

CodeNect: Visual Programming
Software for Learning
Fundamentals of Programming

Brandon B. Lim-it, Jaykel O. Punay

May, 2021

• Technology is constantly progressing and improving

- Technology is constantly progressing and improving
- Programming is essential in the field of technology

- Technology is constantly progressing and improving
- Programming is essential in the field of technology
- Programming is a discipline

- Technology is constantly progressing and improving
- Programming is essential in the field of technology
- Programming is a discipline
- Programming is difficult

- Technology is constantly progressing and improving
- Programming is essential in the field of technology
- Programming is a discipline
- Programming is difficult
- Learning programming is more difficult

The fundamental concepts of programming are essential basics that are necessary for programmers to master. Concepts such as:

Syntax and Semantics

- Syntax and Semantics
- Data Types and Data Structures

- Syntax and Semantics
- Data Types and Data Structures
- Logic and Conditionals

- Syntax and Semantics
- Data Types and Data Structures
- Logic and Conditionals
- Loops and Algorithm

- Syntax and Semantics
- Data Types and Data Structures
- Logic and Conditionals
- Loops and Algorithm
- Memory

The fundamental concepts of programming are essential basics that are necessary for programmers to master. Concepts such as:

- Syntax and Semantics
- Data Types and Data Structures
- Logic and Conditionals
- Loops and Algorithm
- Memory

are key to easily understanding and getting better at programming as programming is a discipline (Prahofer, Hurnaus, Wirth, and Mossenbock, 2007).

Ishikawa Diagrams

Ishikawa diagram of students not familiar and finding programming concepts difficult to understand

Ishikawa Diagrams

Ishikawa diagram of the students incorrect answer to programming assessment

Ishikawa Diagrams

Ishikawa diagram of the tools for programming not effective for learning

The general objective of the study is to develop a CodeNect: Visual Programming Software that will help in learning the fundamentals of programming.

Specifically, this study seeks:

 Identify the concepts learners find difficult to understand through conducted survey.

The general objective of the study is to develop a CodeNect: Visual Programming Software that will help in learning the fundamentals of programming.

- Identify the concepts learners find difficult to understand through conducted survey.
- Analyze the problems through a Ishikawa/Fishbone Diagram.

The general objective of the study is to develop a CodeNect: Visual Programming Software that will help in learning the fundamentals of programming.

- Identify the concepts learners find difficult to understand through conducted survey.
- Analyze the problems through a Ishikawa/Fishbone Diagram.
- Design the system using the Use Case Diagrams.

The general objective of the study is to develop a CodeNect: Visual Programming Software that will help in learning the fundamentals of programming.

- Identify the concepts learners find difficult to understand through conducted survey.
- Analyze the problems through a Ishikawa/Fishbone Diagram.
- Design the system using the Use Case Diagrams.
- Test the usability, functionality of the software using Experience-based test design.

The general objective of the study is to develop a CodeNect: Visual Programming Software that will help in learning the fundamentals of programming.

- Identify the concepts learners find difficult to understand through conducted survey.
- Analyze the problems through a Ishikawa/Fishbone Diagram.
- Design the system using the Use Case Diagrams.
- Test the usability, functionality of the software using Experience-based test design.
- Evaluate the acceptability of the software using the ISO 9126.

• Develop the software with the following main features:

- Develop the software with the following main features:
- Visual Nodes Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module
- ► Input/Output Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module
- ► Input/Output Module
- Debug Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module
- ► Input/Output Module
- Debug Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module
- ► Input/Output Module
- Debug Module

Transpiler Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module
- ► Input/Output Module
- Debug Module

- Transpiler Module
- Assessment Module

- Develop the software with the following main features:
- Visual Nodes Module
- ► Filesystem Module
- ► Input/Output Module
- Debug Module

- Simulation Module
- ► Transpiler Module
- Assessment Module

Significance of the Study

Students

The software helps in the education and improvement in the knowledge, skills, understanding, and expertise of the students and learners about programming. Thus, allowing them to compete and increasing the opportunities for their careers.

Teachers

The software provides assistance for teachers and instructors to teach and demo programming concepts through visualization. This aids in relieving workload, stress, and maximizing lessons each class time.

