Elementy skupione a elementy rozłożone

Teoria obwodów...

- ...jest przybliżeniem teorii pola elektromagnetycznego (EM).
 - elementy skupione wyodrębniamy fragment przestrzeni i traktujemy go jako "czarną skrzynkę", tzn. nie wnikamy, co dzieje się wewnątrz, natomiast zakładamy, że element kontaktuje się ze światem zewnętrznym wyłącznie za pomocą końcówek (zacisków)
 - skupiamy się na jednej, wybranej wielkości fizycznej, np. na polu elektrycznym, polu magnetycznym, stratach ciepła
 - rozmiary znacznie mniejsze od długości fali EM

zastosowanie	f	$\lambda/100$
sieć energetyczna	50Hz	60km
sygnały akustyczne	15kHz	200m
radio FM	100MHz	3cm
rdzeń procesora	3GHz	1mm

Elementy skupione – postulaty

- Pole magnetyczne "wychodzące" na zewnątrz elementu iest stałe.
 - Pole elektryczne wokół elementu (pochodzące od niego) jest potencjalne ⇒ możemy jednoznacznie zdefiniować napiecie miedzy końcówkami elementu (na elemencie).
- Ładunek elektryczny "wewnatrz" elementu jest stały.
 - Możemy jednoznacznie zdefiniować prądy płynące przez poszczególne końcówki elementu.
- Wszystkie zmiany pól EM wewnątrz elementu zachodzą "równocześnie" w kazdym jego miejscu.
 - Element opisywany jest funkcjami wyłącznie czasu t jego równania nie zawierają zmiennych przestrzennych x, y, z.

element rzeczywisty	element obwodowy
opornik (rezystor)	opór
kondensator	pojemność
cewka (zwojnica)	indukcyjność

Podstawowe wielkości elektryczne

- napięcie u
- prad i
- ładunek elektryczny g
- strumień skojarzony (magnetyczny lub abstrakcyjny) ψ

Operator – przekształca funkcję (czasu) w inną funkcję (czasu). Operator różniczkowy – przekształca funkcję (czasu) w jej pochodną (po czasie):

$$D \stackrel{\text{ozn.}}{=} \frac{d}{dt}$$

Wszystkie wielkości elektryczne traktujemy jako funkcje czasu przebiegi (czasowe) lub sygnały i oznaczamy je małymi literami:

$$u = u(t)$$

Wielkości elektryczne stałe w czasie oznaczamy dużymi literami:

$$u(t) = U = const$$

Dużymi literami oznaczamy także (niezmiennicze w czasie) parametry przebiegów będące wielkościami elektrycznymi:

$$u(t) = U_m \cos(\omega t + \phi)$$

Powyżej: sygnał (ko)sinusoidalny, przebieg napięcia.

Napięcie

Strzałka napięcia dodatniego pokazuje punkt o wyższym potencjale.

Prad

Strzałka prądu *dodatniego* pokazuje kierunek ruchu umownych ładunków dodatnich.

Standardowe strzałkowanie:

- elementy pasywne strzałki napięcia i prądu przeciwne
- źródła napięcia/prądu strzałki napięcia i prądu zgodne

Niestandardowe strzałkowanie – nie przejmujemy się – po prostu zmienia się równanie elementu (pojawia się minus).

Obwody a obwody skupione

Obwód (≤ układ ≤ sieć)...

... powstaje przez połączenie końcówek elementów skupionych za pomoca idealnych przewodów.

Wezeł (obszar ekwipotencjalny)...

...tworzą połączone za pomocą idealnych przewodów końcówki (wraz z tymi przewodami).

Obwód skupiony...

... jest to obwód na tyle mały, że można przyjąć, iż w jego obrębie propagacja fali EM jest natychmiastowa (rozmiar $\ll \lambda$). Obwód taki nie promieniuje energii fali EM w przestrzeń.

Obwód SLS – skupiony liniowy i niezmienniczy w czasie (stacjonarny) \Longrightarrow równania różniczkowe zwyczajne, liniowe o stałych współczynnikach.

Podstawowe elementy dwukońcówkowe (dwójniki)

- opór R lub R_N
- pojemność C lub C_N
- indukcyjność L lub L_N
- memrystancja M lub M_N

http://www.spectrum.ieee.org/dec08/7024