

FABRIQUES DE TABAC REUNIES S.A.  
CH-2003 Neuchatel

Switzerland

23 Nov. 90  
FTE/CST

COPY NO.: 3 *x4*

## REPORT P 0268/2179

Mutagenicity of the  
Mainstream and Sidestream Whole Smoke Condensates  
of the Research Cigarettes CALYPSO-1, AREUSE-46, -53, and -55  
in the *Salmonella* *Typhimurium* Strains TA98 and TA100

2026023464

## Erratum

### Re: Final Report P 0268/2179, Project AREUSE

After the delivery of the Final Report P 0268/2179, dated 23 Nov.90, the client gave us the information in Feb. 1991 that the humectant concentration data were not correct. Therefore, the following data in TABLE 1 on PAGE 20 have to be replaced (\*):

| Cigarette | Humectant Conc. In the Filler (%) |     |     |
|-----------|-----------------------------------|-----|-----|
|           | PG                                | GLY | TEG |
| CALYPSO-1 | 1.5                               | 2.5 | -   |
| AREUSE-46 | "                                 | "   | -   |
| -53       | "                                 | "   | 1.0 |
| -55       | "                                 | 7.5 |     |

Remarks: PG: propylene glycol  
GLY: glycerol  
TEG: triethylene glycol

  
10. Feb. 1995

<sup>\*</sup>) from: Reininghaus W., Speck M.: On the influence of humectants on..., Summary Report P 0268/2160, dated 22 Mar.91

2026023465

**CONTENTS**

=====

|                                                    | <b>PAGE</b> |
|----------------------------------------------------|-------------|
|                                                    | =====       |
| <b>ABBREVIATIONS</b>                               | <b>9</b>    |
| <b>1 SUMMARY</b>                                   | <b>11</b>   |
| <b>1.1 Objective</b>                               | <b>11</b>   |
| <b>1.2 Cigarettes</b>                              | <b>11</b>   |
| <b>1.3 Experimental Conduct</b>                    | <b>11</b>   |
| <b>1.4 Results</b>                                 | <b>12</b>   |
| <b>1.4.1 Humectant concentration in condensate</b> | <b>12</b>   |
| <b>1.4.2 Dry condensate yield</b>                  | <b>13</b>   |
| <b>1.4.3 Mutagenicity</b>                          | <b>13</b>   |
| <b>1.5 Comment</b>                                 | <b>15</b>   |
| <b>2 RESPONSIBILITY</b>                            | <b>16</b>   |
| <b>2.1 Project Management</b>                      | <b>16</b>   |
| <b>2.2 Contributing Teams</b>                      | <b>16</b>   |
| <b>3 QUALITY ASSURANCE STATEMENT</b>               | <b>17</b>   |
| <b>4 RESEARCH SUBSTANCES</b>                       | <b>18</b>   |
| <b>4.1 General Specification</b>                   | <b>18</b>   |

2026023466

| CONTENTS<br>=====                                                        | PAGE<br>==== |
|--------------------------------------------------------------------------|--------------|
| 4.2 Supplier's Specification                                             | 20           |
| TABLE 1 CIGARETTE BLEND COMPOSITION AND HUMECTANT CONCENTRATION          | 20           |
| 5 METHOD                                                                 | 25           |
| 5.1 Chronology                                                           | 25           |
| 5.2 Condensate Preparation, Suspension, Storage, and Analyses            | 25           |
| 5.2.1 Mainstream and sidestream whole smoke condensate preparation       | 25           |
| 5.2.2 Suspension and storage of condensate                               | 28           |
| 5.2.3 Analyses                                                           | 30           |
| 5.2.3.1 Determination of water concentration                             | 30           |
| 5.2.3.2 Determination of nicotine concentration                          | 31           |
| 5.2.3.3 Determination of humectants in filler and whole smoke condensate | 34           |
| 5.2.3.4 Bacteriological examination of WSC-I/DMSO suspension             | 37           |
| 5.3 Dosing of Test Substances                                            | 38           |
| 5.4 Metabolic Promutagen Activation System                               | 39           |
| 5.5 Tester Strain Bacteria                                               | 41           |
| 5.5.1 Species and source                                                 | 41           |
| 5.5.2 Cultivation                                                        | 42           |
| 5.5.3 Determination of number of viable bacteria                         | 44           |

2026023467

## CONTENTS

=====

|                                                                                                                                                        | PAGE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5.5.4 Analyses of tester strain properties                                                                                                             | 45   |
| 5.6 Mutagenicity Assay                                                                                                                                 | 48   |
| 5.6.1 Plate incorporation assay                                                                                                                        | 48   |
| 5.6.2 Statistical evaluation                                                                                                                           | 56   |
| FIGURE 1 CHRONOLOGY                                                                                                                                    | 58   |
| FIGURE 2 GLASS IMPACTION TRAP FOR MWSC-I COLLECTION                                                                                                    | 59   |
| FIGURE 3 GLASS IMPACTION TRAP FOR SWSC-I COLLECTION                                                                                                    | 60   |
| TABLE 2 DOSING OF RESEARCH SUBSTANCES                                                                                                                  | 61   |
| TABLE 3 HISTORICAL DATA OF THE SPECIFIC MUTAGENICITY OF<br>MWSC-I AND SWSC-I OF THE STANDARD REFERENCE<br>CIGARETTE 2R1, TIME PERIOD: JUL.80 TO AUG.89 | 62   |
| TABLE 4 HISTORICAL DATA OF SPONTANEOUS AND INDUCED<br>REVERTANTS BY DIAGNOSTIC MUTAGENS, TIME PERIOD:<br>JUN.85 TO DEC.87                              | 63   |
| FIGURE 4 FLOW CHART OF THE PLATE INCORPORATION MUTAGENICITY                                                                                            | 64   |
| 6 STORAGE OF MATERIALS AND RECORDS                                                                                                                     | 65   |
| 7 RESULTS AND COMMENT                                                                                                                                  | 66   |
| 7.1 Text                                                                                                                                               | 66   |
| 7.1.1 Test substance                                                                                                                                   | 66   |
| 7.1.2 Properties of the tester strains and the S9 fraction                                                                                             | 67   |

2026023468

## CONTENTS

|                                                                                                                | PAGE |
|----------------------------------------------------------------------------------------------------------------|------|
| 7.1.3      Mutagenicity of whole smoke condensate                                                              | 68   |
| 7.1.3.1      Dose response and reproducibility                                                                 | 68   |
| 7.1.3.2      Specific mutagenicity of MWSC-I                                                                   | 68   |
| 7.1.3.3      Specific mutagenicity of SWSC-I                                                                   | 69   |
| 7.1.3.4      Mutagenicity per milligram "new tar"                                                              | 70   |
| 7.1.4      Comment                                                                                             | 70   |
| 7.2      Tables and Figures                                                                                    | 71   |
| TABLE 5      HUMECTANT CONCENTRATION IN THE FILLER                                                             | 71   |
| TABLE 6      HUMECTANT YIELD, MWSC-I                                                                           | 72   |
| TABLE 7      HUMECTANT YIELD, SWSC-I                                                                           | 73   |
| TABLE 8      CONDENSATE AND NICOTINE YIELD AND PUFF COUNT,<br>MWSC-I                                           | 74   |
| TABLE 9      CONDENSATE AND NICOTINE YIELD AND PUFF COUNT,<br>SWSC-I                                           | 76   |
| TABLE 10      BACTERIOLOGICAL EXAMINATION OF RESEARCH SUBSTANCE                                                | 78   |
| TABLE 11      SALMONELLA TYPHIMURIUM STRAIN TA98, PHENOTYPIC<br>CHARACTERISTICS                                | 79   |
| TABLE 12      SALMONELLA TYPHIMURIUM STRAIN TA98, VIABILITY                                                    | 80   |
| TABLE 13      SALMONELLA TYPHIMURIUM STRAIN TA98, SPONTANEOUS<br>REVERSION AND RESPONSE TO DIAGNOSTIC MUTAGENS | 81   |
| TABLE 14      SALMONELLA TYPHIMURIUM STRAIN TA100, PHENOTYPIC<br>CHARACTERISTICS                               | 82   |

2026023469

CONTENTS  
=====

|                                                                                                         | PAGE |
|---------------------------------------------------------------------------------------------------------|------|
| TABLE 15 SALMONELLA TYPHIMURIUM STRAIN TA100, VIABILITY                                                 | 83   |
| TABLE 16 SALMONELLA TYPHIMURIUM STRAIN TA100, SPONTANEOUS REVERSION AND RESPONSE TO DIAGNOSTIC MUTAGENS | 84   |
| TABLE 17 ANALYTICAL DATA OF S9 MIXES                                                                    | 85   |
| TABLE 18 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98, CIGARETTE CALYPSO-1                  | 86   |
| TABLE 19 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98, CIGARETTE AREUSE-46                  | 87   |
| TABLE 20 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98, CIGARETTE AREUSE-53                  | 88   |
| TABLE 21 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98, CIGARETTE AREUSE-55                  | 89   |
| TABLE 22 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98, CIGARETTE 2R1                        | 90   |
| TABLE 23 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100, CIGARETTE CALYPSO-1                 | 91   |
| TABLE 24 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100, CIGARETTE AREUSE-46                 | 92   |
| TABLE 25 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100, CIGARETTE AREUSE-53                 | 93   |
| TABLE 26 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100, CIGARETTE AREUSE-55                 | 94   |
| TABLE 27 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100, CIGARETTE 2R1                       | 95   |

2026023470

## CONTENTS

## PAGE

|          |                                                                                   |     |
|----------|-----------------------------------------------------------------------------------|-----|
| TABLE 28 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA98, CIGARETTE CALYPSO-1  | 96  |
| TABLE 29 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA98, CIGARETTE AREUSE-46  | 97  |
| TABLE 30 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA98, CIGARETTE AREUSE-53  | 98  |
| TABLE 31 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA98, CIGARETTE AREUSE-55  | 99  |
| TABLE 32 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA98, CIGARETTE 2R1        | 100 |
| TABLE 33 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA100, CIGARETTE CALYPSO-1 | 101 |
| TABLE 34 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA100, CIGARETTE AREUSE-46 | 102 |
| TABLE 35 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA100, CIGARETTE AREUSE-53 | 103 |
| TABLE 36 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA100, CIGARETTE AREUSE-55 | 104 |
| TABLE 37 | MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN<br>TA100, CIGARETTE 2R1       | 105 |
| TABLE 38 | SPECIFIC MUTAGENICITY OF MWSC-I AND SWSC-I                                        | 106 |
| TABLE 39 | SPECIFIC MUTAGENICITY, RELATIVE DIFFERENCE                                        | 107 |
| TABLE 40 | MUTAGENICITY CALCULATED ON A PER "NEW TAR" BASIS,<br>MWSC-I                       | 108 |

2026023471

## CONTENTS

=====

## PAGE

=====

|           |                                                                               |     |
|-----------|-------------------------------------------------------------------------------|-----|
| TABLE 41  | MUTAGENICITY CALCULATED ON A PER "NEW TAR" BASIS,<br>SWSC-I                   | 109 |
| TABLE 42  | MUTAGENICITY ON A PER "NEW TAR" BASIS, RELATIVE<br>DIFFERENCE                 | 110 |
| FIGURE 5  | YIELD OF CRUDE CONDENSATE, DRY CONDENSATE, WATER,<br>NICOTINE, AND HUMECTANTS | 111 |
| FIGURE 6  | MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE CALYPSO-1      | 112 |
| FIGURE 7  | MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE AREUSE-46      | 113 |
| FIGURE 8  | MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE AREUSE-53      | 114 |
| FIGURE 9  | MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE AREUSE-55      | 115 |
| FIGURE 10 | MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE CALYPSO-1      | 116 |
| FIGURE 11 | MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE AREUSE-46      | 117 |
| FIGURE 12 | MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE AREUSE-53      | 118 |
| FIGURE 13 | MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,<br>CIGARETTE AREUSE-55      | 119 |
| FIGURE 14 | SPECIFIC MUTAGENICITY OF CIGARETTE CONDENSATES,<br>MWSC-I                     | 120 |

2026023472

CONTENTS

=====

PAGE

=====

FIGURE 15 SPECIFIC MUTAGENICITY OF CIGARETTE CONDENSATES,  
SWSC-I

121

FIGURE 16 MUTAGENICITY OF CIGARETTE CONDENSATES ON A PER  
"NEW TAR" BASIS, MWSC-I

122

FIGURE 17 MUTAGENICITY OF CIGARETTE CONDENSATES ON A PER  
"NEW TAR" BASIS, SWSC-I

123

8 REFERENCES

124

2026023473

ABBREVIATIONS (a)(b)

=====

2-AA : 2-aminoanthracene  
2-AF : 2-aminofluorene  
AHM : aryl hydrocarbon monooxygenase (EC 1.14.14.2)  
CFU : colony-forming unit  
DIN : Deutsches Institut für Normung (German Committee of Standards)  
DMSO : dimethyl sulfoxide  
EC : enzyme code according to the "International Union of Biochemistry, Commission on Enzymes"  
Ex : x as exponent to the base 10, e.g., E2 =  $10^2$   
FID : flame ionization detector  
 $x g$  : centrifugal force in terms of the constant of gravitation  
( $1 \times g = 9.81 \text{ m/s}^2$ )  
G6P : glucose-6-phosphate  
M : arithmetic mean  
MMS : methyl methanesulfonate  
MWSC-I: mainstream whole smoke condensate collected with impaction trap  
N : number of individual values  
NADP : nicotinamide adenine dinucleotide phosphate  
NADPH : nicotinamide adenine dinucleotide phosphate, reduced form  
PBS : phosphate-buffered saline  
PT : preliminary title  
PTFE : polytetrafluoroethylene  
r : correlation coefficient  
rpm : revolutions per minute  
RSD : relative standard deviation  
RT : room temperature  
S9 : supernatant of 9000  $\times g$  centrifugation

(a) in addition to those explained immediately on the same page  
(b) Units are given in accordance with SI units (Système International d'Unités).

2026023474

SE : standard error

SOP : standard operating procedure

SWSC-I: sidestream whole smoke condensate collected with impaction  
trap

U : unit

vs : versus

WSC-I : whole smoke condensate collected with impaction trap

2026023475

## 1 SUMMARY

=====

1.1 Objective

Within the framework of the FTR project AREUSE, this study was designed to investigate the mutagenicity of the MAINSTREAM and SIDESTREAM WHOLE SMOKE CONDENSATES of the research cigarettes CALYPSO-1, AREUSE-46, -53, and -55. The mutagenicity determination was carried out using the *Salmonella typhimurium* reverse mutation assay with the tester strains TA98 and TA100 in the presence of a metabolic promutagen activation system.

1.2 Cigarettes

CALYPSO-1 contained the original blend with 2.1 percent propylene glycol and 3.0 percent glycerol as humectants in the filler. AREUSE-46 had the same humectant concentrations but the blend was modified by replacing stems with an additional amount of flue-cured tobacco. It was the reference cigarette for AREUSE-53 and -55. These cigarettes differed from the reference cigarette in that AREUSE-53 contained 1 percent triethylene glycol as an additional humectant and that AREUSE-55 had a glycerol concentration in the filler of 8 percent.

1.3 Experimental Conduct

The mainstream and sidestream whole smoke was simultaneously generated using automatic INBIFO smoking machines. The condensates were collected with glass impaction traps (MWSC-I, SWSC-I). Four batches of each type of condensate per research cigarette were

2026023476

prepared and assayed at the doses 0, 0.05, 0.10, and 0.15 milligrams dry condensate per plate.

The mutagenicity assay performed was a plate incorporation assay. *Salmonella typhimurium* strains TA98 and TA100 were used to detect mutagens which induce frameshift mutation and base-pair substitution respectively. For each tester strain, 2 independent consecutive substudies were carried out using 2 individual condensate batches and 4 plates per dose in each substudy. A postmitochondrial (S9) fraction from the livers of rats treated with Aroclor 1254 was used for the metabolic promutagen activation of the whole smoke condensates. Mutation events were detected in tester strain bacteria reverted from histidine auxotrophy to prototrophy by growth on histidine-deficient agar plates. The number of revertants at the given doses was used to calculate the linear dose-response curve. From this curve, the mutagenicity was calculated as the increase in the number of revertants per milligram dry condensate (specific mutagenicity). Further, the mutagenicity of the condensates was calculated per milligram "new tar", i.e., dry condensate minus nicotine minus humectant content.

The assays were carried out according to the OECD guideline no. 471 (1983). However, only strains TA98 and TA100 were used. These tester strains were found to be in accordance with their genotypes, their spontaneous reversion, and their response to diagnostic mutagens.

#### 1.4 Results

##### 1.4.1 Humectant concentration in condensate

Propylene glycol could not be determined because it could not be separated from the solvent DMSO. The glycerol yield of the MWSC-I

2026023477

was approx. 1.3 milligrams per cigarette for CALYPSO-1, AREUSE-46, and -53 and 3.6 milligrams per cigarette for AREUSE-55. For the SWSC-I, it was approx. 1.8 and 6.3 milligrams per cigarette. The triethylene glycol yield of the MWSC-I was <0.1 milligrams per cigarette for CALYPSO-1, AREUSE-46, and -55 and 1.0 milligram per cigarette for AREUSE-53. For the SWSC-I, it was ≤0.1 and 1.2. These humectant yields correlated with the concentrations determined in the filler.

#### 1.4.2 Dry condensate yield

The dry condensate yield of the MWSC-I of CALYPSO-1, AREUSE-46, -53, and -55 was approx. 17 milligrams per cigarette. For the SWSC-I, it was 22, 23, 25, and 28 milligrams per cigarette respectively.

#### 1.4.3 Mutagenicity

The mutagenic activity of the MWSC-I and SWSC-I of the research cigarettes found in substudy 1 was reproduced in substudy 2. The specific mutagenicity was as follows:

2026023478

| TYPE<br>OF CON-<br>DENSATE | TESTER<br>STRAIN,<br>MUTATION       | CIGARETTE | SPECIFIC<br>MUTAGENICITY<br>(rev./mg dry<br>condensate) | RELATIVE DIFFERENCE (a) |        |           |           |
|----------------------------|-------------------------------------|-----------|---------------------------------------------------------|-------------------------|--------|-----------|-----------|
|                            |                                     |           |                                                         | M (b)                   | SE     | CALYPSO-1 | AREUSE-46 |
| MWSC-I                     | TA98,<br>frameshift<br>mutation     | CALYPSO-1 | 2180                                                    | 64                      | -      | -0.10=    |           |
|                            |                                     | AREUSE-46 | 2401                                                    | 95                      | 0.10=  | -         |           |
|                            |                                     | -53       | 2317                                                    | 92                      | 0.06=  | -0.04=    |           |
|                            |                                     | -55       | 2119                                                    | 61                      | -0.03= | -0.12=    |           |
|                            | TA100,<br>base-pair<br>substitution | CALYPSO-1 | 984                                                     | 85                      | -      | -0.03=    |           |
|                            |                                     | AREUSE-46 | 1009                                                    | 61                      | 0.03=  | -         |           |
|                            |                                     | -53       | 955                                                     | 31                      | -0.03= | -0.05=    |           |
|                            |                                     | -55       | 867                                                     | 48                      | -0.13= | -0.15=    |           |
| SWSC-I                     | TA98,<br>frameshift<br>mutation     | CALYPSO-1 | 1781                                                    | 82                      | -      | -0.03=    |           |
|                            |                                     | AREUSE-46 | 1827                                                    | 81                      | 0.03=  | -         |           |
|                            |                                     | -53       | 1546                                                    | 74                      | -0.14= | -0.17+    |           |
|                            |                                     | -55       | 1282                                                    | 52                      | -0.33+ | -0.35+    |           |
|                            | TA100,<br>base-pair<br>substitution | CALYPSO-1 | 1130                                                    | 52                      | -      | 0.02=     |           |
|                            |                                     | AREUSE-46 | 1113                                                    | 35                      | -0.02= | -         |           |
|                            |                                     | -53       | 991                                                     | 40                      | -0.13= | -0.12=    |           |
|                            |                                     | -55       | 880                                                     | 28                      | -0.25+ | -0.23+    |           |

Only relative differences  $\geq 0.10$  between the research cigarettes are discussed.

The specific mutagenicity of the MWSC-I of the test cigarette AREUSE-55 was numerically lower than that of the reference cigarette AREUSE-46 with respect to both types of mutation. MWSC-I of CALYPSO-1 was less mutagenic than that of AREUSE-46 with

(a) difference between the specific mutagenicities of the test cigarette and the cigarettes CALYPSO-1 or AREUSE-46 divided by the mean of them, level of significance set at alpha = 0.05, reached at a relative difference between 2 research cigarettes  $> 0.16$  (absolute value)

=: no statistically significant difference

+: statistically significant difference

(b) N = 4 condensate batches

2026023479

respect to frameshift mutation and more mutagenic than that of AREUSE-55 with respect to base-pair substitution. However, none of these differences were statistically significant.

The specific mutagenicity of the SWSC-I of the test cigarettes AREUSE-53 and -55 was lower than that of the reference cigarette AREUSE-46 with respect to both types of mutation. The differences were statistically significant in 3 of 4 cases. SWSC-I of CALYPSO-1 was more mutagenic than that of AREUSE-53 and -55 with respect to both types of mutation, a statistical significance being observed for AREUSE-55.

### 1.5 Comment

The modification of the original blend by replacing stems with an additional amount of flue-cured tobacco was found to slightly increase the specific mutagenicity of the MWSC-I (CALYPSO-1 vs AREUSE-46).

Increasing triethylene glycol from 0 to 1 percent and glycerol from 3 to 8 percent in the modified blend were found to decrease the mutagenicity on a dry condensate basis (AREUSE-46 vs -53 and -55). However, when the mutagenicity was calculated on a "new tar" basis, the differences between the reference and the test cigarettes were no longer seen. Therefore, the reduction in the mutagenicity on a dry condensate basis seems to be related to a dilution effect caused by the transferred humectants.

I N B I F O  
Institut für biologische  
Forschung GmbH

2026023480

2 RESPONSIBILITY

2.1 Project Management

Study Director:

27.Nov.90 ..... *F. Tewes* .....  
Date Dr.rer.nat. F. Tewes  
Biologist (Diplombiologe)

2.2 Contributing Teams

Analytical Chemistry:

27.Nov.90 ..... *P. Voncken* .....  
Date Dr.rer.nat. P. Voncken  
Chemist (Diplomchemiker)

Microbiology:

27.Nov.90 ..... *F. Tewes* .....  
Date Dr.rer.nat. F. Tewes  
Biologist (Diplombiologe)

2026023481

3 QUALITY ASSURANCE STATEMENT

=====

The study was conducted according to the Good Laboratory Practice Regulations (a).

Inspections on this study were performed by the quality assurance unit on 11, 15, and 16 Aug.89. All findings were immediately reported to the study director and to the general management.

This report accurately reflects the study carried out and the results obtained.

29. Nov. 1990

.....  
Date Dr.med. U. Hackenberg  
Pharmacologist and Toxicologist  
(Pharmakologe und Toxikologe)

2026023482

(a) Federal Register (1987)

4 RESEARCH SUBSTANCES  
=====4.1 General Specification

Research substance: mainstream and sidestream whole smoke condensate of 4 research cigarettes (a) collected with glass impaction traps  
blend composition and humectant concentration: see TABLE 1

## Research cigarettes

Code: (1) CALYPSO-1  
(2) AREUSE-46  
(3) AREUSE-53  
(4) AREUSE-55

Source: FTR

Date of receipt at INBIFO: 15 Jun. 89

INBIFO substance no.: (1) Z 1135A  
(2) Z 1136A  
(3) Z 1137A  
(4) Z 1138A

Labeling on cigarette pack: (1) CALYPSO 001 P  
(2) AREUSE 046 P  
(3) AREUSE 053 P  
(4) AREUSE 055 P

Amount: 1200

Packaging: approx. 300 single cigarettes/plastic box

Storage: in walk-in cold room (R922), approx. 4 °C, relative humidity uncontrolled

(a) In addition to the research cigarettes, the standard reference cigarette 2R1 was used as internal control.

