

M05M11084 最优化理论、算法与应用 7-1 线性规划

讲义和程序下载 (随课程进度更新)

链接:

https://pan.baidu.com/s/1NynYva56GiPsj2gLl59k0Q?pwd=yuan

提取码: yuan

线性规划1

参考:

- 1.最优化基础理论与方法,第六章,王燕军等
- 2. Convex Optimization, Chapter 2, Stephen Boyd
- 3. Linear and Nonlinear Programming, B2, 3rd ed., David G. Luenberger, Yinyu Ye

- 1.线性规划的标准形式
- 2.线性规划可行域的几何特点 ②极点与极方向
- 3.单纯形法
- 4.对偶单纯形法

- 「①可行域是多面体

 - ③多面体的几何分解
 - ④ 最优解与极点的关系

- 1.线性规划的标准形式
- 2.线性规划可行域的几何特点
- 3.单纯形法
- 4.对偶单纯形法

线性规划

线性规划: 目标函数为变量的线性函数

约束条件为线性等式或线性不等式约束

标准形式: $\min c^T x$ s.t. Ax = b $c, x \in \mathcal{R}^n, A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^m$ (LP)

 $x \ge 0$ 假设系数矩阵A行满秩,即 rank A = m

一般形式: $\min c^T x$ s.t. $a_i^T x \ge b_i$, i = 1, 2, ..., l $a_i^T x = b_i$, i = l + 1, l + 2, ..., m $x_i \ge 0, j = 1, ..., n$

以下讨论围绕标准形式展开

(LP)

几点说明

目标函数为变量的线性函数 线性规划:

约束条件为线性等式或线性不等式约束

 $\min c^T x$ $c, x \in \mathcal{R}^n, A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^m$ 标准形式: s. t. Ax = b

假设系数矩阵A行满秩,即 rankA=m $x \ge 0$

几点说明:

1. 若 rank $A \neq m$, 有两种情况:

①方程组Ax = b无解,没有可行点,问题无解

②方程组中有多余的方程,可剔除,不影响可行域

几点说明

目标函数为变量的线性函数 线性规划:

约束条件为线性等式或线性不等式约束

 $\min c^T x$ $c, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ 标准形式:

(LP)s. t. Ax = b假设系数矩阵A行满秩,即 rankA=m

x > 0

几点说明:

2. 一般的线性规划形式转化为标准形式

 $\max c^T x \iff \min \tilde{c}^T x$ ① 极小化目标函数

 $a_i^T x \ge b_i \iff a_i^T x - s_i = b_i, s_i \ge 0$ ② 不等式转化为等式

 $a_i^T x \le b_i \iff a_i^T x + s_i = b_i, s_i \ge 0$

③添加非负约束 $x_i \in \mathcal{R} \iff x_i = x_i^+ - x_i^-, x_i^+ \ge 0, x_i^- \ge 0$

- 2. 线性规划可行域的几何特点
- $\min c^T x$ s. t. Ax = b (LP) $x \ge 0$

- ①可行域是多面体
- ②多面体的基本性质
- ③多面体的几何分解
- ④ 最优解与极点的关系

REVIEW

超平面与半空间

定义 $a \neq 0 \in \mathcal{R}^n$, $b \in \mathcal{R}$

超平面hyperplane $\{x \in \mathcal{R}^n | a^T x = b\}$

半空间halfspace $\{x \in \mathcal{R}^n | a^T x \ge b\}$ 或 $\{x \in \mathcal{R}^n | a^T x \le b\}$

REVIEW

多面体

多面体polyhedron: $\{x | a_i^T x \le b_j, j = 1, ..., m; c_i^T x = d_j, j = 1, ..., p\}$

- ✓ 有限个半空间和超平面的交集, 凸集
- ✓ 可能是有界的,也可能是无解的
- ✔ 仿射集(如:子空间、超平面、直线),射线,线段和半空间都是多面体

多面体: $P = \{x | a_i^T x \le b_i, j = 1, ..., 5\}$

多面体: $P = \{x | a_j^T x \le b_j, j = 1,4,5\}$

REVIEW

单纯形 多面体中重要的一族

设k+1个点 $v_0,v_1,\cdots,v_k\in \mathcal{R}^n$ 是仿射无关的,即 v_1-v_0,\cdots,v_k-v_0 线性无关,单纯形定义为

$$C = \text{Conv}\{\boldsymbol{v}_0, \boldsymbol{v}_1, \cdots, \boldsymbol{v}_k\} = \{\boldsymbol{\theta}_0 \boldsymbol{v}_0 + \boldsymbol{\theta}_1 \boldsymbol{v}_1 + \cdots + \boldsymbol{\theta}_k \boldsymbol{v}_k | \boldsymbol{\theta} \ge 0, \boldsymbol{1}^T \boldsymbol{\theta} = 1\}$$

Example 2.5 几种单纯形

- ①1维单纯形是线段
- \mathcal{R}^2 中的单纯形

- ②2维单纯形是三角形
- ③3维单纯形是四面体

①可行域是多面体

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

可行域 $S = \{x | Ax = b, x \ge 0\}$ 是多面体 \leftarrow 超平面的交集

①可行域是多面体

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

可行域 $S = \{x | Ax = b, x \ge 0\}$ 是多面体 \leftarrow 超平面的交集

点 = 顶点的凸组合

 $x = \lambda^T v + \mu^T d$ $\lambda \ge 0, \mathbf{1}^T \lambda = 1$ $\mu \ge 0$

