FINM 345X0/STAT 390X0

Midterm Exam (February 10, 2025)

You have an hour and twenty minutes (80 minutes) to complete the exam. There are 7 problems/questions, many with multiple parts, worth varying amounts for a total of 95 points. For all multi-part problems all parts are worth the same amount. This test is closed book. No calculators, phones, etc., permitted. You may have one two-sided, letter-sized sheet of notes that you have prepared.

• On any question you may leave your answer in terms of the normal distribution function

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

• Also for your reference, if N is a N(0,1) random variable N, then

$$\mathbb{E}[N^4] = 3,$$

and the moment generating function is given by

$$\mathbb{E}[e^{sN}] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} e^{st} dt = e^{s^2/2}.$$

Problem 1 (10). Give the definition of a (one-dimensional) Brownian motion B_t starting at the origin with drift m and variance parameter σ^2 .

The solution should mention four things: $B_0 = 0$; independent increments; if s < t, then $B_t - B_s$ is $N(m(t-s), \sigma^2(t-s))$; and continuous paths.

Problem 2 (15). Suppose B_t is a standard Brownian motion starting at the origin. Compute the following.

1. $\mathbb{P}\{B_3^2 \ge 1\}$

$$=1-\mathbb{P}\{-1\leq B_3\leq 1\}=1-\mathbb{P}\{-1/\sqrt{3}\leq B_1\leq 1/\sqrt{3}\}=1-[\Phi(1/\sqrt{3})-\Phi(-1/\sqrt{3})]=2\,\Phi(-1/\sqrt{3})=1-[\Phi(1/\sqrt{3})]=2\,\Phi(-1/\sqrt{3})=1-[\Phi(1/\sqrt{3})]=1-[\Phi(1/\sqrt{3})$$

2. $E[e^{4B_3} \mid B_1]$

$$= E[e^{4B_1} e^{4(B_3 - B_1)} \mid B_1] = e^{4B_1} \mathbb{E}[e^{4(B_3 - B_1)}] = e^{4B_1} \mathbb{E}[e^{4\sqrt{2}N}] = e^{16} e^{4B_1}$$

The last step uses the formula for the moment generating function.

3. $\mathbb{P}\{B_t < 2 \text{ for all } t < 3\}$

$$=1-\mathbb{P}\{B_t\geq 2 \text{ for some } t\leq 3\}=1-2\mathbb{P}\{B_3\geq 2\}=1-2[1-\Phi(2/\sqrt{3})].$$

Problem 3 (10). Let B_t be a standard Brownian motion and let X_t be a geometric Brownian motion satisfying

$$dX_t = X_t \left[2 dt + 3 dB_t \right].$$

Find the following differentials, that is, write them as

[something] $dt + [something] dB_t$.

Note that

$$d\langle X\rangle_t = 6 X_t^2 dt$$

1. $d[t X_t^2]$

Here one could use a product rule or one could write this as $f(t, X_t)$ where $f(t, x) = t x^2$. I will do it the latter way.

$$\dot{f} = x^2, \quad f' = 2tx, \quad f'' = 2t.$$

$$d[tX_t^2] = X_t^2 dt + 2tX_t dX_t + t d\langle X \rangle_t = [X^2 + 4tX_t^2 + 9tX_t^2] dt + 6tX_t^2 dB_t$$

$$= X_t^2 [1 + 13t] dt + 6tX_t^2 dB_t.$$

2. $d[X_tB_t + e^{-3t}]$

$$de^{-3t} = -3e^{-3t} dt$$

$$d[X_tB_t] = X_t dB_t + B_t dX_t + d\langle X, B \rangle_t = X_t dB_t + 2B_t X_t dt + 3B_t X_t dB_t + 3X_t dt$$

$$= [2B_t X_t + 3X_t] dt + [X_t + 3B_t X_t] dB_t$$

$$d[X_tB_t + e^{-3t}] = [2B_t X_t + 3X_t - 3e^{-3t}] dt + [X_t + 3B_t X_t] dB_t$$

3. $d \left[\exp \left\{ \int_0^t X_s^2 ds \right\} \right]$ This is differentiable

$$= \exp\left\{ \int_0^t X_s^2 \, ds \right\} \, X_t^2 \, dt.$$

Problem 4. (10) Let X_t, B_t be as in the previous problem. Find A_t, C_t such that

$$d\langle Y \rangle_t = A_t dt, \quad d\langle X, Y \rangle_t = C_t dt.$$

(Note that Y_t below come from previous problem.)

1. $Y_t = t X_t^2$.

$$A_t = (6tX_t^2)^2, \quad C_t = (6tX_t^2)(3X_t)$$

2. $Y_t = X_t B_t + e^{-3t}$.

$$A_t = [X_t + 3B_t X_t]^2, \quad C_t = [X_t + 3B_t X_t] (3X_t).$$

Problem 5 (25). Suppose W_t is a (one-dimensional) Brownian motion with drift 3 and variance parameter 2. Let $\lambda \in \mathbb{R}$ and let $X_t = e^{\lambda W_t}$.

