I CLAIM:

1	1. An electronic circuit, comprising:		
2	circuit elements arranged in an array of rows and columns, said circuit		
3	elements being alterable in response to data stored therein and configured to shift data		
4	therebetween; and		
5	a strobe line electrically coupled to ones of said circuit elements constituting a		
6	set to provide thereto a strobe signal to cause said ones of said circuit elements in said set to		
7	shift data to non-adjacent ones of said circuit elements outside said set in an interleaving		
8	pattern, said set including row-adjacent and column-adjacent ones of said circuit elements.		
1	2. The electronic circuit of Claim 1, wherein said strobe line is electrically		
2	coupled to ones of said circuit elements located in at least a portion of at least two adjacent		
3	rows of the array.		
1	3. The electronic circuit of Claim 2, wherein:		
2	said strobe line is electrically coupled to ones of said circuit elements located		
3	in a first pair of adjacent rows of the array to provide a first strobe signal to said ones of said		
4	circuit elements located in the first pair of adjacent rows; and		
5	said electronic circuit additionally comprises an additional strobe line		
6	electrically coupled to ones of said circuit elements located in a second pair of adjacent rows		
7	of the array to provide a second strobe signal to said ones of said circuit elements located in		
8	the second pair of adjacent rows.		

1 4. The electronic circuit of Claim 3, wherein said first strobe signal is operable to 2 shift data from said ones of said circuit elements in the first pair of adjacent rows to said ones 3 of said circuit elements in the second pair of adjacent rows. 1 5. The electronic circuit of Claim 1, wherein said strobe line is electrically 2 coupled to ones of said light modulation elements located in at least a portion of at least two 3 adjacent columns of the array. 1 6. The electronic circuit of Claim 1, wherein said strobe line is electrically 2 coupled to at least two groups of orthogonally-adjacent ones of said circuit elements, said at 3 least two groups being positioned diagonally in the array with respect to one another. 1 7. The electronic circuit of Claim 6, wherein said orthogonally-adjacent ones of 2 said circuit elements are in at least two adjacent rows. 1 8. The electronic circuit of Claim 6, wherein said orthogonally-adjacent ones of 2 said circuit elements are in at least two adjacent columns. 1 9. The electronic circuit of Claim 1, further comprising: a buffer connected to at 2 least one end of the array to load the data into ones of said circuit elements. 1 10. The electronic circuit of Claim 9, wherein said buffer is configured to load 2 data into ones of said circuit elements in at least a portion of at least two of the rows of the 3 аттау.

1 11. The electronic circuit of Claim 9, wherein said buffer is configured to load 2 data into ones of said circuit elements in at least a portion of at least two of the columns of 3 the array. 1 12. The electronic circuit of Claim 9, wherein said buffer comprises buffer 2 elements, each of said buffer elements loading data into a respective portion of the array, said 3 strobe line being within a second portion of the array and being connected to clock one of said buffer elements associated with a first portion of the array to load data into the first 4 5 portion of the array. 1 13. The electronic circuit of Claim 1, wherein said circuit elements are light 2 modulation elements, said light modulation elements including: 3 memory elements configured to store the data and shift the data therebetween: 4 and 5 pixel controllers configured to alter the state of respective ones of said light 6 modulation elements in response to the data stored in respective ones of the memory 7 elements. 1 14. The electronic circuit of Claim 13, wherein the memory elements include two 2 groups of the memory elements, the pixel controllers being controlled by the memory 3 elements in an interleaving pattern between the two groups of memory elements. 1 15. The spatial light modulator of Claim 13, wherein each of the memory elements further includes an output node electrically coupled to the respective pixel controller 2 3 and to an input node of a non-adjacent one of the memory elements.

1	16.	The spatial light modulator of Claim 13, wherein said light modulation	
2	elements comprise liquid crystal material		
1	17.	The spatial light modulator of Claim 16, wherein:	
2		the pixel controllers include pixel electrodes configured to receive the data	
	atomod in the		
3	stored in the	respective memory elements, and	
4		said light modulation elements collectively comprise a common electrode	
5	configured to	receive a common electrode signal for said light modulation elements.	
1	18.	The spatial light modulator of Claim 13, wherein:	
2		said light modulation elements additionally include micromirrors, and	
3		the pixel controllers comprise electromechanical devices configured to control	
4	the state of sa	aid respective ones of said micromirrors in response to the data stored in	
5	respective on	es of said memory elements.	
1	19.	The spatial light modulator of Claim 1, wherein said electronic circuit	
2	additionally comprises:		
3		additional strobe lines; and	
4		a shift register electrically connected to said strobe lines to apply the strobe	
5	signals sequentially thereto.		
1	20.	The spatial light modulator of Claim 19, wherein said shift register	
2	implements a	ripple clock.	

1	21.	A method for performing photolithography, said method comprising:
2		loading data representing an image into light modulation elements;
3		altering ones of the light modulation elements in response to the data loaded
4	thereinto to tr	ansfer an instance of the image onto a substrate;
5		shifting the data between non-adjacent ones of the light modulation elements
6	in an interleav	ring pattern;
7		altering ones of the light modulation elements in response to the data shifted
8	thereinto to tr	ansfer another instance of the image onto the substrate.
1	22.	The method of Claim 21, wherein each said altering further comprises:
2		applying a voltage in response to the data to the change optical characteristics
3	of the light modulation elements.	
1	23.	The method of Claim 21, wherein said shifting further comprises:
2		applying strobe signals to strobe lines electrically coupled to respective ones
3	of said light m	andulation elements to cause the data to be shifted between the non-adjacent
4		ht modulation elements.
	or or or or or	are modulation of officials.
1	24.	The method of Claim 23, wherein said applying further comprises:
2		utilizing a ripple clock to control the timing of said applying.
1	25	
1	25.	The method of Claim 23, further comprising:
2		providing the light modulation elements arranged in an array of rows and
3	columns.	

I	20.	The method of Claim 25, wherein said shifting further comprises:
2		applying the strobe signals to respective sets of the light modulation elements,
3	at least one of	the sets comprising ones of the light modulation elements in at least a portion
4	of at least two	adjacent rows; and
5		shifting the data between the light modulation elements in non-adjacent rows.
1	27.	The method of Claim 25, wherein said shifting further comprises:
2		applying the strobe signals to respective sets of the light modulation elements,
3	at least one of	the sets comprising ones of the light modulation elements in at least a portion
4	of at least two	adjacent columns; and
5		shifting the data between the light modulation elements in non-adjacent
6	columns.	
1	28.	The method of Claim 25, wherein said shifting further comprises:
2		applying the strobe signals to respective sets of the light modulation elements,
3	at least one of	the sets comprising ones of the light modulation elements in at least two
4	groups of ortho	ogonally-adjacent ones of the light modulation elements, the at least two
5	groups being p	ositioned diagonally within the array with respect to one another.
1	29.	The method of Claim 21, wherein:
2		the method additionally comprises providing the light modulation elements
3	arranged in an	array of rows and columns; and
4		loading the data into the light modulation elements at one end of the array.

1	30.	The method of Claim 29, wherein said loading further comprises:
2		loading the data into ones of the light modulation elements in at least a portion
3	of at least two rows of the array.	
1	31.	The method of Claim 29, wherein said loading further comprises:
2		loading the data into ones of the light modulation elements in at least a portion
3	of at least two	columns of the array.
1	32.	The method of Claim 29, wherein said loading comprises loading data into a
2	first section of	f the array in response to a strobe signal derived from the strobe signal used to
3	shift data in a	second section of the array.