Convergence monotone et dominée Td-Tp 7

Octobre 2023

Exercice 1

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}^+$, intégrable sur \mathbb{R} . On pose

$$\forall n \in \mathbb{N}^*, f_n : x \longmapsto n \ln \left(1 + \frac{f(x)}{n} \right)$$

Montrer que

$$\int_{\mathbb{R}} f_n \, \mathrm{d}\lambda \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} f \, \mathrm{d}\lambda$$

On va utiliser le théorème de convergence dominée.

- 1. f_n est mesurable sur \mathbb{R} , car c'est la composée d'une fonction mesurable et d'une fonction continue;
- 2. pour tout $x \in \mathbb{R}$, on a

$$f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

3. et on a, par convexité du logarithme $(\ln(1+u) \le u$, pour tout u > 0)

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ |f_n(x)| = f_n(x) \le n \frac{f(x)}{n} = f(x)$$

f est la dominante cherchée, elle est indépendante de n et intégrable par hypothèse. Le théorème de convergence dominée s'applique et donne le résultat demandé.

Exercice 2

Soit $f:[0,+\infty[\longrightarrow \mathbb{R} \text{ continue et bornée. Montrer que } \lim_{n\to\infty}\int_0^\infty \frac{nf(t)}{1+n^2t^2}\,\mathrm{d}t = \frac{\pi}{2}f(0).$

Soit une suite de fonctions $(g_n)_{n\in\mathbb{N}}$ et $g_n = \frac{nf(t)}{1+n^2t^2}$.

- 1. g_n est mesurable sur \mathbb{R}_+ car elle est continue.
- 2. Puisque n existe à la fois sur le numérateur et le dénominateur de la fonction g_n et il y a le terme nt, cela pose des problèmes lorsque nous tendons n vers $+\infty$ pour chercher la limite de la suite de g_n , parce que

$$g_n \xrightarrow[n \to +\infty]{} g : t \mapsto \begin{cases} +\infty & \text{si } t = 0 \\ 0 & \text{si } t \in]0, +\infty[\end{cases}$$

Nous considérons donc de faire le changement de variable.

$$\int_0^\infty \frac{nf(t)}{1+n^2t^2} dt \xrightarrow{\text{c.d.v.}} \int_0^\infty \frac{1}{n} \frac{nf\left(\frac{x}{n}\right)}{1+x^2} dx = \int_0^\infty \frac{f\left(\frac{x}{n}\right)}{1+x^2} dx$$

Alors, on pose $z_n(x) = \frac{f(\frac{x}{n})}{1+x^2}$ et applique le théorème de convergence dominée.

1. z_n est mesurable sur \mathbb{R}_+ car elle est continue.

2. Pour $x \in \mathbb{R}_+$, on a la limite

$$z_n(x) \xrightarrow[n \to +\infty]{} z(x) = \frac{1}{1+x^2} f(0)$$

3. Dominante pour $n \in \mathbb{N}$, $x \in \mathbb{R}_+$,

$$|z_n(x)| \le \frac{\|f\|_{\infty,\mathbb{R}_+}}{1+x^2} = \varphi(x)$$

avec $||f||_{\infty,\mathbb{R}_+} = \sup_{t \in \mathbb{R}_+} |f(t)|$ car f est continue et bornée.

(a) $\varphi(x)$ est mesurable sur \mathbb{R}_+ car elle est continue.

(b) $\varphi(x)$ est intégrable sur \mathbb{R}_+ car $x \mapsto \frac{1}{1+x^2}$ est intégrable sur \mathbb{R}_+ .

Donc,

$$\int_0^\infty \frac{nf(t)}{1 + n^2 t^2} dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \frac{1}{1 + x^2} dx f(0) = \frac{\pi}{2} f(0)$$

Exercice 3

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$, continue et bornée sur \mathbb{R} , vérifiant de plus $f(0) \neq 0$. Donner un équivalent lorsque x tend vers $+\infty$ de

$$\int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} f(t) dt$$

Pour utiliser le théorème de convergence dominée, soit une suite de fonctions $g_n(t) = \frac{e^{-x_n t}}{\sqrt{t}} f(t)$ avec la suite $(x_n)_{n \in \mathbb{N}}$ et $x_n \xrightarrow[n \to +\infty]{} +\infty$. On va ensuite utiliser le théorème de convergence dominée.

1. g_n est mesurable sur \mathbb{R}_+ car elle est continue.

