Programming Languages and Compiler Design

Lexical, Syntactic, and Type Analysis

Yliès Falcone, Jean-Claude Fernandez

Master of Sciences in Informatics at Grenoble (MoSIG) Univ. Grenoble Alpes (Université Joseph Fourier, Grenoble INP)

Academic Year 2015 - 2016

Compiler architecture

Outline - Lexical, Syntactic, and Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type System for a (small) Functional Language

Some Implementation Issues

Lexical Analysis

Regular languages

- ► regular Expressions language description
- ▶ (Non-) Deterministic Finite State Automata language recognition
- ▶ regular grammars language generation/description

Thus, a lexical analyzer may be

- specified by regular expressions,
- ▶ implemented by a Deterministic Finite State Automaton.

Lexical Analyzer Generator

```
LeX : from Regular expression to Finite State Automaton

LeX description

declarations

%%

rules

%%

procedures

Example of declaration :
digit [0-9]
integer {digit}+

Example of rule description :
{integer} {val=atoi(yytext);return(Integer);}
```

Compiler architecture

3160 4160

Syntactic Analysis

Context-free languages

- ▶ Push-down automata language recognition
- ► Context-free grammar language generation/description

Thus, an LR parser can be

- specified by a LR grammars
- ▶ implemented by a deterministic push-down automata

Parser Generator

```
Yacc/Bison: from HC grammar to push-down automata
Yacc/Bison description

declarations
%%
rules
%%
procedures

Example of declaration:
%type <u_node> program
%type <u_node> e

Example of rule description:
e: e'+'t
{$$=m_node(PLUS,$1,$3);}
t
{$$=$1;}
```

Compiler architecture

Static Semantic Analysis

Principles and purposes

Input: : Abstract Syntax Tree (AST)

Output: : enriched AST

(with type information and/or type conversion indications)

Two main purposes:

- ▶ name identification: → bind **use-def** occurrences
- ▶ type verification and/or type inference

7160 8160

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type System for a (small) Functional Language

Some Implementation Issues

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System

Type system for the While language and its extensions

Type System for a (small) Functional Language

Some Implementation Issues

About Types

What is a type?

- ▶ It defines the set of values an expression can take at run-time.
- ▶ It defines the set of operations that can be applied to an identifier.
- ► It defines the resulting type of an expression after applying an operation.

Objectives: anticipate runtime errors.

Example (Types)

int, float, unsigned int, signed int, string, array, list, ...

11 | 60

What are Types Useful for?

Program correctness

```
var x : kilometers ;
var y : miles ;
x := x + y ; -- typing error
```

Program readability

```
var e : energy := ... ; -- partition over the variables
var m : mass := ... ;
var v : speed := ... ;
e := 0.5 * (m*v*v) ;
```

Program optimization

```
var x, y, z : integer ; -- and not real
x := y + z ; -- integer operations are used
```

12160

Typed and Untyped Languages

Typed languages

A dedicated type is associated to each identifier (and hence to each expression).

Example (Typed languages)

Java, Ada, C, Pascal, CAML, etc.

Remark strongly typed vs weakly typed languages...

Untyped languages

A single (universal) type is associated to each identifier (and hence to each expression).

Example (Untyped languages)

Assembly language, shell-script, Lisp, etc.

Typed languages and safe languages

"Well-typed programs never go wrong. . . "

(Robin Milner)

Trapped errors vs untrapped errors.

Safe language = untrapped errors are not possible.

Using types in programming languages is a way to ensure safety but:

- ▶ it is not the only one (Lisp is considered safe),
- ▶ it is not sufficient (C is considered unsafe).

Types and type constructions

Basic types

integers, boolean, characters, etc.

Type constructions

- cartesian product (structure)
- disjoint union
- arrays
- functions
- pointers
- recursive types
- **>** ...

But also:

subtyping, polymorphism, overloading, inheritance, coercion, overriding, etc

[see http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf]

Subtyping

Subtyping is a preorder relation \leq_T between types.

