

SEQUENCE LISTING

<110> Bayer AG, BHC

<120> Isolated photoprotein mtClytin, and the use thereof

<130> Le A 36 839

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 912

<212> DNA

<213> Clytia gregaria

<400> 1

gacagataaa	aaattcactc	cttagattat	ttagtgaata	agagaaaaaa	aggataagaa	60
atcaagatgc	aaaggtttac	aaatcgtctt	ctttccatgt	cggctttacg	tgcaagatca	120
agattgcaac	gcacggcaaa	ttttcacacc	agcatactct	tggctacaga	ttcaaaatac	180
gcggtcaaac	tcgatcctga	ttttgcaaat	ccaaaatgga	tcaacagaca	caaatttatg	240
ttcaactttt	tggacataaa	cggtaagggg	aaaatcacat	tagatgaaat	cgtctccaaa	300
gcttcagacg	acatttgtgc	taaactggat	gcaacaccag	aacagaccaa	acgtcaccag	360
gatgctgttg	aagccttttt	caagaaaatg	ggcatggatt	atggtaaaga	agttgcattc	420
ccagaattta	ttaagggatg	ggaagagttg	gccgaacacg	acttggaact	ctggtctcaa	480
aacaaaagta	cattgatccg	tgaatgggga	gatgctgttt	tcgacatttt	cgacaaagac	540
gcaagtggct	caatcagttt	agacgaatgg	aaggcttacg	gacgaatctc	tggaatctgt	600
ccatcagacg	aagacgctga	gaagacgttc	aaacattgtg	atttggacaa	cagtggcaaa	660
cttgatgttg	atgagatgac	caggcaacat	ttaggcttct	ggtacacatt	ggatccaact	720
tctgatggtc	tttatggcaa	ttttgttccc	taagaagcgt	tcagttaaaa	acgctaaaca	780
ttgttcagtt	gtaaaattat	attcattttc	atttcgtaaa	attagtattt	ataaatttgt	840
atcataaatt	gtatccatgt	tgtagactaa	ataagactcg	gcaaaaaaaa	aaaaaaaaa	900
aaaaaaaaa	aa					912

<210> 2

<211> 228

<212> PRT

<213> Clytia gregaria

<400> 2

- 2 -

Met Gln Arg Phe Thr Asn Arg Leu Leu Ser Met Ser Ala Leu Arg Ala Arg Ser Arg Leu Gln Arg Thr Ala Asn Phe His Thr Ser Ile Leu Leu Ala Thr Asp Ser Lys Tyr Ala Val Lys Leu Asp Pro Asp Phe Ala Asn Pro Lys Trp Ile Asn Arg His Lys Phe Met Phe Asn Phe Leu Asp Ile Asn Gly Lys Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp Asp Ile Cys Ala Lys Leu Asp Ala Thr Pro Glu Gln Thr Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Met Gly Met Asp Tyr Gly Lys Glu Val Ala Phe Pro Glu Phe Ile Lys Gly Trp Glu Glu Leu Ala Glu His Asp Leu Glu Leu Trp Ser Gln Asn Lys Ser Thr Leu Ile Arg Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Ala Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile Ser Gly Ile Cys Pro Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Thr Ser Asp Gly Leu Tyr Gly Asn Phe Val Pro <210> 3 <211> 16 <212> PRT <213> Clytia gregaria <400> 3 Met Gln Arg Phe Thr Asn Arg Leu Leu Ser Met Ser Ala Leu Arg Ala

- 3 -

<210> 4 <211> 48 <212> DNA <213> Clytia gregaria <400> 4 48 atgcaaaggt ttacaaatcg tcttctttcc atgtcggctt tacgtgca <210> 5 <211> 791 <212> DNA <213> Clytia gregaria <400> 5 gatctcagct caacttgcaa taagtatcag atcaaatttt gcaactcaaa gcaaatcatc 60 120 aacttcatca taatgactga cactgcttca aaatacgctg tcaaactcaa gaccaacttt 180 gaagatccaa aatgggtcaa cagacacaaa tttatgttca actttttgga cattaacggc 240 aacggaaaaa tcactttgga tgaaattgtc tccaaagctt cggatgacat ttgcgccaaa 300 cttggagcta caccagctca aacccaacgt catcaggaag ctgttgaagc tttcttcaag aagattggtt tggattatgg caaagaagtc gaattcccag ctttcgttaa cggatggaaa 360 gaactggcca aacatgactt gaaactttgg tcccaaaaca agaaatcttt gatccgcaat 420 tggggagaag ctgtattcga cattttcgac aaggacggaa gtggctcaat cagtttggac 480 gaatggaaaa catacggagg aatctctgga atctgtccat cagacgaaga cgctgaaaag 540 600 accttcaaac attgcgattt ggacaacagt ggcaaacttg atgttgacga gatgaccaga 660 caacatttgg gattctggta caccttggac cctaacgctg atggtcttta tggcaacttt gtcccttaaa aactttttt gctgtaaatt ctttacgggt tatttttca taattgtcat 720 ttgattttaa ctttgtttcg gaaaatgaaa aatattcttt attcagaaaa aaaaaaaaa 780 791 aaaaaaaaa a <210> 6 <211> 198 <212> PRT <213> Clytia gregaria <400> 6 Met Thr Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Lys Thr Asn Phe 1 5 10 15 Glu Asp Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu 20 25 30 Asp Ile Asn Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys 35 40 45 Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Ala Gln Thr 50 55 60 Gln Arg His Gln Glu Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Leu 65 70 75 80

4

Asp	Tyr	Gly	Lys	Glu	Val	Glu	Phe	Pro	Ala	Phe	Val	Asn	Gly	Trp	Lys
				85					90					95	
Glu	Leu	Ala	Lys	His	Asp	Leu	Lys	Leu	Trp	Ser	Gln	Asn	Lys	Lys	Ser
			100					105					110		
Leu	Ile	Arg	Asn	Trp	Gly	Glu	Ala	Val	Phe	Asp	Ile	Phe	Asp	Lys	Asp
		115					120					125			
Gly	Ser	Gly	Ser	Ile	Ser	Leu	qaA	Glu	Trp	Lys	Thr	Tyr	Gly	Gly	Ile
	130					135					140				
Ser	Gly	Ile	Cys	Pro	Ser	Asp	Glu	Asp	Ala	Glu	Lys	Thr	Phe	Lys	His
145					150					155					160
Cys	Asp	Leu	Asp	Asn	Ser	Gly	Lys	Leu	Asp	Val	Asp	Glu	Met	Thr	Arg
				165					170					175	
Gln	His	Leu	Gly	Phe	Trp	Tyr	Thr	Leu	Asp	Pro	Asn	Ala	Asp	Gly	Leu
			180					185					190		
Tyr	Gly	Asn	Phe	Val	Pro										
		195													