Содержание

1. О криптографии	2
2. О криптографических протоколах	3
3. О теории сложности	3
4. Об односторонних функциях	6
5. О трудных предикатах	9
6. О вычислительной неотличимости	10
7. О предсказании следующего бита	. 11
8. О псевдослучайных генераторах	12
9. О криптосистемах	13
10. О стойкости криптосистем	. 14
11. Конкретный пример стойкости	15
12. О генераторах псевдослучайных функций	16
13. О генераторах псевдослучайных перестановок	17
14. Использование псевдослучайных семейств для шифрования	18
15. О электронной подписи	19
15.1. Определения	
15.2. Примеры схем	20
15.2.1. RSA	20
15.2.2. Схема Лемпорта (одноразовая)	21
16. О криптографических хеш-функций	21
17. О применении хэш-функций	24
18. О нулевых разглашениях	24
19. О доказательстве NP языка	27
20. О функциях с секретом	27

Крипта ИСП

Disclaymer: доверять этому конспекту или нет выбирайте сами

1. О криптографии

Определение 1.1: Криптографические средства защиты информации (КСЗИ) – основанные на математических методах преобразования защищаемой информации.

Определение 1.2: Теоретическая криптография (математическая криптография, криптология) – раздел дискретной математики, изучающий математические модели КСЗИ с научной точки зрения.

Основной предмет теоретической криптографии – криптографический протокол. (о нём в следующей главе).

Пример: Криптографические примитивы:

- Односторонняя функция эффективно вычислимая функция, задача инвертирования которой вычислительно трудна.
- Псевдослучайный генератор эффективный алгоритм, генерирующий длинные последовательности, которые никакой эффективный алгоритм не отличит от чисто случайных.
- **Криптографическая хэш-функция** эффективно вычислимое семейство функций, уменьшающих длину аргумента, для которого задача поиска коллизий вычислительно трудна.

Определение 1.3: **Атака** – совокупность предположений о возможностях противника, о том, какие действия ему доступны (помимо вычислений).

Определение 1.4: **Угроза** – цель противника, состоящая в нарушении одного или нескольких из трёх условий (задач) криптографического протокола.

2. О криптографических протоколах

Определение 2.1: **Криптографический протокол** – это протокол, решающий хотя бы одну из трёх задач:

- Обеспечение конфиденциальности данных
- Обеспечение **целостности** сообщений и системы в целом гарантия отсутствия нежелательных последствий вмешательства противника
- Обеспечение **неотслеживаемости** невозможность установления противником, кто из участников выполнил определённое действие

Пример: **Прикладные КП**:

- Системы шифрования
- Подбрасование монеты по телефону
- Схемы электронной подписи
- Протоколы аутентификации
- Системы электронных платежей

Пример: **Примитивные КП**:

- bit-commitment (схема обязательства)
- oblivious transfer (протокол с забыванием)

Определение 2.2: **Стойкость** – формализация понятия качества криптографического протокола, его способность решать поставленную перед ним задачу.

Замечание 2.1: Стойкость определяется **только** для конкретной модели противника, состоящей из трёх основных компонентов:

- Вычислительные ресурсы (включая модель вычислений)
- Атака
- Угроза

3. О теории сложности

Замечание 3.1: Задача кодируется множеством строк в некотором конечном алфавите $\Sigma, |\Sigma| \geq 2$. Без ограничения общности, будем рассматривать только $\Sigma = \{0,1\} = \mathbb{B}$.

Определение 3.1: Σ^* – множество всех слов в алфавите Σ , то есть $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$.

Определение 3.2: **Язык** – некоторое множество слов, то есть подмножество в Σ^* .

Определение 3.3: Модель вычислений, которую мы будем использовать в дальнейшем – **машина Тьюринга**

$$M = \left(Q, q_0, q_f, \Sigma, b, \sigma\right)$$

где

- Q множество состояний (конечное, непустое)
- $q_0, q_f \in Q$ выделенные состояния: начальное и конечное
- Σ конечный алфавит
- b специальный «пустой символ»
- $\sigma: \Sigma \times Q \to \Sigma \times Q \times \{-1,0,1\}$ функция перехода (частично определённая, в общем случае многозначная)

Определение 3.4: С машиной Тьюринга М связаны отображения:

- Вычисляемая машиной функция $M(\cdot): \mathbb{B}^* \to \mathbb{B}^* \cup \{\bot\}$, где M(w) выход машины M, если на вход подана строка w. (Выдаёт \bot если вычисление не закончено)
- Время её работы $T_M(\cdot): \mathbb{B}^* \to \mathbb{N} \cup \{\infty\}$, где $T_M(w)$ число тактов работы машины M при вычислении на входе w.
- Используемая ею память $S_M(\cdot): \mathbb{B}^* \to \mathbb{N} \cup \{\infty\}$, где $S_M(w)$ число ячеек ленты, задействованных в вычислении на входе w.

Определение 3.5: Введём poly(x) – обозначение для «некоторого полинома» от переменной x. Важен не сам полином, факт его существования.

Определение 3.6: Введём названия для некоторых видов машин Тьюринга:

- Детерминированная машина Тьюринга функция перехода σ однозначна
- Полиномиальная (детерминированная) машина Тьюринга М обладает свойством:

$$\forall w \in \mathbb{B}^*: T_M(w) \leq \operatorname{poly}(|w|)$$

- **Недетерминированная машина Тьюринга** функция перехода σ , вообще говоря, многозначна, выбор её значений в конкретном вычислении осуществляется с помощью строки «Недетерминированного выбора» $\psi \in$ \mathbb{B}^{∞} , записанной на специальную ленту
- Полиномиальная недетерминированная машина Тьюринга М обладает свойством:

$$\forall w \in \mathbb{B}^* : \forall \psi \in \mathbb{B}^* : T_M(\psi; w) \leq \operatorname{poly}(|w|)$$

- Вероятностная машина Тьюринга функция перехода σ принимает случайные значения, M(w) – случайная величина (при фиксированном w). Выбор значения функции перехода в каждом такте осуществляется с помощью случайной строки $\rho \in \mathbb{B}^{\infty}$, записанной на специальную ленту.
- Полиномиальная вероятностная машина Тьюринга (п.в.м.Т.) М – обладает свойством:

$$\forall w \in \mathbb{B}^* : \forall \rho \in \mathbb{B}^\infty : T_M(\rho; w) \leq \text{poly}(|w|)$$

• Полиномиальная в среднем вероятностная машина Тьюринга М – обладает свойством:

$$\exists \varepsilon > 0: \forall n \in \mathbb{N}: \forall \rho \in \mathbb{B}^{\infty}: \forall w \in \mathbb{B}^n: \mathbb{E}(T_M(\rho; w))^{\varepsilon} \leq n$$

Определение 3.7: Класс сложностей Bounded-error Probabilistic Polynomial time:

$$\mathrm{BPP} = \left\{ L \subseteq \mathbb{B}^* \mid \exists \ \mathrm{\textit{\pi.b.m.T.}} \ M : \left\{ \begin{matrix} w \in L \ \Rightarrow \mu(\{M(w) = 1\}) \geq \frac{2}{3} \\ w \notin \in L \Rightarrow \mu(\{M(w) = 1\}) \leq \frac{1}{3} \end{matrix} \right\} \right\}$$

Определение 3.8: Класс сложностей Randomzed Polynomial time:
$$\mathrm{RP} = \left\{ L \subseteq \mathbb{B}^* \mid \exists \ \mathrm{п.в.м.T.} \ M : \begin{cases} w \in L \ \Rightarrow \mu(\{M(w) = 1\}) \geq \frac{2}{3} \\ w \notin \in L \Rightarrow \mu(\{M(w) = 1\}) = 0 \end{cases} \right\}$$

Определение 3.9: Однородной моделью вычислителя противника называется полиномиальная вероятностная машина Тьюринга или полиномальная в среднем вероятностная машина Тьюринга.

Определение 3.10: Булевой схемой называется отображение $C: \mathbb{B}^n \to \mathbb{B}^m$, такое, что для каждой координаты образа существует логическая функция от входа, тождественно задающая её.

Размером булевой схемы называется размерность её выхода.

 Π ример: Булевая схема $C:\mathbb{B}^1\to\mathbb{B}^3$ имеет размер 3:

$$C(x_1) = (x_1, \neg x_1, x_1 \vee \neg x_1)$$

Определение 3.11: Неоднородной моделью вычислителя противника называется семейство булевых схем полиномиального размера $C = \{C_n\}_{n=1}^{\infty}$:

$$\forall n : |C_n| \le \text{poly}(n)$$

причём для каждого размера входа |w| выбирается $C_{|w|}$ схема.

4. Об односторонних функциях

Определение 4.1: Функция $\nu: \mathbb{N} \to \mathbb{R}^+$ называется пренебрежимо малой, если

$$\forall$$
 полинома $p:\exists n_0\in\mathbb{N}: \forall n\geq n_0: \nu(n)\leq rac{1}{p(n)}$

Обозначение: negl(n).