沿着"方向"的点都在S内

点=顶点的凸组合+"方向"的锥组合

2. 线性规划可行域的几何特点

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

- ①可行域是多面体
- ②多面体的基本性质
- ③多面体的几何分解
- ④最优解与极点的关系

②多面体的基本性质

(1)极点: 给定非空凸集 $C \subset \mathcal{R}^n$, $x \in C$, 若对 $\lambda \in (0,1)$ 及 $x_1, x_2 \in C$, 由 extreme point $x = \lambda x_1 + (1 - \lambda)x_2$, 可推出 $x = x_1 = x_2$, 则称 $x \to C$ 的极点

x不在集合C中其它两点的连接线段上

(2) 无界方向: 设非空凸集C, 非零向量d对任意 $x \in C$ 均有 $x + \mu d \in C$, $\forall \mu > 0$, recession direction 称d为集合C的无界方向

(3)极方向: 若无界方向d不能表示成另外两个无界方向的正线性组合, extreme direction 即不存在 $\mu_1,\mu_2>0$,使得 $d=\mu_1d_1+\mu_2d_2$,则称d为C的极方向

例:

例:

$$C = \mathcal{R}_+^n$$
, 极点 $x = 0$; 极方向 $e_i, j = 1, ..., n$

$$P = \{x \in \mathbb{R}^n | 1^T x = 1, x \ge 0\}$$

极点 $e_j, j = 1, ..., n; \ O$
极方向 无

多面体 $S = \{x | Ax = b, x \ge 0\}$ 的极点、极方向如何呢?

多面体的极点= $\begin{bmatrix} B^{-1}b \end{bmatrix}$,最多有 C_n^m 个

考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$ 行满秩

- (1) $x \in S$ 是S的极点当且仅当 $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$,其中 $A = \begin{bmatrix} B & N \end{bmatrix}$,B可逆且 $B^{-1}b > 0$ 极点最多有 C_n^m 个
- 说明: $A \in \mathcal{R}^{3 \times 5}$, rank A = 3 $A = [a_1 \ a_2 \ a_3 \ a_4 \ a_5]$ 假设 a_1, a_3, a_5 线性无关

基矩阵
$$B$$
 $B = [a_1 \ a_3 \ a_5]$ 非基矩阵 N $N = [a_2 \ a_4]$ 基变量 x_B $x_B = [x_1 \ x_3 \ x_5]^T$ 非基变量 x_N $x_N = [x_2 \ x_4]^T$ $x = [x_B \ x_N]^T$ $Bx_B + Nx_N = b$

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{4}x_{4} + a_{5}x_{5} = b$$

$$a_{1}x_{1} + a_{3}x_{3} + a_{5}x_{5} + a_{2}x_{2} + a_{4}x_{4} = b$$

$$Bx_{B} \qquad Nx_{N}$$

$$[B \quad N] \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix} = b$$

多面体的极点= $\begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$,最多有 C_n^m 个

考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$ 行满秩

基矩阵 B 非基矩阵 N
基变量 x_B
非基变量 x_N $x = [x_B \ x_N]^T$ $Bx_B + Nx_N = b$ $B = B^{-1}b - B^{-1}Nx_N$ $A = B^{-1}b = B^{-$

多面体的极点= $\begin{bmatrix} B^{-1}b \end{bmatrix}$,最多有 C_n^m 个

考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$ 行满秩

(1)
$$x \in S \not\in S$$
的极点当且仅当 $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$, 其中 $A = \begin{bmatrix} B & N \end{bmatrix}$, B 可逆且 $B^{-1}b > 0$ 极点最多有 $C_n^m \land$ 证明: $\iff Ax = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} = b \implies x \in S$ 不妨设 $x = \lambda \tilde{x} + (1 - \lambda) \bar{x} \quad \lambda \in (0,1); \ \tilde{x}, \bar{x} \in S \quad A\bar{x} = b, \tilde{x} \ge 0$
$$\begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} \tilde{x}_B \\ \tilde{x}_N \end{bmatrix} + (1 - \lambda) \begin{bmatrix} \bar{x}_B \\ \bar{x}_N \end{bmatrix} \qquad \qquad \tilde{x}_N \ge 0$$

$$0 = \lambda \tilde{x}_N + (1 - \lambda) \bar{x}_N \xrightarrow{\lambda > 0, 1 - \lambda > 0} \qquad \tilde{x}_N = 0$$

$$A\tilde{x} = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} \tilde{x}_B \\ 0 \end{bmatrix} = b \implies \tilde{x}_B = B^{-1}b \qquad \Rightarrow x = \tilde{x} = \bar{x} \implies x \not\in M$$
 $A\bar{x} = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} \bar{x}_B \\ 0 \end{bmatrix} = b \implies \bar{x}_B = B^{-1}b$

多面体的极点= $\begin{bmatrix} B^{-1}b \end{bmatrix}$,最多有 C_n^m 个

考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}$ 行满秩

(1)
$$x \in S \not\in S$$
的极点 当且仅当 $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$,其中 $A = \begin{bmatrix} B & N \end{bmatrix}$, B 可逆且 $B^{-1}b > 0$ 极点最多有 C_n^m 个

证明: \Rightarrow 对于 $x = [x_1 \cdots x_n]^T$, 可将其 $k \land$ "正的元素" 放在左端, "0元素" 放在右端 $k \le m$ " rank A = m

简单起见, 不妨设 $x = [x_1 \ \cdots \ x_k \ 0 \ \cdots \ 0]^T$, $x_i > 0, i = 1, ..., k$;

 $\mathcal{C} A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \implies \begin{bmatrix} a_1, \cdots, a_k \\ \end{pmatrix}$

假设存在不全为零的 θ_1 ,…, θ_k , 使 $\theta_1 a_1 + \dots + \theta_k a_k = 0$

 $\diamondsuit\theta = [\theta_1 \quad \cdots \quad \theta_k \quad 0 \quad \cdots \quad 0]^T \qquad A\theta = \theta_1 a_1 + \cdots + \theta_k a_k = 0$

