Microbiome pipelines: 16S sequencing pipeline

jianhong/16s_pipeline

stats

Metagenomics

Microbiome profiling

Microbiome

16S rRNA-seq

- Template relatively short
 - 1.5 kb
- Highly conserved and well studied
 - Amplified by same primers
- Genus-level resolution
 - Closely-related species have a high sequence similarity across the 16S gene

Primer linker

Reverse complement of 3' Illumina adapter

Primer name	Primer sequence	Reference
515f Original	GTGCCAGCMGCCGCGGTAA	Caporaso et al.
806r Original	GGACTACHVGGGTWTCTAAT	Caporaso et al.
515f Modified	GTG Y CAGCMGCCGCGGTAA	Parada et al.
806r Modified	GGACTAC N VGGGTWTCTAAT	Apprill et al.
926r	CCGYCAATTYMTTTRAGTTT	Parada et al.
ITS1f	CTTGGTCATTTAGAGGAAGTAA	Gardes and Bruns
ITS2	GCTGCGTTCTTCATCGATGC	White et al.

4/27/22

Note

- There are multiple different pipelines, such as mothur, QIIME, DADA2, and etc.
- Basic steps: sequence trimming -> demultiplexing -> Chimera filtering -> Sequence classification
- There are multiple available 16S databases, and the used database will affect the taxonomic classification.

Current pipeline

BCL2fastq • bcl2fastq **Trimming** • Trimmomatic fastq_pair_filter.py demultiplex • QIIME2::demux Filter reads • DADA2 classification • DADA2

nextflow

- Track progress tracking
 - Troubleshooting
 - Version control
- Module based design
- Portable and scalable
- Highly reproducible
- Compatible with cluster/cloud computation

10

- Conda is an open-source package management system and environment management system
- It does not require root privilege
- Cons:
 - Not stable as Docker/Singularity
 - Version conflicts
 - Storage space

3 Steps to Run jianhong/16S_pipeline

- Install `conda`
- Install `nextflow`
- Run pipeline

https://youtu.be/XiVnM5iptUI

Install 'MiniConda'

- wget -0 minicoda.sh "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh"
- bash miniconda.sh
- vim ~/.condarc (The order is important)

channels:

- conda-forge
- bioconda
- defaults

Create 'nextflow' environment

• conda create -y --name nextflow bioconda::nextflow=21.10.6

Test run

- Create an interactive job in DCC
 - srun --mem 10G -c 2 --pty bash -i
 - conda activate nextflow
 - nextflow run jianhong/16S_pipeline -r main -profile conda,test
 - To save time for testing:
 - --silva_nr99 '/work/jo117/16S_pipeline/silva_nr99_v138.1_train_set.fa.gz'
 - --silva_tax '/work/jo117/16S_pipeline/silva_species_assignment_v138.1.fa.gz'

Test run by submit it as a job

Create profile config file named as profile.config

```
// submit by slurm
process.executor = "slurm"
process.clusterOptions = "-J ProjectName"
params {
    max_cpus = 2
    max_memory = '6.GB'

// Input data
input = "${projectDir}/assets/test_data"
    skip_bcl2fastq = true
barcodes = "${projectDir}/assets/barcodes.tsv"
    metadata = "${projectDir}/assets/metadata.csv"

// report email
email = 'your@email.addr'
}
```

Create a slurm script file named as microbiome.sh

```
#!/bin/bash

#SBATCH -J 16S_submitter #jobname

#SBATCH -o microbiome.out.%A_%a.txt

#SBATCH -e microbiome.err.%A_%a.txt

#SBATCH --mem-per-cpu=10G #memory for the job submission
node

#SBATCH -c 1 # 1 CPU is good enough

source ${HOME}/.bashrc

conda activate nextflow

nextflow run jianhong/16S_pipeline -r main -profile conda -c
profile.config -resume
```

Run pipeline for your own data

Create profile config file named as profile.config

```
// submit by slurm
process.executor = "slurm"
process.clusterOptions = "-J ProjectName"
params {
// Input data
input = 'path/to/your/initialFiles' // replace it by your own folder contain
Intensities folder.
barcodes = 'path/to/your/barcodes.tsv'
metadata = 'path/to/your/metadata.csv'

// report email
email = 'your@email.addr'
}
```

Create a slurm script file named as microbiome.sh

```
#!/bin/bash

#SBATCH -J 16S_submitter #jobname

#SBATCH -o microbiome.out.%A_%a.txt

#SBATCH -e microbiome.err.%A_%a.txt

#SBATCH --mem-per-cpu=20G #memory for the job submission node

#SBATCH -c 1 # 1 CPU is good enough

mkdir -p tmp

export TMPDIR=${PWD}/tmp

export TMP=${PWD}/tmp

export TEMP=${PWD}/tmp

source ${HOME}/.bashrc

conda activate nextflow

module load bcl2fastq/2.20

nextflow run jianhong/16S_pipeline -r main -profile conda -c profile.config
```

nextflow run jianhong/16S_pipeline -r main -profile conda -c profile.config -resume

Parameters: input/output

- --input '[path to raw reads files]'
 - If fastq files are supplied, the names must follow the pattern: _[RI][12]_[0-9]+, eg: sample1_R1_001.fastq.gz
- --barcodes '[path to barcodes tsv file]'
 - Barcodes will be used by QIIME2::demux
 - Sample file can be found at https://github.com/jianhong/16S_pipeline/blob/main/assets/barcodes.tsv
- --metadata '[path to metadata csv file]'
 - Metadata will be used by Bioconductor::phyloseq package, see help https://bioconductor.org/packages/phyloseq/
 - Sample file can be found at https://github.com/jianhong/16S_pipeline/blob/main/assets/metadata.csv

Parameters: 16S reference

- --silva_nr99: used by assignTaxonomy
- --silva_tax: used by addSpecies
- The latest release can be found at: https://www.arb-silva.de/download/arb-files/
- The defaults are set as files in https://zenodo.org/record/4587955#.YiZhRpNudJU
- The references will be used by DADA2::assignTaxonomy and addSpecies, see help at https://benjjneb.github.io/dada2/training.html
- They can be replaced by other resources such as RDP and UNITE.

Parameters: pipeline control.

- --bcl2fastq: use DCC module bcl2fastq/2:20
- --skip_bcl2fastq: skip bcl2fastq or not
- --skip_fastqc: skip fastqc or not _

• --skip_demultiplex: skip demultiplex or not -

Errors

- Exit code: 127: command not found
 - Check the conda environment installation
- Exit code: 137: out of memory
 - Increase the resource requirement
- Exit code: 139: fault installation
 - Check the conda environment installation

Increase the resource requirement

- https://jianhong.github.io/16S_pipeline/usage.html#resource-requests
- The maximal limitation
 - max_cpus, max_memory, max_time in profile.config file, eg:
 https://github.com/jianhong/16S_pipeline/blob/main/conf/test.config
- Change the requirement by process name in profile.config file.
 - process { withName: BCL2FASTQ { memory = 100.GB } }

Module specific parameters

- All default settings can be found at https://github.com/jianhong/16S pipeline/blob/main/conf/modules.config
- Eg: for trimmomatic, see help at http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual V0.32.pdf

