# Relational Algebra





# Set operation

#### Relation is a set of tuples

- The union  $R \cup S$
- The intersection R ∩ S
- The difference R S

#### **Union Compatibility**

- Two relation schemas R(A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>) and S(B<sub>1</sub>, B<sub>2</sub>, ..., B<sub>n</sub>) are union compatibility if
  - The same degree n
  - And DOM( $A_i$ )=DOM( $B_i$ ),  $1 \le i \le n$

#### The result of $\cup$ , $\cap$ , and $\overline{\phantom{a}}$ operations

Relation



#### Union

Given two relations R & S that are union compatible The union of R and S

Notation  $R \cup S$ 

A relation consists of tuples that are in R or S or both (an element appears only one)

$$r \cup s = \{t/t \in r \lor t \in s\}$$

| r | Α | В |
|---|---|---|
|   | α | 1 |
|   | α | 2 |
|   | β | 1 |

| S | Α | В |
|---|---|---|
|   | α | 2 |
|   | β | 3 |

| $r \cup s$ | Α | В |   |
|------------|---|---|---|
|            | α | 1 |   |
|            | α | 2 |   |
|            | β | 1 |   |
|            |   | _ |   |
|            | α | 2 | Γ |
|            | β | 3 |   |



# Union

| SinhVien          |                           |
|-------------------|---------------------------|
| HOTEN             | DIACHI                    |
| Đinh Bá Tiến      | 119 Cống Quỳnh, Tp HCM    |
| Nguyễn Thanh Tùng | 222 Nguyễn Văn Cừ, Tp HCM |
| Lê Quỳnh Như      | 291 Hồ Văn Huê, Tp HCM    |

| GiaoVien       |                         |
|----------------|-------------------------|
| HOTEN          | DIACHI                  |
| Đinh Bá Tiến   | 119 Cống Quỳnh, Tp HCM  |
| Trần Thanh Tâm | 553 Mai Thi Lưu, Tp HCM |

| SinhVien ∪ GiaoVien |                           |
|---------------------|---------------------------|
| HOTEN               | DIACHI                    |
| Đinh Bá Tiến        | 119 Cống Quỳnh, Tp HCM    |
| Nguyễn Thanh Tùng   | 222 Nguyễn Văn Cừ, Tp HCM |
| Lê Quỳnh Như        | 291 Hồ Văn Huê, Tp HCM    |
| Trần Thanh Tâm      | 553 Mai Thị Lựu, Tp HCM   |



#### Intersection

Given two relations R & S that are union compatible.

The intersection of R and S

Denotation R ∩ S

A relation consists of tuples that are in R and S

$$r \cap s = \{t/t \in r \land t \in s\}$$

| r | Α | В |
|---|---|---|
|   | α | 1 |
|   | α | 2 |
|   | β | 1 |

| S | Α | В |
|---|---|---|
|   | α | 2 |
|   | β | 3 |

| r∩s | Α | В |
|-----|---|---|
|     | α | 2 |



## Intersection

| SinhVien          |                           |
|-------------------|---------------------------|
| HOTEN             | DIACHI                    |
| Đinh Bá Tiến      | 119 Cống Quỳnh, Tp HCM    |
| Nguyễn Thanh Tùng | 222 Nguyễn Văn Cừ, Tp HCM |
| Lê Quỳnh Như      | 291 Hồ Văn Huê, Tp HCM    |

| GiaoVien       |                         |
|----------------|-------------------------|
| HOTEN          | DIACHI                  |
| Đinh Bá Tiến   | 119 Cống Quỳnh, Tp HCM  |
| Trần Thanh Tâm | 553 Mai Thị Lựu, Tp HCM |

| SinhVien ∩ GiaoVien |                        |
|---------------------|------------------------|
| HOTEN               | DIACHI                 |
| Đinh Bá Tiến        | 119 Cống Quỳnh, Tp HCM |



