Situación Problema: Análisis de Audio usando Fourier F1009: Análisis de métodos matemáticos para la física

October 28, 2024

Juan Pablo Guerrero Escudero Romina Nájera Fuentes Juan Braulio Olivares Rodríguez

Introducción

Teoría

Conceptos de física relevantes:

1. Ondas de sonido

De acuerdo a Young y Freedman [1], El sonido se define como una onda longitudinal en un medio, principalmente aire, pero puede ser otros como otros gases, líquidos o sólidos. Las ondas de sonido más simple son ondas sinusoidales con una frecuencia, amplitud y longitud definida. [1]. El ser humano es capaz de escuchar ondas en el rango de 20 a 20,000 Hz, con frecuencias por encima del rango (ultrasónicas) o debajo del rango (infrasónicas) fuera del rango de escucha humano. De acuerdo a Hwaitat [2], las ondas de sonido son peturbancias propagadas por un medio el cuál no se ve afectado, y éstas ondas pueden ser ya sea longitudinales, o transversales. Para una onda de tipo longitudinal, el medio vibra en ángulos rectos al movimiento de la onda, y en el caso de ondas longitudinales, el medio vibra en la misma dirección que el movimiento. En la Figura 1 se observa gráficamente lo discutido.

Figura 1: Ondas longitudinales y transversales

Los parámetros de cualquier onda constituyen la amplitud, la frecuencia y la longitud, mencionados anteriormente. La amplitud puede ser definida como la "altura" de la onda, la frecuencia se define como los ciclos por segundo, y la longitud se define como la distancia entre un pico de onda y otro. Para una vista gráfica, vea la Figura 2. Generalmente, sucede que cuando dos partículas están en movimiento en el mismo medio, ocurre interferencia. Ésto significa que las amplitudes de onda son sumadas algebraicamente, y se siguen moviendo por el medio sin distracciones. En el mundo real, la interferencia de ondas crea patrones complejo, y puede ser muy difícil de analizar.

Figura 2: Parámetros de las ondas de sonido

2. Frecuencias de audio/sonido.

Como se definió anteriormente, la frecuencia de una onda es, de acuerdo a [1], como el número de repeticiones de una función periódica durante una unidad de variación en la variable independiente. En otras palabras, es el número de ocurrencias de un evento repetitivo por unidad de tiempo.

- 3. Sonidos armónicos
- 4. Beats

Análisis matemático + fundamentos:

- 1. Análisis espectral de canciones
- 2. Transformada de Fourier
- 3. Identificación de reggaeton/instrumental

Resultados

Conclusiones

Referencias

References

- [1] H. D. Young and Roger A. Freedman, *University Physics with Modern Physics*, Addison-Wesley, San Francisco, 2012.
- [2] Al Hwaitat et Al, Journal of Experimental & Theoretical Artificial Intelligence, 2022, 34, 749-780