Определение 4.2: Функция $f: X \to Y; X, Y \subseteq \mathbb{B}^*$ называется полиномиально вычислимой, если существует полиномиальная (детерминированная) машина Тьюринга М такая, что

$$\forall x \in X : M(x) = f(x)$$

Замечание 4.1:

- \mathcal{U} равномерное распределение вероятностей
- $x \in Z$ значит, что x выбран случайно из множества Z в соответствии с равномерным распределением вероятностей на этом множестве
- $y \leftarrow M(x)$ значит, что y случайный выход в.м.Т. М, на вход которой был подан X.
- Под возведением в степень 0 или 1 имеется в виду декартово умножение

Определение 4.3: Функция $f: \mathbb{B}^* \to \mathbb{B}^*$ называется (сильно) односторонней, если

1. f полиномиально вычислима 2.

$$\forall \ \mathrm{п.в.м.T.} \ A: \mu_{\substack{x \in \mathbb{B}^n \\ \mathcal{U}}} \big(\big\{ A(1^n; f(x)) \in f^{-1}(f(x)) \big\} \big) = \mathrm{negl}(n)$$

Определение 4.4: Функция $f: \mathbb{B}^* \to \mathbb{B}^*$ называется слабо односторонней, если

1. f полиномиально вычислима

2.

$$\exists$$
 полином $p:\forall$ п.в.м.Т. $A:\exists n_0\in\mathbb{N}:\forall n\geq n_0:$
$$\mu_{x\in\mathbb{B}^n}\big(\big\{A(1^n;f(x))\in f^{-1}(f(x))\big\}\big)\leq 1-\frac{1}{p(n)}$$

Лемма 4.1: Любую полиномиально вычислимую, а значит и (сильно/слабо) одностороннюю функцию можно преобразовать так, чтобы она сохраняла длину аргумента.

Доказательство:

• Выберем какой-нибудь полином m, существующий в силу полиномиальной вычислимости функции f:

$$\forall x : |f(x)| \le m(|x|)$$

это верно, так как машина Тьюринга совершит не более некоторого полиномиального числа тактов, а за такт она может прибавить максимум 1 к длине вывода.

• Определим функцию h на множестве $\bigcup_{n\in\mathbb{N}}\mathbb{B}^{m(n)+1}$, для чего представим каждый x из этого множества в виде x=x'x'', где $x'\in\mathbb{B}^n, x''\in\mathbb{B}^{m(n)+1-n}$, и положим

$$h(x) = f(x') \times 1 \times 0^{m(|x'|) - |f(x')|}$$

Заметим, что вывод теперь имеет такую же длину, как и вход. (Почему нужно добавить единицу, а не все нули?)

Теорема 4.1 (Яо): Если существует слабо односторонняя функция, то существует и сильно односторонняя функция.

Доказательство: Пусть f – слабо односторонняя функция, БОО предположим, что мы уже преобразовали её к виду, сохраняющему длину входа, то есть

$$\forall n \in \mathbb{N} : f(\mathbb{B}^n) \subseteq \mathbb{B}^n$$

Зафиксируем некоторый полином p из определения слабой односторонности.

Для любой п.в.м.Т. A и для всех достаточно больших n:

$$\mu_{\substack{x\in\mathbb{B}^n\\\mathcal{U}}}\big(\big\{A(1^n;f(x))\in f^{-1}(f(x))\big\}\big)\leq 1-\tfrac{1}{p(n)}$$

Введём функцию

$$g(x_1,...,x_t) := (f(x_1),...,f(x_t)); \quad x_i \in \mathbb{B}^n, t(n) := n \cdot p(n)$$

Предположим, что g – не односторонняя, тогда для произвольного полинома q существует п.в.м.Т. B и бесконечное множество $N\subseteq \mathbb{N},$ что

$$\forall n \in N: \mu_{\substack{x \in \mathbb{B}^{nt(n)} \\ \mathcal{I}}} \big(\big\{ B\big(1^{nt(n)}; g(x)\big) \in g^{-1}(g(x)) \big\} \big) > \frac{1}{q(nt(n))}$$

Определим вероятностную машину C_0 на входе $y \in \mathbb{B}^n$:

- 1. for i in [1..t]
- 2. let $z = B(f(x_1), ..., f(x_{i-1}), y, f(x_{i+1}), ..., f(x_t))$
- 3. if $f(z_i) = y$: return z_i

Также определим вероятностный алгоритм C на входе y, выполняющий алгоритм C_0 на этом входе $k(n) \coloneqq 2 \cdot n \cdot t(n) \cdot q(n \cdot t(n))$ раз.

Если на некоторой итерации алгоритм C_0 что-то вернул, то это будет результатом C, иначе C заканчивает работу без выходного значения.

Для произвольного $n \in \mathbb{N}$ положим

$$E_n = \left\{ x \in \mathbb{B}^n \mid \mu(\{C_0(1^n; f(x)) \in f^{-1}(f(x))\}) > \frac{n}{k(n)} \right\}$$

Где берём те x, при которых вероятность (теперь x фиксирован, случайность осталась лишь в случайном векторе 1^n) обращения f отделима от нуля.

Лемма 4.2:

$$\forall n \in \mathbb{N} : \forall x \in E^n : \mu(\{C(1^n; f(x)) \in f^{-1}(f(x))\}) > 1 - e^{-n}$$

Эта лемма показывает, что ограниченная на $E^n \ f$ является сильно односторонней.

Доказательство: Зная, что:

- C применение алгоритма C_0 k раз, а значит если C не угадал прообраз, то и k раз применённый C_0 тоже не угадал. (Оценка вероятности)
- Мы взяли $x \in E_n$, в котором вероятность угадать прообраз алгоритмом $C_0 > \frac{n}{k}$, а значит вероятность не угадать $< 1 \frac{n}{k}$
- $\forall r : \ln r \le r 1$

получим:

$$\mu\big(\big\{C(1^n;f(x)) \notin f^{-1}(f(x))\big\}\big) < \big(1-\tfrac{n}{k}\big)^k = e^{k\ln(1-\frac{n}{k})} \le e^{-n}$$

Лемма 4.3:

$$\exists N_0 \in \mathbb{N}: \forall n > N_0: \mu(E_n) > 1 - \tfrac{1}{2p(n)}$$

Этой леммой мы хотим показать, что с какого-то момента E_n достаточно большое.

Доказательство: Пока скип, большое

Из доказанных лемм вытекает, что

$$\mu\big(\big\{C(1^n;f(x))\in f^{-1}(f(x))\big\}\big)\geq \\ \mu\big(\big\{C(1^n;f(x))\in f^{-1}(f(x))\mid E_n\big\}\big)\mu(E_n)>(1-e^{-n})\Big(1-\frac{1}{2p(n)}\Big)$$

Но если вспомним, что f слабо односторонняя, то получим неравенство:

$$1 - \frac{1}{p(n)} > (1 - e^{-n}) \left(1 - \frac{1}{2p(n)} \right)$$

$$\frac{1}{p(n)} < e^{-n} + \frac{1}{2p(n)} - \frac{e^{-n}}{2p(n)} < e^{-n} + \frac{1}{2p(n)}$$

Раскрыв скобки в правой части получим, что $\frac{1}{p(n)} < e^{-n} + \frac{1}{2p(n)} - \frac{e^{-n}}{2p(n)} < e^{-n} + \frac{1}{2p(n)}$ Что неверно при достаточно больших n, так как e^{-n} убывает быстрее $\frac{1}{2p(n)}$.

5. О трудных предикатах

Определение 5.1: Функция $b: \mathbb{B}^* \to \mathbb{B}$ называется трудным предикатом для функции $f: \mathbb{B}^* \to \mathbb{B}^*$, если

- b полиномиально вычислимая функция
- \forall п.в.м.Т. $A: \mu_{x\in \mathbb{B}^n}(\{A(1^n;f(x))=b(x)\})<\frac{1}{2}+\mathrm{negl}(n)$

Теорема 5.1 (Гольдрайха-Левина): Пусть f – односторонняя функция, определённая всюду и сохраняющая длину, и пусть для всех $x, r \in \mathbb{B}^* : |x| =$ |r|, определены функции

$$g(x,r) = (f(x),r) \quad b(x,r) = \bigoplus_{i=1}^{|x|} x^{[i]} r^{[i]}$$

Тогда b — трудный предикат для функции q.

Доказательство: Предположим, что b не является трудным предикатом для функции g.

