Análisis I #8

27/Nov/2019

36. Sea (M,d) un espacio métrico y $K\subseteq M$ c.p.s (rel. d)

- a) Prueba que si $\emptyset \neq H \subseteq K$ y H es cerrado (rel. d) entonces H es c.p.s (rel. d).
- b) Sea $X: \mathbb{N} \to M$ una sucesión convergente (rel. d) a cierta $\ell \in M$. Prueba que $K = \{x_n\}_{n\in\mathbb{N}} \cup \{\ell\}$ es c.p.s (rel. d)
- 37. Sea $M=(0,\infty)$ y $d(x,y)=\left|\frac{1}{x}-\frac{1}{y}\right|$. Prueba:
 - a) $K_n = (0, \frac{1}{n}]$ es cerrado (rel. $d) \forall n, (K_n)_{n=1}^{\infty}$ es anidado, y sin embargo, $\bigcap_{n=1}^{\infty} K_n = \emptyset$
 - b) $K_n = [n, \infty]$ es cerrado (rel. d), $(K_n)_{n=1}^{\infty}$ es anidado, y $\bigcap_{n=1}^{\infty} K_n = \emptyset$
- 38. Sea $T : \mathbb{R}^p \to \mathbb{R}$ dado por: $T(\mathbf{x}) = a_1 x_1 + \dots + a_p x_p$ con $\mathbf{a} = (a_1, a_2, \dots, a_p) \in \mathbb{R}^p$ fijo. Sea $K = \left\{ \mathbf{x} = (x_1, x_2, \dots, x_p) \middle| \sum_{i=1}^p x_i^2 \le 1 \right\}$ *i.e* $(K = \{\mathbf{x} \mid ||\mathbf{x}|| \le 1\})$. Prueba:

$$a) \ T(K) = [-A,A] \ \mathrm{donde} \ A = \sqrt{\sum_{i=1}^p a_i^2} \quad (= \|\mathbf{a}\|)$$

- b) Obtén $x^*, x_* \in K$ tal que $T(x^*) = A$ y $T(x_*) = -A$
- 39. Sea $T: \mathbb{R}^p \to \mathbb{R}$ como en el ejercicio anterior. Sean $b_1, \dots, b_p > 0$ fijos.

Sea
$$E = \left\{ \mathbf{x} = (x_1, x_2, \dots, x_p) \middle| \sum_{i=1}^p b_i^2 x_i^2 \le 1 \right\}$$
 (E es un elipsoide con interior). Prueba:

- a) E es cerrado y acotado (en \mathbb{R}^p) i.e E es compacto (H–B).
- b) Identifica T(E).
- c) Obtén $x^*, x_* \in E$ tales que $T(x^*) = \sup\{T(\mathbf{x}) \mid \mathbf{x} \in E\}$ y $T(x_*) = \inf\{T(\mathbf{x}) \mid \mathbf{x} \in E\}$ (Sugerencia: T es <u>lineal</u> & T es contínua; $T(-\mathbf{x}) = -T(\mathbf{x}) \ \forall \mathbf{x}$. K y Eson convexos \Longrightarrow T(K) y T(E) son convexos en \mathbb{R} , cerrados, acotados y simétricos. Puedes usar multiplicadores de Lagrange)
- 40. (El teorema de Bolzano)
 - a) Sea $f:[a,b] \to \mathbb{R}$ contínua con f(a) < 0 y f(b) > 0. Prueba que $\exists c \in (a,b)$ tal que f(c) = 0. ¿Cómo pruebas el TEO si f(a) > 0 y f(b) < 0? (Sugerencia: Sea $S = \{x \in [a,b) \mid f(x) < 0\}$. Sea $c = \sup(S)$. Prueba que $c \in (a,b)$ y que f(c) = 0)

- b) Sea $f:[a,b]\to\mathbb{R}$ contínua. Supón que $f(a)\neq f(b)$ y que d está entre f(a) y f(b). Prueba: $\exists c\in(a,b)$ tal que f(c)=d. (TVI)
- 41. Define $f:[0,1]\to\mathbb{R}$ poniendo:

$$f(x) = \begin{cases} 0 & \text{si } x \in [0,1] \setminus \mathbb{Q} \\ \frac{1}{q} & \text{si } x = \frac{p}{q} \in [0,1] \cap \mathbb{Q} \text{ con } (p;q) = 1 \end{cases}$$
 (Función de K. J. Thomae)

Prueba: f es contínua en $x_0 \in [0,1] \iff x_0 \in [0,1] \setminus \mathbb{Q}$.

(Sugerencia que no venía originalmente: Claramente f es discontínua en x_0 si $x_0 \in \mathbb{Q}$; para mostrar que f es contínua en $x_0 \in [0,1] \setminus \mathbb{Q}$ pruebe que dado $\delta > 0$ y $N \in \mathbb{N}$ existe solo una cantidad finita de fracciones $\frac{m}{n}$ tales que $\left|x_0 - \frac{m}{n}\right| < \delta$ sin $n \leq N$)

- 42. Sea (M,d) un espacio métrico y $f:M\to M$ una función contínua (rel. d-d). Define $\varphi:M\to\mathbb{R}$ poniendo: $\varphi=d(x,f(x))\ \forall x\in M$. Prueba:
 - a) φ es contínua (rel. d)
 - b) Si (M,d) es compacto (por cubiertas) (rel. d) y $d(f(x),f(y)) < d(x,y) \ \forall x \neq y \in M$, entonces $\exists x_0 \in M$ único tal que $f(x_0) = x_0$ i.e x_0 es un punto $\underline{\text{fijo}}$ para f. (TEO. de Edelstein).
- 43. Sea (M,d) es un espacio métrico y $X: \mathbb{N} \to M$ una sucesión convergente (rel. d). Sea $\ell = \lim_{n \to \infty} x_n$ (rel. d). Sea $K = \{x_n\}_{n=1}^{\infty} \cup \{\ell\}$. Prueba que K es compacto (rel. d) (por abiertos).
- 44. Sea $M=(0,\infty), d(x,y)=\left|\frac{1}{x}-\frac{1}{y}\right|$. Prueba que: $H=[1,\infty]$ no es compacto (rel. d) a pesar de que H es cerrado y acotado (rel. d). (Compacidad por abiertos)