OPIC CIPO INTELLECTUELLE DU CANADA

(12) (19) (CA) Demande-Application

CANADIAN INTELLECTUAL PROPERTY OFFICE

(21)(A1) 2,271,718 1997/11/13 1998/05/22

- (72) HARRINGTON, Lea A., CA
- (72) ROBINSON, Murray O., US
- (71) AMGEN INC., US
- (71) AMGEN CANADA INC., CA
- (51) Int.Cl. 6 C12N 15/54, C12N 15/85, A61K 31/70, A01K 67/027, C12Q 1/68, C12Q 1/48, A61K 38/45, C07K 16/40, C12N 1/21, C12N 1/19, C12N 9/12, C12N 15/11
- (30) 1996/11/15 (08/751,189) US
- (30) 1997/06/11 (08/873,039) US
- (30) 1997/10/16 (08/951,733) US
- (54) GENES CODANT DES PROTEINES DE TELOMERASE
- (54) GENES ENCODING TELOMERASE PROTEINS

- (57) L'invention concerne des molécules d'acide nucléique, qui codent des polypeptides du complexe télomérase. L'invention se rapporte également à des procédés de préparation desdites molécules d'acide nucléique et desdits polypeptides et à des procédés d'utilisation desdites molécules.
- (57) Disclosed are nucleic acid molecules encoding polypeptides of the telomerase complex. Also disclosed are methods of preparing the nucleic acid molecules and polypeptides, and methods of using these molecules.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/2134
C12N 15/54, 9/12, C12Q 1/68, 1/48, C12N 15/11, 15/85, A01K 67/027, C07K 16/40, A61K 38/45, 31/70, C12N 1/21, 1/19	A1	(43) International Publication Date: 22 May 1998 (22.05.9
(21) International Application Number: PCT/USS (22) International Filing Date: 13 November 1997 (1) (30) Priority Data:	6) (1) (2) (2) (3) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, G GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LI LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NV NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TY TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GK, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, A BY, KG, KZ, MD, RU, TJ, TM) European patent (AT, B CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, N PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GI ML, MR, NE, SN, TD, TG). Published With international search report. With amended claims and statement: 30 July 1998 (30.07.1) et,

(54) Title: GENES ENCODING TELOMERASE PROTEINS

(57) Abstract

Disclosed are nucleic acid molecules encoding polypeptides of the telomerase complex. Also disclosed are methods of preparing the nucleic acid molecules and polypeptides, and methods of using these molecules.

15

- 103 -

AMENDED CLAIMS

[received by the International Bureau on 19 June 1998 (19.06.98); new claims 33-56 added; remaining claims unchanged (7 pages)]

- 1. A TP2 nucleic acid molecule encoding a polypeptide selected from the group consisting of:
- (a) the nucleic acid molecule of SEQ ID NO:13;
- (b) the nucleic acid molecule that is nucleotides 1920-2820 of SEQ ID NO:13;
 - (c) the nucleic acid molecule of SEQ ID NO:19
- 10 (d) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:14, or a biologically active fragment thereof;
 - (e) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:20, or a biologically active fragment thereof;
 - (f) a nucleic acid molecule that encodes a polypeptide that is at least 90 percent identical to the polypeptide of SEQ ID NO:14;
- (g) a nucleic acid molecule that encodes a 20 polypeptide that is at least 90 percent identical to the polypeptide of SEQ ID NO:20;
 - (h) a nucleic acid molecule that hybridizes under stringent conditions to any of (a)-(g) above; and
- (i) a nucleic acid molecule that is the 25 complement of any of (a) - (g) above.
 - 2. The nucleic acid molecule that is SEQ ID NO:13 or SEQ ID NO:19.
- 30 3. The nucleic acid molecule that is nucleotides 1920-2820 of SEQ ID NO:13.
 - 4. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:14 of SEQ ID NO:20.

- 5. A nucleic acid molecule selected from the group consisting of: nucleotides 1-1689 of SEQ ID NO:13, nucleotides 1-1920 of SEQ ID NO:13, nucleotides 1920-2820 of SEQ ID NO:13, nucleotides 2089-2820 of SEQ ID NO:13, and nucleotides 2089-2859 of SEQ ID NO:13.
 - 6. A nucleic acid molecule encoding amino acids 640-940 of the polypeptide of SEQ ID NO:14.
- 7. A vector comprising the nucleic acid molecule of claim 1.
 - 8. A vector comprising the nucleic acid molecule of claim 2.

5

- 9. A vector comprising the nucleic acid molecule of claim 3.
- 10. A vector comprising the nucleic acid 20 molecule of claim 4.
 - 11. A vector comprising the nucleic acid molecule of claim 5.
- 25 12. A vector comprising the nucleic acid molecule of claim 6.
 - $$13.\ A$$ host cell comprising the vector of claim 7.

30

- 14. A host cell comprising the vector of claim 8.
- 15. A host cell comprising the vector of 35 claim 9.

AMENDED SHEET (ARTICLE 19)

		16.	A	host	cell	comprising	the	vector	of
claim	10.								

- 5 17. A host cell comprising the vector of claim 11.
- 18. A host cell comprising the vector of claim 12.
- 10

 19. A process for producing a TP2 polypeptide comprising the steps of:
 - (a) expressing a polypeptide encoded by the nucleic acid of claim 1 in a suitable host; and
- (b) isolating the polypeptide.
 - 20. The process of claim 19 wherein the polypeptide is SEQ ID NO:14 or SEQ ID NO:20.
- 20 21. The process of claim 19 wherein the polypeptide is amino acids 640-940 of SEQ ID NO:14.
 - 22. A TP2 polypeptide selected from the group consisting of:
- 25 (a) the polypeptide of SEQ ID NO:14;
 - (b) the polypeptide that is amino acids 640-940 of SEQ ID NO:14;
 - (c) the polypeptide of SEQ ID NO:20; and
 - (d) a polypeptide that is at least 90 percent
- 30 identical to any of the polypeptides of (a) (c).
 - $23.\ \mbox{A TP2}$ polypeptide that is the polypeptide of SEQ ID NO:14, SEQ ID NO:20, or a biologically active fragment thereof.

- 24. A TP2 polypeptide selected from the group consisting of: amino acids 1-563 of SEQ ID NO:14; amino acids 1-640 of SEQ ID NO:14; amino acids 640-940 of SEQ ID NO:14; and amino acids 696-953 of SEQ ID NO:14.
- 25. The TP2 polypeptide of claim 22 that does not possess an amino terminal methionine.
- 26. A method of increasing proliferation of a cell, comprising expressing a nucleic acid encoding TP2 or a biologically active fragment thereof, in the cell.
- 27. A method of increasing telomerase activity in a cell, comprising expressing a TP2 gene, or a biologically active fragment thereof, in the cell.
- 28. A method of decreasing telomerase in a cell, comprising expressing a TP2 mutant in a cell, wherein the mutant does not have TP2 biological activity.
- 29. A nucleic acid molecule encoding a
 25 mutant TP2 polypeptide, wherein the codon for aspartic
 acid at amino acid position 868 or 869 is changed to a
 codon for alanine.
- 30. A nucleic acid molecule encoding a
 30 mutant TP2 polypeptide, wherein the codons for aspartic
 acid at amino acid positions 868 and 869 are changed to
 codons for alanine.
- 31. A polypeptide encoded by the nucleic 35 acid molecule of claim 29.

- 32. A polypeptide encoded by the nucleic acid molecule of claim 30.
- 5 33. A TRIP1 nucleic acid molecule encoding a polypeptide selected from the group consisting of:
 - (a) the nucleic acid molecule of SEQ ID NO:1;
 - (b) the nucleic acid molecule of SEQ ID NO:2;
- (c) a nucleic acid molecule encoding the 10 polypeptide of SEQ ID NO:3, SEQ ID NO:4, or a biologically active fragment thereof;
 - (d) a nucleic acid molecule that encodes a polypeptide that is at least 70 percent identical to the polypeptide of SEQ ID NO:3 or SEQ ID NO:4;
- (e) a nucleic acid molecule that hybridizes under stringent conditions to any of (a)-(d) above; and (f) a nucleic acid molecule that is the complement of any of (a)-(e) above.
- 20 34. The nucleic acid molecule that is SEQ ID NO:1.
 - 35. The nucleic acid molecule that is SEQ ID NO:2.
 - 36. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:3.
- 37. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:4.
 - 38. A nucleic acid molecule encoding amino acids 1-871 of the polypeptide of SEQ ID NO:3.

- 39. A vector comprising the nucleic acid molecule of claim 33.
- 40. A vector comprising the nucleic acid molecule of claim 34.
 - 41. A vector comprising the nucleic acid molecule of claim 35.
- 10 42. A vector comprising the nucleic acid molecule of claim 36.
 - 43. A vector comprising the nucleic acid molecule of claim 37.
- 44. A vector comprising the nucleic acid molecule of claim 38.
- 45. A host cell comprising the vector of 20 claim 39.
 - 46. A host cell comprising the vector of claim 40.
- 47. A host cell comprising the vector of claim 41.
 - 48. A host cell comprising the vector of claim 42.
- 49. A host cell comprising the vector of claim 43.
- 50. A host cell comprising the vector of 35 claim 44.

