Algebra 1 CP	
Period(s):	

Date:
Day #: 4
Section: 8-3a

LESSON PLAN

A. Warm Up:

CST/CAHSEE: A1 10.0

1) The product of (x+7)(x+3) is:

A
$$x^2 + 21$$

B
$$x^2 + 10x + 21$$

$$C 2x + 10$$

$$x^2 + 3x + 7x + 21$$

Review:

2) Solve each diamond problem.

Remember $\frac{\textbf{product}}{a}$

<u>sum</u>

	_30/
· c · `	
· /	13
	15

Current:

3) Multiply (2x+3)(x+5) using a generic rectangle.

 ${\it Current:}$

4) Multiply (x+4)(x+6) using a generic rectangle.

B. Homework Review:

C. Notes: Factoring $x^2 + bx + c$ Trinomials

Objectives: Factor $x^2 + bx + c$ using a generic rectangle. CA Std. 11.0

Lets look at the problems from the warm up.

$$(x+7)(x+3)$$
 $(2x+3)(x+5)$ $(x+4)(x+6)$

 $\therefore x^2 + 10x + 21 \quad \therefore 2x^2 + 13x + 15 \quad \therefore x^2 + 10x + 24$

"Did anybody notice the products of the diagonals were equal in all 3 examples?"

This will always be true. We can use this fact to help us factor the trinomials using generic rectangles.

Ex. 1 Factor
$$x^2 + 7x + 10$$
 x^2 always went here.

Constant always

The product of the diagonal is $10x^2$. The product of the other diagonal must also be $10x^2$ and the sum of the factors must equal 7x. I can use a diamond to help me find the factors.

went here

Practice

$$\begin{array}{c|c}
x + 5 \\
\hline
GCF \text{ of top row} & x & x^2 & 5x \\
+2 & 2x & 10
\end{array}$$
What is the GCF of the top row?
$$\begin{array}{c|c}
x + 5 \\
\hline
(x) \\
x^2 + 7x + 10 = (x + 2)(x + 5)
\end{array}$$

Ex. 2 Factor $x^2 + 5x + 6$

"Let's do another!"

"What if there are two variables?"

Ex. 3 Factor $a^2 + 7ab + 10b^2$

$$\therefore a^2 + 7ab + 10b^2 = (a + 2b)(a + 5b)$$

"What if you have negative terms?"

Ex. 4 Factor $x^2 - 8x - 20$

$$\begin{array}{c|c}
-20x^2 \\
-10x + 2x \\
-8x
\end{array}$$

$$\therefore x^2 - 8x - 20 = (x+2)(x-10)$$

Practice

You Try:

a) Factor
$$x^2 + 6x + 8$$

a) Factor
$$x^2 + 6x + 8$$
 b) Factor $a^2 + 7ab + 10b^2$

Reflection: Can all trinomials be factored? Are there other methods for factoring?

D. Homework: p 500; 20-28 - you must use generic rectangles and diamonds.