

[Al Theory&App] Introduction to Artificial Intelligence

Instructor: Hao-Shang Ma

Department Of Computer Science And Information Engineering, NTUST

Artificial Intelligence?

- Artificial intelligence is the simulation of human intelligence processes by machines
- Specific applications of AI include expert systems, natural language processing, speech recognition and computer vision

Artificial Intelligence?

- > Artificial Intelligence
- > Big Data
- > Statistics
- > Data Mining
- > Machine Learning
- > Deep Learning

Big Data

- > Big dataset property
 - -Volume
 - –Variety
 - –Velocity
 - –Veracity
- > Data Warehouse vs Data Lake

Statistics

A branch of mathematics and a field of study that deals with collecting, analyzing, interpreting, presenting, and organizing data.

> Statistics vs Big Data

Introduction to Data Mining

What is Data Mining

> Knowledge Discovery from Data

> Extraction of interesting, non-trivial, implicit, previously unknown and potentially useful patterns or knowledge from huge amount of data

Data Mining Processes

> Data collection	
> Data cleaning	Preprocessing
> Data integration	
› Data warehousing	Exploration
> Data selection	
> Pattern evaluation	Data Mining
> Knowledge discovery	Data Mining
> Information presentation	Doot processing
> Decision making	Post processing

Information Presentation

- > Data Visualization
- > Make users understand the knowledge and make decision easily

Decision Making

> Based on the evaluation results to decide the policy

General Types of Data Mining

- Association rule mining
- > Sequential pattern mining
- > Classification
- > Clustering
- > etc.

Association Rules Mining

> Mining implications between items

Tid	Items
100	A,B,D
200	B,C,E
300	A,D
400	A,B,C,D

- > Frequent item sets
 - {A}, {B}, {C}, {D}, {B,C}, {A,B}, {A,D}, {B,D}, {A,B,D}
- > Strong rules
 - $\{A,D\} \to B(2/3)$
 - B \rightarrow C(2/3)
 - $C \rightarrow B(2/2)$

Apriori Algorithm

Itemsets

 $\{A,B,D\}$

Database

2

 $\{A,B,D\}$

Itemset S

 $\{A,B,D\}$

Candidate Generation

 \rightarrow Step 1: self-joining L_k

Itemsets	Sup
{A,B}	2
$\{A,D\}$	2
{B,C}	3
$\{B,D\}$	2

$${A, B} \cup {A, D} = {A, B, D}$$

 ${B, C} \cup {B, D} = {B, C, D}$

Itemsets	
$\{A,B,D\}$	
$\{B,C,D\}$	

> Step 2: pruning

 $\{C,D\}$ is infrequent

Itemset s	Sup
$\{A,B,D\}$	2

Downward Closure Property

> Any subset of a frequent itemset must be frequent

Itemsets	Sup
$\{A,B,D\}$	2

Itemsets	Sup
{A,B}	2
{A,D}	2
{B,C}	3
{B,D}	2

Itemsets	Sup
{A}	3
{B}	3
{C}	2
{D}	3

> If there is any itemset which is infrequent, its superset should not be frequent

Sequential Pattern Mining

> Mining sequential implications between items

SID	Sequences
100	<(1) (2,5) (3) (4)>
200	<(1) (3) (4) (2),(3,5)>
300	<(1,3,5) (4) (2) (3)>
400	<(1) (3) (5)>
500	<(4) (3,5,6)>

$$min_support = 2$$

- Some frequent sequential patterns
 - {1,4,2,3},{1,3,5},{4,5}

The Steps of Apriori-like Algorithm

- > 1. Sort phase
 - Sort the database
 - Customer id as the primary key and time as the second key
- > 2. Litemset phase
 - Count the frequency of the itemset
 - The fraction of customers who bought the itemset

The Steps of Apriori-like Algorithm

> 3. Transformation phase

Transform each tx to all litemsets in the form of

SID	Sequences
100	<(1) (2,5) (3) (4)>
200	<(1) (3) (4) (2),(3,5)>
300	<(1,3,5) (4) (2) (3)>
400	<(1) (3) (5)>
500	<(4) (3,5,6)>

itemset	Count
1	4
2	3
3	4
4	4
5	4
6	1
{2,5}	1
{1,3}	1
{1,5}	1
{3,5}	3
{1,3,5}	1
{5,6}	1
{3,6}	1
{3,5,6}	1

itemset	Count	New ID
1	4	Α
2	3	В
3	4	С
4	4	D
5	4	Е
{3,5}	3	F

SID	Sequences
100	<(1) (2,5) (3) (4)>
200	<(1) (3) (4) (2),(3,5)>
300	<(1,3,5) (4) (2) (3)>
400	<(1) (3) (5)>
500	<(4) (3,5,6)>

SID	Sequences
100	<(A) (B,E) (C) (D)>
200	<(A) (C) (D) (B),(C,E,F)>
300	<(A,C,E,F) (D) (B) (C)>
400	<(A) (C) (E)>
500	<(D) (B,E,F)>

The Steps of Apriori-like Algorithm

- > 4. Mining phase
 - Apriori-like algorithm
- > 5. Maximal phase
 - Find the maximum patterns

SID	Sequences				
100	<(A) (B,E) (C) (D)>				
200	<(A) (C) (D) (B),(C,E,F) $>$				
300	<(A,C,E,F) (D) (B) (C)>				
400	<(A) (C) (E)>				
500	<(D) (B,E,F)>				

3-itemset	Count
A,B,C	3
A,C,D	2
D,B,C	1
A,D,B	2

2-Itemset	count	
A,B	3	
A,C	4	
A,D	3	
A,E	3	
A,F	2	
B,A	0	
B,C	3	
B,D	1	
B,E	1	
B,F	1	
C,A	0	
C,B	2	
C,D	3	
C,E	2	
C,F	0	

2-Itemset	count	
D,A	0	
D,B	3	
D,C	2	
D,E	2	
D,F	2	
E,A	0	
E,B	1	
E,C	2	
E,D	2	
E,F	0	
F,A	0	
F,B	1	

F,C

F,D

F,E

0

SID	Sequences				
100	<(A) (B,E) (C) (D)>				
200	<(A) (C) (D) (B),(C,E,F)>				
300	<(A,C,E,F) (D) (B) (C)>				
400	<(A) (C) (E)>				
500	<(D) (B,E,F)>				

2-Itemset	count
A,B	3
A,C	4
A,D	3
A,E	3
В,С	3
C,D	3
D,B	3

3-itemset	Count
A,B,C	3
A,C,D	2
D,B,C	1
A,D,B	2

Itemset	count
A,B	3
A,C	4
A,D	3
A,E	3
В,С	3
C,D	3
D,B	3
A,B,C	3

itemset	Count	New ID
1	4	А
2	3	В
3	4	С
4	4	D
5	4	Е
{3,5}	3	F

Frequent patterns: {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {3,4}, {4,2}, {1,2,3}

Classification

> Determine the label of data given some observations

Name	Education	Salary	Job	Seniority	Buy car
Allen	Ph.D	High	Engineer	Medium	Yes
Bubble	College	Low	Worker	Medium	No
Chris	Senior high	Medium	Worker	Medium	No
Dustin	Master	Medium	Engineer	Long	Yes
Elan	Ph.D	High	Professor	Long	Yes
Frank	College	High	Sport player	Long	Yes
George	Master	Medium	Engineer	Short	No

(Education >= college) & (salary >= Medium) => buy car

Decision Tree

Clustering

> Determine which items should be similar to one another within a group

K-means Algorithm

Introduction to Machine Learning

The Origins of Machine Learning

> How can computers learn to solve problems without being explicitly programmed?

----Arthur Lee Samuel, 1959

> The answer is: Machine Learning

What is Machine Learning

Machine learning is a field of computer science that gives computer systems the ability to "learn," i.e., progressively improve performance on a specific task, with data but without being explicitly programmed.

> Learn knowledges from data

General Types of Machine Learning

- > Supervise Learning
 - -Classification problems
- > Unsupervised Learning
 - -Clustering problems
 - -Text mining
- > Semi-supervised learning
 - -The classification problem with some missing labels
 - -The clustering problem with some labels

Some Special Types of Machine Learning

- > Reinforcement Learning
 - -alphaGo
 - -alphaGoZero
- > Interactive learning
- > Transfer learning

Supervised Learning

- > Learning from some labeled data
 - -We have the answers of training data

Support Vector Machine

Find The Best Hyperplane

> Find the hyperplane with the largest margin

m: margin

Unsupervised Learning

- > Learning on the un-labeled data
 - -We do not have the answer of training data

Similar to Clustering

Semi-supervised Learning

- > Learning on partly-labeled data
 - -We have only some answers for training data

How to Add Labels for Un-labeled Data

- > Continuity assumption
 - -The nearby data might have the same labels
- > Cluster assumption
 - -The data in the same cluster might have the same labels
- > Manifold assumption
 - -The data lie approximately on a manifold of much lower dimension than the input space

Reinforcement Learning

Learning from rewards–Training our kids

The Example

How Do I Decide Next Step

1st Choice

Yeah!! I got the treasure

2nd Choice

The Best Action in Each Step

Interactive Learning

> Human can give feedbacks to machine to help machine train a better model

Error and human feedbacks

Transfer Learning

> Transfer some knowledge from trained models to new models

General Machine Learning Steps

Data preparation

- Preprocessing
- Exploration
- Split data into training set and testing set

Model development

- Determine your objective functions
- Determine the learning types

Training

 Solve the optimization problem you designed or fit your model with data

Testing

Test the model performance on the testing data

Quality Measurement

Accuracy

$$-ACC = \frac{TP + TN}{P + N}$$

> Precision

$$-Pre = \frac{TP}{PP}$$

> Recall

$$-\operatorname{Rec}=\frac{TP}{P}$$

> F-measure

$$-F1 = 2 \times \frac{Pre \times Rec}{Pre + Rec}$$

condition	Positive (P)	Negative (N)
Predict Positive (PP)	True Positive (TP)	False Positive (FP)
Predict Negative (PN)	False Negative (FN)	True Negative (FN)

Compare with Data Mining **Machine Learning**

Data Mining

> Data collection

> Data cleaning

> Data integration

> Data warehousing

> Data selection

> Pattern evaluation

> Knowledge discovery

> Information presentation

> Decision making

Data collection

Data cleaning

Data integration

Data warehousing

Data selection

Model design

Model training & testing

Information presentation

Decision making

Introduction to Deep Learning

Deep Learning

- > Using some deep (with many layers) models to solve the problem
- > Each layer can represent different features
 - We can learn more knowledge from input data

The Strong Points of Deep Learning

With deep learning

The Strong Points of Deep Learning

Represent different features

The Weak Points of Deep Learning

Lots of parameters to be trained Need lots of data to train a good model