

IIT Madras ONLINE DEGREE

Relations: Examples

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 1

■ $A \times B$ — Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1),(16,1),(49,1),(1,4),(16,4),(49,4),(1,7),(16,7),(49,7)\}$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1), (16,1), (49,1), (1,4), (16,4), (49,4), (1,7), (16,7), (49,7)\}$
 - $B \times B = \{(1,1), (1,16), (1,49), (16,1), (16,16), (16,49), (49,1), (49,16), (49,49)\}$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1), (16,1), (49,1), (1,4), (16,4), (49,4), (1,7), (16,7), (49,7)\}$
 - $B \times B = \{(1,1), (1,16), (1,49), (16,1), (16,16), (16,49), (49,1), (49,16), (49,49)\}$
- Can take Cartesian product of more than two sets

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1), (16,1), (49,1), (1,4), (16,4), (49,4), (1,7), (16,7), (49,7)\}$
 - $B \times B = \{(1,1), (1,16), (1,49), (16,1), (16,16), (16,49), (49,1), (49,16), (49,49)\}$
- Can take Cartesian product of more than two sets
 - $A \times B \times A = \{(1,1,1),(1,1,4),(1,1,7),(1,16,1),(1,16,7),\dots,(7,49,1),(7,49,16),(7,49,49)\}$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1), (16,1), (49,1), (1,4), (16,4), (49,4), (1,7), (16,7), (49,7)\}$
 - $B \times B = \{(1,1), (1,16), (1,49), (16,1), (16,16), (16,49), (49,1), (49,16), (49,49)\}$
- Can take Cartesian product of more than two sets
 - $A \times B \times A = \{(1,1,1),(1,1,4),(1,1,7),(1,16,1),(1,16,7),\dots,(7,49,1),(7,49,16),(7,49,49)\}$
- A relation picks out certain tuples in the Cartesian product

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1),(16,1),(49,1),(1,4),(16,4),(49,4),(1,7),(16,7),(49,7)\}$
 - $B \times B = \{(1,1), (1,16), (1,49), (16,1), (16,16), (16,49), (49,1), (49,16), (49,49)\}$
- Can take Cartesian product of more than two sets
 - $A \times B \times A = \{(1,1,1),(1,1,4),(1,1,7),(1,16,1),(1,16,7),\dots,(7,49,1),(7,49,16),(7,49,49)\}$
- A relation picks out certain tuples in the Cartesian product
 - $S \subseteq A \times B = \{(1,1), (4,16), (7,49)\}$

- $A \times B$ Cartesian product, all pairs (a, b), $a \in A$ and $b \in B$
- \blacksquare $A = \{1, 4, 7\}, B = \{1, 16, 49\}$
 - $A \times B = \{(1,1), (1,16), (1,49), (4,1), (4,16), (4,49), (7,1), (7,16), (7,49)\}$
 - $B \times A = \{(1,1), (16,1), (49,1), (1,4), (16,4), (49,4), (1,7), (16,7), (49,7)\}$
 - $B \times B = \{(1,1), (1,16), (1,49), (16,1), (16,16), (16,49), (49,1), (49,16), (49,49)\}$
- Can take Cartesian product of more than two sets
 - $A \times B \times A = \{(1,1,1),(1,1,4),(1,1,7),(1,16,1),(1,16,7),\dots,(7,49,1),(7,49,16),(7,49,49)\}$
- A relation picks out certain tuples in the Cartesian product
 - $S \subseteq A \times B = \{(1,1), (4,16), (7,49)\}$
 - $S = \{(a, b) \mid (a, b) \in A \times B, b = a^2\}$

Divisibility

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$
 - Can also extend to integer divisors

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$
 - Can also extend to integer divisors
 - $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d|n\}$

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$
 - Can also extend to integer divisors
 - $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d|n\}$
 - Now $(-7,63), (-17,85), (-3,9), \dots$ are also in E

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d | n \}$
 - Can also extend to integer divisors
 - $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d|n\}$
 - Now $(-7,63), (-17,85), (-3,9), \dots$ are also in *E*
- Prime powers

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$
 - Can also extend to integer divisors
 - $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d|n\}$
 - Now $(-7,63), (-17,85), (-3,9), \dots$ are also in E
- Prime powers
 - Pairs of natural numbers (p, n) such that p is prime and $n = p^m$ for some natural number m

- Divisibility
 - Pairs of natural numbers (d, n) such that $d \mid n$
 - Pairs such as $(7,63), (17,85), (3,9), \dots$
 - $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d | n \}$
 - Can also extend to integer divisors
 - $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d | n\}$
 - Now $(-7,63), (-17,85), (-3,9), \dots$ are also in E
- Prime powers
 - Pairs of natural numbers (p, n) such that p is prime and $n = p^m$ for some natural number m
 - Examples: (3,1), (5,625), (7,343), ...

