

Automated Microservice Identification: an Approach to Decomposition into a Modular Monolith Architecture

University of Turku
Department of Computing
Master of Science (Tech) Thesis
April 2024
Florian Dejonckheere

UNIVERSITY OF TURKU

Department of Computing

FLORIAN DEJONCKHEERE: Automated Microservice Identification: an Approach to Decomposition

into a Modular Monolith Architecture

Master of Science (Tech) Thesis, 38 p., 5 app. p.

Department of Computing

April 2024

The modular monolith architecture emerged in recent years as the harmonization of the monolithic

and microservices architectures. The paradigm offers a compromise between modularity, flexibility,

and scalability. Many monolithic applications are being migrated to modular monoliths or

microservices entirely, to satisfy increasingly complex and volatile business requirements. This

process is labour-intensive, slow, and may take months to years for larger codebases. Modularization

of a codebase typically requires the developer to have an intimate knowledge of both the application

code and domain.

In this thesis, we investigate the modular monolith software architecture, and how modules are

typically determined as part of the modularization efforts. We propose an automated solution based

on dependency analysis and machine learning algorithms to aid in the identification of module

boundaries, and evaluate its effectiveness using a case study. We discuss the results and draw

conclusions about the propsed solution.

Keywords: software architecture, monolith, microservices, modular monolith

Contents

1. Introduction	
1.1. Motivation	1
1.2. Scope and goal	1
1.3. Outline	1
2. Methodology	3
3. Background	5
3.1. Monolith architecture	5
3.2. Modular programming	5
3.3. Microservice architecture	5
3.4. Modularization	5
4. Related work	6
5. Modular monolith architecture	7
5.1. Background	7
5.2. Challenges and opportunities	7
5.3. Modularization	7
6. Automated modularization	8
6.1. Plan	8
6.2. Conduct	
6.3. Report	
6.3.1. SDLC artifact	
6.3.2. Algorithms	
6.3.3. Metrics	21
7. Proposed solution	26
7.1. Problem statement	26
7.2. Design	27
7.3. Requirements	28
7.4. Extraction	29
7.4.1. Structural coupling	29
7.4.2. Logical coupling	30
7.4.3. Contributor coupling	31
7.4.4. Dependency graph	32
7.5. Decomposition	34

	7.6. Visualization	35
	7.7. Evaluation	36
8	Case study	37
	8.1. Background	37
	8.2. Experimental setup	37
	8.3. Evaluation and results	37
	8.4. Discussion	
	8.5. Threats to validity	37
9	Conclusion	38
	9.1. Future work	38
R	eferences	39

List of Figures

Figure 1: Design Science Research Process (DSRP)	4
Figure 2: Distribution of selected publications by year	11
Figure 3: Overview of the architecture of the proposed solution	27
Figure 4: Dependency graph	33

List of Tables

Table 1: Systematic literature review process	3
Table 2: Inclusion and exclusion criteria	10
Table 3: Summary of search results	11
Table 4: SDLC artifact categories	14
Table 5: Microservice candidate identification algorithm	18
Table 6: Quality metrics	21
Table 7: Selected publications (primary studies)	1
Table 8: Selected publications (secondary studies)	3

List of Algorithms

Algorithm 1: Logical coupling extraction algorithm	31
Algorithm 2: Contributor coupling extraction algorithm	32

List of Acronyms

AST Abstract Syntax Tree

BPMN Business Process Model and NotationDSRM Design Science Research Methodology

DSRP Design Science Research Process
 SDLC Software Development Life Cycle
 SLR Systematic Literature Review

1. Introduction

1.1. Motivation

1.2. Scope and goal

This research is centered around three research questions:

Research Question 1: What are the challenges and opportunities of the modular monolith architecture compared to traditional monolithic and microservices architectures?

Research Question 2: What are the existing approaches and tools for automated microservice candidate identification in monolith codebases?

Research Question 3: How can static analysis of source code identify module boundaries in a modular monolith architecture that maximize internal cohesion and minimize external coupling?

To answer the first research question, we will first define the modular monolith architecture, and examine what sets it apart from monolithic and microservices architectures. Then, we will proceed to investigate the merits and drawbacks of the software architecture when applied to an existing codebase.

For the second research question, we will enumerate the existing technologies to aid modularization of monolithic codebases, and choose one automated technology for further examination. (*Automated technology*) will then be implemented for a given use case, and compared to manual modularization efforts in terms of accuracy, efficiency, development velocity. This comparison will help us to answer the third research question.

The goal of this research can be summarized as follows:

- 1. Investigate the merits and drawbacks of the modular monolith architecture
- 2. Investigate the use of automated technologies to modularize a monolithic architecture

The proposed solution will add value to the field of software engineering, and will be able to be used as a base for future improvements regarding automated modularization of monolith codebases.

1.3. Outline

The thesis is divided into three parts.

The first part comprises the background and related work. In Chapter 1, the scope and goal of the research is defined, and the research questions are formulated. The stakeholders are identified, and the methodology is explained. Chapter 2 describes the research methodology used in this thesis. Chapter 3 introduces the reader to the research background and necessary concepts. In Chapter 4, the existing literature is reviewed, and the state of the art is presented.

The second part of the thesis, starting with Chapter 5, is dedicated to the first research question. The modular monolith architecture is defined, and its merits and drawbacks are discussed.

The third part aims to solve the second and third research question. Chapter 6 gives an introduction into the automated modularization of monolith codebases, listing the existing technologies. It then continues to focus on one automated technology, (automated technology), and explains its implementation. Chapter 8 applies (automated technology) on a given case study, and compares it to manual modularization efforts.

Finally, Chapter 9 summarizes the findings, and gives an outlook on future work.

2. Methodology

A literature review is conducted to answer the first and second research question. For the first research question, the study aims to find a definition of the modular monolith architecture, and to list the advantages and disadvantages of the architecture based on existing literature. For the second research question, the state of the art in automated modularization technologies is reviewed and summarized.

The third research question is answered by choosing the most appropriate automated technology, and implementing it for a given use case. The implementation is then evaluated based on quantitative and qualitative metrics, and compared to manual modularization efforts.

Finally, the findings are summarized, and an outlook on future work is given.

Systematic literature review

A systematic literature review is used to identify, evaluate and interpret research literature for a given topic area, or research question [1]. The systematic nature of systematic literature reviews reduces bias through a well-defined sequence of steps to identify and categorize existing literature, although publication bias still has to be considered. Studies directly researching the topic area are called *primary* studies, systematic studies aggregating and summarizing primary studies are called *secondary* studies. *Tertiary* studies are systematic studies aggregating and summarizing secondary studies.

The systematic literature review was conducted using the three-step protocol as defined by Kitchenham and Charters [1]:

	Step	Activity
1	Plan	Identify the need for the review, specifying the research questions, and developing a review protocol
2	Conduct	Identification and selection of literature, data extraction and synthesis
3	Report	Evaluation and reporting of the results

Table 1: Systematic literature review process

Case study

For the case study, a Design Science Research Methodology (DSRM) is adopted, which is a research paradigm for information systems research focused at creating and evaluating artifacts. In particular, the research and design of the proposed solution follows the six-step Design Science Research Process (DSRP) model [2]. Their model is based on prior research and is designed to guide researchers through the process of analysis, creation, and evaluation of artifacts.

The six steps of the process are:

- 1. **Problem identification and motivation**: Research problem statement and justification for existence of a solution.
- 2. **Objectives of a solution**: Definition of the objectives, derived from the problem statement.
- 3. **Design and development**: Creation of the artifact.
- 4. **Demonstration**: Usage of the artifact to demonstrate its effectiveness in solving the problem.
- 5. **Evaluation**: Observation and measurement of how well the artifact supports a solution to the problem.
- 6. **Communication**: Transfer of knowledge about the artifact and the problem solution to the relevant audience.

Figure 1: Design Science Research Process (DSRP)

The process is structured sequentially, however the authors suggests that researchers may proceed in a non-linear fashion, and start or stop at any step, depending on the context and requirements of the research.

In this thesis specifically, the DSRP is used to guide the design and development of the automated modularization technology, with a particular focus on the design and development, demonstration, and evaluation steps.

- 3. Background
- 3.1. Monolith architecture
- 3.2. Modular programming
- 3.3. Microservice architecture
- 3.4. Modularization

4. Related work

5. Modular monolith architecture

- 5.1. Background
- 5.2. Challenges and opportunities
- 5.3. Modularization

6. Automated modularization

In this chapter, we investigate the state of the art in automated technologies for modularization of monolith codebases. Using a systematic literature review, we identified and categorized existing literature on automated modularization of monolith codebases. We also provided a brief overview of the most relevant approaches and tools.

6.1. Plan

Using the systematic literature review, we answered the following research question:

Research Question 2: What are the existing approaches and tools for automated microservice candidate identification in monolith codebases?

The motivation for the research question is discussed in Chapter 1.

In current literature, several systematic mapping studies related to microservices architecture have been conducted [3], [4], as well as systematic literature reviews related to microservice decomposition. However, in these studies the methods described are mainly used as an aid for the software architect when identifying microservice candidates. Therefore, we believe that there is a need for a systematic literature review aimed at summarizing existing literature regarding automated and semi-automated methods for modularization of monolith codebases.

