Math 321 Lecture 15

Yuchong Pan

February 6, 2019

1 Riemann's Condition on Riemann-Stieltjes Integrability

Theorem 1. Let

$$f:[a,b] \xrightarrow{\text{bounded}} \mathbb{R},$$

 $\alpha:[a,b] \to \mathbb{R}$ be non-decreasing.

Then $f \in \mathcal{R}_{\alpha}[a, b]$ if and only if for every ϵ , there exists a partition P of [a, b] such that $U_{\alpha}(f, P) - L_{\alpha}(f, P) < \epsilon$.

Proof. " \Rightarrow " Assume $f \in \mathcal{R}_{\alpha}[a,b]$. This implies that

$$\sup\{L_{\alpha}(f,Q): Q \text{ partition of } [a,b]\} = \inf\{U_{\alpha}(f,Q): Q \text{ partition of } [a,b]\} = \underbrace{\int_{a}^{b} f d\alpha}_{\int_{a}^{b} f(x) d\alpha(x)}.$$

Fix $\epsilon > 0$.

$$\begin{array}{c|c}
L_{\alpha}(f,P) & \longleftarrow & U_{\alpha}(f,P) \\
\hline
\bullet & & \bullet
\end{array}$$

Since a supremum is a least upper bound, therefore $\int_a^b f d\alpha - \frac{\epsilon}{2}$ is not an upper bound for the set $\{L_\alpha(f,Q): Q \text{ partitions}[a,b]\}$; i.e., there exists a partition Q_1 such that

$$\int_{a}^{b} f d\alpha - \frac{\epsilon}{2} < L_{\alpha}(f, Q) \le \int_{a}^{b} f d\alpha.$$

$$\frac{L_{\alpha}(f,Q_{1})}{\int_{a}^{b} f d\alpha - \frac{\epsilon}{2}} \int_{a}^{b} f d\alpha$$

Similarly, an infimum is a greatest lower bound, so there exists a partition Q_2 such

$$\int_{a}^{b} f d\alpha + \frac{\epsilon}{2} > U_{\alpha}(f, Q_{2}) \ge \int_{a}^{b} f d\alpha.$$

$$\frac{U_{\alpha}(f,Q_2)}{\int_a^b f d\alpha} \frac{U_{\alpha}(f,Q)}{\int_a^b f d\alpha + \frac{\epsilon}{2}}$$

Math 321 Lecture 15 Yuchong Pan

$$\begin{array}{c|c}
L_{\alpha}(f,Q_{1}) & U_{\alpha}(f,Q_{2}) \\
\downarrow & \times & \downarrow \\
\int_{a}^{b} f d\alpha - \frac{\epsilon}{2} & L_{\alpha}(f,P) & \int_{a}^{b} f d\alpha & U_{\alpha}(f,P) & \int_{a}^{b} f d\alpha + \frac{\epsilon}{2}
\end{array}$$

Set $P = Q_1 \cup Q_2$ = the common refinement of Q_1 and Q_2 . We know that

$$L_{\alpha}(f, Q_1) \le L_{\alpha}(f, P) \le U_{\alpha}(f, P) \le U_{\alpha}(f, Q_2).$$

Since $U_{\alpha}(f, Q_2) - L_{\alpha}(f, Q_1) < \epsilon$, it follows that

$$U_{\alpha}(f,P) - L_{\alpha}(f,P) < \epsilon.$$

 \Leftarrow : Suppose that for every $\epsilon > 0$, there exists a partition P of [a, b] such that

$$U_{\alpha}(f, P) - L_{\alpha}(f, P) < \epsilon. \tag{*}$$

Need to show:

$$\sup_{Q} L_{\alpha}(f, Q) = \inf_{Q} U_{\alpha}(f, Q). \tag{**}$$

Know:

LHS of
$$(**) \leq RHS$$
 of $(**)$.

Remains to prove:

LHS of
$$(**) \ge RHS$$
 of $(**)$.

$$L_{\alpha}(f,Q) \quad L_{\alpha}(f,P) \quad U_{\alpha}(f,Q)$$

$$\sup_{Q} L_{\alpha}(f,Q) = \int_{a}^{b} f d\alpha \quad \stackrel{?}{=} \quad \bar{\int}_{a}^{b} f d\alpha = \inf_{Q} U_{\alpha}(f,Q)$$

Aiming for a contradiction, suppose $\int_a^b f d\alpha < \bar{\int}_a^b f d\alpha$; i.e.,

$$\int_a^b f d\alpha - \int_a^b f d\alpha = d > 0.$$

This means that

$$U_{\alpha}(f,P) - L_{\alpha}(f,P)$$
 for any partition P .

This contradicts our assumption (*) if ϵ is chosen $< \delta$.

Remark.

$$U_{\alpha}(f,P) - L_{\alpha}(f,P) < \epsilon$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$= \sum_{i=1}^{n} \underbrace{(M_{i} - m_{i})}_{\omega(f,I_{i})} \underbrace{\Delta\alpha_{i}}_{\omega(\alpha,I_{i})}.$$

Math 321 Lecture 15 Yuchong Pan

Definition 1. Given any interval $I \subseteq [a, b]$, define

$$\omega(g, I) = \mathbf{maximum oscillation} \text{ of } g \text{ on } I$$
$$= \sup\{g(x) - g(y) : x, y \in I\}$$
$$= \sup\{g(x) : x \in I\} - \inf\{g(y) : y \in I\}.$$

Remark. • If g = f and $I = [x_{i-1}, x_i]$, then $\omega(f, I_i) = M_i - m_i$.

• If $g = \alpha$ is non-decreasing, then $\omega(\alpha, I_i) = \alpha(x_i) - \alpha(x_{i-1}) = \Delta \alpha_i$.

Corollary 1. $C[a,b] \subseteq \mathcal{R}_{\alpha}[a,b]$ for any non-decreasing α .

Proof. We will use Riemann's condition. For every $f \in C[a, b]$, any non-decreasing α and any $\epsilon > 0$, we will find a partition P of [a, b] such that

$$U_{\alpha}(f, P) - L_{\alpha}(f, P) = \sum_{i=1}^{n} \omega(f, I_i)\omega(\alpha, I_i) < \epsilon.$$

f is uniformly continuous, so there exists $\delta > 0$ such that

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{\alpha(b) - \alpha(a)}.$$
 (***)

Choose

$$P = \{ a = x_0 < x_1 = a + \frac{\delta}{2} < x_2 = a + \delta < \dots < x_n = b \}.$$

Note:

$$\omega(f, I_i) < \frac{\epsilon}{\alpha(b) - \alpha(a)} \ \forall i \ \text{by (***)}.$$

Hence,

$$U_{\alpha}(f,P) - L_{\alpha}(f,P) = \sum_{i=1}^{n} \underbrace{\omega(f,I_{i})}_{<\frac{\epsilon}{\alpha(b)-\alpha(a)}} \omega(\alpha,I_{i})$$

$$< \frac{\epsilon}{\alpha(b)-\alpha(a)} \sum_{i=1}^{n} \omega(\alpha,I_{i})$$

$$= \frac{\epsilon}{\alpha(b)-\alpha(a)} \underbrace{\sum_{i=1}^{n} (\alpha(x_{i}) - \alpha(x_{i-1}))}_{=\alpha(b)-\alpha(a)}$$

Theorem 2. If $f_n, f \in \mathcal{R}_{\alpha}[a, b]$ and $f_n \xrightarrow{n \to \infty} f$ uniformly on [a, b], then

$$\int_{a}^{b} f_{n} d\alpha \xrightarrow{n \to \infty} \int_{a}^{b} f d\alpha.$$