

Decision Trees

Decision Tree Model

Cat classification example

	Ear shape (x1)	Face shape(x2)	Whiskers (x ₃)	Cat
37	Pointy 🕊	Round 🕊	Present 🕊	1
0	Floppy 🕊	Not round 🕊	Present	1
3	Floppy	Round	Absent 🕊	0
()	Pointy	Not round	Present	0
(Pointy	Round	Present	1
(4)	Pointy	Round	Absent	1
(E)	Floppy	Not round	Absent	0
()	Pointy	Round	Absent	1
()	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

New test example

Face shape. Round Whiskers: Present

Decision Tree

Decision Trees

Learning Process

Decision 1: How to choose what feature to split on at each node?

Maximize purity (or minimize impurity)

DNA

0/5 cats

Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

Measuring purity

Entropy as a measure of impurity

Cat

Cat

 p_1 = fraction of examples that are cats

Cat

Cat

Entropy as a measure of impurity

p₁ = fraction of examples that are cats

$$p_0 = 1 - p_1$$

$$H(p_1) = -p_1 log_2(p_1) - p_0 log_2(p_0)$$

= $-p_1 log_2(p_1) - (1 - p_1) log_2(1 - p_1)$

Note: " $0 \log(0)$ " = 0

Choosing a split: Information Gain

Choosing a split

 $H(0.5) - \left(\frac{5}{10}H(0.8) + \frac{5}{10}H(0.2)\right)$

$$H(0.5) - \left(\frac{7}{10}H(0.57) + \frac{3}{10}H(0.33)\right)$$

$$= 0.03$$

$$p_1 = \frac{3}{4} = 0.75 \quad p_1 = \frac{2}{6} = 0.33$$

$$H(0.75) = 0.81 \quad H(0.33) = 0.92$$

$$H(0.5) - \left(\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)\right)$$

$$= 0.12$$

Information gain

Information Gain

$$p_1^{\text{left}} = \frac{4}{5}$$
 $p_1^{\text{right}} = \frac{1}{5}$
 $w^{\text{left}} = \frac{5}{10}$ $w^{\text{right}} = \frac{5}{10}$

Information gain

=
$$H(p_1^{\text{root}}) - \left(w^{\text{left}} H(p_1^{\text{left}}) + w^{\text{right}} H(p_1^{\text{right}})\right)$$

Putting it together

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected feature, and create left and right branches of the tree
- Keep repeating splitting process until stopping criteria is met:
 - When a node is 100% one class
 - When splitting a node will result in the tree exceeding a maximum depth
 - Information gain from additional splits is less than threshold
 - When number of examples in a node is below a threshold

Recursive algorithm

Using one-hot encoding of categorical features

Features with three possible values

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
1	Pointy 🕊	Round	Present	1
()	Oval	Not round	Present	1
3	Oval 🕊	Round	Absent	0
	Pointy	Not round	Present	0
(3)	Oval	Round	Present	1
	Pointy	Round	Absent	1
(F)	Floppy 🕊	Not round	Absent	0
1	Oval	Round	Absent	1
(B)	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

3 possible values

One hot encoding

Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
Pointy	1	0	0	Round	Present	1
Oval	0	0	1	Not round	Present	1
Oval	0	0	1	Round	Absent	0
Pointy	1	0	0	Not round	Present	0
Oval	0	0	1	Round	Present	1
Pointy	1	0	0	Round	Absent	1
Floppy	0	1	0	Not round	Absent	0
Oval	0	0	1	Round	Absent	1
Floppy	0	1	0	Round	Absent	0
Floppy	0	1	0	Round	Absent	0

One hot encoding

If a categorical feature can take on k values, create k binary features (0 or 1 valued).

One hot encoding and neural networks

	Pointy ears	Floppy ears	Round ears	Face shape	Whiskers	Cat
(E)	1	0	0	-Round- 1	Present 1	1
()	0	0	1	Not round O	-Present 1	1
3	0	0	1	Round 1	-Absent- O	0
	1	0	0	Not round O	Present 1	0
(3)	0	0	1	Round 1	Present 1	1
(3)	1	0	0	Round 1	Absent 0	1
(B)	0	1	0	Not round 0	Absent 0	1
1	0	0	1	Round 1	Absent 0	1
VEY!	0	1	0	Round 1	Absent 0	1
	0	1	0	Round 1	Absent 0	1

Continuous valued features

Continuous features

	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
3	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
3	Floppy	Round	Absent	15	0
()	Pointy	Not round	Present	9.2	0
(E)	Pointy	Round	Present	8.4	1
(4)	Pointy	Round	Absent	7.6	1
3	Floppy	Not round	Absent	11	0
(3)	Pointy	Round	Absent	10.2	1
()	Floppy	Round	Absent	18	0
	Floppy	Round	Absent	20	0

Splitting on a continuous variable

Regression Trees (optional)

Regression with Decision Trees: Predicting a number

	Ear shape	Face shape	Whiskers	Weight (lbs.)
ET.	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
3	Floppy	Round	Absent	15
8.3	Pointy	Not round	Present	9.2
(E)	Pointy	Round	Present	8.4
	Pointy	Round	Absent	7.6
3	Floppy	Not round	Absent	11
(3)	Pointy	Round	Absent	10.2
()	Floppy	Round	Absent	18
	Floppy	Round	Absent	20

