Merkblatt Theo 2 - Matr.: Name:

Berechenbarkeit

LOOP-Berechenbar

LOOP x_i DO P END und Zeichen ;, :=, +, - (mod. Subtstrak.) P wird mit initialem Wert x_i oft ausgeführt. Alle Variablen x_i , $i \in \mathbb{N}$, sind mit 0 initialisiert. x_0 ist Ausgabe. Parameter $f(x_1, x_2, ...)$ werden in Var. $x_1, x_2, ...$ geschrieben

= Primitive Rek.

Grundfunktionen:

- $-k: \mathbb{N}^l \to \mathbb{N}$ konstante Funktion
- $\Pi_i^l: \mathbb{N}^l \to \mathbb{N}$ Projektion auf i-tes Element $(x_1,...,x_l) \to x_i$
- -s(n) = n + 1 Nachfolger
- Einsetzen mit $g: \mathbb{N}^m \to \mathbb{N}, \ h_i: \mathbb{N}^l \to \mathbb{N}$
- $\Rightarrow \mathbb{N}^l \to \mathbb{N} (x_1, ..., x_l) \mapsto g(h_1(x_1, ..., x_l), ..., h_m(x_1, ..., x_l))$
- Primitive Rekursion : $f(n, x_1, ..., x_k)$ = $\begin{cases} g(x_1, ..., x_k), & n = 0 \\ h(f(n-1, x_1, ..., x_n), n, x_1, ..., x_k), & sonst \\ g(x) = 0 & h(z, n, x) = \operatorname{add}(z, x) \Rightarrow f(y, x) = y \cdot x \end{cases}$ $even(0) = 1 = c_1^0$ $even(x+1) = \operatorname{zero}(\operatorname{even}(x)) = \operatorname{zero}(\Pi_1^2(\operatorname{even}(x), x))$

\subsetneq WHILE-, GOTO-Berechenbar

(da Ackermannfunktion oder nirgends definierte Funktion nicht LOOP-berch.)

WHILE $x_i \neq 0$ DO P END

= Turing-Berechenbar

TM M_i existitert für $f(n_i,...,n_k) = m$. M_i hält mit m auf Ausgabe-band, wenn Eingabe das Tupel $(n_1,...,n_k)$ war.

$= \mu$ -Berechenbar (μ -Rekursiv)

```
\begin{array}{ll} \text{mit } f: \mathbb{N}^{k+1} \rightarrow \mathbb{N} & \mu f: \mathbb{N}^k \rightarrow \mathbb{N} \\ \mu f(x_1,...,x_k) = & \\ \min \left\{ \left. n \mid f(n,x_1,...,x_k) = 0 \right. \wedge \left. \forall m < n : f(m,x_1,...,x_k) > 0 \right\} \right. \\ \text{Für } f(x,y) = 2 \text{ ist } \mu f \text{ nirgends def.} \end{array}
```

Sei f μ -Rekursiv.s Dann exist. p,q als (k+1)-stellige prim. rekursive Funktionen mit :

```
f(x_1,...,x_k) = p(x_1,...,x_k,\mu q(x_1,...,x_k))
```

- ~ Satz von Kleene
- \Rightarrow Eine einzige While-Schleife kann das gleiche berechnen, wie ein Programm mit mehren Schleifen.

= Arithmetisch Repräsentierbar

Terme t_1, t_2, \dots bilden Formeln zB : $t_1 = t_2$

Formeln: $\neg F, F \land G, \dots$ Quantoren \exists, \forall, \in erzeugen gebundene Var. Belegungen mit zB $\Phi(x) = 3, \ \Phi(y) = 3, \dots$ führen zu wahren/falschen Aussagen $\Phi(F)$

 $f:\mathbb{N}^k \to \mathbb{N}$ ist arithmetisch repräsentierbar, falls F existiert mit :

$$F(n_1, ..., n_k, m) \Leftrightarrow f(n_1, ..., n_k) = m$$

 $f(x, y) = x \cdot y \text{ a.r. mit } F(x, y, z) \Leftrightarrow ((x \cdot y) = z)$

Element: $x \ge 1 \Rightarrow \exists k : k+1 = x$

Danach Korrektheit beweisen : F wahr $\Leftrightarrow \dots = f$

Church'sche These

Alle diese letzten Modelle beschreiben das gleiche, wie der intuitive Berechenbarkeitsbegriff.

