Problem 7.4

Given $\forall x. (p(x) \Rightarrow q(x))$ and p(a), use the Fitch system to prove q(a).

To apply a rule of inference, check the lines you wish to use as premises and click the button for the rule of inference. Reiteration allows you to repeat an earlier item. To delete one or more lines from a proof, check the desired lines and click Delete.

Whenever entering expressions, use Ascii characters only. Use \sim for \neg ; use & for \wedge ; use | for \vee ; use \equiv for \Rightarrow ; use A for \forall ; use E for \exists ; and use : for . in quantified sentences. Also, for variables use strings of alphanumeric characters that begin with a capital letter. For example, to write the sentence $\forall x. \exists y. (p(x) \land q(y) \Rightarrow r(y) \land \neg s(y))$, write $\exists x. \exists y. (p(x) \land q(y) \Rightarrow r(y) \land \neg s(y))$.

Proof Editor				
1.	$AX:(p(X) \Longrightarrow q(X))$		Premise	
2.	p(a)		Premise	
3.	p(a) => q(a)		Universal Elimination: 1	
4.	q(a)		Implication Elimination: 3, 2	
Goal	q(a) Complete Submit			Complete Submit
	Assumption Reiteration Delete	Negation Introduction Negation Elimination And Introduction And Elimination Or Introduction Or Elimination	Implication Introduction Implication Elimination Biconditional Introduction Biconditional Elimination	Universal Introduction Universal Elimination Existential Introduction Existential Elimination