

Smart Skincare Assistant

Subjects: Introduction to NN, CNN and GNN (24AIM113)
Analog system design (24AIM114)

Presented By:

MR Bharath - cb.ai.u4aim24022

Shreeram M - cb.ai.u4aim24023

Machavarapu Sriram – cb.ai.u4aim24024

Mahadev M - cb.ai.u4aim24025

Project Mentors:

Dr. Snigdhtanu Acharya

Dr. Amrutha Veluppal

Introduction

Maintaining healthy skin requires continuous monitoring of factors like moisture levels, oil balance, and environmental exposure.

Our IoT-Based Skincare Assistant provides a personalized, Al-driven approach by:

- Real-time skin analysis using sensors
- Dynamic skincare recommendations.
- On-demand scanning & continuous assessment for trend-based skincare

This project integrates IoT sensors with AI models to deliver accurate, adaptive, and real-time skincare solutions for users.

Problem Statement

Traditional skincare solutions often fail to address individual needs:

- Provide static recommendations that don't adapt to changing skin conditions.
- Lack real-time monitoring.
- Ignore environmental factors like humidity, UV exposure, temperature.
- Often bulky or home-based.

Our Solution:

- Recommendations and alerts based on real time conditions.
- On spot skin scanning.
- Compact & portable IoT device, enabling on-the-go skincare analysis.

Hardware Components

ESP32 -

• **Power**: 3.3V - 5V

• ADC Input Voltage Range: 0V - 3.3V

• Wi-Fi Operating Frequency: 2.4 GHz

• Memory: 520 KB SRAM, 4MB Flash

• Active Mode Current Consumption: 160 - 240 mA

Parameter	Raw Sensor Range	Mapped Range in Code	Input Voltage Range	Output Type
Moisture (skin)	0 – 1023 (analogRead)	24 – 39	3.3V – 5V	Analog voltage (0– 3.3V/5V)
Oil (skin sebum)	~10 kHz - 90 kHz (TCS3200 freq.)	19 – 38	2.7V - 5.5V	Digital frequency (Hz)
Temperature	-40°C to 80°C (DHT11 spec)	Used as-is	3.3V – 5V	Digital (Single-wire)
Humidity	0% – 100% RH	Used as-is	3.3V – 5V	Digital (Single-wire)
UV Index	0 – 1023 (analogRead)	0 – 11	3.0V – 5V	Analog voltage (0– 3.3V/5V)

TCS3200 (Color Sensor)

Capacitive Moisture Sensor

DHT11 (Temp & Humidity)

GUVA-S12SD (UV Sensor)

System design

Sensors and Skin Compatibility

TCS3200

Capacitive Moisture sensor

DHT11 & GUVA-S12SD

The sensor's wavelength range aligns well with skin reflectance properties, confirming its suitability for detecting oil content in skin.

Source:

https://www.mdpi.com/1424-8220/22/8/3016

The sensor detects measurable change in capacitance corresponding to varying moisture levels, indicating its sensitivity to moisture.

Source:

https://www.mdpi.com/1424-8220/22/19/7151

Since both are environmental sensors, they need not be compared to the skin's specifications.

CSV file used for model training

JSON file used for recommendation system

```
Recommendation_system.json X
> MiDerma > {} Recommendation_system.json > ...
       "medium low low": {
       "light_low_low": {
           "morning routine":
             "Cream Cleanser",
             "Hydrating Toner",
             "Hyaluronic Acid Serum",
             "Rich Moisturizer",
             "SPF 50 Sunscreen"
           "night_routine": [
             "Oil Cleanser",
             "Hydrating Toner",
             "Peptide Serum",
             "Rich Night Cream",
             "Facial Oil"
       "deep brown black low low": {
           "morning routine":
             "Cream Cleanser",
             "Hydrating Toner",
             "Hyaluronic Acid Serum",
             "Rich Moisturizer with Ceramides",
             "SPF 30+ Sunscreen (Non-comedogenic)"
           "night routine": [
             "Cleansing Balm",
             "Hydrating Toner",
             "Peptide Serum",
             "Rich Night Cream",
             "Facial Oil"
```

Feed forward Neural Network for Skincare Recommendations

Neural networks process sensor data for personalized skincare recommendations.

Feedforward Neural Network (FNN) is good at handling structured data like moisture, oil and skintone. FNN efficiently maps input features to skincare recommendations without needing spatial awareness.

Pre Processing Steps:

- One-Hot Encoding Converts categorical sensor data into numerical values.
- LabelEncoder() Converts categorical class labels into numerical class indices for model training.

Model Architecture

Layer Type	Output Shape	Activation	Additional Notes
Input	(3,)	-	3 input features
Dense	64	ReLU	First hidden layer
BatchNormalization	64	_	Normalizes activations
Dropout	64	_	Dropout rate 0.2
Dense	32	ReLU	Second hidden layer
BatchNormalization	32	_	Normalizes activations
Dense (Output)	num_classes	Softmax	Multi-class output

- Batch Size 16
- Epochs 50
- Accuracy 94%
- Optimizer: Adam with learning rate = 0.0005
- Loss function: Categorical crossentropy

Evaluation Metrics of the current FNN model

Classification Report:				
crassrireacron nepsi ei	precision	recall	f1-score	support
dana kaona kilonk kiak ilan	4 00	0.00		
deep_brown_black_high_low	1.00	0.89	0.94	9
deep_brown_black_high_medium	0.90	0.82	0.86	11
deep_brown_black_medium_low	1.00			2
deep_brown_black_medium_medium	0.50			2
fair_high_low	1.00	1.00	1.00	14
fair_high_medium	1.00	1.00	1.00	12
fair_medium_low	1.00	1.00	1.00	2
fair_medium_medium	1.00	1.00	1.00	2
light_high_low	1.00	0.91	0.95	11
light_high_medium	1.00	1.00	1.00	11
light_medium_low	0.50	0.50	0.50	2
light_medium_medium	1.00	0.50	0.67	2
medium_high_low	0.89	0.89	0.89	9
medium_high_medium	1.00	1.00	1.00	11
medium medium low	0.50	1.00	0.67	2
medium medium medium	1.00	0.50	0.67	2
olive high low	1.00	1.00	1.00	12
olive high medium	1.00	1.00	1.00	12
olive medium low	1.00	1.00	1.00	2
olive medium medium	0.75	1.00	0.86	3
tan brown high low	1.00	1.00	1.00	11
tan brown high medium	1.00	0.93	0.96	14
tan brown medium low	1.00	1.00	1.00	2
tan brown medium medium	0.67	1.00	0.80	2

Learning curve

Arduino IDE output

```
{"temperature":33, "humidity":75, "uvIndex":0, "moisture":26, "oil":24.24243}
{"temperature":33, "humidity":74, "uvIndex":0, "moisture":39, "oil":24}
{"temperature":33, "humidity":73, "uvIndex":0, "moisture":26, "oil":24.3}
{"temperature":33, "humidity":73, "uvIndex":0, "moisture":26, "oil":24}
```

FNN output

```
=== MiDerma Skin Analysis ===
Available skin tones: fair, light, medium, tan_brown, deep_brown_black, olive

=== Recommended Routine ===
{'morning_routine': ['Gentle Cleanser', 'Balancing Toner', 'Vitamin C Serum', 'Lightweight Moisturizer', 'SPF 40 Sunscreen'],
'night_routine': ['Double Cleanse', 'Balancing Toner', 'Retinol Serum', 'Medium-weight Night Cream']}
```

Working

User gives the input of skintone manually

oil and moisture content from sensors is displayed

Personalised skincare routine

Environmental factors, alerts and tips

Thankyou