Homework 5 + Population Bounds EE 668 — Information Theory

Name: Ali Zafari Student Number: 800350381 Fall 2022

Population Bounds

Population bounds have been plotted as shown below, for binary codewords of length n=245. If there were no constraint (requiring a minimum distance between codes) on assigning codewords, 2^{245} codes can be imagined. But with the constraint on having minimum distance between them, this number quickly drops down below 2^{120} ($\approx 10^{36}$).

Figure 1: Population bounds vs. normalized Hamming distance (n = 245)

For binary codewords of length n=10 (below) we can see that the EliasBassalygo is overestimating the upperbound by a value of near 2000, while with a binary code of length 10 the maximum number of possible codewords could be only 1024.

Figure 2: Population bounds vs. normalized Hamming distance (n = 10)

Problem 5.1

((a))

$$h(f) = -\int_0^\infty \lambda e^{-\lambda x} \ln(\lambda e^{-\lambda x}) dx$$
$$= -\lambda \ln(\lambda) \int_0^\infty e^{-\lambda x} dx + \lambda^2 \int_0^\infty x e^{-\lambda x} dx$$
$$= -\ln(\lambda) + 1$$

((b))

$$\begin{split} h(f) &= -\int_{-\infty}^{\infty} \frac{1}{2} \lambda e^{-\lambda|x|} \ln(\frac{1}{2} \lambda e^{-\lambda|x|}) dx \\ &= -\frac{\lambda}{2} \ln(\frac{\lambda}{2}) \int_{-\infty}^{\infty} e^{-\lambda|x|} dx + \frac{\lambda^2}{2} \int_{-\infty}^{\infty} |x| e^{-\lambda|x|} dx \\ &= -\ln(\frac{\lambda}{2}) + 1 \end{split}$$

((c)) Sum of two Gaussians, is again a Gaussian:
$$X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
$$h(f_{X_1 + X_2}) = \frac{1}{2} \ln(2\pi(\sigma_1^2 + \sigma_2^2)) + \frac{1}{2}$$

Problem 5.2

$$\begin{split} I(X;Y) &= h(X) + h(Y) - h(X,Y) \\ &= \frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2} \ln(2\pi\sigma^2) - \frac{1}{2} \ln((2\pi)^2 det(\Sigma)) \\ &= \frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2} \ln(2\pi\sigma^2) - \frac{1}{2} \ln((2\pi)^2 \sigma^4 (1 - \rho^2)) \\ &= -\frac{1}{2} \ln(1 - \rho^2) \end{split}$$

 \bullet $\rho = 1$:

 $I(X;Y) = \infty$. X and Y are completely correlated, and their mutual information explodes. (Degenerate Gaussian)

 \bullet $\rho = 0$:

I(X;Y) = 0. X and Y are independent. (And as a result, they are uncorrelated too. In the special case of Multivariate Gaussian, uncorrelated-ness and independence are the same thing)

• $\rho = -1$:

 $I(X;Y) = \infty$. X and Y are completely correlated, and their mutual information explodes. (Degenerate Gaussian)

Problem 5.3

For this simple distribution we are able to derive mean squared error analytically and take the derivative to find where its minimum value will occur.

$$E[(x-x')^{2}] = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-x^{2}/\sigma^{2}} (x+\hat{x})^{2} dx + \int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-x^{2}/\sigma^{2}} (x-\hat{x})^{2} dx$$
$$= \hat{x}^{2} + \sigma^{2} - \frac{4\hat{x}\sigma^{2}}{\sqrt{2\pi\sigma^{2}}}$$

Now taking the derivative with respect to \hat{x} :

$$\frac{\partial}{\partial \hat{x}} E[(x - x')^2] = 2\hat{x} - \frac{4\sigma^2}{\sqrt{2\pi\sigma^2}} = 0$$

$$\hat{x} = \sigma\sqrt{\frac{2}{\pi}}$$

So if $X \geq 0$ it will be quantized to $\sigma\sqrt{\frac{2}{\pi}}$, otherwise to $-\sigma\sqrt{\frac{2}{\pi}}$.

By substituting back to the expected squared error we can find distortion amount of this quantization scheme:

$$D = E[(x - x')^{2}] = (\sigma \sqrt{\frac{2}{\pi}})^{2} + \sigma^{2} - \frac{4\sigma \sqrt{\frac{2}{\pi}}\sigma^{2}}{\sqrt{2\pi\sigma^{2}}} = \frac{\pi - 2}{\pi}\sigma^{2}$$

The distortion bound for a rate of 1 bit, has the value of $0.25\sigma^2$, while the actual distortion we have calculated here is $0.36\sigma^2$ which has, as expected, higher value than the lower bound.

Problem 5.4

The general rate distortion objective is:

$$R(D) = \min_{p(\hat{x}|x): Distortion < D} I(X; \hat{X})$$

By assuming conditional probabilities as $p(0|0) = \alpha$ and $p(1|1) = \beta$ the other conditional probabilities will be calculated as $p(1|0) = 1 - \alpha$ and $p(0|1) = 1 - \beta$.

