Four lists each containing at MOST 100 docIDs ranked by score with text snippet

Output file: searchResult.txt

a) **Query 1:** portable operating systems

Query				
id	Rank	Doc ID	Score	Text Snippet
1	1	3127	1.1755296	Thoth, a Portable Real-Time Operating System Thoth is a real-time operating system which is designed to be portable over a large set of machines. It is currently running on two minicomputers with
1	2	1461	0.50642985	Discussion Summary on Operating Systems CACM March, 1966 CA660311 JB March 3, 1978 1:26 PM
1	3	3068	0.40902123	A Model for Verification of Data Security in Operating Systems Program verification applied to kernel architectures forms a promising method for providing uncircumventably secure, shared computer
1	4	2246	0.3299833	Levels of Language for Portable Software An increasing amount of software is being implemented in a portable form. A popular way of accomplishing this is to encode the software in a specially
1	5	2111	0.3230007	Spelling Correction in Systems Programs Several specialized techniques are shown for efficiently incorporating spelling correction algorithms in to compilers and operating systems . These include
1	6	2069	0.31651866	Comments on a Paper by Wallace and Mason CACM April, 1970 Heess Jr., W. F. page-on-demand, demand paging, time-sharing multiprogramming, Markovian computer models, scheduling strategies, operating
1	7	2319	0.30766326	increasingly more common and necessary in the near future. Such a design philosophy will clearly have a severe impact on the way we go about modularizing operating and computer systems . CACM July
1	8	2740	0.30766326	free of "deadly embrace" (deadlock). The design principle is an alternative to Dijkstra's hierarchical structuring of operating systems . The project management and the performance are discussed, too

1	9	1462	0.28890023	Multilevel Operating Systems The Basic software for all newer computers is built on the well-established need for standard operating systems . This implies that all applications-no matter how large
1	10	1728	0.28890023	systems , paging, dynamic program behavior, program behavior, virtual memory systems , single-level storage, one-level storage, operating system simulation, operating systems , supervisor simulation, machine
1	11	2597	0.28045723	buffer pool, a disk head optimizer, and a version of the problem of readers and writers. CACM October, 1974 Hoare, C. A. R. monitors, operating systems , scheduling, mutual exclusion
1	12	2629	0.28045723	features seldom found even in larger operating systems , including: (1) a hierarchical file system incorporating demountable volumes; (2) compatible file, device, and inter-process I/O; (3) the ability to
1	13	1750	0.2741132	place of the faster memory. CACM May, 1968 Fuchel, K. Heller, S. multiple computer systems , extended core storage, multiprogrammed operating systems, multiprocessor operating systems, control
1	14	2372	0.26916727	several existing systems , and serves as a framework for a proposal for general security system implementation within today's languages and operating systems . CACM April, 1972 Conway, R. W. Maxwell, W
1	15	1247	0.26857498	An Operating Environment for Dynamic-Recursive Computer Programming Systems Presented in this paper is a brief nontechnical introduction to OEDIPUS, a computer programming system which can serve as
1	16	2080	0.26857498	The Nucleus of a Multiprogramming System This paper describes the philosophy and structure of a multiprogramming system that can be extended with a hierarchy of operating systems to suit diverse
1	17	2482	0.26857498	, resource allocation, operating systems , multiprogramming, hierarchical systems 4.30 4.32 CA730704 JB January 23, 1978 12:46 PM

1	l	ı	1	1
1	18	2867	0.26857498	Modularization and Hierarchy in a Family of Operating Systems This paper describes the design philosophy used in the construction of a family of operating systems . It is shown that the concepts of
1	19	2379	0.26133278	on the principles which guided the design. CACM March, 1972 Liskov, B. H. operating systems , system design, levels of abstraction, machine architecture, microprogramming, segments, semaphores
1	20	1923	0.25321493	methods for programs to communicate with deeply embedded facilities such as command language processors. CACM March, 1969 Rosin, R. F. operating systems , interfaces input-output, high level
1	21	1680	0.24681911	retrieval operating systems , graphics, displays, man-machine interface, on-line computing, graphic programming 1.5 3.3 3.5 3.8 4.0 4.3 CA681007 JB February 21, 1978 3:36 PM
1	22	2840	0.24135262	Protection in Operating Systems A model of protection mechanisms in computing systems is presented and its appropriateness is argued. The "safety" problem for protection systems under this model
1	23	3025	0.24135262	systems . CACM January, 1978 Bell, C. Kotok, A. Hastings, T. Hill, R. computer structures, architecture, operating system, timesharing 4.32 6.21 6.3 CA780105 JB March 28, 1978 5:31 PM
1	24	2621	0.23838985	superior to one-way ciphers derived from Sannon codes. CACM August, 1974 Purdy, G. B. operating systems , time sharing systems , security, cryptography 4.35 CA740803 JB January 17, 1978 10:10 AM
1	25	2378	0.23371433	concepts in detail, outlines the remainder of the supervisor, and discusses some of the advantages of this approach. CACM March, 1972 Gaines, R. S. operating systems , supervisors, multiprogramming, time
1	26	2541	0.23371433	subsystems. It also suggested an important new concept for operating systems : separation of the scheduling from the maintenance functions in resource allocation. This separation enables incorporation of
1	27	2632	0.23371433	secure systems . CACM June, 1974 Wulf, W. Cohen, E. Corwin, W. Jones, A. Levin, R. Pierson, C. Pollack, F. operating system, kernel, nucleus, protection, security 4.3 6.2 CA740614 JB January

1	28	1747	0.23342077	design, operating systems , operating systems design, multiprogramming, multiprogrammed systems , multiprogrammed system design, virtual computers, programming languages, programming language design
1	29	2317	0.23112017	microprogramming for some programming system functions. CACM July, 1972 Rosen, S. languages, operatingsystems , programming systems , multiprogramming, history 1.2 4.22 4.32 CA720711 JB January
1	30	2424	0.22735322	single hardware or software fault.the amount of additional hardware and software required for dynamic verification can be modest. CACM November, 1973 Fabry, R. S. operating systems , data security
1	31	2138	0.22647284	machine (the PDP-10): compilers, operating systems , etc. Prime design goals of the design are the ability to produce highly efficient object code, to allow access to all relevant hardware features
1	32	2151	0.22647284	. operating systems , multiprogramming systems , software measurement, user program measurement, measurement technology, TX-2 computer, virtual computers, performance improvement
1	33	1751	0.2238125	, multiprocessing, multiprogramming, operating systems , program behavior, program models, resource allocation, scheduling, storage allocation 4.30 4.32 CA680505 JB February 23, 1978 9:33 AM
1	34	2320	0.2238125	within operating systems but also within user programs. CACM July, 1972 Hansen, P. B. structured multiprogramming, programming languages, operating systems , concurrent processes, shared data
1	35	2950	0.2238125	framework for implementing flexible schedulers in real operating systems . The policy-driven scheduler of Bernstein and Sharp is discussed as an example of such an implementation CACM July
1	36	3196	0.22226858	preferred. The reactive typewriter should be portable . the reactive typewriter should operate over any commercially used, dial-type telephone (voice) or telegraph (Telex) line or over leased (nondial
1	37	3174	0.22156307	countering observed attempts to penetrate the system. The result is a compromise between extreme security and ease of use. CACM November, 1979 Morris, R. Thompson, K. Operating systems , passwords

1	38	1930	0.21998885	Extremely Portable Random Number Generator Extremely portable subroutines are sometimes needed for which moderate quality and efficiency suffice. Typically, this occurs for library functions (like
1	39	1226	0.21734169	the system's operating efficiency. This paper provides the systems designer with an information source which describes ten techniques that may be employed for organizing structured data. The
1	40	3141	0.21734169	systems , operating systems 4.32 4.35 5.25 5.32 CA790502 DH June 5, 1979 2:35 PM
1	41	1324	0.21344522	Answering English questions by Computer: A Survey Fifteen experimental English language question-answering systems which are programmed and operating are described and reviewed. The systems range
1	42	1951	0.21344522	distribution by the exponential distribution are discussed for the systems studied. CACM December 1970 Fuchs, E. Jackson, P. E. computer communications, timesharing, operating systems , optimization
1	43	2522	0.21344522	April, 1973 Rodriguez-Rosell, J. Dupuy, J. P. working set, dispatcher, scheduler, time-sharing systems , resource allocation, software evaluation, operating systems , supervisory systems 4.31 4.32 CA
1	44	1236	0.20095375	The SMART Automatic Document Retrieval System-An Illustration A fully automatic document retrieval system operating on the IBM 7094 is described. The system is characterized by the fact that
1	45	1752	0.20095375	. Weizer, N. time-sharing, operating systems , resource management, task scheduling, paging, system simulation, memory management, virtual memories 4.30 4.31 4.32 CA680504 JB February
1	46	2777	0.20095375	solution to the problem. It also discusses the need for the generalized operators suggested by Patil. CACM March, 1975 Parnas, D. L. operating systems , co- operating processes, process synchronization
1	47	322	0.1986582	Operational Compatibility of Systems - CONVENTIONS The General Standards Committee of the SHARE organization has devoted considerable effort to the problem of operating a computer efficiently in view

