Języki Formalne i Techniki Translacji lista 2 - zadanie 5

Zofia Wiora

1 Treść zadania

Czy język $L = \{ww^Rx : w, x \in \{0,1\}^*\} \land w, x \neq \varepsilon\}$, gdzie w^R oznacza odwrócenie kolejności liter w słowie w, jest regularny?

2 Rozwiązanie

Język ten **nie jest regularny**, co można udowodnić korzystając z lematu o pompowaniu.

2.1 Lemat o pompowaniu dla języków regularnych (LoP)

Lemat 1 Niech L będzie językiem regularnym. Wówczas istnieje stała n > 1, taka że jeśli z jest dowolnym słowem z L oraz $|z| \ge n$, to z możemy przedstawić w postaci z = uvw, gdzie $|uv| \le n$ i $|v| \ge 1$ oraz uv^iw należy do L dla każdego $i \ge 0$.

W celu udowodnienia, że podany w zadaniu język L nie jest regularny, posłużymy się silniejszą wersją lematu o pompowaniu, w której to słowo z jest postaci z = tuvw, gdzie $|t| \ge 0$ oraz $|uv| \le n$. Wówczas LoP stosowane jest do sufiksu uvw, gdzie $|uvw| \ge n$.

2.2 Metodologia rozwiązywania

Aby udowodnić przy użyciu LoP, że język L nie jest regularny, należy skorzystać z poniższego schematu postępowania:

- 1. Założenie nie wprost, że L jest regularny.
- 2. Pokazanie, że dla każdej stałej $n \ge 1$ istnieje słowo z o długości $|z| \ge n$, takie że dla każdego podziału z = uvw, takiego że $|uv| \le n \land u \ne \varepsilon$, istnieje $i \in \mathbb{N}$, takie że $z' = uv^i w \notin L$.

Kluczem do rozwiązania zadania jest więc odpowiednie dobranie słowa z.

2.3 Dowód

Załóżmy nie wprost, że język $L = \{ww^Rx : w, x \in \{0,1\}^*\} \land w, x \neq \varepsilon\}$ jest regularny i niech $n \ge 1$ będzie stałą z lematu o pompowaniu.

Niech w = aw', gdzie $a \in \{0, 1\}$.

Wówczas słowo z jest postaci:

$$z = ww^R x = (aw')(aw')^R x = (aw')((w')^R a)x = aw'(w')^R ax$$

Równoważnie:

$$z = aw'w^Rx$$

Oznaczmy przez z_i słowo z w którym i-krotnie napompowano część a. Jest więc ono postaci:

$$z_i = a^i w' w^R x = aaa^{i-2} w' w^R x = aa^R a^{i-2} w' w^R x$$

Niech $x' = a^{i-2}w'w^Rx$.

Wtedy:

$$z_i = aa^R a^{i-2} w' w^R x = aa^R x' \in L$$

Łatwo więc zauważyć, że słowo z_i należy do języka L. Dzieje się tak również w szczególności dla i=0:

$$z_0 = w'(w')^R ax = w'(w')^R x'' \in L$$

Aby wykonać dowód dla tego zadania trzeba będzie skorzystać z silniejszej wersji LoP, gdzie Z=TUVW.

Wyznaczmy Z postaci:

$$Z = (10)^n (01)^n 1 \in L$$

gdzie
$$w = (10)^n$$
, $w^R = (01)^n$, $x = 1$ oraz $T = (10)^n$, $UVW = (01)^n$ 1.

Zauważmy, że $1 \leq |V| \leq n$ oraz $|UVW| = 2n + 1 = |UW| \leq 2n$.

Niech Z' = UVW będzie sufiksem słowa Z. Rozważmy pompowanie Z' dla i = 0. Wtedy:

$$Z_0' = UV^0W = UW$$

Wówczas dla $i = 0, Z_0$ jest postaci:

$$Z_0 = (10)^n UW$$

Zauważmy, że $|Z_0| = |(10)^n UW| = 2n + |UW| \le 4n$.

Aby słowo zbyło postaci ww^Rx musi być spełniony warunek $|w|\geqslant 2n.$ Stąd wynika, że $|w^Rx|\geqslant 2n+1.$ Więc:

$$|z| = |ww^R x| = |w| + |w^R + x| \ge 2n + (2n + 1) = 4n + 1$$

Wiemy, że $|Z_0| \leq 4n$, tak więc Z_0 nie jest postaci $ww^R x$, więc $Z_0 \notin L$, więc L nie jest językiem regularnym.

C.N.D.