

Scaling MAP-Elites to Deep Neuroevolution

Cédric Colas, Joost Huizinga, Vashisht Madhavan, Jeff Clune

Solving games and control problems with deep neural networks

Tassa et al. (2018)

Bellemare et al. (2013)

... and many more (driving simulators, navigation in realistic houses etc)

SGD-based (Deep RL) or black-box (Evolution Strategies) modern optimization methods leverage deep neural networks to solve high-dimensional problems.

Deception: the path to success is not always a straight line

Searching for diversity instead

Instead of training one controller to solve the task train many and maximize diversity

Goal Exploration Processes (GEP): Baranes & Oudeyer (2009, 2013) Novelty-search (NS): Lehman & Stanley (2011)

Searching for diversity and performance with Quality-Diversity

MAP-Elites: Mouret & Clune (2015)

Quality & Diversity

Map-Elites + IT&E Cully et al. (2015)

Quality-Diversity currently limited to low-d controllers

Genetic Algorithms for deep nets Such et al. (2017)

Evolution Strategies for deep nets Salimans et al. (2017)

Quality-Diversity, powered by Evolution Strategies

First steps: Novelty-Search, powered by ES

Humanoid

Gradient of performance

Salimans et al. (2017) Conti et al. (2018)

Deceptive Humanoid

Gradient of performance (deceptive)

First steps: Novelty-Search, powered by ES

Conti et al. (2018)

Map-Elites with Evolution Strategies

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

Example: Final 2D position in a maze.

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

X

Step 2: Fill the map!

Pick a cell and its controller

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

Step 2: Fill the map!

Pick a cell and its controller

X

Run mutated controllers

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

X

Step 2: Fill the map!

Pick a cell and its X controller

Run mutated controllers

Compute ES update and evaluate controller

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

X

Step 2: Fill the map!

Pick a cell and its controller

Run mutated controllers

Compute ES update X and evaluate controller

Add it to the BM if:

falls in a new cell

OR

achieves high performance

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

Step 2: Fill the map!

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

Step 2: Fill the map!

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

Step 2: Fill the map!

Objective: Build a behavioral repertoire of high-performing controllers.

Step 1: Define a behavioral characterization and a discretized behavioral map (BM)

Step 2: Fill the map!

spatial space

Experiments

Two applications: Damage Adaptation & Exploration

Damage Adaptation

Exploration

Application #1 - Damage Adaptation

Phase I: Behavioral Collection

Cell Coverage

Ant-v2 Reward default Gym BC [% leg contact]_{L1:L4}

Phase I: Behavioral Collection

Maximum performance

Ant-v2 Reward default Gym BC [% leg contact]_{L1:L4}

Phase 2: Damage Adaptation

Application #2 - Exploration

Exploration: Humanoid Deceptive

Cell Coverage

Exploration: Humanoid Deceptive

Best performance

Cell Coverage

Exploration: Ant Maze

Best performance

AntMaze Reward Euclidean distance to the goal вс

Final (x, y)

Discussion

Related work:

- Kume et al. (2017) Map-based Multi-Policy RL: an RL-based Map-Elites
- CMA-ME: parallel work using CMA-ES Fontaine et al. (GECCO 2020)

Future work:

- Automatize the exploration-exploitation tradeoff
- Sample reuse: reuse the offspring evaluations to compute many candidate child controllers with different objectives (e.g. novelty, performance, mixtures of these, evolvability etc).

MAP-Elites based on Evolution Strategies

Build high-quality behavioral repertoires

ES enables QD algorithms to be scaled to hard control tasks (Ant).

The archive can be used for damage adaptation.

Solve hard exploration problems

It decouples exploration and exploitation for efficient deep exploration and leverages ES to scale to hard control tasks (Humanoid, Ant)

uber-research/Map-Elites-Evolutionary

Exploration: Ant Maze

- Lehman, J., & Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the search for novelty. In *ALIFE* (pp. 329-336).
- Lehman, J., & Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition. In *Proceedings of the 13th* annual conference on Genetic and evolutionary computation (pp. 211-218). ACM.
- Cully, A., & Mouret, J. B. (2013). Behavioral repertoire learning in robotics. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 175-182). ACM.
- Mouret, J. B., & Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.
- Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. *Nature*, 521(7553), 503.
- Forestier, S., Mollard, Y., & Oudeyer, P. Y. (2017). Intrinsically motivated goal exploration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190.
- Kume, A., Matsumoto, E., Takahashi, K., Ko, W., & Tan, J. (2017). Map-based multi-policy reinforcement learning: enhancing adaptability of robots by deep reinforcement learning. arXiv preprint arXiv:1710.06117.
- Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

- Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567.
- Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K., & Clune, J. (2018). Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In Advances in Neural Information Processing Systems(pp. 5027-5038).
- Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 253-279.
- Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. D. L., ... & Lillicrap, T. (2018). Deepmind control suite. arXiv preprint arXiv:1801.00690.
- Baranes, A., & Oudeyer, P. Y. (2009). R-iac: Robust intrinsically motivated exploration and active learning. IEEE Transactions on Autonomous Mental Development, 1(3), 155-169.
- Fontaine, M. C., Togelius, J., Nikolaidis, S., & Hoover, A. K. (2019). Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space. arXiv preprint arXiv:1912.02400.
- Kume, A., Matsumoto, E., Takahashi, K., Ko, W., & Tan, J. (2017). Map-based multi-policy reinforcement learning: enhancing adaptability of robots by deep reinforcement learning. arXiv preprint arXiv:1710.06117.