practice-Copy1

March 8, 2020

```
[52]: from IPython.display import Image
      from sklearn.externals.six import StringIO
      from sklearn.tree import export_graphviz
      import pydotplus
      import imblearn
      import lightgbm
      import hyperopt
[30]: import pandas as pd
      import numpy as np
      import matplotlib
      import matplotlib.pyplot as plt
      import seaborn as sns
      import statsmodels.api as sm
      %matplotlib inline
      import plusmodules as pm
      import warnings
      warnings.filterwarnings('ignore')
[17]: df=pd.read_csv('US_Heart_Patients.csv')
[29]: df=df.sample(frac=1, random_state=3)
[19]: df.head()
[19]:
            male
                  age
                       education currentSmoker
                                                 cigsPerDay
                                                             BPMeds
      3546
                   54
                             1.0
                                                        0.0
                                                                 0.0
      1127
                   42
                             3.0
                                              1
                                                       10.0
                                                                 0.0
      3088
                             1.0
                                              0
                                                        0.0
                                                                 1.0
               0
                   58
      437
               1
                   45
                             1.0
                                              1
                                                       30.0
                                                                0.0
      3188
               1
                   63
                             1.0
                                              0
                                                        0.0
                                                                0.0
            prevalentStroke prevalentHyp diabetes totChol sysBP
                                                                     diaBP
                                                                               BMI
      3546
                                                       241.0 106.0
                                                                       77.0 27.64
                                                  0
                                                                            24.38
      1127
                          0
                                        0
                                                  0
                                                       253.0 109.0
                                                                       74.0
      3088
                                                       274.0 159.0
                                                                       90.0
                                                                            28.40
                          1
                                        1
                                                  0
      437
                          0
                                        0
                                                  0
                                                       240.0 141.0
                                                                       89.0 25.01
```

	3188		0	1		0	190.0	148.0	90.0	27.13	
		hoom+Do+	o m]oogo	e TenYearCHD							
	3546	heartRat 78.	•								
	1127	88.									
	3088	72.									
	437	95.									
	3188	72.	0 86.0	0	,						
[20]:	df										
[20]:		male ag	e educati	on currentS	molron	o i mo	DorDou	BPMeds	\		
[20].	3546	_		0	0	CIR	PerDay 0.0	0.0	\		
	1127	0 4		3.0	1		10.0	0.0			
	3088	0 5		0	0		0.0	1.0			
	437	1 4		0			30.0	0.0			
	3188	1 6		0	1 0		0.0	0.0			
	3100		ى 			••		0.0			
	789			0	0		0.0	0.0			
	968			0	0		0.0	0.0			
	1667	0 5		0	1		3.0	0.0			
	3321	0 5		2.0	0		0.0	0.0			
	1688	0 4		.0	1		15.0	0.0			
		prevalen	tStroke p	revalentHyp	diabe	tes	totChol	sysBP	diaBP	BMI	\
	3546		0	0		0	241.0	106.0	77.0	27.64	
	1127		0	0		0	253.0	109.0	74.0	24.38	
	3088		1	1		0	274.0	159.0	90.0	28.40	
	437		0	0		0	240.0	141.0	89.0	25.01	
	3188		0	1		0	190.0	148.0	90.0	27.13	
			•••	•••		•••		•••			
	789		0	1		0	260.0	159.5	91.0	27.01	
	968		0	1		0	266.0	137.0	88.0	29.76	
	1667		0	1		0	285.0	145.0	100.0	30.14	
	3321		0	1		1	265.0	143.5	85.0	21.68	
	1688		0	0		0	155.0	121.0	86.0	23.16	
		heartRat	e glucose	e TenYearCHD	١						
	3546	78.	•								
	1127	88.									
	3088	72.									
	437	95.									
	3188	95. 72.									
	2100	12.	00.0	,	•						
	 789	 62	 0 66 0)						
	789	 68.									
		 68. 80. 80.	0 80.0	0)						

```
3321 91.0 107.0 0
1688 70.0 59.0 0
```

[4240 rows x 16 columns]

```
[21]: df['TenYearCHD'].value_counts()
```

[21]: 0 3596 1 644

Name: TenYearCHD, dtype: int64

```
[22]: df['TenYearCHD'].value_counts(normalize=True).plot.bar()
```

[22]: <matplotlib.axes._subplots.AxesSubplot at 0x2b0bcaca390>

[23]: mv=df.isnull().sum()
mv[mv>0]

[23]: education 105
 cigsPerDay 29
 BPMeds 53
 totChol 50
 BMI 19
 heartRate 1
 glucose 388
 dtype: int64

```
[24]: df=df.fillna(method='ffill')
      df.head()
      # filling all the null values using forward filing method in order not to \Box
       \hookrightarrow change the distribution
[24]:
                       education currentSmoker
                                                  cigsPerDay
                                                              BPMeds \
            male
                  age
      3546
                   54
                             1.0
                                                         0.0
                                                                 0.0
      1127
                   42
                             3.0
                                                        10.0
               0
                                               1
                                                                 0.0
      3088
               0
                   58
                             1.0
                                               0
                                                         0.0
                                                                 1.0
      437
                   45
                             1.0
                                                        30.0
                                                                 0.0
               1
                                               1
      3188
               1
                   63
                             1.0
                                               0
                                                         0.0
                                                                 0.0
            prevalentStroke prevalentHyp diabetes totChol sysBP
                                                                       diaBP
                                                                                BMI \
                                                        241.0 106.0
                                                                        77.0 27.64
      3546
                          0
                                         0
                                                   0
                                                                        74.0 24.38
      1127
                          0
                                         0
                                                        253.0 109.0
                                                   0
      3088
                          1
                                         1
                                                   0
                                                        274.0 159.0
                                                                        90.0 28.40
      437
                          0
                                         0
                                                   0
                                                        240.0 141.0
                                                                        89.0 25.01
      3188
                          0
                                                        190.0 148.0
                                                                        90.0 27.13
                                         1
                                                   0
            heartRate glucose TenYearCHD
      3546
                 78.0
                          74.0
      1127
                 88.0
                          60.0
                                          0
      3088
                 72.0
                          81.0
                                          0
      437
                 95.0
                          76.0
                                          0
      3188
                 72.0
                          86.0
                                          0
[13]: sns.distplot(df['glucose'].dropna())
      # this plot is for column glucose without null values
```

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x2274bb30630>

[14]: sns.distplot(df['glucose'])
#this plot is after filling the null values with the median value for column

→glucose

[14]: <matplotlib.axes._subplots.AxesSubplot at 0x227502cd7f0>


```
[15]: df['glucose'].describe()
```

```
[15]: count
                4240.000000
      mean
                  81.780896
                  23.257604
      std
      \min
                  40.000000
      25%
                  71.000000
      50%
                  78.000000
      75%
                  87.000000
                 394.000000
      max
```

Name: glucose, dtype: float64

if we see the values that we have change in the distribution in order not to change the distribution we just change the format of filling the null values to forward and backward filling

```
[16]: sns.pairplot(df, hue='TenYearCHD')
```

[16]: <seaborn.axisgrid.PairGrid at 0x2274bc53a20>


```
[17]: plt.figure(figsize=(15,10))
sns.heatmap(df.corr(), annot=True)
```

[17]: <matplotlib.axes._subplots.AxesSubplot at 0x227573f2320>

[18]: import plusmodules as pm
pm.corr_matrix(df)


```
[19]: cols=list(df.columns)

for col in cols:
    sns.boxplot(y=df[col],x=df['TenYearCHD'])
    plt.show()
```



```
[20]: df0= df[df['TenYearCHD']==0]
df1= df[df['TenYearCHD']==1]
```

```
sns.distplot(df0['BMI'])
sns.distplot(df1['BMI'])
```

[20]: <matplotlib.axes._subplots.AxesSubplot at 0x2275bb69518>


```
[21]: df0= df[df['TenYearCHD']==0]
  df1= df[df['TenYearCHD']==1]
  sns.distplot(df0['age'])
  sns.distplot(df1['age'])
```

[21]: <matplotlib.axes._subplots.AxesSubplot at 0x2275bcbce10>

pd.DataFrame([vif(con.values , i) for i in range(con.shape[1])], index=con.

→columns, columns=['VIF'])

[23]:		VIF
	const	197.703826
	male	1.197415
	age	1.368623
	education	1.052772
	currentSmoker	2.490359
	cigsPerDay	2.618425
	BPMeds	1.097285
	prevalentStroke	1.018798
	prevalentHyp	2.050602
	diabetes	1.551588
	totChol	1.104573
	sysBP	3.733003
	diaBP	2.961913

BMI 1.234955 heartRate 1.095442 glucose 1.569448

[]:

BUILDING LOGISTIC REGRESSION MODEL

[24]: model=sm.Logit(y,x).fit()
model.summary()

Optimization terminated successfully.

