antisymmetrical part of the fensor, w_{kl} . Thus, in the second case of a combined deformation of the material and of a rotation of it about the origin of the axes, the general strain tensor E_{kl} has a symmetrical part, e_{kl} , which gives the deformation of the material and an antisymmetrical part, w_{kl} , which gives the rotation of the material about the axes. The symmetrical part of the strain tensor (equation (3)) that does not contain rotation about the origin of the axes, and has only six independent elements, is used in the generalization of Hooke's law. This law relates the state of stress of the material to its state of deformation irrespective of the orientation of the material to the axes. Note that the strains $\partial U_i/\partial x_j$, i=j, correspond to longitudinal strains and those of the form $\partial U_i/\partial x_i$, $i\neq j$, correspond to shear strains.

2.3 The stress tensor

The stress tensor at a point can also be reduced to six independent components, and is defined in terms of the force per unit area acting across the faces of a unit cube as the volume of the cube tends to zero. The stresses σ_{ii} arise from forces acting normally to the faces and the stresses σ_{ij} , $i \neq j$, are shear stresses in which the force acts parallel to the plane of the face in the direction of the first subscript and across a plane perpendicular to the direction given by the second subscript. Clearly the forces acting across opposite pairs of faces of the cube of material must be equal and opposite in the case of equilibrium and this also applies in the limit under dynamic conditions. Furthermore, in equilibrium there is no rotation of the material, so by considering moments about each axis in turn,

$$\sigma_{ij} = \sigma_{ji}, \tag{8}$$

and again, this also applies in the limit under dynamic conditions. Thus there are just six independent components of stress.

2.4 The matrix notation

Returning to Hooke's law (equation (1)) it is apparent that in place of a possible 81 components of c_{ijkl} the above symmetry of σ_{ij} and e_{kl} lead to at most 36 independent elastic constants. At this point it is appropriate to introduce the more compact two-suffix notation for the elastic constants, that is used in the literature, in which the tensor for the $c_{ijkl}(i, j, k, l = 1, 2, 3)$ is replaced by the matrix c_{ij} , i, j = 1, 2, ... 6 according to the following scheme of subscript equality:

Tensor notation 11 22 33 23,32 31,13 12,21

Matrix notation 1 2 3 4 5 6.

For example c_{1112} would be replaced by c_{16} . The stress σ_{ij} and the strain e_{kl} are also converted to the matrix notation according to this scheme, except that in the case of the strains a factor of $\frac{1}{2}$ is introduced in the matrix notation when $k \neq l$, so that

$$\sigma_i = c_{ii}e_i, \tag{9}$$

is the matrix form of Hooke's law.

3. ENERGY OF DEFORMATION

The potential energy Φ of the crystal may be expressed as a Taylor series in terms of the strain, and hence

$$\Delta \Phi = \Phi - \Phi(0) = \left(\frac{\partial \Phi}{\partial e_{ij}}\right)_0 e_{ij} + \frac{1}{2} \left(\frac{\partial^2 \Phi}{\partial e_{ij} \partial e_{kl}}\right)_0 e_{ij} e_{kl} + \frac{1}{6} \left(\frac{\partial^3 \Phi}{\partial e_{ii} \partial e_{kl} \partial e_{mn}}\right)_0 e_{ij} e_{kl} e_{mn} + \dots,$$
(10)

where $\Phi(0)$ is the potential energy of the crystal in the equilibrium unstrained state and $\Delta\Phi$ is the change in potential energy from the equilibrium state to the strained state. Since the deformation is about the equilibrium position, $(\partial\Phi/\partial e_{ij})_0$, and, for small strains, terms in $e_{ij}e_{kl}e_{mn}$ and higher order terms may be neglected. For deformation about the equilibrium position $\Delta\Phi$ must be positive, which means that the right-hand side of equation (10) must be a positive quadratic form with the consequence that

$$\left(\frac{\partial^2 \Phi}{\partial e_{ij} \partial e_{kl}}\right)_0 = \left(\frac{\partial^2 \Phi}{\partial e_{kl} \partial e_{ij}}\right)_0. \tag{11}$$

Now during the application of the stress σ_{ij} a certain amount of work ΔW will be done to produce the strain e_{ij} and

$$\Delta W = \frac{1}{2}\sigma_{ii}e_{ii}.\tag{12}$$

The work ΔW may be equated to the strain energy $\Delta \Phi$ so that

$$\sigma_{ij} = \left(\frac{\partial^2 \Phi}{\partial e_{ij} \partial e_{kl}}\right)_0 e_{kl},\tag{13}$$

and hence

$$c_{ijkl} = \left(\frac{\partial^2 \Phi}{\partial e_{ij} \partial e_{kl}}\right)_0 = c_{klij}.$$
 (14)

which establishes another 15 equalities in the elastic constants and reduces

the maximum number of independent constants to 21. It may be noted that the elastic constant tensor c_{ijkl} is equated to the second-order differential of the crystal potential energy function and for this reason they are sometimes referred to as second-order elastic constants. The next term in the Taylor series expansion gives rise to the third-order elastic constants, which give a measure of the anharmonic form of the interatomic forces or their deviation from the harmonic form of an ideal Hooke's law solid.

The number of independent elastic constants for each crystal class and their suffices are given by Nye⁴ in graphical form and this is summarized in Table 1.

Table 1. The non-zero elastic constants for the various crystal systems and point groups. (Remember that $c_{ij} = c_{ji}$).

