Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Nieistniejący Nichilista

Nr albumu: 123456

Implementacja systemu AI-Arena

Praca licencjacka na kierunku INFORMATYKA

> Praca wykonana pod kierunkiem **dra. Roberta Dabrowskiego** Wydział Matematyki Informatyki i Mechaniki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy przedstawiono implementacje systemu AI-Arena, służacego do przeprowadzania turniejow programow walczacych.

Słowa kluczowe

programy walczace, arena, sztuczna inteligencja

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

D. Software D.0. General

Tytuł pracy w języku angielskim

Implementation of AI-Arena system

Spis treści

W	prowadzenie	5
1.	Podstawowe pojęcia1.1. Gra1.2. Program Walczący	7 7 7
2.	Zastosowania w nauce i biznesie internetowym	9
3.	Podobne platformy 3.1. Top Coder	11 11 11 11
4.	Use cases	13
5.	Metodyka Scrum	17
6.	Architektura systemu 6.1. Nadzorca 6.2. Scheduler 6.3. Baza danych 6.4. API uzytkownika	19 19 19 19
7.	Dokumentacja uzytkowa i opis implementacji	21
8.	Podsumowanie	23
9.	Podział prac	25
10	.Spis płyty	27
Α.	Przykladowa gra	29
в.	Przykladowe programy	31
c.	Przebieg przykladowego turnieju	33
Ri	bliografia	25

Wprowadzenie

System Ai-Arena służy do przeprowadzania rozgrywek i turniejów różnych gier pomiędzy programami komputerowymi. System ma w zamierzeniu twórców służyć osobom zainteresowanym sztuczną inteligencją do sprawdzenia swoich umiejętności, lub jako pomoc przy badaniach nad sztuczną inteligencją.

Praca składa się z pięciu rozdziałów. Pierwszy zawiera opis architektury systemu. W drugim rozdziałe zawarto dokumentację użytkownika systemu i szczegóły implementacji. Rozdział trzeci zawiera podsumowanie, rozdział czwart podział prac a rozdział piąty spis płyty dołączonej do pracy.

Podstawowe pojęcia

1.1. Gra

Gra składa się z Reguł i Sędziego.

Reguły określają stan początkowy, dostępne graczom ruchy oraz warunki zwycięstwa, przegranej, bądź remisu.

Powinny ściśle określać Protokół Komunikacji między Programami Walczącymi, a Sędzią. Gra powinna być co najmniej dwuosobowa.

W warunkach serwisu AI-Arena graczami będą najczęściej programy komputerowe, nazywane Botami bądź Programami Walczącymi.

Sędzia to program kontrolujący przebieg rozgrywki. Ma za zadanie:

- wyznaczyć stan początkowy każdej rozgrywki
- Odbierać komunikaty od programów grających, sygnalizujące ich zagrania
- Kontrolować poprawność zagrań graczy, oraz uaktualniać stan rozgrywki
- Informować Graczy o obecnym stanie rozgrywki
- Rozstrzygać czy gra się zakończyła i przydzielać punkty zwycięstwa graczom.

1.2. Program Walczący - Bot

Jest to program napisany w jednym z obsługiwanych przez język serwisów. Musi być przypisany do konkretnej Gry dostępnej w serwisie. Uczestniczy w rozgrywkach (Meczach) z innymi botami przypisanymi do tej Gry. Ma za zadanie przetwarzać informacje o dotychczasowym przebiegu rozgrywki i produkować kolejne posunięcia, zgodne z regułami Gry.

Zastosowania w nauce i biznesie

Sztuczna inteligencja jest jedną z szybciej rozwijających się obecnie dziedzin. Zastosowania algorytmów SI sięgają prawie wszystkich obszarów nie tylko internetu, ale i codziennego życia. Serwis AI-Arena pomaga rozwijać gałąź tej nauki związaną z rywalizacją.

Najprostsze przykłady rywalizacji to oczywiście wszelkiego rodzaju gry i sporty. Obecnie komputery są w stanie wygrywać z człowiekiem w większości gier takich jak szachy, warcaby itp. Coraz bardziej zaawansowani stają się przeciwnicy kierowani przez komputer w grach video. Również w sporcie zaczęto doceniać znaczenie metod naukowych do opracowywania optymalnych strategii. Prawdopodobnie kwestią czasu jest analizowanie gry wirtualnych zespołów kierowanych sztuczną inteligencją, a następnie wykorzystywanie obserwacji do poprawy gry prawdziwej drużyny.

Rywalizacja może być wykorzystana również jako metoda rozwiązywania problemów. Przykładem takiego podejścia są algorytmy genetyczne, w których najlepsze jednostki pozostają w obiegu, cały czas udoskanalając swoje podejście do rozwiązywania danego problemu.

Serwis AI-Arena ma duże zastosowanie w biznesie. Firmy nieustannie rywalizują między sobą w walce o klienta. Serwis umożliwia symulowanie takiej rywalizacji i dzięki temu odkrywanie skutecznych algorytmów sztucznej inteligencji, które będą podejmowały decyzje decydujące o sukcesie wykorzystującej je firmy.

Innym przykładem zastosowania AI-Arena są działania wojenne. Serwis może pomóć w szukaniu algorytmów, które będą potrafiły adaptować się do różnych warunków i w zależności od nich sugerować najlepsze strategie i taktyki w walce z przeciwnikiem.

Podobne platformy

Obecnie istnieją serwisy internetowe podobne do Ai-Arena. Oto kilka z nich:

3.1. Top Coder

Bardzo popularny serwis organizujący różnego rodzaju konkursy programistyczne. Jednym z nich są tzw Marathon Matche, podczas których uczestnicy wysyłają programy, które starają się najbardziej optymalnie rozwiązać dany problem, przy czym nie istnieje rozwiązanie całkowicie optymalne.