Parameters with demuxing

```
Spinach1 TGTGCGATAACA
                                                                            Spinach2 GATTATCGACGA
withName: QIIME_DEMUX {
                                                                            Spinach3 GCCTAGCCCAAT
    ext.args = '--m-barcodes-column barcode-sequence --p-rev-comp-mapping-barcodes '
    publishDir = [
      path: { "${params.outdir}/3_demultiplex" },
      mode: 'copy',
      saveAs: { filename -> filename.equals('versions.yml') ? null : filename }
```

https://docs.qiime2.org/2022.2/plugins/available/demux/emp-paired/

sample-id barcode-sequence

#q2:types categorical

Trim by dada2::filterAndTrim

For FILTERING, the options are

```
--trimming_reads, -t
                           "logical", Trim reads or not.
                           "integer", Default 0. The number of nucleotides to remove
--trim_left, -a,
                                        from the start of the R1 read. If both
                                       trunc_length_left and trim_left are provided,
                                       filtered reads will have length
                                       trunc_length_left-trim_left.
                           "integer", Default 0. The number of nucleotides to remove
--trim_right, -b,
                                        from the start of the R2 reads. If both
                                        trunc_length_right and trim_right are provided,
                                       filtered reads will have length
                                       trunc_length_right-trim_right.
                           "integer", Default 0 (no truncation). Truncate R1 reads
--trunc_length_left, -m,
                                        after trunc_length_left bases. Reads shorter
                                        than this are discarded.
--trunc_length_right, -n, "integer", Default 0 (no truncation). Truncate R2 reads
                                        after trunc_length_right bases. Reads shorter
                                        than this are discarded.
```

dada2 workflow

- check PAIRED END by length(filtered forward) == length(filtered reverse)
- 2. Learn Error Rates by a subset data (36 samples) (Another way learn Errors)
 - 1. Dereplication by dada2::derepFastq
 - 2. Sample Inference by dada2::dada(dereps, err=NULL, selfConsist=TRUE, multithread=NCORE)
- 3. Run 'dada' by the error model for all samples
 - 1. derepFastq → dada(sample, err=errModel, multithread=NCORE)
- 4. Merge Paired Reads by mergePairs
- 5. Construct Sequence Table: makeSequenceTable and Trim sequences by sequence lengths.
- 6. Remove Chimeras: removeBimeraDenovo(seqtab, method='consensus', multithread=NCORE)
- 7. Assign Taxonomy:
 - 1. TaxTable <- assignTaxonomy(sequences, TRAIN_SET, tryRC=TRYRC, multithread=NCORE)
 - addSpecies(TaxTable, SPECIES_ASSIGNMENT, tryRC=TRYRC, verbose=TRUE)

Parameter - - tryRC

- If you have unmerged reverse-complement reads issue, you may want to try the parameter --tryRC
- It will try to merge the reverse-complement reads counts.
- Please note that partial of this operation is not in DADA2 package. It is used for the reads that not proper demultiplexed.

Modula names and outputs

Modules	program	outputs
BCL2FASTQ	bcl2fastq	0_data_raw/*.fastq.gz
FASTQC	fastqc	fastqc/*_fastqc.{html,zip}
REMOVE_PRIMERS	trimmomatic	1_remove_primers/*.fastq.gz
SYNC_BARCODES	sync_paired_end_reads.py	2_sync_barcodes/*.fastq.gz
QIIME_DEMUX	qiime demux	3_demultiplex/demuxd_reads/*.f astq.gz
FILTERING	dada2::filterAndTrim	4_filter/ <sampleid>/*.fastq.gz</sampleid>
DADA2	dada2	5_data2/*
FHYLOSEQ	phyloseq	6_phyloseq/*
KRONA	Krona	7_Krona/*
MULTIQC 4/27/22	multiqc	multiqc/*

Krona visalization

- https://jianhong.github.io/16S_pi peline/krona.html
- https://github.com/marbl/Krona/ wiki

QC reports

• https://jianhong.github.io/16S_pi
peline/multiqc.html

Get help

- Online Doc: https://jianhong.github.io/16S pipeline/
- Email: jianhong.ou@duke.edu
- Report an issue: https://github.com/jianhong/16S_pipeline/issues
- Dcc usage: https://oit-rc.pages.oit.duke.edu/rcsupportdocs/dcc/#cluster-shared-storage-resources-work-and-scratch

Acknowledgements

