Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

1 Input Parameters

Module	Tension Members Welded Design	
Axial (kN) *	500.0	
Length (mm) *	5000.0	
Section Size*	Ref List of Input Section	
Plate I	Oetails	
	[3.0, 4.0, 6.0, 8.0, 10.0, 12.0	
	, 14.0, 16.0, 20.0, 22.0, 24.0	
Plate Thickness (mm)*	, 25.0, 26.0, 28.0, 30.0, 32.0	
	, 36.0, 40.0, 45.0, 50.0, 56.0	
	, 63.0, 80.0]	
Material *	E 250 (Fe 410 W)B	
Ultimate strength, fu (MPa)	410	
Yield Strength , fy (MPa)	250	
Weld I	Oetails	
Weld Type	Fillet	
Type of weld fabrication	Shop Weld	
Material grade overwrite (MPa) Fu	410.0	
Safety Factors - IS 800:2007 Table 5 (Clause 5.4)		
Governed by Yielding	$\gamma_{m0} = 1.1$	
Governed by Ultimate Stress	$\gamma_{m1} = 1.25$	
Connection Weld	$\gamma_{mw} = 1.25$	

1.1 List of Input Section

Section Size*	['20 x 20 x 3', '20 x 20 x 4', '25 x 25 x 3', '25 x 25 x 4', '25 x 25 x 5', '30 x 30
	x 3', '30 x 30 x 4', '30 x 30 x 5', '35 x 35 x 3', '35 x 35 x 4', '35 x 35 x 5', '
	35 x 35 x 6', '40 x 40 x 3', '40 x 40 x 4', '40 x 40 x 5', '40 x 40 x 6', '45 x 45
	x 3', '45 x 45 x 4', '45 x 45 x 5', '45 x 45 x 6', '50 x 50 x 3', '50 x 50 x 4', '5
	0 x 50 x 5', '50 x 50 x 6', '55 x 55 x 4', '55 x 55 x 5', '55 x 55 x 6', '55 x 55 x
	8', '60 x 60 x 4', '60 x 60 x 5', '60 x 60 x 6', '60 x 60 x 8', '65 x 65 x 4', '65
	x 65 x 5', '65 x 65 x 6', '65 x 65 x 8', '70 x 70 x 5', '70 x 70 x 6', '70 x 70 x
	8', '70 x 70 x 10', '75 x 75 x 5', '75 x 75 x 6', '75 x 75 x 8', '75 x 75 x 70, '8
	0 x 80 x 6', '80 x 80 x 8', '80 x 80 x 10', '80 x 80 x 12', '90 x 90 x 6', '90 x 90
	x 8', '90 x 90 x 10', '90 x 90 x 12', '100 x 100 x 6', '100 x 100 x 8', '100 x 100
	x 10', '100 x 100 x 12', '110 x 110 x 8', '110 x 110 x 10', '110 x 110 x 12', '110
	x 110 x 16', '130 x 130 x 8', '130 x130 x 10', '130 x130 x 12', '130 x130 x 16', '
	150 x 150 x 10', '150 x 150 x 12', '150 x 150 x 16', '150 x 150 x 20', '200 x 200 x

