

(19) RU (11) 2 039 733 (13) C1

(51) Int. Cl. 6 C 07 C 233/18, 233/70,

233/73, 311/17, A 61 K 31/15, 31/18

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5057522/04, 04.08.1992

(46) Date of publication: 20.07.1995

(71) Applicant:
Vserossijskij nauchnyj tsentr po
bezopasnosti biologicheski aktivnykh veshchestv

(72) Inventor: Skachilova S.Ja.,
Azizov R.G., Zueva Eh.F., Burov
Ju.V., Merkulova T.I.

(73) Proprietor:
Vserossijskij nauchnyj tsentr po
bezopasnosti biologicheski aktivnykh veshchestv

(54) DERIVATIVES OF 2-(3,4-DIHYDROXYPHENYL) ETHYLAMINE SHOWING IMMUNOTROPIC ACTIVITY AND CAPABILITY TO INHIBIT VIRUS REPLICATION

(57) Abstract:

FIELD: organic chemistry. SUBSTANCE: product of the formula [2-R¹O-3-R²O]Ph-(CH₂)₂-NHR² where R¹R² a group -C(O)-Ph-NO₂ -C(O)-CH(CH₃)₂ -C(O)-CH(C₃H₇)₂ -C(O)-C₆H₁₁ -C(O)-CH₂-C₆H₁₁ -C(O)-CH₂-C₅H₉ -C(O)-CH₂-Cl -C(O)-(CH₂)₃-Cl -C(O)-(CH₂)₄-Cl

SO₂C₆H₄CH₃ -S(O)-O-Ph-Cl; -C(O)-Ad, where Ad 1-adamantyl, or R¹ hydrogen and R² as indicated above. Reagent 1: dopamine hydrochloride. Reagent 2: chloroanhydride of corresponding acid. Reaction condition: in pyridine medium, at 5-10 C. Derivatives were in substituted amine chemistry. EFFECT: improved method of synthesis. 3 cl, 6 tbl

RU 2039733 C1

RU 2039733 C1

(19) RU (11) 2 039 733 (13) C1

(51) МПК⁶ С 07 С 233/18, 233/70, 233/73,
311/17, А 61 К 31/15, 31/18

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 5057522/04, 04.08.1992

(46) Дата публикации: 20.07.1995

(56) Ссылки: 1. M. Negwer "Organic Chemical drugs and their Synonyms", N 4556, 1987.2. Патент США N 366859, кл. А 61К 27/00, 1972.3. Патент США N 3657452, кл. А 61К 27/00, 1972.4. Химфармжурнал N 4, 1980, с.115-121.

(71) Заявитель:
Всероссийский научный центр по безопасности биологически активных веществ

(72) Изобретатель: Скачилова С.Я.,
Азизов Р.Г., Зуева Э.Ф., Буров Ю.В., Меркулова Т.И.

(73) Патентообладатель:
Всероссийский научный центр по безопасности биологически активных веществ

(54) ПРОИЗВОДНЫЕ 2-(3,4-ДИГИДРОКСИФЕНИЛ)-ЭТИЛАМИНА, ПРОЯВЛЯЮЩИЕ ИММУНОТРОПНУЮ АКТИВНОСТЬ И ОБЛАДАЮЩИЕ СПОСОБНОСТЬЮ ТОРМОЗИТЬ РЕПЛИКАЦИЮ ВИРУСА

(57) Реферат:

Использование: в химии замещенных аминов, в частности в качестве веществ, проявляющих иммунотропную активность. Сущность изобретения: продукт ф-лы: [2-R¹O-3-R²O]Ph-(CH₂)₂-NHR² где R¹R² группа: -C(O)-Ph-NO₂; -C(O)-CH(CH₃)₂; -C(O)-CH(C₃H₇)₂; -C(O)-C₆H₁₁;

-C(O)-CH₂C₆H₁₁; -C(O)-CH₂C₅H₉;
-C(O)-CH₂Cl; -C(O)-(CH₂)₃Cl;
-C(O)-(CH₂)₄Cl; SO₂C₆H₄CH₃;
-S(O)-O-Ph-Cl; -C(O)-Ad, где Ad 1-адамантил, или R¹ водород, а R² указанные значения. Реагент 1: гидрохлорид дофамина. Реагент 2: хлорангидрид соответствующей кислоты. Условия реакции: в среде пиридина при 5-10 °С. 2 с.п. ф-лы, 6 табл.

