#### Evaluating Data Linkage: Creating longitudinal synthetic data to provide a gold-standard linked dataset

**Tom Dalton**, Graham Kirby, Alan Dearle, Özgür Akgün *University of St Andrews* 









### Background

- Digitising Scotland project
  - will transcribe vital event records 1855-1973
    - births
    - marriages
    - deaths
  - aim to link records to form family tree(s)
    - how do we evaluate our data linkage approach?

# Why Synthetic Data?

- Inspired by real world hand-linked gold-standard data
  - Limited availability
  - Inherent errors
- Synthetic Data
  - Known truth gives a perfect gold-standard
  - Vary populations
    - Characteristics
    - Size
  - Many populations
  - Known level of corruption

Data Driven problems - what synthetic data do we need to evaluate the problems we solve?

### Our approaches

- Organic Population Model
  - Event driven micro-simulation
  - Tom Dalton, Victor Andrei
- Verified Population Model
  - Time step driven micro-simulation

#### OPM – Overview

- Approach
  - Takes in a set of distributions defined by the user and a seed size
  - Sets up a population
  - Runs population for given time
  - Generates logging graphs
  - Outputs to desired format

#### OPM – Inputs

#### Genealogical controlling inputs are variable over time

#### **Annotations**

- · female first name
- male first name
- surname
- occupation
- cause of death
- address

#### Seed

- seed age for males
- seed age for females

#### Birth

- children number of in cohab
- children number of in cohab then marriage
- children number of in marriage
- children number of in pregnancy

#### **Partnering**

- partnership characteristic
- partnership remarriage characteristic
- marriage age for males
- marriage age for females
- cohabitation age for males
- cohabitation age for females
- cohabitation to marriage time
- cohabitation length

#### Death

death age at

#### Separation

- divorce age for male
- divorce age for female
- divorce instigated by gender
- divorce reason male
- divorce reason female
- divorce remarriage boolean
- remarriage time to

#### **Genealogical complexity**

- affair number of
- affair number of children
- affair with single or married

#### OPM – Inputs

#### Age at death

| 0    | 0 36525 |   |   |   |   |   |   |   |    |    |    |    |     |     |     |     |     |     |    |    |
|------|---------|---|---|---|---|---|---|---|----|----|----|----|-----|-----|-----|-----|-----|-----|----|----|
| 1600 | 2       | 2 | 2 | 3 | 7 | 4 | 3 | 5 | 20 | 21 | 35 | 63 | 115 | 139 | 143 | 143 | 149 | 94  | 20 | 20 |
| 1700 | 2       | 1 | 2 | 3 | 7 | 4 | 3 | 5 | 20 | 21 | 35 | 63 | 115 | 120 | 125 | 150 | 160 | 110 | 25 | 22 |

#### Female age at marriage

| 5478 | 3652 | 5   |     |     |     |     |    |    |    |    |    |   |   |   |   |   |   |
|------|------|-----|-----|-----|-----|-----|----|----|----|----|----|---|---|---|---|---|---|
| 1600 | 6    | 166 | 222 | 190 | 150 | 114 | 82 | 24 | 24 | 15 | 7  | 1 | 1 | 1 | 1 | 1 | 1 |
| 1700 | 6    | 120 | 222 | 192 | 148 | 103 | 93 | 26 | 22 | 12 | 10 | 1 | 1 | 1 | 1 | 0 | 0 |

#### Male age at marriage

| 5478 | 5478 36525 |     |     |     |     |     |    |    |    |    |   |   |   |   |   |   |   |
|------|------------|-----|-----|-----|-----|-----|----|----|----|----|---|---|---|---|---|---|---|
| 1600 | 6          | 137 | 214 | 192 | 161 | 122 | 91 | 28 | 28 | 14 | 6 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1700 | 3          | 144 | 210 | 180 | 160 | 125 | 96 | 30 | 25 | 18 | 5 | 3 | 2 | 2 | 2 | 1 | 1 |

