

10/549460

SEQUENCE LISTING

<110> Dahl, Niklas
<120> Genes Associated with Obesity and Methods for Using the Same
<130> ASZD-P01-852
<150> GB 0306185
<151> 2003-03-19
<160> 75
<170> PatentIn version 3.2
<210> 1
<211> 2986
<212> DNA
<213> Homo sapiens

<400> 1

ctgaaaacag	aagatagaga	ggagtctcg	agctcgccat	ctccagcgat	ctctacattg	60
ggaaaaaaaca	tggagtcagc	tccggcagcc	cccgacccc	ccgcccagcga	gccaggcagc	120
acgcggcgg	acgcggccgc	cggctccagg	gagaccccgc	tgaaccagga	atccgcccgc	180
aagagcgagc	cgcctgcccc	ggtgcgcaga	cagagctatt	ccagcaccag	cagagatgat	240
gactttttc	atgaactccc	agaaactttt	ccttctgatc	cacctgagcc	tctgcccacat	300
ttccttattt	agcctgaaga	agcttatatt	gtgaagaata	agcctgtgaa	cctgtactgt	360
aaagcaagcc	ctgccaccca	gatctatttc	aagtgtataa	gtgaatgggt	tcatcagaag	420
gaccacatag	tagatgaaag	agtagatgaa	acttccggtc	tcattgtccg	ggaagtgagc	480
attgagattt	cgcgcagca	agtggaaagaa	ctcttggac	ctgaagatta	ctggtgccag	540
tgtgtggcct	ggagctccgc	gggttaccaca	aagagccga	aggcgtatgt	gcccattgca	600
tatctacgg	agacatttga	gcaggaaccc	ctaggaaagg	aagtgtctt	ggaacaggaa	660
gtcttactcc	agtgtcgacc	acctgaaggg	atcccagtgg	ctgaggtgga	atggttgaaa	720
aatgaagaca	taattgatcc	cgttgaagat	cggaaattttt	atattactat	tgatcacaac	780
ctcatataa	agcaggcccc	actctctgt	actgcaaatt	acacctgtgt	tgccaaaaac	840
attgttgc	agagaaaaag	tacaactgcc	actgtcatag	tctatgtcaa	cggtggctgg	900
tccacctgga	cggagtggc	tgtgtgtaac	agccgctgt	gacgagggtt	tcagaaacgt	960
acaaggactt	gtaccaaccc	ggcaccactc	aatgggggtt	ccttctgtga	agggcagagt	1020
gtcagaaaaa	tagcctgtac	tacgttatgc	ccagtgatgt	gcaggtggac	gccatggagc	1080
aagtgttcta	cttgttgaac	tgagtgcacc	cactggcgca	ggagggagt	cacggcgcca	1140
gcccccaaga	atggaggcaa	ggactgcac	ggcctcgtct	tgcaatccaa	gaactgcact	1200
gatgggctt	gcatgcagag	tttcatttat	cccatttcaa	ctgaacagag	aacccagaat	1260
gaatatggat	tttcttctgc	tcctgattca	gatgatgtt	ctctctatgt	tgggattgt	1320
atagcagtga	tcgtttgcct	ggcgatct	gtagttgtgg	ccttgtttgt	gtatcgaaag	1380
aatcatctgt	actttgagtc	agatattatt	gactcttcgg	cactcaatgg	gggtttcag	1440
cctgtgaaca	tcaaggcagc	aagacaagat	ctgctggctg	taccccccaga	cctcacgtca	1500
gctgcagcca	tgtacagagg	acctgtctat	gccctgcatg	acgtctcaga	aaaaatccca	1560
atgaccaact	ctccaattct	ggatccactg	cccaacctga	aatcaaagt	gtacaacacc	1620
tcaggtgctg	tcacccccc	agatgacc	tctgagttt	cgtccaagct	gtcccctcag	1680
atgaccctgt	cgttgggaa	aatgaaggg	ctcagcctga	agaaccagag	tctagcaagg	1740
cagactgatc	cattctgtac	cgcatggc	agcttcaact	cactgggagg	tcaccttatt	1800
gttcccaatt	caggagtca	tttgctgatt	cccgctgggg	ccattccca	agggagagtc	1860
tacgaaatgt	atgtgactgt	acacaggaaa	gaaactatga	ggccacccat	ggatgactct	1920
cagacacttt	tgaccctgt	ggtgagctgt	gggccccca	gagctctgt	cacccgcccc	1980
gtcgtcctca	ctatgatca	ctgcgcagac	cccaataccg	aggactggaa	aatactgctc	2040
aagaaccagg	cagcacaggg	acagtgggag	gatgtgggg	tggtcgggga	ggaaaaacttc	2100
accacccct	gctacattca	gctggatgca	gaggcctgcc	acatcctcac	agagaacctc	2160
agacacccat	ccctggtagg	acattccacc	accaaagcgg	ctgcaaagcgt	2220	

ggccatctttg	ggccccctgtg	ctgctcctcg	ctggaggata	gcacatccgagt	ctactgtctg	2280
gatgacacccc	aggatgccct	gaagggaaatt	ttacatctt	agagacagac	gggaggacag	2340
ctcctagaag	aaccttaaggc	tcttcatttt	aaaggcagca	cccacaacct	gcgcctgtca	2400
attcacagata	tcgcccattc	cctctggaag	agcaaattgc	tggctaaata	tcagggaaatt	2460
ccatTTtacc	atgtttggag	tggatctcaa	agaaaacctgc	actgcacett	cactctggaa	2520
agatTTtagcc	tgaacacagt	ggagctggtt	tgcaaaactct	gtgtgcggca	gggtggaagga	2580
gaagggcaga	tcttccagct	caactgcacc	gtgtcagagg	aacctactgg	catcgatttg	2640
ccgctgctgg	atcctgcgaa	caccatcacc	acggtcacgg	ggcccagtgc	tttcagcattc	2700
cctctcccta	tccggcagaa	gctctgttagc	agcctggatg	ccccccagac	gagaggccat	2760
gactggagga	tgctggccca	taagctgaac	ctggacaggt	acttgaatta	ctttgccacc	2820
aaatccagcc	caactggcgt	aatccctggat	ctttgggaag	cacagaactt	cccagatgga	2880
aacctgagca	tgctggcagc	tgtcttggaa	gaaatggaa	gacatgaaac	ggtgtgtcc	2940
ttagcaqcaq	aaqqqcaqta	ttaaccacca	tqctqqaqq	qqaaat		2986

<210> 2
<211> 964
<212> PRT
<213> *Homo sapiens*

<400> 2
Met Glu Ser Ala Pro Ala Ala Pro Asp Pro Ala Ala Ser Glu Pro Gly
1 5 10 15

Ser Ser Gly Ala Asp Ala Ala Gly Ser Arg Glu Thr Pro Leu Asn
20 25 30

Gln Glu Ser Ala Arg Lys Ser Glu Pro Pro Ala Pro Val Arg Arg Gln
35 40 45

Ser Tyr Ser Ser Thr Ser Arg Asp Asp Asp Phe Phe His Glu Leu Pro
50 55 60

Glu Thr Phe Pro Ser Asp Pro Pro Glu Pro Leu Pro His Phe Leu Ile
65 70 75 80

Glu Pro Glu Glu Ala Tyr Ile Val Lys Asn Lys Pro Val Asn Leu Tyr
 85 90 95

Cys Lys Ala Ser Pro Ala Thr Gln Ile Tyr Phe Lys Cys Asn Ser Glu
100 105 110

Trp Val His Gln Lys Asp His Ile Val Asp Glu Arg Val Asp Glu Thr
115 120 125

Ser Gly Leu Ile Val Arg Glu Val Ser Ile Glu Ile Ser Arg Gln Gln
 130 135 140

Val Glu Glu Leu Phe Gly Pro Glu Asp Tyr Trp Cys Gln Cys Val Ala
145 150 155 160

Trp Ser Ser Ala Gly Thr Thr Lys Ser Arg Lys Ala Tyr Val Arg Ile
165 170 175

Ala Tyr Leu Arg Lys Thr Phe Glu Glu Pro Leu Gly Lys Glu Val
180 185 190

Ser Leu Glu Gin Glu Val Leu Leu Gin Cys Arg Pro Pro Glu Gly Ile
195 200 205

Pro Val Ala Glu Val Glu Trp Leu Lys Asn Glu Asp Ile Ile Asp Pro
 210 215 220
 Val Glu Asp Arg Asn Phe Tyr Ile Thr Ile Asp His Asn Leu Ile Ile
 225 230 235 240
 Lys Gln Ala Arg Leu Ser Asp Thr Ala Asn Tyr Thr Cys Val Ala Lys
 245 250 255
 Asn Ile Val Ala Lys Arg Lys Ser Thr Thr Ala Thr Val Ile Val Tyr
 260 265 270
 Val Asn Gly Gly Trp Ser Thr Trp Thr Glu Trp Ser Val Cys Asn Ser
 275 280 285
 Arg Cys Gly Arg Gly Tyr Gln Lys Arg Thr Arg Thr Cys Thr Asn Pro
 290 295 300
 Ala Pro Leu Asn Gly Gly Ala Phe Cys Glu Gly Gln Ser Val Gln Lys
 305 310 315 320
 Ile Ala Cys Thr Thr Leu Cys Pro Val Asp Gly Arg Trp Thr Pro Trp
 325 330 335
 Ser Lys Trp Ser Thr Cys Gly Thr Glu Cys Thr His Trp Arg Arg Arg
 340 345 350
 Glu Cys Thr Ala Pro Ala Pro Lys Asn Gly Gly Lys Asp Cys Asp Gly
 355 360 365
 Leu Val Leu Gln Ser Lys Asn Cys Thr Asp Gly Leu Cys Met Gln Ser
 370 375 380
 Phe Ile Tyr Pro Ile Ser Thr Glu Gln Arg Thr Gln Asn Glu Tyr Gly
 385 390 395 400
 Phe Ser Ser Ala Pro Asp Ser Asp Asp Val Ala Leu Tyr Val Gly Ile
 405 410 415
 Val Ile Ala Val Ile Val Cys Leu Ala Ile Ser Val Val Val Ala Leu
 420 425 430
 Phe Val Tyr Arg Lys Asn His Arg Asp Phe Glu Ser Asp Ile Ile Asp
 435 440 445
 Ser Ser Ala Leu Asn Gly Gly Phe Gln Pro Val Asn Ile Lys Ala Ala
 450 455 460
 Arg Gln Asp Leu Leu Ala Val Pro Pro Asp Leu Thr Ser Ala Ala Ala
 465 470 475 480
 Met Tyr Arg Gly Pro Val Tyr Ala Leu His Asp Val Ser Asp Lys Ile
 485 490 495
 Pro Met Thr Asn Ser Pro Ile Leu Asp Pro Leu Pro Asn Leu Lys Ile
 500 505 510
 Lys Val Tyr Asn Thr Ser Gly Ala Val Thr Pro Gln Asp Asp Leu Ser
 515 520 525

