NAME

pyFAI-saxs - pyFAI-saxs

SYNOPSIS

pyFAI-saxs [options] -p ponifile file1.edf file2.edf ...

DESCRIPTION

Azimuthal integration for SAXS users.

OPTIONS

--version

show program's version number and exit

-h, --help

show this help message and exit

-p PONIFILE

PyFAI parameter file (.poni)

-n NPT

Number of points in radial dimension

-w WAVELENGTH, --wavelength=WAVELENGTH

wavelength of the X-Ray beam in Angstrom

-e ENERGY, --energy=ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A)

-u DUMMY, --dummy=DUMMY

dummy value for dead pixels

-U DELTA_DUMMY, --delta_dummy=DELTA_DUMMY

delta dummy value

-m MASK, --mask=MASK

name of the file containing the mask image

-d DARK, **--dark**=*DARK*

name of the file containing the dark current

-f FLAT, **−−flat**=*FLAT*

name of the file containing the flat field

-P POLARIZATION_FACTOR, **--polarization**=*POLARIZATION_FACTOR*

Polarization factor, from -1 (vertical) to +1 (horizontal), rection, synchrotrons are around 0.95

default is None for no cor-

--error-model=ERROR_MODEL

Error model to use. Currently on 'poisson' is implemented

--unit=UNIT

unit for the radial dimension: can be q_nm^-1, q_A^-1, 2th_deg,

2th_rad or r_mm

--ext=*EXT*

extension of the regrouped filename (.dat)

pyFAI-saxs is the SAXS script of pyFAI that allows data reduction (azimuthal integration) for Small Angle Scattering with output axis in q space.