

Universidad Simón Bolívar Decanato de Estudios Profesionales Coordinación de Ingeniería de Electrónica

Diseño y Simulación de Procesadores Cuánticos que Implementen Algoritmos Cuánticos de Búsqueda

Por:

Miguel Casanova Realizado con la asesoría de: Enrique Castro y Sttiwuer Diaz

PROYECTO DE GRADO

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero Electrónico

Sartenejas, noviembre de 2018

Índice general

Ín	Índice de Figuras 7							
Li	sta d	e Tablas	10					
1.	Intr	oducción	11					
	1.1.	Justificación	16					
	1.2.	Objetivos	18					
		1.2.1. Objetivo General	18					
		1.2.2. Objetivos Específicos	18					
	1.3.	Fases del Proyecto	19					
	1.4.	Referencias	20					
1.	Info	rmación cuántica	5					
	1.1.	Operadores lineales	5					
	1.2.	Delta de Kronecker	6					
	1.3.	Operadores hermíticos	6					
	1.4.	Operadores unitarios	7					
	1.5.	Conmutador y anticonmutador	8					
	1.6.	Espacios de Hilbert	9					
	1.7.	Estados cuánticos	11					
	1.8.	Sistemas multipartitos	17					
	1.9.	Postulados de la mecánica cuántica	20					
	1.10	Entrelazamiento	21					
	1.11	Qubits	22					
	1.12	Esfera de Bloch	23					
	1.13	Matrices de Pauli	24					
	1.14	Circuitos cuánticos	24					
	1.15	Compuertas cuánticas de un qubit	27					
		1.15.1. Compuerta identidad	27					
		1.15.2. Compuerta X	27					
		1.15.3. Compuerta Z	28					
		1.15.4. Compuerta Y	29					
		1.15.5. Compuerta de Hadamard	29					
		1.15.6. Compuerta S	30					
		1.15.7 Compuerta T	30					

ÍNDICE GENERAL 4

		1.15.8. Compuerta de cambio de fase	31
		1.15.9. Compuertas de rotación	31
	1.16.	Compuertas multiqubit	33
		1.16.1. Compuerta CNOT	33
		1.16.2. Compuerta SWAP	33
		1.16.3. Compuerta $\sqrt{\text{SWAP}}$	34
		1.16.4. Compuerta de Ising	35
		1.16.5. Compuerta de Toffoli	35
		1.16.6. Compuerta de Deutsch	36
	1.17.	Conjuntos universales de compuertas cuánticas	37
		Criterios de DiVincenzo	37
		Fidelidad	38
		Medidas proyectivas	39
		Sistemas cuánticos abiertos	40
3.	Sup	erconductividad	60
	3.1.	Cuantización macroscópica y superconductividad	60
	3.2.	La teoría BCS	62
	3.3.	Cuantización del flujo magnético y efecto tunel Giaver	70
	3.4.	Efecto Josephson	77
	3.5.	Componentes de la corriente en las junciones de Josephson	82
	3.6.	Qubits superconductores	83
	3.7.	Arquetipos de qubits superconductores	85
		3.7.1. Qubit de carga	85
		3.7.2. Qubit de flujo	85
		3.7.3. Qubit de fase	85
	3.8.	Transmones	85
	3.9.	Hamiltonianos multiqubit de transmones	88
	3.10.	Compuertas cuánticas en transmones	89
		3.10.1. Rotaciones X-Y	90
		3.10.2. Compuerta de entrelazamiento	91
		3.10.3. Compuertas compuestas	92
			0.0
4.		imulador	93
	4.1.	Parámetros de los sistemas simulados	94
	4.2.	Compuertas nativas	95
		4.2.1. Rx y Ry	
	4.0	4.2.2. iSWAP	
	4.3.	Compuertas compuestas	98
		4.3.1. X	98
		4.3.2. Y	98
		4.3.3. Rz	98
		4.3.4. Z	
		4.3.5. H	99

