5.9 Artificial Neural Networks

• Artificial neural networks (ANN) เป็นการจำลองการทำงานบางส่วน ของสมองมนุษย์

• Neuron เป็นเซลที่ประกอบด้วย nucleus, cell body, dendry, synapse

axon ดังแสดงในรูปที่ 5.9.1

• สมองของมนุษย์มี neuron ประมาณ 10¹¹ แต่ละ neuron เชื่อมต่อกับ neuron อื่นประมาณ 10¹ และมี stwiching time ประมาณ 10¹³ วินาที ซึ่งช้ามากเมื่อเทียบกับคอมพิวเตอร์ (10¹⁰ วินาที) แต่ทำงานบาง อย่างได้ดีกว่ามาก

•ให้ $g(x)=\sum_{i=0}^n w_i x_i$ หรือในรูปของเวกเตอร์ $g(x)=\vec{w}\cdot\vec{x}$ $o(x_1,...,x_n)=\begin{cases} 1 & if \ g(x)>0 \\ -1 & if \ g(x)<0 \end{cases}$

o ใช้ activation function เป็น stepwise bipolar (output = 1 หรือ -1)

•ในกรณีของ 2 inputs ดังแสดงในรูป 5.9.3

$$g(x) = w_0 + w_1 x_1 + w_2 x_2$$

Perceptrons

- Perceptron เป็น ANN ชนิดหนึ่ง ซึ่งประกอบด้วยยูนิตเดี่ยว(รูป 5.9.2)
- input เป็น real-valued vector
- Perceptron คำนวณ linear combination ของ input(x) และให้ output(o) เป็น 1 ถ้าค่าที่ได้เกิน threshold และเป็น -1 ถ้าค่าไม่เกิน

$$o(x_1,...,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n < 0 \end{cases}$$

โดยที่ -wo คือ ค่า threshold, wi เป็น real-valued constant หรือ weight

• wi เป็นตัวกำหนดความสำคัฐของ input xi ที่มีต่อ output

รูปที่ 5.9.3 decision surface

- เราสามารถมอง perceptron เป็น hyperplane decision surface (g(x)=0)ใน n-dimensional surface
- เราสามารถสอน perceptron ให้แยกตัวอย่าง (คู่ลำดับ input-output)
- คุณสมบัติหนึ่งของ perceptronคือ ทุก function ที่ perceptron สามารถ คำนวณได้ มันก็สามารถที่จะถูกสอนให้เรียน function นั้นได้

Perceptron Learning Rule

- จงหาค่าของเวกเตอร์น้ำหนัก $\vec{\mathcal{W}}$ ที่ทำให้ perceptron เอ๊าท์พูตเป็น +1 หรือ -1 ได้ถูกต้องสำหรับทุกตัวอย่างที่สอน
- Perceptron learning rule
 - เริ่มต้นจากการสุ่มค่าของน้ำหนัก w
 - เทียบ perceptron กับทุกตัวอย่างที่สอนทีละตัว และแก้ไขน้ำหนักเมื่อ perceptron แยกตัวอย่างผิดพลาด
 - วนทำซ้ำกับตัวอย่างที่สอน จนกระทั่ง perceptron แยกตัวอย่างได้ ถกต้องทั้งหมด
 - น้ำหนักถูกปรับตาม $w_i = w_i + \Delta w_i$ โดยที่ $\Delta w_i = \alpha \ (t-o)x_i$ = $\alpha \times \text{error} \times \text{input}$ t เป็น target output,
 - o เป็น output จาก perceptron, lpha เป็นค่าคงที่แสดง learning rate

	σÚ
(bin	รางที่ 5.9.1 การเรียนรู้ของ Perceptron กับ
inary	5.9
ac	<u>-</u>
iva	eu
ti On	5 <u>8</u>
₫	ಕ್ಕೌ
y activation function (output = 0 หรือ	100
on (P
ou Out	erce
but	ptr
II	9
o 式.	ก กับฟังก
ව	₹
<u> </u>	ารัฐเ
	ชัน AND
	8

