

EXPERIMENTO 7

CIRCUITO RC – RESPOSTA EM FREQUÊNCIA

OBJETIVOS: Estudar o comportamento de um circuito **RC série** submetido a uma tensão senoidal, obtendo a resposta do circuito em função da frequência.

MATERIAL UTILIZADO: gerador de funções, osciloscópio, resistores, capacitores.

FUNDAMENTOS TEÓRICOS

Neste experimento, estudaremos a resposta do circuito RC em série alimentado por um gerador que fornece uma tensão senoidal de amplitude V_0 e freqüência angular ω . Tomemos como base a figura 7.1 para analisar as tensões no resistor (v_R) e no capacitor (v_C) e apliquemos a lei das malhas (1º Lei de Kirchhoff).

$$v_G = v_R + v_C$$
 Equação (7.1)

Figura 7.1 – Circuito RC em série alimentado por uma fonte de tensão alternada (gerador de sinais). As tensões no resistor (v_R) e no capacitor (v_C) são fortemente dependentes da frequência utilizada no gerador de funções e permite que a saída entre os extremos destes componentes seja utilizada como filtro. A figura representa o circuito para medir-se V_C .

Para medir-se V_R , trocamos R e C de lugar, ou seja, o componente a ser medido localiza-se entre os pontos A e B.

Sabemos que a tensão no resistor e a tensão no capacitor são dadas respectivamente por:

$$v_R = R \cdot i$$
 e $v_C = \frac{Q}{C} = \frac{1}{C} i dt$ Equações (7.2)

Como a tensão no gerador V_G é uma função senoidal $v_G = V_0 \cdot sen(\omega t + \phi)$, podemos escrever a corrente no circuito como $i = I_0 \cdot sen(\omega t)$, onde a defasagem no tempo entre a corrente no circuito e a tensão aplicada é representada por ϕ .

Substituindo nas equações (7.2) e posteriormente na equação (7.1), temos:

$$V_0 \operatorname{sen} (\omega t + \phi) = R \operatorname{I}_0 \operatorname{sen} \omega t - \frac{\operatorname{I}_0}{\omega C} \cos \omega t$$

Para obter os valores de I_0 , V_0 e ϕ , podemos expandir o primeiro termo da expressão usando uma conhecida relação trigonométrica de forma que:

$$V_0 \operatorname{sen}(\omega t + \phi) = V_0 (\operatorname{sen} \omega t \cos \phi + \operatorname{sen} \phi \cos \omega t) = R I_0 \operatorname{sen} \omega t - \frac{I_0}{\omega C} \cos \omega t$$

Reagrupando os termos da equação acima:

$$sen \omega t (V_0 \cos \phi - R I_0) + \cos \omega t (V_0 sen \phi + \frac{I_0}{\omega C}) = 0$$

É fácil verificar que a relação acima é válida desde que os termos entre parênteses sejam nulos. Tem-se então que:

$$V_0 \cos \phi = R I_0$$
 e $V_0 \operatorname{sen} \phi = -\frac{I_0}{\omega C}$ Equações (7.3)

Podemos, portanto, obter o valor de φ dividindo-se estas expressões de forma que:

$$\phi = arc \ tg \left[- \ \frac{1}{R \ \omega \ C} \right].$$
 Equação (7.4)

Para obter o comportamento da corrente de pico no circuito (I_0), deve-se elevar as Equações (7.3) ao quadrado e somá-las:

$$V_0^2 (\cos^2 \phi + sen^2 \phi) = (R^2 + \frac{1}{(\omega C)^2}) I_0^2$$

Mas $\cos^2 \phi + sen^2 \phi = 1$, então:

$$I_0^2 = \frac{V_0^2}{R^2 + \frac{1}{(\omega C)^2}}$$
 ou $I_0 = \frac{V_0}{\sqrt{R^2 + \frac{1}{(\omega C)^2}}}$ Equação (7.5)

Note que $(\frac{1}{\omega C})$ tem dimensão de resistência (Ω) e recebe o nome de **Reatância**

Capacitiva. A reatância é análoga à resistência dos circuitos de corrente contínua, porém depende da frequência à qual é submetida. Como a tensão no resistor é diretamente proporcional à corrente I então φ pode ser visto como a defasagem no tempo entre a tensão V_R e a tensão aplicada V_G .

A partir das Equações (7.2) podemos obter o valor de pico da tensão no resistor e no capacitor (VERIFIQUE!):

$$V_R = R I_0 = \frac{V_0 R}{\sqrt{R^2 + \frac{1}{(\omega C)^2}}}$$
 Equação (7.6)

$$V_C = \frac{V_0}{\sqrt{(R \omega C)^2 + 1}}$$
 Equação (7.7)

Analisando o comportamento em função da frequência, temos que:

Quando
$${\bf \omega}$$
 tende para ${\bf 0}$ \longrightarrow $V_{R}=0$, $V_{C}=V_{0}$ e $\phi=-\frac{\pi}{2}$

Quando
$$\omega$$
 tende para ∞ \rightarrow $V_R = V_0$, $V_C = 0$ e $\phi = 0$

Das Equações (7.3) à (7.5), observa-se que ângulo de defasagem ϕ_R entre a tensão no gerador e a tensão no resistor V_R e V_0 é dado por:

$$\phi_R = arc \cos\left(\frac{V_R}{V_0}\right)$$
 Equação (7.7)

Assim como o ângulo de defasagem ϕ_C entre a tensão no gerador e a tensão no capacitor V_C e V_0 é dado por :

$$\phi_C = -arc \cos\left(\frac{V_C}{V_0}\right)$$
 Equação (7.8)

lembrando que V_R, V_C e V₀ são os valores de pico das tensões.

FREQUÊNCIA DE CORTE:

Existe uma frequência, chamada de freqüência de corte ω_{C} , na qual a tensão de pico no capacitor é igual à tensão de pico no resistor:

$$V_c(\omega_c) = V_R(\omega_c)$$

usando as expressões de V_C e V_R:

$$\frac{V_0}{\sqrt{(R \omega C)^2 + 1}} = \frac{V_0 R}{\sqrt{R^2 + \frac{1}{(\omega C)^2}}}.$$

Chamando de $\omega = \omega_c$ a igualdade acima nos informa que: $\omega_c = \frac{1}{RC}$

ou, usando a relação entre freqüência ${\bf f}$ e freqüência angular ${\bf \omega}\left(f=\frac{\omega}{2~\pi}\right)$,

$$f_c = \frac{1}{2 \pi R C}$$
 Equação (7.9)

Substituindo a expressão de f_c em V_c (ω_c) = V_R (ω_c):

$$V_C(\omega_c) = V_R(\omega_c) = \frac{V_0}{\sqrt{2}} = 0.707 V_0$$

PROCEDIMENTO EXPERIMENTAL

Montaremos o circuito da figura 7.2, ajustando o gerador de sinais com tensão de pico-a-pico V_0^{PP} =4,0V. Escolha, dentre os componentes de sua bancada e a Equação (7.9), um conjunto R e C que leve a uma frequência de corte entre 1 e 20 kHz. Nosso objetivo é medir V_R e posteriormente V_C em função de um grande intervalo de frequências. Um dos canais do osciloscópio deve ser mantido no gerador de sinais de forma a verificar que o valor de V_0 é mantido constante. Sempre que V_0 variar, ajuste o gerador para manter V_0^{PP} =4,0V.

A) MEDIDAS

A.1) Com o auxílio do osciloscópio, mediremos a tensão de **pico-a-pico** em **R** (V_R^{PP}) em função da **frequência f.** Antes de anotar os pontos, varie a frequência do gerador e observe a variação da tensão no osciloscópio. Escolha uma faixa de frequências na qual a variação na tensão V_R^{PP} esteja entre **0,4V** e **3,6V**.

Varie a frequência nessa faixa medindo aproximadamente ${f 20}$ pontos e construa uma tabela de $V_{\scriptscriptstyle R}^{\scriptscriptstyle PP}$ versus f.

