Algebraic quantum field theory

Ikhan Choi

January 9, 2025

Contents

1		2
	1.1	 2
	1.2	 3
	1.3	 4

Chapter 1

Axiomatic: Osterwalder-Schrader, Wightman, Haag-Kastler

CFT

Statistical physics: Gibbs state by DLR equation, Lieb-Robinson bound, quantum theory

1.1

1.1 (Geometric quantization). On a closed symplectic manifold (X, ω) , fix a *pre-quantum line bundle* on X, which is a structured line bundle $(L, \nabla) \to X$ such that the curvature is the symplectic form ω . Define the *pre-quantum operator* $Q: C^{\infty}(X) \to \operatorname{End}(\Gamma^{\infty}(L))$ such that

$$Q(f) := -i\nabla_{X_f} + f,$$

where X_f is the Hamiltonian vector field associated to $f \in C^{\infty}(X)$ with respect to the symplectic structure. polarization and metaplectic correction to construct the Hilbert space.

I think geometric quantization does not work for field theory in general, and the Chern-Simons theory is the one very exceptional.

- 1.2 (Deformation quantization).
- **1.3** (Path integral quantization). It generates a FQFT as follows. If we describe the Hilbert space H in FQFT as function spaces to describe the propagator corresponded to the world-volume Σ as a integral operator, we want to compute the kernel in terms of action functional as

$$k(x,y) = \int_{\text{Confs}} [D\varphi] e^{iS(\varphi)}.$$

For almost cases (perhaps), it is done by σ -models, in which we set the configuration as $\operatorname{Conf}_{\Sigma} := \operatorname{Map}(\Sigma, X)$ of maps from a world-volume Σ to the target space X. Each function $f \in C^{\infty}(X)$ defines an operator

1.4. Action functionals

- (a) Classical mechanics: Let $\operatorname{Conf}_{\Sigma} := C^{\infty}(\Sigma, X)$, where $\Sigma = [t_i, t_f]$ and $X = T^*\mathbb{R}^3 = T\mathbb{R}^3$. For a given background potential $V: X \to \mathbb{R}$, we can define the action $S(\varphi) := \int_{\Sigma} L(t, \varphi, \dot{\varphi}) dt$, where $L(t, x, v) := \frac{m}{2} ||v||^2 + V(x)$, m > 0 is the mass parameter.
- (b) General relativity: the configuration space is the space of pseudo-metrics, Einstein-Hilbert action
- (c) Electromagnetism and Yang-Mills theory: the configuration space is the space of principal bundles with connections, and the action is $S(A) := \frac{1}{2} \langle F, F \rangle$.
- (d) Chern-Simons theory: the configuration space is the space of principal bundles with connections on three-dimensional manifolds, and the action is $S(\omega) := \mathrm{CS}_Q(\omega)$, where Q is a symmetric polynomial in Chern-Weil theory.

Except classical mechanics, Σ is the space-time.

In principle, the configuration space is the section space of a fiber bundle, and the Lagrangian is a map from the configuration space to the space of densities, which defines an action functional.

1.2

Consider a Poincaré equivariant topological left(really?) module $H = L^2(H_m)$ over a commutative algebra of the Minkowski space $A = \mathcal{S}(\mathbb{R}^{1,d-1})$. We have a partially defined map $A \to H$ (fourier restriction).

An AQFT on Minkowski space can be seen as a causal conical cyclic Poincaré covariant representation $\phi: H \to B(FH)$ of the left *A*-module *H*.

For an ideal I supported on $O \subset \mathbb{R}^{1,d-1}_x$ of A, we can produce a smaller A-module IH and the algebra generated by IH in B(FH) can be considered.

