MATH 257: Homework #6

Jesse Farmer

10 November 2004

1. Let G be a finite abelian group with order n=mk where (m,k)=1. Define $G(r)=\{g\in G\mid g^r=1\}$. Prove that G=G(m)G(k).

Since (m, k) = 1 there exist integers a, b such that am + bk = 1. Then

$$g = g^{am+bk} = g^{am}g^{bk}$$

but $(g^{am})^k = g^{amk} = g^{an} = (g^n)^k = 1$, so that $g^{am} \in G(k)$. Similarly $g^{bk} \in G(m)$, and therefore $G \subseteq G(m)G(k)$. The opposite inclusion is obvious and our statement is proven.

2. Let H and K be groups, $\varphi: K \to Aut(H)$ be a group homomorphism. Prove that $C_{\tilde{K}}(H) = \ker \varphi$, where H and K are isomorphic copies of H and K in $H \rtimes_{\varphi} K$.

From theorem 10 part 5, $khk^{-1} = \varphi(k)(h)$. Denote the identity map by I, then

$$\ker \varphi = \{k \in K \mid \varphi(k) = I\}$$

$$= \{k \in K \mid \varphi(k)(h) = h, \forall h \in H\}$$

$$= \{k \in K \mid khk^{-1} = h, \forall h \in H\}$$

$$= C_K(H)$$

Note that in truth $\ker \varphi$ contains elements of K while $C_K(H)$ contains elements of the subgroup isomorphic to K, so that in actuality $\ker \varphi \cong C_K(H)$.

- 3. Let $H = (\mathbb{Z}_n, +)$ and $A = (\mathbb{Z}_n^{\times}, \cdot)$. Define $\tau(a, b) : \mathbb{Z}_n \to Z_n$ by $\overline{x} \mapsto \overline{ax + b}$ with (a, n) = 1 and $b \in \mathbb{Z}$ and $G = \{\tau(a, b) \mid a, b \in \mathbb{Z}, (a, n) = 1\}$.
 - (a) Define $\phi_{\overline{a}}: H \to H$ by $\overline{h} \mapsto \overline{ha}$. Show that $\phi_{\overline{a}} \in Aut(H)$.

Denote $\phi_{\overline{a}}$ by φ for brevity's sake. φ is surjective since there exists an $\overline{h'} = \overline{ha^{-1}}$ such that $\varphi(\overline{h'}) = \overline{h}$ for all $\overline{h} \in H$. It is trivially injective since every a has an inverse by construction.

That it is a homomorphism is also equally obvious:

$$\varphi\left(\overline{h_1} + \overline{h_2}\right) = \varphi\left(\overline{h_1 + h_2}\right) = \overline{(h_1 + h_2)a} = \overline{h_1a} + \overline{h_2a} = \varphi\left(\overline{h_1}\right) + \varphi\left(\overline{h_2}\right)$$

(b) Show that $\phi: A \to Aut(H)$ is an injective group homomorphism. ϕ is a homomorphism since

$$\phi\left(\overline{a_{1}a_{2}}\right)\left(\overline{h}\right) = \overline{ha_{1}a_{2}} = \phi\left(\overline{a_{2}}\right)\left(\overline{ha_{1}}\right) = \left(\phi\left(\overline{a_{1}}\right)\circ\phi\left(\overline{a_{2}}\right)\right)\left(\overline{h}\right)$$

If $\phi(\overline{a_1}) = \phi(\overline{a_2})$ then $\overline{ha_1} = \overline{ha_2}$ for every $h \in H$. In particular this is true for h = 1, so $\overline{a_1} = \overline{a_2}$. Therefore ϕ is an injective group homomorphism.

(c) Show that for $\overline{a} \in A$ and $\overline{b} \in H$, $\tau(1, b)^{\tau(a,0)} = \tau(1, ab)$. We will identify a with \overline{a} and b with \overline{b} . Let $x \in \mathbb{Z}_n$ then

$$(\tau(a,0)\tau(1,b)\tau(a,0)^{-1})(x) = (\tau(a,0)\tau(1,b))(a^{-1}x)$$

$$= (\tau(a,0))(a^{-1}x+b)$$

$$= x+ab$$

$$= \tau(1,ab)(x)$$

(d) Show that $G \cong H \rtimes_{\phi} A$.

Once again we identify a with $\overline{a} \in A$ and b with $\overline{b} \in H$. Define the map $\psi : H \rtimes_{\phi} A \to G$ by $(a,b) \mapsto \tau(a,b)$. Note that in general $\tau(a_1,b_1) \circ \tau(a_2,b_2) = \tau(a_1a_2,b_1a_2+b_2)$. Recall that the operation on H is addition and the operation on A is multiplication modulo n.

$$\psi(a_1, b_1)(a_2, b_2) = \psi(a_1 a_2, \phi(a_2)(b_1) + b_2)
= \tau(a_1 a_2, \phi(a_2)(b_1) + b_2)
= \tau(a_1 a_2, a_2 b_1 + b_2)
= \tau(a_1, b_1) \circ \tau(a_2, b_2)$$

and therefore ψ is a homomorphism. ψ is trivially surjective from our construction. It is injective since if $\tau(a_1,b_2)(x) = \tau(a_2,b_2)(x)$ for all $x \in \mathbb{Z}_n$ then $a_1x + b_1 = a_2x + b_2$ for all $x \in \mathbb{Z}_n$, including x = 0 and x = 1. Hence $a_1 = a_2$ and $b_1 = b_2$ in \mathbb{Z}_n . Therefore $G \cong H \rtimes_{\phi} A$.