AXONICA® 4.0

User Guide

Copyright (C) 2018, Team aXonica

Team aXonica, 2017-2018Bilal Wajid Momina Jamil Hasan Igbal

aXonica 4.0 User Guide

This program is free software: you can redistribute it and/or modify it under the terms of the **GNU General Public License** as published by the Free Software Foundation, either **version 3** of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the **GNU General Public License** for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see:

https://www.gnu.org/licenses/

Disclaimer of Warranty:

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED. INCLUDING, BUT NOT LIMITED TO, THE **IMPLIED** WARRANTIES MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability:

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY **COPYRIGHT** HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES. INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM WITH OPERATE **ANY** OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF POSSIBILITY THE OF SUCH DAMAGES.

a X onica _{4.0} User Guide		

Contents

About This Guide	1
Abstract	1
Purpose	1
Intended Audience	1
Required Background	1
Updates from Previous Release	1
How This Guide is Organized	2
Contact	2
aXonica Package	3
Installing aXonica software	3
Software Installation Process	8
Installing aXonica software	8
Microsoft Windows Support	16
Installing aXonica software on Microsoft Windows	16
Data Acquisition and Software Pipeline	26
In this Chapter	26
Introduction	26
Image Data Acquisition from MRI	27
Software Image Pipeline	29
Image Preprocessing	30
In this Chapter	30
Introduction	30
Image Visualization	31
ImageVis3D [1]	31
Image Enhancement	33
AMIDE [2]	33
3D Image Reconstruction	34

ITK-SNAP [3] 3.3 Image Processing 36 In this Chapter 3.1 Introduction 3.3 Image Segmentation 3.3 BrainSeg3D [4] 3.3 Image Registration 3.3 Mango [5] 3.3 Image Surfacing 4.4 BrainVISA [6] 4.4 Structural Analysis 4.4 In this Chapter 4.4 Introduction 4.4 3D Image Analysis 4.4 Image [7] 4.4 Morphometric Analysis 4.4 Fractac [8] 4.4 Image Classification 4.4 LA-iMageS [9] 4.4 Image Mapping 5.5 MRI Processor [10] 5.5 Diffusion Analysis 5.5 In this Chapter 5.5 Introduction 5.5 Image Simulation 5.5 MITK-DI [11] 5.5 Tractography 5.5 medinia [12] 5.5 Functional Analysis 5.6 Introduction		
In this Chapter 33 Introduction 34 Image Segmentation 3 BrainSeg3D [4] 3 Image Registration 33 Mango [5] 33 Image Surfacing 4 BrainVISA [6] 4 Structural Analysis 44 Introduction 4 3D Image Analysis 44 Image I[7] 44 Morphometric Analysis 44 Fractac [8] 44 Image Classification 44 LA-iMageS [9] 45 Image Mapping 50 MRI Processor [10] 5 Diffusion Analysis 56 In this Chapter 57 Introduction 55 MITK-DI [11] 55 Functional Analysis 56 In this Chapter 50 Introduction 50 Neuroimage Analysis 60 FSL [13] 66 Neuroimage Visualization 66	ITK-SNAP [3]	34
Introduction 33 Image Segmentation 33 BrainSeg3D [4] 33 Image Registration 33 Mango [5] 33 Image Surfacing 44 BrainVISA [6] 4 Structural Analysis 44 In this Chapter 4 Introduction 4 3D Image Analysis 44 Image J[7] 44 Morphometric Analysis 44 Fractac [8] 44 Image Classification 44 LA-iMageS [9] 44 Image Mapping 55 MRI Processor [10] 55 Diffusion Analysis 56 In this Chapter 56 Introduction 50 Image Simulation 51 MITK-DI [11] 50 Tractography 51 medInria [12] 50 Functional Analysis 56 In this Chapter 51 Introduction 51 Neuroimage Analysis 66 FSL [13] 66	Image Processing	36
Image Segmentation 3 BrainSeg3D [4] 3 Image Registration 33 Mango [5] 33 Image Surfacing 4 BrainVISA [6] 4 Structural Analysis 44 In this Chapter 4 Introduction 4 3D Image Analysis 4 Image J[7] 4 Morphometric Analysis 4 Fractac [8] 4 Image Classification 4 LA-iMageS [9] 4 Image Mapping 5 MRI Processor [10] 5 Diffusion Analysis 5 In this Chapter 5 Introduction 5 Image Simulation 5 MITK-DI [11] 5 Tractography 5 medInria [12] 5 Functional Analysis 5 In this Chapter 5 Introduction 5 Neuroimage Analysis 6 FSL [13] 6 Neuroimage Visualization 6 <td>In this Chapter</td> <td>36</td>	In this Chapter	36
BrainSeg3D [4] 3 Image Registration 33 Mango [5] 33 Image Surfacing 4 BrainVISA [6] 4 Structural Analysis 44 In this Chapter 4 Introduction 4 3D Image Analysis 4 ImageJ [7] 4 Morphometric Analysis 4 Fractac [8] 4 Image Classification 4 LA-iMageS [9] 4 Image Mapping 5 MRI Processor [10] 5 Diffusion Analysis 5 In this Chapter 5 Introduction 5 MITK-DI [11] 5 Tractography 5 medinria [12] 5 Functional Analysis 5 In this Chapter 5 Introduction 5 Neuroimage Analysis 6 FSL [13] 6 Neuroimage Visualization 6	Introduction	36
Image Registration 33 Mango [5] 31 Image Surfacing 4 BrainVISA [6] 4 Structural Analysis 4 In this Chapter 4 Introduction 4 3D Image Analysis 4 Image [7] 4 Morphometric Analysis 4 FracLac [8] 4 Image Classification 4 LA-iMageS [9] 4 Image Mapping 5 MRI Processor [10] 5 Diffusion Analysis 5 In this Chapter 5 Introduction 5 MITK-DI [11] 5 Tractography 5 medInria [12] 5 Functional Analysis 5 In this Chapter 5 Introduction 5 Neuroimage Analysis 6 FSL [13] 66 Neuroimage Visualization 6	Image Segmentation	37
Mango [5]. 33 Image Surfacing. 44 BrainVISA [6]. 4 Structural Analysis. 44 In this Chapter. 44 Introduction. 44 3D Image Analysis. 45 Image [7]. 44 Morphometric Analysis. 44 FracLac [8]. 44 Image Classification 45 LA-iMageS [9]. 45 Image Mapping 55 MRI Processor [10]. 55 Diffusion Analysis 56 In this Chapter 55 Introduction 55 MITK-DI [11]. 55 Tractography 56 medInria [12]. 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	BrainSeg3D [4]	37
Image Surfacing. 4 BrainVISA [6] 4 Structural Analysis 44 In this Chapter. 4 Introduction 4 3D Image Analysis 4 Image [7] 4 Morphometric Analysis 4 FracLac [8] 4 Image Classification 4 LA-iMageS [9] 4 Image Mapping 5 MRI Processor [10] 5 Diffusion Analysis 5 In this Chapter 5 Introduction 5 Image Simulation 5 MITK-DI [11] 5 Tractography 5 medInria [12] 5 Functional Analysis 5 In this Chapter 5 Introduction 5 Neuroimage Analysis 6 FSL [13] 6 Neuroimage Visualization 6	Image Registration	39
BrainVISA [6] 4 Structural Analysis 44 In this Chapter 4 Introduction 4 3D Image Analysis 4 Image [7] 4 Morphometric Analysis 4 FracLac [8] 4 Image Classification 4 LA-iMageS [9] 4 Image Mapping 5 MRI Processor [10] 5 Diffusion Analysis 5 In this Chapter 5 Introduction 5 Image Simulation 5 MITK-DI [11] 5 Tractography 5 medInria [12] 5 Functional Analysis 5 In this Chapter 5 Introduction 5 Neuroimage Analysis 6 FSL [13] 6 Neuroimage Visualization 6	Mango [5]	39
Structural Analysis 44 In this Chapter 4 Introduction 4 3D Image Analysis 4! Image J [7] 4! Morphometric Analysis 4! FracLac [8] 4! Image Classification 4! LA-iMageS [9] 4! Image Mapping 5: MRI Processor [10] 5: Diffusion Analysis 54 In this Chapter 5: Introduction 5: MITK-DI [11] 5: Tractography 5: medInria [12] 5: Functional Analysis 5: In this Chapter 5: Introduction 5: Neuroimage Analysis 6: FSL [13] 6: Neuroimage Visualization 6:	Image Surfacing	41
In this Chapter 4. Introduction 4. 3D Image Analysis 4. Image J [7] 4. Morphometric Analysis 4. FracLac [8] 4. Image Classification 4. LA-iMageS [9] 4. Image Mapping 5. MRI Processor [10] 5. Diffusion Analysis 5. In this Chapter 5. Introduction 5. Image Simulation 5. MITK-DI [11] 5. Tractography 5. medInria [12] 5. Functional Analysis 5. In this Chapter 5. Introduction 5. Neuroimage Analysis 6. FSL [13] 6. Neuroimage Visualization 6.	BrainVISA [6]	41
Introduction 4. 3D Image Analysis 4. ImageJ [7] 4. Morphometric Analysis 4. FracLac [8] 4. Image Classification 4. LA-iMageS [9] 4. Image Mapping 5. MRI Processor [10] 5. Diffusion Analysis 5. In this Chapter 5. Introduction 5. Image Simulation 5. MITK-DI [11] 5. Tractography 5. medInria [12] 5. Functional Analysis 5. In this Chapter 5. Introduction 5. Neuroimage Analysis 6. FSL [13] 6. Neuroimage Visualization 6.	Structural Analysis	44
3D Image Analysis 44 ImageJ [7] 45 Morphometric Analysis 44 FracLac [8] 46 Image Classification 45 LA-iMageS [9] 44 Image Mapping 55 MRI Processor [10] 55 Diffusion Analysis 56 In this Chapter 56 Introduction 55 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 56 Introduction 56 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	In this Chapter	44
ImageJ [7] 44 Morphometric Analysis 44 FracLac [8] 44 Image Classification 45 LA-iMageS [9] 45 Image Mapping 55 MRI Processor [10] 55 Diffusion Analysis 54 In this Chapter 56 Introduction 56 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	Introduction	44
Morphometric Analysis 44 FracLac [8] 44 Image Classification 45 LA-iMageS [9] 44 Image Mapping 55 MRI Processor [10] 55 Diffusion Analysis 54 In this Chapter 56 Introduction 55 Image Simulation 55 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	3D Image Analysis	45
FracLac [8] 44 Image Classification 45 LA-iMageS [9] 45 Image Mapping 55 MRI Processor [10] 55 Diffusion Analysis 54 In this Chapter 56 Introduction 56 Image Simulation 55 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	ImageJ [7]	45
Image Classification 49 LA-iMageS [9] 49 Image Mapping 50 MRI Processor [10] 50 Diffusion Analysis 54 In this Chapter 56 Introduction 50 Image Simulation 51 MITK-DI [11] 50 Tractography 50 medInria [12] 50 Functional Analysis 50 In this Chapter 50 Introduction 50 Neuroimage Analysis 60 FSL [13] 60 Neuroimage Visualization 60	Morphometric Analysis	46
LA-iMageS [9] 49 Image Mapping 51 MRI Processor [10] 55 Diffusion Analysis 54 In this Chapter 55 Introduction 55 Image Simulation 51 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 59 Introduction 59 Neuroimage Analysis 60 FSL [13] 66 Neuroimage Visualization 66	FracLac [8]	46
Image Mapping 55 MRI Processor [10] 55 Diffusion Analysis 54 In this Chapter 55 Introduction 55 Image Simulation 55 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 56 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	Image Classification	49
MRI Processor [10] 55 Diffusion Analysis 54 In this Chapter 56 Introduction 56 Image Simulation 51 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 56 Introduction 56 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	LA-iMageS [9]	49
Diffusion Analysis 54 In this Chapter 56 Introduction 56 Image Simulation 59 MITK-DI [11] 59 Tractography 50 medInria [12] 50 Functional Analysis 56 In this Chapter 59 Introduction 59 Neuroimage Analysis 60 FSL [13] 60 Neuroimage Visualization 60	Image Mapping	51
In this Chapter 56 Introduction 56 Image Simulation 51 MITK-DI [11] 51 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 65	MRI Processor [10]	51
Introduction 56 Image Simulation 51 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	Diffusion Analysis	54
Image Simulation 55 MITK-DI [11] 55 Tractography 56 medInria [12] 56 Functional Analysis 56 In this Chapter 55 Introduction 55 Neuroimage Analysis 66 FSL [13] 66 Neuroimage Visualization 66	In this Chapter	54
MITK-DI [11] 59 Tractography 50 medInria [12] 50 Functional Analysis 50 In this Chapter 50 Introduction 50 Neuroimage Analysis 60 FSL [13] 60 Neuroimage Visualization 60	Introduction	54
Tractography 56 medInria [12] 56 Functional Analysis 59 In this Chapter 59 Introduction 59 Neuroimage Analysis 60 FSL [13] 60 Neuroimage Visualization 60	Image Simulation	55
medInria [12] 56 Functional Analysis 59 In this Chapter 59 Introduction 59 Neuroimage Analysis 60 FSL [13] 60 Neuroimage Visualization 60	MITK-DI [11]	55
Functional Analysis	Tractography	56
In this Chapter	medInria [12]	56
Introduction	Functional Analysis	59
Neuroimage Analysis	In this Chapter	59
FSL [13] 60 Neuroimage Visualization 60	Introduction	59
Neuroimage Visualization6	Neuroimage Analysis	60
-	FSL [13]	60
Papaya [14]6:	Neuroimage Visualization	61
	Papaya [14]	61

