01.09.2020

Announcements

Mini Quiz – 2 today (hopefully!)

Mean/Average Filter

Note: Coefficients sum to 1

N

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

$$\longrightarrow \underline{I'(u,v)} \leftarrow \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j) \bullet \underline{H(i,j)}$$

Effect of Mask Size

Original Image

[3×3]

[5×5]

[7x7]

Repeated Averaging Using Same Filter

NOTE: Can get the <u>effect</u> of larger filters by smoothing repeatedly with smaller filters

Gaussian Smoothing

Mask weights are samples of a zero-mean 2-D Gaussian

I	4	6	4	1
4	16	26	16	4
6	26	43	26	6
4	16	26	16	4
I	4	6	4	I

 5×5 Gaussian filter, $\sigma=1$

$$g_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Meru Prastaara, derived from Pingala's formulae (2 BCE), Manuscript from Raghunath Temple Library, Jammu

$$g_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

E.g. $s = 7 \times 7$

Index N	Coefficients S	um=2 ^N
0	1	1
1	1 1	2
2	1 2 1	4
3	1 3 3 1	8
4	1 4 6 4 1	16
5	1 5 10 10 5 1	32
6	1 6 <u>15 2</u> 0 15 6 1	64
7	1 7 21 35 35 21 7 1	128
8	1 8 28 56 70 56 28 8 1	256
9	1 9 36 84 126 126 84 36 9 1	512
10	1 10 45 120 210 252 210 120 45 10 1	1024
11	1 11 55 165 330 462 462 330 165 55 11 1	2048
12	1 12 66 220 495 792 924 792 495 220 66 12 1	4096

$$g_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Index N	Coefficients	Sum=2 ^N
0	1	1
1	1 1	2
2	1 2 1	4
3	1 3 3 1	8
4	1 4 6 4 1	16
5	1 5 10 10 5 1	32
6	1 6 15 (20) 15 6 1	64
7	1 7 21 35 35 21 7 1	128
8	1 8 28 56 70 56 28 8 1	256
9	1 9 36 84 126 126 84 36 9 1	512
10	1 10 45 120 210 252 210 120 45 10 1	1024
11	1 11 55 165 330 462 462 330 165 55 11 1	2048
12	1 12 66 220 495 792 924 792 495 220 66 12	1 4096

Gaussian Smoothing

Mask weights are samples of a zero-mean 2-D Gaussian

I	4	6	4	I
4	16	26	16	4
6	26	43	26	6
4	16	26	16	4
I	4	6	4	I

256

 5×5 Gaussian filter, $\sigma=1$

Gaussian Smoothing – Effect of sigma

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\{-(x^2 + y^2)/2\sigma^2\}$$

Original Image (Sigma 0)

Gaussian Blur (Sigma 0.7)

Gaussian Blur (Sigma 2.8) ←

Edge detection

 Goal: Identify sudden changes (discontinuities) in an image

- Intuitively, most semantic and shape information from the image can be encoded in the edges
- More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Essentially what area V1 does in our visual cortex.

First Derivative (Digital approximation)

$$\frac{\partial f(x,y)}{\partial x} \sim f[x+1,y] - f[x,y]$$

Second Derivative (Digital Approximation)

$$\frac{\partial^2 f(x,y)}{\partial x^2} \sim (f[x+1,y] - f[x,y]) - (f[x,y] - f[x-1,y])$$

First derivative
 Second derivative

$$\frac{f(x+h,y)-f(x-h,y)}{2h} \longrightarrow \underbrace{\begin{array}{c} -1 & 0 & 1 \\ x\text{-derivative} \end{array}}$$

Image Gradient and Edges

$$\frac{f(x,y+h) - f(x,y-h)}{2h} \longrightarrow \frac{\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}}{y \text{-derivative}}$$

Dr. Prewitt

https://nihrecord.nih.gov/sites/recordNIH/files/pdf/1984/NIH-Record-1984-03-13.pdf

Prewitt Edge Filter

Edge is perpendicular to gradient

Gradient Magnitude and Orientation

2-D Laplacian Filter

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

Edge Masks – Sobel, Laplacian

Edge Masks – Sobel, Laplacian

Image $\nabla^2 I(u,v)$ Sharpening I(u, v)I'(u, v) $\nabla^2 I(u,v) + 128$ (For visualization)

Sharpening (Unsharp Masking)

Highboost Filtering

What does blurring take away?

· Let's add it back:

Unsharp Masking vs Highboost Filtering

Unsharp Masking / Highboost Filtering as Spatial Filters

- If A=I, we get unsharp masking. $I'(u,v)=I(u,v)+\nabla^2 I(u,v)$
- If A>I, original image is added back to detail image (highboost filtering).

Corner cases, Padding

```
M = 3
For each valid location [x,y] in S
         a \leftarrow Average of intensities in a M x M neighborhood centered on [x,y]
                                                                                            valid
        D[x,y] = round(a)
  0
     O
   120
       190
            140
                150
                     200
                                                                                   3×3
   17
                     27
                                         1/9
       123
            150
                 73
                                         1/9
                           х
            140
                150
       178
                     18
                               1/9
                                         1/9
                     87
                                                         5 15
        5×5
```

Image Padding

zero

These pixel values are replicated from boundary pixels. Center of kernel

replicate

References

► GW Chapter – 3.4.1,3.5.1,3.6

Spatial Domain Filtering - Approaches

Linear (Average, Gaussian, Prewitt, Sobel, Laplacian)

Non-linear

Non-linear Spatial Filters (max)

After applying max filter

Non-linear Spatial Filters (min)

salt noise

Non-linear Spatial Filters (median) 6 6 6 6 6 210

salt & pepper noise

After applying median filter

max, min, median → also known as rank / order statistic filters

Other Spatial Filters

- ▶ Geometric mean
- ▶ Harmonic mean
- Contra harmonic mean
- ► Mid Point filter ✓ ² ✓ 50 7 (
- Alpha trimmed mean filter

Bilateral Filtering (Edge preserving smoothing)

Linear Spatial Filter
$$d(i,j,k,l) = e^{-\frac{1}{2}\sigma_{d}^{2}}$$

$$d(i,j,k,l)$$

$$I'(u,v) \leftarrow \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j) \bullet H(i,j)$$

$$f(k,l)$$

$$g(i,j) = \frac{k}{k,l} d(i,j,k,l)$$

References

► GW Chapter – 3.4