» Polyak Step Size¹

- * Polyak choice of step size: $\alpha = \frac{\tau(x) \tau}{\nabla f(x)^T \nabla f(x)}$ with $\nabla f(x)^T \nabla f(x) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x)^2$ and $f^* = \min_x f(x)$
- * Where does this come from? Recall $f(x + \delta) \approx f(x) + \nabla f(x)^T \delta$. Choosing $\delta = -\alpha \nabla f(x)$ then

$$f(\mathbf{x} - \alpha \nabla f(\mathbf{x})) \approx f(\mathbf{x}) - \alpha \nabla f(\mathbf{x})^T \nabla f(\mathbf{x})$$

* Choosing $\alpha = \frac{f(x) - f^*}{\nabla f(x)^T \nabla f(x)}$ then

$$f(x - \alpha \nabla f(x)) \approx f(x) - \frac{(f(x) - f^*)}{\nabla f(x)^T \nabla f(x)} \nabla f(x)^T \nabla f(x) = f^*$$

- * Scaling step size with $\frac{1}{\nabla f(x)^T \nabla f(x)}$ makes lots of sense \to when gradient is large the step size is small, when the gradient is small the step size is large.
- * Don't really need to know f^* , can estimate it or just using $f^*=0$ can work well in ML problems.
- Much lower computational burden than line search ...

¹Originally proposed in Polyak's book, for more recent work see e.g. https://arxiv.org/pdf/1905.00313.pdf

» Polyak Step Size

- * Polyak choice of step size: $\alpha = \frac{f(x) f^*}{\nabla f(x)^T \nabla f(x)}$
- * When close to minimum then expect $\nabla f(x)$ to be close to zero, and so $\nabla f(x)^T \nabla f(x) \approx 0$. To avoid division by zero, in practice tend to modify Polyak step size to

$$\alpha = \frac{f(x) - f^*}{\nabla f(x)^T \nabla f(x) + \epsilon}$$

where ϵ is a small number e.g. 0.001

st Example: $\emph{f}=\emph{x}^2$, starting point $\emph{x}=1$, $\emph{f}^*=0$, $\epsilon=0.0001$ and $\epsilon=0$

* With $\epsilon=0$ Polyak step size is constant, with $\epsilon=0.0001$ Polyak step decreases as get close to minimum. Why?

» Polyak Step Size

* Example: $f = x^2$, starting point x = 1, $f^* = 0$, $\epsilon = 0.0001$ and $\epsilon = 0$

- * $df/dx = 2x \rightarrow \text{Polyak choice is } \alpha = \frac{f(x) f^*}{\nabla f(x)^T \nabla f(x) + \epsilon} = \frac{x^2 0}{(2x)^2 + \epsilon} = \frac{x^2}{4x^2 + \epsilon}$ When $\epsilon = 0$, $\alpha = \frac{x^2}{4x^2} = 0.25 \rightarrow \text{constant}$ When $\epsilon = 0.0001$ then when $x^2 \approx 0$ close to minimum $\alpha \approx \frac{x^2}{\epsilon} \approx 0$.
- * Using non-zero ϵ affects behaviour close to minimum, but effect is small of ϵ is small (remember in ML we usually don't need to get v close to min, just close to the noise floor).

» Polyak Step Size

- * Suppose we didn't know f^* exactly but used a lower value. NB: Shouldn't use an f^* larger than true min coz then $f(x) f^* < 0$ and we might end up with $\alpha < 0$.
- * Example: $f = x^2 + 0.001$, min is now f(0) = 0.001 when x = 0. Starting point x = 1, Polyak $f^* = 0$, $\epsilon = 0.0001$ and $\epsilon = 0$

- Polyak converges quickly, but then step size becomes large and "noisy"
- * When $\epsilon=0$, $\alpha=\frac{x^2+0.001}{4x^2}$. When $x^2\approx 0$ then $\alpha=\frac{0.001}{4x^2}$ so badly behaved When $\epsilon=0.0001$ then when $x^2\approx 0$ then $\alpha\approx\frac{x^2+0.001}{\epsilon}\approx\frac{0.001}{0.0001}=10$, so too large
- * Might choose to place upper limit on step size?

Polyak $\epsilon = 0.0001$, $f^* = 0$

* Quadratic:

* Quadratic loss:

 Since added computational burden of Polyak is low, its competitive with line search wrt convergence vs wall-clock time

Polyak $\epsilon = 0.0001$, $f^* = 0$

* Rosenbrock function:

* Toy neural net loss:

- Again, Polyak competitive with line search wrt convergence vs wall-clock time
- * Hasn't been much work looking at Polyak for ML

Polyak $\epsilon = 0.0001$, $f^* = 0$

* Non-smooth function $f(x) = |x_1| + x_2^2$

* Note: Polyak hasn't received much attention for ML ightarrow but ML usually uses SGD, will come on to this shortly

