الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: جوان2015 المادة : علوم فيزيانية

	٠		100						
ر الإجابة (الموضوع الأول)	مجزاة		•						
			انقاط)	الأول : (44	مرين				
1- المؤكمند: كل فُرد كيميائي يكتسب إلكتروناً أو أكثر خلال تفاعل كيميائي.									
ل الكترون أو أكثر خلال تفاعل كيميائي.	0,25		بميائي يتخل	ع: كل فرد كو	المرج				
$H_2C_2O_4(aq) = 2CO_2(aq) +$	0,25		(aq) +2	e- : الأكسدة:	من.ا				
MnO-(aq) + 8H+(aq) + 5e = Mn2+(aq) + 4H2O(1) من اللابطاع:									
$H_2C_2O_{4(aq)} + 2MnO_{4(aq)}^* + 6H_{(aq)}^* = 10C$	0,25 5 H ₂	20		كمندة – إرج aq) +8I+ التقدم:	I ₂ O(ℓ				
$5 \text{ H}_2\text{C}_2\text{O}_4(\text{aq}) + 2\text{MnO}_4^-(\text{aq}) + 6\text{H}^+(\text{aq}) = 1$	المعادلة	5 I	2(aq) + 2N	in ²⁺ (aq) +81	H ₂ O(ℓ)				
C ₂ V ₂ C ₁ V ₁	ح.ابتدائية	(0					
C ₂ V ₂ -5x C ₁ V ₁ -2x -	ح.انتقالية	C ₂)x	2x	ازياد:				
$C_2V_2-5x_f$ $C_1V_1-2x_f$	ح.نهائية	C ₂	xe	2xf					
$\begin{bmatrix} Mn^{2+} \end{bmatrix} = \frac{2x}{V_T} \text{if } \begin{bmatrix} MnO_t^2 \end{bmatrix}$ $\begin{bmatrix} Mn^{2+} \end{bmatrix} \text{(t)} = \frac{C_1}{2} - \begin{bmatrix} MnO_t^2 \end{bmatrix}$	0,50				$\frac{2}{v}$				
×10 ⁻³ mol L ⁻¹)	0,50	, m	تفاعل: - v = -	المنحنى: ة الحجمية للذ 1 d[Mi	and the same				
	0,25	×	vol	-x-					

	ر پيية الملا	تابع الإجابة النموذجية المادة : علوم فيزيانية الشعبة:علوم تح
لمجدوع		متناصر الإجلية (العوضوع الأول)
		التمريث الثاني: (94 نقاط)
ĺ]- التركيب: النواد ³ H ² H
ĺ	0,50	عدد البروتوبات: 2
		عدد الليكرونات: N = A - Z
	0,50	2- نظائر العنسر لها العند 2 نقمه و 1⁄2 مختلف .
	0,25	A بدلالة عدد نوياتها A بدلالة عدد نوياتها A بدلالة عدد نوياتها A بدلالة عدد نوياتها A اي: A A بدلالة عدد نوياتها A اي: A
	0,25	$\left\{ \begin{array}{c} P(A) & P(A) \\ P(A) & P(A) \end{array} \right\}$. The state of
	0,25	تمثل استطعه المعددة من البيان عامية (10 م مستقر بألية " الإندماج اللووي ". • الأنوية الخفيفة (40 م مستقر بألية " الإندماج اللووي ".
	0,25	Court State To a second of the
04.0	0,50	4- ماقة الزيط الدواد E، هي: الطاقة الواجب توفيرها لنواد ساكنة المسلها إلى تكليوناتها المنعزفة
	0,50	والساكنة . (تاليل التعاريف المكافئة)
	0,50	$ \Delta E = 2\frac{B_t}{A} {2H + \frac{1}{2}H} \longrightarrow \frac{4H_0 + \frac{1}{6}H}{A} $ $= 2\frac{B_t}{A} {2H + \frac{1}{2}H} + 3\frac{B_t}{A} {3H - 4\frac{B_t}{A} + \frac{1}{6}H_0}$ $= 2\frac{B_t}{A} {3H + \frac{1}{2}H} \longrightarrow \frac{4H_0 + \frac{1}{6}H}{A} \longrightarrow 4H$
	0,30	$= (2\times1,1) + (3\times2,8) - (4\times7,1) = 17,8 \text{ MeV}$
	0,50	$ \Delta B = \left (m({}_{1}^{4}H\epsilon) + m({}_{0}^{1}n) - m({}_{1}^{3}H) - m({}_{1}^{2}H)) \times \epsilon^{2} \right $
		= (4,00150+1,00866-3,01550-2,01355)×931,5 =17,6MaV
ĺ		
ĺ		

₹ 23		تابع الإجابة النمونجية المادة: علوم فيزيانية الشعبه: علوم تم
الامة المجموع	الم مجزاة	عناصر الإجابة (الموضوع الأول)
- -	<u> </u>	التعرين الثالث: (4)
	0,25	المناسب المتابخية عملها هو -1 من البيان $(t) = \int_{0}^{\infty} (t)$ من البيان $(t) = \int_{0}^{\infty} (t)$
	!	هواسم استزلزات ذو ذلكري».
	,	2- طريقة ترمسول رأسم الاعتزازات: K
	اشکل 0,25	R = 100 Ω فانون جمع التوترات في 3
	_,	الدارة RC الدارة (RC الدارة RC)
		
	0,25	$E = u_C + u_R$ $da = du_C$
	0,25	$i = \frac{dq}{dt} = C \frac{du_C}{dt} \text{if } u_R = Ri$
	0,50	$\frac{du_C}{dt} + \frac{u_C}{RC} = \frac{E}{RC} \text{if } E = u_C + RC \frac{du_C}{dt} :$
	0,50	
04.0	0,25	$\frac{du_c}{dt} = \frac{E}{t} \times e^{\frac{-1}{t}}$ بالكاني: $u_c(t) = E(1 - e^{\frac{-1}{t}})$ الأحقق: -4
	0,50	$\frac{E}{\tau} = \frac{E}{\tau}$ وبالتحويض في م. آت السابقة نجد: $\frac{E}{\tau} = \frac{E}{\tau}$ ومله: $\frac{E}{\tau} = \frac{E}{\tau}$ ومله:
	0,50	$u_C(t) = E(1 - e^{-\tau/\tau}) = E(1 - 0.37) = 0.63 E$ البرمان: $E(1 - e^{-\tau/\tau}) = E(1 - 0.37) = 0.63 E$ البرمان
	0, 25	$E=2V$: ψ_{μ}
	0,50	$r \in [6,7] \ m.s$ ميان نود: $u_c(r) = 0.63 E *1.26 V - ويامقاط القومة u_c(r) = 0.63 E *1.26 V$
	0,50	$C = \frac{\tau}{R} = \frac{6 \times 10^{-3}}{100} = 60 \ \mu F \qquad \Longleftrightarrow \tau = R.C$ Finally Aug. 1-6
:		
ا ي		
-		
j		
<u>,</u>		

الشعبة:علوم تجريبية	المادة : علوم فيزيانية	تابع الإجابة النمونجية

لابة	- <u>2427</u>	تابع الإجابة النمونجية المادة: علوم فيزيانيه التسعيه: علوم مم	,
الدجموع		عناصر الإجابة (الموضوع الأول)	
	الرسم	التمرين الرابع: (04نقاط)	
	0,25	$\vec{F}_{s/p} = -G \frac{m_p M_s}{\vec{v}} \cdot \vec{v}$ عبارة للقوة: $\vec{F}_{s/p} = -G \frac{m_p M_s}{\vec{v}} \cdot \vec{v}$ عبارة للقوة: 2	
	0,50	[{	
	0,50	$\sum ar{F}_m = m \cdot ar{a}_m$ بتطبیق القانون الثانی لایوانی: م $\overline{F}_{SIP} = m \cdot ar{a}$ ومنه	
		وبالإسقاط على الذاخلم الموجه نحر مركز الشمس:	
i	0,50	$a_N = G \cdot \frac{M_S}{r^2} \Leftarrow G \cdot \frac{m_g \cdot M_S}{r^2} = m_r \cdot a_N$	
	0,50	بايمة الحركة: $a_{r}=0$ $a_{r}=0$ الحركة باترية منتظمة -4	
4.0		أر: شعاع تسارع العركة ناظمها و مركزيا و ثابت القيمة و منه العركة دائرية منتظمة.	
	0,50	$T^2 = f(r^3)$ البيان $T^2 = f(r^3)$ عبارة عن " غط مستقيم مار من المينا " أي $T^2 = f(r^3)$	
	3,00	$rac{T^2}{r^2}=k \approx C^{rac{Mk}{2}}$. و هذا يتوافق مع القانون الثانث لكبار المعبر عنه بالعائلة:	
	0,25	$\frac{T^2}{r^3} = k = \frac{1.2 \times 10^{17}}{4.0 \times 10^{35}} = 3.0 \times 10^{-19} \text{ s}^2 \cdot m^{-3}$: نياتيا	
	0,25	$M_{g}=rac{4\pi^{2}}{G\cdot k} \Leftarrow rac{T^{2}}{r^{2}}=k=rac{4\pi^{2}}{G\cdot M_{g}}$: کالهٔ الشمس: حسب القانون الثالث لکیلر:	
	0,25	$M_S = 2 \times 10^{30} \ kg$	
	0,50	$\frac{T^2}{r^3} = 3.0 \times 10^{-19} \text{ s}^2.m^{-3}$ درر حركة الأرض: -6	
		بالنسريين $T=3,18 \times 10^7 s=368 j \Longleftrightarrow rac{T^2}{(1,50 \times 10^{11})^3} =3,0 \times 10^{-19}$ بالنسريين بالنسريين $T=3,18 \times 10^7 s=368 j \Longleftrightarrow 10^{-19}$	
			!
}		·	

تابع الإجابة النموذجية المادة : طوم فيزيانية الشعبة: علوم تجريبية

لامة ا		القبعية:علام ك	علوم فيزيانيه	الماده :	م الإجابة النمونجيا	<u> </u>					
المجدوع	موزاة		ع الأول)	لإجابة والعوضو	عناصر ا						
	0,50		C,H,CO,	H (aq)+HO^(المعاورة $(aq) = C_4 H_{\phi} CO_2^-$						
	0,50		E (V _{s.}	= 20 mL; p	: ،نجد: (4,4 = H ₈ =	2- نقبلة التكافو يطريقة المماسات					
	0,50			$C_s = 10^{-1} \text{ mod}$	$C_a V_a = C_a V_{bR}$ $(E^1 : Abc : C_a = C_b)$	_					
	0,25		$C_a=10^{-1}\ mol.L^{-1}$ و منه: $C_a=C_b.rac{V_{bb}}{V_a}$. $C_a=C_b.rac{V_{bb}}{V_a}$								
	0,25	المحاطة			و من آلي $V_{k} = 14cm^{3}$ $C_{k}H_{s}CO_{2}(aq)$	_					
4,0	0,25	التقم عع اح 0 اح x اح عن	C _a V _a C _a V _{a-x} C _a V _{a-x}		کمیة المادة بو 0 x ید	يواوة					
	0,25		_•		$= 10^{-4.5} = 3.16 \times 1$	1					
	0,25		[HO.	→ _	10 ^{4,5-14} = 3.16×1 ¹ 2 ⁻],×34×10 ⁻³ = x, =1.4×1 ¹						
	0,25				$\frac{x_f}{x + V_s} = 4.117 \times 1$						
	0,25		$egin{aligned} \left[C_{b}H_{c}COOH ight. ight] = & rac{C_{b}V_{a} - x_{f}}{V_{a} + V_{b}} = 1.765 imes 10^{-2} mol.1 \ & \left[Na^{+}\right] = & rac{C_{b}V_{b}}{V_{a} + V_{b}} \simeq 4.11 imes 10^{-2} mol.1 \ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $								
	0,25										
	0,25	x _{max} =			مثقاطل المحد ومثم: $0^{-4}mol \Leftarrow C_b V$ -	-x _{uax} = 0					
	0,25		← الثقاءات كام	$T_f = \frac{x_f}{x_{\text{max}}} =$	$\frac{1,4\cdot 10^{-3} m ol}{14\cdot 10^{-4} m ol}$	ربائتا <u>ن</u> ; 1 =					
<u></u>		. <u> </u>									

Į į	العلا	المناح ال
لمجموع	_	عنصر الإجلية (الموضوع الثاني)
	0,50 0,25	(44) المتحرين الأولى: (44) المتحرين الأولى: (44) المتحرين الأولى: (44) $H_2O_{(4)} = H_2O_{(4)}^+ + H_3O_{(4)}^+ + H_3O_{(4)}^+ + H_3O_{(4)}^+$ $H_3O^+/H_2O_{(4)}^+$ $H_3O^+/H_2O_{(4)}^+$ $H_3O_{(4)}^+$ $H_$
	0,50	-2 جدول النقدم: $+ H_2O_{(a)} + H_2O_{(a)} + H_3O_{(ac)}^+ + H_3O_{(ac)}^+$ -2 خدول النقدم $+ H_3O_{(ac)}^+ + H_3O_{(ac)}^+ + H_3O_{(ac)}^+$ -2 خدول النقدم -2 خدول -2 خدول -2 خدول النقدم -2 خدول -2 خد
_	0,50	$x_{f} = [H_{3}O^{+}]_{f} \cdot V = 10^{-pH} \cdot V$ و $x_{max} = C \cdot V \Leftarrow C \cdot V - x_{max} = 0$ $x_{f} = \frac{x_{f}}{x_{max}} = \frac{10^{-pR}}{C} = \frac{10^{-2.9}}{10^{-2}} = 0,126 < 1$ وبالتالي: $x_{f} = \frac{x_{f}}{x_{max}} = \frac{10^{-pR}}{C} = \frac{10^{-2.9}}{10^{-2}} = 0$
4,0	0,50	$pKa = 3.8 \Leftarrow pH = pKa + log \frac{\{HCOO^*\}}{[HCOOH]} = pKa + log \frac{\{H_3O^*\}}{C - [H_3O^*]}$ $Ka = \frac{[H_3O^*] \cdot [C_6H_3COO^*]}{[C_6H_3COOH]} : [C_6H_3COOH]$
	0,50	$\frac{Ka}{[H_3O^+]} = \frac{[C_6H_5COO^+]}{[C_6H_5COOH]} \Leftarrow Ka = \frac{[H_3O^+] \cdot [C_8H_5COO^+]}{[C_6H_5COOH]} : \frac{100 \text{ dist}}{100 \text{ dist}} = \frac{100 \text{ dist}}{[C_6H_5COOH]} : \frac{100 \text{ dist}}{100 \text{ dist}} = \frac{100 \text{ dist}}{[C_6H_5COOH]} : \frac{100 \text{ dist}}{100 \text{ dist}} : \frac{100 \text{ dist}}{100 d$
	0,25	$pH = 4,2 \leftarrow log \frac{[C_cH_cCOO^-]}{[C_cH_cCOOH]} = 0$ - بيانيا: $pKa = 4,2 \Leftarrow 4,2 = pKa + 0$ - يالتمويض نجد:
	0,25	4- كلما زاد الله pKa كان الحمض أضعف، حمض البنزويك أضعف من حمض الميثانويك.

		المده عوم طريعه المدهب عوم
للامة المجموع		عناصر الإجلية (الموضوع الثاني)
		التمرين الثاني: (04 نقاط)
	0,50	<u>ا محروب محيدي</u> (40 مصد) 1 - الشكل-3: نقريغ الشكل-4: شحن
	0, 25	الجهاز M المستعمل: راسم الاهتزار ذي ناكرة أو جهاز الـ EXAO
	0,50	$u_{AB}\left(t ight) +u_{R}^{}=0$ -المعادلة القاصلية خلال التغريغ: $u_{AB}\left(t ight) +u_{R}^{}=0$
	0,25	$u_R = R \cdot i = R \cdot \frac{dq}{dt} = R \cdot C \frac{du_{AB}(t)}{dt}$
	0,25	. $u_{AB}(t) + \frac{du_{AB}(t)}{dt} + \frac{1}{R'C} u_{AB}(t) = 0$ وهي معادلة تفاضلية من الرئية الأولى بالنصية لـ
	0,25	$\frac{\mathrm{d} u_{AB}(t)}{\mathrm{d} t} = -\frac{A}{R'C} \cdot e^{\frac{1}{R'C}} \Leftarrow u_{AB}(t) = A \cdot e^{\frac{1}{R'C}}$ التحقق من الحل: -3
	0,25	$-\frac{A}{R'C} \cdot e^{\frac{t}{R'C}} + \frac{1}{R'C}A \cdot e^{\frac{1}{R'C}} = 0$ بالتعويض نجد: $R'C \cdot e^{\frac{t}{R'C}} + \frac{1}{R'C}A \cdot e^{\frac{t}{R'C}} = 0$
