# 模型选择和评估

### 如何选择模型?

- 对一个给定的监督学习任务,应该选择哪个学习模型?
- 如何选择该模型的最优参数?
- 如何估计训练好的模型在学习样例之外的数据上可能的性能?

#### 训练误差与测试误差



#### 训练集与测试集

- 训练集 用来训练模型, 模型的迭代优化
- 测试集不参与训练流程, 监测模型效果
- 验证集 调整模型的超参 数,优化模型



## 划分训练集和测试集

| (); J.S. | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----------|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0        | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1        | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2        | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3        | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4        | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5        | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6        | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7        | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8        | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9        | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Raimi                  | PG     | 127     |
| 10       | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11       | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12       | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13       | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14       | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15       | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16       | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17       | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

## 划分训练集和测试集

|    | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Raimi                  | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

训练数据

测试数据

#### 训练数据

训练模型

#### 测试数据

评价模型

- 用模型预测类别标签
- 和真实值比较
- 计算误差











x108





训练误差(training error)

也称经验误差 (empirical error) 、近似误差 (approximation error) ,是对现有训练集的训练误差,对应训练集数据。

> 学习到的模型

$$Y = \hat{f}(X)$$

> 训练集

$$T = \{(x_1, y_1), (x_2, y_2) \cdots, (x_N, y_N)\}\$$

> 训练误差

$$R_{emp}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

#### • 测试误差 (test error)

也称泛化误差 (generalization error) 、估计误差 (estimation error) , 对测试集的测试误差, 在未知样本上的误差, 对应测试集数据。

> 学习到的模型

$$Y = \hat{f}(X)$$

> 测试集

$$T' = \{(x_{1'}, y_{1'}), (x_{2'}, y_{2'}) \cdots, (x_{N'}, y_{N'})\}$$

> 测试误差

$$e_{test} = \frac{1}{N'} \sum_{i'=1}^{N'} L(y_{i'}, \hat{f}(x_{i'}))$$

## K值会影响判定边界



例: 函数为  $y = \sin(2\pi x)$  , 样本为  $y_i = \sin(2\pi x_i) + \varepsilon_i$  , 训练集为  $T = \{(x_1, y_1), (x_2, y_2) \cdots, (x_{10}, y_{10})\}$ 



#### M次多项式:

$$f_M(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

经验风险:

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (f_{M}(x_{i}, w) - y_{i})^{2}$$

代入多项式:

$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (\sum_{j=0}^{M} w_j x_i^j - y_i)^2$$

通过最小二乘法求解参数



# 不同复杂度的模型



# 不同复杂度的模型



## 不同复杂度的模型



## 不同模型的泛化能力



### 欠拟合与过拟合



欠拟合和过拟合都会导致较大的泛化误差。

#### • 过拟合 (overfitting)

学习所得模型包含参数过多,出现对已知数据预测很好,但 对未知数据预测很差的现象。



• 欠拟合 (underfitting)

对训练样本的一般性质尚未学习好。



过拟合和欠拟合

### 监督学习中的误差来源

#### Error = Bias<sup>2</sup> + Variance + Noise

- 偏差(Bias):模型的期望输出值(即用不同数据集训练出的所有模型输出的平均值)与真实值之间的差异。即学习算法的期望预测与真实结果的偏离程度,刻画了学习算法本身的拟合能力。
- 方差(Variance):用不同数据集训练出的模型的输出值之间的差异。即数据的变动所导致的学习性能的变化,刻画了学习算法的稳定性。

# 偏差与方差



# 偏差-方差权衡



# 偏差-方差权衡



#### 常用的模型评估与选择方法

- 正则化
- 留出法
- 交叉验证法
- 自助法

#### • 正则化(regularization) 实现结构风险最小化策略。

• 一般形式:

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$

• 经验风险:

$$\frac{1}{N}\sum_{i=1}^{N}L(y_i,f(x_i))$$

• 正则化项:

$$\lambda J(f)$$

其中, 入权衡经验风险和模型复杂度

#### • 正则化项

L₁ 范数:

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i; w) - y_i)^2 + \lambda ||w||_1$$

其中, 
$$||w||_1 = \sum_j |w_j|$$

L<sub>2</sub> 范数:

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i; w) - y_i)^2 + \frac{\lambda}{2} ||w||_2^2$$

其中,
$$||w||_2 = \sqrt{\sum_j w_j^2}$$
, $||w||_2^2 = \sum_j w_j^2$ 

#### • 奥卡姆剃刀原理

在模型选择时,选择所有可能模型中,能很好解释已知数据并且十分简单的模型。



• 留出法 (hold-out)

直接将数据集D划分为两个互斥的部分,其中一部分作为训练集S,另一部分用作测试集T。

通常训练集和测试集的比例为0.7:0.3。划分时注意:

- 尽可能保持数据分布的一致性。避免因数据划分过程引入的额外偏差而对最终结果产生影响。
- > 采用若干次随机划分避免单次使用留出法的不稳定性。

交叉验证法(cross validation)

先将数据集划分为k个大小相似的互斥子集,每次采用k-1个子集的并集作为训练集,剩下的那个子集作为测试集。进行k次训练和测试,最终返回k个测试结果的均值。又称为"k折交叉验证"(k-fold cross validation)。

为减少因样本划分带来的偏差,通常重复p次不同的划分,最终结果是p次k折交叉验证结果的均值。

## 超越单个测试集:交叉验证



## 超越单个测试集:交叉验证

|    | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Raimi                  | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

#### 训练数据

验证数据





对这个测试集的最优模型

|    | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Ralmi                  | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

#### 训练数据1

#### 验证数据1

|    | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Ralmi                  | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

训练数据2

验证数据2

|    | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Ralmi                  | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

#### 验证数据3

训练数据3

|    | Date       | Title                               | Budget    | DomesticTotalGross | Director                   | Rating | Runtime |
|----|------------|-------------------------------------|-----------|--------------------|----------------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047          | Francis Lawrence           | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994          | Shane Black                | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                              | 150000000 | 400738009          | Chris BuckJennifer Lee     | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | 76000000  | 368061265          | Pierre CoffinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        | 225000000 | 291045518          | Zack Snyder                | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             | 100000000 | 274092705          | Alfonso Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764          | Dan Scanlon                | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855          | Peter Jackson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 160000000 | 238679850          | Justin Lin                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful           | 215000000 | 234911825          | Sam Ralmi                  | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness             | 190000000 | 228778661          | J.J. Abrams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                | 170000000 | 206362140          | Alan Taylor                | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711          | Marc Forster               | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 135000000 | 187168425          | Kirk De MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | 43000000  | 159582188          | Paul Feig                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | 37000000  | 150394119          | Rawson Marshall Thurber    | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | 40000000  | 150117807          | David O. Russell           | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419          | Baz Luhrmann               | PG-13  | 143     |

#### 验证数据4

训练数据4







欠拟合: 训练误差和交叉验证误差都很高







过拟合: 训练误差低, 交叉验证误差高



#### Polynomial Degree = 4



#### • 自助法 (booststrapping)

以自助采样为基础(有放回采样)。每次随机从D中挑选一个样本,放入D'中,然后将样本放回D中,重复m次之后,得到了包含m个样本的数据集。

样本在m次采样中始终不被采到的概率是 $(1-1/m)^m$ ,取极限得到  $\lim_{m\to\infty}(1-1/m)^m=1/e=0.368$ 。即D中约有36.8%的样本未出现在D'中。于是将D'用作训练集,D用作测试集。这样,仍然使用m个训练样本,但约有1/3未出现在训练集中的样本被用作测试集。

