Universidad Complutense de Madrid

Facultad de Matemáticas

Trabajo de Fin de Grado

Un tratamiento riguroso de la prueba ZIP

Juan Valero Oliet

Dirigido por: Manuel Alonso Morón

Índice general

Ín	dice general	ii
Ín	dice de figuras	iii
1.	Variedades y superficies 1.1. Variedades	1 1 2 4
2.	Triangulación de superficies 2.1. Complejos simpliciales y triangulación	7 7 8
3.	Teorema de Clasificación 3.1. Superficies como cocientes	10 17 24 29
4.	La prueba ZIP de Conway 4.1. Cremalleras	33 33 36
5.	Teorema de Clasificación, segunda parte 5.0.1. Grupos fundamentales de las Superficies Compactas	39 39
Α.	Algunos teoremas de topología importantes A.1. Cocientes topológicos	41 41
В.	CW-complejos	43
Bi	bliografía	46

Índice de figuras

1.1.	Ejemplos de superficies
1.3.	Suma conexa de toros
0.1	
2.1.	k -símplices, $k = 0, \dots, 3$
2.2.	Un complejo simplicial en \mathbb{R}^2
2.3.	Símplices que no forman un complejo
0.1	La esfera como cociente del disco $\overline{\mathbb{B}}^2$
3.1.	
	La esfera como cociente de un cuadrado
3.3.	El toro como cociente de un cuadrado
3.4.	Representación de \mathbb{P}^2 como un espacio cociente
3.5.	Crosscap
3.6.	Entorno euclídeo de un vértice
3.7.	Construcción de la botella de Klein
3.8.	Superficies con borde como cocientes topológicos
3.9.	Representación de superficies importantes
3.10.	Representaciones de la esfera y el plano proyectivo
3.11.	Representación de superficies con borde
3.12.	Subdividir/consolidar
3.15.	La representación $\mathcal{P}_1 = \langle S_1, a, b, c \mid W_1 c^{-1} b^{-1} a^{-1}, abc \rangle$
	Transformación de la bottella de Klein en \mathbb{P}^2
	Haciendo que los pares torcidos sean adyacentes
	Reduciendo el número de vértices equivalentes a v
	Poniendo los pares complementarios juntos
	Subdivisión baricéntrica de un 2-símplice que tiene dos lados en ∂M
	Triangulación cerca de una componente del borde de M
	La superficie $\mathbb{T}^2 \# \mathbb{T}^2$ con dos perforaciones
0	Sapernete I // I con dee perferaerance.
4.1.	Construcciones elementales con cremalleras
4.2.	Suma conexa de un toro y una esfera
4.3.	Suma conexa de una superficie y un toro visto como pegar un asa
B.1.	Demostración de que sólo hay un punto de la frontera en la semirecta

Capítulo 1

Variedades y superficies

En este capítulo doy las definiciones y resultados básicos sobre variedades y superficies. Me basaré principalmente en los libros de J. M. Lee [1] y V. Muñoz - J. J. Madrigal [2].

1.1. Variedades

Los espacios topológicos de los que nos vamos a ocupar en el siguiente trabajo son las variedades, y en concreto las superficies. Definámoslas.

Definición 1.1.1. Una *variedad topológica* (de ahora en adelante *variedad*) es un espacio topológico Hausdorff, II AN y localmente homeomorfo a R^n , para algún $n \ge 0$.

Sea M una variedad, y sea $p \in M$. Si $U \subseteq M$ es un entorno de p que es homeomorfo a un abierto U' de \mathbb{R}^n , decimos que U es un **dominio coordenado**, y llamamos **aplicación coordenada** a cualquier homeomorfismo $\varphi: U \to U'$. Decimos que el par (U, φ) es una **carta para** M.

A un dominio coordenado que es homeomorfo a una bola de \mathbb{R}^n se le llama **bola coordenada** (si n=2, decimos **disco coordenado**). Si $p\in M$ y U es un dominio coordenado que contiene a p, decimos que U es un **entorno Euclídeo** de p.

No siempre se tiene que la adherencia de una bola coordenada sea homeomorfa a una bola cerrada Euclidea. Por tanto, decimos que una bola coordenada $B \subseteq M$ es una **bola coordenada regular** si existe un entorno B' de \overline{B} y un homeomorfismo $\varphi: B' \to B_{r'}(x) \subseteq \mathbb{R}^n$ que lleva B a $B_r(x)$ y \overline{B} a $\overline{B}_r(x)$ para algún r' > r > 0 y para algún $x \in \mathbb{R}^n$.

Observación 1.1.2. Ser localmente homeomorfo a \mathbb{R}^n es una propiedad local, y por tanto las propiedades locales de \mathbb{R}^n se trasladan a una variedad. Así pues, las variedades son localmente compactas, I AN, localmente conexas, localmente conexas por caminos y localmente simplemente conexas.

Vamos a definir ahora la dimensión de una variedad. El *Teorema de Invarianza del Dominio* dice que si $W \subset \mathbb{R}^n$ y $W' \subset \mathbb{R}^m$ son abiertos y existe un homeomorfismo $\phi : W \to W'$, entonces n = m. Así pues, sea M una variedad, y sea $p \in M$. Entonces hay un único $n = n_p$ tal que un entorno U^p de p en M es homeomorfo a un abierto $U' \subset \mathbb{R}^n$. Decimos que n_p es la *dimensión en p*. Si para todo punto $q \in U^p$ tomamos U^p como entorno de q, tenemos que $n_q = n_p$. Luego en toda la componente conexa de p, el p que aparece es el mismo, y lo llamaremos *dimensión* de dicha componente conexa. Si

Figura 1.1: Ejemplos de superficies.

escribimos $M = \coprod M_i$ como la unión disjunta de sus componentes conexas M_i , tenemos que todas las M_i son variedades, y si todas las M_i tienen la misma dimensión n, entonces escribimos $n = \dim M$, y decimos que M es una n-variedad.

El ejemplo más trivial de n-variedad es \mathbb{R}^n , pero también lo es cualquier abierto suyo. De hecho, esto se puede generalizar:

Proposición 1.1.3. Todo subconjunto abierto de una *n*-variedad es una *n*-variedad.

Demostración. Sea M una n-variedad, y sea V un subconjunto abierto de M. Para todo $p \in V$, p tiene un entorno U^p en M que es homeomorfo a un subconjunto abierto de \mathbb{R}^n . $U^p \cap V$ es también abierto y homeomorfo a un subconjunto abierto de \mathbb{R}^n , y está contenido en V. Por tanto V es localmente homeomorfo a R^n . Por otro lado, todo abierto de un espacio Hausdorff es Hausdorff y todo abierto de un espacio II AN es II AN. Por lo que M es una variedad.

Ejemplo 1.1.4. ■ Las 0-variedades son espacios discretos numerables. La única 0-variedad conexa es un punto.

■ Existen dos 1-variedades conexas salvo homeomorfismo: la recta \mathbb{R} y el círculo $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = \{z = e^{2\pi i \theta} \in \mathbb{C} \mid \theta \in [0,1]\} = \{z \in \mathbb{C} \mid |z| = 1\}.$

Definición 1.1.5. Una *superficie* es una 2-variedad.

Ejemplo 1.1.6. Son superficies:

- La esfera $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ (Figura 1.1a).
- El toro $\mathbb{T}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} 2)^2 + z^2 = 1\}$ (Figura 1.1b).

1.2. Variedades con borde

Hay una serie de espacios topológicos que no son variedades pero que tienen interés desde el punto de vista geométrico y son útiles a la hora de estudiarlas. Por ejemplo, la bola cerrada $\overline{\mathbb{B}}^n$ no es una variedad, puesto que para los puntos de su frontera no hay entornos homeomorfos a abiertos de \mathbb{R}^n . Vamos a definir por tanto una clase de espacios que extienda a las variedades pero que admita la existencia de algún tipo de bordes. Para ello, indicaremos con \mathbb{H}^n al semiplano superior cerrado n-dimensional

$$\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0\}.$$

Definición 1.2.1. Una variedad con borde n-dimensional M (o n-variedad con borde) es un espacio topológico Hausdorff y II AN tal que todo punto $p \in M$ tiene un entorno U homeomorfo a un abierto $U' \subset \mathbb{H}^n$.

Sea M una n-variedad con borde, $p \in M$ y $\varphi : U \to U' \subset \mathbb{H}^n$ un homeomorfismo como en la definición. Como en el caso de variedades, decimos que U es un **dominio coordenado**, que φ es una **aplicación coordenada** para M y que el par (U, φ) es una **carta para** M.

Como en la sección anterior, decimos que $B \subseteq M$ es una **semibola coordenada regular** si existe un abierto B' que contiene a \overline{B} y y un homeomorfismo de B' a $B_{r'}(0) \cap \mathbb{H}^n$ que lleva B a $B_r(0) \cap \mathbb{H}^n$ para algún 0 < r < r'. Si denotamos $\varphi(p) = a = (a_1, \ldots, a_n)$, podemos distinguir entre dos tipos de puntos:

- 1. Puntos interiores: Si $a_n > 0$, entonces podemos tomar una bola $B_{\varepsilon}(a) \subset U'$ y $V = \varphi^{-1}(V')$, por lo que V es un entorno de p homeomorfo a un abierto de \mathbb{R}^n . Decimos por tanto que p es un **punto interior de** M, y denotamos por Int M al conjunto de puntos interiores de M.
- 2. Puntos borde: Si $a_n = 0$ para todo n, entonces podemos tomar una semibola $V' = B_{\varepsilon}^+ = B_{\varepsilon}(a) \cap \mathbb{H}^n$, y $V = \varphi^{-1}(V')$. Decimos que p es un **punto borde de** M. Al conjunto de todos los puntos borde de M lo denotamos por ∂M .

Proposición 1.2.2. Sea M una n-variedad con borde, entonces $\operatorname{Int} M$ es un abierto de M, y es en sí mismo una n-variedad.

Demostración. Sea, para cada $x \in \text{Int } M$, (U_x, ψ_x) una carta para x, donde U_x es un abierto homeomorfo a \mathbb{R}^n . Se tiene que $\text{Int } M = \bigcup_{x \in M} U_x$, por lo que es un abierto, y además localmente Euclídeo, y por tanto variedad.

Proposición 1.2.3 (Invarianza del borde). Si M es una n-variedad con borde, entonces un punto $p \in M$ no puede ser un punto interior y un punto borde al mismo tiempo. O lo que es lo mismo, $M = \operatorname{Int} M \cup \partial M$, con $\operatorname{Int} M \cap \partial M = \emptyset$.

Demostración. Dado que las variedades que trato en el trabajo son las superficies, voy a dar la demostración en el caso de que n=2. El caso general incluye conceptos de homología que no voy a tratar.

Supongamos que $p \in M$ es tanto un punto interior como un punto borde de M. Entonces existen (U, φ) tal que $\varphi(U) \subseteq \operatorname{Int} \mathbb{H}^2$ y (V, ψ) tal que $\psi(V) \subseteq \mathbb{H}^2$, donde $\psi(p) = s \in \partial \mathbb{H}^2$. Llamando $W = U \cap V$, se tiene que $\varphi(W)$ es homeomorfo a $\psi(V)$.

Ahora bien, podemos elegir un $\varepsilon > 0$ tal que $B_{\varepsilon}(s) \cap \mathbb{H}^2 \subseteq \psi(W)$. Sea $U' = \psi^{-1} \left(B_{\varepsilon}(s) \cap \mathbb{H}^2 \right)$; utilizando que un abierto de \mathbb{R}^2 menos un punto suyo no es simplemente conexo, tenemos que $\varphi(U') \setminus \{\varphi(p)\}$ es no simplemente conexo. Por otro lado, $U' \setminus p$ es homeomorfo a $X := B_{\varepsilon}(s) \cap \mathbb{H}^2 \setminus \{s\}$. Sea $x_0 \in B_{\varepsilon}(s) \cap \operatorname{Int} \mathbb{H}^2$, definimos $F : X \times [0,1] \to X$ por $F(x,t) = x_0 + (1-t)(x-x_0)$, que nos indica que $\{x_0\}$ es un retracto por deformación fuerte de X. Por tanto, X es simplemente conexo, lo que implica que también lo son $U' \setminus \{p\}$ y $\varphi(U') \setminus \{\varphi(p)\}$, pero esto es una contradicción. \square

Corolario 1.2.4. Si M es una n-variedad con borde, entonces:

- (i) ∂M es un cerrado en M.
- (ii) ∂M es una (n-1)-variedad.
- (iii) M es una variedad si y solo si $\partial M = \emptyset$.

(b) Banda de Möbius.

Demostración. Por el teorema de la invarianza del borde, $\partial M = M \setminus \operatorname{Int} M$, y siendo $\operatorname{Int} M$ abierto, ∂M es por tanto cerrado, lo que demuestra (i). Para (ii), sea $p \in \partial M$. Tomamos U un entorno de p en M y $\varphi: U \to U' \subset \mathbb{H}^n$ un homeomorfismo. Sea $V' = B_{\varepsilon}(a) \cap \mathbb{H}^n$ tal que $\varphi(p) = a$, y $V = \varphi^{-1}(V)$. Así pues, $\varphi^{-1}(\{(x_1,\ldots,x_n) \in V' \mid x_n > 0\}) \subseteq \operatorname{Int} M$ y $\varphi^{-1}(\{(x_1,\ldots,x_{n-1},0) \in V'\}) \subseteq \partial M$. Por lo tanto $\partial M \cap V = \varphi^{-1}(\{(x_1,\ldots,x_{n-1},0) \in V'\}) = W$ es un abierto de ∂M , y $\varphi: W \to W' = B_{\varepsilon}(a) \cap (\mathbb{R}^{n-1} \times \{0\})$ es un homeomorfismo con un abierto de \mathbb{R}^{n-1} , lo que implica que ∂M es una (n-1)-variedad. Finalmente para probar (iii), si suponemos que M es una variedad, entonces todo punto tiene un entorno homeomorfo a un abierto de \mathbb{R}^n , por lo que todo punto es interior y $M = \operatorname{Int} M$, y se sigue de la invarianza del borde que $\partial M = \emptyset$. Si suponemos ahora que $\partial M = \emptyset$, entonces $M = \operatorname{Int} M$, que es una variedad por la Proposición 1.2.2.

Hacemos incapié en que los conceptos de variedad y variedad con borde son distintos. Una variedad con borde puede ser o no una variedad, pues puede tener el borde vacío. En cambio, una variedad es siempre una variedad con borde en la que todo punto es un punto interior. Para evitar confusiones, si el contexto lo pide, utilizaremos variedad sin borde para referirnos a una variedad en el sentido de la Definición 1.1.1.

Veamos algunos ejemplos no triviales de superficies con borde:

Ejemplo 1.2.5. (1) El cilindro (Figura 1.2a):

$$Cil = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z \in [0, 1]\}$$
.

(2) La banda de Möbius (Figura 1.2b):

$$Mob = \left\{ \left(\left(1 + \left(y - \frac{1}{2} \right) \cos \left(\pi x \right) \right), \left(1 + \left(y - \frac{1}{2} \right) \cos \left(\pi x \right) \right) \sin \left(2\pi x \right), \left(y - \frac{1}{2} \right) \sin \left(\pi x \right) \right) \mid x \in [0, 1], y \in [0, 1] \right\}.$$

1.3. Suma conexa de variedades

Sean M_1 y M_2 dos n-variedades conexas. Dados $p_1 \in M_1$ y $p_2 \in M_2$ sean $U_1 \subset M_1$, $U_2 \subset M_2$ entornos abiertos de p_1 y p_2 respectivamente, y sean $\phi_1: U_1 \to \mathbb{R}^n$ y $\phi_2: U_2 \to \mathbb{R}^n$ dos homeomorfismos tales que $\phi_1(p_1) = 0$ y $\phi_2(p_2) = 0$. Si llamamos $B_1 = \phi_1^{-1}(B_1(0)) \subset M_1$ y $B_2 = \phi_2^{-1}(B_1(0)) \subset M_2$, consideremos $M_1^o = M_1 \setminus B_1$, $M_2^o = M_2 \setminus B_2$ y M_1^o II M_2^o con la topología unión disjunta. Se define la relación de equivalencia \sim en la que si $x_1 \in S_1 = \phi_1^{-1}(\partial B_1(0))$, $x_2 \in S_2 = \phi_2^{-1}(\partial B_1(0))$, entonces $x_1 \sim x_2$ si y sólo si $\phi_1(x_1) = \phi_2(x_2)$, y se considera el cociente

$$M = \frac{M_1^o \coprod M_2^o}{\sim}.$$

Figura 1.3: Suma conexa de toros.

Definición 1.3.1. A M así definida se le llama suma conexa de M_1 y M_2 , y se denota por $M = M_1 \# M_2$.

Proposición 1.3.2. Sean M_1 y M_2 variedades. Entonces $M = M_1 \# M_2$ es una variedad.

Demostración. Sea $\pi: M_1^o$ II $M_2^o \to M$ la proyección al cociente y sea $S = \pi(S_1) = \pi(S_2)$. $U_j = M_j^o - S_j, \ j = 1, 2$ son dos abiertos saturados respecto de π , por lo que $\pi: U_j \to \pi(U_j) = U_j'$ es también una aplicación cociente, que además es inyectiva y por lo tanto un homeomorfismo. Tenemos así que M es localmente euclídeo en $U_1' \cup U_2'$, y además es Hausdorff y IIAN. Nos quedan por tanto verificar los puntos $p \in S$. Este $p \in S$ verifica que $p = \pi(p_1) = \pi(p_2)$, con $p_j \in S_j$, j = 1, 2, y que $\varphi_j(p_j) = x_0 \in \partial B_1(0) \subset \mathbb{R}^n$. Si tomamos V un entorno de x_0 en $\partial B_1(0)$, tenemos que dado un $\varepsilon > 0$, $\hat{V} = \{rx \mid r \in (1-\varepsilon, 1+\varepsilon), x \in V\}$ es entorno de x_0 en \mathbb{R}^n , y que $\hat{V} - B_1(0) = \{rx \mid r \in [1, 1+\varepsilon), x \in V\}$. Sea $V_j = \varphi_j^{-1}(\hat{V} - B_1(0))$, que es entorno de p_j en M_j^o . Como V_1 II V_2 es abierto saturado de M_1^o II M_2^o respecto de π , entonces $\tilde{V} = \pi(V_1 \coprod V_2)$ es entorno de p en M. Veamos que es localmente Euclídeo. Si construimos Φ de la siguiente manera

$$\Phi : V_1 \coprod V_2 \to V \times (1 - \varepsilon, 1 + \varepsilon),$$

$$q_1 \in V_1 \mapsto (x, r), r = \|\varphi_1(q_1)\|, x = \varphi_1(q_1)/r,$$

$$q_2 \in V_2 \mapsto (x, 2 - r), r = \|\varphi_2(q_2)\|, x = \varphi_2(q_2)/r.$$

obtenemos que $\Phi: V_1 \to V \times [1, 1+\varepsilon)$ y $\Phi: V_2 \to V \times (1-\varepsilon, 1]$ son homeomorfismos. Además se tiene que $q_1 \sim q_2$ si y sólo si $\Phi(q_1) = \Phi(q_2)$. De este modo, Φ induce una aplicación continua y biyectiva

$$\overline{\Phi} = \Phi \circ \pi^{-1} : \tilde{V} \to V \times (1 - \varepsilon, 1 + \varepsilon).$$

Si comprobamos que $\overline{\Phi}$ es abierta, tendremos que es homeomorfismo. Tomamos un abierto básico saturado de $V_1 \coprod V_2$, entonces o bien está totalmente incluido en $V_1 - S_1$ o en $V_2 - S_2$, en cuyo caso la imagen por $\overline{\Phi}$ es un abierto de $V \times (1 - \varepsilon, 1)$ o de $V \times (1, 1 + \varepsilon)$, o bien interseca a S_1 y S_2 . En este caso el abierto es de la forma $W_1 \coprod W_2$, construido como hicimos con $V_1 \coprod V_2$ a partir de un $W \subset V \subset \partial B_1(0)$. Entonces $\overline{\Phi}(\tilde{W}) = W \times (1 - \delta, 1 + \delta)$ con $0 < \delta \leq \varepsilon$, $\tilde{W} = \pi(W_1 \coprod W_2)$. Luego $\overline{\Phi}$ es abierta, y por tanto un homeomorfismo, y así finalmente \tilde{V} es un entorno euclídeo de p. Por construcción podemos tomar los abiertos $\tilde{V} \subset M$ en cantidad numerable para dormar una base

de la topología, y por lo tanto M es IIAN. Nos queda sólo ver que es Hausdorff. Sea un $q \in U'_j$, j=1,2, y un $p \in S$. Podemos tomar un entorno abierto \tilde{V} de p disjunto de un entorno pequeño de q. Y si tomamos $p,p' \in S$ distintos, los abiertos \tilde{V} , \tilde{V}' construidos partiendo de V, $V' \subset \partial B_1(0)$ disjuntos, son disjuntos. Por lo tanto, M es Hausdorff, y finalmente, variedad.

FALTA COMENTARIO DE QUE LA CONSTRUCCIÓN RESULTANTE NO DEPENDE DE LAS ELECCIONES HECHAS—ANNULUS THEOREM... ETC

Capítulo 2

Triangulación de superficies

Un hecho fundamental para la prueba del teorema de clasificación es que toda superficie es triangulable. La demostración, atribuída a Radó en 1925 [4], utiliza el teorema de Schönflies, cuya prueba es larga y técnica.

2.1. Complejos simpliciales y triangulación

Para poder dar una definición rigurosa de triangulación de variedades necesitamos la noción de complejos simpliciales. Estos son construcciones formadas por símplices, que son una generalización de los triángulos. En esta primera parte me baso en las definiciones de Munkres [5].

Definición 2.1.1. Sean $v_0, \ldots v_k$ k+1 puntos distintos de \mathbb{R}^n . Decimos que $\{v_0, \ldots, v_k\}$ están en **posición general** si $c_0, \ldots c_k$ son números reales tales que

$$\sum_{i=0}^{k} c_i v_i = 0 \text{ y } \sum_{i=0}^{k} c_i = 0,$$

entonces $c_0 = \cdots = c_k = 0$.

Definición 2.1.2. Sean $\{v_0, \ldots, v_n\}$ un conjunto de k+1 puntos de \mathbb{R}^n en posición general. El **símplice** generado por ellos, que denotamos por $[v_0, \ldots, v_k]$, es el conjunto

$$[v_0, \dots, v_k] = \left\{ \sum_{i=0}^k t_i v_i \mid t_i \ge 0, \sum_{i=0}^k t_i = 1 \right\},$$

con la topología heredada de \mathbb{R}^n . Para todo punto $x = \sum_i t_i v_i \in [v_0, \dots, v_k]$, llamamos a los t_i coordenadas baricéntricas de x. Cada uno de los v_i se llama vértice del símplice. Al entero k se le llama dimensión, y diremos que $[v_0, \dots, v_k]$ es un k-símplice.

Ejemplo 2.1.3. Un 0-símplice es un punto, un 1-símplice es un segmento, un 2-símplice es un triángulo junto a su interior, un 3-símplice es un tetraedro sólido, y así sucesivamente (Figura 2.1).

Sea σ un k-símplice. Cada símplice generado por un subconjunto no vacío de vértices de σ se llama cara de σ . Las caras que no son iguales a σ se llaman caras propias. Las caras 0-dimensionales de σ son sus vértices, y a las caras 1-dimensionales se les llama aristas. Las caras (k-1)-dimensionales de un k-símplice se llaman aristas, y a su unión la llamamos frontera. Definimos el interior como σ menos su frontera.

Figura 2.1: k-símplices, $k = 0, \dots, 3$.

Figura 2.2: Un complejo simplicial en \mathbb{R}^2

Figura 2.3: Símplices que no forman un complejo.

Definición 2.1.4. Un *complejo simplicial* es una colección K de símplices en un espacio euclídeo \mathbb{R}^n , que satisface las siguientes condiciones:

- (i) Si $\sigma \in K$, entonces toda cara de σ está en K
- (ii) La intersección de dos símplices cualesquiera en K es o bien vacía o bien una cara de ambos.

Si K un complejo simplicial en \mathbb{R}^n , llamamos dimensión de K a la dimensión máxima de los símplices en K. Esta no es mayor que n. Un subconjunto $K' \subseteq K$ se dice que es un subcomlejo de K si para todo $\sigma \in K'$, toda cara de σ está en K'. Un subcomplejo es un complejo simplicial en sí. Para todo $k \leq n$, el conjunto de todos los símplices de K de dimensión menor o igual que k es un subcomplejo llamado k-esqueleto de K.

La Figura 2.2 muestra un complejo simplicial en \mathbb{R}^2 . En cambio en la Figura 2.3 los símplices representados no forman un complejo, pues no se respeta la condición (ii) de la Definición 2.1.4.

Definición 2.1.5. Sea un complejo simplicial K en \mathbb{R}^n . La unión de todos los símplices en K junto con la topología heredada de \mathbb{R}^n es un espacio topológico que denotamos por |K| y que llamamos **poliedro de** K.

Definición 2.1.6. Una *aplicación afín* es una aplicación $F : \mathbb{R}^n \to \mathbb{R}^m$ tal que F(x) = c + A(x), donde $c \in \mathbb{R}^m$ es un vector fijo y A(x) es una aplicación lineal.

Definición 2.1.7. Sean K, L complejos simpliciales. Una *aplicación simplicial* es una aplicación continua $f:|K| \to |L|$ cuya restricción a cada símplice $\theta \in K$ coincide con una aplicación afín que lleva θ a algún símplice en L.

Definición 2.1.8. Sea X un espacio topológico. Llamamos triangulación de <math>X a un homeomorfismo entre X y el poliedro de algún complejo simplicial.

Definición 2.1.9. Toda variedad (con borde y sin borde) que admita una triangulación se dice *triangulable*.

2.2. Teorema de Radó

Teorema 2.2.1 (Teorema de Radó). Toda superficie es triangulable por un poliedro de un complejo simplicial 2-dimensional, en donde cada 1-símplice es una cara de exáctamente dos 2-símplices.

Teorema 2.2.2. Toda superficie con borde es triangulable por un poliedro de un complejo simplicial 2-dimensional, en donde hay dos tipos de 1-símplices: los que están totalmente contenidos en el borde, y los que se corresponden con puntos interiores. Los primeros son cara de exactamente un 2-símplice, y los últimos exactamente de dos 2-símplices.

Capítulo 3

Teorema de Clasificación

En esta sección daremos una demostración clásica del teorema de clasificación de superficies compactas, que fue probado por primera vez en 1907 por Max Dehn y Poul Heegaard [7]. En las primeras dos secciones utilizo las nociones que da Lee [1] sobre la representación de superficies, y las amplío a la representación de superficies con borde. En la tercera sección demuestro el teorema basándome en la prueba de Lee [1], que a su vez se basa en la demostración clásica de Seifert y Threlfall [8]. Finalmente clasifico las superficies con borde, siguiendo la idea de Massey [9].

3.1. Superficies como cocientes

Para el teorema de clasificación necesitamos un método uniforme de representación de las superficies compactas. Trataremos de dar una forma de representarlas como polígonos, y veremos que toda superficie compacta se puede representar en el plano como el cociente de un polígono por una relación de equivalencia que identifica sus aristas dos a dos.

Veamos tres ejemplos elementales: la esfera \mathbb{S}^2 , el plano proyectivo \mathbb{P}^2 y el toro \mathbb{T}^2 . Como veremos, estas superficies son fundamentales pues toda superficie compacta se puede construir a partir de ellas.

