1/5/1 DIALOG(R)File 352:Derwent WPI (c) 2007 The Thomson Corporation. All rts. reserv.

0007925560

WPI ACC NO: 1997-013703/

Related WPI Acc No: 1996-444894; 1996-444895

XRAM Acc No: C1997-003884

Specific amplification of short nucleic acid fragments - using two thermophilic polymerase(s) one with, the other without, proof-reading activity to improve yield and specificity

Patent Assignee: BOEHRINGER MANNHEIM GMBH (BOEF); ROCHE DIAGNOSTICS GMBH

Inventor: FREY B; KUEBLER H

Patent Family (1 patents, 5 countries)

Patent Application Number

Kind Date Number Kind EP 745687 Date Al 19961204 EP 1996105571 Update A 19960409 199702 B

Priority Applications (no., kind, date): EP 1995105346 A 19950408

Patent Details

Number Kind Lan Pg Dwg Filing Notes EP 745687 A1

DE 31 Regional Designated States, Original: DE ES FR GB IT

Alerting Abstract EP A1

Specific amplification of short, single- or double-stranded nucleic acid fragments (A) carried out in presence of at least one primer pair, pH 7-9.5 buffer, all dNTP required for DNA chain extension and an enzyme mixt. of two thermophilic polymerases, one (TP1) with proofreading activity and the other (TP2) without such activity is claimed. After opt. sepn. of double stranded molecules, the extension reaction is carried out at at least 70(deg)C for 5 sec to 8 min. Also new is a mixt. of TP1 and TP2 in ratio 1:10 with final enzyme concn. 0.5-5 U per vol. (unspecified) of reaction

USE - The method is used to amplify DNA fragments up to 3 kb long, esp. for detection of these fragments in samples of biological fluid. The enzyme mixt. can also be used to label DNA fragments with modified nucleotides. ADVANTAGES - The process provides increased yields and specificity in amplification of short (A).

Title Terms /Index Terms/Additional Words: SPECIFIC; AMPLIFY; SHORT; NUCLEIC ; ACID; FRAGMENT; TWO; THERMOPHILIC; POLYMERASE; ONE; PROOF; READ; ACTIVE

Class Codes

International Classification (Main): C12Q-001/68 (Additional/Secondary): Cl2N-009/12, Cl2P-019/34

File Segment: CPI OWPI Class: B04; D16 fanual Codes (CPI/A-M): B04-E01; B04-E05; B04-L04A; B11-C08E5; B12-K04A;

:OST

17jan07 00:52:30 User060180 Session D14420.2 \$7.32 0.016 Hrs File352 \$7.27 1 Type(s) in Format 5 1 Types \$7.27

Estimated cost File352 \$14.59

\$0.26 INTERNET

\$14.85 Estimated cost this search

\$14.90 Estimated total session cost 0.020 Hrs.

Europäisches Patentamt

European Patent Office

Office européen des brevets

1) EP 0,745 687 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 04.12.1996 Patentblatt 1996/49

(51) Int. Cl.⁶: **C12Q 1/68**, C12N 9/12, C12P 19/34

(21) Anmeldenummer: 96105571.2

(22) Anmeldetag: 09.04.1996

(84) Benannte Vertragsstaaten: DE ES FR GB IT

(30) Priorität: 08.04.1995 EP 95105346

(71) Anmelder: BOEHRINGER MANNHEIM GMBH 68298 Mannheim (DE)

(72) Erfinder:

Frey, Bruno, Dr.
 82377 Penzberg (DE)

 Kübler, Hildegund 82362 Wellhelm (DE)

(54) Verfahren zur spezifischen Vervielfältigung und zum Nachweis von DNA bzw. RNA

(57) Die Erfindung betrifft eine Enzymmischung bestehend aus zwei thermostabilen DNA-Polymerasen mit und ohne proofreading-Aktivität sowie weiterer Hilfssubstanzen für die PCR bzw. RT-PCR und deren Verwendung zur Vervielfältigung von einzel- und doppelsträngigen kurzen Nukleotid-Fragmenten. Das Verfahren zur Vervielfältigung und gegebenenfalls zur Markierung der kurzen DNA-Fragmente zeichnet sich insbesondere durch eine Ekongationstemperatur von ca. 72 °C und eine gute Toleranz gegen hohe Magnesiumkonzentrationen aus.

Beschreibung

Die Erfindung betrifft eine Enzymmischung bzw. deren Verwendung zur spezifischen Vervielfältigung von kurzen Nukleinsäuresequenzen bzw. ein Verfahren zum spezifischen Nachweis solcher Nukleinsäuresequenzen in Gegenwart einer Probe, insbesondere in biologischen Flüssigkeiten.

Die Vermehrung von einzel- bzw. doppelsträngigen Nukleinsäuresequenzen in Gegenwart bestimmter Primer und eines die Polymerisation induzierenden Agenzes, wie z. B. hitzestabile DNA-Polymerasen oder reverse Transkriptasen, finden heutzutage eine breite Anwendung, insbesondere in der klinischen Diagnostik. Das mehrere Cyclen durchlaufende Verfahren ist hinlänglich als Polymerase-Ketten-Reaktion (PCR) bekannt (EP 0 200 362, EP 0 258 017). Die PCR-Reaktion wird üblicherweise mit Hilfe der thermophilen DNA-Polymerase aus <u>Thermus aquaticus</u>, sogenannter Taq-Polymerase durchgeführt. Dieses sogenannte klassische PCR-Verfahren zeigt jedoch bei einigen Anwendungen, wie bei geringen Mengen einer Nukleinsäuresequenz, wie z. B. genomischer DNA, oder der Verwendung von modifizierten Nukleotiden, nur eine niedrige Effizienz bzw. führt in vielen Fällen zu keiner spezifischen Vervielfältigung. Dies kann oft selbst nicht durch eine höhere Cyclenzahl ausgeglichen werden.

Zudem treten entsprechende Phänomene verstärkt bei längeren DNA-Fragmenten auf, d.h. der frühzeitige Abbruch der Vervielfältigung ist insbesondere hier auf die fehlerhafte Ablesung des Enzyms bei dem Polymerisationsprozeß zurückzuführen.

Daher werden heute häufig DNA-Polymerasen wie z. B. aus <u>Pyrococcus furiosus</u>, sogenannte Pfu-Polymerase verwendet (Lundberg, K.S. et al., Gene <u>108</u> (1991) 1-6). Pfu-Polymerase zeichnet sich durch zusätzlich durch eine intrinsische 3'-(editing)-exonuclease-Aktivität (proofreading activity) aus und ist so imstande, die Mutationsrate pro Cyclus beträchtlich, und zwar um den Faktor von ungefähr 10, zu vermindern. Es hat sich jedoch gezeigt, daß die proofreading-Polymerasen bei der Vervielfältigung von kurzen Sequenzen, d. h. bis ca. 5 kb, an ihre Grenzen stossen. Eine Verbesserung in dieser Hinsicht ist von W. Bames. in Proc.Natl.Acad.Sci. USA <u>91</u> (1994), 2216-2220 bzw. WO 94/26766 beschrieben. Die Verbesserung nach Barnes besteht in dem Einsatz einer Mischung, bestehend aus zwei verschiedenen DNA-Polymerasen, wobei die eine sogenannte proofreading-Aktivität (wie z. B. Pfu) und die andere, im Überschuß vorliegende DNA-Polymerase keine proofreading-Aktivität (wie z. B. Taq) aufwelst. Dadurch werden bei der PCR-Amplifikation von längeren DNA-Sequenzen, d. h. von ca. 10 - 35 kb, jewells abhängig von den verwendeten Primern, den Cyclenbedingungen bzw. Cyclenanzahl oder sonstigen Bedingungen, eine höhere Effizienz als auch Ausbeute erzielt. Es hat sich jedoch gezeigt, daß bei kleineren Nukleinsäuresequenzen, d. h. ca. 3 kb oder kleiner, eine Verbesserung hinsichtlich Ausbeute und Spezifitäten nicht erzielt wird.

