Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

A useful transformation: use one accept state

In General

NFA

Equivalent NFA

Single accepting state

Extreme case

NFA without accepting state

Add an accepting state without transitions

Take two languages

Regular language L_1

Regular language $\,L_2\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single accepting state

Single accepting state

$$L_2 = \{ba\} \qquad \qquad b \qquad a \qquad \qquad b$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

Star Operation

NFA for vL_1*

$$w = w_1 w_2 \cdots w_k$$

NFA for
$$L_1^* = \{a^n b\}^*$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

Complement

- 1. Take the DFA that accepts L_1
- 2. Make accepting states non-final, and vice-versa

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA $\,M\,$ that accepts $\,L_{\!1}\cap L_{\!2}\,$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

DFA M_1

DFA M_2

initial state

initial state

DFAM

New initial state

Both constituents must be accepting states

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$a$$

$$b$$

$$a,b$$

$$a_{2}$$

$$a,b$$

$$a,b$$

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

$$a, b$$

$$q_0, p_0 \qquad a \qquad q_0, p_1 \qquad b \qquad q_1, p_1 \qquad a \qquad q_2, p_2$$

$$b \qquad a \qquad b \qquad a$$

$$q_1, p_2 \qquad b \qquad q_0, p_2 \qquad q_2, p_1$$

$$a, b \qquad a$$

$\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

$$L(M) = L(M_1) \cap L(M_2)$$