Это значит, что существуют полиномиальный вероятностный алгоритм A, полином p и бесконечное множество $N \subseteq \mathbb{N} \setminus \{0\}$ такие, что

$$\forall n \in N: \varepsilon(n) = \mu\big(\big\{A\big(1^{2n}; f(x), r\big) = b(x, r)\big\}\big) - \frac{1}{2} > \frac{1}{p(n)}$$

Пусть $n \in N$ и $x \in \mathbb{B}^n$. Положим

$$\overset{\circ}{t(n,x)} = \mu\big(\big\{A\big(1^{2n};f(x),r\big) = b(x,r)\big\}\big) \quad E_n = \Big\{x \in \mathbb{B}^n \mid t(x) \geq \tfrac{1}{2} + \tfrac{\varepsilon(n)}{2}\Big\}$$

Тогда, заметив, что

- $\mathbb{E}_x(t(n,x)) = \varepsilon(n) + \frac{1}{2}$ по определению
- Можно применить неравенство Чебышёва, так как $\frac{1}{2} \frac{\varepsilon(n)}{2} > 0$.

$$\begin{split} \mu\Big(\Big\{t(x)<\tfrac{1}{2}+\tfrac{\varepsilon(n)}{2}\Big\}\Big) &= \mu\Big(\Big\{1-t(x)>\tfrac{1}{2}-\tfrac{\varepsilon(n)}{2}\Big\}\Big) \leq \\ \tfrac{\mathbb{E}_x(1-t(n,x))}{\tfrac{1}{2}-\tfrac{\varepsilon(n)}{2}} &= \tfrac{\frac{1}{2}-\varepsilon(n)}{\tfrac{1}{2}-\tfrac{\varepsilon(n)}{2}} = 1-\tfrac{\varepsilon(n)}{1-\varepsilon(n)} < 1-\varepsilon(n) \end{split}$$

Воспользовавшись отрицанием обеих частей неравенства, получим $\mu(E_n) = \mu\Big(\Big\{t(x) \geq \tfrac12 + \tfrac{\varepsilon(n)}2\Big\}\Big) > \varepsilon(n) > \tfrac1{p(n)}$

$$\mu(E_n) = \mu\Big(\Big\{t(x) \geq \tfrac{1}{2} + \tfrac{\varepsilon(n)}{2}\Big\}\Big) > \varepsilon(n) > \tfrac{1}{p(n)}$$

Для завершения доказательства теоремы достаточно построить полиномиальный вероятностный алгоритм B, определённый для всех n и на $f(E_n)$, такой, что

$$\mu(\{B(1^n;f(x))=x\}) \geq \tfrac{1}{\operatorname{poly}(n)}$$

Тогда этой вероятностью мы сможем оценить снизу вероятность угадать прообраз f, что будет противоречить односторонности f.

Введём обозначение $e_i \in \mathbb{B}^n$ – вектор с единицей на i-м месте.

Алгоритм B на входе $(1^n; f(x))$, где $n \in N$ и $x \in E_n$, будет искать каждый бит $x^{[i]}$ отдельно. Для этого алгоритм B:

- Выбирает случайные элементы $r_1,...,r_{\pi(n)} \in \mathbb{B}^n$, где π некоторый полиномиальный параметр на N, принимающий лишь нечётные значения.
- Для каждого $j \in \{1,...,\pi(n)\}$ вычисляет биты $\beta_j, \rho_j,$ являющиеся предполагаемыми значениями $b(x,r_j\oplus e_i)$ и $b(x,r_j)$ соответственно
- Выбирает в качестве предпологаемого значения $x^{[i]}$ бит, который встречается в последовательности $\beta_j \oplus \rho_j; j \in \{1,...,\pi(n)\}$ более $\frac{\pi(n)}{2}$ раз

Очевидно, если $\beta_j = big(x, r_j \oplus e_iig)$ и $ho_j = big(x, r_jig)$ для более чем половины индексов $j \in \{1,...,\pi(n)\},$ то $x^{[i]}$ будет найден правильно, так как

 $b(x,r_j\oplus e_i)\oplus b(x,r_j)=b(x,e_i)=x^{[i]}$ Бит β_j вычисляется как $A(1^{2n};f(x),r_j\oplus e_i)$. Мы не получим нужную оценку вероятности успеха алгоритма B, если будем вычислять ρ_j как $A(1^{2n}; f(x), r_i)$. Вместо этого алгоритм пытается угадать значение $b(x, r_i)$ для всех j.

Но если просто выбрать $ho_j \in \mathbb{B}$, то вероятность того, что $ho_j = b(x,r_j)$ для всех $j \in \{1,...,\pi(n)\}$ будет равна $\frac{1}{2^{\pi(n)}}$, а эта величина при нужном для нас росте $\pi(n)$ будет пренебрежимо малой, как функция от n. Чтобы обойти это препятствие, алгоритм B делает некую грязь.

6. О вычислительной неотличимости

Определение 6.1: Семейства случайных величин $\left\{\xi_n\right\}_{n\in\mathbb{N}}$ и $\left\{\zeta_n\right\}_{n\in\mathbb{N}}$ называются вычислительно неразличимыми, если для любой п.в.м.т. D:

$$|\mu(\{D(1^n;\xi_n)=1\})-\mu(\{D(1^n;\zeta_n)=1\})|=\mathrm{negl}(n)$$

Замечание 6.1: Равномерно распределённым семейством случайных величин на \mathbb{B}^n будем называть $\{v_n\}_{n\in\mathbb{N}}$: $\forall x\in\mathbb{B}^n: \mu(\{v_n=x\})=\tfrac{1}{2^n}$

$$\forall x \in \mathbb{B}^n: \mu(\{v_n=x\}) = \tfrac{1}{2^n}$$

Определение 6.2: Семейство случайных величин $\left\{\xi_n\right\}_{n\in\mathbb{N}}$ называется **псев**дослучайным, если оно вычислительно неотличимо от равномерно распределённого семейства случайных величин $\left\{v_{m(n)}\right\}_{n\in\mathbb{N}}$

Определение 6.3: Функция $g: \mathbb{B}^* \to \mathbb{B}^*$, такая, что $g(\mathbb{B}^n) \subseteq \mathbb{B}^{m(n)}$ для некоторого полинома m, называется **псевдослучайным генератором** или, полностью, криптографически стойким генератором псевдослучайных последовательностей, если

- 1. *д* полиномиально вычислима
- 2. m(n) > n для всех $n \in \mathbb{N}$
- 3. $\{g(v_n)\}_{n\in\mathbb{N}}$ псевдослучайное семейство случайных величин

7. О предсказании следующего бита

Определение 7.1: Семейство случайных величин $\left\{\xi_{n}\right\}_{n\in\mathbb{N}}$ удовлетворяет условию непредсказуемости следующего бита, если для любой п.в.м.Т. P:

$$\mu_{\substack{i \in \{1, \dots, m(n)\} \\ u}} \Big(\Big\{ P\Big(1^n; \xi_n^{[1, \dots, i-1]} \Big) = \xi_n^{[i]} \Big\} \Big) \leq \tfrac{1}{2} + \mathrm{negl}(n)$$

Теорема 7.1 (Яо об эквивалентности): Семейство случайных величин $\left\{\xi_{n}\right\}_{n\in\mathbb{N}}$ псевдослучайно тогда и только тогда, когда $\left\{\xi_{n}\right\}_{n\in\mathbb{N}}$ удовлетворяет условию непредсказуемости следующего бита.

Доказательство: \Rightarrow От обратного, пусть существует п.в.м.Т. P «предсказатель» и полином p:

 $\mu_i\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,i-1]}\Big)=\xi_n^{[i]}\Big\}\Big)>\tfrac{1}{2}+\tfrac{1}{p(n)}$ Построим «различитель» - п.в.м.Т. D, работающую на входах $(1^n;x),x\in$ $\mathbb{B}^{m(n)}$, работающий по алгоритму:

- 1. Выбираем случайный $i \in \{1,...,m(n)\}$
- 2. Если «предсказатель» угадал по $x^{[1,...,i-1]}$ битам i-й, то «различитель» возвращает 1, иначе 0.

Рассмотрим вероятность:

•
$$\mu(\{D(1^n; \xi_n) = 1\}) = \mu_i \left(\left\{ P\left(1^n; \xi_n^{[1, \dots, i-1]}\right) = \xi_n^{[i]} \right\} \right) > \frac{1}{2} + \frac{1}{p(n)}$$
• $\mu\left(\left\{ D\left(1^n; v_{m(n)}\right) = 1 \right\} \right) = \mu\left(\left\{ P\left(1^n; v_{m(n)}^{[1, \dots, i-1]}\right) = v_{m(n)}^{[i]} \right\} \right) = 0$

$$\sum_{k=1}^{m(n)} \mu \Big(\Big\{ P\Big(1^n; v_{m(n)}^{[1, \dots, k-1]} \Big) = v_{m(n)}^{[k]}, i = k \Big\} \Big) =$$

$$\textstyle \sum_{k=1}^{m(n)} \mu \Big(\Big\{ P\Big(1^n; v_{m(n)}^{[1,\dots,k-1]}\Big) = v_{m(n)}^{[k]} \Big\} \Big) \mu(\{i=k\}) = m(n) \cdot \frac{1}{2} \cdot \frac{1}{m(n)} = \frac{1}{2}$$

Разность этих вероятностей $> \frac{1}{p(n)}$ для бесконечно многих n – противоречие. \Leftarrow От противного. Предположим, $\left\{\xi_n\right\}_{n\in\mathbb{N}}$ и $\left\{v_{m(n)}\right\}_{n\in\mathbb{N}}$ не вычислимо неразличимы: существует такая п.в.м.Т. D «различитель» и полином p, что для бесконечно многих n:

$$\left|\mu(\{D(1^n;\xi_n)=1\})-\mu\Big(\left\{D\Big(1^n;v_{m(n)}\Big)=1\right\}\Big)\right|>\frac{1}{p(n)}$$

Построим «предсказатель следующего бита» — п.в.м.T. P, работающую на входах $(1^n; x), x \in \mathbb{B}^{< m(n)}$, следующим образом:

- 1. Выбираем случайный $y \in \mathbb{B}^{m(n)-|x|}$
- 2. Если «различитель» на входе $x \times y$ выдал 1, то возвращаем $y^{[1]}$, иначе $\neg y^{[1]}$.

