Brought to you by the Boeing Employee Mentoring Robotics Club

2011 FRC Virtual Training Session 3 Electrical System and Sensors

November 18 2011

Tom Wendel

Game Manual Has the Basics

The Bo

THE ROBOT

TABLE OF CONTENTS

4	4	OVERVIEW	. 2
	4.1	RELATED DOCUMENTS & RESOURCES	.2
	4.2	CONVENTIONS	.2
	4.3	ROBOT RULES.	.2
	4.3.1	Safety & Damage Prevention	. 3
	4.3.2	Bumper Rules	. 5
	4.3.3	General Robot Design	. 8
	4.3.4	Budget Constraints	10
	4.3.5	Cost Determination of Additional Parts	11
	4.3.6	Fabrication Schedule	12
	4.3.7	Material Utilization	14
	4.3.8	Power Distribution	15
	4.3.9	Motors & Actuators	19
	4.3.10	Control, Command & Signals System	20
	4.3.11	Pneumatic System	25
	4.3.12	Operator Console	28
	4040	DODOT! "	00

2011 Electrical Layout (typical)

2011 Data Distribution (typical)

Robot Side

Battery, Switch and Power Distribution

Battery, Switch and Power Distribution

The Boeing Company | FIRST ST. Louis

Make sure to fully cover the terminals on the battery, switch and power distribution panel with electrical tape or other appropriate material

Power Distribution Rules

- <R39> All active PD Board branch circuits shall be protected from overload with an appropriate value auto resetting Snap Action circuit breaker (from the KOP or identical equivalent).
 - A. Each speed controller branch circuit must be protected by one and only one 20-amp, 30-amp, or 40-amp circuit breaker on the PD Board. No other electrical load can be connected to the breaker supplying this circuit.
 - B. Each relay module branch circuit must be protected with one and only one 20-amp circuit breaker on the PD Board. No other electrical load can be connected to the breaker supplying this circuit.
 - C. Each Digital Sidecar branch circuit must be protected with one and only one 20-amp circuit breaker on the PD Board. No other electrical load can be connected to the breaker supplying this circuit.
 - D. If the compressor is used, the relay module branch circuit supplying the compressor must be protected with a 20-amp circuit breaker. No other electrical load can be connected to the breaker supplying this circuit.
 - E. A single branch supply circuit may be spliced to supply power to one, two or three of the Analog/Solenoid Breakout Boards. This circuit must be protected with one and only one 20-amp circuit breaker on the PD Board. No other electrical load can be connected to the breaker supplying this circuit.
 - F. Custom circuits and sensors powered via the cRIO-FRC or the Digital Sidecar are protected by the breaker on the circuit(s) supplying those devices. Power feeds to all other custom circuits must be protected with a dedicated 20-amp circuit breaker on the PD Board.

Required Wire Sizes

Application	Minimum wire size
40A circuit	12 AWG (2.052mm)
30A circuit	14 AWG (1.628mm)
20A circuit	18 AWG (1.024mm)
between the PD Board and the Analog and/or Solenoid Breakouts if a common power feed is used	18 AWG (1.024mm)
between the PD Board and the Analog and/or Solenoid Breakouts if individual power feeds are used	20 AWG (0.8128mm)
between the PD Board and the cRIO-FRC	20 AWG (0.8128mm)
between the PD Board and the radio	20 AWG (0.8128mm)
pneumatic valves	24 AWG (0.5106mm)

- CIM and Fisher Price Motors Must be Protected by 40A Circuits
- Most Other Motors Can be Protected by 20A Circuits

cRIO and Digital Sidecar (power)

cRIO and Digital Sidecar (data)

cRIO and Digital Sidecar

Wago Connector Operation

Motor Controllers and Spikes

The Boeing Company | FIRST ST. Louis

Motor Controllers

- Variable control of motor
- Typically connected to Digital Sidecar via PWM cable (Jaguars can also use a CAN bus)

Jaguar

Victor

Make sure that the connection between the PD board and the controllers has + to + and - to -

- Full forward / Full reverse / Off
- Connected to Digital Sidecar via PWM cable

Motor Controllers and Spikes (electrical)

Motor Controllers and Spikes (data)

2011 Radio (electrical)

2011 Radio (data)

2011 Pneumatic Connections

General Guidelines

- cRIO and Camera must be electrically isolated from the rest of the robot
 - Do not mount directly to metal robot chassis
- Label wires (both ends)
 - Electrical
 - > PWM
- Keep things "neat" if possible
 - Makes things easier to troubleshoot and

Sensors

Good Source of Information

The Boeing Company | FIRST ST. Louis

2011 FIRST Robotics Competition Sensor Manual

Voltage Dividers/ Potentiometers

$$V_2 = I^*R_2 = V/(R_1 + R_2) * R_2 = V^*R_2/(R_1 + R_2)$$

When
$$R1 = 0$$
,
When $R1 = R2$,
When $R2 = 0$,

When R1 = 0,
$$V_2 = V^* R_2/(0+R_2) = V (R_2/R_2) = V$$

When R1 = R2, $V_2 = V^* R_2/(R_1+R_2) = V (R_2/2R_2) = V/2$
When R2 = 0, $V_2 = V^* O/(R_1+0) = O/R_1 = 0$

Potentiometer as a Sensor

Potentiometer Connections

The Boeing Company | FIRST ST. Louis

Analog Sensor

Gyro Connections

The Boeing Company | FIRST ST. Louis

Analog Sensor

- Measures rotation rate
- Can be integrated to provide an angle (function provided by software provided to teams)

Accelerometer Connections

The Boeing Company | FIRST ST. Louis

Analog Sensor

Encoder Connections

The Boeing Company | FIRST ST. Louis

Digital Sensor

- Measures number of rotations since power on or last reset
- Good for attaching to drive system to measure distances during autonomous mode

Ultrasonic Sensor Connections

The Boeing Company | FIRST ST. Louis

• Measures distance from a surface

2011 Magnetic Encoder

The Boeing Company | FIRST ST. Louis

austriamicrosystems Magnetic Encoder (austriamicrosystems PN AS5030)

Typical Limit Switches

The Boeing Company | FIRST ST. Louis

Digital Sensor

Pressure Switch That Must Be Used With Compressor

Additional Sensor Information Sources

- Kit of Parts Web Site
 - http://www.usfirst.org/roboticsprograms/frc/2011-frc-kit-of-parts
- Labview Examples
- Manufacturer Fact Sheets

