UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIA DA COMPUTAÇÃO

Arquitetura e Organização de Computadores

Avaliando e Compreendendo o Desempenho

Prof. Sílvio Fernandes

- Uma importante razão para examinar o desempenho de um HW é que normalmente é fundamental para a eficiência de um sistema inteiro, incluindo HW e SW
 - Compreender por que um SW funciona de uma determinada maneira
 - Por que um conjunto de instruções pode ser implementado para funcionar melhor que outro
 - Ou como algum recurso de HW afeta o desempenho
- Precisamos entender o que determina o desempenho em um computador

- Quando falamos que um computador possui melhor desempenho que outro, o que queremos dizer?
 - Exemplo análogo

Avião	Capacidade de passageiros	Autonomia de vôo (milhas)	Velocidade de vôo (milhas por hora)	Vazão de passageiros (passageiros × m.p.h.)
Boeing 777	375	4.630	610	228.750
Boeing 747	470	4.150	610	286.700
BAC/Sud Concorde	132	4.000	1350	178.200
Douglas DC-8-50	146	8.720	544	79.424

Maior velocidade: Concorde

Maior autonomia: DC-8

Maior capacidade: 747

- Se você estivesse executando um programa em 2 desktops diferentes, diria que o mais rápido é o computador que termina primeiro.
- Se você estivesse gerenciando um CPD com vários servidores realizando tarefas submetidas por muitos usuários, você diria que o computador mais rápido é aquele que completou a maior quantidade de tarefas durante um dia

- Usuários de PC estão interessados em tempo de resposta ou latência ou tempo de execução: tempo entre o início e o término de uma tarefa
- Gerentes de CPD estão interessados em vazão ou throughput: a quantidade total de trabalho feito em um determinado tempo

- Dependendo do caso precisamos de diferentes métricas
- Benchmarks SPEC
 - SPEC CPU para desempenho de CPU
 - SPECweb para servidores Web

- Vazão e Tempo de Resposta
 - As seguintes mudanças em um sistema computacional aumentam a vazão, diminuem o tempo de resposta ou as duas coisas?
 - Substituir o processador em um computador por uma versão mais rápida
 - Incluir processadores adicionais em um sistema que usa múltiplos processadores para tarefas distintas, como busca na Web
 - Diminuir o tempo de resposta quase sempre melhora a vazão
 - No caso 1, tanto tempo de resposta quanto vazão são melhorados

- Vazão e Tempo de Resposta
 - No caso 2, como nenhuma tarefa é realizada primeiro, apenas a vazão é melhorada
 - Mas se a demanda por processamento fosse tão grande quanto a vazão, o sistema poderia forçar as requisições a se enfileirar e, neste caso, aumentar a vazão poderia melhorar o tempo de resposta

Desempenho de processadores

Taxa de clock e potência dos processadores x86 da Intel em 25 anos

Desempenho de processadores

Taxa de crescimento do desempenho dos processadores

 Podemos relacionar o desempenho com o tempo de execução para um computador X:

$$Desempenho_x = \frac{1}{Tempo \ de \ execuçãox}$$

• Se o desempenho de X é maior do que o de Y:

$$Desempenho_x > Desempenho_y$$

$$\frac{1}{Tempo\ de\ execuçãox} > \frac{1}{Tempo\ de\ execuçãoy}$$

Tempo de execuçãoy > Tempo de execuçãox

Definindo Desempenho

 Usaremos a frase "X é n vezes mais rápido do que Y" ou "X é n vezes tão rápido quanto Y" para representar

$$\frac{Desempenho_x}{Desempenho_y} = n$$

• Se X é n vezes mais rápido do que Y então

$$\frac{Desempenho_x}{Desempenho_y} = \frac{Tempo \ de \ Execuçãoy}{Tempo \ de \ Execuçãox} = n$$

 Se um computador A executa um programa em 10s e o B executa o mesmo programa em 15s, quanto A é mais rápido do que B?