2026023483

prior to conditioning cigarettes stored at approx. -20 °C for approx. 24 h and subsequently equilibrated at RT before opening

Conditioning: in conditioning room (R326) for approx. 7 d prior to use at approx. 23 °C, 60 % relative humidity

cigarettes taken out of their boxes and deposited in approx. 7 horizontal layers

Selection: no selection

Condensate

Preparation: see Chapter 5.2

Number of condensate batches: 4 condensate batches/condensate type

Number of single cigarettes per condensate batch: approx. 240

Solvent: DMSO

Specification: yield of dry condensate, water, and nicotine and puff count determined for each WSC-I batch

Storage: in the dark at 4 °C, approx. 7 d prior to the mutagenicity assay

Scientific version: SOP MB 84/2, QA 8/7  
Text version: 21 Apr. 89

2026023484

4.2 Supplier's Specification

| CIGARETTE | BLEND COMPOSITION (%) |      |      |      |      |     |     | HUMECTANT CONC.<br>IN THE FILLER (%) |     |     |
|-----------|-----------------------|------|------|------|------|-----|-----|--------------------------------------|-----|-----|
|           | BU                    | FC   | OR   | RL   | ET   | IS  | PG  | GLY                                  | TEG | (a) |
| CALYPSO-1 | 27.2                  | 15.7 | 15.0 | 24.8 | 14.0 | 3.3 | 2.1 | 3.0                                  | -   |     |
| AREUSE-46 | 27.9                  | 18.8 | 15.0 | 24.3 | 14.0 | 0   | "   | "                                    | -   |     |
| -53       | "                     | "    | "    | "    | "    | "   | "   | "                                    | 1.0 |     |
| -55       | "                     | "    | "    | "    | "    | "   | "   | 8.0                                  | -   |     |

TABLE 1 CIGARETTE BLEND COMPOSITION AND HUMECTANT CONCENTRATION

Remarks: BU: Burley tobacco  
 FC: flue-cured tobacco  
 OR: oriental tobacco  
 RL: reconstituted leaf  
 ET: expanded tobacco  
 IS: improved stems  
 PG: propylene glycol  
 GLY: glycerol  
 TEG: triethylene glycol

(a) The concentrations of GLY in cigarette AREUSE-53 and TEG in AREUSE-55 included in the supplier's analysis data sheets are probably not correct (see also Chapter 7.1.1, and TABLES 5 to 7)

S-a.Tab.5 Seite 8A

2026023485

TAPPER: WP60

|                         |                |                             |                          |      |      |      |      |      |           |
|-------------------------|----------------|-----------------------------|--------------------------|------|------|------|------|------|-----------|
| 1                       | 33             | 33.120                      | DATE 14/02/89 TIME 09.22 |      |      |      |      |      |           |
| 3303TE001P              | 02896027       |                             |                          |      |      |      |      |      |           |
| ANALYSIS<br>PMF SMOKING |                | PROJECT LEADER SAP          |                          |      |      |      |      |      |           |
| LABORATORY              |                | PROJECT NR. 6027            | PROTOTYPE NR. 001P       |      |      |      |      |      |           |
| TYPE OF ANALYSIS        |                | BAR CODE FENG783            |                          |      |      |      |      |      |           |
| TEST                    |                | DATE OF ANALYSIS 02/89      |                          |      |      |      |      |      |           |
| <br>CIGARETTE           |                |                             |                          |      |      |      |      |      |           |
| CIG. LENGTH, TOTAL      | MM 21 085      | CIG. WEIGHT, TOTAL          | MG/CIG 29 1008           |      |      |      |      |      |           |
| BUTT LENGTH             | MM 22 029      | F+P WT                      | MG/CIG 30 218            |      |      |      |      |      |           |
| SMOKED LENGTH           | MM 23 056      | TOB. WT                     | MG/CIG 31 0790           |      |      |      |      |      |           |
| ROD LENGTH CIGARETTE    | MM 24 064      | CIG. DIAMETER               | MM 25 7.93               |      |      |      |      |      |           |
| ROD (TOBACCO) VOLUME    | ML 26 3.163    | CIG. RTD                    | MM H2O 33 104            |      |      |      |      |      |           |
| BURN. TIME              | MIN/60 MM 35   | CIG. VENTILATION            | X 58 15                  |      |      |      |      |      |           |
| PAP POR                 | ML/CM2. MIN 27 | FIRMNESS AT 12.5 X OV       | 44 34 3.30               |      |      |      |      |      |           |
| (PAP. VENTIL. SYST.     | 28             | EXPANDED TOBACCO            | X 32                     |      |      |      |      |      |           |
| FILLING POWER CV        | ML/106 27      |                             |                          |      |      |      |      |      |           |
| FIRMNESS AS IS          | MM 08 3.06     |                             |                          |      |      |      |      |      |           |
| OVEN VOLATILES AS IS    | X 09 11.9      |                             |                          |      |      |      |      |      |           |
| <br>FILLER              |                |                             |                          |      |      |      |      |      |           |
| ALKALOIDS, TOTAL        | X 76 1.79      | KJELDAHL NITROGEN           | X 78                     |      |      |      |      |      |           |
| REDUCING SUGARS         | X 75 07.5      | NITROGEN, TOTAL             | X 79                     |      |      |      |      |      |           |
| NITRATE NITROGEN        | X 76 0.22      | OV AT EQUILIBRIUM           | X 71 14.7                |      |      |      |      |      |           |
| AMMONIA NITROGEN        | X 77 0.31      | WEIG 12.5                   | MG/CIG 72 0770           |      |      |      |      |      |           |
|                         |                | DENSITY                     | MG/ML 73 244             |      |      |      |      |      |           |
| <br>FILTER              |                |                             |                          |      |      |      |      |      |           |
| FILTER LENGTH, TOTAL    | MM 51 21       | FILTER RTD                  | MM H2O 57 072            |      |      |      |      |      |           |
| FILTER LENGTH PLUG 1    | MM 53          | FILTER TYPE                 | 59 S                     |      |      |      |      |      |           |
| FILTER LENGTH PLUG 2    | MM 52          | FM FILTER MATERIAL          | 60 CA                    |      |      |      |      |      |           |
| FILTER LENGTH PLUG 3    | MM 61          | DEN.SIN1 68                 | SECT. - 69               |      |      |      |      |      |           |
| TIPPING LENGTH ON CIG.  | MM 54 25       | DEN.SIN2 61                 | SECT. - 62               |      |      |      |      |      |           |
| TIPPING PAPER TYPE      | 55 TC          | DEN.SIN3 39                 | SECT. - 60               |      |      |      |      |      |           |
| TIPPING PERFO. TYPE     | 18 FPZ         | FA FIL. ADDITIVE TYPE       | A3                       |      |      |      |      |      |           |
| TIPPING PERFO. LINES    | NO. 65         | FA FIL. ADDITIVE CONTMG/FIL | 66                       |      |      |      |      |      |           |
| FILTER WEIGHT           | MG/FIL 56 167  |                             |                          |      |      |      |      |      |           |
| TPM FR                  | MG/CIG 50      |                             |                          |      |      |      |      |      |           |
| WATER FR                | MG/CIG 69      |                             |                          |      |      |      |      |      |           |
| DPM FR                  | MG/CIG 65      |                             |                          |      |      |      |      |      |           |
| SN F                    | MG/FIL 66      |                             |                          |      |      |      |      |      |           |
| FILTER EFFICIENCY       | X 67           |                             |                          |      |      |      |      |      |           |
| <br>SMOKE               |                |                             |                          |      |      |      |      |      |           |
| CO CARBON MONOXIDE      | MG/CIG 81 17.6 | NO. NITROGEN MONOXIDE       | MG/CIG 82 0.26           |      |      |      |      |      |           |
|                         |                | (1)                         | (2)                      | (3)  | (4)  | (5)  | (6)  | (7)  | (8)       |
| T.P.M.                  | MG/CIG 83 18.7 | 18.1                        | 18.7                     | 18.5 | 18.6 | 17.5 | 17.8 | 19.2 | = 18.3    |
| H2O WATER IN TP.M.      | MG/CIG 80 2.2  | 2.3                         | 2.5                      | 2.5  | 2.4  | 1.9  | 2.6  | 2.8  | = 2.6     |
| D.P.M.                  | MG/CIG 86 15.9 | 15.8                        | 16.2                     | 16.1 | 16.0 | 15.6 | 15.6 | 16.5 | = 15.9    |
| TAR                     | MG/CIG 90      | 16.9                        | 15.2                     | 15.1 | 15.0 | 16.8 | 16.5 | 15.5 | = 15.0    |
| SM. SMOKE NICOTINE      | MG/CIG 85      | 0.95                        | 0.97                     | 0.94 | 0.97 | 0.89 | 0.92 | 0.98 | = 0.95    |
| RATIO SN/TAR            | X 10           |                             |                          |      |      |      |      |      |           |
| PUFF COUNT              | 40./CIG 86     | 8.6                         | 8.6                      | 8.8  | 8.8  | 9.1  | 8.6  | 8.6  | 9.2 = 8.7 |
| H.C.N                   | UG/CIG 88      |                             |                          |      |      |      |      |      |           |
| ALDEHYDES, TOTAL        | MG/CIG 89      |                             |                          |      |      |      |      |      |           |

2026023486

33

3303TE046P 0389.611

33.120

DATE 28/03/89 TIME 06.33

|                  |                        |
|------------------|------------------------|
| ANALYSIS         | PROJECT LEADER SP4     |
| PHE SMOKING      |                        |
| LABORATORY       | PROJECT VR. 0611       |
| TYPE OF ANALYSIS | BAR CODE FEN0542       |
| TEST             | DATE C. ANALYSIS 03/89 |

*ML model (1)*

|                         |                |                       |                |
|-------------------------|----------------|-----------------------|----------------|
| <b>CIGARETTE</b>        |                |                       |                |
| CIG. LENGTH, TOTAL      | MM 21.084      | CIG. WEIGHT, TOTAL    | MG/CIG 29.1016 |
| BUTT LENGTH             | MM 22.029      | F+F WT                | MG/CIG 30.220  |
| SMOKED LENGTH           | MM 23.055      | TOB WT                | MG/CIG 31.0796 |
| ROD LENGTH CIGARETTE    | MM 24.063      | CIG. DIAMETER         | MM 25.7.92     |
| ROD (TOBACCO) VOLUME    | ML 26.3.107    | CIG. RTD              | MM H20 33.105  |
| BURN. TIME              | MM 34/40 MM 35 | CIG. VENTILATION      | 1.58.14        |
| PAP POR                 | ML/CM2. MIN 27 | FIRMNESS AT 12.5 ° OV | MM 34.2.89     |
| CIG. PAP. VENTIL. SYST. | 28             | EXPANDED TOBACCO      | % 32           |
| FILLING POWER CV        | 4L/106.37      |                       |                |
| COHESION AS IS          | MM 38.2.70     |                       |                |
| OXY VOLATILES AS IS     | % 39.12.0      |                       |                |

|                  |           |                   |                |
|------------------|-----------|-------------------|----------------|
| <b>FILLER</b>    |           |                   |                |
| ALKALOIDS, TOTAL | % 76.1.98 | KJELDAHL NITROGEN | % 78           |
| REDUCING SUGARS  | % 75.07.7 | NITROGEN, TOTAL   | % 79           |
| VITRATE NITROGEN | % 76.0.18 | OV AT EQUILIBRIUM | % 71.13.0      |
| AMMONIA NITROGEN | % 77.0.29 | WEIG 12.5         | MG/CIG 72.0791 |
|                  | .         | DENSITY           | MG/ML 73.255   |

|                        |               |                            |               |
|------------------------|---------------|----------------------------|---------------|
| <b>FILTER</b>          |               |                            |               |
| FILTER LENGTH, TOTAL   | MM 51.21      | FILTER RTD                 | 14.420.57.075 |
| FILTER-LENGTH PLUG 1   | MM 53         | FILTER TYPE                | 59.S          |
| FILTER-LENGTH PLUG 2   | MM 52         | F/F FILTER MATERIAL        | 6C CA         |
| FILTER-LENGTH PLUG 3   | MM 61         | DEN.SIN1 6E                | SECT.- 60     |
| TIPPING LENGTH OV CIG. | MM 54.25      | DEN.SIN2 61                | SECT.- 62     |
| TIPPING PAPER TYPE     | 55 IC         | DEN.SIN3 39                | SECT.- 6C     |
| TIPPING PERFO. TYPE    | 18 EPZ        | FA FIL.ADDITIVE TYPE       | 63            |
| TIPPING PERFO. LINES   | 40.65         | FA FIL.ADDITIVE CONTMG/FIL | 64            |
| PER WEIGHT             | 4G/FIL 56.17C |                            |               |
| TPM FR                 | 4G/CIG 50     |                            |               |
| WATER FR               | 4G/CIG 49     |                            |               |
| DPM FR                 | 4G/CIG 63     |                            |               |
| SN.F                   | 4G/FIL 66     |                            |               |
| FILTER EFFICIENCY      | % 67          |                            |               |

|                    |                |                                     |
|--------------------|----------------|-------------------------------------|
| <b>SMOKE</b>       |                |                                     |
| CO CARBON MONOXIDE | 4G/CIG 31.16.6 | NO NITROGEN MONOXIDE MG/CIG 32.0.24 |

|                    | (1)            | (2)  | (3)  | (4)  | (5)  | (6)  | (7)  | (8)         |
|--------------------|----------------|------|------|------|------|------|------|-------------|
| TPM                | 4G/CIG 33.21.2 | 21.3 | 20.6 | 21.5 | 21.8 | 21.7 | 20.9 | = 21.3      |
| H2O WATER IN TPM   | 4G/CIG 80.3.0  | 2.6  | 2.7  | 2.6  | 2.6  | 2.8  | 2.6  | = 2.7       |
| DPM                | 4G/CIG 84.18.2 | 18.7 | 17.9 | 19.0 | 19.3 | 18.9 | 18.3 | = 18.6      |
| TAR                | 4G/CIG 90.17.0 | 17.4 | 16.7 | 17.7 | 18.3 | 17.6 | 17.0 | = 17.3      |
| SM. SMOKE NICOTINE | 4G/CIG 85.1.25 | 1.31 | 1.24 | 1.33 | 1.29 | 1.31 | 1.27 | 1.28 = 1.29 |
| RATIO SM/TAR       | % 10           |      |      |      |      |      |      | 7.6         |
| PUFF COUNT         | 40./CIG 86.9.7 | 10.3 | 9.8  | 10.3 | 10.3 | 9.5  | 9.9  | 9.5 = 9.9   |
| H.C.N              | 4G/CIG 88      |      |      |      |      |      |      |             |
| ALDEHYDES, TOTAL   | 4G/CIG 89      |      |      |      |      |      |      |             |

2026023487

|                                                    |                                                          |     |     |     |     |     |     |
|----------------------------------------------------|----------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| 1                                                  | 33                                                       |     |     |     |     |     |     |
| 3303TEC53P                                         | 06390611                                                 |     |     |     |     |     |     |
|                                                    |                                                          |     |     |     |     |     |     |
|                                                    | 33.120                                                   |     |     |     |     |     |     |
|                                                    | DATE 21/04/89 TIME 07.26                                 |     |     |     |     |     |     |
| ANALYSIS                                           | PROJECT LEADER SPM                                       |     |     |     |     |     |     |
| TYPE SMOKING                                       |                                                          |     |     |     |     |     |     |
| LABORATORY                                         | PROJECT NR. 0611                                         |     |     |     |     |     |     |
|                                                    | PROTOTYPE NR. 0530                                       |     |     |     |     |     |     |
| TYPE OF ANALYSIS                                   | BAR CODE FEN1587                                         |     |     |     |     |     |     |
| TEST                                               | DATE O. ANALYSIS 06/99                                   |     |     |     |     |     |     |
| <br>CIGARETTE<br><br>CIG. LENGTH, TOTAL MM 21 C84  |                                                          |     |     |     |     |     |     |
| BUTT LENGTH                                        | MM 22 D29                                                |     |     |     |     |     |     |
| STOKED LENGTH                                      | MM 23 D55                                                |     |     |     |     |     |     |
| ROD LENGTH CIGARETTE                               | MM 24 C63                                                |     |     |     |     |     |     |
| ROD (TOBACCO) VOLUME                               | PL 24 3.097                                              |     |     |     |     |     |     |
| BURN. TIME                                         | 414/60 MM 35                                             |     |     |     |     |     |     |
| PAP. POR.                                          | % 41/C42.4IN 27                                          |     |     |     |     |     |     |
| CIG. PAP. VENTIL. SYST.                            | 28                                                       |     |     |     |     |     |     |
| FILLING POWER CV                                   | 4L/10G 27                                                |     |     |     |     |     |     |
| SH. LENGTH AS IS                                   | MM 38 2.79                                               |     |     |     |     |     |     |
| OVEN VOLATILES AS IS                               | % 39 12.6                                                |     |     |     |     |     |     |
| <br>FILLER<br><br>ALKALOIDS, TOTAL % 74 1.96       |                                                          |     |     |     |     |     |     |
| REDUCING SUGARS                                    | % 75 08.6                                                |     |     |     |     |     |     |
| NITRATE NITROGEN                                   | % 76 0.17                                                |     |     |     |     |     |     |
| AMMONIA NITROGEN                                   | % 77 C.33                                                |     |     |     |     |     |     |
| <br>FILTER<br><br>FILTER LENGTH, TOTAL MM 51 21    |                                                          |     |     |     |     |     |     |
| FILTER LENGTH PLUG 1                               | MM 53                                                    |     |     |     |     |     |     |
| FILTER LENGTH PLUG 2                               | MM 52                                                    |     |     |     |     |     |     |
| FILTER LENGTH PLUG 3                               | MM 61                                                    |     |     |     |     |     |     |
| TIPPING LENGTH ON CIG.                             | MM 54 25                                                 |     |     |     |     |     |     |
| TIPPING PAPER TYPE                                 | S5 ICD                                                   |     |     |     |     |     |     |
| TIPPING PERFO. TYPE                                | 18 EPR                                                   |     |     |     |     |     |     |
| TIPPING PERFO. LINES NO. 65                        |                                                          |     |     |     |     |     |     |
| PER FILTER WEIGHT                                  | MG/FILT 56 166                                           |     |     |     |     |     |     |
| TPW FR                                             | MG/CIG 50                                                |     |     |     |     |     |     |
| WATER FR                                           | MG/CIG 69                                                |     |     |     |     |     |     |
| DPM FR                                             | MG/CIG 65                                                |     |     |     |     |     |     |
| SM. F                                              | MG/FILT 66                                               |     |     |     |     |     |     |
| FILTER EFFICIENCY                                  | % 67                                                     |     |     |     |     |     |     |
| <br>SMOKE<br><br>CO CARBON MONOXIDE MG/CIG 81 15.2 |                                                          |     |     |     |     |     |     |
| NO. NITROGEN: MONOXIDE MG/CIG 82 2.63              |                                                          |     |     |     |     |     |     |
| (1)                                                | (2)                                                      | (3) | (4) | (5) | (6) | (7) | (8) |
| T.P. 4                                             | 43/CIG 32 2.8 19.7 22.7 19.4 21.4 19.5 21.5 19.5 = 20.3  |     |     |     |     |     |     |
| H2O WATER IN TPS                                   | 46/CIG 82 2.2 2.5 2.6 2.7 2.5 2.3 2.7 2.7 = 2.6          |     |     |     |     |     |     |
| D.P. 4                                             | 46/CIG 84 18.6 17.2 18.2 17.1 19.0 17.2 16.9 17.2 = 17.0 |     |     |     |     |     |     |
| TAR                                                | 46/CIG 90 17.3 16.1 17.0 16.0 17.8 16.1 17.7 16.0 = 16.8 |     |     |     |     |     |     |
| SM. SMOKE NITROGEN                                 | MG/CIG 95 1.26 1.12 1.22 1.13 1.21 1.13 1.19 1.13 = 1.17 |     |     |     |     |     |     |
| RATIO SM/TAR                                       | % 10                                                     |     |     |     |     |     |     |
| PUFF COUNT                                         | 40./CIG 96 9.9 9.5 9.7 9.2 9.6 9.2 9.3 9.3 = 9.5         |     |     |     |     |     |     |
| H.C.N                                              | UG/CIG 98                                                |     |     |     |     |     |     |
| ALDEHYDES, TOTAL                                   | MG/CIG 99                                                |     |     |     |     |     |     |

2026023488

1 33  
 3303TE055P 04390611

33.12G DATE 21/04/99 TIME 07.25

ANALYSIS PROJECT LEADER SPM  
 PME SMOKING  
 LABORATORY PROJECT NR. 0611 PROTOTYPE NR. 0550  
 TYPE OF ANALYSIS BAR CODE FENC532  
 TEST DATE O. ANALYSIS 26/99

CIGARETTE  
 CIG. LENGTH, TOTAL MM 21.04 CIG. WEIGHT, TOTAL MG/CIG 29.1013  
 BUTT LENGTH MM 22.029 F+P WT MG/CIG 30.219  
 SMOKED LENGTH MM 23.055 TOB WT MG/CIG 31.0796  
 ROD LENGTH CIGARETTE MM 24.063 CIG. DIAMETER MM 25.7.92  
 ROD (TOBACCO) VOLUME ML 26.3.103 CIG. RTD MM 420.33.089  
 BURN. TIME MIN/60 MM 35 CIG. VENTILATION 58.23  
 PAP. PGR ML/CM2.4IN 27 FIRMESS AT 12.5 + 0V MM 34.3.67  
 CIG. PAP. VENTIL. SYST. 28 EXPANDED TOBACCO 3.32  
 FILLING POWER CV ML/10G 07  
 FIRMNESS AS IS MM 28.6.09  
 OVER VOLATILES AS IS % 20.14.1

FILLER  
 ALKALOIDS, TOTAL % 76.1.88 KJELDAHL NITROGEN 3.78  
 REDUCING SUGARS % 75.08.9 NITROGEN, TOTAL 1.70  
 NITRATE NITROGEN % 76.0.18 OV AT EQUILIBRIUM 1.71.15.6  
 AMMONIA NITROGEN % 77.0.34 HEIG 12.5 MG/CIG 72.0750  
 DENSITY MG/ML 73.247

FILTER  
 FILTER LENGTH, TOTAL MM 51.21 FILTER RTD 4.420.57.069  
 FILTER-LENGTH PLUG 1 MM 53 FILTER TYPE 59.S  
 FILTER-LENGTH PLUG 2 MM 52 FM FILTER MATERIAL 60.CA  
 FILTER-LENGTH PLUG 3 MM 61 DEN.SIN1.6E SECT.- 69  
 TIPPING LENGTH ON CIG. MM 54.25 DEN.SIN2.61 SECT.- 62  
 TIPPING PAPER TYPE 55.1C DEN.SIN3.39 SECT.- 40  
 TIPPING PERFO. TYPE 18.EPZ FA FIL.ADDITIVE TYPE 63  
 TIPPING PERFO. LINES NO. 65 FA FIL.ADDITIVE CONTENTS/FIL 54  
 TIP WEIGHT MG/FIL 56.168  
 TPM FR MG/CIG 52  
 WATER FR MG/CIG 69  
 DPM FR MG/CIG 65  
 SN F MG/FIL 66  
 FILTER EFFICIENCY % 67

SMOKE  
 CO CARBON MONOXIDE MG/CIG 81.15.6 NO NITROGEN MONOXIDE MG/CIG 32.0.21

|                    | (1)            | (2)  | (3)  | (4)  | (5)  | (6)  | (7)  | (8)         |
|--------------------|----------------|------|------|------|------|------|------|-------------|
| TPM                | MG/CIG 83.27.8 | 21.6 | 22.9 | 21.7 | 22.7 | 20.4 | 20.3 | 21.1 = 21.7 |
| H2O WATER IN TPM   | MG/CIG 85.3.0  | 3.2  | 3.3  | 2.7  | 3.0  | 2.7  | 3.2  | 2.8 = 3.0   |
| DPM                | MG/CIG 86.12.8 | 18.4 | 17.6 | 19.0 | 17.7 | 17.7 | 17.6 | 18.3 = 18.0 |
| TAR                | MG/CIG 30.16.7 | 17.3 | 16.5 | 17.8 | 16.7 | 16.6 | 16.6 | 17.2 = 16.9 |
| SM. SMOKE NICOTINE | MG/CIG 85.1.08 | 1.37 | 1.08 | 1.13 | 1.05 | 1.06 | 1.04 | 1.10 = 1.08 |
| RATIO SN/TAR       | % 10           |      |      |      |      |      |      | 6.6         |
| PUFF COUNT         | VG./CIG 86     | 9.1  | 10.0 | 9.5  | 10.1 | 9.3  | 9.4  | 9.6         |
| H.C.M              | MG/CIG 88      |      |      |      |      |      |      |             |
| ALDEHYDES, TOTAL   | MG/CIG 89      |      |      |      |      |      |      |             |

## 5 METHOD

## 5.1 Chronology

(see FIGURE 1)

## 5.2 Condensate Preparation, Suspension, Storage, and Analyses

#### 5.2.1 Mainstream and sidestream whole smoke condensate preparation

## **Principle:**

mechanical open-end smoking to a defined butt length in an automatic negative pressure (vacuum pump) smoking machine

## mainstream smoke collection with impaction trap

sidestream smoke collection by means of a circular hood and a special impaction trap

Time: see FIGURE 1

Sample material and quantity: cigarettes, approx. 240/batch

## **Equipment**

## **Smoking machine**

Type:

30-port automatic INBIFO smoking machine with a circular hood for sidestream smoke collection

**Number of machines:**

2

**Machine no.:**

0035, 0036

### **Loading of cigarettes:**

automatically into the cigarette holding device up to a depth of 9 + 1 mm in accordance with DIN 10240

0480

Source: <https://www.industrydocuments.ucsf.edu/docs/trmm0000>

2026023490

**Lighting of cigarettes:** automatically or manually with an iodine spot lamp

iodine spot lamp:  
Halogen-Bellaphot, 15 V, 150 W,  
gold-plated reflector,  
Osram, no. 64635,  
R. Schahl,  
D-8000 München 71

**Ejection of cigarettes:** automatically at butt length of at least 23 mm, but not less than the length of the filter + 8 mm or not less than the length of the tipping paper + 3 mm, in accordance with DIN 10240

**Vacuum pump**

**Mainstream smoke:** membrane vacuum pump N 0135/AVE,  
K. Neuberger KG,  
D-7800 Freiburg-Munzingen

**Sidestream smoke:** water ringpump LRKA 10603,  
SIHI Halberg,  
via Hartmann und Esser GmbH  
und Co.,  
D-5000 Köln 91

**Flowmeter:** rotameter, L 4/160,  
Rota, Dr. Henning KG,  
D-7867 Wehr/Baden

soap-film flowmeter,  
Faust GmbH,  
D-5000 Köln 90

**Impaction trap for mainstream smoke**

**Type:** glass "impaction trap for cigarette smoke condensate collection" according to Philip Morris (see FIGURE 2),  
Faust GmbH,  
D-5000 Köln 90

**Capillary:** length: 5 mm  
bore: 0.4 mm

2026023491

Mode of installation of  
the impaction trap insert: distance of 0.5 mm between capillary tip and wall of flask  
calibrated with a PTFE sheet  
spacer with a thickness of 0.5 mm

Connection of impaction  
trap of smoking machine:  
impaction trap lies horizontally  
below smoking machine connected  
via glass tube

dimension of connecting glass  
tubes (between impaction trap and  
smoking machine):  
length: 51 cm  
outer diameter: 13 mm  
inner diameter: 8 mm

Impaction trap for  
sidestream smoke

Type:  
glass impaction trap for  
sidestream smoke condensate collection (see FIGURE 3),  
Faust GmbH,  
D-5000 Köln 90

Outlet nozzle:  
annular fissure, 88 mm length and  
0.1 mm width

Distance of the  
impaction plate from  
the outlet nozzle:

approx. 0.1 mm

Installation of  
impaction trap:

in vertical position in an  
ice/water bath below smoking  
machine connected via copper tube  
with sidestream smoke collection  
hood

dimension of copper tube:  
length: 70 cm  
outer diameter: 35 mm  
inner diameter: 30 mm

2026023492

**Procedure**

Puff frequency/cigarette: 1 puff/min

Puff duration: 2 s

Puff volume: 35 ml

Puff profile: rectangular

**Suction flow rate**

Mainstream smoke: 1.05 l/min

Sidestream smoke: approx. 120 l/min,  
range: 90 to 160 l/min

**Pressure in impaction trap**

Mainstream smoke: approx. 4E4 Pa (0.4 bar)

Sidestream smoke: approx. 6E4 Pa (0.6 bar),  
regulated with pressure gauge

Scientific version: SOP AC 41/2, AC 42/2  
Text version: 23 Aug. 89

**5.2.2 Suspension and storage of condensate**

**Principle:** suspension of WSC-I in DMSO by sonication

**Time:** immediately after WSC-I preparation

**Sample material and quantity:** total WSC-I of each condensate batch

**Results expressed in:** g/l, mg/cigarette

2026023493

Equipment:

sonication water bath:  
Sonorex RK 100,  
Bandelin KG,  
D-1000 Berlin

brown glass bottles, 125 ml,  
no. 219885,  
with PTFE-lined screw caps,  
brown glass vials, 8 ml,  
no. 224984,  
screw caps, no. 240409,  
Wheaton Scientific,  
via Zinsser,  
D-6000 Frankfurt/Main

brown glass bottles, 100 ml,  
no. 704046 (screw caps from  
Wheaton Scientific, see above),  
Brand GmbH und Co.,  
via Faust GmbH,  
D-5000 Köln 90

Chemicals:

DMSO, no. 2950,  
E. Merck,  
D-6100 Darmstadt 1

Procedure:

WSC-I washed out of trap approx.  
8 times with approx. 10-ml por-  
tions of DMSO repeatedly after  
sonication (water bath) for ap-  
prox. 5 min, washings transferred  
to a 100-ml volumetric flask and  
filled up to volume with DMSO

amount of WSC-I calculated from  
weight of impaction trap before  
and immediately after condensate  
preparation

concentration of dry condensate  
calculated from WSC-I and water  
concentration of suspension  
(determination of water concentra-  
tion: see Chapter 5.6.1)

2026023494

Storage:

in sterile brown glass bottles at  
4 °C for approx. 7 d, 5-ml ali-  
quots at -75 °C

labeling of the bottles:

study no.,  
batch no.,  
condensate type,  
cigarette short code,  
date of condensate preparation

Scientific version:

SOP AC 52/1, AC 74/2

Text version:

22 Mar.88

### 5.2.3 Analyses

#### 5.2.3.1 Determination of water concentration

Principle:

titration according to Karl  
Fischer modified by E. Scholz  
(1984)

Time:

within 48 h after preparation of  
WSC-I suspension

Sample material and quantity:

WSC-I/DMSO suspension, 0.5 ml,  
2 determinations/suspension

Results expressed in:

g/l and mg/cigarette

Equipment:

Karl Fischer-Titrator DL18,  
Printer GA44,  
Mettler Waagen GmbH,  
D-6300 Giessen

Chemicals:

Hydranal composite 5, no. 34805,  
Hydranal solvent, no. 34800,  
Hydranal-Eichstandard 5.00,  
no. 34813,  
Riedel-de Haen,  
D-3016 Seelze 1

2026023495

DMSO, no. 2950,  
E. Merck,  
D-6100 Darmstadt

**Procedure**

- Calibration:** 20 ml Hydranal solvent plus 0.5 ml DMSO titrated with composite 5 solution to dryness, stop time 15 s, 0.5 ml "Eichstandard 5.00" titrated in instrument mode for calibration, calibration factor stored automatically, 0.5 ml DMSO titrated, blank value stored in configuration file
- Titration:** 20 ml Hydranal solvent titrated to dryness, stop time 15 s, for titration of the sample the method "fliegender Start" used, e.g., start of the titration and within 15 s addition of 0.5 ml of the sample
- Computation:** result automatically printed after titration is finished
- Reproducibility (RSD):** 4 % (determined at 10 g/l, N = 5)
- Scientific version:** SOP AC 16/4  
**Text version:** 18 Jul.88

**5.2.3.2 Determination of nicotine concentration**

- Principle:** dilution of condensate suspension in DMSO with n-butylacetate containing isoquinoline as internal standard, capillary gas chromatographic determination of nicotine, data acquisition and evaluation using a laboratory data system

Time: within 48 h after preparation of WSC-I suspension

Sample material and quantity: condensate suspension in DMSO, 1 ml

Results expressed in: g/l, mg/cigarette

Equipment: gas chromatograph: HP5890 with autosampler HP 7673A, Hewlett-Packard GmbH, D-4030 Ratingen

laboratory data system:

hardware: Microvax II, VT340, LA 210, Digital Equipment GmbH, D-8000 München

software: Multichrom, VG Instruments GmbH, D-6200 Wiesbaden

centrifuge: model J-6 B, rotor: JS-4.2, Beckman Instruments GmbH, D-8000 München 40

capillary column: J and W, DB5, no. 123-5025, Carlo Erba Instruments, D-6238 Hofheim

digital dispensette 2 to 10 ml, Eppendorf pipette 1 ml, centrifuge tubes, 20 ml with PTFE-lined septum and screw cap, Faust GmbH, D-5000 Köln 90

Chemicals: n-butylacetate, no. 27,068-7, triethylamine, no. 23,962-3, Aldrich Chemie GmbH und Co., D-7924 Steinheim

2026023497

nicotine, no. 77635,  
Serva Feinbiochemica GmbH und Co.,  
D-6900 Heidelberg

isoquinoline, no. 802406,  
dimethylsulfoxide (DMSO),  
no. 2931,  
E. Merck,  
D-6100 Darmstadt 1

helium 5.0,  
nitrogen,  
air (synthetic),  
hydrogen,  
Linde AG,  
D-5000 Köln

calibration solutions:  
0.4, 3, and 8 g/l nicotine in DMSO  
containing 0.1 % (v/v)  
triethylamine

internal standard solution:  
0.5 g/l isoquinoline in  
n-butylacetate containing 0.1 %  
(v/v) triethylamine

**Procedure:**

addition of 9 ml internal standard  
solution to 1 ml condensate sus-  
pension in DMSO in a centrifuge  
tube, shaking for 10 s, 5 min  
centrifuged at 7.8E3 m/s<sup>2</sup>  
(= 820 x g), 1 µl used for gas  
chromatography

**Gas chromatography**

**Column:** 15 m x 0.25 mm inner diameter,  
fused silica

**Stationary phase:** SE-54, chemically bonded,  
film thickness: 0.25 µm

**Carrier gas and flow rate:** helium, 1.5 ml/min at 150 °C

**Detector:** FID, 250 °C

**Injector:** split injector: 220 °C,  
split ratio 1 : 50

2026023498

Make up gas: nitrogen, 30 ml/min  
Septum purge: 3 ml/min  
Injection volume: 1 µl  
Oven temperature: 150 °C, isothermal  
Retention times: isoquinoline: 1 min,  
nicotine: 1.3 min

Computation: nicotine standard solutions  
treated in the same way as a  
sample, construction of a calibra-  
tion curve using the data system  
with internal standard method

Reproducibility (RSD) 1.6 % (sidestream condensate  
suspension of cigarette 2R1,  
nicotine concentration: 6.2 g/l,  
N = 5)

Scientific version: SOP AC 120/1  
Text version: 17 Aug.90

### 5.2.3.3 Determination of humectants in filler and whole smoke condensate

Principle: gas chromatographic determination  
of humectants in methanolic ex-  
tract of filler and in DMSO  
suspension of whole smoke condensate (a)  
data acquisition and evaluation  
using a laboratory data system

Time: within 1 week after extraction of  
filler or preparation of whole  
smoke condensate suspension

(a) Propylene glycol cannot be determined in WSC-I/DMSO suspension  
due to interference with DMSO.

Sample material and quantity:      filler 5.0 g, WSC-I/DMSO suspension, 1.0 ml

Results expressed in:               mg/cigarette

Equipment:                         capillary gas chromatograph:  
                                      Carlo Erba, 5300 Mega Series,  
                                      detector: FID,  
                                      autosampler AS 550,  
                                      Carlo Erba Instruments,  
                                      D-6238 Hofheim

                                      capillary column: Carbowax 20M,  
                                      no. 19091-61125,  
                                      Hewlett-Packard GmbH,  
                                      D-7030 Böblingen

                                      laboratory data system:

hardware:                        Microvax II, VT 340, LA210,  
                                      Digital Equipment GmbH,  
                                      D-8000 München

software:                        Multichrom,  
                                      VG Instruments GmbH,  
                                      D-6200 Wiesbaden

centrifuge: model J6-B,  
rotor: JS-4.2,  
Beckmann Instruments GmbH,  
D-8000 München 40

mechanical shaker,  
centrifuge tube 100 x 20 mm,  
Faust GmbH,  
D-5000 Köln 90

Chemicals:                        DMSO, no. 2950,  
                                      methanol, no. 6009,  
                                      isopropanol, no. 9634,  
                                      glycerol, no. 4093,  
                                      E. Merck,  
                                      D-6100 Darmstadt 1

2026023500

triethylene glycol, no. T5,945-5,  
propylene glycol, no. 13,436-8,  
Aldrich-Chemie GmbH und Co. KG,  
D-7924 Steinheim

calibration solution:  
1.90 g/l 1,2-propandiol, 1.96 g/l  
triethylene glycol, and 1.97 g/l  
glycerol in methanol, diluted with  
isopropanol to appropriate con-  
centrations before use

hydrogen,  
nitrogen,  
air (synthetic),  
Linde AG,  
D-5000 Köln 50

**Procedure:**

10 ml methanol added to 0.5 g  
filler in a centrifuge tube,  
mechanically shaken for 2 h, after  
standing overnight again shaken  
for 1 h, centrifuged, 1 µl  
methanolic extract injected into  
the gas chromatograph, 1 µl DMSO  
suspension of WSC-I injected into  
the gas chromatograph, samples  
diluted with isopropanol if neces-  
sary

**Gas chromatography**

**Column:** 25 m x 0.32 mm inner diameter,  
fused silica

**Stationary phase:** Carbowax 20M

**Carrier gas:** hydrogen, 50 kPa, corresponding  
4.1 ml/min at 80 °C

**Oven temperature:** initial temperature 80 °C kept for  
1.0 min, increase 30 °C/min to  
220 °C, final temperature kept for  
5 min

2026023501

Detector temperature: 300 °C  
Injection port temperature: 250 °C  
Injection: 1 µl, split ratio 1 : 15  
Retention times: approx. 3.1 min for 1,2-propandiol, 5.9 min for glycerol, and 6.0 min for triethylene glycol  
Computation: construction of a calibration curve from peak area versus humectant concentration and evaluation by the external standard method using the laboratory data system  
Scientific version: SOP AC 86/2  
Text version: 24 Sep. 90

#### 5.2.3.4 Bacteriological examination of WSC-I/DMSO suspension

Principle: determination of bacterial contamination of test substance assayed for mutagenicity in the plate incorporation assay  
detection limited to aerobic bacteria growing on minimal-glucose agar plates  
Time: on the day of mutagenicity assay  
Sample material and quantity: WSC-I/DMSO suspension, highest dose/plate, 1 WSC-I batch of each test cigarette, condensate type, and substudy  
Results expressed in: CFU/plate

2026023502

Equipment:

incubator: no. 3916,  
Forma Scientific,  
via Labotect,  
D-3400 Göttingen

petri dishes: no. 1029, 100 mm x  
15 mm, polystyrene, sterilized,  
Falcon,  
via Becton Dickinson GmbH,  
D-6900 Heidelberg 1

colony counter: Colony Star 2,  
Funke-Gerber,  
D-1000 Berlin

Chemicals:

top agar and minimal-glucose agar,  
composition: see Chapter 5.6.1

Procedure:

top agar and test substance mixed  
by rotation and poured on minimal-  
glucose agar plates, 2 plates/  
sample

incubation of plates at 37 °C,  
manual counting of  
colonies after 2 d of incubation

Scientific version:

SOP MB 44/1

Text version:

27 Oct. 87

5.3 Dosing of Test Substances

Principle:

dilution of test substance stock  
suspension with DMSO to the final  
concentration used in the study

Time:

on the day of mutagenicity assay

Sample material and quantity:

4 WSC-I suspension batches/conden-  
sate type

2026023503

Equipment:

whirlmix: no. 9.730130,  
Heidolph Elektro GmbH und Co. KG,  
D-8420 Kelheim

brown glass vials, 8 ml,  
no. 224984,  
screw caps, no. 240409,  
Wheaton Scientific,  
via Zinsser,  
D-6000 Frankfurt/Main

Chemicals:

DMSO, no. 2950,  
E. Merck,  
D-6100 Darmstadt 1

Procedure

Preparation of application suspension:

shaking of WSC-I/DMSO stock suspension on a whirlmix

2 application suspensions/condensate batch, 2.5 g dry cond./l

Storage:

in dark airtight vials at RT

Dosing:

see TABLE 2

Scientific version:

SOP MB 43/2

Text version:

9 Jan.89

5.4 Metabolic Promutagen Activation System

Principle:

metabolic promutagen activation system consisting of a postmitochondrial (S9) fraction from the livers of rats treated with Aroclor 1254 and a NADPH-generating system

Time:

mixing of S9 protein and NADPH-generating system on the day of mutagenicity assay

2026023504

Sample material and quantity: S9 fraction, batch no. 86-1,  
approx. 2 mg protein/plate

Analyses:

determination of protein concentration, AHH activity, and  
bacterial contaminants interfering  
with the mutagenicity assay

Standard operating procedure: see attached microfiche no. E649



Scientific version:

SOP AT 21/6, AT 26/2, AT 73/2,  
AT 76/2, AT 102/3, BC 1/13,  
BC 128/2, MB 1/2, MB 46/4,  
MB 47/5, MB 48/1, MB 49/1

Text version:

22 Aug. 90

**5 Tester Strain Bacteria****5.1 Species and source**

Species: **Salmonella typhimurium LT-2 mutant strains TA98 and TA100**

**Genotypes**

hisD3052 or hisG46: mutations in histidine operons, resulting in histidine requirement (TA98: hisD3052, TA100: hisG46)

rfa: deep rough, mutation in the lipopolysaccharide barrier making the bacteria cell more permeable and completely nonpathogenic

delta uvrB: deletion of excision repair system resulting in sensitivity to ultraviolet light

pKM101: resistance transfer system, so-called R factor plasmid

**Sensitivity**

TA98: to mutagens causing frameshift mutation

TA100: to mutagens causing base-pair substitution

Source: kindly provided by Prof. Dr. Bruce N. Ames, University of California, Berkely CA, U.S.A

Receipt at INBIFO: 13 Jul. 79

Text version: 16 Oct. 87

2026023506

3.5.2 Cultivation

principle:

cultivation of tester strain bacteria in nutrient broth to an early stationary growth phase

time:

approx. 12 h before use in the mutagenicity assay

sample material and quantity:

Salmonella typhimurium strains from stock culture stored at -196 °C

Results:

cultures of tester strain bacteria

Equipment:

incubator shaker: model G 24,  
New Brunswick Scientific,  
via Biotronik,  
D-4000 Düsseldorf

culture flask: Erlenmeyer flask,  
100 ml, with long neck and  
4 baffles, used with  
stainless steel caps,  
Schott,  
D-6500 Mainz

vial for cold storage:  
polypropylene, 1 ml,  
with screw caps, no. 985730,  
Wheaton Scientific,  
via Zinsser,  
D-6000 Frankfurt/Main

photometer: DB-GT,  
Beckman Instruments GmbH,  
D-8000 München 40

disposable plastic cuvets,  
no. 127-1010-400,  
Elkay Products,  
via Nunc GmbH,  
D-6200 Wiesbaden 12

205-202

**chemicals:**

DMSO, for spectroscopy, no. 2950,  
E. Merck,  
D-6100 Darmstadt 1

Difco-nutrient broth,  
no. 0003,  
Difco Laboratories,  
via Bioteest AG,  
D-6072 Dreieich

PBS without Mg<sup>2+</sup> and Ca<sup>2+</sup>,  
no. L1825,  
Biochrome KG,  
D-1000 Berlin 46

**Procedure**

**Inoculation:** addition of 10 µl of the thawed  
and 10-fold diluted stock culture  
to 30 ml nutrient broth in the  
culture flask

**Cultivation:** cultures incubated in a shaking  
incubator at 37 °C at 200 rpm

cultures grown for approx. 12 h to  
obtain an early stationary growth  
phase

growth phase determined  
photometrically at 565 nm as cell  
suspension density from 5-fold  
diluted culture suspension in PBS,  
absorbance calculation for the un-  
diluted culture

**Centrifugation:** no centrifugation and no washing  
of bacterial cells

**Storage of stock culture:** at -196 °C in liquid nitrogen in  
0.1 ml aliquots of tester strain  
suspension culture with 87.5 ml  
DMSO/1

**Scientific version:** SOP MB 50/3, MB 51/4  
**Text version:** 10 Mar. 89

2026023508

5.3 Determination of number of viable bacteria

Principle:

spreading of bacteria with top agar plating technique and counting of colony-forming units

Time:

at the start and at the end of the mutagenicity assay

Sample material and quantity:

bacteria suspension culture, approx. 0.1 ml of each strain

Results expressed in:

CFU/plate

Equipment:

see Chapter 5.6.1

Chemicals:

nutrient agar, standard 1,  
no. 7881,  
E. Merck,  
D-6100 Darmstadt 1

L-histidine hydrochloride-1-hydrate, no. H 8125,  
biotin, no. B 4501,  
Sigma Chemie GmbH,  
D-8024 Deisenhofen

PBS without Mg<sup>2+</sup> and Ca<sup>2+</sup>,  
no. L1825,  
Biochrome KG,  
D-1000 Berlin 46

histidine/biotin solution no. 2:  
20.96 g histidine hydrochloride-1-hydrate and 244 mg biotin dissolved in 1 l distilled water, sterilized by filtration

minimal-glucose agar and top agar, composition: see Chapter 5.6.1

2026023509

**Procedure:**

aliquots of bacteria suspension culture diluted 1E6-fold in PBS, 0.1 ml of this dilution mixed with 2.0 ml top agar and 0.1 ml histidine/biotin solution (omitted on nutrient agar) and plated on minimal-glucose agar or nutrient agar plates

**incubation:**

approx. 24 h (nutrient agar) or 44 to 48 h (minimal-glucose agar) at 37 °C

counting of CFU: see  
Chapter 5.6.1

**Scientific version:**

SOP MB 53/4

**Text version:**

10 Mar.89

### 5.5.4 Analyses of tester strain properties

**Principle:**

tester strain checked for:

- (1) auxotrophy in the form of histidine requirement
- (2) absence or presence of lipopolysaccharide barrier in the form of sensitivity or resistance to crystal violet
- (3) absence or presence of excision repair system in the form of sensitivity or resistance to ultraviolet light
- (4) absence or presence of R factor in the form of sensitivity or resistance to ampicillin

**Time:**

prior to and at the end of the study

**Sample material and quantity:**

bacteria suspension culture, approx. 0.5 ml

Equipment:

ultraviolet light source:  
Astralux F, no. 15136, 890 W,  
Astralux-Werke,  
A-1000 Wien

filter paper disks: no. 95354,  
ampicillin sensitivity disk,  
10 µg/disk, no. 93332,  
diameter: 6 mm,  
Becton Dickinson GmbH,  
D-6900 Heidelberg 1

incubator: no. 3916,  
Forma Scientific,  
via Labotect,  
D-3400 Göttingen

Chemicals:

L-histidine hydrochloride-1-  
hydrate,  
no. H 8125,  
biotin, no. B 4051,  
Sigma Chemie GmbH,  
D-8024 Deisenhofen

crystal violet, no. 1407,  
nutrient agar, standard 1,  
no. 7881,  
E. Merck,  
D-6100 Darmstadt 1

histidine/biotin solution no. 2:  
20.96 g histidine hydrochloride-1-  
hydrate and 244 mg biotin dis-  
solved in 1 l distilled water,  
sterilized by filtration

crystal violet solution:  
1 g dissolved in 1 l H<sub>2</sub>O

minimal-glucose agar composition:  
see Chapter 5.6.1

Procedure

Reference:

basically according to Maron and  
Ames (1983)

2026023511

Histidine requirement:                   tester strain bacteria streaked on minimal-glucose agar plates without and with 0.1 ml of histidine/biotin solution no. 2, incubation at 37 °C for 18 to 24 h, plates checked for growth

Crystal violet sensitivity:               10 µl crystal violet solution applied to filter paper disk, placed onto complete nutrient agar plate with tester strain bacteria plated, incubation at 37 °C for 12 to 16 h, plates checked for inhibition or growth zone around the disk

Sensitivity to ultraviolet light:       tester strain bacteria to be tested streaked across nutrient agar plates and half of the streak irradiated for 30 s with ultraviolet light at a distance of 33 cm, incubation at 37 °C for 18 to 24 h, plates checked for growth inhibition

Ampicillin sensitivity:                 ampicillin disk applied onto nutrient agar plates with tester strain bacteria plated, incubation at 37 °C for 18 to 24 h, plates checked for growth or inhibition zone around ampicillin disk

Scientific version:                     SOP MB 54/5  
Text version:                            1 Sep.88

6.6 Mutagenicity Assay

6.6.1 Plate incorporation assay

Principle:

mixture of test substance and tester strain bacteria with or without the metabolic activation system spread on minimal-glucose agar plates containing minimal amounts of histidine and biotin using the top agar plating technique

after incubation at 37 °C counting of revertants (see FIGURE 4)

Time of top agar plating: 15 and 16 Aug. 89

sample material and quantity: (1) research substances: MWSC-I and SWSC-I of research cigarettes, see TABLES 1 and 2  
(2) internal controls: MWSC-I and SWSC-I of the standard reference cigarette 2R1, see TABLE 3  
(3) positive controls: diagnostic mutagens, see TABLE 4

Results expressed in: revertants/plate and increase in the number of revertants/mg dry condensate

Equipment:

medium autoclave:  
cultmatic 800 with Pretagar controller,  
Best,  
via E. Schütt jr.,  
D-3400 Göttingen

petri dish filler:  
automatic dose dishes (Tecnopront 100, Tecnomat 125), printer (Tecnoprint 300), and stacking unit (Stacomat 501),  
Tecnomara Deutschland GmbH,  
D-6301 Fernwald

2026023513

test tubes:  
sodium lime silicate glass,  
16 mm x 100 mm,  
no. 114115,  
Rudolf Brand GmbH und Co.,  
D-6980 Wertheim

petri dishes:  
no. 1029, 100 mm x 15 mm,  
polystyrene, sterile,  
Falcon,  
via Becton Dickinson GmbH,  
D-6900 Heidelberg 1

disposable membrane filter unit:  
Millex, 0.45 µm pore size,  
no. SLHA 025BS (for S9 mix),  
filter unit: sterifil,  
no. XX1104710,  
prefilter, no. AP 2504200,  
membrane filter, no. HAWG 04700,  
0.45 µm pore size (for glucose  
solution),  
Millipore GmbH,  
D-6078 Neu-Isenburg

disposable membrane filter unit:

(1) 0.2 µm pore size, no. FP 030/3  
(for NADP and G6P),  
Schleicher und Schüll GmbH,  
D-3354 Dassel

(2) 0.2 µm pore size, no. 120-0020  
and no. 450-0020 (for  
histidine-biotine solution),  
Nalge Company,  
via Faust GmbH,  
D-5000 Köln 90

incubator: no. 3916,  
Forma Scientific,  
via Labotect,  
D-3400 Göttingen

whirlmix: no. 9.730130,  
Heidolph Elektro GmbH und Co. KG,  
D-8420 Kelheim

2026023514

thermostat:  
aluminum bloc thermostat,  
no. 2092,  
Gebr. Liebisch,  
D-4800 Bielefeld

hand-hold terminal: micronic,  
no. 445 AA,  
Facit AB,  
with hand-hold laser scanner,  
LS 8110 II,  
Symbol Technologies, Inc.,  
via Parcon GmbH,  
D-4030 Ratingen

automatic colony counter connected  
via micronic to IBM personal com-  
puter XT:  
model no. 880,  
Artek System Corporation,  
via Fisher Scientific,  
D-8000 München

manual colony counter:  
Colony Star 2,  
Funke-Gerber,  
D-1000 Berlin

automatic pipettes:

(1) refilling syringes:  
Cornwall syringe,  
max. volume: 2 ml (for top  
agar),  
Becton Dickinson GmbH,  
via E. Schütt,  
D-3400 Göttingen

(2) bottle-top dispenser:  
"dispensette", max. volume:  
2 ml (for S9 mix),  
Brand GmbH und Co.,  
D-6980 Wertheim

"distrivar", max. volume: 5 ml  
(for bacteria suspension),  
Gilson,  
via Abimed,  
D-4000 Düsseldorf

2026023515

(3) adjustable pipettes:  
P 20, P 100, and P 1000,  
max. volumes: 0.02, 0.1,  
and 1 ml (for test substance),  
Gilson,  
via Abimed,  
D-4000 Düsseldorf

"finnpipette" digital,  
no. F 4027-010, max. volume:  
0.04 ml (for test substance),  
"Justor 1100DG" digital,  
no. F11DG-50,  
max. volume: 5 ml (for  
solvent),  
LKB Instrument GmbH,  
D-8032 Gräfelfing

## Chemicals:

glucose-6-phosphate-disodium,  
no. 127647,  
NADP-disodium, no. 128058,  
Boehringer Mannheim GmbH,  
D-6800 Mannheim 31

agar, no. 1614,  
citric acid-1-hydrate, no. 244,  
DMSO, no. 2950,  
D(+)-glucose-1-hydrate, no. 8342,  
magnesium chloride-6-hydrate,  
no. 5833,  
magnesium sulfate-7-hydrate,  
no. 5886,  
sodium ammonia hydrogen phosphate-  
4-hydrate, no. 6682,  
sodium chloride, no. 6400,  
sodium dihydrogen  
phosphate-1-hydrate, no. 6346,  
disodium hydrogen  
phosphate-2-hydrate, no. 6580,  
potassium chloride, no. 4936,  
dipotassium hydrogen  
phosphate-3-hydrate, no. 5099,  
E. Merck,  
D-6100 Darmstadt 1

2026023516

2-aminoanthracene, no. A 1381,  
2-aminofluorene, no. A 9031,  
daunomycin, no. D 4885,  
methyl methanesulfonate,  
no. M 4016,  
D(+)-biotin, no. B 4501,  
L-histidine-hydrochloride-  
1-hydrate, no. H 8125,  
Sigma Chemie GmbH,  
D-8024 Deisenhofen

nitrogen, ≥99.999 % (v/v),  
Linde AG,  
via Elbert,  
D-5000 Köln

Minimal-glucose agar:

composition (g/l):  
glucose-1-hydrate 20.0  
magnesium sulfate-7-hydrate 0.2  
dipotassium hydrogen 13.1  
phosphate-3-hydrate  
citric acid-1-hydrate 2.0  
sodium ammonia hydrogen 3.5  
phosphate-4-hydrate  
agar 15.0

glucose solution prepared  
separately 10-fold concentrated  
and sterilized by filtration in-  
cluding prefilter, salts 10-fold  
concentrated and agar solutions  
sterilized separately at 121 °C  
(1.0E5 Pa) for 15 min

automatically filling into petri  
dishes, approx. 30 ml molten  
agar/plate, excess water on the  
solid agar plates removed by ex-  
posure of the covered plates at  
37 °C for approx. 3 d, sub-  
sequently stored at RT

Top agar:

composition (g/l):  
L-histidine-hydrochloride- 0.0095  
1-hydrate  
biotin 0.011  
sodium chloride 4.5  
agar 5.5

2026023517

histidine-biotin solution prepared separately as 10-fold concentrated solution (no. 1: 0.5 mmol histidine-hydrochloride-1-hydrate and 0.5 mmol biotin/l), filter-sterilized, and stored at 4 °C

agar-sodium chloride solution sterilized at 121 °C (1.0E5 Pa) for 15 min and stored at RT

prior to use remelting of the agar-sodium chloride solution by boiling in a water bath or autoclave for approx. 20 min, addition of histidine-biotin solution (no. 1) after cooling down to approx. 45 °C

S9 mix (a):

composition (g/l and mmol/l):  
sodium phosphate - 100.0  
buffer, pH 7.4  
magnesium-chloride- 3.25 16.0  
6-hydrate  
potassium chloride 4.92 66.0  
glucose-6-phosphate- 1.68 5.0  
disodium  
NADP-disodium 3.22 4.0  
S9 protein (prior 10.0 -  
to filtration)

S9 mix filter-sterilized prior to use and stored at 0 °C under nitrogen atmosphere during the mutagenicity assay

dilution of S9 mix with sodium phosphate buffer (0.1 mol/l) to adjust other S9 protein concentrations with a fixed S9 protein/cofactor ratio (according to Zeiger et al., 1979)

(a) protein concentration and AHM activity determined from each S9 mix

sodium phosphate buffer,  
pH 7.4, 0.1 mol/l (prepared as a  
2-fold concentrated solution,  
5.24 g sodium dihydrogen  
phosphate/l and 28.8 g disodium  
hydrogen phosphate/l), sterilized  
at 121 °C (1.0E5 Pa) for 15 min  
and stored at 4 °C

magnesium-potassium chloride  
prepared as 25-fold concentrated  
solution, sterilized at 121 °C  
(1.0E5 Pa) for 15 min and stored  
at 4 °C

glucose-6-phosphate prepared as  
200-fold and NADP as 25-fold con-  
centrated solutions, filter-  
sterilized, and stored at -75 °C

**Tester strain bacteria:**

Salmonella typhimurium strains  
TA98 and TA100, approx. 12-h cul-  
tures grown in Difco nutrient  
broth

**Procedure**

**Reference:** basically according to Maron and Ames (1983)

**Dosing of test substance:** see TABLE 2

**Plating mixture preparation:** components added in the following order:  
(1) 2.0 ml top agar, 45 °C  
(2) research substance, stored at RT  
(3) 0.1 ml tester strain suspension culture, containing approx. 1E8 CFU, stored at RT  
(a)  
(4) 0.5 ml S9 mix or buffer solution stored at 0 °C under nitrogen atmosphere

(a) Temperature may rise to approx. 30 °C during mutagenicity assay.

