Competing for Inventors

(joint with Michele Fornino)

Andrea Manera

May 3, 2021

Research Questions and Main Idea

We ask two main questions:

• What are the boundaries of labor markets for *inventors?*

Theoretical Framework

2 Does competition for scarce inventors between different product markets affect R&D allocation and productivity?

Across product markets, more market power gives:

- Higher private returns to R&D, demand for inventors
- Lower social returns to R&D, less growth per inventor

Complementary explanation for observed decline in R&D productivity

What we Do

- Build data on inventors' flows across product markets
- Preliminary facts:
 - Inventors have become more concentrated across product markets (all levels of NAICS)
 - Positive correlation between product market concentration and share of relevant inventors

Theoretical Framework

- Preliminary model:
 - Acemoglu and Akcigit (2012) + monopolistic firms (CES) in each product market
 - Markets with higher markup hire more inventors
 - Future: work on welfare consequences and policy

Plan of the Talk

Introduction

0000000000

- Motivation (most from our work) and Literature Review
- 2 Data construction
- Model

Are Ideas Harder to Find?

Source: Bloom et al. (2021)

Conclusions

Introduction

R&D spending on Concentration (4d NAICS)

Source: Compustat

0000000000

"Research Quotient" on Concentration

Source: Knott(2012), Compustat

Increased Concentration of Inventors

Source: Compustat and USPTO

Patent vs. Product Similarity among Firm Pairs

Source: Arts et al. (2021) and Hoberg and Phillips (2016)

Relevant Literature

- Trends in innovation and R&D.
 Akcigit and Kerr (2018), Akcigit and Ates (2020), Bloom et al. (2020, 2021), Arora et al. (2021)
- Decreasing Competition
 De Loecker et al. (2020), Gutiérrez and Philippon (2017, 2018),
 Grullon et al. (2019)
- Competition and Innovation
 Aghion et al. (2005, 2009, 2019), Gutiérrez and Philippon (2017),
 Autor et al. (2021), Hoberg and Phillips (2016)
- Models of step-by-step innovation
 Aghion, Harris, and Vickers (1997), Aghion et al. (2001),
 Acemoglu and Akcigit (2012)

Theory Literature:

- R&D activity is (usually) non-rival
- Focus on homogeneous product market
- Look at competition and innovation within product markets

Theoretical Framework

Empirical Literature:

Focus on patents and citations

This paper:

- R&D is rival (inventors are scarce)
- Competition and innovation across different product markets
- Focus on inventors (although through patents)

Empirics Objectives

- Understand boundary of markets for inventors
 - Identify "knowledge markets" as sets of product markets that hire the same type of inventors
 - Use patent data to build a network of flows of inventors across sectors
 - Identify connected sectors maximizing network's modularity
- Look within knowledge markets to see how product markets' share of inventors relate to concentration

Theoretical Framework

Introduction

Data Sources

- Compustat (firm-year):
 - firm identifiers (*gvkey*), product market (*NAICS* 2007), and sales, build competition measures;
- USPTO (patent-year) :
 - patent citation and disambiguated inventor id's, 1975-present;
- DISCERN, Arora et al. (2021) (patent-inventors-year): crosswalk of patent IDs to ultimate-owner gvkey in Compustat 1980-2015:

Dataset Structure

Patent ID	Inventor ID	UO gvkey (assignee)	NAICS	Year
US00001	00001-1	1010	111	1980
US00001	00001-2	1010	111	1980
US00002	00001-1	1010	111	1980
US00003	00001-1	1044	1121	1982

Dataset Structure

Patent ID	Inventor ID	UO gvkey (assignee)	NAICS	Year
US00001	00001-1	1010	111	1980
US00001	00001-2	1010	111	1980
US00002	00001-1	1010	111	1980
US00003	00001-1	1044	1121	1982

	Inventor ID	Gvkey 1	Gvkey 2	NAICS 1	NAICS 2	Year
ĺ	00001-1	1010	1044	111	112	1982

"Knowledge Markets"

