Green's Function Methods for Quantum Chemistry

Pierre-François (Titou) Loos

Sep 22nd 2025

Green's Function Methods

Antoine Marie (PhD) Xavier Blase (Grenoble)

Pina Romaniello (Toulouse)

Electronic Schrödinger Equation

Wave Function Theory

Reduced Quantities

Density Functional Theory

$$N\int\cdots\int\Psi^*({\pmb r},\ldots,{\pmb r}_N)\Psi({\pmb r},\ldots,{\pmb r}_N)\mathrm{d}{\pmb r}_2\cdots\mathrm{d}{\pmb r}_N=rac{{\sf n}({\pmb r})}{{\pmb n}({\pmb r})}$$

Wave Function Theory (WFT) → Density Functional Theory (DFT)

$$E = E_T + E_W + E_V$$

Hohenberg & Kohn, Phys. Rev. 1964 (B864) 136

(Less) Reduced Quantities

Density Matrix Functional Theory

$$N \int \cdots \int \Psi^*(\textbf{\textit{r}}, \ldots, \textbf{\textit{r}}_{\textit{N}}) \Psi(\textbf{\textit{r}}', \ldots, \textbf{\textit{r}}_{\textit{N}}) \mathrm{d}\textbf{\textit{r}}_2 \cdots \mathrm{d}\textbf{\textit{r}}_{\textit{N}} = \boxed{\textbf{\textit{n}}_1(\textbf{\textit{r}}, \textbf{\textit{r}}')}$$

Wave Function Theory (WFT) → Reduced Density Matrix Functional Theory (RDMF)

$$E = E_T + E_W + E_V$$

Gilbert, Phys. Rev. B 12 (1975) 2111

(Even Less) Reduced Quantities

Density Matrix Functional Theory (2nd order)

2nd-order reduced density matrix

$$\frac{N(N-1)}{2} \int \cdots \int \Psi^*(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) d\mathbf{r}_3 \cdots d\mathbf{r}_N = \frac{\mathbf{r}_2(\mathbf{r}_1, \mathbf{r}_2)}{\mathbf{r}_2(\mathbf{r}_1, \mathbf{r}_2)}$$

$$E = E_T + E_W + E_V$$

$$E = -\frac{1}{2} \int \left. \nabla_{\mathbf{r}}^{2} \mathbf{n}_{1}(\mathbf{r}, \mathbf{r}') \right|_{\mathbf{r}' = \mathbf{r}} \mathrm{d}\mathbf{r} + \int \int \frac{\mathbf{n}_{2}(\mathbf{r}_{1}, \mathbf{r}_{2})}{r_{12}} \mathrm{d}\mathbf{r}_{1} \mathrm{d}\mathbf{r}_{2} + \int \mathbf{v}(\mathbf{r}) \mathbf{n}(\mathbf{r}) \mathrm{d}\mathbf{r}$$

One-Body Green's Function: The Sweet Spot?

One-Body Propagator in the Time Domain

$$G(\mathbf{r}, \mathbf{r}'; t - t') = \begin{cases} -\mathrm{i} \left\langle \Psi_0^N \middle| \hat{\psi}(\mathbf{r}t) \hat{\psi}^{\dagger}(\mathbf{r}'t') \middle| \Psi_0^N \right\rangle & \text{for } t > t' \\ +\mathrm{i} \left\langle \Psi_0^N \middle| \hat{\psi}^{\dagger}(\mathbf{r}'t') \hat{\psi}(\mathbf{r}t) \middle| \Psi_0^N \right\rangle & \text{for } t' < t \end{cases}$$

- $\langle \Psi_0^N | \hat{\psi}(\mathbf{r}t) \hat{\psi}^\dagger(\mathbf{r}'t') | \Psi_0^N \rangle$ measures the propagation of an electron (electron branch)
- $\langle \Psi_0^N | \hat{\psi}^\dagger({\bf r}'t') \hat{\psi}({\bf r}t) | \Psi_0^N \rangle$ measures the propagation of a hole (hole branch)

