Lab 1A: Conductivity

Bijan Varjavand

1/31/2017

1 Data, part 1

We measured 3 rods: Brass, Titanium, and Aluminum Their diameters were $3.02\mathrm{mm},\,3.05,\,\mathrm{and}\,3.05\mathrm{mm}$ respectively

For our first sample, brass, we kept length constant at 21 cm and changed the voltage: $\,$

	Voltage	Current
1	0.058	0.031
2	0.194	0.117
3	0.281	0.164
4	0.395	0.232
5	0.521	0.307
6	0.738	0.436
7	1.444	0.856
8	2.681	1.592
9	3.359	2.000

We then measured the voltage change due to varying length across 3 different materials, shown below (with constant current of 1 Amp:

	All	Brass	Titanium	Aluminum
	Length(cm)	Voltage(mV)	Voltage(mV)	Voltage(mV)
1	2	0.161	1.412	0.206
2	4	0.323	2.475	0.330
3	6	0.468	3.806	0.441
4	8	0.630	4.946	0.565
5	10	0.789	6.381	0.675
6	12	0.937	7.556	0.781
7	14	1.108	8.846	0.806
8	16	1.245	10.048	0.972
9	18	1.394	11.350	1.063