

Acute Respiratory Distress Syndrome (ARDS) Strategy

ARDS is a syndrome with a variety of aetiologies

	Berlin Definition of Acute Respiratory Distress Syndrome	
Timing	Within one week of a known clinical insult or new or worsening	
	respiratory symptoms	
Chest Imaging	Bilateral opacities – not fully explained by effusions, lobar/lung	
(CXR or CT)	collapse, or nodules	
Origin of	Not fully explained by cardiac failure or overload	
Oedema	Echo' excludes hydrostatic oedema	
Oxygenation	Mild	P/F ratio* of 27kPa to 40kPa with PEEP ≥ 5cmsH ₂ O
	Moderate	P/F ratio* of 13kPa to 27kPa with PEEP ≥ 5cmsH ₂ O
	Severe	P/F ratio* of <13kPa with PEEP ≥ 5cmsH ₂ O

^{*}P/F ratio = $PaO_2(kPa)/FiO_2(decimal)$

Management

- Identify and treat any precipitating causes
- Oxygenation problems may be due to other problems e.g. cardiac failure
- See figure below Target PaO₂ ≥8kPa
- AVOID HYPEROXIA

Management Strategy and Considerations for Daily Review

Breathing

- Aim for the lowest FiO₂ and PEEP combination to achieve oxygenation goals
- Set pO₂, pCO₂ and PEEP targets
 Tolerate hypercapnia but consider each patient e.g. raised ICP, excessive acidaemia
- Calculate and document Tidal Volumes. Specify 4-6mls/kg predicted body weight:

Male = 50 + (0.91 x (height in cm - 152.4))Female = 45 + (0.91 x (height in cm - 152.4))

- Beware of over-distension of normal parts of lung esp. with higher PEEP levels and plateau pressures >26cmH₂O. Plateau pressure may be acceptable up to 30cmH₂O. See below.
- Chest examination can change consider effusions, pneumothoraces, worsening oedema

Circulation

- Calculate fluid balance. Run patient 'dry'. Target neutral to -1000mls if tolerated
- May require additional vasopressor support (where tissue perfusion allows)
- Consider CVVH for fluid removal

Drugs

- Review medications. May need diuretic infusions
- Review/replace electrolytes

Imaging

· Review chest imaging and repeat if not current

Extra-corporeal therapies

- If unable to achieve pCO₂ targets while maintaining lung protective ventilation consider ECCO₂R
- Consider ECMO in refractory cases (Leicester ECMO Team 0300 300 3200)

Figure 1, above, shows with the same PEEP and ΔP , depending on the alveolar disease/compliance and the terminal bronchiole degree of obstruction, you may get no alveolar ventilation, under distension or over distension, even in the same lung.

Figure 2, above, from Terragni's study, shows with the same lung protective ventilation of 6ml/kg, you may get over-distension of lung (red areas) even within plateau pressure limits. The left image has a plateau pressure of $25-26\text{cmH}_2\text{O}$ The right image has a plateau pressure of $28-30\text{cmH}_2\text{O}$

Directorate of Critical Care

References

- 1. ARDSNet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. *N Engl J Med.* 2000 May 4;342(18):1301–8.
- 2. Brower RG *et al.* Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. *N Engl J Med.* 2004 Jul 22;351(4):327–36.
- National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006 Jun 15;354(24):2564–75.
- 4. Terragni PP *et al.* Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. *Am J of Resp and Critical Care Med.* 2007 Jan 15;175(2):160–6.
- Meade MO et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high
 positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a
 randomized controlled trial. JAMA. 2008 Feb 13;299(6):637–45.
- Peek GJ et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009 Oct 17;374(9698):1351–63.
- 7. Briel M *et al.* Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. *JAMA*. 2010 Mar 3;303(9):865–73.
- 8. Papazian L *et al.* Neuromuscular blockers in early acute respiratory distress syndrome. *N Engl J Med.* 2010 Sep 16;363(12):1107–16.
- 9. Guerin C *et al.* Prone Positioning in Severe Acute Respiratory Distress Syndrome. *N Engl J Med.* 2013 May 20;368(23):2159–68.
- Bein T et al. Lower tidal volume strategy (≈ 3 ml/kg) combined with extracorporeal CO2 removal versus "conventional" protective ventilation (6 ml/kg) in severe ARDS. Intensive Care Med. 2013 May;39(5):847-56.
- 11. Amato MBP *et al.* Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. *N Engl J Med.* 2015 Feb 19;372(8):747–55.
- 12. Frat J-P *et al.* High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. *N Engl J Med.* 2015 Jun 4;372(23):2185–96.

Title: ARDS Strategy	
ID : ARDSSv3.20150823	Authors: M Dunn, N Young, C Parker
Category: Respiratory	Document Version: 3
Status Draft/Final: Final	Review Date: Aug 2017
Authoriser: QIT	Date Authorisation: Aug 2015
Date added to Intranet:	Key words: ARDS

The use of this guideline is subject to professional judgement and accountability. It should not be interpreted as setting a standard of care. This guideline has been prepared carefully and in good faith for use within the Directorate of Critical Care at NHS Lothian. No liability can be accepted by NHS Lothian for any errors, costs or losses arising from the use of this guideline or the information contained herein.