

Logique Séquentielle

Cycle Préparatoire Deuxième Année

Fabrice Muller

Polytech'Nice-Sophia – Département Electronique

Ch1 - La Fonction Mémoire

Ch2 - Les Bascules

- Ch3 Machines Asynchrones
- Ch4 Machines Synchrones
- Ch5 Machines à état

- Introduction aux circuits séquentiels
- Fonction mémoire élémentaire
- Mémoire synchronisée & RST
- Synthèse

Rappel de la Logique Combinatoire

- Circuits combinatoires
 - A chaque état des variables d'entrée correspond un seul état des variables de sortie et inversement
 - Exemples
 - Multiplexeur, décodeur, UAL ...

Circuit Combinatoire = $S(t+\Delta) = f[e1(t), e2(t)]$

Multiplexeur 4 vers 1 (74153)

FUNCTION TABLE									
	SELECT INPUTS		DATA INPUTS			STROBE	ООТРОТ		
	В	A	ÇO	CŢ	C2	Ç3	G	Υ	
	X	X	x	X	X	X	H	L	
	L	L	L	X	X	×	L	L	
	L	L	Н	X	X	×	L	н	
	L	Н	×	L	X	X	L	L	
	L	H	×	н	X	×	L	н	
	Н	L	X	X	L	X	L	L	
	Н	L	×	X	н	X	L	н	
	Н	н	×	Х	X	L	Ł	L	
	Н	н	X	X	X	Н	L	н	

Select inputs A and B are common to both sections. H = high | evel, L = low | level, X = irrelevant

Additionneur 4 bits (7483)

Et La Logique Séquentielle ?

- Circuits séquentiels
 - A un état des variables d'entrée peut correspondre plusieurs états différents des variables de sortie
 - Mémorisation de l'état précédent
 - Principales fonctions séquentielles de base
 - Fonctions mémoires
 - Fonctions de comptage (ou fonctions dibinaire)
 - Fonctions génératrices de transitions (impulsions)
 - Fonctions de retards (ou fonctions délais)

Les régimes d'un circuit séquentiel Rappel: Un problème de temps ... (1/2)

Un circuit séquentiel (comme combinatoire) a un temps de réponse appelé temps de propagation.

Les régimes d'un circuit séquentiel Les 3 Régimes

- Régime permanent stable
 - $s(t+\Delta) = s(t)$

- État stable, le circuit reste dans le même état
- Les entrées peuvent modifiées cet état
- Régime transitoire
 - s(t+∆) différent de s(t)

- Evolution vers un régime permanent ou transitoire
- Le circuit effectue une transition en traversant ou non un état de commutation
- Régime permanent instable s(t)
 - $s(t+\Delta) = complément à 1 de s(t)$
 - Évolution de régime transitoire en régime transitoire
 - Pas d'état stable

- Introduction aux circuits séquentiels
- Fonction mémoire élémentaire
- Mémoire synchronisée & RST
- Synthèse

Introduction à la fonction mémoire

Exemple à partir d'une table d'implication

E(t)

_	1	<u>'</u>	_		
	e1(t)	e2(t)	s(t)	s(t+Δ)	φ
Régime permanent stable	0	0	0	0	0
Régime permanent instable	0	1	0	1	1
Régime transitoire	1	1	0	1	1
Régime permanent stable	1	0	0	0	0
Régime transitoire	0	0	1	0	1
Régime permanent instable	0	1	1	0	1
Régime permanent stable	1	1	1	1	0
Régime permanent stable	1	0	1	1	0

La quantité φ est appelé la fonction de commutation

$$\phi = 1$$
 si s(t+ Δ) différent de s(t)

$$\varphi = 0$$
 si s(t+ Δ) égale à s(t)

Exemple de fonctions élémentaires

Fonction mémoire

C(E)	s(t)	s(t+Δ)	φ	
C1(E)	0	<i>)</i> 1	1	Mise à 1
C1(E)	1 ₹	1	0	
C2(E)	1	1	0	Mémoire
C2(E)	0	0	0	> Memoire
C0(E)	0 1	0	0	
C0(E)	1	0	1	Mise à 0

3 régimes de fonctionnement

Fonction de comptage

C(E)	s(t)	s(t+Δ)	φ				
C3(E)	0 1	1	1				
C3(E)	1 🗸	0	1				
C0(E)							
C1(E)	Comme pour la fonction mémoire						
C2(E)	memoire						

4 régimes de fonctionnement

Les circuits réalisant la fonction mémoire

R prioritaire (nor)

état	R	S	Q	Q'
mémoire	0	0	у	У
Mise à 1	0	1	1	0
Mise à 0	1	0	0	1
R prioritaire	1	1	0	0

S prioritaire (nand)

état	R	S	Q	Q'
mémoire	0	0		
Mise à 1	0	1		
Mise à 0	1	0		
S prioritaire	1	1		

Exemple Le circuit 79279

DATA

- Introduction aux circuits séquentiels
- Fonction mémoire élémentaire
- Mémoire synchronisée & RST
- Synthèse

Mémoire synchronisée ou mémoire RST Les entrées synchrones

 C'est une mémoire dont les entrées sont validées ou non par un signal T

Mémoire synchronisée ou mémoire RST Les entrées asynchrones (1/2)

 Ces entrées appelées entrées de forçage permettent la mise à 1 ou la mise à 0 de la mémoire quel que soit l'état de T

Fonctions de sortie?

Si /preset = 1 et /reset = 1

/preset	/reset	Q	'n
0	1		
1	0		
0	0		

Mémoire synchronisée ou mémoire RST Les entrées asynchrones (2/2)

Table de fonctionnement

Entrées prioritaires sur R, S, T

S	R	/Set	/Reset	Т	Q	Q'	
0	0	1	1	1	у	y	Mémoire
0	1	1	1	1	0	1	Mise à 0
1	0	1	1	1	1	0	Mise à 1
1	1	1	1	1	1	1	Interdit
Х	Х	0	1	Х	1	0	Forçage à 1
Х	X	1	0	X	0	1	Forçage à 0
Х	Х	0	0	Х	1	1	Interdit
Х	Х	1	1	0	У	y	Mémoire isolée de ses entrées

Mémoire D à verrouillage Principe de fonctionnement

- T = 1 : La sortie Q de la mémoire prend l'état de l'entrée D
- T = 0 : La sortie Q reste inchangée (mémoire)

état	R	S	Q	Q'
mémoire	0	0	У	У
Mise à 1	0	1	1	0
Mise à 0	1	0	0	1
S prioritaire	1	1	1	1

Avec T et
$$S = \overline{R}$$

Pas d'état interdit!

Т	D	y(t+Δ)	groupe	Q	/Q
1	0	0	C0	0	1
1	1	1	C1	1	0
0	0	(1)		Q-	/Q-
0	1	y(t)	C2	ġ	/Q-

Mémoire D à verrouillage Exemple

Attention aux parasites!

- Introduction aux circuits séquentiels
- Fonction mémoire élémentaire
- Mémoire synchronisée & RST
- Synthèse

Synthèse

- Introduction au circuit séquentiel
 - Le régime transitoire, permanent stable et instable
 - Une transition n'est pas instantanée (état adjacent)
- Les circuits mémoires
 - 3 régimes de fonctionnements
 - Mise à 0, mise à 1, et mémoire
 - La fonction mémoire élémentaire (S ou R prioritaire)
 - La mémoire RST
 - Entrées synchrones et asynchrones
 - Temps de propagation
 - Oscillation en rebouclage
 - La mémoire D à verrouillage
 - Pas d'état interdit

