Agent-Based Modeling of Ductal Strucutre in Pancreatic Precancer

Cameron Yeagle

Advisors: Dr. Daniel Bergman and Dr. Elana Fertig

August 7, 2025

Project Overview

Goal: Develop framework for modeling dynamic ductal structures

Figure: Kiemen, A. L., Wu, P.-H., Braxton, A. M., Cornish, T. C., Hruban, R. H., Wood, L., Wirtz, D., & Zwicker, D. (2023).

Cameron Yeagle IGS Summer Project August 7, 2025 2 / 13

Current Progress: Ex 1

Current Progress: Ex 2

Level Set Approach: Main Idea

- Main Idea
 - ► The ductal region Ω and basement membrane Γ = ∂Ω are defined implicitly by a signed distance function φ,

$$\begin{cases} \phi(x) < 0, & x \in \Omega \\ \phi(x) = 0, & x \in \Gamma \\ \phi(x) > 0, & x \notin \Omega \\ |\nabla \phi(x)| = 1 \end{cases}$$

Handling Deformations

 \forall point x(t) on Γ , $\phi(x(t),t)=0$ must hold for all time, i.e. $\frac{d\phi}{dt}=0$. Hence, by multi-variable chain rule,

$$\frac{d\phi}{dt} = \frac{\partial\phi}{\partial t} + \nabla\phi \cdot \frac{dx}{dt} = \frac{\partial\phi}{\partial t} + \nabla\phi \cdot V$$

Let $\tilde{V} = V \cdot n$, where n is the unit normal vector $\frac{\nabla \phi}{|\nabla \phi|}$. Then

$$= \frac{\partial \phi}{\partial t} + \tilde{V}|\nabla \phi| = 0$$

Pros & Cons of the LSM

- Pros
 - ► Handles topological changes to the ductal structure implicitly
 - ullet Typically, ϕ is updated by solving a PDE
 - ► Easily adaptable to PhysiCell
- Cons
 - ► Difficult to initialize
 - lacktriangle Updating ϕ via PDE introduces perturbations in SDF

Challenge: Initialization

Ray-Casting (Even-Odd Method)

Figure: Ajmera, G. (2024). Exploring algorithms to determine points inside or outside a polygon.

Ray-Casting: Ex 1

Point 1: is OUTSIDE

Point 2: is INSIDE

Point 3: is INSIDE

Point 4: is OUTSIDE

Point 5: is OUTSIDE

Point 6: is INSIDE

Point 7: is OUTSIDE

Point 8: is OUTSIDE

Point 9: is INSIDE

Point 10: is OUTSIDE

Ray-Casting: Ex 2

Point 1: is INSIDE

Point 2: is INSIDE

Point 3: is INSIDE

Point 4: is INSIDE

Point 5: is OUTSIDE

Point 6: is OUTSIDE

Point 7: is OUTSIDE

Point 8: is INSIDE

Point 9: is OUTSIDE

Point 10: is OUTSIDE

Future Work

- Implement Deformations
 - ► Have the boundary react to proliferation
 - ► Duct should collapse in
- Implement Visualization into Studio

Thank You!

Any Questions?

