

INFO-I590 Fundamentals and Applications of LLMs

Attention and Transformers

Jisun An

An unrolled Recurrent Neural Network (RNN)

Limitations of RNN Models

- RNN models reuse the output of the previous token as input, making parallel processing impossible.
 - Due to sequential processing, the training process is **inherently slower**.
- Information from earlier tokens dissipates as the input sequence grows longer, leading to performance degradation.
- Adding deeper layers to improve performance can result in:
 - Gradient Vanishing: Gradients shrink, stopping weight updates
 - Gradient Exploding: Gradients grow excessively, destabilizing training

Transformers

- Core Innovation: Self-Attention
 - Replaces sequential input processing
 - Calculates relationships between words to adjust their representations
- Advantages Over RNNs
 - Scalability: Deeper models train effectively using repeated blocks (layers)
 - Efficiency: Parallel computation shortens training time.
 - Handles Long Inputs: Maintains performance on long sequences
- Enabling "Large" Language Models (LLMs)
 - Transformers are the backbone of modern LLMs.

"Attention is All You Need" (Vaswani et al. 2017)

- A sequence-to-sequence model based entirely on attention
- Strong results on machine translation
- Fast: only matrix multiplications

Three Types of Transformers

Core Transformer Concepts

- Positional encoding
- Attention
- Multi-headed attention
- Masked attention
- Residual + layer normalization
- Feed-forward layer

Positional Encoding

(Review) Inputs and Embeddings

Inputs: Generally split using subwords

the books were improved

the book _s were improv _ed

Input Embedding: Looked up, like in previously discussed models

Positional Encoding

- Transformer: Processes all inputs simultaneously,
 losing order information. But, order is critical in text.
- If embeddings were used, there would be no way to distinguish between identical words

A **big** dog and a **big** cat would be identical!

 Positional encodings add an embedding based on the word position

Sinusoidal Encoding (Vaswani+ 2017, Kazemnejad 2019)

Calculate each dimension with a sinusoidal function

Even dimensions (2i):

$$PE(pos,2i) = \sin\left(rac{pos}{10000^{rac{2i}{d_{
m model}}}}
ight)$$

Odd dimensions (2i + 1):

$$PE(pos,2i+1) = \cos\left(rac{pos}{10000^{rac{2i}{d}_{\mathrm{model}}}}
ight)$$

 Why? So the doc product between two embeddings becomes higher relatively.

Learned Encoding (Shaw+ 2018)

More simply, just create a learnable embedding

- Advantages: flexibility
- Disadvantages: impossible to extrapolate to longer sequences

Absolute vs. Relative Encodings

- Absolute positional encodings add an encoding to the input in hope that relative position will be captured
- Relative positional encodings explicitly encode relative position

Rotary Positional Encodings (RoPE) (Su+ 2021)

 Fundamental idea: we want the dot product of embeddings to result in a function of relative position

$$f_q(\mathbf{x}_m, m) \cdot f_k(\mathbf{x}_n, n) = g(\mathbf{x}_m, \mathbf{x}_n, m - n)$$

In sum, RoPE uses
 trigonometry and imaginary
 numbers to come up with a
 function that satisfies this
 property.

$$R_{\Theta,m}^{d}\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_1 \\ \cos m\theta_1 \\ \cos m\theta_2 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_{\frac{d}{2}} \end{pmatrix} + \begin{pmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_d \\ x_{d-1} \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_{\frac{d}{2}} \\ \sin m\theta_{\frac{d}{2}} \end{pmatrix}$$

RoPE Intuitions

Yesterday morning, I saw a black cat.

Attention

Attention: Mimicking Human Context Processing

Consider this sentence

"Oo ooo oo ooo oooo bank."

- It's impossible to determine whether "bank" refers to financial institution or land near a river because the context is hidden.
- Now, consider this sentence:

"He sat by the river bank."

- Here, "bank" clearly refers to land near a river due to the surrounding words.
- Humans don't interpret words in isolation. We derive meaning from surrounding words.

Attention: Basic Idea

- The goal of attention is to
 - 1) determine which words to 'attend' to accurately interpret a word within its context
 - , and 2) reinterpret the word based on its context.

Attention: Basic Idea

- The goal of attention is to
 - 1) determine which words to 'attend' to accurately interpret a word within its context
 - , and 2) reinterpret the word based on its context.
- To computes relationships between words
 - Uses Query (Q) & Key (K) to assign weights (higher for important words).
- To reinterprets words based on context
 - Multiplies weights with Value (V) to refine meaning.

Cross Attention (Bahdanau et al. 2015)

 Each element in a sequence attends to elements of another sequence

Self Attention (Cheng et al. 2016, Vaswani et al. 2017)

Each element in the sequence attends to elements of that sequence
 → context sensitive encodings!

