## PCT

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification <sup>6</sup>:
C07C 275/42, C07D 207/27, A61K 31/17, 31/40

(11) International Publication Number:

WO 99/33789

(43) International Publication Date:

8 July 1999 (08.07.99)

(21) International Application Number:

PCT/GB98/03859

A1

(22) International Filing Date:

23 December 1998 (23.12.98)

(30) Priority Data:

9727532.5

23 December 1997 (23.12.97) GB

60/092,602

13 July 1998 (13.07.98) US

(71) Applicant (for all designated States except US): RHONE-POULENC RORER LIMITED [GB/GB]; RPR House, 50 Kings Hill Avenue, Kings Hill, West Malling, Kent ME19 4AH (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ASTLES, Peter, Charles [GB/GB]; Rhone-Poulenc Rorer Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). HARRIS, Neil, Victor [GB/GB]; Rhone-Poulenc Rorer Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). MORLEY, Andrew, David [GB/GB]; Rhone-Poulenc Rorer Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB).
- (74) Agent: CAFFIN, Lee; Rhone-Poulenc Rorer Limited, Patent Dept., Rainham Road South, Dagenham, Essex RM10 7XS (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### **Published**

With international search report.

(54) Title: SUBSTITUTED  $\beta$ -ALANINES

$$R^{\frac{1}{2}} = \begin{pmatrix} X^{\frac{1}{2}} & X^{\frac{1}{2}}$$

#### (57) Abstract

The invention is directed to physiologically active compounds of general formula (I), wherein  $R^1$  is hydrogen, halogen, lower alkyl or lower alkoxy;  $X^1$ ,  $X^2$  and  $X^6$  independently represent N or  $CR^2$ ; and one of  $X^3$ ,  $X^4$  and  $X^5$  represents  $CR^3$  and the others independently represents N or  $CR^2$  [where  $R^2$  is hydrogen, halogen, lower alkyl or lower alkoxy; and  $R^3$  represents a group  $-L^1-(CH_2)_n-C(=O)-N(R^4)-CH_2-CH_2-Y]$ ; and their prodrugs, and pharmaceutically acceptable salts and solvates of such compounds and their prodrugs. Such compounds have valuable pharmaceutical properties, in particular the ability to regulate the interaction of VCAM-1 and fibronectin with the integrin VLA-4( $\alpha 4\beta 1$ ).