Glu Phe Thr Ser Lys Leu Ser Pro Gln Met Thr Gln Ser Leu Leu Glu
 530 535 540

Asn Glu Ala Leu Ser Leu Lys Asn Gln Ser Leu Ala Arg Gln Thr Asp
 545 550 555 560

Pro Ser Cys Thr Ala Phe Gly Ser Phe Asn Ser Leu Gly Gly His Leu
 565 570 575

Ile Val Pro Asn Ser Gly Val Ser Leu Leu Ile Pro Ala Gly Ala Ile
 580 585 590

Pro Gln Gly Arg Val Tyr Glu Met Tyr Val Thr Val His Arg Lys Glu
 595 600 605

Thr Met Arg Pro Pro Met Asp Asp Ser Gln Thr Leu Leu Thr Pro Val
 610 615 620

Val Ser Cys Gly Pro Pro Gly Ala Leu Leu Thr Arg Pro Val Val Leu
 625 630 635 640

Thr Met His His Cys Ala Asp Pro Asn Thr Glu Asp Trp Lys Ile Leu
 645 650 655

Leu Lys Asn Gln Ala Ala Gln Gly Gln Trp Glu Asp Val Val Val
 660 665 670

Gly Glu Glu Asn Phe Thr Thr Pro Cys Tyr Ile Gln Leu Asp Ala Glu
 675 680 685

Ala Cys His Ile Leu Thr Glu Asn Leu Ser Thr Tyr Ala Leu Val Gly
 690 695 700

His Ser Thr Thr Lys Ala Ala Ala Lys Arg Leu Lys Leu Ala Ile Phe
 705 710 715 720

Gly Pro Leu Cys Cys Ser Ser Leu Glu Tyr Ser Ile Arg Val Tyr Cys
 725 730 735

Leu Asp Asp Thr Gln Asp Ala Leu Lys Glu Ile Leu His Leu Glu Arg
 740 745 750

Gln Thr Gly Gly Gln Leu Leu Glu Glu Pro Lys Ala Leu His Phe Lys
 755 760 765

Gly Ser Thr His Asn Leu Arg Leu Ser Ile His Asp Ile Ala His Ser
 770 775 780

Leu Trp Lys Ser Lys Leu Leu Ala Lys Tyr Gln Glu Ile Pro Phe Tyr
 785 790 795 800

His Val Trp Ser Gly Ser Gln Arg Asn Leu His Cys Thr Phe Thr Leu
 805 810 815

Glu Arg Phe Ser Leu Asn Thr Val Glu Leu Val Cys Lys Leu Cys Val
 820 825 830

Arg Gln Val Glu Gly Glu Gly Gln Ile Phe Gln Leu Asn Cys Thr Val
 835 840 845

Ser Glu Glu Pro Thr Gly Ile Asp Leu Pro Leu Leu Asp Pro Ala Asn
850 855 860

Thr Ile Thr Thr Val Thr Gly Pro Ser Ala Phe Ser Ile Pro Leu Pro
865 870 875 880

Ile Arg Gln Lys Leu Cys Ser Ser Leu Asp Ala Pro Gln Thr Arg Gly
885 890 895

His Asp Trp Arg Met Leu Ala His Lys Leu Asn Leu Asp Arg Tyr Leu
900 905 910

Asn Tyr Phe Ala Thr Lys Ser Ser Pro Thr Gly Val Ile Leu Asp Leu
 915 920 925

Trp Glu Ala Gln Asn Phe Pro Asp Gly Asn Leu Ser Met Leu Ala Ala
930 935 940

Val Leu Glu Glu Met Gly Arg His Glu Thr Val Val Ser Leu Ala Ala
945 950 955 960

Glu Gly Gln Tyr

```
<210> 3  
<211> 2780  
<212> DNA  
<213> Homo sapiens
```

<400> 3
ctgaaaacag aagatagaga ggagtctcg agctcgccat ctccagcgat ctctacattg 60
ggaaaaaaaca tggagtcagc tccggcagcc cccgaccggc ccgcgcaggca gccaggcagc 120
agcggcgcgg acgcggccgc cggtccagg gagaccccg tgaaccagga atccgcccgc 180
aagagcgagc cgccctgcccc ggtgcgcaga cagagctatt ccagcaccagg cagagatgtat 240
gactttttc atgaactccc agaaactttt cttctgtatc cacctgagcc tctgccatcat 300
ttccttattg agcctgaaga agcttatatt gtgaagaata agcctgtgaa cctgtactgt 360
aaagcaagcc ctgccaccca gatctattt aagtgtataa gtgaatgggt tcatcagaag 420
gaccacatag tagatgaaag agtagatgaa acttccggc tcattgtccg ggaagtgagc 480
attgagattt cgccgcagca agtggaaagaa ctctttggac ctgaagatata ctggtgccag 540
tgtgtggcct ggagctccgc gggtaaccaca aagagccgga aggctgtatgt ggcgcattgca 600
tatctacggc agacatttga gcaggaacccc cttaggaaagg aagtgtcttt ggaacaggaa 660
gtcttactcc agtgtcgacc acctgaaggg atcccagtgg ctgaggtggaa atggttgaaa 720
aatgaagaca taattgatcc cgttgaagat cggaaattttt atattactat tgatcacaac 780
ctcatcataa agcaggcccg actctctgtat actgcaaatt acacctgtgt tgccaaaaaac 840
attgttgcca agaggaaaag tacaactgccc actgtcataat tctatgtcaa cggtggtctgg 900
tccacctgga cggagtggc tttgtgttaac agccgctgtg gacgagggta tcagaaacgt 960
acaaggactt gtaccaaccc ggcaccactc aatgggggtt cttctgtga agggcagagt 1020
gtgcagaaaa tagcctgtac tacgttatgc ccagtggatg gcaggtggac gccatggagc 1080
aagtggctca ctgttggAAC tgagtgcacc cactggcgca ggagggagtg cacggcgcca 1140
gcccccaaga atggaggca ggactgcgac ggctcgct tgcaatccaa gaactgcact 1200
gatgggctt gcatgcagag ttcatttt cccatttcaa ctgaacagag aaccsagaat 1260
gaatatggat ttcttctgc tcctgattca gatgatgttgc ctctctatgt tgggattgtg 1320
atagcagtga tcgttgcct ggcgatctt gtatgttgg cttgtttgt gtatcgaaag 1380
aatcatcgta actttgagtc agatattatt gactcttcgg cactcaatgg gggcttcag 1440
cctgtgaaca tcaaggcagc aagacaagat ctgctggctg taccggcaga cctcacgtca 1500
gctgcagcca tgacagagg acctgtctat ggcctgcatt acgtctcaga caaaatccca 1560
atgaccaact ctccaattct ggatccactg cccaaacctga aaatcaaagt gtacaacacc 1620
tcaggtgctg tcaccccccAG agatgacctc tctgaggTTA cgtccaaagct gtcccttcag 1680

atgaccgggt	cgttggta	aatgaagcc	ctcagcctga	agaaccagag	tctagcaagg	1740
cagactgatc	catcctgtac	cgcattggc	agcttcaact	cactgggagg	tcaccttatt	1800
gttcccaatt	caggagtca	cttgctgatt	cccgctgggg	ccattccccca	agggagagtc	1860
tacgaaaatgt	atgtgactgt	acacaggaaa	aaaactatga	ggccacccat	ggatgactct	1920
cagacacttt	tgaccctgt	ggtagctgt	gggccccccag	gagctctgct	cacccgcgcc	1980
gtcgtcctca	ctatgcata	ctgcgcagac	ccaaataccg	aggactggaa	aatactgctc	2040
ctcgctggag	tacagcatcc	gagtcactg	tctggatgac	accaggatg	ccctgaagga	2100
aattttacat	cttgagagac	agacgggagg	acagctccct	gaagaaccta	aggctctca	2160
ttttaaaggc	agcacccaca	acctgcgcct	gtcaattcac	gatatcgccc	attccctctg	2220
gaagagcaaa	ttgctggcta	aatatcagga	aattccattt	taccatgttt	ggagtggtac	2280
tcaaaagaaaac	ctgcactgca	ccttcaactct	ggaaagattt	agcctgaaca	cagtggagct	2340
ggtttgc当地	ctctgtgtgc	ggcaggtgga	aggagaagagg	cagatcttcc	agctcaactg	2400
caccgtgtca	gaggaaccta	ctggcatcga	tttgcgcctg	ctggatcctg	cgaacaccat	2460
caccacggtc	acggggccca	gtgcttcag	catccctctc	cctatccggc	agaagctctg	2520
tagcagcctg	gatccccccc	agacgagagg	ccatgactgg	aggatgctgg	cccataagct	2580
gaacctggac	aggtaattga	attacattgc	caccaaatacc	agcccaactg	gcgttaatct	2640
ggatctttgg	gaagcacaga	acttcccaga	tggaaacctg	agcatgctgg	cagctgtctt	2700
ggaagaaatg	ggaagacatg	aaacgggtgt	gtccttagca	gcagaaggc	agtattaacc	2760
accatqctgg	aaggggaaat					2780

<210> 4
<211> 669
<212> PRT
<213> *Homo sapiens*

<400> 4
Met Glu Ser Ala Pro Ala Ala Pro Asp Pro Ala Ala Ser Glu Pro Gly
1 5 10 15

Ser Ser Gly Ala Asp Ala Ala Ala Gly Ser Arg Glu Thr Pro Leu Asn
 20 25 30

Gln Glu Ser Ala Arg Lys Ser Glu Pro Pro Ala Pro Val Arg Arg Gln
35 40 45

Ser Tyr Ser Ser Thr Ser Arg Asp Asp Asp Phe Phe His Glu Leu Pro
50 . 55 60

Glu Thr Phe Pro Ser Asp Pro Pro Glu Pro Leu Pro His Phe Leu Ile
65 70 75 80

Glu Pro Glu Glu Ala Tyr Ile Val Lys Asn Lys Pro Val Asn Leu Tyr
85 90 95

Cys Lys Ala Ser Pro Ala Thr Gln Ile Tyr Phe Lys Cys Asn Ser Glu
 100 105 110

Trp Val His Gln Lys Asp His Ile Val Asp Glu Arg Val Asp Glu Thr
115 120 125

Ser Gly Leu Ile Val Arg Glu Val Ser Ile Glu Ile Ser Arg Gln Gln
 130 135 140

Val	Glu	Glu	Leu	Phe	Gly	Pro	Glu	Asp	Tyr	Trp	Cys	Gln	Cys	Val	Ala
145					150					155					160