#### Difference

Given two relations R & S that are union compatible The difference of R and S

Denotation R - S

A relation consists of tuples that are in R but not in S

$$r-s = \{t/t \in r \land t \notin s\}$$

| r | Α | В |
|---|---|---|
|   | α | 1 |
|   | α | 2 |
|   | β | 1 |

| S | Α | В |
|---|---|---|
|   | α | 2 |
|   | β | 3 |

| r – s | Α | В |
|-------|---|---|
|       | α | 1 |
|       | β | 1 |



# Difference

| SinhVien          |                           |
|-------------------|---------------------------|
| HOTEN             | DIACHI                    |
| Đinh Bá Tiến      | 119 Cống Quỳnh, Tp HCM    |
| Nguyễn Thanh Tùng | 222 Nguyễn Văn Cừ, Tp HCM |
| Lê Quỳnh Như      | 291 Hồ Văn Huê, Tp HCM    |

| GiaoVien       |                         |  |  |  |
|----------------|-------------------------|--|--|--|
| HOTEN          | DIACHI                  |  |  |  |
| Đinh Bá Tiến   | 119 Cống Quỳnh, Tp HCM  |  |  |  |
| Trần Thanh Tâm | 553 Mai Thị Lựu, Tp HCM |  |  |  |

| SinhVien – GiaoVien |                           |  |  |
|---------------------|---------------------------|--|--|
| HOTEN               | DIACHI                    |  |  |
|                     | 222 Nguyễn Văn Cừ, Tp HCM |  |  |
| Lê Quỳnh Như        | 291 Hồ Văn Huê, Tp HCM    |  |  |

# **Properties**

#### Commutative law

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

#### Associative law

$$R \cup (S \cup T) = (R \cup S) \cup T$$

$$R \cap (S \cap T) = (R \cap S) \cap T$$

# Selection Selection

Is applied to relation R to produce a new relation with a subset of R's tuples

Tuples in the resulting relation satisfy some condition C

Denotation  $\sigma_c(R)$ 

C is a Boolean expression made up of <u>clauses</u>

<attribute> <comparison operator> <constant>

<attribute> <comparison operator> <attribute>

Clauses are connected by Boolean operator : ∧ , ∨ , ¬



#### Selection

The result is a relation

The same list of attributes as R

The number of tuples is less than or equal to the number of tuples of R

$$O_{(A=B)\wedge(D>5)}(r)$$

| r | Α                   | В | С                                                 | D  |  |
|---|---------------------|---|---------------------------------------------------|----|--|
|   | α                   | α | 1                                                 | 7  |  |
|   | $-\frac{1}{\alpha}$ | β | <del>  5                                   </del> | 7  |  |
|   |                     | 1 | 12                                                | 3  |  |
|   | β                   | β | 23                                                | 10 |  |



| Α | В | С  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| β | β | 23 | 10 |



#### Selection

Selection operator is commutative



## Projection

Is used to produce from a relation R a new relation that has only some of R's columns

Denotation  $\pi_{A1, A2, ..., Ak}(r)$ 

The result is a relation

Has k attributes

The number of tuples is less than or equal to the number of tuples of R

| r | Α | В        |   | C |
|---|---|----------|---|---|
|   | α | 1(       | ) | 1 |
|   | α | 20       | ) | 1 |
|   | β | 20<br>30 | ) | 1 |
|   | β | 40       | ) | 2 |
|   |   |          |   |   |





| $\pi_{A,C}$ (r) | Α | С |
|-----------------|---|---|
|                 | α | 1 |
|                 | β | 1 |
|                 | β | 2 |



# Projection

Projection operator is not commutative

$$\pi_{X,Y}(r) = \pi_X(X_Y(r))$$

$$\pi_{A_{1,A_{2,...,An}}}(\pi_{A_{1,A_{2,...,Am}}}(r)) = \pi_{A_{1,A_{2,...,An}}}(r)$$
, với  $n \le m$ 



# Selection vs. Projection





Cho biết họ tên và mức lương của các giáo viên nữ

$$\pi_{\text{HOTEN, LUONG}}(\sigma_{\text{PHAI='N\~u'}}(\text{GIAOVIEN}))$$



Cho biết mã số các giáo viên thuộc bộ môn HTTT hoặc có tham gia đề tài mã 001

$$\pi_{\text{MAGV}}(\sigma_{\text{MABM='HTTT'}}(\text{GIAOVIEN})) \cup \pi_{\text{MAGV}}(\sigma_{\text{MAĐT='001'}}(\text{TG\_ĐETAI}))$$



Cho biết mã số các trưởng khoa có chủ nhiệm đề tài

 $\pi_{\text{TRUONGKHOA}}(\text{KHOA}) \cap \pi_{\text{GVCNDT}}(\text{DETAI})$ 



☐ Cho biết tên các công việc bắt đầu trong khoảng từ 01/01/2007 đến 01/08/2007

 $\mathbf{O}_{\text{(NGAYBĐ>='1/1/2007'} \land \text{NGAYBĐ<='1/8/2007')}} (\text{CONGVIEC})$ 



