MS-C2111 Stochastic Processes

Lecture 1: Markov chains

Jukka Kohonen Aalto University

Contents

Examples of Markov chains

Time evolution

Path probabilities and state frequencies

Simulation of Markov chains

Contents

Examples of Markov chains

Time evolution

Path probabilities and state frequencies

Simulation of Markov chains

Random sequence (X_0, X_1, X_2, \dots) with the property:

The future state X_{t+1} is conditionally independent of the past given the current state X_t .

Andrei Markov 1856–1922

Andrei Markov 1978–

Random sequence (X_0, X_1, X_2, \dots) with the property:

The future state X_{t+1} is conditionally independent of the past given the current state X_t .

Mathematically:

Andrei Markov 1856–1922

Andrei Markov 1978–

Random sequence $(X_0, X_1, X_2, ...)$ with the property:

The future state X_{t+1} is conditionally independent of the past given the current state X_t .

Mathematically:

$$\mathbb{P}(X_{t+1} = y \mid X_t = x, H_{t-}) = \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

for all events $H_{t-} = \{X_0 = x_0, \dots, X_{t-1} = x_{t-1}\}$ and for all states x, y

Andrei Markov 1856–1922

Andrei Markov 1978–

Random sequence $(X_0, X_1, X_2, ...)$ with the property:

The future state X_{t+1} is conditionally independent of the past given the current state X_t .

Mathematically:

$$\mathbb{P}(X_{t+1} = y \mid X_t = x, H_{t-}) = \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

for all events $H_{t-} = \{X_0 = x_0, \dots, X_{t-1} = x_{t-1}\}$ and for all states x, y

State space: S = Set of possible states of the chain (Here assumed finite)

Andrei Markov 1856–1922

Andrei Markov 1978–

Random sequence $(X_0, X_1, X_2, ...)$ with the property:

The future state X_{t+1} is conditionally independent of the past given the current state X_t .

Mathematically:

$$\mathbb{P}(X_{t+1} = y \mid X_t = x, H_{t-}) = \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

for all events $H_{t-} = \{X_0 = x_0, \dots, X_{t-1} = x_{t-1}\}$ and for all states x, y

State space: S = Set of possible states of the chain (Here assumed finite)

Transition matrix: $P(x, y) = \mathbb{P}(X_{t+1} = y \mid X_t = x)$ is the probability to move from state x to state y (Here assumed constant over time)

Andrei Markov 1856–1922

Andrei Markov 1978–

Develop a predictive weather model when we estimate that:

Develop a predictive weather model when we estimate that:

A cloudy day is followed by a sunny day with probability 0.2

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow depends on today's weather . . .

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = Weather on day t = 0, 1, 2, ...
```

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = 0
```

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy},
```

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
egin{aligned} oldsymbol{X_t} &= 	ext{Weather on day } t = 0, 1, 2, \dots \ 	ext{State space } oldsymbol{S} &= \{1, 2\} 	ext{ with } 1 = 	ext{cloudy, } 2 = 0 \end{aligned}
```

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow depends on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow depends on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

Markov chain:

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Transition matrix P =

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} =$$

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} = \begin{bmatrix} P(1,2) & P(2,2) \\ P(2,2) & P(2,2) \end{bmatrix}$$

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} = \begin{bmatrix} 0.8 \\ \end{bmatrix}$$

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ \end{bmatrix}$$

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow depends on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
X_t = \text{Weather on day } t = 0, 1, 2, \dots
State space S = \{1, 2\} with 1 = \text{cloudy}, 2 = \text{sunny}
```

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 \end{bmatrix}$$

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow **depends** on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

