ELG4125 Case Journaling

Student Name	Nkemdirim, Chimezirim Miracle
Student Number	8869343

This journaling document contains several tasks related to the $ELG4125\ Case\ 1.$

A Typical "Whole" Power System

(This block diagram describes the building blocks of a particular project therefore; it should be used as a guide only when you draw the block diagram of your project)

Case Statement

Consider a power plant of 800 MVA (Wind Farm) that delivers a transmission line system with a voltage of 500 kV. The transmission line feeds the city of Ottawa that is 200 km away from the power plant. University of Ottawa represents one of the loads in the city of Ottawa with a thermal power plan. It is proposed to turn the campus into a micro-grid with the addition of 500 kVA solar power. For this case, it is required to provide a complete design work for the above power system.

Case Block Diagram

Power Plant, Substation, and Transmission System

Design and size the required power plant including wind turbines, components, and specifications

Power Plant	Product Type	Rating	Specification
Components			
Wind Turbines	Nordex - N131/3300	3MW	 a. Rated power: 3.3MW b. Rotor Diameter: 131m c. 3 stage gearbox d. Rated speed:11.2rpm e. Cut in wind speed: 3m/s f. Cut out wind speed: 25m/s g. Anti-Icing System
Circuit Breaker	Siemens-Live Tank Circuit Breakers	72.5-800kV	a. Operates within -60 to 55 degree Celsius
Generators	Nordex -Doubly Fed asynchronous generator	660V	a. Liquid/ air cooling b. Grid Frequency 50/60Hz

Pictorial Representation of the components of the power plant

Figure 1: The Nordex Wind Turbine

Double click on video above to play

Figure 2: Live Tank Circuit Breakers

Figure 3: Nordex Doubly Fed asynchronous generators

Design and size the required transmission substation including transformers, other components, and specifications.

Transmission Substation	Product Type	Rating	Specification
Components			
Transformer	ABB WindStar Transformers	>10MVA	 a. Frequency: 50/60 Hz b. Cooling: KFWF c. Single and 3 phase transformer
Circuit Breaker	Siemens-Live Tank Circuit Breakers	72.5-800kV	a. Operates within -60 to 55 degree Celsius
Capacitors	GE High Voltage Capacitors	390 farads	 25-1100kVAR for single phase units 300 to 400kVAR for three phase units

Figure 4: The ABB WindStar transformer

Figure 5: The Live Tank Circuit Breakers

Figure 6: GE High voltage capacitors

Design and size the required transmission system including towers, circuits, conductors, insulators, and other specifications. Calculate the related efficiency and voltage regulation

Transmission System	Product Type	Rating	Specification
Components			
Transmission Line	ABB UHVDC(Ultra High Voltage Direct Current) lines	-	a. Resistance: 0.052mohms
Transmission Towers	Tublar Steel	130kV	a. Nominal voltage of 11Kv
	Towers		b. Design Bending Stress: 26kg
			f/mm2
Conductors	Aluminium	-	a. Size: 36.5
	Conductor Steel		b. Permittivity:28
	Reinforced Cable		c. Density: 2.7
Insulators	Siemens Long Rod	$550 \mathrm{kV}$	a. Inductance: 0.2796
	Insulators		

Figure 7: The UHVDC lines

Figure 8: Tublar Steel Pole Towers

Figure 9: The ASCR conductors

Figure 10: The SIEMENS silicone long rod insulators

Calculation of the efficiency and Voltage Regulation of the transmission

$$R = 0.052 \times 10^{-3} ohms \times 200 km = 10.4 ohms, P_{loss} = 3(1086.78)^{2}(10.4 kohms) = 36.9 MW$$

$$\chi_{L} = \frac{\chi}{km} \times 200 km = 0.2796 m \times 200 km = 55.92 ohms$$

$$\Upsilon = \pi \frac{1}{2\pi f c} \times 200 km = \frac{1}{2\pi 60 Hz \times 390 \times 10^{3}} \times 200 km = 1.36 \times 10^{-3} ohms$$

Impedance relay circuits, using nominal π method gives us;

$$A = 1 + \frac{YZ}{2} = 1 + \frac{j1.36 \times 10^{-3} (10.6 + j55.92)}{2} = 0.962 + j7.21 \times 10^{-3} ohms$$

$$B = Z = (10.6 + j55.92) ohms$$

$$C = Y\left(1 + \frac{YZ}{4}\right) = -4.901 \times 10^{-6} + j1.334 \times 10^{-3} ohms$$

$$D = A = 0.962 + j7.21 \times 10^{-3} ohms$$

Voltage at the receiving end, $V_s = AV_r + BI_r = 462.85kV 47.61^o$ Current at the receiving end, $I_s = CV_r + DI_r = 1509.2A 454.23$ Output Power = $V_s \times I_s = 698.5MW$

$$Efficiency, \eta = \frac{P_{out} + P_{loss}}{P_{in}} \times 100 = 91.92\%$$

$$Voltage\ regulation = \frac{V_s - V_r}{V_r} \times 100 = 7.43\%$$

Distribution System and Protection

Distribution System Components	Product Type	Rating	Specification
Distribution poles	Tublar Steel Poles	130kV	c. Nominal voltage of 11Kv d. Design Bending Stress: 26kg f/mm ²
Distribution Transformer	Pylon transformer	11kV	a. Delta-wye connectionb. Three phase transformerc. Nominal voltage of 400V

Calculation of the efficiency and Voltage Regulation of the distribution system

Impedance relay circuits, using nominal π method gives us;

$$A = 1 + \frac{YZ}{2} = 1 + \frac{j1.36 \times 10^{-3} (10.6 + j55.92)}{2} = 0.962 + j7.21 \times 10^{-3} ohms$$

$$B = Z = (10.6 + j55.92) ohms$$

$$C = Y\left(1 + \frac{YZ}{4}\right) = -4.901 \times 10^{-6} + j1.334 \times 10^{-3} ohms$$

$$D = A = 0.962 + j7.21 \times 10^{-3} ohms$$

Voltage at the receiving end, $V_s = AV_r + BI_r = 926.48kV \angle 7109.22^o$ Current at the receiving end, $I_s = CV_r + DI_r = 15982.424A \angle 31.93$ Output Power = $V_s \times I_s = 145MW$

$$Efficiency, \eta = \frac{P_{out} + P_{loss}}{P_{in}} \times 100 = 99.62\%$$

$$Voltage\ regulation = \frac{V_s - V_r}{V_r} \times 100 = 5.43\%$$