# Introduction to Machine Learning Vapnik–Chervonenkis Dimension

Andres Mendez-Vazquez

January 26, 2023

#### Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}(N)$
- Example of Computing #
- What are we looking for?
- Break Point
- VC-Dimension
- lacktriangle Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron



#### Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### 2 Vapnik-Chervonenkis Dimension

- Theory of GeneralizationGeneralization Error
  - Reinterpretation
  - Reinterpretatio
- Subtlety
- lacksquare A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- lacksquare Partition B(N,k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron

#### **Until Now**



# The Question

#### But Never asked ourselves if

• Are we able to really learn f from  $\mathcal{D}$ ?

# Example

#### Consider the following data set $\mathcal{D}$

 $\bullet$  Consider a Boolean target function over a three-dimensional input space  $\mathcal{X} = \{0,1\}^3$ 

# Example

#### Consider the following data set $\mathcal{D}$

 $\bullet$  Consider a Boolean target function over a three-dimensional input space  $\mathcal{X} = \{0,1\}^3$ 

#### With a data set $\mathcal{D}$

| n | $oldsymbol{x}_n$ | $y_n$ |
|---|------------------|-------|
| 1 | 000              | 0     |
| 2 | 001              | 1     |
| 3 | 010              | 1     |
| 4 | 011              | 0     |
| 5 | 100              | 1     |

# We have the following

# We have the space of input has $2^3$ possibilities

 $\bullet$  Therefore, we have  $2^{2^3}$  possible functions for f

# We have the following

# We have the space of input has $2^3$ possibilities

 $\bullet$  Therefore, we have  $2^{2^3}$  possible functions for f

# Learning outside the data $\mathcal{D},$ basically we want a g that generalize outside $\mathcal{D}$

| n | $\boldsymbol{x}_n$ | $y_n$ | g | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ | $f_8$ |
|---|--------------------|-------|---|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 | 000                | 0     | 0 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 2 | 001                | 1     | 1 | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 3 | 010                | 1     | 1 | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 4 | 011                | 0     | 0 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 5 | 100                | 1     | 1 | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 6 | 101                |       | ? | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 7 | 110                |       | ? | 0     | 0     | 1     | 1     | 0     | 0     | 1     | 1     |
| 7 | 110                |       | ? | 0     | 1     | 0     | 1     | 0     | 1     | 0     | 1     |

#### Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
    - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

    - Error in the Sample and Error in the Phenomena
      - Formal Definitions
    - Back to the Hoeffding's Inequality
    - The Learning Process
    - Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error

  - Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

#### Here is the Dilemma!!!

# Each of the $f_1, f_2, ..., f_8$

- $\bullet$  It is a possible real f, the true f.
- ullet Any of them is a possible good f

#### Here is the Dilemma!!!

# Each of the $f_1, f_2, ..., f_8$

- It is a possible real f, the true f.
- ullet Any of them is a possible good f

#### Therefore

• The quality of the learning will be determined by how close our prediction is to the true value.

### Therefore, we have

#### In order to select a g, we need to have an hypothesis ${\cal H}$

 $\bullet$  To be able to select such g by our training procedure.

#### Therefore, we have

#### In order to select a g, we need to have an hypothesis ${\cal H}$

ullet To be able to select such g by our training procedure.

# Further, any of the $f_1, f_2, ..., f_8$ is a good choice for f

ullet Therefore, it does not matter how near we are to the bits in  ${\cal D}$ 

## Therefore, we have

#### In order to select a g, we need to have an hypothesis $\mathcal{H}$

ullet To be able to select such g by our training procedure.

# Further, any of the $f_1, f_2, ..., f_8$ is a good choice for f

ullet Therefore, it does not matter how near we are to the bits in  ${\cal D}$ 

#### Our problem, we want to generalize to the data outside $\mathcal{D}$

 $\bullet$  However, it does not make any difference if our Hypothesis is correct or incorrect in  $\mathcal D$ 

#### We want to Generalize

But, If we want to use only a deterministic approach to  ${\cal H}$ 

ullet Our Attempts to use  ${\mathcal H}$  to learn g is a waste of time!!!

#### Outline

- Is Learning Feasible?
  - Introduction
  - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality

Error in the Sample and Error in the Phenomena

- Formal Definitions
- Back to the Hoeffding's Inequality
- The Learning Process
- Feasibility of Learning
- Example
  - Overall Error

- Theory of Generalization Generalization Error
  - Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



# Consider a "bin" with red and green marbles



#### We have the "Real Probabilities"

- P [Pick a Red marble] =  $\mu$
- $P[Pick a Blue marble] = 1 \mu$

#### We have the "Real Probabilities"

- $P[Pick a Red marble] = \mu$
- $P[Pick a Blue marble] = 1 \mu$

#### However, the value of $\mu$ is not know

ullet Thus, we sample the space for N samples in an independent way.

#### We have the "Real Probabilities"

- $P[Pick a Red marble] = \mu$
- $P[Pick a Blue marble] = 1 \mu$

#### However, the value of $\mu$ is not know

ullet Thus, we sample the space for N samples in an independent way.

#### Here, the fraction of real marbles is equal to u

• Question: Can  $\nu$  can be used to know about  $\mu$ ?

#### Two Answers... Possible vs. Probable

#### No!!! Because we can see only the samples

• For example, Sample an be mostly blue while bin is mostly red.

#### Two Answers... Possible vs. Probable

#### No!!! Because we can see only the samples

• For example, Sample an be mostly blue while bin is mostly red.

#### Yes!!!

• Sample frequency  $\nu$  is likely close to bin frequency  $\mu$ .

# What does $\nu$ say about $\mu$ ?

#### We have the following hypothesis

• In a big sample (large N ),  $\nu$  is probably close to  $\mu$  (within  $\epsilon$ ).

# What does $\nu$ say about $\mu$ ?

#### We have the following hypothesis

• In a big sample (large N ),  $\nu$  is probably close to  $\mu$  (within  $\epsilon$ ).

#### How?

• Hoeffding's Inequality .

#### Outline

- Is Learning Feasible?
  - Introduction
  - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
  - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



# We have the following theorem

#### Theorem (Hoeffding's inequality)

• Let  $Z_1,...,Z_n$  be independent bounded random variables with  $Z_i \in [a,b]$  for all i, where  $-\infty < a \le b < \infty$ . Then

$$P\left(\frac{1}{N}\sum_{i=1}^{N} (Z_i - E[Z_i]) \ge t\right) \le \exp^{-\frac{2Nt^2}{(b-a)^2}}$$

and

$$P\left(\frac{1}{N}\sum_{i=1}^{N}(Z_i - E[Z_i]) \le -t\right) \le \exp^{-\frac{2Nt^2}{(b-a)^2}}$$

for all t > 0.

#### Assume that the $Z_i$ are the random variables from the N samples

• Then, we have that values for  $Z_i \in \{0,1\}$  therefore we have that...

#### Assume that the $Z_i$ are the random variables from the N samples

ullet Then, we have that values for  $Z_i \in \{0,1\}$  therefore we have that...

### First inequality, for any $\epsilon>0$ and N

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\geq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

#### Assume that the $Z_i$ are the random variables from the N samples

ullet Then, we have that values for  $Z_i \in \{0,1\}$  therefore we have that...

# First inequality, for any $\epsilon>0$ and N

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\geq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

### Second inequality, for $\epsilon > 0$ and N

$$P\left[\left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\right)-\mu\leq\epsilon\right]\leq\exp^{-2N\epsilon^{2}}$$

#### Here

#### We can use the fact that

$$\nu = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

#### Here

#### We can use the fact that

$$\nu = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

#### Putting all together, we have

$$P(\nu - \mu \ge \epsilon \text{ or } \nu - \mu \le \epsilon) \le P(\nu - \mu \ge \epsilon) + P(\nu - \mu \le \epsilon)$$

#### Here

#### We can use the fact that

$$\nu = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

#### Putting all together, we have

$$P(\nu - \mu \ge \epsilon \text{ or } \nu - \mu \le \epsilon) \le P(\nu - \mu \ge \epsilon) + P(\nu - \mu \le \epsilon)$$

#### Finally

$$P(|\nu - \mu| \ge \epsilon) \le 2 \exp^{-2N\epsilon^2}$$

# We have the following

 $\bullet$  If  $\epsilon$  is small enough and as long as N is large



# Making Possible

#### Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

# Making Possible

#### Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

#### Learning

ullet We want to find a function  $f:\mathcal{X}\longrightarrow\mathcal{Y}$  which is unknown!!!

### Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

### Learning

- We want to find a function  $f: \mathcal{X} \longrightarrow \mathcal{Y}$  which is unknown!!!
  - lacktriangle Here we assume that each ball in the bin is a sample  $m{x} \in \mathcal{X}$ .

# Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

# Learning

- We want to find a function  $f: \mathcal{X} \longrightarrow \mathcal{Y}$  which is unknown!!!
  - lacktriangle Here we assume that each ball in the bin is a sample  $m{x} \in \mathcal{X}$ .

# Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h:

# Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

# Learning

- ullet We want to find a function  $f:\mathcal{X}\longrightarrow\mathcal{Y}$  which is unknown!!!
  - lacktriangle Here we assume that each ball in the bin is a sample  $m{x} \in \mathcal{X}$ .

# Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h:

• h(x) = f(x) we color the sample blue.

# Possible to estimate $\nu \approx \mu$

• How do we connect with Learning?

# Learning

- We want to find a function  $f: \mathcal{X} \longrightarrow \mathcal{Y}$  which is unknown!!!
  - lacktriangle Here we assume that each ball in the bin is a sample  $m{x} \in \mathcal{X}$ .

# Thus, it is necessary to select an hypothesis

Basically, we want to have an hypothesis h:

- h(x) = f(x) we color the sample blue.
- $h(x) \neq f(x)$  we color the sample red.

# Here a Small Remark

# Here, we are not talking about classes

• When talking about blue and red balls, but if we are able to identify the correct label:

$$\widehat{y}_h = h(\mathbf{x}) = f(\mathbf{x}) = y$$
or
$$\widehat{y}_h = h(\mathbf{x}) \neq f(\mathbf{x}) = y$$

# Here a Small Remark

# Here, we are not talking about classes

• When talking about blue and red balls, but if we are able to identify the correct label:

$$\widehat{y}_h = h\left( {oldsymbol x} 
ight) = f\left( {oldsymbol x} 
ight) = y$$
 or  $\widehat{y}_h = h\left( {oldsymbol x} 
ight) 
eq f\left( {oldsymbol x} 
ight) = y$ 

# Still, the use of blue and red balls allows

• to see our Learning Problem as a Bernoulli distribution

# Swiss mathematician Jacob Bernoulli

#### Definition

• The Bernoulli distribution is a discrete distribution having two possible outcomes X=0 or X=1.

# Swiss mathematician Jacob Bernoulli

#### **Definition**

• The Bernoulli distribution is a discrete distribution having two possible outcomes X=0 or X=1.

# With the following probabilities

$$P(X|p) = \begin{cases} 1 - p & \text{if } X = 0\\ p & \text{if } X = 1 \end{cases}$$

# Swiss mathematician Jacob Bernoulli

#### Definition

• The Bernoulli distribution is a discrete distribution having two possible outcomes X=0 or X=1.

# With the following probabilities

$$P(X|p) = \begin{cases} 1 - p & \text{if } X = 0\\ p & \text{if } X = 1 \end{cases}$$

### Also expressed as

$$P(X = k|p) = (p)^k (1-p)^{1-k}$$

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering lacktriangle Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

# We define $E_{in}$ (in-sample error)

$$E_{in}\left(h\right) = \frac{1}{N} \sum_{n=1}^{N} I\left(h\left(\boldsymbol{x}_{n}\right) \neq f\left(\boldsymbol{x}_{n}\right)\right)$$

• We have made explicit the dependency of  $E_{in}$  on the particular h that we are considering.

# We define $E_{in}$ (in-sample error)

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

• We have made explicit the dependency of  $E_{in}$  on the particular h that we are considering.

# Now $E_{out}$ (out-of-sample error)

$$E_{out}(h) = P(h(\mathbf{x}) \neq f(\mathbf{x})) = \mu$$

# We define $E_{in}$ (in-sample error)

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

• We have made explicit the dependency of  $E_{in}$  on the particular h that we are considering.

# Now $E_{out}$ (out-of-sample error)

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \mu$$

#### Where

ullet The probability is based on the distribution P over  ${\mathcal X}$  which is used to sample the data points  ${\boldsymbol x}.$ 

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality Error in the Sample and Error in the Phenomena
  - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error

  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering lacktriangle Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

#### Generalization Error

# Definition (Generalization Error/out-of-sample error)

Given a **hypothesis/proposed** model  $h \in \mathcal{H}$ , a target **concept/real** model  $f \in \mathcal{F}$ , and an underlying distribution  $\mathcal{D}$ , the generalization error or risk of h is defined by

$$R(h) = P_{x \sim \mathcal{D}}(h(x) \neq f(x)) = E_{x \sim \mathcal{D}}\left[I_{h(x) \neq f(x)}\right]$$

а

where  $I_{\omega}$  is the indicator function of the event  $\omega$ .

<sup>&</sup>lt;sup>a</sup>This comes the fact that  $1*P(A) + 0*P(\overline{A}) = E[I_A]$ 

# **Empirical Error**

# Definition (Empirical Error/in-sample error)

Given a **hypothesis/proposed** model  $h \in \mathcal{H}$ , a target **concept/real** model  $f \in \mathcal{F}$ , a sample  $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ , the empirical error or empirical risk of h is defined by:

$$\widehat{R} = \frac{1}{N} \sum_{i=1}^{N} I_{h(x_i) \neq f(x_i)}$$

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error

  - Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering lacktriangle Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



# Basically

# We have

$$P(|E_{in}(h) - E_{out}(h)| \ge \epsilon) \le 2 \exp^{-2Nt^2}$$

# Basically

#### We have

$$P(|E_{in}(h) - E_{out}(h)| \ge \epsilon) \le 2 \exp^{-2Nt^2}$$

# Now, we need to consider an entire set of hypothesis, ${\cal H}$

$$\mathcal{H} = \{h_1, h_2, ..., h_M\}$$



#### Remark

# The Hoeffding Inequality still applies to each bin individually

• Now, we need to consider all the bins simultaneously.

#### Remark

# The Hoeffding Inequality still applies to each bin individually

• Now, we need to consider all the bins simultaneously.

# Here, we have the following situation

ullet h is fixed before the data set is generated!!!

#### Remark

# The Hoeffding Inequality still applies to each bin individually

• Now, we need to consider all the bins simultaneously.

# Here, we have the following situation

ullet h is fixed before the data set is generated!!!

# If you are allowed to change h after you generate the data set

• The Hoeffding Inequality no longer holds

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
     Frror in the Sample as
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of GeneralizationGeneralization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}$  (N)
- What are we looking for?
- What are we lo

  Break Point
- VC-Dimension
- Partition B(N, k)
- Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron



# With multiple hypotheses in ${\cal H}$

 $\bullet$  The Learning Algorithm chooses the final hypothesis g based on  $\mathcal D$  after generating the data.

# With multiple hypotheses in ${\cal H}$

• The Learning Algorithm chooses the final hypothesis g based on  $\mathcal D$  after generating the data.

#### The statement we would like to make is not

$$P(|E_{in}(h_m) - E_{out}(h_m)| \ge \epsilon)$$
 is small.

# With multiple hypotheses in $\mathcal{H}_1$

• The Learning Algorithm chooses the final hypothesis g based on  $\mathcal D$  after generating the data.

#### The statement we would like to make is not

$$P\left(\left|E_{in}\left(h_{m}\right)-E_{out}\left(h_{m}\right)\right|\geq\epsilon\right)$$
 is small.

#### We would rather

 $P\left(\left|E_{in}\left(g\right)-E_{out}\left(g\right)\right|\geq\epsilon\right)$  is small for the final hypothesis g.

# Something Notable

 $\bullet$  The hypothesis g is not fixed ahead of time before generating the data

# Something Notable

 $\bullet$  The hypothesis g is not fixed ahead of time before generating the data

#### Thus we need to bound

$$P(|E_{in}(q) - E_{out}(q)| > \epsilon)$$

• Which it does not depend on which q the algorithm picks.

