

NP Completeness Algorithms

Practical Exercises

Departamento de Engenharia Informática (DEI) Faculdade de Engenharia da Universidade do Porto (FEUP)

Spring 2024

Analysis and Synthesis of Algorithms Design of Algorithms (DA)

Spring 2024 L.EIC016

Exercise 1.

Is the dynamic-programming algorithm for the 0-1 knapsack problem that is asked for in Exercise 16.2-2 a polynomial-time algorithm? Explain your answer.

Exercise 2.

Show that an otherwise polynomial-time algorithm that makes at most a constant number of calls to polynomial-time subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.

Exercise 3.

Consider the language GRAPH-ISOMORPHISM = $\{G_1, G_2: G_1 \text{ and } G_2 \text{ are isomorphic graphs}\}$. Prove that GRAPH-ISOMORPHISM $\in NP$ by describing a polynomial-time algorithm to verify the language.

Exercise 4.

Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is non-Hamiltonian.

Exercise 5.

Show that if HAM-CYCLE \in P, then the problem of listing the vertices of a Hamiltonian Cycle, in order, is polynomial-time solvable.

Exercise 6.

Professor Jagger proposes to show that SAT \leq P 3-CNF-SAT by using only the truth-table technique in the proof of Theorem 34.10, and not the other steps. That is, the professor proposes to take the boolean formula φ , form a truth table for its variables, derive from the truth table a formula in 3-DNF that is equivalent to $\neg \varphi$, and then negate and apply DeMorgan's laws to produce a 3-CNF formula equivalent to φ . Show that this strategy does not yield a polynomial-time reduction.

Exercise 7.

Suppose that someone gives you a polynomial-time algorithm to decide formula satisfiability. Describe how to use this algorithm to find satisfying assignments in polynomial time.