优点: 自助法在数据集较小、难以有效划分训练/测试集时很有用。

缺点:然而自助法改变了初始数据集的分布,这会引入估计偏差。

## 模型性能度量



• 模型没有高低,只有是否适合。

#### 模型性能度量



- 那么如何量化模型对于问题的适应性?
- > 模型预测是否足够准确
- ▶ 模型预测是否少犯错
- > 模型预测能力是否稳定

## 精度指标的局限性

- 要求你为白血病的诊断构建一个分类器
- 训练数据: 1% 的样例患有白血病,99% 是健康的
- 评价指标是预测精度: 即预测正确的百分比
- 那么构建一个最简单的分类器,对所有输入都回答"健康"
- 仍然可以达到99%的精度。。。

现实中样本在不同类别的分布不平衡,导致精度不能很好地反应分类器的性能

## 回归任务性能度量

在预测任务中,给定数据集 $D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\}$ ,其中  $y_i$  是示例  $x_i$  的真实标记。要评估学习器 f 的性能,就要把学习器预测结果 f(x) 与真实标记 y 进行比较。

回归任务最常用的性能度量是"均方误差" (mean squared error):

$$E(f; D) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

对于数据分布  $\mathcal{O}$ 和概率密度函数  $p(\cdot)$ ,均方误差为:

$$E(f;\mathcal{D}) = \int_{x \sim \mathcal{D}} (f(x) - y)^2 p(x) dx$$

## 分类任务性能度量

- 错误率与精度
- 查准率、查全率与F1分数
- ROC与AUC
- 代价敏感错误率与代价曲线

#### 混淆矩阵

|          | Predicted Positive | Predicted<br>Negative |
|----------|--------------------|-----------------------|
| Actual   | True Positive      | False Negative        |
| Positive | (TP)               | (FN)                  |
| Actual   | False Positive     | True Negative         |
| Negative | (FP)               | (TN)                  |

样本总数 正样本数 负样本数 判断为正样本数 判断为负样本数 正确分类样本数 错误分类样本数

混淆矩阵(confusion matrix)可以展示各种类型的错误,能更好地描述模型的性能,从混淆矩阵中可计算出多种指标。

#### 混淆矩阵

Predicted **Positive** 

**Predicted** Negative

Actual **Positive** 

Actual Negative

| True Positive |
|---------------|
| (TP)          |

**False Positive** (FP)

False Negative (FN)

True Negative (TN)



漏报



Type I Error

误报

假正率(false positive rate, FPR):

 $FPR = FP \setminus (TN+FP)$ 

假负率(flase negative rate, FNR):

 $FNR = FN \setminus (TP+FN)$ 

真正率(true positive rate,TPR):

模型正确预测的正样本的比例。

 $TPR = TP \setminus (TP + FN)$ 

真负率(true negative rate,TNR):

模型正确预测的负样本的比例。

 $TNR = TN \setminus (TN+FP)$ 

#### • 错误率与精度

分类任务中常用的性能度量,既适用于二分类,也适用于多分类。

➤ 错误率 (error rate)

分类错误的样本数占样本总数的比例,对数据集 D,定义为:

$$E(f;D) = \frac{1}{m} \sum_{i=1}^{m} II(f(x_i) \neq y_i)$$

➤ 精度 (accuracy)

Ⅱ(·)为指示函数,·为真假时分别取1和0

分类正确的样本数占样本总数的比例, 定义为:

$$acc(f; D) = \frac{1}{m} \sum_{i=1}^{m} II(f(x_i) = y_i)$$
$$= 1-E(f; D)$$

• 错误率与精度

分类任务中常用的性能度量,既适用于二分类,也适用于多分类。

对于数据分布  $\mathcal{O}$  和概率密度函数  $p(\cdot)$ ,错误率和精度为:

$$E(f;\mathcal{D}) = \int_{x \sim \mathcal{D}} \text{II}(f(x) \neq y) p(x) dx$$

$$acc(f; \mathcal{D}) = \int_{x \sim \mathcal{D}} II(f(x) = y)p(x)dx$$
$$= 1-E(f; \mathcal{D})$$