Query, Key, Value: The Core of Attention

The transformer architecture implements the way we process text using:

- Query (Q): The focus or "search term"
- Key (K): Features of the data used for relevance matching
- Value (V): The actual information retrieved

- Introduced to handle relationships between words efficiently.
- Terms from Information Retrieval

Query, Key, Value: Example

Query, Key, Value: Example

search result by bank

If we evenly reflect surrounding context

	key	value	
1	he	0.2, 0.3, 0.9, 1.2	
1	sat	0.1, 0.2, 1.1, 2.1	
1	by	0.5, 0.3, 1.1, 0.2	_
1	the	0.8, 0.5, 1.5, 0.4	
1	river	0.3, 0.1, 1.7, 0.3	
1	bank	0.4, 0.4, 0.2, 3.4	

If we reflects surrounding context based on distance

	key	value
0	he	0.2, 0.3, 0.9, 1.2
1	sat	0.1, 0.2, 1.1, 2.1
2	by	0.5, 0.3, 1.1, 0.2
3	the	0.8, 0.5, 1.5, 0.4
4	river	0.3, 0.1, 1.7, 0.3
5	bank	0.4, 0.4, 0.2, 3.4

Calculating 'Attention'

 Relevance must be calculated from the data itself, not determined by fixed rules

Calculating 'Attention' with weights

Combining Attention and Value

Calculating Value with weights

Calculating Attention (1)

Calculating Attention (2)

Calculating Attention (3)

Attention Score Functions

Dot Product (Luong et al. 2015)

$$a(\boldsymbol{q}, \boldsymbol{k}) = \boldsymbol{q}^{\mathsf{T}} \boldsymbol{k}$$

- Scaled Dot Product (Vaswani et al. 2017)
 - Problem: scale of dot product increases as dimensions get larger
 - Fix: scale by size of the vector

$$a(\boldsymbol{q}, \boldsymbol{k}) = \frac{\boldsymbol{q}^{\mathsf{T}} \boldsymbol{k}}{\sqrt{|\boldsymbol{k}|}}$$

Self-attention Calculation in Matrix form


```
head_dim = 16

weight_q = nn.Linear(embedding_dim, head_dim)
weight_k = nn.Linear(embedding_dim, head_dim)
weight_v = nn.Linear(embedding_dim, head_dim)

querys = weight_q(input_embeddings) # (1, 5, 16)
keys = weight_k(input_embeddings) # (1, 5, 16)
values = weight_v(input_embeddings) # (1, 5, 16)
```

```
from math import sqrt
import torch.nn.functional as F

def compute_attention(querys, keys, values, is_causal=False):
    dim_k = querys.size(-1) # 16
    scores = querys @ keys.transpose(-2, -1) / sqrt(dim_k)
    weights = F.softmax(scores, dim=-1)
    return weights @ values
```

Multi-head Attention

Intuition for Multi-heads

 Intuition: Information from different parts of the sentence can be useful to disambiguate in different ways

syntax (nearby context)

semantics (farther context)

Multi-head Attention Concept

Scaled Dot-Product Attention

Multi-head Attention Concept

Code Example

```
class MultiheadAttention(nn.Module):
  def __init__(self, token_embed_dim, d_model, n_head, is_causal=False):
    super(). init ()
    self.n head = n head
    self.is causal = is causal
    self.weight g = nn.Linear(token embed dim, d model)
    self.weight k = nn.Linear(token embed dim, d model)
    self.weight v = nn.Linear(token embed dim, d model)
    self.concat linear = nn.Linear(d model, d model)
  def forward(self, querys, keys, values):
    B, T, C = querys.size()
    querys = self.weight_q(querys).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
    keys = self.weight_k(keys).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
    values = self.weight v(values).view(B, T, self.n head, C // self.n head).transpose(1, 2)
    attention = compute_attention(querys, keys, values, self.is_causal)
    output = attention.transpose(1, 2).contiquous().view(B, T, C)
    output = self.concat_linear(output)
    return output
n head = 4
mh attention = MultiheadAttention(embedding dim, embedding dim, n head)
after attention embeddings = mh attention(input embeddings, input embeddings)
after attention embeddings shape
```

What Happens w/ Multi-heads?

Example from Vaswani et al.

Figure 3. An example of the attention mechanism following long-distance dependencies in the encoder self-attention. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making ... more difficult.'

Different colors represent different heads.

See also BertVis: https://github.com/jessevig/bertviz

Masked Attention

Masked Attention

- During generation, the decoder only sees previously generated text, but in training, it has access to the full text, causing data leakage.
- Masking ensures that the model only attends to past tokens.
 - Implementation: A triangular mask is applied, hiding future tokens.

