Statsmodels

최필주

- 널리 사용되는 데이터 분석용 패키지 중 하나
- 주로 활용되는 기능
 - 회귀분석(regression analysis)
 - 시계열분석(time-series analysis)
- Statsmodels의 특징
 - R을 이용한 통계 분석 및 시계열 분석을 파이썬에도 제공
 - R에서 사용하는 formular와 데이터셋 제공

Statsmodels 기본 다루기

- Statsmodels 설치하기
 - pip 사용

```
pip install -U statsmodels
```

Anaconda 사용

```
conda instrall –c conda-forge statsmodels
```

● Import하기

```
import statsmodels.api as sm
```

- Statsmodels에서 제공되는 데이터셋 가져오기
 - sm.datasets.*item*.load_pandas() 함수 사용
 - DataFrame 접근 형태

```
df = sm.datasets.item.load_pandas().data
```

sm.dataset?? 확인해보기

예시 – 심장 이식 수술 결과 데이터

■ 데이터 정보

```
In [1]: import statsmodels.api as sm
        heart_data = sm.datasets.heart
        print(heart_data.SOURCE)
        print(heart_data.DESCRLONG)
        print(heart_data.NOTE)
         Miller, R. (1976). Least squares regression with censored dara. Biometrica, 63 (3).
        449-464.
        This data contains the survival time after receiving a heart transplant, the age of t
        he patient and whether or not the survival time was censored.
        ::
            Number of Observations - 69
            Number of Variables - 3
            Variable name definitions::
                death - Days after surgery until death
                age - age at the time of surgery
                censored - indicates if an observation is censored. 1 is uncensored
```

- 예시 심장 이식 수술 결과 데이터
 - 데이터

```
In [2]: df = heart_data.load_pandas().data
    df.tail()
```

Out [2]:

	survival	censors	age
64	14.0	1.0	40.3
65	167.0	0.0	26.7
66	110.0	0.0	23.7
67	13.0	0.0	28.9
68	1.0	0.0	35.2

- R에서 제공되는 데이터셋 가져오기
 - sm.datasets.get_rdataset('*item*', package = '*package*') 함수
 - 목록
 - http://vincentarelbundock.github.io/Rdatasets/datasets.html
 - DataFrame 접근 형태

```
data = sm.datasets.get_rdataset('item', package = 'package')

df = data.data
```

- 예시1 타이타닉 데이터
 - 데이터 가져오기

```
In [1]: import statsmodels.api as sm
  data = sm.datasets.get_rdataset("Titanic", package="datasets")
  df = data.data
  df.tail()
```

Out [1]:

	Class	Sex	Age	Survived	Freq
27	Crew	Male	Adult	Yes	192
28	1st	Female	Adult	Yes	140
29	2nd	Female	Adult	Yes	80
30	3rd	Female	Adult	Yes	76
31	Crew	Female	Adult	Yes	20

■ 설명을 보고 싶을 경우: __doc__ 참조

```
In [2]: print(|data.__doc__[:1005])
```

- ◉ 예시2 MASS 패키지의 deaths 데이터 가져오기
 - 데이터 가져오기

```
In [2]: data = sm.datasets.get_rdataset("deaths", "MASS")

df = data.data
df.tail()

Out [2]:

time value

67 1979.583333 1354
```

```
      67 1979.583333
      1354

      68 1979.666667
      1333

      69 1979.750000
      1492

      70 1979.833333
      1781

      71 1979.916667
      1915

      1979.5833333
      1781

      71 1979.916667
      1915
```

■ 데이터 설명 확인해보기

- 예시2 MASS 패키지의 deaths 데이터 가져오기
 - 시간 정보 데이터 시각화해서 확인해보기 자료형 바꾸기

```
In [3]:
    def yearfraction2datetime(yearfraction, startyear=0):
        import datetime
        import dateutil
        year = int(yearfraction) + startyear
        month = int(round(12 * (yearfraction - year)))
        delta = dateutil.relativedelta.relativedelta(months=month)
        date = datetime.datetime(year, 1, 1) + delta
        return date

df["datetime"] = df.time.map(yearfraction2datetime)
        df.tail()
```

Out [3]:

	time	value	datetime
67	1979.583333	1354	1979-08-01
68	<u>1979.666667</u>	1333	1979-09-01
69	<u>1979.750000</u>	1492	1979-10-01
70	<u>1979.833333</u>	1781	1979-11-01
71	<u>1979.916667</u>	1915	1979-12-01

