Permit Number 2489A

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Source Name (2) Air Contaminant Name (3)	Emission	Emission Rates (6)	
(+)			lbs/hour	TPY (4)	
ST-B8	Electric Arc Furnace-2 Baghouse Stack	со	24.85	39.76	
		NO _x	5.08	8.14	
		РМ	0.86	2.26	
		PM ₁₀	0.86	2.26	
		PM _{2.5}	0.86	2.26	
		SO ₂	1.08	1.73	
		voc	1.58	2.52	
ST-B24	Electric Arc Furnace-3, Ladle Drying and Scrap Drying Baghouse Stack	со	8.63	24.81	
		NO _x	2.27	6.29	
		РМ	0.26	1.08	
		PM ₁₀	0.26	1.08	
		PM _{2.5}	0.26	1.08	
		SO ₂	1.20	3.49	
		voc	1.77	5.13	
BLDGFUG	Ladle Drying and Scrap Drying, AOD Preheater, Ladle Preheater, Ladle Preheater, Shell Core Making, Manual Core Making, South Foundry Building Fugitives	со	0.67	1.28	
		NO _x	0.70	1.51	
		РМ	0.09	0.15	
		PM ₁₀	0.09	0.15	
		PM _{2.5}	0.07	0.13	
		SO ₂	<0.01	<0.01	
		voc	0.70	1.49	

Project Numbers: 328492

Emission Sources - Maximum Allowable Emission Rates

	1	T		
ST-B18	Argon Oxygen Decarburization, AOD Preheater, Ladle	со	12.95	6.09
	Preheater, and Ladle and Scrap Drying Baghouse Stack	NO _x	5.95	3.57
		РМ	0.72	1.14
		PM ₁₀	0.72	1.14
		PM _{2.5}	0.72	1.14
		SO ₂	1.12	0.45
		voc	1.67	0.72
ST-B21	Core and Mold Making, New Sand Silo 1, Return Sand Silo,	РМ	0.26	0.85
	New Sand Silo 2, Existing Sand Transporter Vent1, Reclaim	PM ₁₀	0.26	0.85
	Sand Silo, Reclaim Transporter Vent, Electric Tunnel Mold	PM _{2.5}	0.26	0.85
	Dryer, Mixer Supply Hopper Assembly, Electric Sand Heaters, Articulating Sand Mold Mixer, Existing Sand Transporter Vent 2, Palmer 200 Core Sand Mixer, New Sand Surge Tank, Palmer 100 Core Sand Mixer, Palmer 300 Core Sand Mixer, Chromite Transporter Vent, and Iron Oxide Transporter Vent Baghouse Stack	voc	0.82	1.95
ST-B26	Hard Face Welders, Grinding and Welding Tables, North Arc Wash Booth, North Torch Tables 1 and 2, Southeast Arc Wash Booth A, Southwest Arc Wash Booth B, Robotic Grinding, Torch Cutting Baghouse Stack	со	<0.01	<0.01
		NOx	<0.01	<0.01
		РМ	0.90	2.98
		PM ₁₀	0.90	2.98
		PM _{2.5}	0.90	2.98
		SO ₂	<0.01	<0.01
		voc	0.05	0.12
ST-SCR2	Cold Box Core Making Scrubber Stack	voc	0.23	1.55
ST-B22	Target Foundry (TF) Sand Molding, Mold Line Heaters,	со	0.57	1.04
	Sand Mold Drying, Return Sand Tank, Rotary Screen, Muller,	NO _x	0.61	1.24

		РМ	0.38	1.59
		PM ₁₀	0.38	1.59
		PM _{2.5}	0.38	1.59
		SO ₂	<0.01	<0.01
		voc	11.70	24.78
	Target Foundry (TF) Sand Molding, Mold Line Heaters,	со	0.57	1.04
	Sand Mold Drying, Return Sand Bin and Tank, Rotary Screen,	NO _x	0.61	1.24
	Muller, Hot Sand Elevators, Multi Cooler, Shake Out, Sand	РМ	0.33	1.40
	Return Conveyor, Punch Out, Sand Tank, Bentonite Bin and Tank, Sand Dryer and Reclaimer, and Pouring and Cooling Baghouse Stack	PM ₁₀	0.33	1.40
		PM _{2.5}	0.33	1.40
		SO ₂	<0.01	<0.01
		voc	11.70	24.78
	Target Foundry (TF) Sand Molding, Mold Line Heaters, Sand Mold Drying, Return Sand Tank, Rotary Screen, Muller, Hot Sand Elevators, Multi Cooler, Shake Out, Sand Return Conveyor, Punch Out, Sand Tank, Bentonite Bin and Tank, Sand Dryer and Reclaimer, and Pouring and Cooling Baghouse Stack	СО	-	1.04
		NOx	-	1.24
		SO ₂	-	<0.01
		VOC	-	24.78
	Target Foundry Building Fugitives (5)	PM	0.07	0.18
		PM ₁₀	0.07	0.18
		PM _{2.5}	0.06	0.13