ÍNDICE GENERAL 5

		4.3.6. CNOT		 	 . 100
		4.3.7. SWAP		 	 . 100
		4.3.8. Compuertas cond	icionales generales .	 	 . 100
	A 1				110
5.	_	ritmo de Grover			112
	5.1.	El algoritmo			
	5.2.	Variaciones y generalizad			
			olificación de amplit		
		•	ver en un paso		
	- 0	5.2.3. Optimización del			
	5.3.	Simulaciones		 	 . 122
6.	Algo	ritmo de Shor			127
	6.1.	Transformada cuántica d	e Fourier	 	 . 127
	6.2.	Estimación de fase		 	 . 129
	6.3.	Estimación de orden		 	 . 132
	6.4.	Expansión en fracciones	contínuas	 	 . 135
	6.5.	Algoritmo de factorizació	n de Shor	 	 . 136
	6.6.	$\operatorname{Simulaciones} \ldots \ldots$			
		6.6.1. Factorización del	número 15	 	 . 137
		6.6.2. Factorización del			
7	Goo	gle PageRank			142
•	7.1.	El algoritmo de remiendo	(narcheo) general		
	7.2.	Interpretación como una	· -		
	7.3.	Cuantizando las caminat			
	7.4.	Caminata cuántica de Sz			
	7.5.	PageRank cuántico			
		Circuitos de las caminat			
		Simulaciones			
	1.1.				
		7.7.4. Grafo aleatorio			
		7.7.4. Graio alcatorio		 	 . 100
8.	Con	elusiones			17 1
Α.	Cálo	ulos de Hamiltonianos	;		171
	A.1.	Régimen rotacional del p	ulso	 	 . 171
		Efecto del pulso sobre el			
		Régimen dispersivo			
P	Cád	gos del simulador			183
ט.		Wolfram Mathematica			183

ÍNDICE GENERAL 6

	B.2.	Python	n										 	190	0
$\mathbf{C}.$	Cód	igos d	e la si	mulacio	ón d	el al	gorit	mo (de G	rove	er			203	3
	C.1.	Wolfra	m Mat	hematic	ca .								 	20	3
	C.2.	Python	n										 	20	4
D.	Cód	igos d	e la si	mulacio	ón d	el al	gorit	mo (de Sl	hor				20'	7
	D.1.	Wolfra	m Mat	hematic	ca .								 	20'	7
	D.2.	Python	n										 	210	0
E.	Cód	igos d	e la si	mulacio	ón d	el al	gotii	mo (de P	ageF	l anl	ζ.		213	3
	E.1.	Wolfra	m Mat	hematic	ca .								 	21	3
	E.2.	Pythoi	1										 	21	6
				estrella											
		E.2.2.	Grafo	corona									 	22	3
		E.2.3.	Grafo	árbol									 	22	5
		E.2.4.	Grafo	aleatori	io .								 	228	8

Índice de figuras

1.1.	Esfera de Bloch
1.2.	Compuerta I en la esfera de Bloch
1.3.	Compuerta X en la esfera de Bloch
1.4.	Compuerta Z en la esfera de Bloch
1.5.	Compuerta Y en la esfera de Bloch
1.6.	Compuerta H en la esfera de Bloch
1.7.	Compuerta S en la esfera de Bloch
1.8.	Compuerta T en la esfera de Bloch
1.9.	Compuerta P en la esfera de Bloch
1.10.	Compuertas Rx, Ry y Rz en la esfera de Bloch
3.1.	Diagrama de Feynman de la interacción electrón-fonón-electrón 66
3.2.	Construcción geométrica de los posibles electrones candidatos para
	formar pares de Cooper, siendo $\hbar K$ el momentum del centro de masas. 67
3.3.	Cuantización del flujo magnético
3.4.	Diagrama de energía de una junción metal-aislante-metal en la que
	no puede haber efecto túnel
3.5.	Diagrama de energía de una junción metal-aislante-metal en la que puede haber efecto túnel
3.6.	Diagrama de energía de una junción superconductor-aislante-metal
	en la que puede haber efecto Giaver
3.7.	Curva característica I-V de una unión Josephson
4.1.	Rotaciones en X e Y de 2π
4.2.	Rotaciones en X e Y de π
4.3.	Rotaciones en X e Y de $\frac{\pi}{2}$
4.4.	Compuertas iSWAP y \sqrt{iSWAP} aplicadas a $ 00\rangle$
4.5.	Compuertas iSWAP y \sqrt{iSWAP} aplicadas a $ 01\rangle$
4.6.	Compuertas iSWAP y \sqrt{iSWAP} aplicadas a $\frac{ 00\rangle+ 11\rangle}{\sqrt{2}}$
4.7.	Compuertas iSWAP y \sqrt{iSWAP} aplicadas a $\frac{ 0\rangle+ 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle+ 1\rangle}{\sqrt{2}} \dots$ 97
5.1.	Circuito del algoritmo de Grover, k_{max} desconocido
5.2.	Interpretación geométrica del operador difusión
5.3.	Circuito del algoritmo de Grover
5.4.	Evolución de las probabilidades en el algoritmo de Grover sin rela-
	jación

