Let X be a grammar symbol, then First(X):

- 1. If X is a terminal, then $FIRST(X) = \{X\}.$
- 2. If X is a nonterminal and X → Y₁Y₂··· Y_k is a production for some k ≥ 1, then place a in FIRST(X) if for some i, a is in FIRST(Y_i), and ε is in all of FIRST(Y₁),..., FIRST(Y_{i-1}); that is, Y₁··· Y_{i-1} *⇒ ε. If ε is in FIRST(Y_j) for all j = 1, 2,..., k, then add ε to FIRST(X). For example, everything in FIRST(Y₁) is surely in FIRST(X). If Y₁ does not derive ε, then we add nothing more to FIRST(X), but if Y₁ *⇒ ε, then we add FIRST(Y₂), and so on.
- 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

Follow(X):

- Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
 - If there is a production A → αBβ, then everything in FIRST(β) except ε is in FOLLOW(B).
 - 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

For the Example:

- FIRST(F) = FIRST(T) = FIRST(E) = {(,id}). To see why, note that the two productions for F have bodies that start with these two terminal symbols, id and the left parenthesis. T has only one production, and its body starts with F. Since F does not derive ε, FIRST(T) must be the same as FIRST(F). The same argument covers FIRST(E).
- 2. FIRST(E') = {+, ϵ }. The reason is that one of the two productions for E' has a body that begins with terminal +, and the other's body is ϵ . Whenever a nonterminal derives ϵ , we place ϵ in FIRST for that nonterminal.
- 3. FIRST $(T') = \{*, \epsilon\}$. The reasoning is analogous to that for FIRST(E').

Now for the Follow:

- 4. FOLLOW(E) = FOLLOW(E') = {), \$}. Since E is the start symbol, FOLLOW(E) must contain \$. The production body (E) explains why the right parenthesis is in FOLLOW(E). For E', note that this nonterminal appears only at the ends of bodies of E-productions. Thus, FOLLOW(E') must be the same as FOLLOW(E).
- 5. FOLLOW(T) = FOLLOW(T') = {+, }, \$}. Notice that T appears in bodies only followed by E'. Thus, everything except ε that is in FIRST(E') must be in FOLLOW(T); that explains the symbol +. However, since FIRST(E') contains ε (i.e., E' * ε), and E' is the entire string following T in the bodies of the E-productions, everything in FOLLOW(E) must also be in FOLLOW(T). That explains the symbols \$ and the right parenthesis. As for T', since it appears only at the ends of the T-productions, it must be that FOLLOW(T') = FOLLOW(T).
- FOLLOW(F) = {+, *,), \$}. The reasoning is analogous to that for T in point (5).

LL(1) Parsing Table

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

1. For each terminal a in FIRST (α) , add $A \to \alpha$ to M[A, a].

2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A, b]. If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A, \$] as well.

If, after performing the above, there is no production at all in M[A, a], then set M[A, a] to error (which we normally represent by an empty entry in the table).

NON-	Input Symbol					
TERMINAL	id	+	*	()	\$
E	$E \to T E'$			$E \to TE^t$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \to \epsilon$
T	$T \rightarrow FT'$			$T \to FT'$		
T'		$T' \rightarrow \epsilon$	$T' \to *FT'$	NOW THE SECOND	$T' \to \epsilon$	$T' \rightarrow \epsilon$
F	$F o \mathrm{id}$			$F \rightarrow (E)$		

Figure 4.19: Model of a table-driven predictive parser

METHOD: Initially, the parser is in a configuration with w in the input buffer and the start symbol S of G on top of the stack, above S. The program in Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for the input. \square

```
let a be the first symbol of w;

let X be the top stack symbol;

while (X \neq \$) { /\$ stack is not empty \$/

if (X = a) pop the stack and let a be the next symbol of w;

else if (X is a terminal ) error();

else if (M[X,a] is an error entry ) error();

else if (M[X,a] = X \rightarrow Y_1Y_2 \cdots Y_k) {

output the production X \rightarrow Y_1Y_2 \cdots Y_k;

pop the stack;

push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack, with Y_1 on top;

}

let X be the top stack symbol;

}
```

MATCHED	STACK	INPUT	ACTION	
	E §	id + id * id		
	TE' \$	$\mathbf{id} + \mathbf{id} * \mathbf{id} \$$	output $E \to TE'$	
	FT'E'\$	id + id * id	output $T \to FT'$	
	id $T'E'$ \$	id+id*id\$	output $F \to id$	
id	T'E'\$	+id*id\$	match id	
id	E' 8	+id*id\$	output $T' \to \epsilon$	
id	+ TE'8	+id*id\$	output $E' \rightarrow + TE'$	
id +	TE'8	id*id\$	match +	
id +	FT'E'	id*id\$	output $T \to FT'$	
id +	id T'E'\$	id*id\$	output $F \to id$	
id + id	T'E'\$	* id\$	match id	
id + id	*FT'E'\$	* id\$	output $T' \rightarrow *FT'$	
id + id *	FT'E'\$	id\$	match *	
id + id *	id T'E'\$	id\$	output $F \to \mathbf{id}$	
id + id * id	T'E'\$	8	match id	
id + id * id	E' \$	8	output $T' \to \epsilon$	
id + id * id	8	8	output $E' \to \epsilon$	

Figure 4.21: Moves made by a predictive parser on input $\mathbf{id} + \mathbf{id} * \mathbf{id}$