Data Management and Annotation	63
In this Chapter	63
Introduction	63
Image Format Management	64
MRIcron [15]	64
DICOM File Management	65
WEASIS [16]	65
Post Installation	67
Post Installation of aXonica software	67
Anatomist	67
Dipy	67
BoneJ	67
ImageVIS 3D	67
AMIDE	67
PID	67
TORTOISE	68
normalize FOV	68
FastFilter3D	68
ITK-Snap	68
HeteroscedasticfMRI	68
pyClusterROI	68
BrainSeg3D	68
CMP-BIA	68
ITK	68
E-Snake	69
mincBEAST	69
Segmentator	69
Mango	69
bUnwarpJ	69
BrainVISA	69
The Virtual Brain	69
CBS Tools	69
HegaEtAl2017	70
NEURON	70

	SliceMap	70
	Nengo	70
	neuroConstruct	70
	MedInria	70
	Brian	70
	Time Domain decoding	70
	Fraclac	70
	Gwyddion	71
	LA-iMageS	71
	Brainstorm	71
	ImageJ	71
	Nipype	71
	MRI Processor	71
	NiBabel	71
	MRIcron	71
	MIPAV	71
	WEASIS	72
۵f	erences	73

About This Guide

Abstract

aXonica is a free, easily distributable software installation package for freeware tools related to Bioimaging especially in the field of Magnetic Resonance Imaging (MRI).

aXonica is a Linux-based installation package that downloads and installs the tools related to Magnetic Resonance Imaging (MRI) as per user requirement. It also downloads the dependencies prior to the tools for which they are required. aXonica also provides an interactive user interface which is easily understandable for users unaware of UNIX-shell language.

Purpose

The basic purpose of this document is to provide the complete description about the installation of aXonica shell file as well as the complete working of aXonica-UI. This document also explains the complete pipeline of MRI tools; also shows how this pipeline is implemented in the installation package.

Intended Audience

This document is intended for users who wish to install the tools related to Magnetic Resonance Imaging on Linux-based operating system.

Required Background

Team aXonica has made every attempt to make this a step-by-step guide. However, some familiarity with Linux operating system as well as software and hardware requirements of aXonica are assumed.

Updates from Previous Release

Added Microsoft Windows Virtualization Support Chapter which enables the user to work on a Windows platform.

How This Guide is Organized

This guide is organized into sections grouped according to the intended use by the user:

- About This Guide (Chapter 1) describes this document's purpose and intended audience.
- aXonica Package (Chapter 2) contains a table which enlists all the included software.
- Software Installation Process (Chapter 3) describes how to install aXonica.
- Microsoft Windows Support (Chapter 4) describes a step-by-step procedure to configure a virtual OS for aXonica on Windows..
- Data Acquisition and Software Pipeline (Chapter 5) describes the acquisition of raw data image of MRI machine and implementation of software pipeline of biological image development.
- Image Preprocessing (Chapter 6) describes the step-by-step solution to use some example software.
- Image Processing (Chapter 7) describes the step-by-step solution to use some example software.
- Structural Analysis (Chapter 8) describes the step-by-step solution to use some example software.
- Diffusion Analysis (Chapter 9) describes the step-by-step solution to use some example software.
- Functional Analysis (Chapter 10) describes the step-by-step to use some example software.
- Data Management & Annotation (Chapter 11) describes the step-by-step to use some example software.
- Post Installation (Chapter 12) describes the working of each software included in the package.
- Software Uninstallation Process (Chapter 13) describes how to install aXonica or any specific tools.

Contact

For any further queries and suggestions, contact us at: mominaj05@gmail.com or hasaniqbal777@gmail.com

aXonica Package

Installing aXonica software

List of software tools and plugins included in aXonica package are shown in the following table. Software which are recommended are also mentioned in the table. Download size and version of each software is mentioned for user convenience:

Sr. No.	Software	Download Size	Version	Latest Update	Recommeded			
	Image Preprocessing							
	In	nage Visualiz	zation					
1	ImageVIS3D	13.2	3.1.0	2016				
2	BoneJ	0.7	1.0.0	2021	✓			
3	Dipy	11.6	1.4.1	2021				
4	Anatomist (BrainVISA)	3400	5.0.2	2021				
5	JIST	43.9	3.2.0	2014				
6	VistaDisp	1331.44	-	2018				
7	iELVis	11	-	2021				
8	MeVisLab	2000	3.4.2	2021				
9	MITK	163	18.04.02	2021				
10	Nilearn	4.7	0.8.0	2021				
11	imlook4d	18.8	5.8.2	2019				
12	MIA	4.2	2.4.7	2016				
Image Enhancement								
13	TORTOISE	40	1.0.4	2016				
14	AMIDE	29	1.0.5	2017				
15	NormalizeFOV	732.7	1.2.0	2016				
16	Fast_Filters	0.3	10.0.0	2017				
17	PID	3.9	1.9.0	2014				
18	CLAHE	O.17	0.1.0	2021				

	1		1		T			
19	HD-BET	0.03	-	2021	✓			
20	MNI-N3	1.3	1.12.0	2012				
21	C-PAC	277	1.8.0	2021				
22	GLMdenoise	0.26	1.4.0	2021				
23	FMRIPrep	41	46.1.0	2021				
24	CoSMoMVPA	9.51	1.1.0	2021				
	3D Image Reconstruction							
25	ITK-SNAP	45.2	3.6.0	2019	✓			
26	InVesalius	91.8	3.1.9	2021				
27	Free-D	8.5	1.15.0	2018				
28	PaCER	9.78	1.0.7	2020				
29	SIRF	1.4	3.1.0	2021				
		mage Proces	esina					
	"	illage Proces	sality					
	lm	age Segmer	ntation					
30	Segmentator	4	1.6.0	2021				
31	BrainSeg3D	47.6	2.5.0	2021				
32	ITK	88	5.2.1	2021				
33	BEaST	0.5	1.15.0	2018				
34	RMNMS	0.1	0.1.0	2015				
35	CMP-BIA	0.1	0.3	2016				
36	E-Snake	0.1	27.1	2012				
37	pyClusterROI	31	2	2015				
38	HeteroscedasticfMRI	2.1	-	2015				
39	ALVIN	18.9	1	2020				
40	MANTIS	20.02	-	2021				
41	SegAN	0.7	-	2019				
42	FMRIPrep	1	20.2.3	2021				
43	AxonDeepSeg	150	3.2.0	2021				
44	seg	0.7	-	2018				
45	medicalzoopytorch	63	-	2021				
46	LiviaNET	12.5	-	2019	✓			
47	Autoencoder Regularization	0.8	-	2021				
Image Registration								
48	AAL	4.7	3.1	2020				
49	elastix	27.7	5.0.1	2021				
50	ART	6	1.07.1	2018				
51	bUnwarpJ	0.1	2.6.12	2021				
52	MIRTK	313.71	2.0.0	2021				
53	IRTK	0.6	1.0.0	2015				
54	AIR	0.99	5.3.0	2010	✓			

