Alcuni esercizi risolti di MATEMATICA DISCRETA C.L. Informatica

1. Determinare il resto della divisione di 190^{597} per 17.

Soluzione Bisogna esprimere 190⁵⁹⁷ (mod 17). Si osserva prima che

$$190 \equiv 3 \pmod{17}.$$

Inoltre, il Piccolo Teorema di Fermat asserisce che, se M.C.D.(a,p)=1, allora $a^{p-1}\equiv 1 \pmod{p}$. Quindi, nel caso in esame

$$3^{16} \equiv 1 \pmod{17}.$$

Allora

$$3^{597} = (3^{16})^{37} \cdot 3^5 \equiv 1^{37} \cdot 3^5 = 3^5 \pmod{17}$$
.

Si vede facilmente che $3^5 = 238 \equiv 5 \pmod{17}$, e quindi il resto è 5.

2. Determinare le ultime due cifre del numero 523^{321} .

Soluzione Si deve ridurre 523³²¹ (mod 100). Si osserva che

$$523 \equiv 23 \pmod{100}$$

e quindi

$$523^{321} \equiv 23^{321} \pmod{100}$$
.

Poichè M.C.D.(23,100)=1, si può usare il teorema di Eulero, secondo il quale

$$23^{\varphi(100)} \equiv 1 \pmod{100}. \tag{1}$$

Per le proprietà della funzione di Eulero si ha

$$\varphi(100) = \varphi(5^2)\varphi(2^2) = (5^2 - 5) \cdot (2^2 - 2) = 20 \cdot 2 = 40$$

pertanto (1) diventa

$$23^{40} \equiv 1 \pmod{100}$$
.

D'altra parte $321 = 40 \cdot 8 + 1$ e quindi

$$23^{321} = (23^{40})^8 \cdot 23 \equiv 1^8 \cdot 23 = 23 \pmod{100}$$

In conclusione $523^{321} \equiv 23 \pmod{100}$.

3. Determinare le ultime 3 cifre del numero 173³¹.

Soluzione Per determinare le ultime 3 cifre del numero 173^{31} , bisogna ridurlo (mod 1000). Si può osservare che $\varphi(1000)=400$ e che l'esponente è 31<400, per cui non si può usare il teorema di Eulero. Potrebbe essere conveniente trovare la quarta potenza di 173, in modo da avere:

$$173^{31} = 173^{28+3} = 173^{28} \cdot 173^3 = (173^4)^7 \cdot 173^3 = (895.745.041)^7 \cdot 5.177.717.$$

Ma 895.745.041 \equiv 41(mod 1000), 5.177.717 \equiv 717 (mod 1000) per cui, usando compatibilità delle congruenze (mod n) ($n \in \mathbb{N}^*$) con il prodotto e la proprietà seguente:

$$\forall a, a', b \in \mathbb{Z}, \ a \equiv a' \pmod{n} \Rightarrow ab \equiv a'b \pmod{n}$$

si ottiene (895.745.041)
7 · 5.177.717 $\equiv (41)^7 \cdot 717$ (mod 1000). D'altra parte, $41^6 = 4.750.104.241 \equiv 241$ (mod 1000), per cui

$$173^{31} \equiv (41)^7 \cdot 717 \equiv 241 \cdot 41 \cdot 717 \pmod{1000}$$
.

A questo punto, poichè $241 \cdot 41 \cdot 717 = 7.084.677 \equiv 677 \pmod{1000}$, le ultime 3 cifre di 173^{31} sono 677. Si osservi che, naturalmente, si può procedere in modo diverso, per esempio partendo dalla terza potenza di 173; si consiglia di rifare l'esercizio seguendo questa strada.

- 4. Determinare i resti delle divisioni seguenti (senza eseguirle):
 - (a) di 362971^{29345} e di 29345^{362971} per 6
 - (b) di 57432^{1142} e di 725843^{594} per 9
 - (c) di 43816^{20321} per 10
 - (d) di 89741^{527} per 3
 - (e) di 4526^{236} e di $7574632^{2845301}$ per 7
 - (f) di $7574632^{2845301}$ per 11.

5. Calcolare:

- (a) le ultime due cifre del numero 48353⁴⁸³.
- (b) l'ultima cifra del numero 725843⁵⁹⁴.
- (c) le ultime tre cifre del numero 3020173³¹.