Lab 02 - Order Quantities When Demand is Approximately Level

Huehn-Brown Products in St. Petersburg offers the following discount schedule for its 4-by-8-foot sheets of quality plywood.

ORDER	UNIT COST
9 sheets or less	\$18.00
10 to 50 sheets	\$17.50
More than 50 sheets	\$17.25

Home Sweet Home Company sources its plywood from Huehn-Brown, facing an ordering cost of \$45 per order, a carrying cost rate of 20% per year, and an annual demand of 100 sheets. To determine the most cost-effective purchasing strategy, it is essential to analyze the impact of different order quantities under the supplier's discount schedule. The following sections outline the development of a computer program that reads input data from an Excel sheet and visualizes the total replenishment cost as a function of order quantity, guiding the selection of the optimal order policy.

Assignment: Economic Order Quantity (EOQ) with Price Breaks

Objective

Develop a program that determines the **cost-minimizing order quantity** under a vendor's **quantity discount schedule**.

Your task is to:

- 1. Read input data from a spreadsheet.
- 2. Compute feasible EOQs by price tier.
- 3. Evaluate total annual replenishment cost for each feasible order quantity.
- 4. Identify and report the optimal order policy.
- 5. Plot the **Total Annual Cost vs. Order Quantity** curve.

Base case parameters:

- Ordering cost = \$45
- Carrying-cost rate = 20% per year
- Annual demand = 100 units

1) Program Requirements

Inputs

From the spreadsheet, your program must read:

- Global parameters:
 - Annual demand (D) (units/year)
 - Ordering cost (K) (\$/order)
 - Carrying-cost rate (i) (fraction/year)
 - o Optional: Lead time (L) (days) and working days/year
- Discount schedule (All-Units price breaks):

min_qty	max_qty	unit_price
1	49	120.00
50	99	115.00
100	∞	110.00

Core Calculations

1. EOQ per tier:

$$Q_k^* = \sqrt{\frac{2 D K}{i c_k}}$$

If (Q_k^*) is below the tier minimum, replace it with that minimum.

2. Total Annual Cost (TAC):

$$TAC(Q) = Dc(Q) + \frac{D}{Q}K + \frac{Q}{2}, i, c(Q)$$

where (c(Q)) is the price for the tier containing (Q).

3. Evaluation:

Calculate TAC for each candidate (Q_k^*) and for every tier boundary. Choose the (Q) that gives the **lowest TAC**.

4. Visualization:

Generate a **cost curve** showing TAC vs. (Q), with vertical lines marking the price breaks.

Outputs

- Candidates Table: shows each tier, unit price, candidate (Q_k^*) , feasibility, and TAC.
- Cost Curve Plot: Total Annual Cost vs. Order Quantity.
- **Recommendation Paragraph**: identify the optimal (Q), tier, and minimum TAC.

2) Example Input Data

Sheet "config"

parameter	value
D	100
K	45
i	0.20

Sheet "discounts"

min_qty	max_qty	unit_price
1	49	120
50	99	115
100	∞	110

3) Expected Output

A. Candidates Table

Tier Price (\$) Nominal EOQ Feasible? Evaluated Q TAC (\$)

B. Cost Curve Plot

• X-axis: Order Quantity (Q)

Y-axis: Total Annual Cost

Mark the minimum cost and price-break lines

C. Recommendation

State the best (Q), its price tier, and total cost, and briefly explain why this policy is optimal.

4) Discussion Questions

- 1. How much cost savings (in \$ and %) does the optimal discounted policy achieve compared to the no-discount case?
- 2. If the carrying-cost rate increases to 25%, does the optimal (Q) change? Why?
- 3. Find the minimum demand (D) that makes a move to the next price tier worthwhile.
- 4. Summarize the managerial lesson: when do price breaks justify larger lots?

5) Deliverables

- **Program Script** that reads the spreadsheet, performs EOQ calculations, and plots TAC vs. (Q).
- Input Spreadsheet (config and discounts sheets).
- Candidates Table and Cost Curve (exported or embedded).
- Short Report (2-3 pages) including:
 - Objective and method
 - Results and plots
 - o Recommendation and answers to discussion questions

6) Evaluation Criteria

Criterion	Description	Weight
Calculation accuracy	Feasibility check, EOQ per tier, and correct TAC evaluation	35 %
Graph clarity	Readable cost curve with tier markers	15 %
Explanation quality	Clear, well-reasoned recommendation	20 %
Code structure	Readable logic and comments	20 %
Presentation	Professional tables and report format	10 %

Bonus Challenge (Optional)

- Extend the program to handle **Incremental discounts** as well as All-Units.
- Produce a heatmap showing optimal (Q) for various values of (D) and (i).
- Incorporate a **Reorder Point** calculation if lead time (L) and daily demand are known.