

实验报告书

课程名称:	路由技术原理与应用					
	计算机					
专 业:	网络工程					
•	2020级					
	2 班					
	潘玥 学号: 202010420211					
						
	, :=					
廾诛时间 :	2022 至 2023 学年第1学期					

成都大学

年 月 日

实验成绩统计表

实验项目序号	实验项目成绩	占实验总成绩比例
实验 1		
实验 2		
实验3		
实验 4		
实验 5		
实验 6		
实验 7		
实验 8		
实验 9		
实验 10		
实验 11		
实验 12		
总成绩		教师签名

成都大学实验报告单

课程名称	路由技术原理 与应用	任课教师	程琨	学	院	计算机学院
学生姓名/学号 (小组成员)	潘玮	月 202010420	211	专 班	业 级	网络工程 20-2
实验室及地点		10318		实验	日期	22. 09. 23
实验项目名称	使用交	换机构建简	单局域网/使用路	由交担	奂机构	建园区网
实验类型	□认知性	□验证性〔	□综合性 □设计	性]研究	生 □创新性
实 验 目 的 及要求	一、本实验通过在交换机上划分虚拟局域网,从而分割交换机的广播域。 1、了解虚拟局域网的工作原理; 2、了解 802.1Q 协议和数据帧结构; 3、掌握基于接口的 VLAN 配置方法; 4、掌握跨交换机配置 VLAN 的方法; 二、本实验介绍如何使用路由交换机构建园区网,并实现 VLAN 之间的互访。 1、熟悉路由交换机的工作原理; 2、掌握交换机虚拟接口(SVI)的创建与应用; 3、掌握使用路由交换机实现不同 VLAN 间通信方法。					
实验仪器、材 料			eNSP, Wiresh	ark		

实验内容及过程记录

项目三: 使用交换机构建简单局域网

一、任务 1: 单交换机上应用 VLAN

Step 1: 配置网络拓扑并规划 IP 地址

图 3-1-1 创建网络拓扑

Step 2: 进查看交换机初始信息并测试网络连通性。 启动交换机 SW-1, 进入 SW-1 的 CLI 界面。

① 使用命令display vlan 查看交换机当前 VLAN 信息:

图 3-1-2 交换机当前 VLAN 信息

可以看到,交换机在初始状态下,存在一个缺省 VLAN,其 VID 值为 1。

② 使用命令display port vlan 查看交换机各接口所属 VLAN 信息:

<huawei>display port v</huawei>	rlan		
Port	Link Type	PVID	Trunk VLAN List
Ethernet0/0/1	hybrid	1	-
Ethernet0/0/2	hybrid	1	_
Ethernet0/0/3	hybrid	1	-
Ethernet0/0/4	hybrid	1	-
Ethernet0/0/5	hybrid	1	_
Ethernet0/0/6	hybrid	1	_
Ethernet0/0/7	hybrid	1	_
Ethernet0/0/8	hybrid	1	_
Ethernet0/0/9	hybrid	1	_
Ethernet0/0/10	hybrid	1	_
Ethernet0/0/11	hybrid	1	_
Ethernet0/0/12	hybrid	1	_
Ethernet0/0/13	hybrid	1	_
Ethernet0/0/14	hybrid	1	_
Ethernet0/0/15	hybrid	1	_
Ethernet0/0/16	hybrid	1	_
Ethernet0/0/17	hybrid	1	_
Ethernet0/0/18	hybrid	1	_
Ethernet0/0/19	hybrid	1	_
Ethernet0/0/20	hybrid	1	_
Ethernet0/0/21	hybrid	1	_
Ethernet0/0/22	hybrid	1	_
GigabitEthernet0/0/1	hybrid	1	_
GigabitEthernet0/0/2	hybrid	1	-

图 3-1-3 交换机各接口所属 VLAN 信息

可以看到,在初始状态下交换机所有接口的 PVID 值都是 1。即所有接口默认属于 VLAN1,接口类型为 hybrid。

③ 创建 VLAN 前测试通信:

在交换机初始配置情况下,对主机进行通信测试,结果如下表:

目的主机 序号 通信结果 源主机 Host-1 Host-2 通 2 Host-1 Host-3 通 Host-4 Host-1 通 4 Host-2 Host-4 誦

表 3-1-1 交换机初始配置通信测试结果

Step3: 配置交换机 SW-1

① 更改交换机名称:

② 创建 VLAN10 和 VLAN20:

```
    [SW-1]vlan batch 10 20
    Info: This operation may take a few seconds. Please wait for a moment...done.
```

③ 将接口划入 VLAN:

```
[SW-1]interface Eth0/0/1
[SW-1-Ethernet0/0/1]port link-type access
[SW-1-Ethernet0/0/1]port default vlan 10
[SW-1-Ethernet0/0/1]quit
[SW-1]
```

图 3-1-4 将接口划入 VLAN

参照对 Ethernet0/0/1 的设置,将 Ethernet0/0/2、Ethernet0/0/5、Ethernet0/0/6 接口划入相应的 VLAN。

```
[SW-1]interface Eth0/0/2
[SW-1-Ethernet0/0/2]port link-type access
[SW-1-Ethernet0/0/2]port default vlan 10
[SW-1-Ethernet0/0/2]quit
[SW-1]interface Eth0/0/5
[SW-1-Ethernet0/0/5]port link-type access
[SW-1-Ethernet0/0/5]port default vlan 10
[SW-1-Ethernet0/0/5]quit
[SW-1]interface Eth0/0/6
[SW-1-Ethernet0/0/6]port link-type access
[SW-1-Ethernet0/0/6]port default vlan 10
[SW-1-Ethernet0/0/6]port default vlan 10
[SW-1-Ethernet0/0/6]port default vlan 10
```

图 3-1-5 配置另外三个接口

④ 显示当前 VLAN 有关信息:

图 3-1-6 重新查看 VLAN 有关信息

⑤ 使用 display port vlan 命令显示当前交换机各接口所属 VLAN 信息:

[SW-1]display port vla Port	Link Type	PVID	Trunk VLAN List
Ethernet0/0/1		10	
Ethernet0/0/1 Ethernet0/0/2	access	10	_
Ethernet0/0/3			_
	hybrid		_
Ethernet0/0/4	hybrid		
Ethernet0/0/5	access	20	
Ethernet0/0/6	access	20	
Ethernet0/0/7	hybrid		
Ethernet0/0/8	hybrid		
Ethernet0/0/9	hybrid		
Ethernet0/0/10	hybrid		
Ethernet0/0/11	hybrid		
Ethernet0/0/12	hybrid		
Ethernet0/0/13	hybrid		
Ethernet0/0/14	hybrid		
Ethernet0/0/15	hybrid		
Ethernet0/0/16	hybrid	1	
Ethernet0/0/17	hybrid	1	
Ethernet0/0/18	hybrid	1	
Ethernet0/0/19	hybrid	1	
Ethernet0/0/20	hybrid	ī	
Ethernet0/0/21	hybrid	ī	
Ethernet0/0/22	hybrid	1	
GigabitEthernet0/0/1	hybrid	1	
GigabitEthernet0/0/2	hybrid	1	

图 3-1-7 重新查看交换机各接口所属 VLAN 信息

⑥ 退出系统视图,保存配置

```
[SW-1]quit
<SW-1>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 0.
Save the configuration successfully.
```

图 3-1-8 退出系统视图

Step 4: VLAN 通信测试

在交换机 SW-1 上配置 VLAN 以后,再次使用 Ping 命令测试主机的通信情况,结果如下表:

表 3-1-2 创建 VLAN 后各主机通信测试结果

序号	源主机	目的主机	通信结果	备注
1	Host-1	Host-2	通	同一 VLAN
2	Host-3	Host-4	通	同一 VLAN
3	Host-1	Host-3	不通	不同 VLAN
4	Host-2	Host-4	不通	不同 VLAN

