

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

20 YEARS 1998-2018

Model-Order Reduction for Power Grid Simulations with Renewables and Batteries

Manuel Baumann

July 2, 2018

Supported by:

csc Who are we?

Sara Grundel

- team leader Simulation of Energy Systems
- areas of expertise: modeling and simulation of large networks, optimization, model-order reduction

Manuel Baumann

- PostDoc at MPI since April 2018
- PhD from TU Delft in Numerical Linear Algebra
- past projects in: computational geophysics, optimal control, model-order reduction

https://konsens.github.io/

Power grid – new challenges

Recent developments:

- renewables
- E-car
- batteries
- prosumers

Gives rise to new mathematical challenges!

© R. Idema, D. Lahaye. Computational Methods in Power System Analysis

csc Classical mathematical model

The network is an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with generators \mathcal{V}_G and loads \mathcal{V}_L ($\mathcal{V} = \mathcal{V}_G \cup \mathcal{V}_L$), and batteries. Four variables at node $i \in \mathcal{V}$,

$$V_i = |V_i|e^{j\delta_i}$$
 (voltage) and $S_i = P_i + jQ_i$ (power).

csc Classical mathematical model

The network is an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with generators \mathcal{V}_G and loads \mathcal{V}_L ($\mathcal{V} = \mathcal{V}_G \cup \mathcal{V}_L$), and batteries. Four variables at node $i \in \mathcal{V}$,

$$V_i = |V_i|e^{j\delta_i}$$
 (voltage) and $S_i = P_i + jQ_i$ (power).

Classical network (conventional generators):

If $i \in \mathcal{V}_G$: P_i and $|V_i|$ are known.

If $i \in \mathcal{V}_L$: $-P_i$ and $-Q_i$ are known.

Classical mathematical model

The network is an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with generators \mathcal{V}_G and loads \mathcal{V}_L ($\mathcal{V} = \mathcal{V}_G \cup \mathcal{V}_L$), and batteries. Four variables at node $i \in \mathcal{V}$,

$$V_i = |V_i|e^{j\delta_i}$$
 (voltage) and $S_i = P_i + jQ_i$ (power).

Classical network (conventional generators):

If $i \in \mathcal{V}_G$: P_i and $|V_i|$ are known.

If $i \in \mathcal{V}_L$: $-P_i$ and $-Q_i$ are known.

Closed system via $2N_L + N_G$ non-linear power flow equations,

$$\begin{pmatrix}
P_i - |V_i| \sum_{k=1}^N |V_k| (G_{ik} \cos(\delta_{ik}) + B_{ik} \sin(\delta_{ik})) \\
Q_i - |V_i| \sum_{k=1}^N |V_k| (G_{ik} \sin(\delta_{ik}) - B_{ik} \cos(\delta_{ik}))
\end{pmatrix} \stackrel{!}{=} 0 \quad \forall i \in \mathcal{V}.$$

Renewables & batteries

Mathematical model for ...

- renewables: as a time-dependent PQ-bus \longrightarrow $+P_i(t), +Q_i(t)$
- batteries: as a control $u_j(t) = \{\pm P_j(t), Q_j(t) \equiv 0\}$ for a few $j \in \mathcal{V}$ with bounds for active power

Renewables & batteries

Mathematical model for ...

- lacktriangleright renewables: as a time-dependent PQ-bus $\lower_i + P_i(t), +Q_i(t)$
- batteries: as a control $u_j(t) = \{\pm P_j(t), Q_j(t) \equiv 0\}$ for a few $j \in \mathcal{V}$ with bounds for active power

Questions:

- Is this reasonable?
- What is the control goal (objective function)?
- Is solving the power flow equation (via Newton-Raphson?) a computational bottleneck for you?

csc The CIGRE test case (1/2)

csc The CIGRE test case (2/2)

8 PVs + 1 wind

9 DERs + batteries

Mathematical model

The abstract optimal control problem

Optimal control problem with (in-)equality constraints:

$$\min_{u} \mathcal{J}(x(u), t)$$

s.t.
$$f(x,t) + Bu(t) = 0$$

s.t.
$$x_{\min} \le x_i(t) \le x_{\max}$$

s.t.
$$u_{\min} \le u_i(t) \le u_{\max}$$

Here, the state at node i is $x_i = [|V_i|, \delta_i, P_i, Q_i]^T$ and the control u_i are the active power of the batteries (at fewer nodes).

$$\text{Non-linear Power Flow eqn's } f_i(x,t) = \begin{bmatrix} P_i(t) - \Re[V_i(t) \sum_{k=1}^N Y_{ik}^* V_k^*(t)] \\ Q_i(t) - \Im[V_i(t) \sum_{k=1}^N Y_{ik}^* V_k^*(t)] \end{bmatrix}.$$

Input-state-output systems:

- $x(t) \in \mathbb{R}^{n_x}$ state, i.e. all quantities $\{V_i, S_i\} \ \forall i \in \mathcal{V}$
- $u(t) \in \mathbb{R}^{n_u}$ input, e.g. battery configurations
- $y(t) \in \mathbb{R}^{n_y}$ output, e.g. maximum voltage $\|V\|_{\infty}$, line loading, ...

Model-order reduction: Reduce the state dimension $n_x\gg 1$ while preserving an accurate input-output relation $u\mapsto y$.

Mathematical systems theory:

Definition 1: Reachability

The state x is **reachable** from the zero state $x_0=0$ if there exist an input function u(t) of finite energy such that x can be obtain from the zero state and within a finite period of time $t<\infty$.

Mathematical systems theory:

Definition 1: Reachability

The state x is **reachable** from the zero state $x_0 = 0$ if there exist an input function u(t) of finite energy such that x can be obtain from the zero state and within a finite period of time $t < \infty$.

Definition 2: Controllability

A non-zero state x is **controllable** if there exist an input u(t) with finite energy such that the state of the system goes to zero from x within a finite time $t < \infty$.

Mathematical systems theory:

Definition 1: Reachability

The state x is **reachable** from the zero state $x_0 = 0$ if there exist an input function u(t) of finite energy such that x can be obtain from the zero state and within a finite period of time $t < \infty$.

Definition 2: Controllability

A non-zero state x is **controllable** if there exist an input u(t) with finite energy such that the state of the system goes to zero from x within a finite time $t<\infty$.

Definition 3: Observability

Given any input u(t), a state x of the system is **observable**, if starting with the state x (x(0) = x), and after a finite period of time $t < \infty$, x can be uniquely determined by the output y(t).

In linear control theory, the full-order model reads,

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

with $A \in \mathbb{R}^{n_x \times n_x}, B \in \mathbb{R}^{n_x \times n_u}, C \in \mathbb{R}^{n_y \times n_x}$, and, particularly, $x(t) \in \mathbb{R}^{n_x}$.

In linear control theory, the full-order model reads,

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

with $A \in \mathbb{R}^{n_x \times n_x}, B \in \mathbb{R}^{n_x \times n_u}, C \in \mathbb{R}^{n_y \times n_x}$, and, particularly, $x(t) \in \mathbb{R}^{n_x}$.

Choose (bi-linear) matrices $V_r, W_r \in \mathbb{R}^{n_x \times r}$ and define corresponding reduced-order model,

$$\dot{\hat{x}}(t) = (W_r^T A V_r) \hat{x}(t) + (W_r^T B) u(t),$$

$$\hat{y}(t) = (C V_r) \hat{x}(t),$$

for the reduced state variable $\hat{x}(t) \in \mathbb{R}^r, r \ll n_x$,

In linear control theory, the full-order model reads,

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

with $A \in \mathbb{R}^{n_x \times n_x}$, $B \in \mathbb{R}^{n_x \times n_u}$, $C \in \mathbb{R}^{n_y \times n_x}$, and, particularly, $x(t) \in \mathbb{R}^{n_x}$.

Choose (bi-linear) matrices $V_r, W_r \in \mathbb{R}^{n_x \times r}$ and define corresponding reduced-order model.

$$\dot{\hat{x}}(t) = (W_r^T A V_r) \hat{x}(t) + (W_r^T B) u(t),$$

$$\hat{y}(t) = (C V_r) \hat{x}(t),$$

for the reduced state variable $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n_x$, while $||y - \hat{y}|| \to \min$.

In linear control theory, the full-order model reads,

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{split}$$

with $A \in \mathbb{R}^{n_x \times n_x}, B \in \mathbb{R}^{n_x \times n_u}, C \in \mathbb{R}^{n_y \times n_x}$, and, particularly, $x(t) \in \mathbb{R}^{n_x}$.

Choose (bi-linear) matrices $V_r, W_r \in \mathbb{R}^{n_x \times r}$ and define corresponding reduced-order model,

$$\begin{split} \dot{\hat{x}}(t) &= (\boldsymbol{W_r}^T A \boldsymbol{V_r}) \hat{x}(t) + (\boldsymbol{W_r}^T B) u(t), \\ \hat{y}(t) &= (C \boldsymbol{V_r}) \hat{x}(t), \end{split}$$

for the reduced state variable $\hat{x}(t) \in \mathbb{R}^r, r \ll n_x$, while $||y - \hat{y}|| \to \min$.

In the linear case, the transfer function maps input to output,

$$G(s) = C(sI_{n_x} - A)^{-1}B,$$

$$\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$$

In the linear case, the transfer function maps input to output,

$$G(s) = C(sI_{n_x} - A)^{-1}B,$$

 $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$

Algorithms:

■ Balanced truncation: Obtain $||G - \hat{G}||_{\mathcal{H}_{\infty}} \to \min$ by truncating states that are 'hard to reach' and 'hard to observe'.

In the linear case, the transfer function maps input to output,

$$G(s) = C(sI_{n_x} - A)^{-1}B,$$

 $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$

Algorithms:

- Balanced truncation: Obtain $||G \hat{G}||_{\mathcal{H}_{\infty}} \to \min$ by truncating states that are 'hard to reach' and 'hard to observe'.
- IRKA: Iteratively compute projection spaces V_r, W_r while minimizing the \mathcal{H}_2 -norm of the transfer function mismatch.

In the linear case, the transfer function maps input to output,

$$G(s) = C(sI_{n_x} - A)^{-1}B,$$

 $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$

Algorithms:

- Balanced truncation: Obtain $||G \hat{G}||_{\mathcal{H}_{\infty}} \to \min$ by truncating states that are 'hard to reach' and 'hard to observe'.
- IRKA: Iteratively compute projection spaces V_r, W_r while minimizing the \mathcal{H}_2 -norm of the transfer function mismatch.
- Moment matching: Approximation $G(s) \approx \hat{G}(s)$ for some points s.

In the linear case, the transfer function maps input to output,

$$G(s) = C(sI_{n_x} - A)^{-1}B,$$

 $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$

Algorithms:

- Balanced truncation: Obtain $||G \hat{G}||_{\mathcal{H}_{\infty}} \to \min$ by truncating states that are 'hard to reach' and 'hard to observe'.
- IRKA: Iteratively compute projection spaces V_r, W_r while minimizing the \mathcal{H}_2 -norm of the transfer function mismatch.
- Moment matching: Approximation $G(s) \approx \hat{G}(s)$ for some points s.
- Extensions: Bi-linear MOR, quadratic MOR, ...

Non-linear model-order reduction

The full-order model is coverned by nonlinear equations,

$$\dot{x} = f(x, t) + Bu,$$

$$y = Cx.$$

Algorithm (Proper Orthogonal Decomposition):

- Collect snapshots $X := [x(t_1), ..., x(t_s)]$
- Computer SVD: $X = V\Sigma U^T$
- Define projection space via truncation $V_r := V[:, 1:r]$

The projection then yields the term $W_r^T f(V_r \hat{x}, t)$ which can be further reduced using hyper-reduction methods (e.g. DEIM).

Model-order reduction for networks

Take V_r from IRKA, and find partition $P(\pi)$ such that,

Range
$$V_r = \text{Range } P(\pi),$$

i.e. find Z such that $V_r = P(\pi)Z$.

Advantages:

- The reduced variable $x \approx P(\pi)\hat{x}$ corresponds to a network.
- Existing code can be re-used.

P. Mlinarić, S. Grundel, P. Benner (2015). *Efficient model order reduction for multi-agent systems using QR decomposition-based clustering.* 54th IEEE Conference on Decision and Control, 4794–4799.

Some open problems

On the mathematical side:

■ MOR with state-inequalities

csc Some open problems

On the mathematical side:

- MOR with state-inequalities
- MOR for fault detection

csc Some open problems

On the mathematical side:

- MOR with state-inequalities
- MOR for fault detection

csc Some open problems

On the mathematical side:

- MOR with state-inequalities
- MOR for fault detection

On the modelling side:

• dynamic power flow simulation: $\delta_i \rightarrow \delta_i(t)$

sc Some open problems

On the mathematical side:

- MOR with state-inequalities
- MOR for fault detection

On the modelling side:

- dynamic power flow simulation: $\delta_i \rightarrow \delta_i(t)$
- new players: DER, battery, E-car ~> 3-phases simulation ?

Dynamic power flow simulation?

Three leading models

Governing equations (swing equations) at network node i,

$$\frac{2H_i}{\omega_R}\ddot{\delta}_i + \frac{D_i}{\omega_R}\dot{\delta}_i = A_i - \sum_{j \neq i} K_{ij}\sin(\delta_i - \delta_j - \gamma_{ij}), \quad i \in \{1, ..., N\},$$

yield for a specific choice of parameters the three models

- EN effective network model $(N = |\mathcal{V}_G|)$,
- SM synchronous motor model $(N = |\mathcal{V}|)$,
- SP structure-preserving model $(N > |\mathcal{V}|)$.
- T. Nishikawa and A. E. Motter (2015). *Comparative analysis of existing models for power-grid synchronization*. New Journal of Physics 17:1.

csc Which model?

Comparison

Current MSc project (ongoing).

MOR for dynamic power simulation

Swing equations,

$$\frac{2H_i}{\omega_R}\ddot{\delta}_i + \frac{D_i}{\omega_R}\dot{\delta}_i = A_i - \sum_{j \neq i} K_{ij}\sin(\delta_i - \delta_j - \gamma_{ij}), \quad i \in \{1, ..., N\}.$$

Linearization,

$$\begin{bmatrix} \dot{\delta}_i \\ \dot{\xi}_i \end{bmatrix} = \begin{bmatrix} \xi_i \\ \frac{\omega_R}{2H_i} \left(A_i - \sum_{j \neq i} K_{ij} \sin(\delta_i - \delta_j - \gamma_{ij}) - \frac{D_i}{\omega_R} \xi_i \right) \end{bmatrix},$$

Bi-linear formulation,

$$\begin{bmatrix} \dot{\delta}_i \\ \dot{\xi}_i \\ \dot{s}_i \\ \dot{c}_i \end{bmatrix} = \begin{bmatrix} \xi_i \\ \frac{\omega_R}{2H_i} \left(A_i - \sum_{j \neq i} K_{ij} (s_i c_j \gamma_{ij}^c - c_i s_j \gamma_{ij}^c - c_i c_j \gamma_{ij}^s - s_i s_j \gamma_{ij}^s) - \frac{D_i}{\omega_R} \xi_i \right) \\ c_i \xi_i \\ -s_i \xi_i \end{bmatrix}$$