

COMPUTER GRAPHICS

3D Graphics with OpenGL

Dr. Zhonggui Chen School of Informatics, Xiamen University http://graphics.xmu.edu.cn

□ \ExperimenterSource\Chapter2\CircularAnnuluses\ circularAnnuluses.cpp

Upper left circular annulus

```
// the white disc overwrites the red disc.
glColor3f(1.0, 0.0, 0.0); // red
drawDisc(20.0, 25.0, 75.0, 0.0);
glColor3f(1.0, 1.0, 1.0); // white
drawDisc(10.0, 25.0, 75.0, 0.0);
```

Upper right circular annulus

```
// the white disc is in front of the red disc blocking it.
glEnable(GL_DEPTH_TEST); // Enable depth testing.
glColor3f(1.0, 0.0, 0.0);
drawDisc(20.0, 75.0, 75.0, 0.0);
glColor3f(1.0, 1.0, 1.0);
drawDisc(10.0, 75.0, 75.0, 0.5); // Compare this z-value
with that of the red disc.
glDisable(GL_DEPTH_TEST); // Disable depth testing.
```

Lower circular annulus

```
// with a true hole.
if (isWire) glPolygonMode(GL_FRONT, GL_LINE);
else glPolygonMode(GL FRONT, GL FILL);
glColor3f(1.0, 0.0, 0.0);
glBegin(GL TRIANGLE STRIP);
for (i = 0; i <= N; ++i)
    angle = 2 * PI * i / N;
    glVertex3f(50 + \cos(\text{angle}) * 10.0,
       30 + \sin(\text{angle}) * 10.0, 0.0);
    glVertex3f(50 + cos(angle) * 20.0,
       30 + \sin(\text{angle}) * 20.0, 0.0);
glEnd();
```

- □ Interchange in circularAnnuluses.cpp the drawing orders of the red and white discs i.e., the order in which they appear in the code in either of the top two annuluses.
- Which one is affected?
- Why?

Z-Buffer

- Add extra depth channel to image
- □ Write Z values when writing pixels

 ∞ ∞ ∞ ∞ ∞ ∞ ∞

□ Test Z values before writing

					-00	-00	-00				_		,)						
œ	8	œ	∞	∞	œ	œ	∞				5	5	5	5	5	5				5	5	5	5	5	5	∞	∞
œ	00	00	00	00	œ	œ	œ				5	5	5	5	5		-			5	5	5	5	5	œ	œ	00
œ	00	00	00	00	œ	œ	œ				5	5	5	5		-			•	5	5	5	5	œ	œ	œ	œ
oo	00	00	00	00	œ	œ	œ		1		5	5	5							5	5	5	∞	00	œ	œ	œ
œ	œ	00	00	œ	œ	œ	œ				5	5		•						5	5	œ	00	œ	œ	œ	œ
œ	00	œ	00	œ	œ	œ	œ				5		•							5	œ	œ	00	œ	œ	œ	00
œ	00	00	00	00	œ	œ	œ			_										œ	œ	00	00	00	œ	œ	œ
5	5	5	5	5	5	5	∞													5	5	5	5	5	5	5	00
5	5	5	5	5	5	5 ∞	σ σ				7									5	5	5	5	5	5	5 ∞	80
		Ë	-				-				7	7											<u> </u>			-	
5	5	5	5	5	5	00	œ		_	-	7 6 5	7	7							5	5	5	5	5	5	œ	œ
5	5	5	5	5	5 ∞	8	∞ ∞		+		-	7 6 5	7	7				•	•	5	5	5	5	5	5 ∞	8	∞ ∞
5 5 5	5	5 5 5	5 5 5	5 5 ∞	5 ∞ ∞	8 8	& & &	•	+		5	-	-	7	7			•	:	5 5	5 5 5	5 5 5	5 5 5	5 5 ∞	5 ∞ ∞	8	∞
5 5 5	5 5 5	5 5 5 5	5 5 5 ∞	5 5 ∞ ∞	5	8 8 8	8 8 8	•	+		5	5	6	-	7	7	1	:	:	5 5 5 4	5 5 5	5 5 5 5	5 5 5 7	5 5 ∞	5 ∞ ∞	8 8 8	80 80 80
5 5 5 5	5 5 5 5	5 5 5 ∞	5 5 5 ∞	5	5 8 8 8	8 8 8 8	8 8 8	•	+		5 4 3	5 4	6	6	÷	7		:	:	5 5 4 3	5 5 5 5 4	5 5 5 5	5 5 7 6	5 5 ∞ ∞	5 ∞ ∞	8 8 8 8	8 8 8 8 8

