Математика

Мы

1 марта 2023 г.

Оглавление

1	Примечания	2
2	Логика	3
3	Множества 3.1 Аксиомы множеств 3.2 Другое	5 5
4	Бинарные отношения	10
5	Общая алгебра	13
6	Алгебраические выражения	18
7	Измерения	23
8	Последовательности	24
9	Функции	31
10	Числа 10.1 Натуральные числа (N) 10.2 Целые числа (Z) 10.3 Рациональные числа (Q) 10.4 Иррациональные числа (I) 10.5 Действительные числа (R) 10.6 Комплексные числа (C)	43 43 45 52 53 53 57
11	Матрицы 11.1 Операции над матрицами 11.2 Перестановки 11.3 Определители 11.4 Миноры, адгебранческие дополнения и ранги	60 64 66 68 71

ОГЛАВЛЕНИЕ	2
11.5 Форматы матриц	
12 Векторы	76

Примечания

В данном материале очень много опечаток. А также данный материал неконсистентен - он не стандартизирован.

Чтобы понять, что означают '<', '>', попробуйте их убрать.

Логика

$$\forall A,\; B \; \left(A \longrightarrow B \Leftrightarrow egin{cases} \mbox{Из посылки A вытекает вывод B.} \\ A - \mbox{достаточное условие для B.} \\ B - \mbox{необходимое условие для A.} \\ \end{cases}$$

$$\forall A,\ B\ \left(egin{cases} A \longrightarrow B \\ B \longrightarrow A \end{cases} \Leftrightarrow A$$
 и B — логически эквивалентные утверждения. $\right)$

$$\forall A,\ B\ ((A\longrightarrow B)\ -\ \text{прямое утверждение.} \Leftrightarrow (B\longrightarrow A)\ -\ \text{обратное утверждение.})$$

$$\forall A,\ B\ ((A\longrightarrow B)\ -\$$
прямое утверждение. $\Leftrightarrow (\overline{A}\longrightarrow \overline{B})\ -\$ противоположное утверждение.)

$$\forall A,\ B\ ((A\longrightarrow B)\ -\$$
прямое утверждение. $\Leftrightarrow (\overline{B}\longrightarrow \overline{A})\ -\$ противоположное обратному утверждение.)

$$\forall A,\ B\ \left(egin{cases} A-\text{прямое утверждение.} \\ B-\text{противоположное обратному утверждение.} \end{matrix} \longrightarrow A \Leftrightarrow B \right)$$

ГЛАВА 2. ЛОГИКА

5

Доказательство от противного:

$$\forall A \; \exists B \; (B \wedge (\overline{A} \longrightarrow \overline{B}) \longrightarrow A)$$

Принцип математической индукции (ПМИ):

$$\forall f \left(\forall n \begin{cases} f: \mathbb{N} \longrightarrow Bool \\ f(0) & \longrightarrow \forall n \ f(n) \\ f(n) \longrightarrow f(n+1) \end{cases} \right)$$

 $\forall f \ Prog(f)$ — прогрессивность свойства f.

$$\forall f, \ g \ \left(\begin{cases} f: \mathbb{N} \longrightarrow Bool \\ g: \mathbb{N} \longrightarrow Bool \\ f(g) = \forall n \ (\forall m \ (m < n \longrightarrow g(m)) \longrightarrow g(n)) \end{cases} \Leftrightarrow f = Prog(g) \right)$$

Принцип сильной индукции (ПСИ):

$$\forall f \ (Prog(f) \longrightarrow \forall n \ f(n))$$

Принцип наименьшего числа (ПНЧ):

$$\forall f \; \left(\exists m \; \begin{cases} f: \mathbb{N} \longrightarrow Bool \\ f(m) \end{cases} \longrightarrow \exists n \; \forall a \; \begin{cases} f(n) \\ a < n \longrightarrow \overline{f(a)} \end{cases} \right)$$

Множества

3.1 Аксиомы множеств

 $\forall a \ a$ — множество.

$$\forall a, \ b \ \begin{bmatrix} b \in a \\ b \notin a \end{bmatrix}$$

Аксиома основания:

Аксиома основания: Не бывает бесконечных цепочек вида $\begin{cases} x_1 \in x_2 \\ x_2 \in x_3 \\ \vdots \end{cases}$

Аксиома равенства:

$$\forall a, b \ (a = b \Leftrightarrow \forall c \ (a \in c \Leftrightarrow b \in c))$$

$$\forall a_1, a_2, \ldots, a_n \ \exists a \ a = \{a_1, a_2, \ldots, a_n\}$$

$$\forall a_1, \ a_2, \dots, \ a_n \ b$$

$$\left(b \in \{a_1, a_2, \dots, a_n\} \Leftrightarrow \begin{bmatrix} b = a_1 \\ b = a_2 \\ \vdots \\ b = a_n \end{bmatrix} \right)$$

$$\forall f,\ c\ (f:c\longrightarrow Bool\Leftrightarrow \exists b\ b=\{a\in c\mid f(a)\})$$

$$\forall f, b, c \left(c \in \{a \in b \mid f(a)\} \Leftrightarrow \begin{cases} c \in b \\ f(c) \end{cases}\right)$$

3.2 Другое

$$\forall a, b \ (a \subseteq b \Leftrightarrow \forall c \ (c \in a \longrightarrow c \in b))$$

$$\forall a, b \ (a = b \Leftrightarrow \forall c \ (c \in a \Leftrightarrow c \in b))$$

$$\forall a, b \ (a = b \Leftrightarrow \forall f \ (\exists c \ f : c \longrightarrow Bool \longrightarrow (f(a) \Leftrightarrow f(b))))$$

$$\forall a, \ b \ \left(a = b \Leftrightarrow \begin{cases} a \subseteq b \\ b \subseteq a \end{cases}\right)$$

 $a \subseteq a$

$$\forall a, \ c \ \left(\exists b \ \begin{cases} a \subseteq b \\ b \subseteq c \end{cases} \longrightarrow a \subseteq c \right)$$

 $\forall a\ a\notin\varnothing$

 $\forall a \ \varnothing \subseteq a$

Парадокс Рассела:

$$\exists a \ \forall b \ (b \in a \Leftrightarrow b \notin b)$$

$$\forall a, b \ (a \in P(b) \Leftrightarrow a \subseteq b)$$

$$\forall a, b, c \left(c \in a \cup b \Leftrightarrow \begin{bmatrix} c \in a \\ c \in b \end{bmatrix}\right)$$

$$\forall a, \ c \ \left(a \in \cup b \Leftrightarrow \exists c \ \begin{cases} a \in c \\ c \in b \end{cases} \right)$$

$$\forall a, \ b \ a \cap b = \{c \in a \mid c \in b\}$$

$$\forall a, b \ a \backslash b = \{c \in a \mid c \notin b\}$$

$$\forall a, b \ a \subseteq b \Leftrightarrow a \cap b = a$$

$$\forall a, \ b \ a \subseteq b \Leftrightarrow a \cup b = b$$

$$\forall a, \ b \ (b - \text{universum.} \Leftrightarrow \overline{a} = b \setminus a)$$

∪ – операция, обладающая коммутативным свойством.

 \cup — операция, обладающая ассоциативным свойством.

 \cup — операция, обладающая дистрибутивным свойством с \cap .

 \cap — операция, обладающая коммутативным свойством.

 \cap — операция, обладающая ассоциативным свойством.

 \cap — операция, обладающая дистрибутивным свойством с \cup .

$$\forall a, \ b \ (a,b) = \{\{a\}, \{a,b\}\}\$$

$$\forall a, b, c \left(\begin{cases} a \in c \\ b \in c \end{cases} \longrightarrow (a, b) \in P(P(c)) \right)$$

$$a \times b = \left\{ z \in P(P(a \cup b)) \mid \exists x, \ y \ \begin{cases} x \in a \\ y \in b \\ z = (x, y) \end{cases} \right\}$$

$$a^0 = \{\varnothing\}$$

$$\forall a_1, a_2, \ldots, a_n \ (a_1, a_2, a_3, \ldots, a_n) = (((a_1, a_2), a_3) \ldots a_n)$$

Бинарные отношения

 $\forall A,\ B,\ C\ (C\subseteq A\times B\Leftrightarrow C$ — множество бинарных отношений между множествами A и B.)

$$\forall A, B, C \ (C \subseteq A \times B \Leftrightarrow dom \ C = \{x \in A \mid \exists y \ (x, y) \in C\})$$

$$\forall A, B, C \ (C \subseteq A \times B \Leftrightarrow rng \ C = \{y \in B \mid \exists x \ (x, y) \in C\})$$

$$\forall A, B, C \ (C \subseteq A \times B \Leftrightarrow C^{-1} = \{(y, x) \in B \times A \mid (x, y) \in C\})$$

$$\forall A, B, C \ (C \subseteq A \times B \Leftrightarrow \forall x, y \ (xCy \Leftrightarrow (x,y) \in C))$$

$$\forall A,\ B,\ C,\ Q,\ Z\ \left(\begin{cases} C\subseteq A\times Z\\ Q\subseteq Z\times B \end{cases} \Leftrightarrow Q\circ C = \left\{ (x,y)\in dom\ C\times rng\ Q\mid \exists z\ \begin{cases} xCz\\ zQy \end{cases} \right\} \right)$$

$$\forall A,\ B,\ C,\ Q,\ Z\ \left(\begin{cases} C\subseteq A\times Z\\ Q\subseteq Z\times B \end{cases} \Leftrightarrow \left(Q\circ C\right)^{-1}=C^{-1}\circ Q^{-1} \right)$$

$$\forall A \ id_A = \{ z \in A \times A \mid \exists x \ z = (x, x) \}$$

$$\forall A, B, C \left(C \subseteq A \times B \longrightarrow \begin{cases} id_B \circ C = C \\ C \circ id_A = C \end{cases} \right)$$

$$\forall A, B, C \left(C \subseteq A \times B \longrightarrow \begin{cases} id_B \circ C = C \\ C \circ id_A = C \end{cases} \right)$$

 $\forall C,\ X\ (\exists A,\ B\ C\subseteq A\times B\Leftrightarrow C[X]$ — образ множества X под действием отношения C.)

$$\forall C, \ X \ C[X] = \left\{ b \in rng \ C \mid \exists a \ \left\{ \begin{matrix} a \in X \\ aCb \end{matrix} \right\} \right.$$

$$\forall C \ C[dom \ C] = rng \ C$$

 $\forall C,\ X\ \left(C[X]-$ образ множества X под действием отношения $C.\Leftrightarrow C^{-1}[X]-$ пробраз множества X под действием отношения X

$$\forall C \ C^{-1}[rng \ C] = dom \ C$$

$$\forall C \ C[\varnothing] = \varnothing$$

$$\forall C,\ X,\ Y\ C[X\cup Y] = C[X] \cup C[Y]$$

$$\forall C, \ X, \ Y \ C[X \cap Y] \subseteq C[X] \cap C[Y]$$

$$\forall C, X, Y (Q \circ C)[X] = Q[C[X]]$$

$$\forall R \ \left(\forall x, \ y, \ z \ \left(\begin{cases} xRy \\ xRz \end{cases} \longrightarrow y = z \right) \Leftrightarrow R -$$
 функционально. $\right)$

$$\forall R \ \left(\forall x, \ y, \ z \ \left(\begin{cases} yRx \\ zRx \end{cases} \longrightarrow y = z \right) \Leftrightarrow R$$
 — инъективно. $\right)$

$$\forall R \ \left(\forall x, \ y, \ z \ \left(R - функционально. \Leftrightarrow R^{-1} -$$
инъективно. $\right) \right)$

$$\forall R, \ X \ (X \subseteq dom \ R \Leftrightarrow R$$
 — тотально для X .)

$$\forall R, \ Y \ (Y \subseteq rng \ R \Leftrightarrow R -$$
сюрьективно для Y .)

$$\forall R, \ X \ (R$$
 – тотально для $X. \Leftrightarrow R^{-1}$ – сюрьективно для $X.)$

$$\forall R,\ Q\ \left(egin{cases} R-\ \mbox{функционально.} \ Q-\ \mbox{функционально.} \end{cases} \longrightarrow R\circ Q -\ \mbox{функционально.} \end{cases} \right)$$

$$\forall R,\ Q,\ A \ \left(\exists B \ egin{dcases} Q \subseteq A imes B \\ R - ext{тотально для } rng\ Q. \longrightarrow R \circ Q - ext{тотально для } A. \\ Q - ext{тотально для } A. \end{cases} \right)$$

$$\forall R,\ Q,\ C \ \left(\exists B \ \begin{cases} R\subseteq B\times C \\ Q-\text{сюрьективно для }dom\ R.\ \longrightarrow R\circ Q-\text{сюрьективно для }C. \\ R-\text{сюрьективно для }C. \end{cases} \right)$$

$$\forall A,\ R\ \left(\exists B \left\{ egin{aligned} R:A\longrightarrow B \\ R-\mbox{ инъекция.} \end{aligned} \Leftrightarrow R^{-1}\circ R\subseteq id_A \end{aligned}
ight)$$

$$\forall B,\ R\ \left(\exists A \begin{cases} R:A\longrightarrow B\\ R-\mbox{функционально.} \end{cases} \Leftrightarrow R\circ R^{-1}\subseteq id_B \right)$$

$$\forall A,\ R\ \left(\exists B \left\{\begin{matrix} R:A\longrightarrow B\\ R-\text{тотально для }A. \end{matrix}\right. \Leftrightarrow id_A\subseteq R^{-1}\circ R\right)$$

$$\forall B,\ R\ \left(\exists A egin{cases} R:A\longrightarrow B\\ R-\text{сюрьективна для }B. \end{cases}\Leftrightarrow id_B\subseteq R\circ R^{-1} \right)$$

Общая алгебра

$$\forall A, \ * \ \left(\left\{ egin{align*} * - \text{операция.} \\ * : A \times A \longrightarrow A \end{array} \Leftrightarrow * - \text{бинарная операция на множестве } A. \right) \end{array} \right)$$

 $\forall A, \ * \ ((A,*) \Leftrightarrow * -$ бинарная операция на множестве A.)

