An exposome approach: Predicting the incidence of Asthma Attacks using multiple environmental exposures and lifestyle factors.

Malo Dirou

Project Presentation, May 4 2021

1

Table of Contents

- 1 Background Information
- 2 Methods
- 3 Results
- 4 Discussion
- **6** Conclusion

Table of Contents

- Background Information
- 2 Methods
- 3 Results
- 4 Discussion
- 6 Conclusion

Information about the disease

According to WHO,

- Asthma is a major non-communicable disease.
- Asthma is a long-term multi-factorial disease. Asthma Attacks are the results of a combination of genetic, physiological, environmental and behavioural factors.
- Asthma has a complex etiology: variation in frequency and severity within and between individuals.
- Asthma is a common chronic disease in children
- Most asthma related-deaths occurs in adults, essentially in low and lower-middle income countries

A Few Numbers

- Estimated that 339 Million people suffer from asthma worldwide.
- 417,918 deaths due to asthma at the global level in 2016.
- 24.8 Million DALYS attributable to asthma in 2016.
- Recall 1 DALY = 1 Lost year of healthy life (1B + 1C)

Aim of the research & Dataset

Today's aim:

- Complementing genome studies with an exposome study.
- Specifically, we will try to identify a large range of environmental factors and behaviors that are suspected to be triggers of asthma attacks.

Dataset: NHANES

- The National Health and Nutrition Examination Survey is a program of studies designed to assess the health and nutritional status of adults and children in the United States.
- How is NHANES unique? It combines interviews and physical examination.

Table of Contents

- 1 Background Information
- 2 Methods
- Results
- 4 Discussion
- 6 Conclusion

Data processing Steps (1)

- Combination of 24 datasets selected from NHANES publicly available data.
- The 24 datasets contain questionnaire information, demographics, examination data and laboratory data.
- Each of the 24 datasets contain 2 years of information for participants.
- I appended 10 years of information (2009-2018) to end up with 2134 unique cases.
- Cases were defined as individuals who had asthma attacks in the past year.

Data processing Steps (2)

Selection of controls:

- Matching using matchit function in R to create case and control groups balanced on age, sex and ethnicity.
- Used a ratio of 4 controls per case.
- Removal of variables with NAs > 50% of all observations
- Removal of variables with same meaning
- Ends up with a dataframe of 10,670 observations and 105 variables

Data Exploration

Gender, ethnicity and age differences before matching among individuals who suffered from asthma attacks in the past year and the healthy individuals

Data Exploration

- Gender, Age and Ethnicity differences after matching
- Age distribution is identical among cases and controls
- Balanced ratio among cases and controls for gender and ethnicity

Figure:

Algorithms choices

Unsupervised Learning Technique: KMeans

- Mean imputation of missing values for numerical variables
- Standardization of numerical values
- One-hot encoding of categorical variables
- Dimensionality transformation of the entire dataset using PCA (2PCS used)

Supervised Learning Techniques: SVM

Same handling of missing values as KMeans - No PCA

Distributed Random Forest and Gradient Boost

Only differences with KMeans and SVM data: No PCA.
Use of most frequent imputation for categorical variables instead of one-hot encoding.

Models Parametrization (1)

KMEANS

- Use of Within Cluster Sum of Squares (WCSS).
- Elbow method associated with gradual decrease in WCSS to find optimal number of clusters k.

SVM

- AUC GridSearch on linear kernel with C = [1,10,30,50].
- On RBF kernel with C = [1,10,30,50], gamma = [0.1, 0.2, 0.3, 0.4, 0.5].
- On polynomial kernel with C = [1,10,30,50], degree = [2,3,4], gamma = [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09].

Models Parametrization (2)

GB

• AUC GridSearch with learning rate = [0.01, 0.1], maximum depth per tree = [3, 5, 9], adding some variations on row and columns sample rates.

RF

AUC GridSearch with max depth per tree = [3,4,5,6,7,8,9] and minimum number of observations per leaf node = [5,7,10,15,20], adding some variations on row sample rate too.

Common uses among SVM, RF, GB

- number of trees = 10000, stopping rounds = 5, stopping tolerance = 1e-4, stopping metric = "AUC", score tree interval = 10 for trees.
- Use of 5-fold cross validation for all models

Table of Contents

- Background Information
- 2 Methods
- 3 Results
- 4 Discussion
- 6 Conclusion

KMEANS Visualization and Goodness of fit

• Clusters are quite compact

Random Forest Variable Importance Plot

Variable Importance Plot Meaning

By order of importance:

- Close relative had asthma,
- no. of days physical health was not good
- no. of days mental health was not good
- How many days feel anxious
- Pain make it hard for usual activities
- Blood Pressure
- Ever told you had chronic bronchitis
- Annual household income
- Total Bilirubin (umol/L)
- How much sleep do you get (hours)?

Partial Dependence plot example

- The PDP shows the dependence between asthma attacks and annual household income.
- Plotting an individual feature against the outcome is interesting to tackle black-box effects

Confusion Matrices for Gradient Boost and Random Forest

Confusion Matrix for SVM and score metrics for all models

	accuracy	f1	precision	recall
Random Forest	0.826837	0.540755	0.588745	0.5
Gradient Boost	0.830585	0.325373	0.865079	0.200368
01/14	0.004700	0.4470	0.074040	0.0007000

- Gradient Boost has a slightly higher accuracy than RF and SVM
- But Random forest has the highest recall

AUC-ROC curves for RF, GB and SVM models

Table of Contents

- 1 Background Information
- 2 Methods
- 3 Results
- 4 Discussion
- 6 Conclusion

Discussion 23

Limitations

- Laboratory and Questionnaire data have too many missing values.
- Self-reporting bias in data from surveys.
- Implementation of some population bias with the nature of the nested case-control study developed.
- Imbalanced available information in variables. Imputation techniques remain specific to the developer.
- GridSearch analyses can always be improved.
- Monitoring environmental exposure is complex and highly subjective.
- What is highest priority and target? Reducing disability or premature deaths arsising from asthma attacks?
- Nationally representative data might not generalize well globally.

Discussion 24

Actionable plans

- Clustering results could be further developed towards semi-supervised learning
- Restrict study population to healthy controls to prevent population bias
- In-depth investigation of co-occurring factors that might be indicators of future asthma attacks
- Improving access to cost-effective interventions in lower-income countries
- Surveillance to map the magnitude of asthma worldwide
- Primary prevention to reduce the level of exposure to common risk factors

Discussion

Table of Contents

- 1 Background Information
- Methods
- Results
- 4 Discussion
- **5** Conclusion

Conclusion 2