

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

ł.,

SANDIA REPORT SAND83-1230 • Unlimited Release Printed May 1983

Proceedings of the Workshop on Ion Mixing and Surface Layer Alloying

ADA131469

M-A. NICOLET, SAMUEL T. PICRAUX

Prepared by Sandia National Laboratories Albuquerque. New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

UTIC FILE COPY AD A 131469

SE 2900 Q(6 82)

The control of the desired of the control of the co

83 08 11 022

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do.

• necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

NTIS price codes Printed copy: A08 Microfiche copy: A01

COMPONENT PART NOTICE

		CON CALLAT TARY NOTICE
	THIS PAPER	IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:
(TITLE):	Proceedings	of the Workshop on Ion Mixing and Surface Layer Alloying
		15 & 16 1983 at Pasadena, California,
(SOURCE):	Sandia Na	tional Labs., Albuquerque, NM.
	To order th	E COMPLETE COMPILATION REPORT USEAD_A131 469
	AUTHORED SE COMPONENT S	NT PART IS PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY CTIONS OF PROCEEDINGS, ANNALS, SYMPOSIA, ETC. HOWEVER, THE HOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION NOT AS A STAND-ALONE TECHNICAL REPORT.
	THE FOLLOWI	NG COMPONENT PART NUMBERS COMPRISE THE COMPILATION REPORT:
	AD#:	TITLE:
	AD-P001 64	9 Effect of Temperature. Dose Rate and Projectile Mass on Ion Beam Mixing.
	AD-P001 65	
	AD-P001 65	
	AD-P001 65	2 Marker Experiments in Si and SiO2.
	AD-P001 65	Atomic Redistribution in Ion Mixing of Bilayer Thin Films.
	AD-P001 65	4 Chemical Influence in Ion Irradiation-Induced Mixing.
	AD-P001 65	5 Sputtering and Ion Mixing in CrSi2: Temperature Effects.
	AD-P001 65	6 Use of Free Energy Diagrams to Interpret Ion Beam Mixing Data.
	AD-P001 65	7 Ion Mixing and Phase Diagrams.
	AD-P001 65	8 Ion-Induced Reactions in Thin Film Structures of Al abd Near-Noble Metals.
	AD-P001 65	
	AD-P001 66	O High Energy Heavy Ion Induced Enhanced Adhesion.
	AD-P001 66	Ion Mixing.
	AD-P001 66	with Ti and C.
	AD-P001 66	
	AD-P001 66	4 Ion-Bean-Enhanced Deposition and Ionized Beam Deposition.
	AD-P001 66	Ion Beam Mixing Research at Westinghouse.
THE PARTY OF	A STATE OF THE PARTY OF THE PAR	Accession For Accession For Accession For Accession For Angla 11 To Unarmounced Justification Aveilability codes Aveilability and/or Aveilability and/or Epostal Aveilability and/or Epostal Epostal

Proceedings of the

WORKSHOP ON ION MIXING AND SURFACE LAYER ALLOYING

April 15 & 16, 1983

California Institute of Technology Pasadena, California 91125

sponsored by

Office of Naval Research (L. R. Cooper)

Co-Organizers:

M-A. Nicolet California Institute of Technology Steele Laboratory, 116-81 Pasadena, California 91125 S. T. Picraux Sandia National Laboratories Division 1111 Albuquerque, New Mexico 87185

This work relates to Department of Navy Grant N00014-83-G-0057 issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.

$\begin{smallmatrix} T \end{smallmatrix} A \begin{smallmatrix} B \end{smallmatrix} L \begin{smallmatrix} E \end{smallmatrix} \quad O \begin{smallmatrix} F \end{smallmatrix} \quad C \begin{smallmatrix} O \end{smallmatrix} N \begin{smallmatrix} T \end{smallmatrix} E \begin{smallmatrix} N \end{smallmatrix} T \begin{smallmatrix} S \end{smallmatrix}$

			<u>P</u>	age
Addre	ess I	ist	t of Participants	1
Works	shop	Sur	mmary	4
Proce	esses	s ar	nd Nomenclature	8
PRESI	ENTA	rioi	NS	
I.	Ion	Miz	king-Collisional Processes	
	1.	R.	S. Averback	10
	2.	s.	Matteson	19
	3.	В.	Paine	31
	4.	Λ.	Barcz	41
	5.	н.	Jorch	47
	6.	T.	Banwell	59
II.	Ion	Mix	xing-Material Processes	
	1.	U.	Shreter	68
	2.	W.	L. Johnson	73
	3.	s.	S. Lau	77
	4.	м.	Nastasi	86
	5.	L.	Rehn	96
	6.	М.	Mendenhall	108
III.	Sur	face	e Modification-Ion Implantation and Mixing	
	1.	К.	Grabowski	117
	2.	D.	M. Follstaedt	127
	3.	В.	D. Sartwell	136

4.	J.	к.	Hir	zonei	n .								150
٠	В.	Ko:	SSOWS	sky		•		•					156

ADDRESS LIST OF PARTICIPANTS

Dr. Robert S. Averback
Materials Science and
Technology Division
Argonne National Laboratory
Argonne, Illinois 60439
(312) 972-5141

Mr. Thomas Banwell
Electrical Engineering
Department, 116-81
California Institute of Technology
Pasadena, California 91125
(213) 356-4815

Dr. Adam Barcz
Electrical Engineering
Department, 116-81
California Institute of Technology
Pasadena, California 91125
(213) 356-4815

Dr. David M. Follstaedt Sandia National Laboratories Division 1112 Albuquerque, New Mexico 87185 (505) 844-2102

Dr. Kenneth S. Grabowski Naval Research Laboratory Washington, D. C. 20375 (202) 767-4800

Dr. James K. Hirvonen Zymet, Inc. Liberty Square Danvers, Massachusetts 01923 (617) 777-5110

Professor William L. Johnson Applied Physics Department, 138-78 California Institute of Technology Pasadena, California 91125 (213) 356-4433

Dr. Harald Jorch Chalk River Nuclear Laboratories Chalk River, Ontario Canada KOJ 1JO (613) 584-3311

ADDRESS LIST (Continued)

Dr. Ram Kossowsky Manager, Physical Metallurgy Research and Development Center Westinghouse 1310 Beulah Road Pittsburgh, Pennsylvania 15235 (412) 256-3684

Professor S. S. Lau
Department of Electrical Engineering
and Computer Sciences
C-104
University of California, San Diego
La Jolla, California 92093
(619) 452-3097

Dr. Sam Matteson Texas Instruments, Inc. M.S. - 147 P.O. Box 225936 Dallas, Texas 75265 (214) 995-5113

Mr. Marcus Mendenhall
Physics Department, 301-38
California Institute of Technology
Pasadena, California 91125
(213) 356-4238

Mr. Mike Nastasi
Materials Science Department
Cornell University
Ithaca, New York 14853
(607) 256-5190

Professor Marc-A. Nicolet
Electrical Engineering
Department, 116-81
California Institute of Technology
Pasadena, California 91125
(213) 356-4803

Dr. Bruce M. Paine
Electrical Engineering
Department, 116-81
California Institute of Technology
Pasadena, California 91125
(213) 356-6555

ADDRESS LIST (Continued)

Dr. S. Thomas Picraux Sandia National Laboratories Division 1111 Albuquerque, New Mexico 87185 (505) 844-7681

Dr. Lynn E. Rehn
Materials Science and
Technology Division
Argonne National Laboratory
Argonne, Illinois 60439
(312) 972-5021

Dr. B. David Sartwell Naval Research Laboratory Washington, D. C. 20375 (202) 767-4800

Dr. Uri Shreter
Electrical Engineering
Department, 116-81
California Institute of Technology
Pasadena, California 91125
(213) 356-6555

WORKSHOP SUMMARY

The purpose of this workshop was to bring together in an informal setting individuals actively involved in ion mixing, and individuals working on high dose ion implantation and its application to the improvement of surface properties of solids. The objectives of the workshop included:

- 1) Outline present understanding of the basic physical processes underlying ion mixing.
- 2) Compare the approach of ion mixing to that of high dose ion implantation.
- 3) Assess the areas of greatest potential practical applications for ion mixing,
- 4) Identify critical areas on which future investigations should focus.

Summaries of the individual contributions presented at the workshop, along with the key illustrations, follow this workshop overview.

The workshop was primarily concerned with mixing phenomena observed for ion energies of about 50 to 500 keV. There is general agreement that the implantation of an ion into a solid initiates atomic redistribution by a number of processes as follows: Ballistic mixing occurs on a time scale $\lesssim 10^{-12}$ sec and contains those processes that can be explained on the basis of energetic displacements with relation atomic rearrangements in the solid.

These processes are athermal. In addition, other processes can contribute to the mixing in amounts which may depend on temperature. The present consensus is that the well-established processes described as radiation-enhanced diffusion are insufficient to explain the observations. Radiation-enhanced diffusion implies that a temperature dependence of mixing will correlate with a flux dependence and in the cases examined, flux dependences have not been observed. This suggests that processes within the immediate vicinity of a cascade may dominate.

The available experimental evidence is consistent with the existence of two temperature regimes. At low temperatures, the variation in mixing with temperature is weak. The amount of mixing observed there, however, varies noticeably between different systems. Attempts to identify this temperature—independent mixing with ballistic processes only are inadequate in two respects: i) small changes in masses between two systems are found to produce larger variations in mixing than can be explained by ballistic contributions; ii) theoretical calculations of the amount of mixing are numerically too uncertain to reliably identify ballistic mixing. At high temperatures, the mixing increases with temperature. However, the temperature ranges accessible so far have been too small to clearly establish the activated nature of that dependence.

There are indications that thermodynamic arguments may be able to explain and possibly predict the formation of metastable phases by ion mixing. Key factors are that the number of atoms involved in a cascade and the cooling time is long enough so that

thermodynamic states can be defined on a local scale. Free energy diagrams and characteristic times for nucleation then should predict which phases will form. For altering surface layer properties of solids (surface ennoblement), ion mixing has several advantages over ion implantation:

- Much larger changes in concentration for the same irradiation dose.
- 2) Much reduced influence of sputtering.
- 3) Insensitive to ion species.
- 4) Facility in new phase formation (metastable, crystalline, amorphous).

Promising and critical areas for future studies should include:

- 1) Both experimental and theoretical studies of the functional dependences of mixing in the temperature-independent regime. There are probably several mechanisms contributing to the diffusion-like mixing that is observed in this regime, but none of them is yet well characterized.
- 2) Studies of molecular effects. These will help to identify non-linear cascade phenomena.
- 3) Development of models that explain mixing that varies with the temperature without varying with the flux of the irradiation.
- 4) Investigations of correlations between trends observed in ion mixing and those observed in

- thermal processing (e.g., the dominant moving species in metal-silicide formation).
- 5) Studies at the microstructural level (e.g., in-situ TEM).
- and simultaneous deposition and bombardment.

 These processes, such as in cluster beam deposition and film deposition during irradiation, are of interest because of their possible economic benefits in applications. Combinations of ion mixing with simultaneous deposition may lead to rather simple implementations. Low ion energy, reduced beam selectivity, and limited vacuum are all compatible with the concept of ion mixing.

Pruitful applications appear to exist in wear, oxidation, and adhesion, particularly on critical surface regions of components.

Recent general references in the area of ion mixing include:

- Metastable Materials Formation by Ion Implantation,
 MRS Symposia Proceeding, Vol. 7, S. T. Picraux and
 W. J. Choyke, Eds., (North-Holland, New York, 1982).
- "Ion Mixing", S. Matteson and M-A. Nicolet, Ann. Rev. Mat. Sci. <u>13</u>, 339 (1983).
- Proceedings of the International Conference on Ion Beam Modification of Materials, Grenoble, France, (September 6-10, 1982); to be published in Nucl. Instr. & Meth.

PROCESSES AND NOMENCLATURE

(∿ 100 keV)

Prompt Processes ($\frac{5}{5}$ 1 ps).

Athermal; high energies.

Ballistic mixing.

- noninteracting collisions ("linear cascade")
- low order collisions ("recoil mixing")
- high order collisions (isotropic cascade mixing)
- interacting collisions (displacement spikes, energy spikes)

Cooling Down Period (> 1 ps and < 100 ps).

Thermally assisted; intermediate energies; thermal spiker.

Delayed Processes (* 1 ps and % 1 h).

Thermally activated; low energies.

Radiation-assisted Diffusion.

- transport by defect fluxes
- transport by enhanced diffusion

Persistent Effects ($\frac{5}{6}$ 1 h).

Thermally activated; energies % kT.

- modified physical and chemical properties
- applications

PRESENTATIONS

-1

1. Ion Mixing-Collisional Processes

"Effect of Temperature, Dose Rate and Projectile Mass on Ion Beam Mixing*"

R. S. Averback
Materials Science and Technology Division
Argonne National Laboratory
Argonne, Illinois 60439

The underlying diffusion mechanisms involved in tenthems mixing of layered materials are proving very clusive. It is known that mixing has both temperature dependent and independent components, but theoretical understanding of either component is lacking. We have initiated systematic studies of the temperature, dose-rate and projectile mass dependences of mixing to provide a basis for future theoretical considerations.

A. The Temperature Dependent Component-Radiation Enhanced Diffusion

as a function of temperature, values of 0.94 eV and 0.88) of are deduced for the apparent activation enthalpies of diffusion respectively. These results might suggest that in the former case (Nb-Si) long-range vacancy migration controls the diffusion process and in the latter (Ni-Si) fast interstitial atoms are the deminant factor. Simple chemical rate theory shows that such an interpretation implies that the mixing should also depend on descriptor. For both Ni-Si and Nb-Si, however, the measured thicknesses of the mixed layers were not affected by a change of

a factor of ten in the dose-rate, whereas the rate theory predicts that the thicknesses should have changed by a factor of ∿ 1.8. The null results suggest that the temperature dependent component of mixing is determined predominately by intra-cascade effects and not by long range migration of defects. These intra-cascade effects may be associated with the individual cascades themselves, or result from the superposition of cascades onto already highly ion-damaged material. An example of such a temperature dependent intra-cascade effect is the thermally stimulated collapse of point defects produced in the cascade, into dislocation loops.

B. Temperature Independent Component - Collisional Effects

Measurements of mixing at liquid helium temperature, where defect motion is suppressed, provide information about the athermal, or collisional aspects of mixing. It was observed that in Pt-Si bilayers, the mixing at 4.2 K was not solely a function of the deposited damage energy (i.e. collisional energy), but also a function of the energy density in the cascades. By irradiating with projectiles varying in mass from 4 amu to 84 amu the energy density in the cascades was systematically increased. It was observed that increasing the energy density in cascades enhanced the effectiveness of mixing. Each unit of damage energy deposited by 275-keV Kr ions was four times as effective as that for 300-keV He ions. This result and the fact that 300-keV He irradiation produces some cascades in addition to many low energy recoils (25% of the damage energy

١,

for 300-keV He in Pt is deposited in primary recoils over v 7 keV), suggest that most of the mixing arises from co-operative phenomena within a cascade rather than to numerous, but individual, low-energy collisions. These results are consistent with a 'thermal spike' model of mixing. They could have important implications for materials modification considerations, since a thermal spike mechanism lends validity to the concept of a super-fast quench of microscopic volumes.

^{*}Work supported by the U.S. Department of Energy References

S. Matteson, J. Roth, and M-A. Nicolet, Radiation Effects, 42, 217 (1979).

^{2.} R. S. Averback, L. J. Thompson, Jr., J. Moyle, and M. Schalit, J. Appl. Phys. 53, 1342 (1982).

Table 1. Effect of temperature and dose-rate on mixing in Ni-Si and Nb-Si. The table shows that there is a strong temperature dependence in ion-beam mixing, but no dose-rate dependence. The results suggest that mixing is predominantly an intra-cascade effect.

Target	Temp (k)	Dose-Rate [*] (µA/cm ²)	$\Delta x^2/\phi^{**}$ (arbitrary units)
Ni-Si	10	7.9	1.05
	373	7.9	2.47
	373	0.71	2.34
Nb-Si	293	7.0	2
	293	0.65	2
	600	7.9	41.0
	600	0.72	41.0

^{*300-}keV Ar
**Nb-Si and Ni-Si are independently normalized.

Temp Dependence of Mixing

1)
$$\Delta x^2 = Dt$$
 $t = \Phi/\phi$

2)
$$D = \sum_{i} D_{i} = D_{con} + D_{th}$$

Fig. 1. Arrhenius plots of ion beam mixing in Nb-Si and Ni-Si. By assuming the diffusion coefficient is comprised of temperature dependent and independent components, the two components can be separated. This procedure yields apparent activation enthalpies of diffusion of .94 eV and .089 eV for Nb-Si and Ni-Si respectively.

ŧ,

300-kev Art irradiation of Ni-Si at 100°c using different dose-rates.

Fig. 2. RBS spectra of Ni-Si bilayers before and after irradiation at 373 K with 300-keV Ar. The dose for each irradiation was 1.2 x $10^{16}/\text{cm}^2$, but the dose-rates were $0.71 \mu\text{A/cm}^2$ and $79 \mu\text{A/cm}^2$. No effect of doserate is observed.

Damage Energy Profiles

Fig. 3. Damage energy depth profiles for various ion irradiations of Pt-Sf bilayers.

Recoil Spectra

$$W = \frac{L}{E_0} \int dE/S(z) \int dT. \frac{dT(E,T)}{dT}. E_0(T)$$

Fig. 4. Recoil energy distribution function. This plot shows the fraction of the total damage energy deposited in Pt resulting from primary recoils below energy T.

Fig. 5. Mixing efficiency as a function of ion mass in Pt-Si bilayers at 10 K. This plot shows that as the mass of the irradiation particle is increased and correspondingly the energy density in cascades is increased, the effectiveness of each unit of damage energy for inducing mixing is also increased. The efficiency for Kr irradiation was arbitrarily set equal to 1.0.

AD P001650

"Models of Ion Mixing"

S. Matteson
Texas Instruments Incorporated
Dallas, Texas 75265

The phenomenon of ion mixing has many facets which are not as yet well, fully, and accurately described in theory. Two general classes of models have been proposed:

- (1) Equilibrium models which describe transport resulting from thermal oscillation of the atoms in a high concentration of defects;
- (2) Ballistic models in which the transport is the product of the radiation damage itself.

Radiation enhanced diffusion (RED) is a description of the transport in terms of standard diffusion greatly enhanced by the increased concentration of defects (with respect to thermally generated defect concentrations) which are necessary for diffusion to occur. Radiation induced segregation is an extension of RED which emphasizes the gradient in the defect concentration and the particular boundary conditions that accompany ion irradiation. Both models predict a dependence on temperature in high damage rate regimes. The models are most important at high temperatures (> 20°).

At low temperatures ballistic processes should dominate if they are of sufficient magnitude. Recoil mixing attempts to analyze the transport as resulting from the direct interaction of the ion with the atom; the model is characterized as anisotropic, predicting drifts in the centroids of charp impurity distributions. Collision cascade mixing treats the transport as a random walk-type problem in which the atom is displaced many times in small steps in successive collision cascades. Neither model has quantitatively described experimental observations to date with sufficient accuracy. However, a re-examination of the parameters entering the model map in a duce better agreement. For example, the range of receil of very low energy atoms is not well known and is critical to the models.

While the detailed models are inadequate, it seems well justified by experimental evidence to use a diffusion-like treatment with appropriate drift terms. These ad hoc treatments have proven very powerful in describing observations. As an example, the drift of a thin Sn layer between intermixing as and S1 layers is explained by the gradient in the "diffusion" coefficient as it increases on going from S1 to Ge.

Careful measurement of the dependence on the various parameters is crucial to an accurate and quantitative understander of ion mixing.

Figure Captions

- Temperature dependence of amount of intermixing of Nb and Si layers under Si irradiation. The high temperature portion of the curve is interpreted as a radiation enhanced diffusion. The low temperature part is approximately independent of temperature and has been interpreted as due to ballistic phenomena. (From Matteson et al., Rad. Effects, 42, 217 (1979)).
- Computer simulations illustrating ballistic processes:

 Collision cascade mixing (left) is a random walk

 problem which is a distribution in displacement

 lengths, is random in direction, and has a distribution in the number of displacements as well;

 recoil mixing is illustrated on the right in which

 each atom experiences only a few recoils, 'o' often

 of large magnitude. Because of the much greater

 probability of lower energy transfers most of the

 recoils are oblique to the ion direction (from the

 left). Recoil mixing predicts a shift of the cen
 troid of the peak with distributions which are more

 lorentzian than gaussian in shape.
- Figure 3 The theoretical behavior of thin Ge layers in a Si matrix under Xe irradiation as described by the collision cascade model. The qualitative description of nearly gaussian profiles with little shift in

Figure Captions (Continued)

the centroid as well as a depth dependence which is correlated with the deposited energy density compares well with experiment. Small shifts are predicted due to the gradient in the diffusion coefficient.

- Schematic of potential of interstitial (left) Figure 4 and substitutional atom (right) in a Si crystal. The two atom potential is taken to be the Born-Mayer (exponential) potential for interstitials and the Lennard-Jones potential for the bound site. of a substitutional atom. The energy required to displace an interstitial is significantly less than a substitutional atom. The substitutional atom must be displaced to the second nearest interstitud site (labeled by letter i). The small arrows indicate increasing potential. Previous calculations have considered only displacement of substitutional atoms. A significant increase in the prediction of the collision cascade model may result from the inclusion of such an effect, e.g., in the case of interstitial Pt in Si.
- Figure 5 Calculations of the redistribution of Sb in SiO₂ during sputter depth profiling with oxygen. (The original material was Si with a thin evaporated layer of Sb.) The lower plot is the distribution

Figure Captions (Continued)

at various time intervals illustrating the effect of the surface erosion. No preferential sputtering is comprehended in the calculations.

- Sb and Sb secondary ion yields. The agreement is fairly good for the assumption of a SiO₂ matrix for the rise of the distribution. The fall of the distribution is slowed by the artifact of Sb ion pick up from the side walls of the sputter crater and preferential sputtering of Si. (Matteson, Appl. Surf. Sci. 9, 335 (1981)).
- The redistribution of a 1 nm Sn layer "sandwiched" between a Ge and a Si layer under 360 keV As irradiation. The distribution is seen to shift into the Ge-rich layer. Other specimens confirm the shift into the Ge-rich layer. This can be understood by the collision cascade model in which the "diffusion" coefficient increases dramatically on passing from the Si to the Ge-rich layers.

Figure 1

Random Walk

Figure 3

Figure 5

AD P001651

"Spreads and Shifts of Markers in Ion Mixing"

Bruce M. Paine California Institute of Technology Pasadena, California 91125

One of the simplest conceivable sample configurations for studying ion mixing in solids consists of a thin ($^{\circ}$ 10 $^{\circ}$) impurity layer (or "marker") buried several hundred $^{\circ}$ deep in an otherwise uniform medium. If the mass of the impurity is substantially greater than that of the medium, then the mixing of the marker can be monitored by backscattering spectrometry. Such experiments have been conducted for a variety of marker elements buried in Si plus markers buried in Al and SiO₂. In these, the mixing is usually characterized by Dt, the product of the effective diffusion coefficient and time and $^{\circ}$ x, the shift of the mean of the marker distribution. In this presentation, we outline the general results of these experiments to date, compare them with the predictions of published models, and finally comment briefly on present understanding of the mechanisms of the ion-induced mixing that is observed.

Below room temperature, the mixing profiles are approximately Gaussian for all marker elements M, in media A - denoted A(M) - except Si(Pd). The mixing parameter varies linearly with fluence, and is essentially independent of temperature, except for Si(Pd). Also, Dt seems to scale with nuclear stopping power F_D for Si(P*). These results are consistent with the qualitative Kinchin-Pease

model of collisional mixing. The quantitative pure-collisional models of Matteson, and Sigmund and Gras-Marti are in fair agreement with the data for Si(Pt). However, the mean shifts predicted by the latter authors to result from "matrix relocation" events are in the wrong direction. If "matrix relocation" events are taken to be suppressed somehow, then the mixing magnitudes predicted by Sigmund and Gras-Marti are 50 times too small.

Monte Carlo calculations of shifts in this system by Roush et al. are in good agreement with experiment for both magnitude and direction.

Above room temperature, mixing profiles are frequently non-Gaussian, and depend strongly on temperature. No attempts at modeling these phenomena have been published.