1	48	2624	0.1986582	Formal Requirements for Virtualizable Third Generation Architectures Virtual machine systems have been implemented on a limited number of third generation computer systems , e.g. CP-67 on the IBM
1	49	3026	0.1986582	The Evolution of the Sperry Univac 1100 Series: A His tory, Analysis, and Projection The 1100 series systems are Sperry Univac's large-scale main frame computer systems . Beginning with the 1107 in
1	50	2358	0.1930821	The Multics Virtual Memory: Concepts and Design As experience with use of on-line operating systems has grown, the need to share information among system users has become increasingly apparent
1	51	2374	0.18991122	A Study of Storage Partitioning Using a Mathematical Model of Locality Both fixed and dynamic storage partitioning procedures are examined for use in multiprogramming systems . The storage
1	52	3137	0.18991122	A Methodology for the Design of Distributed Information Systems A macro model of a distributed information system in presented. The model describes the major costs of using an information system
1	53	2036	0.18111807	-teletype, interaction, conditional job control, operating systems 3.80 3.81 4.29 4.39 CA700701 JB February 13, 1978 9:43 AM
1	54	3028	0.18111807	performance of the Mark I and Atlas is evaluated. CACM January, 1978 Lavington, S. architecture, index registers, paging, virtual storage, extra codes, compilers, operatingsystems , Ferranti, Manchester
1	55	2184	0.160763	On the Meaning of Names in Programming Systems It is assumed that there is a similarity of function between the data names of a programming language and the file names of an operating system. The
1	56	2297	0.160763	. CACM August, 1972 Oden, P. H. Shedler, G. S. paging machines, demand paging, operating systems studies, queuing analysis, memory contention, memory management 4.32 CA720805 JB January
1	57	2622	0.160763	A User Authentication Scheme Not Requiring Secrecy in the Computer In many computer operating systems a user authenticates himself by entering a secret password known solely to himself and the

1	58	1892	0.15892656	multiprogramming, Markovian computer models, scheduling strategies, operating systems , memory management 2.44 4.32 4.39 6.20 6.21 CA690601 JB February 17, 1978 1:43 PM
1	59	2625	0.15892656	, protection hardware, shared addresses, information sharing, operating systems , computer utility, segmentation, tagged architecture 4.30 4.32 4.34 6.21 CA740706 JB January 17, 1978 12:39 PM
1	60	696	0.15825933	Company's manufacturing facilities located in Van Nuys and Sunnyvale, California. The system includes over 200 remote Input Stations which collect and transmit Company operating data to a central Data
1	61	1647	0.15825933	WATFOR-The University of Waterloo FORTRAN IV Compiler WATFOR is an in-core, load-and-go compiler which has been implemented within the IBM 7040/44 operating system. FORTRAN IV was selected as the
1	62	2095	0.15825933	Measurements of Segment Size Distributions of segment sizes measured under routine operating con ditions on a computer system which utilizes variable sized segments (the Burroughs B5500) are
1	63	2582	0.15825933	Improving Locality by Critical Working Sets A new approach to program locality improvement via restructuring is described. The method is particularly suited to those systems where primary memory
1	64	2972	0.15825933	large programs, such as operating systems . CACM April, 1977 Robinson, L. Levitt, K. N. hierarchical structure, program verification, structured programming, formal specification, abstraction, and
1	65	3006	0.15825933	Anomalies with Variable Partition Paging Algorithms Five types of anomalous behavior which may occur in paged virtual memory operating systems a redefined. One type of anomaly, for example
1	66	3050	0.15825933	Systems Design Education: A Gaming Approach One of the problems facing managers of computer installations is the problem of configuring the computer system to meet the demands made by the mix of
1	67	3105	0.15825933	A Language Extension for Expressing Constraints on Data Access Controlled sharing of information is needed and desirable for many applications and is supported in operating systems by access
1	68	1069	0.14430283	A Method for Comparing the Internal Operating Speeds of Computers CACM May, 1964 Raichelson, E. Collins, G. CA640520 JB March 9, 1978 11:35 PM

1	69	1755	0.14430283	Proceedings of the ACM Symposium on Operating system Principles CACM May, 1968 ACM Special Interest Committee CA680501 JB February 23, 1978 9:56 AM
1	70	2796	0.14430283	Monitors: An Operating System Structuring Concept (Corrigendum) CACM February, 1975 Hoare, C. A. R. CA750203 JB January 12, 1978 8:45 AM
1	71	1517	0.12660746	Methods for Analyzing Data from Computer Simulation Experiments This paper addresses itself to the problem of analyzing data generated by computer simulations of economic systems . We first turn to
1	72	1810	0.12660746	folding, are discussed, and it is shown that given some care in use the unit performs satisfactorily under the conditions tested, even though it is operating across a memory-to-storage interface
1	73	1854	0.12660746	specification of concurrent (or pseudoconcurrent) activities in a supposedly more perspicuous manner. It is intended to serve as a basis for the construction of operating systems, which are prime
1	74	1877	0.12660746	Prevention of System Deadlocks A well-known problem in the design of operating systems is the selection of a resource allocation policy that will prevent deadlock. Deadlock is the situation in
1	75	2342	0.12660746	. CACM June, 1972 Gilbert, P. Chandler, W. J. concurrent programming control, cooperating processes, formal programs, interference, mutual exclusion, operating systems , parallel processes
1	76	2535	0.12660746	conditions under which this output process is approximately Poisson. CACM March, 1973 Pack, C. D. computer communications, time-sharing, multiplexing, scheduling algorithms, operating systems 3.80 3.81 6.20 CA730304 JB January 24, 1978 11:13 AM
1	77	2542	0.12660746	. DeVaney, D. B. operating system development, language processing software evaluation, compilers, system programming, supervisory systems , debugging, program maintenance, modeling, system integration
1	78	2849	0.12660746	stations. The packet transport mechanism provided by Ethernet has been used to build systems which can be viewed as either local computer networks or loosely coupled multiprocessors. An Ethernet's
1	79	3002	0.12660746	systems may be derived from it by an appropriate selection of its parameters. This model has already been used in the optimization of library routines' storage at a large scale operating system

1	80	1050	0.10307345	A Parts Breakdown Technique Using List Structures List structured parts breakdown is proposed and discussed. Implementation facts are presented on operating program using these techniques. CACM
1	81	1472	0.10203751	Description of a High Capacity, Fast Turnaround University Computing Center The operating system for the UNIVAC 1107 at Case Institute is reviewed. The system is of interest because of the low
1	82	1591	0.092191696	A Model for a Multifunctional Teaching System A teaching system model that was incorporated into an operating system of a large computer is described. The model transferred control to the
1	83	2357	0.08926423	MUX, a Simple Approach to On-Line Computing An on-line system operating as part of a normal batch system for the CDC 6600 computer is described. The system, which required one man-year for initial
1	84	2868	0.08926423	Reflections on an Operating System Design The main features of a general purpose multiaccess operating system developed for the CDC 6400 at Berkeley are presented, and its good and bad points are
1	85	2920	0.08926423	, operating system, etc., of the "safe situations" which may be realized without endangering the smooth running of the system. When each process specifies its future needs by a flowchart of need
1	86	18	0.08829741	Simple Automatic Coding Systems CACM July, 1958 Adams, E. S. Schlesinger, S. I. CA580701 JB March 22, 1978 9:06 PM
1	87	25	0.08829741	General Purpose Programming Systems CACM May, 1958 Holt, A. W. CA580503 JB March 22, 1978 9:14 PM
1	88	597	0.08829741	Modular Data Processing Systems Written in COBOL CACM May, 1962 Emery, J. C. CA620508 JB March 20, 1978 1:47 PM
1	89	652	0.08829741	Use of Semantic Structure in Information Systems CACM January, 1962 Sable, J. D. CA620107 JB March 20, 1978 4:37 PM
1	90	1360	0.08829741	Description of Systems Used for Data Transmission* (An ASA Tutorial) CACM October, 1966 CA661007 JB March 2, 1978 3:54 PM
1	91	1464	0.08746072	An ALGOL Compiler: Construction and Use in Relation to an Elaborate Operating System An ALGOL translator has been prepared and integrated into the IBSYS Operating System. Assembly and "go

1	92	2311	0.08637957	processing, hardware systems , software systems development process, functional systems , management systems 2.0 3.50 4.0 6.20 CA720717 JB January 30, 1978 11:22 AM
1	93	2407	0.08637957	Curriculum Recommendations for Undergraduate Programs in Information Systems The need for education related to information systems in organizations is discussed, and a curriculum is proposed for an
1	94	2345	0.08110635	Curriculum Recommendations for Graduate Professional Programs in Information Systems The need for education related to information systems in organizations is discussed, and a curriculum is
1	95	2583	0.07804462	Guidelines for Humanizing Computerized Information Systems : A Report from Stanley House CACM November, 1974 Sterling, T. D. humanization, social implication, management, information systems
1	96	238	0.07726023	Simulation and Analysis of Biochemical Systems CACM December, 1961 Garfinkel, D. Rutledge, J. D. Higgins, J. J. CA611212 JB March 15, 1978 10:09 PM
1	97	651	0.07726023	A Survey of Languages and Systems for Information Retrieval CACM January, 1962 Grems, M. CA620108 JB March 20, 1978 4:36 PM
1	98	795	0.07726023	Debugging Systems at the Source Language Level CACM August, 1963 Ferguson, H. E. Berner, E. CA630803 JB March 13, 1978 8:46 PM
1	99	1912	0.07726023	Simulation of Outpatient Appointment Systems An experimental computer program is described which simulates appointment systems employed by outpatient departments of hospitals. Both major kinds of
1	100	2690	0.07726023	A Numbering Systems for Combinations CACM January, 1974 Knott, G. D. combinatorics, coding system, storage mapping function 4.9 5.30 CA740109 JB January 18, 1978 1:42 PM

b) **Query 2:** code optimization for space efficiency

Query id	Rank	Doc ID	Score	Text Snippet
2	1	1795	0.64332205	Optimal Code for Serial and Parallel Computation CACM December, 1969 Fateman, R. J. code optimization , sequencing of operations, detection of common subexpressions 4.12 CA691217 JB February 15, 1978 1:59 PM
2	2	2495	0.5975083	Adapting Optimal Code Generation for Arithmetic Expressions to the Instruction Sets Available on Present-Day Computers CACM June, 1973 Stockhausen, P. F. arithmetic expressions, code generation
2	3	1947	0.5535952	Object code Optimization Methods of analyzing the control flow and data flow of programs during compilation are applied to transforming the program to improve object time efficiency . Dominance
2	4	2748	0.528035	Indirect Threaded Code An efficient arrangement for interpretive code is described. It is related to Bell's notion of threaded code but requires less space and is more amenable to machine
2	5	2559	0.4950907	The Reallocation of Hash-Coded Tables When the space allocation for a hash-coded table is altered, the table entries must be rescattered over the new space . A technique for accomplishing this
2	6	1886	0.44647112	Generation of Optimal Code for Expressions via Factorization Given a set of expressions which are to be compiled, methods are presented for increasing the efficiency of the object code produced by
2	7	2897	0.43843484	produce good code . More elaborate optimizations can further improve the object code . For most contexts of the concatenate statement, the code produced by a compiler using the expansion- optimization
2	8	2904	0.38659886	. compilers, optimization of compiled code , program analysis, operator strength reduction, test replacement, strongly connected region 4.12 5.24 5.32 CA771112 JB December 27, 1977 6:34 AM

