Matrice dei dati centrati e standardizzati Analisi Esplorativa

Aldo Solari

- 1 Vettore delle medie \bar{x}
- $oldsymbol{2}$ Matrice dei dati centrati $ilde{X}$
- $oldsymbol{3}$ Matrice di centramento H
- **4** Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- **6** Matrice di correlazione R
- Appendice: Matrici

Esempio

$$X_{10\times 2} = \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 3 & 10 \\ 4 & 6 \\ 4 & 8 \\ 5 & 10 \\ 6 & 12 \\ 6 & 13 \\ 7 & 11 \\ 8 & 12 \end{bmatrix}$$

Matrice originale X

Matrice centrata \tilde{X} (traslazione)

Matr. stand. Z (compressione/dilatazione)

Dati centrati e dati standardizzati

Abbiamo appena visto che possiamo trasformare (linearmente) la matrice dei dati originali X = x per ottenere

• La matrice dei dati centrati

$$\tilde{X}_{n \times p} = \left(I_{n \times n} - \frac{1}{n} \frac{1}{n \times 11 \times n} \right) X_{n \times p}$$

• La matrice dei dati standardizzati

$$Z_{n \times p} = \tilde{X}_{n \times p} \operatorname{diag}\left(\frac{1}{\sqrt{s_{11}}}, \dots, \frac{1}{\sqrt{s_{pp}}}\right)$$

Come sono

- il vettore delle medie
- la matrice di varianza/covarianza
- la matrice di correlazione

dei dati centrati e dei dati standardizzati?

Dati centrati e dati standardizzati

Matrice dei dati	Vettore delle medie	Matrice di varianze/covarianze	Matrice di correlazione
$\underset{n \times p}{X}$	$ar{ar{x}}_{p imes 1}$	$\mathop{S}\limits_{p imes p}$	$\mathop{R}_{p\times p}$
$ ilde{X}_{n imes p}$	$_{p imes1}^{0}$	$S_{p\times p}^{\tilde{X}} = S_{p\times p}$	$R_{p \times p}^{\tilde{X}} = R_{p \times p}$
$\underset{n \times p}{Z}$	$_{p imes1}^{0}$	$S^Z_{p\times p} = \underset{p\times p}{R}$	$R^{Z}_{p \times p} = R_{p \times p}$

\bar{x} , S e R in forma matriciale

$$\bullet \ \bar{x}_{p \times 1} = \frac{1}{n} \frac{X'}{p \times nn \times 1}$$

$$\bullet \ \ \mathop{S}_{p\times p} = \frac{1}{n} \mathop{\tilde{X}'}_{p\times nn\times p} \mathop{\tilde{X}}_{p}$$

$$\bullet \ \ \underset{p \times p}{R} = \frac{1}{n} \underset{p \times nn \times p}{Z'} Z$$

Proprietà di H, S e R

- La matrice di centramento $H_{n\times n}=I_{n\times n}-\frac{1}{n}1_{n\times 11\times n}$ è simmetrica e idempotente
- La matrice di varianze/covarianze $\mathop{S}_{p\times p}$ e la matrice di correlazione $\mathop{R}_{p\times p}$ sono semidefinite positive

La dimostrazione di tutti questi risultati alla lavagna.

Outline

- 1 Vettore delle medie \bar{x}
- ${f 2}$ Matrice dei dati centrati \tilde{X}
- \bigcirc Matrice di centramento H
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- f 6 Matrice di correlazione R
- 7 Appendice: Matrici

Vettore delle medie in forma matriciale

$$\bar{x}_{p\times 1} = \frac{1}{n} X'_{p\times nn\times 1}$$

$$\bar{x}_{p\times 1} = \begin{bmatrix} \bar{x}_{1} \\ \dots \\ \bar{x}_{j} \\ \dots \\ \bar{x}_{p} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} \sum_{i=1}^{n} x_{i1} \\ \dots \\ \sum_{i=1}^{n} x_{ij} \\ \dots \\ \sum_{i=1}^{n} x_{ip} \end{bmatrix}$$

