Statistical Mechanics Physics 406 at University of Michigan

EVAN CARPENTER

Winter Semester 2022

	1: States, Probability and Binomial Distributionp.	
Lecture	2: Ensembles	2
Lecture	3: Finding total microstate	2
Lecture	4: More on Microcanonical Ensemblep.	2
Lecture	5:	3

Lecture 1. (Jan 05) States, Probability and Binomial Distribution

Figure 1: Phase space of 1-D particle

Lecture 2. (Jan 10) Ensembles

Lagrange multipliers

$$S = -k \sum_{r} p_r \ln(p_r) \tag{0.1}$$

Microcanonical ensemble: All accessible microstate are equally probable

Lecture 3. (Jan 12) Finding total microstate

N particles in volume V with energy between $E, E + \delta E$. Counting number of microstate by using phase space

simplifying example : a 1-D particle has only x and p. Plot in phase space Example in harmonic oscillator with ellipse and shading in phi(E) and Omega(E) Include text in caption explaining equations below it. Moving to 3-D talk about degrees of freedom and volume of h_0 .

Integrating to get Phi(E) with multiintegrals and then taylor approx to get Omega

Quantum Description—¿ specify microstate with quantum numbers example with simp harmon oscill

Lecture 4. (Jan 19) More on Microcanonical Ensemble

 $\Omega(E) = \#$ of states with energy between $E + \delta E$

Describing energy levels of each particle, think N-cube

Now particle can interact!! Mechanical interactions and thermal interactions (both macro descriptions).

1 isolated system at equilibrium \rightarrow same system but with partition, now 2 systems. A^0 is comprised of A, A'. Macro parameters of A^0 are for both states (N, V, E, T, ...).

Thermal Interaction External parameters of A, A' are fixed but mean energy transferred from one system to the other as a result of purely thermal interactions called heat. Probabilities of energy states can change when systems interact P(r)

Mechanical Interaction External Parameters of A, A' change, one does work on the other! This causes the mean energies of A, A' to change.

$$\overline{E} = \sum_{r} p_r E_r$$

Pure thermal and purely mech example in inf sqwell

Lecture 5. (Jan 24)

Pure thermal interaction changes p_r Pure mechanical interaction changes E_r

March 23rd

Stable vs unstable equilibrium

use gibbs and helmholts free energy

isolated system vs in contact with temp or pressure reservoir

equilibrium in contact

system A changes states, exchanging heat or work. How much work can it do?

Isolated system{Reservoir(A, T0,P0)-work source} A does W^* , energy, volume, and entropy increase by $\Delta E, \Delta V, \Delta S$

 $\Delta E, \Delta V, \Delta S$ change of volume and entropy is opposite of change in A bc of first law $W^* + \Delta E - \underbrace{P_0 \Delta V_0 + T \Delta S_0}_{reservoir} = 0$

2nd law says $\Delta(S + S_0) \geq 0$ which means $\Delta S_0 \geq -\Delta S$

Sub in to first law equation

 $W^* \leq -\Delta(E - T_0S + P_0V) = -\Delta G_0$ Not Gibbs free energy bc T_0, P_0 refer to reservoir, not to A, mixed with both variables. $G_0 = G$ when A is in equilibrium with res

Since system is isolated, it starts and ends at $T, P = T_0, P_0$

meaning $W^* \leq -\Delta(E - TS + PV) = -\Delta G$ which is Gibb free energy.

System has fixed volume too, $\Delta V = 0$

$$W^* \le -\Delta(E - T_0 S) = -\Delta G$$

if $T = T_0 \to W^* \le -\Delta F$ Helmholtz for A.

 $W^* \leq -\Delta G$ in general

 $W^* \leq -\Delta F$ for fixed volume

So $-\Delta G$ and $-\Delta F$ are maximum work that can be done—i "Free" Energy!

Spontaneous process defined as process with $W^* = 0$

$$0 \le -\Delta G_0 \to \Delta G_0 \le 0 \to (G_{0f} - G_{0i}) \le 0 \to \boxed{G_{0f} \le G_{0i}}$$

For fixed volume: $\Delta F_0 \leq 0$

In equilibrium, systems in contact with T,P reservoirs, there can be no change in gibbs or helmholtz, meaning that final can't be less than initial, meaning that it must be a minimum! analogue (?) with of $S = S_{max}$ for isolated sys in eq

Stability of thermo system. system A in reservoir, res has T_0, P_0 . How do perterbations/fluctuations change G_0 ? Thinking abt stabel vs unstable equilibium.