Automated methods for modularization are techniques that autonomously perform the entire decomposition process, without requiring intervention of a software architect. The resulting architecture is then presented to the software architect for validation and implementation. Semi-automated methods for modularization are techniques that assist the software architect in the decomposition process, but do not perform the entire process autonomously. The software architect is required to make decisions during the process, and is left with several final proposals to choose from. Automated methods are of particular interest, as they take away the manual effort required from the software architect to analyze and decompose the monolith codebase.

As a search strategy, the following platforms were queried for relevant publications:

- 1. IEEE Xplore¹
- 2. ACM Digital Library²

The platforms were selected based on their academic relevance, as they contain a large number of publications in the field of software engineering. Furthermore, the platforms also contain only peer-reviewed publications, which ensures a certain level of quality in the publications.

¹https://ieeexplore.ieee.org/

²https://dl.acm.org/

Based on a list of relevant topics, we used a combination of related keywords to formulate the search query. We refrained from using more generic keywords, such as "architecture" or "design", as they would yield too many irrelevant results. The topics relevant for the search query are:

- Architecture: the architectural styles being discussed in the publications.

 Keywords: microservice, monolith, modular monolith
- **Modularization**: the process of identifying and decomposing modules in a monolith architecture. Keywords: *service identification, microservice decomposition, monolith modularization*
- **Technology**: the technologies, algorithms, or methods for modularization.

 Keywords: *automated tool, machine learning, static analysis, dynamic analysis, hybrid analysis*

The resulting search query can be expressed as follows:

```
1  (('microservice*' IN title OR abstract) OR
2   ('monolith*' IN title OR abstract))
3  AND
4  (('decompos*' IN title OR abstract) OR
5   ('identificat*' IN title OR abstract))
6  AND
7  ('automate*' IN title OR abstract)
```

Listing 1: Search query

The search query was adapted to the specific search syntax of the platform.

In addition to search queries on the selected platforms, we used snowballing to identify additional relevant publications. Snowballing is a research technique used to find additional publications of interest by following the references of the selected publications .

Based the inclusion/exclusion criteria in Table 2, the results were filtered, and the relevant studies were selected for inclusion in the systematic literature review.

	Criteria
Inclusion	 Title, abstract or keywords include the search terms Conference papers, research articles, blog posts, or other publications Publications addressing (semi-)automated methods or technologies
Exclusion	 Publications in languages other than English Publications not available in full text Publications using the term "microservice", but not referring to the architectural style Publications aimed at greenfield³ or brownfield⁴ development of systems using microservices architecture Publications published before 2014, as the definition of "microservices" as an architectural style is inconsistent before 2014 [4] Publications addressing manual methods or technologies Surveys, opinion pieces, or other non-technical publications

Table 2: Inclusion and exclusion criteria

As a final step, the publications were subjected to a validation scan to ensure relevance and quality. To assess the quality, we mainly focused on the technical soundness of the method or approach described in the publication.

The quality of the publication was assessed based on the following criteria:

- The publication is peer-reviewed or published in a respectable journal
- The publication thoroughly describes the technical aspects of the method or approach
- The publication includes a validation phase or case study demonstrating the effectiveness of the method or approach

This step is necessary to ensure that the selected publications are relevant to the research question and that the results are not biased by low-quality publications.

Once a final selection of publications was made, the resulting publications were qualitatively reviewed and categorized based on the method or approach described.

³Development of new software systems lacking constraints imposed by prior work [5]

⁴Development of new software systems in the presence of legacy software systems [5]

6.2. Conduct

Using the search strategy outlined in the previous section, we queried the selected platforms and found a total of 507 publications.

Platform	Search results	Selected publications
IEEE Xplore	339	33
ACM Digital Library	168	9
Snowballing		6
Total	507	48

Table 3: Summary of search results

After applying the inclusion/exclusion criteria, we selected 42 publications for inclusion in the systematic literature review. Of these publications, 35 are primary studies, and 6 are secondary studies. The secondary studies were used as a starting point for the snowballing process, which resulted in 6 additional publications being included in the systematic literature review. For a list of the selected publications, see Appendix A.

Figure 2: Distribution of selected publications by year

The selected publications range in publication date from 2014 to 2024, with a peak in 2022. Few publications were selected in the first part of the interval, picking up in the later years with a steady increase in the number of publications.

From the selected publications, we extracted relevant information, such as:

- The type of approach or technique described (automated, semi-automated)
- The input data used for the microservice candidate identification process
- The algorithms used in the microservices candidate identification process
- The quality metrics used in the evaluation of the decomposition

Kitchenham and Charters [1] suggest that the data extraction process should be performed by at least two researchers to ensure the quality and consistency of the extracted data. However, due to

resource constraints, the data extraction was performed by a single researcher. To prevent bias and ensure the quality of the data extraction, the results were validated by a re-test procedure where the researcher performs a second extraction from a random selection of the publications to check the consistency of the extracted data.

6.3. Report

The publications selected for inclusion in the systematic literature review were qualitatively reviewed and categorized in three dimensions. The categorization was only performed on the primary studies, as the secondary studies already aggregate and categorize primary studies. The secondary studies were used to perform the snowballing process, which resulted in additional primary studies being included in the systematic literature review.

First, we categorized the publications based on the Software Development Life Cycle (SDLC) artifact used as input for the microservice candidate identification algorithm. Each artifact category has an associated collection type: either static, dynamic, or hybrid. [6]. Static collection describes a SDLC artifact that was collected without executing the software (e.g. source code or binary code), while dynamic collection describes a SDLC artifact that was collected after or during execution of the software (e.g. execution logs). Some publications describe methods or algorithms that use a combination of SDLC artifacts, which is categorized as hybrid.

Second, we categorized the publications based on the class of algorithm(s) used for microservice candidate identification. We based the classification of the algorithms on Abdellatif et al. [7], who identified six types of service identification algorithms.

Third, the publications were also categorized by the quality metrics used for evaluation the proposed decompositions.

6.3.1. SDLC artifact

The identified SDLC artifact categories used as input for the microservice candidate identification algorithm are described in Table 4. The categories are based on Bajaj et al. [6].

Artifact	Type	Publications
Requirements documents and models	Static	[8]-[12]
Design documents	Static	[13]-[17]
Codebase	Static	[18]-[35], [17], [36]-[39]
Execution data	Dynamic	[22], [28], [32], [33], [40]–[43], [38]

Table 4: SDLC artifact categories

Requirements documents and models

In software engineering, requirements documents and models are used to formally describe the requirements of a software system following the specification of the business or stakeholder requirements [44]. They include functional and non-functional requirements, use cases, user stories, and business process models. Approaches using requirements documents and models as input for the microservice candidate identification algorithm often times need to pre-process the documents to extract the relevant information, as they are not intended to be directly read by a machine. In many cases, requirements documents and models for legacy systems are no longer available or outdated, which makes this approach less suitable for automated microservice identification.

Amiri [8] and Daoud et al. [9] model a software system as a set of business process using the industry standard Business Process Model and Notation (BPMN), using the machine-readable XML representation as input for the algorithm. Yang et al. [10] tackle requirements engineering using problem frames [45]. Problem frames are a requirements engineering method, which emphasizes the integration of real-world elements into the software system [10].

Some approaches use schematic requirements documents in XML format as input for the algorithm, as described by Saidi et al. [11]. The latter use domain-driven design techniques to extract functional dependencies from the software design as starting point in microservice identification. Li et al. [12] employ an intermediate format containing a precise definition of business functionality, generated from validated requirements documents.

Design documents

Design documents created by software architects are machine-readable representations of the software system. They describe the software functionalities in detail and are used to guide

the implementation of the software system. Design documents include API specifications, UML diagrams (such as class diagrams and sequence diagrams), and entity-relationship diagrams.

Techniques using design documents either use a domain-driven approach, or a data-driven approach. Domain-driven approaches use domain-specific knowledge to identify microservice candidates, while data-driven approaches use knowledge about data storage and data flow to identify microservice candidates. Similar to requirements documents and models, design documents for legacy systems are often not available or outdated, although some design documents can be reconstructed from the software system (e.g., reverse engineering entity-relationship diagrams from the database schema).

For example, Al-Debagy and Martinek [13] propose a data-driven method based on the analysis of the software system's external API, specified in the OpenAPI⁵ format. The method extracts the information from the specification and converts it into vector representation for further processing.

Zhou and Xiong [14] use readily available design documents as well, in the form of UML class diagrams, use cases, and object sequence diagrams as starting point for the microservice identification algorithm. The decomposition tool proposed by Hasan et al. [17] uses design documents as well, although the specifications are inferred from the source code of the software system, and do not require pre-existing design documents.

Quattrocchi et al. [15] takes a different approach to the problem, using a data-driven approach combined with a domain-driven approach. Software architects describe the software system using a custom architecture description language, and the tool developed by the authors is able to identify microservice candidates. The tool can be prompted to generate different, more efficient decompositions when given additional domain-driven requirements. Wei et al. [16] uses a similar approach, gathering a list of features from the software architect, and proposing a microservice decomposition based on pre-trained feature tables.

Codebase

A third category of SDLC artifacts is the codebase of the software system. This can be the source code of the software system, or a binary distribution (e.g. a JAR file). For example, the implementation in [26] accepts either source code or compiled binary code for analysis.

As the source code of the software system is the most detailed representation of how the software system works, it is most often used as input for the microservice candidate identification algorithm. The source code can be analyzed using static analysis (i.e., without executing the software system), dynamic analysis (i.e., during the execution of the software system or test suite), or a combination of both. Dynamic analysis has the advantage that it can be used if the source code is not available.

⁵https://www.openapis.org/

Additionally, the revision history of the source code can also be used as source for valuable information about the behaviour of the software system. Mazlami et al. [19] originally proposed the use of the revision history of the source code to identify couplings between classes. The authors suggest multiple strategies that can be used to extract information from the revision history. Others have built upon this approach, using the revision history to identify the authors of the source code, and use this information to drive the identification algorithm [32], [39]

Escobar et al. [18] use the source code of the software system to construct an Abstract Syntax Tree (AST), and map the dependencies between the business and data layer. Kamimura et al. [20] use a more data-driven approach, and statically trace data access calls in the source code.

Many publications [21], [26], [28]–[30], [37]–[39] construct a dependency graph from Java source code, and use the graph as input for a clustering algorithm. Bandara and Perera [23] map object-oriented classes in the source code to specific microservices, but require a list of microservices to be specified before the decomposition is performed.

Gianluca Filippone, Autili, et al. [24] concentrate on the API controllers as entrypoints into the software system. A later paper by the same authors [25] builds on top of this approach by using the API endpoints as entrypoints, and then ascending into the source code by separating the presentation and logic layer. Likewise, Zaragoza et al. [29] make a distinction between presentation, business, and data layer.

Most of the publications tracing dependencies between classes (or modules) do this at the level of the classes (or modules). As Mazlami et al. [19] remark, using a more granular approach at the level of methods (or functions) and attributes has the potential to improve the quality of the decomposition. Carvalho et al. [22] use a more granular approach, identifying dependencies between methods in the source code. On the other hand, Kinoshita and Kanuka [27] do not automatically extract information from the source code, but rely on a software architect to decompose the software system on the basis of business capability.

Romani et al. [31] propose a data-centric microservice candidate identification method based on knowledge gathered from the database schema. The authors extract table and column methods from the database schema, and use the semantically enriched information as input for the identification algorithm. Hao et al. [33] construct access patterns from both the database schema (static) and the database calls during execution of the software system (dynamic).

A unique approach to constructing a call graph is proposed by Nitin et al. [36], who make a distinction between context-insensitive and context-sensitive dependency graphs. While the former captures the dependencies between classes using simple method calls, the latter also includes the context (i.e., the arguments) of the method call in the dependency graph.

Execution

As the last category, information about the behaviour of the system can also be collected during the runtime of the software system. Execution data includes log files, execution traces, and performance metrics. This category is often combined with static analysis on source code, as the execution data can provide additional information to the identification algorithm. In dynamic languages such as Java, dynamic analysis can trace access patterns that static analysis cannot (e.g., due to late binding and polymorphism). Additionally, execution data can be collected when the source code of the software system is not available.

Examples of approaches using execution traces are Jin et al. [40] and Eyitemi and Reiff-Marganiec [43]. Using software probes inserted into the bytecode of respectively Java and .NET applications, the authors are able to monitor execution paths. Zhang et al. [41] collect the execution traces of the software system, in combination with performance logs.

Ma et al. [42] use a data-centric approach based on the analysis of database access requests.

Hybrid approach

Some publications suggest a hybrid approach using both static and dynamic analysis. For instance, Wu and Zhang [28], Carvalho et al. [22] and Cao and Zhang [38] collect information statically from the source code (entity classes and databases), as well as dynamically from the execution of the software system (execution traces). The approach proposed by Lourenço and Silva [32] uses either static of the source code or dynamic analysis of the system execution to gather access patterns.

Hao et al. [33] use both static and dynamic analysis, albeit aimed at the database schema and database calls, respectively.

6.3.2. Algorithms

Microservice candidate identification is a problem that is often solved by representing the architecture as a directed graph. The graph exposes the relationship between the elements of the software architectures. The nodes of the graph represent the classes, modules, or components, and the edges the function or method calls between them. Often the edges are weighted, representing the frequency or cost of the calls. Based on the information contained within, the graph is then divided into several clusters, each encapsulating a microservice candidate. The goal is to find a partitioning of the graph that minimizes the number of edges between clusters and maximizes the number of edges within clusters.

The identified classes of microservice candidate identification algorithms are described in Table 5.

Туре	Example algorithms	Publications
Clustering algorithms	K-Means, DBSCAN, Hierarchical Agglomerative Clustering, Affinity Propagation	[9], [11], [13], [21], [23], [28]– [33], [42], [35]–[38]
Evolutionary algorithms	NSGA-II, NSGA-III	[8], [12], [14], [22], [27], [40], [41]
Graph algorithms	Kruskal, Louvain method, Leiden algorithm, Label Propagation	[10], [19], [25], [34], [17], [36], [38]
Other algorithms	Linear optimization, custom algorithms	[15], [18], [20], [21], [24], [26], [43], [16], [17], [39]

Table 5: Microservice candidate identification algorithm

Clustering algorithms

The first class of algorithms identified in the literature is clustering algorithms. Clustering algorithms are unsupervised machine learning algorithms that aim to find an optimal partitioning of the graph. Typical clustering algorithms used for this purpose are K-Means clustering and agglomerative clustering.

Examples of publications using K-Means clustering to identify microservice candidates are Saidi et al. [11], Wu and Zhang [28], Romani et al. [31], and Hao et al. [33].

Al-Debagy and Martinek [13] use Affinity Propagation [46] to cluster vector representations of operation names in a software system. Affinity Propagation is a clustering algorithm that identifies exemplars in the data, which are used to represent the clusters.

Hierarchical clustering approaches are used in various publications [21], [30], [32], [42], [29], [23]. Lourenço and Silva [32] uses similarity between domain entities accesses and development history of source code files as a guiding measure for the clustering algorithm, while Zaragoza et al. [29] uses structural and data cohesion of microservices. Daoud et al. [9] extend the hierarchical agglomerative clustering (HAC) algorithm [47] with a collaborative approach, where the clustering is performed by multiple homogenous clustering nodes, each responsible for a subset of the data.

Selmadji et al. [21] propose two possible algorithms for microservice identification: a hierarchical clustering algorithm, and a clustering algorithm based on gravity centers.

Sellami et al. [35] use the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [48] to identify microservices.

Evolutionary algorithms

Evolutionary algorithms are the second class of algorithms present in the literature. Evolutionary algorithms, and in particular genetic algorithms, are algorithms aimed at solving optimization problems by borrowing techniques from natural selection and genetics. These algorithms typically operate iteratively, selecting the best solutions from a population at each iteration (called a generation), and then combining the selected solutions to create new combinations for the next generation. The process is then repeated until certain criteria are met, for example a maximum number of generations, convergence of the population, or a quality indicator.

Examples of publications using Non-Dominated Sorting Algorithm II (NGSA-II) as multi-objective optimization algorithm to identify microservice candidates are Zhou and Xiong [14], Kinoshita and Kanuka [27], Zhang et al. [41], Jin et al. [40], and Li et al. [12]. Carvalho et al. [22] use the next generation of NSGA, NSGA-III, in order to find a solution for the problem.

Amiri [8] rely on a genetic algorithm using Turbo-MQ [49] as fitness function.

Graph algorithms

Another common approach to identify microservice candidates is to use classical algorithms from graph theory.

For example, Mazlami et al. [19] and Yang et al. [10] use Kruskal's algorithm [50] to partition the graph into connected clusters. Kruskal's algorithm is a greedy algorithm that finds the minimum spanning forest for an undirected weighted graph.

Gianluca Filippone, Qaisar Mehmood, et al. [25] apply the Louvain community detection algorithm [51] to obtain the granularity of the microservices, and high-cohesive communities of nodes. The Louvain method is a greedy optimization algorithm that aims to extract non-overlapping communities from a graph, using the modularity value as optimization target. Hasan et al. [17] use

the Leiden algorithm [52], an improvement of the Louvain method that uses a refinement step to improve the quality of the communities.

Cao and Zhang [38] use both the Leiden algorithm and the hierarchical clustering algorithm to identify microservice candidates. First, the Leiden algorithm is used to detect cohesive communities in static and dynamic analysis data, and then the hierarchical clustering algorithm is used to merge the communities into microservice candidates based on a call relation matrix.

Nitin et al. [36] use Context sensitive Label Propagation (CARGO), an algorithm built on the principles of the Label Propagation algorithm [53]. CARGO is a community detection algorithm that is able to leverage the context embedded in the dependency graph to increase the cohesiveness of the communities.

Other algorithms

Other publications using algorithms that do not fit into one of the previous categories are grouped in a single category.

For example, the authors of Quattrocchi et al. [15] incorporated a Mixed Integer Linear Programming (MILP) solver in their solution. The MILP solver is used to find a solution for an optimization problem that decomposes the software system into microservices, based on the placement of operations and data entities according to the users' needs. Gianluca Filippone, Autili, et al. [24] use a linear optimization algorithm to solve a combinatorial optimization problem.

The approach taken by Kamimura et al. [20] is to use a custom clustering algorithm named SArF [54], that aims at identifying software subsystems without the need for human intervention. Escobar et al. [18] also use a custom clustering algorithm, detecting optimal microservices based on a metamodel of the class hierarchy.

Agarwal et al. [26] propose an algorithm based on seed expansion. The seed classes are detected by using formal concept analysis. Then, using a seed expansion algorithm, clusters are created around the seeds by pulling in related code artefacts based on implementation structure of the software system [26].