```
m{X_t} = 	ext{Weather on day } t = 0, 1, 2, \dots State space m{S} = \{1, 2\} with 1 = 	ext{cloudy, } 2 = 	ext{sunny}
```

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Develop a predictive weather model when we estimate that:

- A cloudy day is followed by a sunny day with probability 0.2
- A sunny day is followed by a cloudy day with probability 0.5
- What happens tomorrow depends on today's weather . . .
- ... but does not depend on anything earlier. (Limited memory)

Markov chain:

 X_t = Weather on day t = 0, 1, 2, ...

State space $S = \{1,2\}$ with 1 = cloudy, 2 = sunny

Transition matrix
$$P = \begin{bmatrix} P(1,1) & P(1,2) \\ P(2,1) & P(2,2) \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Transition diagram

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\mathbb{P}(X_2 = 1 \mid X_0 = 1) = 1$$

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\begin{split} \mathbb{P}(X_2 = 1 \mid X_0 = 1) \\ &= \mathbb{P}(X_1 = 1 \mid X_0 = 1) \mathbb{P}(X_2 = 1 \mid X_1 = 1, X_0 = 1) \\ &+ \mathbb{P}(X_1 = 2 \mid X_0 = 1) \mathbb{P}(X_2 = 1 \mid X_1 = 2, X_0 = 1) \end{split}$$

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\mathbb{P}(X_2 = 1 \mid X_0 = 1) \\
= \mathbb{P}(X_1 = 1 \mid X_0 = 1) \mathbb{P}(X_2 = 1 \mid X_1 = 1, X_0 = 1) \\
+ \mathbb{P}(X_1 = 2 \mid X_0 = 1) \mathbb{P}(X_2 = 1 \mid X_1 = 2, X_0 = 1) \\
= P(1, 1) P(1, 1) + P(1, 2) P(2, 1)$$

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\mathbb{P}(X_2 = 1 \mid X_0 = 1) \\
= \mathbb{P}(X_1 = 1 \mid X_0 = 1) \mathbb{P}(X_2 = 1 \mid X_1 = 1, X_0 = 1) \\
+ \mathbb{P}(X_1 = 2 \mid X_0 = 1) \mathbb{P}(X_2 = 1 \mid X_1 = 2, X_0 = 1) \\
= P(1, 1) P(1, 1) + P(1, 2) P(2, 1) \\
= 0.8 \times 0.8 + 0.2 \times 0.5$$

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\mathbb{P}(X_{2} = 1 \mid X_{0} = 1) \\
= \mathbb{P}(X_{1} = 1 \mid X_{0} = 1) \mathbb{P}(X_{2} = 1 \mid X_{1} = 1, X_{0} = 1) \\
+ \mathbb{P}(X_{1} = 2 \mid X_{0} = 1) \mathbb{P}(X_{2} = 1 \mid X_{1} = 2, X_{0} = 1) \\
= P(1, 1)P(1, 1) + P(1, 2)P(2, 1) \\
= 0.8 \times 0.8 + 0.2 \times 0.5 \\
= 0.74$$

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

By conditioning on X_1 = Tuesday's weather:

$$\mathbb{P}(X_{2} = 1 \mid X_{0} = 1) \\
= \mathbb{P}(X_{1} = 1 \mid X_{0} = 1) \mathbb{P}(X_{2} = 1 \mid X_{1} = 1, X_{0} = 1) \\
+ \mathbb{P}(X_{1} = 2 \mid X_{0} = 1) \mathbb{P}(X_{2} = 1 \mid X_{1} = 2, X_{0} = 1) \\
= P(1, 1)P(1, 1) + P(1, 2)P(2, 1) \\
= 0.8 \times 0.8 + 0.2 \times 0.5 \\
= 0.74$$

Conclusion: Wed is cloudy with probability 0.74

If it is cloudy on Mon (day 0), then what is the probability that it is cloudy also on Wed?

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

By conditioning on X_1 = Tuesday's weather:

$$\mathbb{P}(X_{2} = 1 \mid X_{0} = 1) \\
= \mathbb{P}(X_{1} = 1 \mid X_{0} = 1) \mathbb{P}(X_{2} = 1 \mid X_{1} = 1, X_{0} = 1) \\
+ \mathbb{P}(X_{1} = 2 \mid X_{0} = 1) \mathbb{P}(X_{2} = 1 \mid X_{1} = 2, X_{0} = 1) \\
= P(1, 1)P(1, 1) + P(1, 2)P(2, 1) \\
= 0.8 \times 0.8 + 0.2 \times 0.5 \\
= 0.74$$

Conclusion: Wed is cloudy with probability 0.74

Can you predict Saturday's weather?

Example: Nonbinary weather model

State space $S = \{1, 2, 3\}$ with 1=rainy, 2=cloudy, 3=sunny

Example: Nonbinary weather model

State space $S = \{1, 2, 3\}$ with 1=rainy, 2=cloudy, 3=sunny

Transition matrix
$$P = \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.2 & 0.5 & 0.3 \\ 0.1 & 0.7 & 0.2 \end{bmatrix}$$

Example: Nonbinary weather model

State space $S = \{1, 2, 3\}$ with 1=rainy, 2=cloudy, 3=sunny

Transition matrix
$$P = \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.2 & 0.5 & 0.3 \\ 0.1 & 0.7 & 0.2 \end{bmatrix}$$

Example: Nonbinary weather model

State space $S = \{1, 2, 3\}$ with 1=rainy, 2=cloudy, 3=sunny

Transition matrix
$$P = \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.2 & 0.5 & 0.3 \\ 0.1 & 0.7 & 0.2 \end{bmatrix}$$

Computing weather predictions manually becomes harder.

Example: Nonbinary weather model

State space $S = \{1, 2, 3\}$ with 1=rainy, 2=cloudy, 3=sunny

Transition matrix
$$P = \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.2 & 0.5 & 0.3 \\ 0.1 & 0.7 & 0.2 \end{bmatrix}$$

Computing weather predictions manually becomes harder. Real weather models may have thousands of states. . .