$$\forall A, * ((A, *) \Leftrightarrow A - \text{группоид (магма).})$$

$$\forall A, \ * \ \left(\forall a, \ b, \ c \ \begin{cases} (*,A) \\ a,b \in A \longrightarrow a*b=b*a \end{cases} \Leftrightarrow *- \text{ бинарная ассоциативная операция на множестве } A. \right)$$

$$\forall A, \ * \ \left(\forall a, \ b, \ c \ \begin{cases} (*,A) \\ a,b,c \in A \longrightarrow (a*b)*c = a*(b*c) \end{cases} \right. \\ \Leftrightarrow \left. \text{множестве } A. \right.$$

$$\forall A, * \begin{pmatrix} *$$
 —бинарная ассоциативная операция $\Leftrightarrow A$ — полугруппа относительно бинарной операции $*$. $\end{pmatrix}$

$$\forall A, \ *, \ e \left(\forall a \begin{cases} (*,A) \\ e \in A \\ a \in A \longrightarrow e*a = a*e = a \end{cases} \right) \Leftrightarrow \begin{array}{c} e - \text{ нейтральный элемент группоида } A \\ \text{относительно бинарной операции } *. \end{array} \right)$$

$$\forall A, * \left(\forall a \ (*,A) \Leftrightarrow e_A$$
 — нейтральный элемент группоида $A \right)$ относительно бинарной операции $*$.

$$\forall A, \ * \ \left(\exists e \ \begin{cases} A - \text{полугруппа относительно бинарной операции} \ * \ . \\ e - \text{нейтральный элемент группоида} \ A \end{cases} \Leftrightarrow \begin{cases} A - \text{моноид относительно} \\ \text{относительно бинарной операции} \ * \ . \end{cases} \right)$$

$$\forall A, \ *, \ a, \ b, \ e \left\{ \begin{aligned} &e - \text{ нейтральный элемент группоида } A \\ &a,b \in A \longrightarrow a*b = b*a = e \end{aligned} \right. \Leftrightarrow \left\{ \begin{aligned} &a - \text{ обратимый элемент группоида } A \\ &\text{ относительно бинарной операции } * \ . \\ &b - \text{ обратный элемент группоида } A \\ &\text{ относительно бинарной операции } * \\ &\text{ и элемента } a. \end{aligned} \right.$$

$$\forall A, \ * \left(\forall a \ \begin{cases} A - \text{моноид.} \\ a \in A \longrightarrow a - \text{обратимый элемент группоида } A \Leftrightarrow A - \text{группа.} \\ \text{относительно бинарной операции } *. \end{cases} \right)$$

$$\forall A, \ * \ \left(\left\{ egin{align*} (A,*) - \text{группа.} \\ * - \text{коммутативная операция.} \end{array} \right. \Leftrightarrow (A,*) - \text{абелева группа.} \right)$$

 $\forall *, \ n \ (S_n, *) - \text{симметрическая группа.}$

$$\forall A, * \left(\forall a \; \exists b, \; n \; \left\{ egin{aligned} (A,*) - \text{группа.} \\ a \in A \land b \in A \land n \in \mathbb{N} \longrightarrow a = b^n \end{aligned} \right. \Leftrightarrow (A,*) - \text{циклическая группа.} \right)$$

$$\forall A,\ B,\ *,\ \circ,\ f \left(\forall a,\ b \begin{cases} (A,*) \\ (B,\circ) \\ f:A\longrightarrow B \\ f(a*b)=f(a)\circ f(b) \end{cases} \Leftrightarrow f$$
— гомоморфизм относительно $(A,*)$ и (B,\circ) .

$$\forall A,\ B,\ *,\ \circ,\ f\left(egin{cases} f-\ \mbox{гомоморфизм относительно}\ (A,*)\ \ \mbox{u}\ (B,\circ)\ . \\ (A,*)-\ \mbox{группа.} \\ (B,\circ)-\ \mbox{группа.} \end{cases} \Leftrightarrow \forall a\ \begin{cases} f(a^{-1})=f(a)^{-1} \\ f(e_A)=e_B \end{cases} \right)$$

 $\forall A,\ B,\ *,\ \circ,\ f\ (f$ — гомоморфизм относительно (A,*) и (B,\circ) . $\Leftrightarrow kerf=\{x\in A\mid f(x)=e_B\})$

 $\forall A,\ B,\ *,\ \circ,\ f\ (f$ — гомоморфизм относительно (A,*) и (B,\circ) . $\Leftrightarrow kerf$ — ядро гомоморфизма f .)

$$\forall A,\ B,\ *,\ \circ,\ f\left(egin{cases} f-\ \text{гомоморфизм относительно} \\ (A,*)\ \ \text{и}\ \ (B,\circ)\ . \\ f-\ \ \text{инъекция}. \end{cases}\right)$$

 $\forall f \ (\exists A \ kerf = \{e_A\} \Leftrightarrow f$ – мономорфизм.)

$$\forall A,\ B,\ *,\ \circ,\ f\left(\begin{cases} f-\text{гомоморфизм относительно}\\ (A,*)\ \text{и}\ (B,\circ)\,.\\ f-\text{сюрьекция}. \end{cases} \Leftrightarrow \begin{cases} f-\text{эпиморфизм относительно}\\ (A,*)\ \text{и}\ (B,\circ)\,. \end{cases}\right)$$

$$\forall A,\ B,\ *,\ \circ,\ f \left(\begin{cases} f-\text{мономорфизм относительно} \\ (A,*)\ \text{и}\ (B,\circ)\,. \\ f-\text{эпиморфизм относительно} \\ (A,*)\ \text{и}\ (B,\circ)\,. \end{cases} \right. \Leftrightarrow \frac{f-\text{изоморфизм относительно}}{(A,*)\ \text{и}\ (B,\circ)\,.}$$

$$\forall A,\ B,\ *,\ \circ\ \left(\exists f\ f$$
 — изоморфизм относительно $\Leftrightarrow A$ и B изоморфны. $\right)$

$$\forall A,\ B,\ *,\ \circ\ \left(egin{array}{ll} \exists f\ f-\mbox{изоморфизм относительно} \ (A,*)\ \mbox{u}\ (B,\circ)\,. \end{array}
ight)$$

 $\forall A \ (A - \text{группа.} \Leftrightarrow ord \ A = \text{количество элементов } A.)$

$$\forall A, \ a \ \left(\begin{cases} a \in A \\ a \neq e_A \end{cases} \Leftrightarrow ord \ a = min \{ n \in \mathbb{N} \mid a^n = e_A \} \right)$$

 $\forall a \ ord \ a$ — порядок a.

$$\forall A, \ a \ \left(\begin{cases} A - \text{группа.} \\ a \in A \end{cases} \Leftrightarrow ord \ a \mid ord \ A \right)$$

$$\forall A,\ B,\ * \left(\forall a,\ b \ \begin{cases} (A,*) - \text{группа.} \\ B \subseteq A \\ e_A \in B \\ a \in B \land b \in B \longrightarrow a*b \in B \\ a \in B \longrightarrow a^{-1} \in B \end{cases} \Leftrightarrow (B,*) - \text{подгруппа } A. \right)$$

$$\forall A,\ B,\ * \left(egin{cases} (B,*)-\text{подгруппа}\ A. \\ B
eq \{e_A\} &\Leftrightarrow (B,*)-\text{собственная подгруппа}. \\ B
eq A \end{cases} \right)$$

$$\forall A,\ B,\ *\ \left(\begin{cases} (B,*) - \text{подгруппа }A. \\ B = \{e_A\} \end{cases} \Leftrightarrow (B,*) - \text{тривиальная подгруппа.} \right)$$

$$\forall A,\ B,\ *,\ a\ \left(\begin{cases} (B,*)-\text{подгруппа }A.\\ a\in A\longrightarrow aB=\{c\in B\mid c=a*b\wedge b\in B\}\end{cases} \Leftrightarrow aB-\text{левый смежный класс.}\right)$$

$$\forall A,\ B,\ *,\ a\ \left(\begin{cases} (B,*)-\text{подгруппа}\ A.\\ a\in A\longrightarrow Ba=\{c\in B\mid c=b*a\wedge b\in B\}\end{cases} \Leftrightarrow Ba-\text{правый смежный класс.}\right)$$

$$\forall A,\ B,\ *\ \left(\forall a\ \begin{cases} (B,*)-\text{подгруппа}\ A. \\ aB=Ba \end{cases} \Leftrightarrow B-\text{нормальная подгруппа}. \right)$$

 $\forall A,\ B\ (B$ — нормальная подгруппа $A.\Leftrightarrow B\lhd A)$

$$\forall A, B, * ((B, *) - \text{подгруппа } A. \Leftrightarrow A : B = \text{количество множеств } \forall a \ aB.)$$

$$\forall A,\ B,\ *\ ((B,*)$$
 — подгруппа $A.\Leftrightarrow A:B$ — индекс подгруппы B в $A.)$

Теорема Лагранжа:

$$\forall A, B, * ((B, *) - \text{подгруппа } A. \Leftrightarrow |A| = |B||A:B|)$$

Алгебраические выражения

Алгебраическое выражение - это выражение, состоящее из чисел, буквенных величин и алгебраических операций над ними.

Область допустимых значений (ОДЗ) - это множество всех наборов числовых значений букв, входящих в данное алгебраическое выражение.

Тождественно равные алгебраические выражения - это алгебраические выражения, имеющие равные ОДЗ и равные числовые значения на этом ОДЗ.

Одночлен - это алгебраическое выражение, состоящее из произведения числового коэффициента и буквенных величин.

Стандартный вид одночлена:

- 1. Один числовой коэффициент.
- 2. Нет повторяющихся буквенных величин.

Подобные одночлены - это одночлены, отличающиеся только числовыми коэффициентами.

Многочлен (полином) - это алгебраическое выражение, состоящее из суммы одночленов.

Стандартный вид многочлена:

- 1. Все одночлены стандартного вида.
- 2. Нет подобных одночленов.

Формулы сокращённого умножения:

- 1. Квадрат суммы. $(a+b)^2 = a^2 + 2ab + b^2$
- 2. Разность квадратов. $a^2 b^2 = (a b)(a + b)$
- 3. Куб суммы. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
- 4. Сумма кубов. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$

Неполный квадрат разности:

$$a^2 - ab + b^2$$

$$\forall n, \ k \left(\begin{cases} n \in \mathbb{N} \\ k \in \mathbb{N} \longrightarrow C_n^k = \frac{n!}{k!(n-k)!} \\ k \le n \end{cases} \right)$$

$$\forall n, k \left(\begin{cases} n \in \mathbb{C} \\ k \in \mathbb{N} \longrightarrow C_n^k = \frac{\prod_{i=0}^{k-1} (n-i)}{k!} \end{cases} \right)$$

$$\forall n \ C_n^0 = 1$$

$$\forall n \ C_n^n = 1$$

$$\forall n, \ k \ C_n^k = C_n^{n-k}$$

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$

$$\forall x, \ n \ (1+x)^n = \sum_{k=0}^n C_n^k x^k$$

Бином Ньютона:

$$\forall a, b, n (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

$$\forall A,\ B,\ Q,\ R\ \left(\begin{cases} 0 \leq \deg R < \deg Q \\ A(x) = B(x)Q(x) + R(x) \end{cases} \Leftrightarrow \begin{cases} Q(x) - \text{частное при делении } A(x) \text{ на } B(x). \\ R(x) - \text{остаток при делении } A(x) \text{ на } B(x). \end{cases} \right)$$

$$\forall A,\ B,\ Q,\ R$$

$$\left\{ egin{align*} Q(x) - \text{частное при делении } A(x) \text{ на } B(x). \\ R(x) - \text{остаток при делении } A(x) \text{ на } B(x). \longrightarrow \deg Q = \deg A - \deg B \\ \deg B < \deg A \end{array} \right.$$

$$\forall A,\ B,\ Q,\ R$$

$$\left\{ egin{align*} Q(x) - \text{частное при делении } A(x) \text{ на } B(x). \\ R(x) - \text{остаток при делении } A(x) \text{ на } B(x). \longrightarrow \deg Q = 0 \\ \deg A \leq \deg B \end{array} \right.$$

$$\forall R,\ A,\ \alpha\ (R(x)$$
 — остаток при делении $A(x)$ на $(x-\alpha).\longrightarrow R(x)=A(\alpha))$

Теорема Безу:

$$\forall R \ \left(\exists A,\ x,\ \alpha \ \begin{cases} R(x) - \text{остаток при делении } A(x) \text{ на } (x-\alpha). \\ \alpha - \text{корень } A. \end{cases} \longrightarrow R(x) = 0 \right)$$

Основная теорема алгебры:

$$\forall A \; \exists z \; \left(\begin{cases} A(x) - \text{многочлен.} \\ z \in \mathbb{C} \end{cases} \longrightarrow z - \text{корень } A. \right)$$

$$\begin{cases} \exists P \ \begin{cases} P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \\ \forall i \end{cases} & \Leftrightarrow \begin{cases} x_1 + x_2 + \ldots + x_n = -\frac{a_{n-1}}{a_n} \\ x_1 x_2 + x_1 x_3 + \ldots + x_1 x_n + x_2 x_3 + \ldots + x_{n-1} x_n = \frac{a_{n-2}}{a_n} \\ \vdots \\ x_1 x_2 \ldots x_n = (-1)^n \frac{a_0}{a_n} \end{cases}$$

 $\forall A \ (0 < deg \ A \Leftrightarrow A -$ нетривиальный.)

$$orall A \left(\exists B,\ C\ egin{dcases} A(x) = B(x)C(x) \\ B - \mbox{ нетривиальный.} \Leftrightarrow A(x) - \mbox{приводимый.} \\ C - \mbox{ нетривиальный.} \end{cases}
ight)$$

 $\forall A \ (deg \ A = 1 \longrightarrow A - \text{неприводимый над } \mathbb{C}.)$

 $(1 < deg \ A \longrightarrow A$ — приводимый над $\mathbb{C}.)$

$$\forall A \; \exists \left\{z_n\right\}, \; \left\{\alpha_n\right\}, \; a, \; k \; \left(A(z) - \text{многочлен.} \longrightarrow \begin{cases} deg \; A = \alpha_1 + \alpha_2 + \ldots + \alpha_n \\ a - \text{старший коэффициент } A. \\ A(z) = a(z-z_1)^{\alpha_1}(z-z_2)^{\alpha_2} \ldots (z-z_k)^{\alpha_k} \end{cases}$$

 $\forall A (deg \ A = 1 \longrightarrow A - \text{неприводимый над } \mathbb{R}.)$

$$\forall A \ \left(\begin{cases} deg \ A=2 \\ D(A)<0 \end{cases} \longrightarrow A$$
 — неприводимый над $\mathbb{R}. \right)$

$$orall A\left(egin{bmatrix} 2 < deg\ A \ D(A) < 0 \end{matrix} \longrightarrow A$$
 — приводимый над $\mathbb{R}.
ight)$

Измерения

Величина - это объект, который может быть охарактеризован числом в результате измерения.

