Autoencoder
 - Metrics
 - Layers
 - Models
- Results
 - Synthetic data
 - BCI data

Use of SPD matrices

- Covariances matrices
- Used in computer vision, brain imaging, brain-computer interface (EEG)

CB (LITIS) AE SPDnet 2025 4 / 37

Existing solutions in Euclidean geometry

- Flatten to tangent space
- Distance approximation: Frobenius distance

$$L = ||A - B||_F = \sqrt{\sum_{i,j} (A_{ij} - B_{ij})^2}$$

CB (LITIS) AE SPDnet 2025 5/37

Problems

- Does not preserve the curvature of space
- Non-optimal results with euclidean distance
- Swelling effect: the determinants of the interpolation of flattened matrices

We therefore want to take into account the curvature and the non-linearity of the space of SPD matrices.

CB (LITIS) AE SPDnet 2025 6/37

Riemannian geometry

Riemann metric (AIRM):
$$\delta_R^2(X, Y) = ||\log(X^{-1/2}YX^{-1/2})||_F^2$$

- Measure the similarity between two SPD matrices while respecting the structure
- We will use it in our AE in the model, in the cost function and in the trustworthiness.

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

CB (LITIS) AE SPDnet 2025 7/37

A Riemannian Network for SPD Matrix Learning

Introduction of a network architecture that preserves the properties of positive definite matrices for Deep Learning [6]

- 3 different layers: BiMap, ReEig, LogEig
- We will base ourselves on these layers for our autoencoder

CB (LITIS) AE SPDnet 2025 8/37

Different works

DreamNet: A Deep Riemannian Manifold Network for SPD Matrix Learning [10]

- Methodology for creating deep networks
- Stacked Riemannian Autoencoder (SRAE) at the end of the network
 Riemannian Multinomial Logistics Regression for SPD Neural Networks [3]
 - Adapting logistic regression for SPD matrices
 - New specific layer for classification
 - Use of Log-Euclidean Metric or Log-Cholesky Metric

SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG [7]

• Specific batch normalization for SPD matrices

 CB (LITIS)
 AE SPDnet
 2025
 9/37

Different works

Riemannian batch normalization for SPD neural networks [1]

Specific batch normalization for SPD matrices

A Riemannian Residual Learning Mechanism for SPD Network [2]

Improves learning process for SPD networks

U-SPDNet: An SPD manifold learning-based neural network for visual classification [12]

SPD matrices from visual data

CB (LITIS) AE SPDnet 2025 10 / 37

Reducing the Dimensionality of SPD Matrices with Neural Networks in BCI [8]

 Simplification of complex data for a better interpretability and processing in BCI data

Schur's Positive Definite Network: Deep Learning in the SPD Cone With Structure [9]

 Shows that the use of the structure in the network improves the performances

Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices [13]

- Applies GNN to SPD matrices
- To model graph structures in SPD matrices

CB (LITIS) AE SPDnet 2025 11 / 37

SymNet: A Simple Symmetric Positive Definite Manifold Deep Learning Method for Image Set Classification [11]

• Image set classification

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices [4]

 Lower-dimensional and more discriminative SPD matrices from SPD matrices with orthonormal projection

Geometry-Aware Principal Component Analysis for Symmetric Positive Definite Matrices [5]

- PCA applied to SPD matrices
- Preserves more data variance
- Extends PCA from Euclidean to Riemannian geometries

CB (LITIS) AE SPDnet 2025 12 / 37

Objectives

- Autoencoder for SPD matrices
- Layer to do the reverse operations of the autoencoder
- Comparison of different models
- Impact of distance for reconstruction error

CB (LITIS) AE SPDnet 2025 13 / 37

Table of contents

- Context
 - Use of SPD matrices
 - Problems
 - Works on SPD matrices
 - Objectives
- 2 Autoencoder
 - Metrics
 - Layers
 - Models
- Results
 - Synthetic data
 - BCI data

