Feature Visualisation of CNN

Qing Pan

Supervised by: Dr. Jize Yan & Dr. Hansuang Kim

Overview

01. Introduction

02. Methodology

03. Results and Conclusions

Introduction

Motivations

- Convolutional neural networks (CNNs) have been widely used in Computer Vision field.
- CNNs become more and more opaque.
- A growing sense that networks need to be interpretable for humans.
- Feature visualisation is one of the most powerful tools to understand the black-box neural networks.

Objectives

- Implemented feature visualisation via Activation Maximization (AM) channel-wise to reflect what a certain channel is doing.
- Applied several regularisation methods on AM.
 - L2
 - Total variance
 - Transformation robustness (jitter, scale, rotate)
 - Octaves scale-up
- Evaluated the effect of different regularisations along with their corresponding parameters quantitatively.
- Proposed a refined range of values for each tested parameter.

Methodology

Implementation phase

Implementation of evaluation methods

Experiment phase

Results and Conclusions

Results

Refined range of potential values for each tested parameter

Experiment	Potential parameter range
L2	(-0.01, -0.001)
Total variance	(-0.001, -0.0001)
Transformation: Jitter	(8, 64)
Transformation: Scale	(1.0, 1.4)
Transformation: Rotate	(15, 180)
Octaves scale up	(1.0, 1.2)

Results

The lowest LPIPS of AM images generated with different regularisations for 4 chosen channels.

Experiment	Channel 48	Channel 62	Channel 73	Channel 91
No regularisation	1.244	1.292	1.282	1.234
L2	1.026	1.023	1.041	0.976
Total variance	0.798	0.742	0.778	0.763
Standard transformation	0.901	0.888	0.883	0.849
Transformation: Jitter	0.906	0.915	0.924	0.906
Transformation: Scale	0.836	0.736	0.829	0.819
Transformation: Rotate	0.959	1.047	1.055	1.028
Octaves scale-up	0.717	0.773	0.818	0.780

Conclusions

- All regularisation methods have positive effect on the results to varying degrees
- Both of total variance and octaves scale-up improve the AM image by around 39% in average
- L2 has the least positive effect on the results (with an average improvement of 19.5%)

Experiment	Channel 48	Channel 62	Channel 73	Channel 91	
No regularisation	1.244	1.292	1.282	1.234	
L2	1.026	1.023	1.041	0.976	19.5%
Total variance	0.798	0.742	0.778	0.763	39.0%
Standard transformation	0.901	0.888	0.883	0.849	
Transformation: Jitter	0.906	0.915	0.924	0.906	
Transformation: Scale	0.836	0.736	0.829	0.819	
Transformation: Rotate	0.959	1.047	1.055	1.028	
Octaves scale-up	0.717	0.773	0.818	0.780	38.8%

Thank you

Thanks to your patience and support.

Base AM (channel 0)

Similarity calculation

Channel selection (channel 48,62,73,91)

Channel 48

Channel 62

Channel 73

Channel 91

Experiment results (channel 48)

Reference L2, $\lambda_{L_2} = -0.005$ TV, $\lambda_{tv} = -0.005$ Standard transformation C

Transformation rotate = 45

Back