Trp Ser Ser Ala Gly Thr Thr Lys Ser Arg Lys Ala Tyr Val Arg Ile
165 170 175

Ala Tyr Leu Arg Lys Thr Phe Glu Gln Glu Pro Leu Gly Lys Glu Val
 180 185 190

 Ser Leu Glu Gln Glu Val Leu Leu Gln Cys Arg Pro Pro Glu Gly Ile
 195 200 205

 Pro Val Ala Glu Val Glu Trp Leu Lys Asn Glu Asp Ile Ile Asp Pro
 210 215 220

 Val Glu Asp Arg Asn Phe Tyr Ile Thr Ile Asp His Asn Leu Ile Ile
 225 230 235 240

 Lys Gln Ala Arg Leu Ser Asp Thr Ala Asn Tyr Thr Cys Val Ala Lys
 245 250 255

 Asn Ile Val Ala Lys Arg Lys Ser Thr Thr Ala Thr Val Ile Val Tyr
 260 265 270

 Val Asn Gly Gly Trp Ser Thr Trp Thr Glu Trp Ser Val Cys Asn Ser
 275 280 285

 Arg Cys Gly Arg Gly Tyr Gln Lys Arg Thr Arg Thr Cys Thr Asn Pro
 290 295 300

 Ala Pro Leu Asn Gly Gly Ala Phe Cys Glu Gly Gln Ser Val Gln Lys
 305 310 315 320

 Ile Ala Cys Thr Thr Leu Cys Pro Val Asp Gly Arg Trp Thr Pro Trp
 325 330 335

 Ser Lys Trp Ser Thr Cys Gly Thr Glu Cys Thr His Trp Arg Arg Arg
 340 345 350

 Glu Cys Thr Ala Pro Ala Pro Lys Asn Gly Gly Lys Asp Cys Asp Gly
 355 360 365

 Leu Val Leu Gln Ser Lys Asn Cys Thr Asp Gly Leu Cys Met Gln Ser
 370 375 380

 Phe Ile Tyr Pro Ile Ser Thr Glu Gln Arg Thr Gln Asn Glu Tyr Gly
 385 390 395 400

 Phe Ser Ser Ala Pro Asp Ser Asp Asp Val Ala Leu Tyr Val Gly Ile
 405 410 415

 Val Ile Ala Val Ile Val Cys Leu Ala Ile Ser Val Val Val Ala Leu
 420 425 430

 Phe Val Tyr Arg Lys Asn His Arg Asp Phe Glu Ser Asp Ile Ile Asp
 435 440 445

 Ser Ser Ala Leu Asn Gly Gly Phe Gln Pro Val Asn Ile Lys Ala Ala
 450 455 460

 Arg Gln Asp Leu Leu Ala Val Pro Pro Asp Leu Thr Ser Ala Ala Ala
 465 470 475 480

 Met Tyr Arg Gly Pro Val Tyr Ala Leu His Asp Val Ser Asp Lys Ile
 485 490 495

Pro Met Thr Asn Ser Pro Ile Leu Asp Pro Leu Pro Asn Leu Lys Ile
 500 505 510

Lys Val Tyr Asn Thr Ser Gly Ala Val Thr Pro Gln Asp Asp Leu Ser
 515 520 525

Glu Phe Thr Ser Lys Leu Ser Pro Gln Met Thr Gln Ser Leu Leu Glu
 530 535 540

Asn Glu Ala Leu Ser Leu Lys Asn Gln Ser Leu Ala Arg Gln Thr Asp
 545 550 555 560

Pro Ser Cys Thr Ala Phe Gly Ser Phe Asn Ser Leu Gly Gly His Leu
 565 570 575

Ile Val Pro Asn Ser Gly Val Ser Leu Leu Ile Pro Ala Gly Ala Ile
 580 585 590

Pro Gln Gly Arg Val Tyr Glu Met Tyr Val Thr Val His Arg Lys Glu
 595 600 605

Thr Met Arg Pro Pro Met Asp Asp Ser Gln Thr Leu Leu Thr Pro Val
 610 615 620

Val Ser Cys Gly Pro Pro Gly Ala Leu Leu Thr Arg Pro Val Val Leu
 625 630 635 640

Thr Met His His Cys Ala Asp Pro Asn Thr Glu Asp Trp Lys Ile Leu
 645 650 655

Leu Leu Ala Gly Val Gln His Pro Ser Leu Leu Ser Gly
 660 665

<210> 5

<211> 1863

<212> DNA

<213> Homo sapiens

<400> 5

gttttttttt ttttttttgtt accatagagt tgctctgaaa acagaagata gaggagatct 60
 cgtagtcgc atctccacgcg atctctacat tggaaaaaaa catggagtcgca gctccggcag 120
 cccccgaccc cggccggcagc gagccaggca gcagcgccgc ggacgcggcc gcccgcctcca 180
 gggagacccc gctgaaccag gaatccgccc gcaagagcga gcccgcctgcc ccgtgcgc 240
 gacagagcta ttccagcacc agcagaggtt tctcgttaac gaagaagaca catacatctc 300
 aaattgaaat tattccatgc aagatctgtg gagacaatc atcaggaatc cattatggtg 360
 tcattacatg tgaaggctgc aagggtttt tcaggagaag tcagcaaagc aatgccacct 420
 actcctgtcc tcgtcagaag aactgtttga ttgatcgaac cagtagaaac cgctgccaac 480
 actgtcgatt acagaaatgc cttggcgtag ggatgtctcg agatgtctga aaatttggcc 540
 gaatgtcaaa aaagcagaga gacagttgt atgcagaatg acagaaacac cggatgcagc 600
 agcagcagcg cgaccaccag cagcagcctg gagaggctga gccgctgacg cccacctaca 660
 acatctggc caacgggctg acggaacttc acgacgaccc cagtaactac attgacgggc 720
 acaccctgtt ggggagtaag gcagactccg ccgtcagcag cttctacctg gacatacagc 780
 ctcccccaga ccagtcaggc cttgatataca atggaatcaa accagaacca atatgtgact 840
 acacaccaggc atcaggcttc ttccctact gttcgttcac caacggcgag acttccccaa 900
 ctgtgtccat ggcagaatta gaacaccttg cacagaatat atctaaatcg catctggaaa 960
 cctgccaata cttgagagaa gagctccagc agataaacgtg gcagaccttt ttacaggaag 1020
 aaattgagaa ctatcaaaac aagcagcggg aggtgatgtg gcaattgtgt gccatcaaaa 1080
 ttacagaagc tatacagtat gtggtgagtttgcacaaacg cattgtatggaaac 1140

Pro Glu Gly Ser Lys Ala Asp Ser Ala Val Ser Ser Phe Tyr Leu Asp
 210 215 220
 Ile Gln Pro Ser Pro Asp Gln Ser Gly Leu Asp Ile Asn Gly Ile Lys
 225 230 235 240
 Pro Glu Pro Ile Cys Asp Tyr Thr Pro Ala Ser Gly Phe Phe Pro Tyr
 245 250 255
 Cys Ser Phe Thr Asn Gly Glu Thr Ser Pro Thr Val Ser Met Ala Glu
 260 265 270
 Leu Glu His Leu Ala Gln Asn Ile Ser Lys Ser His Leu Glu Thr Cys
 275 280 285
 Gln Tyr Leu Arg Glu Glu Leu Gln Gln Ile Thr Trp Gln Thr Phe Leu
 290 295 300
 Gln Glu Glu Ile Glu Asn Tyr Gln Asn Lys Gln Arg Glu Val Met Trp
 305 310 315 320
 Gln Leu Cys Ala Ile Lys Ile Thr Glu Ala Ile Gln Tyr Val Val Glu
 325 330 335
 Phe Ala Lys Arg Ile Asp Gly Phe Met Glu Leu Cys Gln Asn Asp Gln
 340 345 350
 Ile Val Leu Leu Lys Ala Gly Ser Leu Glu Val Val Phe Ile Arg Met
 355 360 365
 Cys Arg Ala Phe Asp Ser Gln Asn Asn Thr Val Tyr Phe Asp Gly Lys
 370 375 380
 Tyr Ala Ser Pro Asp Val Phe Lys Ser Leu Gly Cys Glu Asp Phe Ile
 385 390 395 400
 Ser Phe Val Phe Glu Phe Gly Lys Ser Leu Cys Ser Met His Leu Thr
 405 410 415
 Glu Asp Glu Ile Ala Leu Phe Ser Ala Phe Val Leu Met Ser Ala Asp
 420 425 430
 Arg Ser Trp Leu Gln Glu Lys Val Lys Ile Glu Lys Leu Gln Gln Lys
 435 440 445
 Ile Gln Leu Ala Leu Gln His Val Leu Gln Lys Asn His Arg Glu Asp
 450 455 460
 Gly Ile Leu Thr Lys Leu Ile Cys Lys Val Ser Thr Leu Arg Ala Leu
 465 470 475 480
 Cys Gly Arg His Thr Glu Lys Leu Met Ala Phe Lys Ala Ile Tyr Pro
 485 490 495
 Asp Ile Val Arg Leu His Phe Pro Pro Leu Tyr Lys Glu Leu Phe Thr
 500 505 510
 Ser Glu Phe Glu Pro Ala Met Gln Ile Asp Gly
 515 520