$$= \frac{1}{n} \begin{bmatrix} \frac{1'}{x_{1}} & x_{1} \\ \frac{1 \times n_{n \times 1}}{1 \times n_{n \times 1}} \\ \dots \\ \frac{1'}{1 \times n_{n \times 1}} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} (x_{1})' & 1 \\ \frac{1 \times n}{1 \times n} & 1 \\ \dots \\ (x_{j})' & 1 \\ \frac{1 \times n}{1 \times n} & 1 \end{bmatrix} = \frac{1}{n} \begin{bmatrix} (x_{1})' \\ \frac{1 \times n}{1 \times n} \\ \dots \\ (x_{j})' \\ \frac{1 \times n}{1 \times n} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{1 \times n} \\ \dots \\ (x_{p})' \\ \frac{1}{1 \times n} \end{bmatrix}$$

$$= \frac{1}{n} \begin{bmatrix} x_{11} & x_{21} & \dots & x_{i1} & \dots & x_{n1} \\ \dots & \dots & \dots & \dots \\ x_{1j} & x_{2j} & \dots & x_{ij} & \dots & x_{nj} \\ \dots & \dots & \dots & \dots \\ x_{1p} & x_{2p} & \dots & x_{ip} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{n \times 1} & \frac{1}{n \times n \times 1} & \frac{1}{n \times 1} & \frac{1}{$$

Outline

- 1 Vettore delle medie \bar{x}
- ${\bf 2}$ Matrice dei dati centrati \tilde{X}
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- f 6 Matrice di correlazione R
- 7 Appendice: Matrici

Matrice dei dati centrati

$$\tilde{X}_{n \times p} = \left(I_{n \times n} - \frac{1}{n} \frac{1}{n \times 11 \times n} \right) X_{n \times p} = H_{n \times nn \times p} X_{n \times p}$$

dove

- $H_{n \times n}$ è la matrice di centramento
- $I_{n \times n}$ è la matrice identità (vedi Appendice)

$$\begin{split} \tilde{X}_{n \times p} &= \begin{bmatrix} x_{11} - \bar{x}_1 & x_{12} - \bar{x}_2 & \cdots & x_{1j} - \bar{x}_j & \cdots & x_{1p} - \bar{x}_p \\ x_{21} - \bar{x}_1 & x_{22} - \bar{x}_2 & \cdots & x_{2j} - \bar{x}_j & \cdots & x_{2p} - \bar{x}_p \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} - \bar{x}_1 & x_{i2} - \bar{x}_2 & \cdots & x_{ij} - \bar{x}_j & \cdots & x_{ip} - \bar{x}_p \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} - \bar{x}_1 & x_{n2} - \bar{x}_2 & \cdots & x_{nj} - \bar{x}_j & \cdots & x_{np} - \bar{x}_p \end{bmatrix} \\ &= X_{n \times p} - \begin{bmatrix} \bar{x}_1 & \bar{x}_2 & \cdots & \bar{x}_p \\ \bar{x}_1 & \bar{x}_2 & \cdots & \bar{x}_p \\ \vdots & \vdots & \vdots & \vdots \\ \bar{x}_1 & \bar{x}_2 & \cdots & \bar{x}_p \end{bmatrix} \\ &= X_{n \times p} - 1 & \bar{x}' \\ &= X_{n \times p} - \frac{1}{n} & 1' & X \\ &= X_{n \times p} - \frac{1}{n} & 1' & X \\ &= I & X - \frac{1}{n} & 1 & 1' & X \\ &= I & X_{n \times n \times p} - \frac{1}{n} & 1 & 1' & X \\ &= H & X_{n \times n \times p} \end{bmatrix} \end{split}$$

Outline

- 1 Vettore delle medie \bar{x}
- ${\bf 2}$ Matrice dei dati centrati \tilde{X}
- ${\bf 3}$ Matrice di centramento H
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- f 6 Matrice di correlazione R
- 7 Appendice: Matrici

Matrice di centramento

$$H_{n \times n} = I_{n \times n} - \frac{1}{n} \frac{1}{n \times 11 \times n}$$

Matrice di centramento: proprietà

 $H_{n \times n}$ è una matrice simmetrica

$$H_{n \times n} = I_{n \times n} - \frac{1}{n} \frac{1}{n \times 11 \times n} = \begin{bmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} \end{bmatrix}$$

Una matrice quadrata A è simmetrica se A=A'; ovvero se $a_{ij}=a_{ji},\ i=1,\dots,n,$ $j=1,\dots,n;$ vedi Appendice

Matrice di centramento: proprietà

 $\underset{n \times n}{H}$ è una matrice idempotente

Dimostrazione:

Vedi lavagna

Centrare la matrice dei dati centrati

Non produce alcun effetto:

Dimostrazione:

$$\underset{n\times nn\times p}{H\tilde{X}}=\underset{n\times nn\times nn\times p}{H}X=\underset{n\times p}{\tilde{X}}$$

Outline

- 1 Vettore delle medie \bar{x}
- ${f 2}$ Matrice dei dati centrati \tilde{X}
- 3 Matrice di centramento H
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- f 6 Matrice di correlazione R
- 7 Appendice: Matrici

Matrice di varianze/covarianze

$$S_{p \times p} = \frac{1}{n} \tilde{X}' \tilde{X}_{p} = \frac{1}{n} X' H_{p \times nn \times nn \times p}$$

$$n \underset{p \times p}{S} = \begin{bmatrix} \tilde{x}'_1 \\ 1 \times n \\ \tilde{x}'_2 \\ 1 \times n \\ \vdots \\ \tilde{x}'_j \\ 1 \times n \\ \vdots \\ \tilde{x}'_p \\ 1 \times n \end{bmatrix} \begin{bmatrix} \tilde{x}_1 & \tilde{x}_2 & \cdots & \tilde{x}_j & \cdots & \tilde{x}_p \\ n \times 1 & n \times 1 & \cdots & n \times 1 \end{bmatrix}$$

$$= \tilde{X}' \tilde{X}_p$$

$$= \tilde{X}' \tilde{X}_p$$

$$= X' H' H X$$

$$n \times pn \times nn \times pn$$

$$= X' H X$$

$$n \times pn \times nn \times p$$

Matrice di varianze/covarianze: proprietà

 $\underset{p imes p}{S}$ è una matrice semidefinita positiva

Dimostrazione:

Vedi lavagna

Matrice di varianze/covarianze: proprietà

La matrice di varianze/covarianze calcolata per $\tilde{X}_{n \times p}$ risulta uguale alla varianze/covarianze calcolata per per $X_{n \times p}$.

Dimostrazione:

Vedi lavagna

Outline

- 1 Vettore delle medie \bar{x}
- ${f 2}$ Matrice dei dati centrati \tilde{X}
- 3 Matrice di centramento H
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- f 6 Matrice di correlazione R
- 7 Appendice: Matrici

Matrice dei dati standardizzati

$$Z_{n \times p} = \tilde{X}_{n \times p} D_{p \times p}^{-1/2}$$

dove
$$D_{p \times p}^{1/2} = \operatorname{diag}(\sqrt{s_{11}}, \dots, \sqrt{s_{pp}})$$
 con

$$\operatorname{diag}(\sqrt{s_{11}}, \dots, \sqrt{s_{pp}}) = \begin{bmatrix} \sqrt{s_{11}} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sqrt{s_{22}} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sqrt{s_{jj}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \ddots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots & \sqrt{s_{pp}} \end{bmatrix}$$

Per la definizione e proprietà di una matrice diagonale, vedi Appendice

La matrice

$$D_{p \times p}^{-1/2} = \operatorname{diag}\left(\frac{1}{\sqrt{s_{11}}}, \dots, \frac{1}{\sqrt{s_{pp}}}\right) = \begin{bmatrix} \frac{1}{\sqrt{s_{11}}} & \dots & 0 & \dots & 0\\ 0 & \dots & 0 & \dots & 0\\ \vdots & \dots & \vdots & \ddots & \dots\\ 0 & \dots & 0 & \dots & \frac{1}{\sqrt{s_{pp}}} \end{bmatrix}$$

è la matrice inversa di $D_{n \times n}^{1/2}$

Questo richiede che s_{11}, \ldots, s_{pp} siano tutti diversi da 0.

