Geospatial Data Acquisition and Evaluation

Center for Geographic Analysis

Harvard University

Nicole Alexander, Ph. D.

nalexander@cga.harvard.edu

Harvard DataFest 2018

Geospatial Data Acquisition and Evaluation

- Geospatial Data Sources
- Data Transfer
- Metadata
- Geocoding Data Science Datasets in R using Google's API

Geospatial Data Acquisition and Evaluation

- How data are captured determines the quality of decisions that can be made from analyzing the data
 - Primary sources: obtained through direct measurement
 - Secondary sources: derived from other sources
- Data accuracy can more reliably be determined from primary sources

Geospatial Data Sources

	RASTER	VECTOR
Primary	Digital satellite remote- sensing imagesDigital aerial photographs	 GPS measurements Field survey measurements LiDAR
Secondary	 Scanned maps and photographs Digital elevation models from topographic map contours 	 Topographic maps Toponymy (place-name) databases Geocoding

Primary Raster Data Capture

- Remote sensing
 - Satellite
 - Aircraft
- Image Resolution
 - Spatial
 - Spectral
 - Temporal

Remote Sensing Data Capture

- Captures data over a large geographic areas
 - Total ground coverage range from 9 x 9 km 200 x 200 km
- Pixel size determines spatial resolution of an image
 - Spatial accuracy of features increases as pixel size decreases
- Satellite systems capture data in the range of 0.5 m 1 km pixel size
- Camera systems capture data in the range of 0.01 m − 5 m pixel size
- Costly compared with other methods of data capture
- Data volumes can be very large

Primary Vector Data Capture

- Main sources
 - GPS
 - Surveying
- Remote Sensing
 - LiDAR (Light Detection And Ranging)
 - a "cloud" of points that reflects the surface

Primary Vector Data Capture

• GPS

- Recreational: low precision 6 12m
- Mapping and GIS: medium precision 30cm 5m
- Surveying: high precision 5mm 1cm

Surveying

- Used for large scale mapping of small areas and property boundaries
- Capable of 1 mm accuracy
- Equipment and crews are expensive

LiDAR

- 30,000 points per second at an accuracy of around 15cm
- Often rasterized to create DEMs

Secondary Raster Data Capture

- Scanning of hardcopy media
 - Building plans, CAD drawings, property deeds, film, paper maps, aerial photographs, images, etc.
 - Spatial resolution of scanners in the range of 400 900 dpi (16 40 dots per mm)
- DEM generation from topographic map contours or LiDAR

Secondary Vector Data Capture

- Vectorizing raster data
- Digitizing
- Geocoding
- Photogrammetry
- COGO Coordinate Geometry

Data Transfer: Obtaining Data from External Sources

- U.S. Geological Survey
- U.S. Census Bureau
- OpenStreetMap
- GeoNames
- Other Geospatial Data Sites

U.S. Geological Survey (usgs.gov)

 The major provider of geospatial data in the US

U.S. Census Bureau (census.gov)

 Provides data to support the US decennial census

OpenStreetMap (OSM) (openstreetmap.org)

- Map data of the world
- Created and maintained by a community of mappers

GeoNames (geonames.org)

 Global geographical database of place names

Other Geospatial Data Sites

- Harvard University
 - CGA: http://gis.harvard.edu/resources/data
 - Harvard Geospatial Library: http://hgl.harvard.edu
 - Harvard WorldMap: http://worldmap.harvard.edu
 - Harvard Map Collection: http://hcl.harvard.edu/libraries/maps/collections/digital.html#overview
- Local
 - MassGIS: http://www.mass.gov/mgis
 - City of Boston: https://data.boston.gov/dataset?groups=geospatial
 - Metro Boston Data Common: http://www.metrobostondatacommon.org/
- National
 - US Federal Government: http://data.gov
 - US Geological Survey: http://viewer.nationalmap.gov/viewer/
- Global
 - The ESRI Data and Maps: http://bit.ly/NBoQzQ
 - ArcGIS Online Services from ESRI: http://www.arcgis.com/home/

Metadata

- Data about the geospatial data:
 - Identification
 - Data quality
 - Coordinate system
 - Attributes, etc.
- Especially important when using public data

Geocoding Data Science Datasets in R using Google's API

- Kaggle
- Geocoding a CSV of Addresses using Google's API

Kaggle (kaggle.com)

- Data science and machine learning site
- Datasets containing placename or address information can be geocoded to perform spatial analysis

Demo: Geocoding a CSV of Addresses in R using Google's Geocoding API

File Edit Code View Plots Session Build Debug Profile Tools Help

```
O - O Go to file/function
                                             Addins -
 @ googleRgeocode.R ×

    □ □ □ Source on Save □ ▼ ▼ □ □

   1 #1. Install ggmap package (and dependencies) from the Repository in RStudio: Packages -> install -> ggmap
     #2. Open a new R script: File -> New File -> R Script
      #3. Load ggmap
      library(ggmap)
      #4. Select the CSV file from the file chooser
      fileToLoad <- file.choose(new = TRUE)
  10
     #5. Read the CSV data and store it in a variable (origAddress)
      origAddress <- read.csv(fileToLoad, stringsAsFactors = FALSE)
  13
  14 #6. Initialize the data frame
      geocoded <- data.frame(stringsAsFactors = FALSE)</pre>
  16
      #7. Loop through the addresses in the CSV file to get the latitude and longitude
     # of each address and add it to the
      # origAddress data frame in new columns lat and lon
     for(i in 1:nrow(origAddress))
  21 - {
  22
        result <- geocode(origAddress$addresses[i], output = "latlona", source = "google")
        origAddress$lon[i] <- as.numeric(result[1])</pre>
  23
  24
        origAddress$lat[i] <- as.numeric(result[2])</pre>
  25
        origAddress$geoAddress[i] <- as.character(result[3])</pre>
  26
  27
      #8. Write a CSV file containing origAddress to the working directory
      write.csv(origAddress, "geocoded.csv", row.names=FALSE)
  30
  22:85
       (Top Level) $
 Console Terminal x
 ~100
 >
```

Data Acquisition and Evaluation Summary

- Data collection can be expensive and time-consuming
 - Main techniques
 - Primary
 - Raster e.g. remote sensing
 - Vector e.g. GPS, field survey and LiDAR
 - Secondary
 - Raster e.g. scanning
 - Vector e.g. digitizing and geocoding
- Conversion of existing data and online data options available
- Always ask first: to buy or to build?

References

- Longley, P. A., M. F. Goodchild, D. J. Maguire, D. W. Rhind (2010). Geographic Information Systems & Science (3rd Ed). John Wiley & Sons, Inc.
- Clarke, K.C. (2010). Getting Started with GIS (5th Ed). Prentice-Hall, Inc., London.
- Chang, K-T. (2010). Introduction to Geographic Information Systems (5th Ed). McGraw-Hill.
- Center for Geographic Analysis (CGA) Harvard: GIS Training Materials.
- Storybench: http://www.storybench.org/geocode-csv-addresses-r/
- Google: https://developers.google.com/maps/documentation/geocoding/start

Q&A