Analysis of electrical power and energy systems

Practical session 3

5 October 2020

1 The transmission line¹

- 1. The parameters for a 500-kV transmission system with bundled conductors are as follows: $Z_c = 258\Omega$ and $R = 1.76 \times 10^{-2} \Omega/\text{km}$. Calculate the value for the Surge Impedance Loading SIL and the percentage power loss in this transmission line if it is 300 km long and is loaded to its SIL.
- 2. The 500-kV line of type described in Problem 1 is a short-length line, 80 km long. It is loaded to three times its SIL. Calculate the power loss in this line as a percentage of its loading.
- 3. Consider a 300-km long, 345-kV transmission line that has parameters similar to those described in Table 1. Assume its receiving-end voltage $V_R = 1.0$ pu. Plot the voltage ratio V_S/V_R as a function of P_R/SIL , where P_R is the unity power factor load at the receiving end. P_R/SIL varies in a range from 0 to 3.

Table 1: Approximate transmission line parameters with bundled conductors at 60 Hz.

Nominal voltage (kV)	$R (\Omega/\mathrm{km})$	$\omega L (\Omega/\mathrm{km})$	$\omega C (\mu S/km)$
230	0.06	0.5	3.4
345	0.04	0.38	4.6
500	0.03	0.33	5.3
765	0.01	0.34	5.0

- 4. A 200 km long 345-kV line has the parameters given in Table 1. Neglect the resistance. Calculate the voltage profile along this line if it is loaded to
 - (a) $1.5 \times SIL$
 - (b) $0.75 \times SIL$

and the receiving end is held at the voltage of 1 per unit.

2 Solutions

- 1. SIL = 969 MW, power loss = 2.05%
- 2. SIL = 969 MW, power loss = 1.64%

¹Exercises 4.3, 4.4, 4.7 and 4.10 of Ned Mohan's book "Electric power systems, a first course"