#### Code ▼

# Seurat pipeline 8 um data analysis

github.com/acerch 2025-05-06

## Seurat pipeline

[1] "binned\_outputs"

[3] "Visium\_HD\_Human\_Breast\_Cancer\_Fresh\_Frozen\_tissue\_image.tif"

Following Seurat "Analysis, visualization, and integration of Visium HD spatial datasets with Seurat" tutorial, available in: https://satijalab.org/seurat/articles/visiumhd\_analysis\_vignette (https://satijalab.org/seurat/articles/visiumhd\_analysis\_vignette).

And the "Visium HD Analysis" from Harvard Chan Bioinformatics Core (HBC) (http://bioinformatics.sph.harvard.edu/). Available in: https://github.com/hbctraining/spatial\_nanocourse/blob/main/lessons/visium\_hd.md (https://github.com/hbctraining/spatial\_nanocourse/blob/main/lessons/visium\_hd.md)

Data used available in the 10X Genomics Data Base in: https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-human-breast-cancer-fresh-frozen (https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-human-breast-cancer-fresh-frozen)

```
Hide
# Necessary packages CRAN
list.of.packages = c("Seurat", "ggplot2", "dplyr", "patchwork", "hdf5r", "arrow", "ape", "remotes", "devtools", "tict
oc")
# Install necessary packages if needed
new.packages = list.of.packages[!(list.of.packages %in% installed.packages())]
if(length(new.packages)> 0) install.packages(new.packages)
# Load CRAN packages
invisible(lapply(list.of.packages, FUN=library, character.only=TRUE))
                                                                                                                 Hide
# Verify if Seurat packages are installed
if (!requireNamespace("SeuratDisk", quietly = TRUE)) {
  remotes::install_github("mojaveazure/seurat-disk")
                                                                                                                 Hide
if (!requireNamespace("SeuratData", quietly = TRUE)) {
  remotes::install_github("satijalab/seurat-data")
}
# Load Seurat packages
invisible(lapply(c("SeuratDisk", "SeuratData"), FUN=library, character.only=TRUE))
# Bioconductor packages
bioconductor.packages = c("GO.db", "org.Hs.eg.db", "limma")
if (!requireNamespace("BiocManager", quietly = TRUE)) {
  install.packages("BiocManager", repos = "https://cloud.r-project.org")
library(BiocManager)
                                                                                                                 Hide
new.packages.bio = bioconductor.packages[!(bioconductor.packages %in% installed.packages())]
if(length(new.packages.bio)> 0) BiocManager::install(new.packages.bio)
# Load Bioconductor packages
invisible(lapply(bioconductor.packages, FUN=library, character.only=TRUE))
                                                                                                                 Hide
# Measure run time notebook
tic("Total time Seurat pipeline")
                                                                                                                 Hide
# Load Visium HD data
localdir <- "../../Data/Raw/raw_data_fresh_frozen/"</pre>
list.files(localdir)
```

"spatial"

```
# Load a 10x Genomics 8 um Visium Spatial Experiment into a Seurat object
object <- Load10X_Spatial(data.dir = localdir, bin.size = 8)
object</pre>
```

```
An object of class Seurat
18085 features across 472859 samples within 1 assay
Active assay: Spatial.008um (18085 features, 0 variable features)
1 layer present: counts
1 spatial field of view present: slice1.008um
```

```
Hide
# Quality Control
# Pre-filterning
# Create a metadata object
object_meta <- object@meta.data</pre>
# Plot the number of UMIs (nUMI) and the number of genes (nGene)
# Create a plot for nUMI
dist_counts_before <- object_meta %>%
 ggplot(aes(x=nCount_Spatial.008um)) +
 geom\_density(alpha = 0.2) +
 scale_x_log10() +
 theme_classic() +
 ylab("Cell density") +
 xlab("Number of UMIs per bin") +
 ggtitle('Pre-QC UMIs/Bin') +
 theme(plot.title = element_text(hjust = 0.5))
# Create a plot for nGene
dist_features_before <- object_meta %>%
 ggplot(aes(x=nFeature_Spatial.008um)) +
 geom_density(alpha = 0.2) +
 scale_x_log10() +
 theme_classic() +
 ylab("Cell density") +
 xlab("Number of genes per bin") +
 ggtitle('Pre-QC Genes/Bin') +
 theme(plot.title = element_text(hjust = 0.5))
dists_before <- dist_counts_before | dist_features_before</pre>
dists_before
```



Hide

# Good quality data, just one pick representing healthy cells with high number of genes and UMIs per bin.

```
Hide
# Apply filter to delete low quality bins and genes
print(paste("The numer of initial bins and genes before filtering was:", nrow(object@meta.data), "and",nrow(obje
ct), "respectively." ))
[1] "The numer of initial bins and genes before filtering was: 472859 and 18085 respectively."
                                                                                                               Hide
# Create a filtered object, with with nUMI > 80 and nGene > 80, leaving the higher quality bins
object_filt <- subset(object, (nCount_Spatial.008um > 80) &
                        (nFeature_Spatial.008um > 80))
# Calculate the % of mitocondrial genes per bin
object_filt[["percent.mt"]] <- PercentageFeatureSet(object_filt, pattern = "^MT-")
# Apply filter keeping bins of < 30% mitocondrial genes
object_filt <- subset(object_filt, subset = percent.mt < 30)</pre>
# Obtain the count matrix
counts = GetAssayData(object_filt,layer = "counts")
# Filter genes that appear in at least 5 bins, high quality genes
hq_genes = rowSums(counts >0) >= 5
# Subset seurat object to keep only high quality genes
object_filt = subset(object_filt, features = names(hq_genes[hq_genes]))
print(paste("Resulting in" , nrow(object_filt@meta.data), "bins and",nrow(object_filt) , "genes after filtering f
or further processing."))
[1] "Resulting in 463329 bins and 16375 genes after filtering for further processing."
                                                                                                                Hide
# Calculate statistics of filtered object
summary(object_filt$nCount_Spatial.008um, na.rm = T)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                           Max.
                                           5670
    82
           506
                   747
                           787
                                   1015
                                                                                                                Hide
summary(object_filt$nFeature_Spatial.008um, na.rm = T)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                           Max.
  81.0 355.0 544.0
                         560.5 735.0 2913.0
                                                                                                                Hide
# Create a new metadata data frame with the filtered object
object_filt_meta <- object_filt@meta.data</pre>
```

```
# Plot nUMI
dist_counts_after <- object_filt_meta %>%
 ggplot(aes(x=nCount_Spatial.008um)) +
 geom\_density(alpha = 0.2) +
 scale_x_log10() +
 theme_classic() +
 ylab("Cell density") +
 xlab("Number of UMIs per bin") +
  ggtitle('PostQC UMIs/Bin') +
 theme(plot.title = element_text(hjust = 0.5))
# Plot nGene
dist_features_after <- object_filt_meta %>%
 ggplot(aes(x=nFeature_Spatial.008um)) +
 geom_density(alpha = 0.2) +
 scale \times log10() +
 theme_classic() +
 ylab("Cell density") +
 xlab("Number of genes per bin") +
 ggtitle('PostQC Genes/Bin') +
 theme(plot.title = element_text(hjust = 0.5))
# Combine plots side-by-side
dists_after <- dist_counts_after | dist_features_after</pre>
dists_after
```



Warning: Default search for "data" layer in "Spatial.008um" assay yielded no results; utilizing "counts" layer in stead.Warning: The `slot` argument of `FetchData()` is deprecated as of SeuratObject 5.0.0.

Please use the `layer` argument instead.Warning: `PackageCheck()` was deprecated in SeuratObject 5.0.0.

Please use `rlang::check\_installed()` instead.Scale for y is already present.

Adding another scale for y, which will replace the existing scale.Scale for y is already present.

Adding another scale for y, which will replace the existing scale.

Warning: Default search for "data" layer in "Spatial.008um" assay yielded no results; utilizing "counts" layer in stead. Scale for y is already present.

Adding another scale for y, which will replace the existing scale. Scale for y is already present.

Adding another scale for y, which will replace the existing scale.

Hide

```
# Plot both side by side
vln_counts_after | vln_features_after
```











Hide

# note that many spots have very few counts, in-part
# due to low cellular density in certain tissue regions

Hide

# Normalize dataset, use standard log-normalization for spatial data
object\_filt <- NormalizeData(object\_filt, assay = 'Spatial.008um')</pre>

Hide

object\_filt

An object of class Seurat 16375 features across 463329 samples within 1 assay Active assay: Spatial.008um (16375 features, 0 variable features)

2 layers present: counts, data

1 spatial field of view present: slice1.008um

Hide

# Unsupervised clustering

# Define a set of highly variable genes, will help to quantify the variability and similarity between bins.
object\_filt <- FindVariableFeatures(object\_filt)</pre>

```
# Select 50,0000 cells and create a new 'sketch' assay
object_filt <- SketchData(
  object = object_filt,
  ncells = 50000,
  method = "LeverageScore",
  sketched.assay = "sketch",
  features = VariableFeatures(object_filt)
)</pre>
```

```
Calcuating Leverage Score
Attempting to cast layer counts to dgCMatrix
Attempting to cast layer data to dgCMatrix
```

object\_filt

An object of class Seurat
32750 features across 463329 samples within 2 assays
Active assay: sketch (16375 features, 2000 variable features)
2 layers present: counts, data
1 other assay present: Spatial.008um
1 spatial field of view present: slice1.008um

Hide

Hide

Hide

# Observe the leverage score has been added as a column to the metadata of our object.
head(object\_filt@meta.data)

|                           | orig.ident<br><chr></chr> | nCount_Spatial.008um<br><dbl></dbl> | nFeature_Spatial.008um<br><int></int> | percent.mt<br><dbl></dbl> |
|---------------------------|---------------------------|-------------------------------------|---------------------------------------|---------------------------|
| s_008um_00269_00526-1     | S                         | 1479                                | 1023                                  | 5.814740                  |
| s_008um_00260_00253-1     | S                         | 971                                 | 719                                   | 7.106076                  |
| s_008um_00433_00599-1     | s                         | 527                                 | 214                                   | 1.328273                  |
| s_008um_00266_00304-1     | s                         | 749                                 | 547                                   | 6.275033                  |
| s_008um_00359_00037-1     | s                         | 999                                 | 721                                   | 8.608609                  |
| s_008um_00469_00254-1     | s                         | 606                                 | 470                                   | 10.231023                 |
| 6 rows   1-5 of 5 columns |                           |                                     |                                       |                           |