取 $\tilde{x} = x + \varepsilon \theta, \bar{x} = x - \varepsilon \theta$, $\varepsilon > 0$ $A\tilde{x} = Ax + \varepsilon A\theta = b$ $x = \frac{1}{2}\tilde{x} + \frac{1}{2}\bar{x}$ x 不是极点

选取充分小的 $\varepsilon > 0$,使得 $\tilde{x}, \bar{x} \ge 0$ $\tilde{x} \in S$ $\bar{x} \in S$

多面体的极点= $\begin{bmatrix} B^{-1}b \end{bmatrix}$,最多有 C_n^m 个

考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}$ 行满秩

(1) $x \in S \not\in S$ 的极点 当且仅当 $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$,其中 $A = \begin{bmatrix} B & N \end{bmatrix}$, B可逆且 $B^{-1}b > 0$ 极点最多有 C_n^m 个

证明: $\implies a_1, \cdots, a_k$ 线性无关 $k \leq m$

 $: \operatorname{rank} A = m$ a_{k+1}, \dots, a_n 中必存在m - k个列与 a_1, \dots, a_k 线性无关

简单起见,不妨设为 a_{k+1}, \dots, a_m

 $\diamondsuit B = [a_1 \quad \cdots \quad a_m], N = [a_{m+1} \quad \cdots \quad a_n]$

 $\begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_B \\ 0 \end{bmatrix} = b \implies Bx_B = b \implies x_B = B^{-1}b$

 $x = [x_1 \quad \cdots \quad x_k \quad 0 \quad \cdots \quad 0]^T = [x_B \quad 0]^T$ $n - k \uparrow \qquad n - m \uparrow$

 $x_B = [x_1 \quad \cdots \quad x_k \quad 0 \quad \cdots \quad 0]^T$ $m - k \uparrow$

矩阵A的n列中m个线性无关的列的不同组合最多有 C_n^m ,即可以构成最多有 C_n^m 个不同的矩阵B极点最多有 C_n^m 个

多面体的极点 至少存在一个

✓ 非空多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}$ 行满秩,则集合S至少存在一个极点

证明 取
$$x \in S$$
, 不失一般性,设 $x = [x_1 \ \cdots \ x_k \ 0 \ \cdots \ 0]^T$, $x_i > 0, i = 1, ..., k$ 记 $A = [a_1 \ \cdots \ a_n]$ 若 a_1, \cdots, a_k 线性无关,则由上证明可知, $x \not\in S$ 的一个极点 若 a_1, \cdots, a_k 线性相关,则存在不全为零的 $\theta_1, \cdots, \theta_k$,使 $\theta_1 a_1 + \cdots + \theta_k a_k = 0$ 且至少有一个 $\theta_i > 0$ 令 $\alpha = \min \left\{ \frac{x_i}{\theta_i} \middle| \theta_i > 0, i = 1, ..., k \right\} = \frac{x_j}{\theta_j}$ 构造 \bar{x} , $\bar{x}_i = \begin{cases} x_i - \alpha \theta_i & i = 1, ..., k \\ 0 & i = k+1, ..., n \end{cases}$ $\bar{x} \geq 0$ $\bar{x}_i = 0, i = j, k+1, k+2, ..., n$ $A\bar{x} = \sum_{i=1}^n a_i \bar{x}_i = \sum_{i=1}^n a_i (x_i - \alpha \theta_i) = b$ 因此, $\bar{x} \in S$,其非零分量至多有 $k - 1$ 个

重复该过程直至得到点 $\hat{x} \in S$,其非零分量对应的A的列线性无关,此时 $\hat{x} \notin S$ 的一个极点

多面体的无界方向 $Ad = 0, d \ge 0$ 且 $d \ne 0$

考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$ 行满秩

(2) $d \neq 0$ 是S的无界方向当且仅当 $Ad = 0, d \geq 0$

说明: 根据凸集无界方向的定义
$$\forall x \in S, x + \lambda d \in S$$
 $\lambda > 0, x \ge 0 \Longrightarrow d \ge 0$ 可知,
$$Ax = b, Ax + \lambda Ad = b \qquad Ad = 0$$

多面体的极方向 =
$$t\begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$$
 考虑多面体 $S = \{x | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}$ 行满秩

 $(3) \checkmark d \in \mathbb{R}^n$ 是S的极方向当且仅当存在矩阵A的分解 $A = \begin{bmatrix} B & N \end{bmatrix}$ 使 $d = t \begin{vmatrix} -B^{-1}a_j \\ e_i \end{vmatrix}$ 其中, t>0, $B^{-1}a_i \leq 0$, a_i 为矩阵N的第j列 $e_i \in \mathbb{R}^{n-m}$ 的第j个分量为1,其余分量为零

✓ 有限个极方向

说明: ai为矩阵N的第j列

 $e_i \in \mathbb{R}^{n-m}$ 的第j个分量为1, 其余分量为零 $Ne_i = a_i$ d与td为同一方向,可以取t=1

实际中,如果对于某种分解 $A = [B \ N]$,找到N中的第j列 a_i ,满足 $B^{-1}a_i \leq 0$, 那么、就找到一个对应的极方向d

矩阵A的一种分解至多对应一个极方向, 矩阵A的n列中找出m列线性无关的列构成矩阵B 因此,极方向最多有 C_n^m 个

如果目标函数值在这个极方向上是下降的,那么, $\min c^T x \to -\infty$

多面体的极方向 = $t \begin{vmatrix} -B^{-1}a_i \\ e_i \end{vmatrix}$

(3) \checkmark $d \in \mathbb{R}^n$ 是S 的极方向当且仅当存在矩阵A的分解 $A = \begin{bmatrix} B & N \end{bmatrix}$ $d = t \begin{vmatrix} -B^{-1}a_j \\ e_i \end{vmatrix}$ 其中, t > 0, $B^{-1}a_i \le 0$, a_i 为矩阵N的第j列 $e_i \in \mathbb{R}^{n-m}$ 的第j个分量为1,其余分量为零