## 精度: 预测正确的比例

|                    | Predicted Positive     | Predicted<br>Negative  |
|--------------------|------------------------|------------------------|
| Actual<br>Positive | True Positive<br>(TP)  | False Negative<br>(FN) |
| Actual<br>Negative | False Positive<br>(FP) | True Negative<br>(TN)  |
|                    | Accuracy= T            | TP+TN<br>P+FN+FP+TN    |
|                    | Error = T              | FP+FN<br>P+FN+FP+TN    |
|                    | =1 -A                  | ccuracy                |

• 查准率、查全率与F1分数

➤ 查准率 (precision, P)

也叫准确率、精确率,表示预测为正的样例中有多少是真正的正样例,针对的是预测结果。

#### 查准率: 识别出的都是正例



Precision = 
$$\frac{TP}{TP + FP}$$

• 查准率、查全率与F1分数

➤ 查全率 (recall, R)

也叫召回率、敏感度、真正例,表示样例中的正例有多少被预测正确,针对的是原来的样本。

#### 查全率或敏感度: 识别出所有正例



Recall or 
$$=$$
  $\frac{TP}{TP + FN}$ 

• 查准率、查全率与F1分数

➤ P-R曲线



平衡点 (break-even point, BEP): 查准率=查全率

- 查准率、查全率与F1分数
  - ► F1分数

查准率与查全率的调和平均数, 定义为:

$$\frac{1}{F_1} = \frac{1}{2} \left( \frac{1}{P} + \frac{1}{R} \right)$$

$$F_1 = \frac{2 \times P \times R}{P + R} = \frac{2 \times TP}{$$
样本总数+TP-TN

F1的一般形式:

$$F_{\beta} = \frac{(1+\beta^2) \times P \times R}{\beta^2 \times P + R}$$

 $\beta > 0$ ,度量了查全率对查准率的相对重要性:

0 < β < 1, 查准率影响大 B=1, F1 β > 1, 查全率影响大

## 特异度: 避免误报

|          | Predicted Positive | Predicted<br>Negative |
|----------|--------------------|-----------------------|
| Actual   | True Positive      | False Negative        |
| Positive | (TP)               | (FN)                  |
| Actual   | False Positive     | True Negative         |
| Negative | (FP)               | (TN)                  |

Specificity = 
$$\frac{TN}{FP + TN}$$

#### 错误评价指标

|          | Predicted Positive | Predicted<br>Negative |
|----------|--------------------|-----------------------|
| Actual   | True Positive      | False Negative        |
| Positive | (TP)               | (FN)                  |
| Actual   | False Positive     | True Negative         |
| Negative | (FP)               | (TN)                  |

#### ROC曲线与AUC

ROC曲线最早是运用在军事上的,后来逐渐运用到医学领域,并于20世纪80年代后期被引入机器学习领域。相传在第二次世界大战期间,雷达兵的任务之一就是死死地盯住雷达显示器,观察是否有敌机来袭。理论上讲,只要有敌机来袭,雷达屏幕上就会出现相应的信号。但是实际上,如果飞鸟出现在雷达扫描区域时,雷达屏幕上有时也会出现信号。这种情况令雷达兵烦恼不已,如果过于谨慎,凡是有信号就确定为敌机来袭,显然会增加误报风险;如果过于大胆,凡是信号都认为是飞鸟,又会增加漏报的风险。每个雷达兵都竭尽所能地研究飞鸟信号和飞机信号之间的区别,以便增加预报的准确性。但问题在于,每个雷达兵都有自己的判别标准,有的雷达兵比较谨慎,容易出现误报;有的雷达兵则比较胆大,容易出现漏报。

