Matrix Practice(Linear Algebra)

Order of a Matrix

1. Find the order of the following matrices

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{pmatrix}$ c) $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 4 & 0 & 4 \\ 1 & 8 & 3 & 1 \end{pmatrix}$ e) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Trace of a Square Matrix

2. Calculate the trace, trace(A), of the following matrices

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 7 & 5 \\ 1 & 4 & 7 \\ 1 & 7 & -5 \end{pmatrix}$

Transpose of a Matrix

3. Find the transpose of matrix A (A^T)

b)
$$A = \begin{pmatrix} 1 & 5 & 7 \\ 9 & 1 & 7 \\ 0 & 7 & 1 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{pmatrix}$, e) $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$

Matrix Entry Value

4. Find the following entry value

a)
$$m_{12}$$
, m_{22} , m_{34} , m_{44} , m_{14} and m_{33} for $M = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{pmatrix}$

Columns and rows vectors

5. Write the column and row vector of

a)
$$\vec{v} = (2,1,3)$$
 b) $\vec{v} = (2,0,3,4)$ c) $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ d) $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Symmetric Matrix

6. Which of the following matrices are symmetric?

a)
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & 6 \\ 6 & 3 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{pmatrix}$, d) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{pmatrix}$ e) $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{pmatrix}$

b) If $M = \begin{pmatrix} 2 & x & y & 7 \\ 0 & 4 & z & t \\ 1 & 0 & 1 & u \\ v & 6 & 8 & 5 \end{pmatrix}$ is a symmetric matrix, then what are the value of x, y, z, t, u, v?

Diagonal matrix, Triangular Matrix and Skew Symmetric Matrix

7. Which of the matrices are diagonal, upper, lower triangular matrix or skew symmetric?

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & 5 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 \\ 7 & 8 & 9 & 0 \\ 3 & 5 & 9 & 10 \end{pmatrix}$ c) $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{pmatrix}$ d) $D = \begin{pmatrix} 0 & -2 & 3 \\ 2 & 0 & -7 \\ -3 & 7 & 0 \end{pmatrix}$

b) Write the skew symmetric matric of $\vec{v} = (1,2,3)$ $\vec{u} = (0,2,-1)$ and $\vec{w} = (4,-2,3)$

Matrices Addition

- 8. Given the following matrices $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$, find
 - a) A + B b) 2B A c) $B B^t$ d) 2A 3A e) $A^t + B^t$

Matrix Form of the Vector Dot Product

- 9. Write the matrix-dot product of the following vector-dot product
 - a) $\vec{u} \cdot \vec{v}$ where $\vec{v} = (1,2,3)$ $\vec{u} = (0,2,-1)$
 - b) $\vec{u} \cdot \vec{v}$ where $\vec{v} = (2,2,-1)$ $\vec{u} = (3,2,-4)$

Matrix Form of the Vector Cross Product

- 10. Write the matrix-cross product of the following vector-cross product
 - a) $\vec{u} \times \vec{v}$ where $\vec{v} = (1,2,3)$ $\vec{u} = (0,2,-1)$
 - b) $\vec{u} \times \vec{v}$ where $\vec{v} = (1,0,-1)$ $\vec{u} = (2,1,-1)$

Matrices Multiplication

11. Calculate the following matrix multiplication

a)
$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 \\ 6 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & 4 \\ 0 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ f) $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 \end{pmatrix}$

Right and left Vector- Matrix multiplication

12. Let
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ $\vec{u} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ calculate a) $A \cdot \vec{v}$ and $\vec{v} \cdot A$ b) $A \cdot \vec{u}$ and $\vec{u} \cdot A$ c) $B \cdot \vec{u}$ $\vec{u} \cdot B$ d) $B \cdot \vec{w}$ e) $\vec{v} \cdot \vec{u}^t$

System of Linear equations and Augmented Matrix.

