

AFC et ACM.

Travaux dirigés (statistiques exploratoires).

1 Analyse factorielle des correspondances

Le tableau suivant représente le type d'études poursuivies (université, classes préparatoires, autres) en fonction du parcours suivi au lycée.

	Univ.	Prépa	Autres
ES	13	2	5
S	20	2	8
L	10	5	5
Tech.	7	1	22

- 1. Déterminer le tableau des effectifs théoriques en cas d'indépendance.
- 2. Effectuer le test du χ^2 .
- 3. Calculer la matrice X des profils-ligne.
- 4. Quel est le nombre maximal d'axes significatifs pour l'AFC de ce jeu de données?
- 5. Déterminer la matrice VM_L définie à partir de la matrice X et vérifier que les vecteurs suivants en sont vecteurs propres :

$$\begin{pmatrix} -0.77 \\ -0.15 \\ -0.62 \end{pmatrix} \qquad \begin{pmatrix} -0.606 \\ -0.170 \\ 0.777 \end{pmatrix} \qquad \begin{pmatrix} 0.752 \\ -0.651 \\ -0.101 \end{pmatrix} \tag{1}$$

6. En déduire l'inertie des axes.

2 Analyse des correspondances multiples

Un fabriquant de téléphones portables a effectué une étude de marché dans une population de 12 étudiants. Le tableau suivant représente la couleur du téléphone portable, le système d'exploitation de l'ordinateur de chaque étudiant, ainsi que la faculté où il est inscrit.

	Couleur	Système	Faculté
1	noir	windows	sciences
2	noir	linux	DEG
3	argenté	windows	sciences
4	argenté	mac	DEG
5	argenté	linux	sciences
6	argenté	linux	sciences
7	argenté	linux	sciences
8	bleu	mac	DEG
9	bleu	linux	sciences
10	vert	mac	sciences
11	vert	mac	DEG
12	vert	mac	DEG

- $1. \ \ Représenter les données sous forme de tableau disjonctif Z et calculer ses marges.$
- 2. Calculer le tableau de Burt B.
- 3. Déterminer la matrice VM_L dans le cas de l'AFC du tableau Z.
- 4. Combien d'axes retenez vous sachant que les valeurs propres de VM_L sont : 1 ; 0.72 ; 0.43 ; 0.35 ; 0.26 ; 0.19 ; 0.03.