平面上に点列 $P_0,P_1,P_2,\cdots,P_n,\cdots$ があり, P_0 , P_1 の座標はそれぞれ (0,0),(1,0) である.また,任意の自然数 n に対し,線分 P_nP_{n+1} の長さは,線分 $P_{n-1}P_n$ の長さの 2 倍で,半直線 P_nP_{n+1} が半直線 $P_{n-1}P_n$ となす角は 120° である. P_{3n} の座標を求めよ.

 $[{f m}]e(heta)=\cos heta+i\sin heta$ とし,複素数平面で置き換えて考える. $\overrightarrow{P_{n-1}P_n}$ を表す複素数を a_n とすれば,題意より

$$\begin{cases} a_{n+1} = 2e\left(\frac{2\pi}{3}\right)a_n \\ a_1 = 1 \end{cases}$$

だから,繰り返し用いて $a_n=\left\{2e\left(\frac{2\pi}{3}\right)\right\}^{n-1}$ である.従って P_{3n} を表す複素数 b_n として $a=2e\left(\frac{2\pi}{3}\right)$ とおけば,

$$b_n = \sum_{k=1}^{3n} (a_k)$$

$$= \sum_{k=1}^{3n} (a^{k-1})$$

$$= \frac{1 - a^{3n}}{1 - a}$$

$$= \frac{2 + \sqrt{3}i}{7} (1 - 2^{3n})$$

であるから, 求める座標は

$$P_{3n}\left(\frac{2}{7}(1-2^{3n}), \frac{\sqrt{3}}{7}(1-2^{3n})\right)$$

である.…(答)