

Redes Wireless

I Parte: Controlo de Acesso ao Meio em redes Wireless

II Parte: 802.11 Wlan

Medium Access Control (MAC) em redes wireless

Vários nodos partilham o mesmo canal de comunicação e têm dados para transmitir...

Em caso de transmissões simultâneas --> colisão e corrupção dos dados transmitidos. Contolar o acesso ao meio é função do **Protocolo MAC**

MAC em redes wireless

- Esquemas comuns para Controlo de Acesso ao Meio em redes wireless:
 - Sem contenção --> alocar parte do canal para cada nodo:
 - FDMA Dividir o espectro do sinal em várias frequências;
 - TDMA Dividir o espectro do sinal no tempo;
 - CDMA Dividir o espectro do sinal com um código padrão.
 - Com contenção --> alocar o canal a pedido:
 - ALOHA;
 - CSMA.

Frequency Division Multiple Access

* 〇

Universidade do Minho Escola de Engenharia Departamento de Informática

- Ideia básica:
 - 1. Dividir o espectro em gamas de frequências, chamadas *canais*
 - Atribuir um ou mais canais a cada nodo
 - 3. Cada nodo transmite/recebe no(s) canal(ais) atribuido(s)

Vantagens: Simples e eficiente para poucos nodos

Desvantagens: Canais dedicados eventualmente não usados; pouca adaptabilidade a alterações no no de nodos

Time Division Multiple Access (TDMA)

- Ideia básica:
 - 1. Um canal dividido em intervalos de tempo chamados *time slots*
 - Atribuir um ou mais time slots a cada nodo
 - 3. Cada nodo transmite/recebe no(s) time slot(s) atribuído(s)

Vantagens: bom para garantir requisitos temporais

Desvantagens: requer sincronização temporal; pouca adaptabilidade a alterações no no de nodos

nharia nática

Exemplo

- Global System for Mobile communications (GSM).
- Combinação de FDMA e TDMA.

ts5

TDMA Cycle

ts7

Max. nodos simultâneos: 125 canais x 8 slots = 1000 Estes podem ser dinamicamente atribuídos a "canais lógicos"...

0.577 ms

ts2

ts3

ALOHA

- Inventado na University of Hawaii.
- Basic ALOHA:
 - Quando um nodo tem algo para transmitir, transmite;
 - Transmissor espera por um ACK;
 - Se n\u00e3o existir ACK, espera um tempo aleat\u00f3rio e retransmite.

Vantagens: Sistema simples, sem pré-alocação e sem necessidades de sincronização

Desvantagens: Colisões tornam-se um problema -> muito baixa utilização; slotted ALOHA reduz o problema mas não resolve (Util. Max. ~18 para 36%)

Slotted ALOHA:

LCC-CC

- Divide o tempo em slots (n\u00e3o atribuidos a nenhum nodo em particular);
- Transmissões só podem começar no início dos time slots.

Carrier Sense Multiple Access CSMA

- Porque n\u00e3o escutar o meio antes de transmitir ?
 - Isso evitaria algumas colisões...
- Ideia básica do CSMA:
 - Antes de transmitir, escutar o meio.
 - Se meio ocupado:
 - Esperar até que fique livre (persistente)
 - Tentar mais tarde (não-persistente)
 - Quando o canal está livre:
 - Transmitir imediatamente ?

CSMA/Collision Avoidance (CA)

- Esperar um período de tempo aleatório ?
 - Usando janela de contenção
- Se mesmo assim existirem colisões ...
 - Como é difícil detectar colisões em redes wireless:
 - Usar ACKs

CSMA

- Vantagens
 - Canal alocado conforme necessário
 - Não é necessário sincronização
 - Bom desempenho (Max. utilização do canal ~80%*).
- Desvantagens
 - Tempo de espera aleatório
 - Alguns fenómenos em redes wireless podem influenciar desempenho:
 - Hidden nodes, exposed nodes;

*sem nodos escondidos (hidden nodes).

