

Topics

- Random processes
- Sample spaces
- Basic probability rules
 - Complementarity
 - Addition
 - Multiplication
- · Disjoint and independent sets
- The binomial distribution

Random

Can we predict a coin flip mechanistically?

No

Can we predict a coin flip probabilistically?

Yes!

Coin flips

50% chance Heads

50% chance Tails

This "random" result tells us everything we need to know about the very complex problem of the coin-flip.

In short...

What does random mean?

- A random event X can take some values in k = (x₁, x₂, x₃, ...) ... but we can not predict X exactly.
- BUT, if X were repeated many times, a fixed pattern would emerge.
 This pattern is the probability distribution

$$f(k) = P(X = k)$$

Note: the values k is called the **sample space**.

What does random mean?

We can not describe it well exactly ONCE, but we can describe what will happen if it is repeated many times.

This is the *frequentist* interpretation of probability.

Definitions

Long-term (or multiply repeated) pattern for coin-flips: 50/50

Multiply repeated pattern for pup-weights: $N(\mu, \sigma)$

Types of sample spaces

- · Discrete, finite
 - · All outcomes can be enumerated (even if it is a lot of outcomes)
 - . Examples: coin tosses, rolls of the dice, card picks
- · Continuous, infinite
 - Like a continuous variable, there are an uncountable number of outcomes in a continuous sample space
 - Examples: time to your next text message, length of pups, colors in the visible spectrum
- Goal: to estimate the probability of an event P(A) in sample space S

Enumerating discrete sample spaces

- For discrete sample spaces, you can count or enumerate all possibilities.
- Under certain assumptions, you can build the probability model of an event.

Example: A single coin flip

The sample space of X = a single coin flip is:

- and T:
- We denote this: S = {H, T}- possible events are just H or T.
- The probability model is written:

$$P(X = H) = 0.5$$
 and $P(X = T) = 0.5$

Example: Two coin flips

- The sample space of X = two coin flips is: S = HH: QQ HT: QQ TH: QQ and TT: QQ
- Is HT = TH? It depends on your question!
- . If NO, the probability model is:

$$P(X = HH) = 0.25, P(X = HT) = 0.25$$

 $P(X = TH) = 0.25, P(X = TT) = 0.25$

. If YES, the probability model is:

$$P(X = HH) = 0.25$$

 $P(X = HT) = 0.50$
 $P(X = TT) = 0.25$

Example: Two coin flips

- If $HT \neq TH$: P(X = HH) = 0.25, P(X = HT) = 0.25, P(X = TH) = 0.25, P(X = TT) = 0.25
- If HT = TH: P(X = HH) = 0.25 P(X = HT) = 0.50P(X = TT) = 0.25

The sample space depends on the question!

A basketball player shoots three free throws.

· Question I: What are the possible sequences of hits and misses?

1

H

1

2

- S = {MMM, MMH, MHM, MHH, HMM, HMH, HHM, HHH}
- Note: $k = 2^3 = 8$

The sample space depends on the question!

A basketball player shoots three free throws.

• Question II: How many baskets will the basketball player make total?

 \bullet S = {0, 1, 2, 3}

Continuous spaces are different

- The sample space can not be enumerated.
- When we work with these, we need to describe them with a mathematical function that takes values on the continuous real numbers.
- For now, we'll stick to discrete spaces.

Goals and Rules of Probability

- · Rules about sample spaces:
 - $0 \le P(A) \le 1$ for any event A
 - P(S) = 1
- Rules about combining probabilities
 - Complement rule: For any event A, where A^c is the event "not A":
 P(A^c) = 1 P(A)
 - ◆ Addition rule: If A and B are disjoint events, then: P(A or B) = P(A) + P(B)
 - Multiplication rule: If A and B are independent events, then: $P(A \text{ and } B) = P(A) \times P(B)$

Another example system

In the 2006 NBA playoffs, Shaq shot 37% from free throw line.

In the 2011 playoffs, Ray Allen shot 96% from free throw line.

