Chapter 11

Minimum Spanning Tree Recitation.

11.1 The MST Problem.

Definition 11.1.1. A spanning tree T of a graph G = (V, E) is a subset of edges in E such that T is a tree (having no cycles), and the graph (V, T) is connected.

Problem 11.1.1 (MST). Let G=(V,E) be a weighted graph with weight function $w:E\to\mathbb{R}$. We extend the weight function to subsets of E by defining the weight of $X\subset E$ to be $w(X)=\sum_{e\in X}w(e)$. The minimum spanning tree (MST) of G is the spanning tree of G that has the minimal weight according to w. Note that in general, there might be more than one MST for G.

Definition 11.1.2. Let $U \subset V$. We define the cut associated with U as the set of outer edges of U, namely all the edges $(u,v) \in E$ such that $u \in U$ and $v \notin U$. We use the notation $X = (U, \bar{U})$ to represent the cut. We say that $E' \subset E$ respects the cut if $E' \cap X = \emptyset$.

Lemma 11.1.1 (The Cut-Lemma). Let T be an MST of G. Consider a forest $F \subset T$ and a cut X that respects X (i.e. $F \cap X = \emptyset$). Then $F \cup \arg\min_e w(e)$ is also contained in some MST. Note that it does not necessarily have to be the same tree T.

Proof. • If $e \in T$, then $F \cup \{e\} \subset T$ and we are done.

• Otherwise, consider the second case where $e \notin T$. This means that $T \cup \{e\}$ has |V| edges and therefore must have a cycle. Let $\Gamma = T \cup \{e\}$ and let x and y be the endpoints of e (namely e = (x, y)). Denote the subset of vertices defining the cut X by U. Without loss of generality, let's assume $x \in U$ and $y \in \bar{U}$.

Since T is connected, there is a path $x \rightsquigarrow y$ in T, denote it by \mathcal{P} . Additionally, because $e \notin T$, we have that $e \notin \mathcal{P}$. This means that there must be another edge in \mathcal{P} connecting a vertex in U to a vertex in \bar{U}^1 . Let e' be that edge, we have:

¹Otherwise, walking along \mathcal{P} cannot take one out of U, leading to a contradiction as \mathcal{P} leads to y.

- 1. Both $e', e \in X$ So $w(e) \le w(e')$.
- 2. $e \cup \mathcal{P}$ is a cycle in Γ .

By using the fact that subtracting an edge from a cycle doesn't harm connectivity (see Claim 11.3.1), we can conclude that $\Gamma/\{e'\}$ is connected. Since it has |V|-1 edges, it must be a spanning tree. On the other hand, by:

$$w\left(\Gamma/\{e'\}\right) = w\left(T\right) + \overbrace{w(e) - w(e')}^{\leq 0} \leq w\left(T\right)$$

So $\Gamma/\{e'\}$ is an MST. Finally, to close the proof, observe that $F \cup \{e\} \subset \Gamma/\{e'\}$. This means that, we have found an MST that contains $F \cup \{e\}$.

11.2 Kruskal Algorithm.

This algorithm constructs the MST iteratively by holding a forest F contained in an MST and then looking for the minimal edge in a cut that it respects. Note, that since F has no cycles, any edge $e \subset E$ that does not create a cycle in F must belong to a cut X that is respected by F.

By ensuring that the edges are examined in increasing weight order, we can determine that the first edge that does not create a cycle is also the one with the minimum weight among them. Therefore, according to Lemma 11.1.1, we can conclude that the forest obtained by adding e into F is contained in an MST.

```
Result: Returns MST of given G = (V, E, w)
1 sorts the E according to w
2 define F_0 = \emptyset and i \leftarrow 0
3 for e \in E in sorted order do
4 | if F_i \cup \{e\} has no cycle then
5 | F_{i+1} \leftarrow F_i \cup \{e\}
6 | i \leftarrow i+1
7 | end
8 end
9 return F_i
```

Algorithm 1: Kruskal alg.

Claim 11.2.1. *For any* i, $F_i \subset of$ *an MST.*

Proof. By induction.

- 1. Base. Let T be an arbitrary MST of G. $F_0 = \emptyset \subset T$.
- 2. Assumption. Assume correctness for any j < i.
- 3. Step. By the induction assumption, there is an MST T such that $F_{i-1} \subset T$. Denote by e = (x, y) the edge for which $F_i = F_{i-1} \cup \{e\}$. According to the algorithm definition, $F_i = F_{i-1} \cup \{e\}$ has no cycles (line number (4)). This means that with respect to F_{i-1} , x and y belong to two different connected

11.3. APPENDIX. 3

components. Denote the connected component of x by U, and the cut it defines by $X=(U,\bar{U})$. It is clear that F_{i-1} respects X (otherwise U would not be a connected component of F_{i-1}).

On the other hand, $w(e) = \min_{e' \in X} w(e')$. Any other e' with w(e') < w(e) is either already in F_{i-1} and therefore cannot be in X, or it closes a cycle in F_j for some j < i. Since $F_j \subset F_{i-1}$, it also closes a cycle in F_{i-1} . Therefore, it cannot be an edge connecting between U and \bar{U} and does not belong to X.

So, if F_{i-1} respects X and e is the minimal edge in X, then it follows from Lemma 11.1.1 that $F_i = F_{i-1} \cup \{e\}$ is contained in an MST.

Problem 11.2.1. Let $E' \subset E$ such E contains both an MST T and a cycle C. Let e be a maximal edge in C prove that $E'/\{e\}$ contains an MST.

Solution 11.2.1. If $e \notin T$, then we are done. So, it is left to prove for $e \in T$. Let (x,y) = e and consider the forest $F = T/\{e\}$.

Since T is a spanning tree, subtracting e from T divides T into two connected components, U and \bar{U} , corresponding to all vertices that can be reached from x and y, respectively. Let X be the cut $X = (U, \bar{U})$. Note that F respects X. On the other hand, since (x,y) is an edge in cycle C, there is another path from x to y that does not contain e. This path must have a non-trivial intersection with X (otherwise, walking through the path cannot lead to a vertex in \bar{U}).

Therefore, there exists an edge $e' \neq e$ such that $e \in C \cap X$. Let e' = (u,v) and assume, without loss of generality, that $u \in U$ and $v \in \bar{U}$. Since U and \bar{U} are connected components, there are paths $x \leadsto u$ and $v \leadsto y$ that connect with e and e'. This creates a cycle in $T \cup \{e'\}$. Using the fact that subtracting an edge from a cycle does not harm the graph's connectivity, it follows that $T' = T \cup \{e'\}/\{e\}$ is connected and therefore a spanning tree as well.

Furthermore, $w(T') = w(T) - w(e) + w(e') \le w(T)$. Finally, observe that $T' \subset E'/\{e\}$, and we get the required result.

Problem 11.2.2. Consider Problem 11.2.1 and the it's solution, give an example to a graph G and subset of edges E' such that e' defined in the solution is not the minimal edge in C.

11.3 Appendix.

Claim 11.3.1. Let G be a connected graph containing a cycle C. Then the subtraction of any edge in C gives a connected graph.

Proof. Assume, by contradiction, that a graph $G' = G/\{e\}$, where $e \in C$, is not connected. This means that there are two vertices u and v that have a path between them in G, but no such path exists in G'. Denote this path by \mathcal{P} and observe that $e \in \mathcal{P}$, otherwise, \mathcal{P} would also be a path from u to v in G'.

Denote the ends of e by (x, y) = e. Also, denote C by $\langle x_0, x_1, ... x_i, x, y, y_0, ..., y_j \rangle$, where $y_j = x_0$ and there is an inequality for any other pair of vertices (we used

the cycle definition). Then, there is a path $x \rightsquigarrow y$ in C, defined by

$$\langle x_i, x_{i-1}, ..., x_1, x_0, y_{j-1}, y_{j-2}, ..., y_0, y \rangle$$

We denote this path by \mathcal{P}' . By replacing e in \mathcal{P} with \mathcal{P}' , we obtain a path $u \rightsquigarrow x \rightsquigarrow^{\mathcal{P}'} y \rightsquigarrow v$, which is a path between u and v that does not contain e. This contradicts the assumption that there is no path between u and v in G'.