Miejsce na identyfikację szkoły	
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY	LISTOPAD 2017
Czas pracy: 170 minut Instrukcja dla zdającego	
 Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1.–32.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym. W zadaniach zamkniętych (1.–23.) zaznacz jedną poprawną odpowiedź. W rozwiązaniach zadań otwartych (24.–32.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. Zapisy w brudnopisie nie będą oceniane. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! 	Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów .
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO	KOD ZDAJĄCEGO

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

ZADANIA ZAMKNIETE

W zadaniach 1.-23. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\log_2 \frac{1}{\sqrt{8}}$ jest równa:

A.
$$-\frac{3}{2}$$

B.
$$\frac{3}{2}$$

C.
$$\frac{1}{3}$$

D.
$$-\frac{1}{3}$$

Zadanie 2. (0-1)

Liczba $a = \frac{14\sqrt{2}}{\sqrt{2} - 3}$ należy do przedziału:

$$\mathbf{A.}(-\infty,-13)$$

B.
$$(-13, -12)$$

C.
$$(12, 13)$$

D.
$$(13, +\infty)$$

Zadanie 3. (0-1)

Reszta z dzielenia liczby naturalnej x przez 9 jest równa 7. Reszta z dzielenia kwadratu tej liczby przez 9 jest równa:

C. 6

D. 8

Zadanie 4. (0–1)

Prosta l przechodzi przez punkty A = (6, -7), B = (-10, 3). Prosta k jest symetralną odcinka AB. Współczynnik kierunkowy prostej k jest równy:

A.
$$-\frac{8}{5}$$

B.
$$\frac{8}{5}$$

$$\mathbf{C.}\frac{5}{8}$$

D.
$$-\frac{5}{8}$$

Zadanie 5. (0–1)

Dany jest ciąg (a_n) o wyrazie ogólnym $a_n = \frac{2n+1}{n+3}$. Liczby a_3, a_5 są wyrazami tego ciągu, a liczby (a_3, x, a_5) tworzą ciąg arytmetyczny. Liczba x jest równa:

A.
$$x = \frac{61}{48}$$

B.
$$x = \frac{61}{96}$$

C.
$$x = \frac{69}{96}$$
 D. $x = \frac{69}{48}$

D.
$$x = \frac{69}{48}$$

Zadanie 6. (0–1)

Dana jest funkcja określona wzorem $y = x^2 - 4\sqrt{3}x + 12$. Trzecia potęga jedynego miejsca zerowego tej funkcji to liczba:

A.
$$8\sqrt{3}$$

B. 24

C. $24\sqrt{3}$

D. 12

Zadanie 7. (0–1)

Do wykresu funkcji wykładniczej $f(x) = \left(\frac{1}{4}\right)^x$ należy punkt:

A.
$$A = \left(-\frac{1}{2}, -2\right)$$
 B. $A = \left(-\frac{1}{2}, 2\right)$ **C.** $A = \left(2, \frac{1}{2}\right)$ **D.** $A = \left(2, -\frac{1}{2}\right)$

B.
$$A = \left(-\frac{1}{2}, 2\right)$$

C.
$$A = \left(2, \frac{1}{2}\right)$$

D.
$$A = \left(2, -\frac{1}{2}\right)$$

Zadanie 8. (0–1)

Dany jest ciag geometryczny o wyrazach różnych od 0. Suma siódmego i ósmego wyrazu tego ciagu jest równa 0. Oznacza to, że suma tysiaca poczatkowych wyrazów tego ciagu jest równa: **A.** $1000 a_1$ **B.** $1001a_1$ $\vec{\mathbf{C}}$, 10

Zadanie 9. (0–1)

Punkty A,B,C,D należą do okręgu o środku O. Jeśli kat ABC ma miare 70° , to kat *DAC* ma miare:

 $\mathbf{A.70}^{\circ}$ $\mathbf{C.40}^{\circ}$

 $\mathbf{D.}\,20^{\circ}$

Zadanie 10. (0-1)

Trójkaty ABC i DEF sa podobne. Obwód trójkata ABC jest równy 16, a jego pole 12. Pole trójkata *DEF* jest równe 60. Zatem obwód trójkata *DEF* jest równy:

A. 80

B. $16\sqrt{5}$

C. $\frac{16\sqrt{5}}{5}$

Zadanie 11. (0–1)

Wykres funkcji f(x) = (4m-2)x + k - 3 przechodzi tylko przez II i IV ćwiartkę układu współrzędnych. Oznacza to, że:

$$\mathbf{A.} \begin{cases} m > \frac{1}{2} \\ k = -3 \end{cases}$$

A.
$$\begin{cases} m > \frac{1}{2} \\ k = -3 \end{cases}$$
 B. $\begin{cases} m < \frac{1}{2} \\ k = -3 \end{cases}$ **C.** $\begin{cases} m < \frac{1}{2} \\ k = 3 \end{cases}$ **D.** $\begin{cases} m > \frac{1}{2} \\ k = 3 \end{cases}$

$$\mathbf{C.} \begin{cases} m < \frac{1}{2} \\ k = 3 \end{cases}$$

$$\mathbf{D.} \begin{cases} m > \frac{1}{2} \\ k = 3 \end{cases}$$

Zadanie 12. (0–1)

Wzór funkcji, której wykres powstaje przez symetrie osiowa względem osi OX wykresu funkcji $f(x) = x^2 - 4$, to:

A. $f(x) = (x+4)^2$ **B.** $f(x) = -x^2 - 4$ **C.** $f(x) = -x^2 + 4$ **D.** $f(x) = (x-4)^2$

Zadanie 13. (0-1)

Wyrażenie wymierne $W=\frac{x-3}{x^2-4x+4}$ jest określone dla **A.** $x\in R$ **B.** $x\in \setminus \{3\}$ **C.** $x\in R\setminus \{2\}$ **D.** $x\in R\setminus \{-2,2\}$

Zadanie 14. (0–1)

W trójkącie prostokątnym ABC przyprostokątne różnią się o 4, a jeden z kątów ma miarę 30°. Krótsza przyprostokatna tego trójkata ma długość:

B. $\frac{2\sqrt{3}}{6}$

C. $2\sqrt{3} - 2$ D. $2\sqrt{3} + 2$

Zadanie 15. (0–1)

Rozwiązaniem nierówności $(3x+9)^2 > 0$ jest:

A. zbiór *R*

B. zbiór pusty C. zbiór $R \setminus \{-3\}$ D. zbiór $R \setminus \{-9\}$

Zadanie 16. (0–1)

Jeśli $A = (-\infty, 0)$ i $B = \langle 0, 5 \rangle$, to różnica przedziałów B i A jest równa:

$$\mathbf{A} \cdot (-\infty, 0)$$

$$\mathbf{B}.\left(-\infty,0\right)$$

C.
$$(0,5)$$

D.
$$(0,5)$$

Zadanie 17. (0–1)

Dany jest trójkat ABC o bokach długości 4 i 6. Pole tego trójkata jest równe $3\sqrt{15}$. Oznacza to, że jeśli kąt między bokami o długościach 4 i 6 ma miarę $\alpha > 90^{\circ}$, to:

$$\mathbf{A.}\cos\alpha = \frac{\sqrt{15}}{4}$$

B.
$$\cos \alpha = \frac{1}{4}$$

D.
$$\cos \alpha = -\frac{1}{4}$$

Zadanie 18. (0–1)

Rzucono cztery razy moneta. Prawdopodobieństwo tego, że wypadnie co najwyżej 1 orzeł, jest równe:

A.
$$\frac{2}{8}$$

B.
$$\frac{5}{16}$$

C.
$$\frac{4}{8}$$

D.
$$\frac{4}{16}$$

Zadanie 19. (0–1)

Przekrój osiowy stożka jest trójkatem prostokatnym o przeciwprostokatnej długości 12. Pole powierzchni całkowitej stożka jest równe:

A.
$$6\pi(1+\sqrt{2})$$

B.
$$36\pi (1+\sqrt{2})$$

C.
$$24\pi$$

D.
$$36\pi$$

Zadanie 20. (0-1)

Suma n początkowych wyrazów ciągu arytmetycznego wyraża się wzorem $S_n = 3n^2 + 4n$. Piąty wyraz tego ciagu jest równy:

Zadanie 21. (0–1)

Funkcja $f(x) = (m+3)x^2 + 16x + 5$ osiąga wartość największą dla x = 2. Oznacza to, że największa wartość tej funkcji jest równa:

$$\mathbf{A} \cdot -7$$

Zadanie 22. (0-1)

Sześcian ABCDA'B'C'D' przecięto płaszczyzną przechodzącą przez przekątną BD dolnej podstawy i wierzchołek C' górnej podstawy. Jeśli a jest krawędzią tego sześcianu, to pole otrzymanego przekroju jest równe:

A.
$$\frac{1}{2}a^2\sqrt{2}$$

B.
$$\frac{1}{2}a^2\sqrt{3}$$

C.
$$\frac{1}{2}a^2\sqrt{5}$$
 D. $\frac{1}{2}a^2\sqrt{6}$

D.
$$\frac{1}{2}a^2\sqrt{6}$$

Zadanie 23. (0-1)

Jeśli $x + \frac{1}{x} = 6$, to:

A.
$$x^2 + \frac{1}{x^2} = 2\sqrt{6}$$
 B. $x^2 + \frac{1}{x^2} = \sqrt{6}$ **C.** $x^2 + \frac{1}{x^2} = 36$ **D.** $x^2 + \frac{1}{x^2} = 34$

B.
$$x^2 + \frac{1}{x^2} = \sqrt{6}$$

C.
$$x^2 + \frac{1}{x^2} = 36$$

D.
$$x^2 + \frac{1}{x^2} = 34$$

ZADANIA OTWARTE

Rozwiązania zadań 24.–32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (0-2)

Rozwiąż nierówność $(4x-1)^2 < (2-5x)^2$.

Odpowiedź:

Zadanie 25. (0-2)

Narysuj wykres funkcji $f(x) = 2^x - 3$. Podaj zbiór wartości tej funkcji.

Zadanie 26. (0-2)

Wykaż, że jeśli liczba rzeczywista a spełnia warunek a < 1, to $\frac{1}{1-a} \ge 4a$.

Odpowiedź:

Zadanie 27. (0-2)

Wyznacz współczynniki b, c we wzorze funkcji $f(x) = x^2 + bx + c$, jeśli wiesz, że miejsca zerowe tej funkcji są równe (-4) i 2.

Zadanie 28. (0-2)

Wykaż, że jeśli liczby $(3^a, 3^b, 3^c)$ tworzą ciąg geometryczny, to liczby (a, b, c) tworzą ciąg arytmetyczny.

Zadanie 29. (0-2)

Rzucono trzy razy sześcienną kostką do gry. Oblicz prawdopodobieństwo tego, że suma wyrzuconych oczek jest równa co najmniej 16.

Zadanie 30. (0-4)

Wyznacz długość boku kwadratu wpisanego w trójkąt równoboczny o boku *a* w ten sposób, że jeden bok kwadratu jest zawarty w boku trójkąta, a dwa wierzchołki kwadratu należą do pozostałych boków trójkąta.

Zadanie 31. (0-5)

Dane są punkty A = (4,2) i B = (1,-3). Wyznacz współrzędne punktu C należącego do osi OY, tak aby $|\angle ACB| = 90^{\circ}$.

Odpowiedź:

Zadanie 32. (0-6)

Dany jest graniastosłup prawidłowy trójkątny o dolnej podstawie ABC i górnej A'B'C'. Przekątna ściany bocznej tworzy z krawędzią podstawy kąt 60° . Pole ściany bocznej graniastosłupa jest równe $2\sqrt{3}$. Oblicz pole trójkąta ABC'.