ST-B19	Shot Blast Machine 7 and Grinding and Welding Operations Baghouse Stack	PM	0.60	1.99
		PM_{10}	0.60	1.99
		PM _{2.5}	0.60	1.99
		VOC	<0.01	0.02
ST-B25	Pouring Hoods for Pouring Lines, Mold Cooling Hoods for	СО	15.58	45.10
	Cooling Line, Primary Reclamation System, Flask	NO_x	0.02	0.04
	Punchout Baghouse Stack	PM	1.37	4.34
		PM_{10}	1.37	4.34
		PM _{2.5}	1.37	4.34
		SO ₂	4.34	7.10
		VOC	12.23	35.39
ST-B27_1	Thermal Reclaim System Baghouse Stack	СО	0.71	2.26
		NO _x	1.08	3.41
		PM	0.19	0.62
		PM_{10}	0.19	0.62
		PM _{2.5}	0.19	0.62
		SO ₂	<0.01	0.02
		VOC	0.05	0.16
ST-B27_2	Mechanical Reclaim System Baghouse Stack	PM	0.12	0.38
		PM ₁₀	0.12	0.38
		PM _{2.5}	0.12	0.38
ST-B28	Thermal Reclaim System Baghouse Stack	СО	0.71	2.26
		NO _x	1.08	3.41
		PM	0.19	0.62
		PM ₁₀	0.19	0.62
		PM _{2.5}	0.19	0.62

		SO ₂	5.31	16.83
		VOC	0.05	0.16
AUSTFURN5	Austenitizing Furnace 5 Stack	PM	<0.01	0.01
	Stack	PM ₁₀	<0.01	0.01
		PM _{2.5}	<0.01	0.01
		со	0.05	0.06
		NO _x	0.13	0.17
		SO ₂	<0.01	<0.01
		VOC	<0.01	<0.01
AUSTFURN6	Austenitizing Furnace 6 Stack	РМ	<0.01	0.01
		PM ₁₀	<0.01	0.01
		PM _{2.5}	<0.01	0.01
		со	0.05	0.06
		NO _x	0.13	0.17
		SO ₂	<0.01	<0.01
		voc	<0.01	<0.01
BTH-1	Spray Paint Booth 1 Stack	РМ	0.01	0.02
		PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		VOC	3.78	3.95
BTH-2	Spray Paint Booth 2 Stack	РМ	<0.01	0.02
		PM ₁₀	<0.01	0.02
		PM _{2.5}	<0.01	0.02

Project Number: 328492

I	I			
		VOC	2.10	3.95
BTH-1 BTH-2	Spray Paint Booth Stacks Annual Cap	РМ	-	0.02
		PM ₁₀	-	0.02
		PM _{2.5}	-	0.02
		VOC	-	3.95
PBHTR1	Paint Booth Heater 1 Stack	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		со	0.02	0.05
		NO _x	<0.01	0.02
		SO ₂	<0.01	<0.01
		voc	<0.01	<0.01
PBHTR2	Paint Booth Heater 2 Stack	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		со	0.02	0.05
		NO _x	<0.01	0.02
		SO ₂	<0.01	<0.01
		VOC	<0.01	<0.01
PBHTR3	Paint Booth Heater 3 Stack	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		со	0.02	0.05
		NO _x	<0.01	0.02
		SO ₂	<0.01	<0.01
		voc	<0.01	<0.01
Project Number: 328/02	I	l	L	

Project Number: 328492

BLD	GFUG	Inspection Area Fugitives (5)	PM	0.03	<0.01
(1)	Emission point i	d <mark>entification - either specific equip</mark> r	nent designation or emission		
		urce name. For fugitive sources, u			<0.01
(3)	VOC - volatile	organic compounds as defined in	Title 30 Texas Administrativ	e Code § 101.1	0.02
	NO_x - total ox SO_2 - sulfur or	· · · · · · · · · · · · · · · · · · ·	PM _{2.5}	0.01	<0.01
			atmosphoro, including DM	and DM. ac represe	atod
	PM ₁₀ - total na	urticulate matter, suspended in the urticulate matter equal to or less tha	n 10 microns in diameter in	nching PM ₂₅ , as represe	esented
	PM ₂₅₋ - narticu	ate matter equal to or less than 2	microns in diameter	icidaling i wiz.s, as repri	esenteu
STO	SBIDGFUGATION CO - carbon	ate matter equal to or less than 2. "Megnyside iter (5) annual emission limits (tons per y an estimate and agenforce able thr	VOC	0.14	<0.01
(4) ₁	Compliance with	i annual emission limits (tons per y	ear) is based on a 12-month	rolling period.	
(5) 1	Emission rate is	an estimate and is enforceable thr	Palgh compliance with the a	pplicable special condi	t10x127(6) and
(0)		n Peresentations.	In the Automotive Control of the Con		(5 dd 0 . 1
(6)	Planned startup	and shutdown emissions are inclu	deM ₁ Maintenance activities,	exo4pt for those speci	foed3n Special
		are not authorized by this permit	· ·		-
	the conditions o	¹ 80 TAC § 116.119.	PM _{2.5}	<0.01	0.02
SP2)	Byproduct Storage Area Pile 2			
31 2	•	(5)	PM	0.02 Date: D	RAFT
		(6)		_	
			PM ₁₀	<0.01	0.03
			PM _{2.5}	<0.01	<0.01
			F 1V12.5	\(\tau_{0.01}\)	\0.01
ROA	ADFUG	Road Fugitives (5)	PM	2.03	2.84
		Receive Driveway, Air-set	1 141	2.00	2.04
			PM ₁₀	0.44	0.66
			PM _{2.5}	0.08	0.10
I		I		I	