(Vize Haftası) - 9. Hafta

Vize Soruları

- 1. LCD
- 2. Matris Çarpımı
- 3. Algoritma Analizi
- 4. Sıralama O(n)

???

PRİM ALGORİTMASI

Kapsama Algortiması (Min Kapsama Ağacı)'nın Adımları

Ağırlıklı yönsüz graf

- Adım 0 Herhangi bir eleman seçilir $S = \{r\} \quad A = \emptyset \quad r : k \ddot{o} k$
- Adım 1 En kısa kenarı bul Kısa kenarın bir ucu S 'de diğer ucu V-S' de Bu kenarı A kümesine ekle
- Adım 2 $\underbrace{V-S=\varnothing}_{V \text{ fark } S} \Rightarrow dur (S,A)$ ağacını yazdır

Örnek: Min. Kapsama ağacını bulunuz?

$$ek = (a,b)$$

$$A = \{(a,b)\}$$

$$S = \{(a,b)\} \quad V - S = \{c,d,e,f,g\}$$

$$ek = \{(a,c),(b,d)\}\$$
 $A = \{(a,b),(b,d)\}\$
 $S = \{(a,b,d)\}\$ $V - S = \{c,e,f,g\}$

(a,c)=8(b,d)=8

(b,d) yi aldık

$$ek = \{(d,c)\}\$$
 $A = \{(a,b),(b,d),(d,c)\}\$
 $S = \{(a,b,d,c)\}\$ $V - S = \{e,f,g\}$

$$ek = \{(c, f)\}\$$

$$A = \{(a,b), (b,d), (d,c), (c,f)\}\$$

$$S = \{(a,b,d,c,f)\} \quad V - S = \{e,g\}\$$

$$ek = \{(f,g)\}\$$

$$A = \{(a,b),(b,d),(d,c),(c,f),(f,g)\}\$$

$$S = \{(a,b,d,c,f,g)\}\ V - S = \{e\}\$$

(f,e)=5 (g,e)=6 (f,e) seçildi çünkü 5<6

$$ek = \{(f,e)\}$$

$$A = \{(a,b),(b,d),(d,c),(c,f),(f,g),(f,e)\}$$

$$S = \{(a,b,d,c,f,g,e)\} \quad V - S = \emptyset$$

PRİM ALGORİTMASI

Kapsama Algortiması (Min Kapsama Ağacı) 'nın Algoritması

PRİM ALGORİTMASI

Kapsama Algortiması (Min Kapsama Ağacı) 'nın Analizi

- ✓ En küçük kenar **kuyruk kullanılarak** bulunuyor. (Kullanılan yöntem performansı etkileyecektir)
- ✓ ExtractMin(); → Kuyruktan en küçük değere sahip elemanı çıkartıyor
- Kuyruktaki herbir elemanın çıkarılması
- $O(\log n)$ $O(n \cdot \log n)$
- Her kenar için n kere yapıldığından
- $O(n \cdot \log n)$

decreaseKey kısmında

 $O(e \cdot \log n)$

$$T(n) = O((e+n) \cdot \log n)$$

$$T(n,e) = 3n + 2\sum_{u=1}^{V} \left[O(\log n) + O(\deg(u)\log n) \right]$$

$$T(n,e) = 3n + 2 O\left(\log n \sum_{u=1}^{V} [1 + \deg(u)]\right)$$

$$T(n,e) = 3n + 2O\left(\log n \left(n + \frac{2e}{ihmal}\right)\right)$$

$$T(n,e) = O[(V+E) \cdot \log n]$$

e edge

(kenar

KRUSKAL ALGORİTMASI / Greedy Yaklaşım

Amaç: Min Kapsama ağacını bulmak (Yönsüz ve Ağırlıksız | Döngü İçermeyen)

Kapsama Algortiması (Min Kapsama Ağacı)'nın Adımları

```
T = \emptyset
for i = 1 to n
if TU\{i\}' de çevrim yoksa
T' ye ekle
end if
end for
return T
```

Detaylı Algoritma Analizi

Girdi G = (V, E)

Çıktı G'nin kapsamam ağacı T =Kenarlar kümesi

1.Örnek

2.Örnek:

Çevrim oluşturmamasına dikkat edilerek en küçükten başlanarak çiziliyor.

HUFFMAN ALGORITMASI

(Veri Sıkıştırma Algortiması)

Örnek:

50

Bir dosya analiz edilmiş ve aşağıdaki sonuçlar çıkmıştır (Rakamlar tekrar sayısını yani frekansı)

Küçük olan sola büyük olan sağa eklenir

Tüm düğümler bitinceye kadar bu işlemi tekrarlıyoruz

Bilgiler yapraklarda

Soldaki kollara 1, Sağdaki kollara 1 yazıyoruz

A	11	2bit	x50=100
C	110	3bit	x25 = 75
E	010	3bit	x12=36
D	00	2bit	x30=60
F	01	2bit	x45=90

Toplam: 361bit

HUFFMAN ALGORİTMASI Analizi

Zaman Kaybı: Sıkıştırma ve açma işlemleri sırasında olacak

Not: Az sayıda karakter dosya boyutunu küçültme yerine büyütür

```
|Huffman(c)| \\ n \leftarrow |c| \\ Q \leftarrow c \\ for \quad i = 1 to \ n-1 \\ z = D \ddot{u} \ddot{g} \ddot{u} m O l u \dot{s} tur() \\ x = left(z) = MinGetir(Q) \\ y = right(z) = MinGetir(Q) \\ f(z) = f(x) + f(y) \\ Ekle(Q, z) \\ end \ for \\ return \ MiGetir(Q)
```

İkili (Binary) Heap kullanıldığı için;

Heap Oluşturma O(n)Çıkartma ve ekleme işlemi $O(\log n)$ $T(n) = \sum_{i=1}^{n} \log i = O(\log(n!)) = O(n \log n)$

$$T(n) = O(n \log n)$$