✓ 有限个极方向

因此,存在
$$\tilde{\alpha}, \bar{\alpha} > 0$$
,使得 $\tilde{d} = \tilde{\alpha} \begin{bmatrix} \tilde{d}_1 \\ e_j \end{bmatrix}$, $\bar{d} = \bar{\alpha} \begin{bmatrix} \bar{d}_1 \\ e_j \end{bmatrix}$ $\tilde{d} = \tilde{\alpha} \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$, $\bar{d} = \bar{\alpha} \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$

由于
$$A\tilde{d}=0$$
 , $A\bar{d}=0$, 即 , $\tilde{\alpha}[B-N]\begin{bmatrix} \tilde{d}_1\\e_j \end{bmatrix}=0$, $\bar{\alpha}[B-N]\begin{bmatrix} \bar{d}_1\\e_j \end{bmatrix}=0$ $\tilde{d}_1=\bar{d}_1=-B^{-1}a_j$

因此, d为集合S的极方向

 \tilde{d} , \bar{d} 与d为同一方向

多面体的极方向 = $t \begin{bmatrix} -B^{-1}a_j \\ e_i \end{bmatrix}$

(3) \checkmark $d \in \mathbb{R}^n$ 是S 的极方向当且仅当存在矩阵A 的分解 $A = \begin{bmatrix} B & N \end{bmatrix}$ 使 $d = t \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$ 其中,t > 0, $B^{-1}a_j \leq 0$, a_j 为矩阵N 的第j 列 $e_i \in \mathbb{R}^{n-m}$ 的第j 个分量为1,其余分量为零

✓ 有限个极方向

多面体的极方向 = $t \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$

而 $d \neq S$ 的 极方向 $\Rightarrow d \neq 0$

(3) \checkmark $d \in \mathbb{R}^n$ 是S 的极方向当且仅当存在矩阵A 的分解 $A = [B \ N]$ 使 $d = t \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$ 其中,t > 0, $B^{-1}a_j \leq 0$, a_j 为矩阵N 的第j 列 $e_i \in \mathbb{R}^{n-m}$ 的第j 个分量为1,其余分量为零

✓ 有限个极方向

证明: \Longrightarrow 设 $d \in S$ 的 $d \in S$ $d \in$

多面体的极方向 = $t \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$

③
$$\checkmark$$
 $d \in \mathbb{R}^n$ 是 S 的极方向当且仅当存在矩阵 A 的分解 $A = \begin{bmatrix} B & N \end{bmatrix}$ 使 $d = t \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$ 其中, $t > 0$, $B^{-1}a_j \leq 0$, a_j 为矩阵 N 的第 j 列 $e_i \in \mathbb{R}^{n-m}$ 的第 j 个分量为1,其余分量为零

✓ 有限个极方向

证明:
$$\Longrightarrow$$
 设 d 是 S 的 极 f 向 记 $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ 不 f 改 f 一 f 不 f 设 f 一 f — f —

2. 线性规划可行域的几何特点

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

- ①可行域是多面体
- ②多面体的基本性质
- ③多面体的几何分解
- ④ 最优解与极点的关系

③多面体的几何分解 多面体内的点=极点的凸组合+极方向的锥组合

设 $S = \{x | Ax = b, x \ge 0\}$ 非空, $A \in \mathcal{R}^{m \times n}$ 行满秩 假设S的极点为 $x_1, ..., x_k$,极方向为 $d_1, ..., d_l$,则 $x \in S$ 当且仅当

$$x = \sum_{i=1}^{k} \lambda_{i} x_{i} + \sum_{j=1}^{l} \mu_{j} d_{j} \qquad \sum_{i=1}^{k} \lambda_{i} = 1, \lambda_{i} \ge 0, i = 1, \dots, k \quad \mu_{j} \ge 0, j = 1, \dots l$$

$$\mathbf{1}^{T} \lambda = 1, \lambda \ge 0; \mu \ge 0$$

说明

点=极点的凸组合 点=极点的凸组合+极方向的锥组合

 $1^{T} \lambda = 1, \lambda \ge 0; \mu \ge 0$ $c^{T} x = \sum_{i=1}^{k} \lambda_{i} c^{T} x_{i} + \sum_{j=1}^{l} \mu_{j} c^{T} d_{j}$

 $\Leftrightarrow \min c^T x_i$

单纯形法

设 $S = \{x | Ax = b, x \ge 0\}$ 非空, $A \in \mathcal{R}^{m \times n}$ 行满秩 假设S的极点为 $x_1, ..., x_k$,极方向为 $d_1, ..., d_l$,则 $x \in S$ 当且仅当

$$x = \sum_{i=1}^{k} \lambda_i x_i + \sum_{j=1}^{l} \mu_j d_j \qquad \mathbf{1}^T \lambda = 1, \lambda \ge 0; \mu \ge 0$$

推论:

- ✓ 集合S无界当且仅当S至少存在一个极方向
- ✓ 集合S有界当且仅当它可表示为有限个极点的凸组合

证明借助于:

- ✓凸集
- ✓ 支撑平面
- ✓ 分离定理

证明参考

3. Linear and Nonlinear Programming, 4th ed., B2, David G. Luenberger

2. 线性规划可行域的几何特点

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

- ①可行域是多面体
- ②多面体的基本性质
- ③多面体的几何分解
- ④最优解与极点的关系

考虑标准形式的线性规划:

$$\min c^T x$$

s.t. $Ax = b$ (LP) 其中, $A \in \mathcal{R}^{m \times n}$ 行满秩
 $x > 0$ 可行集 $S = \{x | Ax = b, x \ge 0\}$

假设可行集S的极点为 $x_1,...,x_k$,极方向为 $d_1,...,d_l$,则

- 1. 线性规划(LP)有最优解当且仅当 $c^T d_i \ge 0, j = 1, ..., l$
- 2. 若线性规划(LP)有最优解,则必可在某个极点上达到

- 1.线性规划的标准形式
- 2.线性规划可行域的几何特点
- 3.单纯形法
- 4.对偶单纯形法

单纯形法的朴素算法

- 1. 列举所有出所有的极点 $x_1,...,x_k$, 极方向 $d_1,...,d_l$
- 2. 判断 $c^T d_j \ge 0, j = 1, ..., l$ 是否成立?
- 3. 寻找 $x^* = \{x_i | \min c^T x_i, i = 1, ..., k\}$
- 4. 计算目标函数值 $f^* = c^T x^*$

最多C_nm次

$$\min f(x) = -x_1 - 4x_2$$
s. t. $-x_1 \ge -2$

$$-x_1 - x_2 + 3.5 \ge 0$$

$$-x_1 - 2x_2 + 6 \ge 0$$

$$x_1, x_2 \ge 0$$

$$\min f(x) = -x_1 - 4x_2$$
s. t. $-x_1 \ge -2$

$$-x_1 - x_2 + 3.5 \ge 0$$

$$-x_1 - 2x_2 + 6 \ge 0$$

$$x_1, x_2 \ge 0$$

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

 $c = [-1, -4, 0, 0, 0]^T$

$$\min f(x) = c^{T} x$$
s. t. $-x_{1} - x_{3} = -2$

$$-x_{1} - x_{2} - x_{4} = -3.5$$

$$-x_{1} - 2x_{2} - x_{5} = -6$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{4} \ge 0$$

$$b = \begin{bmatrix} 2\\3.5\\6 \end{bmatrix}$$

$\min f(x) = c^T x$
s. t. $x_1 + x_3 = 2$
$x_1 + x_2 + x_4 = 3.5$
$x_1 + 2x_2 + x_5 = 6$
$x_1, x_2, x_3, x_4, x_4 \ge 0$

P	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	f
P_1	0	0	2	3.5	6	0
P_2	0	3	2	0.5	0	[-12]
P_3	1	2.5	1	0	0	-11
P_4	2	1.5	0	0	1	-8
P_5	2	0	0	1.5	4	-2

$$\min f(x) = -x_1 - 4x_2 \rightarrow -\infty$$

s. t. $-x_1 + x_2 \ge 0$
 $x_1, x_2 \ge 0$

$$\min f(x) = -x_1 - 4x_2
\text{s.t.} -x_1 + x_2 - x_3 = 0
x_1, x_2, x_3 \ge 0$$

$$A = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}
b = 0
c = \begin{bmatrix} -1 & -4 & 0 \end{bmatrix}^T$$

$$d_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$$
$$d_2 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$$

$$c^T d_1 = -4 < 0$$

$$c^T d_2 = -5 < 0$$

$$f \to -\infty$$

单纯形法的关键

- ① 找到一个初始的基可行解作为当前的基可行解
- ② 判断当前的基可行解是问题的最优解
- ③ 当前的基可行解不是最优解,寻找更优的另一个基可行解
- ④ 单纯形法的收敛性及收敛速度 略 最多 C_n^m 次当变量、约束多时,计算量很大

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

可行集 $S = \{x | Ax = b, x \ge 0\}$ $A \in \mathcal{R}^{m \times n}$ 行满秩

✓ 基本可行解的分析

可行集 $S = \{x | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}$ 行满秩

$$A = [B \ N], \quad \exists B^{-1} \ 称 B 为 A 的 一组基$$

$$\begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = b \qquad \begin{bmatrix} x_B \\ x_N \end{bmatrix} \ge 0$$

$$Bx_B + Nx_N = b$$

$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$\bar{x}_B = \bar{b} = B^{-1}b, \ \bar{x}_N = 0$$

$$\bar{x} = \begin{bmatrix} \bar{x}_B \\ \bar{x}_N \end{bmatrix} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$
 基本解

$$f(x) = c_B^T x_B + c_N^T x_N$$

$$= c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N^T x_N$$

$$= c_B^T B^{-1}b + (c_N^T - c_B^T B^{-1}N)x_N$$

$$= \bar{f} + \mu^T x_N$$

$$\mu = c_N^T - c_B^T B^{-1} N \qquad \text{检验数向量}$$

$$\ddot{x} \mu \geq 0, \quad \text{M in $f = \bar{f}$}$$

$$\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1} b \\ 0 \end{bmatrix}$$
 为最优解

当 $B^{-1}b \ge 0$ 时, $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \in S$ 基本可行解 其目标函数值 $\bar{f} = c_B^T B^{-1}b$

当 $B^{-1}b \ge 0$ 时,称B为A的一组可行基

可以得出②和③

②判断基可行解是问题的最优解

可行集 $S = \{x | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}$ 行满秩

考虑线性规划的基本可行解 $\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ \bar{x} 是最优解当且仅当检验数(reduced cost) 非负, $\mu = c_N^T - c_B^T B^{-1} N \ge 0$

③ 当前的基可行解不是最优解,寻找更优的另一个基可行解

可行集 $S = \{x | Ax = b, x \ge 0\}, \ A \in \mathcal{R}^{m \times n}$ 行满秩 $\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \ge 0$ 基可行解