Wachstum

von Programm P werden alle Var aufsummiert : $f_p(n) = \max \left\{ \sum_{i \geqslant 0} n_i' \mid \sum_{n_i \geqslant 0} n_i \leqslant n \right\}$ Bei LOOP : $\exists k : \forall n : f_p(n) < a(k,n)$

Entscheidbarkeit

Menge ist $\mathbf{Entscheidbar}$, wenn für Menge A charakteristische

Funktion
$$\chi_A$$
 be
rechenbar ist. $\chi_A(w) = \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases}$

Aentscheidbar $\Leftrightarrow A, \bar{A}$ semi-entscheidbar

Menge ist **Semi-Entscheidbar**, wenn χ_A' wahr für $w \in A$ zurück

```
gibt (also hält). \chi_A(w) = \begin{cases} 1, & w \in A \\ \text{undef.}, & w \notin A \end{cases}
```

Semi-Entscheidbar ist äquivalent zu :

- rekursiv Aufzählbar : $\exists f : \mathbb{N} \to \Sigma^* : A = \{f(n) | n \in \mathbb{N}\}$
- -A ist Typ 0
- \exists Turing Maschine M: A = T(M)
- χ' ist berechenbar
- A ist Definitions- oder Zielbereich von berechenbarer Funktion.

Halteproblem

spezielles Halteproblem $K = \{w \in \{0, 1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ Halteproblem $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$ Halteproblem $H_0 = \{w \mid M_w \text{ hält auf Eingabe } \epsilon\}$

Satz von Rice

Nicht-triviale Aussagen über die Spracheigenschaften von TM sind unentscheidbar.

 $S \subseteq R$ turing-berechenbare Funk. mit $\varnothing \neq S \neq R$

 $C(s) = \{ w \mid M_w \text{ berechnet eine Funktion aus } S \}$ ist unentscheidbare Menge.

Nur für Sprachen verwenden, deren Elemente kodierte TMs sind! Verwendung im Beweis:

- Zeigen : Sprache ist semantisch (z.B : Hängt nur von T(M) ab)
- Zeigen : Sprache ist nicht trivial. (Beispiele von Eingaben, für die Sprache jeweils wahr/falsch)

Komplexität

Alle deterministischen Klassen sind gegen Komplement abgeschlossen.

 $zB : A \in DTIME(\mathcal{O}(\log(n)))$

Zeitklassen

DTIME ist gegen Komplement abgeschlossen NTIME nicht.

${\bf P}$ - Polynomial zeit

durch LOOP-Programme entscheidbar

NP - Nichtdeterministische Polynomialzeit

NP-hart $\forall L \in \text{NP} : L \leq_n A$

 \mathbf{NP} -vollständig NP-hart und Sprache $A \in \mathbf{NP}$

 $A \leq_p B \land B \in (N)P \Rightarrow A \in (N)P$

Beweis $A \in \mathbb{NP}$ oft mit guess & check **EXPTIME** - *Exponentialzeit*

 $2^{p(n)}$ mit Polynom p

Platzklassen

SPACE und NSPACE sind gegen Komplement abgeschlossen, wenn $f \in \Omega(\log(n))$ \Rightarrow NSPACE(f) = coNSPACE(f) (NSPACE : Immerman und Szelepcsényi)

Wird x viel Platz nicht verlassen, endet die Maschine nach spätestens $|x|\cdot|Z|\cdot|\Gamma|^{(|x|+1)}$ in einer Schleife

L = LOGSPACE - logarithmischer Platz

NL - nichtdeterministischer log. Platz

PSPACE - polynomieller Platz

 $=\bigcup_{k\geqslant 1} DSPACE(n^k) = \bigcup_{k\geqslant 1} NSPACE(n^k)$

Zeit- / Platzrelationen

 $DTIME(f) \subseteq DTIME_{2-Band}(f \log f)$

 \sim Satz von Hennie und Stearns (wenn $\epsilon>0$ mit

 $\forall n: f(n) \geqslant (1+\epsilon)n \text{ existiert}$

 $\frac{\mathsf{DNSPACE}(f)}{\mathsf{DNSPACE}_{1-\mathsf{Band}}(f)}$

 \sim Zeit-/Platz-kompressions satz

 $DSPACE(4^{\mathcal{O}(n)}) = \bigcup_{c \in \mathbb{N}} DSPACE(4^{c \cdot n})$

$$\begin{split} & \operatorname{DTIME}(f) \subseteq \operatorname{NTIME}(f) \subseteq \operatorname{DSPACE}(f) \ \, \forall f: \mathbb{N} \to \mathbb{N}, \forall n: f(n) \geqslant n \\ & \operatorname{DSPACE}(f) \subseteq \operatorname{NSPACE}(f) \subseteq \operatorname{DTIME}(2^{\mathcal{O}(f)}) \ \, \forall f: \mathbb{N} \to \mathbb{N}, \\ & \forall n: f(n) \geqslant \log(n) \text{ - exponentialler Blowup} \end{split}$$

 \Rightarrow DSPACE $(f) \subseteq$ DTIME $(2^{\mathcal{O}(f)})$

 $NSPACE(s) \subseteq DSPACE(s^2) \text{ mit } s \in \Omega(\log n)$

~ Satz von Savitch

Zeit- / Platzkonstruierbar

Deterministische TM existiert, die bei unär kodierter Eingabe a^n der Länge n, f(n) viel Platz/Zeit braucht.