### OPM – Approach

- 1. Set inputs
- 2. Choose start date

- 3. Choose seed population size
- 4. Decide ages of people in seed population

Head of queue

- Work out D.O.B.
- Make a birth event
- Insert into queue

### OPM – Creating the seed

- 1. Set inputs
- 2. Choose start date

- 3. Choose seed population size
- 4. Decide ages of people in seed population

1 BORN 1670

Head of queue

- Work out D.O.B.
- Make a birth event
- Insert into queue

### OPM – Creating the seed

- 1. Set inputs
- 2. Choose start date

- 3. Choose seed population size
- 4. Decide ages of people in seed population



Head of queue

- Work out D.O.B.
- Make a birth event
- Insert into queue

### OPM – Creating the seed

- 1. Set inputs
- 2. Choose start date

- 3. Choose seed population size
- 4. Decide ages of people in seed population



Head of queue

- Work out D.O.B.
- Make a birth event
- Insert into queue

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue

3 BORN 1672 BORN 1690

Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



#### Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



Head of queue

- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



### Head of queue



Marriage

#### For MARRIAGE event:

Add person to correct marriage pairing queue

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



#### Head of queue



#### For MARRIAGE event:

Add person to correct marriage pairing queue

Marriage

- 1. Take event from from of queue
- 2. Perform event

- 3. Create resultant events
- 4. Insert events into queue



#### Head of queue



#### For MARRIAGE event:

Add person to correct marriage pairing queue

Marriage

### OPM – Partnering

- 1. Once a year
- 2. Iterate over partnering queues

- 3. Partner together eligible individuals
- 4. Create resultant and insert events into queue



### Head of queue



Marriage

- Decide on end date
  - Insert end event
- Decide on first children
  - Insert BIRTH and BORN events

3 MARR 1690

### OPM – Partnering

- 1. Once a year
- 2. Iterate over partnering queues

- 3. Partner together eligible individuals
- 4. Create resultant and insert events into queue



#### Head of queue



Marriage

- Decide on end date
  - Insert end event
- Decide on children
  - Insert BIRTH and BORN events

3 MARR 1690

### OPM – Partnering

- 1. Once a year
- 2. Iterate over partnering queues

- 3. Partner together eligible individuals
- 4. Create resultant and insert events into queue

#### Head of queue



Marriage

- Decide on end date
  - Insert end event
- Decide on children
  - Insert BIRTH and BORN events

3 MARR 1690

# OPM – Event Handling



### Head of queue



Marriage

- Decide on end date
  - Insert end event
- Decide on children
  - Insert BIRTH and BORN events

3 MARR 1690

### OPM – Event Handling



#### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



#### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



### Head of queue



Marriage

- Decide if another birth
  - Set date
  - Insert BIRTH and BORN event



### Head of queue



- Decide if another birth
  - Set date
  - Insert BIRTH and BORN event



### Head of queue



Marriage

- Decide if another birth
  - Set date
  - Insert BIRTH and BORN event



### Head of queue



Marriage

- Decide if another birth
  - Set date
  - Insert BIRTH and BORN event



#### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



#### Head of queue



- Create person
- Decide on first partnership characteristic
  - Set date
  - Insert
- Death
  - Set date
  - Insert



### Head of queue



Marriage

#### For BIRTH event:

- Decide if another birth
  - Set date
  - Insert BIRTH and BORN event



#### Head of queue



Marriage

#### For BIRTH event:

- Decide if another birth
  - Set date
  - Insert BIRTH and BORN event



# Head of queue



Marriage

For DEATH event:

Remove



# Head of queue



Marriage

For DEATH event:

Remove

4 DEATH 1694

# OPM – Event Handling





5 BORN 1695

#### OPM – Event Handling





5 BORN 1695

# OPM – Event Handling



























































Single

# OPM – Event Handling

Marriage



Cohab

#### OPM - Problems

- Clashing of inputs
- Lack of expression in the model
  - Extraordinary Events
  - Quantification of inputs
- Verifying the generated population matched the desired inputs

#### Length of Cohabitation Distribution - 1600 - end



#### Number of Children Distribution - Cohabitation - 1849 - end



#### OPM - Problems

- Clashing of inputs
- Lack of expression in the model
  - Extraordinary Events
  - Quantification of inputs
- Verifying the generated population matched the desired inputs

#### OPM - Problems

- Clashing of inputs
- Lack of expression in the model
  - Extraordinary Events
  - Quantification of inputs
- Verifying the generated population matches the desired inputs

### Verified Population Model

#### To produce a synthetic population

- A graph (tree structure) representing the true linkage of the population
- The event records for the population

#### Based on a range of summative input statistics

Ordered birth rates, death rates, parenting

#### Statistically verifiable

- against input statistics
- against secondary 'unseen' statistics
- ? 'Turing test'

#### VPM – Overview



#### VPM – Overview

- Inputs
- Integrity and Initialisation
- Simulation approach
  - Simulation
  - Self-correction
- Validation
  - Kaplan Meier
  - ANOVA

#### VPM – Overview

- Inputs
- Integrity and Initialisation
- Simulation approach
  - Simulation
  - Self-correction
- Validation
  - Kaplan Meier
  - ANOVA

#### Genealogical controlling inputs are variable over time

#### **Annotations**

- female first name
- male first name
- surname
- occupation
- cause of death
- address

#### Seed

- seed age for males
- seed age for females

#### **Birth**

- children number of in cohab
- children number of in cohab then marriage
- children number of in marriage
- ordered birth rates
- children number of in pregnancy

#### **Partnering**

- partnership characteristic
- partnership remarriage characteristic
- marriage age for males
- marriage age for females
- cohabitation age for males
- cohabitation age for females
- cohabitation to marriage time
- cohabitation length
- age difference at partnering

#### Death

- death age at
- lifetable

#### Separation

- divorce age for male
- divorce age for female
- divorce instigated by gender
- divorce reason male
- divorce reason female
- divorce remarriage boolean
- remarriage time to
- separation following number of children in partnership

#### **Genealogical complexity**

- affair number of
- affair number of children
- affair with single or married

- Life tables
  - Age at death
  - Sudden changes in death rate

| YEAR       | 1630     |     | 81   | 0.13 |
|------------|----------|-----|------|------|
| POPULATION | SCOTLAND |     | 82   | 0.15 |
| SOURCE     | ONS      |     | 83   | 0.17 |
| VAR        | DEATH    |     | 84   | 0.18 |
| FORM       | RATE     |     | 85   | 0.19 |
| GENDER     | M        |     | 86   | 0.19 |
| DATA       |          |     | 87   | 0.22 |
| 0          | 0.012996 |     | 88   | 0.23 |
| 1          | 0.000945 |     | 89   | 0.23 |
| 2          | 0.000572 |     | 90   | 0.26 |
| 3          | 0.000532 | ••• | 91   | 0.29 |
| 4          | 0.000403 |     | 92   | 0.28 |
| 5          | 0.00038  |     | 93   | 0.26 |
| 6          | 0.000345 |     | 94   | 0.   |
| 7          | 0.000237 |     | 95   | 0.40 |
| 8          | 0.000323 |     | 96   | 0.41 |
| 9          | 0.000293 |     | 97   | 0.39 |
| 10         | 0.000248 |     | 98   | 0.37 |
| 11         | 0.00037  |     | 99   | 0.53 |
| 12         | 0.000324 |     | 100+ | 0.90 |

