Complejidad Temporal

Paolo Rosso

Departamento de Sistemas Informáticos y Computación Universidad Politécnica Valencia, España

14 de Agosto de 2001 Dpto. Informática Universidad Técnica Federico Santa María, Valparaíso, Chile

Contenido

- Introducción
- Estudio de la Complejidad (temporal)
- Ejemplo de la Computación Numérica
- Ejercicios propuestos
- El paradigma de la Programación Paralela

- Tamaño/talla del problema
- Complejidad (temporal) de los algoritmos (que resuelven el problema)
- Notación asintótica: Θ , Ω , O
- Análisis a priori y a posteriori
- Análisis de la complejidad en FLOPS (FLOating Point operationS)

Talla del problema: x metros

Algoritmo a pie (x:entero)

Algoritmo en coche (x:entero)


```
Problema: n*n Talla del Problema: n
Algoritmo A1: Función A1 (n:entero) devuelve entero;
              var m: entero finvar;
              m:=n*n; devuelve m
              finfunción;
Algoritmo A2: Función A2 (n: entero) devuelve entero;
              var m, i: entero finvar;
              m:=0; para i:=1 hasta n hacer m:=m+n finpara;
              devuelve m
              finfunción;
Algoritmo A3: Función A3 (n: entero) devuelve entero;
              var m, i, j: entero finvar;
               m:=0; para i:=1 hasta n hacer
                      para j:=1 hasta n hacer m:=m+1 finpara
                     finpara;
               devuelve m
               finfunción;
```

```
A1: m:=n^*n; t_{as} + t_{op}

A2: m:=0; t_{as}

para i:=1 to n do t_{as} + n + t_{co}

m:=m+n; t_{as}

Para i:=1 to n do t_{as} + n + t_{co}

para i:=1 to n do t_{as} + n + t_{co}

t_{as} + n + t_{co}
```

$$T_{A1} = t_{op} + t_{as} = k_1 \Rightarrow T_{A1} (n) = 1 \text{ paso}$$

$$T_{A2} = n(t_{op} + t_{co}) + (n+2) t_{as} = k_2 * n + k_3 \Rightarrow T_{A2} (n) = n+2 \text{ pasos}$$

$$T_{A3} = n^2 t_{op} + (n^2 + n+2) t_{as} + (n^2 + n) t_{co} = k_4 * n^2 + k_5 * n + k_6 \Rightarrow$$

$$T_{A3} (n) = n^2 + n + 2 \text{ pasos}$$

$$T_{A1}(n)=1$$
 $T_{A2}(n)=n+2$
 $T_{A3}(n)=n^{2}+n+2$

Notación O

$$T_{A1}(n) \in \Theta$$
 (1)
 $T_{A2}(n) \in \Theta$ (n)
 $T_{A3}(n) \in \Theta$ (n²)

```
Problema: Búsqueda elemento en un vector de n elementos
Talla: n
función Secuencial (v:vector[1..n] de enteros; x:entero) devulve lógico;
var enc:lógico; i:entero finvar;
       i:=1; enc:=falso;
       mientras ((ix=n) \( \) not enc) entonces
               si v[i]=x entonces enc:=cierto {instrucción critica}
               sino i:=i+1 finsi;
                                                       T(n) \in \Omega(1)
        devuelve enc
```

finfunción;

 $T(n) \in O(n)$

```
{Vector Ordenado Ascendentemente}
función Binaria (v:vector [1..n] de enteros; x: entero) devuelve lógico;
var izq, der, med: entero; enc:lógico finvar;
       izq:=1; der:=n; enc:=falso;
       repetir
               med:=(izg+der) div 2;
               si v[med] =x entonces enc:=cierto {instrucción critica}
               sino si v[med] > x entonces der:=med - 1
                       sino izq := med + 1
                       finsi
               finsi
        hasta enc \vee (izg>der);
        devuelve enc
                                                     T(n) \in \Omega(1)
finfunción:
                                                  T(n) \in O(\log_2 n)
```