Der Erfindung lag somit die Aufgabe zugrunde, für die spezifische Vervielfältigung von kurzen Nukleinsäuresequenzen Maßnahmen zur Verfügung zu stellen, durch die die im Stand der Technik beschriebenen Nachteile überwunden werden.

Die Aufgabe wird dadurch gelöst, daß eine Mischung, bestehend aus einer thermophilen DNA-Polymerase mit proofreading-Aktivität und einer thermophilen DNA-Polymerase ohne proofreading-Aktivität zur Vervielfältigung von Nukleinsäuresequenzen mit ca. 5 kb oder kleiner mittels PCR-Reaktion bei einer Elongationstemperatur von mindestens 70 °C verwendet wird. Die zweite DNA-Polymerase liegt dabei im Überschuß vor, vorzugsweise in einer mindestens 8fach höheren Konzentration als das erste Enzym.

Für das erste Enzym kommen beispielsweise DNA-Polymerasen aus <u>Pyrococcus furlosus</u> (Pfu), aus <u>Pyrococcus</u> spezies <u>Thermotoga maritima</u> (Tma), aus <u>Pyrococcus woesii</u> (Pwo), aus <u>Thermococcus litoralis</u> (Tli) oder <u>Sulfolobus solfataricus</u> (Sso) in Betracht. Für das Enzym ohne proofreading-Aktivität haben sich Taq DNA-Polymerase oder entsprechende Analoge wie Klentaq I (N-terminal verkürztes Enzym), das Klenowfragment der DNA-Polymerase I aus T. aquaticus oder andere Polymerasen aus Thermus species als geeignet erwiesen. Erfindungsgemäß bevorzugt ist eine Mischung von Pwo und Taq im Verhältnis 1:10.

Die erfindungsgemäße Enzymmischung hat sich neben der Vervielfältigung von DNA-Fragmenten auch vorteilhaft zur Vervielfältigung von RNA-Fragmenten wie beispielsweise mRNA erwiesen. Die erfindungsgemäße Enzymmischung enthält in einem solchen Fall zusätzlich vorzugsweise eine DNA-Polymerase mit reverser Transkriptase (RT)-Aktivität wie belspielsweise AMV-RT (Avlan Myeloblastosis Virus-RT) oder MoMuLV-RT (Moloney Murine Leukemia Virus-RT). Die Reaktion kann alternativ zu AMV, MoMuV auch in Gegenwart einer thermostabilen DNA-Polymerase mit RT-Aktät erfolgen. Bei Anwendung einer gekoppelten RT-PCR hat sich die Verwendung von AMV-RT bzw. eine Temperatur für die RT-Reaktion von ca. 45° bis 60°C als besonders geeignet erwiesen. Die Konzentration der RT, z.B. aus AMV, beträgt üblicherweise zwischen 0,5 bis 5,0 U/Volumen Reaktionsmischung (10 μl), vorteilhafterweise ca. 1,0 bis 3,0 U/10 μl. Die übrigen einzuhaltenden Konditionen wie z.B. Puffer- sowie Salzkonzentrationen sind dem Fachmann bekannt (s. z.B. Mallet, F. et al., Bio Techniques 18 (1995) 678-687).

Darüber hinaus hängen die optimalen Reaktionsbedingungen, wie inkubationszeit, Temperatur, Pufferbedinungen, Magnesium (Mg²⁺)-Konzentration bzw. die Konzentration der Enzymmischung vom jeweils verwendeten Template/Primer-Paar ab und sollte jeweils Individuell bestimmt werden. Entsprechende Vorversuche gehören zu den für den Fachmann üblichen Maßnahmen.

Als optimal für die Mischung hat sich eine Enzymkonzentration im Bereich von 0,5 - 5 U/Testansatz erwiesen, vor-

zugsweise werden 2,5 U/Testansatz eingesetzt.

Als optimale Mg²⁺-Konzentration hat sich in den meisten Fällen ein Bereich von 0,5 - 5 mM, vorzugsweise ca. 1,5 - 3,0 mM, erwiesen. In der Regel wird MgCl₂ verwendet. Es wurde zudem festgestelt, daß das erfindungsgemäße Verfahren zur Amplifikation kurzer Fragmente gegenüber einer mit Taq-Polymerase durchgeführten PCR-Reaktion den Vorteil hat, daß es eine weitaus geringere Empfindlichkeit gegenüber hohen Mg²⁺-Konzentrationen aufweist.

Darüber hinaus können übliche im Bereich von pH 7,0 - 9,5 puffemde Substanzen, wie beispielsweise Hepes, Phosphat, Tricine, Bicine oder Tris-HCl als Puffer für die Reaktion verwendet werden.

Erfindungsgemäß hat sich eine Pufferkonzentration, beispielsweise von Tris-HCl, im Bereich von ca. 5 - 100 mM, vorzugsweise von ca. 50 mM, sowie die Anwesenheit bestimmter Salze als vorteilhaft erwiesen. Bei letzteren haben sich Ammoniumsulfat (AS), und zwar in einer Konzentration von ca. 18 - 30 mM, bevorzugt von 20 - 24 mM sowie Kaliumchlorid (KCl) in einer Konzentration von ca. 30 - 50 mM als besonders vorteilhaft erwiesen. Als pH-Wert für die Amplifikation von kurzen Fragmenten hat sich ein pH-Wert von ca. 8,9 als besonders geeignet erwiesen.

Darüber hinaus kann die PCR-Reaktion erfindungsgemäß durch den Zusatz weiterer Substanzen wie beispiels-weise Rinderserumalbumin in einer Konzentration von bis zu 100 µg/ml, SH-Reagenzien wie Dithlothreitol oder ein Detergenz wie beispielsweise Tween[®]20, Nonidet[®] oder Glycerol oder DMSO in üblichen Konzentrationen weiter verbessert werden.

Für die Amplifikation von kurzen Nukleinsäuresequenzen, d. h. die annähernd 3 kb oder kürzer sind, hat sich insbesondere eine Temperatur für den Verlängerungsschritt von ca. 70 - 75 °C, vorzugsweise von 72 °C als vorteilhaft erwiesen. Die Elongationszeit beträgt zwischen ca. 5 Sekunden und 8 Minuten, vorzugsweise zwischen ca. einer halben und vier Minuten, und hängt stark von der Länge des zu amplifizierenden Fragments ab. Für DNA-Fragmente bis zu 1,0 kb haben hier insbesondere 45 Sekunden, für Fragmente von ca. 1,5 kb ca. eine Minute und ca. zwei Minuten für DNA-Fragmente in der Größenordnung von 3 kb.

Ein für die Nukleinsäure-Amplifikation verwendetes Reagenz besteht vorteilhafterweise aus zwei Einzelmischungen. Die erste Mischung enthält die Template-DNA bzw. - RNA, wie z. B. humane genomische DNA oder mRNA in einem Konzentrationsbereich von ca. 1 bis 500 ng/Ansatz mit sogenannten upstream- und downstream-Primer (vorzugsweise je ca. 300 nM) und sämtliche für die DNA-Kettenverlängerung erforderlichen Nukleotide, wie dATP, dCTP, dGTP und dTTP. Für die einzelnen Nukleotide hat sich in der Regel jewells eine Konzentration zwischen 50 und 500 μM, insbesondere von 150 - 300 μM als geeignet erwiesen. In einzelnen Fällen hat sich jedoch eine höhere Konzentration für die einzelnen dNPTs als vorteilhaft erwiesen (bis ca. 600 mM je dNTP).