为了研究每个雷达兵预报的准确性,雷达兵的管理者汇总了所有雷达兵的预报特点,特别是他们漏报和误报的概率,并将这些概率画到一个二维坐标系里。这个二维坐标的纵坐标为敏感性(真阳性率),即在所有敌机来袭的事件中,每个雷达兵准确预报的概率。而横坐标则为1-特异性(假阳性率),表示在所有非敌机来袭信号中,雷达兵预报错误的概率。由于每个雷达兵的预报标准不同,且得到的敏感性和特异性的组合也不同。将这些雷达兵的预报性能进行汇总后,雷达兵管理员发现他们刚好在一条曲线上,这条曲线就是后来被广泛应用在医疗和机器学习领域的ROC曲线。



摘自《百面机器学习》

# 受试者工作特征(Receiver Operating Characteristic,ROC)曲线



真正例率(TPR): 在所有实际为阳性的样本中,被正确地判断为阳性之比率。假正例率(FPR): 在所有实际为阴性的样本中,被错误地判断为阳性之比率。

取所有可能的阈值,计算(FPR, TPR)

➤ 士兵a-大胆型

|     | 预测正 | 预测负 |
|-----|-----|-----|
| 真实正 | 0   | 10  |
| 真实负 | 0   | 10  |

真正率TPR: 0

假正率FPR: 0

画一个点: (0,0)

Actual Positive

Actual Negative

| Positive       | Negative       |
|----------------|----------------|
| True Positive  | False Negative |
| (TP)           | (FN)           |
| False Positive | True Negative  |
| (FP)           | (TN)           |

Predicted

Y轴: TPR

Predicted

X轴: FPR



➤ 士兵b-一般型

| Actual   |  |
|----------|--|
| Positive |  |

Actual Negative

| True Positive  | False Negative |
|----------------|----------------|
| (TP)           | (FN)           |
| False Positive | True Negative  |
| (FP)           | (TN)           |

**Predicted** 

Negative

Y轴: TPR X轴: FPR

Predicted

**Positive** 

预测正预测负真实正73真实负19

真正率TPR: 0.7

假正率FPR: 0.1

画一个点: (0.1, 0.7)



➤ 士兵c-谨慎型

|     | 预测正 | 预测负 |
|-----|-----|-----|
| 真实正 | 10  | 0   |
| 真实负 | 10  | 0   |

真正率TPR: 1

假正率FPR: 1

画一个点: (1, 1)

Actual Positive

Actual Negative

| Positive       | Negative       |
|----------------|----------------|
| True Positive  | False Negative |
| (TP)           | (FN)           |
| False Positive | True Negative  |
| (FP)           | (TN)           |

Predicted

Y轴: TPR

Predicted

X轴: FPR



3个士兵3个点: (0, 0) (0.1, 0.7) (1, 1)





衡量ROC曲线下的面积 (AUC)

#### • ROC曲线与AUC

> ROC曲线的作用与优点

- ✓ 能查出任意阈值对学习器泛化性能的影响
- ✓ 有助于选择最佳的阈值
- ✓ 可以比较不同学习器的性能

➤ 非均等代价 (unequal cost)

用来衡量不同类型错误所造成的不同损失。

# 代价矩阵

|                    | Predicted Positive     | Predicted<br>Negative  |                    | Predicted Positive | Predicted<br>Negative |
|--------------------|------------------------|------------------------|--------------------|--------------------|-----------------------|
| Actual<br>Positive | True Positive<br>(TP)  | False Negative<br>(FN) | Actual Positive    | 0                  | $cost_{01}$           |
| Actual<br>Negative | False Positive<br>(FP) | True Negative<br>(TN)  | Actual<br>Negative | $cost_{10}$        | 0                     |

cost<sub>ij</sub>表示把第i类样本预测为第j类样本的代价。

➤ 代价敏感错误率 (cost-sensitive error rate)