Eyitemi and Reiff-Marganiec [43] use a rule-based approach to microservice candidate identification. The 6 proposed rules are based on the principles of high cohesion and low coupling, and using a step-based protocol can be used to manually decompose a monolithic system into microservices.

6.3.3. Metrics

The quality metrics used in the publications are summarized in Table 6. The metrics are used to quantitatively evaluate the quality of the generated microservice decomposition. Some of the algorithms require the use of a specific metric to guide the process, such as the fitness function in genetic algorithms.

Metric	Publications
Cohesion	[9], [12]–[15], [21]–[25], [28]–[30], [32], [40], [41], [34], [16], [35], [17], [36]–[38]
Coupling	[9], [12], [14], [21]–[26], [28], [30], [32], [40], [41], [34], [16], [35], [17], [36]–[38]
Network overhead	[14], [15], [22], [24]
Complexity	[13], [30], [32], [17]
CPU and memory usage	[15], [41], [36]
Modularity	[12], [23], [40], [28], [34], [35], [37]
Other metrics	[10]-[12], [19]-[21], [25], [32], [33], [42], [16], [35], [17], [36]- [39]
No metrics	[18], [27], [31], [43]

Table 6: Quality metrics

Cohesion and coupling

The quality metrics most frequently mentioned in the literature are cohesion and coupling. The behaviour of information systems has been studied with the help of these metrics and others such as size and complexity since the 1970s [55]. As object-oriented programming became more popular, the concepts of cohesion and coupling were adapted to the new paradigm [56].

Throughout the years, many definitions of cohesion and coupling have been proposed both for procedural and object-oriented systems. For example, Briand, Morasca, and Basili [57] define cohesion as the tightness with which related program features are grouped together, and coupling as the amount of relationships between the elements belonging to different modules of a system.

The publications in this review use different definitions for cohesion and coupling, and different methods of calculating them. For example, Selmadji et al. [21] define (internal) cohesion as the number of direct connections between the methods of the classes belonging to a microservice over the number of possible connections between the methods of the classes. The authors then define

internal coupling as the number of direct method calls between two classes over the total number of method calls in the application.

Others [22], [24], [14], [41], [26], [23] use a similar definition of cohesion, but they define (individual) coupling as the number of method calls from a microservice class to another class outside of the service boundary. The total coupling of the solution is the sum of the coupling of all microservices. Similarly, Gianluca Filippone, Qaisar Mehmood, et al. [25] define average cohesion and average coupling as ratio of the total cohesion and coupling respectively, to the number of microservices in the decomposition.

Jin et al. [40] introduce the concept of inter-service cohesion and inter-call percentage (ICP) as coupling metrics. Several other publications use the metrics introduced by W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng in their research [28], [34]–[36].

Another approach to cohesion and coupling is that of Santos and Silva [30] and Lourenço and Silva [32], who define cohesion as the percentage of entities accessed by a functionality. If all entities belonging to a microservice candidate are accessed each time a microservice candidate is accessed, the service is strongly cohesive. Coupling is defined as the percentage of the entities exposed by a microservice candidate that are accessed by other microservice candidates.

Al-Debagy and Martinek [13] use the inverse of cohesion as a metric, named lack of cohesion (LCOM). It is calculated by the number of times a microservice uses a method from another microservice, divided by the number of operations multiplied by the number of unique parameters. This metric quantifies how the operations in a service are related to each other in terms of functionality.

Network overhead

Microservices are distributed systems, and communication between services is done over a network. The network overhead is the extra cost of this communication, and many authors consider it an important metric to consider when designing a microservice architecture.

Gianluca Filippone, Autili, et al. [24] and others [22], [14] calculate the value based using a heuristic function that uses the size of primitive types of method call arguments to predict the total network overhead of a microservice decomposition. Carvalho et al. [22] also includes the protocol overhead in the calculation, which is the cost of the communication protocol used to send messages between services (for example, TCP headers, HTTP headers, etc.).

Quattrocchi et al. [15] measure network overhead as part of their operational cost metric. The metric also includes data management costs (CPU and memory).

Complexity

The complexity of a microservice candidate is another metric that can impact the quality of the microservice decomposition. Al-Debagy and Martinek [13] defines complexity based on Number of Operations, a metric that uses Weighted Methods per Class (WMC), summing the number of methods in a class.

Santos and Silva [30] define the complexity metric in terms of the functionality redesign effort, rather than the complexity of the microservice candidates. The metric is associated with the cognitive load of the software architect when considering a migration from monolith to microservice.

In another publication by the same co-author, Lourenço and Silva [32] define complexity as the effort required to perform the decomposition, and expand the concept to uniform complexity, which is calculated by dividing the complexity of a decomposition by the maximum possible complexity.

CPU and memory usage

A non-functional metric that is considered by some authors is the CPU and/or memory usage of the microservices. Zhang et al. [41] use this metric to evaluate the quality of the microservice decomposition, by predicting the average CPU and memory usage of the microservices. The prediction is made based on performance logs collected by executing the monolith application.

Quattrocchi et al. [15] define operational costs as metric to minimize, which includes communication (network) and data management (CPU and memory) costs.

Nitin et al. [36] do not utilize the CPU and memory usage directly as a metric, but instead assume the latency and throughput as indicators of performance.

Modularity

Modularity is a measure of independence of services, and can be divided into many dimensions, such as structure, concept, history, and dynamism [58].

Jin et al. [40] use modularity as a metric to evaluate potential decompositions. The authors use Modularity Quality [59] and extend the concept with structural and conceptual dependencies to assess the modularity of microservice candidates.

Carvalho et al. [22] introduce a metric named feature modularization, which maps a list of features supplied by the software architect onto classes and methods, determining the set of predominant features per microservice.

Other metrics

Lourenço and Silva [32] introduce the concept of Team Size Reduction (TSR), which indicates if the average team size is shorter after the decomposition, by comparing the average number of authors

per microservice to the total number of authors. A Team Size Reduction value of 1 indicates that the microservices architecture has the same number of authors as the monolith, while a value less than 1 indicates a reduction in the number of authors. Mazlami et al. [19] make use of the TSR metric, as well as the Average Domain Redundancy (ADR) metric, which represents the amount of domain-specific duplication or redundancy between the microservices. The ADR metric uses a scale from 0 to 1, where 0 indicates no redundancy and 1 indicates that all microservices are redundant.

Carvalho et al. [22] propose a metric called reuse, which measures the reusability of a microservice. Reuse is calculated as the number of times a microservice is called by the user, relying on dynamic analysis to collect this information.

The usage metric of an object-oriented software system, defined as the sum of the inheritance factor (is-a) and the composition factor (has-a) is used by Bandara and Perera [23] as a part of the fitness function for the clustering algorithm.

Saidi et al. [11] use the intra-domain and inter-domain data dependency metrics to delineate microservice boundaries, based on the read and write access pattern of the operations. In a similar fashion, Selmadji et al. [21] talk about data autonomy determined by the internal and external data access of a microservice candidate.

Kamimura et al. [20] introduce a metric called dedication score, which measures the relationships between services as a function of access frequency. Along with a modularity metric, the dedication score is used in their custom SArF dependency-based clustering algorithm [54].

The correlation metric is used by Yang et al. [10] and indicates the degree of correlation between the microservices. The authors calculate the correlation in two ways: the number of co-occurrence of the problem domain, and the adjacency relationship between problem domains.

Ma et al. [42] use the Adjusted Rand Index (ARI) as clustering evaluation criterion. The metric measures the similarity between two clusters in a decomposition, and ranges from −1 to 1, with 0 being the optimal value.

Hao et al. [33] use the Matching Degree metric as quality indicator. The metric is calculated by dividing the number of intersections of database tables in a given microservice and a given cluster by the total number of tables used in the microservice.

Hasan et al. [17] and Kalia et al. [37] use the Size metric to evaluate the quality of the microservice decomposition. The metric measures how evenly the size of the proposed microservices is. The size metric was originally proposed by Wu, Hassan, and Holt [60].

Santos and Paula [39] use the silhouette coefficient originally proposed by Rousseeuw [61] as evaluation metric. The silhouette coefficient assesses clustering consistency by comparing the average dissimilarity within the cluster.

No metrics

Some of the publications do not mention any quality metrics used in the evaluation of the proposed decomposition. These methods typically rely on the selection or approval of a software architect to choose the best decomposition, based on their experience and knowledge of the system. This is the case of Eyitemi and Reiff-Marganiec [43], Romani et al. [31], Amiri [8], and Escobar et al. [18].

The evaluation method by Kinoshita and Kanuka [27] also does not rely on quantifying the quality of the microservice decomposition using metrics, but rather relies on the software architect's judgement to choose a qualitative decomposition.

7. Proposed solution

In this chapter, we propose our solution for identification of microservice candidates in a monolithic application. The approach is based on the analysis of a dependency graph, that aggregates information from the static and evolutionary analysis of the source code.

