К 80-летию Раиса Сальмановича Исмагилова

Настоящий очерк написан в сязи с юбилеем нашего знаменитого коллеги, выпускника кафедры ТФФА механико-математического факультета МГУ, профессора МГТУ им. Н.Э.Баумана. Мы хотели бы дополнить характеристику его математического творчества, данную в статье в Успехах математических наук 2018г. Основные темы настоящего текста – недавние статьи Исмагилова по теории представлений и спектральной теории дифференциальных операторов.

Мы начнем с группы работ по *операторам Рака*. Сначала напомним, как появились классические многочлены Рака́ (G. Racah). Обозначим через SU(2) группу унитарных матриц размера 2 с определителем 1, а через V_k ее неприводимое представление размерности k+1. Известно, что тензорное произведение двух таких представлений раскладывается в однократную прямую сумму

$$V_k \otimes V_l = \sum_{p: |k-l| \le p \le k+l, k+l+p \text{ четно}} V_p, \tag{1}$$

это разложение легко строится явно. Рассмотрим теперь тройное произведение

$$(V_k \otimes V_k) \otimes V_m = V_k \otimes (V_k \otimes V_m) = \bigoplus_j a_j V_j = \bigoplus_j (\mathbb{C}^{a_j} \otimes V_j), \qquad (2)$$

где a_j – кратности вхождения V_j в тензорное произведение. Такое разложение можно построить разными способами. Можно сначала разложить $V_k \otimes V_l$ в прямую сумму (1)

$$(V_k \otimes V_k) \otimes V_m = (\bigoplus_p V_p) \otimes V_m = \bigoplus_p (V_p \otimes V_m),$$

а потом раскладывать каждое слагаемое $V_p \otimes V_m$ все по тому же правилу (1). Но можно начать с разложения $V_k \otimes V_m$

В итоге мы получим два разных разложения одного и того же унитарного представления. Они будут связаны линейным оператором в правой части (2), он уважает слагаемые $\mathbb{C}^{a_j} \otimes V_j$ и фактически действует в каждом «пространстве кратностей» \mathbb{C}^{a_j} , назовем его *оператором Рака́* R_j (его матричные элементы называются 6j-символами). По построению, этот оператор унитарен, но если явно выписать его матрицу, то унитарность оказывается весьма нетривиальным фактом.

Оказывается, что строчки матрицы R_j могут быть записаны как конечная система ортогональных многочленов дискретного переменного

(так называемые *многочлены* $Pa\kappa a$), эта система зависит от четырех целых параметров $k,\ l,\ m,\ j$. Первые три параметра легко сделать вещественными, для этого надо рассмотреть универсальную накрывающую группы $\mathrm{SL}(2,\mathbb{R})=\mathrm{SU}(1,1)$ и ее представления со старшим весом.

В итоге получается ортогональная система гипергеометрических многочленов типа ${}_4F_3[\dots;1]$, зависящая от 3 вещественных и одного дискретного параметра (в полной общности ее ввел W.Wilson в 1978г.). Напомним, что классические многочлены Якоби являются вырождениями многочленов Рака.

Естественно пытаться обобщить эту конструкцию. Однако уже для группы SU(3) мы столкнемся с тем, что тензорное произведение двух неприводимых представлений имеет кратности, а поэтому возникают сложности с вычислением операторов Рака (хотя формально их несложно определить).

Вопрос об аналоге операторов Рака для бесконечномерных унитарных представлений был задан одновременно Исмагиловым [ФА2006] и W. Groenevelt'ом (Acta Appl. Math., 2006). В этом случае вместо конечномерных унитарных матриц возникают унитарные операторы. Основная трудность в задачах о тензорных произведениях - что кратности в их разложениях почти всегда не единичные, и, что хуже, они часто (или даже обычно) оказываются бесконечными.

Кратность два возникают даже в обманчиво кажущемся простым случае $SL(2,\mathbb{R})$. Спектры для этой задачи были найдены Л.Пуканским в 1961г., а спектральные меры – В.Ф.Молчановым [ИАН1979] Позже этой задаче обращались и другие авторы (Е.Koelink, W.Groenevelt, H.Rosengren [Dev. Math, 2006], Ю.А.Неретин [ФА2005]), но до полной ясности она не доведена, и возможности для свободного оперирования этими объектами, по-видимому, пока нет, и было бы желательно эту задачу доделать. Грунвельт построил операторы Рака для $SL(2,\mathbb{R})$ в случае, когда по крайней мере два сомножителя принадлежат дискретным сериям (в этом случае кратности в тройном произведении не появляются).

