

Regression

Regression analysis is a form of predictive modelling technique which investigates the **relationship** between a dependent and independent variable

Three major **uses** for Regression Analysis:

- Determining the strength of predictors
- Forecasting an effect
- Trend forecasting

- Data is modelled using a straight line
- It is used with continuous variable
- Value of a variable is either an output or predicted
- Accuracy is measured by loss

Source: Linear Regression | Edureka: https://youtu.be/E5RjzSK0fvY

Source: Linear Regression | Edureka: https://youtu.be/E5RjzSK0fvY

Source: Linear Regression | Edureka: https://youtu.be/E5RjzSK0fvY

	Х	У
	1	3
	2	4
	3	2
	4	4
	5	5
Mean	3	3.6

$$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

X	У	x – xbar	y - ybar	(x - xbar) x (y - ybar)	square (x - xbar)	
1	3	-2	-0.6	1.2	4	
2	4	-1	0.4	-0.4	1	
3	2	0	-1.6	0	0	
4	4	1	0.4	0.4	1	
5	5	2	1.4	2.8	4	
3	3.6			4	10	0.4
Xbar	ybar			∑ (x - xbar) x (y - ybar)	∑ square (x - xbar)	m

Source: Linear Regression | Edureka: https://youtu.be/E5RjzSK0fvY

У	= mx + c
У	= 0.4x + 2.4

x	y = 0.4x + 2.4		
1	2.8		
2	3.2		
3	3.6		
4	4		
5	4.4		

R-Square: Coefficient of Determination OR Coefficient of Multiple Determination

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

х	у	$y - \dot{y}$	$(y - \dot{y})^2$	y_p	$(y_p - \dot{y})$	$(y_p - y)^2$
1	3	- 0.6	0.36	2.8	-0.8	0.64
2	4	0.4	0.16	3.2	-0.4	0.16
3	2	-1.6	2.56	3.6	0	0
4	4	0.4	0.16	4.0	0.4	0.16
5	5	1.4	1.96	4.4	0.8	0.64

mean y 3.6

$$R^{2} = \frac{\sum (y_{p} - \dot{y})^{2}}{\sum (y - \dot{y})^{2}}$$


```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (20.0, 10.0)

data = pd.read_csv('headbrain.csv')
print(data.shape)
print(data)
```

```
(237, 4)
     Gender Age Range Head Size(cm^3) Brain Weight(grams)
                                   4512
                                                         1530
          1
                                   3738
                                                         1297
                                   4261
                                                         1335
          1
                                                         1282
                                   3777
          1
                                   4177
                                                         1590
                                    . . .
232
                                   3214
                                                         1110
233
                                   3394
                                                         1215
234
                                   3233
                                                         1104
235
                                   3352
                                                         1170
236
                                   3391
                                                         1120
[237 rows x 4 columns]
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (20.0, 10.0)
data = pd.read csv('headbrain.csv')
X = data['Head Size(cm^3)'].values
Y = data['Brain Weight(grams)'].values
mean x = np.mean(X)
mean y = np.mean(Y)
n = len(X)
numer = 0
denom = 0
for i in range (n):
    numer += (X[i] - mean x) * (Y[i] - mean y)
    denom += (X[i] - mean x) ** 2
b1 = numer / denom
b0 = mean y - (b1 * mean x)
print(b1, b0)
```

0.26342933948939945 325.57342104944223


```
max_x = np.max(X) + 100
min_x = np.min(X) - 100

x = np.linspace(min_x, max_x, 1000)
y = b0 + b1 * x

#plotting line
plt.plot (x, y, color='green', label='Regression Line')
plt.scatter (X, Y, color='blue', label='Scatter Plot')
plt.xlabel("Head Size in cm^3")
plt.ylabel("Brain Weight in grams")
plt.legend()
plt.show()
**Regression Line'
**Reg
```


www.hbpatel.in

How good our model is (using R² value)?

```
ss_t = 0
ss_r = 0
for i in range(n):
    y_pred = b0 + b1 * X[i]
    ss_t += (Y[i] - mean_y) ** 2
    ss_r += (Y[i] - y_pred) ** 2
r2 = 1 - (ss_r / ss_t)
print(r2)
```

0.6393117199570003