IR2: Link Analysis

Thx to Dan Weld, James Moody, Dragomir Radev

Challenges

- Three challenges in web search:
 - Result relevance
 - Processing speed
 - Scaling to many documents
- We'll continue to cover result relevance today

Graphs (or Networks)

- Describe relation among items
- Symmetric or directed
- Have been around for a long time
 - Friendship networks
 - Board membership
 - Paper citations
 - US power grid
 - Web pages

Early social network analysis

- School kids favorite (and captive) subjects of study
- These days much more difficult because need parental consent to gather social network data

♠ boys

O girls

4

High school dating

Chains of affection: The structure of adolescent romantic and sexual networks, Bearman, et al., American Journal of Sociology 110, 44-91 (2004)

High school friendship: James Moody, Race, school integration, and friendship segregation in America, American Journal of Sociology 107, 679-716 (2001).

- Which node(s) are the most important?
- How would you measure it?

- Which node(s) are the most important?
- How would you measure it?
 - # links?
 - # "2-deep links"?
 - position in the graph?
- This is also sometimes called determining "centrality", especially in social network research

- Degree centrality is one way
 - Just count the links!

- Another way: measure closeness
- Node is important if it is close to all others
- Based on inverse of distance from each node to every other node

$$C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$$

Prestige and impor
$$C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$$

 Draw a graph that would cause one node to achieve the best possible score

What would that node's score be?

Prestige and impor
$$C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$$

 Draw a graph that would cause one node to achieve the best possible score

- What would that node's score be?
 - 1 / (n-1)
 - 1/7 = 0.143 in this example
- We'll normalize every score in the graph to this

Closeness

$$C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$$

Distance	Closeness	<u>normalized</u>
0111111	1 .143	1.00
1022222	2 .077	.538
1202222	2 .077	.538
1220222	2 .077	.538
1222022	2 .077	.538
1222202	2 .077	.538
1222220	2 .077	.538
1 2 2 2 2 2 2	0 .077	.538

Closeness

$$C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]$$

Closeness normalized

.400

.400

.400

012344321 .050 .400 101234432 .050 .400 210123443 .050 .400 321012344 .400 .050 432101234 .050 .400 .400 443210123 .050

.050

.050

.050

Distance

344321012

234432101

123443210

Closeness

Distance (Closen	ess norma	alized
0123456	.048	.286	
1012345	.063	.375	
2101234	.077	.462	
3210123	.083	.500	
4321012	.077	.462	
5432101	.063	.375	
6543210	.048	.286	

Prestige & Importance

Other ideas:

- Identify nodes with smallest max-distance to all other nodes
- Betweenness for what fraction of paths is the node along the path?
- Bonacich Power Centrality, aka proximity-to-prestige. A node's importance depends on the importance of its neighbors
- Academic impact analysis
- These ideas came about before the Web, but very relevant

Web Link Analysis

- Search in late 1990s was pretty bad
 - Content growth outstripped human editors
- Lots of Web interest in 1997-1999 in using the hyperlink graph
 - PageRank, Page
 - HITS, Kleinberg
 - "Silk from a sow's ear", Pirolli, Pitkow, Rao
- Can measure "importance", but that's not all

PageRank

- For first time, search engines got the right page
 - AltaVista used to rank pages by URL length
 - When PageRank hit, it was astonishing

• Intuition:

- Web is a big directed graph
- A "random surfer" clicks at random
- Importance of a page = probability the surfer is on the page
- Suppose P has N outgoing links; surfer clicks on link with probability 1/N
- Query-independent!!!

PageRank Intuition

- You have an adjacency matrix E where e[i,j]=1 if i cites j
 - It describes the Web
- Each node in the graph gets a PageRank score, p_u for node u
- Each site in the Web votes for important sites by linking to them
 - Weigh votes according to importance of sender
 - How is importance of sender determined?
 - With its PageRank score!
- PageRank is defined recursively (and computed iteratively)

PageRank

 A node with C links contributes 1/C of its PageRank to each target node

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$

Damping factor d is usually 0.85

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$
 PageRank Example

- Total PR = 1, so initialize each node to 0.25
- Set d = 0.85
- PR(A) = (0.15/4) + 0.85 * (0.25/1 + 0.25/1 + 0.25/1)

• PR(A) = 0.675

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$
 PageRank Example

- Again, initialize all nodes to 0.25 and d=0.85
- PR(A) = compute this

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$
 PageRank Example

- Again, initialize all nodes to 0.25 and d=0.85
- PR(A) = (0.15/4) + 0.85 * (0.25/2 + 0.25/1 + 0.25/3)
- PR(A) = .05 + .85*(0.125 + 0.25 + 0.083)
- PR(A) = 0.4268

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

A	В	С	D
0.25	0.25	0.25	0.25

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

PR(A) = 0.0375 + 0.85(0.25/2 + 0.25/1 + 0.25/3)

Α	В	С	D
0.25	0.25	0.25	0.25
0.428			

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

PR(B) = 0.0375 + 0.85(0.25/3)

A	В	С	D
0.25	0.25	0.25	0.25
0.428	0.109		

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

PR(C) = 0.0375 + 0.85(0.25/2 + 0.25/3)

Α	В	С	D
0.25	0.25	0.25	0.25
0.428	0.109	0.215	

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

PR(D) = 0.0375 + 0.85(0.25/1)

Α	В	С	D
0.25	0.25	0.25	0.25
0.427	0.108	0.215	0.25

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

A	В	С	D
0.25	0.25	0.25	0.25
0.427	0.108	0.215	0.25
0.337	0.108	0.154	0.401
0.328	0.151	0.197	0.324
0.361	0.129	0.193	0.317

Exercise

• If I change the order of nodes in my table (or graph) will the page rank change?

