Заметки к семинарам по методам оптимальных решений

https://github.com/bdemeshev/optimal-solution-pro зеркало: https://gitlab.com/bdemeshev/optimal-solution-pro

19 марта 2024 г.

Содержание

1	Картинки на плоскости	3
2	Оптимизация на плоскости	4
3	Симплекс-метод	4
4	Решения	7
Хэ	штэги	9
Ис	точники мудрости	g

При везении подсказку, ответ или решение можно найти, кликнув по номеру задачи.

1. Картинки на плоскости

Линейная оболочка (linear span):

$$Span(v_1, v_2, v_3) = \{x_1v_1 + x_2v_2 + x_3v_3 \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}\}\$$

Конус (сопе):

Cone
$$(v_1, v_2, v_3) = \{x_1v_1 + x_2v_2 + x_3v_3 \mid x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$$

Выпуклая линейная оболочка (convex linear hull):

$$\operatorname{Hull}(v_1, v_2, v_3) = \operatorname{Convex}(v_1, v_2, v_3) = \left\{ x_1 v_1 + x_2 v_2 + x_3 v_3 \mid x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, \sum x_i = 1 \right\}$$

- **1.1** Рассмотрим точки на плоскости, A = (0,0), B = (5,3) и C = (5,-3).
 - а) Нарисуйте точки 0.5B + 0.5C, 0.9A + 0.1B, 3B 2C.
 - б) Нарисуйте точки $\frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C$, 0.1A + 0.45B + 0.45C, 0.9A + 0.05B + 0.05C.
- **1.2** Рассмотрим точки на плоскости, A = (1, 2), B = (3, 4) и C = (5, 1).
 - а) Нарисуйте Hull(A, B), Hull(A, B, C).
 - б) Нарисуйте Cone(A), Cone(A, B), Cone(A, B, C).
 - в) Нарисуйте Span(A), Span(A, B).
 - r) Нарисуйте A + Span(B), Cone(A) + Cone(B).
 - д) Нарисуйте Hull(A, B) + Cone(C), Hull(A) + Cone(B, C), Hull(A, C) + Cone(B, C).
- **1.3** Рассмотрим точки на плоскости A = (1, 2), B = (5, 2), C = (1, 4), D = (5, 4).
 - а) Запишите E = (1,3) как выпуклую линейную комбинацию точек A, B, C и D.
 - б) Запишите F=(3,3) как выпуклую линейную комбинацию точек $A,\,B,\,C$ и D всеми возможными способами.
 - в) Можно ли записать G=(6,3) как выпуклую линейную комбинацию точек $A,\,B,\,C$ и D?
 - г) Сколькими способами можно записать H=(4,3) как выпуклую линейную комбинацию A,B,C и D?
 - д) Сколькими способами можно записать I=(4,3) как выпуклую линейную комбинацию A,B и D?
 - е) Сколькими способами можно записать J=(4,2) как выпуклую линейную комбинацию A,B,C и D?
 - ж) Сколькими способами можно записать K=(4,2) как выпуклую линейную комбинацию $A,\,C$ и D?
- **1.4** а) Нарисуйте семейство прямых $ax_1 + 5x_2 = 10$ на плоскости (x_1, x_2) .
 - б) Нарисуйте семейство прямых $2x_1 + x_2 = d$ на плоскости (x_1, x_2) .

2. Оптимизация на плоскости

2.1

2.1. Оптимизация на плоскости с параметром

2.2 Решите задачу линейного программирования при всех значениях c:

$$cx_1 + x_2 \to \max \tag{1}$$

$$2x_1 + 3x_2 \leqslant 6 \tag{2}$$

$$x_1 \geqslant 0 \tag{3}$$

$$x_2 \geqslant 0 \tag{4}$$

2.3 Решите задачу линейного программирования при всех значениях a:

$$x_1 + 3x_2 \to \max \tag{5}$$

$$2x_1 + ax_2 \leqslant 6 \tag{6}$$

$$x_1 \geqslant 0 \tag{7}$$

$$x_2 \geqslant 0 \tag{8}$$

3. Симплекс-метод

Решение x системы Ax = b называется допустимым, если все $x_i \geqslant 0$.

