Priority prediction of Asian Hornet sighting report using machine learning methods

Yixin Liu
South China University of Technology

- 1 Background
- 2 Motivation
- 3 Proposed Method
- 4 Experimental Results
- 5 Conclusion

- 1 Background
- 2 Motivation
- 3 Proposed Method
- 4 Experimental Results
- 5 Conclusion

Background

- Asian hornet has caused great damage to the ecological environment.
- One of the key ways to control them is to locate the nest and destroy it by mobilizing the masses to submit **sighting reports**.
- Traditional manual screening methods are inefficient and inaccurate
- How to automatically predict the priority of a sighting report is an important issue.

Task Definition

- Priority Prediction of Sighting Report
 - Higher priority to the report with higher credibility.

Problem Definition

Problem Description

Given a number of sighting report samples in a period of time, predict the
 priority of the report based on the information in the report samples.

Input & Output

- **Input**: Feature matrix of sighting reports $X \in \mathbb{R}^{n \times k}$
- **Output**: Prioritization of sighting reports $Y \in \mathbb{R}^{n \times 1}$

Performance Metric

Classification accuracy (the higher the better)

- 1 Background
- 2 Motivation
- 3 Proposed Method
- 4 Experimental Results
- 5 Conclusion

Motivation

Motivation

- Traditional manual methods are **not efficient and accurate**
- A variety of rich information in the sighting report can help predict the priority
- Combine **machine learning** to mine the features in the sighting report to realize automatic prediction

Challenges

- Feature Engineering: To extract the key features from numerous information in a report is challenging.
- **Priority mapping:** To map the credibility of a single report to its priority in multiple reports is challenging.

- 1 Background
- 2 Motivation
- 3 Proposed Method
- 4 Experimental Results
- 5 Conclusion

Our Approach

- Construct rich features from four dimensions: Location, Time, Image and Text
- Using Logistic Regression to predict the credibility of the report
- Determined the repots' priority by further considering the Mutual Influence

1. Location Feature s_L

- **Assumption:** Initial distribution $P_{x,y}^{(0)}$, migration month \mathbb{T}
- Nest Migration $P_{\text{nest}}^{(t+1)}(\lambda \cdot \phi) = \begin{cases} P_{\text{nest}}^{(t)}(\lambda \cdot \phi) & \text{, } t \notin \mathbb{T} \\ \sum_{(\lambda', \phi')} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(d-30)^2}{2\sigma^2}} P_{\text{nest}}^{(t)}(\lambda', \phi') & \text{, } t \in \mathbb{T} \end{cases}$

1. Location Feature s_L

Observe hornets

$$P_{\text{observe}}^{(t)}(\lambda', \phi') = \sum_{(\lambda \cdot \phi)} e^{-\beta_1 d} P_{\text{nest}}^{(t)}(\lambda \cdot \phi), \forall t$$

Location Feature

$$s_{\rm L}(\lambda', \phi', t) = P_{\rm observe}^{(t)}(\lambda', \phi')$$

2. Time Feature S_T

$$s_{\mathrm{T}} = \begin{cases} c_{T}, & T \in \mathbb{T} \\ 0, & \text{otherwise} \end{cases}$$

where c_T is the number of positive reports in month T over the historical data.

Figure 7: Positive Reports per Month

3. Image Feature s_I

$$s_{\rm I} = \begin{cases} n_{\rm I}, & \text{image(s) provided} \\ 0, & \text{otherwise} \end{cases}$$

where $n_{\rm I}$ denotes the number of image(s) attached to the report.

4. Word Feature s_W

TABLE I
THE DICTIONARY OF KEY CHARACTERISTICS OF V. mandarinia

	Asian giant hornet	Other confusing hornets		
Nest Location	"Underground","forests", "burrows","roots","trunks", · · ·	"Time limbs", "house eaves" "exposed", "lawns",		
Body Appearance	"Yellow heads", "black thorax", "striped abdomens", "giant", · · ·	"Small", "black and white colored", · · ·		

$$s_{\text{W}} = \frac{1}{n_{\text{W}}} \sum_{i=1}^{n_{\text{W}}} (q_i - k_i) + \beta_2 \log(n_{\text{W}} + 1)$$

where q_i is the word frequencies of word w_i in the dictionary of Asian giant hornet feature, k_i is the word frequencies in the confusing dictionary, n_W is the text length of report.

Classification Problem

Optimization Problem with Cross Entropy

- $x^{(i)}$: the sighting report $x^{(i)} \sim u(\cdot)$, where $u(\cdot)$ is a certain distribution that the report data is sampled from.
- y: the report category label, $y \in \{0,1\}$
 - y = 1 denotes that the report confirms the existence of a nest
 - y = 0 means that the report is a false positive
- $p^{(i)}$: the probability that report $x^{(i)}$ belongs to the true positive

$$\max \mathbb{E}_{x^{(i)} \sim u(\cdot)} [y^{(i)} p^{(i)} + (1 - y^{(i)})(1 - p^{(i)})]$$

- $\phi(x^{(i)}) : \text{ feature representation}$ $\phi(x^{(i)}) = \left[s_L^{(i)}, s_T^{(i)}, s_I^{(i)}, s_W^{(i)}\right]^T$
- f: fit a classifier f solve the above Equation by $p^{(i)} = f(\cdot | \phi(x^{(i)}); \theta)$

Classification Prediction

■ Feature Representation

$$\phi(x^{(i)}) = \left[s_L^{(i)}, s_T^{(i)}, s_I^{(i)}, s_W^{(i)}\right]^T$$

Logistic Regression

$$p(x^{(i)}) = \frac{1}{1 + e^{-\theta^T \phi(x^{(i)})}}$$

Loss Function with Weighted Cross-Entropy

$$H(p,y) = \tau y \log(p) + (1-y)\log(1-p)$$

$$\min J(\theta) = \frac{1}{n} \sum_{i=1}^{n} H(h_{\theta}(x^{(i)}), y^{(i)}) + \frac{\beta_3}{2} ||\theta||_2^2$$

Stochastic Gradient Descent

$$\theta' \leftarrow \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$

Priority Prediction

Mutual Influence Factor

$$F_{i,j} = \begin{cases} e^{-\lambda d_{ij}}, & \text{if } t_i = t_j \\ \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2\sigma^2}(d_{ij} - 30\Delta t_{i,j})^2}, & \text{otherwise} \end{cases}$$

Priority Evaluation

$$Z_i = \sum_{j=1}^n F_{i,j} \, p_j$$

The greater the Z-value of a report, the more likely it is to be positive, and thus the sooner it should be investigated.

- 1 Background
- 2 Motivation
- 3 Proposed Method
- 4 Experimental Results
- 5 Conclusion

Dataset & Cleaning

Dataset

■ From: WSDA (Washington State Department of Agriculture)

Ranging: from 2019 to 2021

Data Cleaning: 4,400 -> 4,355

■ **Highly Unbalanced:** only 0.3%(14/4355) is positive report

Detectio		Lab		Submissi Latitu Longi		
n Date	Notes	Status	Lab Comments	on Date	de	tude
	I'm not sure what this is, but it was the					
	biggest looking wasp/hornet I've ever					
	seen, at least an inch long. Sorry for the					-
2020-2	-poor quality picture, I went inside to get	Negati	This is a large fly that mimics bees!	2020-2-	48.729	122.4
29	a glass to catch it and it flew away.	ve ID	Thanks for submitting it.	29	596	80035
						-
2019-10	_	Positiv		2020-1-	48.971	122.7
30	Hornet specimen sent to WSU	e ID		15	949	00941

Parameter Setting

Parameter Setting

■ The initial distribution: the confirmed sighting report locations of the data set from March 2019 to April 2020.

$$P_{\text{nest}}^{(0)}(\lambda \phi) = \begin{cases} 1, & \text{if}(\lambda \phi) \in \mathbb{O}_{positive} \\ 0, & \text{otherwise} \end{cases}$$

.....

Results of Classification Prediction

The influence of balance factor τ

On the highly unbalanced dataset, we achieve weighted accuracy of 83.5%.

Results of Priority Prediction

- Priority Prediction with the Mutual Influences
- Comparison
 - Baseline:

 directly take $p^{(i)}$ as Priority
 - Ours: consider mutual influence $F_{i,j}$

Our method outperforms the baseline method.

- 1 Background
- 2 Motivation
- 3 Proposed Method
- 4 Experimental Results
- 5 Conclusion

Conclusion

Contributions

- We formalized the problem of priority prediction of sighting reports into a twocategory problem.
- To characterize a sighting report, we construct rich features from four dimensions: location, time, image and text.
- We purpose a machine learning model based on logistic regression to predict the credibility of the report, and determined their priority based on the relationship among the reports.

Thank You

Thank You Q&A