Cours	18CSC301T	Cours	FORMAL LANGUAGE AND AUTOMATA	Course	C	Professional Core		T	P	С
e	160505011	e	FORMAL LANGUAGE AND AUTOMATA	Categor	ntegor		3	0	0	3
Code		Name		y						ı

Pre- requisite Courses		Co- requisite Courses	Nil		Progres Cours	sive es	Nil													
Course Offering Depa	artment Computer Scie	nce and Engineering	Data Book / Codes/Stan	dards	Nil															
Course Learning Rationale The purpose of learning this course is to:				Learning Program Learning Outcomes (PLO)																
(CLR):	(CLR):																			
CLR-1: Utilize the m	athematics and engineering	principles for the basic	cs of Formal Language		1 2	3	Ī	1	2	3 4	5	6	7	8	9 10) 11	12	13	14	15
CLR-2: Acquire know	wledge of Automata and min	imize with Regular la	nguage's					e,		Ţ						(1)				
CLR-3: Acquire know	wledge of Context free Gram	nmar and simplify usin	ng normal forms			Ħ		ξ		len						ance				
CLR-4: Gain knowle	dge to push down automata	and apply it with CFL			5.0	Attainment		Knowledge	oc l	Development Design,	age	e			E	Fina	ing.			
CLR-5: Analyze the	methods of turning machine				hinking	j. i		Ğ	Analysis	Develop Design,	l s	Culture	ઝ		leam	8 F	earni			
CLR-6: Analyze and	Design the methods of comp	putational complexity			E.	rtt a			nal	Jes Jesi	01	Cul	i.i.			t.	Le			
				,	I			Ξ	⋖	8. I. i.	Tool Usage	8	nment	-	g :	Z Z	ong]			
Course Learning Out (CLO):	At the end of the	his course, learners wi	ill be able to:		Level of (Bloom)	Expected		Engineering	Problem	Design of Analysis	2 =	Society	Environ Sustaina	Ethics	Individual & 1e	Project Mgt.	Life Lor	PSO - 1		PSO – 3
CLO-1: Acquire the knowledge of mathematics and engineering principles for the basics of Formal Language								M	Н	- H	L	-	-	- 1	L L	-	Н	-	-	-
CLO-2: Acquire the ability to identify specification of a Regular language's with Automata								M	Н	L M	L	-	-	-]	M L	-	Н	-	-	-
CLO-3: Acquire knowledge of Context free Grammar and simplify using normal forms								M	H	ИН	L	-	-	-]	M L	-	Н	-	-	-
CLO-4: Understand the concepts of push down automata and CFL.								M	H	ИН	L	-	-	-]	M L	-	Н	-	-	-
CLO-5: Apply the knowledge to turning machine and its methods								Н	Η :	M H	L	-	-	-]	M L	-	Н	-	-	-
CLO-6: Design the computational and acceptor machines using FA, PDA and Turing machines								L	Н	- H	L	-	-	- 1	L L	-	Н	-	-	-

