Bayesian Networks and Graph Theory

Mark Tierney

ASTR 503

Nov 9th, 2016

Introduction to Graph Theory/Graphical

Models

 Graphs model relationships between nodes using edges to connect them

Can be directed or undirected

- Cycle Graphs and Acyclic Graphs
 - Bayesian Networks exclusively Acyclic
 - Cycle graph is simpler but restrictive

Directed Acyclic Graphs

- Directed Acyclic Graphs (DAGs), every edge is directed
- No way to start at a node and end at same node*
- Can represent events, probabilities, and causality.

Belief Networks (Just another name)

- A belief network defines causal relationships in directed acyclic graphs
- Directed Acyclic Graph

 Can explain away certain possibilities with new events

Bayesian Networks

- Formally a probabilistic directed acyclic graph model
- Consists of random variables and their associated probabilities
- Relationships are defined by the specific DAG (ancestry, parents, children, etc...)
- Not necessarily Bayesian...
- Used for Bayesian Inference
- Undirected graph corresponds to Markov Network

An Example

С	P(S=F) P(S=T)	
F	0.5	0.5
τ	0.9	0.1

- Graph is directed, arrows represent possible causality
- Joint Probability

$$P(C, S, R, W) = P(C) * P(S|C) * P(R|C,S) * P(W|C,S,R)$$

Simplified (upside to Bayes Nets)

$$P(C, S, R, W) = P(C) * P(S|C) * P(R|C) * P(W|S,R)$$

С	P(R=F) P(R=T)	
F	8.0	0.2
т	0.2	8.0

SR	P(W=F)	P(W=T)
FF	1.0	0.0
ТF	0.1	0.9
FΤ	0.1	0.9
тт	0.01	0.99

An Example (Cont.)

- Inferring information given an event from the joint probability
- i.e. given that the grass is wet...
- Two possible causes, sprinkler is on or its raining.
- Guess that sprinkler = True

$$Pr(S = 1|W = 1) = \frac{\sum_{c,r} Pr(C = c, S = 1, R = r, W = 1)}{Pr(W = 1)}$$
= 0.430

Guess that rain = True

$$Pr(R = 1|W = 1) = \frac{\sum_{c,r} Pr(C = c, S = s, R = 1, W = 1)}{Pr(W = 1)}$$
= 0.708

С	P(R=F) P(R=T)	
F	8.0	0.2
т	0.2	8.0

SR	P(W=F)	P(W=T)
FF	1.0	0.0
ΤF	0.1	0.9
FΤ	0.1	0.9
тт	0.01	0.99

Error and Separation

- More robust to error-variance dilemma
 - Reduction of number of parameters and co-dependence
- d-Separation
 - Two nodes are said to be d-connected if there are no colliders between them

Two nodes are d-separated if there is a collider

Two Types of Inferencing

Top Down

- Also known as Predictive Support
- Based on evidence nodes
- Connections through parents
- From earlier example: Rain=True, what is Pr(W=T|R=T)?

Bottom Down

- Diagnostic Support
- Based on evidence nodes connected through children
- In earlier example: Wet Grass=True, what is Pr(S=T|W=T)?

Computational Costs

- Summing/Integrating over the Joint Probability Distribution
 - Goes by O(2^n)
 - Takes exponential time for number of nodes
 - Summing/Integrating of the full JPD is called exact inference
 - NP-Hard Problem
 - Message Passing, MCMC, Loop Belief Propagation
- Instead use Message Passing Algorithm
 - Uses Polytrees (at most, one path between any two nodes)
 - Goes by O(n)
 - Computes marginal likelihood for unobserved nodes
 - Each edge carries the influence that the previous variable has on the next

Bayes Net Learning

- Given training data, causal relationships, etc...
 - Estimate graph topology
 - Estimate parameters of JPD
 - Use one of the four cases