Hide

```
# Perform clustering workflow
object_filt <- FindVariableFeatures(object_filt)</pre>
```

```
object_filt <- ScaleData(object_filt)</pre>
```

object\_filt <- RunPCA(object\_filt, assay = "sketch", reduction.name = "pca.sketch")</pre>

```
PC_ 1
Positive: APOD, PIP, CLU, TSKU, ABCC11, PNMT, LTF, SULT1C3, MAB21L4, MPV17L
       S100A9, TAT, FABP7, PPP1R1B, UGT2B28, ANKRD30A, SCD, AQP3, ELF3, KRT8
       ZNF652, ARFGEF3, S100A7A, AR, TACSTD2, CLDN4, PEG10, ABCA12, CLDN3, IRX3
Negative: SPARC, COL1A1, COL3A1, COL1A2, IGKC, IGHG1, IGFBP7, COL4A1, COL6A2, FN1
       COL4A2, BGN, A2M, TIMP1, LUM, COL6A1, TAGLN, AEBP1, CALD1, APOE
       COL18A1, MMP2, COL6A3, ACTA2, DCN, PRSS23, THY1, COL5A2, COL5A1, PLVAP
PC_ 2
Positive: LYZ, APOE, IGKC, IGHG1, C1QC, C1QA, CD68, FTL, C3, C1QB
       CTSB, CTSZ, CTSS, GPNMB, LAPTM5, CTSD, IGHA1, TYROBP, LUM, SPI1
      MZB1, LSP1, MS4A6A, DCN, CYBB, MPEG1, CD4, LCP1, TRAC, IGHG3
Negative: PLVAP, MCAM, COL18A1, COL4A1, AQP1, COL4A2, VWF, CD34, ENG, PODXL
      RGS5, EGFL7, IGFBP7, CALCRL, CDH5, ESM1, PLPP1, ESAM, SLC9A3R2, KDR
      NOTCH3, CD93, RAMP2, SPARCL1, SEMA3F, EPAS1, OLFML2A, DLL4, A2M, EXOC3L2
PC_ 3
Positive: IGKC, IGHG1, IGHA1, IGLC1, IGHG3, MZB1, DERL3, IGHM, IGHD, TENT5C
       PIM2, TXNDC5, JCHAIN, POU2AF1, CD79A, FCRL5, ITM2C, SSR4, TNFRSF17, SEL1L3
      TXNDC11, CD27, DPEP1, LAX1, BMP6, BTG2, P2RX1, F13A1, CCR2, CPA3
Negative: CTSB, LYZ, APOE, CTSD, CXCL10, CTSZ, CXCL9, CD68, APOC1, LAPTM5
       LGMN, CXCL11, CTSL, GRN, LCP1, GPNMB, ACP5, S100A9, CTSS, FTL
       GBP1, IL4I1, TYROBP, LHFPL2, C3, SPI1, CLU, LIPA, TOP2A, SLC15A3
PC_ 4
Positive: LYZ, CD68, LAPTM5, LCP1, APOE, ENG, ITGAX, PLVAP, VWF, PLEK
       A2M, CTSZ, CTSS, CTSD, CALCRL, CD34, PECAM1, LSP1, EGFL7, SPI1
       CD4, RAMP2, CYBB, TNFAIP2, C1QC, CD83, IL4I1, MPEG1, CDH5, TRAC
Negative: AEBP1, COL1A2, CCN2, COL12A1, COMP, COL1A1, LUM, COL5A1, COL11A1, THBS2
       COL6A3, COL3A1, COL5A2, FN1, SFRP2, THBS1, FBN1, DCN, LRRC15, CTHRC1
       VCAN, POSTN, COL8A1, SULF1, C1S, EPYC, MXRA5, MMP11, BGN, C1R
Positive: TOP2A, CDK1, TPX2, NUSAP1, ASPM, ANLN, HIST1H1B, HMGB2, MYBL2, MKI67
      KIFC1, TROAP, CIT, FAM83D, HIST1H1D, SPC24, ECT2, CENPF, CCNB1, IGKC
       FOXM1, UBE2C, CCNA2, CCNB2, IGHG1, CDCA3, PLK1, PRC1, SPAG5, GPSM2
Negative: SULT1C3, SLC26A3, APOD, TAT, TSKU, PIP, ACSM1, ECHDC2, MPV17L, FABP7
      ACSL3, ATP13A4, CYP1B1, ZBTB16, SLPI, ABCC11, AQP3, UGT2B28, GPCPD1, KYNU
      HMGCS2, THRSP, SORD, FM05, ZNF652, UGT2B11, MYCBP2, ABCA12, IRX3, SOD2
```

Hide

```
object_filt <- FindNeighbors(object_filt, assay = "sketch", reduction = "pca.sketch", dims = 1:50)
```

Computing nearest neighbor graph
Computing SNN

Hide

```
# Find CLusters with Leiden algorith
object_filt <- FindClusters(object_filt, cluster.name = "seurat_cluster.sketched", resolution = 0.65, algorithm =
4)</pre>
```

Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.3 singletons id entified. 12 final clusters.

```
# Create a UMAP using the principal components as input
object_filt <- RunUMAP(object_filt, reduction = "pca.sketch", reduction.name = "umap.sketch", return.model = T, d
ims = 1:50)</pre>
```

```
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT
using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per sessionUMAP will return its model
20:41:53 UMAP embedding parameters a = 0.9922 b = 1.112
20:41:53 Read 50000 rows and found 50 numeric columns
20:41:53 Using Annoy for neighbor search, n neighbors = 30
20:41:53 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40
                     50 60 70 80 90 100%
[----|----|----|----|
**************
20:41:59 Writing NN index file to temp file /tmp/Rtmpyu4MmB/file29a6c692c2a
20:41:59 Searching Annoy index using 1 thread, search_k = 3000
20:42:16 Annoy recall = 100%
20:42:17 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
20:42:19 Initializing from normalized Laplacian + noise (using RSpectra)
20:42:21 Commencing optimization for 200 epochs, with 2452432 positive edges
20:42:21 Using rng type: pcg
Using method 'umap'
0% 10 20 30 40 50 60 70 80
[----|----|----|----|
**************
20:42:35 Optimization finished
```

## Sketched clustering



```
# Adjust MaxSize to run next step
options(future.globals.maxSize= 2000000000)

# Project the cluster labels, and dimensional reductions (PCA and UMAP) that we learned from the 50,000 sketched
cells
object_filt <- ProjectData(
   object = object_filt,
   assay = "Spatial.008um",
   full.reduction = "full.pca.sketch",
   sketched.assay = "sketch",
   sketched.reduction = "pca.sketch",
   umap.model = "umap.sketch",
   dims = 1:50,
   refdata = list(seurat_cluster.projected = "seurat_cluster.sketched")
)</pre>
```

```
full.pca.sketch is not in the object. Data from all cells will be projected to pca.sketch
Projecting cell embeddings
Finding sketch neighbors
Finding sketch weight matrix
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|
*************
Transfering refdata from sketch
Projection to sketch umap
Running UMAP projection
20:46:09 Read 463329 rows
20:46:09 Processing block 1 of 1
20:46:09 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
20:46:12 Initializing by weighted average of neighbor coordinates using 1 thread
20:46:14 Commencing optimization for 67 epochs, with 13899870 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|
**************
20:46:39 Finished
Warning: Keys should be one or more alphanumeric characters followed by an underscore, setting key from full.uma
p.sketch to fullumapsketch_
```

```
Hide
```

```
# Arrange so clusters get listed in numerical order
object_filt$seurat_cluster.projected <- object_filt$seurat_cluster.projected %>%
   as.numeric %>% as.factor()
object_filt
```

```
An object of class Seurat
32750 features across 463329 samples within 2 assays
Active assay: sketch (16375 features, 2000 variable features)
3 layers present: counts, data, scale.data
1 other assay present: Spatial.008um
4 dimensional reductions calculated: pca.sketch, umap.sketch, full.pca.sketch, full.umap.sketch
1 spatial field of view present: slice1.008um
```

Hide

#### head(object\_filt@meta.data)

|                       | orig.ident<br><chr></chr> | nCount_Spatial.008um<br><dbl></dbl> | nFeature_Spatial.008um<br><int></int> | percent.mt<br><dbl></dbl> |
|-----------------------|---------------------------|-------------------------------------|---------------------------------------|---------------------------|
| s_008um_00269_00526-1 | S                         | 1479                                | 1023                                  | 5.814740                  |
| s_008um_00260_00253-1 | S                         | 971                                 | 719                                   | 7.106076                  |
| s_008um_00433_00599-1 | S                         | 527                                 | 214                                   | 1.328273                  |
| s_008um_00266_00304-1 | S                         | 749                                 | 547                                   | 6.275033                  |
| s_008um_00359_00037-1 | S                         | 999                                 | 721                                   | 8.608609                  |
| s_008um_00469_00254-1 | S                         | 606                                 | 470                                   | 10.231023                 |

```
# Visualize the clustering results for the sketched cells, as well as the projected clustering results for the fu
ll dataset

DefaultAssay(object_filt) <- "sketch"
Idents(object_filt) <- "seurat_cluster.sketched"
p1 <- DimPlot(object_filt, reduction = "umap.sketch", label = T, raster = F, cols = color_pal) + ggtitle("Sketche
d clustering (50,000 cells)") + theme(legend.position = "bottom")

# switch to full dataset
DefaultAssay(object_filt) <- "Spatial.008um"
Idents(object_filt) <- "seurat_cluster.projected"
p2 <- DimPlot(object_filt, reduction = "full.umap.sketch", label = T, raster = F, cols = color_pal) + ggtitle("Pr
ojected clustering (full dataset)") + theme(legend.position = "bottom")

p_combinado <- p1 | p2
p_combinado
ggsave("p1.png", plot = p1, width = 8, height = 8, dpi = 300)</pre>
```

```
ggsave("p2.png", plot = p2, width = 8, height = 8, dpi = 300)
ggsave("p_combinado.png", plot = p_combinado, width = 12, height = 6, dpi = 300)
```

## Sketched clustering (50,000 cells Projected clustering (full da

Hide





#### seurat\_cluster.projected

- 17
- 2 8
- 3 9
- 4 10
- 5 11
- 6 12

Hide

```
# Find and visualize the top gene expression markers for each cluster
# Crete downsampled object to make visualization easier
Idents(object_filt) <- "seurat_cluster.projected"
object_subset <- subset(object_filt, cells = Cells(object_filt[["Spatial.008um"]]), downsample = 1000)</pre>
```