It defines a notion of substitutability:

If $T_1 \leq_T T_2$,

then elements of type T_2 may be replaced with elements of type T_1 .

Sub-typing

- class inheritance in OO languages;
- ▶ Integer \leq_T Real (in several languages);
- ► Ada :

```
type Month is Integer range 1..12 ;
-- Month is a subtype of Integer
```

15160

Type Checking vs Type inference

In a typed language, the set of "correct typing rules" is called the type system.

The static semantic analysis phase uses this type system in two ways:

Type checking

Check whether "type annotations" are used in a consistent way throughout the program.

Type inference

Compute a consistent type for each program fragments.

Remark In some languages (e.g., Haskel, CAML), there are/can be no type annotations at all (all types are/can be infered).

Static checking vs dynamic checking

Static checking

Verification performed at compile-time.

Dynamic checking

Verification performed at run-time.

- \rightarrow necessary to correctly handle:
- dynamic binding for variables or procedures
- polymorphism
- array bounds
- subtyping
- etc.

 $[\]Rightarrow$ For most programming languages, both kinds of checks are used...

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extension:

Type System for a (small) Functional Language

Some Implementation Issues

Getting the Intuition on Examples

- "2 + 3 = 6" is well-typed
- ▶ "2 + true = false" is not well-typed
- "2 + x = y" is well-typed if x and y are (visible) integer/real variables
- "let x = 3 in x + y" is well-typed
 if y is a (visible) integer/real variable

 \Rightarrow a term t can be type-checked under assumptions on its **free variables** . . .

19160 20160

How to Formalize a Type System?

- ► Abstract syntax describes terms (represented by ASTs).
- **Environment** Γ: Name $\stackrel{\mathsf{part.}}{\rightarrow}$ Types.
- ▶ Judgment $\Gamma \vdash t : \tau$.

"In environment Γ , term t is well-typed and has type τ ."

(free variables of t belong to the domain of Γ)

► Type system

Inference rules	Axioms
$\left \begin{array}{ccc} \Gamma_1 \vdash \mathcal{A}_1 & \cdots & \Gamma_n \vdash \mathcal{A}_n \\ \hline \Gamma \vdash \mathcal{A} \end{array} \right $	 Γ ⊢ <i>Α</i>

Remark A type system is an inference system.

Example: natural numbers

$$e := n \mid x \mid e_1 + e_2$$
 Syntax

$$\frac{\Gamma(x) = \mathbf{Nat}}{\Gamma \vdash x : \mathbf{Nat}} \qquad \qquad x \text{ is of type } \mathbf{Nat} \text{ in environment } \Gamma \text{ if } \\ \Gamma(x) = \mathbf{Nat}.$$

$$\overline{\Gamma \vdash n : Nat}$$
 The denotation n is of type Nat.

$$\frac{\Gamma \vdash e_1 : \textbf{Nat} \quad \Gamma \vdash e_2 : \textbf{Nat}}{\Gamma \vdash e_1 + e_2 : \textbf{Nat}} \qquad e_1 + e_2 \text{ is of type } \textbf{Nat} \text{ assuming that} \\ e_1 \text{ and } e_2 \text{ are of type } \textbf{Nat}.$$

Derivations in a Type System

A type-check is a proof in the type system, i.e., a derivation tree where:

- ▶ leaves are axioms,
- ▶ nodes are obtained by application of inference rules.

A judgment is valid iff it is the root of a derivation tree.

Example

$$\frac{\emptyset \vdash 1 : \mathbf{Nat} \qquad \emptyset \vdash 2 : \mathbf{Nat}}{\emptyset \vdash 1 + 2 : \mathbf{Nat}}$$

Exercise

Prove that $[x \to \mathbf{Nat}, y \to \mathbf{Nat}] \vdash x + 2 : \mathbf{Nat}$.

