U.D.

Computació

Determinista

Determinista

no

Determinist

Equivalència entre AFD i AFN

Automata Fin amb transicions

Equivalència entre

Autòmats Finits

U.D. Computació

DSIC - UPV

Índex

Autòmats Finits

ט.ט. Computació

Autòmat Fini Determinista

Autòmat Fini

Determinista

Autòmata Fi amb transicions buides

Equivalència entre

- Autòmat Finit Determinista
- Autòmat Finit no Determinista
- Autòmata Finit amb transicions buides

Autòmat Finit Determinista (AFD)

Autòmats Finits

U.D. Computació

Autòmat Finit Determinista

Automat Finit no Determinista Equivalència entre AFD i AFN

Automata Fin amb transicions buides Equivalència entre

Autòmat Finit Determinista (AFD)

Un Autòmat Finit Determinista (AFD) és una 5-tupla de la forma següent: $A = (Q, \Sigma, \delta, q_0, F)$, on:

- Q és un conjunt finit d'estats
- lacksquare Σ és un conjunt finit de símbols anomenat *alfabet*
- $\delta: Q \times \Sigma \rightarrow Q$ és una funció parcial anomenada funció de transició
- lacksquare $q_0 \in Q$ és l'estat inicial
- $F \subseteq Q$ és el conjunt d'estats finals.

Quan la funció de transició és total direm que l'autòmat está completament especificat o és complet.

Representació: taula de transicions

Autòmats Finits

Autòmat Finit Determinista

|Q| files i $|\Sigma|$ columnes. (i,j) és l'estat $\delta(q_i,a_i)$ on q_i és l'*i*-èssim element de Q i a_i el j-èssim de Σ .

Exemple

Siga $A = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_0, q_1\})$ amb la definició de δ següent:

$$\delta(q_0, a) = q_0$$
 $\delta(q_1, a) = q_2$ $\delta(q_2, a) = q_2$
 $\delta(q_0, b) = q_1$ $\delta(q_1, b) = q_1$ $\delta(q_2, b) = q_2$

La taula de transicions corresponent és:

	а	b
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_2

Representació: diagrama de transicions

Autòmats Finits

U.D. Computació

Autòmat Finit Determinista

no
Determinista
Equivalència entre
AFD i AFN

Autòmata Fin amb transicions buides Equivalència entre

És un graf dirigit tal que:

- El nombre de nodes del graf és |Q|, de forma que a cada node li correspon un estat que l'etiqueta.
- $\forall q_i, q_j \in Q, \forall a_k \in \Sigma$, si $\delta(q_i, a_k) = q_j$ aleshores el graf té un arc del node q_i al q_i etiquetat amb el símbol a_k .
- Se senyala l'estat inicial amb una fletxa curta que entra al node corresponent.
- Es marquen els nodes corresponents a estats finals amb un doble cercle.

U.D. Computació

Autòmat Finit Determinista

Autòmat Fini no Determinista

Determinista Equivalència entre AFD i AFN

amb transicions buides

Equivalència entre AFN i $AF\lambda$

Exemple

El diagrama de transicions corresponent a l'exemple anterior es mostra en la figura següent.

Extensió de la funció de transició a cadenes

Autòmats Finits

Autòmat Finit Determinista

Definim la funció $\hat{\delta}: Q \times \Sigma^* \to Q$ com segueix: $\forall a \in Q, x \in \Sigma^*, a \in \Sigma$

$$\blacksquare \hat{\delta}(q,\lambda) = q$$

$$\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

Com $\hat{\delta}(q, a) = \hat{\delta}(q, \lambda a) = \delta(\hat{\delta}(q, \lambda), a) = \delta(q, a)$, a partir d'ara, per comoditat escriurem δ en lloc de $\hat{\delta}$.

Llenguatge acceptat per un AFD

Autòmats Finits

ט.ט. Computaci

Autòmat Finit Determinista

no Determinista Equivalència entre

Autòmata Fin amb transicions buides

Equivalència entre AFN i $AF\lambda$

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFD, i siga $x \in \Sigma^*$. Es diu que la cadena x és acceptada pel AFD A quan $\delta(q_0, x) \in F$.

