5. 公開鍵暗号とRSA暗号

共通鍵暗号との違い 共通鍵暗号の場合: 鍵の数が増大 ・通信相手が 8人の場合、全体で 8×(8-1)/2-28個の鍵が必要 (100人の場合は4950個) ・1人当たり7個の鍵を秘密に保持する必要あり (100人の場合は99個) 公開鍵暗号の場合: 各自の秘密鍵1個と公開鍵1個 ・通信相手が 8人の場合、必要な鍵は全体で 8×2=16個 (100人の場合は200個) ・秘密に保持するのは各自1個のみ(全体が何人でも同じ)

付. 公開鍵暗号の例

用途	名称	数学問題	開発元	発表年
暗号化	RSA	素因数分解	RSA	1978
	Rabin	素因数分解	Rabin	1979
	ElGamal暗号	離散対数	ElGamal	1982
	EPOC	素因数分解	NTT	1998
署名	RSA	素因数分解	RSA	1978
	ElGamal署名	離散対数	ElGamal	1985
	ESIGN	素因数分解	NTT	1990
	DSA	離散対数	NIST	1991
鍵共有	DH	離散対数	Diffie, Hellman	1976
共通	楕円暗号	楕円曲線上の離散対数	Koblitz, Miller	1985

Hellmanの着想

・平文のブロックM

前提: ・ある素数p

•p-1と互いに素な整数e (p-1, e) = 1

暗号文:C≡Me mod p e, p:公開鍵

復号はCからMへの逆変換

オイラーの定理 (a, n) = 1 ならば p-1とe は互いに素故、以下の逆数dは求まる ← $a^{\phi(n)} \equiv 1 \mod n$

 $ed \equiv 1 \mod p-1$

 $C^d \equiv (M^e)^d \mod p$ ← **合同式の定理**: $a \equiv b \mod n$ ならば $a^k \equiv b^k \mod n$

 $ed \equiv 1 \mod p-1$ 故、ed = (p-1)k+1

 $(M^e)^d = M^{ed} = M^{(p-1)k+1} = M^{(p-1)k} M = (M^{(p-1)})^k M$

フェルマーの定理 M p-1 = 1 mod p を適用すると

 $C^d \equiv M \mod p$

但し、eとpが公開されているため、dが求まり、公開鍵暗号方式とはならない

・1977年に当時MITにいたRivest(リベスト)、Shamir(シャミア)、Adleman (エールマン)が発明 代表的な公開鍵暗号方式 素因数分解の困難さを利用 ・平文の値は鍵 n の値より小 公開鍵e, n 秘密鍵d 暗号文C≡Me mod n 平文M M≡C^d mod n $0 \le M < n$ C = f(M,e,n)M = g(C,d,n)

RSA暗号

RSAの仕組み(2)

 $ed \equiv 1 \mod (p-1)(q-1)$

 $C \equiv M^e \mod n$

 $C^d \equiv (M^e)^d \mod n$ ∵ 合同式の定理: $a \equiv b \mod n$ ならば $a^k \equiv b^k \mod n$

ed $\equiv 1 \mod (p-1)(q-1)$ 故、ed = (p-1)(q-1) k+1

 $(M^e)^d = M^{ed} = M^{(p-1)(q-1)k + l} = M^{(p-1)(q-1)k} M = (M^{(p-1)(q-1)})^k M$

フェルマーの小定理より

 $M^{(p-1)} \equiv 1 \bmod p$ 両辺をq-1乗すると、 $(M^{(p-1)})^{(q-1)} \equiv 1 \bmod p$

M (q-1) ≡ 1 mod q 両辺をp-1乗すると、(M (q-1))(p-1) ≡ 1 mod q

M (p-1)(q-1) -1 がp でもq でも割り切れる。

p、qは素数故、M (p-1)(q-1) - 1 がpq、即ちn で割り切れる。

 $M^{(p-1)(q-1)} \equiv 1 \mod n$

 $C^d \equiv M \mod n$

n = pq, $ed \equiv 1 \mod (p-1)(q-1)$ ならば、 $M^{ed} \equiv M \mod n$

9

RSA方式でのディジタル署名

RSAの公開鍵、秘密鍵

n = pq p, q:素数

k = LCM (p-1, q-1) LCM: 最小公倍数

(k, e) = 1 公開鍵: e, n ed ≡ 1 mod k 秘密鍵: d

署名

B 公開鍵:e, n

秘密鍵:d

ハッシュ値Hを0≦H<n の整数で表現*

 $S \equiv H^d \mod n$

署名(暗号化)

