BANA4095: Decision Models – Spring 2021 Re-Introduction to Optimization

Dr. Charles R. Sox Associate Dean - Impact & Partnerships Professor of Operations and Business Analytics

Outline

- · What is Optimization?
- Key Elements of Optimization Models
- Optimization Algorithms
- Excel Solver
- Sensitivity Analysis Report

2

Using a Model for Experimentation Optimization Loop Model Structure Measures Model Parameters

Optimization

- Finding an alternative that achieves the best possible result
 - » Unconstrained Optimization
 - » Constrained Optimization
- · Four key elements of an optimization problem
 - » Objective function
 - » Decision variables
 - » Constraints
 - » Parameters

Optimization Elements

- Objective Function
 - » Measures the value of an alternative
 - » Basis for comparing alternatives
 - » Examples
- Decision Variables
 - » What choices/decisions affect the objective function?
 - » Values that must be chosen in order to define an alternative
 - » Consume or supply some resource

5

Optimization Elements

- Constraints
 - » What resources or requirements limit the possible alternatives/decisions/choices?
 - » Determine whether a specific alternative is feasible
 - » Right-hand side: defines the amount of resource available or needed to satisfy the constraint
- Parameters
 - » Constants used in the model calculations
 - » Define relationships between decision variables, constraints, and objective function

6

Example - Sidneyville Desk Mfg.

- Allocation/Product Mix Problem
- · Produces two types of desk
- Using three types of wood in every desk (measured in board feet, b.f.)

Туре	Profit/desk	
Rolltop	\$115	
Regular	\$90	

	Amount Used		Amount
Wood	Rolltop	Regular	Available
Pine	10	20	200
Cedar	4	16	128
Maple	15	10	220

Example, cont.

- What are the decision variables?
- What is the objective function?
- What are the constraints?

Sidneyville Linear Programming (LP) Formulation

max $115x_1 + 90x_2$

Maximize Total Profit

s.t. $10x_1 + 20x_2 \le 200$

Pine

 $4x_1 + 16x_2 \le 128$

Cedar

 $15x_1 + 10x_2 \le 220$

Maple

 $x_1, x_2 \ge 0$

Non-negative

Solver

- Free Excel add-in for optimization
- PC and Mac versions
- · Located on the Data tab
- · Simple user interface
- · Limited problem size
- Covered in BANA 2082
- Frontline Systems
 - » Developer of Solver
 - » Also offers commercial version: Analytic Solver Platform (ASP)

10

Building a Solver Optimization Model

- Build base case spreadsheet model
 - » Decision variable cells
 - » Input parameter cells
 - » Objective function formula
 - » Constraint formula(s)
- Enter Solver settings
- Solve

Solver Settings

- Set Objective (Max/Min)
 - » Select the cell containing the objective function formula
- · Changing/Decision Variable Cells
 - » Select the cells containing the decision variable values
- Subject to the Constraints
 - » Add each constraint
 - » Cell Reference is cell containing the formula (left hand side)
 - » Constraint is cell containing the limiting value (right hand side)
 - » Drop down box selects the relationship between LHS and RHS
- Check box: Make unconstrained variables non-negative
- Select a Solving Method

Sidneyville Manufacturing

 Construct an Excel Solver optimization model for the Sidneyville example and use it to find the optimal solution

Types of Optimization Models

Туре	Variables	Relationships
Linear Program (LP)	Continuous	Linear
Nonlinear Program (NLP)	Continuous	Nonlinear or Linear
Integer Program (IP)	Integer	Linear
Mixed Integer-Linear (MILP)	Integer or Continuous	Linear
Mixed Integer Nonlinear (MINLP)	Integer or Continuous	Nonlinear or Linear

14

Solver Engines/Algorithms

 Various algorithms that are used to solve different classes of optimization problems. The two basic engines in Solver are

Engine	Objective	Constraints
Simplex LP	Linear	Linear
GRG Nonlinear	Nonlinear	Nonlinear

- The specific Solver Engine is selected from the drop down list at the top of the Engine tab
- Uncheck the "Automatically Select Engine" box

Non-Negativity

- Decision variables are frequently assumed/implied to have non-negative values. This assumption is often not explicitly given in the problem statement, but the modeler should recognize the need for this restriction even if it is not explicitly stated.
- Check box: Make Unconstrained Variables Non-Negative
 - » Constrains ALL decision variables to be non-negative
 - » If only SOME of the decision variables should be non-negative, then explicit bound constraints (>= 0) must be added to the model for the variables that require them.

Special Cases of Optimization Models

- Infeasible Model
 - » There are no feasible solutions that satisfy all of the model constraints
 - » Usually caused by one or more errors in the definition of the constraints or the formula cells referenced in the constraints
- Unbounded Solution
 - » There is no finite feasible solution that is optimal. There is always another solution that has a better objective value.
 - » Usually caused by one or more errors in the definition of the objective or the constraints or the formulas used in the objective and constraints

Binding vs. Non-Binding Constraints

- Example: Sidneyville
- Binding Constraint
 - » Left Hand Side = Right Hand Side
- Non-Binding Constraint
 - » Left Hand Side not equal to Right Hand Side
 - » Slack = RHS LHS
- · Marginal Value of a Resource
 - » If a constraint is non-binding then the marginal value of its corresponding resource is . . . ?

1

Marginal Value / Shadow Price

- The change in the optimal objective value for one additional unit of a resource.
 - » Increases for maximization problems
 - » Decreases for minimization problems
 - » For LPs the marginal value is constant over a range
- What is the "economic value" of obtaining an additional amount of this resource?
- What would you be willing to pay for an additional amount of this resource?
- Example: Sidneyville

Solver Sensitivity Report

- Provides sensitivity information for the optimal solution
- » Decision Variables,
- » Objective Coefficients, and
- » Constraints
- Decision Variable (DV) Reduced Cost (RC)
- » The RC for a DV is the shadow/dual price associated with the nonnegativity constraint for the DV. RC = 0 indicates the DV may be positive in an optimal solution; RC > 0 indicates the DV must be 0 in an optimal solution.
- » If a DV = 0 and its RC = 0, there may be multiple optimal solutions.
 - Methods to find alternate solutions

Solver Sensitivity Report

- Objective Coefficient Allowable Increase/Decrease
 - » Indicates the range of coefficient values over which the current solution remains optimal
- Constraint Shadow Price
 - » The marginal value or marginal cost of the right-hand-side (RHS) of the constraint
- Constraint Allowable Increase/Decrease
 - » Indicates the range of RHS values over which the current shadow price remains constant
- Any change outside of an allowable range requires re-optimization of the model

21

23

Solver Sensitivity Report

- Answer the following questions using only the optimization sensitivity report on the previous slide. How does the optimal solution change when . . .
 - 1. The profit for each Regular desk is increased by \$20?
 - 2. The sales price for each Rolltop desk increases by \$25?
 - 3. There is 15 additional board feet of Pine?
 - 4. There is 100 additional board feet of Cedar?
 - We can purchase 40 additional board feet of Maple at a cost of \$3 per board foot.

Summary

- · What is Optimization?
- · Key Elements of Optimization Models
- Optimization Algorithms
- Excel Solver
- · Sensitivity Analysis Report