t-value and student's t-test

by Alex Dance

Comparing the yield of 2 fields with a mean is easy but it doesn't tell us much

	Field 1	Field 2	Difference
Mean of Yield	15.38	15.68	2%

Steps in going through a t-value and t-test

For our particular sample we don't know if the spread is large or not

The greater the t-value THEN

the more likely it is that your data are significantly separated

The greater the difference in means the greater the numerator and the greater the t-value

t-value=
$$\frac{\overline{\overline{x}1} - \overline{x}2}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

The greater the standard deviation the greater the denominator and the smaller the t-value

The greater the t-value THEN

the more likely it is that your data are significantly separated

	Large	Small
Means variation	Larger t-value	Smaller t-value
Standard deviation	Smaller t-value	Larger t-value
Number of units	Larger t-value	Smaller t-value

Plugging the numbers into a formula is relatively easy and highlights the differences

		_	
	Field 1	Field 2	Difference
Mean	15.38	15.68	2%
StDev	0.31	0.41	32%
Variance (std dev squared)	0.097	0.165	70%
number	16	16	

t-value=
$$\frac{\overline{x1} - \overline{x2}}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

$$\sqrt{\frac{.097}{16} + 0.165/16}$$

t-value =
$$0.3 / 0.13 = 2.3$$

Our hypothesis is based on the t-value being above or below a critical value in student t-test

If t-value is **below** a Critical Value we do NOT reject the null Hypothesis VS

If t-value is **above** a Critical Value we DO reject the null Hypothesis and therefore accept the Alternate Hypothesis

t-value = 2.3

H0 (Null Hypothesis)
There is
NO

statistically significant

difference between the samples

H1 (Alternate Hypothesis)

Reject and therefore (opposite)

IS A

statistically significant

difference between the samples

Plug into a 2-sided t-table for a student's test

df or degrees of freedom = n1 + n2 -2 =16 + 16 -2 =30

cum. prob one-tail two-tails	t _{.50} 0.50 1.00	0.25 0.50	t _{.80} 0.20 0.40	t _{.85} 0.15 0.30	t _{.90} 0.10 0.20	t _{.95} 0.05 0.10	t.975 0.025 0.05	t _{.99} 0.01 0.02	t.995 0.005 0.01	t _{.999} 0.001 0.002	t .9995 0.0005 0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
00	0.000	0.070	0.040	4.045	4.000	4.074	0.000	0.000	0.000	0.000	0.400
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
		111111			Confid	dence L	evel				111-80

Our hypothesis is based on the t-value being above or below a critical value

t-value =2.3

At 5%

Table gives 2.04 at 5%

At 5 % means the corollary. 100% - 5% = 95% Therefore 95% sure If t-value is **below** a Critical Value we do NOT reject the null Hypothesis

If t-value is **above** a Critical Value we DO reject the null Hypothesis and therefore

accept the Alternate Hypothesis

t-value = 2.3

At 1%

table 3.64 at 1%

H0 (Null Hypothesis)
There is
NO

statistically significant

difference between the samples

H1 (Alternate Hypothesis)

Reject and therefore (opposite)

IS A

statistically significant

difference between the samples

This was an unpaired, 2-sided, independent test, which means we are testing independent fields

Alternative is paired samples which is used if sampling the same population twice.

Number of criteria for running a t-test

- Normal distributions in both samples
- Similar variance
- Roughly the same number of data points
- Generally under 30 data points

Most tests are 2-sided

- Select the one-tailed test when the consequences of missing an effect are negligible
- When using a one-tailed test, you are testing for the possibility of the relationship in one direction and completely disregarding the possibility of a relationship in the other direction.
- Choosing a one-tailed test for the sole purpose of attaining significance is not appropriate.
- Imagine you have developed a new drug that you believe is an improvement over an existing drug. You wish to maximize your ability to detect the improvement, so you opt for a one-tailed test. In doing so, you fail to test for the possibility that the new drug is less effective than the existing drug. The consequences in this example are extreme, but they illustrate a danger of inappropriate use of a one-tailed test.

Drink Guinness when doing a t-test

THE PROBABLE ERROR OF A MEAN

BY STUDENT

Introduction

Any experiment may he regarded as forming an individual of a "populatic

Python code

help (ttest_rel)

Notes ---- Examples for use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the pvalue is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics.

Powerpoint Tip

Excel Tip

Type 2 is independent

2 tails

This is just 1 of many tests – only some tests listed below

Parametric Statistical Hypothesis Tests

Student's t-test

Paired Student's t-test

Analysis of Variance Test (ANOVA)

Repeated Measures ANOVA Test

Nonparametric Statistical Hypothesis Tests

Mann-Whitney U Test

Wilcoxon Signed-Rank Test

Kruskal-Wallis H Test

Friedman Test

Normality Tests

Shapiro-Wilk Test

D'Agostino's K^2 Test

Anderson-Darling Test

Correlation Tests

Pearson's Correlation Coefficient

Spearman's Rank Correlation

Kendall's Rank Correlation

Chi-Squared Test

Stationary Tests

Augmented Dickey-Fuller

Kwiatkowski-Phillips-Schmidt-Shin

Thanks

Alex Dance

Background

- Maths / statistics degree
- Background in big data, strategy, analytics
- Worked at Optus, Salmat, Reuters, Pathfinder Solutions

Copy of This Presentation and code

https://github.com/alexdance2468/

Plus other data science projects completed

Contact Details

www.linkedin.com/in/alex-dance/

Thanks

Sources:

https://www.youtube.com/watch?v=pTmLQvMM-1M

https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/

https://en.wikipedia.org/wiki/Student%27s t-test