Die zweite Mischung enthält im wesentlichen den für die PCR-Reaktion erforderlichen Puffer und die erfindungsgemäße Enzymmischung in einer entsprechend höher konzentrieiten Form, so daß sich nach Vermischung mit der ersten Mischung die eingangs beschriebenen vorteilhaften Konzentrationen ergeben. Für die Amplifikation von kurzen Fragmenten haben sich Reaktionsansätze von 10 bis 100 µl als besonders vorteilhaft erwiesen. Nach Zusammenmischung der Einzelmischungen wird die Probe in ein entsprechendes Thermocycler-Gerät eingebracht und zunächst zur Trennung des Doppelstranges des jeweiligen DNA-Fragments denaturiert (bei 94 °C, 2 Minuten). Daran schließen sich die einzelnen Cyclen der PCR, wobei sich bei dem Einsatz kurzer DNA-Fragmente (bis 3 kb) eine Temperatur von 70 - 74 °C als besonders vorteilhaft erwiesen hat.

Die Verwendung der erfindungsgemäßen Enzymmischung hat sich in Kombination mit einem Enzym, welches reverse Transkriptase-Aktivität aufwelst, insbesondere als vorteilhaft erwiesen, wenn die RT-PCR in einem Reaktionsgefäß stattfindet. Dadurch wird eine höhere Effizienz und demzufolge eine höhere Sensitivität in der RT-PCR gegenüber vorbekannten Methoden bewirkt. Insbesondere haben sich hier mesophile RTs wie AMV- und/oder MoMuLV-RT als vorteilhaft erwiesen.

Das erfindungsgemäße Verfahren kann darüber hinaus vorteilhaft für die Markierung von kurzen DNA-Fragmenten eingesetzt werden. Wie bei der Markierung von DNA-Fragmenten bei der PCR-Reaktion prinziplell vorzugehen ist, ist dem Fachmann bekannt (z. B. EP 0 420 260; WO 90/11373).

Vorteilhaft ist erfindungsgemäß, daß die Enzymmischung, bevorzugt bestehend aus Pwo und Taq im Verhältnis von ca. 1:10, unter den spezifischen Bedingungen besonders gut modifizierte Nukleotide wie Digoxigenin-dUTP, Biotin-dUTP oder Fluoreszeln-dUTP akzeptiert. Die Konzentrationen für diese modifizierten Nukleotide liegen optimalerweise bei jeweils ungefähr 66 μΜ, die von dTTP bei ca. 134 μΜ, wenn die Probes anschließend über Southern Blot nachgewiesen werden. Für die Analyse mittels ELISA hat sich eine Konzentration von modifiziertem dUTP von 10 μΜ und der entsprechenden Menge an dTTP als vorteilhaft erwiesen. Für den Fall, daß ein modifiziertes Nukleotid eingesetzt wird, das von der/den Polymerasen schlechter akzeptiert wird, hat sich eine höhere Konzentration an Magnesium, und zwar bis zu 4 mM MgCl₂ als besonders vorteilhaft erwiesen.

Abkūrzungsverzeichnis

30

Bio-dUTP Biotin16-2'-desoxy-uridin-5'-triphosphat

bp Basenpaare C Celsius

CF Cystische Fibrose **dATP** 2'-Desoxy-adenin-5'-triphosphat dCTP 2'-Desoxy-cytidin-5'-triphosphat Digoxigenin 11-2'-desoxy-uridin-5'-triphosphat DIG-dUTP 2'-Desoxy-guanin-5'-triphosphat . dGTP 2'-Desoxy-nukleosid-5'-triphosphat **dNTP** 1,4-Dithiothreital DTT **dTTP** 2'-Desoxy-thymidin-5'-triphosphat **EDTA** (Ethylendinitrilo)tetraessigsaure HĆI Saizsaure Kilobasen Кþ Kaliumchlorid **KCI** Minute Min. milimolar mM **mRNA** messenger RNA 15 μМ mykromolar Nanogramm ng Ammoniumsulfat $(NH_4)_2SO_4$ p53 Protein53 PCR Polymerase Ketten Reaktion Pwo DNA Polymerase aus Pyrococcus woesii Ribonukleinsäure **RNA** Sekunde Sek. Taq DNA Polymerase aus Thermus aquaticus DNA Polymerase aus Thermus thermopbilus Tth tissue Plasminogen Activator **tPA** 2-Amino-2(hydroxymethyl)-1,3-propandiol Tris U Units **Primerverzeichnis** SEQ ID NO:1 Collagen Primer 1: 5' - TAA AGG GTC ACC GTG GCT TC - 3' 35 SEQ ID NO2 Collagen Primer 2: 5' - CGA ACC ACA TTG GCA TCA TC - 3' SEQ ID NO:3 40 p53 Primer 1: 5' - TGG AAA CTT TCC ACT TGA T - 3' SEQ ID NO:4 5' - GTC CCA AGC AAT GGA TCA T - 3' p53 Primer 2: SEQ ID NO:5 FKBP Primer 1: 5' - GGA ATT CTA TGG GAG TGC AGG TGG AA - 3' 50 SEQ ID NO:6 FKBP Primer 2: 5' - GCG GAT CCA AGC TTT CAT TCC AGT TTT AGA AGC TC - 3' 55 SEQ ID NO:7 5' - GCT GCA TCA TAT AAG TTG CC - 3' CF Primer 1:

	12 22 20
	SEQ ID NO:8
	CF Primer 2: 5' - AAG GCT ACA CTG TTA ATT TT - 3'
5	SEQ ID NO:9:
	p53 Primer 3 5' - GTC CCA AGC AAT GGA TGA T - 3'
	SEQ ID NO:10
10	p53 Primer 4: 5' - TGG AAA CTT TCC ACT TGA T - 3'
	SEQ ID NO:11
15	tPA Primer 7: 5' - GGA AGT ACA GCT CAG AGT TCT GCA GCA CCC CTG C - 3'
	SEQ ID NO:12
20	tPA Primer 10: 5' - GAT GCG AAA CTG AGG CTG GCT GTA CTG TCT C - 3'
20	SEQ ID NO:13
	tPA Primer 13: 5' - TGT CTC CAG CAC ACA GCA TGT TGT CGG TGA C - 3'
25	SEQ ID NO:14
	tPA Primer 14: 5' - CAA AGT CAT GCG GCC ATC GTT CAG ACA CAC C - 3'
30	SEQ ID NO:15
	tPA Primer 1 5' - AGA CAG TAC AGC CAG CCT CA - 3'
	SEQ ID NO:16
35	tPA Primer 2 5' - GAC TTC AAA TTT CTG CTC CTC - 3'
	SEQ ID NO:17
40	Collagen Primer 3: 5' - CCA AGA GGA AGG CCA AGT CG - 3'
	SEQ ID NO:18
	Collagen Primer 4: 5' - GGT GGT TTC TTG GTC GGT G - 3'
45	SEQ ID NO:19
	Dystrophie Primer 1: 5' - TAC AGT TTG CCC ATG GAT TG - 3'
<i>50</i>	SEQ ID NO:20
	Dystrophie Primer 2: 5' - GGG AAG TAG AGG ACT GTT ATG AAA GAG AAG - 3'
	SEQ ID NO:21
	O3PDH Primer 1: 5'-TGA AGG TCG GAG TCA ACG GAT TTG GT-3'
	SEQ ID NO:22:

G3PDH Primer 2: 5' - CAT GTG GGC CAT GAG GTC CAC CAC - 3'

Legenden zu den Abbildungen:

Abbildung 1

Amplifikation eines 1.1 kb Fragments aus dem Collagen Gen aus humaner DNA, mit Taq DNA Polymerase (Stand der Technik) und Tag/Pwo-Mischung (erfindungsgemäß) in Abhängigkeit von der Template-Menge.

