Mechatronics

Week 2 Day 2

Previous lecture

- You were introduced to modeling of dynamical systems
- We discussed
 - Differential equations
 - Transfer functions
 - State-space equations

... to represent a dynamical system's behaviour

faculty of science and engineering

Today's lecture:

State-space representation and A, T, and D-type variables

Learning objectives

After today's lecture, you will be able to

 Establish analogies in the modeling of different physical domains

Learning objectives

After today's lecture, you will be able to

- Establish analogies in the modeling of different physical domains
- Describe the main differences and properties of A, T, and D-type elements in physical systems

Learning objectives

After today's lecture, you will be able to

- Establish analogies in the modeling of different physical domains
- Describe the main differences and properties of A, T, and D-type elements in physical systems
- Identify the A,T, and D-type elements, and the A,Ttype variables in different physical domains

Analogies among different physical domains

Analogy between Electrical and Fluid Systems

It is possible to establish analogies among different physical domains

The current (defined as rate of flow of electric charge) is analogous to the flow rate of fluid in fluid systems

Analogy between Electrical and Fluid Systems

It is possible to establish analogies among different physical domains

The current (defined as rate of flow of electric charge) is analogous to the flow rate of fluid in fluid systems

An inertor in a fluid system behaves as an inductor in an electrical system. So we say
that the inertor is the analogue of the inductor

Analogy between Electrical and Fluid Systems

The current (defined as rate of flow of electric charge) is analogous to the flow rate of fluid in fluid systems

Electrical system

Current

Fluid system

Flow rate

$$i = C \frac{dV_{12}}{dt}$$

$$Q = C_f \frac{dP_{12}}{dt}$$

Voltage $(V_{12}) \approx \text{Pressure } (P_{12})$

Capacitance (C) \approx Fluid capacitance (C_f)

Current $(i) \approx \text{Flow rate}(Q)$

Inductor

Fluid system

Inertor

$$V_1 \downarrow i$$

$$\downarrow i$$

$$\downarrow L$$

$$V_2 \downarrow$$

$$V_{12} = L \frac{di}{dt}$$

 \approx

$$P_{12} = I \frac{dQ}{dt}$$

Voltage $(V_{12}) \approx \text{Pressure } (P_{12})$ Inductance $(L) \approx \text{Inertance } (I)$ Current $(i) \approx \text{Flow rate}(Q)$

Force-Voltage Analogy

Electrical system

$$V_{S} = Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C} \int i(t)dt$$

Now,
$$i(t) = \frac{dq}{dt}$$

$$\rightarrow V_S = R \frac{dq}{dt} + L \frac{d^2q}{dt^2} + \frac{1}{C} q \rightarrow$$

Translational Mechanical System

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F \tag{1'}$$

Force-Voltage Analogy

 \approx

Electrical system

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = V_S$$

Voltage (V_s)

Inductance (L)

Resistance (R)

Reciprocal of Capacitance $(\frac{1}{c})$

Charge (q)

Current $(I = \frac{dq}{dt})$

Translational Mechanical System

Force (F)

Mass (m)

Friction coefficient (c)

Spring Constant (k)

Displacement (x)

Velocity $(v = \frac{dx}{dt})$

A- and T-type variables, and A, T, and Dtype elements

The internal behaviour of a physical system is governed by its energy

From an energy-based perspective, we can classify the elements of a physical system as:

- Energy storing elements
 - a capacitor

- a mass
- a spring —

The internal behaviour of a physical system is governed by its energy

From an energy-based perspective, we can classify the elements of a physical system as:

- Energy storing elements
 - a capacitor
 - an inductor
 - a mass
 - a spring

 mechanical dampers, etc.

T- and A-type variables

T- and A-type variables

The dual variables related to energy storing elements can be categorized as

- T-type variables
 - The physical quantity goes <u>through</u> the element, and it is measured by connecting an instrument <u>in series</u> with the corresponding element
 - Examples: current, fluid flow, force etc.

T- and A-type variables

The dual variables related to energy storing elements can be categorized as

- A-type variables
 - These variables act <u>across</u> the element and are measured by connecting an instrument <u>in parallel</u> to the corresponding element
 - Examples: voltage, pressure, velocity etc.

T-type elements

These energy storage elements are related to <u>T-type variables</u>

 e,g. inductors, inertors, springs etc.

 $\int_{\varepsilon_{L}}^{L} = \frac{1}{2} L (i_{L}^{2})$

T-type elements

These energy storage elements are related to T-type variables

 e,g. inductors, inertors, springs etc.

 $\varepsilon_L = \frac{1}{2}Li_L^2$

A-type elements

These energy storage elements are related to A-type variables

 e.g. capacitors, fluid capacitors, mass etc.

T-type elements

These energy storage elements are related to T-type variables

 e,g. inductors, inertors, springs etc.

