Simplifying the Cloud Micro-physical Aggregation Process in the Climate Model ECHAM-HAM and Analyzing its Effect on the Model

Sina Klampt

Bachelor Thesis September 2021

Ulrike Proske Prof. Dr. Ulrike Lohmann

Abstract

 ${\rm Lorem\ ipsum\ dolor...}$

Contents

1	Introduction	3
2	Background	4
3	Methods	5
4	Analysis and Results	6
5	Conclusion	7
6	Discussion	8
7	Bibliography	9

1 Introduction

- cloud microphysical model
- \bullet echam hammoz
- CMP processes riming, accretion aggregation
- $\bullet\,$ focus on aggregation
- simplifaction of model

2 Background

- ullet on aggregation
- $\bullet\,$ on ECHAM-HAM

3 Methods

- taylor series expansion
 - problems with compiling
 - set timer to see efficiency: no significant change (only simpler to understand)
 - for debugging: exchange line by line to figure out where the mistake lies
 - * didn't work
 - * solution: apply merge (as for other arrays) at the end and try again
 - * zdiag0 diagnostics to see if it worked or not
 - diagnostics variable, outputting wrong values
 - * reason: variables exist in grid, but since only 1:kproma are considered there was a problem when dividing into blocks for parallelization, last block was partly filled with random values
 - in the end for model not as important but can be interesting for python diagram (comparison)
- drastic simplification
 - set to const value (ztmp1 = 2)
 - * worked, but Fnet value = -4.4388 (should be between 0-1)
 - set to const value (ztmp1 = -2000)
 - * wrong results, since log becomes negative for small values: in the end positive and big values
 - estimate value with estimate_range.pv
 - * tried values between 100-400
 - * values between 100-200 worked best
 - * detailed explanation how we got these values:

٠ ...

- estimate value with different parameters with estimate_range_sina.py
 - * write down detailed formulation for aggregation to find dependencies
 - * output different parameters (arrays) with zdiag02, zdiag03 etc in mo_cloud_micro.f90 and determine ranges to apply to python script for plotting
 - * try to simplify with taylor series expansion
- compiling with intel on euler and nag4 on aerosol
 - nag4 more detailed but only for short timeframe (5 days in october 2003)
 - intel less detailed, run for 1 year (2003)

4 Analysis and Results

- plots
 - figure out parameters: melina's plots, david's paper
 - difference plots of default vs <code>lsimple_aggr = true</code>
 - zonal mean plots
 - separate plots in comparison
- $\bullet\,$ use module conda, iacpy3_2020 environment

5 Conclusion

6 Discussion

7 Bibliography