Proposición 3.1.1. La esfera \mathbb{S}^2 es homeomorfa a los siguientes espacios cociente:

- (a) El disco cerrado $\overline{\mathbb{B}}^2\subseteq\mathbb{R}^2$ módulo la relación de equivalencia generada por $(x,y)\sim(-x,y)$, si $(x,y)\in\partial\overline{\mathbb{B}}^2$
- (b) El cuadrado $S=\{(x,y):|x|+|y|\leq 1\}$ módulo la relación de equivalencia generada por $(x,y)\sim (-x,y)$ si $(x,y)\in \partial S.$

Demostración. Para ver que cada espacio es homeomorfo a la esfera, daremos una aplicación cociente desde cada espacio a la esfera que haga las mismas identificaciones que la relación de equivalencia, y entonces apelaremos a la unicidad del espacio cociente. (Teorema A.1.7)

Para (a), vamos a definir una aplicación que "envuelve" cada paralelo de la esfera con un segmento horizontal del disco (ver Figura 3.1). Formalmente, esta aplicación $\pi: \overline{\mathbb{B}}^2 \to \mathbb{S}^2$ vienen dada por

$$\pi(x,y) = \begin{cases} (-\sqrt{1-y^2}\cos\frac{\pi x}{\sqrt{1-y^2}}, -\sqrt{1-y^2}, y), & y \neq \pm 1\\ (0,0,y), & y = \pm 1 \end{cases}$$

Figura 3.1: La esfera como cociente del disco $\overline{\mathbb{B}}^2.$

Figura 3.2: La esfera como cociente de un cuadrado.

Es claro que π es continua y hace las mismas identificaciones que la relación de equivalencia. Por ser sobreyectiva, es una aplicación cociente (Teorema A.1.6).

Para probar (b), sea $\alpha: S \to \overline{\mathbb{B}}^2$ el homeomorfismo construido a partir de la aplicación dada en la demostración de Proposición B.0.2 que manda linealmente cada segmento radial entre el origen y la frontera de S a un segmento paralelo a este, que une el centro del disco y su frontera. Hagamos ahora $\beta = \pi \circ \alpha: S \to \mathbb{S}^2$, donde π es la aplicación cociente del parágrafo anterior. Tenemos entonces que β identifica (x,y) y (-x,y) cuando $(x,y) \in \partial S$, y por otro lado es inyectiva, así que hace las mismas identificaciones que la aplicación cociente definida en (b), completando así la demostración (ver Figura 3.2).

Proposición 3.1.2. El toro \mathbb{T}^2 es homeomorfo al espacio cociente resultante de la relación de equivalencia en el cuadrado $I \times I$ que identifica $(x,0) \sim (x,1)$ para todo $x \in I$, y $(0,y) \sim (1,y)$ para todo $y \in I$ (Figura 3.3).

Demostración. Definimos la aplicación $q:I\times I\to \mathbb{T}^2$ que manda $q(u,v)=(e^{2\pi i u},e^{2\pi i v})$. Por el teorema de la aplicación cerrada (Teorema A.1.6), es una aplicación cociente. Al hacer las mismas identificaciones que la relación de equivalencia, por la unicidad del espacio cociente (Teorema A.1.7) se obtiene el resultado.

Figura 3.3: El toro como cociente de un cuadrado.

Proposición 3.1.3. El plano proyectivo \mathbb{P}^2 es homeomorfo a los siguientes espacios cociente:

- (a) El disco cerrado $\overline{\mathbb{B}}^2$ módulo la relación de equivalencia generada por $(x,y) \sim (-x,-y)$ para cada $(x,y) \in \partial \overline{\mathbb{B}}^2$.
- (b) La región cuadrada $S = \{(x,y) : |x| + |y| \le 1\}$ módulo la relación de equivalencia generada por $(x,y) \sim (-x,-y)$ para todo $(x,y) \in \partial S$.

Demostración. Sea la relación de equivalencia \sim generada por $(x,y) \sim (-x,-y)$ para cada $(x,y) \in \mathbb{S}^2$, que representa \mathbb{P}^2 como el cociente de una esfera en la cual se identifican polos opuestos, y sea $p: \mathbb{S}^2 \to \mathbb{P}^2$ su aplicación cociente. Si $F: \overline{\mathbb{B}}^2 \to \mathbb{S}^2$ es la aplicación que manda el disco al emisferio norte de la esfera mediante la aplicación $F(x,y) = (x,y,\sqrt{1-x^2-y^2})$, entonces $p \circ F: \overline{\mathbb{B}}^2 \to \mathbb{S}^2/\sim$ es sobreyectiva por serlo p y F, y es por tanto una aplicación cociente por el teorema de la aplicación cerrada (Teorema A.1.6). La aplicación identifica únicamente $(x,y) \in \partial \overline{\mathbb{B}}^2$ con $(-x,-y) \in \partial \overline{\mathbb{B}}^2$, por lo que \mathbb{P}^2 es homeomorfo al espacio cociente resultante. Para la parte (b) utilizamos un argumento análogo al de la demostración de la Proposición 3.1.1 (b)

Figura 3.4: Representación de \mathbb{P}^2 como un espacio cociente.

De ahora en adelante visualizaremos el plano proyectivo como el **crosscap**, cuya construcción se sigue en la siguiente figura.

Figura 3.5: Crosscap.

En las anteriores proposiciones hemos visto una o varias formas de representar superficies dadas ciertas construcciones geométricas. En estos casos hemos dado aplicaciones y demostraciones concretas para validar nuestros argumentos, pero a medida que aumenta la sofisticación es más útil guiarse visualmente por las figuras construidas. Por ello debemos formalizar un método para construir superficies identificando aristas de figuras geométricas del plano. Daremos por sabidas las definiciones básicas de símplices CW-complejos, que dejamos en el Apéndice B.

Definición 3.1.4. Un **polígono** es un subconjunto de \mathbb{R}^2 que es homeomorfo a \mathbb{S}^1 y está formado por un número finito de segmentos, que llamaremos **aristas** y que se intersecan sólo en sus extremos, que llamaremos **vértices**.

Definición 3.1.5. Una *región poligonal* es un subconjunto compacto de \mathbb{R}^2 cuyo interior es homeomorfo al disco \mathbb{B}^2 y cuya frontera es un polígono. A los vértices y aristas del polígono de la frontera también los llamamos vértices y aristas de la región poligonal.

Veamos pues que identificando aristas de regiones poligonales de par en par obtenemos un espacio cociente que es siempre una superficie:

Proposición 3.1.6. Sean P_1, \ldots, P_k regiones poligonales en el plano, y sea $P = P_1 \coprod \cdots \coprod P_k$, y supongamos dada una relación de equivalencia en P que identifica algunas aristas de los polígonos con otros por homeomorfismos afines. Entonces se tiene:

- (a) El espacio cociente resultante es un CW-complejo 2-dimensional cuyo 0-esqueleto es la imagen del conjunto de vértices de P por la aplicación cociente, y cuyo 1-esqueleto es la imagen de la unión de las aristas de las regiones poligonales.
- (b) Si la relación de equivalencia identifica cada arista de cada P_i con exactamente otra arista de un P_j (no necesariamente $i \neq j$), entonces el espacio cociente resultante es una superficie compacta.
- (c) Si para algunos P_i la relación de equivalencia identifica alguna arista suya con exáctamente otra arista de un P_j (no necesariamente $i \neq j$), y para las aristas restantes no hay ninguna identificación, entonces el espacio cociente resultante es una superficie con borde compacta.

Demostración. Sea M el espacio cociente, sea $\pi: P \to M$ la aplicación cociente y sean $M_0, M_1, M_2 = M$ respectivamente las imágenes por π de los vértices, las aristas y las regiones poligonales. Por la propia definición de P, M_0 es un espacio discreto, y para $k = 1, 2, M_k$ se obtiene a partir de M_{k-1} pegando un número finito de k-celdas. Por tanto M es un CW-complejo (Definición B.0.4).

Para probar (b), si demostramos que M es localmente homeomorfa a un espacio euclideo, entonces, por la Proposición B.0.6, M será una superficie.

Por un lado las 2-celdas son abiertos en M por definición, y por lo tanto son entornos euclideos de cada uno de sus puntos.

Sea D una 1-celda, y sea $d \in D$. Veamos que d tiene un entorno Euclideo. Por un lado, d tiene exáctamente dos preimágenes x e y, cada una en el interior de una arista distinta D_1 y D_2 . Supongamos sin pérdida de generalidad que estas dos aristas pertenecen respectivamente a P_1 y P_2 (P_1 puede ser igual a P_2), y denotemos por $h:D_2\to D_1$ un homeomorfismo tal que h(y)=x. Dado que cada P_i es una variedad con borde, y x,y son puntos borde, podemos elegir cartas coordenadas (U,φ) para P_1 y (V,ψ) para P_2 tal que $x\in U, y\in V$. Denotamos $\widehat{U}=\varphi(U), \widehat{V}=\psi(V)\subseteq \mathbb{H}^2$ y podemos asumir, contrayendo U y V si es necesario, que $h(V\cap D_2)=U\cap D_1$, y que $\widehat{U}=U_0\times [0,\varepsilon), \ \widehat{V}=V_0\times [0,\varepsilon)$ para un $\varepsilon>0$ y unos subconjuntos $U_0,V_0\subset\mathbb{R}$ como se muestra en la Figura 3.6. Así pues podemos escribir las aplicaciones coordenadas como $\varphi(x)=(\varphi_0(x),\varphi_1(x)), \ \psi(x)=(\psi_0(y),\psi_1(y))$ con $\varphi_0:U\to U_0$, $\varphi_1:U\to [0,\varepsilon), \ \psi_0:V\to V_0$ y $\psi_1:V\to [0,\varepsilon)$ aplicaciones continuas. Que x e y sean puntos borde significa que $\varphi_1(x)=\psi_1(y)=0$.

Queremos ensamblar estas dos cartas con una aplicación cuya imagen sea un abierto de \mathbb{R}^2 , pegándolas por los puntos que se corresponden en D_1 y D_2 . El problema es que las aplicaciones φ y ψ no tienen por qué llevar puntos borde que se correspondan al mismo punto imagen, y por tanto tenemos que ajustarlo. Se tiene que las dos restricciones $\varphi_0|_U \cap D_1 : U \cap D_1 \to U_0$ y $\psi_0|_V \cap D_2 : V \cap D_2 \to V_0$ son homeomorfismos, y definimos así el homeomorfismo $\beta : V_0 \to U_0$ por

$$\beta = (\varphi_0|_{U \cap D_1}) \circ h \circ (\psi_0|_{V \cap D_2})^{-1}.$$

Sea ahora $B: \widehat{V} \to \mathbb{R}^2$ la aplicación

$$B(y_1, y_2) = (\beta(y_1), -y_2)$$
.

Geométricamente, B actúa como un espejo, juntando los puntos borde de acuerdo con β , y dando la vuelta al segmento que está por encima de él, llevándolo a un segmento por debajo (como en la Figura AUN POR HACER ??). Esta construcción nos asegura que

$$B \circ \psi(y) = (\beta \circ \psi_0(y), 0) = (\varphi_0 \circ h(y), 0) = \varphi \circ h(y). \tag{3.1}$$

Definimos ahora $\tilde{\Phi}: U \coprod V \to \mathbb{R}^2$ por

$$\tilde{\Phi}(y) = \begin{cases} \varphi(y), & y \in U, \\ B \circ \psi(y), & y \in V. \end{cases}$$

Figura 3.6: Entorno euclídeo de un vértice.

Dado que $U \coprod V$ es un abierto saturado de M, la restricción $\pi|_{U \coprod V}$ es una aplicación cociente en el entorno de $d \pi(U \coprod V)$, y por (3.1) $\tilde{\Phi}$ pasa al cociente y define una aplicación continua e inyectiva $\Phi : q(U \coprod V) \to \mathbb{R}^2$. Como φ, ψ y B son homeomorfismos entre sus dominios y sus imágenes, podemos definir la inversa de Φ de la siguiente manera:

$$\Phi^{-1}(s) = \begin{cases} q \circ \varphi^{-1}(s), & s_2 \ge 0, \\ q \circ \psi^{-1} \circ B^{-1}(s), & s_2 \le 0. \end{cases}$$

Dado que las dos partes de la función son iguales donde coinciden, la aplicación es continua, y por tanto Φ es un homeomorfismo. Así pues, $U \coprod V$ es un entorno Euclideo de d.

La preimagen de una 0-celda v es un conjunto de vértices $\{v_1,\ldots,v_k\}\subseteq P$. Para cada uno de estos vértices podemos elegir un $\varepsilon>0$ tal que el disco $B_\varepsilon(v_i)$ no contenga ningun vértice de la región poligonal P_j a la que pertenece v_i a parte de sí mismo, y tal que no interseca más aristas que las que lo contienen. $B_\varepsilon(v_i)\cap P_j$ es homeomorfo a un subconjunto de \mathbb{R}^2 definido por la intersección de dos semiplanos cuyas fronteras coinciden en un único punto y tal que el ángulo que forman es de $2\pi/k$. Podemos ahora hacer una aplicación que envíe cada una de las regiones asociadas a cada $v_i, i_1, \ldots k$ a un conjunto que contenga un entorno del origen y que respete las identificaciones entre las aristas de los P_j . Esta aplicación está definida sobre un conjunto saturado de P, de la cual podemos sacar un homeomorfismo de v a un entorno del origen de \mathbb{R}^2 .

Finalmente, para probar (c), volvemos a ver cada polígono como una superficie con borde. El interior de las 1-celdas que provienen de aristas que se identifican son localmente euclídeos por la demostración del apartado anterior. Para los puntos vértices de estas 2-celdas podemos encontrar una bola o una semibola coordenada con una construcción similar a la de la demostración anterior, dependiendo de si los vértices están contenidos en el borde o no. Por otro lado, para los puntos de las 1-celdas que tienen sólo una preimagen podemos encontrar como semibolas coordenadas las mismas de antes de pasar al cociente. Por tanto se tiene que el espacio cociente resultante es una superficie con borde.