Notación O

```
Definición: Se dice que:
```

```
g es como mucho del orden de f, o que
```

g crece más lentamente o igual que f, o que

f es una cota superior de g,

sii $\exists c>0, \exists n_0 \in \mathbb{N}: g(n) \leq c f(n) \forall n \geq n_0$

f, g, f₁, f₂, y f₃ serán funciones de N en R⁺

 $O(f(n)) = \{funciones que son como mucho del orden de f(n)\}$

$$3n \in O(n^2)$$
: $c=3$, $n_0=0$ $g(n) = 3n \le c \cdot f(n) = 3n^2 \forall n \ge 0$

$$3n \in O(n)$$
: $c=3$, $n_0=0$ $g(n) = 3n \le 3n = c \cdot f(n) \forall n \ge 0$

$$n \in O(n)$$
: $c=1$, $n_0=0$ $g(n) = n \le n = c \cdot f(n) \forall n \ge 0$

Notación Ω

Definición: Se dice que:

g es como mínimo del orden de f, o que g crece más rapidamente o igual que f, o que f es una cota inferior de g,

sii $\exists c>0, \exists n_0 \in \mathbb{N}: c f(n) \leq g(n) \forall n \geq n_0$

 Ω (f(n)) ={funciones que son como mínimo del orden de f(n)}

$$3n \in \Omega(n)$$
: $c=1, n_0=0$ $c \cdot f(n) = 1 \cdot n \le 3n = g(n) \forall n \ge 0$

$$n^2 \in \Omega(3n)$$
: $c=1, n_0=3$ $c \cdot f(n) = 1 \cdot 3n \le n^2 = g(n) \forall n \ge 3$

$$n^2 \in \Omega(n)$$
: $c=1, n_0=0$ $c \cdot f(n) = 1 \cdot n \le n^2 = g(n) \forall n \ge 0$

$$n^2 \in \Omega(n^2)$$
: $c=1, n_0=0$ $c \cdot f(n) = 1 \cdot n^2 \le n^2 = g(n) \forall n \ge 0$

```
Notación O
Definición: Se dice que:
         g es del orden de f, o que
         q crece más igual de rapidamente que f, o que
         f es una cota inferior e superior de q
         sii \exists c,d >0, \exists n_0 \in \mathbb{N}: c g(n) \leq f(n) \leq d g(n) \forall n \geq n_0
         3n \in \Theta(n):
                       3n \in O(n), 3n \in \Omega(n)
                          d=3, n_0=0 f(n) = 3n \le 3n = d \cdot g(n) \forall n \ge 0
                          c=1, n_0=0 c·g(n) = 1·n \leq 3n = f(n) \foralln\geq0
```

Introducción CNU - ALG

 Se estudian algoritmos para implementar métodos numéricos:

Ejemplos

- Sistemas lineales
- Sistemas lineares
 Interpolación
 Integración, etc.
- Estos problemas se caracterizan por:
 - Elevada complejidad temporal (O(n³))
 - Elevado tamaño de los datos
 - Se requiere una solución en un tiempo limitado
 - (ejemplo: Predicción Meteorológica)
- Las estrategias de diseño de los algoritmos numéricos son las mismas que las estrategias utilizadas en ALG

Estudio de la Complejidad

Tiempos de ejecución en una máquina capaz de ejecutar 10⁹ pasos de programa por segundo (1000 MIPS)

	n (Talla)					
Pasos	1	8	32	10 ³	10 ⁶	10 ⁹
log ₂ n	< 1 ns	3 ns	5 ns	10 ns	20 ns	30 ns
n	1 ns	8 ns	32 ns	1 μs	1 ms	1 s
nlog ₂ n	< 1 ns	24 ns	160 ns	10 μs	20 ms	30 s
n ²	1 ns	64 ns	1 μs	1 ms	17 min	38 años
n ³	1 ns	512 ns	33 μs	1 s	38 años	> 10 ¹⁰ años
2 ⁿ	2 ns	256 ns	4.3 s	> 10 ²⁹¹ años	> 10 ^{300K} años	>10 ^{300M} años
n!	1 ns	40 μs	> 10 ¹⁸ años	> 10 ^{2K} años	> 10 ^{5M} años	>10 ^{9000M} años
n ⁿ	1 ns	17 ms	> 10 ³¹ años	>10 ^{3K} años	> 10 ^{6M} años	>10 ^{9000M} años

Estudio de la Complejidad

Dos tipos de análisis:

- A priori (asintótico)
- Independiente de la máquina y del lenguaje utilizado, así como de la carga de la misma
- Dependiente del diseño del algoritmo y de los datos Dos tipos:
 - ALG: Instrucción crítica (MIPS)
 - CNU: Número de FLOPS
- A posteriori (técnica de temporización)
 Dependiente de la máquina utilizada, así como de la carga de la misma

Estudio de la Complejidad

Situación Real

Se está trabajando en una empresa y el jefe plantea alguna de las dos situaciones siguientes:

- A. La empresa dispone de una máquina y hay que averiguar si un <u>algoritmo</u> se ejecutará en menos de un tiempo dado
- B. Hay que averiguar qué máquina le interesa comprar a la empresa para que un algoritmo se ejecute en menos de un tiempo dado

¿Qué tipo de análisis de complejidad interesa utilizar para cada situación?

Descripción del problema

Dado el polinomio

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

se quiere calcular el valor de $P_n(x)$ en el punto x_0 , es decir,

$$P_n(x_0) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_1 x_0 + a_0$$

Diseño de la estructura de datos

- Es necesario definir una estructura de datos que permita representar al polinomio $P_n(x)$
- Lo más adecuado es utilizar un vector donde se almacenen los n+1 coeficientes: a_0 , a_1 , a_2 ,..., a_n

```
tipo
polinomio=vector [0..n] de real;
fintipo
...
```

Algoritmo 1: Iterativo, coste cuadrático con la talla

```
funcion polIt(e/s p:polinomio; x:real) devuelve real;
var streal; itentero; finyar
s:=0;
para i:=0 hasta n
       s:=s+p[i]^*potencia(x,i);
finpara
devuelve s;
finfuncion
```

```
funcion potencia(base:real;exp:entero)
var j: entero; res: real; tinvar
       res:=1;
        para j:=1 hasta exp
               res:=res*base;
       fingara
        devuelve res;
finfuncion
```

Algoritmo 1: Análisis del Coste

$$t_{potencia}(\exp) \in \Theta(\exp)$$

$$t_{polIt}(n) = \sum_{i=0}^{n} t_{potencia}(i) = \sum_{i=0}^{n} \Theta(i)$$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^2)$$

Flops

$$f_{potencia}(\exp) \equiv \exp$$

$$f_{polIt}(n) = \sum_{i=0}^{n} 2 + f_{potencia}(i) = \sum_{i=0}^{n} (2+i) = 2n + \frac{n(n+1)}{2} \approx \frac{n^2}{2} \in \Theta(n^2)$$

Análisis del Coste del Algoritmo 1 (A priori)

Análisis del Coste del Algoritmo 1 (A posteriori)

Ejemplo: n = 4

$$P_{4}(x_{0}) = a_{4}x_{0}^{4} + a_{3}x_{0}^{3} + a_{2}x_{0}^{2} + a_{1}x_{0} + a_{0} =$$

$$(a_{4}x_{0}^{3} + a_{3}x_{0}^{2} + a_{2}x_{0} + a_{1})x_{0} + a_{0} =$$

$$((a_{4}x_{0}^{2} + a_{3}x_{0} + a_{2})x_{0} + a_{1})x_{0} + a_{0} =$$

$$((a_{4}x_{0}^{2} + a_{3})x_{0} + a_{2})x_{0} + a_{1})x_{0} + a_{0} =$$

$$S^{(4)}((a_{4}x_{0} + a_{3})x_{0} + a_{2})x_{0} + a_{1})x_{0} + a_{0}$$

$$S^{(3)} = S^{(4)} * x_{0} + a_{3}$$

$$S^{(2)} = S^{(3)} * x_{0} + a_{2}$$

$$S^{(1)} = S^{(2)} * x_{0} + a_{1}$$

$$S^{(0)} = S^{(1)} * x_{0} + a_{0}$$

Método de la multiplicación encajada

Algoritmo 2: Iterativo, coste lineal con la talla

Algoritmo 2: Análisis del Coste

$$t_{polIt2}(n) : \sum_{i=1}^{n} 1 = n \in \Theta(n)$$

Flops

$$f_{polIt2}(n) : \sum_{i=1}^{n} 2 = 2n \in \Theta(n)$$

Análisis del Coste del Algoritmo 2 (a priori)

Análisis del Coste del Algoritmo 2 (a posteriori)

Algoritmo 3: Recursivo, coste lineal con la talla

```
funcion polRe (e/s p:polinomio; x:real; i: entero) devuelve real;

var s: real; finvar

si i=n entonces s:=p[n]

sino s:=p[i]+x*polRe(p,x,i+1)

finsi
devuelve s

finfuncion
```

(Llamada inicial con i=0)

Talla:
$$m \approx n-i$$

$$t(m) = \begin{cases} k_1 & m=0 \\ k_2+t(m-1) & m>0 \end{cases}$$

Algoritmo 3': Recursivo

```
tipo

polinomio_ex=vector [O..NMax] de real;
fintipo

funcion polRe (e/s p:polinomio_ex; x:real; i, n: entero) devuelve real;

{idem}
finfuncion
```

