W-04 (ANSYS)

Формулировка задачи:

Дано: E, I_z , l.

Сжимаемая консоль.

E – модуль упругости материала;

 $I_{\rm Z}$ – изгибный момент инерции.

2) Коэффициент приведения длины μ .

Аналитический расчёт (см. W-04) даёт следующе решение:

Первая форма потери устойчивости:

$$\mu = 0.6992 \approx 0.7$$

$$P_{\kappa p} = \frac{\pi^2 \cdot E \cdot I_z}{\mu^2 \cdot l^2} = \frac{\pi^2 \cdot E \cdot I_z}{0.6992^2 \cdot l^2} = 20.187 \cdot \frac{E \cdot I_z}{l^2}$$

Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же результаты методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U_M > PlotCtrls > Style > Colors > Reverse Video

B меню оставить только пункты, относящиеся к прочностным расчётам:

M_M > Preferences > Отметить "Structural" > ОК

При построениях полезно видеть номера точек и линий твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers"> ОК
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22»> ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22»> ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro/библиотека-задач-1/

Решение задачи:

Приравняв E, I_z , P и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > l=1 > Accept > P=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Close Colore Add. Ciptions Delete Close Melp
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота поперечного сечения = $l/100$. С_P > R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

№	Действие	Результат			
4	Cooйcmsa материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Add Temperature Delder Temperature Graph Add Temperature Delder Temperature Graph			
	Твердотельное моделирование				
5	Ключевые точки — границы участков: $A \to 1$, $B \to 2$: M_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем $0,l,0$ > Apply > NPT пишем 2 X,Y,Z пишем $0,0,0$ > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	POINTS .1			
6	Один участок — одна линия:M_M > Preprocessor > Modeling > Create > Lines > Lines >Straight Line >Левой кнопкой мыши последовательно нажать на ключевые точки:1 и 2> ОКПрорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 L-K .1 L1 Y Z.X			

№	Действие	Pes	зультат	
7	Onopы: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "UX" > Apply > Левой кнопкой мыши нажать на 2 ключевую точку > OK > Lab2 установить "All DOF" > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	POINTS POIN NUM	L1	
8	Скрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK	L-K U ROT	L1	
9	Cuna: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab установить "FY" VALUE установить "-P" > OK	L-K U ROT F	L1	

No	Действие	Результат
	Конечноэлементная модель	
10	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	Canal Antibutes Canal Selected Lines Canal Material number MAI Material number MAI Tell considers set number TYPE Element type number
11	P азмер конечного элемента (должен быть небольшим): $M_M > \text{Preprocessor} > \text{Meshing} > \text{Size Cntrls} > \text{ManualSize} > \text{Lines} > \text{All Lines} > \text{Левой кнопкой мыши кликаем на линию L1} > \text{OK}$ $Size$ пишем $l/50$ > OK O бновляем изображение: O M > Plot > Multi-Plots	L-K U ROT F
12	Vказываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > OK > Появляется второе окно Multi-Plotting > Оставляем в нём отметки только напротив Nodes и Elements > OK	Multi-Plotting Edit Window Of Window 2 C Window 3 C Window 4 C Window 5 Display Type Of Entity Plots Graph Plots Display Type Of Cancel Help Of Apply Cancel Help

№	Действие	Результат			
13	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные элементы. Чёрные точки- это их узлы.	1 E-N			
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK Обновляем изображение: U_M > Plot > Multi-Plots	E-N U ROT F			
	Статический расчёт предварительного напряжённого состояния:				
15	Onции статического расчёта: M_M > Solution > Analysis Type > Sol'n Controls > Отмечаем галочкой "Calculate prestress effects" > OK	Basic Transient Sofn Options Nonlinear Advanced NL Analysis Options Simal Displacement Static P Calculate prestress effects P Galculate prestress P			

№	Действие	Результат
	Просмотр результатов	
20	S Видим: $ M_{M} > \text{General Postproc} > \text{Read Results} > \text{By Pick Budum:} $ $ P_{\kappa p} = 20.191 \cdot \frac{E \cdot I_{Z}}{l^{2}} ; $ Расхождение с результатом аналитического расчёта ($puc.~l$) составляет 0,02%. $ > \text{Close} $	Available Data Sets: Set Time Load Step Substep Cumulative 1 20.191 1 1 1 Read Read
21	Коэффициент приведения длины: $P_{\kappa p} = \frac{\pi^2 \cdot E \cdot I_z}{\mu^2 \cdot l^2} \implies \mu = \pi \cdot \sqrt{\frac{E \cdot I_z}{P_{\kappa p} \cdot l^2}} = \pi \cdot \sqrt{\frac{1 \cdot 1}{20,191 \cdot l^2}} = \frac{\pi}{\sqrt{20,191}} = 0,6992 ;$ Тот же результат, что и на $puc.~1$.	
22	Первая форма nomepu ycmoйчивости: M_M > General Postproc > Read Results > First Set M_M > General Postproc > Plot Results > Deformed Shape > KUND ycтановить Def + undeformed > OK Масштаб отклонений выбирается автоматически. Можно его увеличить: U_M > PlotCtrls > Style > Displacement Scaling > DMULT ycтанавливаем "User specified" User specified factor увеличиваем, например, до 1.5 > OK	DISPLACEMENT STEP=1 SUB =1 FREQ=20.1907 DMX =.09794

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.