From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

Julien Bigot, <u>Hélène Coullon</u>, Christian Perez

INRIA team Avalon Maison de la simulation (CEA)

16th November 2015

Motivation

- + Domain Specific Languages
 - Easy language for the user
 - Implicit optimizations
 - Implicit parallelization
- Domain Specific Languages
 - Difficulties deported to the DSL designer
 - ► Low level high performance programming
 - Maintainability and portability
 - As many DSLs as domains
 - Productivity and code-reuse
 - Separation of concerns

Motivation

Component models

- Divide an application into several functionnal black boxes
- Each component defines its connections with outer world
- Each component are built independently from the others
- Application = Assembly of components

+ Component models

- Maintainability through separation of concerns
- Code-reuse and productivity
- Dynamic assembly of components

Motivation

What if a DSL produces a component-based runtime?

- Is it efficient?
- ▶ Is it feasible?
- Does it improve issues of DSLs?
 - maintainability
 - portability
 - productivity

Let's take a useful example : the Multi-Stencil Language !

Table of contents

Multi-Stencil Language

Overview

Compiler

Evaluation

Conclusion and perspectives

•000000

Numerical simulation = Multi-Stencil application

000000

Time and Mesh

Time

At each time iteration of the simulation are applied the computations kernels of the application.

Mesh

- ▶ A Mesh is a connected undirected graph $\mathcal{M} = (V, E)$ without bridges
- \blacktriangleright Mesh entities are a subset of $V \cup E$

Data and Computation Kernels

Data

A Data is a set of numerical values, each one attached to a given mesh entity

Computation kernel

- Set of data read for the computation
 - Each one associated to a stencil shape
- Data written by the computation
- A numerical expression
- A computation domain
 - Subset of mesh entities

Computation kernel: Examples

Compute A using $\{(A, local), (C, n2)\}$ on the computation domain called dc2 with the numerical expression

$$A(x,y) = A(x,y) + C(x1,y1) + C(x1+1,y1).$$

Multi-Stencil program

$$\mathcal{MSP}(T, \mathcal{M}, \mathcal{E}, \mathcal{D}, \Delta, \Gamma)$$

- ▶ T the set of time iterations to tun the simulation
- M the mesh of the simulation
- \triangleright E the set of mesh entities
- $\triangleright \mathcal{D}$ the set of computation domains
- Δ the set of data
- Γ the set of computations
 - = the six sections of a Multi-Stencil Language program!

Multi-Stencil Language

MSL is not

- a new stencil optimizer/compiler
- a new distributed data structure

MSL is

- ▶ a high-level language for multi-stencil simulations
- agnostic from the type of mesh used (data structure)
- based on identifiers only

MSL produces a ready-to-fill component-based parallel pattern of the simulation!

Related Work

Complementary work

- Distributed data structures : SkelGIS, Global Arrays
- Stencil DSLs (on grids) : Pochoir, PATUS
- Stencil DSLs (on unstructured meshes): OP2, Liszt

Similar work

- ▶ Pipeline of stencil computations for image processing : Halide
- DSL to component-based runtime :?

Ready-to-fill parallel pattern

- Data parallelism
 - External distributed data structure
 - Automatic detection of synchronizations
- Task parallelism (mid-grain)
 - ► Compile a static scheduling of computation kernels

The fine grain task parallelism is left to other languages :

- OpenMP in the kernels
- Kernels generated by stencil compilers (Pochoir, PATUS, Liszt etc.)

$$\mathcal{MSP}(T, \mathcal{M}, \mathcal{E}, \mathcal{D}, \Delta, \Gamma)$$

Duplicated on each processor/core

$$\mathcal{MSP}(T, \mathcal{M}, \mathcal{E}, \mathcal{D}, \Delta, \Gamma)$$

Duplicated on each processor/core

$$\mathcal{MSP}(T, \mathcal{M}, \mathcal{E}, \mathcal{D}, \Delta, \Gamma)$$

Duplicated on each processor/core

Example

```
f,cell
mesh: cart
                                    g, edgey
mesh entities: cell, edgex, edgey
                                    h, edgex
computation domains:
                                    i,cell
  allcell in cell
                                    j,edgex
  alledgex in edgex
                                  time: 500
  alledgey in edgey
                                  computations:
                                    b[allcell] = c0(a)
  part1edgex in edgex
                                    c[alledgex]=c1(b[n1])
  part2edgex in edgex
                                    d[alledgex]=c2(c)
data:
                                    e[alledgey]=c3(c)
  a,cell
  b, cell
                                    f[allcell]=c4(d[n1])
                                    g[alledgey]=c5(e)
  c,edgex
                                    h[alledgex]=c6(f)
  d, edgex
                                    i[allcell] = c7(g,h)
  e, edgey
                                    j[partedgex]=c8(i[n1])
```

Data parallelism

$$\Gamma = [c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8]$$

$$\hookrightarrow [c_0, sync_1, c_1, c_2, c_3, sync_4, c_4, c_5, c_6, c_7, sync_8, c_8]$$

Synchronization

For n the number of computations in Γ , and for i,j such that i < j < n, a synchronization is needed between c_i and c_j , denoted $c_i \prec\!\!\!\prec c_j$, if c_j read a data written by c_i with a stencil shape and not locally.

Mid-grain task parallelism

Build the read/write dependency graph.

$$c_2 imes sync_4 imes c_4 o c_6$$
 $c_0 imes sync_1 imes c_1 imes c_7 imes sync_8 imes c_8$
 $c_3 o c_5$

Data parallelism + Task parallelism

Which scheduling?

From the dependency graph we can:

- Use a dynamic scheduler
- Compute a static scheduling

In this work,

- ▶ We build a static scheduling of the multi-stencil application
- This static scheduling can be dumped to a component-based runtime

Series-Parallel Tree

Specific components

- SEQ to directly replace S nodes
- PAR to directly replace P nodes
- SYNC for synchronizations
- K for computation kernels

Direct dump to the component assembly

Component-based runtime

Back to Data Parallelism

Back to Data Parallelism only?

Loop Fusion: Same computation domain under a sequence or a parallel node

Canonical form: $[c_0, sync_1, c_1, c_2, sync_4, c_4, c_6, \{c_3, c_5\}, c_7, sync_8, c_8]$

Implementation and evaluation

Implementation of MSL : Python, SkelGIS and L^2C

Shallow-water equations: 1 mesh, 3 mesh entities, 7 computation domains, 48 data, 98 computations (32 stencils, 66 local kernels)

Evaluation of the data parallelism

- ► Full SkelGIS implementation (DDS + specific interfaces to hide communications)
- MSL implementation which uses the SkelGIS DDS
- ► Cluster Edel of Grid'5000 : 2 8-cores Intel Xeon E5520, 24GB RAM / nodes

Evaluation

Evaluations

Conclusion

- ► A DSL for Multi-Stencil applications (MSL)
- The compilation of MSL to get a static scheduling
- ▶ The dump to a component-based runtime
- No overhead introduced by the solution

Perspectives

- A comparison with an improved version of SkelGIS
- ▶ More evaluations on TGCC Curie (CEA) up to 32k cores
- An evaluation of the Data+Task parallelism (mixing the static scheduling and OpenMP)
- ► A new dump with a component responsible for the dynamic scheduling of the application (using OpenMP 4.x)
- A new dump to CPU+GPGPUs (using existing stencil compilers Pochoir, PATUS etc.)
- An alternative to the SkelGIS DDS using Global Arrays (PGAS)

Thank You!