Исмагилов вычислил операторы Рака для случая основных серий группы $SL(2,\mathbb{C})$, а также представлений групп движений пространств \mathbb{R}^3 , \mathbb{R}^4 (и в этих случаях кратности не появляются¹). Обсудим неожиданные спецфункциональные и геометрические явления, появившиеся в этих работах.

Во-первых, в формулах появляются необычные интегралы типа Меллина-

 $^{^1}$ Тензорные произведения унитарных представлений $SL(2,\mathbb{C})$ были разложены М.А.Наймарком в публикациях 1961-1963 гг.

Барнса. Пусть $a_1, \ldots, a_r, b_1, \ldots, b_r \in \mathbb{C}$, причем $\operatorname{Re} a_j$, $\operatorname{Re} b_j \in \mathbb{Z}$. Рассмотрим следующий интеграл

$${}_{r}\mathbf{F}_{r-1}[a,b] = \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \prod_{k=1}^{r} \frac{\Gamma\left(\frac{1}{2}(a_k+m)-is\right)\Gamma\left(\frac{1}{2}(b_k+m)+is\right)ds}{\Gamma\left(\frac{1}{2}(\overline{a}_k+m)+is\right)\Gamma\left(\frac{1}{2}(\overline{b}_k+m)+1-is\right)}.$$
(3)

Интегральные ядра для операторов Рака выражаются через функции $_r\mathbf{F}_{r-1}$ при r=4. Выражение (3) является гибридом двустороннего гипергеометрического ряда по k и барнсовского интеграла по s. Оно оказывается более ручным объектом, чем может показаться, например, как выяснил Р.С. в [МС62007], оно представимо в виде

$$\sum_{j=1}^{r} C_{j}(\dots) {}_{r}F_{r-1}[\dots;1] {}_{r}F_{r-1}[\dots;1],$$

где $_rF_{r-1}[\dots;1]$ – обычные обобщенные гипергеометрические функции, параметры которых выражаются через $a_p,\ b_p,\ a\ C_j$ произведения гаммафункций (чьи аргументы тоже выражаются через $a_p,\ b_p$). По-видимому, функции $_r\mathbf{F}_{r-1}$ заслуживают отдельного изучения. Естественно предполагать здесь существования надстройки над классической теорией гипергеометрических функций, в частности новых бета-интегралов и связанных с ними явно решаемых разностных задач типа Штурма-Лиувилля.

Второе неожиданное явление связано с пространствами шарнирных многоугольников, которые были введены А.А.Клячко (работа опубликовано в трудах конференции Algebraic geometry and its applications (Yaroslavl, 1992), 1994, впоследствии эти пространства стали предметом многочисленных исследований). А именно, берется множество

$$Kl_n = Kl(a_1, \ldots, a_n)$$

всех замкнутых n-звенных ломаных в \mathbb{R}^3 с фиксированными длинами a_1 , . . . , a_n звеньев, ломаные определены с точностью до движений \mathbb{R}^3 . Как обнаружил Клячко, это пространство обладает неожиданной и богатой геометрией. Оно обладает естественной структурой симплектического 2 и, более того, кэлерова многообразия. На нем действует гамильтоновыми векторными полями алгебра Ли группы кос 3 . Кроме того инварианты n-кратных тензорных произведений $V_{\alpha_1} \otimes \cdots \otimes V_{\alpha_n}$ конечномерных представлений $\mathrm{SU}(2)$ отождествляются с сечениями естественных линейных

 $^{^2}$ Рассмотрим триангуляцию n-угольника набором диагоналей, обозначим через ℓ_j длины диагоналей, через ϕ_j – двугранные углы. Симплектическая форма определяется как $\sum d\ell_j \wedge d\phi_j$. Эта форма не зависит выбора триангуляции, проверка этого утверждения оказывается неожиданно нетривиальной даже для четырехзвенных ломаных.

³Группа кос дискретна, но у нее есть каноническое пополнение по Мальцеву, которое является «бесконечномерной группой Ли». Алгебра Ли этой группы была описана Т. Коhno.

расслоений на пространстве многоугольников (для случая целых длин сторон a_1, \ldots, a_n).

Пространство шарнирных четырехугольников естественно появилось в работах Исмагилова [Φ A2008], [MMJ2014] в связи операторами Рака для групп движений пространств \mathbb{R}^3 и \mathbb{R}^4 . Оказалось, что операторы Рака красиво выражаются с помощью замен координат на Kl₄. В связи с этим естественно задуматься о кратных тензорных произведений унитарных представлений. Аналогичные объекты для представлений SU(2) (и представлений SU(1, 1) со старшим весом) – т.н. 3nj-символи – много исследовались.

