Alimentando Informações: Um Estudo De Dados Nutricionais

Alunos:

Silas de Souza Ferreira

RA: 10414793

Israel Soares do N. Viana

RA: 10414894

Gustavo Silva Rios

RA: 10415824

STORYTELLING

Nosso projeto surge como uma resposta prática e estratégica aos desafios enfrentados no pós pandemia, quando os dados nutricionais passaram a evidenciar tanto a persistência da desnutrição em regiões vulneráveis quanto o avanço silencioso do sobrepeso e da obesidade inclusive entre crianças.

A ausência de acompanhamento regular e a fragmentação das informações em sistemas como o Sisvan Web, e-SUS APS e Auxílio Brasil dificultam a identificação de padrões e a execução de ações coordenadas, especialmente onde a insegurança alimentar é mais severa.

A solução que propomos integra diferentes fontes de dados em uma plataforma interativa, com painéis visuais e análises preditivas que facilitam a tomada de decisão por gestores públicos e profissionais da saúde. Ao transformar dados dispersos em inteligência acionável, nosso projeto fortalece a vigilância nutricional e permite intervenções mais ágeis e direcionadas, promovendo uma articulação eficiente entre saúde, assistência social e educação.

Leitura e Pré-Processamento dos Dados

Merge - Consolidação das Bases

lista_dfs = [df_2023, df_2022, df_2021, df_2020, df_2019, df_2018] df_consolidado = pd.concat(lista_dfs, ignore_index=True)

- As bases de dados foram adquiridas do site do Ministério da Saúde (SISVAN) referentes aos anos de 2018 a 2023.
- Os arquivos .csv foram lidos individualmente com a biblioteca pandas e consolidados em uma só base utilizando sua função .concat()
- A base consolidada possui 212.343 registros válidos e abrange um conjunto robusto de variáveis demográficas, antropométricas e nutricionais, coletadas de 2018 a 2023.
- Apesar do volume expressivo, há ausência de dados em variáveis específicas, como classificações nutricionais por faixa etária e indicadores clínicos, exigindo tratamento prévio para análises preditivas. As variáveis apresentam tipagens heterogêneas, exigindo transformação de tipos para modelagem.

Leitura e Pré-Processamento dos Dados

Convertendo variável temporal para formato Datetime df_consolidado['DT_ACOMPANHAMENTO'] = pd.to_datetime(df_consolidado['DT_ACOMPANHAMENTO'], dayfirst=True, errors='coerce')

```
df_consolidado['NU_PESO'] = df_consolidado['NU_PESO'].str.replace(',', '.').astype(float)
df_consolidado['NU_ALTURA'] = df_consolidado['NU_ALTURA'].str.replace(',', '.').astype(float)
df_consolidado['DS_IMC'] = df_consolidado['DS_IMC'].str.replace(',', '.').astype(float)
```

· Valores de Idade até 168 anos foram encontrados o que é estatisticamente improvável.

```
# Quantidade de registros com idade maior que 120
outliers_idade = df_consolidado[df_consolidado['NU_IDADE_ANO'] > 120]
print(f"Quantidade de registros com idade > 120: {len(outliers_idade)}")

# Visualizar exemplos (opcional)
outliers_idade[['NO_MUNICIPIO', 'NU_IDADE_ANO', 'DS_FASE_VIDA', 'DT_ACOMPANHAMENTO']].head()
```

