Lista de ejercicios Taller Euclides y Hilbert

Fecha límite de entrega: 10 de febrero de 2020

Cada una de las letras E y H del logotipo de este evento están divididas en 5 regiones. Las regiones de la letra E son congruentes a las regiones de la letra H. Encuentra una forma de dividir cada una de estas dos letras en 4 regiones con la misma propiedad.

- 2. Determina si existen las siguientes figuras geométricas:
 - a) Un triángulo equilátero en \mathbb{R}^2 tal que las coordenadas de cada vértice son números enteros.
 - b) Un tetraedro regular en \mathbb{R}^3 tal que las coordenadas de cada vértice son números enteros.
- 3. Determina si los siguientes enunciados son ciertos:
 - a) Existe un conjunto X de 4 puntos en \mathbb{R}^2 de tal forma que para cualesquiera $x, y \in X$ se tiene que dist $(x, y) \in \{1, 2\}$.
 - b) Existe un conjunto X de 6 puntos en \mathbb{R}^3 de tal forma que para cualesquiera $x,y\in X$ se tiene que $\mathrm{dist}(x,y)\in\{1,\sqrt{2}\}.$

4. Sea ABC un triángulo y sean D y E los puntos medios de los lados AB y AC, respectivamente. Sean F y G puntos en el segmento BC tales que |BF| < |BG| y $|FG| = \frac{1}{2}|BC|$. Se construyen H y K como las proyecciones ortogonales de F y E sobre el segmento DG. Demuestra que |DH| = |KG|.

- 5. Sea $r \neq 0$ un número racional y R un rectángulo de lados a y b. Demuestra que se puede dividir a R en una cantidad finita de polígonos y reacomodar esos polígonos para formar un rectángulo de lados ar y b/r.
- 6. Jaimito ha estado estudiando la geometría de \mathbb{R}^n . Consideró un hipercubo de lado 2 y en cada vértice colocó una esfera de radio 1. Después observó que es posible colocar una esfera de radio r y con el mismo centro que el hipercubo que es simultáneamente tangente a las 2^n esferas anteriores y a las 2n caras (n-1)-dimensionales del hipercubo. ¿Cuáles son los valores de n y r?
- 7. Demuestra que para cualesquiera dos números reales α y β se cumple que $\cos(\alpha) + \cos(\beta) = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$.
- 8. Encuentra la matriz (respecto a la base canónica) de la transformación lineal de \mathbb{R}^4 en \mathbb{R}^4 que manda la base ordenada

$$\{(2,0,0,0),(1,1,1,1),(1,1,1,-1),(1,1,-1,1)\}$$

en la base ordenada

$$\{(1,1,1,1),(2,0,0,0),(1,1,1,-1),(1,1,-1,1)\}.$$

¿Se trata de una isometría?

9. Sea $M = \{m_1, \ldots, m_n\} \subset \mathbb{R}^n$ y sea $M' \subseteq M$. Sean $L = \mathcal{L}_{\mathbb{Q}}(M)$ y $L' = \mathcal{L}_{\mathbb{Q}}(M')$, es decir, los subespacios más pequeños de \mathbb{R} que contienen a M y M', respectivamente, cuando consideramos a \mathbb{R} como espacio vectorial sobre \mathbb{Q} . Dada cualquier $f: L' \to \mathbb{R}$ lineal, ¿es posible encontrar $g: L \to \mathbb{R}$ lineal tal que f(m) = g(m) para toda $m \in M'$?