Inductively
Coupled Plasma
Mass Spectrometry
(ICP-MS)
Tutorial

AtomSolve 元析科技

Principle

The working principle of ICP-MS is illustrated in Fig. 1. The liquid sample is first introduced into the nebulizer, where it is converted into an aerosol and carried into the plasma torch. In the torch, an inductively coupled plasma is generated, which atomizes the elements and ionizes them into free ions. These ions are then extracted through a sampling interface and guided by an ion lens system, which focuses and adjusts their trajectory. The ions then enter the quadrupole mass filter, where they are separated according to their mass-to-charge ratio $(\frac{m}{q})$. The selected ions pass through the quadrupole and are detected by a detector, where the signal is amplified and measured.

The output from the instrument is given as counts per second (cps). To determine the concentration of elements in the original liquid sample, the measured cps must be compared to a reference line, which is calibrated using standard solutions with known concentrations.

This technique allows for parts per trillion (ppt)-level detection sensitivity.

Figure 1: The schematic of ICP-MS equipment.

Process

Sequence	Sample	Annotation		
1	1% HNO ₃	washing, CPS data not recorded		
2	1% HNO ₃	washing, CPS data not recorded		
3	UPW	washing, CPS data recorded		
4	1% HNO ₃	ref point 1, blank data (0,0)		
5	100 ppt	ref point 2		
6	200 ppt	ref point 3		
7	500 ppt	ref point 4		
8	1000 ppt	ref point 5		
9	UPW	washing before QC		
10	QC1	quality control		
11	SAMPLE	the real sample to be measured		
12	UPW	washing, CPS data recorded		
13	UPW	washing, CPS data recorded		
14	UPW	washing, CPS data recorded		

Table 1: The experiment process

Reference line

In this section, we will show how the reference line is built by taking Mg^{2+} as an example. TABLE 2 shows the data for generating the reference line of Mg^{2+} . ReferLine ID are the designed concentration (unit ppt) level; Weight conc. are the actual concentration by weight, which depends on the accuracy of the weighing machine; CPS are the detected flux (count per second) of the samples; Regression conc. values are obtained by inputting the five "y" CPS data points as the independent variable, resulting in the "x" outcomes.

ReferLine ID	weight conc.(ppt)	CPS	regress conc.(ppt)
0	0	3.67	-1.743352949
100	101.1570672	4548.38	102.7007552
200	170.7122409	7597.66	172.7776864
500	504.8849092	21927.85	502.1064916
1000	979.6110274	42745.37	980.5236645

Table 2: The data for generating the reference line.

The parameters for regression equation y = ax + b is given in TABLE3.

a	43.51332	
b	79.52908	
Correlation Coefficient	0.999986	

Table 3: Linear Regression Parameters

FIGURE 2 is the plot of the reference line of Mg^{2+} ions. The Reference Line (blue line), represents the linear regression derived from the five data points indicating weight concentration (blue dots). The regression concentration values (red squares) are obtained by inputting the five "y" CPS data points as the independent variable, resulting in the "x" outcomes. This linear regression serves as a guide, illustrating the relationship between weight concentration and CPS data with precision.

Figure 2: The Reference Line (blue line), the weight concentration (blue dots) and the regression concentration values (red squares).

Quality Control (QC)

Quality Control (QC) is a pre-test before measuring real samples. The QC sample concentration should be within the reference range (i.e., 0 to 1000 ppt). Using the measured CPS in the regression equation gives us the regression concentration. If the difference between the regression and weight concentrations is less than 0.2 (20%), the reference line can serve as a reliable guide. Here, the deviation is 0.0153, for Mg^{2+} .

weight conc.(ppt)	CPS	regress conc.(ppt)	deviation
604.8263382	26800.32	614.0830057	0.01530467

Table 4: The QC results of Mg²⁺.

Results

The step 11 is the real sample in this measurement. The measured CPS of Mg^{2+} in the sample is 11.33, which is the average value of 3 repeat recording results: 13, 10 and 11. Put the value 11.33 back to the regression equation y=ax+b, we can get its regress concentration: 0.176 ppt. Using the same method, the concentration of other elements are obtained, as shown in TABLE 5.

Element	Regress Conc. (ppt)	Element	Regress Conc. (ppt)
7 Li [Warm H2]	-0.022	89 Y [HEHe]	-0.026
9 Be [No Gas]	-0.204	90 Zr [He]	2.743
11 B [No Gas]	16.336	93 Nb [HEHe]	0.297
23 Na [Warm H2]	1.157	95 Mo [HEHe]	0.411
24 Mg [Warm H2]	0.176	105 Pd [HEHe]	0.204
27 Al [Warm H2]	0.4	105 Pd [He]	0.078
39 K [Warm H2]	0.921	107 Ag [He]	1.658
40 Ca [Warm H2]	3.779	111 Cd [HEHe]	-0.09
48 Ti [HEHe]	0.165	115 In [HEHe]	1.605
51 V [He]	-0.04	118 Sn [Warm H2]	1.377
52 Cr [Warm H2]	0.111	118 Sn [HEHe]	0.729
55 Mn [Warm H2]	0.1	121 Sb [HEHe]	0.728
56 Fe [Warm H2]	0.59	138 Ba [HEHe]	-0.029
58 Ni [Warm H2]	-0.712	181 Ta [HEHe]	0.099
59 Co [Warm H2]	0.07	182 W [He]	0.68
63 Cu [Warm H2]	0.224	195 Pt [No Gas]	-6.325
64 Zn [He]	0.589	197 Au [He]	4.421
71 Ga [Warm H2]	0.035	201 Hg [HEHe]	1.204
72 Ge [HEHe]	0.624	205 TI [He]	0.732
75 As [He]	-0.294	208 Pb [HEHe]	7.721
88 Sr [HEHe]	0	209 Bi [He]	1.195

Table 5: The concentration of elements

In this table, the "Element" column includes the tested isotope mass of the element, the element label, and the reative gas. The reactive gases are used to resolve interferences, leading to lower detection limits and better accuracy for some difficult analytes.

Figure 3: The mass spectrum

As a mass spectrometric technique, ICP-MS can also separate and measure the individual isotopes of an element, so it can be used for applications where isotopic abundances or isotope ratios are of interest. "FIGURE 3 depicts a "mass spectrum", providing a concise representation of element concentrations at various mass-to-charge ratios. The isolated 'peaks' in the plot correspond to distinct elements or isotopes."

Contact

T.J. Fang, Sales Manager Email: tjfang@gmail.com Tel: +886.932.186.234

Yuan Tu, Ph.D., Technical Sales Mananger

Email: ytujimmy@gmail.com

AtomSolve Technology Co., Ltd.

Address: No. 168, Lane 256, Yilin Road, Rende District, Tainan City 717, Taiwan (RoC)

Web: https://www.atomsolve.com

Disclaimer

The information in this letter are PUBLIC. Please feel free to spread this report to your colleagues.

Appendix-Relative Isotopic Abundance Table

Figure 4: Isotopic abundance table from the Agilent Mass Spectrometer manual.

Other Techniques

Spectroscopic Ellipsometry (SE)
 https://www.atomsolve.com/detailed-introductions/se-details

• FIB-SEM

https://www.atomsolve.com/detailed-introductions/fib

• Transmission Electron Microscopy
https://www.atomsolve.com/detailed-introductions/tem-details

• 3D modeling and simulation

https://www.atomsolve.com/detailed-introductions/3drendering

Public TN01250711T0001-**7**