AAG06

Fazer os testes usando os dados apresentados no exemplo 03

Análise da Lei de Amdahl

Analise da Lei de Amdahl para operações de I/O em sistemas de computação, que estabelece que a taxa de I/O é proporcional à velocidade do processador.

1. Importação das bibliotecas necessárias

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from scipy import stats
```

2. Preparação dos dados

```
In [2]: # Criando o DataFrame com os dados do exemplo
data = {
    'sistema': range(1, 11),
    'mips': [19.63, 5.45, 2.63, 8.24, 14.00, 9.87, 11.27, 10.13, 1.01, 1.26],
    'io_rate': [288.6, 117.3, 64.6, 356.4, 373.2, 281.1, 149.6, 120.6, 31.1, 23.7]
}

df = pd.DataFrame(data)

print("Dados originais:")
display(df)

print("\nEstatisticas descritivas:")
display(df.describe())
```

Dados originais:

	sistema	mips	io_rate
0	1	19.63	288.6
1	2	5.45	117.3
2	3	2.63	64.6
3	4	8.24	356.4
4	5	14.00	373.2
5	6	9.87	281.1
6	7	11.27	149.6
7	8	10.13	120.6
8	9	1.01	31.1
9	10	1.26	23.7

Estatísticas descritivas:

	sistema	mips	io_rate
count	10.00000	10.000000	10.000000
mean	5.50000	8.349000	180.620000
std	3.02765	5.948392	132.814154
min	1.00000	1.010000	23.700000
25%	3.25000	3.335000	77.775000
50%	5.50000	9.055000	135.100000
75%	7.75000	10.985000	286.725000
max	10.00000	19.630000	373.200000

3. Análise Exploratória

```
In [3]: # Visualização da relação entre MIPS e IO Rate
plt.figure(figsize=(10, 6))
plt.scatter(df['mips'], df['io_rate'])
plt.xlabel('MIPS Rate')
plt.ylabel('I/O Rate')
plt.title('Relação entre MIPS Rate e I/O Rate')
plt.grid(True)
plt.show()
```


4. Transformação Logarítmica

Vamos aplicar a transformação logarítmica para linearizar o modelo:

```
I/O rate = \alpha(MIPS rate)^b
```

```
log(I/O rate) = log(\alpha) + b*log(MIPS rate)
```

```
In [4]: # Aplicando transformação logarítmica
df['log_mips'] = np.log(df['mips'])
df['log_io'] = np.log(df['io_rate'])

# Visualizando os dados transformados
plt.figure(figsize=(10, 6))
plt.scatter(df['log_mips'], df['log_io'])
plt.xlabel('log(MIPS Rate)')
plt.ylabel('log(I/O Rate)')
plt.title('Relação entre log(MIPS) e log(I/O Rate)')
plt.grid(True)
plt.show()
```


5. Regressão Linear nos Dados Transformados

```
In [5]:
        # Preparando dados para regressão
         X = df['log_mips'].values.reshape(-1, 1)
         y = df['log_io'].values
         # Ajustando o modelo
         model = LinearRegression()
         model.fit(X, y)
         # Calculando as previsões e resíduos
         y_pred = model.predict(X)
         residuals = y - y_pred
         # Calculando R<sup>2</sup>
         r2 = model.score(X, y)
         print("Resultados da Regressão:")
         print(f"R^2 = \{r2:.4f\}")
         print(f"Intercepto (log \alpha) = \{model.intercept_:.4f\}")
         print(f"Coeficiente (b) = {model.coef_[0]:.4f}")
```

```
# Calculando os parâmetros originais
alpha = np.exp(model.intercept_)
b = model.coef_[0]
print(f"\nParâmetros no modelo original (I/O rate = α(MIPS rate)^b):")
print(f"α = {alpha:.4f}")
print(f"b = {b:.4f}")

Resultados da Regressão:
R² = 0.8430
Intercepto (log α) = 3.2763
Coeficiente (b) = 0.8878

Parâmetros no modelo original (I/O rate = α(MIPS rate)^b):
α = 26.4785
b = 0.8878
```

6. Análise dos Resíduos

```
# Gráficos para análise dos resíduos
In [6]:
        plt.figure(figsize=(12, 5))
        # Resíduos vs valores ajustados
        plt.subplot(121)
        plt.scatter(y_pred, residuals)
        plt.axhline(y=0, color='r', linestyle='-')
        plt.xlabel('Valores Ajustados')
        plt.ylabel('Residuos')
        plt.title('Resíduos vs Valores Ajustados')
        # Q-Q plot
        plt.subplot(122)
        stats.probplot(residuals, dist="norm", plot=plt)
        plt.title('Q-Q Plot dos Resíduos')
        plt.tight_layout()
        plt.show()
```


7. Análise de Variância e Testes de Hipótese

```
In [7]: # Cálculo das estatísticas para testes de hipótese
n = len(df)
p = 1 # uma variável independente

# Erro padrão dos coeficientes
mse = np.sum(residuals**2) / (n-p-1)
se = np.sqrt(mse)
```

```
# Intervalo de confiança para b (90%)
 t_stat = stats.t.ppf(0.95, df=n-p-1)
 b_ci = [b - t_stat*se, b + t_stat*se]
 print("Análise Inferencial:")
 print(f"Erro padrão dos resíduos = {se:.4f}")
 print(f"Intervalo de confiança 90% para b: [{b_ci[0]:.4f}, {b_ci[1]:.4f}]")
 # Teste F
 SS_{reg} = np.sum((y_{pred} - np.mean(y))**2)
 SS_res = np.sum(residuals**2)
 F_stat = (SS_reg/p)/(SS_res/(n-p-1))
 f_critical = stats.f.ppf(q=0.95, dfn=p, dfd=n-p-1)
 print("\nTeste F:")
 print(f"F calculado = {F_stat:.4f}")
 print(f"F crítico (95%) = {f_critical:.4f}")
Análise Inferencial:
Erro padrão dos resíduos = 0.4161
Intervalo de confiança 90% para b: [0.1140, 1.6615]
Teste F:
F calculado = 42.9570
```

Conclusões

F crítico (95%) = 5.3177

1. Transformação dos Dados:

- A transformação logarítmica linearizou adequadamente a relação entre as variáveis
- O modelo log-log obtido tem boa qualidade de ajuste

2. Ajuste do Modelo:

- $R^2 = 0.84$, indicando bom ajuste do modelo
- O expoente b = 0.888 está próximo de 1
- O intervalo de confiança para b inclui 1, sugerindo relação linear

3. Validação da Lei de Amdahl:

- O intervalo de confiança para b contém 1
- Isso suporta a hipótese de proporcionalidade entre I/O rate e MIPS rate
- Portanto, os dados são consistentes com a Lei de Amdahl

4. Diagnósticos:

- Resíduos mostram padrão aleatório
- Q-Q plot indica boa adequação à normalidade
- Teste F confirma a significância do modelo