- **A.2**) Repita o procedimento, medindo a tensão de **pico** a **pico** no capacitor (V_C^{PP}) em função da **frequência f** e construa uma tabela de V_C^{PP} versus f.
- **A.3**) Através da Equação (7.7), calcule a **diferença de fase** ϕ_R entre V_R e V_G para cada valor de **f**. Utilize uma planilha de cálculos se desejar.

A.4) Através da Equação (7.8), calcule a **diferença de fase**, ϕ_C entre V_C e V_G para cada valor de **f**. Utilize uma planilha de cálculos se desejar.

Figura 7.2 – Circuito RC em série alimentado por uma tensão alternada. Nas medidas a serem realizadas, é importante manter as conexões relativas ao "terra" comuns ao gerador de sinais e osciloscópio. Desta maneira, a figura à esquerda representa o circuito para medir-se V_c . Para medir-se V_R , trocamos R e C de lugar (figura central). Para medir V_c , retornamos ao circuito original (à direita).

Para medir-se V_R , trocamos R e C de lugar, ou seja, o componente a ser medido localiza-se entre os pontos A e B.

B) GRÁFICOS

- **B.1**) Com base nas tabelas obtidas, construir em uma **mesma folha** de papel **mono log**, os gráficos de V_R e V_C em função da frequência (lançar **f** na escala logarítmica, na horizontal).
- **B.2**) Construir os gráficos de ϕ_R e ϕ_C versus **f** em uma **mesma** folha de papel **mono-log**. No eixo vertical, posicionar $\phi_R = \phi_C = \mathbf{0}^{\mathbf{0}}$ no meio da folha.

C)ANÁLISE DOS RESULTADOS

- **C.1**) A partir destes dois gráficos, encontre a **frequência** de **corte** do circuito e compare com o valor teórico de f_c .
- **C.2**) Medir as tensões de pico-a-pico V_R^{PP} e V_C^{PP} nos gráficos obtidos, para as seguintes frequências: **0,5f**_c, **f**_c, e **2f**_c. Obter a soma algébrica das tensões para os três casos.
- C.3) A lei de Kirchhof é obedecida? Explique.
- **C.4**) Encontre a **diferença de fase** entre V_R e V_C (independente da frequência). Com base neste valor, represente estas duas tensões através de segmentos orientados (em escala). Coloque sempre V_R^{PP} no eixo **x** positivo e V_C^{PP} no eixo **y** negativo. Por que deve ser assim? COM ESTE PROCEDIMENTO SERÃO TRAÇADOS OS DIAGRAMAS DE FASORES DOS SINAIS V_R e V_C (veja Apêndice sobre Fasores)

Verifique o resultado da soma vetorial entre os sinais, do capacitor e do resistor. Explique seu resultado em termos da **Lei de Kirchoff** (malhas) para tensões alternadas.

D) QUESTÕES ADICIONAIS

- **D.1**) Com base nos resultados desta experiência, porque o **circuito RC** em **CA** é chamado de "**filtro**"?
- **D.2**) O que é um **filtro RC passa-alta**? Dê exemplos de aplicações.
- **D.3**) O que é um **filtro RC passa-baixa**? Dê exemplos de aplicações.

EXPERIMENTO 7

CIRCUITO RC – RESPOSTA EM FREQUÊNCIA

TURMA: ___ DATA: __/__/___

RA
ndo for o caso):
A.2) Tabela $V_{\scriptscriptstyle C}^{\scriptscriptstyle PP}$ versus f .
A.4) Tabela diferença de fase ϕ_C versus f
B.2) Gráficos de ϕ_R e ϕ_C versus f .
e C ±u(C):
For anima antal E 1975
Experimental f _c ±u(f _c):

C.2) Medidas de $V_{\scriptscriptstyle R}^{\scriptscriptstyle PP}$ e $V_{\scriptscriptstyle C}^{\scriptscriptstyle PP}$

f= 0,5f_c

f= f_C

 $f=2f_{C}$

 $V_R^{PP} \pm u(V_R^{PP}) \qquad \qquad -$

 $V_C^{PP} \pm u(V_C^{PP})$ _____

Soma algébrica

Explicação:

C.3)Lei de Kirchhof:

C.4) Diagrama de Fasores:

C.5) Soma fasorial entre V_R e V_C:

Explicação:_____

Conclusões