5.5.	1	
	jación, $\mathcal{W} = \{0\}$	124
5.6.	Evolución de las probabilidades en el algoritmo de amplificación de amplitud sin relajación, $W = \{9, 13\}$	125
5.7.	Evolución de las probabilidades en el algoritmo de amplificación de	
• • • • • • • • • • • • • • • • • • • •	amplitud sin relajación, $W = \{4, 5, 12, 13\}$	125
5.8.	Evolución de las probabilidades en el algoritmo de amplificación de	
	amplitud con relajación	126
6.1.	Distribución de probabilidad en la estimación de fase del algoritmo	
	de Shor sin pérdidas	138
6.2.	Distribución de probabilidad en la estimación de fase del algoritmo	
	de Shor sin pérdidas	140
7 1		1.40
7.1.	Transformación de un grafo al crear la matriz de Google con $\alpha = \frac{1}{2}$	
7.2.	Operador de permutación	
7.3.	Circuito de Loke para las caminatas cuánticas de Szegedy	
7.4.	Circuito de K_i	
7.5.	Grafo estrella	
7.6.		
7.7.	Circuito de K_2 para el grafo estrella	
7.8.	K_b del grafo estrella	156
	T del grafo estrella	
	. Preparación del estado inicial para la caminata en el grafo estrella .	
	. Circuito del PageRank cuántico del grafo estrella	
7.12	. PageRank cuántico instantáneo del grafo estrella sin pérdidas	157
7.13	. PageRank cuántico promedio del grafo estrella sin pérdidas	157
7.14	. PageRank cuántico instantaneo del grafo estrella con y sin pérdidas	158
7.15	. PageRank cuántico promedio del grafo estrella con y sin pérdidas .	158
7.16	. Grafo corona	159
7.17	. Circuito de K_1 para el grafo corona $\ldots \ldots \ldots \ldots \ldots$	159
7.18	. Circuito de K_2 para el grafo corona $\ldots \ldots \ldots \ldots \ldots$	160
7.19	. K_b del grafo corona	160
7.20	. T del grafo corona	160
7.21	. Preparación del estado inicial para la caminata en el grafo corona .	160
7.22	. Circuito del PageRank cuántico del grafo corona	161
	. PageRank cuántico instantáneo del grafo corona sin pérdidas	
7.24	. PageRank cuántico promedio del grafo corona sin pérdidas	161
	. PageRank cuántico instantaneo del grafo aleatorio con y sin pérdidas	
	. PageRank cuántico promedio del grafo aleatorio con y sin pérdidas .	
	. Grafo árbol	
	. Circuito de K_1 para el grafo árbol	
	. Circuito de K_2 para el grafo árbol	
	. Circuito de K_3 para el grafo árbol	
		164 164

7.32. T del grafo árbol
7.33. Preparación del estado inicial para la caminata en el grafo árbol $$. $$. 164
7.34. Circuito del Page Rank cuántico del grafo árbol
7.35. Page Rank cuántico instantáneo del grafo árbol sin pérdidas 165
7.36. Page Rank cuántico promedio del grafo árbol sin pérdida s \dots . 165
$7.37.\mathrm{PageRank}$ cuántico instantaneo del grafo árbol con y sin pérdidas $$. 166
7.38. Page Rank cuántico promedio del grafo árbol con y sin pérdida s $$. $.$ 166
7.39. Grafo aleatorio
7.40. Circuito de K_1 para el grafo aleatorio
7.41. Circuito de K_2 para el grafo aleatorio
7.42. Circuito de K_3 para el grafo aleatorio
7.43. K_b del grafo aleatorio
7.44. T del grafo aleatorio
7.45. Preparación del estado inicial para la caminata en el grafo aleatorio 168
7.46. Circuito del Page Rank cuántico del grafo aleatorio
7.47. Page Rank cuántico instantáneo del grafo aleatorio sin pérdidas 169
7.48. Page Rank cuántico promedio del grafo aleatorio sin pérdida s \dots . 169
7.49. Page Rank cuántico instantaneo del grafo aleatorio con y sin pérdidas 170
7.50. PageRank cuántico promedio del grafo aleatorio con v sin pérdidas. 170

Índice de cuadros

Capítulo 8

Conclusiones

En el presente trabajo se estudiaron las bases de información cuántica, superconductividad, computación cuántica con transmones y tres algoritmos cuánticos. Se construyó un simulador de transmones acoplados a un mismo resonador y el set de instrucciones del procesador cuántico formado por estos transmones. Con este simulador se ejecutaron los tres algoritmos estudiados, los cuales son: El algoritmo de búsqueda de Grover, el algoritmo de factorización de Shor y el algoritmo de centralidad PageRank. Además, las simulaciones se realizaron para un sistema cerrado y para un sistema abierto markoviano.

Del algoritmo de Grover, se realizaron simulaciones del algoritmo con tres bases de datos distintas de dieciséis elementos y un estado marcado, una de dos estados marcados y una de cuatro estados marcados. Con el algoritmo de Shor se factorizaron los números quince y ocho. Luego, el algoritmo PageRank se aplicó a cuatro grafos, uno estrella, uno corona, uno árbol y uno aleatorio.

Debido a que el presente trabajo persiguió objetivos que en nuestra universidad no se dictan dentro del contenido programático de la carrera de Ingeniería Electrónica, se decidió hacer una presentación detallada de los conceptos y herramienta necesarias para la comprensión de la teoría de información cuántica, la computación cuántica superconductora y los algoritmos simulados. Hasta donde conocemos, no existe ningún otro trabajo que haya simulado estos algoritmos en un sistema abierto markoviano y es el primer trabajo de computación cuántica en un departamento de ingeniería venezolano.

En el presente trabajo, se desarrollaron las siguientes herramientas y se obtuvieron los siguientes resultados novedosos:

- 1. Una compuerta controlada de fase CP que permita eliminar las fases en las compuertas de negación con dos o más qubits de control, como la de Toffoli.
- 2. Un conjunto de instrucciones cuánticas basadas en las compuertas nativas de los transmones y un simulador del sistema físico.
- 3. Un operador de multiplicación por 3 módulo 8 sin qubits de ancilla.
- 4. La forma explícita del operador de difusión de las caminatas cuánticas de Szegedy para grafos de cuatro nodos, en función de rotaciones en Y controladas.
- 5. El efecto de la relajación en los algoritmos de Grover, Shor y PageRank.

Appendices

Bibliografía

- [1] Adriano Barenco, Charles H. Bennet, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, Jhon A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. *Physical Review A*, 1995.
- [2] Sttiwuer Díaz-Solórzano. Esquemas de medidas. QIC, 2014.
- [3] Rudolf Gross and Achim Marx. Applied superconductivity: Josephson effect and superconducting electronics. Walther-Meißner-Institut, 2005.
- [4] Onnes H.K. Further experiments with liquid helium. g. on the electrical resistance of pure metals, etc. vi. on the sudden change in the rate at which the resistance of mercury disappears. *Springer*, *Dordrecht*, 1911.
- [5] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature*, 525:73–76, 2015.
- [6] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Physical Review Journals Archive, 1957.
- [7] Herbert Fröhlich. Theory of the superconducting state. Unknown, 1950.
- [8] M Cyrot. Ginzburg-landau theory for superconductors. Reports on Progress in Physics, 36(2):103, 1973.
- [9] Jr. Bascom S. Deaver and William M. Fairbank. Experimental evidence for quantized flux in superconducting cylinders. *Physical Review Letters*, 1961.
- [10] B.D. Josephson. Possible new effects in superconductive tunnelling. *Physics Letters*, 1(7):251-253, 1962.
- [11] P. W. Anderson and J. M. Rowell. Probable observation of the josephson superconducting tunneling effect. *Phys. Rev. Lett.*, 10:230–232, Mar 1963.

BIBLIOGRAFÍA 235

[12] Sidney Shapiro. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. *Phys. Rev. Lett.*, 11:80–82, Jul 1963.

- [13] G. Wendin. Quantum information processing with superconducting circuits: a review. *IOP Science*, 2017.
- [14] Alexandre Blais, Jay Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, , and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. *Physical Review A*, 2007.
- [15] Norbert Schuch and Jens Siewert. Natural two-qubit gate for quantum computation using the xy interaction. *Physical Review A*, 2003.
- [16] T. Loke and J.B. Wang. Efficient quantum circuits for szegedy quantum walks. *Annals of Physics*, 382:64 84, 2017.