1 Известные сведения об алгоритмах SSA и MSSA

В этом разделе приведены описания алгоритмов SSA и MSSA, а также некоторые их свойства и важные определения.

1.1 SSA

Все определения и утверждения из этого раздела можно найти в книге [1]. Пусть дан временной ряд X длины N

$$X = (x_1, x_2, \dots, x_N).$$

Определение 1.1 (Оператор вложения). Оператором вложения \mathcal{H}_L с длиной окна L будем называть отображение, переводящее временной ряд $\mathsf{X} = (x_1, x_2, \dots, x_N), \, N \geqslant L$, в ганкелеву матрицу $\mathbf{X} \in \mathbb{R}^{L \times K}, \, K = N - L + 1$, такую, что $\mathbf{X}_{lk} = x_{l+k-1}$. Результирующая матрица имеет вид

$$\mathcal{H}_L(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_K \\ x_2 & x_3 & \dots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \dots & x_N \end{pmatrix}.$$

Определение 1.2 (Траекторная матрица). Траекторной матрицей ряда X с длиной окна L < N называют матрицу X, полученную применением оператора вложения \mathcal{H}_L , к ряду X.

Пусть временной ряд X представим в виде суммы временных рядов X_k и шума E:

$$\mathsf{X} = \sum_{k=1}^m \mathsf{X}_k + \mathsf{E}.$$

В алгоритме 1 описан метод SSA для разделения компонент сигнила, то есть нахождения рядов X_k . В алгоритме 2 описан метод SSA для выделения сигнала, то есть нахождения $\sum_{k=1}^{m} X_k$. Первые два шага в алгоритме 2 совпадают с соответствующими шагами алгоритма 1, поэтому описание алгоритма начинается с шага 3.

Определение 1.3 (SSA-ранг временного ряда). Число d называется SSA-рангом временного ряда X длины N, если $d \leq (N+1)/2$ и для любой допустимой длины окна L, то есть такой, что $d \leq \min(L, N-L+1)$, ранг траекторной матрицы **X** этого ряда, построенной по длине окна L, равен d.

 $\it Замечание.\$ В качестве параметра $\it R$ в алгоритмах 1 и 2 рекомендуется выбирать $\it SSA$ -ранг сигнала.

Пример 1.1. Ниже приведены примеры некоторых рядов, имеющих конечные SSA-ранги.

- Ранг полиномиального ряда $x_n = Q_d(n)$, где Q_d многочлен степени d, равен d+1.
- Ранг экспоненциального ряда $x_n = Ce^{\alpha n}$, где $\alpha \in \mathbb{C}$ и $C \neq 0$, равен 1.
- Ранг суммы экспоненциальных рядов

$$x_n = \sum_{j=1}^{M} C_j e^{\alpha_j n},$$

где $\alpha_j \in \mathbb{C}$ и $C_j \neq 0$ при всех j, равен количеству уникальных значений α_j .

• Ранг экспоненциально-модулированного гармонического ряда

$$x_n = Ce^{\alpha n}\cos(2\pi n\omega + \psi),$$

где $C \neq 0, \ \alpha \in \mathbb{R}$ и $\omega \in [0,1/2]$, равен $r(\omega)$, где

$$r(\omega) = \begin{cases} 1, & \omega \in \{0, 1/2\}, \\ 2, & \omega \in (0, 1/2). \end{cases}$$
 (1)

Алгоритм 1 SSA для разделения компонент сигнала.

Входные данные: X, L: 1 < L < N, где N — длина X, $m, R: m \leqslant R \leqslant \min(L, N - L + 1), \mathfrak{S}_1, \dots, \mathfrak{S}_m$:

$$\{1, 2, \ldots, R\} = \bigcup_{k=1}^{m} \mathfrak{S}_{k}, \qquad \mathfrak{S}_{k} \cap \mathfrak{S}_{l} = \emptyset, \, k \neq l.$$

Результат: $\widetilde{\mathsf{X}}_1,\,\widetilde{\mathsf{X}}_2,\,\ldots,\,\widetilde{\mathsf{X}}_m$ — оценки рядов $\mathsf{X}_1,\,\mathsf{X}_2,\,\ldots,\,\mathsf{X}_m$.