It has been generally accepted that the mixing above room temperature is caused by thermally-assisted atomic migration. At lower temperatures, the mixing may be purely collisional or it may be collisional with some additional transport mechanisms. Evidence for such additional compenents in the low temperature regime is as follows:

- (a) One system Si(Pd) has been observed so far which does <u>not</u> have Gaussian mixing profiles and for which the mixing is not independent of temperature in this regime.
- (b) The magnitude of the mixing varies significantly, depending on which element is used as the marker.
- (c) Some of the T-dependent curves other than for Si(Pd)

that have been measured so far are not <u>completely</u> horizontal below room temperature: there is a small increase with increase in T.

References

Experiment: B. M. Paine, J. Appl. Phys. <u>53</u>, 6828 (1982) and references contained therein.

Models: H. H. Andersen, Appl. Phys. 18, 131 (1979).

- S. Matteson, Appl. Phys. Lett. 39, 288 (1981).
- P. Sigmund and A. Gras-Marti, Nucl. Instr. & Meth. 182/183, 25 (1981).
- M. L. Roush, P. Davarya, C. P. Gektepe, Nucl. Instr. & Moth. (to be published).

GENERAL SCHEME

MARKER BROADENINGS

TYPICAL BACKSCATTERING SPECTRA

QUALITATIVE MODEL: KINCHIN - PEASE /ANDERSEN

EXPECT Dt
$$\alpha$$
 $F_D \phi < \Gamma^2 > N_o E_d^{eff}$

TYPICAL TEMPERATURE DEPENDENCE

١,

(cm⁴)

<u>D1</u> φ 11

QUANTITATNE MODEL: SIGMUND & GRAS-MARTI

MARKER SHIFTS

THEORY

SICMUND & GRAS-MARTI PREDICT:

FOR A HEAVY MARKER IN A LIGHT MATRIX:

THE MARKER MOVES TOWARDS THE SUFFACE

EXPERIMENT

١,

1.

SUMMARY

METHOD

OBSERVE SPREAD OF MIXING Dt AND SHIFT AT FOR MARKER SPECIES M IN MATRIX A, DENOTED A(M).

RESULTS 1. $T < T_t$ Expts. Mixing fn. ϕ -dep. F_D -dep. T -dep.	Spreads Gaussian except Sil a \$\phi^2 \big(1) c F_D \$\neq f(T) \text{except Sil}	$\frac{Shifts}{Pd}$ $\frac{3}{4} \phi$ $Pd)$ $Pd)$ $Pd)$ $Pd)$
Models Qualitative Kinchin - Pense Quantitative Matteson Sigmund and Gras- Roush	/Anderson O.K. O.K. -Marti 50x too small —	- Trouble C K
2. T>T Expte Mixing for	cten nen-Gaussian etten strong	
Models Thermally-moisted mix STATE OF UNDERSTANDIN log Dt	<u>16</u>	× ny
	COLLISIONAL & CR COLLISIONA	L PLUS ? T

(1) for Si (Pt)

(2) for Si (Ni), Si (Ge), Si (Sh), Si (Sb), Si (W), Si (Pt), Si (Au), AI (St), Si (W), Si (Pt) (3) for Si (Ge), Si (Sb), Si (W), Si (Pt), AI (Sb), Si Oz (W), Si Oz (Pt)

١.

AD P001652

"Marker Experiments in Si and SiO_2 "

orat si

A. Barcz and B. M. Paine California Institute of Technology Pasadena, California 91125

To investigate the role of the chemical nature of the medium and the impurity species in the ion mixing process, we have measured the apparent broadening of thin metal markers in SiO, and compared it with the broadening of markers in Si. Samples consisted of markers of thicknesses of the order of $^{\circ}$ 10 Å of $^{\otimes}$ or Pt imbedded in Si, and of Pt, W, Hf, Co, Ni and Ti markers in SiO2. The SiO2 matrices were prepared by both chemical vapor deposition (CVD) and chemical exidation of silicon in a steam atmosphere. The samples were irradiated with 300 keV Xe[†] ions at 300 K and analyzed by 2 MeV RBS (Fig. 1). The efficiency of the mixing is expressed as mix, - the variance of the redistribution of marker atoms due to the ion irradiation. The mixing is found to be independent of the method of preparation of the SiO, Furthermore, the values of $_{\rm mix}$ for Pt and W markers in ${\rm SiO}_2$ are equal to within experimental uncertainties while in silicon for Pt exceeds that for W by a factor of four. For all systems, the viriance increases linearily with ion fluence (Fig. 2). The mixing parameter (1) in SiO₂ appears to increase monotonically with the atomic number of the marker species (Fig. 3).

In contrast, the amount of mixing reported previously in Si exhibits significant quantitative differences for elements of

Different efficiencies for the ion mixing process in Si and SiO, can also be observed directly from the asymmetric redistribution (preferentially toward silicon) of an initially thin Au marker located at a SiO2-Si interface and subjected to ion bombardment (Fig. 4). These results suggest that fast-diffusing atoms (e.g., Au or Pt in Si) can experience greater relocation under ion irradiation, than less mobile species (e.g., W). In SiO, mixing is less dependent on the chemical nature of the marker because of much lower mobilities of impurities in general (e.g., for Au $D_{Si}/D_{SiO_2} = 10^8$) (2). A preliminary model is proposed according to which, in addition to prompt interactions in a cascade (two-particle collisions), delayed and extended perturbations (resulting for example from either excitations by very lew energy recoils or relaxations of matrix atoms following a "[ref];" displacement) may contribute significantly to the overall relocations of marker atoms. The magnitude of the latter mechanism should thus be related to the probability of thermally activated displacements (diffusion coefficient).

Permanent Address: Institute of Electrical Technology, Al.
Lotników 46, 02-668 Warsaw, Poland.

References

- 1. S. Matteson, B. M. Paine, M. G. Grimaldi, G. Mezey, and M-A. Nicolet, Nucl. Instr. & Meth. 182/183 (1981) 43.
- 2. H. F. Wolf, <u>Semiconductors</u>, (Wiley-Interscience, New York, 1571).

Fig. 1

Fig. 2

Tid. 3

Fig. 4

"Atomic Redistribution in Ion Mixing of Bilayer Thin Films"

H. H. Jorch and R. D. Werner Chalk River Nuclear Laboratories Atomic Energy of Canada Research Co. LTD. Chalk River, Ontario, Canada (KOJ-1JO)

1

1.

An apparatus used for in-situ ion mixing and Rutherford Backscattering (RBS) analysis is described, and data are presented for thin film (i.e. "limited supply") structures of the Ag-Si and Au-Si simple eutectic systems. We find considerable preferred orientation in the Ag thin films which was not observed in the Au films although they were similarly prepared. This texturing is initially increased by No ion bembardment and then decreases (less preferred orientation), but even with the Au films although the decreases (less preferred orientation), but even with the Au films and during the heavy ion pembardment to in both RBS analysis and during the heavy ion pembardment to

Although there is no evidence for phase formation in the Aq-Si system (near room temperature), there are large differences in the degree of mixing of Si into Aq (Fig. 3) between 40 K and 280 K. This suggests thermodynamic forces play a role in himiering mixing at room temperature.

In the Au-Si system, no difference in the mixing behavior of Si into Au is observed from 55 K to 280 K (Fig. 5). At 300 K, however, a ${\rm Au_5Si_2}$ metastable phase forms (Fig. 6) and after the entire Au layer has been converted, the mixing is inhibited.

Growth of this metastable phase proceeds linearly with Xe fluence (Fig. 7), suggesting supply-limited formation kinetics. The interplay of ballistic, cascade, and free energy (thermodynamic and chemical) effects severely complicate the evaluation of ion mixing mechanisms.

Figure Captions

- Figure 1 Preferred orientation effect in evaporated A; thin film before irradiation (compare 20° higher "random" level in Fig. 2) is enhanced by 21°. after 2.3 × 10¹⁵ Xe cm⁻² ion fluence. Further irradiation doses start to decrease the degree of orientation (peak level rises closer to "random" height), but there is still a 27° difference at 10¹⁶ Xe cm⁻².
- Figure 2 With the same sample tilted to minimize the orientation problem, some effect remains (< 20), but the major features show interfacial mixing.
- Figure 3 Comparison of mixing at 40 K and near room temperature by measuring the mean atom fraction of Si in the Ag-Si mixed layer. Lines serve only to guide the eye. The ordinate value is determined from the average height of the Ag spectrum in the mixed layer (Ag peak).
- Figure 4 Low-temperature mixing of Au thin film on Si shows a widening concentration gradient at the interface along with a rapidly increasing Si content throughout the mixed Au layer.
- Figure 5 Mean atom fraction of Si in the Au-Si mixed film. At 300 K, a ${\rm Au_5Si_2}$ metastable phase is formed and appears to retard the mixing after 5 5 \times 10 15 Xe cm⁻¹

Figure Captions (continued)

- Figure 6 At 300 K, Si is seen to move from the substrate into the Au film and stepwise produce a ${\rm Au_5Si_2}$ uniform phase across the film.
- Figure 7 Growth of the ${\rm Au_5Si_2}$ layer is shown. Faster growth at the high dose rate may be due to local heating of the sample.

1.

CHALK RIVER HIGH VOLTAGE MASS SEPARATOR

FEATURES . . .

- HIGH ENERGIES (TO 2 MEV) WITH HEAVY IONS
 - : IMPLANT RANGE FAR BELOW FILM INTERFACE
 - : UNIFORM NUCLEAR STOPPING THROUGHOUT THIN FILM AND INTERFACE
- HIGH VACUUM
 - : 10⁻⁹ RANGE IN 30 K CRYOSHIELD
- TEMPERATURE RANGE
 - : SAMPLE TEMPERATURES 40 K TO 600 K
- RECTANGULAR PRECISION APERTURES
 - : X-Y TRANSLATIONAL REPRODUCIBILITY
 - : UP TO 100 INDEPENDENT RUNS ON EACH OF 5 SEPARATE TARGETS
 - : CENTRAL ANALYSIS
 SPOT

- Y-AXIS ROTATION

: MONITOR PREFERRED ORIENTATION IN IMPLANTATION AND ANALYSIS

MIXED SPOT

Fig.1

Fig.2

ł,

Fi

AD P001654

"Chemical Influences in Ion Irradiation-Induced Mixing"

T. Banwell and M-A. Nicolet California Institute of Technology Pasadena, California 91125

Ion irradiation-induced mixing can be attributed to two principal types of processes; recoil implantation and "cascade" mixing, both of which may contribute significantly in bilayer mixing experiments. We have examined the influence of the chemical reactivity of the layers on these two mechanisms. For this study we chose the mixing of Ti/SiO₂, Cr/SiO₂ and Ni/SiO₂ bilayers induced by 290 keV Xe irradiation at irradiation temperatures of 77-750 K. The ballistic processes should be similar for all three systems since the metals have similar atomic masses; however, their chemical reactivities with SiO₂ are very different. Titanium readily reacts thermally with SiO₂ at temperatures above 900 K. Chromium reacts with SiO₂; however, the reaction is restricted by interfacial passivation. Nickel does not react with SiO₂; a Ni film on SiO₂ will coalesce into islands after only 1100 K annealing.

The projected ranges and standard deviations for 290 keV Xe in these metals are $33\pm2~\mu g/cm^2$ and $13\pm2~\mu g/cm^2$, respectively. Metal films of 16, 24, and 34 $\mu g/cm^2$ were used. The unreacted metal was removed with hot HCl after the Xe irradiation. The metal and Xe remaining after etching were profiled by 2 MeV He backscattering spectrometry.

Figure 1 shows log-log plots of the areal density [M] c of the metal remaining after etching versus Xe fluence ; ye for R.T. irradiation. A predominately linear relationship is observed for the Xe fluence range considered, with d $\log[M]_s/d \log \frac{1}{x_e} = 0.57-0.73$. These results suggest that cascade mixing is the dominant process with a 10-20% contribution from recoil implantation at the lowest Xe fluence. Figure 2 shows the backscattering spectra for the 24 ..g/cm2 Ni samples after R.T. We irradiation and etching. The inflections in the logarithmic plots of the Ni profiles around 1.4 MeV indicate that two processes contribute to Ni transport. Recoil implantation could produce the deep linear tail. Similar features are observed in the residual Ti profiles. Figure 3 shows that the integral of the Ni counts in the fixed portion of the Ni tail indicated is a linear function of Me fluence : $_{\chi_{0}}$ for R.T. irradiation. A small dependence on Ni film thickness is noted. These results can also be attributed to recoil implantation. We conclude that the long range transport is predominately due to recoil implantation while cascade mixing dominates transport near the metal-SiO, interface.

Figure 4 shows the effect of temperature on the mixing process. Both Ti and Cr show enhanced mixing at 750 K while mixing is suppressed in Ni. There is strong correlation between these results and the chemistry associated with thermal annealing. Figure 5 shows the profiles for Ni and Ti with 10¹⁶ Xe cm⁻² irradiation at R.T. and 750 K. The interfacial region is strongly affected by temperature whereas the deep tail is not.

Nickel irradiated at 750 K displays an exponential tail as in Fig. 2 with a linear $\dagger_{\rm Xe}$ dependence as in Fig. 3, although the slope is 30% less. The influence of chemistry is again seen in the results for mixing of Ti/SiO₂ induced by Xe irradiation at R.T. and 750 K, shown in Fig. 6. The enhanced mixing at 750 K is eliminated by incorporating 20-30 at. % O in the Ti layer prior to irradiation. The extra O may diminish the chemical driving force in the Ti-SiO₂ system.

From these results we conclude that chemistry has little direct effect on recoil implantation. "Cascade" mixing is strongly influenced by local chemical processes.

١,

ŧ,

F14.3

١,

١,

ŧ,

II. Ion Mixing-Material Processes

"Sputtering and Ion Mixing in CrS12:

Temperature Effcats"

U. Shreter California Institute of Technology Pasadena, California 91125

Ion mixing and sputtering are influenced by the same transport mechanisms during irradiation. Both prompt and delayed processes are expected to affect mixing as well as sputtering.

It is known that mixing of a Cr layer on Si is strongly temperature-dependent above room temperature. $\operatorname{CrSi}_2^{-1}$ was chosen therefore for the investigation of temperature effects in sputtering.

Measurements of sputtering yields and composition profiles have been carried out using backscattering spectrometry for samples of Crsi_2 on Si irradiated with 200 keV Xe ions. When the CrSi_2 layer is thinner than the ion range, the sputtering yield ratio of Si to Cr increases from 3.5 for room temperature irradiation to 65 at 290°C. For a thick sample, the corresponding increase is from 2.4 to 4.0 only. These changes are explained in terms of a rise in the Si surface concentration at 290°C. The driving force for this process seems to be the establishment of stoichiometric CrSi_2 compound. Transport of Si to the surface is by ion mixing in the thin sample and thermal diffusion through the thick layer.

Mixing of a Cr layer on Si

Fig. 1

1.

Fig.

Schematic description of processes and final compositions

thick samples short range mixing preferential removal of Si irradiation + RT → Si fast mixing -- 290°C diffusion of Si delayed processes short range thin samples mixing « RT fast mixing - 290°C precipitation of Si delayed processes

72

1,

Fig.4

EP001656

USE OF FREE ENERGY DIAGRAMS TO INTERPRET

ION BEAM MIXING DATA

W. L. Johnson

W. M. Keck Laboratory of Engineering Materials
California Institute of Technology

The interpretation of ion mixing results involves the combination of thermodynamic and kinetic concepts. The use of thermodynamic concepts implies that local regions in the vicinity of a cascade achieve some form of metastable equilibrium during the relaxation period following prompt cascade events. This implies that within these local regions, certain thermodynamic variables have well defined averages (e.g. temperature, composition, etc.) while other variables (e.g. long range order) are constrained to assume non-equilibrium values by the kinetic restrictions imposed during the relaxation process following the prompt cascade events. In order to describe the metastable thermodynamics, one can use free energy diagrams. $^{1-3}$ The diagrams describe both equilibrium and metastable equilibrium states. For example, the schematic figure following describes a simple binary eutectic alloy such as Au-Si at low temperatures. The curves α - and β - represent terminal solutions while the curve labeled Amorphous represents an under cooled liquid alloy. The lower horizontal dashed line is the common tangent of the α - and β - curves and represents the two-phase α -B equilibrium state between the terminal solubility limits $\mathbf{X}_{\mathbf{A}}$ and $\mathbf{X}_{\mathbf{B}}$. The upper horizontal dashed line represents a two-phase metastable

equilibrium of α -solution and amorphous alloy. Curves α - and β - represent single phase metastable extended solutions between compositions X_A and X_B . The curve labeled amorphous represents another single phase metastable state. The diagram provides a direct measure of the free energy differences between the equilibrium and various metastable states. The downward vertical arrows represent various possible steps in the relaxation behavior of a locally excited region in the vicinity of a cascade. The local region of average composition X_C relaxes from a very high energy state downward into several possible final states. The possible final states are in order of decreasing free energy: 1) single phase α , 2) single phase amorphous, 3) two-phase α (composition ∇_A) and amorphous (composition ∇_A), 4) two-phase α (composition ∇_A) and β (composition ∇_B). We notice that relaxation processes lead to final states of two types.

States (1) and (2) are compositionally homogeneous. We say that the reaction $1 \rightarrow 2$ is polymorphic (involving no composition changes). Reactions $2 \rightarrow 3$ and $3 \rightarrow 4$ involve compositional segregation. The time required for nucleation of polymorphic transformations should scale with the number of atoms in a critical nucleus of the new phase. For crystalline phases with large complex unit cells (e.g. σ -phase, μ -phase etc.) this time will tend to be longer than for simpler phases (e.g. Cs-Cl type) with small unit cells since critical nuclei sizes will tend to scale with unit cell sizes. The kinetic restrictions during relaxation following cascade events should thus favor polymorphic reactions into simple byproduct phases. Compositionally segregated final states (3 and 4 above) require longer nucleation and growth times than polymorphic final states since atoms in the nuclei must not only order but differentiate compositionally within the nucleus of each new phase. Such processes require times which scale roughly with the square of the number atoms in a critical nucleus of the new phase. The time scales for nucleation of a segregated state will thus tend to be far larger than those for polymorphic reactions. We can summarize by saying that ion mixing should most readily produce polymorphic final states of simple crystal structure (or no crystal structure, i.e. amorphous). Formation of complex crystalline final states with large unit cells or compositionally segregated final states should be suppressed during relaxation following prompt events in cascades. Together with free energy diagrams, these "rules" should allow one to predict the preferred final states arising following ion mixing of binary layers or irradiation of binary alloys. The above summary is brief, a more detailed discussion will be published short1/.

١,

References on free energy diagram

- 1. R. A. Swalin, <u>Thermodynamics of Solids</u>, (John Wiley & Sons, New York, 1962) see especially Chapters 9, 10, 11.
- 2. A. R. Miedema, "The Heats of Formation of Alloys", Phillips Tech. Rev., 36, 217 (1976).
- 3. L. Kaufman and H. Bernstein, <u>Computer Calculations of Phase Diagrams</u>, (Academic Press, New York, 1970) Chapters 3 and 4.

AD P001657

"Ion Mixing and Phase Diagrams"

S. S. Lau University of California, San Diego La Jolla, California 92093

B. X. Liu, M-A. Nicolet and W. L. Johnson California Institute of Technology Pasadena, California 91125

Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynumical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation.

Jon-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures,

extension of terminal solubility from both sides of the phase-diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that form metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

carcade -

Ions

prompt events

Displacement of atoms a Vandom No correlation with phase diagrams is expect

Relaxation

Deby Effects

High Toupt. \$ Pressure in local region

If phase diagrams are protingnt >> High passure phase diagrams.

Further Telaxation Further relaxation to normal tampt and prentowned equilibrium,

Any correlation with Commonly available phase diagrams?

Thin Markers

80

TABLE 1. Ion-Induced Interactions in Transition Metal/S:
Systems (adopted from Ref.: B.Y.Tsaur, in

Proceedings of the Symposium or Thin Film Interfaces
and Interactions, J. E. E. Badlin and J. M. Frate, Life.,
(The Electrochemical Society, Princeton, 1980), V.1. 8 2, p. 205).

Metal/Si	Ion#	Compounds Observed		Phase Formed
		Composition	Phase	by Thermal Annealing
Ti/Si	N+, B+	Ti _s si _z	_	TiSi,
Ti/Si	Ar , Kr ,	, , ,	-	Tisi ₂
v/si	Ar [†] ,Kr [†] ,	~vsi ₂	-	vsi ₂
Cr/Si	Ar ⁺ ,Rr ⁺ ,	~crsi ₂	-	Crsi ₂
Fe/Si	Ar ⁺ ,Rr ⁺ ,	~ PeSi	-	FeSi
Co/Si	Ar [†] ,Kr [†] ,	√c₀ ₂ 51	Co ₂ si•	Co2S1
Ni/Si	Ar , Kr ,	Ni ₂ si	Ni ₂ si*	Wi ₂ Si
Mb/Si	Ar ⁺	NbSi ₂	NbSi2**	WbSi ₂
Nb/Si	si ⁺	NbSi ₂	NbSi ₂ +	NP21
		Nb ₅ Si ₃	Nb5513++	Mp215
Pd/Si	Ar ⁺ ,Kr ⁺ , Xe ⁺	Pd ₂ Si	Pd ₂ Si	Pd ₂ Si
Hf/Si	Ar ⁺ ,Kr ⁺ ,	BfSi	-	BfSi
Pt/Si	Ar ⁴ ,Kr ⁴ , Xe ⁴	Pt ₂ Si	Pt ₂ si	Pt ₂ 51
W/Mo/Si	An+	WSi2/MoSi2		WSi ₂ /MoSi ₂
Mo/6i	As ⁺ ,Ge ⁺	MoS1 ₂		MoS1 ₂
Mb/Si	As ⁺ ,Ge ⁺	Whsi ₂		Mper ³

FOR TRANSITION METAL-SI SYSTEMS, THE FIRST PHASE FORMED IS THE SAME FOR ION MIXING AND THERMAL ANNEALING.

IM → THERMAL ANNEALING

Now, is there a correlation between thermally induced phase and phase diagrams?

YES. VIA THE WALSER AND BENÉ RULE.

THE WALSER AND BENÉ RULE STATES:

"THE FIRST PHASE FORMED IS THE
HIGHEST CONGRUENTLY MELTING
COMPOUND NEAR THE LOWEST EUTECTIC
COMPOSITION."

EXAMPLE: PT_2SI is the first phase formed in PT-SI system. NI_2SI is the first phase formed in NI-SI system.

... FOR COMPOUND FORMING TRANSITION

METAL-SI SYSTEMS

(BILAYER - UNLIMITED SUPPLY)

MI	•-•	THERMAL	ANNEALING	• • •	PHASE	DIAGRAM
1			CORRELAT	ES		

NEED METAL-METAL EXPERIMENTAL RESULTS TO CONFIRM THIS CORRELATION!

Cu-AG

STRUCTURAL DIFFERENCE RULE: To MAKE METALLIC GLASS IN BINARY SYSTEM

- (I) DEPENDS ONLY ON CRYSTAL STRUCTURES OF A & B
 - (II) NOT ON ELECTRONEGATIVITY
- (III) NOT ON ATOMIC SIZE

sometime amorphous phase dissociates upon relatively high dose irradiation.

MX is of h.c.p. structure but is different from the H.C.P metal A in size.

1,

SUMMARY

- 1) GENERALLY SPEAKING, IF PHASE DIAGRAMS SHOW IMMISCIBILITY
 DIFFICULT TO MIX BY IONS (I.E. Cu-W)
- 2) BILAYER UNLIMITED SUPPLY

 FOR METAL-SI SYSTEMS, IM ↔ PHASE DIAGRAM

 VIA

 WALSER AND BENÉ RULE

 NEED METAL-METAL DATA
- 3) MULTILAYERS LIMITED SUPPLY

 METALLIC GLASS → CHOSE BINARY SYSTEMS WITH

 DIFFERENT CRYSTAL STRUCTURES.

 GENERALLY SPEAKING PREFER TWO PHASE REGIONS.
- 4) THIN MARKERS BALLISTIC EFFECT EXPERIMENTS

 COMPOUND FORMATION, THEREFORE PHASE DIAGRAM,
 PLAYS A ROLE IN THE SPREAD OF THE MARKERS.