<210> 7
<211> 1821
<212> DNA
<213> Homo sapiens

<400> 7
ctagattcct ctgtttca taccaggag gtcagggagg gcacccgtta gtgcctgagg 60
ccccgagagg gttcacagcc acctgagaag tggttgcagt ctatgggtgt gtgttcttc 120
tccaagctgt gtcagctgtg gatggcggt gagagaaaac aaaaaaaagt tgttccctc 180
agctctctgc tgaaaaaatg ctcacgggg a gtcagtcaac atttggtac tcagtaacga 240
agaagacaca tacatctcaa attgaaatta ttccatgca gatctgtgaa gacaaatcat 300
caggaatcca ttatgtgtc attacatgtg aaggctgca gggcttttc aggagaagtc 360
agcaaagcaa tgccacctac tcctgtcctc gtcagaagaa ctgtttgatt gatcgaacca 420
gtagaaaccg ctgccaacac tgtcgattac agaaatgcct tgccgttaggg atgtctcgag 480
atgctgtaaa atttggccga atgtcaaaaaa agcagagaga cagcttgat gcagaagtac 540
agaaaacaccg gatgcagcag cagcagcg accaccagca gcagcctgaa gaggctgagc 600
cgctgacgcc cacctacaac atctcggcca acggctgac ggaacttcac gacgaccta 660
gtaactacat tgacgggcac acccctgagg ggataaggc agactccgc gtcagcagct 720
tctacctgga catacagcct tccccagacc agtcaggct tgatataat ggaatcaa 780
cagaaccaat atgtgactac acaccagcat caggcttctt tccctactgt tcgttcacca 840
acggcgagac ttccccaaact gtgtccatgg cagaattaga acacccgtca cagaatata 900
ctaaatcgca tctggaaacc tgccaataact tgagagaaga gctccagcag ataacgtggc 960
agacctttt acaggaagaa attgagaact atcaaaacaa gcagcgggag gtatgtggc 1020
aattgtgtgc catcaaaatt acagaagcta tacagtatgt ggtggagtt gccaaacgca 1080
ttgatggatt tatggaaactg tgtcaaaaatg atcaattgt gttctaaaaa gcaggttctc 1140
tagaggttgtt gtttatcaga atgtgccgtg ccttgactc tcagaacaac accgtgtact 1200
ttgatgggaa gtatgccagc cccgacgtct tcaaattcctt aggttggaa gactttatta 1260
gctttgtgtt tgaatttgg aagagttat gttctatgca cctgactgaa gatgaaattg 1320
cattattttc tgcatttgc tgcatttgc tgcatttgc tgcatttgc tgcatttgc tgcatttgc 1380
aaattgaaaaa actgcaacag aaaattcagc tagctttca acacgtccta cagaagaatc 1440
accgagaaga tggaaatacta acaaagttaa tatgcaaggt gtctacatta agacccctat 1500
gtggacgaca tacagaaaag ctaatggcat ttaaagcaat atacccagac attgtgcgac 1560
ttcattttcc tccattatac aaggagttgt tcacttcaga atttggccat gcaatgcaaa 1620
ttgatgggta aatgttatca cctaagcact tctagaatgt ctgaaagtaca aacatgaaaa 1680
acaaacaaaaa aaattaaccg agacacttta tatggccctg cacagacctg gagcgccaca 1740
caactgcacat cttttggta tcggggctcag gcaaaggagg ggaaacaatg aaaacaaata 1800
aagttgaact tgttttctc a 1821

<210> 8
<211> 477
<212> PRT
<213> Homo sapiens

<400> 8
Met Leu Thr Gly Ser Gln Ser Thr Phe Gly Ile Ser Val Thr Lys Lys
1 5 10 15
Thr His Thr Ser Gln Ile Glu Ile Ile Pro Cys Lys Ile Cys Gly Asp
20 25 30
Lys Ser Ser Gly Ile His Tyr Gly Val Ile Thr Cys Glu Gly Cys Lys
35 40 45
Gly Phe Phe Arg Arg Ser Gln Gln Ser Asn Ala Thr Tyr Ser Cys Pro
50 55 60

Arg Gln Lys Asn Cys Leu Ile Asp Arg Thr Ser Arg Asn Arg Cys Gln
 65 70 75 80

 His Cys Arg Leu Gln Lys Cys Leu Ala Val Gly Met Ser Arg Asp Ala
 85 90 95

 Val Lys Phe Gly Arg Met Ser Lys Lys Gln Arg Asp Ser Leu Tyr Ala
 100 105 110

 Glu Val Gln Lys His Arg Met Gln Gln Gln Arg Asp His Gln Gln
 115 120 125

 Gln Pro Gly Glu Ala Glu Pro Leu Thr Pro Thr Tyr Asn Ile Ser Ala
 130 135 140

 Asn Gly Leu Thr Glu Leu His Asp Asp Leu Ser Asn Tyr Ile Asp Gly
 145 150 155 160

 His Thr Pro Glu Gly Ser Lys Ala Asp Ser Ala Val Ser Ser Phe Tyr
 165 170 175

 Leu Asp Ile Gln Pro Ser Pro Asp Gln Ser Gly Leu Asp Ile Asn Gly
 180 185 190

 Ile Lys Pro Glu Pro Ile Cys Asp Tyr Thr Pro Ala Ser Gly Phe Phe
 195 200 205

 Pro Tyr Cys Ser Phe Thr Asn Gly Glu Thr Ser Pro Thr Val Ser Met
 210 215 220

 Ala Glu Leu Glu His Leu Ala Gln Asn Ile Ser Lys Ser His Leu Glu
 225 230 235 240

 Thr Cys Gln Tyr Leu Arg Glu Glu Leu Gln Gln Ile Thr Trp Gln Thr
 245 250 255

 Phe Leu Gln Glu Glu Ile Glu Asn Tyr Gln Asn Lys Gln Arg Glu Val
 260 265 270

 Met Trp Gln Leu Cys Ala Ile Lys Ile Thr Glu Ala Ile Gln Tyr Val
 275 280 285

 Val Glu Phe Ala Lys Arg Ile Asp Gly Phe Met Glu Leu Cys Gln Asn
 290 295 300

 Asp Gln Ile Val Leu Leu Lys Ala Gly Ser Leu Glu Val Val Phe Ile
 305 310 315 320

 Arg Met Cys Arg Ala Phe Asp Ser Gln Asn Asn Thr Val Tyr Phe Asp
 325 330 335

 Gly Lys Tyr Ala Ser Pro Asp Val Phe Lys Ser Leu Gly Cys Glu Asp
 340 345 350

 Phe Ile Ser Phe Val Phe Glu Phe Gly Lys Ser Leu Cys Ser Met His
 355 360 365

 Leu Thr Glu Asp Glu Ile Ala Leu Phe Ser Ala Phe Val Leu Met Ser
 370 375 380

Ala Asp Arg Ser Trp Leu Gln Glu Lys Val Lys Ile Glu Lys Leu Gln
 385 390 395 400

Gln Lys Ile Gln Leu Ala Leu Gln His Val Leu Gln Lys Asn His Arg
 405 410 415

Glu Asp Gly Ile Leu Thr Lys Leu Ile Cys Lys Val Ser Thr Leu Arg
 420 425 430

Ala Leu Cys Gly Arg His Thr Glu Lys Leu Met Ala Phe Lys Ala Ile
 435 440 445

Tyr Pro Asp Ile Val Arg Leu His Phe Pro Pro Leu Tyr Lys Glu Leu
 450 455 460

Phe Thr Ser Glu Phe Glu Pro Ala Met Gln Ile Asp Gly
 465 470 475

<210> 9

<211> 3646

<212> DNA

<213> Homo sapiens

<400> 9

ctgccttgg agaaagtgga gtgtggcgct tggttgtcgt tatttcctcg gactgcttcg 60
 cgggtcacgg attcagcttc tgcccagtgg ggcttcagc tggttgcgcg tctctctgtc 120
 ccctccccc cccccccggca cacctctgtc tacgatgagg aaaggtctgc gggcgacagc 180
 ggcgcgtgc ggactgggac tggatactt gctgcaaatg ctcgtctac ctgccttggc 240
 cctgctcagc gccagcggca ctggctccgc cgcccaagat gatgactttt ttcatgaact 300
 cccagaaaact ttcccttctg atccacactga gcctctgcca catttcctta ttgagcctga 360
 agaagcttat attgtgaaga ataaggctgt gAACCTGTAC tgtaaAGCAA gcccgtccac 420
 ccagatctat ttcaagtgtat atagtgaatg ggttcatcag aaggaccaca tagtagatga 480
 aagagtagat gaaacttccg gtctcattgtt ccgggaagtgc agcattgaga ttccgcgcca 540
 gcaagtggaa gaactcttg gacactgaaga ttactggtgc cagtgtgtgg cctggagctc 600
 cgcgggttacc acaaagagcc ggaaggcgta tggcgcatt gcatactac ggaagacatt 660
 ttagcaggaa cccctaggaa aggaagtgtc tttggAACAG gaagtcttac tccagtgtcg 720
 accacctgaa gggatcccag tggctgagggt ggaatggttt aaaaatgaag acataattga 780
 tcccgttggaa gatcggatt ttatattac tattgatcac aacctcatca taaagcaggc 840
 ccgactctct gatactgcaa attacacctg tggccaaa aacattgttg ccaagaggaa 900
 aagtacaact gccactgtca tagtctatgt caacgggtgc tggccacct ggacggagtg 960
 gtctgtgtgt aacagccgt gtggacgagg gtatcagaaaa cgtacaagga cttgtaccaa 1020
 cccggcacca ctcaatgggg gtgccttctg tgaaggcag agtgtgcaga aaatagcctg 1080
 tactacgtta tgcccagtgg atggcagggtg gacgcccatttgg agcaagtgtt ctacttgtgg 1140
 aactgagtgc acccacttggc gcaggaggaa gtgcacggcg ccagccccca agaatggagg 1200
 caaggactgc gacggcctcg tcttgcatac caagaactgc actgatgggc tttgcatac 1260
 gactgctcct gattcagatg atgttgcgtt ctatgttggg attgtgatag cagtgtacgt 1320
 ttgcctggcg atctctgttag ttgtggcctt gtttgcgtat cggagaatac atcgtgactt 1380
 ttagtcagat attattgact cttcggcact caatggggc tttcarccctg tgaacatcaa 1440
 ggcagcaaga caagatctgc tggctgtacc cccagacctc acgtcagctg cagccatgt 1500
 cagaggacct gtctatgccc tgcatacgtt ctcagacaaa atcccaatga ccaactctcc 1560
 aattctggat ccactgccccca acctgaaaat caaagtgtac aacacctcag gtgcgtctc 1620
 cccccaagat gacctctctg agtttacgtc caagctgtcc cctcagatga cccagtcgtt 1680
 gttggagaat gaaggcctca gcctgaagaa ccagagtcta gcaaggcaga ctgatccatc 1740
 ctgtaccgca tttggcagct tcaactcgct gggaggtcac cttattgttc ccaattcagg 1800
 agtcagcttgc ctgattcccg ctggggccat tccccaaaggg agagtctacg aaatgtatgt 1860
 gactgtacac aggaaaagaaa ctatgaggcc acccatggat gactctcaga cactttgac 1920
 ccctgtgggtg agctgtgggc ccccaaggagc tctgctcacc cggccgtcg tcctcactat 1980
 gcatcactgc gcagacccca ataccgagga ctggaaaata ctgctcaaga accaggcagc 2040

