Matemáticas Discretas 2023-1 Examen 4

Este es un examen de trabajo individual. Debes entregarlo mediante Moodle, con todas las indicaciones precisadas en la actividad correspondiente.

- 1. (2.5 pts) Considera la gráfica de aristas ponderadas cuyos vértices son los números $1, 2, \ldots, 12$ y en donde dos números i, j tienen una arista entre ellos si i divide a j, o j divide a i. En ese caso, a esa arista se le pone peso |i-j|. Usa el algoritmo de Prim manualmente para encontrar un árbol de peso mínimo en esta gráfica.
- 2. (2.5 pts) Se tiene una gráfica dada G en la cuál se sabe que dos vértices u y v no están conectados entre sí, es decir, no hay ningún camino posible de u a v. Queremos agregar a G más aristas, pero cuidando que u y v sigan desconectados.
 - Diseña un algoritmo que determine cuál es el máximo número de aristas que se pueden agregar de modo que u y v sigan desconectados. De entrada, recibe una gráfica en formato de vértices y aristas. De salida, debe de regresar tanto el máximo número de aristas que se pueden agregar, como la gráfica con las aristas agregadas, en formato de vértices y aristas. El algoritmo debe correr en tiempo a lo más $O(n^2)$.
- 3. (2.5 pts) Un fragmento de ADN es una palabra que usa únicamente las letras A, C, G y T. Se tienen n fragmentos de ADN de longitud 4. Si se tienen dos fragmentos de ADN, podemos pegarlos si pasa alguna de las siguientes dos condiciones:
 - Las dos últimas letras del primero son iguales a las dos primeras letras del segundo.
 - Las tres últimas letras del primero son iguales a las tres primeras letras del segundo.

Por ejemplo, los fragmentos ACGG y CGGT se pueden pegar para obtener ACGGT. Los fragmentos ACTG y TGAA se pueden pegar para obtener ACTGAA.

Dados dos de estos n fragmentos F_1 y F_2 , propón en pseudocódigo un algoritmo que determine si se pueden pegar algunos de los n fragmentos

para obtener un fragmento (de la longitud que sea) que comience con F_1 y termine con F_2 .

Explica las suposiciones de tu modelo y evalúa asintóticamente la complejidad en tiempo de tu propuesta.

- 4. (2.5 pts) Se tienen n intervalos finitos en \mathbb{R} , dados como $[a_i,b_i]$ para cada i en $1,2,\ldots,n$. A partir de ellos, se crea una gráfica G de la siguiente manera: hay un vértice por cada intervalo y hay una arista si los dos intervalos correspondientes se intersectan. Es sencillo verificar si esta gráfica es la gráfica completa en tiempo $O(n^2)$. Veremos cómo hacerlo en menos tiempo.
 - Escríbe qué desigualdades deben cumplir a_i, b_i, a_j, b_j para que los intervalos $[a_i, b_i]$ y $[a_j, b_j]$ se intersecten.
 - Propón en pseudocódigo un algoritmo que use el inciso anterior para determinar si la gráfica G es completa en tiempo $O(n^2)$.
 - Sea b el mínimo de los b_j . Muestra que todas las parejas de intervalos se intersectan si y sólo si b está en todos los intervalos.
 - Propón en pseudocódigo un algoritmo que use el inciso anterior para determinar si la gráfica G es completa en tiempo O(n).
- 5. (+2 pts extra) Sea A la matriz de adyacencia de una gráfica G con n vértices. Toma enteros i, j en $\{1, \ldots, n\}$ y un entero positivo k. Demuestra por inducción que la entrada ij de la matriz A^k es igual a la cantidad de caminos que hay del vértice i al vértice j que tengan longitud k. Usa esto para proponer un algoritmo que calcule esta cantidad de caminos y analiza su tiempo de ejecución.