PHY-112

PRINCIPLES OF PHYSICS-II

Spring-24 | Class-10

AKIFUL ISLAM (AZW)

POTENTIAL AND FIELD

Potential difference experienced by moving a charge from **start**ing location to the **end**ing location.

$$\Delta V = V_{\rm final} - V_{\rm start} = \frac{\Delta U}{q_0} = - \int_{\rm start}^{\rm final} \vec{E} \cdot d\vec{r}. \label{eq:deltaV}$$

POTENTIAL DUE TO A POINT CHARGE

Physically, Electric Potential is the work done per unit charge (+1 C) to bring a charge from infinity (where the electric field is considered to be zero) to a particular location r in an electric field.

$$V_{\infty} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

How does Potential Change?

18

V increases

outward.

EQUIPOTENTIAL SURFACES

These are mathematical surfaces, not physical surfaces, with the same value of ${\cal V}$ at every point.

$$\Delta V = 0 = -\oint \vec{E} \cdot d\vec{r}, \qquad V \equiv {
m constant}.$$

Properties of Equipotential Surfaces

- Perpendicular to Electric Field Lines
- Uniform Potential. All points have the same electric Potential.
- **No Potential Difference**. No work is required to move a charge along the surface.
- **■** Closer Spacing Indicates Stronger Field.
- Gaussian surfaces are equipotential surfaces.

GEOMETRY OF ELECTRIC POTENTIAL AND FIELD

 $ec{E}$ -field changes between two equipotential surfaces.

$$\vec{E}_r = -\frac{dV(r)}{dr} = -\left(\frac{dV_x}{dx}\hat{i} + \frac{dV_y}{dy}\hat{j} + \frac{dV_z}{dz}\hat{k}\right)$$

GEOMETRY OF ELECTRIC POTENTIAL AND FIELD

 \vec{E} -field changes (perpendicular) between two equipotential surfaces toward decreasing potential.

Testing Concepts (1)

Q: A proton is released from rest at point 2, where the Potential is $0\,\mathrm{V}$. Afterward, the proton.

-100 V	0 V	+100 V
1	1	1
l i	- 1	i
1 •	2 •	3 •
i	i	i
1	1	1

- 1. Remains at rest at point 2
- 2. Moves toward point 1 with a steady speed
- 3. Moves toward point 1 with an increasing speed
- 4. Moves toward point 3 with a steady speed
- 5. Moves toward point 3 with an increasing speed

TESTING CONCEPTS (2)

Q: Which potential graph describes the electric field at the left?

Testing Concepts (3)

Q: When a proton moves from A to B along an electric field line, the electric field does 7.91×10^{-28} GJ (Giga joule) of work on it. Calculate (i) $V_B - V_A$, (ii) $V_C - V_A$, and (iii) $U_C - U_B$?

TESTING CONCEPTS (4)

Q:

- Which point, A or B, has a larger electric potential?
- \blacksquare What is the potential difference between A and B?

LOOKING AT THE BIG PICTURE: WHERE WE ARE NOW

Potentials of 3 Key $ec{E}$ Field Sources: Continuous

Potentials of 3 Key $ec{E}$ Field Sources: Continuous

Line	Surface	Volume
$ec{E} = igg(rac{\lambda}{2\pi\epsilon_0 r}igg)\hat{r}$	$ec{E} = igg(rac{\sigma}{2\epsilon_0}igg)\hat{n}$	$ec{E} = \left(rac{ ho r}{3\epsilon_0} ight)\!\hat{r}$
$V = -\int_i^f ec{E} \cdot dec{r}$	$V = -\int_i^f ec{E} \cdot dec{r}$	$V = -\int_i^f ec{E} \cdot dec{r}$
$V = -\left(rac{\lambda}{2\pi\epsilon_0} ight)\int_i^f rac{1}{r}dr$	$V = -\left(rac{\sigma}{2\epsilon_0} ight)\int_i^f dr$	$V=-\left(rac{ ho}{3\epsilon_0} ight)\int_i^f r dr$
$V = - \left(rac{\lambda}{2\pi\epsilon_0} ight)\!\left[\ln r ight]_i^f$	$V = -\left(rac{\sigma}{2\epsilon_0} ight) {[r]}_i^f$	$V = -\left(rac{ ho}{3\epsilon_0} ight) \left[rac{r^2}{2} ight]_i^f$
$V = -\left(rac{\lambda}{2\pi\epsilon_0} ight) \ln r - V_0$	$V = -\left(rac{\sigma}{2\epsilon_0} ight)\!r - V_0$	$V = -\left(rac{ ho}{6\epsilon_0} ight)\!r^2 - V_0$