State space $S = \{ \text{Set of all web pages} \}$ with size n = |S|

State space $S = \{ \text{Set of all web pages} \}$ with size n = |S|

Transition matrix $P \in \mathbb{R}^{n \times n}$ with entries

$$P(x,y) = (1-c) \frac{G(x,y)}{\sum_{y' \in S} G(x,y')} + c \frac{1}{n}$$

State space $S = \{ \text{Set of all web pages} \}$ with size n = |S|

Transition matrix $P \in \mathbb{R}^{n \times n}$ with entries

$$P(x,y) = (1-c) \frac{G(x,y)}{\sum_{y' \in S} G(x,y')} + c \frac{1}{n}$$

Adjacency matrix $G \in \{0,1\}^{n \times n}$ with entries

$$G(x,y) =$$

State space $S = \{ \text{Set of all web pages} \}$ with size n = |S|

Transition matrix $P \in \mathbb{R}^{n \times n}$ with entries

$$P(x,y) = (1-c) \frac{G(x,y)}{\sum_{y' \in S} G(x,y')} + c \frac{1}{n}$$

Adjacency matrix $G \in \{0,1\}^{n \times n}$ with entries

$$G(x,y) = \begin{cases} 1 & \text{if } x \to y \\ 0 & \text{else} \end{cases}$$

State space $S = \{ \text{Set of all web pages} \}$ with size n = |S|

Transition matrix $P \in \mathbb{R}^{n \times n}$ with entries

$$P(x,y) = (1-c) \frac{G(x,y)}{\sum_{y' \in S} G(x,y')} + c \frac{1}{n}$$

Adjacency matrix $G \in \{0,1\}^{n \times n}$ with entries

$$G(x,y) = \begin{cases} 1 & \text{if } x \to y \\ 0 & \text{else} \end{cases}$$

Damping factor $c \in [0, 1]$ (classically c = 0.85)

State space $S = \{ \text{Set of all web pages} \} \text{ with size } n = |S|$

Transition matrix $P \in \mathbb{R}^{n \times n}$ with entries

$$P(x,y) = (1-c) \frac{G(x,y)}{\sum_{y' \in S} G(x,y')} + c \frac{1}{n}$$

Adjacency matrix $G \in \{0,1\}^{n \times n}$ with entries

$$G(x,y) = \begin{cases} 1 & \text{if } x \to y \\ 0 & \text{else} \end{cases}$$

Damping factor $c \in [0, 1]$ (classically c = 0.85)

Interpretation:

 X_t = Location of a surfer at time t who browses the web by randomly selecting hyperlinks

State space $S = \{ \text{Set of all web pages} \}$ with size n = |S|

Transition matrix $P \in \mathbb{R}^{n \times n}$ with entries

$$P(x,y) = (1-c) \frac{G(x,y)}{\sum_{y' \in S} G(x,y')} + c \frac{1}{n}$$

Adjacency matrix $G \in \{0,1\}^{n \times n}$ with entries

$$G(x,y) = \begin{cases} 1 & \text{if } x \to y \\ 0 & \text{else} \end{cases}$$

Damping factor $c \in [0, 1]$ (classically c = 0.85)

Interpretation:

 X_t = Location of a surfer at time t who browses the web by randomly selecting hyperlinks

c =Probability of the surfer deciding to teleport to a random page

Contents

Examples of Markov chains

Time evolution

Path probabilities and state frequencies

Simulation of Markov chains

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state \boldsymbol{x} at time t

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state x at time t

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state x at time t

$$\mu_t(x) \in [0,1]$$
 for all $x \in S$

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state x at time t

$$\mu_t(x) \in [0,1]$$
 for all $x \in S$

$$\sum_{x \in S} \mu_t(x) =$$

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state x at time t

$$\mu_t(x) \in [0,1]$$
 for all $x \in S$

$$\sum_{x \in S} \mu_t(x) = \sum_{x \in S} \mathbb{P}(X_t = x) =$$

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state x at time t

$$\mu_t(x) \in [0,1]$$
 for all $x \in S$

$$\sum_{x \in S} \mu_t(x) = \sum_{x \in S} \mathbb{P}(X_t = x) = 1$$

Distribution of the chain at time t is a vector μ_t with entries

$$\mu_t(x) = \mathbb{P}(X_t = x), \quad x \in S$$

telling the probability of finding the chain in state x at time t

Properties

$$\mu_t(x) \in [0,1]$$
 for all $x \in S$

$$\sum_{x \in S} \mu_t(x) = \sum_{x \in S} \mathbb{P}(X_t = x) = 1$$

 μ_0 is called the initial distribution of the chain

$$\mu_{t+1}(y) =$$

$$\mu_{t+1}(y) = \mathbb{P}(X_{t+1} = y)$$

$$\mu_{t+1}(y) = \mathbb{P}(X_{t+1} = y)$$

= $\sum_{x \in S} \mathbb{P}(X_t = x) \mathbb{P}(X_{t+1} = y \mid X_t = x)$

$$\mu_{t+1}(y) = \mathbb{P}(X_{t+1} = y)$$

$$= \sum_{x \in S} \mathbb{P}(X_t = x) \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

$$= \sum_{x \in S} \mu_t(x) P(x, y)$$

The probability of finding the chain in state y at time t+1 equals

$$\mu_{t+1}(y) = \mathbb{P}(X_{t+1} = y)$$

