CSC 591 Cryptography

9/26/18

Lecture 6 – CPA-Secure Encryption Scheme

Lecturer: Alessandra Scafuro Scribe: Bihan Zhang

Topic/Problem

This is the second lecture on CPA-secure encryption scheme, with a focus on constructing a CPA-secure encryption scheme using PRF.

Definition

An encryption scheme is *CPA* secure if it is secure against chosen plaintext attacks.

The CPA game $(Priv_{A,\Pi}^{CPA}(n))$ is as follows (we sometimes omit the security parameter n in the following context by just denoting $Priv_{A,\Pi}^{CPA}$):

- 1. Let Π be an encryption oracle who generates a secret key k at the very beginning.
- 2. Let A be an adversary
- 3. Training Phase: A can query polynomial number of messages m_i to Π and get the encrypted ciphertext c_i back.
 - 4. Challenge Phase:
- a. A passes a pair of messages $\{m_0, m_1\}$ to Π , where m_0 and m_1 are of the same length.
- b. The challenger picks a random bit $b \leftarrow_R \{0,1\}$ and returns the challenge ciphertext $c^* = Enc(k, m_b)$
- c. A guesses b' ($b' \in \{0,1\}$ corresponds to m_0 or m_1 that the adversary A_{PPT} thinks Π encrypted).
 - d. A_{PPT} wins if b = b'

We say an encryption scheme is CPA-secure if

$$Pr[A \text{ wins } Priv_{A,\Pi}^{CPA}] = 1/2 + \epsilon$$

where ϵ is a negligible function and $Priv_{A,\Pi}^{CPA}$ is the security game constructed with a CPA secure scheme Π .

A function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ is considered *pseudorandom* if for all PPT distinguishers D the following holds true:

$$|Pr[D^{F_k}(n) = 1] - Pr[D^{TR}(n) = 1]| \le \epsilon$$

Where F_k is an oracle modelled as a pseudorandom function and TR is an oracle modelled as truly random function, and ϵ is a negligible function.

Or, in layman's terms, there does not exist a distinguisher that can tell apart the output of a PRF, and the output of a truly random function. The distinguisher can play the PRF Game in order to prove that it can tell these two apart. The PRF game is as follows:

The PRF Game:

- 1. Let O be an oracle instantiated with either F_k or with TR.
- 2. Let D be a distinguisher with access to O.
- 3. D passes x_i to the oracle O
- 4. O will either return $y_i = PRF(x_i)$ or $y_i = TR()$
- 5. D guesses whether y_i came from the PRF or from TR.

D wins if
$$|Pr[D^{F_k}(n) = 1] - Pr[D^{TR}(n) = 1]| = p(n)$$

Where p(n) is a non-negligible function.

Scheme

CPA secure encryption: Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function. We describe the encryption scheme (Gen, Enc, Dec) below:

Gen: Sample a PRF key $k \in \{0,1\}^n$ uniformly at random.

Enc(k,m): Given $k \in \{0,1\}^n$ and $m \in \{0,1\}^n$ choose a uniformly random $r \in \{0,1\}^n$ and construct the ciphertext $c = \langle F_k(r) \oplus m, r \rangle$

Dec(k,c): Given $k \in \{0,1\}^n$ and parse $c = \langle s,r \rangle$, decrypt the ciphertext c to the message $m = F_k(r) \oplus s$

Security Proof

If F is a PRF, (Gen, Enc, Dec) is a CPA secure encryption scheme.

Intuition:

Even though intuitively it feels insecure to reveal r it actually doesn't matter. Even when r is known, since k is unknown, the result of $F_k(r)$ is indistinguishable from a random function. And because the output of $F_k(r)$ is pseudo-random, $F_k(r) \oplus m$ should be secure, and because r is a random value each time, the scheme is non-deterministic, and should be CPA secure.

Formal Proof:

Let $Priv_{A,\Pi}^{CPA}$ be the CPA game constructed with Π as defined under the scheme section. Let $Priv_{A,TR}^{CPA}$ be the same CPA game except that a truly random function is used in place of F_k in the construction. Assume for the sake of contradiction that there exists an Adversary A_{CPA} that can win $Priv_{A,\Pi}^{CPA}$ with some non negligible probability p(n).

$$Pr[A \text{ wins } Priv_{A,\Pi}^{CPA}] = 1/2 + p(n)$$

$$Pr[A \text{ wins } Priv_{A,TR}^{CPA}] = 1/2 + q/2^n$$

where q is the number of queries performed by the adversary. There is a chance that the adversary has seen the random string r repeating, and this chance increases with the number of queries. This is very unlikely, so we'll treat $q/2^n = \epsilon$, where ϵ is a negligible function.

$$|Pr[A \text{ wins } Priv_{A,TR}^{CPA}] - Pr[A \text{ wins } Priv_{A,\Pi}^{CPA}]| = p(n) - q/2^n$$

which is non-negligible.

Reduction A distinguisher D for F can be constructed as follows:

Assume D has oracle access to a function O. O is either instantiated with pseudorandom function F_k , or with a truly random function TF.

D can run adversary A

When A is in it's training phase, it'll ask for encryptions of messages m_i , when this happens D does the following:

- 1. Pick a random $r_i = \{0, 1\}^n$
- 2. Query the Oracle O with r_i and receive y_i
- 3. Output $\langle r_i, m_i \oplus y_i \rangle$

When A challenges with m_0, m_1, D does the following:

- 1. Pick $b \leftarrow_R \{0, 1\}$
- 2. Pick a random $r_i = \{0, 1\}^n$
- 3. Query the Oracle O with r_i and receive y_i
- 4. Output $\langle r_i, m_b \oplus y_i \rangle$

When A enters its decision phase and outputs a bit b'. D should return 1 if b = b', and 0 otherwise

Analysis:

If O is instantiated with F then the reduction is perfectly simulating the game $Priv_{A,\Pi}^{CPA}$ and therefore:

$$Pr[D^{F_k}(n) = 1] = Pr[A \text{ wins } Priv_{A,\Pi}^{CPA}] = 1/2 + p(n)$$

Where p(n) is non-negligible.

If O is instantiated with TR then D is simulating $Priv_{A,TR}^{CPA}$ and so:

$$Pr[D^{TR}(n)=1] = Pr[A \text{ wins } Priv_{A,TR}^{CPA}] = 1/2 + \epsilon$$

Where ϵ is negligible

L6 – CPA-Secure Encryption Scheme-3

$$|Pr[D^{F_k}(n) = 1] - Pr[D^{TR}(n) = 1]| = p(n) - \epsilon$$

This contradicts with our original assumption that F is a PRF and:

$$|Pr[D^{F_k}(n) = 1] - Pr[D^{TR}(n) = 1]| \le \epsilon$$

Therefore if F is a PRF, (Gen, Enc, Dec) is a CPA secure encryption scheme.