Problemas com o CSMA

Sentir o canal no transmissor não fornece informação acerca do canal no receptor

Hidden node problem

N1 e N3 não se escutam mutuamente devido a obstáculos ou atenuação: os seus pacotes colidem em N2

Exposed node problem

N1 e N4 poderiam ser receptores simultaneos mas os respectivos emissores N2 e N3 estão em zona de alcance

Problema menos grave que o anterior --> menos estudado

Exemplo

- 802.11 implementa um mecanismo opcional para reduzir colisões causadas por Hidden Nodes --> mecanismo com reserva do meio.
 - Request-to-Send (RTS)/Clear-to-Send (CTS):
 - Um nó que quer transmitir, envia um pedido RTS;
 - O receptor responde com um CTS -> emissor inicia transmissão;
 - Outras estações que escutam um RTS/CTS permanecem em silêncio (durante a transmissão de dados seguinte cujo duração é declarada nos cabeçalhos RTS/CTS).

 Node 3

10

Wireless Lan

IEEE 802.11

802.11 - Normalização

Protocolo	Data	Frequência	Débito	Técnica de	Distância		
	Norma		Máximo	Modulação	(in - out)		
802.11	Versão ir	Versão inicial de 1997 de baixo débito (1 ou 2Mbps)					
802.11a	1999	5 GHz	54 Mbps	OFDM	~35-120m		
802.11b	1999	2,4 GHz	11 Mbps	DSSS	~38-140m		
802.11g	2003	2,4 GHz	54 Mbps	OFDM	~38-140m		
802.11n	2009	2,4 GHZ 5 GHz	248 Mbps	MIMO	~70-250m		
802.11e	similar a	similar a 802.11b com suporte de Qualidade de Serviço					

802.11ac > 1Gbps; -> 802.11ax -> WiFi 6 \rightarrow TPC

802.11 - Configurações wireless LAN Departamento de Informática

1. Independent/Ad-Hoc Network

2. Infrastructure Network

- WLAN isolada sem sistema de distribuição
- Sem AP, com duas ou mais STAs
- STAs configuradas em *modo ad hoc*
- Carácter temporário

- Um AP interliga uma ou mais STAs a um sistema de distribuição
- Comunicações entre STAs realizadas sempre através do AP
- STAs configuradas em *modo infra-estrutura*

802.11 Wireless LAN

- STA Station Estação com interface wireless
 - Varre os canais à procura de tramas beacon contendo o SSID (Service Set Identity) e o endereço BSSID (Basic SSID - geralmente MAC do AP)
 - Scan passivo Beacon
 - Scan activo Probe Request
 - Escolhe um AP para se associar
 - Possibilidade de autenticação
 - Configura-se normalmente por DHCP

• Sequência: Scanning - Join - Authentication - Association

- AP Access Point (Base Station (BS))
 Estação base com interface *wireless* e *wired*. Permite ligação do BSS ao sistema de distribuição
- BSS Basic Service Set / Base Station Subsystem
 Célula (ou segmento WLAN) contendo grupo de estações abrangidas pelo alcance do AP;
 Ad-hoc/Independent or infrastrutured BSS
- ESS Extended Service Set
 Vários BSS ligados entre si pelos APs a um sistema de distribuição
- DS Distribution System
 Liga os BSS de uma ESS via APs; disponibiliza recursos da rede às BSS; geralmente wired

802.11 Wireless LAN

- BSSs podem ser:
 - Parcialmente sobrepostas: para cobertura contínua numa determinada área
 - Totalmente sobrepostas: para redundância ou melhoria de desempenho
 - Fisicamente disjuntas: interrupção de serviço na transição

A norma 802.11 suporta mobilidade entre BSSs (*roaming*) pertencentes à mesma ESS, mas não suporta transição entre ESSs.