Number of point Point group			Number of			
System	groups	(Schoenflies)	\mathcal{C}_{ij}	C _{ij}		
Triclinic	2	C _i and C _i	21			
Monoclinic	3	C_{2b} , C_s and C_2	13	$c_{11}, c_{12}, c_{13}, c_{15}, c_{22}, c_{23},$ $c_{25}, c_{33}, c_{35}, c_{44}, c_{46}, c_{55}$ and c_{66}		
Orthorhombic	3	D_{2h}, C_{2v} and D_2	. 9	$c_{11}, c_{12}, c_{13}, c_{22}, c_{23}, c_{33}, c_{44}, c_{55} $ and c_{66}		
Tetragonal	3	C _{4h} , S ₄ and C ₄	7	$c_{11} = c_{22}, c_{12}, c_{13} = c_{23},$ $c_{16} = -c_{26}, c_{33}, c_{44} = c_{55}$ and c_{66}		
Tetragonal	4	D_{4h} , D_{2d} , C_{4v} and D_4	6	$c_{11} = c_{22}, c_{12}, c_{13} = c_{23}, c_{33},$ $c_{44} = c_{55} \text{ and } c_{66}$		
Trigonal	2	C _{3i} and C ₃	7	$c_{11} = c_{22}, c_{12}, c_{13} = c_{23},$ $c_{14} = -c_{24}, -c_{15} = c_{25}, c_{33}$ and		
				$c_{44} = c_{55}$ whilst $c_{46} = 2c_{25}$, $c_{56} = 2c_{14}$ and $c_{66} = \frac{1}{2}(c_{11} - c_{12})$		
Trigonal	3	D_{3d}, C_{3v} and D_3	6	$c_{11} = c_{22}, c_{12}, c_{13} = c_{23},$ $c_{14} = -c_{24}, c_{33} \text{ and } c_{44} = c_{55}$ whilst $c_{56} = 2c_{14}$ and $c_{66} = \frac{1}{2}(c_{11} - c_{12})$		
Hexagonal	7	$D_{6h}, D_{3h}, C_{6v}, D_{6}, C_{6h}, C_{3h}$ and C_{6}	5	$c_{11} = c_{22}, c_{12}, c_{13} = c_{23}, c_{33}$ and $c_{44} = c_{55}$ whilst $c_{66} = \frac{1}{2}(c_{11} - c_{12})$		
Cubic	5	O_h , T_d , O_h , T_h , and T	3	$c_{11} = c_{22} = c_{33}, c_{12} = c_{13} = c_{23}$ and $c_{44} = c_{55} = c_{66}$		

4. THE WAVE EQUATION

The initial step in the derivation of the wave equation and hence of an expression for the velocity of the waves involves, as usual, the equations of

motion for an element of the material, but now these must be expressed in the tensor format so that

$$\frac{\partial \sigma_{ij}}{\partial x_i} = \rho u_i, \tag{15}$$

where ρ is the density of the material. Now substituting equations (1) and (3) into (15) eliminates the stress components so that

$$\frac{1}{2}c_{ijkl}\frac{\partial}{\partial x_i}\left(\frac{\partial U_k}{\partial x_l} + \frac{\partial U_l}{\partial x_k}\right) = \rho u_j. \tag{16}$$

If it is now assumed that for an infinite anisotropic elastic solid the solution of equation (16) is a plane wave with constant amplitude A, propagation wave number k, with wavefronts normal to a vector with direction cosines l_1 , l_2 , and l_3 , then:

where v is the phase velocity ω/k in the direction given by l_i . The components of the amplitude may be denoted by α_i so that:

$$\mathbf{A} = \mathbf{i}_i \alpha_i. \tag{18}$$

Then when the assumed solution is substituted into equation (16) the following homogeneous equations result:

$$(\Gamma_{jk} - \delta_{jk}\rho v^2)\alpha_j = 0, (19)$$

where

$$\Gamma_{jk} = \frac{1}{2} l_i l_i (c_{ijkl} + c_{ijlk}), \tag{20}$$

and

$$\delta_{jk} = 0$$
, for $k \neq j$; $\delta_{jk} = 1$ for $k = j$. (21)

These equations have a non-trivial solution only if the secular equation:

$$|\Gamma_{ij} - \delta_{ij}\rho v^2| = 0, \tag{22}$$

is satisfied. This equation is cubic in ρv^2 with three real roots, and from them the velocities v_1 , v_2 , and v_3 are obtained. The largest velocity corresponds to a longitudinal, or nearly longitudinal, wave and the other two velocities are to transverse or nearly transverse waves. The three values of ρv^2 are, of course, the eigenvalues of the matrix Γ_{jk} , and the corresponding solutions for the displacement vector \mathbf{A} are the eigenvectors. For each value of v there is a corresponding solution, for which the relative values of the displacement components can be determined from equation (19).

The three displacement vectors or particle motion vectors are:

$$\mathbf{A}_1 = d_1 \mathbf{i}_i a_i; \qquad \mathbf{A}_2 = d_2 \mathbf{i}_i b_i; \qquad \mathbf{A}_3 = d_3 \mathbf{i}_i c_i, \tag{23}$$

corresponding to three roots ρv_1^2 , ρv_2^2 , and ρv_3^2 respectively; d_1 , d_2 , and d_3 are constants dependent on the excitation, and

$$\frac{a_{2}}{a_{1}} = \frac{\Gamma_{22}(\Gamma_{11} - \rho v_{1}^{2}) - \Gamma_{12}\Gamma_{13}}{\Gamma_{13}(\Gamma_{22} - \rho v_{1}^{2}) - \Gamma_{12}\Gamma_{23}}$$

$$\frac{a_{3}}{a_{1}} = \frac{\Gamma_{23}(\Gamma_{11} - \rho v_{1}^{2}) - \Gamma_{12}\Gamma_{13}}{\Gamma_{12}(\Gamma_{33} - \rho v_{1}^{2}) - \Gamma_{23}\Gamma_{13}},$$
(24)

and

$$a_1^2 + a_2^2 + a_3^2 = 1.$$

There are similar expressions associated with v_2 and v_3 for the b_i and the c_i . The energy flow vector, as defined by Love, is

$$E_{i} = \sigma_{ii} U_{i}, \tag{25}$$

It represents the energy flow per unit time across a surface of unit area normal to this vector. An analogue of the Poynting's vector for the direction of energy flow is obtained when equations (1), (3), and (23) are substituted into (25) and the result is averaged over a cycle, namely:

$$S_{i} = \frac{1}{2}d_{1}^{2} \frac{\omega^{2}}{v_{1}} c_{ijkl} a_{j} (l_{l} a_{k} + l_{k} a_{l}), \qquad (26)$$

with similar expressions for the other two waves.

5. THE COMPUTER PROGRAM

5.1 Program description

The program given here permits the calculation of the velocity, the particle motion direction and the energy flow direction of each mode of propagation for any crystal class in any direction, from the appropriate set of elastic constants and the density of the material. This is done by solving equations (22), (24), and (26). To specify a direction in the crystal two angular coordinates are used rather than the direction cosines used in the calculations, as the former are more easily visualized. The angles used are the zenith angle θ and the azimuth angle ϕ , where θ is the angle between the direction and the positive z-axis and ϕ is the angle between the projection of the direction on to the x-y plane and the positive x-axis. The calculations are performed by the program in a region specified by lower and upper angular limits and divided into a number of steps or intervals.

The master segment controls the stepping of the directions within the range given and the subroutine VELOCT is used to calculate the velocities from the elastic constants and density for the direction specified. Within the subroutine VELOCT, after setting up the appropriate equations, two library subroutines FO1AJF and FO2AMF are used to obtain the roots of equation (22), namely the eigenvalues. Both library subroutines are from the NAG library, but any equivalent subroutines could be used. The subroutine FO1AJF gives the Householder reduction of a real symmetric matrix to tridiagonal form for use by FO2AMF. The subroutine FO2AMF calculates all the eigenvalues and eigenvectors of the real symmetric tridiagonal matrix that has been produced by FO1AJF. The velocities v, are then calculated from the square root of the eigenvalue divided by the density, after which control returns to the master segment. The particle motion direction is obtained from the eigenvectors produced by FO2AMF in VELOCT, instead of from equation (24), and the energy flow direction is obtained by evaluation of equation (26). The subroutine DIRECT is used to obtain the spherical polar directions from the direction cosine data.

The output from the program consists of the input data and, for each direction in the region specified, the three velocities and the associated particle motion directions and energy flow directions. In the output all directions are given both in terms of angles θ and ϕ , and in terms of the direction cosines l_1 , l_2 , and l_3 . If the elastic constants are given in GN m⁻² and the density in 1000 kg m^{-3} , then the velocity values will appear in km s⁻¹ since $v = (F/\rho)^{\frac{1}{2}}$ where v is the velocity, F is the effective elastic constant for the mode, and ρ is the density. The effective elastic constant F has the same units as the elastic constants c_{ij} and is a function of them dependent on the mode considered.

5.2 Running the program

The elastic constants and densities of a number of materials are given in Table 2. Following the listing of the program a sample set of data based upon Table 2 is given, together with the associated output produced by a run of the program. The crystallographic axes for a tetragonal material, such as CaMoO₄, are an orthogonal set, with the z-axis parallel to the axis of fourfold rotational symmetry. The x- and y-axes are equivalent and they are chosen to be in the direction of the two equal dimensions of the smallest unit cell. A number of general observations may be made for sound wave propagation in tetragonal materials. For propagation along the z-axis $l_1 = 0$, $l_2 = 0$, and $l_3 = 1$, and after appropriate substitution into equations (19) and (22) it is clear that the three waves are all pure modes since the matrix is diagonal, and simple expressions can be obtained for the velocities. For propagation in the x-y plane one of the transverse waves is a pure mode

Table 2. The elastic constants and densities of some crystalline solids. All values of elastic constants are given, in GN m⁻², and only zero values have been omitted from the table. Note that the last row gives the source of reference

Material Point	CaWO ₄	CaMoO ₄	SrMoO ₄	MgF ₂	CaSO ₄ , 2H ₂ O	NaBrO ₃	Cu
group	C _{4h}	C _{4h}	C _{4h}	D _{4h}	C _{2h}	T	O _h
¢ ₁₁	143.87	143.92	115.46	124.0	78.6	55.60	169.0
² 12	63.501	68.61	59.85	73.0	41.0	16.76	122.0
- 13	56.170	48.43	44.36	54.0	26.8	16.76	122.0
14							19657
15					-7.0		
16	16.355	12.72	12.09				
22	143.87	143.92	115,46	124.0	62.7	55.60	169.0
23	56.170	48.43	44.36	54.0	24.2	16.76	122.0
24					24.2		
² 25					3.1		
26	-16.355	-12.72	-12.09				
33	130.18	125.86	104.19	177.0	72.6	55.60	169.0
34							
35					-17.4		
36	aa 20a						ver og arguere per over 1808) i Languere and
44	33.609	36.91	34.99	55.4	9.10	15.08	75.5
45							
46	22.600	25.01	24.00	1	-1.6	4 F 60	
55	33.609	36 . 91	34.99	55.4	26.4	15.08	75.5
56	45.072	46.07	17.55	87.0	40.44	15.00	755 CAR
66	45.073	46.07	47.55	97.8	10.44	15.08	75.5
Density	6120	1755	4540	2177	2200	2220	9020
kg m ⁻³ Reference	6120 5	4255 6	4540 7	3177 8	2280 9	3339 10	8930 11

with particle motion parallel to the z-axis. According to Neighbours and Schacher, 12 the other two modes of propagation in this plane are both semi-pure. That is to say the direction of energy flow lies within the x-y plane, although it is not parallel to the direction of propagation. They also show that there are two pure mode directions in the x-y plane at 45° to each other, and the amount by which these are rotated from the x-axis depends on the magnitude of c_{16} . In planes defined by these directions and the z-axis, propagation is again by semi-pure modes, and accidental pure modes may occur in either of these planes at certain angles θ from the z-axis. Because of the crystal symmetry these planes are repeated at 90° intervals. By use of the computer program it is possible to investigate these and other features of wave propagation in crystalline materials.

