Alberi AVL

PIETRO DI LENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA UNIVERSITÀ DI BOLOGNA

Algoritmi e Strutture di Dati Anno Accademico 2022/2023

Introduzione

- Abbiamo visto che, data una chiave k, con un BST è possibile inserire, rimuovere e cercare nodi in tempo O(h), dove h è l'altezza dell'albero
 - Un albero binario con n nodi ha altezza $h = \Omega(\log n)$ e h = O(n)
 - Problema: scrivere un algoritmo che presi in input n chiavi costruisca un BST con altezza $h = \Theta(n)$
 - Problema: scrivere un algoritmo che presi in input n chiavi costruisca un BST con altezza $h = \Theta(\log n)$
- Inserimenti e rimozioni possono sbilanciare l'albero
 - Un albero sbilanciato ha al peggio altezza lineare sul numero di nodi
- Obiettivo: mantenere bilanciato un BST, anche a seguito di inserimenti e rimozioni di nodi, in modo da avere operazioni di inserimento, rimozione e ricerca con costo pessimo logaritmico

Alberi AVL (Adelson-Velsky e Landis, 1962)

- Un albero AVL è un albero binario (quasi) perfettamente bilanciato
 - Il nome deriva dagli autori Adelson-Velsky e Landis
- Un albero AVL con n nodi supporta le operazioni di base SEARCH, INSERT, DELETE con costo $O(\log n)$ nel caso pessimo
- In un albero AVL le operazioni di inserimento e rimozione sono implementate in modo da essere auto-bilancianti
 - L'albero viene automaticamente ribilanciato in seguito ad inserimenti e rimozioni che causino sbilanciamento

DEFINIZIONI

Fattore di bilanciamento

Il fattore di bilanciamento $\beta(v)$ di un nodo v è dato dalla differenza tra l'altezza del sottoalbero sinistro e destro di v:

$$\beta(v) = \text{altezza}(v.left) - \text{altezza}(v.right)$$

Bilanciamento in altezza

Un albero si dice bilanciato in altezza se per ogni nodo v le altezze dei suoi sottoalberi sinistro (v.left) e destro (v.right) differiscono al più di uno

$$|\beta(v)| \leq 1$$

■ Un albero AVL è un albero binario bilanciato in altezza

ESEMPIO: FATTORE DI BILANCIAMENTO

ESEMPIO: ALBERO SBILANCIATO

Alberi AVL?

ALTEZZA DI UN ALBERO AVL

- Qual è l'altezza massima di un albero AVL?
- Valutiamo l'altezza dell'albero bilanciato con sbilanciamento massimo
- Albero di Fibonacci: per ogni nodo u non foglia $|\beta(u)| = 1$

N.B. Leggermente diverso dall'albero della ricorsione di Fibonacci

Altezza di un albero di Fibonacci

- lacksquare Sia n_h il numero di nodi di un albero di Fibonacci di altezza h
- Per costruzione abbiamo che

$$n_h = n_{h-1} + n_{h-2} + 1$$

Teorema

Il numero di nodi di un albero di Fibonacci di altezza h è uguale a

$$n_h = F_{h+3} - 1$$

dove F_n è l'ennesimo numero di Fibonacci

Ricordiamo che $F_1 = F_2 = 1$

n_0	n_1	n_2	n ₃	
2 - 1 = 1	3 - 1 = 2	5 - 1 = 4	8 - 1 = 7	

Altezza di un albero di Fibonacci

- Dimostriamo per induzione che $n_h = F_{h+3} 1$
- Casi base:
 - $n_0 = F_3 1 = 2 1 = 1 \Rightarrow \text{vero}$
 - $n_1 = F_4 1 = 3 1 = 2 \Rightarrow \text{vero}$
- Caso induttivo: assumiamo vere