Regression with Decision Trees

Choosing a split

Weights: 7.2,

9.2, 8.4, 7.6, 10.2 11, 18, 20

Variance: 1.47

Variance: 21.87

Weights: 8.8, 15,

$$w^{\text{left}} = \frac{5}{10}$$

$$w^{\text{left}} = \frac{5}{10}$$
 $w^{\text{right}} = \frac{5}{10}$

$$20.51 - \left(\frac{5}{10} * 1.47 + \frac{5}{10} * 21.87\right)$$

$$= 8.84$$

Weights: 7.2, 15, 8.4, 7.6, 10.2, 18, 20

Weights: 8.8,9.2,11

Variance: 27.80

Variance: 1.37

$$w^{\text{left}} = \frac{7}{10}$$

$$w^{\text{right}} = \frac{3}{10}$$

$$20.51 - \left(\frac{7}{10} * 27.80 + \frac{3}{10} * 1.37\right)$$
$$= 0.64$$

Weights: 7.2, 8.8, 9.2, 8.4

Weights: 15, 7.6, 11, 10.2, 18, 20

Variance: 0.75

Variance: 23.32

$$w^{\text{left}} = \frac{4}{10}$$

$$w^{\text{right}} = 6/_{10}$$

$$20.51 - \left(\frac{4}{10} * 0.75 + \frac{6}{10} * 23.32\right)$$
$$= 6.22$$

Tree ensembles

Using multiple decision trees

Trees are highly sensitive to small changes of the data

Tree ensemble

New test example

Ear shape: Pointy Face shape: Not Round

Whiskers: Present

Prediction: Not cat

Prediction: Cat

Not Round

Whiskers

Absent

Not Cat

Face shape

Present

Cat

Round

Cat

Prediction: Cat

Presen

Ear

shape

Pointy

Cat

Tree ensembles

Sampling with replacement

Sampling with replacement

Sampling with replacement

Ear shape	Face shape	Whiskers	Cat	
Pointy	Round	Present	1	
Floppy	Not round	Absent	0	
Pointy	Round	Absent	1	
Pointy	Not round	Present	0	
Floppy	Not round	Absent	0	
Pointy	Round	Absent	1	
Pointy	Round	Present	1	
Floppy	Not round	Present	1	
Floppy	Round	Absent	0	
Pointy	Round	Absent	1	

Tree ensembles

Random forest algorithm

Generating a tree sample

Given training set of size m

For
$$b = 1$$
 to B

Use sampling with replacement to create a new training set of size m

Train a decision tree on the new dataset

Bagged decision tree

Randomizing the feature choice

At each node, when choosing a feature to use to split, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$K = \sqrt{n}$$

Random forest algorithm

Tree ensembles

XGBoost

Boosted trees intuition

Given training set of size m

For b = 1 to B:

Use sampling with replacement to create a new training set of size m

But instead of picking from all examples with equal (1/m) probability, make it more likely to pick misclassified examples from previously trained trees

Train a decision tree on the new dataset

Ear shape	Face shape	Whiskers	Cat	Present	Whiskers	Ear shape	Face shape	Whiskers	Prediction	
Pointy	Round	Present	Yes	*	`	Pointy	Round	Present	Cat 😃	
Floppy	Round	Absent	No			Floppy	Not Round	Present	Not cat X	
Floppy	Round	Absent	No	(Ear sha	pe Not cat	Floppy	Round	Absent	Not cat	
Pointy	Round	Present	Yes		1	Pointy	Not Round	Present	Not cat	
Pointy	Not Round	Present	Yes			Pointy	Round	Present	Cat 💟	
	Round	Absent	No	Round J	Not round	Pointy	Round	Absent	Not cat X	•
Floppy		Present	Yes	Round 7	¥	Floppy	Not Round	Absent	Not cat	
Floppy	Round					Pointy	Round	Absent	Not cat X	•
Pointy	Not Round	Absent	No	Cat	Not cat	Floppy	Round	Absent	Not cat	
Pointy	Not Round	Absent	No			Floppy	Round	Absent	Not cat	
Pointy	Not Round	Present	Yes			, roppy	1100110	71020116		

1.2...b-1

XGBoost (eXtreme Gradient Boosting)

- Open source implementation of boosted trees
- Fast efficient implementation
- Good choice of default splitting criteria and criteria for when to stop splitting
- Built in regularization to prevent overfitting
- Highly competitive algorithm for machine learning competitions (eg: Kaggle competitions)

Using XGBoost

Classification

```
→from xgboost import XGBClassifier
model = XGBClassifier()
model.fit(X train, y train)
y pred = model.predict(X test)
```

Regression

```
from xgboost import XGBRegressor
model = XGBRegressor()
model.fit(X train, y train)
y pred = model.predict(X test)
```


Conclusion

When to use decision trees

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast
- Small decision trees may be human interpretable

Neural Networks

- Works well on all types of data, including tabular (structured) and unstructured data
- May be slower than a decision tree
- Works with transfer learning
- When building a system of multiple models working together, it might be easier to string together multiple neural networks