Sentiment Analysis Report

Problem Statement:

The objective of this project is to build a sentiment analysis model that classifies text data into two categories: **positive** and **negative**. This classification is crucial for understanding customer opinions, enhancing decision-making, and improving product and service quality. For this purpose, the IMDB movie review dataset was used as a benchmark.

Approach:

1. Data Collection and Preprocessing:

- The dataset consisted of 50,000 movie reviews, balanced across positive and negative sentiments.
- Steps involved:
 - Lowercasing text to ensure uniformity.
 - Removing punctuation and special characters using regex.
 - Tokenization of words for structured processing.
 - Removal of stopwords to focus on meaningful words.
 - Lemmatization to reduce words to their base forms.

2. Feature Extraction:

 Utilized TF-IDF Vectorization to convert textual data into numerical features while preserving important term frequencies.

3. Model Selection:

 Selected Multinomial Naive Bayes as the classifier due to its effectiveness in handling text-based data and high dimensionality.

4. Data Splitting:

 The dataset was split into 80% training and 20% testing sets to evaluate model performance.

5. Model Training:

 The TF-IDF-transformed training data was fed into the Multinomial Naive Bayes classifier.

6. Model Evaluation:

 The testing data was used to evaluate the model using accuracy, precision, recall, F1-score, and a confusion matrix.

Problems Faced:

1. Imbalanced Predictions:

Initially, the model showed a slight bias towards predicting the majority class.
 This was resolved by ensuring balanced training data and tuning hyperparameters.

2. Text Preprocessing Challenges:

 Cleaning text data required significant effort to handle edge cases like special characters and combined words.

3. Overfitting on Training Data:

o Regularization techniques and stratified splitting helped mitigate this issue.

Learned Outcomes:

1. Effective Preprocessing:

• The importance of thorough text preprocessing for high-quality predictions.

2. **TF-IDF Insights:**

 Learned how TF-IDF prioritizes relevant terms by reducing the impact of frequent but less informative words.

3. Evaluation Metrics:

 Gained deeper insights into evaluating model performance using precision, recall, F1-score, and confusion matrices.

Model Accuracy:

• **Accuracy:** 86.64%

Detailed Metrics:

Classification Report:

	precision	recall	f1-score	support
negative	0.85	0.88	0.87	4961
positive	0.88	0.85	0.86	5039
accuracy			0.87	10000
macro avg	0.87	0.87	0.87	10000
weighted avg	0.87	0.87	0.87	10000

Confusion Matrix:

```
[[4384 577]
[ 759 4280]]
```

Key Observations:

1. False Negatives and Positives:

 The confusion matrix revealed 759 false positives and 577 false negatives, suggesting room for improvement in capturing nuances in certain reviews.

2. Balanced Performance:

 The precision, recall, and F1-scores are well-balanced between positive and negative classes, indicating good generalization of the model.

Conclusion:

The sentiment analysis model achieved a commendable accuracy of 86.64% with balanced precision and recall across both classes. The project demonstrated the significance of robust preprocessing and feature engineering for text-based machine learning models. Future improvements could involve using advanced models like **BERT** or **LSTMs** to capture deeper contextual relationships in the text.