Current function value: 0.397264

Iterations 6

[24]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	Tue, 03	enYearCHD Logit MLE Mar 2020 10:40:25 True nonrobust	t Df Residuals: E Df Model: O Pseudo R-squ.: Log-Likelihood: LL-Null:		4240 4225 14 0.06739 -1684.4 -1806.1 6.601e-44	
0.975]	coef	std err	z	P> z	[0.025	
male 0.566 age 0.039	0.3752 0.0282	0.097	3.863 5.177	0.000	0.185	
education -0.078 currentSmoker	-0.1652 -0.2588	0.044	-3.732 -1.842	0.000	-0.252 -0.534	
0.017 cigsPerDay 0.034	0.0232	0.006	4.114	0.000	0.012	
BPMeds 0.855	0.4356	0.214	2.035 2.006	0.042	0.016	
<pre>prevalentStroke 1.731 prevalentHyp 1.132</pre>	0.8754	0.436	7.839	0.045	0.679	

diabetes 1.388	0.8494	0.275	3.092	0.002	0.311
totChol	-0.0011	0.001	-1.112	0.266	-0.003
0.001 sysBP 0.018	0.0114	0.004	3.233	0.001	0.004
diaBP -0.013	-0.0245	0.006	-4.305	0.000	-0.036
BMI -0.028	-0.0507	0.011	-4.447	0.000	-0.073
heartRate	-0.0200	0.004	-5.460	0.000	-0.027
glucose 0.005	0.0015	0.002	0.746	0.456	-0.002

===

coeff values gives the limit of the curve which is for age we get it as 0.0619 and the area for age lies in between +0.0619 and -0.0619 and the pvalue is 0.000 so based on the pvalue, if we get higher p value then the feature is not significant otherwise it is significant.

based on the p value and the significance we remove the features which have the highest pvalue

[25]: # we do backward elimination process to remove the insignificant features which ware not required for the model

[26]: p=model.pvalues p

[26]: male 1.120983e-04 2.255895e-07 age education 1.903272e-04 currentSmoker 6.542441e-02 cigsPerDay 3.885736e-05 BPMeds 4.185155e-02 prevalentStroke 4.481306e-02 prevalentHyp 4.523480e-15 diabetes 1.987960e-03 totChol 2.661457e-01 sysBP 1.224859e-03 diaBP 1.666984e-05 BMI 8.698494e-06 heartRate 4.759197e-08 glucose 4.557022e-01 dtype: float64

```
[27]: cols=list(con.columns)
      while len(cols)>1:
          x1=con[cols]
          model=sm.Logit(y, x1).fit()
          p=model.pvalues
          \max_{p=\max(p)}
          feature_maxp=p.idxmax()
          if max_p>0.05:
              print('\n')
              print('column removed: ', feature_maxp, 'prob :', max_p)
              cols.remove(feature_maxp)
          else:
              break
      cols
     Optimization terminated successfully.
              Current function value: 0.378369
              Iterations 7
     column removed: currentSmoker prob : 0.9248067145320612
     Optimization terminated successfully.
              Current function value: 0.378370
              Iterations 7
     column removed: BMI prob : 0.818347435155813
     Optimization terminated successfully.
              Current function value: 0.378376
              Iterations 7
     column removed: heartRate prob : 0.6936547572101218
     Optimization terminated successfully.
              Current function value: 0.378395
              Iterations 7
     column removed: education prob : 0.7021584464005117
     Optimization terminated successfully.
              Current function value: 0.378412
              Iterations 7
     column removed: diaBP prob : 0.6177168524266301
```

```
Optimization terminated successfully.
             Current function value: 0.378441
             Iterations 7
     column removed: diabetes prob : 0.4300198717944336
     Optimization terminated successfully.
             Current function value: 0.378513
             Iterations 7
     column removed: BPMeds prob : 0.20712144906607255
     Optimization terminated successfully.
             Current function value: 0.378697
             Iterations 7
     column removed: prevalentHyp prob : 0.06386738963096576
     Optimization terminated successfully.
             Current function value: 0.379099
             Iterations 7
[27]: ['const',
      'male',
      'age',
      'cigsPerDay',
      'prevalentStroke',
      'totChol',
      'sysBP',
      'glucose']
[28]: model=sm.Logit(y, con[cols]).fit()
     model.summary()
     Optimization terminated successfully.
             Current function value: 0.379099
             Iterations 7
[28]: <class 'statsmodels.iolib.summary.Summary'>
                              Logit Regression Results
     ______
     Dep. Variable:
                              TenYearCHD No. Observations:
                                                                           4240
     Model:
                                   Logit Df Residuals:
                                                                          4232
     Method:
                                     MLE Df Model:
                         Tue, 03 Mar 2020 Pseudo R-squ.:
     Date:
                                                                       0.1100
                                10:40:25 Log-Likelihood:
     Time:
                                                                       -1607.4
     converged:
                                    True LL-Null:
                                                                       -1806.1
```

Covariance Type:		nonrobust	LLR p-value	8.410e-82	
===					
0.975]	coef	std err	Z	P> z	[0.025
const -7.991	-8.8484	0.438	-20.220	0.000	-9.706
male 0.702	0.5096	0.098	5.184	0.000	0.317
age 0.075	0.0635	0.006	10.632	0.000	0.052
cigsPerDay 0.029	0.0212	0.004	5.510	0.000	0.014
prevalentStroke 1.924	1.0675	0.437	2.443	0.015	0.211
totChol 0.004	0.0021	0.001	2.081	0.037	0.000
sysBP 0.021	0.0167	0.002	8.299	0.000	0.013
glucose 0.011	0.0074	0.002	4.579	0.000	0.004
===			=========		

AGE

11 11 11

- 1. positive sign of age indicates that probability of CHD increases with age
- 2. log(odds) of CHD increased by 0.0646 when age increased by 1 year
- 3. as the age increases by 1 years then odds(CHD) increases by 6 percent (1.066-1)

```
[29]: exp_b=pd.DataFrame({'coef': model.params, 'exp_coef':np.exp(model.params)})
exp_b
```

```
[29]:
                          coef exp_coef
     const
                     -8.848368 0.000144
     male
                      0.509623 1.664664
                      0.063459 1.065516
     age
     cigsPerDay
                      0.021153 1.021378
     prevalentStroke 1.067451 2.907957
     totChol
                      0.002113 1.002115
     sysBP
                      0.016687
                               1.016827
     glucose
                      0.007373 1.007400
```

$\# \mathrm{MALE}$

1. positive value of male says that there is more chances for CHD in male when compared to

female

- 2. log(odds) of CHD for male is 0.4897 higher when compared to female
- 3. odds(CHD) of male is 63% (exp_coef-1) greater than female

```
[30]: x_prob=con[cols]
      x_{prob['y']=y.values}
[31]: x_prob.head()
                                                                               glucose \
[31]:
            const
                    male
                          age
                               cigsPerDay prevalentStroke
                                                              totChol
                                                                        sysBP
      3546
              1.0
                       0
                           54
                                       0.0
                                                           0
                                                                241.0
                                                                       106.0
                                                                                  74.0
      1127
                       0
                           42
                                      10.0
                                                           0
                                                                253.0
                                                                      109.0
                                                                                  60.0
              1.0
      3088
              1.0
                                       0.0
                                                           1
                                                                274.0 159.0
                       0
                           58
                                                                                  81.0
                                      30.0
      437
              1.0
                       1
                           45
                                                           0
                                                                240.0
                                                                       141.0
                                                                                  76.0
                                                                190.0 148.0
      3188
              1.0
                       1
                           63
                                       0.0
                                                                                  86.0
            У
      3546
            0
      1127
            0
      3088
            0
      437
            0
      3188
[32]: x_prob.to_csv('x_prob.csv')
[33]: prob=model.predict(con[cols])
[34]: type(prob)
[34]: pandas.core.series.Series
[35]:
      prob
[35]: 3546
              0.069264
      1127
              0.040086
      3088
              0.432654
      437
              0.193365
              0.302438
      3188
      789
              0.344482
      968
              0.120925
      1667
              0.171440
      3321
              0.193964
              0.038748
      1688
      Length: 4240, dtype: float64
```

```
[36]: prob=pd.DataFrame(prob, columns=['prob'])
      prob.head()
[36]:
                prob
           0.069264
      3546
      1127
            0.040086
      3088 0.432654
      437
            0.193365
      3188 0.302438
[44]: prob['y_est']=prob['prob'].apply(lambda x: 1 if x>0.5 else 0)
[45]: from sklearn.metrics import confusion_matrix
      confusion_matrix(y, prob['y_est'])
[45]: array([[3573,
                      23],
             [ 595,
                      49]], dtype=int64)
[46]: prob['y']=y.values
[47]: df0=prob[prob['y']==0]
      df1=prob[prob['y']==1]
      sns.distplot(df0['prob'])
      sns.distplot(df1['prob'])
```

[47]: <matplotlib.axes._subplots.AxesSubplot at 0x2275c89d710>


```
[48]: #Classification report
      from sklearn.metrics import classification_report, accuracy_score, __
       [51]: confusion_matrix(y, prob['y_est'])
[51]: array([[3573,
                      23],
                     49]], dtype=int64)
             [ 595,
[50]: | accuracy_score(y,prob['y_est'])
[50]: 0.8542452830188679
     1 ROC analysis
[52]: from sklearn.metrics import roc_auc_score, roc_curve
[55]: print('AUC value for the model is :', roc_auc_score(y, prob['prob']))
     AUC value for the model is: 0.7304199282847056
[68]: fpr, tpr, thresholds = roc_curve(y, prob['prob'])
[69]: fpr
[69]: array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.78086763e-04,
            2.78086763e-04, 5.56173526e-04, 5.56173526e-04, 8.34260289e-04,
            8.34260289e-04, 1.39043382e-03, 1.39043382e-03, 2.22469410e-03,
            2.22469410e-03, 2.50278087e-03, 2.50278087e-03, 2.78086763e-03,
            2.78086763e-03, 3.33704116e-03, 3.33704116e-03, 3.61512792e-03,
            3.61512792e-03, 3.89321468e-03, 3.89321468e-03, 4.44938821e-03,
            4.44938821e-03, 4.72747497e-03, 4.72747497e-03, 5.00556174e-03,
            5.00556174e-03, 5.28364850e-03, 5.28364850e-03, 6.67408231e-03,
            6.67408231e-03, 7.23025584e-03, 7.23025584e-03, 8.89877642e-03,
            8.89877642e-03, 9.73303671e-03, 9.73303671e-03, 1.02892102e-02,
            1.02892102e-02, 1.16796440e-02, 1.16796440e-02, 1.25139043e-02,
            1.25139043e-02, 1.27919911e-02, 1.27919911e-02, 1.36262514e-02,
            1.36262514e-02, 1.44605117e-02, 1.44605117e-02, 1.47385984e-02,
             1.47385984e-02, 1.50166852e-02, 1.50166852e-02, 1.52947720e-02,
             1.52947720e-02, 1.55728587e-02, 1.55728587e-02, 1.58509455e-02,
             1.58509455e-02, 1.66852058e-02, 1.66852058e-02, 1.72413793e-02,
             1.72413793e-02, 1.75194661e-02, 1.75194661e-02, 1.80756396e-02,
             1.80756396e-02, 1.83537264e-02, 1.83537264e-02, 1.89098999e-02,
             1.89098999e-02, 1.97441602e-02, 1.97441602e-02, 2.19688543e-02,
```

```
2.19688543e-02, 2.25250278e-02, 2.25250278e-02, 2.36373749e-02,
2.36373749e-02, 2.41935484e-02, 2.41935484e-02, 2.47497219e-02,
2.47497219e-02, 2.50278087e-02, 2.50278087e-02, 2.58620690e-02,
2.58620690e-02, 2.69744160e-02, 2.69744160e-02, 2.80867631e-02,
2.80867631e-02, 2.83648498e-02, 2.83648498e-02, 2.86429366e-02,
2.86429366e-02, 2.89210234e-02, 2.89210234e-02, 3.11457175e-02,
3.11457175e-02, 3.19799778e-02, 3.19799778e-02, 3.22580645e-02,
3.22580645e-02, 3.25361513e-02, 3.25361513e-02, 3.28142380e-02,
3.28142380e-02, 3.39265851e-02, 3.39265851e-02, 3.42046719e-02,
3.42046719e-02, 3.44827586e-02, 3.44827586e-02, 3.55951057e-02,
3.55951057e-02, 3.64293660e-02, 3.64293660e-02, 3.72636263e-02,
3.72636263e-02, 3.80978865e-02, 3.80978865e-02, 3.83759733e-02,
3.83759733e-02, 3.94883204e-02, 3.94883204e-02, 3.97664071e-02,
3.97664071e-02, 4.00444939e-02, 4.00444939e-02, 4.03225806e-02,
4.03225806e-02, 4.14349277e-02, 4.14349277e-02, 4.47719689e-02,
4.47719689e-02, 4.53281424e-02, 4.53281424e-02, 4.72747497e-02,
4.72747497e-02, 4.89432703e-02, 4.89432703e-02, 4.97775306e-02,
4.97775306e-02, 5.14460512e-02, 5.14460512e-02, 5.17241379e-02,
5.17241379e-02, 5.28364850e-02, 5.28364850e-02, 5.42269188e-02,
5.42269188e-02, 5.56173526e-02, 5.56173526e-02, 5.61735261e-02,
5.61735261e-02, 5.72858732e-02, 5.72858732e-02, 5.75639600e-02,
5.75639600e-02, 6.11790879e-02, 6.11790879e-02, 6.28476085e-02,
6.28476085e-02, 6.39599555e-02, 6.39599555e-02, 6.45161290e-02,
6.45161290e-02, 6.53503893e-02, 6.53503893e-02, 6.59065628e-02,
6.59065628e-02, 6.61846496e-02, 6.61846496e-02, 6.67408231e-02,
6.67408231e-02, 6.89655172e-02, 6.89655172e-02, 6.95216908e-02,
6.95216908e-02, 7.23025584e-02, 7.23025584e-02, 7.50834260e-02,
7.50834260e-02, 7.67519466e-02, 7.67519466e-02, 7.73081201e-02,
7.73081201e-02, 7.89766407e-02, 7.89766407e-02, 7.95328142e-02,
7.95328142e-02, 7.98109010e-02, 7.98109010e-02, 8.14794216e-02,
8.14794216e-02, 8.23136819e-02, 8.23136819e-02, 8.39822024e-02,
8.39822024e-02, 8.42602892e-02, 8.42602892e-02, 8.45383760e-02,
8.45383760e-02, 8.48164627e-02, 8.48164627e-02, 8.53726363e-02,
8.53726363e-02, 8.56507230e-02, 8.56507230e-02, 8.59288098e-02,
8.59288098e-02, 8.62068966e-02, 8.62068966e-02, 8.67630701e-02,
8.67630701e-02, 8.89877642e-02, 8.89877642e-02, 8.92658509e-02,
8.92658509e-02, 8.98220245e-02, 8.98220245e-02, 9.03781980e-02,
9.03781980e-02, 9.09343715e-02, 9.09343715e-02, 9.31590656e-02,
9.31590656e-02, 9.39933259e-02, 9.39933259e-02, 9.48275862e-02,
9.48275862e-02, 9.51056730e-02, 9.51056730e-02, 9.78865406e-02,
9.78865406e-02, 1.00945495e-01, 1.00945495e-01, 1.02335929e-01,
1.02335929e-01, 1.02614016e-01, 1.02614016e-01, 1.05116796e-01,
1.05116796e-01, 1.05394883e-01, 1.05394883e-01, 1.05951057e-01,
1.05951057e-01, 1.06229143e-01, 1.06229143e-01, 1.06785317e-01,
1.06785317e-01, 1.08175751e-01, 1.08175751e-01, 1.10122358e-01,
1.10122358e-01, 1.11512792e-01, 1.11512792e-01, 1.13181313e-01,
1.13181313e-01, 1.14015573e-01, 1.14015573e-01, 1.14293660e-01,
```

```
1.14293660e-01, 1.14571746e-01, 1.14571746e-01, 1.14849833e-01,
1.14849833e-01, 1.15406007e-01, 1.15406007e-01, 1.16518354e-01,
1.16518354e-01, 1.18186874e-01, 1.18186874e-01, 1.18464961e-01,
1.18464961e-01, 1.20133482e-01, 1.20133482e-01, 1.21802002e-01,
1.21802002e-01, 1.22358176e-01, 1.22358176e-01, 1.24026696e-01,
1.24026696e-01, 1.24304783e-01, 1.24304783e-01, 1.24582870e-01,
1.24582870e-01, 1.25695217e-01, 1.25695217e-01, 1.25973304e-01,
1.25973304e-01, 1.27919911e-01, 1.27919911e-01, 1.28754171e-01,
1.28754171e-01, 1.29866518e-01, 1.29866518e-01, 1.30144605e-01,
1.30144605e-01, 1.30422692e-01, 1.30422692e-01, 1.31813126e-01,
1.31813126e-01, 1.32091212e-01, 1.32091212e-01, 1.32369299e-01,
1.32369299e-01, 1.34037820e-01, 1.34037820e-01, 1.35706340e-01,
1.35706340e-01, 1.36540601e-01, 1.36540601e-01, 1.37931034e-01,
1.37931034e-01, 1.38487208e-01, 1.38487208e-01, 1.39321468e-01,
1.39321468e-01, 1.40711902e-01, 1.40711902e-01, 1.41546162e-01,
1.41546162e-01, 1.42380423e-01, 1.42380423e-01, 1.42658509e-01,
1.42658509e-01, 1.43492770e-01, 1.43492770e-01, 1.44327030e-01,
1.44327030e-01, 1.45439377e-01, 1.45439377e-01, 1.45995551e-01,
1.45995551e-01, 1.47107898e-01, 1.47107898e-01, 1.48498331e-01,
1.48498331e-01, 1.50444939e-01, 1.50444939e-01, 1.51279199e-01,
1.51279199e-01, 1.53225806e-01, 1.53225806e-01, 1.53503893e-01,
1.53503893e-01, 1.54338154e-01, 1.54338154e-01, 1.55172414e-01,
1.55172414e-01, 1.57675195e-01, 1.57675195e-01, 1.57953281e-01,
1.57953281e-01, 1.58509455e-01, 1.58509455e-01, 1.59621802e-01,
1.59621802e-01, 1.60177976e-01, 1.60177976e-01, 1.60734149e-01,
1.60734149e-01, 1.61846496e-01, 1.61846496e-01, 1.62958843e-01,
1.62958843e-01, 1.63793103e-01, 1.63793103e-01, 1.64349277e-01,
1.64349277e-01, 1.64627364e-01, 1.64627364e-01, 1.64905451e-01,
1.64905451e-01, 1.65183537e-01, 1.65183537e-01, 1.65461624e-01,
1.65461624e-01, 1.68520578e-01, 1.68520578e-01, 1.70467186e-01,
1.70467186e-01, 1.71023359e-01, 1.71023359e-01, 1.71579533e-01,
1.71579533e-01, 1.73526140e-01, 1.73526140e-01, 1.75472747e-01,
1.75472747e-01, 1.76307008e-01, 1.76307008e-01, 1.77141268e-01,
1.77141268e-01, 1.80200222e-01, 1.80200222e-01, 1.82146830e-01,
1.82146830e-01, 1.82981090e-01, 1.82981090e-01, 1.83259177e-01,
1.83259177e-01, 1.84093437e-01, 1.84093437e-01, 1.88820912e-01,
1.88820912e-01, 1.89377086e-01, 1.89377086e-01, 1.90767519e-01,
1.90767519e-01, 1.91601780e-01, 1.91601780e-01, 1.92436040e-01,
1.92436040e-01, 1.92992214e-01, 1.92992214e-01, 1.95216908e-01,
1.95216908e-01, 1.95494994e-01, 1.95494994e-01, 1.95773081e-01,
1.95773081e-01, 1.96607341e-01, 1.96607341e-01, 1.97163515e-01,
1.97163515e-01, 1.97997775e-01, 1.97997775e-01, 1.98275862e-01,
1.98275862e-01, 1.98553949e-01, 1.98553949e-01, 1.99110122e-01,
1.99110122e-01, 2.00778643e-01, 2.00778643e-01, 2.01056730e-01,
2.01056730e-01, 2.04393771e-01, 2.04393771e-01, 2.08008899e-01,
2.08008899e-01, 2.09399333e-01, 2.09399333e-01, 2.10789766e-01,
2.10789766e-01, 2.11902113e-01, 2.11902113e-01, 2.12180200e-01,
```

```
2.12180200e-01, 2.13014461e-01, 2.13014461e-01, 2.14682981e-01,
2.14682981e-01, 2.16629588e-01, 2.16629588e-01, 2.18576196e-01,
2.18576196e-01, 2.19966630e-01, 2.19966630e-01, 2.21078977e-01,
2.21078977e-01, 2.21357063e-01, 2.21357063e-01, 2.25528365e-01,
2.25528365e-01, 2.26918799e-01, 2.26918799e-01, 2.27196885e-01,
2.27196885e-01, 2.28309232e-01, 2.28309232e-01, 2.31924360e-01,
2.31924360e-01, 2.35261402e-01, 2.35261402e-01, 2.36095662e-01,
2.36095662e-01, 2.39710790e-01, 2.39710790e-01, 2.41657397e-01,
2.41657397e-01, 2.43047831e-01, 2.43047831e-01, 2.43604004e-01,
2.43604004e-01, 2.44716352e-01, 2.44716352e-01, 2.45550612e-01,
2.45550612e-01, 2.47497219e-01, 2.47497219e-01, 2.48053393e-01,
2.48053393e-01, 2.50278087e-01, 2.50278087e-01, 2.52224694e-01,
2.52224694e-01, 2.52780868e-01, 2.52780868e-01, 2.53615128e-01,
2.53615128e-01, 2.54171301e-01, 2.54171301e-01, 2.54727475e-01,
2.54727475e-01, 2.55283648e-01, 2.55283648e-01, 2.58064516e-01,
2.58064516e-01, 2.59733037e-01, 2.59733037e-01, 2.62513904e-01,
2.62513904e-01, 2.64182425e-01, 2.64182425e-01, 2.65016685e-01,
2.65016685e-01, 2.66129032e-01, 2.66129032e-01, 2.66685206e-01,
2.66685206e-01, 2.67241379e-01, 2.67241379e-01, 2.68075640e-01,
2.68075640e-01, 2.69187987e-01, 2.69187987e-01, 2.71134594e-01,
2.71134594e-01, 2.71968854e-01, 2.71968854e-01, 2.73915462e-01,
2.73915462e-01, 2.75305895e-01, 2.75305895e-01, 2.75862069e-01,
2.75862069e-01, 2.76418242e-01, 2.76418242e-01, 2.76696329e-01,
2.76696329e-01, 2.78921023e-01, 2.78921023e-01, 2.79199110e-01,
2.79199110e-01, 2.79755284e-01, 2.79755284e-01, 2.80033370e-01,
2.80033370e-01, 2.81701891e-01, 2.81701891e-01, 2.81979978e-01,
2.81979978e-01, 2.83648498e-01, 2.83648498e-01, 2.84204672e-01,
2.84204672e-01, 2.88375973e-01, 2.88375973e-01, 2.90322581e-01,
2.90322581e-01, 2.92269188e-01, 2.92269188e-01, 2.93103448e-01,
2.93103448e-01, 2.93381535e-01, 2.93381535e-01, 2.93937709e-01,
2.93937709e-01, 2.96440489e-01, 2.96440489e-01, 2.98387097e-01,
2.98387097e-01, 2.98943270e-01, 2.98943270e-01, 3.00889878e-01,
3.00889878e-01, 3.02558398e-01, 3.02558398e-01, 3.02836485e-01,
3.02836485e-01, 3.04505006e-01, 3.04505006e-01, 3.07007786e-01,
3.07007786e-01, 3.09232481e-01, 3.09232481e-01, 3.13125695e-01,
3.13125695e-01, 3.13403782e-01, 3.13403782e-01, 3.15350389e-01,
3.15350389e-01, 3.15906563e-01, 3.15906563e-01, 3.18965517e-01,
3.18965517e-01, 3.24249166e-01, 3.24249166e-01, 3.25639600e-01,
3.25639600e-01, 3.28698554e-01, 3.28698554e-01, 3.30645161e-01,
3.30645161e-01, 3.34816463e-01, 3.34816463e-01, 3.35094549e-01,
3.35094549e-01, 3.38987764e-01, 3.38987764e-01, 3.40656285e-01,
3.40656285e-01, 3.41212458e-01, 3.41212458e-01, 3.41768632e-01,
3.41768632e-01, 3.43993326e-01, 3.43993326e-01, 3.45105673e-01,
3.45105673e-01, 3.46218020e-01, 3.46218020e-01, 3.53726363e-01,
3.53726363e-01, 3.54004449e-01, 3.54004449e-01, 3.59010011e-01,
3.59010011e-01, 3.59844271e-01, 3.59844271e-01, 3.63459399e-01,
3.63459399e-01, 3.69577308e-01, 3.69577308e-01, 3.76251390e-01,
```

```
3.76251390e-01, 3.77641824e-01, 3.77641824e-01, 3.80422692e-01,
3.80422692e-01, 3.85428254e-01, 3.85428254e-01, 3.87652948e-01,
3.87652948e-01, 3.88209121e-01, 3.88209121e-01, 3.91268076e-01,
3.91268076e-01, 3.91546162e-01, 3.91546162e-01, 3.94605117e-01,
3.94605117e-01, 3.96551724e-01, 3.96551724e-01, 3.99332592e-01,
3.99332592e-01, 4.03503893e-01, 4.03503893e-01, 4.08231368e-01,
4.08231368e-01, 4.08509455e-01, 4.08509455e-01, 4.09343715e-01,
4.09343715e-01, 4.09899889e-01, 4.09899889e-01, 4.11012236e-01,
4.11012236e-01, 4.12958843e-01, 4.12958843e-01, 4.15461624e-01,
4.15461624e-01, 4.18242492e-01, 4.18242492e-01, 4.22691880e-01,
4.22691880e-01, 4.27975528e-01, 4.27975528e-01, 4.33815350e-01,
4.33815350e-01, 4.34649611e-01, 4.34649611e-01, 4.37708565e-01,
4.37708565e-01, 4.37986652e-01, 4.37986652e-01, 4.38820912e-01,
4.38820912e-01, 4.41045606e-01, 4.41045606e-01, 4.43826474e-01,
4.43826474e-01, 4.45773081e-01, 4.45773081e-01, 4.46051168e-01,
4.46051168e-01, 4.46885428e-01, 4.46885428e-01, 4.52169077e-01,
4.52169077e-01, 4.53837597e-01, 4.53837597e-01, 4.56062291e-01,
4.56062291e-01, 4.57452725e-01, 4.57452725e-01, 4.59677419e-01,
4.59677419e-01, 4.60233593e-01, 4.60233593e-01, 4.63014461e-01,
4.63014461e-01, 4.66351502e-01, 4.66351502e-01, 4.70800890e-01,
4.70800890e-01, 4.78587319e-01, 4.78587319e-01, 4.80812013e-01,
4.80812013e-01, 4.82480534e-01, 4.82480534e-01, 4.84705228e-01,
4.84705228e-01, 4.86095662e-01, 4.86095662e-01, 4.86929922e-01,
4.86929922e-01, 4.88598443e-01, 4.88598443e-01, 4.91379310e-01,
4.91379310e-01, 4.94160178e-01, 4.94160178e-01, 4.96662959e-01,
4.96662959e-01, 4.97497219e-01, 4.97497219e-01, 4.98331479e-01,
4.98331479e-01, 4.98609566e-01, 4.98609566e-01, 4.99165740e-01,
4.99165740e-01, 5.02780868e-01, 5.02780868e-01, 5.03058954e-01,
5.03058954e-01, 5.03615128e-01, 5.03615128e-01, 5.06952169e-01,
5.06952169e-01, 5.11123471e-01, 5.11123471e-01, 5.16685206e-01,
5.16685206e-01, 5.18909900e-01, 5.18909900e-01, 5.20300334e-01,
5.20300334e-01, 5.20578420e-01, 5.20578420e-01, 5.21134594e-01,
5.21134594e-01, 5.24471635e-01, 5.24471635e-01, 5.26140156e-01,
5.26140156e-01, 5.26974416e-01, 5.26974416e-01, 5.28364850e-01,
5.28364850e-01, 5.33926585e-01, 5.33926585e-01, 5.34204672e-01,
5.34204672e-01, 5.36985539e-01, 5.36985539e-01, 5.37541713e-01,
5.37541713e-01, 5.40878754e-01, 5.40878754e-01, 5.42547275e-01,
5.42547275e-01, 5.43659622e-01, 5.43659622e-01, 5.49221357e-01,
5.49221357e-01, 5.55339266e-01, 5.55339266e-01, 5.58120133e-01,
5.58120133e-01, 5.58398220e-01, 5.58398220e-01, 5.73971079e-01,
5.73971079e-01, 5.74805339e-01, 5.74805339e-01, 5.79532814e-01,
5.79532814e-01, 5.80367075e-01, 5.80367075e-01, 5.83426029e-01,
5.83426029e-01, 5.90656285e-01, 5.90656285e-01, 5.90934372e-01,
5.90934372e-01, 6.03170189e-01, 6.03170189e-01, 6.12347052e-01,
6.12347052e-01, 6.14015573e-01, 6.14015573e-01, 6.15127920e-01,
6.15127920e-01, 6.16518354e-01, 6.16518354e-01, 6.16796440e-01,
6.16796440e-01, 6.17908788e-01, 6.17908788e-01, 6.18186874e-01,
```

```
6.18186874e-01, 6.18464961e-01, 6.18464961e-01, 6.19855395e-01,
             6.19855395e-01, 6.22080089e-01, 6.22080089e-01, 6.23192436e-01,
             6.23192436e-01, 6.27641824e-01, 6.27641824e-01, 6.30700779e-01,
             6.30700779e-01, 6.38209121e-01, 6.38209121e-01, 6.39043382e-01,
             6.39043382e-01, 6.41268076e-01, 6.41268076e-01, 6.41824249e-01,
             6.41824249e-01, 6.43770857e-01, 6.43770857e-01, 6.44605117e-01,
             6.44605117e-01, 6.46273637e-01, 6.46273637e-01, 6.49054505e-01,
             6.49054505e-01, 6.51835373e-01, 6.51835373e-01, 6.58231368e-01,
             6.58231368e-01, 6.58509455e-01, 6.58509455e-01, 6.71579533e-01,
             6.71579533e-01, 6.76028921e-01, 6.76028921e-01, 6.79644049e-01,
             6.79644049e-01, 6.80756396e-01, 6.80756396e-01, 6.81868743e-01,
             6.81868743e-01, 6.84371524e-01, 6.84371524e-01, 6.87152392e-01,
             6.87152392e-01, 6.91879867e-01, 6.91879867e-01, 6.95216908e-01,
             6.95216908e-01, 6.96885428e-01, 6.96885428e-01, 6.97997775e-01,
             6.97997775e-01, 7.10789766e-01, 7.10789766e-01, 7.20244716e-01,
             7.20244716e-01, 7.25528365e-01, 7.25528365e-01, 7.33592881e-01,
             7.33592881e-01, 7.43604004e-01, 7.43604004e-01, 7.46384872e-01,
             7.46384872e-01, 7.58620690e-01, 7.58620690e-01, 7.60289210e-01,
             7.60289210e-01, 7.68909900e-01, 7.68909900e-01, 7.69466073e-01,
             7.69466073e-01, 7.70856507e-01, 7.70856507e-01, 7.72246941e-01,
             7.72246941e-01, 7.75305895e-01, 7.75305895e-01, 7.80311457e-01,
             7.80311457e-01, 7.81423804e-01, 7.81423804e-01, 7.83648498e-01,
             7.83648498e-01, 7.86707453e-01, 7.86707453e-01, 7.91991101e-01,
             7.91991101e-01, 7.93103448e-01, 7.93103448e-01, 7.97830923e-01,
             7.97830923e-01, 8.08120133e-01, 8.08120133e-01, 8.17575083e-01,
             8.17575083e-01, 8.17853170e-01, 8.17853170e-01, 8.19243604e-01,
             8.19243604e-01, 8.20355951e-01, 8.20355951e-01, 8.21190211e-01,
             8.21190211e-01, 8.23692992e-01, 8.23692992e-01, 8.31757508e-01,
             8.31757508e-01, 8.36763070e-01, 8.36763070e-01, 8.43437152e-01,
             8.43437152e-01, 8.52614016e-01, 8.52614016e-01, 8.65962180e-01,
             8.65962180e-01, 8.66240267e-01, 8.66240267e-01, 8.66518354e-01,
             8.66518354e-01, 8.74860957e-01, 8.74860957e-01, 8.77363737e-01,
             8.77363737e-01, 8.78754171e-01, 8.78754171e-01, 8.88765295e-01,
             8.88765295e-01, 8.96551724e-01, 8.96551724e-01, 8.98220245e-01,
             8.98220245e-01, 8.99888765e-01, 8.99888765e-01, 9.39098999e-01,
             9.39098999e-01, 9.53003337e-01, 9.53003337e-01, 9.57730812e-01,
             9.57730812e-01, 9.80812013e-01, 9.80812013e-01, 9.98887653e-01,
             9.98887653e-01, 9.99165740e-01, 9.99165740e-01, 1.00000000e+00])
[70]: array([0.
                       , 0.0015528 , 0.00465839, 0.00465839, 0.02173913,
             0.02173913, 0.02329193, 0.02329193, 0.02639752, 0.02639752,
             0.04037267, 0.04037267, 0.04813665, 0.04813665, 0.05279503,
             0.05279503, 0.05434783, 0.05434783, 0.05590062, 0.05590062,
             0.05745342, 0.05745342, 0.05900621, 0.05900621, 0.06055901,
```

