- 1. (10 points) Answer the following questions as true or false. Provide a one sentence justification for your answer.
 - a. For reactors, we often use the α -eigenvalue formulation rather than the k-eigenvalue formulation for criticality calculations.
 - b. On a surface $\vec{r_s}$ with fixed (not necessarily vacuum) boundary conditions, the uncollided flux must satisfy $\psi_0(\vec{r_s}, \hat{\Omega}, E) = 0$, $\hat{\Omega} \cdot \hat{n} < 0$.
 - c. On a surface $\vec{r_s}$ with fixed (not necessarily vacuum) boundary conditions, the *once*-collided flux must satisfy $\psi_1(\vec{r_s}, \hat{\Omega}, E) = 0$, $\hat{\Omega} \cdot \hat{n} < 0$.
 - d. The streaming operator in the transport equation is self-adjoint.
 - e. The source for the adjoint problem is always proportional to the source for the forward problem.
 - f. [okay, this one isn't true or false] Shielding material (not shown in the figure) is placed in a room so as to reduce the detector reading outside the door. Solution of the adjoint TE for the room, with $V_d\Sigma_d(E)\delta(\vec{r}-\vec{r}_d)$ as the adjoint source, indicates that $\psi_2^{\dagger} < \psi_1^{\dagger}$.

Would you place a container of radioactive waste at point one or point two? Why?

2. (20 points) Find the adjoint equation corresponding to

$$[\hat{\Omega} \cdot \nabla + \Sigma(\vec{r}, E) + \frac{\alpha}{v}] \psi(\vec{r}, \hat{\Omega}, E) = \int dE' \int d\hat{\Omega}' \, \Sigma_s(\vec{r}, E' \to E, \hat{\Omega}' \cdot \hat{\Omega}) \psi(\vec{r}, \hat{\Omega}' E')$$

$$+ \frac{\chi(E)}{4\pi} \int dE' \, \nu \Sigma_f(\vec{r}, E') \int d\hat{\Omega}' \, \psi(\vec{r}, \hat{\Omega}', E')$$

and prove that $\alpha^{\dagger} = \alpha$.

Find the first-order perturbation expression relating $\delta \alpha$ to ψ_0 and ψ_0^{\dagger} , the unperturbed flux and its adjoint, respectively.

Comment on why one would choose the α -eigenvalue perturbation equations compared to the k-eigenvalue perturbation equations.

3. (10 points) Suppose that, instead of detector response given by $R = V_d \int dE \Sigma_d(E) \phi(\vec{r_d}, E)$, we want to calculate the current:

$$J_n^+(\vec{r}_d, E) = \int_{\hat{\Omega} \cdot \hat{n} > 0} d\hat{\Omega} \, \hat{\Omega} \cdot \hat{n} \, \psi(\vec{r}_d, \hat{\Omega}, E) \,, \quad \vec{r}_d \in \Gamma \,,$$

the number of particles leaving V with boundary Γ at $\vec{r_d}$ in per cm^2 per unit energy. Derive an expression for $J_n^+(\vec{r_d}, E)$ in terms of the adjoint flux, ψ^{\dagger}

- a. when the particles originate in V from some q_{ex} , and
- b. when the particles enter V across Γ as a known flux given by $\psi(\vec{r}, \hat{\Omega}, E) = \tilde{\Psi}(\vec{r}, \hat{\Omega}, E)$ with $\vec{r} \in \Gamma$ and $\hat{\Omega} \cdot \hat{n} < 0$.
- 4. (10 points) Estimate the fast group constants characterizing H_2O if the fast group is taken from $E_1 = 1 \, eV$ to $E_0 = 10 \, MeV$ and the neutron energy spectrum over this group is taken as $\phi(E) \simeq 1/E$.
- 5. (10 points) Determine the neutron flux $\phi(E)$ resulting from a mono-energetic source at energy E_0 in an infinite hydrogenous medium if the scattering cross section is taken to be constant and the absorption cross section is inversely proportional to the neutron speed.
- 6. (20 points) Derive

$$[\hat{\Omega} \cdot \nabla + \Sigma_{tg}(\vec{r})] \psi_g(\vec{r}, \hat{\Omega}) = \sum_{g'=1}^G \int_{4\pi} d\hat{\Omega}' \, \Sigma_{s,gg'}(\vec{r}, \hat{\Omega}' \cdot \hat{\Omega}) \psi_{g'}(\vec{r}, \hat{\Omega}')$$
$$+ \frac{\chi_g}{4\pi} \sum_{g'=1}^G \nu \Sigma_{fg'}(\vec{r}) \phi_{g'}(\vec{r}) + q_g(\vec{r}, \hat{\Omega})$$

without assuming $\psi(\vec{r}, \hat{\Omega}, E) \approx f(E)\psi)g(\vec{r}, \hat{\Omega})$. Use instead the assumption that all of the cross sections are piecewise constants, changing values only at E_g .

- 7. (10 points) Answer the following short answer questions. If true or false, provide a one sentence justification for your answer.
 - a. True or False: using $\hat{\Omega} \cdot \hat{\Omega}'$ rather than $\hat{\Omega}' \to \hat{\Omega}$ in the scattering cross section implies azimuthal symmetry.
 - b. What is the main challenge associated with the first way that we derived the multi-group equations?

- c. For the more complex multigroup derivation, what is the consistent P_N approximation and how does that compare to the extended transport approximation?
- d. List and briefly discuss three major concerns you might have about being able to accurately characterize uncertainties associated with nuclear data.
- e. List three evaluated nuclear data sets managed by other countries.