华 র 程 3 大 字 《物理化学》(上)单元测试卷 (五)

	化学半衡
—,	选择题(每小题 1 分, 共 30 分)
1.	关于标准平衡常数 K° ,下列说法错误的是。
	A. K° 是一个无量纲的物理量;B. K° 只决定于反应本性和温度;C. K° 与系统总压有关
2.	对于理想气体化学反应 d D(g) + e E(g) = g G(g) + r R(g),若标准压力分别取为 p_1° 和 p_2° ,
	相应的标准平衡常数为 K_1^{\bullet} 和 K_2^{\bullet} ,则 $(K_2^{\bullet}/K_1^{\bullet})$ 等于。
	A. $(p_1^{\bullet}/p_2^{\bullet})^{\sum_{B} \nu_B}$; B. $(p_2^{\bullet}/p_1^{\bullet})^{\sum_{B} \nu_B}$; C. $p_1^{\bullet}/p_2^{\bullet}$
3.	在式 $\Delta_{\rm r}G_{\rm m}^{\scriptscriptstyle \oplus} = -RT \ln K^{\scriptscriptstyle \oplus}$ 中, $\Delta_{\rm r}G_{\rm m}^{\scriptscriptstyle \oplus}$ 。
	A. 是化学反应达到平衡时的摩尔反应吉氏函数; B. 是参加化学反应的各物质均处于标准状态时的摩尔反应吉氏函数; C. 仅是参加化学反应的气态物质处于标准状态时的摩尔反应吉氏函数;
4.	在一定温度下,某反应的标准平衡常数 $K^{\circ}=1$,则 $\Delta_{r}G_{m}^{\circ}$
	A. >; B. <; C. =
5.	在一定温度下,已知反应 A 的 $\Delta_r G_m^{\bullet}(A)$ 与 $K^{\bullet}(A)$,反应 B 的 $\Delta_r G_m^{\bullet}(B)$ 与 $K^{\bullet}(B)$,且
	$\Delta_{r}G_{m}^{\bullet}(A)=2\Delta_{r}G_{m}^{\bullet}(B)$,则 $K^{\bullet}(A)$ 与 $K^{\bullet}(B)$ 的关系为。
	A. $K^{\circ}(A) = K^{\circ}(B)$; B. $K^{\circ}(A) = \left[K^{\circ}(B)\right]^{2}$; C. $K^{\circ}(A)/K^{\circ}(B)$
6.	气相化学反应 $0=-N_2-3H_2+2NH_3$ 和 $0=-2NH_3+N_2+3H_2$ 的标准平衡常数的值分别为 α
	和 <i>b</i> ,则它们的关系为。
	A. $b=-a$; B. $b=a$; C. $b=1/a$
7.	$2CO(g) = C(s) + CO_2(g)$, $C(s) + H_2O(g) = CO(g) + H_2(g)$ $All CO(g) + H_2O(g) = CO_2(g) + H_2(g)$
	的标准平衡常数分别为 K_1° , K_2° 和 K_3° ,则它们的关系为。
	A. $K_3^{\bullet} = K_1^{\bullet} \times K_2^{\bullet}$; B. $K_3^{\bullet} = K_1^{\bullet} + K_2^{\bullet}$; C. $K_3^{\bullet} = K_1^{\bullet} - K_2^{\bullet}$
8.	对于气相化学反应, K_f 与 K° 的关系为。
	A. $K_f = K^{\circ}$; B. $K_f = K^{\circ}(p^{\circ})^{-\sum_{B} v_B}$; C. $K_f = K^{\circ}(p^{\circ})^{\sum_{B} v_B}$
9.	一定温度下,实际气体化学反应当压力趋于零时, $K_p=0.025~(\mathrm{kPa})^2$ 。当压力升高时,以下说
	法正确的是。