Neglect of the features of energy flow in tetragonal materials can lead to incorrect identification of the wave modes in experimental measurements and consequent incorrect values of elastic constants, as the direction of propagation and the direction of energy flow may differ by up to 60°,

James.⁷ These problems can be particularly acute when measurements are carried out on small specimens and unintended reflections can occur which give rise to misleading values for velocity. An extensive discussion of the features of the propagation of sound in solids is given by Musgrave.²

6. FURTHER DEVELOPMENT

Apart from the intrinsic interest in the results of this program there are other uses for the VELOCT subroutine of which two examples are given below:

(1) The Debye characteristic temperature θ_0 of a crystalline solid at 0 K may be calculated from the elastic constants and the density at 0 K using the expression:

$$\theta_0 = \frac{h}{k} \left(\frac{9N}{4\pi V} \right)^{\frac{1}{3}} \left(\int_{0}^{4\pi} \sum_{j=1}^{3} \frac{1}{v_j^3} \frac{d\Omega}{4\pi} \right)^{-\frac{1}{3}}, \tag{27}$$

where N is Avogadro's number, h is Planck's constant, k is Boltzmann's constant, V is the molar volume at 0 K, and v_i are the velocities of the two transverse and longitudinal waves. The integration is carried out numerically with the aid of the VELOCT subroutine from this program. A program to evaluate θ_0 has been written by Gluyas, Hughes, and James⁵ and from their elastic constant data for CaWO₄ extrapolated to 0 K they found $\theta_0 = 246.5 \text{ K}$. In this case, in place of Avogradro's number N, 2N is used since CaWO₄ is taken to be 'diatomic' and consists of Ca²⁺ and WO₄²⁻ ions.

(2) Another application of the VELOCT subroutine of this program has been in the evaluation of the optimum values of the elastic constants of CaMoO₄ from experimental measurements of the velocities of ultrasonic waves (James⁶). The optimum set of elastic constants has been obtained from an over-determined set of measurements by use of the subroutine VELOCT with an iterative minimization subroutine (EO4CCF from the NAG library). The minimization routine was used to adjust the calculated c_{ij} to obtain the lowest value of

SUMSQ =
$$\sum_{i=1}^{n} \left| \frac{v_i^2(\text{calc.})}{v_i^2(\text{meas.})} - 1 \right|,$$
 (28)

where v_i (calc.) is the value of the velocity calculated by the subroutine VELOCT from the current values of the c_{ij} and the density, v_i (meas.) is the measured value of that velocity, and n is the number of measurements that have been made. It can be shown that, for an appropriate set of velocity measurements taken from suitably orientated specimens, only as many

velocities as the number of independent elastic constants have to be measured. However, once a particular orientation of specimen has been produced it is relatively straightforward to measure the velocity of all three modes and then an over-determined set of measurements becomes available for which this method is ideal.

REFERENCES

- 1. A. E. R. Love, The Mathematical Theory of Elasticity (Cambridge University Press, London 1927).
- 2. M. J. P. Musgrave, Crystal Acoustics (Holden Day, London, 1970).
- 3. H. F. Pollard, Sound Waves in Solids (Pion, London, 1977).
- 4. J. F. Nye, Physical Properties of Crystals (Oxford, London, 1957).
- 5. M. Gluyas, F. D. Hughes, and B. W. James, J. Phys. D. Appl. Phys., 6, 2025 (1973).
- 6. B. W. James, J. Appl. Phys., 45, 3201 (1974).
- 7. B. W. James, Phys. Stat. Sol. (a), 13, 89 (1972).
- 8. H. R. Cutler, J. J. Gibson and K. A. McCarthy, Solid State Commun., 6, 431 (1968).
- 9. S. Haussuhl, Z. Krist., 122, 311 (1965).
- 10. M. Gluyas, R. Hunter and B. W. James, J. Phys. D. Appl. Phys., 8, 1 (1975).
- 11. Y. Hiki and A. V. Granato, Phys. Rev., 144, 411 (1966).
- 12. J. R. Neighbours and G. E. Schacher, J. Appl. Phys., 38, 5366 (1967).