- 예시2 MASS 패키지의 deaths 데이터 가져오기
 - 시간 정보 데이터 시각화해서 확인해보기 시각화

```
In [5]: import matplotlib.pyplot as plt
%matplotlib inline
df.plot(x="datetime", y="value")
plt.title(data.title)
plt.show()
```


Statsmodels를 이용한 회귀분석

- Statsmodels을 이용한 선형 회귀분석
 - OLS를 이용한 선형 회귀 분석 수행
 - OLS(Ordinary Least Square): 가장 기본적인 선형 회귀 방법, 잔차제곱합(RSS, Residual Sum of Squares)가 최소값을 갖도록 함

• 실습

- 실습1: Statesmodels에서 제공되는 유방암 데이터 사용
- 실습2: R 데이터 셋에서 제공되는 타이타닉 생존자 데이터 사용
- 실습3: Statesmodels에서 제공되는 심장 이식 수술 데이터 사용

- 데이터 가져오기
 - 데이터 정보 확인

```
In [1]: import statsmodels.api as sm
    cancer_data = sm.datasets.cancer
    print(cancer_data.SOURCE)
    print(cancer_data.DESCRLONG)
    print(cancer_data.NOTE)
```

This is the breast cancer data used in Owen's empirical likelihood. It is taken from Rice, J.A. Mathematical Statistics and Data Analysis.

http://www.cengage.com/statistics/discipline_content/dataLibrary.html

The number of breast cancer observances in various counties ::

Number of observations: 301 Number of variables: 2 Variable name definitions:

cancer - The number of breast cancer observances population - The population of the county

- 데이터 가져오기
 - X, Y에 데이터 저장하기 DataFrame 사용

```
In [2]: df = cancer_data.load_pandas().data
    df.tail()
```

Out [2]:

	cancer	population
296	250.0	62931.0
297	267.0	63476.0
298	244.0	66676.0
299	248.0	74005.0
300	360.0	88456.0

```
In [3]: X = df.population
Y = df.cancer
```

- 데이터 가져오기
 - X, Y에 데이터 저장하기 각각 가져오기

```
In [4]: data = cancer_data.load()
    print(data.exog_name, data.endog_name)
    X = cancer_data.load().exog
    Y = cancer_data.load().endog
```

```
['population'] cancer
```

- endog (endogenous): 종속변수(y)를 의미
- exog (exogenous): 독립변수(x)를 의미

- 데이터 가져오기
 - X, Y에 데이터 저장하기 각각 가져오기

```
In [4]: data = cancer_data.load()
    print(data.exog_name, data.endog_name)
    X = cancer_data.load().exog
    Y = cancer_data.load().endog
```

['population'] cancer

- endog (endogenous): 종속변수(y)를 의미
- exog (exogenous): 독립변수(x)를 의미

- 데이터 분석하기
 - OLS를 이용한 선형 회귀 분석 R-style formulas

```
In [5]:
       import statsmodels.formula.api as smf
        model = smf.ols('cancer ~ population', data = df)
```

• OLS를 이용한 선형 회귀 분석

```
In [6]: | X = sm.add_constant(X, prepend=False)
        model = sm.OLS(Y, X)
```

• X = sm.add_constant(X, prepend = False) 없이 해보기

◉ 분석 결과

```
In [20]:
          fit = model.fit()
          fit.summary()
Out [20]:
          OLS Regression Results
               Dep. Variable:
                                                   R-squared:
                                                                   0.935
                                      cancer
                     Model:
                                               Adj. R-squared:
                                                                   0.935
                                        OLS
                    Method:
                                Least Squares
                                                    F-statistic:
                                                                   4315.
                      Date: Sun, 04 Aug 2019 Prob (F-statistic): 1.04e-179
                                               Log-Likelihood:
                      Time:
                                     16:55:50
                                                                  -1198.1
           No. Observations:
                                                          AIC:
                                         301
                                                                   2400.
               Df Residuals:
                                                          BIC:
                                                                   2408.
                                         299
                   Df Model:
                                           1
            Covariance Type:
                                    nonrobust
                                                                          각각 확인도 가능
                                             t P>|t| [0.025 0.975]
                         coef
                                std err
           population 0.0036 5.45e-05 65.686
                                                                           In [9]:
                                                                                    fit.pvalues
                const -0.5261
                                        -0.543 0.588 -2.433 1.381
                                                                           Out [9]: array([1.03663835e-179, 5.87649244e-001])
                Omnibus: 67.515
                                    Durbin-Watson:
                                                        1.822
           Prob(Omnibus):
                            0.000 Jarque-Bera (JB): 1431.216
                    Skew:
                            0.040
                                          Prob(JB): 1.64e-311
                                          Cond. No. 2.30e+04
                 Kurtosis: 13.682
```

