MA 515 Homework 5

Zheming Gao

October 30, 2017

Problem 1

Proof. Let $V = \text{span}\{v_1, \dots, v_n\}$, where v_1, \dots, v_n are linearly independent elements in V. Then there exists n linearly independent elements $x_1, \dots, x_n \in X$ such that $T(x_i) = v_i, i = 1, \dots, n$. The existence promised by the fact that T is a linear operator. Let $Y_0 = \text{span}\{x_1, \dots, x_n\}$. Hence, $\dim(Y_0) = \dim(V) = n$.

Also, $\ker(T) \cap Y_0 = \{0\}$. Indeed, if $\exists y \neq 0, y \in Y_0$ such that T(y) = 0. Let $y = \sum_{i=1}^n \beta_i x_i$. Then there exists $\beta_i \neq 0$. By linearity of T, $T(y) = \sum_{i=1}^n \beta_i T(x_i) = \sum_{i=1}^n \beta_i v_i \neq 0$ and it yields a contradiction.

Next, we will show $\ker(T)+Y_0=X$. Suppose not, for any $x\in X$, there exists $z\notin \ker(T)+Y_0, w\in \ker(T), r\in Y_0$ such that x=z+w+r. Let $r=\sum_{i=1}^n t_i x_i$, and $T(x)=\sum_{i=1}^n \alpha v_i$. Hence,

$$\sum_{i=1}^{n} \alpha_i v_i = T(x) = T(z) + T(w) + T(r) = T(z) + \sum_{i=1}^{n} t_i v_i.$$

, which implies that $T(z) = \sum_{i=1}^{n} (\alpha_i - t_i) v_i$.

However, $z \notin \ker(T) + Y_0$ and so $T(z) \notin \operatorname{span}\{v_1, \ldots, v_n\} \subset (\ker(T) + Y_0)$. Hence, it is a contradiction.

In conclusion, $\ker(T) + Y_0 = X$ and $\ker(T) \cap Y_0 = \{0\}$, and it implies that $X = \ker(T) \oplus Y_0$.

Problem 2

Proof. If T is continuous, then the preimage(i.e., ker(T)) of $\{0\}$ is closed since $\{0\}$ is closed. Also, ker(T) is a subspace due to the linearity of T.

If $\ker(T)$ is a closed subspace in X, we need to show that T is continuous, or equivalently, bounded. Since Y is a finite-dimensional space, from the result of problem 1, we know there exists a finite-dimensional subspace $Y_0 \subset X$ such that $X = \ker(T) \oplus Y_0$. Hence, for any $x \in X$, there exists $y \in \ker(T)$, $z \in Y_0$ such that x = y + z.

Consider the norm of T,

$$||T||_{\infty} = \sup_{\|x\| \le 1} ||T(x)|| \le \sup_{\|x\| \le 1y \in \ker}.$$

.....

Problem 3

Proof. Denote the graph of f as $G(f):=\{(x,f(x))|x\in X\}\subset X\times Y$. Let $\{z_n\}_{n\in\mathbb{N}}=\{(x_n,f(x_n))\}_{n\in\mathbb{N}}\subset G(f)$ that converges to z=(x,y). It is enough to show that y=f(x). Indeed, $x=\lim_{n\to+\infty}x_n$ and so $\lim_{n\to+\infty}f(x_n)=f(x)$ due to the continuity of f. Also, $y=\lim_{n\to+\infty}f(x_n)$. Hence, y=f(x).

Question: Here we only need X, Y to be metric spaces. We didn't really need completeness. Is it correct?

Problem 4

(a) Proof.

(b) Let f be the following function,

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Problem 5

Proof. $S \circ T$ is a linear operator. Indeed, the domain of $S \circ T$ is X, which is a subspace of itself. Also, function composition preserves linearity.

