Assignment 5: Generating Stochastic Processes

Due on Feb. 28

- 1. Bus arrive at the Oracle Arena for the NBA final according to a Poisson process with rate 5 per hour. Each bus is equally likely to contain either 20, 21, ..., 40, with the numbers in the different buses being independent. Write a MatLab program to simulate a sample path of the total number of customer (not bus) arrivals in the interval [0, 2].
- 2. Consider an NHPP $\{N(t), t \geq 0\}$ with rate $\lambda(t) = 1 + 0.6\sin(t)$. Write MatLab programs to implement the following two algorithms to simulate sample paths of the NHPP in [0, 20]:
 - (a) The naive algorithm:
 - i. t = 0; I = 0.
 - ii. Generate $U \sim \text{Unif}(0,1)$;
 - iii. Set $t = t \frac{1}{\lambda(t)} \log U$. If t > T, stop; else go to Step (iv).
 - iv. I = I + 1; S(I) = t; Go to Step (ii).
 - (b) One of the 2 NHPP algorithms introduced in class.

For each algorithm, simulate 100 independent sample paths of N(t) in [0, 20] to estimate (i) $\mathbb{E}[N(t)]$, (ii) Var(N(t)), and plot a 95% confidence interval for $\mathbb{E}[N(t)]$ for all $0 \le t \le 10$ (so a variance band). Also, graph $\Lambda(t) = \int_0^t \lambda(u) du$ and compare to your estimates in both cases. This should show you that the "naive approach" is incorrect.

3. Consider a DTMC $\{X_n, n = 0, 1, ...\}$ with states $\{0, 1, 2\}$ and transition probability

$$\mathbf{P} = \begin{array}{c} (0) \\ (1) \\ (2) \end{array} \left[\begin{array}{ccc} 1/2 & 1/3 & 1/6 \\ 0 & 1/3 & 2/3 \\ 1/2 & 0 & 1/2 \end{array} \right].$$

(a) Let $X_0 = 0$. Simulate a sample path of $\{X_n\}$ for n = 0, 1, ..., N, with N = 1000. Estimate the long-run proportion of time (steps) the DTMC is in state 0, 1, 2:

$$\hat{\pi}_k = \frac{1}{N} \sum_{k=0}^{N} \mathbf{1}_{\{X_k = i\}}, \qquad i = 0, 1, 2.$$

Compute the exact values of the steady states and compare them to your estimations.

(b) Estimate the long-run average of the DTMC

$$\hat{X} = \frac{1}{N} \sum_{k=0}^{N} X_k.$$

Compute the exact value and compare them to your estimations.

4. (Josh's Barber Shop (An M/M/1/3 + M model))

Josh operates a small barbershop in Raleigh. His barbershop has room for at most three customers, one in service and two waiting.

- Potential customers arrive according to a Poisson process with rate $\lambda = 10$ per hour. If a potential arrival finds the barber shop full, with a customer in service and two other customers waiting, he (she) is blocked and lost (i.e., he will leave and will not affect future arrivals);
- Successive service times are I.I.D. $\text{Exp}(\mu)$ r.v.'s with mean $1/\mu = 30$ minutes;
- Waiting customers have limited patience, with each waiting customer being willing to wait only a random amount of time, if the customer has not started service by that time, the customer will abandon, leaving without receiving service. Customers' patience times are I.I.D. r.v.'s following $\text{Exp}(\gamma)$, with mean $1/\gamma = 20$ minutes.

Using the second CTMC algorithm (i.e., uniformization) to simulate a path of the queue length process $\{Q(t), 0 \le t \le T\}$ (here Q(t) denotes the total number of customers in the shop), T = 10000. Estimate

(a) long-run average number of customers in the shop

$$\hat{Q}_T \equiv \frac{1}{T} \int_0^T Q(t) dt.$$

(b) long-run proportion of time the barber is busy

$$\hat{B}_T \equiv \frac{1}{T} \int_0^T \mathbf{1}(Q(t) > 0) dt.$$

(c) long-run proportion of time the shop is full

$$\hat{F}_T \equiv \frac{1}{T} \int_0^T \mathbf{1}(Q(t) = 3) dt.$$

(d) long-run average number of customers waiting in line

$$\hat{L}_T \equiv \frac{1}{T} \int_0^T \max(Q(t) - 1, 0) dt.$$

Note: Only one sample path of Q(t) needs to be generated.