Martin, Reining & Ceperley, "Interacting Electrons"

Links With Other Reduced Quantities

Link to RDMFT & DFT

$$\begin{array}{l} \textbf{\textit{n}}_1(\textbf{\textit{r}},\textbf{\textit{r}}') = -\mathrm{i} \lim_{t' \to t} \textit{\textit{G}}(\textbf{\textit{r}},\textbf{\textit{r}}';t-t') \\ & \textbf{\textit{n}}(\textbf{\textit{r}}) = -\mathrm{i} \lim_{t' \to t} \lim_{r' \to r} \textit{\textit{G}}(\textbf{\textit{r}},\textbf{\textit{r}}';t-t') \end{array}$$

Galitskii-Migdal Energy Functional

$$E = \frac{i}{2} \int d\mathbf{r} \lim_{t' \to t} \lim_{\mathbf{r}' \to \mathbf{r}} \nabla_{\mathbf{r}}^{2} G(\mathbf{r}, \mathbf{r}'; t - t') + \frac{1}{2} \int d\mathbf{r} \lim_{t' \to t} \lim_{\mathbf{r}' \to \mathbf{r}} \left[\frac{\partial}{\partial t} + i\hat{h}(\mathbf{r}) \right] G(\mathbf{r}, \mathbf{r}', t - t') + E_{V}$$

$$= \frac{1}{2} \int d\mathbf{r} \lim_{t' \to t} \lim_{\mathbf{r}' \to \mathbf{r}} \left[\frac{\partial}{\partial t} - i\hat{h}(\mathbf{r}) \right] G(\mathbf{r}, \mathbf{r}'; t - t')$$

Wave Function Theory (WFT) → Green's Function Functional Theory (GFFT) ?!

Galitskii & Migdal, JETP 7 (1958) 96

Lehmann Representation

One-Body Propagator in the Frequency Domain

$$G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\nu} \frac{\mathcal{I}_{\nu}(\mathbf{r})\mathcal{I}_{\nu}^{*}(\mathbf{r}')}{\omega - (E_{0}^{N} - E_{\nu}^{N-1}) - \mathrm{i}\eta} + \sum_{\nu} \frac{\mathcal{A}_{\nu}(\mathbf{r})\mathcal{A}_{\nu}^{*}(\mathbf{r}')}{\omega - (E_{\nu}^{N+1} - E_{0}^{N}) + \mathrm{i}\eta}$$

$$\frac{\mathbf{r}_{\nu}^{N+1} - \mathbf{r}_{0}^{N}}{\mathbf{r}_{\nu}^{N+1} + \mathbf{r}_{0}^{N}} + \mathrm{i}\eta$$

$$\frac{\mathbf{r}_{\nu}^{N+1} - \mathbf{r}_{0}^{N}}{\mathbf{r}_{\nu}^{N+1} + \mathbf{r}_{0}^{N}} + \mathrm{i}\eta$$

Spectral function

$$A(\omega) = \frac{1}{\pi} \int d\mathbf{r} d\mathbf{r}' |\text{Im } G(\mathbf{r}, \mathbf{r}'; \omega)|$$