The distortion can be written as:

$$\begin{aligned} Distortion &= \sum p(x, \hat{x}) d(x, \hat{x}) \\ &= \sum p(x) p(\hat{x}|x) d(x, \hat{x}) \\ &= \frac{1}{2} (1 - \alpha) 2 + \frac{1}{2} (1 - \beta) 1 + \frac{1}{2} (\alpha) 0 + \frac{1}{2} (\beta) 0 \\ &= \frac{1 - \alpha}{2} 2 + \frac{1 - \beta}{2} \end{aligned}$$

and for the mutual information:

$$I(X; \hat{X}) = H(\hat{x}) - H(\hat{x}|x) = H(\frac{1+\alpha-\beta}{2}, \frac{1-\alpha+\beta}{2}) - \frac{1}{2}[H(\alpha, 1-\alpha) + H(\beta, 1-\beta)]$$

By using Lagrange multipliers, the final objective will be:

$$J = H(\frac{1+\alpha-\beta}{2}, \frac{1-\alpha+\beta}{2}) - \frac{1}{2}[H(\alpha, 1-\alpha) + H(\beta, 1-\beta)] + \lambda(\frac{1-\alpha}{2}2 + \frac{1-\beta}{2}1)$$

By setting the derivative equal to zero, we will have 3 equations to be solved simultaneously, and then optimal α and β will be found. Then by resubmitting those three values into mutual information we will get the rate as a function of distortion.

$$\log \frac{(1-\alpha+\beta)/2}{(1+\alpha-\beta)/2} - \log \frac{1-\alpha}{\alpha} - 2\lambda = 0$$
$$-\log \frac{(1-\alpha+\beta)/2}{(1+\alpha-\beta)/2} - \log \frac{1-\beta}{\beta} - \lambda = 0$$
$$\frac{1-\alpha}{2} 2 + \frac{1-\beta}{2} = D$$

Problem 5.5

((a))

$$D(f_1||f_2) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-x^2/\sigma_1^2} \left[\frac{1}{2}\ln(\frac{\sigma_2^2}{\sigma_1^2}) - \frac{x^2}{2\sigma_1^2} + \frac{x^2}{2\sigma_2^2}\right] dx$$
$$= \frac{1}{2}\ln(\frac{\sigma_2^2}{\sigma_1^2}) + \frac{1}{2}\frac{\sigma_1^2}{\sigma_2^2} - \frac{1}{2}$$

((b))

$$D(f_1||f_2) = \int_0^\infty \lambda_1 e^{-\lambda_1 x} \left[\ln(\frac{\lambda_1}{\lambda_2}) - \lambda_1 x + \lambda_2 x\right] dx$$
$$= \ln(\frac{\lambda_1}{\lambda_2}) + \frac{\lambda_2}{\lambda_1} - 1$$

((c))

$$D(f_1||f_2) = \int_0^a 1 \times \ln(\frac{1}{0}) + \int_a^1 1 \times \ln(\frac{1}{1})$$

= \infty

((d))

$$D(f_1||f_2) = \frac{1}{2} \times \ln(\frac{1/2}{1}) + \frac{1}{2} \times \ln(\frac{1/2}{0})$$

= ∞

Problem 5.6

((a))

$$D(p_0||p_1) = \sum_{x} p_0(x) \log(\frac{p_0(x)}{p_1(x)})$$

$$= \sum_{x} (\frac{1}{2})^x \log(\frac{(\frac{1}{2})^x}{qp^{x-1}})$$

$$= \sum_{x} (\frac{1}{2})^x (-x \log(2p)) + \sum_{x} (\frac{1}{2})^x \log(\frac{p}{q})$$

$$= \log(\frac{1}{4p^2}) + \log(\frac{p}{q})$$

$$= -\log(4pq)$$

((b)) The exponent of error (Chernoff Information) is as follows:

$$-\min_{0 \le \lambda \le 1} \log(\sum p_0^{\lambda}(x) p_1^{1-\lambda}(x))$$

The expression will be a function of λ :

$$\sum p_0^{\lambda}(x)p_1^{1-\lambda}(x) = \left(\frac{q}{p}\right)^{1-\lambda} \sum \left(\frac{p^{1-\lambda}}{2^{\lambda}}\right)^x$$
$$= \frac{p^{\lambda}q^{1-\lambda}}{(2p)^{\lambda} - p}$$

after taking the log of the above expression, now we take the derivative of objective function and set it to zero:

$$-\log(q) + \log(p) - \frac{1}{(2p)^{\lambda} - p} (2p)^{\lambda} \log 2p = 0$$
$$\lambda = \frac{1}{\log 2p} \log(\frac{\log q/p}{\log 2q})$$

Problem 5.7

From Sanov's theorem we knew that:

$$Pr(\frac{1}{n}\sum X_i^2 \ge \alpha^2) \doteq e^{-n\inf_{P*\in\mathcal{E}} D(P*||\mathcal{N}(0,1))}$$

by taking log from both sides, we will have the exponent:

$$D(P^*||Q) = -\frac{1}{n} \log Pr(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \ge \alpha^2)$$

$$D(P^*||Q) = \int_{0}^{\infty} f(x) \ln \frac{f(x)}{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}} dx$$

$$= -h(f) + \frac{1}{2\sigma^2} \mathbb{E}[X^2] + \frac{1}{2} \ln 2\pi\sigma^2$$

As relative entropy always is greater than zero, to have $D(P^*||Q)$ minimized, we need the h(f) to be maximized. Among all continuous random variables, Gaussian random variable has the maximum entropy, so $f = \mathcal{N}(0, \alpha^2)$.