Постоянная величина - это величина, множество значений которой состоит из одного элемента.

Переменная величина - это величина, множество значений которой состоит более чем из одного элемента.

Область изменения - это множество значений, принимаемых переменной величиной.

Последовательности

$$\forall f \ (\exists A \ f: \mathbb{N} \longrightarrow A \Leftrightarrow f$$
 – последовательность.)

$$\forall < n>, < x_n>, \ f \left(egin{cases} f - \text{последовательность.} \\ f(n) = x_n \end{cases} \Leftrightarrow \{x_n\}
ight)$$

 $\forall < x_n > \{x_n\}$ — последовательность.

$$\forall \{x_n\} (\forall k, \ l \ (k < l \longrightarrow x_k < x_l) \Leftrightarrow \{x_n\}$$
 — возрастающая последовательность.)

$$\forall \{x_n\} (\forall k, \ l \ (k < l \longrightarrow x_k \ge x_l) \Leftrightarrow \{x_n\}$$
 — невозрастающая последовательность.)

$$\forall \left\{ x_n \right\} (\forall k,\ l\ (k < l \longrightarrow x_k > x_l) \Leftrightarrow \left\{ x_n \right\}$$
 — убывающая последовательность.)

 $\forall \left\{ x_n \right\} (\forall k,\ l\ (k < l \longrightarrow x_k \le x_l) \Leftrightarrow \left\{ x_n \right\}$ — неубывающая последовательность.)

 $\forall \left\{ x_{n} \right\},\ M\ (\forall k\ |x_{k}| \leq M \Leftrightarrow \left\{ x_{n} \right\}$ — ограниченная последовательность значением M.)

 $\forall \left\{ x_{n} \right\},\ M\ (\forall k\ x_{k} \leq M \Leftrightarrow \left\{ x_{n} \right\}$ — ограниченная сверху последовательность значением M.)

 $\forall \left\{ x_{n} \right\},\ M\ (\forall k\ x_{k} \geq M \Leftrightarrow \left\{ x_{n} \right\}$ — ограниченная снизу последовательность значением M.)

 $\forall \{x_n\},\ a\ (\{x_n\} \rightrightarrows a \Leftrightarrow \{x_n\}$ — последовательность, стабилизирующаяся к a.)

$$\forall \{x_n\}, \ a \left(\exists k \ \forall m, \ l \begin{cases} x_m \in \mathbb{Z} \\ l > k \\ x_l = a \end{cases} \right)$$

$$\forall \left\{ x_{n} \right\}, \ M \left(\forall m \left\{ \begin{aligned} x_{m} \in \mathbb{Z} \\ \left\{ x_{n} \right\} - \text{неубывающая последовательность.} \\ \left\{ x_{n} \right\} - \text{ограниченная сверху последовательность значением } M. \end{aligned} \right. \longrightarrow \exists a \left\{ \begin{aligned} a \in \mathbb{Z} \\ a \leq M \\ \left\{ x_{n} \right\} \rightrightarrows a \end{aligned} \right)$$

$$\forall \left\{x_n\right\}, \ M, \ a \ \left\{ \begin{aligned} x_m &\in \mathbb{R} \\ \left\{x_n\right\} - \text{ограниченная сверху последовательность значением } M. \\ \text{каждая соответствующая цифра } \left\{x_n\right\} &\longrightarrow \left\{x_n\right\} \rightrightarrows a \\ &\rightrightarrows \\ \text{каждая соответствующая цифра } a \end{aligned} \right.$$

$$\forall < n>, < x_n>, \ a \left(egin{cases} \{x_n\} \\ x_n = a^{(n)} \end{cases} \Leftrightarrow \{x_n\}$$
 — последовательность десятичных приближений $a.$

$$\forall \{x_n\}, \ a, \ b \left(\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ \{x_n\} = \left\{ a^{(n)} + b^{(n)} \right\} \end{cases} \longrightarrow \{x_n\} \rightrightarrows a + b \right)$$

$$\forall \{x_n\}, \ a, \ b \left(\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ a > b > 0 \\ \{x_n\} = \left\{ a^{(n)} - (b^{(n)} + 10^{-n}) \right\} \end{cases} \longrightarrow \{x_n\} \rightrightarrows a - b \right)$$

$$\forall \{x_n\}, \ a, \ b \left\{ \begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ \{x_n\} = \left\{ a^{(n)} b^{(n)} \right\} \end{cases} \longrightarrow \{x_n\} \rightrightarrows ab \right\}$$

$$\forall a, b \left\{ \begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ \{x_n\} = \left\{ \left(\frac{a^{(n)}}{b^{(n)} + 10^{-n}} \right)^{(n)} \right\} \longrightarrow \{x_n\} \rightrightarrows \frac{a}{b} \right\}$$

$$\forall \left\{ x_n \right\}, \ a \ \left(\lim_{n \longrightarrow \infty} x_n = a \Leftrightarrow \left\{ x_n \right\} \ \text{стремится } \ k \ a \ \text{как } \ k \ \text{своему пределу.} \right)$$

$$\forall \{x_n\}, \ a \ \left(\lim_{n \to \infty} x_n = a \Leftrightarrow \forall e \ \exists l \ \forall k \ \begin{cases} |a - x_k| < e \\ k > l \end{cases} \right)$$

$$\forall \left\{x_n\right\}, \ M \left\{ \begin{cases} x_m \in \mathbb{R} \\ x_m > 0 \\ \left\{x_n\right\} - \text{неубывающая последовательность.} \longrightarrow \exists a \ \begin{cases} a \leq M \\ \lim_{n \longrightarrow \infty} x_n = a \end{cases} \right\}$$
 последовательность значением M .

$$\forall \{x_n\}, \ a \ \left(\forall m \ \left\{ x_m \in \mathbb{R} \right\} \right. \left. \left. \left\{ x_n \right\} = \left\{ a^{(n)} \right\} \right. \right. \xrightarrow{n \to \infty} x_n = a \right)$$

$$\forall \{x_n\} \left(\exists a \lim_{n \to \infty} x_n = a \Leftrightarrow \{x_n\} - \text{сходящаяся последовательность.}\right)$$

$$\forall \{x_n\} \left(\exists a \lim_{n \to \infty} x_n = a \longrightarrow \{x_n\} - \text{ограниченная последовательность.}\right)$$

$$\forall \{x_n\}, \ a \left(\lim_{n \to \infty} x_n = a \longrightarrow \exists l \ \forall k \ \begin{cases} k > l \\ a > 0 \\ x_k > \frac{a}{2} \\ \begin{cases} a < 0 \\ x_k < \frac{a}{2} \end{cases} \right)$$

$$\forall \{x_n\}, \{y_n\}, a, b \left(\forall k \begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \to a \le b \right)$$

$$\forall \{x_n\}, \{y_n\}, \{z_n\}, a \left(\forall k \begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} z_n = a \end{cases} \longrightarrow \lim_{n \to \infty} y_n = a \right)$$

$$\forall \{x_n\}, \ a \ \left(\lim_{n \to \infty} x_n = a \longrightarrow \lim_{n \to \infty} |x_n| = |a|\right)$$

$$\forall a, b \left(\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \end{cases} \longrightarrow |a+b| \le |a| + |b| \right)$$

$$\forall a, b \left(\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \end{cases} \longrightarrow |a - b| \ge ||a| - |b|| \right)$$

 $\forall A, M \ (M = \sup A \Leftrightarrow M - \text{точная верхняя граница } A.)$

 $\forall A, M \ (M = \inf A \Leftrightarrow M - \text{точная нижняя граница } A.)$

$$\forall A, \ M \left(\forall x, \ M' \ \exists y \ \begin{cases} x \in A \\ x \le M \\ y \in A \\ M' < y \le M \end{cases} \Leftrightarrow M = \sup A \right)$$

$$\forall A,\ M \left(\forall x,\ M' \ \exists y \ \begin{cases} x \in A \\ x \geq M \\ y \in A \\ M' > y \geq M \end{cases} \Leftrightarrow M = \inf A \right)$$

$$\forall A \left(\forall B, \ C \left. \begin{cases} B \in A \\ C \in A \\ B \subset C \end{cases} \Leftrightarrow A - \text{система вложенных отрезков.} \right)$$

$$\forall \{A_n\} \ \left(\forall i, \ j \ \begin{cases} i < j \\ A_j \subset A_i \end{cases} \Leftrightarrow \{A_n\}$$
 — последовательность вложенных отрезков. $\right)$

$$\forall \left\{A_n\right\} \left(\forall e \; \exists i \; \begin{cases} e \in \mathbb{R} \\ e > 0 \\ \left\{A_n\right\} - \text{последовательность} \Leftrightarrow \begin{cases} \left\{A_n\right\} - \text{стягивающаяся последовательность} \\ \text{вложенных отрезков.} \end{cases} \right. \\ \left|A_i\right| < e \end{cases}$$

$$\forall A \ \left(A - \text{система вложенных отрезков.} \longrightarrow \exists x \ \forall B \ \left\{ egin{aligned} B \in A \\ x \in B \end{aligned} \right\}$$

Принцип полноты Кантора:

$$\forall \left\{A_n\right\} \ \left(\left\{A_n\right\} - \text{стягивающаяся последовательность вложенных отрезков.} \longrightarrow \exists x \ \forall i \ \left\{\begin{matrix} x \in A_i \\ x \ \text{единственен.} \end{matrix}\right)$$

$$\forall \left\{ x_n \right\}, \ \left\{ y_n \right\} \ \left(\left\{ \begin{matrix} \lim\limits_{n \longrightarrow \infty} x_n = 0 \\ \left\{ y_n \right\} - \text{ограниченная.} \end{matrix} \right. \longrightarrow \lim\limits_{n \longrightarrow \infty} x_n y_n = 0 \right)$$

$$\forall \{x_n\}, \{y_n\} \lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

$$\forall \{x_n\}, \{y_n\} \lim_{n \to \infty} x_n y_n = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$$

$$\forall \{x_n\}, \{y_n\} \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Второй замечательный предел:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\forall A,\ a\ \left(\exists\left\{x_n\right\}\ \forall n\ \left\{egin{array}{l} x_n\in A\\ x_n\neq a\\ \lim\limits_{n\longrightarrow\infty}x_n=a \end{array}\right. \Leftrightarrow a$$
— предельная точка $A.$

Функции

$$\forall A,\ B,\ f\left(egin{cases} f\subseteq A\times B\\ f-\mbox{функционально.}\Leftrightarrow f:A\longrightarrow B\\ f-\mbox{тотально для }A. \end{cases} \right)$$

$$\forall f \ (\exists A, \ B \ f : A \longrightarrow B \Leftrightarrow f -$$
функция.)

$$\forall f, \ x, \ y \ \left(\begin{cases} f: A \longrightarrow B \\ x \in A \\ xfy \end{cases} \Leftrightarrow y = f(x) \right)$$

$$\forall A, \ B \ B^A = \{ f \in P(A \times B) \mid f : A \longrightarrow B \}$$

$$\forall A,\ B,\ R\ \left(egin{cases} R:A\longrightarrow B\\ R-\text{биекция.} \end{cases} \Leftrightarrow A\overset{R}{\sim} B \right)$$

$$\forall A, \ B \ \left(\exists R \ A \overset{R}{\sim} B \Leftrightarrow A \sim B\right)$$

 $\forall A, B \ (A \sim B \Leftrightarrow A \text{ и } B - \text{равномощные.})$

$$\forall A, B, R \left(\begin{cases} id_A \subseteq R^{-1} \circ R \\ id_B \subseteq R \circ R^{-1} \end{cases} \Leftrightarrow A \stackrel{R}{\sim} B \right)$$

$$\forall A \ \overline{A \sim P(A)}$$

$$\forall A, \ f \ \overline{ \begin{cases} f: A \longrightarrow P(A) \\ f - \text{сюрьекция.} \end{cases} }$$

$$\forall n \ \underline{n} = \{ k \in \mathbb{N} \mid k < n \}$$

$$\forall A \ P(A) \sim 2$$

$$\forall A, \ n \ (n \in A \longrightarrow 1_A(n) = 1)$$

$$\forall A, \ n \ (n \notin A \longrightarrow 1_A(n) = 0)$$

 $\forall A \ 1_A$ — индикаторная функция.

$$\forall A \ A \sim A$$

$$\forall A, B \ (A \sim B \longrightarrow \forall C \ A \times C \sim B \times C)$$

$$\forall A, B, C \ (A \sim B \Leftrightarrow B \sim A)$$

$$\forall A, B, C (A \times B) \times C \sim A \times (B \times C)$$

$$\forall A, B, C (A \times B)^C \sim A^C \times B^C$$

$$\forall A, B, C \left(C^B\right)^A \sim C^{B \times A}$$

$$\forall A, \ B \ \left(\begin{cases} A \sim B \\ B \sim C \end{cases} \longrightarrow A \sim C \right)$$

$$\forall A,\ B,\ f\ \left(egin{cases} f:A\longrightarrow B\\ f-\mbox{uhъекция.} \end{cases} \Leftrightarrow A\stackrel{f}{\leq} B \right)$$

$$\forall A, \ B \ \left(\exists f \ A \stackrel{f}{\leq} B \Leftrightarrow A \leq B\right)$$

$$\forall A,\ B\ (A \leq B \Leftrightarrow A$$
 вложено в $B.)$

Теорема Кантора-Бернштейна-Шрёдера:

$$\forall A, \ B \ \left(\begin{cases} A \le B \\ B \le A \end{cases} \Leftrightarrow A \sim B \right)$$

$$\forall A\ A \leq A$$

$$\forall A, \ C \ \left(\exists B \ \left\{ \begin{matrix} A \leq B \\ B \leq C \end{matrix} \right. \longrightarrow A \leq C \right)$$

$$\forall A,\ B\ \left(A\leq B\Leftrightarrow \exists C\ \begin{cases} C\subseteq B\\ C\sim A \end{cases}\right)$$

$$\forall A, B \ (A \subseteq B \longrightarrow A \le B)$$

$$\forall A, n \ (n \in \mathbb{N} \longrightarrow A^{\underline{n}} \sim A^n)$$

$$\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$$

$$\forall A \ (A - \text{счётно.} \Leftrightarrow A \sim N)$$

$$\forall N \ \overline{P(\mathbb{N}) - \text{счётно.}}$$

$$\underline{2}^{\mathbb{N}} \sim P(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}} \sim \mathbb{Z}^{\mathbb{N}} \sim \mathbb{Q}^{\mathbb{N}} \sim \mathbb{R} \sim \mathbb{R} \times \mathbb{R} \sim \mathbb{R}^{\mathbb{N}}$$

