Revisit to the theoretical analysis of a classical piezoelectric cantilever energy harvester

Maoying Zhou

November 12, 2019

1 Summary of the interested equations

The dynamic equations for a typical piezoelectric composite cantilever beam is

$$B_p \frac{\partial^4 w(x,t)}{\partial x^4} + m_p \frac{\partial^2 w(x,t)}{\partial t^2} = 0, \tag{1}$$

where B_p is the equivalent bending stiffness and m_p is the line mass density of the piezoelectric cantilever beam. If the piezoelectric elements attached to the cantilever beam is connected to an external electrical load R_l , we have

$$\frac{dQ_p(t)}{dt} + \frac{V_p(t)}{R_l} = 0. (2)$$

For the underlying physics, we have the following constitutive equations

$$M_{p}(x,t) = B_{p} \frac{\partial^{2} w(x,t)}{\partial x^{2}} - e_{p} V_{p}(t),$$

$$q_{p}(x,t) = e_{p} \frac{\partial^{2} w(x,t)}{\partial x^{2}} + \varepsilon_{p} V_{p}(t),$$
(3)

or equivalently,

$$\begin{cases}
M_p(x,t) = B_p \frac{\partial^2 w(x,t)}{\partial x^2} - e_p V_p(t), \\
Q_p(x,t) = e_p \left[\frac{\partial w(x,t)}{\partial x} \right]_0^{l_p} + C_p V_p(t).
\end{cases}$$
(4)

One end of the cantilever beam is fixed while the other end is free. So the boundary conditions are

$$\begin{cases} w(0,t) = w_b(t), \\ \frac{\partial w(0,t)}{\partial x} = 0, \end{cases}$$
 (5)

and

$$\begin{cases}
M_p(l_p, t) = B_p \frac{\partial^2 w(l_p, t)}{\partial x^2} - e_p V_p(t) = 0, \\
Q_p(l_p, t) = B_p \frac{\partial^3 w(l_p, t)}{\partial x^3} = 0.
\end{cases}$$
(6)

In the classical energy harvesting applications, the cantilever beam is subject to a periodical base excitation $w_b(t)$. Thus the dynamic response of the cantilever beam is decomposed as

$$w(x,t) = w_b(t) + w_{rel}(x,t), \tag{7}$$

where $w_{rel}(x,t)$ is the relative displacement function of the cantilever beam. In this way, the system is converted into

$$B_{p}\frac{\partial^{4}w_{rel}(x,t)}{\partial x^{4}} + m_{p}\frac{\partial^{2}w_{rel}(x,t)}{\partial t^{2}} = -m_{p}\frac{\partial^{2}w_{b}(t)}{\partial t^{2}},$$
(8)

$$e_p \left[\frac{\partial^2 w_{rel}(x,t)}{\partial x \partial t} \right] \Big|_0^{l_p} + C_p \frac{dV_p(t)}{dt} + \frac{V_p(t)}{R_l} = 0.$$
 (9)

$$\begin{cases} w_{rel}(0,t) = 0, \\ \frac{\partial w_{rel}(0,t)}{\partial x} = 0, \end{cases}$$
 (10)

and

$$\begin{cases} B_p \frac{\partial^2 w_{rel}(l_p, t)}{\partial x^2} - e_p V_p(t) = 0, \\ \frac{\partial^3 w_{rel}(l_p, t)}{\partial x^3} = 0. \end{cases}$$
 (11)

Considering a sinusoidal base excitation

$$w_b(t) = \eta_b e^{j\sigma_b t} \tag{12}$$

where ξ_b is usually a real vibration amplitude, the steady state solution for the above system can be reasonably set as

$$w_{rel}(x,t) = \eta_{rel}(x)e^{j\sigma_b t}, \quad V_p(t) = \tilde{V}_p e^{j\sigma_b t}, \tag{13}$$

where $\eta_{rel}(x)$ and \tilde{V}_p are complex amplitudes. Then the above system is again simplified as

$$B_p \frac{\partial^4 \eta_{rel}(x)}{\partial x^4} - m_p \sigma_b^2 \eta_{rel}(x) = m_p \sigma_b^2 \eta_b, \tag{14}$$

$$\begin{cases}
\eta_{rel}(0) = 0, \\
\frac{\partial \eta_{rel}(0)}{\partial x} = 0,
\end{cases}$$
(15)

and

$$\begin{cases}
B_p \frac{\partial^2 \eta_{rel}(l_p)}{\partial x^2} + \frac{j\sigma_b R_l}{1 + j\sigma_b C_p R_l} e_p^2 \frac{\partial \eta_{rel}(l_p)}{\partial x} = 0, \\
\frac{\partial^3 \eta_{rel}(l_p)}{\partial x^3} = 0.
\end{cases}$$
(16)

Note that here we assume a sinusoidal steady state response, which is not actually validated theoretically.