Table 1 Four cases of BN learning problems

Case	BN structure	Observability	Proposed learning method
1	Known	Full	Maximum-likelihood estimation
2	Known	Partial	EM (or gradient ascent), MCMC
3	Unknown	Full	Search through model space
4	Unknown	Partial	EM + search through model space

(1) Known Structure/Fully Observable

- Simplest Case
- Find parameters for Conditional Probability Distributions
 - Must maximize the likelihood of the training set given
- Using Bayesian Method
 - For each node there is a vector of parameters
 - Assign each vector a probability density function
 - Use training data to compute the posterior distribution of parameters

(2) Known Structure/Partially Observable

- Expectation Maximization Algorithm
 - Expectation step creates a function for the likelihood given current parameters (first guess and then iterations)
 - Maximization step computes parameters that maximize the likelihood function predicted by the first step
 - Iterate (can become costly is first parameter guess is poor)

(3) Unknown Structure/Fully Observable

- Trying to find a DAG to represent outcome prob./cause
 - Ends up being an NP-Hard Problem
 - Assume variables are conditionally independent, come from one parent

(4) Unknown Structure/Partially Observable

- Generally intractable, but you can use Bayesian Information Criterion
 - Guessing starting parameters, calculate likelihood of model
 - Adding parameters can lead to overfitting, BIC adds a penalty for each param.

Python Application

- Bayespy package for this purpose
 - Used for Bayesian inference
 - User determines Bayesian network
- Example
 - Observations based on Gaussian distribution, unknown mean/variance
 - Wish to determine parameters for model of data

```
>>> import numpy as np
>>> data = np.random.normal(5, 10, size=(10,))
```

Python Example (Cont.)

- Directed Graph of models, parameters, and evidence
- Define models using bayespy package

```
>>> from bayespy.nodes import GaussianARD, Gamma
>>> mu = GaussianARD(0, 1e-6)
>>> tau = Gamma(1e-6, 1e-6)
>>> y = GaussianARD(mu, tau, plates=(10,))
```


- GaussianARD and Gamma define nodes
 - More available in bayespy.nodes
 - Plates argument defines number of "plates" directed to by our two nodes

Python Example (Cont.)

- Inference once models are defined
 - Observed data is y, a Gaussian distribution

```
>>> y.observe(data)
```

- Posterior Distribution, calculated using variational Bayesian method
 - Could use MCMC or EP

```
>>> from bayespy.inference import VB
>>> Q = VB(mu, tau, y)
```

Python Example (Cont.)

• Iterate on the inference algorithm (variational Bayesian)

```
>>> Q.update(repeat=20)
Iteration 1: loglike=-6.020956e+01 (... seconds)
Iteration 2: loglike=-5.820527e+01 (... seconds)
Iteration 3: loglike=-5.820290e+01 (... seconds)
Iteration 4: loglike=-5.820288e+01 (... seconds)
Converged at iteration 4.
```

- Examine the output (posterior) as usual
 - Use Histogram
 - Plot marginal probability density functions

Summary

- Bayesian Networks are (strictly) DAGs with local conditional probability
- Used primarily for Bayesian inference, but have further application
 - Neural Networks
 - Hierarchical Networks
 - Hidden Markov Models
- Particularly useful in astronomy
 - Allows for "hand-picking" parametric models
 - Hierarchical modeling allows for several layers of complexion in a given node

References

- Ben-Gal, I. et al., Bayesian Networks. (BN)
- Lewicki, Michael S., Al: Bayes Nets 2. (ABN)
- Loredo, Tom, Bayesian Inference in Astronomy. (BIA)
- Murphy, Kevin, A Brief Introduction to Graphical Models and Bayesian Networks. (ABIGM)
- Gyftodimos, E., Flach, P., Hierarchical Bayesian Networks. (HBN)
- Bhat, H. S. et al., On the derivation of the Bayesian Information Criterion. (ODBI)
- Coughlan, James, A Tutorial Introduction to Belief Propagation. (ATIBF)
- Bayespy: http://bayespy.org/en/latest/user_guide/quickstart.html (BP)