$$= \sum_{x \in S} \mathbb{P}(X_t = x) \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

$$= \sum_{x \in S} \mu_t(x) P(x, y)$$

Hence

$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y)$$

The probability of finding the chain in state y at time t+1 equals

$$\mu_{t+1}(y) = \mathbb{P}(X_{t+1} = y)$$

$$= \sum_{x \in S} \mathbb{P}(X_t = x) \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

$$= \sum_{x \in S} \mu_t(x) P(x, y)$$

Hence

$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y)$$

When μ_t and μ_{t+1} are interpreted as row vectors, we can write this is in matrix form as

$$\mu_{t+1} =$$

The probability of finding the chain in state y at time t+1 equals

$$\mu_{t+1}(y) = \mathbb{P}(X_{t+1} = y)$$

$$= \sum_{x \in S} \mathbb{P}(X_t = x) \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

$$= \sum_{x \in S} \mu_t(x) P(x, y)$$

Hence

$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y)$$

When μ_t and μ_{t+1} are interpreted as row vectors, we can write this is in matrix form as

$$\mu_{t+1} = \mu_t P$$

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

Proof.

(i) Claim OK for t = 0 because

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

Proof.

(i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$.

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$. Then

$$\mu_{t+1} =$$

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$. Then

$$\mu_{t+1} = \mu_t P$$

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$. Then

$$\mu_{t+1} = \mu_t P = (\mu_0 P^t) P$$

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$. Then

$$\mu_{t+1} = \mu_t P = (\mu_0 P^t) P = \mu_0 (P^t P)$$

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$. Then

$$\mu_{t+1} = \mu_t P = (\mu_0 P^t) P = \mu_0 (P^t P) = \mu_0 P^{t+1}.$$

Theorem

The distribution of the chain at time instant $t=0,1,2,\ldots$ can be computed by

$$\mu_t = \mu_0 P^t,$$

where P^t is the t-th power of the transition matrix P.

Proof.

- (i) Claim OK for t = 0 because $P^0 = I$ is the identity matrix.
- (ii) **Induction**: Assume claim OK for time $t \ge 0$. Then

$$\mu_{t+1} = \mu_t P = (\mu_0 P^t) P = \mu_0 (P^t P) = \mu_0 P^{t+1}.$$

Hence claim OK also for time t+1.

Example: Weather prediction

If it is cloudy on Mon, then what is the probability that it is cloudy also on Wed? What about Sat? ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} \textbf{\textit{P}} \ = \ \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

If it is cloudy on Mon, then what is the probability that it is cloudy also on Wed? What about Sat? ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution $\mu_0(x) = \mathbb{P}(X_0 = x)$

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) =$

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) =$

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy})$

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) =$

$$\begin{array}{c} \textbf{\textit{P}} \ = \ \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) =$

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny})$

$$\begin{array}{c} \textbf{\textit{P}} \ = \ \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny}) = 0$

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny}) = 0$
Initial distribution as row vector equals $\mu_0 = [1, 0]$

If it is cloudy on Mon, then what is the probability that it is cloudy also on Wed? What about Sat? ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny}) = 0$
Initial distribution as row vector equals $\mu_0 = [1, 0]$

Wed weather distribution $\mu_2 = \mu_0 P^2$ equals

$$[\mu_2(1), \, \mu_2(2)] = [1, \, 0] \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^2$$

If it is cloudy on Mon, then what is the probability that it is cloudy also on Wed? What about Sat? ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} \textbf{\textit{P}} \ = \ \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny}) = 0$
Initial distribution as row vector equals $\mu_0 = [1, 0]$

Wed weather distribution $\mu_2 = \mu_0 P^2$ equals

$$[\mu_2(1), \, \mu_2(2)] = [1, \, 0] \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^2 = [0.740, \, 0.260]$$