Obviously we can have the following dimensionless scheme:

$$\eta_{rel} \sim u\eta_b, \quad x \sim zl_p$$
(17)

and therefore the following dimensionless parameters

$$\sigma = \sigma_b \sqrt{\frac{m_p l_p^4}{B_p}}, \quad \beta = R_l C_p \sqrt{\frac{B_p}{m_p l_p^4}}, \quad \delta = \frac{e_p^2 l_p}{C_p B_p}.$$
 (18)

Now, we reach the following dimensionless system of boundary value problem

$$\begin{cases} u'''' - \sigma^2 u = \sigma^2, \\ u(0) = 0, \\ u'(0) = 0, \end{cases}$$

$$u''(1) + \frac{j\beta\sigma}{1 + j\beta\sigma} \delta u'(1) = 0,$$

$$u'''(1) = 0,$$
(19)

where the prime denotes the derivative with respect to z. The analytical solution to this problem can be formulated as

$$u(z;\delta) = A_{\delta}\cos\sqrt{\sigma}z + B_{\delta}\sin\sqrt{\sigma}z + C_{\delta}\cosh\sqrt{\sigma}z + D_{\delta}\sinh\sqrt{\sigma}z - 1$$
 (20)

and hence

$$u'(z;\delta) = \sigma^{1/2} \left(-A_{\delta} \sin \sqrt{\sigma}z + B_{\delta} \cos \sqrt{\sigma}z + C_{\delta} \sinh \sqrt{\sigma}z + D_{\delta} \cosh \sqrt{\sigma}z \right),$$

$$u''(z;\delta) = \sigma \left(-A_{\delta} \cos \sqrt{\sigma}z - B_{\delta} \sin \sqrt{\sigma}z + C_{\delta} \cosh \sqrt{\sigma}z + D_{\delta} \sinh \sqrt{\sigma}z \right),$$

$$u'''(z;\delta) = \sigma^{3/2} \left(A_{\delta} \sin \sqrt{\sigma}z - B_{\delta} \cos \sqrt{\sigma}z + C_{\delta} \sinh \sqrt{\sigma}z + D_{\delta} \cosh \sqrt{\sigma}z \right).$$
(21)

The coefficients A_{δ} , B_{δ} , C_{δ} , and D_{δ} are then subject to the following linear system of equations:

$$A_{\delta} + C_{\delta} = 1,$$

$$B_{\delta} + D_{\delta} = 0,$$

$$(-A_{\delta}\cos\sqrt{\sigma} - B_{\delta}\sin\sqrt{\sigma} + C_{\delta}\cosh\sqrt{\sigma} + D_{\delta}\sinh\sqrt{\sigma}) +$$

$$\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1}\delta\left(-A_{\delta}\sin\sqrt{\sigma} + B_{\delta}\cos\sqrt{\sigma} + C_{\delta}\sinh\sqrt{\sigma} + D_{\delta}\cosh\sqrt{\sigma}\right) = 0,$$

$$A_{\delta}\sin\sqrt{\sigma} - B_{\delta}\cos\sqrt{\sigma} + C_{\delta}\sinh\sqrt{\sigma} + D_{\delta}\cosh\sqrt{\sigma} = 0.$$
(22)

Analytically, we can directly obtain the solution to this problem as

$$A_{\delta} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]},$$

$$B_{\delta} = \frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]},$$

$$C_{\delta} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]},$$

$$D_{\delta} = \frac{-\cos\sqrt{\sigma}\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}\cosh\sqrt{\sigma} - \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}.$$

$$(23)$$

The resulting complex amplitudes \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p for output voltage $V_p(t)$, output current $I_p(t)$, and output power $P_p(t)$, respectively, can be formulated as follows

$$\begin{cases}
\tilde{V}_{p} = -\frac{j\sigma\beta}{j\sigma\beta+1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} u'(1), \\
= -\frac{j\sigma\beta}{j\sigma\beta+1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \sigma^{1/2} \left(-A_{\delta} \sin \sqrt{\sigma} + B_{\delta} \cos \sqrt{\sigma} + C_{\delta} \sinh \sqrt{\sigma} + D_{\delta} \cosh \sqrt{\sigma} \right) \\
= \frac{j\sigma\beta}{j\sigma\beta+1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \frac{\sqrt{\sigma} \left(\sin \sqrt{\sigma} - \sinh \sqrt{\sigma} \right)}{1 + \cos \sqrt{\sigma} \cosh \sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \delta \left(\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma} \right)} \\
= \frac{j\sigma\beta}{j\sigma\beta+1} V_{m}, \\
\tilde{I}_{p} = \tilde{V}_{p}/R_{l} = \frac{V_{m}}{R_{l}} \frac{j\sigma\beta}{j\sigma\beta+1} = \frac{j\sigma\beta}{j\sigma\beta+1} I_{m}, \\
\tilde{P}_{p} = \tilde{V}_{p}^{2}/R_{l} = \frac{V_{m}^{2}}{R_{l}} \left(\frac{j\sigma\beta}{j\sigma\beta+1} \right)^{2} = \left(\frac{j\sigma\beta}{j\sigma\beta+1} \right)^{2} P_{m},
\end{cases} \tag{24}$$

in which we have used the notations that

$$\begin{cases} V_{m} = \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \frac{\sqrt{\sigma} \left(\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}\right)}{1 + \cos \sqrt{\sigma} \cosh \sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma} \delta \left(\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}\right)}, \\ I_{m} = \frac{V_{m}}{R_{l}}, \\ P_{m} = \frac{V_{m}^{2}}{R_{l}}. \end{cases}$$

$$(25)$$

In the following, we can obtain the corresponding displacement function u(z) in terms of its amplitude and phase in Figure 1.

The solution u(z) is dependent upon three dimensionless parameters β , σ , and δ . β indicates the electric properties of the piezoelectric energy harvesting system, σ is the equivalent base excitation frequency and hence depicts the mechanical input part of the system, and δ reflects the electromechanical effect in the system. It is seen from the figure that the responsive displacement function u(z) is tuned by the attached piezoelectric layers. Nonetheless, the tuning effect is

Figure 1: Amplitude and phase of the displacement function u(z)

minuscule in the way that compared to the non-piezoelectric case, amplitude of the displacement u(z) is disturbed to a small degree, while the phase is little offset from a value of 0.

Using the following regular expansion:

$$\begin{cases}
A_{\epsilon} = A_0 + \epsilon A_1 + \epsilon^2 A_2 + \cdots, \\
B_{\epsilon} = B_0 + \epsilon B_1 + \epsilon^2 B_2 + \cdots, \\
C_{\epsilon} = C_0 + \epsilon C_1 + \epsilon^2 C_2 + \cdots, \\
D_{\epsilon} = D_0 + \epsilon D_1 + \epsilon^2 D_2 + \cdots,
\end{cases}$$
(26)

we obtain the successive expansion problem: $O(\epsilon^0)$:

$$\begin{cases}
A_0 + C_0 = 1, \\
B_0 + D_0 = 0, \\
-A_0 \cos \sqrt{\sigma} - B_0 \sin \sqrt{\sigma} + C_0 \cosh \sqrt{\sigma} + D_0 \sinh \sqrt{\sigma} = 0, \\
A_0 \sin \sqrt{\sigma} - B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} = 0.
\end{cases} (27)$$

The solution is

$$\begin{cases}
A_0 = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
B_0 = \frac{\cosh\sqrt{\sigma}\sin\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
C_0 = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
D_0 = -\frac{\cosh\sqrt{\sigma}\sin\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}}
\end{cases}$$
(28)

Hence we have

$$-A_0 \sin \sqrt{\sigma} + B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} = \frac{\sinh \sqrt{\sigma} - \sin \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1}$$
(29)