Marie & Loos, JCTC 20 (2024) 4751

Photoemission Spectroscopy

Photoemission Spectroscopy

Hedin's Pentagon

Hedin, Phys. Rev. 139 (1965) A796

Hedin's Equations

$$\begin{split} &\underbrace{\frac{\textbf{G}(12)}{\text{Green's function}}} = \textbf{G}_0(12) + \int \textbf{G}_0(13) \Sigma(34) \underbrace{\textbf{G}(42) \textbf{d}(34)}_{\text{Green's function}} \\ &\underbrace{\frac{\Gamma(123)}{\text{Vertex}}} = \delta(12) \delta(13) + \int \frac{\delta \Sigma_{\text{xc}}(12)}{\delta \, \textbf{G}(45)} \, \textbf{G}(46) \, \textbf{G}(75) \Gamma(673) \textbf{d}(4567) \\ &\underbrace{\frac{\textbf{P}(12)}{\text{polarizability}}} = -\mathrm{i} \int \textbf{G}(13) \Gamma(342) \, \textbf{G}(41) \textbf{d}(34) \\ &\underbrace{\frac{\textbf{W}(12)}{\text{screening}}} = v(12) + \int v(13) \textbf{P}(34) \, \textbf{W}(42) \textbf{d}(34) \\ &\underbrace{\Sigma_{\text{xc}}(12)}_{\text{self-energy}} = \mathrm{i} \int \textbf{G}(14) \, \textbf{W}(13) \Gamma(423) \, \textbf{d}(34) \end{split}$$

Hedin's Square

Hedin, Phys. Rev. 139 (1965) A796

The GW Approximation

Green's function
$$\Gamma(123) = G_0(12) + \int G_0(13)\Sigma(34) G(42) d(34)$$

$$\Gamma(123) = \delta(12)\delta(13)$$

$$P(12) = -iG(12)G(21)$$

$$polarizability$$

$$W(12) = v(12) + \int v(13)P(34)W(42)d(34)$$

$$\sum_{\text{screening}} \sum_{\text{sclf-energy}} iG(12)W(12)$$
self-energy

Golze et al. Front. Chem. 7 (2019) 377; Marie et al. Adv. Quantum Chem. 90 (2024) 157

Self-Energy

Self-Energy as a Function of the Bare Coulomb Operator

$$\Sigma(11') = \underbrace{-\mathrm{i}\bar{\mathbf{v}}(12;1'2')\,\mathsf{G}(2'2)}_{\text{first-order terms}} + \underbrace{\frac{1}{2}\bar{\mathbf{v}}(12;3'2')\,\mathsf{G}(3'3)\,\mathsf{G}(4'2)\,\mathsf{G}(2'4)\bar{\mathbf{v}}(34;1'4')}_{\text{second-order terms}} + \dots$$

Diagrammatic Representation

Hedin's Equations

GW Approximation

Hedin, Phys. Rev. 139 (1965) A796

pp *T*-matrix Approximation

$$T$$
 = $+$ $+$ $+$ $+$

Marie, Romaniello & Loos, PRB 110 (2024) 115155

How to Compute *G*?

The Dyson Equation

Quasi-Particle Equation

$$\underbrace{ \begin{bmatrix} \textbf{\textit{H}}_0 \\ + \\ \textbf{\textit{\Sigma}} \end{bmatrix} \psi_p(\textbf{\textit{x}}) = \underbrace{ \epsilon_p }_{\text{poles of the Green's function}}^{\text{Dyson orbitals}} \psi_p(\textbf{\textit{x}}) \,, }_{\text{poles of the Green's function}}$$

Quasiparticle Concept

electron removal

- Link to electron-boson Hamiltonian:
 Langreth, PRB 1 (1970) 471
 Hedin, JPCM 11 (1999) R489
- Link to coupled-cluster theory:
 Lange & Berkelbach, JCTC 14 (2018) 4224
 Quintero-Monsebaiz et al. JCP 157 (2022) 231102
 Tolle & Chan, JCP 158 (2023) 124123

Quasiparticle Concept

electron removal

- Link to electron-boson Hamiltonian:
 Langreth, PRB 1 (1970) 471
 Hedin, JPCM 11 (1999) R489
- Link to coupled-cluster theory:

 Lange & Berkelbach, JCTC 14 (2018) 4224

 Quintero-Monsebaiz et al. JCP 157 (2022) 231102
 Tolle & Chan, JCP 158 (2023) 124123