Moltiplicare $\tilde{X}_{n \times p}$ da destra per $D_{p \times p}^{-1/2}$ equivale a moltiplicare la j-sima colonna di $\tilde{X}_{n \times p}$ per $\frac{1}{\sqrt{s_{jj}}}$;

$$\begin{split} Z_{n\times p} &= \begin{bmatrix} \frac{x_{11} - \bar{x}_1}{\sqrt{s_{11}}} & \frac{x_{12} - \bar{x}_2}{\sqrt{s_{22}}} & \dots & \frac{x_{1j} - \bar{x}_j}{\sqrt{s_{jj}}} & \dots & \frac{x_{1p} - \bar{x}_p}{\sqrt{s_{pp}}} \\ \frac{x_{21} - \bar{x}_1}{\sqrt{s_{11}}} & \frac{x_{22} - \bar{x}_2}{\sqrt{s_{22}}} & \dots & \frac{x_{2j} - \bar{x}_j}{\sqrt{s_{jj}}} & \dots & \frac{x_{2p} - \bar{x}_p}{\sqrt{s_{pp}}} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{x_{n1} - \bar{x}_1}{\sqrt{s_{11}}} & \frac{x_{n2} - \bar{x}_2}{\sqrt{s_{22}}} & \dots & \frac{x_{nj} - \bar{x}_j}{\sqrt{s_{jj}}} & \dots & \frac{x_{np} - \bar{x}_p}{\sqrt{s_{pp}}} \end{bmatrix} \\ &= \begin{bmatrix} x_{11} - \bar{x}_1 & x_{12} - \bar{x}_2 & \dots & x_{1j} - \bar{x}_j & \dots & x_{1p} - \bar{x}_p \\ x_{21} - \bar{x}_1 & x_{22} - \bar{x}_2 & \dots & x_{2j} - \bar{x}_j & \dots & x_{2p} - \bar{x}_p \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} - \bar{x}_1 & x_{i2} - \bar{x}_2 & \dots & x_{ij} - \bar{x}_j & \dots & x_{ip} - \bar{x}_p \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{n1} - \bar{x}_1 & x_{n2} - \bar{x}_2 & \dots & x_{nj} - \bar{x}_j & \dots & x_{np} - \bar{x}_p \end{bmatrix} D^{-1/2} \\ &= \tilde{X}D^{-1/2} \end{split}$$

Outline

- 1 Vettore delle medie \bar{x}
- ${f 2}$ Matrice dei dati centrati \tilde{X}
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- **6** Matrice di correlazione R
- 7 Appendice: Matrici

Matrice di correlazione

$$\underset{p \times p}{R} = D_{p \times p}^{-1/2} \underset{p \times p}{S} D_{p \times p}^{-1/2}$$

- Moltiplicare $S \atop p imes p$ da sinistra per $D^{-1/2}_{p imes p}$ equivale a moltiplicare l'i-sima riga di $S \atop p imes p$ per $\frac{1}{\sqrt{s_{ii}}}$;
- \bullet Moltiplicare $\underset{p\times p}{S}$ da destra per $D_{p\times p}^{-1/2}$ equivale a moltiplicare la j-sima colonna di $\underset{p\times p}{S}$ per $\frac{1}{\sqrt{s_{jj}}}$;

Quindi

$$R_{p \times p} = D^{-1/2} S D^{-1/2} = \begin{bmatrix} \frac{s_{11}}{\sqrt{s_{11}}\sqrt{s_{11}}} & \frac{s_{12}}{\sqrt{s_{11}}\sqrt{s_{22}}} & \cdots & \frac{s_{1j}}{\sqrt{s_{11}}\sqrt{s_{jj}}} & \cdots & \frac{s_{1p}}{\sqrt{s_{11}}\sqrt{s_{pp}}} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{s_{i1}}{\sqrt{s_{ii}}\sqrt{s_{11}}} & \frac{s_{i2}}{\sqrt{s_{ii}}\sqrt{s_{22}}} & \cdots & \frac{s_{ij}}{\sqrt{s_{ii}}\sqrt{s_{jj}}} & \cdots & \frac{s_{ip}}{\sqrt{s_{ii}}\sqrt{s_{pp}}} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{s_{p1}}{\sqrt{s_{pp}}\sqrt{s_{11}}} & \frac{s_{p2}}{\sqrt{s_{pp}}\sqrt{s_{22}}} & \cdots & \frac{s_{pj}}{\sqrt{s_{pp}}\sqrt{s_{jj}}} & \cdots & \frac{s_{pp}}{\sqrt{s_{pp}}\sqrt{s_{pp}}} \end{bmatrix}$$

Matrice di correlazione: proprietà

$$S_{p \times p} = D_{p \times p}^{1/2} R D_{p \times p}^{1/2}$$

Dimostrazione:

Vedi lavagna

Matrice di correlazione: proprietà

La matrice di varianze/covarianze calcolata per ${\cal Z}$ risulta uguale alla matrice di correlazione calcolata per ${\cal X}$.