Ejemplo 3.1.7. La **botella de Klein** es la superficie K obtenida identificando las aristas del cuadrado $I \times I$ de acuerdo a $(0,t) \sim (1,t)$ y $(t,0) \sim (1-t,1)$ para $0 \le t \le 1$. Para visualizar K, podemos pensar en pegar las aristas izquierda y derecha creando un cilindro, y luego hacer pasar el extremo superior por la parte inferior del cilindro, para finalmente pegar los dos extremos (ver Figura 3.7).

Ejemplo 3.1.8. Veamos ahora como obtener las figuras del Ejemplo 1.2.5. El cilindro Cil es la superficie con borde que se obtiene al identificar las aristas de un cuadrado $I \times I$ dada la relación de equivalencia $(0, y) \sim (1, y)$, con $y \in I$ (Figura 3.8a). La banda de Möbius Mob es la superficie con borde que se obtiene identificando las aristas del cuadrado $I \times I$ de acuerdo a la relación $(0, y) \sim (1, 1 - y)$, $y \in I$ (Figura 3.8b).

Figura 3.7: Construcción de la botella de Klein.

Figura 3.8: Superficies con borde como cocientes topológicos.

3.2. Representación de superficies

Vamos ahora a dar un método uniforme para representar todas las superficies y las superficies con borde como regiones poligonales del plano. A su vez asociaremos a cada región poligonal, y por tanto a cada superficie, una secuencia de símbolos llamada palabra.

Definición 3.2.1. Sea S un conjunto. Una **palabra en** S es una k-tupla ordenada de símbolos, cada uno de la forma a o a^{-1} , para cierto $a \in S$.

Definición 3.2.2. Una representación poligonal, que denotaremos por

$$\mathcal{P} = \langle S \mid W_1, \dots, W_k \rangle$$

es un conjunto finito S junto con un número finito de palabras $W_1,...,W_k$ en S de longitud 3 o más, tal que para todo $a \in S$ existe un W_i tal que $a \in W_i$. Por cuestiones de notación, cuando el conjunto S esté descrito listando sus elementos, quitaremos los corchetes que rodean los elementos de S y denotaremos las palabras W_i por youxtaposición. Por ejemplo, la presentación con $S = \{a, b\}$ y la palabra $W = (a, b, a^{-1}, b^{-1})$ se escribe $\langle a, b \mid aba^{-1}b^{-1}\rangle$.

Permitimos el caso especial de que $S = \{a\}$ (u otro símbolo cualquiera) y que \mathcal{P} tenga una sola palabra de longitud 2, es decir, $\langle a \mid aa \rangle$, $\langle a \mid a^{-1}a^{-1} \rangle$, $\langle a \mid aa^{-1} \rangle$ y $\langle a \mid a^{-1}a \rangle$.

Definición 3.2.3. Toda representación poligonal \mathcal{P} da lugar a un espacio topológico $|\mathcal{P}|$, llamado *realización geométrica de* \mathcal{P} . $|\mathcal{P}|$ se obtiene de la siguiente manera:

- 1. Para cada $W_i \in \mathcal{P}$ de longitud k, sea P_i la k-región poligonal convexa centrada en el origen con aristas de longitud 1, ángulos iguales y tal que un vértice yace sobre el eje OY.
- 2. Se define una correspondencia uno a uno (que llamaremos etiquetado) entre los símbolos de W_i y las aristas de P_i en sentido contrario a las agujas del reloj, empezando por la que yace en el eje OY.
- 3. Sea $|\mathcal{P}|$ el espacio cociente de $\coprod_i P_i$ determinado identificando aristas que tengan el mismo símbolo, conforme al homeomorfismo afín que hace coincidir los primeros vértices de las aristas con una etiqueta dada a y los últimos vertices de las que tienen la correspondiente etiqueta a^{-1} (en el sentido contrario a las agujas del reloj).

Si \mathcal{P} es una de las representaciones poligonales de un solo elemento, definimos $|\mathcal{P}|$ como la esfera \mathbb{S}^2 si la palabra es aa^{-1} o $a^{-1}a$, o como el plano proyectivo \mathbb{P}^2 si es aa o $a^{-1}a^{-1}$.

Por notación, dadas dos palabras W_1 y W_2 , W_1W_2 representará la palabra formada concatenando W_1 y W_2 . Por otro lado, adoptaremos la convención de que $(a^{-1})^{-1} = a$.

También en lo que sigue S denotará una secuencia cualquiera de símbolos, $a, b, c, a_1, a_2, \ldots$ símbolos de S, e un símbolo que no sea de S y W_1, W_2, \ldots palabras formadas por símbolos de S.

Definición 3.2.4. Los interiores, las aristas y los vértices de cada región polgonal P_i se llaman caras, aristas y vértices de la representación. El número de caras es el mismo que el número de palabras, y el número de aristas coincide con la suma de la longitud de las palabras. Para una arista etiquetada a, el vértice inicial es el primero en el sentido contrario de las agujas del reloj, y el otro es el vértice final. Para una arista etiquetada a^{-1} , estas definiciones se invierten.

Definición 3.2.5. Sea $\mathcal{P} = \langle S \mid W_1, \dots, W_k \rangle$ una representación poligonal.

(i) Decimos que \mathcal{P} es una representación de una superficie si para todo $a \in S$, a ocurre exáctamente dos veces en $W_1, ..., W_k$ como a o como a^{-1} .

(ii) Si en cambio en la representación poligonal cada símbolo $a \in S$ ocurre una o dos veces en W_1, \ldots, W_k como a o a^{-1} , diremos que \mathcal{P} es una representación de una superficie con borde

Observación 3.2.6. Por la Proposición 3.1.6, la realización geométrica de una representación de una superficie es una superficie compacta, y la realización geométrica de una representación de una superficie con borde es una superficie con borde.

En el apartado (ii) de la definición anterior dejamos la posibilidad de que cada símbolo aparezca exáctamente dos veces, como en (i). Esto no es ninguna ambigüedad pues como se expuso en la Sección 1.2 una superficie sin borde es siempre una superficie con borde, y una superficie con borde tal que tiene borde vacío es una superficie sin borde.

Definición 3.2.7. Si X es un espacio topológico y \mathcal{P} una representación poligonal cuya realización geométrica es homeomorfa a \mathcal{P} , decimos que \mathcal{P} es una **representación de** X.

Observación 3.2.8. Un espacion topológico que admite una representación con una sola cara es conexo, pues es homeomorfo al cociente de una región poligonal conexa. Con más de una cara, puede ser o no conexo.

Ejemplo 3.2.9. Veamos las representaciones de algunas superficies importantes (ver Figura 3.9 y Figura 3.10).

(a)
$$\mathbb{S}^2 = \langle a \mid aa^{-1} \rangle = \langle a, b \mid abb^{-1}a^{-1} \rangle$$
 (Proposición 3.1.1)

(b)
$$\mathbb{P}^2 = \langle a \mid aa \rangle = \langle a, b \mid abab \rangle$$
 (Proposición 3.1.3)

(c)
$$\mathbb{T}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$
 (Proposición 3.1.2)

Ejemplo 3.2.10. Podemos dar también las representaciones de algunas superficies con borde (Figura 3.11):

(a)
$$\overline{\mathbb{B}}^2 = \langle a, b, c \mid abc \rangle$$
.

(b)
$$Mob = \langle a, b, c \mid abac \rangle$$
 (Ejemplo 3.1.8).

(c)
$$Cil = \langle a, b, c \mid aba^{-1}c \rangle$$
 (Ejemplo 3.1.8).

Figura 3.9: Representación de superficies importantes.

Figura 3.10: Representaciones de la esfera y el plano proyectivo.

Figura 3.11: Representación de superficies con borde.

Figura 3.12: Subdividir/consolidar.

Parece claro que, además de \mathbb{S}^2 y \mathbb{P}^2 , una superficie pueda tener varias presentaciones poligonales. Sea por ejemplo la presentación del toro $\mathbb{T}^2 = \langle a,b \mid aba^{-1}b^{-1} \rangle$. Intuitivamente podemos ver que, subdividiendo las aristas etiquetadas con b y reetiquetándolas con c y d (ver Figura 3.12), la superficie que representa la representación obtenida $\langle a,c,d \mid acda^{-1}c^{-1}d^{-1} \rangle$ será la misma. Vamos ahora a desarrollar unas reglas generales de transformación que nos den figuras equivalentes.

Definición 3.2.11. Sean \mathcal{P}_1 y \mathcal{P}_2 dos representaciones tal que sus realizaciones geométricas son homeomorfas. Entonces decimos que son *topológicamente equivalentes* y escribimos $\mathcal{P}_1 \approx \mathcal{P}_2$.

Vamos a definir ahora unas operaciones elementales sobre las representaciones poligonales. Veremos luego que estas dan lugar a representaciones equivalentes.

Definición 3.2.12. Las siguientes operaciones se llaman *transformaciones elementales* de una presentación poligonal:

- Reetiquetar: Cambiar todas las apariciones de un símbolo a por otro símbolo que no está todavía en la representación, intercambiar todas las apariciones de dos símbolos a y b o intercambiar todas las apariciones de a y a^{-1} .
- **Subdividir** (Figura 3.12): Cambiar todas las apariciones de a por ae y todas las de a^{-1} por $e^{-1}a^{-1}$, donde e es un símbolo que no está todavía en la presentación.
- Consolidar (Figura 3.12): Si a y b aparecen siempre de forma advacente, intercambiar ab por a y $b^{-1}a^{-1}$ por a^{-1} , siempre que esto de lugar a una o más palabras de longitud al menos 3 o una sola palabra de longitud 2.
- Reflejar (Figura 3.13a):

$$\langle S \mid a_1 \dots a_m, W_2, \dots, W_k \rangle \mapsto \langle S \mid a_m^{-1} \dots a_1^{-1}, W_2, \dots, W_k \rangle.$$

■ *Rotar* (Figura 3.13b):

$$\langle S \mid a_1 a_2 \dots a_m, W_2, \dots, W_k \rangle \mapsto \langle S \mid a_2 \dots a_m a_1, W_2, \dots, W_k \rangle.$$

■ Cortar (Figura 3.14a): Si W_1 y W_2 tienen longitud al menos 2,

$$\langle S \mid W_1 W_2, W_3, \dots, W_k \rangle \mapsto \langle S \mid W_1 e, e^{-1} W_2, W_3, \dots W_k \rangle.$$

■ *Pegar* (Figura 3.14a):

$$\langle S, e \mid W_1 e, e^- 1 W_2, W_3, \dots, W_k \rangle \mapsto \langle S \mid W_1 W_2, W_3, \dots, W_k \rangle.$$

■ **Plegar** (Figura 3.14b): Si w_1 tiene longitud al menos 3,

$$\langle S, e \mid W_1 e e^{-1}, W_2, \dots W_k \rangle \mapsto \langle S \mid W_1, W_2, \dots, W_k \rangle.$$

Permitimos que W_1 tenga longitud 2, siempre que la representación tenga una sola palabra.

■ **Desplegar** (Figura 3.14b):

$$\langle S \mid W_1, W_2, \dots, W_k \rangle \mapsto \langle S, e \mid W_1 e e^{-1}, W_2, \dots, W_k \rangle.$$

Proposición 3.2.13. Las operaciones elementales sobre representaciones poligonales dan lugar a representaciones poligonales equivalentes.

Demostración. Los casos de reetiquetar, subdividir y rotar son cambios puramente formales que no afectan al espacio cociente. Los casos subdividir/consolidar, cortar/pegar y plegar/desplegar son inversos, con lo que basta probar uno de cada par. Empecemos con la operación de cortar. Sean P_1, P_2 dos regiones poligonales convexas etiquetadas por las palabras W_1e y $e^{-1}W_2$ y sea P' la region poligonal etiquetada por W_1W_2 . Supongamos de momento que no hay más palabras en las respectivas presentaciones. Si $\pi: P_1 \coprod P_2 \to M$ y $\pi': P' \to M'$ representan respectivamente las aplicaciones cocientes. El segmento que va desde el vértice final de W_1 en P' a su vértice inicial yace en P' por convexidad, y lo etiquetamos con e. Por el $\ref{eq:policy$

Para el plegado, ignoramos como antes palabras adicionales $W_2, ... W_k$. Supongamos para empezar que $W_1 = abcd$ tiene longitud exáctamente 4. Sea P una región poligonal convexa con aristas etiquetadas por $abee^{-1}cd$. Si cortamos a lo largo de el segmento f que une el vértice inicial de a con el vértice final de e y obtenemos así abef y $f^{-1}e^{-1}cd$. Consolidamos ef en h, obteniendo así ah^{-1} y bch. Pegamos por h y obtenemos así abcd. ((Lo he cambiado para evitar hablar de simplex que los introduzco más tarde. Vale igualmente?)) Si W_1 tiene longitud 2 o 3, podemos subdividir para alargar la longitud de la palabra a 4, plegar, y finalmente consolidar de nuevo.

Figura 3.15: La representación $\mathcal{P}_1 = \langle S_1, a, b, c \mid W_1 c^{-1} b^{-1} a^{-1}, abc \rangle$.

Proposición 3.2.14. Sean M_1 y M_2 superficies que admiten respectivamente representaciones $\langle S_1 | W_1 \rangle$ y $\langle S_2 | W_2 \rangle$, donde S_1 y S_2 son conjuntos disjuntos y tal que cada presentación tiene una sola cara. Entonces $\langle S_1, S_2 | W_1 W_2 \rangle$ es una presentación de la suma conexa $M_1 \# M_2$.