A-type elements

These energy storage elements are related to A-type variables

 e.g. capacitors, fluid capacitors, mass etc.

D-type elements

Dissipative elements are referred to as D-type elements

 e.g. resistors, fluid resistor, mechanical dampers, etc.

No D-type variable!

Point to remember

- The elemental equations of A-type and T-type elements are differential equations
 - E.g., $I_C = C \frac{dv_c}{dt}$, $V_L = L \frac{di_L}{dt}$

Point to remember

- The elemental equations of A-type and T-type elements are differential equations
 - E.g., $I_C = C \frac{dv_c}{dt}$, $V_L = L \frac{di_L}{dt}$
- The elemental equations of D-type elements are static relationships
 - E.g., $V_R = Ri_R$

Example: Series RLC circuit

Input=
$$V(t)$$

Output= $I(t)$
 $I(0)=0$

$$\ddot{I}(t) + \frac{R}{L}\dot{I}(t) + \frac{1}{LC}I(t) = \frac{1}{L}\dot{v}(t)$$

Example: Series RLC circuit

Input=
$$V(t)$$

Output= $I(t)$, i.e., current in the circuit
 $I(0)=0$
 $\ddot{I}(t) + \frac{R}{L}\dot{I}(t) + \frac{1}{LC}I(t) = \frac{1}{L}\dot{V}(t)$

- Second-order system because
 - Output variable (I(t)) has the highest degree of two
 - → There are two energy storing elements (inductor and capacitor)
 - → You need two state variables to represent the system

Example: Series RLC circuit

Input=
$$V(t)$$

Output= $I(t)$
 $I(0)=0$
 $\ddot{I}(t) + \frac{R}{L}\dot{I}(t) + \frac{1}{LC}I(t) = \frac{1}{L}\dot{v}(t)$

- Second-order system because
 - Output variable (I(t)) has the highest degree of two
 - → There are two energy storing elements (inductor and capacitor)
 - → You need two state variables to represent the system

The number of independent energy storing elements in a system is equal to the order of the system and to the number of state variables in the system model

Table 1.2. Ideal system elements (linear)

System type	Mechanical translational	Mechancial rotational	Electrical	Fluid	Thermal
A-type variable A-type element Elemental equations Energy stored Energy equations	Velocity, v Mass, m $F = m \frac{dv}{dt}$ Kinetic $\mathcal{E}_k = \frac{1}{2} m v^2$	Velocity, Ω Mass moment of inertia, J $T = J \frac{d\Omega}{dt}$ Kinetic $\mathscr{E}_k = \frac{1}{2} J \Omega^2$	Voltage, e Capacitor, C $i = C \frac{de}{dt}$ Electric field $\epsilon_e = \frac{1}{2} C e^2$	Pressure, P Fluid Capacitor, C_f $Q_f = C_f \frac{dP}{dt}$ Potential $\mathcal{E}_p = \frac{1}{2}C_f P^2$	Temperature, T Thermal capacitor, C_h $Q_h = C_h \frac{dT}{dt}$ Thermal $\mathcal{E}_t = \frac{1}{2} C_h T^2$
T-type variable T-type element Elemental equations Energy stored Energy equations	Force, F Compliance, $1/k$ $v = \frac{1}{k} \frac{dF}{dt}$ Potential $\mathcal{E}_P = \frac{1}{2k} F^2$	Torque, T Compliance, $1/K$ $\Omega = \frac{1}{K} \frac{dT}{dt}$ Potential $\mathcal{E}_P = \frac{1}{2K} T^2$	Current, i Inductor, L $e = L\frac{di}{dt}$ Magnetic field $\mathcal{E}_m = \frac{1}{2}Li^2$	Fluid flow rate, Q_f Inertor, I $P = I \frac{dQ_f}{dt}$ Kinetic $\mathcal{E}_k = \frac{1}{2} I Q_f^2$	Heat flow rate, Q_h None
D-type element Elemental equations Rate of energy dissipated	Damper, b $F = bv$ $\frac{dE_D}{dt} = Fv$ $= \frac{1}{b}F^2$ $= bv^2$	Rotational damper, B $T = B\Omega$ $\frac{dE_D}{dt} = T\Omega$ $= \frac{1}{B}T^2$ $= B\Omega^2$	Resistor, R $i = \frac{1}{R}e$ $\frac{dE_D}{dt} = ie$ $= Ri^2$ $= \frac{1}{R}e^2$	Fluid resistor, R_f $Q_f = \frac{1}{R_f} P$ $\frac{dE_D}{dt} = Q_f P$ $= R_f Q_f^2$ $= \frac{1}{R_f} P^2$	Thermal resistor, R_h $Q_h = \frac{1}{R_h} T$ $\frac{dE_D}{dt} = Q_h$

Note: A-type variable represents a spatial difference across the element.

