EXERCISE SHEET 1

TO BE SOLVED PRIOR, AND DISCUSSED IN THE SEMINAR

1.1. Which of the following sets are subspaces of \mathbb{R}^2 ? Justify your answers.

- (a) $\{\mathbf{x} \in \mathbb{R}^2 : x_1 = 2x_2\},$
- (b) $\{\mathbf{x} \in \mathbb{R}^2 : (x_1, x_2) = t(1, 2) + (1, 1), \ t \in \mathbb{R}\},\$ (c) $\{\mathbf{x} \in \mathbb{R}^2 : x_1 = x_2^2\},\$
- (d) $\{\mathbf{x} \in \mathbb{R}^2 : (x_1, x_2) = t(1, 2), t \in \mathbb{R}\}.$

1.2. Show that the set of symmetric $n \times n$ matrices is a subspace of $M_{n \times n}$.

1.3. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Show that ker A and im A are subspaces of \mathbb{R}^n and \mathbb{R}^m , respectively.

1.4. Express the plane through the origin and the two points (1,1,0) and (2,0,1) as the image of a matrix and as the kernel of a matrix.

1.5. Consider the following vectors in \mathbb{R}^4 .

$$\mathbf{u}_1 = (1, 1, 1, 2), \quad \mathbf{u}_2 = (1, 2, 3, 4), \quad \mathbf{u}_3 = (2, 1, 2, 3), \quad \mathbf{u}_4 = (5, 1, 3, 5).$$

Is \mathbf{u}_1 a linear combination of \mathbf{u}_2 , \mathbf{u}_3 and \mathbf{u}_4 ? Are \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 and \mathbf{u}_4 linearly dependent?

1.6. Which of the following sets of vectors are linearly dependent?

- (a) (1,2,3), (2,3,3), (2,5,7) in \mathbb{R}^3 ,
- (b) (1,2,3,1), (2,3,2,3), (1,1,-1,2) in \mathbb{R}^4 ,
- (c) (1,2,3,1,2), (2,3,2,3,1), (1,1,-1,2,3) in \mathbb{R}^5 .

1.7. Show that the vectors u_1, u_2 and u_3 in the vector space $C(\mathbb{R})$, defined by

$$u_1(x) = \sin(x),$$
 $u_2(x) = \sin(2x),$ $u_3(x) = \sin(3x)$

are linearly independent.