Warning: Not validating Centroids objectsWarning: Not validating Centroids objectsWarning: Not validating FOV objectsWarning: Not validating FOV objectsWarning: Not validating FOV objectsWarning: Not validating FOV objectsWarning: Not validating Seurat objects

Hide

```
# Order clusters by similarity
DefaultAssay(object_subset) <- "Spatial.008um"
Idents(object_subset) <- "seurat_cluster.projected"
object_subset <- BuildClusterTree(object_subset, assay = "Spatial.008um", reduction = "full.pca.sketch", reorder
= T)</pre>
```

Reordering identity classes and rebuilding tree

Hide

```
markers <- FindAllMarkers(object_subset, assay = "Spatial.008um", only.pos = TRUE)</pre>
```

```
Calculating cluster 1
Warning: The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.For a (much!) faster implementation of the Wilcoxon Rank Sum Test, (default method for FindMarkers) please install the presto package
------
install.packages('devtools')
devtools::install_github('immunogenomics/presto')
```

After installation of presto, Seurat will automatically use the more efficient implementation (no further action necessary). This message will be shown once per session

```
| 0 % ~calculating
                          | 1 % ~42s
|+
+
                          | 2 % ~42s
                          | 3 % ~42s
|++
|++
                          | 4 % ~41s
+++
                          | 5 % ~41s
                          | 6 % ~40s
|+++
                          | 7 % ~40s
++++
++++
                          | 8 % ~39s
                          | 9 % ~39s
|++++
+++++
                          | 10% ~38s
|+++++
                          | 11% ~38s
                          | 12% ~37s
|+++++
++++++
                          | 13% ~37s
|++++++
                          | 14% ~36s
                          | 15% ~36s
|+++++++
|++++++
                          | 16% ~36s
++++++++
                          | 17% ~36s
|+++++++
                          | 18% ~35s
|++++++++
                          | 19% ~35s
++++++++
                          | 20% ~34s
                          | 21% ~34s
|+++++++++
                          | 22% ~33s
|+++++++++
                          | 23% ~33s
|+++++++++++
                          | 24% ~32s
|++++++++++
|++++++++++++
                          | 25% ~32s
|++++++++++++
                          | 26% ~32s
                          27% ~31s
|++++++++++++
                          | 28% ~31s
|+++++++++++++
|++++++++++++++
                          | 29% ~30s
|++++++++++++++
                          30% ~30s
                          | 31% ~29s
|+++++++++++++++
|+++++++++++++++
                          | 32% ~29s
|+++++++++++++++
                          33% ~29s
                          | 34% ~28s
|++++++++++++++++
                          | 35% ~28s
                          | 36% ~27s
| 37% ~27s
| 38% ~26s
| 39% ~26s
                          | 40% ~25s
| 41% ~25s
| 42% ~25s
| 43% ~24s
|++++++++++++++++++
| 44% ~24s
                          | 45% ~23s
| 46% ~23s
                          | 47% ~23s
| 48% ~22s
49% ~22s
|+++++++++++++++++++++
                          | 50% ~21s
| 51% ~21s
|++++++++++++++++++++++
                          52% ~20s
| 53% ~20s
| 54% ~20s
| 55% ~19s
| 56% ~19s
                          | 57% ~18s
58% ~18s
| 59% ~17s
| 60% ~17s
| 61% ~17s
                          | 62% ~16s
| 63% ~16s
| 64% ~16s
| 65% ~15s
| 66% ~15s
| 67% ~14s
                          | 68% ~14s
| 69% ~14s
| 70% ~13s
| 71% ~13s
                         | 72% ~12s
| 73% ~12s
| 74% ~11s
| 75% ~11s
                         | 76% ~11s
| 77% ~10s
| 78% ~10s
```

```
| 79% ~09s
| 80% ~09s
| 81% ~09s
| 82% ~08s
| 83% ~08s
       | 84% ~07s
| 85% ~07s
| 86% ~06s
       | 87% ~06s
| 88% ~06s
| 89% ~05s
       | 90% ~05s
| 91% ~04s
| 92% ~04s
| 93% ~03s
| 94% ~03s
```

```
| 0 % ~calculating
ı
                         | 1 % ~51s
|+
+
                         | 2 % ~49s
                         | 3 % ~49s
|++
|++
                         | 4 % ~49s
+++
                         | 5 % ~49s
                         | 6 % ~49s
|+++
                         | 7 % ~48s
++++
++++
                          8 % ~48s
                         | 9 % ~48s
|++++
                         | 10% ~47s
+++++
|+++++
                         | 11% ~46s
                         | 12% ~46s
|+++++
++++++
                         | 13% ~45s
|++++++
                         | 14% ~45s
                         | 15% ~44s
|+++++++
                         | 16% ~44s
|++++++
++++++++
                         | 17% ~43s
|+++++++
                         | 18% ~43s
|++++++++
                         | 19% ~43s
++++++++
                         | 20% ~42s
|+++++++++
                         | 21% ~41s
                         | 22% ~41s
|+++++++++
                         | 23% ~40s
|+++++++++++
                         | 24% ~40s
|++++++++++
|++++++++++++
                         | 25% ~39s
|++++++++++++
                         | 26% ~38s
|++++++++++++
                          27% ~38s
                         | 28% ~37s
|+++++++++++++
|++++++++++++++
                         | 29% ~37s
|++++++++++++++
                         | 30% ~36s
                         | 31% ~36s
|++++++++++++++
|+++++++++++++++
                         | 32% ~35s
|+++++++++++++++
                          33% ~35s
                         | 34% ~34s
|+++++++++++++++
|++++++++++++++++
                         | 35% ~34s
                         | 36% ~33s
| 37% ~32s
| 38% ~32s
| 39% ~31s
                         | 40% ~31s
| 41% ~30s
| 42% ~30s
| 43% ~29s
| 44% ~29s
                         | 45% ~28s
| 46% ~27s
                         | 47% ~27s
| 48% ~26s
49% ~26s
| 50% ~25s
| 51% ~25s
|++++++++++++++++++++++
52% ~24s
| 53% ~24s
                         | 54% ~23s
| 55% ~23s
| 56% ~22s
| 57% ~22s
58% ~21s
                         | 59% ~21s
1 60% ~20s
| 61% ~19s
| 62% ~19s
| 63% ~18s
| 64% ~18s
                         | 65% ~17s
| 66% ~17s
| 67% ~16s
| 68% ~16s
                         | 69% ~15s
| 70% ~15s
| 71% ~14s
                         | 72% ~14s
| 73% ~13s
| 74% ~13s
| 75% ~12s
                         | 76% ~12s
| 77% ~11s
| 78% ~11s
```

```
| 79% ~10s
| 80% ~10s
       | 81% ~09s
| 82% ~09s
| 83% ~08s
       | 84% ~08s
| 85% ~07s
| 86% ~07s
       | 87% ~06s
| 88% ~06s
| 89% ~05s
       | 90% ~05s
| 91% ~04s
| 92% ~04s
| 93% ~03s
| 94% ~03s
```

```
| 0 % ~calculating
ı
                         | 1 % ~51s
|+
+
                         | 2 % ~50s
                         | 3 % ~50s
|++
|++
                         | 4 % ~49s
+++
                         | 5 % ~48s
                         | 6 % ~47s
|+++
                         | 7 % ~47s
++++
++++
                         | 8 % ~47s
                         | 9 % ~46s
|++++
                         | 10% ~45s
+++++
|+++++
                         | 11% ~45s
                         | 12% ~44s
+++++
                         | 13% ~44s
++++++
|++++++
                         | 14% ~43s
                         | 15% ~43s
|+++++++
|++++++
                         | 16% ~42s
++++++++
                         | 17% ~42s
|+++++++
                         | 18% ~41s
|++++++++
                         | 19% ~41s
++++++++
                         | 20% ~40s
                         | 21% ~39s
|+++++++++
                         | 22% ~39s
|+++++++++
                         | 23% ~38s
|+++++++++++
                         | 24% ~38s
|++++++++++
|++++++++++++
                         | 25% ~37s
|++++++++++++
                         | 26% ~37s
                          27% ~36s
|++++++++++++
                         | 28% ~36s
|+++++++++++++
|++++++++++++++
                         | 29% ~35s
|++++++++++++++
                          30% ~35s
                         | 31% ~34s
|+++++++++++++++
|+++++++++++++++
                         | 32% ~34s
|+++++++++++++++
                          33% ~33s
|+++++++++++++++
                         | 34% ~33s
|++++++++++++++++
                         | 35% ~32s
                         | 36% ~32s
| 37% ~31s
| 38% ~31s
| 39% ~30s
                         | 40% ~30s
| 41% ~29s
| 42% ~28s
| 43% ~28s
|++++++++++++++++++
| 44% ~28s
                         | 45% ~27s
| 46% ~27s
                         | 47% ~26s
| 48% ~26s
49% ~25s
                         | 50% ~25s
| 51% ~24s
|++++++++++++++++++++++
52% ~24s
| 53% ~23s
| 54% ~23s
                         | 55% ~22s
| 56% ~22s
                         | 57% ~21s
58% ~21s
| 59% ~20s
| 60% ~20s
                         | 61% ~19s
| 62% ~19s
| 63% ~18s
| 64% ~18s
                         | 65% ~17s
| 66% ~17s
| 67% ~16s
| 68% ~16s
                         I 69% ~15s
| 70% ~15s
| 71% ~14s
                         | 72% ~14s
| 73% ~13s
| 74% ~13s
| 75% ~12s
                         | 76% ~12s
| 77% ~11s
| 78% ~11s
```

```
| 79% ~10s
| 80% ~10s
       | 81% ~09s
| 82% ~09s
| 83% ~08s
       | 84% ~08s
| 85% ~07s
| 86% ~07s
       | 87% ~06s
| 88% ~06s
| 89% ~05s
       | 90% ~05s
| 91% ~04s
| 92% ~04s
| 93% ~03s
| 94% ~03s
```

```
| 0 % ~calculating
                          | 1 % ~01m 03s
|+
+
                          | 2 % ~01m 02s
                          | 3 % ~01m 01s
|++
                          | 4 % ~01m 01s
|++
+++
                          | 5 % ~01m 00s
                          | 6 % ~60s
|+++
++++
                          | 7 % ~59s
++++
                          | 8 % ~59s
                          | 9 % ~58s
|++++
                          | 10% ~57s
+++++
|+++++
                          | 11% ~57s
                          | 12% ~56s
|+++++
++++++
                          | 13% ~55s
|++++++
                          | 14% ~55s
                          | 15% ~54s
|+++++++
|++++++
                          | 16% ~53s
++++++++
                          | 17% ~53s
|+++++++
                          | 18% ~52s
|++++++++
                          | 19% ~51s
++++++++
                          | 20% ~51s
|+++++++++
                          | 21% ~50s
                          | 22% ~50s
|+++++++++
                          | 23% ~49s
|+++++++++++
                          | 24% ~48s
|++++++++++
|++++++++++++
                          | 25% ~48s
|++++++++++++
                          | 26% ~47s
|++++++++++++
                          27% ~47s
                          | 28% ~46s
|+++++++++++++
|++++++++++++++
                          | 29% ~45s
|++++++++++++++
                          30% ~45s
|++++++++++++++
                          | 31% ~44s
|+++++++++++++++
                          | 32% ~43s
|+++++++++++++++
                           33% ~43s
                          | 34% ~42s
|++++++++++++++++
                          | 35% ~42s
                          | 36% ~41s
| 37% ~40s
|++++++++++++++++
                          | 38% ~40s
| 39% ~39s
                          | 40% ~38s
| 41% ~38s
| 42% ~37s
| 43% ~36s
|++++++++++++++++++
| 44% ~36s
                          | 45% ~35s
46% ~34s
                          | 47% ~34s
| 48% ~33s
49% ~33s
| 50% ~32s
51% ~31s
|++++++++++++++++++++++
52% ~31s
| 53% ~30s
                          | 54% ~29s
| 55% ~29s
| 56% ~28s
| 57% ~28s
58% ~27s
                          | 59% ~26s
| 60% ~26s
                          | 61% ~25s
| 62% ~24s
                          | 63% ~24s
| 64% ~23s
                          | 65% ~22s
| 66% ~22s
| 67% ~21s
                          | 68% ~20s
| 69% ~20s
| 70% ~19s
| 71% ~19s
                          | 72% ~18s
| 73% ~17s
                          | 74% ~17s
| 75% ~16s
                          | 76% ~15s
| 77% ~15s
| 78% ~14s
```

```
| 79% ~13s
| 80% ~13s
| 81% ~12s
| 82% ~12s
| 83% ~11s
       | 84% ~10s
| 85% ~10s
| 86% ~09s
       | 87% ~08s
| 88% ~08s
| 89% ~07s
       | 90% ~06s
| 91% ~06s
| 92% ~05s
      | 93% ~04s
| 94% ~04s
```

```
| 0 % ~calculating
ı
                         | 1 % ~59s
|+
+
                         | 2 % ~59s
                         | 3 % ~58s
|++
|++
                         | 4 % ~57s
+++
                         | 5 % ~57s
                         | 6 % ~56s
|+++
++++
                         | 7 % ~56s
++++
                         | 8 % ~56s
                         | 9 % ~55s
|++++
+++++
                         | 10% ~55s
                         | 11% ~54s
|+++++
                         | 12% ~53s
|+++++
++++++
                         | 13% ~53s
|++++++
                         | 14% ~52s
                         | 15% ~52s
|+++++++
|++++++
                         | 16% ~51s
++++++++
                         | 17% ~50s
|+++++++
                          | 18% ~50s
|++++++++
                          | 19% ~49s
++++++++
                         | 20% ~48s
|+++++++++
                          | 21% ~48s
                         | 22% ~47s
|+++++++++
                         | 23% ~47s
|+++++++++++
                          | 24% ~46s
|++++++++++
|++++++++++++
                         | 25% ~45s
|++++++++++++
                         | 26% ~45s
|++++++++++++
                          27% ~44s
                         | 28% ~43s
|+++++++++++++
|++++++++++++++
                         | 29% ~43s
|++++++++++++++
                          | 30% ~42s
|++++++++++++++
                         | 31% ~42s
|+++++++++++++++
                         | 32% ~41s
                          33% ~41s
|+++++++++++++++
|+++++++++++++++
                          | 34% ~40s
|++++++++++++++++
                          | 35% ~39s
                         | 36% ~39s
| 37% ~38s
| 38% ~38s
| 39% ~37s
                          | 40% ~36s
| 41% ~36s
| 42% ~35s
| 43% ~34s
|++++++++++++++++++
| 44% ~34s
                         | 45% ~33s
| 46% ~33s
                          | 47% ~32s
| 48% ~31s
49% ~31s
| 50% ~30s
| 51% ~30s
|++++++++++++++++++++++
52% ~29s
| 53% ~28s
| 54% ~28s
                          | 55% ~27s
| 56% ~27s
| 57% ~26s
                          58% ~26s
| 59% ~25s
| 60% ~24s
                          | 61% ~24s
| 62% ~23s
| 63% ~23s
| 64% ~22s
                         | 65% ~21s
| 66% ~21s
| 67% ~20s
                         | 68% ~19s