If it is cloudy on Mon, then what is the probability that it is cloudy also on Wed? What about Sat? ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} \textbf{\textit{P}} \ = \ \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny}) = 0$
Initial distribution as row vector equals $\mu_0 = [1, 0]$

Wed weather distribution $\mu_2 = \mu_0 P^2$ equals

$$[\mu_2(1), \, \mu_2(2)] = [1, \, 0] \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^2 = [0.740, \, 0.260]$$

Sat weather distribution $\mu_5 = \mu_0 P^5$ equals

$$[\mu_5(1), \, \mu_5(2)] = [1, \, 0] \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^5$$

If it is cloudy on Mon, then what is the probability that it is cloudy also on Wed? What about Sat? ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Initial distribution
$$\mu_0(x) = \mathbb{P}(X_0 = x)$$

 $\mu_0(1) = \mathbb{P}(X_0 = 1) = \mathbb{P}(\mathsf{Mon} = \mathsf{cloudy}) = 1$
 $\mu_0(2) = \mathbb{P}(X_0 = 2) = \mathbb{P}(\mathsf{Mon} = \mathsf{sunny}) = 0$
Initial distribution as row vector equals $\mu_0 = [1, 0]$

Wed weather distribution $\mu_2 = \mu_0 P^2$ equals

$$[\mu_2(1), \, \mu_2(2)] = [1, \, 0] \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^2 = [0.740, \, 0.260]$$

Sat weather distribution $\mu_5 = \mu_0 P^5$ equals

$$[\mu_5(1), \, \mu_5(2)] = [1, \, 0] \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^5 = [0.715, \, 0.285]$$

Transition matrix: Properties

$$P(x, y) = \mathbb{P}(X_{t+1} = y | X_t = x)$$

Transition matrix: Properties

$$P(x,y) = \mathbb{P}(X_{t+1} = y \mid X_t = x)$$

- All entries are probabilities, so $0 \le P(x, y) \le 1$
- Every row sum equals

Transition matrix: Properties

$$P(x, y) = \mathbb{P}(X_{t+1} = y | X_t = x)$$

- All entries are probabilities, so $0 \le P(x, y) \le 1$
- Every row sum equals

$$\sum_{y \in S} P(x,y) = \sum_{y \in S} \mathbb{P}(X_{t+1} = y \mid X_t = x) = 1.$$

Many-step transition probabilities

Theorem

The probability that a Markov chain moves from state x to state y during t time steps can be computed as

$$\mathbb{P}(X_t = y \mid X_0 = x) = P^t(x, y),$$

where $P^t(x, y)$ is the entry of the t-th power of the transition matrix corresponding to row x and column y.

Many-step transition probabilities

Theorem

The probability that a Markov chain moves from state x to state y during t time steps can be computed as

$$\mathbb{P}(X_t = y \mid X_0 = x) = P^t(x, y),$$

where $P^t(x, y)$ is the entry of the t-th power of the transition matrix corresponding to row x and column y.

Proof.

Similar induction proof works. [Lecture notes, Thm 1.7]

Contents

Examples of Markov chains

Time evolution

Path probabilities and state frequencies

Simulation of Markov chains

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) =$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) =$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) \ = \ \mathbb{P}(X_0 = x_0) \mathbb{P}(X_1 = x_1 \, | \, X_0 = x_0)$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) \ = \ \mathbb{P}(X_0 = x_0) \mathbb{P}(X_1 = x_1 \, | \, X_0 = x_0) \ = \ \mu_0(x_0) P(x_0, x_1)$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

Proof.

=

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 \mid X_0 = x_0) = \mu_0(x_0)P(x_0, x_1)$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2)$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 \mid X_0 = x_0) = \mu_0(x_0)P(x_0, x_1)$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2)$$

$$= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_0 = x_0, X_1 = x_1)$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 \mid X_0 = x_0) = \mu_0(x_0)P(x_0, x_1)$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_0 = x_0, X_1 = x_1)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_1 = x_1)$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 \mid X_0 = x_0) = \mu_0(x_0)P(x_0, x_1)$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_0 = x_0, X_1 = x_1)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_1 = x_1)
= \mu_0(x_0) P(x_0, x_1) P(x_1, x_2).$$

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 \mid X_0 = x_0) = \mu_0(x_0)P(x_0, x_1)$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_0 = x_0, X_1 = x_1)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_1 = x_1)
= \mu_0(x_0) P(x_0, x_1) P(x_1, x_2).$$

For
