Caso Gamma

Relatório

Silvaneo Viera dos Santos Junior

2022-10-31

Introdução

Neste relatório apresentaremos os resultados das análises feitas sobre o GDLM k-paramétrico para o caso Gamma com parâmetro de forma e média desconhecidos. Para esta análise, vamos assumir o seguinte modelo observacional:

$$X|\phi,\mu \sim \mathcal{G}\left(\phi,\frac{\phi}{\mu}\right),$$

onde \mathcal{G} representa a distribuição Gamma. Por conveniência, usaremos a parametrização com $\alpha=\phi$ e $\beta=\frac{\phi}{\mu}$ de modo que:

$$X|\alpha,\beta\sim\mathcal{G}(\alpha,\beta)$$
,

sendo que transitar de uma parametrização para a outra é trivial e a resolução dos sistemas de compatibilização é a mesma.

Para os parâmetros α e β , temos que a priori conjugada é tal que:

$$\pi(\alpha, \beta) \propto \exp \{n_0 \alpha \ln(\beta) - k_0 \ln(\Gamma(\alpha)) + \theta_0 \alpha - \tau_0 \beta\},$$

onde n_0 , k_0 , θ_0 e τ_0 são os parâmetros da distribuição e Γ é a função Gamma. Quando um par de variáveis aleatórias X,Y tiver a densidade descrita acima, diremos que $X,Y \sim \Pi(n_0,k_0,\theta_0,\tau_0)$, sendo que $n_0,k_0,\tau_0 > 0$. No caso especial onde $n_0 = k_0$, diremos que $X,Y \sim \Pi(n_0,\theta_0,\tau_0)$.

Ao obter uma amostra de tamanho m do modelo observacional, a obtenção dos parâmetros da posteriori $(n_m, k_m, \theta_m \in \tau_m)$ pode ser feita a partir das equações a seguir:

$$n_m = n_0 + m$$

$$k_m = k_0 + m$$

$$\theta_m = \theta_0 + \sum_{i=1}^m \ln(x_i)$$

$$\tau_m = \tau_0 + \sum_{i=1}^m x_i.$$

Por último, esta distribuição pertence à família exponencial e o vetor de estatísticas suficientes associado a esta distribuição é:

$$H_p = (\alpha, \beta, \alpha \ln(\beta), \ln(\Gamma(\alpha)))'$$

Para utilizar o método proposto no artigo k-paramétrico é necessário obter $\mathbb{E}_p[H_p]$ e $\mathbb{E}_q[H_p]$, onde E_p é o valor esperado calculado com α e β tendo a distribuição conjugada p e E_q é o valor esperado calculado com α e β tendo distribuição log-Normal.

Na próxima sessão discutiremos algumas propriedades da distribuição Π , pois diversos problemas encontrados tem sua origem nas características de Π .

Na sessão subsequente abordaremos os resultados da tentativa de se calcular $\mathbb{E}_p[H_p]$ usando aproximações de Laplace (Tierney e Kadane, 1995). Infelizmente, não conseguimos obter um ajuste funcional com esta abordagem devido a problemas na solução do sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$.

Na última sessão apresentamos uma proposta que permite obter uma expressão analítica aproximada para $\mathbb{E}_p[H_p]$. Com isso, conseguimos resolver o sistema (ainda usando Newton-Raphson, mas sem problemas numéricos) e fazer o ajuste do modelo. Ainda assim, o ajuste deixa a desejar. Mais investigações estão sendo feitas para tentar identificar o problema.

Propriedades da distribuição II

Primeiro, observemos que, se $\alpha, \beta \sim \Pi(n_0, k_0, \theta_0, \tau_0)$, então:

$$f(\beta|\alpha) \propto \pi(\alpha,\beta) \propto \exp\left\{n_0\alpha \ln(\beta) - k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha - \tau_0\beta\right\}$$
$$\propto \exp\left\{n_0\alpha \ln(\beta) - \tau_0\beta\right\} = \beta^{n_0\alpha}e^{-\tau_0\beta},$$

ou seja $\beta | \alpha \sim \mathcal{G}(n_0 \alpha + 1, \tau_0)$.

Usando a distribuição condicional de β podemos reescrever $\mathbb{E}_p[H_p] = \mathbb{E}_p[\mathbb{E}_p[H_p|\alpha]]$, de onde obtemos:

$$\mathbb{E}_{p}[\beta] = \mathbb{E}_{p}[\mathbb{E}_{p}[\beta|\alpha]] = \mathbb{E}_{p}\left[\frac{n_{0}\alpha + 1}{\tau_{0}}\right] = \frac{n_{0}\mathbb{E}_{p}[\alpha] + 1}{\tau_{0}}$$

$$\mathbb{E}_{p}[\alpha\ln(\beta)] = \mathbb{E}_{p}[\alpha\mathbb{E}_{p}[\ln(\beta)|\alpha]] = \mathbb{E}_{p}\left[\alpha(\psi(n_{0}\alpha + 1) - \ln(\tau_{0}))\right]$$

$$= \mathbb{E}_{p}\left[\alpha\psi(n_{0}\alpha + 1)\right] - \ln(\tau_{0})\mathbb{E}_{p}\left[\alpha\right].$$

Usando que $\mathbb{E}_p[\alpha] = \mathbb{E}_q[\alpha]$ ($\mathbb{E}_q[H_p]$ é suposto conhecido), temos que:

$$n_0 = \frac{\mathbb{E}_q \left[\beta\right] \tau_0 - 1}{\mathbb{E}_q \left[\alpha\right]}$$

Com as equações acimas, conseguimos escrever $\mathbb{E}_p[H_p]$ como valores esperados que dependem apenas da distribuição marginal de α , o que pode ser útil para simplicar algumas integrais e possibilitar a resolução numérica com métodos determinísticos. Vale observar que a distribuição marginal de α é tal que:

$$\begin{split} f(\alpha) &\propto \int_0^{+\infty} \pi(\alpha,\beta) d\beta \\ &\propto \int_0^{+\infty} \exp\left\{n_0\alpha \ln(\beta) - k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha - \tau_0\beta\right\} d\beta \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha\} \int_0^{+\infty} \exp\left\{n_0\alpha \ln(\beta) - \tau_0\beta\right\} d\beta \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha\} \int_0^{+\infty} \beta^{n_0\alpha + 1 - 1} e^{-\tau_0\beta} d \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha\} \frac{\Gamma(n_0\alpha + 1)}{\tau_0^{n_0\alpha + 1}} \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha + \ln(\Gamma(n_0\alpha + 1)) - (n_0\alpha + 1) \ln(\tau_0)\} \\ &\propto \exp\{\ln(\Gamma(n_0\alpha + 1)) - k_0 \ln(\Gamma(\alpha)) + (\theta_0 - n_0 \ln(\tau_0))\alpha\} \\ &= \frac{\Gamma(n_0\alpha + 1)}{\Gamma(\alpha)^{k_0}} \exp\left\{(\theta_0 - n_0 \ln(\tau_0))\alpha\right\}. \end{split}$$

Usando a densidade acima e aproveitando a escrita de $\mathbb{E}_p[H_p]$ como uma valor esperado em α , podemos obter $\mathbb{E}_p[H_p]$ usando quadratura Gaussiana e dispensando o uso da aproximação de Laplace.

Como discutido em outros reuniões, um pre-requisito para o uso do Teorema da Projeção é que o valor esperado de H_p exista e seja finito. Caso esta condição não seja satisfeita, não podemos fazer a compatibilização das prioris normal e conjugada. Assim, devemos encontrar as condições para as quais Π é própria (i.e., a constante de normalização de π é finita) e o valor esperado de H_p é finito. Para facilitar esta análise, podemos fazer o estudo da distribuição marginal de α , pois se Π é própria, α também será, ademais, podemos avaliar o valor esperado de H_p olhando apenas para a distribuição de α .

Adiante, vamos exibir a densidade não normalizada de α para vários valores de k_0 , n_0 , θ_0 e τ_0 , porém, como são muitas combinações de parâmetros, a análise acaba se tornando exaustiva, por isso, antes de apresentar os gráficos, vamos resumir as conclussões:

- Se n_0 e k_0 são grandes em comparação a τ_0 e θ_0 a densidade de α se torna crescente em α a partir de algum valor de α (como conseguência, a distribuição marginal de α não é própria). Observe que, para uma amostra grande, temos que $n_m \approx k_m \approx m, \tau_m \approx n_m \sum_{i=1}^m x_i/m, \theta_m \approx k_m \sum_{i=1}^m \ln(x_i)/m,$ assim, a observação feita neste item equivale a dizer que a média dos x_i 's e dos $\ln(x_i)$'s não pode ser demasiadamente pequena.
- Se $n_0 \ge k_0$ a densidadde de α se torna crescente em α para grande parte dos possíveis valores de τ_0 e θ_0 .

