Quiz 5

Deadline	Friday, 24 April 2020 at 11:59PM
Latest Submission	Friday, 17 April 2020 at 5:46PM
Maximum Mark	4

Question 1 (1 mark)

Consider a table of machine parts (*Parts(id,name,colour,size,cost)*), about which we have the following information:

```
db=# select count(distinct size) from Parts;
    count
-----
5

db=# select min(size) from Parts;
    min
-----
tiny

db=# select max(size) from Parts;
    max
-----
huge

db=# select count(*) from Parts;
    count
------
6507
```

Approximately how many tuples would you expect to find in the result of the following query?

```
select * from Parts where size = 'huge';
```

Assume a uniform distribution of part sizes.

(a) (650
(b) (3253
(c) (6506
(d) (None of the other options is correct.

(e) 💿	1301	

Question 2 (1 mark)

Consider the three relations R(id,a,b), S(rid,tid,c), T(id,d,e,f) where the id attributes are primary keys, and S.rid is a foreign key referencing R.id and S.tid is a foreign key referencing T.id.

Consider also the following join on these three relations:

Which of the following does not represent a possible join order for the above SQL statement?

(a) 🔾	(R ⋈ S) ⋈ T
(b) ($R\bowtie (S\bowtie T)$
(c) ((S ⋈ T) ⋈ R
(d) 💿	S⋈(T⋈R)
(e) (They are all valid join orders for the query.

Question 3 (1 mark)

Consider the following two relations/tables:

R(a,b,c) where r_R = 100000, c_R = 100, b_R = 1000

S(c,d,e) where r_S = 50000, c_S = 500, b_S = 100

If we do a natural join on these two tables, using a block nested loop join with 35 buffers, how many pages do we *read* in completing the join?

(a) 🔾	1100
(b) (100000
(c) (None of the other options is correct
(d) (3100
(e) •	4100

Question 4 (1 mark)

Consider two tables R(id,x,y,z) and S(id,a,b,rid) where rid is a foreign key referring to R.id. Consider also the following join on these tables:

```
select x,a from R, S where R.id = S.rid;
```

This join is implemented using the hybrid hash join algorithm with 17 memory buffers, 1 buffer used for input (#0), 8 buffers used to hold one partition in memory (#1-#8), 7 output buffers used to transfer tuples in the other partitions to disk (#9-#16), and 1 "spare" output buffer (#16) used only in the first phase (see below).

The diagram below shows the first phase of the hash join, where *R* is scanned and partitioned into 8 hash buckets. Partition 0 is stored in memory; partitions 1-7 are written to disk.

After the first phase has partitioned R, the join algorithm then partitions S using the same hash function. Any tuples that hash to partition 0 are matched against R's partition 0 tuples held in memory buffers 1-8, and any resulting matches are written to disk via the spare output buffer. Other S tuples are written to disk-based partitions. Partitions 1-7 for R and S are then processed as for a standard hash join, using a second hash function.

Assume that:

- · we have a well-behaved (uniform) hash functions for both the first and second phases
- R contains 3000 tuples in 60 pages; each partition of R requires exactly 8 pages
- S contains 1600 tuples in 40 pages; each partition of S requires exactly 5 pages
- each tuple in S refers to a different tuple in R (i.e. S.rid is unique)
- the result contains 1600 tuples which are written into 30 pages (i.e. they count as disk I/O)

Based on the above, compute the number of disk I/Os needed to execute this join.

(a) (308
(b) (k partitions on disk 272 60 + 40 + 2 * K * (ceil(br/ total partitions) + ceil(bs/ total partitions)) = 60 + 40 + 2 * 7 * (8 + 5) = 282
(c) 💿	plus final write cost + 30 = 312 312 60 + 40 + 7 * 8 writes + 7 * 5 reads + 7 * 8 reads + 7 * 5 writes + 30 writes to disk
(d) (338
(e) (None of the other options is correct