Quasiparticle Concept

RPA excitation

electron removal

- Link to electron-boson Hamiltonian:
 Langreth, PRB 1 (1970) 471
 Hedin, JPCM 11 (1999) R489
- Link to coupled-cluster theory:

 Lange & Berkelbach, JCTC 14 (2018) 4224

 Quintero-Monsebaiz et al. JCP 157 (2022) 231102
 Tolle & Chan, JCP 158 (2023) 124123

Inner- and Outer-valence IPs (aug-cc-pVTZ) for 23 small molecules (FCI reference)

Computational cost

- HF $\mathcal{O}(K^4)$
- $G_0W_0 \mathcal{O}(K^6) \rightarrow \mathcal{O}(K^4)$
- IP-EOM-CC2 $\mathcal{O}(K^5)$
- IP-EOM-CCSD $\mathcal{O}(K^6)$
- IP-EOM-CCSDT $\mathcal{O}(K^8)$

Some issues:

- Highly starting point dependent!
- Systematic improvable?

Marie & Loos, JCTC 20 (2024) 4751

Propagation Can be Longer Than Expected

Fig. 1.1 Propagation of Drunken Man

(Reproduced with the kind permission of The Encyclopedia of Physics)

Mattuck, "A Guide to Feynman Diagrams in the Many-Body Problem"

Two-Body Green's Function

Two-Body Propagator in the Time Domain

Propagation of electron-hole pairs ($t_{1'} > t_1$ and $t_{2'} > t_2$)

$$G_2^{\text{eh}}(12;1'2') \ = (-\mathrm{i})^2 \left< \Psi_0^{\textit{N}} \right| \hat{\psi}^\dagger(1') \hat{\psi}(1) \hat{\psi}^\dagger(2') \hat{\psi}(2) + \hat{\psi}^\dagger(2') \hat{\psi}(2) \hat{\psi}^\dagger(1') \hat{\psi}(1) \left| \Psi_0^{\textit{N}} \right>$$

Propagation of electron-electron and hole-hole pairs ($t_{1'} > t_{2'}$ and $t_1 > t_2$)

$$\begin{split} & \textit{G}_{2}^{\text{ee}}(12;1^{\prime}2^{\prime}) \ = (-\mathrm{i})^{2} \left\langle \Psi_{0}^{\textit{N}} \middle| \hat{\psi}(1)\hat{\psi}(2)\hat{\psi}^{\dagger}(1^{\prime})\hat{\psi}^{\dagger}(2^{\prime}) \middle| \Psi_{0}^{\textit{N}} \right\rangle \\ & \textit{G}_{2}^{\text{hh}}(12;1^{\prime}2^{\prime}) \ = (-\mathrm{i})^{2} \left\langle \Psi_{0}^{\textit{N}} \middle| \hat{\psi}^{\dagger}(1^{\prime})\hat{\psi}^{\dagger}(2^{\prime})\hat{\psi}(1)\hat{\psi}(2) \middle| \Psi_{0}^{\textit{N}} \right\rangle \end{split}$$

The Electron-Hole Channel

Electron-Hole Correlation Function

Electron-Hole Bethe-Salpeter Equation (eh-BSE)

$$L(12; 1'2') = \underbrace{L_0(12; 1'2')}_{G(12')G(21')} + \int d(33'44') L_0(13'; 1'3) \Xi^{eh}(34'; 3'4) L(42; 4'2')$$
eh kernel

Strinati, Riv. Nuovo Cimento 11 (1988) 1; Blase et al. JPCL 11 (2020) 7371

Electron-Hole Effective Interaction Kernel

Effective Interaction Kernel

$$\Xi^{\mathsf{eh}}(12;1'2') = \frac{\delta\Sigma(11')}{\delta G(2'2)} \qquad \qquad \Sigma_{\mathsf{xc}} = \mathrm{i} GW \quad \Rightarrow \quad \frac{\delta\Sigma_{\mathsf{xc}}}{\delta G} = \mathrm{i} \frac{\delta G}{\delta G}W + \mathrm{i} G\underbrace{\frac{\delta W}{\delta G}}_{=0} = \mathrm{i} W$$

Casida Equations for eh-BSE

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu} \end{pmatrix} = \Omega^{N}_{\nu} \begin{pmatrix} \mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu} \end{pmatrix}$$

If no correlation, $W_{ij,ab} = \langle ib|ja \rangle$, then eh-BSE becomes RPAx (or TDHF)!

