CSC3001 Discrete Mathematics

Assignment 2

Deadline: 11:59pm Friday, Oct28,2022

1. Let f_n be the n-th Fibonacci sequence, $f_{n+2}=f_{n+1}+f_n$

a.
$$f_1 = f_2 = 1$$
,
prove that $f_1 + f_2 + \cdots + f_n = f_{n+2} - 1$
b. $f_1 = a, f_2 = b$,
prove that $f_1 + f_2 + \cdots + f_n = f_{n+2} - b$

2. Find and prove closed form formulas for generating functions $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$ of the following sequences

- (a) $a_n = a^n$, where $a \in \mathbf{R}$;
- $(b)a_n = \binom{m}{n}$, where $m \in N$;

(c) $a_n=f_n$, where f_n is the n-th Fibonacci number (assume $f_0=0, f_1=f_2=1)$

3. Using the formlar

$$\binom{n}{m} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-m+1)}{m \cdot (m-1) \cdot (m-2) \cdot \dots \cdot 2 \cdot 1}$$

p is a prime number.

Prove that $\binom{p}{k}$ is divisible by p for 0 < k < p;

Deduce by induction on n that $n^p \equiv_p n.(pn \text{ means } n(mod p))$

4. Using the identity

$$(1+x)^n(1+x)^n = (1+x)^{2n}$$

Prove that

$$\sum_{m=0}^{n} \binom{n}{m} \binom{n}{n-m} = \binom{2n}{n}$$

Deduce that

$$\sum_{m=0}^{n} \binom{n}{m}^2 = \binom{2n}{n}$$

5. Find all solutions, if any, solutions to the system

$$x \equiv 5 \pmod{6}$$
$$x \equiv 3 \pmod{10}$$
$$x \equiv 8 \pmod{15}$$

- 6. Show steps to find;
- (a) the greatest common divisor of 1234567 and 7654321.
- (b) the greatest common divisor of $2^33^55^77^911$ and $2^93^75^57^313$

7. Label the first prime number 2 as P_1 . Label the second prime number 3 as P_2 . Similarly,
label the n-th prime number as P_n . Prove that $P_n < 2^{2^n}$ for an arbitrary $n \in N^+$. (Hint:
consider $P_1P_2P_2\dots P_{n-1}+1$.)

8.In a round-robin tournament, every team plays every other team exactly once and each match has a winner and a loser. We say that the team p_1, p_2, \ldots, p_m form a cycle if p_1 beats p_2, p_2 beats p_3 , and p_m beats p_1 . Show that if there is a cycle of length m(m > 3) among the players in a round-robin tournament, there must be a cycle off three of these players. (Hint: Use well-ordering principle.)