Принцип Дрихле:

$$\exists n \ \underline{n+1} \leq \underline{n}$$

$$\forall m,\ n\ \left(m>n\longrightarrow \overline{\underline{m}\leq \underline{n}}\right)$$

$$\forall m, \ n \ (m \neq n \longrightarrow \overline{m} \sim \underline{n})$$

$$\forall A \exists ! n \ (A \sim \underline{n} \longrightarrow A \sim \underline{n})$$

$$\forall A \ (\exists n \ A \sim \underline{n} \Leftrightarrow A - \text{конечно.})$$

$$\forall A \ (\overline{A - \text{конечно.}} \Leftrightarrow A - \text{бесконечно.})$$

$$\forall A \ (\exists n \ A \sim n \Leftrightarrow |A| = n)$$

$$\forall A \ (A - \text{счётно.} \Leftrightarrow |A| - \text{мощность множества.})$$

$$\forall f \ \left(\forall a, \ b \ f(a,b) = f(b,a) \longrightarrow \begin{matrix} f - \text{фунция, обладающая коммутативным} \\ \text{(переместительным) свойством.} \end{matrix} \right)$$

$$\forall f \ \left(\forall a,\ b,\ c\ f(f(a,b),c) = f(a,f(b,c)) \longrightarrow \begin{matrix} f - \text{фунция, обладающая ассоциативным} \\ \text{(сочетательным) свойством.} \end{matrix} \right)$$

$$\forall f,\ g\ \left(\forall a,\ b,\ c\ f(a,g(b,c))=g(f(a,b),g(a,c))\longrightarrow \begin{matrix} f-\text{фунция, обладающая дистрибутивным}\\ \text{(распределительным) свойством с }g. \end{matrix}\right)$$

$$\forall A \ (A \sim \mathbb{N} \Leftrightarrow A - \text{счётное множество.})$$

$$\forall A,\ B \left(\forall a,\ b \left\{ egin{aligned} a \in A \\ b \in B \Leftrightarrow A \ \text{лежит левее} \ B. \\ a \leq b \end{aligned} \right. \right)$$

$$\forall A,\ B,\ c \ \left(\forall a,\ b \ \begin{cases} a \in A \\ b \in B \\ c \geq a \\ c \leq b \end{cases} \Leftrightarrow c \ \text{разделяет}\ A \ \text{и}\ B. \right)$$

$$\forall A \left(\forall B, \ C \ \exists a \ \begin{cases} B \subset A \\ C \subset A \\ a \in A \end{cases} \Leftrightarrow A - \text{полное.} \right)$$

Если разделяющих элементов в полном множестве больше одного, то их бесконечно много.

$$\forall f,\ g\ \left(\forall x\ \begin{cases} D(f) = D(g) \\ f(x) = g(x) \end{cases} \Leftrightarrow f$$
 и g — совпадающие функции. $\right)$

$$\forall f, \ x \ (f(x) = 0 \Leftrightarrow x - \text{нуль (корень) функции f.)}$$

$$\forall f \left(\forall x \begin{cases} f(-x) = f(x) \\ \exists a & D(f) = (-a;a) \Leftrightarrow f - \text{чётная функция.} \\ D(f) = [-a;a] \end{cases} \right)$$

$$\forall f \left(\forall x \begin{cases} f(-x) = -f(x) \\ \exists a \begin{bmatrix} D(f) = (-a; a) \Leftrightarrow f - \text{нечётная функция.} \\ D(f) = [-a; a] \end{cases} \right)$$

$$\forall f \; \left(\left\{ \dfrac{\overline{f} - \text{чётная функция.}}{\overline{f - \text{нечётная функция.}}} \Leftrightarrow f - \text{общего вида функция.} \right)$$

$$\forall f,\ A \ \left(\forall x_1,\ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) < f(x_2) \end{cases} \Leftrightarrow f$$
— возрастающая функция на A .

$$\forall f, \ A \ \left(\forall x_1, \ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) \geq f(x_2) \end{cases} \Leftrightarrow f$$
 — невозрастающая функция на A .

$$\forall f,\ A\ \left(\forall x_1,\ x_2\ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) > f(x_2) \end{cases} \Leftrightarrow f - \text{убывающая функция на } A.\right)$$

$$\forall f,\ A \ \left(\forall x_1,\ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) \leq f(x_2) \end{cases} \Leftrightarrow f$$
— неубывающая функция на A .

$$\forall f,\ A\ \left(egin{bmatrix} f-\ \mbox{функция убывающая на }A.\ f-\ \mbox{функция возрастающая на }A. \end{cases}\Leftrightarrow A-$$
 интервал монотонности $f.\ \mbox{}\right)$

$$\forall f, \ x_0 \ \left(\exists A \ \forall x \ \begin{cases} x \in A \\ x_0 \in A \\ f(x_0) \leq f(x) \end{cases} \Leftrightarrow x_0$$
 — точка минимума f .

$$\forall f, \ x_0 \ \left(\exists A \ \forall x \ \begin{cases} x \in A \\ x_0 \in A \\ f(x_0) \geq f(x) \end{cases} \Leftrightarrow x_0$$
— точка максимума $f.$

$$\forall f, \ x \ \left(\begin{bmatrix} x - \text{точка минимума } f. \\ x - \text{точка минимума } f. \end{cases} \Leftrightarrow x - \text{экстремум } f. \right)$$

Асимптота - это прямая линия, к которой график функции неограниченно приближается при удалении точки графика в бесконечность.

Исследование функции:

- 1. Область определения функции.
- 2. Область значений функции.
- 3. Нули функции.
- 4. Чётная, или нечётная, или общего вида функция.
- 5. Интервалы монотонности функции.
- 6. Экстремумы функции.
- 7. Асимптоты функции.

$$\forall < y >, f, g (\forall x y = f(g(x)) \Leftrightarrow < y > -$$
 сложная функция.)

$$\forall f, \ g \ (\forall x \ f(g(x)) = x \Leftrightarrow f - \text{обратная} \ g \ функция.)$$

Алгебраическая функция - это функция, закон соответствия которой определяется алгебраическим выражением. (**трансцендентная функция**)

Элементарные функции - это основные элементарные функции и сложные функции, образованные из основных элементарных.

Основные элементарные функции:

1.

$$\forall <\!x\!>,\ f,\ a\ \left(egin{cases} f(x)=x^a \\ a\in R \end{cases} \Leftrightarrow f$$
 — степенная функция.

2.

$$\forall < x>, \ f, \ a \left(egin{cases} f(x) = a^x \\ a \in R \\ a > 0 \\ a
eq 1 \end{cases} \Leftrightarrow f$$
 — показательная функция.

3.

$$\forall < x>, \ f, \ a \left(egin{cases} f(x) = \log_a^x \\ a \in R \\ a > 0 \\ a
eq 1 \end{cases} \Leftrightarrow f$$
 — логарифмическая функция.

4.

$$\forall < x>, \ f \left(egin{aligned} f(x) &= \sin x \\ f(x) &= \cos x \\ f(x) &= \tan x \end{aligned} \Leftrightarrow f$$
 — тригонометрическая функция.
$$f(x) &= \cot x \end{aligned} \right)$$

5.

$$\forall < x>, \ f \left(egin{aligned} f(x) = rcsin x \\ f(x) = rccos x \\ f(x) = rctan x \end{aligned} \Leftrightarrow f - ext{ обратная тригонометрическая функция.} \right)$$

$$\forall < y>, \ < x>, \ P_i, \ n, \ \left(\begin{cases} y=P_n(x)=\sum_{i=0}^n a_i x^{n-i} \\ a_0, \ a_1, \ \dots, \ a_n \end{cases} \Leftrightarrow \begin{cases} < y>- \ \text{целая рациональная функция} \\ \text{(многочлен от переменной } < x>) \ (\ \ \ \ \ \ \ \ \ \ \) \end{cases} \right)$$

$$\forall < y>, \ < x>, \ f, \ a \ \left(\begin{cases} y=f(x)=ax \\ a\neq 0 \end{cases} \Leftrightarrow \begin{cases} < y> \text{прямо пропорционально} < x>. \\ \text{между} < y> \text{ и } < x> \text{ прямо пропорциональная зависимость.} \end{cases} \right)$$

$$\forall < y>, \ < x>, \ f, \ a, \ b \ \left(egin{cases} y = f(x) = ax + b \\ a \neq 0 \end{cases} \Leftrightarrow < y> -$$
 линейная ЦРФ (линейная функция). $ight)$

$$\forall < y>, \ < x>, \ f, \ a, \ b \ \left(\begin{cases} y = f(x) = ax^2 + bx + c \\ a \neq 0 \end{cases} \Leftrightarrow \begin{matrix} < y> - \ \text{квадратичная ЦРФ} \\ \text{(квадратный (квадратичный) трёхчлен)}. \right)$$

$$\forall < y>, \ < x>, \ f, \ a \ \left\{ egin{align*} y = f(x) = rac{a}{x} \\ a
eq 0 \end{array} \right. \Leftrightarrow \left\{ egin{align*} < y> \ \text{ обратно пропорционально } < x>. \\ \text{между } < y> \ \text{и } < x> \ \text{ обратно пропорциональная зависимость.} \end{array} \right.$$

$$\forall < y>, \ x \ \left(y = \frac{P_n(x)}{Q_m(x)} \Leftrightarrow < y> -$$
 дробно-рациональная функция (ДРФ). $\right)$

$$\forall < y>, \ < x>, \ a, \ b, \ c, \ d \left(\begin{cases} y = f(x) = \frac{ax+b}{cx+d} = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} \\ c \neq 0 \\ ad-bc \neq 0 \end{cases} \right)$$

Алгебраическая иррациональная функция - это функция, закон соответствия которой содержит извлечение корня целой степени из алгебраического выражения, содержащего аргумент.

Определение предела функции по Гейне:

$$\forall f, \ a, \ b \ \left(\forall \{x_n\} \ \left(\forall i \ \begin{cases} x_i \in D(f) \\ x_i \neq a \\ \lim_{k \to \infty} x_k = a \end{cases} \longrightarrow \lim_{k \to \infty} f(x_k) = b \right) \Leftrightarrow \lim_{x \to a} f(x) = b \right)$$

$$\forall f, \ a, \ b \ \left(\forall \{x_n\} \ \left(\forall i \ \begin{cases} x_i \in D(f) \\ x_i < a \\ \lim_{k \to \infty} x_k = a \end{cases} \longrightarrow \lim_{k \to \infty} f(x_k) = b \right) \Leftrightarrow \lim_{x \to a^-} f(x) = b \right)$$

$$\forall f, \ a, \ b \ \left(\forall \left\{ x_n \right\} \ \left(\forall i \ \begin{cases} x_i \in D(f) \\ a < x_i \\ \lim_{k \to \infty} x_k = a \end{cases} \longrightarrow \lim_{k \to \infty} f(x_k) = b \right) \Leftrightarrow \lim_{x \to a+} f(x) = b \right)$$

$$\forall f, g, a \lim_{x \longrightarrow a} (f(x) + g(x)) = \lim_{x \longrightarrow a} f(x) + \lim_{x \longrightarrow a} g(x)$$

$$\forall f,\ g,\ a\ \lim_{x\longrightarrow a}(f(x)g(x))=\lim_{x\longrightarrow a}f(x)\lim_{x\longrightarrow a}g(x)$$

$$\forall f, g, a \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$\forall g, \ a, \ b \ \left(\exists f, \ h \ \forall i \ \left\{ \begin{matrix} \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b \\ f(i) \le g(i) \le h(i) \end{matrix} \right. \longrightarrow \lim_{x \to a} g(x) = b \right)$$

$$\forall a \left(\lim_{x \to a} f(x) = 0 \Leftrightarrow \lim_{x \to a} \frac{1}{f(x)} = \infty \right)$$

$$\forall f, \ g, \ a, \ c \ \left(\exists b \ \left\{ \begin{aligned} & \lim_{x \to a} f(x) = b \\ & \lim_{x \to b} g(x) = c \end{aligned} \right. \longrightarrow \lim_{x \to a} g(f(x)) = c \right)$$

$$\forall f,\ a\ \left(\left[rac{\lim\limits_{x\longrightarrow a}f(x)=f(a)}{a-\text{предельная }D(f)}\right.\Leftrightarrow f$$
 — непрерывна в точке $a.\right)$

$$\forall f \; \exists \delta \; \forall x \; \left(\exists a \; \begin{cases} f - \text{непрерывная в } a. \\ \delta > 0 & \longrightarrow \exists b \; |f(x)| \leq b \\ x \in O_{\delta}(a) \end{cases} \right)$$

$$\forall f \; \exists \delta \; \forall x \; \left(\exists a \; \begin{cases} f - \text{непрерывна в } a. \\ f(a) \neq 0 & \longrightarrow f(x) \neq 0 \\ x \in O_{\delta}(a) \end{cases}\right)$$

$$\forall f,\ g,\ h,\ a \left(egin{cases} f - \text{ непрерывная в } a. \\ g - \text{ непрерываня в } a. \longrightarrow h(x) - \text{ непрерывная в } a. \\ h(x) = f(x) + g(x) \end{cases} \right)$$

$$\forall f,\ g,\ h,\ a$$

$$\left\{ egin{aligned} f - & \text{ непрерывная в } a. \\ g - & \text{ непрерываня в } a. & \longrightarrow h(x) - & \text{ непрерывная в } a. \\ h(x) & = f(x)g(x) \end{aligned} \right.$$

$$\forall f,\ g,\ h,\ a \left(\begin{cases} f-\text{непрерывная в }a.\\ g-\text{непрерываня в }a.\\ g(a)\neq 0 & \longrightarrow h(x)-\text{непрерывная в }a.\\ h(x)=\frac{f(x)}{g(x)} \end{cases} \right)$$

$$\forall h,\ a\ \left(\exists f,\ g\ \begin{cases} f$$
 — непрерывная в $a.$ g — непрерывная в $f(a).\longrightarrow h$ — непрерывная в $a.$ $h(x)=g(f(x))$

$$\forall f,\ d\ \exists c\ \left(\exists a,\ b\ \left\{egin{array}{ll} f\ \ \mbox{непрерывна на }[a,b] \\ c\in(a,b) & \longrightarrow d=f(c) \\ d\ \ \mbox{между }f(a)\ \mbox{и }f(b) \end{array}
ight)$$

$$\forall f,\ a \ \left\{ \begin{aligned} &f - \text{разрывная в } a. \\ &\lim_{x \longrightarrow a-} f(x) \neq \infty \\ &\lim_{x \longrightarrow a-} f(x) = b \\ &\lim_{x \longrightarrow a+} f(x) \neq \infty \\ &\lim_{x \longrightarrow a+} f(x) \neq \infty \\ &\lim_{x \longrightarrow a+} f(x) = c \end{aligned} \right. \Leftrightarrow a - \text{точка разрыва первого рода } f.$$

$$\left(\exists b \ \begin{cases} a-\text{точка разрыва первого рода.}\\ \lim_{x\longrightarrow a}f(x)=b \end{cases} \Leftrightarrow a-\text{точка устранимого разрыв.}\right)$$

$$\forall f,\ a\ \left(\left\{ \dfrac{f-{
m pазрывная }\ b\ a.}{a-{
m точка pазрыва первого poдa}.} \Leftrightarrow a-{
m точка pазрыва второго poдa}\ f. \right)$$

Глава 10

Числа

Числовое кольцо - это множество чисел, результат суммы, разности, произведения любых чисел которого принадлежит ему тоже.