- 13. Write the augmented matrix of the following systems of linear equations
 - a) $\begin{cases} x+2y=5 \\ 2x-3y=-4 \end{cases}$ b) $\begin{cases} x+2y=7 \\ 5x-3y=9 \end{cases}$ c) $\begin{cases} 2x+3y=16 \\ 2x-y=8 \end{cases}$ d) $\begin{cases} 3x+y=2 \\ 2x+y=1 \end{cases}$ e) $\begin{cases} x+y-5z=-3 \\ x+y+z=3 \\ 7x-y+2z=8 \end{cases}$ f) $\begin{cases} x+y+z=2 \\ x-3y+2z=-4 \\ 5x-y+3z=8 \end{cases}$ g) $\begin{cases} x+3y+z=4 \\ 2x-y+2z=1 \\ 3x-y+2z=3 \end{cases}$ h) $\begin{cases} x+y-z=6 \\ 2x+3y+z=7 \\ x-y+2z=-4 \end{cases}$

Identifying a Row Echelon Form of a Matrix

14. Which of the matrices are in row echelon form?

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 8 & 4 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 4 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 8 & 2 \\ 2 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix} \quad E = \begin{pmatrix} 1 & 4 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

$$F = \begin{pmatrix} 0 & 5 & 3 & 0 & 7 \\ 0 & 0 & 5 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad G = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} \quad H = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} \quad I = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix} \quad J = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \end{pmatrix}$$

Identifying Reduced Row Echelon Form of a Matrix (RREF)

15. Which of the matrices are in reduced row echelon form?

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$F = \begin{pmatrix} 1 & 5 & 0 & 0 & 7 \\ 0 & 0 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} G = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} I = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 5 \end{pmatrix} J = \begin{pmatrix} 1 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Computing Row Echelon Form of a Matrix

16. Convert the following matrices in row echelon form

a)
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & 6 \\ 6 & 3 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{pmatrix}$, d) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{pmatrix}$ e) $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 4 & 7 & 3 \end{pmatrix}$

Computing Reduced Row Echelon Form of a Matrix (RREF)

17. Convert the following matrices into reduced row echelon form (canonical form)

a)
$$\begin{pmatrix} 1 & 2 & 5 \\ 2 & -3 & -4 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & 7 \\ 5 & -3 & 9 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 3 & 16 \\ 2 & -1 & 8 \end{pmatrix}$ d) $\begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}$
e) $\begin{pmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{pmatrix}$ f) $\begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{pmatrix}$ g) $\begin{pmatrix} 1 & 3 & 1 & 4 \\ 2 & -1 & 2 & 1 \\ 3 & -1 & 2 & 3 \end{pmatrix}$ h) $\begin{pmatrix} 1 & 1 & -1 & 6 \\ 2 & 3 & 1 & 7 \\ 1 & -1 & 2 & -2 \end{pmatrix}$

Solution of System of Linear Equations Using Reduced Row Echelon Form(RREF)

18. Solve the system of linear equations using Reduced Row Echelon Form matrix

a)
$$\begin{cases} x+2y=5\\ 2x-3y=-4 \end{cases}$$
 b)
$$\begin{cases} x+2y=7\\ 5x-3y=9 \end{cases}$$
 c)
$$\begin{cases} 2x+3y=16\\ 2x-y=8 \end{cases}$$
 d)
$$\begin{cases} 3x+y=2\\ 2x+y=1 \end{cases}$$
 e)
$$\begin{cases} x+y-5z=-3\\ x+y+z=3\\ 7x-y+2z=8 \end{cases}$$
 f)
$$\begin{cases} x+y+z=2\\ x-3y+2z=-4\\ 5x-y+3z=8 \end{cases}$$
 g)
$$\begin{cases} x+3y+z=4\\ 2x-y+2z=1\\ 3x-y+2z=3 \end{cases}$$
 h)
$$\begin{cases} x+y-z=6\\ 2x+3y+z=7\\ x-y+2z=-2 \end{cases}$$

Rank of a Matrix

19. Find the rank of the Matrix

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 6 & 1 & 1 \\ 3 & 4 & 3 & 4 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{pmatrix}$