3.2. Ai Challenge

Serwis organizujący w sposób cykliczny zawody dla programów walczących. Najczęściej ok 2 konkursy rocznie. Każdy konkurs ma określony czas trwania i nie można w nim uczestniczyć po jego zakończeniu.

3.3. SPOJ

Serwis zawierający dużą bazę zadań algorytmicznych dostępnych do rozwiązywania użytkownikom. Zadania nie mają określonego terminu rozwiązywania. Istnieje ranking biorący pod uwagę liczbę wszystkich rozwiązanych przez użytkowników zadań.

Use cases

Scenariusze użycia systemu przez użytkownika niezalogowanego (Gościa)

Dostęp do strony głównej Założenia:

• Brak

Scenariusz postępowania:

1. Gość wpisuje w pasku adresu adres strony

Efekt:

1. W oknie przeglądarki wyświetla się strona główna

Scenariusze alternatywne:

• Brak

Rejestracja w systemie

Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość posiada aktywne konto mailowe

Scenariusz postępowania:

- 1. Gość klika na link ?zarejestruj? przekierowujący do strony z rejestracją
- 2. Gość wpisuje swoje dane do formularza. Dane zawierają m.in. pożądaną nazwę użytkownika, hasło, pole do weryfikacji hasła, adres mailowy.
- 3. Gość wchodzi na swoją skrzynkę mailową i otwiera list wysłany przez serwis
- 4. Gość klika w link aktywacyjny

Efekt:

- 1. System wysyła do użytkownika wiadomość na podany adres mailowy
- 2. System zakłada użytkownikowi nowe konto w serwisie
- 3. Po kliknięciu w link aktywacyjny system umożliwia zalogowanie na to konto

Scenariusze alternatywne:

- 1. Gość wybrał nazwę użytkownika, która jest już zajęta
 - a) System wyświetla komunikat, że żądana nazwa użytkownika jest niedostępna
- 2. Gość wpisał niejednakowe ciągi znaków w polu "hasło" i "potwierdzenie hasła"
 - a) System wyświetla komunikat o niezgodności danych
- 3. Gość wpisał niepoprawny adres mailowy
 - a) System próbuje wysłać maila na podany adres
 - b) W przypadku braku aktywacji konta w ciągu 24 godzin konto zostanie automatycznie skasowane
- 4. Gość nie kliknął w link aktywacyjny przysłany w mailu
 - a) Po upływie 24 godzin konto zostanie automatycznie skasowane

Logowanie w systemie - wariant 1: Gość posiada konto Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość posiada konto w serwisie

Scenariusz postępowania:

- 1. Gość klika w link ?zaloguj? przekierowujący na stronę logowania
- 2. Gość w formularzu wpisuje swoją nazwę użytkownika i hasło

Efekt:

1. System przekierowuje użytkownika na jego stronę startowa

Scenariusze alternatywne:

- 1. Podana przez Gościa nazwa użytkownika jest nieprawidłowa
 - a) System wyświetla komunikat, że podana nazwa użytkownika lub hasło jest nieprawidłowe
- 2. Podane przez Gościa hasło jest nieprawidłowe
 - a) System wyświetla komunikat, że podana nazwa użytkownika lub hasło jest nieprawidłowe
- 3. Konto nie zostało aktywowane

a) System wyświetla komunikat, że konto nie zostało jeszcze aktywowane. Użytkownik pozostaje niezalogowany

Logowanie w systemie - wariant 2: Gość nie posiada konta Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość nie posiada konta w serwisie

Scenariusz postępowania:

- 1. Gość klika w link ?zaloguj? przekierowujący na stronę logowania
- 2. Gość w formularzu wpisuje nazwę użytkownika i hasło

Efekt:

1. System wyświetla komunikat, że podana nazwa użytkownika lub hasło są nieprawidłowe

Scenariusze alternatywne:

• Brak

Metodyka Scrum

Architektura systemu

6.1. Nadzorca

Warstwa nadzorcy jest odpowiedzialna za uruchamienie rozgrywek pomiędzy wybranymi graczami, zbieranie informacji o ich wynikach i przekazywnie ich do warstwy schedulera. Nadzorca jest skryptem napisanm w pythonie, którego najważniejszą częścią jest metoda play. Metoda ta przyjmuje jako argumenty uruchamialne pliki sędziego i programów grających, oraz limity czasowy i pamięciowy dla każdego programu grającego. Następnie metoda play przeprowadza odpowiednią rozgrywkę, zwracając jako wynik ciągi liczb oznaczające przydzielone przez sedziego punkty za rozgrywkę, wykorzystane przez programy czasy i pamięć RAM.

6.2. Scheduler

Warstwa schedulera jest odpowiedzialna za ustalanie jakie rozgrywki w turnieju mają się odbyć, zlecanie poszczególnych rozgrywek nadzorcy i zapisywanie otrzymanych od nadzorcy wyników w bazie. Do realizacji warstwy nadzorcy używany jest program Gearmand0.26.

6.3. Baza danych

6.4. API uzytkownika

Użytkownik komunikuje się z systemem poprzez interfejs webowy, zaimplementowany w Django. Interfejs pozwala na przesyłanie plików swoich programów grających...

Dokumentacja uzytkowa i opis implementacji

Podsumowanie

Podział prac

Spis płyty

Dodatek A

Przykladowa gra

Dodatek B

Przykladowe programy

Dodatek C

Przebieg przykladowego turnieju

Bibliografia