In [1]:

import numpy as np
import pandas as pd

In [2]:

import matplotlib.pyplot as plt
import seaborn as sns

In [3]:

%matplotlib inline

In [4]:

 $USA Housing = pd.read_csv(r'C:\Users\DELL\Downloads\3PythonCourse\Refactored_Py_DS_ML_Bootcamp-manusers (and the properties of the prope$

In [5]:

USAHousing.head()

Out[5]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Addr
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry 674\nLaurabury, 370
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Vi Suite 079∖nL Kathleen, C
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizal Stravenue∖nDanieltc WI 0648
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPC 44
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nF AE 09

In [6]:

USAHousing.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 7 columns):

Avg. Area Income 5000 non-null float64
Avg. Area House Age 5000 non-null float64
Avg. Area Number of Rooms 5000 non-null float64
Avg. Area Number of Bedrooms 5000 non-null float64

Area Population 5000 non-null float64
Price 5000 non-null float64
Address 5000 non-null object

dtypes: float64(6), object(1) memory usage: 273.5+ KB

In [7]:

USAHousing.describe()

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [9]:

USAHousing.isnull().sum()

Out[9]:

Avg. Area Income 0
Avg. Area House Age 0
Avg. Area Number of Rooms 0
Avg. Area Number of Bedrooms 0

Area Population
Price 0
Address 0

dtype: int64

EDA

In [10]:

sns.pairplot(USAHousing)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x20c57b4fc88>

In [11]:

sns.distplot(USAHousing['Price'])

C:\Users\DELL\Anaconda3\lib\site-packages\scipy\stats\py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will r esult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x20c59d3b8d0>

In [15]:

sns.heatmap(USAHousing.corr(), annot = True)

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x20c5ab4cef0>

Splitting the dataset

In [16]:

USAHousing.columns

Out[16]:

Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'],
 dtype='object')

In [17]:

X = USAHousing[['Avg. Area Income','Avg. Area House Age','Avg. Area Number of Rooms','Avg. Area Number of

In [18]:

y = USAHousing['Price']

In [19]:

from sklearn.model selection import train test split

In [20]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 101)
```

Training the model(Test data)

In [23]:

from sklearn.linear_model import LinearRegression

In [24]:

Im = LinearRegression()

In [25]:

lm.fit(X_train, y_train)

Out[25]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Model Evaluation

In [30]:

Im.intercept

Out[30]:

-2640441.3997810436

In [32]:

df = pd.DataFrame(Im.coef_, X.columns)
df.columns = ['Coefficients']
df

Out[32]:

Coefficients

 Avg. Area Income
 21.566696

 Avg. Area House Age
 165453.042478

 Avg. Area Number of Rooms
 120499.839093

 Avg. Area Number of Bedrooms
 1999.785336

 Area Population
 15.340604

In [33]:

prediction = Im.predict(X_test)

In [34]:

plt.scatter(y_test, prediction) plt.show()

In [37]:

```
df1 = pd.DataFrame({'Actual': y_test, 'Predicted': prediction})
df2 = df1.head(25)
df2
```

Out[37]:

	Actual	Predicted
1718	1.251689e+06	1.257920e+06
2511	8.730483e+05	8.221124e+05
345	1.696978e+06	1.740669e+06
2521	1.063964e+06	9.724521e+05
54	9.487883e+05	9.934223e+05
2866	7.300436e+05	6.441261e+05
2371	1.166925e+06	1.073912e+06
2952	7.054441e+05	8.565840e+05
45	1.499989e+06	1.445318e+06
4653	1.288199e+06	1.204342e+06
891	1.441737e+06	1.455792e+06
3011	1.279681e+06	1.298557e+06
335	1.754969e+06	1.735924e+06
3050	1.511653e+06	1.336926e+06
3850	1.441956e+06	1.387637e+06
834	1.119993e+06	1.222404e+06
3188	7.278665e+05	6.137863e+05
4675	1.138885e+06	9.639335e+05
2564	1.074263e+06	1.221197e+06
1866	1.386473e+06	1.198072e+06
1492	4.046436e+05	5.058619e+05
3720	1.449829e+06	1.769107e+06
618	1.775875e+06	1.853881e+06
3489	1.202051e+06	1.200370e+06
2145	1.105737e+06	1.065129e+06

In [38]:

df2.plot(kind = 'bar', figsize = (10,8)) plt.show()

In [36]:

sns.distplot((y_test-prediction), bins = 50)

C:\Users\DELL\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will r esult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x20c5c235978>

Evaluating the Model

In [39]:

from sklearn import metrics
print('MAE',metrics.mean_absolute_error(y_test, prediction))
print('MSE', metrics.mean_squared_error(y_test, prediction))
print('RMSE',np.sqrt(metrics.mean_squared_error(y_test, prediction)))

MAE 81305.23300085348 MSE 10100187858.863457 RMSE 100499.69083964117

In []: