Arrays in MATLAB

Contents

- Basics of Arrays in MATLAB
- 2 Array Operations
- Array Constructors
- **4** Building Arrays Out Of Arrays
- Slicing Arrays

Basics of Arrays in MATLAB

Introduction to Arrays

Vectors and matrices are often collectively called arrays.

Notation

- \mathbb{R}^m (or \mathbb{C}^m): the set of all real (or complex) **column vectors** with m elements.
- $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$): the set of all real (or complex) $m \times n$ matrices.
- If $\mathbf{v} \in \mathbb{R}^m$ with $\mathbf{v} = (v_1, v_2, \dots, v_m)^T$, then for $1 \le i \le m, v_i \in \mathbb{R}$ is called the *i*th *element* or the *i*th *index* of \mathbf{v} .
- If $A \in \mathbb{R}^{m \times n}$ with $A = (a_{i,j})$, then for $1 \le i \le m$ and $1 \le j \le n$, $a_{i,j} \in \mathbb{R}$ is the element in the ith row and jth column of A.

Creating Arrays

A row vector is created by

$$x = [1 \ 3 \ 5 \ 7];$$

 $x = [1,3,5,7];$

A column vector is created by

A matrix is formed by

The MATLAB expression \mathbf{x} .' means \mathbf{x}^T while \mathbf{x}' means $\mathbf{x}^H = (\mathbf{x}^*)^T$.

Shape of Arrays

To find the number of elements of a vector:

```
length(x)
length(y)
```

To find the number of rows/columns of an array:

```
size(A,1) % # of rows
size(A,2) % # of cols
size(A) % both
```

• To find the total number of elements of an array:

```
numel(A)
```


Shape of Arrays (Notes)

- For a matrix A, length (A) yields the larger of the two dimensions.
- The result of size (A) can be stored in two different ways:

```
szA = size(A)
[m, n] = size(A)
```

Q. How are they different?

• All of the following generate *empty arrays*.

```
[]
[1:0]
[1:0].'
```

Q. What are their sizes? What are their numel values?

Getting/Setting Elements of Arrays

• To access the *i*th element of a vector:

• To access the (i, j)-element of a matrix:

• To assign values to a specific element:

$$x(2) = 2$$

 $A(2,4) = 0$

• Indices start at 1 in MATLAB, not at 0!

Linear Indexation and Straightening of Matrix

- MATLAB uses column-major layout by default, meaning that the elements of the columns are contiguous in memory.
- Consequently, one can get/set an element of a matrix using a single index.

```
A(8)
```

An array can be put into a column vector using

	А	(:)				
--	---	-----	--	--	--	--

Array Operations

Two Kinds of Transpose

ullet The transpose of an array: A^{T}

A.'

• The conjugate transpose of an array:

$$A^{\mathrm{H}} = A^* = \overline{A}^{\mathrm{T}}$$

Α'

• If $A \in \mathbb{R}^{m \times n}$, $A^{\mathrm{H}} = A^{\mathrm{T}}$. So, if A is a real array, A.' and A' are equivalent.

Standard Arithmetic Operation

Standard arithmetic operations seen in linear algebra are executed using the familiar symbols.

• Let A, B
$$\in \mathbb{R}^{m \times n}$$
 and $c \in \mathbb{R}$.

• A
$$\pm$$
 B: elementwise addition/subtraction (A \pm B)

• A
$$\pm$$
 c: shifting all elements of A by \pm c (A \pm c)

- Let $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, and $C \in \mathbb{R}$.
 - A*B: the $m \times n$ matrix obtained by the linear algebraic multiplication (AB)
 - c*A: scalar multiple of A (cA)
- Let $A \in \mathbb{R}^{m \times m}$ and $n \in \mathbb{N}$.
 - A^n: the n-th power of A; the same as $A*A* \cdots *A$ (n times) (Aⁿ)

Standard Arithmetic Operation - Inner Products

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ be column vectors. The inner product of \mathbf{x} and \mathbf{y} is calculated by

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_my_m = \sum_{j=1}^{m} x_jy_j \in \mathbb{R}.$$

In MATLAB, simply type x' * y.

Standard Arithmetic Operation - Outer Products

Let $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$ be column vectors. The *outer product* of \mathbf{x} and \mathbf{y} is calculated by

$$\mathbf{x}\mathbf{y}^{\mathrm{T}} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

In MATLAB, simply type x*y'.

Elementwise Multiplication (. *)

 To multiply entries of two arrays of same size, element by element:

Elementwise Division (./)

• To divide entries of an array by corresponding entries of another same-sized array:

• To divide a number by multiple numbers (specified by entries of an array):

```
s ./ y
```

 To divide all entries of an array by a common number:

Elementwise Exponentiation (. ^)

 To raise all entries of an array to (different) powers:

 To raise a number to multiple powers (specified by entries of an array):

```
s .^ x
```

 To raise all entries of an array to a common power:

Mathematical Functions

 Built-in mathematical functions accept array inputs and return arrays of function evaluation, e.g.,

```
sqrt(A)
sin(A)
mod(A)
...
```


Array Constructors

Colon Operator

Suppose a < b.