VELOCITY PROGRAM

```
C THE VELOCITY OF ULTRASONIC WAVES IN ANY DIRECTION IN A SOLID
C ARE CALCULATED. THE DIRECTIONS IN WHICH THE VELOCITIES ARE
С
    CALCULATED ARE SPECIFIED BY THE POLAR DIRECTIONS THETA AND PHI.
C
    THE CALCULATIONS ARE DONE FOR A SERIES OF THETA AND PHI VALUES
С
    GIVEN BY LOWER ANGULAR LIMITS, TL AND PL, BY UPPER ANGULAR LIMITS
C
    TU AND PU, AND BY THE NUMBER OF INTERMEDIATE DIRECTIONS NT AND NP.
    REAL LL
    DIMENSION C(6,6),LL(3),V(3),A(3,3),D(3),G(3,3),IA(20),
1NOT(3,3),55(3,3)
    DATA NOT(1,1),NOT(1,2),NOT(1,3),NOT(2,1),NOT(2,2),
    INDT(2,3),NDT(3,1),NDT(3,2),NDT(3,3)/1,6,5,6,2,4,5,4,3/
PI=3.141592654
    Z=P[/180.0
  READ INPUT DATA
23 READ(5,104)IC
    IF (IC-1) 1000,33.1
    IC IS USED AS A CONTROL INTEGER AS FOLLOWS.
    FOR IC=2 NEW TITLE, RHO, CIJ, TE, TH, NT, PL, PH, AND NP ARE SOUGHT,
C IC MUST BE SET EQUAL TO 2 AT THE BEGINNING OF THE DATA.
    FOR IC=1 NEW TL, TH, NT, PL, PH, AND NP ARE SOUGHT FOR USE WITH
    THE PREVIOUS RHO AND CIJ.
С
   FOR IC=0 RUN OF PROGRAM IS ENDED.

1 READ(5,100)IA
Ç
READC 5, 101 )RHO
WRITE(6,201)RHO
 WRITE(6,208)
    DO 2 I=1,6
    READ(5,103)(C(I,J),J=1,6)
   2 WRITE(6,202 XC(1,J),J=1,6)
  33 READ(5,102)TL, TH, NT
    READ(5, 102)PL, PH, NP
    WRITE(6,203)TL,TH,NT
    WRITE(6,204)PL,PH,NP
    WRITE(6,206)
 100 FORMAT(20A4)
 101 FORMAT(1F0.0)
 102 FORMAT(2F0.0,10)
 103 FORMAT(6F0.0)
 104 FORMAT(110)
 200 FORMAT(1H1,20A4)
 201 FORMAT(1H ,/, DENSITY = 1,F10.4,1H ,**1000 KGM-31./)
 202 FORMAT(1H , "CIJ MATRIX", 6F10.4)
 203 FORMATCIH , /, THETA RANGE . F8.4, IH , TO , F8.4, IH , IN , IG, IH ,
   (*STEPS*)
 204 FORMAT(1H , 'PHI RANGE ', F8.4, 1H , 'TO', F8.4, 1H , 'IN', 16, 1H ,
   1"STEPS")
 205 FORMAT(1H ,/, MODE VELOCITY, F8.3, 1H , KM/S')
 206 FORMAT(1H , ///, 36X, THETA PHI L1 L2
 207 FORMAT(1H , /, ONE EIGENVALUE NEEDS HORE THAN 30 (TERATIONS', /)
 208 FORMAT(1H , 'ELASTIC CONSTANTS GNM-2'
    FNT=FLOAT(NT)
    FNP=FLOAT(NP)
    TS=(TH-TL)/FNT*Z
    PS=(PH-PL)/FNP*Z
    T=TL*Z
```

.

VELOCITY PROGRAM

```
DO 3 I=1,NT
     P≃PL×Z
     DO 4 J=1,NP
C
     CACULATE VELOCITIES V, AND DISPLACEMENT VECTORS A
     CALL VELOCT(RHO, T, P, C, V, LL, A, NOT, IFAIL)
     THETA=T/Z
    PHI=P/Z
     WRITE(6,209)THETA, PHI, LL(1), LL(2), LL(3)
     IF (IFAIL) 6,6,5
   5 WRITE(6,207)
     GOTO 4
   6 CONTINUE
 209 FORMATCH , //, PROPAGATION DIRECTION .9X,5F10.4)
     DO 10 NR=1,3
     CALCULATE ENERGY VECTORS S
C
     DO i1 IT=1.3
     SUM=0.0
     DO 12 JT=1.3
     DO 13 KT=1.3
   M=NOT(IT, JT)
     N=NOT(KT,LT)
     SUM=SUM+C(M,N)*A(JT,NR)*(LL(LT)*A(KT,NR)+LL(KT)*A(LT,NR))
  14 CONTINUE
  13 CONTINUE
  12 CONTINUE
     SS(IT,NR)=SUM
  11 CONTINUE
10 CONTINUE
     PRINT FOR EACH VELOCITY THE PARTICLE MOTION AND
     ENERGY FLOW DIRECTIONS AND FINALLY THE VELOCITY
     DO 15 NR=1,3
     WRITE(6, 205 )V(NR)
     CALL DIRECT(A,NR,210,1E-4)
CALL DIRECT(SS,NR,211,1E-4)
   15 CONTINUE
   4 P-P+PS
   3 T=T+TS
     GOTO 23
     CONTROL NOW RETURNS TO THE BEGINNING OF THE PROGRAM.
C
     A NEW VALUE OF THE CONTROL INTEGER IS USED FOLLOWS.
C
     TO END THE RUN OF THE PROGRAM, IC=0
     TO ENABLE NEW RANGES OF THETA AND PHI TO BE SELECTED, IC=1
     TO RUN THE PROGRAM FOR ANOTHER MATERIAL, IC=2
 1000 CONTINUE
     STOP
     SUBROUTINE VELOCT(RHO, T, P, C, V, LL, A, NOT, IFAIL)
     RHO IS THE DENSITY, I AND P ARE THE POLAR COORDINATES
C
     THETA AND PHI IN RADIANS C IS A 6*6 ARRAY OF THE ELASTIC CONSTANTS, V IS AN ARRAY OF THE 3 VELOCITIES AND LL IS AN ARRAY OF THE 3 DIRECTION COSINES AND A IS
C
С
C
     A 3*3 ARRAY OF THE EIGENVECTORS
C
     REAL LL
     DIMENSION NOT(3,3),C(6,6),G(3,3),A(3,3),LL(3),V(3),D(3),E(3)
```

