2. Übungsblatt 27.10.2020

Aufgabe 1: Sei (Q, κ) ein parametrisiertes Problem. Beweisen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. (Q, κ) ist fixed-parameter tractable
- 2. Q ist entscheidbar in Zeit $g(\kappa(x)) + f(\kappa(x)) \cdot p(|x| + \kappa(x)), f, g$ berechenbar, p Polynom
- 3. Q ist entscheidbar in Zeit $g(\kappa(x)) + p(|x|)$, g berechenbar, p Polynom

Aufgabe 2: Das Problem p-deg-Independent-Set ist wie folgt definiert:

Instanz: Ein Graph G = (V, E) und ein $k \in \mathbb{N}$.

Parameter: $k + \deg(G)$, wobei $\deg(G) = \max\{\deg(v) \mid v \in V\}$. **Frage:** Hat der Graph G ein k-elementiges independent set?

Zeigen Sie, dass p-deg-INDEPENDENT-SET in FPT liegt.

Aufgabe 3: Sei (Q, κ) ein parametrisiertes Problem. (Q, κ) liegt letztendlich in P, falls es eine berechenbare Funktion $h \colon \mathbb{N} \to \mathbb{N}$ und einen Polynomialzeitalgorithmus M gibt, der bei Eingabe $x \in \Sigma^*$ mit $|x| \geq h(\kappa(x))$ entscheidet, ob $x \in Q$. Das Verhalten auf Eingaben $x \in \Sigma^*$ mit $|x| < h(\kappa(x))$ ist beliebig. Zeigen Sie, dass

 $(Q, \kappa) \in \mathsf{FPT}$ gdw. Q ist entscheidbar und (Q, κ) ist letztendlich in P .