Dynamic Structural Equation Modeling of Intensive Longitudinal Data

Oisín Ryan Utrecht University o.ryan@uu.nl

July, 2017

Slides from Ellen L. Hamaker

Cattell's data box

Time series data: N=1 and T is large

Idiographic (N=1) research in psychology

N=1 research has included:

- Cattell's P-technique: factor analysis of N=1 data
- Dynamic factor analysis: considering lagged relationships
- Measurement burst design: multiple waves of intensive measurements
- Intervention research: ABAB design etc.

Idiographic (N=1) research in psychology

N=1 research has included:

- Cattell's P-technique: factor analysis of N=1 data
- Dynamic factor analysis: considering lagged relationships
- Measurement burst design: multiple waves of intensive measurements
- Intervention research: ABAB design etc.

Critique of this kind of research:

- within-person fluctuations are just noise
- results are not generalizable
- no one has these data

New technology

Intensive longitudinal data

Different forms of intensive longitudinal data:

- daily diary (DD); self-report end-of-day
- experience sampling method (ESM); self-report of subjective experience
- ecological momentary assessment (EMA); healthcare related self-report
- ambulatory assessment (AA); physiological measurements
- · event-based measurements; self-report after a particular event
- observational measurements; expert rater

Intensive longitudinal data

Different forms of intensive longitudinal data:

- daily diary (DD); self-report end-of-day
- experience sampling method (ESM); self-report of subjective experience
- ecological momentary assessment (EMA); healthcare related self-report
- ambulatory assessment (AA); physiological measurements
- event-based measurements; self-report after a particular event
- observational measurements; expert rater

For more info on **methodology**, check out:

- Seminar of Tamlin Conner and Joshua Smyth on YouTube (https://www.youtube.com/watch?v=nQBBVp9vBIQ)
- Society for Ambulatory Assessment (http://www.saa2009.org/)
- Life Data (https://www.lifedatacorp.com/)
- Quantified Self (http://quantifiedself.com/)

Characteristics of these kind of data

Data structure:

- one or more measurements per day
- · typically for multiple days
- sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Characteristics of these kind of data

Data structure:

- one or more measurements per day
- · typically for multiple days
- sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Advantages of ESM, EMA and AA

- · no recall bias
- high ecological validity
- physiological measures over a large time span
- monitoring of symptoms and behavior, with new possibilities for feedback and intervention (e-Health and m-Health)
- · window into the dynamics of processes

A paradigm shift

Taken from Hamaker and Wichers (2017)

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application 1: Multilevel VAR(1) model
- DSEM application 2: Mediation
- Discussion

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

Main characteristics:

- N=1 technique
- T is large (say >50)
- concerned with trends, cycles and autocorrelation structure (i.e., serial dependency)
- goal: forecasting (≠ prediction)

Lags

 y_1 y_2 *y*₃ У4 *y*5 *y*₆ *y*₇ *y*₈ . . . y_T

Lags

Υ	Y at lag 1
<i>y</i> ₁	
y_2	<i>y</i> ₁
<i>y</i> ₃	<i>y</i> ₂
<i>y</i> 4	у3
<i>y</i> 5	<i>y</i> ₄
<i>y</i> ₆	<i>y</i> 5
<i>y</i> 7	У6
<i>y</i> 8	<i>y</i> 7
y_T	y_{T-1}
	y_T

Lags

Υ	Y at lag 1	Y at lag 2
y_1		
y_2	У1	
<i>y</i> ₃	<i>y</i> 2	<i>y</i> ₁
<i>y</i> 4	у3	<i>y</i> ₂
<i>y</i> 5	У4	У3
У6	<i>y</i> 5	У4
<i>y</i> 7	У6	<i>y</i> ₅
У8	<i>y</i> 7	У6
• • •		
y_T	y_{T-1}	y_{T-2}
	y_T	y_{T-1}
		y_T

Sequence, ACF and PACF

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application 1: Multilevel VAR(1) model
- DSEM application 2: Mediation
- Discussion

Lagged relationships in multilevel data

If we have time series data from multiple individuals, we may want to study:

- individual differences in lagged relationships between a variable and itself: autoregression
- individual differences in lagged relationship between different variables: cross-lagged relationships

Lagged relationships in multilevel data

If we have time series data from multiple individuals, we may want to study:

- individual differences in lagged relationships between a variable and itself: autoregression
- individual differences in lagged relationship between different variables: cross-lagged relationships

If we use multilevel modeling for this, we could refer to it as multilevel time series analysis, or dynamic multilevel modeling.

ID

ID	Yit
1	<i>y</i> 11
1	<i>y</i> 12
1	<i>y</i> 13
1	
1	y_{1T}
2	<i>y</i> ₂₁
2	<i>y</i> 22
2	<i>y</i> 23
2	
2	У2Т
	•••
N	y_{N1}
N	<i>y</i> _{N2}
N	y _N 3
N	
N	y_{NT}
	3 - 1 - 2

ID	Yit	y_{it-1}
1	<i>y</i> 11	
1	y ₁₂	<i>y</i> 11
1	<i>y</i> 13	<i>y</i> ₁₂
1		
1	y_{1T}	y_{1T-1}
2	<i>y</i> ₂₁	
2	<i>y</i> 22	<i>y</i> 21
2	<i>y</i> 23	<i>y</i> 22
2	• • •	
2	y_{2T}	y_{2T-1}
• • •	•••	•••
N	y_{N1}	
N	y _{N2}	y_{N1}
N	y _N 3	y _{N2}
N	• • •	• • •
N	y_{NT}	y_{NT-1}

Groating lagg	od prodictore	<u> </u>		
ID	Yit	y_{it-1}	x_{it-1}	
1	<i>y</i> 11			
1	<i>y</i> 12	<i>y</i> 11	x_{11}	
1	<i>y</i> 13	<i>y</i> ₁₂	x_{12}	
1	•••		•••	
1	y_{1T}	y_{1T-1}	x_{1T-1}	
2	<i>y</i> ₂₁			
2	<i>y</i> 22	<i>y</i> 21	x_{21}	
2	<i>y</i> 23	<i>y</i> 22	x_{22}	
2				
2	y_{2T}	y_{2T-1}	x_{2T-1}	
•••				
N	y_{N1}			
N	y _{N2}	y_{N1}	x_{N1}	
N	y _N 3	YN2	x_{N2}	
N	•••		•••	
N	y_{NT}	y_{NT-1}	x_{NT-1}	

Inertia research based on multilevel AR(1) models

Level 1 model:

$$NA_{it} = c_i + \phi_i NA_{i,t-1} + \zeta_{it}$$

Inertia research based on multilevel AR(1) models

Level 1 model:

$$NA_{it} = c_i + \phi_i NA_{i,t-1} + \zeta_{it}$$

Level 2 model:

$$c_i = \gamma_{00} + u_{0i}$$

$$\phi_i = \gamma_{01} + u_{1i}$$

Inertia research based on multilevel AR(1) models

Level 1 model:

$$NA_{it} = c_i + \phi_i NA_{i,t-1} + \zeta_{it}$$

Level 2 model:

$$c_i = \gamma_{00} + u_{0i}$$
$$\phi_i = \gamma_{01} + u_{1i}$$

This research line was initiated by **Suls, Green and Hillis** (1998), and continued by the group of **Kuppens**.

The focus is on individual differences in the **autoregressive parameter** ϕ_i (=inertia, carry-over, regulatory weakness), which is shown to be:

- positively related to current depression, neuroticism, and being female
- predictive of later depression (Kuppens and Koval)

Dynamic networks based on multilevel VAR(1) models

Level 1 model:

$$y_{1it} = c_{1i} + \phi_{11i}y_{1it-1} + \cdots + \phi_{1ki}y_{kit-1} + \zeta_{1it}$$

$$y_{2it} = c_{2i} + \phi_{21i}y_{1it-1} + \cdots + \phi_{2ki}y_{kit-1} + \zeta_{2it}$$

$$\vdots$$

$$y_{kit} = c_{ki} + \phi_{k1i}y_{1it-1} + \cdots + \phi_{kki}y_{kit-1} + \zeta_{kit}$$

Dynamic networks based on multilevel VAR(1) models

Level 1 model:

$$y_{1it} = c_{1i} + \phi_{11i}y_{1it-1} + \dots + \phi_{1ki}y_{kit-1} + \zeta_{1it}$$

$$y_{2it} = c_{2i} + \phi_{21i}y_{1it-1} + \dots + \phi_{2ki}y_{kit-1} + \zeta_{2it}$$

$$\dots$$

$$y_{kit} = c_{ki} + \phi_{k1i}y_{1it-1} + \dots + \phi_{kki}y_{kit-1} + \zeta_{kit}$$

Initiated by **Bringmann et al. (2013)**, and further popularized by the software from **Sacha Epskamp**.

The focus is on **cross-lagged parameters** between variables (=nodes; typically symptoms), and on measures based on these (e.g., centrality).

Main idea is that **stronger connections** lead to an **increased risk** of developing and maintaining psychopathology.

Taken from Hamaker (2012).

Three perspectives on data

Three perspectives on data

Cross-sectional

Three perspectives on data

Three perspectives on data

Taken from Hamaker (2012).

Between-person differences in within-person slopes

Taken from Hamaker and Grasman (2014).

Between-person differences in within-person slopes

Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need

- (intensive) longitudinal data
- to **decompose** observed variance into within and between
- to consider individual differences in within-person dynamics

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

 negative bias in autoregression when centering the lagged predictor (Nickell's bias)

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only one outcome variable (thus, separate models for multivariate outcomes)

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only one outcome variable (thus, separate models for multivariate outcomes)
- only observed variables (no measurement error, moving average terms, factor models)

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only one outcome variable (thus, separate models for multivariate outcomes)
- only observed variables (no measurement error, moving average terms, factor models)
- missing data result in many missing cases

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only one outcome variable (thus, separate models for multivariate outcomes)
- only observed variables (no measurement error, moving average terms, factor models)
- missing data result in many missing cases
- unequally spaced observations

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only one outcome variable (thus, separate models for multivariate outcomes)
- only observed variables (no measurement error, moving average terms, factor models)
- missing data result in many missing cases
- unequally spaced observations

Dynamic structural equation modeling (DSEM) in Mplus tackles all these problems.