| 69% ~19s
| 70% ~18s
| 71% ~18s
                         | 72% ~17s
| 73% ~16s
| 74% ~16s
| 75% ~15s
                         | 76% ~15s
| 77% ~14s
| 78% ~13s
```

```
| 79% ~13s
| 80% ~12s
       | 81% ~12s
| 82% ~11s
| 83% ~10s
       | 84% ~10s
| 85% ~09s
| 86% ~09s
       | 87% ~08s
| 88% ~07s
| 89% ~07s
       | 90% ~06s
| 91% ~05s
| 92% ~05s
      | 93% ~04s
| 94% ~04s
```

```
| 0 % ~calculating
                          | 1 % ~01m 04s
|+
+
                          | 2 % ~01m 02s
                          | 3 % ~01m 02s
|++
                          | 4 % ~01m 01s
|++
+++
                          | 5 % ~01m 00s
                          | 6 % ~59s
|+++
++++
                          | 7 % ~59s
++++
                          | 8 % ~59s
                          | 9 % ~58s
|++++
                          | 10% ~57s
+++++
|+++++
                          | 11% ~57s
                          | 12% ~56s
|+++++
++++++
                          | 13% ~55s
|++++++
                          | 14% ~55s
                          | 15% ~54s
|+++++++
|++++++
                          | 16% ~53s
++++++++
                          | 17% ~53s
|+++++++
                          | 18% ~52s
|++++++++
                          | 19% ~51s
++++++++
                          | 20% ~51s
|+++++++++
                          | 21% ~50s
                          | 22% ~49s
|+++++++++
                          | 23% ~49s
|+++++++++++
                          | 24% ~48s
|++++++++++
|++++++++++++
                          | 25% ~48s
|++++++++++++
                          | 26% ~47s
|++++++++++++
                          27% ~47s
                          | 28% ~46s
|+++++++++++++
|++++++++++++++
                          | 29% ~45s
|++++++++++++++
                          30% ~45s
|++++++++++++++
                          | 31% ~44s
|+++++++++++++++
                          | 32% ~43s
|+++++++++++++++
                           33% ~43s
                          | 34% ~42s
|++++++++++++++++
                          | 35% ~42s
                          | 36% ~41s
| 37% ~40s
|++++++++++++++++
                          | 38% ~40s
| 39% ~39s
                          | 40% ~38s
| 41% ~38s
| 42% ~37s
| 43% ~36s
|++++++++++++++++++
| 44% ~36s
                          | 45% ~35s
46% ~34s
                          | 47% ~34s
| 48% ~33s
49% ~32s
| 50% ~32s
51% ~31s
|++++++++++++++++++++++
52% ~31s
| 53% ~30s
                          | 54% ~29s
| 55% ~29s
| 56% ~28s
| 57% ~27s
58% ~27s
                          | 59% ~26s
| 60% ~26s
                          | 61% ~25s
| 62% ~24s
                          | 63% ~24s
| 64% ~23s
                          | 65% ~22s
| 66% ~22s
| 67% ~21s
                          | 68% ~20s
| 69% ~20s
| 70% ~19s
| 71% ~18s
                          | 72% ~18s
| 73% ~17s
                          | 74% ~17s
| 75% ~16s
                          | 76% ~15s
| 77% ~15s
| 78% ~14s
```

```
| 79% ~13s
| 80% ~13s
| 81% ~12s
| 82% ~11s
| 83% ~11s
       | 84% ~10s
| 85% ~10s
| 86% ~09s
       | 87% ~08s
| 88% ~08s
| 89% ~07s
       | 90% ~06s
| 91% ~06s
| 92% ~05s
      | 93% ~04s
| 94% ~04s
```

```
| 0 % ~calculating
ı
                         | 1 % ~59s
|+
+
                         | 2 % ~59s
                         | 3 % ~58s
|++
|++
                         | 4 % ~58s
+++
                         | 5 % ~58s
                         | 6 % ~57s
|+++
++++
                         | 7 % ~57s
++++
                         | 8 % ~56s
                         | 9 % ~56s
|++++
+++++
                         | 10% ~55s
|+++++
                         | 11% ~55s
                         | 12% ~54s
|+++++
                         | 13% ~53s
++++++
|++++++
                         | 14% ~53s
                         | 15% ~52s
|+++++++
|++++++
                         | 16% ~52s
++++++++
                         | 17% ~51s
|+++++++
                          | 18% ~50s
|++++++++
                          | 19% ~50s
++++++++
                         | 20% ~49s
                          | 21% ~49s
|+++++++++
                         | 22% ~48s
|+++++++++
                         | 23% ~47s
|+++++++++++
                          | 24% ~47s
|++++++++++
|++++++++++++
                         | 25% ~46s
|++++++++++++
                         | 26% ~45s
|++++++++++++
                          27% ~45s
                         | 28% ~44s
|+++++++++++++
|++++++++++++++
                         | 29% ~44s
|++++++++++++++
                          | 30% ~43s
                         | 31% ~42s
|++++++++++++++
|+++++++++++++++
                         | 32% ~42s
                          33% ~41s
|+++++++++++++++
|+++++++++++++++
                          | 34% ~41s
|++++++++++++++++
                          | 35% ~40s
                         | 36% ~39s
| 37% ~39s
| 38% ~38s
| 39% ~37s
                          | 40% ~37s
| 41% ~36s
| 42% ~36s
| 43% ~35s
|++++++++++++++++++
| 44% ~34s
                         | 45% ~34s
| 46% ~33s
                          | 47% ~33s
| 48% ~32s
49% ~31s
| 50% ~31s
| 51% ~30s
|++++++++++++++++++++++
52% ~30s
| 53% ~29s
                         | 54% ~28s
| 55% ~28s
| 56% ~27s
| 57% ~27s
                          58% ~26s
| 59% ~25s
| 60% ~25s
| 61% ~24s
                         | 62% ~23s
| 63% ~23s
| 64% ~22s
                         | 65% ~22s
| 66% ~21s
| 67% ~20s
                         | 68% ~20s
| 69% ~19s
| 70% ~19s
| 71% ~18s
| 72% ~17s
| 73% ~17s
| 74% ~16s
| 75% ~15s
                         | 76% ~15s
| 77% ~14s
| 78% ~14s
```

```
| 79% ~13s
| 80% ~12s
| 81% ~12s
| 82% ~11s
| 83% ~10s
       | 84% ~10s
| 85% ~09s
| 86% ~09s
       | 87% ~08s
| 88% ~07s
| 89% ~07s
       | 90% ~06s
| 91% ~06s
| 92% ~05s
      | 93% ~04s
| 94% ~04s
```

```
| 0 % ~calculating
ı
                           | 1 % ~01m 14s
|+
|++
                           | 2 % ~01m 14s
                           | 3 % ~01m 14s
|++
                           | 4 % ~01m 13s
|+++
                           | 5 % ~01m 12s
+++
                           | 6 % ~01m 11s
|++++
++++
                           | 7 % ~01m 11s
+++++
                            8 % ~01m 11s
                           | 9 % ~01m 10s
+++++
                           | 10% ~01m 09s
|+++++
|+++++
                           | 11% ~01m 08s
                           | 12% ~01m 07s
|++++++
++++++
                           | 13% ~01m 06s
                           | 14% ~01m 06s
|++++++
                           | 15% ~01m 05s
1+++++++
|+++++++
                           | 16% ~01m 04s
                           | 17% ~01m 03s
|+++++++
|+++++++++
                           | 18% ~01m 02s
|++++++++
                           | 19% ~01m 02s
|+++++++++
                           | 20% ~01m 01s
                            21% ~01m 00s
+++++++++
                           | 22% ~59s
|++++++++++
                           | 23% ~58s
|+++++++++++
                           | 24% ~58s
|++++++++++++
++++++++++++
                           | 25% ~57s
                           | 26% ~56s
|++++++++++++
|++++++++++++
                           27% ~55s
                           | 28% ~55s
|++++++++++++++
|++++++++++++++
                           | 29% ~54s
|++++++++++++++
                           | 30% ~53s
                           | 31% ~53s
|+++++++++++++++
|++++++++++++++++
                           | 32% ~52s
|+++++++++++++++
                            33% ~51s
                           | 34% ~50s
|++++++++++++++++
|++++++++++++++++
                           | 35% ~50s
                           | 36% ~49s
| 37% ~48s
|+++++++++++++++++
                           | 38% ~47s
| 39% ~47s
                           | 40% ~46s
| 41% ~45s
| 42% ~44s
| 43% ~43s
|+++++++++++++++++++++
                           | 44% ~43s
| 45% ~42s
46% ~41s
                           | 47% ~40s
| 48% ~39s
                           49% ~39s
| 51% ~38s
| 52% ~37s
|+++++++++++++++++++++++
                            53% ~36s
| 54% ~36s
                           | 55% ~35s
| 56% ~34s
| 57% ~33s
| 58% ~32s
59% ~32s
| 60% ~31s
| 61% ~30s
                           | 62% ~29s
| 63% ~29s
I 64% ~28s
| 65% ~27s
                           | 66% ~26s
| 67% ~25s
| 68% ~25s
                           | 69% ~24s
| 70% ~23s
| 71% ~22s
                           | 72% ~22s
| 73% ~21s
| 74% ~20s
| 75% ~19s
| 76% ~19s
                           | 77% ~18s
| 78% ~17s
| 79% ~16s
```

```
| 80% ~15s
| 81% ~15s
| 82% ~14s
| 83% ~13s
| 84% ~12s
         | 85% ~12s
| 86% ~11s
| 87% ~10s
| 88% ~09s
         | 89% ~08s
| 90% ~08s
         | 91% ~07s
| 92% ~06s
        | 93% ~05s
| 94% ~05s
|+++++++++++| 99% ~01s
|++++++++| 100% elapsed=01m 16s
```

```
| 0 % ~calculating
                           | 1 % ~01m 14s
|+
                           | 2 % ~01m 14s
|+
                           | 3 % ~01m 13s
|++
                           | 4 % ~01m 12s
|++
                           | 5 % ~01m 11s
|+++
                           | 6 % ~01m 11s
|+++
++++
                           | 7 % ~01m 10s
++++
                            8 % ~01m 10s
                           | 9 % ~01m 09s
|++++
                           | 10% ~01m 08s
+++++
|+++++
                           | 11% ~01m 08s
                           | 12% ~01m 07s
|+++++
++++++
                           | 13% ~01m 06s
                           | 14% ~01m 05s
|++++++
                           | 15% ~01m 04s
|+++++++
|++++++
                           | 16% ~01m 04s
|+++++++
                           | 17% ~01m 03s
|+++++++
                           | 18% ~01m 02s
|++++++++
                           | 19% ~01m 02s
|++++++++
                           | 20% ~01m 01s
                            21% ~01m 00s
|+++++++++
                           | 22% ~59s
|+++++++++
                           | 23% ~58s
|+++++++++++
                           | 24% ~58s
|++++++++++
|++++++++++++
                           | 25% ~57s
                           | 26% ~56s
|++++++++++++
|++++++++++++
                           27% ~55s
                           | 28% ~55s
|+++++++++++++
|++++++++++++++
                           | 29% ~54s
|++++++++++++++
                           | 30% ~53s
|++++++++++++++
                           | 31% ~52s
                           | 32% ~52s
|+++++++++++++++
|+++++++++++++++
                            33% ~51s
                           | 34% ~50s
|+++++++++++++++
|++++++++++++++++
                           | 35% ~49s
|++++++++++++++++
                           | 36% ~49s
                           | 37% ~48s
| 38% ~47s
| 39% ~46s
                           | 40% ~45s
| 41% ~45s
| 42% ~44s
| 43% ~43s
|++++++++++++++++++
                           | 44% ~42s
| 45% ~42s
46% ~41s
                           | 47% ~40s
| 48% ~40s
49% ~39s
| 50% ~38s
| 51% ~37s
|++++++++++++++++++++++
52% ~36s
| 53% ~36s
| 54% ~35s
                           | 55% ~34s
| 56% ~33s
                           | 57% ~33s
58% ~32s
                           | 59% ~31s
| 60% ~30s
                           | 61% ~30s
| 62% ~29s
                           | 63% ~28s
| 64% ~27s
                           | 65% ~27s
| 66% ~26s
| 67% ~25s
                           | 68% ~24s
| 69% ~24s
| 70% ~23s
| 71% ~22s
                           | 72% ~21s
| 73% ~21s
| 74% ~20s
| 75% ~19s
                           | 76% ~18s
| 77% ~17s
| 78% ~17s
```

```
| 79% ~16s
| 80% ~15s
| 81% ~14s
| 82% ~14s
| 83% ~13s
       | 84% ~12s
| 85% ~11s
| 86% ~11s
| 87% ~10s
       | 88% ~09s
| 89% ~08s
       | 90% ~08s
| 91% ~07s
| 92% ~06s
| 93% ~05s
| 94% ~05s
```

```
| 0 % ~calculating
ı
                         | 1 % ~20s
|+
|++
                         | 2 % ~19s
                         | 3 % ~19s
|++
|+++
                         | 4 % ~18s
+++
                         | 5 % ~18s
                         | 6 % ~18s
|++++
++++
                         | 7 % ~18s
+++++
                         | 8 % ~18s
                         | 9 % ~17s
+++++
|+++++
                         | 10% ~17s
|+++++
                         | 11% ~17s
                         | 12% ~17s
|++++++
                         | 13% ~17s
++++++
                         | 14% ~17s
|++++++
                         | 15% ~17s
1+++++++
+++++++
                         | 16% ~16s
                         | 18% ~16s
|+++++++
|+++++++++
                         | 19% ~16s
|++++++++
                         | 20% ~16s
|+++++++++
                         | 21% ~15s
+++++++++
                         | 22% ~15s
                         | 23% ~15s
|++++++++++
                         | 24% ~15s
|+++++++++++
                         | 25% ~15s
|++++++++++++
                         | 26% ~14s
++++++++++++
                         | 27% ~14s
|++++++++++++
                          28% ~14s
|+++++++++++++
                         | 29% ~14s
|++++++++++++++
                         | 30% ~13s
|++++++++++++++
                         | 31% ~13s
|++++++++++++++
|++++++++++++++
                         | 32% ~13s
                         | 33% ~13s
|++++++++++++++++
|++++++++++++++++
                          34% ~13s
|++++++++++++++++
                         | 35% ~12s
|+++++++++++++++++
                         | 36% ~12s
                         | 37% ~12s
| 38% ~12s
| 39% ~12s
|++++++++++++++++++++
                         | 40% ~11s
                         | 41% ~11s
| 42% ~11s
| 43% ~11s
| 44% ~11s
| 45% ~10s
| 46% ~10s
| 47% ~10s
                         | 48% ~10s
| 49% ~10s
                         | 51% ~09s
| 52% ~09s
                         | 53% ~09s
|+++++++++++++++++++++++
                          54% ~09s
| 55% ~09s
                         | 56% ~08s
| 57% ~08s
| 58% ~08s
| 59% ~08s
60% ~08s
| 61% ~07s
| 62% ~07s
                         | 63% ~07s
| 64% ~07s
| 65% ~07s
| 66% ~06s
                         | 67% ~06s
| 68% ~06s
| 69% ~06s
                         | 70% ~06s
| 71% ~05s
| 72% ~05s
| 73% ~05s
I 74% ~05s
| 75% ~05s
                         | 76% ~05s
| 77% ~04s
                         | 78% ~04s
| 79% ~04s
| 80% ~04s
```