- Knowledge Market: set of NAICS (product markets) that employ the same type of inventors
 - To capture similar required knowledge to innovate
- From data, undirected network:
 - NAICS (3 or 4 digit) as nodes
 - Normalized effective inventor flows as edge weights, W

"Effective inventors"

• Effective inventors: "Productivity-adjusted" inventors:

$$\mathsf{Inventors}_{f,t} = \sum_{i \in \{\mathsf{inventors in firm } f\}} \left[\sum_{p \in \{\mathsf{inventor} i'\mathsf{s patents}\}} \frac{1}{N_p} \right],$$

with N_p the number of inventors who worked on patent p

 Normalized effective inventor flow between NAICS i and j in period t is:

$$W_{ij,t} = \frac{\tilde{\mathsf{Inventors}}_{i \to j,t} + \tilde{\mathsf{Inventors}}_{j \to i,t}}{\tilde{\mathsf{Inventors}}_{i,t} + \tilde{\mathsf{Inventors}}_{i,t}}$$

Detecting Knowledge Markets

- Run a weighted community detection algorithm:
 - Maximizes modularity of the network
 - Finds N communities to maximize:

$$Q = \sum_{c=1}^{N} \left[e_{cc} - \left(\sum_{j} e_{cj} \right)^2 \right],$$

where e_{ci} is the (weighted) fraction of edges that have one end in community c and the other in community j.

 "How much more the community is connected internally than externally".

Markets at 3-digit NAICS

Features of Flows and Knowledge Markets

- Many connections across product markets even at 3 digits!
- Same inventors are employed by firms in highly different product markets
- Broad communities
- Reasonable?
 - Green Cluster collects "Food and Agriculture": Crop Production, Food Manufacturing and Services, Beverage and Tobacco;
 - Orange Cluster is mostly "Mining" and "Heavy Industry": e.g.
 Petroleum and Coal Products, Chemical, Machinery Manufacturing;
 - Yellow Cluster collects "Communications", "Electronics" and "Publishing":e.g. Computer and Electronic Products, Telecommunications, Data Processing;

Ideal Regression

Ideal causal regression:

Share_{$$skt$$} = $f_s + f_t + f_k + \beta Conc_{s,t-1} + \varepsilon_{st}$,

- s is the product market, NAICS 3- or 4-digit ("sector")
- k is a "knowledge" market
- Share_{skt}: share of inventors in market k employed by s
- $Conc_{s,t-1}$ is a lagged concentration measure: HHI at relevant NAICS, top firms' sale share.

Specification

We run:

$$\hat{\mathsf{Share}}_{\mathsf{skt}} = f_{\mathsf{s}} + f_{\mathsf{t}} + f_{\mathsf{k}} + \beta \mathsf{Conc}_{\mathsf{s},t-1} + \varepsilon_{\mathsf{st}},$$

with:

$$\hat{Share}_{skt} \equiv Share_{skt} - \frac{N_{st}}{N_{kt}},$$

- Deviation from equal distribution (note: f_s , f_k should capture other technological factors)
- N_{st} number of firms in the product market s
- N_{kt} is the number of firms that compete for scientists k.
- Corrects for mechanical downward bias: more concentrated sectors have also less firms.

Results

Introduction

	(1)	(2)	(3)	(4)	(5)	(6)
	Share	Share	Share	Share	Share	Share
L.HHI index in 3-digit NAICS	0.004	0.027***				
	(0.007)	(800.0)				
L.Normalized HHI index in 3-digit NAICS			0.021**			
•			(0.007)			
L.Top 3 firms sale share in 3-digit NAICS				0.074***		
.,				(0.015)		
L.Top 5 firms sale share in 3-digit NAICS					0.102***	
2. Top o mino sale share in o algie in neo					(0.022)	
L.Top 10 firms sale share in 3-digit NAICS						0.087*
L. Top 10 IIIIIs sale share III 3-digit NAIC3						(0.035)
						,
Constant	0.147***	-0.011**	-0.003	-0.056***	-0.085***	-0.079*
	(0.003)	(0.004)	(0.003)	(0.012)	(0.019)	(0.032)
Observations	1581	1581	1492	1581	1581	1581

Standard errors in parentheses. Fixed effects for sector, year and knowledge market included in all specifications.

⁺ p<0.1, * p<0.05, ** p<0.01, *** p<0.001

Thoughts

- Note: the correlation is mostly driven by the contemporaneous concentration.
 - There is scope for our hypothesis!
- Effects are not insignificant:
 - e.g. a 1pp increase in top-5 product market share gives 0.1pp more scientist market share
 - Recall: scientist market spans multiple sectors
- Effects are likely non-linear, more analysis is warranted!

Model Objectives

 Explain our intuition on decrease in competition driving lower growth through misallocation

Theoretical Framework

- Build a model that generates a negative relation between competition and inventor demand
 - Version of Acemoglu and Akcigit (2012)
 - Two differences:
 - Imperfect substitution of goods within markets ⇒No Bertrand competition
 - Look across, rather than within product markets
 - Separate markets for production and research workers
- Issue: concentration not a good measure of competition in this model
- But positive relation between markup and inventor demand!
- Suggestions appreciated

Final Good

- Standard representative household
- Consumes the Cobb Douglas aggregate of intermediate goods Q(k):

$$\log Y = \int_0^1 \log Q(k) \ d \ k$$

Demand for intermediates:

$$p_k = \frac{Y}{Q_k}.$$

Y is the numeraire.

Intermediates

• Each intermediate *k* is a CES aggregate of two differentiated goods:

$$Q_k = \left[q_{i,k}^{\frac{\varepsilon-1}{\varepsilon}} + q_{j,k}^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• Thus, firm i's problem:

$$\max_{q_{i,k}} p_{i,k} q_{i,k} - \frac{w}{\lambda^{n_{i,k}}} q_i$$

$$\text{s.t.} p_{i,k} = p_k \left[\frac{Q_k}{q_{i,k}} \right]^{\frac{1}{\varepsilon}}$$

- $\lambda^{-n_{i,k}}$ is firm i's productivity
- $n_{i,k} \in \mathbb{N}$ is the state of technology of firm i
- ullet $\varepsilon>1$ gives elasticity of substitution between varieties ("mkt power")

Intermediates cont.

Solution:

$$p_{i,k} = \frac{\varepsilon}{\varepsilon - 1} \frac{w}{\lambda^{n_{i,k}}}, \quad q_{i,k} = \left[\frac{\varepsilon - 1}{\varepsilon} \frac{\lambda^{n_{i,k}}}{w} p_k\right]^{\varepsilon} Q_k$$

Profits:

$$\Pi_{i,k} = \frac{1}{\varepsilon - 1} \lambda^{-n_{i,k}} \left[1 + \left[\lambda^{n_{j,k} - n_{i,k}} \right]^{\varepsilon - 1} \right]^{-\frac{\varepsilon}{\varepsilon - 1}} w Q_k$$

• Using $Y = p_k Q_k$:

$$\Pi_{i} = \frac{1}{\varepsilon} \left[1 + \left[\lambda^{n_{j} - n_{i}} \right]^{\varepsilon - 1} \right]^{-1} Y$$

Markov Property

Profits:

$$\Pi_i = \frac{1}{\varepsilon} \left[1 + \left[\lambda^{n_j - n_i} \right]^{\varepsilon - 1} \right]^{-1} Y$$

depend only on the technology gap wrt rival: $m_{i,k} \equiv n_{i,k} - n_{i,k}$

- Firm's dynamic problem is Markovian with state m
- Use transformed variables x = X/Y

R&D

Introduction

• Technology state n can be improved by one step with success rate x:

$$x = \left(\frac{h}{\alpha}\right)^{\frac{1}{\gamma}}$$

- h is number of inventors hired
- $\gamma > 1$ parametrizes how hard research is
- R&D cost:

$$hw^{R\&D} = \alpha x^{\gamma} w^{R\&D}$$

R&D Choice

Firm value:

$$\rho v_{m} - \dot{v}_{m} = \max_{x_{m}} \quad \pi_{m} - \alpha x_{m}^{\gamma} w^{\text{R&D}} + x_{m} (v_{m+1} - v_{m})$$
$$x_{-m} (v_{m-1} - v_{m}) + \eta_{m} (v_{0} - v_{m})$$

