Gaussian Elimination

Angjoo Kanazawa

October 24, 2011

1 Gaussian Elimination and LU Factorization

Gaussian Elimination is a way of solving systems of linear equations. When you apply the algorithm in a matrix form, it lets us write a matrix as the product of a unit lower-triangular matrix and an upper-triangular matrix. **Problem Statement:** Solve Ax = b, where A is a N by M non-singular

Goal: Compute L, a unit lower-triangular matrix and U an upper-triangular matrix (with a P permutation matrix) s.t. A = LU. Then, we can solve Ax = b by

$$Ax = b$$

$$LUx = b$$

$$L\hat{b} = b \text{ where } \hat{b} = L^{-1}b$$

$$\Rightarrow Ux = \hat{b}$$

Where since L is a lower triangular matrix, we can solve for \hat{b} using forward-substitution in $\mathcal{O}(n^2)$, and similarly, U is an upper triangular matrix so using backward-substitution we can solve for x in $\mathcal{O}(n^2)$ Doing the LU factorization costs $\mathcal{O}(\frac{2}{3}n^3) = \mathcal{O}(n^3)$.

2 How to do LU Factorization

- 1. Add multiple of first row of A and first entry of b to the second to last rows to produce zeros on the first column. i.e. Multiply A with L_1 to get $A^{(1)}$ ($A^{(i)}$ is our A after ith many steps).
- 2. Repeat, then we will get our upper triangular matrix $U = L_{n-1} \cdots L_1 A$, and our $L = L_1^{-1} \cdots L_{n-1}^{-1}$.

(Why?) because $A = L_1^{-1}L_1A = L_1^{-1}U_1$ where $U_1 = L_1A$ we get:

$$A = (L_1^{-1} \cdots L_{n-1}^{-1})(L_{n-1} \cdots L_1 A)$$

= LU

3 Step-by-Step example with 3 by 3 case

Let's walk through the entire thing with a 3 by 3 A:

3.1 LU Factorization

$$Ax = b \Rightarrow \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Where x is unknown.

1. Formally, our L_1 is $\begin{pmatrix} 1 & 0 & 0 \\ -a_{21}/a_{11} & 1 & 0 \\ -a_{31}/a_{11} & 0 & 1 \end{pmatrix}$, so

$$L_{1}A = \begin{pmatrix} 1 & 0 & 0 \\ -a_{21}/a_{11} & 1 & 0 \\ -a_{31}/a_{11} & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ \frac{-a_{21}}{a_{11}} a_{11} + a_{21} & \frac{-a_{21}}{a_{11}} a_{12} + a_{22} & \frac{-a_{21}}{a_{11}} a_{13} + a_{23} \\ \frac{-a_{31}}{a_{11}} a_{11} + a_{31} & \frac{-a_{31}}{a_{11}} a_{12} + a_{32} & \frac{-a_{31}}{a_{11}} a_{13} + a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{pmatrix}$$

2.
$$L_2L_1A = L_2U^{(1)} =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -a_{32}^{(1)}/a_{22}^{(1)} & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & \frac{-a_{32}^{(1)}}{a_{22}^{(1)}} a_{22}^{(1)} + a_{32}^{(1)} & \frac{-a_{32}^{(1)}}{a_{22}^{(1)}} a_{23}^{(1)} + a_{33}^{(1)} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{pmatrix} = U$$

Now What's L? Note that for all of L_i 's we use, $L_i^{-1}=-L_i$ (check it). So our $L=L_1^{-1}L_2^{-1}=$

$$\begin{pmatrix} 1 & 0 & 0 \\ a_{21}/a_{11} & 1 & 0 \\ a_{31}/a_{11} & a_{32}^{(1)}/a_{22}^{(1)} & 1 \end{pmatrix}$$

Or just all of the nonzero elements of $-L_i$'s.

(Remember that inverse/multiplication of a lower triangular matrix is also a lower triangular matrix)

Finally we have:

$$A = LU$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ a_{21}/a_{11} & 1 & 0 \\ a_{31}/a_{11} & a_{32}^{(1)}/a_{22}^{(1)} & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{pmatrix}$$

3.2 Forward-substitution

Going back to our objective of solving Ax = b, now we do $\hat{b} = L^{-1}b$, or often written as Ly = b $(y = \hat{b})$.

Looking at

$$\begin{pmatrix} 1 & 0 & 0 \\ a_{21}/a_{11} & 1 & 0 \\ a_{31}/a_{11} & a_{32}^{(1)}/a_{22}^{(1)} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

The first two equations are $y_1 = b_1$ and $\frac{a_{21}}{a_{11}}y_1 + y_2 = b_2$. But since we know y_1 from the first line, we can substitute b_1 for y_1 and yield $y_2 = b_2 - b_1 \frac{a_{21}}{a_{11}}$. We can keep on substituting earlier results to obtain all y_1 and this is forward-substitution.

