

Sumário (2	a parte)
◆ Processamen	to de cadeias de caracteres
Criptação	
	ão. Conceitos fundamentais
■ Cifra de	
■ Tabela d	le substituição
■ Cifra de	Vigenere
■ Cifra de	Vernam
Métodos	de permutação
■ Método	"RSA"
AA-Ano lectivo 2011/2012	Aula 4 - Processamento de cadeias de caracteres: Criptacão

Processamento de cadeias de caracteres — Criptação Definições Criptação: codificação da informação por forma a mantê-la secreta Criptografia: Desenvolvimento de técnicas de criptação Cripto-análise: Trabalho associado à tarefa de tentar descodificar a informação codificada (secreta) Cripto-sistema: conjunto de elementos que assegura um meio secreto de comunicação entre duas entidades AA-Ano lectivo 2011/2012 Aula 4 - Processamento de cadeias de caracteres: 5

Processamento de cadeias de caracteres - Criptação • Aplicações • Sistemas de comunicações militares e diplomáticas • Transferência de fundos entre bancos • Manutenção de ficheiros secretos por parte dos utilizadores,...

Aula 4 - Processamento de cadeias de caracteres:

AA-Ano lectivo 2011/2012

Criptação – Tabela	de substituição
	ginal é substituído por um outro na tabela de substituição
> Exemplo de uma tabela de	e substituição:
ABCDEFGHIJI	<pre>CLMNOPQRSTUVWXYZ</pre>
THE QUICK BR	OWNFXJMPDVRLAZYG
Ent	ão teremos para o exemplo:
Texto original:	E F A C I L
Cripto-texto:	UTIH BW
AA-Ano lectivo 2011/2012 Aula 4	- Processamento de cadeias de caracteres: 11 Criptação

Criptação – Tabela de substituição

 O elevadíssimo nº de hipóteses é enganador, no que se refere à segurança do método.

É relativamente fácil de descobrir a tabela de substituição tendo em conta aspectos como sejam:

 Frequência das letras inerente a qualquer linguagem

Por exemplo, o E é a letra mais frequente em Inglês, pelo que o cripto-analista assumirá, à partida, e possivelmente com sucesso, que a letra mais frequente no cripto-texto substituirá o E!

Combinação de letras

Por exemplo, em Inglês, certas combinações de 2 letras (como o QJ) nunca ocorrem, enquanto que outras (como ER) são muito comuns

AA-Ano lectivo 2011/2012

Aula 4 - Processamento de cadeias de caracteres:

13

Criptação - Cifra de Vigenere

- É uma extensão da Cifra de César. Em vez de se considerar um mesmo deslocamento (K) para todos os caracteres do texto original, teremos diferentes deslocamentos
- Isto consegue-se considerando uma pequena chave, em que cada caracter é usado para determinar o valor de k a usar em cada momento
- A chave será repetida as vezes necessárias para cobrir todos os caracteres do texto original

AA-Ano lectivo 2011/2012

Aula 4 - Processamento de cadeias de caracteres: Criptação 14

Criptação – C	ifra	3	de	٧	i <u>c</u>	je	ne	er	e					
> Exemplo:														
Texto original:	E		М	U	Ι	Т	0		F	A	C	Ι	L	
Chave:	A	В	D											
K	= 1 ,	, 2	, 4											
Codificação:	Е	E]M	U	I	T	0	Ē] F	Α	C	I		
	A		B D		_		- [-}-		_	- -	
Cripto-texto:	F		Q											
AA-Ano lectivo 2011/2012		Αι	ıla 4 - I	Proces		ento Cript		deias	de d	caract	eres:			15

Cri	ptação – Cifra de Vernam
>	É uma generalização do método Cifra de Vigenere , em que a chave é tão comprida quanto o texto a criptar.
>	Método totalmente seguro , visto que cada caracter da chave é usado apenas uma vez .
	Assim, o cripto-analista terá de tentar, para cada posição do cripto-texto, todos os caracteres do alfabeto!
	Isto corresponde a obter todas as mensagens possíveis com o comprimento do texto original!
A	A-Ano lectivo 2011/2012 Aula 4 - Processamento de cadeias de caracteres: 17 Criptação

Bit do Texto (T)	Bit da Chave (C)	Bit do Cripto-texto (Z
0	0	0
0	1	1
1	0	1
1	1	0
		Z = T ⊕ C
T ⊕ Z = C (1)		de descriptação (obtença ginal à custa do cripto-tex
Z⊕C=T (2)	e da chave Fazer o ou) é idêntica à de cripto-tex exclusivo de cada bit o com cada bit da chave!

					nutação
• Exemp	lo:				
Texto	orig	ginal	: E F	ACIL	
Texto	orig	jinal	arti	ficialn	nente aumentado com dois
carac	tere	s (Y,	Z):		F ACI LYZ
selec	cion	ados	alea	toria	mente
Cripto	o-tex	cto:	FE I	ACZL	Y
	er a	chav	e de	perm	texto, o receptor terá de lutação e a sua inversa. No
	1	2	3	4	— posição original
	2	3	1	-	posição permutada
AA-Ano lectivo 2	011/20	12		Aula 4	- Processamento de cadeias de caracteres:

Método "RSA"