Matrix Elements With Static Screening

$$A_{ia,jb} = \overbrace{(\epsilon_a^{GW} - \epsilon_i^{GW})}^{\text{quasiparticle energies}} \delta_{ij} \delta_{ab} + \underbrace{\langle ib|aj \rangle}_{\text{Hartree}} - \underbrace{W_{ij,ab}}_{\text{exchange-correlatio}}$$

$$B_{ia,jb} = \langle ij|ab \rangle - W_{ib,aj}$$

The Particle-Particle Channel

Particle-Particle Correlation Function

$$K(12;1'2') = -G_2(12;1'2') + G^{\text{hh}}(12)G^{\text{ee}}(2'1')$$

$$K(\boldsymbol{r_1r_2};\boldsymbol{r_1r_2};\boldsymbol{r_1r_2};\omega) = \sum_{\nu} \frac{L_{\nu}^{N+2}(\boldsymbol{r_1r_2})R_{\nu}^{N+2}(\boldsymbol{r_1'r_2})}{\omega - (E_{\nu}^{N+2} - E_{0}^{N} - \mathrm{i}\eta)} - \sum_{\nu} \frac{L_{\nu}^{N-2}(\boldsymbol{r_1'r_2})R_{\nu}^{N-2}(\boldsymbol{r_1r_2})}{\omega - (E_{0}^{N} - E_{\nu}^{N-2} + \mathrm{i}\eta)}$$

$$\underline{\nu} \text{th double EA (DEA)}$$

$$vth double IP (DIP)$$

Particle-Particle Bethe-Salpeter Equation (pp-BSE)

$$\textit{K}(12;1'2') = \underbrace{\textit{K}_{0}(12;1'2')}_{\frac{1}{2}[\textit{G}(21')\textit{G}(12')-\textit{G}(11')\textit{G}(22')]} - \int \textit{d}(33'44') \textit{K}(12;44') \underbrace{\Xi^{\mathsf{pp}}(44';33')}_{\mathsf{pp} \; \mathsf{kernel}} \textit{K}_{0}(33';1'2')$$

Marie, Romaniello, Loos, PRB 110 (2024) 115155; Marie et al. JCP 162 (2025) 134105

Effective Interaction Kernel

$$\Xi^{\mathsf{pp}}(11';22') = \left. \frac{\delta \Sigma^{\mathsf{ee}}(22')}{\delta \, \mathsf{G}^{\mathsf{ee}}(11')} \right|_{\mathcal{U}=0} \qquad \qquad \Sigma^{\mathsf{GW}}_{\mathsf{Bc}} = -\mathrm{i} \, \mathsf{G}^{\mathsf{ee}} W \quad \Rightarrow \quad \mathrm{i} \, \frac{\delta \Sigma^{\mathsf{GW}}_{\mathsf{Bc}}(11')}{\delta \, \mathsf{G}^{\mathsf{ee}}(22')} = \frac{1}{2} [W(11';22') - W(11';2'2)]$$

Casida Equations for pp-BSE

$$\begin{pmatrix} \pmb{C} & \pmb{B} \\ -\pmb{B}^{\dagger} & -\pmb{D} \end{pmatrix} \begin{pmatrix} \pmb{X}_{\nu} \\ \pmb{Y}_{\nu} \end{pmatrix} = \Omega_{\nu}^{N\pm 2} \begin{pmatrix} \pmb{X}_{\nu} \\ \pmb{Y}_{\nu} \end{pmatrix}$$

If no correlation, $W_{pq,rs} = \langle ps|qr \rangle$, then pp-BSE becomes pp-RPA!