(binary activation function (output = 0 หรือ 1))	ารางที่ 5.9.1 การเรียนรู้ของ Perceptron กับฟังก์ชัน AN
(output = 0 1	erceptron กับ
หรือ 1))	เฟ็งก์ชัน AN

- -ในกรณีที่ perceptron แยกตัวอย่างได้ถูกต้อง (t-o) จะมีค่าเป็น 0 ∆w ไม่เปลี่ยนแปลง
- -ในกรณีที่ perceptron ให้เอ๊าท์พุตเป็น -1 แต่ target output = 1 เพื่อที่จะทำให้ perceptron เอ๊าท์พุตเป็น 1 น้ำหนักต้องถูกปรับ ให้สามารถเพิ่มค่าของ $\vec{w}\cdot\vec{x}$
 - -- ถ้า xi>0, wi จะเพิ่มขึ้นและจะทำให้ perceptron เอ๊าท์พุตได้ ถูกต้องยิ่งขึ้น (Δw_i = α(t-o)x_i > 0)
 - -- ถ้า xi<0, wi จะลดลงและจะทำให้ perceptron เอ๊าท์พุตได้ ถูกต้องยิ่งขึ้น
- -ในกรณีที่ perceptron ให้เอ้าท์พุตเป็น 1 แต่ target output = -1 w ของ x ที่เป็นค่าบวก จะลดลง. w ของ x ที่เป็นค่าลบ จะเพิ่มขึ้น

	Input	_		٥	٥	_		0	0	-1		a	0	_	-	0	0			0	0	_	_	٥	0			0	0	-4	-+	٥	0	_	
	Input	ঠ .		0	_	0		0	-	0	_	0	_	0		0		0	,	0	_	0		0	1	٥	_	0		0	_	٥		0	
Blas in		1.0°W0		0.10	0.10	0.40	0.40	-0.10	-0.10	0.40	0.90	0.40	-0.10	0.40	0.90	0.40	-0.10	0.40	0.90	0.40	-0.10	0,40	0.90	0.40	-0.10	0.40	0.90	0.40	-0.10	0.40	0.90	0.40	-0.10	0.40	,
Blas Input X0 =		X1. IX		0.00	0.00	0,10	0.10	0.00	0.00	0.40	0.10	0.00	0.00	-0.40	0.10	0.00	0.00	-0.40	0.10	0.00	0.00	-0.40	0.10	0.00	0.00	0.40	0.10	0.00	0.00	-0.40	0.10	0.00	0.00	-0.40	•
#		X2*W2		0.00	0.10	0.00	0.60	0.00	0,10	0.00	0.60	0.00	0.10	0.00	0.60	0.00	0.10	0.00	0.60	.000	0.10	0.00	0.60	0.00	0.10	0.00	0.60	0.00	0.10	0.00	0.60	0.00	0.10	0.00	
	Net Sum	Input		0.10	0.00	0.50	1.10	0.10	0.00	0.00	1.60	0.40	0.00.	0,00	1.60	0.40	0.00	0.00	1.60	0,40	0.00	0.00	1.60	0.40	0.00	0.00	1.60	0.40	0.00	. 0.00	1.60	0.40	0.00	0.00	
	Target	OLL		٥		_	0	0		_	0	o.			0.	0	_	_	0	0	_	-	0	0	_	_	0	0			o	0	_	_	
Alpha	Actual	Out		_	0			0	0	0		-	0	. 0		_	0	0	_	-	0	0		_		. 0	-		. 0		_	-	0		
= 0.80	Alpha	*Error		-0.20	0.50	0.00	-0.50	0.00	0.50	0.50	-0.50	0.50	0.50	0.50	-0.50	-0.50	0.50	0.50	0.50	0.50	0.50	0.50	-0.50	-0.50	0.50	0.50	-0.50	0.50	0.50	0.50	-0.50	-0.50	0.50	0.50	5 00
	We	W	0.1	-0.10	0.40	. 0.40	-0.10	-0.10	0.40	0.90	. 0.40	0.10	0.40	0.90	0.40	-0.10	0.40	0.90	0.40	-0.10	0.40	0.90	0.40	0.10	0.40	0.90	0.40	. 0.10	0.40	0.90	0.40	-0.10	0.40	0.90	
	Weight Values	M	0.1	0.10	0.10	0,10	-0,40	-0.40	0.40	0.10	-0.40	-0.40	-0.40	0,10	-0.40	-0.40	-0.40	0.10	-0,40	-0.40	-0.40	0.10	-0.40	-0.40	-0.40	0.10	-0.40	-0.40	-0.40	0.10	0.40	0.40	0.40	0.10	-5 40
	Ses	W2	0.1	0.10	0.60	0.60	0.1	0.10	0.60	0.60	0.10	T	1	_	T	0.10	T	T	T	Ĺ	Ī	0.60	Т		9.60	ľ		0.10		-	0.10	Г	0.60	0.60	2 2

ตกรางที่ 5.9.2 ความพยายามของ perceptron ที่จะเรียนพังก์ชัน XOR (binary activation function (output = 0 หรือ 1))

ข้อจำกัดของ Perceptron Learning Rule

- concept หรือ function ที่สามารถเรียนได้โดย perceptron learning rule นั้น จะต้องเป็น linearly separable function
- ถ้าไม่เป็นแบบ linearly separable, perceptron จะไม่ลู่เข้า (รูปที่ 5.9.4)

ฐปที่ 5.9.4 linearly and linearly non-separable function

- นิยาม training error (E(w)) $E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d o_d)^2$ โดยที่ D เป็นเซตของตัวอย่าง, td เป็น target output ของตัวอย่าง d od เป็น output ของ perceptron สำหรับตัวอย่าง d
- ullet E(ec w)เป็น parabolic function ของec w ชึ่งมีค่าต่ำสุดค่าเดียว
- ตัวอย่างขอ**∉**(พี) (2 inputs) แสดงในรูปที่ 5.9.6

รูปที่ 5.9.6 Hypothesis Space of w and E(w)

Delta Rule (Gradient Descent)

- delta rule คล้ายกับ perceptron learning rule แต่จะลู่เข้าสู่ค่าที่ทำให้ error น้อยที่สุด ในกรณีที่ตัวอย่างไม่เป็นแบบ linearly separable
- •ใช้หลักการของ gradient descent เพื่อหาคำตอบจาก space ของ เวกเตอร์น้ำหนักที่เป็นไปได้
- เป็นพื้นฐานของอัลกอริทึม Backprogagation
- •ใช้ activation function เป็น linear function ซึ่งหาอนุพันธ์ได้ (รูปที่ 5.9.5)

ฐปที่ 5.9.5 linear activation function

• เอ๊าท์พุตของ perceptron แสดงโดย $oldsymbol{o}(ec{x}) = ec{w} \cdot ec{x}$

Derivation of the Delta Rule

- ullet หลักการของ delta rule คือหาค่า ec w ที่ทำให้ E(ec w) มีค่าน้อยที่สุด
- เริ่มจากเวกเตอร์น้ำหนักเริ่มต้นแล้วปรับค่าเวกเตอร์น้ำหนักทีละน้อย ในทิศทางลงที่ชันที่สุด(steepest descent)ของerror surface(รูป5.9.6)
- เวกเตอร์ที่สัมผัสกับ error surface คำนวณได้จากอนุพันธ์ของ $E(\vec{w})$ เทียบกับ \vec{w} (ให้เวกเตอร์นี้แทนด้วย $\nabla\!E(\vec{w})$)

$$\nabla E(\vec{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n} \right]$$