0.06055901, 0.0636646, 0.0636646, 0.07453416, 0.07453416,

[70]: tpr

```
0.07608696, 0.07608696, 0.08229814, 0.08229814, 0.08385093,
0.08385093, 0.08695652, 0.08695652, 0.0931677, 0.0931677,
0.0947205 , 0.0947205 , 0.09782609 , 0.09782609 , 0.10248447 ,
0.10248447, 0.10403727, 0.10403727, 0.10559006, 0.10559006,
0.11024845, 0.11024845, 0.11180124, 0.11180124, 0.11645963,
0.11645963, 0.11956522, 0.11956522, 0.12111801, 0.12111801,
0.12267081, 0.12267081, 0.1242236, 0.1242236, 0.1257764,
0.1257764 , 0.12732919, 0.12732919, 0.12888199, 0.12888199,
0.13043478, 0.13043478, 0.13198758, 0.13198758, 0.13354037,
0.13354037, 0.13509317, 0.13509317, 0.13664596, 0.13664596,
0.13975155, 0.13975155, 0.14130435, 0.14130435, 0.14285714,
0.14285714, 0.14596273, 0.14596273, 0.14751553, 0.14751553,
0.14906832, 0.14906832, 0.15217391, 0.15217391, 0.15372671,
0.15372671, 0.1552795 , 0.1552795 , 0.1568323 , 0.1568323 ,
0.15838509, 0.15838509, 0.15993789, 0.15993789, 0.16149068,
0.16149068, 0.16459627, 0.16459627, 0.16614907, 0.16614907,
0.16925466, 0.16925466, 0.17236025, 0.17236025, 0.17546584,
0.17546584, 0.17701863, 0.17701863, 0.17857143, 0.17857143,
0.18012422, 0.18012422, 0.1878882, 0.1878882, 0.18944099,
0.18944099, 0.19254658, 0.19254658, 0.19409938, 0.19409938,
0.19565217, 0.19565217, 0.19720497, 0.19720497, 0.19875776,
0.19875776, 0.20031056, 0.20031056, 0.20186335, 0.20186335,
0.20341615, 0.20341615, 0.20652174, 0.20652174, 0.20962733,
0.20962733, 0.21118012, 0.21118012, 0.21273292, 0.21273292,
0.21428571, 0.21428571, 0.21583851, 0.21583851, 0.2173913 ,
0.2173913 , 0.2189441 , 0.2189441 , 0.22204969 , 0.22204969 ,
0.22360248, 0.22360248, 0.22515528, 0.22515528, 0.22981366,
0.22981366, 0.23136646, 0.23136646, 0.23291925, 0.23291925,
0.23447205, 0.23447205, 0.23602484, 0.23602484, 0.23757764,
0.23757764, 0.23913043, 0.23913043, 0.24534161, 0.24534161,
0.24689441, 0.24689441, 0.2484472 , 0.2484472 , 0.25
          , 0.2515528 , 0.2515528 , 0.25621118, 0.25621118,
0.25776398, 0.25776398, 0.25931677, 0.25931677, 0.26242236,
0.26242236, 0.26397516, 0.26397516, 0.26552795, 0.26552795,
0.26708075, 0.26708075, 0.26863354, 0.26863354, 0.27329193,
0.27329193, 0.27484472, 0.27484472, 0.27639752, 0.27639752,
0.27795031, 0.27795031, 0.2810559, 0.2810559, 0.2826087
0.2826087, 0.28416149, 0.28416149, 0.28571429, 0.28571429,
0.28726708, 0.28726708, 0.28881988, 0.28881988, 0.29037267,
0.29037267, 0.29192547, 0.29192547, 0.29347826, 0.29347826,
0.29968944, 0.29968944, 0.30279503, 0.30279503, 0.30434783,
0.30434783, 0.30590062, 0.30590062, 0.30745342, 0.30745342,
0.3121118 , 0.3121118 , 0.3136646 , 0.3136646 , 0.31521739,
0.31521739, 0.31832298, 0.31832298, 0.31987578, 0.31987578,
0.32142857, 0.32142857, 0.32298137, 0.32298137, 0.32763975,
0.32763975, 0.33229814, 0.33229814, 0.33385093, 0.33385093,
0.33540373, 0.33540373, 0.34006211, 0.34006211, 0.34161491,
```

```
0.34161491, 0.3431677, 0.3431677, 0.34782609, 0.34782609,
0.34937888, 0.34937888, 0.35093168, 0.35093168, 0.35248447,
0.35248447, 0.35403727, 0.35403727, 0.35559006, 0.35559006,
0.35714286, 0.35714286, 0.36024845, 0.36024845, 0.36180124,
0.36180124, 0.36335404, 0.36335404, 0.36490683, 0.36490683,
0.36645963, 0.36645963, 0.36956522, 0.36956522, 0.37111801,
0.37111801, 0.37267081, 0.37267081, 0.3742236 , 0.3742236 ,
0.37732919, 0.37732919, 0.37888199, 0.37888199, 0.38354037,
0.38354037, 0.38509317, 0.38509317, 0.38819876, 0.38819876,
0.39130435, 0.39130435, 0.39285714, 0.39285714, 0.39596273,
0.39596273, 0.39906832, 0.39906832, 0.40062112, 0.40062112,
0.4052795 , 0.4052795 , 0.40838509, 0.40838509, 0.40993789,
0.40993789, 0.41149068, 0.41149068, 0.41304348, 0.41304348,
0.41459627, 0.41459627, 0.41614907, 0.41614907, 0.41770186,
0.41770186, 0.41925466, 0.41925466, 0.42080745, 0.42080745,
0.42236025, 0.42236025, 0.42391304, 0.42391304, 0.42546584,
0.42546584, 0.42701863, 0.42701863, 0.42857143, 0.42857143,
0.43012422, 0.43012422, 0.43167702, 0.43167702, 0.43322981,
0.43322981, 0.43478261, 0.43478261, 0.4363354, 0.4363354
0.4378882 , 0.4378882 , 0.44099379, 0.44099379, 0.44254658,
0.44254658, 0.44409938, 0.44409938, 0.44565217, 0.44565217,
0.44720497, 0.44720497, 0.44875776, 0.44875776, 0.45186335,
0.45186335, 0.45341615, 0.45341615, 0.45652174, 0.45652174,
0.45807453, 0.45807453, 0.45962733, 0.45962733, 0.46118012,
0.46118012, 0.46273292, 0.46273292, 0.46428571, 0.46428571,
0.46583851, 0.46583851, 0.4673913, 0.4673913, 0.4689441,
0.4689441 , 0.47204969, 0.47204969, 0.47360248, 0.47360248,
0.47515528, 0.47515528, 0.47670807, 0.47670807, 0.47981366,
0.47981366, 0.48291925, 0.48291925, 0.48447205, 0.48447205,
0.48602484, 0.48602484, 0.48757764, 0.48757764, 0.49068323,
0.49068323, 0.49223602, 0.49223602, 0.49534161, 0.49534161,
0.49689441, 0.49689441, 0.50310559, 0.50310559, 0.50465839,
0.50465839, 0.50621118, 0.50621118, 0.50776398, 0.50776398,
0.50931677, 0.50931677, 0.51086957, 0.51086957, 0.51397516,
0.51397516, 0.51552795, 0.51552795, 0.51708075, 0.51708075,
0.51863354, 0.51863354, 0.52018634, 0.52018634, 0.52329193,
0.52329193, 0.52484472, 0.52484472, 0.52639752, 0.52639752,
0.5310559 , 0.5310559 , 0.5326087 , 0.5326087 , 0.53571429,
0.53571429, 0.53726708, 0.53726708, 0.54037267, 0.54037267,
0.54347826, 0.54347826, 0.54658385, 0.54658385, 0.55124224,
0.55124224, 0.55279503, 0.55279503, 0.55434783, 0.55434783,
0.55745342, 0.55745342, 0.55900621, 0.55900621, 0.56055901,
0.56055901, 0.5621118 , 0.5621118 , 0.5636646 , 0.5636646 ,
0.56521739, 0.56521739, 0.56677019, 0.56677019, 0.56832298,
0.56832298, 0.56987578, 0.56987578, 0.57142857, 0.57142857,
0.57298137, 0.57298137, 0.57608696, 0.57608696, 0.57763975,
0.57763975, 0.57919255, 0.57919255, 0.58074534, 0.58074534,
```

```
0.58229814, 0.58229814, 0.58540373, 0.58540373, 0.58850932,
0.58850932, 0.59006211, 0.59006211, 0.59161491, 0.59161491,
0.5931677 , 0.5931677 , 0.5947205 , 0.5947205 , 0.59627329,
0.59627329, 0.59782609, 0.59782609, 0.59937888, 0.59937888,
0.60248447, 0.60248447, 0.60403727, 0.60403727, 0.60869565,
0.60869565, 0.61024845, 0.61024845, 0.61180124, 0.61180124,
0.61335404, 0.61335404, 0.61490683, 0.61490683, 0.61801242,
0.61801242, 0.62111801, 0.62111801, 0.62267081, 0.62267081,
0.6257764, 0.6257764, 0.62732919, 0.62732919, 0.62888199,
0.62888199, 0.63043478, 0.63043478, 0.63198758, 0.63198758,
0.63354037, 0.63354037, 0.63664596, 0.63664596, 0.63819876,
0.63819876, 0.63975155, 0.63975155, 0.64130435, 0.64130435,
0.64285714, 0.64285714, 0.64596273, 0.64596273, 0.64751553,
0.64751553, 0.64906832, 0.64906832, 0.65062112, 0.65062112,
0.65217391, 0.65217391, 0.65372671, 0.65372671, 0.6568323 ,
0.6568323 , 0.65838509, 0.65838509, 0.65993789, 0.65993789,
0.66149068, 0.66149068, 0.66304348, 0.66304348, 0.66459627,
0.66459627, 0.66614907, 0.66614907, 0.66770186, 0.66770186,
0.66925466, 0.66925466, 0.67080745, 0.67080745, 0.67236025,
0.67236025, 0.67391304, 0.67391304, 0.67546584, 0.67546584,
0.67857143, 0.67857143, 0.68012422, 0.68012422, 0.68167702,
0.68167702, 0.68478261, 0.68478261, 0.6863354, 0.6863354,
0.68944099, 0.68944099, 0.69254658, 0.69254658, 0.69409938,
0.69409938, 0.69565217, 0.69565217, 0.69720497, 0.69720497,
0.69875776, 0.69875776, 0.70031056, 0.70031056, 0.70341615,
0.70341615, 0.70496894, 0.70496894, 0.70652174, 0.70652174,