Para garantir que a distribuição marginal de α seja própria, precisamos que n_0 seja significativamente maior que k_0 (o quão menor vai depender da escala de k_0) e/ou que τ_0 e θ_0 estejam compatíveis com a escala de k_0 e n_0 . Em geral, essa informação será relevante apenas para inicialização do Newton-Raphson, sendo necessária uma escolha que evite que o algoritmo passe por "regiões ruins".

A seguir, apresentamos a densidade marginal não normalizada de α para $n_0 = k_0 = 1$ e diversos valores de τ_0 e θ_0 :

Veja que, se $\tau_0 = e^{\theta_0}$, a densidade de α é simplemente uma reta crescente em α . Se $\tau_0 > e^{\theta_0}$ a densidade de α é própria e se $\tau_0 \leq e^{\theta_0}$ a desidade de α é crescente em α (a partir de algum valor), logo a distribuição de α não é própria.

 $n_0 = 2 e k_0 = 2$

Com $n_0=k_0=2$ temos um resultado parecido com o anterior, porém, o "ponto de corte" para tornar a densidade imprópria muda. De modo geral, quando $n_0=k_0=m$, observamos que o ponto de corte é $\ln\left(\frac{\tau_0}{m}\right)>\frac{\theta_0}{m}$. Intuitivamente, podemos entender a razão para este ponto de corte da seguinte forma: Se temos uma amostra de tamanho m com m muito grande, então $\tau_m\approx m\sum\frac{x_i}{m}$ e $\theta_m\approx m\sum\frac{\ln(x_i)}{m}$, então teríamos que $\ln\left(\frac{\tau_m}{m}\right)>\frac{\theta_m}{m}$, pois a função logarítmo é côncava, portanto $\ln\left(\frac{\tau_m}{m}\right)\approx \ln\left(\sum\frac{x_i}{m}\right)>\sum\frac{\ln(x_i)}{m}\approx\frac{\theta_m}{m}$. Ou seja, é "artificial" para uma Π que a condição $\ln\left(\frac{\tau_0}{m}\right)>\frac{\theta_0}{m}$ não seja válida, pois dados reais nunca produziram parâmetros sem essa propriedade.

A partir das análises feitas não conseguimos encontrar uma regra que garanta que a densidade de α seja própria a menos que tomemos $n_0=k_0$, porém, ainda nesse caso, a restrição encontrada é inconveniente, pois a restrição $\ln\left(\frac{\tau_0}{m}\right)>\frac{\theta_0}{m}$ induz um espaço parametrico onde não há garantias de que exista um elemento que minimize a divergência KL. No geral, tivemos muitos problemas em encontrar o mínimo, pois o algoritmo frequentemente saí do conjunto válido de parâmetros. Em diversas ocasiões conseguimos encontrar um valor inicial para os parâmetros de modo que o algoritmo de Newton-Raphson convirja de forma adequada, mas não conseguimos estabelecer um critério geral que garanta que sempre poderemos resolver o sistema. Uma forma de mitigar esse problema seria através da simplificação dos sistemas (se possível), pois isso facilitaria a busca dos parâmetros.

Método de Laplace

Suponhamos que queremos calcular $\mathbb{E}[g(x)]$ com x tendo densidade proporcional a f^* e g sendo uma função positiva, então podemos escrever:

$$\mathbb{E}[g(x)] = \frac{\int_{\mathbb{R}} g(x) f^*(x) dx}{\int_{\mathbb{R}} f^*(x) dx}.$$

Se considerarmos que:

$$g(x)f^*(x) \approx \exp\left\{L_1(x_1^*) - \frac{(x - x_1^*)^2}{2v_1}\right\},$$

 $f^*(x) \approx \exp\left\{L_2(x_2^*) - \frac{(x - x_2^*)^2}{2v_2}\right\},$

onde $L_1(x) = \ln(g(x)f^*(x))$, $L_2(x) = \ln(f^*(x))$, x_i^* é o argumento que maximiza L_i e $v_i = -L_i''^{-1}(x_i^*)$. Usando a aproximação acima, obtemos:

$$\mathbb{E}[g(x)] \approx \left(\frac{v_1}{v_2}\right)^{\frac{1}{2}} \exp\left\{L_1(x_1^*) - L_2(x_2^*)\right\}$$

A abordagem acima pode ser facilmente generalizada para o caso onde x é um vetor.