| ++++++++++++++++++++++++++++++++++++++ | 81% ~04s              |
|----------------------------------------|-----------------------|
| ++++++++++++++++++++++++++++++++++++++ | 82% ~03s              |
| ++++++++++++++++++++++++++++++++++++++ | 84% ~03s              |
| ++++++++++++++++++++++++++++++++++++++ | 85% ~03s              |
| ++++++++++++++++++++++++++++++++++++++ | 86% ~03s              |
| ++++++++++++++++++++++++++++++++++++++ | 87% ~03s              |
| ++++++++++++++++++++++++++++++++++++++ | 88% ~02s              |
| ++++++++++++++++++++++++++++++++++++++ | 89% ~02s              |
| ++++++++++++++++++++++++++++++++++++++ | 90% ~02s              |
| ++++++++++++++++++++++++++++++++++++++ | 91% ~02s              |
| ++++++++++++++++++++++++++++++++++++++ | 92% ~02s              |
| ++++++++++++++++++++++++++++++++++++++ | 93% ~01s              |
| ++++++++++++++++++++++++++++++++++++++ | 94% ~01s              |
| ++++++++++++++++++++++++++++++++++++++ | -   95% ~01s          |
| ++++++++++++++++++++++++++++++++++++++ | -   96% ~01s          |
| ++++++++++++++++++++++++++++++++++++++ | -+   97% ~01s         |
| ++++++++++++++++++++++++++++++++++++++ | -+   98% ~00s         |
| ++++++++++++++++++++++++++++++++++++++ | -++  99% ~00s         |
| ++++++++++++++++++++++++++++++++++++   | -++  100% elapsed=19s |

```
| 0 % ~calculating
ı
                          | 1 % ~18s
|+
|++
                          | 2 % ~18s
                          | 3 % ~18s
|++
|+++
                          | 4 % ~18s
+++
                          | 5 % ~18s
                          | 6 % ~17s
|++++
++++
                          | 7 % ~17s
+++++
                          | 8 % ~17s
                          | 9 % ~17s
+++++
|+++++
                          | 10% ~17s
|+++++
                          | 11% ~16s
                          | 12% ~16s
|++++++
++++++
                          | 13% ~16s
                          | 14% ~16s
|++++++
                          | 15% ~16s
1+++++++
+++++++
                          | 16% ~15s
                          | 17% ~15s
|+++++++
|+++++++++
                          | 18% ~15s
++++++++
                          | 19% ~15s
|+++++++++
                          | 20% ~15s
+++++++++
                          | 21% ~15s
|++++++++++
                          | 22% ~14s
                          | 23% ~14s
|+++++++++++
                          | 24% ~14s
|++++++++++++
++++++++++++
                          | 25% ~14s
                          | 26% ~14s
|+++++++++++++
                           27% ~13s
|++++++++++++
                          | 28% ~13s
|++++++++++++++
|++++++++++++++
                          | 29% ~13s
|++++++++++++++
                          | 30% ~13s
                          | 31% ~13s
|+++++++++++++++
|++++++++++++++++
                          | 32% ~12s
|+++++++++++++++
                           33% ~12s
                          | 34% ~12s
|++++++++++++++++
|++++++++++++++++
                          | 35% ~12s
                          | 36% ~12s
| 37% ~12s
| 38% ~11s
| 39% ~11s
                          | 40% ~11s
| 41% ~11s
| 42% ~11s
| 43% ~10s
|+++++++++++++++++++++
| 44% ~10s
                          | 45% ~10s
46% ~10s
                          | 47% ~10s
| 48% ~09s
49% ~09s
|+++++++++++++++++++++
                          | 51% ~09s
| 52% ~09s
|+++++++++++++++++++++++
53% ~09s
                          | 54% ~09s
| 55% ~08s
56% ~08s
                          | 57% ~08s
| 58% ~08s
59% ~08s
| 60% ~07s
| 61% ~07s
                          | 62% ~07s
| 63% ~07s
| 64% ~07s
| 65% ~06s
| 66% ~06s
| 67% ~06s
| 68% ~06s
                          | 69% ~06s
| 70% ~06s
| 71% ~05s
                          | 72% ~05s
| 73% ~05s
| 74% ~05s
| 75% ~05s
| 76% ~04s
                          | 77% ~04s
| 78% ~04s
| 79% ~04s
```

| ++++++++++++++++++++++++++++++++++++++     | 100 | $%$ elaps $\epsilon$ |
|--------------------------------------------|-----|----------------------|
| ++++++++++++++++++++++++++++++++++++++     | 99% | ~00s                 |
| ++++++++++++++++++++++++++++++++++++++     | 98% | ~00                  |
| ++++++++++++++++++++++++++++++++++++++     | 97% | ~01                  |
| <br> +++++++++++++++++++++++++++++++++++   | 96% | ~0                   |
| ++++++++++++++++++++++++++++++++++++       | 95% | ~(                   |
| ++++++++++++++++++++++++++++++++++++       | 94% | ^                    |
| ++++++++++++++++++++++++++++++++++++       | 93% |                      |
| '<br> ++++++++++++++++++++++++++++++++++++ | 92% |                      |
| ++++++++++++++++++++++++++++++++++++++     | 91% |                      |
|                                            | 90% |                      |
| ++++++++++++++++++++++++++++++++++++++     | 89% |                      |
| '<br> ++++++++++++++                       | 88% |                      |
| ·<br> ++++++++++++++++++++++++++++++++++++ | 87% |                      |
| ++++++++++++++++++++++++++++++++++++++     | 86% |                      |
| +++++++++++++                              | 85% |                      |
| ·<br> ++++++++++++                         | 84% |                      |
| ++++++++++++                               | 83% |                      |
| ++++++++++++                               | 82% |                      |
| '<br> ++++++++++++                         | 81% |                      |
| ++++++++++++++++++++++++++++++++++++++     | 80% |                      |

```
| 0 % ~calculating
ı
                         | 1 % ~15s
|+
|++
                         | 2 % ~15s
                         | 3 % ~15s
|++
|+++
                         | 4 % ~14s
+++
                         | 5 % ~14s
                         | 6 % ~14s
|++++
++++
                         | 7 % ~14s
+++++
                         | 8 % ~14s
                         | 9 % ~13s
+++++
|+++++
                         | 10% ~13s
|+++++
                         | 11% ~13s
                         | 12% ~13s
|++++++
++++++
                         | 13% ~13s
                         | 14% ~13s
|++++++
                         | 15% ~13s
1+++++++
+++++++
                         | 16% ~12s
++++++++
                         | 17% ~12s
|+++++++++
                         | 18% ~12s
++++++++
                         | 19% ~12s
|+++++++++
                         | 20% ~12s
+++++++++
                         | 21% ~12s
                         | 22% ~12s
|++++++++++
                         | 23% ~11s
|++++++++++
                         | 24% ~11s
|++++++++++++
                         | 25% ~11s
++++++++++++
                         | 26% ~11s
|+++++++++++++
                          27% ~11s
|++++++++++++
                         | 28% ~11s
|++++++++++++++
|++++++++++++++
                         | 29% ~10s
|++++++++++++++
                          30% ~10s
                         | 31% ~10s
|+++++++++++++++
|++++++++++++++++
                         | 32% ~10s
|+++++++++++++++
                          33% ~10s
                         | 34% ~10s
|++++++++++++++++
|++++++++++++++++
                         | 35% ~10s
                         | 36% ~09s
| 37% ~09s
| 38% ~09s
| 39% ~09s
                         | 40% ~09s
| 41% ~09s
| 42% ~09s
| 43% ~08s
|+++++++++++++++++++++
| 44% ~08s
                         | 45% ~08s
46% ~08s
                         | 47% ~08s
| 48% ~08s
49% ~08s
| 51% ~07s
                         | 52% ~07s
|+++++++++++++++++++++++
53% ~07s
| 54% ~07s
                         | 55% ~07s
56% ~07s
                         | 57% ~06s
| 58% ~06s
                          59% ~06s
| 60% ~06s
| 61% ~06s
                         | 62% ~06s
| 63% ~06s
| 64% ~05s
| 65% ~05s
                         | 66% ~05s
| 67% ~05s
| 68% ~05s
                         | 69% ~05s
| 70% ~05s
| 71% ~04s
                         | 72% ~04s
| 73% ~04s
| 74% ~04s
| 75% ~04s
| 76% ~04s
                         | 77% ~03s
| 78% ~03s
| 79% ~03s
```

```
| 80% ~03s
| 81% ~03s
              | 82% ~03s
| 83% ~03s
| 84% ~02s
| 85% ~02s
| 86% ~02s
| 87% ~02s
              | 88% ~02s
| 89% ~02s
              | 90% ~02s
| 91% ~01s
| 92% ~01s
|+++++++++| 100% elapsed=15s
                               Hide
# Add entrez column with entrez Ids of genes
markers$entrez <- mapIds(org.Hs.eg.db,</pre>
      keys = markers$gene,
      column = "ENTREZID",
      keytype = "SYMBOL",
      multiVals = "first")
'select()' returned 1:1 mapping between keys and columns
```

```
# Select the 15 best ranked genes
markers %>%
  group_by(cluster) %>%
  dplyr::filter(avg_log2FC >= 1 , p_val_adj <= 0.05) %>%
  slice_head(n = 15) %>%
  ungroup() -> top15
```

Hide

Hide

Hide

Hide

# Manually annotating clusters using top 15 DEG from each cluster with CellMarkers BD, using tool CellMarker\_annotation (http://www.bio-bigdata.center/CellMarker\_annotation.jsp)

```
markers %>%
  group_by(cluster) %>%
  dplyr::filter(avg_log2FC >= 1 , p_val_adj <= 0.05) %>%
  slice_head(n = 10) %>%
  ungroup() -> top10

object_subset <- ScaleData(object_subset, assay = "Spatial.008um", features = top10$gene)</pre>
```

```
heatmap <- DoHeatmap(object_subset, assay = "Spatial.008um", features = top10$gene, size = 3, group.colors = colo r_pal) + theme(axis.text = element_text(size = 5.5), legend.position = "none") heatmap

ggsave("heatmap.png", plot=heatmap, width=16, height=10, dpi =600)
```



```
# Build Tree only based on the top 10 genes per cluster
object_subset10 = BuildClusterTree(object_subset, features = top10$gene, reorder.numeric = T)

# Plot dendogram
data.tree <- Tool(object = object_subset10, slot = "BuildClusterTree")
ape::plot.phylo(x = data.tree, direction = "rightwards", edge.width=0.5)</pre>
```

```
96
93
97
94
95
98
92
912
910
911
99
```

```
# Assign cell types to metadata
clusters = object_filt@meta.data$seurat_cluster.projected
levels(clusters)
```

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

levels(clusters) = c("1.Célula madre hematopoyética/Pericito","2.Célula madre cancerosa","3.Mastocito/Célula plas mática", "4.Célula basal/Célula epitelial basal","5.Panmacrófago/Macrófago M1","6.Célula plasmática/Célula B","7. Miofibroblasto/Pericito","8.Célula progenitora epitelial/Célula B reguladora B10","9.Panmacrófago/Fibroblasto aso c. a cáncer","10.Célula progenitora epitelial/Fibroblasto asoc. a cáncer","11.Fibroblasto asoc. a cáncer/Célula e pitelial luminal","12.Célula progenitora luminal")

object\_filt@meta.data\$seurat\_cluster.projected = clusters

# Set color palette

names(color\_pal) <- sort(unique(object\_filt\$seurat\_cluster.projected))</pre>

Hide

# Review the levels
levels(Idents(object\_filt))

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

Hide

head(object\_filt@meta.data)

|                           | orig.ident<br><chr></chr> | nCount_Spatial.008um<br><dbl></dbl> | nFeature_Spatial.008um<br><int></int> | percent.mt<br><dbl></dbl> |
|---------------------------|---------------------------|-------------------------------------|---------------------------------------|---------------------------|
| s_008um_00269_00526-1     | S                         | 1479                                | 1023                                  | 5.814740                  |
| s_008um_00260_00253-1     | s                         | 971                                 | 719                                   | 7.106076                  |
| s_008um_00433_00599-1     | s                         | 527                                 | 214                                   | 1.328273                  |
| s_008um_00266_00304-1     | S                         | 749                                 | 547                                   | 6.275033                  |
| s_008um_00359_00037-1     | S                         | 999                                 | 721                                   | 8.608609                  |
| s_008um_00469_00254-1     | s                         | 606                                 | 470                                   | 10.231023                 |
| 6 rows   1-5 of 9 columns |                           |                                     |                                       |                           |

Hide

levels(object\_filt@meta.data\$seurat\_cluster.projected)

- [1] "1.Célula madre hematopoyética/Pericito"
- [3] "3.Mastocito/Célula plasmática"
- [5] "5.Panmacrófago/Macrófago M1"
- [7] "7.Miofibroblasto/Pericito"

dora B10"

[9] "9.Panmacrófago/Fibroblasto asoc. a cáncer"

oc. a cáncer"

[11] "11.Fibroblasto asoc. a cáncer/Célula epitelial luminal"

"2.Célula madre cancerosa"

"4.Célula basal/Célula epitelial basal"

"6.Célula plasmática/Célula B"

"8.Célula progenitora epitelial/Célula B regula

"10.Célula progenitora epitelial/Fibroblasto as

"12.Célula progenitora luminal"

Hide

# Assign cell types to object
levels(Idents(object\_filt))

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

```
# Create new cluster names with cell types
new_cluster_names = c(
 "1" = "1.Célula madre hematopoyética/Pericito",
 "2" = "2.Célula madre cancerosa",
 "3" = "3.Mastocito/Célula plasmática",
 "4" = "4.Célula basal/Célula epitelial basal",
 "5" = "5.Panmacrófago/Macrófago M1",
 "6" = "6.Célula plasmática/Célula B",
 "7" = "7.Miofibroblasto/Pericito",
 "8" = "8.Célula progenitora epitelial/Célula B reguladora B10",
 "9" = "9.Panmacrófago/Fibroblasto asoc. a cáncer",
 "10" = "10.Célula progenitora epitelial/Fibroblasto asoc. a cáncer",
 "11" = "11.Fibroblasto asoc. a cáncer/Célula epitelial luminal",
 "12" = "12.Célula progenitora luminal"
# Assign cell types to clusters
names(new_cluster_names) = levels(object_filt)
object_filt = RenameIdents(object_filt, new_cluster_names)
levels(Idents(object_filt))
```

```
[1] "1.Célula madre hematopoyética/Pericito" "2.Célula madre cancerosa"
[3] "3.Mastocito/Célula plasmática" "4.Célula basal/Célula epitelial basal"
[5] "5.Panmacrófago/Macrófago M1" "6.Célula plasmática/Célula B"
[7] "7.Miofibroblasto/Pericito" "8.Célula progenitora epitelial/Célula B regula dora B10"
[9] "9.Panmacrófago/Fibroblasto asoc. a cáncer" "10.Célula progenitora epitelial/Fibroblasto as oc. a cáncer"
[11] "11.Fibroblasto asoc. a cáncer/Célula epitelial luminal" "12.Célula progenitora luminal"
```

```
# Plot UMAP
umap_cells = DimPlot(object_filt, reduction = "full.umap.sketch", label = TRUE, raster=F, pt.size = 0.02, label.s
ize = 0, cols = color_pal)
umap_cells + coord_fixed(ratio = 1) +
    ggtitle("Seurat 8 μm") +
    xlab("UMAP1")+
    ylab("UMAP2")+
    theme(legend.text = element_text(size=8))
```



## Seurat 8 µm



- 1.Célula madre hematopoyética/Pericito
- 2.Célula madre cancerosa
- 3.Mastocito/Célula plasmática
- 4.Célula basal/Célula epitelial basal
- 5.Panmacrófago/Macrófago M1
- 6.Célula plasmática/Célula B
- 7.Miofibroblasto/Pericito
- 8.Célula progenitora epitelial/Célula B reguladora B10
- 9.Panmacrófago/Fibroblasto asoc. a cáncer
- 10.Célula progenitora epitelial/Fibroblasto asoc. a cáncer

Hide

- 11.Fibroblasto asoc. a cáncer/Célula epitelial luminal
- 12.Célula progenitora luminal

```
# Prepare objects to perform G0

# Define gene universe, all genes in markers
universe_genes = unique(na.omit(markers$entrez))

# Filter markers avg_log2FC > 1 and p_val_adj < 0.05
filtered_markers = markers %>%
    group_by(cluster) %>%
    dplyr::filter(avg_log2FC >= 1, p_val_adj <= 0.05)</pre>
```

```
# Run goana for each cluster with top 15 markers
go_results_list15 = list()

clusters15 = unique(top15$cluster)

for (cl in clusters15) {
   entrez_cl15 = top15 %>%
      filter(cluster == cl) %>%
      pull(entrez)

go_r15 = goana(entrez_cl15, universe = universe_genes, species = "Hs")
   go_results_list15[[as.character(cl)]] = topGO(go_r15, number = 10, ontology = "BP")
   print(names(go_results_list15[[cl]])
}
```

```
[1] "1"
```

|            | Term<br><chr></chr>        |    | <b>N</b><br>r×dbl | <b>DE</b><br>×dbl> | P.DE <dbl></dbl> |
|------------|----------------------------|----|-------------------|--------------------|------------------|
| GO:0001525 | angiogenesis               | ВР | 404               | 10                 | 1.089861e-11     |
| GO:0048514 | blood vessel morphogenesis | ВР | 468               | 10                 | 4.685361e-11     |
| GO:0001568 | blood vessel development   | BP | 535               | 10                 | 1.755911e-10     |
|            |                            |    |                   |                    |                  |

|                 | Term<br><chr></chr>                                      | <b>O</b> <ch< th=""><th></th><th><b>DE</b><br/>×dbl&gt;</th><th>P.DE <dbl></dbl></th></ch<> |     | <b>DE</b><br>×dbl> | P.DE <dbl></dbl> |
|-----------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|--------------------|------------------|
| GO:0001944      | vasculature development                                  | BP                                                                                          | 557 | 10                 | 2.611068e-10     |
| GO:0035239      | tube morphogenesis                                       | BP                                                                                          | 633 | 10                 | 9.165101e-10     |
| GO:0035295      | tube development                                         | BP                                                                                          | 774 | 10                 | 6.518964e-09     |
| GO:0072359      | circulatory system development                           | BP                                                                                          | 800 | 10                 | 8.984225e-09     |
| GO:0048646      | anatomical structure formation involved in morphogenesis | BP                                                                                          | 803 | 10                 | 9.316414e-09     |
| GO:0003094      | glomerular filtration                                    | BP                                                                                          | 22  | 3                  | 3.174068e-06     |
| GO:0097205      | renal filtration                                         | ВР                                                                                          | 25  | 3                  | 4.728779e-06     |
| 1-10 of 10 rows | S                                                        |                                                                                             |     |                    |                  |

[1] "9"

|            | Term<br><chr></chr>                                                       | <b>O.</b> .<br><ch< th=""><th></th><th><b>D</b><br/>•<dbl></dbl></th></ch<> |      | <b>D</b><br>• <dbl></dbl> |
|------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|---------------------------|
| GO:0009605 | response to external stimulus                                             | BP                                                                          | 1475 | 10                        |
| GO:0006952 | defense response                                                          | BP                                                                          | 1138 | 9                         |
| GO:0009607 | response to biotic stimulus                                               | BP                                                                          | 996  | 8                         |
| GO:2000646 | positive regulation of receptor catabolic process                         | BP                                                                          | 6    | 2                         |
| GO:0044419 | biological process involved in interspecies interaction between organisms | BP                                                                          | 1096 | 8                         |
| GO:0002682 | regulation of immune system process                                       | BP                                                                          | 1102 | 8                         |
| GO:0050866 | negative regulation of cell activation                                    | BP                                                                          | 151  | 4                         |
| GO:0006955 | immune response                                                           | BP                                                                          | 1154 | 8                         |
| GO:0002604 | regulation of dendritic cell antigen processing and presentation          | BP                                                                          | 10   | 2                         |
| GO:2000644 | regulation of receptor catabolic process                                  | BP                                                                          | 10   | 2                         |

[1] "5"

GO:0019886
GO:0042157
GO:0002495
GO:0002504
GO:0019882
GO:0002478
GO:0006898
GO:00055094
GO:0019884
GO:0034381
1-10 of 10 rows | 1-1 of 5 columns

[1] "4"

|            | Term                                            | 0                                                                            | N     | DE          | P.DE         |
|------------|-------------------------------------------------|------------------------------------------------------------------------------|-------|-------------|--------------|
|            | <chr></chr>                                     | <chr< th=""><th>∞dbl&gt;</th><th><dbl></dbl></th><th><dbl></dbl></th></chr<> | ∞dbl> | <dbl></dbl> | <dbl></dbl>  |
| GO:0008544 | epidermis development                           | ВР                                                                           | 225   | 6           | 3.058028e-07 |
| GO:0031424 | keratinization                                  | BP                                                                           | 19    | 3           | 2.002136e-06 |
| GO:0045109 | intermediate filament organization              | BP                                                                           | 22    | 3           | 3.174068e-06 |
| GO:0045104 | intermediate filament cytoskeleton organization | BP                                                                           | 38    | 3           | 1.715938e-05 |
| GO:0045103 | intermediate filament-based process             | BP                                                                           | 38    | 3           | 1.715938e-05 |
| GO:0009888 | tissue development                              | ВР                                                                           | 1291  | 8           | 1.111907e-04 |

|                 | Term<br><chr></chr>                           | O         N         DE         P.DE <chr><dbl></dbl> <dbl></dbl></chr> |
|-----------------|-----------------------------------------------|------------------------------------------------------------------------|
| GO:0030216      | keratinocyte differentiation                  | BP 86 3 2.000826e-04                                                   |
| GO:0045229      | external encapsulating structure organization | BP 239 4 2.520534e-04                                                  |
| GO:0030198      | extracellular matrix organization             | BP 239 4 2.520534e-04                                                  |
| GO:0043062      | extracellular structure organization          | BP 239 4 2.520534e-04                                                  |
| 1-10 of 10 rows |                                               |                                                                        |