$$n_{h-1} = F_{h+2} - 1$$
 e $n_{h-2} = F_{h+1} - 1$

dobbiamo dimostrare che $n_h = F_{h+3} - 1$

$$n_h = n_{h-1} + n_{h-2} + 1$$

= $(F_{h+2} - 1) + (F_{h+1} - 1) + 1$
= $F_{h+3} - 1 \Rightarrow \text{vero}$

ALTEZZA DI UN ALBERO AVL

■ Ricapitolando: un albero di Fibonacci di altezza *h* ha

$$n_h = F_{h+3} - 1$$
 nodi

Ricordiamo che

$$F_h = \Theta(\phi^h)$$
 dove $\phi \approx 1.618$

da cui otteniamo che

$$n_h = F_{h+3} - 1 = \Theta(\phi^{h+3}) = \Theta(\phi^h)$$

e possiamo quindi concludere che

$$h = \Theta(\log n_h)$$

■ Poiché l'albero di Fibonacci con n nodi è l'albero con altezza massima tra tutti gli alberi binari bilanciati con n nodi possiamo concludere che l'altezza di un albero AVL con n nodi è $\Theta(\log n)$

Mantenere il bilanciamento

- La ricerca su un albero AVL viene effettuata come su un BST
- Inserimenti e rimozioni invece richiedono di essere modificati per mantenere il bilanciamento dell'albero

- Per poter verificare il bilanciamento ogni nodo *u* deve mantenere informazioni sull'altezza del proprio sottoalbero *u.height*
 - ullet Serve per poter calcolare il fattore di bilanciamento eta

AGGIORNAMENTO ALTEZZA

```
function UPDATE-HEIGHT (NODE T)
 2:
        if T \neq NIL then
 3:
            nh = lh = rh = 0
 4:
            if T.left \neq NIL then
 5:
                lh = T.left.height
            if T.right \neq NIL then
 6:
 7:
                rh = T.right.height
8:
            if T.left \neq NIL or T.right \neq NIL then
                nh = \max(lh, rh) + 1
 9:
10:
             T.height = nh
    function \beta(\text{Node }T) \rightarrow \text{Int}
         lh = rh = 0
 2:
         if T.left \neq NIL then
 3:
             lh = T.left.height
 4:
 5:
         if T.right \neq NIL then
```

rh = T.right.height

return lh - rh

6:

7:

- Entrambe costano O(1)
- Possiamo interrompere l'aggiornamento se la nuova altezza non varia rispetto alla precedente

ROTAZIONI

■ Rotazione semplice: operazione fondamentale per ribilanciare l'albero

- Preserva la proprietà di ordine dei BST
 - La chiave $u.key \ge v.key$ e maggiore o uguale di ogni chiave in T_1, T_2
 - La chiave $v.key \le u.key$ e minore o uguale di ogni chiave in T_2, T_3

ESEMPI DI ROTAZIONI SEMPLICI

rotazione DX su perno u

rotazione SX su perno \boldsymbol{u}

ESEMPIO DI ROTAZIONE SEMPLICE

PSEUDOCODICE: ROTAZIONE A DESTRA

```
1: function ROTATEDX(AVL T, NODE u)
        if u \neq \text{NIL} and u.left \neq \text{NIL} then
            v = u.left
         v.parent = u.parent
 5:
           u.parent = v
   u.left = v.right
 7:
     v.right = u
            if v.parent == NIL then \triangleright v is the new root
                T.root = v
 9:
10:
        else
                                           > parent update
                if v.parent.left == u then
11:
                    v.parent.left = v
12:
13:
               else
14:
                    v.parent.right = v
```

- Costo: O(1)
- ROTATESX simmetrica

SBILANCIAMENTI

- Assumiamo di avere un albero AVL bilanciato, in cui il sottoalbero radicato in un nodo u diventa sbilanciato in seguito ad una operazione di inserimento o rimozione
- Abbiamo quattro casi (simmetrici a due a due)
 - Sbilanciamento SS: $\beta(u) = 2$ e $\beta(u.left) \ge 0$
 - Sbilanciamento DD: $\beta(u) = -2$ e $\beta(u.right) \leq 0$
 - Sbilanciamento SD: $\beta(u) = 2$ e $\beta(u.left) = -1$
 - Sbilanciamento DS: $\beta(u) = -2$ e $\beta(u.right) = 1$

ESEMPI: SBILANCIAMENTI SS

ESEMPI: SBILANCIAMENTI SD

ESEMPI: SBILANCIAMENTI DD

ESEMPI: SBILANCIAMENTI DS

Sbilanciamento $SS \Rightarrow Rotazione DX 1/2$

■ Ribilanciamento per uno sbilanciamento SS ⇒ Rotazione DX

$$\beta(u) = 2 e \beta(u.left) = 1$$

Sbilanciamento SS \Rightarrow Rotazione DX 2/2

■ Ribilanciamento per uno sbilanciamento SS ⇒ Rotazione DX

$$\beta(u) = 2 e \beta(u.left) = 0$$

Esempi: sbilanciamento $SS \Rightarrow Rotazione DX$

SBILANCIAMENTO $SD \Rightarrow ROTAZIONE DX$?

■ Ribilanciamento per uno sbilanciamento SD con Rotazione DX

$$\beta(u) = 2 e \beta(u.left) = -1$$

- Non funziona!!
- Abbiamo ottenuto uno sbilanciamento DS

SBILANCIAMENTO SD \Rightarrow ROTAZIONE SXDX 1/2

■ Ribilanciamento per uno sbilanciamento SD ⇒ Rotazione SXDX

$$\beta(u) = 2 e \beta(u.left) = -1$$

■ Step 1: rotazione SX con perno *u.left*

SBILANCIAMENTO SD \Rightarrow ROTAZIONE SXDX 2/2

■ Ribilanciamento per uno sbilanciamento SD ⇒ Rotazione SXDX

$$\beta(u) = 2 e \beta(u.left) = -1$$

■ Step 2: rotazione DX con perno *u*

Esempi: sbilanciamento $SD \Rightarrow Rotazione SXDX$

Riassunto: sbilanciamenti e rotazioni

- Sbilanciamento SS: $\beta(u) = 2$ e $\beta(u.left) \ge 0$
 - Rotazione DX su u
- Sbilanciamento DD: $\beta(u) = -2$ e $\beta(u.right) \leq 0$
 - Rotazione SX su u
- Sbilanciamento SD: $\beta(u) = 2$ e $\beta(u.left) = -1$
 - Rotazione SX su *u.left*
 - Rotazione DX su u
- Sbilanciamento DS: $\beta(u) = -2$ e $\beta(u.right) = 1$
 - Rotazione DX su *u.right*
 - Rotazione SX su u

PSEUDOCODICE: BILANCIAMENTO

```
1: function BALANCE(AVL T, Node u)
        if u \neq \text{NIL} and |\beta(u)| == 2 then
 2:
 3:
            if \beta(u) == 2 then
                if \beta(u.left) == -1 then \triangleright Sbilanciamento SD
 4:
                     ROTATESX(T, u.left)
 5:
                 ROTATEDX(T, u)
 6:
 7:
            else
                if \beta(u.right) == 1 then \triangleright Sbilanciamento DS
8:
 9:
                     ROTATEDX(T, u.right)
                 ROTATESX(T, u)
10:
```

■ Costo: O(1)

Java (asdlab.libreria.AlberiRicerca.AlberoAVL)

Metodo per il ribilanciamento di un albero AVL tramite rotazione

```
private void ruota(Nodo v) {
      switch (bil(v)) {
           case +2:
           if (bil(alb.sin(v)) > -1) // Caso SS (0, +1)
4
             ruotaDes(v);
5
                                 // Caso SD (-1)
           else {
6
             ruotaSin(alb.sin(v));
             ruotaDes(v);
8
9
           break:
10
           case -2:
11
           if (bil(alb.des(v)) < +1) // Caso DD (-1, 0)
12
             ruotaSin(v);
13
                               // Caso DS (+1)
           else {
14
             ruotaDes(alb.des(v));
15
             ruotaSin(v);
16
17
           break:
18
19
20
```

Inserimento in un albero AVL

- Si inserisce il nuovo nodo come per i BST
 - Costo nel caso pessimo: $O(\log n)$
- 2 Si riaggiornano le altezze dei sotto-alberi, eventualmente cambiate
 - Nel caso peggiore, tale aggiornamento dovrà essere effettuato per tutti i nodi nel cammino dal nodo inserito fino alla radice
 - Costo nel caso pessimo: $O(\log n)$
- Se un nodo presenta fattore di bilanciamento ± 2 (nodo critico), occorre ribilanciare l'albero con la procedura di ribilanciamento
 - N.B. In caso di inserimento abbiamo al più un nodo critico
 - Costo nel caso pessimo: O(1)
 - Costo dell'inserimento in un albero AVL nel caso pessimo: $O(\log n)$