- 51. A process for producing a TRIP1 polypeptide comprising the steps of:
- (a) expressing a polypeptide encoded by the5 nucleic acid of claim 1 in a suitable host; and
 - (b) isolating the polypeptide.
 - 52. The process of claim 51 wherein the polypeptide is SEQ ID NO:3.

- 53. The process of claim 51 wherein the polypeptide amino acids 1-871 of SEQ ID NO:3.
- 54. A TRIP1 polypeptide selected from the group consisting of:
 - (a) the polypeptide of SEQ ID NO:3;
 - (b) the polypeptide that is amino acids 1-871 of SEQ ID NO:3; and
- (c) a polypeptide that is at least 70 percent 20 identical to the polypeptide of (a) or (b).
 - 55. A TRIP1 polypeptide that is the polypeptide of SEQ ID NO:3 or a biologically active fragment thereof.

25

56. The TRIP1 polypeptide of claim 52 that does not possess an amino terminal methionine.

WO 98/21343

PCT/US97/21248

- 110 -

STATEMENT UNDER ARTICLE 19

The claims of International Application WO 98/21248, published 22 May 1998, have been amended. Original claims 1 through 32 have not been amended, however, new claims 33 through 56 have been added. Claims 33 through 56 are directed to an aspect of the invention not originally claimed by Applicants. Specifically, claims 33 through 56 encompass telomerase protein 1 and DNA encoding therefor. Such claims are fully supported by the written description and the drawings.

FIG. 1A

ATGGAAAAACTCCATGGGCATGTGTCTGCCCATCCAGACATCCTCTCCT TGGAGAACCGGTGCCTGGCTATGCTCCCTGACTTACAGCCCTTGGAGAA ACTACATCAGCATGTATCTACCCACTCAGATATCCTCTCCTTGAAGAAC CAGTGCCTAGCCACGCTTCCTGACCTGAAGACCATGGAAAAACCACATG GATATGTGTCTGCCCACCCAGACATCCTCTCTTGGAGAACCAGTGCCT GGCCACACTTTCTGACCTGAAGACCATGGAGAAACCACATGGACATGTT TCTGCCCACCCAGACATCCTCTCCTTGGAGAACCGGTGCCTGGCCACCC TCCCTAGTCTAAAGAGCACTGTGTCTGCCAGCCCCTTGTTCCAGAGTCT ACAGATATCTCACATGACGCAAGCTGATTTGTACCGTGTGAACAACAGC AATTGCCTGCTCTCTGAGCCTCCAAGTTGGAGGGCTCAGCATTTCTCTA AGGGACTAGACCTTTCAACCTGCCCTATAGCCCTGAAATCCATCTCTGC CACAGAGACAGCTCAGGAAGCAACTTTGGGTCGTTGGTTTGATTCAGAA GAGAAGAAGGGGCAGAGACCCAAATGCCTTCTTATAGTCTGAGCTTGG GAGAGGAGGAGGTGGAGGATCTGGCCGTGAAGCTCACCTCTGGAGA CTCTGAATCTCATCCAGAGCCTACTGACCATGTCCTTCAGGAAAAGAAG ATGGCTCTACTGAGCTTGCTGTGCTCTACTCTGGTCTCAGAAGTAAACA TGAACAATACATCTGACCCCACCCTGGCTGCCATTTTTGAAATCTGTCG TGAACTTGCCCTCCTGGAGCCTGAGTTTATCCTCAAGGCATCTTTGTAT GCCAGCCAGCTGAACGTCCGGAATGTGGCCAATAACATCTTGGCCA

FIG.1B

TTGCTGCTTTCTTGCCGGCGTGTCGCCCCCCCCCGCGACGATATTTCTG TGCCATTGTCCAGCTGCCTTCTGACTGGATCCAGGTGGCTGAGCTTTAC CAGAGCCTGGCTGAGGGAGATAAGAATAAGCTGGTGCCCCTGCCCGCCT GTCTCCGTACTGCCATGACGACAAATTTGCCCAGTTTGACGAGTACCA GCTGGCTAAGTACAACCCTCGGAAGCACCGGGCCAAGAGACACCCCCGC CGGCCACCCGCTCTCCAGGGATGGAGCCTCCATTTTCTCACAGATGTT TTCCAAGGTACATAGGGTTTCTCAGAGAAGAGCAGAGAAAGTTTGAGAA GGCCGGTGATACAGTGTCAGAGAAAAAGAATCCTCCAAGGTTCACCCTG AAGAAGCTGGTTCAGCGACTGCACATCCACAAGCCTGCCCAGCACGTTC AAGCCCTGCTGGGTTACAGATACCCCTCCAACCTACAGCTCTTTTCTCG AAGTCGCCTTCCTGGGCCTTGGGATTCTAGCAGAGCTGGGAAGAGGATG AAGCTGTCTAGGCCAGAGACCTGGGAGCGGAGCTGAGCCTACGGGGGA ACAAAGCGTCGGTCTGGGAGGAACTCATTGAAAATGGGAAGCTTCCCTT CATGCCATGCTTCGGAACCTGTGCAACCTGCTGCGGGTTGGAATCAGT TCCCGCCACCATGAGCTCATTCTCCAGAGACTCCAGCATGGGAAGTCGG TGATCCACAGTCGGCAGTTTCCATTCAGATTTCTTAACGCCCATGATGC CATTGATGCCCTCGAGGCTCAACTCAGAAATCAAGCATTGCCCTTTCCT TCGAATATAACACTGATGAGGCGGATACTAACTAGAAATGAAAAGAACC GTCCCAGGCGAGGTTTCTTTGCCACCTAAGCCGTCAGCAGCTTCGTAT WO 98/21343 PCT/US97/21248 --

3 / 4 6

FIG.1C

GGCAATGAGGATACCTGTGTTGTATGAGCAGCTCAAGAGGGAGAAGCTG AGAGTACACAAGGCCAGACAGTGGAAATATGATGGTGAGATGCTGAACA GGTACCGACAGGCCCTAGAGACAGCTGTGAACCTCTCTGTGAAGCACAG CCTGCCCTGCTGCCAGGCCGCACTGTCTTGGTCTATCTGACAGATGCT AATGCAGACAGGCTCTGTCCAAAGAGCAACCCACAAGGGCCCCCGCTGA ACTATGCACTGCTGTTGATTGGGATGATCACGAGGGCGGGGCAGCT GGACGTCGTGTGTGGAGGTGACACTCTGAAGACTGCAGTGCTTAAG GCAGAAGAAGGCATCCTGAAGACTGCCATCAAGCTCCAGGCTCAAGTCC AGGAGTTTGATGAAAATGATGGATGGTCCCTGAATACTTTTGGGAAATA CCTGCTGTCTCTGGCTGGCCAAAGGGTTCCTGTGGACAGGGTCATCCTC CTTGGCCAAAGCATGATGATGAATGATAAATGTGGCCAAACAGCTTT ACTGGCAGCGTGTGAATTCCAAGTGCCTCTTTGTTGGTATCCTCCTAAG AAGGGTACAATACCTGTCAACAGATTTGAATCCCAATGATGTGACACTC TCAGGCTGTACTGATGCGATACTGAAGTTCATTGCAGAGCATGGGGCCT CCCATCTTCTGGAACATGTGGGCCAAATGGACAAAATATTCAAGATTCC ACCACCCCAGGAAAGACAGGGGTCCAGTCTCTCCGGCCACTGGAAGAG GACACTCCAAGCCCCTTGGCTCCTGTTTCCCAGCAAGGATGGCGCAGCA TCCGGCTTTTCATTTCATCCACTTTCCGAGACATGCACGGGGAGCGGGA CCTGCTGCTGAGGTCTGTGCTGCCAGCACTGCAGGCCCGAGCGGCCCCT