Числовое поле - это множество чисел, результат выполнения рациональных действий над любыми числами которого принадлежит ему тоже.

10.1 Натуральные числа (N)

 Γ ЛАВА 10. ЧИСЛА 45

* — операция на числах, обладающая дистрибутивным свойством с +.

Делитель а - это число, на которое а делится без остатка.

Кратное а - это всякое число, которое делится на а без остатка.

$$\forall a \left(\forall b \begin{cases} a > 1 \\ b|a \longrightarrow \begin{bmatrix} b = \pm 1 & \Leftrightarrow a - \text{простое.} \\ b = \pm a \end{cases} \right)$$

$$\forall a \ (\overline{a-\text{простоe}}. \Leftrightarrow a-\text{составноe.})$$

Простых чисел имеется бесконечное множество.

$$\forall n, \ \{p_n\}$$
 $\left\{\exists \left\{\alpha_n\right\} \ \forall i \ \left\{ egin{align*} i \in \mathbb{N} \\ \alpha_i \in \mathbb{N} \end{array} \right. \longrightarrow \left\{ egin{align*} \left\{p_n\right\} - \text{все попарно различные простые числа.} \\ n \in \mathbb{N} \\ n \neq 0 \\ n = p_1^{\alpha_1} p_2^{\alpha_2} \dots \\ p_1^{\alpha_1} p_2^{\alpha_2} \dots - \text{разложениена простые множители } n. \right\} \right\} \Leftrightarrow \emptyset$

Основная теорема арифметики:

 $\exists ! < n > < n > -$ разложение на простые множители n.

$$\forall a, b \ (HOД(a,b) = 1 \Leftrightarrow a,b$$
 — взаимно однозначные.)

$$\forall a \ (a|2 \Leftrightarrow a -$$
чётное.)

Признаки делимости в 10-й системе счисления:

- 1. Признак делимости на 2: последняя цифра в записи числа выражает чётное число.
- 2. Признак делимости на 3: сумма цифр записи числа делится на 3.
- 3. Признак делимости на 4: последние две цифры в записи числа выражают число, делящееся на 4.
- 4. Признак делимости на 5: последняя цифра в записи числа является 0 или 5.
- 5. Признак делимости на 9: сумма цифр записи числа делится на 9.

$$\forall a, b \text{ HOД}(a, b) \text{ HOK}(a, b) = ab$$

10.2 Целые числа (**Z**)

 $\mathbb{N}\subset\mathbb{Z}$

Целое алгебраическое выражение - это алгебраическое выражение, в котором используют только сложение, вычитание, умножение.

Положительное число - это число, большее нуля.

Отрицательное число - это число, меньшее нуля.

Противоположные числа - это числа, отличающиеся знаком.

$$a - b = a + (-b)$$

$$a(-b) = -ab$$

Неравенство Бернули:

$$\forall x, \ n \ \left\{ \begin{cases} x \in \mathbb{Z} \\ x \ge -1 \\ n \in \mathbb{N} \\ n \ne 0 \end{cases} \longrightarrow (1+x)^n \ge 1 + nx \right\}$$

 $\forall a, b \ (a|b \Leftrightarrow a$ делит b.)

$$\forall a, \ b \left(a | b \Leftrightarrow \exists c \begin{cases} a \in \mathbb{Z} \\ b \in \mathbb{Z} \\ c \in \mathbb{Z} \\ b = ac \end{cases} \right)$$

$$\forall a,\ b\ \left(a|b\Leftrightarrow \exists \left\{\alpha_n\right\},\ \left\{\beta_n\right\}\ \left(\exists \left\{p_n\right\} \left\{\begin{matrix} p_1^{\alpha_1}p_2^{\alpha_2}\ldots-\text{разложение на простые множители }a\\ p_1^{\beta_1}p_2^{\beta_2}\ldots-\text{разложение на простые множители }b\end{matrix}\right.\right)\right)$$

 $\forall a \ a | a$

$$\forall a, \ b \ \left(\begin{cases} a|b \\ b|a \end{cases} \longrightarrow a = \pm b \right)$$

$$\forall a, b, c \left(\begin{cases} a|b \\ b|c \end{cases} \longrightarrow a|c \right)$$

$$\forall a, b, c \left(\begin{cases} a|b \\ a|c \end{cases} \longrightarrow a|(b \pm c) \right)$$

$$\forall a, \ b \left(\begin{cases} a \in \mathbb{N} \\ b \in \mathbb{N} \longrightarrow \exists! c, \ d \\ b \neq 0 \end{cases} \right. \left. \begin{cases} d \in \mathbb{N} \\ c \in \mathbb{N} \\ a = bd + c \\ 0 \le c < |b| \end{cases} \right)$$

 Γ ЛАВА 10. ЧИСЛА 48

$$\forall a, b, c \ (a \equiv b \ (mod \ c) \Leftrightarrow c | (a - b))$$

$$\forall a, b, c \ (a \equiv b \ (mod \ c) \Leftrightarrow a\%c = b\%c)$$

$$\forall a, \ b, \ c, \ d, \ i \ \left(\begin{cases} a \equiv b \ (mod \ i) \\ c \equiv d \ (mod \ i) \end{cases} \longrightarrow \left\{ \begin{aligned} a + c \equiv b + d \ (mod \ i) \\ ac \equiv bd \ (mod \ i) \end{aligned} \right)$$

$$\forall a, b, c, d \ (a \equiv b \ (mod \ c) \longrightarrow a^d \equiv b^d \ (mod \ c))$$

$$\forall a, b, d$$

$$\begin{cases} d|a \\ d|b \\ \forall d' \end{cases} \begin{cases} d'|a \\ d'|b \end{cases} \longrightarrow d'|d$$
 $\Leftrightarrow d - \text{HOД}(a,b).$

$$\forall \left\{p_{n}\right\}, \ \left\{\alpha_{n}\right\}, \\ \left\{\beta_{n}\right\}, \ a, \ b \ \left\{ \begin{cases} p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\ldots - \text{разложение на простые} \\ \text{множители } a \\ p_{1}^{\beta_{1}}p_{2}^{\beta_{2}}\ldots - \text{разложение на простые} \\ \text{множители } b \end{cases} \longrightarrow \text{HOД}(a,b) = p_{1}^{min(\alpha_{1},\beta_{1})}p_{2}^{min(\alpha_{2},\beta_{2})}\ldots \right\}$$

$$\forall a, b, d \left(\begin{cases} a|d \\ b|d \end{cases} \\ \forall d' \left\{ \begin{matrix} a|d' \\ b|d' \end{matrix} \longrightarrow d|d' \right. \right. \right)$$

$$HOД(0,0)=0$$

 Γ ЛАВА 10. ЧИСЛА 49

$$\forall a \text{ HOД}(a,0) = a$$

$$\forall a,\ b,\ q\ q\in\mathbb{Z}\longrightarrow \mathrm{HOД}(a+bq,b)=\mathrm{HOД}(a,b)$$

$$\forall a, b \text{ HOД}(a\%b, b) = \text{HOД}(a, b)$$

$$\forall a, \ b \ \text{HOД}\left(\frac{a}{\text{HOД}(a,b)}, \frac{b}{\text{HOД}(a,b)}\right) = 1$$

$$\forall a, \ c \ \left(\exists b \ \begin{cases} a|bc \\ \text{HOД}(a,b) = 1 \end{cases} \longrightarrow a|c \right)$$

$$\forall x, \ y, \ m \ \left(\exists a \ \begin{cases} \text{HOД}(a,m) = 1 \\ ax \equiv ay \ (mod \ m) \end{cases} \longrightarrow x \equiv y \ (mod \ m) \right)$$

$$\forall x, y, m \ (\exists a \ ax \equiv ay \ (mod \ am) \Leftrightarrow x \equiv y \ (mod \ m))$$

Тождество Безу:

$$\forall a, b \ (HOД(a,b) = 1 \longrightarrow \exists x, y \ ax + by = 1)$$

$$\forall a, \ b \ \left(\exists x, \ y \ \left\{ egin{aligned} x \in \mathbb{Z} \\ y \in \mathbb{Z} \end{aligned} \longrightarrow ax + by = \mathrm{HOД}(a,b) \right) \end{aligned}$$

$$\forall a, m \ (\exists x \ ax \equiv 1 \ (mod \ m) \Leftrightarrow HO \square (a, m) = 1)$$

 $\forall < x > \varphi(x)$ — функция Эйлера.

 $\forall <\!\! x\!\! > \varphi(x) =$ количество чисел взаимно простых с x $1,2,\ldots,x-1.$

$$\forall x \ (x - \text{простое.} \longrightarrow \varphi(x) = x - 1)$$

$$\forall a, b \ (HOД(a,b) = 1 \longrightarrow \varphi(a,b) = \varphi(a)\varphi(b))$$

Теорема Эйлера:

$$\forall a, \ x \ \left(\begin{cases} \text{HOД}(a, x) = 1 \\ x > 1 \end{cases} \longrightarrow a^{\varphi(x)} \equiv 1 \pmod{x} \right)$$

$$\forall x, \ y, \ a \left\{ \begin{cases} a \in \mathbb{Z} \\ x \geq 0 \\ y \geq 0 \\ \text{HOД}(a, m) = 1 \\ x \equiv y \pmod{\varphi(m)} \end{cases} \right. \longrightarrow a^x \equiv a^y \pmod{m}$$

Малая теорема Ферма:

$$\forall a, \ p \ \left(\begin{cases} p - \text{простое.} \\ \text{НОД}(a, p) = 1 \end{cases} \longrightarrow a^{p-1} \equiv 1 \ (mod \ p) \right)$$

$$\forall p, \ a \ (p - \text{простое.} \longrightarrow a^p \equiv a \ (mod \ p))$$

$$\forall \{p_n\} \,, \, \{\alpha_n\} \,, \\ \{\beta_n\} \,, \, a, \, b \quad \left\{ \begin{cases} p_1^{\alpha_1} p_2^{\alpha_2} \dots - \text{разложение на простые} \\ \text{множители } a \\ p_1^{\beta_1} p_2^{\beta_2} \dots - \text{разложение на простыe} \\ \text{множители } b \end{cases} \longrightarrow \text{HOK}(a,b) = p_1^{\max(\alpha_1,\beta_1)} p_2^{\max(\alpha_2,\beta_2)} \dots \right\}$$

Алгоритм Евклида:

$$HOД(a,b) = HOД(a \% b, b) = HOД(a \% b, b \% (a \% b)) = \dots = HOД(\dots, 0)$$

Расширенный алгоритм Евклида:

$$\begin{cases} r_t = au_t + bv_t \\ r_t = r_{t-2} - r_{t-1}q_{t-1} \\ r_0 = a \\ r_1 = b \\ u_t = u_{t-2} - u_{t-1}q_{t-1} \\ u_0 = 1 \\ u_1 = 0 \\ v_t = v_{t-2} - v_{t-1}q_{t-1} \\ v_0 = 0 \\ v_1 = 1 \end{cases}$$

$$\forall \langle x \rangle, \ \langle y \rangle, \ b, \ c \ \left(\exists a \ \begin{cases} ax + by = c \\ a = 0 \\ b \mid c \end{cases} \right) \longrightarrow \forall t \ \begin{cases} x = t \\ y = \frac{c}{b} \end{cases}$$

$$\forall \langle x \rangle, \ \langle y \rangle, \ a, \ b, \ c \ \begin{cases} ax + by = c \\ a \neq 0 \\ b \neq 0 \\ \text{HOД}(a,b) \mid c \end{cases} \longrightarrow \exists a', \ b', \ c', \ u, \ v \ \forall t \ \begin{cases} a' = \frac{a}{\text{HOД}(a,b)} \\ b' = \frac{b}{\text{HOД}(a,b)} \\ c' = \frac{c}{\text{HOД}(a,b)} \\ a'u + b'v = 1 \\ x = uc' - b't \\ y = vc' + a't \\ t \in \mathbb{Z} \end{cases}$$

$$\forall a,\ b,\ c\ \left(\exists < x>,\ < y>\ \left\{ \begin{aligned} &\frac{ax+by=c}{\operatorname{HOД}(a,b)\mid c}\longrightarrow \forall t,\ k\ \left(\left\{ \begin{aligned} &t\in\mathbb{Z}\\ &k\in\mathbb{Z} \end{aligned} \longrightarrow \overline{at+bk=c} \right) \right) \end{aligned} \right.$$

$$\forall A,\ m,\ x'\ \left(\begin{cases} A(x) \equiv 0\ (mod\ m)\\ 0 \leq x' < m \end{cases} \Leftrightarrow x' - \text{решение сравнения } A(x) \equiv 0\ (mod\ m). \right)$$

