25 Spring ECEN 720: High-Speed Links: Circuits and Systems Post-lab Report

Lab2: Channel Models

Name: Yu-Hao Chen

UIN:435009528

Section:700

Professor: Sam Palermo

TA: Srujan Kumar Kaile

Description:

This lab explores S-parameter modeling of transmission lines, vias, and connectors, analyzing ISI, peak distortion, modulation schemes, and termination design. Channel impulse responses are derived via inverse Fourier transform, enabling eye diagram generation through MATLAB and Cadence simulations.

Design & results

- 1. Channel Transient Simulation. The objective of this problem is to use measured channel S-parameters data to produce an impulse response and perform a transient simulation in MATLAB involving sending random NRZ data across this channel.
- a. Download the S-parameters file for a 12" Backplane channel, "peters 01 0605 B12 thru.s4p"
- b. Use the MATLAB file "read_sparam.m" to produce an impulse response. Note this code requires the function "xfr fn to imp.m".

c. Use the produced impulse response to perform transient simulations. Plot eye diagrams with 10k random bits at 3, 6, and 8Gbps. Example code for this is the file "channel data.m".

d. Using peak distortion analysis generate the worst case bit pattern and plot the worst case eye at 6 and 8Gbps. In generating the worst case bit pattern, truncate the pulse response such that there are 10 pre-cursor samples and 100 post-cursor samples.

- 2. Use measured channel S-parameters data to produce a pulse response and perform a transient simulation in Cadence. Use a 12" Backplane channel, "peters_01_0605_B12_thru.s4p" and transfer the file to ECEN720 directory where you run Cadences. Perform a pulse response simulation using an ideal 1V pulse (differential) with 1ps rise/fall time and 125ps pulse width (for 8Gbps). The channel needs to be terminated at both input and output. The pulse response can be obtained by measuring Vout. The circuit setup is shown in Figure 11. Refer to the Appendix on how to use channel model in Cadence.
- a. Show your schematic and simulation results.

Figure 11 Circuit Setup for Impulse Response

Pulse response distortion can caused by reflections, channel resonances and channel loss (dispersion)

By analyzing the input data and pulse response, we can predict the output result, which determines how easily the input data can be recovered from the output.

b. Perform transient simulation using a PRBS input pattern at 3Gbps, 6Gbps, and 8Gbps. Refer to the Appendix for PRBS generation in Cadence.

c. Plot eye diagrams at these data rates using Cadence's calculator. Refer to the Appendix on how to plot an eye diagram.

input pattern at 3Gbps

- The amount of the margin can be used to calculate the receiver's sensitivity requirement. The timing margin is often used to estimate a digital system timing budget or the receiver's aperture time.
- Inter-symbol interference (ISI) is a form of a signal distortion which is caused by reflections, channel resonances and channel loss (dispersion). It is the interference between symbols where the current bit (symbol) could distort its subsequent and previous bits (symbol).
- The higher input pattern rate means more bits (data) in the same period, which means the interference between symbols can be more drastically (under the

same channel impulse response)

3. Peak Distortion Analysis. For the 1-bit pulse response shown in Figure 13, find the worst-case input bit pattern, assuming the ISI is ZERO for samples outside the plot range. Also, find the worst-case eye height.

Figure 12 Pulse Response for Peak Distortion Analysis

4. Modulation Schemes. NRZ is the most commonly used modulation format. PAM-4

transmits 2 bits/symbol at half the speed.

a. Explain the difference between the NRZ and PAM4 schemes.

NRZ (Non-Return-to-Zero)

- Binary signaling (2 levels, "0" and "1").
- Each symbol represents **1 bit**, meaning the baud rate (symbol rate) is equal to the data rate.
- **Higher voltage margin** between the two levels.
- Simpler receiver design with only one decision threshold.
- More resilient to noise and channel loss due to its larger signal amplitude.

PAM-4 (Pulse Amplitude Modulation-4)

- 4-level signaling ("00", "01", "11", "10").
- Each symbol represents 2 bits, meaning the baud rate is half the data rate.
- Reduces required bandwidth but introduces smaller voltage margins between signal levels.
- More susceptible to noise and distortion due to closer voltage levels.
- Requires more complex equalization and receiver circuits.

Key Trade-off:

- NRZ requires twice the bandwidth of PAM-4 but has better signal integrity.
- PAM-4 transmits more data per symbol, reducing bandwidth needs, but suffers from increased ISI (Inter-Symbol Interference), noise sensitivity, and reduced voltage margin.

b. Assuming the channel loss at 2.5GHz is 7dB and at 5GHz is 14dB, which modulation scheme (NRZ or PAM-4) would have better voltage margin?

- NRZ would have a better voltage margin despite higher channel loss because it has fewer signal levels and a larger separation between them.
- PAM-4 benefits from lower bandwidth requirements but struggles with ISI and noise sensitivity.)
- 5. Termination Circuit. 10 a. Briefly list the pros and cons of these termination schemes:

(a) Off-chip vs. on chip, (b) series vs. parallel, and (c) DC vs. AC coupling.

	Pro	Con
Off-chip Termination	Can handle higher power	Increases parasitics and
	dissipation	trace inductance
	More accurate resistor	Slower response due to
	values	board-level interconnects
On-chip Termination	Better high-speed signal	
	integrity	
	Lower parasitics and	
	reflections	
Series Termination	Reduces signal overshoot	Causes signal delay and
	and ringing	affects rise time
	Lower power	suited for point-to-point
	consumption (no	transmission, not multi-
	continuous current flow)	drop systems
Parallel Termination	Provides strong signal	Higher power dissipation
	damping (reduces	(continuous current draw)
	reflections)	
	Works well in multi-drop	Requires precise
	bus systems	matching of termination
		resistor
DC Coupling	Works well for low-	Cannot block DC offset
	frequency and DC-	between transmitter and
	balanced signals	receiver
	Simpler design	Potential issues with
		common-mode voltage
		mismatches
AC Coupling	Blocks DC offset, allowing	Requires AC-coupling
	different voltage levels	capacitors, which
	between transmitter and	introduce high-pass
	receiver	filtering (can distort low-
		frequency content)

b. Design three 50Ω active terminations and characterize the resistance of these three active termination schemes as shown in Figure 9. For configurations in Figures 10(a) and (b) use once only PMOS and then only NMOS transistors. Sweep the input voltage from GND to VDD and show the resistance curves vs. input voltage. If 90nm CMOS process is used, the nominal supply voltage is 1.2V (use the nominal VDD for any other CMOS process you use as well).

Figure 9 Active Termination Schemes [Dally]

Yaxis-Id vs Xaxis-VDS=Vin

1/slope= I/V= 1/R

Two-element

- Y-axis Id vs X-axis Vdd-Vin (VSD)
- Red line by M3 (saturate in the end 1.2-VS=Vin > Vov)
- Yellow line by M4 (diode connect)

PASSGATE

