Automaty a gramatiky 1

Vojtěch Šára

March 9, 2021

Nejjednodušší automat je vypínač. Deterministický konečný automat (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q - konečná neprázdná množina stavů

 Σ - konečná neprázdná množina vstupních symbolů abecedy

 δ - přechodová funkce $Q\times\Sigma\to Q$ typicky reprezentovaná hranami grafu

 $q_0 \in Q$ - počáteční stav, vede do něj šipka odnikud.

F - množina koncových stavů

Pro představu si můžeme představit vyhledávací automat z Knuth Morris Pratta.

Automat mohu reprezentovat diagramem, tabulkou či stavovým stromem.

Slovo je konečná (i prázdná) posloupnost symbolů z Σ , prázdné slovo se značí $\lambda \vee \epsilon$ Množina všech slov v abecedě Σ značíme Σ^*

Množina neprázdných slov je Σ^+

Jazyk je množina slov v abecedě Σ - $L\subseteq \Sigma^\star$

Zřetězení - u.v nebo uvMocnina (jen přirozenými) - $(u^0 = \lambda, u^1 = u, u^{n+1} = u^n.u)$ Délka slova |auto| = 4Počet výskytů je kolikrát je podřetězec v řetězci.

Rozšířená přechodová funkce δ^{\star} je transitivní uzávěr funkce δ

Jazyk je rozpoznatelný konečným automatem jestliže existuje konečný automat A takový, že $L=L(A)=\{w|w\in\Sigma^{\star}\wedge\delta^{\star}(q_0,w)\in F\}$

Jazyky rozpoznatelné konečnými automaty nazýváme regulární.

Jsou jazyky, které nejsou regulární.

0.1 Iterační (pumping) lemma

Mějme regulární jazyk L. Pak existuje $n \in \mathbb{N}$ závislá na L, taková, že: každé $w \in L$; $|w| \ge n$ můžeme rozděliz na tři části, w = xyz, že:

- 1. $y \neq \lambda$
- 2. $|xy| \leq n$
- 3. $\forall k \in \mathbb{N}_0$ slovo $xy^k z$ je také v L.

Důkaz:

Regulární - existuje DFA A s n stavy, že L = L(A). Vezměme libovolné slovo z L délky $m \geq n$. Zbytek důkazu neni.

Kongruence

Na konečné abecedě Σ a relaci ekvivalence \sim na $\Sigma^{\star}.$ Potom:

- 1. ~ je pravá kongruence, jestliže $(\forall u, v, w \in \Sigma^{\star})u \sim v \Rightarrow uw \sim vw$
- 2. \sim je konečného indexu, jestliže rozklad Σ^{\star}/\sim má konečný počet tříd.
- 3. Třídy kongruence = $[u]_{\sim}$

Myhill-Nerodova věta

Nechť L je jazyk nad konečnou abecedou Σ . Potom následující je ekvivalentní:

- 1. L je rozpoznatelný konečným automatem
- 2. existuje pravá kongruence konečného indexu tak, že L je sjednocením jistých tříd rozkladu Σ^{\star}/\sim

Pro důkaz definují ekvivalenci jako slova, která nás z počátečního stavu dostanou do stejného stavu. Tato ekvivalence je ekvivalencí, je to i pravá kongruence.

Pro druhý směr volíme stavy jako třídy rozkladu Σ^*/\sim Počáteční stav $q_0....$

Věta Myhil-Nerod je konstruktivní, nabízí nám tedy návod jak sestavit automat. Na přednášce tady byl příklad.

Zajímavost: jazyk $L=\{u|u=a^+b^ic^i\vee u=b^ic^j\}$ není regulární (Myhill-Nerod) ale vždy lze pumpovat první písmeno.

Dosažitelnost

Stav je dosažitelný, pokud existuje slovo, kterým se do něj z počátečního stavu dostanu. Dosažitelné stavy hledáme iterativně - nějaký průchod stavovým prostorem. Korektnost - nachází pouze dosažitelné stavy, Úplnost - všechny dosažitelné stavy najdu.

Nejednoznačnost

Automat přijímající daný jazyk není určen jednoznačně. Tady byl na přednášce příklad takového jazyka.

Automatový homomorfismus

 $h:Q_1\to Q_2$ je automat. homomorfismus, jestliže:

- 1. $h(q_{0_1}) = q_{0_2}$
- 2. $h(\delta_1(q,x)) = \delta_2(h(q),x)$ stejné přechodové funkce
- 3. stejné koncové stavy

Ekvivalence automatů

Dva konečné automaty jsou ekvivalentní, pokud rozpoznávají stejný jazyk. Homomorfismus implikuje ekvivalenci

Jestli jsou všechny stavy ekvivalentní, pak jsou automaty ekvivalentní. Neekvivalentní = rozlišitelné.

Existuje algoritmus hledání všech rozlišitelných stavů. Postupně vyškrtávám nehodící. Tento algoritmus je korektní.

Algoritmus nalezení reduktu - vyškrtnu nedosažitelné, pak spojím ekvivalentní stavy. Tím dostávám redukovaný DFA.