RU 2 0 3 9 7 3 3 C 1

R U ? 0 3 9 7 3 3 C 1

RU 2039733 C1

Изобретение относится к новым химическим соединениям, конкретно к производным 2-(3,4-дигидроксифенил)этиламина, которые проявляют иммунотропную активность и обладают способностью тормозить репликацию вируса.

Известны структурные аналоги заявляемых соединений, обладающие другими видами активности. Так, препарат ибопамин, обладающий спазмолитическими свойствами, применяется в качестве сердечно-сосудистого средством [1] а этиловый эфир

3,4-дикарбокси- β -фенетилкарбаминовой кислоты проявляет антидепрессивную [2] и антипаркинсоническую [3] активность. Иммунотропная активность и способность тормозить репликацию вируса среди структурных аналогов заявляемых соединений неизвестны.

В настоящее время для лечения заболеваний, связанных с иммунными нарушениями, широко применяется препарат левамизол [4] недостатком которого является достаточно высокая токсичность (ЛД₅₀ составляет 50 мг/кг).

Целью изобретения являются производные 2-(3,4-дигидроксифенил)этиламина, проявляющие иммунотропную активность, способность тормозить репликацию вируса и обладающие низкой токсичностью.

Поставленная цель достигается производными 2-(3,4-дигидроксий)этиламина общей формулы

R^2 принимает указанные значения.

Указанные соединения получают известным способом по методу Эйнгорна при взаимодействии гидрохлорида дофамина с хлорангидридами кислот в пиридине. Данные элементарного анализа, температуры плавления, выходы синтезированных соединений, параметры ИК-спектров представлены в табл.1.

Пример 1. Получение N-[2-[3,4-бис-(4-нитробензоилокси)фенил]этил]-4-нитробензамида (соединение 1).

В трехгорлую колбу, снабженную мешалкой, капельной воронкой и обратным холодильником, загружают 3 г дофамина и 40 мл пиридина. Реакционную массу охлаждают в бане со льдом до температуры 5±2°C. Затем при перемешивании добавляют 9 г хлорангидрида 4-нитробензойной кислоты. Реакционную массу перемешивают при

5-10 °С в течение 2 ч. Отфильтровывают образовавшийся гидрохлорид пиридина, маточный раствор выливают в охлажденную воду (~ 100 мл). Реакционную смесь перемешивают при комнатной температуре в течение 2-3 ч, выпавший продукт кристаллизуют 20 ч. Осадок N-[2-[3,4-бис-(4-нитробензоилокси)фенил]этил]-4-нитробензамида отфильтровывают, промывают подкисленной водой и спиртом, сушат на воздухе до постоянной массы. Получают 7,5 г белого с желтоватым оттенком кристаллического порошка. Т.пл. 205-208°C. Выход продукта составляет 79,1% на взятый в реакцию дофамина гидрохлорид. Очистку продукта осуществляют перекристаллизацией из диметилформамида или из ацетона. Структура соединения подтверждена элементным анализом, методами ИК- и ПМР-спектроскопии (см. табл.1).

Аналогично получены соединения 2-12.

Пример 2. Получение N-[2-[4-хлорбутилкарбокси]-3-оксифенил]этил]-4-хлорбутилкарбоксамид (соединение 13).

В трехгорлую колбу, снабженную мешалкой, капельной воронкой и обратным холодильником, загружают 3 г дофамина и 40 мл пиридина. Реакционную массу охлаждают до температуры 5±2°C. Затем при перемешивании добавляют 5,0 г хлорангидрида ω -хлорвалериановой кислоты. Реакционную массу перемешивают при 5-10 °С в течение 2 ч. Отфильтровывают гидрохлорид пиридина, маточный раствор выливают в охлажденную воду (~ 100 мл) и перемешивают при комнатной температуре в течение 3 ч. Воду декантируют, оставшийся маслянистый осадок сушат в вакууме на масляном насосе до постоянной массы. Продукт очищают на хроматографической колонке (d 2 см) с силикагелем. Элюент хлороформ. Контроль за составом фракции ведут методом ТСХ на пластинах Силуфол УФ-254. Объединяют фракции, имеющие одинаковый состав. Растворитель отгоняют. Получают 0,8 г соединения 7 в виде слегка желтоватого масла и 1,9 г соединения 13 в виде белого с кремоватым оттенком кристаллического порошком. Выход продуктов составляет 10,0 и 30,3% соответственно (см. табл.1).