● 분석 결과의 의미 - 적합모델

■ Dep. variable: 종속변수

Model: 적합모델

■ Method: 파라미터 적합 방법

No. Observations: 사용된 관찰 개수

DF Residuals: 잔차의 자유도

• 관찰 개수에서 파라미터의 수를 뺀 값

Dep. Variable:cancerModel:OLSMethod:Least SquaresDate:Sun, 04 Aug 2019Time:16:55:50No. Observations:301Df Residuals:299Df Model:1

■ DF Model: 모델에서 추정하는 파라미터의 개수(상수항은 제외)

- 분석 결과의 의미 적합 정도
 - 결정계수
 - R-Squared: 분석 결과의 적합도
 - Adj. R-Squared: 파라미터 개수와 관찰 개수에 따라 조정된 값

R-squared:	0.935
Adj. R-squared:	0.935
F-statistic:	4315.
Prob (F-statistic):	1.04e-179
Log-Likelihood:	-1198.1

AIC:

BIC:

2400.

2408.

F-statistic

- 간단히 회귀가 단순평균보다 좋은지를 나타냄
- Prob (F-statistic): 운 좋게 F-statistic에 도달할 확률. 충분히 낮다면 회귀가 단순평균보다 훨씬 더 좋다는 것 확신 가능, 0.05 이하여야 함

■ 모델의 평가

- AIC(Akaike Information Criterion): 관찰 개수와 모델 자체의 복잡성을 기반으로 모델 평가, 낮을 수록 좋음
- BIC(Bayesian Information Criterion): AIC와 유사

- 분석 결과의 의미 적합 정도
 - R-squared의 계산

```
In [32]: import numpy as np
         fitted_values = fit.predict(X)
         mean_sum_squared_errors = np.sum((Y-Y.mean())**2)
         regr_sum_squared_errors = np.sum((Y-fitted_values)**2)
         (mean_sum_squared_errors - regr_sum_squared_errors) / mean_sum_squared_errors
```

Out [32]: 0,9351930401579102

- 분석 결과의 의미 계수 정보
 - coef: 추정계수

	coef	std err	t	P> t	[0.025	0.975]
population	0.0036	5.45e-05	65.686	0.000	0.003	0.004
const	-0.5261	0.969	-0.543	0.588	-2.433	1.381

- std err: 추정계수의 표준오차
 - 클수록 추정계수의 불확실성 증가
- t: 선형관계(관련성)가 존재하는 정도 (노이즈 대비 시그널)
 - 제곱하면 F-statistic 값이 나옴
 - 크다: 표준 편차가 작다 → 독립-종속 변수간 상관도 높음
 - 작다: 표준 편차가 크다 → 관계 낮음
- P > Itl: t에 대한 P value

Omnibus: 67.515

Skew:

Kurtosis: 13.682

0.040

Prob(Omnibus):

1.822

Durbin-Watson:

0.000 Jarque-Bera (JB): 1431.216

Prob(JB): 1.64e-311

Cond. No. 2.30e+04

- 분석 결과의 의미 잔차 분석
 - Skew(비대칭도)
 - 평균 주위 잔차의 대칭 측정값
 - 0일 수록 대칭
 - Kurtosis(첨도)
 - 잔차의 분포 모양
 - 종 모양이면 0, 음수는 평평한 분포, 양수면 뽀족한 분포
 - Omnibus: 비대칭도와 첨도를 결합한 통계 테스트
 - Pro(Omnibus): Omnibus를 확률로 변환한 것
 - Durbin-Watson
 - 잔차 사이의 상관관계 여부. 시간 기반 데이터 분석과 관련있음
 - Jarque-Bera(JB)
 - 비대칭도와 첨도의 또 다른 테스트
 - Cond. No
 - 다중공선성에 대한 테스트. 여러 개의 독립변수를 작업할 때 다룸

● 분석 결과 시각화

```
In [44]: import matplotlib.pyplot as plt
%matplotlib inline
  plt.plot(Y, label = 'Original')
  plt.plot(fitted_values, label = 'Predicted')
  plt.legend()
  plt.show()
```

