Package 'neftest'

July 19, 2021

Type Package
Title Goodness of fit tests based on zero regression characterizations of Tweedie, Bar- Lev and Enis class of distributions
Version 1.0.1
Author Author [aut], Author [aut], Author [aut], Author [aut,cre], Author [aut,cre]
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>
Description Provide test statistics for the goodness of fit tests based on zero regression characterizations of Tweedie, Bar-Lev and Enis class of distributions, and p-value of test statistic according to several specified distributions, which is based on the proposed method.
License GPL (>= 2)
Depends R (>= $3.2.0$)
LazyData true
NeedsCompilation yes
Repository CRAN
<pre>URL https://github.com/xliusufe/neftest</pre>
Encoding UTF-8
R topics documented:
neftest-package pvals

2 pvals

neftest-package	Goodness of fit tests based on zero regression characterizations of Tweedie, Bar-Lev and Enis class of distributions

Description

Provide test statistics for the goodness of fit tests based on zero regression characterizations of Tweedie, Bar-Lev and Enis class of distributions, and p-value of test statistic according to several specified distributions, which is based on the proposed method.

Details

Package: neftest
Type: Package
Version: 1.0.1
Date: 2021-07-18
License: GPL (>= 2)

References

Authors (2021). Goodness of fit tests based on zero regression characterizations of Tweedie, Bar-Lev and Enis class of distributions. Manuscript.

pvals	The p-value of the test based on the test statistic Tnw
·	

Description

Compute the p-value of the test based on the test statistic T_{nw} .

Usage

Arguments

X	A length n vector of input data.
distr	The true distribution including Poisson distribution distr = "Poisson", Gamma distribution distr = "Gamma" and Inverse Gaussian distribution distr = "Inverse Gaussian". Default is distr = "Poisson".
bootstrap	logical. Bootstrap method is used to compute the p-value if FALSE (default), and the maximum likelihood method otherwise.
В	Number of bootstrap samples. Default is 1000.

pvals 3

weight	The weight functions including normal distribution weight = "normal" and Laplace distribution weight = "laplace". Default is weight = "normal".
а	The parameter of the weight function. Default is 1.0. See details in the paper
max.iter	The maximum number of iterations in Newton method. Default is 100.
tol	The precision of the Newton method. Default is 1e-8.

Value

pval The p-value of the test.

References

Authors (2021). Goodness of fit tests based on zero regression characterizations of Tweedie, Bar-Lev and Enis class of distributions. Manuscript.

Examples

```
# Poisson
n <- 100
distr <- "Poisson"
x <- rpois(n,lambda = 1)
pval = pvals(x, distr)
pval
# Poisson with Bootstrap
n <- 100
B <- 500
distr <- "Poisson"
x <- rpois(n,lambda = 1)
pval = pvals(x, distr, bootstrap = TRUE, B = B)
pval
# Gamma
n <- 100
distr <- "Gamma"
     <- rgamma(n, shape = 1, rate = 1)</pre>
pval = pvals(x, distr)
pval
# Gamma with Bootstrap
     <- 100
n
     <- 500
distr <- "Gamma"
     <- rgamma(n, shape = 1, rate = 1)</pre>
pval = pvals(x, distr, bootstrap = TRUE, B = B)
pval
```

4 rIGauss

```
# Inverse Gaussian
n     <- 100
distr <- "Inverse Gaussian"
x      <- rIGauss(n, mu = 1, lambda = 1)
pval = pvals(x, distr)

pval

# Inverse Gaussian with Bootstrap
n     <- 100
B      <- 500
distr <- "Inverse Gaussian"
x      <- rIGauss(n, mu = 1, lambda = 1)
pval = pvals(x, distr, bootstrap = TRUE, B = B)</pre>
```

rIGauss

Generates random numbers from Inverse Gaussian distribution.

Description

Generates random numbers from Inverse Gaussian distribution.

Usage

```
rIGauss(n, mu = 1.0, lambda = 1.0)
```

Arguments

n Number of random numbers to be generated.

mu Shape parameter μ . Default is 1. lambda Scale parameter λ . Default is 1.

Details

The probability density function:

$$f(x; \mu, \lambda) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right), x > 0.$$

Value

Х

The random numbers from Inverse Gaussian distribution.

Examples

```
x = rIGauss(n = 10, mu = 1.0, lambda = 1.0) x
```

Tnw 5

Tnw

The test statistic for testing if a distribution is a TBE(γ 0)

Description

Compute the test statistic T_{nw} .

Usage

```
Tnw(x, gamma0 = 1, weight = "normal", a = 1.0)
```

Arguments

Х	A length n vector of input data.
gamma0	The power parameter in TBE(γ_0). Default is 1.
weight	The weight functions including normal distribution weight = "normal" and Laplace distribution weight = "laplace". Default is weight = "normal".
а	The parameter of the weight function. Default is 1.0.

Value

Tn The test statistic T_{nw} .

References

Authors (2021). Goodness of fit tests based on zero regression characterizations of Tweedie, Bar-Lev and Enis class of distributions. Manuscript.

Examples

```
# Poisson
n <- 100
x <- rpois(n,lambda = 1)
   <- 1000
Tn <- Tnw(x, gamma0 = 1, weight = "normal", a = 1.0)
Tb = rep(NA, B)
lambdahat = mean(x)
for(b in 1:B){
 xb <- rpois(n, lambda = lambdahat)</pre>
 Tb[b] \leftarrow Tnw(xb, gamma0 = 1, weight = "normal", a = 1.0)
pval = mean(Tb > Tn)
# Gamma
   <- 100
   <- rgamma(n, shape = 1, rate = 1)
Tn <- Tnw(x, gamma0 = 1, weight = "normal", a = 1.0)
# Inverse Gaussian
   <- rIGauss(n, mu = 1, lambda = 1)
   <- 1000
```

Tnw Tnw

```
Tn <- Tnw(x, gamma0 = 1, weight = "normal", a = 1.0)
Tb = rep(NA, B)
nuhat = mean(x)
lambdahat = (mean(1/x)-nuhat^(-1))^(-1)
for(b in 1:B){
   xb <- rIGauss(n, mu = nuhat, lambda = lambdahat)
   Tb[b] <- Tnw(xb, gamma0 = 1, weight = "normal", a = 1.0)
}
pval = mean(Tb > Tn)
```

Index

```
* package
    neftest-package, 2

neftest (neftest-package), 2
neftest-package, 2

pvals, 2

rIGauss, 4

Tnw, 5
```