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type system of **While** (without blocks and procedures) Extension of the type system for **Block** Extension of the type system for **Proc**

Type System for a (small) Functional Language

Some Implementation Issues

23160 24160

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type system of While (without blocks and procedures)

Extension of the type system for **Block** Extension of the type system for **Proc**

Type System for a (small) Functional Language

Some Implementation Issues

Syntax of Language While

Expressions

- ▶ same syntax for Boolean and integer expressions (e).
- ▶ 3 kinds of (syntactically) distinct binary operators: arithmetic (opa), boolean (opb) and relational (oprel)

e ::= true | false | n | x | e opa e | e oprel e | e opb e

Statements

Judgments

▶ $\Gamma \vdash S$ "In environment Γ , statement S is well-typed".

► $\Gamma \vdash e : t$ "In environment Γ , expression e is of type t".

Type system for Statements

Assignment	Skip
$ \frac{\Gamma \vdash e : t \Gamma \vdash x : t}{\Gamma \vdash x := e} $	Γ⊢skip

Sequence	Iteration
$ \frac{\Gamma \vdash S_1 \Gamma \vdash S_2}{\Gamma \vdash S_1; S_2} $	$ \begin{array}{c cccc} \Gamma \vdash e : \mathbf{Bool} & \Gamma \vdash S \\ \hline \Gamma \vdash \text{ while } e & \text{do } S \text{ od} \end{array} $

Type System for Expressions

bool. constant	int. constant	int opbin
		$\Gamma \vdash e_1 : Int$
$\overline{\Gamma \vdash \mathtt{true} : \mathbf{Bool}}$		$\Gamma \vdash e_2 : \mathbf{Int}$
	<u>Γ⊢n:Int</u>	$\Gamma \vdash e_1 \text{ opa } e_2 : \mathbf{Int}$
Γ⊢ false : Bool		

variables	bool. opbin relational operators	
	$\Gamma \vdash e_1 : \mathbf{Bool}$	$\Gamma \vdash e_1 : t$
$\Gamma(x)=t$	$\Gamma \vdash e_1 : \mathbf{Bool}$	Γ ⊢ <i>e</i> ₂ : <i>t</i>
$\Gamma \vdash x : t$	$\overline{\Gamma \vdash e_1 \text{ opb } e_2 : \mathbf{Bool}}$	$\overline{\Gamma \vdash e_1 \text{ oprel } e_2 : \mathbf{Bool}}$

27160 28160

Exercises

Exercise: conditional statement

Complete the type system by providing a rule for conditional statements.

Exercise: introducing reals and type conversion

Extend the type system for the expressions assuming that arithmetic types can be now either integer (Int) or real (Real).

Several solutions are possible:

- 1. Type conversions are never allowed.
- 2. Only explicit conversions (with a cast operator) are allowed.
- 3. (implicit) conversions are allowed.

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type system of While (without blocks and procedures)

Extension of the type system for **Block**

Extension of the type system for Proc

Type System for a (small) Functional Language

Some Implementation Issues

Language Block

Reminder

A new syntactic rule for statements:

$$S ::= \cdots \mid \mathbf{begin} \ D_V \ ; \ S \ \mathbf{end}$$

And for declarations:

$$D_V ::= \mathbf{var} \ x := e \ ; \ D_V \mid \epsilon$$

The semantics is such that:

- ▶ one executes *S* in the state updated after evaluating variable declarations:
- \blacktriangleright (values of) variables are restored after the execution of S.

32160 33160

Extending the Type System

Notations

- \triangleright DV(D_v) denotes the set of variables **declared** in D_v .
- ▶ $\Gamma[y \mapsto \tau]$ denotes the environment Γ' such that:
 - $\Gamma'(x) = \Gamma(x) \text{ if } x \neq y$
 - $\Gamma'(y) = \tau$

Judgments

▶ $\Gamma \vdash D_V \mid \Gamma_I$ means

"declarations D_V update environment Γ into Γ_I "

 $ightharpoonup \Gamma \vdash S$ means

"statement S is well-typed within environment Γ "

Extending the Type System

Inference rule for Blocks

$$\frac{\Gamma \vdash D_V \mid \Gamma_I \quad \Gamma_I \vdash S}{\Gamma \vdash \mathbf{begin} \ D_V \ ; \ S \ \mathbf{end}}$$

Inference rules for declarations

Sequential evaluation

$$\frac{\Gamma \vdash e : t \quad \Gamma[x \mapsto t] \vdash D_V \mid \Gamma_I \quad x \notin DV(D_V)}{\Gamma \vdash \mathbf{var} \ x := e \ ; \ D_V \mid \Gamma_I}$$

Collateral evaluation

$$\frac{}{\Gamma \vdash \epsilon \mid \Gamma} \quad \frac{\Gamma \vdash e : t \quad \Gamma \vdash D_V \mid \Gamma_I \quad x \notin \mathtt{DV}(D_V)}{\Gamma \vdash \mathsf{var} \ x := e; D_V \mid \Gamma_I [x \mapsto t]}$$

Some Alternatives for Variable Declarations

explicitely typed variables:

```
var x := e : t
```

uninitialized variables:

```
var x : t
```

untyped variables(?)

```
var x := e
```

uninitialized and untyped variables(???)

```
var x
```

36 1 60

37160

Language Proc

Syntactic rules for statements:

$$S ::= \cdots \mid \mathbf{begin} \ D_V \ ; D_P \ ; \ S \ \mathbf{end} \mid \mathbf{call} \ p$$

and for declarations:

$$D_P ::= \mathbf{proc} \ p \ \mathbf{is} \ S \ ; \ D_P \mid \epsilon$$

 $DP(D_P)$ denotes the set of procedures **declared** in D_P .

The semantics depends on the kind of binding (static vs dynamic) one considers...

Outline: Type Analysis

Types in Programming Language

How to Formalize a Type System

Type system for the While language and its extensions

Type system of While (without blocks and procedures Extension of the type system for **Block**

Extension of the type system for Proc

Type System for a (small) Functional Language

Some Implementation Issues

Judgments

- ▶ Procedure environment Γ_P : Name $\rightarrow \{proc\}$ (partial)
- ▶ $\Gamma_V \vdash D_V \mid \Gamma_V'$ means

"Variable declarations D_V update variable environment Γ_V into Γ_V ".

 $ightharpoonup (\Gamma_V, \Gamma_P) \vdash D_P \text{ means}$

"Procedure declarations D_P is well-typed within variable and procedure environments (Γ_V, Γ_P) ."

 $ightharpoonup (\Gamma_V, \Gamma_P) \vdash S$ means

"Statement S is well-typed within variable and procedure environments (Γ_V, Γ_P) .

Example: Static Binding for Procedures and Variables

Example (Static binding for variables and procedures)

```
begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x;

end;
```

We need to:

- have some "memorization" of the current "procedure mapping" that "remembers the current procedure definitions when it has been defined"
- \blacktriangleright know the "memory location" currently designated by a variable name \hookrightarrow when we call q we call p and modify x

40 | 60

Static Binding for Procedures and Variables

```
Block \frac{\Gamma_{V} \vdash D_{V} \mid \Gamma'_{V} \quad (\Gamma'_{V}, \Gamma_{P}) \vdash D_{P} \quad (\Gamma'_{V}, \Gamma'_{P}) \vdash S}{(\Gamma_{V}, \Gamma_{P}) \vdash \mathbf{begin} \ D_{V} \ ; \ D_{P} \ ; \ S \ end}
\frac{(\Gamma_{V}, \Gamma_{P}) \vdash S \quad (\Gamma_{V}, \Gamma_{P}[p \mapsto \mathbf{proc}]) \vdash D_{P} \quad p \not\in DP(D_{P})}{(\Gamma_{V}, \Gamma_{P}) \vdash \mathbf{proc} \ p \ is \ S \ ; \ D_{P}}
\Gamma_{P}(p) = \mathbf{proc}
\Gamma_{P}(p) = \mathbf{proc}
\Gamma_{P}(p) \vdash \mathbf{call} \ p
\bullet \ \text{where} \ \Gamma'_{P} = \mathbf{upd}(\Gamma_{P}, D_{P})
\bullet \ \text{with} :
\mathbf{upd}(\Gamma_{P}, \mathbf{proc} \ p \ is \ S \ ; \ D_{P}) = \mathbf{upd}(\Gamma_{P}[p \mapsto \mathbf{proc}], D_{P})
\mathbf{upd}(\Gamma_{P}, \varepsilon) = \Gamma_{P}
```

41 | 60

Example: Dynamic Binding for Procedures and Variables

Example (Dynamic binding for variables and procedures)

```
begin var \mathbf{x} := 0;

proc p is \mathbf{x} := \mathbf{x} * 2;

proc q is call p;

begin var \mathbf{x} := 5;

proc p is \mathbf{x} := \mathbf{x} + 1;

call q; y := \mathbf{x};

end;
```

We need to have some "memorization" of the current "procedure mapping" $% \begin{center} \begin$

```
\hookrightarrow when we call q we call p
```

Dynamic Binding for Procedures and Variables

Block
$$\frac{\Gamma_V \vdash D_V \mid \Gamma_V' \quad (\Gamma_V', \Gamma_P') \vdash S \quad \mathrm{udef}(D_P)}{(\Gamma_V, \Gamma_P) \vdash \mathbf{begin} \ D_V \; ; \ D_P \; ; \ S \; \mathbf{end}}$$

$$\frac{(\Gamma_V, \Gamma_P) \vdash S}{(\Gamma_V, \Gamma_P) \vdash \mathbf{call} \; p} \; \Gamma_P(p) = S$$

$$\blacktriangleright \; \text{ where } \Gamma_P' = \mathrm{upd}(\Gamma_P, D_P)$$

$$\blacktriangleright \; \text{ with: } \quad \mathrm{upd}(\Gamma_P, \mathbf{proc} \; p \; \mathbf{is} \; S \; ; \; D_P) \; = \; \mathrm{upd}(\Gamma_P[p \mapsto S], D_P)$$

$$\mathrm{upd}(\Gamma_P, \varepsilon) \; = \; \Gamma_P$$

$$\mathrm{udef}(\mathbf{proc} \; p \; \mathbf{is} \; S \; ; \; D_P)) \; = \; \mathrm{udef}(D_P) \land p \not \in DP(D_P)$$

$$\mathrm{udef}(\varepsilon) \; = \; \mathrm{true}$$

Remark procedure environment $\Gamma_P : Name \rightarrow Stm$ (partial)

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type System for a (small) Functional Language

Some Implementation Issues

A Small Functional Language

Syntax of the language

$$\begin{array}{lll} e & ::= & n \mid r \mid \mathsf{true} \mid \mathsf{false} \mid x \mid \mathsf{fun} \; x : \tau.e \mid (e \; e) \mid (e \; , \; e) \\ \tau & ::= & \mathsf{Bool} \mid \mathsf{Int} \mid \mathsf{Real} \mid \tau \rightarrow \tau \mid \tau \times \tau \end{array}$$

Example (Programs)

- **4**2
- ► (x 12.5)
- ► (x , true)
- ▶ **fun** *x* : **Bool**. *x*
- ▶ ((fun x : Bool. x) 12)
- ▶ fun x: Int \rightarrow Real. (x 12)

44160 45160

Version 1: no polymorhism, explicit type annotations

Judgment

 $\Gamma \vdash e : \tau$ means "In environment Γ , e is well-typed and of type τ ."

Type System

Extension: definition of identifiers

We add a new construct:

let
$$x = e_1 : \tau_1$$
 in e_2

Informal semantics:

within e_2 , each occurrence of x is replaced by e_1

Extending the type system to handle identifiers

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma[x \mapsto \tau_1] \vdash e_2 : \tau_2}{\Gamma \vdash \mathsf{let} \ x = e_1 : \tau_1 \ \mathsf{in} \ e_2 : \tau_2}$$

Version 2: no polymorphism, no type annotations

Syntax of the language

$$e ::= \cdots \mid \mathbf{fun} \ x.e \mid \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2$$

Modified type system

$$\frac{\Gamma[x \mapsto \tau_1] \vdash e : \tau_2}{\Gamma \vdash \mathbf{fun} \ x.e : \tau_1 \mapsto \tau_2}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma[x \mapsto \tau_1] \vdash e_2 : \tau_2}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 : \tau_2}$$

 \Rightarrow a unique value for type τ_1 has to be infered ...

Examples

Expressions that can be typed:

- ► ((fun x.x) 1) : Int
- ► ((fun x.x) true) : Bool
- ▶ let x = 1 in ((fun y.y) x) : Int
- ▶ let f = fun x.x in (f 2) : Int

Expressions that cannot be typed

 $\not\exists (\Gamma, \tau)$ such that $\Gamma \vdash e : \tau$

- **▶** (12)
- ▶ fun *x*.(*x x*)
- ▶ let $f = \text{fun } x.x \text{ in } ((f \ 1), (f \ \text{true}))$

48160 49160

Polymorphism?

We introduce:

- ightharpoonup type variable α
- $\blacktriangleright \forall \alpha.\tau$ means " α can take any type within type expression τ "

Example (Polymorphic expression)

fun x.x is of type $\forall \alpha.\alpha \rightarrow \alpha$

Definition (Set of free type variables)

Given an environment Γ :

$$\mathcal{D}(\mathsf{Bool}) = \mathcal{D}(\mathsf{Int}) = \mathcal{D}(\mathsf{Real}) = \emptyset$$

$$\mathcal{D}(\alpha) = \{\alpha\}
\mathcal{D}(\tau_1 \longrightarrow \tau_2) = \mathcal{D}(\tau_1) \cup \mathcal{D}(\tau_2)
\mathcal{D}(\forall \alpha \cdot \tau) = \mathcal{D}(\tau) \setminus \{\alpha\}
\mathcal{D}(\Gamma) = \bigcup_{x \in \mathbf{dom}(\Gamma)} \mathcal{D}(\Gamma(x))$$

Polymorphism: the F system

Definition (Rules for system F)

$$\frac{\Gamma \vdash e : \tau \qquad \alpha \not\in \mathcal{D}(\Gamma)}{\Gamma \vdash e : \forall \alpha \cdot \tau} \quad \text{(generalization)}$$

$$\frac{\Gamma \vdash e : \forall \alpha \cdot \tau}{\Gamma \vdash e : \tau[\tau' \mapsto \alpha]} \quad \text{(instanciation)}$$

Example (Programs)

- ▶ let $f = \text{fun } x.x \text{ in } ((f \ 1), \ (f \ \text{true}))$
- ► fun x.(x x)

Remark Type inference is no longer decidable in this type system. . . \Box

Polymorphism: the Hindley-Milner system

Type quantifiers may only appear "in front" of type expressions.

Definition (New Syntax)

Definition (New Rules for the Hindley-Milner system)

$$\frac{\Gamma \vdash e : \sigma \qquad \alpha \not\in \mathcal{D}(\Gamma)}{\Gamma \vdash e : \forall \alpha \cdot \sigma} \qquad \text{(generalization)}$$

$$\frac{\Gamma \vdash e : \forall \alpha \cdot \sigma}{\Gamma \vdash e : \sigma[\tau \mapsto \alpha]} \qquad \text{(instanciation)}$$

$$\frac{\Gamma \vdash e_1 : \sigma_1 \quad \Gamma[x \mapsto \sigma_1] \vdash e_2 : \sigma_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \sigma_2} \qquad \text{(polymorph "let")}$$

Example

let
$$f = \text{fun } x.x \text{ in } ((f \ 1), (f \ \text{true}))$$

Outline: Type Analysis

Types in Programming Languages

How to Formalize a Type System?

Type system for the While language and its extensions

Type System for a (small) Functional Language

Some Implementation Issues

52160 53160

Reminder

Several issues to be handled during static semantic analysis:

- 1. type-check the input AST
 - ► formal specification = a type system
 - ▶ notion of environment (name binding), to be computed:

$$\Gamma_V : Name \rightarrow Type$$

 $\Gamma_P : Name \rightarrow \{proc\}$

- 2. decorate this AST to prepare code generation
 - ▶ give a type to intermediate nodes
 - ▶ indicate implicit type conversions
- \Rightarrow How to go from type system to algorithms?