二、任务 2: 跨交换机应用 VLAN

Step1: 配置网络拓扑并规划 IP 地址

图 3-2-1 在 eNSP 中配置的网络拓扑

Step 2: 配置交换机 SW-1

① 按要求配置 SW-1

```
15
   <Huawei>system-view
      Enter system view, return user view with Ctrl+Z.
16
   [Huawei]undo info-center enable
17
18
      Info: Information center is disabled.
19
     [Huawei]sysname SW-1
      // 创建 VLAN10 和 VLAN20;
20
   [SW-1]vlan batch 10 20
      Info: This operation may take a few seconds. Please wait for a moment...done.
22
     // 将 Ethernet0/0/1 和 Ethernet0/0/2 接口设置成 Access 类型,划入 VLAN10;
23
    [SW-1]interface Eth0/0/1
24
25
      [SW-1-Ethernet0/0/1]port link-type access
26
    [SW-1-Ethernet0/0/1]port default vlan 10
27
      [SW-1-Ethernet0/0/1]quit
      [SW-1]interface Eth0/0/2
28
29
      [SW-1-Ethernet0/0/2]port link-type access
30
    [SW-1-Ethernet0/0/2]port default vlan 10
31
      [SW-1-Ethernet0/0/2]quit
     // 将 Ethernet0/0/5 和 Ethernet0/0/6 接口设置成 Access 类型,划入 VLAN20;
32
      [SW-1]interface Eth0/0/5
33
34
    [SW-1-Ethernet0/0/5]port link-type access
35
      [SW-1-Ethernet0/0/5]port default vlan 20
      [SW-1-Ethernet0/0/5]quit
36
37
      [SW-1]interface Eth0/0/6
38
     [SW-1-Ethernet0/0/6]port link-type access
39
      [SW-1-Ethernet0/0/6]port default vlan 20
40
      [SW-1-Ethernet0/0/6]quit
```

```
41  // 将 GEO/O/1 接口设置成 Trunk 类型, 允许 VLAN10 和 VLAN20 通过;
42  [SW-1]interface GigabitEthernet0/0/1
43  [SW-1-GigabitEthernet0/0/1]port link-type trunk
44  [SW-1-GigabitEthernet0/0/1]port trunk allow-pass vlan 10 20
45  [SW-1-GigabitEthernet0/0/1]quit
46  [SW-1]quit
```

② 配置完成后,显示当前交换机所有接口所属 VLAN 信息

<sw-1>display port vlar Port</sw-1>	Link Type	PVID	Trunk VLAN List
Ethernet0/0/1	access	10	
Ethernet0/0/2	access	10	
Ethernet0/0/3	hybrid		
Ethernet0/0/4	hybrid		
Ethernet0/0/5	access	20	
Ethernet0/0/6	access	20	
Ethernet0/0/7	hybrid		
Ethernet0/0/8	hybrid		
Ethernet0/0/9	hybrid		
Ethernet0/0/10	hybrid		
Ethernet0/0/11	hybrid		
Ethernet0/0/12	hybrid		
Ethernet0/0/13	hybrid		
Ethernet0/0/14	hybrid		
Ethernet0/0/15	hybrid		
Ethernet0/0/16	hybrid		
Ethernet0/0/17	hybrid		
Ethernet0/0/18	hybrid		
Ethernet0/0/19	hybrid		
Ethernet0/0/20	hybrid		
Ethernet0/0/21	hybrid		
Ethernet0/0/22	hybrid		
GigabitEthernet0/0/1	trunk		1 10 20
GigabitEthernet0/0/2	hybrid		

图 3-2-2 配置 SW-1 完成后 VLAN 信息

Step3: 配置交换机 SW-2

参考 SW-1 的方式配置 SW-2,接口信息如下:

[SW-2]display port vlan			
Port	Link Type	PVID	Trunk VLAN List
Ethernet0/0/1	access	10	_
Ethernet0/0/2	access	10	
Ethernet0/0/3	hybrid	1	
Ethernet0/0/4		1	
	hybrid		
Ethernet0/0/5	access	20	
Ethernet0/0/6	access	20	
Ethernet0/0/7	hybrid		
Ethernet0/0/8	hybrid		
Ethernet0/0/9	hybrid		
Ethernet0/0/10	hybrid		
Ethernet0/0/11	hybrid		
Ethernet0/0/12	hybrid		
Ethernet0/0/13	hybrid		
Ethernet0/0/14	hybrid		
Ethernet0/0/15	hybrid		
Ethernet0/0/16	hybrid		
Ethernet0/0/17	hybrid		
Ethernet0/0/18	hybrid		
Ethernet0/0/19	hybrid		
Ethernet0/0/20	hybrid		
Ethernet0/0/21	hybrid		
Ethernet0/0/22	hybrid		
GigabitEthernet0/0/1	trunk		1 10 20
GigabitEthernet0/0/2	hybrid		

图 3-2-3 配置 SW-2 完成后 VLAN 信息

Step 4: 通信测试

通信测试结果如表 2-1 所示:

表 3-2-1 通信测试结果						
序号	源主机	目的主机	通信结果			
1	Host−1	Host-2	通	同交换机,同一 VLAN		
2	Host-1	Host−3	不通	同交换机,不同 VLAN		
3	Host-1	Host-4	不通	同交换机,不同 VLAN		
4	Host-1	Host-5	通	跨交换机,同一 VLAN		
5	Host-1	Host-6	通	跨交换机,同一 VLAN		
6	Host-1	Host-7	不通	跨交换机,不同 VLAN		
7	Host-1	Host-8	不通	跨交换机,不同 VLAN		

基于端口划分 VLAN 后,同一部门内(同一 VLAN)分布在不同交换机的主机之间可以通信,不同部门主机之间不可通信,满足任务要求。

三、任务 3: 基于 MAC 地址的 VLAN 应用

Step1: 配置网络拓扑并规划 IP 地址

图 3-3-1 拓扑配置

Step 2: 配置用户主机信息:

为了配置基于 MAC 地址的 VLAN 时,输入主机 MAC 地址更方便,此处将 Host-A1 的 MAC 地址改为 00-00-00-00-00-A1,将 Host-B1 的 MAC 地址改为 00-00-00-00-00-B1。

图 3-3-2 修改 Host-A1 和 Host-B1 的 MAC 地址

Step 3: 配置交换机 SW-1/SW-2/SW-3

① 配置 SW-1

启动 SW-1。该交换机用于接入部门 A 和部门 B 的计算机,由于接入位置不固定,因此此处不对 SW-1 做配置,保持缺省配置。

② 配置 SW-2

启动 SW-2。由于接入 Printer-A 和 Printer-B 的位置是固定的,因此此处使用基于接口的 VLAN。具体配置过程如下:

```
1 <Huawei>system-view
      Enter system view, return user view with Ctrl+Z.
 2
    [Huawei]undo info-center enable
 3
      Info: Information center is disabled.
 4
 5
    [Huawei]sysname SW-2
     // 创建 VLAN10 和 VLAN20;
 6
 7
    [SW-2]vlan batch 10 20
     Info: This operation may take a few seconds. Please wait for a moment...done.
 8
     // 将 Ethernet0/0/1 和 Ethernet0/0/2 接口设置成 Access 类型,划入 VLAN10;
9
10
   [SW-2]interface Eth 0/0/1
      [SW-2-Ethernet0/0/1]port link-type access
11
     [SW-2-Ethernet0/0/1]port default vlan 10
12
      [SW-2-Ethernet0/0/1]quit
13
   [SW-2]interface Eth 0/0/2
14
      [SW-2-Ethernet0/0/2]port link-type access
15
     [SW-2-Ethernet0/0/2]port default vlan 20
16
17
      [SW-2-Ethernet0/0/2]quit
   // 将 GE 0/0/2 接口设置成 Trunk 类型,允许 VLAN10 和 VLAN20 通过;
18
      [SW-2]interface GigabitEthernet 0/0/2
19
      [SW-2-GigabitEthernet0/0/2]port link-type trunk
20
```

```
21
      [SW-2-GigabitEthernet0/0/2]port trunk allow-pass vlan 10 20
22
      [SW-2-GigabitEthernet0/0/2]quit
23
      [SW-2]quit
24
      <SW-2>save
      ② 配置 SW-3
   <Huawei>system-view
 2
      Enter system view, return user view with Ctrl+Z.
 3
    [Huawei]undo info-center enable
 4
      Info: Information center is disabled.
 5
      [Huawei]sysname SW-3
      // 创建 VLAN10 和 VLAN20;
 6
    [SW-3]vlan batch 10 20
 7
      Info: This operation may take a few seconds. Please wait for a moment...done.
 8
     // 配置MAC 地址与VLAN 之间的映射关系:
 9
      // 进入 VLAN10,并绑定 MAC 地址 00-00-00-00-A1
10
     [SW-3]vlan 10
11
      [SW-3-vlan10]mac-vlan mac-address 0000-0000-00A1
12
13
    [SW-3-vlan10] quit
      [SW-3]vlan 20
14
15
      [SW-3-vlan20] mac-vlan mac-address 0000-0000-00B1
16
      [SW-3-vlan20]quit
17
     // GE 0/0/1
18
      [SW-3]interface GigabitEthernet 0/0/1
19
      [SW-3-GigabitEthernet0/0/1]mac-vlan enable
20
      Info: This operation may take a few seconds. Please wait for a moment...done.
21
      [SW-3-GigabitEthernet0/0/1]port link-type hybrid
22
23
    [SW-3-GigabitEthernet0/0/1]port hybrid untagged vlan 10 20
      [SW-3-GigabitEthernet0/0/1]quit
24
25
    // GE 0/0/2
      [SW-3]interface GigabitEthernet 0/0/2
26
27
      [SW-3-GigabitEthernet0/0/1]port link-type trunk
28
     [SW-3-GigabitEthernet0/0/1]port trunk allow-pass vlan 10 20
      [SW-3-GigabitEthernet0/0/1]quit
29
30
      [SW-3]quit
31
      <SW-3>save
  Step4:测试通信
```

