# 2.7 – Precise Definitions of Limits MATH 2554 – Calculus I

Fall 2019

#### From before:

# Definition (Limit of a Function)

Suppose the function f is defined for all x near a except possibly at a. If f(x) is arbitrarily close to L (that is, as close to L as we like) for all x sufficiently close (but not equal) to a, we write

$$\lim_{x\to a}f(x)=L$$

and say the limit of f(x) as x approaches a equals L.

This "definition" is descriptive, but not rigorous.

Question: How can we turn this definition into a mathematically rigorous statement?

### Step 1: Understanding absolute values.

The rigorous definition includes the statements  $|x-a|<\delta$  and  $|f(x)-L|<\epsilon$ .

Example: Rephrase  $|x-4| < \frac{1}{2}$  without using absolute value and demonstrate your answer on the number line.

Now do the same for  $0<|x-a|<\delta$  and  $|f(x)-L|<\epsilon$  where  $a\in\mathbb{R}$  and  $\epsilon>0$ , and  $\delta>0$ .

Problem: A carpenter needs to cut a wooden board to a length of 7.6 inches with a tolerance of 0.01 inch, meaning the actual length after the cut can be within 0.01 inch of 7.6 inches and still be usable.

- 1. What are some possible values of x, where x is the actual length of the board after cutting?
- 2. Write an inequality to represent the possible usable board lengths.
- 3. Write an inequality that includes the tolerance and the ideal length to describe all possible values of *x*.

Recall: The definition of limit says x sufficiently close (but not equal) to a. The number  $\delta$  is the tolerance, i.e., the number that guarantees that x is "sufficiently close" to a.

Question: How do we use inequalities and absolute values to ensure that  $x \neq a$ ?!?!?!?

#### Step 2: The translation.

Descriptive Statement: If f(x) is arbitrarily close to L (that is, as close to L as we like) for all x sufficiently close (but not equal) to a.

Translation: Given an allowed error tolerance  $\epsilon > 0$  around L, I need to find a margin  $\delta$  around a (namely,  $0 < |x - a| < \delta$ ) so that f(x) is within my allowed tolerance, i.e.,  $|f(x) - L| < \epsilon$ .

Quantitative Statement: Given  $\epsilon>0$ , there exists  $\delta>0$  that depends on  $\epsilon>0$  so that

$$|f(x) - L| < \epsilon$$

whenever  $0 < |x - a| < \delta$ .

Step 3: Understanding Step 2 graphically. Consider the following function, which is undefined at x = 2.



Step 3: The choice of  $\epsilon$  defines a horizontal strip of *y*-values from  $3 - \epsilon$  to  $3 + \epsilon$ . Call this the  $\epsilon$ -strip.



Step 3: The choice of  $\delta$  defines an open interval around x=2. Consider the values of the function lying over the interval  $(2-\delta, 2+\delta)$ .



Step 3: In this example, as the function values are arbitrarily close to 3 provided the inputs are sufficiently close to 2. That is for every  $\epsilon$  there is a  $\delta$  (it changes with  $\epsilon$ ) so that *all* the function values lying over the interval  $(2 - \delta, 2 + \delta)$  lie in the  $\epsilon$  strip.



Notice that the exact value of the function at x = 2 does not matter. It this case, the function is not even defined at x = 2!

### Step 4: Writing the precise definition.

# Definition (Limit of a Function)

Assume that f(x) exists for all x in some open interval containing a, except possibly at a. We say that the limit of f(x) as x approaches a is L, written

$$\lim_{x\to a}f(x)=L$$

if for any number  $\epsilon > 0$ , there exists  $\delta > 0$  such that

$$|f(x) - L| < \epsilon$$
 whenever  $0 < |x - a| < \delta$ .

Homework Problems: Section 2.7 (pp.126-127):#1-7, 9-12, 51,52