FCC ID: VJ9XRF01

FCC TEST REPORT for ASSAN ELECTRONIC CONTROL TECHNOLOGY Co., Ltd.

2.4GHz RF Module Model No.: XRF01

Prepared for Address

ASSAN ELECTRONIC CONTROL TECHNOLOGY Co., Ltd.
B1001, Xiya Suqare, No.33 Yuzhou Rd., Chongqing 400039,

China

Tel: (86) 23-68799088 Fax: (86) 23-68619415

Prepared By Address : Anbotek Compliance Laboratory Limited

: 2/F, Langfeng Building, Kefa Road North, Hi-tech Industrial

Park, Nanshan District, Shenzhen 518057, China

Tel: (86) 755-26014771 Fax: (86) 755-26014720

Report Number : 200707688F

Date of Test : Sep.13~30, 2007

Date of Report : Oct.08, 2007

TABLE OF CONTENT

Description

Page

Test Report

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Description of Test Facility	
1.3. Measurement Uncertainty	5
2. MEASURING DEVICE AND TEST EQUIPMENT	
3. TEST PROCEDURE	7
4. RADIATION INTERFERENCE	8
4.1. Requirements (15.249, 15.209):	8
4.2 Test Results	8
5. OCCUPIED BANDWIDTH	
5.1. Requirements (15.249):	10
5.2 Test Results	10
6. PHOTOGRAPH	
6.1. Photo of Radiation Emission Test	12

APPENDIX I (Photos of EUT) (1 Page)

TEST REPORT

Applicant : ASSAN ELECTRONIC CONTROL TECHNOLOGY Co., Ltd.

Manufacturer : ASSAN ELECTRONIC CONTROL TECHNOLOGY Co., Ltd.

EUT : 2.4GHz RF Module

Model No. : XRF01 Serial No. : N/A

Rating : DC 3.3V Trade Mark : ASSAN

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.249

The device described above is tested by Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Anbotek Compliance Laboratory Limited

Date of Test: Sep.13~30, 2007

Prepared by:

(Engineer

(Manager

Reviewer

(Project Manager)

Approved & Authorized Signer:

Anhotek Compliance Laboratory Limited Report No. 2007/076881-

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : 2.4GHz RF Module

Model Number : XRF01

Test Power Supply: DC 3.3V

Frequency : $2400 \sim 2483 \text{MHz}$

Antenna assembly: 2 dBi

Gain

Applicant : ASSAN ELECTRONIC CONTROL TECHNOLOGY Co., Ltd. Address : B1001, Xiya Suqare, No.33 Yuzhou Rd., Chongqing 400039, China

Manufacturer : ASSAN ELECTRONIC CONTROL TECHNOLOGY Co., Ltd. Address : B1001, Xiya Suqare, No.33 Yuzhou Rd., Chongqing 400039, China

Date of receiver : Sep.01, 2007 Date of Test : Sep.13~30, 2007

1.2. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

VCCI-Registration No.: R-2197 and C-2383

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registed and fully described in a report filed with the (VCCI) Voluntary Control Council for Interference by Information Technology Equipment. The acceptance letter from the VCCI is maintained in our files. Registration R-2197 and C-2383, September 29, 2005.

FCC-Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, August 04, 2005.

IC-Registration No.: 6002

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registed and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 6002, August 25, 2005.

Test Location

All Emissions tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. at No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China

1.3. Measurement Uncertainty

Radiation Uncertainty : $Ur = \pm 4.26dB$

Conduction Uncertainty : $Uc = \pm 2.66dB$

2. MEASURING DEVICE AND TEST EQUIPMENT

Equipment	Manufacturer	Model #	Serial #	Data of Cal.	Due Data
EMI Test Receiver	Rohde & Schwarz	ESCI	100119	Mar.03, 2007	Mar.02, 2008
EMI Test Receiver	Rohde & Schwarz	ESIB26	100249	Sep.22, 2006	Sep.21, 2007
Spectrum Analyzer	Rohde & Schwarz	FSP40	100273	Sep.18, 2006	Sep.17, 2007
Signal Generator	Rohde & Schwarz	SMR27	100124	Jul.06, 2005	Jul.25, 2007
Signal Generator	Rohde & Schwarz	SML03	102319	Aug.01, 2005	Aug.01, 2007
AC Power Source	All Power Electronic Co.	APW-1100N	890869	N/A	N/A
Absorbing Clamp	Rohde & Schwarz	MDS21	100218	Apr.30, 2005	Apr.29, 2007
Power Meter	Rohde & Schwarz	NRVD	101287	Jul.19, 2005	Jul.18, 2007
Coaxial Cable	N/A	N/A	N/A	May.31, 2006	May.30, 2007
Coaxial Cable	N/A	N/A	N/A	May.31, 2006	May.30, 2007
Coaxial Cable	N/A	N/A	N/A	May.31, 2006	May.30, 2007
Universal radio Communication tester	Rohde & Schwarz	CMU200	101724	Sep.08, 2006	Sep.07, 2008
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	N/A	N/A	N/A
BiConilog Antenna	ETS-LINDGREN	3142C	00042670	Mar.03, 2007	Mar.02, 2008
BiConilog Antenna	ETS-LINDGREN	3142C	00042673	Mar.03, 2007	Mar.02, 2008
Double-ridged Waveguide horn	ETS-LINDGREN	3117	00035926	Dec.30, 2005	Dec.29, 2007
Double-ridged Waveguide horn	ETS-LINDGREN	3117	00041545	Dec.30, 2005	Dec.29, 2007
Pre-amplifier	Rohde & Schwarz	AFS42- 00101800- 25-S-42	1091457	Jul.17, 2006	Jul.16, 2008
Thermo-/Hygrometer	N/A	TH01	N/A	May.03, 2006	Mar.03, 2008
Shielding Room	Zhong Yu Electron	GB-88	N/A	N/A	N/A
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	N/A	Apr.28, 2005	Apr.27, 2007

3. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Anbotek Compliance Lavoratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.3oF with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

4. Radiation Interference

4.1. Requirements (15.249, 15.209):

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m @3M
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBµV/m @3m	54 dBµV/m @3m	ABOVE 960 MHz	54dBuV/m

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

4.2 Test Results

Horizontal

PASS.

a. Low Mode(2402MHz)

Frequency MHz	Cable Loss dB	Ant Factor dB/m	Preamp Factor dB	Read Level dBµV	Level dBµV/m	Limit dBµV/m	Over Limit dB
2,402.2 4,804.1 7,206.0 9,607.9	0.00 0.00 0.00 0.00	26.01 30.49 34.02 36.54	40.05 42.56 43.55 44.20	90.06 57.92 34.20 31.61	76.02 45.85 24.67 23.95	94.0 54.0 54.0 54.0	-17.98 -8.15 -29.33 -30.05
Vertical							
Frequency MHz	Cable Loss dB	Ant Factor dB/m	Preamp Factor dB	Read Level dBµV	Level dBµV/m	Limit dBµV/m	Over Limit dB
2,402.2 4,804.1 7,206.0 9,607.9	0.00 0.00 0.00 0.00	26.01 30.49 34.02 36.54	40.05 42.56 43.55 44.20	91.58 60.63 35.58 31.72	77.54 48.56 26.05 24.06	94.0 54.0 54.0 54.0	-16.46 -5.44 -27.95 -29.94

9,920.0

0.00

36.77

b. Middle M Horizontal	·	MHz)					
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m \\$	$dB\mu V/m$	dB
2,440.9	0.00	27.87	40.17	89.78	77.48	94.0	-16.52
4,882.4	0.00	31.91	43.02	57.66	46.55	54.0	-7.45
7,323.2	0.00	34.58	43.67	33.58	24.49	54.0	-29.51
9,764.0	0.00	36.66	44.43	31.33	23.56	54.0	-30.44
-	-	-	-	-	-	-	-
Vertical							
Frequency	Cable	Ant	Preamp	Read	Level	Limit	Over
	Loss	Factor	Factor	Level			Limit
MHz	dB	dB/m	dB	dΒμV	dBµV/m	dBμV/m	dB
2,440.9	0.00	27.87	40.17	90.99	78.69	94.0	-15.31
4,882.4	0.00	31.91	43.02	57.70	46.59	54.0	-7.41
7,323.2	0.00	34.58	43.67	33.56	24.47	54.0	-29.53
9,764.0	0.00	36.66	44.43	31.37	23.60	54.0	-30.40
c. High Mod	- le(2480MH	- Iz)	-	-	-	-	-
Horizontal	•	,					
Frequency	Cable	Ant	Preamp	Read	Level	Limit	Over
	Loss	Factor	Factor	Level	Level		Limit
MHz	dB	dB/m	dB	dΒμV	$dB\mu V/m$	$dB\mu V/m$	dB
2,480.0	0.00	28.84	40.23	87.20	75.81	94.0	-18.19
4,959.7	0.00	33.72	43.25	55.59	46.06	54.0	-7.94
7,440.0	0.00	34.70	43.82	32.41	23.29	54.0	-30.71
9,920.0	0.00	36.77	44.51	31.42	23.68	54.0	-30.32
-	-	-	-	-	-	-	-
Vertical							
	Cable	Ant	Preamp	Read			Over
Frequency	Loss	Factor	Factor	Level	Level	Limit	Limit
MHz	dB	dB/m	dB	dΒμV	$dB\mu V/m \\$	$dB\mu V/m \\$	dB
2,480.0	0.00	28.84	40.23	87.96	76.57	94.0	-17.43
4,959.7	0.00	33.72	43.25	56.18	46.65	54.0	-7.35
7,440.0	0.00	34.70	43.82	33.66	24.54	54.0	-29.46
0.000.0	0.00	26.77	44.51	21.56	22.02	510	20.10

Emissions attenuated more than 20 dB below the permissible value are not reported.

44.51

31.56

23.82

54.0

-30.18

5. Occupied Bandwidth

5.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.

5.2 Test Results

Pass.

Please refer the following plot.

Low Mode:

FCC ID: VJ9XRF01

Middle Mode:

High Mode:

6. PHOTOGRAPH

6.1. Photo of Radiation Emission Test

Page 13 of 14 FCC ID: VJ9XRF01

APPENDIX I (Photos of EUT)

Figure 1
The EUT-Front View

Figure 2
The EUT-Back View