2026023019

Top agar plating:

components mixed by rotating the test tube gently on a whirlmix, then poured on minimal-glucose agar plates and spread evenly on the agar surface by wobbling

mixing, pouring, and spreading of the top agar occurred within 20 s, plates allowed to harden for 3 to 6 min and then transferred to the dark incubator

Incubation:

44 to 48 h at 37 °C in the dark

Labeling of the petri dishes:

individual plate no. including bar code (type 2 of 5 interleaved), project no., name of test substance, batch no., type of test substance, tester strain, absence/presence of metabolic activation system, test substance doses, date of top agar plating

Counting of revertants:

manual and/or automatic counting immediately or after storage at 4 °C for not longer than 48 h, plates brought to RT

automatic counting:  
standardized by 5100 mm<sup>2</sup> plate aperture area without discrimination of colony size, each plate counted 3 times, rotation of the plate 120° between each count, data recorded on floppy disk, highest count used for the computer calculation of revertants

Scientific version:

SOP MB 55/4

Text version:

30 May 90

### 5.6.2 Statistical evaluation

Primary data (revertants/plate):

calculation of mean, SE, and RSD from all plates of each dose for each research cigarette, also calculated separately for each substudy and WSC-I batch, data not corrected for automatic counting

data stored and calculated in data base management system ORACLE on a VAX computer

specific mutagenicity (a):

increase in the number of revertants per mg dry condensate (rev./mg dry cond.)

equivalent to regression coefficient "a" of the linear dose-response curve  
 $y = ax + b$

mutagenicity on a "new tar" basis:

dry cond. yield

$x = \text{spec. mutagen. } x$

dry cond. yield - nicotine yield - humectant yield

Relative difference:

absolute difference between 2 values (A and B) divided by the mean of them

$$\frac{|A - B|}{(A + B)/2}$$

(a) The specific mutagenicity derived from the regression curve might be slightly different from the mean of 4 condensate batches calculated separately.

reproducibility of the specific mutagenicity of substudy 1 in substudy 2:

statistical significance of the difference between the specific mutagenicities obtained in 2 independent substudies fixed at a level of significance of alpha = 0.017 with a relative difference between the specific mutagenicities of 25 % (a)

reproducibility presumed if level of significance not reached

statistical significance of the difference between the specific mutagenicities of MWS of 2 research cigarettes:

statistical significance reached at the level of significance alpha = 0.05 with a relative difference between the specific mutagenicities of 16 % (a)

Scientific version:  
Text version:

SOP MB 60/2  
30 May 90

- (a) In the basic biometric INBIFO study P 0268/2029 with strain TA98, the MWSC-I of 1 test cigarette was assayed according to the INBIFO standard operating procedure (same procedure as in the present study: 2 independent substudies, 4 doses, and 64 plates/test cigarette). A basic biometric study with strain TA100 not having been performed, the limit of the relative difference for 2 test cigarettes or 2 substudies is set at 0.16 or 0.25 respectively as in the biometric study with strain TA98.

2026023522

|                                 | 15.<br>JUN.<br>89<br>I | 1.<br>AUG.<br>89<br>-60              | 8.<br>AUG.<br>89<br>-13            | 15.<br>AUG.<br>89<br>1 |
|---------------------------------|------------------------|--------------------------------------|------------------------------------|------------------------|
| start of study                  |                        |                                      |                                    |                        |
| cigarettes arrival              | X<br>Y                 | .                                    | .                                  | .                      |
| conditioning                    | .                      | X X X X X X X X<br>. Y Y Y Y Y Y Y Y |                                    | .                      |
| start of cigarettes preparation | .                      | .                                    | X X X<br>. Y Y Y                   | .                      |
| storage                         | .                      | .                                    | X X X X X X X X<br>. Y Y Y Y Y Y Y | .                      |
| agenicity assay                 |                        |                                      |                                    |                        |
| smoking                         | .                      | .                                    | .                                  | X<br>. Y               |
| incubation                      | .                      | .                                    | .                                  | X X<br>. Y Y           |
| counting of revertants          | .                      | .                                    | .                                  | .                      |
|                                 | I                      | I                                    | I                                  | I                      |
|                                 | -60                    | -13                                  | -6                                 | 1                      |

## FIGURE 1 CHRONOLOGY

Remarks: X: substudy 1  
Y: substudy 2

0462323



FIGURE 2 GLASS IMPACTION TRAP FOR MWSC-I COLLECTION

2026023524



FIGURE 3 GLASS IMPACTION TRAP FOR SWSC-I COLLECTION

2026023525

| RESEARCH<br>SUBSTANCE | METABOLIC<br>ACTIVATION | APPLICATION SUSPENSION |                  | DOSE                    |
|-----------------------|-------------------------|------------------------|------------------|-------------------------|
|                       |                         | CONCENTRATION          | VOLUME<br>PLATED |                         |
|                       |                         | (g dry cond./l)        | (µl/plate)       | (mg dry<br>cond./plate) |
| NSC-I,<br>WSC-I       | yes                     | 2.5                    | 0                | 0 (a)                   |
|                       |                         |                        | 20               | 0.050                   |
|                       |                         |                        | 40               | 0.100                   |
|                       |                         |                        | 60               | 0.150                   |

TABLE 2 DOSING OF RESEARCH SUBSTANCES

Remarks: Of each WSC-I batch and for each activation system, 2 application suspensions were prepared using DMSO as solvent.

2026023526

(a) solvent control: 60 µl DMSO/plate

| TYPE OF<br>CONDEN-<br>SATE | TESTER<br>STRAIN | SPECIFIC MUTAGENICITY (rev./mg dry cond.) |            |      |      |
|----------------------------|------------------|-------------------------------------------|------------|------|------|
|                            |                  | N                                         | M ± SD     | MIN. | MAX. |
| NSC-I                      | TA98             | 61                                        | 1501 ± 193 | 907  | 1854 |
|                            | TA100            | 49                                        | 885 ± 165  | 559  | 1400 |
| SWSC-I                     | TA98             | 27                                        | 1540 ± 170 | 1288 | 1896 |
|                            | TA100            | 27                                        | 1247 ± 256 | 899  | 2278 |

TABLE 3 HISTORICAL DATA OF THE SPECIFIC MUTAGENICITY OF MWSC-I AND SWSC-I OF THE STANDARD REFERENCE CIGARETTE 2R1, TIME PERIOD: JUL.80 TO AUG.89

2026023527

| TESTER STRAIN | PARAMETER   | PRESENCE OF S9 | DOSE PER PLATE | HISTORICAL DATA (rev./plate) |               |       |       | PUBLISHED DATA<br>(rev./plate) |
|---------------|-------------|----------------|----------------|------------------------------|---------------|-------|-------|--------------------------------|
|               |             |                |                | N                            | M ± SD        | MIN.  | MAX.  |                                |
| TA98          | spont. rev. | no             | -              | 17                           | 24.2 ± 3.2    | 19.0  | 30.8  | 30 to 50 (1)                   |
|               |             | yes            | -              | 17                           | 42.6 ± 6.8    | 33.0  | 55.8  | -                              |
|               | daunomycin  | no             | 6 µg           | 16                           | 1198 ± 207    | 792   | 1595  | approx. 1020 (2)               |
|               | 2-AA        | yes (a)        | 2 µg           | 16                           | 1462 ± 171    | 1091  | 1910  | approx. 1000 (3)               |
|               | 2-AF        | " (a)          | 2 µg           | 16                           | 289.6 ± 71.6  | 132   | 415   | approx. 140 (1)                |
| TA100         | spont. rev. | no             | -              | 17                           | 138.9 ± 19.2  | 105.5 | 173.5 | 120 to 200 (1)                 |
|               |             | yes            | -              | 17                           | 134.1 ± 21.9  | 102.3 | 190.0 | -                              |
|               | MMS         | no             | 0.5 µl         | 17                           | 600.3 ± 130.6 | 474   | 863   | approx. 1360 (1)               |
|               | 2-AA        | yes (a)        | 2 µg           | 17                           | 1847 ± 156    | 1441  | 2020  | -                              |
|               | 2-AF        | " (a)          | 2 µg           | 17                           | 173.4 ± 34.8  | 142   | 295   | approx. 280 (1)                |

TABLE 4 HISTORICAL DATA OF SPONTANEOUS AND INDUCED REVERTANTS BY DIAGNOSTIC MUTAGENS, TIME PERIOD: JUN.85 TO DEC.87

Remarks: (1) Maron and Ames (1983)

(2) Babudri et al. (1984)

(3) Zeiger et al. (1979)

data corrected for spontaneous revertants

(a) S9 amount not optimized

826023528



FIGURE 4 FLOW CHART OF THE PLATE INCORPORATION MUTAGENICITY

2026023529

**STORAGE OF MATERIALS AND RECORDS**

---

Research substance

Test cigarettes: no storage after completion of the study

Condensates:

approx. 5 ml WSC-I stock suspension of each condensate preparation transferred on day of cigarette condensate preparation into brown glass vial with screw cap and stored at -75 degrees centigrade for at least 1 year

the remaining volume of each condensate preparation stored at 4 degrees centigrade for approx. 1 month

Protocol, records, and evaluation sheets:

stored in our archives for at least 5 years after delivery of the final report to the client. They can be claimed by the client.

Scientific version:

SOP MB 61/1, QA 10/4

Text version:

30 May 90

2026023530

**RESULTS AND COMMENT**  
=====**1.1 Text****1.1.1 Test substance**

In the filler the propylene glycol concentration was the same in all research cigarettes (see TABLE 5). The test cigarette AREUSE-53 was found to contain triethylene glycol, and AREUSE-55 was the cigarette having the highest glycerol concentration of the research cigarettes.

In the condensates propylene glycol could not be determined because it could not be separated from the solvent DMSO. The glycerol yield of the MWSC-I was approx. 1.3 milligrams per cigarette for CALYPSO-1, AREUSE-46, and -53 and 3.6 milligrams per cigarette for AREUSE-55 (see TABLE 6). For the SWSC-I, it was approx. 1.8 and 6.3 milligrams per cigarette (see TABLE 7). The triethylene glycol yield of the MWSC-I was <0.1 milligrams per cigarette for CALYPSO-1, AREUSE-46, and -55 and 1.0 milligram per cigarette for AREUSE-53 (see TABLE 6). For the SWSC-I, it was ≤0.1 and 1.2 (see TABLE 7). These humectant yields correlated with the concentrations determined in the filler.

The dry condensate yield of the MWSC-I was approx. 17 milligrams per cigarette for all research cigarettes (see TABLE 8 and FIGURE 5). The dry condensate yield of the SWSC-I was higher ranging from 22 milligrams per cigarette for CALYPSO-1 to 28 milligrams per cigarette for AREUSE-55 (see TABLE 9 and FIGURE 5).

The application suspensions of MWSC-I and SWSC-I of the research cigarettes were found to be free of bacterial contaminants which could interfere with the mutagenicity assay (see TABLE 10).

2026023531

### 1.2 Properties of the tester strains and the S9 fraction

The strains were found to respond in a manner characteristic of their phenotypes as required in the basic "method paper" by Maron and Ames (1983) (see TABLES 11 and 14).

The number of spontaneous revertants of strain TA98 was found to be slightly lower than that obtained in previous studies and that reported by Maron and Ames (1983) (see TABLES 4, 13, and 16). This is considered to be caused by the use of an agar from another supplier. However, the response of both tester strains to diagnostic mutagens and to MWSC-I and SWSC-I of 2R1 as internal controls was in accordance with results obtained in previous studies (see below).

The mutagenic activity of the strain-specific positive control substances daunomycin (TA98) and MMS (TA100) was found to be in accordance with the results obtained in previous studies and those published by Babudri et al. (1984) and Maron and Ames (1983) (see TABLES 4, 13, and 16). The mutagenic response of both tester strains to the promutagens 2-AA and 2-AF indicated that the metabolic activity of the S9 was sufficient and was in accordance with the data published by Zeiger et al. (1979) and Maron and Ames (1983).

The amount of S9 protein per plate was 1.6 milligrams (see TABLE 17). The AHM activity of the S9 mix was found to be approx. 45 percent higher than the activity previously determined in the original S9 fraction (see Chapter 5.4, microfiche no. E649). This increase might be due to the protein determination which was performed according to Lowry which always yields a lower protein concentration than the previously used Biuret method.

2026023532

### 7.1.3 Mutagenicity of whole smoke condensate

#### 7.1.3.1 Dose response and reproducibility

An approx. linear increase in the number of revertants with increasing doses of WSC-I was obtained with respect to frameshift mutation in TA98 and base-pair substitution in TA100 (see TABLES 18 to 37 and FIGURES 6 to 13).

The specific mutagenicity of the MWSC-I and SWSC-I of all research cigarettes determined in substudy 1 was reproduced in substudy 2 (relative difference ≤ 0.25, range 0.01 to 0.18) (see "Remarks" in TABLES 8 to 37).

The specific mutagenicity of the MWSC-I and SWSC-I of the standard reference cigarette 2R1 was found to be in the range expected for frameshift mutation induction in strain TA98 and base-pair substitution induction in strain TA100 when compared with all previous INBIFO data (see TABLES 3, 22, 27, 32, and 37).

#### 7.1.3.2 Specific mutagenicity of MWSC-I

With respect to frameshift mutation in strain TA98, the mean activity of MWSC-I was found to be 2180 revertants per milligram dry condensate for the cigarette CALYPSO-1, 2401 for AREUSE-46, 2317 for -53, and 2119 for -55 (see TABLE 38 and FIGURE 14).

With respect to base-pair substitution in strain TA100, the mean activity of MWSC-I was found to be 984 revertants per milligram dry condensate for the cigarette CALYPSO-1, 1009 for AREUSE-46, 955 for -53, and 867 for -55 (see TABLE 38 and FIGURE 14).

The specific mutagenicity of the MWSC-I of the test cigarette AREUSE-55 was numerically lower than that of the reference cigarette AREUSE-46 with respect to both types of mutation (see TABLE 39). MWSC-I of CALYPSO-1 was less mutagenic than that of AREUSE-46 with respect to frameshift mutation and more mutagenic than that of AREUSE-55 with respect to base-pair substitution. However, none of these differences were statistically significant (see TABLE 39).

#### 7.1.3.3 Specific mutagenicity of SWSC-I

With respect to frameshift mutation in strain TA98, the mean activity of SWSC-I was found to be 1781 revertants per milligram dry condensate for the cigarette CALYPSO-1, 1827 for AREUSE-46, 1546 for -53, and 1282 for -55 (see TABLE 38 and FIGURE 15).

With respect to base-pair substitution in strain TA100, the mean activity of SWSC-I was found to be 1130 revertants per milligram dry condensate for the cigarette CALYPSO-1, 1113 for AREUSE-46, 991 for -53, and 880 for -55 (see TABLE 38 and FIGURE 15).

The specific mutagenicity of the SWSC-I of the test cigarettes AREUSE-53 and -55 was lower than that of the reference cigarette AREUSE-46 with respect to both types of mutation (see TABLE 39). The differences were statistically significant with 1 exception (AREUSE-53, TA100). SWSC-I of CALYPSO-1 was more mutagenic than that of AREUSE-53 and -55 with respect to both types of mutation, a statistical significance being observed for AREUSE-55 (see TABLE 39).

2026023534

1.3.4 Mutagenicity per milligram "new tar"

the mutagenicity was calculated on a per milligram "new tar" basis, i.e., dry condensate yield minus nicotine and humectant yields, no difference was observed for MWSC-I between the reference cigarette AREUSE-46 and the test cigarettes AREUSE-53 and -55 which both contained the modified blend but different humectant concentrations in the filler (see TABLES 40 and 42, FIGURE 16). For SWSC-I, a slightly lower mutagenicity was observed for the test cigarettes AREUSE-53 and -55 compared to that of the reference cigarette AREUSE-46 with respect to strain TA98 (see TABLES 41 and 42, FIGURE 17). However, the difference is not considered to be biologically relevant. It should be noted that only 2 of 4 condensate batches of each research cigarette were examined for the presence of humectants.

7.1.4 Comment

The modification of the original blend by replacing stems with an additional amount of flue-cured tobacco was found to slightly increase the specific mutagenicity of the MWSC-I (CALYPSO-1 vs AREUSE-46).

Increasing triethylene glycol from 0 to 1 percent and glycerol from 3 to 8 percent in the modified blend was found to decrease the mutagenicity on a dry condensate basis (AREUSE-46 vs -53 and -55). However, when the mutagenicity was calculated on a "new tar" basis, the differences between the reference and the test cigarettes were no longer seen. Therefore, the reduction in the mutagenicity on a dry condensate basis seems to be related to a dilution effect caused by the transferred humectants.

202602435

7.2 Tables and Figures

| CIGARETTE | HUMECTANT CONCENTRATION IN THE FILLER (%) |          |                    |
|-----------|-------------------------------------------|----------|--------------------|
|           | PROPYLENE GLYCOL                          | GLYCEROL | TRIETHYLENE GLYCOL |
| CALYPSO-1 | 1.3                                       | 2.3      | 0                  |
| AREUSE-46 | 0.7                                       | 2.3      | 0                  |
| -53       | 1.1                                       | 2.2      | 1.0                |
| -55       | 1.0                                       | 6.8      | 0                  |

*Corrected values  
R. Spec.*

*2.5; 7.5*

TABLE 5 HUMECTANT CONCENTRATION IN THE FILLER

Remarks: determination performed at INBIFO

2026023536

| CIGA-<br>DETTE | BATCH NO.          | YIELD (mg/cig.) |                       |
|----------------|--------------------|-----------------|-----------------------|
|                | STAT.<br>PARAMETER | GLYCEROL        | TRIETHYLENE<br>GLYCOL |
| CALYPSO-1      | 3200               | 1.5             | 0.0                   |
|                | 3218               | 1.3             | 0.0                   |
|                | M                  | 1.40            | 0.02                  |
| AREUSE-46      | 3202               | 1.4             | 0.1                   |
|                | 3224               | 1.3             | 0.1                   |
|                | M                  | 1.33            | 0.06                  |
| AREUSE-53      | 3208               | 1.3             | 1.0                   |
|                | 3226               | 1.3             | 1.0                   |
|                | M                  | 1.31            | 0.98                  |
| AREUSE-55      | 3210               | 3.6             | 0.0                   |
|                | 3232               | 3.5             | 0.0                   |
|                | M                  | 3.55            | 0.00                  |
| 2R1            | 3216               | 4.1             | 0.1                   |
|                | 3234               | 4.2             | 0.1                   |
|                | M                  | 4.14            | 0.10                  |

TABLE 6 HUMECTANT YIELD, MWSC-I

20260235J7

| IGA-<br>STAT.<br>PARAMETER | BATCH NO. | YIELD (mg/cig.) |                       |
|----------------------------|-----------|-----------------|-----------------------|
|                            |           | GLYCEROL        | TRIETHYLENE<br>GLYCOL |
| ALYPSO-1                   | 3201      | 1.7             | 0.1                   |
|                            | 3219      | 1.9             | 0.2                   |
|                            | M         | 1.82            | 0.11                  |
| AREUSE-46                  | 3203      | 1.5             | 0.1                   |
|                            | 3225      | 1.9             | 0.2                   |
|                            | M         | 1.69            | 0.12                  |
| AREUSE-53                  | 3209      | 2.1             | 1.5                   |
|                            | 3227      | 1.5             | 1.0                   |
|                            | M         | 1.79            | 1.24                  |
| AREUSE-55                  | 3211      | 6.4             | 0.0                   |
|                            | 3233      | 6.1             | 0.0                   |
|                            | M         | 6.28            | 0.02                  |
| 2R1                        | 3217      | 2.4             | 0.2                   |
|                            | 3235      | 2.0             | 0.2                   |
|                            | M         | 2.21            | 0.16                  |

TABLE 7 HUMECTANT YIELD, SWSC-I

2026023538

| CIGA-<br>RETTE | BATCH NO.<br>-----<br>STAT.<br>PARAMETER | YIELD (mg/cig.) |       |       | PUFF<br>COUNT (a)<br><br>(puff/<br>cig.) |
|----------------|------------------------------------------|-----------------|-------|-------|------------------------------------------|
|                |                                          | CONDENSATE      |       | NICO- |                                          |
|                |                                          | CRUDE           | DRY   | TINE  |                                          |
| CALYPSO-1      | 3200                                     | 24.3            | 17.3  | 1.18  | 8.5                                      |
|                | 3204                                     | 19.8            | 14.7  | 1.00  | 8.3                                      |
|                | 3218                                     | 22.3            | 16.8  | 1.12  | 9.0                                      |
|                | 3222                                     | 20.7            | 15.9  | 1.07  | 9.0                                      |
|                | M                                        | 21.79           | 16.17 | 1.095 | 8.7                                      |
|                | SE                                       | 1.00            | 0.58  | 0.037 | 0.1                                      |
|                | RSD (%)                                  | 9.2             | 7.2   | 6.8   | 7.9                                      |
| AREUSE-46      | 3202                                     | 24.0            | 18.2  | 1.55  | 9.9                                      |
|                | 3206                                     | 23.2            | 17.6  | 1.50  | 10.1                                     |
|                | 3224                                     | 22.0            | 17.5  | 1.45  | 10.2                                     |
|                | 3228                                     | 21.9            | 17.3  | 1.45  | 10.0                                     |
|                | M                                        | 22.75           | 17.64 | 1.488 | 10.1                                     |
|                | SE                                       | 0.50            | 0.19  | 0.025 | 0.1                                      |
|                | RSD (%)                                  | 4.4             | 2.2   | 3.3   | 7.1                                      |
| AREUSE-53      | 3208                                     | 24.0            | 17.6  | 1.36  | 9.1                                      |
|                | 3212                                     | 21.5            | 16.5  | 1.27  | 8.9                                      |
|                | 3226                                     | 24.6            | 18.9  | 1.43  | 9.3                                      |
|                | 3230                                     | 24.8            | 19.0  | 1.41  | 9.3                                      |
|                | M                                        | 23.75           | 18.02 | 1.369 | 9.1                                      |
|                | SE                                       | 0.75            | 0.59  | 0.034 | 0.1                                      |
|                | RSD (%)                                  | 6.3             | 6.5   | 5.0   | 6.3                                      |

TABLE 8 CONDENSATE AND NICOTINE YIELD AND PUFF COUNT, MWSC-I

(a) mean of each batch obtained from 10 individual values

891010 16:40:32 Page 1 File : USER\_DISK:[AC]ANALYIELD\_2179.LIS;2

2026023539

| CIGA-<br>RETTE | BATCH NO. | YIELD (mg/cig.)    |            |       | PUFF<br>COUNT (a) |  |
|----------------|-----------|--------------------|------------|-------|-------------------|--|
|                |           | STAT.<br>PARAMETER | CONDENSATE |       |                   |  |
|                |           |                    | CRUDE      | DRY   |                   |  |
| AREUSE-55      | 3210      | 23.3               | 17.5       | 1.24  | 9.5               |  |
|                | 3214      | 24.1               | 17.9       | 1.23  | 9.5               |  |
|                | 3232      | 23.9               | 17.6       | 1.18  | 9.5               |  |
|                | 3236      | 22.6               | 17.1       | 1.19  | 9.4               |  |
|                | M         | 23.46              | 17.54      | 1.210 | 9.5               |  |
|                | SE        | 0.35               | 0.17       | 0.014 | 0.1               |  |
|                | RSD (%)   | 2.9                | 1.9        | 2.4   | 5.8               |  |
| 2R1            | 3216      | 47.6               | 39.6       | 3.04  | 11.8              |  |
|                | 3220      | 49.4               | 41.2       | 3.17  | 11.6              |  |
|                | 3234      | 51.6               | 44.5       | 3.09  | 11.7              |  |
|                | 3238      | 42.8               | 36.6       | 2.82  | 11.8              |  |
|                | M         | 47.84              | 40.45      | 3.032 | 11.7              |  |
|                | SE        | 1.88               | 1.65       | 0.074 | 0.1               |  |
|                | RSD (%)   | 7.9                | 8.2        | 4.9   | 7.0               |  |

TABLE 8 (cont.) CONDENSATE AND NICOTINE YIELD AND PUFF COUNT, MWSC-I

2026023540

(a) mean of each batch obtained from 10 individual values

| CIGA-<br>ETTE | BATCH NO.<br>-----<br>STAT.<br>PARAMETER | YIELD (mg/cig.) |       |               | PUFF<br>COUNT (a)<br><br>(puff/<br>cig.) |  |
|---------------|------------------------------------------|-----------------|-------|---------------|------------------------------------------|--|
|               |                                          | CONDENSATE      |       | NICO-<br>TINE |                                          |  |
|               |                                          | CRUDE           | DRY   |               |                                          |  |
| CALYPSO-1     | 3201                                     | 30.0            | 20.9  | 1.78          | 8.5                                      |  |
|               | 3205                                     | 30.3            | 21.5  | 2.08          | 8.3                                      |  |
|               | 3219                                     | 30.0            | 22.1  | 2.12          | 9.0                                      |  |
|               | 3223                                     | 34.5            | 23.0  | 2.18          | 9.0                                      |  |
|               | M                                        | 31.22           | 21.88 | 2.041         | 8.7                                      |  |
|               | SE                                       | 1.11            | 0.44  | 0.091         | 0.1                                      |  |
|               | RSD (%)                                  | 7.1             | 4.0   | 8.9           | 7.9                                      |  |
| AREUSE-46     | 3203                                     | 27.3            | 18.9  | 1.86          | 9.9                                      |  |
|               | 3207                                     | 36.6            | 23.0  | 2.38          | 10.1                                     |  |
|               | 3225                                     | 31.1            | 23.7  | 2.49          | 10.2                                     |  |
|               | 3229                                     | 32.2            | 26.0  | 2.66          | 10.0                                     |  |
|               | M                                        | 31.82           | 22.88 | 2.348         | 10.1                                     |  |
|               | SE                                       | 1.93            | 1.47  | 0.172         | 0.1                                      |  |
|               | RSD (%)                                  | 12.1            | 12.9  | 14.7          | 7.1                                      |  |
| AREUSE-53     | 3209                                     | 33.6            | 25.8  | 2.51          | 9.1                                      |  |
|               | 3213                                     | 41.4            | 27.4  | 2.50          | 8.9                                      |  |
|               | 3227                                     | 31.9            | 20.2  | 2.01          | 9.3                                      |  |
|               | 3231                                     | 34.8            | 27.1  | 2.81          | 9.3                                      |  |
|               | M                                        | 35.43           | 25.13 | 2.456         | 9.1                                      |  |
|               | SE                                       | 2.07            | 1.69  | 0.166         | 0.1                                      |  |
|               | RSD (%)                                  | 11.7            | 13.5  | 13.5          | 6.3                                      |  |