- 1: Вложение: построение траекторной матрицы ${\bf X}$ по длине окна L.
- 2: Разложение: проведение SVD траекторной матрицы X, получение её представления в виде

$$\mathbf{X} = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}, \quad R \leqslant d \leqslant \min(L, N - L + 1).$$

3: Группировка: построение матриц

$$\mathbf{X}_k = \sum_{i \in \mathfrak{S}_k} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

4: Восстановление: вычисление рядов $\widetilde{\mathsf{X}}_k$ по матрицам \mathbf{X}_k посредством их усреднения вдоль побочных диагоналей $i+j=\mathrm{const}$:

$$\begin{split} \tilde{x}_n^{(k)} &= \frac{1}{\#\mathfrak{M}_n} \sum_{(i,j) \in \mathfrak{M}_n} \left(\mathbf{X}_k \right)_{ij}, \qquad n \in \overline{1:N}, \\ \mathfrak{M}_n &= \left\{ (i,j) \;\middle|\; 1 \leqslant i \leqslant L, \; 1 \leqslant j \leqslant N-L+1, \; i+j-1 = n \right\}. \end{split}$$

Алгоритм 2 SSA для выделения сигнала.

Входные данные: X, L: 1 < L < N, где N-длина $X, R: 1 \leqslant R \leqslant \min(L, N-L+1)$.

Результат: $\widetilde{\mathsf{X}}$ — оценка сигнала $\sum_{k=1}^{m} \mathsf{X}_k$.

3: Группировка: построение матрицы

$$\widetilde{\mathbf{X}} = \sum_{i=1}^{R} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

- 4: Восстановление ряда $\widetilde{\mathbf{X}}$ по матрице $\widetilde{\mathbf{X}}$ посредством её усреднения вдоль побочных диагоналей i+j= const.
 - Ранг суммы экспоненциально-модулированных гармоник

$$x_n = \sum_{i=1}^{M} Ce^{\alpha_j n} \cos(2\pi n\omega_j + \psi_j)$$

равен

$$\sum_{(\omega,\alpha)\in\Omega}r(\omega),$$

где Ω — множество уникальных пар (ω_i, α_i) , представленных в данном временном ряде.

Определение 1.4 (Слабая SSA-разделимость). Временные ряды $\hat{X} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N)$ и $\tilde{X} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_N)$ называют слабо L-разделимыми в терминах SSA, если выполнены следующие условия:

2

1.
$$\sum_{k=0}^{L-1} \hat{x}_{i+k} \tilde{x}_{j+k} = 0, \quad \forall i, j \in \overline{1 : (N-L+1)},$$

2.
$$\sum_{k=0}^{N-L} \hat{x}_{i+k} \tilde{x}_{j+k} = 0, \quad \forall i, j \in \overline{1:L}.$$

Утверждение 1.1. Пусть $X = \widehat{X} + \widetilde{X}$, а X, \widehat{X} и \widetilde{X} — траекторные матрицы с длиной окна L рядов X, \widehat{X} и \widetilde{X} соответственно. Тогда сумма SVD матриц \widehat{X} и \widetilde{X} является SVD матрицы X тогда и только тогда, когда ряды \widehat{X} и \widetilde{X} слабо L-разделимы в терминах SSA.

Утверждение 1.1 позволяет выделить множество временных рядов, которые возможно разделить алгоритмом 1, а именно: слабо разделимые с некоторой длиной окна.