Significance of the Study

Educational Institutions

The software benefits educational institutions like university for computer laboratory classes by providing a free software oriented for the purpose of learning

Developers

The software provides learning experience for the developers and researchers in preparation for software development career.

Researchers

This study serves as a guide and reference in the field of software development and education for future researchers.

- 1 GB HDD Storage

Conceptual Framework of the Study

Simplicity and Functionality

The software will prioritize simple and basic functionalities over numerous features for the purpose of learning and education.

Stand-alone Program

The software will have no account management and can be run without any hassle. The software works perfectly in offline mode.

Terminal-based

The software is limited to simulating text-based or command/terminal prompts as the priority is learning the fundamentals of programming.

Visual Nodes Module

Nodes are graphical elements that serve as the building blocks of the software. Nodes can be used as a variable, logic, and conditionals

Filesystem Module

Serves as the interface between the software and the user's machine for handling files such as creation, modification, reading, and deletion.

Input/Output Module

The module is responsible for processing and responding events and performing actions based on the event such as key press, mouse click, and mouse movement.

Debug Module

This module will linter and give feedback and indication to the user whenever there is an attempt to perform an action that is faulty in logic

Simulation Module

The process of simulation involves the compiling, building, and running the visual code is executed by this module

Transpiler Module

This module transpiles the visual code made by the user into source code in target programming language

Scope and Limitations of the Study

Assessment Module

The functionality of providing exercises designed for the learning of topics and concepts in programming and evaluation of the results are handled by this module

Visul Nodes Modules

Visul Nodes Modules

Visul Nodes Modules

Filesystem Module

Filesystem Module

```
File: /home/brbl/Projects/CodeNect/test/test_assessment.cn
[meta]
title = Name
author = Brandon
creation dt = 21-05-2021 11:58:07
offsetx = -47.000000
offsety = -126.000000
[node 0]
name = first_name
kind = VARIABLE
x = 71.600037
y = 295.0000000
desc =
value slot = STRING
value = What is your name? Brandon
input 1 = STRING
output 1 = STRING
[connection PRINT 0 STRING-first name STRING]
in_node_name = PRINT_0
in slot = STRING
out node name = first_name
out slot = STRING
[node_1]
name = PRINT 0
kind = ACTION
x = 410.500000
y = 309.500000
desc =
action = PRINT
```


Input/Output Module

Debug Module

Transpiler Module

Assessments Module

Getting the Summation of Two Numbers

INSTRUCTION

- 1. Prompt the user for the starting number
- 2. Prompt the user for the ending number
- 3. Create a variable that will hold the sum with initial value of \odot
- 4. Loop using a For loop using the starting and ending numbers
- 5. Add the sum variable with the iteration count
- 6. After the loop, print the sum

EXPECTED OUTPUT

Enter starting number: 5 Enter ending number: 10 Summation: 45

Do this assessment 🗲 Back

Assessments Module

• Prototype of Visual Programming Environment for C Language Novice Programmer (Abe, K., Fukawa, Y., & Tanaka, T., 2019)

- Prototype of Visual Programming Environment for C Language Novice Programmer (Abe, K., Fukawa, Y., & Tanaka, T., 2019)
- On the Design of a Generic Visual Programming Environment (Zhang, D.-Q., & Zhang, K.)

- Prototype of Visual Programming Environment for C Language Novice Programmer (Abe, K., Fukawa, Y., & Tanaka, T., 2019)
- On the Design of a Generic Visual Programming Environment (Zhang, D.-Q., & Zhang, K.)
- Environment pi J for Visual Programming in Java (Prokhorov, V., & Kosarev, V., 1999)

- Prototype of Visual Programming Environment for C Language Novice Programmer (Abe, K., Fukawa, Y., & Tanaka, T., 2019)
- On the Design of a Generic Visual Programming Environment (Zhang, D.-Q., & Zhang, K.)
- Environment pi J for Visual Programming in Java (Prokhorov, V., & Kosarev, V., 1999)
- HASKEU: An editor to support visual and textual programming in tandem (Alam, A., & Bush, V., 2016)