Обозначим $\sigma_i(n) = \mu\Big(\Big\{D\Big(1^n; \xi_n^{[1,\dots,i]} \times v_{m(n)}^{[i+1,\dots,m(n)]}\Big) = 1\Big\}\Big); 0 \leq i \leq m(n)$ Тогда рассмотрим цепочку равенс

 $\mu(\{P(1^n;\xi_n^{[1,\dots,i-1]})=\xi_n^{[i]}\})=$

$$\begin{split} \mu\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,i-1]}\Big) &= \xi_n^{[i]},v_{m(n)}^{[i]} = \xi_n^{[i]}\Big\}\Big) + \mu\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,i-1]}\Big) = \xi_n^{[i]},v_{m(n)}^{[i]} = \neg \xi_n^{[i]}\Big\}\Big) = \\ \mu\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,i-1]}\Big) = v_{m(n)}^{[i]},v_{m(n)}^{[i]} = \xi_n^{[i]}\Big\}\Big) + \mu\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,i-1]}\Big) = \neg v_{m(n)}^{[i]},v_{m(n)}^{[i]} = \neg \xi_n^{[i]}\Big\}\Big) = \\ \mu\Big(\Big\{D\Big(1^n;\xi_n^{[1,\dots,i-1]}\times v_{m(n)}^{[i,\dots,m(n)]}\Big) = 1,v_{m(n)}^{[i]} = \xi_n^{[i]}\Big\}\Big) + \mu\Big(\Big\{D\Big(1^n;\xi_n^{[1,\dots,i-1]}\times v_{m(n)}^{[i,\dots,m(n)]}\Big) = 0,v_{m(n)}^{[i]} = \neg \xi_n^{[i]}\Big\}\Big) = \\ \sum_{b\in\mathbb{B}}\mu\Big(\Big\{D\Big(1^n;\xi_n^{[1,\dots,i-1]}\times b\times v_{m(n)}^{[i+1,\dots,m(n)]}\Big) = 1,v_{m(n)}^{[i]} = b,b = \xi_n^{[i]}\Big\}\Big) + \\ \sum_{b\in\mathbb{B}}\mu\Big(\Big\{D\Big(1^n;\xi_n^{[1,\dots,i-1]}\times b\times v_{m(n)}^{[i+1,\dots,m(n)]}\Big) = 0,v_{m(n)}^{[i]} = b,b = \neg \xi_n^{[i]}\Big\}\Big) = \end{split}$$

$$\begin{split} \frac{1}{2}\mu\Big(\Big\{D\Big(1^n;\xi_n^{[1,\dots,i]}\times v_{m(n)}^{[i+1,\dots,m(n)]}\Big) &= 1\Big\}\Big) + \frac{1}{2}\mu\Big(\Big\{D\Big(1^n;\xi_n^{[1,\dots,i-1]}\times \neg \xi_n^{[i]}\times v_{m(n)}^{[i+1,\dots,m(n)]}\Big) &= 0\Big\}\Big) &= \frac{1}{2}\sigma_i(n) + \frac{1}{2}(1-2\sigma_{i-1}(n)+\sigma_i(n)) &= \frac{1}{2}+\sigma_i(n)-\sigma_{i-1}(n) \end{split}$$

Где в последнем переходе используется равенство:
$$\mu\Big(\Big\{D\Big(1^n,\xi_n^{[1,\dots,i-1]}\times\neg\xi_n^{[i]}\times v_{m(n)}^{[i+1,\dots,m(n)]}\Big)=1\Big\}\Big)=2\sigma_{i-1}(n)-\sigma_i(n)$$

которое получается аналогичным расписываниям выше, но для предсказания i-1 бита.

$$\begin{split} \text{B MTOPE} & \mu\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,i-1]}\Big)=\xi_n^{[i]}\Big\}\Big) = \frac{1}{m(n)}\sum_{k=1}^{m(n)}\mu\Big(\Big\{P\Big(1^n;\xi_n^{[1,\dots,k-1]}\Big)=\xi_n^{[k]}\Big\}\Big) = \\ & \frac{1}{2} + \frac{1}{m(n)}\sum_{k=1}^{m(n)}(\sigma_k(n)-\sigma_{k-1}(n)) = \\ & \frac{1}{2} + \frac{1}{m(n)}\Big(\mu(\{D(1^n;\xi_n)=1\}) - \mu\Big(\Big\{D\Big(1^n;v_{m(n)}\Big)=1\Big\}\Big)\Big) > \frac{1}{2} + \frac{1}{m(n)n(n)} + \frac{1}{2} + \frac{1}{m(n)n(n)} + \frac{1}{2} +$$

Что для бесконечно многих n даёт противоречие с условием непредсказуемости следующего бита.

8. О псевдослучайных генераторах

Определение 8.1: Функция, являющаяся одновременно односторонней и биекцией называется **односторонней перестановкой**.

Утверждение 8.1 (Яо): Если существует односторонняя перестановка, то существует псевдослучайный генератор.

Доказательство: Пусть f – односторонняя перестановка.

Продолжим её на всё \mathbb{B}^* (обрубаем до префикса, на котором была определена) и построим f'(x,r) = (f(x),r), как в теореме Гольдрайха-Левина.

Получили, что f' также односторонняя перестановка с трудным предикатом $b(\cdot)$.

Определим $g: x \mapsto f'(x)b(x)$, который и будет псевдослучайным генератором.

Замечание 8.1: То, что f перестановка, нужно не только для обеспечения правильных длин значений, но и для того, чтобы f(x) было равномерно распределено на \mathbb{B}^n при $x \in \mathbb{B}^n$.

Теорема 8.1 (Хостада и других, без доказательства): псевдослучайные генераторы существуют тогда и только тогда, когда существуют односторонние функции.

9. О криптосистемах

Замечание 9.1: Будем использовать обозначения:

- $n \in \mathbb{N}$ параметр стойкости
- $M_n \subseteq \mathbb{B}^*$ пространство сообщений (открытых текстов)
- $\operatorname{supp}(\xi) = \{x \mid \mu(\{\xi = x\}) \neq 0\}$ **носитель** случайной величины

Определение 9.1: Система (вероятностного) шифрования с секретным ключом (криптосистема, шифр) – это тройка алгоритмов (G, E, D):

- Генератор ключей G п.в.м.Т., $G(1^n) = k$ **секретный ключ**, можно считать, что k выбирается из $K_n = \operatorname{supp}(G(1^n))$ согласно вероятностному распределению \mathcal{G}_n , задаваемому случайной величиной $G(1^n)$.
- Алгоритм шифрования E п. (в.) м.Т., для $m \in M_n$, $k \in K_n : E(1^n; k, m) = c$ криптограмма (шифртекст) открытого текста m на ключе k.
- Алгоритм дешифрования $D \pi$.д.м.Т.

$$\forall m \in M_n : \forall k \in K_n : D(1^n; k, E(1^n; k, m)) = m$$

Определение 9.2: Система шифрования называется **блоковой**, если в ней алгоритм шифрования разбивает сообщение произвольной длины на блоки и шифрует каждый блок отдельно по **одному и тому же** алгоритму.

Определение 9.3: **Потоковая** же криптосистема последовательно шифрует элементы открытого текста, такими элементами чаще всего являются биты, данный тип криптосистем имеет внутренне состояние, **изменяющееся** после шифрования каждого нового сообщения.

10. О стойкости криптосистем

Определение 10.1: Стойкость криптосистемы определяется относительно конкретного противника.

Замечание 10.1 (Модель противника):

- Вычислительные ресурсы = п.в.м.Т.
- Атака возможность получения исходных данных
- Угроза цель противника

Замечание 10.2 (Основные типы атак):

1. Атака с известными шифртекстами:

$$c_1, c_2, ..., c_l$$

2. Атака с известными открытыми текстами:

$$(m_1,c_1),(m_2,c_2),...,(m_l,c_l); \quad c_i=E(1^n;k,m_i)$$

3. Атака с выбором открытых текстов:

$$m_1,...,m_l\mapsto (m_1,c_1),...,(m_l,c_l); \quad c_i=E(1^n;k,m_i)$$

4. Атака с выбором шифртекстов:

$$c_1,...,c_l\mapsto (m_1,c_1),...,(m_l,c_l);\quad m_i=D(1^n;k,c_i)$$

5. Атака с выбором текстов – комбинация 3 и 4.

Атаки 3-5 бывают:

- Неадаптивными, когда противник получает весь набор данных разом
- Адаптивными, когда пары к выбранным данным он получает последовательно по i, то есть выбор следующего запроса может зависеть от результатов предыдущего.

Замечание 10.3 (Основные типы угроз):

- 1. Полное раскрытие найти использованный ключ
- 2. Извлечение открытого текста по известной информации и случайному значению $E(1^n; k, m)$ найти сообщение m
- 3. Извлечение частичной информации об открытом тексте: для некоторой функции $f: \mathbb{B}^* \to \mathbb{B}^*$ по известной информации и случайному значению $E(1^n; k, m)$ найти f(m)
- 4. **Различие двух шифртекстов** при подходящей выборке m^0, m^1 открытых сообщений, не появлявшихся при атаке, по криптограмме $E\left(1^n; k, m^b\right)$ для случайного $b \in \{0,1\}$ определить b, то есть какое из двух сообщений было зашифровано

11. Конкретный пример стойкости

Замечание 11.1: Определим IND-CPA-стойкость криптосистемы с секретным ключом – стойкость относительно пары угрозы 4/атака 3.

Формализуем предположения о противнике с помощью специального оракула, к которому имеет доступ алгоритм противника.

Оракул \mathcal{O} , определяемый для криптосистемы (G, E, D):

- В начале работы выбирает секретный ключ $k \in \mathcal{G}_n$
- После этого принимает запросы двух типов:
 - 1. (1;x), где $x\in M_n$ в ответ на который возвращает $E(1^n;k,x)$
 - 2. $(2; y^0, y^1)$, где $y^0, y^1 \in M_n$, получив который, проверяет, что y^0 и y^1 не появлялись ранее, выбирает случайный бит $b \in \{0,1\}$ и в зависимости от значения b возвращает либо $E(1^n, k, y^0)$, либо $E(1^n, k, y^1)$.
- Ответив на один запрос второго типа, завершает свою работу

Определение 11.1: Криптосистема (G, E, D) называется IND-СРА-стой-кой, если для любой п.в.м.Т. A с вышеописанным оракулом \mathcal{O} :

$$\mu\big(\big\{A^{\mathcal{O}}(1^n)=b\big\}\big) \leq \tfrac{1}{2} + \mathrm{negl}(n)$$

Пример: Пусть g — псевдослучайный генератор, $g(\mathbb{B}^n)\subseteq \mathbb{B}^{q(n)}$ $m_1,...,m_t\in \mathbb{B}^n$ — сообщения, причём $t\cdot n+1< q(n)$

Участники обмениваются по защищённому каналу секретным ключом $k\in\mathcal{U}$

 \mathbb{B}^n , причём $g(k)=g_1...g_t,g_i\in\mathbb{B}^n$.

Тогда для $1 \le i \le t$:

- Шифрование $c_i = E(1^n; k, m_i) = m_i \oplus g_i$
- Дешифрование $m_i = D(1^n; k, c_i) = c_i \oplus g_i$

Утверждение 11.1: Если g – псевдослучайный генератор, то описанная выше криптосистема – IND-CPA-стойкая.

Доказательство: Предположим, что существует такая п.в.м.Т. А, что для некоторого полинома p и бесконечно многих n $\mu(\{A^{\mathcal{O}}(1^n)=b\})>\frac{1}{2}+\frac{1}{p(n)}.$ Построим п.в.м.Т. S, работающую на входе $(1^n;z),z\in\mathbb{B}^{q(n)},z=$

 $z_1...z_t, z_i \in \mathbb{B}^n$ следующим образом:

- 1. S запускает машину A на входе 1^n и берёт на себя роль оракула, делая хог c элементами z.
- 2. Вычисляет выход $S(1^n;z) = \begin{cases} 1 & A^{S(1^n)} = b \\ 0 & A^{S(1^n)} \neq b \end{cases}$

Таким образом,

- если $z=g(v_n),$ то по предположению A вычисляет b с вероятностью >
- ullet иначе $z=v_{q(n)}$ произвольная равномерная случайная величина, отгадывающая ответ с вероятностью подбрасывания монетки

Получили, что $\mu(\{S(1^n,g(v_n))=1\})-\mu\left(\left\{S\left(1^n,v_{q(n)}\right)=1\right\}\right)>\frac{1}{p(n)},$ что противоречит с тем, что g – псевдослучайный генератор.

12. О генераторах псевдослучайных функций

Замечание 12.1: Будем рассматривать семейства функций вида $F = \cup_{n \in \mathbb{N}} \ F_n = \left\{ f_{n,i} : \mathbb{B}^{l(n)} \to \mathbb{B}^{m(n)} \right\}_{n \in \mathbb{N}, i \in \mathbb{B}^n} \quad F_n \subseteq \left(\mathbb{B}^{m(n)} \right)^{\mathbb{B}^{l(n)}}$ где $l(\cdot), m(\cdot)$ – некоторые полиномы.

Определение 12.1: Г называется псевдослучайным семейством функций, если

• F полиномиально вычислимо, в смысле

$$\exists$$
 п.д.м.Т $A: \forall n, i, w: A(1^n; i, w) = f_{n,i}(w)$

Для любой п.в.м.Т A:

$$\left|\mu_i\big(\big\{A^{f_{n,i}}(1^n) = 1\big\}\big) - \mu_\varphi(\{A^\varphi(1^n) = 1\})\right| = \mathrm{negl}(n)$$
 где $i \in \mathbb{B}^n, \varphi \in \big(\mathbb{B}^{m(n)}\big)^{\mathbb{B}^{l(n)}}$

Определение 12.2: Генератор для семейства функций F – это пара алгоритмов (I, C):

• І – полиномиальная вероятностная машина Тьюринга:

$$I(1^n)=i$$
 – индекс функции а F_n

• C – полиномиальная (детерминированная) машина Тьюринга:

$$\forall n, i, x : C(1^n; i, x) = f_{n,i}(x)$$

Определение 12.3: Генератором всевдослучайных функций будем называть генератор для псевдослучайного семейства функций F относительно некоторого семейства вероятностных распределений индексов $\left\{\mathcal{I}_n\right\}_{n\in\mathbb{N}}$.

Теорема 12.1 (Гольдрайха и других): Если существует псевдослучайный генератор, то для любых полиномов $l(\cdot), m(\cdot)$ существует псевдослучайное семейство функций F.

 Доказательство: Возьмём псевдослучайный генератор $g:\mathbb{B}^n o \mathbb{B}^{2n}$ для всех n и функции

 $g_0(y) = g(y)^{[1,\dots,n]}; \quad g_1(y) = g(y)^{[n+1,\dots,2n]}; \quad y \in \mathbb{B}^n, n \in \mathbb{N}$

Определим функции семейства для $x \in \mathbb{B}^{l(n)}$ по всем n:

$$f_{n.i}'(x) = g_{x^{[l(n)]}}(...g_{x^{[1]}}(i)...) \in \mathbb{B}^r$$

 $f_{n,i}'(x)=g_{x^{[l(n)]}}(...g_{x^{[1]}}(i)...)\in \mathbb{B}^n$ Псевдослучайность семейства $F'=\left\{f_{n,i}'\right\}$ доказывается от противного:

Если π .в.м. T A отличает функции семейства от случайных, построим $\mathbf{n.s.m.T}\ B$, которая запускает A, выдаёт ей (вместо оракула) значение хитро строящейся функции h и возвращает в конце выход машины A.

Тогда B будет отличать случайный вектор $g(y) \in \mathbb{B}^{2n}$ от равномерно случайного вектора $v_{2n},$ что противоречит определению псевдослучайного генератора q.

Далее «растянем» до длины m(n) значения функций семейства F' с помощью их композиций с подходящим псевдослучайным генератором.

Полученное семейство F будет таким же псевдослучайным, как и F'. \square

13. О генераторах псевдослучайных перестановок

Определение 13.1: Псевдослучайным семейством перестановок называется псевдослучайное семейство функций, все функции которого являются биекциями.

Также от них требуется неотличимость от раномерно случайной перестановки, а не от произвольной функции.

Утверждение 13.1: Существует преобразование Файстеля Ф, которое превращает произвольную функцию, сохраняющую длину, в перестановку

Доказательство: Давайте определим преобразование $\forall n \in \mathbb{N}$ в явном виде, пусть $f: \mathbb{B}^n \to \mathbb{B}^n$.

Тогда её преобразованием Файстеля, а также обратное к нему: $\forall x,y,u,v\in\mathbb{B}^n: \begin{cases} \Phi_f(x\times y)=y\times (x\oplus f(y))\\ \Phi_f^{-1}(uv)=(v\oplus f(u))\times u \end{cases}$

$$\forall x,y,u,v \in \mathbb{B}^n: \begin{cases} \Phi_f(x \times y) = y \times (x \oplus f(y)) \\ \Phi_f^{-1}(uv) = (v \oplus f(u)) \times u \end{cases}$$

Определение 13.2: Г называется полиномиально инвертируемым семейством перестановок, если полиномиально вычислима функция $(1^n; i, y) \mapsto f_{n,i}^{-1}(y).$

Теорема 13.1 (Луби-Ракоффа, без доказательства): Если существует псевдослучайное семейство функций, сохраняющих длину, то существует полиномиально инвертируемое псевдослучайное семейство перестановок.