Als Template-Variation wurden jeweils 250 ng, 100 ng, 50 ng, 10 ng und 1 ng humane genomische DNA verwendet. Die Enzymmischung zeigt bei jeder Konzentration deutlich mehr PCR Produkt, selbst 1 ng wurde effizient amplifiziert. Mit Taq DNA Polymerase sind gerade noch 10 ng Ausgangs-DNA nachweisbar. Dies zeigt, daß die Enzymmischung in diesem Beispiel ca. 50 mal effizienter amplifiziert als Taq Polymerase.

Abbilduna 2

Amplifikation eines 307 bp Fragments aus dem P 53 Gen (aus humaner DNA) mit Taq DNA Polymerase (Stand der Technik) und Taq/Pwo-Mischung (erfindungsgemäß) in Abhängigkeit von der Mg-lonen-Konzentration. Als Mg-lonen-Konzentrationen wurden 1.5; 1.75; 2.0; 2.5; 3.0; 5.0 mM eingesetzt.

Die Enzymmischung zeigt über alle Mg-Konzentrationen eine effizientere Amplifikation der Ausgangs-DNA. Mit Taq DNA Polymerase wird nur ein deutlich sichtbares Produkt mit 1.5 mM Magnesium erzielt. Dies zeigt, daß die Enzymmischung deutlich weniger anfällig gegenüber Mg-Einflüssen ist.

Abbildung 3

Amplifikation von 324 bp, 950 bp, 2.9 kb, 4.8 ko, 6.5 kb und 9.3 kb Fragmenten aus humaner, genomischer DNA mit Taq/Pwo-Enzymmischung (erfindungsgemäß) und Taq DNA Polymerase (Stand der Technik).

Mit der Enzymmischung können über den ganzen Bereich PCR-Produkte erzielt werden. Mit Taq-Polymerase ist es nur möglich bis 3 kb PCR-Produkte zu amplifizieren. In allen Fällen zeigt die Enzymmischung deutlich mehr Produkt als Taq-Polymerase.

Abbildung 4

Amplifikation und Markierung eines 375 bp Fragmentes aus dem tPA Gen aus humaner DNA mit Pwo-DNA-Polymerase, Taq-DNA-Polymerase und der Enzymmischung in Abhängigkeit von verschiedenen Konzentrationen der modifizierten Nukleotiden DIG-dUTP und Bio-dUTP. Sowohl der Einbau von Digoxigenin-dUTP als auch von Biotin-dUTP, unabhängig von der Konzentration des modifizierten Nukleotides, wird mit der Enzymmischung am besten vollzogen. Dies bezieht sich sowohl auf die Effizienz (Produktmenge) als auch auf die Dichte der Markierung (Shift der PCR-Produkte zu höherem Molekulargewicht, was einen höheren Einbau von modifiziertem dUTP entspricht). Pwo-Polymerase zeigt im Ethicium-Bromid Gel keine spezifischen PCR-Produkte, nur unspezifischen Hintergrund. Taq-DNA-Polymerase zeigt nur teilweise eine spezifische Amplifikation, auch hier ist ein hoher unspezifischer Hintergrund sichtbar.

o Abbildung 5

Amplifikation eines 259 bp Fragmentes aus der Collagen mRNA aus humaner Gesamt-Leber-RNA, mit Hilfe einer gekoppelten Reversen Transkription-Polymerase Ketten Reaktion (RT-PCR). Zum einen wird die Amplifikation mit Tth DNA-Polymerase zum anderen mit AMV/Taq-Pwo Mischung (erfindungsgemäß) durchgeführt in Abhängigkeit von der Template Menge.

Als Template Variation wurden jeweils 250 ng, 100 ng, 50 ng und 1 ng total RNA verwendet. Die Enzymmischung zeigt über einen breiten Bereich eine deutlich höhere Produktmenge. Selbst bei 5 ng Ausgangs-RNA ist mit der Enzymmischung noch ein deutliches Signal sichtbar, während mit der Tth DNA-Polymerase nur ein sehr schwaches Signal erzielt werden kann.

Abbildung 6

Amplifikation eines 983 bp Fragmentes aus der G3PDH mRNA aus humaner Gesamt-Leber-RNA mit Hilfe einer gekoppelten RT-PCR. Zum einen wurde die Amplifikation mit AMV/Taq Mischung, zum anderen mit AMV/Enzymmischung (erfindungsgemäß) in Abhängigkeit von der Template RNA Menge als auch in Abhängigkeit von der verwendeten dNTP-Konzentration durchgeführt.

Die verwendeten RNA Template Mengen waren 250 ng, 100 ng und 10 ng, die verwendeten dNTP Konzentrationen waren 200 μM (1.5 mM Mg-lonen) oder 500 μM (2.25 mM Mg-lonen). Die Verwendung der AMV/Enzymmischung zeigt unter allen Bedingungen eine deutlich höhere Produktmenge als die AMV/Taq Mischung. Ebenfalls ist festzusteilen,

6

20

30

daß die Erhöhung der dNTP/Mg-lonen Konzentration eine Verbesserung der Reaktion darstellt unabhängig vom verwendeten System.

Abbildung 7

Amplifikation eines 1851 bp Fragmentes aus der Dystrophin mRNA aus humaner Gesamt-Muskel RNA. Zum einen wurde die Amplifikation mit AMV/Taq Mischung (b), zum anderen mit AMV/Enzymmischung (a) in Abhängigkeit von der Template RNA Menge als auch in Abhängigkeit von der Ammoniumsulfatkonzentration durchgeführt.

Die verwendeten RNA Template Mengen waren 100 ng, 10 ng und 5 ng, die verwendeten Ammoniumsulfatkonzentrationen waren 18 mM, 20 mM, 22 mM, 24 mM und 26 mM. Die Verwendung der AMV/Enzymmischung (a) zeigt unter allen Bedingungen eine deutlich höhere Produktmenge als die AMV/Teq Mischung (b).

Die folgenden Beispiele verdeutlichen die Erfindung weiter:

Beispiel 1:

15

25

30

35

In den gezeigten Beispielen wurde als Taq/ Pwo Enzymmischung (erfindungsgemäß) die thermostabilen Polymerasen von Thermus aquaticus (Taq) und Pyrococcus woesii (Pwo) verwendet. Das Mischungsverhältnis der beiden Polymerasen war 10:1 (Taq: Pwo) nach Aktivität (Units). Eine typische Enzymmischung war 3.14 U Taq Polymerase + 0.35 U Pwo Polymerase pro µl. Die Enzymmischung wurde in Lagerpuffer (20 mM Tris/HCl, pH 7.5 (20°C), 100 mM KCl, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween20, 0.5% Nonidet P40, 50 % Glycerin) bei -20°C gelagert.

Die Polymerase-Ketten-Reaktion (PCR) wurde im 100 μl Volumen durchgeführt. Die Reaktionbedingungen für die Enzymmischung war wie folgt:

PCR-Puffer:	22 mM (NH ₄) ₂ SO ₄ ; 50 mM Tris/HCl, pH 8,9 (20°C)
MgCl ₂	1.5 mM
Enzymmischung	2.6 U
dNTP	200 μM (jeweils)
Collagen Primer 1	300 nM
Collagen Primer 2	300 nM

Als Template wurde genomische DNA (human) mit 5 verschiedenen Konzentrationen verwendet 250 ng, 10 ng, 10 ng und 1 ng.

Parallel zu den Ansätzen mit der Enzymmischung wurden PCR Reaktionen mit Taq DNA Polymerase durchgeführt. Der einzige Unterschied zu dem vorher beschriebenen Ansatz besteht im PCR Puffer, hier wurde der Taq Puffer verwendet (50 mM KCl, 10 mMTris/HCl pH 8.3 (20°C)) sowie 2.5 U Taq DNA Polymerase.