acagggacag tgggaggatg tggtggtggt cggggaggaa aacttcacca cccctgcta 2100
 cattaagctg gatgcagagg cctgccacat cctcacagag aacctcagca cctacgcctc 2160
 gtaggacat tccaccacca aagcggtgc aaagcgcctc aagctggca tctttggcc 2220
 cctgtgctgc tcctcgctgg agtacagcat ccgagtctac tgtctggatg acacccagga 2280
 tgcctgaaag gaaattttac atcttgagag acagacggaa ggacagctcc tagaagaacc 2340
 taaggctctt cattttaaag gcagcaccca caacctgcgc ctgtcaattc acgatatcgc 2400
 ccattccctc tggaaagagca aattgctgca taaatatcag gaaattccat ttaccatgt 2460
 ttggagtgga tctcaaagaa acctgcactg cacccactt ctggaaagat ttagcctgaa 2520
 cacagtggag ctggtttgc aactctgtt gcggcaggtg gaaggagaag ggcagatctt 2580
 ccagctcaac tgcaccgtgt cagaggaacc tactggcatc gatttgcgc tgctggatcc 2640
 tgcgaacacc atcaccacgg tcacggggcc cagtcttc agcatccctc tccctatccg 2700
 gcagaagctc ttagcagcc tggatgcccc ccagacgaga ggccatgact ggaggatgt 2760
 gcccataag ctgaacctgg acaggtactt gaattactt gccaccaaatt ccagccaaac 2820
 tgcgtataat ctggatcttt gggaaagcaca gaacttccca gatggaaacc tgagcatgt 2880
 ggcagctgtc ttggaaagaaa tggaaagaca tgaaacggtg gtgtccttag cagcagaagg 2940
 gcagtattaa ccaccatgct ggaaggggaa atgaaggaca aaaatgcaca gggagtctgt 3000
 gccgtccag gtgaatcaca gctgaggagg aaatccagat gagaccaatg cacttcacag 3060
 gcaagaatgc agcaggagcc agaaggaaaa cagatacaac tgcccatgta catgcccact 3120
 ttactcggag atcatcacgg gagttaaagaa aaattgtgtt aatttgtacc ttgaatttag 3180
 ctatcaacct aatttcctc ttagttggc ttagtgcgtgt gtgtacagg atcttacagt 3240
 ttcctaggaa acgctttta ttgctatcca gatatatggaa taaacttct taacaaaccc 3300
 aatttctaca aatgtgttt acatcaaatt ggacagggat gcagacactg tccatggctc 3360
 gttctatattt tggtaatc atttgaaggta gaagctgtgg acggttgtt gtgtctattt 3420
 cagatttagta atttacagag aaatcacaga ctttgctac aaatcgtgtg catcaagtgt 3480
 ctcagataat cctccatca gtgttctgtt tctagaactt gttagaccag tgtaactgtt 3540
 ttagtcaatc aagtggagaa tctaagtgtt aaaaagaaat aactaagact cctattcatt 3600
 ggagggaccc ttctgtgtt ctttggaaat aaagctgttag cactgc 3646

<210> 10
 <211> 931
 <212> PRT
 <213> Homo sapiens

<400> 10															
Met	Arg	Lys	Gly	Leu	Arg	Ala	Thr	Ala	Ala	Arg	Cys	Gly	Leu	Gly	Leu
1															15
Gly	Tyr	Leu	Leu	Gln	Met	Leu	Val	Leu	Pro	Ala	Leu	Ala	Leu	Leu	Ser
					20										30
Ala	Ser	Gly	Thr	Gly	Ser	Ala	Ala	Gln	Asp	Asp	Asp	Phe	Phe	His	Glu
						35			40						45
Leu	Pro	Glu	Thr	Phe	Pro	Ser	Asp	Pro	Pro	Glu	Pro	Leu	Pro	His	Phe
					50										55
Leu	Ile	Glu	Pro	Glu	Glu	Ala	Tyr	Ile	Val	Lys	Asn	Lys	Pro	Val	Asn
						65				75					80
Leu	Tyr	Cys	Lys	Ala	Ser	Pro	Ala	Thr	Gln	Ile	Tyr	Phe	Lys	Cys	Asn
						85				90					95
Ser	Glu	Trp	Val	His	Gln	Lys	Asp	His	Ile	Val	Asp	Glu	Arg	Val	Asp
						100			105						110
Glu	Thr	Ser	Gly	Leu	Ile	Val	Arg	Glu	Val	Ser	Ile	Glu	Ile	Ser	Arg
							115			120					125

Gln Gln Val Glu Glu Leu Phe Gly Pro Glu Asp Tyr Trp Cys Gln Cys
 130 135 140

Val Ala Trp Ser Ser Ala Gly Thr Thr Lys Ser Arg Lys Ala Tyr Val
 145 150 155 160

Arg Ile Ala Tyr Leu Arg Lys Thr Phe Glu Gln Glu Pro Leu Gly Lys
 165 170 175

Glu Val Ser Leu Glu Gln Glu Val Leu Leu Gln Cys Arg Pro Pro Glu
 180 185 190

Gly Ile Pro Val Ala Glu Val Glu Trp Leu Lys Asn Glu Asp Ile Ile
 195 200 205

Asp Pro Val Glu Asp Arg Asn Phe Tyr Ile Thr Ile Asp His Asn Leu
 210 215 220

Ile Ile Lys Gln Ala Arg Leu Ser Asp Thr Ala Asn Tyr Thr Cys Val
 225 230 235 240

Ala Lys Asn Ile Val Ala Lys Arg Lys Ser Thr Thr Ala Thr Val Ile
 245 250 255

Val Tyr Val Asn Gly Gly Trp Ser Thr Trp Thr Glu Trp Ser Val Cys
 260 265 270

Asn Ser Arg Cys Gly Arg Gly Tyr Gln Lys Arg Thr Arg Thr Cys Thr
 275 280 285

Asn Pro Ala Pro Leu Asn Gly Gly Ala Phe Cys Glu Gly Gln Ser Val
 290 295 300

Gln Lys Ile Ala Cys Thr Thr Leu Cys Pro Val Asp Gly Arg Trp Thr
 305 310 315 320

Pro Trp Ser Lys Trp Ser Thr Cys Gly Thr Glu Cys Thr His Trp Arg
 325 330 335

Arg Arg Glu Cys Thr Ala Pro Ala Pro Lys Asn Gly Gly Lys Asp Cys
 340 345 350

Asp Gly Leu Val Leu Gln Ser Lys Asn Cys Thr Asp Gly Leu Cys Met
 355 360 365

Gln Thr Ala Pro Asp Ser Asp Asp Val Ala Leu Tyr Val Gly Ile Val
 370 375 380

Ile Ala Val Ile Val Cys Leu Ala Ile Ser Val Val Val Ala Leu Phe
 385 390 395 400

Val Tyr Arg Lys Asn His Arg Asp Phe Glu Ser Asp Ile Ile Asp Ser
 405 410 415

Ser Ala Leu Asn Gly Gly Phe Gln Pro Val Asn Ile Lys Ala Ala Arg
 420 425 430

Gln Asp Leu Leu Ala Val Pro Pro Asp Leu Thr Ser Ala Ala Ala Met
 435 440 445

Tyr Arg Gly Pro Val Tyr Ala Leu His Asp Val Ser Asp Lys Ile Pro
 450 455 460
 Met Thr Asn Ser Pro Ile Leu Asp Pro Leu Pro Asn Leu Lys Ile Lys
 465 470 475 480
 Val Tyr Asn Thr Ser Gly Ala Val Ser Pro Gln Asp Asp Leu Ser Glu
 485 490 495
 Phe Thr Ser Lys Leu Ser Pro Gln Met Thr Gln Ser Leu Leu Glu Asn
 500 505 510
 Glu Ala Leu Ser Leu Lys Asn Gln Ser Leu Ala Arg Gln Thr Asp Pro
 515 520 525
 Ser Cys Thr Ala Phe Gly Ser Phe Asn Ser Leu Gly Gly His Leu Ile
 530 535 540
 Val Pro Asn Ser Gly Val Ser Leu Leu Ile Pro Ala Gly Ala Ile Pro
 545 550 555 560
 Gln Gly Arg Val Tyr Glu Met Tyr Val Thr Val His Arg Lys Glu Thr
 565 570 575
 Met Arg Pro Pro Met Asp Asp Ser Gln Thr Leu Leu Thr Pro Val Val
 580 585 590
 Ser Cys Gly Pro Pro Gly Ala Leu Leu Thr Arg Pro Val Val Leu Thr
 595 600 605
 Met His His Cys Ala Asp Pro Asn Thr Glu Asp Trp Lys Ile Leu Leu
 610 615 620
 Lys Asn Gln Ala Ala Gln Gly Gln Trp Glu Asp Val Val Val Val Gly
 625 630 635 640
 Glu Glu Asn Phe Thr Thr Pro Cys Tyr Ile Lys Leu Asp Ala Glu Ala
 645 650 655
 Cys His Ile Leu Thr Glu Asn Leu Ser Thr Tyr Ala Leu Val Gly His
 660 665 670
 Ser Thr Thr Lys Ala Ala Ala Lys Arg Leu Lys Leu Ala Ile Phe Gly
 675 680 685
 Pro Leu Cys Cys Ser Ser Leu Glu Tyr Ser Ile Arg Val Tyr Cys Leu
 690 695 700
 Asp Asp Thr Gln Asp Ala Leu Lys Glu Ile Leu His Leu Glu Arg Gln
 705 710 715 720
 Thr Gly Gly Gln Leu Leu Glu Glu Pro Lys Ala Leu His Phe Lys Gly
 725 730 735
 Ser Thr His Asn Leu Arg Leu Ser Ile His Asp Ile Ala His Ser Leu
 740 745 750
 Trp Lys Ser Lys Leu Leu Ala Lys Tyr Gln Glu Ile Pro Phe Tyr His
 755 760 765

Val Trp Ser Gly Ser Gln Arg Asn Leu His Cys Thr Phe Thr Leu Glu
 770 775 780
 Arg Phe Ser Leu Asn Thr Val Glu Leu Val Cys Lys Leu Cys Val Arg
 785 790 795 800
 Gln Val Glu Gly Glu Gly Gln Ile Phe Gln Leu Asn Cys Thr Val Ser
 805 810 815
 Glu Glu Pro Thr Gly Ile Asp Leu Pro Leu Leu Asp Pro Ala Asn Thr
 820 825 830
 Ile Thr Thr Val Thr Gly Pro Ser Ala Phe Ser Ile Pro Leu Pro Ile
 835 840 845
 Arg Gln Lys Leu Cys Ser Ser Leu Asp Ala Pro Gln Thr Arg Gly His
 850 855 860
 Asp Trp Arg Met Leu Ala His Lys Leu Asn Leu Asp Arg Tyr Leu Asn
 865 870 875 880
 Tyr Phe Ala Thr Lys Ser Ser Pro Thr Gly Val Ile Leu Asp Leu Trp
 885 890 895
 Glu Ala Gln Asn Phe Pro Asp Gly Asn Leu Ser Met Leu Ala Ala Val
 900 905 910
 Leu Glu Glu Met Gly Arg His Glu Thr Val Val Ser Leu Ala Ala Glu
 915 920 925
 Gly Gln Tyr
 930