CB (LITIS) AE SPDnet 2025 14 / 37

Autoencoder Basics

- Unsupervised learning: measurement of reconstruction error
- Dimension reduction
- Learn the underlying patterns
- Used for generative models

$$\begin{array}{c} \phi: \mathcal{X} \rightarrow \mathcal{F} \text{ , encoder} \\ \psi: \mathcal{F} \rightarrow \mathcal{X} \text{ , decoder} \\ \phi, \psi = \arg\min_{\phi, \psi} ||X - (\psi \circ \phi)X||^2 \end{array}$$

CB (LITIS) AE SPDnet 2025 15 / 37

Reconstruction error

 For each matrix, we calculate the Riemannian distance with its reconstruction.

$$\begin{split} \phi: \mathcal{X} &\to \mathcal{F} \\ \psi: \mathcal{F} &\to \mathcal{X} \\ \phi, \psi &= \arg\min_{\phi, \psi} \delta_R^2(X, \psi(\phi(X))) = \arg\min_{\phi, \psi} ||\log(X^{-1/2}\psi(\phi(X))X^{-1/2})||_F^2 \end{split}$$

CB (LITIS) AE SPDnet 2025 16 / 37

Trustworthiness

- For each matrix, we take its k closest matrices in the output space and its closest matrices in the input space.
- The distance is the same used to calculate our cost function.
- We penalize proportionally to the difference in ranks in the input space.
- We do not penalize matrices coming closer together.

$$T(k) = 1 - \frac{2}{nk(2n-3k-1)} \sum_{i=1}^{n} \sum_{j \in \mathcal{N}_{i}^{k}} \max(0, (r(i, j) - k))$$

CB (LITIS) AE SPDnet 2025 17 / 37

Accuracy

- We use MDM (Minimum Distance to Mean) to know the precision before reconstituting our matrices.
- For each class, a centroid is estimated according to our distance.
- We compare the initial precision with the final precision.

CB (LITIS) AE SPDnet 2025 18/37

BiMap layer

- The function of this layer is to generate more compact and more discriminative SPD matrices.
- Layer which performs a bilinear map f_b to transform the initial matrices into new matrices of lower dimension.

$$X_k = f_b^{(k)}(X_{k-1}; W_k) = W_k X_{k-1} W_k^T$$

 W_k is of full rank to guarantee that X_k remains SPD.

Network parameters

Number of input filters/channels hi, number of output filters/channels ho, size of input matrix ni, size of output matrix no

ReEig layer

- The function of this layer is to improve discriminative performance by introducing nonlinearity, in the same way as ReLU.
- Introduction of a non-linear function f_r which corrects the matrices by setting a threshold for low eigenvalues.

$$X_k = f_r^{(k)}(X_{k-1}) = U_{k-1} \max(\epsilon I, \Sigma_{k-1}) U_{k-1}^T$$

CB (LITIS) AE SPDnet 2025 20 / 37

LogEig/ExpEig layers

LogEig

The function of this layer is to be able to apply Riemann geometry to the output matrix.

$$X_k = f_l^{(k)}(X_{k-1}) = \log(X_{k-1}) = U_{k-1}\log(\Sigma_{k-1})U_{k-1}^T$$

ExpEig

The function of this layer is to apply the inverse function of the LogEig layer.

$$X_k = f_e^{(k)}(X_{k-1}) = \exp(X_{k-1})$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

CB (LITIS) AE SPDnet 2025 21 / 37

One layer

- Single BiMap layer for the encoder from $ni \rightarrow no$ and $hi \rightarrow ho$.
- We look at the influence of the output dimension and the output layer.
- The decoder does the opposite operation.

CB (LITIS) AE SPDnet 2025 22 / 37

Two layers with funnel channels

- Two BiMap layers.
 - $ni \rightarrow ni/2$ and $hi \rightarrow ho$.
 - $ni/2 \rightarrow no$ and $ho \rightarrow hi$.
- We look at the influence of the number of intermediate channels and the output dimension.
- The decoder does the opposite operation.

Multiple layers evenly distributed

- Number of BiMap layers set in parameters.
- Channels and intermediate matrix sizes based on the number of layers.
- The decoder does the opposite operation.

CB (LITIS) AE SPDnet 2025 24 / 37

Multiple layers halved in dimension

- Number of BiMap layers and filters in layers depends on *ni* and *no*.
- Matrix size divided by two, number of filters multiplied by two at each layer.
- The decoder does the opposite operation.

CB (LITIS) AE SPDnet 2025 25 / 37

Table of contents

- Context
 - Use of SPD matrices
 - Problems
 - Works on SPD matrices
 - Objectives
- 2 Autoencoder
 - Metrics
 - Layers
 - Models
- Results
 - Synthetic data
 - BCI data

Synthetic data

CB (LITIS) AE SPDnet 2025 27 / 33

Adding noises

CB (LITIS) AE SPDnet 2025 28 / 37

Gaussian noise

CB (LITIS) AE SPDnet 2025 29 / 3

Salt and pepper noise

CB (LITIS) AE SPDnet 2025 30 / 37

Masking noise

CB (LITIS) AE SPDnet 2025 31/37

BCI data

CB (LITIS) AE SPDnet 2025 32 / 37

Results

- Prediction less accurate
- The more we preserve the neighborhood, the worse the accuracy becomes.
- Lossy compression

Accuracy is already good without the autoencoding. We should try with a dataset

CB (LITIS) AE SPDnet 2025 33 / 37

References I

- Daniel Brooks, Olivier Schwander, Frederic Barbaresco, Jean-Yves Schneider, and Matthieu Cord.
 - Riemannian batch normalization for spd neural networks, 2019.
- Zhenyu Cai, Rui Wang, Tianyang Xu, Xiaojun Wu, and Josef Kittler. A riemannian residual learning mechanism for spd network. In 2024 International Joint Conference on Neural Networks (IJCNN), pages 1–9, 2024.
- Ziheng Chen, Yue Song, Gaowen Liu, Ramana Rao Kompella, Xiaojun Wu, and Nicu Sebe.
 - Riemannian multinomial logistics regression for spd neural networks, 2024.
 - Mehrtash T. Harandi, Mathieu Salzmann, and Richard Hartley. From manifold to manifold: Geometry-aware dimensionality reduction for spd matrices, 2014.

References II

Geometry-aware principal component analysis for symmetric positive definite matrices.

Machine Learning, 106, 04 2017.

Zhiwu Huang and Luc Van Gool.

A riemannian network for SPD matrix learning.

CoRR, abs/1608.04233, 2016.

Reinmar J Kobler, Jun ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe.

Spd domain-specific batch normalization to crack interpretable unsupervised domain adaptation in eeg, 2022.

CB (LITIS) AE SPDnet 2025 35 / 37

References III

Zhen Peng, Hongyi Li, Di Zhao, and Chengwei Pan.

Reducing the dimensionality of spd matrices with neural networks in bci.

Mathematics, 11:1570, 03 2023.

Can Pouliquen, Mathurin Massias, and Titouan Vayer.

Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure.

working paper or preprint, November 2024.

Rui Wang, Xiao-Jun Wu, Ziheng Chen, Tianyang Xu, and Josef Kittler.

Dreamnet: A deep riemannian network based on spd manifold learning for visual classification, 2022.

References IV

Rui Wang, Xiao-Jun Wu, and Josef Kittler.

Symnet: A simple symmetric positive definite manifold deep learning method for image set classification.

IEEE Transactions on Neural Networks and Learning Systems, 33(5):2208–2222, 2022.

Rui Wang, Xiao-Jun Wu, Tianyang Xu, Cong Hu, and Josef Kittler. U-spdnet: An spd manifold learning-based neural network for visual classification.

Neural Networks, 161:382-396, 2023.

Wei Zhao, Federico Lopez, J. Maxwell Riestenberg, Michael Strube, Diaaeldin Taha, and Steve Trettel.

Modeling graphs beyond hyperbolic: Graph neural networks in symmetric positive definite matrices, 2023.