TABLE 9 CONDENSATE AND NICOTINE YIELD AND PUFF COUNT, SWSC-I

(a) mean of each batch obtained from 10 individual values

Trmm00007

| CIGA-<br>RETTE | BATCH NO.          | YIELD (mg/cig.) |       |                 | PUFF<br>COUNT (a) |
|----------------|--------------------|-----------------|-------|-----------------|-------------------|
|                | STAT.<br>PARAMETER | CONDENSATE      |       | NICO-<br>TINE   |                   |
|                |                    | CRUDE           | DRY   | (puff/<br>cig.) |                   |
| AREUSE-55      | 3211               | 36.8            | 26.9  | 2.47            | 9.5               |
|                | 3215               | 42.8            | 28.1  | 2.43            | 9.5               |
|                | 3233               | 40.3            | 27.4  | 2.49            | 9.5               |
|                | 3237               | 33.8            | 27.7  | 2.31            | 9.4               |
|                | M                  | 38.43           | 27.50 | 2.423           | 9.5               |
|                | SE                 | 1.98            | 0.25  | 0.041           | 0.1               |
|                | RSD (%)            | 10.3            | 1.8   | 3.3             | 5.8               |
| 2R1            | 3217               | 34.9            | 23.1  | 2.64            | 11.8              |
|                | 3221               | 25.6            | 22.7  | 2.39            | 11.6              |
|                | 3235               | 29.0            | 19.5  | 2.25            | 11.7              |
|                | 3239               | 31.2            | 21.5  | 2.56            | 11.8              |
|                | M                  | 30.15           | 21.69 | 2.459           | 11.7              |
|                | SE                 | 1.95            | 0.82  | 0.087           | 0.1               |
|                | RSD (%)            | 12.9            | 7.6   | 7.0             | 7.0               |

TABLE 9 (cont.) CONDENSATE AND NICOTINE YIELD AND PUFF COUNT, SWSC-I

(a) mean of each batch obtained from 10 individual values

2026023542

| DATE OF<br>ASSAY           | CIGARETTE | CONDENSATE<br>TYPE                      | NUMBER OF<br>BATCHES<br>ANALYZED | BACTERIAL<br>CONTAMINATION |   |
|----------------------------|-----------|-----------------------------------------|----------------------------------|----------------------------|---|
| (Aug. 89)                  |           |                                         |                                  |                            |   |
| (CFU/0.15 mg<br>dry cond.) | 15, 16    | CALYPSO-1,<br>AREUSE-46,<br>-53,<br>-55 | MWSC-I,<br>SWSC-I                | 2                          | 0 |

TABLE 10 BACTERIOLOGICAL EXAMINATION OF RESEARCH SUBSTANCE

2026023543

| PARAMETER                    | RESPONSE    |            |
|------------------------------|-------------|------------|
|                              | RECOMMENDED | DETERMINED |
| <b>histidine requirement</b> |             |            |
| growth without histidine     | 0           | 0          |
| growth with histidine        | +           | +          |
| <b>sensitivity to</b>        |             |            |
| crystal violet               | +           | +          |
| ultraviolet light            | +           | +          |
| ampicillin                   | 0           | 0          |

TABLE 11 SALMONELLA TYPHIMURIUM STRAIN TA98, PHENOTYPIC CHARACTERISTICS

Remarks: dates of determinations: 9 Aug. and 20 Sep. 89

2026023544

| DATE OF<br>ASSAY | DETERMI-<br>NATION | VIABILITY (CFU/plate) |     |     |     | MEAN  | SE   | RSD (%) |
|------------------|--------------------|-----------------------|-----|-----|-----|-------|------|---------|
|                  |                    | PLATE                 |     |     |     |       |      |         |
|                  |                    | 1                     | 2   | 3   | 4   |       |      |         |
| 15-AUG-89        | start              | 156                   | 175 | 147 | -   | 159.3 | 8.3  | 9.0     |
|                  | end                | 174                   | 176 | 103 | 179 | 158.0 | 18.4 | 23.2    |
| 16-AUG-89        | start              | 168                   | 180 | 169 | 164 | 170.3 | 3.4  | 4.0     |
|                  | end                | 211                   | 173 | 174 | 181 | 184.8 | 8.9  | 9.7     |

TABLE 12 SALMONELLA TYPHIMURIUM STRAIN TA98, VIABILITY

Remarks: number of viable bacteria plated in the mutagenicity assay: mean of viability x diluting factor 1E6,  
 mean +- SE of both substudies:  
 $1.69 \times 10^8 \pm 0.06 \times 10^8$  CFU/plate (N= 15)

| DATE OF ASSAY | SUBSTANCE  | PRES- ENCE OF S9 | MUTAGENICITY (rev./plate) |      |      |      | MEAN   | SE   | RSD (%) |      |
|---------------|------------|------------------|---------------------------|------|------|------|--------|------|---------|------|
|               |            |                  | PLATE                     | 1    | 2    | 3    |        |      |         |      |
| 15-AUG-89     | DMSO       | no               |                           | 13   | 14   | 14   | 17     | 14.5 | 0.9     | 11.9 |
|               |            | yes              |                           | 29   | 30   | 30   | 26     | 28.8 | 0.9     | 6.6  |
|               | daunomycin | no               | 1546                      | 1592 | 1524 | 1580 | 1560.5 | 15.6 | 2.0     |      |
|               |            | no               | 26                        | 39   | 17   | 23   | 26.3   | 4.6  | 35.4    |      |
|               | 2-AA       | yes              | 1332                      | 1245 | 1352 | 1450 | 1344.8 | 42.1 | 6.3     |      |
|               |            | yes              | 327                       | 329  | 324  | 392  | 343.0  | 16.4 | 9.5     |      |
| 16-AUG-89     | DMSO       | no               |                           | 13   | 14   | 17   | 17     | 15.3 | 1.0     | 13.5 |
|               |            | yes              |                           | 23   | 35   | 30   | 25     | 28.3 | 2.7     | 19.0 |
|               | daunomycin | no               | 1507                      | 1503 | 1469 | 1357 | 1459.0 | 35.1 | 4.8     |      |
|               |            | no               | 23                        | 23   | 17   | 29   | 23.0   | 2.4  | 21.3    |      |
|               | 2-AA       | yes              | 1426                      | 1313 | 1337 | 1431 | 1376.8 | 30.3 | 4.4     |      |
|               |            | yes              | 342                       | 310  | 316  | 336  | 326.0  | 7.7  | 4.7     |      |

TABLE 13 SALMONELLA TYPHIMURIUM STRAIN TA98, SPONTANEOUS REVERSION AND RESPONSE TO DIAGNOSTIC MUTAGENS

Remarks: doses of solvent per plate (spontaneous reversion):  
 50 µl DMSO, doses of diagnostic mutagens per plate:  
 6 µg daunomycin, 650 µg MMS, 2 µg 2-AA, 2 µg 2-AF,  
 mean +- SE of spontaneous reversion of both substudies:  
 14.9 +- 0.6 rev./plate (N= 8) in the absence and  
 28.5 +- 1.3 rev./plate (N= 8) in the presence of S9

2026023546

| PARAMETER                    | RESPONSE    |            |
|------------------------------|-------------|------------|
|                              | RECOMMENDED | DETERMINED |
| <b>histidine requirement</b> |             |            |
| growth without histidine     | 0           | 0          |
| growth with histidine        | +           | +          |
| <b>sensitivity to</b>        |             |            |
| crystal violet               | +           | +          |
| ultraviolet light            | +           | +          |
| ampicillin                   | 0           | 0          |

TABLE 14 SALMONELLA TYPHIMURIUM STRAIN TA100, PHENOTYPIC CHARACTERISTICS

Remarks: dates of determinations: 9 Aug. and 20 Sep. 89

2026023547

| DATE OF ASSAY | DETERMINATION | VIABILITY (CFU/plate) |     |     |     | MEAN  | SE  | RSD (%) |
|---------------|---------------|-----------------------|-----|-----|-----|-------|-----|---------|
|               |               | PLATE                 | 1   | 2   | 3   | 4     |     |         |
| 15-AUG-89     | start         | 111                   | 90  | 116 | 113 | 107.5 | 5.9 | 11.0    |
|               | end           | 109                   | 107 | 103 | 111 | 107.5 | 1.7 | 3.2     |
| 16-AUG-89     | start         | 123                   | 129 | 134 | 120 | 126.5 | 3.1 | 4.9     |
|               | end           | 113                   | 117 | 117 | 124 | 117.8 | 2.3 | 3.9     |

TABLE 15 SALMONELLA TYPHIMURIUM STRAIN TA100, VIABILITY

Remarks: number of viable bacteria plated in the mutagenicity assay: mean of viability x diluting factor 1E6,  
 mean +- SE of both substudies:  
 $1.15E8 \pm 0.03E8$  CFU/plate (N= 16)

2026023548

| DATE OF ASSAY | SUB-STAN-  | PRES-ENCE OF S9 | MUTAGENICITY (rev./plate) |      |      |      | MEAN   | SE    | RSD (%) |
|---------------|------------|-----------------|---------------------------|------|------|------|--------|-------|---------|
|               |            |                 | PLATE                     | 1    | 2    | 3    |        |       |         |
| 15-AUG-89     | DMSO       | no              | 109                       | 120  | 106  | 87   | 105.5  | 6.9   | 13.0    |
|               |            | yes             | 121                       | 123  | 123  | 90   | 114.3  | 8.1   | 14.2    |
|               | daunomycin | no              | 232                       | 210  | 224  | 108  | 193.5  | 28.9  | 29.8    |
|               |            | no              | 1088                      | 1198 | 1014 | 938  | 1059.5 | 55.4  | 10.5    |
|               | 2-AA       | yes             | 1675                      | 1714 | 1739 | 1567 | 1673.8 | 37.9  | 4.5     |
|               | 2-AF       | yes             | 285                       | 298  | 309  | 250  | 285.5  | 12.8  | 9.0     |
| 16-AUG-89     | DMSO       | no              | 104                       | 117  | 109  | 127  | 114.3  | 5.0   | 8.8     |
|               |            | yes             | 131                       | 113  | 123  | 89   | 114.0  | 9.1   | 16.0    |
|               | daunomycin | no              | 145                       | 132  | 131  | 92   | 125.0  | 11.5  | 18.3    |
|               |            | no              | 1418                      | 1490 | 1446 | 936  | 1322.5 | 129.7 | 19.6    |
|               | 2-AA       | yes             | 1482                      | 1538 | 1514 | 1420 | 1488.5 | 25.6  | 3.4     |
|               | 2-AF       | yes             | 251                       | 288  | 274  | 226  | 259.8  | 13.6  | 10.5    |

TABLE 16 SALMONELLA TYPHIMURIUM STRAIN TA100, SPONTANEOUS REVERSION AND RESPONSE TO DIAGNOSTIC MUTAGENS

Remarks: doses of solvent per plate (spontaneous reversion):  
 50 ul DMSO, doses of diagnostic mutagens per plate:  
 6 ug daunomycin, 650 ug MMS, 2 ug 2-AA, 2 ug 2-AF,  
 mean +- SE of spontaneous reversion of both substudies:  
 109.9 +- 4.3 rev./plate (N= 8 ) in the absence and  
 114.1 +- 5.6 rev./plate (N= 8 ) in the presence of S9

2026023549

| DATE OF<br>MUTAGENICITY<br>ASSAY | PROTEIN             |          | SPECIFIC<br>AHM ACTIVITY | BACTERIAL<br>CONTAMI-<br>NATION |
|----------------------------------|---------------------|----------|--------------------------|---------------------------------|
|                                  | CONCENTRATION (g/l) | AMOUNT   |                          |                                 |
|                                  | UNFIL-<br>TERED     | FILTERED |                          |                                 |
| (Aug.89)                         |                     |          | (mg/plate)               | (CFU/ml)                        |
| 15                               | 3.2                 | 3.2      | 1.6                      | 99.0                            |
| 16                               | 3.2                 | 3.1      | 1.6                      | 100.7                           |

TABLE 17 ANALYTICAL DATA OF S9 MIXES

Remarks: S9 mixes stored at -75 degrees centigrade until determination  
date of determination: 25 Oct.89  
protein determination according to Lowry et al. (1951)

2026023550

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     |       |      | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-------|------|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     | M     | SE   | RSD             |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |       |      |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     |       |      | (%)             | (rev.<br>/mg)   | r     |  |
| 15-AUG-89        | 3200  | 0.00         | 19                        | 27  | 33  | 33  | 28.0  | 3.3  | 23.7            |                 |       |  |
|                  |       | 0.05         | 98                        | 102 | 93  | 102 | 98.8  | 2.1  | 4.3             |                 |       |  |
|                  |       | 0.10         | 227                       | 210 | 234 | 213 | 221.0 | 5.7  | 5.2             |                 |       |  |
|                  |       | 0.15         | 334                       | 314 | 324 | 339 | 327.8 | 5.5  | 3.4             | 2043            | 0.993 |  |
|                  | 3204  | 0.00         | 37                        | 23  | 31  | 29  | 30.0  | 2.9  | 19.2            |                 |       |  |
|                  |       | 0.05         | 128                       | 102 | 127 | 92  | 112.3 | 9.0  | 16.1            |                 |       |  |
|                  |       | 0.10         | 253                       | 225 | 269 | 255 | 250.5 | 9.2  | 7.4             |                 |       |  |
|                  |       | 0.15         | 387                       | 370 | 324 | 359 | 360.0 | 13.3 | 7.4             | 2257            | 0.988 |  |
|                  | 3200  | 0.00         | -                         | -   | -   | -   | 29.0  | 2.1  | 20.2            |                 |       |  |
|                  | 3204  | 0.05         | -                         | -   | -   | -   | 105.5 | 5.0  | 13.4            |                 |       |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 235.8 | 7.5  | 9.0             |                 |       |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 343.9 | 9.0  | 7.4             | 2150            | 0.986 |  |
| 16-AUG-89        | 3218  | 0.00         | 25                        | 36  | 32  | 36  | 32.3  | 2.6  | 16.1            |                 |       |  |
|                  |       | 0.05         | 99                        | 105 | 109 | 103 | 104.0 | 2.1  | 4.0             |                 |       |  |
|                  |       | 0.10         | 203                       | 206 | 235 | 211 | 213.8 | 7.3  | 6.8             |                 |       |  |
|                  |       | 0.15         | 317                       | 351 | 353 | 363 | 346.0 | 10.0 | 5.8             | 2102            | 0.987 |  |
|                  | 3222  | 0.00         | 28                        | 38  | 37  | 38  | 35.3  | 2.4  | 13.8            |                 |       |  |
|                  |       | 0.05         | 111                       | 122 | 115 | 115 | 115.8 | 2.3  | 4.0             |                 |       |  |
|                  |       | 0.10         | 233                       | 245 | 226 | 226 | 232.5 | 4.5  | 3.9             |                 |       |  |
|                  |       | 0.15         | 410                       | 389 | 370 | 362 | 382.8 | 10.7 | 5.6             | 2318            | 0.988 |  |
|                  | 3218  | 0.00         | -                         | -   | -   | -   | 33.8  | 1.7  | 14.6            |                 |       |  |
|                  | 3222  | 0.05         | -                         | -   | -   | -   | 109.9 | 2.6  | 6.8             |                 |       |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 223.1 | 5.3  | 6.7             |                 |       |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 364.4 | 9.7  | 7.5             | 2210            | 0.984 |  |
| 15-AUG-89        | 3200  | 0.00         | -                         | -   | -   | -   | 31.4  | 1.4  | 18.4            |                 |       |  |
| 16-AUG-89        | 3204  | 0.05         | -                         | -   | -   | -   | 107.7 | 2.8  | 10.4            |                 |       |  |
|                  | 3218  | 0.10         | -                         | -   | -   | -   | 229.4 | 4.7  | 8.2             |                 |       |  |
|                  | 3222  | 0.15         | -                         | -   | -   | -   | 354.1 | 6.9  | 7.8             | 2180            | 0.985 |  |

2026023551

TABLE 18 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE CALYPSO-1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.03. Deviations >0.25 are considered statistically significant.

890823 08:45:48 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

| DATE OF<br>ASSAY | BATCH | DOSE MUTAGENICITY (rev./plate) |     |     |     |     |       |      |      | REGR.<br>COEFF. | CORR.<br>COEFF. |  |  |
|------------------|-------|--------------------------------|-----|-----|-----|-----|-------|------|------|-----------------|-----------------|--|--|
|                  |       | PLATE                          |     |     |     | M   | SE    | RSD  |      |                 |                 |  |  |
|                  |       | 1                              | 2   | 3   | 4   |     |       |      |      |                 |                 |  |  |
|                  |       | (mg/<br>pl.)                   |     |     |     |     |       |      | (%)  | (rev.<br>/mg)   |                 |  |  |
| 15-AUG-89        | 3202  | 0.00                           | 31  | 38  | 29  | 26  | 31.0  | 2.5  | 16.4 |                 |                 |  |  |
|                  |       | 0.05                           | 106 | 141 | 121 | 113 | 120.3 | 7.6  | 12.6 |                 |                 |  |  |
|                  |       | 0.10                           | 236 | 259 | 242 | 216 | 238.3 | 8.9  | 7.4  |                 |                 |  |  |
|                  |       | 0.15                           | 388 | 381 | 394 | 362 | 381.3 | 6.9  | 3.6  | 2337            | 0.991           |  |  |
|                  | 3206  | 0.00                           | 36  | 38  | 30  | 36  | 35.0  | 1.7  | 9.9  |                 |                 |  |  |
|                  |       | 0.05                           | 109 | 104 | 119 | 131 | 115.8 | 6.0  | 10.3 |                 |                 |  |  |
|                  |       | 0.10                           | 258 | 263 | 256 | 255 | 258.0 | 1.8  | 1.4  |                 |                 |  |  |
|                  |       | 0.15                           | 413 | 453 | 441 | 421 | 432.0 | 9.1  | 4.2  | 2667            | 0.986           |  |  |
|                  | 3202  | 0.00                           | -   | -   | -   | -   | 33.0  | 1.6  | 13.8 |                 |                 |  |  |
|                  | 3206  | 0.05                           | -   | -   | -   | -   | 118.0 | 4.5  | 10.9 |                 |                 |  |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 248.1 | 5.6  | 6.4  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 406.6 | 11.0 | 7.6  | 2502            | 0.984           |  |  |
| 16-AUG-89        | 3224  | 0.00                           | 40  | 38  | 28  | 44  | 37.5  | 3.4  | 18.2 |                 |                 |  |  |
|                  |       | 0.05                           | 93  | 98  | 118 | 117 | 106.5 | 6.4  | 12.1 |                 |                 |  |  |
|                  |       | 0.10                           | 223 | 218 | 247 | 250 | 234.5 | 8.2  | 7.0  |                 |                 |  |  |
|                  |       | 0.15                           | 329 | 398 | 368 | 362 | 364.3 | 14.1 | 7.8  | 2216            | 0.984           |  |  |
|                  | 3228  | 0.00                           | 35  | 31  | 29  | 31  | 31.5  | 1.3  | 8.0  |                 |                 |  |  |
|                  |       | 0.05                           | 117 | 123 | 107 | 101 | 112.0 | 4.9  | 8.8  |                 |                 |  |  |
|                  |       | 0.10                           | 247 | 263 | 272 | 238 | 255.0 | 7.7  | 6.0  |                 |                 |  |  |
|                  |       | 0.15                           | 412 | 362 | 386 | 365 | 381.3 | 11.6 | 6.1  | 2385            | 0.990           |  |  |
|                  | 3224  | 0.00                           | -   | -   | -   | -   | 34.5  | 2.0  | 16.6 |                 |                 |  |  |
|                  | 3228  | 0.05                           | -   | -   | -   | -   | 109.3 | 3.9  | 10.1 |                 |                 |  |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 244.8 | 6.5  | 7.5  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 372.8 | 9.0  | 6.9  | 2300            | 0.986           |  |  |
| 15-AUG-89        | 3202  | 0.00                           | -   | -   | -   | -   | 33.8  | 1.3  | 15.0 |                 |                 |  |  |
| 16-AUG-89        | 3206  | 0.05                           | -   | -   | -   | -   | 113.6 | 3.1  | 10.9 |                 |                 |  |  |
|                  | 3224  | 0.10                           | -   | -   | -   | -   | 246.4 | 4.2  | 6.8  |                 |                 |  |  |
|                  | 3228  | 0.15                           | -   | -   | -   | -   | 389.7 | 8.1  | 8.4  | 2401            | 0.983           |  |  |

TABLE 19 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE AREUSE-46

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.08. Deviations >0.25 are considered statistically significant.

890823 08:47:54 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

| DATE OF<br>DAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|----------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   |       |  |
| 5-AUG-89       | 3208  | 0.00         | 24                        | 31  | 32  | 32  | 29.8            | 1.9             | 13.0  |  |
|                |       | 0.05         | 114                       | 115 | 114 | 110 | 113.3           | 1.1             | 2.0   |  |
|                |       | 0.10         | 219                       | 238 | 232 | 226 | 228.8           | 4.1             | 3.6   |  |
|                |       | 0.15         | 386                       | 363 | 407 | 361 | 379.3           | 10.9            | 5.7   |  |
|                |       |              |                           |     |     |     |                 | 2328            | 0.989 |  |
|                | 3212  | 0.00         | 23                        | 34  | 25  | 22  | 26.0            | 2.7             | 21.1  |  |
|                |       | 0.05         | 120                       | 109 | 127 | 124 | 120.0           | 3.9             | 6.6   |  |
|                |       | 0.10         | 253                       | 266 | 255 | 261 | 258.8           | 3.0             | 2.3   |  |
|                |       | 0.15         | 378                       | 410 | 419 | 371 | 394.5           | 11.8            | 6.0   |  |
|                |       |              |                           |     |     |     |                 | 2489            | 0.993 |  |
|                | 3208  | 0.00         | -                         | -   | -   | -   | 27.9            | 1.7             | 17.3  |  |
|                | 3212  | 0.05         | -                         | -   | -   | -   | 116.6           | 2.3             | 5.5   |  |
|                |       | 0.10         | -                         | -   | -   | -   | 243.8           | 6.1             | 7.1   |  |
|                |       | 0.15         | -                         | -   | -   | -   | 386.9           | 8.0             | 5.8   |  |
|                |       |              |                           |     |     |     |                 | 2408            | 0.990 |  |
| 16-AUG-89      | 3226  | 0.00         | 37                        | 28  | 36  | 40  | 35.3            | 2.6             | 14.5  |  |
|                |       | 0.05         | 129                       | 116 | 99  | 130 | 118.5           | 7.2             | 12.2  |  |
|                |       | 0.10         | 225                       | 219 | 211 | 206 | 215.3           | 4.2             | 3.9   |  |
|                |       | 0.15         | 343                       | 335 | 350 | 356 | 346.0           | 4.5             | 2.6   |  |
|                |       |              |                           |     |     |     |                 | 2058            | 0.992 |  |
|                | 3230  | 0.00         | 39                        | 30  | 32  | 39  | 35.0            | 2.3             | 13.4  |  |
|                |       | 0.05         | 118                       | 119 | 110 | 136 | 120.8           | 5.5             | 9.1   |  |
|                |       | 0.10         | 251                       | 252 | 228 | 248 | 244.8           | 5.6             | 4.6   |  |
|                |       | 0.15         | 411                       | 358 | 419 | 381 | 392.3           | 14.0            | 7.2   |  |
|                |       |              |                           |     |     |     |                 | 2391            | 0.988 |  |
|                | 3226  | 0.00         | -                         | -   | -   | -   | 35.1            | 1.6             | 13.0  |  |
|                | 3230  | 0.05         | -                         | -   | -   | -   | 119.6           | 4.2             | 10.0  |  |
|                |       | 0.10         | -                         | -   | -   | -   | 230.0           | 6.5             | 7.9   |  |
|                |       | 0.15         | -                         | -   | -   | -   | 369.1           | 11.1            | 8.5   |  |
|                |       |              |                           |     |     |     |                 | 2225            | 0.984 |  |
| 15-AUG-89      | 3208  | 0.00         | -                         | -   | -   | -   | 31.5            | 1.5             | 18.7  |  |
| 16-AUG-89      | 3212  | 0.05         | -                         | -   | -   | -   | 118.1           | 2.4             | 8.0   |  |
|                | 3226  | 0.10         | -                         | -   | -   | -   | 236.9           | 4.7             | 7.9   |  |
|                | 3230  | 0.15         | -                         | -   | -   | -   | 378.0           | 7.0             | 7.4   |  |
|                |       |              |                           |     |     |     |                 | 2316            | 0.986 |  |

TABLE 20 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE AREUSE-53

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.08. Deviations >0.25 are considered statistically significant.

890823 08:49:57 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023553

| DATE OF ASSAY | BATCH | DOSE MUTAGENICITY (rev./plate) |     |     |     |     |       |      |      | REGR. COEFF. | CORR. COEFF. |
|---------------|-------|--------------------------------|-----|-----|-----|-----|-------|------|------|--------------|--------------|
|               |       | PLATE                          |     |     |     | M   | SE    | RSD  |      |              |              |
|               |       | 1<br>(mg/<br>pl.)              | 2   | 3   | 4   |     |       |      |      |              |              |
| 15-AUG-89     | 3210  | 0.00                           | 25  | 26  | 36  | 36  | 30.8  | 3.0  | 19.8 | 2130         | 0.993        |
|               |       | 0.05                           | 115 | 111 | 116 | 119 | 115.3 | 1.7  | 2.9  |              |              |
|               |       | 0.10                           | 225 | 240 | 259 | 211 | 233.8 | 10.3 | 8.8  |              |              |
|               |       | 0.15                           | 369 | 331 | 336 | 349 | 346.3 | 8.5  | 4.9  |              |              |
|               | 3214  | 0.00                           | 28  | 31  | 32  | 39  | 32.5  | 2.3  | 14.3 | 2271         | 0.982        |
|               |       | 0.05                           | 83  | 123 | 149 | 100 | 113.8 | 14.3 | 25.2 |              |              |
|               |       | 0.10                           | 232 | 236 | 242 | 201 | 227.8 | 9.2  | 8.0  |              |              |
|               |       | 0.15                           | 392 | 339 | 385 | 376 | 373.0 | 11.8 | 6.3  |              |              |
|               | 3210  | 0.00                           | -   | -   | -   | -   | 31.6  | 1.8  | 16.1 | 2200         | 0.986        |
|               |       | 0.05                           | -   | -   | -   | -   | 114.5 | 6.7  | 16.5 |              |              |
| 16-AUG-89     | 3232  | 0.00                           | 40  | 41  | 35  | 34  | 37.5  | 1.8  | 9.4  | 1973         | 0.983        |
|               |       | 0.05                           | 101 | 109 | 106 | 86  | 100.5 | 5.1  | 10.2 |              |              |
|               |       | 0.10                           | 209 | 221 | 209 | 174 | 203.3 | 10.2 | 10.0 |              |              |
|               |       | 0.15                           | 345 | 343 | 326 | 314 | 332.0 | 7.4  | 4.4  |              |              |
|               | 3236  | 0.00                           | 27  | 32  | 27  | 38  | 31.0  | 2.6  | 16.9 | 2104         | 0.990        |
|               |       | 0.05                           | 99  | 100 | 116 | 95  | 102.5 | 4.6  | 9.0  |              |              |
|               |       | 0.10                           | 227 | 232 | 229 | 210 | 224.5 | 4.9  | 4.4  |              |              |
|               |       | 0.15                           | 363 | 348 | 336 | 317 | 341.0 | 9.7  | 5.7  |              |              |
|               | 3232  | 0.00                           | -   | -   | -   | -   | 34.3  | 1.9  | 15.7 | 2038         | 0.986        |
|               |       | 0.05                           | -   | -   | -   | -   | 101.5 | 3.2  | 9.0  |              |              |
|               | 3236  | 0.10                           | -   | -   | -   | -   | 213.9 | 6.6  | 8.7  |              |              |
|               |       | 0.15                           | -   | -   | -   | -   | 336.5 | 5.9  | 5.0  |              |              |
| 15-AUG-89     | 3210  | 0.00                           | -   | -   | -   | -   | 32.9  | 1.3  | 15.9 |              |              |
| 16-AUG-89     | 3214  | 0.05                           | -   | -   | -   | -   | 108.0 | 4.0  | 14.6 |              |              |
|               | 3232  | 0.10                           | -   | -   | -   | -   | 222.3 | 5.0  | 8.9  |              |              |
|               | 3236  | 0.15                           | -   | -   | -   | -   | 348.1 | 5.8  | 6.7  | 2119         | 0.984        |

TABLE 21 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE AREUSE-55

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.08. Deviations >0.25 are considered statistically significant.