Sample space rules

- $0 \le P(A) \le 1$
 - P(heads) = 0.5
 - P(Shaq makes a FT) = 0.37
 - P(Allen makes a FT) = 0.96
- P(S) = 1
 - P(heads) + P(tails) = 1
 - P(Shaq makes a FT) + P(Shaq misses a FT) = 1
 - P(Allen makes a FT) + P(Allen misses a FT) = 1
 - P(Shaq makes either 0,1,2,3 FT in 3 attempts) = 1
- $P(A^c) = 1 P(A)$
 - P(heads) = 1 P(tails) = 0.5
 - P(Shaq misses a FT) = 1-P(Shaq makes a FT) = 0.63
 - P(Shaq makes 0/3) = 1-P(Shaq makes 1,2 or 3/3) = ?

Complements

Event A divide sample space into two pieces:

- Event happened: A
- Event did not happen: A^c
 - $A^c = A$ "complement"

Rule of complements: $P(A^c) = 1 - P(A)$

Combining events: UNION

UNION: A or $B - A \cup B$

- Example: Three coin tosses with exactly one head OR first flip is a tail
- S = {{HHH}, {HHT}, {HTH}, {HTT} {THH}, {THT}, {TTH}, {TTT}}
- A = {{HTT}, {THT}, {TTH}}
- B = {{THH}, {THT}, {TTH}, {TTT}}
- $A \cup B = \{\{HTT\}, \{THH\}, \{THT\}, \{TTH\}, \{TTT\}\}$
- $(A \cup B)^C = \{HHH\}, \{HHT\} \{HTH\}$

In a Venn diagram

ς

Combining events: INTERSECTION

INTERSECTION: A and $B - A \cap B$

- Example: Three coin tosses with exactly one head AND first flip is a tail
- S = {{HHH}, {HHT}, {HTH}, {HTT} {THH}, {THT}, {TTH}, {TTT}}
- \bullet A = {{HTT}, {THT}, {TTH}}
- B = {{THH}, {THT}, {TTH}, {TTT}}
- $A \cap B = \{\{\mathsf{HTT}\}\}$
- $(A \cup B)^c = ...$

In a Venn diagram

Addition rule for disjoint events

Two events A and B are disjoint if they have no outcomes in common and can never happen together. The probability that A OR B occurs is the sum of their individual probabilities

Addition rule for disjoint events:

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$$

Independence

- If events A and B are independent, then P(A) has no impact on P(B).
 - Example:
 - You flip a coin twice,
 - P(Heads first) has no effect on P(Tails second)
 - Counterexample:
 - You draw a card from a deck of 52 once:
 - P(black card on first draw) = 0.5.
 - You draw a second card from a deck without replacing the first: P(black card on second draw) = 25/51 < 0.5.
 - Possible counterexample:
 - · You shoot a basketball once.
 - Is P(You make the second|You missed the first) =

P(You make a second|You made the first)?

Multiplication rule for Independent Events

- If A and B are independent: $P(A \cap B) = P(A) \times P(B)$
- Note: P(B|A) = P(B)

Example 1: Three Heads

- What is the probability of flipping three heads in three tosses?
- Note: P(H) = 0.5;
- · Coin flips are independent;
- So $P(HHH) = P(H) \times P(H) \times P(H)$

Example 2: A run of three

- What is the probability of getting three in a row?
- Now we combine "AND" and "OR":

$$\begin{array}{ll} P(HHH \cup TTT) & = & P(HHH) + P(TTT) \\ & = & P(H \cap H \cap H) + P(T \cap T \cap T) \\ & = & P(H)P(H)P(H) + P(T)P(T)P(T) \\ & = & (0.5)^3 + (0.5)^3 = 0.25 \end{array}$$

- So what is the probability of a 2/1 split?
- P(2/1 split) = P((HHH ∪ TTT)^c) = 1 − P(HHH ∪ TTT) = 0.75

Example

- Note that every outcome has the same probability,
- But that is only because
 P(H) = P(T) = P(H^c)

	Toss:				
	First	Second	Third		
1	н	н	н		
2	Н	Н	Т		
3	Н	T	Н		
4	Н	T	T		
5	Т	Н	Н		
6	Т	Н	Т		
7	Т	T	Н		
8	Т	T	Т		

Uniform probability spaces

- There is a class of random processes for which each outcome has equal probability, for example:
 - · Coin flips
 - Dice rolls
 - · Cards from a shuffled deck
- But not:
 - Free throws

Part II: Permutations and Combinations

A surprising fact

A lot of the theory underlying classical statistical inference can be derived from considering (in great detail) *independent* events from *equal probability* sample spaces!

