Autómatos e Linguagens Formais

	Exame — 12 de junho de 2023 ————	——————————————————————————————————————			
	Exame 12 de junho de 2025	duração. 120 minutos			
Nome:		Número:			

Cada uma das questões do **Grupo I** deve ser respondida no espaço disponibilizado a seguir à questão, <u>sem apresentação de justificações</u>. As respostas às questões do **Grupo II** devem ser apropriadamente justificadas e respondidas na "Folha de Teste".

Grupo I

- 1. Considere o alfabeto $A = \{a, b, c\}$ e considere as linguagens $L_1 = \{a, c\}, L_2 = \{\epsilon, ab, bc\}$ e $L_3 = \{u \in L_1^k : k \in \mathbb{N}\}.$
 - (a) Determine i) L_1^2 e ii) $L_2^I L_1$. Resposta:
 - (b) Determine $L_3 \cap \{u \in A^* : |u| \le 2\}.$

Resposta:

- (c) Indique uma expressão regular r sobre A tal que $\mathcal{L}(r) = L_2 \cup L_3$. Resposta:
- 2. Considere o alfabeto $A = \{a, b, c\}$ e a expressão regular $r_0 = a(b+c)^* + a^*(b+c)$.
 - (a) Determine $L_0 = \{u \in A^* : |u| \le 2 \land u \in \mathcal{L}(r_0)\}.$ Resposta:
 - (b) Indique se cada uma das duas seguintes afirmações é ou não verdadeira.
 - i) $(a(b+c))^* \le r_0$. Resposta:
 - ii) $r_0 \leq (a(b+c))^*$. Resposta:
 - (c) Desenhe (graficamente) um autómato finito que reconheça $\mathcal{L}(r_0)$. Podem ser utilizadas transições- ϵ . Resposta:
- 3. Considere o autómato $\mathcal{A} = (\{1,2,3\},\{a,b\},\delta,1,\{2,3\}),$ cuja função transição δ é dada pela tabela:

$$\begin{array}{c|ccccc} \delta & 1 & 2 & 3 \\ \hline a & \{2,3\} & \{1\} & \{1\} \\ b & \emptyset & \{2\} & \{2\} \end{array}$$

(a) Determine o conjunto das palavras de comprimento 3 que sejam etiqueta de algum caminho com origem 2 e destino 2.

Resposta:

- (b) Indique um sistema de equações lineares à direita associado a \mathcal{A} . Resposta:
- (c) Indique uma expressão regular r sobre A tal que $\mathcal{L}(r) = L(\mathcal{A})$. Resposta:
- (d) Desenhe (graficamente) um autómato finito determinista que reconheça $L(\mathcal{A})$. Resposta:
- 4. Considere o alfabeto $A = \{a, b, c\}$ e a gramática independente de contexto $G = (\{S, X\}, A, S, P)$, onde as produções de P são: $S \rightarrow abSc \mid X$ $X \rightarrow b \mid bX .$
 - (a) Determine $L_0 = \{ \alpha \in (A \cup \{S, X\})^* : S \stackrel{2}{\Rightarrow} \alpha \}.$ Resposta:
 - (b) Indique uma derivação de abbc a partir de S e indique a árvore de derivação por si determinada. Resposta:
 - (c) (i) Indique um autómato de pilha E com 1 estado, que use o critério da pilha vazia para reconhecer palavras, tal que L(E) = L(G) (as transições de E podem ser descritas graficamente) e (ii) indique uma computação em E que mostre que abbc é reconhecida por E.

 Resposta:

Grupo II

- 1. Considere de novo o autómato $\mathcal A$ da questão 3 do Grupo I.
 - (a) Dê exemplo de estados distintos de \mathcal{A} que sejam equivalentes. Justifique.
 - (b) Mostre que, para todo $u \in A^*$, se $1 \xrightarrow{u} 1$, então $u \in \mathcal{L}((ab^*a)^*)$.
- 2. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem $L_1 = \{a^m b^n c^m : m, n \in \mathbb{N}_0 \land m < n\}$.
 - (a) Mostre que a linguagem L_1 não é regular.
 - (b) Mostre que, para todo $u \in A^*$, se $u \in L_1$, então $u \in L(G)$, onde G é a gramática da questão 4 do Grupo I.

Cotações	I.1	I.2	I.3	I.4	II.1	II.2
Cotações	3	3,5	4,25	4,25	2,5	2,5