Theorem (2.2.18e). Let A, B, and C be sets. $(B-A) \cup (C-A) = (B \cup C) - A$.

Proof. Let x be an element in $(B-A)\cup (C-A)$. This is the same as saying $x\in [(B\cap \overline{A})\cup (C\cap \overline{A})]$. By definition, $[(x\in B)\wedge (x\in \overline{A})]\vee [(x\in C)\wedge (x\in \overline{A})]$. By the associative property for logical conjunction, and factoring out the term $(x\in \overline{A})$, we get $[(x\in B)\vee (x\in C)]\wedge (x\in \overline{A})$. This statement is the definition for $(B\cup C)-A$.

Proving the converse case, suppose that x is an element in $(B \cup C) - A$. Note that the expression is equivalent to $(B \cup C) \cap \overline{A}$. Thus we have the following definition, $[(x \in B) \lor (x \in C)] \land (x \in \overline{A})$. By logical distribution for conjunction over disjunction $[(x \in B) \land (x \in \overline{A})] \lor [(x \in C) \land (x \in \overline{A})]$. This statement defines the expression $x \in [(B \cap \overline{A}) \cup (C \cap \overline{A})]$. Which, as argued in the first paragraph, is logically equivalent to $x \in [(B - A) \cup (C - A)]$.

Since $[(B-A)\cup(C-A)]\subseteq[(B\cup C)-A]$ and $[(B\cup C)-A]\subseteq[(B-A)\cup(C-A)]$. It immediately follows from the definition of set equivalence that $(B-A)\cup(C-A)=(B\cup C)-A$.