Отчёт по лабораторной работе №5. Модель хищник-жертва.

Предмет: математическое моделирование

Александр Сергеевич Баклашов

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Задача (Вариант 38) 4.2 Решение 4.2.1 Код 4.2.2 Параметры симуляции 4.2.3 Графики	7 7 7 8 9
5	Выводы	12
6	Библиография	13

List of Figures

4.1	Код	8
4.2	Параметры симуляции	9
4.3	График зависимости численности хищников от численности жертв	10
4.4	Графики изменения численности хищников и численности жертв	10
4.5	Стационарное состояние	11

1 Цель работы

Рассмотреть простейшую модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. С помощью рассмотренного примера научиться решать задачи такого типа.

2 Задание

Для модели «хищник-жертва»:

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при начальных условиях: x_0 , y_0 . Найдите стационарное состояние системы. [3]

3 Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв и хищников зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

Данная модель описывается следующим уравнением:

$$\left\{ \begin{array}{l} \frac{dx}{dt} = -ax(t) + bx(t)y(t) \\ \frac{dy}{dt} = cy(t) - dx(t)y(t) \end{array} \right.$$

где x - число хищников; y - число жертв; a,d - коэффициенты смертности; b,c - коэффициенты прироста популяции.

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке: $x_0 = \frac{c}{d}$, $y_0 = \frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0) = x_0$, $y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет. [2]

4 Выполнение лабораторной работы

4.1 Задача (Вариант 38)

Для модели «хищник-жертва»:

$$\left\{ \begin{array}{l} \frac{dx}{dt} = -0.7x(t) + 0.06x(t)y(t) \\ \frac{dy}{dt} = 0.6y(t) - 0.07x(t)y(t) \end{array} \right. \label{eq:delta_t}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: x_0 =8, y_0 =15. Найдите стационарное состояние системы. [3]

4.2 Решение

4.2.1 Код

Напишем код в OpenModelica [1] (рис. 4.1)

Figure 4.1: Код

4.2.2 Параметры симуляции

Зададим параметры симуляции (рис. 4.2)

Figure 4.2: Параметры симуляции

4.2.3 Графики

1. Построим график зависимости численности хищников от численности жертв, найдём стационарное состояние системы. (рис. 4.3)

Figure 4.3: График зависимости численности хищников от численности жертв

2. Построим графики изменения численности хищников и численности жертв (рис. 4.4)

Figure 4.4: Графики изменения численности хищников и численности жертв

3. Найдём стационарное состояние системы. (рис. 4.5)

Figure 4.5: Стационарное состояние

5 Выводы

В ходе данной лабораторной работы я рассмотрел простейшую модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. С помощью рассмотренного примера научился решать задачи такого типа.

6 Библиография

- 1. Modelica: Language Specification. 308 с. [Электронный ресурс]. М. URL: Language Specification (Дата обращения: 12.03.2021).
- 2. Лабораторная работа №5. Модель хищник-жертва. 5 с. [Электронный ресурс]. М. URL: Лабораторная работа №5. Модель хищник-жертва. (Дата обращения: 12.03.2021).
- 3. Лабораторная работа №5. Варианты. [Электронный ресурс]. М. URL: Варианты (Дата обращения: 12.03.2021).