

Pauli exclusion principle: wave function for identical fermions must be **antisymmetric** if the particle labels are exchanged

How do we tell what symmetry the isospin configurations have? $I = 0$ or 1 for NN.

Use symbolic representation: $\uparrow = \frac{1}{2}$ and $\downarrow = -\frac{1}{2}$

The 4 configurations (m_1, m_2) are: $(\uparrow\uparrow), (\uparrow\downarrow), (\downarrow\uparrow), (\downarrow\downarrow)$

$(\uparrow\uparrow)$ and $(\downarrow\downarrow)$ are **symmetric** - exchanging the symbols (1,2) has no effect.
These correspond to total isospin $(I, m_I) = (1, 1)$ and $(1, -1)$

$(\uparrow\downarrow), (\downarrow\uparrow)$ states correspond to $m_I = 0$, but they have **mixed symmetry**. ☺

Solution: make **symmetric** and **antisymmetric** combinations of the mixed states:

$$\text{symmetric: } (\uparrow\downarrow) + (\downarrow\uparrow) \rightarrow (\downarrow\uparrow) + (\uparrow\downarrow) \quad (I=1, m_I = 0)$$

$$\text{anti- : } (\uparrow\downarrow) - (\downarrow\uparrow) \rightarrow (\downarrow\uparrow) - (\uparrow\downarrow) = -\{(\uparrow\downarrow) - (\downarrow\uparrow)\} \quad (I=0, m_I=0)$$

Bottom line: $I = 1$ states are **symmetric**, $I = 0$ **antisymmetric**. (Same for spin, S)
The np system can be in a state of either $I = 1$ or $I = 0$ but not both, if isospin is a good quantum number.

Isospin for nuclei:

2

- Nucleon: $I = \frac{1}{2}$, $m_I = \pm \frac{1}{2}$. For a **nucleus**, by extension: $m_I = \frac{1}{2}(Z - N)$.
- If neutrons and protons are really "identical" as far as the strong interaction is concerned, then nuclei with the same mass number but (Z, N) interchanged ought to be very similar. These are called "**mirror nuclei**", e.g. ^{11}B (5,6) and ^{11}C (6,5)
- Energy spectra line up after correction for Coulomb energy difference in the ground state. ✓

evidence for "charge symmetry" of nuclear force

implications of isospin symmetry:

(note - other convention: $T = \text{isospin}$)

3

- pp and nn systems are always $I = 1$
- np system is $(\downarrow\uparrow)$, ie it can be partly $I = 1$ and partly $I = 0$
- for a **nucleus**, $m_I = \frac{1}{2}(Z-N)$ and $I = |m_I|$, ie lowest energy has smallest I
(consistent with the deuteron being $I = 0$)
- Example: "isobaric triplet" ^{14}C , ^{14}N , ^{14}O :

Isospin selection rules for strong interactions

4

Consider the deuteron, $^2\text{H} = (\text{np})$ bound state (d)

Quantum numbers: $m_I = 0, I = 0$ $J^\pi = 1^+$ ($S = 1, L = 0, \pi = (-1)^L$)

→ How do we know it has $I = 0$?

"Isospin selection rules":

The reaction: 1) $\text{d} + \text{d} \rightarrow \gamma + {}^4\text{He}$ occurs, but

isospin analysis: $\vec{0} + \vec{0} = \vec{0} + \vec{0}$ ($I = 0$ deuteron also works)

2) $\text{d} + \text{d} \rightarrow \pi^0 + {}^4\text{He}$ does not

isospin analysis: $\vec{0} + \vec{0} \neq \vec{1} + \vec{0}$ (only $I = 0$ prevents this!)

Bottom line: I is conserved by the strong interaction. Energy depends on I but not on m_I

Observation of the Charge Symmetry Breaking $d + d \rightarrow {}^4\text{He} + \pi^0$ Reaction Near Threshold

E. J. Stephenson,¹ A. D. Bacher,^{1,2} C. E. Allgower,¹ A. Gärdestig,³ C. M. Lavelle,¹ G. A. Miller,⁴ H. Nann,^{1,2} J. Olmsted,¹ P. V. Pancella,⁵ M. A. Pickar,⁶ J. Rapaport,⁷ T. Rinckel,¹ A. Smith,⁸ H. M. Spinka,⁹ and U. van Kolck^{10,11}

¹*Indiana University Cyclotron Facility, Bloomington, Indiana 47408, USA*

²*Department of Physics, Indiana University, Bloomington, Indiana 47405, USA*

³*Indiana University Nuclear Theory Center, Bloomington, Indiana 47408, USA*

⁴*Department of Physics, University of Washington, Seattle, Washington 98195, USA*

⁵*Physics Department, Western Michigan University, Kalamazoo, Michigan 49008, USA*

⁶*Department of Physics and Astronomy, Minnesota State University at Mankato, Mankato, Minnesota 56001, USA*

⁷*Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA*

⁸*Physics Department, Hillsdale College, Hillsdale, Michigan 49242, USA*

⁹*Argonne National Laboratory, Argonne, Illinois 60439, USA*

¹⁰*Department of Physics, University of Arizona, Tucson, Arizona 85721, USA*

¹¹*RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA*

(Received 9 May 2003; published 2 October 2003)

We report the first observation of the charge symmetry breaking $d + d \rightarrow {}^4\text{He} + \pi^0$ reaction near threshold. Measurements using a magnetic channel (gated by two photons) of the ${}^4\text{He}$ scattering angle and momentum (from time of flight) permitted reconstruction of the π^0 "missing mass," the quantity used to separate ${}^4\text{He} + \pi^0$ events from the continuum of double radiative capture ${}^4\text{He} + \gamma + \gamma$ events. We measured total cross sections for neutral pion production of 12.7 ± 2.2 pb at 228.5 MeV and 15.1 ± 3.1 pb at 231.8 MeV. The uncertainty is dominated by statistical errors. These cross sections arise fundamentally from the down-up quark mass difference and quark electromagnetic effects that contribute in part through meson mixing (e.g., $\pi^0 - \eta$) mechanisms.

