Signals & Systems

Spring 2019

https://sites.google.com/site/ntusands/

https://ceiba.ntu.edu.tw/1072EE2011_04

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

Outline

- Ch. 2 LTI Systems
- Ch. 3 FS of Periodic Signals
- Ch. 4 CTFT
- Ch. 5 DTFT
- Ch. 6 Time and Freq. Characterization of Signals and Systems
- Ch. 7 Sampling
- Ch. 9 Laplace Transform
- Ch. 10 z-Transform
- Ch. 8 Comm. Systems

Bonus Lecture: Machine Learning 101

Machine Learning 101

- From Probability to Bayes Decision Rule
- Brief Review of Linear Algebra & Linear System
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

Dimension Reduction

- Principal Component Analysis (PCA)
 - Unsupervised & linear dimension reduction
 - Related to Eigenfaces, etc. feature extraction and classification techniques
 - Still very popular despite of its simplicity and effectiveness.
 - Goal:
 - Determine the projection, so that the variation of projected data is maximized.

(

Formulation & Derivation for PCA

- Input: a set of instances x without label info
- Output: a projection vector ω maximizing the variance of the projected data
- In other words, we need to maximize $var(\boldsymbol{\omega}^T \boldsymbol{x})$ with $\|\boldsymbol{\omega}\| = 1$.

Formulation & Derivation for PCA (cont'd)

• Lagrangian optimization for PCA

Eigenanalysis & PCA

- Find the eigenvectors e_i and the corresponding eigenvalues λ_i
 - The direction e_i captures the variance of λ_i .
 - But, which eigenvectors to use? All of them?
- A d x d covariance matrix contains a maximum of d eigenvector/eigenvalue pairs.
 - Which \mathbf{e}_i (and thus λ_i) to consider?
 - Assume N images of size M x M pixels, we have dimension $d = M^2$.
 - What is the rank of ∑?
 - Thus, at most non-zero eigenvalues can be obtained.

Eigenanalysis & PCA (cont'd)

- Image reconstruction via PCA
 - Expand a signal (e.g., an input image) via eigenvectors as bases
 - With symmetric matrices (e.g., covariance matrix), eigenvectors are orthogonal.
 - They can be regarded as unit basis vectors to span any instance in the d-dim space.

Practical Issues in PCA

- Assume we have N = 100 images of size 200 x 200 pixels (i.e., d = 40000).
- What is the size of the covariance matrix? What's its rank?
- What can we do? Gram Matrix Trick!

Let's See an Example (CMU AMP Face Database)

- Let's take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.
- # of eigenvectors are expected to use for perfectly reconstructing the input = 64.
- Let's check it out!

What Do the Eigenvectors/Eigenfaces Look Like?

All 64 Eigenvectors, do we need them all?

Use only 1 eigenvector, MSE = 1233

MSE=1233.16

Use 2 eigenvectors, MSE = 1027

MSE=1027.63

Use 3 eigenvectors, MSE = 758

MSE=758.13

Use 4 eigenvectors, MSE = 634

Use 8 eigenvectors, MSE = 285

MSE=285.08

With 20 eigenvectors, MSE = 87

MSE=87.93

With 30 eigenvectors, MSE = 20

MSE=20.55

With 50 eigenvectors, MSE = 2.14

With 60 eigenvectors, MSE = 0.06

All 64 eigenvectors, MSE = 0

Final Remarks

- Linear & unsupervised dimension reduction
- PCA can be applied as a feature extraction/preprocessing technique.
 - E.g,, Use the top 3 eigenvectors to project data into a 3D space for classification.

Final Remarks (cont'd)

- How do we classify? For example...
 - Given a test face input, project into the same 3D space (by the same 3 eigenvectors).
 - The resulting vector in the 3D space is the feature for this test input.
 - We can do a simple Nearest Neighbor (NN) classification with Euclidean distance, which calculates the distance to all the projected training data in this space.
 - If NN, then the label of the closest training instance determines the classification output.
 - If k-nearest neighbors (k-NN), then k-nearest neighbors need to vote for the decision.

Demo available at http://vision.stanford.edu/teaching/cs231n-demos/knn/

Final Remarks (cont'd)

- If labels for each data is provided → Linear Discriminant Analysis (LDA)
 - LDA is also known as Fisher's discriminant analysis.
 - Eigenface vs. Fisherface (IEEE Trans. PAMI 1997)
- If linear DR is not sufficient, and non-linear DR is of interest...
 - Isomap, locally linear embedding (LLE), etc.
 - t-distributed stochastic neighbor embedding (t-SNE) (by G. Hinton & L. van der Maaten)

