Beachfront Bungalows

(Final Project)

Introduction

- Beachfront Bungalows International A new realty-services start-up
- Target Market Tech-Savvy high net-worth individuals
- Services Offered (using Machine Learning and AI) -
 - Property Appraisal for Buyers and Sellers
 - House Price Valuation through Analysis of Existing Listings (Datasets)

Project Goal

- o Live Demo Home appraisal by means of automated object recognition on Smartphones using TensorFlow
- o Computational Analysis Predictive Analyses of Home Prices using Machine Learning models
 - Create, train and test multiple "Supervised ML Models" for regression analysis of past and existing listings
 - Derive insights into the performance of different ML models by analyzing prediction accuracies for home prices
 - Determine which ML model is best suited for house price valuation based on multiple parameters.

Demo

GitHub Link: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android

Link to APK File: https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/*zip*/archive.zip

Machine Learning Models

Models:

- 1. Linear Regression
- 2. Multivariate Regression
- 3. Decision trees
- 4. Random Forests
- 5. Support Vector Machines (SVM)
- 6. Lasso
- 7. Ridge
- 8. K- Nearest Neighbor (K-nn)
- 9. Gradient Descent Boosting
- 10. K-fold Grid-Search with Cross Validation

(Note: One-Hot Encoding to transform categorical parameters)

Performance Metric:

- 1. Correlations
- 2. Mean-squared error
- 3. Accuracy

Core Phases:

- 1. Data Input
- 2. Exploratory Analysis
- 3. Features and Labels
- 4. Data Preparation / Cleaning
- 5. Model Creation
- 6. Training and Testing
- 7. Model Fine-Tuning
- 8. Accuracy Evaluation

Datasets

US:

- Coastal Areas Housing Prices in California
- Data from 1990 California census
- 20,640 property listings
- 10 variables each including longitude, latitude, total rooms, proximity to ocean, price etc.
- Source: Paper published in Statistics & Probability Letters 33.3 (1997): 291-297)

AUSTRALIA:

- Coastal Region Housing Prices in Melbourne
- Data scraped from publicly available weekly listings on www.domain.com.au
- 14,242 property listings
- 21 variables each including address, longitude, latitude, suburb, total rooms, bedrooms, bathrooms,

lot-size, price, postal code etc.

- Source - Kaggle.com

Results

ML Model	Mean Squared Error	Accuracy (R2)
Linear Regression	0.4503	0.549
Multivariate Regression	2.17e-13	<mark>1.0</mark>
	0.0156	0.998
Random Forests	0.0020	0.999
Support Vector Machines	0.8227	0.323
Lasso	0.0008	0.999
Ridge	0.0019	0.998
K-nn	0.81	1.0
Gradient Descent with Boosting	0.1668	.78
K-Fold Grid-Search with Cross-Validation	0.0216	1.0

Conclusions

- Key parameters affecting house price valuation?
 - Location (Zipcode / postal code, proximity to beach)
- Main challenges of machine learning?
 - Large unclean datasets and computational time Needs GPU or Cloud
- How to improve accuracy and reduce overfitting?
 - Cross-Validation, Lasso / Ridge Regression (Regularization), Scaling, Boosting
- Does overall performance depend on feature selection?
 - Correlated Features and One-Hot Encoding. Drop unrelevant / uncorrelated features
- Effects of k-fold Cross-Validation?
 - Improves over-fitting, Effectively uses small data-sets
- Did certain algorithms perform poorly on both datasets? Why?
 - Yes, Linear Regression because most natural processes tend to be non-linear
- Which supervised models are better for predictive analysis?
 - Yes, Multivariate Regression, Lasso, Ridge, Random Forests performed well.

