

Foundations of Machine Learning (ECE 5984)

- Logistic Regression -

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

Classification

Question

Is this email spam?

Is the transaction fraudulent?

Is the tumor malignant?

Answer "y"

no yes

no yes

y can only be one of two values

"binary classification"

"negative class"

+ "bad"

absence

false true

useful for classification

"positive class"

"good"

presence

The Perceptron

Linear Classification

Linear decision boundary

$$x + b = 0$$

$$w_1 x_1 + w_2 x_2 + b = 0$$

$$w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$$

Rosenblatt's Perceptron

A single perceptron as a linear decision boundary (hyperplane)

Weight vector is orthogonal to the hyperplane

Weight vector is orthogonal to the hyperplane

• Find a separating hyperplane

Find a separating hyperplane

Angles between all positive examples $x^{(i)}$ and w should be less then ?? degree

Angles between all negative examples $x^{(i)}$ and w should be greater then ?? degree

Perceptron Learning Algorithm

• Find the w vector that perfectly classify training examples

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs with label 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
   Pick random \mathbf{x} \in P \cup N;
   if x \in P and w.x < 0 then
   end
   if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
   end
end
//the algorithm converges when all the
 inputs are classified correctly
```

Perceptron Learning Algorithm

• Find a separating hyperplane

Perceptron Learning Algorithm

• Find a separating hyperplane

Logistic Regression

Problems of the Perceptron

• Which one is better?

Problems of the Perceptron

• What about not linearly separable cases?

Classification w/ Linear Regression

Classification w/ Linear Regression

Classification w/ Linear Regression

Logistic Function (aka Sigmoid)

Squeezing the output of a 'linear equation' between 0 and 1

$$step(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Function (aka Sigmoid)

• Squeezing the output of a 'linear equation' between 0 and 1

$$z = w^{\mathsf{T}} x$$

$$f(x) = \frac{1}{1 + e^{-z}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression

•
$$y = \sigma(w^{T}x) = \frac{1}{1 + e^{-w^{T}x}}$$

- Using the 'logistic function' to squeeze the output of a 'linear equation'
 - $\sigma(w^{\mathsf{T}}x) \in [0,1]$ (w/ sigmoid)
 - $step(w^Tx) \in \{0,1\}$ (thresholding)
- So, now it's more like probability
 - $p(y = 1|x; w) = \sigma(w^{\mathsf{T}}x)$
 - $p(y = 0 | x; w) = 1 \sigma(w^{\mathsf{T}} x)$
 - p(y = 0|x; w) = p(y = 1|x; w)

Training set

	tumor size	 patient's age	malignant?
	(cm) <u>¼</u>	Xn	У
i=1	10	52	1
	2	73	0
•	5	55	0
	12	49	1
i=m			

Can we apply MSE loss function to logistic regression?

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \{0, 1\}, w \in \mathbb{R}^d$$

$$X \in \mathbb{R}^{N \times d}, Y \in \{0, 1\}^N$$

MSE(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \sigma(w^{T} x^{(i)}))^{2}$$

Is it convex?

Convexity Check

Derivative of Sigmoid Function