# We have two rules

# First one

 $\text{if }A_{1}\Longrightarrow A_{2},\text{ then }P\left( A_{1}\right) \leq P\left( A_{2}\right)$ 

# We have two rules

# First one

if 
$$A_1 \Longrightarrow A_2$$
, then  $P(A_1) \le P(A_2)$ 

If you have any set of events  $A_1, A_2, ..., A_M$ 

$$P(A_1 \cup A_2 \cup \cdots \cup A_M) \leq \sum_{m=1}^{M} P(A_m)$$

## Now assuming independence between hypothesis

$$\begin{split} |E_{in}\left(g\right) - E_{out}\left(g\right)| &\geq \epsilon \Longrightarrow |E_{in}\left(h_{1}\right) - E_{out}\left(h_{1}\right)| \geq \epsilon \\ & \text{ or } |E_{in}\left(h_{2}\right) - E_{out}\left(h_{2}\right)| \geq \epsilon \\ & \cdots \\ & \text{ or } |E_{in}\left(h_{M}\right) - E_{out}\left(h_{M}\right)| \geq \epsilon \end{split}$$

#### We have

$$P(|E_{in}(g) - E_{out}(g)| \ge \epsilon) \le P[|E_{in}(h_1) - E_{out}(h_1)| \ge \epsilon$$
or  $|E_{in}(h_2) - E_{out}(h_2)| \ge \epsilon$ 
...

or 
$$|E_{in}\left(h_{M}\right)-E_{out}\left(h_{M}\right)|\geq\epsilon]$$

### Then

#### We have

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le \sum_{m=1}^{M} \left[\left|E_{in}\left(h_{m}\right) - E_{out}\left(h_{m}\right)\right| \ge \epsilon\right]$$

### Then

#### We have

$$P\left(\left|E_{in}\left(g\right) - E_{out}\left(g\right)\right| \ge \epsilon\right) \le \sum_{m=1}^{\infty} \left[\left|E_{in}\left(h_{m}\right) - E_{out}\left(h_{m}\right)\right| \ge \epsilon\right]$$

# Thus

$$P(|E_{in}(g) - E_{out}(g)| \ge \epsilon) \le 2M \exp^{-2N\epsilon^2}$$

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies Shattering
- lacktriangle Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

# Something Notable

• We have introduced two apparently conflicting arguments about the feasibility of learning.

# Something Notable

 We have introduced two apparently conflicting arguments about the feasibility of learning.

# We have two possibilities

ullet One argument says that we cannot learn anything outside of  ${\cal D}.$ 

## Something Notable

 We have introduced two apparently conflicting arguments about the feasibility of learning.

# We have two possibilities

- ullet One argument says that we cannot learn anything outside of  $\mathcal{D}$ .
- The other say it is possible!!!

## Something Notable

 We have introduced two apparently conflicting arguments about the feasibility of learning.

# We have two possibilities

- $\bullet$  One argument says that we cannot learn anything outside of  $\mathcal{D}.$
- The other say it is possible!!!

# Here, we introduce the probabilistic answer

This will solve our conundrum!!!

#### The Deterministic Answer

ullet Do we have something to say about f outside of  $\mathcal{D}$ ? The answer is NO.

#### The Deterministic Answer

ullet Do we have something to say about f outside of  $\mathcal{D}$ ? The answer is NO.

#### The Probabilistic Answer

 $\bullet$  Is  ${\mathcal D}$  telling us something likely about f outside of  ${\mathcal D}?$  The answer is YES

#### The Deterministic Answer

ullet Do we have something to say about f outside of  $\mathcal{D}$ ? The answer is NO.

#### The Probabilistic Answer

 $\bullet$  Is  ${\mathcal D}$  telling us something likely about f outside of  ${\mathcal D}$ ? The answer is YES

# The reason why

• We approach our Learning from a Probabilistic point of view!!!

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
  - Overall Error

- Theory of Generalization Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



# For example

# We could have hypothesis based in hyperplanes

• Linear regression output:

$$h\left(\boldsymbol{x}\right) = \sum_{i=1}^{d} w_i x_i = \boldsymbol{w}^T \boldsymbol{x}$$

# For example

## We could have hypothesis based in hyperplanes

• Linear regression output:

$$h\left(oldsymbol{x}
ight) = \sum_{i=1}^{d} w_i x_i = oldsymbol{w}^T oldsymbol{x}$$

#### Therefore

$$E_{in}\left(\boldsymbol{x}\right) = \frac{1}{N} \sum_{i=1}^{N} \left(h\left(\boldsymbol{x}_{n}\right) - y_{n}\right)^{2}$$

# Clearly, we have used loss functions

# Mostly to give meaning $h \approx f$

ullet By Error Measures  $E\left(h,f\right)$ 

# Clearly, we have used loss functions

# Mostly to give meaning $h \approx f$

ullet By Error Measures  $E\left(h,f\right)$ 

# By using pointwise definitions

$$e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$$

# Clearly, we have used loss functions

# Mostly to give meaning $h \approx f$

ullet By Error Measures  $E\left(h,f\right)$ 

# By using pointwise definitions

$$e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$$

# Examples

- Squared Error  $e(h(\mathbf{x}), f(\mathbf{x})) = [h(\mathbf{x}) f(\mathbf{x})]^2$
- Binary Error  $e(h(x), f(x)) = I[h(x) \neq f(x)]$

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
  - Overall Error

#### 2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
   Generalization Error
  - Reinterpretation
  - Subtletv
- Subtlety
- lacksquare A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}$  (N)
- What are we looking for?
- What are we lo
- VC-Dimension
- Partition B(N, k)
- Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron



### The Overall Error

 $E\left(h,f\right)=$  Average of pointwise errors  $e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$ 

#### The Overall Error

$$E\left(h,f\right)=$$
 Average of pointwise errors  $e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$ 

## In-Sample Error

$$E_{in}(h) = \frac{1}{N} \sum_{i=1}^{N} e(h(\boldsymbol{x}_i), f(\boldsymbol{x}_i))$$

#### The Overall Error

$$E\left(h,f\right) = \text{Average of pointwise errors } e\left(h\left(\boldsymbol{x}\right),f\left(\boldsymbol{x}\right)\right)$$

# In-Sample Error

$$E_{in}(h) = \frac{1}{N} \sum_{i=1}^{N} e(h(\boldsymbol{x}_i), f(\boldsymbol{x}_i))$$

### Out-of-sample error

$$E_{in}(h) = E_{\mathcal{X}}[e(h(\boldsymbol{x}), f(\boldsymbol{x}))]$$

# We have the following Process

# Assuming P(y|x) instead of y = f(x)

• Then a data point (x, y) is now generated by the joint distribution P(x, y) = P(x) P(y|x)

# We have the following Process

# Assuming $P(y|\mathbf{x})$ instead of $y = f(\mathbf{x})$

• Then a data point (x, y) is now generated by the joint distribution P(x, y) = P(x) P(y|x)

#### Therefore

Noisy target is a deterministic target plus added noise.

$$f(\mathbf{x}) \approx E[y|\mathbf{x}] + (y - f(\mathbf{x}))$$

# Finally, we have as Learning Process



# Distinction between $P(y|\boldsymbol{x})$ and $P(\boldsymbol{x})$

ullet Both convey probabilistic aspects of  $oldsymbol{x}$  and y.

# Distinction between P(y|x) and P(x)

ullet Both convey probabilistic aspects of  $oldsymbol{x}$  and y.

#### Therefore

- **1** The Target distribution P(y|x) is what we are trying to learn.
- 2 The Input distribution P(x) quantifies relative importance of x.

# Distinction between P(y|x) and P(x)

ullet Both convey probabilistic aspects of  $oldsymbol{x}$  and  $oldsymbol{y}.$ 

#### Therefore

- **1** The Target distribution P(y|x) is what we are trying to learn.
- ② The Input distribution P(x) quantifies relative importance of x.

# Finally

• Merging P(x, y) = P(y|x) P(x) mixes the two concepts

# Learning is feasible because It is likely that

$$E_{out}\left(g\right)\approx E_{in}\left(g\right)$$

# Learning is feasible because It is likely that

$$E_{out}\left(g\right)\approx E_{in}\left(g\right)$$

# Therefore, we need $q \approx f$

$$E_{out}\left(g\right) = P\left(g\left(\boldsymbol{x}\right) \neq f\left(\boldsymbol{x}\right)\right) \approx 0$$

# Learning is feasible because It is likely that

$$E_{out}\left(g\right)\approx E_{in}\left(g\right)$$

# Therefore, we need $g \approx f$

$$E_{out}\left(g\right) = P\left(g\left(\boldsymbol{x}\right) \neq f\left(\boldsymbol{x}\right)\right) \approx 0$$

#### How do we achieve this?

$$E_{out}(g) \approx E_{in}(g) = \frac{1}{N} \sum_{n=1}^{N} I(g(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

### We make at the same time

$$E_{in}\left(g\right)\approx0$$

ullet To Make the Error in our selected hypothesis g with respect to the real function f

#### We make at the same time

$$E_{in}\left(g\right)\approx0$$

ullet To Make the Error in our selected hypothesis g with respect to the real function f

# Learning splits in two questions

- **①** Can we make  $E_{out}(g)$  is close enough  $E_{in}(g)$ ?
- ② Can we make  $E_{in}(g)$  small enough?



# Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

# We have that

# The out-of-sample error

$$E_{out}\left(h\right) = P\left(h\left(\boldsymbol{x}\right) \neq f\left(\boldsymbol{x}\right)\right)$$

# We have that

# The out-of-sample error

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))$$

#### It Measures how well our training on $\mathcal{D}$

• It has generalized to data that we have not seen before.

## We have that

# The out-of-sample error

$$E_{out}(h) = P(h(\boldsymbol{x}) \neq f(\boldsymbol{x}))$$

### It Measures how well our training on ${\mathcal D}$

• It has generalized to data that we have not seen before.

#### Remark

ullet  $E_{out}$  is based on the performance over the entire input space  ${\cal X}.$ 

# Testing Data Set

# Intuitively

ullet we want to estimate the value of  $E_{out}$  using a sample of data points.

# Testing Data Set

# Intuitively

ullet we want to estimate the value of  $E_{out}$  using a sample of data points.

# Something Notable

• These points must be 'fresh' test points that have not been used for training.

# Testing Data Set

# Intuitively

ullet we want to estimate the value of  $E_{out}$  using a sample of data points.

# Something Notable

• These points must be 'fresh' test points that have not been used for training.

# Basically

Out Testing Set.

#### Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### 2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}$  (N)
- What are we looking for?
- Break Point
- VC-Dimension
- lacksquare Partition B(N,k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron

#### Thus

#### It is possible to define

ullet The **generalization error** as the discrepancy between  $E_{in}$  and  $E_{out}$ 

#### Thus

#### It is possible to define

ullet The **generalization error** as the discrepancy between  $E_{in}$  and  $E_{out}$ 

#### Therefore

 The Hoeffding Inequality is a way to characterize the generalization error with a probabilistic bound

$$P(|E_{in}(g) - E_{out}(g)| \ge \epsilon) \le 2M \exp^{-2N\epsilon^2}$$

▶ For any  $\epsilon > 0$ .

#### Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

## Reinterpreting This

## Assume a Tolerance Level $\delta$ , for example $\delta = 0.0005$

 $\bullet$  It is possible to say that with probability  $1-\delta$  :

$$E_{out}(g) < E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

#### Proof

We have the complement Hoeffding Probability using the absolute value

$$P(|E_{out}(g) - E_{in}(g)| < \epsilon) \le 1 - 2M \exp^{-2N\epsilon^2}$$

## Proof

# We have the complement Hoeffding Probability using the absolute value

$$P(|E_{out}(g) - E_{in}(g)| < \epsilon) \le 1 - 2M \exp^{-2N\epsilon^2}$$

#### Therefore, we have

$$P\left(-\epsilon < E_{out}\left(g\right) - E_{in}\left(g\right) < \epsilon\right) \le 1 - 2M \exp^{-2N\epsilon^2}$$

## **Proof**

# We have the complement Hoeffding Probability using the absolute value

$$P\left(\left|E_{out}\left(g\right) - E_{in}\left(g\right)\right| < \epsilon\right) \le 1 - 2M \exp^{-2N\epsilon^2}$$

#### Therefore, we have

$$P\left(-\epsilon < E_{out}\left(g\right) - E_{in}\left(g\right) < \epsilon\right) \le 1 - 2M \exp^{-2N\epsilon^2}$$

#### This imply

$$E_{out}\left(g\right) < E_{in}\left(g\right) + \epsilon$$

# We simply use

$$\delta = 2M \exp^{-2N\epsilon^2}$$

# We simply use

$$\delta = 2M \exp^{-2N\epsilon^2}$$

#### Then

$$\ln 1 - \ln \frac{\delta}{2M} = 2N\epsilon^2$$

## We simply use

$$\delta = 2M \exp^{-2N\epsilon^2}$$

#### Then

$$\ln 1 - \ln \frac{\delta}{2M} = 2N\epsilon^2$$

#### Therefore

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

#### Generalization Bound

#### This inequality is know as a generalization Bound

$$E_{in}(g) < E_{out}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

#### Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### 2 Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization ErrorReinterpretation
  - Subtlety
- Subtlety
- lacksquare A Problem with M
- DichotomiesShattering
- Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron

## The following inequality also holds

$$-\epsilon < E_{out}(g) - E_{in}(g) \Rightarrow E_{out}(g) > E_{in}(g) - \epsilon$$

## The following inequality also holds

$$-\epsilon < E_{out}(g) - E_{in}(g) \Rightarrow E_{out}(g) > E_{in}(g) - \epsilon$$

#### Thus

• Not only we want our hypothesis g to do well int the out samples,  $E_{out}\left(g\right) < E_{in}\left(g\right) + \epsilon$ 

## The following inequality also holds

$$-\epsilon < E_{out}(g) - E_{in}(g) \Rightarrow E_{out}(g) > E_{in}(g) - \epsilon$$

#### Thus

• Not only we want our hypothesis g to do well int the out samples,  $E_{out}(q) < E_{in}(q) + \epsilon$ 

#### But, we want to know how well we did with our ${\cal H}$

- Thus,  $E_{out}\left(g\right) > E_{in}\left(g\right) \epsilon$  assures that it is not possible to do better!!!
  - Given any hypothesis with higher

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

than g.

#### But, we want to know how well we did with our ${\mathcal H}$

• Thus,  $E_{out}\left(g\right) > E_{in}\left(g\right) - \epsilon$  assures that it is not possible to do better!!!

#### But, we want to know how well we did with our ${\cal H}$

• Thus,  $E_{out}\left(g\right) > E_{in}\left(g\right) - \epsilon$  assures that it is not possible to do better!!!

## Given any hypothesis h with higher than g

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

#### But, we want to know how well we did with our ${\cal H}$

• Thus,  $E_{out}\left(g\right)>E_{in}\left(g\right)-\epsilon$  assures that it is not possible to do better!!!

## Given any hypothesis h with higher than g

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} I(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

## It will have a higher $E_{out}(h)$ given

$$E_{out}(h) > E_{in}(h) - \epsilon$$

#### Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error
  - Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



## The Infiniteness of ${\cal H}$

## A Problem with the Error Bound given its dependency on ${\cal M}$

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

## The Infiniteness of ${\cal H}$

#### A Problem with the Error Bound given its dependency on ${\it M}$

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

## What happens when M becomes infinity

ullet The number of hypothesis in  ${\cal H}$  becomes infinity.

## The Infiniteness of ${\cal H}$

## A Problem with the Error Bound given its dependency on ${\it M}$

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

## What happens when M becomes infinity

ullet The number of hypothesis in  ${\cal H}$  becomes infinity.

## Thus, the bound becomes infinity

- ullet Problem, almost all interesting learning models have infinite  $\mathcal{H}....$ 
  - For Example... in our linear Regression...  $f(x) = w^T x$

## Therefore, we need to replace M

#### We need to find a finite substitute with finite range values

• For this, we notice that

$$|E_{in}(h_1) - E_{out}(h_1)| \ge \epsilon \text{ or } |E_{in}(h_2) - E_{out}(h_2)| \ge \epsilon \cdots$$

or 
$$|E_{in}(h_M) - E_{out}(h_M)| \ge \epsilon$$

## This guarantee $|E_{in}(g) - E_{out}(g)| \ge \epsilon$

• Thus, we can take a look at the events  $\mathcal{B}_m$  events for which you have  $|E_{in}\left(h_m\right)-E_{out}\left(h_m\right)|\geq\epsilon$ 

## This guarantee $|E_{in}(g) - E_{out}(g)| \ge \epsilon$

• Thus, we can take a look at the events  $\mathcal{B}_m$  events for which you have  $|E_{in}\left(h_m\right)-E_{out}\left(h_m\right)|>\epsilon$ 

#### Then

$$P\left[egin{array}{cccc} \mathcal{B}_1 & ext{or } \mathcal{B}_2 & \cdots & ext{or } \mathcal{B}_M \end{array}
ight] \leq \sum_{m=1}^M P\left[\mathcal{B}_m
ight]$$

# Now, we have the following



# Now, we have the following

## Example



#### We have a gross overestimate

ullet Basically, if  $h_i$  and  $h_j$  are quite similar the two events

$$\left|E_{in}\left(h_{i}\right)-E_{out}\left(h_{i}\right)\right|\geq\epsilon$$
 and  $\left|E_{in}\left(h_{j}\right)-E_{out}\left(h_{j}\right)\right|\geq\epsilon$ 

are likely to coincide!!!

#### Something Notable

• In a typical learning model, many hypotheses are indeed very similar.

#### Something Notable

• In a typical learning model, many hypotheses are indeed very similar.

## The mathematical theory of generalization hinges on this observation

ullet We only need to account for the overlapping on different hypothesis to substitute M.

#### Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization Generalization Error

  - Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

## Consider

#### A finite data set

$$\mathcal{X} = \{\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N\}$$

#### Consider

#### A finite data set

$$\mathcal{X} = \{x_1, x_2, ..., x_N\}$$

And we consider a set of hypothesis  $h \in \mathcal{H}$  such that  $h: \mathcal{X} \to \{-1, +1\}$ 

• We get a N-tuple, when applied to  $\mathcal{X}$ ,  $h\left(\boldsymbol{x}_{1}\right), h\left(\boldsymbol{x}_{2}\right),...,h\left(\boldsymbol{x}_{N}\right)$  of  $\pm 1.$ 

#### Consider

#### A finite data set

$$\mathcal{X} = \{x_1, x_2, ..., x_N\}$$

And we consider a set of hypothesis  $h \in \mathcal{H}$  such that  $h: \mathcal{X} \to \{-1, +1\}$ 

• We get a N-tuple, when applied to  $\mathcal{X}$ ,  $h\left(\boldsymbol{x}_{1}\right), h\left(\boldsymbol{x}_{2}\right),...,h\left(\boldsymbol{x}_{N}\right)$  of  $\pm 1.$ 

## Such N-tuple is called a Dichotomy

• Given that it splits  $x_1, x_2, ..., x_N$  into two groups...

# Dichotomy

#### Definition

• Given a hypothesis set  $\mathcal{H}$ , a **dichotomy** of a set  $\mathcal{X}$  is **one of the possible ways** of labeling the points of  $\mathcal{X}$  using a hypothesis in  $\mathcal{H}$ .

# Examples of Dichotomies



# Something Important

## Each $h \in \mathcal{H}$ generates a dichotomy on $\boldsymbol{x}_1,...,\boldsymbol{x}_N$

ullet However, two different h's may generate the same dichotomy if they generate the same pattern

### Remark

### Definition

• Let  $x_1, x_2, ..., x_n \in \mathcal{X}$ . The dichotomies generated by  $\mathcal{H}$  on these points are defined by

$$\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=\left\{ \left(h\left[\boldsymbol{x}_{1}\right],h\left[\boldsymbol{x}_{2}\right],...,h\left[\boldsymbol{x}_{N}\right]\right)|h\in\mathcal{H}\right\}$$

### Remark

### Definition

• Let  $x_1, x_2, ..., x_n \in \mathcal{X}$ . The dichotomies generated by  $\mathcal{H}$  on these points are defined by

$$\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=\left\{ \left(h\left[\boldsymbol{x}_{1}\right],h\left[\boldsymbol{x}_{2}\right],...,h\left[\boldsymbol{x}_{N}\right]\right)|h\in\mathcal{H}\right\}$$

#### Therefore

• We can see  $\mathcal{H}(x_1, x_2, ..., x_N)$  as a set of hypothesis by using the geometry of the points.

### Remark

### Definition

• Let  $x_1, x_2, ..., x_n \in \mathcal{X}$ . The dichotomies generated by  $\mathcal{H}$  on these points are defined by

$$\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=\left\{ \left(h\left[\boldsymbol{x}_{1}\right],h\left[\boldsymbol{x}_{2}\right],...,h\left[\boldsymbol{x}_{N}\right]\right)|h\in\mathcal{H}\right\}$$

#### Therefore

• We can see  $\mathcal{H}(x_1, x_2, ..., x_N)$  as a set of hypothesis by using the geometry of the points.

### Thus

• A large  $\mathcal{H}(x_1, x_2, ..., x_N)$  means  $\mathcal{H}$  is more diverse.

# Growth function, Our Replacement of M

#### Definition

ullet The growth function is defined for a hypothesis set  ${\cal H}$  by

$$m_{\mathcal{H}}\left(N\right) = \max_{\boldsymbol{x}_{1},...,\boldsymbol{x}_{N} \in \mathcal{X}} \#\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)$$

▶ where # denotes the cardinality (number of elements) of a set.

# Growth function, Our Replacement of M

#### **Definition**

ullet The growth function is defined for a hypothesis set  ${\cal H}$  by

$$m_{\mathcal{H}}\left(N\right) = \max_{\boldsymbol{x}_{1},...,\boldsymbol{x}_{N} \in \mathcal{X}} \#\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)$$

▶ where # denotes the cardinality (number of elements) of a set.

#### Therefore

- $m_{\mathcal{H}}\left(N\right)$  is the **maximum number of dichotomies** that be generated by  $\mathcal{H}$  on any N points.
  - **We** remove dependency on the entire  $\mathcal{X}$

## We have that

ullet M and  $m_{\mathcal{H}}\left(N
ight)$  is a measure of the of the number of hypothesis in  $\mathcal{H}$ 

### We have that

ullet M and  $m_{\mathcal{H}}\left(N
ight)$  is a measure of the of the number of hypothesis in  $\mathcal{H}$ 

## However, we avoid considering all of ${\mathcal X}$

• Now we only consider N points instead of the entire  $\mathcal{X}$ .

# Upper Bound for $m_{\mathcal{H}}(N)$

### First, we know that

$$\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{N}\right) \subseteq \left\{-1, +1\right\}^{N}$$

# Upper Bound for $m_{\mathcal{H}}(N)$

### First, we know that

$$\mathcal{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{N}\right) \subseteq \left\{-1, +1\right\}^{N}$$

Hence, we have the value of  $m_{\mathcal{H}}\left(N\right)$  is at most  $\#\left\{-1,+1\right\}^{N}$ 

$$m_{\mathcal{H}}(N) \leq 2^N$$

## Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error
  - Reinterpretation
- Subtlety
- A Problem with M
- Dichotomies
- Shattering
- lacktriangle Example of Computing  $m_{\mathcal{H}}\left(N\right)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron

## If $\mathcal{H}$ is capable of generating all possible dichotomies on $m{x}_1, m{x}_2, ..., m{x}_N$

- Then,
  - $ightharpoonup \mathcal{H}(x_1, x_2, ..., x_N) = \{-1, +1\}^N \text{ and } \#\mathcal{H}(x_1, x_2, ..., x_N) = 2^N$

## If ${\cal H}$ is capable of generating all possible dichotomies on ${m x}_1, {m x}_2, ..., {m x}_N$

- Then,
  - $ightharpoonup \mathcal{H}\left(oldsymbol{x}_{1},oldsymbol{x}_{2},...,oldsymbol{x}_{N}
    ight)=\left\{ -1,+1
    ight\} ^{N}$  and  $\#\mathcal{H}\left(oldsymbol{x}_{1},oldsymbol{x}_{2},...,oldsymbol{x}_{N}
    ight)=2^{N}$

### We can say that

ullet  $\mathcal{H}$  can shatter  $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$ 

## If ${\cal H}$ is capable of generating all possible dichotomies on ${m x}_1, {m x}_2, ..., {m x}_N$

- Then,
  - $\blacktriangleright \ \mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=\left\{ -1,+1\right\} ^{N} \ \text{and} \ \#\mathcal{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}\right)=2^{N}$

#### We can say that

ullet  $\mathcal{H}$  can shatter  $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N$ 

## Meaning

ullet  ${\cal H}$  is as diverse as can be on this particular sample.

# Shattering

### **Definition**

• A set  $\mathcal X$  of  $N\geq 1$  points is said to be shattered by a hypothesis set  $\mathcal H$  when  $\mathcal H$  realizes all possible dichotomies of  $\mathcal X$ , that is when

$$m_{\mathcal{H}}(N) = 2^N$$

## Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization Generalization Error
  - Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering
- Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

# Example

## Positive Rays

• Imagine a input space on  $\mathbb{R}$ , with  $\mathcal{H}$  consisting of all hypotheses  $h:\mathbb{R}\to\{-1,+1\}$  of the form

$$h\left(x\right) = sign\left(x - a\right)$$

# Example

### Positive Rays

• Imagine a input space on  $\mathbb{R}$ , with  $\mathcal{H}$  consisting of all hypotheses  $h:\mathbb{R}\to\{-1,+1\}$  of the form

$$h\left(x\right) = sign\left(x - a\right)$$

## Example



## Thus, we have that

As we change a, we get N+1 different dichotomies

$$m_{\mathcal{H}}\left(N\right) = N + 1$$

## Thus, we have that

## As we change a, we get N+1 different dichotomies

$$m_{\mathcal{H}}(N) = N + 1$$

### Now, we have the case of positive intervals

•  $\mathcal{H}$  consists of all hypotheses in one dimension that return +1 within some interval and -1 otherwise.



## We have

ullet The line is again split by the points into N+1 regions.

### We have

ullet The line is again split by the points into N+1 regions.

### **Furthermore**

 The dichotomy we get is decided by which two regions contain the end values of the interval

### We have

ullet The line is again split by the points into N+1 regions.

#### **Furthermore**

 The dichotomy we get is decided by which two regions contain the end values of the interval

### Therefore, we have the number of possible dichotomies

$$\begin{pmatrix} N+1\\2 \end{pmatrix}$$

# Additionally

### If the two points fall in the same region, the $\mathcal{H}=-1$

Then

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

# Finally

## In the case of a Convex Set in $\mathbb{R}^2$

 $\bullet$   ${\cal H}$  consists of all hypothesis in two dimensions that are positive inside some convex set and negative elsewhere.





## We have the following

$$m_{\mathcal{H}}(N) = 2^N$$

By using the "Radon's theorem"

## Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization Generalization Error
  - Reinterpretation

  - Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

## Remember

### We have that

$$P\left(\left|E_{in}\left(g\right)-E_{out}\left(g\right)\right|\geq\epsilon\right)\leq2M\exp^{-2N\epsilon^{2}}$$

## Remember

### We have that

$$P(|E_{in}(g) - E_{out}(g)| \ge \epsilon) \le 2M \exp^{-2N\epsilon^2}$$

## What if $m_{\mathcal{H}}(N)$ replaces M

• If  $m_{\mathcal{H}}\left(N\right)$  is polynomial, we have an excellent case!!!

## Remember

### We have that

$$P(|E_{in}(g) - E_{out}(g)| \ge \epsilon) \le 2M \exp^{-2N\epsilon^2}$$

## What if $m_{\mathcal{H}}(N)$ replaces M

ullet If  $m_{\mathcal{H}}\left(N
ight)$  is polynomial, we have an excellent case!!!

### Therefore, we need to prove that

•  $m_{\mathcal{H}}(N)$  is polynomial

## Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error Reinterpretation
- Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



### **Break Point**

### Definition

• If **no data set of size** k can be shattered by  $\mathcal{H}$ , then k is said to be a break point for  $\mathcal{H}$ :

$$m_{\mathcal{H}}(k) < 2^k$$

# Example



## **Important**

## Something Notable

• In general, it is easier to find a break point for  ${\cal H}$  than to compute the full growth function for that  ${\cal H}.$ 

## **Important**

## Something Notable

• In general, it is easier to find a break point for  $\mathcal H$  than to compute the full growth function for that  $\mathcal H$ .

## Using this concept

We are ready to define the concept of Vapnik–Chervonenkis (VC) dimension.

## Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization Generalization Error

  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies
- Shattering • Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron

#### **VC-Dimension**

#### Definition

• The VC-dimension of a hypothesis set  $\mathcal H$  is the size of the largest set that can be fully shattered by  $\mathcal H$  (Those points need to be in "General Position"):

$$VC_{dim}(\mathcal{H}) = \max \left\{ k | m_{\mathcal{H}}(k) = 2^k \right\}$$

ightharpoonup A set containing k points, for arbitrary k, is in **general linear position** if and only if no (k-1) -dimensional flat contains them all

## Important Remarks

#### Remark 1

• if  $VC_{dim}\left(\mathcal{H}\right)=d$ , there exists a set of size d that can be fully shattered.

## Important Remarks

#### Remark 1

• if  $VC_{dim}\left(\mathcal{H}\right)=d$ , there exists a set of size d that can be fully shattered.

#### Remark2

- ullet This does not imply that all sets of size d or less are fully shattered
  - ► This is typically the case!!!

# Why? General Linear Position



# Now, we define B(N, k)

#### Definition

• B(N,k) is the maximum number of dichotomies on N points such that no subset of size k of the N points can be shattered by these dichotomies.

# Now, we define B(N, k)

#### **Definition**

• B(N,k) is the maximum number of dichotomies on N points such that no subset of size k of the N points can be shattered by these dichotomies.

## Something Notable

• The definition of B(N,k) assumes a break point k!!!

#### **Further**

## Since B(N,k) is a maximum

• It is an upper bound for  $m_{\mathcal{H}}(N)$  under a break point k.

 $m_{\mathcal{H}}(N) \leq B(N,k)$  if k is a break point for  $\mathcal{H}$ .

#### **Further**

## Since B(N,k) is a maximum

• It is an upper bound for  $m_{\mathcal{H}}\left(N\right)$  under a break point k.

 $m_{\mathcal{H}}\left(N\right) \leq B\left(N,k\right)$  if k is a break point for  $\mathcal{H}.$ 

#### Then

• We need to find a Bound for  $B\left(N,k\right)$  to prove that  $m_{\mathcal{H}}\left(k\right)$  is polynomial.

## Thus, we start with two boundary conditions k=1 and N=1

$$B(N,1) = 1$$
  
 $B(1,k) = 2 \ k > 1$ 

#### Something Notable

 $\bullet$  B(N,1)=1 for all N since if no subset of size  $\bf 1$  can be shattered

## Something Notable

- ullet B(N,1)=1 for all N since if no subset of size  ${f 1}$  can be shattered
  - Then only one dichotomy can be allowed.

#### Something Notable

- ullet B(N,1)=1 for all N since if no subset of size 1 can be shattered
  - Then only one dichotomy can be allowed.
  - ▶ Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

## Something Notable

- ullet B(N,1)=1 for all N since if no subset of size  ${f 1}$  can be shattered
  - Then only one dichotomy can be allowed.
  - ▶ Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

#### Second

ullet B(1,k)=2 for k>1 since there do not even exist subsets of size k.

## Something Notable

- ullet B(N,1)=1 for all N since if no subset of size  ${f 1}$  can be shattered
  - Then only one dichotomy can be allowed.
  - ▶ Because a second different dichotomy must differ on at least one point and then that subset of size 1 would be shattered.

#### Second

- ullet B(1,k)=2 for k>1 since there do not even exist subsets of size k.
  - ▶ Because the constraint is vacuously true and we have 2 possible dichotomies +1 and -1.

## Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma Hoeffding's Inequality

  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error Reinterpretation

  - Subtletv
- A Problem with M
- Dichotomies
- Shattering lacktriangle Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- lacktriangle Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- - Multi-Layer Perceptron



B(N,k) Dichotomies,  $N \geq 2$  and  $k \geq 2$ 

|       |         | # of rows | $x_1$ | $  x_2  $ | <br>$x_{N-1}$  | $x_N$  |
|-------|---------|-----------|-------|-----------|----------------|--------|
|       | $S_1$   | α         | +1    | +1        | <br>+1         | +1     |
|       |         |           | -1    | +1        | <br>+1         | -1     |
|       |         |           | :     | :         | <br>:          | :      |
|       |         |           | +1    | -1        | <br>-1         | -1     |
|       |         |           | -1    | +1        | <br>-1         | +1     |
| $S_2$ | $S_2^+$ | β         | +1    | -1        | <br>+1         | +1     |
|       |         |           | -1    | -1        | <br>+1         | +1     |
|       |         |           | :     | :         | <br>:          | :      |
|       |         |           | +1    | -1        | <br>+1         | +1     |
|       |         |           | -1    | +1        | <br>-1         | +1     |
|       | $S_2^-$ | β         | +1    | -1        | <br>+1         | -1     |
|       |         |           | -1    | -1        | <br>+1         | -1     |
|       |         |           | :     | :         | <br>:          | :      |
|       |         |           | +1    | -1        | <br>+1         | -1     |
|       |         |           | -1    | +1        | <br>□ → -1 🗇 → | 4 ≣1 → |

# What is this partition mean

## First, Consider the dichotomies on $m{x}_1m{x}_2\cdotsm{x}_{N-1}$

• Some appear once (Either +1 or -1 at  $x_N$ ), but only ONCE!!!

## What is this partition mean

### First, Consider the dichotomies on $oldsymbol{x}_1oldsymbol{x}_2\cdotsoldsymbol{x}_{N-1}$

- Some appear once (Either +1 or -1 at  $x_N$ ), but only ONCE!!!
- We collect them in  $S_1$

# What is this partition mean

## First, Consider the dichotomies on $oldsymbol{x}_1oldsymbol{x}_2\cdotsoldsymbol{x}_{N-1}$

- Some appear once (Either +1 or -1 at  $x_N$ ), but only ONCE!!!
- We collect them in  $S_1$

### The Remaining Dichotomies appear Twice

ullet Once with +1 and once with -1 in the  $oldsymbol{x}_N$  column.

## Therefore, we collect them in three sets

## The ones with only one Dichotomy

ullet We use the set  $S_1$ 

## Therefore, we collect them in three sets

## The ones with only one Dichotomy

ullet We use the set  $S_1$ 

#### The other in two different sets

- $S_2^+$  the ones with  $x_N = +1$ .
- $S_2^-$  the ones with  $x_N = -1$ .

## We have the following

$$B\left( N,k\right) =\alpha +2\beta$$

## We have the following

$$B(N,k) = \alpha + 2\beta$$

The total number of different dichotomies on the first N-1 points

• They are  $\alpha + \beta$ .