A ideia proposta pelo Migon é utilizar o método descrito para calcular $\mathbb{E}_p[H_p]$, porém encontramos um problema ao tentar por em prática esta proposta: Para calcular $\mathbb{E}_p[H_p]$ pelo método de Laplace precisamos conhecer os parâmetros da distribuição conjugada, mas desejamos calcular $\mathbb{E}[g(x)]$ justamente para encontrar os parâmetros da distribuição conjugada.

Para apresentar o problema de forma clara, vamos descrever o algoritimo de Newton-Raphson para a solução do sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$:

- Passo 0: Suponha que conhecemos $\mathbb{E}_q[H_p]$ e seja $\phi = \mathbb{E}_p[H_p]$ com $p = \Pi(n, k, \tau, \theta)$.
- Passo 1: Inicializamos escolhendo n, k, τ e θ como valores válidos.
- Passo 2: Calculamos ϕ e $\nabla \phi$ (a matriz de derivadas parciais de ϕ com relação aos parâmetro de Π). Caso não exista a forma analítica para $\nabla \phi$, devemos avaliar ϕ 4 vezes (além da avaliação inicial) para calcular numericamente as derivadas de ϕ .
- Passo 3: Atualizamos n, k, τ e θ segundo o algoritmo de Newton-Raphson.
- Passo 4: Se ϕ é suficientemente próximo de $\mathbb{E}_q[H_p]$ encerramos o algoritmo, do contrário voltamos ao passo 2.

Usando o método de Laplace para obter ϕ , digamos, para encontrar $\mathbb{E}_p[\alpha]$, então temos que $g(\alpha,\beta)=\alpha$ e devemos encontrar α_1^* , β_1^* , α_2^* e β_2^* que maximizam L_1 e L_2 , respectivamente. Infelizmente, não é possível obter uma forma analítica fechada para α_1^* e β_1^* , de modo que seria necessário usar o método de Newton-Raphson para encontrar esses valores, porém isto está ocorrendo dentro de **uma** avaliação de **uma** das componentes de ϕ para **uma** iteração do método de Newton-Raphson, ou seja, seria necessário usar o método de Newton-Raphson 20 vezes **para cada iteração** do método de Newton-Raphson principal (temos de calcular ϕ 5 vezes a cada iteração e em cada cálculo precisamos usar Newton-Raphson 4 vezes). Por conta disso, é inviável usar a abordagem acima para realizar a compatibilização das prioris. Se fosse possível obter α_1^* , β_1^* de forma analítica para todos os parâmetro, não haveria problema, porém, não sendo este o caso, se torna inviável a resolução do sistema.

Como alternativa ao método descrito acima, podemos usar o seguinte fato, se $\Pi(n, k, \theta, \tau)$ pertence à família exponencial, então:

$$\mathbb{E}_p[H_p] = \nabla A(n, k, \theta, \tau),$$

onde $A(n,k,\theta,\tau)$ é o logarítimo da constante de normalização de $\Pi(n,k,\theta,\tau)$, isto é:

$$\exp\{A(n,k,\theta,\tau)\} = \left(\int_0^{+\infty} \int_0^{+\infty} \exp\left\{n\alpha \ln(\beta) - k \ln(\Gamma(\alpha)) + \theta\alpha - \tau\beta\right\} d\beta d\alpha\right)^{-1}.$$

Pelo método de Laplace, temos que:

$$\exp\{A(n, k, \theta, \tau)\} \approx \sqrt{2\pi v_2} \exp\{L_2(\alpha_2^*, \beta_2^*)\},\,$$

sendo que, especificamente para este caso, por sorte, há forma analítica aproximada para α_2^*, β_2^* . De fato, veja que $L_2(\alpha, \beta) = n\alpha \ln(\beta) - k \ln(\Gamma(\alpha)) + \theta\alpha - \tau\beta$, daí:

$$\frac{\partial}{\partial \alpha} L_2(\alpha, \beta) = n \ln(\beta) - k \psi(\alpha) + \theta$$
$$\frac{\partial}{\partial \beta} L_2(\alpha, \beta) = n \frac{\alpha}{\beta} - \tau,$$

onde ψ é a função digamma.

Da segunda equação obtemos que:

$$\frac{\partial}{\partial \beta} L_2(\alpha^*, \beta^*) = 0 \iff n \frac{\alpha^*}{\beta^*} = \tau \iff \beta^* = \frac{n}{\tau} \alpha^*$$

Substitituindo o valor de β^* na primeira equação e usando uma aproximação de primeira ordem para a função digamma obtemos que:

$$\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) = n \ln\left(\frac{n}{\tau}\right) + n \ln(\alpha^*) - k\psi(\alpha^*) + \theta,$$

$$\approx n \ln\left(\frac{n}{\tau}\right) + n \ln(\alpha^*) - k \ln(\alpha^*) + \frac{k}{2\alpha^*} + \theta,$$

Usando o Wolfram, encontramos que $\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) = 0$ se, e somente se:

$$\alpha^* = \frac{k}{2(k-n)W\left(\frac{k(2^{1-\frac{n}{k}}e^{\theta/k}\frac{n}{\tau}n^{k/k})^{-k/(k-n)}}{k-n}\right)},$$

onde W é a função W de Lambert.

Veja que a solução proposta não está bem definida no caso n = k, ademais, como discutido anteriormente, a aproximação de primeira ordem para a função digamma deixa muito a desejar. Contudo, no caso onde n = k podemos usar uma aproximação de segunda ordem para a função digamma, pois, neste caso, obtemos:

$$\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) \approx n \ln\left(\frac{n}{\tau}\right) + n \ln(\alpha^*) - k \ln(\alpha^*) + \frac{k}{2\alpha^*} + \frac{k}{12\alpha^{*2}} + \theta = n \ln\left(\frac{n}{\tau}\right) + \frac{n}{2\alpha^*} + \frac{k}{12\alpha^{*2}} + \theta,$$

daí:

$$\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) = 0 \iff \alpha^* = \frac{1}{3 + \sqrt{9 + 12\left(\ln\left(\frac{\tau}{n}\right) - \frac{\theta}{n}\right)}}.$$

Observe que, na solução acima, se $\ln\left(\frac{\tau}{n}\right) < \frac{\theta}{n} - \frac{3}{4}$, então α^* não está bem definido, o que é algo problemático. Dito isso, como visto anteriorimente, já é necessário que $\ln\left(\frac{\tau}{n}\right) > \frac{\theta}{n}$, a restrição $\ln\left(\frac{\tau}{n}\right) > \frac{\theta}{n} - \frac{3}{4}$ já está sendo satisfeita

Vale destacar que, se Π é a posteriori depois de se observar uma amostra de tamanho m do modelo observacional (m >> 0), então $\ln\left(\frac{\tau}{n}\right) \approx \ln\left(\frac{1}{m}\sum x_i\right)$ e $\theta/n \approx \frac{1}{m}\sum \ln(x_i)$, daí, como a função log é concava, vale que $\ln\left(\frac{\tau}{n}\right) > \frac{\theta}{n}$, ou seja, α^* está bem definido, logo, após observar uma quantidade razoável de dados, estaremos livres do risco de que α^* não existir.

Uma vez obtido α^* e β^* , podemos obter uma aproximação para $A(n,k,\theta,\tau)$ e então obter $\mathbb{E}_p[H_p] = \nabla A(n,k,\theta,\tau)$.

Como mencionado anteriormente, também podemos obter $\mathbb{E}_p[H_p]$ por integração numérica e obter um resultado semelhante. A princípio, não seria viável obter $\mathbb{E}_p[H_p]$ por integração numérica, pois a integral que devemos calcular é dupla, inviabilizando os métodos determinísticos que conheço (eles funcionam, mas ficam com o custo computacional irrazoável), ademais, não podemos usar integração por Monte Carlo, pois, para o método de Newton-Raphson, devemos calcular as derivadas de $\mathbb{E}_p[H_p]$ e como não conhecemos a forma analítica de $\mathbb{E}_p[H_p]$, devemos recorrer a diferenciação numérica, porém o erro de Monte Carlo impede que isso seja feito (o ruído aleatório intrínsico ao método de Monte Carlo "ofusca" o valor das derivadas, sendo necessário usar amostras irrazoavelmente grandes para contornar esse problema).