14. Использование псевдослучайных семейств для шифрования

Замечание 14.1: Пусть $F=\cup_{n\in\mathbb{N}}\left\{f_{n,i}:B^{l(n)}\to B^{l(n)}
ight\}_{n\in\mathbb{N},i\in\mathbb{B}^n}$ – полиномиально инвертируемое псевдослучайное семейство перестановок.

n — параметр стойкости.

m – открытый текст, при необходимости дополненный до длины l(n) $M_n = \mathbb{B}^{l(n)}$

Замечание 14.2: Построим криптосистему, используя данное семейство перестановок

- $G(1^n)=i\mathop{\in}_{\mathcal{U}}\mathbb{B}^n$ секретный ключ
- $E(1^n;i,m) = f_{n,i}(m) = c \in \mathbb{B}^{l(n)}$ криптограмма $D(1^n;i,c) = f_{n,i}^{-1}(c) = m$

D – полиномиальная, так как семейство F полиномиально инвертируемо Такая (блоковая) криптосистема с секретным ключом – IND-CPA-стойкая.

Замечание 14.3: Если позволить шифровать более длинные сообщения, разбивая их на блоки длины l(n) и применяя к ним перестановку по отдельности, то такая система уже не будет IND-стойкой.

15. О электронной подписи.

15.1. Определения

Определение 15.1.1: Схемой электронной подписи называется следующую тройку алгоритмов (G, S, V) вместе с процедурой A:

- 1. Генератор ключей G- п.в.м.Т : $G(1^n)=(\hat{k},k)$ пара секретный/открытый ключ. $K_n=\mathrm{supp}(G(1^n))-$ пространство ключей.
- 2. Генератор подписей S- п.в.м.Т : $m\in M_n,$ $\left(\hat{k},k\right)\in K_n\Rightarrow S\left(1^n,\hat{k},m\right)=s-$ подпись для сообщения m.
- 3. Алгоритм проверки п.д.м.Т $V:V(1^n,k,m,s)\in\mathbb{B}$ принимается ли подпись. Причём $V\left(1^n,k,m,S\left(1^n,\hat{k},m\right)\right)=1.$ То есть правильная подпись всегда принимается.
- 4. *А* процедура арбитража (разрешения споров). Арбитр кто-то кому все участники доверяют, и он может получить доступ к секретам.

Определение 15.1.2: Схема аутентификации сообщений (МАС).

Строится аналогично, только без открытого ключа

- \hat{k} известен обоим участникам
- Оба могут как подписывать так и проверять подпись.
- Нет задачи убедить в чём-то третью сторону. МАС предназначен для сети из небольшого числа доверяющих друг другу участников

Замечание 15.1.1: Считаем, что противнику по умолчанию известна схема, то есть (G, S, V), параметр n, а так же открытый ключ.

Замечание 15.1.2: Основные типы атак

- 1. Атака с известным открытым ключом ККА.
 - Знаем только открытый ключ
- 2. Атака с известными сообщениями КМА
 - Известен набор сообщений с подписями $\{(m_i, s_i)\}_{i=0..l}$
- 3. Атака с выбором сообщений СМА.
 - Противник может подписывать некоторые сообщения. $\{m_i\} \rightsquigarrow \{(m_i, s_i)\}$
 - Может быть с априорным знанием k (направленная) или нет (простая).
 - Может быть адаптивной или неадаптивной. (Зависит ли m_i , от ответов на предыдущие запросы).

Замечание 15.1.3: Основные типы угроз

- 1. Полное раскрытие (total breaking).
- 2. Универсальная подделка (universal forgery)
 - Найти п.в.м.Т $S': \forall m \in M_n V(1^n, k, m, S'(1^n, k, m)) = 1$. То есть научиться подписывать без приватного ключа \hat{k} .
- 3. Селективная подделка Selective forgery
 - Найти подпись для какого то конкретного сообщения m. (Здесь и далее всегда неявно подразумевается, что подпись сообщения которое хочет подписать атакующий ему не была известна заранее / сказана оракулом).
- 4. Экзистенциальная подделка.
 - Найти пару $(m', s') : V(1^n, k, m', s') = 1.$

Определение 15.1.3: Если никакой эффективный алгоритм не может осуществить угрозу экзистенциальной подделки с существенной вероятностью, то схема электронной подписи называется EU-стойкой.

Определение 15.1.4: EU-CMA стойкость

Оракул-подписант: $\mathcal{O}:\mathcal{O}(m)=Sig(1^n,\hat{k},mig).$

Схема (G,S,V) EU-СМА стойкая если

 \forall п.в.м.Т $A^{\mathcal{O}}$: $\mu(\{A^{\mathcal{O}}(1^n,k)=(m,s),\ V(1^n,k,m,s)=1\})=\operatorname{negl}(n)$

Теорема 15.1.1: Rompel Если существует односторонняя функция, то существует EU-CMA стойкая схема электронной подписи.

Замечание 15.1.4: В обратную сторону тоже верно. Предположим противное, тогда можно эффективно обратить генератор ключей, и тем самым по открытому ключу получить секретный. Другими словами $f(r) = k \Leftrightarrow G(r, 1^n) = (k, \hat{k})$ должна быть односторонней.

15.2. Примеры схем

15.2.1. RSA

 $N=pq,\ p,q\in\mathbb{P}$ $\gcd(e,\varphi(N))=1,ed\equiv 1\operatorname{mod}\varphi(N),$ где φ – функция Эйлера.

- $G: k = (N, e), \hat{k} = (N, d)$
- $S: s = m^d \mod N$
- $V: s^e \stackrel{?}{=} m \mod N$. $m^{de} \equiv m^{1+l\varphi(N)} \equiv m \mod N$

Замечание 15.2.1.1: RSA НЕ является ни EU-ККА стойкой ни UU-СМА стойкой.

15.2.2. Схема Лемпорта (одноразовая)

Пусть $f:\mathbb{B}^n \to \mathbb{B}^n$ односторонняя функция сохраняющая длину. Сообщение $m \in M_n = \mathbb{B}^n$. $m = m^{[1]}m^{[2]}...m^{[n]}$

- G. Нагенерируем 2n случайных последовательностей: $\{x_i^0, x_i^1\}_{i=0}^n$. Они будут нашим секретным ключом. Ко всем ним применяем f. Получаем $\{y_i^0, y_i^1\}_{i=0}^n$ это публичный ключ.
- S. В зависимости от значения і-го бита в числе выбираем либо x_i^0 либо x_i^1 . Формально $s=s^{[1]}s^{[2]}...s^{[n]}=x_0^{m^{[0]}}x_1^{m^{[1]}}...x_n^{m^{[n]}}$
- V. Применяем f к подписи и сверяемся что все сходится: $y_i^{m^{[i]}} = f(s_i)$.

Замечание 15.2.2.1: Эта схема EU-CMA1-стойкая — при условии, что противнику доступно только одно обращение к оракулу (l=1).

Замечание 15.2.2.2: Чтобы снять ограничение на длину сообщения, достаточно подписывать хеш от сообщения. Далее это будет считаться стратегией по умолчанию.

16. О криптографических хеш-функций

Определение 16.1: Семейством хэш-функций называется

$$H = \cup_{n \in \mathbb{N}} \ H_n = \left\{h_{n,i} : \mathbb{B}^{t(n)} \to \mathbb{B}^{m(n)}\right\}_{n \in \mathbb{N}, i \in I_n}$$

где $t(\cdot), m(\cdot)$ — такие полиномы, что m(n) < t(n) для всех $n \in \mathbb{N}$, а на каждом случайном векторе I_n задано распределение вероятностей \mathcal{I}_n , так, что $\left\{\mathcal{I}_n\right\}_{n\in\mathbb{N}}$ — полиномиально конструируемое семейство.

Определение 16.2: H называется семейством хэш-функций с трудно-обнаружимыми коллизиями относительно $\left\{\mathcal{I}_n\right\}_{n\in\mathbb{N}},$ если

- H полиномиально вычислимо
- Для любой п.в.м.Т A

$$\mu_{i \leftarrow \mathcal{I}_n} \left(\left\{ A(1^n; i) = (x', x''), x' \neq x'', h_{n,i}(x') = h_{n,i}(x'') \right\} \right) = \text{negl}(n)$$

Определение 16.3: Н называется (универсальным) односторонним семейством хэш-функций относительно $\left\{\mathcal{I}_n\right\}_{n\in\mathbb{N}},$ если

- Н полиномиально вычислимо
- Для любой такой п.в.м.Т A, которая сначала на входе 1^n выдаёт $x' \in \mathbb{B}^{t(n)}$, а затем на входе $i \in I_n$ выдаёт $x'' \in \mathbb{B}^{t(n)}$ (A реализует алгоритм поиска специфичных колизий)

$$\mu_{i \leftarrow \mathcal{I}_n} \left(\left\{ A(1^n; i) = x'', x'' \neq x', h_{n,i}(x') = h_{n,i}(x'') \right\} \right) = \mathrm{negl}(n)$$

Теорема 16.1 (Наора-Юнга): Если существует односторонняя перестановка, то существует и одностороннее семейство хэш-функций.

Доказательство: Отождествим \mathbb{B}^n с $\mathbb{GF}(2^n)$ для каждого n. (все рассматриваемые алгебраические операции над векторами будут иметься в виду именно из этого поля).