 \ddot{x} 非最优解,即 $\mu = c_N^T - c_B^T B^{-1} N \ge 0 \implies c_j - c_B^T B^{-1} a_j < 0, \quad a_j \not\in N$ 的第j列让N的第j列进入基变量

取 $x = \bar{x} + \lambda d_j$, $\lambda > 0 \Longrightarrow c^T x = c^T \bar{x} + \lambda c^T d_j < c^T \bar{x} \Longrightarrow$ 可行解x使目标函数值更优 $\bar{a}_j = B^{-1} a_j$, 分两种情况讨论:

- (1) 若 $\bar{a}_j \leq 0$,
- (2) 若 $\bar{a}_j \le 0$,

③ 当前的基可行解不是最优解,寻找更优的另一个基可行解

可行集
$$S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$$
行满秩 $\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \ge 0$ 基可行解 若 \bar{x} 非最优解,即 $\mu = c_N^T - c_B^T B^{-1} N \ge 0 \implies c_j - c_B^T B^{-1} a_j < 0$, $a_j \not\in N$ 的第 j 列

取
$$d_j = \begin{bmatrix} -\overline{a}_j \\ e_j \end{bmatrix}$$
 ,则 $Ad_j = 0$
$$c^T d_j < 0$$

(1) 若
$$\bar{a}_j \leq 0$$
,则 $d_j \geq 0$ 为可行集 S 的一个极方向
对于任意 $\lambda > 0$,均有 $x = \bar{x} + \lambda d_j \geq 0$
当 $\lambda \to +\infty$, $c^T x = c^T \bar{x} + \lambda c^T d_j \to -\infty$, LP 不存在最优解

$$\mathbb{R} \ x = \bar{x} + \lambda d_j \,, \ \lambda > 0$$

$$\bar{a}_j = B^{-1}a_j$$
 , 分两种情况讨论:

- (1) 若 $\bar{a}_i \leq 0$,
- (2) 若 $\bar{a}_i \leq 0$,

③ 当前的基可行解不是最优解,寻找更优的另一个基可行解

可行集 $S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$ 行满秩 $\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \ge 0$ 基可行解 \ddot{z} 非最优解,即 $\mu = c_N^T - c_B^T B^{-1} N \ge 0 \implies c_j - c_B^T B^{-1} a_j < 0$, $a_j \in \mathbb{R}$ 的第j列

取
$$d_j = \begin{bmatrix} -\overline{a}_j \\ e_j \end{bmatrix}$$
 ,则 $Ad_j = 0$
$$(1) \ \ \ddot{a}_j \leq 0$$
,则 $d_j \geq 0$ 为可行集 S 的一个极方向
$$LP \land \ddot{a}_j \leq 0$$
,为保证 $x = \bar{x} + \lambda d_j \geq 0$,只需 $\bar{b} - \lambda \bar{a}_j \geq 0$

$$(1)$$
 若 $\overline{a}_j \leq 0$,则 $d_j \geq 0$ 为可行集 S 的一个极方向 LP 不存在最优解

取
$$x = \bar{x} + \lambda d_j$$
, $\lambda > 0$

$$\bar{a}_j = B^{-1} a_j$$
, 分两种情况讨论:

 $x = \bar{x} + \lambda d_j = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -\bar{a}_j \\ e_i \end{bmatrix} \ge 0$ $\bar{b} = B^{-1}b \ge 0$ 注意 \bar{b} 和 \bar{a}_i 为列向量, $\bar{b} - \lambda \bar{a}_i \ge 0 \iff \bar{b}_i - \lambda \bar{a}_{ij} \ge 0$ $etaar{a}_{ij}\leq 0$,则 $ar{b}_i-\lambdaar{a}_{ij}\geq 0$,无需再考虑; 只考虑 $ar{a}_{ij}>0$ 的情况,找出最小的 λ ,以保证所有分量大于0

(1) 若 $\bar{a}_i \leq 0$,

计算
$$\bar{\lambda} = \min \left\{ \frac{\bar{b}_i}{\bar{a}_{ij}} \middle| \bar{a}_{ij} > 0, i = 1, ..., m \right\} = \frac{b_r}{\bar{a}_{rj}} > 0$$

令 $x = \bar{x} + \bar{\lambda}d_j, \ x_r = 0, \ x_j = \bar{\lambda} \ x 至 多有 m 个 非零元素$

出基 进基

(2) 若 $\bar{a}_i \leq 0$,

③ 当前的基可行解不是最优解,寻找更优的另一个基可行解

可行集
$$S = \{x | Ax = b, x \ge 0\}, A \in \mathcal{R}^{m \times n}$$
行满秩 $\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \ge 0$ 基可行解 若 \bar{x} 非最优解,即 $\mu = c_N^T - c_B^T B^{-1} N \ge 0$ \Longrightarrow $c_j - c_B^T B^{-1} a_j < 0$, $a_j \not\in N$ 的第 j 列 取 $d_j = \begin{bmatrix} -\bar{a}_j \\ e_j \end{bmatrix}$,则 $Ad_j = 0$
$$c^T d_i < 0$$

$$\mathbb{R} \ x = \bar{x} + \lambda d_j, \ \lambda > 0$$

 $\bar{a}_i = B^{-1}a_i$, 分两种情况讨论:

- (1) 若 $\bar{a}_j \leq 0$, 则 $d_i \geq 0$ 为可行集S的一个极方向,LP不存在最优解 $\bar{b} = B^{-1}b$
- (2) 若 $\bar{a}_j \le 0$, 计算 $\bar{\lambda} = \min \left\{ \frac{\bar{b}_i}{\bar{a}_{ij}} \middle| \bar{a}_{ij} > 0, i = 1, ..., m \right\} = \frac{\bar{b}_r}{\bar{a}_{rj}} > 0$ 令 $x = \bar{x} + \bar{\lambda} d_j$, $x_r = 0$, $x_j = \bar{\lambda}$ 出基 进基

