

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS MAIN CAMPUS

FIRST SEMESTER 2019/2020 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN COMPUTER SCIENCE

COMP 214: DATA STRUCTURES

STREAM: Y2S1 TIME: 11:00-1:00PM

EXAMINATION SESSION: DEC DATE: 5/12/ 2019

VENUE: AUDITORIUM COPIES: 35

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question 1 and any other two questions in the answer booklet provided.
- 2. Do not write on your question papers. All rough work should be done in your answer booklet.
- 3. Clearly indicate which question you are answering.
- 4. Write neatly and legibly.
- 5. Edit your work for language and grammar errors.
- 6. Follow all the instructions in the answer booklet

QUESTION ONE (30 marks)

a)	State any two	primitive data stru	ctures and any ty	wo abstract data s	structures (2mks)
α,	Diate all , the	printing of data bura	cuitos una un , cr	Wo abbilact data i	on actares (

- b) Explain any two applications of stack (2mks)
- c) Demonstrate how you define a queue structure in C (2mks)
- d) What is complexity analysis? Give two forms of complexity analysis with examples.

(5mks)

- e) What is the advantage of circular doubly linked lists over other linked lists (2mks)
- f) Write a C function that expresses recursive computation of a factorial of a number n

(3mks)

- g) Explain depth first order in binary tree (3mks)
- h) Write a small code to define stack as a structure in C programming language (3mks)
- i) If the index position of the rear and the front of the queue are 0 and -1 respectively, how many elements are there in that queue? (4mks)
- j) Explain the characteristics of good hash function? (2mks)
- k) What are the two parameters specified when pushing an item into the stack (2mks)

QUESTION TWO (20 marks)

- a) Data structures can be classified on the basis of different characteristics. Explain any four characteristics with example in each. (4mks)
- b) Write an algorithm for push operation in stack data structure (3mks)
- c) Explain the syntax of declaration and assignment of values in a two dimensional array.

(2mks)

- d) Draw any directed graph of five nodes. Demonstrate how to represent it using adjacency matrix (5mks)
- e) Why is a stack considered as restricted data structure (2mks)
- f) Compute the postfix and prefix of the following expressions; A+B*(D-F) (4mks)

QUESTION THREE (20 marks)

- a) Every Algorithm must satisfy the different properties. Explain five of those properties (5mks)
- b) What is recursion? Write the procedure of executing the minimal number for the tower of Hanoi having any number of disks (5mks)
- c) Show how a sequence of enqueing and dequeing represented by a linear array can cause overflow to occur upon an attempt to insert an element into an empty queue (5mks)
- d) Draw a perfect binary search tree with seven nodes and demonstrate how to search for one of the leaf nodes (5mks)

QUESTION FOUR (20 marks)

- a) Give any two scenarios where queue structure can be used in computing (2mks)
- b) Why do we consider an array elements as 'similar' and 'finite' (2mks)
- c) Explain how test stack overflow and stack underflow in C (4mks)
- d) What are the advantages of linked lists over arrays (2mks)
- e) Why is fibonnacci series considered a recursive function? (2mks)
- f) A company contains 10 employees each having a unique 5 digit number. Demonstrate how hashing can be used to represent these employees uniquely using two digit numbers (5mks)
- g) What is the value of the postfix expression 6.3.2.4 + -* (3mks)

QUESTION FIVE (20 marks)

a)	State any three parameters used in measurement of time complexity	(3mks)			
b)	Explain any three features of a circular queue	(3mks)			
c)	Explain using an example of any algorithm the best, worst and average case analysis of				
	an algorithm	(3mks)			
d)	Describe binary tree and the three of its traversal methods.	(4mks)			
e)	What is the effect of omitting a termination condition in a recursive method	(2mks)			
f)	Write a code in C to declare the following elements into one dimensional array ar	ıd show			
	their respective index positions; Abc, Bcd, Cdf, Def, Fgh	(5mks			