 $\forall a, c, m \ (\exists x' \ x' - \text{решение} \ ax \equiv c \ (mod \ m) \Leftrightarrow \text{HOД}(a, m) \mid C)$

$$\forall < x>, \\ a, \ c, \ m \\ \left\{ \begin{aligned} &ax \equiv c \ (mod \ m) \\ &\text{HOД}(a,m) \mid c \end{aligned} \right. \longrightarrow \exists a', \ c', \ m' \ \forall t \\ \left\{ \begin{aligned} &t \in \mathbb{Z} \\ &0 \leq t < \text{HОД}(a,m) \end{aligned} \right. \longrightarrow \left\{ \begin{aligned} &a' = \frac{a}{\text{HОД}(a,m)} \\ &c' = \frac{c}{\text{HОД}(a,m)} \\ &m' = \frac{m}{\text{HОД}(a,m)} \\ &x = a^{-1}c' \ \% \ m' + m't \end{aligned} \right. \right\}$$

$$\forall < x>, \quad \begin{cases} x \equiv c_1 \pmod{m_1} & \exists \left\{M_n\right\}, \\ x \equiv c_2 \pmod{m_2} & \left\{x_n\right\}, \\ \vdots & & \left\{b_n\right\} \\ x \equiv c_n \pmod{m_n} & \forall i \end{cases} \begin{cases} M_i = m_1 m_2 \dots m_{i-1} m_{i+1} \dots m_n \\ x_i - \text{ решение } M_i b_i \equiv c_i \\ x = \left(x_1 M_1 + x_2 M_2 + \dots + x_n M_n\right) \ \% \ m_1 m_2 \dots m_n \end{cases}$$

10.3 Рациональные числа (Q)

 $\mathbb{Z}\subset\mathbb{Q}$

Рациональное число - это число, представимое в виде $\frac{a}{b}$, где числитель $a \in Z$, а знаменатель $b \in N$.

Рациональные числа образуют поле.

 \mathbb{Q} всюду плотно в \mathbb{R} .

Арифметические (рациональные) действия: сложение, вычитание, умножение, деление.

Рациональное алгебраическое выражение - это алгебраическое выражение, в котором используют только рациональные действия.

Дробное алгебраическое выражение - это рациональное алгебраическое выражение, в записи которого используют деление на буквенные выражения.

Алгебраическая дробь - это это алгебраическое выражение, имеющее вид частного от деления двух целых алгебраических выражений.

Дробное число - это рациональное число, числитель которого не делится на знаменатель нацело.

Целая часть числа - это наибольшее целое число, не превосходящее данного ([x]) .

Дробная часть числа - это разность между данным числом и его целой частью ((x))

$$x - [x] \ge 0$$

$$x - [x] < 1$$

Разложение рационального числа на сумму целой и дробной частей взаимно однозначно.

 Γ ЛАВА 10. ЧИСЛА 54

Десятичная дробь - это дробь, у которой знаменатель представляет собой натуральную степень числа 10.

Всякое рациональное число может быть представлено бесконечной десятичной периодической дробью взаимно однозначно.

10.4 Иррациональные числа (I)

Всякое иррациональное число может быть представлено бесконечной десятичной непериодической дробью взаимно однозначно.

Иррациональные алгебраические выражения - это алгебраическое выражение, в записи которого используются знаки радикала из буквенного выражения.

Корень находится в простейшей форме, если:

- 1. Он не содержит иррациональности в знаменателе.
- 2. Нельзя сократить его показатель с показателем подкоренного выражения.
- 3. Все возможные множители вынесены из-под корня.

Подобные корни - это корни, отличающиеся только коэффициентами.

10.5 Действительные числа (R)

 $Q \subset R$

 $I \subset R$

Действительные числа образуют поле.

Множество действительных чисел упорядочено.

Множество действительных чисел непрерывно.

 \mathbb{R} — полное.

Аксиома Архимеда:

$$\forall a \exists n \begin{cases} a \in \mathbb{R} \\ n \in \mathbb{N} \\ na \ge 1 \end{cases}$$

$$\forall x, \ y \left(\begin{cases} x < y \\ x \in \mathbb{R} \longrightarrow \exists z, \ w \end{cases} \middle\{ \begin{cases} z \in \mathbb{Q} \\ w \in \mathbb{I} \\ x < z < y \\ x < w < y \end{cases} \right)$$

Всякое десятичное число определяет действительное число взаимно однозначно.

55

$$\forall a \ \left(\begin{cases} a \in \mathbb{R} \\ a \ge 0 \end{cases} \longrightarrow |a| = a \right)$$

$$\forall a \ \left(\begin{cases} a \in \mathbb{R} \\ a < 0 \end{cases} \longrightarrow |a| = -a \right)$$

Многочлен с действительными коэффициентами разлагается в произведение линейных двучленов вида x-a и квадратных трёхчленов вида x^2+px+q .

n-ая степень числа a - это произведение n сомножителей, равных a. (a^n)

- а основание степени.
- n показатель степени.

Возведение отрицательного числа в иррациональную степень не определено.

Возведение нуля в не положительную степень не определено.

$$a^x = a^y \longrightarrow x = y$$

Корень n-ой степени из числа a - это число, n-ая степень которого равна a. ($\sqrt[n]{a}$)

Извлечение корня степени из а - это отыскание корня из а.

Арифметический корень (арифметическое значение корня) - это положительный корень чётной степени из положительного числа.

56

Корень чётной степени по умолчанию арифметический.

$$\begin{cases} \sqrt[n]{a^n} = a \\ n \text{ - Hevëthoe.} \end{cases}$$

$$\begin{cases} \sqrt[n]{a^n} = |a| \\ n \text{ - vëthoe.} \end{cases}$$

Квадратный корень:

$$\sqrt[2]{x} = \sqrt{x}$$

Кубический корень:

$$\sqrt[3]{x}$$

$$\sqrt[b]{x^a} = x^{\frac{a}{b}}$$

Логарифм числа N по основанию а - это показатель степени, в которую нужно возвести a, чтобы получить N.

$$\begin{cases} a^{\log_a N} = N \\ N > 0 \\ a > 0 \\ a \neq 1 \end{cases}$$

Если число и основание логарифма лежат по одну сторону от единицы, то этот логарифм положителен, и наоборот.

Потенцирование - это возведение числа, от которого взят логарифм, в этот логарифм.

Если основание больше единицы, то большее число имеет больший логарифм.

Если основание меньше единицы, то большее число имеет меньший логарифм.

Десятичный логарифм - это логарифм по основанию 10.

$$\log_{10} N = \lg N$$

Характеристика - это целая часть десятичного логарифма.

Мантисса - это дробная часть десятичного логарифма.

Открытый интервал (интервал) (a; b) - это множество действительных чисел x, удовлетворяющих неравенствам $a < x \le b$.

Окрестность точки $\mathbf{x_0} \ (\mathbf{x_0} - \mathbf{h}; \mathbf{x_0} + \mathbf{h})$ - это интервал длины $2\mathbf{h}$ серединой x_0 .

 $\forall a,\ e\ (a-e;a)\cup(a;a+e)$ — проколотая e-окрестность точки a.

Замкнутый интервал (отрезок) [a; b] - это множество действительных чисел x, удовлетворяющих неравенствам $a \le x \le b$.

Полуоткрытый интервал [a; b) или (a; b] - это множество действительных чисел x, удовлетворяющих неравенствам $a \le x < b$ или $a < x \le b$ соответственно.

Бесконечный интервал $(\mathbf{a};\infty)$, или $[\mathbf{a};\infty)$, или $(\infty;\mathbf{b})$, или $(\infty;\mathbf{b})$, или $(\infty;\infty)$ - это множество действительных чисел x, удовлетворяющих a < x , или $a \le x$, или x < b , или $x \le b$, или $x \in B$ соответственно. (конечный интервал)

 $\forall a, \ b \ |[a;b]|$ — длина отрезка [a;b].

$$\forall a, b |[a;b]| = b - a$$

$$\forall A,\ a,\ b\ \left(A=[a;b]\longrightarrow\overline{A-$$
счётное множество.}
ight)

Мощность [0; 1] — мощность континуума.

10.6 Комплексные числа (С)

$$\mathbb{R}\subset\mathbb{C}$$

Комплексные числа образуют поле.

Комплексное число:

$$z = a + bi$$

а - действительная часть

b - мнимая часть или коэффициент при мнимой единице.

 $i^2 = -1$

Алгебраические действия: рациональные действия и извлечение корня.

$$z_1 = z_1$$
, если $a_1 = a_2$ и $b_1 = b_2$.

$$a_1 = a_2$$
 и $b_1 = b_2$, если $z_1 = z_2$.

Чисто мнимое число - это комплексное число, у которого действительная часть равна нулю.

Комплексно сопряжённые числа z и \overline{z} - это два комплексных числа, действительные части которых равны, а мнимые противоположны.

59

$$z = \overline{\overline{z}}$$

$$z\overline{z} = a^2 + b^2$$

$$\overline{z_1} + \overline{z_2} = \overline{(z_1 + z_2)}$$

$$\overline{z_1 z_2} = \overline{(z_1 z_2)}$$

Значения многочлена при комплексного сопряжённых значениях комплексно сопряжены между собой.

Если многочлен имеет комплексный корень, то и сопряжённое число является его корнем.

Если $P_n(z)=(z-\alpha)^kP_{n-k}(z)$, P_{n-k} не делится на $z-\alpha$ нацело, то k - кратность корня α

Сумма кратности корней равна степени многочлена.

Если $P_n(z)=(z-\alpha)^kP_{n-k}(z)$, P_{n-k} не делится на $z-\alpha$ нацело и k=1 , то корень α однократный (простой).

Если $P_n(z)=(z-\alpha)^kP_{n-k}(z)$, P_{n-k} не делится на $z-\alpha$ нацело и k>1 , то корень α кратный.

Абсолютная величина (модуль) z:

$$|z| = \sqrt{z\overline{z}}$$

Алгебраическая форма комплексного числа:

$$z = a + bi$$

60

Тригонометрическая форма комплексного числа:

$$z = r(\cos\phi + i\sin\phi)$$

 ${\bf r}$ - модуль. ϕ - аргумент.

Главное значение аргумента:

argz

$$\begin{cases} argz \ge 0 \\ argz < 2\pi \end{cases}$$

$$z_1 z_2 = r_1 r_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + i\sin(\phi_1 - \phi_2))$$

Формула Муавра:

$$z^n = r^n(\cos n\phi + i\sin n\phi)$$

$$\forall z, \ r, \ n, \ \varphi \ \left(z = r(\cos\varphi + i\sin\varphi) \longrightarrow \sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)\right)$$

$$\forall \varphi \ \cos \varphi + i \sin \varphi = e^{i\varphi}$$

Глава 11

Матрицы

$$\forall m,\ n\ \left(\begin{cases} m\in\mathbb{N}\\ n\in\mathbb{N} \end{cases}\Leftrightarrow M_{m\times n}$$
 — множество матриц размера (порядка) m на $n.$

$$\forall A,\ m,\ n \ \left(\begin{cases} m \in \mathbb{N} \\ n \in \mathbb{N} \\ A - \text{множество}. \end{cases} \right. \Leftrightarrow \frac{M_{m \times n}(A) - \text{множество матриц размера (порядка) } m \text{ на } n, \\ \text{элементы которых принадлежат } A.$$

$$\forall n \ M_n = M_n$$

 $\forall n\ M_n$ — множество квадратных матриц размера (порядка) n.

$$\forall A, \ n \ M_n(A) = M_n(A)$$

 $\forall A,\ n\ M_n(A)$ — множество квадратных матриц размера (порядка) n, элементы которых принадлежат A.

$$\forall A, m, n \ (A \in M_{m \times n} \Leftrightarrow A = A_{m \times n}.)$$

$$\forall A \ (A \in M_n \Leftrightarrow A_n = A_n)$$

$$\forall A, \ m, \ n \ \left(A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \Leftrightarrow A \in M_{m \times n} \right)$$

$$\forall A,\ i,\ j$$

$$\left\{\exists m,\ n \ \begin{cases} A\in M_{m\times n}\\ i\in \mathbb{N}\\ i\leq m &\Leftrightarrow [A]_{ij}-$$
 элемент матрицы с индексами і и j.
$$j\in \mathbb{N}\\ j\leq n \end{cases} \right.$$

$$\forall A,\ n egin{aligned} A_n - \text{столбец } n \text{ матрицы } A. \\ A_n - \text{строка } n \text{ матрицы } A. \end{aligned}$$

$$\forall A \ (\exists m \ A \in M_{m \times 1} \Leftrightarrow A$$
 — матрица-строка (вектор-строка).)

$$\forall A \ (\exists n \ A \in M_{1 \times n} \Leftrightarrow A$$
 — матрица-столбец (вектор-столбец).)

$$\forall A \ (A=0 \Leftrightarrow A$$
 – нулевая.)

$$\forall A \ (\forall i, \ j \ [A]_{ij} = 0 \Leftrightarrow A = 0)$$

$$\forall B \ (\forall A \ AB = BA = A \Leftrightarrow B -$$
единичная.)