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application 1: Multilevel VAR(1) model
- DSEM application 2: Mediation
- Discussion

Data: Daily measurements affect

Data come from the **COGITO study** of the MPI in Berlin; goal is to study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (under revision).

Data: Daily measurements affect

Data come from the **COGITO study** of the MPI in Berlin; goal is to study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (under revision).

Characteristics of the younger and older sample:

- aged 20-31; aged 65-80
- 101 individuals; 103 individuals
- about 100 daily measurements of positive affect (PA) and negative affect (NA)

Decomposition

Decomposition into a between part and a within part

$$PA_{it} = \mu_{PA,i} + PA_{it}^*$$

$$NA_{it} = \mu_{NA,i} + NA_{it}^*$$

Decomposition

Decomposition into a between part and a within part

$$PA_{it} = \mu_{PA,i} + PA_{it}^*$$

 $NA_{it} = \mu_{NA,i} + NA_{it}^*$

- μ_{PA,i} and μ_{NA,i} are the individual's means on PA and NA (i.e., baseline, trait, or equilibrium scores) ⇒ between-person part
- PA_{it}^* and NA_{it}^* are the **within-person centered** (cluster-mean centered) scores \Rightarrow within-person part

Total, between-, and within-person variance

Intraclass correlation: $\frac{\sigma_{between}^2}{\sigma_{between}^2 + \sigma_{within}^2} = \frac{\sigma_{between}^2}{\sigma_{total}^2}$

Bivariate model: Multilevel vector AR(1) model

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the autoregressive parameter for NA (i.e., inertia, carry-over)

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the **cross-lagged parameter** for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the **cross-lagged parameter** for PA to NA (i.e., spill-over)

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the **cross-lagged parameter** for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the **cross-lagged parameter** for PA to NA (i.e., spill-over)
- $\zeta_{PA,it}$ is the **innovation** for PA (residual, disturbance, dynamic error)
- $\zeta_{NA,it}$ is the **innovation** for NA (residual, disturbance, dynamic error)

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

where

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the **cross-lagged parameter** for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the **cross-lagged parameter** for PA to NA (i.e., spill-over)
- $\zeta_{PA,it}$ is the **innovation** for PA (residual, disturbance, dynamic error)
- $\zeta_{NA,it}$ is the **innovation** for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances and covariance:

$$\begin{bmatrix} \zeta_{PA,it} \\ \zeta_{NA,it} \end{bmatrix} \sim MN \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \theta_{11} \\ \theta_{21} & \theta_{22} \end{bmatrix} \end{bmatrix}$$

Between-person level model

Between level: fixed and random effects

$$\begin{bmatrix} \mu_{PA,i} \\ \mu_{NA,i} \\ \phi_{PP,i} \\ \phi_{PN,i} \\ \phi_{NP,i} \\ \phi_{NN,i} \end{bmatrix} = \begin{bmatrix} \gamma_P \\ \gamma_N \\ \gamma_{PP} \\ \gamma_{PN} \\ \gamma_{NP} \\ \gamma_{NN} \end{bmatrix} + \begin{bmatrix} u_{P,i} \\ u_{N,i} \\ u_{PP,i} \\ u_{PN,i} \\ u_{NP,i} \\ u_{NN,i} \end{bmatrix} \quad \boldsymbol{u}_i \sim MN(\boldsymbol{0}, \boldsymbol{\Psi})$$

Where:

- γ_P to $\gamma_{NN} \Rightarrow$ fixed effects
- $u_{P,i}$ to $u_{NN,i} \Rightarrow$ random effects

Between-person level model

Between level: fixed and random effects

$$\begin{bmatrix} \mu_{PA,i} \\ \mu_{NA,i} \\ \phi_{PP,i} \\ \phi_{PN,i} \\ \phi_{NP,i} \\ \phi_{NN,i} \end{bmatrix} = \begin{bmatrix} \gamma_P \\ \gamma_N \\ \gamma_{PP} \\ \gamma_{PN} \\ \gamma_{NP} \\ \gamma_{NN} \end{bmatrix} + \begin{bmatrix} u_{P,i} \\ u_{N,i} \\ u_{PP,i} \\ u_{PN,i} \\ u_{NP,i} \\ u_{NN,i} \end{bmatrix} \quad \boldsymbol{u}_i \sim MN(\boldsymbol{0}, \boldsymbol{\Psi})$$

Where:

- γ_P to $\gamma_{NN} \Rightarrow$ fixed effects
- $u_{P,i}$ to $u_{NN,i} \Rightarrow$ random effects

Parameters estimated at this level are:

- 6 fixed effects (i.e., γ's)
- 6 variances for random effects (i.e., diagonal elements of Ψ)
- 15 covariances between the random effects (i.e., off-diagonal elements in Ψ)

Bivariate model: Mplus code

VARIABLE: NAMES ARE id sessdate

na1 na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10

sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;

