MATH 242 - Quiz 5 REMIX

04/04/2024

1. [7 pts] Use the Midpoint Rule with n = 6 to approximate the integral:

$$\int_0^{12} \frac{x^3}{3} dx$$

For clarity in grading, first fill in the following:

(a)
$$a = \bigcirc$$

(b)
$$b = [3]$$

(c)
$$\Delta x = \frac{12 \cdot 6}{6} = 2$$

(d) the four
$$x_i = \{ \bigcirc, 2, 4, 6 \}$$

(e) the three midpoints
$$\bar{x}_i = \{$$
 , $\}$, $\}$ $\}$

(f) the three
$$f(\bar{x}_i) = \{$$
 $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$

(g) Therefore
$$\int_0^{12} \frac{x^3}{3} dx \approx \left(\frac{1}{3} + 9 + \frac{125}{3} + \frac{2^3}{3} + \frac{9^3}{3} + \frac{11^3}{3} \right)$$

2. [3 pts] The Error associated with the Midpoint Rule is

$$|E_{M_n}| \le \frac{K(b-a)^3}{24n^2}$$

where $K \ge |f''(x)|$ for all $x \in [a, b]$

(a) What is the appropriate K for the integral above?

(b) What is the worst magnitude error $|E_{M_n}|$ we can expect using n = 6? Keep in mind your answer in (1.) may have been closer to the truth, but this provides an upper bound.