온난화팀

권다연 백서연 윤종필 이강산

CC Co

문제제기

크롤링

모델소개

Polar bear cubs drowning due to sea ice loss, says report Polar bear cubs in Alaska are drowning on long swims with their mothers because of melting sea ice, a new study finds

크롤링


```
links = []
for i in range(0, 100):

    link = (fnd[i].get('src', ''))
    if link == '':
        print('its empty')
    else:
        links.append(link)

# for i in range(0, 100):

#    link = (fnd[i].get('data-src', ''))
    if link == '':
        print('its empty')
```



```
X = tf.placeholder(tf.float32, [None, 64, 64, 3])
Y = tf.placeholder(tf.float32, [None, 2])
W1 = tf.Variable(tf.random_normal([3,3,3,32], stddev=0.01))
L1 = tf.nn.conv2d(X, W1, strides=[1,1,1,1], padding='SAME')
L1 = tf.nn.relu(L1)
L1 = tf.nn.max pool(L1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
Tensor("MaxPool 3:0", shape=(?, 32, 32, 32), dtype=float32)
W2 = tf.Variable(tf.random_normal([3,3,32,64], stddev=0.01))
L2 = tf.nn.conv2d(L1, W2, strides=[1,1,1,1], padding='SAME')
L2 = tf.nn.relu(L2)
L2 = tf.nn.max pool(L2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
print(L2)
Tensor("MaxPool_4:0", shape=(?, 16, 16, 64), dtype=float32)
W3 = tf.Variable(tf.random normal([3,3,64,128], stddev=0.01))
L3 = tf.nn.conv2d(L2, W3, strides=[1,1,1,1], padding='SAME')
L3 = tf.nn.relu(L3)
L3 = tf.nn.max pool(L3, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
print(L3)
Tensor("MaxPool_5:0", shape=(?, 8, 8, 128), dtype=float32)
W4 = tf.Variable(tf.random normal([8*8*128, 256], stddev=0.01))
L4 = tf.reshape(L3, [-1,8*8*128])
L4 = tf.matmul(L4, W4)
L4 = tf.nn.relu(L4)
print(L4)
Tensor("Relu 7:0", shape=(?, 256), dtype=float32)
W5 = tf.Variable(tf.random normal([256,2], stddev=0.01))
model=tf.matmul(L4, W5)
model
<tf.Tensor 'MatMul 3:0' shape=(?, 2) dtype=float32>
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
optimizer = tf.train.AdamOptimizer(0.0001).minimize(cost)
```

```
is_correct = tf.equal(tf.argma
accuracy = tf.reduce_mean(tf.correct)
print('train : ', sess.run(accuracy)
print('test : ', sess.run(accuracy)
train : 0.96917146
```

test : 0.76685935

