CSD1130 Game Implementation Techniques

Lecture 12

Questions?

- Binary Collision Map
 - Introduction
 - Initialization
- Sprite Collision using Hot Spots
- Snapping
- Normalized Coordinates System

Outline

- Jumping
 - Hard Coded
 - Linear
 - Accelerated

Jumping in Games

- There are several ways to implement jumping in games, ex:
 - Hard coded elevation:
 - Each elevation height is preset in some data table
 - Linear elevation:
 - · Elevation speed is constant while going up and down
 - Accelerated elevation:
 - The elevation is controlled by forces

Accelerated Motion (1/2)

Jumping is:

 Applying a small upward force to the object, then allow the gravity to smoothly stop the object from going up and to start pulling it down

Accelerated Motion (2/2)

The mathematical equation:

$$\mathbf{Pos}_{1} = \frac{1}{2}a * t^{2} + v_{0} * t + \mathbf{Pos}_{0}$$

• *a* is the acceleration and is the result of the gravity force. Ex:

$$a(0,-g)$$

Accelerated Motion in Games

 In games we divide the previous equation into two parts:

$$v_1 = a * t + v_0$$

$$\mathbf{Pos}_1 = \mathbf{v}_1 * t + \mathbf{Pos}_0$$

Projectile Motion

- How to get a nice projectile motion?
- How to control the elevation?
- Will it be too low? Too high?

Goal:

 To have the maximum height reached by the game object directly dependent on the initial velocity.

Answer:

Conservation of energy

Conservation of Energy (1/4)

Conservation of Energy (2/4)

• The total energy (Kinetic and Potential) is constant throughout the entire jump.

$$\frac{1}{2}mv_0^2 + mgh_0 = \frac{1}{2}mv_1^2 + mgh_1$$

o represents values at the beginning of the jump 1 represents values at the peak of the jump

Conservation of Energy (3/4)

Removing the mass from the equation we get:

$$\frac{1}{2}v_0^2 + gh_0 = \frac{1}{2}v_1^2 + gh_1$$

Jumping upwards, we get:

$$\frac{1}{2}v_{y0}^{2} + gh_{0} = \frac{1}{2}v_{y1}^{2} + gh_{1}$$

Conservation of Energy (4/4)

• Since velocity at the peak of the jump is $\mathbf{0}$ on the Y axis therefore solving for v_{y0} we get:

$$v_{y0} = \sqrt{2g(h_1 - h_0)}^{ ext{Maximum Rinetic Energy Maximum Potential Energy}}$$