Database Technology

Topic 6: Functional Dependencies and Normalization

Olaf Hartig

Informal Measures

Motivation

- How can we be sure that the translation of an EER diagram into a relational schema results in a good database design?
- Given a deployed database, how can we be sure that it is well-designed?
- What is a good database design?
 - Informal measures
 - Formal measure: normal forms
 - · Definition based on functional dependencies

Database Technology Topic 6: Functional Dependencies and Normalization

Example of Bad Design

 EMP_DEPT

 Ename
 Ssn
 Bdate
 Address
 Dnumber
 Dname
 Dmgr_ssn

- Every tuple contains employee data and department data
- Redundancy
- Dname and Dmgr_ssn repeated for every employee in a department
- Potential for too many NULL values
 - Employees not in any department need to pad tuples with NULLs
- Update anomalies
- Deleting the last employee in a department will result in deleting the department
- Changing the department name or manager requires many tuples to be updated
- Inserting employees requires checking for consistency of its department name and manager

Database Technology Topic 6: Functional Dependencies and Normalization

Informal Measures

- Easy-to-explain meaning for each relation schema
 - Each relation schema should be about only one type of entities or relationships
 - Natural result of good ER design
- Minimal redundant information in tuples
 - Avoids update anomalies
 - Avoids wasted space
- Minimal number of NULL values in tuples
 - Avoids inefficient use of space
 - Avoids costly outer joins or other special treatment in queries
 - Avoids ambiguous interpretation (e.g., unknown vs. does not apply)

Database Technology Topic 6: Functional Dependencies and Normalization

Quiz

The above relation schema representing the relationship between employees and the projects which they work on \dots

- A. ... is an example of good design
- B. ... does not allow for an employee to work a different number of hours on each project that employee is assigned to
- C. ... uses exactly one tuple to record an employee's name
- D. ... cannot be used in a straightforward manner to record the name and location of a project that has no employees assigned

Database Technology Topic 6: Functional Dependencies and Normalization

6

Foundations of Formal Measures

Functional Dependencies (FDs) – Idea

- Assume that no two actors have the same name
- Each actor has a unique city of birth in some country
- Thus, given an actor's name, there is only one possible value for birth city and country
- name → cityOfBirth
- name → countryOfBirth
- However, given a country of birth, we do not have a unique corresponding name
 - countryOfBirth \rightarrow name
- Cannot tell from the example whether city determines name or country

Actor		
name	cityOfBirth	countryOfBirth
Ben Affleck	Berkeley	USA
Alan Arkin	New York	USA
Tommy Lee Jones	San Saba	USA
John Wells	Alexandria	USA
Steven Spielberg	Cincinnati	USA
Daniel Day-Lewis	Greenwich	UK

Database Technology Topic 6: Functional Dependencies and Normalization

Preliminary Definition

Let R be a relational schema with the attributes $A_1, A_2, ..., A_n$, let X be a subset of $\{A_1, A_2, ..., A_n\}$, and let t be a tuple for R. Then, we write t[X] to denote the sequence of values that t has for the attributes in set X.

- Example:
 - Assume X = {cityOfBirth} and Y = {name, cityOfBirth}
 - Let t be the first tuple in the example table
 - Then, t[X] is the tuple ('Berkley')
 and t[Y] is the tuple

and t[Y] is the tuple ('Ben Afflect', 'Berkley')

ACIOI		
name	cityOfBirth	countryOfBirth
Ben Affleck	Berkeley	USA
Alan Arkin	New York	USA
Tommy Lee Jones	San Saba	USA
John Wells	Alexandria	USA
Steven Spielberg	Cincinnati	USA
Daniel Day-Lewis	Greenwich	UK

Database Technology Topic 6: Functional Dependencies and Normalization

Functional Dependencies (FDs) - Definition

Constraint between two sets of attributes from a relation

Let R be a relational schema with the attributes $A_1, A_2, ..., A_n$ and let X and Y be subsets of $\{A_1, A_2, ..., A_n\}$. Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on any valid relation state r of R. For any two tuples t_1 and t_2 in state r we have that: if $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$.

- We say "X determines Y" or "Y depends on X"

Database Technology Topic 6: Functional Dependencies and Normalization

Trivial Functional Dependencies

- Some dependencies must always hold
- Examples:
 - $\{name, cityOfBirth\} \rightarrow \{name, cityOfBirth\}$
 - $\{name, cityOfBirth\} \rightarrow \{name\}$
 - {name, cityOfBirth} → {cityOfBirth}
- Formally:
 - Let R be a relation schema. and
 - let X and Y be subsets of attributes in R.
 - If Y is a subset of X, then $X \rightarrow Y$ holds trivially.