0.70807453, 0.70807453, 0.70962733, 0.70962733, 0.71273292,
0.71273292, 0.71428571, 0.71428571, 0.71583851, 0.71583851,
0.7173913 , 0.7173913 , 0.7189441 , 0.7189441 , 0.72049689,
0.72049689, 0.72204969, 0.72204969, 0.72360248, 0.72360248,
0.72515528, 0.72515528, 0.72826087, 0.72826087, 0.72981366,
0.72981366, 0.73136646, 0.73136646, 0.73291925, 0.73291925,
0.73447205, 0.73447205, 0.73602484, 0.73602484, 0.73757764,
0.73757764, 0.73913043, 0.73913043, 0.74068323, 0.74068323,
0.74223602, 0.74223602, 0.74378882, 0.74378882, 0.74534161,
0.74534161, 0.74689441, 0.74689441, 0.7484472 , 0.7484472 ,
                    , 0.7515528 , 0.7515528 , 0.75310559,
0.75
         . 0.75
0.75310559, 0.75465839, 0.75465839, 0.75621118, 0.75621118,
0.75776398, 0.75776398, 0.75931677, 0.75931677, 0.76086957,
0.76086957, 0.76397516, 0.76397516, 0.76552795, 0.76552795,
0.76708075, 0.76708075, 0.76863354, 0.76863354, 0.77018634,
0.77018634, 0.77329193, 0.77329193, 0.77484472, 0.77484472,
0.77639752, 0.77639752, 0.77795031, 0.77795031, 0.77950311,
0.77950311, 0.7826087, 0.7826087, 0.78416149, 0.78416149,
0.78571429, 0.78571429, 0.78726708, 0.78726708, 0.78881988,
0.78881988, 0.79037267, 0.79037267, 0.79192547, 0.79192547,
0.79347826, 0.79347826, 0.79658385, 0.79658385, 0.79813665,
```

```
0.79813665, 0.79968944, 0.79968944, 0.80124224, 0.80124224,
0.80279503, 0.80279503, 0.80434783, 0.80434783, 0.80590062,
0.80590062, 0.80900621, 0.80900621, 0.81055901, 0.81055901,
0.8121118 , 0.8121118 , 0.8136646 , 0.8136646 , 0.81521739,
0.81521739, 0.81677019, 0.81677019, 0.81832298, 0.81832298,
0.81987578, 0.81987578, 0.82142857, 0.82142857, 0.82298137,
0.82298137, 0.82453416, 0.82453416, 0.82608696, 0.82608696,
0.82763975, 0.82763975, 0.82919255, 0.82919255, 0.83074534,
0.83074534, 0.83229814, 0.83229814, 0.83385093, 0.83385093,
0.83695652, 0.83695652, 0.83850932, 0.83850932, 0.84006211,
0.84006211, 0.84161491, 0.84161491, 0.8431677, 0.8431677,
0.8447205 , 0.8447205 , 0.84627329, 0.84627329, 0.84782609,
0.84782609, 0.84937888, 0.84937888, 0.85093168, 0.85093168,
0.85248447, 0.85248447, 0.85403727, 0.85403727, 0.85559006,
0.85559006, 0.85714286, 0.85714286, 0.85869565, 0.85869565,
0.86024845, 0.86024845, 0.86180124, 0.86180124, 0.86335404,
0.86335404, 0.86490683, 0.86490683, 0.86645963, 0.86645963,
0.86801242, 0.86801242, 0.86956522, 0.86956522, 0.87111801,
0.87111801, 0.87267081, 0.87267081, 0.8757764 , 0.8757764 ,
0.88043478, 0.88043478, 0.88198758, 0.88198758, 0.88354037,
0.88354037, 0.88509317, 0.88509317, 0.88664596, 0.88664596,
0.88819876, 0.88819876, 0.88975155, 0.88975155, 0.89130435,
0.89130435, 0.89285714, 0.89285714, 0.89440994, 0.89440994,
0.89596273, 0.89596273, 0.89751553, 0.89751553, 0.89906832,
0.89906832, 0.90062112, 0.90062112, 0.90217391, 0.90217391,
0.90372671, 0.90372671, 0.9052795, 0.9052795, 0.9068323,
0.9068323 , 0.90838509, 0.90838509, 0.90993789, 0.90993789,
0.91149068, 0.91149068, 0.91304348, 0.91304348, 0.91459627,
0.91459627, 0.91614907, 0.91614907, 0.91770186, 0.91770186,
0.91925466, 0.91925466, 0.92080745, 0.92080745, 0.92236025,
0.92236025, 0.92391304, 0.92391304, 0.92546584, 0.92546584,
0.92701863, 0.92701863, 0.92857143, 0.92857143, 0.93012422,
0.93012422, 0.93322981, 0.93322981, 0.93478261, 0.93478261,
0.9363354 , 0.9363354 , 0.9378882 , 0.9378882 , 0.93944099,
0.93944099, 0.94099379, 0.94099379, 0.94254658, 0.94254658,
0.94409938, 0.94409938, 0.94565217, 0.94565217, 0.94875776,
0.94875776, 0.95031056, 0.95031056, 0.95186335, 0.95186335,
0.95341615, 0.95341615, 0.95496894, 0.95496894, 0.95652174,
0.95652174, 0.95807453, 0.95807453, 0.95962733, 0.95962733,
0.96118012, 0.96118012, 0.96273292, 0.96273292, 0.96428571,
0.96428571, 0.9673913, 0.9673913, 0.9689441, 0.9689441,
0.97049689, 0.97049689, 0.97204969, 0.97204969, 0.97360248,
0.97360248, 0.97515528, 0.97515528, 0.97670807, 0.97670807,
0.97826087, 0.97826087, 0.97981366, 0.97981366, 0.98136646,
0.98136646, 0.98291925, 0.98291925, 0.98447205, 0.98447205,
0.98602484, 0.98602484, 0.98757764, 0.98757764, 0.98913043,
0.98913043, 0.99068323, 0.99068323, 0.99223602, 0.99223602,
```

```
0.99689441, 0.9984472 , 0.9984472 , 1.
                                                                       ])
                                                          , 1.
[71]: thresholds[0]=thresholds[0]-1
      thresholds
[71]: array([0.92865961, 0.92865961, 0.91312889, 0.85807079, 0.64451403,
             0.64416086, 0.64309831, 0.63692876, 0.62076474, 0.61888853,
             0.60102884, 0.59273286, 0.5770012, 0.57610607, 0.56445639,
             0.56020808, 0.55728264, 0.55126303, 0.54849605, 0.54828537,
             0.54341342, 0.53974452, 0.5349244, 0.53000139, 0.52883151,
             0.52733388, 0.52427393, 0.52388946, 0.51400158, 0.51330848,
             0.51019049, 0.49846189, 0.49116721, 0.48931525, 0.4872395,
             0.47831579, 0.47723031, 0.47321536, 0.46956079, 0.46852073,
             0.46553847, 0.4592962, 0.458117, 0.4555332, 0.45126052,
             0.44956977, 0.44915032, 0.44740178, 0.44606112, 0.4384331,
             0.43737703, 0.43691176, 0.43508574, 0.43408986, 0.4330541 ,
             0.43265376, 0.43102807, 0.43008087, 0.43000903, 0.42957085,
             0.42936337, 0.42630178, 0.42528352, 0.42355043, 0.42345092,
             0.4234059, 0.42331062, 0.42172468, 0.42110502, 0.42061139,
             0.42032199, 0.41772335, 0.41750821, 0.41465187, 0.41385254,
             0.40576651, 0.4029689, 0.40195735, 0.40136434, 0.39853548,
             0.39584684, 0.39514619, 0.39483351, 0.39428731, 0.39346769,
             0.3929519, 0.39235909, 0.38972444, 0.3892277, 0.38669205,
             0.38628958, 0.38403039, 0.38234922, 0.38225198, 0.38082617,
             0.38078663, 0.38015343, 0.38004899, 0.37936257, 0.37692393,
             0.37685872, 0.37610958, 0.37609513, 0.37459313, 0.37447038,
             0.3733836, 0.37168459, 0.37029713, 0.36966553, 0.36828297,
             0.36779387, 0.36760438, 0.36724039, 0.36716669, 0.36562435,
             0.36483676, 0.36483373, 0.36433355, 0.36222789, 0.36143299,
             0.36137587, 0.35896203, 0.35742823, 0.3572915, 0.35728136,
             0.35543663, 0.35467239, 0.35323471, 0.35319749, 0.35052527,
             0.34970768, 0.34962419, 0.34876417, 0.34649624, 0.34617561,
             0.34269334, 0.34252339, 0.34183778, 0.34154528, 0.33967697,
             0.33955122, 0.33844998, 0.33837291, 0.33801881, 0.33691981,
             0.33507753, 0.33476029, 0.33460297, 0.33447968, 0.33343906,
             0.33314767, 0.33172122, 0.33156745, 0.32945259, 0.32945011,
             0.32911431, 0.3290035, 0.32714076, 0.32698674, 0.32482758,
             0.32417389, 0.32103059, 0.3209272, 0.31965252, 0.31928761,
             0.31793924, 0.31779948, 0.31758022, 0.31718795, 0.3161549 ,
             0.31612397, 0.31477564, 0.3141388, 0.31411096, 0.3140424,
             0.31379587, 0.31344034, 0.3104198, 0.30958537, 0.30947877,
             0.30915224, 0.30815709, 0.30769416, 0.30518836, 0.30472316,
             0.30276593, 0.30272534, 0.30243764, 0.30053361, 0.2983907,
             0.29836775, 0.29740877, 0.29684029, 0.29672261, 0.29646286,
             0.29583082, 0.29577584, 0.29536068, 0.29533362, 0.29406129,
             0.29403525, 0.29388283, 0.29384107, 0.29364328, 0.29341469,
```

