

FCC Test Report

FCC ID : 2AAS9-1254XW

Equipment : Dual Radio 802.11a/n+b/g/n Indoor Access

Point

Model No. : BW1254

Brand Name : BROWAN

Applicant : BROWAN COMMUNICATIONS Co., Ltd.

Address : No. 15-1, Zhonghua Rd., Hsinchu Industrial

Park, Hukou, Hsinchu, Taiwan, R. O. C. 303

Manufacturer : Gemtek Technology Co., Ltd.

Address : No. 15-1, Zhonghua Rd., Hsinchu Industrial

Park, Hukou, Hsinchu, Taiwan, R. O. C. 303

Standard : 47 CFR FCC Part 15.247

Received Date : Aug. 02, 2013

Tested Date : Aug. 03 ~ Sep. 30, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

ilac-mra

Page: 1 of 65

Report No.: FR380701AC

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Test Standards	10
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	13
3.2	6dB and Occupied Bandwidth	18
3.3	RF Output Power	21
3.4	Power Spectral Density	23
3.5	Unwanted Emissions into Restricted Frequency Bands	25
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	55
4	TEST LABORATORY INFORMATION	64
5	APPENDIX A – AVERAGE POWER FOR REFERENCE ONLY	65

Release Record

Report No.	Version	Description	Issued Date
FR380701AC	Rev. 01	Initial issue	Feb. 14, 2014
FR380701AC	Rev. 02	Modified model name of antenna No.2 & 3 (page 5)	Feb. 21, 2014

Report No.: FR380701AC Page: 3 of 65

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 2.877MHz 43.83 (Margin -2.17dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 955.33 MHz 45.00 (Margin -1.00dB) – QP [dBuV/m at 3m]: 2390 MHz 53.00 (Margin -1.00dB) - AV	Pass
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: 11b: 29.62 11g: 29.43 HT20: 29.39 HT40: 27.51	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR380701AC Page: 4 of 65

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information								
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS			
2400-2483.5	b	2412-2462	1-11 [11]	2	1-11 Mbps			
2400-2483.5	g	2412-2462	1-11 [11]	2	6-54 Mbps			
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	MCS 0-15			
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	MCS 0-15			

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant.	Model	Туре	Connector							Operating Frequencies (MHz) / Antenna Gain (dBi)		(dBi)
No.	Wiodei	Туре	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850				
1	EDA-1713 2G4 R2-A7	Dipole (Omni-directi onal)	R-SMA	5	х	X	x	Х				
2	EDA-1713 5G0 R2-A4	Dipole (Omni-directi onal)	R-SMA	Х	5	5	5	5				
3	EDA-8709P- 25G R2-A11	Dipole (Omni-directi onal)	R-SMA	2	2	2	2	2				
4	EDA-1713-2 5G R2-A4	Dipole (Omni-directi onal)	R-SMA	5	5	5	5	5				
5	SAA05-2201 70	Dipole (Omni-directi onal)	R-SMA	3	5	5	5	5				

Note: Highest antenna gain (Antenna 1) was chosen for test.

1.1.3 EUT Operational Condition

Supply Voltage	□ AC mains	☐ DC	
Type of DC Source	☐ Internal DC supply	☐ External DC adapter	☐ 5Vdc from Host

Report No.: FR380701AC Page: 5 of 65

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
		Brand Name: LEI				
1	AC Adapter	Model Name: MU24-B480050-A1				
		Power Rating: I/P: 100-240Vac, 50-60Hz, 1.0A O/P: 48Vdc, 0.5A				
		Power Line: 1.5m non-shielded cable w/o core				
		Brand Name: BROWAN				
2	POE	Model Name: BE3013				
2	102	Power Rating: I/P: 8~57Vdc O/P: 8~57Vdc,				

1.1.5 Channel List

Frequency	band (MHz)	2400~	2483.5	
802.11 b /	g / n HT20	802.11n HT40		
Channel	Channel Frequency(MHz)		Frequency(MHz)	
1	2412	3	2422	
2	2417	4	2427	
3	2422	5	2432	
4	2427	6	2437	
5	2432	7	2442	
6	2437	8	2447	
7	2442	9	2452	
8	2447			
9	2452			
10	2457			
11	2462			

Report No.: FR380701AC Page: 6 of 65

1.1.6 Test Tool and Duty Cycle

Test tool ART2-GUI V2.3			
Duty Cycle Of Test Signal (%)	100.00% - IEEE 802.11b 100.00% - IEEE 802.11g 100.00% - IEEE 802.11n (HT20) 100.00% - IEEE 802.11n (HT40)		
Duty Factor	0 - IEEE 802.11b 0 - IEEE 802.11g 0 - IEEE 802.11n (HT20) 0 - IEEE 802.11n (HT40)		

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11b	2412	22
11b	2437	29
11b	2462	24
11g	2412	18.5
11g	2437	19
11g	2462	18.5
HT20	2412	16.5
HT20	2437	19
HT20	2462	18
HT40	2422	13.5
HT40	2437	18.5
HT40	2452	15

1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)	
1	Notebook	DELL	E6430		DoC	RJ45, 10m non-shielded with 1 core.	
2	USB Dongle	PQI	U273V				

Note: Console cable was supplied by applicant.

