14 אלגברה לינארית (2) תשע'ט ד תרגיל

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף שם (פרטי ומשפחה) ומספר ת.ז. יש לציין כותרת ברורה בראש הדף הכוללת במיות: כתבו את שם הקורס עד ל- 19.6.6.19 את שם הקורס ומספר התרגיל. סרקו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל- 21:00 בשעה 21:00

$$v\in\mathbb{R}^3$$
 לכל $T(v)=Av$ לינארי המוגדר האופרטור $T:\mathbb{R}^3 o\mathbb{R}^3$ ויהי והי $A=\left[egin{array}{ccc}2&-1&-1\-1&2&-1\-1&-1&2\end{array}
ight]\in M_3(\mathbb{R})$ תהי $A:V\in\mathbb{R}^3$ האופרטור הלינארי המוגדר ע"י

. אלכסונית. כך ש־ $O^{-1}AO$ שלכסונית. אורתוגונלית עצמו, ומצאו T צמוד ש־ ד אמכחלרית. הראו אורתוגונלית עצייד את פארית. הראו ש־ ד צמוד לעצמו, ומצאו אורתוגונלית כך ש־ אורתוגונלית במכפלה הסקלרית.

.
$$v\in\mathbb{C}^2$$
 לכל $T(v)=Av$ ע'י המוגדר הלינארי האופרטור $T:\mathbb{C}^2 o\mathbb{C}^2$ ויהי $A=\left[egin{array}{cc} rac{2\sqrt{2}}{3} & rac{i}{3} \\ rac{i}{3} & rac{2\sqrt{2}}{3} \end{array}
ight]\in M_2(\mathbb{C})$ תהי .2

. אלכסונית. ער ש־ $U^{-1}AU$ ש־ כך ער אוניטרית מטריצה מטריצה אוניטרי, הראו ש־ אוניטרית. הראו דרית. במכפלה הסקלרית. במכפלה אוניטרי, ומצאו מטריצה אוניטרי, ומצאו אוניטרית. הראו ש־

$$v\in\mathbb{C}^3$$
 לכל $T(v)=Av$ 'ניהי המוגדר הלינארי האופרטור $T:\mathbb{C}^3 o\mathbb{C}^3$ ויהי והי $A=\left[egin{array}{ccc}0&0&-1\0&rac{1-i}{\sqrt{2}}&0\1&0&0\end{array}
ight]\in M_3(\mathbb{C})$ תהי 3.

. אלכסונית. במכפלה ער ש־ $U^{-1}AU$ ש־ כך ער אוניטרית מטריצה מטריצה אוניטרי, ומצאו ש־ אוניטרית. הראו די את במכפלה אלכסונית. הראו ש־

- . $v\in V$ אבור כל $\langle T(v)\mid v\rangle=0$ ש" כך ש" אופרטור $T:V\to V$ ו $\mathbb C$ עבור כל ממימד ממימ ממים ממים יהי V יהי V מתקיים עבור כל V מתקיים מחקיים לכל V והסיקו כי לכל לכל V מתקיים עבור מחקיים ליש והסיקו כי לכל מחקיים עבור מחקיים מחקיים מחקיים ליש מחקיים מחקי
- $|\lambda|=1$ מקיים T של $\lambda\in\mathbb{C}$ עבמי ערך עבמי כך לכסין לינארי לינארי T:V o V ו־ T:V o V אופרטור ממימד ממימד ממימד ממימד. אופרטרי. די אוניטרי.
 - הבאות: הבאות: עובריכו או הפריכו או הוכיחו הוכיחו לינארי $T:V \to V$ אופרטות ממימד ממימד ממימד ממימד הוכיחו אווים. אווים. T^* שווים.
 - . T^st אם"ם v ו"ע של v ב. v ו"ע של אם"
 - 1.7ע עבור הע"ע אם "ם 1.7ע של אם עבור הע"ע אם אם עבור הע"ע אם עבור הע"ע ע

.
$$ec y=\left[egin{array}{c} y_1 \ y_2 \end{array}
ight]$$
 רי $ec x=\left[egin{array}{c} x_1 \ x_2 \end{array}
ight]$ כאשר כל סעיף נתונה פונקציה $ec x:\mathbb{R}^2 imes\mathbb{R}^2 imes\mathbb{R}^2 o\mathbb{R}$ כאשר .7

. אם האם או אנטי־סימטרית או האם g סימטרית אם כן, קבעו אם הארית על \mathbb{R}^2 אם בילינארית על אם מגדירה תבנית מגדירה על אם כן, קבעו האם

$$g\left(\vec{x},\vec{y}
ight)=(x_1-x_2)(y_2-y_1)$$
 (1) $g\left(\vec{x},\vec{y}
ight)=(x_1-y_2)(x_2-y_1)$ (2) $g\left(\vec{x},\vec{y}
ight)=x_1y_2$ (18)

$$g\left(\left[egin{array}{c} x_1 \ x_2 \end{array}
ight], \left[egin{array}{c} y_1 \ y_2 \end{array}
ight]
ight)=x_1y_1-x_2y_1$$
מוגדרת ע'י $g:\mathbb{R}^2 imes\mathbb{R}^2 imes\mathbb{R}^2 o\mathbb{R}$ מוגדרת בנית בילינארית $g:\mathbb{R}^2 imes\mathbb{R}^2 o\mathbb{R}$ מהי המטריצה המייצגת של $g:\mathbb{R}^2 imes\mathbb{R}^2 o\mathbb{R}$ כאשר א) $g:\mathbb{R}^2 o\mathbb{R}$ הוא הבסיס הסטנדרטי של $g:\mathbb{R}^2 o\mathbb{R}^2 o\mathbb{R}$ בבסיס $g:\mathbb{R}^2 o\mathbb{R}^2$ הוא הבסיס הסטנדרטי של $g:\mathbb{R}^2 o\mathbb{R}^2 o\mathbb{R}^2$

. $A=M^tM$ ו מטריצה הפיכה $M\in M_n(\mathbb{R})$. פ. תהי $g_A(v,w)=v^tAw$ יי המוגדרת $g_A:\mathbb{R}^n imes\mathbb{R}^n\to\mathbb{R}$ היא מכפלה פנימית על הוכיחו