Parallel A* search algorithm Group 1

0716045 彭敘溶 0716067 何昱奇 07162 1 1 陳煜盛

Outline

- ☐ A* search algorithm
- Experimental Setup
- Centralized Parallel A*
- Analyzing CPA
- Decentralized Parallel A*

A* search algorithm

- Informed search algorithm
- Best first search
- Evaluation : f(n) = g(n) + h(n)
- g(n): cost function, the actual cost from start node to node n
- h(n): heuristic function
 - admissible => never overestimate
 - ex : In shortest path problem => stright line distance

A* search algorithm (Cont.)

Experimental Setup

- Graph / Map Construction
 - Real road data from Hsinchu using
 OpenStreetMap
- Heuristic
 - The straight distance between each node and the target node

- node
 - · ID
 - g
 - h
 - previous
 - open
 - closed
 - Lock

- edge
 - start
 - end
 - distance

- Lock
 - Lock1 (OPEN/CLOSED)
 - Lock2(Incumbent cost)
 - Node Set
 - OPEN
 - CLOSED

Centralized Parallel A* – An example

- edge distance
- heuristic

incumbent_cost = [∞]

incumbent_cost = ∞

incumbent_cost = ∞

incumbent_cost = ∞

incumbent_cost = [∞]

OPEN

incumbent_cost = [∞]

Node 1,2,3 Ambiguous But no problem => finally closed

node 7 is dangerous. lock it for safety.

5

OPEN

_____ Lock1

Lock1

incumbent_cost = ∞

finding best

found

waitwaitwaitwaitthread 0thread 1thread 2thread 3

incumbent_cost = ∞

Lock2

incumbent_cost = 14

Lock2

6

OPEN

Lock 1

incumbent_cost = 14

OPEN 6 7

finding best

6

OPEN

found

Lock2

Lock2

Lock1

incumbent_cost = 11

finding best

OPEN

found

wait wait wait wait thread 0 thread 1 thread 2 thread 3

found

OPEN

found

OPEN

7

OPEN

7

OPEN

7

None OPEN CLOSED

- Case 1

g1' < g1 g2' < g2

- Case 2


```
Algorithm 2: Simple Parallel A* (SPA*)
                      1 Initialize OPEN_{shared} to \{s_0\};
                       2 Initialize Lock l_0, l_i;
                       3 Initialize incumbent.cost = \infty;
                       4 In parallel, on each thread, execute 5-32;
                       5 while TerminateDetection() do
                            if OPEN_{shared} = \emptyset or Smallest f(n) value of n \in OPEN_{shared} \ge incumbent.cost then
                       7
                             AcquireLock(l_o);
                            Get and remove from OPEN_{shared} a node n with a smallest f(n);
                            ReleaseLock(l_o);
                             Add n to CLOSED_{shared};
                      11
                            if n is a goal node then
                      12
                      13
                                AcquireLock(l_i):
                                if path cost from s_0 to n < incumbent.cost then
                                   incumbent = path from s_0 to n;
                      15
                                   incumbent.cost = path cost from s_0 to n;
                      16
                                ReleaseLock(l_i);
                            for every successor n' of n do
    Lock —
                                q_1 = q(n) + c(n, n');
                                if n' \in CLOSED_{shared} then
                                   if g_1 < g(n') then
                      21
                                       Remove n' from CLOSED_{shared} and add it to OPEN_{shared};
                      22
                                    else
                      23
                                       Continue;
                      24
                      25
                                   if n' \notin OPEN_{shared} then
                      26
                                       Add n' to OPENshared :
                      27
                                    else if g_1 \geq g(n') then
                      28
                                       Continue;
                                Set q(n') = q_1;
                                Set f(n') = g(n') + h(n');
                                Set parent(n') = n;
Unlock -
                      33 if incumbent.cost = \infty then
                            Return failure (no path exists);
                      35 else
                            Return solution path from s_0 to n;
```

- Result

Enviroment : Macbook Pro 2019 CPU : i5- 8257U 4	FR 4" BU UN TO TO TO UNITED BUT TO SEE THE SECOND S		
Number of thread	Total execution time	A* algorithm time	visited node
1	11.433	10.347	7074
2	5.896	5.252	7080
3	4.228	3.516	7093
4	3.399	2.747	7104
5	2.928	2.496	7118
6	2.804	2.179	7130
7	2.579	2.103	7135
8	2.472	2.077	7137
9	2.601	2.088	7140
10	2.484	1.966	7147
11	2.555	1.987	7151

$$S_{ ext{latency}}(s) = rac{1}{(1-p) + rac{p}{s}}$$

- Amdahl's law
 - **p**: The proportion of parallelizable region.
 - **1 p**: The proportion of non-parallelizable region.
 - s = 8: Number of threads.
 - $S_{
 m latency}(s)=$ **4.98** : speed up

Number of thread	Total execution time	A* algorithm time
1	11.433	10.347
		4.98x

2.472

2.077

- => p = 0.91
- Cost a lot when finding neighbor.

- When finding neighbors.
 - Search edges table to get neighbors' ID.
 - Search nodes table to get neighbor 1's g, h, open, closed ...
 - Search nodes table to get neighbor 2's g, h, open, closed ...
 - Search nodes table to get neighbor 3's g, h, open, closed ...
 - ...

nodes table

ID	g	h	••••
14567			
14576			
14588			
14590			

edges table

- 4 4		
start	end	
14576	14590	
	\sim	
14576	(14567	
14576	14588	

- Solution : Use Index

Centralized parallel A* with new structure

Number of thread	Total execution time	A* algorithm time	Visited node
1	1.123	0.458	7074
2	1.079	0.394	7075
3	1.002	0.347	7075
4	1.002	0.325	7074
5	0.989	0.315	7075
6	1.043	0.366	7075
7	1.025	0.359	7076
8	1.105	0.428	7075
9	2.601	2.088	7077
10	2.484	1.966	7077
11	2.555	1.987	7078

Intel i5 8257U is 4 Core 8 Thread

- Each thread has their own OPEN, CLOSED, and BUFFER set
- Faster than CPA
- Constraint: The Graph must not be bidirectional
 - Real world map is bidirectional
 - Oscillating between two nodes

References

[1] Alex Fukunaga, Adi Botea, Yuu Jinnai, and Akihiro Kishimoto, "A Survey of Parallel A*"

[2] Ariana Weinstock and Rachel Holladay, "Parallel A* Graph Search"