1. For which value of λ is X_t a martingale with respect to $\{\mathcal{F}_t\}$ where \mathcal{F}_t is the information in $\{W_s : s \leq t\}$? We need for s < t,

$$E[e^{\lambda W_t} \mid \mathcal{F}_s] = e^{\lambda W_s}.$$

$$E[e^{\lambda W_t} \mid \mathcal{F}_s] = E[e^{\lambda W_s} e^{\lambda(W_t - W_s)} \mid \mathcal{F}_s] = e^{\lambda W_s} \mathbb{E}[e^{\lambda(W_t - W_s)}].$$

So we need $\mathbb{E}[e^{\lambda(W_t-W_s)}]=1$. W_t-W_s has the same distribution as $3\left(t-s\right)+\sqrt{2\left(t-s\right)}\,N$ where N has a standard normal distribution.

$$\mathbb{E}[e^{\lambda(W_t - W_s)}] = e^{3\lambda(t-s)} \, \mathbb{E}[e^{\lambda\sqrt{2(t-s)} \, N}] = e^{3\lambda(t-s)} e^{\lambda^2(t-s)}.$$

The answer is $\lambda = -3$,

2. What is

$$\lim_{n \to \infty} \sum_{j=1}^{3n} \left[W\left(\frac{j}{n}\right) - W\left(\frac{j-1}{n}\right) \right]^2 ?$$

This is the quadratic variation. The limit is $2 \cdot 3 = 6$.

3. Suppose that B_t is a standard Brownian motion independent of W_t and

$$Z_t = 2B_t - W_t + 3t.$$

Then Z_t is a Brownian motion (you do not need to prove this). What are the drift and variance parameters for Z_t ?

The drift is -3+3=0. The variance parameter is $4 \cdot 1 + 2 = 6$

4. Consider the two-dimensional Brownian motion $Y_t = (W_t, Z_t)$. What are the drift and covariance matrix for Y?

The drift is the vector m=(3,0). The covariance matrix is the same as if there were no drift terms.

$$\operatorname{Var}(W_t) = 2t$$
, $\operatorname{Var}(Z_t) = (2^2 + 2)t$, $\operatorname{Cov}(W_t, Z_t) = \operatorname{Cov}(W_t, -W_t) = -2t$

$$\Gamma = \begin{bmatrix} 2 & -2 \\ -2 & 6 \end{bmatrix}.$$

Problem 6 (10). Suppose W_t is as in Problem 5.

1. Let

$$u(t,x) = \mathbb{E}\left[W_t^3 \mid W_0 = x\right].$$

Then u(t,x) satisfies a partial differential equation (PDE) for t>0 with an initial condition u(0,x). Give the PDE that u(t,x) satisfies, that is:

$$\partial_t u(t,x) = ???????$$

$$= 3 u'(t,x) + u''(t,x)$$

2. Suppose $\phi(t,x)$ is the density of the random variable W_t assuming that $W_0 = 0$. What PDE does $\phi(t,x)$ satisfy, that is:

$$\partial_t \phi(t,x) = ??????$$

$$=-3u'(t,x)+u''(t,x)$$

(If you use the L or L^* notation in your answers, you must state what L or L^* equals.)

Problem 7 (15). Suppose B_t is a standard Brownian motion and consider the simple process A_t that changes values only at time t = 1. We set $A_t = 2$ for t < 1 and for t > 1,

$$A_t = \begin{cases} B_1^2 & \text{if } B_1 > 0\\ 0 & \text{if } B_1 \le 0 \end{cases}.$$

Let

$$Z_2 = \int_0^2 A_s \, dB_s$$

Find the following.

1. $\mathbb{E}[Z_2]$

$$=0$$
 (Martingale since $\mathbb{E}[Z_2^2]<\infty$)

2. $Var[Z_2]$

$$= \int_0^2 \mathbb{E}[A_s^2] \, ds.$$

For $s \le 1$, $A_s^2 = 4$. For $1 \le s \le 2$ as in the previous part,

$$\mathbb{E}[A_s^2] = \mathbb{E}[B_1^2 \, 1\{B_1 > 0\}] = \mathbb{E}[(B_1^2)^2] \, \mathbb{P}\{B_1 > 0\} = \frac{3}{2}.$$

Here we use the fact about $E[N^4]$ mentioned at the beginning of the exam.

$$= \int_0^1 4 \, ds + \int_1^2 \frac{3}{2} \, ds = 4 + \frac{3}{2} = \frac{11}{2}.$$

3. Which of the following is true: $\mathbb{P}\{Z_2>0\}>1/2; \mathbb{P}\{Z_2>0\}=1/2; \mathbb{P}\{Z_2<0\}>1/2?$ You must justify your answer.

In order for $Z_2 > 0$ we need both $B_1 > 0$ and $Z_2 > 0$. The first happens with probability 1/2 and given $B_1 > 0$, there is a positive probability that $Z_2 \le 0$. Hence the total probability is less than 1/2.

$$\mathbb{P}\{Z_2 < 0\} > 1/2.$$

No credit should be given to answer without justification.