Database Technology Topic 6: Functional Dependencies and Normalization

Identifying Functional Dependencies

- Property of the semantics (the meaning) of the attributes
- Recognized and recorded as part of database design
- Given an arbitrary relation state,
 - we cannot determine which FDs hold
 - we can observe that an FD does not hold if there are tuples that violate the FD

LU LINKÖPING UNIVERSITY

Database Technology Topic 6: Functional Dependencies and Normalization 12

Running Example

Consider the following relation schema

R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry)

Functional dependencies?

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent FD4: Continent → ContinentArea

LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization

13

Implication and Closure

- Let R be a relational schema and let F be a set of FDs for R
- Definition: F is said to logically imply an FD X → Y if this FD holds in all instances of R that satisfy all FDs in F
 - Example: $F = \{ FD3, FD4 \}$ with FD3: Country \rightarrow Continent and FD4: Continent \rightarrow ContinentArea

Then, F logically implies FD5: Country \rightarrow ContinentArea

- Definition: The closure of F, denoted by F+, is the set of all FDs that are logically implied by F
- Clearly, F is a subset of F+. However, what else is in F+?

LU LINKÖPING UNIVERSITY

Database Technology Topic 6: Functional Dependencies and Normalization

Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$

(we use XY as a short form for $X \cup Y$)

- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These three rules are sound
 - i.e., given a set F of FDs, any FD that can be derived by applying these rules repeatedly is in F+
- These three rules are complete
 - i.e., given a set F of FDs, by applying these rules repeatedly, we will eventually find every FD that is in F⁺

LU LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization

Reasoning About FDs (cont'd)

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$

(we use XY as a short form for $X \cup Y$)

- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Additional rules can be derived:
- Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$
- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Pseudo-transitivity: If $X \to Y$ and $WY \to Z$, then $WX \to Z$

LINKÖPING UNIVERSITY Database Technology Topic 6: Functional Dependencies and Normalization

16

Running Example (cont'd)

- Recall R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry) with:
 - FD1: PID → PersonName
 - FD2: PID, Country → NumberVisitsCountry
 - FD3: Country → Continent
 - FD4: Continent → ContinentArea
- Show that we also have FD': PID,Country → NumberVisitsCountry, Continent, ContinentArea, PersonName
 - FD5: Country → ContinentArea (transitive rule with FD3 and FD4)
 - FD6: Country → Continent, ContinentArea (union rule with FD3 and FD5)
 - FD7: PID, Country → PID, Continent, ContinentArea (augmentation of FD6)
 - FD8: PID, Country \rightarrow Continent, ContinentArea (decomposition of FD7)
 - FD9: PID, Country -> PersonName (augmentation + decomposition FD1)
 - Finally, FD' by union rule with FD2, FD8, and FD9

LIU LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization **Revisiting Keys**

- Given a relation schema R with attributes A₁, A₂, ..., A_n
 X a subset of these attributes, and F is a set of FDs for R
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ is in F^+
 - Often written as $X \to R$
- Given a set F of FDs, how can we easily test whether $X \to R$ is in F^+ ?

Let F be a set of FDs over the attributes of a relation R and let X be a subsets of these attributes.

The **attribute closure** of X w.r.t. F is the maximum set of attributes functionally determined by X.

- If the attribute closure of X contains all attributes, we have $X \to R$
- The attribute closure can be computed in polynomial time ...

LU LINKÖPING

Picture source: https://pixabay.com/en/key-keychain-house-keys-door-key-2744636/

PING ERSITY Picture source: https://pixabay.com/en/key-кеусп abase Technology

Computing (Super)Keys

```
function ComputeAttrClosure( X, F)
begin
    X^{+} := X:
    while F contains an FD Y \rightarrow Z such that
          (i) Y is a subset of X^+, and
          (ii) Z is not a subset of X^+ do
         X^+ := X^+ \cup Z;
    end while
    return X+;
end
                ■ Example: Recall R( PID, PersonName, Country, Continent,
                                      ContinentArea, NumberVisitsCountry) with:
                    FD1: PID → PersonName
                    FD2: PID, Country → NumberVisitsCountry
                    FD3: Country → Continent
                    FD4: Continent → ContinentArea
```

The attribute closure of $X = \{ PID, Country \} w.r.t. FD1-FD4 is \{ PID, Country \} w.r$ Country, PersonName, NumberVisitsCountry, Continent, ContinentArea }

LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization

Revisiting Keys (cont'd)