7.1. Problem statement

The goal of this solution is to identify a set of microservice candidates that can be extracted from the source code of the given monolithic application, in order to automate the migration to a microservices architecture. The problem can be formulated as a graph partitioning problem, where the vertices correspond to the modules or classes in the monolithic application, and the edges represent the dependencies between them. The input of the algorithm is a representation M of the monolithic application, which exposes a set of functionalities M_F through a set of classes M_C , and history of modifications M_H . The triplet is described by Equation 1.

$$M_{i} = \left\{ M_{F_{i}}, M_{C_{i}}, M_{H_{i}} \right\} \tag{1}$$

The set of functionalities M_{F_i} , the set of classes M_{C_i} , and the set of historical modifications M_{H_i} are described by Equation 2.

$$\begin{split} M_{F_i} &= \left\{ f_1, f_2, ..., f_j \right\} \\ M_{C_i} &= \left\{ c_1, c_2, ..., c_k \right\} \\ M_{H_i} &= \left\{ h_1, h_2, ..., h_l \right\} \end{split} \tag{2}$$

The output of the algorithm is a set of microservices S, according to Equation 3, where m is the number of microservices in the proposed decomposition.

$$S_i = \{s_1, s_2, ..., s_m\} \tag{3}$$

As each class belongs to exactly one microservice, the proposed decomposition S can be written as a surjective function f of M_{C_i} onto S_i as in Equation 4, where $f(c_i) = s_j$ if class c_i belongs to microservice s_j .

$$f: M_{C_i} \to S_i \tag{4}$$

A microservice that contains only one class is called a *singleton microservice*. Singleton microservices typically contain classes that are not used by any other class in the monolithic application. As an optimization of the microservice decomposition, these classes can be omitted from the final decomposition, as they do not have any functional contribution.

7.2. Design

We start by identifying the functional and non-functional requirements for the solution. Then, we propose a four-step approach to decomposition adapted from the microservice identification pipeline by Lopes and Silva [62].

- Extraction: the necessary information is extracted from the application and its environment.
- **Decomposition**: using the collected data, a decomposition of the application into microservices is proposed.
- **Visualization**: the proposed decomposition is visualized to facilitate the understanding of the architecture.
- Quality assessment: the proposed decomposition is evaluated according to a set of quality metrics.

Figure 3: Overview of the architecture of the proposed solution

The next sections detail each of these steps, providing a comprehensive overview of the proposed solution. The process we describe is generic and not tied to any specific programming language or paradigm. We implemented a prototype of the proposed solution in Ruby, as the monolithic application we use for evaluation is written in Ruby. The implementation is available online⁶.

 $^{{}^6}https://github.com/floriandejonckheere/mosaik\\$

7.3. Requirements

Our approach needs to fulfill certain requirements. We make a distinction between functional and non-functional requirements. In software engineering, functional requirements describe requirements that impact the design of the application in a functional way . Non-functional requirements are additional requirements imposed at design-time that do not directly impact the functionality of the application .

The functional requirements we pushed forward for our proposed solution are as follows:

- 1. **Efficiency**: the solution decomposes the monolithic application into a microservices application with adequate efficiency
- 2. **Automation**: the solution automates the decomposition process as much as possible
- 3. **Technology**: the solution is written in a programming language that is compatible with the Ruby programming language⁷
- 4. **Visual**: the solution can output the proposed decomposition in a visual manner, to aid understanding of the process

The non-functional requirements identified in our solution are:

- 1. **Usability**: a software architect or senior software engineer can reasonably quickly get started with the solution
- 2. **Performance**: the solution performs the analysis, decomposition, and evaluation reasonably fast on the source code of a larger application
- 3. **Reuse**: The solution can successfully be reused for untested monolithic applications

⁷https://www.ruby-lang.org/

7.4. Extraction

Software development is typically done in multiple steps, either using the waterfall model, or using an iterative approach. Analysis and design are two steps of early software development which often yield software development lifecycle artifacts in the form of use cases, process models, and diagrams. However, after the completion of the development and the subsequent deployment, these documents are often not kept up to date, and sometimes even lost. Hence, it is not always possible to use design documents for the information extraction phase. A software development artifact that is usually available is the source code repository of the application. Hence, we chose the source code repository as the starting point of the information extraction.

Mazlami et al. [19] propose a microservice extraction model that includes three possible extraction strategies: *logical coupling* strategy, *semantic coupling* strategy, and *contributor coupling* strategy. In this thesis, we concentrate on the logical coupling strategy, and the contributor coupling strategy. The next sections describe in detail how these strategies are used for extracting information from the source code repository.

7.4.1. Structural coupling

Structural coupling is a measure of the dependencies between software components. The dependencies can take the form of control dependencies, or data dependencies . Control dependencies are dependencies between software components that are related to the flow of control of the software system (e.g. interleaving method calls). Data dependencies relate to the flow of data between software components (e.g. passing parameters). In our proposed solution we extract structural coupling information using static analysis of the source code . As the solution is intended to collect information from monolithic applications written in the Ruby programming language, the static analysis is limited to the information that is embedded in the source code. Ruby is a dynamic language, which means that only incomplete type information can be extracted using static analysis. In particular, some techniques like meta-programming and dynamic class loading may affect the accuracy of the extracted information.

Our solution analyzes the source code of the monolithic application using the parser library. The library is written in Ruby and can be used to parse Ruby source code files and extract the AST of the source code. Iterating over the AST of the monolithic application, our solution extracts the references between classes. Using this information, a call graph N_s is constructed that represents the structural coupling of the monolithic application.

For each class c_i in the monolithic application, a vertex is created in the call graph N_s . References between classes are represented as directed edges between the vertices.

⁸https://github.com/whitequark/parser

A directed edge is created for each reference between two classes c_i, c_j . This edge describes three types of references: (i) static method calls between two methods m_i and m_j of the classes c_i, c_j (method-to-method), (ii) references from method m_i to an object of class c_j (method-to-entity), and (iii) associations between entities of class c_i and c_j (entity-to-entity) [24].

The weight of the edge between two classes c_i, c_j is the sum of the number of references between the classes, as described in Equation 5.

$$w(c_i,c_j) = \sum_{m_i \in c_i, m_j \in c_j} ref(m_i,m_j) + ref(m_i,c_j) + ref(c_i,c_j) \tag{5}$$

The ref function returns the number of references between the two methods m_i, m_j , method m_i and class m_j , or classes c_i and c_j .

As Carvalho et al. [22] note, the choice of granularity is an important decision in the extraction of microservices. Existing approaches tend to use a more coarse-grained granularity (e.g. on the level of files or classes) rather than a fined-grained granularity (e.g. on the level of methods). Using a coarse-grained granularity can lead to a smaller number of microservices that are responsible for a larger number of functionalities. A fine-grained granularity can lead to a much larger number of microservices, which can decrease the maintainability of the system. Hence, a trade-off between the two granularities must be made. Our proposed solution uses a coarse-grained granular approach, using the classes of the monolithic application as the starting point for the extraction of microservices.

7.4.2. Logical coupling

The logical coupling strategy is based on the Single Responsibility Principle [63], which states that a software component should only have one reason to change. Software design that follows the Single Responsibility Principle groups together software components that change together. Hence, it is possible to identify appropriate microservice candidates by analyzing the history of modifications of the classes in the source code repository. Classes that change together, should belong in the same microservice. Let M_H be the history of modifications of the source code files of the monolithic application M. Each change event h_i is associated with a set of associated classes c_i that were changed during the modification event at timestamp t_i , as described by Equation 6 [19].

$$h_i = \{c_i, t_i\} \tag{6}$$

If c_1 , c_2 are two classes belonging to the same change event h_i , then the logical coupling is computed as follows in Equation 7 [19].

$$\Delta(c_1, c_2) = \sum_{h \in M_H} \delta_{h(c_1, c_2)} \tag{7}$$

Where δ is the change function.

$$\delta(c_1,c_2) = \begin{cases} 1 \text{ if } c_1,c_2 \text{ changed in } h_i \\ 0 \text{ otherwise} \end{cases} \tag{8}$$

Then, Equation 7 is calculated for each change event $h_i \in M_H$, and each pair of classes c_1, c_2 in the change event. Thus, the aggregated logical coupling N_c for each pair of classes $c_i, c_j \in M_C$ is defined as the sum of the logical coupling for each change event $h_i \in M_H$.

$$N_c(c_1, c_2) = \Delta(c_1, c_2) \tag{9}$$

Consider the extraction algorithm in pseudocode in Algorithm 1.

```
Algorithm 1: Logical coupling extraction algorithm

cochanges ← array[][]

for each ( commit : git.log()) {
    parent ← commit.getParent()
    parentDiff ← diff ( commit, parent )

for each ( file_one : parentDiff.getFiles() ) {
    cochanges[file_one][file_two] ← 1
    }
}

return cochanges;
```

Algorithm 1: Logical coupling extraction algorithm

7.4.3. Contributor coupling

Conway's law states that the structure of a software system is a reflection of the communication structure of the organization that built it [64]. The contributor coupling strategy is based on the notion that the communication structure can be recovered from analyzing the source code repository [19]. Grouping together software components that are developed in teams that have a strong communication paradigm internally can lead to less communication overhead when developing and maintaining the software system. Hence, identifying microservice candidates based on the communication structure of the organization can lead to more maintainable software systems.