» Adagrad²

* Another idea for adapting step size:

$$x_0 = x0$$
; $\alpha_0 = \alpha 0$; $sum = \epsilon$; $t = 0$ for k in range(num_iters):
$$x_{t+1} = x_t - \alpha_t \frac{df}{dx}(x_t)$$

$$sum = sum + \frac{df}{dx}(x_t)^2$$

$$\alpha_{t+1} = alpha0/sum$$
 $t = t+1$

i.e. step size at iteration t is:

$$\alpha_t = \frac{\alpha_0}{\sqrt{\frac{df}{dx}(x_0)^2 + \frac{df}{dx}(x_1)^2 + \dots + \frac{df}{dx}(x_{t-1})^2} + \epsilon} = \frac{\alpha_0}{\sqrt{\sum_{i=1}^{t-1} \frac{df}{dx}(x_i)^2} + \epsilon}$$

- * Similar to Polyak, but now divide by sum of gradients rather than just by last gradient. Still have to manually select α_0 .
- Idea: (i) step size should get smaller over time (why?) and (ii) should be larger/smaller depending on past gradients.

²https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf, see Section 1.3.1 in particular. Quite mathematical ...

» Adagrad

* In general, x is a vector and $\nabla f(x_t) = \left[\frac{\partial f}{\partial x_t}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_t}(x)\right]$ is a vector. So far we've used a single step size:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \left[\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}), \frac{\partial f}{\partial \mathbf{x}_2}(\mathbf{x}), \dots, \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}) \right]$$

But Adagrad uses a vector of step sizes $[\alpha_1, \alpha_2, \dots, \alpha_n]$ and:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \left[\alpha_1 \frac{\partial \mathbf{f}}{\partial \mathbf{x}_1}(\mathbf{x}), \alpha_1 \frac{\partial \mathbf{f}}{\partial \mathbf{x}_2}(\mathbf{x}), \dots, \alpha_n \frac{\partial \mathbf{f}}{\partial \mathbf{x}_n}(\mathbf{x})\right]$$

with

$$\alpha_1 = \frac{\alpha_0}{\sqrt{\sum_{i=1}^{t-1} \frac{\partial f}{\partial x_1}(x_i)^2 + \epsilon}}$$

$$\alpha_2 = \frac{\alpha_0}{\sqrt{\sum_{i=1}^{t-1} \frac{\partial f}{\partial x_2}(x_i)^2 + \epsilon}}$$
etc

* Example: $f = x^2$, starting point x = 1, Adagrad $\alpha_0 = 0.2$ (selected so that initial step size is 0.1, see below), $\epsilon = 1.0e - 5$, constant $\alpha = 0.1$

* Adagrad and constant step size initially the same. Adagrad decreases step size, quickly at first (when df/dx is larger) then much more slowly as close to minimum df/dx is small

- * Adjust α_0 for Adagrad so that later step size matches that constant step size strategy ...
- * Example: $f=\overline{x^2}$, starting point x=1, Adagrad $\overline{\alpha_0=0.3}$ (larger now), $\epsilon=1.0$ e-5, constant $\alpha=0.1$

Quadratic: Adagrad $lpha_0=0.5$, $\epsilon=1.0$ e-5 (note larger value of $lpha_0$), constant lpha=0.1

* Quadratic loss: Adagrad $\alpha_0=2.5$, $\epsilon=1.0$ e-5 (note huge value of α_0), constant $\alpha=0.5$

Important to tune Adagrad initial step size $lpha_0$, but with tuning can get fast convergence.

* Rosenbrock function: Adagrad $\alpha_0=1$, $\epsilon=1.0$ e-5, constant $\alpha=0.002$

* Toy neural net loss: Adagrad $\alpha_0=2.5$, $\epsilon=1.0$ e-5, constant $\alpha=0.5$

* Even with tuning α_0 Adagrad isn't faster than constant step size strategy on Rosenbrock function. But fast convergence for neural net loss function.

Adagrad $\alpha_0 = 0.01, \epsilon = 1.0e - 5$, constant $\alpha = 0.005$

* Non-smooth function $f(x) = |x_1| + x_2^2$

 Recall that kink in cost function tends to cause "chattering" when use constant step size close to minimum, by decreasing the step size Adagrad reduces this.

» RMSprop³

- * Adagrad can decrease the step size too aggressively (that's why we needed to make α_0 large), making convergence slow. RMSprop is a tweak to try to address that.
- * Adagrad:

$$\alpha_t = \frac{\alpha_0}{\sqrt{\frac{df}{dx}(\mathbf{x}_0)^2 + \frac{df}{dx}(\mathbf{x}_1)^2 + \dots + \frac{df}{dx}(\mathbf{x}_{t-1})^2 + \epsilon}}$$

RMSprop: Gradually forget past values:

$$\alpha_t = \frac{\alpha_0}{\sqrt{(1-\beta)\beta^t \frac{df}{dx}(x_0)^2 + (1-\beta)\beta^{t-1} \frac{df}{dx}(x_1)^2 + \dots + (1-\beta)\frac{df}{dx}(x_{t-1})^2 + \epsilon}}$$

 $x_0 = x_0$; $\alpha_0 = \alpha_0$; sum = 0; t = 0

with $0 < \beta \le 1$. Implement using:

for
$$k$$
 in range(num_iters):
$$\begin{aligned} x_{t+1} &= x_t - \alpha_t \frac{df}{dx}(x_t) \\ sum &= \beta sum + (1-\beta) \frac{df}{dx}(x_t)^2 \\ \alpha_{t+1} &= alpha0/(\sqrt{sum} + \epsilon) \\ t &= t+1 \end{aligned}$$

-* Have to manually select $lpha_0$ and eta.

» RMSprop

$$* \ \alpha_t = \frac{\alpha_0}{\sqrt{(1-\beta)(\beta^t \frac{df}{dx}(x_0)^2 + \beta^{t-1} \frac{d}{dx}(x_1)^2 + \dots + \frac{df}{dx}(x_{t-1})^2) + \epsilon}}$$
 Implement denominator using:

$$sum = \beta sum + (1 - \beta) \frac{df}{dx} (x_t)^2$$

and then use $\sqrt{\mathit{sum}} + \epsilon$

* How to choose β ?

* Typically choose $\beta=0.9$ or larger.

* Example: $f = x^2$, starting point x = 1, RMSprop $\alpha_0 = 0.06$, $\beta = 0.9$, Adagrad $\alpha_0 = 0.2$, $\epsilon = 1.0e - 5$, constant $\alpha = 0.1$

Adagrad, RMSprop and constant step size initially the same.
 RMSprop eventually increases step size - why?

* Quadratic: RMSprop $\alpha_0=0.15$, $\beta=0.9$, $\epsilon=1.0$ e-5, Adagrad $\alpha_0=0.5$, constant $\alpha=0.1$

* Quadratic loss: RMSprop $\alpha_0=0.5$, $\beta=0.9$, $\epsilon=1.0$ e-5, Adagrad $\alpha_0=2.5$, constant $\alpha=0.5$

st Adagrad, RMSprop, Polyak all pretty similar. Note need to tune $lpha_0$ for Adagrad, RMSprop.

» Exampl<u>es</u>

* Rosenbrock function: RMSprop $\alpha_0=0.01$, $\beta=0.9$, $\epsilon=1.0$ e-5, Adagrad $\alpha_0=1$, constant $\alpha=0.002$

* Toy neural net loss: RMSprop $\alpha_0=0.05,\,\beta=0.9,\,\epsilon=1.0$ e – 5, Adagrad $\alpha_0=1$, constant $\alpha=0.75$

st Even with tuning $lpha_0$ RMSprop/Adagrad are not faster than constant step size strategy on Rosenbrock function. But fast convergence for neural net loss function.

RMSprop $\alpha_0=0.01$, $\beta=0.9$, $\epsilon=1.0$ e-5, Adagrad $\alpha_0=0.01$, constant $\alpha=0.005$

* Non-smooth function $f(x) = |x_1| + x_2^2$

 RMSprop less effective than Adagrad at reducing chattering close to minimum of non-smooth function (doesn't reduce step size enough).

» Per co-ordinate step size

* Adagrad/RMSprop use a vector of step sizes $[\alpha_1, \alpha_2, \dots, \alpha_n]$ and:

$$x_{t+1} = x_t - \left[\alpha_1 \frac{\partial f}{\partial x_1}(x), \alpha_1 \frac{\partial f}{\partial x_2}(x), \dots, \alpha_n \frac{\partial f}{\partial x_n}(x)\right]$$

- st Other classes of approaches that also use a vector lpha include *Newton* methods and *quasi-Newton* methods.
- * Newton methods use the second-derivative (the derivative of the derivative) to calculate α . For $\nabla f(x_t) = \left[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right]$ then second derivative is a matrix (a 2D array):

$$\begin{pmatrix} \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_1}(x) & \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_1}(x) & \cdots & \frac{\partial}{\partial x_n} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_2}(x) & \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_2}(x) & \cdots & \frac{\partial}{\partial x_n} \frac{\partial f}{\partial x_2}(x) \\ \vdots & & & \end{pmatrix}$$

- Expensive to calculate. Quasi-Newton methods (e.g. BFGS) try to approx second derivative more efficiently, but are still computationally costly → only suitable for "small" data. Newton/quasi-Newton methods can accelerate convergence vs #iterations but can be slower wrt wall-clock time.
- Can perform poorly on non-convex problems (may not converge at all e.g. see Fig 1 in https://arxiv.org/pdf/1606.01885v1.pdf, https://epubs.siam.org/doi/10.1137/S1052623401383455)

» Summary

- Polyak choice of step size works pretty well in examples here, but not well studied for ML problems
- Adagrad is known to suffer from slow convergence due to decreasing step size too quickly. RMSpop tries to patch up Adagrad. Sometimes helps, sometimes doesn't in examples here
- Adagrad and RMSprop are implemented in common ML libraries, but Polyak isn't ... hmm?
- * In ML its normal to use SGD, we'll come to this later