Notes - Commutative Rings

George McNinch

2025-01-15

See [Stewart, chapter 16] ¹ for general results about commutative rings.

Commutative rings

In the lecture today, we define the notion of a ring:

Definition A ring R is an additive abelian group together with an operation of multiplication $R \times R \to R$ given by $(a,b) \mapsto a \cdot b$ such that the following axioms hold:

- multiplication is associative
- multiplication distributes over addition: for every $a, b, c \in R$ we have ²

$$a(b+c) = ab + ac$$

and

$$(b+c)a = ba + ca$$

We say that the ring R is *commutative* if the operation of multiplication is commutative; i.e. if ab = ba for all $a, b \in R$.

And we say that R has identity if multiplication has an identity, i.e. if there is an element $1_R \in R$ such that $a \cdot 1_R = 1_R \cdot a = a$ for every $a \in R$.

In the course, we will consider (almost?) exclusively rings which are commutative and have identity.

Here are some examples of commutative rings:

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}
- if X is a set and if R is a commutative ring, the set X^R of all R-valued functions on X can be viewed as a commutative ring in a natural way.

Polynomial rings

If R is a commutative ring, the collection of all polynomials in the variable T having coefficients in R is denoted R[T].

Notice that the set of monomials $S = \{T^i \mid i \in \mathbb{N}\}$ has the following properties:

• every element of R[T] is an R-linear combination of elements of S. This just amounts to the statement that every polynomial $f(T) \in R[T]$ has the form

$$f(T) = \sum_{i=0}^{N} a_i T^i$$

for a suitable $N \geq 0$ and suitable coefficients $a_i \in R$.

¹As noted in the course syllabus, Tisch library has an entry for this item here; click to find online access to the text *Galois Theory*, Ian Stewart. (CRC Press, 4th edition 2022).

²We often just denote multiplication by juxtaposition: i.e. we may write ab instead of $a \cdot b$ for $a, b \in R$

 $^{^3}$ Usually we write 1 for 1_R . The idea is that 1_R is the multiplicative identity of R. For example, the identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the multiplicative identity 1_R of the matrix ring $R = \operatorname{Mat}_2(\mathbb{R})$.

- the elements of ${\cal S}$ are linearly independent i.e. if

$$\sum_{i=0}^N a_i T^i = 0 \quad \text{for} \quad a_i \in R,$$

then $a_i=0$ for every i.

Polynomials in R[T] can be added in a natural way. (This is just like adding vectors in a vector space).

And there is a product operation on polynomials, as follows: if $f(T) = \sum_{i=0}^N a_i T^i$ and $g(T) = \sum_{i=0}^M b_i T^i$ then

$$f(T) \cdot g(T) = \sum_{i=0}^{N+M} c_i T^i \quad \text{where} \quad c_i = \sum_{s+t=i} a_s b_t.$$

Proposition: R[T] is a commutative ring with identity.