890823 08:52:01 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023554

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     |       | REGR.<br>COEFF. | CORR.<br>COEFF. |            |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-------|-----------------|-----------------|------------|
|                  |       |              | PLATE                     |     |     |     | M     | SE              | RSD             |            |
|                  |       |              | 1                         | 2   | 3   | 4   |       |                 |                 |            |
|                  |       | (mg/<br>pl.) |                           |     |     |     |       | (%)             | (rev.<br>/mg)   | r          |
| 15-AUG-89        | 3216  | 0.00         | 32                        | 34  | 40  | 35  | 35.3  | 1.7             | 9.7             |            |
|                  |       | 0.06         | 113                       | 132 | 107 | 110 | 115.5 | 5.6             | 9.8             |            |
|                  |       | 0.11         | 223                       | 202 | 195 | 224 | 211.0 | 7.4             | 7.0             |            |
|                  |       | 0.17         | 360                       | 351 | 329 | 341 | 345.3 | 6.7             | 3.9             | 1830 0.989 |
|                  | 3220  | 0.00         | 32                        | 45  | 37  | 40  | 38.5  | 2.7             | 14.1            |            |
|                  |       | 0.05         | 107                       | 94  | 102 | 95  | 99.5  | 3.1             | 6.2             |            |
|                  |       | 0.10         | 185                       | 211 | 205 | 185 | 196.5 | 6.8             | 6.9             |            |
|                  |       | 0.15         | 318                       | 317 | 304 | 290 | 307.3 | 6.6             | 4.3             | 1806 0.988 |
|                  | 3216  | 0.00         | -                         | -   | -   | -   | 36.9  | 1.6             | 12.3            |            |
|                  | 3220  | 0.05         | -                         | -   | -   | -   | 99.5  | 3.1             | 6.2             |            |
|                  |       | 0.06         | -                         | -   | -   | -   | 115.5 | 5.6             | 9.8             |            |
|                  |       | 0.10         | -                         | -   | -   | -   | 196.5 | 6.8             | 6.9             |            |
|                  |       | 0.11         | -                         | -   | -   | -   | 211.0 | 7.4             | 7.0             |            |
|                  |       | 0.15         | -                         | -   | -   | -   | 307.3 | 6.6             | 4.3             |            |
|                  |       | 0.17         | -                         | -   | -   | -   | 345.3 | 6.7             | 3.9             | 1818 0.989 |
| 16-AUG-89        | 3234  | 0.00         | 25                        | 31  | 30  | 23  | 27.3  | 1.9             | 14.2            |            |
|                  |       | 0.05         | 92                        | 93  | 101 | 94  | 95.0  | 2.0             | 4.3             |            |
|                  |       | 0.10         | 164                       | 171 | 168 | 165 | 167.0 | 1.6             | 1.9             |            |
|                  |       | 0.15         | 279                       | 278 | 258 | 264 | 269.8 | 5.2             | 3.9             | 1599 0.993 |
|                  | 3238  | 0.00         | 25                        | 34  | 28  | 36  | 30.8  | 2.6             | 16.7            |            |
|                  |       | 0.05         | 110                       | 108 | 113 | 102 | 108.3 | 2.3             | 4.3             |            |
|                  |       | 0.10         | 173                       | 174 | 204 | 198 | 187.3 | 8.0             | 8.6             |            |
|                  |       | 0.15         | 314                       | 301 | 336 | 290 | 310.3 | 9.9             | 6.4             | 1835 0.987 |
|                  | 3234  | 0.00         | -                         | -   | -   | -   | 29.0  | 1.6             | 15.9            |            |
|                  | 3238  | 0.05         | -                         | -   | -   | -   | 101.6 | 2.9             | 8.0             |            |
|                  |       | 0.10         | -                         | -   | -   | -   | 177.1 | 5.4             | 8.6             |            |
|                  |       | 0.15         | -                         | -   | -   | -   | 290.0 | 9.2             | 9.0             | 1717 0.982 |
| 15-AUG-89        | 3216  | 0.00         | -                         | -   | -   | -   | 32.9  | 1.5             | 18.2            |            |
| 16-AUG-89        | 3220  | 0.05         | -                         | -   | -   | -   | 100.9 | 2.1             | 7.3             |            |
|                  | 3234  | 0.06         | -                         | -   | -   | -   | 115.5 | 5.6             | 9.8             |            |
|                  | 3238  | 0.10         | -                         | -   | -   | -   | 183.6 | 4.9             | 9.3             |            |
|                  |       | 0.11         | -                         | -   | -   | -   | 211.0 | 7.4             | 7.0             |            |
|                  |       | 0.15         | -                         | -   | -   | -   | 295.8 | 6.8             | 8.0             |            |
|                  |       | 0.17         | -                         | -   | -   | -   | 345.3 | 6.7             | 3.9             | 1775 0.98  |

TABLE 22 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE 2R1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.06. Deviations >0.25 are considered statistically significant.

2026023555

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     |       |      | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-------|------|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     | M     | SE   | RSR             |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |       |      |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     |       |      | (%)             | (rev.<br>/mg)   | r     |  |
| 15-AUG-89        | 3200  | 0.00         | 83                        | 75  | 78  | 78  | 78.5  | 1.7  | 4.2             |                 |       |  |
|                  |       | 0.05         | 147                       | 137 | 115 | 129 | 132.0 | 6.8  | 10.2            |                 |       |  |
|                  |       | 0.10         | 187                       | 151 | 152 | -   | 163.3 | 11.8 | 12.6            |                 |       |  |
|                  |       | 0.15         | 209                       | 189 | 208 | 209 | 203.8 | 4.9  | 4.8             | 815             | 0.970 |  |
|                  | 3204  | 0.00         | 73                        | 104 | 90  | 101 | 92.0  | 7.0  | 15.2            |                 |       |  |
|                  |       | 0.05         | 167                       | 151 | 162 | 164 | 161.0 | 3.5  | 4.3             |                 |       |  |
|                  |       | 0.10         | 208                       | 191 | 222 | 204 | 206.3 | 6.4  | 6.2             |                 |       |  |
|                  |       | 0.15         | 288                       | 258 | 312 | 230 | 272.0 | 17.8 | 13.1            | 1170            | 0.962 |  |
|                  | 3200  | 0.00         | -                         | -   | -   | -   | 85.3  | 4.2  | 13.9            |                 |       |  |
|                  | 3204  | 0.05         | -                         | -   | -   | -   | 146.5 | 6.5  | 12.6            |                 |       |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 187.9 | 10.3 | 14.6            |                 |       |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 237.9 | 15.5 | 18.4            | 999             | 0.905 |  |
| 16-AUG-89        | 3218  | 0.00         | 91                        | 76  | 84  | 83  | 83.5  | 3.1  | 7.4             |                 |       |  |
|                  |       | 0.05         | 167                       | 121 | 137 | 120 | 136.3 | 11.0 | 16.1            |                 |       |  |
|                  |       | 0.10         | 157                       | 204 | 166 | 177 | 176.0 | 10.2 | 11.6            |                 |       |  |
|                  |       | 0.15         | 260                       | 187 | 207 | 204 | 214.5 | 15.8 | 14.7            | 865             | 0.928 |  |
|                  | 3222  | 0.00         | 83                        | 81  | 94  | 88  | 86.5  | 2.9  | 6.7             |                 |       |  |
|                  |       | 0.05         | 160                       | 131 | 161 | 147 | 149.8 | 7.0  | 9.4             |                 |       |  |
|                  |       | 0.10         | 184                       | 186 | 213 | 209 | 198.0 | 7.6  | 7.6             |                 |       |  |
|                  |       | 0.15         | 247                       | 248 | 261 | 249 | 251.3 | 3.3  | 2.6             | 1085            | 0.986 |  |
|                  | 3218  | 0.00         | -                         | -   | -   | -   | 85.0  | 2.0  | 6.8             |                 |       |  |
|                  | 3222  | 0.05         | -                         | -   | -   | -   | 143.0 | 6.5  | 12.9            |                 |       |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 187.0 | 7.2  | 10.9            |                 |       |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 232.9 | 10.2 | 12.4            | 975             | 0.943 |  |
| 15-AUG-89        | 3200  | 0.00         | -                         | -   | -   | -   | 85.1  | 2.3  | 10.6            |                 |       |  |
| 16-AUG-89        | 3204  | 0.05         | -                         | -   | -   | -   | 144.8 | 4.5  | 12.4            |                 |       |  |
|                  | 3218  | 0.10         | -                         | -   | -   | -   | 187.4 | 5.9  | 12.3            |                 |       |  |
|                  | 3222  | 0.15         | -                         | -   | -   | -   | 235.4 | 9.0  | 15.3            | 987             | 0.923 |  |

2026023556

TABLE 23 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE CALYPSO-1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.02. Deviations >0.25 are considered statistically significant.

890823 08:56:12 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

| DATE OF<br>ASSAY | BATCH | DOSE MUTAGENICITY (rev./plate) |     |     |     |     |       |      |      | REGR.<br>COEFF. | CORR.<br>COEFF. |  |  |
|------------------|-------|--------------------------------|-----|-----|-----|-----|-------|------|------|-----------------|-----------------|--|--|
|                  |       | PLATE                          |     |     |     | M   | SE    | RSD  |      |                 |                 |  |  |
|                  |       | 1<br>(mg/<br>pl.)              | 2   | 3   | 4   |     |       |      |      |                 |                 |  |  |
| 15-AUG-89        | 3202  | 0.00                           | 76  | 89  | 77  | 69  | 77.8  | 4.2  | 10.7 |                 |                 |  |  |
|                  |       | 0.05                           | 127 | 113 | 138 | 126 | 126.0 | 5.1  | 8.1  |                 |                 |  |  |
|                  |       | 0.10                           | 197 | 152 | 189 | 186 | 181.0 | 9.9  | 11.0 |                 |                 |  |  |
|                  |       | 0.15                           | 221 | 187 | 229 | 260 | 224.3 | 15.0 | 13.4 | 989             | 0.957           |  |  |
|                  | 3206  | 0.00                           | 56  | 82  | 78  | 88  | 76.0  | 7.0  | 18.4 |                 |                 |  |  |
|                  |       | 0.05                           | 144 | 157 | 144 | 145 | 147.5 | 3.2  | 4.3  |                 |                 |  |  |
|                  |       | 0.10                           | 194 | 176 | 187 | 206 | 190.8 | 6.3  | 6.6  |                 |                 |  |  |
|                  |       | 0.15                           | 274 | 244 | 287 | 232 | 259.3 | 12.8 | 9.9  | 1186            | 0.975           |  |  |
|                  | 3202  | 0.00                           | -   | -   | -   | -   | 76.9  | 3.8  | 13.9 |                 |                 |  |  |
|                  | 3206  | 0.05                           | -   | -   | -   | -   | 136.8 | 4.9  | 10.2 |                 |                 |  |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 185.9 | 5.7  | 8.7  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 241.8 | 11.3 | 13.2 | 1087            | 0.955           |  |  |
| 16-AUG-89        | 3224  | 0.00                           | 79  | 82  | 84  | 85  | 82.5  | 1.3  | 3.2  |                 |                 |  |  |
|                  |       | 0.05                           | 121 | 128 | 130 | 129 | 127.0 | 2.0  | 3.2  |                 |                 |  |  |
|                  |       | 0.10                           | 166 | 192 | 186 | 182 | 181.5 | 5.6  | 6.1  |                 |                 |  |  |
|                  |       | 0.15                           | 220 | 189 | 241 | 227 | 219.3 | 11.0 | 10.0 | 929             | 0.977           |  |  |
|                  | 3228  | 0.00                           | 92  | 88  | 75  | 74  | 82.3  | 4.6  | 11.1 |                 |                 |  |  |
|                  |       | 0.05                           | 133 | 146 | 118 | 119 | 129.0 | 6.6  | 10.3 |                 |                 |  |  |
|                  |       | 0.10                           | 162 | 166 | 157 | 162 | 161.8 | 1.8  | 2.3  |                 |                 |  |  |
|                  |       | 0.15                           | 231 | 242 | 217 | 216 | 226.5 | 6.2  | 5.5  | 931             | 0.977           |  |  |
|                  | 3224  | 0.00                           | -   | -   | -   | -   | 82.4  | 2.2  | 7.5  |                 |                 |  |  |
|                  | 3228  | 0.05                           | -   | -   | -   | -   | 128.0 | 3.2  | 7.1  |                 |                 |  |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 171.6 | 4.6  | 7.6  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 222.9 | 6.0  | 7.6  | 930             | 0.977           |  |  |
| 15-AUG-89        | 3202  | 0.00                           | -   | -   | -   | -   | 79.6  | 2.2  | 11.2 |                 |                 |  |  |
| 16-AUG-89        | 3206  | 0.05                           | -   | -   | -   | -   | 132.4 | 3.1  | 9.3  |                 |                 |  |  |
|                  | 3224  | 0.10                           | -   | -   | -   | -   | 178.8 | 4.0  | 9.0  |                 |                 |  |  |
|                  | 3228  | 0.15                           | -   | -   | -   | -   | 232.3 | 6.6  | 11.4 | 1009            | 0.959           |  |  |

TABLE 24 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE AREUSE-46

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.16. Deviations >0.25 are considered statistically significant.

890823 08:58:15 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

20260235.7

| DATE OF<br>ASSAY | BATCH | DOSE MUTAGENICITY (rev./plate) |     |     |     |     |       |      |      | REGR.<br>COEFF. | CORR.<br>COEFF. |  |  |
|------------------|-------|--------------------------------|-----|-----|-----|-----|-------|------|------|-----------------|-----------------|--|--|
|                  |       | PLATE                          |     |     |     | M   | SE    | RSD  |      |                 |                 |  |  |
|                  |       | 1<br>(mg/<br>pl.)              | 2   | 3   | 4   |     |       |      |      |                 |                 |  |  |
| 15-AUG-89        | 3208  | 0.00                           | 95  | 94  | 101 | 89  | 94.8  | 2.5  | 5.2  | 886             | 0.983           |  |  |
|                  |       | 0.05                           | 141 | 145 | 131 | 123 | 135.0 | 5.0  | 7.4  |                 |                 |  |  |
|                  |       | 0.10                           | 185 | 178 | 203 | 187 | 188.3 | 5.3  | 5.6  |                 |                 |  |  |
|                  |       | 0.15                           | 213 | 224 | 242 | 220 | 224.8 | 6.2  | 5.5  |                 |                 |  |  |
|                  | 3212  | 0.00                           | 81  | 106 | 85  | 108 | 95.0  | 7.0  | 14.7 | 1010            | 0.982           |  |  |
|                  |       | 0.05                           | 165 | 147 | 144 | 144 | 150.0 | 5.0  | 6.7  |                 |                 |  |  |
|                  |       | 0.10                           | 193 | 179 | 205 | 205 | 195.5 | 6.2  | 6.3  |                 |                 |  |  |
|                  |       | 0.15                           | 259 | 253 | 231 | 250 | 248.3 | 6.0  | 4.9  |                 |                 |  |  |
|                  | 3208  | 0.00                           | -   | -   | -   | -   | 94.9  | 3.4  | 10.2 | 948             | 0.975           |  |  |
|                  |       | 0.05                           | -   | -   | -   | -   | 142.5 | 4.3  | 8.6  |                 |                 |  |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 191.9 | 4.0  | 5.9  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 236.5 | 6.0  | 7.2  |                 |                 |  |  |
| 16-AUG-89        | 3226  | 0.00                           | 91  | 99  | 87  | 90  | 91.8  | 2.6  | 5.6  | 1005            | 0.975           |  |  |
|                  |       | 0.05                           | 142 | 149 | 164 | 143 | 149.5 | 5.1  | 6.8  |                 |                 |  |  |
|                  |       | 0.10                           | 214 | 203 | 187 | 186 | 197.5 | 6.7  | 6.8  |                 |                 |  |  |
|                  |       | 0.15                           | 257 | 253 | 254 | 209 | 243.3 | 11.4 | 9.4  |                 |                 |  |  |
|                  | 3230  | 0.00                           | 81  | 79  | 85  | 77  | 80.5  | 1.7  | 4.2  | 918             | 0.977           |  |  |
|                  |       | 0.05                           | 125 | 145 | 150 | 130 | 137.5 | 6.0  | 8.7  |                 |                 |  |  |
|                  |       | 0.10                           | 153 | 195 | 183 | 186 | 179.3 | 9.1  | 10.2 |                 |                 |  |  |
|                  |       | 0.15                           | 207 | 224 | 229 | 218 | 219.5 | 4.7  | 4.3  |                 |                 |  |  |
| 15-AUG-89        | 3226  | 0.00                           | -   | -   | -   | -   | 86.1  | 2.6  | 8.4  | 961             | 0.964           |  |  |
|                  |       | 0.05                           | -   | -   | -   | -   | 143.5 | 4.3  | 8.4  |                 |                 |  |  |
|                  | 3230  | 0.10                           | -   | -   | -   | -   | 188.4 | 6.3  | 9.4  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 231.4 | 7.3  | 8.9  |                 |                 |  |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 233.9 | 4.6  | 7.9  |                 |                 |  |  |

TABLE 25 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE AREUSE-53

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.01. Deviations >0.25 are considered statistically significant.

890823 09:00:18 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023558

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   | r     |  |
| 15-AUG-89        | 3210  | 0.00         | 63                        | 89  | 75  | 107 | 83.5            | 9.5             | 22.7  |  |
|                  |       | 0.05         | 162                       | 145 | 156 | 137 | 150.0           | 5.6             | 7.4   |  |
|                  |       | 0.10         | 177                       | 166 | 195 | 188 | 181.5           | 6.4             | 7.0   |  |
|                  |       | 0.15         | 233                       | 237 | 237 | 241 | 237.0           | 1.6             | 1.4   |  |
|                  |       |              |                           |     |     |     |                 | 984             | 0.972 |  |
|                  | 3214  | 0.00         | 102                       | 73  | 93  | 93  | 90.3            | 6.1             | 13.6  |  |
|                  |       | 0.05         | 160                       | 138 | 136 | 143 | 144.3           | 5.5             | 7.6   |  |
|                  |       | 0.10         | 188                       | 139 | 216 | 207 | 187.5           | 17.2            | 18.3  |  |
|                  |       | 0.15         | 237                       | 226 | 231 | 214 | 227.0           | 4.9             | 4.3   |  |
|                  |       |              |                           |     |     |     |                 | 907             | 0.946 |  |
|                  | 3210  | 0.00         | -                         | -   | -   | -   | 86.9            | 5.4             | 17.5  |  |
|                  | 3214  | 0.05         | -                         | -   | -   | -   | 147.1           | 3.8             | 7.3   |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 184.5           | 8.6             | 13.1  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 232.0           | 3.0             | 3.7   |  |
|                  |       |              |                           |     |     |     |                 | 945             | 0.959 |  |
| 16-AUG-89        | 3232  | 0.00         | 75                        | 80  | 99  | 76  | 82.5            | 5.6             | 13.6  |  |
|                  |       | 0.05         | 102                       | 126 | 146 | 131 | 126.3           | 9.1             | 14.5  |  |
|                  |       | 0.10         | 145                       | 215 | 181 | 173 | 178.5           | 14.4            | 16.1  |  |
|                  |       | 0.15         | 198                       | 194 | 208 | 191 | 197.8           | 3.7             | 3.7   |  |
|                  |       |              |                           |     |     |     |                 | 796             | 0.930 |  |
|                  | 3236  | 0.00         | 78                        | 88  | 77  | 85  | 82.0            | 2.7             | 6.5   |  |
|                  |       | 0.05         | 151                       | 148 | 108 | 128 | 133.8           | 10.0            | 14.9  |  |
|                  |       | 0.10         | 152                       | 184 | 157 | 164 | 164.3           | 7.0             | 8.6   |  |
|                  |       | 0.15         | 208                       | 183 | 203 | 215 | 202.3           | 6.9             | 6.8   |  |
|                  |       |              |                           |     |     |     |                 | 782             | 0.957 |  |
|                  | 3232  | 0.00         | -                         | -   | -   | -   | 82.3            | 2.9             | 9.9   |  |
|                  | 3236  | 0.05         | -                         | -   | -   | -   | 130.0           | 6.4             | 14.0  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 171.4           | 7.9             | 13.0  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 200.0           | 3.7             | 5.3   |  |
|                  |       |              |                           |     |     |     |                 | 789             | 0.943 |  |
| 15-AUG-89        | 3210  | 0.00         | -                         | -   | -   | -   | 84.6            | 3.0             | 14.2  |  |
| 16-AUG-89        | 3214  | 0.05         | -                         | -   | -   | -   | 138.6           | 4.2             | 12.2  |  |
|                  | 3232  | 0.10         | -                         | -   | -   | -   | 177.9           | 5.9             | 13.2  |  |
|                  | 3236  | 0.15         | -                         | -   | -   | -   | 216.0           | 4.7             | 8.8   |  |
|                  |       |              |                           |     |     |     |                 | 867             | 0.936 |  |

TABLE 26 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE AREUSE-55

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.18. Deviations >0.25 are considered statistically significant.

890823 09:02:21 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023559

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     |       |      |      |     | REGR.<br>COEFF. | CORR.<br>COEFF. |  |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-------|------|------|-----|-----------------|-----------------|--|--|
|                  |       |              | PLATE                     |     |     |     | M     | SE   | RSD  |     |                 |                 |  |  |
|                  |       |              | 1                         | 2   | 3   | 4   |       |      |      |     |                 |                 |  |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     |       |      |      | (%) | (rev.<br>/mg)   |                 |  |  |
| 15-AUG-89        | 3216  | 0.00         | 91                        | 71  | 105 | 93  | 90.0  | 7.0  | 15.7 |     |                 |                 |  |  |
|                  |       | 0.06         | 150                       | 139 | 141 | 170 | 150.0 | 7.1  | 9.4  |     |                 |                 |  |  |
|                  |       | 0.11         | 230                       | 205 | 210 | 216 | 215.3 | 5.4  | 5.0  |     |                 |                 |  |  |
|                  |       | 0.17         | 274                       | 208 | 262 | 226 | 242.5 | 15.4 | 12.7 | 930 | 0.947           |                 |  |  |
|                  | 3220  | 0.00         | 75                        | 93  | 97  | 86  | 87.8  | 4.8  | 11.0 |     |                 |                 |  |  |
|                  |       | 0.05         | 143                       | 136 | 132 | 157 | 142.0 | 5.5  | 7.7  |     |                 |                 |  |  |
|                  |       | 0.10         | 196                       | 165 | 202 | 189 | 188.0 | 8.1  | 8.6  |     |                 |                 |  |  |
|                  |       | 0.15         | 237                       | 205 | 240 | 241 | 230.8 | 8.6  | 7.5  | 950 | 0.974           |                 |  |  |
|                  | 3216  | 0.00         | -                         | -   | -   | -   | 88.9  | 4.0  | 12.7 |     |                 |                 |  |  |
|                  | 3220  | 0.05         | -                         | -   | -   | -   | 142.0 | 5.5  | 7.7  |     |                 |                 |  |  |
|                  |       | 0.06         | -                         | -   | -   | -   | 150.0 | 7.1  | 9.4  |     |                 |                 |  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 188.0 | 8.1  | 8.6  |     |                 |                 |  |  |
|                  |       | 0.11         | -                         | -   | -   | -   | 215.3 | 5.4  | 5.0  |     |                 |                 |  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 230.8 | 8.6  | 7.5  |     |                 |                 |  |  |
|                  |       | 0.17         | -                         | -   | -   | -   | 242.5 | 15.4 | 12.7 | 941 | 0.959           |                 |  |  |
| 16-AUG-89        | 3234  | 0.00         | 79                        | 101 | 92  | 79  | 87.8  | 5.4  | 12.3 |     |                 |                 |  |  |
|                  |       | 0.05         | 135                       | 125 | 140 | 128 | 132.0 | 3.4  | 5.1  |     |                 |                 |  |  |
|                  |       | 0.10         | 161                       | 173 | 184 | 169 | 171.8 | 4.8  | 5.6  |     |                 |                 |  |  |
|                  |       | 0.15         | 224                       | 194 | 202 | 214 | 208.5 | 6.6  | 6.3  | 804 | 0.980           |                 |  |  |
|                  | 3238  | 0.00         | 89                        | 92  | 81  | 81  | 85.8  | 2.8  | 6.6  |     |                 |                 |  |  |
|                  |       | 0.05         | 153                       | 112 | 122 | 145 | 133.0 | 9.6  | 14.4 |     |                 |                 |  |  |
|                  |       | 0.10         | 190                       | 180 | 191 | 153 | 178.5 | 8.9  | 9.9  |     |                 |                 |  |  |
|                  |       | 0.15         | 213                       | 170 | 199 | 201 | 195.8 | 9.1  | 9.3  | 751 | 0.933           |                 |  |  |
|                  | 3234  | 0.00         | -                         | -   | -   | -   | 86.8  | 2.8  | 9.2  |     |                 |                 |  |  |
|                  | 3238  | 0.05         | -                         | -   | -   | -   | 132.5 | 4.7  | 10.1 |     |                 |                 |  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 175.1 | 4.8  | 7.8  |     |                 |                 |  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 202.1 | 5.7  | 8.0  | 777 | 0.957           |                 |  |  |
| 15-AUG-89        | 3216  | 0.00         | -                         | -   | -   | -   | 87.8  | 2.4  | 10.8 |     |                 |                 |  |  |
| 16-AUG-89        | 3220  | 0.05         | -                         | -   | -   | -   | 135.7 | 3.7  | 9.6  |     |                 |                 |  |  |
|                  | 3234  | 0.06         | -                         | -   | -   | -   | 150.0 | 7.1  | 9.4  |     |                 |                 |  |  |
|                  | 3238  | 0.10         | -                         | -   | -   | -   | 179.4 | 4.4  | 8.5  |     |                 |                 |  |  |
|                  |       | 0.11         | -                         | -   | -   | -   | 215.3 | 5.4  | 5.0  |     |                 |                 |  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 211.7 | 6.1  | 10.0 |     |                 |                 |  |  |
|                  |       | 0.17         | -                         | -   | -   | -   | 242.5 | 15.4 | 12.7 | 870 | 0.945           |                 |  |  |

TABLE 27 MUTAGENICITY OF MWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE 2R1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.19. Deviations >0.25 are considered statistically significant.