Verificação de inconsistências

```
# Verificações baseadas em impossibilidades absolutas (independente da idade)
peso_invalidos = df_consolidado[df_consolidado['NU_PESO'] <= 0]
altura_invalidos = df_consolidado[df_consolidado['NU_ALTURA'] <= 0]
peso_max_invalidos = df_consolidado[df_consolidado['NU_PESO'] > 200] # excessivo mesmo para adultos
altura_max_invalidos = df_consolidado[df_consolidado['NU_ALTURA'] > 220]
imc_invalidos = df_consolidado[(df_consolidado['NU_ALTURA'] > 220]
imc_invalidos = df_consolidado[(df_consolidado['DS_IMC'] < 10) | (df_consolidado['DS_IMC'] > 60)]

print(f"Peso zero ou negativo: {len(peso_invalidos)}")
print(f"Altura zero ou negativa: {len(altura_invalidos)}")
print(f"Altura > 220cm: {len(altura_max_invalidos)}")
print(f"IMC fora de faixa (10 a 60): {len(imc_invalidos)}")

Peso zero ou negativo: 411
Altura zero ou negativa: 419
Peso > 200kg: 43
Altura > 220cm: 21
IMC fora de faixa (10 a 60): 658
```

```
df_consolidado = df_consolidado[]
    (df_consolidado['NU_PESO'] >= 1.5) & (df_consolidado['NU_PESO'] <= 200) &
    (df_consolidado['NU_ALTURA'] >= 40) & (df_consolidado['NU_ALTURA'] <= 220) &
    (df_consolidado['DS_IMC'] >= 10) & (df_consolidado['DS_IMC'] <= 60)
</pre>
```

- Inicialmente, os campos numéricos NU_PESO, NU_ALTURA e DS_IMC foram padronizados, convertendo valores decimais com vírgulas para o formato de ponto (.) e transformando-os em tipo numérico (float), garantindo a integridade para análises estatísticas e modelagens.
- Além disso, a variável DT_ACOMPANHAMENTO foi **convertida para o tipo datetime**, com tratamento de datas inválidas via errors='coerce', permitindo análises temporais consistentes e a extração de componentes como ano e mês.
- Foram aplicadas **regras fisiológicas** plausíveis para **garantir a integridade dos dados** antropométricos. **Removemos valores extremos de peso** (<1,5 kg ou >200 kg), altura (<40 cm ou >220 cm) e IMC (<10 ou >60), compatíveis com limites clínicos reais.
- A coluna de data de acompanhamento foi convertida corretamente para o formato datetime, assegurando consistência nas análises temporais.

- As variáveis antropométricas apresentam fortes correlações positivas, como entre peso e IMC (0,89) e peso e altura (0,84), evidenciando coerência fisiológica nos dados;
- A idade também influencia diretamente peso, altura e IMC, reforçando seu papel como variável-chave nos modelos.

As correlações negativas observadas com NU_COMPETENCIA (anomês do acompanhamento) são fracas, indicando estabilidade temporal nos padrões antropométricos da população analisada.

Distribuição de Idade dos Indivíduos Acompanhados (2018–2023)

- O perfil dos dados indica um **foco maior nas faixas mais jovens**, seja por prioridade de programas, seja pela composição etária da população atendida.
- Políticas de saúde para **idosos** podem demandar mais atenção, visto o número reduzido de registros apesar da **alta prevalência de doenças crônicas nessa população**.
- A curva de distribuição pode ajudar no planejamento de recursos, priorizando regiões ou grupos etários com maior demanda.

Distribuição do IMC por Fase da Vida

- A distribuição do IMC nos mostra que o IMC **tende a aumentar com a idade**, especialmente a partir da adolescência.
- Maior variabilidade ocorre nas fases de transição hormonal (adolescência) e nas fases de maior risco de doenças crônicas (adultos e idosos).
- A presença de outliers elevados em todas as fases indica a existência de casos de obesidade, inclusive em faixas etárias infantis.

Número de Acompanhamentos por Ano (2018-2023)

	ANO	Atendimentos
0	2018	31280
1	2019	29936
2	2020	22516
3	2021	29607
4	2022	45679
5	2023	52120

- Houve queda no número de acompanhamentos entre 2018 e 2020, com o menor valor em 2020;
- A partir de 2021, observou-se uma forte retomada, culminando no maior número de registros em 2023;
- A queda em 2020 está associada à pandemia de COVID-19, enquanto a retomada reflete a reorganização e expansão dos serviços de saúde no pós-pandemia.

Comparação do Estado Nutricional entre Adultos e Idosos

- Os idosos apresentam maior prevalência de sobrepeso e baixo peso, o que sugere dupla vulnerabilidade: tanto à desnutrição quanto ao excesso de peso;
- Já os adultos concentram os casos de obesidade nos graus mais elevados, o que representa um alerta para riscos metabólicos e cardiovasculares nessa faixa etária;
- O padrão indica a necessidade de **estratégias nutricionais distintas** para cada grupo etário: **prevenção de obesidade** em adultos e **monitoramento** tanto de ganho quanto de perda de peso em idosos.

Execução do Modelo ARIMA

Previsão de OBESIDADE - ADULTOS

```
# Filtrar apenas adultos
    df_adultos = df_consolidado[df_consolidado['DS_FASE_VIDA'] == 'ADULTO']
    # Filtrar apenas quem tem estado nutricional disponível
    df_adultos = df_adultos[df_adultos['CO_ESTADO_NUTRI_ADULTO'].notna()]
    # Definir o que é considerado "obeso" para adultos
    condicoes_obesidade = ['Sobrepeso', 'Obesidade Grau I', 'Obesidade Grau III', 'Obesidade Grau III']
    # Série: percentual de obesos por ano
    serie_obesidade_adultos = (
        df_adultos
        .groupby('ANO', group_keys=False)
        .apply(lambda x: (x['CO_ESTADO_NUTRI_ADULTO'].isin(condicoes_obesidade).sum() / len(x)) * 100)
        .reset_index(name='Percentual_Obesidade_Adultos')
    serie_obesidade_adultos
₹
             Percentual_Obesidade_Adultos
    0 2018
                                61.900118
    1 2019
                                 62.653505
    2 2020
                                 66.026003
    3 2021
                                 67.353804
    4 2022
                                 66.317618
                                67.753172
     5 2023
```

```
# Previsão para os próximos 5 anos
n_periods = 5
previsao, intervalo_conf = modelo.predict(n_periods=n_periods, return_conf_int=True)

# Criar DataFrame das previsões
anos_futuros = np.arange(2024, 2029)
df_previsoes = pd.DataFrame({
        'ANO': anos_futuros,
        'Previsao_Obesidade': previsao,
        'IC_Inferior': intervalo_conf[:, 0],
        'IC_Superior': intervalo_conf[:, 1]
})

df_previsoes
```

C:\Users\gsilv\miniforge3\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: ValueWarning:

No supported index is available. Prediction results will be given with an integer index beginning at `start`.

	AN	NO Pr	revisao_Obesi	dade I	C_Infe	rior	IC_Sup	erior
	6 202	24	66.96	7026	63.558	3496	70.3	75557
	7 202	25	66.41	4198	62.247	7266	70.5	81130
	8 202	26	66.02	5442	61.530	0512	70.5	20372
	9 202	27	65.75	2063	61.103	3480	70.4	00647
1	0 202	28	65.55	9820	60.837	7100	70.2	82540

- O código realiza uma análise temporal da obesidade entre adultos, permitindo observar tendências no percentual de obesos entre 2018 e 2023 — que, segundo os dados, tem mostrado uma tendência de crescimento;
- O código realiza uma **previsão da obesidade até 2028**, indicando que o **percentual** deve se manter relativamente **estável** com leve tendência de queda, porém com **intervalos de confiança amplos**, o que sugere incerteza sobre a precisão exata dos valores futuros.

Execução do Modelo ARIMA

```
import plotly.graph_objects as go
# Base para o gráfico
fig = go.Figure()
# Histórico
fig.add_trace(go.Scatter(
    x=serie.index,
   y=serie.values,
    mode='lines+markers+text',
    name='Histórico (2018-2023)',
    text=[f"{v:.1f}%" for v in serie.values],
    textposition="top center",
    line=dict(color='blue'),
    marker=dict(size=8)
# Previsão
fig.add_trace(go.Scatter(
    x=df_previsoes['ANO'],
    y=df_previsoes['Previsao_Obesidade'],
    mode='lines+markers+text',
    name='Previsão (2024-2028)',
    text=[f"{v:.1f}%" for v in df_previsoes['Previsao_Obesidade']],
    textposition="top center",
    line=dict(dash='dash', color='orange'),
    marker=dict(size=8)
# Banda de confiança
fig.add_trace(go.Scatter(
    x=pd.concat([df_previsoes['ANO'], df_previsoes['ANO'][::-1]]),
    y=pd.concat([df_previsoes['IC_Superior'], df_previsoes['IC_Inferior'][::-1]]),
    fill='toself',
   fillcolor='rgba(255,165,0,0.2)',
    line=dict(color='rgba(255,255,255,0)'),
    hoverinfo="skip",
    showlegend=True,
    name='Intervalo de Confiança (95%)'
# Linha divisória entre histórico e previsão
fig.add_vline(x=2023.5, line=dict(color="gray", dash="dot"))
# Layout
fig.update_layout(
    title='Projeção do Percentual de Obesidade em Adultos (2018-2028)',
    xaxis_title='Ano',
    yaxis_title='Percentual de Obesidade (%)',
    xaxis=dict(dtick=1), # mostrar todos os anos
    yaxis=dict(range=[serie.min()-1, df_previsoes['IC_Superior'].max()+1]),
    legend=dict(x=0.01, y=0.99),
    template='simple_white'
fig.show()
```

