Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 02

Выполнил			(подпись)
		(фамилия, и.о.)	,
П			
Проверил		(фамилия, и.о.)	(подпись)
""	20г.	Санкт-Петербург,	20г.
Работа выпол	нена с оценкой		
Дата защиты	"" 20	<u>_</u> г.	

Цель работы

Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные

В таблице 1 и 2 приведены исходные данные динамических звеньев

Таблица 1 – Исходные данные

Тип звена	Передаточная функция
Колебательное	$\frac{k}{T^2s^2+2\xi Ts+1}$
Идеальное интегрирующее	$\frac{k}{s}$
Изодромное	$\frac{k(1+Ts)}{s}$

Таблица 2 – Параметры

k	T	ξ
2	0.5	0.15

1 Колебательное звено

В таблице 3 представлены экспериментальные данные колебательного звена. Уравнение асимптотической ЛАЧХ

$$L(\omega) = \begin{cases} 20 \lg(k), & \text{при } \omega < \omega_1; \\ 20 \lg(k) - 40 \lg(T * \omega), & \text{при } \omega \ge \omega_1 \\ \omega = \frac{1}{T} \end{cases}$$
 (1)

Таблица 3 – Экспериментальные данные колебательного звена

ω , рад/с	$\lg(\omega)$	$A(\omega)$	$L(\omega)$	$\psi(\omega)$, град
0,5	-0,30	2,26	7,082168783	-0,08
1	0,00	2,88	9,187849755	-0,2
1,5	0,18	4,53	13,121964044	-0,81
2	0,30	6,66	16,46948458	-1,36
3	0,48	2,16	6,689075023	-2,82
4	0,60	1,42	3,045766888	-4,48
5	0,70	1,08	0,66847511	-15,7
10	1,00	0,38	-8,404328068	-31,4
15	1,18	0,25	-12,04119983	-47,1
20	1,30	0,17	-15,39102157	-62,8
25	1,40	0,14	-17,07743929	-78,5
35	1,54	0,09	-20,91514981	-109,9
50	1,70	0,06	-24,43697499	-157

На рисунках 1-6 представлены частотные и логарифмические характеристики колебательного звена.

Рис. 1 – АЧХ

Рис. 2 – ФЧX

Рис. 3 – ЛФЧХ

Рис. 4 – ЛАЧХ

Рис. 5 – Асимптотическая $\Pi A Y X$

Рис. 6 – АФЧХ

2 Идеальное интегрирующее звено

В таблице 4 представлены экспериментальные данные идеального интегрирующего звена.

$$L(\omega) = 20 \lg(k) - 20 \lg(\omega) \tag{2}$$

Таблица 4 – Экспериментальные данные идеального интегрирующего звена

$\omega,\mathrm{pag/c}$	$\lg(\omega)$	$A(\omega)$	$L(\omega)$	$\psi(\omega)$, град
0,5	-0,30	8	18,06179974	-3,16
1	0,00	4	12,04119983	-9,38
1,5	0,18	2,66	8,497632733	-3,18
2	0,30	2	6,020599913	-3,14
3	0,48	1,33	2,477032819	-3,12
4	0,60	1	0	-3,12
5	0,70	0,8	-1,93820026	-3,1
10	1,00	0,4	-7,958800173	-3,1
15	1,18	0,26	-11,70053304	-3,15
20	1,30	0,2	-13,97940009	-3
25	1,40	0,16	-15,91760035	-3
35	1,54	0,11	-19,1721463	-3,15
50	1,70	0,08	-21,93820026	-3

На рисунках 7-12 представлены частотные и логарифмические характеристики идеального интегрирующего звена.

Рис. 7 – АЧХ

Рис. 8 – ФЧХ

Рис. 9 – ЛФЧХ

Рис. 10 - ЛАЧХ

Рис. 11 – Асимптотическая $\Pi A \Psi X$

Рис. 12 – АФЧХ

3 Изодромное звено

В таблице 5 представлены экспериментальные данные изодромного звена. Уравнение асимптотической ЛАЧХ

$$L(\omega) = 20 \lg(k) - 20 \lg(\omega) + 20 \lg \sqrt{1 + \omega^2 * T^2}$$
(3)

Таблица 5 – Экспериментальные данные изодромного звена

$\omega,\mathrm{pag/c}$	$\lg(\omega)$	$A(\omega)$	$L(\omega)$	$\psi(\omega)$, град
0,5	-0,30	4,82	13,66094076	-1,57
1	0,00	3,23	10,18405045	-0,92
1,5	0,18	2,77	8,849595381	-0,63
2	0,30	2,56	8,164799306	-0,48
3	0,48	2,36	7,458240059	-0,33
4	0,60	2,26	7,082168783	-0,24
5	0,70	2,21	6,887845474	-0,2
10	1,00	2,1	6,444385895	-0,1
15	1,18	2,06	6,277344407	-0,06
20	1,30	2,05	6,235077221	-0,04
25	1,40	2,04	6,192603349	-0,05
35	1,54	2,02	6,107027389	-0,035
50	1,70	2,02	6,107027389	0

На рисунках 13-18 представлены частотные и логарифмические характеристики изодромного звена.

Рис. 13 – АЧХ

Рис. 14 — ФЧХ

Рис. 15 – ЛФЧХ

Рис. 16 – ЛАЧХ

Рис. 17 – Асимптотическая ЛАЧХ

Рис. 18 – АФЧХ

Вывод

В данной лабораторной работе были исследованы частотные обычные и логарифмические характеристики трех типовых звеньев: колебательного, идеального интегрирующего и изодромного. В ходе лабораторной работы было выявлено, что асимптотические ЛАЧХ сходятся построенными по математическим моделям графиками.