Practical S-m-n Theorem Examples: Step-by-Step Real Solutions

How to Read and Solve ANY S-m-n Exercise

STEP 1: Extract the Requirements from Exercise Text

Look for these patterns in the exercise:

- "show there exists s: $\mathbb{N} \to \mathbb{N}$ such that..." \to This tells you what function to construct
- "W_s(x) = ..." → This is the DOMAIN (where function is defined)
- "E_s(x) = ..." → This is the CODOMAIN (what values function outputs)
- " $|W s(x)| = ..." \rightarrow This is SIZE of domain$
- "|**E_s(x)**| = ..." → This is SIZE of codomain

STEP 2: Understand W_x and E_x Logically

- $\mathbf{W}_{\mathbf{x}} = \mathbf{domain of } \boldsymbol{\phi}_{\mathbf{x}} = \{\text{inputs where } \boldsymbol{\phi}_{\mathbf{x}} \text{ converges} \}$
- $\mathbf{E_x} = \mathbf{codomain of } \boldsymbol{\phi_x} = \{\text{outputs that } \boldsymbol{\phi_x} \text{ produces} \}$
- **Key insight:** $g(x,y) \downarrow \iff y \in W_s(x)$, and $g(x,y) = z \iff z \in E_s(x)$

OFFICIAL EXERCISE 3.4: Even Domain, Offset Codomain

Exact Exercise Text: "Prove that there is a total computable function $k : \mathbb{N} \to \mathbb{N}$ such that for each $n \in \mathbb{N}$ it holds that $W_k(n) = P = \{x \in \mathbb{N} \mid x \text{ even}\}$ and $E_k(n) = \{x \in \mathbb{N} \mid x \geq n\}$."

Complete Step-by-Step Solution:

1. Extract Requirements from Text:

- Look for " $W_k(n) = ...$ " $\rightarrow W_k(n) = P = \{0, 2, 4, 6, ...\}$ (all even numbers)
- Look for " $E_k(n) = ...$ " $\rightarrow E_k(n) = \{n, n+1, n+2, ...\}$ (all numbers $\ge n$)

2. Logical Analysis:

- **Domain pattern:** Function should be defined ONLY on even inputs (0, 2, 4, 6, ...)
- Codomain pattern: Function outputs should be ≥ n
- **Key insight:** When input x is even, we want output ≥ n

3. Construct f(n,x):

4. Verify Why This Works:

- **Domain check:** f(n,x) converges \iff x is even \iff x \in P
 - So $W_k(n) = \{x \mid f(n,x) \downarrow\} = \{x \mid x \text{ even}\} = P \checkmark$
- Codomain check: When x is even: f(n,x) = x/2 + n
 - Since $x \in \{0, 2, 4, 6, ...\}$, we have $x/2 \in \{0, 1, 2, 3, ...\}$
 - So $f(n,x) \in \{n, n+1, n+2, n+3, ...\} = \{y \mid y \ge n\}$
 - Therefore $E_k(n) = \{n, n+1, n+2, ...\} \checkmark$

5. Make It Computable:

```
f(n, x) = qt(2, x) + n + \mu z.rm(2, x)
```

- qt(2, x) = x/2 (quotient)
- $rm(2, x) = x \mod 2$ (remainder: 0 if even, 1 if odd)
- μz.rm(2, x) converges to 0 if x even, diverges if x odd

OFFICIAL EXERCISE 3.5: Threshold Domain, Even Codomain

Exact Exercise Text: "Use it to prove it exists a total computable function $k : \mathbb{N} \to \mathbb{N}$ such that $W_k(n) = \{x \in \mathbb{N} \mid x \ge n\}$ and $E_k(n) = \{y \in \mathbb{N} \mid y \text{ even}\}$ for all $n \in \mathbb{N}$."

