Klausur Grundlagen der Informatik

Semester: AI2,WI2 | SS 08, 7.7.2008 Bearbeitungszeit: 90 | Hilfsmittel: A ohne prog. C

Aufgabe 1 (3 Punkte)

Wieviele binäre Stellen	benötigt man, u	m eine Zahl r	nit n Dezimalstellen	zu speichern? (Herlei	tung!)

Aufgabe 2 (2 Punkte)

Angenommen, wir hätten auf einem Rechner eine Möglichkeit, gleichverteilte echt zufällige ganze Zahlen aus $\{0,1,\ldots,m-1\}$ zu erzeugen. Wenn wir solche Zahlen als Hashwerte verwenden, werden Kollisionen weitgehend vermieden. Warum macht die Verwendung von Zufallszahlen als Hashwerte aber keinen Sinn?

Aufgabe 3 (8 Punkte)

Kreuzen Sie in folgender Tabelle **alle** zutreffenden Felder an. Es seien $k \geq 1$, $\epsilon > 0$ und c > 1. Es stehen die Abkürzungen O, o, Ω , ω und Θ für f(n) = O(g(n)), etc. Vergleichen Sie hierzu das asymptotische Verhalten der Funktionen f und g.

f(n)	g(n)	O	0	Ω	ω	Θ
1.01^{n}	$n^{1.01}$					
$\log n^2$	$\log \sqrt{n}$					
$(3/2)^n$	1.1^{n}					
$n \log n$	$n + \log n^4$					
e^n	n!					
n	$n + \sin^2 n$					

Aufgabe 4 (9 Punkte)

Gegeben sei die Rekurrenzgleichung $T(n) = T(n)$	(12) + n.
a) Bestimmen Sie mit dem Mastertheorem die K	omplexität des zugehörigen Algorithmus.
b) Skizzieren Sie den zugehörigen Rekursionsbaum.	c) Berechnen Sie an Hand des Rekursionsbaums die Komplexität des zugehörigen Algorithmus.

Aufgabe 5 (5 Punkte)

Gegeben ist folgende Entfernungstabelle des ungerichteten Graphen G mit den Knoten 1,2,3,4,5:

Lösen Sie das Single-Source-Shortest-Path-Problem mit Knoten 3 als Quelle. Geben Sie den aufspannenden Baum als Graphen G = (V, E) an und zeichnen sie ihn.

Aufgabe 6 (6 Punkte ())

Gegeben sei die Grammatik $G = (\{B, B_0, B_1\}, \{0, 1\}, P, B)$ mit

$$P = \{ B \to 0B_0 | 1B_1, B_0 \to 0B, B_1 \to 1B, B \to \varepsilon \}.$$

- a) Geben Sie alle Worte mit maximal 4 Zeichen an, die sich aus dieser Grammatik ableiten lassen.
- b) Geben Sie einen zu G äquivalenten regulären Ausdruck an.
- c) Geben Sie das Zustandsübergangsdiagramm eines endlichen Automaten an, der die Sprache L(G) erkennt.