Die Amplifikationen wurden in einem Perkin Elmer GenAmp 9600 Thermocycler mit folgendem Cycleprogramm durchgeführt:

4 5	1x	Denatürierung für 2 Min. bei 94°C	1
	10x	Denaturierung für 15 Sek. bei 94°C	
		Annealing für 30 Sek. bei 60°C	l
50		Elongation für 45 Sek. bei 72°C	
	20x	Denaturierung für 15 Sek. bei 94°C	
		Annealing für 30 Sek. bei 60°C	l
		Elongation für 45 Sek. bei 72°C + Cycle Verlängerung für 20 Sek. für jeden weiteren Cycle	
:5	1x	7 Min. bei 72°C	

25 μl des erhaltenen PCR Produktes wurde auf einem 1%igen Agarose-Gel analysiert. Abbildung 1 zeigt, die

Amplifikation eines 1.1 kb Fragments aus dem Collagen Gen aus humaner DNA, mit Taq DNA Polymerase (Stand der Technik) und Taq/Pwo-Mischung (erfindungsgemäß) in Abhängigkeit von der Template-Menge.

Die Enzymmischung zeigt bei jeder Template Konzentration deutlich mehr PCR Produkt, selbst 1 ng wurde effizient amplifiziert. Mit Taq DNA Polymerase sind gerade noch 10 ng Ausgangs-DNA nachweisbar. Dies zeigt, daß die Enzymmischung in diesem Beisplel ca. 50 mal effizienter amplifiziert als Taq DNA Polymerase.

Beispiel 2:

Die Amplifikationen mit der Enzymmischung als auch mit Taq DNA Polymerase wurde identisch zu Beispiel 1 durchgeführt mit folgenden Änderungen:

Template DNA (human-genomische DNA) war 250 ng. Als Primer wurden p53 primer 1 als forward Primer und p53 Primer 2 als reverse Primer verwendet.

Die Magnesium Konzentration wurde wie folgt verwendet: 1.5 mM, 1.75 mM, 2.0 mM, 2.5 mM, 3.0 mM und 5.0 mM. Das Cycle-Programm und die Analytik der PCR Produkte war wie in Beispiel 1.

Abbildung 2 zeigt die Amplifikation eines 307 bp Fragments aus dem p53 Gen mit Taq DNA Polymerase (Stand der Technik) und Taq/Pwo-Mischung (erfindungsgemäß) in Abhängigkeit von der Mg-konen-Konzentration.

Die Enzymmischung zeigt über alle Mg-Konzentrationen eine effizientere Amplifikation der Ausgangs-DNA. Mit Taq DNA Polymerase wird nur ein deutlich sichtbares Produkt mit 1.5 mM Magnesium erzielt. Dies zeigt, daß die Enzymmischung deutlich weniger anfällig gegenüber Mg-Einflüssen ist.

Beispiel 3:

Eine Reihe von verschiedenen PCR Fragmenten wurden aus 250 ng genomischer DNA amplifiziert. Die Bedingungen für die PCR Reaktion sowie das Cycle Programm waren wie in Beispiel 1 beschrieben mit folgenden Änderungen: Folgende Primerpaare und Bedingungen wurden verwendet:

- 1) FKBP Primer 1/ FKBP Primer 2 (324 bp)
- 2) CF Primer 1/ CF Primer 2 (950 bp)
- 3) p53 Primer 3/ p53 Primer 4 (2.9 kb); Elongationszeit 2 Min.
- 4) tPA Primer 7/ tPA Primer 10 (4.8 kb); Elongationszeit 4 Min.
- 5) tPA Primer 7/ tPA Primer 13 (6.5 kb); Elongationszelt 5 Min.
- 6) tPA Primer 7/ tPA Primer 14 (9.3 kb); Elongationszeit 8 Min.

Für 4) -6) wurden 50 µl Reaktionsansätze verwendet und die Elongationstemperatur wurde mit 68°C gewählt.
Abbildung 3 zeigt die Amplifikation von 324 bp, 950 bp, 2.9 kb, 4.8 kb, 6.5 kb und 9.3 kb Fragmenten aus humaner, genomischer DNA mit Taq/Pwo-Enzymmischung (erfindungsgemäß) und Taq DNA Polymerase (Stand der Technik).

Mit der Enzymmischung können über den ganzen Bereich PCR-Produkte erzielt werden. Mit Taq-Polymerase ist es nur möglich, bis 3 kb PCR-Produkte zu amplifizieren. In allen Fällen zeigt die Enzymmischung deutlich mehr Produkt als Taq-Polymerase.

Beispiel 4:

Die Amplifikationbedingungen als auch die Cyclebedingungen waren wie im Beispiel 1 aufgeführt, mit folgenden Änderungen:

Es wurden die tPA Primer 1 und tPA Primer 2 verwendet. Die Menge an humaner DNA war 100 ng.

Für Pwo wurden folgende PCR Puffer Bedingungen gewählt: 10 mM Tris/HCl pH 8.85; 25 mM KCl, 5 mM (NH₄)₂SO₄). Die Magnesiumsulfat-Konzentration war 2.0 mM. Es wurden 2.5 U Pwo DNA Polymerase pro Reaktion eingesetzt.

Es wurden folgende dNTP Mischungen für die Experimente verwendet:

- 1 je 200 μM dGTP, dCTP, dATP, dTTP
- 2 je 200 μM dGTP, dCTP, dATP, dTTP; 100 μM dTTP, 100 μM Biotin-dUTP
- 3 je 200 μM dGTP, dCTP, dATP, dTTP; 134 μM dTTP, 66 μM Biotin-dUTP
- 4 je 200 μM dGTP, dCTP, dATP, dTTP; 180 μM dTTP, 20 μM Biotin-dUTP
- je 200 μM dGTP, dCTP, dATP, dTTP; 134 μM dTTP, 66 μM Digoxigenin-dUTP
 je 200 μM dGTP, dCTP, dATP, dTTP; 190 μM dTTP, 10 μM Digoxigenin-dUTP
 - Abbildung 4 zeigt die Amplifikation und Marklerung eines 375 ha Fragmentes aus dem tPA Gen 8

Abbildung 4 zeigt die Amplifikation und Markierung eines 375 bp Fragmentes aus dem tPA Gen aus humaner DNA mit Pwo-DNA-Polymerase, Taq-DNA-Polymerase und der Enzymmischung in Abhängigkeit von verschiedenen Kon-

8

25

30

20

35

50

zentrationen der modifizierten Nukleotiden DIG-dUTP und Bio-dUTP. Sowohl der Einbau von Digoxigenin-dUTP als auch von Biotin-dUTP, unabhängig von der Konzentration des modifizierten Nukleotides, wird mit der Enzymmischung am besten vollzogen. Dies bezieht sich sowohl auf die Effizienz (Produktmenge) als auch auf die Dichte der Marklerung (Shift der PCR-Produkte zu höherem Molekulargewicht, was einen höheren Einbau von modifiziertem dUTP entspricht). Pwo-Polymerase zeigt im Ethidium-Bromid Gel keine spezifischen PCR-Produkte, nur unspezifischen Hintergrund. Taq-DNA-Polymerase zeigt nur teilweise eine spezifische Amplifikation, auch hier ist ein hoher unspezifischer Hintergrund sichtbar.

Beispiel 5:

10

Die Reaktionsbedingungen für die gekoppelte RT-PCR für die AMV/Taq-Pwo Mischung (erfindungsgemäß) sind wie folgt:

In einem 50 μl Ansatz sind 5 U AMV; 0.75 μl der in Beispiel 1 beschriebenen Enzymmischung (Taq/Pwo); 22 mM (NH₄)₂SO₄; 50 mM Tris/HCl, pH 8.9 (20°C); 1.5 mM MgCl₂; 1 mM DTT; 200 μM dNTP (Jewells); 300 nM Collagen Primer 3, 300 nM Collagen Primer 4.