Методом ПМР подтверждено строение вновь синтезированных триацильных ($R_1=R_2$ =ацил; соед. 1-12) и диацильных ($R_1=H$, R_2 =ацил; соед. 13 и 14) производных дофамина. Спектры ПМР сняты в DMSO-d₆ на спектрометре ЯМР "Tesla" BS-587A (80 мГц); внутренний стандарт ТМС; температура образца 303 К. В спектрах ПМР гидрохлорида дофамина регистрируются следующие сигналы поглощения: широкий сигнал поглощения интенсивностью в две протонные единицы при δ 8,82 м.д. принадлежащий протонам гидроксильных групп; широкий сигнал поглощения протонов при четвертичном атоме азота интенсивностью в три протонные единицы при δ 8,02 м.д. сигналы поглощения ароматических протонов: H-5, δ 6,69 м.д. I_{5,6}=7,9 Гц; H-2, δ 6,63 м.д. I_{2,6}=2,0 Гц; H-6, δ 6,47 м.д. I_{5,6}=7,9 Гц.

В области δ 2,5-3,0 м.д. регистрируются

RU 2039733 C1

неразрешенный мультиплет сигналов поглощения четырех алифатических протонов. В качестве примера рассмотрим спектры производных дофамина и хлорвалериановой кислоты (смд. 7 и 13).

В спектрах ПМР всех ацильных производных дофамина сигналы поглощения алифатических протонов ацильной части молекулы представляют собой сложные неразрешенные мультиплеты в области $\delta = 1,2\text{--}3,5$ м.д. перекрывающиеся также с сигналами поглощения растворителя ДМСО и сигналом поглощения H_2O (примесь в ДМСО). Поэтому, принимая во внимание данные спектра ПМР гидрохлорида дофамина, наиболее информативной областью спектров ПМР, полученных производных дофамина, представляется низкопольная часть этих спектров. В низкопольной части спектров триацильных производных зарегистрирован триплет сигнала поглощения амидного протона при $\delta = 7,89$ м.д. и $\text{I}_{\text{NHCH}_2} = 5,4$ Гц и неразрешенный мультиплет трех ароматических протонов при $\delta = 7,00\text{--}7,25$ м.д. Для этих спектров характерно отсутствие сигналов поглощения гидроксильных протонов. В низкопольной части спектров ПМР диацильных производных дофамина зарегистрирован сигнал поглощения гидроксильного протона при $\delta = 9,47$ м.д. триплет сигнала поглощения амидного протона при $\delta = 7,85$ м.д. и $\text{I}_{\text{NHCH}_2} = 5,5$ Гц, а также сигналы поглощения ароматических протонов:

- H-5, $\delta = 6,88$ м.д. $\text{I}_{5,6} = 8,1$ Гц;
- H-2, $\delta = 6,78$ м.д. $\text{I}_{2,6} = 1,8$ Гц;
- H-6, $\delta = 6,60$ м.д. $\text{I}_{6,2} = 1,8$ Гц, $\text{I}_{5,6} = 8,1$ Гц.

Таким образом, методом ПМР подтверждено наличие в молекуле производных дофамина трех и двух ацилов соответственно.

Наличие в спектре ПМР диацильного производного дофамина сигнала поглощения протона одной из гидроксильных групп позволяет установить с помощью специальных методик ПМР-спектроскопии положение свободной гидроксильной группы в ароматическом кольце молекулы.

При подавлении спин-спинового взаимодействия β -метиленовых протонов молекулы дофамина с протонами ароматического кольца на частоте поглощения β -метиленовых протонов наблюдается сужение сигналов поглощения протонов H-2 и H-6. Положение гидроксильной группы диацильного производного установлено на основании изменения интенсивности сигналов поглощения ароматических протонов при применении гомоядерного эффекта Оверхаузера (ЯЭО). В экспериментах по ЯЭО при насыщении сигнала протона гидроксильной группы обнаружено заметное возрастание интенсивности сигнала поглощения протона H-2. Это свидетельствует о пространственной близости последнего к гидроксильной группе диацильного производного, однозначно доказывающее, что гидроксильная группа находится в *m*-положении к группировке $-\text{OH}_2\text{CH}_2\text{NHR}^2$.

