Algebraic Geometry 1

PROBLEM SET 9

Keywords: Proj, finite morphisms

Problem 1

Let $S_{\bullet} = \bigoplus_{n>0} S_n$ be a graded ring, and for $d \geq 1$ let:

$$S_{\bullet}^{(d)} = \bigoplus_{n \ge 0} S_{dn}$$

be the subring generated by homogeneous elements of degree divisible by d. Show that the natural inclusion $S^{(d)}_{\bullet} \subseteq S_{\bullet}$ induces an isomorphism $\operatorname{Proj}(S_{\bullet}) \simeq \operatorname{Proj}(S^{(d)}_{\bullet})$.

Problem 2

Show that $\mathbb{P}(1,1,2)$ admits a closed embedding in \mathbb{P}^3 .

Problem 3

- 1. Let $X \to \operatorname{Spec}(k)$ be a finite morphism. Show that (the underlying topological space of) X consists of finitely many points with the discrete topology.
- 2. Show that finite morphisms have finite fibres.
- 3. Find an example of a morphism with finite fibres which is not finite.

Problem 4

- 1. Show that Proj(R[t]) is isomorphic to Spec(R).
- 2. Let $A \subseteq B$ be a finite ring extension. Define a graded ring S_{\bullet} with $S_0 = A$ and $S_n = B$ for all $n \ge 1$. Show that $\operatorname{Proj}(S_{\bullet}) \simeq \operatorname{Spec}(B)$. Show that S_{\bullet} is a finitely generated graded A-algebra.
- 3. Use the previous point to show that finite morphisms are proper.