MAT426: Advanced Calculus

Miraj Samarakkody

Tougaloo College

03/25/2025

2.35 Theorem

Theorem

Closed subset of compact sets are compact.

Corollary

Corollary

If F is closed and K is compact, then $F \cap K$ is compact.

2.36 Theorem

Theorem

If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is non-empty, then $\cap K_{\alpha}$ is non-empty.

Corollary

Corollary

If $\{K_n\}$ is a sequence of non-empty compact sets such that $K_n \supset K_{n+1}$, $(n=1,2,3,\dots)$, then $\bigcap_{n=1}^{\infty} K_n$ is not empty.

2.37 Theorem

Theorem

If E is an infinite subset of a compact set K, then E has a limit point in K.

2.38 Theorem

Theorem

If $\{I_n\}$ is a sequence of intervals in \mathbb{R}^1 , such that $I_n \supset I_{n+1}$ $(n=1,2,3,\ldots)$, then $\bigcap_{n=1}^{\infty}I_n$ is not empty.

2.39 Theorem

Theorem

Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_{n+1}$ $(n=1,2,3,\ldots)$, then $\bigcap_{i=1}^{\infty} I_n$ is not empty.

Theorem

Theorem

Every k—cell is compact.