Reference the Population Mean Difference Part of the Exam 2 Practice Test to Fill in the Blanks Below

A. Problem Stater	ment	ì

We	would	like	to	test	the	following	hy	potheses:
----	-------	------	----	------	-----	-----------	----	-----------

$$\begin{split} H_0 : & \mu_F - \mu_M = 0 \\ H_A : & \mu_F - \mu_M \neq 0, \end{split}$$

W	here:

	μ_F is the average number of weekend cigarettes ALL female smokers in the U. μ_M is the average number of weekend cigarettes ALL male smokers in the U.K	
n o	n order to test this, we need to know more about the sampling distribution of	
1)	1)	
fν	B. Actual Sampling Distribution Creation f we wanted to create this sampling distribution by hand, that would help us test need to do the following.	these hypotheses we would
1.	1. Collect <i>M</i> random samples (2) (WITH/WITHOUT)replaceme	nt from the population
	distribution of female U.K. smokers.	
2.	2. Then calculate the (3) of each of these random sample	s and put them in a list.
3.	3. Collect <i>M</i> random samples (2) (WITH/WITHOUT) replaceme	ent from the population
	distribution of male U.K. smokers.	
4.	4. Then calculate the (3) of each of these random sample	s and put them in a list.
5.	5. Finally, to create the sampling distribution we would subtract the values in bo	oth lists.
HO dis	C. Theoretical Sampling Distribution HOWEVER, we don't actually need to create this sampling distribution above, beconstribution. 1. The mean of this sampling distribution is approximately (4)	
2.		
3.		
	then the distribution of (1) is (7)	
	a) .	
	b)	
	c)	
	d)	
	e)	
	f)	
	-1	

D. What does a p-value really mean?

Because the sampling distribution of (1)_______ is (7)______ we are able to calculate the p-value which represents

p-value = P((1) _____ that are at least as suspicious (of the alternative hypothesis) as (8) _____ assuming that (9) _____

For this problem, a (1)______ that is at exactly as suspicious (of the alternative hypothesis as (8)______ is (10)_____

E. Calculating the p-value