FIG.1D

CACCGTATCAGCCTTCACGGAATCGACCTCCGCTGGGGCGTCACTGAGG AGGAGACCCGTAGGAACAGACAACTGGAAGTGTGCCTTGGGGAGGTGGA GAACGCACAGCTGTTTGTGGGGATTCTGGGCTCCCGTTATGGATACATT CCCCCAGCTACAACCTTCCTGACCATCCACACTTCCACTGGGCCCAGC AGTACCCTTCAGGGCGCTCTGTGACAGAGATGGAGGTGATGCAGTTCCT GAACCGGAACCAACGTCTGCAGCCCTCTGCCCAAGCTCTCATCTACTTC CGGGATTCCAGCTTCCTCAGCTCTGTGCCAGATGCCTGGAAATCTGACT TTGTTTCTGAGTCTGAAGAGGCCGCATGTCGGATCTCAGAACTGAAGAG CTACCTAAGCAGACAGAAAGGGATAACCTGCCGCAGATACCCCTGTGAG TGGGGGGTGTGGCAGCTGGCCGGCCCTATGTTGGCGGGCTGGAGGAGT TTGGGCAGTTGGTTCTGCAGGATGTATGGAATATGATCCAGAAGCTCTA CCTGCAGCCTGGGGCCCTGCTGGAGCAGCCAGTGTCCATCCCAGACGAT GACTTGGTCCAGGCCACCTTCCAGCAGCTGCAGAAGCCACCGAGTCCTG CCCGCCACGCCTTCTTCAGGACACAGTGCAACAGCTGATGCTGCCCCA CGGAAGGCTGAGCTGACGGGGCAGTCAGGACAGGCCAAGACAGCC TTCCTGGCATCTCTTGTGTCAGCCCTGCAGGCTCCTGATGGGGCCAAGG TGGCACCATTAGTCTTCTTCCACTTTTCTGGGGCTCGTCCTGACCAGGG TCTTGCCCTCACTCTGCTCAGACGCCTCTGTACCTATCTGCGTGGCCAA CTAAAAGAGCCAGGTGCCCTCCCCAGCACCTACCGAAGCCTGGTGTGGG

FIG.1E

AGCTGCAGCAGAGGCTGCTGCCCAAGTCTGCTGAGTCCCTGCATCCTGG CCAGACCCAGGTCCTGATCATCGATGGGGCTGATAGGTTAGTGGACCAG AATGGGCAGCTGATTTCAGACTGGATCCCAAAGAAGCTTCCCCGGTGTG TACACCTGGTGCTGAGTGTCTAGTGATGCAGGCCTAGGGGAGACCCT TGAGCAGAGCCAGGTGCCCACGTGCTGGCCTTGGGGCCTCTGGAGGCC TCTGCTCGGGCCCGGCTGGTGAGAGAGGAGCTGGCCCTGTACGGGAAGC GGCTGGAGGAGTCACCATTTAACAACCAGATGCGACTGCTGCTGGTGAA GCGGGAATCAGGCCGGCCGCTCTACCTGCGCTTGGTCACCGATCACCTG AGGCTCTTCACGCTGTATGAGCAGGTGTCTGAGAGACTCCGGACCCTGC CTGCCACTGTCCCCCTGCTGCAGCACATCCTGAGCACACTGGAGAA GGAGCACGGCCTGATGTCCTTCCCCAGGCCTTGACTGCCCTAGAAGTC ACACGGAGTGGTTTGACTGTGGACCAGCTGCACGGAGTGCTGAGTGTGT GGCGGACACTACCGAAGGGGACTAAGAGCTGGGAAGAAGCAGTGGCTGC CAGAGTCTGCGCAGTTTGCTAGGGGAGGGCCCTCTGGAGCGCCCTGGTG CCCGGCTGTGCCTCCCTGATGGGCCCCTGAGAACAGCAGCTAAACGTTG CTATGGGAAGAGGCCAGGGCTAGAGGACACGGCACACATCCTCATTGCA GCTCAGCTCTGGAAGACATGTGACGCTGATGCCTCAGGCACCTTCCGAA GTTGCCCTCCTGAGGCTCTGGGAGACCTGCCTTACCACCTGCTCCAGAG WO 98/21343 PCT/US97/21248 -

6/46

FIG.1F

CGGGAACCGTGGACTTCTTTCGAAGTTCCTTACCAACCTCCATGTGGTG GCTGCACACTTGGAATTGGGTCTGGTCTCTCGGCTCTTGGAGGCCCATG CCCTCTATGCTTCTTCAGTCCCCAAAGAGGAACAAAAGCTCCCCGAGGC TGACGTTGCAGTGTTTCGCACCTTCCTGAGGCAGCAGGCTTCAATCCTC AGCCAGTACCCCGGCTCCTGCCCCAGCAGCCAGCCAACCAGCCCCTGG ACTCACCTCTTTGCCACCAAGCCTCGCTGCTCTCCCGGAGATGGCACCT CCAACACACACTACGATGGCTTAATAAACCCCGGACCATGAAAAATCAG CAAAGCTCCAGCCTGTCTCTGGCAGTTTCCTCATCCCCTACTGCTGTGG CCTTCTCCACCAATGGGCAAAGAGCAGCTGTGGGCACTGCCAATGGGAC AGTTTACCTGTTGGACCTGAGAACTTGGCAGGAGGAGAAGTCTGTGGTG AGTGGCTGTGATGGAATCTCTGCTTGTTTGTTCCTCTCCGATGATACAC TCTTTCTTACTGCCTTCGACGGCTCCTGGAGCTCTGGGACCTGCAGCA TGGTTGTCGGGTGCTGCAGACTAAGGCTCACCAGTACCAAATCACTGGC TGCTGCCTGAGCCCAGACTGCCGGCTGCTAGCCACCGTGTGCTTGGGAG GATGCTAAAGCTGTGGGACACAGTCCGTGGCCAGCTGGCCTTCCAGCA CACCTACCCCAAGTCCCTGAACTGTGTTGCCTTCCACCCAGAGGGGCAG GTAATAGCCACAGCAGCTGGGCTGGCAGCATCAGCTTCTTCCAGGTGG ATGGGCTCAAAGTCACCAAGGACCTGGGGGCACCCGGAGCCTCTATCCG TACCTTGGCCTTCAATGTGCCTGGGGGGGTTGTGGCTGTGGGCCGGCTG

7 / 4 6

FIG.1G

CCTTCCCTGCCCACCATGGCTTTGTTGCTGCTGCGCTTTTTCCTGCATGC GGGTTGCCAGTTACTGACGGCTGGAGAGGATGGCAAGGTTCAGGTGTGG TCAGGGTCTCTGGGTCGGCCCCGTGGGCACCTGGGTTCCCTTTCTCTCT CTCCTGCCCTCTCTGTGGCACTCAGCCCAGATGGTGATCGGGTGGCTGT TGGATATCGAGCGGATGGCATTAGGATCTACAAAATCTCTTCAGGTTCC CAGGGGGCTCAGGCTCAGGCACTGGATGTGGCAGTGTCCGCCCTGGCCT GGCTAAGCCCCAAGGTATTGGTGAGTGGTGCAGAAGATGGGTCCTTGCA GGGCTGGGCACTCAAGGAATGCTCCCTTCAGTCCCTCTGGCTCCTGTCC AGATTCCAGAAGCCTGTGCTAGGACTGGCCACTTCCCAGGAGCTCTTGG CTTCTGCCTCAGAGGATTTCACAGTGCAGCTGTGGCCAAGGCAGCTGCT GACGCGGCCACACAAGGCAGAAGACTTTCCCTGTGGCACTGAGCTGCGG GGACATGAGGGCCCTGTGAGCTGCTGTAGTTTCAGCACTGATGGAGGCA GCCTGGCCACCGGGGCCGGGATCGGAGTCTCCTCTGCTGGGACGTGAG GACTGGGTCACTGGCTGTGCCTGGACCAAAGATAACCTACTGATATCCT GCTCCAGTGATGGCTCTGTGGGGCTCTGGGACCCAGAGTCAGGACAGCG GCTTGGTCAGTTCCTGGGTCATCAGAGTGCTGTGAGCGCTGTGGCAGCT GTGGAGGAGCACGTGGTGTCTGTGAGCCGGGATGGGACCTTGAAAGTGT

FIG.1H

CATTAGCCACTGTGCAGCTGCCATGGAGCCCCGTGCAGCTGGACAGCCT GGGTCAGAGCTTCTGGTGGTAACCGTCGGGCTAGATGGGGCCACACGGT TATGGCATCCACTCTTGGTGTGCCAAACCCACACCCTCCTGGGACACAG CGGCCCAGTCCGTGCTGCTGTTTCAGAAACCTCAGGCCTCATGCTG ACCGCCTCTGAGGATGGTTCTGTACGGCTCTGGCAGGTTCCTAAGGAAG CAGATGACACATGTATACCAAGGAGTTCTGCAGCCGTCACTGCTGGC TTGGGCACCAGATGGTTCCATGGCAGTATCTGGAAATCAAGCTGGGGAA CTAATCTTGTGGCAGGAAGCTAAGGCTGTGGCCACAGCACAGGCTCCAG GCCACATTGGTGCTCTGATCTGGTCCTCGGCACACCCTTTTTTTGTCCT CAGTGCTGATGAGAAAATCAGCGAGTGGCAAGTGAAACTGCGGAAGGGT TCGGCACCCGGAAATTTGAGTCTTCACCTGAACCGAATTCTACAGGAGG ACTTAGGGGTGCTGACAAGTCTGGATTGGGCTCCTGATGGTCACTTTCT CATCTTGGCCAAAGCAGATTTGAAGTTACTTTGCATGAAGCCAGGGGAT GCTCCATCTGAAATCTGGAGCAGCTATACAGAAAATCCTATGATATTGT CCACCACAAGGAGTATGGCATATTTGTCCTGCAGCCCAAGGATCCTGG AGTTCTTTCTTGAGGCAAAAGGAATCAGGAGAGTTTGAAGAGAGG CTGAACTTTGATATAAACTTAGAGAATCCTAGTAGGACCCTAATATCGA TAACTCAAGCCAAACCTGAATCTGAGTCCTCATTTTTGTGTGCCAGCTC WO 98/21343

