Efficient Snapshot Retrieval over Historical Graph Data

Udayan Khurana, Amol Deshpande *University of Maryland, College Park*{udayan, amol}@cs.umd.edu

Agenda

- What
 - Historical Graph Data
 - Snapshot Retrieval
- Why
 - Motivation
- How
 - GraphPool
 - DeltaGraph
- Experiments

Historical Graph Data

- A collection of graph snapshots
 - A set of nodes and a set of edges
 - A list of attribute-value pairs
- Event
 - Creation or deletion of an edge or node
 - Change in an attribute value of a node or an edge
 - (a) {NE, N:23, N:4590, directed:no, 11/29/03 10:10}
 - (b) {UNA, N:23, 'job', old: '...', new: '...', 11/29/07 17:00}

$$G_k = G_{k-1} + E, \quad G_{k-1} = G_k - E$$

Snapshot Retrieval

- Singlepoint
 - GetHistGraph(Time t, String attr options)
- Multipoint
 - GetHistGraphs(List<Time> t list, String attr options)
 - TimeExpression
 - Time interval

Option	Explanation
-node:all (default)	None of the node attributes
+node:all	All node attributes
+node:attr1	Node attribute named "attr1"; overrides
	"-node:all" for that attribute
-node:attr1	Node attribute named "attr1"; overrides
	"+node:all" for that attribute

Snapshot Retrieval

```
/* Loading the index */
GraphManager\ gm = new\ GraphManager(...);
gm.loadDeltaGraphIndex(...);
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph\ h1 = gm.GetHistGraph("1/2/1985", "+node:name");
/* Traversing the graph*/
List < HistNode > nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge\ ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add("1/2/1986");
listOfDates.add("1/2/1987");
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, "");
```

Motivation

- To support a broad range of network analysis tasks
- The existing solutions for graph data management lack adequate techniques for temporal annotation

System Architecture

GraphPool

- An in-memory graph data structure in an overlapping manner
- A single graph that is the union of
 - current graph
 - historical snapshots
 - materialized graphs
- GraphID-Bit Mapping Table
- Update and Clean-up

GraphPool

GraphId-Bit Mapping Table

Bit	GraphID	Graph	Dep
2,3	34	Hist. Graph	-
4	4	Mat. Graph	-
5	41	Mat. Graph	-
6,7	35	Hist. Graph	4

(c)

- A novel, extensible, highly tunable, and distributed hierarchical index structure
- Prior Techniques
 - External interval tree, Segment trees, Snapshot index, Copy+Log
 - Not efficiently support multipoint queries, Not highly tunable, Not support different persistent storage options

(a) Singlepoint query t_1

(b) Multipoint query $\{t_1, t_2, t_3\}$

Model of Graph Dynamics

$$|G_{|E|}| = |G_0| + |E| \times \delta_* - |E| \times \rho_*$$

Differential Functions

Table 2: Differential Functions

Name	Description
	*
Intersection	$f(a,b,c\dots) = a \cap b \cap c\dots$
Union	$f(a,b,c\dots) = a \cup b \cup c\dots$
Skewed	$f(a,b) = a + r.(b-a), 0 \le r \le 1$
Right Skewed	$f(a,b) = a \cap b + r \cdot (b - a \cap b), 0 \le r \le 1$
Left Skewed	$f(a,b) = a \cap b + r \cdot (a - a \cap b), 0 \le r \le 1$
Mixed	$f(a,b,c) = a + r_1.(\delta_{ab} + \delta_{bc}) -$
	$r_2.(\rho_{ab} + \rho_{bc}), 0 \le r_2 \le r_1 \le 1$
Balanced	$f(a,b,c) = a + \frac{1}{2} (\delta_{ab} + \delta_{bc}) -$
	$\frac{1}{2}.(\rho_{ab}+\rho_{bc}\dots)$
Empty	$\widehat{f}(a,b,c\dots) = \emptyset$

- Implementation
 - Java
 - Kyoto Cabinet key-value store
- Datasets
 - DBLP
 - Randomly generated small
 - Randomly generated large

Thank You!