Lecture 6

• **Read:** Chapter 3.1-3.7

Continuous Random Variables

- Probability Density Function
- Cumulative Distribution Function
- Expected Values
- Some Common Continuous Random Variables
 - Uniform, Exponential
- Gaussian Random Variables
- Mixed Random Variables
 - Delta function, Unit step function
- Probability Models of Derived Random Variables

Continuous Random Variable

• <u>Definition</u>: (Continuous Random Variable) An RV X is said to be continuous if its probability law can be described in terms of a nonnegative function $f_X(x)$ called its probability density function (PDF), such that

$$P[X \in B] = \int_B f_X(u) du$$

for every subset B of the real line.

• **Example:** The velocity of a randomly selected car measured by an analog speedometer.

Probability Density Function: Properties

1.
$$P[x < X < x + \delta] = f_X(x) \cdot \delta$$

2.
$$P[X = x] = 0$$
, for all x

$$3. \int_{-\infty}^{\infty} f_X(x) dx = 1$$

Cumulative Distribution Function (CDF)

• **Definition:** The CDF of a RV X is defined as $F_X(x) = P[X \le x]$. In particular for every x, we have

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

• Example:

Properties of CDF

- 1. $F_X(x)$ is monotonically increasing, i.e., if $x \le y$, then $F_X(x) \le F_X(y)$.
- 2. $F_X(x)$ tends to 0 as $x \to -\infty$ and tends to 1 as $x \to \infty$.
- 3. $F_X(x)$ is a continuous differentiable function if X is continuous.
- 4. If X is continuous, the PDF and CDF are related as follows:

$$f_X(x) = \frac{dF_X(x)}{dx}$$
 $F_X(x) = \int_{-\infty}^x f_X(t)dt$

5.
$$P[a < X \le b] = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

Expected Value

 <u>Definition</u>: (Expected Value) The expected value of a continuous random variable X is

$$\mu_X = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Properties of expected value

$$E[X - \mu_X] = 0$$

$$E[1] = 1$$

$$E[aX + b] = aE[X] + b$$

• Expected value of g(X)

$$E[g(X)] = E[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Variance

• Definition: (Variance)

$$\sigma_X^2 = Var[X] = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

- Some useful properties
 - 1. $Var[X] = E[X^2] (E[X])^2$
 - 2. $Var[aX] = a^2 Var[X]$
 - 3. Var[X + a] = Var[X]
 - 4. If X always takes the value a, then Var[X] = 0.

Some Common Continuous Distributions

Some Common Continuous Distributions

Uniform Distribution

• <u>Definition</u>: (Uniform random variable) X is a uniform random variable if the PDF of X is

$$f_X(x) = egin{cases} 1/(b-a) & ext{, } a \leq x < b \ 0 & ext{, otherwise} \end{cases}$$

where the two parameters are b > a.

- Expected value: $\mu_X = (a+b)/2$
- Variance: $\sigma_X^2 = E[X^2] \mu_X^2 = (b-a)^2/12$
- **Example:** Find the mean and variance of Z = 3X + 10.

Exponential Distribution

- <u>Definition</u>: (Exponential Distribution) X is an exponential RV with parameter $\lambda > 0$ iff $f_X(x) = \lambda e^{-\lambda x}$.
 - $P[X \ge x] = e^{-\lambda x}$
- Good model for the the amount of time until a part breaks,
 e.g., light bulb burns out, or an accident occurs.
 - The larger $\lambda > 0$ is, the sooner it breaks, i.e., has a higher failure rate.

Normal (Gaussian) Distribution

• **<u>Definition:</u>** X is a normally distributed RV with mean μ_X and variance σ_X^2 if it has

PDF:
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_X} e^{-(x-\mu_X)^2/2\sigma_X^2}$$
, for $-\infty < x < \infty$

or

CDF:
$$F_X(x) = \frac{1}{\sqrt{2\pi}\sigma_X} \int_{-\infty}^x e^{-(x-\mu_X)^2/2\sigma_X^2}$$

• We say Z is a standard normal RV if $Z \sim N(0,1)$.

