Med Sea High School		
Physics: T1	Test	Dec
	Class: 12 LS	Duration of Exam:120 min
Name:	Scholastic Year: 2022/2	023

Exercise 1 (7 points): Effect of the resistance on the charging of a capacitor

The aim of this exercise is to study the effect of the resistance of a resistor on the charging of a capacitor.

For this aim, we set-up the circuit of document 1 that includes:

- A capacitor, initially uncharged, of capacitance $C = 4\mu F$;
- a resistor of adjustable resistance R;
- an ideal battery of voltage $u_{AM} = E$;
- a switch K.

We close the switch at $t_0 = 0$, and the charging process starts.

1- Theoretical study

- **1.1-** Derive the differential equation that describes the variation of the voltage $u_{DF} = u_c$ during the charging of the capacitor.
- **1.2-** The solution of this differential equation has the form of: $u_C = A + Be^{Dt}$. Determine the constants A, B and D in terms of E, R and C.
- **1.3-** Verify that the capacitor becomes practically fully charged at t = 5RC.
- **1.4-** Indicate the effect of the resistance of the resistor on the duration of the charging of the capacitor.

uc (**V**)

0.8

1.6

8

2- Experimental study

We adjust R to two different values R_1 and R_2 ; an appropriate device allows to trace, for each value of R, the voltage u_C as a function of time (Doc.2).

- curve (a) corresponds to $R = R_1$.
- curve (b) corresponds to $R = R_2$.
 - **2.1-** Using the curves of document 3:
 - **2.1.1-** specify the value of E;
 - **2.1.2-** specify, without calculation, whether the value of R_2 is: equal to, greater than, or less than the value of R_1 ;
 - **2.1.3-** determine the values of R_1 and R_2 .
 - **2.2-** The capacitor is fully charged, the electric energy stored in the capacitor is W_C .
 - **2.2.1-** Is the value of W_C affected by the resistance of the resistor? Justify.
 - **2.2.2-** Deduce the value of W_C .

(b)

2.4

Doc.2

3.2

t (ms)

Exercise 2 (6 points): Motion on a slide

In a park, a child plays on a slide.

The child, considered as a particle, has a mass M = 20 kg. He climbs to point A the top of the slide, and then slides down without initial velocity to point B at the bottom of the slide at the ground level (Doc. 3). The part AB of the slide is straight and inclined by an angle $\alpha = 30^{\circ}$ with respect to the horizontal. The top A of the slide is situated at a height $h_A = 1.8$ m above the ground. Point A is taken as the origin of the x-axis, passing through AB, and of unit vector i (Doc.4).

The aim of this exercise is to determine the duration of motion of the child from A to B in two cases: without friction and with friction.

Take:

- the horizontal plane passing through B as a reference level for gravitational potential energy;
- $g = 10 \text{ m/s}^2$.
- 1) The child climbs from the ground to point A.
 - 1.1) Calculate the variation of the gravitational potential \triangle GPE of the system (Child, Earth) between the ground and A.

- 1.2) Calculate the work W done by the weight of the child, when he climbs from the ground to A, knowing that $W = M g (h_i - h_f)$ where h_i and h_f are the initial and final heights above the ground.
- **1.3**) Compare W and \triangle GPE.
- 2) Suppose that the child slides without friction from A to B.
 - **2.1**) Determine the speed V_B of the child when he reaches the ground at B.
 - 2.2) Show that the variation of the linear momentum of the child between A and B is $\overrightarrow{\Delta P} = 120 \vec{i} \text{ (kg.m/s)}.$
 - 2.3) Show that the sum of the external forces vector exerted on the child, during the downward motion from A to B is 100 i (N).
 - **2.4)** Deduce, by applying Newton's second law, the duration Δt_1 along AB, knowing that

$$\frac{\Delta \vec{P}}{\Delta t} = \frac{d\vec{P}}{dt}$$

- 3) In reality, the child is submitted to a force of friction \vec{f} , supposed constant and parallel to the displacement. During the motion from A to B, the system (Child, Slide, Earth, Atmosphere) loses 25% of its mechanical energy at A.
 - 3.1) Show that during the downward motion of the child from A to B, the variation in the internal energy of the system (Child, Slide, Earth, Atmosphere) is $\Delta U = 90$ J.

 - **3.2**) Deduce that the magnitude of the friction force \vec{f} is f = 25 N. **3.3**) The variation of the linear momentum of the child between A and B, in this case, is $\overrightarrow{\Delta P} = 60\sqrt{3}$ i (kg.m/s). Determine, by applying Newton's second law, the duration Δt_2 along AB,

knowing that
$$\frac{\Delta \vec{P}}{\Delta t} = \frac{d\vec{P}}{dt}$$
.

Exercise 3 (7 points):

A solid S_1 of mass $m_1 = 100$ g moves along the track DAMN of document 5. The track DA is circular of center I and radius R = 0.2m. The track AM is horizontal; the force of friction is neglected along the track DAM. The track MN is an inclined plane that makes an angle $\alpha = 30^{\circ}$ with the horizontal plane. The horizontal plane passing by the track AM is taken as the reference level of the gravitational potential energy. ($g=10m/s^2$)

- 1) The solid S_1 is launched without initial velocity from point D where $h_D=20$ cm. It passes by point F with a speed 1m/s and makes an angle θ with the vertical plane, then reaches A with velocity V_1 .
 - **1.1**) The mechanical energy is conserved along the track DA. Justify.
 - **1.2**) By applying the conservation of mechanical energy, determine:
 - **1.2.1**) Determine θ .
 - **1.2.2**) Show that the speed at point A is 2m/s.
- 2) The solid S_1 continues its motion along the track AM with the same speed acquired at A, S_1 enters into perfectly elastic collision with another solid S_2 initially at rest, just after collision, S_1 and S_2 move with velocities V_1 and V_2 respectively where V_2 = 2 m/s.
 - **2.1**) Name two physical quantities that remains conserved during this collision.
 - **2.2**) Show that $V_2' = \frac{2m_1}{m_1 + m_2} V_1$.
 - **2.3**) Deduce the value of m_2 .
 - **2.4**) Justify that S_1 comes to rest after collision.
- 3) The solid S_2 continues its motion along the inclined plane to reach the maximum position at N where MN=20cm.
 - **3.1**) Show that the solid is subjected to a force of friction along this track.
 - **3.2**) Determine the force of friction along MN.

Blessed Efforts