- Given a relation schema R with attributes $A_1, A_2, ..., A_n$ X a subset of these attributes, and F is a set of FDs for R
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ is in F^+
 - Often written as $X \to R$
 - Can be tested easily by computing the attribute closure of X
- However, not every superkey is a candidate key
- To determine that X is a **candidate key** of R, we also need to show that no proper subset of X determines R
 - i.e., there does not exist a Y such that $Y \subseteq X$ and $Y \rightarrow R$
- Hence, identifying all candidate keys is a matter of testing increasingly smaller subsets of $\{A_1, A_2, ..., A_n\}$

LU LINKÖPING UNIVERSITY

Picture source: https://pixabay.com/en/key-keychain-house-keys-door-key-2744636/

Overview

- (1NF, 2NF,) 3NF, BCNF (4NF, 5NF)
 - BCNF: Boyce-Codd Normal Form
- Relation in higher normal form also satisfies the conditions of every lower normal form
- The higher the normal form, the less the redundancy
- 3NF and BCNF are our formal measure of good database design
 - Reduce redundancy
 - Reduce update anomalies
- Normalization: process of turning a set of relations that are in lower normal forms into relations that are in higher normal forms
 - by successively decomposing lower normal form relations

LU LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization

LU LINKÖFINS UNIVERSITY

Normal Forms

- Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD $X \rightarrow Y$ in F^+ we have that X is a superkey
 - Note that it is sufficient to check the FDs in F

Boyce-Codd Normal Form (BCNF)

Example relation that is not in BCNF:

<u>ID</u>	Name	Zip	City
100	Andersson	58214	Linköping
101	Björk	10223	Stockholm
102	Carlsson	58214	Linköping

FD1: Zip → City FD2: ID → { Name, Zip, City }

- Why do we want to avoid FDs whose left-hand-side is not a superkey?
 - Set of attributes that is not a superkey can have repeated values
 - So may have the attributes that depend on it
 - · Hence, redundancy and, thus, waste of space and update anomalies

LINKÖPING UNIVERSITY

Database Technology Topic 6: Functional Dependencies and Normalization

Quiz (Running Example)

- Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD $X \rightarrow Y$ in F^+ we have that X is a superkey
- Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: $PID \rightarrow PersonName$

FD2: PID, Country - NumberVisitsCountry

FD3: Country → Continent FD4: Continent - ContinentArea

Is R in BCNF?

Yes / No

What can we do about it? ▶ Decompose R

LU LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization

Desirable Propertiesof Decompositions

LINKOKNS UNIVERSITY

Attribute Preservation

- Of course, keep all the attributes from the initial schema!
- Formally
 - Suppose attr(R) denotes the set of attributes in a relation schema R
 - Then, given a relation schema R, a set of relation schemas $R_1, ..., R_n$ is an attribute-preserving decomposition of R if $\mathsf{attr}(R) = \mathsf{U}_{i=1...n} \, \mathsf{attr}(R_i)$

Database Technology Topic 6: Functional Dependencies and Normalization

Dependency Preservation

- Idea: every FD of the initial schema can be recovered based on the FDs of the schemas in the decomposition
- Example: Consider R(Proj, Dept, Div) with FD1: Proj → Dept FD2: Dept → Div FD3: Proj → Div
 - R is not in BCNF (why?)
 - Two alternative decompositions into BCNF relations:

D1: R1(Proj, Dept) with FD1 and R2(Dept, Div) with FD2

D2: R1(Proj, Dept) with FD1 and R3(Proj, Div) with FD3

- D2 does not preserve FD2!
- D1 preserves FD3 because in D1, FD3 can be reconstructed by applying the transitivity rule to FD1 and FD2

Database Technology Topic 6: Functional Dependencies and Normalization

Dependency Preservation (formally)

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Picture source: https://pixabay.com/en/search-to-find-internet-1013910

Database Technology Topic 6: Functional Dependencies and Normalization

Non-Additive Join Property

- Also called lossless join property
- It must be possible that if we join the relations R₁, ..., R_n, then we recover the initial relation R without generating additional tuples (also called "spurious tuples")
- Example for a decomposition that does not have the property
 - Consider R(Student, Assignment, Mark)
 - Decomposition into R1(Student, Mark) and R2(Assignment, Mark)
 - There are instances of R for which joining their decomposed R1 and R2 (by R1.Mark=R2.Mark) result in another instance of R containing additional ("spurious") tuples that were not in the initial instance of R

Student	Assignment	Mark
Alice	A1	100
Bob	A1	80
Poh	۸2	100

Database Technology Topic 6: Functional Dependencies and Normalization **BCNF Decomposition Algorithm**

LINKOPINS INVERSITY

Decomposition Step

- Let $X \to Y$ be the FD that violates BCNF in a relation schema R
- Replace R by two new relation schemas R1 and R2 constructed as follows
- Create R1 with all the attributes in X and in Y
- Create R2 from R by removing all attributes that are in Y and not in X
- Example: recall the example relation that was not in BCNF