"Ion-Induced Reactions in Thin Film Structures of Al and Near-Noble Metals"

M. Nastasi, L. S. Hung and J. W. Mayer
Department of Materials Science and Engineering
Cornell University
Ithaca, New York 14853

Thin film Pd/Al, Ni/Al and Pt/Al interdigitated samples, either thermally reacted to form intermetallic compounds (Fig. 1) or left in their unreacted state, were irradiated with Xe ions to doses of 2×10^{14} to 2×10^{15} Xe ions/cm². Only crystalline compounds of the simplest structure, cP₂ could be identified by electron diffraction (Fig. 2). Compounds of a more complex structure than cP₂ decompose upon irradiation into an amorphous mixture and elemental constituents. Table 1 presents a summary of the results found in all three metal/Al systems (1).

when Pd/Al, Ni/Al and Pt/Al bilayers are ion reacted, RBS studies show the evolution of steps in the backscattered signals (Fig. 3). Electron diffraction studies of the mixed samples do not confirm the presence of the compound suggested by RBS. Instead it is found that the only crystalline phases formed by ion reaction are of the cP₂ structure type (Fig. 4). In the Pd/Al system, the broadening of Pd diffraction lines (Fig. 5), as a result of mixing, indicates an enhancement of the Al solubility above that found thermally. In situ TEM thermal

formed through thermal reactions (Fig. 6). Table 2, below, lists the results of this work. The fact that fair agreement exists between the first ion induced composition, determined by RBS, and the first thermally formed compound, suggests that chemical driving forces are in operation during the mixing process. But, the observation that the ion induced compositions do not correspond to crystalline phases identified by diffraction indicates that the high quench rate, non-equilibrium character of the cascade presents limitations on what phases are kinetically possible from a nucleation point of view. Figure 7 presents the equilibrium phase diagrams for the metal/Al systems studied and indicates the reactions observed in the bilayered structures.

TMUS 2 BILAYER THERMAL 8 ION BEAM REACTIONS

SYSTEM	FIRST THERMAL PHASE (TEM)	FIRST ION MOIED COMPCO TION (FBS)	FIRST ION MIXED CRYSTALLINE PHASE (TEM)
Pt/AI	P12 A13	P140 A160	a
NI/A1	NiAl ₃	N ₁₂₅ Al ₇₅	N ₁ A1
Pd/AI	PdAla	Pd 6, Al33	PdAI
			1

Reference

L. S. Hung, M. Nastasi, J. Gyulai, and J. W. Mayer, Appl. Phys. Lett. 42 (April, 1983).

Interdigitated Samples, Thermal and Ion Reactions

System	Thermal R	Reactions	Ion Beam Reactions
	Compounds	Structure	500 KeV Xe, 2x10 ¹⁵ /cm ²
Pd/Al Ni/Al	PdAl ₃ Pd ₂ Al ₃ PdAl(H) Pd ₂ Al	hP ₅ cP ₂ oP ₁₂	a + Al PdAl(H) + a PdAl(H) a +Pd a +Al
	Ni ₂ Al ₃	hP ₅	NiAI+ α
	NiAl	cP ₂	NiAI
Pt/AI	PtAl ₂ Pt ₂ Al ₃ Pt ₂ Al Pt ₃ Al	cF ₁₂ hP ₅) a

Remarks: c, h, o and t refer to cubic, hexagonal, orthorhombic and tetragonal. F and P refer to all face-centered and primitive. Numbers refer to the number of atoms in the unit cell.

Table 1. Interdigitated sample results for the Fd/Al, Ni/Al and Ft/Al systems. These results indicate that only the compounds. FdAl and NiAl, with the simplest structure, cP_2 (i.e. cesium chloride), survive Ne irradiation while compounds with a more complex structure decay into amorphous and elemental material.

Fig. 1. Flectron diffractic patterns from multiple layered Pd/Al samples annealed at 350°C for 1 hr. showing the formation of single phase alloys indicated by the phase diagram. The top part of the figure represents schematically the structure of the sample.

ANNEAL 350°C, I hour

Fig. 2. Electron diffraction jets one of preamosaleliti'Al complex foll weaky patterns from samples implanted with 0×10^{17} Me ions in at 500 MeV. Note that phases FdAl_3 and $\mathrm{Fd}_2\mathrm{Al}$ become amorphous while $\mathrm{Pi}_2\mathrm{Al}_3$ decomposes into PdAl(H) plus an amorphous phase. $\mathrm{FdAl}(\mathrm{H})$ remains crystalline after implantation.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

Fig. 3. RBS spectra from an ion reacted Pd/Al bilayer. Step evolution in the spectra resulted from mixing by 1×10^{15} Xe ions/cm² at 600 KeV. Step highs indicate the formation of a mixed layer with an approximate composition of Pd₆₇Al₃₃.

Fig. 4. Electron diffraction patterns of 600 KeV Xe reacted bilayers. Diffraction rings from samples implanted with $2 \text{xl} 0^{15}$ Xe ions/cm² indicate the presence of Pd. Al and the compound PdAl. At a higher dose, $6 \text{xl} 0^{15}/\text{cm}^2$, complete attenuation of the elemental Pd signal is observed along with an enhancement in the PdAl signal.

	a _o , Lattice Parameter (Å)
Al	4.049
Pd	3.890
PdAI	3.049
Pd/Al Solid Soln	3.8 9- 3.9 8

Fig. 5. Diffraction patterns from both as deposited and ion mixed Pd/Al bilayers. After mixing the diffraction lines become broader indicating the incorporation Al into the Pd lattice beyond the equilibrium solid solubility.

Fig. 6. Pd/Al bilayer thermal history. (a) Electron diffraction patterns obtained from in situ TEM thermal studies on Pd/Al bilayers. (b) Pd/Al phase diagram along with a thermal history curve showing the phase sequence found from the in situ thermal TEM studies. The first compound found to form thermally was PdAl_h.

Fig. 7. Pt/Al, Ni/Al and Pd/Al phase diagrames along with the results obtained from bilayer reaction experiments. 95

"Ion-Beam Induced Changes in Alloy Composition"

L. E. Rehn and H. Wiedersich
Materials Science & Technology Division
Argonne National Laboratory
Argonne, Illinois 60439

In general, point defect fluxes transport alloying commonents in proportions which differ from the bulk alloy concentration.

Hence, even in initially homogeneous alloys, the local concentration will be altered in any region which experiences a net influx or outflow of defects. Because large numbers of point defects are introduced by each implanted ion, preferential transport of certain alloying components by persistent defect fluxes generated during ion bombardment can be highly efficient in modifying near-surface alloy compositions. This nenequilibrium, radiation-induced segregation (RIS) adds a further degree of complexity to the ion-implantation process. In a more positive vein, however, the established existence of strong RIS effects should allow certain materials modifications to be achieved more efficiently, and make possible additional types of modifications which otherwise would not be feasible (1).

Considerable progress has occurred over the last few years in our basic understanding of Ris. A strong correlation has been established between the sign of the lattice mismatch of realloying components and the direction of segregation. To a great extent, elements which decrease the lattice parameter upon alloying are observed to move in the same direction as the defect

ŧ,

flux, while alloying components which expand the lattice are found to move in the opposite direction. The size-effect correlation lends strong support to the idea that preferential transport by interstitial fluxes generally dominates the segregation process.

Very detailed and systematic studies of RIS have been performed on Ni-Si alloys. Rate constants for the growth of radiation-induced Ni₃Si surface coatings were measured and used to determine the dose, dose-rate and temperature dependences of RIS (2,3). Relatively simple models account quantitatively for the observed effects in terms of point-defect properties and irradiation parameters. The good quantitative agreement between the models and the experimental results provides a basis for extracting information about more general aspects of ion bombardment at elevated temperatures from the measured growth-rate constants. For example, most radiation-induced microstructural modifications (such as the coating growth) are driven by those defects that escape the parent cascade and can migrate long distances before annihilation. The RIS results show that when normalized to the same deposited damage energy, heavy ion bombardment is much less (< 5%) efficient than lightion bombardment at producing long-range migrating defects. light-ion bombardments appear advantageous for ion-beam modifications which require long-range defect migration, e.g. modifications by RIS or alloying by radiation-enhanced diffusion. increased efficiency for production of migrating point defects can be contrasted with the observation discussed by R. S. Averback

1,

at this workshop that heavy-ion bombardment is more efficient for mixing metal-silicide interfaces.

The mean square average diffusion distance for both vacancies and interstitials can be very large at elevated temperatures (> µm's in 1s at 500°C). Consequently, defects which escape the implanted region at elevated temperature can produce compositional and microstructural changes to depths which are much larger than the ion range. A particularly dramatic example of this occurs during ion sputtering of Cu-Ni alloys, where significant changes in composition are produced to depths which are three orders of magnitude greater than the implanted layer. Because of the large defect mobilities, and the fact that diffusion processes must compete with the rate of surface recession, the effects of defect production (ballistic mixing), radiation-enhanced diffusion and RIS become separated spatially during ion sputtering at elevated temperatures, and thus can be studied simultaneously in the same alloy ⁽⁴⁾.

References

- 1. L. E. Rehn, in <u>Metastable Materials Formation by Ion</u> <u>Implantation</u>, S. T. Picraux and W. J. Choyke, Eds., (Elsevier Science Publishing Co.Inc., New York, 1982), MRS Symposia Vol. 7, pp. 17-33.
- 2. R. S. Averback, L. E. Rehn, W. Wagner, H. Wiedersich, and P. R. Okamoto, submitted to Phys. Rev. B15.
- P. R. Okamoto, L. E. Rehn, and R. S. Averback, J. Nucl. Mater. 108&109, 319-330 (1982).

4. L. E. Rehn, N. Q. Lam, and H. Wiedersich, to be published.

Ion-Beam Induced Changes <u>in Alloy Composition</u> (Role of defect fluxes)

Homogeneous Alloy

- Demixes

Nonequilibrium Effects:

like ion-beam mixing, they offer higher efficiency, greater flexibility but may produce unwanted effects

a. can be quite large b. can be understood in simple terms

Talk → 2 parts

I. Radiation-Induced Segregation-Ni(Si)

II. Sputtering of Cu-Ni Alloys

H. Wiedersich, R. S. Averback, P. R. Okamoto

1.

Dose-Rate Dependence

: Can determine production efficiency for long-range migrating defects!

Light ions (Low Energies) are advantageous for RED/RIS Modifications

NB: Opposite to metal-silicide mixing (low-T R.S. Averback

X=J4D,t		for H _v =1eV; t=	= ls
	300℃	500°C	
X	.a µm	2.7 µm	

¥,

ł,

Spatial Dependence of Dominant Effect (At Steady State)

è,

"High Energy Heavy Ion Induced Enhanced Adhesion"

Marcus H. Mendenhall California Institute of Technology Pasadena, California 91125

DESCRIPTION

Interfaces bombarded with ions in the electronic stopping regime (E > 100 keV/amu) can be bonded together quite strongly. Metal-metal, metal-semiconductor, metal-dielectric and dielectric-dielectric combinations have been successfully bonded.

1

ADVANTAGES OVER LOW ENERGY TECHNIQUES

- I) The technique is universal: All tested combinations of materials show enhanced adhesion including difficult systems such as Ag on Si.
- 2) Very low beam dose required on many systems: For Au on Ta, 20 MeV Cl requires only $2\times 10^{13}/\text{cm}^2$ ions. For Au on PTFE, $1\times 10^{13}/\text{cm}^2$ of 1 MeV protons is sufficient.
- ion beams do not significantly sputter or disrupt metals.

 This allows thin optical films, for example, to be processed without major changes in optical properties.
- 4) Long Beam Range Beam particles are implanted about 10 µm into the target, allowing fairly thick films to be bonded.

108

5) Very shallow mixing depth: No mixing has been seen at the 2 nm level on bonded systems. Any mixing occurring is expected to have much shorter range than this since ions in the electronic stopping power regime do not produce many high energy recoil particles.

DISADVANTAGE OVER LOW ENERGY TECHNIQUES

Ł,

High energy ion beams require very large accelerators which are expensive and produce high radiation levels, requiring substantial shielding.