Во всяком случае эти работы дают новые возможности для теории унитарных представлений и для ее приложений к теории специальных функций.

Другая недавняя теоретико-представленческая работа Р.С.Исмагилова посвящена аналогам характеров для групп диффеоморфизмов. Рассмотрим область $\Omega \subset \mathbb{R}^m$, группу $\mathrm{Diff}(\Omega)$ ее диффеоморфизмов, сохраняющих ориентацию, и ее унитарное представление ρ_{σ} в $L^2(\Omega)$, заданное формулой

$$\rho_{\sigma}(q)f(x) = f(q(x)) \det J(q(x))^{1/2+i\sigma},$$

где σ – вещественный параметр, $q \in \mathrm{Diff}(\Omega)$, а J – матрица Якоби. Давно известно (и одновременно малоизвестно), что это у этих представлений есть аналоги характеров. А именно рассмотрим отображение h из компактной области \mathbb{R}^N в $\mathrm{Diff}(\Omega)$, пусть $\phi(t)$ – гладкая функция на \mathbb{R}^N с компактным носителем. Тогда

$$\operatorname{tr} \int_{\mathbb{R}^N} \phi(t) \rho_{\sigma}(h(t)) dt = \int_{\mathbb{R}^N} \phi(t) \chi_{\sigma}(h(t)) dt, \tag{4}$$

где

$$\chi_{\sigma}(q) = \sum_{x:q(x)=x} \frac{\det(J(q(x)))^{1/2+i\sigma}}{\det(J(x)-1)}$$
(5)

(суммирование ведется по всем неподвижным точкам диффеоморфизма, для семейств h общего положения эта формула имеет смысл). Однако эту конструкцию не удается пошевелить, даже для тензорных произведений представлений вида ρ_{σ} характеров в таком смысле нет. В статье [МСб2015] предлагается конструкция гибрида характера в упомянутом смысле со сферическими функциями, а именно показывается, что для некоторого класса представлений представлений групп диффеморфизмов для некоторых канонически определенных проекторов P можно на-

писать для следов

$$\operatorname{tr}\Big(P\cdot\int_{\mathbb{R}^N}\phi(t)\rho(q)\,dt\cdot P\Big)$$

формулы похожие на (4)–(5), причем получаемые функции однозначно определяют представления.

Перейдем ко второй части нашего очерка. Исследованию спектральных свойств операторов Штурма-Лиувилля $L_q = -d^2/dx^2 + q(x)$ на полуоси $(0,\infty)$ с быстро осциллирующими (вещественными и непрерывными) потенциалами посвящена работа Р.С.Исмагилова, опубликованная в Journal of Spectral Theory (2016). Предыстория рассматриваемого вопроса такова. В случае, когда $q(x) \to +\infty$ при $x \to \infty$ и, стало быть, спектр оператора L_q дискретен, асимптотическая формула для соответствующей считающей функции была вычислена Титчмаршем и содержится в его известной монографии 1946 года. Исследование асимптотического поведения собственных значений L_q в более сложном случае, когда $q(x) \to -\infty$ при $x \to \infty$ было предпринято Хейвудом в 1954 г., а также Аткинсоном и Фултоном в 1982 г.

Вопрос об асимптотике спектров L_q с быстро осциллирующими потенциалами на примере $q(x) = hx \cos x^2$ впервые рассмотрен Исмагиловым в работе 1985 года. В упомянутой выше недавней его публикации дискретность спектра L_q доказана для потенциалов вида $h(v'(x))^2 \cos v(x)$, где $h \in (1/2,1), \ v$ и v' неограниченно возрастают и $v''/(v')^2 \to 0$ при $x \to \infty$; установлены также спектральные асимптотики $N(0,t) \asymp \sqrt{t}w(\sqrt{t})$ и $N(-t,0) \asymp v(w(\sqrt{t}))$, здесь $w = (v')^{-1}$. Этот результат обобщает факт из [МЗ,1985] о существовании коэффициентов h, для которых оператор L_q с $q(x) = hx \cos x^2$ имеет дискретный спектр с указанным асимптотическим поведением.