Consider rolling 2 dice

Question: What is the probability that the sum is 5?

What is the probability that the sum is 5?

The sample space consists of 36 equally probable events:

			⊡ ∷		· :::
					· . :::
			⊡ ∷		⊡ ∷
			∷ ∷	∷∷	
\Box	∷ :.	\square	∷∷	\square	∷ ∷
·	∷ :	∷ :	∷ ∷	∷ ∷	::: :::
· ·	· •	<u> </u>		. ∷	⊡ 🖽
		· ·	·::	· ::	· :::
					·

 $S = \{(1,1), (1,2), (1,3),\}$

- How do we know? We counted: $N_S = 6 \times 6$
 - Note: A and B are independent, so $P(A \cap B) = P(A)P(B)$.
- How many sum to 5? We counted: (1,4), (2,3), (3,2), (4,1)
 - N_A = 4
- $P(D_1 + D_2 = 5) = N_A/N_S = 4/36 = 0.111$

Lots of probability problems are just counting problems!

- What's the probability of 1 die giving an odd number?
 - S has 6 outcomes, A (Odds) had 3 outcomes, $N_A/N_S = 3/6 = 0.5$
- What's the probability of 2 dice giving a sum > 9?
 - S has 36 outcomes, A (> 9) has six outcomes, $N_A/N_S = 6/36 = 0.166$
- What's the probability that at least 2 people in a class of 23 people have the same birthday?
 - Yikes!
- What's the probability that after 20 coin flips, you'll get exactly 10 heads?
 - Yikes!

Counting is not always easy!

What's for lunch?

- · Food: Sushi, Teriyaki, Udon noodle
- Drink: Fanta, Green Tea, H₂0

How many different meals can I make?

Counting Rules

Fundamental counting rule

Let A_1 be a set with n_1 elements and A_2 be a set with n_2 elements. If one element is taken from A_1 and one element is taken from A_2 , there are:

$$n_1 \times n_2$$

possible unique outcomes.

Answer

 $3 \times 3 = 9$

What's for dinner?

- · Food: Escargots, Fondue, Grenouilles
- Drink: Bordeaux, Burgundy, Beaujolais
- Dessert: Crème fraîche, Tarte aux pommes, Sorbet aux pêches

How many people at a table can have a unique meal?

Counting Rules

Multiplicative rule

Let A_1 , A_2 , A_3 be k sets with n_1 , n_2 , ... n_k elements (respectively) in each set. If one element is taken from each set, then there are

$$n_1 \times n_2 \times ... \times n_k$$

possible unique outcomes.

$$3 \times 3 \times 3 = 27$$

How do I rank my favorite animals?

Some animals:

· Aardvark, Baboon, Cheetah, Dolphin

How many different ways can I rank them according to how cool I think they are?

Counting Rules

Factorial rule for permutations

A set of n elements can be ordered n! different ways

Definition of factorial

$$n! = n(n-1)(n-2)(n-3)...1$$

And: 1! = 0! = 1

$$4! = 4 \times 3 \times 2 \times 1 = 24$$

How do I rank my favorite four out of eleven animals?

Some animals:

 Aardvark, Baboon, Cheetah, Dolphin, Egret, Flamingo, Giraffe, Hippo, Iguana, Jackal, Kangaroo

How many different ways can I rank the 4 coolest ones?

Counting Rules

Permutations (order matters)

A selection of r elements from a set of n total elements can be ${\bf rank}$ ordered in

$$\frac{n!}{(n-r)!}$$

different ways.

$$\frac{11!}{(11-4)!} = \frac{11!}{7!} = 11 \times 10 \times 9 \times 8 = 7920$$

How do I pick four animals I want to study?

Some animals:

 Aardvark, Baboon, Cheetah, Dolphin, Egret, Flamingo, Giraffe, Hippo, Iguana, Jackal, Kangaroo

How many different ways can I separate this group into 4 that I want to study and 7 that I don't?