- Prototype of Visual Programming Environment for C Language Novice Programmer (Abe, K., Fukawa, Y., & Tanaka, T., 2019)
- On the Design of a Generic Visual Programming Environment (Zhang, D.-Q., & Zhang, K.)
- Environment pi J for Visual Programming in Java (Prokhorov, V., & Kosarev, V., 1999)
- HASKEU: An editor to support visual and textual programming in tandem (Alam, A., & Bush, V., 2016)
- The Scratch Programming Language and Environment (Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E., 2010)

- Prototype of Visual Programming Environment for C Language Novice Programmer (Abe, K., Fukawa, Y., & Tanaka, T., 2019)
- On the Design of a Generic Visual Programming Environment (Zhang, D.-Q., & Zhang, K.)
- Environment pi J for Visual Programming in Java (Prokhorov, V., & Kosarev, V., 1999)
- HASKEU: An editor to support visual and textual programming in tandem (Alam, A., & Bush, V., 2016)
- The Scratch Programming Language and Environment (Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E., 2010)
- CodeMonkey (Israel-Fishelson & Hershkovitz, 2020)

Sofware Requirements - Development

• Linux 5.4 kernel with Manjaro distribution as Operating System

- Linux 5.4 kernel with Manjaro distribution as Operating System
- Terminal for running commands

- Linux 5.4 kernel with Manjaro distribution as Operating System
- Terminal for running commands
- Vim for text and code editing

- Linux 5.4 kernel with Manjaro distribution as Operating System
- Terminal for running commands
- Vim for text and code editing
- GLFW and OpenGL for rendering

- Linux 5.4 kernel with Manjaro distribution as Operating System
- Terminal for running commands
- Vim for text and code editing
- GLFW and OpenGL for rendering
- DearImGui and ImNodes for user-interface base framework

- Linux 5.4 kernel with Manjaro distribution as Operating System
- Terminal for running commands
- Vim for text and code editing
- GLFW and OpenGL for rendering
- DearImGui and ImNodes for user-interface base framework
- C++ programming language

Methodology - Method

V-Model

This model follows the relationships between each of the different phases in the life cycle of the development process, each with an associated testing phase.

The primary focus and purpose of this model is to improve the efficiency of development and to ensure the effectiveness of the software.

Phases of V-Model

Requirements

- Requirements
- System Design

- Requirements
- System Design
- Architecture Design

- Requirements
- System Design
- Architecture Design
- Module Design

- Requirements
- System Design
- Architecture Design
- Module Design
- Implementation and Coding

- Requirements
- System Design
- Architecture Design
- Module Design
- Implementation and Coding
- Testings

System Architecture

Results and Discussion

Likert Scale for Software Evaluation

LIKERT SCALE				
RANGE	INTEPRETATION			
4.21 - 5.00	Excellent			
3.41 - 4.20	Very Good			
2.61 - 3.40	Good			
1.81 - 2.60	Fair			
1.00 - 1.80	Poor			

Technical Evaluation

Profile

Name	E-Mail	Designation/	Institution	Educational
	Address	Rank		Attainment
(not mentioned		Software		
due to	auahdark687291	Engineer &	Hasanuddin	Information
confidentiality)	@gmail.com	Game	University	Systems
confidentiality)		Developer		
(not mentioned		System		
due to	thereal.alex.b	Programmer &	Syntacore	Computer
	@gmail.com	Lead		Science
confidentiality)		Programmer		
Fort Bautista	febhd0120	Web	Snipesoft Ltd	Information
	@gmail.com	Developer		Technology
Michael	gelvezmichael	Web	Straight Login	Information
Gelvez	@yahoo.com	Developer		Technology
Bonalyn De		Web		
	ronrioflorido2	Developer &	Fatec	Information
Guzman	@gmail.com	Trading	Corporation	Technology
Rioflorido		Staff		
John Fros	iohnerospuvo21		Philippine	
	, , , , , , , , , , , , , , , , , , , ,	Instructor	Christian	MIS
Puyo	@gmail.com		University	
Ralph Waldo	rccandaza	Web Stratnoint	Stratpoint	Computer
Candaza	@up.edu.ph	Developer		Science

