1.1 Axiomatic description of a cohomology theory

There are dual axioms to the Eilenberg-Steenrod axioms (introduced in Definition ??) which govern cohomology theories.

Definition 1 (cohomology theory). Let A be an abelian group. A <u>cohomology theory</u> with coefficients in A is a series of functors

$$H^n$$
: Pair^{op} \rightarrow Ab; $n \ge 0$

together with natural transformations

$$\partial: H^n \circ T^{\mathrm{op}} \Rightarrow H^{n+1}$$

satisfying the following conditions.

- 1. **Homotopy:** If f and g are homotopic maps of pairs, then $H^n(f) = H^n(g)$ for all n.
- 2. **Excision:** If (X, A) is a pair with $U \subset X$ such that $\bar{U} \subset \mathring{A}$, then the inclusion $i: (X \setminus U, A \setminus U) \hookrightarrow (X, A)$ induces an isomorphism

$$H^n(i): H^n(X, A) \cong H^n(X \setminus U, A \setminus U)$$

for all n.

3. **Dimension:** We have

$$H^{n}(\mathrm{pt}) = \begin{cases} A, & n = 0 \\ 0, & \text{otherwise.} \end{cases}$$

4. **Additivity:** If $X = \coprod_{\alpha} X_{\alpha}$ is a disjoint union of topological spaces, then

$$H^n(X) = \prod_{\alpha} H^n(X_{\alpha}).$$

5. **Exactness:** Each pair (X, A) induces a long exact sequence on cohomology.

1.2 Singular cohomology

Definition 2 (singular cohomology). Let G be an abelian group. The <u>singular cochain</u> complex of X with coefficients in G is the cochain complex

$$S^{\bullet}(X;G) = \operatorname{Hom}(S_{\bullet}(X),G).$$

We also define relative homology:

$$S^{\bullet}(X, A; G) = \text{Hom}(S_{\bullet}(X, A), G).$$

We will denote the evaluation map $\operatorname{Hom}(A, G) \otimes A \to G$ using angle brackets $\langle \cdot, \cdot \rangle$. In this form, it is usually called the *Kroenecker pairing*.

Lemma 3. Let C_{\bullet} be a chain complex. The evaluation map (also known as the *Kroenecker pairing*)

$$\langle \cdot, \cdot \rangle \colon C^n(X; G) \otimes C_n(X) \to G$$

descends to a map on homology

$$\langle \cdot, \cdot \rangle \colon H^n(C^{\bullet}) \otimes H_n(C_{\bullet}) \to G.$$

Proof. Let $\alpha \colon C_n \to G \in C^n$ be a cocycle and $a \in C_n$ a cycle, and let $db \in C_n$ be a boundary. Then

$$\langle \alpha, a + db \rangle = \langle \alpha, a \rangle + \langle \alpha, db \rangle$$
$$= \langle \alpha, a \rangle + \langle \delta \alpha, b \rangle$$
$$= \langle \alpha, a \rangle.$$

Furthermore, if $\delta \beta \in C^n$ is a cocycle, then

$$\langle \alpha + \delta \beta, a \rangle = \langle \alpha, a \rangle + \langle \delta \beta, a \rangle$$
$$= \langle \alpha, a \rangle + \langle \beta, da \rangle$$
$$= \langle \alpha, a \rangle$$

Via ⊗-hom adjunction, we get a map

$$\kappa \colon H^n(C^{\bullet}) \to \operatorname{Hom}(H_n(C_{\bullet}), G).$$

Theorem 4 (universal coefficient theorem for singular cohomology). Let *X* be a topo-

logical space, and *G* an abelian group. There is a split exact sequence

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(X), G) \hookrightarrow H^n(X; G) \longrightarrow \operatorname{Hom}(H_n(X), G) \longrightarrow 0$$

Proof. We now

Example 5. We have seen (in Example ??) that the homology of $\mathbb{C}P^n$ is

$$H_k(\mathbb{C}P^n) = \begin{cases} \mathbb{Z}, & 0 \le k \le 2n, \ k \text{ even,} \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $0 \le k \le n$, k even, we find

$$H^k(\mathbb{C}P^n;\mathbb{Z}) \cong \operatorname{Ext}^1(0,\mathbb{Z}) \oplus \operatorname{Hom}(\mathbb{Z},\mathbb{Z})$$

 $\cong \mathbb{Z}.$

For k odd with $0 \le k \le n$, we have

$$H^k(\mathbb{C}P^n;\mathbb{Z}) \cong \operatorname{Ext}^1(\mathbb{Z},\mathbb{Z}) \oplus \operatorname{Hom}(0,\mathbb{Z})$$

 $\cong 0.$

For k > n, we get $H^k(\mathbb{C}P^n; \mathbb{Z}) = 0$.

