Final_Assignment_Machine_learning _Regression Problem statement

A client requirement is he wants to predict the insurance charges based on the several parameters. The client has provided the dataset of the same.

As a data scientist you must develop a model which will predict the insurance charges.

√ Identify the problem statement

After studied this problem statement clearly, I found three stages of model screening process, after this process we can tell, how the model should be for this assignment

Stage 1: ("Domain selection")

✓ Our dataset in numbers and our predicted column also in numbers so the machine learning domain gives best model among others.

Stage 2: ("Learning selection")

✓ We have clear input and output so we will go with supervised learning

Stage 3: ("Find classification or regression")

✓ Our output is numerical so that its regression

✓ Tell basic info about the dataset

Well, our dataset has **1338 rows and 6 columns**, mostly in numbers except the column name sex (Male, Female)

✓ Pre-processing method

Pre-processing is needed in our dataset because sex column has **nominal data**. So, we should convert this nominal data to number by using **one hot encoding method**

✓ Final good model

if r2_score near 1 we consider that best model, after compare other models with respective algorithms Support vector machine gives best model with r2_score 0.8734

✓ Comparison between different algorithms

i. Algorithm – Simple _Linear – regression – Our dataset has multiple inputs so we can't use this algorithm

- ii. Algorithm Multilinear regression R2_score 0.7894
- iii. Algorithm Support vector machine regression R2 score 0.7590
- iv. Algorithm Decision tree regression R2_score -0.7660
- v. Algorithm Random _Forest regression R2_score 0.8734

Following tabulation shows that r2_score with combination of respective fine turn hyper parameters

Algorithm – Support vector machine – Support vector regression

Si.no	Penalty	Linear	RBF	Poly	Sigmoid
	value (c)	r2_score	(nonlinear)	r2_score	r2_score
1	C=1.0	-0.1116	-0.088	-0.0642	-0.0899
2	C=100	0.5432	-0.1248	-0.0099	-0.1181
3	C=1000	0.6340	-0.1174	-0.0555	-
4	C=2000	0.6893	-0.1077	-0.0027	-
5	C=3000	0.7590	-0.0962	0.0489	-

Note: penalty value too high leads to overfitting

Best r2_score is - 0.7590

Algorithm – Decision tree – Decision tree regression

Si.no	Criterion	Splitter	Max_ features	Min_impurity (Float=0-1)	Ccp-alpha (Float=0- infiniti)	R2_score
1.	Mse	Best	None	0.0	0.0	0.6895
2.	Mse	Random	3	0.0	0.01	0.6926
3.	Mse	Best	Sqrt	0.1	0.0	0.7325
4.	Mse	Best	3	0.01	0.05	0.7277
5.	Mse	Random	None	0.1	0.05	0.7660
6.	Mse	Random	None	0.05	0.1	0.6730
7.	Mse	Best	Log2	0.05	0.1	0.7540
8.	Friedman_mse	Random	Sqrt	0.01	0.01	0.6680
9.	Friedman_mse	Best	None	0.0	0.0	0.6877
10.	Friedman_mse	Random	Log2	0.05	0.05	0.5899
11.	Friedman_mse	Random	None	0.0	0.01	0.7294
12.	Friedman_mse	Best	4	0.1	0.0	0.6280
13.	Mae	Best	Log2	0.05	0.1	0.6593
14.	Mae	Random	5	0.01	0.1	0.7284
15.	Mae	Random	Sqrt	0.01	0.0	0.7473
16.	Mae	Best	None	0.0	0.1	0.6716
17.	Mae	Best	2	0.1	0.05	0.7386

18.	Mae	Best	3	0.1	0.0	0.7005
-----	-----	------	---	-----	-----	--------

Note: Mse- mean squered error

Mae- mean absolute error

Best r2_score is - 0.7660

Algorithm – Random _Forest – regression

Si.no	N_Estimators	Criterion	Max_	Random_state	R2_score
			features		
1.	50	Mse	None	0.0	0.8498
2.	100	Mse	None	0.0	0.8538
3.	100	Mse	Sqrt	0.0	0.8710
4.	50	Mse	Sqrt	42	0.8727
5.	100	Mse	Log2	0.0	0.8710
6.	50	Mse	None	42	0.8569
7.	100	Mse	Log2	42	0.8734
8.	50	Friedman_mse	None	0.0	0.8500
9.	50	Friedman_mse	Sqrt	0.0	0.8702
10.	50	Friedman_mse	None	42	0.8560
11.	50	Friedman_mse	Log2	42	0.8721
12	50	Mae	None	0.0	0.8526
13	50	Mae	Log2	0.0	0.8708
14	50	Mae	Sqrt	0.0	0.8708
15	50	Mae	None	42	0.85035
16	50	Poisson	None	0.0	0.84910
17	50	Poisson	Sqrt	0.0	0.86323
18	50	Poisson	Log2	42	0.87104

Note: Mse- mean squared error

Mae- mean absolute error

Best r2_score is - 0.8734

Conclusion

After working with all Machine learning algorithms now we can compare and identify good model with fine tune hyper parameters. (Note: if r2_score is near 1 its consider as a good model)

The good model and r2_value of this dataset is - Algorithm - Random _Forest - Best r2_score is- 0.8734