Dito isso, durante a construção deste relatório, observamos que $\mathbb{E}_p[H_p]$ pode ser escrito como uma integral que depende apenas de α , o que viabiliza o uso de métodos numérico determinísticos para calcular $\mathbb{E}_p[H_p]$ (especificamente, usamos Quadratura Gaussiana, que é o método default da função integrate do R), usando essa abordagem obtemos um resultado parecido com o resultado usando a aproximação de Laplace, porém, acredito que o uso de Quadratura Gaussiana seja mais adequado, pois evita o uso de aproximações, gerando assim valores que são numericamente iguais ao verdadeiro.

Vale destacar que, apesar da abordagem usando o método de Laplace não ser a que recomendo, acredito que o desenvolvimento dessa abordagem foi útil para dar alguns *insights* que não obteríamos se tivéssemos feito uso de integração numérica desde o início.

Isso concluí a análise sobre o uso da aproximação de Laplace para calcular $\mathbb{E}_p[H_p]$. Resolvido esta questão, resta apenas usar o algoritmo de Newton-Raphson para resolver o sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$.

Como mencionado anteriormente, há certas escolhas de parâmetros para a distribuição conjugada para as quais Π não é própria, sendo que não conseguimos uma forma de garantir que o algoritmo de Newton-Raphson não passe por parâmetros inadequados. Não bastasse isso, também não conseguimos garantir que o sistema sequer tenha solução.

Tentando aplicar o a metodologia em dados simulados, independente da inicialização do modelo, sempre há alguma iteração onde o algoritmo de Newton-Raphson tem problemas. Ademais também reparamos que há uma distorção considerável dos dados após a compatibilização das prioris, de modo que tivemos problemas mesmo nas ocasiões em que o algoritmo de Newton-Raphson de fato convergiu.

Por último, apresentarei na próxima sessão uma abordagem alternativa que permite simplificar a resolução do sistema e obter forma analítica aproximada para $\mathbb{E}_p[H_p]$.

Proposta alternativa: Aproximação da distribuição marginal de α

Lembremos que, se $\alpha, \beta \sim \Pi(n, k, \tau, \theta)$, então $\beta | \alpha \sim \mathcal{G}(n\alpha + 1, \tau)$ e:

$$f(\alpha) \propto \frac{\Gamma(n\alpha+1)}{\Gamma(\alpha)^k} \exp\left\{(\theta - n\ln(\tau))\alpha\right\}.$$

Ademais, a fórmula de Stirling nos diz que:

$$\Gamma(x+1) \approx \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$
.

Usando essa aproximação na densidade de α obtemos que:

$$\begin{split} f(\alpha) &\propto \frac{\Gamma(n\alpha+1)}{\Gamma(\alpha)^k} \exp\left\{(\theta-n\ln(\tau))\alpha\right\} \\ &= \frac{\Gamma(n\alpha+1)}{\alpha^{-k}\Gamma(\alpha+1)^k} \exp\left\{(\theta-n\ln(\tau))\alpha\right\} \\ &\approx \frac{\sqrt{2\pi n}}{\sqrt{2\pi^k}} \frac{\alpha^{\frac{1}{2}}n^{n\alpha}\alpha^{n\alpha}e^{-n\alpha}}{\alpha^{-k}\alpha^{\frac{k}{2}}\alpha^{k\alpha}e^{-k\alpha}} \exp\left\{(\theta-n\ln(\tau))\alpha\right\} \\ &= \frac{\sqrt{n}}{(2\pi)^{\frac{k-1}{2}}} \alpha^{\frac{1}{2}+\frac{k}{2}}\alpha^{(n-k)\alpha}e^{-(n-k)\alpha} \exp\left\{(\theta-n\ln(\tau/n))\alpha\right\}. \end{split}$$

Até aqui a equação acima não é particularmente útil, porém, se assumirmos n = k, obtemos:

$$f(\alpha) \propto \alpha^{\frac{1}{2} + \frac{n}{2}} \exp \{ (\theta - n \ln(\tau/n)) \alpha \}.$$

Ao olhar com carinho, podemos reparar que α tem distribuição aproximada $\mathcal{G}\left(\frac{n+3}{2}, n \ln(\tau/n) - \theta\right)$ (e esta é uma boa aproximação). Com essa informação, temos que:

$$\mathbb{E}_p[\alpha] \approx \frac{n+3}{2(n\ln(\tau/n) - \theta)}$$

O que pode ser usado para resolver mais uma das equações do sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$ sem recorrer a métodos numéricos.

