Name: Dat Truong U78042625

Chapter 7 Exercises

Exercise 7.1

Starting on the left side, we want to prove $x \in \mathbb{Z}$ is odd if $\exists j \in \mathbb{Z} \ni x = 2j-1$

Let k = j + 1. Because $j, 1 \in \mathbb{Z}, j + 1 \in \mathbb{Z}$ by Closure, which allows for $k \in \mathbb{Z}$

Also, x = 2j - 1 = 2(k+1) - 1 = 2k+1. Hence, by definition, x is odd. \square

Now we want to prove $\exists j \in \mathbb{Z} \ni x = 2j - 1$ if $x \in \mathbb{Z}$ is odd.

By definition, $\exists k \in \mathbb{Z} \ni x = 2k + 1$. Let l = k - 1. Because $k, -1 \in \mathbb{Z}$, $k - 1 \in \mathbb{Z}$ by Closure, which leads to $l \in \mathbb{Z}$

Also, x = 2k + 1 = 2(l - 1) + 1 = 2l - 1. Hence, we have shown that $\exists j \in \mathbb{Z} \ni x = 2j - 1 \square$ Therefore, $x \in \mathbb{Z}$ is odd iff $\exists j \in \mathbb{Z} \ni x = 2j - 1$

Exercise 7.2

1. We assume that $\exists n \ni (\exists a, b \in \mathbb{Z} \ni n = 2a \text{ and } n = 2b + 1)$ Then,

$$2a = 2b + 1$$
$$2a - 2b = 1$$
$$a - b = \frac{1}{2}$$

Because $a, -b \in \mathbb{Z}$, $a - b \in \mathbb{Z}$ by Closure. However, $\frac{1}{2} \notin \mathbb{Z} \implies$

Hence, there exists no integers that can be both even and odd. \square

2. Prove by induction

Base Case: Let n = 1. We need to show that n is either even or odd.

Obeserve that $0 \in \mathbb{Z}$ and $1 = 2 \cdot 0 + 1$, so 1 is odd; and indeed, 1 is either even or odd.

Induction Hypothesis: We assume that when n = k, k is either even or odd.

Induction Step: We need to show that k+1 is either even or odd.

Case 1: k is even. So, $\exists a \in \mathbb{Z} \ni k = 2a$, which means that k+1=2a+1. By definition, k+1 is odd. \square Case 2: k is odd. So, $\exists b \in \mathbb{Z} \ni k = 2b+1$, which means that k+1=2b+2=2(b+1). Because $b, 1 \in \mathbb{Z}$, $b+1 \in \mathbb{Z}$ by Closure. Thus, by definition, k+1 is even. \square

Therefore, k + 1 is either even or odd.

From our proof of induction, we have shown that n is either even or odd. \square

3. Let $m \in \mathbb{Z}^-$. Then $-m \in \mathbb{Z}^+$. We have shown that -m is either even or odd.

Case 1: -m is even. So, $\exists a \in \mathbb{Z} \ni -m = 2a$. This means that m = -2a = 2(-a). Because $a, -1 \in \mathbb{Z}$, $-a \in \mathbb{Z}$ by Closure. Thus, by definition, m is also even. \square

Case 2: -m is odd. So, $\exists b \in \mathbb{Z} \ni -m = 2b+1$. This means that m = -(2b+1) = -2b-1 = 2(-b-1)+1.

Because $b, -1 \in \mathbb{Z}, -b \in \mathbb{Z}$ and $-b - 1 \in \mathbb{Z}$ by Closure. Thus, by definition, m is also odd. \square

Therefore, m is either even or odd. \square

4. Obeserve that $0 \in \mathbb{Z}$ and $0 = 2 \cdot 0$, so 0 is even. Furthermore, we have also shown that every number in \mathbb{Z}^+ and \mathbb{Z}^- are either even or odd.

