

Clustering

CS 145
Fall 2015
Wei Wang

Challenges of Hierarchical Clustering Methods

- Hard to choose merge/split points
 - Never undo merging/splitting
 - Merging/splitting decisions are critical
- ▶ Do not scale well: $O(n^2)$
- ► What is the bottleneck when the data can't fit in memory?
- Integrating hierarchical clustering with other techniques
 - ▶ BIRCH, CURE, CHAMELEON, ROCK

BIRCH

- Balanced Iterative Reducing and Clustering using Hierarchies
- CF (Clustering Feature) tree: a hierarchical data structure summarizing object info
 - ► Clustering objects → clustering leaf nodes of the CF tree

Clustering Feature Vector

Clustering Feature: CF = (N, LS, SS)

N: Number of data points

LS:
$$\sum_{i=1}^{N} = \overline{X_i}$$

SS: $\sum_{i=1}^{N} = \overline{X_i}^2$

CF = (5, (16,30),(54,190))

(3, 4)
(2, 6)
(4, 5)
(4, 7)
(3, 8)

CF-tree in BIRCH

- Clustering feature:
 - Summarize the statistics for a subcluster: the 0th, 1st and 2nd moments of the subcluster
 - Register crucial measurements for computing cluster and utilize storage efficiently
- ► A CF tree: a height-balanced tree storing the clustering features for a hierarchical clustering
 - ▶ A nonleaf node in a tree has descendants or "children"
 - ▶ The nonleaf nodes store sums of the CFs of children

CF Tree

Parameters of A CF-tree

- Branching factor: the maximum number of children
- ► Threshold: max diameter of sub-clusters stored at the leaf nodes

BIRCH Clustering

- ► Phase 1: scan DB to build an initial inmemory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
- Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree

Pros & Cons of BIRCH

- Linear scalability
 - Good clustering with a single scan
 - Quality can be further improved by a few additional scans
- Can handle only numeric data
- Sensitive to the order of the data records

Drawbacks of Square Error Based Methods

- One representative per cluster
 - ► Good only for convex shaped having similar size and density
- ► A number of clusters parameter k
 - ▶ Good only if k can be reasonably estimated

Drawback of Distance-based Methods

- Hard to find clusters with irregular shapes
- Hard to specify the number of clusters
- ▶ Heuristic: a cluster must be dense

Directly Density Reachable

MinPts = 3 Eps = 1 cm

- Parameters
 - Eps: Maximum radius of the neighborhood
 - MinPts: Minimum number of points in an Epsneighborhood of that point
 - ► NEps(p): $\{q \mid dist(p,q) \leq Eps\}$
- Core object p: |Neps(p)|≥MinPts
- Point q directly density-reachable from p iff q ∈Neps(p) and p is a core object

Density-Based Clustering: Background (II)

- Density-reachable
 - ► Directly density reachable $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$, ..., $p_{n-1} \rightarrow p_n \rightarrow p_n$ density-reachable from p_1
- Density-connected
 - Points p, q are density-reachable from o → p
 and q are density-connected

DBSCAN

A cluster: a maximal set of densityconnected points

Discover clusters of arbitrary shape in spatial

DBSCAN: the Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p wrt Eps and MinPts
- ▶ If p is a core point, a cluster is formed
- If p is a border point, no points are densityreachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

Problems of DBSCAN

- Different clusters may have very different densities
- Clusters may be in hierarchies

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

(a)

DBSCAN online Demo:

OPTICS: A Cluster-Ordering Method (1999)

- ▶ OPTICS: Ordering Points To Identify the Clustering Structure
 - ► Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of the database wrt its density-based clustering structure
 - ► This cluster-ordering contains info equiv to the density-based clusterings corresponding to a broad range of parameter settings
 - ► Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS: Some Extension from DBSCAN

- ▶ Index-based: k = # of dimensions, N: # of points
 - ► Complexity: O(N*logN)
- Core Distance of an object p: the smallest value ε such that the ε-neighborhood of p has at least MinPts objects

Let $N_{\epsilon}(p)$: ϵ -neighborhood of p, ϵ is a distance value

Core-distance_{ϵ , MinPts}(p) = Undefined if card(N_{ϵ}(p)) < MinPts

MinPts-distance(p), otherwise

Reachability Distance of object p from core object q is the min radius value that makes p density-reachable from q

Reachability-distance_{ϵ , MinPts}(p, q) =

Undefined if q is not a core object

max(core-distance(q), distance(q, p)), otherwise

Core Distance & Reachability Distance

Figure 10.16: OPTICS terminology. Based on [ABKS99].

Density-Based Clustering: OPTICS & Applications

demo: http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo

