CS 70 Fall 2020

Discrete Mathematics and Probability Theory

DIS 02A

1 Stable Matching

Consider the set of candidates $C = \{1, 2, 3\}$ and the set of jobs $J = \{A, B, C\}$ with the following preferences.

С		J	
1	Α	В	С
2	В	A	С
3	Α	В	С

J		С	
A	2	1	3
В	1	2	3
С	1	2	3

Run the applicant propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work)

ow your work)			
Jall propose	Day 1	Day 2	Day 3
1 2 3	Bc	B A C	(C)

2 Good, Better, Best

In a particular instance of the stable marriage problem with n applicants and n jobs, it turns out that there are exactly three distinct stable matchings, S_1 , S_2 , and S_3 . Also, each applicant m has a different partner in the three matchings. Therefore each applicant has a clear preference ordering of the three matchings (according to the ranking of his partners in his preference list). Now, suppose for applicant m_1 , this order is $S_1 > S_2 > S_3$.

Prove that every applicant has the same preference ordering $S_1 > S_2 > S_3$. Two ordering $S_1 > S_2 > S_3$.

Hint: Recall that a applicant-optimal matching always exists and can be generated using applicant proposes matching algorithm. By reversing the roles of stable matching algorithm, what other matching can we generate?

$$S_1 > S_3$$

For everyone's $(M_1, j) \in S_1$
 $S_1 > S_2$
 $S_2 > S_3$
 $S_1 > S_2 > S_3$