$$\frac{\sigma(x) = \frac{1}{1 + e^{-x}}}{\frac{d\sigma(x)}{dx}} =$$

Derivative of Sigmoid Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{1}{(1 + e^{-x})} \frac{e^{-x}}{(1 + e^{-x})}$$

$$= \sigma(x)(1 - \sigma(x))$$

Convexity Check in 1D

$$\frac{\partial^2 L(w)}{\partial w^2} \ge 0$$

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$\hat{y}^{(i)} = \sigma(wx^{(i)})$$

$$\frac{\partial L(w)}{\partial w} = \sum_{i=1}^{N} -(y^{(i)} - \hat{y}^{(i)})\hat{y}^{(i)}(1 - \hat{y}^{(i)})x^{(i)} = \sum_{i=1}^{N} -(y^{(i)}\hat{y}^{(i)} - y^{(i)}\hat{y}^{(i)^2} - \hat{y}^{(i)^2} + \hat{y}^{(i)^3})x^{(i)}$$

$$\frac{\partial^2 L(w)}{\partial w^2} = \sum_{i=1}^N -\left(y^{(i)} - 2y^{(i)}\hat{y}^{(i)} - 2\hat{y}^{(i)} + 3\hat{y}^{(i)}^2\right)\hat{y}^{(i)}(1 - \hat{y}^{(i)})x^{(i)^2} > 0$$

Convexity Check in 1D

$$-3\hat{y}^{(i)^{2}} + 2(y^{(i)} + 1)\hat{y}^{(i)} - y^{(i)}? \qquad y^{(i)} \in \{0,1\}$$
if $y^{(i)} = 0$

$$-3\hat{y}^{(i)^{2}} + 2\hat{y}^{(i)} = -3\left(\hat{y}^{(i)} - \frac{2}{3}\right)\hat{y}^{(i)} \qquad \hat{y}^{(i)} \in \left[0, \frac{2}{3}\right] \qquad \hat{y}^{(i)} \in \left[\frac{2}{3}, 1\right]$$

$$> 0 \qquad < 0$$

• Convexity Check in 1D

$$-3\hat{y}^{(i)^{2}} + 2(y^{(i)} + 1)\hat{y}^{(i)} - y^{(i)}? \qquad y^{(i)} \in \{0,1\}$$

$$if y^{(i)} = 1$$

$$-3\hat{y}^{(i)^{2}} + 4\hat{y}^{(i)} - 1 = -3\left(\hat{y}^{(i)} - \frac{1}{3}\right)(\hat{y}^{(i)} - 1) \qquad \hat{y}^{(i)} \in \left[\frac{1}{3}, 1\right] \qquad \hat{y}^{(i)} \in \left[0, \frac{1}{3}\right]$$

$$> 0 \qquad < 0$$

Convexity Check in 2D

Log Loss

$$D = \{ (x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)}) \}$$
$$x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \{0, 1\}, w \in \mathbb{R}^d$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$-\log(\hat{y}), \qquad y^{(i)} = 1$$

log(x)

$$if y^{(i)} = 1,$$

 $-\log(\hat{y})$

$$-\log(\hat{y})$$

$$if y^{(i)} = 0,$$

$$-\log(1-\hat{y})$$

$$-\log(1-\hat{y})$$

Convexity Check in 1D

$$if y^{(i)} = 1,$$

$$L(w) = -\sum_{i=1}^{N} \log(\hat{y}^{(i)}) \qquad \hat{y}^{(i)} = \sigma(wx^{(i)})$$

$$\hat{y}^{(i)} = \sigma(wx^{(i)})$$

$$\frac{\partial L(w)}{\partial w} =$$

$$\frac{\partial^2 L(w)}{\partial w^2} =$$

Convexity Check in 1D

$$if y^{(i)} = 0,$$

$$L(w) = -\sum_{i=1}^{N} \log(1 - \hat{y}^{(i)}) \qquad \hat{y}^{(i)} = \sigma(wx^{(i)})$$

$$\frac{\partial L(w)}{\partial w} =$$

$$\frac{\partial^2 L(w)}{\partial w^2} =$$

Solving Logistic Regression

- Is it convex?
- Does it have a closed form solution?

BCE(w) =
$$-\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$\frac{\partial \mathrm{BCE}(w)}{\partial w_j} =$$

BCE(w) =
$$-\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$\frac{\partial BCE(w)}{\partial w_j} = \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)}$$

$$w_j \coloneqq w_j - \alpha (\sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)})$$

(Gradient Descent)

Algorithm: Perceptron Learning Algorithm

 $P \leftarrow inputs$ with label 1; $N \leftarrow inputs$ with label 0; Initialize w randomly; while !convergence do

Pick random $\mathbf{x} \in P \cup N$;