CLUSTER = id; ! Specify the person id variable

USEVAR = dayPA dayNA; ! Specify which variables are used in the model

MISSING = ALL(-999);

LAGGED = dayPA(1) dayNA(1); ! This creates lagged variables TINTERVAL = sessdate(1); ! This is to account for unequal intervals

ANALYSIS: TYPE IS TWOLEVEL RANDOM; ! This allows for random slopes

ESTIMATOR = BAYES; ! DSEM requires Bayesian estimation

PROC = 2; ! Using 2 processors makes it faster

BITER = (5000); ! This implies at least 5000 iterations are used THIN = 10; ! Thinning helps with getting more stable results

Bivariate model: Mplus code

```
MODEL:
                %WITHIN%! Specify the random lagged relationships
                p pp | dayPA ON dayPA&1;
                p pn | dayPA ON dayNA&1;
                p np | dayNA ON dayPA&1;
                p nn | dayNA ON dayNA&1;
                %BETWEEN% | Allow all 6 random effects to be correlated
                p_pp WITH p_pn-p_nn dayPA dayNA;
                p pn WITH p np-p nn dayPA dayNA;
                p np WITH p nn dayPA dayNA;
                p nn WITH dayPA dayNA;
                dayPA WITH dayNA;
                TECH1 TECH8 STDYX:
OUTPUT:
PLOT:
                TYPE = PLOT3:
                FACTORS = ALL:
```

Mplus results: Within-person (younger sample)

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Within Level						
DAYNA WITH DAYPA	-0.069	0.004	0.000	-0.076	-0.061	*
Residual Variances						
DAYPA	0.414	0.006	0.000	0.403	0.426	*
DAYNA	0.302	0.004	0.000	0.294	0.311	*

Mplus results: Between-person (younger sample)

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
[]						
Between Level						
[]						
Means						
DAYPA	3.090	0.110	0.000	2.875	3.308	*
DAYNA	0.977	0.077	0.000	0.826	1.128	*
P PP	0.334	0.026	0.000	0.283	0.387	*
P PN	0.050	0.022	0.016	0.006	0.093	*
PNP	0.038	0.015	0.006	0.008	0.068	*
P_NN	0.370	0.027	0.000	0.315	0.423	*
Variances						
DAYPA	1.178	0.189	0.000	0.886	1.618	*
DAYNA	0.595	0.101	0.000	0.443	0.832	*
P PP	0.055	0.010	0.000	0.039	0.079	*
P PN	0.024	0.006	0.000	0.014	0.039	*
P NP	0.013	0.003	0.000	0.008	0.021	*
P_NN	0.062	0.012	0.000	0.044	0.089	*

Standardization in multilevel models is a **tricky issue**.

Standardization in multilevel models is a **tricky issue**.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Standardization in multilevel models is a **tricky issue**.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it **parallels** standardizing when N=1.

Standardization in multilevel models is a **tricky issue**.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it **parallels** standardizing when N=1.

Standardized fixed effect should be the average standardized within-person effect.

Mplus standardized results (younger sample)

STDYX Standardization

	Estimate	Posterior S.D.			C.I. Upper 2.5%	Significance
Within-Level Standardized Estimates Averaged Over Clusters						
P_PP DAYPA ON DAYPA&1	0.335	0.011	0.000	0.312	0.358	*
P_PN DAYPA ON DAYNA&1	0.034	0.013	0.006	0.008	0.059	*
P_NP DAYNA ON DAYPA&1	0.038	0.011	0.000	0.017	0.059	*
P_NN DAYNA ON DAYNA&1	0.370	0.012	0.000	0.347	0.394	*
DAYNA WITH DAYPA	-0.194	0.010	0.000	-0.213	-0.175	*
Residual Variances DAYPA DAYNA	0.816 0.792	0.008 0.008	0.000	0.799 0.775	0.832 0.808	* *

Mplus standardized results (younger sample)

R-SQUARE

Within-Level R-Square Averaged Across Clusters

Variable	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%
DAYPA DAYNA	0.184	0.008	0.000	0.168	0.201 0.225

Between-person level: Correlated random effects

To **represent the correlation matrices** of the 6 random effects in each group, we can use the network representation (with qgraph from Sacha Epskamp in R):

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application 1: Multilevel VAR(1) model
- DSEM application 2: Mediation
- Discussion

Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

Between level: Including a level 2 predictor

$$\mu_{PA,i} = \gamma_{00} + \gamma_{01}CESDpre_i + u_{0i}$$
 $\mu_{NA,i} = \gamma_{10} + \gamma_{11}CESDpre_i + u_{1i}$
 $\phi_{PP,i} = \gamma_{20} + \gamma_{21}CESDpre_i + u_{2i}$
 $\phi_{PN,i} = \gamma_{30} + \gamma_{31}CESDpre_i + u_{3i}$
 $\phi_{NN,i} = \gamma_{40} + \gamma_{41}CESDpre_i + u_{4i}$
 $\phi_{NP,i} = \gamma_{50} + \gamma_{51}CESDpre_i + u_{5i}$

Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

Between level: Including a level 2 predictor

$$\mu_{PA,i} = \gamma_{00} + \gamma_{01}CESDpre_i + u_{0i}$$
 $\mu_{NA,i} = \gamma_{10} + \gamma_{11}CESDpre_i + u_{1i}$
 $\phi_{PP,i} = \gamma_{20} + \gamma_{21}CESDpre_i + u_{2i}$
 $\phi_{PN,i} = \gamma_{30} + \gamma_{31}CESDpre_i + u_{3i}$
 $\phi_{NN,i} = \gamma_{40} + \gamma_{41}CESDpre_i + u_{4i}$
 $\phi_{NP,i} = \gamma_{50} + \gamma_{51}CESDpre_i + u_{5i}$

Between level: Including a level 2 outcome

$$CESDpost_{i} = \gamma_{60} + \gamma_{61}CESDpre_{i} + \gamma_{62}\mu_{PA,i} + \gamma_{63}\mu_{NA,i} + \gamma_{64}\phi_{PP,i} + \gamma_{65}\phi_{PN,i} + \gamma_{66}\phi_{NN,i} + \gamma_{67}\phi_{NP,i} + u_{6i}$$

Dynamic mediation model

Mplus input mediation model

VARIABLE: NAMES ARE id sessdate

na1 na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10

sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;

CLUSTER = id;

USEVAR = dayPA dayNA CESDpre CESDpost; ! Plus level 2 variables

BETWEEN = CESDpre CESDpost; ! Specify these as level 2 variables LAGGED = dayPA(1) dayNA(1);

TINTERVAL = sessdate(1);

MISSING = ALL(-999);

DEFINE: CENTER CESDpre CESDpost (GRANDMEAN);! Grand mean centering

ANALYSIS: TYPE IS TWOLEVEL RANDOM;

ESTIMATOR = BAYES; PROCESSORS = 2; BITER = (5000);

THIN = 10;

Bivariate model: Mplus code

```
MODEL:
                           %WITHIN% | Same as before
                           p pp | dayPA ON dayPA&1;
                           p pn | dayPA ON dayNA&1;
                           p np | dayNA ON dayPA&1;
                           p nn | dayNA ON dayNA&1;
                           %BETWEEN%! Mediation model with parameter names
                           p pp-p nn dayPA dayNA ON CESDpre (a1-a6);
                           CESDpost ON p pp-p nn dayPA dayNA CESDpre (b1-b7);
MODEL CONSTRAINT:
                           ! Compute the indirect effects
                           new (ab p pp); ab p pp=a1*b1;
                           new (ab_p_pn); ab_p_pn=a2*b2;
                           new (ab_p_np); ab_p_np=a3*b3;
                           new (ab p nn); ab p nn=a4*b4;
                           new (ab dayPA); ab dayPA=a5*b5;
                           new (ab dayNA); ab dayNA=a6*b6;
OUTPUT:
                           TECH1 TECH8 STDYX:
PLOT:
                           TYPE = PLOT3:
                           FACTOR =ALL:
```

Mplus output mediation model (younger sample)

	Estimate	Posterior S.D.	One-Tailed P-Value			Significance
[] Between Level []					11	,
Intercepts						
CESDPOST	0.104	0.136	0.223	-0.167	0.365	
DAYPA	3.088	0.103	0.000	2.888	3.293	*
DAYNA	0.989	0.076	0.000	0.844	1.146	*
P_PP	0.338	0.024	0.000	0.289	0.386	*
P PN	0.031	0.020	0.057	-0.008	0.071	
P_NP	0.035	0.014	0.006	0.007	0.062	*
P_NN	0.376	0.024	0.000	0.329	0.423	*
Residual Variances	3					
CESDPOST	0.067	0.012	0.000	0.048	0.095	*
DAYPA	1.049	0.158	0.000	0.798	1.416	*
DAYNA	0.517	0.091	0.000	0.377	0.729	*
P_PP	0.045	0.008	0.000	0.032	0.064	*
P_PN	0.019	0.005	0.000	0.011	0.030	*
P NP	0.010	0.003	0.000	0.005	0.016	*
P_NN	0.043	0.008	0.000	0.031	0.062	*
New/Additional Para	ameters					
AB P PP	0.010	0.025	0.266	-0.028	0.076	
AB P PN	-0.002	0.032	0.439	-0.074	0.062	
AB P NP	-0.004	0.037	0.401	-0.089	0.067	
AB P NN	0.195	0.070	0.000	0.081	0.359	*
AB DAYPA	0.049	0.035	0.029	-0.001	0.135	
AB_DAYNA	0.028	0.043	0.234	-0.052	0.119	

Mplus output mediation model (older sample)