使用 ping 命令测试 Host-A1 和 Host-B1 分别访问 Printer-A 和 Printer-B 情况,结果如

下表:

表 3-3-1 创建 VLAN 后各主机通信测试结果						
序号	源主机	目的主机	通信结果	备注		
1	Host-A1	Printer-A	通	同一 VLAN		
2	Host-A1	Printer-B	不通	不同 VLAN		
3	Host-B1	Printer-A	通	同 VLAN		
4	Host-R1	Printer-R	不通	不同 VI AN		

更改 Host-A1 和 Host-B1 接入 SW-1 的位置,结果相同。

四、任务 4: VLAN 通信的报文分析

Step1:确定网络拓扑与抓包位置

网络拓扑结构和抓包位置如图 3-4-1 所示, 其中①~⑨为抓包地点。

图 3-4-1 不同类型接口抓包分析

Step 2:设计抓包方法,验证 VLAN 隔离广播报文的效果

① 执行通信操作

在 Host-1 中执行命令 "ping 192.168.64.24 -t",

即 Host-1 (属于 VLAN10) 与 Host-8 (属于 VLAN20) 通信。

```
PC>ping 192.168.64.24 -t

Ping 192.168.64.24: 32 data bytes, Press Ctrl_C to break
From 192.168.64.11: Destination host unreachable
From 192.168.64.24 ping statistics ---
4 packet(s) transmitted
0 packet(s) received
100.00% packet loss
```

图 3-4-2 Host-1 与 Host-8 通信

让 Host-1 PING Host-8,是因为通信双方属于不同 VLAN,通信不成功。 Host-1 会一直发送 ARP 报文,便于抓取。

② 在 Wireshark 中设置报文过滤

在每个抓包地点处的 Wireshark 过滤栏中设置过滤条件,此处输入 "arp",表示只显示抓取到的 ARP 报文,如图 3-4-3 所示。

图 3-4-3 只显示抓取到的 ARP 报文

③ 查看并分析① - ⑨处的报文:

就和 Host-1 访问 Host-8 的时候一样,因为一开始 Host-1 并不知道 Host-8 的 MAC 地址,所以 Host-1 会首先通过 ARP 协议去获取 Host-8 的 MAC 地址,即发出 ARP 报文,询问"谁的 IP 地址是 192.168.64.24?请告诉 192.168.64.11(即 Host-1)"。因为 ARP 报文是以广播的方式发送的,所以我们可以查看①~⑨处是否有从 Host-1 发出的 APR 广播包,以此来验证 VLAN 对广播包的隔离作用。

arp)				■ ▼ 表达:	式… +
No.	Time	Source	Destination	Protocol	Length Info	-
	57 40.656000	HuaweiTe_4a:24:78	Broadcast	ARP	60 Who has 19	92
	58 41.656000	HuaweiTe_4a:24:78	Broadcast	ARP	60 Who has 19	92
	60 42.656000	HuaweiTe_4a:24:78	Broadcast	ARP	60 Who has 19	92
	61 43.641000	HuaweiTe_4a:24:78	Broadcast	ARP	60 Who has 19	92
> Fr	ame 57: 60 bytes	on wire (480 bits), 6	0 bytes captured	(480 bits) on	interface 0	
> Et	hernet II, Src: H	HuaweiTe_4a:24:78 (54:	89:98:4a:24:78),	Dst: Broadcast	(ff:ff:ff:ff:f	f:ff)
> Ad	dress Resolution	Protocol (request)				

