1665 1666

E Statistical Analyses for RQ2

of the effect varied across models:

1667 1668

Prompting Comparisons within Models

1669 1670

1676 1677 1678

1683 1684 1685

1686 1687

1697 1698 1699

1702

1703

1704

1705 1706 1707

1708 1709 1710

1711

1712 1713

1715 1716

(p < .01, g = 0.28), suggesting GPT-5's original outputs were better at simulating realistic mistakes. • For Claude Sonnet 4, CoT and IO were significantly better than Self-refine (p < .003 and p < .02 respectively), though CoT and IO did not differ significantly (p = 0.390). This reinforces Claude's overall robustness but indicates iterative refinement decreases alignment.

• For Gemini 2.5 Pro, results show that CoT (p < .001, g = 0.59) and Self – refine (p < .001, g = -0.49 when compared to IO) were significantlybetter than IO (baseline), with CoTshowingthelargesteffectsize.

As shown in Table 6, prompting strategy significantly affected alignment with authentic student errors, but the direction

• For **GPT-4o**, Self-refine produced significantly worse alignment than either CoT or IO (p < .001, medium

effects). This confirms the descriptive pattern that GPT-4o's alignment degrades under iterative refinement.

• For GPT-5, Self-refine substantially reduced alignment compared to both CoT (p < .001, g = 0.43) and IO

• For Grok Code Fast 1, Self-refine significantly reduced alignment compared to both IO (p < .001, g = 0.60)and CoT (p < .001, g = 0.52). This suggests that Self – refineled to the worst match to student errors.

Model Comparisons

Table 7 shows pairwise model comparisons:

- GPT-5 consistently produced errors much more similar to students compared to all other models, with extremely large positive effect sizes (q between 0.35 and 1.79). This confirms GPT-5's position as the most consistent simulator of student-like mistakes.
- Gemini 2.5 Pro significantly outperformed Grok Code Fast 1 by a large margin (g = 0.95) and was significantly worse than GPT-5 (g = 0.35) and ClaudeSonnet4 (g = -1.29 when compared to Claude).
- Claude Sonnet 4 significantly underperformed GPT-5 (g = -1.79 when compared to GPT-5) and Gemini2.5Pro (g = -1.29), but outperformed Grok Code Fast 1 (g = -0.27) when compared to Claude) and GPT-40 (g = 0.40).
- GPT-40 occupied a middle ground: significantlyworse than Claude (g = 0.40) and Gemini2.5Pro (g = -0.82), but significantly better than GPT-5 (g = -1.26). Compared to Grok Code Fast 1, GPT - 40 showed a small, significant advantage (g = 0.13).

In summary, these results statistically confirm that GPT-5 provides the closest approximation of authentic student errors, followed by a mixed group including Gemini 2.5 Pro, Claude Sonnet 4, GPT-40, and Grok Code Fast 1. Prompting design modulates these effects, but model choice remains the dominant factor.

Table 6. Independent *t*-test results for prompt strategies by model (RQ2).

Model	Group A	Group B	t-statistic	df	<i>p</i> -value	Hedges' g
GPT 4o	СоТ	selfrefine	-7.83	425.00	3.85e - 14	-0.70
GPT 40	CoT	baseline	-4.02	395.03	6.92e - 05	-0.39
GPT 40	baseline	selfrefine	-3.79	462.87	1.68e-0 4	-0.35
GPT 5	СоТ	selfrefine	4.68	429.58	3.79e - 06	0.43
GPT 5	baseline	selfrefine	3.09	433.91	2.11e - 03	0.28
GPT 5	CoT	baseline	1.95	582.74	5.14e - 02	0.16
Claude Sonnet 4	СоТ	selfrefine	3.01	438.07	2.77e - 03	0.28
Claude Sonnet 4	baseline	selfrefine	2.41	508.46	1.63e - 02	0.21
Claude Sonnet 4	CoT	baseline	0.86	474.57	0.390	0.08
Gemini 2.5 Pro	CoT	baseline	5.93	390.17	6.69e - 09	0.59
Gemini 2.5 Pro	baseline	selfrefine	-5.09	407.99	5.36e - 07	-0.49
Gemini 2.5 Pro	CoT	selfrefine	1.15	395.34	0.249	0.11
Grok Code Fast 1	baseline	selfrefine	6.62	365.54	1.26e - 10	0.60
Grok Code Fast 1	CoT	selfrefine	4.88	277.03	1.78e - 06	0.52
Grok Code Fast 1	CoT	baseline	-1.41	396.83	0.158	-0.14

Table 7. Independent t-test results for model comparisons (RQ2).

Group A	Group B	t-statistic	df	<i>p</i> -value	Hedges' g
GPT 5	Claude Sonnet 4	36.08	1434.22	2.13e - 203	1.79
GPT 5	Grok Code Fast 1	26.53	1343.54	4.92e - 125	1.41
GPT 4o	GPT 5	-24.31	1449.66	8.98e - 110	-1.26
Claude Sonnet 4	Gemini 2.5 Pro	-22.68	965.40	1.20e - 91	-1.29
Gemini 2.5 Pro	Grok Code Fast 1	16.61	1161.37	9.58e - 56	0.95
GPT 40	Gemini 2.5 Pro	-14.65	1200.94	7.45e - 45	-0.82
GPT 40	Claude Sonnet 4	7.32	1187.92	4.45e - 13	0.40
GPT 5	Gemini 2.5 Pro	6.53	1242.96	9.66e - 11	0.35
Claude Sonnet 4	Grok Code Fast 1	-4.66	1064.99	3.55e - 06	-0.27
GPT 40	Grok Code Fast 1	2.25	1239.35	0.024	0.13