FD1: Zip → City FD2: ID → { Name, Zip, City }

Zip	City	
58214	Linköping	
10223	Stockholm	
with FD1		

<u>ID</u>	Name	Zip
100	Andersson	58214
101	Björk	10223
102	Carlsson	58214

Note that R1 or R2 may still not be in BCNF

with FD3: ID → {Name, ZIP}

Database Technology Topic 6: Functional Dependencies and Normalization LU LINKÖPING UNIVERSITY

Algorithm

Result := R;

end while return Result;

function DecomposeBCNF(R,F)

Database Technology Topic 6: Functional Dependencies and Normalization

ContinentArea, NumberVisitsCountry) with:

Given R2(PID, Country, Continent, ContinentArea, NumberVisitsCountry)

We may decompose R2 by using FD3, in which case we would end up

with a BCNF decomposition of R that is not dependency preserving

while there is a relation schema R_i in Result for which the restriction of F^+ to R_i contains a non-trivial

Replace R_i in Result by R_i 1 and R_i 2;

Running Example (cont'd)

FD1: PID → PersonName

FD3: Country → Continent

FD4: Continent → ContinentArea

Recall R(PID, Country, PersonName, Continent,

FD2: PID, Country - NumberVisitsCountry

 $FD X \rightarrow Y$ that violates the BCNF condition

Decompose R_i into R_i 1 and R_i 2 as on the previous slide;

32

Running Example (cont'd)

 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent FD4: Continent → ContinentArea

- R is not in BCNF (FD1, FD3, and FD4 violate the BCNF condition)
- By using FD1, we decompose R into
 - R1(PID, PersonName) with FD1, and
 - R2(PID, Country, Continent, ContinentArea, NumberVisitsCountry)
 with FD2, FD3, and FD4 (and others)
- Now, R1 is in BCNF, but R2 is not because of FD3 and FD4 (and others)
 - Hence, we need to decompose R2 further ...

LU LINKÖPING

Database Technology Topic 6: Functional Dependencies and Normalization

LU LINKÖPING UNIVERSITY Database Technology
Topic 6: Functional Dependencies and Normalization

with FD2, FD3, and FD4 (and others)

Running Example (cont'd)

 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

 $\textit{FD2:} \ \ \mathsf{PID}, \ \mathsf{Country} \ \rightarrow \ \mathsf{NumberVisitsCountry}$

FD3: Country → Continent FD4: Continent → ContinentArea

- Given R2(<u>PID</u>, <u>Country</u>, Continent, ContinentArea, NumberVisitsCountry) with FD2, FD3, and FD4 (and others)
- Let's use FD4 instead, which gives us
 - R2X(Continent, ContinentArea) with FD4, and
 - R2Y(<u>PID</u>, <u>Country</u>, Continent, NumberVisitsCountry)
 with FD2 and FD3 (and others)
- R2X is in BCNF, but R2Y still is not because of FD3

Database Technology Topic 6: Functional Dependencies and Normalization

Running Example (cont'd)

 Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

 $\textit{FD2:} \ \ \mathsf{PID}, \ \mathsf{Country} \ \rightarrow \ \mathsf{NumberVisitsCountry}$

FD3: Country → Continent

FD4: Continent \rightarrow ContinentArea

Given R2Y(PID, Country, Continent, NumberVisitsCountry)
 with FD2 and FD3 (and others)

- Since FD3 violates BCNF for R2Y we use it to decompose R2Y into
 - R2YA(Country, Continent) with FD3, and
- R2YB(PID, Country, NumberVisitsCountry) with FD2
- Finally, R2YA and R2YB are also in BCNF
- Hence, the result of decomposing R consists of R1, R2X, R2YA, and R2YB

Database Technology Topic 6: Functional Dependencies and Normalization

36

Properties of the Algorithm

- Results depend on the FDs chosen for the decomposition steps
- Any resulting decomposition has the non-additive join property (lossless)
- Finding a dependency-preserving decomposition is not guaranteed,
 - even if one exists and may be found by choosing other (BCNF-violating) FDs for the decomposition steps
- For some cases, there does not exist any decomposition into BCNF relations that is lossless and dependency preserving
 - Example: R(A, B, C) with $FD1: AB \rightarrow C$ and $FD2: C \rightarrow B$
 - For 3NF, there always exists a decomposition that is lossless and dependency preserving (but our algorithm is not guaranteed to find it)

Database Technology Topic 6: Functional Dependencies and Normalization

LINKÖPING UNIVERSITY www.liu.se