$$\frac{Desempenho_A}{Desemepnho_B} = \frac{Tempo \ de \ Execução B}{Tempo \ de \ Execução A} = n$$

Logo o fator de desempenho é

$$\frac{15}{10}$$
 = 1,5

Portanto, A é 1,5 vezes mais rápido do que B

- O tempo é a medida de desempenho dos computadores
 - O computador que realiza a mesma quantidade de trabalho no menor tempo é o mais rápido
- O tempo de execução é medido em segundos/programa
- Tempo de execução na CPU ou tempo de CPU
 - Tempo real que a CPU gasta computando para uma tarefa específica (não inclui E/S ou execução de outros programas)
- Tempo de CPU do usuário
 - O tempo de CPU gasto efetivamente em um programa
- Tempo de CPU do sistema
 - O tempo de CPU gasto no SO realizando tarefas a pedido do programa

- Quase todos os computadores são construído usando-se um clock que determina quando os eventos ocorrem no HW
 - Intervalos de tempo discretos s\u00e3o ciclos de clock
 - Extensão de um período de clock é o tempo para um ciclo completo (ex: 250 picossegundos ou 250 ps)
 - Taxa de clock é o inverso do período do clock (ex: 4 gigahertz ou 4 GHz)

Fonte: http://wiki.foz.ifpr.edu.br/wiki/index.php/Clock

 Nesse momento, o desempenho final é o tempo de execução da CPU

Tempo de execução da CPU para um programa

= Ciclos de clock da CPU para um programa

Tempo do ciclo de clock

 Outra alternativa é que, a velocidade de clock e o tempo do ciclo de clock são inversos

Tempo de execução da CPU para um programa

Ciclos de clock da CPU para um programa

Velocidade de clock

Nosso programa favorito é executado em 10 s no computador A, que possui um clock de 2 GHz. Estamos tentando ajudar um projetista a construir um computador B que execute esse programa em 6 segundos. O projetista determinou que um aumento substancial na velocidade de clock é possível, mas esse aumento afetará o restante do projeto da CPU, fazendo com que o computador B exija 1,2 vezes mais ciclos de clock do que o A para esse programa. Que velocidade de clock devemos dizer para o projetista buscar?

Tempo de
$$CPU_A = \frac{Ciclos de clock da $CPU_A}{Velocidade de clock_A}$

10 segundos = $\frac{Ciclos de clock da $CPU_A}{2 \times 10^9 \text{ ciclos/segundo}}$$$$

Ciclos de clock da $CPU_A = 10$ segundos x 2 x10 9 ciclos/segundo = 20 x10 9 ciclos

O tempo de CPU de B pode ser encontrado usando

Tempo de
$$CPU_B = \frac{1.2 \text{ x Ciclos de clock da } CPU_A}{\text{Velocidade de clock}_B}$$

Exemplo

6 segundos =
$$\frac{1,2 \times 20 \times 10^9 \text{ ciclos}}{\text{Velocidade de clock}_B}$$

Velocidade de clock_B =
$$\frac{1,2 \times 20 \times 10^9 \text{ ciclos}}{6 \text{ segundos}} = 4 \text{ GHz}$$

 Portanto, a velocidade de clock do computador B deve ser o dobro da velocidade de clock de A para poder executar o programa em 6 segundos

- As equações anteriores não incluem qualquer referência ao <u>número de instruções</u> necessárias para o programa.
- Entretanto, como o compilador claramente gerou instruções para serem executadas, o tempo de execução tem de depender do número de instruções em um programa
- O tempo de execução é igual ao número de instruções executadas multiplicado pelo tempo médio gasto por cada instrução

Ciclos de clock da CPU = Instruções para um programa x Ciclos de clock médios por instrução

- O termo ciclos por instrução, que é o número médio de ciclos de clock que cada instrução gasta para ser executada, normalmente é abreviado como CPI
- O CPI fornece uma maneira de comparar duas implementações diferentes do mesmo conjunto de instruções, já que a contagem de instruções necessária para um programa será, evidentemente, a mesma