①找到一个初始的基可行解作为当前的基可行解

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x > 0$$

(1) 大M法

$$\min c^{T}x + M \cdot \mathbf{1}^{T}s$$
s. t. $Ax + s = b$ ($LP - M$)
$$x, s \ge 0$$

初始基本可行解:
$$\begin{bmatrix} x \\ s \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$$

若 $s^* = 0$,最优解 x^*

(2) 两阶段法

$$\min \mathbf{1}^T s$$
s. t. $Ax + s = b$ $(LP - I)$
 $x, s \ge 0$

基本可行解:
$$\begin{bmatrix} x \\ s \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix} \Rightarrow \begin{bmatrix} \bar{x} \\ \bar{s} \end{bmatrix}$$

若 $\bar{s} = 0$,初始基本可行解 \bar{x} 再解(LP)

单纯形法

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

寻找
$$A$$
的一组基 B ,满足:①可行性, $B^{-1}b \ge 0$ ②最优性, $c_N^T - c_B^T B^{-1} N \ge 0$

单纯形法: 在可行基中迭代直至找到满足最优性条件的基

满足①和②的
$$\bar{x} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$
 为最优解

Linear Programming Simplex Algorithm

- (1) Given $A = \begin{bmatrix} B & N \end{bmatrix}$, $\exists B^{-1}$ and $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$
- (2) Calculate Reduced Cost $\bar{c} = c_N^T c_B^T B^{-1} N$ If $\bar{c} \ge 0$, $x^* = x$ STOP

(3) Choose
$$j$$

$$c_{j} - c_{B}^{T}B^{-1}a_{j} = \{c_{i} - c_{B}^{T}B^{-1}a_{i} | c_{i} - c_{B}^{T}B^{-1}a_{i} < 0, i \in \text{index } N\} \qquad j = \{i \in \text{index } N \mid c_{i} - c_{B}^{T}B^{-1}a_{i} < 0\}$$

$$\bar{a}_{j} = B^{-1}a_{j}$$
If $\bar{a}_{j} \leq 0$ then
$$x^{*} = Nan, f^{*} = -\infty \text{ STOP}$$
else
$$x_{j} \text{ Entering Variable}$$
endif

(4)
$$\overline{b} = B^{-1}b$$
Calculate $\overline{\lambda} = \min \left\{ \frac{\overline{b}_i}{\overline{a}_{ij}} \middle| \overline{a}_{ij} > 0, i = 1, ..., m \right\} = \frac{\overline{b}_r}{\overline{a}_{rj}} > 0$
 x_r Leaving Variable
$$x \coloneqq x + \lambda d_j, \quad d_j = \begin{bmatrix} -B^{-1}a_j \\ e_j \end{bmatrix}$$
GOTO (2)

- 1.线性规划的标准形式
- 2.线性规划可行域的几何特点
- 3.单纯形法
- 4.对偶单纯形法
 - ①弱对偶定理
 - ②强对偶定理
 - ③互补松弛条件
 - ④对偶单纯形算法

对偶

$$\min c^{T} x \qquad \max b^{T} y$$
s. t. $Ax = b$ (LP) s. t. $A^{T} y \le c$ (LD)

①弱对偶定理 设x和y分别为线性规划问题(LP)和对偶问题(LD)的可行解,则 $c^Tx \ge b^Tv$

$$c^T x \ge (A^T y)^T x = y^T A x = b^T y$$
 若一个无界,另一个则无可行解

- ②强对偶定理 设问题(LP)或对偶问题(LD)存在最优解,则另一个也存在最优解, 且, v(LP) = v(LD), 其中, v(*)为问题(*)的最优值
- ③互补松弛条件 设x和y分别为问题(LP)和对偶问题(LD)的可行解,记 $u=c-A^Ty$ x和y分别为问题(LP)和(LD)的最优解当且仅当 $u_ix_i=0,i=1,...,n$

$$\bigcirc v(LP) = v(LD)$$

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

$$\max b^T y$$

s.t. $A^T y \le c$ (LD)

②
$$v(LP) = v(LD)$$

不妨设(LP)存在最优解
$$\bar{x} = \begin{bmatrix} B^{-1}b\\0 \end{bmatrix}$$

$$\bar{f} = c_B^T B^{-1} b = v(LP)$$

检验数
$$\mu = c_N^T - c_B^T B^{-1} N \ge 0$$

$$\mathfrak{P} \bar{y}^T = c_B^T B^{-1}$$

$$\mathbb{N} \ \overline{y}^T A = c_B^T B^{-1} [B \quad N]$$
$$= [c_B^T \quad c_B^T B^{-1} N]$$

$$\leq [c_B^T \quad c_N^T]$$

$$A^T \bar{y} \leq c$$

$$b^T \overline{y} = \overline{y}^T b = c_B^T B^{-1} b = c^T \overline{x}$$

根据弱对偶定理,
$$c^T x \ge b^T y$$

所以,
$$\bar{y}$$
是(LD)的最优解

$$\mathbb{L} v(LP) = v(LD)$$

③
$$x$$
为问题(LP)、 y 为(LD)的最优解 $\Leftrightarrow u_i x_i = 0, i = 1, ..., n$ $u = c - A^T y$

$$\min c^T x$$
s. t. $Ax = b$ (LP)
$$x \ge 0$$

$$\max b^T y$$

s. t. $A^T y \le c$ (LD)