Report No.: FR380701AC Page: 7 of 65

1.3 Test Setup Chart

Report No.: FR380701AC Page: 8 of 65

1.4 The Equipment List

Test Item	Conducted Emission							
Test Site	Conduction room 1 / (C	O01-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
EMC Receiver	R&S	ESCS 30	100169	Oct. 02, 2012	Oct. 01, 2013			
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013			
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013			
ISN	TESEQ	ISN T800	34406	Apr. 08, 2013	Apr. 07, 2014			
ISN	TESEQ	ISN T200A	30494	Apr. 09, 2013	Apr. 08, 2014			
ISN	TESEQ	ISN ST08	22589	Jan. 24, 2013	Jan. 23, 2014			
RF Current Probe	FCC	F-33-4	121630	Dec. 04, 2012	Dec. 03, 2013			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013			
ESH3-Z6 V-Network(+)	R&S	ESH3-Z6	100920	Nov. 21, 2012	Nov. 20, 2013			
ESH3-Z6 V-Network(-)	R&S	ESH3-Z6	100951	Jan. 30, 2013	Jan. 29, 2014			
Two-Line V-Network	R&S	ENV216	101579	Jan. 07, 2013	Jan. 06, 2014			
50 ohm terminal	NA	50	01	Apr. 22, 2013	Apr. 21, 2014			
50 ohm terminal	NA	50	02	Apr. 22, 2013	Apr. 21, 2014			
50 ohm terminal	NA	50	03	Apr. 22, 2013	Apr. 21, 2014			
50 ohm terminal (Support Unit)	NA	50	04	Apr. 22, 2013	Apr. 21, 2014			
Note: Calibration Inter	val of instruments listed a	above is one year.						

Test Item	RF Conducted										
Test Site	(TH01-WS)	TH01-WS)									
Instrument	Manufacturer	Manufacturer Model No. Serial No.		Calibration Date	Calibration Until						
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014						
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013						
Power Meter	Anritsu	ML2495A	1241002	Oct. 15, 2012	Oct. 14, 2013						
Power Sensor	Anritsu	MA2411B	1027366	Oct. 24, 2012	Oct. 23, 2013						
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014						
Radio Communication Analyzer	Anritsu	MT8820C	20C 6201240341 Mar. 13, 2013		Mar. 12, 2014						
Wideband Radio Communication Tester	R&S	CMW500	106070	Jan. 29, 2013	Jan. 28, 2014						
Bluetooth Tester	R&S	CBT	100959	Jan. 09, 2013	Jan. 08, 2014						
MXG-B RF Vector Signal Generator Agilent		N5182B	MY53050081	Apr. 19, 2013	Apr. 18, 2014						
Mobile WiMAX test set Agilent		E6651A	MY47310158	Oct. 09 ,2012	Oct .09 , 2013						
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.										

Report No.: FR380701AC Page: 9 of 65

Test Item	Radiated Emission above 1GHz									
Test Site	966 chamber1 / (03Ch	966 chamber1 / (03CH01-WS)								
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date								
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014					
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014					
Receiver	R&S	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014					
Bilog Antenna	SCHWARZBECK	SCHWARZBECK VULB9168 VULB9168-522		Jan. 11, 2013	Jan. 10, 2014					
Horn Antenna 1G-18G	SCHWARZBECK BBHA 9120 D B		BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014					
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	BBHA 9170517 Jan. 14, 2013						
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013					
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013					
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013					
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013					
control	EM Electronics	EM1000	60612	N/A	N/A					

Loop Antenna	R&S	R&S HFH2-Z2		Nov. 15, 2012	Nov. 14, 2014			
Amplifier	MITEQ	AMF-6F-260400	9121372	Apr. 19, 2013	Apr. 18, 2015			
Note: Calibration Interval of instruments listed above is two year.								