___-Hierarchiesatz

Platz: Sei

 $s_1,s_2:\mathbb{N}\to\mathbb{N}$, $s_1\notin\Omega(s_2)$, $s_2\in\Omega(\log n)$, s_2 platzkonstruierbar $\mathsf{DSPACE}(s_2)\backslash\mathsf{DSPACE}(s_1)\neq\varnothing$

Beweis für $s_1 \notin \Omega(s_2)$: $\forall c > 0$: $\exists a \in \mathbb{N} : s_1(a) < c \cdot s_2(b)$ Aufstellen und a suchen, für das Gleichung stimmt.

 \Rightarrow DSPACE(log) \subseteq DSPACE(log²)

Zeit : Sei

 $t_1,t_2:\mathbb{N}\to\mathbb{N}$, $\,t_1\log(t_1)\notin\Omega(t_2)$, $\,t_2\in\Omega(n\log(n))$, $\,t_2$ zeitkonstruierbar

 $\text{DTIME}(t_2)\backslash \text{DTIME}(t_1) \neq \emptyset$

 $\Rightarrow \text{DTIME}(\mathcal{O}(n)) \subsetneq \text{DTIME}(\mathcal{O}(n^2))$

Sei r total und berechenbar. $\forall n: r(n) \ge n$ $\Rightarrow \exists$ totale Funktion $s: \mathbb{N} \to \mathbb{N}$ $s(n) \ge n+1$ mit

 $DTIME(s) = DTIME(r \circ s)$ $\sim Satz \text{ von Borodim}$

(s ist nicht zeitkonstruierbar)

Probleme

Zeit, Platz

PCP - Post-Korrespondenz-Problem

 $\chi_{\rm PCP}$ ist berechenbar \Rightarrow PCP ist rek. aufzählbar. \Leftrightarrow semi-entscheidbar.

PCP ist aber unentscheidbar (für $\Sigma \geqslant 2$) H \leqslant MPCP \leqslant PCP

SAT - Satisfiablity

NP-vollständig

 $SAT = \{F \mid F \text{ ist erfüllbar}\}$ Algos aktuell bei $2^{c \cdot n}$ (also $\in E$)

Allgemein äquivalent zu

3KNF-SAT, beide NP-vollständig

 $2KNF-SAT \in P \& NL-vollständig$

CLIQUE

NP-vollständig

Graph $G = (V, E), k \in \mathbb{N}$

 $V' \subseteq V$ ist Clique, falls $\forall u, v \in V' : u \neq v \implies (u, v) \in E$

CLIQUE ∈ NP durch guess & check.

FÄRBBARKEIT

NP-vollständig

 $\varphi: V \to \{1, ..., k\}$ für Graph $G = (V, E), \quad k \in \mathbb{N},$ Knotenfärbung mit k Farben : $\forall (u, v) \in E : \varphi(u) \neq \varphi(v)$ FÄRBBARKEIT \in NP durch guess & check. NP-Vollständigkeit durch 3KNF \leq 3-Färbbarkeit

${f GAP}$ - ${\it Grapherreichbarkeit}$

∈P, NL-vollständig

Auf Graph $G=(V,E),\quad k\in\mathbb{N}$ und 2 Knoten : $s,t\in V$ Kann man über Kanten $\in E$ von s zu t gelangen ? DSPACE($\log^2 n$) GAP \in NL, da : WHILE $v\neq t$ DO $\{$ Wähle nich-det. $w\in V,\quad \text{aus } (v,w)\in E$ v=w $\}$ RETURN 1

CVP - Circuit Value Problem

P-vollständig Bei Schaltkreisen können (Teil)formeln wiederverwendet werden.

QBF - Quantifizierbare Boolsche Formeln

PSPACE-vollständig

TSP - Traveling Salesman Problem

∈NP

VC - Vertex Cover

Allgemeines

TM $M=(Z,\Sigma,\Gamma,\delta,z,\neg,E)$ - Z : Zustandsmenge, Γ : Bandalphabet, Übertragungsfunktion $\delta(z_i,a)=(z_j,a',\mathbf{L})$, z : Startzustand $a,a'\in\Gamma$, statt L auch L,R,N Sprache T(M)

TM ist äquivalent zu Mehrband-TMs und nicht det. TM

Grammatik : $G = (V, \Sigma, P, S)$ mit $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$

Disjunktion : \vee , Konjunktion \wedge , DNF : $\bigvee_i \bigwedge_j (\neg) x_{ij}$ Bestimmte Verknüpfung der Unterterme.

