Solutions to Homework 3

1. Data: p = 18, $c_v = 3$, $s_v = 1$, and the distribution of demand is:

D = d	10	11	12	13	14
$P\{D=d\}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{4}{10}$	$\frac{2}{10}$	$\frac{1}{10}$

- (a) E(D) = 12
- (b) Since $E[min\{D, 11\}] = 10.9$ and $E[max\{11 D, 0\}] = 0.1$ it follows that expected profit under the policy q = 11 is: $g(11) = 15E[min\{D, 11\}] 2E[max\{11 D, 0\}] = 163.3$.
- (c) The smallest q satisfying $F(q) \ge \frac{p-c_v}{p-s_v} = \frac{15}{17}$ is q=13. It is the best amount.
- (d) This is optimal provided that the environment does not change and that the game is played many times, it is the long run average.
- (e) From tables of the Gaussian (i.e., normal) distribution or by using a calculator: $F(q) = P\{D < q\} = \frac{15}{17} \Rightarrow q = 1017$

2. Data: p = 20, $c_v = 8$, and the demand distribution is:

b	15	16	17	18	19	20
$P\{D=d\}$	$\frac{1}{20}$	$\frac{4}{20}$	$\frac{5}{20}$	$\frac{5}{20}$	$\frac{2}{20}$	$\frac{3}{20}$

The appropriate decision rule is to choose the smallest q such that $F(q) \ge \frac{p-c_v}{p} = \frac{12}{20}$. So for q=18 we have $\frac{15}{20} > \frac{12}{20}$. For q<18 $F(q) < \frac{p-c_v}{p} = \frac{12}{20}$. Thus, the answer is $y^*=18$. When $y^*=18$, the expected sale is E(0,18) = 17.2. So the weekly profit is 17.2*20-18*8 = 200.

3. Data: unit retail price is 550, unit delivery charge is 50; consequently the unit penalty cost is p = 600, unit variable cost is $c_v = 400$, unit inventory holding cost is h = 25, and the distribution of demand is:

distribution of demand is:								
D = d	10	11	12	13	14	15		
$P\{D=d\}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$		

- (a) Expected shortage cost: $pE[max\{D-12,0\}] = p = 600$ and expected inventory cost: $hE[max\{12-D,0\}] = 12.5$. The expected total cost is 612.5.
- (b) q is smallest number such that $F(q) \ge \frac{p-c_v}{p+h} = \frac{200}{625} = \frac{8}{25} \Rightarrow q = 11.$
- (c) Now q solves $F(q) = \frac{p-c_v}{p+h} = \frac{200}{625} = \frac{8}{25} \Rightarrow q = 953$; so order 953 cameras.