Because $\mathbb{Z} = \mathbb{Z}^+ \cup \mathbb{Z}^- \cup \{0\}$, we conclude that every number in \mathbb{Z} are either even or odd. \square

Exercise 7.3

Because n is prime, $n \in \mathbb{N}$. Also, $n \in \mathbb{Z}$

Our hypothesis n|(a+b) gives us $\exists i \in \mathbb{Z} \ni a+b=n \cdot i$. Based on another hypothesis n|a, we get $\exists j \in \mathbb{Z} \ni a=n \cdot i$. Then, $b=(a+b)-a=n \cdot i-n \cdot j=n(i-j)$

Because $i, -j \in \mathbb{Z}$, $i - j \in \mathbb{Z}$ by Closure. Hence, $n|b \square$

Exercise 7.7

We are given that x is even. By definition, $\exists i \in \mathbb{Z} \ni x = 2i$

So,
$$x^2 = (2i)^2 = 4i^2 = 2(2i^2)$$

Because $i, 2 \in \mathbb{Z}$, $2i^2 \in \mathbb{Z}$ by Closure. Hence, by definition, x^2 is even. \square

Exercise 7.9

We assume that there exists a largest real number. Let it be r.

Because $r, 1 \in \mathbb{R}$, $r+1 \in \mathbb{R}$ by Closure. Because of our assumption that r is the largest real number,

$$r+1 \le r$$

$$r-(r+1) \in \mathbb{R}^+ \text{ or } r-(r+1) = 0$$

$$-1 \in \mathbb{R}^+ \text{ or } -1 = 0 \implies$$

Hence, there exists no largest real number. \square

Exercise 7.10

We assume that there exists a smallest integer. Let it be z.

Because $z, 1 \in \mathbb{Z}$, $z - 1 \in \mathbb{Z}$ by Closure. Because of our assumption that z is the smallest integer,

$$z \le z - 1$$

$$z - 1 - z \in \mathbb{R}^+ \text{ or } z - 1 - z = 0$$

$$-1 \in \mathbb{R}^+ \text{ or } -1 = 0 \implies = 0$$

Hence, there exists no smallest integer. \square

Exercise 7.12

1. $\exists x, y \in \mathbb{Z} \ni 2x + 4y = 1$

We obtain $x + 2y = \frac{1}{2}$. Because $x, y, 2 \in \mathbb{Z}$, $x + 2y \in \mathbb{Z}$ by Closure. However, $\frac{1}{2} \notin \mathbb{Z} \implies$

Hence the initial statement is false. \square

$$2. \ \exists x, y \in \mathbb{Z} \ni 3x + 5y = 2$$

Observe that $-1, 1 \in \mathbb{Z}$ and $3 \cdot -1 + 5 \cdot 1 = 2$

Hence the initial statement is true. \Box

3.
$$\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R} \ni xy = 4$$

Observe that when x = 0, xy = 0, $\forall y \in \mathbb{R} \implies$

Hence the initial statement is false. \Box

4.
$$\forall x \in \mathbb{N}, x^2 - x + 11$$
 is prime

Observe that when x = 11, $x^2 - x + 11 = 11^2 - 11 + 11 = 121$, and $11|121 \implies$

Hence the initial statement is false. \Box

5.
$$\exists x \in \mathbb{N} \ni x^x = 9x$$

Observe that when x = 3, $x^{x} = 3^{3} = 27$ and $9x = 9 \cdot 3 = 27$.

Hence the initial statement is true. \Box

6. 231 can be written as the sum of 4 odd numbers.

We assume that this statement is true, so $\exists i, j, k, l \in \mathbb{Z} \ni 231 = (2i+1) + (2j+1) + (2k+1) + (2l+1)$

The terms can be rewritten as: (2i+1)+(2j+1)+(2k+1)+(2l+1)=2i+2j+2k+2l+4=2(i+j+k+l+2)

Because $i + j + k + l + 2 \in \mathbb{Z}$, 231 is even by definition. But $231 = 2 \cdot 115 + 1$, so 231 is odd. $\Rightarrow \Leftarrow$

Hence the initial statement is false. \Box

7. 132 can be written as the sum of 4 odd numbers.

Observe that 132 = 29 + 31 + 35 + 37, and $29 = 2 \cdot 14 + 1$, $31 = 2 \cdot 15 + 1$, $35 = 2 \cdot 17 + 1$, $37 = 2 \cdot 18 + 1$

Hence the initial statement is true. \Box

8. 73 can be written as the sum of 1 odd and 2 even numbers.

Observe that 73 = 3 + 34 + 36, and $3 = 2 \cdot 1 + 1$, $34 = 2 \cdot 17$, $36 = 2 \cdot 18$

Hence the initial statement is true. \Box

9. 73 can be written as the sum of 1 even and 2 odd numbers.