Using this, our \hat{b} is:

$$\begin{split} y_1 &= b_1 \\ b_2 &= y_2 + y_1 \frac{a_{22}}{a_{11}} \\ &\to y_2 = b_2 - b_1 \frac{a_{22}}{a_{11}} \text{ substitute } y_1 \\ b_3 &= y_3 + y_1 \frac{a_{31}}{a_{11}} + y_2 \frac{a_{32}^{(1)}}{a_{22}^{(1)}} \\ &\to y_3 = b_3 - \left(y_1 \frac{a_{31}}{a_{11}} + y_2 \frac{a_{32}^{(1)}}{a_{22}^{(1)}}\right) \end{split}$$

Formally:

$$y_m = b_m - \sum_{i=1}^{m-1} l_{mi} y_i$$

This is long and details don't matter so just denote $\hat{b}=(\hat{b}_2)$ \hat{b}_3

3.3 Backward-substitution

Similarly, now that we have our \hat{b} , we do $U\hat{b} = x$. Since U is an upper triangular, it's the same thing as forward substitution but we progress from x_n $(x_n = \hat{b}_1)$ For us the x is:

$$x_{3} = \frac{\hat{b}_{3}}{u_{33}}$$

$$\hat{b}_{2} = u_{22}x_{2} + u_{23}x_{3}$$

$$\rightarrow x_{2} = \frac{\hat{b}_{2} - u_{23}x_{3}}{u_{22}}$$

$$\rightarrow x_{2} = \frac{\hat{b}_{2} - u_{23}\frac{\hat{b}_{3}}{u_{33}}}{u_{22}} \text{ substitute } x_{3}$$

$$\hat{b}_{1} = u_{11}x_{1} + u_{12}x_{2} + u_{13}x_{3}$$

$$\rightarrow x_{1} = \frac{\hat{b}_{1} - (u_{12}x_{2} + u_{13}x_{3})}{u_{11}}$$

Formally:

$$x_m = (\hat{b}_m - \sum_{i=m+1}^{1} u_{mi} x_i) / u_{mm}$$

And finally we get our x!!

4 Pivoting

If $a_{11} = 1$, everything above falls apart. In such a case we need to permute the first row of A with another row of A with $max_j|a_{j1}|$. This is the same as multiplying Ax = b with a permutation matrix, P_1 , where all the diagnoal values are 1 but a_{11}, a_{jj} and rest all 0 but a_{1j} and a_{j1}

$$P_{1} = \begin{pmatrix} \mathbf{0} & \cdots & \cdots & \mathbf{1} = a_{1j} & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \cdots & \cdots & 0 \\ \vdots & & & & & & \\ \mathbf{1}_{(a_{j1})} & 0 & 0 & \mathbf{0}_{(a_{jj})} & \cdots & \cdots & 0 \\ \vdots & & & & & & \\ 0 & \cdots & \cdots & \cdots & \cdots & 1 \end{pmatrix}$$

So in the end, we do the same as above and compute L, U, and $P = P_1P_2\cdots P_k$ where $k \leq n-1$ and get PA = LU. Note that there is no multiplication/division in doing PA.

5 Cost Analysis/Complexity

P is costless in terms of flops (in the context of number of multiplication and divisions). Components that contribute to the cost are:

1. **LU decomposition**: to make L_1 requires n-1 divisions, and doing L_1A requires (n-1)(n-1) multiplications. So total of $(n-1)^2+n-1=n^2-n+1$ or n(n-1) operations for step 1 (n diagonal elements to multiply with elements that required (n-1) flops to make).

So to do step 2 is (n-1)(n-2), and so forth until n-1 steps are done, which is:

$$\sum_{i=1}^{n-1} i(i+1) = sum_{i=1}^{n-1} i^2 + \sum_{i=1}^{n-1} i$$

Recalling calc 2 arithmetic series and special sums, $\sum_{i=1}^n i = n(n+1)/2$ and $\sum_{i=1}^n i^2 = n(n+1)(2n+1)/6$, so the total sum is $\mathcal{O}n^3/3 + (n^2+n)/2 = \mathcal{O}(2n^3/3)$

2. **forward/backward substitution**: The first(last for back) operation is 1 multiplication, the second equation requires 2 multiplication, and in the end it requires n multiplication. Disregarding the additions, this is just $\sum_{i=1}^{n} i = n(n+1)/2 = \mathcal{O}(n^2)$. This analysis holds for both, so total $\mathcal{O}(2n^2)$ here.

So in total, we have

$$\mathcal{O}(2n^3/3) + \mathcal{O}(2n^2) = \mathcal{O}(n^3)$$

for large n.