1.3 The cap product

The Kroenecker pairing gives us a natural evaluation map

$$S^n(X) \otimes S_n(X) \to \mathbb{Z}$$
,

allowing an n-cochain to eat an n-chain. A cochain of order q cannot directly act on a chain of degree n > q, but we can split such a chain up into a singular q-simplex, on which our cochain can act, and a singular n - q-simplex, which is along for the ride.

Definition 6 (front, rear face). Let $a: \Delta^n \to X$ be a singular n-simplex, and let $0 \le q \le n$.

• The (n-q)-dimensional front face of a is given by

$$F^{n-q}(a) = \Delta^{n-q} \xrightarrow{i} \Delta^{tn} \xrightarrow{a} X,$$

where i is induced by the inclusion

$$\{0,\ldots,n-q\} \hookrightarrow \{1,\ldots,n\}; \qquad k \mapsto k.$$

• The *q*-dimensional rear face of *a* is given by

$$R^{q}(a) = \Delta^{q} \xrightarrow{r} \Delta^{n} \xrightarrow{a} X$$

where r is the map

$$\{0,\ldots q\} \to \{0,\ldots,n\}; \qquad k \mapsto n-q+k.$$

Note that for $a \in S_n(X)$, we can write

$$F^{n-q}(a) = (\partial_{n-q+1} \circ \partial_{n-q+2} \circ \cdots \circ \partial_n)(a)$$

and

$$R^{q}(a) = (\partial_{0} \circ \partial_{0} \circ \cdots \circ \partial_{0})(a).$$

The cap product will be a map

However, we will want to generalize slightly, to arbitrary coefficient systems and relative homology.

Definition 7 (cap product). The cap product is the map

$$: S^q(X,A;R) \otimes S_n(X,A;R) \to S_{n-q}(X;R); \qquad \alpha \otimes a \otimes r \mapsto F^{n-q}(a) \otimes \langle \alpha, R^q(a) \rangle r.$$

Of course, we need to check that this is well-defined, i.e. that for $b \in S_n(A) \subset S_n(X)$, we have $\alpha \frown b = 0$. We compute

$$\alpha \frown b = F^{n-1}(b) \otimes \langle \alpha, R^q(b) \rangle.$$

Since $b \in S_n(A)$, we certainly have that $R^q(b) \in S_n(A)$. But then $\langle \alpha, R^q(b) \rangle = 0$ by definition of relative cohomology.

Lemma 8. The cap product obeys the Leibniz rule, in the sense that

$$\partial(\alpha \frown (a \otimes r)) = (\delta\alpha) \frown (a \otimes r) + (-1)^q \alpha \frown (\partial\alpha \otimes r).$$

Proof. We do three calculations.

$$\partial(\alpha \frown a) = \partial(F^{n-q}(\alpha) \otimes \langle \alpha, R(a) \rangle)$$

$$= \partial(F^{n-q}(a)) \otimes \langle \alpha, R^q(a) \rangle$$

$$= \sum_{i=0}^{n-q} (-1)^i \partial_i (\partial_{n-q+1} \circ \cdots \circ \partial_n)(a) \otimes \langle \alpha, R^q(a) \rangle$$

$$(\delta \alpha) \frown a = F^{q}(a) \otimes \langle \delta \alpha, R^{q}(a) \rangle$$

$$= F^{n-q}(a) \otimes \langle \delta \alpha, R^{q}(a) \rangle$$

$$= F^{n-q}(a) \otimes \langle \alpha, \partial R^{q}(a) \rangle$$

$$= \sum_{i=0}^{q} (-1)^{i} F^{n-q}(a) \otimes \langle \alpha, \partial_{i} \circ \partial_{0}^{q} a \rangle$$

$$\alpha \frown (\partial a) =$$

Proposition 9. The cup product is natural in the sense that for any $f: X \to X$ inducing a map of pairs $(X, A) \to (X, B)$, the diagram

commutes, i.e.

$$f_*(F(a) \otimes \langle f^*\beta, R(a) \rangle) = F(f_*a) \otimes \langle \beta, R(f_*a) \rangle.$$

