Эволюционная теория игр и равновесие Нэша

Золотов Борис Алексеевич, аспирант МКН СПбГУ

6 октября 2022 г.

«Лига Лекторов», 3 сезон

Содержание

Теория некооперативных игр Битва в море Бисмарка Кто такой Джон Нэш Золотые шары (дилемма заключённого) Уступить или проехать (Ястребы и голуби) Смешанные стратегии Эволюционная теория игр

Теория некооперативных игр

Некооперативные игры

Несколько участников одновременно принимают решения и получают выигрыш в зависимости от сочетания этих решений. Им известно, какой выигрыш полагается за какие комбинации их действий.

Им доступен весь их опыт взаимодействия с миром и друг с другом, но они не формируют коалиций с жёстко зафиксированной стратегией. Решение, как быть, они принимают исключительно самостоятельно.

Актуальность теории

Примеры таких взаимодействий встречаются повсеместно: в экономике, в биологии, в дорожном движении, в планировании мероприятий, в криптовалюте Caginalp and Caginalp (2019)

Задача теории — предсказывать доли популяции, выбирающие определённую стратегию.

Битва в море Бисмарка

Битва в море Бисмарка

Генерал Имамура может послать конвой северным маршрутом (2 дня) или южным маршрутом (3 дня).

Генерал Кенни хочет бомбить конвой; если он отправит свои самолёты *не туда,* у него будет на это полдня меньше. Peters (2015)

Запись игры с помощью таблицы

Кенни выбирает строку таблицы, Имамура выбирает столбец. Их выигрыши записаны в соотв. клетках таблицы напротив их выбора.

Имамура

		Сев	ер	К	Эг
	Север		-2		-2.5
Кенни	Ce	2		2.5	
Ker	Ļ		-1.5		-3
	Q	1.5		3	

Доминирующая стратегия

При любом действии Кенни Имамуре выгоднее выбирать север (см. строчки).

У Имамуры есть домин. стратегия, у Кенни нет.

Имамура

		Север	Юг
	Север	<u>-2</u>	≥ -2.5
НИ	Сев	2	2.5
Кенни		<u>1.5</u>	≥ -3
	Ŋ	1.5	3

Равновесие Нэша

Умный Кенни тоже выберет север. Позиция (Север, Север) — *равновесие Нэша*: действие каждого — лучший ответ на действие другого.

		Имамура				
		Сев	ер	К	Эг	
	Север		-2	≥	-2.5	
ИНН	Се	2		2.5		
Кенни		W	–1. 5		-3	
	Юг	1.5		3		

Равновесие Нэша

Равновесие Нэша — это устойчивое состояние общества, такой закон, который никто не будет хотеть нарушить даже при отсутствии какого-либо контроля.

Кто такой Джон Нэш

Джон Форбс Нэш

Первый в мире лауреат Абелевской и Нобелевской премий (по экономике, «За анализ равновесия»).

Страдал шизофренией, которую сам научился подавлять.

Золотые шары (дилемма

заключённого)

Что такое дилемма заключённого?

Известная игра, где равновесие Нэша находится не в позиции, которая кажется предпочтительной для обоих игроков. Peters (2015); Maschler et al. (2013)

Адаптирована в качестве телешоу «Золотые шары» на британском канале *ITV*. Darai and Grätz (2010)

Таблица выигрышей для «3. Ш.»

Оба делятся — выигрыш делится поровну.

Один делится — всё забирает другой.

Оба хотят забрать — остаются ни с чем.

Игрок 2

		Дел	ИТЬ	Заб	рать
	Делить		5		10
0K 1	Дел	5		0	
Игрок 1	зать		0		0
	Забрать	10		0	

Что тут происходит?

У обоих игроков есть доминирующая стратегия: забирать деньги.

Она всегда даёт не меньший выигрыш.

Игрок 2

		Делить	Забрать
	ИТЬ	5	≤ 10
0K 1	Делить	5	0
Игрок 1	ать	0	€ 0
	Забрать	10	0

Равновесие Нэша

В этой игре три равновесия Нэша, но ни одно из них— не (Делить, Делить).