2. Soit x > 0 et $t \in]0, +\infty[$, on a

$$\left| \frac{e^{-xt} f(t)}{\sqrt{t}} \right| \le \frac{e^{-xt}}{\sqrt{t}} ||f||_{\infty, \mathbb{R}_+}$$

avec $||f||_{\infty,\mathbb{R}_+} = \sup_{t \in \mathbb{R}_+} |f(t)|$ car f est continue et bornée.

(a) Sur [0,1] (la fonction est définie sur $\Omega = [0, +\infty[)$), on a

$$\left| \frac{e^{-xt}}{\sqrt{t}} \right| \le \frac{1}{\sqrt{t}}$$

or

$$\int \frac{1}{\sqrt{t}} dt = 2\sqrt{t} + C \Longrightarrow \int_0^1 \frac{1}{\sqrt{t}} dt = 2$$

alors, $t \mapsto \frac{1}{\sqrt{t}}$ est intégrable sur]0,1], et donc $t \mapsto \frac{e^{-xt}}{\sqrt{t}}$ est intégrable sur]0,1].

(b) Sur $[1, +\infty[$, on a

$$\left| \frac{e^{-xt}}{\sqrt{t}} \right| = O\left(\frac{1}{t^2}\right)$$

De même, on obtient l'intégrabilité de $t \mapsto \frac{e^{-xt}}{\sqrt{t}}$ sur $[1, +\infty[$.

Enfin, on a trouvé la fonction dominée intégrable

$$\varphi : t \mapsto \begin{cases} \frac{1}{\sqrt{t}} & \text{si } t \in]0,1] \\ \frac{1}{t^2} & \text{si } t \in]1,+\infty[\end{cases}$$

3. Changement de variable

$$\int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} f(t) dt \xrightarrow{\text{c.d.v.}} \left(\int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} f\left(\frac{u}{x}\right) du \right) \frac{1}{\sqrt{x}}$$

Attention, ici on peut pas arriver à t=0. Mais comme $\lim_{\alpha\to 0^+,\beta\to+\infty} \int_{\alpha}^{\beta} \frac{e^{-xt}f(t)}{\sqrt{t}} dt$ existe, on peut passer à la limite dans le terme de doite.

4. Appliquer le théorème de convergence dominée, l'idée est juste comme l'exercice 2,

$$\int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} f\left(\frac{u}{x}\right) du \xrightarrow[x \to +\infty]{} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} f(0) du$$

Soit une suite $(x_n)_{n\in\mathbb{N}}$ et $x_n \xrightarrow[n\to+\infty]{} +\infty$, on pose

$$z_n: u \mapsto \frac{e^{-u}}{\sqrt{u}} f\left(\frac{u}{x_n}\right)$$

- (a) z_n est mesurable sur \mathbb{R}_+ car elle est continue;
- (b) la limite de la suite z_n existe,

$$z_n(u) \xrightarrow[n \to +\infty]{} \frac{e^{-u}}{\sqrt{u}} f(0) = z(u)$$

Attention, u = x t et $t \in]0, +\infty[$, on peut avoir f(0) si et seulement si f est continue.

(c) Domination

$$|z_n(u)| \le \frac{e^{-u}}{\sqrt{u}} ||f||_{\infty, \mathbb{R}_+} = \varphi(u)$$

On a déjà eu l'intégrablité de φ sur \mathbb{R}_+ , donc

$$\int_0^{+\infty} \frac{e^{-xt} f(t)}{\sqrt{t}} dt \xrightarrow{x \to +\infty} f(0) \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = f(0) \Gamma\left(\frac{1}{2}\right)$$

Exercice 4

On donne $c = \int_{0}^{+\infty} e^{-t} \ln(t) dt$.

1. Montrer l'existence de c.

 $f:t\mapsto e^{-t}\ln(t)$ est continue sur $]0,+\infty[$. Au voisinage de $0,\,f(t)\sim\ln(t)$ qui est négatif et intégrable. Au voisinage de $+\infty,\,f(t)=o\left(e^{-t/2}\right)$ par croissances comparées, qui est positif et intégrable. Par conséquent, f est intégrable sur $]0,+\infty[$ et son intégrale \boxed{c} existe.