VELOCITY PROGRAM

```
CALCULATE DIRECTION COSINES OF PROPAGATION DIRECTION
                 LL(1)=SIN(T)mCOS(P)
LL(2)=SIN(T)mSIN(P)
                 LL(3)=COS(T)
 C
                 SET UP CHRISTOFFEL MATRIX
                D0 1 US=1,3,1
D0 2 KS=1,3,1
SUMS=0.0
                 DO 1 JS=1,3,1
SUMS=0.0
               DO 3. IS=1,3,1
              DO 1 LS=1,3,1
            MS=NOT(IS, JS)
                 NS=NOT(KS,LS)
                SUMS=SUMS+LL(IS)*LL(LS)*C(MS,NS)
       1 CONTINUE
3 CONTINUE
                 G(JS, KS)=SUMS
                 IF(Js.NE.Ks) G(Ks,Js)=G(Js,Ks)
           2 CONTINUE
1 CONTINUE
                 CALL F01AJF(3,2,0**(-218),6,3,D,E,A,3)
                 CALL F02AMF(3,2.0**(-37),D,E,A,3,IFAIL)
                 IF (IFAIL) 5,5,6
           5 D0 7 JS=1,3
            7 U(JS)=SQRT(D(JS)/RHO)
            6 RETURN
                 END
                 SUBPOUTINE DIRECT(A,NR,JW,EPS)
 C
                 FOR A(I,R) WHERE I=1,2,3 IN WHICH THE A(I,R) ARE NOT
 C
                 NECESSARILY NORMALIZED THE CORRESPONDING SPHEPICAL
 С
                POLAR CO-ORDINATES THETA AND PHI ARE CALCULATED. THETA
 С
                PHI AND THE NORMALIZED DIRECTION COSINES APE PRINTED
 C
                 JW CONTROLS THE WRITE STATEMENT THAT IS USED
                REAL L
                DIMENSION L(3),A(3,3)
                PI=3.141592654
                Z=PI/180.0
                S=0.0
                DO 1 ID=1,3
           1 IF(ABS(A(ID, NR)).GT.S) S=ABS(A(ID, NR))
                REDUCE RANGE OF DIRECTION COSINES TO 0 TO 1
 C
                DO 2 ID=1,3
L(ID)=R(ID,NR)/S

The section of the se
           2 L(ID)=A(ID,NR)/S
                S=0.0
                DO 3 ID=1,3
           3 S=S+L(ID)##2
                S=SQRT(S)
                NORMALIZE DIRECTION COSINES
C
                DO 4 [D=1.3
           4 L(ID)=L(ID)/S
C
                CALCULATE THETA AND PHI FROM NORMALIZED DIRECTION COSINES
                IF(ABS(L(3)).GT.EPS) GO TO S
                GO TO 7
           5 IF(ABS(L(3)).LT.(1.0-EPS)) GO TO 6
                THETA=0.0
                                                                                         子。 1000年 1200年 12
                PHI=0.0
```

UELOCITY PROGRAM

PHI HAS NO MEANING FOR THETA=0.0 THEREFORE SET PHI=0.0 C GO TO 15 6 THETA=ATAN(SQRT(1.0-L(3)##2)/L(3)) NOTE THETA DEFINED 8.0 TO PI WHEREAS ATAN RANGE -P1/2 TO +P1/2 C IF (THETA.GT.0.0) 60 TO 7 THETA=PI+THETA 7 PHI=0.0 IF (L(1)) 13,8,9 8 IF (L(2)) 10,15,11 9 IF (LG2)) 12,14,14 10 PHI=PI 11 PHI=PHI+PI/2.0 60 TO 15 12 PHI=PI 13 PHI=PHI+PI 14 PHI=PHI+ATAN(L(2)/L(1)) 15 CONTINUE THETA=THETA/Z PHI=PHI/Z IF (JU-210) 16,16,17 16 URITE(6,210)THETA, PHI, L(1), L(2), L(3) **60TO 18** 17 URITE(6,211)THETA, PHI, L(1), L(2), L(3) 210 FORMAT(1H , "PARTICLE MOTION", 15X, 5F10.4) 211 FORMAT(1H , 'ENERGY FLOH', 19X, 5F10.4) 18 CONTINUE RETURN END

DATA FOR THE VELOCITY PROGRAM

```
CALCIUM MOLYBDATE DATA FROM B W JAMES J APPL PHYS VOL 45 3201 (1974)
4.255
143.92 68.61 48.43 0.0 0.0 12.72
68.61 143.92 48.43 0.0 0.0 -12.72
48.43 48.43 125.86 0.0 0.0 0.0
0.0 0.0 0.0 39.91 0.0 0.0
0.0 0.0 0.0 0.0 39.91 0.0
12.72 -12.72 0.0 0.0 0.0 46.07
90.0 95.0 1
0.0 90.0 6
                                                 400/01/04
```

海南市 化多型铁铁 医克里克氏试验检 经连续 医抗性性毒素

RESULTS FROM THE VELOCITY PROGRÂM

CALCIUM MOLYBDATE DATA FROM B W JAMES J APPL PHYS VOL 45 3201 (1974)

DENSITY = 4.2550 #1000 KGM-3

ELASTIC CONSTANTS GNM-2

CIJ MATRIX 143.9200 68.6100 48.4300 0.0000 0.0000 12.7200

CIJ MATRIX 68.6100 143.9200 48.4300 0.0000 0.0000 -12.7200

CIJ MATRIX 48.4300 48.4300 125.8600 0.0000 0.0000 0.0000

CIJ MATRIX 0.0000 0.0000 0.0000 39.9100 0.0000 0.0000

CIJ MATRIX 0.0000 0.0000 0.0000 0.0000 39.9100 0.0000

CIJ MATRIX 12.7200 -12.7200 0.0000 0.0000 0.0000 46.0700

THETA RANGE 90.0000 TO 95.0000 IN 1 STEPS
PHI RANGE 0.0000 TO 90.0000 IN 6 STEPS

		THETA	PHI	LI	rs	L3
PROPAGATION DIRECTION		90.0000	0.0000	1.0000	0.0000	-0.0000
MODE VELOCITY 3.00	63 KM/S					
PARTICLE MOTION		0.0000	0.0000	0.0000	-0.0000	1.0000
ENERGY FLOW		90.000	360.0000	1.0000	-0.0000	-0.0000
MODE VELOCITY 3.2:	32 KM/S					
PARTICLE MOTION		90.0000	97.2868	-0.1268	0.9919	0.0000
ENERGY FLOW		90.0000	328.9673	0.8569	-0.5155	-0.0000
MODE VELOCITY 5.8	49 KM∕S					
PARTICLE MOTION		90.0000	7.2868	0.9919	0.1268	-0.0000
ENERGY FLOW		90.0000	10.4099	0.9835	0.1807	-0.0000
PROPAGATION DIRECTIO	ON	90.000	15.0000	0.9659	0.2588	-0.0000
MODE VELOCITY 2.74	19 KM/S					
PARTICLE MOTION		90.0000	289.5796	0.3351	-0.9422	0.0000
ENERGY FLOW		90.0000	347.2489	0.9753	-0.2207	-0.0000
MODE VELOCITY 3.08	63 KM/S					
PARTICLE MOTION		0.0000	0.0000	0.0000	0.0000	1.0000
ENERGY FLOW		90.0000	15.0000	0.9659	0.2588	-0.0000
MODE VELOCITY 6.09	91 KM/S					2000 P. St. 1811
PARTICLE MOTION		90.0000	199.5796	-0.9122	-0.3351	0.0000
ENERGY FLOW		90.0000	21.1168	0.9328	0.3603	-0.0000
						West State
PROPAGATION DIRECTION	MC	90.0000	30.0000	0.8660	0.5000	-0.0000
						1.3.50
	97 KM/S	00 0000	200 0202	0. 1 822	-0.8761	-0.0000
PARTICLE MOTION		90.0000	298.8262 38.6282	0.7812	0.62 1 3	-0.0000
ENERGY FLOH		30.000	30.000	0.401C	6.0L 13	0.0000

RESULTS FROM THE VELOCITY PROGRAM

						transfer (1984)
MODE VELOCITY 3.0	063 KM/S					
PARTICLE MOTION		0.0000	0.0000	0.0000	0.0000	1.0000
ENERGY FLOW		90.000	30.0000	0.8660	0.5000	-0.0000
MODE VELOCITY 6.	157 KM/S					
PARTICLE MOTION	ene in English i	90.0000	208.8262	-0.8761	-0.4822	0.0000
ENERGY FLOW		90.0000	28.4542	0.8792	0.4765	-0.0000
PROPAGATION DIRECT	ION	90.0000	45.0000	0.7071	0.7071	-0.0000
系 28 - 第 基 - 代 48 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	de de de la la					
MODE VELOCITY 2.5	919 KM/S		ma dayon	- 498 - 1071 - 1088148	a sard sassificasi.	
PARTICLE MOTION		90.0000	308.7462	0.6259	-0.7799	-0.0000
ENERGY FLOW	*	90.0000	77.4021	0.2181	0.9759	-0.0000
					0.0.00	
MODE VELOCITY 3.0	063 KM/S					
PARTICLE MOTION		0.0000	0.0000	0.0000	-0.0000	1.0000
ENERGY FLOW		90.0000	45.0000	0.7071	0.7071	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
MODE VELOCITY 6.0	011 KM/S	WARE.				remotive
PARTICLE MOTION		90.0000	218.7462	-0.7799	-0.6259	0.0000
ENERGY FLOW		90.0000	36.4858	0.8040	0.5946	-0.0000
	结束 经统计法	35/85·.	lit	2,00,0		
The State of States of the States	in (1946) (11					
PROPAGATION DIRECT	пол	90.0000	60.0000	0.5000	0.8660	-0.0000
	363 KM/S					
PARTICLE MOTION		0.0000	0.0000	-0.0000	0.0000	1.0000
ENERGY FLOW		90.000	60.0000	0.5000	0.8660	-0.0000
	94 _ 8				n i fall an air bhail 1907 bh. Bhailte an Aireann an Airleann air bhailleann air bhailleann air	
	116 KM∕S				1997 - F. 1997 1997 - F. 1997	
PARTICLE MOTION	The second se	90.0000	323.6264	0.8052	-0.5930	0.0000
ENERGY FLOW		90.000	85.2760	0.0824	0.9966	-0.0000
SECONDO LIPERATE	nangua anggar	V. 1		.884 4.5 (\$14.5 FB	19% on Addition Rudges	
	743 KM/S		000 000			
PARTICLE MOTION		90.0000	233.6264	-0.5930	-0.8052	0.0000
ENERGY FLOW		שטטט. טכ	50.5144	0.6359	0.7718	-0.0000
PROPAGATION DIRECTI	LUN	שטטט. טכ	75.0000	0.2588	0.9659	-0.0000
MODE VELOCITY 3.0	ACOUNT ACTION OF	5,542,548			an a	
PARTICLE MOTION	POS KIIVS	0.0000				
ENERGY FLOW		0.000	0.0000	0.000	0.0000	1.0000
ENERGI FLOW		טטטט. טפ	75.0000	0.2288	0.9659	-0.0000
MODE VELOCITY 3.5	EGO (VM 20)	• *(Ge(\$9)			and the second s	
PARTICLE MOTION						
ENERGY FLOW				0.9741		
EHEROT FLOW		טטטש. שכ	67.5301	0.3822	0.9241	-0.0000
MODE VELOCITY 5.6	SZE MM /O S	. N2665	1887.	ryajira ila 378 wilas		
PARTICLE MOTION						
ENERGY FLOW		90 0000	70 0404	-0.2259 0.2071	70.9/11	0.0000
A STATE OF THE STA	1. 1.80 M. H.	טטטט. טכ	רברש.ט׳	0.20/1	ø.3/83	-0.0000
		55836			randrik direktir di aktorikation 1900 - Alfrica Afrika disk	

CHAPTER 8

A Computer-assisted Tutorial in Time-independent Non-degenerate Perturbation Theory

D. J. MARTIN

1. INTRODUCTION

Probably the most widely used approximate method in quantum mechanics is that known as perturbation theory. The idea of the following exercise is for the student to calculate the energies of a particle in a particular form of one-dimensional potential well, first with the computer program—which uses a numerical iterative technique to give very accurate results—and then by employing first- and second-order perturbation theory. The student has the incentive of trying to achieve agreement with the computer—rather as the theoretician seeks to achieve results in conformity with experiments.

