CSC411/2515 Homework 4 Solutions

Fall 2018

November 11, 2018

Question 1 a)

Single GPU

Layer	# Units	#Weights	#Connections
Conv1	290,400	34,848	105,415,200 (91,998,720 with typo)
Conv2	186,624	614,400	447,897,600
Conv3	$64,\!896$	884,736	149,520,384
Conv4	$64,\!896$	1,327,104	224,280,576
Conv5	43,264	884,736	149,520,384
FC1	4,096	177,209,344	177,209,344
FC2	4,096	16,777,216	16,777,216
FC3	1,000	4,096,000	4,096,000

2 GPUs

Layer	#Units	#Weights	#Connections
Conv1	290,400	34,848	105,415,200 (91,998,720 with typo)
Conv2	186,624	307,200	223,948,800 (111,974,400 with max pooling)
Conv3	64,896	884,736	149,520,384
Conv4	$64,\!896$	663,552	112,140,288
Conv5	43,264	442,368	74,760,192
FC1	4,096	177,209,344 (37,748,736 with max pooling)	177,209,344 (37,748,736 with max pooling)
FC2	4,096	16,777,216	16,777,216
FC3	1,000	4,096,000	4,096,000

- (1.5 marks for getting all correct # weights)
- (1 mark for getting most of the correct # weights)
- (0.5 marks for getting at least one correct # weights)
- (1.5 marks for getting all correct # connections)
- (1 mark for getting most of the correct # connections)
- (0.5 marks for getting at least one correct # connections)

b)

- i) Most parameters are in the FC layers (eg. reduce # units in FC layers). (0.5 marks)
- ii) Lots of ways to reduce the number of connections (eg. reduce number of kernels or increase stride) (0.5 marks).

Question 2 a)

$$p(y = k|x, \mu, \sigma) = \frac{p(x|y = k, \mu, \sigma)p(y = k)}{\sum_{j=1}^{K} p(x, y = j|\mu, \sigma)}$$

(0.5 marks)

$$= \frac{\alpha_k (\prod_{i=1}^D 2\pi\sigma_i^2)^{-1/2} \exp(-\sum_{i=1}^D \frac{1}{2\sigma_i^2} (x_i - \mu_{ki})^2)}{\sum_{j=1}^K \alpha_j (\prod_{i=1}^D 2\pi\sigma_i^2)^{-1/2} \exp(-\sum_{i=1}^D \frac{1}{2\sigma_i^2} (x_i - \mu_{ji})^2)}$$

(0.5 marks)

b)

$$\ell(\theta; D) = -\log \prod_{n=1}^{N} p(x^{(n)}|y^{(n)}, \theta) p(y^{(n)})$$

(0.5 marks)

$$= -\log \prod_{j=1}^{K} \alpha_{j}^{\sum_{n=1}^{N} I(y^{(n)} = j)} \left(\prod_{i=1}^{D} 2\pi \sigma_{i}^{2} \right)^{-N/2} \exp\left(-\sum_{i=1}^{D} \frac{1}{2\sigma_{i}^{2}} \sum_{n=1}^{N} (x_{i}^{(n)} - \mu_{y^{(n)}i})^{2}\right)$$

$$= -\sum_{i=1}^{K} \sum_{n=1}^{N} I(y^{(n)} = j) \log \alpha_{j} + \frac{N}{2} \sum_{i=1}^{D} \log 2\pi \sigma_{i}^{2} + \sum_{i=1}^{D} \frac{1}{2\sigma_{i}^{2}} \sum_{n=1}^{N} (x_{i}^{(n)} - \mu_{y^{(n)}i})^{2}$$

(0.5 marks for expanding the probabilities in some way)

c)

$$\frac{\partial \ell}{\partial \mu_{ki}} = -\frac{1}{\sigma_i^2} \sum_{n|y^{(n)}=k} (x_i^{(n)} - \mu_{ki}) = -\frac{1}{\sigma_i^2} (\sum_{n|y^{(n)}=k} x_i^{(n)} - n_k \mu_{ki})$$

(0.5 marks) where n_k is the number of data points in class k. You can also do this with an indicator function $I(y^{(n)} = k)$.

$$\mu_{kiMLE} = \frac{\sum_{n|y^{(n)}=k} x_i^{(n)}}{n_k}$$

(0.5 marks)

$$\frac{\partial \ell}{\partial \sigma_i^2} = \frac{N}{2\sigma_i^2} - \frac{1}{2(\sigma_i^2)^2} \sum_{n=1}^{N} (x_i^{(n)} - \mu_{y^{(n)}i})^2$$

(0.5 marks)

$$\sigma_{iMLE}^2 = \frac{\sum_{n=1}^{N} (x_i^{(n)} - \mu_{y^{(n)}iMLE})^2}{N}$$

(0.5 marks)

d)

Constraint: $\sum_{j=1}^{K} \alpha_j - 1 = 0$ so the objective becomes $f(\theta) = \ell - \lambda(\sum_{j=1}^{K} \alpha_j - 1)$ (0.5 marks for knowing the constraint)

$$\frac{\partial f}{\partial \alpha_k} = \frac{\sum_{n=1}^{N} I(y^{(n)} = k)}{\alpha_k} - \lambda$$
$$\alpha_{kMLE} = \frac{\sum_{n=1}^{N} I(y^{(n)} = k)}{\lambda}$$

Considering the constraint, we get $\lambda = N$ so $\alpha_{kMLE} = \frac{\sum_{n=1}^{N} I(y^{(n)} = k)}{N}$ (0.5 marks)