## We have the following

$$B(N,k) = \alpha + 2\beta$$

## The total number of different dichotomies on the first N-1 points

• They are  $\alpha + \beta$ .

# Additionally, no subset of k of these first N-1 points can be shattered

• Since no k-subset of all N points can be shattered:

$$\alpha + \beta \le B(N-1,k)$$

By definition of B.



# Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in $S_2^+$

 $\bullet$  If there existed such a subset, then taking the corresponding set of dichotomies in  $S_2^-$  and  $\boldsymbol{x}_N$ 

# Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in $S_2^+$

- ullet If there existed such a subset, then taking the corresponding set of dichotomies in  $S_2^-$  and  ${\boldsymbol x}_N$ 
  - You finish with a subset of size k that can be shattered a contradiction given the definition of B(N,k).

# Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in $S_2^+$

- ullet If there existed such a subset, then taking the corresponding set of dichotomies in  $S_2^-$  and  ${\boldsymbol x}_N$ 
  - ▶ You finish with a subset of size k that can be shattered a contradiction given the definition of B(N,k).

#### Therefore

$$\beta \leq B(N-1,k-1)$$

# Further, no subset of size k-1 of the first N-1 points can be shattered by the dichotomies in $S_2^+$

- $\bullet$  If there existed such a subset, then taking the corresponding set of dichotomies in  $S_2^-$  and  $\boldsymbol{x}_N$ 
  - ▶ You finish with a subset of size k that can be shattered a contradiction given the definition of B(N,k).

#### Therefore

$$\beta \leq B(N-1,k-1)$$

#### Then, we have

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$



## Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of GeneralizationGeneralization Error
  - Generalization Err
  - Reinterpretation
  - Subtlety
- A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Rreak Point
- VC-Dimension
- Partition B(N, k)
- Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron



# Connecting the Growth Function with the $VC_{dim}$

#### Sauer's Lemma

 $\bullet$  For all  $k\in\mathbb{N}$  , the following inequality holds:

$$B\left(N,k\right) \le \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\i \end{array}\right)$$

## **Proof**

#### Proof

• For k=1

$$B(N,1) \le B(N-1,1) + B(N-1,0) = 1 + 0 = \binom{N}{0}$$

## **Proof**

#### Proof

• For k=1

$$B(N,1) \le B(N-1,1) + B(N-1,0) = 1 + 0 = \binom{N}{0}$$

## Then, by induction

• We assume that the statement is true for  $N \leq N_0$  and all k.

#### Now

#### We need to prove this for $N=N_0+1$ and all k

 $\bullet$  Observation: This is true for k=1 given

$$B\left( N,1\right) =1$$

#### Now

#### We need to prove this for $N=N_0+1$ and all k

 $\bullet$  Observation: This is true for k=1 given

$$B\left( N,1\right) =1$$

#### Now, consider $k \geq 2$

$$B(N_0,k) + B(N_0,k-1)$$

## Now

#### We need to prove this for $N=N_0+1$ and all k

ullet Observation: This is true for k=1 given

$$B\left( N,1\right) =1$$

#### Now, consider $k \geq 2$

$$B(N_0,k) + B\left(N_0,k-1\right)$$

#### Therefore

$$B(N_0 + 1, k) \le \sum_{i=0}^{k-1} {N_0 \choose i} + \sum_{i=0}^{k-2} {N_0 \choose i}$$

## We have the following

$$\begin{split} &=1+\sum_{i=1}^{k-1}\left[\left(\begin{array}{c}N_0\\i\end{array}\right)+\left(\begin{array}{c}N_0\\i-1\end{array}\right)\right]\\ &=1+\sum_{i=1}^{k-1}\left(\begin{array}{c}N_0+1\\i\end{array}\right)=\sum_{i=0}^{k-1}\left(\begin{array}{c}N_0+1\\i\end{array}\right) \end{split}$$

• Because 
$$\binom{N_0}{i} + \binom{N_0}{i-1} = \binom{N_0+1}{i}$$

$$= 1 + \sum_{i=1}^{k-1} \left( \begin{array}{c} N_0 + 1 \\ i \end{array} \right) = \sum_{i=0}^{k-1} \left( \begin{array}{c} N_0 + 1 \\ i \end{array} \right)$$

$$\bullet \ \, \mathsf{Because} \left( \begin{array}{c} N_0 \\ i \end{array} \right) + \left( \begin{array}{c} N_0 \\ i-1 \end{array} \right) = \left( \begin{array}{c} N_0+1 \\ i \end{array} \right)$$

$$B(N_0 + 1, k) \le 1 + \sum_{i=1}^{k-1} {N_0 \choose i} + \sum_{i=1}^{k-1} {N_0 \choose i-1}$$

$$= 1 + \sum_{i=1}^{k-1} \left[ {N_0 \choose i} + {N_0 \choose i-1} \right]$$

$$= 1 + \sum_{i=1}^{k-1} {N_0 + 1 \choose i} = \sum_{i=0}^{k-1} {N_0 + 1 \choose i}$$



$$B(N_0 + 1, k) \le 1 + \sum_{i=1}^{k-1} {N_0 \choose i} + \sum_{i=1}^{k-1} {N_0 \choose i-1}$$

$$= 1 + \sum_{i=1}^{k-1} \left[ {N_0 \choose i} + {N_0 \choose i-1} \right]$$

$$= 1 + \sum_{i=1}^{k-1} {N_0 + 1 \choose i} = \sum_{i=0}^{k-1} {N_0 + 1 \choose i}$$

• Because 
$$\binom{N_0}{i} + \binom{N_0}{i-1} = \binom{N_0+1}{i}$$

# Now

#### We have in conclusion for all k

$$B\left(N,k\right) \le \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\i \end{array}\right)$$

# Now

#### We have in conclusion for all k

$$B\left(N,k\right) \le \sum_{i=0}^{k-1} \left(\begin{array}{c} N\\i \end{array}\right)$$

# Therefore 1

$$m_{\mathcal{H}}(N) \leq B(N,k) \leq \sum_{i=0}^{k-1} {N \choose i}$$

# Then

### **Theorem**

• If  $m_{\mathcal{H}}\left(k\right) < 2^{k}$  for some value k, then

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

# Finally

# Corollary

• Let  $\mathcal{H}$  be a hypothesis set with  $VC_{dim}\left(\mathcal{H}\right)=k$ . Then, for all N>k

$$m_{\mathcal{H}}(N) \le \left(\frac{eN}{k}\right)^{k-1} = O\left(N^k\right)$$

$$\leq \sum_{i=0}^{k} {N \choose i} \left[ \frac{N}{k} \right]^{k-i}$$

$$\leq \sum_{i=0}^{N} {N \choose i} \left[ \frac{N}{k} \right]^{k-i}$$

$$\left[ \frac{N}{k} \right]^{k} \sum_{i=0}^{N} {N \choose i} \left[ \frac{k}{N} \right]^{i}$$

$$\leq \sum_{i=0}^{N} {N \choose i} \left[ \frac{N}{k} \right]^{k-i}$$
$$\left[ \frac{N}{k} \right]^{k} \sum_{i=0}^{N} {N \choose i} \left[ \frac{k}{N} \right]^{i}$$

$$\left[\frac{N}{k}\right]^k \sum_{i=0}^N \left(\begin{array}{c} N\\ i \end{array}\right) \left[\frac{k}{N}\right]^i$$

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k} {N \choose i}$$

$$\leq \sum_{i=0}^{k} {N \choose i} \left[ \frac{N}{k} \right]^{k-i}$$

$$\leq \sum_{i=0}^{N} {N \choose i} \left[ \frac{N}{k} \right]^{k-i}$$

$$\left[ \frac{N}{k} \right]^{k} \sum_{i=0}^{N} {N \choose i} \left[ \frac{k}{N} \right]^{i}$$

# We have

$$= \left[\frac{N}{k}\right]^k \left[1 + \frac{k}{N}\right]^N$$

#### We have

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^k \sum_{i=0}^N \binom{N}{i} \left[\frac{k}{N}\right]^i$$

$$= \left[\frac{N}{k}\right]^k \left[1 + \frac{k}{N}\right]^N$$

### Given that $(1-x) = e^{-x}$

$$m_{\mathcal{H}}(N) \le \left[\frac{N}{k}\right]^k e^{\frac{k}{N}}$$

$$\le \left[\frac{N}{k}\right]^{k-1} e^{k-1} = \left[\frac{e}{k}\right]^k N^k = O\left(N^k\right)$$