<210> 11
 <211> 6277
 <212> DNA
 <213> Homo sapiens

<400> 11
 ataaaggcaca ttttagcattg ttgtgtttta ataactgcaa atgttctaaa tgtgaataag 60
 agcatataat taagattttt tgaataaaact cctaaaattg aaatgtttgt gttgtcttta 120
 ttcattacc ctaatgcccc ttttgggttg aggtatttga cagccagaat aatggctccc 180
 caaggatgtc catgggttttgg gaatttaaga atatgttaca ttacatggca aatctgtaga 240
 aattaaagta gcagatggat ttaaagttgc taatctgctg actttaagag agtagattt 300
 tcttggattt ttccattggg tccaaatatta tcacaataat ttctaaatgt ggaggaaattt 360
 agaagaagtgt agtgctttga tacgagaagt acttgaacca tactgtctgg gtgtgaagat 420
 gggggaaagggg gcccactagcc aaagaatgtt ggtgtccctt ggaagctggaa aacagctaga 480
 aaacatgtttt tctgttagagg ctgcagaaag gagctcagct ctgggatcat tctcagttcc 540
 ttaaggctgc cctctgggcc tagccttggc tagccttaggc cttggcccttc tcataaaatc 600
 acaattttttt ttttaaaaatc tcatcaagag aattaatctc tcaagcttgc catgtatcg 660
 tcttatgttaa tctaattcaag gaaatggaat atccccatc atccataagc cctggccaca 720
 ctcaagagaa aaacatatac atggccaaata tagcagagaa caagaaattt ggaggccatc 780
 ttggaaattttt gtctacaaca ctcctggat tccctctgtg tggttgttctt tgcataatc 840
 cacatatata tacgtacata cacatccatg cacatatgtt tttgttattac ttttttcaat 900
 gtagacatatac cagcttctta taatatttga tttctttgtt tttccactag ttcagtcata 960
 tttcgctgtt ttagctacca gatcccatct gatacatgaa aacaacatgaa agaagataaa 1020
 gaaagtttctt ctagcatct tttctctcgat gacattcaat tgcataactca ccatcaccca 1080
 aacagcaaaaa ttattgactg acacttcaa taatcttcc taataacttat ttacattaaa 1140

aatatttttc tttatgaggg tgaagttagaa attaattcac agctctgtac tctggacaaa 1200
 gaaaaaactg taacaaaaaaaa atcttcacac tgatctaaca ctttatattc tcatacgatca 1260
 agtgattaat taaattccaa tgctcctctg aaggaggtt ggcatttcta taaattaaaa 1320
 aatatcgccg ggcattgtgg ctcacgtctg taatcccagc actttggaa gccaaggcag 1380
 gcagatcacg aggtcaggag atcgagacca tcctggctt cacggtgaaa ccctgtctct 1440
 actaaaaata caaaaaaaaaaaa aaaagttagg tggcgttagt ggcgggcgcc ttagtcccc 1500
 gctactcggg aggctgaggg agaagaatgg cgtgaaccca ggaggcggag ctgcagtga 1560
 gccaagatcg tgccactgca ctccagcctg ggtgacagag cgagactcca tctaaaaaaaa 1620
 aaaaaaaaaaa ttataactaa agttttaaat taaatcattc tgattgttca ggaatgcaca 1680
 cccttaaata tatgtataaa aaaattaaag atttcttata gaaaaactta ttgaaaaagt 1740
 ccctgaaaga taacaaatga tattataaac tatgtatttct ttagtataat ttccaaaaaaaa 1800
 tacataattt tatgagcaaa atgggtgttga atatataaaa tattgtatgt atgtgtgt 1860
 atataagctt ttaagtgaa gttaaaaac atgaatgagg acctatgaag cattatttct 1920
 gtgcacgtac caatatcctg ttatccag tgcccaaccc taagatctct gactctacca 1980
 cattaacttc agactaaaaaa ctaaccctt taaacacacc gtaaatgatt ttttttgtt 2040
 aaatgcaact taaaaatttc aaaatataata atagaaaaa tgatgtttaa tatattgtgt 2100
 tggaaatgtta aagaataaaac ttagtttga atgcattctga atattttgtt ggcattgcaac 2160
 agctcttagt aagaaaccat tccatctttc tgagagaaag ttgtatatttta actgaagaga 2220
 ggcattttgt tttgatctgg aggccacaaga aatctttaaag ttagtataatcc attaggttat 2280
 aagataaaaaa aaaatccat cagagaatag gaaaataaaaa accactagta atctcattac 2340
 tgcccttca aatactactg ctatataaggt gaacagcttc ccctctagtc tttccctttt 2400
 ctccccaaaa tagccgacga gtggatcaag catgtcttagt gggatataag cacaaggat 2460
 gcttattctt gttttcttctt ttttttattt gttctgatta ttaatttttcc ccctagtc 2520
 agttctttt ttggatgaaa tttagggcaa gtgttcaggc ttaccttagt acttcagatg 2580
 atgacatctc ctctaaacag taattatattt ttcagttca tggtaatatttta caacatttt 2640
 agctcattttta aaataactaac tatgccccctt gatatggttt gactctgtgt ctacacccaa 2700
 atctcatgtc aaattgttaat cccacttat tgaaggtggg gactgggtggg aggtgattgg 2760
 atcatagtcg ggggttccag tggtttagcg ccattctccc tagggctgtc ttgtgataga 2820
 gttctcacca gatccgatga gatctgttgg tttcaaagtg ttagcagtc tcagtc 2880
 tggctgtctg tctgtcttc tctctgtctc tcaatccccctt gctccaccat ggttaagatgt 2940
 gcttacttcc cctttatgtt ttgacacgtat tggtaatgttcc ctgaggcctc ccagccatgc 3000
 ttctgtacag cctgaggaac tggtagtcaa ttaaatgtct ttcttcata aactacccag 3060
 ttcaggttag ttctttatag cagcatgaaa acagactaat acacccctt tctcagcctg 3120
 tgctgtggg aaggctagcc aatgcaagca gaaagagggg tgctgtctgc tggttctcca 3180
 attggcatct gtcccccttc ttcatcttgc tggatataatggggccca agacttactt 3240
 ttggcctcag acacagtcaa ggatcatctt gatgaaaaaa acaaaatcac ctttgaacct 3300
 ctccctccac accatcttcc actttggttt tccgctatgc ctttgtactg gggacaaaga 3360
 ctatccacga atccttactt taaaaactga ggcagtggct ctgaatcatt ccccttgg 3420
 cccccccaca catctgaaca ccctcggtc ccaacaccac atctgctgaa gttgactgg 3480
 cctgaaatgc tggaggctca gtgttttggg aaactgcggg gagttctctt gccacaattc 3540
 tcttgggttc cgtcaaaagc aattacatgt ttcagatgtt gaaaagcact gtcataaaaa 3600
 gctggcacag cagccaaaggaa gacagatgtt taaaaccaca cggcttctca gaactccac 3660
 ttacgttggg gtcagcaca gagatgagca tggatgtatc ccccccgtctt acatccccc 3720
 atttggattt aatgcatgag gtcgtttctt gatgagggtgc caaattctttt cggggacaa 3780
 acacaaagtt gcagaattca gtgatcatac aagtccatgtt cctcaaaacga aaataataat 3840
 actataaaatg caaagatgtt accataaaaaa atacagttagg tggactttt tgagtcaaca 3900
 taaaaaaatc cagcatttctt aactggtagc atgaggagta ccagtctgca ggtatgttaac 3960
 gcactgatag gctatggaca atatattcca cacttacggg agtggggaaa ctataggtca 4020
 gacaaagcta caggtacttc ttctttctt ttttctttt ttctttcttgc gatggaggct 4080
 ccctctgtcg ccttaggttgg agtgcattgg catgatctca gctcactgca acctccgcct 4140
 cccgggttca agtgattctc ctgcctcagc ctcctggatgc gctgggatata taggcccaca 4200
 ccaccaacca cccggctaat ttttcatatt ttttagtagaa acgagggttc actgtgttag 4260
 ccagaatggt ctgcacttcc tgaccttagt gatctgcctg cctcagcctc ccaaagtgt 4320
 gggattacag gtgtgagcca cggcactcg cccaaagtact tcttaactgc aggacttctc 4380
 agaggctttt aatatggtaa tgagtgttgc tggatgttgc gactcaatc aatataatgc 4440
 caacacgtttt gatatgacca cagaacccat ttccctgaac actttttatc acctccataga 4500
 gcaggggtca gaaaactact gcccattgtgg tctgatctgg ccactgctt tttcgtaaa 4560
 ttttcaactgc ccacagccaa cctcatttgc ttagatggccg tccatggctg ctccacact 4620
 gcagccgcag cgatgatgc tggagacacgc acccggttgc cacaaggatctt aaaaatattt 4680

ctcttggcc ctttacggaa aacgtgtaca aactttgtcc tctgaaatat agtttggaa 4740
 cctacttcac tcatgatatac aataattcta aaaaatttca aacaattttt aaagtcaaca 4800
 ttgagaagtt ttccatggtt agaatttaat aattacagtc aataactctc ttaaagcattc 4860
 gtgacaataa agtagaagga cactgtgtaa ttctatatgg tctctgtctt cagggagctc 4920
 ccaagctagt ttgtaaaaaa gagaactcaa ggcacaaaca actggggggc aagagatgtt 4980
 ctaaacacta agaggaggca atatggcata gtagaaaagaa tgcaagcatg tgtaagagta 5040
 aaacatacac agggcgcaga gtcacaagag tcaggggtt gcttggctg tgataccctc 5100
 tcctgcata agagtaagac ctgctttatt gggcacttac tatgtgccag gcaccatccc 5160
 agttcttc catgaaggat tgctctttaa ttcttatcat aatgaatagg tactattatt 5220
 atcccagttt atgggtgagg aaaccaagtc ttaggttgc taacttatta aaataaagca 5280
 catacctagt aggtggtaa caagagccaa aacaagtctg ttggtcagct aaccaccacg 5340
 ttatagtggc tgctgcttag gggcagcata tattccctgc atttccccag aggtgacaga 5400
 agtagtgag aggtagtgc tctctaggt ctgacacaca gcccatgtt gctgactcaa 5460
 caaccacaca acgtaatgtc atggcaccc tc aggtggcagg gagggtatcg tggctggac 5520
 tgatcttc aaggctgc aactgtgc ctgagcagg tggtaagga tggcagaagg aagaggggag 5580
 tgaggcactc agggtagaca gaaggtgata ctggcacatc ctccactc aaggaatctg 5640
 gaagggtttt acaaataatgt acattttga gtggaaacag cagaaagttag gggctggcta 5700
 cctactttcc actaccctta tcccactcc ccctagggg tgaggcagag ataagcacgc 5760
 tttgtggggc acactgatcc acaaacttgc aacccctgag tccactc aagcagcctgg 5820
 gcaggatgaa tgggtgttgc cggcatgtc agcttctt tctcttagag 5880
 tcaatccat gatccccctgc gaaaagaatc ctccacttga cctgaatgtc ctgtattggc 5940
 accttcttgc caggaatcct atcgggtatt tcatcaaagc atcccacacg agtttaagt 6000
 gtggctccat gagagtaaga caccaggaca gctgtgccac ctgtgtgc ttgcctgtac 6060
 tgtctgc acaatgtgc ccagagatgtt ggagaggctt cgaaaggac tggattttgc tattttggc 6120
 caacacttct acatgtcaag gaatctgaag tctccgcctg ggctcaaaa catttcttgt 6180
 ggctcaactg accatcccg tgacccctgag gggacatgag tggcttcaag ctaagaggaa 6240
 gcagtccaaac tctgcacac gaattaccaa ggaacat 6277