2	9	3080	0.38377044	Proving the Correctness of Heuristically Optimized Code A system for proving that programs written in a high level language are correctly translated to a low level language is described. A
2	10	2491	0.37791464	interpretive code not needing an interpreter. Extensions and optimizations are mentioned. CACM June, 1973 Bell, J. R. interpreter, machine code , time tradeoff, space tradeoff, compiled code , subroutine
2	11	2680	0.3617208	suggested for those cases in which it is inefficient to compute the actual optimum. CACM March, 1974 Morgan, H. L. disk analysis, disk optimization , disk files, file systems, file scheduling, space
2	12	2537	0.3568571	Common Phrases and Minimum- Space Text Storage A method for saving storage space for text strings, such as compiler diagnostic messages, is described. The method relies on hand selection of a set
2	13	3171	0.34712863	absolutely no overhead, in either time or space , during execution of the program. CACM October, 1979 Klint, P. Line number administration, diagnostic messages, abstract machine code 4.12 4.13 4.20 4.42 CA791004 DB January 17, 1980 9:57 AM
2	14	2464	0.3463252	The Complex Method for Constrained Optimization [E4] (Algorithm A454) CACM August, 1973 Richardson, J. A. Kuester, J. L. optimization , constrained optimization , Box's algorithm 5.41 CA730810 JB January 23, 1978 10:34 AM
2	15	1195	0.33868977	UPLIFTS-University of Pittsburgh Linear File Tandem System A series of computer programs has been developed and is now operational for processing the National Aeronautics and Space Administration
2	16	2253	0.32735753	calculi described by the authors in a previous paper. This scheme attempts program optimization by transforming the original algorithm rather than the machine code . The goal is to automatically
2	17	2944	0.3262091	that cancel when the code is executed and those that can be grouped to achieve improved efficiency . CACM July, 1977 Barth, J. M. garbage collection, global flow analysis, list processing
2	18	2929	0.31939238	An Analysis of Inline Substitution for a Structured Programming Language An optimization technique known as inline substitution is analyzed. The optimization consists of replacing a procedure

		1	I	
2	19	1655	0.30841085	Code Extension Procedures for Information Interchange* (Proposed USA Standard) CACM December, 1968 standard code , code , information interchange, characters, shift out, shift in, escape, data link
2	20	2716	0.28945735	, which was designed using this approach, is described in detail. SQUIRAL seeks to minimize query response time and space utilization by: (1) performing global query optimization , (2) exploiting disjoint
2	21	1564	0.2743894	Description of Basic Algorithm in DETAB/65 Preprocessor The basic algorithm for the conversion of decision tables into COBOL code is contained in the generator portion of the DETAB/65 preprocessor
2	22	2423	0.2743894	minute. For an XPL compiler, the parser program and its tables currently occupy 288 words of 60-bit core memory of which 140 words are parsing table entries and 82 words are links to code
2	23	2374	0.27298835	A Study of Storage Partitioning Using a Mathematical Model of Locality Both fixed and dynamic storage partitioning procedures are examined for use in multiprogramming systems. The storage
2	24	3005	0.26183242	Implications of Structured Programming for Machine Architecture Based on an empirical study of more than 10,000 lines of program text written in a GOTO-less language, a machine architecture
2	25	2033	0.26124457	Space /Time Trade-offs in Hash Coding with Allowable Errors In this paper trade-offs among certain computational factors a given set of messages. Two new hash-coding methods are examined and
2	26	1651	0.24911706	subsequent use either as a pedagogical device or for solving rather small LP problems. This latter (limited) use derives not at all from inherent limitations in the code itself, but from an efficiency
2	27	2611	0.24534898	The Complex Method for Constrained Optimization (Algorithm R454) CACM August, 1974 Shere, K. D. CA740813 JB January 17, 1978 9:28 AM
2	28	2858	0.24334013	addressing constraints. This may be, for example, achieving the smallest number of long instructions, in which case the total code length is minimized, or minimizing the assigned address of a specified
2	29	3053	0.24334013) optimization , although packing costs remain linear-O(n)-with table size n. The techniques are primarily suited for important fixed (but possibly quite large) tables for which reference frequencies may

2	30	3054	0.24068223	sorting method which requires negligible extra storage. CACM October, 1978 Sedgewick, R. Quicksort, analysis of algorithms, code optimization , sorting 4.0 4.6 5.25 5.31 5.5 CA781007 DH January
2	31	267	0.24038294	Some Proposals for Improving the Efficiency of ALGOL 60 CACM November, 1961 Wilkes, M. V. CA611101 JB March 15,1978 11:01 PM
2	32	230	0.23872676	A Proposal for Character Code Compatibility CACM February, 1960 Bemer, R. W. CA600202 JB March 22, 1978 2:25 PM
2	33	797	0.23872676	American Standard Code for Information Interchange CACM August, 1963 CA630801 JB March 13, 1978 8:55 PM
2	34	1064	0.23872676	Perforated Tape Code for Information Interchange (Proposed American Standard) CACM June, 1964 CA640603 JB March 9, 1978 9:46 PM
2	35	1289	0.23872676	Proposed Revised American Standard Code for Information Interchange CACM April, 1965 CA650402 JB March 7, 1978 4:03 PM
2	36	2856	0.23869252	space , for example) is located only through implicit enumeration of all possible decision trees using a technique such as branch-and-bound. The new approach described in this paper uses dynamic
2	37	2433	0.23437612	that data allocation rather than code structuring is the crucial ILLIAC optimization problem. A satisfactory method of data allocation is then presented. Language structures to utilize this storage
2	38	1234	0.23171572	-language. A technique of simulation at compile time of the use of a conventional run-time stack enables the generation of code for expressions which minimizes stores, fetches and stack-pointer
2	39	2701	0.22340249	December, 1975 Graham, S. L. Wegman, M. global flow analysis, data flow, code optimization , common subexpression elimination, live-dead analysis, information propagation, flow graph, reducibility
2	40	1901	0.22280307	Dynamic Space -Sharing in Computer Systems A formalization of relationships between space -shading program behavior, and processor efficiency in computer systems is presented. Concepts of value and
2	41	66	0.22071782	A Proposal for a Generalized Card Code for 256 Characters CACM September, 1959 Bemer, R. W. CA590903 JB March 22, 1978 4:50 PM

2	42	1757	0.21100664	Data Code for Calendar Date for Machine-to-Machine Data Interchange* (Proposed USA Standard) CACM April, 1968 USA Standard, data code , calendar date, machine-to-machine data interchange, recording
2	43	1542	0.2106169	A Microprogrammed Implementation of EULER on IBM System/360 Model 30 An experimental processing system for the algorithmic language EULER has been implemented in microprogramming on an IBM System
2	44	2133	0.21029912	Algorithm for the Assignment Problem (Rectangular Matrices) [H] (Algorithm 415) CACM December, 1971 Bourgeois, F. Lassalle, J. C. operations research, optimization theory, assignment problem
2	45	1275	0.20888591	Code Structures for Protection and Manipulation of Variable Length Items (Corrigendum) CACM April, 1965 Ramamoorthy, C. V. CA650416 JB March 7, 1978 3:31 PM
2	46	1414	0.20888591	Twelve-Row Punched-Card Code for Information Interchange* (Proposed American Standard) CACM June, 1966 CA660607 JB March 3, 1978 8:39 AM
2	47	2835	0.20701885	Recursion Analysis for Compiler Optimization A relatively simple method for the detection of recursive use of procedures is presented for use in compiler optimization . Implementation
2	48	149	0.20604253	A Decision Rule for Improved Efficiency in Solving Linear Programming Problems with the Simplex Algorithm CACM September, 1960 Dickson, J. C. Frederick, F. P. CA600908 JB March 20, 1978 8:43 PM
2	49	1670	0.20255528	Correspondences of 8-Bit and Hollerith Codes for Computer Environments (A USASI Tutorial Standard) CACM November, 1968 USA standard, card code , punched card, punched card code , hole-patterns, hole
2	50	1992	0.20255528	Comment on Bell's Quadratic Quotient Method for Hash Code Searching CACM September, 1970 Lamport, L. hashing, hash code , scatter storage, calculated address, clustering, search, symbol table, keys
2	51	2722	0.19925252	Multidimensional Binary Search Trees Used for Associative Searching This paper develops the multidimensional binary search tree (or k-d tree, where k is the dimensionality of the search space) as a

2	52	2745	0.19869836	A Linear Space Algorithm for Computing Maximal Common Subsequences The problem of finding a longest common subsequence of two strings has been solved in quadratic time and space . An algorithm is
2	53	2734	0.19712423	, the size of the request population had little effect on allocation efficiency . For exponential and hyperexponential distributions of requests, first-fit outperformed best-fit; but for normal and
2	54	2530	0.18242602	An Algorithm for Extracting Phrases in a Space -Optimal Fashion [Z] (Algorithm A444) CACM March, 1973 Wagner, R. A. information retrieval, coding, text compression 3.70 5.6 CA730309 JB January
2	55	3129	0.17914577	Optimal Storage Allocation for Serial Files A computer system uses several serial files. The files reside on a direct-access storage device in which storage space is limited. Records are added
2	56	1065	0.17904507	Bit Sequencing of the American Standard Code for Information Interchange (ASCII) in Serial-by-Bit Data Transmission (Proposed American Standard) CACM June, 1964 CA640602 JB March 9, 1978 9:47 PM
2	57	2586	0.17904507	Adapting Optimal Code Generation for Arithmetic Expressions to the Instruction Sets Available on Present-Day Computers (Errata) CACM October, 1974 Stockhausen, P. F. CA741012 JB January 16, 1978 11:05 AM
2	58	48	0.17705749	Shift-Register Code for Indexing Applications In this communication the use of a shift- register code with n = 10 is described for calling 64 wireless telemetering stations in a fixed cyclical order
2	59	1362	0.17705749	Code Extension in ASCII* (An ASA Tutorial) The American Standard Code for Information Interchange (ASCII) contains a number of control characters associated with the principle of code extension
2	60	2711	0.1756262	A Vector Space Model for Automatic Indexing In a document retrieval, or other pattern matching environment where stored entities (documents) are compared with each other or with incoming patterns
2	61	2078	0.1752548	Representations for Space Planning Problems involving the arrangement of objects in two- or three- space where the objective function primarily consists of derivatives of the distance between

2	62	1807	0.17389299	to produce excellent object code without significantly reducing the compilation speed. CACM December, 1969 Busam, V. A. England, D. E. FORTRAN, optimization , expressions, compilers, compilation
2	63	1223	0.16849889	subexpression recognition. Optimization such as the effective use of index registers, although as important, is not discussed since the object code which would be most efficient is highly machine
2	64	1235	0.16849351	at relatively high speed in only a limited storage space . About half of the word-events in a corpus are identified through the use of a small dictionary of function words and frequently occurring
2	65	3083	0.16805974	fact that link fields are present in each cell of the hash table which permits "chaining" of the first overflow items in the table. The efficiency of the method is derived and a tradeoff analysis is
2	66	1369	0.16523181	Half Rotations in N-Dimensional Euclidean Space An iterative procedure is described for determining half rotations in n-dimensional Euclidean space . The method is a variant of the cyclic Jacobi
2	67	1204	0.15765558	Character Structure and Character Parity Sense for Serial-by-Bit Data Communication in the American Standard Code for Information Interchange (Proposed American Standard) CACM September, 1965 CA650902 JB March 6, 1978 7:41 PM
2	68	2645	0.15531684	Two Languages for Estimating Program Efficiency Two languages enabling their users to estimate the efficiency of computer programs are presented. The program whose efficiency one wishes to
2	69	2892	0.15143192	of protocol hierarchy and the characteristics of each level are summarized. Then the line efficiency for various models of system use is studied. Some measurements of line efficiency for the
2	70	1708	0.14958504	A Note on the Efficiency of a LISP Computation in a Paged Machine The problem of the use of two levels of storage for programs is explored in the context of a LISP system which uses core memory as
2	71	93	0.14920424	From Formulas to Computer Oriented Language A technique is shown for enabling a computer to translate simple algebraic formulas into a three address computer code . CACM March, 1959 Wegstein, J. H

				Preliminary Report on a System for General Space Planning A computer language and a set of
2	72	2389	0.14902377	programs within that language are described which allow the formulating and solving of a class of space
2	73	2863	0.14902377	VMIN-An Optimal Variable- Space Page Replacement Algorithm A criterion for comparing variable space page replacement algorithms is presented. An optimum page replacement algorithm, called VMIN, is
2	74	1652	0.14447135	A Code for Non-numeric Information Processing Applications in Online Systems A code has been specifically designed to simplify the internal information processing operations within an online
2	75	1676	0.14430216	must be developed, written in a high level language, which minimizes machine dependencies and isolates those which are necessary. A language and a compiler for the language are discussed here. The
2	76	2836	0.14363311	Weighted Derivation Trees The nodes of a weighted derivation tree are associated with weighting functions over the vocabulary of a context-free grammar. An algorithm is presented for constructing
2	77	2524	0.1414585	metric on the the key space , is suitably defined, three file structures are presented together with their corresponding search algorithms, which are intended to reduce the number of comparisons
2	78	1465	0.14062326	Program Translation Viewed as a General Data Processing Problem Efficiency dictates that the overall effectiveness of a compiler be increased by all means available. For a compiler to have a
2	79	2126	0.13736169	Experience with an Extensible Language An operational extensible language system is described. The system and its base language are appraised with respect to efficiency , flexibility, and utility
2	80	1523	0.13666514	SHARER, a Time Sharing System for the CDC 6600 A time sharing system embedded within the standard batch processing system for the CDC 6600 is described. The system is general purpose and file
2	81	2230	0.13616589	A Language for Treating Geometric Patterns in a Two-dimensional space In this paper CADEP, a problem-oriented language for positioning geometric patterns in a two-dimensional space , is presented

2	82	1331	0.13049494	Code Structures for Protection and Manipulation of Variable-Length Items When items are made up of a variable number of characters, each containing the same number of bits, certain control
2	83	2498	0.12899466	Minimizing Wasted Space in Partitioned Segmentation A paged virtual memory system using a finite number of page sizes is considered. Two algorithms for assigning pages to segments are discussed
2	84	794	0.12837844	A List-Type Storage Technique for Alphameric Information A method which is economic in terms of space and time is proposed for the storage and manipulation of character strings of arbitrary length
2	85	2344	0.12832725	On the Optimization of Performance of Time- Sharing Systems by Simulation A simulation model of a time-sharing system with a finite noncontiguous store and an infinite auxiliary store is used to
2	86	2950	0.12738775	. Various classes of scheduling algorithms are defined and related to existing algorithms. A criterion for the implementation efficiency of an algorithm is developed and results in the definition of time
2	87	124	0.12612447	An Algorithm for the Assignment Problem The assignment problem is formulated and briefly discussed. An efficient algorithm for its solution is presented in ALGOL code . An empirical relation
2	88	1551	0.12612447	On Compiling Algorithms for Arithmetic Expressions This paper deals with algorithms concerning arithmetic expressions used in a FORTRAN IV compiler for a HITAC-5020 computer having n accumulators
2	89	1270	0.12610742	On ALGOL Education: Automatic Grading Programs Two ALGOL grader programs are presented for the computer evaluation of student ALGOL programs. One is for a beginner's program; it furnishes random
2	90	1352	0.12610742	Automatic Integration of a Function with a Parameter Two efficient methods for automatic numerical integration are Romberg integration and adaptive Simpson integration. For integrands of the form
2	91	1429	0.12610742	Matrix Reduction Using the Hungarian Method For The Generation of School Timetables The application of Kuhn's Hungarian Method to the problem of matrix reduction as needed in Gotlieb's method for

2	92	2365	0.12610742	Matrix Computations with Fortran and Paging The efficiency of conventional Fortran programs for matrix computations can often be improved by reversing the order of nested loops. Such modifications
2	93	2816	0.12418647	the optimum points at which to reorganize a database. A disk file organization which allows for distributed free space is described. A cost function describing the excess costs due to physical
2	94	2249	0.12392385	A Comparison of Multivariate Normal Generators Three methods for generating outcomes on multivariate normal random vectors with a specified variance-covariance matrix are presented. A comparison
2	95	1030	0.1231686	efficiency of a simulation system, methods are presented for simultaneously evaluating many functions for one set of values of the variables, and for evaluating simultaneously one function for many
2	96	693	0.12267449	An Extension of Fibonaccian Search To Several Variables A technique which uses Fibonaccian search concepts has been developed to solve optimization problems involving unimodal functions of several
2	97	1786	0.121533155	An Improved Hash Code for Scatter Storage Introduced is a hash coding method based on fixed-point division rather than multiplication or logical operations. This new method allows the hash table
2	98	3175	0.121533155	probabilities are updated in parallel for all code letters, using joint letter probabilities. Iterating the updating scheme results in improved estimates that finally lead to breaking the cipher. The
2	99	3064	0.12141173	Event Manipulation for Discrete Simulations Requiring Large Numbers of Events The event- manipulation system presented here consists of two major parts. The first part addresses the familiar
2	100	164	0.12103897	A Short Study of Notation Efficiency CACM August, 1960 Smith Jr., H. J. CA600802 JB March 20, 1978 9:02 PM

c) **Query 3:** parallel algorithms

Query				
id	Rank	Doc ID	Score	Text Snippet
3	1	2973	1.0088185	Sorting on a Mesh-Connected Parallel Computer Two algorithms are presented for sorting n^2 elements on an n X n mesh-connected processor array that require O(n) routing and comparison steps. The
3	2	3075	0.9137456	Fast Parallel Sorting Algorithms A parallel bucket-sort algorithm is presented that requires time O(log n) and the use of n processors. The algorithm makes use of a technique that requires more
3	3	2557	0.8322328	required to evaluate such products on ordinary serial computers as well as parallel computers is discussed. Algorithms are presented which properly parse such matrix sequences subject to the constraints
3	4	2266	0.8261164	zeros and their multiplicity are readily determined. At no point in the method is polynomial deflation used. CACM November, 1972 Patrick, M. L. parallel numerical algorithms , real polynomials, real
3	5	3156	0.8261164	, D. Graph theory, parallel processing, algorithms , transitive closure, connected component 5.25 5.32 6.22 CA790802 DB January 4, 1980 12:18 PM
3	6	1601	0.76765776	measurements are interpreted in a parallel processing environment. In such an environment the procedures obtained are superior to standard algorithms . CACM May, 1967 Shedler, G. S. CA670505 JB February
3	7	950	0.68843037	computers as can be expected to be available in the near future, much of numerical analysis will have to be recast in a more " parallel " form. By this is meant that serial algorithms ought to be replaced
3	8	1468	0.68843037	Syntax-Directed Interpretation of Classes of Pictures A descriptive scheme for classes of pictures based on labeling techniques using parallel processing algorithms was proposed by the author some

