TCP Throughput
Instantaneous Average Huroughput (S) Huroughput (Saug)
- Assume TCP congestion window (CW) of W Lound Segment - Assume no slow start. (operating in AIMD) - Round-trip time of RTT seconds congestion avoidance - Segment size of MSS bytes/segment Phase
2: What is the average throughput of TCP? A: at CW=W, sending rate (S)
$S = \frac{W \cdot MSS}{RTT}$ bytes/sec
at CW=W => Triple duplicate a(K (TDA)) => mult decrease => CW = W/2
$S' = \frac{1}{2}S$ $Avg. Throughput:$ $Savg = \frac{S + 1/2S}{2} - \frac{3}{4}S$
= 3w. MSS bytes/sec

Link capacity = 10 Gbps = 1.25 GBpsMSS = 1500 bytes/segmentRTT = 100 ms = 0.1 sec

Q: What is the required window size?

W = S. RTT Sogments
MSS

= 83,333 segments

Q-3 users, 90 Mbps link (3 users are gombe)

U1 -> 50 Mbps | user request or

V2 -> 50 Mbps | requirement

V3 -> 10 Mbps

Fair allocation: 77 It depends!

Fair — proportional (41, 41, 8)

max-min (40, 40, 10)

Fair, efficient, good, optimal, best

—) have to give them meaning.

TCP-fair: (30, 30, 30)

TCP Reno with S5/AIMD

$$T_{X} 1: CW = 2$$

$$T_{X} 2: CW = 4$$

$$T_{X} 3: CW = 8$$

$$Slow shart$$

$$T_X S$$
: $CW = 10$
 $T_X S$: $CW = 2$
 $T_X S$: $CW = 2$
 $T_X S$: $T_X S$