Ключевым при доказательстве этих фактов служит следующее (см. [МЗ,1985]) предложение об оценке числа $N(\alpha,\beta)$ точек спектра оператора L_q принадлежащих интервалу (α,β) . Пусть $\lambda_1([a,b])$ — наименьшее собственное значение задачи $L_q y = \lambda y, y(a) = y(b) = 0$, последовательности $0 = a_0 < a_1 < \ldots, 0 = b_0 < b_1 < \ldots$ стремятся к бесконечности, A и B их функции распределения соответственно. Если $\lambda_1([a_{k-1},a_k]) \leqslant \alpha$ и $\lambda_1([b_{k-1},b_k]) \geqslant \beta$ при $k \geqslant 1$, то $N(\alpha,\beta) \leqslant \lim\inf(B(x)-A(x))+1$; если же $\lambda_1([a_{k-1},a_k]) \geqslant \alpha$ и $\lambda_1([b_{k-1},b_k]) \leqslant \beta$ при $k \geqslant 1$, то $N(\alpha,\beta) \geqslant \limsup(B(x)-A(x))-1$. Вывод этого предложения в некотором смысле родственен доказательству достаточного условия существенной самосопряженности L_q выводимой Раисом Саль-

мановичем (см. [УМН, 1963]) из информации об ограничении потенциала q на непересекающиеся отрезки, уходящие в бесконечность.

В работе Исмагилова "О возмущении спектра, вызванном ограниченным возмущением потенциала" [МЗ, 2014] рассматривается отображение Φ , сопоставляющее возмущению $f \in C^{\flat}[0,\infty)$ потенциала гармонического осциллятора на полуоси соответствующее возмущение спектра, т.е. элемент из пространства l^{∞} . Обсуждается вопрос о том, в каком смысле отображение Ф, может быть аппроксимировано линейным. С учетом того, что Φ , переводит класс смежности $f + C_0[0, \infty)$ в класс смежности $\Phi(f) + l_0$ сформулирована гипотеза о линейности отображения $\Phi^0: C^{\flat}[0,\infty)/C_0[0,\infty) \to l^{\infty}/l_0$. Эта задача представляет интерес по двум причинам. Во-первых, если непрерывный и возрастающий к бесконечности потенциал q оператора Штурма-Лиувилля $L_q y = -y'' + qy$ на полуоси $[0,\infty)$ с краевым условием y(0)=0 таков, что спектр L_q достаточно разрежен (например, выполнено условие $\lambda_n \sim n^{3/2+\varepsilon}, \ \varepsilon > 0$), то отображение Φ^0 линейно; впрочем, это верно и не только для операторов Штурма-Лиувилля. Во-вторых, в случае потенциала x^2 найдутся линейное отображение $R: C^{\flat}[0,\infty) \to l^{\infty}$ и подпространство $l_1 \subset l^{\infty}$ такие, что $Ran(\Phi - R) \subset l_1$. Доказательство этого утверждения основано на использовании следующего результата Исмагилова и Костюченко $[\Phi A, 2009]$. Пусть A, B — самосопряженные операторы, A имеет дискретный спектр $\lambda_1 \leqslant \lambda_2 \leqslant \ldots, \lambda_k \to \infty, B$ — ограничен, $\widetilde{\lambda}_1 \leqslant \widetilde{\lambda}_2 \leqslant \ldots$ — спектр оператора A+B; тогда при $t \in [0,1]$

$$\sum_{k=0}^{\infty} (\widetilde{\lambda}_k - \lambda_k) \exp(-t\lambda_k) = \operatorname{Tr}(B \exp(-tA)) + O(t\operatorname{Tr}\exp(-tA)).$$

Статья Исмагилова и его ученика Султанова [МЗ, 2011] посвящена классификации дифференциальных операторов второго порядка, действующих в пространствах Понтрягина 2π -периодических функций на \mathbb{R} и симметрических относительно соответствующей индефинитной эрмитовой формы [x,y]=(Jx,y). Полученный авторами результат ставит задачу отыскания условий J-самосопряженности найденных операторов. Пусть \mathcal{D} — пространство основных функций на окружности, \mathcal{D}' — соответствующее пространство обобщенных функций. Индефинитная форма в \mathcal{D} , имеющая конечный ранг индефинитности, задается элементом $q \in \mathcal{D}'$, для которого $q(t) = q(-t) = \overline{q}(t)$, причем коэффициенты Фурье $q_k = \langle q, e^{ikt} \rangle$ отрицательны лишь для k из некоторо-

го конечного непустого набора и $q_k > 0$ для всех остальных k. Пополнение \mathcal{H}' пространства \mathcal{D} относительно скалярного произведения $(u,v) = \sum |q_k| u_k \overline{v}_k$ (здесь $u = \sum u_k e^{ikt}$) есть пространство Понтрягина с индефинитной формой $[u,v] = \sum q_k u_k \overline{v}_k$. Для дифференциального оператора $L = p_0 \frac{d^2}{dt^2} + p_1 \frac{d}{dt} + p_2$ с $D_L = \mathcal{D}$ пара (q,L) называется элементарной, если q имеет конечный ранг индефинитности и коэффициенты p_i имеют наименьший общий период 2π . В [МЗ, 2011] получен список таких пар; они могут быть трех типов: 1) с рациональной зависимостью q_k от k; 2) с q_k , выражающимися через значения Γ -функции; 3) постоянные q_k при $k > k_0$.