2026023560

| DATE OF<br>ASSAY | BATCH | DOSE | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |      | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |      | 1<br>(mg/<br>pl.)         | 2   | 3   | 4   |                 |                 |       |  |
| 15-AUG-89        | 3201  | 0.00 | 22                        | 29  | 39  | 42  | 33.0            | 4.6             | 27.9  |  |
|                  |       | 0.05 | 107                       | 92  | 108 | 103 | 102.5           | 3.7             | 7.1   |  |
|                  |       | 0.10 | 196                       | 198 | 209 | 179 | 195.5           | 6.2             | 6.3   |  |
|                  |       | 0.15 | 293                       | 335 | 314 | 319 | 315.3           | 8.7             | 5.5   |  |
|                  | 3205  | 0.00 | 29                        | 21  | 28  | 22  | 25.0            | 2.0             | 16.3  |  |
|                  |       | 0.05 | 88                        | 106 | 99  | 100 | 98.3            | 3.8             | 7.6   |  |
|                  |       | 0.10 | 176                       | 174 | 184 | 202 | 184.0           | 6.4             | 6.9   |  |
|                  |       | 0.15 | 275                       | 266 | 272 | 267 | 270.0           | 2.1             | 1.6   |  |
|                  | 3201  | 0.00 | -                         | -   | -   | -   | 29.0            | 2.8             | 27.1  |  |
|                  |       | 0.05 | -                         | -   | -   | -   | 100.4           | 2.6             | 7.2   |  |
|                  |       | 0.10 | -                         | -   | -   | -   | 189.8           | 4.7             | 6.9   |  |
|                  |       | 0.15 | -                         | -   | -   | -   | 292.6           | 9.5             | 9.2   |  |
| 16-AUG-89        | 3219  | 0.00 | 33                        | 28  | 36  | 30  | 31.8            | 1.8             | 11.0  |  |
|                  |       | 0.05 | 82                        | 108 | 103 | 93  | 96.5            | 5.8             | 11.9  |  |
|                  |       | 0.10 | 170                       | 226 | 191 | 200 | 196.8           | 11.6            | 11.8  |  |
|                  |       | 0.15 | 316                       | 328 | 321 | 334 | 324.8           | 3.9             | 2.4   |  |
|                  | 3223  | 0.00 | 42                        | 38  | 38  | 38  | 39.0            | 1.0             | 5.1   |  |
|                  |       | 0.05 | 100                       | 88  | 99  | 110 | 99.3            | 4.5             | 9.1   |  |
|                  |       | 0.10 | 163                       | 176 | 197 | 173 | 177.3           | 7.1             | 8.1   |  |
|                  |       | 0.15 | 287                       | 261 | 292 | 307 | 286.8           | 9.6             | 6.7   |  |
|                  | 3219  | 0.00 | -                         | -   | -   | -   | 35.4            | 1.7             | 13.3  |  |
|                  |       | 0.05 | -                         | -   | -   | -   | 97.9            | 3.4             | 9.9   |  |
|                  |       | 0.10 | -                         | -   | -   | -   | 187.0           | 7.3             | 11.0  |  |
|                  |       | 0.15 | -                         | -   | -   | -   | 305.8           | 8.6             | 8.0   |  |
| 15-AUG-89        | 3201  | 0.00 | -                         | -   | -   | -   | 32.2            | 1.8             | 21.9  |  |
| 16-AUG-89        | 3205  | 0.05 | -                         | -   | -   | -   | 99.1            | 2.1             | 8.4   |  |
|                  | 3219  | 0.10 | -                         | -   | -   | -   | 188.4           | 4.2             | 8.9   |  |
|                  | 3223  | 0.15 | -                         | -   | -   | -   | 299.2           | 6.4             | 8.6   |  |
|                  |       |      |                           |     |     |     |                 | 1780            | 0.982 |  |

TABLE 28 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE CALYPSO-1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.02. Deviations >0.25 are considered statistically significant.

890823 09:06:27 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023561

| DATE OF<br>ASSAY | BATCH | DOSE<br>(mg/<br>pl.) | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|----------------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |                      | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |                      | 1                         | 2   | 3   | 4   |                 |                 |       |  |
| 15-AUG-89        | 3203  | 0.00                 | 31                        | 27  | 26  | 41  | 31.3            | 3.4             | 21.9  |  |
|                  |       | 0.05                 | 88                        | 104 | 87  | 101 | 95.0            | 4.4             | 9.2   |  |
|                  |       | 0.10                 | 188                       | 174 | 196 | 199 | 189.3           | 5.6             | 5.9   |  |
|                  |       | 0.15                 | 347                       | 306 | 283 | 312 | 312.0           | 13.2            | 8.5   |  |
|                  | 3207  | 0.00                 | 29                        | 25  | 35  | 35  | 31.0            | 2.4             | 15.8  |  |
|                  |       | 0.05                 | 88                        | 99  | 110 | -   | 99.0            | 6.4             | 11.1  |  |
|                  |       | 0.10                 | 183                       | 160 | 182 | 185 | 177.5           | 5.9             | 6.6   |  |
|                  |       | 0.15                 | 296                       | 297 | 280 | -   | 291.0           | 5.5             | 3.3   |  |
|                  | 3203  | 0.00                 | -                         | -   | -   | -   | 31.1            | 1.9             | 17.7  |  |
|                  |       | 0.05                 | -                         | -   | -   | -   | 96.7            | 3.4             | 9.4   |  |
|                  |       | 0.10                 | -                         | -   | -   | -   | 183.4           | 4.4             | 6.7   |  |
|                  |       | 0.15                 | -                         | -   | -   | -   | 303.0           | 8.5             | 7.4   |  |
| 16-AUG-89        | 3225  | 0.00                 | 40                        | 36  | 31  | 31  | 34.5            | 2.2             | 12.6  |  |
|                  |       | 0.05                 | 80                        | 98  | 98  | 74  | 87.5            | 6.2             | 14.1  |  |
|                  |       | 0.10                 | 201                       | 189 | 151 | 163 | 176.0           | 11.5            | 13.1  |  |
|                  |       | 0.15                 | 313                       | 322 | 271 | 253 | 289.8           | 16.5            | 11.4  |  |
|                  | 3229  | 0.00                 | 32                        | 40  | 35  | 32  | 34.8            | 1.9             | 10.9  |  |
|                  |       | 0.05                 | 115                       | 132 | 123 | 90  | 115.0           | 9.0             | 15.7  |  |
|                  |       | 0.10                 | 220                       | 216 | 231 | 220 | 221.8           | 3.2             | 2.9   |  |
|                  |       | 0.15                 | 311                       | 358 | 333 | 351 | 338.3           | 10.5            | 6.2   |  |
|                  | 3225  | 0.00                 | -                         | -   | -   | -   | 34.6            | 1.3             | 10.9  |  |
|                  |       | 0.05                 | -                         | -   | -   | -   | 101.3           | 7.3             | 20.3  |  |
|                  |       | 0.10                 | -                         | -   | -   | -   | 198.9           | 10.3            | 14.6  |  |
|                  |       | 0.15                 | -                         | -   | -   | -   | 314.0           | 12.9            | 11.6  |  |
| 15-AUG-89        | 3203  | 0.00                 | -                         | -   | -   | -   | 32.9            | 1.2             | 14.9  |  |
|                  | 3207  | 0.05                 | -                         | -   | -   | -   | 99.1            | 4.1             | 16.0  |  |
|                  | 3225  | 0.10                 | -                         | -   | -   | -   | 191.1           | 5.7             | 12.0  |  |
|                  | 3229  | 0.15                 | -                         | -   | -   | -   | 308.9           | 7.8             | 9.8   |  |
|                  |       |                      |                           |     |     |     |                 | 1833            | 0.974 |  |

2026023562

TABLE 29 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE AREUSE-46

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.04. Deviations >0.25 are considered statistically significant.

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   |       |  |
| 15-AUG-89        | 3209  | 0.00         | 24                        | 28  | 31  | 27  | 27.5            | 1.4             | 10.5  |  |
|                  |       | 0.05         | 84                        | 96  | 82  | 88  | 87.5            | 3.1             | 7.1   |  |
|                  |       | 0.10         | 184                       | 164 | 145 | 181 | 168.5           | 9.0             | 10.7  |  |
|                  |       | 0.15         | 294                       | 286 | 252 | 302 | 283.5           | 11.0            | 7.8   |  |
|                  |       |              |                           |     |     |     |                 | 1698            | 0.981 |  |
|                  | 3213  | 0.00         | 30                        | 30  | 37  | 31  | 32.0            | 1.7             | 10.5  |  |
|                  |       | 0.05         | 84                        | 74  | 94  | 69  | 80.3            | 5.5             | 13.8  |  |
|                  |       | 0.10         | 194                       | 166 | 184 | 159 | 175.8           | 8.0             | 9.2   |  |
|                  |       | 0.15         | 243                       | 266 | 266 | 247 | 255.5           | 6.1             | 4.8   |  |
|                  |       |              |                           |     |     |     |                 | 1532            | 0.986 |  |
|                  | 3209  | 0.00         | -                         | -   | -   | -   | 29.8            | 1.3             | 12.7  |  |
|                  | 3213  | 0.05         | -                         | -   | -   | -   | 83.9            | 3.2             | 10.9  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 172.1           | 5.7             | 9.4   |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 269.5           | 7.9             | 8.3   |  |
|                  |       |              |                           |     |     |     |                 | 1615            | 0.981 |  |
| 16-AUG-89        | 3227  | 0.00         | 37                        | 27  | 52  | 27  | 35.8            | 5.9             | 33.0  |  |
|                  |       | 0.05         | 88                        | 77  | 76  | 89  | 82.5            | 3.5             | 8.4   |  |
|                  |       | 0.10         | 136                       | 158 | 141 | 137 | 143.0           | 5.1             | 7.2   |  |
|                  |       | 0.15         | 249                       | 247 | 237 | 228 | 240.3           | 4.9             | 4.0   |  |
|                  |       |              |                           |     |     |     |                 | 1348            | 0.980 |  |
|                  | 3231  | 0.00         | 28                        | 50  | 41  | 29  | 37.0            | 5.2             | 28.3  |  |
|                  |       | 0.05         | 89                        | 95  | 83  | 84  | 87.8            | 2.8             | 6.3   |  |
|                  |       | 0.10         | 194                       | 190 | 168 | 144 | 174.0           | 11.5            | 13.2  |  |
|                  |       | 0.15         | 275                       | 291 | 239 | 299 | 276.0           | 13.3            | 9.6   |  |
|                  |       |              |                           |     |     |     |                 | 1607            | 0.975 |  |
|                  | 3227  | 0.00         | -                         | -   | -   | -   | 36.4            | 3.7             | 28.5  |  |
|                  | 3231  | 0.05         | -                         | -   | -   | -   | 85.1            | 2.3             | 7.6   |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 158.5           | 8.3             | 14.8  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 258.1           | 9.4             | 10.3  |  |
|                  |       |              |                           |     |     |     |                 | 1477            | 0.967 |  |
| 15-AUG-89        | 3209  | 0.00         | -                         | -   | -   | -   | 33.1            | 2.1             | 25.0  |  |
| 16-AUG-89        | 3213  | 0.05         | -                         | -   | -   | -   | 84.5            | 1.9             | 9.1   |  |
|                  | 3227  | 0.10         | -                         | -   | -   | -   | 165.3           | 5.2             | 12.5  |  |
|                  | 3231  | 0.15         | -                         | -   | -   | -   | 263.8           | 6.1             | 9.3   |  |
|                  |       |              |                           |     |     |     |                 | 1546            | 0.974 |  |

2026023563

TABLE 30 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE AREUSE-53

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.09. Deviations >0.25 are considered statistically significant.

890823 09:10:33 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

| DATE OF<br>ASSAY | BATCH | DOSE | MUTAGENICITY (rev./plate) |     |     |     |       | REGR.<br>COEFF. | CORR.<br>COEFF. |
|------------------|-------|------|---------------------------|-----|-----|-----|-------|-----------------|-----------------|
|                  |       |      | PLATE                     |     |     |     | M     |                 |                 |
|                  |       |      | 1                         | 2   | 3   | 4   |       | (%)             |                 |
| 15-AUG-89        | 3211  | 0.00 | 42                        | 27  | 28  | 35  | 33.0  | 3.5             | 21.1            |
|                  |       | 0.05 | 70                        | 73  | 80  | 88  | 77.8  | 4.0             | 10.3            |
|                  |       | 0.10 | 135                       | -   | 125 | 157 | 139.0 | 9.5             | 11.8            |
|                  |       | 0.15 | 202                       | 187 | 235 | 267 | 222.8 | 17.8            | 16.0            |
|                  | 3215  | 0.00 | 36                        | 40  | 44  | 33  | 38.3  | 2.4             | 12.5            |
|                  |       | 0.05 | 90                        | 82  | 67  | 69  | 77.0  | 5.5             | 14.2            |
|                  |       | 0.10 | 153                       | 125 | 134 | 145 | 139.3 | 6.1             | 8.8             |
|                  |       | 0.15 | 247                       | 216 | 213 | 226 | 225.5 | 7.7             | 6.8             |
|                  | 3211  | 0.00 | -                         | -   | -   | -   | 35.6  | 2.2             | 17.4            |
|                  |       | 0.05 | -                         | -   | -   | -   | 77.4  | 3.1             | 11.5            |
|                  |       | 0.10 | -                         | -   | -   | -   | 139.1 | 4.9             | 9.2             |
|                  |       | 0.15 | -                         | -   | -   | -   | 224.1 | 9.0             | 11.4            |
| 16-AUG-89        | 3233  | 0.00 | 25                        | 35  | 29  | 29  | 29.5  | 2.1             | 14.0            |
|                  |       | 0.05 | 64                        | 86  | 86  | 70  | 76.5  | 5.6             | 14.7            |
|                  |       | 0.10 | 113                       | 128 | 126 | 160 | 131.8 | 10.0            | 15.2            |
|                  |       | 0.15 | 203                       | 207 | 226 | 198 | 208.5 | 6.1             | 5.9             |
|                  | 3237  | 0.00 | 53                        | 37  | 28  | 37  | 38.8  | 5.2             | 26.8            |
|                  |       | 0.05 | 85                        | 71  | 77  | 81  | 78.5  | 3.0             | 7.6             |
|                  |       | 0.10 | 146                       | 151 | -   | -   | 148.5 | -               | -               |
|                  |       | 0.15 | 238                       | 258 | 275 | 231 | 250.5 | 10.0            | 8.0             |
| 15-AUG-89        | 3233  | 0.00 | -                         | -   | -   | -   | 34.1  | 3.1             | 25.9            |
|                  |       | 0.05 | -                         | -   | -   | -   | 77.5  | 3.0             | 10.8            |
|                  |       | 0.10 | -                         | -   | -   | -   | 137.3 | 7.3             | 13.0            |
|                  |       | 0.15 | -                         | -   | -   | -   | 229.5 | 9.6             | 11.8            |
|                  | 3215  | 0.00 | -                         | -   | -   | -   | 34.9  | 1.9             | 21.3            |
|                  |       | 0.05 | -                         | -   | -   | -   | 77.4  | 2.1             | 10.8            |
|                  |       | 0.10 | -                         | -   | -   | -   | 138.3 | 4.1             | 10.6            |
|                  |       | 0.15 | -                         | -   | -   | -   | 226.8 | 6.4             | 11.3            |

TABLE 31 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE AREUSE-55

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.03. Deviations >0.25 are considered statistically significant.

890823 09:12:37 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   |       |  |
| 15-AUG-89        | 3217  | 0.00         | 27                        | 37  | 36  | 39  | 34.8            | 2.7             | 15.3  |  |
|                  |       | 0.05         | 76                        | 101 | 78  | 84  | 84.8            | 5.7             | 13.4  |  |
|                  |       | 0.10         | 161                       | 179 | 189 | 173 | 175.5           | 5.9             | 6.7   |  |
|                  |       | 0.15         | 250                       | 262 | 290 | 239 | 260.3           | 11.0            | 8.4   |  |
|                  |       |              |                           |     |     |     |                 | 1534            | 0.984 |  |
|                  | 3221  | 0.00         | 34                        | 24  | 28  | 36  | 30.5            | 2.8             | 18.1  |  |
|                  |       | 0.05         | 109                       | 104 | 104 | 101 | 104.5           | 1.7             | 3.2   |  |
|                  |       | 0.10         | 217                       | 220 | 203 | 221 | 215.3           | 4.2             | 3.9   |  |
|                  |       | 0.15         | 331                       | 305 | 304 | 310 | 312.5           | 6.3             | 4.0   |  |
|                  |       |              |                           |     |     |     |                 | 1913            | 0.995 |  |
|                  | 3217  | 0.00         | -                         | -   | -   | -   | 32.6            | 1.9             | 16.9  |  |
|                  | 3221  | 0.05         | -                         | -   | -   | -   | 94.6            | 4.6             | 13.8  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 195.4           | 8.2             | 11.9  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 286.4           | 11.5            | 11.3  |  |
|                  |       |              |                           |     |     |     |                 | 1724            | 0.975 |  |
| 16-AUG-89        | 3235  | 0.00         | 27                        | 43  | 25  | 30  | 31.3            | 4.0             | 25.9  |  |
|                  |       | 0.05         | 77                        | 82  | 84  | 78  | 80.3            | 1.7             | 4.1   |  |
|                  |       | 0.10         | 178                       | 158 | 145 | 170 | 162.8           | 7.2             | 8.9   |  |
|                  |       | 0.15         | 257                       | 214 | 263 | 255 | 247.3           | 11.2            | 9.1   |  |
|                  |       |              |                           |     |     |     |                 | 1461            | 0.983 |  |
|                  | 3239  | 0.00         | 24                        | 31  | -   | 47  | 34.0            | 6.8             | 34.7  |  |
|                  |       | 0.05         | 112                       | 89  | 96  | 96  | 98.3            | 4.9             | 9.9   |  |
|                  |       | 0.10         | 206                       | 194 | 175 | 166 | 185.3           | 9.0             | 9.8   |  |
|                  |       | 0.15         | 270                       | 255 | 260 | 268 | 263.3           | 3.5             | 2.7   |  |
|                  |       |              |                           |     |     |     |                 | 1559            | 0.991 |  |
|                  | 3235  | 0.00         | -                         | -   | -   | -   | 32.4            | 3.4             | 27.8  |  |
|                  | 3239  | 0.05         | -                         | -   | -   | -   | 89.3            | 4.2             | 13.2  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 174.0           | 6.8             | 11.1  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 255.3           | 6.2             | 6.9   |  |
|                  |       |              |                           |     |     |     |                 | 1513            | 0.982 |  |
| 15-AUG-89        | 3217  | 0.00         | -                         | -   | -   | -   | 32.5            | 1.8             | 21.7  |  |
| 16-AUG-89        | 3221  | 0.05         | -                         | -   | -   | -   | 91.9            | 3.1             | 13.4  |  |
|                  | 3235  | 0.10         | -                         | -   | -   | -   | 184.7           | 5.9             | 12.7  |  |
|                  | 3239  | 0.15         | -                         | -   | -   | -   | 270.8           | 7.5             | 11.0  |  |
|                  |       |              |                           |     |     |     |                 | 1619            | 0.973 |  |

TABLE 32 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA98,  
CIGARETTE 2R1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.13. Deviations >0.25 are considered statistically significant.

890823 09:14:39 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2025 RELEASE UNDER E.O. 14176

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     |       | REGR.<br>COEFF. | CORR.<br>COEFF. |               |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-------|-----------------|-----------------|---------------|
|                  |       |              | PLATE                     |     |     |     | M     | SE              | RSD             |               |
|                  |       |              | 1                         | 2   | 3   | 4   |       |                 |                 |               |
|                  |       | (mg/<br>pl.) |                           |     |     |     |       | (%)             |                 | (rev.<br>/mg) |
| 15-AUG-89        | 3201  | 0.00         | 84                        | 83  | 75  | 99  | 85.3  | 5.0             | 11.7            |               |
|                  |       | 0.05         | 145                       | 147 | 142 | 164 | 149.5 | 4.9             | 6.6             |               |
|                  |       | 0.10         | 219                       | 205 | 210 | 226 | 215.0 | 4.7             | 4.3             |               |
|                  |       | 0.15         | 289                       | 277 | 280 | 263 | 277.3 | 5.4             | 3.9             | 1283 0.993    |
|                  | 3205  | 0.00         | 87                        | 83  | 97  | 79  | 86.5  | 3.9             | 8.9             |               |
|                  |       | 0.05         | 156                       | 146 | 143 | 152 | 149.3 | 2.9             | 3.9             |               |
|                  |       | 0.10         | 211                       | 199 | 216 | 216 | 210.5 | 4.0             | 3.8             |               |
|                  |       | 0.15         | 243                       | 254 | 246 | 256 | 249.8 | 3.1             | 2.5             | 1102 0.990    |
|                  | 3201  | 0.00         | -                         | -   | -   | -   | 85.9  | 2.9             | 9.7             |               |
|                  | 3205  | 0.05         | -                         | -   | -   | -   | 149.4 | 2.7             | 5.0             |               |
|                  |       | 0.10         | -                         | -   | -   | -   | 212.8 | 3.0             | 4.0             |               |
|                  |       | 0.15         | -                         | -   | -   | -   | 263.5 | 5.9             | 6.4             | 1192 0.987    |
| 16-AUG-89        | 3219  | 0.00         | 81                        | 78  | 79  | 88  | 81.5  | 2.3             | 5.5             |               |
|                  |       | 0.05         | 149                       | 150 | 149 | 143 | 147.8 | 1.6             | 2.2             |               |
|                  |       | 0.10         | 196                       | 186 | 187 | 171 | 185.0 | 5.2             | 5.6             |               |
|                  |       | 0.15         | 266                       | 247 | 256 | 221 | 247.5 | 9.6             | 7.8             | 1070 0.982    |
|                  | 3223  | 0.00         | 81                        | 81  | 84  | 95  | 85.3  | 3.3             | 7.8             |               |
|                  |       | 0.05         | 150                       | 139 | 151 | 136 | 144.0 | 3.8             | 5.3             |               |
|                  |       | 0.10         | 210                       | 181 | 182 | 194 | 191.8 | 6.8             | 7.1             |               |
|                  |       | 0.15         | 245                       | 264 | 235 | 242 | 246.5 | 6.2             | 5.0             | 1063 0.988    |
|                  | 3219  | 0.00         | -                         | -   | -   | -   | 83.4  | 2.0             | 6.8             |               |
|                  | 3223  | 0.05         | -                         | -   | -   | -   | 145.9 | 2.0             | 4.0             |               |
|                  |       | 0.10         | -                         | -   | -   | -   | 188.4 | 4.1             | 6.2             |               |
|                  |       | 0.15         | -                         | -   | -   | -   | 247.0 | 5.3             | 6.1             | 1067 0.985    |
| 15-AUG-89        | 3201  | 0.00         | -                         | -   | -   | -   | 84.6  | 1.7             | 8.2             |               |
| 16-AUG-89        | 3205  | 0.05         | -                         | -   | -   | -   | 147.6 | 1.7             | 4.6             |               |
|                  | 3219  | 0.10         | -                         | -   | -   | -   | 200.6 | 4.0             | 8.0             |               |
|                  | 3223  | 0.15         | -                         | -   | -   | -   | 255.3 | 4.4             | 6.9             | 1130 0.980    |

TABLE 33 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE CALYPSO-1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.11. Deviations >0.25 are considered statistically significant.

890823 09:16:42 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023566

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   |       |  |
| 15-AUG-89        | 3203  | 0.00         | 75                        | 82  | 90  | 92  | 84.8            | 3.9             | 9.2   |  |
|                  |       | 0.05         | 186                       | 150 | 139 | 144 | 154.8           | 10.7            | 13.8  |  |
|                  |       | 0.10         | 211                       | 232 | 219 | 213 | 218.8           | 4.7             | 4.3   |  |
|                  |       | 0.15         | 257                       | 235 | 245 | 258 | 248.8           | 5.5             | 4.4   |  |
|                  |       |              |                           |     |     |     |                 | 1112            | 0.970 |  |
|                  | 3207  | 0.00         | 87                        | 88  | 92  | 93  | 90.0            | 1.5             | 3.3   |  |
|                  |       | 0.05         | 140                       | 135 | 147 | 160 | 145.5           | 5.4             | 7.5   |  |
|                  |       | 0.10         | 190                       | 180 | 179 | 176 | 181.3           | 3.0             | 3.4   |  |
|                  |       | 0.15         | 258                       | 225 | 250 | 265 | 249.5           | 8.7             | 7.0   |  |
|                  |       |              |                           |     |     |     |                 | 1028            | 0.981 |  |
|                  | 3203  | 0.00         | -                         | -   | -   | -   | 87.4            | 2.2             | 7.0   |  |
|                  | 3207  | 0.05         | -                         | -   | -   | -   | 150.1           | 5.8             | 10.9  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 200.0           | 7.5             | 10.7  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 249.1           | 4.8             | 5.4   |  |
|                  |       |              |                           |     |     |     |                 | 1070            | 0.971 |  |
| 16-AUG-89        | 3225  | 0.00         | 73                        | 79  | 75  | 78  | 76.3            | 1.4             | 3.6   |  |
|                  |       | 0.05         | 164                       | 151 | 158 | 121 | 148.5           | 9.5             | 12.9  |  |
|                  |       | 0.10         | 217                       | 176 | 165 | 165 | 180.8           | 12.4            | 13.7  |  |
|                  |       | 0.15         | 257                       | 253 | 241 | 250 | 250.3           | 3.4             | 2.7   |  |
|                  |       |              |                           |     |     |     |                 | 1108            | 0.967 |  |
|                  | 3229  | 0.00         | 94                        | 89  | 85  | 89  | 89.3            | 1.8             | 4.1   |  |
|                  |       | 0.05         | 173                       | 134 | 155 | 157 | 154.8           | 8.0             | 10.3  |  |
|                  |       | 0.10         | 182                       | 196 | 209 | 222 | 202.3           | 8.6             | 8.5   |  |
|                  |       | 0.15         | 315                       | 260 | 266 | 254 | 273.8           | 14.0            | 10.2  |  |
|                  |       |              |                           |     |     |     |                 | 1202            | 0.971 |  |
|                  | 3225  | 0.00         | -                         | -   | -   | -   | 82.8            | 2.7             | 9.2   |  |
|                  | 3229  | 0.05         | -                         | -   | -   | -   | 151.6           | 5.9             | 11.0  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 191.5           | 8.1             | 11.9  |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 262.0           | 8.0             | 8.6   |  |
|                  |       |              |                           |     |     |     |                 | 1155            | 0.961 |  |
| 15-AUG-89        | 3203  | 0.00         | -                         | -   | -   | -   | 85.1            | 1.8             | 8.3   |  |
| 16-AUG-89        | 3207  | 0.05         | -                         | -   | -   | -   | 150.9           | 4.0             | 10.6  |  |
|                  | 3225  | 0.10         | -                         | -   | -   | -   | 195.8           | 5.4             | 11.1  |  |
|                  | 3229  | 0.15         | -                         | -   | -   | -   | 255.6           | 4.8             | 7.5   |  |
|                  |       |              |                           |     |     |     |                 | 1113            | 0.965 |  |

TABLE 34 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE AREUSE-46

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.08. Deviations >0.25 are considered statistically significant.