1.2 MSSA

Все определения и утверждения из этого раздела можно найти в работах [2, 3, 4]. Пусть дан P-мерный временной ряд X длины N

$$X = (X_1 : X_2 : \dots : X_P),$$

 $X_p = \left(x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)}\right)^{T}.$

Определение 1.5 (Траекторная матрица многомерного временного ряда). Пусть $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_P$ — траекторные матрицы рядов $\mathsf{X}_1, \mathsf{X}_2, \ldots, \mathsf{X}_P$ соответственно, построенные по длине окна L. Траекторной матрицей многомерного временного ряда X называется матрица $\mathsf{X} \in \mathbb{R}^{L \times KP},$ K = N - L + 1, построенная соединением матриц \mathbf{X}_p по столбцам, то есть

$$\mathbf{X} = [\mathbf{X}_1 : \mathbf{X}_2 : \dots : \mathbf{X}_P].$$

Методы MSSA для разделения компонент и выделения сигнала совпадают с алгоритмами 1 и 2 соответственно, с точностью до изменения шагов вложения и восстановления в соответствии с определением траекторной матрицы многомерного ряда (процедура восстановления временного ряда по матрице должна быть обратной к шагу вложения).

Определение 1.6 (MSSA-ранг временного ряда). Число d называется MSSA-рангом P-мерного временного ряда X длины N, если $d \leq P(N+1)/(P+1)$, и для любой допустимой длины окна L, то есть такой, что $d \leq \min(L, P(N-L+1))$, ранг траекторной матрицы X этого ряда, построенной по длине окна L, равен d.

Замечание. Как и в SSA, в алгоритме MSSA рекомендуется в качестве параметра количества компонент, относимых к сигналу, выбирать ранг сигнала.

Пример 1.2. Рассмотрим P-мерный временной ряд X длины N с элементами вида

$$x_n^{(p)} = \sum_{i=1}^{R(p)} a_i^{(p)} e^{-\alpha_i^{(p)} n} \cos\left(2\pi\omega_i^{(p)} n + \varphi_i^{(p)}\right). \tag{2}$$

MSSA-ранг такого ряда равен

$$\sum_{(\omega,\alpha)\in\Omega} r(\omega),\tag{3}$$

где функция $r(\omega)$ определена в уравнении (1), а Ω —множество уникальных пар $\left(\omega_i^{(p)},\alpha_i^{(p)}\right)$, представленных в данном временном ряде.

Замечание. В дальнейшем в работе будут проведены сравнения методов SSA и MSSA с их тензорными модификациями HO-SSA и HOSVD-MSSA на многомерных сигналах вида (2). Это обосновано тем, что такая модель, а точнее её частный случай, в котором параметры R(p), $\omega_i^{(p)}$ и $\alpha_i^{(p)}$ не зависят от номера ряда p, применяется в спектроскопии ядерного магнитного резонанса [5]. Кроме того, в работе [6] также рассматривается этот частный случай модели.

Определение 1.7 (Слабая MSSA-разделимость). P-мерные временные ряды \widehat{X} и \widetilde{X} длины N называются слабо L-разделимыми, если выполнены следующие условия:

1.
$$\sum_{k=0}^{L-1} \hat{x}_{i+k}^{(p)} \tilde{x}_{j+k}^{(p')} = 0, \quad \forall i, j \in \overline{1:(N-L+1)}, p, p' \in \overline{1:P},$$

2.
$$\sum_{p=1}^{P} \sum_{i=0}^{K-1} \hat{x}_{k+i}^{(p)} \tilde{x}_{m+i}^{(p)} = 0, \quad \forall k, m \in \overline{1:L}.$$

Утверждение 1.2. Пусть $X = \widehat{X} + \widetilde{X}$, а X, \widehat{X} и \widetilde{X} — траекторные матрицы с длиной окна L рядов X, \widehat{X} и \widetilde{X} соответственно. Тогда сумма SVD матриц \widehat{X} и \widetilde{X} является SVD матрицы X тогда и только тогда, когда ряды \widehat{X} и \widetilde{X} слабо L-разделимы в терминах MSSA.