Let M_H be the history of modifications of the source code files of the monolithic application M. Each change event h_i is associated with a set of associated classes c_i that were changed during the modification event at timestamp t_i . The change event h_i is also associated with a set of developers $d_i \in M_D$, as stated in Equation 10 [19]. M_D is the set of developers that have contributed to the source code repository of the monolithic application.

$$h_i = \{c_i, t_i, d_i\} \tag{10}$$

 $H(c_i)$ is a function that returns the set of change events that have affected the class c_i , and $D(c_i)$ returns the set of developers that have worked on the class c_i .

$$H(c_i) = \{ h_i \in M_H \mid c_i \in h_i \}$$
 (11)

$$D(c_i) = \{ d_i \in M_D \mid \forall h_i \in H(c_i) : d_i \in h_i \}$$
 (12)

Then, Equation 12 is calculated for each class $c_i \in M_C$ in the monolithic application.

Finally, the aggregated contributor coupling N_d for each pair of classes $c_i, c_j \in M_C$ is defined as the cardinality of the intersection of the sets of developers that have contributed to the classes c_i, c_j [19].

$$N_d(c_1, c_2) = |D(c_i) \cap D(c_j)| \tag{13}$$

Consider the extraction algorithm in pseudocode in Algorithm 2.

```
Algorithm 2: Contributor coupling extraction algorithm

coauthors ← array[][]

for each ( commit : git.log() ) {
    parent ← commit.getParent()
    parentDiff ← diff ( commit, parent )

for each ( file : parentDiff.getFiles() ) {
    coauthors[file] ← commit.getAuthors()
    }
}

return coauthors;
```

Algorithm 2: Contributor coupling extraction algorithm

7.4.4. Dependency graph

As a final step in the information extraction phase, an edge-weighted graph G=(V,E) is constructed, where V is the set of classes in the monolithic application, and E is the set of edges between classes that have an interdependency based on the discussed information extraction strategies. The weight for the edge e_i between classes $c_j, c_k \in V$ is calculated as the weighted sum of the call graph N_s representing the structural coupling, the co-change matrix N_c representing the logical coupling, and the co-authorship matrix N_d representing the contributor coupling. The weights $\alpha, \beta, \gamma \in [0,1]$ are used to balance the contribution of the structural, logical, and contributor coupling respectively, as described in Equation 14.

$$w(e_i) = w\left(c_j, c_k\right) = \alpha N_s\left(c_j, c_k\right) + \beta N_c\left(c_j, c_k\right) + \gamma N_d\left(c_j, c_k\right) \tag{14} \label{eq:14}$$

An illustration of the graph G is presented in Figure 4.

$$G = (V, E)$$

Figure 4: Dependency graph

7.5. Decomposition

7.6. Visualization

7.7. Evaluation

- 8. Case study
- 8.1. Background
- 8.2. Experimental setup
- 8.3. Evaluation and results
- 8.4. Discussion
- 8.5. Threats to validity

9. Conclusion

9.1. Future work

References

- [1] B. Kitchenham and S. Charters, "Guidelines for performing Systematic Literature Reviews in Software Engineering." 2007.
- [2] K. Peffers, M. Rothenberger, T. Tuunanen, and S. Chatterjee, "A Design Science Research Methodology for Information Systems Research," vol. 24, no. 3. pp. 45–77, 2007.
- [3] N. Alshuqayran, N. Ali, and R. Evans, *A Systematic Mapping Study in Microservice Architecture*. 2016, pp. 44–51.
- [4] C. Pahl and P. Jamshidi, Microservices: A Systematic Mapping Study. 2016, pp. 137–146.
- [5] R. M. Gupta, *Project Management*. Prentice-Hall of India Pvt.Limited, 2011.
- [6] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, "A Prescriptive Model for Migration to Microservices Based on SDLC Artifacts," *Journal of Web Engineering*, Jun. 2021, doi: 10.13052/jwe1540-9589.20312.
- [7] M. Abdellatif *et al.*, "A Taxonomy of Service Identification Approaches for Legacy Software Systems Modernization." p. 110868–110869, 2021.
- [8] M. J. Amiri, "Object-Aware Identification of Microservices," in 2018 IEEE International Conference on Services Computing (SCC), San Francisco, CA, USA: IEEE, Jul. 2018, pp. 253–256. doi: 10.1109/SCC.2018.00042.
- [9] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A. El Fazziki, "Towards an Automatic Identification of Microservices from Business Processes," in 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Bayonne, France: IEEE, Sep. 2020, pp. 42–47. doi: 10.1109/ WETICE49692.2020.00017.
- [10] Z. Yang, S. Wu, and C. Zhang, "A Microservices Identification Approach Based on Problem Frames," in 2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence (SEAI), Xiamen, China: IEEE, Jun. 2022, pp. 155–159. doi: 10.1109/ SEAI55746.2022.9832106.
- [11] M. Saidi, A. Tissaoui, and S. Faiz, "A DDD Approach Towards Automatic Migration To Microservices," in 2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia: IEEE, Apr. 2023, pp. 1–6. doi: 10.1109/ IC_ASET58101.2023.10150522.
- [12] Y. Li, Y. Zhang, Y. Yang, W. Wang, and Y. Yin, "RM2MS: A Tool for Automatic Identification of Microservices from Requirements Models," in 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), Västerås, Sweden: IEEE, Oct. 2023, pp. 50–54. doi: 10.1109/MODELS-C59198.2023.00018.

- [13] O. Al-Debagy and P. Martinek, "Extracting Microservices' Candidates from Monolithic Applications: Interface Analysis and Evaluation Metrics Approach," in 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest, Hungary: IEEE, Jun. 2020, pp. 289–294. doi: 10.1109/SoSE50414.2020.9130466.
- [14] X. Zhou and J. Xiong, "Automated Microservice Identification from Design Model," 2022.
- [15] G. Quattrocchi, D. Cocco, S. Staffa, A. Margara, and G. Cugola, "Cromlech: Semi-Automated Monolith Decomposition Into Microservices," *IEEE Transactions on Services Computing*, pp. 1– 16, 2024, doi: 10.1109/TSC.2024.3354457.
- [16] Y. Wei, Y. Yu, M. Pan, and T. Zhang, "A Feature Table Approach to Decomposing Monolithic Applications into Microservices," in 12th Asia-Pacific Symposium on Internetware, Singapore Singapore: ACM, Nov. 2020, pp. 21–30. doi: 10.1145/3457913.3457939.
- [17] M. H. Hasan, M. H. Osman, N. I. Admodisastro, and M. S. Muhammad, "AI-based Quality-driven Decomposition Tool for Monolith to Microservice Migration," in *Proceedings of the 2023 4th Asia Service Sciences and Software Engineering Conference*, Aizu-Wakamatsu City Japan: ACM, Oct. 2023, pp. 181–191. doi: 10.1145/3634814.3634839.
- [18] D. Escobar *et al.*, "Towards the Understanding and Evolution of Monolithic Applications as Microservices," in *2016 XLII Latin American Computing Conference (CLEI)*, Valparaíso, Chile: IEEE, Oct. 2016, pp. 1–11. doi: 10.1109/CLEI.2016.7833410.
- [19] G. Mazlami, J. Cito, and P. Leitner, "Extraction of Microservices from Monolithic Software Architectures," in 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA: IEEE, Jun. 2017, pp. 524–531. doi: 10.1109/ICWS.2017.61.
- [20] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, "Extracting Candidates of Microservices from Monolithic Application Code," in 2018 25th Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan: IEEE, Dec. 2018, pp. 571–580. doi: 10.1109/APSEC.2018.00072.
- [21] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P. Zaragoza, and C. Dony, "From Monolithic Architecture Style to Microservice One Based on a Semi-Automatic Approach," in *2020 IEEE International Conference on Software Architecture (ICSA)*, Salvador, Brazil: IEEE, Mar. 2020, pp. 157–168. doi: 10.1109/ICSA47634.2020.00023.
- [22] L. Carvalho *et al.*, "On the Performance and Adoption of Search-Based Microservice Identification with toMicroservices," in *2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)*, Adelaide, Australia: IEEE, Sep. 2020, pp. 569–580. doi: 10.1109/ICSME46990.2020.00060.
- [23] C. Bandara and I. Perera, "Transforming Monolithic Systems to Microservices An Analysis Toolkit for Legacy Code Evaluation," in 2020 20th International Conference on Advances in ICT

