北京理工大学__2016_ - _2017_学年 第_二_学期

2016 级 电路分析基础 D 课程试卷 A 卷

开课学院: <u>信息</u>	与电子学院	=	•			
试卷用途:□期中	☑期末	□补考				
考试形式:□开卷	□半开卷	☑闭卷				
考试日期:	2017年 6月	21 日		所需时间:	120	_分钟
考试允许带:	文具、计算	ii ii	_入场			
班级:	学号:			_ 姓名:		

考生承诺:"我确认存次考试是完全通过自己的劳力完成的。"

考生签名: _____

题序	_	1 1	111	四	五.	六	七	八	总分
满分	14	12	14	10	10	14	14	12	
得分									

注意: 1. 试卷正面答题,背面草稿; 2. 试卷不允许拆开; 3. 分析计算题要写过程。

一、(本题共14分,包含2个小题)

- 1. (8分) 电路如图 1.1 所示。
- (1) 求电路中的电流I;
- (2) 求图中受控源的功率;
- (3) 判断受控源是提供功率还是吸收功率。

2. (6分)将图 1.2 (a) 电路等效为图 (b) 电路,求电压 U_{OC} 和电阻 R_0 。

二、(12 分) 电路如图 2 所示,图中 $U_S=12V$, $R_1=3K\Omega$, $R_2=6K\Omega$, $R_3=2K\Omega$, $C=5\mu F$ 。开关 S 闭合前电路已处于稳态。在 t=0 时将开关 S 闭合,用三要素法求换路 后支路电流 $i_1(t)$ 和 $i_2(t)$,并画出它们的变化曲线。

三、(本题共14分,包含2个小题)

- 1. (8分)如图 3.1 所示, N 为含源线性电阻网络,已知:
- (1) $\stackrel{\text{def}}{=} u_{s_1} = 0V$, $u_{s_2} = 0V$ \bowtie , u = 1V; (2) $\stackrel{\text{def}}{=} u_{s_1} = 1V$, $u_{s_2} = 0V$ \bowtie , u = 2V;
- (3) $\stackrel{\underline{u}}{=} u_{S1} = 0V$, $u_{S2} = 1V$ $\stackrel{\underline{v}}{=}$, u = -1V;

试写出u与 u_{s1} , u_{s2} 之间关系的表达式。

图 3.1

2. (6分) 电容元件两端电压波形如图 3.2 所示,求 $0 \sim 1ms$ 及t = 1.5ms 时电容的充电电流和t = 2ms 时电容的储能。

图 3.2

四、(10 分) 电路如图 4 所示,t=0 时开关 S 闭合。设 $u_{c}(0_{-})=0$, $i(0_{-})=0$, $R=2K\Omega$, L=1H, $C=1\mu F$, $U_{S}=100V$ 。 试求 t>0 时电路中的电流 i(t) 和电压 $u_{c}(t)$ 。

五、(10分) 正弦稳态电路如图 5 所示, $us(t) = \cos t \, V$, $is(t) = \cos t \, A$ 。

- (1) Z_L =? 时获得最大功率? (Z_L 实部、虚部均可变), 并求 P_{Lmax} ;
- (2) 若 $Z_L = R_L$ (纯电阻) 时,应如何实现功率匹配?并求此时的 P'_{Lmax} 。

六、(本题共14分,包含2个小题)

1. (8分)正弦稳态电路如图 6.1 所示,已知 $U_1=1V$, $R=20\Omega$,L=400mH, $C=0.1\mu F$ 试求该电路的谐振频率 f_0 , 品质因数 Q 及谐振时的 U_L 和 U_C 。

图 6.2

七、(本题共14分,包含2个小题)

1. $(8\, \mathcal{G})$ 日光灯等效电路如图 7. 1 所示,日光灯管可等效为电阻元件 R ,镇流器等效为电感 L 。已知电源电压 U=220V ,频率 $f=50H_Z$,测得日光灯灯管两端的电压为 $U_R=100V$,功率为 P=40W 。求:

- (1) 日光灯的电流和功率因数。
- (2) 若要将功率因数提高到 0.9, 需要并联的电容器的容量是多少?
- (3) 并联电容前后电源提供的电流各是多少?

2. (6 分) 图 7.2 所示电路中,已知 $R_1 = 5\Omega$, $R_2 = 30\Omega$, $\omega L = 10\Omega$, $\frac{1}{\omega C} = 40\Omega$, $u(t) = [70 + 50\sqrt{2}\cos\omega t + 5\sqrt{2}\cos(2\omega t + 15^{\circ})]$ V。试求电流瞬时值i(t)和其有效值I。

八、(本题共12分,包含2个小题)

1. (7分) 电路如图 8.1 所示,已知 $u(t) = U_{1m} \cos(100t + \varphi_1) + U_{3m} \cos(300t + \varphi_3)V$,

 $C_1=0.25\mu F$,输出信号为 $u_o(t)$ 。欲使基波($\omega=100rad/s$)信号全部输出,而三次谐波($\omega=300rad/s$)信号完全被滤掉,试求此时L和C 的值。

- 2. (5 分)正弦稳态电路如图 8.2 所示,L=1H, $C=100\mu F$, $i_s(t)=\sqrt{2}\cos\omega t$ A
- (1) 求 ω 为何值时,电压u(t)与电阻 $R(R \neq 0)$ 无关;
- (2) 求此时的电压u(t)。

图 8.2