TEORÍA CUÁNTICA DE CAMPOS CURSO JAVIER GARCÍA

Conceptos matemáticos de teoría cuántica de campos

Desarrollo de series de potencia mediante Taylor

Diagonalización de matrices

Una matriz cuadrada "A" se dice que es diagonalizable si es semejante a una matriz diagonal. Es decir, si mediante un cambio de base puede reducirse a una forma diagonal. En este caso, la matriz podrá descomponerse de la forma $A=MDM^{-1}$. En donde "M" es una matriz invertible cuyos vectores columna son vectores propios de A, y D es una matriz diagonal formada por los valores propios de A.

Si la matriz A es semejante ortogonalmente a una matriz diagonal, es decir, si la matriz M es ortogonal se dice entonces que la matriz A es diagonalizable ortogonalmente, pudiendo escribirse como $A = MDM^T$. El teorema espectral garantiza que cualquier matriz cuadrada simétrica con coeficientes reales es ortogonalmente diagonalizable. En este caso M está formada por una base ortonormal de vectores propios de la matriz siendo los valores propios reales. La matriz M es por tanto ortogonal y sus vectores filas de M^{-1} son vectores columnas de M.

Si una matriz es simétrica entonces es diagonalizable

Una matriz simétrica tiene la siguiente forma

$$\begin{pmatrix} a & b & c \\ b & e & d \\ c & d & f \end{pmatrix}$$

Ejemplo.

Encontrar una base de vectores $M = \{v_1, v_2\}$ que sea propio de la matriz

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Para que exista un vector propio de la matriz se supone que el vector debe tener la forma

$$Av = \lambda v$$

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x - y \\ -x + y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$$

$$\begin{pmatrix} x - y \\ -x + y \end{pmatrix} - \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x - y - \lambda x \\ -x + y + \lambda y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$A - \lambda \mathbb{I} = 0$$

Teorema: Existen infinito número de vectores a_iv para una sola λ que satisface un sistema compatible indeterminado. Para encontrar los eigenvalores

$$Det(A - \lambda \mathbb{I}) = 0$$

$$(1-\lambda)^2 - 1 = 0$$

Los eigenvalores son

$$\lambda_1 = 0$$
, $\lambda_2 = 2$

Para el eigenvector de $\lambda_1=0$ existen infinitos valores de vectores, para nuestro estudio estaremos usando los vectores cuya magnitud o modulo sea igual a 1 (se buscan normalizar)

$$v_1 = \frac{1}{\sqrt{2}} \binom{1}{1}$$

Para $\lambda_2=2$

$$v_2 = \frac{1}{\sqrt{2}} {\binom{-1}{1}}$$

Una condición que pide la teoría será que el determinante de la base sea mayor que cero

$$|v_1 \quad v_2| = \begin{vmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} > 0$$

$$detM = \begin{vmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} = 1$$

Ortogonalidad de las componentes de la base M

Esos vectores son ortogonales $v_1 \cdot v_2 = 0$

$$v_1^T v_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Teorema: Una propiedad de las matrices ortogonales es que la matriz inversa es igual a su transpuesta. Por lo que $M^{-1}=M^T$

Teorema: Si una matriz es simétrica entonces la matriz es ortogonalmente diagonalizable y si una matriz es ortogonalmente diagonalizable entonces es simétrica.

La matriz diagonal se puede calcular

$$D = M^T A M$$

$$A = MDM^T$$

Ejercicio

Se quiere hacer un cambio de variable de manera que en las nuevas variables u,v que son de la base

$$M = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$x^2 + y^2 - 2xy = u^2 + v^2$$

El vector dado está expresado en la base canónica

$$v = {x \choose y} = x {1 \choose 0} + y {0 \choose 1}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

$$x = \frac{u - v}{\sqrt{2}}, \qquad y = \frac{u + v}{\sqrt{2}}$$

Se puede escribir entonces como

$$x^{2} + y^{2} - 2xy = \lambda_{1}u^{2} + \lambda_{2}v^{2}$$
$$A\binom{x}{y} = D\binom{u}{v}$$