<210> 12
 <211> 1829
 <212> DNA
 <213> Homo sapiens

<400> 12
 ttttgcctt gttttccag ctattaaaag ggagatatac tcattcattc aacaaggatt 60
 tcttgcggac ccattttcca cgacagaacc atccaaacca agacacttct tcctattgtg 120
 gcaaaaatga gcaacgttaa aactccccag aatgcagagg tgactcacgt gtttatgtaa 180
 gtaagcattt agatatggct ttggaaaaga aaacacacac ctaaaagagg ctaccagcat 240
 ttgaataaaag tggtaacact ggggttcaa aactgtacaa cagttctgt gtacttaag 300
 tcactatcct tcataacttct tccctttaaa ttctatttga aactaaataa tatcaacaat 360
 actttaagta agattatgtc ggttactg atgaaattat atgcaggctc gcttggcctg 420
 ttctcatgcg taaggcttgc ataacttgc cctaggtt ccagttctgc ttacctgagt 480
 acccacttta tcccagaaac gagacctgaa cactgtgtcc tggtttcatc tttccagtga 540
 gccagccttc tgaggcatta gggctcagc aagaccatgg aggtgagaga ggcacaggca 600
 cactccagat gcagggctc tggccctgtt caagagtac acggcagaga ggacaagact 660
 cctgtcccg gggactgtt ttcccttttgc ccccacaccc cagatatctt cgtgacagcc 720
 cctgcctga aagcccggtg agcgtcatgg cggagaagcc agcctgttgc cgattattct 780
 gcctgacagg gactatctgc tgctgtgtc agtttagaa atgtcataag ctcaggactc 840
 aggacacttt gacgtcgagt ccaacaggac ccatagatgc cccctgaaca attctcatct 900
 gtgtggaaag cctaagggggt gtttttaagt aggggctggc aggagagtga ggtctggct 960
 gcttcttac ggcttcaat gtcggccca tttccctgggat tttccaggag taagtcttgc 1020
 ctcccatgaa tcccactgac ccctaagtgg catggaaaag gagaggacaa aaagaaagga 1080
 gtttagacatt tgactaatac tggttgc gtagatgc tctttgagca ggtaggcatt 1140
 taaagctaac tttccatcat gggataacact tgggggttct ttggagactg atctgcgtga 1200
 ccccaatggc tcaacaggaa tcttcccttca caattccctt gacttagttaa tggccctact 1260
 ctccctgctat cttcttctcc ctgggttctca gtgttcaact gccacataaa ctctctctct 1320
 cactgttggg gtcggcatttgc ccctctgagttt ggaattctg ggcaaaaagat tcaatgtcaag 1380
 ctcaccaggc tatctcacat tggccctaca tctggcttcc tggaaatatg cccatatcct 1440

ttgtctggac	aatcctgaga	cagacccagc	ccaatgcaga	agtgcctatt	cttctctcag	1500
cagcagatta	acttgtctgg	gagttactca	tcctcagact	tctcaagctc	attccgacac	1560
ctgtccacct	aatgcagcaa	ctgcacgtga	cacaataaac	acttaatgca	agtcacaaat	1620
gggagtcaca	tatataatat	tattagtagc	cacgctagaa	aatagagaca	gaaacagata	1680
aagttaattt	caatttcagt	aacatttcat	ttaatcta	ctgtcaaaaa	tactattgtc	1740
tcaatatata	atcaacaaa	ctgttaatg	aatacattac	agttttttt	tattaagtct	1800
ttgaaatgga	gtgtgtat	tagacttaa				1829

<210> 13
<211> 2612
<212> DNA
<213> Homo sapiens

<400> 13						
atgaggaaag	gtctgcgggc	gacagcggcc	cgctgcggac	tggactggg	atacttgctg	60
caaatgctcg	tgctacactgc	cctggccctg	ctcagcgc	gcggcactgg	ctccggcc	120
caagatgatg	actttttca	tgaactccca	gaaactttc	cttctgatcc	acctgagcct	180
ctgccacatt	tccttattga	gcctgaagaa	gcttatattg	tgaagaataa	gcctgtgaac	240
ctgtactgta	aagcaagccc	tgccacccag	atctattca	agtgtatag	tgaatgggtt	300
catcagaagg	accacatagt	agatgaaaga	gtagatgaaa	cttccggct	cattgtccgg	360
gaagtgagca	ttgagattc	gcccagca	gtggaaagaa	tcttggacc	tgaagattac	420
tgtgtccagt	gtgtggcctg	gagctccg	ggtaccacaa	agagccggaa	ggcgtatgt	480
cgcattgcat	atctacggaa	gacattttag	caggaacccc	taggaaagga	agtgtcttg	540
gaacaggaag	tcttactcca	gtgtcgacca	cctgaaggga	tcccagtggc	tgaggtggaa	600
tgttgaaaaa	atgaagacat	aattgatccc	gttgaagatc	ggaatttttta	tattactatt	660
gatcacaacc	tcatcataaa	gcaggccc	ctctctgata	ctgcaaatta	cacctgtgtt	720
gcaaaaaaca	ttgttccaa	gaggaaaagt	acaactgcca	ctgtcatagt	ctatgtcaac	780
ggggcgttgt	ccacctggac	ggagtggct	gtgtgtaa	gccgctgtgg	acgagggtat	840
cagaaacgta	caaggactt	taccaaccc	gcaccactca	atgggggtgc	cttctgtgaa	900
ggcagagtg	tgcagaaaat	agcctgtact	acgttatg	cagtggatgg	caggtggacg	960
ccatggagca	agtggcttac	ttgttggact	gagtgcaccc	actggcgcag	gagggagtgc	1020
acggcgccag	cccccaagaa	tggaggcaag	gactgcacg	gcctcgtt	gcaatccaag	1080
aactgcactg	atgggctt	catgcagact	gctctgtt	cagatgtat	tgctctctat	1140
gttggattt	tgtatgcagt	gatctttgc	ctggcgatct	ctgtagttt	ggccttgttt	1200
gtgtatcgga	agaatcatcg	tgacttttag	tcagatatta	ttgactttt	ggcactcaat	1260
ggggcctt	agcctgtgaa	catcaaggca	gcaagacaag	atctgctggc	tgtacccca	1320
gacctcacgt	cagctgc	catgtacaga	ggacctgtct	atgccctgca	tgacgtctca	1380
gacaaaatcc	caatgacca	ctctccaatt	ctggatccac	tgcaccaact	gaaaatcaaa	1440
gtgtacaaca	cctcagg	tgtcaccc	caagatgacc	tctctgagtt	tacgtccaag	1500
ctgtccctc	agatgacca	gtcggtt	gagaatgaa	ccctcagcct	gaagaaccag	1560
agtctagcaa	ggcagactga	tccatctgt	accgcattt	gcagttca	ctcactgg	1620
ggtcaccta	ttgttccaa	ttcaggagtc	agcttgc	ttccgcgtt	ggccattccc	1680
caagggagag	tctacgaaat	gtatgtact	gtacacagga	aagaaactat	gaggccaccc	1740
atggatgact	ctcagacact	tttgaccc	gtggtgagct	ttggggccccc	aggagctct	1800
ctcacccg	ccgtcgct	cactatgcat	cactgc	accaccaatac	cgaggactgg	1860
aaaatactgc	tcctcgctt	agtacagcat	ccgagtctac	tgtctggat	acacccagga	1920
tgcctgaa	gaaattttac	atcttggag	acagacgg	ggacagctt	tagaagaacc	1980
taaggctt	cattttaa	gacgaccca	caacctgc	ctgtcaattt	acgatatgc	2040
ccatccc	tggaaagac	aattgctgg	taaatatc	gaaattccat	tttaccatgt	2100
ttggagtgg	tctcaaa	acctgcact	caccc	ctggaaagat	ttagcctgaa	2160
cacagtgg	ctggtttgc	aactctgt	gcggcagg	gaaggagaag	ggcagatct	2220
ccagctcaac	tgcaccgt	cagaggaacc	tactggc	gatttgc	tgctggatcc	2280
tgcgaacacc	atcaccacgg	tcacgggg	cagtctt	agcatcc	tccctatcc	2340
gcagaagctc	tgtacagcc	ttgatgccc	ccagacg	ggccatgact	ggaggatgt	2400
ggccataag	ctgaaac	acaggtactt	gaattactt	gccaccaat	ccagccaa	2460
tggcgtatc	ctggatctt	ggaagcaca	gaacttcc	gatggaaacc	tgagcatgt	2520
ggcagctgtc	ttggaaagaa	ttggaagaca	tgaaacgg	gtgtcctt	cagcagaagg	2580
gcagtattaa	ccaccatgt	ggaaggggaa	at			2612

