

BRAC UNIVERSITY **Principles of Physics-II (PHY-112)**

Department of Mathematics and Natural Sciences

Quiz: 01, **Section**: 30 **Date**: June 27, 2024

Duration: 30 Minutes	Summer 2024 (10F-31C)	Marks: 15
----------------------	-----------------------	-----------

Duration. 30 Militares	3ummer 2024 (101-31C)	Iviairs. 15
Name:	Student ID:	
Use SI Units only. Partial M	arks will be given for partially correct answers ONLY.	
A singular point charge produces an electric independent of observers	ic field — nt for different charges — O only when an observer con	mes in \(\) Need
in the horizontal axis? Equilibrium means	\vec{E} -field equilibrium in between two point (both positive) the net force on a test charge is zero. \bigcirc equilibrium can be found in the given interval \bigcirc E_+	(1
erties of electric charge?	actions." This statement implies which of the following for additivity of electric charges quantization of ways an integer	(1
4. Two point charges placed <i>r</i> distance apar between them is tripled, the new force is—○ tripled ○ doubled ○ the same		and the distance
.1	inward electric field around it. Placing a negative charg	,
6. What is the total mass of a lump of protons	s measuring 1.5 C?	C
	$15, n = \frac{+1.50}{+1.602 \times 10^{-19}0} = 9.3$ $1 = nmp = 9.3633 \times 10^{18} \times 1$ $= 1.564 \times 10^{-8} \text{ kg}.$	
	cm apart in air and attract each other with a force of 4×8 positive or negative? Assume the spheres to be pointlib	
FE = C9,92; 91	= = q. Dopposite cha	urges
$= \frac{Cq^{\gamma}}{\gamma \sigma \gamma}$ $= \frac{1}{\sqrt{F_{E} \gamma \sigma^{\gamma}}}$	$= \sqrt{\frac{5 \times 10^{-5} \text{N} \times (3 \times 10^{-7} \text{m})^{2}}{8.986 \times 10^{9} \text{NC}^{-2} \text{m}^{2}}} = \pm$	+ 2'24nC.
V V C	V 8-986 x 109 NC-m	

(2)

$$\frac{Q_{1}}{+4nC} + 6nC$$

$$\frac{1}{16nC} + \frac{1}{16nC} + \frac{1}{1$$

9. A positron and an electron are released from rest in the center of a capacitor. (a) Is the force ratio F_p : F_e greater than 1, less than 1, or equal to 1? Explain. (b) Is the acceleration ratio a_p : a_e greater than 1, less than 1, or equal to 1? Explain. **Hint**: A capacitor contains a uniform electric field between the plates. Positron is the anti-particle of electron with equal but opposite charge and the same mass.

Capacitors hold a uniform E between the two plates. Placing a proton and an electron in this field from west will accelerate them.

BRAC UNIVERSITY Principles of Physics-II (PHY-112)

Department of Mathematics and Natural Sciences

Quiz: 01, **Section**: 30 **Date**: June 27, 2024

Duration: 30 Minutes Summer 2024 (10F-31C) Marks: 15

Juration: 30 Minutes	Summer 2024 (10F-31C) Marks: 15
Name:	Student ID:
Use SI Units only. Partial Mark	ks will be given for partially correct answers ONLY.
1. A singular point charge produces an electric findependent of observers	field — for different charges \(\) only when an observer comes in \(\) Need
charges placed in the horizontal axis? Equilib	\vec{E} -field equilibrium in between two point (one positive, one negative) rium means the net force on a test charge is zero. quilibrium can be found in the given interval $\bigcirc E_+ = -E$
electric charge?	is statement violates which of the following fundamental properties of additivity of electric charges ys an integer
4. Two point charges placed <i>r</i> distance apart for between them is tripled, the new force is—○ tripled ○ one-ninth of the prior	eels a mutual electrostatic force F_E . If both charges and the distance the same \bigcirc one-third of the prior
from the source will measure —	outward electric field around it. Placing a negative charge 1 cm away
6. What is the total mass of a lump of electrons r	measuring 1.5 C?
	$n = \frac{-1.50}{-1.602 \times 10^{-19}c} = 9.3633 \times 10^{18}$ $= nm_e = 9.3633 \times 10^{18} \times 9.1 \times 10^{-31} \text{ K}$
·	$=8.521\times10^{-12}$ kg.
	apart in air and repel each other with a force of 4×10^{-5} N. Compute ositive or negative? Assume the spheres to be pointlike.
FE = C9192; 91 = 9	z=q.
$= \frac{Cq^{2}}{r^{2}}$ $\Rightarrow q = \pm \sqrt{\frac{F_{E} r^{2}}{C}} =$	$\sqrt{\frac{4 \times 10^{-5} \text{N} \times (3 \times 10^{-7} \text{m})^{2}}{8.986 \times 10^{9} \text{NC}^{-2} \text{m}^{2}}} = \pm 2.00 \text{ nC}.$

(2)

$$\frac{1}{E_{2}} = +6nC$$

$$\frac{1}{E_{1}} = +6nC$$

$$\frac{1}{E_{1}} = +6nC$$

$$\frac{1}{E_{1}} = +6nC$$

$$\frac{1}{E_{1}} = +6nC$$

9. A proton and an electron are released from rest in the center of a capacitor. (a) Is the force ratio F_p : F_e greater than 1, less than 1, or equal to 1? Explain. (b) Is the acceleration ratio a_p : a_e greater than 1, less than 1, or equal to 1? Explain. **Hint**: A capacitor contains a uniform electric field between the plates.

Capacitors hold a uniform E between the two plates. Placing a proton and an electron in this field from west will accelerate them.

Force voatio, Fp: Fe = | Pproton E|: | Pelectron E|.

= 1; Since | Pproton | = | Pelectron |

Acceleration ratio, ap: ae = \frac{Fe}{mp}: \frac{Fe}{me} = \frac{me}{mp}

< 1; Since m proton > m electron