Introduction to Data Analysis: Capstone Option 2: Biodiversity for the National Parks

Hanbyul Jo

Species Info Data

	category	scientific_name	common_names	conservation_status
0	Mammal	Clethrionomys gapperi gapperi	Gapper's Red-Backed Vole	No Intervention
1	Mammal	Bos bison	American Bison, Bison	No Intervention
2	Mammal	Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Domesticated Cattle	No Intervention
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention
4	Mammal	Cervus elaphus	Wapiti Or Elk	No Intervention

 There are than 5800 rows in species.csv. It has category, scientific_name, common_name, conservation_status columns.

Conservation_status column has 4 levels of status.
 However, less than 200 animals have valid value for conservation_status column.

Significance Calculation Between Different species

	category	not_protected	protected	percent_protected
0	Amphibian	72	7	0.088608
1	Bird	413	75	0.153689
2	Fish	115	11	0.087302
3	Mammal	146	30	0.170455
4	Nonvascular Plant	328	5	0.015015
5	Reptile	73	5	0.064103
6	Vascular Plant	4216	46	0.010793

 I could see that birds and mammals have higher percentage to be endangered after aggregating the data. However, we should make sure that this observation is valid through Chi-Test.

```
Biodiversity Capstone Project
          scriptpy
                                                                                0.687594809666
0.0383555902297
     import codecademylib
                                                                                0.0531354223215
     import pandas as pd
     from matplotlib import pyplot as plt
     from scipy.stats import chi2_contingency
    contingency = [[30, 146],
                      expected = chi2_contingency(contingency)
     print(pval)
     # No significant difference because pval > 0.05
     contingency_reptile_mammal = [[30, 146],
                                   [5, 73]]
    pval_reptile_mammal = chi2_contingency(contingency_reptile_mammal)[1]
    print(pval_reptile_mammal)
    contingency_reptile_bird = [[5, 73],
                                   [75, 413]]
    chii2, pvali, dofi, expectedi =
     chi2_contingency(contingency_reptile_bird)
    print(pvali)
    # Significant difference! pval_reptile_mammal < 0.05</pre>
```

 I did Chi-test between Reptile and Mammal. P-value for this test was 0.03, which is low enough to say that Mammal is more endangered than Reptile. I did additional Chi-test between Reptile and Bird. P-value was quite close to 0.05, but still higher than that, which means that we can't confidently say that birds are more endangered than reptile.

A recommendation for conservationist

Mammals seem to struggle the most in national parks.
 Pay close attention to mammals.

Sample Size Determination for the Foot and Mouth Disease

• We know that 15% of sheep had the Foot and Mouth Disease last year (Baseline conversion rate). We want to detect at least 5 percentage, so the minimum detectable effect rate is 100*5/15 = 33.3333. We want 90% confidence level. Based on these three numbers, I could find out we need at least 870 samples with sample size calculator.

+ Graph

• This is the graph showing how many sheep are observed in each national park.