Vedi lavagna

Esempio

Matrice

$$X_{4\times2} = \begin{bmatrix} 42 & 4\\ 52 & 5\\ 48 & 4\\ 58 & 3 \end{bmatrix}$$

Vettore delle medie

$$\bar{x}_{2\times 1} = \frac{1}{4} \begin{bmatrix} 42 & 52 & 48 & 58 \\ 4 & 5 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 50 \\ 4 \end{bmatrix}$$

Matrice di centramento

Esempio

Matrice dei dati centrati:

$$\begin{split} \tilde{X}_{4 \times 2} &= HX \\ &= \begin{bmatrix} 1 - 1/4 & -1/4 & -1/4 & -1/4 \\ -1/4 & 1 - 1/4 & -1/4 & -1/4 \\ -1/4 & -1/4 & 1 - 1/4 & -1/4 \\ -1/4 & -1/4 & -1/4 & 1 - 1/4 \end{bmatrix} \begin{bmatrix} 42 & 4 \\ 52 & 5 \\ 48 & 4 \\ 58 & 3 \end{bmatrix} \\ &= \begin{bmatrix} -8 & 0 \\ 2 & 1 \\ -2 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrice di varianze/covarianze

$$\begin{split} S_{2\times2} &= \frac{1}{4}\tilde{X}'\tilde{X} \\ &= \frac{1}{4} \begin{bmatrix} -8 & 2 & -2 & 8 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -8 & 0 \\ 2 & 1 \\ -2 & 0 \\ 8 & 1 \end{bmatrix} = \begin{bmatrix} 34 & -1.5 \\ -1.5 & 0.5 \end{bmatrix} \end{split}$$

Esempio

Matrice di correlazione:

$$R_{2\times2} = D_{2\times2}^{-1/2} S D_{2\times22\times2}^{-1/2}$$

$$= \begin{bmatrix} 1/\sqrt{34} & 0 \\ 0 & 1/\sqrt{0.5} \end{bmatrix} \begin{bmatrix} 34 & -1.5 \\ -1.5 & 0.5 \end{bmatrix} \begin{bmatrix} 1/\sqrt{34} & 0 \\ 0 & 1/\sqrt{0.5} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1.5/(\sqrt{34}\sqrt{5}) \\ -1.5/(\sqrt{34}\sqrt{5}) & 1 \end{bmatrix}$$

Matrice dei dati standardizzati:

$$Z_{4\times2} = \begin{bmatrix} -8 & 0 \\ 2 & 1 \\ -2 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{34} & 0 \\ 0 & 1/\sqrt{0.5} \end{bmatrix} = \begin{bmatrix} -8/\sqrt{34} & 0 \\ 2/\sqrt{34} & 1/\sqrt{0.5} \\ -2/\sqrt{34} & 0 \\ 8/\sqrt{34} & -1/\sqrt{0.5} \end{bmatrix}$$

Outline

- 1 Vettore delle medie \bar{x}
- ${f 2}$ Matrice dei dati centrati \tilde{X}
- 3 Matrice di centramento H
- f 4 Matrice di varianze/covarianze S
- f 5 Matrice dei dati standardizzati Z
- f 6 Matrice di correlazione R
- 7 Appendice: Matrici

Matrice trasposta

Data una matrice $\underset{n\times p}{A}$

$$A = \underset{n \times p}{A} = \left[\begin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{np} \end{array} \right]$$

la matrice trasposta A' è $\underset{p \times n}{\overset{}{\triangleright}}$

$$A' = A' = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{i1} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{i2} & \cdots & a_{n2} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{1j} & a_{2j} & \cdots & a_{ij} & \cdots & a_{nj} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{1p} & a_{2p} & \cdots & a_{ip} & \cdots & a_{np} \end{bmatrix}$$

dove l'operatore trasposizione ' fa in modo che le righe vengono invertite con le colonne, ovvero la prima riga diventa la prima colonna, la seconda riga la seconda colonna etc.

Prodotto fra due matrici

Date due matrici $\underset{n\times p}{A}$ e $\underset{p\times q}{B}$, il loro prodotto è dato da

$$\underset{n \times pp \times q}{AB} = \underset{n \times q}{C}$$

dove l'elemento di posizione (i,j) della matrice C è definito come

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = a_{i1} b_{1j} + \ldots + a_{ip} b_{pj}$$

Si noti che il prodotto è possibile fra matrici di dimensioni opportune. Due matrici possono essere moltiplicate fra loro solo se il numero di colonne della prima è uguale al numero di righe della seconda.