Therefore we have the minimum value exponent of Sanov's equation, as:

$$D(P^*||Q) = -\frac{1}{2}\ln(2\pi\alpha^2) - \frac{1}{2} + \frac{\alpha^2}{2\sigma^2} + \frac{1}{2}\ln 2\pi\sigma^2$$
$$= \frac{\alpha^2}{2\sigma^2} + \frac{1}{2}\ln\frac{\sigma^2}{\alpha^2} - \frac{1}{2}$$

Appendix

Listing 1: Matlab Code to Plot Bounds

```
clc;
 1
 2
   clear all;
 3
   close all;
 4
 5
   n = 245;
 6
   number_of_points = 14;
   %% Hamming Bound
 9
10 | e = 0.10;
   hamx = zeros(number_of_points);
12 | hamy = zeros(number_of_points);
13
   syms j;
14
15
   for i = 1:number_of_points
        r = floor(n*e);
16
17
       d = (2 * r) + 1;
18
       hamx(i) = e;
19
       hamy(i) = 2^n / symsum(nchoosek(n, j), j, 0, r);
20
       e = e + 0.02;
21
   end
22
   %% Plotkin Bound
23
24
25
   e = 0.10;
   plotkinx = zeros(1,number_of_points);
26
27
   plotkiny = zeros(1,number_of_points);
28
29
   for i = 1:number_of_points
30
        r = n * e;
31
        r = floor(r);
32
       d = (2 * r) + 1;
33
       plotkinx(i) = e;
34
        if mod(d,2) == 0 \&\& (2 * d) > n
35
            plotkiny(i) = 2*(d/(2*d)-n);
36
       elseif mod(d,2) == 1 \&\& (2*d) + 1 > n
            plotkiny(i) = 2 * ((d + 1) / ((2 * d) + 1 - n));
37
```

```
elseif mod(d,2) == 0 \&\& 2 * d == n
38
39
            plotkiny(i) = 4 * d;
40
       elseif mod(d,2) == 1 \&\& (2 * d) + 1 == n
41
            plotkiny(i) = (4 * d) + 4;
42
       else
43
                disp(not valid.);
44
       end
45
       e = e + 0.02;
46
   end
47
48
   %% Elias—Bassalygo Bound
49
50 | e = 0.10;
   ebx = zeros(number_of_points);
51
   eby = zeros(number_of_points);
53
54
   for i=1:8
       r = floor(n * e);
55
56
       d = (2 * r) + 1;
       ebx(i) = e;
57
58
        Jnr = floor((n / 2) * (1 - sqrt(1 - ((2 * (2 * r + 1)) / n))));
59
       eby(i) = floor((n * 2^n(n + 1)) / nchoosek(n, Jnr));
60
61
       e = e + 0.02;
62
   end
63
64
   %% Gilbert—Varshamov Lower Bound
65
66 | e = 0.10;
67
   gvx = zeros(number_of_points);
68
   gvy = zeros(number_of_points);
69
70 | for i = 1:number_of_points
71
        r = floor(n * e);
72
       d = (2 * r) + 1;
73
       gvx(i) = e;
74
       gvy(i) = ceil((2^n) / symsum(nchoosek(n, j), j, 0, 2 * r));
75
       e = e + 0.02;
76 end
77
78
```

```
% Plotting
79
80
81
   h0 = semilogy(plotkinx, plotkiny, 'r-*', 'LineWidth', 3, 'MarkerSize',10);
82 hold on;
83
   h1 = semilogy(hamx, hamy, 'b:o', 'LineWidth', 3, 'MarkerSize',10);
84
85 h2 = semilogy(gvx, gvy, 'g-.+', 'LineWidth', 3, 'MarkerSize', 10);
   h3 = semilogy(ebx, eby, 'k—d', 'LineWidth', 3, 'MarkerSize', 10);
86
87
88 | lgd = legend([h0, h1(1), h2(1), h3(1)], 'Plotkin', 'Hamming', 'Gilbert-
       Varshamov', 'Elias—Bassalygo');
89 | title(lgd, 'Bounds');
90 grid on;
91 |xlim([0.10 0.36]);
92 | set(gca, 'FontSize', 20);
93 | ylabel('Population');
94 | xlabel(sprintf('Radius in Normalized HD (n=%d)', n));
```