Complete Step-by-Step Solution:

1. Extract Requirements from Text:

- $W_k(n) = \{n, n+1, n+2, ...\}$ (all numbers $\geq n$)
- $E_k(n) = \{0, 2, 4, 6, ...\}$ (all even numbers)

2. Logical Analysis:

- **Domain pattern:** Function defined when $x \ge n$
- Codomain pattern: Function outputs should be even numbers
- **Key insight:** For inputs $x \ge n$, we want to produce even outputs

3. Construct f(n,x):

```
f(n, x) = \{
 2 * (x - n), if x \ge n
 \uparrow, if x < n
}
```

4. Verify Why This Works:

- **Domain check:** f(n,x) converges $\iff x \ge n$
 - So W_k(n) = $\{x \mid f(n,x) \downarrow\} = \{x \mid x \ge n\} \checkmark$
- Codomain check: When $x \ge n$: f(n,x) = 2*(x-n)
 - Since $x \ge n$, we have $(x-n) \in \{0, 1, 2, 3, ...\}$
 - So $2*(x-n) \in \{0, 2, 4, 6, ...\}$ = even numbers
 - Therefore E_k(n) = {y | y even} ✓

5. Make It Computable:

```
f(n, x) = 2 * (x - n) + \mu z.(n - x)
```

- (x n) gives the offset from n
- $\mu z.(n x)$ converges to 0 if $x \ge n$, diverges if x < n

OFFICIAL EXERCISE 3.3: Equation Domain

Exact Exercise Text: "State the smn theorem and use it to prove that there exists a total computable function $s : \mathbb{N}^2 \to \mathbb{N}$ such that $W_s(x,y) = \{z : x * z = y\}$ "

Complete Step-by-Step Solution:

1. Extract Requirements from Text:

- Function s takes TWO parameters: x and y
- $W_s(x,y) = \{z \mid x * z = y\}$ (solutions to equation x * z = y)
- No requirement for E_s(x,y) specified

2. Logical Analysis:

- When does equation x * z = y have solutions?
 - If x = 0 and y = 0: z can be anything $\rightarrow W_s(0,0) = \mathbb{N}$
 - If x = 0 and $y \neq 0$: no solutions $\rightarrow W_s(0,y) = \emptyset$
 - If $x \neq 0$ and y divisible by x: $z = y/x \rightarrow W_s(x,y) = \{y/x\}$
 - If $x \neq 0$ and y not divisible by x: no solutions $\rightarrow W_s(x,y) = \emptyset$

3. Construct g(x,y,z):

```
g(x, y, z) = {
    0, if x * z = y
    ↑, otherwise
}
```

4. Verify Why This Works:

- g(x,y,z) converges \iff $x * z = y \iff$ z is a solution to x * z = y
- So W_s(x,y) = $\{z \mid g(x,y,z) \downarrow\} = \{z \mid x * z = y\} \checkmark$

5. Make It Computable:

```
g(x, y, z) = \mu w. |(x * z) - y| + |y - (x * z)|
```

This converges to 0 iff x*z = y, diverges otherwise.

OFFICIAL EXERCISE: Power Domain with Odd Codomain

Exact Exercise Text: "Use it for proving there exists k: $\mathbb{N} \to \mathbb{N}$ total and computable s.t. $\forall n \in \mathbb{N}$ we have $W_k(n) = \{z^k \mid z \in \mathbb{N}\}$ and $E_k(n)$ is the set of odd numbers"

Complete Step-by-Step Solution:

1. Extract Requirements:

- $W_k(n) = \{0^n, 1^n, 2^n, 3^n, ...\} = \{z^n \mid z \in \mathbb{N}\}$
- $E_k(n) = \{1, 3, 5, 7, ...\}$ (all odd numbers)

2. Logical Analysis:

- **Domain:** Function defined when input y is a perfect n-th power
- Codomain: Function outputs should be odd numbers

3. Construct g(n,y):

```
g(n, y) = \{
2k + 1, if \exists z such that y = z^n (and k is some index)
\uparrow, otherwise
}
```

4. Better Construction:

```
g(n, y) = \{
2 * (\mu z.|z^n - y|) + 1, \text{ if } \exists z \text{ such that } y = z^n
\uparrow, \text{ otherwise}
```

5. Make It Computable:

```
g(n, y) = 2 * (\mu z. |z^n - y|) + 1
```

This finds z such that $z^n = y$, then outputs 2z + 1 (which is odd).