- **1.5** (Wightman axioms). Let $\mathbb{R}^{1,d-1}_x$ be the Minkowski space and \mathcal{P}^{\uparrow}_+ the connected component of the Poincaré group. A *Wightman field* is a linear map $\phi: \mathcal{S}(\mathbb{R}^{1,d-1}_x) \to \operatorname{End}(\mathcal{D})$, where \mathcal{D} is an inner product space with completion \mathcal{H} , such that
 - (i) Covariance: there is a representation $U: \mathcal{P}_+^{\uparrow} \to U(\mathcal{H})$ such that $\operatorname{Ad} U(\gamma)\phi(f) = \phi(\gamma^* f)$,
 - (ii) Causality: if the supports of f and g are space-like separated, then $[\phi(f), \phi(g)] = 0$ on D,
- (iii) Conicality:
- (iv) Cyclicity: there is a Poincaré invaraint cyclic vector Ω in the sense that the span of the set $\{\phi(f_1)\cdots\phi(f_n)\Omega\}$ is dense in \mathcal{D} .
- **1.6** (Free massive bosonic fields). Let m > 0, called the mass of a scalar particle, and let d = 1 + 1 be a positive integer, called the dimension. Note $\mathcal{P}_+^{\uparrow} = \mathbb{R}^{1,1} \rtimes \mathbb{R}$. On the mass shell $H_m := \{p \in \mathbb{R}_p^{1,1} : (p,p) = p_0^2 p_1^2 = m^2, \ p_0 > 0\}$, the induced metric is Riemannian with the volume form $(p_1^2 + m^2)^{-\frac{1}{2}} dp_1$, so we can define $L^2(H_m)$.

For $f \in \mathcal{S}(\mathbb{R}^{1,1}_x)$, consider the restriction of the Fourier transform $\hat{f} \in L^2(H_m)$.

$$\widehat{f}(p) = \int_{\mathbb{R}^{1,1}} e^{i(x,p)} f(x) d^2 x, \qquad p \in H_m,$$

where d^2x is the Lebesgue measure on $\mathbb{R}^{1,1}$, which is Lorentz invariant. Via the Bosonic Fock space construction $\mathcal{F}^+(L^2(H_m))$, we define a operator-valued distribution

$$\phi: f \mapsto a^{\dagger}(\hat{f}) + a(\hat{f}),$$

 $\phi(f)$ is defined densely on $\mathcal{F}^+(L^2(H_m))$.

- (a) ϕ is covariant.
- (b) ϕ is local.
- (c) ϕ has positive energy.
- (d) ϕ admits a vaccum.
- (e) ϕ has linear energy bound. In particular, it defines a Araki-Haag-Kastler net.

Proof. (a) Consider a representation $U_m: \mathcal{P}^{\uparrow}_{+} \to U(L^2(H_m))$ on $L^2(H_m)$, defined by

$$(U_m(a,\Lambda)\Psi)(p) := e^{i(a,p)}\Psi(\Lambda^{-1}p), \qquad (a,\Lambda) \in \mathcal{P}^{\uparrow}_{\perp}, \ \Psi \in L^2(H_m).$$

The action $U_m: \mathcal{P}_+^{\uparrow} \to U(L^2(H_m))$ is extended to $\Gamma(U_m): \mathcal{P}_+^{\uparrow} \to U(\mathcal{F}^+(L^2(H_m)))$, called the second quantization. Then, since $\mathcal{F}(a, \Lambda)\mathcal{F}^{-1}$ maps

$$(p \mapsto \int e^{i(x,p)} f(x) d^2 x)$$
 to $(p \mapsto \int e^{i(x,p)} f(\Lambda^{-1}(x-a)) d^2 x = e^{i(a,p)} \int e^{i(x,\Lambda^{-1}p)} f(x) d^2 x),$

so it is covariant.

(b) Define the left and right wedges

$$W_L := \{ x \in \mathbb{R}^{1,1} : |x_0| \le -x_1 \}, \qquad W_R := \{ x \in \mathbb{R}^{1,1} : |x_0| \le x_1 \}.$$

Suppose f and g are Schwartz functions supported on W_L and W_R respectively. Write

$$[\phi(f), \phi(g)] = [a^{\dagger}(\hat{f}), a(\hat{g})] + [a(\hat{f}), a^{\dagger}(\hat{g})].$$

analytic continuation and residue theorem... If $f(x) \neq 0$ and $g(y) \neq 0$, then x and y are contained in the interior of W_L and W_R , so (x, y) > 0.

What is the interactions?

Conformal nets, vertex operator algebras, and Segal's picture. Factorization algebra?

1.3

A stochastic process is a family of *-homomorphisms $\varphi_t: A \to (N, \tau)$ indexed by t.

A stochastic process $\{\varphi_t\}$ is called *Markov* if there is a unital positive linear semi-group action α on A such that $\varphi_t(a) = \varphi_0(\alpha_t(a))$.

For a unital positive linear semi-group action α on A and an initial condition in A^* , then we can construct a Markov process $\varphi_t: A \to (N, \tau)$. The algebra N does not depend on the initial condition, but the trace τ is determined by the initial condition.