Proof.

$$f_*(F(a) \otimes \langle f^*\beta, R(a) \rangle) = f_*(F(a) \otimes \langle f^*\beta, R(\alpha) \rangle)$$

$$= f_*(F(a) \otimes \langle \beta, f_*(R(a)) \rangle)$$

$$= f_*(F(a) \otimes \langle \beta, R(f_*a) \rangle)$$

$$= F(f_*a) \otimes \langle \beta, R(f_*a) \rangle.$$

We can write this in a prettier way as

$$f_*(f^*\beta \frown a) = \beta \frown f_*(a).$$

Proposition 10. The cap product descends to a map on homology; that is, we get a map

$$\neg: H^q(X, A; R) \otimes H_n(X, A; R) \to H_{n-q}(X; R); \qquad [\alpha] \otimes [a \otimes r] \mapsto [F^{n-q}(a) \otimes \langle \alpha, R^q(a) \rangle r].$$

1.4 The cup product

Recall that we have constructed an Eilenberg-Zilber map

$$H_i(X) \otimes H_i(X) \to H_{i+i}(X \times X)$$

in Subsection ??. By

1.5 Manifold orientations

Let M be an n-dimensional topological manifold. Without loss of generality, we may choose an atlas for M such that each each point $x \in M$ has a chart (U_x, ϕ_x) such that $U_x \cong \mathbb{R}^n$ and $\phi_x(x) = 0 \in \mathbb{R}^n$.

Let $x \in M$. Then

$$H_n(M, M \setminus \{x\}) \cong H_n(M \setminus (M \setminus U_x), M \setminus \{x\} \setminus (M \setminus U_x)) \qquad (excision)$$

$$\cong H_n(U_x, U_x \setminus \{x\})$$

$$\cong H_n(\mathbb{D}^n, \mathbb{S}^{n-1}) \qquad (homotopy)$$

$$\cong H_{n-1}(\mathbb{S}^{n-1}) \qquad (Example ??)$$

$$\cong \mathbb{Z}.$$

For any other point $y \in U_x$, an orientation at x gives an orientation at y via the compo-

sition

$$H_n(X, X \setminus \{x\}) \cong H_n(X, X \setminus U_x) \cong H_n(X, X \setminus \{y\}).$$

We call a choice of generator of $H_n(X, X \setminus \{x\})$ a local orientation on M at x.

We will use the following notation: for a pair X, A, we will write

$$H_n(X, A \setminus X) = H_n(X \mid A).$$

Furthermore, if $A = \{x\}$, we will write $H_n(X \mid x)$ instead of $H_n(X \mid \{x\})$.

We think of $H_n(X \mid A)$ as the *local homology* of A in X, since it depends (by excision) only on the closure of A in X.

Definition 11 (orientation cover). Let M be an n-dimensional manifold. The <u>orientation</u> cover of M is, as a set,

$$\tilde{M} = \{ \mu_x \mid x \in M, \ \mu_x \text{ is a local orientation of } M \text{ at } x \}.$$

There is a clear surjection from \tilde{M} to M as follows.

$$\tilde{M} \qquad \mu_x$$
 $\downarrow \qquad \qquad \downarrow$
 $M \qquad \qquad \chi$

The set \tilde{M} turns out to be a topological manifold, and the surjection $\tilde{M} \to M$ turns out to be a double cover.

Definition 12 (orientation). Let M be an n-dimensional manifold. An <u>orientation</u> on M is a set-section σ of the bundle $\tilde{M} \to M$ satisfying the following condition: for any $x \in M$ and any $y \in U_x$, the induced local orientation at y is equal to $\sigma(y)$.

For a triple $B \subset A \subset X$ denote the canonical map on pairs $(X, X \setminus A) \to (X, X \setminus B)$ by $\rho_{B,A}$.

Lemma 13. Let M be a connected, orientable topological manifold of dimension m, and let $Ks\{M\}$ be a compact subset.

- 1. For all q > m, $H_q(M | K) = 0$.
- 2. If $a \in H_m(M \mid k)$, then a = 0 if and only if $(\rho_{x,K})_*a = 0$ for all $x \in X$.

Proof. We prove the lemma in several steps.

