Teoria da Computação Linguagens Regulares (Parte 1) Equivalência entre AFND e AFD

Prof. Jefferson Magalhães de Morais

Notação tabular

- É uma notação para a representação de autômatos finitos
 - ullet Cada linha da tabela representa um estado distinto q
 - ullet Cada coluna é associada a um elemento distinto de σ

 - ullet "o" é o estado inicial
 - "←" indica os estados finais
 - "↔" indica um estado simultaneamente inicial e final

Algoritmo

- Considere $M_1=(Q_1,\Sigma,\delta_1,q_{10},F_1)$ um AFND e $M_2=(Q_2,\Sigma,\delta_2,q_{20},F_2)$ um AFD que se deseja obter. M_2 é obtido a partir de M_1 através do algoritmo seguinte
 - Entrada: M_1 com $\delta_1: Q_1 \times \Sigma \to 2^{Q_1}$
 - Saída: M_2 com $\delta_2: Q_2 imes \Sigma o Q_2$ tal que $L(M_1) = L(M_2)$
 - Método:

 - 2 $\forall i \geq 0$, se $q_{1i} \in Q_1$ então $Q_2 \leftarrow Q_2 \cup \{q_{2i}\}$
 - $3 \forall i \geq 0$, se $q_{1i} \in F_1$ então $F_2 \leftarrow F_2 \cup \{q_{2i}\}$
 - $\forall q_{1i} \in Q_1, \sigma \in \Sigma, \text{ se } \delta_1(q_{1i},\sigma) = \{q_{11},\ldots,q_{1n}\}, n \geq 1, \text{ então } \delta_2(q_{2i},\sigma) = \{q_{21},\ldots,q_{2n}\}$
 - **3** Substituir todos os elementos $\{q_{2i}\}$ de δ_2 por q_{2i}

Algoritmo

- **1** Enquanto houver transições não-determinísticas em δ_2 , faça:
 - a) Selecione uma transição não-determinística qualquer $\delta_2(q,\sigma) = \{q_{21},\ldots,q_{2n}\}, n \geq 2$
 - b) Acrescente um novo estado $q_{21} \dots q_{2i} \dots q_{2n}$ à tabela de transição de estados (índices em ordem crescente); se $q_{2i} = q_{2i1} \dots q_{2im}$, considerar a ordenação de todos os estados obtidos pela substituição de q_{2i} por $q_{2i1} \dots q_{2im}$ em $q_{21} \dots q_{2i} \dots q_{2n}$
 - c) Substitua todas as referências a $\{q_{21}, \ldots, q_{2n}\}$ por q_{21}, \ldots, q_{2n}
 - d) Para cada $\sigma \in \Sigma$, faça:
 - i. $\delta_2(q_{21}\dots q_{2n},\sigma) \leftarrow \emptyset$
 - ii. Para cada estado $q_{2j} \in \{q_{21}, \ldots, q_{2n}\}$, faça:
 - A. $\delta_2(q_{21}\ldots q_{2n},\sigma) \leftarrow \delta_2(q_{21}\ldots q_{2n},\sigma) \cup \delta_2(q_{2j},\sigma)$
 - B. Se $q_{2j} \in F_2$, então $F_2 \leftarrow F_2 \cup \{q_{21} \dots q_{2n}\}$

Considere o AFND apresentado anteriormente

Resultado final após a aplicação do algoritmo

	δ'	а	b	с
\longrightarrow	q_0	q_1q_2		
←	q_1		$q_{1}q_{2}$	
←	q_2			q_2
←	q_1q_2		q_1q_2	q_2

	δ	а	b	c
\longrightarrow	q_0	$\{q_1,q_2\}$		
←	q_1		$\{q_1,q_2\}$	
\leftarrow	q_2			$\{q_2\}$

- A eliminação de não-determinismo implica
 - ullet Criação de novos estados Q'
 - Altera a função de transição de estados δ'
 - ullet Acrescenta estados finais ao autômato resultante F'
- O AFD resultante pode conter estados inacessíveis, i.e., estados que não podem ser atingidos a partir do estado inicial por nenhum caminho

Considere o AFND e a sua notação tabular

	δ	а	b	c
\rightarrow	q_0	$\{q_1,q_2\}$		$\{q_3\}$
←	q_1	$\{q_0\}$	$\{q_0,q_1\}$	
←	$ q_2 $			$\{q_2\}$
	q_3	$\{q_2\}$	$\{q_1\}$	

Substituir $\{q_0\}$ por q_0 , $\{q_1\}$ por q_1 , $\{q_2\}$ por q_2 e $\{q_3\}$ por q_3

	δ	а	b	С		δ	а	b	с
\rightarrow	q_0	$\{q_1,q_2\}$		$\{q_3\}$	\rightarrow	q_0	$\{q_1,q_2\}$		q_3
←	q_1	$\{q_0\}$	$\{q_0,q_1\}$		←	q_1	q_0	$\{q_0,q_1\}$	
\leftarrow	q_2			$\{q_2\}$	←	q_2			q_2
	q_3	$\{q_2\}$	$\{q_1\}$			q_3	q_2	q_1	

Criar um novo estado $q_1 \, q_2$, substituindo $\{ \, q_1, \, q_2 \}$ na tabela por $q_1 \, q_2$

	δ	а	b	c
\rightarrow	q_0	$\{q_1,q_2\}$		q_3
←	q_1	q_0	$\{q_0,q_1\}$	
←	q_2			q_2
	q_3	q_2	q_1	

	_			
	δ	а	b	c
\rightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	$\{q_0,q_1\}$	
←	q_2			q_2
	q_3	q_2	q_1	
\leftarrow	q_1q_2	q_0	$\{q_0,q_1\}$	q_2

