Compressors

Principle of operation: Air is sucked into the impeller eye and whirled outwards at high speed by the impeller disk. At any point in the flow of air through the impeller the centripetal acceleration is obtained by a pressure head so that the static pressure of the air increases from the eye to the tip of the impeller. The remainder of the static pressure rise is obtained in the diffuser, where the very high velocity of air leaving the impeller tip is reduced to almost the velocity with which the air enters the impeller eye.

Usually, about half of the total pressure rise occurs in the impeller and the other half in the diffuser. Owing to the action of the vanes in carrying the air around with the impeller, there is a slightly higher static pressure on the forward side of the vane than on the trailing face. The air will thus tend to flow around the edge of the vanes in the clearing space between the impeller and the casing. This results in a loss of efficiency and the clearance must be kept as small as possible. Sometimes, a shroud attached to the blades as shown in Figure.6.1(d) may eliminate such a loss, but it is avoided because of increased disc friction loss and of manufacturing difficulties.

The straight and radial blades are usually employed to avoid any undesirable bending stress to be set up in the blades. The choice of radial blades also determines that the total pressure rise is divided equally between impeller and diffuser.

Before further discussions following points are worth mentioning for a centrifugal compresssor.

- (i) The pressure rise per stage is high and the volume flow rate tends to be low. The pressure rise per stage is generally limited to 4:1 for smooth operations.
- (ii) Blade geometry is relatively simple and small foreign material does not affect much on operational characteristics.
- (iii) Centrifugal impellers have lower efficiency compared to axial impellers and when used in aircraft engine it increases frontal area and thus drag. Multistaging is also difficult to achieve in case of centrifugal machines.

Work done and pressure rise

Since no work is done on the air in the diffuser, the energy absorbed by the compressor will be determined by the conditions of the air at the inlet and outlet of the impeller. At the first instance, it is assumed that the air enters the impeller eye in the axial direction, so that the initial angular momentum of the air is zero. The axial portion of the vanes must be curved so that the air can pass smoothly into the eye. The angle which the leading edge of a vane makes with the tangential direction, α , will be given by the direction of the relative velocity of the air at inlet, V_{r1} , as shown in Fig. 6.3. The air leaves the impeller tip with an absolute velocity of V_2 that will have a tangential or whirl component V_{w2} . Under ideal conditions, V_2 , would be such that the whirl component is equal to the impeller speed U_2 at the tip. Since air enters the impeller in axial direction, $V_{w1} = 0$.

Figure 6.3 Velocity triangles at inlet and outlet of impeller blades

Under the situation of $V_{w1}=0$ and $V_{w2}=U_2$, we can derive from Eq. (1.2), the energy transfer per unit mass of air as

$$\frac{E}{m} = U_2^2 \tag{6.1}$$

Due to its inertia, the air trapped between the impeller vanes is reluctant to move round with the impeller and we have already noted that this results in a higher static pressure on the leading face of a vane than on the trailing face. It also prevents the air acquiring a whirl velocity equal to impeller speed. This effect is known as slip. Because of slip, we obtain $V_{w2} < U_2$. The slip factor σ is defined in the similar way as done in the case of a centrifugal pump as

$$\sigma = \frac{V_{w2}}{U_2}$$

The value of σ lies between 0.9 to 0.92. The energy transfer per unit mass in case of slip becomes

$$\frac{E}{m} = V_{w2} U_2 = \sigma U_2^2 \tag{6.2}$$

One of the widely used expressions for σ was suggested by Stanitz from the solution of potential flow through impeller passages. It is given by

$$\sigma = 1 - \frac{0.63\pi}{n}$$
, where n is the number of vanes.

Previous

Next