Als Template wurde Gesamt Leber-RNA (menschlich) verwendet, wobei folgende Konzentrationen eingesetzt wurden: 250 ng, 100 ng, 50 ng, 10 ng, 5 ng, 1 ng.

Parallel zu den Ansätzen mit der Enzymmischung wurden RT-PCRs mit Tth DNA-Polymerase durchgeführt. Der 50 µl Ansatz bestand aus 4 U Tth DNA-Polymerase, 50 mM Bicine/KOH pH 8.2, 115 mM KAc, 2 mM Mn(OAc)₂, 8% (v/v) Glycerin, 200 µM dNTP (jeweils) 300 nM sequenzspezifische Collagen 3 forward und Collagen 4 reverse Primers sowie gleiche Konzentrationen der jeweiligen Template RNA wie oben beschrieben.

Die RT-PCR wurde in einem Perkin Elmer GenAmp 9600 Thermocycler mit folgendem Cycleprogramm durchgeführt:

25

30

1x	Reverse Transkriptions Reaktion, 30 Min. bei 60°C
1x -	Denaturierung für 2 Min. bei 94°C
10x	Denaturierung für 15 Sek. bei 94°C
 	Annealing für 30 Sek. bei 60°C
	Elongation für 40 Sek bei 72°C
25x	Denaturierung für 20 Sek. bei 94°C
	Annealing für 30 Sek. bei 60°C
	Elongation für 40 Sek. bei 72°C + Cycle Verlängerung für 10 Sek. für jeden weiteren Cycle
1x	7 Min. bei 72°C

40

35

20 µl des erhaltenen PCR Produktes wurde auf einem 1%igen Agarose-Gel analysiert.

Abbildung 5 zeigt die Amplifikation des 259 bp Fragmentes aus Collagen-mRNA. Die Enzymmischung zeigt über einen breiten Bereich eine deutlich höhere Produktmenge. Selbst bei 5 ng Ausgangs-RNA ist der Enzymmischung noch ein deutliches Signal sichtbar, während mit der Tth DNA-Polymerase nur ein sehr schwaches Signal erzielt werden kann.

Beispiel 6:

Es wurden dieselben Reaktionsbedingungen für die gekoppelte RT-PCR für die AMV/Taq-Pwo Mischung wie in Beispiel 5 beschrieben angewendet. Für die AMV/Taq-Reaktion wurde anstelle der erfindungsgemäßen Enzymmischung 2.5 U Taq DNA-Polymerase verwendet. In beiden Reaktionen wurden 200 nM G3PDH Primer forward and reverse verwendet. Als Template wurde Gesamt-Leber-RNA aus Mensch verwendet, wobei folgende Konzentrationen eingesetzt wurden: 250 ng, 100 ng und 10 ng.

Parallel zu diesen Ansätzen wurden Reaktionen mit 500 µM dNTPs (jeweils) und 2.25 mM Mg²⁺-lonen durchgeführt. Alle anderen Parameter blieben unverändert.

Die Thermocycle-Bedingungen unterschieden sich wie folgt zu Beispiel 5:

- RT-Reaktion bei 55°C für 30 Min.
- Annealing-Temperatur der Primer bei 55°C

- Elongationszeit 1 Min.

Abbildung 6 zeigt die Amplifikation des 983 bp Fragmentes aus G3PDH-RNA. Die AMV/Enzymmischung zeigt unter allen Bedingungen eine deutlich höhere Produktmenge als die AMV/Taq Mischung. Ebenfalls wird sichtbar, daß die Erhöhung der dNTP/Mg²⁺-Konzentration eine Verbesserung der Reaktion darstellt, unabhängig von dem verwendeten System.

Belspiel 7:

Es wurden dieselben Reaktionsbedingungen für die gekoppelte RT-PCR für die AMV/Taq-Pwo Mischung (b) sowie für AMV/Taq (b) wie in Beispiel 6 beschrieben verwendet. In beiden Reaktionen wurden 200 nM Dystrophin Primer forward und reverse verwendet. Als Template wurde Gesamt-Muskel-RNA aus Mensch verwendet, wobei folgende Konzentrationen eingesetzt wurden: 100 ng, 10 ng und 5 ng. Neben der Template-Konzentration wurde noch die Ammoniumsulfatkonzentration in der Reaktion verändert. Folgende AS-Mengen wurden eingesetzt: 18 mM, 20 mM, 22 mM, 24 mM und 26 mM.

Die Thermocycle-Bedingungen unterschieden sich wie folgt zu Beispiel 5:

- RT-Reaktion bei 55°C f

 ür 30 Min.
- Annealing-Temperatur der Primer bei 58°C
- 20 Elongationszeit 1.5 Min.

25

30

35

40

45

50

Abbildung 7 zeigt die Amplifikation des 1851 bp Fragmentes aus Dystrophie-RNA. Die AMV/Enzymmischung zeigt unter allen verwendeten Bedingungen eine deutlich höhere Produktmenge als die AMV/Taq Mischung. Etwas höhere Ammoniumsulfatkonzentrationen geben ein stärkeres Signal.

SEQUENZPROTOKOLL

D		•
	(1) ALLGEMEINE ANGABEN:	
10	(i) ANMELDER:	
	(A) NAME: BOEHRINGER MANNHEIM GMBH	
	(B) STRASSE: Sandhofer Str. 116	
	(C) ORT: Mannheim	
15	(E) LAND: Deutschland	
	(F) POSTLEITZAHL: D-68305	
	(G) TELEFON: 0621/759-3277	
20	(H) TELEFAX: 0621/759-4457	
	(ii) BEZEICHNUNG DER ERFINDUNG: Verfahren zur	spezifischen Verviel-
25	faeltigung und zum Nachweis von DNA bzw. RNA	
	(iii) ANZAHL DER SEQUENZEN: 22	
30	(iv) COMPUTER-LESBARE FASSUNG:	
	(A) DATENTR GER: Floppy disk	
	(B) COMPUTER: IBM PC compatible	
35	(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS	1
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.3	30B (EPA)
	(v) DATEN DER PRIORITÄTSANMELDUNG:	
40	ANMELDENUMMER: EP 95105346.1	
	(2) ANGABEN ZU SEQ ID NO: 1:	
15	·	
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 20 Basenpaare	
io	(B) ART: Nucleotid	•
	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	

5	(ii) ART DES MOLEKULS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"		
		·. ·.	
10	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:		
15	TAAAGGGTCA CCGTGGCTTC	20	
	(2) ANGABEN ZU SEQ ID NO: 2:		
20	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 20 Basenpaare		
	(B) ART: Nucleotid		
25	(C) STRANGFORM: Einzelstrang		
	(D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKÜLS: other nucleic acid		
30	(A) BESCHREIBUNG: /desc = "Primer"		
35			
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:		
40	CGAACCACAT TGGCATCATC	20	
	(2) ANGABEN ZU SEQ ID NO: 3:		
45			
	(i) SEQUENZKENNZEICHEN:		
•	(A) LÄNGE: 19 Basenpaare		
50	(B) ART: Nucleotid		
	(C) STRANGFORM: Einzelstrang		
	(D) TOPOLOGIE: linear		

