Structurer une démonstration

Montrons $\forall x \in \mathbb{R}, \ x = 0 \Longleftrightarrow \forall \varepsilon > 0, \ |x| < \varepsilon$:

Soit $x \in \mathbb{R}$, montrons l'équivalence entre x = 0 et

 $\forall \varepsilon > 0$, $|x| < \varepsilon$ par double implication :

Supposons x = 0 **et montrons** $\forall \varepsilon > 0$, $|x| < \varepsilon$:

Soit $\varepsilon > 0$, on a alors $|x| = |0| = 0 < \varepsilon$

Raisonnons par contraposition en supposant

 $x \neq 0$ et en montrant $\exists \varepsilon > 0, |x| \geqslant \varepsilon$:

Posons $\varepsilon = |x|$.

Puisque $x \neq 0$, on a $\varepsilon = |x| > 0$ et $|x| \geqslant \varepsilon$