③
$$x$$
为问题 (LP) 、 y 为 (LD) 的最优解 $\Leftrightarrow u_i x_i = 0, i = 1,...,n$ $u = c - A^T y$

$$x$$
为(LP)、 y 为(LD)的可行解

$$Ax = b, x \ge 0, A^T y \le c$$

$$c^T x - b^T y = c^T x - x^T A y = (c - A^T y)^T x = u^T x$$

$$x$$
为(LP)、 y 为(LD)的最优解 \Leftrightarrow 根据强对偶定理, $c^Tx = b^Ty$

$$\iff u_i x_i = 0, i = 1, \dots, n$$

④对偶单纯形算法

$$\min c^{T} x$$
s. t. $Ax = b$ (LP)
$$x > 0$$

$$\max b^{T} y$$
s. t. $A^{T} y \le c$ (LD)

A的一组基B,满足: 原问题的可行性, $B^{-1}b \geq 0$ 原问题的最优性, $c_N^T - c_B^T B^{-1} N \geq 0$

原问题最优性 ⇔ 对偶问题可行性

单纯形法: 在可行基中迭代直至找到满足最优性的基

对偶单纯形法: 在对偶可行基中迭代直至找到满足原始可行性的基

对偶单纯形算法的主要思想

假设B是一组对偶可行基,即 $\bar{c} = c_N^T - c_B^T B^{-1} N \ge 0$ 成立

- \checkmark 若 $B^{-1}b \ge 0$, 则 $\bar{x} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ 和 $\bar{y} = c_B^T B^{-1}$ 分别为 (LP)和 (LD)的最优解,且 $\bar{f} = c^T \bar{x} = b^T \bar{y} = c_B^T B^{-1}b$
- ✓ $\ddot{A}B^{-1}b \geq 0$,记 $\bar{b} = B^{-1}b$,则存在某个r满足 $\bar{b}_r < 0$,讨论如下: 令B,N分别表示B和N所对应的列标集合,记 $\bar{a}_i = B^{-1}a_i$,考虑以下两种情况:
- (1) 若对于任意 $i \in \mathcal{N}$,均有 $\bar{a}_{ir} \geq 0$

第r个约束方程 $x_r + \sum_{i \in \mathbb{N}} \bar{a}_{ir} x_i = \bar{b}_r$ 则 $x_r = \bar{b}_r - \sum_{i \in \mathbb{N}} \bar{a}_{ir} x_i < 0$ 则原问题(LP)无可行解

(2)若存在某些 $i \in \mathcal{N}$,使 $\bar{a}_{ir} < 0$

对偶单纯形算法的主要思想

假设B是一组对偶可行基,即 $\bar{c} = c_N^T - c_B^T B^{-1} N \ge 0$ 成立

- ✓ 若 $B^{-1}b \ge 0$, 则 $\bar{x} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ 和 $\bar{y} = c_B^T B^{-1}$ 分别为 (LP)和 (LD)的最优解,且 $\bar{f} = c^T \bar{x} = b^T \bar{y} = c_B^T B^{-1}b$
- ✓ $\ddot{A}B^{-1}b \ge 0$,记 $\bar{b} = B^{-1}b$,则存在某个r满足 $\bar{b}_r < 0$,讨论如下: 令B,N分别表示B和N所对应的列标集合,记 $\bar{a}_i = B^{-1}a_i$,考虑以下两种情况:
- (1) 若对于任意 $i \in \mathcal{N}$,均有 $\bar{a}_{ir} \geq 0$ 则原问题(LP)无可行解
- (2)若存在某些 $i \in \mathcal{N}$,使 $\bar{a}_{ir} < 0$ 计算 $\lambda = \min\left\{\frac{\bar{c}_i}{|\bar{a}_{ir}|}\Big|\bar{a}_{ir} < 0, i \in \mathcal{N}\right\} = \frac{\bar{c}_j}{|\bar{a}_{jr}|} > 0$ 保证 $\tilde{c}_i = \bar{c}_i + \lambda \bar{a}_{ir} \geq 0, \forall i \in \mathcal{N} \setminus \{j\}$

新的检验数 $\tilde{c} = c_{\tilde{N}}^T - c_{\tilde{B}}^T \tilde{B}^{-1} \tilde{N}$ $\tilde{c}_r = \lambda$

基Ã为对偶可行基

对偶单纯形算法 Linear Programming Dual simplex algorithm

- (1) Given: B Dual feasible basis; \mathcal{B} , \mathcal{N} Column index set of matrix B and N
- (2) Calculate $\bar{b} = B^{-1}b$ If $\bar{b} \ge 0, x^* = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix}$ STOP
- (3) Choose r $\bar{b}_r = \min\{\bar{b}_i | \bar{b}_i < 0, i \in \mathcal{N}\}$ $\bar{a}_i = B^{-1}a_i, i \in \mathcal{N}$ If $\bar{a}_{ir} \geq 0, \forall i \in \mathcal{N}$ then $x^* = Nan, f^* = -\infty$ STOP else x_r Leaving Variable endif
- (4) Reduced Cost $\bar{c} = c_N^T c_B^T B^{-1} N$ Calculate $\bar{\lambda} = \min \left\{ \frac{\bar{c}_i}{|\bar{a}_{ir}|} \middle| \bar{a}_{ir} < 0, i \in \mathcal{N} \right\} = \frac{\bar{c}_j}{|\bar{a}_{jr}|} > 0$ x_j Entering Variable $\widetilde{\mathcal{B}} = \mathcal{B} \cup \{j\} \setminus \{r\} \quad \widetilde{\mathcal{N}} = \mathcal{N} \cup \{r\} \setminus \{j\}$ \mathcal{B} New Dual feasible basis

 GOTO (2)