3	9	2433	0.594452	method and express parallel algorithms are described. CACM October, 1973 Millstein, R. E. array processing, parallelism detection, explicit parallelism, array allocation, parallel control
3	10	2570	0.594452	A Comparison of List Schedules for Parallel Processing Systems The problem of scheduling two or more processors to minimize the execution time of a program which consists of a set of partially
3	11	2289	0.5686563	implementations require from n^2 to n^3 steps. CACM September, 1972 Levitt, K. N. Kautz, W. H. graph theory, cellular logic-in-memory arrays, parallel processing, special purpose computers, algorithms for
3	12	1957	0.5663724	The List Set Generator: A Construct for Evaluating Set Expressions The list set generator is defined and algorithms for its use are given. The list set generator is a construct which may be added
3	13	2838	0.5339811	normally requires by performing garbage collection on a second processor in parallel with list processing operations, or on a single processor time-shared with them. Algorithms for recovering discarded
3	14	2692	0.48292387	Reentrant Polygon Clipping A new family of clipping algorithms is described. These algorithms are able to clip polygons against irregular convex planefaced volumes in three dimensions, removing
3	15	141	0.4730892	Some Thoughts on Parallel Processing CACM October, 1960 Yarbrough, L. D. CA601007 JB March 20, 1978 8:16 PM
3	16	392	0.4730892	Comment on A Paper on Parallel Processing CACM February, 1961 Nekora, M. R. CA610206 JB March 17, 1978 12:58 AM
3	17	1302	0.4730892	Parallel Signaling Speeds for Data Transmission (Proposed American Stand ard) CACM March, 1965 CA650305 JB March 7, 1978 6:08 PM
3	18	2114	0.47197703	, and record retrieval are defined and from which some of the frequently used file structures such as inverted files, index-sequential files, and multilist files are derived. Two algorithms which
3	19	2723	0.47197703	Multiprocessing Compactifying Garbage Collection Algorithms for a multiprocessing compactifying garbage collector are presented and discussed. The simple case of two processors, one performing

3	20	2182	0.41395304	Interrupt Driven Programming CACM July, 1971 Zelkowitz, M. interrupts, supervisors, monitors, debugging, parallel processing, associative memories, microprogramming 3.51 4.32 4.42 CA710608 JB
3	21	2685	0.40970725	The Parallel Execution of DO Loops Methods are developed for the parallel execution of different iterations of a DO loop. Both asynchronous multiprocessor computers and array computers are
3	22	2714	0.39114887	Merging with Parallel Processors Consider two linearly ordered sets A, B, A =m, B =n, m<=n, and p, p<=m, parallel processors working synchronously. The paper presents an algorithm for merging A
3	23	2896	0.35849383	An Exercise in Proving Parallel Programs Correct A parallel program, Dijkstra's on-the-fly garbage collector, is proved correct using a proof method developed by Owicki. The fine degree of in
3	24	1262	0.35481688	Procedure-Oriented Language Statements to Facilitate Parallel Processing Two statements are suggested which allow a programmer writing in a procedure-oriented language to indicate sections of
3	25	1367	0.35481688	Character Structure and Character Parity Sense for Parallel -by-Bit Data Communication in ASCII* (Proposed American Standard) CACM September, 1966 CA660912 JB March 2, 1978 4:26 PM
3	26	1795	0.35481688	Optimal Code for Serial and Parallel Computation CACM December, 1969 Fateman, R. J. code optimization, sequencing of operations, detection of common subexpressions 4.12 CA691217 JB February 15, 1978 1:59 PM
3	27	1828	0.35481688	Synchronization in a Parallel -Accessed Data Base The following problem is considered: Given a data base which can be manipulated simultaneously by more than one process, what are the rules for
		2-22	0.05404505	Reduction: A Method of Proving Properties of Parallel Programs When proving that a parallel program has a given property it is often convenient to assume that a statement is indivisible, i.e.
3	28	2700	0.35481688	<pre>that Algorithms Policy/Revised August 1970 CACM August 1070 CA700814 IB February 10, 1078, 2:12 PM</pre>
3	29	2007	0.3525926	August, 1970 CA700814 JB February 10, 1978 3:12 PM Remarks on Algorithms 2 and 3, Algorithm 15 and
3	30	371	0.34904885	 Algorithms 25 and 26 CACM March, 1961 Wilkinson, J. H. CA610311 JB March 17, 1978 12:35 AM

3	31	1158	0.33452457	Program Structures for Parallel Processing Constructs for organizing and explicating parallel program segments are discussed as extensions to ALGOL 60. The constructs serve as meta-commands and
3	32	2785	0.30728042	language, and discusses some of the problems associated with parallel computer architectures. CACM March, 1975 Lawrie, D. H. Layman, T. Baer, D. Randal, J. M. GLYPNIR, Illiac IV, Programming
3	33	1796	0.29918474	Index by Subject to Algorithms , 1969 CACM December, 1969 This 1969 index is the first supplement to the Index by Subject to Algorithms , 1960 1968 (Comm. ACM 11, 12 (Dec. 1968), 827 830). CA691216 JB February 15, 1978 2:03 PM
3	34	2952	0.29568073	Functions Realizable with Word- Parallel Logical and Two's-Complement Addition Instructions CACM June, 1977 Warren, H. S. Jr. Boolean functions, two's-complement, sign propagation 4.0 6.32 CA
3	35	2895	0.292709	A Language for Formal Problem Specification A language for specifying the in tended behavior of communicating parallel processes is described. The specifications are constraints on the order in
3	36	1811	0.2897068	A Case Study in Programming for Parallel - Processors An affirmative partial answer is provided to the question of whether it is possible to program parallel -processor computing systems to
3	37	270	0.28207406	Techniques for Storage Allocation Algorithms CACM October, 1961 Kelley Jr., J. E. CA611011 JB March 16, 1978 12:50 PM
3	38	804	0.28207406	Exponentiation of Series (Algorithms 134) CACM July, 1963 Thacher Jr., H. C. CA630720 JB March 14, 1978 8:19 AM
3	39	1342	0.28207406	Transportation Problem (Algorithms 293 [H]) CACM December, 1966 Bayer, G. CA661207a JB March 2, 1978 2:30 PM
3	40	1660	0.28207406	Index By Subject To algorithms , 1960-1968 CACM December, 1968 CA681206 JB February 21, 1978 1:39 PM
3	41	1952	0.28207406	Index by Subject to Algorithms , 1970 CACM December, 1970 CA701211 JB February 9, 1978 2:50 PM
3	42	2325	0.28207406	Numerical Mathematics and Computer Science Numerical mathematics is viewed as the analysis of continuous algorithms . Four of the components of numerical mathematics are discussed. These are

				Interference Between Communicating CD Parallel (/D)
3	43	2342	0.2644649	Interference Between Communicating Parallel Processes Various kinds of interference between communicating parallel processes have been examined by Dijkstra, Knuth, and others. Solutions have been
		25 12	0.2011013	Formal Verification of Parallel Programs Two
3	44	2851	0.2644649	formal models for parallel computation are presented: an abstract conceptual model and a parallel -program model. The former model does not distinguish
3	44	2031	0.2044049	On Shrinking Binary Picture Patterns A parallel
3	45	2401	0.25606704	processing algorithm for shrinking binary patterns to obtain single isolated elements, one for each pattern, is presented. This procedure may be
				Verifying Properties of Parallel Programs: An
				Axiomatic Approach An axiomatic method for proving a number of properties of parallel programs is
3	46	2865	0.25606704	presented. Hoare has given a set of axioms for
				Models for Parallel Processing Within Programs:
				Application to CPU:I/O and I/O:I/O Overlap Approximate queueing models for internal parallel processing by
3	47	3059	0.25606704	individual programs in a multiprogrammed
2	40	2080	0.2508024	requirements of program scheduling and resource allocation. The system nucleus simulates an environment in which program execution and input/output are handled
3	48	2080	0.2508934	uniformly as parallel , cooperating Communicating Sequential Processes This paper suggests
3	49	3073	0.2508934	that input and output are basic primitives of programming and that parallel composition of communicating sequential processes is a fundamental
3	50	1374	0.2468148	Evaluation of Determinant; Determinant Evaluation (Algorithms 41[F3]; 269[F3]) CACM September, 1966 Bergson, A. CA660909e JB March 23, 1978 4:29 PM
				Generator of Spanning Trees (Algorithms 354 [H])
				CACM September, 1969 McIlroy, M. D. spanning trees, trees, graphs 5.32 CA690904 JB February 15, 1978 4:50
3	51	1851	0.2468148	PM
3	52	1953	0.2468148	Exponential Integral Ei(x) (Algorithms 385 \$\$13)) CACM December, 1970 Redish, K. A. ANSI Fortran standard 4.0 4.22 CA701210 JB February 9, 1978 3:04 PM
				Further Evidence for the Analysis of Algorithms for
				the Zero-One Programming Problem The purpose of this note is to report computational experience additional to
3	53	2226	0.2468148	that recently summarized by Gue et

