PROPERTIES OF THE GROUP 17 ELEMENTS					
	F	Cl	Br	I	At
Melting point (°C)	-219.62	-100.98	-7.2	113.5	302
Boiling point (°C)	-188.14	-34.6	58.78	184.35	337
Density (g/cm ³)	1.69×10^{-3}	3.214×10^{-3}	3.119	4.93	not known
Ionization energy (kJ/mol)	1681	1251	1140	1008	_
Atomic radius (pm)	72	100	114	133	140
Ionic radius (pm)	133	181	196	220	_
Common oxidation number in compounds	-1	-1, +1, +3, +5, +7	-1, +1, +3, +5, +7	-1, +1, +3, +5, +7	-1, +5
Crystal structure	cubic	orthorhombic	orthorhombic	orthorhombic	not known

APPLICATION The Environment

Chlorine in Water Treatment

For more than a century, communities have treated their water to prevent disease. A treatment process widely used in the United States is chlorination. All halogens kill bacteria and other microorganisms. Chlorine, however, is the only halogen acceptable for large-scale treatment of public water supplies.

When chlorine is added to water, the following reaction produces HCl and hypochlorous acid, HOCl.

$$Cl_2(g) + H_2O(l) \longrightarrow HCl(aq) + HOCl(aq)$$

Hypochlorous acid is a weak acid that ionizes to give hydrogen ions and hypochlorite ions, OCl⁻.

$$HOCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + OCl^-(aq)$$

The "chlorine" used in swimming pools is really the compounds shown above and not chlorine at all.