Attacking algorithm for $\mathcal{H}(2,0^k)$

2024-08-04

0.1 Data

Suppose we have a translation surface (X,ω) with n_1 short cylinders and n_2 long cylinders with some lable, either A or B. I will call then $C_0,...C_{n_1},C_{n_1+1},...C_{n_1+n_2-1}$ (sorry about the 0-indexing!). Let the height of C_i be c_i .

For cylinders $C_{n_1+1}, C_{n_1+2}, C_{n_1+n_2-2}, C_{n_1+n_2-1}$ (excluding cases where any of these indices are n_1, n_1+n_2) we associate an array $\mathrm{marked}_i[]$ which is a nonempty subset of $\{\ell, r\}$, denoting whether there is a marked point on the left and/or right half on top of cylinder C_i .

0.2 The algorithm

- $\bullet~$ I can assume that $n_1,n_2\geq 2$ because otherwise no vertically-scaling rel deformations exist
- With this email, (I think) I can eliminate *all* cases where there are 3 cylinders of the same label in a row. Therefore, any attack (top or bottom) comes from at most 2 cylinders in $\mathcal{H}(2,0^k)$.

0.2.1 Attacks from the bottom

For every cylinder C_i (most of the time) we compute the attack below it as:

- (1) $c_{i+2} + c_{i+1}$ (indices are taken $mod(n_1 + n_2)$) if the label of C_{i+2} and C_{i+1} is different from C_i ,
- (2) otherwise, c_{i+1} if the label of C_{i+1} is not C_i
- (3) otherwise, 0

There is a special cases though when C_i is a short cylinder and C_{i+1} or C_{i+2} are long cylinders.

- (1) If C_i is a short cylinder and C_{i+1} and C_{i+2} are long cylinders (this means $i = n_1 1$):
 - (a) $c_{i+1}+c_{i+2}$ if C_{i+1} and C_{i+2} have different labels to C_i and $\ell\in \operatorname{marked}_{n_1+3}$ (its important that AA/BB on the bottom is impossible, because otherwise $\operatorname{marked}_{n_1+3}$ does not exist!).
 - (b) otherwise, c_{i+1} if C_{i+1} has a different label than C_i and $\ell \in \operatorname{marked}_{n_1+2}$
 - (c) otherwise, 0
- (2) If C_i and C_{i+1} are a short cylinders and C_{i+2} is a long cylinder (this means $i = n_1 2$):
 - (a) $c_{i+1}+c_{i+2}$ if C_{i+1} and C_{i+2} have different labels to C_i and $\ell\in \operatorname{marked}_{n_1+2}$.
 - (b) otherwise, c_{i+1} if C_{i+1} has a different label than C_i
 - (c) otherwise, 0

There is another special case where C_i is one of the bottom two cylinders $(i = n_1 + n_2 - 1)$ or $i = n_1 + n_2 - 2$.

- (1) If $i = n_1 + n_2 1$ then the attack is
 - (a) $c_{n_1} + c_{n_1+1}$ if C_{n_1} and C_{n_1+1} have different labels to C_i and $r \in \text{marked}_{n_1+2}$ (again, it's important that AA/BB on the bottom is impossible).

- (b) otherwise, c_{n_1} if C_{n_1} has a different label than C_i and $r \in \operatorname{marked}_{n_1+1}$
- (c) otherwise, 0
- (2) If $i = n_1 + n_2 2$ then the attack is
 - (a) $c_{n_1+n_2-1}+c_{n_1}$ if $C_{n_1+n_2-1}$ and C_{n_1} have different labels to C_i and $r\in\max_{n_1+1}$
 - (b) otherwise, $c_{n_1+n_2-1}$ if $C_{n_1+n_2-1}$ has a different label than C_i
 - (c) otherwise, 0

0.2.2 Attacks from the top

This is similar to the bottom.

For every cylinder C_i (most of the time) we compute the attack above it as:

- (1) $c_{i-2} + c_{i-1}$ if the label of C_{i-2} and C_{i-1} is different from C_i ,
- (2) otherwise, c_{i-1} if the label of ${\cal C}_{i-1}$ is not ${\cal C}_i$
- (3) otherwise, 0

There is a special cases though when C_i is a short cylinder and C_{i+1} or C_{i+2} are long cylinders (this is i = 0, 1).

- (1) If C_0 is a short cylinder and $C_{n_1+n_2-1}$ and $C_{n_1+n_2-2}$ are long cylinders:
 - (a) $c_{n_1+n_2-1}+c_{n_1+n_2-2}$ if $C_{n_1+n_2-1}$ and $C_{n_1+n_2-2}$ have different labels to C_0 and $\ell\in\operatorname{marked}_{n_1+n_2-2}$ (its important that AA/BB on the bottom is impossible again because in this case $n_1+n_2-2=n_1$).
 - (b) otherwise, $c_{n_1+n_2-1}$ if $C_{n_1+n_2-1}$ has a different label than C_0 and $\ell\in \mathrm{marked}_{n_1+n_2-1}$
 - (c) otherwise, 0
- (2) If C_1 and C_0 are a short cylinders and $C_{n_1+n_2-1}$ is a long cylinder:
 - (a) $c_0+c_{n_1+n_2-1}$ if C_0 and $C_{n_1+n_2-1}$ have different labels to C_1 and $\ell\in\max_{n_1+n_2-1}$.
 - (b) otherwise, c_{i+1} if C_{i+1} has a different label than C_i
 - (c) otherwise, 0

There is another special case where C_i is one of the top two long cylinders $(i=n_1 \text{ or } i=n_1+1).$

- (1) If $i = n_1$ then the attack is
 - (a) $c_{n_1+n_2-1}+c_{n_1+n_2-2}$ if $C_{n_1+n_2-1}$ and $C_{n_1+n_2-2}$ have different labels to C_i and $r\in \operatorname{marked}_{n_1+n_2-2}$ (again, it's important that AA/BB on the bottom is impossible).
 - (b) otherwise, $c_{n_1+n_2-1}$ if $C_{n_1+n_2-1}$ has a different label than C_i and $r\in \mathrm{marked}_{n_1+n_2-1}$
 - (c) otherwise, 0
- (2) If $i = n_1 + 1$ then the attack is
 - (a) $c_{n_1+n_2-1}+c_{n_1}$ if $C_{n_1+n_2-1}$ and C_{n_1} have different labels to C_i and $r\in\max_{n_1+1}$
 - (b) otherwise, c_{n_1+1} if C_{n_1+1} has a different label than C_i
 - (c) otherwise, 0

0.3 How many equations?

Since each marked_i can be either $\{\ell\}, \{r\}, \{\ell+r\}$, this gives up to $3^4=81$ times more equations to solve. On the other hand, sometimes $\operatorname{marked}_{n_1+1}=\{\ell,r\}$, $\operatorname{marked}_{n_1+2}=\{r\}$ is the same as $\operatorname{marked}_{n_1+1}=\{\ell\}$, $\operatorname{marked}_{n_1+2}=\{r\}$. There might be some simplification in most cases then.