890823 09:18:45 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023567

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   |       |  |
| 15-AUG-89        | 3209  | 0.00         | 92                        | 81  | 108 | 104 | 96.3            | 6.1             | 12.7  |  |
|                  |       | 0.05         | 156                       | 152 | 132 | 151 | 147.8           | 5.4             | 7.3   |  |
|                  |       | 0.10         | 204                       | 210 | 206 | 214 | 208.5           | 2.2             | 2.1   |  |
|                  |       | 0.15         | 260                       | 258 | 231 | 236 | 246.3           | 7.4             | 6.0   |  |
|                  |       |              |                           |     |     |     |                 | 1021            | 0.982 |  |
|                  | 3213  | 0.00         | 95                        | 91  | 83  | 86  | 88.8            | 2.7             | 6.0   |  |
|                  |       | 0.05         | 128                       | 148 | 152 | 156 | 146.0           | 6.2             | 8.5   |  |
|                  |       | 0.10         | 203                       | 232 | 196 | 215 | 211.5           | 7.9             | 7.5   |  |
|                  |       | 0.15         | 272                       | 228 | 238 | 244 | 245.5           | 9.4             | 7.7   |  |
|                  |       |              |                           |     |     |     |                 | 1072            | 0.973 |  |
|                  | 3209  | 0.00         | -                         | -   | -   | -   | 92.5            | 3.4             | 10.4  |  |
|                  | 3213  | 0.05         | -                         | -   | -   | -   | 146.9           | 3.8             | 7.3   |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 210.0           | 3.8             | 5.2   |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 245.9           | 5.6             | 6.4   |  |
|                  |       |              |                           |     |     |     |                 | 1046            | 0.977 |  |
| 16-AUG-89        | 3227  | 0.00         | 81                        | 80  | 84  | 96  | 85.3            | 3.7             | 8.6   |  |
|                  |       | 0.05         | 134                       | 132 | 108 | 123 | 124.3           | 5.9             | 9.5   |  |
|                  |       | 0.10         | 178                       | 143 | 177 | 182 | 170.0           | 9.1             | 10.7  |  |
|                  |       | 0.15         | 201                       | 224 | 215 | 227 | 216.8           | 5.8             | 5.4   |  |
|                  |       |              |                           |     |     |     |                 | 880             | 0.975 |  |
|                  | 3231  | 0.00         | 115                       | 94  | 81  | 84  | 93.5            | 7.7             | 16.4  |  |
|                  |       | 0.05         | 130                       | 132 | 135 | 142 | 134.8           | 2.6             | 3.9   |  |
|                  |       | 0.10         | 174                       | 172 | 201 | 187 | 183.5           | 6.7             | 7.3   |  |
|                  |       | 0.15         | 272                       | 225 | 226 | 246 | 242.3           | 11.0            | 9.1   |  |
|                  |       |              |                           |     |     |     |                 | 990             | 0.970 |  |
|                  | 3227  | 0.00         | -                         | -   | -   | -   | 89.4            | 4.2             | 13.4  |  |
|                  | 3231  | 0.05         | -                         | -   | -   | -   | 129.5           | 3.6             | 7.9   |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 176.8           | 5.8             | 9.3   |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 229.5           | 7.5             | 9.3   |  |
|                  |       |              |                           |     |     |     |                 | 935             | 0.962 |  |
| 15-AUG-89        | 3209  | 0.00         | -                         | -   | -   | -   | 90.9            | 2.7             | 11.7  |  |
| 16-AUG-89        | 3213  | 0.05         | -                         | -   | -   | -   | 138.2           | 3.4             | 9.8   |  |
|                  | 3227  | 0.10         | -                         | -   | -   | -   | 193.4           | 5.5             | 11.3  |  |
|                  | 3231  | 0.15         | -                         | -   | -   | -   | 237.7           | 5.0             | 8.4   |  |
|                  |       |              |                           |     |     |     |                 | 991             | 0.957 |  |

TABLE 35 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE AREUSE-53

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.11. Deviations >0.25 are considered statistically significant.

890823 09:20:48 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023568

| DATE OF<br>ASSAY | BATCH | DOSE MUTAGENICITY (rev./plate) |     |     |     |     |       |      |               | REGR.<br>COEFF. | CORR.<br>COEFF. |  |
|------------------|-------|--------------------------------|-----|-----|-----|-----|-------|------|---------------|-----------------|-----------------|--|
|                  |       | PLATE                          |     |     |     | M   | SE    | RSD  |               |                 |                 |  |
|                  |       | 1<br>(mg/<br>pl.)              | 2   | 3   | 4   |     |       | (%)  | (rev.<br>/mg) |                 |                 |  |
| 15-AUG-89        | 3211  | 0.00                           | 74  | 94  | 96  | 88  | 88.0  | 5.0  | 11.3          |                 |                 |  |
|                  |       | 0.05                           | 144 | 147 | 128 | 156 | 143.8 | 5.8  | 8.1           |                 |                 |  |
|                  |       | 0.10                           | 169 | 168 | 183 | 173 | 173.3 | 3.4  | 4.0           |                 |                 |  |
|                  |       | 0.15                           | 212 | 230 | 233 | 204 | 219.8 | 7.0  | 6.4           | 849             | 0.975           |  |
|                  | 3215  | 0.00                           | 91  | 89  | 79  | 120 | 94.8  | 8.8  | 18.6          |                 |                 |  |
|                  |       | 0.05                           | 106 | 141 | 147 | 144 | 134.5 | 9.6  | 14.2          |                 |                 |  |
|                  |       | 0.10                           | 199 | 183 | 195 | 199 | 194.0 | 3.8  | 3.9           |                 |                 |  |
|                  |       | 0.15                           | 208 | 224 | 240 | 255 | 231.8 | 10.1 | 8.7           | 941             | 0.960           |  |
|                  | 3211  | 0.00                           | -   | -   | -   | -   | 91.4  | 4.9  | 15.0          |                 |                 |  |
|                  | 3215  | 0.05                           | -   | -   | -   | -   | 139.1 | 5.5  | 11.1          |                 |                 |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 183.6 | 4.6  | 7.1           |                 |                 |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 225.8 | 6.1  | 7.7           | 895             | 0.963           |  |
| 16-AUG-89        | 3233  | 0.00                           | 98  | 101 | 80  | 83  | 90.5  | 5.3  | 11.6          |                 |                 |  |
|                  |       | 0.05                           | 141 | 119 | 128 | 123 | 127.8 | 4.8  | 7.5           |                 |                 |  |
|                  |       | 0.10                           | 188 | 160 | 183 | 185 | 179.0 | 6.4  | 7.2           |                 |                 |  |
|                  |       | 0.15                           | 206 | 221 | 219 | 193 | 209.8 | 6.5  | 6.2           | 818             | 0.973           |  |
|                  | 3237  | 0.00                           | 98  | 94  | 69  | 105 | 91.5  | 7.8  | 17.1          |                 |                 |  |
|                  |       | 0.05                           | 137 | 152 | 159 | 171 | 154.8 | 7.1  | 9.2           |                 |                 |  |
|                  |       | 0.10                           | 191 | 180 | 202 | 200 | 193.3 | 5.0  | 5.2           |                 |                 |  |
|                  |       | 0.15                           | 215 | 218 | 247 | 242 | 230.5 | 8.2  | 7.1           | 911             | 0.963           |  |
|                  | 3233  | 0.00                           | -   | -   | -   | -   | 91.0  | 4.4  | 13.6          |                 |                 |  |
|                  | 3237  | 0.05                           | -   | -   | -   | -   | 141.3 | 6.5  | 12.9          |                 |                 |  |
|                  |       | 0.10                           | -   | -   | -   | -   | 186.1 | 4.6  | 7.0           |                 |                 |  |
|                  |       | 0.15                           | -   | -   | -   | -   | 220.1 | 6.2  | 8.0           | 864             | 0.954           |  |
| 15-AUG-89        | 3211  | 0.00                           | -   | -   | -   | -   | 91.2  | 3.2  | 13.8          |                 |                 |  |
| 16-AUG-89        | 3215  | 0.05                           | -   | -   | -   | -   | 140.2 | 4.1  | 11.7          |                 |                 |  |
|                  | 3233  | 0.10                           | -   | -   | -   | -   | 184.9 | 3.2  | 6.8           |                 |                 |  |
|                  | 3237  | 0.15                           | -   | -   | -   | -   | 222.9 | 4.3  | 7.7           | 880             | 0.958           |  |

TABLE 36 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE AREUSE-55

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.03. Deviations >0.25 are considered statistically significant.

| DATE OF<br>ASSAY | BATCH | DOSE         | MUTAGENICITY (rev./plate) |     |     |     | REGR.<br>COEFF. | CORR.<br>COEFF. |       |  |
|------------------|-------|--------------|---------------------------|-----|-----|-----|-----------------|-----------------|-------|--|
|                  |       |              | PLATE                     |     |     |     |                 |                 |       |  |
|                  |       |              | 1                         | 2   | 3   | 4   |                 |                 |       |  |
|                  |       | (mg/<br>pl.) |                           |     |     |     | (%)             | (rev.<br>/mg)   | r     |  |
| 15-AUG-89        | 3217  | 0.00         | 102                       | 84  | 90  | 80  | 89.0            | 4.8             | 10.8  |  |
|                  |       | 0.05         | 166                       | 165 | 142 | 140 | 153.3           | 7.1             | 9.2   |  |
|                  |       | 0.10         | 185                       | 182 | 217 | 195 | 194.8           | 7.9             | 8.1   |  |
|                  |       | 0.15         | 254                       | 219 | 245 | 237 | 238.8           | 7.4             | 6.2   |  |
|                  |       |              |                           |     |     |     |                 | 981             | 0.972 |  |
|                  | 3221  | 0.00         | 87                        | 84  | 67  | 71  | 77.3            | 4.9             | 12.6  |  |
|                  |       | 0.05         | 140                       | 169 | 132 | 167 | 152.0           | 9.4             | 12.4  |  |
|                  |       | 0.10         | 206                       | 232 | 220 | 232 | 222.5           | 6.2             | 5.6   |  |
|                  |       | 0.15         | 256                       | 271 | 293 | 265 | 271.3           | 7.9             | 5.8   |  |
|                  |       |              |                           |     |     |     |                 | 1305            | 0.981 |  |
|                  | 3217  | 0.00         | -                         | -   | -   | -   | 83.1            | 3.9             | 13.2  |  |
|                  | 3221  | 0.05         | -                         | -   | -   | -   | 152.6           | 5.5             | 10.1  |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 208.6           | 7.0             | 9.5   |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 255.0           | 7.9             | 8.8   |  |
|                  |       |              |                           |     |     |     |                 | 1143            | 0.964 |  |
| 16-AUG-89        | 3235  | 0.00         | 85                        | 96  | 90  | 71  | 85.5            | 5.3             | 12.5  |  |
|                  |       | 0.05         | 144                       | 147 | 155 | 123 | 142.3           | 6.8             | 9.6   |  |
|                  |       | 0.10         | 196                       | 180 | 176 | 192 | 186.0           | 4.8             | 5.1   |  |
|                  |       | 0.15         | 245                       | 234 | 250 | 224 | 238.3           | 5.8             | 4.9   |  |
|                  |       |              |                           |     |     |     |                 | 1004            | 0.984 |  |
|                  | 3239  | 0.00         | 84                        | 103 | 99  | 83  | 92.3            | 5.1             | 11.1  |  |
|                  |       | 0.05         | 153                       | 134 | 131 | 140 | 139.5           | 4.9             | 7.0   |  |
|                  |       | 0.10         | 176                       | 208 | 219 | 175 | 194.5           | 11.2            | 11.5  |  |
|                  |       | 0.15         | 242                       | 247 | 273 | 254 | 254.0           | 6.8             | 5.4   |  |
|                  |       |              |                           |     |     |     |                 | 1080            | 0.977 |  |
|                  | 3235  | 0.00         | -                         | -   | -   | -   | 88.9            | 3.7             | 11.6  |  |
|                  | 3239  | 0.05         | -                         | -   | -   | -   | 140.9           | 3.9             | 7.9   |  |
|                  |       | 0.10         | -                         | -   | -   | -   | 190.3           | 5.9             | 8.7   |  |
|                  |       | 0.15         | -                         | -   | -   | -   | 246.1           | 5.1             | 5.9   |  |
|                  |       |              |                           |     |     |     |                 | 1042            | 0.978 |  |
| 15-AUG-89        | 3217  | 0.00         | -                         | -   | -   | -   | 86.0            | 2.7             | 12.4  |  |
| 16-AUG-89        | 3221  | 0.05         | -                         | -   | -   | -   | 146.8           | 3.6             | 9.8   |  |
|                  | 3235  | 0.10         | -                         | -   | -   | -   | 199.4           | 5.0             | 10.0  |  |
|                  | 3239  | 0.15         | -                         | -   | -   | -   | 250.6           | 4.7             | 7.5   |  |
|                  |       |              |                           |     |     |     |                 | 1093            | 0.967 |  |

TABLE 37 MUTAGENICITY OF SWSC-I WITH S9 ACTIVATION IN STRAIN TA100,  
CIGARETTE 2R1

Remarks: Difference of regression coefficients (specific mutagenicity) of both substudies relative to their mean is 0.09. Deviations >0.25 are considered statistically significant.

890823 09:24:54 Page 1 File : USER\_DISK:[MB]MUTSPEC\_2179.LIS;1

2026023570

| TYPE OF CONDEN-SATE | MUTAGENIC EFFECT,<br>STRAIN      | CIGARETTE | SPECIFIC MUTAGENICITY<br>(rev./mg dry cond.) |          |    |        |
|---------------------|----------------------------------|-----------|----------------------------------------------|----------|----|--------|
|                     |                                  |           | N                                            | M        | SE | RSD(%) |
| MNSC-I              | frameshift mutation,<br>TA98     | CALYPSO-1 | 4                                            | 2180     | 64 | 5.9    |
|                     |                                  | AREUSE-46 | 4                                            | 2401     | 95 | 7.9    |
|                     |                                  | -53       | 4                                            | 2317 (a) | 92 | 8.0    |
|                     |                                  | -55       | 4                                            | 2119     | 61 | 5.8    |
|                     | base-pair substitution,<br>TA100 | CALYPSO-1 | 4                                            | 984 (a)  | 85 | 17.4   |
|                     |                                  | AREUSE-46 | 4                                            | 1009     | 61 | 12.0   |
|                     |                                  | -53       | 4                                            | 955      | 31 | 6.5    |
|                     |                                  | -55       | 4                                            | 867      | 48 | 11.0   |
| SWSC-I              | frameshift mutation,<br>TA98     | CALYPSO-1 | 4                                            | 1781 (a) | 82 | 9.2    |
|                     |                                  | AREUSE-46 | 4                                            | 1827 (a) | 81 | 8.8    |
|                     |                                  | -53       | 4                                            | 1546     | 74 | 9.6    |
|                     |                                  | -55       | 4                                            | 1282 (a) | 52 | 8.1    |
|                     | base-pair substitution,<br>TA100 | CALYPSO-1 | 4                                            | 1130     | 52 | 9.2    |
|                     |                                  | AREUSE-46 | 4                                            | 1113     | 35 | 6.4    |
|                     |                                  | -53       | 4                                            | 991      | 40 | 8.2    |
|                     |                                  | -55       | 4                                            | 880      | 28 | 6.4    |

TABLE 38 SPECIFIC MUTAGENICITY OF MNSC-I AND SWSC-I

2026023571

890821 11:12:38 Page 1 File : USER\_DISK:[MB]SPECMUTA\_2179.LIS;2

(a) The specific mutagenicity derived from the regression curve might be slightly different from the mean of 4 condensate batches calculated separately.

| CONDENSATE<br>TYPE | MUTAGENIC<br>EFFECT,<br>STRAIN           | CIGARETTE | RELATIVE DIFFERENCE |           |           |           |
|--------------------|------------------------------------------|-----------|---------------------|-----------|-----------|-----------|
|                    |                                          |           | CALYPSO-1           | AREUSE-46 | AREUSE-53 | AREUSE-55 |
| MNSC-I             | frameshift<br>mutation,<br>TA98          | CALYPSO-1 | -                   | -0.10=    | -0.06=    | 0.03=     |
|                    |                                          | AREUSE-46 | 0.10=               | -         | 0.04=     | 0.12=     |
|                    |                                          | -53       | 0.06=               | -0.04=    | -         | 0.09=     |
|                    |                                          | -55       | -0.03=              | -0.12=    | -0.09=    | -         |
|                    | base-pair<br>substitu-<br>tion,<br>TA100 | CALYPSO-1 | -                   | -0.03=    | 0.03=     | 0.13=     |
|                    |                                          | AREUSE-46 | 0.03=               | -         | 0.05=     | 0.15=     |
|                    |                                          | -53       | -0.03=              | -0.05=    | -         | 0.10=     |
|                    |                                          | -55       | -0.13=              | -0.15=    | -0.10=    | -         |
| SWSC-I             | frameshift<br>mutation,<br>TA98          | CALYPSO-1 | -                   | -0.03=    | 0.14=     | 0.33+     |
|                    |                                          | AREUSE-46 | 0.03=               | -         | 0.17+     | 0.35+     |
|                    |                                          | -53       | -0.14=              | -0.17+    | -         | 0.19+     |
|                    |                                          | -55       | -0.33+              | -0.35+    | -0.19+    | -         |
|                    | base-pair<br>substitu-<br>tion,<br>TA100 | CALYPSO-1 | -                   | 0.02=     | 0.13=     | 0.25+     |
|                    |                                          | AREUSE-46 | -0.02=              | -         | 0.12=     | 0.23+     |
|                    |                                          | -53       | -0.13=              | -0.12=    | -         | 0.12=     |
|                    |                                          | -55       | -0.25+              | -0.23+    | -0.12=    | -         |

TABLE 39 SPECIFIC MUTAGENICITY, RELATIVE DIFFERENCE

Remarks: The relative difference between the 2 research cigarettes is the difference of their mutagenicities divided by the mean of them. Negative values indicate that the mutagenicity of the cigarette given in the column is lower than that of the cigarette given in the headline.

The statistically significant difference is reached if the relative difference between 2 research cigarettes is  $>0.16$  (absolute value, level of significance set at alpha = 0.05)

=: no statistically significant difference

+: statistically significant difference

2026023572

| CIGA-<br>RETTE | BATCH NO.<br>-----<br>STAT.<br>PARAMETER | "NEW TAR"<br>YIELD<br>(mg/cig.) | MUTAGENICITY<br>(rev./mg "new tar") |       |
|----------------|------------------------------------------|---------------------------------|-------------------------------------|-------|
|                |                                          |                                 | TA98                                | TA100 |
| CALYPSO-1      | 3200                                     | 14.7                            | 2414                                | 963   |
|                | 3218                                     | 14.3                            | 2467                                | 1016  |
|                | M                                        | 14.48                           | 2441                                | 989   |
| AREUSE-46      | 3202                                     | 15.2                            | 2797                                | 1184  |
|                | 3224                                     | 14.7                            | 2636                                | 1105  |
|                | M                                        | 14.94                           | 2717                                | 1144  |
| AREUSE-53      | 3208                                     | 14.0                            | 2924                                | 1113  |
|                | 3226                                     | 15.2                            | 2571                                | 1256  |
|                | M                                        | 14.60                           | 2747                                | 1184  |
| AREUSE-55      | 3210                                     | 12.7                            | 2932                                | 1355  |
|                | 3232                                     | 12.9                            | 2696                                | 1088  |
|                | M                                        | 12.81                           | 2814                                | 1221  |

TABLE 40 MUTAGENICITY CALCULATED ON A PER "NEW TAR" BASIS, MWSC-I

2026023573

| CIGA-<br>RETTE | BATCH NO.<br>-----<br>STAT.<br>PARAMETER | "NEW TAR"<br>YIELD<br>(mg/cig.) | MUTAGENICITY<br>(rev./mg "new tar") |       |
|----------------|------------------------------------------|---------------------------------|-------------------------------------|-------|
|                |                                          |                                 | TA98                                | TA100 |
| CALYPSO-1      | 3201                                     | 17.4                            | 2265                                | 1546  |
|                | 3219                                     | 17.9                            | 2418                                | 1322  |
|                | M                                        | 17.63                           | 2342                                | 1434  |
| AREUSE-46      | 3203                                     | 15.5                            | 2290                                | 1359  |
|                | 3225                                     | 19.1                            | 2113                                | 1371  |
|                | M                                        | 17.30                           | 2201                                | 1365  |
| AREUSE-53      | 3209                                     | 19.8                            | 2218                                | 1334  |
|                | 3227                                     | 15.7                            | 1735                                | 1134  |
|                | M                                        | 17.72                           | 1977                                | 1234  |
| AREUSE-55      | 3211                                     | 17.9                            | 1895                                | 1271  |
|                | 3233                                     | 18.8                            | 1730                                | 1195  |
|                | M                                        | 18.36                           | 1813                                | 1233  |

TABLE 41 MUTAGENICITY CALCULATED ON A PER "NEW TAR" BASIS, SWSC-I

2026023574

| CONDENSATE<br>TYPE | MUTAGENIC<br>EFFECT,<br>STRAIN           | CIGARETTE | RELATIVE DIFFERENCE |           |           |           |
|--------------------|------------------------------------------|-----------|---------------------|-----------|-----------|-----------|
|                    |                                          |           | CALYPSO-1           | AREUSE-46 | AREUSE-53 | AREUSE-55 |
| MNSC-I             | frameshift<br>mutation,<br>TA98          | CALYPSO-1 | -                   | -0.11     | -0.12     | -0.14     |
|                    |                                          | AREUSE-46 | 0.11                | -         | -0.01     | -0.04     |
|                    |                                          | -53       | 0.12                | 0.01      | -         | -0.02     |
|                    |                                          | -55       | 0.14                | 0.04      | 0.02      | -         |
|                    | base-pair<br>substitu-<br>tion,<br>TA100 | CALYPSO-1 | -                   | -0.15     | -0.18     | -0.21     |
|                    |                                          | AREUSE-46 | 0.15                | -         | -0.03     | -0.07     |
|                    |                                          | -53       | 0.18                | 0.03      | -         | -0.03     |
|                    |                                          | -55       | 0.21                | 0.07      | 0.03      | -         |
| SWSC-I             | frameshift<br>mutation,<br>TA98          | CALYPSO-1 | -                   | 0.06      | 0.17      | 0.25      |
|                    |                                          | AREUSE-46 | -0.06               | -         | 0.11      | 0.19      |
|                    |                                          | -53       | -0.17               | -0.11     | -         | 0.09      |
|                    |                                          | -55       | -0.25               | -0.19     | 0.09      | -         |
|                    | base pair<br>substitu-<br>tion,<br>TA100 | CALYPSO-1 | -                   | 0.05      | 0.15      | 0.15      |
|                    |                                          | AREUSE-46 | -0.05               | -         | 0.10      | 0.10      |
|                    |                                          | -53       | -0.15               | -0.10     | -         | 0.00      |
|                    |                                          | -55       | -0.15               | -0.10     | -0.00     | -         |

TABLE 42 MUTAGENICITY ON A PER "NEW TAR" BASIS, RELATIVE DIFFERENCE

Remarks: The relative difference between 2 research cigarettes is the difference of their mutagenicities divided by the mean of them. Negative values indicate that the mutagenicity of the cigarette given in the column is lower than that of the cigarette given in the headline.

2026023575



FIGURE 5 YIELD OF CRUDE CONDENSATE, DRY CONDENSATE, WATER,  
NICOTINE, AND HUMECTANTS  
(see TABLES 6 to 9)

2026023576



FIGURE 6 MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE CALYPSO-1  
(see TABLES 18 and 23)

2026023577



FIGURE 7 MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE AREUSE-46  
(see TABLES 19 and 24)

2026023578



FIGURE 8 MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE AREUSE-53  
(see TABLES 20 and 25)

2026023579



FIGURE 9 MUTAGENICITY OF MWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE AREUSE-55  
(see TABLES 21 and 26)

2026023580



FIGURE 10 MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE CALYPSO-1  
(see TABLES 28 and 33)

2026023581



FIGURE 11 MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE AREUSE-46  
(see TABLES 29 and 34)

2026023582



FIGURE 12 MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE AREUSE-53  
(see TABLES 30 and 35)

2026023583



FIGURE 13 MUTAGENICITY OF SWSC-I IN STRAINS TA98 AND TA100,  
CIGARETTE AREUSE-55  
(see TABLES 31 and 36)

2026023584



FIGURE 14 SPECIFIC MUTAGENICITY OF CIGARETTE CONDENSATES, MWSC-I  
(see TABLE 38)

Remarks: mean  $\pm$  SE, N = 4 condensate batches

2026023585



FIGURE 15 SPECIFIC MUTAGENICITY OF CIGARETTE CONDENSATES, SWSC-I  
(see TABLE 38)

Remarks: mean + SE, N = 4 condensate batches

\*: indicating statistically significant difference between 2 research cigarettes

2026023586



FIGURE 16 MUTAGENICITY OF CIGARETTE CONDENSATES ON A PER "NEW TAR" BASIS, MWSC-I  
(see TABLE 40)

Remarks: mean and single values, N = 2 condensate batches

2026023587



FIGURE 17 MUTAGENICITY OF CIGARETTE CONDENSATES ON A PER "NEW TAR" BASIS, SWSC-I  
(see TABLE 41)

Remarks: mean and single values, N = 2 condensate batches

2026023588

8 REFERENCES

Babudri, N., Pani, B., Tamaro, M., Monti-Bragadin, C., Zunino, F., Mutagenic and cytotoxic activity of doxorubicin and daunorubicin derivatives on prokaryotic and eukaryotic cells, Br. J. Cancer 50: 91-96 (1984) - (INBIFO reference: L0271 A01)

DIN Deutsches Institut für Normung:  
Maschinelles Abrauchen von Zigaretten und Bestimmung des Rauchkondensats,  
DIN 10240, Berlin: Beuth Verlag, 1978

Federal Register, U.S.A.,  
Nonclinical laboratory studies: good laboratory practice regulations,  
52 (172): 33768-33782 (1987)

INBIFO study P 0268/2029,  
Plate incorporation mutagenicity study of whole smoke condensates of test cigarette SMIM-5 on *Salmonella typhimurium* strain TA98, pilot study for statistical analysis (PT),  
Study director: Dr.rer.nat. R.-A. Walk  
not yet reported

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265-275 (1951)

Maron, D.M., Ames, B.N., Revised methods for the *Salmonella* mutagenicity test, Mutat. Res. 113: 173-215 (1983) - (INBIFO reference: L0040 C04)

OECD: Guideline 471, *Salmonella typhimurium*, reverse mutation assay, in: OECD Guidelines for testing of chemicals, Paris: Organization for Economic Co-operation and Development, 1983

Scholz, E. (Ed.): Karl Fischer-Titration, Berlin: Springer Verlag, 1984

Zeiger, E., Chhabra, R.S., Margolin, B.H., Effects of the hepatic S9 fraction from Aroclor-1254-treated rats on the mutagenicity of benzo(a)pyrene and 2-aminoanthracene in the *Salmonella*/microsome assay, Mutat. Res. 64: 379-389 (1979) - (INBIFO reference: L0020 N25)

END OF REPORT

2026023589