Dot Product

Definition

Let $u=(u_1,u_2,\dots,u_n),v=(v_1,v_2,\dots,v_n)$ be vectors in \mathbb{R}^n . $u\cdot v=u_1v_1+u_2v_2+\dots+u_nv_n$

Basic Properties

Let u, v, w be vectors in \mathbb{R}^n and c a scalar.

- 1. $u \cdot v = v \cdot u$
- 2. $(u+v)\cdot w=u\cdot w+v\cdot w$ and $w\cdot (u+v)=w\cdot u+w\cdot v$
- 3. $(cu)\cdot v = u \cdot (cv) = c(u \cdot v)$
- 4. ||cu|| = |c|||u||
- 5. $u \cdot u \ge 0$ and $u \cdot u = 0$ if and only if u = 0.