2. Montrer que c < 0.

On a

On a:
$$c = \int_0^1 e^{-t} \ln(t) dt + \int_1^{+\infty} e^{-t} \ln(t) dt \quad \text{d'après la relation de Chasles}$$

$$= \int_{+\infty}^1 e^{-1/x} \ln\left(\frac{1}{x}\right) \frac{-dx}{x^2} + \int_1^{+\infty} e^{-t} \ln(t) dt \quad \text{à l'aide du changement de variable } x = 1/t$$

$$= \int_1^{+\infty} \left(\frac{-e^{-1/t}}{t^2} + e^{-t}\right) \ln(t) dt = \int_1^{+\infty} \underbrace{e^{-t} \left(1 - e^{g(t)/t}\right) \ln(t)}_{>0} dt \quad \text{où } g(t) = t^2 - 1 - 2t \ln(t).$$

g est dérivable sur]0, +\infty[avec g(1)=0 et $g':t\mapsto 2(t-1-\ln(t)).$ Par concavité de ln, on en déduit que g est strictement croissante, donc strictement positive sur $]1,+\infty[$. Finalement, on conclut que |c| < 0 par monotonie de l'intégrale (d'une fonction continue strictement positive).

3. (a) Montrer
$$c = \lim_{n \to +\infty} \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} \ln(t) dt$$

Puisque $ln(1+u) \le u$, on a

$$0 \le \left(1 - \frac{t}{n}\right)^n = \exp\left(n \ln\left(1 - \frac{t}{n}\right)\right) \le e^{-t}$$

De plus, pour la suite $\left(\left(1-\frac{t}{n}\right)^n\right)_{n\in\mathbb{N}}$, on a $\left(1-\frac{t}{n}\right)^n\xrightarrow[n\to+\infty]{}e^{-t}$. Donc, si on pose $f_n(t)=$

i.
$$f_n$$
 est mesurable sur $]0, +\infty[$ car elle est continue;
ii. $f_n(t) \xrightarrow[n \to +\infty]{} f(t) = e^{-t} \ln(t)$ et $|f_n(t)| \le |e^{-t} \ln(t)| = \varphi(t)$

A. φ est mesurable sur $]0, +\infty[$ car elle est continue;

B.
$$\varphi$$
 est intégrable sur $]0, +\infty[$ car $\varphi \xrightarrow[0^+]{} o\left(\frac{1}{\sqrt{t}}\right)$ et $\varphi \xrightarrow[+\infty]{} o\left(\frac{1}{t^2}\right)$.

iii. Donc, par convergence dominée

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n \ln(t) dt = \int_0^{+\infty} e^{-t} \ln(t) dt = c$$

(b) En déduire
$$\left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)_{n \in \mathbb{N}^*}$$
 converge.

On a pour tout $n \ge 1$:

$$\begin{split} &\int_0^n \left(1-\frac{t}{n}\right)^n \ln(t) \; \mathrm{d}t \\ &= \int_1^0 x^n \ln \left(n(1-x)\right) (-n \; \mathrm{d}x) \quad \text{à l'aide du changement de variable } x = 1 - \frac{t}{n} \\ &= n \ln(n) \int_0^1 x^n \; \mathrm{d}x + n \int_0^1 x^n \ln(1-x) \; \mathrm{d}x \\ &= \frac{n}{n+1} \ln(n) - n \int_0^1 \sum_{k\geqslant 1} \frac{x^{n+k}}{k} \; \mathrm{d}x \quad \text{à l'aide du dévelop. en série entière de ln} \\ &= \frac{n}{n+1} \ln(n) - n \sum_{k\geqslant 1} \frac{1}{k} \int_0^1 x^{n+k} \; \mathrm{d}x \quad \text{d'après le théo. de convergence monotone} \\ &= \frac{n}{n+1} \ln(n) - n \sum_{k\geqslant 1} \frac{1}{k(n+k+1)} \\ &= \frac{n}{n+1} \ln(n) - \frac{n}{n+1} \sum_{k\geqslant 1} \left(\frac{1}{k} - \frac{1}{n+k+1}\right) \\ &= \frac{n}{n+1} \ln(n) - \frac{n}{n+1} \sum_{k\geqslant 1} \frac{1}{k} \quad \text{par télescopage} \\ &= \underbrace{\frac{-n}{n+1}}_{\rightarrow -1} \left(\sum_{k=1}^n \frac{1}{k} - \ln(n)\right) - \underbrace{\frac{n}{(n+1)^2}}_{\rightarrow 0} \quad \text{quand } n \rightarrow +\infty. \end{split}$$

On déduit du résultat de la question précédente que $\left[\left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)_{n\geqslant 1} \text{ converge}\right]$ vers

