Math 10

<u>Lesson 1–4</u> Answers

Lesson Questions

Question 1

When we calculate the radical, radicals that are rational numbers result in a rational number while radicals that are irrational result in an irrational number.

$$\sqrt{0.24} = 0.489897...$$
irrational $\sqrt[5]{-32} = -2$ rational $\frac{5}{7}$ rational $\sqrt{64} = 8$ rational $\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$ rational $\sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = 0.4473235$

$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$
 rational $\sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = 0.4473235...$ irrational $\sqrt{0.25} = 0.5$ rational $\sqrt{12} = 1.122462...$ irrational

$$0.6^2 = 0.36 \text{ rational}$$
 $\sqrt{3} = 1.17320508... \text{ irrational}$

Question 2

Compute the following numbers and classify them as natural, whole, integer, rational, and/or irrational:

$$\sqrt{16} = 4$$
 rational, integer, whole and natural

$$\sqrt[3]{30} = 3.1072325...$$
 irrational

$$\sqrt[4]{\frac{16}{81}} = \frac{\sqrt[4]{16}}{\sqrt[4]{81}} = \frac{2}{3}$$
 rational

Question 3

L1-4

Which numbers below belong to each set: natural, whole, integer, rational, and/or irrational?

$$\frac{3}{5}$$
 rational 0.217 rational

$$3\sqrt{2}$$
 irrational 6π irrational

$$-2\frac{1}{4}$$
 rational $\sqrt[3]{8} = 2$ rational, integer, whole, natural

$$\sqrt{121} = 11$$
 rational, integer, whole, natural 6.121121... rational

Question 4

Classify each of the following numbers as rational or irrational. Provide an explanation.

Number	Rational or irrational	Explanation
0	rational	whole number
π	irrational	non-repeating number
$\sqrt{36} = 6$	rational	whole number
- 4.2558	irrational	non-repeating number
- 4.2558	rational	terminating decimal
99 13	rational	division of two integers
$\sqrt{500} = 22.36067$	irrational	non-repeating number
6.3	rational	repeating number
³ √343 = 7	rational	whole number

Question 5

Which of the following numbers are irrational. Provide an explanation.

Number	Irrational (yes or no)	Explanation
$\sqrt{3} = 1.73205$	yes	non-terminating decimal
$\sqrt{36+64} = \sqrt{100} = 10$	no	integer
$\sqrt{24} = 4.898979$	yes	non-terminating decimal
$2\sqrt{36} = 12$	no	integer
$\sqrt{2+\sqrt{4}}=2$	no	integer
$\sqrt{36} + \sqrt{64} = 14$	no	integer
$\sqrt{2\frac{1}{4}} = 1.5$	no	terminating decimal
$\sqrt{434} = 20.83266$	yes	non-terminating decimal
$2+\sqrt{36}=8$	no	integer

Question 6

Use a number line to order the following numbers from least to greatest

$$\sqrt{2} = 1.414$$
 $\sqrt[3]{-2} = -1.26$
 $\sqrt[3]{6} = 1.82$
 $\sqrt{11} = 3.32$
 $-\sqrt{8} = -2.8$
 $-\sqrt{8} = -2.83$
 $\sqrt[3]{-2} = -1.26$
 $\sqrt{2} = 1.414$
 $\sqrt[3]{6} = 1.82$
 $\sqrt{11} = 3.32$
 $\sqrt{11} = 3.32$

Question 7

 $\sqrt{-4}$ is not a real number. It is impossible to find a root value that, when multiplied by itself, results in a negative number (i.e. $2 \cdot 2 = 4$ and $-2 \cdot -2 = 4$).

(However, the idea of the square root of a negative number eventually led to a whole new branch of mathematics called Complex Numbers.)

L1-4

Nasty question of the day

For a right angle triangle, the lengths of the sides must obey Pythagorus' equation $c^2 = a^2 + b^2$

(a) All sides have rational number lengths.

There are an infinite number of triangles like this (Google whole number right triangles):

(b) Exactly 2 sides have rational number lengths. There are an infinite number of triangles like this:

(c) Exactly 1 side has a rational number length. There are an infinite number of triangles like this:

(d) No sides have rational number lengths. There are an infinite number of triangles like this:

L1-4

Assignment

- 1. a) The square root of 8 is between the root of 4 (2) and the root of 9 (3). Since 8 is close to 9, we try 2.9 and 2.8 and find that 2.8 is the best answer
 - b) The cube root of 9 is between the cube root of 8 (2) and the cube root of 27 (3). Since 9 is very close to 8 we try 2.1 and 2.2 and find that 2.1 is the best answer
 - c) 1.8
 - d) 3.6
- 2.
- a) The calculator returns an error message; the square of a real number will always be positive.
- b) Any non-zero even index
- c) i) Any odd index
 - ii) Any even index
- 3. a) As written the number 12.247 448 71 is rational since it terminates.
 - b) The root of 150 is irrational since it results in a non-terminating and non-repeating number.
- 4. a), b)

Real Numbers

- 5. $\sqrt[3]{8} = 2$ $\sqrt[3]{64} = 4$
- $\sqrt[3]{30} = 3.10723...$
- $\sqrt[3]{300} = 6.6943295...$

The cubes roots of the numbers in parts c and d will be irrational.

- 6. $\sqrt[3]{98}$, $\sqrt{40}$, $\sqrt[3]{300}$, $\sqrt[3]{500}$, $\sqrt{75}$, $\sqrt{98}$
- 7. a) i) True Natural numbers are a subset of Integers
 - ii) True Integers are a subset of Rational numbers.
 - iii) False The set of Whole numbers includes 0. 0 is not a Natural number.
 - iv) False Other irrational numbers are numbers like π and ζ and e.
 - v) True Natural numbers are a subset of rational numbers
 - b) iii) 0 iv) π

8. Answers will vary. For example:

- a) any fraction or decimal 0.75
- b) 0
- c) any non-repeating, non-terminating number like $\sqrt{7}$

9. Additional numbers may vary. For example: Real numbers

- 10. a) $\sqrt{40} = 6.3245...$ Irrational number
 - b) $\sqrt{81} = 9$ Rational number

11. a) Yes. Any number that is not a perfect square like $\sqrt{40}$.

b) No. If the original number is irrational then the square root will be "doubly" irrational. For example $\sqrt{\sqrt{7}} = 1.62657...$