- Vamos supor que temos 2 implementações do mesmo conjunto de instruções. O computador A tem um tempo de ciclo de clock de 250ps e um CPI de 2,0 para um determinado programa, e o computador B tem um tempo de ciclo de clock de 500ps e um CPI de 1,2 para o mesmo programa. Que computador é mais rápido para esse programa e o quanto mais rápido?
 - Sabemos que cada computador executa o mesmo número de instruções para o programa; vamos chamar esse número de I

- Primeiro, encontre o número de ciclos de clock do processador para cada computador
 - Ciclos de clock da CPU_A= I x 2,0
 - Ciclos de clock da CPU_B= 1 x 1,2
- Agora podemos calcular o tempo de CPU para cada computador
 - Tempo de CPU_A = Ciclos de clock_A x tempo de clock_A
 - Tempo de $CPU_A = 1 \times 2.0 \times 250 \text{ ps} = 500 \times 1 \text{ ps}$
- Da mesma forma, para B:
 - Tempo de CPU_B = Ciclos de clock_B x tempo de clock_B
 - Tempo de $CPU_B = 1 \times 1.2 \times 500 \text{ ps} = 600 \times 1 \text{ ps}$

- Claramente, o computador A é mais rápido
- O quanto mais rápido é calculado pela razão:

```
\frac{Desempenho \ da \ CPUA}{Desempenho \ da \ CPUB} = \frac{Tempo \ de \ ExecuçãoB}{Tempo \ de \ ExecuçãoA} = \frac{600 \ x \ I \ ps}{500 \ x \ I \ ps} = 1,2
```

 Podemos concluir que A é 1,2 vezes mais rápido que B para esse programa

 Agora podemos escrever essa equação de desempenho básica em termos de contagem de instruções, de CPI e de tempo do ciclo de clock

Tempo de CPU = Contagem de instruções x CPI x Tempo do ciclo de clock

Ou ainda

Tempo de CPU = Contagem de instruções x CPI

Velocidade de clock

 Algumas vezes, é possível calcular os ciclos da CPU olhando os diferentes tipos de instruções e usando suas contagens de ciclos de clock individuais

Ciclos de clock da
$$CPU = \sum_{i=1}^{n} (CPIi \times Ci)$$

 Onde C_i é a contagem do número de instruções da classe i executadas, CPI_i é a média dos ciclos por instrução para essa classe e n é o número de classes de instrução

 Exemplo: Um projetista de compilador está tentando decidir entre 2 sequências de código para um determinado computador. Os projetista de HW forneceram os seguintes fatos:

	CPI para esta classe de instrução		
	Α	В	С
CPI	1	2	3

 Para uma determinada instrução em linguagem de alto nível

Sequência de	Contagem de instrução para classe de instrução			
código	Α	В	С	
1	2	1	2	
2	4	1	1	

- Exemplo: Qual sequência de código executa mais instruções? Qual será mais rápida? Qual é o CPI para cada sequência?
 - A seq. 1 executa 2+1+2 = 5 instruções
 - A seq. 2 executa 4+1+1 = 6 instruções
 - Logo, a seq. 2 executa mais instruções
 - Para encontrar o número total de ciclos de clock para cada sequência:
 - Ciclos de clock da $CPU = \sum_{i=1}^{n} (CPIi \times Ci)$
 - Ciclos de clock da $CPU_1 = (2x1) + (1x2) + (2x3) = 10$ ciclos
 - Ciclos de clock da $CPU_2 = (4x1) + (1x2) + (1x3) = 9$ ciclos

- Exemplo: Qual sequência de código executa mais instruções? Qual será mais rápida? Qual é o CPI para cada sequência?
 - Logo, a seq. 2 é a mais rápida, mesmo que ela executa uma instrução extra
 - Os valores de CPI podem ser calculados:
 - $CPI = \frac{Ciclos \ de \ clock \ da \ CPU}{Contagem \ de \ instruções}$
 - $CPI_1 = 10 / 5 = 2$
 - $CPI_2 = 9 / 6 = 1.5$
 - Quando estiver comparando 2 computadores, você precisa considerar TODOS os 3 componentes, que se combinam para formar o tempo de execução

