处即箱:004

天津大学物理实验报告

实验题目:起苏北州①

一、实验目的

1.3解就效应的原理及超影栅的形成机制和特点。

2.利用光州超声测量原理测超声被速度。

二实验仪器

数字显示高频信号源,压电陶器片,液槽,平行光管,阿贝式准直望

运镜,测微目镜,高压取灯。

压电陶瓷片(PZT)在高级功率信号源(频率约10MHZ)交变电场作用,发生期期性的压缩和伸长,这种高频振动在介质中的传播就是起声被,信号源是一个晶体管自激振荡器。PZT片与可变电容器并联构成LC振荡回路的电容部分,电感上是一个螺旋线圈,通过晶体管的正反缓电路的作用,能够到生和维持等中幅振荡,调整面板上的电容器可以改变振荡频率。

三、实验原理

天津大学物理实验报告

天津大学物理实验报告

机械学院 ≥01 年级 机棒 专业 4 班 姓名王祥 成绩
实验日期: 学号到20174 同组实验者
实验题目:起声光##─❷
超声的实验光路如48-3所示,实际上因少角很小,可以认为
singx= Lx/f (48-2)
其中,1水为光州省分别零负至第水外光谱的图面,十分整线的信息。14,所
超声波设长为:
1= kx/son gk = kxf/lk (48-3)
超声波在液体中传播的速度
(- 50.4) (119-11)
式中、以是高级功率信号源方压电阳瓷的井板级车。
回、实验均聚 1. 仪器调节
心参照,实验36"分光计的调节与使用"调节望远镜与平行光管
山冬熙图48-3的光路图,将蓝有酒精及压由陶瓷片的液林等置于载物台
上,并将望远镜的阿贝目镜更换成别微目镜,调节目镜,使其分别极及
灯光管的狭缝像竖直清晰且消除视差。
13 格丘电陶瓷片链接子高较信号上,仔细调节较率和被槽方位。应
目镜视界中也现在方域你而清晰的三级沿着北海。
2 测导 洒楼中的声味
17用测微目镜,依灰测出意天光谱中蓝,绿、黄松二点灯郁分分
以记录信号摘的频率和实验室给出的连锁供证及汞光谱各谱
线波长值。根据为(48-3)、式(48-4)计算超声波在栖精中的声声,并分以
值(1168m/s)比较。
3、现一里在写声被在水中台游速
心幽竹压电陶瓷片电源,用吹风机吹干陶瓷片。
12)更换水水费,用上水湖雪栗水湖出起声波在水中的声速。

天津大学 机械学院加了 在加 机街

天津大学物理实验报告

	表 X x /mm		盐波 高速			-	V= 102/18		1.
黄	6.030	X2/mm	X./mm	X!/mm	Xi/mm	4	1 -		13/m
			4.573	3.280	2.765	2.242	0.647	1.205	1.89
级	5.860	5.035	4.415	3.150	2.550	1.885	0.633	1.243	1.988
蓝	5.430	4795	4.227	3.042	2.460	1,705	0.618	1.168	1.86
	A./HH	A A2/med	m Azhan	一 下/点	um CL=Ā.	v)/m/s)	サキシニ1	0.48 11/12	
苦	151.6	162.8	155.4	156-6	一桩		海=57	7.04	
	146.7	149.4	140.1	145	¥ 148		入绿二点	46.1nm	
140				1.110	66	V		135,8nm	
蓝	119.9	126.9	119.3	122.	_	-	f=170	nm	
Li=	士(Xi-X	i), Ai	= v2f/	li A	三三八				
	角度计算:								
			- (A:-7)2	0					
2V	= \\ \frac{\xi(n_{\cup})}{n(n_{\cup})}	可可可	7×8	= 5.27.	um				
n=9	Pat, togs	=2.3		1.00					16
故	WA = UTIA	= to.95.5	in = 12,2	un hand	2 1				
	11 11.	- X - D.1	DZMHZ"	华人	X /				
		Uc = 1 2	12-1-U	2/2 = 0	.086 =	8.6%			
	Ur-	C-117	7716						1825
	故Uc=	C.8.6%	3 = 127.	28 m/s					
			מ(פב בכן	n/s (P.	= 95%)				
+1	10 -	1111ml							
故	L C701 =	(1480 ±	12/120	,					

机林

天津大学物研究. Tho m

天津大学物理实验报告

机械学院 2017年级 机制专业 4班 姓名王祥

学号30720174同组实验者 实验日期:_

	麦		英验题目 基本 起音	:超声光 波声速泡	州多	禁	V = 10.2	SHMZ	
-	X /mm	Xs/mm	Xalmm	Xi'/mm	X½/mm	X3/mm	L./mm	Lz/mm	13/mm
黄	8.875	8.131	7.375	5.883	5.200	4528		1.466	2174
绿		8.030	7.228	5.662	4853	4.082	0.55	1.589	2.384
蓝	8,395	7.823	7.113	5.548	4740 5-548	3.940	0.783	1.542	2,228
	1/m	12 Jum	13/Mm	Ālam	c(= 1	V)/(m/s)			
善	131.5	133.8	135.4						33
绿	118.6	1/6.8	119.3	1/6.2	119	1			
蓝	94.6	96.1	99.8						7

女不确定度计算

$$S_{\pi} = \sqrt{\frac{1}{3}(N_{i}-1)} = \sqrt{\frac{1}{9}(N_{i}-1)} = 5.36 \mu m$$

故 Un=to.gs Sn=5.36x2.31=12.4.um

Uy = 0.02 MHZ

$$u_r = \frac{u_c}{c} = \sqrt{\frac{u_n}{\pi}}^2 + (\frac{u_0}{v})^2 = 0.107 = 10.7\%$$

the $u_c = c \cdot 10.7\% = 127.44 \text{ m/s}$.

天津大学物理实验报告

附页

元结果分析和讨话

盖的来说,我觉得本友实验,我所得到的实验有明显的误差 光谱中由外到内分替绿蓝,按正常思致可以想象,实验数据中同一级的从, 血按照, 苗, 绿, 蓝的顺序递减。然, 而实验的得数据并非 她此。不过数据处理结果所得的 C(= 不以) 方理 话值之间的差距 非常小,实验又算是较成功的。

计算不确度后,可以明显发现不确度还是有些大的,个人观点,实验者读数在太实验中还是有些误差影响的。光学实验,对于多数眼睛近视, 甚至是正常视力的同绪是一项对眼睛, 在旅游游游的地战, 多次实验者,实验中途就有在眼睛痛的问题。如何改善光学实验的这一弊心偏缓思高。是否可以从借助计算机解决人眼读数困难,人服波劝等?提高数据的降价实验的不确定度。