- for Emerging Regions (ICTer), Colombo, Sri Lanka: IEEE, Nov. 2020, pp. 95–100. doi: 10.1109/ICTer51097.2020.9325443.
- [24] Gianluca Filippone, Autili, et al., "Migration of Monoliths through the Synthesis of Microservices Using Combinatorial Optimization," in 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Wuhan, China: IEEE, Oct. 2021, pp. 144–147. doi: 10.1109/ISSREW53611.2021.00056.
- [25] Gianluca Filippone, Qaisar Mehmood, et al., "From Monolithic to Microservice Architecture: An Automated Approach Based on Graph Clustering and Combinatorial Optimization," in 2023 IEEE 20th International Conference on Software Architecture (ICSA), L'Aquila, Italy: IEEE, Mar. 2023, pp. 47–57. doi: 10.1109/ICSA56044.2023.00013.
- [26] S. Agarwal *et al.*, "Monolith to Microservice Candidates Using Business Functionality Inference," in *2021 IEEE International Conference on Web Services (ICWS)*, Chicago, IL, USA: IEEE, Sep. 2021, pp. 758–763. doi: 10.1109/ICWS53863.2021.00104.
- [27] T. Kinoshita and H. Kanuka, "Automated Microservice Decomposition Method as Multi-Objective Optimization," in 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), Honolulu, HI, USA: IEEE, Mar. 2022, pp. 112–115. doi: 10.1109/ICSA-C54293.2022.00028.
- [28] S. Wu and C. Zhang, "Identification of Microservices through Processed Dynamic Traces and Static Calls," in 2022 3rd International Conference on Computer Science and Management Technology (ICCSMT), Shanghai, China: IEEE, Nov. 2022, pp. 304–308. doi: 10.1109/ ICCSMT58129.2022.00071.
- [29] P. Zaragoza, A.-D. Seriai, A. Seriai, A. Shatnawi, and M. Derras, "Leveraging the Layered Architecture for Microservice Recovery," in 2022 IEEE 19th International Conference on Software Architecture (ICSA), Honolulu, HI, USA: IEEE, Mar. 2022, pp. 135–145. doi: 10.1109/ICSA53651.2022.00021.
- [30] S. Santos and A. R. Silva, "Microservices Identification in Monolith Systems: Functionality Redesign Complexity and Evaluation of Similarity Measures," *Journal of Web Engineering*, Aug. 2022, doi: 10.13052/jwe1540-9589.2158.
- [31] Y. Romani, O. Tibermacine, and C. Tibermacine, "Towards Migrating Legacy Software Systems to Microservice-based Architectures: A Data-Centric Process for Microservice Identification," in 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), Honolulu, HI, USA: IEEE, Mar. 2022, pp. 15–19. doi: 10.1109/ICSA-C54293.2022.00010.
- [32] J. Lourenço and A. R. Silva, "Monolith Development History for Microservices Identification: A Comparative Analysis," in *2023 IEEE International Conference on Web Services (ICWS)*, Chicago, IL, USA: IEEE, Jul. 2023, pp. 50–56. doi: 10.1109/ICWS60048.2023.00019.

- [33] J. Hao, J. Zhao, and Y. Li, "Research on Decompostion Method of Relational Database Oriented to Microservice Refactoring," 2023.
- [34] M. Brito, J. Cunha, and J. Saraiva, "Identification of Microservices from Monolithic Applications through Topic Modelling," in *Proceedings of the 36th Annual ACM Symposium* on *Applied Computing*, Virtual Event Republic of Korea: ACM, Mar. 2021, pp. 1409–1418. doi: 10.1145/3412841.3442016.
- [35] K. Sellami, M. A. Saied, and A. Ouni, "A Hierarchical DBSCAN Method for Extracting Microservices from Monolithic Applications," in *The International Conference on Evaluation* and Assessment in Software Engineering 2022, Gothenburg Sweden: ACM, Jun. 2022, pp. 201– 210. doi: 10.1145/3530019.3530040.
- [36] V. Nitin, S. Asthana, B. Ray, and R. Krishna, "CARGO: AI-Guided Dependency Analysis for Migrating Monolithic Applications to Microservices Architecture," in *Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering*, Rochester MI USA: ACM, Oct. 2022, pp. 1–12. doi: 10.1145/3551349.3556960.
- [37] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee, "Mono2Micro: A Practical and Effective Tool for Decomposing Monolithic Java Applications to Microservices," in *Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering*, Athens Greece: ACM, Aug. 2021, pp. 1214–1224. doi: 10.1145/3468264.3473915.
- [38] L. Cao and C. Zhang, "Implementation of Domain-oriented Microservices Decomposition Based on Node-attributed Network," in 2022 11th International Conference on Software and Computer Applications, Melaka Malaysia: ACM, Feb. 2022, pp. 136–142. doi: 10.1145/3524304.3524325.
- [39] A. Santos and H. Paula, "Microservice Decomposition and Evaluation Using Dependency Graph and Silhouette Coefficient," in 15th Brazilian Symposium on Software Components, Architectures, and Reuse, Joinville Brazil: ACM, Sep. 2021, pp. 51–60. doi: 10.1145/3483899.3483908.
- [40] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, "Service Candidate Identification from Monolithic Systems Based on Execution Traces," *IEEE Transactions on Software Engineering*, vol. 47, no. 5, pp. 987–1007, May 2021, doi: 10.1109/TSE.2019.2910531.
- [41] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, "Automated Microservice Identification in Legacy Systems with Functional and Non-Functional Metrics," in *2020 IEEE International Conference on Software Architecture (ICSA)*, Salvador, Brazil: IEEE, Mar. 2020, pp. 135–145. doi: 10.1109/ICSA47634.2020.00021.

- [42] S.-P. Ma, T.-W. Lu, and C.-C. Li, "Migrating Monoliths to Microservices Based on the Analysis of Database Access Requests," in *2022 IEEE International Conference on Service-Oriented System Engineering (SOSE)*, Newark, CA, USA: IEEE, Aug. 2022, pp. 11–18. doi: 10.1109/SOSE55356.2022.00008.
- [43] F.-D. Eyitemi and S. Reiff-Marganiec, "System Decomposition to Optimize Functionality Distribution in Microservices with Rule Based Approach," in 2020 IEEE International Conference on Service Oriented Systems Engineering (SOSE), Oxford, United Kingdom: IEEE, Aug. 2020, pp. 65–71. doi: 10.1109/SOSE49046.2020.00015.
- [44] "IEEE Guide for Software Requirements Specifications." pp. 1–26, 1984.
- [45] M. Jackson, *Problem frames: analyzing and structuring software development problems.* USA: Addison-Wesley Longman Publishing Co., Inc., 2000.
- [46] B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," *Science*, vol. 315, no. 5814, pp. 972–976, 2007, doi: 10.1126/science.1136800.
- [47] F. Murtagh and P. Legendre, "Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion?," *Journal of Classification*, vol. 31, no. 3, p. 274–275, 2014, doi: 10.1007/s00357-014-9161-z.
- [48] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining*, in KDD'96. Portland, Oregon: AAAI Press, 1996, p. 226–227.
- [49] B. Mitchell, M. Traverso, and S. Mancoridis, "An Architecture for Distributing the Computation of Software Clustering Algorithms," in *Proceedings Working IEEE/IFIP Conference* on Software Architecture, Amsterdam, Netherlands: IEEE Comput. Soc, 2001, pp. 181–190. doi: 10.1109/WICSA.2001.948427.
- [50] J. Kleinberg and É. Tardos, Algorithm Design. Pearson Education, 2006, pp. 142–151.
- [51] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks," *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2008, no. 10, p. P10008, 2008, doi: 10.1088/1742-5468/2008/10/P10008.
- [52] V. A. Traag, L. Waltman, and N. J. van Eck, "From Louvain to Leiden: guaranteeing well-connected communities," *Scientific Reports*, vol. 9, no. 1, Mar. 2019, doi: 10.1038/ s41598-019-41695-z.
- [53] X. Zhu and Z. Ghahramani, "Learning from Labeled and Unlabeled Data with Label Propagation," p., 2003.

- [54] K. Kobayashi, M. Kamimura, K. Kato, K. Yano, and A. Matsuo, "Feature-gathering dependency-based software clustering using Dedication and Modularity," in 2012 28th IEEE International Conference on Software Maintenance (ICSM), IEEE, 2012. doi: 10.1109/icsm.2012.6405308.
- [55] D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into Modules," vol. 15, no. 12, 1972.
- [56] J. Eder, G. Kappel, and M. Schre, "Coupling and Cohesion in Object-Oriented Systems," 1995.
- [57] L. Briand, S. Morasca, and V. Basili, "Property-Based Software Engineering Measurement," *IEEE Transactions on Software Engineering*, vol. 22, no. 1, pp. 68–86, 1996, doi: 10.1109/32.481535.
- [58] I. Candela, G. Bavota, B. Russo, and R. Oliveto, "Using Cohesion and Coupling for Software Remodularization: Is It Enough?," ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, 2016, doi: 10.1145/2928268.
- [59] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner, "Using automatic clustering to produce high-level system organizations of source code," in *Proceedings. 6th International Workshop on Program Comprehension. IWPC'98 (Cat. No.98TB100242)*, 1998, pp. 45–52. doi: 10.1109/WPC.1998.693283.
- [60] J. Wu, A. Hassan, and R. Holt, "Comparison of Clustering Algorithms in the Context of Software Evolution," in 21st IEEE International Conference on Software Maintenance (ICSM'05), Budapest, Hungary: IEEE, 2005, pp. 525–535. doi: 10.1109/ICSM.2005.31.
- [61] P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis," *Journal of Computational and Applied Mathematics*, vol. 20, pp. 53–65, 1987, doi: https://doi.org/10.1016/0377-0427(87)90125-7.
- [62] T. Lopes and A. R. Silva, "Monolith Microservices Identification: Towards An Extensible Multiple Strategy Tool," in 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), L'Aquila, Italy: IEEE, Mar. 2023, pp. 111–115. doi: 10.1109/ICSA-C57050.2023.00034.
- [63] R. C. Martin, *Agile Software Development: Principles, Patterns, and Practices.* USA: Prentice Hall PTR, 2003.
- [64] M. E. Conway, "How do committees invent?," 1968.
- [65] Y. Abgaz et al., "Decomposition of Monolith Applications Into Microservices Architectures: A Systematic Review," *IEEE Transactions on Software Engineering*, vol. 49, no. 8, pp. 4213–4242, Aug. 2023, doi: 10.1109/TSE.2023.3287297.
- [66] I. Oumoussa and R. Saidi, "Evolution of Microservices Identification in Monolith Decomposition: A Systematic Review," vol. 12, 2024.