Ejercicio propuesto

Se define un campo

$$\phi(x) = (\phi_1(x) \phi_2(x) \phi_3(x))$$

$$L = -6\phi_1^2, -6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3$$

A) Encontrar la matriz A que cumple

$$\phi^T A \phi = L$$

Solución.

$$(\phi_1 \phi_2 \phi_3) A \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = -6\phi_1^2 - 6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3$$

Para encontrar los valores que debe tener la matriz A se proponen los siguientes términos dentro de la matriz los cuales deben ser iguales a L

$$(\phi_1 \phi_2 \phi_3) \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = -6\phi_1^2 - 6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3$$

Realizando la multiplicación de la parte $A\phi$

$$(\phi_1 \ \phi_2 \ \phi_3) \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = (\phi_1 \ \phi_2 \ \phi_3) \begin{pmatrix} A_{11} \phi_1 + A_{12} \phi_2 + A_{13} \phi_3 \\ A_{21} \phi_1 + A_{22} \phi_2 + A_{23} \phi_3 \\ A_{31} \phi_1 + A_{32} \phi_2 + A_{33} \phi_3 \end{pmatrix}$$

Ahora la parte de la multiplicación ϕ^T

$$\phi_1(A_{11}\phi_1 + A_{12}\phi_2 + A_{13}\phi_3) + \phi_2(A_{21}\phi_1 + A_{22}\phi_2 + A_{23}\phi_3) + \phi_3(A_{31}\phi_1 + A_{32}\phi_2 + A_{33}\phi_3)$$

$$= -6\phi_1^2, -6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3$$

$$A_{11}\phi_1^2 + A_{12}\phi_1\phi_2 + A_{13}\phi_1\phi_3 + A_{21}\phi_2\phi_1 + A_{22}\phi_2^2 + A_{23}\phi_2\phi_3 + A_{31}\phi_3\phi_1 + A_{32}\phi_3\phi_2 + A_{33}\phi_3^2 =$$

Los coeficientes de la matriz simétrica son $A_{12}=A_{21}$, $\ A_{23}=A_{32}$

$$A_{12} + A_{21} = A_{23} + A_{32} = -\sqrt{2}$$

$$A_{11} = A_{22} = A_{33} = -6$$
, $A_{12} = A_{23} = A_{21} = A_{32} = -\frac{\sqrt{2}}{2}$, $A_{13} = A_{31} = 0$

$$A = \begin{pmatrix} -6 & -\frac{\sqrt{2}}{2} & 0\\ -\frac{\sqrt{2}}{2} & -6 & -\frac{\sqrt{2}}{2}\\ 0 & -\frac{\sqrt{2}}{2} & -6 \end{pmatrix}$$

B) Diagonalizar A

Solución.

Los valores propios λ se calculan mediante el determinante

$$Det(A - \lambda \mathbb{I}) = 0$$

$$\begin{vmatrix} -6 & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & -6 & -\frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & -6 \end{vmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{vmatrix} = 0$$

Haciendo las operaciones

$$A - \lambda \mathbb{I} = \begin{pmatrix} -6 - \lambda & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & -6 - \lambda & -\frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & -6 - \lambda \end{pmatrix}$$

$$Det(A - \lambda \mathbb{I}) = -(6 + \lambda) \left[(6 + \lambda)^2 - \left(\frac{\sqrt{2}}{2}\right)^2 \right] + \frac{\sqrt{2}}{2} \left[\left(\frac{\sqrt{2}}{2}\right) (6 + \lambda) - 0 \right]$$

$$= -(6 + \lambda) \left[(6 + \lambda)^2 - \frac{1}{2} \right] + \frac{1}{2} (6 + \lambda)$$

$$= -(6 + \lambda) \left\{ (6 + \lambda)^2 - \frac{1}{2} - \frac{1}{2} \right\} = -(6 + \lambda) \{36 + 12\lambda + \lambda^2 - 1\} = -(6 + \lambda) \{35 + 12\lambda + \lambda^2\}$$

$$= -(6 + \lambda) (7 + \lambda) (5 + \lambda) = 0$$

$$\lambda_1 = -7, \quad \lambda_2 = -6, \quad \lambda_3 = -5$$

Matriz que contiene a los eigenvectores que son base de A

$$\vec{m}_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \qquad \vec{m}_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, \qquad \vec{m}_3 = \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix}$$