			One-Tailed		C.I.	a: ::::		
f 1	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance		
[] Between Level								
[]								
Intercepts								
CESDPOST	0.015	0.113	0.448	-0.210	0.236			
DAYPA	4.566	0.120	0.000	4.336	4.796	*		
DAYNA	0.313	0.052	0.000	0.210	0.417	*		
P PP	0.421	0.026	0.000	0.370	0.472	*		
P PN	0.133	0.039	0.000	0.057	0.212	*		
P NP	0.016	0.017	0.167	-0.018	0.051			
P_NN	0.239	0.027	0.000	0.185	0.291	*		
Residual Variance								
CESDPOST	0.039	0.006	0.000	0.029	0.053	*		
DAYPA	1.416	0.221	0.000	1.079	1.918	*		
DAYNA	0.269	0.041	0.000	0.203	0.365	*		
P PP	0.056	0.010	0.000	0.039	0.079	*		
P_PN	0.083	0.021		0.051	0.131	*		
P_NP	0.024	0.004	0.000	0.018	0.035	*		
P_NN	0.051	0.009	0.000	0.037	0.072	*		
New/Additional Par								
AB_P_PP	0.005	0.016	0.302	-0.018	0.049			
AB_P_PN	-0.004	0.025	0.396		0.045			
AB_P_NP	0.012	0.027	0.268	-0.035	0.076			
AB_P_NN	-0.036	0.038	0.112	-0.130	0.025			
AB_DAYPA	0.028	0.038	0.209	-0.042	0.110			
AB DAYNA	0.027	0.036	0.194	-0.040	0.108			

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application 1: Multilevel VAR(1) model
- DSEM application 2: Mediation
- Discussion

Advantages of using DSEM in Mplus (thus far)

Compared to standard multilevel software:

- Multiple outcome variables: this allows for correlated residuals and correlated random effects
- Unequal time interval: can be handled by choosing a grid for inserting missings
- Outcomes at between-person level
- Person-mean centering integral part of model estimation (solves Nickell's bias)

Advantages of using DSEM in Mplus (thus far)

Compared to standard multilevel software:

- Multiple outcome variables: this allows for correlated residuals and correlated random effects
- Unequal time interval: can be handled by choosing a grid for inserting missings
- Outcomes at between-person level
- Person-mean centering integral part of model estimation (solves Nickell's bias)

Compared to other Bayesian software (e.g., WinBUGS, jags, Stan):

- Easy to use due to tailor-made code
- **Default uninformative priors** for parameters (even for small variances)
- Fast (which makes a difference in case of Bayes)

Advantages of using DSEM in Mplus (thus far)

Compared to standard multilevel software:

- Multiple outcome variables: this allows for correlated residuals and correlated random effects
- Unequal time interval: can be handled by choosing a grid for inserting missings
- Outcomes at between-person level
- **Person-mean centering** integral part of model estimation (solves Nickell's bias)

Compared to other Bayesian software (e.g., WinBUGS, jags, Stan):

- Easy to use due to tailor-made code
- **Default uninformative priors** for parameters (even for small variances)
- Fast (which makes a difference in case of Bayes)

Other recent developments: mIVAR, ctsem and open Mx (in R); Bayesian Ornstein-Uhlenbeck Model (BOUM); GIMME.

More advantages of using DSEM in Mplus

Other options offered by DSEM in Mplus version 8:

- Diverse plotting options: allows for inspection of data and results
- Latent variables: allows for measurement error to be split off and for moving average terms
- Cross-classified models: allows for random effects of time
- Random variance: allows for individual difference in variability

More advantages of using DSEM in Mplus

Other options offered by DSEM in Mplus version 8:

- Diverse plotting options: allows for inspection of data and results
- Latent variables: allows for measurement error to be split off and for moving average terms
- Cross-classified models: allows for random effects of time
- Random variance: allows for individual difference in variability

Future options Mplus will offer:

- Regime-switching models: allows for a process to switch between distinct states
- Residual dynamic modeling: allows for easy combination of time trends and residual lagged relationships

Random innovation variance (univariately)

Within level: AR(1) with random
$$\phi_i$$

$$NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it}$$
 $\zeta_{it} \sim N(0, \sigma_i^2)$

Random innovation variance (univariately)

Within level: AR(1) with random ϕ_i

$$NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it}$$
 $\zeta_{it} \sim N(0, \sigma_i^2)$

Between level: fixed and random effects

$$\begin{aligned} \mu_i &= \gamma_{\mu} + u_{0i} \\ \phi_i &= \gamma_{\phi} + u_{1i} \\ \log(\sigma_i^2) &= \gamma_{\log(\sigma^2)} + u_{2i} \end{aligned} \begin{bmatrix} u_{0i} \\ u_{1i} \\ u_{2i} \end{bmatrix} \sim MN \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} & \psi_{22} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \end{bmatrix}$$

Random innovation variance (univariately)

Within level: AR(1) with random ϕ_i

$$NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it}$$
 $\zeta_{it} \sim N(0, \sigma_i^2)$

Between level: fixed and random effects

$$\mu_{i} = \gamma_{\mu} + u_{0i}
\phi_{i} = \gamma_{\phi} + u_{1i}
\log(\sigma_{i}^{2}) = \gamma_{\log(\sigma^{2})} + u_{2i}$$

$$\begin{bmatrix} u_{0i} \\ u_{1i} \\ u_{2i} \end{bmatrix} \sim MN \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} & \psi_{22} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \end{bmatrix}$$

Reasons to assume **individual differences** for σ^2 :

- individuals may differ with respect to the variability in exposure to external factors
- individuals may differ with respect to their reactivity to external influences (see reward experience and stress sensitivity research)

Random innovation variances and covariance

In the bivariate case, we want **random innovation variances** AND **random innovation covariance**.