[1] "2"

|                 | Term<br><chr></chr>              | Ont<br><chr></chr> | N<br><dbl></dbl> | <b>DE</b> <dbl></dbl> | P.DE<br><dbl></dbl> |
|-----------------|----------------------------------|--------------------|------------------|-----------------------|---------------------|
| GO:0052697      | xenobiotic glucuronidation       | BP                 | 2                | 2                     | 1.524715e-06        |
| GO:0006629      | lipid metabolic process          | BP                 | 856              | 8                     | 2.694781e-06        |
| GO:0052695      | cellular glucuronidation         | BP                 | 4                | 2                     | 9.134897e-06        |
| GO:0044281      | small molecule metabolic process | BP                 | 1171             | 8                     | 2.822794e-05        |
| GO:0006805      | xenobiotic metabolic process     | BP                 | 54               | 3                     | 3.997288e-05        |
| GO:0019585      | glucuronate metabolic process    | BP                 | 8                | 2                     | 4.250479e-05        |
| GO:0006063      | uronic acid metabolic process    | BP                 | 8                | 2                     | 4.250479e-05        |
| GO:0008202      | steroid metabolic process        | BP                 | 190              | 4                     | 7.737566e-05        |
| GO:0008210      | estrogen metabolic process       | BP                 | 13               | 2                     | 1.179734e-04        |
| GO:0009410      | response to xenobiotic stimulus  | BP                 | 257              | 4                     | 2.485447e-04        |
| 1-10 of 10 rows |                                  |                    |                  |                       |                     |

[1] "8"

|                 | Term<br><chr></chr>                                               | <b>O</b> <ch< th=""><th><b>N</b><br/>r×dbl&gt;</th><th>DE<br/><dbl></dbl></th></ch<> | <b>N</b><br>r×dbl> | DE<br><dbl></dbl> |
|-----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------|-------------------|
| GO:0071635      | negative regulation of transforming growth factor beta production | BP                                                                                   | 10                 | 2                 |
| GO:0016125      | sterol metabolic process                                          | BP                                                                                   | 105                | 3                 |
| GO:0071634      | regulation of transforming growth factor beta production          | BP                                                                                   | 28                 | 2                 |
| GO:0071548      | response to dexamethasone                                         | BP                                                                                   | 28                 | 2                 |
| GO:1901615      | organic hydroxy compound metabolic process                        | BP                                                                                   | 310                | 4                 |
| GO:0071604      | transforming growth factor beta production                        | BP                                                                                   | 30                 | 2                 |
| GO:0042221      | response to chemical                                              | BP                                                                                   | 2219               | 9                 |
| GO:0071320      | cellular response to cAMP                                         | BP                                                                                   | 33                 | 2                 |
| GO:0015850      | organic hydroxy compound transport                                | BP                                                                                   | 154                | 3                 |
| GO:0032597      | B cell receptor transport into membrane raft                      | BP                                                                                   | 1                  | 1                 |
| 1-10 of 10 rows | 1-5 of 5 columns                                                  |                                                                                      |                    |                   |

[1] "11"

|            |  | • |
|------------|--|---|
| GO:0006959 |  |   |
| GO:0048799 |  |   |
| GO:1902230 |  |   |
| GO:0043066 |  |   |
| GO:0043069 |  |   |
| GO:1902229 |  |   |
| GO:0006956 |  |   |
| GO:0002253 |  |   |
| GO:0098630 |  |   |

#### GO:0042710

1-10 of 10 rows | 1-1 of 5 columns

#### [1] "10"

| Term <chr></chr>                                         | <b>O</b><br><chr< th=""><th></th><th><b>DE</b><br/><dbl></dbl></th><th>P.DE<br/><dbl></dbl></th></chr<>                                                                                           |                                                                                                                                                                                                                                                                                                                                           | <b>DE</b><br><dbl></dbl>                         | P.DE<br><dbl></dbl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tissue development                                       | ВР                                                                                                                                                                                                | 1291                                                                                                                                                                                                                                                                                                                                      | 9                                                | 1.123814e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| protein import                                           | BP                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                        | 2                                                | 9.607215e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cell adhesion                                            | ВР                                                                                                                                                                                                | 1021                                                                                                                                                                                                                                                                                                                                      | 7                                                | 2.001726e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| positive regulation of intracellular signal transduction | ВР                                                                                                                                                                                                | 772                                                                                                                                                                                                                                                                                                                                       | 6                                                | 3.510740e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| animal organ maturation                                  | BP                                                                                                                                                                                                | 21                                                                                                                                                                                                                                                                                                                                        | 2                                                | 3.639223e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| epithelium development                                   | BP                                                                                                                                                                                                | 785                                                                                                                                                                                                                                                                                                                                       | 6                                                | 3.844648e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| regulation of developmental process                      | BP                                                                                                                                                                                                | 1646                                                                                                                                                                                                                                                                                                                                      | 8                                                | 6.217095e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| positive regulation of developmental process             | BP                                                                                                                                                                                                | 904                                                                                                                                                                                                                                                                                                                                       | 6                                                | 8.225564e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| regulation of cell adhesion                              | BP                                                                                                                                                                                                | 589                                                                                                                                                                                                                                                                                                                                       | 5                                                | 8.551243e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| anatomical structure morphogenesis                       | ВР                                                                                                                                                                                                | 1744                                                                                                                                                                                                                                                                                                                                      | 8                                                | 9.273109e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                          | cchr> tissue development protein import cell adhesion positive regulation of intracellular signal transduction animal organ maturation epithelium development regulation of developmental process | <chr> <chr>   tissue development BP   protein import BP   cell adhesion BP   positive regulation of intracellular signal transduction BP   animal organ maturation BP   epithelium development BP   regulation of developmental process BP   positive regulation of developmental process BP   regulation of cell adhesion BP</chr></chr> | <chr><chr><chr><chr>&lt;</chr></chr></chr></chr> | Chr>         Chrxdbl><br>dbl>           tissue development         BP 1291 9           protein import         BP 11 2           cell adhesion         BP 1021 7           positive regulation of intracellular signal transduction         BP 772 6           animal organ maturation         BP 21 2           epithelium development         BP 785 6           regulation of developmental process         BP 1646 8           positive regulation of developmental process         BP 904 6           regulation of cell adhesion         BP 589 5 |

### [1] "12"

|                 | Term<br><chr></chr>            | Ont<br><chr></chr> | N<br><dbl></dbl> | <b>DE</b> <dbl></dbl> | P.DE<br><dbl></dbl> |
|-----------------|--------------------------------|--------------------|------------------|-----------------------|---------------------|
| GO:0000280      | nuclear division               | ВР                 | 317              | 9                     | 8.407861e-12        |
| GO:0048285      | organelle fission              | ВР                 | 354              | 9                     | 2.269782e-11        |
| GO:0098813      | nuclear chromosome segregation | ВР                 | 243              | 8                     | 6.242417e-11        |
| GO:0022402      | cell cycle process             | ВР                 | 972              | 11                    | 1.729028e-10        |
| GO:0051276      | chromosome organization        | ВР                 | 467              | 9                     | 2.709723e-10        |
| GO:0000819      | sister chromatid segregation   | ВР                 | 193              | 7                     | 7.552913e-10        |
| GO:0007059      | chromosome segregation         | ВР                 | 336              | 8                     | 8.289123e-10        |
| GO:0007049      | cell cycle                     | ВР                 | 1223             | 11                    | 2.089808e-09        |
| GO:0140014      | mitotic nuclear division       | ВР                 | 228              | 7                     | 2.425180e-09        |
| GO:1903047      | mitotic cell cycle process     | ВР                 | 607              | 9                     | 2.783825e-09        |
| 1-10 of 10 rows |                                |                    |                  |                       |                     |

### [1] "7"

|                 | Term<br><chr></chr>                           | Ont<br><ch< th=""><th></th><th><b>DE</b><br/>≪dbl&gt;</th><th>P.DE<br/><dbl></dbl></th></ch<> |     | <b>DE</b><br>≪dbl> | P.DE<br><dbl></dbl> |
|-----------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|-----|--------------------|---------------------|
| GO:0030199      | collagen fibril organization                  | ВР                                                                                            | 62  | 7                  | 8.298952e-13        |
| GO:0001568      | blood vessel development                      | BP                                                                                            | 535 | 10                 | 1.755911e-10        |
| GO:0001944      | vasculature development                       | ВР                                                                                            | 557 | 10                 | 2.611068e-10        |
| GO:0072359      | circulatory system development                | ВР                                                                                            | 800 | 10                 | 8.984225e-09        |
| GO:0045229      | external encapsulating structure organization | BP                                                                                            | 239 | 7                  | 1.216970e-08        |
| GO:0030198      | extracellular matrix organization             | ВР                                                                                            | 239 | 7                  | 1.216970e-08        |
| GO:0043062      | extracellular structure organization          | ВР                                                                                            | 239 | 7                  | 1.216970e-08        |
| GO:0048514      | blood vessel morphogenesis                    | ВР                                                                                            | 468 | 8                  | 5.271343e-08        |
| GO:0071604      | transforming growth factor beta production    | BP                                                                                            | 30  | 4                  | 6.172500e-08        |
| GO:0018149      | peptide cross-linking                         | BP                                                                                            | 9   | 3                  | 1.749966e-07        |
| 1-10 of 10 rows |                                               |                                                                                               |     |                    |                     |

[1] "3" GO:0050853 GO:0002443 GO:0006958 GO:0019731 GO:0002460 GO:0016064 GO:0006956 GO:0019724 GO:0002455 GO:0002252 1-10 of 10 rows | 1-1 of 5 columns [1] "6" GO:0050853 GO:0050851 GO:0016064 GO:0019724 GO:0002429 GO:0002768 GO:0002250 GO:0002449 GO:0002460 GO:0002757 1-10 of 10 rows | 1-1 of 5 columns Hide # Report total run time Seurat pipeline toc(quiet = FALSE) Total time Seurat pipeline: 1474.222 sec elapsed