10.4 选择排序

- ◆ 选择排序的基本思想是:
 - □每一趟(例如第 i 趟, i = 1, ..., n-1) 在后面 n-i+1 个待排序记录序列中选出关键字值最小的记录, 作为有序记录序列的第 i 个记录。待到第 n-1 趟作完, 待排序记录只剩下1 个, 就不用再选了。
 - □选择排序的每一趟可把有序区扩大,直到n-1趟后即可把有序区扩大到整个待排序序列。
- ◆ 主要的选择排序算法:简单选择排序和堆排序。

10.4.1 简单选择排序

- ◆ 简单选择排序的基本步骤是:
 - ▶ 在一组记录 r[i]~r[n] 中选择具有最小关键字的记录;
 - 若它不是这组记录中的第一个记录,则将它与这组记录中的第一个记录对调;
 - ▶ 在这组记录中剔除这个具有最小关键字值的记录。在剩下的记录 r[i+1]~r[n] 中重复执行第①、②步,直到剩余记录只有一个为止。

● 简单选择排序的演示

第 8 趟 14 35 35 48 55 62 77 98

10.4.1 简单选择排序

【示例】已知有10个待排序的记录,它们的关键字序列为 (75,87,68,92,88,61,77,96,80,72),给出用直接选择排序法进行排序的过程。

初始序列	75	87	68	92	88	61	77	96	80	72
i=0	61	87	68	92	88	75	77	96	80	72
i=1	61	68	87	92	88	75	77	96	80	72
i=2	61	68	72	92	88	75	77	96	80	87
i=3	61	68	72	75	88	92	77	96	80	87
i=4	61	68	72	75	77	92	88	96	80	87
i=5	61	68	72	75	77	80	88	96	92	87
i=6	61	68	72	75	77	80	87	96	92	88
i=7	61	68	72	75	77	80	87	88	92	96
i=8	61	68	72	75	77	80	87	88	92	96
最后结果	61	68	72	75	77	80	87	88	92	96

简单选择排序算法如下:

```
int SelectMinKey(SqList L, int i)
{
   // 返回在L.r[i..L.length]中key最小的记录的序号
   KeyType min;
   int j, k;
                                  // 设第i个为最小
   k = i;
   min = L.r[i].key;
   for(j = i + 1; j <= L.length; j++)</pre>
       if(L.r[j].key < min) { // 找到更小的
           k = j;
           min = L.r[j].key;
   return k;
}
```

简单选择排序算法如下:

```
void SelectSort(SqList &L)
   // 对顺序表L作简单选择排序。算法10.9
   int i, j;
   RedType t;
   for(i = 1; i < L.length; ++i) { //选择第i小的记录,并交换到位
      // 在L.r[i..L.length]中选择key最小的记录
      j = SelectMinKey(L, i);
      if(i != j) {
                                //与第i个记录交换
          t = L.r[i];
          L.r[i] = L.r[j];
          L.r[j] = t;
```

> 对 n 个记录进行简单选择排序, 所需进行的关键字间的比较次数总计为:

$$\sum_{i=0}^{n-2} (n-i-1) = \frac{n(n-1)}{2}$$

▶ 移动记录的次数,最小值为 0,最大值为3(n-1)。

> 归纳起来,简单选择排序算法的性能如表所示。

	时间复杂度	空间复杂度	44 户 加		
最好情况	最坏情况	平均情况	全門友 術及	稳定性	
0(n ²)	0(n ²)	0(n ²)	0(1)	不稳定	

— END