- 1) Durch x²+y²=1 wird ein Kreis mit Mittelpunkt im Koordinatenursprung und Radius 1 beschrieben. Lässt sich der Kreis durch eine Funktion f: D→W, y = f(x) darstellen? Begründung!
- 2) Laden Sie sich von <u>www.mathe-online.at</u> den **Excel-Plotter** herunter. (→Extras→Makros→Sicherheit **niedrig**, Plotter schließen und neu starten.)

Experimentieren Sie mit $y = f(x) = a \cdot (x-b)^2 + c$ und halten Sie das Ergebnis fest.

Was passiert, wenn Sie c verändern.

b verändern

a verändern?

Experimentieren Sie mit $y = 2^{a \cdot x}$. Vergleichen Sie insbesondere $y = f(x) = 2^{x}$ und $y = f(-x) = 2^{-x}$.

3) Bestimmen Sie für $\underline{y=f(x)=2x+10}$ $f(x_1+x_2)$ und vergleichen Sie mit $f(x_1)+f(x_2)$. Ist die Abbildung linear?

4) $u(t) = \begin{cases} 0 & \text{für } t < a \\ U_0 & \text{für } t \ge a \end{cases}$, wobei a>0. Beschreiben Sie u(t) mit Hilfe der Sprungfunktion $\epsilon(t)$. (Skizze)

Bestimmen Sie den Gleichstromwiderstand und den differenziellen Widerstand r_{d} anhand der Zeichnung für I=2.5~A.

6) Skizzieren Sie zum Funktionsgraphen aus Aufgabe 5) die Ableitungsfunktion $r_d = r_d$ (I)! Bestimmen Sie dazu näherungsweise die Werte der Ableitung für I = 0, 0.5, 1.0, ..., 3.0 A.

7) Berechnen Sie die Ableitung von $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \frac{1}{x}$, über die Definition als Grenzwert.

8) Berechnen Sie die Ableitung nach t:

a)
$$y(t) = 2t^{\frac{3}{4}} + \frac{1}{\sqrt{t}}$$

b)
$$u(t) = 2 \frac{V}{s} t + 4V$$

9) Differenzieren Sie:

a)
$$y = (6x + 1)^5$$

b)
$$y = \sqrt{x} (x+3)^4$$

c)
$$y = \frac{1}{2x-1}$$

1) nein, 2 y-Werte zu einem x 3) Die Abbildung ist nicht linear. 4) $u(t) = U_0 \, \epsilon \, (t-a)$ 5) $0.38 \, \Omega$, $r_d \approx 0.2 \, \Omega$ 7) $-1/x^2$

8) a)
$$y'(t) = \frac{3}{2} t^{-\frac{1}{4}} - \frac{1}{2} t^{-\frac{3}{2}}$$
 b) $u'(t) = 2 \text{ V/ s}$

9) a) 30
$$(6x+1)^4$$
 b) $\frac{1}{2\sqrt{x}}(x+3)^4 + \sqrt{x} \cdot 4(x+3)^3$ c) $\frac{-2}{(2x-1)^2}$