Electrical system

1 → T-type element2 → A-type element

Example 3

Electrical system

university of groningen

Electrical system

Electrical system

university of groningen

Electrical system

$$V_S = V_{12} + V_{2R}$$
 (1)

$$C\frac{dV_{2R}}{dt} = i \qquad (2)$$

$$V_{12} = L \frac{di}{dt} \tag{3}$$

$$P_{s} = P_{12} + P_{2R}$$
 (1')

$$C_f \frac{dP_{2R}}{dt} = Q \qquad (2')$$

$$P_{12} = I \frac{dQ}{dt} \tag{3'}$$

$$P_S = P_{12} + P_{2R} (1')$$

$$P_{12} = I \frac{dQ}{dt}$$

Electrical system

university of

groningen

 $V_S = V_{12} + V_{2R}$

 $V_{12} = L \frac{di}{dt}$

Putting (3) in (1), we obtain

Fluid system

Putting (3') in (1'), we obtain

university of

 $V_{\rm s} = V_{12} + V_{2R}$

 $V_{12} = L \frac{di}{dt}$

faculty of science and engineering

Example 3

 $P_{\rm S} = P_{12} + P_{2R}$ (1')

$$P_{12} = I \frac{dQ}{dt} \tag{3'}$$

Fluid system

Putting (3) in (1), we obtain

Putting (3') in (1'), we obtain

$$V_{S} = L\frac{di}{dt} + V_{2R}$$

$$P_{S} = I\frac{dQ}{dt} + P_{2R}$$

$$\frac{di}{dt} = -\frac{1}{L}V_{2R} + \frac{1}{L}V_{S} \quad (\#)$$

$$\frac{dQ}{dt} = -\frac{1}{I}P_{2R} + \frac{1}{I}P_{S} \ (\#')$$

faculty of science and engineering

$C\frac{dV_{2R}}{dt} = i$

$$\frac{di}{dt} = -\frac{1}{L}V_{2R} + \frac{1}{L}V_{S} \quad (\#)$$

Electrical system

Example 3 $c_f \frac{dP_{2R}}{dt} = Q$

$$C_f \frac{dP_{2R}}{dt} = Q \tag{2'}$$

$$\frac{dQ}{dt} = -\frac{1}{I}P_{2R} + \frac{1}{I}P_{S} \ (\#')$$

Fluid system

From (2), we have

$$\frac{dV_{2R}}{dt} = \frac{1}{C}i \quad (\$)$$

$$\downarrow \quad (\$) \text{ and } (\#)$$

From (2'), we have

$$\frac{dP_{2R}}{dt} = \frac{1}{C_f} Q \qquad (\$')$$

(\$') and (#')

 $\frac{dV_{2R}}{dt} = \frac{1}{C}i$ (\$) $\frac{di}{dt} = -\frac{1}{L}V_{2R} + \frac{1}{L}V_{S}$ (#)

faculty of science and engineering

Example 3 $\frac{dP_{2R}}{dt} = \frac{1}{C_f}Q$

$$\frac{dP_{2R}}{dt} = \frac{1}{C_f} Q \qquad (\$')$$

$$\frac{dQ}{dt} = -\frac{1}{I} P_{2R} + \frac{1}{I} P_S \qquad (\#')$$

 \downarrow (\$) and (#)

$$\begin{bmatrix} \frac{dV_{2R}}{dt} \\ \frac{di}{dt} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & 0 \end{bmatrix} \begin{bmatrix} V_{2R} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} V_{S}$$

$$\left| + \begin{bmatrix} 0 \\ 1 \\ \overline{L} \end{bmatrix} \right|$$

$$\begin{bmatrix} \frac{dP_{2R}}{dt} \\ \frac{dQ}{dt} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C_f} \\ -\frac{1}{I} & 0 \end{bmatrix} \begin{bmatrix} P_{2R} \\ Q \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{I} \end{bmatrix} P_s$$

Electrical system

$$\begin{bmatrix} \frac{dP_{2R}}{dt} \\ \frac{di}{di} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ \frac{1}{-\frac{1}{L}} & 0 \end{bmatrix} \begin{bmatrix} V_{2R} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} V_{S}$$

•

$$\begin{bmatrix} \frac{dP_{2R}}{dt} \\ \frac{dQ}{dt} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C_f} \\ -\frac{1}{I} & 0 \end{bmatrix} \begin{bmatrix} P_{2R} \\ Q \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{I} \end{bmatrix} P_s$$

The A-type and T-type variables are suitable choices for state variables!

Summary of the lecture

- It is possible to establish analogies between two different physical domains
- The elements of a system can be classified as energy storing elements and dissipative elements
- The behaviour of the energy-storing elements is governed by Atype and T-type elements in terms of differential equations
- The behaviour of the dissipative elements is governed by static relationship between A-type and T-type variables
- The A-type and T-type variables are suitable state variable choices

Next lecture:

Modeling of interconnected multidomain systems