3	54	2417	0.2468148	Four Combinatorial Algorithms [G6] (Algorithm A466) CACM November, 1973 Ehrlich, G. permutations and combinations 5.39 CA731109 JB January 20, 1978 9:59 AM
3	55	2725	0.2468148	A Comparison of Simulation Event List Algorithms (Corrigendum) CACM August, 1975 Vaucher, J. C. Duval, P. CA750810 JB January 6, 1978 3:43 PM
3	56	2830	0.2468148	A Practitioner's Guide to Addressing Algorithms (Corrigendum) CACM September, 1976 Severance, D. G. Duhne, R. A. CA760909 JB January 4, 1978 8:43 AM
3	57	1551	0.2442833	On Compiling Algorithms for Arithmetic Expressions This paper deals with algorithms concerning arithmetic expressions used in a FORTRAN IV compiler for a HITAC-5020 computer having n accumulators
3	58	1569	0.2365446	statements parallel the structure and notation of the grammar. CACM July, 1967 Irwin, L. CA670704 JB February 28, 1978 9:01 AM
3	59	3044	0.2365446	different content. CACM November, 1978 Friedman, D. Wise, D. Parallel evaluation, suspending cons, Lisp, conditional forms, if-then-else, ambiguous function, infinite structures 4.2 4.13 4.32 5.24 CA
3	60	2884	0.23321806	Permutation Enumeration: Four New Permutation Algorithms Classical permutation enumeration algorithms encounter special cases requiring additional computation every nth permutation when generating
3	61	2902	0.21591799	Dynamic Memory Allocation in Computer Simulation This paper investigates the performance of 35 dynamic memory allocation algorithms when used to service simulation programs as represented by
3	62	2950	0.21591799	A Unifying Approach to Scheduling This paper presents a scheme for classifying scheduling algorithms based on an abstract model of a scheduling system which formalizes the notion of priority
3	63	3166	0.21591799	Computing Standard Deviations: Accuracy Four algorithms for the numerical computation of the standard deviation of (unweighted) sampled data are analyzed. Two of the algorithms are well-known in

3	64	1658	0.21155554	Analysis of Algorithms for the Zero-One Programming Problem This paper is concerned with a review and examination of several existing algorithms for the zero-one programming problem. Computational
3	65	2025	0.21155554	Student's t-Distribution; Jacobi Polynomials; Modified Romberg Quadrature; Factorial Analysis of Variance; (Algorithms 332,344,351,359) CACM July, 1970 Sale, A. H. J. Fortran standards
3	66	2222	0.21155554	Comment on London's Certification of Algorithm 245 CACM January, 1971 Redish, K. A. proof of algorithms , debugging, certification, metatheory, sorting, in-place sorting 4.42 4.49 5.24 5.31 CA
3	67	2362	0.21155554	Linear Equation Solver [F4] (Algorithm A423) CACM April, 1972 Moler, C. B. matrix algorithms , linear equations, Fortran, paged memory, virtual memory, array processing 4.22 4.32 5.14 CA720411 JB
3	68	2505	0.21155554	Reflection-Free Permutations, Rosary Permutations, and Adjacent Transposition Algorithms CACM May, 1973 Roy, M. K. permutation, permutation generation, scheduling, combinatorial analysis 5.39 CA
3	69	2863	0.21155554	VMIN-An Optimal Variable-Space Page Replacement Algorithm A criterion for comparing variable space page replacement algorithms is presented. An optimum page replacement algorithm, called VMIN, is
3	70	2942	0.21155554	An Algol-Based Implementation of SNOBOL 4 Patterns CACM July, 1977 Brownlee, J. N. patterns SNOBOL 4, pattern matching, string processing, pattern implementation, algorithms in Pascal 4.29 CA770710 JB December 28, 1977 8:15 AM
3	71	3061	0.21155554	Simulations of Dynamic Sequential Search Algorithms None CACM September, 1978 Tenenbaum, A. Searching, list processing, sequential searching, dynamic reordering, simulation 3.748.1 CA780911 DH January 29, 1979 6:30 PM
3	72	2740	0.20907786	semaphores and extended semaphores (queue semaphores). The number of parallel processes is carefully justified, and the various semaphore constructions are explained. The system is proved to be
3	73	1008	0.20697652	. The FASEB meeting is the largest scientific meeting held in the United States each year. The technique developed for FASEB can be applied to schedule any meeting with parallel sessions. CACM

1			I	1
				analogous to certain matrix operations, a parallel nomenclature is suggested for their classification. CACM September, 1965 Reily, E. D. Federighi, F. D. CA650906 JB
3	74	1200	0.20697652	March 6, 19787:33 PM
				of quasi- parallel processing. CACM September,
3	75	1380	0.20697652	1966 Dahl, O. J. Nygaard, K. CA660907 JB March 2, 1978 6:21 PM
3	76	2727	0.20697652	Multiple Byte Processing with Full-Word Instructions A method is described which allows parallel processing of packed data items using only ordinary full-word computer instructions, even though the
3	70	2121	0.20037032	virtual computer are explained. Examples of applications
3	77	1747	0.20485362	of the criteria concern the reading of a time-of-day clock, the synchronization of parallel processes, protection in multiprogrammed systems
3	//	1/4/	0.20465502	,
				On Simulating Networks of Parallel Processes in Which Simultaneous Events May Occur Some of the
				problems of simulating discrete event systems, particularly
3	78	1846	0.20485362	computer systems, on a conventional
				which the expression is to be executed, these subexpressions can be evaluated in serials, in
				parallel , or in a combination of these modes. This
3	79	2175	0.20485362	paper shows that expression execution time can be
				process is then discussed. The method described is
				suitable for parallel processing because the operations relative to each state can be computed in
3	80	2195	0.20485362	parallel , and the number of stages is equal to the
				Accelerating LP Algorithms It is shown how a novel
				method for computing (related) inner products can accelerate the pricing phase of LP algorithms .
3	81	1873	0.19945648	Other LP applications are indicated. CACM July
				Sorting by Natural Selection A family of sorting
				algorithms is proposed, the members of which make fuller use of the memory space and thus yield longer
3	82	2272	0.19945648	sorted strings. Extensive simulation results
				system. It is shown that carefully designed matrix
				algorithms /B> can lead to enormous savings in the
3	83	1924	0.19710524	number of page faults occurring when only a small part of the total matrix can be in main memory at
				Optimizing the Polyphase Sort Various dispersion
				algorithms for the polyphase sorting procedure are
3	84	2146	0.19710524	examinedhe optimum algorithm based on minimizing the total number of unit strings read is
	U 7	2170	3.13/10324	total namber of unit strings reducts

3	85	2273	0.19710524	Conversion of Decision Tables By Rule Mask Method Without Rule Mask Two algorithms for generating computer programs from decision tables are described. The algorithms allow handling limited entry
3	86	2283	0.19710524	Thinning Algorithms on Rectangular, Hexagonal, and Triangular Arrays In this report three thinning algorithms are developed: one each for use with rectangular, hexagonal, and triangular arrays
3	87	2903	0.19710524	Improving Programs by the Introduction of Recursion A new technique of program transformation, called "recursion in troduction," is described and applied to two algorithms which solve pattern
3	88	3006	0.19710524	Anomalies with Variable Partition Paging Algorithms Five types of anomalous behavior which may occur in paged virtual memory operating systems a redefined. One type of anomaly, for example
3	89	1392	0.18321247	Experience with FORMAC Algorithm Design Various facets of the design and implementation of mathematical expression manipulation algorithms are discussed. Concrete examples are provided by the
3	90	2490	0.18321247	Efficient Algorithms for Graph Manipulation [H] (Algorithm A447) Efficient algorithms are presented for partitioning a graph into connected components, biconnected components and simple paths. The
3	91	2679	0.18321247	Some Performance Tests of "quicksort" and Descendants Detailed performance evaluations are presented for six ACM algorithms : quicksort (No. 64), Shellsort (No. 201), stringsort (No. 207), "TREESORT
3	92	2997	0.18321247	algorithms use the "divide and conquer" technique and recursively apply a merge procedure for two nonin tersecting convex hulls. Since any convex hull algorithm requires at least O(n log n) operations
3	93	1341	0.17740844	correspondingly. The continued use of such a structure raises questions about its effects on the usefulness of future systems, particularly with regard to such trends as time sharing, parallel
3	94	1471	0.17740844	computer systems. These meta-instructions relate to parallel processing, protection of separate computations, program debugging, and the sharing among users of memory segments and other computing