We assume that this statement is true, so $\exists i, j, k \in \mathbb{Z} \ni 73 = 2i + (2j+1) + (2k+1)$

The terms can be rewritten as: 2i + (2i + 1) + (2k + 1) = 2i + 2i + 2k + 2 = 2(i + i + k + 1)

Because $i + j + k + 1 \in \mathbb{Z}$, 73 is even by definition. But $73 = 2 \cdot 36 + 1$, so 73 is odd. $\Rightarrow \Leftarrow$

Hence the initial statement is false. \Box

Exercise 7.14

We will prove the given statement by induction.

Base Case: Let n = 1. We need to show that $4|5^1 - 1$. We have $5^1 - 1 = 5 - 1 = 4$. So, 4|4, and indeed, $4|5^1 - 1$.

Induction Hypothesis: We assume that when n = k, $4|5^k - 1$. This means that $\exists a \in \mathbb{N} \ni 5^k - 1 = 4a$ **Induction Step**: We want to show that $4|5^{k+1} - 1$.

$$5^{k+1} - 1 = 5 \cdot 5^k - (5-4)$$

$$= 5 \cdot 5^k - 5 + 4$$

$$= 5(5^k - 1) + 4$$

$$= 5(4a) + 4$$

$$= 4(5a) + 4$$

$$= 4(5a + 1)$$

Because $a, 5, 1 \in \mathbb{Z}$, $5a + 1 \in \mathbb{Z}$ by Closure. Thus, $4|5^{k+1} - 1$, which is what we need.

From our proof of induction, we have shown that $4|5^n-1, \forall n \in \mathbb{N} \square$

Exercise 7.19

Starting on the left side, we want to prove 3x - 5 is even if x is odd

By definition, $\exists a \in \mathbb{Z} \ni x = 2a + 1$. So, 3x - 5 = 3(2a + 1) - 5 = 6a + 3 - 5 = 2(3a - 1).

Because $a, 3, -1 \in \mathbb{Z}$, $3a - 1 \in \mathbb{Z}$ by Closure. Hence, 3x - 5 is even by definition. \square

Now we want to prove x is odd if 3x - 5 is even. We assume that x is even.

By definition, $\exists b \in \mathbb{Z} \ni x = 2b$. So, 3x - 5 = 3(2b) - 5 = 6b - 5 = 6b - 6 + 1 = 2(3b - 3) + 1.

Because $b, 3, -3 \in \mathbb{Z}$, $3b-3 \in \mathbb{Z}$ by Closure. Hence, 3x-5 is odd by definition. Taking the contrapositive, we have if 3x-5 is even, then x is odd. \square

Exercise 7.20

We assume that x is odd.

By definition, $\exists a \in \mathbb{Z} \ni x = 2a + 1$. So, $x^2 - 1 = (2a + 1)^2 - 1 = 4a^2 + 4a + 1 - 1 = 4(a^2 + a)$

By Closure, $a^2 + a \in \mathbb{Z}$, which yields us $4|4(a^2 + a)$, or $4|x^2 - 1$

Therefore, if x is odd, then 4 divides $x^2 - 1$

Taking the contrapositive lets us conclude that if 4 does not divide $x^2 - 1$, then x is even. \square

Exercise 7.29

Theorem 7.10. We assume that $\sqrt{n} \in \mathbb{Q}$. In other words, $\exists a, b \in \mathbb{Z} \ni \sqrt{n} = \frac{a}{b}$ and a, b share no common factors other than 1.

We get $n=\frac{a^2}{b^2}$, which gives us $a^2=b^2n$. Because $b^2\in\mathbb{Z}$ by Closure, $n|a^2$. Because n is prime, n|a by Euclid's Lemma. So, $\exists i\in\mathbb{Z}\ni a=i\cdot n$ by definition.

Then, $(i \cdot n)^2 = b^2 n$, which takes us to $b^2 = i^2 n$. Because $i^2 \in \mathbb{Z}$ by Closure, $n|b^2$. Because n is prime, n|b by Euclid's Lemma.

So, n|a and n|b, which means a, b share n as a common factor. Also, n > 1 because it is prime. $\Rightarrow \leftarrow$ Hence, the initial assumption is false, and $\sqrt{n} \in \mathbb{Q}^C$

Corollary 7.11.

• $-\sqrt{n}$ is irrational

We assume that $-\sqrt{n} \in \mathbb{Q}$. In other words, $\exists c, d \in \mathbb{Z} \ni -\sqrt{n} = \frac{c}{d}$. Then $\sqrt{n} = -\frac{c}{d} = \frac{-c}{d}$. $-c \in \mathbb{Z}$ by Closure. Hence, by definition, $\frac{-c}{d} \in \mathbb{Q}$. But $\sqrt{n} \in \mathbb{Q}^C$ by Theorem 7.10. $\Rightarrow \leftarrow$ So the initial assumption is false, and $-\sqrt{n} \in \mathbb{Q}^C$

• $\frac{1}{\sqrt{n}}$ is irrational

We assume that $\frac{1}{\sqrt{n}} \in \mathbb{Q}$. In other words, $\exists e, f \in \mathbb{Z} \ni \frac{1}{\sqrt{n}} = \frac{e}{f}$. Then $\sqrt{n} = 1 \div \frac{e}{f} = \frac{f}{e}$ By definition, $\frac{f}{e} \in \mathbb{Q}$. But $\sqrt{n} \in \mathbb{Q}^C$ by Theorem 7.10. $\Rightarrow \Leftarrow$ So the initial assumption is false, and $\frac{1}{\sqrt{n}} \in \mathbb{Q}^C$

Exercise 7.34

 $x, y \in \mathbb{Q}$ and $w, z \in \mathbb{Q}^C$

1.
$$x + y \in \mathbb{Q}$$

Because $x, y \in \mathbb{Q}$, $\exists a, b, c, d \in \mathbb{Z} \ni x = \frac{a}{b}, y = \frac{c}{d}$

$$x+y=\frac{a}{b}+\frac{c}{d}=\frac{ad}{bd}+\frac{bc}{bd}=\frac{ad+bc}{bd}$$

 $x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$ $ad + bc \in \mathbb{Z} \text{ and } bd \in \mathbb{Z} \text{ by Closure. Therefore, by definition, } \frac{ad+bc}{bd} \in \mathbb{Q}, \text{ or } x + y \in \mathbb{Q} \square$ $2. \ w + z \in \mathbb{Q}^C$

Observe that $\sqrt{2}, -\sqrt{2} \in \mathbb{Q}^C$, and $\sqrt{2} + -\sqrt{2} = 0 \in \mathbb{Q}$

So the initial assumption is false. \square

3.
$$x + z \in \mathbb{Q}^C$$

We assume that $x+z=\alpha\in\mathbb{Q}$. Then, $\exists a,b,e,f\in\mathbb{Z}\ni x=\frac{a}{b},\alpha=\frac{e}{f}$

$$z = \alpha - x = \frac{e}{f} - \frac{a}{b} = \frac{be - af}{bf}$$

 $be-af \in \mathbb{Z}$ and $bf \in \mathbb{Z}$ by Closure. Therefore, by definition, $\frac{be-af}{bf} \in \mathbb{Q}$, or $z \in \mathbb{Q}$ \Longrightarrow

Our initial assumption is false. Therefore, $x + z \in \mathbb{Q}^C$

$$4. xy \in \mathbb{Q}$$

Because $x, y \in \mathbb{Q}$, $\exists a, b, c, d \in \mathbb{Z} \ni x = \frac{a}{b}, y = \frac{c}{d}$

$$xy = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

 $ac \in \mathbb{Z}$ and $bd \in \mathbb{Z}$ by Closure. Therefore, by definition, $\frac{ac}{bd} \in \mathbb{Q}$, or $xy \in \mathbb{Q}$

5.
$$wz \in \mathbb{Q}^C$$

Observe that $\sqrt{2}, -\sqrt{2} \in \mathbb{Q}^C$, and $\sqrt{2} \cdot -\sqrt{2} = -2 \in \mathbb{Q}$

So the initial assumption is false. \square

6.
$$xz \in \mathbb{Q}^C$$

Observe that $0 \in \mathbb{Q}$ and $\sqrt{2} \in \mathbb{Q}^C$, but $0 \cdot \sqrt{2} = 0 \in \mathbb{Q}$

So the initial assumption is false. \square