Chapter – 4: Metals and Non-Metals

- Metals discovered 1000s of years ago
- Progress of mankind linked with discovery of metals
- Stone age to bronze age after discovery of copper
- Discovery of iron iron age
- Non-metals discovered later
- 118 known elements divided into 3 groups metals, non-metals, **metalloids** show both properties antimony and arsenic

Metals and their occurrence

- 80 known elements metals lose electrons to form cations positive ions
- Some found in abundance (huge quantity) some rare
- Metals rarely or do not react **noble metals** gold and platinum expensive metals
- Growth of nation decided by consumption of metal per annum
- Wealth in the form of gold

Occurrence

- Metals mainly earth's crust also present in seas and oceans
- Aluminium most abundant followed by iron
- Cannot extract or obtain from all available minerals
- Minerals from which metals can be extracted conveniently **ores**
- Metals mined, seperated, purified
- Metal ores carbonates, sulphides, oxides, chlorides, halides
- Many processes extraction of metals from ores

Physical properties of metals

- Common physical properties
- Wires made of copper, iron, aluminium **ductility**
- Beat metals into thin sheets making jewellery, metal sheets malleability
- Properties characteristics exceptions
 - Physical state solid at room temperatures Mercury (liquid at room temp.)
 - o Hardness hard and very strong Sodium, Potassium (soft metals)
 - Melting and boiling points high melting and boiling points Mercury, Cesium, Tellurium (low points)
 - o Malleability can be beaten up in sheets (malleable) Zinc (not malleable)
 - Ductility can be shaped into wires (ductile) Zinc (not ductile)
 - o Conductivity good conductors of heat and electricity Mercury, Tungsten (bad conductors)
 - o Density high density Sodium, Potassium (low density)
 - o Lustre brilliant shine –
 - Sonority make ringing sound (sonorous) Mercury (not sonorous)

Chemical properties of metals

- Common chemical properties
- Metals react with other elements show similar results
- Rate of reaction depend on reactivity
- **Reactivity series** arrangement of metals some metals more reactive than others

Activity Series of Metals and Hydrogen

Most Reactive

→ Least Reactive
Li, Rb, K, Cs, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, H, Cu, Hg, Ag, Pt, Au

- Hydrogen only non-metal in the series
 - Reaction with oxygen
 - Form basic oxides
 - Metal + oxygen → metal oxide
 - Magnesium burns form magnesium oxide (ash)
 - $2Mg + O_2 \rightarrow 2MgO$
 - Different metals react under different conditions
 - Zinc, copper react at high temperatures
 - $2Zn + O_2 \rightarrow 2ZnO$
 - Sodium, potassium react at room temperatures catch fire easily kept in kerosene
 - $4Na + O_2 \rightarrow 2Na_2O$
 - Reaction with water
 - Different metals react at different rates form oxides or hydroxides and hydrogen
 - Some react at room temperatures some with boiling water some with warm water
 some with steam only
 - Metal + water → metal hydroxide + hydrogen
 - $2Na + H_2O \rightarrow 2NaOH + H_2$
 - $Mg + H_2O \rightarrow MgO + H_2$ (warm water)
 - $Zn + H_2O \rightarrow ZnO + H_2$ (boiling water)
 - $2\text{Fe} + 3\text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + 3\text{H}_2 \text{ (steam)}$
 - o Reaction with dilute mineral acids
 - Different metals react under different conditions form mineral salts and hydrogen
 - Metal + dilute acid → metal salt + hydrogen
 - Metals top of reactivity series react more readily lower metals react slowly
 - $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
 - $Mg + 2HCl \rightarrow MgCl_2 + H_2$
 - o Reaction with salt solution
 - More reactive metals replace less reactive metals displacement reaction
 - More reactive metal higher in reactivity series
 - Copper less reactive than Iron no reaction
 - $Cu + FeSO_4 \rightarrow$ no reaction
 - Magnesium more reactive than Copper displacement
 - $Mg + CuSO_4 \rightarrow MgSO_4 + Cu$

Uses of metals

• Very useful – different purposes

- Copper (Cu)
 - o Electrical wires good conductor of electricity
 - Cooking utensils good conductor of heat
 - Alloys brass and bronze
- Aluminium (Al)
 - o Electrical wires good conductor of electricity
 - o Food packaging foils malleable
 - o Paints
 - o Alloys magnalium
 - o Aluminium alloys construction of aircraft
 - Cooking utensils good conductor of heat
 - Drink cans non-toxic
- Iron (Fe)
 - o Iron alloys construction of buildings, bridges, car parts, engine parts, ships, etc.
- Mercury (Hg)
 - o Used in thermometers shiny liquid at room temperatures and expand easily on boiling
- Lead (Pb)
 - o Automobile batteries and pipes
 - o Water proof edgings extremely malleable

Noble metals

- Metals react very rarely or not at all
- Gold, platinum, silver exist in free state
- Silver damaged exposed to air react with hydrogen sulphide form silver sulphide
- Gold
 - Jewellery and decorations
 - Electroplating
 - Dental fillings
- Silver
 - o Jewellery and decorations
 - Electroplating
 - o Photography and dental fillings
 - Electronic components
 - o Silver foil (*vark*)
- Platinum
 - Jewellery
 - Dental fillings and photography
 - o Catalyst helps in reactions
 - o Manufacture of sulphuric acid and nitric acid

