Valid, Satisfiable

- Valid: always true. $KB \models \alpha$ iff. $KB \Rightarrow \alpha$ is valid
- Satisfiable: can be true.
- Unsatisfiable: always false

• Proof:
$$\frac{\alpha}{\beta}$$
: $\alpha \Rightarrow \beta$

• All these symbols are simply want to avoid reusing of \Rightarrow , —, \models , \vdash_i

Proofing the KB entailment

 $A \Leftrightarrow (B \lor C) \vDash_? B \Rightarrow A \text{ as an example}$

- Convert to CNFs $A \Leftrightarrow (B \lor C)$
- Proof by contradict: $KB \Rightarrow \alpha$ to $KB \land \neg \alpha$ is unsatisfiable (always false)
 - There is no case where KB is true and α is false

- Resolution: $(A \lor B) \land (\neg A \land C) = (B \lor C)$
- Empty $(A \land \neg A = F)$ means $KB \land \neg \alpha$ is unsatisfiable then $KB \models \alpha$