图 3-4-4 抓取到的 ARP 报文

综上,在①~⑨处抓取 ARP 保温的情况如下表所示:

	表 3-4-1 ①~⑨处的报文抓取情况
抓包位置	是否抓到从 Host-1 发出的 ARP 广播包
1	是
2	是
3	否
4	否
(5)	是
6	是
7	是
8	否
9	否

Step3:分析研究不同类型接口对数据帧中 VLAN 标记的处理

① 执行通信操作。

在 Host-1 中执行命令 "ping 192.168.64.13 -t", 即 Host-1 (属于 VLAN10) 与 Host-5 (属于 VLAN10) 通信。

```
PC>ping 192.168.64.13 -t

Ping 192.168.64.13: 32 data bytes, Fress Ctrl_C to break
From 192.168.64.13: bytes=32 seq=1 ttl=128 time=63 ms
From 192.168.64.13: bytes=32 seq=2 ttl=128 time=78 ms
From 192.168.64.13: bytes=32 seq=3 ttl=128 time=78 ms
From 192.168.64.13: bytes=32 seq=4 ttl=128 time=62 ms
From 192.168.64.13: bytes=32 seq=5 ttl=128 time=78 ms
From 192.168.64.13: bytes=32 seq=6 ttl=128 time=93 ms
From 192.168.64.13: bytes=32 seq=6 ttl=128 time=99 ms
From 192.168.64.13: bytes=32 seq=8 ttl=128 time=63 ms
```

图 3-4-5 Host-1 与 Host-5 通信

双方属于同一 VLAN 因此能正常通信。

② 在 Wireshark 中设置报文过滤

在每个抓包地点处的 Wireshark 过滤栏中设置过滤条件,此处输入"ICMP",表示只显示抓取到的 ICMP 报文,如图 3-4-6 所示。

图 3-4-6 只显示抓取到的 ICMP 报文

③ 查看并分析① 、⑤、 ⑥处的报文:

在①处的报文:

Frame 49: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0 Ethernet II, Src: HuaweiTe_4a:24:78 (54:89:98:4a:24:78), Dst: HuaweiTe_d2:05:bb (54:89:98 Internet Protocol Version 4, Src: 192.168.64.11, Dst: 192.168.64.13 Internet Control Message Protocol

图 3-4-7 在①处抓取到的 ICMP 报文

从 Host-1 发出的报文,为普通帧,没有 VLAN 标记。

在⑤处的报文:

图 3-4-8 在⑤处抓取到的 ICMP 报文

GE 0/1/1 是 Trunk 接口,该帧的 VID 是 10,不等于 GE 1/0/0 接口的 PVID 值 (默认为 1),所以不去掉 VLAN 标记。所提该报文是一个 Tagged 帧,其 VID 值是 10.

在⑥处的报文:

【 icmp														
No.		Time	Source	Destination	Protocol	Length Info			^					
	11	4.328000	192.168.64.11	192.168.64.13	ICMP	74 Echo	(ping)							
Ш	12	4.343000	192.168.64.13	192.168.64.11	ICMP	74 Echo	(ping)							
	14	5.422000	192.168.64.11	192.168.64.13	ICMP	74 Echo	(ping)							
4-	15	5.422000	192.168.64.13	192.168.64.11	ICMP	74 Echo	(ping)		~					
> Frame 14: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0														
>	Ethernet II, Src: HuaweiTe_4a:24:78 (54:89:98:4a:24:78), Dst: HuaweiTe_d2:05:bb (54:89:98:d2:													
>	Internet Protocol Version 4, Src: 192.168.64.11, Dst: 192.168.64.13													
>	Internet Control Message Protocol													

图 3-4-9 在⑥处抓取到的 ICMP 报文

SW-2 的 Ethernet 0/0/1 接口属于 VLAN10,是 Access 接口,因此从该接口发出时会去掉 VLAN 标记,变成普通帧,发往 Host-5。

	项目四	四: 使	用路日	由交换机构	勾建园区	[XX]						
一、任务 1: 在 eNSP 中部署园区网												
Step1:新建拓扑,	根据实验规	划,在	eNSP	中部署硬件	设备,网约	各拓扑如图] 4-1-1	所示				
实验总结与体会												
教师评语												
实验成绩	□优	□良	□中	□及格	□不及村	各 得	分:					