	A. $K_f = K_p = 0.025 \text{ (kPa)}^2$; B. $K_f = 0.025 \text{ (kPa)}^2$, K_p 变化;C. K_f 变化, K_p 不变
10.	气相化学反应 $CO_2+H_2=CO+H_2O$ 的 K_f 与 K° 的关系是
	A. $K_f = K^{\circ}$; B. $K_f > K^{\circ}$; C. $K_f < K^{\circ}$
11.	化学反应 $N_2(g) + 3H_2(g) = 2NH_3(g)$, $K_f 与 K^{\circ}$ 的关系是。
	A. $K_f = K^{\circ}$; B. $K_f = K^{\circ} (p^{\circ})^{-2}$; C. $K_f = K^{\circ} (p^{\circ})^2$
12.	化学反应 $N_2O_4(g) = 2NO_2(g)$ 的 $K_f 与 K^{\circ}$ 的关系是。
	A. $K_f = K^{\circ}$; B. $K_f = K^{\circ} (p^{\circ})^{-1}$; C. $K_f = K^{\circ} p^{\circ}$
13.	下列理想气体反应中, $K_f = K^{\circ}$ 的是。
	A. $N_2O_4(g) = 2NO_2(g)$; B. $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$; C. $N_2(g) + 3H_2(g) = 2NH_3(g)$
14.	25℃时,理想气体的化学反应 2CO ₂ (g) = 2CO(g)+O ₂ (g)的标准摩尔反应吉氏函数
	$\Delta_{\mathrm{r}}G_{\mathrm{m}}^{\Theta}=514.2\mathrm{kJ} imes\mathrm{mol}^{-1}$,则反应的 $\Delta_{\mathrm{r}}A_{\mathrm{m}}^{\Theta}$
	A: =; B: >; C: <
15.	一定温度下理想气体的化学反应 $A(g)+B(g)=3C(g)$ 的 $K^{\Theta}=2.55$,则在该温度下以分压表
	示的平衡常数 $K_p=$ 。
	示的平衡常数 $K_p = $ 。 A: 2.55 kPa; B: 2.55×10 ⁻² kPa; C: 2.55×10 ² kPa
16.	反应 $SnS(s)+H_2(g)=Sn(s)+H_2S(g)$ 在一定温度下达到化学平衡,气体可视为理想气体,平
	衡分压分别为 $p_{\mathrm{H}_2}^{\mathrm{eq}}$ 和 $p_{\mathrm{H}_2\mathrm{S}}^{\mathrm{eq}}$ 。下列说法不正确的是。
	A. 此温度下,该平衡系统中 $p_{\mathrm{H}_2\mathrm{S}}^{\mathrm{eq}}/p_{\mathrm{H}_2}^{\mathrm{eq}}$ 为常数;
	B. 此温度下,以分压表示的平衡常数为 $p_{H_2S}^{eq}/p_{H_2}^{eq}$,其值等于反应的标准平衡常数;
	C. 此温度下,该平衡系统中 $p_{\mathrm{H}_2\mathrm{S}}^{\mathrm{eq}}/p_{\mathrm{H}_2}^{\mathrm{eq}}$ 的值与系统压力有关
17.	298.15K 时反应 $SO_2(g) + \frac{1}{2}O_2(g) = SO_3(g)$ 的 $K^{\circ} = 2.6 \times 10^{12}$,标准摩尔反应焓 $\Delta_r H_m^{\circ}$ 等于
	-98.89kJ mol并假设与温度无关,则 35℃时反应的 K°=。
	A: 3.6×10^{12} ; B: 2.6×10^{12} ; C: 7.13×10^{11}
18.	在真空容器中放置固体氯化铵,加热可发生 $NH_4Cl(s) = NH_3(g) + HCl(g)$ 化学反应。在某一
	温度下反应达到平衡并测得系统压力为 100 kPa,则在该温度下 K_p 等于。
19	A: $10000(kPa)^2$; B: $2500(kPa)^2$; C: $50(kPa)^2$ 在温度 T 、压力 p 恒定时,在已达平衡的理想气体反应 $A(g)+B(g)=C(g)$ 中加入一定量的惰
1).	性组分 D(g),则反应将。 。
	A. 向左移动: R. 向左移动: C. 不移动

