8086 Microprocessor System Project (Part I-B)

Project Summary

This project presents the complete design, integration, and initialization of a microcomputer system based on the Intel **8086 microprocessor running at 10 MHz**, with support for all major peripherals and coprocessing capabilities. The system includes:

- Math Coprocessor 8087
- **1MB total memory** (RAM and ROM)
- Diskette controller 8272 (added in Part I-B)
- Parallel, Serial, USB (DMA-based) communication
- ADC/DAC for analog/digital conversion
- 16-digit seven-segment display
- 64-key matrix keyboard
- Printer interface
- 8237 DMA Controller
- 8259A Interrupt Controller

The full system includes memory decoding logic, I/O mapping, assembly-level routines, pseudocode for all initialization steps, and team member task distribution.

S Design Objectives

- © Construct a working microcomputer based on 8086 + 8087
- Design and implement a 1MB memory map with DRAM, ROM, I/O
- ¶ Integrate peripherals via memory-mapped I/O
- Use 8237 DMA for high-speed USB/disk transfers
- Use 8259A PIC for interrupt-driven I/O handling
- Add **8272 diskette controller** (Part I-B requirement)
- Provide full initialization and test routines in **pseudocode + assembly**

System Architecture

- Full block diagram of CPU, memory, coprocessor, and peripheral buses
- Unified memory and I/O space using address decoding logic with 74LS138
- All data/control signals routed and labeled
 - Refer to: CPU_Memory.md, CPU_Memory.asm, CPU_Memory_pseudocode.md

Memory System Design

- 1MB memory space divided as:
 - **768KB RAM** using 4164 DRAM chips (3 banks)
 - **128KB ROM** for BIOS and routines
 - **128KB I/O-mapped area** for peripherals
- - Refer to: CPU_Memory.md, Storage_DMA_Integration.md

Software & Initialization

- All system modules are initialized via assembly and/or pseudocode:
 - System startup and memory test
 - 8087 coprocessor detection and setup
 - DMA configuration and buffer setup
 - Peripheral setup (keyboard, display, printer, ADC/DAC, disk)
 - USB + Floppy transfer routines using **DMA Channels 1-3**
 - Refer to: CPU_Memory.asm, CPU_Memory_pseudocode.md IO_Peripherals.md
 - Data_Conversion_Interrupts.md Storage_DMA_Integration.md —

Team Responsibilities

Member	Area	Key	Deliverables	Files Submitted
		Components		
Jared	CPU & Memory	• 8086 CPU•	• Block	CPU_Memory.
	Architecture	8087	diagrams•	md CPU_Memor
		Coprocessor•	Memory map•	y.asmCPU_Mem
		1MB	Initialization	ory_pseudocode
		RAM/ROM•	code• Assembly	.mdCPU_Memor
		Address	routines	y.txt
		decoding		
Jesmarie	User I/O	• 16-digit 7-	• Display	IO_Peripherals.
	Interface	segment	driver•	md
		display• 64-key	Keyboard	
		matrix	scanner•	
		keyboard•	Printer	
		Printer	interface•	
			Assembly	
			examples	
Valeria	Communication	• RS-232 serial	•	Data_Conversi

	s & Interrupts	port• Parallel	Communication	on_Interrupts.
		port•	drivers• DMA	md
		USB+DMA•	controller•	
		8259A interrupt	Interrupt	
		controller	handlers• USB	
			routines	
Giovanny	Data Conversion	 ADC (Analog- 	• ADC/DAC	Storage_DMA_I
	& Storage	to-Digital)• DAC	drivers• Disk	ntegration.md
		(Digital-to-	controller•	
		Analog)• 8272	Conversion	
		Floppy	routines•	
		controller	Storage	
			examples	

All files are modular and follow shared address conventions.

☑ Final Integration Test

- System performs correct memory initialization with RAM test and ROM checksum
- All I/O devices respond correctly to their mapped addresses
- DMA transfers are verified between floppy <-> memory <-> USB
- Interrupts are handled using vector table 0x0000-0x03FF and managed by 8259A

Getting Started

To replicate or run the project: 1. Load CPU_Memory.asm and simulate on 8086-compatible assembler 2. Refer to each .md file for subsystem details 3. Use pseudocode as reference for embedded system implementation 4. Test each module independently before full integration

References (with PDF Filenames)

- [1] 8086 Memory and I/O Interfacing
 - 1.8086 Memory and I_O Interfacing.pdf
 - 2.8086 Memory and I_O Interfacing. Part II.pdf
 - \bullet 3.8086 Memory and I_O Interfacing. Part III and Case of Studies.pdf
- [2] System Bus Structure
 - 4.CAP 8 SYSTEM BUS STRUCTURE.pdf
- [3] I/O Interfaces and Interrupts
 - 5.CAP 9 I.O INTERFACES.pdf

- [4] Semiconductor Memory
 - 6.CAP 10 Semiconductor Memory.pdf
- [5] Multiprocessor Configurations & Datasheets
 - 7.8086 Multiprocessor Configurations-1.pdf
 - Manufacturer datasheets: 8086, 8087, 8237, 8259A, 8255, 8251, 8279, 8272, ADC0808, DAC0800