	(II) ART DES MOLEKULS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"	,
5		
10		•.
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
15	TGGAAACTTT CCACTTGAT	19
	(2) ANGABEN ZU SEQ ID NO: 4:	
20	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 19 Basenpaare	
	(B) ART: Nucleotid	
25	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKULS: other nucleic acid	
<i>30</i>	(A) BESCHREIBUNG: /desc = "Primer"	
35		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	٠
40	GTCCCAAGCA ATGGATCAT	19
45	(2) ANGABEN ZU SEQ ID NO: 5:	
10	(i) SEOUTH DISTRICT DISTRICT COMME	
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 26 Basenpaare	
50	(B) ART: Nucleotid	
	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	

	(ii) ART DES MOLEKULS: other nucleic acid		,
	(A) BESCHREIBUNG: /desc = "Primer"		
5		•	
	·	٠,	
	·	٠.	
10			
•	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:		
	GGAATTCTAT GGGAGTGCAG GTGGAA	26	
15			
	(2) ANGABEN ZU SEQ ID NO: 6:		
20	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 35 Basenpaare		
	(B) ART: Nucleotid		
25	(C) STRANGFORM: Einzelstrang		٠
	(D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKÜLS: other nucleic acid		
30	(A) BESCHREIBUNG: /desc = "Primer"		
35			
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:		•
40	GCGGATCCAA GCTTTCATTC CAGTTTTAGA AGCTC		35
	(2) ANGABEN ZU SEQ ID NO: 7:		
45	·		
	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 20 Basenpaare		
	(B) ART: Nucleotid		
50	(C) STRANGFORM: Einzelstrang		
	(D) TOPOLOGIE: linear		
55			

	(ii) ART DES MOLEKÜLS: other nucleic acid	,
	(A) BESCHREIBUNG: /desc = "Primer"	
5		
		٠.
10		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
	•	
15	GCTGCATCAT ATAAGTTGCC	20
	(2) ANGABEN ZU SEQ ID NO: 8:	
20	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 20 Basenpaare	
	(B) ART: Nucleotid	
25	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: other nucleic acid	
30	(A) BESCHREIBUNG: /desc = "Primer"	
	(1) DESCRICEIDONG: /desc = "Primer"	
35 [.]		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:	
40	AAGGCTACAC TGTTAATTTT	20
	(2) ANGABEN ZU SEQ ID NO: 9:	
45		
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 19 Basenpaare	
50	(B) ART: Nucleotid	
	(C) STRANGFORM: Einzelstrang	
•	(D) TOPOLOGIE: linear	
	·	

	(ii) ART DES MOLEKÜLS: other nucleic acid	
	(A) BESCHREIBUNG: /desc = "Primer"	
5		
		••
•		•.
10		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:	
15	GTCCCAAGCA ATGGATGAT	19
10		
	(2) ANGABEN ZU SEQ ID NO: 10:	
20	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 19 Basenpaare	
	(B) ART: Nucleotid	
	(C) STRANGFORM: Einzelstrang	•
25	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: other nucleic acid	
30	(A) BESCHREIBUNG: /desc = "Primer"	
35		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:	
40	TGGAAACTTT CCACTTGAT	19
	(2) ANGABEN ZU SEQ ID NO: 11:	
45 .	(2) ANOADEN 20 SEQ ID NO. 11.	
10	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 34 Basenpaare	
	(B) ART: Nucleotid	
50	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	

	(ii) ART DES MOLEKÜLS: other nucleic acid			
	(A) BESCHREIBUNG: /desc = "Primer"			
5	· · · · · · · · · · · · · · · · · · ·		•	
•	· ·			
		••		
10	•			
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:			
15	GGAAGTACAG CTCAGAGTTC TGCAGCACCC CTGC			34
	(2) ANGABEN ZU SEQ ID NO: 12:			
20	(i) SEQUENZKENNZEICHEN:			
	(A) LÄNGE: 31 Basenpaare	•		
	(B) ART: Nucleotid			
25	(C) STRANGFORM: Einzelstrang	•		
	(D) TOPOLOGIE: linear			
	(ii) ART DES MOLEKÜLS: other nucleic acid			,
30	(A) BESCHREIBUNG: /desc = "Primer"	•		
35				
33				
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:			
40	GATGCGAAAC TGAGGCTGGC TGTACTGTCT C		31	
45	(2) ANGABEN ZU SEQ ID NO: 13:			
••	(i) SEOLIENZKEN DIZEKOLEN -			
	(i) SEQUENZKENNZEICHEN:			
	(A) LÄNGE: 31 Basenpaare (B) ART: Nucleotid			
50				
	(C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear			
	(-/ - 0. ODOUL, ILICAL			

	(II) ART DES MOLEROES. Other nucleic acid		· ,
	(A) BESCHREIBUNG: /desc = "Primer"		
5			•
	•		
	•	٠.	
10			
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:		
	TGTCTCCAGC ACACAGCATG TTGTCGGTGA C		31
15	(0) ANG ARMI ZU SEO ID NO. 14.		
	(2) ANGABEN ZU SEQ ID NO: 14:		
20	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 31 Basenpaare	•	
	(B) ART: Nucleotid		
25	(C) STRANGFORM: Einzelstrang		•
25	(D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKÜLS: other nucleic acid		
30	(A) BESCHREIBUNG: /desc = "Primer"		•
			•
35			
~			
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:		
40	CAAAGTCATG CGGCCATCGT TCAGACACAC C		31
	·		
	(2) ANGABEN ZU SEQ ID NO: 15:		
45	(2) OF OUT THE PRIZE COURTS.		
	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 20 Basenpaare		•
50	(B) ART: Nucleotid		
	(C) STRANGFORM: Einzelstrang		
	(D) TOPOLOGIE: linear		

	(ii) ART DES MOLEKÜLS: other nucleic acid	,
	(A) BESCHREIBUNG: /desc = "Primer"	
5		
		•
	·	٠.
10		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:	•
	AGACACTAGA COCA COCE	
15 '	AGACAGTACA GCCAGCCTCA	20
	(2) ANGABEN ZU SEQ ID NO: 16:	
	(2) 12 (2) 3EQ ID 140. 16:	
20	(i) SEQUENZKENNZEICHEN:	
•	(A) LÄNGE: 21 Basenpaare	
	(B) ART: Nucleotid	
25	(C) STRANGFORM: Einzelstrang	
25	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: other nucleic acid	
30	(A) BESCHREIBUNG: /desc = "Primer"	
	·	
35		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
40	GACTTCAAAT TTCTGCTCCT C	21
	(2) ANGABEN ZU SEQ ID NO: 17:	
45	()	
10	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 20 Basenpaare	
	(B) ART: Nucleotid	
50	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	
	·	

	(ii) ART DES MOLEKÜLS: other nucleic acid	
•	(A) BESCHREIBUNG: /desc = "Primer"	٠
5		
		••
		٠.
10	(wi) SEQUENZAPESCUMPURIO, SEQUENCE 15	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
	CCAAGAGGAA GGCCAAGTCG	20
15		
	(2) ANGABEN ZU SEQ ID NO: 18:	
·		
20 .	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 19 Basenpaare	
	(B) ART: Nucleotid	
25	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: other nucleic acid	
30	(A) BESCHREIBUNG: /desc = "Primer"	
<i>=</i>		
35		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	
40		
40	GGTGGTTTCT TGGTCGGTG	19
	(2) ANGABEN ZU SEQ ID NO: 19:	
45	(2) 12 (3) 25 (2) (2) (3)	
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 20 Basenpaare	
50	(B) ART: Nucleotid	
••	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	