PCT/US97/21248 --

9/16

FIG.11

TGATGGGATCCTATGGAACCTGGCCAAATGCAGCCCAGAAGGAGAATGG
ACCACAGGTAACATGTGGCAGAAAAAAAGCAAACACTCCAGAAACCCAAA
CTCCAGGGACAGACCCATCTACCTGCAGGGAATCTGATGCCAGCATGGA
TAGTGATGCCAGCATGGATAGTGAGCCAACACCACATCTAAAGACACGG
CAGCGTAGAAAGATTCACTCGGGCTCTGTCACAGCCCTCCATGTGCTAC
CTGAGTTGCTGGTGACAGCTTCGAAGGACAGATGTTAAGCTATGGGA
GAGACCCAGTATGCAGCTGCTGGGCCTGTTCCGATGCGAAGGGTCAGTG
AGCTGCCTGGAACCTTGGGGCCTAACTCCACCCTGCAGCTTGCCG
TGGGAGACGTGCAGGGCAATGTGTACTTTCTGAATTGGGAA

FIG.2A

ATGGAGAAGCTCTGTGGGCATGTGCCTGGCCATTCAGACATCCTCTCCT TGAAGAACCGGTGCCTGACCATGCTCCCTGACCTCCAGCCCCTGGAGAA AATACATGGACATAGATCTGTCCACTCAGACATCCTTTCCTTGGAGAAC CAGTGTCTGACCATGCTCTCTGACCTCCAGCCCACGGAGAGAATAGATG GGCATATATCTGTCCACCCAGACATCCTCTCCTTGGAGAATCGGTGCCT GACCATGCTCCCTGACCTCCAGCCTCTGGAGAAGCTATGTGGACATATG TCTAGTCATCCAGACGTCCTTTCTTTGGAAAACCAATGTCTAGCTACTC TCCCCACTGTAAAGAGCACTGCATTGACCAGCCCCTTGCTCCAGGGTCT TCACATATCTCATACGGCACAAGCTGATCTGCATAGCCTGAAAACTAGC AACTGCCTGCTCCTGAGCTTCCTACCAAGAAGACTCCATGTTTCTCTG AGGAACTAGACCTTCCACCTGGACCCAGGGCCCTGAAATCCATGTCTGC TACAGCTCAAGTCCAGGAAGTAGCCTTGGGTCAATGGTGTCTCCAAA GAAAAGGAATTTCAAGAAGAAGAAGCACAGAAGTCCCRATGCCTTTGT ACAGTCTAAGCTTGGAAGAAGAAGAAGTGGAGGCACCGGTCTTAAAACT CACATCTGGAGACTCTGGCTTTCATCCTGAAACCACTGACCAGGTCCTT CAGGAGAAGAAGATGGCTCTCTTGACCTTACTCTGCTCTGCTCTGGCCT TGAAGTCTGTAGTGCCCTGGCCTCCTTGGAACCGGAGTTCATCCTTAAG GCATCTTTGTATGCTCGGCAGCAACTTAACCTCCGGGACATCGCCAATA

WO 98/21343

PCT/US97/21248 _

11/46

FIG.2B

CAGTTCTGGCTGTGCCTCTTGCCAGCCTGCCGCCCCCATGTACG ACGGTATTACTCCGCCATTGTTCACCTGCCTTCAGACTGGATCCAGGTA GCCGAGTTCTACCAGAGCCTGGCAGAAGGGGGATGAGAAGAAGTTGGTGT CCCTGCCTGCCTCTCCGAGCTGCCATGACCGACAATTTGCCGAGTT TGATGAGTACCAGCTAGCTAAGTACAACCCACGGAAACATCGGTCCAAG AGGCGGTCCCGCCAGCCACCCCGCCCTCAAAAGACAGAACGTCCATTTT CAGAGAGAGGGAAATGTTTTCCAAAGAGCCTTTGGCCCCTTAAAAATGA ACAGATTACGTTTGAAGCAGCTTATAATGCAATGCCAGAGAAAAACAGG CTACCACGGTTCACTCTGAAGAAGTTGGTAGAGTATCTACATATCCACA AGCCTGCTCAGCACGTCCAGGCCCTGCTGGGCTACAGGTACCCAGCCAC CCTAGAGCTCTTTTCTCGGAGTCACCTCCCTGGGCCGTGGGAGTCTAGC AGAGCTGGTCAGCGGATGAAGCTCCGAAGGCCAGAGACCTGGGAGCGGG AGCTGAGTTTACGGGGAAACAAAGCTTCTGTGTGGGAGGAGCTCATAGA CAATGGGAAACTGCCCTTCATGGCCATGCTCCGGAACCTGTGTAACCTG CTGCGGACTGGGATCAGTGCCCGCCACCATGAACTCGTTCTCCAGAGAC TCCAGCATGAGAAATCTGTGGTTCACAGTCGGCAGTTTCCATTCAGATT CCTTAATGCTCATGACTCTATCGATAAACTTGAGGCTCAGCTCAGAAGC AAAGCATCACCCTTCCCAATACAACATTGATGAAACGGATAATGA TTAGAAACTCAAAAAAAAATAGGAGGCCTGCCAGTCGGAAGCACCTGTG

FIG.2C

CACCCTGACGCCCGGCAGCTTCGGGCAGCAATGACTATACCTGTGATG TATGAGCAGCTCAAGCGGGAGAAACTGAGGCTGCACAAGGCCAGACAAT GGAACTGTGATGTTGAGTTGCTGGAGCCGCTATCGCCAGGCCCTGGAAAC AGCTGTGAACCTCTCAGTAAAGCACAACCTATCCCCGATGCCTGGCCGA ACCCTCTTGGTCTATCTCACAGATGCAAATGCCGACAGGCTCTGTCCCA AGAGTCACTCACAAGGGCCTCCCCTGAACTATGTGCTGCTGCTGATCGG AATGATGGTGGCTCGAGCCGAGCAAGTGACTGTTTGCTTGTGTGGGGGA GGATTTGTGAAGACACCGGTACTTACAGCCGATGAAGGCATCCTGAAGA CTGCCATCAAACTTCAGGCTCAAGTCCAGGAGTTAGAAGGCAATGATGA GTGGCCCCTGGACACTTTTGGGAAGTATCTGCTGTCTCTGGCTGTCCAA AGCTCCTGAAAGTAGCCAAACAGATTATCTGGCAGCATGTGAATTCCAA GTGCCTCTTTGTTGGTGTCCTCCTACAGAAAACACAGTACATATCACCA AATTTGAATCCCAACGATGTGACGCTCTCAGGCTGCACTGACGGGATCC TGAAATTCATTGCCGAACATGGAGCCTCTCGTCTCCTGGAACATGTGGG ACAACTAGATAAACTATTCAAGATCCCCCCACCCCCAGGAAAGACACAG GCACCGTCTCCCGGCCGCTGGAGGAGAACATCCCTGGTCCCTTGGGTC CTATTTCCCAGCATGGATGGCGCAATATCCGGCTTTTCATTTCATCCAC TTTCCGTGACATGCATGGGGAGCGAGATTTGCTGATGAGATCTGTTCTG

FIG.2D

CCCGCACTGCAGGCCAGAGTGTTCCCCCACCGCATCAGTCTTCACGCCA TTGACCTGCGCTGGGGTATCACAGAGGAAGAGACCCGCAGGAACAGACA ACTGGAAGTGTGCCTTGGGGAGGTGGAGAACTCACAGCTGTTCGTGGGG ATTCTGGGCTCCCGCTATGGCTACATTCCCCCCAGCTATGATCTTCCTG ATCATCCCCACTTCACTGGACCCATGAGTACCCTTCAGGGCGATCCGT GACAGAGATGGAGGTGATGCAATTCCTGAACCGTGGCCAACGCTCGCAG CCTTCGGCCCAAGCTCTCATCTACTTCCGAGATCCTGATTTCCTTAGCT CTGTGCCAGATGCCTGGAAACCTGACTTTATATCTGAGTCAGAAGAAGC TGCACATCGGGTCTCAGAGCTGAAGAGATATCTACACGAACAGAAAGAG GTTACCTGTCGCAGCTACTCCTGTGAATGGGGAGGTGTAGCGGCTGGCC GGCCCTATACTGGGGGCCTGGAGGAGTTTGGACAGTTGGTTCTCCAGGA TGTGTGGAGCATGATCCAGAAGCAGCACCTGCAGCCTGGGGCCCAGTTG GAGCAGCCAACATCCATCTCAGAAGACGATTTGATCCAGACCAGCTTTC AGCAGCTGAAGACCCCAACGAGTCCGGCACGGCCACGCCTTCTTCAGGA TACAGTGCAGCAGCTGTTGCTGCCCCATGGGAGGCTGAGCCTAGTGACT GGGCAGGCAGGACAGGGAAAGACTGCCTTTCTGGCATCCCTTGTGTCTG CTTTGCAGCAGCCCGCCCTGACCAGTGTCTTGCTCTCAACCTCCTCAGA CGCCTCTGTACCCATCTGCGTCAAAAACTGGGAGAGCTGAGTGCCCTCC