20.	乙苯脱氢制苯乙烯 $C_6H_5C_2H_5(g) = C_6H_5C_2H_3(g) + H_2(g)$ 可视为理想气体反应,则在原料气			
	中掺入水蒸气后,将使苯乙烯的产率。			
21.	对已达到平衡的反应,加入产物时,会导致 $\Delta_{ m r}G_{ m m}$			
	A: >; B: =; C: <			
22.	1000K 时,理想气体反应 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ 的 $K^{\circ} = 1.43$ 。设有一反应系统,			
	各物质分压为 p_{CO} =0.500MPa, $p_{\text{H}_2\text{O}}$ =0.200MPa, p_{CO_2} =0.200MPa,要使反应逆向进行,则			
	系统中氢气的分压应至少超过MPa。			
	A: 0.215; B: 0.315; C: 0.715			
23.	$PCl_{5}(g)$ 分解反应在 473K 达到平衡时有 48.5%分解,在 573K 达到平衡时有 97%分解,则			
	此反应的 $\Delta_{\rm r} H_{\rm m}^{\Theta}$ 。			
	A.大于零; B.小于零; C.等于零			
24.	分解反应 $A(l) = B(l) + C(l)$ 的 $\Delta_r G_m / kJ \cdot mol^{-1} = -250 + 7.50 \times 10^4 / (T/K)$ 。若使物质 A 不至发			
	生分解,则温度应控制不高于			
25.	已知 298K 时理想气体反应 $N_2O_4(g)=2NO_2(g)$ 的 $K^{\circ}=0.1132$ 。今在同温度且 $N_2O_4(g)$ 及 $NO_2(g)$			
26.	的分压都为 101.325 kPa 的条件下,反应将。 A. 向生成NO ₂ 的方向进行; B. 正好达到平衡; C. 向生成N ₂ O ₄ 的方向进行 已知 2 NO(g) + O_2 (g) = 2 NO ₂ (g)为放热反应。反应达平衡后,欲使平衡向右移动以获得更多 NO ₂ ,应采取的措施是。			
27.	A. 降温和减压; B. 降温和增压; C. 升温和减压 在温度为 T 的一真空容器中,引入 $(NH_4)_2CO_3$ 固体,将发生下列反应, $(NH_4)_2CO_3(s)$ =			
	$2NH_3(g)+CO_2(g)+H_2O(g)$,其平衡常数为 K° 。设各气体都符合理想气体,分解压力为 p 。			
	欲使 <i>p> p</i> * , <i>K</i> * 必须满足。			
	A: $K^{\circ} > 1/64$; B: $K^{\circ} < 1/64$; C: $K^{\circ} = 1/64$			
28.	温度为 T 时,理想气体化学反应 $A(g)+2B(g)=2C(g)$ 的 K_p 与 K_c 之比 $K_p/K_c=$ 。			
	A: 1; B: RT ; C: $1/(RT)$			
29.	已知 $2Ag_2O(s) = 4Ag(s) + O_2(g)$ 的 $\Delta_r G_m^{\bullet} / (J \cdot mol^{-1}) = 58576 - 122T / K$ 。在一定温度 T 下,			
	反应在压力为 100 kPa 的纯氧气中达到平衡,此时温度 T 和标准平衡常数 K° 是。			
30.	A: 298.15K、1; B: 480.13K、1.2; C: 480.13K、1 已知反应 NH ₄ COONH ₂ (s)=2NH ₃ (g)+CO ₂ (g)在 303.15K 时 <i>K_p</i> =66.37 Pa ³ ,则此条件下固态物			

质 NH₄COONH₂ 分解压力等于_____。

A: 4.65Pa, 1; B: 7.65Pa; C: 9.65 Pa

二、(此题总分10分)

400K~500 K 的温度内,气相反应 A(g) = B(g) + C(g) 的标准摩尔反应吉布斯函数与温度的关系为: $\Delta_r G_m^{\bullet} / (J \cdot mol^{-1}) = 83.68 \times 10^3 - 14.52 \times (T/K) \ln(T/K) - 72.26 \times (T/K)$ 。 假设反应可视为理想气体反应。

- 1. 分别推导出 $\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\diamond}$ 、 $\Delta_{\mathbf{r}}H_{\mathbf{m}}^{\diamond}$ 和 $\Delta_{\mathbf{r}}C_{\mathbf{p},\mathbf{m}}^{\diamond}$ 与温度的关系式;
- 2. 计算 450 K 时反应的 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\diamond}$ 、 K^{\diamond} 、 K_{p} ;
- 3. 在 450 K 时,将物质 A 导入抽空的密闭容器中,若平衡时的总压为 101325Pa,计算物质 A 的转化率。

三、(此题总分10分)

25℃时,已知如下数据:

物质	SO_2	O_2	SO_3
$\Delta_{\rm f} H_{\rm m}^{\circ}(298.15{\rm K})/({\rm kJ\cdot mol^{-1}})$	-296.830	0	-395.72
$S_{\rm m}^{\rm e}(298.15{\rm K})/({\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1})$	248.22	205.138	256.76

- 1. 计算 25°C时反应 2SO₂(g) + O₂(g) = 2SO₃(g) 的 $\Delta_r H_m^{\theta}$ 、 $\Delta_r S_m^{\theta}$ 、 $\Delta_r G_m^{\theta}$ 以及 K^{θ} 。
- 2. 假定反应系统中气体可视为理想气体,求25°C时的 K_n 和 K_c 。
- 3. 温度升高时, K° 的值是增加还是下降?为什么?

