作业一

515030910223 杨健邦

Contents

一、	使用的编程环境	. 2
=,	使用图形库	. 2
三、	总体思路	. 2
四、	球面绘制	. 2
	1. 图形建模思路	. 2
	2. 小球弹跳思路	. 2
五、	鼠标或音频控制	. 3
六、	Loader	. 4
	1. 综述	. 4
	2. 操作	. 4
	3. 错误处理	. 4
	4. 相应样例	. 4
七、	创新设计	. 5
	1. 小球弹跳时的阻力	. 5
	2. 相机漫游(Camera)	. 6
八.	参考资料	6

一、使用的编程环境

Visual studio 2015

二、使用图形库

Glut

三、总体思路

使用 gl ut Ti mer Func 中调用 gl ut Post Redi spl ay 和另一个 gl ut Ti mer Func 的方法来定时刷新画面,以此产生动画效果。相关代码放在 main.cpp 中。

四、球面绘制

1. 图形建模思路

使用一块 10x10 大小的正方形作为地面,以便能直观地显示小球与地面反弹的效果。正方形表面着色,由两种颜色的四块小正方形组成,以便能显现光照打在地面上的层次效果。*相关代码放在 Ground.h 与 Ball.cpp 中。*

使用 gl utSol i dSphere 来生成球形,使用 gl Materi al fv 来给球面着色, 使用 gl Transl ated 来使球体水平居中。*相关代码放在 Ball.h 与 Ball.cpp 中*。

2. 小球弹跳思路

小球的弹跳模拟弹性碰撞,即小球与地面碰撞时,速度大小不变,方向相反。

小球先被置于一个较高的高度,用一个变量记录小球的速度方向,一开始小球方向向下。每一次刷新,利用公式

$$S = V_0 t + 1/2 a t^2$$

计算下落距离,小球的 y 坐标减去这个距离。

当小球的高度坐标(y)比小球的半径还要小时,将小球的半径赋值给 y,防止小球出现穿透地板的情况,小球将改变速度方向,速度大小不变,此时小球向上运动。

图一

五、鼠标或音频控制

本工程只有鼠标控制,没有音频控制。

由于小球是一个三维物体,而鼠标的位置信息是一个二维数组,用鼠标来控制物体三维移动不太实际,因此这里鼠标只用于控制小球的运动和暂停以及重置小球。

左键:恢复小球运动。

右键: 暂停小球运动。

中键: 重置小球运动。

相关代码放在 main.cpp 中。

六、Loader

1. 综述

只支持 obj 文件的读取,可以进行自由落体弹跳运动。*相关代码放在 Loader.h* 与 Loader.cpp 中。

2. 操作

./BouncingBall-3D [filename]

不带参数,则是显示弹跳的小球,将 obj 文件的路径作为第一个参数传进去是则是显示弹跳的模型。 *相关代码放在 main 函数中*。

3. 错误处理

- a. 参数过多会提示并退出程序。
- b. 文件后缀名过多会提示并退出程序。
- c. 读取文件时, 文件内部格式或数据有误会提示并退出程序。

4. 相应样例

相应的 obj 样例放在 obj-samples 文件夹中。需要修改 Loader.cpp 文件的宏SCALE,其中,

Bunny.obj SCALE 800

eight.obj SCALE 1

图_

七、创新设计

1. 小球弹跳时的阻力

在实际中,小球每一次弹起的最高高度总会越来越低,最终停止。这是因为受到了各种阻力的影响。其中最为明显的阻力有两种,一种是运动时向后的空气阻力,另一种是与地面碰撞时,因剧烈形变而与地面间的摩擦阻力。

至于第二种阻力,实在是难以计算,因此只能进行近似计算,设定每次下落与地面碰撞消耗的能量近似为 10%。

至于第一种阻力, 由公式

$$f = 1 / 2 cA\rho v^2$$

可计算出空气阻力,公式中各种变量,如 c 流体拖拽系数设置为球形物体的流体拖拽系数 0.47, p 为空气的密度 1kg/m³, A 则为小球的横截面积。小球的密度设置为同水的密度。

由于计算机的数据都是离散的,而且我们每次画面刷新的时间间隔为 1000/60 毫秒,时间间隔很小,每个间隔中,可以认定物体的阻力几乎保持不变,因此可近似成为匀速直线运动,因此物体的速度可计算出来。

物体运动幅度小于一定值时,可认定物体停止运动。

相关代码放在 Ground.h 与 Ball.cpp 中。

2. 相机漫游(Camera)

按上、下、左、右键可以可以转动视觉窗口,可以改变观察小球弹跳的窗口, Lookat 永远看向地面的中心。

八、参考资料

- [1] http://www.lighthouse3d.com/tutorials/glut-tutorial/
- [2] http://www.cnblogs.com/crazyxiaom/articles/2073586.html[
- [3] https://stackoverflow.com/questions/21120699/c-obj-file-parser