4,0	0,25	$A=E \Leftarrow \mathfrak{u}_{AB}(0) = \mathbf{A} \cdot \mathrm{e}^{rac{0}{R^{*}C}} \pm A = E$ کون $\mathbf{t}=0$ کیا $\mathbf{t}=0$ کیارہ شدہ الثیار:
	0,50	$i(t) = \frac{dq}{dt} = C \cdot \frac{du_{AB}(t)}{dt} = -C \cdot \frac{E}{R'C} \cdot e^{-\frac{t}{R'C}} = -\frac{E}{R'} \cdot e^{-\frac{t}{R'C}}$
	0,25	ملاحظة: يمكن استنتاج $i(t)$ من قلارن جمع الترترات. $u_{AB}=0.63\cdot E=7.56\ V$ من الشكل -4 : من الملك -4 : من الملك -5
	,,,,,,	وبالإسقاط نجد: 0,23 = +
	0,25	$u_{AB} = 0.37 \cdot E = 4,44 \text{ V}$ من الشكل 3: من أجل
:		$ au'=0.09s$ وبالإسقاط نجد: $ au'=0.09s$ ملاحظة: تقبل القهم القريبة من قيم $ au$ و $ au'=0.09/500=180.10^4F=180~\mu F ightharpoonup = 180.10^4F=180~\mu F$
•	0,25	1 I
	0,25	$R = t/C = 0.2/(180 \cdot 10^{-6}) = 1.1 \cdot 10^{3} \Omega \Leftrightarrow \tau = R \cdot C$ - قيمة المقارمة:
<u> </u>		
		,
	ļ	

الملاحث المجموع الثاني المجموع المج
0,25 N=A-Z=78: وحد البريتوبات: 2=53: وحد البريتوبات: 2=53: والله المنابعة المناب
0,25 N=A-Z=78: وحد البريتوبات: 2=53: وحد البريتوبات: 2=53: والله المنابعة المناب
0,25 3×0,25 3×0,25 A = 131 → ½X + ½ + ½ + ⅓ + ⅓ + ⅓ + ⅓ + ⅓ + ⅓ + ⅓ + ⅓
3×0.25 $A = 131 \rightarrow {}^{\circ}_{2}X + {}^{\circ}_{-1}e : 311 + {}^{\circ}_{2}X + {}^{\circ}_{-1}e : 311 + {}^{\circ}_{2}X + {}^{\circ}_{-1}e : 311 + {}^{\circ}_{2}X + {}^{\circ}_{2}E : 311 + {}^{\circ}_{2}E :$
$Z = 54$ ين المنطاط العد الشعلي نباين المنطاط العد الشعلي نباين المنطاط العد الشعلي نبية $^{131}_{53}$ \rightarrow $^{131}_{54}$ \rightarrow $^{131}_{54$
المعادلة تعلى النولة المعادلة تصبح: المعادلة تصبح: عن المعادلة تصبح: المعادلة تصبح: المعادلة تصبح: المعادلة تصبح: عن المعادلة تصبح: عن المعادلة تصبح: عن المعادلة تعلى النولية المعادلة المعادل التوجيد المعادلة المعادل التوجيد الت
0,50 $0,50$ $0,50$ $0,50$ $0,50$ $0,50$ $0,25$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0,25 (1)
$a_{0}=\frac{\Delta(\ln A)}{\Delta t}=\frac{(28,8-36)}{80-0}=-0.09 \text{ jours}^{-1}:$ ميك مامل الترجيه . 20.00 (2)
$4,0$ 0,25 (2) $\ell n A = -0,09 \cdot t + 36$ بالرحدة jours بالرحدة $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftarrow \ell n A_0 = 36$ بالرحدة (2) مع (1) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 36$ بالرحدة (1) مع (2) مع (1) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 36$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 36$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 36$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = e^{36} = 4,3 \times 10^{15} \text{ Bq} \Leftrightarrow \ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج: $\ell n A_0 = 26$ بالرحدة (1) مع (2) ينتج (1) ينتج (1