```
if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then
| \mathbf{w} = \mathbf{w} + \mathbf{x} ;
end
if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
| \mathbf{w} = \mathbf{w} - \mathbf{x} ;
end
```

end

//the algorithm converges when all the inputs are classified correctly

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$w \in \mathbb{R}^d$$

$$\frac{\partial \mathrm{BCE}(w)}{\partial w} = ?$$

$$Y \in \mathbb{R}^N$$

$$X \in \mathbb{R}^{N \times d}$$

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma(w^{\mathsf{T}} x^{(i)})$$

$$\frac{\partial \mathrm{BCE}(w)}{\partial w} = X^{\mathsf{T}}(\sigma(Xw) - Y)$$

$$w \in \mathbb{R}^d$$

$$Y \in \mathbb{R}^N$$

$$X \in \mathbb{R}^{N \times d}$$

$$w \coloneqq w - \alpha(X^{\mathsf{T}}(\sigma(Xw) - Y))$$

(Gradient Descent)

MLE

MLE for Logistic Regression

• Bernoulli distribution

parameter
$$p(x; p) = p^{x}(1-p)^{1-x}, \qquad x \in \{0,1\}$$

$$\begin{cases} x = 0, & 1-p \\ x = 1, & p \end{cases}$$

$$E[x] = p$$

$$\sum_{x \in \{0,1\}} xp(x) = 1 \cdot p + 0 \cdot (1-p) = p$$

MLE for Logistic Regression

• Finding the parameters that maximize 'conditional likelihood'

Assumption1: p(y|x) is a Bernoulli distribution

Assumption2: I.I.D

$$\log L(w) = \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)};w) = \sum_{i=1}^{N} \log \sigma(w^{\mathsf{T}}x^{(i)})^{y^{(i)}} \left(1 - \sigma(w^{\mathsf{T}}x^{(i)})\right)^{1-y^{(i)}}$$
$$= \sum_{i=1}^{N} y^{(i)} \log \sigma(w^{\mathsf{T}}x^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - \sigma(w^{\mathsf{T}}x^{(i)})\right)$$

a.k.a Binary Cross Entropy (BCE) Loss

Multiclass Classification

Multiclass Classification

One vs. All for Multiclass Classification

Sigmoid function and binary logistic regression

Softmax Function

Sigmoid function and binary logistic regression

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \qquad y = \sigma(w^{\mathsf{T}}x)$$

Softmax Function

- 'Soft' 'Max' function
 - $[1,2,3,2,1] \rightarrow [0.0674,0.183,0.498,0.183,0.0674]$

softmax:
$$\mathbb{R}^C \to [0,1]^C$$

 $||\text{softmax}||_1 = 1$

$$\operatorname{softmax}(z)_j = \frac{e^{z_j}}{\sum_{i=1}^C e^{z_i}}$$

$$\operatorname{softmax}(z) = \begin{bmatrix} \frac{e^{z_1}}{\sum_{i=1}^C e^{z_i}} \\ \frac{e^{z_2}}{\sum_{i=1}^C e^{z_i}} \end{bmatrix} \in [0,1]$$

Weight vectors for each class!

$$\hat{y}^{(i)} = \operatorname{softmax}(Wx^{(i)}) \in \mathbb{R}^C$$
 $W \in \mathbb{R}^{c \times d}$ $w_k \in \mathbb{R}^d$ $p(y = 0 | x) =$

Weight vectors for each class!

$$\hat{y}^{(i)} = \operatorname{softmax}(Wx^{(i)}) \in \mathbb{R}^{C} \qquad W \in \mathbb{R}^{c \times d} \qquad w_{k} \in \mathbb{R}^{d}$$

$$p(y = 0|x) = \frac{e^{w_{0}^{T}x}}{e^{w_{0}^{T}x} + e^{w_{1}^{T}x} + e^{w_{2}^{T}x}}$$

$$p(y = 1|x) = \frac{e^{w_{1}^{T}x}}{e^{w_{0}^{T}x} + e^{w_{1}^{T}x} + e^{w_{2}^{T}x}}$$

$$p(y = 2|x) = \frac{e^{w_{2}^{T}x}}{e^{w_{0}^{T}x} + e^{w_{1}^{T}x} + e^{w_{2}^{T}x}}$$