Profile

Jaypee Galang	jaypeegalang27 @gmail.com	Web Developer & Instructor	ISDC	Information Technology
Cyril Elijah	cyrilelijahaurino	Software	Controtek	Computer
Maurino	@gmail.com	Developer	Solutions	Science
Conrad	conradreyes123	Web & Game	Chanifu	Information
Reyes	@gmail.com	Developer	Shopify	Technology

Technical Evaluators

• 10 IT/CS professionals

Technical Evaluators

- 10 IT/CS professionals
- Software downloaded from Google Drive

Technical Evaluators

- 10 IT/CS professionals
- Software downloaded from Google Drive
- Software evaluated through Google Form

Summary Table for the Overall of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
Functionality	4.33	0.82	excellent
Reliability	4.00	0.85	very good
Usability	4.10	0.83	very good
Efficiency	4.40	0.77	excellent
Maintainability	4.30	0.75	excellent
Portability	4.55	0.76	excellent
User-friendliness	4.43	0.67	excellent
Average	4.30	0.78	excellent

Summary Table for the Functionality of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Informative (The information is			
clear, concise and informative to	4.00	1.05	very good
the intended audience.)			
2. Accurate (The software			
provides accurate and correct	4.40	0.70	excellent
data.)			
3. Interoperability (The modules			
are interconnected to each other	4.60	0.70	excellent
and functions as a whole.)			
Average	4.33	0.82	excellent

Summary Table for the Reliability of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION	
1. Reliable (The software is reliable	4.00	0.94	very good	
in normal use.)	1.00	0.01	very good	
2. Bug free (Software is bug free.)	3.79	0.95	good	
3. Standard Equipment (The				
system uses standard equipment	4.30	0.67	excellent	
that is reliable, widely available and	4.00	0.07	CACCIICITE	
applicable to a variety of users.)				
Average	4.00	0.85	very good	

Summary Table for the Usability of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Understandability (The software	4.00	1.05	very good
is easy to understand.)	4.00	1.00	very good
2. Operability (The software is			
easily operated by the intended	4.20	0.63	very good
user.)			
3. Learnability (The program is			
attractive and interesting; it	4.20	1.03	very good
motivates users to continue using	4.20	1.03	very good
the program.)			
Average	4.10	0.83	very good

Summary Table for the Efficiency of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
Special equipment (If the			
program requires special			
equipment, the requirements are	4.40	0.70	excellent
minimal and clearly stated by the			
developer.)			
2. Storage (The program doesnt			
consume large amount of memory	4.40	0.84	excellent
that can slow down the processing	1.10	0.01	CXCCIICITE
of the system.)			
3. Detection (The program can			
easily identify the cause of failure	4.40	0.84	excellent
within the software.)			
Average	4.40	0.77	excellent

Summary Table for the Maintainability of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Function (The effort required to			
change the system functions is	4.30	0.82	excellent
minimal.)			
2. Process (The program is stable			
that if when something is changed,	4.30	0.82	excellent
it will not affect the processing of	4.30	0.02	excellent
the system.)			
3. Test (The effort needed to test	4.30	0.67	excellent
the system is minimal.)	4.50	0.07	GAGGIIGHT
Average	4.30	0.75	excellent

Summary Table for the Portability of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION	
Installation (The effort required	4.70	0.67	excellent	
to install the system is minimal.)	4.70	0.07	excellent	
2. Adaptability (The system has				
the ability to adapt to new	4.40	0.84	excellent	
specifications or operating	4.40	0.04	excellent	
environments.)				
Average	4.55	0.76	excellent	

Summary Table for the User-Friendliness of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Clarity of controls			
(Information about controls are	4.10	0.88	very good
understandable and available	4.10	0.00	very good
to the users.)			
2. Objectivity of contents (The			
language is non-discriminatory.			
Content is free from race,	4.90	0.32	excellent
ethnic, gender, age and other			
stereotypes.)			
3. Typographical Accuracy (The			
content is free from spelling	4.30	0.82	excellent
and grammatical errors.)			
Average	4.43	0.67	excellent

Feedbacks

An interesting approach to teaching programming, I can see how assessments system can be used to teach data structures and algorithms in the future. Underlying C representation can also be instrumental in teaching proper memory management and even more complex concepts like cache. Overall software leaves a very positive first impression and a good extension opportunity.

Functionalities and features are working well. The software will be at best on its user-friendliness with sample demos at the menu.

Great Application!, I suggest it to have a version running on Linux based OS and in Mac OS also.

Profile

Name	E-Mail Address	Designation/ Rank	Institution	Course, Year and Section
Jerald Vidallo	jerald.vidallo @cvsu.edu.ph	Student	Cavite State University	BSIT 4-1
Ron Tseytlin	ronts390 @gmail.com	Student	Ben Gurion University	BSCS 1-1
Angelo Mari Paredes	angelomariparedes @gmail.com	Student	Luis Y. Ferrer Jr. Senior High School	STEM 2-1
Christian Vergel Plaus	mitoplaus @gmail.com	Student	De La Salle University	CPE 2-1
Edward Conception	edward.concepcion @cvsu.edu.ph	Student	Cavite State University	BSIT 4-1
Marie Joy Musa	mariejoy.musa @cvsu.edu.ph	Student	Cavite State University	BSIT 4-1
Marvin Recto	marvin.recto @cvsu.edu.ph	Student	Cavite State University	BSIT 4-1
Lmarl Saria	lmarlsaria21 @gmail.com	Graduate	Cavite State University	BSIT Graduate

Profile

Ren Antonio	reneantonio. dimabogte @cvsu.edu.ph	Student	Cavite State University	BSIT 2-4
Rhealyn Villar	rhealynvillar @gmail.com	Student	Cavite State University	BSIT 2-4
Jingkie Lagarde	jingkie.lagarde @cvsu.edu.ph	Student	Cavite State University	BSIT 3-3
Jaymark Abulencia	jaymark.abulencia @cvsu.edu.ph	Student	Cavite State University	BSIT 4-1

Non-Technical Evaluators

• 12 students with programming subjects

Non-Technical Evaluators

- 12 students with programming subjects
- Software downloaded from Google Drive

Non-Technical Evaluators

- 12 students with programming subjects
- Software downloaded from Google Drive
- Software evaluated through Google Form

Non-Technical Evaluators

- 12 students with programming subjects
- Software downloaded from Google Drive
- Software evaluated through Google Form
- YouTube video for tutorial on basic usage of the software

Summary Table for the Overall of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
Functionality	4.69	0.49	excellent
Reliability	4.41	0.67	excellent
Usability	4.37	0.73	excellent
User-friendliness	4.50	0.60	excellent
Average	4.50	0.62	excellent

Summary Table for the Functionality of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Informative (The information is			
clear, concise and informative to	4.67	0.49	excellent
the intended audience.)			
2. Accurate (The software			
provides accurate and correct	4.83	0.39	excellent
data.)			
3. Interoperability (The modules			
are interconnected to each other	4.58	0.67	excellent
and functions as a whole.)			
Average	4.69	0.52	excellent

Summary Table for the Reliability of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Reliable (The software is reliable	4.41	0.67	excellent
in normal use.)		5.07	555116111

Summary Table for the Usability of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
Understandability (The software	4.41	0.67	excellent
is easy to understand.)		0.07	3.33110111
2. Learnability (The software is			
easily operated by the intended	4.33	0.78	excellent
user.)			
Average	4.37	0.73	excellent

Summary Table for the User-Friendliness of the Software

INDICATOR	MEAN	STANDARD DEVIATION	INTERPRETATION
1. Clarity of controls			
(Information about controls are	4.25	0.62	excellent
understandable and available	4.23	0.02	excellent
to the users.)			
2. Objectivity of contents (The			
language is non-discriminatory.			
Content is free from race,	4.83	0.39	excellent
ethnic, gender, age and other			
stereotypes.)			
3. Typographical Accuracy (The			
content is free from spelling	4.3	0.82	excellent
and grammatical errors.)			
Average	4.50	0.60	excellent

Feedbacks

This is very useful for IT/CS students.

The interface of the program encouraged me to experiment and try out its different features.

The software needs to be more user-friendly. Without a manual, it is a little bit difficult to navigate and sometimes confusing. But the functionality of the software is built very well and the data shown are accurate.