بيمانية المرابع المر
0,25 $A_{o} = e^{36} = 4.3 \times 10^{15} \text{ Bq} \Leftarrow \ln A_{o} = 36 \text{forms} \Leftrightarrow (1) \text{ and } (1) \text{ forms} \Leftrightarrow (1) f$
0,50 $t_{1/2} = \frac{\ell n 2}{0.09} \approx 8 \text{ jours} \Leftrightarrow \lambda = \frac{\ell n 2}{t_{1/2}} = 0.09$ $Atails: The little of most of minutes of most of most$
m_0 ملاحظة: تقبل القبم القريبة من هذه القيمة. (m_0) ملاحظة الإبتدائية -5 m_0 $m_$
$m_{o} = \frac{t_{i/2} \cdot A_{o} \cdot M}{\ell n 2 \cdot N_{A}} \Leftarrow A_{o} = \lambda \cdot N_{o} = \frac{\ell n 2}{t_{i/2}} \cdot \frac{m_{o}}{M} \cdot N_{A}$
$m_{o} = \frac{t_{i/2} \cdot A_{o} \cdot M}{\ell n 2 \cdot N_{A}} \Leftarrow A_{o} = \lambda \cdot N_{o} = \frac{\ell n 2}{t_{i/2}} \cdot \frac{m_{o}}{M} \cdot N_{A}$
$\mathbf{m}_{0} = \frac{\mathbf{v}_{2} - \mathbf{v}_{1}}{\ell \mathbf{n}_{2} \cdot \mathbf{N}_{A}} \Leftarrow \mathbf{A}_{0} = \lambda \cdot \mathbf{N}_{0} = \frac{2M_{0}}{t_{1/2}} \cdot \frac{M_{0}}{M} \cdot \mathbf{N}_{A}$
0,25 $m_0 = \frac{8 \cdot (24 \cdot 3600) \cdot 4.3 \times 10^{15} \cdot 131}{4.0 \cdot 6.00 \times 10^{23}} = 0.9g$
$m_0 = \frac{1}{\ln 2 \cdot 6,02 \cdot 10^{21}} = 0.9g \cdot 2.6g$
·

	1	تابع الإجابة النمونجية المادة: علوم فيزيانية التسعية: علوم
الامة المجموع	اله مجزأة	عناصر الإجلية (الموضوع الثاني)
	لأرسم	التعري <u>ن الرابع</u> : (04 نقاط) التعري <u>ن الرابع</u> : (04 نقاط)
ļ	0, 25	التعريب الرابع: (40 تفاهـ) AB التسارع على العسار AB
	0,25	$\sum \overline{F}_{mr} = \overline{P} + \overline{R} + \overline{f} = m \cdot \overline{a}$ بتطبیق الفانون الثانی للیوتن:
		ربالإسفاط على محور الحركة: m.g.sinc - f = m.a
	0,25	$a = g \cdot \sin \alpha - \frac{f}{m}$
	0,25	$a = \frac{v_B^2}{2 \cdot AB} = \frac{2^2}{2 \cdot 2} = 1 \text{m/s}^3 \Leftrightarrow v_B^2 - v_A^2 = 2 \text{a} \cdot AB$
		- شدة قرة الاحتكاك:
	0,25	$f = (g \cdot \sin \alpha - a) \cdot m = (10 \cdot 0.5 - 1) \cdot 0.1 = 0.4N \iff a = g \cdot \sin \alpha - \frac{f}{m}$
	الارسم	مِلاحظة : وقبل استخدام مبدأ لِتحفاظ الطاقة. الم
4,0	الرسم 0,25	ج- طبيعة الحركة على المسار BC :
	0,25	بتطبیق القانون الثانی لنیوتن: P+R=m.ā بتطبیق القانون الثانی لنیوتن:
	0,25	أ بالإسقاط على محور المركة: m·a = 0 ⇒ 0 = a
	0,20	ا فالحركة مستقيمة متنظمة.