Next we need to show $S \circ T$ is bounded. Consider norm $||S \circ T||_{\infty}$,

$$||S \circ T||_{\infty} = \sup_{\|x\|_{X}=1} ||(S \circ T)(x)||_{Z} = \sup_{\|x\|_{X}=1} ||S(T(x))||_{Z}$$

$$\leq \sup_{\|x\|_{X}=1} ||S||_{\infty} ||T(x)||_{Y}$$

$$= ||S||_{\infty} \sup_{\|x\|_{X}=1} ||T(x)||_{Y}$$

$$= ||S||_{\infty} ||T||_{\infty}.$$

Since both S and T are bounded linear operators, $||S||_{\infty}$ and $||T||_{\infty}$ are less than positive infinity and this leads to the conclusion that $||S \circ T||_{\infty} < +\infty$.

In conclusion, $S \circ T$ is a bounded linear operator.

Problem 6

Proof. (a) T is a contraction mapping. Indeed, let $c = ||T||_{\infty} < 1$. Hence, for any $x_1, x_2 \in X(x_1 \neq x_2)$,

$$||T(x_1) - T(x_2)|| = ||T(x_1 - x_2)|| \le ||T||_{\infty} ||x_1 - x_2|| = c||x_1 - x_2||.$$

where 0 < c < 1. Hence, there exists a unique $x_0 \in X$ such that $T(x_0) = x_0$. And this is equivalent to say that linear operator (which is easy to check) $\mathcal{N}(I-T) = \{x_0\}$. However, $\{0\} \in \mathcal{N}(I-T)$ always holds. Thus, $x_0 = 0$.

Next we need to show that I - T is a one-to-one mapping. Suppose not, then there exists $y \in X$ and distinct $y_1, y_2 \in X$ such that $(I - T)(y_1) = (I - T)(y_2) = y$. By linearity, $(I - T)(y_1 - y_2) = 0$ and it yields that $y_1 = y_2$, which is a contradiction.

What's more, I-T is surjective. Indeed, I-T maps from X to X. For any element $x \in X$, \exists unique $y \in X$ such that y = (I-T)(x). Hence, volume of the range of I-T equals to the volume of domain. i.e., $|\Re(I-T)| = |\mathcal{D}(I-T)| = |X|$. Also, $\Re(I-T) \subset X$, which yields that $\Re(I-T) = X$. In conclusion, I-T is bijective.

(b) Let $S = \sum_{n=0}^{\infty} T^n$ and consider $||S||_{\infty}$.

$$||S||_{\infty} \leqslant ||\lim_{m \to +\infty} \sum_{n=0}^{m} T^{n}||_{\infty}$$

$$= \lim_{m \to +\infty} ||\sum_{n=0}^{m} T^{n}||_{\infty}$$

$$\leqslant \lim_{m \to +\infty} \sum_{n=0}^{m} ||T^{n}||_{\infty}$$

$$\leqslant \lim_{m \to +\infty} \sum_{n=0}^{m} ||T||_{\infty}^{n}$$

$$= \lim_{m \to +\infty} \sum_{n=0}^{m} c^{n}$$

$$= \frac{1}{1-c} < +\infty.$$

We use triangle inequality above. Also, the limit and norm can exchange due to the continuity of norm.

Hence, S is bounded in $\|\cdot\|_{\infty}$. And it is obvious that S is a linear operator, so $S \in (B(X,X),\|\cdot\|_{\infty})$.

(c) It is enough to check that $S \circ (I - T) = (I - T) \circ S = I$.

$$S \circ (I - T) = S - S \circ T = \sum_{n=0}^{\infty} T^n - \sum_{n=1}^{\infty} T^n$$
$$= T^0 = I$$

$$(I - T) \circ S = S - T \circ S = \sum_{n=0}^{\infty} T^n - \sum_{n=1}^{\infty} T^n$$
$$= T^0 = I$$

Hence, $S = (I - T)^{-1}$.

Problem 7

Proof. For each $n \in \mathbb{N}$, $||T^n||_{\infty} \leq ||T||_{\infty}^n$. Since T is a bounded linear operator, $||T||_{\infty} < +\infty$. By triangle inequality and Taylor theorem,

$$||S||_{\infty} \leqslant \sum_{n=0}^{+\infty} \frac{||T^n||_{\infty}}{n!} \leqslant \sum_{n=0}^{+\infty} \frac{||T||_{\infty}^n}{n!} = e^{||T||_{\infty}}.$$