MID TERM EXAMINATION-Dec 2022(Re-minor)

Basic Electrical Engg., B. Tech-IT-1, IT-2, 1st Sem

Time: 01:00 Hrs Maximum Marks: 30

Note: Attempt questions as per Instructions

SECTION-A (Attempt any two questions out of three, Each of 05 Marks)

Q.1. Find the voltage V_{AB} in the circuit shown in Fig.

- **Q.2.** State and maximum power transfer theorem and drive the condition for maximum power transfer. Also show that efficiency at maximum power transfer is 50%.
- **Q.3.** Determine current through $6-\Omega$ resistance connected across A–B terminals in the electric circuit shown in Figure using Thevenin's theorem.

SECTION-B (Attempt any One question, out of two, Each of 10 Marks)

- **Q.4.** Use mesh current method to determine currents through each of the components in the circuit shown in Fig.
- **Q.5.** Discuss in brief:
 - (a) Linear Circuit(s)
 - (b) Mesh and Loop
 - (c) Uni-lateral and Bi-lateral Network
 - (d) Voltage Drop & Potential Difference
 - (e) Ohm's Law

SECTION-C (Compulsory, 10 Marks)

Q.6. (a) Use superposition principle to find the current through resistance R_1 (= 40 k Ω) in the circuit shown in Fig. (05Marks)

(b) Using Norton's theorem, find the current in the branch AB containing 6 Ω resistor of the network shown in Fig. (05Marks)

