Assignment 1D Solutions:

Equations/statements marked in blue casey | point each.

Alternate solutions are accepted (as long as they are need reasoned). Message any of the TAs it you have a problem.

1. Let λ , $\alpha \in \mathbb{R}$, and $A = \begin{bmatrix} \lambda & In & y \end{bmatrix} \in C^{(n+1)\times(n+1)}$ where $y \in C^{(n+1)\times(n+1)}$

6) Use Cauchy interlacing theorem to show \(\) is an EVal (A) with multiplicity at least n-1.

D Find the other ZEVals (A).

A.@From Cauchy interlacing theorem, for $A = \begin{bmatrix} B \\ J \end{bmatrix}$, with $\lambda_i(B)$ and $\hat{\lambda}_i(A)$ escanged in Trealme, $\begin{bmatrix} y^{t} \\ y^{t} \end{bmatrix}$, $\hat{\lambda}_1 \leq \hat{\lambda}_1 \leq \hat{\lambda}_2 \leq \hat{\lambda}_2 \leq \dots \leq \hat{\lambda}_n \leq \hat{\lambda}_n \leq \hat{\lambda}_{n+1}$

Since $B = \lambda In$, $\lambda i(B) = \lambda + 1 \le i \le n$ $\Rightarrow \lambda_1 \le \lambda \le \lambda_2 \le \lambda \le \dots \le \lambda_n \le \lambda \le \lambda_{n+1} - 0$ Thus, $\lambda_1 \le \lambda \le \lambda_{n+1}$ $\lambda_2 = \lambda_3 = \dots = \lambda_n = \lambda$ Thus λ is an EVal (A) with multip. n-1

 $\begin{array}{lll}
\text{B} & \text{Ta}(A) = \sum_{i=1}^{n+1} \hat{\lambda}_i = (n-1)\lambda + \hat{\lambda}_i + \hat{\lambda}_{n+1} \\
& 11 \\
& n\lambda + \alpha = \lambda + \alpha = \hat{\lambda}_1 + \hat{\lambda}_{n+1} & -3
\end{array}$

$$\frac{\lambda_{1}}{\lambda_{1}} \frac{\lambda_{nm} \cdot \lambda^{n-1}}{\lambda_{1}}$$

$$\det(A) = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right|$$

$$= \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right|$$

$$= \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right|$$

$$= \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_{1}} \right| = \left| \lambda_{1} \frac{\lambda_{1}}{\lambda_$$

$$\Rightarrow \quad \hat{\lambda}_1 \cdot \hat{\lambda}_{n+1} = \alpha \lambda - \|y\|^2 - \underline{4}$$

$$\frac{\lambda_1 = \lambda + \alpha - \hat{\lambda}_{n+1}}{\Rightarrow -\hat{\lambda}_{n+1}^2 + \lambda \hat{\lambda}_{n+1} + \alpha \hat{\lambda}_{n+1}} = \alpha \lambda - \|y\|^2$$

$$= \frac{\lambda_1^2}{\hat{\lambda}_{n+1}^2} - (\lambda + \alpha) \hat{\lambda}_{n+1} - (\|y\|^2 - \alpha \lambda) = 0$$

$$3\hat{\lambda}_{1} = (\lambda + \alpha) - \sqrt{(\lambda - \alpha)^{2} + 4iyi^{2}} - 6$$

$$(:\hat{\lambda}_{1} \leq \lambda \leq \hat{\lambda}_{n+1})$$
2

2. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian and aij be ",j) the de @ Paoue that $\lambda \min(A) \leq aii \leq \lambda \max(A)$ B If A is PD , prove that $aii > 0$ Positive Definite $f = 1, 2,, n$ (4)	ment of A.
A. @ From the Rayleigh-Ritz theorem, $ \lambda_{\min}(A) \subseteq \frac{\chi^{H} A \chi}{\chi^{\mu} \chi} \subseteq \lambda_{\max}(A) \qquad -1 $	
Take $x = e_i \rightarrow ith col. of In$ =) $\lambda_{min}(A) \leq a_{ii} \leq \lambda_{max}(A)$ -2	
B A is PD => xHAx >0 + 0 + x & C" Take x = ei -> ith col. of In -B => ei A ei = ai >0 Doing this repeatedly for all i & E1, 2,, n} yields the final result ai >0 + i -A (Alternately, for a PD matrix, all EVals >0) => From 182a, ai >> min >0 => aii >0)	
(=) From 1820, aii 7 / min >0 =) aii 70/	