- Ordered Birth Table
  - Fertility rate (TFR and ASFR)
  - Age of females at birth and partnering
  - Controls family size paired with **separation**

| YEAR       | 1980        |             |             |             |             |
|------------|-------------|-------------|-------------|-------------|-------------|
| POPULATION | ENGWALES    |             |             |             |             |
| SOURCE     | ONS         |             |             |             |             |
| VAR        | BIRTH       |             |             |             |             |
| TYPE       | ORDERED     |             |             |             |             |
| FORM       | RATE        |             |             |             |             |
| LABELS     | 0           | 1           | 2           | 3           | 4+          |
| DATA       |             |             |             |             |             |
| 15         | 0.003       | 0           | 0           | 0           | 0           |
| 16         | 0.01067     | 0.00033     | 0           | 0           | 0           |
| 17-19      | 0.0386209   | 0.006538    | 0.0015411   | 0           | 0           |
| 20-24      | 0.069174    | 0.020412    | 0.018144    | 0.004536    | 0.001134    |
| 25-29      | 0.04008     | 0.02672     | 0.044088    | 0.016032    | 0.00668     |
| 30-34      | 0.011442424 | 0.010012121 | 0.030751515 | 0.012872727 | 0.005721212 |
| 35-39      | 0.0022      | 0.00308     | 0.00946     | 0.00462     | 0.00264     |
| 40-49      | 0.000264    | 0.000312    | 0.000864    | 0.000528    | 0.000432    |

- Multiple births in pregnancy
  - Twinning

| YEAR       | 2013     |          |          |          |
|------------|----------|----------|----------|----------|
| POPULATION | ENGWALES |          |          |          |
| SOURCE     | ONS      |          |          |          |
| VAR        | MULTIPL  | E_BIRTH  |          |          |
| FORM       | RATE     |          |          |          |
| LABELS     | 1        | 2        | 3        | 4        |
| DATA       |          |          |          |          |
| 15-19      | 0.994061 | 0.00587  | 0.000069 | 0        |
| 20-24      | 0.991185 | 0.008714 | 0.000101 | 0        |
| 25-29      | 0.987437 | 0.012378 | 0.00018  | 0.000005 |
| 30-34      | 0.982819 | 0.016912 | 0.000268 | 0        |
| 35-39      | 0.977418 | 0.022068 | 0.000495 | 0.000018 |
| 40-44      | 0.972353 | 0.027117 | 0.00053  | 0        |
| 45-49      | 0.906608 | 0.089022 | 0.004369 | 0        |

- Partnering
  - Age difference at partnering
  - Male age at partnering

| POPULATION | ENGV                | VALES  |        |        |        |        |        |        |
|------------|---------------------|--------|--------|--------|--------|--------|--------|--------|
| SOURCE     | ONS                 |        |        |        |        |        |        |        |
| VAR        | PARTN               | IERING |        |        |        |        |        |        |
| TYPE       | FEMALE_AGES_ON_ROWS |        |        |        |        |        |        |        |
| FORM       | PROPO               | RTIONS |        |        |        |        |        |        |
| LABELS     | 15-19               | 20-24  | 25-29  | 30-34  | 35-39  | 40-44  | 45-49  | 50-100 |
| DATA       |                     |        |        |        |        |        |        |        |
| 15-19      | 0.1868              | 0.5580 | 0.1784 | 0.0502 | 0.0173 | 0.0058 | 0.0021 | 0.0015 |
| 20-24      | 0.0211              | 0.4409 | 0.3663 | 0.1140 | 0.0373 | 0.0133 | 0.0045 | 0.0026 |
| 25-29      | 0.0048              | 0.1247 | 0.4497 | 0.2677 | 0.1026 | 0.0318 | 0.0118 | 0.0068 |
| 30-34      | 0.0030              | 0.0567 | 0.2149 | 0.3662 | 0.2124 | 0.0910 | 0.0366 | 0.0192 |
| 35-39      | 0.0024              | 0.0325 | 0.1214 | 0.2248 | 0.2983 | 0.1846 | 0.0841 | 0.0518 |
| 40-44      | 0.0016              | 0.0185 | 0.0749 | 0.1340 | 0.2111 | 0.2622 | 0.1745 | 0.1232 |
| 45-49      | 0.0004              | 0.0125 | 0.0600 | 0.1009 | 0.1459 | 0.1784 | 0.2459 | 0.2559 |