$$t \geq 3$$
:

Theorem

For any Markov chain with initial distribution μ_0 and transition matrix P, the path probabilities can be computed by

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, \dots, X_t = x_t) = \mu_0(x_0)P(x_0, x_1)\cdots P(x_{t-1}, x_t).$$

Proof.

$$\mathbb{P}(X_0 = x_0, X_1 = x_1) = \mathbb{P}(X_0 = x_0)\mathbb{P}(X_1 = x_1 \mid X_0 = x_0) = \mu_0(x_0)P(x_0, x_1)$$

$$\mathbb{P}(X_0 = x_0, X_1 = x_1, X_2 = x_2)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_0 = x_0, X_1 = x_1)
= \mathbb{P}(X_0 = x_0, X_1 = x_1) \mathbb{P}(X_2 = x_2 \mid X_1 = x_1)
= \mu_0(x_0) P(x_0, x_1) P(x_1, x_2).$$

For t > 3: Induction...

Occupancy of states

The frequency of state y among the first t states is

$$N_t(y) = \sum_{s=0}^{t-1} 1(X_s = y),$$

Occupancy matrix M_t has entries

$$M_t(x,y) = \mathbb{E}(N_t(y) | X_0 = x).$$

The entry of the occupancy matrix M_t for row x and column y tells the expected number of times that a chain starting at x visits y during the first t time instants.

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let $\mathbb{P}_{\mathsf{x}}, \mathbb{E}_{\mathsf{x}}$ be the conditional probability and expectation given $X_0 = x$.

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let $\mathbb{P}_{\mathbf{x}}, \mathbb{E}_{\mathbf{x}}$ be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x}N_{t}(y) =$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let $\mathbb{P}_{\mathsf{x}}, \mathbb{E}_{\mathsf{x}}$ be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x} \mathcal{N}_{t}(y) = \mathbb{E}_{x} \sum_{s=0}^{t-1} 1(X_{s} = y)$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let $\mathbb{P}_{\mathsf{x}}, \mathbb{E}_{\mathsf{x}}$ be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x}N_{t}(y) = \mathbb{E}_{x}\sum_{s=0}^{t-1}1(X_{s}=y) = \sum_{s=0}^{t-1}\mathbb{E}_{x}1(X_{s}=y)$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let $\mathbb{P}_{\mathbf{x}}, \mathbb{E}_{\mathbf{x}}$ be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x} \mathcal{N}_{t}(y) = \mathbb{E}_{x} \sum_{s=0}^{t-1} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{E}_{x} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{P}_{x}(X_{s} = y)$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let \mathbb{P}_x , \mathbb{E}_x be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x} N_{t}(y) = \mathbb{E}_{x} \sum_{s=0}^{t-1} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{E}_{x} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{P}_{x}(X_{s} = y)$$

$$\implies M_t(x,y) =$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let \mathbb{P}_x , \mathbb{E}_x be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x} N_{t}(y) = \mathbb{E}_{x} \sum_{s=0}^{t-1} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{E}_{x} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{P}_{x}(X_{s} = y)$$

$$\implies M_t(x,y) = \mathbb{E}_x N_t(y)$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let \mathbb{P}_x , \mathbb{E}_x be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x}N_{t}(y) = \mathbb{E}_{x} \sum_{s=0}^{t-1} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{E}_{x} 1(X_{s} = y) = \sum_{s=0}^{t-1} \mathbb{P}_{x}(X_{s} = y)$$

$$\implies M_{t}(x, y) = \mathbb{E}_{x}N_{t}(y) = \sum_{s=0}^{t-1} \mathbb{P}_{x}(X_{s} = y)$$

Theorem

The occupancy matrix can be computed as $M_t = \sum_{s=0}^{t-1} P^s$.

Proof.

Let $\mathbb{P}_{\mathbf{x}}, \mathbb{E}_{\mathbf{x}}$ be the conditional probability and expectation given $X_0 = x$.

$$\mathbb{E}_{x}N_{t}(y) = \mathbb{E}_{x}\sum_{s=0}^{t-1}1(X_{s}=y) = \sum_{s=0}^{t-1}\mathbb{E}_{x}1(X_{s}=y) = \sum_{s=0}^{t-1}\mathbb{P}_{x}(X_{s}=y)$$

$$\implies M_t(x,y) = \mathbb{E}_x N_t(y) = \sum_{s=0}^{t-1} \mathbb{P}_x(X_s = y) = \sum_{s=0}^{t-1} P^s(x,y).$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

The 7-day occupancy matrix equals

$$M_7 =$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

The 7-day occupancy matrix equals

$$M_7 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^1 + \dots + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^6$$

Predict the expected number of cloudy days during a week starting with a sunny day.