PRACTICAL EXAMPLE 1: Basic Cardinality Control (From Tutorial) (From Tutorial)

Exercise Text: "Show there exists s: $\mathbb{N} \to \mathbb{N}$ such that $|W_s(x)| = 2x$ and $|E_s(x)| = x$ "

Step-by-Step Solution:

1. Extract Requirements:

- Need: function s such that $|W_s(x)| = 2x$ and $|E_s(x)| = x$
- This means: W_s(x) has exactly 2x elements, E_s(x) has exactly x elements

2. Logical Analysis:

- $W_s(x) = \{0, 1, 2, ..., 2x-1\}$ (first 2x natural numbers)
- $E_s(x) = \{0, 1, 2, ..., x-1\}$ (first x natural numbers)

3. Construct g(x,y):

4. Why this works:

- g(x,y) converges \iff $y < 2x <math>\iff$ $y \in \{0,1,2,...,2x-1\}$
- So $W_s(x) = \{0,1,2,...,2x-1\} \rightarrow |W_s(x)| = 2x \checkmark$
- When y < 2x: $g(x,y) = qt(2,y) = Ly/2 \rfloor \in \{0,1,2,...,x-1\}$
- So $E_s(x) = \{0,1,2,...,x-1\} \rightarrow |E_s(x)| = x \checkmark$

5. Make it computable:

```
g(x, y) = qt(2, y) + \mu z.(y + 1 - 2x)
```

PRACTICAL EXAMPLE 2: Set Construction with Conditions

Exercise Text: "Show there exists k: $\mathbb{N} \to \mathbb{N}$ such that $W_k(n) = P$ (even numbers) and $E_k(n) = \{y \mid y \ge n\}$ "

Step-by-Step Solution:

1. Extract Requirements:

- $W_k(n) = P = \{0, 2, 4, 6, ...\}$ (all even numbers)
- $E_k(n) = \{n, n+1, n+2, ...\}$ (all numbers $\ge n$)

2. Logical Analysis:

- Function should be defined ONLY on even inputs
- For even input y, output should be something ≥ n

3. Construct g(n,x):

4. Why this works:

- g(n,x) converges \iff x is even \iff x \in P
- So W_k(n) = P ✓
- When x is even: $g(n,x) = x/2 + n \ge n$
- As x ranges over all evens {0,2,4,...}, x/2 ranges over {0,1,2,...}
- So g(n,x) ranges over {n, n+1, n+2, ...}
- Therefore $E_k(n) = \{y \mid y \ge n\} \checkmark$

5. Make it computable:

```
g(n, x) = qt(2, x) + n + \mu z.rm(2, x)
```

PRACTICAL EXAMPLE 3: Divisor Construction

Exercise Text: "Show there exists k: $\mathbb{N} \to \mathbb{N}$ such that $\phi_k(n)$ is total and $E_k(n)$ is the set of integer divisors of n"

Step-by-Step Solution:

1. Extract Requirements:

- φ_k(n) must be total (defined everywhere)
- E_k(n) = divisors of n = {d | d divides n}

2. Logical Analysis:

- Since $\varphi_k(n)$ is total: $W_k(n) = \mathbb{N}$
- Need E_k(n) to contain exactly the divisors of n

3. Construct g(n,x):

```
g(n, x) = {
    x * n, if x divides n
    1, otherwise
}
```

4. Why this works:

- g(n,x) is always defined \rightarrow W_k(n) = $\mathbb{N} \rightarrow \phi_k(n)$ total \checkmark
- When x divides n: $g(n,x) = x^*n$, but we want just x
- When x doesn't divide n: g(n,x) = 1

Actually, better construction:

```
g(n, x) = {
    x, if x divides n
    1, otherwise
}
```

• $E_k(n) = \{x \mid x \text{ divides } n\} \cup \{1\} = \text{ divisors of } n \checkmark$

5. Make it computable:

```
g(n, x) = x * sg(rm(x, n)) + sg(rm(x, n))
where sg(0) = 1, sg(y) = 0 for y > 0.
```

PRACTICAL EXAMPLE 4: Equation Solving

Exercise Text: "Show there exists s: $\mathbb{N}^2 \to \mathbb{N}$ such that $W_s(x,y) = \{z \mid x * z = y\}$ "

Step-by-Step Solution:

1. Extract Requirements:

```
• W_s(x,y) = \{z \mid x * z = y\} (solutions to equation x * z = y)
```

2. Logical Analysis:

- Function should be defined exactly when x * z = y
- No specific requirement for codomain, so we can output anything

3. Construct g(x,y,z):

4. Why this works:

- g(x,y,z) converges \iff $x * z = y \iff$ $z \in \{$ solutions to $x*z = y\}$
- So $W_s(x,y) = \{z \mid x * z = y\} \checkmark$

5. Make it computable:

```
g(x, y, z) = \mu w. |(x * z) - y| + |y - (x * z)|
```

This converges to 0 iff x*z = y.

