Description	Math	AMPL	OR-Tools (Direct)	OR-Tools (Dataframes)	
Sets	Let <name> denote the set of <something></something></name>	set <name>;</name>	<name> = list(<something>)</something></name>	<name> = list(<something>.index)</something></name>	
Do no mo et ena	Let <name> be a subset of $\{(i,j): i \in \langle \text{this} \rangle, j \in \langle \text{that} \rangle \}$ Let <name>_i denote <name> for $i \in \langle \text{SET} \rangle$</name></name></name>	set <name> within <this> cross <that>;</that></this></name>	() = di-+(())	(CET) [() + 3:-+()	
Parameters Input Chash	-	param <name> {i in <set>};</set></name>	<pre><name> = dict(<name>)</name></name></pre>	<pre><name> = <set>[<name>].to_dict()</name></set></name></pre>	
Input Check	$\langle \mathtt{name} \rangle_i \geq 0 \text{ for } i \in \langle \mathtt{SET} \rangle$	check {i in <set>}: <name>[i] >= 0;</name></set>	for i in <set></set>		
Model			assert <name>[i] >= 0</name>		
Model			m = OR.Solver(<name>, <solver>) OR.Solver.GLOP_LINEAR_PROGRAMMING: Open-source LP solver</solver></name>		
			OR. Solver. CBC_MIXED_INTEGER_PROGRAMMING: Open-source MIP solver		
			OR. Solver. GUROBI_MIXED_INTEGER_PROGRAMMING: Commercial MIP solver		
Varia bles	Let $x_i > 0$ denote <name> for $i \in \langle SET \rangle$</name>	var x {i in <set>} >= 0;</set>	x = {}		
	Det $x_i \geq 0$ denote thames for $i \in VBLI$?	Val X (I III \SEI/) /- 0,	for i in <set>:</set>		
			x[i] = m.NumVar(0, m.infinity(), ("(%s)" % (i)))		
	(Integer variables)	<pre>var x {i in <set>} >= 0 integer;</set></pre>	x = {} for i in <set>: x[i]= m.IntVar(0, m.infinity(), ("(%s)" % (i)))</set>		
	(11000gor variation)	var a (1 in 1521), o integer,			
	Let $x_{ij} \geq 0$ denote <name> for $(i, j) \in \langle SET \rangle$</name>	<pre>var x {(i,j) in <set>} >= 0;</set></pre>	x = {} for i,j in <set>:</set>		
		, , ,			
			x[i,j] = m.NumVar(0, m.infinity(), ("(%s, %s)" % (i,j)))		
Summation	$\sum_{i \in AGRM} x_i$	<pre>sum {i in <set>} x[i];</set></pre>	<pre>sum(x[i] for i in <set>)</set></pre>		
	$\sum_{\substack{i \in \langle \text{SET} \rangle}} x_i \\ \sum_{(i,j) \in \langle \text{SET} \rangle} x_{ij}$	sum {(i,j) in <set>} x[i,j];</set>	<pre>sum(x[i,j] for i,j in <set>)</set></pre>		
Ob :+:	$\angle (i,j) \in \langle \text{SET} \rangle \stackrel{iij}{\sim}$		m.Maximize(<expression>)</expression>		
Objective Function	max <expression></expression>	maximize <some_name>: <expression>;</expression></some_name>	m.Maximize(<expression>) m.Minimize(<expression>)</expression></expression>		
	min <expression> such that <expression></expression></expression>	minimize <some_name>: <expression>;</expression></some_name>	. 1		
Constraints		<pre>subject to <some_name>: <expression>; subject to <some_name> {i in <set>}:</set></some_name></expression></some_name></pre>	<pre>m.Add(<expression>) for i in <set>:</set></expression></pre>		
	such that <expression> for $i \in \langle SET \rangle$</expression>	<pre>subject to <some_name> {1 in <se1>}: <expression>;</expression></se1></some_name></pre>	m.Add(<expression>)</expression>		
	such that $\langle \text{expression} \rangle$ for $(i, j) \in \langle \text{SET} \rangle$	subject to <some_name> {(i,j) in <set>}:</set></some_name>	for i, j in <set>: m.Add(<expression>)</expression></set>		
	Buch that texpressions for $(i,j) \in tbm$	<pre><expression>;</expression></pre>			
Set Data		set <name> := <item1> <item2> <item3>;</item3></item2></item1></name>	<pre><name> = [<item1>,<item2>]</item2></item1></name></pre>	<set>,<name></name></set>	
Parameter Data	$\langle \text{name} \rangle_i \text{ for } i \in \langle \text{SET} \rangle$	param <name> :=</name>	$\langle \text{name} \rangle = \{i:\langle \text{name} \rangle_i,$	i, <name>i</name>	
1 Grameter Base		i <name>;</name>	j: <name>;}</name>	j, <name> i</name>	
	$\langle \mathtt{name} \rangle_{ij} \text{ for } (i,j) \in \langle \mathtt{SET} \rangle$	param <name> :=</name>	$\langle \text{name} \rangle = \{(i,j): \langle \text{name} \rangle_{ij},$	j, y	
		$i j < name >_{ij};$	$(a,b):\langle name \rangle_{ab}$		
Min-Cost Flow	Consider the directed graph $G = (N, E)$	set NODES;	NODES = list(nodes)	NODES = list(nodes.index)	
		set EDGES within (NODES cross NODES);	EDGES = list(edges)	EDGES = list(edges.index)	
			_	_	
	Let b_i be the supply at node $i \in N$	param b {i in NODES};	b = dict(b)	b = nodes["b"].to_dict()	
	Let c_i be the cost of edge $(i,j) \in E$	param c {(i,j) in EDGES};	c = dict(c)	c = edges["c"].to_dict()	
	Let u_i be the upper bound of edge $(i,j) \in E$	param u {(i,j) in EDGES};	u = dict(u)	<pre>u = nodes["u"].to_dict()</pre>	
			m = OR.Solver("mincostflow", OR.Solver.GLOP_LINEAR_PROGRAMMING)		
	Let $x_{ij} \geq 0$ be the flow on edge $(i,j) \in E$	var x {(i,j) in EDGES} >= 0;	$x = \{\}$		
	Let wij we the new on eage (t, j) c h		for i, j in EDGES:		
				inity(), ("(%s, %s)" % (i,j)))	
			- 7,5-		
	$\max \sum_{(i,j)\in E} c_{ij} x_{ij}$	minimize Total_Cost:	m.Minimize(sum(c[i,j] * x[i,j] for i,j in EDGES))		
	$(i,j) \in E^{-i,j-i,j}$	sum (i,j) in EDGES c[i,j]*x[i,j];			
	s.t. $x_{ij} \le u_{ij} \forall (i,j) \in E$	subject to Capacity {(i,j) in EDGES}:	for i,j in EDGES:		
		x[i,j] <= u[i,j];	m.Add(x[i,j] <= u[i,j])		
	s.t. $\sum_{(i,j)\in E} x_{ij} - \sum_{(j,i)\in E} x_{ji} = b_i \forall i\in N$	subject to Supply i in NODES:	SES: for k in NODES:		
	$(i,i) \in E \times ij$ $(i,i) \in E \times ji = 0i$ $\forall i \in I$	2425 00 00 24PP-) 10222.			
		(sum (i,j) in EDGES x[i,j] -	m.Add(sum(x[i,j] for i,j	in EDGES if i == k)	