1. First take $M = \mathbb{R}^m$ and $K \subset M$ compact and convex, so that any $x \in K$ is a deformation retract of K. Then, since K is closed and bounded, we can find an

open ball $\mathring{\mathbb{D}}^m$ with $K \subset \mathring{\mathbb{D}}^m$. Then certainly

$$\overline{M \setminus \mathring{\mathbb{D}}^m} = M \setminus \mathbb{D}^m \subset (M \setminus K) = M \setminus K,$$

so by excision and deformation retractness we have

$$\begin{split} H_q(M, M \smallsetminus K) &\cong H_q(M \smallsetminus (M \smallsetminus \mathring{\mathbb{D}}^m), (M \smallsetminus K) \smallsetminus (M \smallsetminus \mathring{\mathbb{D}}^m)) \\ &= H_q(\mathbb{D}^m, \mathbb{D}^m \smallsetminus K) \\ &\cong H_q(\mathbb{D}^m, \mathbb{D}^m \smallsetminus \{x\}) \\ &\cong H_q(\mathbb{D}^m, \mathbb{S}^{m-1}) \\ &\cong H_{q-1}(\mathbb{S}^{m-1}). \end{split}$$

For q > m, this is 0, and for q = m we note that similar reasoning provides an isomorphism

$$H_q(M, M \setminus K) \cong H_q(M, M \setminus \{x\})$$
 for all $x \in X$.

2. Now let $M = \mathbb{R}^n$ and $K = K_1 \cup K_2$, where both K_i are compact and convex. Note that $K_1 \cap K_2$ is also compact and convex. Consider the following relative Mayer-Vietoris sequence.

For q > n, Part 1. implies that

$$H_{q+1}(M \mid K_1 \cap K_2) = H_q(M \mid K_1) = H_q(M \mid K_2) = 0,$$

so by exactness $H_q(M \mid K_1 \cup K_2) = 0$.

3. For $M = \mathbb{R}^n$, $K = \bigcup_i K_i$ for K_i compact and contractible, we get the result by induction.

4.

Proposition 14. Let $K \subset M$ be compact, and assume that M is connected and oriented via an orientation $x \mapsto o_x \in H_m(X \mid x)$. Then there exists a unique orientation class $o_K \in H_m(M \mid K)$ such that $(\rho_{x,K})_* o_K = o_x$ for all $x \in K$.

Proof. First we show uniqueness, as we will need it later. Suppose that there exist two orientation classes o_K , o'_K such that

$$(\rho_{x,K})_* o_K = (\rho_{x,K})_* o_K' = o_x.$$

Taking a difference, we find

$$(\rho_{X,K})_*(o_K - o'_K) = 0,$$

so by Lemma 13, we get uniqueness.

As a first step towards proving existence, suppose that K is contained in the domain $U_{\alpha} \cong \mathbb{R}^n$ of a single chart. Pick some $x \in K$, and consider the following morphisms in **Pair**

$$\begin{array}{ccc}
M \setminus U_{\alpha} & \longrightarrow M \\
\downarrow & & \parallel \\
M \setminus K & \longleftarrow M \\
\downarrow & & \parallel \\
M \setminus \{x\} & \longleftarrow M
\end{array}$$

which correspond to the commuting diagram.

$$H_m(M \mid U_\alpha) = H_m(M \mid x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_m(M \mid K)$$

Pulling $o_x \in H_m(M \mid x)$ back to $H_m(M \mid U_\alpha)$, then mapping it to $H_m(M \mid K)$ with ϕ gives an orientation class $o_K \in H_m(M \mid K)$. The commutativity of the diagram ensures that $(\rho_{x,K})_* o_K = o_x$.

Now suppose that K is not contained in a single chart. We can find an open cover of K by charts, and since K is compact, there exists a finite subcover.

Suppose K is contained in two charts U_1 and U_2 ; the general case follows by induction. Then we can express K as a union of compacta $K = K_1 \cup K_2$, where $K_i \subset U_i$. Consider the relative Mayer-Vietoris sequence

$$0 \longrightarrow H_m(M \mid K_1 \cup K_2) \stackrel{i}{\hookrightarrow} H_m(M \mid K_1) \oplus H_m(M \mid K_2) \stackrel{\kappa}{\longrightarrow} H_m(M \mid K_1 \cap K_2) \longrightarrow \cdots$$

By our above work, we get unique orientation classes $o_{K_i} \in H_m(M|K_i)$ such that $(\rho_{x,K_i})_* = o_x$ for all $x \in K_i$, i = 1, 2. Applying κ , we find

$$\kappa(o_{K_1}, o_{K_2}) = \rho_{K_1 \cap K_2, K_1} o_{K_1} - \rho_{K_1 \cap K_2, K_2} o_{K_2}.$$

But by uniqueness, these must be equal, so there exists a unique o_K in $H_m(M \mid K)$ as in the theorem.

