BME/EECS 516 HW#4 solutions

Solutions, Homework #4

1. The magnitude of the cross product is $|\mathbf{M} \times \mathbf{B}_0| = |\mathbf{M}| |\mathbf{B}_0| \sin \alpha$ and it points in the direction pointing out of the plane that contains both \mathbf{M} and \mathbf{B}_0 . The velocity of the trip of the magnetization (that is, the scalar dM/dt) is $\gamma \mathrm{M} \, \mathrm{B}_0 \sin \alpha$. The x-y component of \mathbf{M} is $\mathrm{M} \sin \alpha$. The path length around a circle traced out by the tip of \mathbf{M} is given by $2\pi r$ where r is the x-y component of \mathbf{M} . Therefore the path length is $2\pi \, \mathrm{M} \sin \alpha$ and the velocity along that path is $\gamma \mathrm{M} \, \mathrm{B}_0 \sin \alpha$. The time for one precession is then $\frac{2\pi}{\gamma B_0}$ and the frequency is $\frac{\gamma}{2\pi} B_0$.

A more rigorous solution has defines M_{xy} in the complex x-y plane and the change of M_{xy} is given by (i($\angle M_{xy}$) γM $B_0 \sin \alpha$), where i indicates that direction of the derivative is perpendicular to ($\angle M_{xy}$) the x-y direction of M. Recognizing that that $\angle M_{xy} M \sin \alpha = M_{xy}$, the new scalar differential equation is $dM_{xy}/dt = -i \gamma B_0 M_{xy}$, which has solution $M_{xy}(t) = M \sin \alpha \exp(-i \gamma B_0 t)$, which precesses at $\omega_0 = \gamma B_0$.

- 2. 13C parameters in terms of 1H paramters:
 - a. Since $\Delta E = \hbar \gamma B_0$, ΔE scales linearly with γ . Therefore $\Delta E_C = \frac{1}{4} \Delta E_H$.
 - b. Since $\omega_0 = \gamma B_0$, ω_0 scales linearly with γ . Therefore $\omega_{0,C} = \frac{1}{4} \omega_{0,H}$.
 - c. Since $N_{diff} \cong \Delta E/kT$, N_{diff} scales linearly with ΔE . Therefore $N_{diff,C} = \frac{1}{4} N_{diff,H}$.
 - d. Since $|\mu| = \hbar \gamma$, $|\mu|$ scales linearly with γ . Therefore $|\mu|_C = \frac{1}{4} |\mu|_H$.
 - e. Since $|\mathbf{m}| = N_{diff} < \mu >$, $|\mathbf{m}|$ scales linearly with both $|\mu|$ and N_{diff} , and thus scales with the square of γ . Therefore $|\mathbf{m}|_C = \frac{1}{16} |\mathbf{m}|_H$.

BME/EECS 516 HW#4 solutions

3. Rotational frequency are for B_1 : $\omega_1 = \gamma B_1$ and for ΔB : $\Delta \omega = \gamma \Delta B$. Rotation angles are equal to $\phi = \omega \tau$: b. $\pi/2$, c. π , d. $\pi/2$, e.(c.) $\pi/2$, e.(d.) $\pi/2$. Axes of precession are shown below.

- 4. Relaxation.
 - a. To find the maximum of $\Delta s_{xy}(t)=M_{xyA}(t)-M_{xyB}(t)=M_0(e^{-t/T2A}-e^{-t/T2B})$, we must find t, such that $d\{\Delta s_{xy}(t)\}/dt=0$. The solution

$$t_{opt} = \frac{T_{2A}T_{2B}}{T_{2A} - T_{2B}} \ln \left(\frac{T_{2A}}{T_{2B}}\right)$$

This t_{opt} is the "echo time" that will yield the maximum difference between two tissues A and B, that is, will maximize the contrast to noise ratio. A similar solutions works for the T1's.

b. To find the maximum of $\Delta s_z(t) = M_{zA}(t) - M_{zB}(t) = M_0(1-e^{-t/T1A}-1+e^{-t/T1B})$, we must find t, such that $d\{\Delta s_z(t)\}/dt = 0$. The solution is

$$t_{opt} = \frac{T_{1A}T_{1B}}{T_{1A} - T_{1B}} \ln \left(\frac{T_{1A}}{T_{1B}}\right)$$

This t_{opt} is the "repetition time" that will yield the maximum difference between tissues A and B.

c. $T_{2gray} = 95 \text{ ms}$, $T_{2white} = 75 \text{ ms} \rightarrow TE_{opt} = 84.21 \text{ ms}$ $T_{1gray} = 1100 \text{ ms}$, $T_{1white} = 800 \text{ ms} \rightarrow TR_{opt} = 934.13 \text{ ms}$