AB	BA	С	D
0.25	0.25	0.25	0.25

Exercise

• If I change the order of nodes in my table (or graph) will the page rank change?

 No: labels don't matter, structure of the graph does

A B	B A	С	D
0.25	0.25	0.25	0.25
0.427	0.108	0.215	0.25
0.337	0.108	0.154	0.401
0.328	0.151	0.197	0.324
0.361	0.129	0.193	0.317

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$

Sink nodes

What happens after many iterations?

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_i)}{C(I_i)}$$

Sink nodes

- What happens after many iterations?
 - PR(A) keeps increasing
 - PR(B) = PR(C) = PR(D) = (1-d)/N

$$PR(A) = \frac{(1-d)}{N} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$

Sink nodes

- Nodes with no outlinks are disallowed
- Can "drain rank" from rest of system
- Solution: Add edge from sink=>every node

Sink regions

- Must have non-zero probability of reaching every node from every other node
- Solution: with prob (1-d), random surfer types in a random URL instead of clicking a link

$$PR(A) \neq \underbrace{\frac{(1-d)}{N}} + d\sum_{i} \frac{PR(I_{i})}{C(I_{i})}$$

Adding PageRank to a Search Engine

- Weighted sum of page importance and querysimilarity
- •Score(query, doc)=
 - w*sim(q, p) + (1-w) * PR(p)
 - If sim(q, p) > 0
 - Otherwise, 0
- Where:
 - 0 < w < 1
 - Values sim(q,p) and PR(p) are normalized

Hubs and Authorities

- Due to Kleinberg, 1997
- Unlike PageRank, is query-dependent
- A page is a good *authority* if it is pointed-to by many good *hubs*
- A page is a good *hub* if it points to many good authorities
- Good hubs and authorities reinforce each other

Hubs and Authorities

- A page is a good *authority* if it is pointed-to by many good *hubs*
- A page is a good *hub* if it points to many good authorities

HITS algorithm

$$auth(p) = \sum_{i=1}^{n} hub(i)$$

$$hub(p) = \sum_{i=1}^{n} auth(i)$$

- 1. Obtain *root set* using input query
- 2. Expand the root set by radius 1. This is called the base set
- 3. Authority update
- 4. Hub update
- Iteratively compute hub, authority scores for each node in graph

More HITS

- 1. Initialize all hub() and auth() scores to 1
- 2. For all nodes, update Auth() scores
- 3. For all nodes, update Hub() scores
- 4. Normalize scores
 - Divide each Auth by sqrt(sum(Auth²))
 - Divide each Hub by sqrt(sum(Hub²))
- 5. If converges, terminate; else goto 2
- Note that unlike page rank, we need an explicit normalization step

- All nodes start with value 1
- NOTE: this example omits normalization

Compute authorities

Compute hubs

Compute authorities

Compute hubs

Latent Semantic Indexing

- Documents are about topics, not about words.
 How can we identify topics?
- Use Eigen-decomposition (singular value decomposition) of document-term matrix.
- The larger Eigen values correspond to topics that "characterize" documents.
- Corresponding Eigen vectors define a multidimension topic space.
- Represent documents and queries as vectors/points in this topic space.

Relevance Factors

- Many other things can be considered.
 - Which part of the page words appear in
 - How close together the words appear
 - Synonyms of specified words
 - Guesses of user intent
- Google says, "Relevancy is determined by over 200 factors, one of which is the PageRank for a given page."

Search Engine Optimization

- Big bucks for good ranking
- Many nasty ways to improve ranking
 - E.g. Link farms
 - Search engines hate this
- But knowing what the search engine does can be used to improve ranking for your page/site.

Make it easy for the search engine

- In your site design, use text rather than images and Flash for important content
- Make your site work with JavaScript, Java and CSS disabled
- Avoid links that look like form queries http://www.mysite.com/info?about
- Have pages that focus on a particular topic
- Market your site by having other relevant sites link to yours

Link Spam

- Write comments on influential blogs etc.
 - Link these back to your site

```
"Fantastic blog. <A href=<a href=http://mypornsite.com</a>> Black belt ideas.</a>
```

- Blog owner should use rel="nofollow" attribute for such links in comments.
 - Such links are ignored for indexing purposes.

Challenges

- Three challenges in web search:
 - Result relevance
 - Processing speed
 - Scaling to many documents
- So far we've discussed result relevance
- Next time, we'll cover speed and scaling