Tópicos de Matemática

Univ. do Minho - Lic. em Ciências da Computação

1º teste 31 de outubro de 2018

- 1. As fórmulas $p \lor (\sim q \lor \sim r)$ e $r \to (q \to p)$ são semanticamente equivalentes? Justifique. (1,5 valores)
- 2. Diga, justificando, se $r \rightarrow q$ ser verdadeira é:
 - a) condição necessária para $p \lor q$ e $\sim p$ serem verdadeiras; (0,5 valores)
 - b) condição suficiente para $p \lor q$ e $\sim p$ serem verdadeiras. (0,5 valores)
- 3. Sejam a e b números reais tais que $3a+2b \le 5$. Mostre que se a>1 então b<1. (1 valor)
- 4. Seja M(x) o predicado «x é multifacetado», relativo a números x. Exprima em linguagem simbólica, usando quantificadores, a afirmação «se algum número negativo é multifacetado, então todos os números são multifacetados». (0,5 valores)
- 5. Considere as seguintes proposições, nas quais o universo de cada quantificação é Q⁺:
 - i) $\forall_x \exists_y xy = 2$
 - ii) $\exists_v \forall_x xy = 1$
 - a) Diga, justificando, se cada uma dessas proposições é verdadeira ou falsa.

(1,4 valores)

- b) Escolha uma dessas proposições e apresente uma proposição equivalente à sua negação, sem recorrer ao conetivo ~. (0,6 valores)
- 6. Mostre que, para todo o $n \in \mathbb{N}$, $1 + 4 + 16 + \ldots + 4^{n-1} = \frac{4^n 1}{3}$. (2 valores)
- 7. Considere os conjuntos

$$A = \left\{ \, x \in \mathbb{Q} \, : 4 \, |x| \in \mathbb{N} \, \right\}, \quad B = \left\{ -2, \, 1, \, \frac{7}{2} \right\} \quad \text{e, para cada } i \in \mathbb{N}, \ \ C_i = \left\{ -i, \, 0, \, i \right\}.$$

Diga, justificando, se

- a) $B \subseteq A$;
- b) $\frac{4}{3} \in A \backslash B$;
- c) $-\frac{3}{4} \in A \cup B$;

d)
$$\bigcap_{i\in\mathbb{N}} C_i \subseteq A$$
. (2 valores)