0.99378882, 0.99378882, 0.99534161, 0.99534161, 0.99689441,

```
0.2932092 , 0.29296167, 0.29218926, 0.2920774 , 0.29187858,
0.29183322, 0.29166508, 0.29128987, 0.29127814, 0.29113198,
0.29048496, 0.29037034, 0.2890065, 0.289001, 0.2888116,
0.28863135, 0.28800427, 0.28774457, 0.28728023, 0.28723849,
0.28693373, 0.28679581, 0.28484528, 0.28476776, 0.28449563,
0.28339427, 0.28313307, 0.28302221, 0.28289819, 0.28287845,
0.28041608, 0.28036254, 0.27855781, 0.27837761, 0.27767391,
0.27675417, 0.27596671, 0.27591271, 0.27411878, 0.27400641,
0.27376361, 0.27351236, 0.27318901, 0.27262819, 0.27251534,
0.27217525, 0.2720517, 0.2716222, 0.26988873, 0.26931064,
0.26829461, 0.26795803, 0.2668869, 0.26679382, 0.26601899,
0.26566957, 0.26505914, 0.26451568, 0.26421945, 0.26413663,
0.26384421, 0.26350025, 0.26343422, 0.26315574, 0.26284415,
0.26218022, 0.26195089, 0.26188803, 0.26117356, 0.26065091,
0.2606367, 0.26055402, 0.25999151, 0.25986766, 0.2586563,
0.25805507, 0.2578462, 0.25768443, 0.25661597, 0.25641174,
0.25612301, 0.25609652, 0.25597756, 0.25594714, 0.2553851,
0.25501461, 0.25463949, 0.25430829, 0.25283804, 0.25259686,
0.25252163, 0.25248391, 0.25222323, 0.25175806, 0.25175565,
0.25145549, 0.25111035, 0.25088005, 0.249933 , 0.24876944,
0.2485891 , 0.24851747, 0.24846368, 0.24812066, 0.24733587,
0.24681688, 0.2456441, 0.24542786, 0.24519275, 0.2448061,
0.24414541, 0.24365647, 0.2435497, 0.24354032, 0.24286686,
0.24242752, 0.24119988, 0.24090414, 0.24064468, 0.24056294,
0.2402415 , 0.24012239, 0.23986201, 0.23981887, 0.23952523,
0.23944861, 0.23887904, 0.2388368, 0.23810159, 0.23763404,
0.23747248, 0.23741455, 0.23624283, 0.23620844, 0.23495012,
0.23487205, 0.23429372, 0.2341946, 0.23384556, 0.23363797,
0.23229268, 0.23197999, 0.23181875, 0.23171335, 0.23124091,
0.23089352, 0.23055247, 0.23030155, 0.22966386, 0.22962143,
0.22961907, 0.22958382, 0.22930299, 0.22925942, 0.22901934,
0.22890904, 0.22888304, 0.2288277, 0.22858492, 0.2285254,
0.22812763, 0.22805016, 0.22653364, 0.22648416, 0.22584289,
0.22568348, 0.22567221, 0.22549265, 0.22548401, 0.2251746 ,
0.22494211, 0.22476945, 0.2247351, 0.22463773, 0.22457759,
0.22389602, 0.22194166, 0.22169496, 0.22057644, 0.22035719,
0.21980181, 0.21977696, 0.21958009, 0.21955979, 0.21789608,
0.2178112 , 0.21716562, 0.21713765, 0.2169344 , 0.2168094 ,
0.21655311, 0.21613361, 0.21534287, 0.2153087, 0.21471205,
0.21457894, 0.21407068, 0.21405475, 0.21393814, 0.21393519,
0.21367796, 0.21342377, 0.21107733, 0.21100256, 0.2107229,
0.21069544, 0.20965521, 0.2093742 , 0.20924391, 0.2088922 ,
0.20824456, 0.20816463, 0.20804356, 0.20783607, 0.20667067,
0.20654085, 0.20650455, 0.20584378, 0.20583348, 0.20569998,
0.20534459, 0.20514782, 0.20492418, 0.2049054, 0.20469415,
0.20451699, 0.20446675, 0.20442175, 0.20438586, 0.20404096,
0.20318184, 0.20303274, 0.20223474, 0.2021211, 0.20204802,
```

```
0.20202746, 0.19979026, 0.19977055, 0.19791372, 0.19788277,
0.19738082, 0.19738038, 0.19636812, 0.19623227, 0.1957743,
0.19563714, 0.19559013, 0.19525575, 0.19517766, 0.19496757,
0.19455445, 0.19451189, 0.19396448, 0.19376671, 0.19321231,
0.1931035 , 0.19257114 , 0.19247807 , 0.19221103 , 0.19183865 ,
0.19183541, 0.19151575, 0.19022018, 0.19009016, 0.18993392,
0.18986362, 0.18984605, 0.1898434, 0.18959467, 0.18959322,
0.18809535, 0.18798779, 0.18675502, 0.18664434, 0.18657277,
0.18655357, 0.18521825, 0.18519639, 0.18457626, 0.18457598,
0.18425655, 0.18423861, 0.18414145, 0.18411601, 0.18398421,
0.18388963, 0.18356281, 0.18350053, 0.18264317, 0.18253659,
0.18226702, 0.18225504, 0.18177734, 0.18172609, 0.18104715,
0.18095994, 0.18089041, 0.18073929, 0.18037455, 0.1803251,
0.18015449, 0.18012046, 0.17972107, 0.1797101, 0.17966453,
0.17956201, 0.17879334, 0.17845307, 0.17729233, 0.17727144,
0.17644501, 0.17639041, 0.17606378, 0.17578906, 0.17539393,
0.17524977, 0.17514954, 0.1750058, 0.17464486, 0.17446851,
0.17428966, 0.17422882, 0.17369073, 0.17366908, 0.17354411,
0.17349648, 0.17207435, 0.17198328, 0.17166765, 0.17162688,
0.17117819, 0.17097479, 0.17009237, 0.16999686, 0.169573
0.16942428, 0.16930989, 0.16926022, 0.16914878, 0.169072
0.16823663, 0.16822307, 0.16778579, 0.16768332, 0.16741343,
0.16739998, 0.16714202, 0.16707665, 0.16677264, 0.16675908,
0.16661585, 0.16648852, 0.1657838, 0.16576943, 0.16562511,
0.16544651, 0.1644722, 0.16423586, 0.16353372, 0.16352132,
0.16270947, 0.16257315, 0.16248814, 0.16246642, 0.16244032,
0.16232762, 0.16226176, 0.16225112, 0.16156298, 0.16135127,
0.16081026, 0.16079857, 0.16027505, 0.16018918, 0.15995263,
0.15993445, 0.1594537, 0.15938744, 0.15934377, 0.15932885,
0.15911481, 0.1588453, 0.15805522, 0.15803036, 0.15762911,
0.15733274, 0.15621762, 0.15580321, 0.15568873, 0.15565762,
0.15500351, 0.15496338, 0.15475112, 0.15457933, 0.15393928,
0.15381912, 0.15249509, 0.15244137, 0.15216158, 0.15213229,
0.15090918, 0.15078059, 0.15004612, 0.15000232, 0.14896379,
0.14891676, 0.14874891, 0.14854973, 0.14741628, 0.14741533,
0.14700581, 0.14689312, 0.14687052, 0.14683346, 0.14679341,
0.14674343, 0.14638452, 0.14626977, 0.14606738, 0.14602976,
0.14585066, 0.14571806, 0.14341774, 0.1433701, 0.14311739,
0.14311113, 0.14216979, 0.14194954, 0.14164217, 0.14143121,
0.14079211, 0.14078758, 0.1396099, 0.13943539, 0.13800038,
0.137843 , 0.1374488 , 0.13727677, 0.13655195, 0.13655098,
0.13532333, 0.13521463, 0.1345864 , 0.13454533, 0.1343841 ,
0.1343532 , 0.1336116 , 0.13348396 , 0.1334586 , 0.13338983 ,
0.13246124, 0.13243433, 0.13202873, 0.13201342, 0.13111783,
0.13109958, 0.13014289, 0.13004644, 0.12912798, 0.12904027,
0.12897428, 0.12889448, 0.12875498, 0.12866416, 0.1284696,
0.12843366, 0.12837492, 0.12836881, 0.12818053, 0.12796755,
```

```
0.12711803, 0.12711305, 0.12603337, 0.12603322, 0.12528494,
0.12521837, 0.12400717, 0.12399876, 0.12282423, 0.12281238,
0.12276369, 0.12269624, 0.12194626, 0.1218845, 0.12182603,
0.12176863, 0.12152588, 0.12151435, 0.12126677, 0.12119174,
0.12072316, 0.12055888, 0.12016458, 0.12016134, 0.12014142,
0.11990214, 0.11986295, 0.11983272, 0.11879197, 0.11874245,
0.11835944, 0.11823335, 0.11790769, 0.11790695, 0.11722783,