- x_m is own research
- x_{-m} is research by rival
- η_m is spillover intensity

Distribution of Technology Gaps

- Let x_m^* be the optimal R&D intensity
- LOM of distribution across m-gap markets:

$$\begin{split} \dot{\mu}_{m}^{*} &= -\left(x_{m}^{*} + x_{-(m)}^{*} + \eta_{m}\right) \mu_{m}^{*} + x_{(m-1)}^{*} \mu_{m-1}^{*} + x_{-(m+1)}^{*} \mu_{m+1}^{*}, \quad m \geq 1, \\ \dot{\mu}_{0}^{*} &= -2x_{0}^{*} \mu_{0}^{*} + \sum_{n \geq 1} \eta_{n} \mu_{n}^{*} + x_{-1}^{*} \mu_{1}^{*}. \end{split}$$

• In matrix form: $\dot{\mu} = A^T \mu$

Labor markets

We assume:

- Supply of production labor perfectly elastic
- Supply of inventors fixed at $L^{R\&D}$
- Inventors' market clearing:

$$L^{\text{R&D}} = \alpha \sum \mu_n^* \left[\left(x_n^* \left(w^{\text{R&D}} \right) \right)^{\gamma} + \left(x_{-n}^* \left(w^{\text{R&D}} \right) \right)^{\gamma} \right]$$

 In the future, endogenize supply with human capital investments

Innovation and Growth

A BGP equilibrium of this model is a set of normalized $\{v_m\}_{0}^{\infty}$, research intensities, $\{x_n^*\}_{-\infty}^{+\infty}$ wages w^{prod} , $w^{\text{R&D}}$, and a stationary distribution $\{\mu_m^*\}_0^{\infty}$ such that:

- Values are determined by the solution to the HJB with $\dot{v}_m = 0$
- 2 Firm choose x_n^* optimally
- 3 The stationary distribution solves the KFE $\dot{\mu}^* = 0$
- Labor markets clear
- Factor shares are constant

Growth

Introduction

• Growth is then:

$$g = \frac{\log\left(\frac{\varepsilon - 1}{\varepsilon}\lambda\right)\left[\int_{0}^{1}\left(n_{k}\left(t + \Delta t\right) - n_{k}\left(t + \Delta t\right)\right)dk\right]}{\Delta t}$$
$$= \log\left(\frac{\varepsilon - 1}{\varepsilon}\lambda\right)\left[2x_{0}^{*}\mu_{0}^{*} + \sum_{n>0}\mu_{n}^{*}x_{n}^{*}\right]$$

Theoretical Framework

- Depends only on x^* and μ^*
- Directly increasing in ε for given research intensity and distribution

Numerical Exercise

- Parameters from Acemoglu and Akcigit (2012):
 - $\gamma \approx$ 3.3 (midrange of estimates, Kortum (1993)), $\alpha \approx$ 1000
 - $\lambda = 1.05$
 - $\rho = 5\%$
- Set maximum technology steps $\bar{n} = 100$
- Features of the model with high ($\varepsilon=100$) and low ($\varepsilon=1.5$) substitution

Concentration

Introduction

Equilibrium with $\varepsilon = 100$

Equilibrium with $\varepsilon = 1.5$

Intuition

Introduction

- Wih high substitution, even a small tech gap leads to monopoly by most productive firm
- With lower substitution, differentiation can support larger tech gaps
- More substitution gives more concentration cet. par.
- But aggregate demand for inventors (next slide):
 - Higher in market with larger markup
 - Where more of the returns from R&D are appropriated by the firm

Aggregate Labor Demand

Conjectures

- When putting together the two markets, less competitive will attract more
- This will be regardless of consumer preferences (still C-D).
- Potential for misallocation
- Lower growth and productivity of R&D than overall more competitive economy
- "Issue": competition negatively related to concentration

What Next?

Introduction

- Find an event for better empirics
- Expand the theory to verify conjectures
 - Adding entry to each good market so that markup does become a function of concentration
- Include human capital and specific inventor types
 - Look at new inventors over time
- Quantitative exploration