• When they 2 classes

$$p(y = 0|x) =$$

$$p(y = 1|x) =$$

When they 2 classes

$$w^* = -(w_0 - w_1)$$

$$p(y = 0|x) = \frac{e^{w_0^{\mathsf{T}}x}}{e^{w_0^{\mathsf{T}}x} + e^{w_1^{\mathsf{T}}x}} = \frac{e^{w_0^{\mathsf{T}}x}}{e^{w_0^{\mathsf{T}}x} + e^{w_1^{\mathsf{T}}x}} = \frac{e^{-w_1^{\mathsf{T}}x}}{e^{-w_1^{\mathsf{T}}x}} = \frac{e^{(w_0 - w_1)^{\mathsf{T}}x}}{1 + e^{(w_0 - w_1)^{\mathsf{T}}x}} = \frac{e^{-w^{\mathsf{T}}x}}{1 + e^{-w^{\mathsf{T}}x}}$$

$$p(y = 1|x) = \frac{e^{w_1^{\mathsf{T}}x}}{e^{w_0^{\mathsf{T}}x} + e^{w_1^{\mathsf{T}}x}} = \frac{e^{w_1^{\mathsf{T}}x}}{e^{w_0^{\mathsf{T}}x} + e^{w_1^{\mathsf{T}}x}} = \frac{1}{1 + e^{-w^{\mathsf{T}}x}}$$

$$1 - \frac{1}{1 + e^{-w^{*T}x}} = \frac{e^{-w^{*T}x}}{1 + e^{-w^{*T}x}}$$

Categorical Distribution

 Categorical distribution can be used to model a random variable X that takes values in {1, ..., C}

$$p(x;\phi) = \phi^x (1-\phi)^{1-x}$$

Bernoulli distribution

$$p(x = i) = \phi_i$$

$$\phi_{1,\ldots,}\phi_{C-1}$$

$$\sum_{i=1}^{C} \phi_i = 1$$

$$\sum_{i=1}^{C} \phi_i = 1 \qquad 1 - \sum_{i=1}^{C-1} \phi_i = \phi_C$$

$$p(x) = \prod_{i=1}^{C} \phi_i^{\mathbb{I}_i(x)} = \phi_1^{\mathbb{I}_1(x)} \phi_2^{\mathbb{I}_2(x)} \dots \phi_C^{\mathbb{I}_C(x)}$$

$$\mathbb{I}_i(x) = \begin{cases} 1 & \text{if } x == i \\ 0 & \text{otherwise} \end{cases}$$

MLE w/ categorical distribution

$$p(y|x) = \prod_{i=1}^{N} \prod_{j=1}^{C} \phi_j^{\mathbb{I}_j(y^{(i)})} \qquad y^{(i)} \in \{1, \dots, C\}$$

$$\log p(y|x) =$$

MLE w/ categorical distribution

$$p(y|x) = \prod_{i=1}^{N} \prod_{j=1}^{C} \phi_j^{\mathbb{I}_j(y^{(i)})}$$

$$\log p(y|x) = \sum_{i=1}^{N} \log \prod_{j=1}^{C} \phi_{j}^{\mathbb{I}_{j}(y^{(i)})} = \sum_{i=1}^{N} \sum_{j=1}^{C} \log \phi_{j}^{\mathbb{I}_{j}(y^{(i)})} = \sum_{i=1}^{N} \sum_{j=1}^{C} \mathbb{I}_{j}(y^{(i)}) \log \phi_{j}$$

Cross Entropy Loss

- Cross Entropy Loss
 - BCE is a special case of CE (two classes)

$$CE(w) = -\sum_{i=1}^{N} \sum_{c=1}^{C} y_c^{(i)} \log(\hat{y}_c^{(i)}) \qquad \hat{y}^{(i)} = \operatorname{softmax}(Wx^{(i)}) \in \mathbb{R}^C \qquad W \in \mathbb{R}^{c \times d}$$

$$y^{(i)} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \quad \text{(one-hot vector)} \qquad \mathbb{I}_j(y^{(i)})$$

$$BCE(w) = -\sum_{i=1}^{N} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Derivative of the Softmax Function

$$y_j = \frac{e^{z_j}}{\sum_{i=1}^C e^{z_i}}$$

1)
$$i \neq j$$

$$\frac{\partial y_i}{\partial z_j} = \frac{\left(\sum_{k=1}^C e^{z_k}\right) \cdot 0 - e^{z_i} e^{z_j}}{\left(\sum_{k=1}^C e^{z_k}\right)^2} = -y_i y_j$$

2)
$$i = j$$

$$\frac{\partial y_i}{\partial z_j} = \frac{\left(\sum_{k=1}^C e^{z_k}\right) \cdot e^{z_i} - e^{z_i} e^{z_i}}{\left(\sum_{k=1}^C e^{z_k}\right)^2} = y_i - y_i^2 = y_i(1 - y_i)$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

Derivative of the Softmax Function

