Manipulating Functional Dependencies

Dr. Bing Zhou

Closure of FD sets

- Given a relation schema R and set S of FDs
 - is the FD F logically implied by S?
- Example
 - $R = \{A,B,C,G,H,I\}$
 - $-S = A \rightarrow B$, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$
 - would A \rightarrow H be logically implied?
 - yes (you can prove this, using the definition of FD)
- Closure of S: S^+ = all FDs logically implied by S
- How to compute S^+ ?
 - we can use <u>Armstrong's axioms</u>

Armstrong's Axioms

- Reflexivity rule
 - A1 A2 ... An \rightarrow a subset of A1 A2 ... An
- Augmentation rule
 - A1 A2 ... An → B1 B2 ... Bm then

Transitivity rule

- A1 A2 ... An
$$\rightarrow$$
 B1 B2 ... Bm and
B1 B2 ... Bm \rightarrow C1 C2 ... Ck
then
A1 A2 ... An \rightarrow C1 C2 ... Ck

Inferring S^+ using Armstrong's Axioms

- $S^{+} = S$
- Loop
 - For each F in S, apply reflexivity and augmentation rules
 - add the new FDs to S^+
 - For each pair of FDs in S, apply the transitivity rule
 - add the new FD to S^+
- Until S^+ does not change any further

Additional Rules

- Union rule
 - $\times \rightarrow Y$ and $\times \rightarrow Z$, then $\times \rightarrow YZ$
 - (X, Y, Z are sets of attributes)
- Decomposition rule
 - $-X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Pseudo-transitivity rule
 - $-X \rightarrow Y$ and $YZ \rightarrow U$, then $XZ \rightarrow U$
- These rules can be inferred from Armstrong's axioms

Example

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B \quad A \rightarrow C \quad CG \rightarrow H \quad CG \rightarrow I \quad B \rightarrow H\}$
- some members of F⁺
 - $\blacksquare A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - \blacksquare AG $\rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $CG \rightarrow HI$
 - from $CG \rightarrow H$ and $CG \rightarrow I$: "union rule" can be inferred from
 - definition of functional dependencies, or
 - Augmentation of $CG \rightarrow I$ to infer $CG \rightarrow CGI$, augmentation of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Closures of Attributes

Suppose a relation with attributes A, B, C, D, E, and F satisfies the FDs

$$AB \rightarrow C \quad BC \rightarrow AD \quad D \rightarrow E, \quad CF \rightarrow B$$

Given these FDs,

- what is the set X of attributes such that $AB \rightarrow X$ is true? $X = \{A, B, C, D, E\}$, i.e., $AB \rightarrow ABCDE$.
- ▶ what is the set Y of attributes such that $BCF \rightarrow Y$ is true? $Y = \{A, B, C, D, E, F\}$, i.e., $BCF \rightarrow ABCDEF$
- ► {B, C, F} is a superkey.

Closures of Attributes: Definition

Given

- ightharpoonup a set of attributes $\{A_1, A_2, \dots, A_n\}$ and
- a set of FDs S,

the *closure* of $\{A_1, A_2, \dots, A_n\}$ under the FDs in S is

- ▶ the set of attributes $\{B_1, B_2, \dots, B_m\}$ such that for $1 \le i \le m$, the FD $A_1A_2 \dots A_n \to B_i$ follows from S.
- ▶ the closure is denoted by $\{A_1, A_2, ..., A_n\}^+$.
- ▶ Which attributes must $\{A_1, A_2, ..., A_n\}^+$ contain at a minimum? $\{A_1, A_2, ..., A_n\}$. Why?

 $A_1A_2 \dots A_n \to A_i$ is a trivial FD.

Closures of Attributes: Algorithm

Given

- ▶ a set of attributes $\{A_1, A_2, \dots, A_n\}$ and
- a set of FDs S,
- compute $X = \{A_1, A_2, \dots, A_n\}^+$.
 - 1. Set $X \leftarrow \{A_1, A_2, \dots, A_n\}$.
 - 2. Find an FD $B_1B_2 ... B_k \to C$ in S such that $\{B_1, B_2, ... B_k\} \subseteq X$ but $C \notin X$.
 - Add C to X.
 - 4. Repeat the last two steps until you cannot find such an attribute C.
 - 5. The final value of X is the desired closure.

Closures of Attributes: Algorithm

- Basis: Y + = Y
- Induction: Look for an FD's left side X that is a subset of the current Y +
 - If the FD is $X \rightarrow A$, add A to Y^+

Closure Example

```
Student(SSN, sName, address,
HScode, HSname, HScity, GPA, priority)

SSN \rightarrow sName, address, GPA

GPA \rightarrow priority

HScode \rightarrow HSname, HScity

\[ \left\{ 55N \rightarrow H5code \right\} \]

\[ \left\{ 55N \right\} \]

\[ \left\{ 5
```

Why is the Concept of Closures Useful?

- Closures allow us to prove correctness of rules for manipulating FDs.
 - ► Transitive rule: if $A_1A_2...A_n \rightarrow B_1B_2...B_m$ and $B_1B_2...B_m \rightarrow C_1C_2...C_n$ then $A_1A_2...A_n \rightarrow C_1C_2...C_n$.
 - ▶ To prove this rule, simply check if $\{C_1, C_2, \dots, C_n\} \subseteq \{A_1, A_2, \dots, A_n\}^+$.
- Closures allow us to procedurally define keys. A set of attributes X is a key for a relation R if and only if
 - \triangleright $\{X\}^+$ is the set of all attributes of R and
 - for no attribute $A \in X$ is $\{X \{A\}\}^+$ the set of all attributes of R.

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

• Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?

– i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Example of Attribute Set Closure

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \mid A \rightarrow C \mid CG \rightarrow H \mid CG \rightarrow I \mid B \rightarrow H\}$
- (AG)+
 - 1. result = AG
 - 2. $(A \rightarrow C \text{ and } A \rightarrow B)$ result = ABCG
 - 3. $(CG \rightarrow H \text{ and } CG \subseteq AGBC) \text{ result} = ABCGH$
 - 4. (CG \rightarrow I and CG \subseteq AGBCH) result = ABCGHI
- Is AG a super key?
- Is AG a key?
 - 1. Does $A^+ \rightarrow R$?
 - 2. Does $G^+ \rightarrow R$?

Example of Closure Computation

- Consider the "bad" relation Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId).
- What are the FDs that hold in this relation?

```
	ext{Id} 	o 	ext{Name}
	ext{Id} 	o 	ext{FavouriteAdvisorId}
	ext{AdvisorId} 	o 	ext{AdvisorName}
```

- To compute the key for this relation,
 - 1. Compute the closures for all sets of attributes.
 - Find the minimal set of attributes whose closure is the set of all attributes.

Closures of FDs vs. Closures of Attributes

- Both algorithms take as input a relation R and a set of FDs F.
- Closure of FDs:
 - ▶ Computes $\{F\}^+$, the set of all FDs that follow from F.
 - Output is a set of FDs.
 - Output may contain an exponential number of FDs.
- Closure of attributes:
 - ▶ In addition, takes a set $\{A_1, A_2, \ldots, A_n\}$ of attributes as input.
 - ▶ Computes $\{A_1, A_2, \dots, A_n\}^+$, the set of all attributes B such that the $A_1A_2 \dots A_n \to B$ follows from F.
 - Output is a set of attributes.
 - Output may contain at most the number of attributes in R.