 $\dot{}$ Modifizierte Differenz : $\max\{0, a - b\} = \min(a, b)$

Belegung \mathscr{A} passt zu Formel F, wenn jede vorkommende atomare Variable einen Wert zugewiesen bekommt.

Belegung \mathscr{A} ist Modell, wenn passend und $\mathscr{A}(F) = 1$.

Formel F ist gültig, wenn für alle \mathscr{A} , die zu F passen, $\mathscr{A}(F) = 1$ gilt (Tautologie). ''Ungültig'' existiert nicht

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k}$$

Nirgends definierte Funktion Σ (berechenbar)

Ackermann-Funktion A(n) = a(n, m)

$$\begin{aligned} & \mathbf{a}(0,y) = y+1 \\ & \mathbf{a}(x,0) = \mathbf{a}(x-1,1) \\ & \mathbf{a}(x,y) = \mathbf{a}(x-1,\mathbf{a}(x,y-1)) \end{aligned} \quad x,y>0 \\ & y \\ & \mathbf{a}(x,y) \\ & \mathbf{a}(x,y) \\ & \mathbf{a}(x,y) \\ & \mathbf{a}(x,y+1) \leq \mathbf{a}(x+1,y) \\ & \mathbf{a}(x,y) \\ & \mathbf{a}(x,y) \\ & \mathbf{a}(x,y) \end{aligned}$$

Bijektion $\mathbb{N}^2 \to \mathbb{N}$

Kodieren von Tupeln :

$$c(x,y) = {x+y+1 \choose 2} + x = add(f(s(add(x,y))), x)$$

Dove-Tailing

- $\Sigma^* = \{w_1, w_2, ...\}$ Längenlexikographisch Anordnen
- FOR i = 0, 1, 2, ... DO

Simuliere i Schritte von M_w auf Eingabe e(i) ...Kriterium...

Translationstechnik

Padding einer Sprache mit $\emptyset \notin \Sigma$ Pad_f(L) = $\{w \S^{f(|w|)-|w|} \mid w \in L\}$

 $\mathbf{Zeit} : \mathrm{Pad}_f(L) \in \mathrm{DNTIME}(\mathcal{O}(g)) \Leftrightarrow \mathrm{L} \in \mathrm{DNTIME}(\mathcal{O}(g \circ f))$

mit f, g zeitkonstruierbar, $g(n), f(n) \ge n$

Platz: $\operatorname{Pad}_f(L) \in \operatorname{DNSPACE}(\mathcal{O}(g)) \Leftrightarrow \operatorname{L} \in \operatorname{DNSPACE}(\mathcal{O}(g \circ f))$ mit $g \in \Omega(\log), \forall n : f(n) \geq n$ berechenbar

 $\Rightarrow DSPACE(n) \neq P$

Aufzählbar / Abzählbar

rekursiv	Aufzählbar	Abzählbar
totale Funktion $f: \mathbb{N} \to \Sigma^*$		
f ber	rechenbar	

Mit $A \subseteq B$ folgt NICHT:

B rekursiv aufzählbar $\Rightarrow A$ rek. aufzählbar. Nur A abzählbar

Reduktion

A ist auf B reduzierbar $A \leq B$, wenn totale & berechenbare Funktion $f: \Sigma^* \to \Gamma^*$ existiert mit : $x \in A \Leftrightarrow f(x) \in B$

 \leqslant unbeschränkt \leqslant_p polynomialzeit \leqslant_{log} Logspace (f ist logspace-berechenbar)

 $A \leq B$ und B (semi-)entscheidbar \Rightarrow A (semi-)entscheidbar

Landau-Symbole

 $f \in \mathcal{O}$: f wächst nicht wesentlich schneller als ... $f \in \Omega$: f wächst nicht wesentlich langsamer als ...

Beweis $f(n) \in \mathcal{O}(b(n))$: $\exists c \exists n_0 \ \forall (n \ge n_0)$: $b(n) \le c \cdot f(n)$

Relationen

 $L \subseteq NL \subseteq P \subseteq PSPACE \subseteq EXPTIME$

 \Rightarrow DSPACE(log n) \subseteq NSPACE(log n) \subseteq DTIME($2^{\mathcal{O}(\log n)}$) = P

$G(a,b,i,\cdot)$ -Prädikat

```
G(a,b,i,y) \Leftrightarrow y = a \mod (1+(i+1)\cdot b)

\Rightarrow y \leq (i+1)b \pmod{(1+(i+1)b\%(a-y))} = 0

a,b zwei Werte, die endliche Folge (n_0,...,n_k) kodieren.

i Index, y Wert. Es gilt für alle i \leq k:

n_i = y \Leftrightarrow G(a,b,i,y)

\forall k \forall (n_0,...,n_k) \in \mathbb{N}^{k+1} \exists a,b \in \mathbb{N} \ \forall i \in \{0,...,k\} : G(a,b,i,n_i)
```