7 以下の 2条件によって定められる数列 $\{a_n\}$ がある.

1.
$$a_1>0,\ a_{n+1}\neq a_n\ (n=1,2,3,\cdots)$$

2. $S_n=a_1+\cdots a_n$ とするとき, $S_n=a_n^2+na_n-4\ (n=1,2,3,\cdots)$

- (1) 初項 a1 を求めよ.
- (2) $b_n=a_{2n-1},c_n=a_{2n}$ $(n=1,2,3,\cdots)$ とするとき、数列 $\{b_n\},\{c_n\}$ の一般項をそれぞれ求めよ.
- (3) $a_k = 0$ を満たす k を求めよ.

(1)

$$RH(27)$$
. $v=lact$
 $S_1 = Q_1^2 + Q_1 - 4$
 $S_1 = Q_1^2 + Q_1 - 4$
 $Q_1 = Q_1^2 + Q_1 - 4$
 $Q_1 = Q_1^2 + Q_1 - 4$
 $Q_1 = Q_1^2 + Q$

(2)
$$\begin{array}{l}
\text{AH}_{2} \approx 1.6 \cdot 1. & \text{N} = 2 \text{ N} \cdot \text{E} \\
\text{S}_{2} = \text{A}_{2}^{2} + 2 \text{ A}_{2} - \text{Y} \\
\text{A}_{1} + \text{A}_{2} = \text{A}_{2}^{2} + 2 \text{A}_{2} - \text{Y} \\
\text{A}_{2}^{2} + \text{A}_{2} - \text{A}_{3} = 0 \\
\text{A}_{1} + \text{A}_{2} - \text{A}_{3} = 0 \\
\text{A}_{1} + \text{A}_{2} + \text{A}_{3} = 0
\end{array}$$

条件2 Mi.

$$F(H_2 M_1).$$

ox loly

$$Q_{u+2} = -Q_{u+1} - (u+1)$$

= $-(-Q_u - u) - (u+1)$
= $Q_u - 1$. でかられない。
数なり $Q_u = 1$ のでは、値を一月を数なりである。

いかあめのとき、本かまりは は=27かんでり、

$$L_{n}$$
 は 神理 2. (L_{n} - 1. L_{n} = 2 - (L_{n} - 1) L_{n} = 3 - L_{n} . L_{n} = 2 - (L_{n} - 1) L_{n} = -3 / L_{n} L_{n}

(3)
$$h_{11} = 0 \neq 1$$
 $3 - h = 0$ $h = 3$.
 $t_{2} \cdot h_{3} = a_{2\cdot 3-1} = a_{5} \neq 1$ $f_{2} = 5$.

Cu=0 27/23 413 AZLZ411.