Иммунотропную активность оценивали по способности препаратов изменять образование антител к тест-антителам

(эритроциты барабана); реакцию гиперчувствительности замедленного типа;

реакцию "трансплантат против хозяина"; фагоцитарную активность нейтрофилов; пролиферацию клеток костного мозга; резистентность экспериментальных животных к инфекции.

В экспериментах использовались самцы мышей гибридов (СВАхС57В1)F1, и нелинейных мышей массой 20-25 г. Животные содержались при температуре 20-21°C при 12 ч режиме освещения, доступ к корму *ad libitum*.

Исследуемые препараты вводили внутрибрюшинно или подкожно в виде суспензии в 0,1 мл физиологического раствора, содержащего 0,1% Твин 80 (в отдельных экспериментах использовали 0,17% Твин 80). Контрольным животным вводили равный объем физиологического раствора, содержащего Твин 80. Инъекции проводили по схеме 0,1, 2 и -1, 0,1, где 0 день иммунизации. Для индукции антителообразования мышей иммунизировали эритроцитами барабан в дозе 107 клеток на мышь. Через 6 сут иммунизации мышей забивали и определяли титры гемагглютиминов и гемолитическую активность сыворотки

спектрофотометрическим методом (А. А. Буркин, А. С. Лосев Хим. фарм. журнал. 1976, N 11, с. 41-45) в микромодификации. При использовании реакции

гиперчувствительности замедленного типа (ГЗТ) мышей сенсибилизовали внутрибрюшинно клетками *Staphylococcus albumen* в дозе $5 \cdot 10^6$ клеток на мышь. Через 5 сут в подушечку задней лапы вводили разрешающую дозу клеток *Staphylococcus albumen* 10^7 клеток в 0,05 мл, через 24 ч измеряли разницу в массах контрольной и воспаленной лап.

В отдельных экспериментах в качестве тест-антигена использовали эритроциты барабана, сенсибилизирующую дозу $3 \cdot 10^7$, разрешающая доза 10^8 клеток.

При определении влияния исследуемых соединений на фагоцитарную активность нейтрофилов через 24 ч после внутрибрюшинной инъекции препаратов отбирали кровь в раствор гепарина (конечная концентрация 10 ед/мл). Затем 0,1 мл крови смешивали с 0,05 мл суспензии клеток *Staphylococcus albumen*, инкубировали 30 мин при 37°C, лизировали эритроциты с помощью 0,83% NH_4Cl , делали мазки и фиксировали спиртом. После окрашивания по Рамоновскому-Гимзе подсчитывали число фагоцирующих клеток из 200 нейтрофилов (активность фагоцитоза) и среднее число микробных клеток, поглощенных одним нейтрофилем (фагоцитирующий индекс). При оценке активности нейтрофилов по продукции супероксидного радикала кровь, полученную в указанных условиях, смешивали в соотношении 1: 1 с 0,2%-ным раствором нитросинего тетразолия (НСТ), инкубировали 30 мин при 37°C и делали мазки. Мазки окрашивали сафранином и подсчитывали число нейтрофилов, содержащих гранулы восстановленного нитротетразоля из 200 клеток.

При исследовании влияния на

пролиферацию клеток костного мозга мышей забивали цервикальной дислокацией через 24 ч после однократного внутрибрюшинного введения препаратов. Затем в стерильных условиях извлекали большие берцовые кости, из которых с помощью среды 199 вымывали клетки костного мозга. После центрифугирования и промывки клетки культивировали в 96-луночных планшетах для иммунологических реакций в течение 16 ч при 37°C во влажной атмосфере с 5% CO₂. В инкубационную среду добавляли 10% эмбриональный телячий сыворотки и ³H-тимидин (1 мкМ на лунку). По истечении времени инкубирования клетки переносили на бумажные фильтры FN-8. Фильтры высушивали, отмывали 2 раза по 5 мин физиологическим раствором, затем 5% ТХУ 24 при 4°C и еще 2 раза по 5 мин 5% ТХУ. После засушивания просчитывали радиоактивность проб в сцинцилляторе ЖС-8 на счетчике.