E — единичная матрица.

$$\forall i, j \ (i \neq j \Leftrightarrow [E]_{ij} = 0)$$

$$\forall i, \ j \ (i = j \Leftrightarrow [E]_{ij} = 1)$$

 $\forall i, \ j \ E_{ij}$ — матричная единичка.

$$\forall i, j, k, l \left(\begin{cases} k \neq i \\ l \neq j \end{cases} \Leftrightarrow [E_{ij}]_{kl} = 0 \right)$$

$$\forall i, j, k, l \left(\begin{cases} k=i \\ l=j \end{cases} \Leftrightarrow [E_{ij}]_{kl} = 1 \right)$$

$$\forall A \ (\exists \lambda \ A = \lambda E \Leftrightarrow A - \text{скалярная (диагональная}).)$$

$$\forall A \ (\exists n \ A^n = 0 \Leftrightarrow A - \text{нильпотентная.})$$

$$\forall A, \ B, \ m, \ n \ \left(\forall i, \ j \ \begin{cases} A_{m \times n} \\ B_{m \times n} \\ [A]_{ij} = [B]_{ij} \end{cases} \Leftrightarrow A = B \right)$$

 $\forall A A^T$ — транспонированная.

$$\forall A, \ B \ (\forall i, \ j \ [A]_{ij} = [B]_{ji} \Leftrightarrow B = A^T)$$

$$\forall A, \ n \ \left(A = A_n \longrightarrow \widetilde{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^T \right)$$

$$\forall A,\ B\ \left(B=\widetilde{A}\Leftrightarrow B-\text{союзная }\mathbf{k}\ A.\right)$$

$$\forall A \ (AB = E \Leftrightarrow B - \text{обратная к } A.)$$

$$\forall A,\ B\ \left(B=A^{-1}\Leftrightarrow B-\text{обратная к }A.\right)$$

$$\forall A \ (A - \text{обратная.} \longrightarrow \exists n \ A \in M_n)$$

$$\forall A \ A^{-1} = \frac{\widetilde{A}}{\det A}$$

11.1 Операции над матрицами

$$\forall A,\ B,\ m,\ n,\ i,\ j\ \left(\begin{cases} A\in M_{m\times n}\\ B\in M_{m\times n} \end{cases} \longrightarrow [A+B]_{ij} = [A]_{ij} + [B]_{ij} \right)$$

+ – операция на матрицах, обладающая коммутативным свойством.

+ – операция на матрицах, обладающая ассоциативным свойством.

$$\forall A, \ \lambda, \ i, \ j \ (\lambda \in \mathbb{F} \longrightarrow [\lambda A]_{ij} = \lambda [A]_{ij})$$

* — операция на матрице и числе, обладающая ассоциативным свойством.

* — операция на матрице и числе, обладающая дистрибутивным свойством с + относительно матриц и относительно чисел.

$$\forall \left\{ \lambda_n \right\} \ A, \ B, \ i, \ j \ (B = \lambda_i A_i + \ldots + \lambda_j A_j \longrightarrow B$$
 — линейная комбинация A_i, \ldots, A_j .)

$$\forall \left\{ \lambda_{n} \right\}, \ A, \ B, \ i, \ j \ \left(\exists k \ \begin{cases} B = \lambda_{i} A_{i} + \ldots + \lambda_{j} A_{j} \\ \lambda_{k} \neq 0 \end{cases} \longrightarrow B$$
 — нетривиальная. $\right)$

$$\forall A,\ i,\ j$$
 $\left(\exists B \ \begin{cases} B-$ линейная комбинация $A_i,\dots,A_j.$ $\Leftrightarrow A_i,\dots,A_j-$ линейно зависимые. $B=0$

 $\forall A,\ i,\ j\ \left(\overline{A_i,\dots,A_j}$ – линейно зависимые. $\Leftrightarrow A_i,\dots,A_j$ – линейно независимые.)

$$\forall A, \ B, \ m, \ r, \ n, \ i, \ j \ \left(\begin{cases} A \in M_{m \times r} \\ B \in M_{r \times n} \end{cases} \longrightarrow [AB]_{ij} = \sum_{k=1}^{r} [A]_{ik} [B]_{kj} \right)$$

* — операция на матрицах, обладающая ассоциативным свойством.

* – операция на матрицах, обладающая дистрибутивным свойством с +.

$$\forall A, B (AB)^T = B^T A^T$$

$$\forall A, B (AB)^{-1} = B^{-1}A^{-1}$$

Элементарные преобразования матриц:

- 1. Перестановка местами любых двух строк или столбцов матрицы.
 - (а) Переставить местами і и ј строки это единичную матрицу, где переставили местами і и ј строки или столбцы, умножить на матрицу.
 - (b) Переставить местами і и ј столбцы это умножить матрицу на единичную матрицу, где переставили местами і и ј строки или столбцы.
- 2. Умножение любой строки или столбца матрицы на константу, отличную от нуля.
 - (а) Умножить строку і на константу, отличную от нуля, это единичную матрицу, где і строку или столбец умножили на эту константу, умножить на матрицу.

- (b) Умножить столбец і на константу, отличную от нуля, это умножить матрицу на единичную матрицу, где і строку или столбец умножили на эту константу.
- 3. Прибавление к любой строке или столбцу матрицы этой матрицы другой строки или столбца, умноженной на некоторую константу.
 - (a) Прибавить к строке і строку ј, умноженную на константу, это единичную матрицу, где прибавили к і строке строку ј, умноженную на константу, умножить на матрицу.
 - (b) Прибавить к столбцу і столбец j, умноженный на константу, это умножить матрицу на единичную матрицу, где прибавили к i столбцу столбец j, умноженный на константу.

11.2 Перестановки

$$\forall \{a_r\}, \ a, \ n \ \left\{ egin{align*} a_k \in \mathbb{N} \\ a_k \neq n \\ k \neq l \longrightarrow a_k \neq a_l \\ a = a_1, a_2, \dots, a_n \end{array} \right\}$$

$$\forall f,\ n \ \left(\begin{cases} (f(1),f(2),\ldots,f(n)) - \text{перестановка.} \\ f = \begin{pmatrix} 1 & 2 & \ldots & n \\ f(1) & f(2) & \ldots & f(n) \end{pmatrix} \right) \Leftrightarrow f - \text{подстановка.} \end{cases}$$

 $\forall n \ (n \in \mathbb{N} \longrightarrow S_n$ – множество подстановок длины n.)

$$\forall f \ \left(\forall i \ \exists n \ \left\{ egin{aligned} f \in S_n \\ f(f(\dots f(i) \dots)) = i \end{aligned} \Leftrightarrow f - \mbox{циклическая подстановка}). \end{aligned} \right)$$

$$orall f \left(egin{cases} f \in S_2 \\ f - \mbox{цикл.} \end{cases} \Leftrightarrow f - \mbox{транспозиция.}
ight)$$

 $\forall f,\ n\ (n-\text{сумма}\ \text{инверсий}\ \text{первой}\ \text{и}\ \text{второй}\ \text{строки}\ \text{подстановки}\ f.\longrightarrow sgnf=(-1)^n)$

$$\forall f \ \left(egin{cases} f - \text{подстановка.} \\ \text{Сумма инверсий первой и второй строки } f \ \text{чётна.} \end{cases} \Leftrightarrow f - \text{чётная.} \right)$$

$$\forall f,\ g\ \left(egin{cases} f-\ ext{подстановка.} \\ g-\ ext{подстановка.} \end{matrix} \longrightarrow fg-\ ext{умножение}\ (\text{композиция})\ ext{подстановок.} \end{cases}\right)$$

$$\forall f,\ g\ \left(\begin{cases} f-\text{подстановка.}\\ g-\text{подстановка.} \end{cases} \longrightarrow fg = \left(\begin{array}{ccc} 1 & 2 & \dots & n\\ f(g(1)) & f(g(2)) & \dots & f(g(n)) \end{array}\right)\right)$$

$$\forall f, \ g \ \left(\begin{cases} f-\text{подстановка.} \\ g-\text{подстановка.} \end{cases} \longrightarrow sgn(fg) = sgnf*sgng \right)$$

$$\forall f \qquad \begin{cases} d(f) - \text{декремент.} \\ d(f) = \text{длина } f - \\ (\text{число независимых циклов } f + \\ \text{количество символов, оставляемых на месте}). \\ d(f) = \text{количество действительно перемещаемых символов-} \\ \text{количество независимых циклов.} \\ d(f) = \text{сумма длин циклов - количество циклов.} \end{cases}$$

$$\forall f \ \left(f - \text{подстановка.} \longrightarrow sgnf = (-1)^{d(f)}\right)$$

id — подстановка.

id — тождественная.

$$id = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{array}\right)$$

$$\forall f \ f^{-1} = \left(\begin{array}{ccc} f(1) & f(2) & \dots & f(n) \\ 1 & 2 & \dots & n \end{array} \right)$$

$$\forall n, \ k \ (k \in \mathbb{N} \longrightarrow (a_1, a_2, \dots, a_n)^{nk} = id)$$

При возведении подстановки в степень, кратную HOKy длин всех её циклов, будет получаться тождественная подстановка.

11.3 Определители

 $\forall A \ det A$ — определитель A.

$$\forall A, \ n \ \left(A \in M_n \longrightarrow det A = \sum_{f \in S_n} sgnf * [A]_{1f(1)} * [A]_{2f(2)} * \dots * [A]_{nf(n)} \right)$$

$$\forall A \ (det A = 0 \Leftrightarrow A -$$
вырожденная.)

$$\forall A \ (det A \neq 0 \Leftrightarrow A - \text{невырожденная.})$$

$$\forall A \ det A^T = det A$$

$$\forall A, A', i \ det(A_1, \dots, A'_i + A''_i, \dots, A_n) = det(A_1, \dots, A'_i, \dots, A_n) + det(A_1, \dots, A''_i, \dots, A_n)$$

$$\forall A, A', i, \lambda \det(A_1, \dots, \lambda A'_i, \dots, A_n) = \lambda \det(A_1, \dots, A'_i, \dots, A_n)$$

$$\forall A, i, j \ det(A_1, \dots, A_i, \dots, A_j, \dots, A_n) = -det(A_1, \dots, A_j, \dots, A_i, \dots, A_n)$$

$$\forall A \ (\exists i \ A_i = 0 \longrightarrow det A = 0)$$

$$\forall A \ (\exists k, \ l \ A_k = A_l \longrightarrow det A = 0)$$

 $\forall A \ (\exists i \ A_i$ — линейная комбинация остальных. $\longrightarrow det A = 0)$

$$\forall \{\lambda_n\}, \ A \ det(A_1, A_2, \dots, A_i, \dots, A_n) = det(A_1, A_2, \dots, A_i + (\lambda_1 A_1 + \lambda_2 A_2 + \dots + \lambda_{i-1} A_{i-1} + \lambda_{i+1} A_{i+1} + \dots + \lambda_n A_n), \dots, A_n)$$

$$detE = 1$$

Разложение по строке:

$$\forall A, j, n \left(A = A_n \longrightarrow det A = \sum_{i=1}^n [A]_{ij} A_{ij} \right)$$

Разложение по столбцу:

$$\forall A, i, n \left(A = A_n \longrightarrow det A = \sum_{j=1}^n [A]_{ij} A_{ij} \right)$$

Фальшивое разложение:

$$\forall A, \ n, \ k, \ i \ \left(\begin{cases} A \in M_n \\ k \neq i \end{cases} \longrightarrow \sum_{j=0}^n [A]_{ij} A_{kj} = 0 \right)$$

$$\forall A, \ n, \ k, \ i \ \left(\begin{cases} A \in M_n \\ k \neq j \end{cases} \longrightarrow \sum_{i=0}^n [A]_{ij} A_{ik} = 0 \right)$$

$$\forall A,\ n\ \left(egin{cases} A=A_n \\ \Pi$$
од главной диагональю A только нули. $\longrightarrow det A=\prod_{i=1}^n [A]_{ii} \end{cases} \right)$

10) Если A и B — квадратные матрицы, то для блочной матрицы: $\det\left(\begin{array}{c|c}A&C\\\hline 0&B\end{array}\right)=\det A\cdot\det B$

$$\forall A,\ B\ \left(\begin{cases} A\in M_n\\ B\in M_n \end{cases} \longrightarrow \det(AB) = \det A\ \det B\right)$$

$$det(A^{-1}) = det(A)^{-1}$$

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

$$\forall A \ (\exists B \ B = A^{-1} \Leftrightarrow det A \neq 0)$$

11.4 Миноры, алгебраические дополнения и ранги

$$\forall B,\ M,\ k$$

$$\left(\exists A\ \begin{cases} A-\text{матрица из элементов матрицы }B,\\ \text{стоящих на пересечении }k\text{ строк и }k\text{ столбцов.}\Leftrightarrow M-\text{минор }k\text{ порядка матрицы }B.\\ M=\det A \end{cases}\right)$$

$$\forall B,\ M$$

$$\left\{ \exists A \ \begin{cases} A-\text{матрица, на главной диагонали которой стоят} \\ \text{только все или не все элементы} \\ \text{главной диагонали } B. \\ M=\det A \end{cases} \Leftrightarrow M-\text{главный минор матрицы } B. \right\}$$

 $\forall A \ RqA - pahr \ A.$

 $\forall A \ RgA =$ наибольший порядок отличного от 0 минора матрицы A.

$$\forall A \ RgA =$$

максимальное число линейно независимых строк = максимальное число линейно независимых столбцов.

 $\forall A,\ A'\ (A'$ —матрица, полученная из Aэлементарными преобразованиями. $\longrightarrow RgA=RgA')$

$$\forall A \left(\exists n \; \left\{ \begin{aligned} &A \in M_n \\ &RgA = n \end{aligned} \right. \Leftrightarrow detA \neq 0 \right)$$

$$\forall A \left(\exists n \; \left\{ egin{aligned} A \in M_n \\ A_1, A_2, \dots, A_n - \text{линейно независимые.} \end{aligned} \right. \Leftrightarrow det A \neq 0 \right)$$

$$\forall A,\ M\ \left(egin{cases} M- \text{ минор порядка }RgA \text{ матрицы }A. \\ M \neq 0 \end{cases} \Leftrightarrow M-$$
 базисный минор матрицы $A. \end{pmatrix}$

 $\forall A,\ i\ (A_i$ — то, из чего составлен базисный минор матрицы $A.\longrightarrow A_i$ — базисный.)