3	95	1536	0.17740844	linkage to complex arithmetic subroutines. Evaluation of a function and derivative proceed in parallel , as in Wengert's procedure, but with the "imaginary" parts of variables declared complex
3	96	1554	0.17740844	parallel and perspective projections of four-dimensional hyperobjects rotating in four-dimensional space. The observed projections and their motions were a direct extension of three-dimensional
3	97	1603	0.17740844	/output timing, buffering, and task scheduling and provides parallel processing capability. User programs communicate with the monitor through a small set of meta- instruction which consists mostly of
3	98	1960	0.17740844	design rather than on implementation details. The main features of the system include the ability given to any user to schedule his own parallel processes using system primitive operations, the file
3	99	2376	0.17740844	nor will they run into a deadlock. CACM March, 1972 Habermann, A. N. parallel programming, multiprogramming, program correctness, process communication, process scheduling 4.30 4.32 4.39 4.9 CA
3	100	2514	0.17740844	procedure in a derivation or parse, using weighted programming matrices; he also has a choice of instance selection schemes (raster,random, parallel). Examples are given involving array languages

d. **Query 4:** parallel processor in information retrieval

Query				
id	Rank	Doc ID	Score	Text Snippet
4	1	2967	0.7082254	also addressed. CACM May, 1977 Stillman, N. J. Berra, P. B. associative memory, associative processor , content-addressable memory, graphics, information retrieval , data structures, software
4	2	634	0.5461165	Manipulation of Trees in Information Retrieval * CACM February, 1962 Salton, G. CA620209 JB March 20, 1978 3:44 PM
4	3	2973	0.5330611	. CACM April, 1977 Thompson, C. D. Kung, H. T. parallel computer, parallel sorting, parallel merge, routing and comparison steps, perfect shuffle. processor in terconnection pattern
4	4	1811	0.51177335	A Case Study in Programming for Parallel -Processors An affirmative partial answer is provided to the question of whether it is possible to program parallel - processor computing systems to
4	5	891	0.41518122	retrieval program as expensive and difficult (from a programming stand-point) to reconsider their position, for the present solution makes it possible to install an information retrieval program in
4	6	2530	0.40958735	An Algorithm for Extracting Phrases in a Space- Optimal Fashion [Z] (Algorithm A444) CACM March, 1973 Wagner, R. A. information retrieval , coding, text compression 3.70 5.6 CA730309 JB January
4	7	2965	0.40958735	An Optimal Evaluation of Boolean Expressions in an Online Query System CACM May, 1977 Hanani, M. Z. query, Boolean expression, information retrieval , file organization 3.5 3.70 3.74 CA770507 JB
4	8	2976	0.40958735	Approximating Block Accesses in Database Organizations CACM April, 1977 Yao, S. B. database, inverted file organization, database performance and measurement, information retrieval , query

4	9	3168	0.40958735	Comment on "An Optimal Evaluation of Boolean Expressions in an Online Query System." CACM October, 1979 Laird, P. Query, Boolean expression, information retrieval , file organization
4	10	2288	0.40007916	information retrieval system with a minimal search time and no redundant storage. Some important theorems on the consecutive retrieval property are proved in this paper. Conditions under which the
4	11	1927	0.38666227	Information Science in a Ph. Computer Science Program This report contains recommendations on a sample course curriculum in the general area of information organization and information system
4	12	2278	0.37855646	On Foster's Information Storage and Retrieval Using AVL Trees CACM September, 1972 Tan, K. C. binary trees, search trees, information storage, information retrieval 3.70 3.73 3.74 CA720912 JB January 27, 1978 4:10 PM
4	13	2838	0.35851765	normally requires by performing garbage collection on a second processor in parallel with list processing operations, or on a single processor time-shared with them. Algorithms for recovering discarded
4	14	2882	0.35653657	A Stochastic Evaluation Model for Database Organization in Data Retrieval Systems Experimental work in the valuation of large scale data retrieval systems has been scarce due to its difficulty and
4	15	1457	0.35578042	Data Manipulation and Programming Problems in Automatic Information Retrieval Automatic information retrieval programs require the manipulation of a variety of different data structures, including
4	16	2140	0.35020137	Retrieval -Update Speed Tradeoffs Using Combined Indices In a paper in the November 1970 Communications of the ACM, V. Y. Lum introduced a technique of file indexing named combined indices. This
4	17	1699	0.34822118	Experimental Evaluation of Information Retrieval Through a Teletypewriter Experiments designed to evaluate the capabilities of mechanized information retrieval systems, with emphasis on interactive

i		I	1	1
				iteration are computationally independent, making the methods of interest in a parallel
4	18	1601	0.34366482	processing environment. Convergence is insured by extracting the "best information " at each iteration
				Note on "An Optimal Evaluation of Boolean Expressions in an Online Query System." CACM October, 1979
	40	24.50	0.04400070	Gudes, E. Hoffman, A. Query, Boolean expression, optimal
4	19	3169	0.34132278	evaluation, information retrieval
4	20	2516	0.2205500	Hierarchical Storage in Information Retrieval A probabilistic analysis is employed to determine the effect of hierarchical storage organizations on information retrieval operations. The
4	20	2516	0.3396688	data
				method described is binary in nature and offers new potential for information retrieval systems. CACM February, 1969 Arora, S. R. Dent, W. T.
4	21	1935	0.3378923	binary pattern, file examination, graph theory
				On the Problem of Communicating Complex Information The nature of the difficulty involved in communicating mathematical results between scientists using a computer based information
4	22	2519	0.32636416	retrieval
	22	2042	0.00400000	The Use of an Interactive Information Storage and Retrieval System in Medical Research This paper presents the results of a study of the use of an
4	23	3012	0.32482263	interactive computerized storage and retrieval
4	24	1681	0.31271085	remote typewriter console. It has been developed for retrieval of documents from a computerized data base, the Moore School Information Systems Laboratory files. Requests are formulated in a
				A Formal System for Information Retrieval from Files A generalized file structure is provided by which the concepts of keyword, index, record, file, directory, file
4	25	2114	0.3120005	structure, directory decoding
4	26	2175	0.30691025	which the expression is to be executed, these subexpressions can be evaluated in serials, in parallel , or in a combination of these modes. This paper shows that expression execution time can be
4	27	1830	0.30682305	Retrieval Times for a Packed Direct Access Inverted File CACM October, 1969 Bayes, A. J. information retrieval , direct access memory, data base, inverted list 3.70 4.41 CA691016 JB February 15, 1978 1:27 PM

4	28	2865	0.29916105	for the use of auxiliary variables, which are added to a parallel program as an aid to proving it correct. The information in a partial correctness proof can be used to prove such properties as
4	29	1937	0.29438117	for specifying data retrieval and display requests. Data is displayed as tables and graphs produced in a format ready for publication. In this paper the statements of the request language and the
4	30	275	0.28660002	Dynamic Storage Allocation for an Information Retrieval System CACM October, 1961 Sams, B. H. CA611006 JB March 16, 1978 12:58 PM
4	31	651	0.28660002	A Survey of Languages and Systems for Information Retrieval CACM January, 1962 Grems, M. CA620108 JB March 20, 1978 4:36 PM
4	32	2070	0.28660002	A Formal System for Information Retrieval from Files CACM April, 1970 Hsiao, D. Harary, F. CA700414 JB February 13, 1978 2:37 PM
4	33	2990	0.28351814	Effective Information Retrieval Using Term Accuracy The performance of information retrieval systems can be evaluated in a number of different ways. Much of the published evaluation work is based
4	34	1675	0.27305824	first time are ineffectual, and that the factor is but a scale factor. CACM November, 1968 Korfhage, R. R. information retrieval , relevance, indexing, classification 3.70 3.71 3.74 CA681104 JB February 21, 1978 2:57 PM
4	35	2645	0.27148092	provide additional information about the program written in the first language and to output results estimating its efficiency. Processors for the two languages are also described. The first
4	36	2723	0.26939452	LISP-like list operations and the other performing garbage collection continuously, is thoroughly examined. The necessary capabilities of each processor are defined, as well as interprocessor
4	37	2497	0.26721078	branch would have resulted in an effective interrupt. CACM June, 1973 Hill, J. C. interrupts, supervisors, monitors, debugging, parallel processing, associative memories, microprogramming
4	38	2307	0.2662603	earlier file processing and of normal collection growth. The proposed procedures provide powerful tools for information retrieval and for the control of dynamic library collections in which new

4	39	1846	0.26329422	On Simulating Networks of Parallel Processes in Which Simultaneous Events May Occur Some of the problems of simulating discrete event systems, particularly computer systems, on a conventional
4	40	2455	0.26295358	A Generalization of AVL Trees A generalization of AVL trees is proposed in which imbalances up to (triangle shape) is a small integer. An experiment is performed to compare these trees with
4	41	1725	0.2572509	-addressed memories, ordered lists, ordered information retrieval , ordered retrieval theorem, column digit values, digit value variety, column sensing arrangement, digit value readout, digit variety
4	42	1032	0.25681505	Theoretical Considerations in Information Retrieval Systems Information storage and retrieval systems are composed of three major components: (a) identification of information and tagging it for
4	43	2631	0.25681505	An Information -Theoretic Approach to Text Searching in Direct Access Systems Using direct access computer files of bibliographic information , an attempt is made to overcome one of the problems
4	44	1959	0.2559755	programming language and supervisory system in which these concepts are implemented, is used to illustrated the new organization which is proposed for management information systems. CACM December
4	45	1359	0.25542647	Data Filtering Applied to Information Storage and Retrieval Applications Manipulation of data strings is the most complex processing function in information storage and retrieval applications
4	46	2947	0.2553496	system much more powerful than the sum of its parts. CACM July, 1977 Schneider, B. R. Jr. Watts, R. M. information retrieval , text editing, minicomputers, CRTs,time sharing, bibliographic search and
4	47	1236	0.2507608	several hundred different methods are available to analyze documents and search requests. This feature is used in the retrieval process by leaving the exact sequence of operations initially unspecified