 Podemos ver como esses fatores são combinados para fornecer o tempo de execução medido em segundos por programa

$$Tempo = \frac{segundos}{programa} = \frac{instruções}{programa} x \frac{ciclos de clock}{instrução} x \frac{segundos}{ciclo de clock}$$

Componentes do desempenho	Unidade de medida
Tempo de execução da CPU para um programa	Segundos para o programa
Contagem de instruções	Instruções executadas para o programa
Ciclos de clock por instrução (CPI)	Número médio de ciclos de clock por instrução
Tempo de ciclo de clock	Segundos por ciclo de clock

Componente de HW ou SW	Afeta o quê?	
Algoritmo	Contagem de instruções, possivelmente CPI	
Linguagem de programação	Contagem de instruções, CPI	
Compilador	Contagem de instruções, CPI	
Arquitetura do conjunto de instruções	Contagem de instruções, taxa de clock, CPI	

 Armadilha: Esperar que a melhoria de um aspecto de um computador aumente o desempenho geral por uma quantidade proporcional ao tamanho da melhoria

Exemplo:

 Suponha que um programa execute em 100 s em um computador, com operações de multiplicação responsáveis por 80 s desse tempo. Quanto terei de melhorar a velocidade da multiplicação se eu quiser que meu programa execute 5 vezes mais rápido?

- Podemos usar a Lei de Amdahl
 - A melhoria de desempenho possível com determinado aprimoramento é limitada pela quantidade com que o recurso aprimorado é utilizado.
- Então temos

 $\frac{\textit{Tempo de execução após aprimoramento}}{\textit{Quantidade de aprimoramento}} + \textit{Tempo de execução não afetado} \\ \frac{\textit{Tempo de execução afetado pelo aprimoramento}}{\textit{Quantidade de aprimoramento}} + \textit{Tempo de execução não afetado}$

Para este problema

Tempo de execução após aprimoramento =
$$\frac{80}{n}$$
 + (100 s - 80 s)

$$20 s = \frac{80 s}{n} + (20 s)$$
 \rightarrow $0 = \frac{80 s}{n}$

- Suponha que queremos saber se uma aplicação que usa o desktop de um cliente e um servidor remoto está limitada pelo desempenho da rede. Para as mudanças a seguir, diga se apenas a vazão melhora, se o tempo de resposta e a vazão ou se nenhum dos dois melhora
 - Um canal de rede extra é acrescentado entre o cliente e o servidor, aumentando a vazão total da rede e reduzindo o atraso para obter acesso à mesma (já que agora há dois canais)

- b) O software de rede é melhorado, reduzindo, assim, o atraso da comunicação via rede, mas não melhorando a vazão
- c) Mais memória é acrescentada ao computador
- 2. O desempenho do computador C é 4 vezes melhor do que o desempenho do computador B, que executa uma determinada aplicação em 28 segundos. Quanto tempo o computador C levará para executar essa aplicação?

- 3. Uma determinada aplicação Java roda 15 s em um processador de desktop. É lançado um novo compilador Java que exige apenas seis décimos da quantidade de instruções do antigo compilador. Infelizmente, ele aumenta o CPI em 1,1. Em que velocidade podemos esperar que a aplicação seja executada usando esse novo compilador?
 - a) $(15 \times 0.6) / 1.1 = 8.2 \text{ s}$
 - b) $15 \times 0.6 \times 1.1 = 9.9 \text{ s}$
 - c) $(15 \times 1,1) / 0.6 = 27.5 \text{ s}$

- a: ambos; b: tempo de resposta; c: nenhum
- 2. 7 segundos
- 3. b

Referências

- PATTERSON, D. A.; HENNESSY, J.L. Organização e projeto de computadores – a interface hardware software. 3. ed. Editora Campus, 2005.
- STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 8. ed. Prentice Hall, 2009.