Introduction to Brain and Neuroscience (BM 1060)

Cellular, Synaptic and Molecular Neuroscience

Levels of abstraction in Neuroscience

Behaviour Responses to stimuli, choices etc

Systems e.g. Visual, Auditory, Motor

Areas e.g. Frontal, Temporal lobes

Circuit e.g. cortical column

Neurons A Cell

Synapse Connection between cells

Molecule Molecules, ions entering/leaving the cell

Origins – Cajal & Golgi

Santiago Ramon y Cajal

- Father of modern Neuroscience
- Early sketches of various cell types
- Identified Neuron as the basic unit of NS

Camillo Golgi

Staining technique using Silver Nitrate to see cells under microscope

Cajal & Golgi

- ■Debates between Cajal and Golgi on Neuronal vs Reticular theory (entire brain is continuous) of NS
- ■Golgi and Ramón y Cajal were jointly awarded the Nobel Prize in Physiology or Medicine in 1906

Neurons

- ■A Cell: Basic unit of organization of the nervous system
- Can be thought of as
- Electrically excitable cells
- bags of semi permeable membranes
- Separates the Intra cellular from extra cellular space
- Na⁺, K⁺, Ca²⁺, Cl⁻ lons flit in and out of the semi permeable membranes through ion channels

Nernst Potential

- Equilibrium potential at zero ionic current (NOTE: when membrane is permeable to ONE ionic species only)
- •Ionic current is caused by diffusion and electrostatic drift

$$V_{in} - V_{out} = -\frac{RT}{zF} ln \frac{[C_{in}]}{[C_{out}]}$$

- ■R: Gas constant, T: Temperature, z: Valence of ion, F: Faraday's constant
- ■[C] : concentration
- At 25 C

$$V_{in} - V_{out} = -\frac{25 \, mV}{z} ln \frac{[C_{in}]}{[C_{out}]}$$

Calculate equilibrium potentials

	Inside	Outside
	(mM)	(mM)
Frog muscle (Conway 1957)		
K ⁺	124	2.25
Na ⁺	10.4	109
Cl-	1.5	77.5
Ca ²⁺	4.9 [†]	2.1
Squid axo	n (Hodgkin 1	964)
K ⁺	400	20
Na ⁺	50	440
Cl-	40-150	560
Ca ²⁺	0.4^{\dagger}	10

Johnston & Wu, Foundations of Cellular Neurophysiology

Modeling an ion channel: a potassium channel

Add another channel for Sodium

Add a model Lipid Bilayer

Applying Kirchoff....

$$I_{inj} = i_c + i_{Na} + i_K$$

 $I_{inj} = C_m \frac{dV}{dt} + (V - E_K)g_K + (V - E_{Na})g_{Na}$

Conductance varies with time, voltage and temperature

Emergence of the AP (Qualitative)

- At Rest
- K⁺ channel moderate conductance, Na⁺ channel very low conductance, at around resting membrane potentials
- So what will be the resting membrane potential be like? (Take a guess)
- Depolarisation
- Deposit some charge inside
- What happens if K⁺ channel is the only active conductance?
- What happens if Na⁺ channel is also active albeit with low conductance?
- At highly depolarized states ?

Important properties of the channel

- Non-linearity
- Rectification

Quantitative analysis: Hodgkin-Huxley

- Hodgkin, Huxley 1952, series of papers
- ■Nobel prize (1963) in physiology or medicine

Hodgkin-Huxley equations

$$I_{inj} = C_m \cdot \frac{dV}{dt} + I_{ion}(V, t)$$

$$I_{ion}(V, t) = g_{Na}(V, t) \cdot (V - E_{Na}) + g_K(V, t) \cdot (V - E_K) + g_L \cdot (V - E_L)$$

$$g_{Na}(V, t) = m^3(V, t) \cdot h(V, t) \cdot \overline{g}_{Na}(V - E_{Na})$$

$$g_K(V, t) = n^4 \cdot (V, t) \cdot \overline{g}_K(V - E_K)$$

$$\frac{dm}{dt} = \frac{m_{\infty}(V) - m}{\tau_m(V)}$$

$$\frac{dn}{dt} = \frac{n_{\infty}(V) - n}{\tau_n(V)}$$

$$\frac{dh}{dt} = \frac{h_{\infty}(V) - h}{\tau_n(V)}$$

Neurons are not point objects!

A rat hippocampal CA3 cell

Johnston & Wu, Foundations of Cellular Neurophysiology

Synapses

Synapse model

- Ligand gated ion channel
- mathematical treatment similar to voltage gated ion channels
- add $((V E_{AMPA})g_{syn})$ term
- Excitatory or Inhibitory synapses
- Excitatory : e.g. AMPA
- Inhibitory : e.g. GABA

Molecular modeling

Modeling the movement of ions within cells or synapses

E.g. https://www.youtube.com/watch?v=Hjt-7V_K2Gc