四、(此题总分10分)

298 K 时, 物质的热力学数据如下:

物质	H ₂ O (g)	CO (g)	$CO_2(g)$	$H_2(g)$
$\Delta_{\mathrm{f}} H_{\mathrm{m}}^{\mathrm{o}}/\mathrm{k}\mathrm{J}\cdot\mathrm{mol}^{-1}$	-241.82	-110.52	-398.51	0
$S_{\rm m}^{\rm o} / { m J} \cdot { m K}^{-1} \cdot { m mol}^{-1}$	188.83	197.67	213.7	130.68

- 1. 计算 298K 时,理想气体化学反应 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ 的 $\Delta_r H_m^{\bullet} \cdot \Delta_r S_m^{\bullet} \cdot \Delta_r G_m^{\bullet} \cdot K^{\bullet}$ 和 K_p ;
- 2. 若反应的 $\Delta_{\mathbf{r}}C^{\bullet}_{p,\mathbf{m}}=0$, 计算 $K^{\bullet}=1$ 时的反应温度。

五、(此题总分10分)

 $Ag_2CO_3(s)$ 分解反应为: $Ag_2CO_3(s) \rightarrow Ag_2O(s) + CO_2(g)$,设气相为理想气体,298.15K 时各物质物性数据见下表。

	$\Delta_{\mathrm{f}} H_{\mathrm{m}}^{\mathrm{o}} / \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	$S_{\mathrm{m}}^{\mathrm{o}} / \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$ /J·mol ⁻¹ ·K ⁻¹
$Ag_2CO_3(s)$	-506.14	167.36	106.23
$Ag_2O(s)$	-30.57	121.71	66.86
$CO_2(g)$	-393.15	213.64	39.37

假设热容与温度无关。

- 1. 计算 298.15 K 下,反应的 $\Delta_r H_m^{\bullet}$ 、 $\Delta_r S_m^{\bullet}$ 、 $\Delta_r G_m^{\bullet}$ 、 K^{\bullet} 和 K_p ;
- 2. 将 $Ag_2CO_3(s)$ 放入真空容器中分解,当系统压力为 101.3kPa 时的温度称为分解温度,计算 $Ag_2CO_3(s)$ 分解反应的分解温度。

六、(此题总分10分)

理想气体的化学反应 A(g)+B(g)=2C(g) 在 400K 时的 $K^{\circ}=3.45$, $\Delta_{\rm r}H_{\rm m}^{\circ}=-35.18$ kJ/mol。

- 1. 求 400K 时的 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\bullet}$ 、 $\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\bullet}$ 和 K_{p} ;
- 2. 如平衡 $p_A = 2kPa$, $p_B = 6kPa$, 则平衡系统中 p_C 为多少?
- 3. 刚开始时,系统中只有 1 mol A 和 1 mol B, 计算此条件下物质 B 的平衡转化率。

七、(此题总分10分)

试计算反应 $C(s)+2H_2(g)=CH_4(g)$ 在 1000K 时的 $\Delta_r H_m^e$ 、 $\Delta_r S_m^e$ 及标准平衡常数 K^e 。已知数据如下表:

物质	$\Delta_{\rm f} H_{\rm m}^{\rm e}(298{\rm K})/{\rm kJ\cdot mol^{-1}}$	$\Delta_{\rm c} H_{\rm m}^{\circ} (298 {\rm K}) / {\rm kJ \cdot mol^{-1}}$	$S_{\mathrm{m}}^{\bullet}(298\mathrm{K})/\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$	$\overline{C}_{p.\mathrm{m}}\big/\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$
C(s)			5.69	19.9
$H_2(g)$			130.70	29.4
$CH_4(g)$		-890.31	186.38	54.0
$H_2O(1)$	-285.85			
$CO_2(g)$	-393.51			

八、(此题总分10分)

298.15K 时, 化 学 反 应 FeO(s)=Fe(s)+0.5O₂(g) 的 $\Delta_{\rm r}H_{\rm m}^{\circ}=272.0{\rm kJ\cdot mol^{-1}}$, $\Delta_{\rm r}S_{\rm m}^{\circ}=70.469{\rm J\cdot K^{-1}\cdot mol^{-1}}$, $\Delta_{\rm r}\bar{C}_{p,{\rm m}}=6.276{\rm J\cdot K^{-1}\cdot mol^{-1}}$ 。试求1000℃时该反应系统中O₂(g) 的 平衡压力。