Prodotto fra due matrici

Alcune proprietà

Date le matrici $A,\,B$ e C (di dimensione opportune per definire l'eventuale prodotto) e una costante c

- c(AB) = (cA)B
- A(BC) = (AB)C
- $\bullet \ A(B+C) = AB + AC$
- $\bullet \ (B+C)A = BA + CA$
- (AB)' = B'A'

Matrice quadrata e matrice simmetrica

Matrice quadrata

Una matrice è quadrata se il numero delle righe è uguale al numero delle colonne.

Matrice simmetrica

Una matrice quadrata B è detta simmetrica se B=B', ovvero se $b_{ij}=b_{ji}, i=1,\ldots,n, j=1,\ldots,n.$

Matrice identità

E' una matrice simmetrica con valore 1 sulla diagonale e 0 altrove:

$$I_{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \ddots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Data una matrice $\underset{n \times p}{A}$, vale

$$\underset{n \times nn \times p}{I} A = \underset{n \times p}{A}$$

e

$$\underset{n \times pp \times p}{A} I = \underset{n \times p}{A}$$

Matrice invertibile

Una matrice quadrata $\underset{n\times n}{A}$ è detta invertibile se esiste una matrice $\underset{n\times n}{B}$ tale che

$$AB_{n \times nn \times n} = BA_{n \times nn \times n} = I_{n \times n}$$

Se è questo il caso, allora la matrice $\underset{n \times n}{B}$ è univocamente determinata da $\underset{n \times n}{A}$ ed è chiamata l'inversa di $\underset{n \times n}{A}$, indicata con $\underset{n \times n}{A^{-1}}$

Matrice inversa

Sia $\underset{q\times q}{A}$ e $\underset{q\times q}{B}$ tali che le rispettive matrici inverse esistano;

$$\bullet \ (\underset{q \times q}{A^{-1}})' = (\underset{q \times q}{A'})^{-1}$$

$$\bullet \ (\underset{q \times qq \times q}{A} \underset{q}{B})^{-1} = \underset{q \times q}{B^{-1}} \underset{q \times q}{A^{-1}}$$

Matrice diagonale

E' una matrice simmetrica con valori d_1, \ldots, d_n sulla diagonale e 0 altrove:

$$\operatorname{diag}(d_1, \dots, d_n) = \begin{bmatrix} d_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_i & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \ddots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots & d_n \end{bmatrix}$$

Moltiplicare una matrice $\underset{n \times p}{A}$ da sinistra per $\operatorname{diag}(d_1,\dots,d_p)$ equivale, per ogni i, a moltiplicare l'i-sima riga di $\underset{n \times p}{A}$ per d_i ; moltiplicare una matrice $\underset{n \times p}{A}$ da destra per $\operatorname{diag}(d_1,\dots,d_n)$ equivale, per ogni j, a moltiplicare la j-sima colonna di $\underset{n \times p}{A}$ per d_j ;

Matrice diagonale invertibile

Una matrice diagonale $\operatorname{diag}(d_1,\ldots,d_n)$ è invertibile se e solo se i valori d_1,\ldots,d_n sono diversi da 0. In questo caso si ha:

$$(\operatorname{diag}(d_1,\ldots,d_n))^{-1} = \operatorname{diag}(1/d_1,\ldots,1/d_n)$$

Matrice idempotente

Una matrice quadrata $\underset{n\times n}{B}$ è detta idempotente se vale

$$\underset{n\times n}{B}\underset{n\times n}{B}=\underset{n\times n}{B}$$

.

Matrice (semi)definita positiva

Una matrice simmetrica $\underset{p \times p}{B}$ è detta semidefinita positiva se vale

$$\underset{1 \times pp \times pp \times 1}{a'} \underset{p \times 1}{B} \underset{p \times 1}{a} \ge 0 \quad \forall \underset{p \times 1}{a}$$

Una matrice simmetrica $\underset{p \times p}{B}$ è detta definita positiva se vale

$$a'Ba \atop 1 \times pp \times pp \times 1 > 0 \quad \forall a \atop p \times 1$$