Example

```
begin
   var x : Int ;
   var y : Real ;
   y := 2 * x + y * (3 + x) ;
end
```


From a Type System to Algorithms?

```
\Rightarrow recursive traversal of the AST...
```

AST representation:

```
typedef struct tnode {
   String string; // lexical representation
   kind elem; // category (idf, binaop, while, etc.)
   struct tnode *left, *right; // children
   Type type; // type (Int, Real, Void, Bad, etc.)
   ...
} Node;
```

Type-checking function:

```
Type TypeCheck(* node) ; // checks the correctness of node, returns the result Type // and inserts type conversions when necessary
```

56 1 60

Type Checking Algorithm for Statements

Sequence	Iteration	Assignment
$\frac{\Gamma \vdash S_1 \Gamma \vdash S_2}{\Gamma \vdash S_1; S_2}$	$\frac{\Gamma \vdash e : \mathbf{Bool} \Gamma \vdash S}{\Gamma \vdash \text{while} e \text{ do } S}$	$\frac{\Gamma \vdash x : t \Gamma \vdash e : t}{\Gamma \vdash x := e}$

```
function Type typeCheck(Node *node) {
  switch node->elem {
    case SEQUENCE:
    if (typeCheck(node->left) != Void) return BAD;
    return typeCheck(node->right);
    case WHILE:
    if (typeCheck(node->left) != BOOL) return BAD;
    return typeCheck(node->right);
    case ASSIGN:
    Tl=typeCheck(node->left);
    Tr=typeCheck(node->right);
    if (Tl != Tr) return BAD else return VOID;
}
```

Type Checking Algorithm for Arithmetic Expressions

DENOT	BINAOP	IDF
<u>Γ⊢n: Int</u>	$\frac{\Gamma \vdash e_l : Tl \Gamma \vdash e_r : Tr T = resType(Tr, Tl)}{\Gamma \vdash e_l \text{ binaop } e_r : T}$	$\frac{\Gamma(x)=t}{\Gamma\vdash x:t}$

```
function Type typeCheck(Node *node) {
 switch node->elem {
   case DENOT: break ; // lexical analysis
   case IDF: node->type=Gamma(node->string); break; // environment
   case BINAOP: // type-checking
     Tl=typeCheck(node->left);
     Tr=typeCheck(node->right);
     node->type=resType(T1, Tr);
     if (node->type != Tl) insConversion(node->left, node->type);
     if (node->type != Tr) insConversion(node->right, node->type);
     break ;
 }
 return node->type ;
function Type resType(Type t1, Type t2) {
 if (t1==Boolean) or (t2==Boolean) return Bad; else return Max(t1, t2);
                                                                     57 | 60
```

Environment Implementation and Name Binding?

- ► Associate a type to each identifier
 - ► each use occurrence → decl occurrence
 - info should be retrieved efficiently (no AST traversal)
- ▶ How can we handle nested declarations?

```
begin
   var x : Int ; var y : Real ;
   begin
   var x : Boolean ;
   x = y > 2.5 ;
   end
end
```

Usual Solution: symbol table

- ► Store all information associated to an identifier: type, kind (var, param, proc), address (for code gen), etc.
- ▶ Built during traversals of the declaration parts of the AST
- ► Efficient search procedure: binary tree, hash table, etc.
- ▶ Two solutions for handling nested blocks ($\Gamma[x \to Bool]$)
 - a global table, with a unique id associated to each idf:
 {((x,1):Int),((y,1):Real),((x,1.1):Bool)}
 → based on a unique (hierarchical) numbering of blocks
 - ▶ a dynamic stack of local tables, one local table per block: $\{x: \text{Int}, y: \text{Real}\} \longrightarrow \{x: \text{Bool}\}$

60 | 60