Examen d'Algèbre Linéaire du mardi 21 mars 2017

4 exercices indépendants (Durée : 2 heures)

Exercice I-

Soit E un espace vectoriel de dimension 3, muni d'une base \mathcal{B} . Soit l'endomorphisme u de E, défini par sa matrice $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ dans la base \mathcal{B} . On considère un endomorphisme f de E vérifiant $f^2 = u$.

- 1. Déterminer les matrices de f^4 et f^6 dans la base \mathcal{B} .
- 2. Montrer que $\dim(\ker f^2)=1$ et que f n'est pas bijective.
- **3.** Montrer que $\ker(f) \subset \ker(f^2)$, puis que $\ker(f) = \ker(f^2)$.
- **4.** Établir $\ker(f^k) = \ker(f^{k+1})$ pour tout entier $k \ge 1$.
- **5.** Montrer qu'il y a une contradiction. Conclusion ?

Exercice II-

Soit
$$A = \begin{pmatrix} 0 & 3/4 & 0 \\ 3/4 & 0 & 1 \\ 1/4 & 1/4 & 0 \end{pmatrix}$$
.

- 1. Montrer que A est diagonalisable et trouver ses valeurs propres.
- **2.** Soit $P = \begin{pmatrix} 12 & -1 & -3 \\ 16 & 1 & 1 \\ 7 & 0 & 2 \end{pmatrix}$.
 - a) Montrer que P est inversible.
 - b) Sans calculer P^{-1} , montrer que $P^{-1}AP = \operatorname{diag}(1, -3/4, -1/4)$.
- 3. Soit $\Phi: M \in \mathcal{M}_3(\mathbb{R}) \mapsto P^{-1}MP \in \mathcal{M}_3(\mathbb{R})$.
 - a) Montrer que Φ est continue et montrer que (A^n) converge. On note Q sa limite.
- b) Soit q l'endomorphisme associé à Q. Montrer que q est un projecteur et en donner l'image et le noyau. En déduire Q.

Exercice III-

Soit
$$u$$
 l'endomorphisme de \mathbb{R}^4 associé à $A = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix}$.

 \mathbb{R}^4 étant muni de sa structure euclidienne canonique, montrer qu'il existe p et q, projecteurs orthogonaux, et λ et μ réels tels que $u=\lambda p+\mu q,\ p\circ q=0$ et $id_E=p+q$.

Exercice IV-

On considère le système
$$Ax = b$$
 où $A = \begin{pmatrix} \alpha & 0 & \gamma \\ 0 & \alpha & \beta \\ 0 & \delta & \alpha \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, avec α , β , γ et δ des paramètres réels et $\alpha \neq 0$.

- 1. Écrire la matrice J de Jacobi et la matrice G de Gauss-Siedel.
- 2. Déterminer le spectre de J et donner une condition sur les paramètres intervenant dans A pour que la méthode de Jacobi converge. Déterminer de même le spectre de G et donner une condition pour que la méthode de Gauss-Siedel converge.
- 3. Déduire de la question précédente que les méthodes de Jacobi et de Gauss-Siedel sont, soit toutes les deux convergentes, soit toutes les deux divergentes. Dans le cas de convergence, quelle est la méthode qui converge le plus vite ?
- **4.** On prend ici $\alpha = 4$, $\beta = \delta = 1$ et $\gamma = 0$.
 - a) Donner les 3 premières itérations de Jacobi et de Gauss-Siedel si $x^{(0)}={}^t(0,0,0).$
- b) Calculer les valeurs propres de A et en déduire qu'elle est définie positive. Donner les valeurs de $w \in \mathbb{R}$ pour lesquelles la méthode de relaxation est convergente.