结构与原理

工业热电偶作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中 0~1800℃范围的液体、蒸汽和气体介质以及固体表面的温度。

若配接输出 4^2 20mA、 0^1 0V 等标准电流、电压信号的温度变送器,使用更加方便、可靠。

装配式热电偶是由感温元件(热电偶芯)、不锈钢保护管、接线盒以及各种 用途的固定装置组成。

铠装式热电偶比装配式热电偶具有外径小、可任意弯曲、抗震性强等特点。 适宜安装在装配式热电偶无法安装的场合,它的外保护管采用不同材料的不锈钢 管(适合不同使用温度的需要),内充满高密度氧化物质绝缘体,非常适合安装 在环境恶劣的场合。

隔爆式热电偶通常用于生产现场伴有各种易燃、易爆等化学气体。如果使用普通热电偶极易引起环境气体爆炸,因此在这种场合必须使用隔爆热电偶,隔爆热电偶适用在 d II BT1—6 及 d II CT1—6 温度组别区间内具有爆炸性气体的危险场所内。

● 热电偶的工作原理是:

两种不同成份的导体,两端经焊接,形成回路,直接测量端叫工作端(热端)接线端子端叫冷端,当热端和冷端存在温差时,就会在回路里产生热电流,接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值,电动势随温度升高而增长。

热电动势的大小只和热电偶的材质以及两端的温度有关,和热电偶的长短粗 细无关。

●热电偶的种类

热电偶的主要种类区别在其热电偶芯(两根偶丝)的材质不同而不同,它所输出的电动势也不同,热电偶主要有以下几种(见下表),

名称	型号(代号)	分度号	测温范围(℃)	允许偏差(℃)
镍铬-镍硅	WRN	K	0—1200	±2.5或0.75% t
镍铬-铜镍	WRE	Е	0-900	±2.5或0.75% t
铂铑 10-铂	WRP	S	0—1600	±1.5 或 0.25% t
铂铑 30-铂铑 6	WRR	В	600—1700	±1.5 或 0.25% t
铜-铜镍	WRC	Т	-40350	±1.0或0.75% t
铁-铜镍	WRF	Ј	-40750	±2.5或0.75% t

说明:表中"t"为实测温度;代号后加"K"字即为铠装式热电偶。

1>装配热电偶

装配热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。 可选型号

B型、S型、K型、E型

主要技术参数

测量范围及基本误差限

热电偶类别	代号	分度号	测量范围	基本误差限
镍铬一康铜	WRK	Е	0-800℃	$\pm 0.75\%$ t
镍铬一镍硅	WRN	K	0-1300℃	±0.75%t
铂铑 13-铂	WRB	R	0−1600°C	±0.25%t

铂铑 10一铂	WRP	S	0-1600℃	±0.25%t
铂铑 30一铂	WRR	R	0-1800℃	±0.25%t
铑 6	WICH	Д	0 1000 C	- 0. 25%0

注: t 为感温元件实测温度值(℃)

热电偶时间常数

热惰性级别	时间常数(秒)	热惰性级别	时间常数(秒)
I	90-180	III	10-30
II	30-90	IV	<10

- ◆热电偶公称压力: 一般是指在工作温度下保护管所能承受的静态外压而破裂。
- ◆热电偶最小插入深度: 应不小于其保护套管外径的 8-10 倍 (特列产品例外)
- ◆绝缘电阻: 当周围空气温度为 15-35 °C,相对湿度<80 %时绝缘电阻>5 兆欧(电压 100 V)。具有防溅式接线盒的热电偶,当相对温度为 93 ± 3 °C 时,绝缘电阻>0.5 兆欧(电压 100 V)
- ◆高温下的绝缘电阻: 热电偶在高温下, 其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。

规定的长时间使用温 度(℃)	试验温度(℃)	绝缘电阻值(Ω)
≥600	600	72000
≥ 800	800	25000
≥1000	1000	5000

型号命名方法

2>铠装热电偶

铠装热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它 和工业用装配式热电偶一样,作为测量温度的变送器,通常和显示仪表、记录仪 表和电子调节器配套使用,同时亦可作为装配式热电偶的感温元件。它可以直接 测量名种生产过程中从 0~800℃范围内的液体、蒸汽和气体介质以及固体表面的温度。

原理

铠装热电偶的工作原理是,两种不同成份的导体两端经焊接,形成回路,直接测温端叫工作端,接线端子端叫冷端,也称参比端。当工作端和参比端存在温差时,就会在回路中产生热电流,接上显示仪表,仪表上就会指示出热电偶所产生的热电动势的对应温度值。

铠装热电偶的热电动势将随着测量端温度升高而增长, 热电动势的大小 只和热电偶导体材质以及两端温差有关, 和热电极的长度、直径无关。

铠装热电偶的结构原理是,是由导体、高绝缘氧化镁、外套 1Cr18Ni9Ti 不锈钢保护管,经多次一体拉制而成。铠装热电偶产品主要由接线盒、接线端子 和铠装热电偶组成基本结构,并配以各种安装固定装置组成。

铠装热电偶分绝缘式和接壳式两种。

基本技术指标

米印		去您从	常用温	最高使用温	允许偏	i差△ t
类别 (代号)	分度号	套管外 径(d)		度(℃)	测温范围 (℃)	允差值
镍铬一康铜 WREK	E	≥ ¢ 3	600	700	0~700	± 2.5℃ 或 ± 0.75%t
镍铬一镍硅 WRNK	K	≥ ¢ 3	800	950	0~900	± 2.5℃ 或 ± 0.75%t
铜一康铜	Т		350	400	<-200	未作规定 ± 1℃或
WRCK		<i>γ</i> Ψ 0	550	100	<i>-</i> 40∼350	$\pm 0.75\%t$

注:1、t 为被测温度的绝对值

2、T型分度号产品需与厂方协商订货

铠装热电偶热响应时间

在温度出现阶跃变化时,热电偶的输出变化至相当于该阶跃变化的 50% 所得的时间称为热响应时间,用 τ 0. 5 表示。

绝缘电阻

当周围空气温度为 20±1.5℃,相对湿度不大于 80%时,绝缘型铠装热电偶的偶 丝与外套管之间的绝缘电阻值应符合下表的规定。

偶丝直径 (mm)	试验电压 (V-DC)	绝缘电阻 (MΩ.m)
1.5	$50 \pm 10\%$	≥ 1000
>1.5	$500 \pm 10\%$	≥ 1000

可挠度:

铠装热电偶的可挠曲率半径不小于其外径的5倍。

铠装热电偶热响应时间

热响应时间τ0.5秒套管	接壳式	绝缘式
直径(mm)		
3. 0	0.6	1. 2
4. 0	0.8	2. 5
5. 0	1. 2	4. 0
6. 0	2.0	6. 0
8. 0	4.0	8. 0