Random innovation variances and covariance

In the bivariate case, we want **random innovation variances** AND **random innovation covariance**.

The latter is modeled with an additional factor η_t :

Where:

- $-\eta_t$ is the shared part (we assume a negative covariance)
- $e_{PA,t}$ and $e_{NA,t}$ are the unique parts

Mplus code: Within model

OUTPUT:

```
MODEL:
            %WITHIN%
            p pp | davPA ON davPA&1:
            p pn | dayPA ON dayNA&1;
            p np | dayNA ON dayPA&1;
            p nn | dayNA ON dayNA&1;
            ! Create latent variable that represents negative covariance
            Cov BY dayPA1 dayNA-1:
            ! Create random (log) variances
            logvarPA | dayPA;
            logvarNA | dayNA;
            logCov | Cov;
            %BETWEEN%
            p pp-p nn WITH p pn-p nn logvarPA logvarNA logCov dayPA dayNA;
            logvarPA WITH logvarNA logCov dayPA dayNA:
            logvarNA WITH logCov dayPA dayNA:
            logCov WITH dayPA dayNA;
            dayPA WITH dayNA;
```

TECH1 TECH8 STDYX FSCOMPARISON:

What about many variables?

Emilio Ferrer obtained data from **193 dyads** for **52-108 days** on **8 variables** (i.e., general and relationship specific PA and NA).

What about many variables?

Emilio Ferrer obtained data from **193 dyads** for **52-108 days** on **8 variables** (i.e., general and relationship specific PA and NA).

Within level: Vector autoregressive model

$$\begin{bmatrix} GPAM_{it}^* \\ GNAM_{it}^* \\ RSPAM_{it}^* \\ RSPAM_{it}^* \\ GPAF_{it}^* \\ GNAF_{it}^* \\ RSNAF_{it}^* \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \phi_{14} & \phi_{15} & \phi_{16} & \phi_{17} & \phi_{18} \\ \phi_{21} & \phi_{22} & \phi_{23} & \phi_{24} & \phi_{25} & \phi_{26} & \phi_{27} & \phi_{28} \\ \phi_{31} & \phi_{32} & \phi_{33} & \phi_{34} & \phi_{35} & \phi_{36} & \phi_{37} & \phi_{38} \\ \phi_{41} & \phi_{42} & \phi_{43} & \phi_{44} & \phi_{45} & \phi_{46} & \phi_{47} & \phi_{48} \\ \phi_{51} & \phi_{52} & \phi_{53} & \phi_{54} & \phi_{55} & \phi_{56} & \phi_{57} & \phi_{58} \\ RSPAF_{it}^* \\ RSNAF_{it}^* \end{bmatrix} = \begin{bmatrix} GPAM_{it-1}^* \\ GNAM_{it-1}^* \\ \phi_{61} & \phi_{62} & \phi_{63} & \phi_{64} & \phi_{65} & \phi_{66} & \phi_{67} & \phi_{68} \\ \phi_{71} & \phi_{72} & \phi_{73} & \phi_{74} & \phi_{75} & \phi_{76} & \phi_{77} & \phi_{78} \\ \phi_{81} & \phi_{82} & \phi_{73} & \phi_{84} & \phi_{85} & \phi_{86} & \phi_{87} & \phi_{88} \end{bmatrix} \begin{bmatrix} GPAM_{it-1}^* \\ GNAM_{it-1}^* \\ GRAM_{it-1}^* \\ GPAF_{it-1}^* \\ GNAF_{it-1}^* \\ GNAF_{it-1}^* \\ RSPAF_{it-1}^* \\ RSPAF_{it-1}^* \\ RSNAF_{it-1}^* \end{bmatrix} + \begin{bmatrix} \zeta_{1it} \\ \zeta_{2it} \\ \zeta_{5it} \\ \zeta_{6it} \\ \zeta_{7it} \\ \zeta_{8it} \end{bmatrix}$$

What about many variables?

Emilio Ferrer obtained data from **193 dyads** for **52-108 days** on **8 variables** (i.e., general and relationship specific PA and NA).