Решение x системы Ax = b называется базисным, если столбцы $\operatorname{col}_i A$ при $x_i \neq 0$ линейно независимы.

Терминология

3.1 Рассмотрим систему уравнений

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 8 \\ x_1 - x_2 + x_4 = 9 \end{cases}$$

Есть несколько векторов, $x_a=(0,0,0,0)$, $x_b=(0,0,8,9)$, $x_c=(1,0,6,8)$, $x_d=(1,-9,33,-1)$, $x_e=(0,-9,35,0)$.

- а) Какие векторы являются решениями системы?
- б) Какие векторы являются базисными решениями системы?
- в) Какие векторы являются допустимыми решениями при условии, что все $x_i \geqslant 0$?
- 3.2 Рассмотрим систему уравнений

$$\begin{cases} x_1 + 3x_2 + x_3 = 10 \\ 2x_1 + x_2 + x_4 = 11 \end{cases}$$

Есть несколько векторов, $x_a = (1, 2, 3, 4)$, $x_b = (0, 0, 10, 11)$, $x_c = (1, 0, 9, 9)$, $x_d = (6, -1, 7, 0)$, $x_e = (0, 11, -23, 0)$.

а) Какие векторы являются решениями системы?

- б) Какие векторы являются базисными решениями системы?
- в) Какие векторы являются допустимыми решениями при условии, что все $x_i \geqslant 0$?
- 3.3 Рассмотрим систему ограничений в канонической форме:

$$\begin{cases} 2x_1 + 5x_2 + x_3 = 8 \\ x_1 - 6x_2 + x_4 = 15 \\ -x_1 + 2x_2 + x_5 = 11 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0. \end{cases}$$

- а) Найдите хотя бы одно базисное допустимое решение системы.
- б) Найдите все базисные допустимые решения системы.
- 3.4 Рассмотрим систему ограничений в канонической форме:

$$\begin{cases} 2x_1 + 5x_2 - x_3 = 8 \\ x_1 - 6x_2 + x_4 = 15 \\ -x_1 + 2x_2 + x_5 = 11 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0, x_5 \geqslant 0. \end{cases}$$

- а) Найдите хотя бы одно базисное допустимое решение системы.
- б) Найдите все базисные допустимые решения системы.

Приятная стартовая точка

3.5 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + 3x_2 \leqslant 9 \\ 2x_1 + x_2 \leqslant 8 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.6 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + 2x_2 + 3x_3 \to \max \\ x_1 + x_2 + 2x_3 \leqslant 10 \\ 2x_1 + x_2 + x_3 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.

- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.7 Рассмотрим задачу линейного программирования:

$$\begin{cases} 2x_1 - 3x_2 \to \min \\ x_1 + x_2 \leqslant 10 \\ 2x_1 + x_2 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.8 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + x_2 + x_3 \to \max \\ 2x_1 + x_2 + 3x_3 \leqslant 10 \\ x_1 - x_2 + x_3 \leqslant 6 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.9 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 - 2x_2 + 3x_3 \to \min \\ 3x_1 + 2x_2 + x_3 \leqslant 10 \\ x_1 + x_2 - x_3 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.

Особые случаи

Поиск стартовой точки

4. Решения

1.1.

1.2.

