

Cathy Chang

Advisor: Prof. Vianney Denis



- 1. Introduction & Background
  - a. Current methods in quantifying coral morphology
  - b. Fractal Dimension
- 2. Materials and Methods
- 3. Discussion
- 4. Next Steps

### Current Methods in Coral Categorization

### **Trait-based Categorization**

Submassive corals: massive and branching

Columnar: it's submassive or branching

Encrusting: many corals start off as encrusting then grow into other forms

Branching: both aborescent and bushy



**Interpretations are Subjective!** 









Current trait-based coral growth categorization is **loose** in definition.

### Alternative method: DNA Identification

- DNA fragmentation/ degradation
- Break off corals

Species identification is often through naked eye; **prone to subjectivity**.

corals are irregularly shaped organisms, similar to many organisms found in nature.

Desire: shift from **qualitative** to **quantitative** statistical approaches to **safely** & **efficiently** identify **irregularly shaped** corals.



### What is a Fractal?

"Rough or fragmented geometric shape that can be split into parts each of which is (at least approximately) a reduced-size copy of the whole"

- Statistically self-similar
- Has non-integer fractal dimension
- Studied by the field of Fractal Geometry

| fractal                            | Euclidean                               |
|------------------------------------|-----------------------------------------|
| modern invention                   | traditional                             |
| no specific size or scale          | based on a characteristic size or scale |
| appropriate for geometry in nature | suits description of man made objects   |
| described by an algorithm          | described by a usually simple formula   |

Benoit Mandelbrot, 1983



### Nature Conforms to Fractal Geometry!





### Fractal Dimension

$$N = s^{-D}$$

Dimension = 1

1 < D < 2

Dimension = 2

2 < D < 3

Dimension = 3

Lines

| $N=rac{1}{s}$ |  |
|----------------|--|
|----------------|--|

| s   | N | illustration |
|-----|---|--------------|
| 1   | 1 |              |
| 1/2 | 2 |              |
| 1/3 | 3 |              |





### Squares, Circles, etc.



| s   | N | illustration |  |
|-----|---|--------------|--|
| 1   | 1 |              |  |
| 1/2 | 4 |              |  |
| 1/3 | 9 |              |  |

### Convoluted surfaces



### Boxes, Spheres, Cylinders, etc.



1/3



| s   | N | illustration |
|-----|---|--------------|
| 1   | 1 |              |
| 1/2 | 8 |              |
|     |   |              |

27

### Fractal Dimension

# Parameter in characterizing roughness of an object and performing complexity analysis

### Advantages:

- Sensitive to structural changes in the object
- Orientation & scale invariant

#### Various methods:

- Cube Counting method
- Bouligand-Minkowski method

#### Uses:

- Describing ecological systems (population, community, landscape)
- Insect movements
- Image process/analysis
- Chaotic trajectories
- Arteries (blood movement path)

#### General formula:

$$D = lim_{s o 0} rac{\log n}{\log 1/s}$$

# Box/Cube Counting Method

#### Step 1

measure how many boxes (N) of specified length (s) are required to cover the perimeter

#### Step 2

Scale down and measure again.

#### Step 3

Repeat steps 1-2 multiple times

#### Step 4

Create log-log plot of number of boxes (N) vs scale (s)

#### Step 5

Find the slope of the plot







### Aim

Evaluate **fractal dimension** with **cube counting method** as a variable in quantifying coral morphology



# Research Methodology: Materials

3D scan 46 corals from the NTU Coral Museum & obtain .obj files







## Research Methodology: File Modification

Modify the files (if necessary) to omit non environment-facing portions

Not characteristic of the corals





# Research Methodology: Cube Counting

- Determine the sizes of the boxes used in the box counting method
  - Spread evenly over a log2 scale to obtain a smooth log-log plot
- Find the number of cubes required to cover all vertices at each box size
- Create the log-log plot
- Revise the log-log plot with starting & ending point

def bucket fractal dimension(array, boxDimensions, n samples = 30, max box size = None, min box size = 0.001): print("Doing bucket fractal dimension analysis") #default max size is the largest power of 2 that fits in the smallest dimension of the array: max box size = (np.min(boxDimensions)) print("Max box size: {} Min box size: {}".format(max box size. min box size)) File Name: | Surface Area (mm^2) | Volume (mm^3) | myFD | OnlineFD | FileFD | numVertices boundLength | boundWidth | boundHeight

Pavona frondifera - 1564's my FD: 1.284 16 14 12 <sup>133</sup>, Ending 5at 2 point 3 w 10 4291848**\$tope< 065**2398069815 8 Find start point where the slope is 6 <sup>7348</sup> Within 25% of the average stope 6Find end point where slope is <60% 355880fithe, average slope 5, 12

Coral name: Payona frondifera - 1564 with FD: 2.0301558549716945

## Advantages & Disadvantages

### **Advantage**

- Orientation invariant
- Deterministic way to evaluate starting & ending scales
- File modification to reduce data that

may contribute noise

#### 

### Disadvantage

- Not looking at interior space; only looking at shell
  - Density
- Incomplete coral models
  - Fractal dimension is static, not dynamic





# Next Steps

- Photogrammetry
- Automatic species identification
- Colony scale
- Characterize individual corals' theoretical fractal dimension
  - Stochastic processes
  - ODE
- Multi-Scale fractal dimension.