Tour-de-force experiment: <http://www.cerncourier.com/main/article/43/5/4>

- isospin-forbidden reaction since $I = 0$ for the d , ${}^4\text{He}$, and $I=1$ for π^0 : "textbook case"

(technically speaking, this reaction breaks "charge symmetry" which is the symmetry under reversal of all up and down quarks in a wave function, or equivalently a quark "isospin flip". The pion wave function is CS - odd; the others are CS even)

- Charge symmetry is broken by the electromagnetic interaction: up-down quark mass difference, and their electric charge differences
- reaction could proceed with very low cross section compared to isospin-allowed cases, but there was never any convincing evidence published until 2003
- compare similar cross-sections at reaction threshold:

$$p + d \rightarrow {}^3\text{He} + \pi^0 \quad \sigma = 13 \text{ } \mu\text{b} \quad (\text{Isospin allowed})$$

$$d + d \rightarrow {}^4\text{He} + \pi^0 \quad \sigma = 13 \pm 2 \text{ pb} \quad (\text{forbidden, new result})$$

- Rough estimate of cross section ratio :

$$\sigma \sim \left(\int \psi_f V \psi_i d^3r \right)^2 \Rightarrow \frac{\sigma_{\text{allowed}}}{\sigma_{\text{forbidden}}} \sim \left(\frac{V_s}{V_{em}} \right)^2 = \left(\frac{1}{4\pi\epsilon_0 hc} \right)^2 \approx 2 \times 10^4 ?$$

→ Comparison of precise measurement and theory, accounting for all known CSB effects, tests our understanding of CS as a symmetry of the strong interaction

Cooler

CSB

7

the search
for $d+d \rightarrow \alpha\pi^0$

slides courtesy of Dr. E. Stephenson, Indiana University

Ed Stephenson
Physics Colloquium
9/24/03

full set: <http://www.iucf.indiana.edu/Experiments/COOLCSB>

CHARGE SYMMETRY BREAKING

8

atomic nucleus

proton

neutron

Simple notion: charge symmetry
The proton and neutron are the same except for electromagnetic properties.

Isospin: the quantum number for CS
Proton and neutron have $I = 1/2$

But they are different: $m_N - m_P = 1.3$ MeV
(The neutron decays in 887 s: $n \rightarrow p + e^- + \bar{\nu}_e$)

quarks inside nucleons:
CS says up and down are the same except for charge

$z = 2/3$

$z = -1/3$

Nuclear charge symmetry breaking comes from:

- ➡ electromagnetic interactions among quarks
- ➡ $m_d > m_u$

How much does each contribute?

Observation of the Isospin-forbidden $d+d \rightarrow {}^4\text{He} + \pi^0$ Reaction near Threshold

isospin: 0 0 0 1

CHARGE SYMMETRY says that the physics is unchanged when protons and neutrons are swapped, or when up and down quarks are swapped.

The pion wavefunction $\psi = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$ is not symmetric under up-down exchange. Deuterons and helium reverse exactly. Thus, an observation of this process is also an observation of charge symmetry breaking.

Threshold Energy:

For a reaction to occur in a fixed target experiment, m_1 has to hit m_2 with enough energy to make the particles in the final state. The minimum kinetic energy required is called the threshold energy:

$$T_{\text{thr}} = -Q \frac{m_1 + m_2 + \sum m_f}{2m_2}$$

$$Q = m_1 + m_2 - \sum m_f$$

Relativistic formulation! Next homework...

Examples:

Experimental approach:

11

$d + d \rightarrow \alpha + \pi^0$ in the lab close to threshold:

12

For a fixed target experiment just above threshold,

- α particles emerge within a narrow cone about the 0-degree line.
 (Spectrometer with small forward acceptance will catch every α .)
- low-energy π^0 quickly decays into two photons which emerge nearly back to back in the lab.

Therefore, the apparatus must identify a forward α in coincidence with two photons that have a large opening angle between them.

'Missing Mass' measured with proton beam:

15

conservation of energy:

- $W = E_p + E_d - E({}^3\text{He}) = m_\pi$
- E_p from beam energy
- deuteron at rest in target
- $E({}^3\text{He})$ from energy and momentum measured with the magnetic channel
- calculate W from data, should find a peak at the pion mass for reaction at threshold.
- then check in Pb glass array to see if pion was observed

SEPARATION OF $\alpha\pi^0$ AND $\alpha\gamma\gamma$ EVENTS

16

IDEA: Calculate missing mass from the four-momentum measured in the magnetic channel, using time-of-flight for z-axis momentum and MWPC X and Y for transverse momentum. Should see a peak for $\alpha\pi^0$ reaction and a broad background from $\alpha\gamma\gamma$

RESULTS (*measured at two different beam energies*)

17

Events in these spectra must satisfy:
correct pulse height in channel scintillators
usable wire chamber signals
good Pb-glass pulse height and timing

First ever convincing
observation of both the
 $\alpha\pi^0$ and $\alpha\gamma\gamma$ reactions!

Peaks give the correct
 π^0 mass with 60 keV
error. ✓

Bottom line: time to revise all the textbooks!!!