	(ii) ART DES MOLEKÜLS: other nucleic acid		
	(A) BESCHREIBUNG: /desc = "Primer"		•
5			•
	•		
	•	••	
10	•		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:	·	
15	TAGAGTTTGC CCATGGATTG	20	
.0			
	(2) ANGABEN ZU SEQ ID NO: 20:		
		-	
20	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 30 Basenpaare		
	(B) ART: Nucleotid		
25	(C) STRANGFORM: Einzelstrang		
	(D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKÜLS: other nucleic acid	·	
30	(A) BESCHREIBUNG: /desc = "Primer"	·	
35			
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:		
40	GGGAAGTAGA GGACTGTTAT GAAAGAGAAG		30
	(2) ANGABEN ZU SEQ ID NO: 21:		
45	•		
	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 26 Basenpaare		
50	(B) ART: Nucleotid		
	(C) STRANGFORM: Einzelstrang		•
	(D) TOPOLOGIE: linear		
_			

	(ii) ART DES MOLEKÜLS: other nucleic acid	,
	(A) BESCHREIBUNG: /desc = "Primer"	
5		
		*•
		٠.
10		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:	
15	TGAAGGTCGG AGTCAACGGA TTTGGT	26
	(2) ANGABEN ZU SEQ ID NO: 22:	
20	() (DOLEN GENERAL DESCRIPTION OF THE PROPERTY	
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 24 Basenpaare	
25	(B) ART: Nucleotid	
	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	
30	(ii) ART DES MOLEKÜLS: other nucleic acid	
	(A) BESCHREIBUNG: /desc = "Primer"	
	(71) BBSCIII BBCIII 74636 TIMBI	
35		
		•
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22	
	CATGTGGGCC ATGAGGTCCA CCAC	24
45	•	

Patentansprüche

- Verfahren zur spezifischen Vervielfältigung von kurzen ein- oder doppelsträngigen Nukleinsäure-Fragmenten in Gegenwart mindestens eines geeigneten Primer-Paares, einer zwischen pH 7,0 und 9,5 puffernden Substanz, sämtlicher für die DNA-Kettenverlängerung erforderlichen Nukleotide (dNTPs) und einer Enzymmischung, dadurch gekennzeichnet, daß die Enzymmischung aus einer thermophilen DNA-Polymerase mit proofreading-Aktivität und einer thermophilen DNA-Polymerase ohne proofreading-Aktivität besteht und nach gegebenenfalls stattgefundenem Denaturierungsschritt zur Spaltung von doppelsträngigen DNA-Fragmenten der Elongationsschritt zwischen 5 Sekunden und 8 Minuten bei mindestens 70 °C durchgeführt wird.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Enzymmischung eine DNA-Polymerase ohne proofreading-Aktivität im Überschuß aufweist.

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Enzymmischung DNA-Polymerasen aus <u>Pyrococcus woesii</u> und aus <u>Thermus aquaticus</u> enthält und eine Gesamtenzymkonzentration von ca. 0,5 U bis 5,0 U in der Reaktionsmischung aufweist.
- Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß Magnesiumionen in einem Konzentrationsbereich von 0,5 bis 5,0 mM zugegen sind.
 - Verfahren nach einem der vorangegangenen Ansprüche, dedurch gekennzeichnet, daß Magnesiumionen in einem Konzentrationsbereich von ca. 1,0 bis 3,0 mM zugegen sind und/oder die Konzentration der einzelnen dNTPs zwischen 50 und 500 μM beträgt.
 - 6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß ungefähr 18 bis 30 mM Ammoniumsulfat und/oder ungefähr 30 bis 50 mM Kaliumchlorid in der Reaktionsmischung, die einen AusgangspH-Wert von ca. 8,9 aufweist, vorhanden sind.
 - 7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Elongationstemperatur ca. 72 °C beträgt.
- 8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß ein Enzym mit reverser 20 Transkriptase-Aktivität zugegen ist.
 - 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß es sich bei dem Enzym um AMV- und/oder MoMuLV-RT handelt.
- 25 10. Verfahren nach-einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß eine der thermostabilen DNA-Polymerasen reverse Transkriptase-Aktivität aufweist.
 - 11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die RT-Reaktion bei ca. 45° bis 60°C stattfindet.
 - 12. Enzymmischung bestehend aus einer thermophilen DNA-Polymerase mit proofreading-Aktivität und einer thermophilen DNA-Polymerase ohne proofreading-Aktivität im Verhältnis 1:10 und die Konzentration der Enzyme so angelegt ist, daß die Endkonzentration 0,5 bis 5,0 U/Volumen Reaktionsmischung beträgt.
- 35 13. Enzymmischung nach Anspruch 12, dadurch gekennzeichnet; daß DNA-Polymerase aus <u>Pyrococcus woessi</u> und <u>Thermus aquaticus</u> sowie 0,5 bis 5,0 mM Magnesiumionen zugegen sind.
 - 14. Verwendung der Enzymmischung gemäß Anspruch 12 oder 13 zur Vervielfältigung kurzer DNA-Fragmente.
- 40 15. Verwendung gemäß Anspruch 14, dadurch gekennzeichnet, daß die DNA-Fragmente bis zu ca. 3 kb lang sind.
 - Verwendung der Enzymmischung gemäß der Ansprüche 12 bis 14 zur. Vervielfältigung kurzer DNA-Fragmente und/oder Markierung von DNA-Fragmenten mit modifizierten Nukleotiden.

55

50

10

15

Abbildung 1

erfindungsgemäß

Stand der Technik

Abbildung 2

Stand der Technik

erfindungsgemäß

Abbilduna 3

Mix: Taq/Pwo-Mischung

Abbildung 4

Stand der Technik

. erfindungsgemäß

```
je 200 µM dGTP, dCTP, dATP, dTTP
je 200 µM dGTP, dCTP, dATP, dTTP; 100 µM dTTP, 100 µM Biotin-dUTP
je 200 µM dGTP, dCTP, dATP, dTTP; 134 µM dTTP, 66 µM Biotin-dUTP
je 200 µM dGTP, dCTP, dATP, dTTP; 180 µM dTTP, 20-µM-Biotin-dUTP
je 200 µM dGTP, dCTP, dATP, dTTP; 134 µM dTTP, 66 µM Digoxigenin-dUTP
je 200 µM dGTP, dCTP, dATP, dTTP; 190 µM dTTP, 10 µM Digoxigenin-dUTP
```

EP 0 745 687 A1

Abbildung 5

Abbildung: 6

- 1: 250 ng Gesamt-RNA (human) 2: 100 ng Gesamt-RNA (human)
- : 10 ng Gesamt-RNA (human)

Abbildung: 🗸

a) AMV/ Enzymmischung

b) AMV/ Taq

1: 18 mM Ammoniumsulfat

4

- 2: 20 mM
- 3: 22 mM -"-
- 4: 24 mM -"-
- 5: 26 mM -"-

EUROPÄISCHER RECHERCHENBERICHT

Number for Amedium EP 96 10 5571

EINSCHLÄGIGE DOKUMENTE				•.
ategorie	Kennzeichnung des Dokum der maßgebli	ents tolt Augube, sowek erforderlich, ctien Telle	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Inc.)
P,X	WO-A-95 16028 (STRA * das ganze Dokumen	·	1-7, 12-16	C12Q1/68 C12N9/12 C12P19/34
D,X	WO-A-94 26766 (BARI * das gänze Dokumei	•	1-7, 12-16	
4	EP-A-0 511 712 (EAS		1-7, 12-16	·
				RECHERCHIERTE (Int.Cl.4) C12Q C12N
	·	, ·		
	·			
Der v	·	rde für alle Patentaasprücke erstellt		
	Redurchment Common Comm	Abschlußdatum der Recherche		Prithe
X : vox Y : vox	DEN HAAG KATEGORIE DER GENANNTEN a besonderer Bedeutung allela betrack besonderer Bedeutung in Verbindur feren Veröffentlichung derselben Kat hnologischer Hintergrund	E : literes Patent anch dem Ann g mit einer D : la der Anneld	Ingrunde Begende Johnmest, das jede schielatum veröffe ung angeführtes D	intlicht worden ist Pokument

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.