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

12', '200 x 200 x 16', '200 x 200 x 20', '200 x 200 x 25', '50 x 50 x 7', '50 x 50
x 8', '55 x 55 x 10', '60 x 60 x 10', '65 x 65 x 10', '70 x 70 x 7', '100 x 100 x
7', '100 x 100 x 15', '120 x 120 x 8', '120 x 120 x 10', '120 x 120 x 12', '120 x 1
20 x 15', '130 x 130 x 9', '150 x 150 x 15', '150 x 150 x 18', '180 x 180 x 15', '1
80 x 180 x 18', '180 x 180 x 20', '200 x 200 x 24', '30 x 20 x 3', '30 x 20 x 4', '
30 x 20 x 5', '40 x 25 x 3', '40 x 25 x 4', '40 x 25 x 5', '40 x 25 x 6', '45 x 30
x 3', '45 x 30 x 4', '45 x 30 x 5', '45 x 30 x 6', '50 x 30 x 3', '50 x 30 x 4', '5
0 x 30 x 5', '50 x 30 x 6', '60 x 40 x 5', '60 x 40 x 6', '60 x 40 x 8', '65 x 45 x
5', '65 x 45 x 6', '65 x 45 x 8', '70 x 45 x 5', '70 x 45 x 6', '70 x 45 x 8', '70
x 45 x 10', '75 x 50 x 5', '75 x 50 x 6', '75 x 50 x 8', '75 x 50 x 10', '80 x 50
x 5', '80 x 50 x 6', '80 x 50 x 8', '80 x 50 x 10', '90 x 60 x 6', '90 x 60 x 8', '
90 x 60 x 10', '90 x 60 x 12', '100 x 65 x 6', '100 x 65 x 8', '100 x 65 x 10', '10
0 x 75 x 6', '100 x 75 x 8', '100 x 75 x 10', '100 x 75 x 12', '125 x 75 x 6', '125
x 75 x 8', '125 x 75 x 10', '125 x 95 x 6', '125 x 95 x 8', '125 x 95 x 10', '125
x 95 x 12', '150 x 115 x 8', '150 x 115 x 10', '150 x 115 x 12', '150 x 115 x 16',
'200 x 100 x 10', '200 x 100 x 12', '200 x 100 x 16', '200 x 150 x 10', '200 x 150
x 12', '200 x 150 x 16', '200 x 150 x 20', '40 x 20 x 3', '40 x 20 x 4', '40 x 20 x
5', '60 x 30 x 5', '60 x 30 x 6', '60 x 40 x 7', '65 x 50 x 5', '65 x 50 x 6', '65
x 50 x 7', '65 x 50 x 8', '70 x 50 x 5', '70 x 50 x 6', '70 x 50 x 7', '70 x 50 x
8', '75 x 50 x 7', '80 x 40 x 5', '80 x 40 x 6', '80 x 40 x 7', '80 x 40 x 8', '80
x 60 x 6', '80 x 60 x 7', '80 x 60 x 8', '90 x 65 x 6', '90 x 65 x 7', '90 x 65 x 8
', '90 x 65 x 10', '100 x 50 x 6', '100 x 50 x 7', '100 x 50 x 8', '100 x 50 x 10',
 '100 x 65 x 7', '120 x 80 x 8', '120 x 80 x 10', '120 x 80 x 12', '125 x 75 x 12',
'135 x 65 x 8', '135 x 65 x 10', '135 x 65 x 12', '150 x 75 x 9', '150 x 75 x 15',
'150 x 90 x 10', '150 x 90 x 12', '150 x 90 x 15', '200 x 100 x 15', '200 x 150 x
15', '200 x 150 x 18']

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2 Design Checks

2.1 Selected Member Data

	g. *	(100 0	0 401 17 1 1 7 1 4 1 1)	
Section Size*		('60 x 60 x 10', 'Back to Back Angles')		
Material *		E 250 (Fe 410 W)B		
Ultimate strength, fu (MPa)		410		
Yield Streng	th , fy (MPa)		250	
Mass	8.71	Iz(mm4)	710000.0	
Area(mm2) - A	1100.0	Iy(mm4)	1471100.0	
a(mm)	60.0	rz(mm) 18.0		
b(mm)	60.0	ry(mm) 25.9		
t(mm)	10.0	Zz(mm3) 1000000		
R1(mm)	6.5	Zy(mm3) 24520.0		
R2(mm)	0.0	Zpz(mm3) 1000		
Cy(mm)	N/A	Zpy(mm3) 1000		
Cz(mm)	18.6	r(mm) 17.96		

