

Algèbre linéaire et analyse 1

(HLMA101 – Année universitaire 2019–2020)

Feuille d'exercices N°11

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Vrai ou faux?

- (a) Si f admet une asymptote oblique en $+\infty$, alors il existe $a \in \mathbb{R}$ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = a$.
- (b) S'il existe $a \in \mathbb{R}$ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = a$, alors f admet une asymptote oblique en $+\infty$.
- (c) La fonction $x \to x^2$ admet une asymptote oblique en $+\infty$.

Question 2. Étudier la convexité et les points d'inflexion des fonctions $x \mapsto x^3 - x$ et $x \mapsto \frac{1}{x}$.

2. Travaux dirigés

Exercice 1. Déterminer les domaines de dérivabilité ainsi que la dérivée des fonctions :

- (a) $x \mapsto x(\sin(x) + 1)^{-2}$;
- (b) $x \mapsto x|x|$;
- (c) $x \mapsto x^{3/5}$;
- (d) $x \mapsto \sqrt{x^3 + x^2}$:

Exercice 2. Rechercher les éventuelles asymptotes des fonctions définies par les formules suivantes.

- (a) $f(x) = \frac{4x^2 3 + \cos(x)}{x 2}$ (b) $g(x) = x + e^x$

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x^4 + x^3 - 3x^2 + 4x + 1$.

- (1) Étudier la convexité de f et déterminer ses éventuels points d'inflexion
- (2) Donner l'équation de la tangente au graphe de f en chaque point d'inflexion.

- Exercice 4. On considère la fonction $f(x) = \frac{x^2+1}{x+2}$.

 (a) Expliciter les domaines de définition, de continuité et de dérivabilité de f, et calculer sa dérivée.
 - (b) Dresser son tableau de variations en justifiant soigneusement les différents éléments qui y sont portés.
 - (c) Étudier la convexité de f.
 - (d) Etudier l'existence d'éventuelles asymptotes de f en $\pm \infty$ et la position relative du graphe de f par rapport à ses asymptotes, puis tracer l'allure du graphe de f.

Exercice 5. Déduire de la convexité du sinus que $\frac{2}{\pi}x \le \sin(x) \le x$ pour tout $x \in [0, \frac{\pi}{2}]$.

Exercice 6 (d'après Examen 1ère session, Janvier 2015). On pose $f(x) = (1+x)\sqrt{x^2-1}$.

- (a) Déterminer les domaines de définition, de continuité, de dérivabilité et la dérivée de f. La fonction est-elle dérivable en 1? En -1?
- (b) Dresser le tableau de variations de f, étudier sa convexité et tracer l'allure du graphe.
- (c) Montrer que f induit une bijection continue et monotone g de $[1, +\infty[$ dans une partie de $\mathbb R$ que l'on précisera. Sur quel domaine g^{-1} est-elle dérivable? Déterminer $g^{-1}(0)$, $g^{-1}(3\sqrt{3})$ et $(g^{-1})'(3\sqrt{3})$.

Exercice 7. Soit Γ_f le graphe de la fonction $f: x \mapsto x^2$. Montrer que la réunion de toutes les tangentes à Γ_f est exactement la partie du plan située « sous » Γ_f . Dit autrement : si M est un point du plan de coordonnées (x, y), montrer qu'il existe une tangente à Γ_f passant par M si et seulement si $y \leq x^2$. Quel est l'ensemble des points par lesquels passe une et une seule tangente?

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe telle que $\lim_{x \to +\infty} f(x) = 2$.

- (1) Montrer que $f(0) \ge 2$.
- (2) Si f(0) = 2, montrer que f est constante égale à 2 sur \mathbb{R}_+ .
- (3) Si f(0) > 2, montrer que $\lim_{x \to -\infty} f(x) = +\infty$.

3. Révisions et approfondissement

Exercice 9. Déterminer les domaines de dérivabilité ainsi que la dérivée des fonctions :

- (a) $x \mapsto |x|$;
- (b) $x \mapsto \cot(x)$;
- (c) $x \mapsto \arcsin(x) + \arccos(x)$;
- (d) $x \mapsto \sqrt{x^4 + x^6}$.

Exercice 10. Montrer que $e^x \ge 1 + x$ pour tout x réel positif.

- (a) en faisant une étude de fonctions;
- (b) en utilisant le théorème des accroissements finis;
- (c) en utilisant la convexité.

Exercice 11. Montrer que pour tout $x \in \mathbb{R}^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \operatorname{signe}(x) \frac{\pi}{2}$.

Exercice 12. Démontrer que $ln(x) \le x-1$ pour tout x>0 par trois méthodes différentes :

- avec une étude de fonctions;
- en utilisant les accroissements finis;
- avec une propriété de concavité.

Exercice 13 (d'après Examen 2ème session 2015-2016). Soit la fonction f définie sur $]0, +\infty[$ par $f(x) = e^{-1/x}$.

- (a) Étudier le comportement de f aux bornes de son ensemble de définition.
- (b) Justifier que f est continue et dérivable sur $]0, +\infty[$ et calculer sa dérivée. Déterminer l'équation de la tangente au graphe de f au point d'abscisse $\frac{1}{2}$.
- (c) Déterminer les variations de f.
- (d) Montrer que f est dérivable deux fois, calculer f'' et étudier la convexité/concavité de f.

On se donne maintenant la fonction g définie sur \mathbb{R} par g(x) = 0 si $x \le 0$ et g(x) = f(x) si x > 0.

- (e) Montrer que g est continue et dérivable sur \mathbb{R} .
- (f) Exhiber un exemple explicite d'une fonction h définie et dérivable sur \mathbb{R} , égale à g sur $[-1, +\infty[$ et telle que 0 < h(x) < 1 pour tout $x \in]-\infty, -1[$.

Exercice 14 (d'après Examen 1ère session, Janvier 2017). On pose $f(x) = \arctan(\ln x) - 2x$ et on définit la fonction $g: [0, +\infty[\longrightarrow \mathbb{R} \text{ par } g(x) = f(x) \text{ si } x > 0 \text{ et } g(0) = -\pi/2.$

- (a) Donner l'ensemble de définition de f.
- (b) Montrer que g est continue sur $[0, +\infty[$.
- (c) Déterminer la limite de g en $+\infty$.
- (d) Montrer que g est deux fois dérivable sur $]0,+\infty[$. Calculer g', puis vérifier que pour tout x>0,

$$g''(x) = -\frac{(1 + \ln x)^2}{x^2 (1 + (\ln x)^2)^2}$$

- (e) Que peut-on dire de la convexité/concavité de g?
- (f) Qu'obtient-on sur les variations de g'?
- (g) On pose $h(x) = x(1 + (\ln(x))^2)$ pour tout x > 0 et h(0) = 0. Calculer h(1), puis justifier soigneusement que l'équation h(x) = 1/2 admet au moins une solution dans]0,1[. En déduire que g' s'annule exactement une fois sur $]0,+\infty[$.
- (h) Montrer que le graphe de g admet comme asymptote oblique en $+\infty$ la droite d'équation $y = \pi/2 2x$; quelle est la position relative du graphe de g et de son asymptote?
- (i) Montrer que g n'est pas dérivable en 0.

Défi. Démontrer par récurrence sur $n \in \mathbb{N}$ que si Q est un polynôme de degré n, alors l'équation $e^x = Q(x)$ a au plus n+1 solutions réelles.