מטלת מנחה 15 - קורס 20425

שאלה 1

p. על פי לינאריות התוחלת: p. על פי לינאריות התוחלת:

$$E\left[\sum_{i=1}^{m} X_{i}\right] = \sum_{i=1}^{m} E\left[X_{i}\right] = \sum_{i=1}^{m} n \cdot ip = np \cdot \sum_{i=1}^{m} i = np \cdot \frac{m(m+1)}{2}$$

על כן אם ניקח את האומד $\stackrel{\circ}{p}=rac{2}{nm(m+1)}\Sigma X_i$ נקבל:

$$E[\hat{p}] = \frac{2}{nm(m+1)} \cdot E[\sum_{i=1}^{m} X_i] = \frac{2}{nm(m+1)} \cdot np \cdot \frac{m(m+1)}{2} = p$$

ב. נקבל ע"פ 9.15:

$$MSE(\hat{p}, p) = Var(\hat{p}) + (E[\hat{p}] - p)^{2} = Var(\hat{p}) + 0^{2} = Var(\hat{p})$$

:כאשר

$$Var(\hat{p}) = Var(\frac{2}{nm(m+1)}\Sigma X_i) = (\frac{2}{nm(m+1)})^2 \cdot Var(\Sigma X_i)$$

המשתנים המקריים $X_{\scriptscriptstyle i}$ בלתי תלויים, לכן:

$$Var(\sum_{i=1}^{m} X_i) = \sum_{i=1}^{m} Var(X_i) = \sum_{i=1}^{m} nip(1 - ip) = np \sum_{i=1}^{m} i - pi^2 =$$

$$= np \sum_{i=1}^{m} i - np^2 \sum_{i=1}^{m} i^2 = np \frac{m(m+1)}{2} - np^2 \frac{m(m+1)(m+2)}{6} =$$

$$= \frac{1}{6} npm(m+1)(3 - p(m+2))$$

ומקבלים:

$$MSE(\hat{p}, p) = \left(\frac{2}{nm(m+1)}\right)^{2} \cdot \frac{1}{6}npm(m+1)(3-p(m+2)) =$$

$$= \frac{4}{n^{2}m^{2}(m+1)^{2}} \cdot \frac{nm(m+1)}{6} \cdot p(3-p(m+2)) =$$

$$= \frac{2p(3-p(m+2))}{3nm(m+1)}$$

ג. נקבל ע"פ 9.13:

$$(1 - p) = 1 - \hat{p} = 1 - \frac{2}{nm(m+1)} \Sigma X_i$$

ד. כמו כן מקבלים:

$$MSE(1 - p) = Var(1 - p) + 0^{2} = Var(1 - p) = (-1)^{2}Var(p) = \frac{2p(3-p(m+2))}{3nm(m+1)}$$

שאלה 2

יהא X_1 , אות ההתפלגות פונקציית ההתפלגות של המדגם של המדגם מקרי של ההתפלגות איית מונקציית ההתפלגות של המדגם X_1 , אוריה, לפי אי-תלות חלקי המדגם,

$$p(x_{1}, x_{2}, ..., x_{n}) = \prod_{i=1}^{n} P\{X_{i} = x_{i}\} = \prod_{i=1}^{n} {i-1 \choose r-1} (1-p)^{i-r} p^{r}$$

לכן פונקציית הנראות תהיה:

$$L(p) = \prod_{i=1}^{n} {x_i - 1 \choose r - 1} (1 - p)^{x_i - r} p^r$$

וכן נקבל:

$$\ln[L(p)] = \ln\left(\prod_{i=1}^{n} \binom{x_i-1}{r-1} (1-p)^{x_i-r} p^r\right) = \sum_{i=1}^{n} \ln\left(\frac{x_i-1}{r-1} (1-p)^{x_i-r} p^r\right) = \\
= \sum_{i=1}^{n} \ln\left(\frac{x_i-1}{r-1} + \sum_{i=1}^{n} \ln(1-p)^{x_i-r} + \sum_{i=1}^{n} \ln p^r = \\
= \sum_{i=1}^{n} \ln\left(\frac{x_i-1}{r-1} + \ln(1-p) \cdot \sum_{i=1}^{n} (x_i-r) + \ln p \cdot \sum_{i=1}^{n} r = \\
= \sum_{i=1}^{n} \ln\left(\frac{x_i-1}{r-1} + \sum_{i=1}^{n} x_i - nr\right) + \ln(1-p) + nr \cdot \ln p = \\$$

נרצה למצוא אומדן נראות מקסימלית. ידוע על פי מונוטוניות פונקציית ה $\ln L'(p) = 0, \ L''(p) < 0$ כי $\ln L(p) = 0, \ \ln [L(p)]' < 0$ ורק אם $\ln [L(p)]' = 0, \ \ln [L(p)]' < 0$ לכן נגזור את

$$\ln[L(p)]' = (\sum_{i=1}^{n} x_i - nr) \cdot \frac{-1}{1-p} + nr \cdot \frac{1}{p} = 0$$