4	48	2711	0.2507608	A Vector Space Model for Automatic Indexing In a document retrieval , or other pattern matching environment where stored entities (documents) are compared with each other or with incoming patterns
4	49	1747	0.24959369	virtual computer are explained. Examples of applications of the criteria concern the reading of a time-of-day clock, the synchronization of parallel processes, protection in multiprogrammed systems
4	50	1613	0.24941622	One-Pass Compilation of Arithmetic Expressions for a Parallel Processor Under the assumption that a processor may have a multiplicity of arithmetic units, a compiler for such a processor should
4	51	239	0.24565716	Inefficiency of the Use of Boolean Functions for Information Retrieval Systems CACM December, 1961 Verhoeff, J. Goffman, W. Belzer, J. CA611211 JB March 15, 1978 10:10 PM
4	52	292	0.24565716	An Information Retrieval Language for Legal Studies CACM September, 1961 Kehl, W. B. Horty, J. F. Bacon, C. R. T. Mitchell, D. S. CA610902 JB March 16, 1978 9:51 PM
4	53	1831	0.24565716	A Comment on Optimal Tree Structures CACM October, 1969 Stanfel, L. E. information retrieval , file searching, tree structures, double chaining 3.70 3.73 3.74 CA691015 JB February
4	54	2532	0.24565716	On Harrison's Substring Testing Technique CACM March, 1973 Bookstein, A. string, substring, hashing, information storage and retrieval 3.74 5.30 5.5 CA730307 JB January 24, 1978 10:30 AM
4	55	2561	0.24531764	A Heuristic Approach to Inductive Inference in Fact Retrieval Systems Heuristic procedures are presented which have been developed to perform inferences by generalizing from available information
4	56	2032	0.23892593	, tree structures, file structures, scatter tables, hashing functions, information retrieval 3.70 3.74 CA700705 JB February 13, 1978 8:49 AM
4	57	2493	0.23892593	. CACM June, 1973 Shneiderman, B. data base, reorganization, files, information retrieval 3.73 CA730607 JB January 23, 1978 2:14 PM
4	58	1960	0.23832633	Process Management and Resource Sharing in the Multiaccess System ESOPE The main design principles of the multiaccess system ESOPE are described. Emphasis is placed on basic ideas underlying the

1	l		İ	1
4	59	2575	0.23623443	The Best-Match Problem in Document Retrieval CACM November, 1974 Van Rijsbergen, C. J. document retrieval , best match, clustering, file searching, matching, dissimilarity, hierarchy
				Multi-attribute Retrieval with Combined Indexes In this paper a file organization scheme designed to replace the use of the popular secondary index filing
4	60	1976	0.23291053	scheme (or inverted files on secondary key
4	61	2714	0.2318515	favorably with the previous best parallel merging algorithm, Batcher's algorithm, which requires n/p + ((m+n)/2p)log2 m steps in the general case and km/p + ((k+1)/2)(m/p)log2 m in the special case
4	62	2846	0.23022163	Compressed Tries This paper presents a new data structure, called a compressed trie or C-trie, to be used in information retrieval systems. It has the same underlying m-ary tree structure as a
4	63	1788	0.22707391	Toward a General Processor for Programming Languages Many efforts have been made to develop a better way of implementing a higher level programming language than by the construction of a whole new
4	64	3134	0.22261603	The Use of Normal Multiplication Tables for Information Storage and Retrieval This paper describes a method for the organization and retrieval of attribute based information systems, using the
4	65	2896	0.22205634	An Exercise in Proving Parallel Programs Correct A parallel program, Dijkstra's on-the-fly garbage collector, is proved correct using a proof method developed by Owicki. The fine degree of in
4	66	2160	0.22039233	Canonical Structure in Attribute Based File Organization A new file structure for attribute based retrieval is proposed in this paper. It allows queries involving arbitrary Boolean functions of
4	67	1367	0.21977878	Character Structure and Character Parity Sense for Parallel -by-Bit Data Communication in ASCII* (Proposed American Standard) CACM September, 1966 CA660912 JB March 2, 1978 4:26 PM
4	68	1711	0.21719776	keeping. Information is given on patents, copyrights and trade secret protection for programs, and the problem of using copyrighted material in information storage and retrieval systems, including the

1 1	I	I	Ī	1
4	69	2795	0.21719776	model. In generating sentences from meaning structures, the program employs both the information retrieval and deduction capabilities of the memory model. The model encompasses several diverse
4	70	1262	0.21610773	Procedure-Oriented Language Statements to Facilitate Parallel Processing Two statements are suggested which allow a programmer writing in a procedure- oriented language to indicate sections of
4	71	440	0.20856614	considerable discriminating power. Rules that can be applied generally to name retrieval systems have been developed in a methodological study of the linkage of vital and health records into family
4	72	1652	0.20711954	in area such as informationretrieval , document classification, computer-aided teaching and text editing. This code, called IPC (Information Processing Code), is an 8-bit code set constructed so
4	73	1514	0.20635842	values of an adjustment statistic. An example evaluates the gain parameters for a typical information retrieval system. CACM November, 1967 Shumway, R. H. CA671106 JB February 26, 1978 2:59 PM
4	74	1828	0.20607825	Synchronization in a Parallel -Accessed Data Base The following problem is considered: Given a data base which can be manipulated simultaneously by more than one process, what are the rules for
4	75	2141	0.20479368	strings-sequence of like codes-by three methods and in four directions. Relationships are developed between compression alternatives to avoid comparing all of them. The technique has been used to
4	76	2543	0.20479368	Reducing the Retrieval Time of Scatter Storage Techniques A new method for entering and retrieving information in a hash table is described. The method is intended to be efficient if most entries
4	77	2412	0.2047143	Comment on Brent's Scatter Storage Algorithm CACM November, 1973 Feldman, J. A. Low, J. R. Hashing, information storage and retrieval , scatter storage, searching, symbol table
4	78	2552	0.2047143	A Note on When To Chain Overflow Items Within a Direct-Access Table CACM January, 1973 Bays, C. hash code, open hash, chaining, information retrieval , collision 3.7 4.9 CA730109 JB January
4	79	2781	0.2047143	information retrieval 3.7 CA750307 JB January 9, 1978 4:37 PM

4	80	1456	0.20312296	Storage and Retrieval of Aspects of Meaning in Directed Graph Structures An experimental system that uses LISP to make a conceptual dictionary is described. The dictionary associates with each
4	81	2623	0.20312296	other information coding techniques. CACM August, 1974 Hahn, B. file maintenance, information retrieval , utility programs, text compression, coding techniques, data storage, data management
4	82	2484	0.202765	results in different information structures, as list, tree, ring, etc. Thus the problem of information organization and storage is reduced to that of defining relations and formulating algorithms
4	83	3135	0.20197439	, chemical structure search, information retrieval , crystal -structure analysis, drug analysis and design 3.13 3.63 3.74 CA790401 DH May 21, 1979 10:50 AM
4	84	2451	0.20110689	Design of Tree Structures for Efficient Querying A standard information retrieval operation is to determine which records in a data collection satisfy a given query expressed in terms of data
4	85	2722	0.19743586	data structure for storage of information to be retrieved by associative searches. The k-d tree is defined and examples are given. It is shown to be quite in its storage requirements. A
4	86	1108	0.19457446	Digital Data Processor for Tracking the Partially Illuminated Moon* A study of lunar tracking techniques and fabrication of a breadboard to assess the feasibility of the best technique selected was
4	87	2377	0.19457446	A Hardware Architecture for Implementing Protection Rings Protection of computations and information is an important aspect of a computer utility. In a system which uses segmentation as a memory
4	88	406	0.19209304	The Use of Threaded Lists in Constructing a Combined ALGOL and Machine-Like Assembly Processor CACM January, 1961 Evans Jr., A. Perlis, A. J. Van Zoeren, H. CA610108 JB March 17, 1978 1:20 AM
4	89	1527	0.1893306	A Grammar Base Question Answering Procedure The subject of this paper is a procedure for the automatic retrieval of certain segments of stored information , either explicitly or implicitly

				, direct access method, randomizing, random access, file addressing, file organizations, file structures, scatter storage, search method, collisions, synonyms, clustering,
4	90	2991	0.18778704	<pre>information retrieval, open</pre>
4	91	1680	0.18740638	employing a display unit to interleave tutoring with other computer operations such as simulation, programming, and information retrieval . It is written in FORTRAN IV (G) for the IBM System
4	92	1194	0.18609634	, is reviewed briefly. Two principles are presented as paramount in the provision of information services: (1) easy accessibility to the information files by users unfamiliar with file organization
4	93	3075	0.18597947	Fast Parallel Sorting Algorithms A parallel bucket-sort algorithm is presented that requires time O(log n) and the use of n processors. The algorithm makes use of a technique that requires more
4	94	1742	0.18540506	is a key factor in display processor design. CACM June, 1968 Myer, T. H. display processor design, display system, computer graphics, graphic terminal, displays, graphics, display generator
4	95	1530	0.18354164	The ML/I Macro Processor A general purpose macro processor called ML/I is described. ML/I has been implemented on the PDP-7 and I. Atlas 2 computers and is intended as a tool to allow users to
4	96	2388	0.18319824	number of items in the tree. The binary trees grown by this algorithm sometimes have some branches longer than others; therefore, it is possible to reduce the average retrieval time by
4	97	2650	0.18319824	time proportional to a , the number of characters in a. The method should find applications in information retrieval , artificial intelligence, and spelling correction systems. CACM May
4	98	2746	0.18319824	. J. keywords and phrases, string pattern matching, bibliographic search, information retrieval , text-editing, finite state machines, computational complexity. 3.74 3.71 5.22 5.25 CA750607 JB
4	99	2895	0.18130824	A Language for Formal Problem Specification A language for specifying the in tended behavior of communicating parallel processes is described. The specifications are constrain ts on the order in

				zeros and their multiplicity are readily determined. At no point in the method is polynomial deflation used. CACM November, 1972 Patrick, M. L. parallel
4	100	2266	0.18030451	numerical algorithms, real polynomials, real