Standard Gaussian

• **Definition:** A standard Gaussian RV $Z \sim N(0,1)$ has PDF

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$
, for $-\infty < z < \infty$

The CDF of a standard Gaussian is usually denoted by

$$\Phi(z) = F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-u^2/2} du$$

Linear Transformations

<u>Fact:</u> Linear transformation of Gaussian RV is another Gaussian RV.

1. Suppose $X \sim N(\mu_X, \sigma_X^2)$ and $Y = \frac{X - \mu_X}{\sigma_X}$ (renormalized RV). Then,

$$Y \sim N(0,1) \Rightarrow \qquad f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}, \ \text{for} -\infty < y < \infty$$

2. Alternately, suppose $Z \sim N(0,1)$ and let Y = aZ + b. Then,

$$Y \sim N(b, a^2)$$

Linear Transformations: Proof of 1

$$F_{Y}(y) = P[Y \le y] = P\left[\frac{X - \mu}{\sigma} \le y\right]$$

$$= P[X - \mu \le y\sigma]$$

$$= P[X \le \mu + y\sigma]$$

$$= F_{X}[\mu + y\sigma]$$

$$= \int_{-\infty}^{\mu + y\sigma} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(u-\mu)^{2}/2\sigma^{2}} du$$
change of variables: $v = \frac{u - \mu}{\sigma}$

$$u = \mu + \sigma v$$

$$du = \sigma dv$$

$$= \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}\sigma} e^{-v^{2}/2} \sigma dv$$

$$= \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-v^{2}/2} dv$$

Linear Transformations: Intuition

<u>Intuition:</u> You can think of Gaussian RV $X \sim N(\mu, \sigma^2)$ as

$$X = \underbrace{\mu}_{ ext{a constant: the mean}} + Z \underbrace{\sigma}_{ ext{fluctuation}}$$
 , where $Z \sim \mathit{N}(0,1)$

Using Fact and Tables for CDF: Example

• Suppose $X \sim N(1, 16)$. Find P[-3 < X < 4].

.....

Using Fact and Tables for CDF: Example (cont.)

• Suppose $X \sim N(1, 16)$. Find P[-3 < X < 4].

.....

- We need to compute $P[-3 < X < 4] = F_X(4) F_X(-3)$.
- Instead, using previous fact: $X \sim 4Z + 1$, where $Z \sim N(0,1)$.
- P[-3 < X < 4] = P[-3 < 4Z + 1 < 4] because X has the same distribution as 1 + 4Z. So,

$$P[-3 < 4Z + 1 < 4] = P\left[-1 < Z < \frac{3}{4}\right] = F_Z\left(\frac{3}{4}\right) - F_Z(-1)$$
$$= \Phi\left(\frac{3}{4}\right) - \Phi(-1)$$

Using Fact and Tables for CDF: Example (cont.)

- We look up these values in <u>tables</u> for $\Phi(z)$ and $Q(z) = P[Z > z] = 1 \Phi(z)$ (Tables 3.1 and 3.2 on p. 123 and p. 124 of our textbook)
- Note that by symmetry: $\Phi(-z) = 1 \Phi(z)$, so we need to only tabulate positive values

Using Fact and Tables for CDF: Example (cont.)

How do we deal with negative values?

$$\Phi(-1) = 1 - \Phi(1)$$

$$P[-3 < X < 4] = \Phi\left(\frac{3}{4}\right) - 1 + \Phi(1)$$

• In general, if $X \sim N(\mu, \sigma^2)$, then

$$F_X(x) = P[X \le x] = P[\mu + \sigma Z \le x] = P\left[Z \le \frac{x - \mu}{\sigma}\right]$$
$$= \Phi\left(\frac{x - \mu}{\sigma}\right)$$

Mixed RVs

Mixed RVs

Unit Impulse/Delta Function

• **Definition:** The unit impulse or delta function, δ , is defined as

$$\delta(x) = \lim_{\epsilon o 0} d_{\epsilon}(x)$$
 $d_{\epsilon}(x) = egin{cases} +rac{1}{\epsilon} & , -rac{\epsilon}{2} \leq x \leq rac{\epsilon}{2} \ 0 & , ext{ otherwise} \end{cases}$

- Properties:
 - 1. $\int_{-\infty}^{+\infty} \delta(x) dx = 1$
 - 2. For any continuous function g,

$$\int_{-\infty}^{+\infty} g(x)\delta(x-x_0)dx = g(x_0)$$
 "sifting property"
$$\delta(x)$$

Unit Step Function

• **Definition:** The unit step function, u(x),

$$u(x) = \begin{cases} 1 & \text{, } x \ge 0 \\ 0 & \text{, otherwise} \end{cases}$$

• Properties:

1. $\int_{-\infty}^{x} \delta(u) du = u(x)$ Equivalently, we think of $\frac{\partial u(x)}{\partial x} = \delta(x)$

PDFs for Discrete Random Variables

- Consider a discrete RV X with P.M.F. $p_x(x)$, $x \in S_X$.
- We can write the CDF of X as

$$F_X(x) = \sum_{x_i \in S_x} p_X(x_i) u(x - x_i)$$

• Can we define the P.D.F. of a discrete RV?

$$f_X(x) = \frac{\partial}{\partial x} F_X(x) = \sum_{x_i \in S_x} p_X(x_i) \delta(x - x_i)$$

PDFs for Discrete Random Variables (cont.)

• Using this notation, we can compute E[X] as follows:

$$E[X] = \sum_{x_i \in S_X} x_i p_X(x_i) = \int_{-\infty}^{+\infty} x f_X(x) dx$$

$$= \int_{-\infty}^{+\infty} x \left(\sum_{x_i \in S_X} p_X(x_i) \delta(x - x_i) \right) dx$$

$$= \sum_{x_i \in S_X} \left(\int_{-\infty}^{+\infty} x p_X(x_i) \delta(x - x_i) dx \right)$$

$$= \sum_{x_i \in S_X} x_i p_X(x_i)$$

Mixed RVs

- <u>Definition</u>: (Mixed random variable) X is a mixed random variable if and only if $f_X(x)$ contains both impulses and nonzero finite values.
- CDF $F_X(x)$ is piecewise continuous but has jumps at $x_1, x_2, ...$
- Jump at x_i is $P[X = x_i]$
- PDF has impulses at x_i weighted by $P[X = x_i]$

Mixed Random Variables: Example 1

- *X* ∼ uniform{1,2,3}
- Find the CDF and PMF of X.

.....

- PMF: $p_X(1) = p_X(2) = p_X(3) = 1/3$
- CDF: $F_X(x) = \frac{1}{3}u(x-1) + \frac{1}{3}u(x-2) + \frac{1}{3}u(x-3)$
- PDF: $f_X(x) = \frac{1}{3}\delta(x-1) + \frac{1}{3}\delta(x-2) + \frac{1}{3}\delta(x-3)$

Mixed Random Variables: Example 2

 W = time you wait at the ATM and

$$W = egin{cases} 0 & ext{, with probability } p ext{ (no line)} \ X & ext{, with probability } (1-p) \end{cases}$$

and with let $X \sim exp(a)$.

$$f_X(x) = egin{cases} ae^{-ax} & \text{, } x \geq 0 \\ 0 & \text{, otherwise} \end{cases}$$

• What is the CDF of W?

.....

•
$$F_W(w)$$
: $F_W(w) = 0$, $w < 0$
 $F_W(w) = p$, $w = 0$
 $F_W(w) = p + (1 - p)F_X(w)$, $w > 0$

Mixed Random Variables: Example 2 (cont.)