Пусть

$$G_n \coloneqq \left\{ \forall a,b \in \mathbb{B}^n : a \neq 0 \mid g_{n,a,b} : \mathbb{B}^n \to \mathbb{B}^{n-1} : g_{n,a,b}(x) = (ax+b)^{[1,\dots,n-1]} \right\}$$

Заметим, что строки x', x'' образуют коллизию для $g_{n,a,b}$ тогда и только тогда, когда $g_{n,a,b}(x'), g_{n,a,b}(x'')$ различаются только в последнем бите.

$$ax' + b = ax'' + b + 1 \Rightarrow a = (x' - x'')^{-1}$$

Пусть $M(x', x'') = ((x' - x'')^{-1}, r)$, где $x', x'' \in \mathbb{B}^n, r \in \mathbb{B}^n$.

 По сути M по двум элементам выдаёт индекс хэш-функции, на которой на них будет коллизия.

Тогда M удовлетворяет свойству достижимости коллизий. Кроме того, поскольку $(x'-v)^{-1} \in \mathbb{B}^n \setminus \{0\}$ при $v \in \mathbb{B}^n \setminus \{x'\}$, случайная величина M(x',v) распределена равномерно на множестве описаний всех функций из G_n .

Пусть предполагаемая существующая односторонняя перестановка – f. Рассмотрим семейство

$$H = \cup_{n \in \mathbb{N}} \ H_n = \cup_{n \in \mathbb{N}} \ \left\{ h_{n,a,b} = g_{n,a,b} \circ f \mid g_{n,a,b} \in G_n \right\}$$

Очевидно, оно полиномиально вычислимо, как состоящее из композиций полиномиально вычислимых функций.

Докажем, что задача поиска специфических коллизий для него трудна.

Пусть произвольная π .в.м.Т A, реализующая алгоритм поиска специфических коллизий для семейства хэш-функций H.

Напомним, что $\pi.в.м.$ Т A работает в два этапа:

- На первом по случайному вектору 1^n выдаёт x, к которому на втором этапе будем искать коллизию
- На втором этапе $A(1^n; v)$ выдаёт x', который должен выдавать коллизию с x на хэш-функции $h_{n,v}$. В этом конкретном случае v=(a,b).

На основе A построим вспомогательную $\pi.в.м.$ Т B, которая будет дальше применена в доказательстве.

Алгоритм B будет принимать на вход $v \in \mathbb{B}^n$. (Хотим построить B так, чтобы $B(1^n; f(u)) = u).$

- Если f(x) = v, где x из описания первого этапа A, то B вернёт x
- Иначе B вернёт результат выполнения $y = A(1^n; M(f(x), v))$, то есть элемент, который имеет коллизию с x на такой хэш-функции, в которой имеют коллизию элементы f(x) и v.

Очевидно, B полиномиальна.

Предположим, что для поданной на вход машине B строки $f(u), u \in \mathbb{B}^n$ выполнено

- $f(x) \neq v = f(u)$
- $y \neq x$
- $h_{n,a,b}(y) = h_{n,a,b}(x)$, где (a,b) = M(f(x),f(u))

Из этого случая можно сделать следующие выводы:

- $f(x) \neq f(y)$, така как f перестановка и $x \neq y$.
- $g_{n,a,b}(f(y)) = h_{n,a,b}(y) = h_{n,a,b}(x) = g_{n,a,b}(f(x))$ по предположению
- Но при этом $g_{n,a,b}(f(x)) = g_{n,a,b}(f(u)),$ так как по определению M для функции с индексов (a,b) = M(f(x),v) пара (f(x),v) = (f(x),f(u)) образует коллизию.

Итого $f(y) \neq f(x) \neq f(u)$, но при этом $g_{n,a,b}(f(y)) = g_{n,a,b}(f(x)) = g_{n,a,b}(f(u))$. Следовательно, f(y) = f(u), так как у $g_{n,a,b}(f(x))$ не может быть три различных прообраза.

Следовательно y=u, так как f – перестановка \Rightarrow на входе f(u) машина B выдаёт u.

Теперь используя эту $\mathbf{n. s. m. T}$ B с доказанным свойством докажем сложность произвольного алгоритма поиска специфических коллизий для семейства хэш-функций H.

Пусть x — выход A после 1 этапа, $(a,b) \in (\mathbb{B}^n \setminus \{0^n\}) \times \mathbb{B}^n /$ Заметим, что $u \in \mathbb{B}^n \setminus \{x\} \Leftrightarrow f(u) \in \mathbb{B}^n \setminus \{f(x)\}.$

Наконец, мы готовы совершить оценку сложности поиска коллизий $\mu_{(a,b)}\big(\big\{A(1^n;(a,b))=y,y\neq x,h_{n,a,b}(y)=h_{n,a,b}(x)\big\}\big)=$

$$\mu_{(a,b)}\big(\big\{A(1^n;(a,b))=y,y\neq x,h_{n,a,b}(y)=h_{n,a,b}(x)\big\}\big)=$$

$$\mu_u \left(\left\{ A(1^n; M(f(x), f(y))) = y, y \neq x, h_{n,a,b}(x) = h_{n,a,b}(y) \right\} \right) = 0$$

$$\mu_{v_n}(\{B(1^n;f(v_n))=v_n \mid f(x) \neq f(v_n)\}) \leq \frac{\mu_{v_n}(\{B(1^n;f(v_n))=v_n\})}{\mu_{v_n}(\{f(x) \neq f(v_n)\})} \leq 2 \operatorname{negl}(n)$$

В последнем переходе мы воспользовались тем, что $\mu_{v_n}(\{f(x) \neq f(v_n)\}) =$ $1-\frac{1}{2^n}\geq \frac{1}{2}$ и тем, что f – односторонняя перестановка.

17. О применении хэш-функций

Замечание 17.1: Модифицируем схему Лемпорта, описанную в Раздел 15.2.2.

Чтобы снять ограничение на длину |m|=n, воспользуемся семейством криптографических хэш-функций

$$H = \cup_{n \in \mathbb{N}} H_n; \quad H_n = \left\{h_{n,d} : \mathbb{B}^{l(n)} \to \mathbb{B}^n\right\}_{d \in I_n}$$

К обоим ключам добавляется $d \leftarrow \mathcal{I}_n$, а вместо $m \in \mathbb{B}^{l(n)}$ подписывается $h_{n,d}(m) \in \mathbb{B}^n$. При проверке также сообщения сначала хэшируется.

Теорема 17.1 (Ромпеля, без доказательства): Односторонние семейства хэш-функций существуют тогда и только тогда, когда существует односторонняя функция.

18. О нулевых разглашениях

Замечание 18.1: Предположим, что Алиса знает доказательство некоторой теоремы и желает убедить Боба, что теорема верна, так, чтобы не сообщить ему никакой информации, на основании которой он научился бы доказывать эту теорему самостоятельно.

Этим двум противоречивым требованиям удовлетворяют протоколы с нулевым разглашением.

Определение 18.1: Интерактивной парой машин Тьюринга называется пара π .в.м.Т (A, B), соединённые между собой коммуникационной лентой:

Замечание 18.2 (Особенности интерактивной пары машин Тьюринга):

- Вход может быть общим у обеих машин, но они могут иметь и свои частные входы.
- Раунд период активности однйо машины с записью слова на коммуникационную ленту.
- Если раунд только один, то соответствующий протокол называется неинтерактивным.
- Выход пары (A,B) это (y_A,y_B) или только $y_B,$ если машина B останавливается первой.
- Интерактивная машина **полиномиальна**, если время её работы при совместном вычислении с любой другой машиной Тьюринга на общем входе x ограничено величиной $\operatorname{poly}(|x|)$. В этом случае число раундов также полиномиально, но размер входящих сообщений вообще говоря, необязательно.

Замечание 18.3: Введём обозначения

- Р доказывающий
- V **проверяющий**, выдающий 1 или 0 (доказательство принимается или нет)
- $L \subseteq \mathbb{B}^*$ язык, соответствующий некоторой распознавательной задаче.

Определение 18.2: Интерактивной доказательство для языка L – это интерактивная пара машин Тьюринга (P,V) с полиномиальной V, для которых выполнены условия:

• Полнота

$$\forall x \in L: \mu(\{(P,V)(x)=1\}) \geq \tfrac{2}{3}$$

• Корректность

$$\forall$$
интерактивной в.м.Т. $P': \forall x \notin L: \mu(\{(P',V)(x)=1\}) \leq \frac{1}{3}$

Определение 18.3: Рассмотрим выполнение интерактивной пары машин Тьюринга (P,V) и обозначим через $\mathrm{view}_V^P(x)$ транскрипцию этого выполнения, состоящую из использованного префикса случайной строки машины V, последовательности пересылаемых сообщений в хронологическом порядке и выхода пары.

Определение 18.4: Интерактивной доказательство (P,V) для бесконечного языка L называется доказательством с абсолютно нулевым разглашением, если для любой интерактивной п.в.м.Т V' существует п.в.м.Т S, такая, что семейства $\left\{ \operatorname{view}_{V'}^P(x) \right\}_{x \in L}$ и $\left\{ S(x) \right\}_{x \in L}$ распределены одинаково, а точкее, для любого $x \in L$:

• $\mu(\{S(x) \neq \perp\}) \ge \frac{1}{\text{poly}(|x|)}$

• При условии $S(x) \neq \perp$: $\mu(\{S(x)=z\}) = \mu(\{\operatorname{view}_{V'}^P(x)=z\})$

Это определение значит, что наличие честного «доказывателя» никак не поможет нечестному «проверяющему» доказывать.