เวกเตอร์นี้แสดงทิศในแนวขึ้น, เวกเตอร์ที่มีทิศทางลงจึงเป็น – $\nabla E(\vec{w})$

• ดังนั้นกฏในการปรับค่าเวกเตอร์น้ำหนักเป็น:

$$\vec{w} = \vec{w} + \Delta \vec{w}$$

โดยที่

$$\Delta \vec{w} = -\eta \, \nabla E(\vec{w})$$

η : learning rate เป็นค่าคงที่เลขบวก

• Delta rule สามารถเขียนให้อยู่ในรูปของสมาชิกแต่ละตัวได้

$$\begin{split} w_i &= w_i + \Delta w_i \\ \Delta w_i &= -\eta \frac{\partial E}{\partial w_i} \\ \bullet \frac{\partial E}{\partial w_i} \text{ คำนวณได้โดย: } \frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d) \\ &\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id}) \end{split}$$

xid คือสมาชิก xi ของตัวอย่าง d

$$\therefore \Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

Multilayer Network and Backpropagation

- perceptron เดี่ยวสามารถแสดงได้แค่ linear decision surface เท่านั้น
- เน็ตเวิร์กหลายชั้น (multilayer network) สามารถแสดง nonlinear decision surface ได้
- ตัวอย่างของmultilayer networkที่แสดงฟังก์ชัน XORแสดงในรูป 5.9.7 และ decision surface แสดงในรูป 5.9.8

Delta Rule Algorithm

Delta-Rule(training-examples, n)

Each training example is a pair $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate.

- Initialize each wi to some small random value
- Until the termination condition is met, Do
 - -Initialize each Δwi to zero.
- -For each $\langle \vec{x}, t \rangle$ in training-examples, Do
 - -- Input the instance \vec{x} to the unit and compute the output o
 - -- For each linear unit weight wi, Do

$$\Delta w_i = \Delta w_i + \eta \ (t - o) \ x_i$$

-For each linear weight wi, Do

$$w_i = w_i + \Delta w_i$$

x1	x2	x1 XOR x2
0	0	0
0	1	1
1	0	1
1	1	0
	'	

รูปที่ 5.9.8 decision surface ของ network ในรูปที่ 5.9.7

• Multilayer network ใช้ activation function ที่สามารถหาค่าอนุพันธ์ได้ เช่น sigmoid function (แสดงในรูปที่ 5.9.9)

รูปที่ 5.9.10 Perceptron ที่ใช้ Sigmoid function

• คุณสมบัติหนึ่งของ sigmoid function คือ ค่าอนุพันธ์แสดงอยู่ในรูปของ เอ๊าท์พุตได้อย่างง่าย

$$\frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))$$

193

Backpropagation(training-examples, n,nin,nout,nhidden)

Each training example is a pair $\langle \vec{x}, \vec{t} \rangle$, where \vec{x} is the input vector, \vec{t} is the target output vector, η is the learning rate. nin, nout, nhidden are number of network inputs, units in the hidden layer, output units, respectively. The input from unit i into unit j, and the weight from unit i to unit j are denoted xji and wji

- Initialize all network weights to small random numbers (e.g., [-0.05..0.05])
- Until the termination condition is met, Do
- ullet For each $\langle ec{x}, ec{t}
 angle$ in training-examples, Do {Propagate the input forward through the network}
 - 1. Input the instance \vec{x} to the network, compute the output ou of every unit u. {Propagate the errors backward through the network}
 - 2. For each network output unit k, calculate its error term δ k

$$\delta_k = o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h, calculate its error term $\pmb{\delta}$ h

$$\delta_h = o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k$$

4. Update each network weight w_{ji}: $w_{ji} = w_{ji} + \Delta w_{ji}$ where $\Delta w_{ji} = \eta \delta_{j} x_{ji}$

Backpropagation Algorithm

- Backpropagation (BP) algorithm เรียนรู้ค่าเวกเตอร์น้ำหนักสำหรับ multilayer feedforward network (MLFF) โดยการใช้ gradient descent เพื่อหาค่าต่ำสุดของerrorระหว่างเอ๊าท์พุตของเน็ตเวอร์กับtarget value
- ullet ค่า error (E) นิยามเป็น $E(ec{w}) = rac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left(t_{kd} o_{kd}
 ight)^2$