- [67] R. A. Schmidt and M. Thiry, "Microservices Identification Strategies: A Review Focused on Model-Driven Engineering and Domain Driven Design Approaches," in 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain: IEEE, Jun. 2020, pp. 1–6. doi: 10.23919/CISTI49556.2020.9141150.
- [68] J. Kazanavicius and D. Mazeika, "Migrating Legacy Software to Microservices Architecture," in 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania: IEEE, Apr. 2019, pp. 1–5. doi: 10.1109/eStream.2019.8732170.
- [69] A. Mparmpoutis and G. Kakarontzas, "Using Database Schemas of Legacy Applications for Microservices Identification: A Mapping Study," in *Proceedings of the 6th International Conference on Algorithms, Computing and Systems*, Larissa Greece: ACM, Sep. 2022, pp. 1–7. doi: 10.1145/3564982.3564995.
- [70] L. Baresi, M. Garriga, and A. De Renzis, "Microservices Identification Through Interface Analysis," Service-Oriented and Cloud Computing, vol. 10465. Springer International Publishing, Cham, pp. 19–33, 2017. doi: 10.1007/978-3-319-67262-5_2.
- [71] S. Eski and F. Buzluca, "An Automatic Extraction Approach: Transition to Microservices Architecture from Monolithic Application," in *Proceedings of the 19th International Conference on Agile Software Development: Companion*, Porto Portugal: ACM, May 2018, pp. 1–6. doi: 10.1145/3234152.3234195.
- [72] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, "From Monolith to Microservices: A Classification of Refactoring Approaches," Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment, vol. 11350. Springer International Publishing, Cham, pp. 128–141, 2019. doi: 10.1007/978-3-030-06019-0_10.
- [73] A. K. Kalia *et al.*, "Mono2Micro: An AI-based Toolchain for Evolving Monolithic Enterprise Applications to a Microservice Architecture," in *Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering*, Virtual Event USA: ACM, Nov. 2020, pp. 1606–1610. doi: 10.1145/3368089.3417933.
- [74] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, "Towards Automated Microservices Extraction Using Muti-objective Evolutionary Search," Service-Oriented Computing, vol. 11895. Springer International Publishing, Cham, pp. 58–63, 2019. doi: 10.1007/978-3-030-33702-5_5.

A Systematic Literature Review (SLR) publications

Primary studies

	ID	Publication
P1	[11]	A DDD Approach Towards Automatic Migration To Microservices, M. Saidi, A. Tissaoui, and S. Faiz
P2	[10]	A Microservices Identification Approach Based on Problem Frames, Z. Yang, S. Wu, and C. Zhang
P3	[27]	Automated Microservice Decomposition Method as Multi-Objective Optimization, T. Kinoshita and H.
		Kanuka
P4	[14]	Automated Microservice Identification from Design Model, X. Zhou and J. Xiong
P5	[41]	Automated Microservice Identification in Legacy Systems with Functional and Non-Functional Metrics, Y.
		Zhang, B. Liu, L. Dai, K. Chen, and X. Cao
P6	[15]	Cromlech: Semi-Automated Monolith Decomposition Into Microservices, G. Quattrocchi, D. Cocco, S.
		Staffa, A. Margara, and G. Cugola
P7	[20]	Extracting Candidates of Microservices from Monolithic Application Code, M. Kamimura, K. Yano, T.
		Hatano, and A. Matsuo
P8	[13]	Extracting Microservices' Candidates from Monolithic Applications: Interface Analysis and Evaluation
		Metrics Approach, O. Al-Debagy and P. Martinek
P9	[19]	Extraction of Microservices from Monolithic Software Architectures, G. Mazlami, J. Cito, and P. Leitner
P10	[21]	From Monolithic Architecture Style to Microservice One Based on a Semi-Automatic Approach, A. Selmadji,
		AD. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P. Zaragoza, and C. Dony
P11	[25]	From Monolithic to Microservice Architecture: An Automated Approach Based on Graph Clustering and
		Combinatorial Optimization, Gianluca Filippone, Qaisar Mehmood, et al.
P12	[28]	Identification of Microservices through Processed Dynamic Traces and Static Calls, S. Wu and C. Zhang
P13	[29]	Leveraging the Layered Architecture for Microservice Recovery, P. Zaragoza, AD. Seriai, A. Seriai, A.
		Shatnawi, and M. Derras
P14	[30]	Microservices Identification in Monolith Systems: Functionality Redesign Complexity and Evaluation of
		Similarity Measures, S. Santos and A. R. Silva
P15	[42]	Migrating Monoliths to Microservices Based on the Analysis of Database Access Requests, SP. Ma, TW.
		Lu, and CC. Li
P16	[24]	Migration of Monoliths through the Synthesis of Microservices Using Combinatorial Optimization,
		Gianluca Filippone, Autili, et al.
P17	[32]	Monolith Development History for Microservices Identification: A Comparative Analysis, J. Lourenço and
		A. R. Silva
P18	[26]	Monolith to Microservice Candidates Using Business Functionality Inference, S. Agarwal, R. Sinha, G.
		Sridhara, P. Das, U. Desai, S. Tamilselvam, A. Singhee, and H. Nakamuro
P19	[8]	Object-Aware Identification of Microservices, M. J. Amiri
P20	[22]	On the Performance and Adoption of Search-Based Microservice Identification with toMicroservices, L.
		Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assuncao, J. A. Pereira, B. Fonseca, M. Ribeiro, M. J. De
		Lima, and C. Lucena
P21	[33]	Research on Decompostion Method of Relational Database Oriented to Microservice Refactoring, J. Hao, J.
		Zhao, and Y. Li
P22	[12]	RM2MS: A Tool for Automatic Identification of Microservices from Requirements Models, Y. Li, Y. Zhang, Y.
		Yang, W. Wang, and Y. Yin

P23	[40]	Service Candidate Identification from Monolithic Systems Based on Execution Traces, W. Jin, T. Liu, Y. Cai,
		R. Kazman, R. Mo, and Q. Zheng
P24	[43]	System Decomposition to Optimize Functionality Distribution in Microservices with Rule Based Approach,
		FD. Eyitemi and S. Reiff-Marganiec
P25	[9]	Towards an Automatic Identification of Microservices from Business Processes, M. Daoud, A. El Mezouari,
		N. Faci, D. Benslimane, Z. Maamar, and A. El Fazziki
P26	[31]	Towards Migrating Legacy Software Systems to Microservice-based Architectures: A Data-Centric Process
		for Microservice Identification, Y. Romani, O. Tibermacine, and C. Tibermacine
P27	[18]	Towards the Understanding and Evolution of Monolithic Applications as Microservices, D. Escobar, D.
		Cardenas, R. Amarillo, E. Castro, K. Garces, C. Parra, and R. Casallas
P28	[23]	Transforming Monolithic Systems to Microservices - An Analysis Toolkit for Legacy Code Evaluation, C.
		Bandara and I. Perera
P29	[16]	A Feature Table Approach to Decomposing Monolithic Applications into Microservices, Y. Wei, Y. Yu, M.
		Pan, and T. Zhang
P30	[35]	A Hierarchical DBSCAN Method for Extracting Microservices from Monolithic Applications, K. Sellami, M.
		A. Saied, and A. Ouni
P31	[17]	AI-based Quality-driven Decomposition Tool for Monolith to Microservice Migration, M. H. Hasan, M. H.
		Osman, N. I. Admodisastro, and M. S. Muhammad
P32	[36]	CARGO: AI-Guided Dependency Analysis for Migrating Monolithic Applications to Microservices
		Architecture, V. Nitin, S. Asthana, B. Ray, and R. Krishna
P33	[38]	Implementation of Domain-oriented Microservices Decomposition Based on Node-attributed Network, L.
		Cao and C. Zhang
P34	[39]	Microservice Decomposition and Evaluation Using Dependency Graph and Silhouette Coefficient, A. Santos
		and H. Paula
P35	[37]	Mono2Micro: A Practical and Effective Tool for Decomposing Monolithic Java Applications to Microservices,
		A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee

Table 7: Selected publications (primary studies)

Secondary studies

	ID	Publication
P1	[6]	A Prescriptive Model for Migration to Microservices Based on SDLC Artifacts, D. Bajaj, U. Bharti, A. Goel,
		and S. C. Gupta
P2	[65]	Decomposition of Monolith Applications Into Microservices Architectures: A Systematic Review, Y. Abgaz, A.
		McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol, G. Jackson, M. Yilmaz, J. Buckley, and P. Clarke
P3	[66]	Evolution of Microservices Identification in Monolith Decomposition: A Systematic Review, I. Oumoussa and
		R. Saidi
P4	[67]	Microservices Identification Strategies : A Review Focused on Model-Driven Engineering and Domain Driven
		Design Approaches, R. A. Schmidt and M. Thiry
P5	[68]	Migrating Legacy Software to Microservices Architecture, J. Kazanavicius and D. Mazeika
P6	[69]	Using Database Schemas of Legacy Applications for Microservices Identification: A Mapping Study, A.
		Mparmpoutis and G. Kakarontzas

Table 8: Selected publications (secondary studies)

B Examples

Examples First page

```
Ruby
  class Example
    def initialize
     @text = "Hello world"
4
    end
5
    def say_hello
     puts @text
8
9 end
10
11 example = Example.new
12
13 example.say_hello
14 # => Hello world
```

Listing 2: Ruby code example

Examples Second page