Minimizing multi-pathogen risk and costs through control measures

Subhasish Basak^{1,2}, Julien Bect², Laurent Guillier¹, Fanny Tenenhaus-Aziza³,

Janushan Christv⁴ & Emmanuel Vazguez²

ArtiSaneFood: Biopreservation and Risk Modelling Approaches
May 25, 2023 - Bragança, Portugal

- 1. Agence Nationale de Sécurité Sanitaire (ANSES), Maison-Alfort, France 2. Université Paris-Saclay, CNRS, CentraleSupeléc, L2S, Gif-sur-yvette, France
- 3. Centre national interprofessionnel de l'économie laitière (CNIEL), Paris, France
- 4. Centre technique d'expertise agroalimentaire (ACTALIA), La-Roche-sur-foron, France

This work is part of the ArtiSaneFood project (grant number : ANR-18-PRIM-0015) which is part of the PRIMA program supported by the European Union.

Motivation & application

- Aim: Control risk of illness from pathogens in raw milk cheese
 - STEC → Haemolytic Uremic Syndrome (HUS)
 STEC & MPS STEC
 - Salmonella → Salmonellosis

High & Low Virulent Salmonella

- Quantitaive Risk Assesement (QRA)
 - Based on Perrin et al. (2014) and Basak et al. (in prep.)
- Optimization : Find intervention parameters that minimize the objectives
 - Relative risk of illness & intervention cost (€)

Farm module: Milk collection

- Milk sorting: Reject farm if E.coli conc. $(Y_{\mathrm{milk}}^{\mathrm{Ecoli}}) > \mathsf{threshold}$
 - $Y_{
 m milk}^{
 m Ecoli} \sim {
 m Lognormal}$ with parameters based on $extit{CNIEL} + extit{ACTALIA}$ data
- Concentrations are computed indirectly due to limit of detection

$$Y_{\mathrm{milk}}^{\mathrm{X}} = Y_{\mathrm{milk}}^{\mathrm{Ecoli}} \cdot (Y_{\mathrm{feces}}^{\mathrm{X}} / Y_{\mathrm{feces}}^{\mathrm{Ecoli}})$$

- $-X \in \{STEC, Salmonella\}$
- $Y_{\rm feces}^{\rm Salmo} \sim {\rm Lognormal}$, $Y_{\rm feces}^{\rm STEC} \sim {\rm Weibull}$, $Y_{\rm feces}^{\rm Ecoli} \sim {\rm Lognormal}$
- Prevalence rates and distribution parameters:
 - (Perrin et al., 2014) & (Bonifait et al., 2021)

Figure 1: Simulated concentration of bacterias in milk in production

Farm module outputs

Cheese module

■ Growth / phase

$$\frac{dy}{dt} = \mu_{X}^{\max}(t) \cdot y(t) \cdot (1 - \frac{y(t)}{y^{\max}})$$

 $\mathsf{Milk\ storage}\ \to\ \mathsf{Molding}\ \to\ \mathsf{Colony\ formation}\ \to\ \mathsf{Draining}\ \to\ \mathsf{Salting}$

■ Decline \ phase

$$\begin{split} & \textbf{STEC}: Y_{\text{STEC}}^{\text{consume}} = Y_{\text{STEC}}^{\text{salting}} \cdot 10^{-\rho \cdot t} \\ & \textbf{Salmonella}: Y_{\text{Salmo}}^{\text{consume}} = Y_{\text{Salmo}}^{\text{salting}} \cdot 10^{-(t/\delta)^p} \\ & \textbf{Ripening} \ \rightarrow \ \textbf{Cheese storage} \ \rightarrow \ \textbf{Consumption} \end{split}$$

→ Decline rates based on ACTALIA report

Cheese module: Pre-molding stages

Figure 2: Growth rate $\mu^{\max}(t)$ and evolution y(t) of STEC and Salmonella

 $\rightarrow \mathsf{Number\ of\ colonies}\colon\ N_{\mathbf{X}}^{\mathrm{colony}} \sim \mathrm{Poisson}(Y_{\mathbf{X}}^{\mathrm{molding}} \cdot c)$

Cheese module: Evolution of colonies

Figure 3: Evolution of colonies of different strains of STEC and Salmonella

ightarrow Size of colonies: $Y_{
m X}^{
m colony} \sim {
m Lognormal}$ with median $Y_{
m X}^{
m consume}$

