Instructor: Omri Weinstein

TA: Zhenrui Liao Homework 3

1: Problem 1 (Randomized and Distributional Communication Complexity) 25 pts

Let $f: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}$ be a 2-party Boolean function.

- (1) Show that f admits a 2-bit randomized (public-coin) communication protocol that succeeds with probability $\geq 1/2 + 2^{-2n}$.
- (2) Show that for any prior distribution μ , there is a 2-bit protocol for f with success probability $\geq 1/2 + Disc_{\mu}(f)$, where $Disc_{\mu}(f)$ is the discrepancy of f w.r.t μ .
- (3) Show that $R_{1/3}^{priv}(f) \ge \lg D(f)$, where D(f) is the deterministic communication complexity of f and $R_{1/3}^{priv}(f)$ is the private-coin randomized communication complexity of f with error 1/3. (For simplicity, you may assume that the probabilities of transmitting 0/1 in any execution of a randomized protocol for f are rational numbers). Make sure you understand why your argument fails for *public*-coin protocols.

Conclude that $R_{\epsilon}^{priv}(EQUALITY_n) \geq \Omega(\lg n)$ (which is the maximal separation possible due to Neumann's theorem).

2: Problem 2 (Internal vs. External Information Complexity) 20 pts

Recall that the external information complexity of a communication protocol π with respect to $(X,Y) \sim \mu$, is defined as $IC_{\mu}^{ext}(\pi) := I(\Pi;XY)$ (as usual, Π denotes the (r.v) transcript of π).

- (1) Prove that for any (randomized) protocol π and any distribution μ , $IC_{\mu}^{ext}(\pi) \geq IC_{\mu}(\pi)$.
- (2) Prove that if μ is a product distribution $(\mu(x,y) = \mu(x)\mu(y))$, then $IC_{\mu}^{ext}(\pi) = IC_{\mu}(\pi)$.

3: Problem 3 (Indexing Lower Bound via Information Complexity), 25 pts

Let $IND_n: \{0,1\}^n \times [n] \mapsto \{0,1\}$ denote the Indexing function, in which Alice holds an *n*-bit array A, Bob holds an index $i \in [n]$, and the players' goal is to compute $IND_n(A,i) := A_i$.

There is a trivial $\lceil \lg n \rceil$ -bit protocol by having Bob send his index to Alice. But what if only Alice can speak? Let us denote by $R_{1/3}^{A\to B}(IND_n)$ the one-way randomized communication complexity of IND_n , i.e., the minimum length of a (possibly randomized) message |M| that Alice can send Bob, which allows Bob to recover A_i w.p $\geq 1/3$. Prove that $R_{1/3}^{A\to B}(IND_n) \geq \Omega(n)$.

(Hint: Recall that if the entries A_i are independent random variables, then $\sum_{i} I(A_i; M) \leq I(A_1, \dots, A_n; M)$. This should guide you how to find the hard distribution $(A, i) \sim \mu$. Then use Fano's inequality).

4: Problem 4, An $\Omega(\sqrt{n})$ LB for DISJ under product distributions, 30 pts

In this exercise, we will use a simplified version of the $\Omega(n)$ randomized Set-Disjointness lower

TA: Zhenrui Liao

 $D_{\mu^n}^{1/3}(DISJ_n) \ge \Omega(\sqrt{n})$:

bound we saw in class, to prove that the distributional communication complexity of $DISJ_n$ with respect to product distributions is $\Omega(\sqrt{n})$. To this end, let μ denote the distribution on (X_i, Y_i) , in which X_i and Y_i are i.i.d $Ber(1/\sqrt{n})$, and let us consider the product distribution $(X,Y) \sim \mu^n$ on inputs $X := X_1, \ldots, X_n, Y := Y_1, \ldots, Y_n \subseteq [n]$. A simple calculation shows that $\Pr_{\mu^n}[X \cap Y = \emptyset]$ $\approx 1/e$, so for large enough n, the distribution is roughly "unbiassed". We shall show that

- (1) Let Π be an optimal (deterministic) protocol for $DISJ_n$ under μ^n (recall that we may indeed assume Π is deterministic by an averaging principle). Use Π in order to design a (randomized) protocol π for the 2-bit AND(a,b) function s.t: (i) $\forall (a,b) \in (\{0,1\})^2 \quad \Pr_{\pi}[\pi(a,b) = AND(a,b)] \geq \Omega(1)$, and (ii) When $(A,B) \sim \mu$, then $I_{\mu}(\pi;A,B) \leq \|\Pi\|/n$. (note that, since μ is product, the "embedding" is simpler as the players can privately complete the remaining coordinates to Π).
- (2) Let π_{ab} denote the distribution of (the transcript of) π when A=a,B=b. Use part (1.i) to prove that : (i) $\Delta(\pi_{00},\pi_{11}) \geq \Omega(1)$ (where $\Delta(\cdot,\cdot)$ is the total variation distance). (ii) Use part (1.ii) + Pinsker's inequality to prove that: $\mathbb{E}_{(a,b)\sim\mu}[\Delta^2(\pi_{a,b},\pi)] \leq O(\|\Pi\|/n)$, where π here denotes the prior distribution of the transcript $\pi(A,B)$, where $(A,B)\sim\mu$.
- (3) Use the definition of μ to argue that part (2.ii) implies $\Delta^2(\pi_{10}, \pi) \leq O(\|\Pi\|/\sqrt{n})$, and similarly $\Delta^2(\pi_{01}, \pi) \leq O(\|\Pi\|/\sqrt{n})$. Now conclude that

$$\Delta^2(\pi_{10}, \pi_{01}) \le O(\|\Pi\|/\sqrt{n}).$$

- (4) On the other hand, use part (2.i) and the "Cut-and-Paste" Lemma from class, to prove that $\Delta^2(\pi_{10}, \pi_{01}) \geq \Omega(1)$.
- (5) Conclude by (3) and (4) that $\|\Pi\| \ge \Omega(\sqrt{n})$.

5: Problem 5, (Parity Game), 25 pts

Alice and Bob play the following communication game $G_{\oplus}(x,y)$: The players receive n-bit strings x,y respectively, s.t $Parity(x) = \bigoplus_{i=1}^{n} x_i = 0$, and $Parity(y) = \bigoplus_{i=1}^{n} y_i = 1$. Note that this implies that $x \neq y$. The goal of Alice and Bob is to deterministically find a coordinate $i \in [n]$ s.t $x_i \neq y_i$ (both players must know such i by the end of the protocol). Show that any deterministic protocol that solves G_{\oplus} must spend $2 \lg(n)$ bits of communication.

(Hint: Design a hard distribution μ and then show that the information learnt by each player from any Π that solves the game under μ must be large).