The form of the potential—an infinite potential well with an extra potential (the perturbation) in part of the well (see Figure 1)—is chosen so that the Schrödinger equation can be solved numerically to a high degree of accuracy and that the perturbation theory calculation is relatively straightforward.

2. BASIC QUANTUM MECHANICS

2.1 Introduction

The central theoretical problem in treating any microscopic system—in which quantum-mechanical effects are significant—is that of finding the solution to the appropriate Schrödinger equation. For a single particle of mass M_p in a time-independent scalar field $V(\mathbf{r})$ the (time-independent) Schrödinger equation is

$$\left[-\frac{\hbar^2}{2M_p} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E\psi(\mathbf{r}), \tag{1}$$

Figure 1. The form of the perturbed infinite potential well. V_p can be >0 or <0

where $\hbar = h/2\pi$, h is Planck's constant ($\hbar = 1.056 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$) and ∇^2 is the Laplacian operator (sometimes written Δ) which in Cartesian coordinates is

$$\nabla^2 = \left\{ \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right\},\tag{2}$$

 $\psi(\mathbf{r})$ is the wave function of the particle. If $\psi(\mathbf{r})$ is known then all possible information about the system can be obtained because the probability density at \mathbf{r} is $\psi^*(\mathbf{r}) \cdot \psi(\mathbf{r})$, where $\psi^*(\mathbf{r})$ is the complex conjugate of $\psi(\mathbf{r}) \cdot \text{Here}$, E is the energy of the particle but not all values of E are necessarily possible. In fact it can be shown that if the particle is in a bound state (i.e. $\psi(\mathbf{r}) \to 0$ for $r \to \infty$) then E can only take discrete values, i.e. the energy is quantized. For a given $V(\mathbf{r})$ there are generally a number of different $\psi(\mathbf{r})$ and corresponding energies E which will be distinguished with the subscript n in the form $\psi_n(\mathbf{r})$ and E_n . The expression $[-(\hbar^2/2M_p)\nabla^2 - V(\mathbf{r})]$ is called the Hamiltonian (\mathcal{H}) and the time-independent Schrödinger equation can be written as $\mathcal{H}\psi_n(\mathbf{r}) = E_n\psi_n(\mathbf{r})$.

Typically M_p and $V(\mathbf{r})$ are known so that it remains to solve equation (1) for $\psi_n(\mathbf{r})$ and to compare E_n with the results of experiment. There are very few problems for which an exact analytical solution has been found for

 $\psi_n(\mathbf{r})$. Indeed, in the majority of cases it is necessary to accept an approximate solution where, of course, approximate should not be confused with inaccurate (i.e. $\sin(x) \approx x$ with high accuracy provided $x \ll 1$.)

Probably the approximate method most widely used in quantum theory is that known as perturbation theory. This method is applicable if the Hamiltonian consists of two parts

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_p, \tag{3}$$

where \mathcal{H}_{p} has only a small effects and is called the perturbation and where the Schrödinger equation, without \mathcal{H}_{p} , can be solved and all the possible $\psi_{n}^{(0)}(\mathbf{r})$ and corresponding energies $E_{n}^{(0)}$ can be found. (The (0) superscript on $\psi_{n}^{(0)}(\mathbf{r})$ and $E_{n}^{(0)}$ is used to indicate that they correspond to the unperturbed Hamiltonian \mathcal{H}_{0} .) In the absence of the perturbation \mathcal{H}_{p} equation (1) is therefore:

$$\mathcal{H}_0 \psi_n^{(0)}(\mathbf{r}) = E_n^{(0)} \psi_n^{(0)}(\mathbf{r}). \tag{4}$$

The simplest form of perturbation theory applies when:

- (1) \mathcal{H}_0 and \mathcal{H}_p do not vary with time; and
- (2) the solutions for the unperturbed system are non-degenerate, i.e. for a given energy $E_n^{(0)}$ there is a unique $\psi_n^{(0)}(\mathbf{r})$.

In this exercise we will confine our attention to quantized energy levels—which simplifies the notation. In fact, once the basic ideas have been grasped, the extension of perturbation theory to more general cases, where degeneracy occurs and/or \mathcal{H}_p varies with time, is relatively simple.

2.2 Time-independent non-degenerate perturbation theory

In order to apply perturbation theory we must know $\psi_n^{(0)}(\mathbf{r})$ and $E_n^{(0)}$ —the unperturbed wave functions and energies. Then, even if we cannot solve the Schrödinger equation in the presence of the perturbation \mathcal{H}_p , i.e.

$$(\mathcal{H}_0 + \mathcal{H}_p)\psi_n(\mathbf{r}) = E_n\psi_n(\mathbf{r}), \tag{5}$$

perturbation theory enables us to make an accurate estimate of $\psi_n(\mathbf{r})$ and E_n in terms of $\psi_n^{(0)}(\mathbf{r})$ and $E_n^{(0)}$, provided that the effects of \mathcal{H}_p are small.

A full explanation and justification of perturbation theory is beyond the scope of this chapter (the subject is discussed in most intermediate-level textbooks on quantum theory), but the basis of the method is to express both E_n and $\psi_n(\mathbf{r})$ —the perturbed energy and the perturbed wave function—as power series in what might be called the 'strength' of \mathcal{H}_p (which we will write as λ_p , a dimensionless number), i.e.

$$E_{n} = \varepsilon_{0} + \lambda_{p}/\varepsilon_{1} + \lambda_{p}^{2}/\varepsilon_{2} + \dots,$$

$$\psi_{n}(\mathbf{r}) = \chi_{0}(\mathbf{r}) + \lambda_{p}/\chi_{1}(\mathbf{r}) + \lambda_{p}^{2}/\chi_{2}(\mathbf{r}) + \dots.$$
(6)