Counting Rules

Combinations (order doesn't matters)

A selection of r elements from a set of n total elements can be **chosen** in

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

different ways.

"Choose" function

- We call this creature: (ⁿ_r) "n choose r"
- ullet It is the number of ways we can pick r unique cases from a set of n
- It is also written: rCn, and called: "the binomial coefficient".

$$\frac{11!}{4!(11-4)!} = \frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1} = 330$$

Blaise Pascal (1623 - 1662)

Great French mathematician - described "Pacal's triangle" in *Treatise on the Arithmetical Triangle* (1653).

Zhu Shijie 朱世杰 (1270 - 1330)

- Great Chinese mathematician described the triangle in The Precious Mirror of the Four Elements (1303).
- Attributes it to Jia Xian (1050).
- Also attributed to Omar Khayyam (Persia: 1048-1131) - Khayyam's Triangle
- Who attributes it to Al-Karaji (Persia: 953-1029)
- Though it was known by Pingala (India: 2nd century)

Back to the Birthday Problem

What is the probability that in a class of 23 students, at least 2 will have a matching birthday?

- What is S? All possible sequences of birthdays (multiplicative rule):
 - $V_S = 365^{23}$
- What is A? All possible sequences where at least 2 people have the same birthday.
 - That's a bit tricky.
- What is A^c? All possible sequences where NO ONE shares a birthday (permutations rule).
 - $N_A = 365 \times 364 \times 363 \times ... \times 343 = \frac{365!}{(365-23)!}$
 - \bullet $P(A^c) = \frac{N_{A^c}}{N_S} = \frac{365!/342!}{365^{23}}$
 - $P(A) = 1 P(A^c) = 1 \frac{365!/342!}{365^{23}} \approx 0.507$

Back to the Coin Problem

What is the probability that after flipping 10 coins, you'll get exactly 5 heads?

- Sample size (multiplicative rule)
 - N_S = 2¹⁰
- What is the event size: N_A?
- We can define a sequence of events by 5 numbers chosen from 1 to 10. This is the same as choosing a combination of 5 unique numbers from 10 total, and we don't care about the order (combinations rule):

$$N_A = {10 \choose 5} = \frac{10!}{5!(10-5)!}$$

• $P(5 \text{ heads in } 10 \text{ tosses}) = \frac{10!/(5!(10-5)!)}{210} \approx 0.246$

A different way to look at the Coin Problem

What is the probability that after flipping 10 coins, you'll get exactly 5 heads?

- First: We need 5 heads (H) and 5 tails (T) to happen:
 - P(T) = P(H) = 1/2• $P(HHHHHH) = (1/2)^5$, $P(TTTTT) = (1/2)^5$
- But there are many ways in which these sequences can happen!
 - $P(5 \text{ heads in } 10 \text{ tosses}) = K(1/2)^5(1/2)^5$
 - What is K?
- Combinations Rule!

$$K = {10 \choose 5} = \frac{10!}{5!(10-5)!}$$

• $P(5 \text{ heads in } 10 \text{ tosses}) = \frac{10!}{5!(10-5)!} (1/2)^5 (1/2)^5 \approx 0.246$

More flexible way of thinking about the problem...

Example: what is the probability that Shaq will make 8 free throws out of 10?

- We need 8 successes (H) and 2 failures (M) to happen:
 - P(H) = p = 0.374 and P(M) = 1 p = 0.626
- How many ways can the sequence of 8 hits happen? Combinations Rule!

$$K = {10 \choose 8} = \frac{10!}{8!2!}$$

• $P(8 \text{ hits in } 10 \text{ FT's}) = \frac{10!}{8!7!} p^8 (1-p)^2 \approx 0.67\%$

(Note: that number is written in PERCENT!)

Binomial Distribution

The Binomial Distribution...

... is a **discrete probability distribution** that tells you the exact probability of k successes out of n tries, if each try is an independent event with probability p:

$$f(k|n,p) = \Pr(X = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

where $k = \{0, 1, 2...n\}$. Note the following properties:

$$\sum_{k=0}^{n} f(k|n,p) = 1$$

Note that we derived this distribution from **probability rules** and **counting rules**.