Llenguatge acceptat per un AFD

Es defineix el llenguatge acceptat pel AFD A com:

$$L(A) = \{x \in \Sigma^* | \delta(q_0, x) \in F\}$$

U.D.

Autòmat Finit Determinista

Autàmat Finit

no

Determinis

Equivalència ent

Autòmata Fin

amb transicions

Equivalència entre AFN i AF λ

U.D.

Computació

Autòmat Finit Determinista

Autòmat Fini

no

Determinist

Equivalència en

AFD i AFN

amb transicions

Equivalència entre

$$\rightarrow$$
 a,b a,b

$$\rightarrow \bigcirc \stackrel{a,b}{\rightarrow} \bigcirc \stackrel{}{} \bigcirc$$

ט.ט. Computació

Autòmat Finit

Autòmat Finit

Determinist

Equivalència entr

Autòmata Fir amb transicions

Equivalència entre

o.b. Computació

Autòmat Finit Determinista

Autòmat Fini

Determinist

Equivalència entre

Automata Fil amb transicions

Equivalència entre

U.D.

Computació

Autòmat Finit Determinista

Autòmat Finit

Autómat Finit

Determinista

AFD i AFN

amb transicions buides

Equivalència entre

Autòmat Finit

Autòmat Finit no Determinista (AFN)

Autòmats Finits

U.D. Computacio

Autòmat Fini Determinista

Autòmat Finit no Determinista Equivalencia entre

Autòmata Finit amb transicions buides

Autòmat Finit no Determinista (AFN)

Un Autòmat Finit No Determinista (AFN) és una 5-tupla $A = (Q, \Sigma, \delta, q_0, F)$, on:

- Q, Σ , $q_0 \in Q$, i $F \subseteq Q$ són el mateix conjunt d'estats, alfabet d'entrada, estat inicial i conjunt d'estats finals de la definició del AFD
- $\delta: Q \times \Sigma \to 2^Q$ és la *funció de transició*, definida també com una funció parcial.

Representació

Autòmats Finits

U.D. Computacio

utòmat Finit

Autòmat Finit no Determinista Equivalència entre

Autòmata Fin amb transicions

Equivalència entre

Exemple

Siga $A = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_0, q_1, q_2\})$ on la funció de transició ve definida per:

$$\begin{array}{ll} \delta(q_0,a) = \{q_0,q_1,q_2\} & \delta(q_1,a) = \emptyset & \delta(q_2,a) = \emptyset \\ \delta(q_0,b) = \{q_1,q_2\} & \delta(q_1,b) = \{q_1,q_2\} & \delta(q_2,b) = \emptyset \\ \delta(q_0,c) = \{q_2\} & \delta(q_1,c) = \{q_2\} & \delta(q_2,c) = \{q_2\} \end{array}$$

La corresponent taula de transicions és:

	a	b	С
q_0	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$ $\{q_1, q_2\}$	$\{q_2\}$ $\{q_2\}$
q_1	Ø	$\{q_1, q_2\}$	$\{q_2\}$
q_2	Ø	Ø	{ q ₂ }

Representació

Autòmats Finits

U.D.

Computació

Determinista

Autòmat Finit

no Determinista

Determinista Foulvalància enti

Equivalència ent

Automata Fir amb transicions

Equivalència entre AFN i $AF\lambda$

Exemple

El diagrama de transicions és:

Extensió de la funció de transicions a cadenes

Autòmats Finits

U.D. Computació

Autòmat Finit Determinista

Autòmat Finit no Determinista

Equivalència entre AFD i AFN

Autòmata Fin amb transicions buides Definim la funció $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ com segueix:

$$\forall q \in Q, x \in \Sigma^*, a \in \Sigma$$
:

$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

Com $\hat{\delta}(q, a) = \bigcup_{p \in \hat{\delta}(q, \lambda)} \delta(p, a) = \bigcup_{p \in \{q\}} \delta(p, a) = \delta(q, a)$, a partir d'ara escriurem δ en loc de $\hat{\delta}$.

Llenguatge acceptat per un AFN

Autòmats Finits

U.D.

Autòmat Fin

Autòmat Finit no Determinista

Equivalència entre

Autòmata Fin amb

transicions buides

Equivalència entre AFN i $AF\lambda$

Llenguatge acceptat per un AFN

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFN, es defineix el *llenguatge acceptat* pel AFN A com

$$L(A) = \{x \in \Sigma^* | \delta(q_0, x) \cap F \neq \emptyset\}$$

Autòmats Finits

Computació

Determinista

Autòmat Finit no Determinista

Equivalència ent AFD i AFN

Autòmata Finit amb transicions

Equivalència entre AFN i AF λ

Autòmats Finits

O.D. Computació

Determinista

Autòmat Finit no Determinista

Equivalència entr AFD i AFN

Automata Fin amb transicions buides

Equivalència entre AFN i AF λ

Autòmats Finits

Computació

Autòmat Finit Determinista

Autòmat Finit no Determinista

Equivalència entre AFD i AFN

Autòmata Fini amb transicions

Equivalència entre AFN i $AF\lambda$

Autòmats Finits

O.D. Computació

Determinista

Autòmat Finit no Determinista

Equivalència entr

Automata Fin amb transicions buides

Equivalència entre AFN i AF λ

Autòmats Finits

ام.ک. Computacić

Autòmat Finit Determinista

Autòmat Finit no Determinista

Equivalència entre

Autòmata Fin amb transicions

Equivalència entre AFN i $AF\lambda$

Autòmats Finits

Computacić

Autòmat Finit Determinista

Autòmat Finit no Determinista

Equivalència entre

Automata Fir amb transicions buides

Equivalència entre AFN i $AF\lambda$

Equivalència entre AFD i AFN

Autòmats Finits

ט.ט. Computació

Determinista

Autòmat Finit

Automat Finit no Determinista Equivalència entre AFD i AFN

Automata Fin amb transicions buides Equivalència entre

- Tot AFD és un AFN, ja que es pot entendre com un cas particular.
- La forma d'obtenir un AFD equivalent a un determinat AFN consisteix a fer que els estats del AFD es corresponguen amb conjunts d'estats del AFN, i fer que la funció de transició del AFD simule el canvi de conjunts d'estats que es produeix en el AFN per a un mateix símbol d'entrada.

Equivalència entre AFD i AFN

Autòmats Finits

 Extensió de la funció de transició a conjunts d'estats, $\delta' \cdot 2^Q \times \Sigma \rightarrow 2^Q$.

$$\forall P \subseteq Q, a \in \Sigma \quad \delta'(P, a) = \bigcup_{p \in P} \delta(p, a)$$

- Extensió de la funció de transició a conjunts d'estats i cadenes. $\delta'': 2^Q \times \Sigma^* \to 2^Q$:
 - $\blacksquare \forall P \subseteq Q \quad \delta''(P,\lambda) = P$
 - $\forall P \subset Q, x \in \Sigma^*, a \in \Sigma \quad \delta''(P, xa) = \delta'(\delta''(P, x), a)$

Equivalència entre AFD i AFN

Autòmats Finits

U.D. Computacio

Autòmat Fini Determinista

Automat Finit no Determinista Equivalència entre

Autòmata Finit amb transicions buides Equivalència entre

Equivalència entre AFD i AFN

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFN tal que L = L(A). Definim un AFD $A' = (Q', \Sigma, \delta', q'_0, F')$ de forma que:

$$extbf{Q}' = 2^Q, q_0' = \{q_0\},$$

$$\blacksquare F' = \{q' \in Q' | q' \cap F \neq \emptyset\},\$$

es defineix la funció de transició δ' com l'extensió de la funció de transició δ a conjunts d'estats.

L'autòmat A' que es defineix és un AFD, ja que el perfil de la seua funció de transició és $\delta': Q' \times \Sigma \to Q'$.

Exemple

Autòmats Finits

O.D. Computació

Automat Finit Determinista

Determinista

no Determinista

Equivalència entre AFD i AFN

Autómata Fi amb transicions buides

Equivalència entre

	а	b	С
$\{q_0\}$	$\{q_0, q_1, q_2\}$ $\{q_0, q_1, q_2\}$ \emptyset	$\{q_1, q_2\}$	{ <i>q</i> ₂ }
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_2\}$
$\{q_1, q_2\}$	Ø	$\{q_1, q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø	$\{q_2\}$

Exemple

Autòmats Finits

U.D.

Computació

Autòmat Fini

Autòmat Finit

Determinis

Equivalència ent

Automata F amb transicions

Equivalència entre

Autòmata Finit amb transicions buides $(AF\lambda)$

Autòmats Finits

ט.ט. Computacio

Autòmat Finit Determinista

Automat Finit no Determinista Equivalència entre AFD i AFN

Autòmata Finit amb transicions buides

Equivalència entre AFN i $AF\lambda$

Autòmata Finit amb transicions buides $(AF\lambda)$

Un Autòmata Finit amb transicions buides ($AF\lambda$) és una 5-tupla $A = (Q, \Sigma, \delta, q_0, F)$, on:

- Q, Σ , $q_0 \in Q$, i $F \subseteq Q$ són el mateix conjunt d'estats, alfabet d'entrada, estat inicial i conjunt d'estats finals de la definició del AFD
- $\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$ la funció de transicions, definida també com una funció parcial.

Representació

Autòmats Finits

U.D. Computació

Autòmat Finit

Autòmat Finit

Determinista

Equivalència entre

Autòmata Finit amb transicions buides

Equivalència entre

Exemple

Siga $A=(\{q_0,q_1,q_2,q_3\},\{0,1\},\delta,q_0,\{q_0\})$ on la funció de transició ve definida per:

	0	1	λ
q_0	Ø	Ø	$\{q_1\}$
q_1	Ø	$\{q_3\}$	$\{q_2\}$
q_2	$\{q_1\}$	{ q ₂ }	Ø
q ₃	Ø	{ q ₃ }	$\{q_0\}$

Representació

Autòmats Finits

U.D.

Computacio

Determinista

Autòmat Fin

Determinista

Equivalència entre AFD i AFN

Autòmata Finit

amb transicions buides

Equivalència entre AFN i $AF\lambda$

Exemple

El diagrama de transicions:

Extensió de la funció de transicions a cadenes

Autòmats Finits

U.D. Computació

Autòmat Finit

no
Determinista
Equivalència entre
AFD i AFN

Autòmata Finit amb transicions buides

Equivalència entr 4FN i 4F λ

Concepte de λ -clausura

- Siga $q \in Q$, $\lambda clausura(q) = \{q\} \cup \{q'|q' \text{ és accesible des de } q \text{ a través de camins etiquetats amb } \lambda\}.$
- Siga $P \subseteq Q$, $\lambda clausura(P) = \bigcup_{p \in P} \lambda clausura(p)$.

Extensió a cadenes

 $\forall q \in Q, x \in \Sigma^*, a \in \Sigma$:

- $\hat{\delta}(q,\lambda) = \lambda clausura(q)$
- $lacksquare \hat{\delta}(q, xa) = \lambda clausura\left(igcup_{p \in \hat{\delta}(q, x)} \delta(p, a)
 ight)$

Exemple

Autòmats Finits

ט.ט. Computacić

.

Determinista

Autòmat Fini

Determinista Equivalència entre AFD i AFN

Autòmata Finit amb transicions buides

Equivalència entre AFN i AF λ

λ – clausures

- $\lambda clausura(q_0) = \{q_0, q_1, q_2\}$
- $\lambda clausura(q_1) = \{q_1, q_2\}$
- $\blacksquare \lambda clausura(q_3) = \{q_0, q_1, q_2, q_3\}$