 $O(\epsilon^1)$:

$$\begin{cases}
A_1 + C_1 = 0, \\
B_1 + D_1 = 0, \\
(-A_1 \cos \sqrt{\sigma} - B_1 \sin \sqrt{\sigma} + C_1 \cosh \sqrt{\sigma} + D_1 \sinh \sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_0 \sin \sqrt{\sigma} + B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} \right) = 0, \\
A_1 \sin \sqrt{\sigma} - B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma} = 0.
\end{cases} (30)$$

The solution is

$$\begin{cases}
A_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
B_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
C_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(-\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
D_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{-\sin\sqrt{\sigma} + \sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right)
\end{cases}$$
(31)

Then we have

$$-A_1 \sin \sqrt{\sigma} + B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma}$$

$$= \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right) \left(\frac{\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right)$$
(32)

 $O(\epsilon^2)$:

$$\begin{cases}
A_2 + C_2 = 0, \\
B_2 + D_2 = 0, \\
(-A_2 \cos \sqrt{\sigma} - B_2 \sin \sqrt{\sigma} + C_2 \cosh \sqrt{\sigma} + D_2 \sinh \sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_1 \sin \sqrt{\sigma} + B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma} \right) = 0, \\
A_2 \sin \sqrt{\sigma} - B_2 \cos \sqrt{\sigma} + C_2 \sinh \sqrt{\sigma} + D_2 \cosh \sqrt{\sigma} = 0.
\end{cases} (33)$$

The solution is

$$\begin{cases} A_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\ B_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\ C_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{-\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\ D_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\ D_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \end{cases}$$

To get higher order expansions, we can use the following iteration method: $O(\epsilon^{k+1})$ $(k \ge 1)$:

$$\begin{cases}
A_{k+1} + C_{k+1} = 0, \\
B_{k+1} + D_{k+1} = 0, \\
(-A_{k+1}\cos\sqrt{\sigma} - B_{k+1}\sin\sqrt{\sigma} + C_{k+1}\cosh\sqrt{\sigma} + D_{k+1}\sinh\sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_k\sin\sqrt{\sigma} + B_k\cos\sqrt{\sigma} + C_k\sinh\sqrt{\sigma} + D_k\cosh\sqrt{\sigma} \right) = 0, \\
A_{k+1}\sin\sqrt{\sigma} - B_{k+1}\cos\sqrt{\sigma} + C_{k+1}\sinh\sqrt{\sigma} + D_{k+1}\cosh\sqrt{\sigma} = 0.
\end{cases} (35)$$

The solution is

$$\begin{cases}
A_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\
B_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\
C_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(-\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\
D_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{-\sin\sqrt{\sigma} + \sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k)
\end{cases}$$
(36)

where for $k \geq 2$

$$Q_k = -A_k \sin \sqrt{\sigma} + B_k \cos \sqrt{\sigma} + C_k \sinh \sqrt{\sigma} + D_k \cosh \sqrt{\sigma}, \tag{37}$$

and for $k \geq 0$

$$Q_{k+1} = -A_{k+1} \sin \sqrt{\sigma} + B_{k+1} \cos \sqrt{\sigma} + C_{k+1} \sinh \sqrt{\sigma} + D_{k+1} \cosh \sqrt{\sigma}$$

$$= -\left(\frac{\sin \sqrt{\sigma} \cosh \sqrt{\sigma} + \cos \sqrt{\sigma} \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1}\right) \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) Q_k,$$
(38)

and

$$Q_{1} = -A_{1} \sin \sqrt{\sigma} + B_{1} \cos \sqrt{\sigma} + C_{1} \sinh \sqrt{\sigma} + D_{1} \cosh \sqrt{\sigma}$$

$$= \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right) \left(\frac{\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right)$$
(39)

$$Q_0 = \frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \tag{40}$$

Hence it is shown that for $k \geq 0$

$$Q_{k} = -\left(\frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) Q_{k}$$

$$= \left[-\left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) \left(\frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right)\right]^{k} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right)$$
(41)

As a result, we obtain that for $k \geq 0$

$$\begin{cases} A_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ B_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ C_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\cos\sqrt{\sigma}-\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ D_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sin\sqrt{\sigma}+\sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \end{cases}$$