Criar um novo estado $q_0 \, q_1$, substituindo $\{ \, q_0, \, q_1 \}$ na tabela por $q_0 \, q_1$

	δ	а	b	c
\rightarrow	q_0	$q_{1}q_{2}$		q_3
\leftarrow	q_1	q_0	$\{q_0,q_1\}$	
\leftarrow	q_2			q_2
	q_3	q_2	q_1	
\leftarrow	q_1q_2	q_0	$\{q_0,q_1\}$	q_2

	δ	а	b	c
\rightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	q_0q_1	
←	q_2			q_2
	q_3	q_2	q_1	
←	$q_{1}q_{2}$	q_0	q_0q_1	q_2
←	q_0q_1	$\{q_1q_2, q_0\}$	q_0q_1	q_3

Criar um novo estado $q_0 \, q_1 \, q_2$, substituindo $\{ \, q_1 \, q_2, \, q_0 \}$ na tabela por $q_0 \, q_1 \, q_2$

	δ	а	b	c
\rightarrow	q_0	$q_{1}q_{2}$		q_3
←	q_1	q_0	q_0q_1	
←	q_2			q_2
	q_3	q_2	q_1	
←	q_1q_2	q_0	q_0q_1	q_2
←	q_0q_1	$\{q_1q_2,q_0\}$	q_0q_1	q_3

	δ	а	b	c
\rightarrow	$ q_0 $	q_1q_2		q_3
←	q_1	q_0	q_0q_1	
←	$ q_2$			q_2
	q_3	q_2	q_1	
←	q_1q_2	q_0	q_0q_1	q_2
←	q_0q_1	$q_0q_1q_2$	q_0q_1	q_3
←	$ _{q_0q_1q_2}$	$q_0q_1q_2$	q_0q_1	$\{q_2, q_3\}$

Criar um novo estado $q_2 \, q_3$, substituindo $\{ \, q_2, \, q_3 \}$ na tabela por $q_2 \, q_3$

	δ	а	b	c
\rightarrow	q_0	$q_{1}q_{2}$		q_3
←	q_1	q_0	q_0q_1	
←	q_2			q_2
	q_3	q_2	q_1	
←	q_1q_2	q_0	q_0q_1	q_2
←	q_0q_1	$q_0q_1q_2$	q_0q_1	q_3
←	$q_0q_1q_2$	$q_0q_1q_2$	q_0q_1	$\{q_2, q_3\}$

	δ	а	b	c
\rightarrow	q_0	$q_{1}q_{2}$		q_3
←	q_1	q_0	q_0q_1	
←	q_2			q_2
	q_3	q_2	q_1	
←	q_1q_2	q_0	q_0q_1	q_2
←	q_0q_1	$q_0q_1q_2$	q_0q_1	q_3
←	$q_0q_1q_2$	$q_0q_1q_2$	q_0q_1	$q_{2}q_{3}$
←	q_2q_3	q_2	q_1	q_2

Resultado final

	δ	а	b	c
\rightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	q_0q_1	
\leftarrow	q_2			q_2
	q_3	q_2	q_1	
\leftarrow	$q_{1}q_{2}$	q_0	q_0q_1	q_2
\leftarrow	q_0q_1	$q_0q_1q_2$	q_0q_1	q_3
\leftarrow	$q_0q_1q_2$	$q_0q_1q_2$	q_0q_1	q_2q_3
←	q_2q_3	q_2	q_1	q_2

Novos estados

- O número de novos estados no AFD é limitado pela quantidade de combinações distintas que podem ser feitas entre os estados do AFND
- Se $M_1=(Q_1,\Sigma,\delta_1,q_0,F_1)$ é o AFND e $M_2=(Q_2,\Sigma,\delta_2,q_0,F_2)$ é o AFD equivalente, então $|Q_2|\leq 2^{|Q_1|}-1$
- Exemplo: eliminação de não-determinismos

					δ	а	b
				\rightarrow	q_0	$q_{1}q_{2}$	
	δ	а	b	←	q_1		
\rightarrow	q_0	$\{q_1,q_2\}$			q_2	q_0q_2	q_0q_1
←	q_1			←	$q_{1}q_{2}$	q_0q_2	q_0q_1
	q_2	$\{q_0, q_2\}$	$\{q_0, q_1\}$	<u></u>	q_0q_1	q_1q_2	
					q_0q_2	$q_0q_1q_2$	q_0q_1
				\leftarrow	$q_0q_1q_2$	$q_0q_1q_2$	q_0q_1

•
$$Q_1 = \{q_0, q_1, q_2\}$$
 e

•
$$Q_2 = \{q_0, q_1, q_2, q_0 q_1, q_0 q_2, q_1 q_2, q_0 q_1 q_2\}$$

•
$$|Q_1| = 3 \text{ e } |Q_2| = 2^3 - 1 = 7$$

Considerações sobre a equivalência

- Nem sempre todas as combinações possíveis de estados surgirão
- Alguns estados antigos, eventualmente, tornam-se inacessíveis
- Conclusão sobre o teorema
 - Existe um AFD equivalente a qualquer AFND
 - O AFND não é mais poderoso que um AFD
- Procedimento inverso
 - É óbvio que existe um AFND que seja equivalente a AFD
 - A incorporação de não-determinismos pode ser feita trivialmente

Considerações sobre a equivalência

Por exemplo, o AFD que aceita a linguagem $a(bca)^*$ é

Acrescentando um novo estado q_3 e a transição $\delta(q_2,c)=q_3$ já seria suficiente para tornar M não-determinístico, sem alterar a linguagem aceita por ele