Demostración. Consideramos la representación $\mathcal{P}_1 = \langle S_1, a, b, c \mid W_1c^{-1}b^{-1}a^{-1}, abc \rangle$ (Figura 3.15). Pegando a lo largo de a y doblando dos veces, tenemos que \mathcal{P}_1 es una representación equivalente a $\langle S_1 \mid W_1 \rangle$ y por tanto es una representación de M_1 . Llamemos B_1 a la imagen en M_1 del interior de la región poligonal cuya frontera es abc. Veamos que B_1 es un disco coordenado regular, es decir, que existe un entorno B' de B_1 en M_1 y un homeomorfismo $\phi: B' \to \mathbb{R}^2$ que manda B_1 a \mathbb{B}^2 y \overline{B} a $\overline{\mathbb{B}}^2$. Una forma de verlo lo sugiere la Figura 3.15: sean P_1 , Q y P'_1 regiones poligonales convexas etiquetadas respectivamente por las palabras $W_1c^{-1}b^{-1}a^{-1}$, abc y W_1 . Si triangulamos las regiones poligonales como en la Figura 3.15, obtenemos una aplicación simplicial $f: P_1 \coprod Q \to P'_1$ que lleva Q a el triángulo $Q' \subseteq P'_1$, que comparte una vértice v con P'_1 . La composición $P_1 \coprod Q \to P'_1 \to M_1$ respeta las identificaciones hechas por la aplicación cociente $P'_1 \to M_1$, por lo que se tiene un homeomorfismo de M_1 llevando B_1 a la imagen de Q'.

Ahora, fijémonos en la demostración de la Proposición 3.1.6 (b). Cuando construimos el entorno Euclídeo de un vértice, ensamblábamos las regiones del plano de los varios vértices en un mismo disco coordenado. Aplicando esa construcción al vértice v, llevamos Q' a un conjunto que es homeomorfo a un disco cerrado en el plano (??), y entonces extendemos ese homeomorfismo a un disco abierto que lo contiene.

Se sigue de este resultado que la realización geométrica de $\langle S_1, a, b, c \mid W_1c^{-1}b^{-1}a^{-1} \rangle$ es homeomorfa a $M_1' = M_1 \setminus B_1$, y ∂B_1 es la imagen de las aristas $c^{-1}b^{-1}a^{-1}$. Un argumento similar demuestra que $\langle S_2, a, b, c \mid abcW_2 \rangle$ es una presentación de M_2 menos un disco coordenado $M_2' = M_2 \setminus B_1$. Por tanto se tiene que $\langle S_1, S_2, a, b, c \mid W_1, c^{-1}b^{-1}a^{-1}, abcW_2 \rangle$ es una presentación de $M_1' \coprod M_2'$ con las fronteras de los respectivos discos identificados, es decir, $M_1 \# M_2$. Finalmente, pegando por a y doblando dos veces, se obtiene la presentación $\langle S_1, S_2 \mid W_1W_2 \rangle$.

Ejemplo 3.2.15. Con la proposición anterior podemos aumentar nuestra lista de superficies conocidas. A estas representaciones las llamaremos representaciones *estándar*.

$$\langle a \mid aa^{-1} \rangle$$

(b) Suma conexa de n toros.

$$\langle a_1, \dots, a_n, b_1, \dots, b_n \mid a_1 b_1 a_1^{-1} b_1^{-1} \dots a_n b_n a_n^{-1} b_n^{-1} \rangle$$

(c) Suma conexa de n planos proyectivos.

$$\langle a_1, \ldots, a_n \mid a_1 a_1 \ldots a_n a_n \rangle$$

3.3. Teorema de clasificación de superficies compactas

Proposición 3.3.1. Toda superficie compacta admite una representación poligonal.

Demostración. Sea M una superficie compacta. Por el Teorema de Radó, M es homeomorfa al poliedro |K| de un complejo simplicial K de dimensión 2, en donde todo 1-símplice es una cara de exáctamente dos 2-símplices. Sea \mathcal{P} la representación poligonal de una superficie que consta de una palabra de longitud 3 por cada 2-símplice, y cuyas aristas tienen las mismas etiquetas si y solo si corresponden al mismo 1-símplice. Veamos que la realización geométrica de $\mathcal P$ es homeomorfa al poliedro (de?) K. Si ponemos $P = P_1 \coprod \cdots \coprod P_k$ que denota al conjunto de la unión disjunta de los 2-símplices de K, entonces tenemos las aplicaciones cociente $\pi_K: P \to |K|$ y $\pi_P: P \to |\mathcal{P}|$. Hay que ver por tanto que hacen las mimas identificaciones. Sabemos que las ambas aplicaciones son inyectivas en el interior de los 2-símplices, identifican vértices sólo con vertices y hacen las mismas identificaciones en las aristas. Falta por tanto demostrar que π_K y $\pi_{\mathcal{P}}$ identifican los vértices sólo de acuerdo a la relación generada por la identificación de las aristas. Supongamos que $v \in K$ es un vértice. Se tiene que v pertenece a un 1-símplice, pues si no sería un punto aislado de |K|, lo que contradice que |K| sea una variedad. El Teorema de Radó nos garantiza que este 1-símplice es una cara de exáctamente dos 2-símplices. Definimos una relación de equivalencia sobre los dos 2-símplices que contienen v: si σ , σ' son dos 2-símplices que contienen a v, decimos que están **contectados por** arista en v si hay una secuencia de 2-símplices que contienen a v $\sigma = \sigma_1, \ldots, \sigma_k = \sigma'$ ta lque cada σ_i comparte una arista con σ_{i+1} para todo $i=1,\ldots,k-1$. Vamos a comprobar que sólo hay una relación de equivalencia por contradicción. Supongamos que podemos agrupar los 2-símplices que contienen a v en dos conjuntos disjuntos $\{\sigma_1,\ldots,\sigma_k\}$ y $\{\tau_1,\ldots,\tau_m\}$ tales que todo σ_i está conectado con todo σ_j pero ningún τ_i está conectado con ningún σ_j . Sea $\varepsilon > 0$ tal que la bola $B_{\varepsilon}(v)$ interseca sólo los símplices que contienen a v. Se tiene entonces que $B_{\varepsilon}(v) \cap |K|$ es un abierto de |K| y por tanto una superficie, por lo que v tiene un entorno $W \subseteq B_{\varepsilon}(v) \cap |K|$ que es homeomorfo a \mathbb{R}^2 , por lo que $W \setminus \{v\}$ es conexo. Pero si ponemos ahora

$$U = W \cap (\sigma_1 \cup \dots \cup \sigma_k) \setminus \{v\}$$
$$V = W \cap (\tau_1 \cup \dots \cup \tau_m) \setminus \{v\}$$

entonces U y V son dos abiertos de |K| tal cuya intersección con cada símplice es abierta en el símplice, y $W = U \cap V$ es una desconexión de W. Pero esto es una contradicción.

Como venimos diciendo desde el principio del presente trabajo nuestras superficies fundamentales son el toro \mathbb{T}^2 , la esfera \mathbb{S}^2 , y el plano proyectivo \mathbb{P}^2 . ¿Qué pasa con las otras superficies que hemos visto, como la botella de Klein o la suma conexa de toros y planos proyectivos? La respuesta la obtenemos de los dos siguientes lemas.

Lema 3.3.2. La botella de Klein es homeomorfa a $\mathbb{P}^2 \# \mathbb{P}^2$.

Demostración. Vamos a demostrarlo haciendo transformaciones elementales en la representación de la botella de Klein vista en el Ejemplo 3.2.9. Siguiendo la figura Figura 3.16, tenemos

$$\langle a, b | abab^{-1} \rangle$$

$$\approx \langle a, b, c | abc, c^{-1}ab^{-1} \rangle \qquad \text{(cortar por } c)$$

$$\approx \langle a, b, c, | bca, a^{-1}cb \rangle \qquad \text{(rotar y reflejar)}$$

$$\approx \langle b, c | bbcc \rangle \qquad \text{(pegar por } a \text{ y rotar)}$$

Y esto es la presentación poligonal de la suma conexa de dos planos proyectivos.

Figura 3.16: Transformación de la bottella de Klein en \mathbb{P}^2 .

Lema 3.3.3. La suma conexa $\mathbb{T}^2 \# \mathbb{P}^2$ es homeomorfa a $\mathbb{P}^2 \# \mathbb{P}^2 \# \mathbb{P}^2$.

Demostración. Partimos de una representación poligonal de $K\#\mathbb{P}^2$, que es, por el lema anterior, una presentación de $\mathbb{P}^2\#\mathbb{P}^2\#\mathbb{P}^2$ y procedemos haciendo transformaciones elementales:

$$\langle a,b,c|abab^{-1}cc\rangle$$

$$\approx \langle a,b,c,d|abd^{-1}c,d^{-1}c^{-1}ba^{-1}\rangle \qquad \qquad \text{(cortar por }d)$$

$$\approx \langle a,b,d|a,b,d^{-1}ba^{-1}d^{-1}\rangle \qquad \qquad \text{(pegar por }c)$$

$$\approx \langle a,b,d,e|deb^{-1},abea^{-1}d^{-1}\rangle \qquad \qquad \text{(cortar por }e\text{ y reflejar)}$$

$$\approx \langle adeea^{-1}d^{-1}\rangle \qquad \qquad \text{(pegar por }b)$$

$$\approx \langle a,d,e|a^{-1}d^{-1}adee\rangle \qquad \qquad \text{(rotar)}$$

Esta última es, tal como queríamos, una representación de $\mathbb{T}^2 \# \mathbb{P}^2$.

Podemos ahora enunciar y demostrar nuestro teorema. Diremos que dos aristas identificadas de una representación poligonal son **complementarias** si aparecen tanto en la forma a como en la de a^{-1} , y diremos que son **torcidas** si aparecen como a, \ldots, a o como $a^{-1}, \ldots a^{-1}$. ((Quizás esto interrumpe un poco el discurso. Ponerlo en la demo mejor?))

Teorema 3.3.4 (Clasificación de Superficies Compactas). Toda superficie compacta y conexa no vacía es homeomorfa a alguna de las siguientes superficies:

- (a) La esfera \mathbb{S}^2 .
- (b) Una suma conexa $\mathbb{T}^2\#\dots\#\mathbb{T}^2$ de copias del toro.
- (c) Una suma conexa $\mathbb{P}^2 \# \dots \# \mathbb{P}^2$ de copias del plano proyectivo.

A estas superficies las llamamos superficies estándar.

Demostración. Sea M una superficie junto con una representación poligonal suya, que existe por la Proposición 3.3.1. Probaremos el teorema haciendo transformaciones elementales sobre esta representación hasta llegar a una de las estándar.

PASO 2: O bien M es homeomorfa a la esfera, o bien M admite una presentación en la cual no hay pares complementarios adyacentes. Podemos ir eliminando los pares complementarios adyacentes

haciendo sucesivos pegados. O bien los eliminamos todos, o bien nos queda $\langle a \mid aa^{-1} \rangle$, lo que implica que M es homeomorfa a la esfera.

PASO 3: M admite una representación en la que todos los pares torcidos son adyacentes. Si en la representación de M hay un par torcido no adyacente, podemos transformar la representación con rotaciones hasta una de la forma VaWa, donde V y W son palabras no vacías. Guiándonos por la Figura 3.17 podemos ahora efectuar sobre VaWa sucesivas transformaciones (cortar a lo largo de b, reflejar, pegar a lo largo de a) hasta llegar a la representación $VW^{-1}bb$, donde W^{-1} denota la reflexión de W. Hemos por tanto sustituido el par torcido a, a por el par torcido b, b, que es adyacente. Al hacer esta operación no hemos separado pares adyacentes. Se pueden haber creado nuevos pares torcidos al reflejar W, pero hemos reducido el número total de pares no adyacentes en al menos una unidad. Por tanto, al cabo de un número finito de pasos, no hay más pares torcidos no adyacentes. Si se han creado nuevos pares adyacentes complementarios, repetimos el Paso 2, que no aumenta el número de pares no adyacentes.

PASO 4: M admite una representación en la que todos los vértices se identifican en un único punto. Sea v una clase de vértices. Si existe otra clase de vértices que no se identifican con v, entonces existirá una arista que una v y la otra clase de vértices. Etiquetémoslos por a y w respectivamente, tal como se muestra en la Figura 3.18. La otra arista que junta con a en su vértice v no puede estar identificado con a, pues si fuese su complementario, lo habríamos eliminado en el Paso 2, y si formase con a un par torcido, entonces la aplicación cociente identificaría también los otros dos vértices de cada a, y estamos asumiendo lo contrario. Por lo tanto llamamos a esta otra arista b, y a su otro vértice x, el cual puede estar identificado con v, con w o con ninguno de los dos.

En algún lugar de la representación poligonal hay una arista que se identifica con b, de la forma b o b^{-1} . Supongamos que aparece en la forma b^{-1} (el otro caso implica como diferencia sólo una reflexión, que indicaremos cuándo ha de hacerse). Podemos escribir la representación como $baXb^{-1}Y$, donde X e Y son palabras desconocidas y al menos una es no vacía. Ahora, cortando a lo largo de c y pegando a lo largo de b (efectuando aquí la reflexión necesaria si la arista aparecía como b) como se muestra en la Figura 3.19, llegamos a una representación en la cual el número de vértices con etiqueta v ha disminuído, mientras que en cambio el número de vértices con la etiqueta v ha aumentado. Si se han introducido nuevos pares complementarios adyacentes, volvemos a aplicar el Paso v0 de nuevo para quitarlos. Esta operación puede hacer disminuir los vértices etiquetados por v1 (por ejemplo por la operación de plegado) pero nunca aumentarlos. Repitiendo la secuencia un número finito de veces, podemos finalmente eliminar totalmente la clase de vértices v1. Iterando el proceso podemos quedarnos finalmente con una sola clase de vértices.

PASO 5: Si la presentación tiene un par complementario a, a^{-1} , entonces tiene otro par complementario b, b^{-1} que aparece intercalado con el primero, en la forma $a, \ldots, b, \ldots, a^{-1}, \ldots, b^{-1}$. Si no es así, entonces la presentación es de la forma $aXa^{-1}Y$, donde X e Y contienen sólo pares complementarios o pares torcidos adyacentes. ((???)) Por lo tanto cada arista en X se identifica con otra arista en X, y lo mismo pasa en Y. Esto implica que los vértices finales de a y a^{-1} , que tocan únicamente X, se identifican por tanto sólo con vértices de X, y que los vértices iniciales de a y a^{-1} se identifican sólo con vértices de Y. Esto es una contradicción, puesto que todos los vértices se identifican unos con otros por el Paso 4.

PASO 6: M admite una presentación en la que todos los pares complementarios intercalados aparecen juntos con ninguna otra arista entre ellos: $aba^{-1}b^{-1}$. Si la representación poligonal está formada a partir de la palabra $WaXbYa^{-1}Zb^{-1}$, hacemos, como en la figura ??, las siguientes transformaciones: cortamos a lo largo de c, pegamos por a, cortamos a lo largo de d, y pegamos finalmente por b. Obtenemos así la palabra $cdc^{-1}d^{-1}WZYX$, sustituyendo por tanto los dos pares adyacentes por un nuevo par intercalado $cdc^{-1}d^{-1}$, sin separar otras aristas que previamente eran adyacentes ((y sin crear nuevos pares torcidos)). Por lo tanto, repitiendo el proceso un número de veces se obtiene el

Figura 3.17: Haciendo que los pares torcidos sean adyacentes.

Figura 3.18: Reduciendo el número de vértices equivalentes a v.

resultado.

PASO 7: M es homeomorfa a la suma conexa de uno o más toros o a la suma conexa de uno o más planos proyectivos. Este es el paso que finaliza la demostración. Recapitulando lo hecho en los pasos anteriores, tenemos una representación de M (que llamaremos representación estándar) en la cual todos los pares torcidos aparecen uno junto al otro y todos los pares complementarios aparecen intercalados en grupos de dos, en la forma $aba^{-1}b^{-1}$. Por tanto esta es la representación de una suma conexa de toros (representados por los bloques $aba^{-1}b^{-1}$) y de planos proyectivos (representados por los cc). Si sólo aparecen o bien toros o bien planos proyectivos, hemos terminado. Nos queda el caso en el que aparecen tanto pares torcidos como pares complementarios. Si es así, algún par complementario aparece junto a un par torcido, es decir por la palabra $aba^{-1}b^{-1}ccX$ o $ccaba^{-1}b^{-1}X$. En los dos casos, tenemos la suma conexa de un toro, un plano proyectivo, y lo que represente la palabra X. Pero por el Lema 3.3.3, $\mathbb{T}^2\#\mathbb{P}^2=\mathbb{P}^2\#\mathbb{P}^2$, por lo que podemos eliminar un toro de la suma conexa. Iterando un número finito de veces, eliminamos todas las apariciones de los bloques de pares complementarios, es decir, de los \mathbb{T}^2 , completando así la demostración.

Figura 3.19: Poniendo los pares complementarios juntos.

3.4. Teorema de clasificación de superficies con borde

Podemos dar ahora una clasificación de las superficies con borde, que nos servirá para comparar resultados con la prueba ZIP, donde se da directamente una clasificación de las superficies con borde. Empecemos viendo una definición:

Definición 3.4.1. Sea S una superficie (con o sin borde). Sea $p \in \text{Int}(S)$ y U un entorno abierto de p en S. Sea $\phi: U \to \mathbb{R}^n$ un homeomorfismo tal que $\phi(p) = 0$. Sea $B = \phi^{-1}(B_1(0))$. Decimos que la nueva superficie con borde $S^o = S \setminus B$ es S **1-perforada**, y a $\partial B \subset S^o$ la llamamos **perforación**. Podemos repetir el proceso sobre S^o sucesivamente, obteniendo S n-perforada con un número finito $n \in \mathbb{N}$ de perforaciones.

Vimos, en el ejemplo Ejemplo 1.2.5 que un toro con dos perforaciones es una superficie con borde. Veamos una propiedad muy interesante:

Proposición 3.4.2. Toda superficie con borde compacta es homeomorfa a una superficie compacta con perforaciones.

Demostración. Sea M una superficie compacta. Vamos a demostrar que el borde ∂M es homeomorfo a una unión disjunta de circunferencias \mathbb{S}^1 . Por el Corolario 1.2.4 se tiene que ∂M es una 1-variedad. Salvo homeomorfismo, las 1-variedades conexas son \mathbb{R} y \mathbb{S}^1 . Por ser ∂M un subconjunto cerrado de un compacto, es también compacto, y por tanto se tiene que cada componente conexa de ∂M es homeomorfa a \mathbb{S}^1 .

Por otro lado, vamos a ver que pegando discos a las componentes de ∂M se obtiene una superficie sin borde. Sean $S = \coprod_i \overline{\mathbb{B}}_i^2$ y $f: \partial S = \coprod_i \mathbb{S}^1 \to \partial M$ un homeomorfismo. Considerando f como una función de ∂S en M, definimos la relación de equivalencia \sim en la unión disjunta $M \coprod S$ generada por $a \sim f(a)$, y denotamos el espacio cociente resultante por $M^* = (M \coprod S)/\sim$. Tenemos que ver que M^* es IIAN, Haussdorf y localmente homeomorfo a un espacio euclídeo de dimensión 2. Empecemos con esto último.

Sea $q:M \amalg S \to M^*$ la aplicación cociente, y sea $B=q(\partial M \cup \partial S)$. Notamos que Int $M \amalg II$ Int S es un abierto saturado de $M \amalg S$, por lo que podemos restringir q a una aplicación cociente que va de Int $M \amalg II$ Int S en $M^* \setminus B$. Dado que esta restricción es inyectiva, es un homeomorfismo, y por tanto $M^* \setminus B$ es localmente homeomorfo a un espacio euclídeo de dimensión 2. Por tanto nos queda considerar los puntos en B, pero esto lo tenemos por un argumento análogo al que usamos en la demostración de Proposición 3.1.6.

Por otro lado, el espacio cociente M^* es IIAN por la proposición ??. Para probar que es Haussdorf, hay que ver que las fibras de q se pueden separar por abiertos saturados. Pero esto siempre es posible escogiendo bolas coordenadas suficientemente pequeñas. Así pues, M^* es una superficie.

Dada una superficie con borde compacta M, denotaremos por M^* la superficie compacta sin borde obtenida mediante el proceso anterior, que llamaremos pegar un disco cerrado a cada componente conexa de ∂M . Si en cambio empezamos por una superficie compacta sin borde M^* y construimos una superficie con borde haciendo perforaciones, ¿Van a ser homeomorfas las superficies resultantes de hacer las perforaciones en lugares distintos? La respuesta es afirmativa, pero antes necesitamos ver la siguiente proposición:

Proposición 3.4.3. Toda superficie con borde compacta admite una representación poligonal.

Demostraci'on. Sea M una superficie con borde compacta. Sabemos que M es triangulable por el poliedro de un complejo simplicial en el cual hay dos clases de 1-símplices: los 1-símplices cuyo

Figura 3.20: Subdivisión baricéntrica de un 2-símplice que tiene dos aristas en ∂M .

interior se corresponde a puntos interiores y los 1-símplices que se corresponden a componentes del borde de M.

Podemos suponer que la triangulación satisface que ningún 1-símplice tiene los dos vértices contenidos en el borde a menos que esté contenido completamente en el borde, y un 2-símplice no tiene más de una arista en el borde. Si no fuese así, pordemos conseguir esta condición subdividiendo cada arista en dos y cada 2-símplice en seis 2-símplices mediante lo que llamamos subdivisión baricéntrica, representada en la Figura 3.20. Subdividiendo más veces si es necesario, llegamos a una triangulación que satisface la siguiente condición más fuerte: Si P_i y P_j son dos 2-símplices tal que cada uno tiene una arista contenida en el borde de M, entonces, o bien P_i y P_j son disjuntos, o bien tienen un vértice en común v, que es un vértice del borde de M.

Denotemos por B_1, \ldots, B_k las componentes de ∂M . Si P es un 2-símplice que encuentra a B_i en algún punto suyo, entonces P tiene exáctamente dos aristas que tienen un vértice en B_i pero que no están contenidos en B_i . Similarmente, si σ es un 1-símplice que tiene un vértice en B_i pero que no yace sobre B_i , entonces σ es una arista de dos 2-símplices que encuentran a B_i . Podemos por tanto ordenar los 2-símplices que encuentran B_i y los 1-símplices que son aristas suyas pero que no yacen sobre B_i de la siguiente manera:

$$P_1, e_1, P_2, e_2, \dots, P_n, e_n, P_{n+1} = P_1$$

donde cada e_j es una arista de P_j y P_{j+1} , y donde cada 2-símplice P_k tiene por tanto como aristas a e_{k-1} y e_k . ((Habría que demostrar que es única;?)) Para cada componente B_i podemos escribir de esa forma un ciclo de 2-símplices y aristas, que es único. Para cada componente del borde B_i , la unión de los 2-símplices de su ciclo asociado $\mathcal{P}_i = \bigcup_j P_j$ es homeomorfa a una región poligonal con una perforación. La Figura 3.21 muestra un ejemplo cuando n = ??????. Sean $P'_1, \dots P'_l$ los 2-símplices de la triangulación de M que no pertenecen a ninguna de las \mathcal{P}_i , y llamamos

$$\mathcal{P} = \left(\bigcup_{i=1}^k \mathcal{P}_i\right) \cup \left(\bigcup_{j=1}^l P'_j\right).$$

Ahora sólo falta aplicar sobre \mathcal{P} el resto de la demostración de la Proposición 3.3.1.

Ejemplo 3.4.4. Veamos las representaciones estándar de las superficies fundamentales perforadas. Para ello, hacemos un corte c_i desde un mismo vértice a cada perforación asociada a la componente

Figura 3.21: Triangulación cerca de una componente del borde de M.

 B_i , de forma que estos no se solapen con las perforaciones. En la Figura 3.22 podemos ver un ejemplo de la representación estándar de la suma conexa de dos toros con dos perforaciones.

(a) Esfera con k perforaciones.

$$\langle a, c_1, \dots, c_k, B_1, \dots, B_k \mid aa^{-1}c_1B_1c_1^{-1}\dots c_kB_kc_k^{-1} \rangle$$

(b) Suma conexa de n toros con k perforaciones.

$$\langle a_1, \dots, a_n, b_1, \dots, b_n, c_1, \dots, c_k, B_1, \dots, B_k \mid a_1b_1a_1^{-1}b_1^{-1}\dots a_nb_na_n^{-1}b_n^{-1}c_1B_1c_1^{-1}\dots c_kB_kc_k^{-1} \rangle$$

(c) Suma conexa de n planos proyectivos con k perforaciones.

$$\langle a_1, \dots, a_n, c_1, \dots, c_k, B_1, \dots, B_k \mid a_1 a_1 \dots a_n a_n c_1 B_1 c_1^{-1} \dots c_k B_k c_k^{-1} \rangle$$

Teorema 3.4.5 (Clasificación de superficies con borde compactas). Sean M_1 y M_2 superficies con borde compactas tales que ∂M_1 y ∂M_2 tienen el mismo número de componentes. Entonces M_1 y M_2 son homeomorfas si y solo si las superficies M_1^* y M_2^* son homeomorfas.

Demostración. Probaremos el teorema demostrando que M_1 y M_2 son homeomorfas a una misma representación estándar de las del ejemplo anterior. Sea M una superficie con borde compacta, y sea una representación suya como la de la Proposición 3.4.3. El teorema se prueba aplicando los siete pasos de la demostración del Teorema de Clasificación de Superficies Compactas a esta representación poligonal, teniendo en cuenta que las operaciones de cortar y pegar que aparecen sucesivamente se hagan evitando las perforaciones. Así podemos asegurar que durante el proceso el número de perforaciones no cambia. Como resultado, obtenemos una de las tres representaciones estándar de las superficies sin borde, con k perforaciones en su interior. Para completar la prueba, hacemos los cortes c_1, \ldots, c_k desde el vértice inicial de la representación poligonal a cada una de las perforaciones B_1, \ldots, B_k , de forma inductiva y sin que se solapen, obteniendo uno de los polígonos estándar del ejemplo anterior.

Figura 3.22: La superficie $\mathbb{T}^2\#\mathbb{T}^2$ con dos perforaciones.

Capítulo 4

La prueba ZIP de Conway

4.1. Cremalleras

Conway utiliza las cremalleras (zips en inglés) para describir cómo actúan las identificaciones topológicas. Cada cremallera actúa sobre una o dos perforaciones de una superficie. Están formadas por dos zips (dos partes dentadas) fijadas la/s perforación/es y un zipper (el deslizador). Al cerrar el zipper, las zips se juntan identificándose. Trato de dar una definición rigurosa:

Definición 4.1.1. Sea S una superficie con borde compacta. Una cremallera es una identificación entre dos subconjuntos cerrados del borde de S. A este par lo llamamos par-zip.

En la prueba ZIP, Conway nos explica gráficamente las posibles formas de unir cremalleras.

Definición 4.1.2. Sea S una superficie. Definimos cuatro formas elementales de identificar pares-zip en perforaciones de S perforada:

- 1. Cap: Los pares zip yacen cada uno sobre la mitad de una misma perforación con orientaciones opuestas (Figura 4.1a).
- 2. *Crosscap*: Los pares zip yacen cada uno sobre la mitad de una misma perforación con la misma orientación (Figura 4.1b).
- 3. *Handle*: Los pares zip yacen cada uno sobre una perforación distinta de S con orientaciones opuestas (Figura 4.1c).
- 4. *Crosshandle*: Los pares zip yacen cada uno sobre una perforación distinta de S con la misma orientación (Figura 4.1d).

Figura 4.1: Construcciones elementales con cremalleras.

Figura 4.2: Suma conexa de un toro y una esfera.

Proposición 4.1.3. Sean M, M' dos superficies conexas (con o sin borde) y sean $P = \langle S \mid W \rangle$ y $P' = \langle S' \mid W' \rangle$ sus respectivas representaciones poligonales de una sola cara. Se tiene entonces:

- (i) La suma conexa de una esfera y S es homeomorfa a S.
- (ii) Sea $|\mathcal{P}|$ la realización geométrica de P. Sea ∂B una perforación sobre \mathbb{S}^2 , y sea ϕ un homeomorfismo entre las aristas de $|\mathcal{P}|$ y ∂B . Si identificamos ahora los pares de segmentos sobre ∂B de la imagen de ϕ , obtenemos la misma superficie S.
- (iii) Con una construcción análoga a la del apartado anterior, si hacemos una perforación sobre una superficie S' con el borde con etiquetas asociadas a una representación poligonal de S, al identifacarlas obtenemos la suma conexa S#S'.

Demostración. Sea la suma conexa de \mathbb{S}^2 y M, cuya representación poligonal viene dada por $\langle a, S \mid aa^{-1}W \rangle$. Plegando por a se obtiene (i).

Para demostrar (ii), sea $\langle a, c, S \mid aa^{-1}cWc^{-1} \rangle$ la representación poligonal de la esfera con una perforación asociada a M. Si plegamos por a, rotamos, y volvemos a plegar por c obtenemos la palabra $\langle S \mid W \rangle$ que es la representación poligonal de M.

Finalmente para (iii), sea $\langle S, S', B, c \mid W'cWc^{-1} \rangle$, que es la representación de M' con una perforación asociada a M. Desplegando por a se tiene

$$\langle S, S', a, B, c \mid W'aa^{-1}cWc^{-1} \rangle$$

que es la suma conexa de M' y \mathbb{S}^2 con una perforación asociada a M. Por (ii), esto es equivalente a la suma conexa de M' y M.

Proposición 4.1.4. (a) La esfera con un handle es homeomorfa al toro \mathbb{T}^2 .

(b) La esfera con un crosshandle es homeomorfa a la botella de Klein K.

Demostración. Sea la representación de la esfera con un par-zip asociado al handle (ver??)

$$\langle a, c_1, c_2, z \mid aa^{-1}c_1^{-1}zc_1c_2^{-1}z^{-1}c_1 \rangle.$$

Doblamos por a y nos queda

$$\langle c_1, c_2, z \mid c_1^{-1} z c_1 c_2^{-1} z^{-1} c_2 \rangle$$

y podemos finalmente rectiquetar $e = c_2 c_1^{-1}$ para obtener la representación de \mathbb{T}^2

$$\langle e, z \mid eze^{-1}z^{-1} \rangle$$

Figura 4.3: Suma conexa de una superficie y un toro visto como pegar un asa.

Similarmente, para demostrar (b), sea la representación de la esfera con un par-zip asociado al crosshandle (ver ??)

$$\langle a, c_1, c_2, z \mid aa^{-1}c_1^{-1}zc_1c_2^{-1}zc_1 \rangle.$$

Doblamos por a y nos queda

$$\langle c_1, c_2, z \mid c_1^{-1} z c_1 c_2^{-1} z c_2 \rangle$$

y reetiquetando $e = c_2 c_1^{-1}$, obtenemos finalmente la representación de la botella de Klein

$$\langle e, z \mid eze^{-1}z \rangle$$

Corolario 4.1.5. Sea S una superficie. Los siguientes espacios son homeomorfos:

- a) S con un cap y S.
- b) S con un crosscap y $S \# \mathbb{P}^2$.
- c) S con un handle y $S \# \mathbb{T}^2$.
- d) S con un crosshandle y S # K (siendo K la botella de Klein).

4.2. Teorema de Clasificación

Definición 4.2.1. Una superficie con borde se dice ordinaria si es homeomorfa a una colección finita de esferas cada una con un número finito de *handles*, *crosshandles*, *crosscaps* y perforaciones.

Lema 4.2.2. Sea S una superficie con borde con un par-zip tal que cada cremallera está en una componente conexa de su borde. Entonces, si S es ordinaria antes de identificar las cremalleras, es ordinaria también después.

Demostraci'on. Consideramos el caso en que las dos cremalleras ocupan cada una una perforaci\'on en su totalidad. Entonces al identificarlas se tiene un handle (Figura 4.1c) o un crosshandle (Figura 4.1d), dependiendo de sus respectivas orientaciones. Si las dos perforaciones pertenecen a componentes conexas de S distintas, entonces identificando obtenemos la suma conexa de las dos componentes. Consideramos ahora el caso en el que las dos cremalleras yacen sobre la misma perforación y la cubren totalmente. Identificándolas nos da o bien un cap (Figura 4.1a) o bien un crosscap (Figura 4.1b), dependiendo de sus respectivas orientaciones.

Finalmente, consideramos los varios casos en que las cremalleras no ocupan perforaciones en su totalidad. Para empezar, supongamos que la superficie ordinaria de la que partimos es una esfera. Tenemos varios casos:

(1) Una perforación con un par-zip y dos componentes conexas distintas del borde. Tenemos dos posibilidades dependiendo de la orientación de las cremalleras. En la primera

$$\langle a, z, B_1, B_2, c \mid aa^{-1}c^{-1}zB_2z^{-1}B_1c \rangle$$

$$\approx \langle z, B_1, B_2, c \mid c^{-1}zB_2z^{-1}B_1c \rangle \qquad \text{(doblar por } a\text{)}$$

$$\approx \langle z, B_1, B_2 \mid zB_2z^{-1}B_1 \rangle \qquad \text{(doblar por } c\text{)}$$

que es una representación del cilindro, es decir, una esfera con dos perforaciones, y por tanto una superficie ordinaria. Cambiando la aparición de z^{-1} por la de z, obtenemos mediante un proceso análogo al anterior la representación

$$\langle z, B_1, B_2 \mid zB_2zB_1 \rangle$$

que es la representación de un crosscap con dos perforaciones, es decir, una superficie ordinaria.

(2) Una perforación con un par-zip y una componente conexa del borde. Como antes, dependiendo de la orientación podemos partir de

$$\begin{split} \langle a,z,B,c \mid aa^{-1}c^{-1}zBz^{-1}c\rangle \\ &\approx \langle z,B,c \mid c^{-1}zBz^{-1}c\rangle & \text{(doblar por } a) \\ &\approx \langle z,B \mid zBz^{-1}\rangle & \text{(doblar por } c) \end{split}$$

que es una representación de una esfera perforada. Cambiando la aparición de z^{-1} por z, llegamos a la representación

$$\langle z, B, | zBz \rangle$$

que es una representación de \mathbb{P}^2 perforado, es decir, un crosscap con una perforación, y por lo tanto una superficie ordinaria.

(3) Dos perforaciones con un par-zip y dos componentes conexas dististas del borde. Por un lado

$$\langle a, z, B_1, B_2, c_1, c_2 \mid aa^{-1}c_2^{-1}zB_2c_2c_1z^{-1}B_1c_1 \rangle$$

$$\approx \langle z, B_1, B_2, c_1, c_2 \mid c_2^{-1}B_2zc_2c_1^{-1}z^{-1}B_1c_1 \rangle \qquad \text{(doblar por } a)$$

$$\approx \langle e, z, B_1, B_2 \mid eB_2zze^{-1}z^{-1}B_1 \rangle \qquad \text{(rotar y consolidar } e = c_1c_2^{-1})$$

que es la representación de un toro con dos perforaciones. De la misma forma, cambiando la orientación de la aparición de z^{-1} llegamos a

$$\langle e, z, B_1, B_2 | eB_2 z e^{-1} z B_1 \rangle$$

que es la botella de Klein con dos perforaciones, lo que es lo mismo, una esfera con crosshandle y dos perforaciones, es decir, una superficie ordinaria.

(4) Dos perforaciones con un par-zip y una componente conexa distinta del borde. Empezando con la representación

$$\langle a, z, B, c_1, c_2 \mid aa^{-1}c_2^{-1}Bzc_2c_1^{-1}z^{-1}c_1 \rangle$$

$$\approx \langle z, B, c_1, c_2 \mid c_2^{-1}Bzc_2c_1^{-1}z^{-1}c_1 \rangle \qquad \text{(doblar por } a)$$

$$\approx \langle e, z, B \mid eBze^{-1}z^{-1} \rangle \qquad \text{(rotar y consolidar } e = c_1c_2^{-1})$$

que es una representación de \mathbb{T}^2 con una perforación, o lo que es lo mismo, una esfera con un handle y una perforación, es decir, una superficie ordinaria. De la misma forma, cambiando z^{-1} por z obtenemos

$$\langle e, z, B \mid eBze^{-1}z \rangle$$

que es la representación de la botella de Klein con una perforación, es decir, una esfera con un crosshandle y una perforación, y por tanto una superficie ordinaria.

Por tanto, aplicando la demostración de la Proposición 4.1.3 (iii), demostramos los cuatro puntos anteriores para cremalleras sobre superficies arbitrarias, por lo que queda entonces demostrada la proposición.

Teorema 4.2.3 (Teorema de clasificación, versión preeliminar). Toda superficie compacta es ordinaria.

Demostración. Sea S una superficie compacta. Sabemos, por el Teorema de Radó, que S está triangulada por un poliedro |K| asociado a un complejo simplicial K tal que cada 1-símplice que contiene puntos interiores de S es una cara de exáctamente dos 2-símplices, y cada 1-símplice que contiene puntos del borde de S es cara de exáctamente un 2-símplice. Si sobre los primeros 1-símplices ponemos una cremallera distinta, en los 2-símplices habrá algunos 1-símplices que se identifiquen. Llamemos $K_2 = \{\sigma_1, \ldots, \sigma_j\}$, donde cada σ_i es un 2-símplice para todo $i = 1 \ldots, j$. K_2 es una superficie ordinaria, pues cada σ_i es homeomorfo a una esfera perforada. Si identificamos ahora las cremalleras una a una, por el Lema 4.2.2 y por inducción, la superficie resultante es ordinaria.

Lema 4.2.4. Un crosshandle es homeomorfo a dos crosscaps.

Demostración. Por la Proposición 4.1.4, la esfera con un crosshandle es homeomorfa a una botella de klein. Por la Lema 3.3.2, la botella de Klein es homeomorfa a la suma conexa $\mathbb{P}^2 \# \mathbb{P}^2$, o lo que es lo mismo, dos crosscaps.

Lema 4.2.5. Handles y crosshandles son equivalentes en la presencia de crosscaps.

Demostración. Sea una esfera con un par-zip asociado a un handle y otro asociado a un crosscap. Sabemos que, identificando las cremalleras obtenemos un espacio homeomorfo a la suma conexa $\mathbb{T}^2\#\mathbb{P}^2$. Pero por la Lema 3.3.3, este espacio es homeomorfo a $\mathbb{P}^2\#\mathbb{P}^2\#\mathbb{P}^2$, que a su vez, es homeomorfo al plano proyectivo con un crosshandle, que a su vez es homeomorfo a una esfera con un crosshandle y un crosscap.

Teorema 4.2.6 (Clasificación de superficies). Toda superficie compacta es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps.

Demostración. Por la versión preeliminar del teorema de clasificación, una superficie compacta es homeomorfa a una esfera con handles, crosshandles y crosscaps.

- Caso 1: Al menos hay un crosshandle en nuestra superficie. Por el Lema 4.2.4, cada crosshandle es homeomorfo a dos crosscaps, por lo que la superficie es homeomorfa a una esfera con solamente crosscaps y handles. Como al menos hay un crosscap, cada handle es homeomorfo a un crosshandle (Lema 4.2.5), que es a us vez homeomorfo a dos crosscaps (Lema 4.2.4 de nuevo), quedando una esfera sólo con crosscaps.
- Caso 2: No hay ni crosshandles ni crosscap en la superficie. La superficie es entonces homeomorfa a una esfera sólo con handles.

Capítulo 5

Teorema de Clasificación, segunda parte

Vamos a empezar recordando brevemente las presentaciones de grupos.

Definición 5.0.1. Sea S un conjunto, y $R \subset F(S)$, donde F(S) es el grupo libre en S. Llamamos **presentación de un grupo** al par $\langle S \mid R \rangle$. A los elementos de S los llamamos **generadores**, y a los de R **relaciones**. La presentación de un grupo determina un grupo, que también denotamos por $\langle S \mid R \rangle$, y que viene dado por el siguiente grupo cociente:

$$\langle S \mid R \rangle = F(S)/\overline{R}$$

donde \overline{R} representa la intersección de todos los subgrupos normales de F(S) que contienen a R.

Cada relación $r \in R$ determina un producto de potencias de generadores que vale 1 en el cociente.

Definición 5.0.2. Sea ahora un grupo arbitrario G. Decimos que una presentación de un grupo $\langle S \mid R \rangle$ es una **presentación de G** si existe un isomorfismo $\langle S \mid R \rangle \cong G$.

Los elementos de G claramente generan G, y por la propiedad característica de los grupos libres, la aplicación identidad de G en sí mismo se extiende a un homomorfismo único $\Phi: F(G) \to G$. Si ponemos $R = \operatorname{Ker} \Phi$, entonces, por el primer teorema de isomorfía tenemos que $G \cong F(G)/R$. Como R es normal, $R = \overline{R}$, y por tanto G tiene como presentación $\langle G \mid R \rangle$. Esta presentación trivial es muy ineficiente, pues normalmente F(G) y R son más grandes que G. Si G admite una presentación $\langle S \mid R \rangle$ en las cuales S y R son conjuntos finitos, decimos que G tiene una presentación finita.

5.0.1. Grupos fundamentales de las Superficies Compactas

Teorema 5.0.3. Sea M una superficie con una presentación suya de una cara $\langle a_1, \ldots, a_n \mid W \rangle$. Entonces una presentación del grupo fundamental $\pi_1(M)$ viene dada por $\langle a_1, \ldots, a_n \mid W \rangle$.