 $\forall A,\ i\ \left(\overline{A_i-$ базисный. $\longrightarrow A_i-$ линейная комбинация базисных матрицы $A.\right)$

$$\forall M,\ M'$$

$$= A \left\{ egin{align*} M - \text{минор матрицы } A. \\ M' - \text{минор, составленный} \\ \text{из тех же строк и столбцов, что и } M, &\Leftrightarrow M' - \text{окаймляющий минор } M. \\ \text{и добавленных одной строки и одного столбца} \\ \text{матрицы } A. \end{array} \right.$$

$$\forall A,\ M,\ k\ \left(egin{cases} M-\text{ минор }k \text{ порядка матрицы }A. \\ \text{Все окаймляющие миноры минора }M=0 \end{cases} \longrightarrow RgA=k \right)$$

$$\forall A,\ B,\ M \left\{ egin{align*} A - \text{матрица из элементов матрицы } B, \\ \text{кроме строк и столбцов } B, \\ \text{из которых составлен минор } M. \\ M' = det A \end{array} \right. \Leftrightarrow M' - \text{дополнительный минор к минору } M.$$

$$\forall M,\ M^* \ \left(\exists A,\ \alpha,\ n \ \begin{cases} A=A_n\\ \alpha=\text{сумма номеров строк и столбцов }A,\\ \text{из которых составлен минор }M.\\ M'-\text{дополнительный минор к минору }M.\\ M^*=(-1)^\alpha M' \end{cases} \right)$$

 $\forall A,\ i,\ j\ M_{ij}$ — минор элемента $[A]_{ij}$ матрицы A.

$$\forall A,\ n,\ i,\ j \ \left(egin{cases} A = A_n \\ A - \text{матрица из элементов матрицы } B, \Leftrightarrow det A = M_{ij} \\ \text{кроме строки } i \text{ и столбца } j. \end{cases} \right)$$

 $\forall A, i, j \ A_{ij}$ — алгебраическое дополнение элемента $[A]_{ij}$.

$$\forall A, i, j \ A_{ij} = (-1)^{i+j} M_{ij}$$

11.5 Форматы матриц

Ведущий элемент - это первый ненулевой элемент строки.

Ступенчатый вид матрицы - это матрица, номера столбцов ведущих элементов которой возрастают, а нулевые строки, если они есть, расположены внизу.

Улучшенный (приведённый, канонический) ступенчатый вид матрицы - это ступенчатый вид матрицы, в котором все ведущие элементы - единицы, над которыми в столбце все элементы - нули.

Любую матрицу элементарными преобразованиями можно привести к улучшенному ступенчатому виду.

$$\forall A,\ B,\ C$$

$$\left(\exists m,\ r,\ n \left\{ egin{align*} B \in M_{m \times r} \\ C \in M_{r \times n} \\ r = RgB = RgC \end{array} \Leftrightarrow BC - \text{скелетное разложение } A. \right)$$

$$\forall A,\ B,\ C$$
 $\left(\exists m,\ r,\ n\ \begin{cases} B$ — нижняя треугольная матрица матрицы. $\Leftrightarrow BC$ — LU разложение A . $A=BC$

 $\forall A \ (A - \text{строго регулярная.} \Leftrightarrow A - \text{имеет LU разложение.})$

11.6 СЛАУ относительно матриц

$$\forall a \; \left(\begin{cases} a - \mathrm{CJAY.} \\ a - \mathrm{имеет} \; \mathrm{решениe.} \end{cases} \longrightarrow a - \mathrm{coвместная.} \right)$$

$$\forall a \; \left(\begin{cases} a-\mathrm{CJAY.} \\ a-\mathrm{не} \; \mathrm{имеет} \; \mathrm{решений.} \end{cases} \longrightarrow a-\mathrm{несовместная.} \right)$$

$$\forall A, \ x, \ b \left(Ax = b - C \Pi A Y. \longrightarrow \forall i \begin{cases} \Delta_i = det(A_1, A_2, \dots, A_{i-1}, B, Ai + 1, \dots, A_n) \\ \Delta = det A \\ x_i = \frac{\Delta_i}{\Delta} \end{cases} \right)$$

$$\forall A,\ x,\ b \ \left(\exists i\ \begin{cases} Ax=b-\mathrm{CЛAY}. \\ \Delta=0 & \longrightarrow Ax=b-\mathrm{несовместная}. \\ \Delta_i \neq 0 \end{cases}\right)$$

$$\forall A,\ x,\ b \ \left\{ egin{align*} Ax = b - \mathrm{CЛAY}. \\ \Delta \neq 0 \end{array} \right. \longrightarrow \left\{ egin{align*} Ax = b - \mathrm{cobmecthag}. \\ Ax = b - \mathrm{umeet} \ \mathrm{equinctbehloe} \ \mathrm{peinehue}. \end{array} \right.$$

Теорема Кронекера-Капелли:

$$\forall A, b \ (RgA = Rg(A|b) \Leftrightarrow \exists x \ Ax = b - \text{совместная.})$$

$$\forall A,\ l,\ n \ \left\{ egin{align*} A_{l},A_{l+1},\ldots,A_{l+n-RgA-1}-\text{ л.н.з. столбцы.} & A_{l},A_{l+1},\ldots,A_{l+n-RgA-1}-\\ A_{l},A_{l+1},\ldots,A_{l+n-RgA-1}-\text{ решения } Ax=0. \Leftrightarrow \text{фундаментальная система}\\ n-\text{число неизвестных.} & \text{решений (ФСР) } Ax=0. \end{array} \right.$$

$$\forall A, \ x \ (Ax = 0 \longrightarrow \exists C \ C - \Phi CP \ Ax = 0.)$$

$$\forall C, \ x \ \exists n \ (\exists m \ C_{m \times n} - \Phi CP \ Ax = 0. \longrightarrow x = \alpha_1 C_1 + \ldots + \alpha_n C_n.)$$

$$\forall C, \ x \ \exists \left\{\alpha_n\right\}, \ n \ \left(\exists m \ \left\{\begin{matrix} C_{m\times n} - \Phi \mathrm{CP} \ Ax = 0. \\ Ax' = b \end{matrix}\right. \longrightarrow x' + \alpha_1 C_1 + \ldots + \alpha_n C_n - \mathrm{все} \ \mathrm{pешения} \ Ax = b. \right)$$

Глава 12

Векторы

 $\forall \overrightarrow{a}, \ \overrightarrow{b} \ \left(\overrightarrow{a}, \overrightarrow{b}$ – лежат на одной прямой или на параллельных. $\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}$ – коллинеарны.)

$$\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} - \text{лежат на прямых}, \Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} - \text{компланарны}.)$

$$\forall \overrightarrow{a}, \overrightarrow{b} \left(\left\{ \overrightarrow{a} \uparrow \uparrow \overrightarrow{b} \middle| \overrightarrow{a} = \overrightarrow{b} \middle| \right\} \right)$$

$$\forall \overrightarrow{a}, \overrightarrow{b} \left(\left\{ \overrightarrow{a} = \overrightarrow{b} \right. \right. \left. \left\{ \overrightarrow{a} = \overrightarrow{b} \right. \right. \right. \Leftrightarrow \overrightarrow{a}, \overrightarrow{b} - \text{скользящие.} \right)$$

$$\forall \overrightarrow{a}, \ \overrightarrow{b} \ \left(\left\{ \overrightarrow{a} = \overrightarrow{b} \right. \right. \right.$$
 Начало $\overrightarrow{a} =$ начало $\overrightarrow{b} \Leftrightarrow \overrightarrow{a}, \overrightarrow{b} -$ связанные.

- + операция на векторах, обладающая коммутативным свойством.
- + операция на векторах, обладающая ассоциативным свойством.
- * операция на векторе и числе, обладающая коммутативным свойством.
- * операция на векторе и числе, обладающая ассоциативным свойством.
- * операция на векторе и числе, обладающая дистрибутивным свойством с + относительно векторов и относительно чисел.

$$\forall \overrightarrow{b} \ \left(\overrightarrow{b} \neq 0 \Leftrightarrow \exists \overrightarrow{a} \ |a| * \cos \angle \left(\overrightarrow{a}, \overrightarrow{b} \right) - \text{ортогональная проекция } \overrightarrow{a} \text{ на направление } \overrightarrow{b}. \right)$$

Ортогональная проекция уважает сложение векторов.

Ортогональная проекция уважает умножение вектора на число.

$$\forall \overrightarrow{a}, \ \overrightarrow{b} \ \left(\overrightarrow{a}, \overrightarrow{b}\right) = |\overrightarrow{a}| \left| \overrightarrow{b} \right| \cos \varphi$$

$$\forall \overrightarrow{a}, \overrightarrow{b} \left(\overrightarrow{a}, \overrightarrow{b}\right) = \left(\overrightarrow{b}, \overrightarrow{a}\right)$$

$$\forall \overrightarrow{a}, \overrightarrow{b} \left(\alpha \overrightarrow{a}, \overrightarrow{b} \right) = \alpha \left(\overrightarrow{a}, \overrightarrow{b} \right)$$

$$\forall \overrightarrow{a}, \ \overrightarrow{b} \ \left(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c}\right) = (\overrightarrow{a}, \overrightarrow{c}) + \left(\overrightarrow{b}, \overrightarrow{c}\right)$$

$$\forall \overrightarrow{a} \ (\overrightarrow{a} \neq 0 \Leftrightarrow 0 < (\overrightarrow{a}, \overrightarrow{a}))$$

$$\forall \overrightarrow{a} \ (\overrightarrow{a} = 0 \Leftrightarrow 0 = (\overrightarrow{a}, \overrightarrow{a}))$$

$$\forall \overrightarrow{a_1}, \ \overrightarrow{a_2}, \ \dots, \ \overrightarrow{a_k} \ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{л.н.з.} \right. \right. \right. \\ \left. \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{л.н.з.} \right. \right. \right. \\ \left. \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right) \right. \right) \right. \\ \left. \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \\ \left. \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \right. \\ \left. \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \\ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \\ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \\ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \\ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис.} \right. \right) \right. \\ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{b} \ \left\{ \overrightarrow{b} - \text{линейная комбинация } \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \overrightarrow{a_k} \right. \right. \right) \right]$$

$$\forall \overrightarrow{a_1}, \ \overrightarrow{a_2}, \ \dots, \ \overrightarrow{a_k} \ \left(\forall \overrightarrow{b} \ \left\{ \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{базис} \right. \right. \right.$$
 $\left. (i = j \longrightarrow (a_i, a_j) = 1 \ \Leftrightarrow \overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k} - \text{ортонормированный базис (OHB)}. \right)$

$$\forall \overrightarrow{a}, \overrightarrow{b} \left(\overrightarrow{a}, \overrightarrow{b} \right) = a_x b_x + a_y b_y + \dots$$
 в ОНБ.

 Γ — матрица Γ рама.

$$\forall \overrightarrow{e_1}, \ \overrightarrow{e_2}, \ \overrightarrow{e_3}, \ \overrightarrow{e_2}, \ \overrightarrow{e_3} - \text{basis.} \Leftrightarrow \left(\begin{array}{ccc} (\overrightarrow{e_1}, \overrightarrow{e_1}) & (\overrightarrow{e_1}, \overrightarrow{e_2}) & (\overrightarrow{e_1}, \overrightarrow{e_3}) \\ (\overrightarrow{e_2}, \overrightarrow{e_2}) & (\overrightarrow{e_2}, \overrightarrow{e_2}) & (\overrightarrow{e_2}, \overrightarrow{e_3}) \\ (\overrightarrow{e_3}, \overrightarrow{e_1}) & (\overrightarrow{e_3}, \overrightarrow{e_2}) & (\overrightarrow{e_3}, \overrightarrow{e_3}) \end{array} \right) = \Gamma \right)$$

$$\forall \dots \left(\begin{cases} \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3} - \text{базис.} \\ \overrightarrow{a} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2} + a_3 \overrightarrow{e_3} \longrightarrow \left(\overrightarrow{a}, \overrightarrow{b} \right) = \left(\begin{array}{cc} a_1 & a_2 & a_3 \end{array} \right) \Gamma \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) \right)$$

$$\forall \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \quad \left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} - \text{ортогональный базис.} \Leftrightarrow \forall \overrightarrow{d} \quad cos \angle \left(\overrightarrow{d}, \overrightarrow{i}\right), cos \angle \left(\overrightarrow{d}, \overrightarrow{j}\right), cos \angle \left(\overrightarrow{d}, \overrightarrow{j}\right) - \right) \\ \text{ направляющие косинусы } \overline{a}.$$

$$\forall \overrightarrow{i}, \ \overrightarrow{j}, \ \overrightarrow{k} \ \left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} - \text{ортогональный базис.} \Leftrightarrow \forall \overrightarrow{a} \ \cos^2 \angle \left(\overrightarrow{a}, \overrightarrow{i}\right) + \cos^2 \angle \left(\overrightarrow{a}, \overrightarrow{j}\right) + \cos^2 \angle \left(\overrightarrow{a}, \overrightarrow{k}\right) = 1\right)$$

 $\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ (Со стороны \overrightarrow{c} кратчайший поворот от \overrightarrow{a} к \overrightarrow{b} против часовой. $\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ — правая.)

$$\left|\overrightarrow{a}\times\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|\sin\angle\left(\overrightarrow{a},\overrightarrow{b}\right)$$

$$\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \ \left(\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b} \Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} - \text{правая.} \right)$$

$$\forall \overrightarrow{a}, \ \overrightarrow{b} \ \left(\overrightarrow{a} \times \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a} \, \| \, \overrightarrow{b} \right)$$

$$\forall \overrightarrow{a}, \overrightarrow{b} \overrightarrow{a} \times \overrightarrow{b} \perp \overrightarrow{a}$$

$$\forall \overrightarrow{a}, \overrightarrow{b} \overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

$$(\alpha \overrightarrow{a}) \times \overrightarrow{b} = \alpha \left(\overrightarrow{a} \times \overleftarrow{b} \right)$$

 \times —операция на векторах, обладающая дистрибутивным свойством с + относительно векторов.

$$\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \left(0 < \left(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c}\right) \longrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} -$$
правая.)

$$orall \overrightarrow{a}, \ \overrightarrow{b}, \ \overrightarrow{c} \ \left(\left(\overrightarrow{a} imes \overrightarrow{b}, \overrightarrow{c}
ight) < 0 \longrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} -$$
 левая.)

$$\forall \overrightarrow{a}, \ \overrightarrow{b}, \ \overrightarrow{c} \ \left(\left(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c} \right) = 0 \Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} - \text{компланарны.} \right)$$

$$\forall \overrightarrow{a}, \ \overrightarrow{b}, \ \overrightarrow{c} \ \left(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c}\right) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \text{B OHB}.$$

$$\forall \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \qquad \left(\exists a, \ b, \ c \ \begin{cases} \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} - \text{OHB.} \\ a \\ b \\ c \end{cases} \right) \qquad \Leftrightarrow \underbrace{(O \times \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}) - \text{прямоугольная}}_{\text{декартова система координат (ПДСК).}} \right)$$