(נכפול בp(1-p) ונקבל:

$$-(\Sigma x_{i} - nr)p + nr(1 - p) = 0$$

$$nr \cdot p - \Sigma x_{i} \cdot p + nr - nr \cdot p = 0$$

$$nr = \Sigma x_{i} \cdot p$$

$$\hat{p} = \frac{nr}{\Sigma x_{i}}$$

נוודא מקסימליות:

$$\ln[L(p)]'' = (\sum_{i=1}^{n} x_i - nr) \cdot \frac{-1}{(1-p)^2} + nr \cdot \frac{1}{p^2} = -\frac{\sum_{i=1}^{n} x_i - nr}{(1-p)^2} - \frac{nr}{p^2} < 0$$

. נסיונות פעמים r פעמים n מציין את מספר ה"נסיונות" הכולל עד במדגם המקרי, והוא לפחות Σx_i

n = 10, r = 3 ב. עבור

$$P\{X = 8\} = {7 \choose 2} (1 - p)^5 p^3$$

על כן נקבל לפי 9.20 את האנ"מ:

$$\hat{P} = 21(1 - \frac{30}{\Sigma x_i})^5 (\frac{30}{\Sigma x_i})^3$$

כמו כן, מתקיים $\frac{r}{n}=\frac{r}{n}$, ולכן אומד יהיה

$$\hat{\mu} = \frac{r}{\frac{nr}{\Sigma x}} = \frac{\Sigma x_i}{n} = \bar{X}$$

שאלה 3

את $p_{_1}$ את הבעיה ביקב "הילולה", וב $p_{_0}$ את התפלגות החבילות ביקב הילולה", וב $p_{_1}$ את התפלגות החבילות ביקב השומרים".

נסמן ב $X_1 + X_2 :$ את מספר בקבוקי היין הלבן בחבילה ה X_i . המשתנה שאנחנו בודקים: $X_i = X_1 + X_2 :$ היין הלבן הכולל. ההתפלגויות:

מספר בקבוקי יין לבן	0	1	2
"הילולה"	0.1	0.2	0.7
"השומרים	0.4	0.3	0.3

"הילולה, מיקב הילולה, גיעו מיקב, א $X_i \sim p_0^{}$

"השומרים, מיקב השומרים, גיעו מיקב, השומרים, א $X_{_{i}} \sim p_{_{1}}$

נחשב את ההסתברויות לקבלת X=x ב-2 ההתפלגויות בעזרת נוסחת ההסתברות השלמה, וכן נחשב את יחס הנראות:

X = x	$(X_{1},\ X_{2})$ אפשרויות ל	$p_0(X=x)$	$p_1(X=x)$	$\lambda(x)$
0	(0,0)	$0.1^2 = 0.01$	$0.4^2 = 0.16$	16
1	(0,1), (1,0)	$2 \cdot 0.2 \cdot 0.1 = 0.04$	$2 \cdot 0.4 \cdot 0.3 = 0.24$	6
2	(2,0), (1,1), (0,2)	$\begin{vmatrix} 2 \cdot 0.7 \cdot 0.1 + 0.2^2 = \\ = 0.18 \end{vmatrix}$	$\begin{vmatrix} 2 \cdot 0.4 \cdot 0.3 + 0.3^2 \\ = 0.33 \end{vmatrix}$	1.833
3	(2,1), (1,2)	$2 \cdot 0.7 \cdot 0.2 = 0.28$	$2 \cdot 0.3 \cdot 0.3 = 0.18$	0.6429
4	(2,2)	$0.7^2 = 0.49$	$0.3^2 = 0.09$	0.1837

נבנה מרחב דחייה C אליו נוסיף בסדר יורד את הערכים אשר $\lambda(x)$ מרבי עבורם, כל עוד נקבל שרמת המובהקות לא עולה על C:

С	$\alpha = p_0(C)$
{0}	0.01
{0, 1}	0.05
{0, 1, 2}	0.23

נקבל שמרחב הדחייה יהיה $\mathcal{C}=\{X=0,1\}$ כאשר X מייצג, כאמור, את מספר בקבוקי היין הלבן בשתי החבילות יחד. המבחן הוא בעל רמת מובהקות של 5%, ועוצמה מקסימלית עבור רמת מובהקות זו על פי ניימן-פירסון.

$$\alpha=p_0(\mathcal{C})=0.05$$
 ב. ההסתברות לטעות מסוג 1 תהיה $\beta=p_1(\bar{\mathcal{C}})=p_1(X=2,3,4)=0.33+0.18+0.09=0.6$ בהסתברות לטעות מסוג 2 תהיה

ג. אם נוסיף חסם 0.1 המבחן לא ישתנה, שכן לא נוכל להוסיף עוד איברים למרחב הדחייה מבלי לעלות $\alpha \leq 0.1$ על רמת מובהקות של 10%. האיבר הבא בתור להוספה למרחב הדחייה ייתן רמת מובהקות של 23%.