• To create an arithmetic progression from a to b (increment by 1):

a:b

The result is a row vector [a, a+1, a+2, ..., a+m], where $m = \lfloor b-a \rfloor.$

• To create an arithmetic progression from a to b with steps of size d > 0:

a:d:b

The result is a row vector [a, a+d, a+2*d, ..., a+m*d], where $m = \lfloor (b-a)/d \rfloor.$

LINSPACE and LOGSPACE

• To create a row vector of n numbers evenly spaced between a and b:

```
linspace(a, b, n)
```

The result is [a, a+d, a+2*d, ..., b], where
$$d = (b-a)/(n-1).$$

 To create a row vector of n numbers that are logarithmically evenly spaced between 10^a and 10^b:

```
logspace(a, b, n)
```

The result is
$$[10^{\rm a},\ 10^{\rm a+d},\ 10^{\rm a+2d},\ \dots,\ 10^{\rm b}]$$
, where
$${\rm d}\ =\ ({\rm b-a})\ /\ ({\rm n-1})\,.$$

ZEROS, ONES, and EYE


```
zeros(m, n)
```

• To create an $(m \times n)$ matrix all whose entries are one:

```
ones(m, n)
```

• To create the $(m \times m)$ identity matrix:

```
eye(m)
```


ones(3,1)

eye(3)

1	0	0
0	1	0
0	0	1

Random Arrays

Each of the following generates an $(m \times n)$ array of random numbers:

- rand (m, n): uniform random numbers in (0,1)
- randi (k, m, n): uniform random integers in [1, k]
- randn (m, n): Gaussian random numbers with mean 0 and standard deviation 1

Random Arrays (Application)

To generate an $(m \times n)$ array of

• uniform random numbers in (a, b):

```
a + (b - a) *rand(m, n)
```

• uniform random integers in $[k_1, k_2]$:

```
randi([k1, k2], m, n)
```

• Gaussian random numbers with mean μ and standard deviation σ :

```
mu + sig∗randn(m, n)
```

Building Arrays Out Of Arrays

Concatenation

If two arrays A and B have *comparable* sizes, we can concatenate them.

horizontally by [A B]

vertically by [A; B]

RESHAPE and REPMAT

• reshape (A, m, n) reshapes the array A into an $m \times n$ matrix whose elements are taken columnwise from A.

• repmat (A, m, n) replicates the array A, m times vertically and n times horizontally.

FLIP

- Type help flip on the Command Window and learn about flip function.
- Do the same with its two variants, flipud and fliplr

Creating Diagonal Matrices

To create a diagonal matrix

$$\begin{bmatrix} v_1 & 0 & 0 & \cdots & 0 \\ 0 & v_2 & 0 & \cdots & 0 \\ 0 & 0 & v_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & v_n \end{bmatrix} :$$

V	→	diag(v)				
1		1	0	0	0	0
8		0	8	0	0	0
3		0	0	3	0	0
6		0	0	0	6	0
2		0	0	0	0	2

```
diag(v)
```

Note.

- diag(v, k) puts the elements of v on the k-th super-diagonal.
- diag (v, -k) puts the elements of v on the k-th sub-diagonal.

Extracting Diagonal Elements

Use diag(A, k) to extract the k-th diagonal of A. diag(A) is short for diag(A, 0).

• k > 0 for super-diagonals:

• k < 0 for sub-diagonals:

Slicing Arrays

Using Vectors as Indices

To get/set multiple elements of an array at once, use vector indices.

 To grab 3rd, 4th, and 5th elements of x:

```
x(3:5) % or x([3 4 5])
```

To grab 3rd to 8th elements of x:

```
x(3:8)
x(3:end)
```

To grab 3rd to 7th elements of x:

```
x(3:7)
x(3:end-1)
```


Using Vectors as Indices – Example

 To extract 2nd, 3rd, and 4th columns of the 2nd row of A:

```
A(2,2:4) % or A(2,[2 3 4])
```

• To extract the entire 2nd row of A:

```
A(2,1:5)
A(2,1:end)
A(2,:)
```

					4
1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	
21	22	23	24	25	

_	/	/	/	/
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Using Vectors as Indices – Example

 To extract 2nd through 5th elements of the 4th column of A:

```
A([2 3 4 5],4)
A(2:5,4)
A(2:end,4)
```

• To extract the entire 4th column of A:

```
A(1:5,4)
A(1:end,4)
A(:,4)
```

	_	,	_	,
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

	_	/	/	
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Using Vectors as Indices – Example

• To grab the interior block of A:

```
A(2:4,2:4)
A(2:end-1,2:end-1)
```

 To extract every other elements on every other rows as shown:

```
A(1:2:5,1:2:5)
A(1:2:end,1:2:end)
```

					4
1	2	3	4	5	,
6	7	8	9	10	/
11	12	13	14	15	/
16	17	18	19	20	/
21	22	23	24	25	

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25