Use the Monte Carlo method to approximate N(0,1)

Xiaokang Liu

13 September 2018

Abstract

This report aims to record a small experiment to use the Monte Carlo method to approximate the cumulative distribution function of the standard normal distribution. The results will be displayed in tables and graphs.

Contents

1	Intr	roduction	1
2	Imp	plementation and Results	1
	2.1	R codes of conducting experiments	1
	2.2	Results	2

1 Introduction

Consider approximation of the distribution function of N(0,1),

$$\Psi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy, \tag{1}$$

by

$$\widehat{\Psi}(t) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le t), \tag{2}$$

where X_i 's are i.i.d. N(0,1) variables. Experiments with the approximation at $n \in \{10^2, 10^3, 10^4\}$ at $t \in \{0, 0.67, 0.84, 1.28, 1.65, 2.32, 2.58, 3.09, 3.72\}$ will be displayed by a table. The experiment will be repeated for 100 times. The bias at all t will be showed in some boxplots.

2 Implementation and Results

2.1 R codes of conducting experiments

```
n <- c(100, 1000, 10000)
t <- c(0,0.67,0.84,1.28,1.65,2.32,2.58,3.09,3.72)
results <- array(dim = c(100, 3, 9))
for (i in 1:100){
  for (j in 1:3){
    for (k in 1:9){</pre>
```

Table 1: Summary of the experiment(part 1)

	0.0	0.67	0.84	1.28	1.65
true	0.500000	0.7485711	0.7995458	0.8997274	0.9505285
n=100	0.499900	0.7478000	0.7999000	0.8989000	0.9512000
n=1000	0.500430	0.7498600	0.7996200	0.9009600	0.9494300
n=10000	0.500402	0.7481770	0.7992960	0.8995590	0.9506210

2.2 Results

2.2.1 Tables of mean estimation values

The following two tables including the results averaged from 100 repetations for each situation. By comparing the results of the 2, 3 and 4 row with the 1st row, we can find that larger the sample size, smaller the difference between the approximated probability and the true probability.

2.2.2 Box plots of bias at all t

```
# get the bias
bias <- array(dim = c(100, 3, 9))
truep <- t(matrix(rep(pnorm(t),3), nrow = 9, ncol = 3))
for (i in 1:100){</pre>
```

Table 2: Summary of the experiment(part 2)

	2.32	2.58	3.09	3.72
true	0.9898296	0.995060	0.9989992	0.9999004
n=100	0.9911000	0.995600	0.9986000	0.9998000
n=1000	0.9892700	0.995160	0.9989800	0.9999300
n=10000	0.9897490	0.995026	0.9990450	0.9998950

```
bias[i,,] <- results[i,,]-truep</pre>
###### for t=0.0, 0.67, 0.84
prg1 <- vector()</pre>
for(a in 1:3){
  for (b in 1:3){
    prg1 <- c(prg1,sort(bias[,a,b]))</pre>
  }
}
nprg <- 100
f1 <- rep(c(rep("0.0",nprg),rep("0.67",nprg),rep("0.84",nprg)),3)
f2 <- c(rep(100,nprg*3),rep(1000,nprg*3),rep(10000,nprg*3))
prgdata1 <- data.frame(b=factor(f1),</pre>
                       Correlation=factor(f2),
                       PRG=prg1,geom="point")
#postscript(paste("1to3.eps",sep=""), width = 4, height = 4,horizontal=FALSE)
ggplot(aes(y = PRG, x = b, fill = Correlation), data = prgdata1) +
  geom_boxplot(notch=TRUE, notchwidth=0.3, outlier.size=2, outlier.shape=1) +
  scale_fill_manual(name = "Correlation",
                     values = c("grey50", "grey75", "white"))+
  vlab("Bias") +
  xlab("Different t value")+
  theme_bw()+
  guides(fill=FALSE)+
  geom_hline(aes(yintercept=0), colour="black", linetype="dashed")
```



```
###### for t=1.28, 1.65, 2.32
prg2 <- vector()</pre>
for(a in 1:3){
  for (b in 4:6){
    prg2 <- c(prg2,sort(bias[,a,b]))</pre>
  }
}
f3 <- rep(c(rep("1.28",nprg),rep("1.65",nprg),rep("2.32",nprg)),3)
prgdata2 <- data.frame(b=factor(f3),</pre>
                       Correlation=factor(f2),
                       PRG=prg2,geom="point")
#postscript(paste("1to3.eps",sep=""), width = 4, height = 4,horizontal=FALSE
ggplot(aes(y = PRG, x = b, fill = Correlation), data = prgdata2) +
  geom_boxplot(notch=TRUE, notchwidth=0.3, outlier.size=2, outlier.shape=1) +
  scale_fill_manual(name = "Correlation",
                    values = c("grey50", "grey75", "white"))+
  ylab("Bias") +
  xlab("Different t value")+
  theme_bw()+
  guides(fill=FALSE)+
  geom_hline(aes(yintercept=0), colour="black", linetype="dashed")
```

notch went outside hinges. Try setting notch=FALSE.


```
##### for t=2.58, 3.09, 3.72
prg3 <- vector()</pre>
for(a in 1:3){
  for (b in 7:9){
    prg3 <- c(prg3,sort(bias[,a,b]))</pre>
  }
}
f4 <- rep(c(rep("2.58",nprg),rep("3.09",nprg),rep("3.72",nprg)),3)
prgdata3 <- data.frame(b=factor(f4),</pre>
                       Correlation=factor(f2),
                       PRG=prg3,geom="point")
\#postscript(paste("1to3.eps", sep=""), width = 4, height = 4, horizontal=FALSE)
ggplot(aes(y = PRG, x = b, fill = Correlation), data = prgdata3) +
  geom_boxplot(notch=FALSE,notchwidth=0.3,outlier.size=2,outlier.shape=1) +
  scale_fill_manual(name = "Correlation",
                    values = c("grey50", "grey75", "white"))+
  ylab("Bias") +
  xlab("Different t value")+
  theme_bw()+
  guides(fill=FALSE)+
  geom_hline(aes(yintercept=0), colour="black", linetype="dashed")
```


dev.off()

null device
1