Layer Normalization and

Residual Connections

Layer Normalization (Ba et al. 2016)

 Normalizes the outputs to be within a consistent range, preventing too much variance in scale of outputs

$$\hat{x}_i = rac{x_i - \mu}{\sigma + \epsilon}$$

$$y_i = \gamma \hat{x}_i + eta$$

$$\mu = rac{1}{N} \sum_{j=1}^N x_j \qquad \qquad \sigma = \sqrt{rac{1}{N} \sum_{j=1}^N (x_j - \mu)^2}$$

Layer Normalization

RMSNorm (Zhang and Sennrich 2019)

 Root Mean Square (RMS) normalization simplifies LayerNorm by removing the mean and bias terms

$$\hat{x}_i = rac{x_i}{ ext{RMS}(x) + \epsilon}$$
 $y_i = \gamma \hat{x}_i$

$$ext{RMS}(x) = \sqrt{rac{1}{N}\sum_{j=1}^N x_j^2}$$

Residual Connections (Kaiming et al. 2015)

* Cited by 250467

 Add an additive connection between the input and output

$$y = \mathcal{F}(x) + x$$

 Prevents vanishing gradients and allows f to learn the difference from the input

Post- vs. Pre-Layer Norm (e.g., Xiong et al. 2020)

 Where should LayerNorm be applied? Before or after?

 Pre-layer-norm is better for gradient propagation

Figure 1. (a) Post-LN Transformer layer; (b) Pre-LN Transformer layer.

Feed Forward Layers

Feed Forward Layers

 Fully connected layer that extracts combination features from the attended outputs

$$FFN(x; W_1, \mathbf{b}_1, W_2, \mathbf{b}_2) = f(\mathbf{x}W_1 + \mathbf{b}_1)W_2 + \mathbf{b}_2$$

Some Activation Fundations in Transformers

Vaswani et al.: ReLU

$$ReLU(\mathbf{x}) = max(0, \mathbf{x})$$

LLaMa: Swish/SiLU (Hendricks and Gimpel 2016)

$$Swish(\mathbf{x}; \beta) = \mathbf{x} \odot \sigma(\beta \mathbf{x})$$

Core Transformer Concepts

- ✓ Positional encoding
- ✓ Attention
- ✓ Multi-headed attention
- ✓ Masked attention
- ✓ Residual + layer normalization
- ✓ Feed-forward layer

(BERT, GPT, and T5)

Transformer-based architectures

Three Types of Transformers (1)

Three Types of Transformers (2)

Transformer-based models fall into three major groups:

- Encoder-only Models
 - Used for natural language understanding (NLU) tasks
 - Example: BERT
- Decoder-only Models
 - Used for natural language generation (NLG) tasks
 - Example: GPT, LLaMA
- Encoder-Decoder Models
 - Handles both understanding and generation tasks
 - Examples: T5, BART

BERT (Devlin et al. 2018)

Bidirectional Encoder Representations from Transformers

Masked Language Modeling (MLM)

ModernBERT (Warner et al. 2024)

Sentence-BERT (SBERT) (Reimers and Gurevych 2019)

- A modification of BERT designed for sentence embeddings
- Generates context-aware vector representations of sentences
- Optimized for semantic similarity tasks via siamese or triplet networks, enabling fast & accurate sentence comparison
- Widely used in semantic search, clustering, and QA

T5: Text-to-Text Transfer Transformer (Raffel et al. 2019)

- Treats all NLP tasks as text-to-text translation
- Example: For summarization, input starts with "Summarize:"

GPT (Yenduri et al. 2023)

Generative Pre-trained Transformer

Yenduri et al. 2023. Generative Pre-trained Transformer: A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions. https://arxiv.org/abs/2305.10435

Img: https://www.linkedin.com/posts/ayushi-sharma-8a285a185_gpt-1-gpt-2-and-gpt-3-are-almost-similar-activity-7026040251622043648-NNUz, https://medium.com/@YanAlx/step-by-step-into-gpt-70bc4a5d8714

Original Transformer vs. LLaMA

	Vaswani et al.	LLaMA
Norm Position	Post	Pre
Norm Type	LayerNorm	RMSNorm
Non-linearity	ReLU	SiLU
Positional Encoding	Sinusoidal	RoPE

How Important is It?

"Transformer" is Vaswani et al., "Transformer++" is (basically) LLaMA

Stronger architecture is ≈10x more efficient!

Model Type	Rep. Model	Advantages	Disadvantage
Encoder	Google's BERT	 Achieves higher performance in NLU compared to decoder models due to bidirectional context comprehension Supports parallel computation, enabling faster training and inference Excels in downstream tasks across various applications 	 Not suitable for NLG tasks Limited context length constraints performance
Decoder	OpenAl's GPT, Meta's LLaMA	 Excels in text generation tasks Performs well with relatively long context windows 	 Unidirectional processing leads to lower performance in NLU tasks Can convert all tasks into a generation problem, but this may be inefficient
Encoder-Deco der	Meta's BART, Google's T5	 Strong performance in both generation and understanding tasks Uses bidirectional encoding for better comprehension and leverages encoder outputs in the decoder, enhancing context-aware generation 	 More complex due to the combined use of both encoder and decoder Requires more data and computational resources for training

The Annotated Transformer

Attention is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

- v2022: Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak, and Stella Biderman.
- Original: Sasha Rush.

The Transformer has been on a lot of people's minds over the last year five years. This post presents an annotated version of the paper in the form of a line-by-line implementation. It reorders and deletes some sections from the original paper and adds comments throughout. This document itself is a working notebook, and should be a completely usable implementation. Code is available here.

https://nlp.seas.harvard.edu/annotated-transformer/

Any Questions?