Signal detection in high energy physics via a semisupervised nonparametric approach

Alessandro Casa, Giovanna Menardi casa@stat.unipd.it

University of Padua Department of Statistical Sciences

SIS2017 Statistical Conference

Motivation

- The Standard Model represents the state of the art in High Energy Physics (HEP)
 - it describes how the fundamental particles interact with each others and with the forces between them giving rise to the matter in the universe
- There are indications that it does not complete our understanding of the universe^[3]
 - research is carried on to explain the shortcomings of this theory
 - experiments are conducted within accelerators (e.g., LHC), where physical particles are made collide and the product of their collision detected
 - do collisions produce any unclassified particle?

Framework - physical

• Ingredients:

- background: process describing the known physics, predominant, always observed
- signal (new particle): anomalous process, if present

• Main assumption:

 (possible) signal behaves as a deviation from the background, occurring collectively as an excess over the invariant mass of the background [6]

Framework - statistical

- Ingredients:
 - $\mathcal{X}_b \sim f_b : \mathbb{R}^d \to \mathbb{R}^+ \cup \{0\}$ labelled data from background density, known or estimable arbitrarily well
 - $\mathcal{X}_{bs} \sim f_{bs} : \mathbb{R}^d \to \mathbb{R}^+ \cup \{0\}$: unlabelled data, from the whole process density, unknown, may contain signal
- Main assumption:
 - ullet (possibile) signal arises as a *mode* in f_{bs} , not seen in f_b

Aim and contribution

- Aim: identify the signal and discriminate it from the background
 - semi-supervised learning: knowledge of one class (background) out of the two possible (background and signal) ↔ anomaly detection problem
- Main contribution: semi-supervise a nonparametric unsupervised framework by integrating within the clustering process the additional information available on the background

The nonparametric unsupervised framework - the principle

- Clusters correspond to the domain of attraction of the modes of the density underlying the data
- The density identifies a partition of the sample space, not only of the data

The nonparametric unsupervised framework -the practice

- Operational search of the modal regions → problem not faced here, use of preexisting methods
 - bump hunting
 - detection of connected components of the density level sets
- Nonparametric estimate of the density, e.g. via kernel methods:

$$\hat{f}(\mathbf{x}; \mathcal{X}, h) = \frac{1}{n \cdot h^d} \sum_{i=1}^n \prod_{j=1}^d K\left(\frac{x_j - x_{ij}}{h}\right), \tag{1}$$

- requires h to be known \rightarrow selection of the smoothing amount h
- requires d to be limited \rightarrow selection of variables

Selection of variables

- Main idea: a variable is relevant if its marginal distribution f_{bs} shows a changed behavior with respect to $f_b \leftarrow$ this difference shall be due to the presence of a signal, not seen in background density
 - \bullet select randomly k variables
 - ullet compare the marginals \hat{f}_b and \hat{f}_{bs} estimated on the selected variables via the application of a nonparametric test^[5]
 - if the comparison highlights a different behavior, update a counter for the selected variables
 - repeat a large number of times and evaluate the relevance of each single variable by evaluating the proportion of times allowing to select and work with a smaller subset
 - select the most relevant variables

Selection of the smoothing amount h

- Main idea: tuning a nonparametric estimate of the unlabelled data by selecting the smoothing amount so that the induced modal partition will classify the labelled background data as accurately as possible.
 - ullet estimate f_b by $\hat{f}_b
 ightarrow$ a partition $\mathcal{P}_b(\mathcal{X}_b)$ remains associated
 - ullet for h_{bs} varying in a range of plausible values:
 - estimate f_{bs} by $\hat{f}_{bs}(\cdot; \mathcal{X}_{bs}, h_{bs}) \rightarrow$ identify the partitions $\mathcal{P}_{bs}(\mathcal{X}_{bs})$ and $\mathcal{P}_{bs}(\mathcal{X}_b)$ both defined by the modal regions of \hat{f}_{bs} .
 - compare $\mathcal{P}_{bs}(\mathcal{X}_b)$ with $\mathcal{P}_b(\mathcal{X}_b)$ via the computation of some agreement index I
 - ullet select the bandwidth h_{bs} that maximizes I to estimate f_{bs}
 - ullet identify the ultimate partition $\mathcal{P}_{bs}(\mathcal{X}_{bs})^{[1]}$

Application to HEP data

Physical process simulated within ATLAS detector configuration^[2]

- Experiment: HEP proton-proton collisions (1 collision = 1 observation) → produce particles from two physical processes:
 - background: dominant standard model top quark pair production
 - signal: also decaying to top quark but lacking of an intermediate resonance
- Variables: kinematic features of the collisions
 - 18 low-level variables:leading lepton momenta, momenta of the 4 leading jets, b-tagging for each jet, missing transverse momentum magnitude and angle
 - 5 high-level variables: combine low-level information
- ullet \mathcal{X}_b and \mathcal{X}_{bs} both labelled, labels of \mathcal{X}_{bs} employed to evaluate results only
- $n_b = 20000$; $n_{bs} = 10000$
- ullet Signal amount set to 30% of \mathcal{X}_{bs}

Results

	Clusters	
Label	1	2
Bkg	6176	847
Sgn	369	2608
Misclassification error:	12.16%	
True positive rate:	87.60%	

Concluding remarks

- Given the awkward problem, results are promising but the physical context requires high sensitivity and specificity
- Further research is required at different levels:
 - reduce arbitrariness → make smoothing selection fully authomatic
 - reduce simplification → use more realistic signal to background ratio and handle imbalance

Relevant references

- 1. AZZALINI, A., & TORELLI, N. (2007). Clustering via nonparametric density estimation. Statistics and Computing, 17(1).
- 2. Baldi, P. Cranmer, K, Faucett, T., Sadowski, P. & Daniel Whiteson. (2016)

 Parameterized Machine Learning for High-Energy Physics. The

 European Physical Journal C, 76(5).
- 3. Bhat, P. C. (2011). *Multivariate analysis methods in particle physics.* Annual Review of Nuclear and Particle Science, 61.
- 4. Chandola, V., Banerjee, A., & Kumar, V. (2009). *Anomaly detection: A survey,* ACM computing surveys (CSUR), 41(3).
- Duong, T., Goud B. & Schauer K. (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. Proceedings of the National Academy of Sciences 109(22)
- 6. Vatanen, T., Kuusela, M., Malmi, E., Raiko, T., Aaltonen, T., & Nagai, Y. (2012). Semi-supervised detection of collective anomalies with an application in high energy particle physics. IEEE International Joint Conference on Neural Networks (IJCNN).