<210> 14
<211> 636
<212> PRT
<213> Homo sapiens

<400> 14
Met Arg Lys Gly Leu Arg Ala Thr Ala Ala Arg Cys Gly Leu Gly Leu
1 5 10 15
Gly Tyr Leu Leu Gln Met Leu Val Leu Pro Ala Leu Ala Leu Leu Ser
20 25 30
Ala Ser Gly Thr Gly Ser Ala Ala Gln Asp Asp Asp Phe Phe His Glu
35 40 45
Leu Pro Glu Thr Phe Pro Ser Asp Pro Pro Glu Pro Leu Pro His Phe
50 55 60
Leu Ile Glu Pro Glu Glu Ala Tyr Ile Val Lys Asn Lys Pro Val Asn
65 70 75 80
Leu Tyr Cys Lys Ala Ser Pro Ala Thr Gln Ile Tyr Phe Lys Cys Asn
85 90 95
Ser Glu Trp Val His Gln Lys Asp His Ile Val Asp Glu Arg Val Asp
100 105 110
Glu Thr Ser Gly Leu Ile Val Arg Glu Val Ser Ile Glu Ile Ser Arg
115 120 125
Gln Gln Val Glu Glu Leu Phe Gly Pro Glu Asp Tyr Trp Cys Gln Cys
130 135 140
Val Ala Trp Ser Ser Ala Gly Thr Thr Lys Ser Arg Lys Ala Tyr Val
145 150 155 160
Arg Ile Ala Tyr Leu Arg Lys Thr Phe Glu Gln Glu Pro Leu Gly Lys
165 170 175
Glu Val Ser Leu Glu Gln Glu Val Leu Leu Gln Cys Arg Pro Pro Glu
180 185 190
Gly Ile Pro Val Ala Glu Val Glu Trp Leu Lys Asn Glu Asp Ile Ile
195 200 205
Asp Pro Val Glu Asp Arg Asn Phe Tyr Ile Thr Ile Asp His Asn Leu
210 215 220
Ile Ile Lys Gln Ala Arg Leu Ser Asp Thr Ala Asn Tyr Thr Cys Val
225 230 235 240
Ala Lys Asn Ile Val Ala Lys Arg Lys Ser Thr Thr Ala Thr Val Ile
245 250 255
Val Tyr Val Asn Gly Gly Trp Ser Thr Trp Thr Glu Trp Ser Val Cys
260 265 270

Asn Ser Arg Cys Gly Arg Gly Tyr Gln Lys Arg Thr Arg Thr Cys Thr
 275 280 285
 Asn Pro Ala Pro Leu Asn Gly Gly Ala Phe Cys Glu Gly Gln Ser Val
 290 295 300
 Gln Lys Ile Ala Cys Thr Thr Leu Cys Pro Val Asp Gly Arg Trp Thr
 305 310 315 320
 Pro Trp Ser Lys Trp Ser Thr Cys Gly Thr Glu Cys Thr His Trp Arg
 325 330 335
 Arg Arg Glu Cys Thr Ala Pro Ala Pro Lys Asn Gly Gly Lys Asp Cys
 340 345 350
 Asp Gly Leu Val Leu Gln Ser Lys Asn Cys Thr Asp Gly Leu Cys Met
 355 360 365
 Gln Thr Ala Pro Asp Ser Asp Asp Val Ala Leu Tyr Val Gly Ile Val
 370 375 380
 Ile Ala Val Ile Val Cys Leu Ala Ile Ser Val Val Val Ala Leu Phe
 385 390 395 400
 Val Tyr Arg Lys Asn His Arg Asp Phe Glu Ser Asp Ile Ile Asp Ser
 405 410 415
 Ser Ala Leu Asn Gly Gly Phe Gln Pro Val Asn Ile Lys Ala Ala Arg
 420 425 430
 Gln Asp Leu Leu Ala Val Pro Pro Asp Leu Thr Ser Ala Ala Ala Met
 435 440 445
 Tyr Arg Gly Pro Val Tyr Ala Leu His Asp Val Ser Asp Lys Ile Pro
 450 455 460
 Met Thr Asn Ser Pro Ile Leu Asp Pro Leu Pro Asn Leu Lys Ile Lys
 465 470 475 480
 Val Tyr Asn Thr Ser Gly Ala Val Thr Pro Gln Asp Asp Leu Ser Glu
 485 490 495
 Phe Thr Ser Lys Leu Ser Pro Gln Met Thr Gln Ser Leu Leu Glu Asn
 500 505 510
 Glu Ala Leu Ser Leu Lys Asn Gln Ser Leu Ala Arg Gln Thr Asp Pro
 515 520 525
 Ser Cys Thr Ala Phe Gly Ser Phe Asn Ser Leu Gly Gly His Leu Ile
 530 535 540
 Val Pro Asn Ser Gly Val Ser Leu Leu Ile Pro Ala Gly Ala Ile Pro
 545 550 555 560
 Gln Gly Arg Val Tyr Glu Met Tyr Val Thr Val His Arg Lys Glu Thr
 565 570 575
 Met Arg Pro Pro Met Asp Asp Ser Gln Thr Leu Leu Thr Pro Val Val
 580 585 590

Ser Cys Gly Pro Pro Gly Ala Leu Leu Thr Arg Pro Val Val Leu Thr
 595 600 605

Met His His Cys Ala Asp Pro Asn Thr Glu Asp Trp Lys Ile Leu Leu
 610 615 620

Leu Ala Gly Val Gln His Pro Ser Leu Leu Ser Gly
 625 630 635

<210> 15

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer MF402L1II

<400> 15

atggagactt cgctcactgg tcctcttt

28

<210> 16

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer MF402L1II

<400> 16

cctggaggca cataaaccct agacatcc

28

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer MF402L1III

<400> 17

acatcctgag gtaggtggtc c

21

<210> 18

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer MF402L1III

<400> 18

gggtctcaact cattctgttg c

21

<210> 19

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF402L11III

<400> 19
ctgtatTTG actcaattgt g

21

<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF402L11III

<400> 20
ccaaaAGCCT ctccttatta c

21

<210> 21
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF402L11IV

<400> 21
gaatacagac acacagagac agcacctt

28

<210> 22
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF402L11IV

<400> 22
gttccttgct ccagtgaaag acataatc

28

<210> 23
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF402L11V

<400> 23
ctaaccACAG ttcagtggaa cccattgc

28

```

<210> 24
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF402L11V

<400> 24
atttgatgtt catacagggt tggggac 28

<210> 25
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF402L11VI

<400> 25
ctccacttgg actctgatga caccactg 28

<210> 26
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF402L11VI

<400> 26
catagttcac tgcagcctca acctcct 27

<210> 27
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF90A19I

<400> 27
taattatgtt tagacagacc gtcctcca 28

<210> 28
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19I

<400> 28
agtttactac tcagccttg ctttcact 28

```

<210> 29

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer MF90A19II

<400> 29

tctgccccac gtccaatcta ggtaactt

28

<210> 30

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer MF90A19II

<400> 30

gatgggtgtgg aggaagaggt tcaaaggt

28

<210> 31

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer MF90A19III

<400> 31

aactgagaac tggaaggttag ctttgaaa

28

<210> 32

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer MF90A19III

<400> 32

acaagagcag tcagaactat ttggccct

28

<210> 33

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer MF90A19IV

<400> 33

atttgctggc tccgacagta agtattcc

28

```

<210> 34
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19IV

<400> 34
atgcagtgtat gcttaacacc ctgtctct          28

<210> 35
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF90A19V

<400> 35
cctgctctgt ctgccttgga aaagaaaat          28

<210> 36
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19V

<400> 36
tcttggccca gacggataaa gagtccat          28

<210> 37
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF90A19VI

<400> 37
agtgcaccagg taagcatgcc ttccaata          28

<210> 38
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19VI

<400> 38
aagctggcaa ggagattctc aaaagtgg          28

```

```

<210> 39
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF90A19VII

<400> 39
accacatctg ctgaagttga ctggacct                                28

<210> 40
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19VII

<400> 40
tctggggcaac atagtgaaac cctgtctc                                28

<210> 41
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF90A19VIII

<400> 41
cttgaacctta ggagacggag gttgcagt                                28

<210> 42
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19VIII

<400> 42
aagcatatct ctgaccctct gccattc                                28

<210> 43
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer MF90A19IX

<400> 43
gaagctgcaa tcccatcctt gtctcttt                                28

```

```

<210> 44
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer MF90A19IX

<400> 44
tggtggtgca cacctgtaat accagcta                                28

<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer C4P3F

<400> 45
aggatgtcca tggtttgga                                20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer C4P3R

<400> 46
ctgtttccag cttccagagg                                20

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer C4P4F

<400> 47
catggtccca aagctctgtt                                20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer C4P4R

<400> 48
tgacggaatt tcagtgcac                                20

```

```

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer C4P7F

<400> 49
tctgatacag gggatttggc                                20

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer C4P7R

<400> 50
ttcaggtggg tgatgtgtgt                                20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer C4P8F

<400> 51
aggaaagagg ggtgctgtct                                20

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer C4P8R

<400> 52
atagcaggag agtgagggca                                20

<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer C4P9F

<400> 53
ggcccaacttt ctggttcata                                20

```

<210> 54

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer C4P9R

<400> 54

tcagccagac cagtgtgaaa

20

<210> 55

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer C15P1F

<400> 55

ggtctctgcc ctctgtcaag

20

<210> 56

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer C15P1R

<400> 56

aggcttccca cacagatgag

20

<210> 57

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer C15P2F

<400> 57

cactcttggc acccttaacc

20

<210> 58

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer C15P2R

<400> 58

tttgttctgt cctccccaac

20

<210> 59

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer C15P5F

<400> 59

tttcatcaa gcatcccaca

20

<210> 60

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer C15P5R

<400> 60

tggttaattcg tgctgcagag

20

<210> 61

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer C15P6F

<400> 61

cccaaacatt ccaacttcgt

20

<210> 62

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer C15P6R

<400> 62

tagctcaagc ctgaaccat

20

<210> 63

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer BPC4F

<400> 63

accctaattgc ccattttgg ttgagg

26

<210> 64

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer BPC15R

<400> 64

aaataccagt ccttccgaa gcctctcc

28

<210> 65

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer BPC15F

<400> 65

cgacagaacc atccaaacca agacactt

28

<210> 66

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer BPC4R

<400> 66

gtgtttattt tgtcacgtgc agttgctg

28

<210> 67

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward Primer RORa1 5' UTR

<400> 67

ctgaaaacag aagatagagg gagtctc

27

<210> 68

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse Primer UNC5c 3'UTR

<400> 68

atttcccctt ccagcatgg

20

<210> 69
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer AP1

<400> 69
ccatcctaat acgactcact ataggc

27

<210> 70
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer

<400> 70
ctccacagat cttgcattgg a t

22

<210> 71
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer AP2

<400> 71
actcactata gggctcgagc ggc

23

<210> 72
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer

<400> 72
tctgtgtttc ataccaggaa ggt

23

<210> 73
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer

<400> 73
agaacacacaca cccatagact gca

23

<210> 74
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward Primer

<400> 74
cctgtaccgc atttggcag 19

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse Primer

<400> 75
tgcaaaccag ctccactgtg 20