

# MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES BIOINFORMATICS WORKSHOP

**Presents** 

# Introduction to tree visualization and annotation using ggtree

Taylor Davedow, PhD Student
Department of Medical Microbiology and Infectious Diseases
University of Manitoba



### **INFORMATION FOR PARTICIPANTS**

All workshops are being recorded and posted to the MMID Bioinformatics Workshop – YouTube

For live Q&A, go to <u>slido.com</u> and use participant code #<u>3323315</u>

## 2023 MMID Bioinformatics Workshop Schedule

| DATE     | INSTRUCTOR     | TOPIC                                                          |
|----------|----------------|----------------------------------------------------------------|
| March 2  | Grace E. Seo   | Introduction to the 2023 MMID Bioinformatics Workshop          |
| March 9  | Grace E. Seo   | Introduction to conda and tool installation                    |
| March 16 | Grace E. Seo   | Introduction to genomics and viral data analysis               |
| March 23 | Jill Rumore    | Bacterial Genomics                                             |
| March 30 | Jill Rumore    | Reference Databases                                            |
| April 6  | Taylor Davedow | Beginner's Guide to Phylogenetic Trees                         |
| April 13 | Taylor Davedow | Introduction to tree visualization and annotation using ggtree |
| April 20 | -              | Bfx workshop: Bring your own dataset!                          |
| April 27 | -              | Bfx workshop: Bring your own dataset!                          |

April 20 and April 27 in-person sessions are open to the public (up to 100 people)!

Work with your colleagues/friends to analyze data together.

## **SET UP WI-FI (IN-PERSON PARTICIPANTS)**

- 1. Connect to UofM-secure (if you are a student or staff)
  - Use your @myumanitoba.ca or @umanitoba.ca login and password

### 2. Connect to UofM-guest

### To access uofm-guest Wi-Fi:

- 1. Ensure your wireless card is active and connected to the **uofm-guest** network.
- 2. Open your web browser (e.g. Google Chrome, Microsoft Edge, Firefox, etc.) and browse to any website. This should redirect you to the **Acceptable Use Agreement** page.
- 3. Review the Acceptable Use Agreement for the unsecured wireless.
- 4. Select I Agree.

## **LEARNING OBJECTIVES**

- 1. Create a tree using ggtree
- 2. Use geometric functions and aesthetic mappings to annotate tree
- 3. Learn how to customize legends and add themes

### **DISCLAIMER**

To provide a basic working instruction, all tools will be run with default settings. HOWEVER, careful consideration of analysis parameters in the context of the research question should be taken into account when analyzing your own datasets, as default parameters do not always provide the most optimal result.

### FILES FOR WORKSHOP

#### 1. msa.fasta.tree (newick format)

 Created by downloading a subset of genome accessions listed in manuscript, skesa assembly, multiple sequence alignment and running iqtree

#### 2. metadata.xlsx

Information compiled from manuscript (Tables 1 & 2)

### 3. RScripts

Follow along with today's workshop using our R code

Please download and save materials to your workshop directory:

https://github.com/mmid-bioinformatics-workshop/2023-04-13-Intro-to-tree-visualization-and-annotation-using-ggtree

## **DEMONSTRATION**

## **GETTING STARTED...**

- 1. Open up RStudio
- 2. Set working directory to your workshop folder:

In the files pane, navigate to your workshop folder, then click: more > set as working directory

3. Create four sub directories in the workshop directory:

Move the tree and metadata to "data" directory Move script files to "script" directory



## **GETTING STARTED...**

### 4. Open up Script and install packages

```
install.packages("readxl")
install.packages("BiocManager")
install.packages("treeio")
install.packages("tidyverse")
install.packages("phytools")
```

### 5. Load BiocManager package then install ggtree

```
library(BiocManager)
BiocManager::install("ggtree")
```

\*\* Note: if you already have ggtree (or other packages) installed you can skip installation \*\*

<u>Detailed instructions for installing and loading packages can be found here:</u>
<a href="https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/install.packages/">https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/install.packages</a>

### **PUBLICALLY AVAILABLE DATASET**

#### https://doi.org/10.3389/fpubh.2019.00066



Uploaded to the MMID Bioinformatics GitHub Repository <a href="https://github.com/mmid-bioinformatics-workshop">https://github.com/mmid-bioinformatics-workshop</a>

Data was sequenced using the Illumina HiSeq 2000



## **BASIC WORKFLOW**



### **GGTREE**

- Package for R programming language
- Under Bioconductor project
- Creator: Guangchuang Yu
- Extension of ggplot2
- Data integration, manipulation and visualization of phylogenetic trees
- Customized annotation of tree



- https://yulab-smu.top/treedata-book/
- https://github.com/YuLab-SMU/ggtree



## **FOLLOW ALONG IN RSCRIPT**

## **GETTING STARTED...**

### Load packages

```
library(readxl) # for reading in xl files
library(ggtree) # for building tree
library(treeio) # for read.newick function
library(phytools) # for midpoint.root (also has read.newick option)
library(tidyverse)# to assist with data tidying
```

<sup>\*\*</sup> We will also be using ggplot2 which should automatically load in with ggtree\*\*

## **LOAD IN FILES**

### Load tree and metadata file from data directory

```
# tree file
tree <- read.newick("data/msa.fasta.tree")

# metadata file
metadata <- read_xlsx("data/metadata.xlsx")</pre>
```

## **CREATE A BASIC TREE**

### Create a basic tree using the ggtree() function:

ggtree(tree)

- Tree is our phylo object
- For a list of other arguments check out the ggtree help page:

?ggtree



## **CHANGING TREE LAYOUT**

### You can change the tree layout by using the "layout" argument

ggtree(tree, layout = "rectangular")

rectangular circular roundrect

## **CHANGING TREE LAYOUT**

A **cladogram** will show topology without branch length information

```
ggtree(tree, branch.length = "none")
```

**Midpoint root:** roots the tree at the midpoint of the longest point between two tips.

ggtree (midpoint.root(tree))



You could also try changing position of the root node using root.position argument

\*\*Caution: rooting can drastically change tree topology and you must use an appropriate method based on your data \*\*

## **IDENTIFYING NODES**

## We can display the node numbers by using geom\_text2 argument:

This will help us refer to a specific nodes while using other functions later on



## TREE MANIPULATION

- To view a particular clade, we can use viewClade()
- Notice the difference b/w operators
  - + Plus
  - %>% Pipe
- > ggtree(tree) %>%
   viewClade(node = 17)

> ggtree(tree) +
 viewClade(node = 17)





## TREE MANIPULATION

Original tree with node labels





> ggtree(tree) %>%
 collapse(node = 17)



## **ADDING TIP LABELS**

### 1. You can check the name of the tip labels using head()

```
head(tree$tip.label)
```

#### 2. Add tip labels using geom\_tiplab

```
ggtree(tree) +
  geom_tiplab(size = 4) + # displaying tip labels
  coord_cartesian(clip = 'off')+ # allows us to draw outside the
plot
  theme(plot.margin = margin(1,3,1,1, "cm")) # add space around
the plot
```

## **ADDING TIP LABELS**



## **CUSTOMIZING TIP LABELS**

1. Since we will be linking the metadata file to the tree, we can use a vector to check if there are any biosample\_id observations that are not in the tree:

```
metadata$biosample_id[!tree$tip.label %in% metadata$biosample_id]
[1] character(0)
# all observations match b/w tree and metadata
```

2. Link metadata and change the tip label using geom\_tiplab:

```
ggtree(tree) %<+% # to attach annotation data to tree
  metadata + # our metadata
  geom_tiplab(aes(label = sample_id)) + # change to strain_ID
  coord_cartesian(clip = 'off')+
  theme(plot.margin = margin(1,3,1,1, "cm"))</pre>
```

Any data we want linked to the tree must have a column that **EXACTLY matches** the tip.label

## **CUSTOMIZING TIP LABELS**





## **DEMONSTRATION**

### 1. create a simple tree and save it as an object

```
gg_simple <- ggtree(tree) %<+%
  metadata + # link our metadata file
here
  coord_cartesian(clip = 'off')+
  theme(plot.margin = margin(1,4,1,1,
"cm"))</pre>
```

## 2. Reorient the tree using flip(), and save as new object

```
gg_flip <- gg_simple %>%
flip(25, 17)
```



### 3. Add tip labels

```
gg_flip +
  geom_tiplab(offset = 0.0001)
```

### 4. Add tip points



## SCALE\_MANUAL

### Create your own discrete scale



To find codes for ggplot2 colors and shapes, go to:

http://sape.inf.usi.ch/quick-reference/ggplot2/colour

Or search "ggplot2 colors" in google

### 5. Use scale\_manual to specific shape and color



#### 6. Add a clade label

```
gg flip +
  geom tiplab(offset = 0.0001) +
  geom tippoint(aes(color = `tdh/trh`, shape = matrix),
                size = 4
                alpha = 0.7) +
  scale color manual (values = c("+/+" = "deepskyblue1",
                                "+/-" = "mediumturquoise",
                                 "-/-" = "corall") +
  scale shape manual(values = c("oyster" = 16,
                                 "stool" = 17.
                                 "water" = 15),
                     name = "Sample matrix") +
  geom cladelab(node = 17, label = "ST36",
                offset = 0.0008,
                barsize = 1.5,
                barcolor = 'grey44',
                textcolor = 'grey44',
                offset.text = 0.0001)
```



#### 7. Use theme() to add final touches to the plot & save as new object

```
example1 <- qq flip +
  geom tiplab(offset = 0.0001) +
 geom tippoint(aes(color = `tdh/trh`, shape = matrix),
                size = 4,
                alpha = 0.7) +
  scale color manual(values = c("+/+" = "deepskyblue1",
                                "+/-" = "mediumturquoise",
                                "-/-" = "coral1")) +
  scale shape manual(values = c("oyster" = 16,
                                "stool" = 17,
                                "water" = 15),
                     name = "Sample matrix") +
  geom cladelab(node = 17, label = "ST36",
                offset = 0.0008,
                barsize = 1.5,
                barcolor = 'grey44',
                textcolor = 'grey44',
                offset.text = 0.0001) +
  theme(legend.text = element text(size = 14, face = "bold"),
        legend.title = element text(size = 16, face = "bold"),
        legend.spacing.y = unit(0, "mm"),
        panel.border = element blank(),
        aspect.ratio = 1, axis.text = element text(colour = 1, size = 12),
        legend.background = element blank(),
        legend.box.background = element rect(colour = "black"))
```



### **EXAMPLE 1**

#### 8. Export final tree into output directory

ggsave("output/example1.jpeg", example1, dpi = 300)

#### **Additional arguments**

Scale, width, height, units, dpi

#### **Details:**

Currently supports pdf, jpeg, tiff, png and more...

#### <u>Learn more about ggsave() in r documentation:</u>

https://www.rdocumentation.org/packages/ggplot2/versions/0.9.0/topics/ggsave

#### **EXERCISE 1**

#### Let's apply everything we've learned so far:

- 1) Create a tree using the serovar as the tip labels
- 2) Set your own color of the nodes based on sequence type (st) and change their shape
- 3) Change the font size of the tip labels and legend
- 4) (Bonus) Move the legend to the bottom of the tree (hint, use help page)

Time: 10 minutes

### **EXERCISE 1**



### **EXERCISE 1**

#### Let's apply everything we've learned so far:

- 1) Create a tree using the serovar as the tip labels
- 2) Set your own color of the nodes based on sequence type (st) and change their shape
- 3) Change the font size of the tip labels and legend
- 4) (Bonus) Move the legend to the bottom of the tree

Time: 10 minutes

HINT: use AS.FACTOR() around a continuous variable to read as a discrete scale



To find codes for ggplot2 colors and shapes, go to: http://sape.inf.usi.ch/quick-reference/ggplot2/colour Or search "ggplot2 colors" in google

# **DEMONSTRATION**

#### **EXERCISE 1 ANSWER**

```
exercise1 <- gg flip +
  geom tiplab(aes(label = serovar),
              offset = 0.0001,
              size = 5) +
  geom tippoint(aes(color = as.factor(st)),
                shape = 18,
                size = 4,
                alpha = 0.5) +
  scale color manual(values =
    c("pink", "blue", "green", "orange", "purple"),
                     name = "Sequence Type") +
  theme(legend.text = element text(size = 14),
        legend.title = element text(size = 16, face = "bold"),
        legend.position = "bottom",
        legend.spacing = unit(0, "cm"),
        panel.border = element blank(),
        aspect.ratio = 1, axis.text = element text(colour = 1,
        size = 12),
        legend.background = element blank(),
        legend.box.background = element rect(colour = "black"))
```

## **FOLLOW ALONG IN RSCRIPT**

### LAYERS FOR TREE ANNOTATION

Add geom\_tiplab layer onto the tree from exercise 1

You can continue to add layers, while changing the offset each time

### LAYERS FOR TREE ANNOTATION



#### HIGHLIGHTING CLADES

#### 1. By specifying node

#### 2. By subsetting by a condition

## **HIGHLIGHTING CLADES**



# **MORE EXAMPLES!**



FIGURE 7.2: **Example of plotting SNP and trait data**. The 'location' information was attached to the tree and used to color tip symbols (Tree panel), and other datasets. SNP and Trait data were visualized as dot chart (SNP panel) and bar chart (Trait panel).



FIGURE 7.4: **Example of plotting matrix with gheatmap()** . A H3 influenza tree with a genotype table visualized as a heatmap (A). Tips were aligned and with a tailored x-axis for divergence times (tree) and genomic segments (heatmap) (B).

a

#### SHORT COMMUNICATION

Arteaga et al., Microbial Genomics DOI 10.1099/mgen.0.000340





# Genomic characterization of the non-01/non-0139 *Vibrio cholerae* strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018

Mónica Arteaga¹‡, Juliana Velasco¹‡, Shelly Rodriguez¹, Maricel Vidal², Carolina Arellano³, Francisco Silva⁴, Leandro J. Carreño⁵,6, Roberto Vidal³,6,\* and David A. Montero³,5,\*





FIGURE 9.4: **Phylogenetic tree with OTU abundance densities.** Tips were colored by Phylum, and the corresponding abundances across different samples were visualized as density ridgelines and sorted according to the tree structure.

### **HELPFUL RESOURCES**

Data integration, manipulation and visualization of phylogenetic trees:

https://yulab-smu.top/treedata-book/index.html

ggtree github:

https://github.com/YuLab-SMU/ggtree

**Enhanced annotation practice:** 

http://www.randigriffin.com/2017/05/11/primate-phylogeny-ggtree.html

ggtreeExtra:

https://yulab-smu.top/treedata-book/chapter10.html

https://github.com/YuLab-SMU/ggtreeExtra

## **NEXT WEEK...**

Bring your own data set!



### **THANK YOU FOR ATTENDING!**

Please make sure to fill out the Exit Survey at <a href="https://docs.google.com/forms/d/e/1FAIpQLScSMU-AOMMru9CUz-UP1pJhrz0npverR6PpDcvF6jdrw-QDSA/viewform-We value your feedback!">https://docs.google.com/forms/d/e/1FAIpQLScSMU-AOMMru9CUz-UP1pJhrz0npverR6PpDcvF6jdrw-QDSA/viewform-We value your feedback!</a>

More questions? Please email us at mmid.bioinformatics.workshop@gmail.com or post them to the workshop slack channel