Реакцию "трансплантат против хозяина" определяли в подколенных лимфатических узлах при локальном введении полуаллогенных клеток. Мышам, гибридам (СВАхС57Б1)FI, в подушку задней лапы вводили 2 · 10⁷ клеток, выделенных из лимфатических узлов (паховых, подколенных, подмышечных, шейных) родительского генотипа линии СВА. В контроллеральную лапу вводили такое же количество сингенных клеток из лимфатических узлов. Животным опытной группы в течение трех дней вводили исследуемые вещества, начиная за 24 ч до переноса лимфоцитов. На восьмые сутки мышей забивали цервикальной дислокацией, извлекали подколенные лимфатические узлы в раствор Хенкса и определяли их массу.

Реакцию оценивали по индексу реакции -ИР:

ИР

масса подколенного узла опытной лапы

масса подколенного узла контрольной лапы

При изучении влияния препарата на резистентность мышей к инфекции использовали суточную культуру *Salmonella enteritidis*. Животных заражали подкожной инъекцией 5·10⁸ клеток на мышь. Исследуемые препараты вводили в течение 4 дней, начиная за сутки до заражения. Эффект препарата оценивали по средней продолжительности жизни животных в группе. При определении острой токсичности подсчитывали количество погибших мышей после однократной внутрибрюшинной инъекции супензии исследуемых веществ. В качестве вещества сравнения был выбран хорошо известный иммуномодулятор левамизол. Необходимо отметить, что данные о его фармакологической активности противоречивы, в зависимости от иммунного статуса, дозы и схемы введения левамизол стимулирует или угнетает иммунитет (B. Renoux, Drugs, 1980 1980, т.19, с. 89-99).

Однако сочли возможным использовать его в качестве вещества сравнения, так как иммуномодуляторы, близкие по структуре и типу действия, отсутствуют и, кроме того, это наиболее изученный препарат. В связи с тем, что левамизол не влиял на пролиферацию клеток костного мозга, в этом эксперименте в качестве вещества сравнения использовали известный препарат

метилурацилстимулятор лейкопозза. При изучении влияния препаратов на резистентность мышей к инфекциям для сравнения использовали препарат "Бронхомунал" (ЛЕК, Югославия), применяемый для лечения бронхолегочных инфекций.

Результаты исследований иммунотропной активности заявляемых соединений представлены в табл.2-5.

Установлено, что производные 2-(3,4-диоксифенил)этиламина способны изменять активность иммунной системы (табл.2, 3). Выраженность и направленность эффекта зависят от заместителя. Большинство из испытанных веществ стимулировало иммунологические реакции, вместе с тем соединение 14 угнетало клеточный иммунитет. Из исследованных соединений наибольшая иммуностимулирующая активность наблюдалась у соединений 1 и 2. Оба вещества выражено стимулируют образование антител к тест-антигену (табл.2), а препарат 1 в некоторой степени реакцию ГЗТ (табл.2). Кроме того, эти вещества нормализуют сниженную реакцию "трансплантат против хозяина" и пролиферацию клеток костного мозга (табл.4,5).

Исследование новых производных 2-(3,4-дигидроксифенил)этиламина на способность тормозить репликацию вируса проводили следующим образом.

CEM-SS клетки выращены в среде RPMI 1640, содержащей 10% инактивированной сыворотки плода коровы, 2 мкМ глутамина и 50 мкг/мл гентамицина. Изолят ВИЧ-1 BRU был размножен путем инфицирования клеток CEM-SS. Начиная с 3 дня инфицирования среду собирали ежедневно и фильтровали на клетках CEM-SS. Штаммы вируса по порциям хранили при температуре -80°C. Размножение ВИЧ-1 BRU в клетках CEM-SS измеряли путем подсчета синцитий, продуцированных в течение 4 дней после инфицирования. Клетки CEM-SS были инфицированы 100-200 синцитий образующих единиц ВИЧ на 400.000 клеток. После 30-минутной абсорбции отделяли остаточный свободный вирус. Инфицированные клетки ресусцидировали в среде RPMI, содержащей 10% сыворотки плода коровы, и вносили по 0,9 мл (400.000 клеток) в лунки 24-луночных планшетов. Затем добавляли по 0,1 мл различных растворов антивирусных препаратов и культивировали при 37°C. Через 4 сут проводили подсчет синцитий методом световой микроскопии. Ингибирование размножения вируса было подтверждено посредством сравнения активности обратной транскриптазы, связанной с частицей вируса, выделенной через 4 дня после инфицирования в присутствии или отсутствии препарата. Цитотоксичность определялась измерением уменьшения жизнеспособности неинфицированных клеток в присутствии препарата с помощью метода восстановления МТТ.