Divisibility

- Pairs of natural numbers (d, n) such that $d \mid n$
- \blacksquare Pairs such as $(7,63), (17,85), (3,9), \dots$
- $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$
- Can also extend to integer divisors
- $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d | n\}$
- Now $(-7,63), (-17,85), (-3,9), \dots$ are also in *E*

Prime powers

- Pairs of natural numbers (p, n) such that p is prime and $n = p^m$ for some natural number m
- Examples: (3,1), (5,625), (7,343), ...
- First define primes: $P = \{p \mid p \in \mathbb{N}, factors(p) = \{1, p\}, p \neq 1\}$

Divisibility

- Pairs of natural numbers (d, n) such that $d \mid n$
- Pairs such as $(7,63), (17,85), (3,9), \dots$
- $D = \{ (d, n) \mid (d, n) \in \mathbb{N} \times \mathbb{N}, d \mid n \}$
- Can also extend to integer divisors
- $\blacksquare E = \{(d, n) \mid (d, n) \in \mathbb{Z} \times \mathbb{N}, d|n\}$
- Now $(-7,63), (-17,85), (-3,9), \dots$ are also in *E*

Prime powers

- Pairs of natural numbers (p, n) such that p is prime and $n = p^m$ for some natural number m
- Examples: (3,1), (5,625), (7,343), ...
- First define primes: $P = \{p \mid p \in \mathbb{N}, factors(p) = \{1, p\}, p \neq 1\}$
- Prime powers: $PP = \{(p, n) \mid (p, n) \in P \times \mathbb{N}, n = p^m \text{ for some } m \in \mathbb{N}\}$

Mathematics for Data Science 1. Week 1

Airline routes

■ An airline flies to set of cities — e.g. Bangalore, Chennai, Delhi, Kolkata, . . .

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$
- Is D reflexive, irreflexive?

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$
- Is *D* reflexive, irreflexive?
 - Hopefully irreflexive!

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$
- Is D reflexive, irreflexive?
 - Hopefully irreflexive!
- Is *D* symmetric?

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$
- Is *D* reflexive, irreflexive?
 - Hopefully irreflexive!
- Is *D* symmetric?
 - If there is a direct flight from Bangalore to Delhi, is there always a direct flight back from Delhi to Bangalore

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$
- Is *D* reflexive, irreflexive?
 - Hopefully irreflexive!
- Is *D* symmetric?
 - If there is a direct flight from Bangalore to Delhi, is there always a direct flight back from Delhi to Bangalore
 - For bigger cities, yes

- An airline flies to set of cities e.g. Bangalore, Chennai, Delhi, Kolkata, . . .
- Let *C* denote the set of cities served by the airline
- Some cities are connected by direct flights
- $D \subseteq C \times C$
- Is D reflexive, irreflexive?
 - Hopefully irreflexive!
- Is *D* symmetric?
 - If there is a direct flight from Bangalore to Delhi, is there always a direct flight back from Delhi to Bangalore
 - For bigger cities, yes
 - For smaller cities, may have a triangular route
 Chennai → Madurai → Salem → Chennai

Tables as relations

■ Flying distances between cities

Source	Destination	Distance (km)
Bangalore	Chennai	290
Chennai	Delhi	1752
Delhi	Bangalore	1735
Delhi	Chennai	1752

Tables as relations

Flying distances between cities

Source	Destination	Distance (km)
Bangalore	Chennai	290
Chennai	Delhi	1752
Delhi	Bangalore	1735
Delhi	Chennai	1752

■ Table is a relation: $Dist \subseteq C \times C \times \mathbb{N}$

Flying distances between cities

Source	Destination	Distance (km)
Bangalore	Chennai	290
Chennai	Delhi	1752
Delhi	Bangalore	1735
Delhi	Chennai	1752

- Table is a relation: $Dist \subseteq C \times C \times \mathbb{N}$
- Some entries are useless: (Delhi,Delhi,0)

Flying distances between cities

Source	Destination	Distance (km)
Bangalore	Chennai	290
Chennai	Delhi	1752
Delhi	Bangalore	1735
Delhi	Chennai	1752