Image Surfacing						
55	ANTs	21.3	2.3.5	2021	✓	
56	Mango	65	4.1.0	2016		
57	iso2mesh	160	5.14.0	2021		
58	NMT	286.5	2.1.2	2021		
59	Surfing	249.8	4.14.0	2020		
60	SUMA	90.9	4.4.7	2021		
	Strı	ıctural Data /	Analysis			
		D Imaga And	alveie			
		D Image Ana	aiysis			
61	Brainstorm	59	21.0.0	2021	✓	
62	ImageJ	85.5	153.0.0	2021		
63	nipype	11.11	1.6.1	2021		
64	VISTASOFT	38.4	1.0.0	2021		
65	TINA	0.06	0.1.12	2020		
66	calcFD	0.55	31.0.0	2021		
67	PRoNTo	24.9	2.1.1	2021		
68	Nitime	6.2	0.9.0	2021		
69	DynamicBC	14.74	2.2.0	2019		
70	BFAST3D	0.2	-	2020		
71	3D Slicer	503	4.11.0	2021		
72	DCEMRI	4	0.51.0	2021		
	Mo	rphometric A	nalysis			
73	FracLac	13.8	2.5.0	2021		
74	Gwyddion	12	2.55.0	2021	✓	
75	CaPTk	1400	1.8.1	2021		
76	ASLtbx	0.379	15.0.0	2015		
77	GAT	14.2	1.5.1	2014		
		Quality Con	trol			
78	Mindcontrol	6.34	1.3.3	2018		
79	MRIQC	3040	0.16.1	2021		
80	ArtRepair	0.1	5b3	2019	√	
		nage Modeliz				
01		T	T T	2020		
81	SIMRI	6.4	2.0.0	2020	✓	
82	SimVascular	799	6.15.0	2021		
83	ROAST	180.52	3.0.0	2020		
	Image Classification					
84	LA-iMageS	82.4	1.1.5	2017	✓	

Image Mapping						
85	MRI Processor	0.18	1.1.6	2021		
86	Lead-DBS	4069	1.6.3	2021	✓	
	Diff	usion Data A	nalysis			
	ı	mage Simula	ation			
87	MITK-DI	159	10.23.0	2021		
88	The Virtual Brain	1200	2.3.0	2021	✓	
89	SimTB	2.9	18.0.0	2019		
		Tractograp	hy			
90	medInria	82.7	3.2.0	2021		
91	MRtrix3	19.6	3.0.3	2021		
92	SlicerDMRI	503	4.11.0	2021		
93	brainGraph	1.4	3.0.0	2021		
94	Braintome DiffusionKit	50.1	1.5.0	2020		
95	PANDA	10	1.3.1	2018	✓	
96	DSI Studio	75.4	21.08.0	2021		
	Fund	ctional Data /	Analysis			
	Ne	euroimage Ai	nalysis			
97	FSL	0.09	6.0.4	2016	✓	
98	BrainVISA	3400	5.0.2	2021		
99	SPM	111	12.0.0	2020		
100	BrainVoyager	501	22.0.0	2021		
101	NeuroElf	27.1	1.1.0	2021		
102	BRAINSTools	30	5.4.0	2021		
103	NMT	286.5	2.1.2	2021		
104	CONN	125	21a	2021		
105	SDM	279	6.21.0	2019		
106	bgsmtr	3.8	0.7.0	2019		
107	SliceMap	42	1.0.0	2020		
108	GC-LDA	197.75	-	2021		
Neuroimage Visualization						
109	FreeSurfer	3100	7.2.0	2021		
110	IClinfMRI	15.33	-	2021		
111	Papaya	121.1	-	2019	✓	
	Image Data Management and Annotation					
	Image Format Management					
112	BrainMap	204.9	0.2.3	2017		

113	XNAT	8	1.8.2	2018	
114	MENGA	3	3.1.0	2016	
115	PyNWB	1.14	2.0.0	2021	
116	lcbm2tal	204.9	0.2.3	2021	✓
117	NiBabel	3.3	3.2.1	2021	
118	MRIcron	17.31	1.0.0	2021	
119	MRIcro	8	1.39.0	2021	
120	Dinifti	0.7	2.3.3	2013	
	DIC	DNA 5:1- NA			
	DICC	DM File Mana	agement		
121	DCMTK	11.4	3.6.5	2021	
122	WEASIS	38	3.7.1	2021	
123	DicomBrowser	8.1	1.7.5	2020	
124	HeudiconV	0.341	0.9.0	2021	
125	MIPAV	100	10	2019	✓
126	DICOMweb	0.021	0.40.0	2019	
127	GDCM	2.6	2.8.9	2021	
128	odil	44.9	0.8.0	2021	
129	VV: the 4D viewer	15.2	1.4.0	2021	
130	DIANA	9.5	2.1.5	2018	

Software Installation Process

Installing aXonica software

For downloading of aXonica, visit its website:

https://qithub.com/mominaj/aXonica-bin

- 1. aXonica can also be downloaded from the following command through git:
 - \$ git clone https://github·com/mominaj/aXonica-bin
- 2. Now run the following commands on terminal:
 - \$ cd aXonica-bin
 - \$ chmod +x aXonica_setup_enUS
 - \$ ·/aXonica_setup_enUS
- 3. Installation wizard of aXonica will start.

NOTE Installation of aXonica require a proper internet connection to proceed, otherwise the installation terminates.

Figure 1: Installation Welcome screen

4. Click **Next** to proceed and confirm the Internet connection.

Figure 2: Internet check successful screen

5. Installation is **terminated** if there is **no internet**.

Figure 3: Internet check failed screen

6. **Dependencies** related to software will start installing.

Figure 4: Dependencies Installation in progress screen

7. All the dependencies which are installed are displayed at the end of the installation. Click **Ok**.

Figure 5: Dependencies Installation finished screen

8. aXonica pipeline detail screen is **displayed**. It has the information about which software you want to install. Click **Next** to Proceed.

Figure 6: Pipeline information screen

Selection screen for Preprocessing tools is displayed. Select the required tools and Click Next.

Figure 7: Preprocessing tools selection screen

 Selection screen for Processing tools is displayed. Select the required tools and Click Next.

Figure 8: Processing tools selection screen

 Selection screen for Structural Analysis tools is displayed. Select the required tools and Click Next.

Figure 9: Structural Analysis tools selection screen

 Selection screen for Diffusion Data Analysis tools is displayed. Select the required tools and Click Next.

Figure 10: Diffusion Data Analysis tools selection screen

13. Selection screen for Functional Data Analysis tools is displayed. Select the required tools and Click **Next**.

Figure 11: Functional Data Analysis tools selection screen

14. Selection screen for Data Management and Annotation tools is displayed. Select the required tools and Click Next.

Figure 12: Data Management and Annotation tools selection screen

15. Click **Next** to proceed with the installation.

Figure 13: Ready to Install screen

16. Tools installation will **continue**. Some tools **install** as a standalone installation and will be called automatically.