Definition 15 (orientation class). Let M be a connected, orientable, compact manifold of dimension m. An <u>orientation class</u> on M is an element $o_m \in H_m(M: \mathbb{Z})$ such that $o_x = (\rho_{x,M})_* o_m$ is an orientation.

Theorem 16. Let *M* be a compact, connected manifold of dimension *m*. The following are equivalent.

- 1. M is (\mathbb{Z} -)orientable.
- 2. There exists an orientation class $o_M \in H_m(M; \mathbb{Z})$.
- 3. $H_m(M; \mathbb{Z}) \cong \mathbb{Z}$.

Proof.

- $(1 \Rightarrow 2)$ Consequence of Proposition 14.
- $(2 \Rightarrow 3)$ Let $a \in H_m(M)$, and let $x \in M$. Then $(\rho_{x,M})_*a = k_xo_x$ for some $k_x \in \mathbb{Z}$. This defines a function $M \to \mathbb{Z}$, $x \mapsto k_x$.

We aim to show that this function is constant. Choose a chart U_x around x, and let $y \in U_x$. Then the outside of the following diagram commutes by functoriality of H_m , and the lower triangle commutes by definition of an orientation class, so the upper triangle commutes.

This means in particular that

$$\phi(k_x o_x) = k_x \phi(o_x) = k_x o_u$$

must be equal to $k_y o_y$, so $k_x = k_y$. Thus, the function $x \mapsto k_x$ is locally constant, hence constant. Call this constant k.

Thus, $ka-o_M$ is zero when restricted to any $x \in M$, implying by Proposition 14 that $a = ko_M$. o_M generates $H_m(M)$.

We know that o_M is non-trivial because $(\rho_{x,M})_*o_M$ generates $H_m(M|x)$, and that it has infinite order because if $\ell o_M = 0$ for some $\ell \neq 0 \in \mathbb{Z}$ $H_m(M)$, then $\ell(\rho_{x,M})_*o_M = \ell o_x = 0$. This shows that $H_m(M)$ has a single generator of infinite order, i.e. is isomorphic to \mathbb{Z} .

 $(2 \Rightarrow 3)$ Pick a generator $o_M \in \mathbb{Z}$, and define an orientation by

$$o_x = (\rho_{x,M})_* o_M.$$

From now, we will sometimes denote an orientation class on M by [M].

Definition 17 (degree). Let M and N be oriented, connected, compact manifolds of the same dimension $m \ge 1$, and let $g \colon M \to N$ be continuous. The <u>degree</u> of f is the integer d such that

$$f(o_M) = do_N$$
.

Proposition 18. Let M and N be oriented, connected, compact manifolds of the same dimension $m \ge 1$, and let $f, g: M \to N$ be continuous.

1. The degree is multiplicative, i.e.

$$\deg(f \circ g) = \deg(f) \circ \deg(g)$$

2. If \overline{M} is the same manifold as M but with the opposite orientation, then

$$\deg(f: M \to N) = -\deg(f: \bar{M} \to N).$$

3. If the degree of *f* is not trivial, then *f* is surjective.

Proof. All obvious.

1.6 Cohomology with compact support

For this section, let R be a commutative ring with unit 1_R . For most of this section, we will work with cohomology over R, but notationally suppress this.

Definition 19 (singular cochains with compact support). Let X be a topological space, and let R be a commutative ring with unit 1_R . The <u>singular n-cochains with compact support are the set</u>

$$S^n_c(X;R) = \left\{\phi\colon S_n(X) \longrightarrow R \mid \underset{\phi(\sigma)=0 \text{ for all } \sigma\colon \Delta^n \to X \text{ with } \sigma(\Delta^n) \cap K_\phi = \emptyset}{\text{there exists } K_\phi \subset X \text{ compact such that}}\right\}.$$

That is, singular cochains with compact support are those ϕ which ignore simplices which do not hit some compact subset K_{ϕ} .

Clearly $S_c^n(X) \subset S^n(X)$, and since the boundary of any simplex with compact support clearly has compact support, there is an induced chain complex structure

$$S_c^*(X)$$
.