En forma general tenemos $(A - \lambda_i \mathbb{I}) \vec{m}_i = \vec{0}$. Las ecuaciones generales son las siguientes

$$\begin{pmatrix} -6 - \lambda_i & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & -6 - \lambda_i & -\frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & -6 - \lambda_i \end{pmatrix} \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$-(6 + \lambda_i)x_i - \frac{\sqrt{2}}{2}y_i = 0$$
$$-\frac{\sqrt{2}}{2}x_i - (6 + \lambda_i)y_i - \frac{\sqrt{2}}{2}z_i = 0$$

$$-\frac{\sqrt{2}}{2}y_i - (6+\lambda_i)z_i = 0$$

Ahora para el eigenvector \vec{m}_1 con eigenvalor λ_1 lo cual es $(A-\lambda_1\mathbb{I})\vec{m}_1=0$. Las ecuaciones son las siguientes

$$-(6-7)x_1 - \frac{\sqrt{2}}{2}y_1 = 0$$

$$-\frac{\sqrt{2}}{2}x_1 - (6-7)y_1 - \frac{\sqrt{2}}{2}z_1 = 0$$

$$-\frac{\sqrt{2}}{2}y_1 - (6-7)z_1 = 0$$

La dependencia

$$x_{1} = \frac{\sqrt{2}}{2}y_{1}, \qquad \frac{\sqrt{2}}{2}y_{1} = z_{1}$$

$$\vec{m}_{1} = \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2}y_{1} \\ y_{1} \\ \frac{\sqrt{2}}{2}y_{1} \end{pmatrix} = y_{1} \begin{pmatrix} \frac{\sqrt{2}}{2} \\ 1 \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$

Ahora buscamos el valor de z_2 para que $|\vec{m}_1| = 1$

$$|\vec{m}_1| = z_1 \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + 1 + \left(\frac{\sqrt{2}}{2}\right)^2} = 1$$

$$z_1 = \frac{1}{\sqrt{2}}$$

$$\vec{m}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sqrt{2}}{2} \\ 1 \\ \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \end{pmatrix}$$

Ahora para el eigenvector \vec{m}_2 con eigenvalor λ_2 lo cual es $(A - \lambda_2 \mathbb{I})\vec{m}_2 = 0$. Las ecuaciones son las siguientes

$$-(6-6)x_2 - \frac{\sqrt{2}}{2}y_2 = 0$$
$$-\frac{\sqrt{2}}{2}x_2 - (6-6)y_2 - \frac{\sqrt{2}}{2}z_2 = 0$$

$$-\frac{\sqrt{2}}{2}y_2 - (6-6)z_2 = 0$$

La dependencia y los valores son

$$x_2 = -z_2, y_2 = 0$$

$$\vec{m}_2 = \begin{pmatrix} -z_2 \\ 0 \\ z_1 \end{pmatrix} = z_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Ahora buscamos el valor de z_2 para que $|\vec{m}_2| = 1$

$$|\vec{m}_2| = z_2 \sqrt{(-1)^2 + 1} = 1$$

$$z_2 = \frac{1}{\sqrt{2}}$$

$$\vec{m}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{pmatrix}$$

Ahora para el eigenvector \vec{m}_3 con eigenvalor λ_3 lo cual es $(A - \lambda_3 \mathbb{I})\vec{m}_3 = 0$. Las ecuaciones son las siguientes

$$-(6-5)x_3 - \frac{\sqrt{2}}{2}y_3 = 0$$

$$-\frac{\sqrt{2}}{2}x_3 - (6-5)y_3 - \frac{\sqrt{2}}{2}z_3 = 0$$

$$-\frac{\sqrt{2}}{2}y_3 - (6-5)z_3 = 0$$

La dependencia de las componentes en términos de la componente y_3

$$x_3 = \frac{\sqrt{2}}{2}y_3, \qquad z_3 = \frac{\sqrt{2}}{2}y_3$$

$$\vec{m}_3 = \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} y_3 \\ -y_3 \\ \frac{\sqrt{2}}{2} y_3 \end{pmatrix} = y_3 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -1 \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$