При испытаниях противовирусной активности использовали серии возрастающих концентраций препаратов. Приведенная в табл.6 величина соответствует максимальной концентрации

исследуемого вещества, используемой в эксперименте. Активность препарата выражалась как минимальная концентрация, вызывающая торможение репликации вируса. В качестве вещества сравнения использовали азидотимидин.

Как видно из данных табл.6, азидотимидин подавляет репликацию вирусов в концентрации 0,01 мкМ, тогда как соединение 2 в концентрации 0,1 мкМ. Однако азидотимидин значительно токсичнее: в концентрации 0,1 мкМ наблюдается гибель 20% клеток, а соединение 2 даже в концентрации 10 мкМ не проявляет токсичности. Поэтому, учитывая оба эти фактора (активность и токсичность), следует считать эффекты заявляемого соединения 2 и азидотимицина сравнимыми. Исследования производных

2-(3,4-дигидроксифенил)этиламина на анти-ВИЧ-1 анализ свидетельствуют о том, что соединение 2 способно тормозить репликацию вируса.

В результате приведенных исследований установлено, что производные 2-(3,4-дигидроксифенил)этиламина значительно менее токсичны, чем препарат левамизол. По иммуномодулирующей активности они не уступают препаратам сравнения, а по некоторым показателям превосходят их. Спектр иммунотропной активности этих соединений отличается от спектра активности левамизола. Левамизол, как известно, в основном активирует клеточные реакции, тогда как, например, соединения 1 и 2 более выражено стимулируют гуморальные реакции.

Указанные обстоятельства позволяют рекомендовать производные

2-(3,4-дигидроксифенил)этиламина в качестве потенциальных иммуностимулирующих лекарственных средств для терапии заболеваний, связанных с нарушением функции иммунной системы, а также в качестве средств для снижения побочных иммуносупрессивных влияний других лекарственных препаратов, например цитостатиков, и в качестве противовирусных средств.

Формула изобретения:

1. Производные
2-(3,4-дигидроксифенил)-этиламина общей

формулы

где R₁ R₂ (C(O) C₆H₄NO₂, C(O)CH(CH₃)₂,

C(O)CH/(C₃H₇)₂, C(O)C₆H₁₁, C(O)CH₂C₆H₁₁,

C(O)CH₂C₅H₉, C(O)CH₂Cl, C(O) (CH₂)₃ Cl,

C(O) (CH₂)₄Cl, SO₂C₆H₄CH₃, SO₂C₆H₄Cl,

или R₁ H, а R₂ имеет указанные значения, проявляющие иммунотропную активность.

2. N-{2-[3,4-Бис(изобутирилокси)фенил]этил}

изобутириламид, обладающий способностью тормозить репликацию вируса.

35

40

45

50

55

60

R U 2 0 3 9 7 3 3 C 1

Таблица 1

N ^o n/p	Соединение	R ¹	R ²	Брутто- формула	T.пл., °C
1	N-{2-/3,4-бис-(4-нитробензоил-окси)фенил/этил}-4-нитробензамид	CO-	CO-	C ₂₉ H ₂₀ N ₄ O ₁₁	206-207
2	N-{2-/3,4-бис-(изобутирилокси)-фенил/-этил}изобутириламид	(CH ₃) ₂ C ₆ H ₅ CO	(CH ₃) ₂ C ₆ H ₅ CO	C ₂₀ H ₂₉ NO ₅	106,5-108,0
3	N-{2-/3,4-бис-(циклогексанкарбокси)фенил/этил}циклогексанкарбоксамид	CO-	CO-	C ₂₉ H ₄₁ NO ₅	102-105
4	N-{2-/3,4-бис-(циклогексилацетокси)фенил/этил}циклогексилацетамид	CH ₂ -CO-	CH ₂ -CO-	C ₃₂ H ₄₇ NO ₅	79-81
5	N-{2-/3,4-бис-(адамантанкарбокси)фенил]этил}адамантанкарбоксамид	CO-	CO-	C ₄₁ H ₅₃ NO ₅	209-211
6	N-{2-/3,4-бис-(цикlopентиалетокси)фенил/этил}цикlopентиалацетамид	CH ₂ -CO-	CH ₂ -CO-	C ₂₉ H ₄₁ NO ₅	59-61
7	N-{2-/3,4-бис-(4-хлорбутилкарбокси)фенил]этил}-4-хлорбутилкарбоксамид	Cl(CH ₂) ₄ CO	Cl(CH ₂) ₄ CO	C ₂₃ H ₃₂ Cl ₃ NO ₅	-

R U 2 0 3 9 7 3 3 C 1

Продолжение табл. 1

№ п/п	Соединение	R ¹	R ²	Брутто- формула	T. пп., °C
8	N-[2-[3,4-бис-(4-метилфенил)сульфоксигифенил]этил]-4-метилфенилсульфамид			C ₂₉ H ₂₆ NO ₈ S ₃	110-112
9	N-[2-[3,4-бис-(4-хлорбутирилокси)фенил]этил]-4-хлорбутирилокси-фенилсульфамид	Cl(CH ₂) ₃ CO	Cl(CH ₂) ₃ CO	C ₂₀ H ₂₆ Cl ₃ NO ₅	53,5-55,0
10	N-[2-[3,4-бис-(4-хлорфенил)сульфонилокси]фенил]этил]-4-хлорфенилсульфамид			C ₂₆ H ₂₀ Cl ₃ S ₃ NO ₈	136,0-136,5
11	N-[2-[3,4-бис-(2-пропилпентанонилокси)фенил]этил]-2-пропилпентанамид	(C ₃ H ₇) ₂ CHCO	(C ₃ H ₇) ₂ CHCO	C ₃₂ H ₅₃ NO ₅	44,0-44,5
12	N-[2-[3,4-бис-(хлорацетокси)фенил]этил]хлорацетамид	CICH ₂ CO	CICH ₂ CO	C ₁₄ H ₁₄ Cl ₃ NO ₅	103,5-105,5
13	N-[2-[4-(4-хлорбутилкарбокси)-3-оксифенил]этил]-4-хлорбутилкарбоксамид	H	Cl(CH ₂) ₄ CO	C ₁₈ H ₂₅ Cl ₂ NO ₄	65-70
14	N-[2-[4-(цикlopентиллацетокси)-3-оксифенил]этил]цикlopентиллацетамид	H		C ₂₂ H ₃₁ NO ₄	-

R U 2 0 3 9 7 3 3 C 1

Продолжение табл. 1

№№ п/п	Элементный анализ					ИК-спектры				Выход на дофамин, %
	C	H	N	Cl	S	C=O амид I	C-N N-H амид II	C=O эфир		
	Вычислено									
1	58,0 58,16	3,36 3,32	9,33 9,09	-	-	3280	1640	1520	1740	79,1
2	66,09 65,94	8,04 8,07	3,85 3,70	-	-	3340	1640	1540	1750	83,6
3	72,00 71,90	8,56 8,70	2,90 2,96	-	-	3330	1640	1550	1760	85,5
4	73,09 72,91	9,03 8,88	2,66 2,60	-	-	3320	1640	1540	1760	80,0
5	76,96 76,20	8,35 8,63	2,19 2,40	-	-	3440	1630	1540	1740	73,0
6	72,00 72,20	8,56 8,10	2,90 2,92	-	-	3340	1640	1540	1750	62,0
7	54,28 54,06	6,34 6,04	2,75 2,70	20,90 20,97	-	3300	1640	1540	1760	68,0

R U ? 0 3 9 7 3 3 C 1

Продолжение табл. 1

№№ п/п	Элементный анализ					ИК-спектры				Выход на дофамин, %
	C	H	N	Cl	S	N-H	C=O амид I	C-N N-H амид II	C=O эфир	
	Вычислено Найдено					амиды	-SO ₂ O-R	1375 1180 1160 810		
8	56,57 56,61	4,75 4,76	2,27 2,20	—	15,62 15,50	—	-SO ₂ O-R	1375 1180 1160 810	61,8	
9	51,46 51,63	5,61 5,64	3,00 3,05	22,79 22,79	—	3320	1630	1540	1750	45,7
10	46,13 46,06	2,98 2,96	2,07 1,91	15,71 15,67	14,21 14,35	—	-SO ₂ O-R	1380 1190 1160 820	55,4	
11	72,31 72,43	10,01 10,17	2,64 2,77	—	—	3250	1620	1540	1750	65,7
12	43,95 43,75	3,69 3,72	3,66 3,80	27,80 27,48	—	3320	1640	1550	1780	63,0
13	55,39	6,45	3,59	18,17	—	3380	1620	1560	1745	30,3
14	70,45	8,36	3,75	—	—	3370	1640	1560	1745	40,1