PRACTICAL EXAMPLE 5: Square Set Construction

Exercise Text: "Show there exists s: $\mathbb{N} \to \mathbb{N}$ such that $W_s(x) = \{(k+2)^2 \mid k \in \mathbb{N}\}$ "

Step-by-Step Solution:

1. Extract Requirements:

- $W_s(x) = \{4, 9, 16, 25, ...\} = \{(k+2)^2 \mid k = 0,1,2,...\}$
- Note: This set doesn't depend on x!

2. Logical Analysis:

- For any x, we want the same domain: perfect squares starting from 4
- We need to check if y is a perfect square of form $(k+2)^2$

3. Construct g(x,y):

```
g(x, y) = {
    k, if ∃k such that y = (x + k)²
    ↑, otherwise
}
```

Wait, the exercise says W_s(x) should be the same for all x. Let me re-read...

Actually, looking at the pattern, it should be:

4. Make it computable:

$$g(x, y) = \mu k. |y - (k + 2)^2|$$

This finds k such that $y = (k+2)^2$, or diverges if no such k exists.

PRACTICAL EXAMPLE 6: Cardinality with Two Parameters

Exercise Text: "Show there exists s: $\mathbb{N}^2 \to \mathbb{N}$ such that $|W_s(x,y)| = x * y$ "

Step-by-Step Solution:

1. Extract Requirements:

• $|W_s(x,y)| = x * y$ (domain has exactly x*y elements)

2. Logical Analysis:

• W_s(x,y) = {0, 1, 2, ..., xy - 1} (first xy natural numbers)

3. Construct g(x,y,z):

```
g(x, y, z) = {
    0, if z < x * y
    ↑, otherwise
}</pre>
```

4. Why this works:

- g(x,y,z) converges \iff $z < xy <math>\iff$ $z \in \{0,1,2,...,xy-1\}$
- So |W_s(x,y)| = x*y √

5. Make it computable:

$$g(x, y, z) = \mu w.(z + 1 - (x * y))$$

PATTERN RECOGNITION FROM EXERCISE TEXT

How to Read Exercise Requirements Like a Detective

Pattern 1: Cardinality Control

- **Text signals:** "|W_s(x)| = ...", "exactly n elements", "size of domain"
- What to do: Make g(x,y) converge for exactly that many y values
- **Example:** " $|W_s(x)| = 2x$ " $\rightarrow g(x,y)$ defined for $y \in \{0,1,2,...,2x-1\}$

Pattern 2: Specific Set Construction

- **Text signals:** "W_s(x) = {specific description}", "even numbers", "divisors"
- What to do: Make g(x,y) converge exactly when y is in that set
- **Example:** "W_s(x) = even numbers" \rightarrow g(x,y) defined when rm(2,y) = 0

Pattern 3: Equation Solving

- **Text signals:** "W_s(x,y) = {z | equation}", "solutions to", "such that"
- What to do: Make g(x,y,z) converge exactly when equation holds
- **Example:** "W_s(x,y) = $\{z \mid xz = y\}$ " $\rightarrow g(x,y,z)$ defined when xz = y

Pattern 4: Total Functions

- Text signals: "φ_k(n) is total", "defined everywhere", "total computable"
- What to do: Make g(n,x) always converge (never use ↑)
- **Example:** "φ_k(n) total" → g(n,x) = some_always_defined_expression

Pattern 5: Threshold Conditions

- **Text signals:** "x ≥ n", "greater than", "at least"
- What to do: Use μz.(threshold x) pattern
- **Example:** " $x \ge n$ " \rightarrow add $\mu z.(n x)$ to make it diverge when x < n

COMMON MISTAKES AND HOW TO AVOID THEM

Mistake 1: Confusing Domain and Codomain

Wrong thinking: "W_s(x) is what the function outputs" **Correct thinking:** "W_s(x) is where function is DEFINED, E_s(x) is what it OUTPUTS" **Fix:** Always ask "When does g(x,y) converge?" for W_s(x), "What does g(x,y) equal?" for E_s(x)

Mistake 2: Not Making g(x,y) Computable

Wrong: g(x,y) = "check if y is prime" (not primitive recursive) **Correct:** Use only qt, rm, sg, μ -operator, +, *, and compositions **Fix:** Break down complex conditions into primitive recursive parts

Mistake 3: Wrong μ-operator Usage

Wrong: μz .(condition) where condition can be false **Correct:** μz .|expression1 - expression2| where difference is 0 iff condition holds **Example:** μz .|xz - y| finds z such that xz = y

Mistake 4: Ignoring Edge Cases

Wrong: Assuming $x \ne 0$ in equation $x^*z = y$ **Correct:** Handle x = 0 case separately or use robust construction **Fix:** Test your construction with small values: x=0, x=1, y=0, etc.

Mistake 5: Circular Reasoning in Verification

Wrong: "W_s(x) contains even numbers because g(x,y) works for even y" **Correct:** "g(x,y) converges exactly when y is even, therefore W_s(x) = even numbers" **Fix:** Always verify: W_s(x) = {y | g(x,y) \$\dagger\$ matches requirement

MECHANICAL READING ALGORITHM

MECHANICAL READING ALGORITHM

For ANY S-m-n Exercise, Follow These Steps:

Step 1: SCAN the exercise text

- Find: "show there exists..." → This tells you what to construct
- Count parameters: s: $\mathbb{N} \to \mathbb{N}$ (one param) vs s: $\mathbb{N}^2 \to \mathbb{N}$ (two params)
- Extract ALL requirements about W_s and E_s

Step 2: CLASSIFY the exercise type

- Cardinality? Look for $|W_s(x)| = ...$
- Specific sets? Look for W_s(x) = {description}
- Equations? Look for W_s(x,y) = {z | equation}
- Total functions? Look for "φ_k(n) is total"

Step 3: TRANSLATE requirements to g(x,y) logic

- W_s(x) requirement → "When should g(x,y) converge?"
- E_s(x) requirement → "What should g(x,y) equal when it converges?"

Step 4: CONSTRUCT g(x,y) using templates

- Use pattern templates from examples above
- Ensure it uses only primitive recursive functions

Step 5: VERIFY your construction

- Check: $W_s(x) = \{y \mid g(x,y) \downarrow\}$ matches requirement
- Check: $E_s(x) = \{g(x,y) \mid y \in W_s(x)\}$ matches requirement
- Test with small values: x=0, x=1, x=2

Step 6: WRITE the formal solution

- State S-m-n theorem
- Define g(x,y) explicitly
- Apply S-m-n theorem to get s
- Verify both W_s and E_s properties

UNIVERSAL PATTERN RECOGNITION

Quick Reference Table:

Exercise Text Contains	Pattern Type	g(x,y) Template
$ W_s(x) = f(x) $	Cardinality	g(x,y) defined for $y < f(x)$
$"W_s(x) = even numbers"$	Even/Odd	g(x,y) + μz.rm(2,y)
$"W_s(x) = \{y \mid y \ge x\}"$	Threshold	g(x,y) + μz.(x - y)
$"W_s(x,y) = \{z \mid equation\}"$	Equation	g(x,y,z) defined when equation holds
"φ_k(n) is total"	Total Function	g(n,x) always defined
"divisors of n"	Divisibility	Use $rm(x,n) = 0$ test
"E_s(x) = odd numbers"	Odd Codomain	g(x,y) = 2*something + 1

Meta-Pattern: The Universal Logic

Every S-m-n exercise follows this logic:

- 1. You need to create a function $\varphi_s(x)$ with specific domain/codomain properties
- 2. $\varphi_s(x)(y) = g(x,y)$ by S-m-n theorem
- 3. Design g(x,y) so convergence creates desired domain, outputs create desired codomain
- 4. $W_s(x) = \{y \mid g(x,y) \downarrow\}, E_s(x) = \{g(x,y) \mid y \in W_s(x)\}$

This is why the methodology works for EVERY exercise:

- Extract what W_s(x) and E_s(x) should be
- Design g(x,y) to create those convergence and output patterns
- Verify the construction matches requirements
- Apply S-m-n theorem mechanically

You now have a complete system to solve any S-m-n theorem exercise by pattern recognition and mechanical application!