Dura (hour		11	9	9	9	7		
S-1	SLO-1	Introduction to Automaton	Grammars: Introduction: Types of Grammar	Pushdown Automata: Definitions Moves	Turing Machines: Introduction	Undecidability :Basic definitions		
3-1	SLO-2	Mathematical concepts	Context Free Grammars and Languages	Instantaneous descriptions	Formal definition of Turing machines, Instantaneous descriptions	Decidable problems,		
S-2	SLO-1	Formal Languages: Strings, Languages, Properties	Derivations	Deterministic pushdown automata	Turing Machine as Acceptors	Examples of undecidable problems and Problems		
5-2	SLO-2	Finite Representation : Regular Expressions	Ambiguity	Problems related to DPDA	Problems related to turning machine as Acceptors	Rice's Theorem		
S-3	SLO-1	Problems related to regular expressions	Relationship between derivation and derivation trees	Non - Deterministic pushdown automata	Problems related to turning machine as Acceptors	Undecidable problems about Turing Machine- Post's Correspondence Problem		
	SLO-2	Finite Automata :Deterministic Finite Automata	Problems related to Context free Grammar	Problems related to NDPDA		Problems related to Post's Correspondence Problem		
S-4	SLO-1	Nondeterministic Finite Automata	Simplification of CFG : Elimination of Useless Symbols	Problems related to DPDA and NDPDA	Turing Machine as a Computing Device	Properties of Recursive and Recursively enumerable languages		
3-4	SLO-2	Finite Automaton with €- moves			Problems related to turning Turing Machine as a Computing Device			
S-5	SLO-1	Problems related to Deterministic and Nondeterministic Finite Automata	Simplification of CFG : Unit productions	Pushdown automata to CFL Equivalence	Problems related to turning Turing Machine as a Computing Device	Introduction to Computational Complexity: Definitions		
	SLO-2	Problems related to Finite Automaton with €- moves	Simplification of CFG : Null productions	Problems related to Equivalence of PDA to CFG	_	Time and Space complexity of TMs		
S-6	SLO-1	Equivalence of NFA and DFA	Problems related to Simplification of CFG	Problems related to Equivalence of PDA to CFG	Techniques for Turing Machine Construction	Complexity classes: Class P, Class NP		
	SLO-2	Heuristics to Convert NFA to DFA						
S-7	SLO-1	Equivalence of NDFA's with and without €- moves	Chomsky normal form	CFL to Pushdown automata Equivalence	Considering the state as a tuple Considering the tape symbol as a tuple	Complexity classes: Introduction to NP- Hardness		
3-7	SLO-2	Problems related Equivalence of NDFA's with and without €-moves	Problems related to CNF	Problems related to Equivalence of CFG to PDA	Checking off symbols	NP Completeness		

	SLO-1	Minimization of DF	A	Greiback Norma	al form	Pumping le	nma for CFL		Modific	ations of Turing	Machine		
S-8	SLO-2	Problems related to l	Minimization of						Multi-ta	pe Turing Machi	ne		
SLO-1		Regular Languages : Finite Automata and Regul	•	Problems related	l to GNF	Problems ba	Problems based on pumping Lemma			terministic Turin	g Machine		
5-7	SLO-2							Semi-In	finite Tape Turin	g Machine			
S-10	SLO-1	Problems related to I Finite Automata and Languages and Regular Grammars	Equivalence of										
	SLO-2	Variants of Finite Au :Two-way Finite Au Mealy Machines	tomaton										
S-11	SLO-1	Properties of Regula Closure Properties	r Languages:										
5-11	SLO-2	Set Theoretic Proper Properties	ties & Other										
	SLO-3	Pumping Lemma											
	ning urces	1.Hopcroft J.E., Mot Languages and Com 2. Michael Sipser, "I	putations", Secor	nd Edition, Pearson	Education, 2008.		Education, (5. Kamala l Computatio	01- May- 2 Krithivasa n", Pearso	2010. n, Rama.I n Educati	R," Introduction to ion India, 01-Sep	o Formal Langua -2009.	Computation" McGrages, Automata Theo	ory and
Lear	nng Asso	Bloom's			(Continuous Learnin		1%				Final Examinat	ion (50%
		Level of	CLA -	- 1 (10%)	CLA -	weigh - 2 (15%)	tage) CLA -	- 3 (15%)) CL		4 (10%)#	weightage)	IOII (3070
		Thinking	Theory	Practice	Theory	Practice	Theory	Prac	tice	Theory	Practice	Theory	Practice
Level	1	Remember Understand	40 %	-	30 %	-	30 %	-		30 %	-	30%	-
Level	2	Apply Analyze	40 %	-	40 %	-	40 %	-		40 %	-	40%	-
Level 3		Evaluate 20 %		- 30 %		-	30 %			30 %	-	30%	-
	. ,	Total		0 %		0 %		0 %) %	10	0 %
		be from any combina	tion of these: As:	signments, Seminar	s, Tech Talks, M	ini-Projects, Case-S	studies, Self-Stud	ıy, MOOC	s, Certific	cations, Conf. Pa	per etc.,		
	se Design ts from I					Evner	s from Higher Te	echnical In	etitutione		Intern	al Experts	
лрсі	ts nom i	nd usu y				Exper	is nom ringher re	cinicai n	stitutions		Intern	ai Experts	

Internal Experts Dr.R.AnnieUthra Dr.Jeyasudha