Figure 14: Tools installation progress screen

 Software will be download from the aXonica repository online. Downloading time depend upon your Internet.

Figure 15: Tools downloading in background

Microsoft Windows Support

Installing aXonica software on Microsoft Windows

aXonica is software package for Linux, specifically Ubuntu users, but Windows users can use aXonica using a Virtual Machine. Follow these steps to initialize a Virtual Machine on your Windows host.

NOTE aXonica support a 64bit Windows host. Microsoft Windows XP and Vista support is discontinued.

- First you have to download the image file of the required OS (Ubuntu) from its website
 or use the following link:
 http://repo.isra.edu.pk/ubuntu-release/18.04.2/ubuntu-18.04.2-desktop-amd64.iso
- 2. Download the virtualization software (Oracle VM VirtualBox) from the following link: https://download.virtualbox.org/virtualbox/6.0.10/VirtualBox-6.0.10-132072-Win.exe
- 3. Install this software in Windows OS host.
- 4. Start Virtual Box, and click on the New symbol.

Figure 1: New Virtual OS

Give the virtual OS a relevant Name. Select the Type (Linux) and Version (Ubuntu 64-bit) and Click Next.

Figure 2: Assigning Name

6. **Allocate** RAM to the virtual OS. Following system has 8GB of RAM so 2GB of RAM is allocated. You can use more RAM if your system has enough extra RAM.

NOTE Allocate about half of the RAM to the virtual OS. Click **Next**.

Figure 3: Memory Allocation

7. **Create** a virtual disk. This works as the hard disk of the virtual Linux system. This is where the virtual system will store its files. Click **Create**.

Figure 4: Creating a virtual hard disk

8. Select VDI file type here (recommended). Click Next.

Figure 5: Hard disk file type

9. You can choose either of Dynamically allocated or Fixed size option for creating the virtual hard disk. **Choose** Dynamically allocated. (recommended). Click **Next**.

NOTE Dynamic allocation is allocated as time passes and data is increased whereas fixed is allocated instantly.

Figure 6: Storage type

10. Select VDI file type here (recommended) and Select the Hard Disk size. (recommended size: 100 GB). Click **Create**.

Figure 7: Hard disk size

11. Click **Next**. Now, Select Settings to assign the image file of respective OS to VB.

Figure 8: Select Settings

12. **Select** General → Advanced. Now, select the Shared Clipboard and Drag'n'Drop option to Bidirectional.

Figure 9: Advanced Settings

13. Select Settings to assign the image file of respective OS to VB. **Select** Storage → Controller: IDE → Empty. Now, in the Attributes tab, click on New Disk and provide the path of downloaded image file of Ubuntu OS. **Click** OK.

Figure 10: Providing Image file

14. Once everything is in place, it's time to boot that ISO and install Linux as a virtual operating system. Click **Start**.

Figure 11: Starting Virtual OS

15. Virtual OS will boot into Linux Installation process. You should be presented with the option to install it. Click **Install Ubuntu**.

Figure 12: Installing Ubuntu

16. Continue with Normal Installation.

Figure 13: Update Screen

Figure 14: Installation type Screen

18. Select Continue.

Figure 15: Confirmation Screen

19. Select your Current City and Continue. Select **Continue**.

Figure 16: Location selection screen

20. Fill your Info and click Continue.

Figure 17: Intro Screen

21. Installation will Continue.

Figure 18: Installation Screen

22. Installation is Complete. Click **Restart Now**.

Figure 19: Complete Installation Screen

Data Acquisition and Software Pipeline

In this Chapter

We will learn about:

- Image Data Acquisition
- MRI network diagram in hospitals
- Introduction to software pipeline

Introduction

Medical Imaging Technology is identified globally by some major diagnostic imaging device manufacturers. Honorable mentions contain Fujifilm Holdings, Siemens Healthcare, Toshiba Medical Systems Corporation and Canon Medical Systems Corporation.

MRI machine is installed and distributed with some extra workstation for functionality i.e.

- Scan Console
- Display Console
- Reconstruction Box
- Quality Control (Calibration Phantoms)

Image Data Acquisition from MRI

MRI installation network diagram is given as follows:

Figure 1: MRI network diagram

STEP 1:

In the first step, the Scan Console is given commands by the user about which part of the human body is about to be analyzed.

STEP 2:

These commands are transferred to the MRI and patient data is acquired. This raw data is in K-space (frequency domain).

STEP 3:

The data is then sent to the Scan Console which further sends this data to the reconstruction box. This raw data is stored in Raw Data Disk (RDD).

STEP 4:

Inside the reconstruction box, Fourier analysis is performed on the data and thus it is converted into time domain.

The output, known as Image Data received from the transform is saved in Image Data Disk (IDD).

STEP 4:

The image data acquired from IDD is then transferred to Display Console for further processing.

STEP 6:

Now the data present in Display Console is further transferred to aXonica workstation which has all freeware tools installed in it. Any operation can be performed according to user's request.

Software Image Pipeline

MRI software base is divided into several steps. These steps are visualized using a pipeline so that the tools can be accessed according to user's needs. aXonica contains several tools from each category.

Figure 2: MRI Pipeline Visualized

Image Preprocessing

In this Chapter

We will learn about:

- Image Preprocessing
- Steps for Preprocessing
- Example tools for Preprocessing

Introduction

Pre-processing concerns the improvement of the Image Data and it enhances some image features that are important for further processing.

Image Preprocessing has three significant steps:

- Image Visualization
- Image Enhancement
- 3D Image Reconstruction

Image Visualization

Raw data is acquired from MRI Scanner. The images acquired are in the frequency domain. Specific Fourier analysis converts the "Raw Data" into "Image Data" which is in time domain. It is further pre-processed and transferred for imaging.

Example tool ImageVis3D

ImageVis3D [1]

An architecture for Large Scale Volume Rendering: Provides domain specific visualization capabilities.

- 1. **Open** terminal and **run** these commands:
 - \$ cd /usr/local/ImageVis3D-3·1·0/
 - \$ ·/ImageVis3D
- 2. Select "Open data set from file"

Figure 1: ImageVis3D Welcome screen

3. **Load** the downloaded dataset

Figure 2: Visualized Image

4. Further **Analyze** the image.

Image Enhancement

Brightness of specific parts of body (e.g. Brain, Spine etc.) is adjusted so that the results are more suitable for display and further image analysis.

Example tool AMIDE

AMIDE [2]

A Free Software Tool for Multimodality Medical Image Analysis: Displays and analyzes multimodality volumetric medical images.

- 1. **Run** the following commands in the terminal:
 - \$ export UBUNTU_MENUPROXY=0
 - \$ amide
- 2. AMIDE "New Study" screen opens:

Figure 3: AMIDE Welcome screen

- 3. File \rightarrow Open Study
- 4. Load the downloaded tutorial dataset file:m2862-small.xif

Figure 4: Enhanced Images

5. Further **Analyz**e the image.

3D Image Reconstruction

Visualized images are processed and several images are aligned and converted to separate Axial, Coronal and Sagittal planes of the visualized part of body.

Example tool ITK-SNAP

ITK-SNAP [3]

Allows users to segment structures in 3D medical images. ITK-SNAP provides semiautomatic segmentation using active contour methods, as well as manual delineation and image navigation.

- 1. **Run** the following commands in the terminal:
 - \$ cd /usr/local/itksnap-3.6.0-20170401-Linux-x86_64
 - \$ cd bin/
 - \$ ·/itksnap
- 2. File \rightarrow Open main image \rightarrow Browse

Figure 5: ITK-SNAP Welcome screen

3. **Load** data set from file:

Figure 6: 3D Reconstructed Image

4. Further **Analyze** the image

Image Processing

In this Chapter

We will learn about:

- Image Processing
- Steps for Processing
- Example tools for Processing

Introduction

Image processing refers to processing or altering an existing image in a desired manner. Image Processing has three significant steps:

- Image Segmentation
- Image Registration
- Image Surfacing

Image Segmentation

It is a process of partitioning a digital image into multiple segments which are more meaningful and easier to analyze. For Example: A Brain MRI image is segmented into several images for visualization and analyses of gray matter, white matter and cerebrospinal fluids.

Example tool BrainSeg3D

BrainSeg3D [4]

Provides a free volume (3D image) viewer and segmentation tool. BrainSeg3D is a graphic application that make segmentation of volumes more accurate by providing tools for semi-automated segmentation combined with a user friendly graphic interface.

- 1. Run these commands in the terminal:
 - \$ cd /usr/local/brainseg3d
 - \$ ·/BrainSeg3D
- 2. Select 'Quick open file'

Figure 1: BrainSeg3D Welcome Screen

3. Load Tutorial data sets

4. **Select** all Images and Import

Figure 2: Segmented Image

5. Further **Analyze** the image

Image Registration

Process of transforming different sets of data into one coordinate system.

Standard Co-ordinate system for DICOM images is 512 x 512-pixel resolution. This provides a standard base for patient imaging. It is very helpful in reporting of the patient to have a standard pixel ratio.

Figure 3: Image Registration

Example tool *Mango*

Mango [5]

A complete data analysis pipeline that provides statistical confidence estimates for interactions and corrects for major sources of bias including differential peak enrichment and genomic proximity.

- 1. Run the following commands in the terminal:
 - > cd /usr/local/Mango
 - > ·/mango
- 2. Select **Open**.

Figure 4: Mango Welcome screen

3. **Open** the Tutorial Data<u>set downloaded.</u>

Figure 5: Registered Image

4. Further **Analyze** the image according to needs.

Image Surfacing

Process in which a 3D view of the Image Data is created and visualized.

Example tool BrainVISA

BrainVISA [6]

Neuroimaging Research Software Hosts heterogeneous tools dedicated to neuroimaging research.

- 1. Run the following commands in the terminal:
 - > cd /brainvisa-4.5.0
 - > ·/anatomist

Figure 6: Anatomist Welcome screen

- 2. File \rightarrow Open
- 3. Load the downloaded tutorial dataset file:
 - T1 MRI: data_for_anatomist/subjectO1/subjectO1.nii
 - Activation map: data_for_anatomist/subjectO1/Audio-Video_T_map.nii
- 4. **Select** the 2 objects in the object list using Ctrl + left button
- 5. Click on the fusion button

6. A new window is **displayed** which allows to select some fusion parameters.

Figure 7: Fusion type selection screen

7. **Click** OK to create the fusion object

Figure 8: Fusion object screen

- 8. **Open** an axial window by clicking on
- 9. **Put** the object (the fusion volume) into this window: **drag and drop** this object into the window. Following non registered image will appear

Figure 9: Fused mismatched image

- 10. For each volume, **right-click**.
- 11. Referential → Load information from file header

NOTE The option Referential \rightarrow Load information from file header extracts information about referential and transformations which are stored in the image files i.e. automatic registration.

12. Look at the fusion, the 2 images are now well superimposed.

NOTE Manual registration can also be done but in fact the human eye cannot drive a registration as well as a specific algorithm. For instance, images may seem aligned in an axial slice, but contain some drifts in sagittal and coronal orientations.

Structural Analysis

In this Chapter

We will learn about:

- Structural Analysis
- Steps for Structural Analysis
- Example Tools for Structural Analysis of Images

Introduction

Structural analysis of an image refers to the extraction of meaningful information from the image by means of several techniques.

Structural Analysis has seven significant steps:

- 3D Image Analysis
- Morphometric Analysis
- Quality Control
- Image Modelization
- Image Classification
- Image Mapping

3D Image Analysis

3D image analysis is the extraction of specific part of body from 3D visualized images which can be analyzed. For Example: 3D Analysis of Circle of Willis inside the brain.

Example tool ImageJ

ImageJ [7]

Biological Image Analysis: Provides easy installation on arbitrary platforms and a simple user interface.

- 1. **Run** the following commands in the terminal:
 - \$ cd /usr/local/ImageJ
 - \$ ·/ImageJ
- 2. File \rightarrow Open

Figure 1: ImageJ Welcome Screen

3. **Select** the downloaded tutorial datasets:t1-rendering.zip

Figure 2: 3D Analyzed Image

4. Further **Analyze** the image according to need

Morphometric Analysis

It is visualization of the outer surface of the part of body under analysis.

Recommended tool FracLac

FracLac [8]

NOTE It is an ImageJ plugin, and it is executed from ImageJ.

1. Run these commands in the terminal:

\$ cd ~/Package/Plugins

NOTE This is the resource folder of aXonica-master where the tools are downloaded.

\$ sudo cp Frac_Lac·jar /usr/local/ImageJ/plugins

NOTE Provide the password for administrator.

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ
- 2. File \rightarrow Open

Figure 3: ImageJ Welcome Screen

3. Select the downloaded tutorial datasets: testimage.gif

Figure 4: Sample Image

3. Select "BC"

No Scan Selected. Set up scans with purple buttons; run scans with blue.

Figure 5: FracLac Welcome screen

4. Select OK

Figure 6: Mode Selection

5. Select OK

Figure 7: FracLac settings screen

6. **Select** OK

Figure 8 Colour Coding Selection screen

7. **Select** Scan

Figure: 9 Ready to scan

NOTE Wait for the image to be processed.

Figure 10: Analyzed Image

8. Further **Analyze** the image according to needs.

Image Classification

Different types of tumors and diseases are classified separately in this step.

Example tool LA-iMageS

LA-iMageS [9]

A software for elemental distribution bioimaging: Provides easy installation on arbitrary platforms and a simple user interface.

- 1. **Run** the following commands in the terminal:
 - \$ cd /usr/local/LA-iMageS-1.1.5
 - \$ ·/run·sh
- 2. **Select** data directory of downloaded tutorial datasets:

/coin

/seed

Figure 11: Load Dataset screen

3. Select OK.

Figure 12: Analyze the Images

NOTE Wait for the image to be processed.

Figure 13: Analysed Image

4. Further **Analyze** the image.

Image Mapping

Optimization of images according to T1-weighted and T2-weighted images standards. In T1 images only fat is bright while in T2 images both fat and water is bright. Both of these standards are used for specific analysis.

(a) T1 weighted image

(b) T2 weighted image

Figure 14: Comparison Between T1 and T2 weighted images

Example tool MRI

Processor

MRI Processor [10]

Computes parametric maps in magnetic resonance (MR) images: MRI Processor provides different mechanisms to distinguish different tissues and disease processes.

NOTE It is an ImageJ plugin, and it is executed from ImageJ.

- 1. Run these commands in the terminal:
 - \$ cd ~/Package/Plugins

NOTE This is the resource folder of aXonica-master where the tools are downloaded.

\$ sudo cp mri_processor_·jar /usr/local/ImageJ/plugins

NOTE Provide the password for administrator.

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ
- 2. File \rightarrow Open

Figure 29: ImageJ Welcome Screen

3. **Select** the downloaded tutorial datasets:*subjectO1.nii*

Figure 30: Sample Image

4. **Select** Plugins \rightarrow MRI Processor

Figure 31: Mapping selection

- 5. **Select** Map type as Tl exponential. **Click** OK
- 6. Following Mapped Images appear:

Figure 32: Mapped Images

7. Following are the Logs for Image Mapping:

Figure 33: Mapping Logs

8. Further analyze the Image

Diffusion Analysis

In this Chapter

We will learn about:

- Diffusion Analysis
- Steps for Diffusion Analysis
- Example Tools for Diffusion Analysis of Images

Introduction

Diffusion analysis of an image captures the activity of neuronal tracts.

Diffusion Analysis has two significant steps:

- Image Simulation
- Tractography

Image Simulation

Numerical simulations can help deepen the understanding of the relationship between the cellular structure and the diffusion MRI signal and can play a significant role in the formulation and validation of appropriate models in order to answer relevant biological questions.

Example tool MITK-DI

MITK-DI [11]

MITK-DI provides means to diffusion weighted image reconstruction, visualization and quantification. Diffusion tensors as well as different q-ball reconstruction schemes are supported.

- 1. **Run** the following commands on the terminal to start MITK-DI:
 - \$ cd /usr/local/bin
 - $$\cdot/MITK-Diffusion_ubuntu-20\cdot04_2020\cdot10\cdot23_0f33cec9_663c55f1_NoPython\cdotrun$

Figure 34: MITK Welcome Screen

2. Now use the relevant option for usage.

Tractography

In neuroscience, tractography is a 3D modeling technique used to visually represent nerve tracts using data collected by diffusion MRI. It uses special techniques of magnetic resonance imaging (MRI) and computer-based diffusion MRI. The results are presented in two- and three-dimensional images called tractograms.

Example tool medInria

medInria [12]

Research and visualize medical images: medInria is a platform for the diffusion of research software in medical imaging created by medInria teams.

Run the following commands on the terminal:

1. Select Diffusion

Figure 35: medInria Welcome Screen

5. **Select** "Open a file from your system".

Figure 36: Load Study screen

- 5. **Select** the downloaded tutorial dataset file: *xDTICUBE-4D.nii.gz*
- 6. **Select** the Estimation Algorithm as DTI estimation, in the Model Estimation tab.
- 7. **Select** the gradient file: *gradient7.txt*

Figure 37: Model Estimation

8. **Select** Estimate model and wait for the diffusion analysis of the image

Figure 38: Diffusion Estimated Image

9. Further **Analyze** the Image according to needs.

Functional Analysis

In this Chapter

We will learn about:

- Functional Analysis
- Steps for Functional Analysis
- Example Tools for Functional Analysis of Images

Introduction

Functional analysis of an image measures brain activity by detecting changes associated with blood flow.

Functional Analysis has two significant steps:

- Neuroimage Analysis
- Neuroimage Visualization

Neuroimage Analysis

The goal of fMRI data analysis is to detect correlations between brain activation and a task the subject performs during the scan. It also aims to discover correlations with the specific cognitive states, such as memory and recognition, induced in the subject.

Example tool FSL

FSL [13]

FSL, is a software library containing image analysis and statistical tools for functional, structural and diffusion MRI brain imaging data.

1. Type FSL on search bar and click on it to run it

Figure 39: FSL Welcome Screen

2. Now use the relevant option for analysis

Neuroimage Visualization

Sophisticated visualization tools are essential for the presentation and exploration of human neuroimaging data. While two-dimensional orthogonal views of neuroimaging data are conventionally used to display activity and statistical analysis, three-dimensional (3D) representation is useful for showing the spatial distribution of a functional network, as well as its temporal evolution.

Example tool Papaya

Papaya [14]

Papaya, is an open-source neuroimaging toolkit for processing, analyzing, and visualizing human brain MR images. Go to following folder.

- \$ /opt/aXonica_v4·O/papaya/build
- 1. Click on index.html
- 2. It will open up papaya on your browser

Figure 40: Papaya Welcome Screen

3. Now load image in nifty or dicom format and visualize it

Figure 41: Load and Analyze Image

Data Management and Annotation

In this Chapter

We will learn about:

- Data Management and Annotation
- Steps for Data Management and Annotation

Introduction

Refers to the transmission of DICOM image file over networks as well as extracting data from DICOM files and converting it to other formats.

Data Management and Annotation has two significant steps:

- Image Format Management
- DICOM File Management

Image Format Management

Concerns the transmission of DICOM image file over networks.

Example tool MRIcron

MRIcron [15]

An image viewer for neuroimaging data: MRIcron is a platform able to support multiple layers, draw an identified region of brain injury, view data volume rendering and computes statistical results.

- 1. **Run** the following commands in the terminal:
 - \$ cd/usr/local/mricron_lx
 - \$ ·/mricron

Figure 1: MRIcron Welcome screen

2. Further **Analyze** the image

NOTE It is a demo software and it is only used to set the Data Image Formats and test them using a Reconstruction environment.

DICOM File Management

Deals with the extraction of data from DICOM files and their conversion into other formats.

Example tool WEASIS

WEASIS [16]

Allows users to view clinical images: WEASIS is a software consisting of a multipurpose web-based viewer and dealing with digital imaging and communications in medicine (DICOM) dataset.

- 1. Run the following commands in the terminal:
 - \$ cd /usr/local/weasis
 - \$ ·/viewer_linux·sh
- 2. File \rightarrow Open \rightarrow DICOM

Figure 2: WEASIS Welcome screen

3. **Provide** path for the DICOM file.

Figure 3: Import DICOM

4. Select "Import".

Figure 4: DICOM Image

5. Further Analyze the image.

Post Installation

Post Installation of aXonica software

After the installation of aXonica is complete you can use some of the installed tools as follows:

Anatomist

It is installed and used with BrainVISA.

- \$ cd /brainvisa-4.5.0
- \$ ·/anatomist

Dipy

This tool is a python setting for MRI database.