Table 1

Material Combinations Tested for High Enegy Heavy Ion Induced Enhanced Adhesion

Table 1 lists the various substrate, film and beam combinations we have tested for enhanced adhesion. In the dose column, numbers preceded by $\cong ar \leq$ have been measured using movable slits to define the beam shape, so the actual dose is not well known. Numbers preceded by \leq have been tested at the dose shown, and show adhesion, but lower doses have not been tried so the threshold may be much lower. Numbers without any prefix represent values measured as described in §4.3 and should be reliable to $\sqrt{2}$. All numbers represent the dose required to pass the "Scotch Tape" test.

Substrate	Film	Beam	Dose (#/cm²)	Comments
	Au	20 MeV Cl	≌5×10 ¹⁴	Residual adhesion is very good. Unirradiated samples often pass tape test.
Si, n-type 10 Ω-cm	Ag	20 MeV Cl	≅2×:0¹5	Very low residual adhesion except when sample not rinsed in methanol after HF dip. Then, residual adhesion is near the tape threshold.
	Au	107 MeV Kr	5×10 ¹²	•
	Au	87 MeV Ar	S 8×1013	•
	Au	27 MeV Ar	2×1013	•
	Au	20 MeV Cl	2.5×10 ¹³	
	Λu	7.2 X eV Cl	4 5×10 ¹³	
	Au	3.2 MeV Cl	9×10 ¹³	
Ta	Au	12 VeV F	7×10 ¹⁹	
14	Au	3.7 MeV F	1 3×10 ¹⁴	
	Au	35 MeV O	1×10 ¹⁴	•
	Au	: MeV He	6×10 ¹⁵	
	Au	1 MeV H	3×10 ¹⁶	Peak adhesion is very weak. Very little material is left after the tape test, but there seems to be a real threshold for none vs. what little remains
	Ag	20 MeV Cl	\$1×10 ¹⁴	

^{*}Berkeley runs, listed doses adjusted down from measured value by 0.5 to bring 27 MeV Ar point into line with CIT data.

1.

			Table 1 (cont'd)	
Substrate	Film	Beam	Dose (#/cm²)	Comments
	Au	107 MeV Kr	1.5×10 ¹³	•
	Au	20 MeV Cl	5×10 ¹⁴	
Fused SiO ₂	Λu	12 MeV F	>5×10 ¹⁸	No adhesion observed with 12 MeV F beam.
	Au	27 MeV Ar	≅3×10 ¹⁴	
	Λg	20 MeV Cl	<2×10 ¹⁴	
InP p-type .001 Ω-cm	Au	20 MeV Cl	<5×10 ¹⁴	
GaAs, heavily doped	Au	20 MeV CI	≲1×10 ¹⁴	
A	Au	20 MeV Cl	<1×10 ¹⁴	
Teffon [®]	Au	i MeV H	≅3×10 ₁₃	
Polytetrafluoroethylet	ne Au	1 MeV He	≲1×10 ¹⁴	Higher doses burn substrate
Topaz Al ₂ SiO ₃ (OH,F) ₂	Au	20 MeV Cl	≅5×10 ¹⁵	
	Pd	20 MeV CI	<1×10 ¹⁵	
Al_2O_3	Ag	20 MeV Cl	ACK 10 ¹⁵	
Alumina/Silica/ Magnesia Glass-Ceramic	Cu	20 MeV CI	≲3×10 ¹⁵	
Ferrite	Au	20 MeV Cl	21×10 ¹⁵	
I-Carbon (See §2.1.4)	Λg	20 MeV Cl	≊1×10 ¹⁵	These films seem to decompose under irradiation. The adhesion was at best weak, and where the metal peeled, the I-carbon had turned dark brown underneath. I suspect that the films were reverting to graphite (as diamond is wont to do)

ł,

Figure 18
Expanded View of Ag Edge
on
Backscattering Spectrum
from
Multilayer Ag/Si Target
(sec §4.1.2)

This spectrum is an expansion and comparison of the high edge of the silver peak from an irradiated and unirradiated part of the target. The curve plotted with the symbol + is from the irradiated area. The curve plotted with the symbol • is from the unirradiated area. The + curve is not raw data; it has been translated along the x-axis by 1.7 channels to the right and interpolated back to integral channel numbers to remove the effects of the slight carbon buildup on the target. Note how well the edges agree; there is no visible evidence for any broadening that might be caused by mixing.

The + curve is 3-Mar-1983 run 7, interpolated The + curve is 3-Mar-1983 run 10

Fig. 21 Beam Dose vs. dE/dx for Au on Ta

ŧ,

Figure 21

Plot of Beam Dose Required to Pass Tape Test

US.

dE/dx for the Ion Beam on Au on Ta Targets (see §4.3)

This plot shows the dependence of beam dose required to produce sufficient adhesion to pass the "Scotch Tape" test on the energy loss of the beam. The points plotted are

- 1 20 MeV Cl
- 2 7.2 MeV Cl
- 3 3.2 MeV Cl
- 4 12 MeV F
- 5 3.7 MeV F
- 6 1 MeV H
- 7 1 MeV He
- A 107 MeV Kr *
- B 35 MeV 0 •
- C 27 MeV Ar *
- D 87 MeV Ar *

and the line plotted is $Dose = 4.2 \times 10^{14} (dE/dx)^{-1.65}$. The point for protons has substantial uncertainties, since the peak adhesion for protons was very weak. However, the rest of the points should be reliable to whim $\sqrt{2}$.

All points marked * above were run on the LBL 88" Cyclotron. As is described in §4.3, they have been adjusted downwards by a factor of 2 so that the 27 MeV Ar point lies on the curve from data obtained at Caltech. If the adjustment is omitted, the slope of the curve does not charge significantly (since all the LBL points are internally consistent with this slope), but the multiplier for the doses increases by 16%.

III. Surface Meditication-Ion Implantation and Mixing

"Ion Mixing of Cr Layers on Steel: Effect of Impurities During Ion Mixing"

K. S. Grabowski and R. J. Colton Naval Research Laboratory Washington, D. C. 20375

W. K. Chan and C. R. Clayton State University of New York Stony Brook, New York 11974

known to deposit carbon on the target surface. It has been observed that such effects during ion mixing of Cr layers on bearing steels may encourage pitting corrosion of an ion mixed surface. Xe⁺ was round to incorporate O, and Cr was found to incorporate C during ion mixing of Cr films deposited on AIST 52100 steel.

To help identify the source of these contaminants and define implantation conditions sufficient to eliminate them experiments work was undertaken using a UHV target chamber, a controlled partial pressure of ¹³CO, and varied ion beam currents differing by about an order of magnitude.

SIMS analyses for ¹³C incorporation following Cr⁺ mixing of Cr films on AISI-M50 steel have been performed. They indicated that a relative implement rate of gas molecules to Cr⁺ ions of approximately less than 1 is necessary to prevent the incorporation of C from the vacuum in in Timplantation.

Fig. 6. Fluence dependence of oxygen recoil implantation and oxygen enhanced xenon collection in silicon.

from K. Wittmaack and P. Blank,

Ion Implantation in Semiconductors,

Boulder (1976), p. 363.

Ł,

Fig. 10 Anodic polarization curves of intermix 52100 bearing steel in 0.01 M NaCl solution buffered at pH=6 with cathodic pretreatment

Pig. 4 Auger depth profile of Pe, Cr, O, C in Cr intermix with 52100

1,

ŧ,

	<0,2 (EST.)	<0.3	7.7	14
er Same	(101) (65)	< 2.2	110	110
		۲.۸	100	100
	72	K. W.	60	4,9
			HBR-C0	LDR-C0

Following SIMS profiles stow Cr.fs.O. 12c and 1**2c depth** distributions in Cr⁺ implanted or films. LDR UNV, HBR-CO, and LDR-CO samples are shown.

AD P001662

"Mechanical Properties and Microstructure of Fe Alloys
Implanted With Ti and C"

D. M. Follstaedt Sandia National Laboratories* Albuquerque, New Mexico 87185 of the second

Iron-based alloys implanted with Ti and C are of increasing interest because of their favorable surface properties (1-3). Similar improved surface properties are found for alloys into which only Ti was deliberately implanted, but which also acquired C at the surface during the implantation (3-6). Most notable of these properties are reduced friction coefficients and wear depths relative to values for the unimplanted surface. Friction is typically reduced by (50) and wear by up to (90) in unlubricated pin-on-disc tests when the discs are implanted. Moreover, these results are obtained on a wide range of steels (Knoop hardnesses from 180 to 789) with both hard and soft pin materials (440C and 304 stainless steels, respectively). Tests at other laboratories on 52100 bearing steel show reduced wear and reduced friction during lubricated testing as well (3,7).

It is of further interest to compare the mechanical test results with Ti and C implantations to those with N implantation, which is more commonly used. Studies of the latter treatment demonstrate reduced wear on mild steels, but results are mixed on 304 stainless steel and transformation-hardened steels. For instance, Type 52100 shows no reduction in wear (3,7). Furthermore,

N implantation in most instances does not reduce friction (3,7,8).

Thus surfaces alloyed with Ti and C appear very promising for reducing wear, because of their applicability to many steels, and also for reducing friction. While these effects have been demonstrated on ion-implanted surfaces, alloys with the same properties might be obtainable by other methods, such as sputter or vapor deposition or ion beam mixing of deposited layers. The deposited layers offer the potential for thicker surface alloys, which could extend the beneficial effects to greater wear depths.

Recent transmission electron microscopic (TEM) examinations of f.c.c. 304 implanted with Ti and C show that the surface alloys is amorphous ⁽⁹⁾. Furthermore, wear tracks on discs produced by light pin loads and showing reduced wear were observed to have a nearly continuous amorphous layer across the track ⁽¹⁰⁾. Wear tracks due to heavier pin loads do not show reduced wear; no amorphous layer and greatly reduced Ti contents were found in these tracks. We have also run pin-on-disc tests with devitrified 304 (Ti,C); these tests showed no reduction in friction, thus demonstrating that the amorphous phase is required for this property ⁽⁹⁾. Thus all evidence to date indicates that reduced friction and wear are the direct result of the amorphous phase with Ti and C. The observed amorphization of b.c.c. Fe ^(5,6), f.c.c. 304 ⁽⁹⁾ and b.c.t. (martensite) 52100 ⁽⁴⁾ suggests that a similar amorphous layer is formed on all the steels.

This work was performed at Sandia National Laboratories and supported by the U.S. Department of Encr. under contract #DE-AC04-76DP00789.

References

- L. E. Pope, F. G. Yost, D. M. Follstaedt, J. A. Knapp, and
 S. T. Picraux, in Wear of Materials, 1983, (ASME, 1983).
- F. G. Yost, L. E. Pope, D. M. Follstaedt, J. A. Knapp, and
 S. T. Picraux, in <u>Metastable Materials Formation by Ion</u>
 <u>Implantation</u>, S. T. Picraux and W. J. Choyke, Eds., (North-Holland, New York, 1982), p. 261.
- C. A. Carosella, I. L. Singer, R. C. Bowers, and C. R.
 Gossett, in Wear of Materials, 1983, (ASME, 1983), p. 103.
- I. L. Singer, C. A. Carosella, and J. R. Reed, J. Nucl. Inst. and Meth. 182/183, 923 (1981).
- 5. J. A. Knapp, D. M. Follstaedt, and S. T. Picraux, in <u>Ion Implantation Metallurgy</u>, C. M. Preece and J. K. Hirvonen, Eds., (The Metallurgical Soc. of AIME, Warrendale, PA, 1980), p. 152.
- D. M. Follstredt, J. A. Knapp, and S. T. Picraux, Appl. Phys. Lett., 37, 380 (1980).
- 7. T. E. Fischer, M. J. Luton, J. M. Williams, C. W. White, and B. R. Appleton, presented at the ASME/ASLE Lubrication Conference in Washington, D.C., October 5-7, 1982.
- 8. F. G. Yost, S. T. Picraux, D. M. Follstaedt, L. E. Pope, and J. A. Knapp, Proc. Conf. on Metallurgical Coatings, April 18-22, 1983, San Diego, CA; to appear in THIN SOLID FILMS.
- 9. D. M. Follstaedt, L. E. Pope, J. A. Knapp, S. T. Picraux, and F. G. Yost, Proc. Conf. on Metallurgical Coatings, April 18-22, 1983, San Diego, CA.; to appear in THIN SOLID FILMS.
- D. M. Follstaedt, F. G. Yost, L. E. Pope, J. A. Knapp, and
 T. Picraux, submitted to Appl. Phys. Lett.

