

RASD

Patricia Abbud Maddalena Andreoli Andreoni Paolo Cudrano

Contents

1	Inti	roduction	
	1.1	Description of the given problem	
	1.2	Goals	
	1.3	Domain properties	
	1.4	Glossary	
	1.5	Assumptions	
	1.6	Constrains	
	1.7	Proposed system	
	1.8	Identifying Stakeholders	
	1.9	Reference documents	
2	Act	ctors Identifying	
3	Rec	Requirements	
4	Scenario identifying		
5	UML models		
6	Alloy modeling		
7		pendix	
	7.1	Used tools	
	7.2	Hours of work	

1 Introduction

1.1 Description of the given problem

The system we are going to develop is a carsharing service called *PowerEnJoy*. The system allows registered users to locate and reserve a car to use.

1.2 Goals

- **G1** The system charges the user for a predefined amount of money per minute.
- G2 The system starts charging the user as soon as the car ignites.
- **G3** The system stops charging the user when the car is parked in a safe area and the user exits the car. The user must confirm the operation, otherwise the system keeps charging them.
- G4 A screen on the car notifies the user of the current charges.
- **G5** The system locks the car automatically when the user exits the car.
- **G6** The system allows the user to open the car through a bluetooth system when the user has reserved it.
- **G8** If the user has chosen to keep being charged, the system allows them to exit and close and re-open the car through a bluetooth system.
- **G9** If the user has chosen to stop being charged, the system keeps a 10minutes window of time when they are allowed to re-open the car if it has not already been reserved by someone else.
- G10 The set of safe parking areas is predefined by the management system.
- **G11** The system allows the user to earn a 10% discount on the current ride if there are at least two other passengers in the car.

1.3 Domain properties

We assume that the following properties hold in the analyzed world:

- All cars are equipped and located with a GPS system.
- All the GPS always give the right position.
- The GPS system cannot be switched off.
- All cars are equipped with a Bluetooth system.
- The Bluetooth system is always on.

- When a user reserves a car, they always use it.
- The safe areas are predefined and within the municipality of Milan.
- The payment of all services is always accepted.
- \bullet The cars always ignite when they are charged
- The cars cannot be reserved by more than one user at any given time.
- The system is always able to tell how many people occupy a car.
- 1.4 Glossary
- 1.5 Assumptions
- 1.6 Constrains
- 1.7 Proposed system
- 1.8 Identifying Stakeholders
- 1.9 Reference documents

2 Actors Identifying

3 Requirements

4 Scenario identifying

5 UML models

6 Alloy modeling

7 Appendix

List of Figures

List of Tables

7.1 Used tools

For this assignment, we used the following tools:

LaTeX The group used LaTeX to structure the final document and to help with versioning.

Github We leaned on Github for versioning and coordinating synchronized work.

 ${f Toggl}$ We used toggl to keep track of work hours.

Alloy

7.2 Hours of work