Z-Buffer

Z-Buffer

A 3D scene

Z-buffer representation

Enabling Depth Testting in OpenGL

- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH) in main() causes the depth buffer to be initialized.
- □ glClear(GL_ COLOR_BUFFER BIT | GL_DEPTH_BUFFER_BIT) in the drawScene() routine causes the depth buffer to be cleared.
- glEnable(GL_DEPTH_TEST) in the drawScene() routine turns hidden surface removal on.
 - The complementary command is glDisable(GL_DEPTH_TEST)

Projection transformation

Orthographic Projection Matrix

- Original point: (x, y, z, 1)
- □ Projection onto z = 0 plane
- □ Projected point: $x_p = x$, $y_p = y$, $z_p = 0$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Orthographic Projection

- □ Simple, but not realistic
- Used in architectural design

Perspective Projection

Vanishing Points

- In perspective projection, parallel lines (parallel in the scene) appear to converge to a single point
 - This is called the vanishing point

Vanishing Points

Perspective Projection in OpenGL

glFrustum(left , right , bottom , top, near , far)

Perspective Projection in OpenGL

glFrustum(left , right , bottom , top , near , far)

Perspective Projection in OpenGL

- Rendering sequence
 - Shoot and print

Example: helix.cpp

- \square A helix coiling up the z-axis: glVertex3f(R * cos(t), R * sin(t), t 60.0);
- □ Replace glOrtho(-50.0, 50.0, -50.0, 50.0, 0.0, 100.0) with glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0)

Example: helix.cpp

- Predict the change in the display caused by the change in the frustum:
- Move the back face back:
 - glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 120.0)
- Move the front face back:
 - glFrustum(-5.0, 5.0, -5.0, 5.0, 10.0, 100.0)
- Move the front face forward:
 - glFrustum(-5.0, 5.0, -5.0, 5.0, 2.5, 100.0)
- Make the front face bigger:
 - glFrustum(-10.0, 10.0, -10.0, 10.0, 5.0,100.0)

Approximating Curved Objects

 Hemisphere of radius R, centered at the origin O, with its circular base lying on the xz -plane

Approximating Curved Objects

 Sample the hemisphere and approximate the circular band between each pair of adjacent latitudes with a triangle strip

Approximating Curved Objects

 Sample the hemisphere and approximate the circular band between each pair of adjacent latitudes with a triangle strip

```
for(j = 0; j < q; j++)
  // One latitudinal triangle strip.
   glBegin(GL_TRIANGLE_STRIP);
      for(i = 0; i \leq p; i++)
         glVertex3f(R * cos((float)(j+1)/q * PI/2.0) *
                        cos(2.0 * (float)i/p * PI),
                    R * sin((float)(j+1)/q * PI/2.0),
                    -R * cos((float)(j+1)/q * PI/2.0) *
                        sin(2.0 * (float)i/p * PI));
         glVertex3f(R * cos((float)j/q * PI/2.0) *
                        cos(2.0 * (float)i/p * PI),
                    R * sin((float)j/q * PI/2.0),
                    -R * cos((float)j/q * PI/2.0) *
                        sin(2.0 *(float)i/p * PI));
   glEnd();
```


Interesting applications

□ 3D Street Art

Interesting applications

Impossible motions

3D Graphics with OpenGL

-- Transformations

Transformations

Basics

Introduction

- Transformation:
 - maps points to other points and/or vectors to other vectors
- □ For images, shapes, etc.
 - A geometric transformation maps positions that define the object to other positions
 - Linear transformation means the transformation is defined by a linear function...

Some Examples

Uniform Scale

Nonuniform Scale

Mapping Function

Mapping a position x in old image to a new position x'=f(x) in new image

Linear -vs- Nonlinear

Nonlinear(swirl)

Instancing

- □ Reuse geometric descriptions
- □ Saves memory

Basic Transformations

- □ Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!

OpenGL Transformations Matrices

- □ Translate, rotate, scale objects
- Position the camera

OpenGL Transformation Matrices

□ Projection from 3D to 2D

OpenGL Transformation Matrices

- Manipulated separately in OpenGL
 - □ (must set matrix mode):

```
glMatrixMode (GL_MODELVIEW);
glMatrixMode (GL_PROJECTION);
```

Setting the Current Model-view Matrix

Load or post-multiply

```
glMatrixMode (GL_MODELVIEW);
glLoadIdentity(); // very common usage
float m[16] = { ... };
glLoadMatrixf(m); // rare, advanced
glMultMatrixf(m); // rare, advanced
```

Use library functions

```
glTranslatef(dx, dy, dz);
glRotatef(angle, vx, vy, vz);
glScalef(sx, sy, sz);
```

Transformations

2D Transformations

Linear Functions in 2D

 $\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$

$$x' = f(x, y) = c_1 + c_2 x + c_3 y$$

$$y' = f(x, y) = d_1 + d_2 x + d_3 y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} M_{xx} & M_{xy} \\ M_{yx} & M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