1.3.

a)
$$E = 0.5A + 0B + 0.5C + 0D$$

б) Например, F = 0A + 0.5B + 0.5C + 0D = 0.5A + 0B + 0C + 0.5D = 0.25A + 0.25B + 0.25C + 0.25D. Для нахождения всех способов надо решить систему:

$$\alpha A + \beta B + \gamma C + \delta D = E\alpha + \beta + \gamma + \delta = 1$$

$$\left(\begin{array}{ccc|c}
1 & 5 & 1 & 5 & 3 \\
2 & 2 & 4 & 4 & 3 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \to \dots \to \left(\begin{array}{ccc|c}
0 & 1 & 0 & 1 & 1/2 \\
0 & 0 & 1 & 1 & 1/2 \\
1 & 0 & 0 & -1 & 0
\end{array}\right)$$

Система имеет бесконечное количество решений.

Все способы, $F = \alpha A + (0.5 - \alpha)B + (0.5 - \alpha)C + \alpha D$, где $\alpha \in [0; 0.5]$.

- в) Нельзя, так как $G \notin \text{Hull}(A, B, C, D)$.
- г) Есть ∞ способов.
- д) Есть 1 способ. Решаем систему уравнений $I=t_1A+t_2B+(1-t_1-t_2)D$. Получаем, что I=0.25A+0.25B+0.5D.
- е) Есть 1 способ, J = 0.25A + 0.75B.
- **ж**) 0

1.4.

2.1.

2.2.

2.3.

3.1

J.1.			
вектор	решение	базисное решение	допустимое решение
$x_a = (0, 0, 0, 0)$	нет	нет	нет
$x_b = (0, 0, 8, 9)$	да	да	да
$x_c = (1, 0, 6, 8)$	да	нет	да
$x_d = (1, -9, 33, -1)$	да	нет	нет
$x_e = (0, -9, 35, 0)$	да	да	нет

	вектор	решение	базисное решение	допустимое решение	
3.2.	$x_a = (1, 2, 3, 4)$	нет	нет	нет	
		да	да	да	
	$x_c = (1, 0, 9, 9)$	да	нет	да	
	$x_d = (6, -1, 7, 0)$	да	нет	нет	
	$x_e = (0, 11, -23, 0)$	да	да	нет	

3.3.

- a) x = (0, 0, 8, 15, 11)
- б)

3.4.

- а) Решение x=(0,0,-8,15,11) является базисным и не является допустимым. Подойдёт, например, x = (4, 0, 0, 11, 15).
- б)

3	<u> 5.5. </u>								
		x_1	x_2	x_3	x_4	b			
	x_3		3	1	0	9	r	_	(0,0,9,8), z=0.
	x_4	2	1	0	1	8 '	x.	_	(0,0,5,0), z=0.
	z	1	1	0	0	0			
-		x_1	x_2	x_3	,	$\overline{x_4}$	b	_	
	x_3	0	5/2	1	_	1/2		_	x = (4, 0, 5, 0), z = 4.
	x_1	1	1/2	0	1	-/2	4	,	x = (4, 0, 0, 0), z = 4.
	z	0	1/2	0	_	1/2	-4	_	
_		x_1	x_2	x_3		x_4	b	_	
	x_2					-1/5			x = (3, 2, 0, 0), z = 5.
_	x_1	1	0	-1/	5	3/5	3	,	x = (0, 2, 0, 0), z = 0.
	z	0	0	-1/	5	-2/5	5		

	x_1	x_2	x_3	x_4	x_5	b			
	1						_	$m = (0, 0, 0, 10, 5), \alpha = 0$	
x_5	2	1	1	0	1	5	,	x = (0, 0, 0, 10, 5), z = 0.	
\overline{z}	1	2	3	0	0	0	_		
	x_1	x_2	x_3	x_4	$x_{!}$	5	b	_	
$\overline{x_4}$	-3	-1	0	1	-	2	0	— — (0, 0, 5, 10, 0), ~ —	15
x_3	2	1	1	0	1		5	x = (0, 0, 5, 10, 0), z =	15.
~	_5	_1	n	0		3.	_15		

3.7.

$$x = (0, 10, 0, 0, 16), z = 10.$$

x = (0, 0, 0, 10, 6), z = 0.

3.9.

Источники мудрости