Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.11.2015

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	12	8	11	9	40	
	erreichte Punkte						
							•
${\bf Bitte}\;$							
tragen Sie	Name, Vorname und	Matrik	ælnumr	ner auf	dem D	eckbla ⁻	tt ein,
rechnen Si	ie die Aufgaben auf se	paratei	n Blätte	ern, ni o	c ht auf	dem A	ingabeblatt,
beginnen S	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	eite,	
geben Sie	auf jedem Blatt den N	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
begründer	n Sie Ihre Antworten a	usführ	lich und	d			
kreuzen Si antreten k	e hier an, an welchem önnten:	der fol	genden	Termin	ne Sie z	ur mür	ndlichen Prüfung
	Do., 03.12.2015	□ Mo.	, 07.12.	2015		Mi., 09	9.12.2015

1. Bearbeiten Sie die folgenden Teilaufgaben:

- 12 P.
- a) Gegeben ist die Systemantwort eines Abtastsystems laut Abbildung 1. Bear- 7 P.| beiten Sie folgende Aufgaben:
 - i. Bestimmen Sie die Impulsantwort und zeichnen Sie diese in Abbildung 1 2 P. ein.
 - ii. Der Eingangs- und Ausgangsvektor des Systems lauten 3 P.

$$\mathbf{\Gamma} = \begin{bmatrix} 2 \\ -1 \\ \beta \\ 1 \end{bmatrix}, \quad \mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}. \tag{1}$$

Bestimmen Sie den Parameter β sowie die Dynamikmatrix Φ .

Hinweis: Falls Sie Punkt i. nicht gelöst haben verwenden Sie die Impulsantwort $g_k = \delta_{k-1} - 2\delta_{k-2} + 8\delta_{k-4}$.

Nutzen Sie die Eigenschaft der finiten Impulsantwort für den Ansatz der Dynamikmatrix und nehmen Sie $\Phi_{i,j} \geq 0$ an.

iii. Ist das System vollständig steuerbar und/oder vollständig erreichbar? Be- 2 P.| gründen Sie Ihre Antwort ausführlich.

Abbildung 1: Eingangs-Ausgangsverhalten eines zeitdiskreten LTI-Systems.

b) Von einem System sind die zeitkontinuierliche und die zeitdiskrete Dynamik- 5 P.| matrix

$$\mathbf{A} = \begin{bmatrix} -20 & 10 & 4 \\ 0 & -20 & 23 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{\Phi} = \begin{bmatrix} \exp(-2) & \exp(-2) & 0.5 \\ 0 & \exp(-2) & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
(2)

sowie der Eingangsvektor und die Ausgangsgleichung

$$\Gamma = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}}, \quad y(k) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \mathbf{x}(k)$$
 (3)

gegeben.

- i. Berechnen Sie die Abtastzeit T_A des Systems (2). 1 P.
- ii. Berechnen Sie die Übertragungsfunktion G(z). 2 P.
- iii. Ist das System BIBO-stabil? Kann aus BIBO-Stabilität auf asymptotische Stabilität geschlossen werden? Begründen Sie Ihre Antwort anhand des Systems (2).

2. Gegeben ist das System

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{4a}$$

$$y = \mathbf{c}^{\mathrm{T}} \mathbf{x} \tag{4b}$$

mit

$$\mathbf{A} = \begin{bmatrix} -2 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (4c)

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}. \tag{4d}$$

Bearbeiten Sie folgende Teilaufgaben:

- a) Für das System wird ein trivialer Beobachter mit dem geschätzten Zustand 2 P.| $\tilde{\mathbf{x}}$ verwendet. Was für ein Beobachtungsfehler $\mathbf{e} = \tilde{\mathbf{x}} \mathbf{x}$ ergibt sich im eingeschwungenen Zustand für einen Anfangsfehler von $\mathbf{e}(0) = \begin{bmatrix} 0 & 0 & 0.7 \end{bmatrix}^{\mathrm{T}}$ und u = 0.
- b) Ist das System (4) vollständig beobachtbar? Begründen Sie Ihre Antwort aus- $2\,\mathrm{P.}$ führlich.
- c) Entwerfen Sie für das System (4) einen vollständigen Luenberger Beobachter 3 P.| für den das charakteristische Polynom des Fehlersystems

$$p(\lambda) = \lambda^3 + 9\lambda^2 + 26\lambda + 24 \tag{5}$$

lautet.

d) Welche Bedingung muss ein System erfüllen, um einen trivialen Beobachter 1 P.| anwenden zu können? Welche Bedingungen müssen beim Anwenden eines vollständigen Luenberger Beobachters gelten?

3. Bearbeiten Sie die folgenden Teilaufgaben.

11 P.|

a) Gegeben ist ein Standardregelkreis mit einem Freiheitsgrad und

 $4.5 \, P.$

2 P.

$$R(s) = \frac{1 + \beta s}{1 - 2s}$$
 $G(s) = \frac{1}{s - \alpha}$.

- i. Wie muss die Regelstrecke G beschaffen sein, damit der vorgeschlagene 1.5 P. Regler grundsätzlich sinnvoll verwendbar ist? Das heißt, in welchem Bereich muss $\alpha \in \mathbb{R}$ liegen, damit unabhängig von $\beta \in \mathbb{R}$ Stabilität möglich ist?
- ii. Für welchen Parameterbereich von $\beta \in \mathbb{R}$ ist der Regelkreis unter der 3 P. Berücksichtigung des Ergebnisses aus dem vorigen Unterpunkt i. intern stabil?
- b) Gegeben ist ein lineares zeitinvariantes System in **Steuerbarkeitsnormal-** 6.5 P. **form**

$$\dot{\mathbf{x}} = \mathbf{A}_R \mathbf{x} + \mathbf{b}_R u$$

mit $\mathbf{x} \in \mathbb{R}^3$ und dem charakteristischen Polynom $p(\lambda) = \lambda^3 - \lambda$.

- i. Geben Sie \mathbf{A}_R und \mathbf{b}_R an.
- ii. Ist das System vollständig erreichbar? Begründen Sie Ihre Antwort! 1.5 P.|
- iii. Es soll ein Regler entworfen werden, der den Zustand x_1 einer Solltrajektorie $z_1(t)$ nachführt. Dazu wird ein Regelgesetz der Form

$$u = \mathbf{k}^{\mathrm{T}}\mathbf{x} - k_1 z_1 - k_2 z_2 - k_3 z_3 - z_2 + \dot{z}_3$$

mit $\mathbf{k}^{\mathrm{T}} = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$ angesetzt. Es gilt

$$\dot{z}_1 = z_2$$
 und $\dot{z}_2 = z_3$.

Berechnen Sie \mathbf{k}^{T} so, dass alle Eigenwerte der Dynamik
matrix \mathbf{F} der Fehlerdynamik

$$\dot{\mathbf{e}} = \mathbf{F}\mathbf{e}$$

mit

$$\mathbf{e} = \mathbf{x} - egin{bmatrix} z_1 \ z_2 \ z_3 \end{bmatrix}$$

bei -1 liegen.

Hinweis: Berechnen Sie zuerst die Matrix F.

4. Bearbeiten Sie folgende Teilaufgaben.

9 P.|

6 P.

a) Gegeben ist das nichtlineare System

$$\dot{x}_1 = x_1^2 \cos(x_2) - 10 + u_1^2
\dot{x}_2 = -x_2 + \frac{u_2}{1 + u_1}
\dot{x}_3 = x_2^2 - x_3.$$
(6)

- i. Berechnen Sie alle Ruhelagen \mathbf{x}_R des Systems (6) für einen allgemeinen 1 P.| konstanten Wert \mathbf{u}_R der Eingangsgrößen.
- ii. Berechnen Sie die Linearisierung von (6) mit der Ausgangsgröße 3 P.

$$\mathbf{y} = \begin{bmatrix} x_1 x_2 + x_3 \\ \cos(x_1) + x_2 u_1^2 \end{bmatrix}$$

um eine allgemeine Trajektorie $\mathbf{x}(t) = \tilde{\mathbf{x}}(t)$ mit den zugehörigen Eingangsgrößen $\mathbf{u}(t) = \tilde{\mathbf{u}}(t)$.

- iii. Geben Sie für $u_1 \equiv u_2 \equiv 0$ eine Trajektorie $\tilde{\mathbf{x}}$ so an, dass die Linearisierung 2 P. von (6) um diese Trajektorie ein zeitinvariantes System darstellt. Beachten Sie, dass zumindest eine Komponente von $\tilde{\mathbf{x}}$ explizit von der Zeit abhängig sein soll.
- b) Geben Sie eine mögliche Übertragungsfunktion G(s) zum nachstehend abgebildeten Bode-Diagramm an und beschreiben Sie Ihren Lösungsweg.

