Index

2.1 Potències amb exponent sencer	3
2.2 Exercicis potències amb exponent sencer	
2.3 Potències amb exponent cero, negatiu i base 10	8
2.4 Exercicis de potències amb exponent cero, negatiu i base 10	10
2.5 Potències amb exponent fraccionari	13
2.6 Exercicis de potències amb exponent fraccionari	16
2.7 Radicals d'índex 2	19
2.8 Exercicis amb radicals d'índex 2	20
2.9 Operacions amb radicals d'índex 2	22
2.10 Exercicis amb operacions amb radicals d'índex 2	23
2 11 Solucions	27

2 Potències i arrels

La potencia és una operació amb la qual un mateix nombre es multiplica diverses vegades amb si mateix. Per exemple

$$1 \cdot 10^6$$
 byte = $1 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$ byte = $1 \cdot 000 \cdot 000 = 1$ MB

L'avantatge d'expressar un nombre en forma de potència és manifesta en els nombres molt grans, ja que s'expressa amb menys xifres i resulta més curt.

2.1 Potències amb exponent sencer

Una potència és un producte de factors iguals que es pot escriure de forma abreujada. $5 \cdot 5 \cdot 5 = 5^3$

En aquest exemple anomenem 5 la base, ja que és el nombre que es multiplica i 3 l'exponent, ja que en la multiplicació apareix el cinc, la base, 3 vegades

Exponent: vegades que es multiplica la base

Base: factor que es multiplica

Amb paraules es diu: (nombre de la base) elevat a (nombre de l'exponent).

10³ Deu elevat a tres.

7⁵ Set elevat a cinc.

Propietats

$$a^m \cdot a^n = a^{m+n}$$
 $\rightarrow 2^3 \cdot 2^2 = (2 \cdot 2 \cdot 2) \cdot (2 \cdot 2) = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5$

$$a^{m}: a^{n} = a^{m-n}$$
 $\rightarrow 2^{3}: 2^{2} = (2 \cdot 2 \cdot 2): (2 \cdot 2) = \frac{2 \times 2 \times 2}{2 \times 2} = \frac{2^{3}}{2^{2}} = 2^{3-2} = 2^{1} = 2$

$$(a^{m})^{n} = a^{m \cdot n}$$
 $\rightarrow (2^{3})^{2} = (2 \cdot 2 \cdot 2)^{2} = (2 \cdot 2 \cdot 2) \cdot (2 \cdot 2 \cdot 2) = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
 $(2^{3})^{2} = 2^{6}$

$$a^n \cdot b^n = (a \cdot b)^n \rightarrow 2^2 \cdot 3^2 = 2 \cdot 2 \cdot 3 \cdot 3 = (2 \cdot 3) \cdot (2 \cdot 3) = (2 \cdot 3)^2$$

$$a^n: b^n = (a:b)^n \rightarrow 2^2: 3^2 = (2 \cdot 2): (3 \cdot 3) = \frac{2 \times 2}{3 \times 3} = \frac{2}{3} \cdot \frac{2}{3} = (\frac{2}{3})^2 = (2:3)^2$$

2.2 Exercicis potències amb exponent sencer

Exercici 2.2-1

Escriu en forma de potència única

a) $5^3 \cdot 5^5$	$d) (-10)^5 : (-10)^2$	$g) (3^2)^5$	$j) a^3 \cdot a^{-5}$
b) $5^{14}:5^5$	$e) (-4)^3 \cdot 7^3$	h)15 ² · 15 ⁻²	$(k) (a^3)^6$
c) $(-5)^5 \cdot 3^5$	f) (-75) ² : 15 ²	i) [(-10) ²] ³	$l) a^5 : a^{-3}$

Exercici 2.2-2

Simplifica i calcula:

a) $\frac{2^4 \times 2^{-4}}{2^3}$	$c) \frac{2^3 \times 2^5 \times 2^{-2}}{2^5 \times 2^6 \times 2^7}$	e) $\frac{7^2 \times (-3)^2 \times 5}{5 \times 5^2 \times 3^4 \times (7^2)^3}$
$b) \ \frac{a^3 \times a^5 \times a^2}{a^5 \times a}$	$d) \frac{a \times b^3 \times a^3 \times b^5}{(b^3)^2 \times a^5}$	

Exercici 2.2-3

Descompon en factors primers els nombres i simplifica:

	- \	121×36	b)	243×21
1	a)	539×9	D)	81×49

Exercici 2.2-4

Indica quines de les següents igualtats són vertaderes i per a les que no ho siguin, calcula el resultat correcte.

a) $(-3)^4 = 3^4$	c) $(-2)^3 = 8$	e) $(-3)^7 = 3^7$	g) $(-8)^2 = 8^2$
b) $(-1)^5 = 1$	d) $(-3)^6 = -3^6$	f) $(-3)^8 = 3^8$	h) $-(-3)^6 = 3^6$

Escriu en forma de potència única:

a) 3 ⁵ : 3 ⁷	e) $(7^3 \cdot 3^3)^2$	i) (2 ²) ³
b) (3 ⁻²) ⁷	f) (3 ⁻²) ⁻²	j) 10 ⁻² : 10 ⁻⁸
c) $5^2 \cdot 3^2$	g) 3 ⁵ · 3 ⁻²	k) 4 ⁻² : 4 ⁻⁸
d) 10 ³ · 5 ³	h) 2 ³ · 2 ⁻⁴	l) $(7^5 \cdot {}^35)^{-2}$

Exercici 2.2-6

Simplifica i calcula:

a)	$\frac{3^5 \times 3^2 \times 3}{3^2 \times 3}$	e)	$\frac{a^3 \times b^3 \times b^{-2}}{a^2 \times b^4 \times b^5}$
b)	$\frac{(-5)^2 \times 3^2 \times 3}{5^{-3} \times 3^4}$	f)	$\frac{a^3 \times b^3 \times (c^3)^2 \times c^5}{a^3 \times (b^2)^2 \cdot \times b \times c}$
c)	$\frac{(-7)^2 \times 11^5}{7^{-3} \times 11}$	g)	$\frac{10^2 \times 10^5 \times (10^2)^3}{10^6 \times 10^{-2}}$
d)	$\frac{a^2 \times a^{-3} \times a^0}{a^{10} \times a^{-3}}$	h)	$\frac{(a^3 \times b) \times c^{-3}}{(a^2)^5 \times b \times (c^5)}$

Exercici 2.2-7

Descompon en factors primers i simplifica:

a)	$\frac{216\times1024}{4}$	c)	$\frac{64\times32\times9}{243\times8}$
b)	$\frac{625\times20}{125\times270}$	d)	$\frac{100}{360\times90}$

2.3 Potències amb exponent cero, negatiu i base 10

$$a^0 = 1$$

Qualsevol **potència amb exponent 0** té com a valor **sempre 1**.

Demostració:

$$3^4 \cdot 3^{-4} = 3^0 = 3^4 \times \frac{1}{3^4} = 3^4 : 3^4 = \frac{3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3} = \frac{81}{81} = 81 : 81 = 1$$

En la multiplicació de dues potències amb la misma base, es sumen els exponents.

La suma dels exponents dóna 0 quan són iguals però amb signe contrari.

En aquest cas sempre es divideix un nombre entre si mateix, amb el resultat 1.

Exponent negatiu

$$\mathbf{a}^{-\mathbf{n}} = \frac{1}{a^n}$$

Una potència amb exponent negatiu és igual a la inversa de la potència amb exponent positiu.

Demostració:

$$(2 \cdot 2 \cdot 2 \cdot 2) : (2 \cdot 2) = \frac{2 \times 2 \times 2 \times 2}{2 \times 2} = \frac{2^4}{2^2} = 2^4 \times 2^{-2} = 2^2 = 4$$

Potències amb base 10 - Notació científica

Les potències amb base 10 són útils per expressar nombres molt grans o molt petits.

Per exemple, la capacitat d'un disc dur pot ser de 1 000 000 000 000 bytes (1 TB) i el radi d'un protó és aproximadament 0,0000000005 m.

Per expressar aquets nombres és més còmoda la notació científica, que és el producte d'un nombre decimal i una potència de 10.

$$1 \cdot 10^{12}$$
 byte = 10^{12} byte = 1 TB

$$5 \cdot 10^{-11} \text{ m} = 0,00000000005 \text{ m}$$

Notació científica

- a,bc... és un nombre decimal
- 10ⁿ és una potència amb base 10 i amb exponent n que pot ser positiu (nombres molt grans) o negatiu (nombres molt petits).

En la notació científica també s'anomena l'exponent ordre de magnitud.

2.4 Exercicis de potències amb exponent zero, negatiu i base 10

Exercici 2.4-1

Transforma en potències positives:

a) 3 ⁻⁶	d) $\frac{1}{3^{-10}}$	g) (2 ⁻²) ⁴	j) 9 ⁻³ : 9 ⁶
b) 3 ⁻⁴	e) $\frac{1}{5^{-3}}$	h) 15 ⁻³ · 5 ⁻³	k) 72 ⁻² : 9 ⁻²
c) 5 ⁻²	f) $\frac{1}{3^{-1}}$	i) 3 ² · 3 ⁻⁵	1)4-1 + 4-2

Exercici 2.4-2

Resol les operacions aplicant les propietats de les potències i la notació científica.

a) $(3.2 \cdot 10^{-10}) \cdot (1.6 \cdot 10^{18})$	b) $(6.4 \cdot 10^8) : (1.6 \cdot 10^{12})$
a) (3,2 · 10) · (1,0 · 10)	0) (0,4 10) . (1,0 10)

Exercici 2.4-3

Escriu amb notació científica:

a) 0,00004	e) 0,00031	
b) 0,000012	f) 35 000 000	
c) 7 000 000	g) 0,4230	
d) 235 000 000	h) 4 320 000	

Indica l'order de magnitud dels nombres de l'exercici anterior.

a)	e)
b)	f)
c)	g)
d)	h)

Exercici 2.4-4

Escriu com a potències positives:

a) 3 ⁻⁵	d) 7 ⁻⁵	g) $\frac{8}{10^{-5}}$	j) 10 ⁻³ · 2 ⁻³
b) 2 ⁻³	e) $\frac{1}{3^{-5}}$	h) $\frac{1}{4^{-2}}$	k) 100 ⁻⁵ : 2 ⁻⁵
c) 4 ⁻³	f) $\frac{1}{10^{-2}}$	i) (2 ²) ⁻⁶	l) 5 ⁻² : 5 ⁻¹

m)
$$(-5)^{-2}$$
 n) $[(-5)^{-2}]^7$

Exercici 2.4-5

Realitza les operacions amb notació científica.

a) $(3.75 \cdot 10^{-8}) \cdot (2.5 \cdot 10^{15})$	c) $(1,25 \cdot 10^5) : (2,5 \cdot 10^{10})$
b) $(4,38 \cdot 10^{12}) \cdot (3,1 \cdot 10^{12})$	d) $(3,012 \cdot 10^{-3}) \cdot (4 \cdot 10^{-2})$

Escriu amb notació científica:

a) 0,000021	e) 0,003	
b) 0,000327	f) 1 530 000	
c) 0,0000725	g) 2 370 000	
d) 1 0000 000	h) 2 475 360	

Exercici 2.4-7

Escriu amb forma decimal:

a) 3,2 · 10 ⁻³	f) 8,5 · 10 ⁵	
b) 5,6 · 10 ⁻⁴	g) 2,43 · 10 ⁻³	
c) -2 · 10 ⁶	h) 3,733 · 10 ⁴	
d) 6,1 · 10 ⁻⁴	i) 5,347·10 ²	
e) 5,38 · 10 ³	j) 3,427 · 10 ⁻⁶	

Exercici 2.4-8

Indica l'order de magnitud dels següents nombres:

a) 3,1 · 10 ⁻¹²	
b) 4,8 · 10 ⁻⁶	
c) 2,5 · 10 ¹⁸	
d) 3,7 · 10 ⁴	

2.5 Potències amb exponent fraccionari

Fins ara només hem observat potències amb exponents que eren nombres sencers.

Ara aprendrem a utilitzar potències amb exponents que són fraccions.

Comencem observant exponents que són fraccions amb numerador 1 i denominador distint a 0.

Per exemple:

$$4^{\frac{1}{2}}$$
 no sabem què és això.

Però sí coneixem el resultat de la següent operació:

$$4^{\frac{1}{2}} \cdot 4^{\frac{1}{2}} = 4^{\frac{1}{2} + \frac{1}{2}} = 4^{1} = 4$$

Podem deduir que $4^{\frac{1}{2}}$ és un nombre que multiplicat amb si mateix dóna 4.

Tots sabem que $2 \cdot 2 = 4$.

Per tant
$$4^{\frac{1}{2}} = 2$$

Veiem que un nombre elevat a $\frac{1}{2}$ és igual a l'arrel quadrada del nombre.

$$4^{\frac{1}{2}} = \sqrt{(2)}$$

I què passa si l'exponent és $\frac{1}{3}$?

Doncs observem $27^{\frac{1}{3}}$.

$$27^{\frac{1}{3}} \cdot 27^{\frac{1}{3}} \cdot 27^{\frac{1}{3}} = 27^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 27^{1} = 27$$

Quin nombre multiplicat 3 vegades amb si mateix dóna 27?

$$3 \cdot 3 \cdot 3 = 27 \rightarrow 27^{\frac{1}{3}} = \sqrt[3]{27} = 3$$

De tot l'anterior podem generalitzar:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Ara anem a multiplicar $27^{\frac{1}{3}}$ amb $27^{\frac{1}{3}}$, recordant que $(a^m)^n = a^{m \cdot n}$

$$27^{\frac{1}{3}} \cdot 27^{\frac{1}{3}} = 27^{(\frac{1}{3})^2} = 27^{\frac{2}{3}} = 27^{2\times\frac{1}{3}} = 27^{2^{\frac{1}{3}}} = 27^{2^{\frac{1}{3}}} = 3\sqrt{27^2}$$

Podem generalitzar:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Quan escrivim una potencia amb fracció com a exponent, per exemple $2^{\frac{1}{2}}$ com a arrel, $\sqrt{\frac{1}{2}}$ es diu que hem covertit la potencia en un radical.

Propietats

Les potències amb fracció com a exponent tenen les mateixes propietats que les potències amb nombre sencer com a exponent.

Propietat	Exemple
$a^{\frac{m}{n}} \cdot a^{\frac{p}{q}} = a^{\frac{m+p}{q}}$	$2^{\frac{2}{4}} \cdot 2^{\frac{3}{6}} = 2^{\frac{2}{4} + \frac{3}{6}} = 2^{\frac{12}{12}} = 2^1 = 2$
$a^{\frac{m}{n}}: a^{\frac{p}{q}} = a^{\frac{m}{n} - \frac{p}{q}}$	$2^{\frac{2}{4}}$: $2^{\frac{3}{6}}$ = $2^{\frac{2}{4} - \frac{3}{6}}$ = 2^{0} = 1
$(a^{m/n})^{p/q} = a^{\frac{m}{n} \times \frac{p}{q}} = a^{\frac{m \times p}{n \times q}}$	$(2^{2/4})^{3/6} = 2^{\frac{2}{4} \times \frac{3}{6}} = 2^{\frac{2 \times 3}{4 \times 6}} = 2^{\frac{6}{24}} = 2^{\frac{1}{4}} = \sqrt[4]{2}$
$(a\times b)^{\frac{m}{n}} = a^{\frac{m}{n}} \times b^{\frac{m}{n}}$	$(a\times b)^{\frac{m}{n}} = 2^{\frac{3}{6}}\times 4^{\frac{3}{6}}$
$(a:b)^{m/n} = a^{\frac{m}{n}} : b^{\frac{m}{n}}$	$(2:4)^{3/6} = 2^{\frac{3}{6}} : 4^{\frac{3}{6}}$

Aquestes propietats es poden escriure amb el símbol de l'arrel:

Propietat	Exemple
$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a} \times b$	$\sqrt[2]{4} \times \sqrt[3]{9} = \sqrt[3]{4} \times 9 = \sqrt[2]{4} \times \sqrt[3]{9} = \sqrt[3]{36} = 6$
$a^{\frac{m}{n}} : \sqrt[n]{b} = \sqrt[n]{a \div b}$	$\sqrt[2]{4}$: $\sqrt[2]{9}$ = $\sqrt[2]{4 \div 9}$ = $\frac{2}{3}$ = $0,\overline{6}$
$\left(\sqrt[n]{a^m}\right)^p = a^{m \times \frac{1}{n} \times p} = a^{\frac{m \times p}{n}}$	
$= \sqrt[n]{a^{m \times p}}$	$= (2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2)^{\frac{1}{4}}$ $= 2\cdot2\cdot2=8$
	$\sqrt[4]{\sqrt[3]{2^{12}}} = 2^{\frac{12}{3\times 4}} = \sqrt[4\times 3]{a^{12}} = \sqrt[12]{a^{12}} = a$

2.6 Exercicis de potències amb exponent fraccionari

Exercici 2.6-1

Converteix en radicals les següents potències:

a) $5^{\frac{1}{2}}$	c) 4 ^{1/3}	e) $8^{\frac{3}{5}}$	
b) $3^{\frac{5}{4}}$	d) $7^{\frac{3}{2}}$	f) 2 ³ / ₇	

Exercici 2.6-2

Completa la taula.