Linear dependence using Matrix Echelon Form

20. Are \vec{u}_1 , \vec{u}_2 and \vec{u}_3 linear independent or linear dependent in \mathbb{R}^3 ?

a)
$$\vec{u}_1 = (1, 2, 5), \vec{u}_2 = (2, 4, 1)$$
 and $\vec{u}_3 = (1, 1, 2)$

a)
$$\vec{u}_1 = (1,2,5), \vec{u}_2 = (2,4,1)$$
 and $\vec{u}_3 = (1,1,2)$
b) $\vec{u}_1 = (1,4,3), \vec{u}_2 = (3,0,1)$ and $\vec{u}_3 = (1,1,2)$
c) $\vec{u}_1 = (1,1,1), \vec{u}_2 = (1,2,0)$ and $\vec{u}_3 = (0,-1,1)$
d) $\vec{u}_1 = (1,1,1), \vec{u}_2 = (1,2,0)$ and $\vec{u}_3 = (0,-1,2)$

c)
$$\vec{u}_1 = (1,1,1), \vec{u}_2 = (1,2,0)$$
 and $\vec{u}_3 = (0,-1,1)$

d)
$$\vec{u}_1 = (1,1,1), \vec{u}_2 = (1,2,0)$$
 and $\vec{u}_3 = (0,-1,2)$

21. Are \vec{u}_1 and \vec{u}_2 linear independent or linear dependent in \mathbb{R}^2 ?

a) $\vec{u}_1 = (1,2,)$ and $\vec{u}_2 = (2,4)$ b) $\vec{u}_1 = (2,8)$ and $\vec{u}_2 = (2,5)$

a)
$$\vec{u}_1 = (1, 2,)$$
 and $\vec{u}_2 = (2, 4)$

b)
$$\vec{u}_1 = (2,8) \text{ and } \vec{u}_2 = (2,5)$$

22. Are u, v, and w linear independent or linear dependent in P_2 ?

a)
$$u = 1 - x$$
, $v = 5 - 3x + 2x^2$ and $w = 1 + 3x - x^2$

b)
$$u = 1 + x + x^2$$
, $v = x + 2x^2$ and $w = x^2$

Basis Using Matrix Reduced Row Echelon Form(RREF)

23. Do the set of vector $B = \{\vec{u}_1, \vec{u}_2\}$ form a basis of \mathbb{R}^3 ?

a)
$$\vec{u}_1 = (2,8)$$
 and $\vec{u}_2 = (2,5)$ b) $\vec{u}_1 = (1,3)$ and $\vec{u}_2 = (2,6)$

b)
$$\vec{u}_1 = (1,3)$$
 and $\vec{u}_2 = (2,6)$

24. Does the set of vector $B = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ form a basis of \mathbb{R}^3 each case below?

a)
$$\vec{u}_1 = (1,0,0), \vec{u}_2 = (1,1,0)$$
 and $\vec{u}_3 = (1,1,1)$

a)
$$\vec{u}_1 = (1,0,0), \vec{u}_2 = (1,1,0)$$
 and $\vec{u}_3 = (1,1,1)$ b) $\vec{u}_1 = (1,2,3), \vec{u}_2 = (2,0,1)$ and $\vec{u}_3 = (3,2,2)$

c)
$$\vec{u}_1 = (1,2,1), \vec{u}_2 = (1,7,-1)$$
 and $\vec{u}_3 = (2,1,3)$ d) $\vec{u}_1 = (1,2,1), \vec{u}_2 = (5,2,3)$ and $\vec{u}_3 = (3,2,2)$

d)
$$\vec{u}_1 = (1,2,1), \vec{u}_2 = (5,2,3)$$
 and $\vec{u}_3 = (3,2,2)$

25. Which of the following set of vectors are bases for P_2 ?

a)
$$u = 1 - x$$
, $v = 5 - 3x + 2x^2$ and $w = 1 + 3x - x^2$

b)
$$u = 1 + 2x + x^2$$
, $v = 2 + x^2$ and $w = 3 + 2x + 2x^2$

c)
$$u = 1 + x + x^2$$
, $v = x + 2x^2$ and $w = x^2$

d)
$$u = 1 - 2x + 3x^2$$
, $v = 5 + 6x - x^2$ and $w = 3 + 2x + x^2$

Basis of a Matrix Row Space

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{pmatrix}$

Basis of a Matrix Column Space

27. Find the basis of column space of matrix A, dim(colsp(A)) and rank(A)

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{pmatrix}$

Basis of a Matrix Null Space

28. Find a basis for the null space of A and $\dim(Null(A))$

a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 3 & 8 \end{pmatrix}$ e) $A = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 5 & 1 \end{pmatrix}$