โดยที่ outputs คือเซตของ output units ในเน็ตเวิร์ก,
tkd และ okd เป็น target value และ output value ตามลำดับของ output
unit ที่ k และตัวอย่างที่ d

• BP ค้นหาเวกเตอร์น้ำหนักที่ให้ค่า error ต่ำสุด แต่ในกรณีของ MLFF ค่าต่ำสุดมีมากกว่าหนึ่ง ดังนั้นคำตอบของ BP จึงเป็น local minimum

194

Derivation of Backpropagation Rule

• ให้errorของแต่ละตัวอย่าง d เป็น Ed แล้วน้ำหนัก wji ถูกปรับโดย Δ wji ตาม gradient descent

$$\Delta w_{ji} = -h \frac{\partial E_d}{\partial w_{ji}}$$

โดยที่ Ed เป็น error ของตัวอย่าง d คำนวณรวมทั้งหมดสำหรับทุก output unit

$$E_d(\vec{w}) = \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

outputs เป็นเซตของ output units, tk และ ok เป็น target value และ output value ของ unit k สำหรับตัวอย่าง d ตามลำดับ

• ให้
$$net_j = \sum_i w_{ji} x_{ji}$$
เราจะได้ว่า $\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} x_{ji}$

- พิจารณา $\frac{\partial E_d}{\partial \ net_j}$ จากสมการที่แล้วเป็น 2 กรณี: 1 กรณีที่ unit j เป็น output unit และ 2 กรณีที่ unit j เป็น hidden unit
- กรณีที่ 1: training rule สำหรับน้ำหนักของ output unit เนื่องจาก wji มีผลต่อเน็ตเวิร์กโดยผ่านทาง netj และ netj มีผลต่อเน็ตเวิร์กโดยผ่านทาง oj เท่านั้น

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

- คำนวณ
$$\frac{\partial E_d}{\partial o_j}$$
 $\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$ $\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$

เพราะว่า อนุพันธ์ของพจน์อื่น ๆที่ k ที่ไม่เท่ากับ j เป็น 0 $\frac{\partial E_d}{\partial \, o_j} = -(t_j - o_j)$

- กรณีที่ 2: training rule สำหรับน้ำหนักของ hidden unit ในการคำนวณกฎสำหรับ wji ซึ่ง j เป็น hidden unit นั้น เราต้องพิจารณา ผลทางอ้อมของ wji ที่มีต่อเอ๊าท์พุตของเน็ตเวิร์กและ Ed
 - -ให้ Downstream(j) เป็น เซตของ units ทั้งหมดที่ได้รับ input จาก output ของ unit j
 - netj สามารถส่งผลต่อเอ๊าท์พุตของเน็ตเวิร์ก (และ Ed) ได้โดยผ่านทาง unit ใน Downstream(j) เท่านั้น

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j}$$

$$= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

- คำนวณ $\frac{\partial o_j}{\partial net_j}$, จากคุณสมบัติของ sigmoid function

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}$$
$$= o_j(1 - o_j)$$

.. จะได้ว่า
$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j)o_j(1 - o_j)$$

• ดังนั้น gradient descent rule สำหรับ output unit จึงเป็น

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$
$$= \eta (t_j - o_j) o_j (1 - o_j) x_{ji}$$

198

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j}$$
$$= \sum_{k \in Downstream(j)} -\delta_k w_{kj} o_j (1 - o_j)$$

-ให้
$$\delta_j$$
 แสดง $-\frac{\partial E_d}{\partial \ net_j}$
$$\delta_j = o_j (1-o_j) \sum_{k \in Downstream(j)} \delta_k w_{kj}$$
 และ $\Delta w_{ji} = \eta \, \delta_j x_{ji}$

• ในอัลกอริทึมเป็นกรณีที่ Downstream(j) = outputs

An Example of Multilayer Networks

• ตัวอย่างของ multilayer networks ที่ใช้รู้จำเสียงพูด

201