($\mathbf{5} = \{1, 2\}$ with 1 =cloudy, 2 =sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

The 7-day occupancy matrix equals

$$M_7 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^1 + \dots + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^6 = \begin{bmatrix} 5.408 & 1.592 \\ 3.980 & 3.020 \end{bmatrix}$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P \\ \end{array} = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

The 7-day occupancy matrix equals

$$M_7 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^1 + \dots + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^6 = \begin{bmatrix} 5.408 & 1.592 \\ 3.980 & 3.020 \end{bmatrix}$$

$$M_7(\ ,\) =$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P \\ \end{array} = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

The 7-day occupancy matrix equals

$$M_7 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^1 + \dots + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^6 = \begin{bmatrix} 5.408 & 1.592 \\ 3.980 & 3.020 \end{bmatrix}$$

$$M_7(2,) =$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P \\ \end{array} = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

The 7-day occupancy matrix equals

$$M_7 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^1 + \dots + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^6 = \begin{bmatrix} 5.408 & 1.592 \\ 3.980 & 3.020 \end{bmatrix}$$

$$M_7(2,1) =$$

Predict the expected number of cloudy days during a week starting with a sunny day. ($S = \{1, 2\}$ with 1 = cloudy, 2 = sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

The 7-day occupancy matrix equals

$$M_7 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^1 + \dots + \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}^6 = \begin{bmatrix} 5.408 & 1.592 \\ 3.980 & 3.020 \end{bmatrix}$$

$$M_7(2,1) = 3.980$$

Contents

Examples of Markov chains

Time evolution

Path probabilities and state frequencies

Simulation of Markov chains

A stochastic representation of transition matrix P =

A stochastic representation of transition matrix P = Pair (f, U) where $f: S \times S' \to S$ is a deterministic function and $U \in S'$ is a random variable such that

$$\mathbb{P}(f(x,U)=y) = P(x,y)$$
 for all $x,y \in S$.

A stochastic representation of transition matrix P = Pair (f, U) where $f: S \times S' \to S$ is a deterministic function and $U \in S'$ is a random variable such that

$$\mathbb{P}(f(x,U)=y) = P(x,y)$$
 for all $x,y \in S$.

Simulation:

(i) Find a stochastic representation (f, U) of P.

A stochastic representation of transition matrix P = Pair (f, U) where $f: S \times S' \to S$ is a deterministic function and $U \in S'$ is a random variable such that

$$\mathbb{P}(f(x,U)=y) = P(x,y)$$
 for all $x,y \in S$.

Simulation:

- (i) Find a stochastic representation (f, U) of P.
- (ii) Find a random number generator which produces independent random variables U_1, U_2, \ldots with the same distribution as U.

A stochastic representation of transition matrix P = Pair (f, U) where $f: S \times S' \to S$ is a deterministic function and $U \in S'$ is a random variable such that

$$\mathbb{P}(f(x,U)=y) = P(x,y)$$
 for all $x,y \in S$.

Simulation:

- (i) Find a stochastic representation (f, U) of P.
- (ii) Find a random number generator which produces independent random variables U_1, U_2, \ldots with the same distribution as U.
- (iii) Compute $X_{t+1} = f(X_t, U_{t+1})$ for t = 0, 1, ...

A stochastic representation of transition matrix P = Pair (f, U) where $f: S \times S' \to S$ is a deterministic function and $U \in S'$ is a random variable such that

$$\mathbb{P}(f(x,U)=y) = P(x,y)$$
 for all $x,y \in S$.

Simulation:

- (i) Find a stochastic representation (f, U) of P.
- (ii) Find a random number generator which produces independent random variables U_1, U_2, \ldots with the same distribution as U.
- (iii) Compute $X_{t+1} = f(X_t, U_{t+1})$ for t = 0, 1, ...

Then $(X_0, X_1, X_2, ...)$ is a Markov chain with transition matrix P.

Develop a simulator for the weather model ($S = \{1,2\}$ with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1 =cloudy, 2 =sunny)

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Stochastic representation:

Let ${\color{red} \textit{U}}$ be a 10-sided die (uniformly distributed on ${\color{red} \textit{S'}} = \{1, \dots, 10\})$

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

	1	2	3	4	5	6	7	8	9	10
1										
2										

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1		
2										

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

	1	2	3	4	5	6	7	8	9	2
1	1	1	1	1	1	1	1	1	2	2
2										

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1					2

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2 2

Develop a simulator for the weather model (S =
$$\{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times S'\to\{1,2\}$ via the table

										10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Develop a simulator for the weather model (S =
$$\{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times S'\to\{1,2\}$ via the table

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Let \red{U} be uniformly distributed in the continuous interval $\red{S'}=[0,1]$

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with $1=$ cloudy, $2=$ sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times S'\to\{1,2\}$ via the table

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Let \red{U} be uniformly distributed in the continuous interval $\red{S'}=[0,1]$ and define a function $\red{f}:\{1,2\}\times S'\to\{1,2\}$ by

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times \ref{S'} \to \{1,2\}$ via the table

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Let \red{U} be uniformly distributed in the continuous interval $\red{S'}=[0,1]$ and define a function $\red{f}:\{1,2\}\times S'\to\{1,2\}$ by

$$f(x, u) =$$

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with $1=$ cloudy, $2=$ sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times S'\to\{1,2\}$ via the table

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Let \ref{U} be uniformly distributed in the continuous interval $\ref{S'} = [0,1]$ and define a function $\ref{f}: \{1,2\} \times \ref{S'} \to \{1,2\}$ by

$$f(x,u) = \begin{cases} 1 & \text{if } x = 1 \text{ and } u \leq 0.8 \end{cases}$$

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times S'\to\{1,2\}$ via the table

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Let \ref{U} be uniformly distributed in the continuous interval $\ref{S'} = [0,1]$ and define a function $\ref{f}: \{1,2\} \times \ref{S'} \to \{1,2\}$ by

$$f(x, u) = \begin{cases} 1 & \text{if } x = 1 \text{ and } u \le 0.8 \\ 1 & \text{if } x = 2 \text{ and } u \le 0.5 \end{cases}$$

Develop a simulator for the weather model (
$$S = \{1,2\}$$
 with 1=cloudy, 2=sunny)

$$\begin{array}{c} P = \begin{bmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{bmatrix}$$

Stochastic representation:

Let \ref{U} be a 10-sided die (uniformly distributed on $\ref{S'}=\{1,\ldots,10\}$) and define a function $\ref{f}:\{1,2\}\times S'\to\{1,2\}$ via the table

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	2	2
2	1	1	1	1	1	2	2	2	2	2

Stochastic representation 2:

Let \ref{U} be uniformly distributed in the continuous interval $\ref{S'} = [0,1]$ and define a function $\ref{f}: \{1,2\} \times \ref{S'} \to \{1,2\}$ by

$$f(x,u) = \begin{cases} 1 & \text{if } x = 1 \text{ and } u \leq 0.8\\ 1 & \text{if } x = 2 \text{ and } u \leq 0.5\\ 2 & \text{else} \end{cases}$$

Discussion: Dynamical systems vs. Markov chains

	Dynamical system	Markov chain
Initial state State evolution Law at time t Law evolution	Deterministic x_0 $x_{t+1} = f(x_t)$ δ_{x_t} $\mu_{t+1} = \delta_{f(x_t)}$	Random X_0 with law μ_0 $X_{t+1} = f(X_t, U_{t+1})$ μ_t $\mu_{t+1} = \mu_t P$

Every Markov chain admits a (nonunique) stochastic representation $X_{t+1} = f(X_t, U_{t+1})$ for some $f: S \times S' \to S$ and some $U_1, U_2, ...$

Next time we discuss Markov chains in the long run as $t o \infty$

Kirjallisuutta

R Durrett.

Essentials of Stochastic Processes.

2nd edition, Springer 2012.

D Williams.

Probability with Martingales.

Cambridge University Press 1991.

Aineistolähteet

Esityksessä käytetyt kuvat (esiintymisjärjestyksessä)

- 1. Image courtesy of think4photop at FreeDigitalPhotos.net
- 2. Image courtesy of Lisa Gansky from New York, NY, USA [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)]