Probability and Statistics

Lab – The testing of hypotheses and t-tests

Test procedure at the $100\alpha\%$ significance level. Conventionally, we use $\alpha = 0.05, 0.01$ or 0.001, i.e., tests at the 5%,1% or 0.1% significance level.

- 1. We begin by setting up a *statistical model*, which provides a theoretical framework for analysing the data.
- 2. We shall usually consider two competing hypotheses, a null hypothesis H_0 and an alternative hypothesis H_1 .
- 3. We construct a test statistic whose distribution under H_0 is known, at least approximately.
- 4. Given α , if t is the observed value of the test statistic on a particular occasion, we reject H_0 at the $100\alpha\%$ significance level if and only if $|t| \geq k_{\alpha}$ if the test is one-sided, or $|t| \geq k_{\alpha/2}$ if the test is two-sided.
- 5. An alternative way of describing this procedure is in terms of p-values. We reject H_0 at the $100\alpha\%$ significance level if and only if p-value $\leq \alpha$.

One sample t-tests

1. Statistical Model

$$x_1, x_2, \dots, x_n \stackrel{iid}{\sim} N\left(\mu, \sigma^2\right)$$

with μ and σ^2 unknown.

2. H_0 and H_1

Null hypothesis H_0	Alternative hypothesis H_1				
	two-sided		one-sided greater		one-sided less
$\mu = \mu_0$	$\mu \neq \mu_0$	or	$\mu > \mu_0$	or	$\mu < \mu_0$

3. Test Statistic

To test the null hypothesis H_0 we use the test statistic

$$t = \frac{(\bar{x} - \mu_0)}{\frac{s}{\sqrt{n}}} \sim t_{n-1} .$$

4. Rejection region Significance-level- α test

two-sided		one-sided greater		one-sided less
$ t \ge t_{n-1,\frac{\alpha}{2}}$	or	$t \ge t_{n-1,\alpha}$	or	$t \le -t_{n-1,\alpha}$

5. p-value

two-sided one-sided greater one-sided less
$$2(1 - F(|t|))$$
 or $1 - F(t)$ or $F(t)$

where F(t) is the c.d.f. of a t-distribution with n-1 degrees of freedom.

R function

Two-sided H_1 :

One-sided greater H_1 :

Two-sample t-tests – Independent Samples

1. Statistical Model

$$x_1, x_2, \dots, x_n \stackrel{iid}{\sim} N\left(\mu_1, \sigma^2\right)$$
 and $y_1, y_2, \dots, y_m \stackrel{iid}{\sim} N\left(\mu_2, \sigma^2\right)$

with μ_1, μ_2 and σ^2 unknown. The two samples are independent.

2. H_0 and H_1

Null hypothesis H_0	Alternative hypothesis H_1				
	two-sided		one-sided greater		one-sided less
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	or	$\mu_1 > \mu_2$	or	$\mu_1 < \mu_2$

3. Test Statistic Under H_0 ,

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{s^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2} .$$

where s^2 is the pooled estimate of variance, based on the data from both samples:

$$s^{2} = \frac{(n-1)s_{1}^{2} + (m-1)s_{2}^{2}}{n+m-2} ,$$

where s_1^2 and s_2^2 are the sample variances for the samples from Population 1 and Population 2, respectively.

4. Rejection region Significance-level- α test

two-sided		one-sided greater		one-sided less
$ t \ge t_{n+m-2,\frac{\alpha}{2}}$	or	$t \ge t_{n+m-2,\alpha}$	or	$t \le -t_{n+m-2,\alpha}$

5. p-value

two-sided one-sided greater one-sided less
$$2(1 - F(|t|))$$
 or $1 - F(t)$ or $F(t)$

where F(t) is the c.d.f. of a t-distribution with n+m-2 degrees of freedom.

R function

Two-sided H_1 :

One-sided greater H_1 :

Two-sample t-tests – Paired comparisons

1. Statistical Model

 x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n are paired (not independent) samples from Normal distributions with means μ_X and μ_Y (both unknown) respectively.

The analysis will be based on consideration of the differences $d_i = x_i - y_i$:

$$d_i \stackrel{iid}{\sim} N\left(\mu_D, \sigma_D^2\right)$$

where

$$\mu_D = \mu_X - \mu_Y \ ,$$

and σ_D^2 are unknown.

2. H_0 and H_1

The hypotheses that we test may be expressed in terms of μ_X and μ_Y or, equivalently, in terms of $\mu_D = \mu_X - \mu_Y$.

	Null hypothesis H_0	Alternative hypothesis H_1			
		two-sided	one-sided greater	one-sided less	
In terms of μ_X, μ_Y :	$\mu_X = \mu_Y$	$\mu_X \neq \mu_Y$	$\mu_X > \mu_Y$	$\mu_X < \mu_Y$	
In terms of μ_D :	$\mu_D = 0$	$\mu_D \neq 0$	$\mu_D > 0$	$\mu_D < 0$	

3. Test Statistic Under H_0 ,

$$t = \frac{\bar{x} - \bar{y}}{\frac{s_D}{\sqrt{n}}} = \frac{\bar{d}}{\frac{s_D}{\sqrt{n}}} \sim t_{n-1} ,$$

where \bar{d} and s_D^2 are the sample mean and sample variance for d_1, d_2, \ldots, d_n .

4. Rejection region Significance-level- α test

two-sided		one-sided greater		one-sided less
$ t \ge t_{n-1,\frac{\alpha}{2}}$	or	$t \ge t_{n-1,\alpha}$	or	$t \le -t_{n-1,\alpha}$

5. p-value

two-sided one-sided greater one-sided less
$$2(1 - F(|t|))$$
 or $1 - F(t)$ or $F(t)$

where F(t) is the c.d.f. of a t-distribution with n-1 degrees of freedom.

4

R function

```
Two-sided H_1:
```

```
t.test(x, y, paired = TRUE)
  or

t.test(x - y)
  One-sided greater H<sub>1</sub>:

t.test(x, y, paired = TRUE, alternative = "greater")
  or

t.test(x - y, alternative = "greater")
  One-sided less H<sub>1</sub>:

t.test(x, y, paired = TRUE, alternative = "less")
  or

t.test(x - y, alternative = "less")
```

Hypothesis testing for a proportion

1. Statistical Model

X is the number of success in n trials. $\hat{p} = \frac{r}{n}$ is the proportion of members in the sample with a characteristic. p is the proportion of individuals in the population who have the specified characteristic.

2. H_0 and H_1

Null hypothesis H_0	Alternative hypothesis H_1				
	two-sided one-sided greater one-sided				one-sided less
${p=p_0}$	$p \neq p_0$	or	$p > p_0$	or	$p < p_0$

3. Test Statistic

To test the null hypothesis H_0 we use the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \sim N(0, 1)$$

4. Rejection region Significance-level- α test

two-sided		one-sided greater		one-sided less
$ z \ge z_{\frac{\alpha}{2}}$	or	$z > z_{\alpha}$	or	$z < -z_{\alpha}$

5. p-value

two-sided one-sided greater one-sided less
$$2(1 - \Phi(|z|))$$
 or $1 - \Phi(z)$ or $\Phi(z)$

where $\Phi(z)$ is the c.d.f. of a standard Normal distribution.

R function

Two-sided H_1 :

One-sided greater H_1 :

Hypothesis testing for comparing two proportions

1. Statistical Model

 X_1 is the number of success in n_1 trials in population 1. $\hat{p}_1 = \frac{X_1}{n_1}$ is the proportion of members in a sample from population 1 with a characteristic. X_2 is the number of success in n_2 trials in population 2. $\hat{p}_2 = \frac{X_2}{n_2}$ is the proportion of members in a sample from population 2 with a characteristic. The two samples are independent.

2. H_0 and H_1

Null hypothesis H_0	Alternative hypothesis H_1				
	two-sided		one-sided greater		one-sided less
$p_1 = p_2$	$p_1 \neq p_2$	or	$p_1 > p_2$	or	$p_1 < p_2$

3. Test Statistic

To test the null hypothesis H_0 we use the test statistic

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}(1/n_1 + 1/n_2)}}, \sim N(0, 1)$$

where
$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$$
, and $\hat{q} = 1 - \hat{p}$

4. Rejection region Significance-level- α test

two-sided		one-sided greater		one-sided less
$ z \ge z_{\frac{\alpha}{2}}$	or	$z > z_{\alpha}$	or	$z < -z_{\alpha}$

5. p-value

two-sided one-sided greater one-sided less
$$2(1-\Phi(|z|))$$
 or $1-\Phi(z)$ or $\Phi(z)$

where $\Phi(z)$ is the c.d.f. of a standard Normal distribution.

R function

Two-sided H_1 :

$$prop.test(c(x1, x2), c(n1, n2), correct = FALSE)$$

One-sided greater H_1 :

Example 1 - From 2013 exam

In an experiment to investigate whether there was significant evidence of an underlying difference between the mean measurements given by two types of caliper, Caliper 1 and Caliper 2, the diameter of a ball bearing was measured by 12 inspectors, each using the two types of caliper. The results are given in the table below.

Diameter of ball bearing in cm.

Inspector	Caliper 1	Caliper 2
1	0.265	0.264
2	0.265	0.265
3	0.266	0.264
4	0.267	0.266
5	0.267	0.267
6	0.265	0.268
7	0.267	0.264
8	0.267	0.265
9	0.265	0.265
10	0.268	0.267
11	0.268	0.268
12	0.265	0.269

- 1. State precisely the statistical model that is being used, defining carefully any notation that you use. Specify the null and alternative hypotheses in terms of the model parameters.
- 2. Write down a general formula for the test statistic that is used in the parametric test and state its distribution under the null hypothesis.
- 3. Draw conclusions in the present case.

Solution

Load the data

1. The two samples are paired (not independent).

We assume that the data comes from Normal distributions with means μ_X and μ_Y (unknown) in order to perform a two sample t-test for paired samples.

The null hypothesis is that there is no difference between the mean of the two measurements: $H_O: \mu_X = \mu_Y$, while the alternative hypothesis is that there is not significant difference $H_1: \mu_X \neq \mu_Y$.

2. The test statistic is,

$$t = \frac{\bar{x} - \bar{y}}{\frac{s_D}{\sqrt{n}}} = \frac{\bar{d}}{\frac{s_D}{\sqrt{n}}} ,$$

where \bar{d} and s_D^2 are the sample mean and sample variance for d_1, d_2, \ldots, d_n . under H_0 it follows a t distribution with n-1 degrees of freedom.

In this case:

```
d <- Caliper1 - Caliper2
d

n <- length(d)
n

dbar <- mean(d)
dbar

sD <- sd(d)
sD</pre>
```

The test statistics is

```
t <- dbar / (sD / sqrt(n))
t
```

and the p-value:

```
pval \leftarrow 2 * (1 - pt(abs(t), df = n - 1))
pval
```

We can perform the test by using the function t.test:

let's check that this is the same as:

```
test2 <- t.test(d)
test2</pre>
```

3. Fill in the conclusions:

Example 2

A pharmaceutical company wishes to determine whether its new allergy product (A) is any better at reducing the level of a certain histamine in the blood stream than its current product (B). Two independent random samples of individuals were drawn from groups of people using product A and product B, respectively, and their histamine levels (in mg per cubic litre) were recorded. The data are given below.

```
Product A: 16.61 15.38 15.70 17.58 16.66 17.13
Product B: 18.66 19.52 16.98 18.19 17.20
```

- 1. State carefully the statistical model that underlies an appropriate analysis, specifying in particular the unknown parameters.
- 2. Stating in terms of the model parameters the hypotheses that you are testing, write down a test statistic to investigate whether the mean level of the histamine for Product A is less than for Product B. Find the corresponding p-value and draw conclusions.