		Игрок 2			
		Делить	Забрать		
)X 1	Делить	5	< 10 0		
Игрок 1	Забрать	/\ 0 10			

Парето-оптимум

Участники пытаются разработать такую систему контроля, которая бы заставила их гарантированно находиться в позиции, оптимальной по Парето:

Нельзя улучшить чей-либо выигрыш, не ухудшив суммарного выигрыша и справедливости его распределения. Уступить или проехать (Ястребы и

голуби)

Уступить или проехать: выигрыши

Оба уступают — заминка на одном месте Один уступает — оба счастливы Оба едут — попадают в ДТП

Игрок 2

		Усту	ПИТЬ	Exa	ать
	Уступить		–1		2
0K 1	Усту	– 1		1	
Игрок '	TP		1		-11
	Ехать	2		-11	

Доминирующая стратегия

Ни у одного из игроков нет доминирующей стратегии. (Игра симметрична, поэтому покажем только для первого.)

Игрок 2

		Уступить	Ехать
	Уступить	<u> </u>	€ 2
0K 1	Усту	– 1	1
Игрок 1	ТЬ	1	≥ -11
	Ехать	2	–11

Два равновесия Нэша и светофор

Есть два симметричных равновесия Нэша, от которых игрокам невыгодно отступать, если им указать, в какой они играют.

		Игрок 2					
		Уступить	Ехать				
	ПИТЬ	<u> </u>	≤ 2				
0K 1	Уступить	– 1	1				
Игрок 1	Ехать	1	√ –11				
	Exa	2	_11				

Два равновесия Нэша и светофор

Прибор, который это указывает, называется *светофор*. Но предлагается поискать равновесие ещё кое-где.

Игрок 2 Уступить Ехать Игрок 1 -11

Смешанные стратегии

Суть смешанных стратегий

Пусть абстрактный коллективный первый игрок уступает с вероятностью *p*, а второй — с вероятностью *q*.

Равновесие Нэша — позиция, когда действие каждого игрока — *лучший ответ* на действие другого.

Найдём, какая q будет лучшим ответом в зависимости от p.

Ожидаемый выигрыш второго игрока

$$-1 \cdot pq + 2 \cdot p(1-q) + 1 \cdot (1-p)q - 11 \cdot (1-p)(1-q) =$$

$$= (12 - 15p) \cdot q + 13p - 11$$

Лучшая q — либо 0, либо 1, либо все возможные.

Игрок 2

		Устуі	ПИТЬ	Exa	ать
	Уступить		-1		2
0K 1	Усту	-1		1	
Игрок '	Ехать		1		–11
	Exa	2		-11	

Три равновесия Нэша

$$p<rac{4}{5}$$
, тогда $q=1$ $p=rac{4}{5}$, тогда q любое, выигрыш от него не зависит $p<rac{4}{5}$, тогда $q=0$

Эволюционная теория игр

Модель репликации

Большая популяция людей каждый день играет в «уступить или проехать» внутри себя. Каждый человек либо целый день всех пропускает, либо целый день едет первым.

Каждый вечер каждый человек i выбирает своего случайного соседа j, и если тот в течение дня получил бо́льший выигрыш, чем i, то i на следующий день с некоторой вероятностью начинает играть так, как j играл сегодня. Santos et al. (2005)

Эта вероятность равна

$$\frac{P(j) - P(i)}{(11+2) \cdot \max(d(j), d(i))}$$

Смешанную стратегию мы мыслим как долю людей, которые сегодня всем уступают.

Чем больший выигрыш получают люди, играющие определённым образом, тем быстрее растёт их количество. Rees (2005)

Доля людей, которые уступают дорогу

Доля людей, которые уступают дорогу, стремится к $p=\frac{4}{5}$ из равновесия Нэша.

Другой взгляд на смешанные стратегии

Если смешанная стратегия каждого игрока— вероятность, с которой он уступает дорогу, то игроки, несомненно, будут группироваться вокруг одного значения— проблема в том, что практически произвольного.

Список литературы

- Caginalp, C. and Caginalp, G. (2019). Aims mathematics. Establishing Cryptocurrency Equilibria Through Game Theory, 4(3).
- Darai, D. and Grätz, S. (2010). Golden balls: A prisoner's dilemma experiment. Technical Report 1006, Socioeconomic Institute, University of Zurich.
- Maschler, M., Solan, E., and Zamir, S. (2013). Game Theory. Cambridge University Press.
- Peters, H. (2015). *Game Theory: A Multi-Leveled Approach*. Springer Texts in Business and Economics. Springer-Verlag Berlin Heidelberg, second edition.
- Rees, T. (2005). An Introduction To Evolutionary Game Theory.
- Santos, F., Pacheco, J., and Lenaerts, T. (2005). Evolutionary dynamics of social dilemmas in structured heterogeneous populations. *Proceedings of the National Academy of Sciences*.