PYTHON 编程基础

赋值运算符 比较运算符 和逻辑运算符

赋值运算符

赋值运算要求左操作数对象必须是值可以修改的变量。

运算符	使用方法	功能描述
=	y=x	将x的值赋给变量y
+=	y+=x	等价于y=y+x
-=	y-=x	等价于y=y-x
=	y=x	等价于y=y*x
/=	y/=x	等价于y=y/x
//=	y//=x	等价于y=y//x
%=	y%=x	等价于y=y%x
_	y=x	等价于y=y**x

例如

- 1. i1,i2=10,3 #i1和i2的值分别被赋为10和3
- 2. i1+=i2 #i1的值被改为13
- 3. print(i1) #输出"13"
- 4. c1,c2=3+4.1j,5.2+6.3j #c1和c2的值分别被赋为3+4.1j和5.2+6.3j
- 5. c1-=c2 #c1的值被改为-2.2-2.2j
- 6. print(c1) #输出 "-2.2-2.2j"
- 7. f1,f2=3.2,1.5 #f1和f2的值分别被赋为3.2和1.5
- 8. f1*=f2 #f1的值被改为4.8
- 9. print(f1) #输出 "4.8"
- 10. i1,f1=3,0.5 #i1和f1的值分别被赋为3和0.5
- 11. i1**=f1 #i1的值被改为1.7320508075688772 (即3的0.5次幂)
- 12. print(i1) #输出 "1.7320508075688772"

比较运算符

比较运算的作用是对两个操作数对象的大小关系进行判断。

	运算符	使用方法	功能描述
	== (等于)	y==x	如果y和x相等,则返回True;
			否则,返回False
	!= (不等于)	y!=x	如果y和x不相等,则返回
			True; 否则,返回False
	> (大于)	y>x	如果y大于x,则返回True;
			否则,返回False
	< (小于)	y <x< td=""><td>如果y小于x,则返回True;</td></x<>	如果y小于x,则返回True;
			否则,返回False
	>= (大于等于)	y>=x	如果y大于或等于x,则返回
			True; 否则,返回False
	<= (小于等于)	y<=x	如果y小于或等于x,则返回
			True; 否则,返回False

例如

1. i1,i2,i3=25,35,25 #i1、i2和i3分别被 赋为25、35和25

- 2. print(i1==i2) #输出 "False"
- 3. print(i1!=i2) #輸出 "True"
- 4. print(i1>i3) #輸出 "False"
- 5. print(i1<i2) #輸出 "True"
- 6. print(i1>=i3) #输出 "True"
- 7. print(i1<=i2) #输出 "True"

提示

比较运算返回的结果是布尔 值True或False。在执行程序 时,程序中的每条语句并不 一定是按顺序依次执行。比 较运算的主要作用是设置条 件,某些语句在满足条件时 才会执行一次(即条件语 句) , 而某些语句在满足条 件时会重复执行多次(即循 环语句)。

逻辑运算符

逻辑运算可以将多个比较运算连接起来形成更复杂的条件判断。

运算符	使用方法	功能描述
and	x and y	如果x和y都为Ture,则返回True;否则,返回Flase
or	x or y	如果x和y都为False,则返回False;否则,返回True
not	not x	如果x为True,则返回False; 如果x为False, 返回True

例如:

- 1. n=80, a=100
- 2. print(n>=0 and n<=a) #输出 "True" , 判断n是否大于等于0且小于等于a
- 3. print(n<0 or n>a) #输出 "False" , 判断n是否小于0或大于a
- 4. print(not(n>=0 and n<=a)) #輸出 "False"