Easy to understand just need time. better with instructions

Thank You and Its pleasure to be one of the first user of the app! Good day!

Excellent

Good program and file structure. It runs in Windows 10 w/o error.

 Visual Programming Software for Learning Fundamentals of Programming

- Visual Programming Software for Learning Fundamentals of Programming
- Uses visual elements instead of traditional text-based programming

- Visual Programming Software for Learning Fundamentals of Programming
- Uses visual elements instead of traditional text-based programming
- Software usable by anyone with interest in learning programming

- Visual Programming Software for Learning Fundamentals of Programming
- Uses visual elements instead of traditional text-based programming
- Software usable by anyone with interest in learning programming
- Supplementary software for instructors of programming

Seven Modules

Visual Nodes Module

- Visual Nodes Module
- Input/Output Module

- Visual Nodes Module
- Input/Output Module
- Filesystem Module

- Visual Nodes Module
- Input/Output Module
- Filesystem Module
- Transpiler Module

- Visual Nodes Module
- Input/Output Module
- Filesystem Module
- Transpiler Module
- Debug Module

- Visual Nodes Module
- Input/Output Module
- Filesystem Module
- Transpiler Module
- Debug Module
- Simulation Module

- Visual Nodes Module
- Input/Output Module
- Filesystem Module
- Transpiler Module
- Debug Module
- Simulation Module
- Assessment Module

Evaluation

• 10 Technical Evaluators

Evaluation

- 10 Technical Evaluators
- 12 Non-Technical Evaluators

Evaluation

- 10 Technical Evaluators
- 12 Non-Technical Evaluators
- ISO 9126

Evaluation

- 10 Technical Evaluators
- 12 Non-Technical Evaluators
- ISO 9126
- Overall software evaluated as "EXCELLENT"

Seven modules developed and completed

- Seven modules developed and completed
- Unit test and Integration test

- Seven modules developed and completed
- Unit test and Integration test
- Technical evaluation overall mean = 4.30 (EXCELLENT)

- Seven modules developed and completed
- Unit test and Integration test
- Technical evaluation overall mean = 4.30 (EXCELLENT)
- Non-Technical evaluation overall mean = 4.50 (EXCELLENT)

The lack of familiarity when it comes to visual programming has affected the metrics for usability for both the non-technical and technical evaluators as compared to traditional text-based programming, visual programming is rarely used or known.

Unit Test

```
doctest] doctest version is "2.4.6"
doctest] run with "--help" for options
TEST CASE: Testing Input/Output Module
0.000032 s: Testing Input/Output Module
../test.cpp:59:
TEST CASE: Testing Filesystem Module
0.001556 s: Testing Filesystem Module
../test.cop:94:
TEST CASE: Testing Visual Nodes Module
  Testing String Logic
0.063005 s: Testing Visual Nodes Module
../test.cop:727:
TEST CASE: Testing Transpiler Module
0.011802 s: Testing Transpiler Module
TEST CASE: Testing Debugger Module
0.000227 s: Testing Debugger Module
../test.cpp:773:
TEST CASE: Testing Simulation Module
  Testing nested For-Loops
  outer iteration #4
  inner iteration #4
0.010103 s: Testing Simulation Module
../test.cpp:823:
TEST CASE: Testing Assessments Module
2.820801 s: Testing Assessments Module
[doctest] test cases: 7 | 7 passed | 0 failed | 0 skipped
[doctest] assertions: 558 | 558 passed | 0 failed |
[doctest] Status: SUCCESS!
```


• Add more programming language target for transpilation. e.g Java

- Add more programming language target for transpilation. e.g Java
- Increase the number of available nodes that can be used

- Add more programming language target for transpilation. e.g Java
- Increase the number of available nodes that can be used
- Expand the number of assessment exercises

- Add more programming language target for transpilation. e.g Java
- Increase the number of available nodes that can be used
- Expand the number of assessment exercises
- Expand the number of documents for guidelines and solutions

- Add more programming language target for transpilation. e.g Java
- Increase the number of available nodes that can be used
- Expand the number of assessment exercises
- Expand the number of documents for guidelines and solutions
- In-depth tutorial/demo for absolute beginners

Thank you so much and God bless all!