Java (asdlab.libreria.AlberiRicerca.AlberoAVL)

Metodo per l'inserimento in un albero AVL

```
public Rif insert(Object e, Comparable k) {
      InfoAVL i = new InfoAVL(e, k);
      Nodo v = super.insert(i);
      Nodo p = alb.padre(v);
      while (p != null) {
        if (bil(p)==-2 || bil(p)==2) break;
6
        aggiornaAltezza(p);
        p = alb.padre(p);
      if (p != null) ruota(p);
10
      return i;
11
12 }
```

- Aggiorniamo l'altezza nel percorso nodo inserito-radice e ci fermiamo se troviamo un nodo sbilanciato (ciclo while a riga 5)
- Se troviamo un nodo sbilanciato chiamiamo la procedura di rotazione su tale nodo (riga 10)

RIMOZIONE IN UN ALBERO AVL

- Si rimuove il nodo come per i BST
 - Costo nel caso pessimo: $O(\log n)$
- 2 Si riaggiornano le altezze dei sotto-alberi, eventualmente cambiate
 - Nel caso peggiore, tale aggiornamento dovrà essere effettuato per tutti i nodi nel cammino dal nodo inserito fino alla radice
 - Costo nel caso pessimo: $O(\log n)$
- Se un nodo presenta fattore di bilanciamento ± 2 (nodo critico), occorre ribilanciare l'albero con la procedura di ribilanciamento
 - N.B. In caso di rimozione potremmo avere più nodi critici
 - Tutti i nodi critici sono in un unico percorso radice-foglia
 - Costo nel caso pessimo: $O(\log n)$
 - Costo della rimozione in un albero AVL nel caso pessimo: $O(\log n)$

Java (asdlab.libreria.AlberiRicerca.AlberoAVL)

Metodo per la rimozione in un albero AVL

```
public void delete(Rif i) {
   Nodo p = super.delete((InfoAVL)i);
   while (p != null) {
      if (bil(p)==-2 || bil(p)==2) ruota(p);
      else aggiornaAltezza(p);
      p = alb.padre(p);
   }
}
```

Esempio: Rotazioni a cascata 1/4

Albero AVL bilanciato prima della rimozione del nodo con chiave 1

Esempio: Rotazioni a cascata 2/4

Ribilanciamento: rotazione SX con perno $\it u$

Esempio: Rotazioni a cascata 3/4

Ribilanciamento: rotazione SX con perno w

Esempio: Rotazioni a cascata 4/4

Albero ribilanciato

Altri alberi bilanciati

- Gli Alberi AVL non sono l'unica struttura dati auto-bilanciante
- Altre implementazioni non richiedono necessariamente alberi binari
- Tra le strutture dati maggiormente note abbiamo
 - B-alberi
 - Alberi generici, non necessariamente binari
 - Utilizzati per database e file system
 - Alberi 2-3
 - Ogni nodo intero ha 2 oppure 3 nodi
 - Tutte le foglie sono sempre allo stesso livello
 - Le chiavi sono tutte nelle foglie (e ordinate)
 - RB-Alberi (Red-Back Trees)
 - Alberi binari come gli AVL
- Tutte queste strutture supportano le operazioni di inserimento, rimozione e ricerca in tempo logaritmico

Dizionario: riassunto dei costi

	SEARCH		INSERT		DELETE	
	Medio	Pessimo	Medio	Pessimo	Medio	Pessimo
Array non ordinati	O(n)	O(n)	O(n)	O(n)	Θ(n)	Θ(n)
Array ordinati	$O(\log n)$	$O(\log n)$	O(n)	O(n)	O(n)	O(n)
Lista concatenata	O(n)	O(n)	O(n)	O(n)	O(n)	O(n)
Albero Binario di Ricerca	$O(\overline{h})$	O(h)	$O(\overline{h})$	O(h)	$O(\overline{h})$	O(h)
Albero AVL	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$

- $h = \text{altezza dell'albero}, \overline{h} = \text{altezza media dell'albero}$
- Gli Alberi AVL ci assicurano un costo pessimo e medio logaritmico per tutte le operazioni