Consumer module

• Dose in cheese serving:

$$\Gamma_{\mathbf{X}} = \sum_{s \in \text{strains}} N_s^{\text{colony}} \cdot Y_s^{\text{colony}}$$

Dose-response model:

$$P_{
m STEC}^{
m illness} = 1 - (1 - r_{
m age})^{\Gamma_{
m STEC}}$$
 (Perrin et al., 2014)
$$P_{
m Salmo}^{
m illness} = 1 - (1 + \frac{\Gamma_{
m Salmo}}{\beta})^{-\alpha}$$
 (Strickland et al., 2023)

Batch risk:

$$R_{\rm X}^{\rm batch} = \sum_{\rm age=1}^{15} g({\rm age}) \cdot \mathbb{E}_{\Gamma_{\rm X}}[P_{\rm X}^{\rm illness}]$$

→ Effect of Salmonella is independent of consumer age

Intervention steps

- Milk testing: Farm module
 - Proportion of farm milk tested $ightarrow p_{
 m milk}$
 - Threshold of E.coli test $ightarrow l_{
 m milk}$
 - ightarrow Computes $M^{
 m batch}$ milk rejected (in liters)
- Cheese testing: Postharvest module
 - Proportion of cheese batch tested $\rightarrow p_{\mathrm{cheese}}$
 - Number of cheese samples tested $\rightarrow n_{\rm sample}$
 - ightarrow Computes $P_{
 m X}^{
 m batch}$ Probability of rejecting the batch

$$P_{\mathrm{X}}^{\mathrm{batch}} = 1 - (1 - P[\Gamma_{\mathrm{X}} > 0])^{n_{\mathrm{sample}}}$$

Quantities of interest (QoI)

ullet Qols are computed using $R_{
m X}^{
m batch}$, $P_{
m X}^{
m batch}$ and $M^{
m batch}$

$$R_{\mathbf{X}}^{\text{illness}} = \frac{\mathbb{E}[R_{\mathbf{X}}^{\text{batch}} \cdot (1 - P_{\mathbf{X}}^{\text{batch}} \cdot p^{\text{cheese}})]}{\mathbb{E}[1 - P_{\mathbf{X}}^{\text{batch}} \cdot p^{\text{cheese}}]}$$

$$C^{\text{avg}} = (c_1 + c_2 \cdot \mathbb{E}[M^{\text{batch}}]) + (c_3 + c_4 \cdot \mathbb{E}[P_{\mathbf{X}}^{\text{batch}} \cdot p^{\text{cheese}}])$$

- Several batches are simulated to estimate
 - $\rightarrow c_i$'s denote cost values (COPIL ArtiSaneFood, Caen, Normandie, 2022)
- DALY: Disability-adjusted life year
 - Batch risk for HUS and Salmonellosis are computed
 - Overall risk was assessed by combining the burden of disease metrics

Multi-objective optimization $\rightarrow f = (R^{\text{HUS}}, C)$

• Consider an input: $x_1 = (p_{\text{milk}}, l_{\text{milk}}, p_{\text{cheese}}, n_{\text{sample}})$

$$p_{\rm milk}=30\%,\,l_{\rm milk}=50\,{\rm CFU},\,p_{\rm cheese}=50\%,\,n_{\rm sample}=5\,{\rm units}$$

• Corresponding actual output: $f_1 = (R_1^{HUS} = 2.2, C_1 = 1000 \, \mathrm{EUR})$

Dominated area by f_1 in objective space

Pareto optimal solutions

• Example: Inputs $\{x_i\}$ and outputs $\{f_i\}$, for $i=1,\ldots,5$

Minimizing two conflicting functions: $\min_x f(x)$

 $j_3, j_4 \propto j_5$ dominated by j_1 and j_2

ullet Goal: Estimate the Pareto set $\mathcal{P}=\{x_1,x_2\}$ and Pareto front $\mathcal{F}=\{f_1,f_2\}$

Multi-objective stochastic optimization

• Simulator: Inputs $\{x_i\}$ and outputs $\{z_i = f_i + \text{noise}\}$, for $i = 1, \dots, 5$

Minimizing two expensive & noisy functions: $\min_x f(x)$

 f_3 , f_4 & f_5 dominated by f_1 and f_2

Naive approach Use Monte Carlo simulations → computationally expensive

PALS (Barracosa et al., 2021) and (Basak et al., 2022)

• Input points: $(p_{\mathrm{milk}}^i, l_{\mathrm{milk}}^i, p_{\mathrm{cheese}}^i, n_{\mathrm{sample}}^i)_{i=1,2,\ldots,1500}$