- Table is a relation: $Dist \subseteq C \times C \times \mathbb{N}$
- Some entries are useless: (Delhi,Delhi,0)
- Restrict to cities served by direct direct flights $Dist = \{(a, b, d) \mid (a, b) \in D, d \text{ is distance from } a \text{ to } b\}$

Flying distances between cities

Source	Destination	Distance (km)
Bangalore	Chennai	290
Chennai	Delhi	1752
Delhi	Bangalore	1735
Delhi	Chennai	1752

- Table is a relation: $Dist \subseteq C \times C \times \mathbb{N}$
- Some entries are useless: (Delhi,Delhi,0)
- Restrict to cities served by direct direct flights $Dist = \{(a, b, d) \mid (a, b) \in D, d \text{ is distance from } a \text{ to } b\}$
- $lue{}$ Distances are symmetric, even if D is not

Flying distances between cities

Source	Destination	Distance (km)
Bangalore	Chennai	290
Chennai	Delhi	1752
Delhi	Bangalore	1735
Delhi	Chennai	1752

- Table is a relation: $Dist \subseteq C \times C \times \mathbb{N}$
- Some entries are useless: (Delhi,Delhi,0)
- Restrict to cities served by direct direct flights $Dist = \{(a, b, d) \mid (a, b) \in D, d \text{ is distance from } a \text{ to } b\}$
- Distances are symmetric, even if D is not
- Save space by representing only one direction in the table

Mathematics for Data Science 1. Week 1

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

■ Some columns are special — each student has a unique roll number

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

- Some columns are special each student has a unique roll number
 - Such a column is called a key

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

- Some columns are special each student has a unique roll number
 - Such a column is called a key
 - Name is not a key, in general

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

- Some columns are special each student has a unique roll number
 - Such a column is called a key
 - Name is not a key, in general
- Given the roll number, can retrieve the data for a student

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

- Some columns are special each student has a unique roll number
 - Such a column is called a key
 - Name is not a key, in general
- Given the roll number, can retrieve the data for a student
 - Function from Roll Numbers to (Name, Date of Birth)

Roll no	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

- Some columns are special each student has a unique roll number
 - Such a column is called a key
 - Name is not a key, in general
- Given the roll number, can retrieve the data for a student
 - Function from Roll Numbers to (Name, Date of Birth)
 - (key,value) pairs

Roll No	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

Roll no	Subject	Grade)
A71396	English	В
B82976	Mathematics	Α
C93986	Physics	В
B82976	Chemistry	Α

Roll No	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

Roll no	Subject	Grade)
A71396	English	В
B82976	Mathematics	Α
C93986	Physics	В
B82976	Chemistry	Α

 Generate a table with roll numbers, names and grades

Roll No	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

Roll no	Subject	Grade)
A71396	English	В
B82976	Mathematics	Α
C93986	Physics	В
B82976	Chemistry	А

 Generate a table with roll numbers, names and grades

Roll No	Name	Subject	Grade)
A71396	Abhay Shah	English	В
B82976	Payal Ghosh	Mathematics	Α
B82976	Payal Ghosh	Chemistry	Α
C93986	Payal Ghosh	Physics	В

Roll No	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

Roll no	Subject	Grade)
A71396	English	В
B82976	Mathematics	Α
C93986	Physics	В
B82976	Chemistry	Α

- Generate a table with roll numbers, names and grades
- Join the relations on Roll No

Roll No	Name	Subject	Grade)
A71396	Abhay Shah	English	В
B82976	Payal Ghosh	Mathematics	Α
B82976	Payal Ghosh	Chemistry	Α
C93986	Payal Ghosh	Physics	В

Roll No	Name	Date of birth)
A71396	Abhay Shah	03-07-2001
B82976	Payal Ghosh	18-06-1999
F98989	Jeremy Pinto	22-02-2003
C93986	Payal Ghosh	14-05-2000

Roll no	Subject	Grade)
A71396	English	В
B82976	Mathematics	Α
C93986	Physics	В
B82976	Chemistry	Α

- Generate a table with roll numbers, names and grades
- Join the relations on Roll No

Roll No	Name	Subject	Grade)
A71396	Abhay Shah	English	В
B82976	Payal Ghosh	Mathematics	Α
B82976	Payal Ghosh	Chemistry	Α
C93986	Payal Ghosh	Physics	В

Summary

- A relation describes special tuples in a Cartesian product
- Data tables are essentially relations
- Combining information on tables can be described in terms of operations on relations