Producto de una Matriz Cuadrada por un Vector

$$t_{mv2}(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(1) \Rightarrow \sum_{i=1}^{n} \sum_{j=i}^{n} 1 = \sum_{i=1}^{n} (n-i+1) = n^{2} - \sum_{i=1}^{n} i + n = \frac{n^{2}}{2} + \frac{n}{2} \Rightarrow t_{mv2}(n) \in \Theta(n^{2})$$

$$f_{mv2}(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} 2 = \sum_{i=1}^{n} 2(n-i+1) = n^{2} + n \Rightarrow f_{mv2}(n) \approx n^{2}$$

Cálculo de la Integral con el Método de los Rectángulos

Descripción del problema

- Dada la función f(x), se pretende calcular la integral de dicha función en el intervalo [a,b]
- Esta se define como el área dibujada en la figura

Cálculo de la Integral con el Método de los Rectángulos

Método a utilizar: Rectángulos

 Consiste en dividir el intervalo [a,b] en N intervalos de tamaño h=(b-a)/N. En el ejemplo de la figura N=4

- La integral se aproxima mediante la suma de los rectángulos de la figura
- Si se llama x_i al punto medio de cada intervalo i, entonces el área del rectángulo i será $h*f(x_i)$, i=1, 2, 3 y 4

Cálculo de la Integral con el Método de los Rectángulos

Se pide

- Implementa un algoritmo que implemente el método de los rectángulos utilizando un esquema iterativo. Supondremos que la función f(x) es un polinomio de grado n, es decir $f(x)=P_n(x)$. Entradas: P_n , h, a, b
- Implementa un algoritmo que implemente el método de los rectángulos utilizando un esquema recursivo. Supondremos que la función f(x) es un polinomio de grado n, es decir $f(x)=P_n(x)$. Entradas: P_n , h, I, J (Llamada inicial con I=a y J=b)
- Analiza asintóticamente el coste temporal de ambos algoritmos

Cálculo de la Integral con el Método de los Rectángulos

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + ... + a_1 x + a_0$$

Talla subproblema: m

Complejidad algoritmo: $t(m) \in \Theta(m)$

Talla problema: n, m

n intervalos (e.g. n=4) de tamaño h=(b-a)/n

$$t(n,m) \in \Theta(n^*m)$$

si $n > m \approx t(n) \in \Theta(n)$

Ejercicios Propuestos Cálculo de Raíces Mediante el Método de Bisección

Descripción del problema

Dada la función f(x), se pretende calcular una raíz de dicha función en el intervalo [a,b]. Es decir, calcular el punto c donde f(c)=0

Para asegurar que la función f(x) tiene, al menos, una raíz en el intervalo [a,b] debe cumplirse que f(a)f(b)<0 (Teorema de Bolzano)

Ejercicios Propuestos Cálculo de Raíces Mediante el Método de Bisección

Método a utilizar: Bisección

- El método de Bisección divide el intervalo inicial [a,b]=[I,J] (inicialmente I=a y J=b) en dos intervalos de igual tamaño [I,m] y [m,J]
- De esos dos intervalos se selecciona aquel en el que se satisface el teorema de Bolzano. En el caso de la figura el intervalo izquierdo, ya que f(I)f(m) < 0

Cálculo de Raíces Mediante el Método de Bisección

Se pide

- Implementa un algoritmo que implemente el método de Bisección utilizando un esquema iterativo. Supondremos que la función f(x) es un polinomio de grado n, es decir $f(x)=P_n(x)$. Entradas: P_n , a, b y tol (tolerancia)
- Implementa un algoritmo que implemente el método de Bisección utilizando un esquema recursivo. Supondremos que la función f(x) es un polinomio de grado n, es decir $f(x)=P_n(x)$. Entradas: P_n , I, J (llamada inicial I=a y J=b) y tol (tolerancia)
- Analiza asintóticamente el coste temporal de ambos algoritmos

Cálculo de Raíces Mediante el Método de Bisección

Talla problema: n,p

$$\begin{split} n &= (b-a)/\epsilon \\ p &: f(x) = a_p x^p + a_{p-1} x^{p-1} + ... + a_1 x + a_0 \\ &\quad t(n,p) \in \Omega(p) \quad t(n,p) \in O(p^* log_2 n) \\ si \ n &> p \approx t(n) \in \Omega(1) \ t(p) \in O(log_2 n) \end{split}$$

Programación Paralela

Multicomputadores con memoria distribuida