Corolario 5.0.4. Los grupos fundamentales de las superficies compactas estándar tienen como presentación:

(a) $\pi_1(\mathbb{S}^2) \cong \langle \emptyset \mid \emptyset \rangle$ (el grupo trivial).

(b)
$$\pi_1(\mathbb{T}^2 \# \dots \mathbb{T}^2) \cong \langle \beta_1, \gamma_1, \dots, \beta_n, \gamma_n \mid \beta_1 \gamma_1 \beta_1^{-1} \gamma_1^{-1} \dots \beta_n \gamma_n \beta_n^{-1} \gamma_n^{-1} \rangle$$
.

(c)
$$\pi_1(\mathbb{P}^2 \# \dots \# \mathbb{P}^2) \cong \langle \beta_1, \dots, \beta_n \mid \beta_1^2 \dots \beta_n^2 \rangle$$
.

Definición 5.0.5. Dado un grupo G, el **subgrupo conmutador de** G, denotado por [G, G], es el subgrupo de G generado por todos los elementos de la forma $\alpha\beta\alpha^{-1}\beta^{-1}$, para $\alpha\beta\in G$. Al grupo cociente Ab (G)=G/[G,G] lo llamamos el **abelianizado de** G.

Como el isomorfismo $F: G_1 \to G_2$ lleva el subgrupo conmutador de G_1 al de G_2 , entonces grupos isomorfos tienen abelianizados isomorfos.

Proposición 5.0.6. Los grupos fundamentales de las superficies estándar tienen los siguientes abelianizados:

- Ab $(\pi_1(\mathbb{S}^2)) = \{1\}.$
- Ab $(\pi_1(\mathbb{T}^2 \# \dots \# \mathbb{T}^2)) \cong \mathbb{Z}^{2n}$.
- $\bullet \text{ Ab } (\pi_1(\mathbb{P}^2 \# \dots \# \mathbb{P}^2)) \cong \mathbb{Z}^{n-1} \times \mathbb{Z}/2.$

Teorema 5.0.7 (Teorema de Clasificación, segunda parte). Toda superficie compacta es homeomorfa a exáctamente una de las superficies estándar.

Teorema 5.0.8. Para $n \geq 2$, \mathbb{S}^n es simplemente conexa.

Lema 5.0.9. Si un grupo abeliano G tiene una base finita, entonces toda base finita tiene el mismo número de elementos.

Definición 5.0.10. Si G es un grupo abeliano libre con una base finita, decimos que G tiene rango finito, y decimos que G es de rango n si n es el número de elementos de cualquier base.

Definición 5.0.11. Sea G un grupo abeliano. Decimos que un elemento suyo $g \in G$ es un elemento de torsión si ng = 0 para algún $n \in \mathbb{Z} \setminus \{0\}$. Dado que si ng = n'g' = 0, entonces nn'(g + g') = 0, y por lo tanto el conjunto de todos los elementos de torsión de G es un subgrupo suyo, denotado por G_{tor} . Decimos que G es un grupo sin torsión si el único elemento de torsión es el G.

Apéndice A

Algunos teoremas de topología importantes

A.1. Cocientes topológicos

Empecemos recordando las nociones básicas de cocientes topológicos.

Definición A.1.1. Sea X un espacio topológico e Y un conjunto. Sea $f: X \to Y$ una aplicación sobreyectiva. Definimos la **topología cociente** sobre Y inducida por f de la siguiente manera: $V \subseteq Y$ es abierto si Y solo si Y es abierto en Y.

Definición A.1.2. Si X e Y son espacios topológicos, decimos que $q: X \to Y$ es una **aplicación cociente** o **identificación** si es sobreyectiva e Y tiene la topología cociente inducida por q.

Se deduce de la definición que una aplicación cociente es siempre continua.

Sea ahora X un espacio topológico y \sim una relación de equivalencia en X. Si X/\sim es el conjunto de las clases de equivalencia, sea $q:X\to X/\sim$ la aplicación que lleva cada $x\in X$ a su clase de equivalencia. Entonces decimos que X/\sim junto con la topología cociente inducida por q es un **espacio cociente** de X por la relación de equivalencia \sim .

Estudiemos ahora condiciones bajo las cuales una aplicación entre dos espacios topológicos es una aplicación cociente.

Sean X e Y espacios topológicos y sea $q:X\to Y$ una aplicación. Si $y\in Y$ decimos que un subconjunto del tipo $q^{-1}(y)\subseteq X$ es una **fibra** de q. Un conjunto $U\subseteq X$ tal que existe un $V\subseteq Y$ con $U=q^{-1}(V)$ decimos que es **saturado con respecto de q**.

Proposición A.1.3. Una aplicación $q: X \to Y$ continua y sobreyectiva es una aplicación cociente si y solo si lleva abiertos saturados a abiertos saturados.

Proposición A.1.4 (Propiedades de las aplicaciones cociente). Se tienen las siguientes propiedades:

- La composición de aplicaciones cociente es una aplicación cociente.
- Una aplicación cociente sobreyectiva es un homeomorfismo.
- Si $q: X \to Y$ es una aplicación cociente y $U \subseteq X$ es un abierto (o cerrado) saturado, entonces la restricción $q|_U: U \to q(U)$ es una aplicación cociente.

Proposición A.1.5. Si $q:X\to Y$ es una aplicación continua, sobreyectiva y abierta o cerrada, entonces es una aplicación cociente.

Teorema A.1.6 (Lema de la aplicación cerrada). Sea F una aplicación continua de un espacio topológico compacto en un espacio topológico Hausdorff. Entonces:

- (a) F es una aplicación cerrada.
- (b) Si F es sobreyectiva, entonces es una aplicación cociente.
- (c) Si F es inyectiva, entonces es una inmersión topológica.
- (d) Si F es biyectiva, entonces es un homeomorfismo.

Teorema A.1.7 (Unicidad de espacios cociente). Supongamos $q_1: X \to Y_1$ y $q_2: X \to Y_2$ son aplicaciones cociente que hacen las mismas identificaciones, es decir, tales que $q_1(x) = q_1(x')$ si y solo si $q_2(x) = q_2(x')$. Entonces existe un único homeomorfismo $\phi: Y_1 \to Y_2$ tal que $\phi \circ q_1 = q_2$.

Proposición A.1.8 (Pasando al cociente). Supongamos que $q: X \to Y$ es una aplicación cociente, Z es un espacio topológico y $f: X \to Z$ es una aplicación continua tal que si q(x) = q(x'), entonces f(x) = f(x'). Entonces existe una única aplicación continua $\tilde{f}: Y \to Z$ tal que $f = \tilde{f} \circ q$.

Teorema A.1.9 (Lema de pegado). Sean A, B dos subconjuntos abiertos (o cerrados) de un espacio topológico X, tal que $X = A \cap B$, y sea Y otro espacio topológico. Si la restricción de $f: X \to Y$ a A y B es continua, entonces f es continua.

Apéndice B

CW-complejos

Utilizo la definición inductiva de CW-complejo dada por Hatcher [6] y algunas propiedades expuestas por Lee [1].

Definición B.0.1. Una *n-celda abierta* es un espacio topológico homeomorfo a la bola abierta unidad \mathbb{B}^n , y una *n-celda* cerrada es un espacio homeomorfo a $\overline{\mathbb{B}}^n$.

Toda bola abierta o cerrada en \mathbb{R}^n es claramente una n-celda. El siguiente teorema nos proporciona más ejemplos:

Proposición B.0.2. Si $D \subseteq \mathbb{R}^n$ es un conjunto compacto y convexo con interior no vacío, entonces D es una n-celda cerrada y su interior es una n-celda abierta. De hecho, dado $p \in \mathring{D}$, entonces existe un homeomorfismo $F : \overline{\mathbb{B}}^n \to D$ que envía 0 a p, $\overline{\mathbb{B}}^n$ a \mathring{D} , y \mathbb{S}^{n-1} a ∂D .

Demostración. Sea $p \in D$ un punto de su interior. Si reemplazamos D por su imagen mediante la traslación $x \mapsto x - p$, que es un homeomorfismo de \mathbb{R}^n en sí mismo, podemos asumir que $p = 0 \in \mathring{D}$. Entonces existe un $\varepsilon > 0$ tal que la bola $B_{\varepsilon}(0)$ está contenida en D. Usando la dilatación $x \mapsto x/\varepsilon$, podemos asumir que $\mathbb{B}^n = B_1(0) \subseteq D$. La clave de la demostración es la siguiente: cada semirecta cerrada empezando en el origen interseca ∂D en exactamente un punto. Sea R una semirecta así. Dado que D es compacto, su intersección con R es compacta. Por tanto existe un punto x_0 en su intersección tal que en él su distancia al origen asume el máximo. Es claro que pertenece a la frontera de D. Para ver que el punto es único, veamos que el segmento que une 0 y x_0 está formado enteramente por puntos interiores de D excepto por el x_0 mismo. Cualquier punto en este segmento distinto de x_0 se puede escribir de la forma λx_0 para $0 \le \lambda < 1$. Supongamos $z \in B_{1-\lambda}(\lambda x_0)$, y sea $y = (z - \lambda x_0)/(1-\lambda)$. Como $|z - \lambda x_0| < |1-\lambda|$ se tiene que |y| < 1, y por tanto $y \in B_1(0) \subseteq D$ (ver Figura B.1). Como $y \in B_1(\lambda x_0)$ está contenida en D, lo que implica que λx_0 es un punto interior. Definimos ahora la aplicación $f : \partial D \to \mathbb{S}^{n-1}$ por

$$f(x) = \frac{x}{|x|}$$

f(x) es el punto donde el segmento desde el origen hasta x interseca la esfera unidad. Como f es la restricción de una función continua, es continua, y por el parágrafo anterior es biyectiva. Dado que ∂D es compacta, f es un homeomorfismo por el teorema de la aplicación cerrada (Teorema A.1.6).

Figura B.1: Demostración de que sólo hay un punto de la frontera en la semirecta.

Finalmente definimos $F: \overline{\mathbb{S}}^n \to D$ por

$$F(x) = \begin{cases} |x|f^{-1}\left(\frac{x}{|x|}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

F es continua fuera del origen por serlo f^{-1} , y en el origen porque por ser f^{-1} acotada $F(x) \to 0$ cuando $x \to 0$. Geometricamente, F manda cada segmento radial que conecta 0 con un punto de \mathbb{S}^{n-1} al segmento radial desde 0 hasta el punto $f^{-1}(w) \in \partial D$. Por convexidad, F toma valores en D. La aplicación F es inyectiva, pues puntos de distintas semirectas van a parar a distintas semirectas, y cada segmento radial va linealmente a su imagen. Es sobreyectiva pues cada punto $y \in D$ está en una semirecta empezando en 0. Por el teorema de la aplicación cerrada, F es un homeomorfismo. \square

Esto nos muestra que un intervalo cerrado es una 1-celda cerrada, toda región poligonal es una 2-celda cerrada, y un tetraedro sólido es una 3-celda cerrada. Por convención, los conjuntos unitarios son 0-celdas abiertas y cerradas a la vez.

Observación B.0.3. Sea D una n-celda. Entonces D es una variedad con borde por serlo $\overline{\mathbb{B}}^n$. Denotamos por ∂D e Int D respectivamente a las imágenes de \mathbb{S}^{n-1} y \mathbb{B}^n por un homeomorfismo $F: \overline{\mathbb{B}}^n \to D$, tal que ∂D es homeomorfo a \mathbb{S}^{n-1} e Int D es una n-celda abierta.

Definición B.0.4. Un CW-complejo es un espacio topológico X construido de la siguiente manera:

- (1) Empezamos con un espacio discreto X^0 , cuyos puntos consideramos 0-celdas.
- (2) Inductivamente, formamos el n-esqueleto X^n a partir de X^{n-1} pegando una colección (que puede ser vacía) de n-celdas.
- (3) Definimos $X = \bigcup_n X^n$, y definimos la siguiente topología, que es coherente con la familia $\{X^n\}$: un conjunto $A \subset X$ es abierto (o cerrado) si y solo si $A \cap X^n$ es abierto (o cerrado) en X^n , para todo n.

Definición B.0.5. Si $X=X^n$ para algún n, entonces se dice que X es de dimensión finita, y decimos que la dimensión de X es n.

Proposición B.0.6. Sea X un CW-complejo con un conjunto numerable de celdas. Si X es localmente homeomorfo a un espacio euclídeo, entonces es una variedad.

Proposición B.0.7. Si M es una n-variedad no vacía y un CW-complejo, entonces n es también la dimensión de M como CW-complejo.

Bibliografía

- [1] J. M. Lee. *Introduction to Topological Manifolds*. Graduate text in mathematics, Springer Verlag New York, 2011.
- [2] V. Muñoz, J. J. Madrigal. Topología Algebráica. Sanz y Torres, 2015.
- [3] A. Hatcher. *The Kirby Torus Trick for Surfaces*, 2013. http://front.math.ucdavis.edu/1312.3518
- [4] T. Radó. Über den Begriff der Riemannschen Fläche, Acta Sci. Math. Szeged. 2 1925, 101–121.
- [5] J. R. Munkres. Elements of Agebraic Topology. Addison-Wesley, 1984.
- [6] A. Hatcher. Algebraic Topology. 2001. http://pi.math.cornell.edu/~hatcher/AT/ATpage.html
- [7] M. Dehn, P. Heegard. Analysis situs, Enzyklopädie der Math. Wiss. 1907, 153-220.
- [8] H. Seifert, W. Threlfall. A Textbook of Topology, 1era edición. Academic, New York. 1980.
- [9] W. S. Massey. Algebraic Topology, an introduction, Springer Verlag. 1970.
- [10] N. J. Wildberger. Algebraic Topolgy: A Begginer's Course. Lecture 19. http://www.wildegg.com/youtube-algebraic-topology.html