Within level: Vector autoregressive model

$$\begin{bmatrix} GPAM_{it}^* \\ GNAM_{it}^* \\ RSPAM_{it}^* \\ RSPAM_{it}^* \\ GPAF_{it}^* \\ GNAF_{it}^* \\ RSNAF_{it}^* \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \phi_{14} & \phi_{15} & \phi_{16} & \phi_{17} & \phi_{18} \\ \phi_{21} & \phi_{22} & \phi_{23} & \phi_{24} & \phi_{25} & \phi_{26} & \phi_{27} & \phi_{28} \\ \phi_{31} & \phi_{32} & \phi_{33} & \phi_{34} & \phi_{35} & \phi_{36} & \phi_{37} & \phi_{38} \\ \phi_{41} & \phi_{42} & \phi_{43} & \phi_{44} & \phi_{45} & \phi_{46} & \phi_{47} & \phi_{48} \\ \phi_{51} & \phi_{52} & \phi_{53} & \phi_{54} & \phi_{55} & \phi_{56} & \phi_{57} & \phi_{58} \\ \phi_{61} & \phi_{62} & \phi_{63} & \phi_{64} & \phi_{65} & \phi_{66} & \phi_{67} & \phi_{68} \\ \phi_{71} & \phi_{72} & \phi_{73} & \phi_{74} & \phi_{75} & \phi_{76} & \phi_{77} & \phi_{78} \\ \phi_{81} & \phi_{82} & \phi_{73} & \phi_{84} & \phi_{85} & \phi_{86} & \phi_{87} & \phi_{88} \end{bmatrix} \begin{bmatrix} GPAM_{it-1}^* \\ GNAM_{it-1}^* \\ RSNAM_{it-1}^* \\ RSNAM_{it-1}^* \\ GNAF_{it-1}^* \\ GNAF_{it-1}^* \\ RSNAF_{it-1}^* \\ RSNAF_{it-1}^* \end{bmatrix} + \begin{bmatrix} \zeta_{1ii} \\ \zeta_{2ii} \\ \zeta_{3ii} \\ \zeta_{5ii} \\ \zeta_{6ii} \\ \zeta_{7ii} \\ \zeta_{8ii} \end{bmatrix}$$

which gives:

$$GPAM_{it}^* = \phi_{11}GPAM_{it-1}^* + \phi_{12}GNAM_{it-1}^* + \dots + \phi_{18}RSNAF_{it-1}^* + \zeta_{1it}$$
...
$$RSNAF_{it}^* = \phi_{81}GPAM_{it-1}^* + \phi_{82}GNAM_{it-1}^* + \dots + \phi_{88}RSNAF_{it-1}^* + \zeta_{8it}$$

Multilevel VAR(1)

Within level: Residual covariance matrix

$$\begin{bmatrix} \zeta_{1it} \\ \zeta_{2it} \\ \dots \\ \zeta_{8it} \end{bmatrix} \sim MN(\mathbf{0}, \mathbf{\Theta}^*)$$

Hence, we estimate $8 \times 8 = 64$ lagged parameters, and $8 \times 9/2 = 36$ variances and covariances at the within-person level.

Multilevel VAR(1)

Within level: Residual covariance matrix

$$\begin{bmatrix} \zeta_{1it} \\ \zeta_{2it} \\ \dots \\ \zeta_{8it} \end{bmatrix} \sim MN(\mathbf{0}, \boldsymbol{\Theta}^*)$$

Hence, we estimate $8 \times 8 = 64$ lagged parameters, and $8 \times 9/2 = 36$ variances and covariances at the within-person level.

Between level: Fixed and random effects

$$egin{bmatrix} \mu_{1i} \ \mu_{2i} \ \dots \ \mu_{8i} \end{bmatrix} \sim MN(oldsymbol{\gamma}, oldsymbol{\Psi})$$

Hence, we estimate 8 grand means, and $8 \times 9/2 = 36$ variances and covariances at the between-person level. In total: 144 parameters.

Three networks

Lagged, within-person (residual), and between-person:

Note:

- lagged network = within-person standardized lagged relationships
- within-person residual network = correlations of within-person residuals
- between-person network = correlations of within-person means

References

- Bringmann, Vissers, Wichers, Geschwind, Kuppens, Peeters, Borsboom & Tuerlinckx (2013). A network approach to psychopathology: New insights into clinical longitudinal data. *PLoS ONE*, 8, e60188, 1-13.
- Hamaker (2012). Why researchers should think "within-person": A paradigmatic rationale. In M. R. Mehl & T. S. Conner (Eds.). Handbook of Research Methods for Studying Daily Life, 43-61. New York, NY: Guilford Publications.
- Hamaker, Asparouhov, Brose, Schmiedek & Muthén (submitted). At the frontiers
 of modeling intensive longitudinal data: Dynamic structural equation models for
 the affective measurements from the COGITO study. Multivariate Behavioral
 Research.
- Hamaker & Grasman (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492.
- Hamaker & Wichers (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. Current Directions in Psychological Science, 26, 10-15.
- Jongerling, Laurenceau & Hamaker (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334-349.

References

- Koval, Kuppens, Allen & Sheeber (2012). Getting stuck in depression: The roles
 of rumination and emotional inertia. Cognition & Emotion, 26, 1412-1427.
- Kuppens, Allen & Sheeber (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21, 984-991.
- Kuppens, Sheeber, Yap, Whittle, Simmons & Allen (2012). Emotional inertia prospectively predicts the onset of depressive Multilevel AR(1) model 33 disorder in adolescence. *Emotion*, 12, 283-289.
- Schuurman, Ferrer, de Boer-Sonnenschein & Hamaker (2016). How to compare cross-lagged associations in a multilevel autoregressive model. *Psychological Methods*, 21, 206-221.
- Suls, Green & Hillis (1998). Emotional reactivity to everyday problems, affective inertia, and neuroticism. Personality and Social Psychology Bulletin, 24, 127-136.