Регрессия и стохастический градиентный спуск Необходимые сведения

Иванов И.Е., Петюшко А.А.

МГУ

10 марта 2021 г.

План

- Коэффициент детерминации
- Стохастический градиентный спуск
- Численная производная
- Итераторы

Коэффициент детерминации

- ullet Пусть $Y = \{y_1, \dots, y_N\}$ множество правильных ответов
- ullet $Y_{pred} = \{y_{pred1}, \dots, y_{predN}\}$ множество предсказанных ответов

Коэффициент детерминации

 R^2 -коэффициент (определяющий качество предсказания):

$$R^2 = 1 - rac{\sum_{i} (y_i - y_{predi})^2}{\sum_{i} (y_i - rac{1}{N} \sum_{j} y_j)^2}$$

Замечание. $-\infty < R^2 \le 1$. Идеальное предсказание дает $R^2 = 1$.

Классический градиентный спуск

- Функция потерь для линейной регрессии (без регуляризации): $L(w, X_{train}) = \frac{1}{N} \sum_{i} (w^T \cdot x^{(i)} y_i)^2 = \frac{1}{N} \sum_{i} L(w, x^{(i)}) = \frac{1}{N} \sum_{i} L_i(w)$
- ullet Задача: минимизировать $L(w,X_{train})$ путем обучения весов $w\colon L(w,X_{train}) o \min_w$

Численная оптимизация методом градиентного спуска

- Начальное приближение: $w^{(0)} := 0$
- ullet Итерация алгоритма: $w^{(t+1)} := w^{(t)} \eta \cdot
 abla_w L(w^{(t)}, X_{train})$
- Градиентный шаг: η

Проблема: сложно считать в условиях большого количества объектов в обучающей выборке.

Стохастический градиентный спуск

Алгоритм стохастического градиентного спуска

- Инициализация весов $w^{(0)}$
- ullet Инициализация функции потерь $L(w^{(0)}, X_{train}) := rac{1}{N} \sum_i L_i(w^{(0)})$

Итерации

- ullet Выбор объекта $x_i \in X^m$ (например, случайным образом)
- Вычисление ошибки на данном объекте: $L_i(w^{(t)})$
- ullet Шаг градиентного спуска: $w^{(t+1)} := w^{(t)} \eta \cdot
 abla_w L_i(w^{(t)})$

Вариативность SGD

Инициализация

- $w_i = 0$
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$

Пакетный SGD

Идея: на каждом шаге использовать более надежную оценку градиента не на одном примере, а на нескольких

Итерации

- ullet Выбор подмножества объектов мощности 1 < k < N: $J = \{i_1, \dots, i_k\}$
- ullet Вычисление ошибки на этих объектах: $L_{i_1}(w^{(t)}), \dots, L_{i_k}(w^{(t)})$
- ullet Шаг градиентного спуска: $w^{(t+1)} := w^{(t)} \eta \cdot rac{1}{k} \sum_{j=1}^k
 abla_w L_{i_j}(w^{(t)})$

Численный градиент

Численная производная

- ullet Пусть $x\in\mathbb{R}$
- ullet Используем разложение Тейлора до первого порядка: $f(x+\delta)pprox f(x)+\delta f'(x)$
- ullet Производная с помощью конечных разностей первого порядка: $f'(x) pprox rac{f(x+\delta)-f(x)}{\delta}$
- ullet Для более надежной оценки производной: $\delta
 ightarrow 0, \delta > 0$

Численный градиент

- ullet Пусть $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$
- ullet Тогда градиентом abla f(x) называется вектор $abla f(x) = (rac{\partial f(x)}{\partial x_1}, \dots, rac{\partial f(x)}{\partial x_n})$
- Частная производная: $\frac{\partial f(x)}{\partial x_i} \approx \frac{f(x+\delta e_i)-f(x)}{\delta}$, где $e_i=(0,\dots,0,1,0,\dots,0)$ единичный базисный вектор с 1 на месте i

Итераторы в Python

- Нужны для упрощения навигации по элементам объекта (некоторая коллекция)
- Применяются в цикле "for i in iterator:"
- Имеют достаточно строгий синтаксис
- В задачах подразумевается, что мы будем ходить по обучающей выборке некоторое количество полных раз по кругу, после чего завершаем работу

Итераторы в Python

```
class mylterator:
        def iter (self):
               return self
        def __init__(self, limit):
                self limit = limit
                self.counter = 0
        def     next (self):
                 if self.counter < self.limit:</pre>
                         self.counter += 1
                         return 1
                else:
                         raise Stoplteration
iterate = mylterator(3)
for i in iterate:
        print(i)
```

Удачи в решении задач!