BoneJ

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage.

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ

ImageVIS 3D

- \$ cd /usr/local/ImageVis3D-3·1·0/
- \$ ·/ImageVis3D

AMIDE

- \$ export UBUNTU_MENUPROXY=0
- \$ amide

PID

This is a command line interface tool. Its user manual is provided.

TORTOISE

- \$ cd /usr/local/TORTOISE_V3·1·0/TORTOISE_GUI
- \$ gksu python TortoiseGui·py

normalizeFOV

This is a command line interface tool. Its user manual is provided.

FastFilter3D

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage.

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ

ITK-Snap

- \$ cd /usr/local/itksnap-3.6.0-20170401-Linux-x86_64
- \$ cd bin/
- \$ ·/itksnap

HeteroscedasticfMRI

This is a command line interface tool. Its user manual is provided.

pyClusterROI

This is a command line interface tool. Its user manual is provided.

BrainSeg3D

- \$ cd /usr/local/brainseg3d
- \$ ·/BrainSeg3D

CMP-BIA

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ

ITK

This is a command line interface tool. Its user manual is provided.

E-Snake

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage

\$ cd /usr/local/ImageJ

\$ ·/ImageJ

mincBEAST

This is command line interface tool. Its user manual is provided.

Segmentator

This is command line interface tool. Its user manual is provided.

Mango

- \$ cd /usr/local/Mango
- \$ ·/mango

bUnwarpJ

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage

\$ cd /usr/local/ImageJ

\$ ·/ImageJ

BrainVISA

- \$ cd /brainvisa-4.5.0
- \$ ·/anatomist

The Virtual Brain

- \$ cd /usr/local/TVB_Distribution/bin/
- \$ ·/tvb_start·sh

CBS Tools

It is a plugin for LA-iMageS.

- > cd /usr/local/LA-iMageS-1.1.5
- > chmod +x run·sh

> ·/run·sh

HegaEtAl2017

This is a command line interface tool. Its user manual is provided.

NEURON

This is a command line interface tool. Its user manual is provided.

SliceMap

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage

\$ cd /usr/local/ImageJ

\$ ·/ImageJ

Nengo

This is command line interface tool. Its user manual is provided.

neuroConstruct

- \$ cd /usr/local/neuroConstruct_1.6.0
- \$ gksu bash neuroConstruct_1.6.0

MedInria

- \$ cd /usr/local/medinria-2·2·3-Linux-x86_64
- \$ cd bin/
- \$ ·/medInria launcher·sh

Brian

This is command line interface tool. Its user manual is provided.

Time Domain decoding

This is command line interface tool. Its user manual is provided.

Fraclac

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ

Gwyddion

\$ gwyddion

LA-iMageS

- \$ cd /usr/local/LA-iMageS-1.1.5
- \$ chmod +x run·sh
- \$ ·/run·sh

Brainstorm

- \$ cd /usr/local/brainstorm3/bin/R2015b/
- \$ gksu bash brainstorm3.command

ImageJ

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ

Nipype

This tool is python setting for MRI database.

MRI Processor

It is a plugin for ImageJ. It is installed in: Package/Plugins folder. Copy the .jar file and paste in the plugins folder of ImageJ for usage

- \$ cd /usr/local/ImageJ
- \$ ·/ImageJ

NiBabel

This tool is python setting for MRI database.

MRIcron

- \$ cd /usr/local/mricron_lx
- \$ ·/mricron

MIPAV

\$ cd /usr/local/MIPAV

\$ ·/mipav

WEASIS

- \$ cd /usr/local/weasis
- \$ ·/viewer-linux·sh

References

- [1] T. Fogal and J. H. Kr{\"u}ger, "Tuvok, an Architecture for Large Scale Volume Rendering.," in *VMV*, 2010.
- [2] A. M. Loening and S. S. Gambhir, "AMIDE: a free software tool for multimodality medical image analysis," *Molecular imaging*, vol. 2, p. 15353500200303133, 2003.
- [3] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee and G. Gerig, "User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability," *Neuroimage*, vol. 31, pp. 1116-1128, 2006.
- [4] Z. Lesjak, A. Galimzianova, B. Likar, F. Pernus and Z. Spiclin, "Increased accuracy and reproducibility of MS lesion volume quantification by using publicly available BrainSeg3D image analysis software," in *MULTIPLE SCLEROSIS JOURNAL*, 2015.
- [5] J. L. Lancaster, A. R. Laird, S. B. Eickhoff, M. J. Martinez, P. M. Fox and P. T. Fox, "Automated regional behavioral analysis for human brain images," *Frontiers in neuroinformatics*, vol. 6, p. 23, 2012.
- [6] Y. Cointepas, J.-F. Mangin, L. Garnero, J.-B. Poline and H. Benali, "BrainVISA: software platform for visualization and analysis of multi-modality brain data," *Neuroimage*, vol. 13, p. 98, 2001.
- [7] J. Schindelin, C. T. Rueden, M. C. Hiner and K. W. Eliceiri, "The ImageJ ecosystem: An open platform for biomedical image analysis," *Molecular reproduction and development,* vol. 82, pp. 518-529, 2015.
- [8] A. Karperien, "FracLac for ImageJ," Charles Sturt University, 2013.
- [9] H. L{\'o}pez-Fern{\'a}ndez, G. S. Pess{\^o}a, M. A. Z. Arruda, J. L. Capelo-Mart{\'\i}nez, F. Fdez-Riverola, D. Glez-Pe{\^n}a and M. Reboiro-Jato, "LA-iMageS: a software for elemental distribution bioimaging using LA--ICP--MS data," *Journal of cheminformatics*, vol. 8, p. 65, 2016.
- [10] D. Prodanov and K. Verstreken, "Automated segmentation and morphometry of cell and tissue structures. Selected algorithms in imageJ," in *Molecular Imaging*, InTech, 2012.
- [11] Fritzsche; Klaus H., ""MITK diffusion imaging." Methods of information in medicine," vol. 51, pp. 441--448, 2012.
- [12] N. Toussaint, J.-C. Souplet, P. Fillard and others, "MedINRIA: medical image navigation and research tool by INRIA," in *Proc. of MICCAI*, 2007.
- [13] M. Jenkinson, "Fsl.," *Neuroimage*, vol. 62, pp. 782--790, 2012.

- [14] T. Sherif, "BrainBrowser: distributed, web-based neurological data visualization.," *Frontiers in Neuroinformatics,* vol. 8, p. 89, 2015.
- [15] S. R. Kesler, J. S. Kent and R. O'Hara, "Prefrontal cortex and executive function impairments in primary breast cancer," *Archives of neurology*, vol. 68, pp. 1447-1453, 2011.
- [16] G. Valeri, F. A. Mazza, S. Maggi, D. Aramini, L. La Riccia, G. Mazzoni and A. Giovagnoni, "Open source software in a practical approach for post processing of radiologic images," *La radiologia medica*, vol. 120, pp. 309-323, 2015.