PALS: Estimated Pareto front

- (a) Samples ALL 1500 points $\times 5000$
- (b) Samples only 300 points $\times 200$ (size)
- PALS has $\sim 4\%$ misclassification rate in estimating Pareto optimal points

Conclusions & Perspectives

- QRA model for STEC and Salmonella
- Bayesian Optimization for finding the optimal intervention parameters
 - \rightarrow Open sourcing (Github + FSKX) multipathogen QRA model
 - ightarrow Optimization on DALY metrics
 - \rightarrow Propose a 3-pathogen model with Listeria

Thank you for your attention!

COPIL ArtiSaneFood 2022, Caen, Normandie

References

- F. Perrin, F. Tenenhaus-Aziza, V. Michel, S. Miszczycha, N. Bel, and M. Sanaa. Quantitative risk assessment of haemolytic and uremic syndrome linked to O157:H7 and non-O157:H7 shiga-toxin producing escherichia coli strains in raw milk soft cheeses. <u>Risk Analysis</u>, 2014.
- S. Basak, J. Christy, L. Guillier, F. Audiat-Perrin, M. Sanaa, F. Tenenhaus-Aziza, J. Bect, and E. Vazquez. Quantitative risk assessment of haemolytic and uremic syndrome (hus) from consumption of raw milk soft cheese. in prep.
- L. Bonifait, A. Thépault, L. Baugé, S. Rouxel, F. Le Gall, and M. Chemaly. Occurrence of salmonella in the cattle production in france. <u>Microorganisms</u>, 9(4), 2021. ISSN 2076-2607. doi: 10.3390/microorganisms9040872. URL https://www.mdpi.com/2076-2607/9/4/872.
- J.C. Augustin, V. Zuliani, M. Cornu, and L. Guillier. Growth rate and growth probability of listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. <u>Journal of Applied Microbiology</u>, 99:1019–1042, 2005. doi: 10.1111/j.1365-2672.2005.02710.x.

- A.J Strickland, F Sampedro, and C.W Hedberg. Quantitative risk assessment of salmonella in ground beef products and the resulting impact of risk mitigation strategies on public health. <u>Journal of Food Protection</u>, 86(6):100093, 2023. ISSN 0362-028X. doi: https://doi.org/10.1016/j.jfp.2023.100093. URL https://www.sciencedirect.com/science/article/pii/S0362028X23067650.
- B. Barracosa, J. Bect, H. Dutrieux Baraffe, J. Morin, J. Fournel, and E. Vazquez. Extension of the pareto active learning method to multi-objective optimization for stochastic simulators. Virtual Conference originally scheduled in Fort Worth. Texas. United States. 2021.
- Subhasish Basak, Julien Bect, Laurent L. Guillier, Fanny Tenenhaus-Aziza, Janushan Christy, and Emmanuel Vazquez. Bayesian multi-objective optimization for quantitative risk assessment in microbiology. MASCOT-NUM 2022, June 2022. URL https://hal.science/hal-03715857. Poster.

Bayesian Optimization (BO) framework

Expensive evaluations + Noisy observations

Algorithm 1 Using a Gaussian process regression (GPR) model ξ on f

Sample f at n_0 points

▷ initialization step

while budget > 0 do

Update : GPR posterior ξ_n

Compute: acquisition function $J_n(x)$ Next point : $x_{n+1} = \arg \max_{x \in \mathbb{X}} J_n(x)$

Sample: f at x_{n+1}

end while

Estimate $\widehat{\mathcal{P}}$ and $\widehat{\mathcal{F}}$ with GPR posterior mean

▷ Prediction step

Weighted Mean Square Error (W-MSE)

- PALS (Barracosa et al., 2021) + extension (Basak et al., 2022)
- MSE is used as a measure of uncertainty
- The new sample X_{n+1} corresponds to highest uncertain region of $\mathbb X$

$$X_{n+1} = \operatorname*{arg\,max}_{x \in \mathbb{X}} \left(w_n(x) \cdot \sum_{j=1}^q \frac{\sigma_{j,n}^2(x)}{R_{j,n}^2} \right)$$

- $R_{i,n}$ is a normalizing constant for $j=1,2,\ldots,q$ -th objective
- $\sigma_{j,n}^2(x)$ is the GP posterior variance at $x \in \mathbb{X}$
- Non-zero weights are given to "potentially Pareto optimal" points