Problem Statement: 07

In a 1000 MW boiler system, optimizing the boiler efficiency is crucial to minimize fuel consumption and reduce emissions. Boiler efficiency depends on several key parameters, including:

- 1. **Oxygen content in flue gas (O2)**: This is a critical indicator of combustion efficiency. Maintaining an optimal oxygen level ensures complete combustion while avoiding excessive energy loss due to high excess air.
- 2. **Carbon dioxide content in flue gas (CO2)**: High CO2 content in the flue gas indicates better combustion of carbon in fuel, which is desirable for efficiency.
- 3. **Flue gas temperature (T_fg)**: A higher flue gas temperature indicates heat loss in exhaust gases, which reduces efficiency.
- 4. **Unburnt carbon in ash (U_C)**: This represents incomplete combustion and reduces overall boiler efficiency.

The goal is to formulate a convex equation for **Boiler Efficiency** (η) based on these parameters and optimize it by varying the oxygen content (O2) while ensuring operational constraints.

Mathematical Analysis:

The boiler efficiency equation can be approximated as:

$$\eta = 100 - (L_{\rm dry \ flue \ gas} + L_{\rm unburnt \ carbon} + L_{\rm radiation})$$

Where:

- 1. $L_{
 m dry\ flue\ gas} = K_1 \cdot (T_{fg} T_{
 m ambient})/{
 m GCV}$ Represents the heat loss due to dry flue gas, dependent on flue gas temperature.
- 2. $L_{
 m unburnt\ carbon} = K_2 \cdot U_C$ Represents the heat loss due to unburnt carbon in ash.
- 3. $L_{
 m radiation} = K_3$ A constant representing radiation loss.

Given constants:

- $K_1 = 0.5$
- $K_2 = 0.8$
- $K_3 = 1.5$
- GCV (Gross Calorific Value) = $25000 \, \text{kJ/kg}$
- $T_{\rm ambient} = 30^{\circ} \, \rm C$

Constraints:

- $3\% \le O_2 \le 7\%$ (to ensure complete combustion)
- T_{fg} is measured in $120^{\circ}~{
 m C} \leq T_{fg} \leq 180^{\circ}~{
 m C}$
- U_C is measured in $0.5\% \leq U_C \leq 1.5\%$

The negative value in the optimization function is used because the optimization process in many libraries, like scipy.optimize.minimize, **by default minimizes a function**. If you want to maximize something, you can turn it into a minimization problem by negating the function.

Why?

If we want to **maximize the boiler efficiency (η\etaη)**, we cannot directly use scipy.optimize.minimize because it minimizes by nature. To handle this:

- The boiler efficiency function is negated, so the optimizer minimizes the negative efficiency.
- Mathematically:

maximize η is equivalent to minimizing $-\eta$

Boiler Efficiency Equation:

The boiler efficiency η is given by:

$$\eta = 100 - (L_{
m dry \ flue \ gas} + L_{
m unburnt \ carbon} + L_{
m radiation})$$

Where:

1.
$$L_{ ext{dry flue gas}} = K_1 \cdot rac{(T_{fg} - T_{ ext{ambient}})}{ ext{GCV}}$$

- 2. $L_{\text{unburnt carbon}} = K_2 \cdot U_C$
- 3. $L_{
 m radiation} = K_3$ (a constant)

Thus:

$$\eta = 100 - \left[K_1 \cdot rac{(T_{fg} - T_{
m ambient})}{
m GCV} + K_2 \cdot U_C + K_3
ight]$$

We are optimizing over three variables:

- O_2 (oxygen content in flue gas)
- ullet T_{fg} (flue gas temperature)
- U_C (unburnt carbon in ash)

The radiation loss K_3 is constant and does not affect convexity.

- 1. Convex Functions are crucial in optimization because:
 - · A local minimum is always a global minimum.
 - · They are easier to solve due to guaranteed convergence of optimization algorithms.
- 2. Concave Functions are useful when maximizing:
 - · A local maximum is always a global maximum.
 - By negating the function, concave problems can be turned into convex problems (e.g., maximizing profit).