Exemple

Autòmats Finits

Autòmata Finit buides

Càlcul de $\hat{\delta}(q_0, 01)$

$$\hat{\delta}(q_0,01) = \lambda - \textit{clausura}(\bigcup_{p \in \hat{\delta}(q_0,0)} \delta(p,1))$$
 (1)

$$\hat{\delta}(q_0,0) = \lambda - c$$
lausura $(\bigcup_{p \in \hat{\delta}(q_0,\lambda)} \delta(p,0))$ (2)

$$\hat{\delta}(q_0,\lambda) = \lambda - \textit{clausura}(q_0) = \{q_0,q_1,q_2\}.$$

Substituint en (2):

$$\hat{\delta}(q_0,0) = \lambda - \textit{clausura}(\bigcup_{p \in \{q_0,q_1,q_2\}} \delta(p,0)) = \\ \lambda - \textit{clausura}(\emptyset \cup \emptyset \cup \{q_1\}) = \lambda - \textit{clausura}(\{q_1\}) = \{q_1,q_2\}.$$

$$\lambda - clausura(\emptyset \cup \emptyset \cup \{q_1\}) = \lambda - clausura(\{q_1\}) = \{q_1, q_2\}$$

Substituint en (1):

$$\hat{\delta}(q_0,01) = \lambda - clausura(\bigcup_{p \in \{q_1,q_2\}} \delta(p,1)) = \lambda - clausura(\{q_2\} \cup \{q_3\}) = \lambda - clausura(\{q_2,q_3\}) = \{q_0,q_1,q_2,q_3\}.$$

U.D. Computació

Computaci

Autòmat Finit

Determinista
Equivalència entre
AFD i AFN

Autòmata Finit amb transicions buides

Equivalència entre AFN i $AF\lambda$

En un $AF\lambda$, $\hat{\delta}(q, a)$ no és necessàriament igual que $\delta(q, a)$ i $\hat{\delta}(q, \lambda)$ no és necessàriament igual que $\delta(q, \lambda)$. És necessari distingir entre δ i $\hat{\delta}$.

Llenguatge acceptat per un $AF\lambda$

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un $AF\lambda$, es defineix el *llenguatge* acceptat pel $AF\lambda$ A com

$$L(A) = \{x \in \Sigma^* | \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$$

Equivalència entre AFN i AF \(\)

Autòmats Finits

U.D. Computacio

Autòmat Finit Determinista

Autòmat Finit no Determinista Equivalència entre

Autòmata Fin amb transicions buides Equivalència entre Tot *AFN* es pot interpretar com un $AF\lambda$ per al qual es compleix que $\forall q \in Q \quad \lambda - clausura(q) = \{q\}.$

Equivalència entre AFN i $AF\lambda$

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un $AF\lambda$. Definim un AFN $A' = (Q, \Sigma, \delta', q_0, F')$ on:

$$F' = \left\{ egin{array}{ll} F \cup \{q_0\} & ext{si} & \lambda - \mathit{clausura}(q_0) \cap F
eq \emptyset \ & F & ext{en cas contrari} \end{array}
ight.$$

La funció δ' es defineix com:

$$\forall q \in Q, a \in \Sigma \quad \delta'(q, a) = \hat{\delta}(q, a).$$

Exemple

Autòmats Finits

ט.ט. Computacić

Determinista

Autòmat Finit no

Determinista
Equivalència entre
AFD i AFN

Autòmata Fi amb transicions buides

Equivalència entre AFN i AF λ

λ – clausures

- $\lambda clausura(q_0) = \{q_0, q_1, q_2\}$
- $\lambda clausura(q_1) = \{q_1, q_2\}$
- $\blacksquare \lambda clausura(q_3) = \{q_0, q_1, q_2, q_3\}$

Exemple

Autòmats Finits

> U.D. omputació

Autòmat Finit Determinista

Autòmat Fini

Determinista Equivalència entre AFD i AFN

Automata Fir amb transicions buides Equivalència entre

	0	1
q_0	$\{q_1, q_2\}$	$\{q_0, q_1, q_2, q_3\}$
q_1	$\{q_1, q_2\}$	$\{q_0, q_1, q_2, q_3\}$
q_2	$\{q_1,q_2\}$	{ q ₂ }
q 3	$\{q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$

El conjunt d'estats finals $F = \{q_0\}$ ja conté l'estat inicial, aleshores F' = F.