$$y_j = \frac{e^{z_j}}{\sum_{i=1}^C e^{z_i}}$$

$$\frac{\partial y_i}{\partial z_i} = \begin{cases} y_i(1 - y_i), & i = j \\ -y_i y_j, & i \neq j \end{cases} = y_i (1\{i = j\} - y_j)$$

$$\frac{dy}{dz} = \begin{bmatrix} y_1(1-y_1) & \cdots & -y_1y_C \\ \vdots & \ddots & \vdots \\ -y_Cy_1 & \cdots & y_C(1-y_C) \end{bmatrix}$$

Cross-Entropy + Softmax

$$\log \mathrm{CE}(W) = -\sum_{i=1}^C y_i \log(\hat{y}_i) \qquad \hat{y}_i = \frac{e^{z_i}}{\sum_{j=1}^C e^{z_j}} \qquad z_c = W_c^\top x \qquad W_c \in \mathbb{R}^d \quad W \in \mathbb{R}^{c \times d}$$

$$\frac{\partial \widehat{y}_i}{\partial z_j} = \begin{cases} \widehat{y}_i (1 - \widehat{y}_i), & i = j \\ -\widehat{y}_i \widehat{y}_j, & i \neq j \end{cases}$$

$$\frac{\partial L}{\partial z_j} = -\frac{\partial}{\partial z_j} \sum_{i=1}^C y_i \log(\hat{y}_i) = -\sum_{i=1}^C y_i \frac{\partial \log(\hat{y}_i)}{\partial z_j} = -\sum_{i=1}^C \frac{y_i}{\hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_j}$$

Cross-Entropy + Softmax

$$\begin{split} \log \mathrm{CE}(W) &= -\sum_{i=1}^C y_i \log(\hat{y}_i) \quad \hat{y}_i = \frac{e^{z_i}}{\sum_{j=1}^C e^{z_j}} \qquad z_c = W_c^\top x \qquad W_c \in \mathbb{R}^d \quad W \in \mathbb{R}^{c \times d} \\ \frac{\partial \hat{y}_i}{\partial z_i} &= \begin{cases} \hat{y}_i (1 - \hat{y}_i), & i = j \\ -\hat{y}_i \hat{y}_j, & i \neq j \end{cases} \end{split}$$

$$\frac{\partial \mathrm{CE}(W)}{\partial z_j} = -\frac{\partial}{\partial z_j} \sum_{i=1}^C y_i \log(\hat{y}_i) = -\sum_{i=1}^C y_i \frac{\partial \log(\hat{y}_i)}{\partial z_j} = -\sum_{i=1}^C \frac{y_i}{\hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_j}$$

$$= -\frac{y_j}{\hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_j} - \sum_{i \neq j}^C \frac{y_i}{\hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_j} = -\frac{y_j}{\hat{y}_j} \hat{y}_j (1 - \hat{y}_j) + \sum_{i \neq j}^C \frac{y_i}{\hat{y}_i} \hat{y}_i \hat{y}_j$$

$$= -y_j + y_j \hat{y}_j + \sum_{i \neq j}^C y_i \hat{y}_j = -y_j + \hat{y}_j \sum_{i=1}^C y_i = \hat{y}_j - y_j$$

$$\frac{dL}{dz} = \hat{y} - y$$

$$\frac{\partial}{\partial W_{c,j}} CE(W) = \frac{\partial CE(W)}{\partial z} \frac{\partial z}{\partial W_{c,j}} = \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)}$$

$$W_{c,j} \coloneqq W_{c,j} - \alpha \left(\sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \right)$$

(Gradient Descent)

$$\frac{\partial}{\partial W_{c,j}} CE(W) = \frac{\partial CE(W)}{\partial z} \frac{\partial z}{\partial W_{c,j}} = \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)}$$

$$\frac{\partial}{\partial W} CE(W) = \frac{\partial CE(W)}{\partial z} \frac{\partial z}{\partial W_{c,j}} = (\text{softmax}(WX) - Y)X^{\top} \qquad W \in \mathbb{R}^{c \times d}$$
$$Y \in \mathbb{R}^{c \times N}$$

$$X \in \mathbb{R}^{d \times N}$$

$$W \coloneqq W - \alpha(\operatorname{softmax}(WX) - Y)X^{\mathsf{T}}$$

(Gradient Descent)