TI AND C IMPLANTED STEELS

REDUCED NEAR S 50% S 90% S 95% S 50% S 50%	MUCH LESS WEAR SCAR GREATLY REDUCED ~ 80%	Reduced Reduced Possibly Reduced
REDUCED	40-50% NG "STICK- SLIP"	~ 50 % ~ 50 % UNCHANGED
ELUENCE 2x10 ¹⁷ T1/CM ² (180-90 KEV) 2x10 ¹⁷ C/CM ² (30 KEV) (~20 AT. \$ T1, \$ over ~ 70 NM)	$\begin{bmatrix} 4.6 \times 10^{17} & \text{Ti/cm}^2 \\ (190 & \text{keV}) \\ (\sim 25 & \text{At.} \% & \text{Ti,} \\ 5-15 & \text{At.} \% & \text{C} \end{bmatrix}$	$\begin{bmatrix} (150 \text{ keV}) \\ 4x10^{17} \text{ Ti/cm}^2 \\ (300-100 \text{ keV}) \end{bmatrix}^{+}$
TEST CONDITIONS UNLUBRICATED PIN-ON-DISC (440C AND 304 PINS)	UNLUBRICATED BALL-ON-DISC HEXADECANE, BALL-ON-DISC ABRASIVE WEAR BY DIAMOND PARTICLES LUBRICATED, BALL-ON-	CYLINDER BALL-ON-CYLINDER - UNLUBRICATED - HEXADECANE - LUBRICATED
STEEL Fe 304 15-5 PH NITRONIC 60 440C	52100 52100 52100 304 52100	52100

Ł,

Sandia National Laboratories Naval Research Laboratory Exxon Research and Engineering Company/Oak Ridge National Laboratory

WEAR AND FRICTION SUMMARY

N IMPLANTATION

- OFTEN REDUCED SLIDING WEAR (BUT NOT 52100)
- USUALLY NO REDUCTION IN FRICTION

Tr + C IMPLANTATION

- UNLUBRICATED REDUCED WEAR IN WIDE RANGE OF STEELS (KNOOP HARDNESSES 180 789)
- UNLUBRICATED REDUCED WEAR WITH BOTH HARD (440C)
 AND SOFT PINS (304)
- REDUCED ABRASIVE WEAR
- REDUCED LUBRICATED WEAR (52100)
- REDUCED UNLUBRICATED FRICTION (ALL STEELS)
- REDUCED FRICTION IN HEXADECANE

Ti + C SURFACE ALLOYS LOOK PROMISING, BUT

- TI IS RELATIVELY MORE DIFFICULT TO IMPLANT THAN N
- THIN IMPLANTED LAYERS (~ 0.1 µm); T₁ DIFFUSION INWARD NOT EXPECTED.
- ION BEAM MIXING MIGHT BE USEFUL IN PRODUCING THICKER LAYERS WITH LOW ION FLUENCES OF READILY IMPLANTED SPECIES.

Figure 1. a) Schematic cross section of the microstructure observed by TEM in 304(Ti,C). b) Bright field TEM micrograph showing amorphous layer (light area) and thicker (darker) area which includes the crystalline substrate. c) EDS spectrum

from the amorphous layer. d) Dark field TEM micrograph in which bec particles in the substrate are illuminated.

1.

THERMAL EVOLUTION OF AMORPHOUS 304 S.S. IMPLANTED WITH TI AND C

Figure 2. Electron 3.77. Stien patterns and dark field micrographs showing the thermal exploition of arroid on 3.4(Ti,C). Pictures were taken near the end of 1/4 hr. annouls at harmonly higher temperature.

Fig. 3 Coefficient of friction values plotted versus pin load for 304 stainless steel. (Measured by L. E. Pope.)

Fig. 4 Maximum wear depths after 1000 cycles plotted versus pin load for 304 stainless steel. (Measured by F. G. Yost.)

Wear depth and remaining It fraction for wear tracks made with 104 and 440C pins with loads £ 50 g on a 104 disc implanted with It and C.

١,

MICROSTRUCTURE OF WEAR TRACKS IN 304 S.S. IMPLANTED WITH TI AND C

23.6 gm Pin Load, Wear Depth \leq 0.15 μ m

SEM

304 Disc
Implanted With TEM
2 X 10¹⁷ Ti/cm²,
180-90 keV
and
2 X 10¹⁷ C/cm².

30 keV (~20 at % Ti and C)

●WEAR TRACK
IS A NEARLY
CONTINUOUS
AMORPHOUS
LAYER

a) SEM and b) TEM micrographs from the same area of the wear track made with a 440C pin and 23.6 g load. c) and d) Electron diffraction patterns from the areas indicated in b).

"High Dose Ion Implantation And Corrosion Behavior of Ferrous Metals"

B. D. Sartwell* and N. S. Wheeler Bureau of Mines, 4900 LaSalle Road Avondale, Md. 20782

G. K. Hubler and E. McCafferty Naval Research Laboratory Washington, D. C. 20375

C. R. Clayton State University of New York Stony Brook, New York 11794

There are two possible approaches to applying ion implantation to the modification of the corrosion behavior of metals and allows. The first approach is to use ion implantate. to produce metastable or amorphous corresion-resistant surfacalloys that are inaccessible by conventional metallurgical techniques, and to apply them to specific applications where corrosion is a severe problem. Secondly, and of a more fundamental nature, ion implantation can be used to introduce controlled amounts of various elements into the surface of a metal as part of a research effort to identify the mechanisms responsible for certain forms of general and localized corrosion. technique of alloying to produce more corrosion resistant materials is widely used and the choice of a particular alloying element is usually based on the fact that it will enhance the formation of a passive film or will reduce the rate of the various cathodic processes that occur on the metal's surface. It is also possible to

reduce the overall perrosion rate by introducing an element that displays rapid cathodic kinetics, but it is essential that the original material passivate in the corresive environment that is being considered.

Aqueous corrosion proceeds through an electrochemical mechunism and there are various types of electrochemical techniques used to evaluate the corresion resistance of alloys. Linear polarization and Tifel region extrapolation have been used to evaluate binary Fe-Fo and Fe-Ti surface alloys formed by ion implantation. The instantaneous corrosion rate of the Fe-Pb alloys in 0.1 \pm H.SO, was approximately 3 to 4 times lower than that of pure mon. The reason for this is a decrease in the hydrogen exchange current density caused by the presence of the lead, which is a journal for the hydrogen evolution reaction. The correction rate of the Fe-Ti alloys was approximately two times higher than that of iron. Auger analysis of the Fe-Ti allow before expansive to the Acid solution indicated that TiC was in the region about 4.5 to 34 nm from the surface. SEM analysis following the electrochemical tests revealed the presence of square flat-kettemed pits, a morphology which is usually associated with inclusion etch pits. Thus, it is proposed that the square gits may have been formed as TiC precipitates were etched from the sample surface.

The implicatation of mirronium into iron reduces the corresion rate by an order of magnitude by enhancing the rate of passivation in a $1.5 \, \rm H_2SO_4$ solution. The corrosion rate is still considerably higher, however, than that observed for an

amorphous $\mathrm{Fe_{90}Zr_{10}}$ coating even though the near-surface concentration of Zr in the implanted sample was estimated to be 20 to 30 atomic percent.

The implantation of Ti into 52100 steel results in the formation of an amorphous Ti-Fe-C surface, which provides modest improvements in corrosion resistance in $1\ \underline{N}\ \mathrm{H_2SO_4}$ and $0.1\ \underline{N}\ \mathrm{NaCl}$. The anodic current density in both solutions is about 10% that of unimplanted 52100 steel, up to an anodic overpotential of about 800 mV. Pitting, which is initiated at low overpotentials, leads to undermining of the implanted layer and its eventual peeling off at higher potentials. Detailed optical and surface analytical studies show that the pitting initiates at surface flaws, which are most likely surface carbides or oxide inclusions. Galvanic action between free Ti beneath the pitted amorphous film and Fe in the bulk steel thus leads to undermining of the imorphous layer.

The effect of the implantation of various ions on the pitting corrosion resistance of 52100 steel in a 0.01M NaCl solution has been investigated. Molybdenum implantation provided very little improvements; however, a combination of both chromium and molybdenum significantly increased the breakdown potential for initiation of pitting corrosion. Finally, tantalum implantation proved to be the most effective in protecting the surface of the 52100 from pitting corrosion.

Present Address: Naval Research Laboratory, Code 6675, Washington,
D.C. 20375

TABLE 1. - Corrosion rates, expressed in mils/year, in 0.1 N H_SO_
for several different metals and ion-implanted alloys
using two different test methods, Tafel extrapolation
and three-point linear polarization

Test metlod	Fe	Fe-Pb	РЬ	Fe-Ti	Ti
Tafel extrapolation	50±2	12±2	0.42±0.19	96±22	0.69±0.04
Linear polarization	32±9	16±10	(1)	55±47	0.98±0.52

¹Could not measure corrosion rate due to cathodic Tafel slope being indeterminate.

FIGURE 1. Idealized potentiodynamic polarization scan (current vs. voltage characteristic) for a ferrous alloy in 1M HgGG, at room temperature. The dashed line indicates an improvement in the passivity of the surface and therefore improved correction resistance.

Figure_Caption

FIGURE 2

Two electrochemical methods used for determining currosion rates were Tafel region extrapolation and three-point linear polarization. The former determines the corrosion rate graphically whereas the latter required calculations based on experimental data. When the logarithm of the absolute value of the measured current density is plotted against the ample potential, the resulting curve generally has two linear portions (Tafel regions), one on the anodic and one on the cathodic side of the SSOC (stendy-state open-circuit) potential. Extrapolation of the Tafel regions gives a point of intersection, the coordinates of which are the corrosion potential E_c and the corresion current density I_c, or corrosion rate.

The basis for linear polarization, or polarization resistance, lies in the assumption that potential varies linearly with current dencity for a range of 1.20 mV from Eq. as illustrated in this figure. The clope of this line can be related to the Tafel region slopes (found from log I vs. E curves) to give Iq. Some metal/environment systems display linear E vs. I curves, but meat are nonlinear as shown by the solid line. The three-point linear polarization method was deviced to provide a means for determining the slope of the E vs. I curve in the nonlinear case.

FIGURE 3. Current density as a function of sample potential for Fe, Ft, and Fo implanted with 30 keV Pb such that the final retained down was 1.0 x 10 to atoms/cm2. The potential is shown as velta for the steady-state open-circuit potential. The dashed lines represent the extrapolation from the Tafol region of each curve.

FIGURE 4. Current density as a function of sample potential for Fe. Ti, and Fe implanted with 50 keV ${\rm Ti}^+$ to a total retained dose of 7×10^{16} atoms/cm², wit' the potential shown as volts from the SSOC potential.

ŧ,

ŧ,

The control of the design of the control of the con

Ł,

Anodic potentie-lynamic pelarization curves for unimplanted 52100 steel and Ti-implanted 52100 steel (4.0 x 10^{17} ions/em² at 190 keV) in 0.1 M MrN colution. FIGURE 7

FIGURE 8. Idealized potentiodynamic polarization scans (current va. voltage characteristic) for a ferrous alloy in a lufferel pH 6 solution at room temperature. The upper set of curves demonstrate the effect of adding ClT ions to the colution.

Eb defines the pitting potential where a sharp increase in current results when pits form on the surface. The lower set of curves demonstrate the desired result of ion implantation, i.e., force the pitting potential toward higher values.

ŧ,

Potentiodynamic anodic polarization data produced in buffer solution of pH6 containing 0.01M NaCl for 52100 steel, and for 52100 steel implanted with molybdenum (3.5 x 10¹⁶ ions/cm²), chromium (2 x 10¹⁷ ions/cm² at 150 keV), chromium plus molybdenum (2 x 10¹⁷ Cr/cm² at 150 keV, 3.5 x 10¹⁶ Mo/cm² at 100 keV), and tantalum (1 x 10¹⁷ ions/cm² at 150 keV). The curves indicate that tantalum was most effective in protecting the surface from pitting corrosion.

"Ion Beam-Enhanced Deposition and Ionized Cluster Beam Deposition"

J. K. Hirvonen
Zymet, Inc.
Danvers, Massachusetts 01923

A. ION BEAM-ENHANCED DEPOSITION ,

(SEE, PRANEVICIUS, WEISSMANTAL, COLLIGON, CUOMO, OTHERS?)