#### We have

$$m_{\mathcal{H}}(N) \le \left[\frac{N}{k}\right]^k \sum_{i=0}^N \binom{N}{i} \left[\frac{k}{N}\right]^i$$

$$= \left[\frac{N}{k}\right]^k \left[1 + \frac{k}{N}\right]^N$$

# Given that $(1-x) = e^{-x}$

$$\leq \left\lceil \frac{N}{k} \right\rceil^{k-1} e^{k-1} = \left\lceil \frac{e}{k} \right\rceil^k N^k = O\left(N^k\right)$$

# We have

$$m_{\mathcal{H}}(N) \leq \left[\frac{N}{k}\right]^k \sum_{i=0}^N \binom{N}{i} \left[\frac{k}{N}\right]^i$$

$$= \left[\frac{N}{k}\right]^k \left[1 + \frac{k}{N}\right]^N$$

# Given that $(1-x) = e^{-x}$

$$m_{\mathcal{H}}(N) \le \left[\frac{N}{k}\right]^k e^{\frac{k}{N}}$$

$$\le \left[\frac{N}{k}\right]^{k-1} e^{k-1} = \left[\frac{e}{k}\right]^k N^k = O\left(N^k\right)$$

### We have that

•  $m_{\mathcal{H}}\left(N\right)$  is bounded by  $N^{k-1}$  i.e. if  $m_{\mathcal{H}}\left(k\right)<2^{k}$  we have that  $m_{\mathcal{H}}\left(N\right)$  is polynomial

#### We have that

- $m_{\mathcal{H}}\left(N\right)$  is bounded by  $N^{k-1}$  i.e. if  $m_{\mathcal{H}}\left(k\right)<2^{k}$  we have that  $m_{\mathcal{H}}\left(N\right)$  is polynomial
- We are not depending on the number of hypothesis!!!!

#### We have that

- $m_{\mathcal{H}}\left(N\right)$  is bounded by  $N^{k-1}$  i.e. if  $m_{\mathcal{H}}\left(k\right)<2^{k}$  we have that  $m_{\mathcal{H}}\left(N\right)$  is polynomial
- We are not depending on the number of hypothesis!!!!

# Outline

- Is Learning Feasible?
  - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
    - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

#### Vapnik-Chervonenkis Dimension

- Theory of Generalization
  - Generalization Error
  - Reinterpretation
  - Subtlety
- A Problem with M
- Dichotomies
- Shattering Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- lacksquare Partition B(N,k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- 3 Example
  - Multi-Layer Perceptron

# Remark about $m_{\mathcal{H}}(k)$

#### We have bounded the number of effective hypothesis

• Yes!!! we can have M hypotheses but the number of dichotomies generated by them is bounded by  $m_{\mathcal{H}}\left(k\right)$ 

# VC-Dimension Again

#### Definition

• The VC-dimension of a hypothesis set  $\mathcal H$  is the size of the largest set that can be fully shattered by  $\mathcal H$  (Those points need to be in "General Position"):

$$VC_{dim}\left(\mathcal{H}\right) = \max\left\{k|m_{\mathcal{H}}\left(k\right) = 2^{k}\right\}$$

# VC-Dimension Again

#### Definition

• The VC-dimension of a hypothesis set  $\mathcal{H}$  is the size of the largest set that can be fully shattered by  $\mathcal{H}$  (Those points need to be in "General Position"):

$$VC_{dim}(\mathcal{H}) = \max \left\{ k | m_{\mathcal{H}}(k) = 2^{k} \right\}$$

# Something Notable

• If  $m_{\mathcal{H}}(N) = 2^N$  for all N,  $VC_{dim}(\mathcal{H}) = \infty$ 

# Remember

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{1}{2N}} \ln \frac{2M}{\delta}$$

### Remember

# We have the following

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{1}{2N}} \ln \frac{2M}{\delta}$$

# We instead of using M, we use $m_{\mathcal{H}}\left(N\right)$

• We can use our growth function as the effective way to bound

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{1}{2N}\ln\frac{2m_{\mathcal{H}}\left(N\right)}{\delta}}$$

# VC Generalized Bound

### Theorem (VC Generalized Bound)

• For any tolerance  $\delta>0$  and  $\mathcal{H}$  be a hypothesis set with  $VC_{dim}\left(\mathcal{H}\right)=k.$ ,

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{2k}{N}} \ln \frac{eN}{k} + \sqrt{\frac{1}{2N} \ln \frac{1}{\delta}}$$

• with probability  $\geq 1 - \delta$ 

# VC Generalized Bound

# Theorem (VC Generalized Bound)

• For any tolerance  $\delta>0$  and  $\mathcal{H}$  be a hypothesis set with  $VC_{dim}\left(\mathcal{H}\right)=k.$ ,

$$E_{in}\left(g\right) < E_{out}\left(g\right) + \sqrt{\frac{2k}{N}} \ln \frac{eN}{k} + \sqrt{\frac{1}{2N} \ln \frac{1}{\delta}}$$

• with probability  $\geq 1 - \delta$ 

### Something Notable

This Bound only fails when  $VC_{dim}(\mathcal{H}) = \infty!!!$ 

# Proof

#### Although we will not talk about it

- We will remark the that is possible to use the Rademacher complexity
  - To manage the number of overlapping hypothesis (Which can be infinite)

# Proof

# Although we will not talk about it

- We will remark the that is possible to use the Rademacher complexity
  - ► To manage the number of overlapping hypothesis (Which can be infinite)

# We will stop here, but

• But I will encourage to look at more about the proof...

#### About the Proof

#### For More, take a look at

- "A Probabilistic Theory of Pattern Recognition" by Luc Devroye et al.
- "Foundations of Machine Learning" by Mehryar Mohori et al.

#### About the Proof

#### For More, take a look at

- "A Probabilistic Theory of Pattern Recognition" by Luc Devroye et al.
- "Foundations of Machine Learning" by Mehryar Mohori et al.

# This is the equivalent to use Measure Theory to understand the innards of Probability

• We are professionals, we must understand!!!

# Outline

- - Introduction
    - The Dilemma
  - A Binary Problem, Solving the Dilemma
  - Hoeffding's Inequality
  - Error in the Sample and Error in the Phenomena
  - Formal Definitions
  - Back to the Hoeffding's Inequality
  - The Learning Process
  - Feasibility of Learning
  - Example
    - Overall Error

- Theory of Generalization Generalization Error
  - Reinterpretation
  - Subtletv
- A Problem with M
- Dichotomies Shattering
- lacktriangle Example of Computing  $m_{\mathcal{H}}(N)$
- What are we looking for?
- Break Point
- VC-Dimension
- Partition B(N, k)
- lacktriangle Connecting the Growth Function with the  $VC_{dim}$
- VC Generalization Bound Theorem
- Example
  - Multi-Layer Perceptron

# As you remember from previous classes



# Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l+1.

# Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l+1.

# Now, we have a set of hypothesis ${\cal H}$

• NInput Nodes with in-degree 0

# Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l+1.

# Now, we have a set of hypothesis ${\cal H}$

- ullet NInput Nodes with in-degree 0
- ullet Intermediate Nodes with in-degree r

# Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l+1.

# Now, we have a set of hypothesis ${\cal H}$

- NInput Nodes with in-degree 0
- ullet Intermediate Nodes with in-degree r
- Single Output node with out-degree 0

# Let G be a layered directed acyclic graph

Where directed edges go from one layer l to the next layer l+1.

# Now, we have a set of hypothesis ${\cal H}$

- NInput Nodes with in-degree 0
- ullet Intermediate Nodes with in-degree r
- Single Output node with out-degree 0

# ${\mathcal H}$ our hypothesis over the space Euclidean space ${\mathbb R}^r$

• Basically each node represent the hypothesis  $c_i : \mathbb{R}^r \to \{-1, 1\}$  by mean of  $\tanh$ .

### We have that

ullet The Neural concept represent an hypothesis from  $\mathbb{R}^N$  to  $\{-1,1\}$ 

#### We have that

ullet The Neural concept represent an hypothesis from  $\mathbb{R}^N$  to  $\{-1,1\}$ 

# Therefore the entire hypothesis is a composition of concepts

ullet This is called a G-composition of  ${\mathcal H}$ .

# We have the following theorem

# Theorem (Kearns and Vazirani, 1994)

• Let G be a layered directed acyclic graph with N input nodes and  $r \geq 2$  internal nodes each of indegree r.

# We have the following theorem

# Theorem (Kearns and Vazirani, 1994)

- Let G be a layered directed acyclic graph with N input nodes and  $r \geq 2$  internal nodes each of indegree r.
- Let  $\mathcal{H}$  hypothesis set over  $\mathbb{R}^r$  of  $VC_{dim}\left(\mathcal{H}\right)=d$ , and let G-composition of  $\mathcal{H}$ . then

$$VC_{dim}\left(\mathcal{H}_G\right) \le 2ds \log_2\left(es\right)$$