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

ANSI C63.10-2009

FCC KDB 558074 D01 DTS Meas Guidance v03r01

FCC KDB 662911 D01 Multiple Transmitter Output v02

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

Report No.: FR380701AC Page: 10 of 65

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Parameters	Uncertainty					
Bandwidth	±35.286 Hz					
Conducted power	±0.536 dB					
Frequency error	±35.286 Hz					
Temperature	±0.3 °C					
Conducted emission	±2.946 dB					
AC conducted emission	±2.43 dB					
Radiated emission	±2.49 dB					

Report No.: FR380701AC Page: 11 of 65

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By	
AC Conduction	CO01-WS	24°C / 72%	Peter Lin	
Radiated Emissions	03CH01-WS	24°C / 66%	Aska Huang	
RF Conducted	TH01-WS	23°C / 62%	Brad Wu	

FCC site registration No.: 657002IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data rate (Mbps) / MCS	Test Configuration
Conducted Emissions	11b	2437	1 Mbps	1, 2
Radiated Emissions (below 1GHz)	11b	2437	1 Mbps	1, 2
Radiated Emissions (above 1GHz)	11b 11g HT20 HT40	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462 2422 / 2437 / 2452	1 Mbps 6 Mbps MCS 0 MCS 0	1
Fundamental Emission Output Power	11b	2412 / 2437 / 2462	1 Mbps	
6dB bandwidth	11g HT20	2412 / 2437 / 2462 2412 / 2437 / 2462	6 Mbps MCS 0	1
Power spectral density	HT40	2422 / 2437 / 2452	MCS 0	

NOTE:

 The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Test Configuration 1 : Adapter Mode Test Configuration 2 : POE Mode

Report No.: FR380701AC Page: 12 of 65

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30	60	50					
Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR380701AC Page: 13 of 65

3.1.4 Test Result of Conducted Emissions

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dBuV) = Level (dBuV) - Limit Line (dBuV).

Report No.: FR380701AC Page: 14 of 65

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dBuV) = Level (dBuV) - Limit Line (dBuV).

Report No.: FR380701AC Page: 15 of 65

Report No.: FR380701AC Page: 16 of 65

Report No.: FR380701AC Page: 17 of 65

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

3.2.3 Test Setup

Report No.: FR380701AC Page: 18 of 65

3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation	NI.	Eron (MU=)	6dB Bandwidth (MHz)					
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (kHz)	
11b	2	2412	10.09	10.09			500	
11b	2	2437	10.09	10.09			500	
11b	2	2462	10.09	10.09			500	
11g	2	2412	16.35	16.35			500	
11g	2	2437	16.29	16.35			500	
11g	2	2462	16.29	16.41			500	
HT20	2	2412	17.22	17.22			500	
HT20	2	2437	17.16	16.93			500	
HT20	2	2462	17.57	16.93			500	
HT40	2	2422	36.06	35.94			500	
HT40	2	2437	35.83	35.83			500	
HT40	2	2452	35.83	35.71			500	

Report No.: FR380701AC Page: 19 of 65

Modulation	N	Freq.				
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3
11b	2	2412	13.89	13.89		
11b	2	2437	14.07	14.07		
11b	2	2462	14.01	14.12		
11g	2	2412	17.08	16.90		
11g	2	2437	17.13	16.79		
11g	2	2462	17.25	16.90		
HT20	2	2412	18.12	18.06		
HT20	2	2437	18.18	18.12		
HT20	2	2462	18.29	18.00		
HT40	2	2422	38.21	37.40		
HT40	2	2437	38.21	37.63		
HT40	2	2452	38.78	38.32		

Report No.: FR380701AC Page: 20 of 65

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Cor	auct	ea po	ower shall not exceed 1 watt.
\boxtimes	Ante	enna	gain <= 6dBi, no any corresponding reduction is in output power limit.
	Ante	enna	gain > 6dBi
		The	n Fixed, point to point operations. e conducted output power from the intentional radiator shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dB
		Sys Ope	ed, point to point operations tems operations tems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point erations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 that the directional gain of the antenna exceeds 6 dBi.
			tems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point rations ,no any corresponding reduction is in transmitter peak output power
3.3.	2	Test	Procedures
\boxtimes	Max	kimur	n Peak Conducted Output Power
		Spe	ectrum analyzer
		1.	Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
		2.	Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
		3.	Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.
	\boxtimes	Pov	ver meter
		1.	A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
	Max	kimur	m Conducted Output Power
		Spe	ectrum analyzer
		1.	Set RBW = 1MHz, VBW = 3MHz, Detector = RMS.
		2.	Set the sweep time to: \geq 10 x (number of measurement points in sweep) x (maximum data rate per stream).
		3.	Perform the measurement over a single sweep.
		4.	Use the spectrum analyzer's band power measurement function with band limits set equal to the EBW(26dBc) band edges.
		Pov	ver meter
		1.	A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

