PETR 6328: Problem Set #3

Instructor: Dr. B. Dindoruk, University of Houston

Due Date: October 27, 2015

Problem Statement:

Write a program/implementation that calculates the compositions and molar volumes (densities) of two phases in equilibrium for the quaternary system given below (you need to write a two-phase flasher with Soave-Redlich-Kwong and Peng-Robinson EOS capabilities – see Problem Set # 2).

- Document your work and outline the process. Presentation should be neat and professional (tables, plots etc, as needed).
- Use the fugacity expression from Problem Set #2 (also given below)
- Include source code/listing and executable(s) (This is a must) and relevant details how to run the program/implementation + again how you have completed the work
- Please submit all your work electronically using blackboard (pls. pack all the files together to make it easier to download).

Flash Conditions:

Temperature: 180 °F Pressure: 2000 psia

Mixture Composition:

CO2: 0.65 (mole fraction)
CH4: 0.20 (mole fraction)
n-C4: 0.05 (mole fraction)
n-C10: 0.10 (mole fraction)

INPUT DATA

Binary Interaction Parameters (PREOS):

kij	CO2	CH4	n-C4	n-C10
CO2	0	0.1200	0.1200	0.1141
CH4	0.1200	0	0.0000	0.0422
n-C4	0.1200	0.0000	0	0.0078
n-C10	0.1141	0.0422	0.0078	0

Binary Interaction Parameters (SRKEOS):

kij	CO2	CH4	n-C4	n-C10
CO2	0	0.1200	0.1200	0.1304
CH4	0.1200	0	0.0000	0.0411
n-C4	0.1200	0.0000	0	0.0067
n-C10	0.1304	0.0411	0.0067	0

Component	MW	Tc (F)	Pc (psi)	Acentric Factor (ω)	Cpen (ft3/lb- mol) FOR PREOS (Optional)	Cpen (ft3/lb- mol) FOR SRKEOS (Optional)
CO2	44.010	87.890	1069.87	0.2250	-2.63E-02	4.85E-02
CH4	16.043	-116.590	667.20	0.0080	-8.33E-02	1.01E-02
n-C4	58.124	305.690	551.10	0.1930	-0.10	0.13
n-C10	142.285	652.010	305.68	0.4900	0.26	0.68

Fugacity expression for the generalized cubic $P = \frac{RT}{V - b} - \frac{a\alpha}{V^2 + ubV + wb^2}$ (as defined in Homework #2) is :

$$\ln \hat{\phi}_i = \ln \frac{\hat{f}_i}{y_i P} = \frac{B_i}{B} (Z - 1) - \ln(Z - B) + \frac{A}{B\sqrt{u^2 - 4w}} \left[\frac{B_i}{B} - \delta_i \right] \ln \left(\frac{2Z + B(u + \sqrt{u^2 - 4w})}{2Z + B(u - \sqrt{u^2 - 4w})} \right) \quad i = 1, 2, ..., n_c$$

Where

$$A = \frac{(a\alpha)P}{R^2T^2}, \qquad B = \frac{bP}{RT}$$

and

$$\delta_{i} = \frac{2}{(a\alpha)} \sum_{j=1}^{n_{c}} y_{j} (a\alpha)_{ij} \quad i = 1, 2, ..., n_{c}$$

With the following mixing rules

$$b = \sum_{i=1}^{n_c} y_i b_i \quad \text{and} \quad (a\alpha) = \sum_{i=1}^{n_c} \sum_{i=1}^{n_c} y_i y_j (a\alpha)_{ij}$$
$$(a\alpha)_{ij} = (1 - k_{ij}) \sqrt{(a\alpha)_i (a\alpha)_j}$$

The general form of the cubic EOS in terms of Z – factor $\left(Z = \frac{PV}{RT}\right)$

$$Z^{3} - (1 + B - uB)Z^{2} + (A + wB^{2} - uB - uB^{2})Z - AB - wB^{2} - wB^{3} = 0$$

For example, for Peng-Robinson EOS (u=2, and w= -1), the generalized fugacity coefficient equation for the cubic EOS shown above can be expressed as:

$$\ln \hat{\phi}_{i} = \ln \frac{\hat{f}_{i}}{y_{i}P} = \frac{B_{i}}{B}(Z-1) - \ln(Z-B) + \frac{A}{2\sqrt{2}B} \left[\frac{B_{i}}{B} - \frac{2}{(a\alpha)} \sum_{j=1}^{n_{c}} y_{j}(a\alpha)_{ij} \right] \ln \left(\frac{Z+B(1+\sqrt{2})}{Z+B(1-\sqrt{2})} \right) \quad i = 1,2,...,n_{c}$$

where

$$A = \frac{(a\alpha)P}{R^2T^2}$$
, $B = \frac{bP}{RT}$, $\hat{\phi}_i = \frac{\hat{f}_i}{y_iP}$ (these definitions are the same as in the case of the general

form - of the EOS)

For PREOS, Z is the root of the following cubic equation:

$$Z^{3} - (1-B)Z^{2} + (A-3B^{2}-2B)Z - (AB-B^{2}-B^{3}) = 0$$

ANSWERS:

Using SRK EOS with no volume translation:

 $\label{eq:velocity} \begin{array}{l} V\!\!=\!0.6488523 \; \text{mol}, \; Z_v\!\!=\!0.7002532, \;\; \text{Molar Volume of Vapor (V_v)} \; = 2.4035881 \; \text{ft3/lb-mole} \\ L\!\!=\!0.3511477 \; \text{mol}, \; Z_l\!\!=\!0.5709956, \;\; \text{Molar Volume of Liquid (V_l)} \; = 1.9599173 \; \text{ft3/lb-mole} \\ \end{array}$

Component	Zi (Feed mol frac)	yi (vap mol frac)	xi (liq mol frac)	$K_i = yi/xi$	Partial Fugacity, \hat{f}_i (psi)
CO2	0.65	0.716034	0.527981	1.35617E+00	9.85190E+02
CH4	0.20	0.237363	0.130961	1.81247E+00	5.07354E+02
n-C4	0.05	0.034123	0.079337	4.30101E-01	1.88295E+01
n-C10	0.10	0.012480	0.261720	4.76834E-02	7.10339E-01

Using PR78 EOS with no volume translation:

Component	Zi (Feed mol frac)	yi (vap mol frac)	xi (liq mol frac)	$K_i = yi/xi$	Partial Fugacity, \hat{f}_i (psi)
CO2	0.65	0.713949	0.528543	1.35079E+00	9.3606E+02
CH4	0.20	0.236146	0.131349	1.79785E+00	4.8389E+02
n-C4	0.05	0.035110	0.078280	4.48518E-01	1.7614E+01
n-C10	0.10	0.014795	0.261828	5.65055E-02	6.6118E-01