Как и в одномерном случае, это утверждение позволяет определять множество рядов, которые возможно разделить с помощью метода MSSA.

1.3 ESPRIT

Все определения и утверждения из этого раздела можно найти в статьях [7, 6].

Пусть элементы многомерного временного ряда X имеют вид

$$x_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{\alpha_j n} e^{i\left(2\pi\omega_j n + \varphi_j^{(p)}\right)},\tag{4}$$

где і обозначает мнимую единицу, а параметрами модели являются амплитуды $a_j^{(p)} \in \mathbb{R} \setminus \{0\}$, фазы $\varphi_i^{(p)} \in [0, 2\pi)$, частоты $\omega_i \in [0, 1/2]$ и степени затухания $\alpha_i \in \mathbb{R}$.

Алгоритм ESPRIT (Estimation of signal parameters via rotational invariance technique), как и SSA, относится к классу методов, основанных на подпространстве сигнала. В отличие от SSA, ESPRIT применяется для решения задачи оценки параметров степеней затухания α_j и частот ω_j многомерного комплекснозначного сигнала в модели (4).

В алгоритме 3 описан метод ESPRIT для оценки параметров сигнала (4). Первые два шага в алгоритме 3 совпадают с соответствующими шагами алгоритма 1, поэтому описание алгоритма начинается с шага 3.

Алгоритм 3 ESPRIT для оценки параметров многомерного комплекснозначного сигнала.

Входные данные: X, L: 1 < L < N, где N — длина X, $R: 1 \leqslant R \leqslant \min(L, N-L+1)$. Результат: $(\widehat{\alpha}_1, \widehat{\omega}_1), (\widehat{\alpha}_2, \widehat{\omega}_2), \dots, (\widehat{\alpha}_R, \widehat{\omega}_R)$ — оценки параметров сигнала (4).

3: Решение уравнения

$$\mathbf{U}^{\uparrow} = \mathbf{U}_{\perp} \mathbf{Z}$$

относительно матрицы \mathbf{Z} , где $\mathbf{U} = [U_1:U_2:\ldots:U_d]$, запись \mathbf{U}^{\uparrow} обозначает матрицу \mathbf{U} без первой строки, а запись \mathbf{U}_{\downarrow} —без последней.

4: Нахождение первых R собственных чисел λ_j матрицы \mathbf{Z} . Полученные собственные числа λ_j считаются оценками экспонент $e^{\alpha_j + 2\pi i \omega_j}$, через которые можно выразить оценки искомых параметров:

$$\widehat{\alpha}_j = |\lambda_j|, \qquad \widehat{\omega}_j = \frac{\operatorname{Arg}(\lambda_j)}{2\pi}.$$

Список литературы

- [1] Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of Time Series Structure. Chapman and Hall/CRC, 2001.
- [2] Степанов Д.В., Голяндина Н.Э. Варианты метода «Гусеница»—SSA для прогноза многомерных временных рядов // Труды IV Международной конференции «Идентификация систем и задачи управления». 2005. С. 1831—1848.
- [3] Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package / Golyandina N., Korobeynikov A., Shlemov A., and Usevich K. // Journal of Statistical Software. 2015. Vol. 67, no. 2.
- [4] Golyandina N., Zhigljavsky A. Singular Spectrum Analysis for Time Series. 2 ed. Springer Berlin Heidelberg, 2020.
- [5] Algorithm for Time-Domain NMR Data Fitting Based on Total Least Squares / Van Huffel S., Chen H., Decanniere C., and Van Hecke P. // Journal of Magnetic Resonance, Series A. — 1994. — Vol. 110, no. 2. — P. 228–237.

- [6] Papy J.M., De Lathauwer L., Van Huffel S. Exponential data fitting using multilinear algebra: the single-channel and multi-channel case // Numerical Linear Algebra with Applications. 2005. Vol. 12, no. 8. P. 809–826.
- [7] Roy R., Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989. Vol. 37, no. 7. P. 984–995.