Таблица 2

Сводная таблица результатов иммунотропной активности производных
2-(3,4-дигидроксифенил)этиламина (% к контролю)

Соединение	Токсичность, мг/кг	Доза, мг/кг	Гуморальный иммунитет (образование антител)	Клеточный иммунитет (реакция ГЗТ)	Фагоцитоз (активность нейтрофилов)
1	более 1000	10,0	189	107	110
	1000	100,0	709	120	118
2	более 1000	10,0	211	100	119
	1000	100,0	453	95	119
3	более 1000	5,0	164	128	82
	1000	50,0	162	83	83
4	более 1000	5,0	532	95	93
	1000	50,0	129	101	89
5	более 1000	1,0	—	—	138
	1000	10,0	—	78	—
6	833	100,0	98	102	97
	1,0	—	—	—	101
7	1000	10,0	71	104	—
	1000	100,0	88	105	104
8	1000	1,0	—	—	117
	1000	10,0	145	109	—
9	более 1000	100,0	50	96	100
	1000	5,0	—	132	117
10	1000	5,0	137	—	—
	1000	50,0	—	123	105
11	более 1000	100,0	126	—	—
	1000	5,0	357	115	114
12	более 1000	50,0	135	106	97
	1000	5,0	66	—	—
13	1000	10,0	—	98	140
	1000	100,0	74	—	—
14	1000	10,0	—	87	132
	1000	100,0	83	79	87
15	50	10,0	147	92	116
	(Левамизол)	100,0	121	98	91
13	более 1000	100,0	98	112	123
	1000	5,0	89	—	100
14	более 1000	50,0	183	—	110
	1000	5,0	—	43	93
15	50	50,0	—	40	110
	(Левамизол)	5,0	136	138	150

Таблица 3

Влияние соединений 1 и 2 на продолжительность жизни мышей, инфицированных *Salmonella enteritidis*

Соединение	Доза, мг/кг	Средняя продолжительность жизни, сут	% к контролю
Контроль, физраствор	—	5,9±0,3	100
Контроль, 0,1 % Твин 80	—	7,3±1,3	100

RU 2039733 C1

RU 2039733 C1

Продолжение табл. 3

Соединение	Доза, мг/кг	Средняя продолжительность жизни, сут	% к контролю
1 Бронхомунал (ЛЕК Югославия)	50,0 3,5	9,6±2,0 6,7±0,5	131,5 114 (по отношению к п.1)
Контроль, физраствор	-	5,8±0,5	-
Контроль, 0,1 % Твин 80	-	4,9±0,2	100
2 Левамизол	10,0 2,5	5,4±0,4 4,6±0,7	110 94

Таблица 4

Влияние исследуемых веществ на реакцию "трансплантат против хозяина"

Соединение	Доза, мг/кг	Индекс реакции	% к контролю
Контроль, физраствор	-	5,64±0,61	-
Контроль, 0,1 % Твин 80	-	4,83±0,57	100
1	10,0	5,19±0,63	107
1	100,0	6,67±0,615*	138
2	10,0	6,42±0,55*	138
2	100,0	5,74±0,195	119
Левамизол	2,5	5,66±0,91	117

Примечание. В каждой группе по 8 мышей

Таблица 5

Влияние соединений 1 и 2 на пролиферацию клеток костного мозга мышей

Соединение	Доза, мг/кг	Радиоактивность, число импульсов в минуту	% к контролю
Контроль, физраствор	-	29470+3270	-
Контроль, 0,1 % Твин 80	-	20449+1057	100
1	10,0	31652+1893**	155
1	100,0	30198+4451*	148
2	10,0	26977+4627	132
2	100,0	30222+3269*	148
Метилурацил	100,0	30217+5477	148

Таблица 6

Соединение	Максимальная концентрация, мкМ	Активность, мкМ (%)	Токсичность, мкМ (%)
Азидотимидин	1	0,01 (80)	1 (20)
2	10	0,1 (40)	10 (0)

RU 2039733 C1

RU 2039733 C1