Projeção do Percentual de Obesidade em Adultos (2018-2028)

- Apesar da alta histórica, o modelo sugere uma estabilização ou ligeira redução na obesidade adulta até 2028 mas com incertezas consideráveis;
- O percentual de obesidade aumentou de 61,9% em 2018 para 67,8% em 2023;
- Destaque para o salto entre 2019 (62,7%) e 2020 (66,0%).

Execução do Modelo ARIMA


```
[ ] previsao_2023_array, intervalo_2023 = modelo_validacao.predict(n_periods=1, return_conf_int=True)
    # Acessar corretamente o valor previsto e intervalo
    previsao_2023 = previsao_2023_array.item() # Extrai o valor float
    ic inferior = intervalo 2023[0, 0]
    ic superior = intervalo 2023[0, 1]
    print(f"Previsão para 2023: {previsao_2023:.2f}%")
    print(f"Intervalo de confiança: {ic_inferior:.2f}% a {ic_superior:.2f}%")
    print(f"Valor real em 2023: {y_real_2023:.2f}%")
T:\Users\gsilv\miniforge3\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: ValueWarning:
    No supported index is available. Prediction results will be given with an integer index beginning at `start`.
    Previsão para 2023: 64.85%
    Intervalo de confiança: 60.62% a 69.08%
    Valor real em 2023: 67.75%
[ ] mae = abs(y real 2023 - previsao 2023)
    mape = (mae / y_real_2023) * 100
    print(f"MAE: {mae:.2f}%")
    print(f"MAPE: {mape:.2f}%")
→ MAE: 2.90%
```

Apesar do modelo ARIMA ter apresentado uma previsão próxima do valor real, os resultados ainda indicam limitações preocupantes na acurácia:

- A previsão para 2023 (64,85%) ficou abaixo do valor real (67,75%), com uma diferença de quase 3 pontos percentuais;
- Mesmo estando dentro do intervalo de confiança, o modelo subestimou a obesidade, o que pode comprometer decisões baseadas nessas previsões especialmente em áreas como saúde pública;
- O erro percentual (MAPE) de 4,28% pode parecer aceitável em alguns contextos, mas em projeções epidemiológicas, essa margem pode representar milhares de pessoas não contabilizadas adequadamente;
- O intervalo de confiança é relativamente amplo (de 60,62% a 69,08%), sugerindo incerteza considerável nas estimativas;

Em resumo, embora o modelo tenha tido um desempenho estatisticamente aceitável, ele demonstra fragilidades ao capturar a real dinâmica da obesidade e pode não ser suficientemente confiável para projeções de longo prazo ou para formulação de políticas públicas sem ajustes ou validações adicionais.