FIG.2E

CCAGCACTTACAGAGGCCTGGTGTGGGAACTGCAGCAGAAGTTGCTCCT CAAATTCGCTCAGTCGCTGCAGCCTGCTCAGACTTTGGTCCTTATCATC GATGGGGCAGATAAGTTGGTGGATCGTAATGGGCAGCTGATTTCAGACT GGATCCCCAAGTCTCTTCCGCGGCGAGTACACCTGGTGCTGAGTGTGTC CAGTGACTCAGGCCTGGGTGAGACCCTTCAGCAAAGTCAGGGTGCTTAT GTGGTGGCCTTGGGCTCTTTGGTCCCATCTTCAAGGGCTCAGCTTGTGA GAGAAGAGCTAGCACTGTATGGGAAACGACTGGAGGAGTCACCTTTTAA CAACCAGATGCGGCTGCTGCCAAAGCAGGGTTCAAGCCTGCCATTG TACCTGCACCTTGTCACTGACTACCTGAGGCTCTTCACACTGTATGAAC AGGTGTCTGAGAGACTTCGAACCCTGCCCGCCACTCTCCCACTGCTCTT GCAGCACATCCTGAGCACCTTGGAGCAAGAACATGGCCATGATGTCCTT CCTCAGGCTTTGACTGCCCTTGAGGTCACACGAAGTGGTCTGACTGTGG ACCAGCTACATGCAATCCTGAGCACATGGCTGATCTTGCCCAAGGAGAC TAAGAGCTGGGAAGAAGTGCTGGCTGCCAGTCACAGTGGAAACCCTTTC CCCTTGTGTCCATTTGCCTACCTTGTCCAGAGTCTACGCAGTTTACTAG GGGAGGCCCAGTGGAGCGCCCTGGTGCCCGTCTCTGCCTCTCTGATGG GCCCCTGAGGACAACAATTAAACGTCGCTATGGGAAAAGGCTGGGGCTA GAGAAGACTGCGCATGTCCTCATTGCAGCTCACCTCTGGAAGACGTGTG ATCCTGATGCCTCGGGCACCTTCCGAAGTTGCCCTCCTGAGGCTCTGAA

FIG.2F

AGATTTACCTTACCACCTGCTCCAGAGCGGGAACCATGGTCTCCTTGCC GAGTTTCTTACCAATCTCCATGTGGTTGCTGCATATCTGGAAGTGGGTC TAGTCCCCGACCTCTTGGAGGCTCATGTGCTCTATGCTTCTTCAAAGCC TGAAGCCAACCAGAAGCTCCCAGCGGCAGATGTTGCTGTTTTCCATACC TTCCTGAGACAACAGGCTTCACTCCTTACCCAGTATCCTTTGCTCCTGC TCCAGCAGCCAGCCTGAAGAGTCACCTGTTTGCTGCCAGGC CCCCCTGCTCACCCAGCGATGGCACGACCAGTTCACACTGAAATGGATT AATAAACCCCAGACCCTGAAGGGTCAGCAAAGCTTGTCTCTGACAATGT CCTCATCCCCAACTGCTGTGGCCTTCTCCCCGAATGGGCAAAGAGCAGC TGTGGGGACCGCCAGTGGGACAATTTACCTGTTGAAACTTGAAAACCTGG CAGGAGGAGAAGGCTGTGGTGAGTGGCTGTGACGGGATTTCCTCTTTTG CATTCCTTTCGGACACTGCCCTTTTCCTTACTACCTTCGACGGGCACCT AGAGCTTTGGGACCTGCAACATGGTTGTTGGGTGTTTCAGACCAAGGCC CACCAGTACCAAATCACTGGCTGCTGCCTGAGCCCAGACCGCCGCCTGC TGGCCACTGTGTTTTGGGAGGATACCTAAAGCTGTGGGACACAGTCCG AGGACAGCTGGCTTTTCAGTACACCCATCCAAAGTCTCTCAACTGCGTT GCCTTCCACCCAGAGGGGCAGGTGGTAGCCACAGGCAGCTGGGCA GCATTACCTTCTTCCAGGCAGATGGACTCAAAGTCACCAAGGAACTAGG GGCCCCCGGACCCTCTGTCTGTAGTTTGGCATTCAACAAACCTGGGAAG

FIG.2G

ATTGTGGCTGTGGGCCCGATAGATGGGACAGTGGAGCTGTGGGCCTGGC AAGAGGGTGCCCGGCTGGCGCCTTCCCTGCACAGTGTGGCTGTGTCTC TGCTGTTCTTTCTTGCATGCTGGAGACCGGTTCCTGACTGCTGGAGAA GCCTGGGCTCTCTTCTCTCTCTGCACTCTCGGTGGCTCTCAACCC AGACGGTGACCAGGTGGCTGTTGGGTACCGAGAAGATGGCATTAACATC TACAAGATTTCTTCAGGTTCCCAGGGGCCTCAGCATCAAGAGCTAAATG TGGCGGTGTCTGCACTGGTGTGGCTGAGCCCTAGTGTTTTGGTGAGTGG TGCAGAAGATGGATCCCTGCATGGTTGGATGTTCAAGGGAGACTCCCTT CATTCCCTGTGGCTGTTGTCGAGATACCAGAAGCCTGTGCTGGGACTGG CTGCCTCCCGGGAACTCATGGCTGCCTCAGAGGACTTCACTGTGAG ACTGTGGCCCAGACAGCTGCTGACACAGCCACATGTGCATGCGGTAGAG TTGCCCTGTTGTGCTGAACTCCGGGGACACGAGGGGCCAGTGTGCTGCT GTAGCTTCAGCCCTGATGGAGGCATCTTGGCCACAGCTGGCAGGGATCG GAATCTCCTTTGCTGGGACATGAAGATAGCCCAAGCCCCTCTCCTGATT CACACTTTCTCGTCCTGTCATCGTGACTGGATCACTGGCTGTGCGTGGA CCAAAGACAACATCCTGGTCTCCTGCTCGAGTGATGGCTCTGTGGGACT CTGGAACCCAGAGGCAGGCAGCAACTTGGCCAGTTCTCAGGCCACCAG AGTGCCGTGAGCGCCGTGGTTGCTGTGGAGGAACACATTGTATCTGTGA

FIG.2H

GCCGAGATGGGACCTTGAAAGTGTGGGACCATCAGGGTGTGGAGCTGAC CAGCATCCCTGCCCATTCCGGACCCATCAGCCAGTGTGCAGCTGCTCTG GAGCCCCGCCCAGGGGGACAGCCTGGATCAGAGCTTCTGGTGGTGACTG TTGGACTAGATGGGCCACAAAGTTGTGGCATCCCCTGTTGGTGTGCCA AATACGTACTCTCCAGGGACACAGTGGCCCAGTCACAGCAGCTGCTGCT TCAGAGGCCTCAGGCCTCCTGCTGACCTCAGATGATAGCTCTGTACAGC TCTGGCAGATACCAAAGGAAGCAGATGATTCATACAAACCTAGGAGTTC TGTGGCCATCACTGCTGGGCATGGCACCGGATGGTTCTATGGTGGTG TCCGGAAATGAAGCCGGGAACTGACACTGTGGCAGCAAGCCAAGGCTG TGGCTACCGCACAGGCTCCAGGCCGCGTCAGTCACCTGATCTGGTACTC GGCAAATTCATTCTTCGTTCTCAGTGCTAATGAAAACGTCAGCGAGTGG CAAGTGGGACTGAGGAAAGGTTCAACGTCCACCAGTTCCAGTCTTCATC TGAAGAGAGTTCTGCAGGAGGACTGGGGAGTCTTGACAGGTCTGGGTCT GGCCCCTGATGGCCAGTCTCTCATCTTGATGAAAGAGGATGTGGAATTA CTAGAGATGAAGCCTGGGTCTATTCCATCTTCTATCTGCAGGAGGTATG GAGTACATTCTTCAATACTGTGCACCAGCAAGGAGTACGGCTTGTTCTA CCTGCAGCAGGGGACTCCGGATTACTTTCTATATTGGAGCAAAAGGAG TCAGGGGAGTTTGAAGAGATCCTGGACTTCAATCTGAACTTAAATAATC CTAATGGGTCCCCAGTATCAATCACTCAGGCCAAACCTGAGTCTGAATC