検証(復号)

B

H ≡ Se mod n

ed≡1 mod k より、公開鍵e と秘密鍵d は逆数。署名は暗号化の逆操作で可能

A 公開鍵:e,n

* 署名対象のサイズが n-1で抑えられることが文書のハッシュを取る理由の1つ

11

RSA方式での暗号化 RSAの公開鍵、秘密鍵 p, q:素数 n = pqk = LCM (p-1, q-1) LCM: 最小公倍数 公開鍵:e,n (k, e) = 1秘密鍵:d $ed \equiv 1 \mod k$ 暗号化 B 公開鍵:e, n A 公開鍵:e,n 秘密鍵:d 平文Mを0≦M<n の整数 暗号化 C ≡ Me mod n C

鍵 n(d)として、512,768,1024,2048ビットが使用されている (1024ビット以上が望ましい)

10

12

復号 M ≡ C^d mod n

付. RSA公開鍵、秘密鍵の例

公開鍵 e (17 ビット) 65537 (0x10001)

n (1024 ビット) d2:de:6d:97:b1:9f:a3:62:ec:c7:e5:f8:97:3d:

cd:01:00:26:e7:59:49:05:68:9d:0a:62:3a:a7:ea:5d:54:b7:1c:be:12:91:41:58:53:2e:b8:5a:9a:d6:0c:48:52:3a:71:8f:0c:56:97:b7:10:f4:d7:98:aa:30:b7:59:c6:06:4f:04:f0:f2:07:fe:6b:b4:b4:f5:76:91:a0:56:5e:cb:b0:23:58:58:85:d4:da:d9:85:76:96:88:8d:00:fd:40:53:c5:f2:4b:a8:00:9c:fb:ed:3e:a0:9a:c5:d4:9e:1e:fc:ea:83:1b:96:33:62:

5f:41:67:ce:5c:f3:12:0a:53

秘密鍵 d (1024 ビット) 46:57:98:ab:6f:bf:57:1b:9a:ed:1c:14:0f:2f:b8:

81:4a:f1:af:5f:23:72:c0:71:12:93:ae:09:71:ae: ec:a1:a0:de:ef:06:b1:8b:ab:43:fc:8f:8c:f3:36: 69:b1:b4:79:49:44:ce:66:11:d5:80:37:a3:5f:b2: 9c:97:3f:ed:23:bb:fb:09:19:bc:5a:6a:bc:14:e0: 39:dc:77:4a:b2:8d:a6:6b:67:ab:ac:f2:50:47:41: 62:30:ad:24:a5:05:4a:56:50:b3:9e:80:e2:32:d9: b7:ec:55:13:11:21:02:b0:f2:c4:29:3e:f0:04:64:

77.60.33.13.11.21.02.00.12.04.29.36.10.04

6a:a1:ce:8f:53:6e:64:41

3

RSAでの鍵の計算例

素因数分解の困難さの利用

13

RSAでの暗号復号例

公開鍵 n=34, e=3

0≦M<n を満たす平文M=26 の暗号化

 $C \equiv M^e \mod n = 26^3 \mod 34$

 $26^3 \equiv (-8)^3 = (-8)^2(-8) \equiv (-4)(-8) = 32 \mod 34$

暗号文C=32

秘密鍵 d =11

復号

 $M \equiv C^d \mod n = 32^{11} \mod 34$

 $32^{11} \equiv (-2)^{11} = ((-2)^5)^2 (-2) \equiv 2^2(-2) = -8 \equiv 26 \mod 34$

平文M=26

14

RSAの利用

RSA暗号は計算時間がかかるので、通常は鍵配送時の鍵の暗号化に使用

平文が短い場合、大きな乱数を連結する

公開鍵のeの値

- ・e は固定値でもよい(安全性は低下しない)
- e が小さいと、使用頻度の高い暗号化と署名検証の処理が早くなる
- ·e として、3 と 65537(2¹⁶+1)がよく使われる
- 公開鍵のn は秘密鍵対応に異なる値

16