非均等代价下,不再是简单地最小化错误次数,而是希望最小化总体代价(total cost)。令D+和D-分别代表样例集D的正例子集和负例子集,则代价敏感错误率为:

$$E(f; D; \text{ cost}) = \frac{1}{m} \left( \sum_{x_i \in D^+} \text{II}(f(x_i) \neq y_i) \times cost_{01} + \sum_{x_i \in D^-} \text{II}(f(x_i) \neq y_i) \times cost_{10} \right)$$

➤ 代价曲线 (cost curve)

在非均等代价下,ROC曲线不能直接反映出学习器的期望总体 代价,而"代价曲线"则可达到该目的。

➤ 代价曲线 (cost curve)

横轴X: 取值为[0,1]的正例概率代价

$$P(+)\cos t = \frac{p^*\cos t_{01}}{p^*\cos t_{01} + (1-p)\cos t_{10}}$$

P为样例为正例的概率。

➤ 代价曲线 (cost curve)

纵轴Y: 取值为[0,1]的归一化代价

$$\cos t_{norm} = \frac{FNR * P * \cos t_{01} + FPR * (1-P) * \cos t_{10}}{P * \cos t_{01} + (1-P) * \cos t_{10}}$$

P为样例为正例的概率。

➤ 代价曲线 (cost curve)

Y = (FNR-FPR)\*X+FPR



### 多分类错误评价指标

|                   | Predicted<br>Class 1 | Predicted<br>Class 2 | Predicted<br>Class 3 |
|-------------------|----------------------|----------------------|----------------------|
| Actual<br>Class 1 | TP1                  |                      |                      |
| Actual<br>Class 2 |                      | TP2                  |                      |
| Actual<br>Class 3 |                      |                      | TP3                  |



大部分多分类错误评价 指标和二分类的类似— 只是扩展为求和取平均。

## 宏平均和微平均

### • 宏平均(Macro-averaging)

先对每个类统计指标值,然后再对所有类求算术平均值。

$$\begin{aligned} \text{Macro}\_\text{P} &= \frac{1}{n} \sum_{i=1}^n P_i \\ \text{Macro}\_\text{R} &= \frac{1}{n} \sum_{i=1}^n R_i \\ \text{Macro}\_\text{F1} &= \frac{1}{n} \sum_{i=1}^n F1_i \\ \\ \text{Macro}\_\text{F1} &= \frac{2 \times Macro}\_P \times Macro}\_R \end{aligned}$$

# 宏平均和微平均

#### • 微平均(Micro-averaging)

对数据集中每个实例不分类别进行统计,建立全局混淆矩阵,然后再计算相应指标。

$$\begin{aligned} &\text{Micro\_P} = \frac{\overline{\text{TP}}}{\overline{\text{TP}} + \overline{\text{FP}}} \ = \ \frac{\sum_{i=1}^{n} TP_i}{\sum_{i=1}^{n} TP_i + \sum_{i=1}^{n} FP_i} \\ &\text{Micro\_R} = \frac{\overline{\text{TP}}}{\overline{\text{TP}} + \overline{\text{FN}}} \ = \ \frac{\sum_{i=1}^{n} TP_i}{\sum_{i=1}^{n} TP_i + \sum_{i=1}^{n} FN_i} \end{aligned}$$

$$&\text{Micro\_F1} = \frac{\frac{2 \times Micro\_P \times Micro\_R}{Micro\_P + Micro\_R}}{\frac{2 \times Micro\_P \times Micro\_R}{Micro\_P + Micro\_R}}$$

### 练习

- 有10个样本,属于A、B、C三个类别。假设 这10个样本的真实类别和预测的类别 分别 是:
  - 真实: AAACBCABBC
  - 预测: AACBACACBC
- 1. 求出每个类别的精度和错误率, P,R,和F1
- 2. 求出宏平均P,R,和F1
- 3. 求出微平均P,R,和F1

## 练习

 数据集包含1000个样本,其中500个正例, 500个反例,将其划分为包含70%样本的训练集和30%个样本的测试集用于留出法评估, 试估算共有多少种划分方法。