Cho biết họ tên của các giáo viên và lương của họ sau khi tăng 10%

 $\pi_{\text{HOTEN, LUONG*1.1}}$  (GIAOVIEN)



## Sequences of operations

#### Apply several relational algebra operations one after one

-A single relational algebra expression

$$\pi_{A_1, A_2, \dots, A_k}(\sigma_P(r))$$
  $\sigma_P(\pi_{A_1, A_2, \dots, A_k}(r))$ 

- -Break down a complex expression into simpler steps
  - Step 1

$$\mathbf{O}_{\mathsf{P}}(\mathsf{r})$$

Step 2

$$\pi_{A1 A2}$$
 Ak (the result of step 1)



## Assignment operator

Is often used to receive the result of an operation

- The intermediate result in a sequence of operations

Denotation ←

#### Example

- □ Step 1
  s ←  $\mathbf{\sigma}_{P}$ (r)
- □ <u>Step 2</u>

$$KQ \leftarrow \pi_{A1, A2, ..., Ak}(s)$$



## Rename operator

Relation: R(B, C, D)

Rename the relation name

 $\rho_s(R)$ : Rename the name of relation r to s

Rename the attribute name

 $\rho_{X, C, D}(R)$ : Rename the name of attribute B to X

 $\rho_{S(X,C,D)}(R)$ : Rename the name of relation R to S and the name of attribute B to X

 $S(X,C,D) \leftarrow r$ 



Cho biết mã số và họ tên giáo viên thuộc bộ môn HTTT

KQ(MA, TEN)  $\leftarrow \pi_{\text{MAGV, HOTEN}}$  (GV\_HTTT)

 $\rho_{\text{KQ(MA, TEN)}}(\pi_{\text{MAGV, HOTEN}}(\text{GV\_HTTT}))$ 



## Cartesian product

Denotation  $\Gamma \times S$ 

The result is a relation Q

Q has one tuple for each combination of tuples, one from R and one from S

If R has *u* tuples and S has *v* tuples,

Then Q will have  $(u \times v)$  tuples

If R has *n* attributes and S has *m* attributes,

Then Q will have (n + m) attributes  $(R^+ \cap S^{+} = \emptyset)$ 



# Cartesian product

#### Example

| r | Α | В |
|---|---|---|
|   | α | 1 |
|   | β | 2 |

| S | X | С  | D |
|---|---|----|---|
|   | α | 10 | + |
|   | β | 10 | + |
|   | β | 20 | - |
|   | γ | 10 | - |

unambiguous

| r×s | Α | R.B | X | С  | D |
|-----|---|-----|---|----|---|
|     | α | 1   | α | 10 | + |
|     | α | 1   | β | 10 | + |
|     | α | 1   | β | 20 | - |
|     | α | 1   | γ | 10 | 1 |
|     | β | 2   | α | 10 | + |
|     | β | 2   | β | 10 | + |
|     | β | 2   | β | 20 | - |
|     | β | 2   | γ | 10 | - |

 $\rho_{(X,C,D)}(s)$ 



## Cartesian product

☐ Cartesian product is often followed by a selection operation

$$r \times s$$

| Α | R.B | S.B | С  | D |  |
|---|-----|-----|----|---|--|
| α | 1   | α   | 10 | + |  |
| α | 1   | β   | 10 | + |  |
| α | 1   | β   | 20 | - |  |
| α | 1   | γ   | 10 | - |  |
| β | 2   | α   | 10 | + |  |
| β | 2   | β   | 10 | + |  |
| β | 2   | β   | 20 | - |  |
| β | 2   | γ   | 10 | - |  |

$$\mathbf{O}_{A=S.B}(r \times s)$$

| Α | R.B | S.B C |    | D |
|---|-----|-------|----|---|
| α | 1   | α     | 10 | + |
| β | 2   | β     | 10 | + |
| β | 2   | β     | 20 | - |