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	09 /06 /2020	Client

2.2 Member Checks

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} \text{ or } A_c = \frac{2 * A_g f_y}{\gamma_{m0}}$ $= \frac{2 * 1100.0 * 250}{1.1}$ $= 500.0$	
Tension Rupture Capacity (kN)		$\beta = 1.4 - 0.076 * \frac{w}{t} * \frac{f_y}{0.9 * f_u} * \frac{b_s}{L_c}$ $\leq \frac{0.9 * f_u * \gamma_{m0}}{f_y * \gamma_{m1}} \geq 0.7$ $= 1.4 - 0.076 * \frac{60.0}{10.0} * \frac{250}{0.9 * 410} * \frac{60.0}{241}$ $\leq \frac{0.9 * 410 * 1.1}{250 * 1.25} \geq 0.7$ $= 1.32$ $T_{dn} = 2 * (\frac{0.9 * A_{nc} * f_u}{\gamma_{m1}} + \frac{\beta * A_{go} * f_y}{\gamma_{m0}})$ $= 2 * (\frac{0.9 * 500.0 * 410}{1.25} + \frac{1.32 * 600.0 * 250}{1.1})$ $= 655.2$ $T_d = min(T_{dq}, T_{dn})$	
Tension Capacity (kN)	500.0	= min(500.0, 655.2) $= 500.0$	Pass
Slenderness	$\frac{K*L}{r} \le 400$	$\frac{K*L}{r} = \frac{1*5000.0}{17.96}$ $= 278.32$	Pass
Utilization Ratio	$Utilization\ Ratio \leq 1$	$Utilization Ratio = \frac{F}{Td} = \frac{500.0}{500.0}$ $= 1.0$	
Axial Load Considered (kN)	$Ac_{min} = 0.3 * A_{c}$ $= 0.3 * 500.0$ $= 150.0$ $Ac_{max} = 500.0$	A = 500.0	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.3 Thickness Checks

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)	500.0	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 200.0 * 40.0 * 250}{1.1}$ $= 545.45$	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.4 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$t_{w_{min}}$ based on thinner part $= 10$ or 7 $IS800: 2007$ cl.10.5.2.3 $Table21$ $t_{w_{min}}$ based on thicker $part = 10$	10	Pass
Max Weld Size (mm)	Thickness of Thinner part $= min(40.0, 10.0) = 10.0$ $t_{w_{max}} = 10$	10	Pass
Throat Thickness (mm)	$t_t \ge 3$	$t_t = 0.7 * t_w$ = 0.7 * 10 $t_t = 7.0$	Pass
Effective length (mm)		$l_w = 964.0$	
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{0.0 * 0.0}{1.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{0.0 * 0.0}{1.0}$ $V_{wv} = \frac{V}{l_{w}} = \frac{0.0}{964.0}$ $A_{wh} = \frac{A}{l_{w}} = \frac{500000.0}{964.0}$ $R_{w} = \sqrt{(0.0 + 518.67)^{2} + (0.0 + 0.0)^{2}}$ $= 518.67$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{7.0 * 410}{\sqrt{3} * 1.25}$ $= 1325.6$	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.5 Gusset Plate Checks

Check	Required	Provided	Remarks
		H = 1 * Depth + clearance	
Min.Height (mm)		= (1 * 200.0) + 40	
		= 100.0	
		L = Flangeweld + clearance	
Min.Length (mm)	5000.0	=221+40	Pass
		= 261	
Thickness (mm)		$t_p = 40.0$	
		$T_{dg} = rac{l*t*f_y}{\gamma_{mo}}$	
Tension Yielding			
Capacity (kN)		$=\frac{1*200.0*40.0*250}{1.1}$	
		= 545.45	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture		$= \frac{1*0.9*200.0*40.0*410}{1}$	
Capacity (kN)		= 1.25	
		= 708.48	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Ca-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
pacity (kN)		$I_{db2} = \frac{1}{\sqrt{3}\gamma_{m1}} + \frac{1}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 2209.56$	
		$T_d = min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity	A = 500.0	= min(545.45, 708.48, 2209.56)	Pass
(kN)		= 545.45	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.6 Intermittent Connection

Check	Required	Provided	Remarks
Connection (nos)		4	
Spacing (mm)	1000	895.6	Pass
Min.Height (mm)		100	
Min.Length (mm)		50	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

3 3D View

Figure 1: 3D View