Coordinate of a Vector and Matrix

29. Find the coordinate of \vec{v} with respect to the basis $B = \{\vec{i}, \vec{j}, \vec{k}\} = \{(1,0,0), (0,1,0), (0,0,1)\}$

a)
$$\vec{v} = 2\vec{i} + 3\vec{j} - \vec{k}$$

a)
$$\vec{v} = 2\vec{i} + 3\vec{j} - \vec{k}$$
 b) $\vec{v} = \vec{i} + \vec{j} - \vec{k}$ c) $\vec{v} = 5\vec{i} - \vec{k}$

30. Find the coordinate of matrix A with respect $B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$

a)
$$A = \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ c) $A = \begin{pmatrix} 0 & 4 \\ 2 & 1 \end{pmatrix}$ d) $A = \begin{pmatrix} 3 & -7 \\ 2 & 4 \end{pmatrix}$

31. Find the coordinate of P with respect to the given basis B

a)
$$p(x) = 5 - 4x + 7x^2 + 10x^3$$
 in $B = \{1, x, x^2, x^3\}$

b)
$$p(x) = -x + 3x^2$$

in
$$B = \{1, x, x^2, x^3\}$$

b)
$$p(x) = -x + 3x^2$$
 in $B = \{1, x, x^2, x^3\}$
c) $p(x) = -x + 3x^2$ in $B = \{1, x, x^2\}$

in
$$B = \{1, x, x^2\}$$

d)
$$p(x) = 2 - x + 7x^2$$
 in $B = \{1, x, x^2\}$

in
$$B = \{1, x, x^2\}$$

32. Calculate the coordinates of \vec{u} with respect to the given basis B

- a) Find the coordinate of $\vec{u} = (2, -3)$ with respect to $B = \{(1, 1), (3, 4)\}$
- b) Find the coordinate of $\vec{u} = (8,7)$ with respect to $B = \{(1,2),(2,1)\}$
- c) Find the coordinate of $\vec{u} = (-3,1)$ with respect to $B = \{(1,3),(2,1)\}$
- d) Find the coordinate of $\vec{u} = (1,2)$ with respect to $B = \{(1,1),(3,4)\}$

Change of Basis and Transition Matrix

33. Consider the bases $S = \{\vec{i}, \vec{j}\} = \{(1,0),(0,1)\}$ and $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,2),(2,5)\}$

- a) Find the transition matrix from S to B, $M_{R \leftarrow S}$
- b) If $\vec{v} = (1,2) = \vec{i} + 2\vec{j}$, calculate its coordinate in B, that is find $[\vec{v}]_{R}$
- c) Find the transition matrix from B to S , $M_{S \leftarrow B}$

34. Consider the bases $S = \{\vec{i}, \vec{j}\} = \{(1,0), (0,1)\}$ and $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,3), (1,4)\}$

- a) Find the transition matrix from S to B, $M_{B \leftarrow S}$
- b) If $\vec{v} = (1,2) = \vec{i} + 2\vec{j}$, calculate its coordinate in B, that is find $[\vec{v}]_{R}$
- c) Find the transition matrix from B to S, $M_{S \leftarrow B}$

35. Consider the bases $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,3), (1,4)\}$ and $B' = \{\vec{v}_1, \vec{v}_2\} = \{(1,2), (2,5)\}$

- a) Find the transition matrix from B to B', $M_{{\scriptscriptstyle B'\leftarrow B}}$
- b) If $\begin{bmatrix} \vec{v} \end{bmatrix}_B = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ in B, calculate its coordinate in B', that is find $\begin{bmatrix} \vec{v} \end{bmatrix}_{B'}$

36. Consider the bases $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,3), (1,4)\}$ and $B' = \{\vec{v}_1, \vec{v}_2\} = \{(1,2), (1,1)\}$

- a) Find the transition matrix from B to B', $M_{B'\leftarrow B}$
- b) If $[\vec{v}]_B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ in B, calculate its coordinate in B', that is find $[\vec{v}]_{B'}$