However, there is a more categorical description of this chain complex coming from relative cohomology.

Let X be a topological space. Denote by $\mathcal K$ the set of compact subsets of X. This is clearly a poset under

$$K < K' \iff K \subseteq K'$$
.

and it is filtered because for a finite set I, $\bigcup_i K_i$ is an upper bound for $\{K_i\}_{i \in I}$.

Fixing some X, consider the functor

$$\mathcal{K}^{\text{op}} \to \text{Pair}; \qquad K \mapsto (X, X \setminus K).$$

We get a functor $\mathcal{K} \to \mathbf{Coch}_{\geq 0}(R\mathbf{-Mod})$ via the composition

$$\mathcal{K} \longrightarrow \mathbf{Pair}^{\mathrm{op}} \xrightarrow{S^{\bullet}} \mathbf{Coch}_{>0}(R\mathbf{-Mod})$$
.

For obvious reasons, we call this functor $S^{\bullet}(X \mid -)$

Proposition 20. The colimit

$$\operatorname{colim}_{K} S^{\bullet}(X \mid K)$$

agrees with cohomology with compact support $S_c^{\bullet}(X)$.

Proof. Let $f \in S^n(X \mid K)$. Then by definition, f is a map $S_n(X \mid K) \to R$, i.e. a map $S_n(X) \to R$ such that for any $\sigma \colon \Delta^n \to X$ such that $\sigma(\Delta^n) \cap K = \emptyset$, $f(\sigma) = 0$. Thus, $f \in S^n_c(X)$.

This inclusion gives a chain map $S^{\bullet}(X \mid K) \hookrightarrow S_c^{\bullet}(X)$, and these together induce an inclusion $S^{\bullet}(X \mid K) \to S_c^{\bullet}(X)$. In fact, this is a level-wise epimorphsim since any $g \in S_c^{\bullet}(X)$ is of the above form.

Corollary 21. We have an isomorphism

$$H_c^n(X) \cong \operatorname{colim}_K H^n(X \mid K).$$

Proof. Filtered colimits are exact by Corollary ??.

¹This is a monomorphism because the components are monomorphisms, and by Corollary ?? filtered colimits are exact, hence preserve monomorphisms.

1.7 Poincaré duality

This section takes place over a ring R with unit 1_R . We will usually notationally suppress R.

Let M be a connected, m-dimensional manifold with R-orientation $x \mapsto o_x$, and let $K \subset M$ be a compact subset. By Proposition 14, there exists an orientation class $o_K \in H_m(M \mid K)$ compatible with the orientation o_x .

Consider the cap product

$$H^q(M \mid K) \otimes H_m(M \mid K) \xrightarrow{\frown} H_{m-q}(M)$$
.

Sticking $o_K \in H_m(M \mid K)$ into the second slot of the cap product and setting p = n - q, we find a map

$$H^{m-p}(M \mid K) \xrightarrow{(-) \frown o_K} H_p(M)$$

Proposition 22. The maps

$$(-) \frown o_K \colon H^{m-p}(M|K) \to H_p(M)$$

descend to a map

$$H_c^{m-p}(M) \to H_p(M).$$

Proof. By Proposition 9, the identity $id_M : M \to M$ makes the following diagram commute.

$$H^{m-p}(M \mid L) \otimes H_m(M \mid L) \xrightarrow{(-) \smallfrown (-)} H_p(M)$$

$$\downarrow \qquad \qquad \downarrow^{(\mathrm{id}_M)_*}$$

$$H^{m-p}(M \mid K) \otimes H_m(M \mid K) \xrightarrow[(-) \smallfrown (-)]{} H_p(M)$$

Since

$$(\mathrm{id}_M)_*=\mathrm{id}_{H_p(M)},$$

this in particular means that the triangles

commute. But this says that the maps $(-) \frown o_K$ form a cocone under $H^{m-p}(M \mid -)$. \Box

Definition 23 (Poincaré duality). The map defined in Proposition 22 is called the Poincaré

 $\underline{\text{Duality}}$ map, and denoted

$$\mathsf{PD}\colon H^{m-q}_c(M)\to H_m(M).$$

Theorem 24 (Poincaré duality). Let M be a connected manifold of dimension m with an R-orientation $x\mapsto o_x$. Then

$$\mathsf{PD} \colon H^{m-p}_c(M;R) \to H_p(M;R)$$

is an isomorphism for all $p \in \mathbb{Z}$.