Ahora buscamos el valor de y_3 para que $|\vec{m}_3|=1$

$$|\vec{m}_3| = \sqrt{\left(-\frac{\sqrt{2}}{2}y_3\right)^2 + y_3^2 + \left(-\frac{\sqrt{2}}{2}y_3\right)^2} = 1$$

$$y_3\sqrt{\frac{1}{2}+1+\frac{1}{2}}=1$$
, $y_3=\frac{1}{\sqrt{2}}$

$$\vec{m}_3 = -y_3 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -1 \\ \frac{\sqrt{2}}{2} \end{pmatrix} = -\frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -1 \\ \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{2} \end{pmatrix}$$

La nueva base está dada por

$$M = \begin{pmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \overline{\sqrt{2}} & \frac{1}{2} \end{pmatrix}$$

Ahora se calcula la matriz diagonal

$$D = M^T A M$$

$$D = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -6 & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & -6 & -\frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & -6 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} -5 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} -5 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -7 \end{pmatrix}$$

Hay que pasar a unas variables ϕ a ψ mediante la matriz

$$\phi_i = M_{ij}\psi_j$$

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

C) Mostrar que

$$L = \psi_j^T D \psi_j$$

$$L = (\psi_1 \, \psi_2 \, \psi_3) \begin{pmatrix} -5 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -7 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$
$$L = -5\psi_1^2 - 6\psi_2^2 - 7\psi_3^2$$

Comprobación mediante Mathematica

🥸 Matriz para teoría cuántica de campos curso Javier.nb * - Wolfram Mathematica 11.3

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

Out[73]=
$$\left\{\left\{-6, -\frac{1}{\sqrt{2}}, 0\right\}, \left\{-\frac{1}{\sqrt{2}}, -6, -\frac{1}{\sqrt{2}}\right\}, \left\{0, -\frac{1}{\sqrt{2}}, -6\right\}\right\}$$

In[74]:= Eigenvalues[A]

Out[74]=
$$\{-7, -6, -5\}$$

$$ln[96]:=$$
 Idn = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Out[96]=
$$\{\{1, 0, 0\}, \{0, 1, 0\}, \{0, 0, 1\}\}$$

In[106]:= A + 6 Idn

Out[106]=
$$\left\{ \left\{ 0, -\frac{1}{\sqrt{2}}, 0 \right\}, \left\{ -\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right\}, \left\{ 0, -\frac{1}{\sqrt{2}}, 0 \right\} \right\}$$

Out[107]=
$$\left\{ \left\{ 0, -\frac{1}{\sqrt{2}}, 0 \right\}, \left\{ -\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right\}, \left\{ 0, -\frac{1}{\sqrt{2}}, 0 \right\} \right\}$$

In[105]:= A + 5 Idn

Out[105]=
$$\left\{\left\{-1, -\frac{1}{\sqrt{2}}, 0\right\}, \left\{-\frac{1}{\sqrt{2}}, -1, -\frac{1}{\sqrt{2}}\right\}, \left\{0, -\frac{1}{\sqrt{2}}, -1\right\}\right\}$$

In[75]:= Eigenvectors[A]

Out[76]=
$$\{\{1, \sqrt{2}, 1\}, \{-1, 0, 1\}, \{1, -\sqrt{2}, 1\}\}$$

In[93]:= Det[M]

Out[93]= 1

In[49]:= Inverse[M] // TraditionalForm

Out [49]//TraditionalForm=

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}$$

In[50]:= Transpose[M] // TraditionalForm

Out ISO1//Traditional Forms

$$\begin{pmatrix}
\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{pmatrix}$$

In[94]:= d = M.A.Inverse[M] // Simplify

Out [94]= {{-5, 0, 0}, {0, -6, 0}, {0, 0, -7}}