	Radicand	Índex	Arrel
$\sqrt{64} = 8$			
⁴ √81 = 3			
$\sqrt{4} = 2$			
$\sqrt{81} = 9$			
³ √125 = 5			

Resol les següents operacions.

- a) $3 \cdot \sqrt{16} + (4 \cdot \sqrt{25} 3^2)$
- b) ($\sqrt{81} + 3$): $4 5^2$: $\sqrt{25}$
- c) $2^3 + 3 \sqrt{36} \sqrt{49} : 7$

Exercici 2.6-4

Calcula.

a) $3^{\frac{5}{3}} \cdot 3^{\frac{4}{3}}$	c) $[(4)^2]^{\frac{3}{5}}$	e) ³ √5	
b) $5^{\frac{2}{4}}:5$	d) $(3\times5)^{\frac{2}{3}}$	f) $\sqrt[5]{2} \cdot \sqrt[5]{3}$	

Exercici 2.6-5

Escriu com a potències els següents radicals.

a) $\sqrt{5}$	e) $\sqrt[3]{25^2}$	i) $\sqrt[3]{13^5}$	
b) ³ √7	f) $\sqrt[3]{71}$	$j) \sqrt[3]{2^6}$	
c) $\sqrt[4]{3^2}$	g) ⁶ √5	k) $\sqrt[3]{3^5}$	
d) $\sqrt{8^3}$	h) $\sqrt[7]{11^2}$	l) $\sqrt[3]{7^3}$	

Exercici 2.6-6

Escriu com a radicals les següents potències.

a) $11^{\frac{1}{3}}$	d) 4 ^{7/8}	g) $8^{\frac{1}{5}}$	
b) $7^{\frac{5}{4}}$	e) $5^{\frac{10}{3}}$	h) 3 ⁴ / ₇	
c) $2^{\frac{3}{11}}$	f) 8 ⁶ / ₅	i) $10^{\frac{2}{11}}$	

Resol les següents expressions.

a) $\sqrt{64} - 3 \cdot \sqrt{25} + 125 : \sqrt{25}$	
b) $2^2 - 4$: $\sqrt{4} + \sqrt{8} - 16$: $\sqrt{64}$	
c) $5^3 - 7^2 + (\sqrt{81} : \sqrt{9} - 27 : 3)$	
d) $10^2 - 5^2 - (\sqrt{25} : 5 + 11^2 - 21)$	

Exercici 2.6-8

Converteix en radicals.

a) $5^{\frac{1}{2}} \cdot 5^{\frac{1}{4}}$	e) $[3^2]^{\frac{1}{10}}$
b) $6^{\frac{2}{3}} \cdot 6^{\frac{2}{3}}$	f) $(4\times5)^{\frac{1}{5}}$
c) $7^{\frac{3}{2}}:7$	g) $(25:5)^{\frac{3}{7}}$
d) $4^{\frac{5}{2}}$: $4^{\frac{1}{2}}$	h) $[2^{\frac{2}{3}}]^{\frac{3}{5}}$

Exercici 2.6-9

Calcula.

a) $\sqrt[3]{2 \times 5}$	e) ³ √25 : ³ √5
b) ⁵ √5÷3	f) $\sqrt[4]{\sqrt{3}}$
c) $(\sqrt{4^2})^5$	g) $\sqrt{\sqrt{a\times b}}$
d) $\sqrt[3]{2} \times \sqrt[3]{7}$	h) $\sqrt{64}$: $\sqrt{16}$

2.7 Radicals d'índex 2

L'arrel quadrada d'un nombre natural pot ser:

Exacta: Si el nombre és un quadrat perfecte, i té dues solucions.

No exacta: Quan la resta és distinta a 0. En aquest cas es pot calcular per tanteig o mitjançant un algorithme per al càlcul de l'arrel quadrada.

Exempe de càlcul per tanteig:

L'arrel quadrada de 6 no és exacta.

Els dos quadrats perfectes entre els quals es troba són 4 i 9.

$$4 = 2^{2}$$

$$2 < \sqrt{6} < 3$$

Arrel sencera per defecte Arrel sencera per excès

Resta per defecte:

Resta per excès:

$$6 - 2^2 = 2$$

$$3^2 - 6 = 3$$

2.8 Exercicis amb radicals d'índex 2

Exercici 2.8-1

Calcula:

a) $\sqrt{625}$	d) $\sqrt{1000000}$
b) $\sqrt{144}$	e) $\sqrt{1444}$
c) $\sqrt{1600}$	f) $\sqrt{256}$

Exercici 2.8-2

Indica les arrels per defecte i excès. Indica també les restes per defecte i excès.

a) √785	c) $\sqrt{325}$
b) $\sqrt{124}$	d) $\sqrt{405}$

Exercici 2.8-3

Per barrar una piscina quadrada amb 196 m2 de superfície, quants metres de tanca es necessiten?

Exercici 2.8-4

Calcula les següents arrels.

a)	$\sqrt{36000}$	d) $\sqrt{121}$
b)	$\sqrt{8100}$	e) $\sqrt{22500}$
c)	$\sqrt{49000000}$	f) $\sqrt{324}$

Transforma en potències.

a) √51	d) $\sqrt{38}$	g) √26
b) √28	e) $\sqrt{45}$	h) $\sqrt{41}$
c) $\sqrt{104}$	f) $\sqrt{200}$	i) √85

Exercici 2.8-6

Indica les arrels per defecte i excès. Indica també les restes per defecte i excès.

a) $\sqrt{326}$	d) √37243
b) $\sqrt{1285}$	e) √56712
c) $\sqrt{2531}$	f) $\sqrt{356743}$

Exercici 2.8-7

La superfície d'una taula quadrada és de 3600 cm². Quin és el seu perímetre? Fes un esquema de la taula indicant la llargària dels seus costats.

Exercici 2.8-8

El volum d'un dipòsit d'aigua cúbic és de 8 m³. Quines són les seves dimensions? Fes un esquema del dipòsit indicant les llargària dels seus costats.

Exercici 2.8-9

La superfície **S** d'un cercle es calcula amb

$$S = \pi \cdot r^2$$

on **r** és el radi.

Quin és el diàmetre d'un cable de 5 mm² de secció?

Fes un esquema del cable indicant la secció i el diàmetre.

2.9 Operacions amb radicals d'índex 2

Simplificació d'arrels amb índex 2

Pas 1: Es descomposa en factors primers el radicand (factorització)

Exemple: $\sqrt{360} = \sqrt{2^3 \cdot 3^2 \cdot 5}$

<u>Pas 2</u>: Si els exponents són tots parells, l'arrel quadrada és (exacta) un nombre sencer, si els exponents són nombres imparells majors que 1, es transformen en nombre par + Exemple: $\sqrt{360} = \sqrt{2^2 \cdot 2^1 \cdot 3^2 \cdot 5}$

<u>Pas 3</u>: Totes les potències amb exponent parell és poden treure fora de l'arrel, dividint l'exponent entre 2.

Exemple: $\sqrt{360} = \sqrt{2^2 \cdot 2^1 \cdot 3^2 \cdot 5} = 2 \cdot 3\sqrt{2 \cdot 5} = 6\sqrt{2 \cdot 5} = 6\sqrt{10}$

Arrels semblants amb index 2

Les arrels són semblants quan tenen el mateix índex i el mateix radicand. Per exemple $2\sqrt{3}$ i $5\sqrt{3}$ són semblants, mentre què $3\sqrt{8}$ i $4\sqrt{2}$ no ho són, perquè els radicands són diferents.

Les arrels semblants es poden sumar, restar, multiplicar i dividir

$$2\sqrt{3} + 5\sqrt{3} = (2+5) \sqrt{3} = 7 \sqrt{3}$$

$$2\sqrt{3}$$
 - $5\sqrt{3}$ = (2 - 5) $\sqrt{3}$ = -3 $\sqrt{3}$

$$2\sqrt{3} \cdot 5\sqrt{3} = (2 \cdot 5) \sqrt{3} = 10 \sqrt{3}$$

$$2\sqrt{3}$$
: $5\sqrt{3} = (2:5) \sqrt{3} = \frac{2}{5}\sqrt{3}$

2.10 Exercicis amb operacions amb radicals d'índex 2

Exercici 2.10-1

Simplifica les arrels factoritzant-les.

a) $\sqrt{450}$	c) $\sqrt{363}$
b) √392	d) √1728

Exercici 2.10-2

Suma i resta les següents arrels i si és necessari simplifica-les a arrels semblants.

a) $\sqrt{3} - 3 \cdot \sqrt{3} + 2 \cdot \sqrt{3}$	c) $\sqrt{27} + 4\sqrt{243}$
b) $\sqrt{18} - \sqrt{8}$	d) $3\sqrt{125}-2\sqrt{5}$

Exercici 2.10-3

Extreu tots els factors i calcula els resultats.

	,		,
~)	/ 40 / 2	トノ	/24 : /C
181	$\sqrt{40 \cdot \sqrt{2}}$	1)) 1	$\sqrt{24 \pm \sqrt{6}}$
\ <u>``</u>	, ,, , , _	<i>-</i>	, _ , , ,

Exercici 2.10-4

Simplifica la següent expressió.

 $\frac{3}{\sqrt{3}}$

Exercici 2.10-5

Extreu els factors de les arrels.

a) $\sqrt{125}$	c) √785
b) √742	d) √1225

Resta o suma les arrels quan sigui possible.

a) $\sqrt{2} + \sqrt{2} - \sqrt{2}$	d) $\sqrt{6} - 3\sqrt{7}$
b) $5\sqrt{3} + 4\sqrt{3}$	e) $\sqrt{5} - 8\sqrt{5} + 4\sqrt{5}$
c) $3\sqrt{7} - 5\sqrt{7} + 4\sqrt{7}$	f) $3\sqrt{6} + 3\sqrt{2}$

Exercici 2.10-7

Transforma en arrels semblants i simplifica.

a) $\sqrt{300} - \sqrt{75}$	d) $2\sqrt{2} + \sqrt{18} - 3\sqrt{8}$
b) $\sqrt{72} - \sqrt{18}$	e) $3\sqrt{20} - \sqrt{125}$
c) $\sqrt{50} - \sqrt{32}$	f) $\sqrt{27} - 3\sqrt{3} + 5\sqrt{243}$

Exercici 2.10-8

Extreu els factors de les arrels i calcula.

a) $\sqrt{80} \cdot \sqrt{125}$	c) $\sqrt{64} \cdot \sqrt{16}$
b) $\sqrt{49} \cdot \sqrt{343}$	d) $\sqrt{50} \cdot \sqrt{2}$

Exercici 2.10-9

Extreu els factors de les arrels i calcula.

a) $\sqrt{125} \div \sqrt{25}$	c) $\sqrt{64} \div \sqrt{16}$
b) $\sqrt{24} \div \sqrt{3}$	d) $\sqrt{8} \div \sqrt{2}$

Exercici 2.10-10

Simplifica.

a) $\frac{2}{\sqrt{5}}$	d) $\frac{\sqrt{2}}{\sqrt{5}}$
b) $\frac{3}{\sqrt{13}}$	e) $\frac{\sqrt{3}}{\sqrt{7}}$
c) $\frac{3}{2\sqrt{8}}$	f) $\frac{\sqrt{2}}{2\sqrt{5}}$

2.10-11 Escriu en forma de potències uniques

c)
$$(-2)^3$$
: (-2)

d)
$$(10^3)^2$$

f) a5 · a3

2.10-12 Factoritza i simplifica

a)
$$\frac{81 \cdot 36}{27 \cdot 32}$$

b)
$$\frac{125 \cdot 5^2}{625 \cdot 20}$$

c)
$$\frac{30 \cdot (-2)^3 \cdot 9}{48 \cdot 4 \cdot (-3)^2}$$

b)
$$\frac{125 \cdot 5^2}{625 \cdot 20}$$
 c) $\frac{30 \cdot (-2)^3 \cdot 9}{48 \cdot 4 \cdot (-3)^2}$ d) $\frac{3^2 \cdot 18^3 \cdot 10}{25^4 \cdot 2^7}$ e) $\frac{2^{-3} \cdot 8^4 \cdot 10^4}{2^4 \cdot 1.000}$

e)
$$\frac{2^{-3} \cdot 8^4 \cdot 10^4}{2^4 \cdot 1.000}$$

2.10-13 Transforma en potència única i resol

a)
$$\frac{1}{3^{-3}}$$

2.10-14 Escriu amb notació científica

- a) 0,000032
- b) 0,000000872
- c) 3.250.000.000
- d) 4.723.000
- e) 1.200.000

f) 0,00000045

2.10-15 Transforma les potències en arrels

g) 42/4

2.10-16 Escriu com a una sola potència

a)
$$[(-2)^3]^5$$

b)
$$(-2)^3 \cdot (-3)^3 \cdot (-4)^3$$

c)
$$(-2)^2 \cdot 3^2$$

e)
$$(-9)^2 : (-3)^2$$

f) $(2)^8 : (-2)^3 \cdot (2)^2$

2.10-17 Indica les arrels per defecte i excès. Indica també les restes per defecte i excès.

e) √1.348

2.10-18 Extreu els factors de les arrels

e) √784

2.10-19 Calcula

a)
$$\sqrt{8} - \sqrt{2} + 4\sqrt{32}$$

c)
$$\sqrt{54}$$
: $\sqrt{24}$

d)
$$\sqrt{8} - 3\sqrt{18} + 2\sqrt{98} - \sqrt{108}$$

e)
$$\sqrt{27} - 3\sqrt{50} + \sqrt{18} + \sqrt{8}$$

f)
$$\sqrt{72} - 3\sqrt{200} + \sqrt{98} + \sqrt{800}$$

2.10-20 Simplifica

a)
$$\frac{5}{\sqrt{5}}$$

b)
$$\frac{4}{\sqrt{2}}$$

c)
$$\frac{3}{\sqrt{27}}$$

d)
$$\frac{2}{\sqrt{8}}$$

2.10-21 Escriu amb notació científica

b) 0,000000132

c) 132,52 · 105

d) 0,01245 · 109

2.10-22 Calcula i escriu amb notació científica

b) (123 · 10¹¹) · (2 · 10¹⁰)

c) (549 · 108) : (9 · 105)

d) (120,6 · 109): (2 · 106)

Exercici 2.10-23

Dintre d'un cartró hi ha 5 caixes, amb 25 llapisos per caixa. Tenim 5 cartrós.

Quants llapisos tenim?

Expressa el resultat en forma de potència i resol.

Solucions

2.11 Solucions

Exercici 2.2-1

Escriu en forma de potència única

a) $5^3 \cdot 5^5 = 5^5$	d) $(-10)^5$: $(-10)^2$ = $(-10)^3$	$g) (3^2)^5 = 3^{10}$	$j) a^3 \cdot a^{-5} = a^{-2}$
$b) 5^{14} : 5^5 = 5^9$	$e) (-4)^3 \cdot 7^3 = (-28)^3$	$h)15^2 \cdot 15^{-2} = 15^0$	$k) (a^3)^6 = a^{18}$
		= 1	
$c) (-5)^5 \cdot 3^5 = (-15)^5$	$f) (-75)^2 : 15^2 = (-5)^2$	i) $[(-10)^2]^3 = (-10)^6$	$l) a^5 : a^{-3} = a^8$

Exercici 2.2-2

Simplifica i calcula:

a) $\frac{2^4 \times 2^{-4}}{2^3} = \frac{2^0}{2^3} = 2^{-3}$ $= \frac{1}{8}$	c) $\frac{2^3 \times 2^5 \times 2^{-2}}{2^5 \times 2^6 \times 2^7} = \frac{2^6}{2^{18}}$ = $\frac{1}{2^{12}} = 2^{-12}$	e) $\frac{7^{2} \times (-3)^{2} \times 5}{5 \times 5^{2} \times 3^{4} \times (7^{2})^{3}}$ $= \frac{7^{2} \times (-3)^{2} \times 5}{5^{3} \times 3^{4} \times 7^{6}}$ $= \frac{1}{5^{2} \times 3^{2} \times 7^{4}} = \frac{1}{540225}$
b) $\frac{a^3 \times a^5 \times a^2}{a^5 \times a} = \frac{a^{10}}{a^6}$ = a^4	$d) \frac{a \times b^3 \times a^3 \times b^5}{(b^3)^2 \times a^5}$	

Exercici 2.2-3

Descompon en factors primers els nombres i simplifica:

a)
$$\frac{121 \times 36}{539 \times 9} = \frac{11^2 \times 3^3}{7^2 \times 11 \times 3^2} = \frac{11 \times 3}{7^2}$$
 b) $\frac{243 \times 21}{81 \times 49} = \frac{3^5 \times 3 \times 7}{3^4 \times 7^2} = \frac{3^2}{7}$ = $\frac{33}{49}$

Indica quines de les següents iguantats són vertaderes i per a les que no ho siguin, calcula el resultat correcte.

a) $(-3)^4 = 3^4$ ok	c) $(-2)^3 = -8$	e) $(-3)^7 = -3^7$	g) $(-8)^2 = 8^2$ ok
b) $(-1)^5 = -1$	d) $(-3)^6 = -3^6$ ok	f) $(-3)^8 = 3^8$ ok	h) $-(-3)^6 = -3^6$

Exercici 2.2-5

Escriu en forma de potència única:

a) $3^5: 3^7 = 3^{-2}$	e) $(7^3 \cdot 3^3)^2 = (7 \cdot 3)^9 = 21^9$	i) $(2^2)^3 = 2^6$
b) $(3^{-2})^7 = 3^{-14}$	f) $(3^{-2})^{-2} = 3^4$	j) 10^{-2} : $10^{-8} = 10^{-10}$
c) $5^2 \cdot 3^2 = (3 \cdot 5)^2 = 15^2$	g) $3^5 \cdot 3^{-2} = 3^3$	k) 4^{-2} : $4^{-8} = 4^{-10}$
d) $10^3 \cdot 5^3 = (10 \cdot 5)^3 = 50^3$	h) $2^3 \cdot 2^{-4} = 2^{-1}$	l) $(7^5 \cdot 3^5)^{-2} = (7 \cdot 3)^{5 \cdot -2}$
		= 21 ⁻¹⁰

Exercici 2.2-6

Simplifica i calcula:

a)	$\frac{3^5 \times 3^2 \times 3}{3^2 \times 3} = \frac{3^8}{3^3} = 3^5$	e)	$\frac{a^3 \times b^3 \times b^{-2}}{a^2 \times b^4 \times b^5} = \frac{a^3 \times b}{a^2 \times b^9} = \frac{a}{b^8}$
b)	$\frac{(-5)^2 \times 3^2 \times 3}{5^{-3} \times 3^4} = \frac{5^5}{3}$	f)	$\frac{a^3 \times b^3 \times (c^3)^2 \times c^5}{a^3 \times (b^2)^2 \cdot \times b \times c} = \frac{a^3 \times b^3 \times c^6 \times c^5}{a^3 \times b^5 \times c}$
		=	$\frac{a^3 \times b^3 \times c^{11}}{a^3 \times b^5 \times c} = \frac{c^{10}}{b^2}$
c)	$\frac{(-7)^2 \times 11^5}{7^{-3} \times 11} = 7^5 \times 11^4$	g)	$\frac{10^2 \times 10^5 \times (10^2)^3}{10^6 \times 10^{-2}} = \frac{10^7 \times 10^6}{10^4} = 10^9$
d)	$\frac{a^2 \times a^{-3} \times a^0}{a^{10} \times a^{-3}} = \frac{a^{-1}}{a^7} = \frac{1}{a^8} = a^{-8}$	h)	$\frac{(a^3 \times b) \times c^{-3}}{(a^2)^5 \times b \times (c^5)} = \frac{a^3 \times b \times c^{-3}}{a^{10} \times b \times c^5}$
			$\frac{1}{a^7 \times c^8}$

Descompon en factors primers i simplifica:

a) $\frac{216 \cdot 1024}{4} = \frac{2^4 \cdot 13 \cdot 2^{10}}{2^2} = 2^{12} \cdot 13$ $216 \mid 2$ $1024 \mid 2$ $108 \mid 2$ $512 \mid 2$	c) $\frac{64 \cdot 32 \cdot 9}{243 \cdot 8} = \frac{2^6 \cdot 2^5 \cdot 3^2}{3^5 \cdot 2^3} = \frac{2^8}{3^3}$ $64 = 2^6$
54 2 256 2 26 2 128 2 13 13 64 2	$9 = 3^{2}$ 27 3 $8 = 2^{3}$ 9 3 $243 = 3^{5}$ 3 3
1 32 2 16 2 8 2 4 2 2 2 1	1
$216 = 2^4 \cdot 13 \qquad 1024 = 2^{10}$	
b) $\frac{625 \cdot 20}{125 \cdot 270} = \frac{5^4 \cdot 2^2 \cdot 5}{5^3 \cdot 2 \cdot 3^3 \cdot 5} = \frac{5 \cdot 2}{3^3}$ $625 \mid 5 270 \mid 2$ $125 \mid 5 135 \mid 3$ $25 \mid 5 45 \mid 3$ $5 \mid 5 15 \mid 3$ $1 \mid \qquad 5 \mid 5$ $1 \mid$	d) $\frac{100}{360 \times 90} = \frac{2^2 \cdot 5^2}{2^3 \cdot 3^2 \cdot 5 \cdot 2 \cdot 3^2 \cdot 5} = \frac{1}{2^2 \cdot 3^4}$ $100 \mid 2 360 \mid 2 90 \mid 2$ $50 \mid 2 180 \mid 2 45 \mid 3$ $25 \mid 5 90 \mid 2 15 \mid 3$ $5 \mid 5 45 \mid 3 5 \mid 5$ $1 \mid 15 \mid 3 1 \mid$ $5 \mid 5$ $1 \mid$
$625 = 5^4 270 = 2 \cdot 3^3 \cdot 5$ $125 = 5^3$	$100 = 2^{2} \cdot 5^{2}$ $360 = 2^{3} \cdot 3^{2} \cdot 5$ $90 = 2 \cdot 3^{2} \cdot 5$

Transforma en potències positives:

a) $3^{-6} = \frac{1}{3^6}$	d) $\frac{1}{3^{-10}} = 3^{10}$	g) $(2^{-2})^4 = 2^{-2\cdot 4} = 2^8$	$j) 9^{-3}: 9^6 = 9^{-3-6} = 9^{-9}$
	5 5 5		k) 72^{-2} : $9^{-2} = \left(\frac{72}{9}\right)^{-2} = 8^{-2}$ $= \frac{1}{8^2}$
c) $5^{-2} = \frac{1}{5^2}$	f) $\frac{1}{3^{-1}} = 3^1 = 3$	i) $3^2 \cdot 3^{-5} = 3^{2-5} = 3^{-3}$	l) $4^{-1} + 4^{-2} = \frac{1}{4} + \frac{1}{4^2}$ = $\frac{4}{4^4} + \frac{1}{4^2} = \frac{5}{4^4}$

Exercici 2.4-2

Resol les operacions aplicant les propietats de les potències i la notació científica.

a) $(3.2 \cdot 10^{-10}) \cdot (1.6 \cdot 10^{18})$	b) $(6,4 \cdot 10^8) : (1,6 \cdot 10^{12})$
$=5,12\cdot 10^8$	$= 10,24 \cdot 18^{-4} = 1,024 \cdot 18^{-3}$

Exercici 2.4-3

Escriu amb notació científica:

a) 0,00004	4 · 10 ⁻⁵	e) 0,00031	3,1 · 10-4
b) 0,000012	1,2 · 10-5	f) 35 000 000	$3.5 \cdot 10^{7}$
c) 7 000 000	$1\cdot 10^6$	g) 0,4230	4,23 · 10 ⁻¹
d) 235 000 000	$2,35 \cdot 10^{8}$	h) 4 320 000	$3,32 \cdot 10^6$

Indica l'order de magnitud dels nombres de l'exercici anterior.

a) -5	e) -4
b) -5	f) 7
c) 6	g) -1
d) 8	h) 6

Exercici 2.4-4

Escriu com a potències positives:

a) $3^{-5} = \frac{1}{3^5}$	d) $7^{-5} = \frac{1}{7^5}$	g) $\frac{8}{10^{-5}} = 8 \cdot 10^{5}$	j) $10^{-3} \cdot 2^{-3} = (10 \cdot 2)^{-3} = \frac{1}{20^{3}}$
			k) $100^{-5}: 2^{-5} = (100 \div 2)^{-5} = \frac{1}{50^{5}}$
c) $4^{-3} = \frac{1}{4^3}$	$f) \frac{1}{10^{-2}} = 10^2$	i) $(2^2)^{-6} = 2^{2 \cdot (-6)}$ = $2^{-12} = \frac{1}{2^{12}}$	1) $5^{-2}:5^{-1}=5^{-2-(-1)}=5^{-1}=\frac{1}{5}$

m)
$$(-5)^{-2} = \frac{1}{5^2}$$
 n) $[(-5)^{-2}]^7 = (-5)^{-2 \cdot 7} = (-5)^{-14} = \frac{1}{(-5)^{14}} = \frac{1}{5^{14}}$

Exercici 2.4-5

Realitza les operacions amb notació científica.

a) $(3.75 \cdot 10^{-8}) \cdot (2.5 \cdot 10^{15}) = 9.375 \cdot 10^{7}$	c) $(1,25 \cdot 10^5)$: $(2,5 \cdot 10^{10}) = 0,5 \cdot 10^{-5}$
b) $(4,38 \cdot 10^{12}) \cdot (3,1 \cdot 10^{12}) = 13,578 \cdot 10^{25}$	d) $(3,012 \cdot 10^{-3}) \cdot (4 \cdot 10^{-2}) = 12,048 \cdot 10^{-5}$ =1,2048 · 10 ⁻⁴

Escriu amb notació científica:

a) 0,000021	2,1 · 10-5	e) 0,003	3 · 10-3
b) 0,000327	3,27 · 10-4	f) 1 530 000	$1,53 \cdot 10^6$
c) 0,0000725	7,25 · 10 ⁻⁵	g) 2 370 000	$2,37 \cdot 10^6$
d) 10 000 000	$1\cdot 10^7$	h) 2 475 360	$2,47536\cdot 10^6$

Exercici 2.4-7

Escriu amb forma decimal:

a) 3,2 · 10 ⁻³	0,0032	f) 8,5 · 10 ⁵	850 000
b) 5,6 · 10 ⁻⁴	0,00056	g) 2,43 · 10 ⁻³	0,00243
c) -2 · 10 ⁶	-2 000 000	h) 3,733 · 10 ⁴	37 330
d) 6,1 · 10 ⁻⁴	0,00061	i) 5,347·10 ²	534,7
e) 5,38 · 10 ³	5 380	j) 3,427 · 10 ⁻⁶	0,000003427

Exercici 2.4-8

Indica l'order de magnitud dels següents nombres:

a) 3,1 · 10 ⁻¹²	-12
b) 4,8 · 10 ⁻⁶	-6
c) 2,5 · 10 ¹⁸	18
d) 3,7 · 10 ⁴	4

Converteix en radicals les següents potències:

a) $5^{\frac{1}{2}}$	$\sqrt{5}$	c) $4^{\frac{1}{3}}$	³ √4	e) $8^{\frac{3}{5}}$	$\sqrt[5]{8^3}$
b) $3^{\frac{5}{4}}$	⁴ √3 ⁵	d) $7^{\frac{3}{2}}$	$\sqrt[2]{7^3}$	f) $2^{\frac{3}{7}}$	$\sqrt[7]{2^3}$

Exercici 2.6-2

Completa la taula.

	Radicand	Índex	Arrel
$\sqrt{64} = 8$	64	2	8
∜81 = 3	81	4	3
$\sqrt{4} = 2$	4	2	2
$\sqrt{81} = 9$	81	2	9
³ √125 = 5	125	3	5

Exercici 2.6-3

Resol les següents operacions.

a)
$$3 \cdot \sqrt{16} + (4 \cdot \sqrt{25} - 3^2) = 3 \cdot 4 + (4 \cdot 5) - 9 = 12 + 20 - 9 = 23$$

b)
$$(\sqrt{81} + 3) : 4 - 5^2 : \sqrt{25} = (9 + 3) : 4 - 25 : 5 = 12 : 4 - 5 = 3 - 5 = -2$$

c)
$$2^3 + 3 \sqrt{36} - \sqrt{49} : 7 = 8 + 3 \cdot 6 - 7 = 8 + 18 - 7 = 19$$

Calcula.

a)
$$3^{\frac{5}{3}} \cdot 3^{\frac{4}{3}} = 3^{\frac{5}{3} + \frac{4}{3}} = 3^{\frac{9}{3}}$$
 c) $[(4)^2]^{\frac{3}{5}} = (4)^{2 \cdot \frac{3}{5}}$ e) $\sqrt[3]{\sqrt{5}} = 1,31$ b) $5^{\frac{2}{4}} : 5 = 5^{\frac{2}{4} - 1} = 5^{\frac{2}{4} - \frac{4}{4}}$ d) $(3 \times 5)^{\frac{2}{3}} = 15^{\frac{2}{3}}$ e) $\sqrt[5]{6} = 1,43$ f) $\sqrt[5]{2} \cdot \sqrt[5]{3} = \sqrt[5]{2} \cdot \sqrt[5]{3} = \sqrt[5]{2} \cdot \sqrt[5]{3} = \sqrt[5]{2} \cdot \sqrt[5]{3} = \sqrt[5]{6} = 1,43$ e) $\sqrt[6]{5} \cdot \sqrt[6]{5} = 1,31$ e) $\sqrt[6]{$

Escriu com a potències els següents radicals.

a) $\sqrt{5}$	$5^{\frac{1}{2}}$	e) $\sqrt[3]{25^2}$	$25^{\frac{2}{3}}$	i) $\sqrt[3]{13^5}$	$13^{\frac{5}{3}}$
b) ³ √7	$7^{\frac{1}{3}}$	f) ³ √71	$71^{\frac{1}{3}}$	j) $\sqrt[3]{2^6}$	$2^{\frac{6}{3}}$
c) $\sqrt[4]{3^2}$	$3^{\frac{2}{4}}$	g) ⁶ √5	5 ¹ / ₆	k) $\sqrt[3]{3^5}$	5 ³
d) $\sqrt{8^3}$	8 ^{3/2}	h) $\sqrt[7]{11^2}$	$11^{\frac{2}{7}}$	1) $\sqrt[3]{7^3}$	$7^{\frac{3}{3}}$

Exercici 2.6-6

Escriu com a radicals les següents potències.

a) $11^{\frac{1}{3}}$	∛11	d) $4^{\frac{7}{8}}$	$\left(\sqrt[8]{4}\right)^7$	g) $8^{\frac{1}{5}}$	$(\sqrt[5]{8})$
b) $7^{\frac{5}{4}}$	$(\sqrt[4]{7})^5$	e) $5^{\frac{10}{3}}$	$(\sqrt[3]{5})^{10}$	h) $3^{\frac{4}{7}}$	$(\sqrt[7]{3})^4$
c) $2^{\frac{3}{11}}$	$(\sqrt[11]{2})^3$	f) $8^{\frac{6}{5}}$	$(\sqrt[5]{8})^6$	i) $10^{\frac{2}{11}}$	$\left(\sqrt[11]{10}\right)^2$

Exercici 2.6-7

Resol les següents expressions.

a)
$$\sqrt{64} - 3 \cdot \sqrt{25} + 125$$
: $\sqrt{25} = 8 - 3 \cdot 5 + 125$: $5 = 8 - 15 + 25 = 18$
b) $2^2 - 4$: $\sqrt{4} + \sqrt{8} - 16$: $\sqrt{64} = 4 - 2 + 2,83 - 2 = 4,83$
c) $5^3 - 7^2 + (\sqrt{81} : \sqrt{9} - 27 : 3) = 125 - 49 + 3 - 9 = 70$
d) $10^2 - 5^2 - (\sqrt{25} : 5 + 11^2 - 21) = 100 - 25 - 1 - 121 + 21 = -26$

Converteix en radicals.

a) $5^{\frac{1}{2}} \cdot 5^{\frac{1}{4}} = 5^{\frac{1}{2} + \frac{1}{4}} = 5^{\frac{2}{4} + \frac{1}{4}} = 5^{\frac{3}{4}} = \sqrt[4]{5^3}$	e) $[3^2]^{\frac{1}{10}} = 3^{2 \cdot \frac{1}{10}} = 3^{\frac{2}{10}}$
b) $6^{\frac{3}{5}} \cdot 6^{\frac{2}{3}} = 6^{\frac{3}{5} + \frac{2}{3}} = 6^{\frac{9}{15} + \frac{10}{15}} = 6^{\frac{19}{15}} = \sqrt[15]{6^{19}}$	f) $(4\times5)^{\frac{1}{5}} = \sqrt[5]{20}$
c) $7^{\frac{3}{2}}:7=7^{\frac{3}{2}+\frac{1}{1}}=7^{\frac{3}{2}+\frac{2}{2}}=7^{\frac{5}{2}}=\sqrt[2]{7^5}$	g) $(25:5)^{\frac{3}{7}} = \sqrt[7]{5^3}$
d) $4^{\frac{5}{2}}$: $4^{\frac{1}{2}} = 4^{\frac{5}{2} + \frac{1}{2}} = 4^{\frac{6}{2}} = \sqrt[2]{4^6}$	h) $[2^{\frac{2}{3}}]^{\frac{3}{5}} = 2^{\frac{2}{3} \cdot \frac{3}{5}} = 2^{\frac{6}{15}} = \sqrt[15]{2^6}$

Exercici 2.6-9

Calcula.

a) $\sqrt[3]{2.5} = \sqrt[3]{10} = 2,15$	e) $\sqrt[3]{25}$: $\sqrt[3]{5}$ = $\sqrt[3]{25 \div 5} = \sqrt[3]{5}$ = 1,71
b) $\sqrt[5]{5 \div 3} = \sqrt[5]{1,67} = 1,1$	f) $\sqrt[4]{\sqrt{3}} = 3^{\frac{1}{2} \cdot \frac{1}{4}} = 3^{\frac{1}{8}} = \sqrt[8]{3} = 1,15$
c) $(\sqrt{4^2})^5 = 4^5 = 1024$	g) $\sqrt{\sqrt{a \cdot b}} = (a \cdot b)^{\frac{1}{2} \cdot \frac{1}{2}} = (a \cdot b)^{\frac{1}{4}} = \sqrt[4]{a \cdot b}$
d) $\sqrt[3]{2} \cdot \sqrt[3]{7} = \sqrt[3]{2 \cdot 7} = \sqrt[3]{14} = 2,41$	h) $\sqrt{64}$: $\sqrt{16}$ = 8 : 4 = 2

Exercici 2.8-1

Calcula:

a) $\sqrt{625} = 25$	d) $\sqrt{1000000} = 1000$
b) $\sqrt{144} = 12$	e) $\sqrt{1444} = 38$
c) $\sqrt{1600} = 40$	f) $\sqrt{256} = 16$

Exercici 2.8-2

Indica les arrels per defecte (ad) i excès (ae). Indica també les restes per defecte (rd) i excès (re).

a) $\sqrt{785}$ ad= 28, ae = 29, rd = 1, re = 56	c) $\sqrt{325}$ ad= 18, ae = 19, rd = 1, re = 36
b) $\sqrt{124}$ ad= 11, ae = 12, rd = 3, re = 20	d) $\sqrt{405}$ ad= 20, ae = 21, rd = 5, re = 36

Per barrar una piscina quadrada amb 196 m2 de superfície, quants metres de tanca es necessiten?

Es necessiten $\sqrt{196 m^2} = 14 m$ de tanca.

Exercici 2.8-4

Calcula les següents arrels.

a) $\sqrt{36000} = 189,74$	d) $\sqrt{121} = 11$
b) $\sqrt{8100} = 90$	e) $\sqrt{22500} = 150$
c) $\sqrt{49000000} = 7000$	f) $\sqrt{324} = 18$

Exercici 2.8-5

Transforma en potències.

a) $\sqrt{51} = 51^{\frac{1}{2}}$	d) $\sqrt{38} = 38^{\frac{1}{2}}$	g) $\sqrt{26} = 26^{\frac{1}{2}}$
b) $\sqrt{28} = 28^{\frac{1}{2}}$	e) $\sqrt{45} = 45^{\frac{1}{2}}$	h) $\sqrt{41} = 41^{\frac{1}{2}}$
c) $\sqrt{104} = 104^{\frac{1}{2}}$	f) $\sqrt{200} = 200^{\frac{1}{2}}$	i) $\sqrt{85} = 85^{\frac{1}{2}}$

Exercici 2.8-6

Indica les arrels per defecte i excès. Indica també les restes per defecte i excès.

a) $\sqrt{326}$ ad= 18, ae = 19, rd = 2, re = 35	d) $\sqrt{37243}$ ad= 192, ae = 193, rd = 379, re = 6
b) $\sqrt{1285}$ ad= 35, ae = 36, rd = 60, re = 11	e) $\sqrt{56712}$ ad= 238, ae = 239, rd = 68, re = 409
c) $\sqrt{2531}$ ad= 50, ae = 51, rd = 31, re = 70	f) $\sqrt{356743}$ ad= 597, ae = 598, rd = 334, re = 861

La superfície d'una taula quadrada és de 3600 cm². Quin és el seu perímetre? Fes un esquema de la taula indicant la llargària dels seus costats.

El seu perímetre és $4 \cdot \sqrt{3600 \, \text{cm}^2} = 4 \cdot 60 \, \text{cm} = 240 \, \text{cm}$.

El volum d'un dipòsit d'aigua cúbic és de 8 m³. Quines són les seves dimensions? Fes un esquema del dipòsit indicant les llargària dels seus costats.

$$V = a \cdot b \cdot c = 8 \text{ m}^3$$

 $a = b = c$
 $V = a^3 = 8 \text{ m}^3$

$$\sqrt[3]{V} = \sqrt[3]{a^3} = a = b = c = \sqrt[3]{8 \, m^3} = 2 \, m$$

La superfície ${\bf S}$ d'un cercle es calcula amb

$$S = \pi \cdot r^2$$

on **r** és el radi.

Quin és el diàmetre d'un cable de 5 mm² de secció?

Fes un esquema del cable indicant la secció i el diàmetre. π

$$S = \pi \cdot r^2 = 5 \, mm^2 \rightarrow r^2 = \frac{5 \, mm^2}{\pi} \rightarrow \sqrt{r^2} = \sqrt{\frac{5 \, mm^2}{\pi}} \rightarrow r = \sqrt{1,59 \, mm^2} = 1,26 \, mm$$

Simplifica les arrels factoritzant-les.

a) $\sqrt{450} = \sqrt{2 \cdot 3^2 \cdot 5^2} = 3 \cdot 5\sqrt{2} = 15\sqrt{2}$	c) $\sqrt{363} = \sqrt{3.11^2} = 11\sqrt{3}$
$450 = 2 \cdot 3^2 \cdot 5^2$	$363 = 3 \cdot 11^2$
b) $\sqrt{392} = \sqrt{2^3 \cdot 7^2} = \sqrt{2^2 \cdot 2^1 \cdot 7^2} = 2 \cdot 7\sqrt{2} = 14 \cdot \sqrt{2}$	d) $\sqrt{1728}$ = $\sqrt{2^6 \cdot 3^3} = \sqrt{2^6 \cdot 3^2 \cdot 3^1} = 2^3 \cdot 3\sqrt{3} = 24\sqrt{3}$
$392 = 2^3 \cdot 7^2$	$1728 = 2^6 \cdot 3^3$

Exercici 2.10-2

Suma i resta les següents arrels i si és necessari simplifica-les a arrels semblants.

a) $\sqrt{3} - 3 \cdot \sqrt{3} + 2 \cdot \sqrt{3} = 0$	c) $\sqrt{27} + 4\sqrt{243} = \sqrt{3^3} + 4\sqrt{3^5}$
	$= \sqrt{3^2 \cdot 3^1} + 4 \cdot \sqrt{3^4 \cdot 3^1} = 3\sqrt{3} + 4 \cdot 3^2 \sqrt{3} = 39\sqrt{3}$
b) $\sqrt{18} - \sqrt{8} = \sqrt{2 \cdot 3^2} - \sqrt{2^3} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2}$	d) $3\sqrt{125} - 2\sqrt{5} = 3\sqrt{5^3} - 2\sqrt{5}$ = $3\sqrt{5^2 \cdot 5^1} - 2\sqrt{5} = 3 \cdot 5\sqrt{5} - 2\sqrt{5} = 13\sqrt{5}$

Exercici 2.10-3

Extreu tots els factors i calcula els resultats.

a)
$$\sqrt{40} \cdot \sqrt{2} = \sqrt{2^3 \cdot 5} \cdot \sqrt{2} = 2\sqrt{2 \cdot 5} \cdot \sqrt{2}$$

b) $\sqrt{24} \div \sqrt{6} = \sqrt{2^3} \div \sqrt{2 \cdot 3} = 2\frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}}$
 $= 2 \cdot \sqrt{2} \cdot \sqrt{5} \cdot \sqrt{2} = 2 \cdot 2 \cdot \sqrt{5} = 4\sqrt{5} = 8,94$
 $= 0,58$

Exercici 2.10-4

Simplifica la següent expressió.

$$\frac{3}{\sqrt{3}} = \sqrt{3}$$

Extreu els factors de les arrels.

a) $\sqrt{125} = \sqrt{5^3} = 5\sqrt{5}$	c) $\sqrt{785} = \sqrt{5.157}$
b) $\sqrt{742} = 2 \cdot 7 \cdot 53$	d) $\sqrt{1225} = \sqrt{5^2 \cdot 7^2} = \sqrt{5^2} \cdot \sqrt{7^2} = 5.7 = 35$

Exercici 2.10-6

Resta o suma les arrels quan sigui possible.

a) $\sqrt{2} + \sqrt{2} - \sqrt{2} = \sqrt{2}$	d) $\sqrt{6} - 3\sqrt{7}$
b) $5\sqrt{3} + 4\sqrt{3} = 9\sqrt{3}$	e) $\sqrt{5} - 8\sqrt{5} + 4\sqrt{5} = -2\sqrt{5}$
c) $3\sqrt{7} - 5\sqrt{7} + 4\sqrt{7} = 2\sqrt{7}$	f) $3\sqrt{6} + 3\sqrt{2}$

Exercici 2.10-7

Transforma en arrels semblants i simplifica.

a) $\sqrt{300} - \sqrt{75} = \sqrt{2^2 \cdot 3 \cdot 5^2} - \sqrt{3 \cdot 5^2}$	d) $2\sqrt{2} + \sqrt{18} - 3\sqrt{8}$
$= 2.5\sqrt{3} - 5\sqrt{3} = 10\sqrt{3} - 5\sqrt{3} = 5\sqrt{3}$	$= 2\sqrt{2} + \sqrt{2 \cdot 3^2} - 3\sqrt{2^3} = 2\sqrt{2} + 3\sqrt{2} - 3 \cdot 2\sqrt{2}$
	$= \sqrt{2} + 3\sqrt{2} - 6\sqrt{2} = -2\sqrt{2}$
b) $\sqrt{72} - \sqrt{18} = \sqrt{2^3 \cdot 3^2} - \sqrt{2 \cdot 3^2}$	e) $3\sqrt{20} - \sqrt{125} = 3\sqrt{2^2 \cdot 5} - \sqrt{5^3}$
$= \sqrt{2^2 \cdot 2^1 \cdot 3^2} - \sqrt{2 \cdot 3^2} = 2 \cdot 3\sqrt{2} - 3\sqrt{2} = 3\sqrt{2}$	$= 2 \cdot 3\sqrt{5} - \sqrt{5^2 \cdot 5^1} = 6\sqrt{5} - 5\sqrt{5} = \sqrt{5}$
c) $\sqrt{50} - \sqrt{32} = \sqrt{2^3 \cdot 3^2} - \sqrt{2 \cdot 3^2}$	f) $\sqrt{27} - 3\sqrt{3} + 5\sqrt{243} = \sqrt{3^3} - 3\sqrt{3} + 5\sqrt{3^5}$
$= \sqrt{2 \cdot 5^2} - \sqrt{2^4 \cdot 2^1} = 5\sqrt{2} - 2^2\sqrt{2} = \sqrt{2}$	$= \sqrt{3^2 \cdot 3^1} - 3\sqrt{3} + 5\sqrt{3^4 \cdot 3^1}$
	$= 3\sqrt{3} - 3\sqrt{3} + 5 \cdot 3^2 \sqrt{3} = 45\sqrt{3}$

Extreu els factors de les arrels i calcula.

a) $\sqrt{80} \cdot \sqrt{125} = \sqrt{2^4 \cdot 5} \cdot \sqrt{5^3} = 2^2 \sqrt{5} \cdot 5 \sqrt{5}$	c) $\sqrt{64} \cdot \sqrt{16} = \sqrt{2^6} \cdot \sqrt{2^4} = 2^3 \cdot 2^2 = 8 \cdot 4 = 32$
$= 2^2 \sqrt{5} \cdot 5 \sqrt{5} = 4 \cdot 5 \cdot (\sqrt{5})^2 = 20 \cdot 5 = 100$	
b) $\sqrt{49} \cdot \sqrt{343} =$	d) $\sqrt{50} \cdot \sqrt{2} = \sqrt{2 \cdot 5^2} \cdot \sqrt{2} = 5\sqrt{2} \cdot \sqrt{2} = 5 \cdot 4 = 20$
$\sqrt{7^2} \cdot \sqrt{343} = 7 \cdot 18,52 = 129,64$	

Exercici 2.10-9

Extreu els factors de les arrels i calcula.

a)
$$\sqrt{125} \div \sqrt{25}$$

 $= \sqrt{5^3} \div \sqrt{5^2} = \frac{\sqrt{5 \cdot 5 \cdot 5}}{\sqrt{5 \cdot 5}} = \sqrt{\frac{5 \cdot 5 \cdot 5}{5 \cdot 5}} = \sqrt{5} = 2,24$
c) $\sqrt{64} \div \sqrt{16} = \sqrt{2^6} \div \sqrt{2^3} = \frac{\sqrt{2^6}}{\sqrt{2^3}}$

$$\sqrt{\frac{2^6}{2^3}} = \sqrt{2^3} \cdot 2^2 \cdot 2^1 = 2\sqrt{2}$$
b) $\sqrt{24} \div \sqrt{3} = \sqrt{2^3 \cdot 3} \div \sqrt{3}$

$$= \frac{\sqrt{2^2 \cdot 2^1 \cdot 3}}{\sqrt{3}} = \frac{2\sqrt{2 \cdot 3}}{\sqrt{3}} = \frac{2\sqrt{2} \cdot \sqrt{3}}{\sqrt{3}} = 2\sqrt{2} = 2,83$$
d) $\sqrt{8} \div \sqrt{2} = \sqrt{2^3} \div \sqrt{2} = \frac{\sqrt{2^3}}{\sqrt{2}} = \sqrt{\frac{2^3}{2}} = \sqrt{2^2}$

$$= 2$$

Exercici 2.10-10

Si és possible simplifica.

a) $\frac{2}{\sqrt{5}}$ no és possible	d) $\frac{\sqrt{2}}{\sqrt{5}}$ no és possible
b) $\frac{3}{\sqrt{13}}$ no és possible	e) $\frac{\sqrt{3}}{\sqrt{7}}$ no és possible
c) $\frac{3}{2\sqrt{8}} = \frac{3}{4\sqrt{2}}$	f) $\frac{\sqrt{2}}{2\sqrt{5}} = \frac{1}{\sqrt{2} \cdot \sqrt{5}} = \frac{1}{\sqrt{2 \cdot 5}} = \frac{1}{\sqrt{10}}$

Fonts:

F.P.B. Ciencias Aplicadas 1 - Editorial Donostiarra

Autors Ángel Almaraz Martín

M^a Inmaculada Puebla Prada

Manuel Jesús Malho Martín

Paloma Prieto Merino

Margarita Montes Aguilera