Report No.: FR380701AC Page: 21 of 65

3.3.3 Test Setup

3.3.4 Test Result of Maximum Output Power

Modulation		Freq.	Conducted output power (dBm)			Total			
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11b	2	2412	22.69	22.14			349.462	25.43	30
11b	2	2437	26.75	26.46			915.740	29.62	30
11b	2	2462	22.65	22.32			354.685	25.50	30
11g	2	2412	26.21	26.05			820.547	29.14	30
11g	2	2437	26.74	26.08			877.572	29.43	30
11g	2	2462	25.12	24.89			633.406	28.02	30
HT20	2	2412	24.02	23.88			496.691	26.96	30
HT20	2	2437	26.42	26.34			869.057	29.39	30
HT20	2	2462	24.45	24.06			533.295	27.27	30
HT40	2	2422	21.12	20.74			247.996	23.94	30
HT40	2	2437	24.76	24.22			563.467	27.51	30
HT40	2	2452	20.99	20.02			226.065	23.54	30

Report No.: FR380701AC Page: 22 of 65

3.4 Power Spectral Density

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 3kHz, VBW = 10kHz.
 - Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 100kHz, VBW = 300 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.\

3.4.3 Test Setup

Report No.: FR380701AC Page: 23 of 65

3.4.4 Test Result of Power Spectral Density

Modulation Mode	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
11b	2	2412	-0.54	5.99
11b	2	2437	4.91	5.99
11b	2	2462	0.38	5.99
11g	2	2412	-5.17	5.99
11g	2	2437	-4.22	5.99
11g	2	2462	-5.70	5.99
HT20	2	2412	-6.95	5.99
HT20	2	2437	-5.38	5.99
HT20	2	2462	-5.84	5.99
HT40	2	2422	-12.26	5.99
HT40	2	2437	-7.25	5.99
HT40	2	2452	-10.56	5.99

Note:

- 1. Test result is bin-by-bin summing measured value of each TX port.
- Directional gain = 5 + 10*log(2/1) = 8.01 dBi > 6 dBi
 Limit shall be reduced to 8 dBm (8.01 dBi 6 dBi) = 5.99 dBm

Report No.: FR380701AC Page: 24 of 65

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR380701AC Page: 25 of 65

3.5.3 Test Setup

Report No.: FR380701AC Page: 26 of 65

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR380701AC Report Version: Rev. 02

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m)

Report No.: FR380701AC Page: 28 of 65

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR380701AC Page: 29 of 65

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m)

Report No.: FR380701AC Page: 30 of 65

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 31 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 32 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 33 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 34 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 35 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 36 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 37 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 38 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 39 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 40 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 41 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 42 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 43 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 44 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 45 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 46 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 47 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 48 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40

Report No.: FR380701AC Page: 49 of 65

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 50 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 51 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 52 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 53 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

Report No.: FR380701AC Page: 54 of 65

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

\boxtimes	The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band
	shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

The peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

Report No.: FR380701AC Page: 55 of 65

3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

802.11b

Report No.: FR380701AC Report Version: Rev. 02

Report No.: FR380701AC Page: 57 of 65

Report No.: FR380701AC Page: 58 of 65

Report No.: FR380701AC Page: 59 of 65

802.11n HT20

Report No.: FR380701AC Page: 60 of 65

Report No.: FR380701AC Page: 61 of 65

802.11n HT40

Report No.: FR380701AC Page: 62 of 65

Report No.: FR380701AC Page: 63 of 65

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-3-271-8666 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

Report No.: FR380701AC Page: 64 of 65

5 Appendix A – Average power for reference only

Test Procedures

A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

Test Setup

Test Result of Maximum Output Power

Modulation	Modulation N _{TX}	Freq. (MHz)	Average conducted output power (dBm)				Total Power	Total Power	Limit
Wode			Chain 0	Chain 1	Chain 2	Chain 3	(mW)	(dBm)	(dBm)
11b	2	2412	20.14	20.06			204.667	23.11	30
11b	2	2437	25.78	25.21			710.337	28.51	30
11b	2	2462	21.12	20.36			238.062	23.77	30
11g	2	2412	17.53	17.26			109.835	20.41	30
11g	2	2437	18.19	17.54			122.672	20.89	30
11g	2	2462	16.82	16.02			88.078	19.45	30
HT20	2	2412	15.71	15.33			71.358	18.53	30
HT20	2	2437	17.82	17.71			119.554	20.78	30
HT20	2	2462	16.15	15.63			77.769	18.91	30
HT40	2	2422	12.52	12.05			33.897	15.30	30
HT40	2	2437	16.93	16.02			89.312	19.51	30
HT40	2	2452	12.71	11.52			32.854	15.17	30

Report No.: FR380701AC Page: 65 of 65