fourier_method

February 26, 2019

1 Fourier transform in european option pricing

1.1 Abstract

Our goal is

• Use Fourier transform method for european call pricing whenever characteristic function is available for its log price

1.2 Problem

In the **Heston** model, the dynamic involves two processes (S_t, v_t) . More precisely, the asset price S follows generalized geometric Brownian motion with random volatility process $\sqrt{v_t}$, i.e.

$$dS_t = rS_t dt + \sqrt{\nu_t} S_t dW_{1,t}$$

while squared of volatility process ν follows CIR process

$$d\nu_t = \kappa(\theta - \nu_t)dt + \xi \sqrt{\nu_t}(\rho dW_{1,t} + \bar{\rho} dW_{2,t})$$

with $ho^2 + \bar{
ho}^2 = 1$. Feller condition for its existence of the solution is

$$2\kappa\theta > \xi^2$$
.

Our goal is to use Fourier transform to evaluate Call(T = 1, K = 100) underlying Heston model with the following parameters:

$$S_0 = 100, \nu(0) = .04, r = .05, \kappa = 1.2, \theta = .04, \xi = .3, \rho = .5.$$

There is no explicit formula for both call price and pdf of S_T . However, the explicit formula for the **characteristic function** of $\log S_T$ is available. Therefore, it is perfectly suitable for Fourier transform method.

1.3 Analysis

1.3.1 Main result

We assume the characteristic function of a random variable *X* is defined by

$$\phi(u) = \mathbb{E} \exp(iuX).$$

ex Prove that, if $X \sim \mathcal{N}(\mu, \sigma^2)$, then its characteristic function is

$$\log \phi(u) = iu\mu - \frac{1}{2}u^2\sigma^2.$$

Propostion

Let interest rate be r and the characteristic function of $ln(S_T)$ be ϕ . The price of Call(T, K) is

$$C = S_0 I_1 - K e^{-rT} I_2,$$

where

$$I_1(\phi, \ln K) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{-iu\ln(K)}\phi(u-i)}{iu\phi(-i)}\right) du$$

and

$$I_2(\phi, \ln K) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{-iu\ln(K)}\phi(u)}{iu}\right) du.$$

The above presentation actually gives straightforward evaluation for python as long as the characteristic function is available. One may use scipy.integrate.quad for two integrations in the formula.

1.3.2 **Proof**

We recall that the characteristic function of a random variable *X* is defined by

$$\phi(u) = \mathbb{E} \exp(iuX).$$

• (hw) Prove

$$\int_0^\infty \frac{\sin t}{t} dt = \pi/2.$$

Lemma

$$I(X > H) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \frac{\sin(u(X - H))}{u} du.$$

Lemma

For $\phi = \phi_X$, we have

$$\mathbb{P}(X > H) = I_2(\phi, H).$$

Lemma

For $\phi = \phi_X$, we have

$$\frac{\mathbb{E}[e^X I(X > H)]}{\mathbb{E}[e^X]} = I_1(\phi, H)$$

Proof of proposition

$$C = \mathbb{E}[e^{-rT}S_T I(\ln S_T > \ln K)] - Ke^{-rT}\mathbb{E}[I(\ln S_T > \ln K)].$$

Note that

$$\mathbb{E}[e^{-rT}S_T]=S_0.$$

Therefore, we have

$$C = S_0 \frac{\mathbb{E}[S_T I(\ln S_T > \ln K)]}{\mathbb{E}[S_T]} - Ke^{-rT} \mathbb{E}[I(\ln S_T > \ln K)].$$

Now, we conclude the result by utilizing the above lemmas with $X = \ln S_T$.