- 1. MAJOR FEATURES.
 - TRANSCENDS ADVANTAGES OF CONVENTIONAL COATING PROCESSES AND ION IMPLANTATION
 - ALREADY DEMONSTRATED:
 - · "DIAMOND-LIKE" CARBON (I-C) QUASI-AMORPHOUS
 - CUBIC BORON NITRIDE
 - H=aSI
 - ADVANTAGES:
 - No LIMIT TO COATING THICKNESS
 - CONTROLLABLE STOICHIOMETRY
 - SUPERIOR ADHESION.
 - · HIGH-DENSITY COATINGS
 - · LOW-TEMPERATURE PROCESS
- 2. APPLICATION TO WEAR- AND CORROSION-RESISTANT COATINGS. EXAMPLES:

THE ION BEAM:

- · PROVIDES CHEMICAL DOPING , AND
- PROMOTES NUCLEATION AND KINETICS OF FILM GROWTH TO HIGH-TEMPERATURE REGIME WHILE SUBSTRATE REMAINS AT LOW TEMPERATURE
- 3. VARIABLES TO BE STUDIED.
 - · OPTIMUM FLUXES OF IONS AND DEPOSITED ATOMS
 - · CHARACTERIZATION OF MICROSTRUCTURE
 - EFFECT OF ION SPECIES AND ENERGY ON THIN-FILM STRUCTURE (100 EV 10 KEV)
 - · MECHANICAL INTEGRITY OF COATING

B. IONIZED CUSTER BEAM DEPOSTION

(SEE, T. TAKAGI, 19TH UNIVERSITY CONFERENCE ON CERAMIC SCIENCE, NOVEMBER 8-10, 1982, JANE S. MCKIMMON CENTER, NORTH CAROLINA STATE UNIVERSITY, NORTH CAROLINA)

1. MAJOR FEATURES.

- ABILITY TO ADJUST AVERAGE ENERGY PER DEPOSITION ATOM OVER $0.01 100^+$ eV range
- EFFECTIVE CONVERSION OF CLUSTER KINETIC ENERGY TO ADATOM SURFACE ENERGY DUE TO SNOWBALL EFFECT
- INHERENT CLEANSING ACTION BY SPUTTERING AND MICRO-SCALE HEATING
- ENHANCED REACTIVE PROCESSES DUE TO IONIC CHARGE PRESENCE

2. TECHNICAL PROSPECTS.

- BULK MATERIAL PROPERTIES
- CONTROL OF MORPHOLOGY
- SELECTION OF GROWTH STRUCTURE
- HIGH TEMPERATURE EQUIVALENT PROCESSES AT LOW TEMPERATURE
- PROCESS CLEANLINESS
- EFFICIENT REACTIVE FORMATION
- CONVENIENT DOPING
- QUANTITATIVE PARAMETERS
- AUTOMATION
- CLOSED-LOOP CONTROL
- MATERIAL USE EFFICIENCY
- CURRENTLY R&D APPLICATIONS
- SCALE UP CAPABILITY
- VERSATILITY

Figure Captions

Figure 1 Ion beam-enhanced deposition.

Figure 2 Ionized cluster beam deposition.

Figure 3 Cluster impact phenomena.

Fig.1

Fig. 2

1.

"Ion Beam Mixing Research At Westinghouse"

R. Kossowsky and R. R. Jensen Research and Development Center Westinghouse Pittsburgh, Pennsylvania 15235

The program on ion implantation and ion beam mixing has concentrated on three areas of major applications: improvement of wear properties, specifically cemented carbide tools; oxidation resistance for gas turbine applications; and bonding of metal to ceramics.

The first slide lists the major species we have been experimenting with ("Recoil Implantation Areas").

To allow a routine of recoil implantation, the pertinent parameters should be known. Our simple minded view of recoil is shown in the next two vu-graphs ("Coating - Substrate" and "Solution"). We assume a modified diffusional mixing where a balance has to be obtained among the various processes, i.e. - rate of surface recession by sputtering (V) and the forward motion of the mixed ion by an effective diffusivity, D, and is defined as the sputtering efficiency, \uparrow is the dose and β - the atomic volume. The "Solution" page shows that the problem is reduced to solution in terms of one parameter - $\alpha\sqrt{D}$, where W is the thickness of the deposited film.

The next three graphs ("Recoil Implantation Concentration Profiles" for Cr, Mo, Cr) show typical calculated recoil profiles

for Cr recoiled with three different gases, with the parameter α decreasing, respectively from 0.58 to 0.28. This demonstrates that the best mixing of Cr is to be obtained with N gas.

The last set of slides ("Metal-Glass Bonding", "Au on SiO₂ - evaporation, sputter deposited, and flat faced pins glued on implanted and unimplanted Au films") show a progression of an experimental program to bond Au to glass. The glass is signifulcantly weakened by the process of recoil.

The last slide ("Recoil Implantation of Carbon ...") shows an expected result re-incorporation of carbon into the matrix of steel during N implantation due to ambient residual carbon on the surface.

1.

RECOIL IMPLANTATION AREAS

Species Implanted	<u>Substrate</u>	
В	steel	
Υ	Ni-Cr-Al alloys	
Cr	Си	
Ti	WC	
Cr	WC	
Hf	WC	
Ni	SiO ₂	
Ni		
Au	Si ₃ N ₄ SiO ₂	

$$\frac{\partial C}{\partial t} - V \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$

1.C.
$$C(x,0) = \begin{cases} 1 & 0 \le x \le w \\ 0 & x > w \end{cases}$$

B.C.
$$\frac{\partial C}{\partial x}(x,t)\Big|_{x=0} = 0$$

WHERE

$$V = S\phi\Omega$$

$$D = \frac{1}{2}K \langle R^2 \rangle$$

SOLUTION

$$C(x,t) = \frac{1}{2} \left[erfc \left(\frac{X+Vt-W}{2\sqrt{Dt}} \right) - e^{\frac{WV}{2}} erfc \left(\frac{X+Vt+W}{2\sqrt{Dt}} \right) \right]$$

TET

×|≥ || |×

$$C(x,t') = 1/2 \left[erfc \left(\frac{x' + t' - 1}{2 \alpha \sqrt{t'}} \right) - e^{1/2} erfc \left(\frac{x' + t' + 1}{2 \alpha \sqrt{t'}} \right) \right]$$

.

METAL-GLASS BONDING

METAL GLASS RECOIL IMPLANTATION MIXED ZONE METAL GLASS

Au on $$10_2$

Experiment:

-500 Å Au evaporated onto $\rm SiO_2$ -Ar ion implanted to 1 x $\rm 10^{16}~ions/cm^2$ a 100 keV

Results:

- -Unimplanted Au film easily removed by single adhesive tape test
- -After implantation, Au film adherent, unaffected by multiple tape tests
- -Au film sputtered nonuniformly during implantation due to poor initial adherence of film

Au on SiO_2

Experiment:

- -500 $\mathring{\text{A}}$ Au sputter deposited on SiO_2
- $-SiO_2$ precleaned in-situ by sputter etching
- -Ar $^+$ ion implanted to 1 x 10^{16} ions/cm 2 at 100 keV

Results:

<u>Both</u> implanted <u>and</u> unimplanted Au films strongly adherent. Impossible to remove either film with any type of tape.

Au on SiO₂

Experiment:

- -Flat faced pins glued on implanted and unimplanted sputtered Au films.
- -Pins pulled in tension to test adherence of films

Results:

Failure Stress (Average of five tests)

<u>Unimplanted</u>	<u>Implanted</u>		
814 ± 142 psi	308 ± 88 psi		
Glue failure	Glass fracture		

In both cases, film not removed from SiO_2 .

RECOIL IMPLANTATION OF CARBON INTO 30455 BY N+

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1 REPORT NUMBER 2 GOVY ACCESSION NO HISTORY	RECIPIENT'S CATALOU NUMBER			
PROCEEDINGS OF THE WORKSHOP ON ION MIXING AND SURFACE LAYER ALLOYING	Final - April 14 to 16,			
AND SURFACE BATER ABBOTTAG	6 PERFORMING CRO REPORT N. MBER			
THORES	8 CONTRACTOR SPANT N MHER I			
Marc-A. Nicolet and S. Thomas Picraux	N00014-83-G-0057			
Dr. Marc-A. Nicolet	10 PROGRAM F, EMENT PROFE TO TA + AREA & WORK UNIT N, MRS NS			
California Institute of Technology, 116-81 Pasadena, California 91125	Code 410			
TONYROLLING OFFICE NAME AND ADDRESS Leader Electronics Division	12 REPORT DATE			
Office of Naval Research	May 6, 1983			
800 N. Quincy Street, Arlington, VA. 22217	173			
Office of Naval Research Detachment Pasadena 1030 East Green Street				
Pasadena, California 91106	15# DECUASSIFICATION COANSHAONS SCHEDULE			
16 DISTRIBUTION STATEMENT (of this Report)				
17 DIST 9:BUTION STATEMENT (of the sharrant antered in Black 20, II different fro.	m Report)			
18 SUPPLEMENTARY NOTES				
Prepared in cooperation with S. Thomas Picraux, Division 1111, Sandia National Laboratories, Albuquerque, New Mexico 87185				
19 KEY #ORD\$ (Continue on reverse aids if necessary and identify by block number)				
ion mixing, ballistic mixing, irradiation	, implantation			
20 AB TRACT (Continue on reverse side II no essery and itentify by Nock number:	d			
Summaries are presented of all prepared contributions to the				
workshop. They over the basic mechanisms of ion mixing, its				
relation to high-dose implantation, and areas of potential applica-				
tions. In addition, we outline the major conclusions of the work- shop and give a tentative scheme of nomenclature for the mechanisms				
of ion mixing.				

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(Intentionally left blank)

Distribution: L. J. Erickson 3141 W. L. Garner (3) 3151 3154-3 C. Dalin (25) (for DOE/TiC) P. S. Peercy 1110 1100 F. L. Vook 1111 S. T. Picraux (60) 1111 G. W. Arnold 1111 K. L. Brower 1111 B. L. Doyle J. A. Knapp 1111 1111 H. J. Stein S. M. Myers 1112 C. I. H. Ashby 1112 D. K. Brice 1112 D. M. Follstaedt 1112 1112 C. E. Land 1112 W. R. Wampler

Dr. Robert S. Averback
Materials Science and
Technology Division
Argonne National Laboratory
Argonne, IL 60439

Mr. Thomas Banwell
Electrical Engineering
 Department, 116-81
California Institute of Technology
Pasadena, CA 91125

Dr. Adam Barcz
Electrical Engineering
Department, 116-81
California Institute of Technology
Pasadena, CA 91125

Dr. Kenneth S. Grabowski Naval Research Laboratory Washington, DC 20375

Dr. James K. Hirvonen Zymet, Inc. Liberty Square Danvers, MA 01923

Prof. William L. Johnson Applied Physics Department, 138-78 California Institute of Technology Pasadena, CA 91125

Distribution continued

Dr. Harald Jorch Chalk River Nuclear Laboratories Chalk River, Ontario Canada KOJ 1J0

Dr. Adam Kossowsky Manager, Physical Metallurgy Research and Development Center Westinghouse 1310 Beulah Road Pittsburgh, PA 15235

Prof. S. S. Lau
Department of Electrical Engineering
and Computer Sciences
C-104
University of California, San Diego
La Jolla, CA 92093

Dr. Sam Matteson Texas Instruments, Inc. M.S. - 147 PO Box 225936 Dallas, TX 75265

Mr. Marcus Mendenhall Physics Department, 301-38 California Institute of Technology Pasadena, CA 91125

Mr. Mike Nastasi Materials Science Department Cornell University Ithaca, NY 14853

Prof. Marc-A. Nicolet Electrical Engineering Department, 116-81 California Institute of Technology Pasadena, CA 91125

Dr. Bruce M. Paine
Electrical Engineering
Department, 116+81
California Institute of Technology
Pasadena, CA 91125

Distribution continued

Pr. Lynn E. Rehn Materials Science and Technology Division Argonne National Laboratory Argonne, IL t 1439

Dr. B. David Sartwell Naval Research Laboratory Washington, DC 20375

Dr. Uri Shreter
Electrical Engineering
Department, 116-81
Ca'ifornia Institute of Technology
Pasadena, CA 91125

END DATE FILMED

29—83 DTIC