	الرسم	مِ <u>الْحَظَّةَ</u> : يَقَبَلُ اسْتَخَدَّامَ مَبِداً الْمِفَاظِ الْطَالَة. 2- أ- قابر هان على معادلة المسار: 2- أ- قابر هان على معادلة المسار:
	0,25	$V_{\rm C}$ - قبر مان على معلالة المسار: $\overline{P}_{\rm ext}=\vec{p}=m\hat{a}$ - $V_{\rm C}$
i	0,25	بالإستاط على Ox نجد :
	0,25	$x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$ $y_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$
		$v_{x} = -gt + c \Leftarrow \frac{dv_{x}}{dt} = -g \Leftarrow a_{x} = -g$
	0, 25	$z = -\frac{1}{2}gt^2 + c' \Leftarrow v_z = \frac{dz}{dt} = -gt \Leftrightarrow t = 0$
		$z = -\frac{1}{2}gt^2 + h : e^{-t} = 0$
	0,25	$z = -\frac{g}{2v_{-}^{2}}x^{2} + h = -1,25 \cdot x^{2} + 0,8$ $\leftarrow t = \frac{x}{v_{o}}$
	0,25	$x_D = \sqrt{0.8/1,25} = 0.8m \iff z_D = -1.25 \cdot x_D^2 + 0.8 = 0 : OD $
	0,25	$v_{\rm D}$ جہ۔ آئیمۂ السرعۂ $v_{\rm D}$: $v_{\rm D}$ السرعۂ $v_{\rm D}$: $v_{\rm D}$
	0,25	$v_D = \sqrt{v_{aD}^2 + v_{aD}^2} = \sqrt{v_C^2 + (-gt)^2} = \sqrt{2^2 + (-10 \times 0.4)^2} = 4.47 \text{ m/s}$
		ملاحظة : يقبل استخدام مبدأ المغاظ الطاقة.
<u> </u>		

تابع الإجابة النموذجية المادة: علوم فيزيانية الشعبة: علوم تجريبية

0,50 (التجريبي: (40 نقاط) (التجريبي: (140 ن	المجموع	العاد مجزأة			(ع الثاني	لموضو	لإجابة (ا	مناصر ال			
$CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_3O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_3O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_3O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_3O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_3O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_3O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e) + H_2O (e)$ $CH_3COOH_{(e)} + C_2H_3OH_{(e)} = CH_3COOC_2H_5 (e)$ $CH_3COOH_$	است	مبرره							(10)			
0,25 $0,25$		0.50	CILC	20011				arona orusa musica	اط)	(04 نة	يريبي :	رين الت
(0,25) ((hami) (hami) (ham			CH ₃ C	OOH (t)	$+C_2H_50$	$OH_{(t)} =$	CH ₃ CC	OC ₂ H				
$t(\min) 0 60 120 180 240 300 360 420 \\ n_{scide}(mol) 1,40 0,80 0,59 0,52 0,48 0,47 0,46 0,46 \\ n_{ester}(mol) 0 0,60 0,81 0,88 0,92 0,93 0,94 0,94 \\ n_{ester} = f(t) : 0,000 \\ n_{ester}(mol) 0 0,60 0,81 0,88 0,92 0,93 0,94 0,94 \\ n_{ester} = f(t) : 0,000 \\ n_{ester}(mol) 0 0,60 0,81 0,88 0,92 0,93 0,94 0,94 \\ n_{ester} = f(t) : 0,000 \\ n_{ester}(mol) 0 0,60 0,81 0,88 0,92 0,93 0,94 0,94 \\ n_{ester} = f(t) : 0,000 \\ n_{ester} = f(t) : $		10 38 CC 1	18									
t (min)		0,25	ه) دور الحمض: تسريع التفاعل (وسيط)									
0,25 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(min)	Т.		1 222		r			الجدول:
$n_{ester}(mol)$ 0 0,50 0,59 0,52 0,48 0,47 0,46 0,46 0,46 $n_{ester}(mol)$ 0 0,60 0,81 0,88 0,92 0,93 0,94 0,94 0,94 $n_{ester} = f(t)$: بيان: $n_{ester}(mol)$ 0 0,60 0,81 0,88 0,92 0,93 0,94 0,94 0,94 $n_{ester} = f(t)$ (0) $n_{ester}(mol)$		0, 25			10.71				100000	0.000	100000	-
$n_{\text{ester}(\text{mol})}$ (0,50 $n_{\text{ester}(\text{mol})}$ (0,50 n_{ester} (0,50 n_{ester} (0,50 n_{ester} (0,50 n_{ester} (0,50 n_{ester} (1,50 n_{ester			_	-	1000000	005030	A. 30.000				0.00000	-
(0,50) $(0,50)$		-	· est	(mor)	0	0,60	0,81	0,88	0,92	C. C		1
(0,50) $(0,50)$			1969	SALES ASSESSMENT	S distantisment	Brigg (Strict Brig	NE STATE	activa traversa		nester	= f(t)	لبيان: (
(0,50) $(0,50)$			n	ester(mol) [
(0,50) $(0,50)$				7 415	16			1, 2.				
x_{02} x_{02} x_{03} x_{04} x_{05} x_{07}							alleria Solu				(91)
x_{02} x_{03} x_{04} x_{05} x_{07}	10	0.50					4		(θ_2)			4
x_{02} (min) x_{03} (min) x_{04} (min) x_{05} (min) $x_{$	4.0	0,50										
0,50 $0,50$			X1/2	1/2								
عبدول التقدم: $t(min)$ $t_{1/2}$ $t(min)$ $t_{1/2}$ $t(min)$ $t_{1/2}$ $t(min)$ $t_{1/2}$ $t(min)$ $t_{1/2}$ $t(min)$ $t_{1/2}$ $t(min)$ $t(mol)$ $t($		- 24								Now think to departure		
0 $t_{1/4}$ $t_{1/2} = t_{1/2} =$										30		
0 $t_{1/4}$ $t_{1/2} = t_{1/2} =$	3.9								15.75 - 17.15			
$0,50$ $CH_3COOH_{(t)} + C_2H_3OH_{(t)} = CH_3COOC_2H_5$ (t) t			0 4	tv.	是是是是						Litt	nin)
$CH_{3}COOH_{(t)} + C_{2}H_{3}OH_{(t)} = CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOH_{(t)} + C_{2}H_{3}OH_{(t)} = CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) $CH_{3}COOC_{2}H_{5}$ (t) + $H_{2}O$ (t) + H_{2}	- 1			-72							,	20 00
0,50 $ z z $			ىلة	المعا	CH ₃ CC	OOH,,	$+C_{\gamma}H_{\epsilon}$	OH.,, =	CH,C	OOC.H	ندم: 1 + آ	جدول التا 1.0
z 0 $ z $ 0 $ z $ 0 $ z $ 0 $ z $ 0 0 0 0 $ z $ 1 $ z $ 1 $ z $ 1 $ z $ 1 $ z $ 2 $ z $ 1 $ z $ 2 $ z $ 2 $ z $ 3 $ z $ 4 $ z $ 4 $ z $ 4 $ z $ 4 $ z $ 5 $ z $ 6 $ z $ 7 $ z $ 8 $ z $ 8 $ z $ 9 $ z $		0.50	2.5	التقدم		(4)			CONTRACTOR AND AND ADDRESS OF		3 (1)	- 20 (1)
z = x $ z = x$ $ z $			100 000 000		$n_0 = 1$	40				7.80 11		0
$x_f = 1,40 - 0,46 = 0,94mol$: $x_f = 1,40 - 0,40 = $			100000	x	n ₀ -	x				Y		
0,50 $x_f = 1,40-0,46 = 0,94mol$: $x_{max} = n_0 = 1,4mol$ $x_f = 1,40-0,46 = 0,94mol$: $x_{max} = n_0 = 1,4mol$ $x_f < x_{max} = 0,50$ $x_f = x_f / x_{max} = 67\%$ $x_f $			عن	х,	n ₀ - 2	τ,			300	and the same of th		Total Control
$r_f = x_f / x_{max} = 67\%$ و نصب $x_f < x_m$ أو نصب الثناعل: $x_f = x_f / 2 = 0.94 / 2 = 0.47 mol$ أنيا : $t_{1/2} \in [38 \ ; \ 42] (min)$		0,50						-			دار تاد:	
$x(t_{1/2}) = x_f/2 = 0,94/2 = 0,47mol$ تعيين زمن نصف الثغاطل: $t_{1/2} \in [38 ; 42]$ (min) تيا :		0,50	*	300000								
نيا : (min) : الارب و [38 ; 42] الماري = (18 ; 42] الماري = (18 ; 42]		0,25										
ν ₂ ε[36 , 42](mm) : ψ		0,25			-(1/2)	~ / / 2	- 0,27	, 2 - 0,	1.0	2556		
$\theta_{2}=100^{\circ}$ کیفیا عند $n_{ester}=g\left(t ight)$ کیفیا عند $n_{ester}=g\left(t ight)$		020000		3		M 1.5		2000				
(p)	-312-05	0,23		(6	كل السابو	(انظر الق	$\theta_2 = 10$	10°C 7	(كيفيا عذ	n _{ester} =	g(t)	- تمثيل