Определение 18.5: Пусть ξ, ζ – случайные величины со значениями в конечном или счётном множестве X.

Статистическим расстоянием между ξ и ζ называют $\Delta(\xi,\zeta)=\max_{Z\subset X}|\mu(\{\xi\in Z\})-\mu(\{\zeta\in Z\})|$

Определение 18.6: Семейства $\{\xi_x\}_{x\in L}, \{\zeta_x\}_{x\in L}$ называются статистически неразличимыми, если $\Delta(\xi_x,\zeta_x)=\mathrm{negl}(|x|)$

Определение 18.7: Интерактивное доказательство (P,V) для бесконечного языка L называется доказательством со статистически нулевым разглашением, если для любой интерактивной п.в.м.Т V' существует п.в.м.Т S такая, что семейства $\left\{ \operatorname{view}_{V'}^P(x) \right\}_{x \in L}$ и $\left\{ S(x) \right\}_{x \in L}$ статистически неразличимы

Определение 18.8: Семейства $\{\xi_x\}_{x\in L}, \{\zeta_x\}_{x\in L}$ называются вычислительно неразличимыми, если для любой п.в.м.Т D:

$$|\mu(\{D(x,\xi_x)=1\}) - \mu(\{D(x,\zeta_x)=1\})| = \mathrm{negl}(|x|)$$

Определение 18.9: Интерактивное доказательство (P,V) для бесконечного языка L называется доказательством с вычислительно нулевым разглашением, если для любой интерактивной п.в.м.Т V' существует п.в.м.Т S такая, что семейства $\left\{\operatorname{view}_{V'}^P(x)\right\}_{x\in L}$ и $\{S(x)\}_{x\in L}$ вычислительно неразличимы

Пример (Протокол доказательства с абсолютно нулевым разглашением для языка пар изоморфных графов): Общий вход: (G_0,G_1) , где $G_0=(U,E_0),G_1=(U,E_1)$.

Пусть |U|=n, причём $|E_0|=|E_1|$.

• Prover выбирает случайную n-перестановку $\pi \in S_n$ и случайный бит $c \in \mathbb{B}$

- Prover создаёт новый граф $H=\pi(G_c)$, изоморфный изначальным, посылает его Verifier
- Verifier выбирает случайный бит $b \in \mathbb{B}$, посылает его Prover
- Prover создаёт новую перестановку $\psi = \begin{cases} \pi, b = c \\ \varphi \circ \varphi, b \neq c \end{cases}$, где φ известная только ему перестановка, такая, что $G_c = \varphi(G_{\neg c})$. Посылает полученную перестановку ψ Verifier.
- Verifier проверяет $\varphi(G_b) \stackrel{?}{=} H$

Описанный выше алгоритм запускается в цикле $|E_1|$ раз и результатом проверки на изоморфизм будет $1 \Leftrightarrow$ во всех итерациях проверка Verifier была пройдена успешна.

19. О доказательстве NP языка

Определение 19.1: Бинарное отношение $R \subseteq \mathbb{B}^* \times \mathbb{B}^* - \mathbf{NP}$ -отношение, если R распознаётся некоторой п.д.м.Т и

$$\forall x, y \in \mathbb{B}^* : (x, y) \in R \Rightarrow |y| \le \text{poly}(|x|)$$

Такой y называется **NP-доказательством** для x относительно R.

Теорема 19.1 (Гольдрайха и других): Пусть существует односторонняя функция.

Пусть R – NP-отношение, такое, что следующий язык бесконечен:

$$L_R = \{ x \in \mathbb{B}^* \mid \exists y \in \mathbb{B}^* : (x, y) \in R \}$$

Тогда существует протокол интерактивного доказательства (P,V) с вычислительно нулевым разглашением для языка L_R , на котором P работает за полиномиальное время на любом общем входе $x \in L_R$, если ему на вход подаётся произвольное NP-доказательство для x относительно R.

20. О функциях с секретом

Определение 20.1: Система вероятностного шифрования с открытым ключом – это тройка алгоритмов (G, E, D):

- Генератор ключей п.в.м. Т $G:G(1^n)=\left(k,\hat{k}\right)$ — открытый и секретный ключи
- Алгоритм шифрования п.в.м.Т $E: c = E(1^n, k, m)$
- Алгоритм дешифрования п.д.м. Т
 $D: m = D(1^n; k, \hat{k}, E(1^n, k, m))$

Замечание 20.1 (Основные типы атак):

- 1. Атака с известным окрытым ключом **КОА**:
 - Атака с известными шифртекстами КСА
 - Атака с известными открытыми текстами КРА
 - Атака с выбором открытых текстов СРА
- 2. Атака с выбором шифртекстов ССА
 - Может быть адаптивной или неадаптивной

Замечание 20.2 (Основные типы угроз):

- 1. Полное раскрытие
- 2. Извлечение открытого текста
- 3. Извлечение частичной информации об открытом тексте
- 4. Различие двух шифртекстов

Определение 20.2: Г называется семейством функций с секретом, если для него существует тройка алгоритмов (Γ, C, R) , удовлетворяющих следующим условиям:

- 1. п.в.м.Т $\Gamma:\Gamma(1^n)=(d,s)$, где d описание функции из семейства, s секрет для этой функции.
- 2. п.д.м.Т C:(d,C) генератор для семейства $F:C(1^n;d,x)=f_{n,d}(x)$
- 3. п.д.м.Т *R*:

$$\forall (d,s) \in \operatorname{supp}(\Gamma(1^n)) : \forall x \in \mathbb{B}^{l(n)} : R\big(1^n,d,s,f_{n,d}(x)\big) = x' \in f_{n,d}^{-1}\big(f_{n,d}(x)\big)$$

1. Для любой п.в.м. Т
 A задача обращения $f_{n,d}(x)$ вычислительно трудна.

 Π ример (Семейство функций Рабина): \mathbb{P}_n – множество простых чисел pдлины n в двоичной записи, таких, что $p \equiv 3 \mod 4$.

 $N=pq; \quad p\neq q; \quad p,q\in\mathbb{P}_n.$ Где N называется числом Блюма. Тогда

- $\Gamma: \Gamma(1^n) = (N, (p, q))$ $C: f_{n,N}(x) = x^2 \bmod N$ $R: R(1^n, N, (p, q), z) = \begin{cases} \pm z^{\frac{p+1}{4}} \bmod p \\ \pm z^{\frac{q+1}{4}} \bmod q \end{cases}$ при условии, что $z = x^2 \bmod N$.

Теорема 20.1: Если для любой п.в.м.Т A при $p,q\in\mathbb{P}_n$ задача факторизации их произведения вычислительно трудна:

$$\mu(\{A(1^n;pq)\in\{p,q\}\})=\operatorname{negl}(n)$$
 То $\left\{f_{n,N}\right\}$ – семейство функций с секретом.

Доказательство: Предположим, что ∃ п.в.м.Т A для которой:

$$\varepsilon(N) = \mu \big(\big\{ f_{n,N} \big(A \big(1^n; N, f_{n,N}(z) \big) \big) = f_{n,N}(z) \big\} \big)$$

её вероятность успеха инвертирования $f_{n,N}$.

Построим машину Тьюринга S^A с оракулом A для факторизации N. На входе N машина S выполняет следующие шаги:

- Выбирается $z \in \mathbb{Z}_N^*$ и вычисляет $f_{n,N}$
- Вычисляет $a=\left(N,f_{n,N}(z)\right)$. Если $a\neq 1$, то выдаёт $\left(\frac{N}{a},a\right)$ и останавливается
- Иначе обращается к оракулу и вычисляет $z' = A ig(N, f_{n,N}(z) ig)$
- Вычисляет b=(N,z+z') и выдаёт $\left(\frac{N}{b},b\right)$ и останавливается.

Почему это правильный алгоритм?

Если на втором шаге $a \neq 1$, то получаем разложение N = pq и радуемся. Иначе, рассмотрим случайную величину z, равномерно распределённую в \mathbb{Z}_N^* . Вероятность успеха инвертирования $f_{n,N}(z)$ по определению машины A равна $\varepsilon(N)$.

Из определения семейства функций знаем, что существует ровно четыре возможных допустимых значений для z'.

Без ограничения общности, можно считать, что z' принадлежит множеству из двух корней $\{z_1, N-z_1\}$.

Поскольку значение z распределено равномерно на множестве всех четырёх прообразов $f_{n,N}(z)$, то с вероятностью $\frac{1}{2}$ элемент z принадлежит другой паре $\{z_2,N-z_2\}$.

Тогда

$$(z+z')(z-z')=z^2-{(z')}^2=0,$$
 но при этом БОО $z+z'\neq 0 \, \mathrm{mod}\, N$ Тогда по свойствам поля – $\{p,q\}\ni (z+z',N)\neq 1.$

Следовательно, машина S^A находит разложение числа N на множители p,q с вероятностью не менее $\frac{\varepsilon(N)}{2}$, которая отделима от нуля каким-то полином на бесконечном подмножестве $\mathbb N$ – противоречие.