Nomenklatur

Subskript:

 ∞ Umgebungsspezifisch W Wand f Flüssigkeit V Volumenspezifisch Η Hydraulisch Q Querschnittsspezifisch Th Thermisch St Stoffeigenschaftenspezifisch krit kritisch

Superskript:

" Flächenbezogen Volumenbezogen

 zeitliche Ableitung (Wärmestrom, Massenstrom, Enthalpiestrom etc.)

Symbole:

α	Wärmeübergangskoeffizient	$[W/m^2 K]$
λ	Wärmeleitfähigkeit	[W/m K]
а	Temperaturleitfähigkeit	$[m^2/s]$
c_p	Spezifische Wärmekapazität	[J/kg K]
\dot{T}	Temperatur	[K]
A	Fläche	$[m^2]$
δ	Grenzschichtdicke	[m]
L_{th}	Thermische Einlauflänge	[m]
Q	Wärmestrom	[W]
ġ"	Wärmestromdichte	$[W/m^2]$
n	Strommenge	[mol]
h	Enthalpie Strom	[W]
u	Geschwindigkeit in x-Richtung	[m/s]
V	Geschwindigkeit in y-Richtung	[m/s]
W	Geschwindigkeit in z-Richtung	[m/s]
τ	Scherspannung	$[N/m^2]$
ho	Dichte	[kg/m ³]
υ	Dynamische Viskosität	$[m^2/s]$
P	Druck	$[N/m^2]$
ф	Wärmequellenstrom	[W]
R	Universelle Gaskonstante	[kg/mol K]
ψ	Stromfunktion	$[m^2/K]$
β	Ausdehnungskoeffizient	[1/K]
D	Durchmesser	[m]

Dimensionslose Kennzahl:

Re	Reynoldszahl	[-]
f	Dimensionslose Stromfunktion	[-]
Pr	Prandtl Zahl	[-]
Nu	Nusselt Zahl	[-]
Gr	Grashof Zahl	[-]
Pe	Péclet Zahl	[-]
Ar	Archimedes Zahl	[-]

V 01: Einführung in das Thema der Konvektion und Herleitung der Erhaltungsgleichung

Lernziele:

- > Wesen der Konvektion und Abgrenzung zum Begriff der Advektion verstehen
- Konvektion als Zusammenspiel von Wärmeleitung und Advektion begreifen.
 Klassifikation von Konvektionsprahlemen

Klassifikation von Konvektionsproblemen

- Herleiten der Erhaltungsgleichungen für Masse, Impuls und Energie
- Verstehen der Ähnlichkeit zwischen Impuls- und Energietransport

Verständnisfragen:

- ☐ Was ist unter einem Wärmeübergangskoeffizienten zu verstehen und was beschreibt dieser?
- ☐ Warum gilt in unmittelbarer Wandnähe auch auf der Fluidseite das Fourier'sche Wärmeleitungsgesetz?
- ☐ Was besagt die dimensionslose Nusselt-Zahl?
- ☐ Worin besteht der Unterschied zwischen natürlicher und erzwungener Konvektion?

V 02: Grenzschicht bei der erzwungenen Konvektion

Lernziele:

- Verständnis des Grenzschichtkonzepts an einer ebenen Platte in einer kontanten laminaren Strömung
- Ähnlichkeit der Geschwindigkeits- und Temperaturprofile und die Abhängigkeit des Wärmeübergangskoeffizienten von der Scherspannung

Verständnisfragen:

- ☐ Worin unterscheiden sich Nusselt- und Biot-Zahl?
- ☐ Welche Relevanz hat die Prandtl-Zahl für die Grenzschichttheorie?
- Falls Identität zwischen der Dicke der Strömungs- und der Temperaturgrenzschicht besteht $(\delta_u = \delta_T)$, gilt welche Beziehung für die Nusselt-Zahl? (nicht klausurrelevant)

V 03: Grenzschichtgleichungen- Natürliche Konvektion

Lernziele:

- ➤ Grenzschichtprofil (Temperatur und Geschwindigkeit) an einer ebenen Platte mit freier Konvektion verstehen und erklären können
- ➤ Herleitung und Bedeutung der Grashof-Zahl
- Kenntnis der Unterschiede zwischen den Grenzschichtprofilen bei erzwungener und freier Konvektion

Verständnisfragen:

- ☐ Welches ist das treibende Potential der natürlichen Konvektion?
- ☐ Warum sind Auftriebskräfte bei erzwungener Konvektion vernachlässigbar?

V 04: Turbulente Strömungen

Lernziele:

- Konzept turbulenter Strömungen
- Makroskopische Auswirkung turbulenter Fluktuationen auf den Masse- und Wärmetransport verstehen

Verständnisfragen:

☐ Wie wirkt sich die Turbulenz auf den Wärmeübergang aus?

V 05: Anwendung der Ähnlichkeitstheorie

Lernziele:

- > Grundverständnis der Ähnlichkeitstheorie erarbeiten
- Physikalische Bedeutung relevanter dimensionsloser Kennzahlen, die ein Konvektionsproblem beschreiben können, erfassen und in eigenen Worten wiedergeben können

Unterschiedliche konvektive Wärmeübergangsprobleme in Hinblick auf die Strömungs- und Randbedingungen unterscheiden können.

Verständnisfragen:

- Was besagt die Ähnlichkeitstheorie und auf was muss geachtet werden, damit die Lösung zweier unterschiedlicher Probleme identisch ist?
 Welche Kennzahlen sind für die empirisch begründeten Wärmeübergangsgesetze von
- Welche Kennzahlen sind für die empirisch begründeten Warmeubergangsgesetze vor essentieller Bedeutung?

V 06: Wärmeübergangsgesetze bei der erzwungenen Konvektion umströmter Körper

Lernziele:

- > Kenntnis und Verständnis der relevanten Kennzahlen
- Überblick verschiedener Anwendungsfälle und dazugehöriger Korrelationen

cooled turbine blade

Verständnisfragen:

- ☐ Welche dimensionslosen Kennzahlen müssen bei der erzwungenen Konvektion berücksichtigt werden? Wie wird die Anwendbarkeit einer Korrelation überprüft?
- ☐ Bei welcher Temperatur sind die in den Kennzahlen auftretenden Stoffeigenschaften zu ermitteln?
- ☐ Worin unterscheiden sich örtlicher und gemittelter Wärmeübergang bei einer ebenen Platte mit Beheizung oder Kühlung?

V 07: Erzwungene Konvektion durchströmter Körper

Lernziele:

- Wesentliche Unterschiede zwischen umströmten und durchströmten Körpern formulieen können
- > Hydrodynamisches und thermisches Einlaufverhalten verstehen
- ➤ Kenntnis über den Verlauf des lokalen und gemittelten Wärmeübergangskoeffizienten
- Kenntnis über die Anwendung der logarithmischen Mitteltemperatur zur Berechnung des Gesamtwärmestroms

Verständnisfragen:

Welche Kennzahl kann zur Charakterisierung des Umschlagpunkts von einer laminaren zu einer turbulenten Rohrströmung herangezogen werden?
Ist der lokale Wärmeübergangskoeffizient immer niedriger als der gemittelte Wärmeübergangskoeffizient?
Welchen Einfluss hat die Einlauflänge auf das Temperaturprofil?
Wann nähern sich die unterschiedlichen Grenzschichten einer Rohrströmung an?

V 08: Natürliche Konvektion umströmter Körper

Lernziele:

➤ Kenntnis der im Skript und in der Formelsammlung genannten Korrelationen für Fälle natürlicher Konvektion

Verständnisfragen:

Welche Kennzahlen müssen bei der Anwendung der Wärmeübergangsgesetze berücksichtigt werden?
Was ist das treibende Potential bei der natürlichen Konvektion?

☐ Welche Anwendungsfälle sind bei horizontalen Platten zu unterscheiden und inwiefern weichen diese von senkrechten Platten ab?

V 09: Natürliche Konvektion in geschlossenen Räumen

Lernziele:

- Einflusses beheizter und gekühlter Oberflächen in geschlossenen Räumen verstehen
- > Entscheidungskompetenz bei senkrechten und horizontalen Anordnungen
- ➤ Überblick über verschiedene Anwendungsfälle gewinnen

chimney

Verständnisfragen:

Warum wird die Wärme im allgemeinen bei einer Fluidschicht zwischen zwei horizontalen
Flächen nur durch Wärmeleitung übertragen wenn die obere Platte beheizt wird?

☐ Welche Ausnahme existiert von dem in der obigen Frage genannten Regelfall?