Отметим здесь также явную формулу для спектра оператора второй производной на конечном графе G, опубликованную Исмагиловым в [ФА, 2012]. Точнее, пусть G = (V, E) — связный неориентированный конечный граф без петель и кратных ребер. Если, отождествляя ребро $l \in E$ с некоторым отрезком, ввести на l метрику d и соответствующую ориентацию, то для f(x), $x \in l$, определена производная; при этом вторая производная не зависит от ориентации. Для концевых вершин a, b ребра l определены односторонние производные

$$f'_l(a) = \lim_{l \ni x \to a} \frac{f(x) - f(a)}{d(x, a)}, \quad f'_l(b) = \lim_{l \ni x \to b} \frac{f(x) - f(b)}{d(x, b)}.$$

Зафиксировав числа $p(l) = p(a,b) = p(b,a) > 0, l = \{a,b\} \in E$ (для несмежных вершин p(a,b) = 0), на пространстве функций класса C^2 на G, удовлетворяющих условиям $\sum_b p(a,b)u'_l(a) = 0, l = \{a,b\}$, получаем оператор $A: u \mapsto -u''$; он симметричен и существенно самосопряжен в гильбертовом пространстве \mathcal{H} со скалярным произведением $(f_1,f_2) = \sum_{l \in E} p(l) \int_l f_1(x) \overline{f}_2(x) \, dx$. Оказывается, что целая функция $\prod_{k=1}^{\infty} \left(1-\lambda^2/\lambda_k^2\right)$, сопоставляемая множеству $\{\lambda_k^2\}$ ненулевых собственных значений оператора A с точностью до фиксированного множителя совпадает с многочленом от переменных p(l), коэффициентами которого служат тригонометрические многочлены $R_f(\lambda)$, явно выписываемые по таким отображениям $f: V \to V$, для которых $(v, f(v)) \in E$.

Для комплекснозначных функций на *p*-адическом поле, по-видимому, нет естественного аналога оператора дифференцирования. Однако есть прямые аналоги операторов дробного дифференцирования, хорошо известные специалистам. А именно, рассматриваются сверточные операто-

ры вида

$$I_{\alpha}f(x) = \int_{\mathbb{O}_n} |x - y|^{-1-\alpha} f(y) \, dy.$$

Соответственно появляются p-адические аналоги дифференциальных операторов задаваемые формулами типа $L:I_{\alpha}+\psi(x)$, где $\psi(x)$ — вещественная функция ("потенциал"). Спектральная теория таких операторов оказывается значительно более простой, чем для классических операторов Шредингера. Исмагилов получил формулы для асимптотики выражений $\operatorname{Tr}\exp(-tL)$ при $t\to +0$, что в свою очередь позволяет получить асимптотику собственных чисел оператора L. Оказывается, что эти результаты допускают распространение на широкий класс сверточных операторов.

Наконец, отметим результат Исмагилова о представлении в виде произведения Рисса спектральной меры σ потока, возникающего при ограничении действия \mathbb{R} на остаточную σ -алгебру стационарного случайного блуждания по \mathbb{R} . Это произведение Рисса имеет вид

$$\prod_{k=1}^{\infty} \left| \sqrt{p_k} + \sqrt{1 - p_k} e^{i\xi h_k} \right|^2,$$

где $p_k \in (0,1)$ и $h_k \in \mathbb{R}$ суть параметры блуждания (вероятность неподвижности на k-ом шаге и соответственно величина смещения в противном случае). Найдено достаточное условие сингулярности меры σ .

Впервые связь произведений Рисса со спектральными мерами рассматривали Ф.Ледрапье (1970) и Ив Мейер (1974). К середине 80-х накопились разнообразные факты, развивающие эту связь применительно к самоподобным динамическим системам; они изложены в монографии Мартины Квефелек "Substitution dynamical systems - Spectral analysis опубликованной в серии Lecture Notes in Mathematics (1987). В последствии Ж.Бурген применил произведения Рисса к изучению динамических систем аппроксимационного ранга 1. Интересное применение произведений Рисса к построению \mathbb{R} -действий спектральной кратности 1, обладающих свойством быстрого убывания корреляций, разработал А.Приходько.

В завершение нашего очерка мы желаем Раису Сальмановичу крепкого здоровья и новых математических воодушевлений.

Ю.А.Неретин, А.М.Стёпин