Corrosion of metals

- Metal reactive surface attacked by air and moisture
- Chemical reaction result metal get damaged corrosion
- Surface gets damaged corrosion happens on the inside Iron

- Copper, silver only surface damage
 - o Silver
 - Exposed to air gets damaged lose their shine
 - Silver not much reactive does not react with oxygen but hydrogen sulphide form black coating – silver sulphide
 - Ag + H₂S \rightarrow Ag₂S + H₂
 - o Gold
 - Highly non-reactive does not react does not corrode
 - Gold used for electroplating other elements
 - o Aluminium
 - Aluminium vessels lose shine formation of aluminium oxide non-reactive protects from further corrosion
 - This case corrosion is useful
 - $4Al + 3O_2 \rightarrow 2Al_2O_3$
 - Copper
 - Non-reactive some extent
 - Corrodes slowly exposure to moist air formation of greenish layer copper carbonate (basic)
 - $2Cu + (H_2O + CO_2 + O_2) \rightarrow Cu(OH)_2 + CuCO_3$
 - Statue of Liberty copper golden colour turned to green colour corrosion of copper
 - o Iron
 - Exposed to moist air formation of reddish brown substance rust
 - Corrosion of iron **rusting**
 - 4Fe + $3O_2$ + $3H_2O \rightarrow Fe_2O_3$ (ferrous oxide) + $2Fe(OH)_2$ (rust ferric hydroxide)

Prevention of corrosion

- Corrosion serious problem
- Prevented metal not allowed to contact moist air
- Some of the methods
 - o Applying grease or oil
 - Cuts contact from moist air
 - Painting
 - Coating of paint prevents contact from moist air
 - o Galvanization
 - Layer of Zinc prevents contact
 - Iron dipped in molten Zinc
 - Alloying
 - Create alloys with other metals
 - Iron alloyed with nickel, chromium, carbon forms stainless steel
 - Electroplating
 - Thin layer –protective metal by electroplating
 - Steel coating of chromium make car parts
 - Steel coating of tin food packaging cans

Non-metals and their occurrence

- Elements accept electrons anions negatively charged
- Non-metals used in pure form or compounds
- Hydrogen most common in universe
- Oxygen most abundant (earth's crust) followed by silicon

Occurrence

- Both states free as well as compounds
 - o Hydrogen
 - Combined form water, methane earth's crust
 - Also present in coal, petroleum
 - Free form outer space, Sun, other stars
 - Carbon
 - Free form coal, diamond, graphite
 - Combined form carbohydrates, fats, proteins, vitamins, CO₂ required for photosynthesis
 - Also present in coal gas, petroleum, natural gas, as carbonates
 - Oxygen
 - Air around us
 - Combined form water, oxides, carbonates
 - o Nitrogen
 - Main constituent in air
 - Combined state nitrates, ammonia,
 - Also present in soil and all living things

Physical properties of non-metals

- Show different properties vary too much different from metals
- Properties characteristics exceptions
 - Physical state either solid (carbon, Sulphur, phosphorous) or gaseous (oxygen, hydrogen, chlorine) Bromine (only liquid non-metal)
 - o Density lower density Diamond (density comparable to aluminium)
 - o Malleability and ductility neither malleable not ductile (brittle powdery mass) –
 - o Thermal and electrical conductivity poor conductors Graphite (good conductor)
 - Lustre do not lustre Iodine crystals, graphite (shiny)
 - Hardness soft Diamond (extremely hard)

Chemical properties of non-metals

- Reaction with oxygen
 - o React on heating form oxides
 - $C + O_2 \rightarrow CO_2$
 - Oxides dissolve in water form acids
 - $CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)
- Reaction with water
 - o Do not react with water or steam

- Reaction with acids
 - Do not react with acids
 - o Exception Silicon, Sulphur

Uses of non-metals

- Oxygen
 - o Sustain life needed for respiration
 - Also needed for burning
- Carbon
 - o Components of food carbohydrates, fats, etc.
 - Other compounds textiles, dyes, plastics, paper, fuels
 - Diamond, graphite 2 forms
 - o Diamond jewellery graphite food conductor electrodes pencil leads
- Hydrogen
 - o Manufacture of ammonia
 - o Manufacture vegetable ghee hydrogenation of oils
 - Welding of metals
 - o Liquid hydrogen fuel in rockets
- Nitrogen
 - Food packaging
 - o Liquid nitrogen freezing food
 - o Presence of nitrogen reduces rate of combustion
- Sulphur
 - o Manufacture of several chemicals
 - o Manufacture of vulcanized rubber tough and strong used in automobiles tyres
 - Used in fungicide
- Phosphorus
 - o Manufacture of safety matches, fireworks
- Chlorine
 - Used in water purification

Alloys

- Metals and non-metals mixed with other metals form **alloys**
- Melt main metal dissolve other metals or non-metals fixed ratio
- Properties improve this way
 - Increasing hardness
 - Iron, copper not hard enough for construction
 - Pure iron mixed with 0.5 % Carbon form **steel** hard enough for construction
 - Increasing resistance to corrosion
 - Metals corrode easily
 - Iron, nickel, chromium, carbon stainless steel
 - o Changing physical or chemical properties
 - Tin and lead high melting points
 - Tin and lead mixed together form solder low melting point