Matrix Elements With Static Screening

$$C_{ab,cd} = \overbrace{(\epsilon_a^{GW} + \epsilon_b^{GW})}^{ ext{quasiparticle energies}} \delta_{ac}\delta_{bd} + \underbrace{W_{ac,bd} - W_{ad,bc}}_{ ext{Bogoliubov-correlation}}$$
 $B_{ab,ij} = W_{ai,bj} - W_{aj,bi}$

 $D_{ii} k_l = -(\epsilon_i^{GW} + \epsilon_i^{GW})\delta_{ik}\delta_{il} + W_{ik} i_l - W_{il} i_k$

Singlet and Triplet DIPs (aug-cc-pVTZ) for 23 small molecules (FCI reference)

Schwinger-Dyson Relationship

$$G^{-1}(11') = G_0^{-1}(11') - \Sigma(11')$$

$$\Sigma(11') = -iv(12; 3'2') G_2(3'2'; 32) G^{-1}(31')$$

Two-body Vertex

Parquet theory aims at computing F, hence G_2 , through Dyson equations

Bethe-Salpeter Equations

Two-body Vertex

Parquet Decomposition

$$F(12;34) = \Lambda(12;34) + \underbrace{\Phi^{\text{eh}}(12;34) + \Phi^{\overline{\text{eh}}}(12;34) + \Phi^{\text{pp}}(12;34)}_{\text{can be computed with Bethe-Salpeter equations}}$$

Proper way to account for different correlation channels in the self-energy without double counting!

De Dominicis & Martin, J. Math. Phys. 5 (1964) 14; ibid 5 (1964) 31 Bickers, "Self-consistent many-body theory for condensed matter systems" in Theoretical Methods for Strongly Correlated Electrons (2004) 237

Self-Consistent Algorithm

Approximations

- Parquet approximation $\Lambda = -\mathrm{i}\bar{v}$
- One-shot approximation
- Static kernel approximation for Γ

One-shot parquet approximation (osPA)

Full two-body self-consistency, single one-body iteration in the diagonal approximation

Approximations

- Parquet approximation $\Lambda = -i\bar{v}$
- One-shot approximation
- Static kernel approximation for Γ

One-shot parquet approximation (osPA)

Full two-body self-consistency, single one-body iteration in the diagonal approximation

Approximations

- Parquet approximation $\Lambda = -i\bar{v}$
- One-shot approximation
- Static kernel approximation for Γ

One-shot parquet approximation (osPA)

Full two-body self-consistency, single one-body iteration in the diagonal approximation

Preliminary Results on Principal IPs

Preliminary statistics on 20 IPs in the aug-cc-pVTZ basis set

Method	osPA	G_0W_0	$G_0 T_0$
MAE	0.29	0.37	0.34

Marie & Loos, arxiv:2509.03253

Acknowledgements & Funding

- Antoine Marie
- Pina Romaniello
- Xavier Blase
- Marios-Petros Kitsaras & Johannes Tölle
- Abdallah Ammar
- Enzo Monino
- Roberto Orlando
- Raúl Quintero-Monsebaiz

https://pfloos.github.io/WEB_LOOS

https://lcpq.github.io/PTEROSOR

Inner- and Outer-valence IPs (aug-cc-pVTZ) for 23 small molecules (FCI reference)

Singlet and Triplet DIPs (aug-cc-pVTZ) for 23 small molecules (FCI reference)

Effect of the Quasiparticle Energies

Marie & Loos, JCTC 20 (2024) 4751; Marie et al. JCP 162 (2025) 134105

(Single-Site) Double Core Holes (aug-cc-pCVTZ & CVS-FCI reference)

Cederbaum et al. JCP 85 (1986) 6513; Marie et al. JCP 162 (2025) 134105

