Peyman Shobeiri

Supervisor : Dr.Moattar

"Latent Semantic Analysis is a technique of analysing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms."

- Wikipedia

Music **Food** News **Technology**

- 1. Article 1
- 2. Article 2
- 3. Article 3
- 4. Article 4
- 5. Article 5
- 6. Article 6

Bag Of Words Model

Words/Do c uments	going	to	today	i	am	it	is	rain	not	outside
1	1	1	1	0	0	1	1	1	0	0
2	1	0	1	1	1	0	0	0	1	1
3	1	1	0	1	1	0	0	0	0	0

M x N matrix

M = Number of Rows/Documents

N = Number of columns/words

SVD - Definition

$$A_{[mxn]} = U_{[mxr]} * S_{[rxr]} * (V_{[nxr]})^T$$

A: Input Data Matrix

o $m \times n$ matrix (m = number of documents, <math>n = number of words/features)

U: Left Singular matrix

m x r matrix (m = number of documents, r = number of concepts)

S: Rank Matrix

r x r matrix (r = rank of A)

V: Right Singular Matrix

o $n \times r$ matrix (n = number of words/features, <math>r = number of concepts)

SVD – Visually Explained

Latent Semantic Analysis — Applications

Article Bucketing in Websites
Finding relations between articles/words
Page Indexing in Search Engines