Task 1 report:

Pre-process the images:

- 1) Resize to 128x128
- 2) Normalise the image: mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]

Sample images after pre-process:

Model used: Resnet50 with pretrain weights

Graphs:

The model's learning progress can be observed in the accuracy and loss graphs, but there appears to be minimal improvement in the model's performance. The accuracy graph shows a consistent range between 49 to 51%, and the loss graph follows a similar pattern. Despite the model's attempts to learn, there are no significant changes in its accuracy or loss values.

25

20

15 epoch

Results on evaluation step

10

Accuracy: 0.496 Precision: 0.455 Recall: 0.14693 F1 score: 0.222

Task 2 report:

Pre-process data:

```
[ ] 1 import re
      3 # define a function to clean the text
      4 def clean_text(text):
           cleaned_text = re.sub(r'[^\w\s]', '', text)
           removed_text = re.sub(r'[\w\s]', '', text)
           print(f"Removed characters: {removed_text}")
           return cleaned_text
      2 df_t['text'] = df_t['text'].apply(clean_text)
    Removed characters:
    Removed characters: ..'
    Removed characters: .
    Removed characters:
    Removed characters: +=
    Removed characters: :::..
    Removed characters:
    Removed characters:
    Removed characters:
    Removed characters: -
    Removed characters:
    Removed characters:
    Removed characters:
```

Model used:

Pretrained BERT model has been used in this case. To train the model for the above Hateful and Not-Hateful memes, last-layer fine tuning has been done. Last Layer:

```
(dropout): Dropout(p=0.1, inplace=False)
(relu): ReLU()
(fc1): Linear(in_features=768, out_features=512, bias=True)
(fc2): Linear(in_features=512, out_features=2, bias=True)
(softmax): LogSoftmax(dim=1)
```

Graphs:

Result:

Accuracy: 0.594 Precision: 0.621 Recall: 0.43877 F1 score: 0.5143

Accuracy: 0.5 Classification		recall	f1-score	support	
Class 0 Class 1	0.58 0.62	0.74 0.44	0.65 0.51	510 490	
accuracy macro avg weighted avg	0.60 0.60	0.59 0.59	0.59 0.58 0.58	1000 1000 1000	

Task 3 report:

Graphs Of Loss and Accuracy

1) Accuracy vs Epochs

2) Loss vs Epochs

3) Scores:

... Accuracy: 60.01%
 F1 score: 38.29%
 Precision: 52.78%
 Recall: 23.27%

ClassWise Scores:

	precision	recall	f1-score	support
Non-hateful	0.63	0.77	0.70	1250
Hateful	0.40	0.25	0.31	750
accuracy			0.58	2000
macro avg	0.52	0.51	0.50	2000
weighted avg	0.55	0.58	0.55	2000

4) TSNE PLOTS

TSNE for task 1:

TSNE for Task 2:

TSNE for Task 3:

- 1. From the TSNE plot of the TASK 1 model, it is evident that the model is unable to determine the hateful and non-hateful memes separately. Hence, more features are required for better classification.
- 2. From the TSNE plot of the TASK 2 model, it is evident that the model is unable to determine the hateful and non-hateful memes separately, given the fact that the model is scattering the data evenly. Hence, more features are required for better classification.
- 3. From the TSNE plot of the TASK 3 model, although not clearly, but two clusters are being formed from the use of the model. Hence the multimodal is performing better than the previous two models evidently.