FIG.21

ATCCCTTTTGTGCGCCACCTCTGATGGGATGCTGTGGAACTTATCTGAA
TGTACCTCAGAGGGAGAATGGATCGTAGATAACATTTGGCAGAAAAAAG
CAAAAAAACCTAAAACTCAGACTCTGGAGACAGAGTTGTCCCCGCACTC
AGAGTTGGATTTTTCCATTGATTGCTGGATTGATCCCACAAATTTAAAG
GCACAGCAGTGTAAAAAGATCCACTTGGGCTCTGTCACAGCCCTCCATG
TGCTTCCGGGATTGCTGGTGACAGCTTCGAAGGACAGAGTTTAAGCT
GTGGGAGAGACCCAGTATGCAGCTGCTGGGCTTTTCCGATGTGAAGGG
CCAGTGAGCTGTTGGAACCTTGGATGTGAAGGG
TTGCTGTGGGAGCCCAGCTCTCCCCTGCAGC

FIG.3A

MEKLHGHVSAHPDILSLENRCLAMLPDLQPLEKLHQHVSTHSDILSLKN QCLATLPDLKTMEKPHGYVSAHPDILSLENQCLATLSDLKTMEKPHGHV SAHPDILSLENRCLATLPSLKSTVSASPLFQSLQISHMTQADLYRVNNS NCLLSEPPSWRAQHFSKGLDLSTCPIALKSISATETAQEATLGRWFDSE EKKGAETQMPSYSLSLGEEEEVEDLAVKLTSGDSESHPEPTDHVLQEKK MALLSLLCSTLVSEVNMNNTSDPTLAAIFEICRELALLEPEFILKASLY ARQQLNVRNVANNILAIAAFLPACRPHLRRYFCAIVQLPSDWIQVAELY QSLAEGDKNKLVPLPACLRTAMTDKFAQFDEYQLAKYNPRKHRAKRHPR RPPRSPGMEPPFSHRCFPRYIGFLREEQRKFEKAGDTVSEKKNPPRFTL KKLVQRLHIHKPAQHVQALLGYRYPSNLQLFSRSRLPGPWDSSRAGKRM KLSRPETWERELSLRGNKASVWEELIENGKLPFMAMLRNLCNLLRVGIS SRHHELILQRLQHGKSVIHSRQFPFRFLNAHDAIDALEAQLRNQALPFP SNITLMRRILTRNEKNRPRRRFLCHLSRQQLRMAMRIPVLYEQLKREKL RVHKARQWKYDGEMLNRYRQALETAVNLSVKHSLPLLPGRTVLVYLTDA NADRLCPKSNPQGPPLNYALLLIGMMITRAEQVDVVLCGGDTLKTAVLK AEEGILKTAIKLQAQVQEFDENDGWSLNTFGKYLLSLAGQRVPVDRVIL LGQSMDDGMINVAKQLYWQRVNSKCLFVGILLRRVQYLSTDLNPNDVTL SGCTDAILKFIAEHGASHLLEHVGQMDKIFKIPPPPGKTGVQSLRPLEE DTPSPLAPVSQQGWRSIRLFISSTFRDMHGERDLLLRSVLPALQARAAP

FIG.3B

HRISLHGIDLRWGVTEEETRRNRQLEVCLGEVENAQLFVGILGSRYGYI PPSYNLPDHPHFHWAQQYPSGRSVTEMEVMQFLNRNQRLQPSAQALIYF RDSSFLSSVPDAWKSDFVSESEEAAXRISELKSYLSRQKGITCRRYPCE WGGVAAGRPYVGGLEEFGQLVLQDVWNMIQKLYLQPGALLEQPVSIPDD DLVQATFQQLQKPPSPARPRLLQDTVQXLMLPHGRLSLVTGQSGQGKTA ${ t FLASLVSALQAPDGAKVAXLVFFHFSGARPDQGLALTLLRRLCTYLRGQ}$ LKEPGALPSTYRSLVWELQQRLLPKSAESLHPGQTQVLIIDGADRLVDQ NGQLISDWIPKKLPRCVHLVLSVSSDAGLGETLEQSQGAHVLALGPLEA SARARLVREELALYGKRLEESPFNNQMRLLLVKRESGRPLYLRLVTDHL RLFTLYEQVSERLRTLPATVPLLLQHILSTLEKEHGPDVLPQALTALEV TRSGLTVDQLHGVLSVWRTLPKGTKSWEEAVAAGNSGDPYPMGPFACLV **OSLRSLLGEGPLERPGARLCLPDGPLRTAAKRCYGKRPGLEDTAHILIA** AQLWKTCDADASGTFRSCPPEALGDLPYHLLQSGNRGLLSKFLTNLHVV **AAHLELGLVSRLLEAHALYASSVPKEEQKLPEADVAVFRTFLRQQASIL** SQYPRLLPQQAANQPLDSPLCHQASLLSRRWHLQHTLRWLNKPRTMKNQ QSSSLSLAVSSSPTAVAFSTNGQRAAVGTANGTVYLLDLRTWQEEKSVV SGCDGISACLFLSDDTLFLTAFDGLLELWDLQHGCRVLQTKAHQYQITG CCLSPDCRLLATVCLGGCLKLWDTVRGQLAFQHTYPKSLNCVAFHPEGQ VIATGSWAGSISFFQVDGLKVTKDLGAPGASIRTLAFNVPGGVVAVGRL

FIG.3C

DSMVELWAWREGARLAAFPAHHGFVAAALFLHAGCQLLTAGEDGKVQVW SGSLGRPRGHLGSLSLSPALSVALSPDGDRVAVGYRADGIRIYKISSGS QGAQGQALDVAVSALAWLSPKVLVSGAEDGSLQGWALKECSLQSLWLLS RFQKPVLGLATSQELLASASEDFTVQLWPRQLLTRPHKAEDFPCGTELR GHEGPVSCCSFSTDGGSLATGGRDRSLLCWDVRTPKTPVLIHSFPACHR DWVTGCAWTKDNLLISCSSDGSVGLWDPESGQRLGQFLGHQSAVSAVAA VEEHVVSVSRDGTLKVWDHQGVELTSIPAHSGPISHCAAAMEPRAAGQP GSELLVVTVGLDGATRLWHPLLVCQTHTLLGHSGPVRAAAVSETSGLML TASEDGSVRLWQVPKEADDTCIPRSSAAVTAVAWAPDGSMAVSGNQAGE LILWQEAKAVATAQAPGHIGALIWSSAHTFFVLSADEKISEWOVKLRKG SAPGNLSLHLNRILQEDLGVLTSLDWAPDGHFLILAKADLKLLCMKPGD APSEIWSSYTENPMILSTHKEYGIFVLQPKDPGVLSFLRQKESGEFEER LNFDINLENPSRTLISITQAKPESESSFLCASSDGILWNLAKCSPEGEW TTGNMWQKKANTPETQTPGTDPSTCRESDASMDSDASMDSEPTPHLKTR QRRKIHSGSVTALHVLPELLVTASKDRDVKLWERPSMQLLGLFRCEGSV SCLEPWLGANSTLQLAVGDVQGNVYFLNWE

FIG.4A

MEKLCGHVPGHSDILSLKNRCLTMLPDLQPLEKIHGHRSVHSDILSLEN QCLTMLSDLQPTERIDGHISVHPDILSLENRCLTMLPDLQPLEKLCGHM SSHPDVLSLENQCLATLPTVKSTALTSPLLQGLHISHTAQADLHSLKTS NCLLPELPTKKTPCFSEELDLPPGPRALKSMSATAQVQEVALGQWCVSK EKEFQEEESTEVPMPLYSLSLEEEEVEAPVLKLTSGDSGFHPETTDQVL **QEKKMALLTLLCSALASNVNVKDASDLTRASILEVCSALASLEPEFILK** ASLYARQQLNLRDIANTVLAVAALLPACRPHVRRYYSAIVHLPSDWIQV AEFYQSLAEGDEKKLVSLPACLRAAMTDKFAEFDEYQLAKYNPRKHRSK RRSRQPPRPQKTERPFSERGKCFPKSLWPLKNEQITFEAAYNAMPEKNR LPRFTLKKLVEYLHIHKPAQHVQALLGYRYPATLELFSRSHLPGPWESS RAGQRMKLRRPETWERELSLRGNKASVWEELIDNGKLPFMAMLRNLCNL LRTGISARHHELVLQRLQHEKSVVHSRQFPFRFLNAHDSIDKLEAQLRS KASPFPSNTTLMKRIMIRNSKKNRRPASRKHLCTLTRRQLRAAMTIPVM YEQLKREKLRLHKARQWNCDVELLERYRQALETAVNLSVKHNLSPMPGR TLLVYLTDANADRLCPKSHSQGPPLNYVLLLIGMMVARAEQVTVCLCGG GFVKTPVLTADEGILKTAIKLQAQVQELEGNDEWPLDTFGKYLLSLAVQ RTPIDRVILFGQRMDTELLKVAKQIIWQHVNSKCLFVGVLLQKTQYISP NLNPNDVTLSGCTDGILKFIAEHGASRLLEHVGQLDKLFKIPPPPGKTQ APSLRPLEENIPGPLGPISQHGWRNIRLFISSTFRDMHGERDLLMRSVL