Para obter solução analítica para todo o sistema resta apenas calcular um valor esperado, uma vez que, ao supor n=k reduzimos o sistema para 3 equações, das quais temos solução analítica para duas. Se conseguirmos resolver a última de forma analítica, podemos conseguir uma forma garantida de fazer a compatibilização das prioris sem depender de métodos iterativos.

O valor esperado que resta calcular é $\mathbb{E}_p[\alpha \ln(\beta) - \ln(\Gamma(\alpha))] = \mathbb{E}_p[\alpha \psi(n\alpha + 1) - \ln(\tau)\alpha - \ln(\Gamma(\alpha))]$ (note que, ao supor n = k, H_p se tornou outro vetor). Usando que:

$$\psi(n\alpha + 1) \approx \psi(n\alpha) \approx \ln(n\alpha) - \frac{1}{2n\alpha} - \frac{1}{12n^2\alpha^2}$$
$$\ln(\Gamma(\alpha)) \approx \alpha \ln(\alpha) - \frac{1}{2}\ln(\alpha) + \frac{1}{12\alpha},$$

podemos obter a seguinte aproximação:

$$\alpha\psi(n\alpha+1) - \ln(\tau)\alpha - \ln(\Gamma(\alpha)) \approx \alpha \ln(n\alpha) - \frac{1}{2n} - \frac{1}{12n^2\alpha} - \alpha \ln(\alpha) + \frac{1}{2}\ln(\alpha) - \frac{1}{12\alpha}$$
$$= \alpha \ln(n) - \left(\frac{1}{2n} - \frac{1}{12n^2} - \frac{1}{12}\right)\frac{1}{\alpha} + \frac{1}{2}\ln(\alpha).$$

Por último, considerando que $\mathbb{E}_p[\frac{1}{\alpha}] \approx \frac{2(n\ln(\tau/n)-\theta)}{n+1}$ e $\mathbb{E}_p[\ln(\alpha)] \approx \psi\left(\frac{n+3}{2}\right) - \ln(n\ln(\tau/n)-\theta)$ (pois α tem distribuição aproximada $\mathcal{G}\left(\frac{n+3}{2}, n\ln(\tau/n) - \theta\right)$), então:

$$\mathbb{E}_{p}[\alpha \ln(\beta) - \ln(\Gamma(\alpha))] \approx \frac{n+3}{2(n \ln(\tau/n) - \theta)} \ln(n) - \left(\frac{1}{2n} - \frac{1}{12n^2} - \frac{1}{12}\right) \frac{2(n \ln(\tau/n) - \theta)}{n+1} + \frac{1}{2}\psi\left(\frac{n+3}{2}\right) - \ln(n \ln(\tau/n) - \theta).$$

Usando a equação acima, ainda temos de usar Newton-Raphson para resolver o sistema, porém com estas simplificações o algoritmo ficou muito mais rápido e converge sem dificuldades, possibilitando a

compatibilização das prioris. Vale destacar também que a aproximação usada é muito boa, de modo que não há perdas significativas na resolução do sistema (pelo menos nos casos em que testei).

Usando os resultados acima, foi possível fazer o ajuste do GDLM, prossigamos então a análise apresentando o resultado do ajuste do modelo usando as aproximações propostas.

Para testas a qualidade do ajuste, geramos uma amostra i.i.d. com 200 elemento da distribuição $\mathcal{G}(1,1)$ e usamos a abordagem do artigo k-paramétrico para estimar os parâmetros α e β da distribuição dos dados. O resultado pode ser observado a seguir:

Distribuição preditiva

Parâmetro alpha Valor real: 1

Média: 0.468725817021833 Mediana: 0.404045061851186

Quantil de 0.975: 1.19424744613269 Quantil de 0.025: 0.136368395122457

Parâmetro beta Valor real: 1

Média: 0.0718832090036268 Mediana: 0.0673312685816263

Quantil de 0.975: 0.137111834199079 Quantil de 0.025: 0.0329446389131496

Podemos observar que a estimativa dos parâmetros está bem ruim. Afim de tentar entender a causa para essas estimativas ruins, apresentamos um gráfico com a estimação dos parâmetros a cada iteração:

Valores do parâmetro n0 da distribuição conjugada

Valores do parâmetro tau0 da distribuição conjugada

Valores do parâmetro theta0 da distribuição conjugada

Claramente temos um problema na compatibilização das prioris, especificamente, parece que a informação adquirida após se observar o dado é perdida durante a compatibilização. Mais investigações serão feitas para tentar resolver esse problema.