For $w \ge 0$:

$$F_W(w) = P[W \le w] = P[W = 0] + P[0 < W \le w]$$
$$= p + (1 - p) \underbrace{P[0 < X \le w]}_{F_X(w)}$$

$$F_X(x)=egin{cases} 1-e^{-ax} & ,\ x\geq 0 \ 0 & ,\ 0 ext{ otherwise} \end{cases}$$
 $F_W(w)=p+(1-p)(1-e^{-aw}),\ w>0$

Mixed Random Variables: Example 2 (cont.)

• What is the PDF of W?

.....

$$f_W(w) = egin{cases} 0 & , \ w < 0 \ p\delta(w) + (1-p)ae^{-aw} & , \ w \geq 0 \end{cases}$$

Probability Models for Derived RVs

$$X \longrightarrow g(\cdot) \longrightarrow Y = g(X)$$

$$f_X(x) = f_X(x) \longrightarrow \text{What are } f_Y(y), F_Y(y) ?$$

• Recall: If all we need is E[Y], we do not need to compute $f_Y(y)$. Indeed,

$$E[Y] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$
$$(E[Y] = \int_{-\infty}^{+\infty} y f_Y(y) dy)$$

Probability Models for Derived RVs: Example

$$F_{Y}(y) = P(Y \le y)$$

$$= P[\alpha X + \beta \le y]$$

$$= P[\alpha X \le y - \beta]$$

$$= P\left(X \le \frac{y - \beta}{\alpha}\right)$$

$$= F_{X}\left(\frac{y - \beta}{\alpha}\right)$$

$$f_{Y}(y) = \frac{\partial}{\partial y}F_{Y}(y)$$

$$= \frac{1}{\alpha}f_{X}\left(\frac{y - \beta}{\alpha}\right)$$

Probability Models for Derived RVs: 3-Step Procedure

- 1. Find CDF of Y $(F_Y(y) = P[Y \le y] = P[g(X) \le y])$ and express it in terms of $F_X(x)$.
- 2. Find $f_Y(y) = \frac{\partial}{\partial y} F_Y(y)$.
- 3. Determine the range of Y, S_Y .

Probability Models for Derived RVs: 3-Step Procedure: Example 1

- Let $Y = e^X$.
- Find $f_Y(y)$ in terms of $f_X(x)$.

.....

$$F_Y(y) = P[Y \le y] = P[e^X \le y] = P[X \le \ln y] = F_X(\ln y)$$

$$f_Y(y) = \frac{\partial}{\partial y} F_X(\ln y) = \frac{1}{y} f_X(\ln y)$$

Probability Models for Derived RVs: 3-Step Procedure: Example 1 (cont.)

- Let $Y = e^X$.
- Find $f_Y(y)$ in terms of $f_X(x)$.

• In particular, suppose $X \sim N(\mu, \sigma^2)$ and $Y = e^X$. Then,

$$\begin{split} f_X(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ f_Y(y) &= \frac{1}{y} f_X(\ln y) = \begin{cases} \frac{1}{y} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln y - \mu)^2}{2\sigma^2}\right) & \text{, } y > 0 \\ 0 & \text{, otherwise} \end{cases} \end{split}$$

• Note: This is the lognormal PDF.

Probability Models for Derived RVs: 3-Step Procedure: Example 2

- Let $Y = X^2$.
- Find $f_Y(y)$ in terms of $f_X(x)$.

$$F_Y(y) = P[Y \le y] = P[X^2 \le y]$$

$$= P[-\sqrt{y} \le X \le \sqrt{y}]$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) + \frac{1}{2\sqrt{y}} f_X(-\sqrt{y})$$

Probability Models for Derived RVs: 3-Step Procedure: Example 2 (cont.)

- Let $Y = X^2$.
- Find $f_Y(y)$ in terms of $f_X(x)$.

In particular, let $X \sim \text{uniform}[-1,1]$ and $Y = X^2$. Then,

$$f_X(x) = \begin{cases} \frac{1}{2} & \text{, } -1 \le x \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

$$f_Y(y) = egin{cases} rac{1}{2\sqrt{y}} & \text{, } 0 < y \leq 1 \\ 0 & \text{, otherwise} \end{cases}$$