Semantic similarity and machine learning with ontologies

Ontologies: axioms, not graphs!

Overview	Browse DLQuery Download		
Annotation	Value		
label	B cell apoptotic process		
definition	Any apoptotic process in a B cell, a lymphocyte of B lineage with the phenotype CD19-positive and capable of B cell mediated immunity.		
class	http://purl.obolibrary.org/obo/GO_0001783		
ontology	GO-PLUS		
Equivalent	apoptotic process and (occurs in some B cell)		
SubClassOf	occurs in some B cell, lymphocyte apoptotic process		
id	GO:0001783		
has_obo_name	espace biological_process		

Ontologies: axioms, not graphs!

Gene Ontology:

- behavior DisjointWith: 'developmental process'
- behavior SubclassOf: only-in-taxon some metazoa
- 'cell proliferation' DisjointWith: in-taxon some fungi
- 'cell growth' EquivalentTo: growth and ('results in growth of' some cell)

• ...

Onto2Vec

Visualizing embeddings

Combination with text

- ontologies contain more than axioms:
 - ▶ labels, synonyms, definitions, authors, etc.
- Description Logic axioms != natural language
- transfer learning: learn on one domain/task, apply to another
 - e.g.: learn on literature, apply to ontologies
 - words have "meaning" in literature, Description Logic symbols have "meaning" in ontology axioms
- Ontologies Plus Annotations 2 Vec (OPA2Vec) combines both

Ontologies Plus Annotations 2 Vec

Onto2Vec and OPA2Vec

- https:
 //github.com/bio-ontology-research-group/mowl
- python library
 - ► input: OWL ontology, set of entities with annotations/associations
 - output: vectors for each class and entity
- Elk reasoner
- limitations: word-based
 - completely ignores any semantics!

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ► graph-based or based on axioms

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ► graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"

- none of the models discussed above are truly "semantic"
 - ▶ all syntactic
 - ► graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"
 - lacktriangle universal algebra over formal languages (with signature Σ)

Description Logic EL++

Name	Syntax	Semantics
top	T	$\Delta^{\mathcal{I}}$
bottom	Τ	Ø
nominal	{a}	$\{a^{\mathcal{I}}\}$
conjunction	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
existential	∃r.C	$ \{x \in \Delta^{\mathcal{I}} \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} $
restriction		
generalized	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$
concept		
inclusion		
role inclu-	$r_1 \circ \circ r_n \sqsubseteq r$	$r_1^{\mathcal{I}} \circ \circ r_n^{\mathcal{I}} \subseteq r^{\mathcal{I}}$
sion		

Models

- ullet Interpretations and Σ -structures
- Model $\mathfrak A$ of a formula ϕ : ϕ is true in $\mathfrak A$ ($\mathfrak A \models \phi$)
- Theory *T*: set of formulas
- ullet ${\mathfrak A}$ is a model of T if ${\mathfrak A}$ is a model of all formulas in T
- Ontologies are (special kinds of) theories

EL Embeddings

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$

EL Embeddings

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - ▶ or: the embedding function *is* an interpretation function

Key idea

- for all $r \in \Sigma(T)$ and $C \in \Sigma(T)$, define $f_e(r)$ and $f_e(C)$
- $f_e(C)$ maps to points in an open n-ball such that $f_e(C) = C^{\mathcal{I}}$: $C^{\mathcal{I}} = \{x \in \mathbb{R}^n | \|f_e(C) x\| < r_e(C)\}$
 - ▶ these are the *extension* of a class in \mathbb{R}^n
- $f_e(r)$ maps a binary relation r to a vector such that $r^{\mathcal{I}} = \{(x,y)|x + f_e(r) = y\}$
 - ► that's the TransE property for *individuals*
- use the axioms in T as constraints

Algorithm

- normalize the theory:
 - every \mathcal{EL}^{++} theory can be expressed using four normal forms (Baader et al., 2005)
- eliminate the ABox: replace each individual symbol with a singleton class: a becomes {a}
- rewrite relation assertions r(a,b) and class assertions C(a) as $\{a\} \sqsubseteq \exists r.\{b\}$ and $\{a\} \sqsubseteq C$
- normalization rules to generate:
 - C ⊆ D
 - \triangleright $C \sqcap D \sqsubseteq E$
 - $ightharpoonup C \sqsubseteq \exists R.D$
 - ightharpoonup $\exists R.C \sqsubseteq D$

$$\begin{aligned} & loss_{C \sqsubseteq D}(c, d) = \\ & \max(0, \|f_{\eta}(c) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ & + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1| \end{aligned} \tag{1}$$

$$loss_{C \sqsubseteq \exists R.D}(c, d, r) = \max(0, ||f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)|| + r_{\eta}(c) - r_{\eta}(d) - \gamma) + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$$
 (2)

$$loss_{\exists R.C \sqsubseteq D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) - f_{\eta}(r) - f_{\eta}(d)\| - r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1|$$
(3)

$$\begin{aligned} & loss_{C \sqcap D \sqsubseteq \bot}(c, d, e) = \\ & \max(0, r_{\eta}(c) + r_{\eta}(d) - \|f_{\eta}(c) - f_{\eta}(d)\| + \gamma) \\ & + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1| \end{aligned} \tag{4}$$

EL Embeddings

Male	⊑ Person	(5)
Female	⊑ Person	(6)
Father	\sqsubseteq <i>Male</i>	(7)
Mother	\sqsubseteq Female	(8)
Father	\sqsubseteq Parent	(9)
Mother	\sqsubseteq Parent	(10)
Female \sqcap Male	⊑⊥	(11)
Female □ Parent	\sqsubseteq Mother	(12)
$Male \sqcap Parent$	\sqsubseteq Father	(13)
\exists has Child. Person	<i>□</i> Parent	(14)
Parent	⊑ Person	(15)
Parent	$\sqsubseteq \exists hasChild. \top$	(16)

EL Embeddings

- model with $\Delta = R^n$
- support quantifiers, negation, conjunction,...

□ ▶