0.11717918, 0.11685647, 0.11676852, 0.11664818, 0.11663572,
0.11627795, 0.11618794, 0.11554535, 0.11552573, 0.1144051,
0.11429646, 0.1126436, 0.11250931, 0.11207879, 0.11203023,
0.11185202, 0.11184314, 0.11148559, 0.11146698, 0.11120297,
0.11115628, 0.11109994, 0.11101685, 0.11073656, 0.11065017,
0.11019857, 0.11018548, 0.10960938, 0.1095962, 0.10925837,
0.10910322, 0.10900257, 0.10899743, 0.10863833, 0.10858328,
0.10839953, 0.10831012, 0.10828435, 0.10828088, 0.10771175,
0.10763282, 0.10759787, 0.10752556, 0.10749735, 0.10746794,
0.10688978, 0.10684995, 0.1063058, 0.10629321, 0.10522435,
0.10521509, 0.10515005, 0.10514782, 0.10484634, 0.10480108,
0.10475697, 0.10466224, 0.10460825, 0.10459095, 0.1037969,
0.10368566, 0.1034845 , 0.1034752 , 0.10342125, 0.10332735,
0.10324275, 0.10319683, 0.10209366, 0.10207314, 0.1019966,
0.10193442, 0.10116171, 0.10114575, 0.10105733, 0.10094436,
0.10042395, 0.10037017, 0.09990133, 0.0997378, 0.09957168,
0.09946114, 0.09839695, 0.09834413, 0.0973887, 0.0973846,
0.096948 , 0.09693104, 0.09689615, 0.09682582, 0.09387525,
0.09377728, 0.09363914, 0.09361491, 0.09259582, 0.09245396,
0.09241018, 0.09229646, 0.09167095, 0.09160461, 0.09060281,
0.0905052, 0.09047322, 0.09041022, 0.08801017, 0.08799856,
0.08610805, 0.08601478, 0.08578725, 0.08577788, 0.08562191,
0.08556472, 0.08536292, 0.08534797, 0.08531295, 0.08531138,
0.08504026, 0.08501637, 0.08496262, 0.08464103, 0.08462276,
0.08433641, 0.08427495, 0.08427174, 0.08385706, 0.08383907,
0.08362683, 0.08350795, 0.08298388, 0.08291183, 0.08230025,
0.08226383, 0.08100847, 0.08090965, 0.08072979, 0.08071016,
0.08045552, 0.08041438, 0.08026502, 0.08019655, 0.0799844
0.07998133, 0.07995473, 0.07995433, 0.0797089 , 0.0797061 ,
0.07945378, 0.07943751, 0.07888998, 0.07885991, 0.07770182,
0.07769342, 0.07759494, 0.0774411 , 0.07519614, 0.07489458,
0.07418652, 0.07417896, 0.07354856, 0.07354527, 0.07337354,
0.07336796, 0.07322231, 0.07319695, 0.07307742, 0.07299536,
0.07283037, 0.07280322, 0.07217041, 0.07216143, 0.07187547,
0.07186352, 0.0714693, 0.07142604, 0.07119708, 0.07113929,
0.06905402, 0.06895556, 0.06747331, 0.06746046, 0.06685283,
0.06684286, 0.06524281, 0.06522665, 0.06402206, 0.06398712,
0.06334123, 0.06327201, 0.06159922, 0.06158461, 0.06125926,
0.06115098, 0.05975845, 0.05975037, 0.05964408, 0.05964223,
0.05948584, 0.05948231, 0.05911416, 0.05908679, 0.05868924,
```

```
0.05862304, 0.0577153, 0.05759739, 0.05747826, 0.05742848,
             0.05668755, 0.05666189, 0.05593665, 0.05590074, 0.05521105,
             0.05508452, 0.0549536, 0.05493949, 0.05430349, 0.05429474,
             0.05316018, 0.05315129, 0.05163659, 0.0515894, 0.05148726,
             0.05146957, 0.05137055, 0.05126952, 0.05095405, 0.05095118,
             0.05071836, 0.05067791, 0.05034513, 0.05031417, 0.04949195,
             0.04949127, 0.04869796, 0.04866308, 0.0480071, 0.04785995,
             0.04661886, 0.04656894, 0.04505122, 0.04501014, 0.04500188,
             0.04500046, 0.04498397, 0.04495405, 0.04376022, 0.04373156,
             0.0434092, 0.04340905, 0.04322769, 0.04320108, 0.04175277,
             0.04172554, 0.04089151, 0.04080126, 0.04071272, 0.04069495,
             0.04036055, 0.04023161, 0.03407794, 0.03401422, 0.03132938,
             0.03122749, 0.03051799, 0.03049861, 0.02486645, 0.024665
             0.01832377, 0.01813727, 0.01746985, 0.01744419, 0.01615037])
[72]: roc=pd.DataFrame({'fpr': fpr,'tpr': tpr,'thresholds': thresholds, })
[73]: roc
[73]:
                             thresholds
                fpr
                          tpr
          0.000000 0.000000
      0
                                 0.928660
      1
          0.000000 0.001553
                                 0.928660
      2
          0.000000 0.004658
                                0.913129
      3
          0.000278 0.004658
                                 0.858071
      4
           0.000278 0.021739
                                0.644514
      975 0.998888 0.996894
                                0.018324
      976 0.998888 0.998447
                                0.018137
      977 0.999166 0.998447
                                 0.017470
      978 0.999166 1.000000
                                0.017444
     979 1.000000 1.000000
                                0.016150
      [980 rows x 3 columns]
[90]: plt.plot(fpr, tpr)
      plt.plot(fpr, fpr, 'red')
[90]: [<matplotlib.lines.Line2D at 0x2275adefda0>]
```



```
[86]: fig, ax= plt.subplots()
    ax.plot(fpr, tpr)
    ax.plot(fpr, fpr, 'red')
    ax.set_xlabel('FPR')
    ax.set_ylabel('TPR')
    ax1=ax.twinx()
    ax1.set_ylabel('Thresholds')
    ax1.plot(fpr, thresholds)
    plt.show()
```



```
[92]: roc[(roc['tpr']>=0.80) & (roc['tpr']<=0.81)]
[92]:
                                 thresholds
                 fpr
                           tpr
      738
           0.494160
                      0.801242
                                   0.109596
                                   0.109258
      739
           0.496663
                      0.801242
           0.496663
      740
                      0.802795
                                   0.109103
                                   0.109003
      741
           0.497497
                      0.802795
      742
           0.497497
                      0.804348
                                   0.108997
      743
           0.498331
                      0.804348
                                   0.108638
      744
           0.498331
                      0.805901
                                   0.108583
      745
           0.498610
                      0.805901
                                   0.108400
      746
           0.498610
                      0.809006
                                   0.108310
      747
           0.499166
                      0.809006
                                   0.108284
```

if the model is good then we might have got the value of fpr as very low with higher tpr, higher tpr and lower fpr says the threshold value

[]: