目 录

1.	范畴	2
1.1.	Grothendieck宇宙	2
1.2.	范畴的定义	2
1.3.	函子与自然变换	3
1.4.	Yoneda引理	5
1.5.	伴随函子	5
2.	极限	7
2.1.	极限的定义	7
2.2.	极限的转化	8
2.3.	极限的交换性	9
2.4.	加法范畴和Abel范畴	10
2.5.	正合函子	11
3.	半群范畴	13
3.1.	半群范畴的定义	13
3.2.	半群范畴的模	15
3.3.	辫半群范畴和对称半群范畴	16
3.4.	Drinfeld中心	18
3.5.	Müger中心	19
3.6.	对偶	21
4.	半群范畴中的代数	23
4.1.	结合代数	23
4.2.	交换代数	24
4.3.	内蕴Hom	25
4.4.	代数的中心	26
4.5.	Barr-Beck定理	27
5.	融合范畴	29
5.1.	融合范畴	29
5.2.	可分代数	30
5.3.	模的张量积	30
5.4.	多重融合范畴的张量积	32
5.5.	模的对偶	33
5.6.	多重融合范畴的结构	33
5.7.	全局维数	34

1. 范畴

1.1. **Grothendieck宇宙. 粗**略而言, 如果我们在一个集合U里可以进行所有的数学操作, 那么这个集合就称为一个Grothendieck宇宙.

定义1.1.1. 一个Grothendieck宇宙是一个集合U, 满足下列公理:

- (i) 如果 $x \in U$ 且 $y \in x$, 则 $y \in U$.
- (ii) 如果 $x \in U$, 则幂集 $P(x) \in U$.
- (iii) 如果 $I \in U, x: I \to U$ 是一个映射, 则集合的并 $\bigcup_{\alpha \in I} x(\alpha) \in U$.

引理1.1.2. (1) 如果 $x \in U$ 且 $y \subset x$, 则 $y \in U$.

- (2) 如果 $U \neq \emptyset$, 则 $\emptyset \in U$.
- (3) 如果 $x, y \in U$, 则 $x \cup y \in U$.
- (4) 如果 $x, y \in U$,则 $x \times y \in U$.

证明. (1) 因为 $y \in P(x)$, 所以根据公理(i)和(ii)得 $y \in U$.

- (2) 是(1)的推论.
- (3) 两元素集合 $P(P(\emptyset)) \in U$.
- (4) $x \times y \subset P(P(x \cup y))$. (有序对定义为 $(a,b) = \{\{a\}, \{a,b\}\}$.)

命题1.1.3. (1) 如果 $I \in U, x : I \to U$ 是一个映射, 则 $\bigcap_{\alpha \in I} x(\alpha) \in U$.

- (2) 如果 $I \in U$, $x: I \to U$ 是一个映射, 则 $\coprod_{\alpha \in I} x(\alpha) \in U$.
- (3) 如果 $I \in U, x : I \to U$ 是一个映射, 则 $\prod_{\alpha \in I} x(\alpha) \in U$.
- (4) 如果 $x, y \in U$, 则 $y^x \in U$.

证明. (1) $\bigcap_{\alpha \in I} x(\alpha) \subset \bigcup_{\alpha \in I} x(\alpha)$.

- (2) $\coprod_{\alpha \in I} x(\alpha) \subset I \times \bigcup_{\alpha \in I} x(\alpha)$.
- (3) $\prod_{\alpha \in I} x(\alpha) \subset P(I \times \bigcup_{\alpha \in I} x(\alpha)).$
- (4) $y^x \subset P(x \times y)$.

习题1.1.4. 证明: 若U是一个Grothendieck宇宙,则 $U \notin U$.

例1.1.5. (1) 空集∅是一个Grothendieck宇宙.

(2) 所有遗传有限集(hereditarily finite sets)组成的集合 $V_{\omega} = P(\emptyset) \cup P^2(\emptyset) \cup \cdots$ 是一个Grothendieck宇宙.

接下来我们选定一个Grothendieck宇宙U使得自然数集 $\mathbb{N} \in U$. 如果一个集合X含于U,则称X是**小的**,否则称X是**大的**.

如不做特别说明,我们提到的拓扑空间,以及群、环、模、线性空间等代数概念都将假设是小的

1.2. **范畴**的定义.

定义1.2.1. 一个范畴C由下列要素组成

- (1) 一个集合Ob(C), 其中的元素称为Cb的对象. 我们用记号 $X \in C$ 表示X是范畴Cb的一个对象.
- (2) 每两个对象 $X,Y \in \mathfrak{C}$ 有一个集合 $\mathrm{Hom}_{\mathfrak{C}}(X,Y)$, 其中的元素称为从X到Y的**态射**. 我们用记号 $f:X \to Y$ 表示f是一个从X到Y的态射.
- (3) 每三个对象 $X,Y,Z\in \mathfrak{C}$ 有一个映射 $\circ: \mathrm{Hom}_{\mathfrak{C}}(Y,Z)\times \mathrm{Hom}_{\mathfrak{C}}(X,Y)\to \mathrm{Hom}_{\mathfrak{C}}(X,Z),$ 称为**复合规则**.

它们满足下列公理

- (单位律) 每个对象 $X \in \mathcal{C}$ 有一个态射 $\mathrm{Id}_X : X \to X$, 称为**恒同态射**, 使得对任意态 射 $f: Y \to X$ 有 $\mathrm{Id}_X \circ f = f$, 对任意态射 $g: X \to Z$ 有 $g \circ \mathrm{Id}_X = g$.
- (结合律) 对任意态射 $f: X \to Y, g: Y \to Z, h: Z \to W, 有(h \circ g) \circ f = h \circ (g \circ f)$.

注1.2.2. 恒同态射 Id_X 是唯一的.

例1.2.3. (1) 小集合及集合映射组成的集合范畴Set.

- (2) 拓扑空间范畴Top, 流形范畴.
- (3) 群范畴Grp, Abel群范畴Abel, 一个域k上的线性空间范畴 $Vect_k$, 一个环A的左模范畴 $LMod_A$.
- (4) (含单位元的)环范畴Ring, 交换环范畴CRing.
- (5) 带基点的拓扑空间范畴 Top_* , 同伦范畴 Top^{hom} .
- (6) 偏序集 (X, \leq) .
- (7) 反向范畴 \mathcal{C}^{op} : $Ob(\mathcal{C}^{\text{op}}) = Ob(\mathcal{C})$, $\operatorname{Hom}_{\mathcal{C}^{\text{op}}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(Y,X)$.
- (8) 乘积范畴 $\mathfrak{C} \times \mathfrak{D}$: $Ob(\mathfrak{C} \times \mathfrak{D}) = Ob(\mathfrak{C}) \times Ob(\mathfrak{D})$, $\operatorname{Hom}_{\mathfrak{C} \times \mathfrak{D}}((X,Y),(X',Y')) = \operatorname{Hom}_{\mathfrak{C}}(X,X') \times \operatorname{Hom}_{\mathfrak{D}}(Y,Y')$.

定义1.2.4. 设C是一个范畴. C中的一个态射 $f:X\to Y$ 称为**同构**, 若存在 $g:Y\to X$, 使得 $g\circ f=\mathrm{Id}_X$, $f\circ g=\mathrm{Id}_Y$. 此时称X与Y**同构**, 记作 $X\cong Y$. 如果C中的态射都是同构, 则称C是一个**群胚**.

 \mathfrak{C} 中的一个态射 $f:X\to Y$ 称为**单射**,若对任意 $Z\in\mathfrak{C}$,与f复合诱导单射 $\mathrm{Hom}_{\mathfrak{C}}(Z,X)\to\mathrm{Hom}_{\mathfrak{C}}(Z,Y)$. 此时称X是Y的一个**子对象**

 CP 的一个态射 $f:X\to Y$ 称为**满射**,若对任意 $Z\in \operatorname{C}$,与f复合诱导单射 $\operatorname{Hom}_{\operatorname{\mathbb{C}}}(Y,Z)\to \operatorname{Hom}_{\operatorname{\mathbb{C}}}(X,Z)$. 此时称Y是X的一个**商对象**

注1.2.5. 若 $f: X \to Y$ 是同构,则f既单且满. 反之不一定. 比如在一个偏序集中,所有态射既单且满. 但只有恒同态射是同构.

定义1.2.6. 称范畴D是C的子范畴,如果 $Ob(D) \subset Ob(C)$,对于 $X,Y \in D$ 有 $Hom_D(X,Y) \subset Hom_C(X,Y)$,并且D的态射复合是C的限制。C的一个子范畴D称为完全的,如果对任意 $X,Y \in D$, $Hom_D(X,Y) = Hom_C(X,Y)$.

 $\mathbf{M1.2.7.}$ (1) Abel是 \mathbf{Grp} 的完全子范畴. $\mathbf{CR}inq$ 是 $\mathbf{R}inq$ 的完全子范畴.

- (2) 有限维线性空间组成 $Vect_k$ 的一个完全子范畴.
- (3) 全体小集合和集合单射组成Set的一个子范畴.

范畴	始对象/终对象	乘积	余乘积	同构	单/满射
$\mathbb{S}et$	∅ / 单元素集	Descartes积	无交并	双射	单/满射
$\Im op$	\emptyset / pt	乘积空间	无交并	同胚	连续单/满射
$\Im op_*$	(pt, pt)	乘积空间	一点并	同胚	连续单/满射
$\mathfrak{G}rp$	平凡群	群直积	自由乘积	群同构	单/满同态
$\mathcal{A}bel$	0	群直积	直和	群同构	单/满同态
$\Re ing$	$\mathbb{Z} / 0$	环直积	自由乘积	环同构	单同态/-
$\mathfrak{CR}ing$	$\mathbb{Z} / 0$	环直积	张量积	环同构	单同态/-
偏序集	最小元/最大元	下确界	上确界	恒同	全部态射

注1.2.8. 一个范畴可以看作一个有向图, 其中的顶点是对象, 箭头是态射. 图上附带一个箭头的复合运算, 运算满足单位律和结合律.

我们考虑集合范畴Set所对应的有向图. 忘掉所有集合的信息, 仅从这个图我们可以还原出范畴Set几乎所有的信息: 图里的一个顶点来自于空集, 当且仅当它到每个顶点有且只有一个箭头. 图里的一个顶点来自于单元素集, 当且仅当每个顶点到它有且只有一个箭头. 一个顶点所对应的集合的元素与单元素集到它的箭头一一对应.

这个例子告诉我们, 范畴里一个对象的信息都含在它与其它对象的态射中. 稍后的Yoneda引理会更好地阐释这一点.

1.3. 函子与自然变换.

定义1.3.1. 设C, D是两个范畴. 一个**函子** $F: C \to D$ 包括下列对应

- (1) 每个 \mathfrak{C} 中的对象 $X \in \mathfrak{C}$, 对应 \mathfrak{D} 中的一个对象 $F(X) \in \mathfrak{D}$.
- (2) 每个 \mathfrak{C} 中的态射 $f: X \to Y$,对应 \mathfrak{D} 中的一个态射 $F(f): F(X) \to F(Y)$.

它们满足下列公理

- (单位律) 对 \mathfrak{C} 中的每个对象 $X \in \mathfrak{C}$, $F(\mathrm{Id}_X) = \mathrm{Id}_{F(X)}$.
- (复合律) 对 \mathfrak{C} 中的任意态射 $f: X \to Y, g: Y \to Z,$ 有 $F(g \circ f) = F(g) \circ F(f).$

习**题1.3.2.** 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个函子. 证明: F将同构映为同构.

定义1.3.3. 一个函子 $F: \mathcal{C} \to \mathfrak{D}$ 称为忠实的(完全的, 完全忠实的), 如果对任意 $X, Y \in \mathcal{C}$, F诱导的映射 $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$ 是单射(满射,双射).

定义1.3.4. 设C, D是两个范畴, F, G: $C \to D$ 是两个函子. 一个函子的**自然变换** ξ : $F \to G$ 是一系列自然的态射 ξ_X : $F(X) \to G(X)$, $X \in C$. 具体而言, ξ 对C中的每个对象 $X \in C$, 指定D中的一个态射 ξ_X : $F(X) \to G(X)$, 使得对任一C中的态射f: $X \to Y$, 下列图表交换

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\xi_X \downarrow \qquad \qquad \downarrow \xi_Y$$

$$G(X) \xrightarrow{G(f)} G(Y).$$

一个函子**同构** $\xi: F \to G$ 是一系列自然的同构 $\xi_X: F(X) \to G(X), X \in \mathbb{C}$. 具体而言, ξ 是一个自然变换, 且对所有的 $X \in \mathbb{C}$, ξ_X 都是同构. 此时称函子F与G**同构**, 记作 $F \cong G$.

习题1.3.5. 证明: 一个自然变换 $\xi: F \to G$ 是函子同构, 当且仅当存在自然变换 $\eta: G \to F$ 使得 $\eta \circ \xi = \mathrm{Id}_F, \, \xi \circ \eta = \mathrm{Id}_G$.

定义1.3.6. 一个函子 $F: \mathcal{C} \to \mathcal{D}$ 称为**范畴等价**, 若存在函子 $G: \mathcal{D} \to \mathcal{C}$, 使得 $G \circ F \cong \mathrm{Id}_{\mathcal{C}}$, $F \circ G \cong \mathrm{Id}_{\mathcal{D}}$. 此时称范畴 $\mathcal{C} \to \mathcal{D}$ 等价, 记作 $\mathcal{C} \simeq \mathcal{D}$.

例1.3.7. (1) 恒同函子 $\mathrm{Id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}$. 恒同自然变换 $\mathrm{Id}_F:F\to F$.

- (2) 遗忘函子 $\Im op \to Set$, $\Im rp \to Set$, $\Im ing \to Abel$, $\Im op_* \to \Im op$. 它们都是忠实的, 但不是完全的.
 - (3) 子范畴的含入函子是忠实的, 完全子范畴的含入函子是完全忠实的.
- (4) 同调群函子 $H_n: \Im op \to Abel$, 上同调群函子 $H^n: \Im op \to Abel^{op}$. 基本群函子 $\pi_1: \Im op_* \to \Im op$, 同伦群函子 $\pi_n: \Im op_* \to Abel$, $n \geq 2$, 和道路分支函子 $\pi_0: \Im op \to Set$. 它们既不是忠实的, 也不是完全的. 自然变换 $H^n \to \hom_{\mathbb{Z}}(H_n(-), \mathbb{Z})$.
 - (5) 函数环函子 $\Im op \to \mathcal{CR}ing^{op}, X \mapsto C(X) = \operatorname{Hom}_{\Im op}(X,\mathbb{R}).$
 - (6) 对偶空间函子 $D: Vect_k \to Vect_k^{op}$, 它是忠实的但不是完全的. 自然变换 $Id \to D^2$.
 - (7) 函子 $F: \mathcal{C} \to \mathcal{D}$ 诱导一个函子 $F^{\text{op}}: \mathcal{C}^{\text{op}} \to \mathcal{D}^{\text{op}}$.

定义1.3.8. 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个函子. 我们称 $X \in \mathcal{D}$ 属于F的本质像, 如果存在 $Y \in \mathcal{C}$, 使得 $X \cong F(Y)$. 我们称F是本质满的, 如果 \mathcal{D} 中的对象都属于F的本质像.

注1.3.9. 若两个函子同构,则它们有相同的本质像.

命题1.3.10. 一个函子 $F: \mathcal{C} \to \mathcal{D}$ 是范畴等价的充分必要条件是: (1) F是完全忠实的, (2) F是本质满的.

证明. 充分性. 对于 $X \in \mathcal{D}$, 根据(2)我们可选取 $G(X) \in \mathcal{C}$ 及同构 $\xi_X : F(G(X)) \to X$. 对于 \mathcal{D} 中态 射 $f: X \to Y$, 根据(1)存在唯一态射 $G(f): G(X) \to G(Y)$ 使得 $F(G(f)) = \xi_Y^{-1} \circ f \circ \xi_X$. 于是我们得到一个函子 $G: \mathcal{D} \to \mathcal{C}$, 并且有函子同构 $\xi: F \circ G \to \mathrm{Id}_{\mathcal{D}}$. 另一方面, 对于 $Z \in \mathcal{C}$, 根据(1)同构 $\xi_{F(Z)}: FGF(Z) \to F(Z)$ 决定了一个同构 $\eta_Z: GF(Z) \to Z$. 因此有函子同构 $\eta: G \circ F \to \mathrm{Id}_{\mathcal{C}}$.

必要性. 设 $G: \mathcal{D} \to \mathcal{C}$ 是F的逆. (1) 对于 $X, Y \in \mathcal{C}$, 映射 $F: \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ 有逆映射 $\operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)) \xrightarrow{G} \operatorname{Hom}_{\mathcal{C}}(GF(X), GF(Y)) \cong \operatorname{Hom}_{\mathcal{C}}(X, Y)$. (2) 对于 $X \in \mathcal{D}$, 函子同构 $F \circ G \cong \operatorname{Id}_{\mathcal{D}}$ 给出一个同构 $F(G(X)) \cong X$.

推论1.3.11. 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个完全忠实的函子, \mathcal{D}' 是由F的本质像组成的 \mathcal{D} 的完全子范畴. 则F诱导了范畴等价 $\mathcal{C} \simeq \mathcal{D}'$.

习题1.3.12. 设 $X \in Set$ 是一个单元素集. 证明: 函子 $Hom_{Set}(X, -) : Set \to Set$ 是一个范畴等价.

习题1.3.13. 证明: 由全体拓扑空间及全体映射组成的范畴与Set等价.

1.4. Yoneda引理.

定义1.4.1. 一个范畴ሮ称为局部小的, 如果任意两个对象间的态射集合 $Hom_{\mathcal{C}}(X,Y)$ 是小的. 一个范畴ሮ称为小的, 如果C是局部小的, 并且 $Ob(\mathcal{C})$ 是一个小集合. 一个范畴ሮ称为本质小的, 如果C等价于一个小范畴.

例1.4.2. Set的有限集组成的完全子范畴是本质小的, 但不是小的.

定义1.4.3. 设C, D是范畴. 全体函子 $F: C \to D$ 及自然变换构成一个范畴, 记作Fun(C, D). 特别地, 范畴Fun(C^{op}, Set)称为C上的**预层范畴**, 记作P(C), 其中的对象称为C上的**预层**. 对于局部小范畴C, 我们将函子 $j: C \to P(C), X \mapsto \operatorname{Hom}_{C}(-, X)$ 称为**Yoneda嵌入**.

注1.4.4. 如果C是小范畴且D是(局部)小范畴, 则Fun(C, D)也是(局部)小范畴.

注1.4.5. 当C不是一个(局部)小范畴, 我们可以通过放大宇宙使得C成为一个(局部)小范畴. 因此我们对于(局部)小范畴的结论, 通常都可用于一般的范畴.

命题1.4.6. 设C是一个局部小范畴, $X \in \mathcal{C}$, $\mathfrak{F} \in \mathfrak{P}(\mathcal{C})$. 我们有双射 $\mathrm{Hom}_{\mathfrak{P}(\mathcal{C})}(j(X),\mathfrak{F}) \to \mathfrak{F}(X)$, $\xi \mapsto \xi_X(\mathrm{Id}_X)$.

证明. 对于 $x \in \mathcal{F}(X)$, 我们有自然变换 $\xi_x : j(X) \to \mathcal{F}$, 使得 $(\xi_x)_Z = \mathcal{F}(-)(x) : \operatorname{Hom}_{\mathcal{C}}(Z,X) \to \mathcal{F}(Z)$. 映射 $x \mapsto \xi_x = \xi \mapsto \xi_X(\operatorname{Id}_X)$ 互逆.

推论1.4.7 (Yoneda引理). 设C是一个局部小范畴. 则Yoneda嵌入 $j: C \to \mathcal{P}(C)$ 是完全忠实的.

定义1.4.8. 设C是一个局部小范畴. 称一个函子 $F: \mathbb{C}^{op} \to Set$ 是可表示的, 如果F同构于某个函子 $Hom_{\mathbb{C}}(-,X)$; 换言之, F属于Yoneda嵌入的本质像.

注1.4.9. 根据Yoneda引理, 表示一个函子 $F: \mathcal{C}^{op} \to Set$ 的对象X在典范同构下唯一.

例1.4.10. 遗忘函子 $For: (\Im op^{\operatorname{op}})^{\operatorname{op}} \to \mathbb{S}et$ 由单元素集表示.

习题1.4.11. 证明遗忘函子 $For: Srp \rightarrow Set, For: \mathfrak{R}ing \rightarrow Set$ 是可表示的.

习题1.4.12. 证明函子 $Grp \rightarrow Set$, $G \mapsto \{g \in G \mid g^2 = 1\}$ 是可表示的.

1.5. 伴随函子.

定义1.5.1. 一个伴随由一对函子 $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}$ 和一个自然的双射 $\mathrm{Hom}_{\mathcal{D}}(F(X), Y) \cong \mathrm{Hom}_{\mathcal{C}}(X, G(Y))$ 组成. 此时称 $F \not\in G$ 的**左伴随函子**, $G \not\in F$ 的**右伴随函子**.

例1.5.2. (1) 遗忘函子Top, Grp, Abel, Ring, $CRing \rightarrow Set$ 有左伴随函子, 将一个集合S映为由S生成的离散空间,自由群,自由Abel群, Z上的自由代数, Z上的多项式环.

(2) 设 $\phi:A\to B$ 是环同态. 函子 $\phi_*:\operatorname{LMod}_B\to\operatorname{LMod}_A,N\mapsto_AN$ 有左伴随函子 $\phi^*=B\otimes_A-:\operatorname{LMod}_A\to\operatorname{LMod}_B,$ 和右伴随函子 $\phi^!=\operatorname{hom}_A(B,-):\operatorname{LMod}_A\to\operatorname{LMod}_B.$

(3) 设A是一个交换环, N是一个A模. 由张量积的定义, $-\otimes_A N$: LMod $_A \to \operatorname{LMod}_A$ 是hom $_A(N,-)$: LMod $_A \to \operatorname{LMod}_A$ 的左伴随函子.

注1.5.3. 若函子 $F: \mathcal{C} \to \mathcal{D} \not\models G: \mathcal{D} \to \mathcal{C}$ 的左伴随, 则 $F^{\mathrm{op}}: \mathcal{C}^{\mathrm{op}} \to \mathcal{D}^{\mathrm{op}} \not\models G^{\mathrm{op}}: \mathcal{D}^{\mathrm{op}} \to \mathcal{C}^{\mathrm{op}}$ 的右伴随

习题1.5.4. 设函子 $F: \mathcal{C} \to \mathcal{D}, F': \mathcal{D} \to \mathcal{E}$ 分别是 $G: \mathcal{D} \to \mathcal{C}, G': \mathcal{E} \to \mathcal{D}$ 的左伴随. 证明: $F' \circ F$ 是 $G \circ G'$ 的左伴随.

命题1.5.5. 设 \mathcal{C} , \mathcal{D} 是局部小范畴. 一个函子 $F:\mathcal{C}\to\mathcal{D}$ 有右伴随的充分必要条件是, 对每个 $Y\in\mathcal{D}$, 函子 $\mathrm{Hom}_{\mathcal{D}}(F(-),Y):\mathcal{C}^{\mathrm{op}}\to Set$ 是可表示的.

证明. 必要性. 设 $G: \mathcal{D} \to \mathcal{C}$ 是F右伴随. 由伴随函子的定义, G(Y)表示函子 $\mathrm{Hom}_{\mathcal{D}}(F(-),Y)$.

充分性. 设函子 $\operatorname{Hom}_{\mathbb{D}}(F(-),Y)$ 由G(Y)表示. 对于 \mathfrak{D} 中一个态射 $f:Y\to Y'$,根据Yoneda引理,自然变换 $\operatorname{Hom}_{\mathbb{C}}(-,G(Y))\cong \operatorname{Hom}_{\mathbb{D}}(F(-),Y) \xrightarrow{f\circ-} \operatorname{Hom}_{\mathbb{D}}(F(-),Y')\cong \operatorname{Hom}_{\mathbb{C}}(-,G(Y'))$ 给出一个态射 $G(f):G(Y)\to G(Y')$. 这样我们得到一个函子 $G:\mathfrak{D}\to \mathbb{C}$,它是F的右伴随.

推论1.5.6 (伴随函子的唯一性). 若一个函子 $F: \mathcal{C} \to \mathcal{D}$ 有右伴随, 则右伴随函子在典范同构下唯一.

定理1.5.7. 函子 $F: \mathcal{C} \to \mathcal{D} \not\models G: \mathcal{D} \to \mathcal{C}$ 的左伴随的充分必要条件是, 存在自然变换 $u: \mathrm{Id}_{\mathcal{C}} \to G \circ F \cap \mathcal{A}_{\mathcal{D}}$, 使得下列两个复合自然变换都是恒同

$$F = F \circ \operatorname{Id}_{\mathcal{C}} \xrightarrow{\operatorname{Id}_{F} \circ u} F \circ G \circ F \xrightarrow{v \circ \operatorname{Id}_{F}} \operatorname{Id}_{\mathcal{D}} \circ F = F,$$

$$G = \operatorname{Id}_{\mathcal{C}} \circ G \xrightarrow{u \circ \operatorname{Id}_{G}} G \circ F \circ G \xrightarrow{\operatorname{Id}_{G} \circ v} G \circ \operatorname{Id}_{\mathcal{D}} = G.$$

证明. 充分性. 我们有两个映射

$$\Phi: \operatorname{Hom}_{\mathcal{D}}(F(X),Y) \to \operatorname{Hom}_{\mathcal{C}}(X,G(Y)), \quad f \mapsto (X \xrightarrow{u_X} GF(X) \xrightarrow{G(f)} G(Y)),$$

$$\Psi: \operatorname{Hom}_{\mathcal{C}}(X,G(Y)) \to \operatorname{Hom}_{\mathcal{D}}(F(X),Y), \quad g \mapsto (F(X) \xrightarrow{F(g)} FG(Y) \xrightarrow{v_Y} Y).$$

有ΨΦ $(f) = (F(X) \xrightarrow{F(u_X)} FGF(X) \xrightarrow{FG(f)} FG(Y) \xrightarrow{v_Y} Y)$. 由v的自然性, ΨΦ $(f) = (F(X) \xrightarrow{F(u_X)} FGF(X) \xrightarrow{v_{F(x)}} F(X) \xrightarrow{f} Y) = f$. 同理可证ΦΨ(g) = g.

必要性. $\Diamond u_X: X \to GF(X)$ 是 $\mathrm{Id}_{F(X)}$ 在自然同构 $\mathrm{Hom}_{\mathcal{D}}(F(X), F(X)) \cong \mathrm{Hom}_{\mathcal{C}}(X, GF(X))$ 下的像, $v_Y: FG(Y) \to Y$ 是 $\mathrm{Id}_{G(X)}$ 在自然同构 $\mathrm{Hom}_{\mathcal{C}}(G(Y), G(Y)) \cong \mathrm{Hom}_{\mathcal{D}}(FG(Y), Y)$ 下的像. 从而得到自然变换u, v. 由交换图表

$$\operatorname{Hom}_{\mathfrak{C}}(GF(X), GF(X)) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{D}}(FGF(X), F(X))$$

$$\downarrow^{-\circ I_{(UX)}} \qquad \qquad \downarrow^{-\circ F(UX)}$$

$$\operatorname{Hom}_{\mathfrak{C}}(X, GF(X)) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{D}}(F(X), F(X))$$

可知第一个复合自然变换是恒同. 同理可证第二个.

习题1.5.8. 设 $F: \mathcal{C} \to \mathcal{D}$ 是 $G: \mathcal{D} \to \mathcal{C}$ 的左伴随函子, \mathcal{E} 是一个范畴. 证明: $F \circ - : \operatorname{Fun}(\mathcal{E}, \mathcal{C}) \to \operatorname{Fun}(\mathcal{E}, \mathcal{D})$ 是 $G \circ - : \operatorname{Fun}(\mathcal{E}, \mathcal{D}) \to \operatorname{Fun}(\mathcal{E}, \mathcal{C})$ 的左伴随函子.

习题1.5.9. 设函子 $F: \mathcal{C} \to \mathcal{D}$ 有右伴随函子G. 证明: F是完全忠实的, 当且仅当 $u: \mathrm{Id}_{\mathcal{C}} \to G \circ F$ 是 同构.

定义1.5.10. 称一个函子 $G: \mathcal{D} \to \mathbb{C}$ 是保守的,若对任意 \mathcal{D} 中的态射f, f是同构当且仅当G(f)是同构.

习题1.5.11. 设函子 $G: \mathcal{D} \to \mathcal{C}$ 有左伴随 $F: \mathcal{C} \to \mathcal{D}$. 证明: G是范畴等价当且仅当F是完全忠实的且G是保守的.

2.1. 极限的定义.

定义2.1.1. 设C是一个范畴. 称一个对象 $X \in C$ 是一个**始对象**, 如果X到每个对象 $Y \in C$ 都有唯一一个态射; 换言之, $Hom_{\mathcal{C}}(X,Y)$ 是单元素集. C^{op} 中的始对象称为C中的**终对象**. 如果X既是始对象又是终对象, 则称X是一个**零对象**.

设c是一个有零对象的范畴. 一个态射 $f: X \to Y$ 称为**零态射**, 若f穿过零对象. 始对象通常记作0, 终对象通常记作*, 零对象和零态射通常记作0.

习**题2.1.2.** 设C是一个有零对象的范畴. 证明: 对任意 $X,Y \in C$, 存在唯一一个零态射 $0: X \to Y$.

注2.1.3. 一个范畴中的始对象(终对象,零对象)如果存在,则在典范同构下唯一.

定义2.1.4. 设C是一个范畴. C中的一个图表是一个函子 $p: \mathfrak{I} \to \mathfrak{C}$, 其中 \mathfrak{I} 是一个范畴, 称为**指标范畴**.

图表p的**极限**是一个对象X,及一组态射 $\{f_{\alpha}: X \to p(\alpha)\}_{\alpha \in \mathbb{J}}$,使得对任意 \mathbb{J} 中的态射 $t: \alpha \to \beta$ 有 $f_{\beta} = p(t) \circ f_{\alpha}$;它们满足下列泛性质:对任意满足同样条件的对象 $Y \in \mathbb{C}$ 及态射 $\{g_{\alpha}: Y \to p(\alpha)\}_{\alpha \in \mathbb{J}}$,存在唯一态射 $h: Y \to X$,使得 $g_{\alpha} = f_{\alpha} \circ h$. 通常我们也将X称为图表p的极限,记作 $\lim p$ 或 $\lim_{\alpha \in \mathbb{J}} p(\alpha)$.

图表 $p^{\mathrm{op}}: \mathcal{I}^{\mathrm{op}} \to \mathcal{C}^{\mathrm{op}}$ 的极限称为图表p的**余极限**, 记作 $\varprojlim p$ 或 $\varinjlim_{\alpha \in \mathcal{I}} p(\alpha)$.

注2.1.5. 一个图表的(余)极限如果存在,则在典范同构下唯一.

注2.1.6. 给一个图表 $p: \mathfrak{I} \to \mathfrak{C} \times \mathfrak{D}$ 等价于给两个图表 $p_1: \mathfrak{I} \to \mathfrak{C}$ 和 $p_2: \mathfrak{I} \to \mathfrak{D}$,并且 $\varprojlim p = (\lim p_1, \lim p_2), \lim p = (\lim p_1, \lim p_2), .$

例2.1.7. (1) 以空集Ø为指标的极限和余极限分别是终对象和始对象.

- (2) 以集合 Λ 为指标的极限和余极限分别称为**乘积**和**余乘积**, 记作 $\prod_{\alpha \in \Lambda} p(\alpha)$ 和 $\coprod_{\alpha \in \Lambda} p(\alpha)$.
- (3) 一个偏序集 Λ 称为一个**反向集(正向集)**, 若 Λ 的任意有限子集有下界(上界); 特别地, Λ 非空. 以反向集(正向集) Λ 为指标的极限(余极限), 称为**反向极限(正向极限)**.
- (4) 设 $\Lambda = \{x, y, z\}$ 是一个偏序集, 关系为 $x \le z, y \le z$. 以 Λ (Λ ^{op})为指标的极限(余极限), 称为**拉回(推出)**, 记作 $p(x) \times_{p(z)} p(y)$ ($p(x) \coprod_{p(z)} p(y)$), 或者示以图表

$$\underbrace{\lim_{} p \longrightarrow p(x)} \qquad p(z) \longrightarrow p(x)
\downarrow \qquad \downarrow \qquad \downarrow
p(y) \longrightarrow p(z) \qquad p(y) \longrightarrow \underbrace{\lim_{} p}$$

(5) 设J是由两个对象x, y组成的范畴,仅有的非恒同态射是两个态射 $f, g: x \to y$. 以J为指标的极限和余极限,分别称为equalizer和coequalizer,示以图表

$$\underset{\longleftarrow}{\varprojlim} p \to p(x) \rightrightarrows p(y), \qquad p(x) \rightrightarrows p(y) \to \underset{\longrightarrow}{\varinjlim} p.$$

例2.1.8. 在范畴Set, Top, Grp, Abel, Ring, CRing中, 有如下极限和余极限.

- (1) 一个小图表p的极限 $\lim p = \{(x_{\alpha}) \in \prod p(\alpha) \mid p(t)(x_{\alpha}) = x_{\beta}, \forall t : \alpha \to \beta\}.$
- (2) 拉回 $X \times_Z Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\},$ 其中 $f: X \to Z, g: Y \to Z$ 是图表中的态射.
 - (3) 两个态射 $f, g: X \to Y$ 的equalizer为 $\{x \in X \mid f(x) = g(x)\}$.
- (4) 一个小正向图表p的正向极限 $\stackrel{\longrightarrow}{\lim} p$ 是全体 $p(\alpha)$ 的无交并商掉如下等价关系: $x_{\alpha} \sim x_{\beta}$ 若存在 $t: \alpha \to \gamma, s: \beta \to \gamma$, 使得 $p(t)(x_{\alpha}) = p(s)(x_{\beta})$.
- (5) 两个态射 $f,g:X\to Y$ 的coequalizer分别为Y商掉由 $\{f(x)\sim g(x)\}_{x\in X}$ 生成的等价关系,等价关系,正规子群,子群,双边理想,理想.

例2.1.9. 设X是一个光滑流形. 对于X的一组开集 $\{U_i\}$, 有光滑流形范畴中的coequalizer图表

$$\coprod_{i,j} U_i \cap U_j \rightrightarrows \coprod_i U_i \to \bigcup_i U_i,$$

和CRing中的equalizer图表

$$C^{\infty}(\bigcup_{i} U_{i}) \to \prod_{i} C^{\infty}(U_{i}) \Longrightarrow \prod_{i,j} C^{\infty}(U_{i} \cap U_{j}).$$

 $C^{\infty}(\bigcup_{i}U_{i})\to\prod_{i}C^{\infty}(U_{i})\rightrightarrows\prod_{i,j}C^{\infty}(U_{i}\cap U_{j}).$ 对于一点 $x\in X$, 全体包含x的开集在包含关系" \supset "下构成一个正向集 Λ . $\mathfrak{CR}ing$ 中的正向极 $\mathbb{R} \underset{U \in \Lambda}{\underline{\lim}} C^{\infty}(U) = C_x^{\infty}(X).$

例2.1.10. 设A是一个环, M是一个右A模, N是一个左A模. 则有Abel中coequalizer图表

$$M \otimes A \otimes N \rightrightarrows M \otimes N \to M \otimes_A N.$$

习题2.1.11. 证明: 若 $X \xrightarrow{f} Y \rightrightarrows Z$ 是equalizer图表, 则 f是单射; 若 $Y \rightrightarrows Z \xrightarrow{f} X$ 是coequalizer图 表,则f是满射.

习题2.1.12. 设范畴3有始对象 \emptyset . 证明: 一个图表 $p: \mathfrak{I} \to \mathfrak{C}$ 的极限就是 $p(\emptyset)$.

习题2.1.13. 设D是C的完全子范畴, p是D中的一个图表. 证明: 若p在C中的极限存在, 且落

习题2.1.14. 证明Set与Set^{op}不等价. [提示: 范畴等价保持所有极限和余极限.]

 $\mathbf{\dot{z}2.1.15.}$ (1) 设 $p: \mathcal{I} \to \mathcal{C}$ 是一个图表, $\phi: \mathcal{J} \to \mathcal{I}$ 是一个函子. 则有典范态射 $\lim p \to \lim (p \circ \phi)$.

(2) 设 $p,q: \mathfrak{I} \to \mathcal{C}$ 是两个图表. 则一个自然变换 $p \to q$ 诱导一个态射 $\varprojlim p \stackrel{\backprime}{\to} \varprojlim q$.

2.2. 极限的转化.

定理2.2.1. 设C是一个范畴. 下列陈述等价:

- (1) C有所有小极限.
- (2) C有有限极限和小反向极限.
- (3) C有小乘积和拉回.
- (4) C有小乘积和equalizer.

设范畴e有所有小极限, $F: e \to D$ 是一个函子. 下列陈述等价:

- (1) F保持所有小极限.
- (2) F保持有限极限和小反向极限.
- (3) F保持小乘积和拉回.
- (4) F保持小乘积和equalizer.

证明. $(1) \Rightarrow (2)$, 显然. $(2) \Rightarrow (3)$, 设 Λ 是一个小集合. Λ 的全体有限子集P在包含关系" \supset "下 构成一个反向集, 并且 $\prod_{\alpha \in \Lambda} X_{\alpha}$ 可表为反向极限 $\lim_{P \subset \Lambda} (\prod_{\alpha \in P} X_{\alpha})$. (3) \Rightarrow (4), 图表 $X \Rightarrow$ Y的equalizer可表为拉回 $X \times_{X \times Y} X$. (4) \Rightarrow (1), 任一极限可由乘积和equalizer表出. 事实上, 极限 $\lim_{\alpha \in \mathbb{T}} p(\alpha)$ 可表为图表 $\prod_{\alpha \in \mathbb{T}} p(\alpha) \Rightarrow \prod_{t: \alpha \to \beta} p(\beta)$ 的equalizer, 其中两个态射分别为对角线态 射和 $\prod_{t:\alpha\to\beta}p(t)$.

 \mathbf{E} 义2.2.2. 一个范畴 \mathfrak{g} 称为**有限的**, 若 \mathfrak{g} 有有限个对象, 且 \mathfrak{g} 的态射由有限个态射在复合下生成, 以 有限范畴为指标的极限称为有限极限.

定理2.2.3. 设C是一个范畴, 下列陈述等价:

- (1) c有所有有限极限.
- (2) C有终对象和拉回.
- (3) C有有限乘积和equalizer.

设范畴 \mathfrak{C} 有有限极限, $F: \mathfrak{C} \to \mathfrak{D}$ 是一个函子. 下列陈述等价:

- (1) F保持所有有限极限.
- (2) F保持终对象和拉回.
- (3) F保持有限乘积和equalizer.

例2.2.4. 范畴Set, Top, Grp, Abel, Ring, CRing有所有小极限和小余极限, 因为它们有小乘积, equalizer, 小余乘积, coequalizer.

例2.2.5. 设C是一个范畴. 若范畴 \mathfrak{D} 有所有小(余)极限, 则范畴 $\operatorname{Fun}(\mathfrak{C},\mathfrak{D})$ 亦然. 事实上, 对于一个图表 $p: \mathfrak{I} \to \operatorname{Fun}(\mathfrak{C},\mathfrak{D})$,有($\varprojlim_{\alpha} p_{\alpha}$)(X) = $\varprojlim_{\alpha} p_{\alpha}(X)$,($\varinjlim_{\alpha} p_{\alpha}$)(X) = $\varinjlim_{\alpha} p_{\alpha}(X)$, $X \in \mathfrak{C}$. 特别地, 预层范畴 $\mathfrak{P}(\mathfrak{C})$ 有所有小极限和小余极限.

例2.2.6. 设C是一个局部小范畴, $X \in C$ 是一个对象. 则根据极限的定义易知, 可表示函子 $Hom_{\mathbb{C}}(-,X): \mathbb{C}^{op} \to Set$ 和 $Hom_{\mathbb{C}}(X,-): \mathbb{C} \to Set$ 保持所有(\mathbb{C}^{op} 或 \mathbb{C} 中存在的)极限. 因此Yoneda嵌入 $j: \mathbb{C} \to \mathcal{P}(\mathbb{C})$ 保持所有(\mathbb{C}^{op} 中存在的)极限.

例2.2.7. 遗忘函子 $Top, Srp, Abel, \Re ing, \mathbb{CR}ing \to Set$ 保持所有小极限和小正向极限. (事实上, 这些遗忘函子都是可表示函子, 且有左伴随.)