- 1. São usadas duas chaves:
 - uma chave de criptação do texto original
 - uma chave de descodificação do cripto-texto
- 2. Para cada chave de criptação, há exactamente uma chave de descodificação correspondente, diferente da chave de criptação
- 3. Há muitos pares (chave de criptação, chave de descodificação respectiva)

AA-Ano lectivo 2011/2012

Aula 4 - Processamento de cadeias de caracteres:

25

Método "RSA"

- 4. A chave de criptação é tornada pública (não é secreta), pelo receptor, a todos aqueles que serão emissores de mensagens para ele
- 5. No entanto, a chave de descodificação é apenas conhecida pelo receptor (é secreta)
- 6. É quase impossível determinar a chave de descodificação se só se conhece a chave de criptação. Assim sendo, só mesmo, o receptor pode descodificar o cripto-texto, visto ser o único que conhece a chave de descodificação:

AA-Ano lectivo 2011/2012

Aula 4 - Processamento de cadeias de caracteres: Criptação 26

Método "RSA" Criação das chaves C e D a) Gerar três números primos⁽¹⁾ "aleatórios" com cerca de 100 algarismos cada um ⁽²⁾: x — nº primo y — nº primo d — nº primo, sendo o maior dos três (1) Nº primo é aquele que só é divisível por si próprio e por 1 (por exemplo, os nºs seguintes são primos: 2,3,5,7,11,13,17) (2) Os autores sugerem no mínimo 100 algarismos AA-Ano lectivo 2011/2012 Aula 4 - Processamento de cadeias de caracteres: 29

Mét	codo "RSA"
b)	Calcular o número inteiro N ⁽³⁾ , por:
	$N = x \cdot y$
	(3) N terá cerca de 200 algarismos
c)	Determinar o número inteiro c através da equação
	$(c \cdot d) \mod((x-1) \cdot (y-1)) = 1$
d)	Prova-se ⁽⁴⁾ que, com N, d e c escolhidos desta maneira se tem, para qualquer nº inteiro (M), menor do que N:
	$ (M^c \bmod N)^t \bmod N = M \forall M \leq N - 1 $
	(4) A demonstração poderá encontrar-se em qualquer manual de Teoria dos Números
AA-Aı	no lectivo 2011/2012 Aula 4 - Processamento de cadeias de caracteres: 30 Criptação

Método "RSA" e) As chaves de criptação (C) e de descodificação (D) serão constituídas pelos pares de inteiros seguintes: C = (N, c) D = (N, d) f) Um exemplo, em que os números são propositadamente pequenos (por isso, sem interesse prático!): ⇒ Números primos arbitrados: x = 47 y = 59 d = 157 ⇒ N = x.y = 47 * 59 = 2773 AA-Ano lectivo 2011/2012 Aula 4 - Processamento de cadeias de caracteres: 31

Método "RSA	//
Porque é quase im	possível determinar a chave D?
- A chave C é públ	ica, donde conhece-se N e c
– Então para deter determinar d	minar D=(N, d), é necessário
	om o que acabamos de ver, c e d ravés da equação
$(c \cdot d)$ moo que foi usada po	$\frac{1((x-1)\cdot(y-1))=1}{\text{r quem criou as chaves!}}$
 No entanto, o cri a seguinte relaçã 	pto-analista conhece N e sabe que há ĭo N = x . y
AA-Ano lectivo 2011/2012	Aula 4 - Processamento de cadeias de caracteres: 33 Criptação

Então ele "só" terá de pega	r no número N (com ce	erc
de 200 algarismos!) e tent	ar decompô-lo no produ	uto
dois factores primos!		
A tabela que se segue ilust	ra a dificuldade do prol	nle
	id didilical add do pro-	
(admite-se que cada opera	-	
(admite-se que cada opera	-	
(admite-se que cada opera Nº de algarismos de N	-	
Nº de algarismos de N	ção demora 10 ⁻⁶ s): Tempo	
Nº de algarismos de N 50	ção demora 10 ⁻⁶ s): Tempo 4h	
Nº de algarismos de N	ção demora 10 ⁻⁶ s): Tempo	
Nº de algarismos de N 50 75	ção demora 10 ⁻⁶ s): Tempo 4h 104 dias	

2º Pa	sso (criptaçã	o propriame	nte dita):
	Transforma-se	cada nº intei	ro M _i (M	₁ M ₆) num
	outro número			
	efeito a chave	de criptação	C (C=(N,	, c)):
		T_i	$=M_i^c$	mod N
	No nosso caso	1 1 1 1 1	1 1 1 1	
	$T_1 = M_1^{17} \bmod$	$2773 = 0803^{17}$	mod 27	73=0779
eitas a	s contas para	os outros cas	os, terer	nos:
0779	1983 2641	1444 0052	0802←	7540 6
(T)	(T) (T)	(T_4) (T_5)	(T ₄)	Este é o cripto-texto

,		
 Operação de 	descodificação d	o Cripto-texto
Usar a chav	e de descodificaçã	o $D(D = (N, d))$ para
calcular:	4	
	$T_i^a \mod N$	para todo o bloco i
7 -	se que se obtém, o nal M _i , isto é	com esta operação, o
	$M_i = T_i^d$ m	od N
cálculo		ela sua expressão de
T^d	$\operatorname{mod} N = M^c$	$\operatorname{mod} N$ mod N

