EsD3: Macchine a stati finiti: semafori e riconoscitore di fronti

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

26 aprile 2022

1 Misura componenti dei circuiti

Riportiamo per completezza il valore della tensione continua di alimentazione per i circuiti integrati misurata con il multimetro

$$V_{CC} = 4.99 \pm 0.03 \text{V}$$

e il valore di capacità del condensatore di disaccoppiamento che collega le linee di alimentazione a massa (sempre misurato con il multimetro)

$$C_d = 97 \pm 4 \text{ nF}$$

2 Implementazione di un semaforo con circuiti integrati

2.a Diagramma a stati del semaforo

Nel caso di semaforo "abilitato" i possibili output sono 3 e abbiamo quindi deciso di implementarli con 3 stati interni della macchina; nel caso di semaforo "disabilitato" i possibili output sono 2, ma possono essere ottenuti riutilizzando due degli stati precedenti e l'input "enable" tramite un'opportuno circuito combinatorio (FSM di Mealy).

Si è deciso di codificare in due bit di memoria i tre stati (00), (01) e (10) che corrispondono, quando E=1 (abilitato), ai tre output "verde", "verde-giallo", "rosso" (che si susseguono in modo ciclico). Quando invece E=0 (disabilitato) vengono usati solamente (00) e (01), che corrispondono agli output del semaforo "spento" e "giallo".

2.b Codifica degli stati della macchina

La scelta della codifica in termini di bit è riassunta nella tabella che segue: Q_0 e Q_1 rappresentano rispettivamente lo stato delle uscite del primo e del secondo flip-flop e S è lo stato associato.

S_E	S_D	Q_0	Q_1
$Y^ Y^+$	V VG R	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	0 1 0

Tabella 1: codifica binaria degli stati del semaforo.

Figura 1: schema del semaforo Mealy con enable.

2.c Tabelle di verità

2.d Mappe di Karnaugh e logica combinatoria

2.e Costruzione del circuito

Si è assemblato il circuito riportato in fig. 1 e si sono collegati i pin preset e clear dei D-FF a V_{CC} per evitare reset o clear spuri.

Per studiarne il comportamento generiamo nei due pin DIO 0 (CLOCK) e DIO 1 (ENABLE) dell'AD2 due segnali di clock di frequenza $f=20~{\rm Hz}$ e 2 Hz agli ingressi CLK ed E del circuito.

2.f Analisi e verifica del funzionamento del circuito

Figura 2: Acquisizione di un ciclo completo (frequenza 1 kHz) con Logic Analyzer dei segnali in ingresso e in uscita dal semaforo.

3 Implementazione software della logica combinatoria con AD2/ROM

- 3.a Costruzione del circuito
- 3.b Implementazione delle tabelle di verità in ROM
- 3.c Verifica del funzionamento del circuito
- 3.d Variante svizzera del semaforo ROM

4 Implementazione in software dei semafori con MCU (Arduino)

- 4.a Collegamento LED semaforo alle uscite
- 4.b Definizione interruttore di Enable
- 4.c Implementazione del codice per la FSM
- 4.d Versione svizzera del semaforo con Enable via Arduino

5 Falling-edge detector

5.a Progettazione FSM e costruzione dei circuiti

Si vuole realizzare una FSM che riceve uno stream di bit su una linea di ingresso e che accende un LED tutte le volte che si presenta un fronte di discesa.

5.b Definizione dello stream di bit casuali in ingresso

Con la funzione Patterns di Waveform si invia un segnale di clock di frequenza $f_{\rm clk} = 1$ kHz al pin (CLK) del contatore e si acquisiscono i segnali in uscita con la funzione Logic dello stesso.

5.c Verifica del funzionamento e analisi della temporizzazione

Conclusioni e commenti finali

Si è riusciti a verificare il corretto funzionamento di circuiti logici sequenziali di crescente complessità e svariate applicazioni (e.g., sistemi di controllo e misura) costruiti con porte NOT, NAND, XOR, D-Latch e contatori

sincroni. In particolare sono stati realizzati e studiati un D-Latch, uno shift-register con positive edge-triggered D-FF, un generatore di sequenze pseudocasuali e alcuni tipi di divisore di frequenza con contatori binari. Inoltre si è riusciti ad apprezzare l'effetto dei tempi di propagazione delle porte sul loro comportamento, seppur in maniera limitata dalla bassa risoluzione temporale dell'AD2.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.