定理2.2.8. 若函子 $F: \mathcal{C} \to \mathcal{D} \not\models G: \mathcal{D} \to \mathcal{C}$ 的左伴随,则F保持所有(\mathcal{C} 中存在的)余极限,G保持所有(\mathcal{D} 中存在的)极限.

证明. 定理与所选宇宙无关, 因此可通过放大宇宙假设 \mathfrak{C} , \mathfrak{D} 是局部小的. $\operatorname{Hom}_{\mathfrak{C}}(X,G(\varprojlim Y_{\alpha}))\cong \operatorname{Hom}_{\mathfrak{D}}(F(X),\varprojlim Y_{\alpha})\cong \varprojlim \operatorname{Hom}_{\mathfrak{C}}(X,G(Y_{\alpha})),$ 因此 $G(\varprojlim Y_{\alpha})$ 实现了极限 $\lim G(Y_{\alpha})$. 同理可证F保持所有余极限.

命题2.2.9. 设函子 $L: \mathcal{C} \to \mathcal{D}$ 有一个完全忠实的右伴随 ι . (1) 若 \mathcal{C} 有小余极限,则 \mathcal{D} 也有小余极限. (2) 若 \mathcal{C} 有小极限,则 \mathcal{D} 也有小极限.

证明. (1) 设 \mathfrak{D} 中的一个小图表在 \mathfrak{C} 中的余极限是Y, 则L(Y)是该图表在 \mathfrak{D} 中的余极限. (2) 设 \mathfrak{D} 中的一个小图表在 \mathfrak{C} 中的极限是Y, 则典范态射 $Y \to L(Y)$ 是同构, 因此L(Y)是该图表在 \mathfrak{D} 中的极限.

2.3. 极限的交换性.

定理2.3.1. 一个范畴中的极限与极限交换. 即对一个图表 $p: \mathfrak{I} \times \mathfrak{J} \to \mathfrak{C}$, 如果二重极限

$$\varprojlim_{\alpha \in \mathbb{I}} \varprojlim_{\beta \in \mathcal{J}} p(\alpha, \beta), \quad \varprojlim_{\beta \in \mathcal{J}} \varprojlim_{\alpha \in \mathbb{I}} p(\alpha, \beta)$$

都存在,则两者都是图表p的极限 $\lim_{(\alpha,\beta)\in\mathcal{I}\times\mathcal{I}}p(\alpha,\beta)$,从而典范同构.

证明. 由于可表示函子保持极限, 利用Yoneda引理可将问题转化到集合范畴Set中. 然后直接验证. \Box

定理2.3.2. 在集合范畴Set中,小正向极限与有限极限交换. 即对于小正向集 Λ ,有限范畴J,和图表 $p:\Lambda \times J \to Set$,有自然同构

$$\varinjlim_{\alpha\in \Lambda} \varprojlim_{\beta\in \Im} p(\alpha,\beta) \cong \varprojlim_{\beta\in \Im} \varinjlim_{\alpha\in \Lambda} p(\alpha,\beta).$$

证明. 由于有限极限可由终对象和拉回表出,只需证明拉回与小正向极限交换. 我们有自然的双射 $\varinjlim_{\alpha \in \Lambda} (X_{\alpha} \times_{Z_{\alpha}} Y_{\alpha}) \to (\varinjlim_{\alpha \in \Lambda} X_{\alpha}) \times_{(\varinjlim_{\alpha \in \Lambda} Z_{\alpha})} (\varinjlim_{\alpha \in \Lambda} Y_{\alpha}), [(x_{\alpha}, y_{\alpha})] \mapsto ([x_{\alpha}], [y_{\alpha}]).$

推论2.3.3. 在范畴Top, Grp, Abel, Ring, CRing中,有限极限与小正向极限交换.

2.4. **加法范畴和Abel范畴. 加**法范畴和Abel范畴的典型例子是一个环的模范畴. 加法范畴的特点是有直和以及链复形的概念, 并且态射可以做加减法. Abel范畴则还有正合性及同调的概念.

定义2.4.1. 一个局部小范畴A称为一个加法范畴, 如果它满足下列条件:

- (1) A有零对象0, 有有限乘积和余乘积.
- (2) 根据(1), 对任意两个对象 $X,Y \in \mathcal{A}$, 态射 $X \xrightarrow{\operatorname{Id} \times 0} X \times Y$ 和 $Y \xrightarrow{0 \times \operatorname{Id}} X \times Y$ 确定一个典范态射 $X \coprod Y \to X \times Y$. 我们要求这些典范态射都是同构. 我们将 $X \coprod Y \cong X \times Y$ 记作 $X \oplus Y$, 称为X与Y的**直和**.
- (3) 根据(1)(2), 对任意两个对象 $X,Y \in \mathcal{A}$, $\operatorname{Hom}_{\mathcal{A}}(X,Y)$ 有加法半群结构: f+g定义为复合态射 $X \to X \times X \xrightarrow{f \times g} Y \times Y \cong Y \coprod Y \to Y$, 以零态射为单位元. 我们要求这些加法半群 $\operatorname{Hom}_{\mathcal{A}}(X,Y)$ 都是Abel群.

设A, B是加法范畴. 一个函子 $F: A \to B$ 称为**加法函子**, 如果F保持有限乘积(或等价地保持有限 余乘积).

习题2.4.2. 设み是加法范畴. 证明对任意对象 $X,Y,Z\in\mathcal{A}$, 态射复合 $\operatorname{Hom}_{\mathcal{A}}(Y,Z)\times\operatorname{Hom}_{\mathcal{A}}(X,Y)\to \operatorname{Hom}_{\mathcal{A}}(X,Z)$ 是Abel群的双线性映射. 并由此推出可表示函子 $\operatorname{Hom}_{\mathcal{A}}(X,-):\mathcal{A}\to \mathit{Set}$ 自动提升为一个函子 $\mathcal{A}\to \mathit{Abel}$.

习题2.4.3. 设 $F: A \to \mathcal{B}$ 是加法范畴间的加法函子. 证明: 对任意 $X, Y \in \mathcal{C}$, 映射 $F: \operatorname{Hom}_{\mathcal{A}}(X, Y) \to \operatorname{Hom}_{\mathcal{B}}(F(X), F(Y))$ 是一个Abel群同态.

注2.4.4. 设A, B是加法范畴. 则 $A \times B$ 也是加法范畴, 并且 $\mathrm{Hom}_{A \times B}((X,Y),(X',Y')) = \mathrm{Hom}_{A}(X,X') \oplus \mathrm{Hom}_{B}(Y,Y')$. 我们将 $A \times B$ 记作 $A \oplus B$, 并称其为A与B的**直和**. 在不引起歧义的情况下, 我们将(X,0)和(0,Y)分别记作X和Y. 在这个记号下, $(X,Y) = X \oplus Y$. 特别地, A和B可视为 $A \oplus B$ 的完全子范畴.

定义2.4.5. 设A是一个有零对象0的范畴. 一个态射 $f: X \to Y$ 的核和**余核**分别定义为拉回和推出

$$\begin{array}{cccc}
\operatorname{Ker} f & \xrightarrow{\alpha} X & & X & \xrightarrow{f} Y \\
\downarrow & & \downarrow f & & \downarrow \beta \\
0 & \longrightarrow Y & & 0 & \longrightarrow \operatorname{Coker} f.
\end{array}$$

f的**像**和**余像**分别定义为推出和拉回

$$\begin{array}{cccc}
\operatorname{Ker} f & \xrightarrow{\alpha} X & \operatorname{Coim} f & \xrightarrow{q} Y \\
\downarrow & & \downarrow p & & \downarrow \beta \\
0 & \longrightarrow \operatorname{Im} f & 0 & \longrightarrow \operatorname{Coker} f.
\end{array}$$

当这些极限和余极限都存在时, 态射 f有典范的分解 $X \stackrel{p}{\to} \operatorname{Im} f \to \operatorname{Coim} f \stackrel{q}{\to} Y$, 并且下列诱导图表分别是拉回和推出

定义2.4.6. 一个加法范畴A称为一个Abel范畴, 若A有核及余核, 并且对A中每个态射f, 典范态射 $Im\ f\to Coim\ f$ 都是同构.

注2.4.7. 若A是加法范畴(Abel范畴),则Aop也是.

例2.4.8. 一个环A的左模范畴L Mod_A 是Abel范畴.若A是Noether环,则A的有限生成的模组成的L Mod_A 的完全子范畴也是Abel范畴.

例2.4.9. Set, Top, Ring, CRing都不是加法范畴, 因为它们没有零对象. Top_{*}和Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为典范态射Grp不是加法范畴, 因为电力

习题2.4.10. 证明下述命题:

- (1) 在一个加法范畴中,一个态射f是单射,当且仅当f的核是零对象.
- (2) 在一个加法范畴中, X是态射 $f,g:Y\to Z$ 的equalizer当且仅当X是态射 $f-g:Y\to Z$ 的核. 由此推出一个Abel范畴有限极限和有限余极限.
 - (3) 在一个Abel范畴中, 一个态射f是同构, 当且仅当f既单且满.

定义**2.4.11.** 一个加法范畴中的**链复形** C_* 是一个序列··· $\rightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots$,使得 $\partial_{n-1} \circ \partial_n = 0$. 进而可定义链映射和链同伦.

一个Abel范畴中的链复形 C_* 的p维**同调**定义为诱导态射 $\operatorname{Im} \partial_{n+1} \to \operatorname{Ker} \partial_n$ 的余核, 记作 $H_p(C_*)$.

2.5. 正合函子.

定义2.5.1. 一个Abel范畴中的序列 $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z$ 称为在Y处正合,如果诱导态射 $Coim f \to Y$ 是g的核。称一个序列 $\cdots \to X_{n+1} \to X_n \to X_{n-1} \to \cdots$ 正合,若它在每个 X_n 处正合。一个形如 $0 \to X \to Y \to Z \to 0$ 的正合列称为**短正合列**。

例2.5.2. 在一个Abel范畴中, 我们有下列事实.

- (1) 一个序列 $0 \to X \xrightarrow{f} Y$ 正合, 当且仅当f是单射.
- (2) 一个序列 $0 \to X \xrightarrow{f} Y \to 0$ 正合, 当且仅当f是同构.
- (3) 一个序列 $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z$ 正合, 当且仅当X是q的核.
- (4) 对于任意态射 $f: X \to Y$, 有正合列 $0 \to \operatorname{Ker} f \to X \xrightarrow{f} Y \to \operatorname{Coker} f \to 0$.

定义**2.5.3.** 设范畴 \mathfrak{C} 有有限极限(有限余极限). 一个函子 $F: \mathfrak{C} \to \mathfrak{D}$ 称为**左正合的**(**右正合的**), 如果F保持有限极限(有限余极限). 如果F既是左正合的又是右正合的,则称F是**正合的**.

例2.5.4. (1) 若局部小范畴 \mathfrak{C} 有有限极限,则可表示函子 $\mathrm{Hom}_{\mathfrak{C}}(X,-): \mathfrak{C} \to \mathfrak{S}et$ 是左正合的.

(2) 若范畴c有有限极限(有限余极限),则任一右(左)伴随函子 $F: C \to D$ 是左(右)正合的.

命题2.5.5. 设A, B是Abel范畴. 一个函子 $F: A \to B$ 是左正合的, 当且仅当下列条件成立:

- (1) F是加法函子.
- (2) F将A中形如 $0 \to X \to Y \to Z$ 的正合列映为B中的正合列 $0 \to F(X) \to F(Y) \to F(Z)$.

证明. 条件(1)等价于F保持有限乘积. 条件(2)等价于F保持核, 又等价于F保持equalizer. \Box

习**题2.5.6.** 设A, B是Abel范畴. $F: A \to B$ 是一个函子. 证明下列陈述等价:

- (1) F是正合的.
- (2) F将A中的短正合列映为B中的短正合列.
- (3) F将A中的任意正合列映为B中的正合列.

定义2.5.7. 设A是一个Abel范畴. 我们称一个对象 $P \in C$ 是**投射的**, 如果函子 $Hom_A(P,-): A \to Abel$ 是正合的. 称一个对象 $I \in C$ 是**内射的**, 如果函子 $Hom_A(-,I): A^{op} \to Abel$ 是正合的.

命题2.5.8. 设A是一个Abel范畴, $P \in A$. 下列陈述等价:

- (1) P是投射的.
- (2) 函子 $\operatorname{Hom}_{\mathcal{A}}(P,-): \mathcal{A} \to \mathcal{A}bel$ 是右正合的.
- (3) 函子 $\operatorname{Hom}_{\mathcal{A}}(P,-): \mathcal{A} \to \mathcal{A}bel$ 保持满射.
- (4) 对A中的任意满射 $f: X \to Y$ 及态射 $g: P \to Y$, 存在态射 $h: P \to X$ 使得 $f \circ h = g$.

证明. (1) \Leftrightarrow (2), 因为 $\operatorname{Hom}_{\mathcal{A}}(P,-)$ 左正合. (2) \Rightarrow (3) \Leftrightarrow (4), 显然. (3) \Rightarrow (2), $\diamondsuit F = \operatorname{Hom}_{\mathcal{A}}(P,-)$. 则F左正合, 因此是加法函子. 任取 \mathcal{A} 中的正合列 $X \xrightarrow{f} Y \to Z \to 0$. 有满射 $X \to \operatorname{Im} f$ 和正合列 $0 \to \operatorname{Im} f \to Y \to Z \to 0$. 因此有满射 $F(X) \to F(\operatorname{Im} f)$ 和正合列 $0 \to F(\operatorname{Im} f) \to F(Z) \to 0$. 因此有正合列 $F(X) \to F(Z) \to 0$.

习题2.5.9. 证明: 在一个Abel范畴中, $X \oplus Y$ 是投射的, 当且仅当X和Y都是投射的.

习题2.5.10. 设有短正合列的交换图表

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

$$\downarrow_{\mathrm{Id}_X} \downarrow \qquad \downarrow_{\mathrm{Id}_Z} \downarrow$$

$$0 \longrightarrow X \longrightarrow Y' \longrightarrow Z \longrightarrow 0$$

证明 f 是同构.

定义2.5.11. Abel范畴中一个短正合列 $0 \to X \to Y \to Z \to 0$ 称为可**裂的**, 如果存在交换图表

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

$$\downarrow^{\operatorname{Id}_X} \downarrow^{\operatorname{Id}_Z,0} \downarrow^{\operatorname{Id}_Z}$$

$$0 \longrightarrow X \xrightarrow{(\operatorname{Id}_X,0)} X \oplus Z \xrightarrow{(0,\operatorname{Id}_Z)} Z \longrightarrow 0.$$

一个Abel范畴称为半单的,如果每个短正合列可裂.

例2.5.12. $Vect_k$ 是半单的, Abel不是半单的.

注**2.5.13.** 设 $F: A \to B$ 是Abel范畴间的加法函子. 若A是半单的,则F是正合函子.

命题2.5.14. 若Z是一个投射对象,则任意短正合列 $0 \to X \to Y \to Z \to 0$ 可裂.

证明. Id_Z 可提升为 $Z \to Y$.

命题2.5.15. 设A是一个Abel范畴. 下列陈述等价:

- (1) A是半单的.
- (2) A的所有对象都是投射的.
- (3) A的所有对象都是内射的.

证明. $(1) \Rightarrow (2)$, 每个满射 $Y \to Z$ 可表为 $(\mathrm{Id}_Z, 0) : Z \oplus \mathfrak{Z} \to Z$. $(2) \Rightarrow (1)$, 由上一命题立得. $(1) \Leftrightarrow (3)$, 将 $(1) \Leftrightarrow (2)$ 用于 $\mathcal{A}^{\mathrm{op}}$.

定义2.5.16. 设A是一个Abel范畴. A的非零对象X称为单的, 若X没有非平凡的子对象, 即对于任意单射 $f: Y \to X$, f是零态射或同构.

例2.5.17. k是 $Vect_k$ 唯一的单对象. 当q是素数时, \mathbb{Z}_q 是Abel的单对象.

命题2.5.18. 设A是一个Abel范畴. 若X,Y是A的单对象,则每个非零态射 $f: X \to Y$ 都是同构. 特别地,若X是单对象,则 $Hom_A(X,X)$ 是一个除环; 若X,Y是不同构的单对象,则 $Hom_A(X,Y) = 0$.证明. Ker f = 0, 所以f是同构.

习题2.5.19. 设X是Abel范畴A的单对象. 证明X是A^{op}的单对象.

习题2.5.20. 设Abel范畴A单每个对象都是有限个单对象的直和. 证明A是半单的.

3. 半群范畴

在代数学中, 我们有如下环与模的定义:

一个环由一个Abel群A, 一个元素 $1 \in A$, 及一个双线性映射 $\cdot: A \times A \to A$ 组成, 使得对任 意 $a,b,c \in A$, 有等式 $1 \cdot a = a = a \cdot 1$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. 一个环同态 $f: A \to B$ 是一个Abel群同态, 使得f(1) = 1, $f(a \cdot b) = f(a) \cdot f(b)$.

一个环A的左模由一个Abel群M,及一个双线性映射 $\cdot: A \times M \to M$ 组成,使得对任意 $a,b \in A, x \in M$,有等式 $1 \cdot x = x, (a \cdot b) \cdot x = a \cdot (b \cdot x)$.或者等价地,A的左模由一个Abel群M,及一个环同态 $A \to \hom_{\mathbb{Z}}(M,M)$ 组成.一个左A模同态 $f: M \to N$ 是一个Abel群同态,使得对任意 $a \in A, x \in M$,有等式 $f(a \cdot x) = a \cdot f(x)$.

在范畴学中, 我们以范畴和函子替代Abel群和同态, 可做出类似的定义. 但是范畴之间的函子可以有非平凡的同构. 因此我们不再采用等式, 而用自然同构来处理问题.

3.1. 半群范畴的定义.

定义3.1.1. 一个半群范畴C由下列要素组成

- (1) 一个范畴C:
- (2) 一个对象1 \in C. 称为单位对象:
- (3) 一个函子 \otimes : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$, 称为**张量积函子**;
- (4) 自然的同构 $\lambda_X : \mathbf{1} \otimes X \to X, \, \rho_X : X \otimes \mathbf{1} \to X, \, X \in \mathfrak{C};$
- (5) 自然的同构 $\alpha_{X,Y,Z}: (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z), X,Y,Z \in \mathcal{C}$, 称为**结合子**;

使得对任意 $X, Y, Z, W \in \mathcal{C}$, 下列图表交换

- **注3.1.2.** 一个半群范畴称为**严格的**, 如果定义中的自然同构 λ , ρ , α 都是恒同. 这时定义中的图表自动交换.
- **例3.1.3.** (1) 交换环A的模范畴 LMod_A 如下构成一个半群范畴: 单位对象A, 通常的张量积运 算 \otimes_A , 典范同构 $A \otimes_A X \cong X \cong X \otimes_A A$, $(X \otimes_A Y) \otimes_A Z \cong X \otimes_A (Y \otimes_A Z)$. 特别地, 线性空间 范畴 Vect_A 是一个半群范畴.
- (2) 设C有有限乘积. 则C如下构成一个半群范畴: 终对象*作为单位对象, 乘积×作为张量积, 典范同构* × $X \cong X \cong X \times *$, $(X \times Y) \times Z \cong X \times (Y \times Z)$.
- (3) 设M是一个范畴,则Fun(M,M)如下构成一个严格半群范畴:恒同函子 Id_M 作为单位对象,函子复合。作为张量积.
 - (4) 若C是一个半群范畴,则 C^{op} 在张量积 \otimes^{op} : $C^{op} \times C^{op} \to C^{op}$ 下也是一个半群范畴.
- (5) 若C是一个半群范畴,则C在张量积 \otimes^{rev} : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$, $(X,Y) \mapsto Y \otimes X$ 下是一个半群范畴,记作 \mathcal{C}^{rev} .
 - (6) 若C, D是半群范畴, 则乘积C × D也是一个半群范畴.

- (7) 有限维线性空间范畴Vec是一个半群范畴. 若G是一个群,则有限维G分次线性空间范畴Vec $_G$ 是一个半群范畴. G的有限维模和模同态组成一个半群范畴Rep $_G$. 更一般地,一个Hopf代数 $_H$ 的有限维左模范畴Rep $_H$ 在模的张量积下是一个半群范畴.
 - (8) 配边范畴 Cob_n .
- (9) 一个(含单位元的)半群可以看作一个严格半群范畴(只有恒同态射). 特别地, 一个环作为乘法半群可看作一个半群范畴.

定义3.1.4. 设C, D是两个半群范畴. 一个**半群函子** $F: C \to D$ 由下列要素组成

- (1) 一个函子 $F: \mathcal{C} \to \mathcal{D}$.
- (2) 一个同构 $\mu: F(\mathbf{1}_{\mathcal{C}}) \to \mathbf{1}_{\mathcal{D}}$.
- (3) 自然的同构 $\nu_{X,Y}: F(X \otimes Y) \to F(X) \otimes F(Y), X,Y \in \mathfrak{C}.$

使得对任意 $X,Y,Z \in \mathbb{C}$. 下列图表交换

$$F(X \otimes \mathbf{1}_{\mathfrak{C}}) \xrightarrow{\nu_{X,\mathbf{1}_{\mathfrak{C}}}} F(X) \otimes F(\mathbf{1}_{\mathfrak{C}})$$

$$F(\rho_{X}) \downarrow \qquad \qquad \downarrow^{\mathrm{Id}_{F(X)} \otimes \mu}$$

$$F(X) \longleftarrow^{\rho_{F(X)}} F(X) \otimes \mathbf{1}_{\mathfrak{D}},$$

$$F((X \otimes Y) \otimes Z) \xrightarrow{\nu_{X \otimes Y,Z}} F(X \otimes Y) \otimes F(Z) \xrightarrow{\nu_{X,Y} \otimes \operatorname{Id}_{F}(Z)} (F(X) \otimes F(Y)) \otimes F(Z)$$

$$\downarrow^{\alpha_{F(X),F(Y),F(Z)}} \downarrow^{\alpha_{F(X),F(Y),F(Z)}} F(X \otimes (Y \otimes Z)) \xrightarrow{\nu_{X,Y \otimes Z}} F(X) \otimes F(Y \otimes Z) \xrightarrow{\operatorname{Id}_{F(X)} \otimes \nu_{Y,Z}} F(X) \otimes (F(Y) \otimes F(Z)).$$

设 $F,G:\mathcal{C}\to\mathcal{D}$ 是两个半群函子. 一个**半群自然变换** $\xi:F\to G$ 是一个自然变换, 使得对任意 $X,Y\in\mathcal{C}$, 下列图表交换

$$F(\mathbf{1}_{\mathfrak{C}}) \xrightarrow{f} G(\mathbf{1}_{\mathfrak{C}}), \qquad F(X \otimes Y) \xrightarrow{\xi_{X \otimes Y}} G(X \otimes Y)$$

$$\downarrow^{\nu_{X,Y}} \downarrow^{\nu_{X,Y}} \downarrow^{\nu_{X,Y}}$$

$$F(\mathbf{1}_{\mathfrak{C}}) \xrightarrow{\xi_{1}_{\mathfrak{C}}} G(X) \otimes G(Y).$$

- **例3.1.5.** (1) 如果C是一个半群范畴,则有半群函子 $C \to Fun(C,C), X \mapsto X \otimes -.$
- (2) 设范畴 \mathfrak{C} , \mathfrak{D} 有有限乘积, 视为半群范畴. 若函子 $F:\mathfrak{C}\to\mathfrak{D}$ 保持有限乘积, 则F是一个半群函子.
- (3) 若G是一个有限群, 则遗忘函子 $\operatorname{Rep} G \to \operatorname{Vec} \operatorname{AVec}_G \to \operatorname{Vec}$ 都是半群函子. 对于每个群元 $\operatorname{\mathbb{R}} g \in G$, 自然同构 $\rho_V(g): V \to V$ 定义了半群函子 $\operatorname{Rep} G \to \operatorname{Vec}$ 的一个自同构.

习题3.1.6. 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个半群函子. 证明F是半群等价, 当且仅当F是等价.

引理3.1.7. 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个半群函子. 下列图表对于 $X \in \mathcal{C}$ 交换

$$F(\mathbf{1}_{\mathfrak{C}} \otimes X) \xrightarrow{\nu_{\mathbf{1}_{\mathfrak{C}}, X}} F(\mathbf{1}_{\mathfrak{C}}) \otimes F(X)$$

$$F(\lambda_{X}) \downarrow \qquad \qquad \downarrow^{\mu \otimes \operatorname{Id}_{F(X)}}$$

$$F(X) \longleftarrow^{\lambda_{F(X)}} \mathbf{1}_{\mathfrak{D}} \otimes F(X),$$

证明. 我们有交换图表

 $\diamondsuit Z = 1$, 右下三角形即给出所要的交换图表.

定理3.1.8. 设C是一个半群范畴. 则对任意对象 $X_1, X_2, \ldots, X_n \in \mathbb{C}$, 张量积 $X_1 \otimes X_2 \otimes \cdots \otimes X_n$ 良定义. 具体而言, 任意从 $(\cdots((X_1 \otimes X_2) \otimes X_3) \otimes \cdots) \otimes X_n$ 到自身的由 $\lambda^{\pm 1}$, $\rho^{\pm 1}$, $\alpha^{\pm 1}$ 复合得到的同构f, 必然是恒同态射.

证明. 首先, 我们定义一个半群函子 $F: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}, \mathcal{C})$. 对于 $X \in \mathcal{C}$, 令F(X)为函子 $X \otimes -: \mathcal{C} \to \mathcal{C}$. 再赋予F一个半群函子结构: $\mu = \lambda_-: F(\mathbf{1}) \to \operatorname{Id}_{\mathcal{C}}$, $\nu_{X,Y} = \alpha_{X,Y,-}: F(X \otimes Y) \to F(X) \circ F(Y)$. 从定义易见F是一个半群函子. 注意到函子F是忠实的, 因此只需证明F(f)是恒同. 由于半群范畴 $\operatorname{Fun}(\mathcal{C},\mathcal{C})$ 是严格的, 可利用定义及引理中的交换图表, 将F(f)共轭到一个由 $\mu^{\pm 1}$ 复合的态射. 不失一般性, 假设所有对象 $X_i \neq \mathbf{1}$. 则这些 $\mu^{\pm 1}$ 可两两抵消掉, 从而F(f)是恒同态射.

习题3.1.9. 设C是一个半群范畴. 证明: $Hom_{\mathcal{C}}(1,1)$ 是一个交换半群.

3.2. 半群范畴的模.

定义3.2.1. 设C是一个半群范畴. 一个左C模M由下列要素组成

- (1) 一个范畴 ::
- (2) 一个函子 \otimes : $\mathfrak{C} \times \mathfrak{M} \to \mathfrak{M}$;
- (3) 自然的同构 $\lambda_M : \mathbf{1} \otimes M \to M, M \in \mathcal{M}$;
- (4) 自然的同构 $\alpha_{X,Y,M}:(X\otimes Y)\otimes M\to X\otimes (Y\otimes M),\,X,Y\in\mathfrak{C},\,M\in\mathfrak{M};$

使得对任意 $X,Y,Z \in \mathbb{C}, M \in \mathbb{M},$ 下列图表交换

设D也是半群范畴. 一个左Drev模M称为一个右D模, 张量积函子一般记作 $\otimes : M \times D \to M$. 一个左 $C \times D$ rev模M称为一个C-DDZ模, 张量积函子一般记作 $\otimes : C \times M \times D \to M$.

定理3.2.2. 设C是一个半群范畴, M是一个左C模. 则对任意对象 $X_1, X_2, \ldots, X_n \in C$ 及 $M \in M$,张量积 $X_1 \otimes X_2 \otimes \cdots \otimes X_n \otimes M$ 良定义. 具体而言, 任意从 $(\cdots((X_1 \otimes X_2) \otimes X_3) \otimes \cdots) \otimes M$ 到自身的由 $\lambda^{\pm 1}$, $\rho^{\pm 1}$, $\alpha^{\pm 1}$ 复合得到的同构, 必然是恒同态射.

证明. 我们有半群函子 $F: \mathcal{C} \to \operatorname{Fun}(\mathcal{M}, \mathcal{M})$,使得 $F(X) = X \otimes -: \mathcal{M} \to \mathcal{M}$. 半群函子结构为: $\mu = \lambda_-: F(\mathbf{1}) \to \operatorname{Id}_{\mathcal{M}}, \nu_{X,Y} = \alpha_{X,Y,-}: F(X \otimes Y) \to F(X) \circ F(Y)$. 于是函子 $X_1 \otimes X_2 \otimes \cdots \otimes X_n \otimes -: \mathcal{M} \to \mathcal{M}$ 良定义.

例3.2.3. (1) 设C是一个半群范畴.则C是自身的左模和右模,也是C-C双模.

(2) 设 $^{\circ}$ 是一个半群范畴. 给一个左 $^{\circ}$ 模,等价于给一个范畴 $^{\circ}$ 和一个半群函子 $^{\circ}$ O \rightarrow Fun($^{\circ}$ M, $^{\circ}$ M). 由此可知, 若 $^{\circ}$ F: $^{\circ}$ O \rightarrow D是一个半群函子,则每个左 $^{\circ}$ D模自动成为一个左 $^{\circ}$ C模;特别地, $^{\circ}$ D成为一个 $^{\circ}$ C- $^{\circ}$ C双模.

定义3.2.4. 设M、N是半群范畴C的两个左模. 一个模函子 $F: M \to N$ 由下列要素组成

- (1) 一个函子 $F: \mathcal{M} \to \mathcal{N}$.
- (2) 自然的同构 $\nu_{X,M}: F(X \otimes M) \to X \otimes F(M), X \in \mathcal{C}, M \in \mathcal{M}.$

使得对任意 $X,Y \in \mathcal{C}, M \in \mathcal{M}$,下列图表交换

设 $F,G: M \to N$ 是两个模函子. 一个**模自然变换** $\xi: F \to G$ 是一个自然变换, 使得对任意 $X \in \mathcal{C}, M \in M$, 下列图表交换

$$F(X \otimes M) \xrightarrow{\xi_{X \otimes M}} G(X \otimes M)$$

$$\downarrow^{\nu_{X,M}} \qquad \qquad \downarrow^{\nu_{X,M}}$$

$$X \otimes F(M) \xrightarrow{\operatorname{Id}_{X} \otimes \xi_{M}} X \otimes G(M).$$

若M, N是两个左C模(右D模, C-D双模), 则全体模函子 $F: M \to N$ 及模自然变换构成一个范畴, 记作 $Fun_{C}(M,N)$ ($Fun_{D^{rev}}(M,N)$, $Fun_{C|D}(M,N)$).

- **例3.2.5.** (1) 若M, N是半群范畴C的左模,则 $Fun_{C}(M, M)$ 是半群范畴,并且 $Fun_{C}(M, N)$ 是一个 $Fun_{C}(N, M)$ 双模.
 - (2) 给一个C-D双模等价于给一个左C模M和一个半群函子 $D^{rev} \to Fun_c(M, M)$.
- (3) 设G是一个有限群. 有半群函子 $Vec_G \to Fun_{Rep_G}(Vec, Vec)$,因而Vec是 Vec_G -RepG双模,且有半群函子 $Rep_G \to Fun_{Vec_G}(Vec, Vec)$. 事实上这两个半群函子都是等价.

习题3.2.6. 设 $F: M \to N$ 是一个左C模函子. 证明F是左C模等价, 当且仅当F是范畴等价.

习题3.2.7. 证明: 任何一个半群范畴 \mathfrak{C} 都等价于一个严格半群范畴. [提示: 证明半群等价 $\mathfrak{C} \simeq \operatorname{Fun}_{\mathfrak{C}^{\operatorname{rev}}}(\mathfrak{C},\mathfrak{C})$.]

3.3. **辫半群范畴和对称半群范畴.** 在代数学中, 环有交换性及中心的概型. 我们有如下的观察: 一个环A是交换的, 当且仅当乘法 \cdot : $A \otimes A \to A$ 是一个环同态.

设A是一个环. 则A的中心Z(A)是一个交换环, 并且乘法 $: Z(A) \otimes A \to A$ 是一个环同态. 我们有交换图表

A的中心Z(A)满足如下泛性质. 若B是一个环, $f: B \otimes A \to A$ 是一个环同态, 使得下列图表交换

则存在唯一的环同态 $g: B \to Z(A)$, 使得下列图表交换

由于这个泛性质唯一地决定了Z(A),因此它可作为中心的定义.

作为推论, 我们有典范的环同构 $Z(A) \cong \operatorname{Hom}_{A|A}(A,A)$, 因为右边也满足中心的泛性质.

在范畴学中, 我们同样可以讨论半群范畴的交换性和中心. 不过这时会发现半群范畴的交换性有两个不同层次. (事实上高阶半群范畴的交换性会有更多的层次.)

定义3.3.1. 一个辫半群范畴C由下列要素组成

- (1) 一个半群范畴C;
- (2) 自然的同构 $\beta_{X,Y}: X \otimes Y \to Y \otimes X, X, Y \in \mathcal{C}$, 称为**辫结构**; 使得对任意 $X,Y,Z \in \mathcal{C}$, 下列图表交换:

$$Y \otimes X \otimes Z$$

$$\beta_{X,Y} \otimes \operatorname{Id}_{Z} \xrightarrow{\beta_{X,Y} \otimes Z} Y \otimes Z \otimes X$$

$$X \otimes Y \otimes Z \xrightarrow{\beta_{X,Y} \otimes Z} Y \otimes Z \otimes X$$

设C, D是两个辫半群范畴. 一个**辫半群函子** $F: C \to D$ 是一个半群函子, 使得对任意 $X, Y \in C$, 下列图表交换

$$F(X \otimes Y) \xrightarrow{F(\beta_{X,Y})} F(Y \otimes X)$$

$$\downarrow^{\nu_{X,Y}} \qquad \qquad \downarrow^{\nu_{Y,X}}$$

$$F(X) \otimes F(Y) \xrightarrow{\beta_{F(X),F}(Y)} F(Y) \otimes F(X).$$

命题3.3.2. 在一个辫半群范畴C中, 下列图表交换:

证明. 假设C是严格的. 由交换图表

得 $\beta_{X,1} = \mathrm{Id}_X$. 类似地 $\beta_{1,X} = \mathrm{Id}_X$.

定义3.3.3. 一个辫半群范畴 \mathfrak{C} 称为**对称半群范畴**, 若对任意 $X,Y\in \mathfrak{C}, \beta_{X,Y}=(\beta_{Y,X})^{-1}$. 设 $\mathfrak{C},\mathfrak{D}$ 是 两个对称半群范畴. 一个**对称半群函子** $F:\mathfrak{C}\to\mathfrak{D}$ 是一个辫半群函子.

注3.3.4. 设C是一个辫半群范畴, $X \in \mathbb{C}$. 则 $X^{\otimes n}$ 上有一个n股辫群的作用. 如果C是对称的, 则 $X^{\otimes n}$ 上有一个n元素置换群的作用.

例3.3.5. (1) 设C是一个辫半群范畴. 则C在辫结构 $\bar{\beta}_{X,Y} = (\beta_{Y,X})^{-1}$ 下是也是一个辫半群范畴, 记作 \bar{c}

(2) 设G是一个有限群,则RepG是一个对称半群范畴.若G是有限Abel群,则VecG也是一个对称半群范畴.更一般地,若H是一个余对称的Hopf代数,则RepG是一个对称半群范畴.

(3) 若c是一个辫半群范畴,则有完全忠实的辫半群函子 $c \to 3(c)$ 和 $\bar{c} \to 3(c)$.

注3.3.6. 设C是一个半群范畴. 则C的辫结构与 \otimes : $C \times C \to C$ 的半群函子结构——对应. 事实上,一个辫结构 β 诱导了 \otimes 的一个半群函子结构 $Id_X \otimes \beta_{Y,X'} \otimes Id_{Y'}$: $(X \otimes Y) \otimes (X' \otimes Y') \to (X \otimes X') \otimes (Y \otimes Y')$. 反之, \otimes 的一个半群函子结构给出一个辫结构 $X \otimes Y \cong (1 \otimes X) \otimes (Y \otimes 1) \to (1 \otimes Y) \otimes (X \otimes 1) \cong Y \otimes X$. 这说明, 赋予C一个辫结构等价于赋予 \otimes 一个半群函子结构.

习题3.3.7. 设C是一个辫半群范畴,从而 $\otimes : C \times C \to C$ 是一个半群函子. 证明: C是对称的,当且仅当 \otimes 是一个辫半群函子.

3.4. Drinfeld中心.

构造3.4.1. 设C是一个半群范畴. 一个对象 $X \in C$ 上的**半辫结构**是一个自然同构 $b_{X,Y}: X \otimes Y \to Y \otimes X, Y \in C$, 使得对任意 $Y, Z \in C$ 下列图表交换:

我们如下构造一个辫半群范畴 $\mathfrak{Z}(\mathfrak{C})$,称为 \mathfrak{C} 的 $\mathbf{Drinfeld}$ 中心。 $\mathfrak{Z}(\mathfrak{C})$ 的一个对象是一个对 $(X,b_{X,-})$,其中X是 \mathfrak{C} 中的对象, $b_{X,-}$ 是X上的一个半辫结构。一个态射 $(X,b_{X,-})\to (Y,b_{Y,-})$ 是一个 \mathfrak{C} 中的态射 $f:X\to Y$,使得下列图表对于 $Z\in\mathfrak{C}$ 交换

$$X \otimes Z \xrightarrow{b_{X,Z}} Z \otimes X$$

$$f \otimes \operatorname{Id}_{Z} \downarrow \qquad \qquad \downarrow \operatorname{Id}_{Z} \otimes f$$

$$Y \otimes Z \xrightarrow{b_{Y,Z}} Z \otimes Y.$$

张量积 $(X, b_{X,-}) \otimes (Y, b_{Y,-})$ 定义为 $(X \otimes Y, b_{X \otimes Y,-})$, 其中 $b_{X \otimes Y,Z}$ 是复合同构 $X \otimes Y \otimes Z \xrightarrow{\operatorname{Id}_X \otimes b_{Y,Z}} X \otimes Z \otimes Y \xrightarrow{b_{X,Z} \otimes \operatorname{Id}_Y} Z \otimes X \otimes Y$. 单位对象为 $(\mathbf{1}, \rho^{-1} \circ \lambda)$. 辫结构定义为 $\beta_{(X,b_{X,-}),(Y,b_{Y,-})} = b_{X,Y}$.

注3.4.2. 若C和D是半群范畴, 则 $\mathfrak{Z}(\mathbb{C} \times \mathbb{D}) = \mathfrak{Z}(\mathbb{C}) \times \mathfrak{Z}(\mathbb{D})$.

注3.4.3. 一个对象 $X \in \mathcal{C}$ 上可以有多个不同的半辫结构. 因此 $\mathfrak{Z}(\mathcal{C})$ 一般不是 \mathcal{C} 的子范畴. 另一方面, 如果X有半辫结构, 则必然有 $X \otimes Y \cong Y \otimes X$. 所以一般的X没有半辫结构.

例3.4.4. 设A是一个环,看作一个半群范畴(只有恒同态射).则Z(A)就是A的中心.

例3.4.5. $3(\text{Vec}) \simeq \text{Vec}$. 事实上, Vec的每个对象都是单位对象的直和, 并且它的张量积关于每个变量保持直和, 所以每个对象有唯一的半辫结构. 类似地, 若A是交换环, 则 LMod_A 由单位对象在小余极限下生成, 并且张量积关于每个变量保持小余极限, 所以 $3(\text{LMod}_A) \simeq \text{LMod}_A$.

注**3.4.6.** 设C是一个半群范畴. 有典范的辫半群等价 $\overline{3(C)} \simeq 3(C^{rev}), (X, b_{X-1}) \mapsto (X, b_{V}^{-1}).$

习题3.4.7. 设C是一个半群范畴. 证明有典范的半群等价 $Fun_{C|C}(C,C) \simeq \mathfrak{Z}(C)$.

定理3.4.8. 设C是一个半群范畴. (1) C的张量积诱导了一个半群函子 \otimes : $\mathfrak{Z}(C)$ × C \to C, 并且下列 半群范畴的图表在同构意义下交换:

(2) 对任意半群范畴D和半群函子⊙: $D \times C \to C$, 若下列半群范畴的图表在同构意义下交换

则存在半群函子 $G: \mathcal{D} \to \mathfrak{Z}(\mathcal{C})$ 使得下列图表在同构意义下交换

并且G在同构下唯一.

证明. (1) 自然同构 $(Z \otimes Z') \otimes (X \otimes X')$ $\xrightarrow{\operatorname{Id}_Z \otimes b_{Z',X} \otimes \operatorname{Id}_{X'}} (Z \otimes X) \otimes (Z' \otimes X'), \ Z, Z' \in \mathfrak{Z}(\mathfrak{C}), \ X, X' \in \mathfrak{C},$ 将函子 \otimes : $\mathfrak{Z}(\mathfrak{C}) \times \mathfrak{C} \to \mathfrak{C}$ 提升为一个半群函子.

(2) 我们有半群函子 $G: \mathcal{D} \to \mathfrak{Z}(\mathbb{C}), Y \mapsto (Y \odot \mathbf{1}, b_{Y \odot \mathbf{1}, -}),$ 其中 $b_{Y \odot \mathbf{1}, X}$ 是复合同构 $(Y \odot \mathbf{1}) \otimes X \cong (Y \odot \mathbf{1}) \otimes (\mathbf{1} \odot X) \cong Y \odot X \cong (\mathbf{1} \odot X) \otimes (Y \odot \mathbf{1}) \cong X \otimes (Y \odot \mathbf{1}).$ 还有半群自然同构 $G(Y) \otimes X = (Y \odot \mathbf{1}) \otimes X \cong Y \odot X.$

假设有半群函子 $G': \mathcal{D} \to \mathfrak{Z}(\mathfrak{C})$ 和半群自然同构 $G'(Y) \otimes X \cong Y \odot X$. 则有半群自然同构 $G'(Y) \cong G'(Y) \otimes 1 \cong Y \odot 1 \cong G(Y)$.

定义3.4.9. 设C是一个辫半群范畴. 一个C上**的半群范畴**是一个半群范畴D及一个辫半群函子 $C \to 3(D)$.

例3.4.10. (1) 一个半群范畴C是 $\mathfrak{Z}(\mathfrak{C})$ 上的半群范畴. (2) 设C和 \mathfrak{D} 是半群范畴, \mathfrak{M} 是一个 \mathfrak{C} - \mathfrak{D} 双模. 则Fun $\mathfrak{C}(\mathfrak{D},\mathfrak{M})$ 是 $\mathfrak{Z}(\mathfrak{C})$ × $\mathfrak{Z}(\mathfrak{D})$ 上的半群范畴.

3.5. Müger中心.

定义3.5.1. 设C是一个辫半群范畴. C的一个对象X称为**透明的**, 若对任意 $Y \in \mathbb{C}$, $\beta_{X,Y} = (\beta_{Y,X})^{-1}$. 我们将C的透明对象组成的完全子范畴, 记作 \mathbb{C}' 或 \mathfrak{Z}_2 (\mathbb{C}), 称为C的 \mathbf{M} üger中心.

习题3.5.2. 证明: (1) 若 $X,Y \in \mathcal{C}$ 透明, 则 $X \otimes Y$ 也透明, 从而 $\mathfrak{Z}_2(\mathcal{C})$ 是辫半群范畴. (2) 辫半群范畴 $\mathfrak{Z}_2(\mathcal{C})$ 是对称的.

定理3.5.3. 设C是一个辫半群范畴. (1) C的张量积诱导了一个辫半群函子 \otimes : $\mathfrak{Z}_2(\mathbb{C}) \times \mathbb{C} \to \mathbb{C}$, 并且下列辫半群范畴的图表在同构意义下交换:

(2) 对任意辫半群范畴 \mathfrak{D} 和辫半群函子 $\mathfrak{O}: \mathfrak{D} \times \mathfrak{C} \to \mathfrak{C},$ 若下列辫半群范畴的图表在同构意义下交换

则存在辫半群函子 $G: \mathcal{D} \to \mathfrak{Z}_2(\mathcal{C})$ 使得下列图表在同构意义下交换

$$\begin{array}{ccc}
3_2(\mathcal{C}) \times \mathcal{C} \\
& \otimes \\
\mathbb{D} \times \mathcal{C} & & \otimes \\
\end{array}$$

并且G在同构下唯一.

证明. (1) 显然. (2) 我们有辫半群函子 $G: \mathcal{D} \to \mathcal{C}, Y \mapsto Y \odot \mathbf{1}$. 由交换图表

$$(Y \otimes \mathbf{1}) \odot (\mathbf{1} \otimes X) \xrightarrow{\beta_{Y,\mathbf{1}} \odot \beta_{\mathbf{1},X}} (\mathbf{1} \otimes Y) \odot (X \otimes \mathbf{1}) \xrightarrow{\beta_{\mathbf{1},Y} \odot \beta_{X,\mathbf{1}}} (Y \otimes \mathbf{1}) \odot (\mathbf{1} \otimes X)$$

$$\downarrow \sim \qquad \qquad \downarrow \sim \qquad \qquad \downarrow \sim \qquad \qquad \downarrow \sim$$

$$(Y \odot \mathbf{1}) \otimes (\mathbf{1} \odot X) \xrightarrow{\beta_{Y \odot \mathbf{1},\mathbf{1} \odot X}} (\mathbf{1} \odot X) \otimes (Y \odot \mathbf{1}) \xrightarrow{\beta_{\mathbf{1} \odot X,Y \odot \mathbf{1}}} (Y \odot \mathbf{1}) \otimes (\mathbf{1} \odot X)$$

可知G的像落在 $\mathfrak{Z}_2(\mathfrak{C})$ 中. 还有半群自然同构 $G(Y)\otimes X=(Y\odot 1)\otimes X\cong Y\odot X$.

假设有辫半群函子 $G': \mathcal{D} \to \mathfrak{Z}_2(\mathfrak{C})$ 和半群自然同构 $G'(Y) \otimes X \cong Y \odot X$. 则有半群自然同构 $G'(Y) \cong G'(Y) \otimes 1 \cong Y \odot 1 \cong G(Y)$.

定义3.5.4. 设C是一个对称半群范畴. 一个C上**的辫半群范畴**是一个辫半群范畴D及一个辫半群 函子 $C \to 3_2(D)$.

3.6. 对偶.

定义3.6.1. 设C是一个半群范畴, $X,Y \in C$ 是两个对象. 称X是Y的**左对偶**, Y是X的**右对偶**, 如果存在态射 $u: \mathbf{1} \to Y \otimes X$ 和 $v: X \otimes Y \to \mathbf{1}$, 使得下列复合态射是恒同

$$X \cong X \otimes \mathbf{1} \xrightarrow{\operatorname{Id}_X \otimes u} X \otimes Y \otimes X \xrightarrow{v \otimes \operatorname{Id}_X} \mathbf{1} \otimes X \cong X,$$

$$Y \cong \mathbf{1} \otimes Y \xrightarrow{u \otimes \operatorname{Id}_Y} Y \otimes X \otimes Y \xrightarrow{\operatorname{Id}_Y \otimes v} Y \otimes \mathbf{1} \cong Y.$$

我们将Y记作 X^R ,将X记作 Y^L .称C是**刚性的**,如果每个对象都有左对偶和右对偶.

注3.6.2. 设C是对称半群范畴. 若Y是X的右对偶, 则Y也是X的左对偶.

- **例3.6.3.** (1) 设M是一个范畴. 半群范畴Fun(M, M)的一个对象的左对偶等价于一个左伴随函子,右对偶等价于一个右伴随函子.
- (2) 线性空间范畴 $Vect_k$ 的一个对象V有对偶等价于V是一个有限维线性空间. 特别地, 有限维线性空间组成的完全子范畴Vec有对偶. 事实上, 若V有对偶W, $u:k \to V \otimes W$ 将1映为 $\sum v_i \otimes w_i$,则复合映射 $V \xrightarrow{u \otimes \operatorname{Id}_V} V \otimes W \otimes V \xrightarrow{\operatorname{Id}_V \otimes V} V$ 将x映为 $\sum v(w_i \otimes x)v_i$. 因此V由 v_i 线性张出.
- (3) 若G是一个有限群,则半群范畴Rep G和VecG是刚性的. 更一般地,若H是一个Hopf代数,则半群范畴Rep H是刚性的.
 - (4) 配边范畴 Cob_n 是刚性的. 一个对象M的对偶是 \overline{M} .

命题3.6.4. 设 $F: \mathcal{C} \to \mathcal{D}$ 是一个半群函子. 若 $X \in \mathcal{C}$ 是 $Y \in \mathcal{C}$ 的左对偶, 则F(X)是F(Y)的左对偶. 证明. 由定义立得.

命题3.6.5. 设C是一个半群范畴, M是一个左C模. 若X有左对偶, 则函子 $X^L \otimes -: M \to M$ 是 $X \otimes -$ 的左伴随.

证明. 考虑半群函子 $\mathcal{C} \to \operatorname{Fun}(\mathcal{M}, \mathcal{M}), X \mapsto X \otimes -.$ 应用命题3.6.4.

注3.6.6. 设C是一个刚性的半群范畴. 则函子 $X \otimes - : M \to M$ 有左伴随和右伴随, 因此保持所有极限和余极限. 特别地, 若C是Abel范畴, 则张量积 $\otimes : C \times C \to C$ 关于每个变量都是正合的.

推论3.6.7. 设C是一个半群范畴. 若X有左对偶 X^L ,则 X^L 在典范同构下唯一. 特别地, $(X^L)^R$ 与X典范同构.

注3.6.8. 设C是一个刚性的半群范畴, $F: \mathcal{M} \to \mathcal{N}$ 是一个左C模函子. 若函子F有右伴随G, 则G也是一个左C模函子, 其中同构 $G(X \otimes N) \cong X \otimes G(N)$ 由 $\operatorname{Hom}_{\mathcal{M}}(M, G(X \otimes N)) \cong \operatorname{Hom}_{\mathcal{N}}(F(M), X \otimes N) \cong \operatorname{Hom}_{\mathcal{N}}(X^L \otimes F(M), N) \cong \operatorname{Hom}_{\mathcal{N}}(F(X^L \otimes M), N) \cong \operatorname{Hom}_{\mathcal{M}}(X^L \otimes M, G(N)) \cong \operatorname{Hom}_{\mathcal{M}}(M, X \otimes G(N))$ 所诱导.

构造3.6.9. 设C是一个刚性的半群范畴. 有函子 $\delta^L: \mathcal{C} \to \mathcal{C}^{\mathrm{op}}, X \mapsto X^L$, 将态射 $f: X \to Y$ 映 为 $f^L: Y^L \xrightarrow{\mathrm{Id}_{Y^L} \otimes u} Y^L \otimes X \otimes X^L \xrightarrow{\mathrm{Id}_{Y^L} \otimes f \otimes \mathrm{Id}_{X^L}} Y^L \otimes Y \otimes X^L \xrightarrow{v \otimes \mathrm{Id}_{X^L}} X^L$. 类似地有函子 $\delta^R: \mathcal{C} \to \mathcal{C}^{\mathrm{op}}, X \mapsto X^R$.

命题3.6.10. 设C是一个刚性的半群范畴. 有半群等价 $\delta^L: \mathbb{C}^{rev} \to \mathbb{C}^{op}, X \mapsto X^L \Lambda \delta^R: \mathbb{C}^{rev} \to \mathbb{C}^{op}, X \mapsto X^R.$

证明. 函子 δ^L 与 δ^R 互逆. $(X \otimes Y)^L$ 与 $Y^L \otimes X^L$ 都是 $X \otimes Y$ 的左对偶, 诱导的典范同构 $(X \otimes Y)^L \cong Y^L \otimes X^L$ 将 δ^L 提升为一个半群函子.

命题3.6.11. 设C是一个刚性的半群范畴, 其中C是Abel范畴. 则对任意对象X和投射对象P, $X \otimes P$ 是投射对象.

证明. $\operatorname{Hom}_{\mathfrak{C}}(X \otimes P, -) \cong \operatorname{Hom}_{\mathfrak{C}}(P, X^R \otimes -)$ 正合.

命题3.6.12. 设C是一个刚性的半群范畴, 其中C是Abel范畴. 下列陈述等价:

(1) C是半单的.

- (2) 1是投射的.
- (3) 1是内射的.

证明. $(1) \Rightarrow (2)$, 显然. $(2) \Rightarrow (1)$, 由上一命题立得. $(1) \Leftrightarrow (3)$, 将 $(1) \Leftrightarrow (2)$ 用于 \mathbb{C}^{op} .

习题3.6.13. 证明: (1) 若半群范畴C是刚性的,则Drinfeld中心 $\mathfrak{Z}(C)$ 亦然. (2) 若辫半群范畴C是刚性的,则Mriger中心 $\mathfrak{Z}_2(C)$ 亦然.

4. 半群范畴中的代数

4.1. 结合代数.

定义4.1.1. 设C是一个半群范畴. C中的一个代数A由下列要素组成

- (1) 一个对象 $A \in \mathcal{C}$;
- (2) 一个态射 $u: \mathbf{1} \to A$, 称为**单位**;
- (3) 一个态射 $m: A \otimes A \to A$, 称为**乘法**;

使得下列图表交换

设 $A, B \not= C$ 中的两个代数. 一个**代数同态** $f: A \to B \not= -$ 个态射, 使得下列图表交换

C中的代数和代数同态构成一个范畴, 记作Alg(C). C^{op}中的一个代数称为C中的一个**余代数**.

注4.1.2. (1) 半群范畴&中的每个代数A都可看作是 $\mathcal{C}^{\mathrm{rev}}$ 中的代数, 记作 A^{rev} , 因为一个态射 $m:A\otimes A\to A$ 等价于一个态射 $m:A\otimes^{\mathrm{rev}}A\to A$. 于是 $\mathrm{Alg}(\mathcal{C})\simeq \mathrm{Alg}(\mathcal{C}^{\mathrm{rev}})$.

- (2) 若 \mathcal{C} , \mathcal{D} 是半群范畴, 则 \mathcal{A} lg($\mathcal{C} \times \mathcal{D}$) = \mathcal{A} lg(\mathcal{C}) × \mathcal{A} lg(\mathcal{D}).
- (3) 若半群范畴 \mathfrak{C} 有所有小(或者有限)极限,则 $\mathfrak{Alg}(\mathfrak{C})$ 也有所有小(或者有限)极限,并且遗忘函子 $For: \mathfrak{Alg}(\mathfrak{C}) \to \mathfrak{C}$ 保持小(或者有限)极限.
- (4) 若半群范畴c有小正向极限,并且c的张量积分别关于每个变量保持小正向极限,则Alg(c)也有小正向极限,并且遗忘函子 $For: Alg(c) \to c$ 保持小正向极限.
 - (5) 半群范畴C的单位对象1本身是一个代数, 它是Alg(C)的始对象, 称为平凡代数.

习题4.1.3. 证明: 若半群范畴C中的一个代数A作为对象同构于1, 则A作为代数同构于1.

M4.1.4. (1) 赋予Set乘积半群范畴结构. 则Alg(Set)是由通常的半群和半群同态组成的范畴.

- (2) 赋予Abel通常的半群范畴结构. 则 $Alg(Abel) \simeq \Re ing$.
- (3) 全体范畴及函子的同构类组成一个范畴Cat, 它在范畴乘积下构成一个半群范畴. 每个半群范畴都是其中的代数. (反之不然, 正确的做法是保留函子同构将Cat做成一个二阶范畴.)

定义4.1.5. 设C是半群范畴,M是一个左C模,A是C中的一个代数. M中一个的**左**A模M由下列要素组成

- (1) 一个对象 $M \in \mathcal{M}$;
- (2) 一个态射 $m: A \otimes M \to M$;

使得下列图表交换

设M, N是两个M中的左A模. 一个**模同态** $f: M \to N$ 是一个态射, 使得下列图表交换

$$\begin{array}{ccc} A \otimes M \xrightarrow{\operatorname{Id}_A \otimes f} A \otimes N \\ \downarrow^m & \downarrow^m \\ M \xrightarrow{f} N. \end{array}$$

M中的左A模及模同态构成一个范畴, 记作 $LMod_A(M)$ 或 $_AM$.

设见是半群范畴,M是一个右D模,B是D中的一个代数。M中的左 B^{rev} 模范畴记作RMod $_B(M)$ 或 M_B ,其中的对象也称为一个右B模。

设C, D是半群范畴, M是一个C-D双模, (A, B)是 $C \times D$ 中的一个代数. M中的左 (A, B^{rev}) 模范畴记作 $BMod_{A|B}(M)$ 或 $_AM_B$, 其中的对象也称为一个A-B**双模**.

例4.1.6. 设A, B是两个环. 则 $\mathrm{LMod}_A(Abel)$, $\mathrm{RMod}_B(Abel)$, $\mathrm{BMod}_{A|B}(Abel)$ 分别是通常的左A模 范畴, 右B模范畴, A-B双模范畴.

注**4.1.7.** (1) $_{1}$ $\mathcal{M} \simeq \mathcal{M}$.

- (2) 若M是一个C-D双模, 则AM是一个右D模. 特别地, AC是一个右C模.
- (3) 设 $M \in \mathcal{C}_A$, $N \in {}_A$ M. 我们以 $M \otimes_A N$ 表示图表 $M \otimes A \otimes N \rightrightarrows M \otimes N$ 的coequalizer. 我们有 $A \otimes_A N \cong N$.
- (4) 设C有coequalizer, 并且张量积关于每个变量都保持coequalizer. 则 $_A$ C $_A$ 是一个半群范畴, 张量积为 \otimes_A . 并且有辫半群函子 $\mathfrak{Z}(\mathfrak{C})\to\mathfrak{Z}(_A$ C $_A$), $X\mapsto X\otimes A$. \mathfrak{C}_A 是一个 \mathfrak{C}_A C $_A$ 双模, $_A$ C是一个 $_A$ C $_A$ C双模.
- (5) 设 $f:A\to B$ 是C中的一个代数同态, M是一个左C模, $M\in {}_B$ M. 则复合态射 $A\otimes M\xrightarrow{f\otimes \mathrm{Id}_M}B\otimes M\xrightarrow{m}M$ 赋予M一个左A模结构. 特别地, B是一个A-A双模.

命题4.1.8. 设C是一个半群范畴, $A \in Alg(C)$ 是一个代数, M是一个左C模.

- (1) 遗忘函子 $G: {}_{A}\mathcal{M} \to \mathcal{M}$ 是保守的.
- (2) G有左伴随函子 $F: X \mapsto A \otimes X$. 其中 $A \otimes X$ 称为由X生成的自由A模.
- (3) 如果M有所有小(或者有限)极限, 则 $_A$ M也有所有小(或者有限)极限, 并且遗忘函子 $_A$ M \to M保持小(或者有限)极限.
- (4) 如果M有所有小(或者有限)余极限, 并且函子 $A \otimes -: M \to M$ 保持小(或者有限)余极限, 则 $_A M$ 也有所有小(或者有限)余极限, 并且遗忘函子 $_A M \to M$ 保持小(或者有限)余极限.

证明. (1) 若模同态 $f: M \to N$ 是M中的同构, 则 f^{-1} 自动是模同态.

- (2) 自然态射 $X \xrightarrow{u \otimes X} A \otimes X = GF(X)$ 和 $FG(M) = A \otimes M \xrightarrow{m} M$ 使得F是G的左伴随.
- (3) 设 $p: \mathfrak{I} \to {}_{A}\mathfrak{M}, \ \alpha \mapsto M_{\alpha}$ 是一个图表, 则复合态射 $A \otimes \varprojlim G(M_{\alpha}) \to \varprojlim A \otimes G(M_{\alpha}) \to \varprojlim G(M_{\alpha})$ 赋予 $\varprojlim G(M_{\alpha})$ 一个左A模结构, 使得它成为图表p的极限.
- (4) 设 $p: \mathfrak{I} \to {}_{A}\mathfrak{M}, \ \alpha \mapsto M_{\alpha}$ 是一个图表,则复合态射 $A \otimes \varinjlim G(M_{\alpha}) \cong \varinjlim A \otimes G(M_{\alpha}) \to \varinjlim G(M_{\alpha})$ 赋予 $\varinjlim G(M_{\alpha})$ 一个左A模结构,使得它成为图表p的余极限.

命题4.1.9. 设 $f: A \to B$ 是半群范畴 \mathfrak{C} 中的一个代数同态, M是一个左 \mathfrak{C} 模. 假设M有coequalizer, 并且函子 $B \otimes -: M \to M$ 保持coequalizer. 则有自然双射 $\operatorname{Hom}_{BM}(B \otimes_A M, N) \cong \operatorname{Hom}_{AM}(M, N), M \in {}_AM, N \in {}_BM$.

证明. 自然态射 $M\cong A\otimes_A M \xrightarrow{f\otimes_A M} B\otimes_A M$ 和 $B\otimes_A N \to B\otimes_B N\cong N$ 使得 $M\mapsto B\otimes_A M$ 是 $N\mapsto N$ 的左伴随.

4.2. 交换代数.

定义4.2.1. 设C是一个辫半群范畴. 一个C中的代数A称为**交换的**, 如果下列图表交换

 $Alg(\mathcal{C})$ 中由交换代数组成的完全子范畴记作 $CAlg(\mathcal{C})$.

构造4.2.2. 设C是一个辫半群范畴. 对于 $A, B \in Alg(C)$, 复合态射

$$(A \otimes B) \otimes (A \otimes B) \xrightarrow{\operatorname{Id}_A \otimes \beta_{A,B}^{-1} \otimes \operatorname{Id}_B} A \otimes A \otimes B \otimes B \xrightarrow{m \otimes m} A \otimes B$$

赋予了 $A \otimes B$ 一个代数结构, 使 $Alg(\mathcal{C})$ 成为一个半群范畴. 若 \mathcal{C} 是对称的, 则 $Alg(\mathcal{C})$ 成为一个对称半群范畴.

定理4.2.3. 设C是一个辫半群范畴. 则遗忘函子Alg(Alg(C)) \simeq Alg(C)诱导等价Alg(Alg(C)) \simeq CAlg(C).

证明. 根据定义, $Alg(Alg(\mathcal{C}))$ 的一个对象由一个代数 $A \in Alg(\mathcal{C})$ 及两个代数同态 $u: \mathbf{1} \to A$, $m: A \otimes A \to A$ 组成. $u: \mathbf{1} \to A$ 是一个代数同态等价于说u与代数A的单位一致. 进而, $m: A \otimes A \to A$ 是一个代数同态等价于说m与代数A的乘法一致,并且A是一个交换代数. 这给出了一个函子 $\Phi: Alg(Alg(\mathcal{C})) \to CAlg(\mathcal{C})$. 上述构造过程可逆回,因此 Φ 是等价.

例4.2.4. $Alg(\Re ing) \simeq \mathfrak{C}\Re ing$.

习题4.2.5. 设C是一个对称半群范畴. 证明: 遗忘函子 $Alg(Alg(C^{op})^{op}) \to Alg(C^{op})^{op}$ 可提升为一个对称半群等价 $Alg(Alg(C^{op})^{op}) \simeq Alg(Alg(C)^{op})^{op}$,其中的对象称为**双代数**.

定义4.2.6. 设C是一个辫半群范畴, $A \in CAlg(C)$. 一个局部A模是一个右A模M, 使得下列图表交换:

$$\begin{array}{c} A \otimes M \xrightarrow{\beta_{A,M}} M \otimes A \\ \downarrow^{\beta_{M,A}} \downarrow & \downarrow^{m} \\ M \otimes A \xrightarrow{m} M. \end{array}$$

全体局部A模组成 C_A 的一个完全子范畴, 记作 C_A 0.

注4.2.7. 设辫半群范畴 \mathcal{C} 有coequalizer,并且张量积关于每个变量都保持coequalizer. 设 $A \in \mathrm{CAlg}(\mathcal{C})$.

- (1) 一个右A模M自动成为一个A-A双模, 其中左作用定义为 $A \otimes M \xrightarrow{\beta_{A,M}} M \otimes A \xrightarrow{m} M$. 我们得到一个完全忠实函子 $\mathcal{C}_A \to {}_A\mathcal{C}_A$, 使得 \mathcal{C}_A 成为一个半群范畴.
- (2) \mathcal{C}_A^0 是一个辫半群范畴,辫结构 $M \otimes_A N \cong N \otimes_A M$ 由 $\beta_{M,N}: M \otimes N \to N \otimes M$ 所诱导. 如果 \mathcal{C} 是对称的,则 $\mathcal{C}_A^0 = \mathcal{C}_A$ 也是对称的.
 - (3) 有辫半群函子 $\bar{\mathcal{C}} \to \mathfrak{Z}(\mathcal{C}_A)$, $X \mapsto X \otimes A$, 以及 $\mathcal{C}_A^0 \to \mathfrak{Z}(\mathcal{C}_A)$, $M \mapsto M$.

4.3. **内蕴Hom.**

定义4.3.1. 设C是一个半群范畴, M是一个左C模. 两个对象 $M,N\in M$ 的内**蕴Hom**是一个C的对象[M,N]使得 $\mathrm{Hom}_{\mathfrak{M}}(-\otimes M,N)\cong \mathrm{Hom}_{\mathfrak{C}}(-,[M,N])$. 若[M,N]对所有 $M,N\in M$ 都存在, 则称范畴M enrich于 \mathbb{C} 中.

例4.3.2. (1) 将半群范畴C视为左C模. 若X有左对偶, 则[X, Y] \cong $Y \otimes X^L$. 特别地, 若C是刚性的, 则它enrich于自身中.

- (2) 一个交换环A的模范畴 $LMod_A$ enrich于自身中, $\mathbb{E}[M, N] \cong hom_A(M, N)$.
- (3) 集合范畴Set取乘积半群范畴结构, enrich于自身中, 且 $[M,N] \cong Hom_{Set}(M,N)$.

注4.3.3. 在上述定义中, 假设 $[M, -]: M \to C$ 存在. (1) 由定义[M, -]是 $-\otimes M$ 的右伴随.

- (2) 恒同态射 $M \otimes N \to M \otimes N$ 诱导态射 $[M,N] \otimes M \to N$. 态射 $X \otimes [M,N] \otimes M \to X \otimes N$ 诱导态射 $X \otimes [M,N] \to [M,X \otimes N]$.
- (3) [M,M]定义了一个C中的代数,单位 $u: \mathbf{1} \to [M,M]$ 由 $\mathbf{1} \otimes M \cong M$ 诱导,乘法 $m: [M,M] \otimes [M,M] \to [M,M]$ 由复合态射 $[M,M] \otimes [M,M] \otimes M \to [M,M] \otimes M \to M$ 诱导,同理[M,N]是一个右[M,M]模,于是我们得到一个函子 $M \to C_{[M,M]}, N \mapsto [M,N]$,稍后我们将证明,在适当的条件下这个函子是左C模等价。
- **命题4.3.4.** 设C是一个半群范畴,左C模M enrich于C中. 若 $X \in$ C有左对偶,则对于 $M, N \in$ M,典范态射 $X \otimes [M, N] \to [M, X \otimes N]$ 是同构.

证明. 复合态射 $[M,X\otimes N]\to X\otimes X^L\otimes [M,X\otimes N]\to X\otimes [M,X^L\otimes X\otimes N]\to X\otimes [M,N]$ 是 典范态射的逆.

构造4.3.5. 设C是刚性的半群范畴, $A \in \text{Alg}(\mathcal{C})$. 若M是一个右A模, 则 $m: M \otimes A \to M$ 诱导一个态射 $A \otimes M^R \to M^R$,使得 M^R 成为一个左A模. 于是有等价 $\mathcal{C}_A \simeq ({}_A\mathcal{C})^{\text{op}}, M \mapsto M^R$,它的逆是 $N \mapsto N^L$.

命题4.3.6. 设C是刚性的半群范畴有coequalizer, $A \in Alg(C)$. 有自然双射 $Hom_{C_A}(M, X \otimes N) \cong Hom_{C}(M \otimes_A N^R, X), X \in C, M, N \in C_A$.

证明. 左边是图表 $\operatorname{Hom}_{\operatorname{\mathcal C}}(M,X\otimes N)$ \rightrightarrows $\operatorname{Hom}_{\operatorname{\mathcal C}}(M\otimes A,X\otimes N)$ 的equalizer. 右边是图表 $\operatorname{Hom}_{\operatorname{\mathcal C}}(M\otimes N^R,X)$ \rightrightarrows $\operatorname{Hom}_{\operatorname{\mathcal C}}(M\otimes A\otimes N^R,X)$ 的equalizer.

命题4.3.7. 设刚性的半群范畴 \mathfrak{C} 有coequalizer, A是一个 \mathfrak{C} 中的代数. 视 \mathfrak{C}_A 为一个左 \mathfrak{C} 模. 则 \mathfrak{C}_A enrich于 \mathfrak{C} 中,且有自然同构 $[M,N]\cong (M\otimes_A N^R)^L$.

证明. 我们有 $\operatorname{Hom}_{\mathcal{C}_A}(X\otimes M,N)\cong \operatorname{Hom}_{\mathcal{C}_A}(M,X^R\otimes N)\cong \operatorname{Hom}_{\mathcal{C}}(M\otimes_A N^R,X^R)\cong \operatorname{Hom}_{\mathcal{C}}(X,(M\otimes_A N^R)^L).$

4.4. **代数的中心. 设**C是辫半群范畴D上的半群范畴.

构造4.4.1. $Alg(\mathfrak{C})$ 是 $CAlg(\mathfrak{D})$ 的左模. 对于 $A \in Alg(\mathfrak{C})$ 和 $B \in CAlg(\mathfrak{D})$, $B \otimes A$ 的乘法由 $(B \otimes A) \otimes (B \otimes A) \cong B \otimes B \otimes A \otimes A \xrightarrow{m \otimes m} B \otimes A$ 给出.

定义4.4.2. 一个代数 $A \in Alg(\mathcal{C})$ 在 \mathfrak{D} 中的中心是一个代数 $Z_{\mathfrak{D}}(A) \in Alg(\mathfrak{D})$ 及一个代数同态 $m: Z_{\mathfrak{D}}(A) \otimes A \to A$,使得下列图表交换:

并且满组下述泛性质. 对任意代数 $B \in Alg(\mathcal{D})$ 及代数同态 $f: B \otimes A \to A$, 若下列图表交换

则存在唯一的代数同态 $g: B \to Z_{\mathcal{D}}(A)$, 使得下列图表交换

当 $D = \mathfrak{Z}(\mathcal{C})$ 时, 我们将 $Z_{\mathcal{D}}(A)$ 记作Z(A), 称为A的完全中心.

注**4.4.3.** 复合代数同态 $Z_{\mathcal{D}}(A) \otimes Z_{\mathcal{D}}(A) \otimes A \xrightarrow{\operatorname{Id}_{Z_{\mathcal{D}}(A)} \otimes m} Z_{\mathcal{D}}(A) \otimes A \xrightarrow{m} A$ 诱导一个代数同态 $Z_{\mathcal{D}}(A) \otimes Z_{\mathcal{D}}(A) \to Z_{\mathcal{D}}(A)$, 使得 $Z_{\mathcal{D}}(A) \in \operatorname{Alg}(\operatorname{Alg}(\mathcal{D})) \simeq \operatorname{CAlg}(\mathcal{D})$. 因此 $Z_{\mathcal{D}}(A)$ 是交换代数.

定理4.4.4. 假设 $[A,-]_{\mathcal{D}}: {}_{A}\mathcal{C}_{A} \to \mathcal{D}$ 存在. 则 ${}_{A}\mathcal{C}_{A}$ 中的典范态射 $m: [A,A]_{\mathcal{D}}\otimes A \to A$ 是 \mathcal{C} 中的代数同态, 使得 $[A,A]_{\mathcal{D}}$ 实现中心 $Z_{\mathcal{D}}(A)$.

证明. 令 $Z = [A, A]_{\mathcal{D}}$. 由交换图表

的外层方块可知 $m: Z \otimes A \to A$ 是代数同态.

由交换图表

的外层方块可知 $f: B \otimes A \to A$ 是A-A双模同态. 因此存在唯一D的态射 $g: B \to Z$ 使得 $m \circ (g \otimes \mathrm{Id}_A) = f$. 易见g保持代数的乘法. 由B的交换图表可知g保持代数的单位.

例4.4.5. 如果[$\mathbf{1}_{c}$, -] $_{D}: \mathcal{C} \to \mathcal{D}$ 存在,则[$\mathbf{1}_{c}$, $\mathbf{1}_{c}$] $_{D}$ 是平凡代数 $\mathbf{1}_{c}$ 的中心. 特别地, 它是一个交换代数.

4.5. Barr-Beck定理.

定义4.5.1. 设C是一个范畴. 半群范畴Fun(\mathcal{C},\mathcal{C})中的一个代数T称为C上的一个**monad**. 我们称一个函子 $G:\mathcal{D}\to \mathcal{C}$ 是**monadic**, 如果存在C上的一个monad T和范畴等价 $\mathcal{D}\simeq \mathrm{LMod}_T(\mathcal{C})$, 使得G同构于复合函子 $\mathcal{D}\simeq \mathrm{LMod}_T(\mathcal{C})\to \mathcal{C}$.

例4.5.2. 若函子 $F: \mathcal{C} \to \mathcal{D} \not\models G: \mathcal{D} \to \mathcal{C}$ 的左伴随,则 $G \circ F \not\models \mathcal{C}$ 上的一个monad,单位是 $\mathrm{Id}_{\mathcal{C}} \xrightarrow{u} G \circ F$,乘法 $\not\models G \circ F \circ G \circ F \xrightarrow{\mathrm{Id}_{G} \circ v \circ \mathrm{Id}_{F}} G \circ F$.

引理4.5.3. 设 $G: A \to \mathcal{B}$ 是Abel范畴间的正合函子. (1) G是保守的, 当且仅当G将非零对象映为非零对象. (2) 若G是保守的, 则G是忠实的, 并且G(f)是满射(单射)当且仅当f也是.

证明. (1) 充分性. 若G(f)是同构, 则 $\operatorname{Ker} G(f) = \operatorname{Coker} G(f) = 0$, 所以 $\operatorname{Ker} f = \operatorname{Coker} f = 0$, 所以f是同构. 必要性. 若G(X) = 0, 则G将态射 $X \to 0$ 映为同构, 所以X = 0.

(2) 若G(f) = 0, 则 $\operatorname{Ker} G(f) = G(X)$, $\operatorname{Coker} G(f) = G(Y)$, 所以 $\operatorname{Ker} f = X$, $\operatorname{Coker} f = Y$, 所以f = 0. 若G(f)满, 则 $\operatorname{Coker} G(f) = 0$, 所以根据(1)有 $\operatorname{Coker} f = 0$, 所以f满.

下面是Barr-Beck定理的一个特殊情形:

定理4.5.4. 设C, \mathcal{D} 是Abel范畴. 一个函子 $G: \mathcal{D} \to \mathcal{C}$ 是monadic, 使得 $T: \mathcal{C} \to \mathcal{C}$ 是右正合的, 当且仅当G满足下列条件:

- (1) G有左伴随函子 $F: \mathcal{C} \to \mathcal{D}$.
- (2) G是保守且右正合的.

证明. 必要性. 不妨设 $\mathcal{D} = \operatorname{LMod}_T(\mathcal{C})$, G是遗忘函子 $\operatorname{LMod}_T(\mathcal{C}) \to \mathcal{C}$. 则G是保守的, 且有左伴随 $X \mapsto T(X)$. 因为T右正合, 根据命题4.1.8(4), G也是右正合的.

充分性. 令 $T = G \circ F$. 则T右正合. 定义函子 $\phi : \mathcal{D} \to \mathrm{LMod}_T(\mathcal{C}), X \mapsto G(X)$. 则函子G是 ϕ 与遗忘函子的复合. 我们需要证明 ϕ 是等价. 因为G正合且保守, ϕ 是忠实的.

因为 $G(v_X): GFG(X) \to G(X)$ 是满射, $v_X: FG(X) \to X$ 是满射. 设 $f: G(X) \to G(Y)$ 是T模同态. 有交换图表

$$GFG(X) \xrightarrow{G(v_X)} G(X)$$

$$GF(f) \downarrow \qquad \qquad \downarrow f$$

$$GFG(Y) \xrightarrow{G(v_Y)} G(Y).$$

因为G忠实, 复合态射 $\operatorname{Ker} v_X \hookrightarrow FG(X) \xrightarrow{F(f)} FG(Y) \xrightarrow{v_Y} Y$ 为零. 所以存在g使得下列图表交换

$$FG(X) \xrightarrow{v_X} X$$

$$\downarrow^{g}$$

$$FG(Y) \xrightarrow{v_Y} Y.$$

因为 $G(v_X)$ 是满射, 所以f = G(g). 这证明了 ϕ 是完全的.

每个 $M \in \operatorname{LMod}_T(\mathcal{C})$ 是 $T(M) = \phi F(M)$ 的商,因此M是某个T模同态 $\phi(X) \to \phi(Y)$ 的余核,因此属于 ϕ 的本质像. 这证明了 ϕ 是本质满的.

定理4.5.5. 设C是刚性的半群范畴, M是一个左C模, 其中C和M都是Abel范畴. 存在一个C中代数A使得有左C模等价 $M \simeq C_A$ 的充分必要条件是:

- (1) M enrich于C中:
- (2) 存在一个对象 $P \in M$ 使得 $[P, -] : M \to C$ 保守且右正合.

此时函子[P, -]诱导了左C模等价 $\mathcal{M} \simeq \mathcal{C}_{[PP]}$.

证明. 必要性. 假设 $\mathcal{M} = \mathcal{C}_A$. (1) 由命题4.3.7立得. (2) 取P = A. 则 $[A, -] : \mathcal{C}_A \to \mathcal{C}$ 是遗忘函子. 充分性. 函子 $F = -\otimes P : \mathcal{C} \to \mathcal{M}$ 是G = [P, -]的左伴随. 根据Barr-Beck定理, 函子G是monadic. 根据命题4.3.4,我们有 $G \circ F = [P, -\otimes P] \cong -\otimes [P, P]$,所以 $\mathcal{M} \simeq \operatorname{LMod}_{G \circ F}(\mathcal{C}) \simeq \mathcal{C}_{[P, P]}$.

5. 融合范畴

5.1. **融合范畴.** 设k是一个特征零的代数闭域. 令Vec为有限维k线性空间组成的范畴.

除非做特别说明, 我们假设k线性范畴间的函子都是k线性的, 并且对于k线性范畴C和D, 用记号Fun(C, D)表示k线性函子组成的范畴.

注5.1.2. 若 \mathcal{C} , \mathcal{D} 是k线性范畴, 则 $\mathcal{C}^{\mathrm{op}}$, $\mathcal{C} \oplus \mathcal{D}$ 与 $\mathrm{Fun}(\mathcal{C}, \mathcal{D})$ 亦然. 并且对于k线性范畴 \mathcal{E} , 有 $\mathrm{Fun}(\mathcal{C} \oplus \mathcal{D}, \mathcal{E}) \simeq \mathrm{Fun}(\mathcal{E}, \mathcal{E}) \oplus \mathrm{Fun}(\mathcal{D}, \mathcal{E})$ 以及 $\mathrm{Fun}(\mathcal{E}, \mathcal{C} \oplus \mathcal{D}) \simeq \mathrm{Fun}(\mathcal{E}, \mathcal{C}) \oplus \mathrm{Fun}(\mathcal{E}, \mathcal{D})$.

定义5.1.3. 一个k线性范畴C称为**半单的**, 如果它k线性等价于有限个Vec的直和.

命题5.1.4. 一个k线性范畴C是半单的, 当且仅当它满足下列条件:

- (1) C是半单的Abel范畴.
- (2) C有有限个单对象.
- (3) 对任意 $X, Y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ 是有限维k线性空间.

注5.1.5. 我们有Fun(Vec, Vec) \simeq Vec. 所以半单k线性范畴间的k线性函子都是正合的, 并且有左右伴随. 特别地, 若C是半单k线性范畴, 则每个k线性函子 $F: \mathbb{C}^{op} \to \text{Vec}$ 都可表示.

定义5.1.7. 一个多重融合范畴是一个刚性的k线性半群范畴e, 其中e是半单的k线性范畴. 如果e的单位对象是一个单对象,则称e是一个**融合范畴**.

例5.1.8. 若G是一个有限群,则 Vec_G 是一个融合范畴, Rep_G 是一个对称融合范畴. 更一般地,如果H是一个半单Hopf代数,则 Rep_G 是一个融合范畴.

定义5.1.10. 设 $^{\circ}$ 设 $^{\circ}$ 是一个**多重融合范畴**. 一个**半单左** $^{\circ}$ **模**是一个 k 线性左 $^{\circ}$ 模M, 使得M是半单 k 线性范畴. 类似地可定义半单右模和半单双模.

注**5.1.11.** (1) 若 \mathcal{M} , \mathcal{N} 是半单k线性范畴, 则Fun(\mathcal{M} , \mathcal{M})是多重融合范畴, 并且Fun(\mathcal{M} , \mathcal{N})是一个半单右Fun(\mathcal{M} , \mathcal{M})模.

(2) 设 $^{\rm C}$, $^{\rm D}$ 是多重融合范畴. 给一个半单左 $^{\rm C}$ 模, 等价于给一个半单 $^{\rm k}$ 线性范畴 $^{\rm M}$ 和一个 $^{\rm k}$ 线性半群函子 $^{\rm C}$ \to Fun($^{\rm M}$, $^{\rm M}$). 给一个半单 $^{\rm C}$ - $^{\rm D}$ 双模, 等价于给一个半单 $^{\rm k}$ 线性范畴 $^{\rm M}$ 和一个 $^{\rm k}$ 双线性半群函子 $^{\rm C}$ \times $^{\rm D^{\rm rev}}$ \to Fun($^{\rm M}$, $^{\rm M}$).

定义5.1.12. 设C是多重融合范畴. 一个半单左C摸M是**不可分解的**, 如果M非零并且不是两个非零左C模的直和.

命题5.1.13. 设C是多重融合范畴, M是不可分解的半单左C模. 则对任意非零 $M\in M$, 有 $M\simeq \mathbb{C}_{[M,M]}$.

证明. 函子 $\operatorname{Hom}_{\mathfrak{M}}(-\otimes M, N): \mathcal{C}^{\operatorname{op}} \to \operatorname{Vec}$ 可表示,即[M, N]存在. 所以 \mathfrak{M} enrich于 \mathcal{C} 中. 函子 $[M, -]: \mathfrak{M} \to \mathcal{C}$ 显然正合.为了应用定理4.5.5,还需证明函子[M, -]保守.

定义M的单对象集合上的二元关系,使得当 $[P,Q] \neq 0$ 时 $P \sim Q$. 注意到 $P \sim Q$ 当且仅当存在一个 $X \in \mathbb{C}$ 和非零态射 $X \otimes P \to Q$. 该关系显然是自反的. 非零 $X \otimes P \to Q$ 诱导非零 $X^R \otimes Q \to P$, 所以该关系是对称的. 非零 $X \otimes P \to Q$ 和 $Y \otimes Q \to R$ 诱导非零 $Y \otimes X \otimes P \to R$,所以该关系是传递的,因而是一个等价关系. 每个等价类的直和给出一个半单左 \mathbb{C} 模. 由于M不可分解,故只有一个等价类. 这意味着函子[M,-]保守.

推论5.1.14. 设C是多重融合范畴, M是半单左C模. 则存在代数 $A \in Alg(C)$ 使得 $M \simeq C_A$.

命题5.1.15. 设C是多重融合范畴, M和N是半单左C模. 假设 $\mathcal{M}=\mathcal{C}_A,\,\mathcal{N}=\mathcal{C}_B.$ 则 $\mathrm{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{N})\simeq_A\mathcal{C}_B.$

证明. 函子 $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{N}) \to {}_{A}\mathcal{C}_{B}, F \mapsto F(A)$ 与函子 ${}_{A}\mathcal{C}_{B} \to \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{N}), V \mapsto - \otimes_{A} V$ 互逆.

事实5.1.16. 设C是多重融合范畴, \mathcal{M} , \mathcal{N} 是半单左C模. 则 $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{N})$ 是半单的. 特别地, $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ 是 多重融合范畴.

5.2. 可分代数.

定义5.2.1. 设C是多重融合范畴. 一个代数 $A \in Alg(C)$ 是可分的, 如果存在A-A双模同态 $\iota : A \to A \otimes A$ 使得 $m \circ \iota = Id_A$.

命题5.2.2. 设C是多重融合范畴, $A \in Alg(C)$ 可分. 对任意半单左C模M, AM是半单k线性范畴. 对任意半单右C模M, N_A 是半单k线性范畴.

证明. 对于 $M \in \mathcal{M}$, $\operatorname{Hom}_{A^{\mathcal{M}}}(A \otimes M, -) \cong \operatorname{Hom}_{\mathcal{M}}(M, -)$ 正合,因此自由模 $A \otimes M$ 是投射的. 对于 $V \in {}_{A}\mathcal{M}$, $\operatorname{左} A$ 模同态 $V \cong A \otimes_{A} V \xrightarrow{\iota \otimes_{A} \operatorname{Id}_{V}} (A \otimes A) \otimes_{A} V \cong A \otimes V$ 使得 $V \not\in A \otimes V$ 的直和项,所以V是投射的. 这证明了 ${}_{A}\mathcal{M}$ 是半单的Abel范畴.

令S是M的所有单对象的直和. 则任意单对象 $V \in {}_{A}M$, $\operatorname{Hom}_{AM}(A \otimes S, V) \cong \operatorname{Hom}_{M}(S, V)$ 非零,所以 $V \not\in A \otimes S$ 的直和项. 这证明了 ${}_{A}M$ 只有有限个单对象. 根据命题5.1.4, 命题得证.

推论5.2.3. 设C是多重融合范畴. 代数 $A \in Alg(C)$ 是可分的, 当且仅当 C_A 是半单k线性范畴.

证明. 必要性由上述命题立得. 充分性. 令 $M = \mathcal{C}_A$. 根据事实5.1.16, $\operatorname{Fun}_{\mathcal{C}}(M, M)$ 是半单的. 所以由命题5.1.15, ${}_{A}\mathcal{C}_{A}$ 是半单的. 所以A可分.

5.3. 模的张量积.

定义5.3.1. 设C是多重融合范畴,M是一个半单右C模,N是一个半单左C模,P是一个半单k线性范畴. 一个C**双线性函子或平衡C模函子**是一个k双线性函子 $F: M \times N \to P$ 及一个自然同构 $F(M \otimes X, N) \cong F(M, X \otimes N)$ 使得下列图表交换:

 $ext{CX3}$ $ext{CX3}$ $ext{CX3}$ $ext{CX4}$ $ext{CX4}$

$$F(M \otimes X, N) \xrightarrow{\sim} F(M, X \otimes N)$$

$$\xi_{M \otimes X, N} \downarrow \qquad \qquad \qquad \downarrow \xi_{M, X \otimes N}$$

$$G(M \otimes X, N) \xrightarrow{\sim} G(M, X \otimes N).$$

我们以 $Fun_c^{bi}(M \times N, P)$ 表示C双线性函子和自然变换组成的范畴.

M与N在C上的**张量积**是一个半单k线性范畴 $M \boxtimes_{\mathcal{C}} N$,及一个 \mathcal{C} 双线性函子 $\boxtimes_{\mathcal{C}} : M \times N \to M \boxtimes_{\mathcal{C}} N$,使得对任意半单k线性范畴 \mathcal{D} , $- \circ \boxtimes_{\mathcal{C}} : \operatorname{Fun}_{\mathcal{C}}(M \boxtimes_{\mathcal{C}} N, \mathcal{D}) \to \operatorname{Fun}_{\mathcal{C}}^{bi}(M \times N, \mathcal{D})$ 是范畴等价.

注5.3.2. 对于半单k线性范畴M,N,我们将M \boxtimes_{Vec} N简记为M \boxtimes N,称为M与N的**Deligne张量积**. 一个k双线性函子M \times N \to P自动是一个Vec双线性函子. 所以给一个k双线性函子M \times N \to P等价于给一个k线性函子M \boxtimes N \to P.

注5.3.3. 有典范等价:

- (1) $\mathcal{M} \boxtimes_{\mathfrak{C}} \mathfrak{C} \simeq \mathcal{M}$, $\mathfrak{C} \boxtimes_{\mathfrak{C}} \mathfrak{N} \simeq \mathfrak{N}$.
- $(2) \ (\mathcal{M} \oplus \mathcal{M}') \boxtimes_{\mathcal{C}} \mathcal{N} \simeq (\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}) \oplus (\mathcal{M}' \boxtimes_{\mathcal{C}} \mathcal{N}), \ \mathcal{M} \boxtimes_{\mathcal{C}} (\mathcal{N} \oplus \mathcal{N}') \simeq (\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}) \oplus (\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}').$
- (3) $(\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}) \boxtimes_{\mathcal{D}} \mathcal{P} \simeq \mathcal{M} \boxtimes_{\mathcal{C}} (\mathcal{N} \boxtimes_{\mathcal{D}} \mathcal{P}).$

定理5.3.4. 设C是多重融合范畴, $\mathcal{M} = {}_{A}\mathsf{C}, \, \mathcal{N} = \mathsf{C}_{B}, \, \mathrm{其中}A, B$ 是C中的可分代数. 则C双线性函子 $\phi: \mathcal{M} \times \mathcal{N} \to {}_{A}\mathsf{C}_{B}, \, (M, N) \mapsto M \otimes N$ 使得 ${}_{A}\mathsf{C}_{B}$ 实现张量积 $M \boxtimes_{\mathfrak{C}} \mathcal{N}$.

证明. 设 $F: \mathbb{M} \times \mathbb{N} \to \mathcal{P}$ 是一个C双线性函子,其中 \mathcal{P} 是一个半单k线性范畴.设 $V \in {}_{A}\mathcal{C}_{B}$.我们有coequalizer图表 $V \otimes B \otimes B \Rightarrow V \otimes B \to V$.令 $\tilde{F}(V)$ 是图表 $F(V \otimes B, B) \Rightarrow F(V, B)$ 的coequalizer,从而得到一个k线性函子 $\tilde{F}: {}_{A}\mathcal{C}_{B} \to \mathcal{P}$.这给出一个函子 $\mathrm{Fun}^{bi}_{\mathcal{C}}(\mathbb{M} \times \mathbb{N}, \mathcal{P}) \to \mathrm{Fun}_{\mathcal{C}}(\mathbb{M} \boxtimes_{\mathcal{C}} \mathbb{N}, \mathcal{P}),$ $F \mapsto \tilde{F}$.

由于 $\tilde{F}(M \otimes N)$ 是图表 $F(M, N \otimes B \otimes B) \Rightarrow F(M, N \otimes B)$ 的coequalizer, 所以同构于F(M, N), 从而 $\tilde{F} \circ \phi \cong F$. 反之对于k线性函子 $G : {}_{A}\mathcal{C}_{B} \to \mathcal{P}$, 有 $\tilde{G} \circ \phi \cong G$. 所以函子 $F \mapsto \tilde{F}$ 是等价.

推论5.3.5. 在定理5.3.4中, 令 $\mathcal{M}' = \mathcal{C}_A$. 则 \mathcal{C} 双线性函子 $\mathcal{M} \times \mathcal{N} \to \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}', \mathcal{N})$, $(M, N) \mapsto - \otimes_A M \otimes N$ 使得 $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}', \mathcal{N})$ 实现张量积 $M \boxtimes_{\mathcal{C}} \mathcal{N}$.

注5.3.6. 因为每个A-B双模V都是 $V\otimes B$ 的商, 所以 $M\boxtimes_{\mathfrak{C}} N$ 的每个对象都是形如 $M\boxtimes_{\mathfrak{C}} N$ 的对象的商.

构造5.3.7. 设C是刚性的半群范畴. 若M是一个左C模,则函子 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}, (M, X) \mapsto X^L \otimes M$ 使得 M^{op} 成为一个右C模,我们将其记作 $M^{\mathrm{op}|L}$;函子 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}, (M, X) \mapsto X^R \otimes M$ 也使得 M^{op} 成为一个右C模,我们将其记作 $M^{\mathrm{op}|R}$. 类似地,若 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}, (M, X) \mapsto X^R \otimes M$ 也使得 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}$,我们将其记作 $M^{\mathrm{op}|R}$. 类似地,若 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}$, $M^{\mathrm{op}} \times \mathcal{C} \times M^{\mathrm{op}} \to M^{\mathrm{op}}, (X, N) \mapsto N \otimes X^L$ 使得 $M^{\mathrm{op}} \times \mathcal{C} \times M^{\mathrm{op}} \to M^{\mathrm{op}}, (X, N) \mapsto N \otimes X^R$ 也使得 $M^{\mathrm{op}} \times \mathcal{C} \times M^{\mathrm{op}} \to M^{\mathrm{op}}, (X, N) \mapsto N \otimes X^R$ 也使得 $M^{\mathrm{op}} \times \mathcal{C} \times M^{\mathrm{op}} \to M^{\mathrm{op}}, (X, N) \mapsto N \otimes X^R$ 也使得 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}$,我们将其记作 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}$,我们将其记作 $M^{\mathrm{op}} \times \mathcal{C} \to M^{\mathrm{op}}$,我们将其记的,我们将其记的,我们将其记的,我们将其记的,我们将其记的,我们将和的,我们将到的,我们将和的,我们将到的,我们将

推论5.3.8. 设C是多重融合范畴, M, N是半单左C模.

- (1) 有k线性等价 $\mathcal{M}^{\text{op}|L} \boxtimes_{\mathfrak{C}} \mathfrak{N} \simeq \text{Fun}_{\mathfrak{C}}(\mathfrak{M}, \mathfrak{N}), M \boxtimes_{\mathfrak{C}} N \mapsto [-, M]^R \otimes N.$
- (2) 有k线性等价 $\mathcal{M}^{\text{op}|R} \boxtimes_{\mathcal{C}} \mathcal{N} \simeq (\mathcal{N}^{\text{op}|L} \boxtimes_{\mathcal{C}} \mathcal{M})^{\text{op}}, M \boxtimes_{\mathcal{C}} N \mapsto N \boxtimes_{\mathcal{C}} M.$

证明. 设 $\mathcal{M} = \mathcal{C}_A$, $\mathcal{N} = \mathcal{C}_B$. (1) 有 $\mathcal{M}^{\text{op}|L} \simeq {}_A\mathcal{C}$, $M \mapsto M^R$, 以及

$$\mathfrak{M}^{\mathrm{op}|L} \boxtimes_{\mathfrak{C}} \mathfrak{N} \simeq {}_{A}\mathfrak{C}_{B} \simeq \mathrm{Fun}_{\mathfrak{C}}(\mathfrak{M}, \mathfrak{N})$$

$$M \boxtimes_{\mathcal{C}} N \mapsto M^R \otimes N \mapsto - \otimes_A M^R \otimes N \cong [-, M]^R \otimes N.$$

(2) 有 $\mathcal{M}^{\text{op}|R} \simeq {}_{A^{LL}}\mathfrak{C}, M \mapsto M^L, 以及$

$$\mathcal{M}^{\mathrm{op}|R} \boxtimes_{\mathcal{C}} \mathcal{N} \simeq {}_{A^{LL}} \mathcal{C}_{B} \simeq ({}_{B} \mathcal{C}_{A})^{\mathrm{op}} \simeq (\mathcal{N}^{\mathrm{op}|L} \boxtimes_{\mathcal{C}} \mathcal{M})^{\mathrm{op}}$$
$$M \boxtimes_{\mathcal{C}} N \mapsto M^{L} \otimes N \mapsto N^{R} \otimes M \mapsto N \boxtimes_{\mathcal{C}} M.$$

命题5.3.9. 设C和D是多重融合范畴, M是一个半单左C模, N是一个半单C-D双模, P是一个半单左D模. 有范畴等价Fun_C(M, N) \square_D P \simeq Fun_C(M, N \square_D P), F \square_D $P \mapsto F(-)$ \square_D P.

证明. 根据推论5.3.8(1), 有范畴等价Fune(\mathcal{M}, \mathcal{N}) $\boxtimes_{\mathcal{D}} \mathcal{P} \simeq \mathcal{M}^{\text{op}|L} \boxtimes_{\mathcal{C}} \mathcal{N} \boxtimes_{\mathcal{D}} \mathcal{P} \simeq \text{Fune}(\mathcal{M}, \mathcal{N} \boxtimes_{\mathcal{D}} \mathcal{P}),$ ($[-, M]^R \otimes N$) $\boxtimes_{\mathcal{D}} P \mapsto M \boxtimes_{\mathcal{C}} N \boxtimes_{\mathcal{D}} P \mapsto [-, M]^R \otimes (N \boxtimes_{\mathcal{D}} P).$

命题5.3.10. 设C和C'是多重融合范畴.

(1) 若 $A, B \in Alg(\mathcal{C})$ 和 $A', B' \in Alg(\mathcal{C}')$ 是可分代数,则有k线性等价

$${}_{A}\mathcal{C}_{B}\boxtimes_{A'}\mathcal{C}'_{B'}\simeq{}_{A\boxtimes A'}(\mathcal{C}\boxtimes\mathcal{C}')_{B\boxtimes B'},\quad M\boxtimes M'\mapsto M\boxtimes M'.$$

(2) 若M是半单右C模、M'是半单右C'模、M是半单左C模、M'是半单左C'模、则有K线性等价

$$(\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}) \boxtimes (\mathcal{M}' \boxtimes_{\mathcal{C}'} \mathcal{N}') \simeq (\mathcal{M} \boxtimes \mathcal{M}') \boxtimes_{\mathcal{C} \boxtimes \mathcal{C}'} (\mathcal{N} \boxtimes \mathcal{N}'),$$

$$(M \boxtimes_{\mathcal{C}} N) \boxtimes (M' \boxtimes_{\mathcal{C}'} N') \mapsto (M \boxtimes M') \boxtimes_{\mathcal{C} \boxtimes \mathcal{C}'} (N \boxtimes N').$$

(3) 若M, N是半单左C模, M'N'是半单左C'模, 则有k线性等价

$$\operatorname{Fun}_{\mathfrak{C}}(\mathcal{M},\mathcal{N})\boxtimes\operatorname{Fun}_{\mathfrak{C}'}(\mathcal{M}',\mathcal{N}')\simeq\operatorname{Fun}_{\mathfrak{C}\boxtimes\mathfrak{C}'}(\mathcal{M}\boxtimes\mathcal{M}',\mathcal{N}\boxtimes\mathcal{M}'),$$

$$F \boxtimes F' \mapsto F \boxtimes F'$$
.

证明. (1) 令 $G: {}_{A\boxtimes A'}({}^{\mathfrak{C}}\boxtimes {}^{\mathfrak{C}'}){}_{B\boxtimes B'}\to {}^{\mathfrak{C}}\boxtimes {}^{\mathfrak{C}'}$ 和 $G: {}_{A}{}^{\mathfrak{C}}{}_{B}\boxtimes {}_{A'}{}^{\mathfrak{C}'}{}_{B'}\to {}^{\mathfrak{C}}\boxtimes {}^{\mathfrak{C}'}$ 为遗忘函子, F,F'是它们的左伴随. 由monad同构 $G\circ F\cong G'\circ F'$, 结论得证.

- (2) 结合(1)和定理5.3.4.
- (3) 结合(1)和命题5.1.15.

推论5.3.11. 设C和D是多重融合范畴. 则 $\mathfrak{Z}(\mathbb{C} \boxtimes \mathbb{D}) \simeq \mathfrak{Z}(\mathbb{C}) \boxtimes \mathfrak{Z}(\mathbb{D})$.

5.4. 多重融合范畴的张量积.

命题5.4.1. 一个半群范畴C是刚性的, 当且仅当它满足下列条件:

- (1) C enrich于自身, 并且函子 $[-,1]: C^{op} \to C$ 是范畴等价.
- (2) 对所有 $X, Y \in \mathcal{C}$, 典范态射 $Y \otimes [X, 1] \rightarrow [X, Y]$ 是同构.

证明. 必要性. (1) $[X,Y] = Y \otimes X^L$. 特别地, $[X,1] = X^L$. (2) 由命题4.3.4立得.

构造5.4.2. 设C是辫多重融合范畴, M是它上的多重融合范畴, N是C上的多重融合范畴. C \boxtimes C \boxtimes 线性函子(M \boxtimes M) \times (N \boxtimes N) \to M \boxtimes C \boxtimes N, (M \boxtimes M', N \boxtimes N') \mapsto (M \boxtimes M') \boxtimes C (N \boxtimes N') \mapsto M \boxtimes C \boxtimes C \boxtimes C \boxtimes P \boxtimes C \boxtimes C

定理5.4.3. 设C是辫多重融合范畴,M是 \bar{C} 上的多重融合范畴,N是C上的多重融合范畴。则 $M \boxtimes_{C} N$ 是多重融合范畴。

证明. 我们需要证明M $\boxtimes_{\mathcal{C}}$ N是刚性的. 为此我们需要验证上述命题的两个条件. 易见 $M^L \boxtimes_{\mathcal{C}}$ $N^L \not= M \boxtimes_{\mathcal{C}} N$ 的左对偶. 因此 $[M \boxtimes_{\mathcal{C}} N, \mathbf{1}] = M^L \boxtimes_{\mathcal{C}} N^L$. 有范畴等价 $M \boxtimes_{\mathcal{C}} N \simeq N^{\mathrm{op}|L} \boxtimes_{\mathcal{C}} M^{L|\mathrm{op}} \simeq (\mathcal{M} \boxtimes_{\mathcal{C}} N)^{\mathrm{op}}, M \boxtimes_{\mathcal{C}} N \mapsto N^L \boxtimes_{\mathcal{C}} M^L \mapsto M^L \boxtimes_{\mathcal{C}} N^L$. 因此 $[-, \mathbf{1}]$ 是等价.

根据命题4.3.4, 当Y形如 $M \boxtimes_{\mathcal{C}} N$ 时, 典范态射 $Y \otimes [X, \mathbf{1}] \to [X, Y]$ 是同构. 又 $- \otimes [X, \mathbf{1}]$ 和[X, -]都是正合函子, 因此该典范态射对于一般的Y亦是同构.

推论5.4.4. 设C是对称多重融合范畴,M和N是C上的辫多重融合范畴。则 $M \boxtimes_C N$ 是辫多重融合范畴。

5.5. 模的对偶.

定义5.5.1. 设C和D是多重融合范畴, M是一个半单C-D双模, N是一个半单D-C双模. 称M是N的 左对偶, N是M的右对偶, 若存在D-D双模函子 $u: D \to N \boxtimes_C M$ 和C-C双模函子 $v: M \boxtimes_D N \to C$, 使得下列复合双模函子都与恒同函子同构:

$$\begin{split} & \mathcal{M} \simeq \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{D} \xrightarrow{\mathrm{Id}_{\mathcal{M}} \boxtimes_{\mathcal{D}} u} \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{M} \xrightarrow{v \boxtimes_{\mathcal{C}} \mathrm{Id}_{\mathcal{M}}} \mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{M} \simeq \mathcal{M}, \\ & \mathcal{N} \simeq \mathcal{D} \boxtimes_{\mathcal{D}} \mathcal{N} \xrightarrow{u \boxtimes_{\mathcal{D}} \mathrm{Id}_{\mathcal{N}}} \mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \xrightarrow{\mathrm{Id}_{\mathcal{N}} \boxtimes_{\mathcal{C}} v} \mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{C} \simeq \mathcal{N}. \end{split}$$

注5.5.2. 一个半单双模的左(右)对偶在典范等价下唯一.

定理5.5.3. 设 \mathfrak{C} 和 \mathfrak{D} 是多重融合范畴, \mathfrak{M} 是一个半单 \mathfrak{C} - \mathfrak{D} 双模. 则 $\mathfrak{Fun}_{\mathfrak{C}}(\mathfrak{M},\mathfrak{C})$ 是 \mathfrak{M} 的右对偶, $\mathfrak{Fun}_{\mathfrak{D}^{\mathrm{rev}}}(\mathfrak{M},\mathfrak{D})$ 是 \mathfrak{M} 的 左对偶.

证明. 双模函子 $u: \mathcal{D} \to \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M}) \simeq \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{C}) \boxtimes_{\mathcal{C}} \mathcal{M}$ 和 $v: \mathcal{M} \boxtimes_{\mathcal{D}} \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{C}) \to \mathcal{C}, M \boxtimes_{\mathcal{C}} F \mapsto F(M)$ 使得Fun_{\mathcal{C}}(\mathcal{M}, \mathcal{C})是 \mathcal{M} 的右对偶. 同理可证Fun_{\mathcal{D} rev}(\mathcal{M}, \mathcal{D})是 \mathcal{M} 的左对偶.

注**5.5.4.** 有双模范畴等价 $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{C}) \simeq \mathcal{M}^{L|\operatorname{op}|L}$ 和 $\operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathcal{M},\mathcal{D}) \simeq \mathcal{M}^{R|\operatorname{op}|R}$.

定理5.5.6. 设C和D是多重融合范畴, M是一个可逆半单C-D双模.

- (1) 典范半群函子 $\mathcal{C} \to \operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathcal{M}, \mathcal{M})$ 和 $\mathcal{D}^{\operatorname{rev}} \to \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ 是等价.
- (2) 典范半群函子 $\mathfrak{Z}(\mathfrak{C}) \to \operatorname{Fun}_{\mathfrak{C}|\mathfrak{D}}(\mathfrak{M},\mathfrak{M}) \leftarrow \mathfrak{Z}(\mathfrak{D})$ 是等价.
- (3) 诱导的半群等价 $\mathfrak{Z}(\mathfrak{C}) \simeq \mathfrak{Z}(\mathfrak{D})$ 是辫半群等价.

证明. 设半单D-C双模N是M的逆. 则半群函子 $-\boxtimes_{\mathcal{C}} \mathcal{M}: \operatorname{Fun}_{\mathcal{C}^{\operatorname{rev}}}(\mathcal{C},\mathcal{C}) \to \operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathcal{C}\boxtimes_{\mathcal{C}} \mathcal{M},\mathcal{C}\boxtimes_{\mathcal{C}} \mathcal{M}) \simeq \operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathcal{M},\mathcal{M}) = -\boxtimes_{\mathcal{D}} \mathcal{N}: \operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathcal{M},\mathcal{M}) \to \operatorname{Fun}_{\mathcal{C}^{\operatorname{rev}}}(\mathcal{M}\boxtimes_{\mathcal{D}} \mathcal{N},\mathcal{M}\boxtimes_{\mathcal{D}} \mathcal{N}) \simeq \operatorname{Fun}_{\mathcal{C}^{\operatorname{rev}}}(\mathcal{C},\mathcal{C})$ 逆. 类似地,半群函子Fun $_{\mathcal{C}|\mathcal{C}}(\mathcal{C},\mathcal{C}) \to \operatorname{Fun}_{\mathcal{C}|\mathcal{D}}(\mathcal{M},\mathcal{M})$ 是等价. 这证明了(1)和(2).

假设 $\mathfrak{Z}(\mathfrak{C}) \simeq \mathfrak{Z}(\mathfrak{D})$ 将X, X'映为Y, Y'. 则有交换图表:

$$X \otimes X' \otimes M \stackrel{\sim}{\longrightarrow} X \otimes M \otimes Y' \stackrel{\sim}{\longrightarrow} M \otimes Y' \otimes Y \stackrel{\operatorname{Id}_{M} \otimes \beta_{Y,Y'}^{-1}}{\longrightarrow} M \otimes Y \otimes Y' \\ \downarrow^{\operatorname{Id}_{M} \otimes \beta_{Y',Y}} & \downarrow^{\operatorname{Id}_{M} \otimes \beta_{Y,Y'}} \\ X' \otimes X \otimes M \stackrel{\sim}{\longrightarrow} X' \otimes M \otimes Y \stackrel{\sim}{\longrightarrow} M \otimes Y \otimes Y' \stackrel{\operatorname{Id}_{M} \otimes \beta_{Y',Y}^{-1}}{\longrightarrow} M \otimes Y' \otimes Y.$$

外层方块意味着 $3(\mathfrak{C}) \simeq 3(\mathfrak{D})$ 是辫半群等价. 这证明了(3).

5.6. 多重融合范畴的结构.

定义5.6.1. 称一个非零多重融合范畴是不可分解的, 若它不是两个非零多重融合范畴的直和.

例5.6.2. 融合范畴是不可分解的, 因为单位对象是单的.

定理5.6.3. 设C是一个不可分解的多重融合范畴, $\mathbf{1} = e_1 \oplus \cdots \oplus e_n$ 是单对象分解. 令 $\mathbf{c}_{ij} = e_i \otimes \mathbf{c} \otimes e_j$.

- $(1) e_i \otimes e_i \cong e_i \cong e_i^R$. $\exists i \neq j \forall e_i \otimes e_j = 0$. 从而 $\mathfrak{C} \simeq \bigoplus_{i,j} \mathfrak{C}_{ij}$.
- (2) 若 $X \in \mathcal{C}_{ii}$ 和 $Y \in \mathcal{C}_{il}$ 非零, 则 $X \otimes Y$ 非零.
- (3) $\mathcal{C}_{ij} \not\simeq 0$.
- (4) c的张量积诱导 \mathcal{C}_{ii} - \mathcal{C}_{ll} 双模等价 $\mathcal{C}_{ij} \boxtimes_{\mathcal{C}_{ji}} \mathcal{C}_{jl} \simeq \mathcal{C}_{il} \simeq \operatorname{Fun}_{\mathcal{C}_{ji}} (\mathcal{C}_{ji}, \mathcal{C}_{jl})$.
- (5) \mathcal{C}_{ij} 是可逆的 \mathcal{C}_{ii} - \mathcal{C}_{jj} 双模.
- (6) C_{ii}-C双模⊕, C_{ij}与C-C_{ii}双模⊕, C_{ji}互逆.
- (7) $\mathfrak{Z}(\mathfrak{C}) \simeq \mathfrak{Z}(\mathfrak{C}_{ii})$.

证明. (1) 对偶态射 $\mathbf{1} \to e_i^R \otimes e_i$ 非零, 因此 $e_i^R \otimes e_i$ 非零. 因此 $e_i^R \otimes e_i \hookrightarrow \mathbf{1} \otimes e_i \cong e_i$ 和 $e_i^R \otimes e_i \hookrightarrow$ $e_i^R \otimes \mathbf{1} \cong e_i^R$ 都是同构. 所以 $e_i \otimes e_i \cong e_i \cong e_i^R$. 因为 $e_i \otimes \mathbf{1} \cong e_i^{\mathring{\mathbf{H}}}$, 所以当 $i \neq j$ 时 $e_i \otimes e_j = 0$. (2) $\operatorname{Hom}_{\mathcal{C}}(X \otimes Y, X \otimes Y) \cong \operatorname{Hom}(X^L \otimes X, Y \otimes Y^L)$ 含有非零复合态射 $X^L \otimes X \to e_j \to Y \otimes Y^L$.

- (3) 定义二元关系, 当 $\mathcal{C}_{ij} \not\simeq 0$ 时 $i \sim j$. 由于 $e_i \in \mathcal{C}_{ii}$, 该关系是自反的. 由于对偶诱导等 价 $C_{ij} \sim C_{ii}^{op}$, 所以该关系是对称的. 再由(2)该关系是传递的, 因而是一个等价关系. 由于C不可分 解. 该二元关系只有一个等价类.
- (4) 任取非零 $X \in \mathcal{C}_{ji}$ 和 $Y \in \mathcal{C}_{jl}$. 令A = [X, X], B = [Y, Y]. 根据 $(2), [X, -] : \mathcal{C}_{ji} \to \mathcal{C}_{jj}$ 保守, 故由定理4.5.5, $\mathfrak{C}_{ji} \simeq (\mathfrak{C}_{jj})_A$. 同理 $\mathfrak{C}_{jl} \simeq (\mathfrak{C}_{jj})_B$, 从而 $\mathfrak{C}_{ij} \boxtimes_{\mathfrak{C}_{jj}} \mathfrak{C}_{jl} \simeq \operatorname{Fun}_{\mathfrak{C}_{jj}}(\mathfrak{C}_{ji}, \mathfrak{C}_{jl}) \simeq {}_A(\mathfrak{C}_{jj})_B$. 遗忘函子 $G: {}_{A}(\mathcal{C}_{jj})_{B} \to \mathcal{C}_{jj}$ 有左伴随 $F = A \otimes - \otimes B$. 函子 $G' = X \otimes - \otimes Y^{L}: \mathcal{C}_{il} \to \mathcal{C}_{jj}$ 有左 伴随 $F' = X^L \otimes - \otimes Y$. 根据Barr-Beck定理, $G \cap G'$ 是monadic. 由monad同构 $G \circ F \cong G' \circ F'$, $\mathcal{A}_A(\mathcal{C}_{ij})_B \simeq \mathcal{C}_{il}$. 诱导的等价 $\mathcal{C}_{ij} \boxtimes_{\mathcal{C}_{ij}} \mathcal{C}_{jl} \simeq \mathcal{C}_{il}$ 将 $P \boxtimes_{\mathcal{C}_{ij}} Q$ 映为 $P \otimes Q$.
 - (5)是(4)的推论.
 - (6) 由色 $\boxtimes_{\mathfrak{C}} \mathfrak{C} \simeq \mathfrak{C}$ 得($\bigoplus_{i} \mathfrak{C}_{ij}$) $\boxtimes_{\mathfrak{C}} (\bigoplus_{i} \mathfrak{C}_{ji}) \simeq \mathfrak{C}_{ii}$. 由(4)知($\bigoplus_{i} \mathfrak{C}_{ji}$) $\boxtimes_{\mathfrak{C}_{ii}} (\bigoplus_{i} \mathfrak{C}_{ij}) \simeq \mathfrak{C}$.
 - (7) 结合(6)和定理5.5.6.

注5.6.4. 一个辫多重融合范畴是不可分解的, 当且仅当它是辫融合范畴. 事实上, 辫结构意味着

定理5.6.5. 设 \mathfrak{D} 是不可分解的多重融合范畴, \mathfrak{M} 是一个非零的半单右 \mathfrak{D} 模, $\mathfrak{C} = \operatorname{Fun}_{\mathcal{D}^{\mathrm{rev}}}(\mathfrak{M}, \mathfrak{M})$. 则典范的半群函子 $\mathcal{D}^{rev} \to \operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ 是等价, 并且 \mathcal{M} 是可逆的 \mathcal{C} - \mathcal{D} 双模.

证明. 多重融合范畴 $\operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathfrak{M}\oplus \mathfrak{D},\mathfrak{M}\oplus \mathfrak{D})\simeq \begin{pmatrix} \mathfrak{C} & \mathfrak{M} \\ \operatorname{Fun}_{\mathcal{D}^{\operatorname{rev}}}(\mathfrak{M},\mathfrak{D}) & \mathfrak{D} \end{pmatrix}$ 是不可分解的. 利用定 理5.6.3(4)的推理可证结论.

推论5.6.6. 设C是一个不可分解融合范畴. 典范辫半群函子 $3(C) \boxtimes \overline{3(C)} \to 3(\overline{3(C)})$ 是等价.

证明. 因为 $\mathfrak{Z}(\mathfrak{C}) \simeq \operatorname{Fun}_{\mathfrak{C}\boxtimes \mathfrak{C}^{\operatorname{rev}}}(\mathfrak{C},\mathfrak{C})$, 所以 \mathfrak{C} 是可逆的 $\mathfrak{Z}(\mathfrak{C})$ - $\mathfrak{C}\boxtimes \mathfrak{C}^{\operatorname{rev}}$ 双模. 应用定理 $\mathfrak{Z}.\mathfrak{Z}.\mathfrak{Z}.\mathfrak{Z}.\mathfrak{Z}$. 结论得

推论5.6.7. 设C是融合范畴. 则C $\simeq \mathfrak{Z}(C)_{[1,1]_{\mathfrak{Z}(C)}}$.

证明. 由于 $Fun_{3(C)}(C,C) \simeq C \boxtimes C^{rev}$ 的单位对象是单的, C是不可分解的左 $\mathfrak{Z}(C)$ 模. 根据命题5.1.13, $\mathfrak{C} \simeq \mathfrak{Z}(\mathfrak{C})_{[\mathbf{1},\mathbf{1}]_{\mathfrak{Z}(\mathfrak{C})}}.$

推论5.6.8. 设 \mathcal{C} 是一个融合范畴. 若 $\mathfrak{Z}(\mathcal{C}) \simeq \mathrm{Vec}$, 则 $\mathcal{C} \simeq \mathrm{Vec}$.

推论5.6.9. 设C是一个多重融合范畴. 若 $\mathfrak{Z}(C) \simeq Vec$, 则存在半单k线性范畴M使得 $C \simeq Fun(\mathcal{M}, \mathcal{M})$.

证明. 由于 $\mathfrak{Z}(\mathfrak{C})$ 不可分解, \mathfrak{C} 不可分解. 令 $\mathfrak{M} = \bigoplus_i \mathfrak{C}_{ii}$. 则M是可逆的 \mathfrak{C} - \mathfrak{C}_{ii} 双模, 故 $\mathfrak{C} \simeq \operatorname{Fun}_{\mathfrak{C}_{\underline{i}}\mathfrak{C}_{i}}$ ($\mathfrak{M}, \mathfrak{M}$). 因为 $\mathfrak{Z}(\mathfrak{C}_{ii}) \simeq \mathfrak{Z}(\mathfrak{C}) \simeq \text{Vec},$ 所以 $\mathfrak{C}_{ii} \simeq \text{Vec}.$

5.7. 全局维数.

引理5.7.1. 设C是多重融合范畴, $X \in C$ 是一个单对象, 有非典范同构 $X^L \cong X^R$.

证明. $\operatorname{Hom}_{\mathfrak{C}}(X^L, X^R) \cong \operatorname{Hom}_{\mathfrak{C}}(X \otimes X^L, \mathbf{1}) \neq 0.$

定义5.7.2. 设 $^{\circ}$ 是一个融合范畴. 一个单对象 $X \in ^{\circ}$ 的平方范数定义为标量

$$\|X\|^2: \mathbf{1} \xrightarrow{u \otimes u} X^R \otimes X \otimes X \otimes X^L \xrightarrow{f^{-1} \otimes \operatorname{Id}_X \otimes \operatorname{Id}_X \otimes f} X^L \otimes X \otimes X \otimes X^R \xrightarrow{v \otimes v} \mathbf{1}$$

其中 $f: X^L \to X^R$ 是一个同构. \mathfrak{C} 的**全局维数** $\dim \mathfrak{C}$ 定义为所有单对象的平方范数之和.

注**5.7.3.** (1) $\|\mathbf{1}\|^2 = 1$.

- (2) 由于不同f的选取只相差一个倍数, 所以 $||X||^2$ 与f选取无关.
- (3) 对于融合范畴 \mathfrak{C} 和 \mathfrak{D} , $\dim(\mathfrak{C} \boxtimes \mathfrak{D}) = \dim \mathfrak{C} \dim \mathfrak{D}$.

事实5.7.4. $||X||^2 > 0$. 特别地, dim $\mathcal{C} \ge 1$; 等式成立当且仅当 $\mathcal{C} \simeq \text{Vec.}$

事实5.7.5. 设C是融合范畴. 则dim $\mathfrak{Z}(\mathbb{C}) = (\dim \mathbb{C})^2$.

推论5.7.6. 设C是一个融合范畴, \mathcal{M} 是不可分解的半单左C模. 则dim $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M}) = \dim \mathcal{C}$.

证明. 结合定理5.5.6, 定理5.6.5和上述事实.

例5.7.7. 设G是一个有限群. 有dim Rep G = dim Vec $_G$ = |G|. 因而dim $\mathfrak{J}(\operatorname{Rep} G)$ = dim $\mathfrak{J}(\operatorname{Vec}_G)$ = $|G|^2$, dim Fun $_{\operatorname{Rep}_G}(\operatorname{Vec},\operatorname{Vec})$ = |G|. 显然半群函子Vec $_G$ \to Fun $_{\operatorname{Rep}_G}(\operatorname{Vec},\operatorname{Vec})$ 将单对象映为单对象,所以是等价. 于是根据定理5.6.5,Vec是可逆Vec $_G$ -Rep G双模,并且半群函子Rep $_G$ \to Fun $_{\operatorname{Vec}_G}(\operatorname{Vec},\operatorname{Vec})$ 也是等价.

假设G是Abel群. 则G的不可约表示都是一维的,因而与群同态 $\chi:G\to\mathbb{C}^\times$ 一一对应. 单对象 $\mathbb{C}_g\in \mathrm{Vec}_G$ 及其上的半辫 $\chi(h):\mathbb{C}_g\otimes\mathbb{C}_h\to\mathbb{C}_g\otimes\mathbb{C}_h$ 定义了 $\mathfrak{Z}(\mathrm{Vec}_G)$ 的一个单对象 (\mathbb{C}_g,χ) . 由于 $\dim\mathfrak{Z}(\mathrm{Vec}_G)=|G|^2,(\mathbb{C}_g,\chi)$ 列举了所有的单对象. 有半群等价 $\mathfrak{Z}(\mathrm{Vec}_G)\simeq\mathrm{Vec}_G\boxtimes\mathrm{Rep}\,G,(\mathbb{C}_g,\chi)\mapsto\mathbb{C}_g\boxtimes\mathbb{C}^\times$. 遗忘函子 $\mathfrak{Z}(\mathrm{Vec}_G)\to\mathrm{Rep}_G$ 将 (\mathbb{C}_g,χ) 映为一维表示 \mathbb{C}^\times .