O IAPP (*Inter-Access Point Protocol*) coordena a interacção entre APs na transição entre BSSs

16

802.11 - Nível MAC

Métodos de acesso:

- DCF (Distributed Coordination Function)
- PCF (Point Coordination Function)
- MAC-DCF CSMA/CA (obrigatório)
 - Physical channel sensing
 - Evitar a colisão através de um mecanismo de random back-off
 - Distância mínima entre pacotes consecutivos
 - Pacotes ACK (não para broadcasts)
- MAC-DCF c/ RTS/CTS (opcional)
 - Physical e Virtual channel sensing
 - Protocolo de handshaking com pequenos pacotes de reserva do meio
 - Evita o problema de "hidden terminal"
- MAC- PCF (opcional) sem contenção
 - Access Point faz o poll às estações de acordo com uma lista

802.11 - CSMA/CA

• Carrier Sense Multiple Access Collision Avoidance (802.11)

Cada STA escuta o meio antes de iniciar a transmissão (physical channel sensing). Se o meio estiver livre por alguns microsegundos (DIFS), a STA pode transmitir por um tempo limitado. Se o meio estiver ocupado, faz back off por um período aleatório antes de escutar o meio novamente.

Uma STA não escuta o meio enquanto transmite.

Não transmite e recebe ao mesmo tempo --> não consegue detectar colisões (CD) --> evitar colisões (CA)

802.11 - CSMA/CA

Algoritmo CSMA/CA:

Se sentir o meio desocupado por **DIFS** segundos (Distributed Inter Frame Space)
transmite trama (sem efectuar Collision Detection)
receptor devolve ACK após **SIFS** segundos (Short Inter Frame Space)
Se sentir o meio ocupado => espera por um DIFS livre + random backoff (Collision Avoidance)

802.11 - CSMA/CA

- MAC reenvia pacote se não vier a confirmação
 - => ARQ stop-and-wait
- Ar menos fiável do que meios guiados => taxas de erros maiores
 - => MAC fragmenta tramas para evitar retransmissão de pacotes grandes NAV: Network Allocation Vector (tempo reservado)

802.11 - RTS/CTS

Virtual channel sensing (RTS/ CTS)

- RTS requisita o uso do meio
- CTS silência as estações que estão acessíveis para o receptor (mas possivelmente escondidas do emissor); isto previne colisões provocadas por estações escondidas durante a troca de dados
- RTS e CTS muito curtos: colisões improváveis

RTS - request to send CTS - clear to send

NAV: Network Allocation Vector

22

802.11 - RTS/CTS (cont)

- Estação envia RTS com parâmetro de reserva depois de esperar por DIFS (reserva declara o tempo que o trama de dados necessita do meio)
- Receptor envia acknowledgement via CTS depois de SIFS (se apto a receber)
- Emissor pode agora enviar os dados, com confirmação via ACK
- Outras estações registam os anúncios de reserva do meio enviados via RTS e CTS

802.11 - Formato da trama

802.11 - Formato da trama

Endereço 1:

- Receptor: nó que recebe a trama e deve confirmar a recepção
- Todas as estações lêem este endereço

Endereço 2

• Transmissor: nó que transmite a trama e deve retransmitir em caso de não-confirmação

• Endereços 3 e 4 dependem do modo de operação

toDS	fromDS	addrl	addr2	addr3	addr4	obs.
0	0	DA	SA	BSSID	12	ad hoc
0	1	DA	BSSID	SA	-	do AP
1	0	BSSID	SA	DA	-	para AP
1	1	RA	TA	DA	SA	dentro DS

802.11 - Formato da trama

toDS=1, fromDS=0

A1 (RA) = BSSID = MAC AP A2 (TA) = SA = MAC STA A3 (DA) = MAC R1

toDS=1, fromDS=1

A1 (RA) = MAC AP2A2 (TA) = MAC AP1

A3 (DA) = MAC R2

A4(SA) = MACR1

toDS=0, fromDS=1

A1 (RA) = DA = MAC STA A2 (TA) = BSSID = MAC AP A3 (SA) = MAC R1 DA - Destination Address - receptor final

SA - Source Address - origem da transmissão

RA - Receiver Address - estação wireless que deve processar a trama wireless STA -> RA=DA

wired node -> RA=MAC AP; DA=router

TA - Transmitter Address - interface wireless que transmitiu a trama BSSID - MAC da interface wireless do AP (Infrastrurure networks); aleatório BSSID (Ad-hoc networks)