Begin by characterizing A by T, V.

$$\left(\frac{\partial G_0}{\partial T}\right)_{\!\!V}\!\!=0, \left(\frac{\partial G_0}{\partial V}\right)_{\!\!T}\!\!=0$$

Expanding about minimum G_min .

$$G_0 = G_{min} + \frac{1}{2} \left. \left(\frac{\partial^2 G_0}{\partial T^2} \right)_V \right|_{G = G_{min}} \left(\Delta T \right)^2 + \frac{1}{2} \left. \left(\frac{\partial^2 G_0}{\partial V^2} \right)_T \right|_{G = G_{min}} \left(\Delta V \right)^2 + \left. \frac{\partial G_0}{\partial TV} \right. \right|_{G = G_{min}} \Delta T \Delta V + \dots$$

Now calculate derivs.

$$\left(\frac{\partial G_0}{\partial T}\right)_V = \left(\frac{\partial E}{\partial T}\right)_V - T_0 \left(\frac{\partial S}{\partial T}\right)_V = T \left(\frac{\partial S}{\partial T}\right)_V - T_0 \left(\frac{\partial S}{\partial T}\right)_V$$

So
$$T = T_0$$

$$\left(\frac{\partial G_0}{\partial V}\right)_T = \left(\frac{\partial E}{\partial V}\right)_T - T_0 \left(\frac{\partial S}{\partial V}\right)_T = T \left(\frac{\partial S}{\partial T}\right)_V - p - T_0 \left(\frac{\partial S}{\partial T}\right)_V + p_0 = 0$$

so
$$P = P_0$$

$$\begin{split} \left(\frac{\partial^2 G_0}{\partial V^2}\right)_T &= T \left(\frac{\partial^2 S}{\partial V^2}\right)_T - \left(\frac{\partial P}{\partial V}\right)_T - T_0 \left(\frac{\partial^2 S}{\partial V^2}\right)_T = - \left(\frac{\partial P}{\partial V}\right)_T = \frac{1}{V\kappa} \\ \left(\frac{\partial^2 G_0}{\partial T^2}\right)_V &= T \left(\frac{\partial^2 S}{\partial T^2}\right)_V + \left(\frac{\partial S}{\partial T}\right)_V - T_0 - \left(\frac{\partial^2 S}{\partial T^2}\right)_V \\ &= \left(\frac{\partial S}{\partial T}\right)_V = \frac{C_V}{T} \\ \frac{\partial G_0}{\partial TV} &= T \frac{\partial S}{\partial TV} - T_0 \frac{\partial S}{\partial TV} = 0 \end{split}$$

Combining them all together to get:

$$G_0 = G_{min} + \underbrace{\frac{C_V}{2T_0} (\Delta T)^2 + \frac{1}{2V\kappa} (\Delta V)^2}_{\text{Must be } > 0 \text{ for stable}}$$

So stable if C_V and $\kappa > 0$

Monday March 28th

Phase Transitions as applications of the tdymic instability, aka C_V or $\kappa < 0$. Phase transitions accompany changes of internal energy of system.

Change in crystaline structure.

Change in conductor to superconductor.

Must consider non ideal gasses. Van-der Waals gas.

For 1 mol of VDW gas:

$$\left(p + \frac{a}{v^2}\right)(v - b) = RT$$

Consider isotherms on p-v diagram in Desmos, there is a section for low T where $\frac{\partial P}{\partial V} > 0$ System with 2 possible phases in contact with temp and pressure reservoir. Gibbs free energy.

$$G(T, P) \equiv G(T, P)/\text{mole}$$
 $\nu_i \equiv \# \text{ moles in phase } i$

For equilibrium

$$G_T = \nu_1 g_1 + \nu_2 g_2$$

must be a minimum. Constraint is that

$$\nu_1 + \nu_2 = \nu$$

Three possibilities

- $g_1 < g_2$ At equilibrum $G_T = \nu g_1$
- $g_1 > g_2$ At equilibrium $G_T = \nu g_2$
- $g_1 = g_2$ At equilibrium $G_T = \nu_1 g_1 + \nu_2 g_2$

Phase diagram is a P-T diagram with lines that represent $g_i = g_j$ for two phases i, j For phase change:

$$g_1 = g_2$$

$$E_1 - TS_1 + PV_1 = E_2 - TS_2 + PV_2$$

$$(E_1 - E_2) - \underbrace{T(S_1 - S_2)}_{Q} + P(V_1 - V_2) = 0$$

First order phase transitions.

Characterized by:

- g(T, P) is continuous across boundary between phases.
- The first partial derivatives are discontinuous. $\left(\frac{\partial g}{\partial P}\right)_T = v$, $\left(\frac{\partial g}{\partial T}\right)_P = -s$ So in first order latent heat is absorbed or given off. take differentials a nd group together to get

$$\Delta \frac{\partial g}{\partial P} = v_1 - v_2 = \Delta v \text{ Change in molar volume}$$

$$\Delta \frac{\partial g}{\partial T} = -(s_1 - s_2) = -\Delta s \text{ Change in molar entropy}$$

the amount of molar latent heat that must be absorbed is l so $\Delta S = l/T$

$$\frac{\partial P}{\partial T} = \frac{\Delta S}{\Delta V} = \frac{l}{T\Delta V}$$

Clausius-Clapeyron equation.

First order phase transitions are characterized by latent heat produced.

Second order phase transitions: both g and 1st derivatives are cont but second derivatives are not,,, no latent heat.

Application of Clausius-Clapeyron equation.

consider liquid vapor, find vapor pressure in equilibrium with liquid.

Simplifying asssump:

- $\Delta V = V_{vap} V_{liq} \approx V_{vap} \rightarrow V_{liq} << V_{vap}$
- PV = RT
- Asssume $l \neq l(T)$

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{l}{T} \frac{1}{V_{vap}} = \frac{l}{T} \frac{P}{RT} = \frac{lP}{RT^2}$$

$$\frac{dp}{p} = \frac{l}{RT^2} dt$$

$$P = P_0 e^{-l/RT}$$