- Diagonal matrices
 - □ Diagonal parts are scale in X and scale in Y directions
 - Negative values flip
 - Two negatives make a positive (180 deg. rotation)
 - Axis-aligned scales

$$\mathbf{p'} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \mathbf{p}$$

- Rotations are counter-clockwise
- Consistent w/ right-hand rule
- □ Note:
 - Rotations of by zero degree give an identity
 - \blacksquare Rotations are modulo 360 (or 2π)

$$\mathbf{p}' = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} \mathbf{p}$$

Shears

$$x' = x + H \cdot y$$
$$y' = y$$

Shears (Y-shears)

$$x' = x$$
$$y' = y + h \cdot x$$

Shears

(a) Original object

(b) Object after x shear

$$\mathbf{p'} = \begin{bmatrix} 1 & H_x \\ H_y & 1 \end{bmatrix} \mathbf{p}$$

Translation

□ This is the not-so-useful way:

$$\mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Note that its not like the others.

Homogeneous Coordinates

- Move to one higher dimensional space
 - Append 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \tilde{\mathbf{p}} = \begin{vmatrix} p_x \\ p_y \\ 1 \end{vmatrix} = \begin{vmatrix} w \cdot p_x \\ w \cdot p_y \\ w \end{vmatrix}, \quad w \neq 0$$

homogeneous coordinates

Homogeneous Translation

$$\mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\tilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

$$\tilde{\mathbf{p}}' = T\tilde{\mathbf{p}}$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

Scaling

$$\tilde{\mathbf{p}}' = \begin{vmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{vmatrix} \tilde{\mathbf{p}}$$

Rotation

$$\tilde{\mathbf{p}}' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \tilde{\mathbf{p}}$$

Shear
$$\tilde{\mathbf{p}}' = \begin{bmatrix} 1 & H_x & 0 \\ H_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tilde{\mathbf{p}}$$

Compositing Matrices

- Rotations and scales always about the origin
- □ How to rotate/scale about another point?

Rotate about an arbitrary Point

□ Step 1: Translate point to origin

Translate(-C)

Rotate About Arb. Point

- □ Step 1: Translate point to origin
- □ Step 2: Rotate as desired

Translate(-C)
Rotate(θ)

Rotate About Arb. Point

- Step 1: Translate point to origin
- □ Step 2: Rotate as desired
- □ Step 3: Put back where it was

Translate(-C)
Rotate(θ)
Translate(C)

$$\widetilde{\mathbf{p}}' = \mathbf{T}\mathbf{R}(-\mathbf{T})\widetilde{\mathbf{p}} = \mathbf{A}\widetilde{\mathbf{p}}$$

Order Matters!

The order in which matrices appear matters

$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \mathbf{A}$$

- Some special cases work, but they are special
- But matrix multiplication is associative

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

Think about efficiency when you have many points to transform...

Matrix Inverses

- In general: A⁻¹ undoes effect of A
- Special cases:
- Special cases:

 Translation: negate t_x and t_y $\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
 \end{bmatrix}$ $\begin{bmatrix}
 1 & 0 & -t_x \\
 0 & 1 & -t_y \\
 0 & 0 & 1
 \end{bmatrix}$
 - \blacksquare Rotation: transpose (negate θ)

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

■ Scale: invert diagonal (axis-aligned scales)

$$\begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1/S_x & 0 & 0 \\ 0 & 1/S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transformations

3D Transformations

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
 - Vectors get longer by one
 - Matrices get one extra column and row
 - Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For 3D

$$\widetilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\tilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For 3D (Axis-aligned!)

Shears

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & 0 \\ h_{yx} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\widetilde{\mathbf{A}} = egin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \ h_{yx} & 1 & h_{yz} & 0 \ h_{zx} & h_{zy} & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

For 3D (Axis-aligned!)

□ 3D Rotations fundamentally more complex than in 2D

■ 2D: angle of rotation

■ 3D: angle and axis of rotation

□ 2D rotations implicitly rotate about a third out of plane axis

2D rotations implicitly rotate about a third out of plane axis

$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: looks same as $\hat{\mathbf{R}}$

$$\mathbf{R}_{\hat{x}} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{vmatrix}$$

$$\mathbf{R}_{\hat{y}} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{\hat{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

"Z is in your face"

Also known as "direction-cosine" matrices

$$\mathbf{R}_{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \mathbf{R}_{\hat{y}} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{\hat{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation about an Arbitrary Radial Axis

Can be built from axis-aligned matrices:

$$\mathbf{R} = \mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$$

- Euler Angles
- In OpenGL
 - void glRotated(angle, x, y, z)