# cdio

# Example

Cho biết thông tin của bộ môn cùng thông tin giảng viên làm trưởng bộ môn đó

| TENBM              | MABM | TRUONGBM | NGAYNHANCHUC | ••• |
|--------------------|------|----------|--------------|-----|
| Hệ thống thông tin | нттт | 002      | 20/09/2004   |     |
| Công nghệ tri thức | CNTT |          |              |     |
| Mạng máy tính      | MMT  | 001      | 15/05/2005   |     |

| MAGV | HOTEN           | NGSINH     | MABM | PHAI | LUONG |  |
|------|-----------------|------------|------|------|-------|--|
| 001  | Nguyễn Hoài An  | 15/02/1973 | MMT  | Nam  | 2000  |  |
| 002  | Trần Trà Dương  | 20/06/1960 | нттт | Nu   | 2500  |  |
| 003  | Nguyễn Ngọc Anh | 11/05/1975 | HTTT | Nu   | 2200  |  |
| 004  | Trương Nam Sơn  | 20/06/1959 | VS   | Nam  | 2300  |  |



| TENBM              | MABM | TRUONGBM | NGAYNHANCHUC | GV  | HOTEN          |  |
|--------------------|------|----------|--------------|-----|----------------|--|
| Hệ thống thông tin | нттт | 002      | 20/09/2004   | 002 | Trần Trà Dương |  |
| Mạng máy tính      | MMT  | 001      | 15/05/2005   | 001 | Trương Nam Sơn |  |



☐ B1: Tích Cartesian BOMON và GIAOVIEN

 $\square$  B2: Chọn ra những bộ thỏa TRUONGBM = MAGV

$$KQ \leftarrow \sigma_{TRUONGBM=MAGV}(BM\_GV)$$



| GIÁOVIÊN | <u>MÃGV</u> | HỌTÊN           | •••• | NGÀYSINH   | SÓNHÀ | •••• |
|----------|-------------|-----------------|------|------------|-------|------|
|          | 001         | Nguyễn Hoài An  | •••• | 15/02/1973 | 25/3  | •••  |
|          | 002         | Trần Trà Hương  | •••• | 20/06/1960 | 125   |      |
|          | 003         | Nguyễn Ngọc Ánh | •••• | 11/05/1975 | 12/21 | •••• |
|          | ••••        |                 |      | ••••       | ••••  |      |

| BỘMÔN |  | <u>MÃBM</u> | TÊNBM              | PHÒNG | •••• | TRƯỞNGBM | •••• |
|-------|--|-------------|--------------------|-------|------|----------|------|
|       |  | НТТТ        | Hệ thống thông tin | B13   | •••• | 002      | •••• |
|       |  | CNTT        | Công nghệ tri thức | B15   | •••  |          | •••• |
|       |  | MMT         | Mạng máy tính      | B16   | •••• | 001      |      |
|       |  |             |                    |       |      |          |      |

 $\sigma_{TRUONGBM=MAGV}(BM\_GV)$ 

|   | <u>MÃGV</u> | HỌTÊN          | ••••    | NGÀYSINH          | ••••    | <u>MÃBM</u> | TÊNBM              | PHÒNG | ••••    | TRƯỞNGBM   | ••••    |
|---|-------------|----------------|---------|-------------------|---------|-------------|--------------------|-------|---------|------------|---------|
|   | 001         | NT ~ TT \.     |         | 15/00/1070        |         |             | TTA 11 A 11 A 11   | D12   |         |            |         |
|   | 001         | Nguyen Hoai An | • • • • | 13/02/1973        |         | ппп         | He mong mong un    | D13   | • • • • | V0X        | • • • • |
| _ |             | NT             |         | 1 = 10 0 11 0 = 0 |         |             |                    | 215   |         | $\searrow$ |         |
|   |             | Nguyên Hoài An | • • • • | 15/02/1973        |         | CNII        | Cong nghệ tri thực | B12   | • • • • | <b>\</b> \ | • • • • |
| 1 | 001         | Nguyễn Hoài An | • • • • | 15/02/1973        | ••••    | MMT         | Mạng máy tính      | B16   |         | <u>001</u> |         |
|   |             |                |         | W7 1              |         |             |                    |       |         |            | 3       |
|   | ••••        |                | 1:/     |                   | • • • • | ••••        | ••••               |       | ••••    | •••        |         |



- Cho biết họ tên các giáo viên cùng bộ môn với giáo viên 'Trần Trà Hương'
  - Quan hệ: GIAOVIEN
  - Thuộc tính: HOTEN, MABM
  - □ Điều kiện: HOTEN = 'Trần Trà Hương'

Giáo viên "Trần Trà Hương" ở bộ môn nào?

