Q1) A dataset of labeled 2-D points are given in the below figure. Classify a newcoming point with coordinates (X, Y) = (1,1) by using K-Nearest Neighbor algorithm with (a) K=1 and (b) K=3. Show your computation steps by using the Euclidean distance (20 points).

Q2) Using above data fill values of a design matrix and write equations to solve Y = F(X) linear regression (Y = B0 + X * B1) (15 points).

Q3) Compute the likelihood of selecting banana having the properties of yellow, long and sweet by using a naïve bayes (25 points).

	Yellow	Long	Sweet	Total
Apple	5	0	5	10
Banana	3	3	4	10
Other	2	2	6	10

Q4) Give short answers to the following questions with 1-2 sentences (16 Points).

- a) Why Cross-validation is used?
- b) When do you use regression instead of classification?

c)	What are the major 3 metrics of regression to control quality of fit? In which order do you use
	them?

- d) Which metric is most useful to measure high variability in regression? Mean Square Error or Mean Absolute Error?
- e) Write down a second order polynomial of two variables Z = F(X,Y) with co-linearity term.
- f) What is the advantage of Lasso regularization over the Ridge Regularization?
- g) What are the minimum number of samples to solve a 3rd order polynomial regression?
- h) Give an example of normalizing input data to the same range.
- **Q5)** You have designed a cancer test and your findings with 120 test subjects are measured as a confusion matrix below (24 points).
 - a) Compute TP, FP, FN, TN, Precision, Recall, Accuracy, F-Score.

		Predicted		
		Cancer	Healthy	
Actual	Cancer	15	5	
	Healthy	10	90	

- b) What are the possible consequences of making an error (FP and FN) in classification? How would you improve your classifier?
- c) Based on this cancer test example, which metric(s) (precision, recall, accuracy or F-score) would you use to evaluate your classifier? Explain your reasoning.