- Separation following number of children in partnership
  - Family size
  - A genealogy focused way of modelling separation

| 1981        |
|-------------|
| ENGWALES    |
| ONS         |
| SEPARATION  |
| RATE        |
|             |
| 0.003222    |
| 0.003425984 |
| 0.001090183 |
| 0.000281235 |
| 7.27E-05    |
|             |

- Inputs
- Integrity and Initialisation
- Simulation approach
  - Simulation
  - Self-correction
- Validation
  - Kaplan Meier
  - ANOVA

# VPM – Integrity

### How far back from our 'start date'?

- Integrity
- Dependent on desired records

#### For a death certificate:



## VPM – Initialisation

- Information known
  - Start Date
  - Desired initial population size
  - Earliest reference
  - Pre-model BR and DR

Size of population ×

Earliest Reference Start Date

**Time** 

## VPM – Initialisation



- Inputs
- Integrity and Initialisation
- Simulation approach
  - Simulation
  - Self-correction
- Validation
  - Kaplan Meier
  - ANOVA

## VPM - Death



#### **Death**

Males aged 0

Population size = S = 250

 $nMx = {}_{0}M_{1} = 0.0130$ 

Number to die =  $S \times nMx$  = 3.25

Select 3 males to die

#### **Self correction**

Rounding errors

## VPM - Birth



#### Birth

Females aged 20 with 2 children

Population size = S = 5000

 $nMx = {}_{20(2)}M_1 = 0.069$ 

Number to birth  $= S \times nMx = 345$ 

Select 345 females to give birth

### **Separation**

We have 345 females where they have had 2 children in a partnership

Population size = S = 345

 $nMx = {}_{2C}M_{1C} = 0.0034$ 

Number to sep.  $= S \times nMx$  = 1.173

Select 1 female to separate

## VPM - Partnering



### **Partnering**

We have 1 female selected to be a mother in need of a partner

We also have the females of other birth orders

Total of 350 mothers

|        | 15-19 | 20-24   | 25-29   | 30-34  | 35-39  | 40-44 | 45-49 | 50-100 |
|--------|-------|---------|---------|--------|--------|-------|-------|--------|
| 20-24  | 0.021 | 0.441   | 0.366   | 0.114  | 0.037  | 0.013 | 0.004 | 0.003  |
| Exact  | 7.388 | 154.321 | 128.194 | 39.888 | 13.068 | 4.666 | 1.562 | 0.913  |
| Chosen | 7     | 154     | 128     | 40     | 13     | 5     | 2     | 1      |

#### **Self correction**

- Rounding errors
- Insufficient people

- Inputs
- Integrity and Initialisation
- Simulation approach
  - Simulation
  - Self-correction
- Validation
  - Kaplan Meier
  - ANOVA

## VPM — Statistical Verification

Kaplan Meier Analysis

Ordered birth

- Death
- Separation



## VPM — Statistical Verification

- ANOVA
  - Partnering
  - Multiple births



## VPM – Evaluation

- Infinite number of possible input combination
- How to test?
  - Characteristics
  - Input generation
  - Objective correctness measure
- Generalising to different domains

- Inputs
- Integrity and Initialisation
- Simulation approach
  - Simulation
  - Self-correction
- Validation
  - Kaplan Meier
  - ANOVA



## Future work and Other Uses

Creating synthetic data sets in privacy sensitive environments

Data safe havens

Opportunities to explore supervised learning approaches to linkage based on synthetic population topologies

## Questions?

Tom Dalton – tsd4@st-andrews.ac.uk