Convex Optimization Overview

Stephen Boyd Steven Diamond Enzo Busseti Akshay Agrawal Junzi Zhang EE & CS Departments Stanford University

Outline

Mathematical Optimization

Convex Optimization

Solvers & Modeling Languages

Examples

Summary

Outline

Mathematical Optimization

Convex Optimization

Solvers & Modeling Languages

Examples

Summary

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbb{R}^n$ is (vector) variable to be chosen
- $ightharpoonup f_0$ is the *objective function*, to be minimized
- f_1, \ldots, f_m are the inequality constraint functions
- $ightharpoonup g_1, \ldots, g_p$ are the equality constraint functions
- ▶ variations: maximize objective, multiple objectives, . . .

Finding good (or best) actions

- x represents some action, e.g.,
 - trades in a portfolio
 - airplane control surface deflections
 - schedule or assignment
 - resource allocation
 - transmitted signal
- constraints limit actions or impose conditions on outcome
- ▶ the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - fuel use
 - risk

Engineering design

- ▶ x represents a design (of a circuit, device, structure, ...)
- constraints come from
 - manufacturing process
 - performance requirements
- ightharpoonup objective $f_0(x)$ is combination of cost, weight, power, . . .

Finding good models

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- ▶ objective $f_0(x)$ is the prediction error on some observed data (and possibly a term that penalizes model complexity)

Inversion

- ► *x* is something we want to estimate/reconstruct, given some measurement *y*
- constraints come from prior knowledge about x
- ightharpoonup objective $f_0(x)$ measures deviation between predicted and actual measurements

Worst-case analysis (pessimization)

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- ightharpoonup minimizing $-f_0(x)$ finds worst possible parameter values
- if the worst possible value of $f_0(x)$ is tolerable, you're OK
- ▶ it's good to know what the worst possible scenario can be

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - ▶ an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - ► reaction rates in a cell maximize growth
 - currents in an electric circuit minimize total power

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - ▶ an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in an electric circuit minimize total power
- (except the last) these are very crude models
- and yet, they often work very well

Summary

summary: optimization arises *everywhere*

Summary

summary: optimization arises everywhere

▶ the bad news: most optimization problems are intractable i.e., we cannot solve them

Summary

summary: optimization arises everywhere

▶ the bad news: most optimization problems are intractable i.e., we cannot solve them

► an exception: convex optimization problems are tractable i.e., we (generally) can solve them

Outline

Mathematical Optimization

Convex Optimization

Solvers & Modeling Languages

Examples

Summary

Convex optimization problem

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- ▶ variable $x \in \mathbf{R}^n$
- equality constraints are linear
- ▶ f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

$$f_i(\theta x + (1-\theta)y) \le \theta f_i(x) + (1-\theta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

- ▶ beautiful, nearly complete theory
 - ▶ duality, optimality conditions, . . .

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

▶ lots of applications (many more than previously thought)

Application areas

- machine learning, statistics
- finance
- supply chain, revenue management, advertising
- control
- signal and image processing, vision
- networking
- circuit design
- combinatorial optimization
- quantum mechanics
- ► flux-based analysis

The approach

- ▶ try to formulate your optimization problem as convex
- ▶ if you succeed, you can (usually) solve it (numerically)
 - using generic software if your problem is not really big
 - by developing your own software otherwise

The approach

- try to formulate your optimization problem as convex
- ▶ if you succeed, you can (usually) solve it (numerically)
 - using generic software if your problem is not really big
 - by developing your own software otherwise
- some tricks:
 - change of variables
 - approximation of true objective, constraints
 - relaxation: ignore terms or constraints you can't handle

Outline

Mathematical Optimization

Convex Optimization

Solvers & Modeling Languages

Examples

Summary

Medium-scale solvers

- ▶ 1000s–10000s variables, constraints
- reliably solved by interior-point methods on single machine (especially for problems in standard cone form)
- exploit problem sparsity
- not quite a technology, but getting there
- used in control, finance, engineering design, . . .

Large-scale solvers

- ► 100k 1B variables, constraints
- solved using custom (often problem specific) methods
 - ▶ limited memory BFGS
 - stochastic subgradient
 - block coordinate descent
 - operator splitting methods
- require custom implementation, tuning for each problem
- used in machine learning, image processing, . . .

Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description automatically transformed to a standard form
 - solved by standard solver, transformed back to original form
- implementations:
 - YALMIP, CVX (Matlab)
 - CVXPY (Python)
 - ► Convex.jl (Julia)
 - CVXR (R)

CVX

```
(Grant & Boyd, 2005)

cvx_begin
  variable x(n)  % declare vector variable
  minimize sum(square(A*x-b)) + gamma*norm(x,1)
  subject to norm(x,inf) <= 1
cvx_end</pre>
```

- ► A, b, gamma are constants (gamma nonnegative)
- ▶ after cvx_end
 - problem is converted to standard form and solved
 - variable x is over-written with (numerical) solution

CVXPY

```
(Diamond & Boyd, 2013); (Agrawal et al., 2018)
import cvxpy as cp
x = cp.Variable(n)
cost = cp.sum\_squares(A*x-b) + gamma*cp.norm(x,1)
prob = cp.Problem(cp.Minimize(cost),
                   [cp.norm(x,"inf") <= 1])
opt_val = prob.solve()
solution = x.value
```

- ▶ A, b, gamma are constants (gamma nonnegative)
- solve method converts problem to standard form, solves, assigns value attributes

Convex.jl

```
(Udell et al., 2014)
using Convex
x = Variable(n);
cost = sum_squares(A*x-b) + gamma*norm(x,1);
prob = minimize(cost, [norm(x,Inf) <= 1]);
opt_val = solve!(prob);
solution = x.value;</pre>
```

- ▶ A, b, gamma are constants (gamma nonnegative)
- solve! method converts problem to standard form, solves, assigns value attributes

Modeling languages

- enable rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)

- ▶ slower than custom methods, but often not much
- current work focuses on extension to large problems

Outline

Mathematical Optimization

Convex Optimization

Solvers & Modeling Languages

Examples

Summary

Radiation treatment planning

- radiation beams with intensities $x_i \ge 0$ directed at patient
- ► radiation dose *y_i* received in voxel *i*
- \triangleright y = Ax
- $ightharpoonup A \in \mathbf{R}^{m \times n}$ comes from beam geometry, physics
- ▶ goal is to choose *x* to deliver prescribed radiation dose *d_i*
 - $ightharpoonup d_i = 0$ for non-tumor voxels
 - $ightharpoonup d_i > 0$ for tumor voxels
- \triangleright y = d not possible, so we'll need to compromise
- typical problem has $n = 10^3$ beams, $m = 10^6$ voxels

Radiation treatment planning via convex optimization

minimize
$$\sum_{i} f_i(y_i)$$

subject to $x \ge 0$, $y = Ax$

- ▶ variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^m$
- objective terms are

$$f_i(y_i) = w_i^{\text{over}}(y_i - d_i)_+ + w_i^{\text{under}}(d_i - y_i)_+$$

- w_i^{over} and w_i^{under} are positive weights
- ▶ i.e., we charge linearly for over- and under-dosing
- a convex problem

Example

- ightharpoonup real patient case with n=360 beams, m=360000 voxels
- ▶ optimization-based plan essentially the same as plan used

Example

- real patient case with n = 360 beams, m = 360000 voxels
- optimization-based plan essentially the same as plan used
 - but we computed the plan in a few seconds on a GPU
 - original plan took hours of least-squares weight tweaking

Image in-painting

- guess pixel values in obscured/corrupted parts of image
- ▶ total variation in-painting: choose pixel values $x_{ij} \in \mathbb{R}^3$ to minimize total variation

$$TV(x) = \sum_{i,j} \left\| \left[\begin{array}{c} x_{i+1,j} - x_{ij} \\ x_{i,j+1} - x_{ij} \end{array} \right] \right\|_{2}$$

a convex problem

 512×512 grayscale image ($n \approx 300000$ variables)

 512×512 color image ($n \approx 800000$), 80% of pixels removed

80% of pixels removed

Control

minimize
$$\sum_{t=0}^{T-1} \ell(x_t, u_t) + \ell_T(x_T)$$
 subject to
$$x_{t+1} = Ax_t + Bu_t$$

$$(x_t, u_t) \in \mathcal{C}, \quad x_T \in \mathcal{C}_T$$

- variables are
 - system states $x_1, \ldots, x_T \in \mathbf{R}^n$
 - ▶ inputs or actions $u_0, \ldots, u_{T-1} \in \mathbf{R}^m$
- \blacktriangleright ℓ is stage cost, ℓ_T is terminal cost
- ightharpoonup C is state/action constraints; C_T is terminal constraint
- convex problem when costs, constraints are convex
- applications in many fields

- ▶ n = 8 states, m = 2 inputs, horizon T = 50
- ▶ randomly chosen A, B (with $A \approx I$)
- ▶ input constraint $||u_t||_{\infty} \leq 1$
- terminal constraint $x_T = 0$ ('regulator')
- $\ell(x, u) = ||x||_2^2 + ||u||_2^2$ (traditional)
- ► random initial state x₀

Support vector machine classifier with ℓ_1 -regularization

- ightharpoonup given data (x_i, y_i) , $i = 1, \ldots, m$
 - $x_i \in \mathbf{R}^n$ are feature vectors
 - $y \in \{\pm 1\}$ are associated boolean outcomes
- ▶ linear classifier $\hat{y} = \text{sign}(\beta^T x v)$
- find parameters β , ν by minimizing (convex function)

$$(1/m)\sum_{i} (1-y_{i}(\beta^{T}x_{i}-v))_{+} + \lambda \|\beta\|_{1}$$

- first term is average hinge loss
- ightharpoonup second term shrinks coefficients in β and encourages sparsity
- $\lambda \ge 0$ is (regularization) parameter
- simultaneously selects features and fits classifier

- ightharpoonup n = 20 features
- ightharpoonup trained and tested on m=1000 examples each

38

 β_i vs. λ (regularization path)

Outline

Mathematical Optimization

Convex Optimization

Solvers & Modeling Languages

Examples

Summary

Summary 40

Summary

- convex optimization problems arise in many applications
- convex optimization problems can be solved effectively
 - using generic methods for not huge problems
 - by developing custom methods for huge problems
- ▶ high level language support (CVX/CVXPY/Convex.jI/CVXR) makes prototyping easy

Summary 41

Resources

many researchers have worked on the topics covered

- ► Convex Optimization (book)
- ► *EE364a* (course slides, videos, code, homework, ...)
- ▶ software CVX, CVXPY, Convex.jl, CVXR

all available online

Summary 42