FIG.4B

PALQARVFPHRISLHAIDLRWGITEEETRRNRQLEVCLGEVENSQLFVG ILGSRYGYIPPSYDLPDHPHFHWTHEYPSGRSVTEMEVMQFLNRGQRSQ PSAQALIYFRDPDFLSSVPDAWKPDFISESEEAAHRVSELKRYLHEOKE VTCRSYSCEWGGVAAGRPYTGGLEEFGQLVLQDVWSMIOKOHLOPGAOL EOPTSISEDDLIQTSFQQLKTPTSPARPRLLODTVOOLLLPHGRLSLVT GQAGQGKTAFLASLVSALKVPDQPNEPPFVFFHFAAARPDQCLALNLLR RLCTHLROKLGELSALPSTYRGLVWELQQKLLLKFAQSLQPAQTLVLII DGADKLVDRNGQLISDWIPKSLPRRVHLVLSVSSDSGLGETLQQSQGAY VVALGSLVPSSRAQLVREELALYGKRLEESPFNNQMRLLLAKQGSSLPL YLHLVTDYLRLFTLYEQVSERLRTLPATLPLLLQHILSTLEQEHGHDVL POALTALEVTRSGLTVDQLHAILSTWLILPKETKSWEEVLAASHSGNPF PLCPFAYLVQSLRSLLGEGPVERPGARLCLSDGPLRTTIKRRYGKRLGL EKTAHVLIAAHLWKTCDPDASGTFRSCPPEALKDLPYHLLOSGNHGLLA **EFLTNLHVVAAYLEVGLVPDLLEAHVLYASSKPEANOKLPAADVAVFHT** FLRQQASLLTQYPLLLLQQAASQPEESPVCCQAPLLTQRWHDQFTLKWI NKPOTLKGQQSLSLTMSSSPTAVAFSPNGQRAAVGTASGTIYLLNLKTW QEEKAVVSGCDGISSFAFLSDTALFLTTFDGHLELWDLQHGCWVFQTKA HQYQITGCCLSPDRRLLATVCLGGYLKLWDTVRGQLAFQYTHPKSLNCV AFHPEGOVVATGSWAGSITFFQADGLKVTKELGAPGPSVCSLAFNKPGK

FIG.4C

IVAVGRIDGTVELWAWQEGARLAAFPAQCGCVSAVLFLHAGDRFLTAGE DGKAQLWSGFLGRPRGCLGSLPLSPALSVALNPDGDQVAVGYREDGINI YKISSGSQGPQHQELNVAVSALVWLSPSVLVSGAEDGSLHGWMFKGDSL HSLWLLSRYQKPVLGLAASRELMAAASEDFTVRLWPRQLLTQPHVHAVE LPCCAELRGHEGPVCCCSFSPDGGILATAGRDRNLLCWDMKIAQAPLLI HTFSSCHRDWITGCAWTKDNILVSCSSDGSVGLWNPEAGQQLGQFSGHQ SAVSAVVAVEEHIVSVSRDGTLKVWDHQGVELTSIPAHSGPISQCAAAL EPRPGGQPGSELLVVTVGLDGATKLWHPLLVCQIRTLQGHSGPVTAAAA SEASGLLLTSDDSSVQLWQIPKEADDSYKPRSSVAITAVAWAPDGSMVV SGNEAGELTLWQQAKAVATAQAPGRVSHLIWYSANSFFVLSANENVSEW QVGLRKGSTSTSSSLHLKRVLQEDWGVLTGLGLAPDGQSLILMKEDVEL LEMKPGSIPSSICRRYGVHSSILCTSKEYGLFYLQQGDSGLLSILEQKE SGEFEEILDFNLNLNNPNGSPVSITQAKPESESSLLCATSDGMLWNLSE CTSEGEWIVDNIWQKKAKKPKTQTLETELSPHSELDFSIDCWIDPTNLK AQQCKKIHLGSVTALHVLPGLLVTASKDRDVKLWERPSMQLLGLFRCEG PVSCLEPWMEPSSPLQLAVGDTQGNLYFLSWE

FIG.5A

CACGCGTCCGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGG CCCCGGCCACCCCGCGATGCCGCGCGCTCCCCGCTGCCGAGCCGTGCG CTCCCTGCTGCGCAGCCACTACCGCGAGGTGCTGCCGCTGGCCACGTTC GTGCGGCGCCTGGGGCCCCAGGGCTGGCGGCGGGGGCCC CTGAAGGAGCTGGTGCCCGAGTGCTGCAGAGGCTGTGCGAGCGCGCG CGAAGAACGTGCTGGCCTTCGGCTTCGCGCTGCTGGACGGGCCCGCGG GGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTACCTGCCCAAC GCCGCGTGGGCGACGACGTGCTGGTTCACCTGCTGGCACGCTGCGCGCT CTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGGCCGCCG CTGTACCAGCTCGGCGCTGCCACTCAGGCCCGGCCCCCGCCACACGCTA GTGGACCCCGAAGGCGTCTGGGATGCGAACGGGCCTGGAACCATAGCGT CAGGGAGGCCGGGTCCCCCTGGGCCTGCCAGCCCCGGGTGCGAGGAGG CGCGGGGCAGTGCCAGCCGAAGTCTGCCGTTGCCCAAGAGGCCCAGGC GTGGCGCTGCCCCTGAGCCGGAGCGCCCCGTTGGGCAGGGGTCCTG GGCCCACCCGGGCAGGACGCGTGGACCGAGTGACCGTGGTTTCTGTGTG GTGTCACCTGCCAGACCCGCCGAAGAAGCCACCTCTTTGGAGGGTGCGC

FIG.5B

TCTCTGGCACGCCACTCCCACCCATCCGTGGGCCGCCAGCACCACGC GGGCCCCCATCCACATCGCGGCCACCACGTCCCTGGGACACGCCTTGT CCCCCGGTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACA AGGAGCAGCTGCGGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCT GACTGGCGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCC TGGATGCCAGGGACTCCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACT GGCAAATGCGGCCCCTGTTTCTGGAGCTGCTTGGGAACCACGCGCAGTG CCCCTACGGGGTGCTCCTCAAGACGCACTGCCGCTGCGAGCTGCGGTC ACCCCAGCAGCCGGTGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGTGG CGGCCCCGAGGAGGAGGACACAGACCCCCGTCGCCTGGTGCAGCTGCT CCGCCAGCACAGCCCCTGGCAGGTGTACGGCTTCGTGCGGGCCTGC CTGCGCCGGCTGGTGCCCCCAGGCCTCTGGGGCTCCAGGCACAACGAAC GCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCATGC CAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGGACTGC GCTTGGCTGCGCAGGGCCCAGGGGTTGGCTGTTCCGGCCGCAGAGC ACCGTCTGCGTGAGGAGATCCTGGCCAAGTTCCTGCACTGGCTGATGAG TGTGTACGTCGTCGAGCTGCTCAGGTCTTTCTTTTATGTCACGGAGACC ACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTGGAGCA AGTTGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCG

FIG.5C

GGAGCTGTCGGAAGCAGAGGTCAGGCAGCATCGGGAAGCCAGGCCCGCC CTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACGGGCTGCGGC CGATTGTGAACATGGACTACGTCGTGGGAGCCAGAACGTTCCGCAGAGA AAAGAGGCCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTG CTCAACTACGAGCGGCGCGCGCCCCGGCCTCCTGGGCGCCTCTGTGC TGGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCTGT GCGGGCCCAGGACCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTG ACGGGCGCGTACGACACCATCCCCCAGGACAGGCTCACGGAGGTCATCG CCAGCATCATCAAACCCCAGAACACGTACTGCGTGCGTCGGTATGCCGT GGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAGCCAC GTCTCTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTC ACCTGCAGGAGACCAGCCCGCTGAGGGATGCCGTCGTCATCGAGCAGAG CTCCTCCTGAATGAGGCCAGCAGTGGCCTCTTCGACGTCTTCCTACGC TTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGTCCTACGTCCAGT GCCAGGGATCCCGCAGGCTCCATCCTCCACGCTGCTCTGCAGCCT GTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGAC GGGCTGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACC TCACCCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGA GTATGGCTGCGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTA

PCT/US97/21248 _

28/46

FIG.5D

GAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGATGCCGGCCCACGGCCTAT

FIG.6A

HASGORCVLLRTWEALAPATPAMPRAPRCRAVRSLLRSHYREVLPLATF VRRLGPQGWRLVQRGDPAAFRALVAQCLVCVPWDARPPPAAPSFROVSC LKELVARVLQRLCERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPN TVTDALRGSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPP LYQLGAATQARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPGARR RGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCV VSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPC PPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRP WMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAV TPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRAC LRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDC AWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTET TFOKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPA LLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSV LNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVDV TGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSH VSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLR ${\tt FMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRD}$

PCT/US97/21248 _

30/46

FIG.6B

 ${\tt GLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPV}$ ${\tt EDEALGGTAFVQMPAHGL}$

PCT/US97/21248 _

31/46 FIG. 7

TCCCCTGGTGCGGCCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACT ACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCT ${\tt TCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGT}$ GTCACAGCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCA ACATCTACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGC AGCTCCCATTTCATCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCA TCTCTGACACGGCCTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGA TGTCGCTGGGGCCCAAGGGCCCCCCCCCCCCTCCCGAGGCCGTGCAGT GGCTGTGCCACCAAGCATTCCTGCTCAAGCTGACTCGACACCGTGTCACCTACG TGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCC CGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGGCACTGCCCTCAG ACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCA AGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGT CCAGCCAAGGCTGAGTGTCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCT GGCGCTCGGCTCCACCCAGGGCCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCA CTCCCACATAGGAATAGTCCATCCCCTGAT

PCT/US97/21248 _

32/46 FIG.8A

CCACGCGTCCGGCAGCGTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCC GGCCACCCCGCGATGCCGCGCGCGCTCCCCGCTGCCGAGCCGTGCGCTCCCTGCT GCGCAGCCACTACCGCGAGGTGCTGCCGCTGGCCACGTTCGTGCGCCCTGGG CCCCTCCTTCCGCCAGGTGTCCTGCCTGAAGGAGCTGGTGGCCCGAGTGCTGCA GAGGCTGTGCGAGCGCGCGAAGAACGTGCTGCCTTCGGCTTCGCGCTGCT GGACGGGGCCCGCGGGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTA GCTGCGCCGCGTGGCGACGACGTGCTGCTTCACCTGCTGGCACGCTGCGCGCT CTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGGCCGCCGCTGTA CCAGCTCGGCGCTGCCACTCAGGCCCGGCCCCCCCCACACGCTAGTGGACCCCG AAGGCGTCTGGGATGCGAACGGCCTGGAACCATAGCGTCAGGGAGGCCGGGGT AAGTCTGCCGTTGCCCAAGAGGCCCAGGCGTGGCGCTGCCCCTGAGCCGGAGCG GACGCCCGTTGGGCAGGGGTCCTGGGCCCACCCGGGCAGGACGCGTGGACCGAG TGACCGTGGTTTCTGTGTGTGTCACCTGCCAGACCCGCCGAAGAAGCCACCTC GCACCACGCGGCCCCCCATCCACATCGCGGCCACCACGTCCCTGGGACACGCC TTGTCCCCCGGTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACAA

PCT/US97/21248 _

33/46 FIG.8B

GGAGCAGCTGCGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCTGACTGG CGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCCTGGATGCCAGG GACTCCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACTGGCAAATGCGGCCCCT GTTTCTGGAGCTGCTTGGGAACCACGCGCAGTGCCCCTACGGGGTGCTCCTCAA GACGCACTGCCGCTGCGAGCTGCGGTCACCCCAGCAGCCGGTGTCTGTGCCCG GGAGAAGCCCCAGGGCTCTGTGGCGGCCCCCGAGGAGGAGGACACAGACCCCCG TCGCCTGGTGCAGCTCCCCCCAGCACAGCAGCCCCTGGCAGGTGTACGGCTT CGTGCGGCCTGCCCGGCTGGTGCCCCCAGGCCTCTGGGGCTCCAGGCA CAACGAACGCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCA TGCCAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGACTGCGC TTGGCTGCGCAGGGCCCAGGGGTTGGCTGTTCCGGCCGCAGAGCACCGTCT GCGTGAGGAGATCCTGGCCAAGTTCCTGCACTGGCTGATGAGTGTGTACGTCGT CGAGCTGCTCAGGTCTTTCTTTTATGTCACGGAGACCACGTTTCAAAAGAACAG GCTCTTTTTCTACCGGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAG ACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCTGTCGGAAGCAGAGGTCAGGCA GCATCGGGAAGCCAGGCCCGCCCTGCTGACGTCCAGACTCCGCTTCATCCCCAA GCCTGACGGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAAC GTTCCGCAGAGAAAAGAGGCCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTT CAGCGTGCTCAACTACGAGCGGGCGCGCGCGCCCCGGCCTCTGT GCTGGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCG

PCT/US97/21248 _

34/46 FIG.8C

GGCCCAGGACCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTGACGGCCGC GTACGACACCATCCCCAGGACAGGCTCACGGAGGTCATCGCCAGCATCATCAA ACCCCAGAACACGTACTGCGTGCGTCGGTATGCCGTGGTCCAGAAGGCCGCCCA TGGGCACGTCCGCAAGGCCTTCAAGAGCCACGTCTCTACCTTGACAGACCTCCA GCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGAGACCAGCCCGCTGAGGGA ${\tt TGCCGTCGTCATCGAGCAGCAGCTCCTCCTGAATGAGGCCAGCAGTGGCCTCTT}$ CGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGTC CTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTG CAGCCTGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGA CGGGCTGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCTCAC CCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTG CGTGGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTAGAAGACGAGGCCCT GGGTGGCACGGCTTTTGTTCAGATGCCGGCCCACGGCCTATTCCCCTGGTGCGG CCTGCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACTACTCCAGCTATGC CCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCTTCAAGGCTGGGAG GAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGTGTCACAGCCTGTT TCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCTACAAGAT CCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTCA TCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGC CTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGC

PCT/US97/21248 _

35/40 FIG.8D

FIG.9A

HASGQRCVLLRTWEALAPATPAMPRAPRCRAVRSLLRSHYREVLPLATF VRRLGPQGWRLVQRGDPAAFRALVAQCLVCVPWDARPPPAAPSFROVSC LKELVARVLQRLCERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPN TVTDALRGSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPP LYQLGAATQARPPPHASGPRRLGCERAWNHSVREAGVPLGLPAPGARR RGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCV VSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPC PPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRP WMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVLLKTHCPLRAAV TPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRAC LRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVRDC AWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTET TFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPA LLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSV LNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVDV TGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQKAAHGHVRKAFKSH VSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFDVFLR FMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRD GLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPV

PCT/US97/21248 _

37/46

FIG.9B

EDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASL
TFNRGFKAGRNMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLL
QAYRFHACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSL
GAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQTQLSR
KLPGTTLTALEAAANPALPSDFKTILD

PCT/US97/21248 _

38/46 FIG.10

PCT/US97/21248

FIG.11A

FIG. 11B

FIG.11C

PCT/US97/21248 -

40146

F1G.12A

FIG.12B

PCT/US97/21248 -

	Mock	rRIP1	FLA	AGT	P2	MycTRIP1/ FLAGTP2			
	N2A Mock	MYCTRIP		+PEP	+NS PEP		1+PEP	+NS PEP	
	1	2	3	4	5	6	7	8	- 200 kDa
anti FLAG			(58) (39)	•	⇔	E			- TP2 - 116 - 97
anti MYC	*		٠	٠.		***			- TRIP1 - 200 kDa

FIG.13A

FIG.13B

	⋖								
	μg RNA								
	1.0				52				
o Sino	10.0				54				
hTR only	500.0				53				
~	100.0				22				
œ	1.0				51				
7P2 + mTR	10.0	50							
	900.0				6 i				
	100.0				81				
TP2 + chTR TP2 + tRNA	1.0				21				
	0.03				91				
	900.0				ទ្ធរ				
	100.0				tı	Ezzes.			
	1.0				13	ا مو			
	coo	ıs							
	900.0	11							
	0.001				Of				
1	928NA +1.0				6				
E E	1.0			3	8				
TP2 + hTR	10.0	100.0 300.0 10.0 1.0							
	300.0	9							
	100.0			*	S				
vino S9T					Þ				
AMQ on					3				
əs	HeLa + RNas				2				
	HeLa				ı				

PCT/US97/21248 -

43/46

40	_	WT TP2		5-1		5-2		5-1,2								
HeLa HeLa + RNase	TP2 only	0.005 0.01 0.1	0.1+ RNase	0.001	0.005	0.01	0.1	0.001	0.005	0.01	0.1	0.001	0.005	0.01	0.1	μg hTR

FIG. 15A

WT TP2 5-1 5-2 5-1,2 no DNA

- 200 kDa

- 116 kDa

FIG.15B

FIG. 16A

FIG.16B

FIG.17B

PCT/US97/21248 -

46/46

1 2 3 4 5 6

FIG. 18