FIL

UFR IEEA

Quelques rappels pour se (re)familiariser avec les notations.

Langages

Soit Σ un alphabet (ou vocabulaire) quelconque (un ensemble de caractères, ou symboles):

- un mot x (de longueur n) sur Σ est une suite finie de caractères de Σ (de longueur n);
- $-\epsilon$ est le mot ne contenant aucun caractère;
- $-\Sigma^n$ est l'ensemble des mots de longueur n;
- $-\Sigma^*$ signifie $\bigcup_{n>0} \Sigma^n$, c'est l'ensemble de tous les mots sur Σ ;
- -xy est la concaténation des mots x et y.

Un langage L sur Σ est un sous-ensemble de $\Sigma: L \in \mathcal{P}(\Sigma^*), L \subseteq \Sigma^*$. Quelques opérations courantes sur les langages :

- $L_1 \cup L_2$: union de langages;
- L_1L_2 signifie $\{xy|x \in L_1, y \in L_2\}$, concaténation de langages;
- $-\overline{L}$ signifie $\Sigma^* L$, complément d'un langage;
- L^n signifie $\{x_1 \dots x_n | x_i \in L, 1 \le i \le n\}$;
- L^* signifie $\bigcup_{n>0} L^n$, fermeture d'un langage.

Définition 1 (Langages réguliers) Un langage régulier sur Σ est défini récursivement :

- $-\emptyset$, $\{\epsilon\}$ sont des langages réguliers;
- pour tout $a \in \Sigma$, $\{a\}$ est un langage régulier;
- si L_1 et L_2 sont des langages réguliers sur Σ alors $L_1 \cup L_2$, L_1L_2 et L_1^* sont aussi des langages réguliers sur Σ ;
- il n'y a pas d'autre langage régulier sur $\Sigma.$

Les langages réguliers sont clôts par union, intersection, concaténation, complémentaire, différence ensembliste, et il est facile de construire l'automate correspondant à partir des automates correspondant aux langages opérandes.

Expressions régulières

Définition 2 (Expressions régulières) Les expressions régulières (er) sur Σ et les langages réguliers qu'elles décrivent sont aussi décrits récursivement :

- $-\emptyset$ est une er qui décrit le langage \emptyset ;
- $-\epsilon$ est une er qui décrit le langage $\{\epsilon\}$;
- a (pour $a \in \Sigma$) est une er qui décrit le langage $\{a\}$.

Si e_1 et e_2 sont des er sur Σ , décrivant les langages $L(e_1)$ et $L(e_2)$, alors les expressions suivantes sont aussi des er :

- $e_1 \mid e_2$ décrit le langage $L(e_1) \cup L(e_2)$;
- e_1e_2 décrit le langage $L(e_1)L(e_2)$;
- e_1^* décrit le langage $L(e_1)^*$.

Il n'y a pas d'autre expression régulière.

Automates à nombre fini d'états (AF)

Définition 3 (Automate fini non déterministe, AFND) Un automate fini non déterministe (AFND) est un tuple $A = (\Sigma, Q, \Delta, q_0, F)$ dans lequel :

- $-\Sigma$ est l'alphabet d'entrée;
- -Q est un nombre fini d'états;
- $-q_0 \in Q$ est l'état initial;
- $-F \subseteq Q$ est l'ensemble des états finaux;
- $-\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ est la relation de transition.

Un AFND admet des transitions étiquetées par ϵ et des états dont plus d'une transition sortante ont la même étiquette.

Doc de TD COMPIL 2008 - 2009

Définition 4 (Configuration, langage accepté) Soit $A = (\Sigma, Q, \Delta, q_0, F)$ un AFND :

- un couple (q, w) avec $q \in Q$ et $w \in \Sigma^*$ est une configuration de A;
- (q_0, w) est une configuration initiale;
- (q_f, ϵ) avec $q_f \in F$ est une configuration finale.

La relation de dérivation $\vdash_A \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$ est telle que

$$(q, aw) \vdash_A (q', w) \text{ ssi } (q, a, q') \in \Delta \text{ avec } a \in \Sigma \cup \{\epsilon\}$$

Le $langage \ accept\'e$ par A est

$$L(A) = \{ w \in \Sigma^* | (q_0, w) \vdash_A^* (q_f, \epsilon) \text{ avec } q_f \in F \}$$

Théorème 1 Un langage est régulier ssi il est accepté par un AFND.

Définition 5 (AF Deterministe - AFD) Soit $A = (\Sigma, Q, \Delta, q_0, F)$ un AFND. A est un AFD si Δ est une fonction partielle $\delta : Q \times \Sigma \to Q$.

Dans un AFD il n'y a pas de transition sur ϵ , et pour tout couple (q, a) il existe au plus un état successeur.

Propriété 1 Si un langage L est accepté par un AFND alors il existe un AFD acceptant L.

2008 - 2009 Licence 2ème année