Exercice 5

1. Soit $(f_n)_{n\geq 0}$ une suite de fonctions $(\Omega, \mathcal{T}) \longrightarrow (\mathbb{R}, \mathcal{BO}(\mathbb{R}))$ intégrables. Montrer que

$$\sum_{n>0} \int_{\Omega} |f_n| \, d\mu < +\infty \Longrightarrow \sum_{n>0} \left(\int_{\Omega} f_n \, d\mu \right) = \int_{\Omega} \left(\sum_{n>0} f_n \right) \, d\mu$$

D'après le théorème de convergence monotone, la suite des fonctions $\sum_{n\geq 0} |f_n|$ est croissante. Cela implique la fonction $\sum_{n\geq 0} f_n$ existe et est intégrable. De plus, pour tout $N\in\mathbb{N}$,

$$\left| \sum_{n=0}^{N} f_n \right| \le \sum_{n>0} |f_n| \text{ et } \sum_{n=0}^{N} f_n \xrightarrow[N \to +\infty]{p.p.} \sum_{n=0}^{+\infty} f_n$$

D'après le théorème de convergence dominée, on a donc

$$\int_{\Omega} \left(\sum_{n=0}^{N} f_n \right) d\mu \xrightarrow[N \to +\infty]{} \int_{\Omega} \left(\sum_{n \ge 0} f_n \right) d\mu$$

Par ailleurs, pour tout $N \ge 0$

$$\int_{\Omega} \left(\sum_{n=0}^{N} f_n \right) d\mu = \sum_{n=0}^{N} \int_{\Omega} f_n d\mu$$

Et $\int_{\Omega} f_n \, d\mu$ est le terme général d'une série absolument convergente par hypothèse. En passant à la limite quand $N \to +\infty$ dans l'inégalité précédente, on obtient le résultat.

2. En déduire, calculer les intégrales

(a)

$$\int_0^1 \frac{\ln(x)}{1-x} \, \mathrm{d}x$$

Pour tout $x \in]0,1[$, on a

$$\frac{\ln(x)}{1-x} = \sum_{n>0} x^n \ln(x)$$

Posons pour tout $n \ge 0$, $f_n: x \in]0,1[\mapsto x^n \ln(x)]$. Alors, par une intégration par parties, on obtient,

$$\int_0^1 |f_n(x)| \, \mathrm{d}x = -\int_0^1 x^n \ln(x) \, \mathrm{d}x = \int_0^1 \frac{x^n}{n+1} \, \mathrm{d}x = \frac{1}{(n+1)^2}$$

Donc $\sum_{n\geq 0} \int_0^1 |f_n(x)| dx < +\infty$. On peut donc appliquer la question 1, et alors,

$$\int_0^1 \frac{\ln(x)}{1-x} \, \mathrm{d}x = \int_0^1 \left(\sum_{n \ge 0} x^n \ln(x) \right) \, \mathrm{d}x = \sum_{n \ge 0} \int_0^1 x^n \ln(x) \, \mathrm{d}x = -\sum_{n \ge 0} \frac{1}{(n+1)^2} = -\frac{\pi^2}{6}$$

(b)

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} \, \mathrm{d}x$$

Pour tout x > 0, on a

$$\frac{\sin(ax)}{e^x - 1} = e^{-x} \frac{\sin(ax)}{1 - e^{-x}} = \sum_{n \ge 0} e^{-(n+1)x} \sin(ax)$$

Posons pour tout $n \ge 0$, $f_n : x \in]0, +\infty[\mapsto e^{-(n+1)x}\sin(ax)]$. Alors, pour tout x > 0, $|f_n| \le ax e^{-(n+1)x}$, et

$$\sum_{n\geq 0} \int_0^{+\infty} |f_n(x)| \, \mathrm{d}x \leq \sum_{n\geq 0} \int_0^{+\infty} ax \, e^{-(n+1)x} \, \mathrm{d}x = \sum_{n\geq 0} \frac{1}{(n+1)^2} < +\infty$$

Ainsi, d'après la question 1,

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx = \sum_{n>0} \int_0^{+\infty} f_n(x) dx$$

On a donc

$$\int_0^{+\infty} f_n(x) \, dx = \int_0^{+\infty} \left(e^{-(n+1)x} \frac{e^{iax} - e^{-iax}}{2i} \right) \, dx$$
$$= \frac{1}{2i} \left(\frac{1}{(n+1)x - iax} - \frac{1}{(n+1)x + iax} \right) = \frac{a}{(n+1)^2} + a^2$$

Finalement,

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} \, \mathrm{d}x = \sum_{n \ge 1} \frac{a}{n^2 + a^2}$$