Let $\{Z_n\}$ be a sequence of random variables.

Definition: Modes of Convergence

- 1. $Z_n \longrightarrow Z$ in probability $\iff Z_n Z \longrightarrow 0$ in probability. \iff For any $\epsilon > 0$, $P(|Z_n - Z| > \epsilon) \longrightarrow 0$, as $n \longrightarrow \infty$.
- 2. $Z_n \longrightarrow Z$ in distribution $\iff Z_n Z \longrightarrow 0$ in distribution. $\iff F_{Z_n}(t) \longrightarrow F_Z(t), \forall t \text{ that is a point of continuity of } F_Z(\cdot).$
- 3. $Z_n \longrightarrow Z$ in quadratic mean $\iff E\{(Z_n Z)^2\} \longrightarrow 0$.

Properties:

- 1. $Z_n \longrightarrow Z$ in quadratic mean $\Longrightarrow Z_n \longrightarrow Z$ in probability.
- 2. $Z_n \longrightarrow Z$ in probability $\Longrightarrow Z_n \longrightarrow Z$ in distribution.
 - * So convergence in quadratic mean and convergence in distribution are, respectively, the strongest and weakest mode of convergence among the three modes of convergence.
- 3. $Z_n \longrightarrow c$ (a constant) in probability $\iff Z_n \longrightarrow c$ in distribution.
- 4. $Z_n \longrightarrow Z$ in probability, and g is a continuous function $\Longrightarrow g(Z_n) \longrightarrow g(Z)$ in probability.

 $Z_n \longrightarrow Z$ in distribution, and g is a continuous function $\Longrightarrow g(Z_n) \Longrightarrow g(Z)$ in distribution.

5. $X_n \longrightarrow X$ in probability, $Y_n \longrightarrow Y$ in probability $\Longrightarrow X_n \pm Y_n \longrightarrow X \pm Y$ in probability;

$$X_n Y_n \longrightarrow XY$$
 in probability; and $X_n/Y_n \longrightarrow X/Y$, if $P(Y=0)=0$.

6. Slutsky's Theorem: $X_n \longrightarrow X$ in distribution, $Y_n \longrightarrow c$ (a constant) $\Longrightarrow X_n \pm Y_n \longrightarrow X \pm c$ in distribution; $X_n Y_n \longrightarrow cX$ in distribution; and $X_n/Y_n \longrightarrow X/c$, if $c \neq 0$.

^{*} This is a very important theorem to find the asymptotic distribution of several estimators.