Những giáo viên nào thuộc về bộ môn đó?

| MABN | 1 | HOTEN           |
|------|---|-----------------|
| MMT  |   | Nguyễn Hoài An  |
| HTTT |   | Trần Trà Hương  |
| HTTT |   | Nguyễn Ngọc Anh |
| VS   |   | Trương Nam Sơn  |
|      |   |                 |

| MABM | HOTEN           |
|------|-----------------|
| MMT  | Nguyễn Hoài An  |
| HTTT | Trần Trà Hương  |
| HTTT | Nguyễn Ngọc Anh |
| VS   | Trương Nam Sơn  |
|      |                 |



B1: Tìm bộ môn mà giáo viên 'Trần Trà Hương' thuộc về

$$r1 \leftarrow \pi_{MABM}(\sigma_{HOTEN='Tr\math{\hat{a}}\mbox{n}} Tr\math{\hat{a}}\mbox{Hurong'}(GIAOVIEN))$$

B2: Lấy ra họ tên các giáo viên cùng bộ môn

$$r2 \leftarrow \sigma_{HOTEN \leftrightarrow Tr\grave{a} Hurong'} (GIAOVIEN)$$

$$r3 \leftarrow \sigma_{R1.MABM=R2.MABM} (r1 \times r2)$$

$$KQ \leftarrow \pi_{HOTEN}$$
 (r3)



Is used to combine related tuples from 2 relations into single tuples

Denotation  $R \bowtie S$ 

 $R(A_1, A_2, ..., A_n)$  and  $S(B_1, B_2, ..., B_m)$ 

#### Result is a relation Q

Has (n + m) attributes Q(A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>, B<sub>1</sub>, B<sub>2</sub>, ..., B<sub>m</sub>)

A tuple of Q is a combination of tuples from R and S satisfying some join condition

The form :  $A_i \theta B_i$ 

A<sub>i</sub>: the attribute from R, B<sub>i</sub>: the attribute from S

Ai and Bi have the samedomain

 $\theta$ : comparison operators  $\neq$ , =, <, >,  $\leq$ ,  $\geq$ 



#### Categories

Theta join pairs tuples using one specific condition

Denotation  $R \bowtie_{C} S$ 

C refers to an arbitrary condition for attributes

Equi join when C involves equality comparisons only

#### Natural join

Denote  $R \bowtie S$  or R \* S

 $R^+ \cap S^+ \neq \emptyset$ 

Only one join attribute is kept



#### Theta join



$$r \bowtie_{B < D} s$$

| Α | В | С | D | Е |
|---|---|---|---|---|
| 1 | 2 | 3 | 3 | 1 |
| 1 | 2 | 3 | 6 | 2 |
| 4 | 5 | 6 | 6 | 2 |

$$r \bowtie_C s = \sigma_C(r \times s)$$



#### Equi join

| r | Α | В | С |
|---|---|---|---|
|   | 1 | 2 | 3 |
|   | 4 | 5 | 6 |
|   | 7 | 8 | 9 |
|   |   |   |   |

| S | D | Е |
|---|---|---|
|   | 3 | 1 |
|   | 6 | 2 |
|   |   |   |

$$\rho_{(\text{S.C,D})}\,\text{s}$$

$$r\bowtie_{C=D} s$$

| Α | В | С | D | E |
|---|---|---|---|---|
| 1 | 2 | 3 | 3 | 1 |
| 4 | 5 | 6 | 6 | 2 |

$$r\bowtie_{C=s.C} s$$

| Α | В | С | s.C | D |
|---|---|---|-----|---|
| 1 | 2 | 3 | 3   | 1 |
| 4 | 5 | 6 | 6   | 2 |



#### Natural join

| r | Α        | В | C |
|---|----------|---|---|
|   | 1        | 2 | 3 |
|   | 4        | 5 | 6 |
|   | 7        | 8 | 9 |
|   | <u> </u> |   |   |

| S | С | D |
|---|---|---|
|   | 3 | 1 |
|   | 6 | 2 |
|   |   |   |





#### Natural join

Cho biet ten gv cua khoa CNTT co tham gia de tai "TPTM"g← giaovien b← bomon t←thamgiadt

C1: 
$$k1 \leftarrow \sigma_{\text{makhoa='CNTT'}}(g \bowtie b)$$

$$k2 \leftarrow \pi_{tengv} (\sigma_{madt='TPTM'} (k1 \bowtie t))$$

C2: 
$$\pi_{\text{tengy}}$$
 ( $\sigma_{\text{madt='TPTM'} \land \text{makhoa='CNTT'}}$  ( $g \bowtie b \bowtie t$ ))