MAPE: 4.28%

Extra: Rede Neural para Classificação de Estado Nutricional

```
# Pré-processamento
X = pd.get_dummies(df[features], drop_first=True)
le = LabelEncoder()
y = le.fit_transform(df[target])
y = to_categorical(y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

```
# Arquitetura da rede neural
inputs = Input(shape=(X_train.shape[1],), name="Input")

x = Dense(512, activation='relu', name="Dense_512")(inputs)

x = Dropout(0.5, name="Dropout_512")(x)

x = Dense(256, activation='relu', name="Dense_256")(x)

x = Dropout(0.4, name="Dropout_256")(x)

x = Dense(128, activation='relu', name="Dense_128")(x)

x = Dropout(0.3, name="Dropout_128")(x)

x = Dense(64, activation='relu', name="Dense_64")(x)

x = Dropout(0.2, name="Dropout_64")(x)

outputs = Dense(y.shape[1], activation='softmax', name="Output")(x)

model = Model(inputs=inputs, outputs=outputs, name="NN_Classifier")
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
```

```
# Callbacks
callbacks = [
    EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
    ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3),
    ModelCheckpoint('best_model_classification.keras', save_best_only=True)
]
```

Para finalizar como extra modelamos uma rede neural para classificação do estado nutricional dos adultos, a decisão para incluir esse modelo vem da relevância dessa variável no dataset e será útil para entendermos quais variáveis se ajustam melhor à rede:

- Foi criada uma função que codifica as variáveis categóricas (get_dummies), divide os dados em treino e teste(train_test_split), cria toda a arquitetura faz o ajuste e evaluation;
- Arquitetura densa criada com a Functional API do Keras, com camadas decrescentes (512 → 64) e uso de camadas de regularização dropout para desativar aleatoriamente uma fração de neurônios evitando overfitting;
- Métricas de acurácia e plot de matriz de confusão;

Callbacks Utilizados:

- EarlyStopping: Interrompe o treinamento automaticamente quando a validação não melhora após várias épocas. Isso evita overfitting e economiza tempo computacional;
- ReduceLROnPlateau: Reduz a taxa de aprendizado (learning rate) pela metade se a validação estagnar, permitindo que o otimizador faça ajustes mais finos e encontre um mínimo local mais estável;
- ModelCheckpoint: Salva automaticamente o melhor modelo (com menor val_loss) durante o treinamento, garantindo que não se perca uma boa configuração por overfitting nas épocas finais;
- Em sua chamada selecionamos quais variáveis features, target e quantidade de epochs desejados.

Extra: Rede Neural para Classificação de Estado Nutricional

Classification Report								
	precision	recal1	f1-score	support				
Adequado ou eutrófico	0.99	0.99	0.99	6281				
Baixo peso	0.98	0.94	0.96	420				
Obesidade Grau I	0.99	0.99	0.99	3883				
Obesidade Grau II	0.93	0.99	0.96	1470				
Obesidade Grau III	1.00	0.88	0.94	717				
Sobrepeso	0.99	0.99	0.99	6674				
accuracy			0.99	19445				
macro avg	0.98	0.96	0.97	19445				
weighted avg	0.99	0.99	0.99	19445				

- Após 50 *epochs* de treinamento, a rede neural densa convergiu com **excelente desempenho**, alcançando **acurácia de 98,15%** e validação de 98,79%.
- O modelo apresentou **F1-score médio de 0,97**, confirmando sua **robustez na classificação multiclasse** do estado nutricional a partir de variáveis sociodemográficas e antropométricas.
- A matriz de confusão revela alta precisão na maioria das classes, com **destaque** para a correta identificação de indivíduos **eutróficos**, com **sobrepeso** e **obesidade grau I**.

Conclusões

- Este projeto utilizou dados retirados do **Sisvan (2018–2023)** para analisarmos de maneira aprofundada o estado nutricional da população atendida na Atenção Primária à Saúde e prevermos cenários futuros que possam gerar planos de execução de como melhorar esses indicadores;
- Para que isso fosse possível foi necessário uma rigorosa etapa de pré-processamento e limpeza dos dados, para então realizamos diferentes tipos de análises exploratórias;
- Através do modelo ARIMA foi possível entender como a OBESIDADE em ADULTOS se comportará nos anos seguintes ao último ano que temos registro, porém devido a limitações dos dados tivemos baixos níveis de acurácia do modelo;
- Para finalizar, fizemos uma rede neural para classificar o Estado Nutricional dos Adultos como um extra ao projeto e, mesmo com as limitações mencionadas, o modelo performou muito bem com valores acima de 90% de acurácia.

