Nome do Projeto: PillTime Alarm

Integrantes:

Maria Eduarda Nascimento Andrade – 12311EBI007 Italo Gowbery Mota Vieira – 12311EAU013 Gabriel Henrique Silva Cardoso – 12311EBI06 João Vitor Ramos Mitidiero –12311ETE014 Lucas Militello da Silva – 12311EBI002

Resumo

O projeto PillTime Alarm visa desenvolver um despertador sonoro, focado em auxiliar usuários no horário de tomar seus medicamentos. A ideia central é criar um dispositivo que emite um alerta sonoro no momento programado para a administração de determinado remédio, tal como a exibição de uma mensagem no visor. Após a pessoa apertar o botão sinalizando que o medicamento foi tomado, uma mensagem de status é enviada por Whatsapp aos números de telefone cadastrados.

Funcionalidades Principais

- 1. Despertador Sonoro: Emitirá um som no horário programado para a ingestão do medicamento.
- 2. Conversor de Áudio para Toque no Buzzer: Permite a personalização do som do alarme através de um conversor de áudio.
- 3. Visor: Exibirá informações relevantes, como a dose e o nome do medicamento a ser tomado.
- 4. Desligamento por Movimento Detectado: O dispositivo permitirá o desligamento do alarme por meio da detecção de movimento.
- 5. Interface de configuração.
- 6. Botão que quando acionado, manda uma mensagem de que o medicamento foi tomado.

Componentes que serão utilizados

- ESP32, Buzzer, Visor, Sensor de Proximidade, Botões. Há possibilidade de alteração nessa lista.

Interface

- Utilização do App Inventor ou alguma outra tecnologia que melhor se encaixar nos requisitos, para criar uma interface intuitiva e fácil de usar, permitindo que o usuário configure facilmente os horários dos alarmes, personalize o som do despertador e visualize informações sobre os medicamentos.

Documentação Completa

- Vídeos e imagens detalhados sobre o funcionamento do PillTime Alarm.
- Arquivo detalhado da montagem, incluindo esquemático, disponibilizado no GitHub para fácil acesso e replicação,
- Slides de apresentação,
- Relatório para ser entregue.

Benefícios

- Auxilia na administração correta de medicamentos.
- Personalização do alarme para atender às preferências do usuário.
- Interface fácil de configurar, tornando o dispositivo acessível a usuários de todas as idades.

		Requisitos
() Comunicação com a porta serial	
() Armazenar dados na nuvem	
() Acionamento de motor	
() Comunicação via Bluetooth ou Wifi	

Prazos/Calendário

Fevereiro						
D	S	Т	Q	Q	S	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29		

Março						
D	S	Т	Q	Q	S	S
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

	Abril					
D	S	Т	Q	Q	S	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	18	19	20	21
22	23	24	25	26	27	28
29	20					

15 (18/04)	**Apresentação Projeto Final.	Arquivos em C; Escrita e Leitura em Texto; Escrita e Leitura em Binário. Dicas de aperfeiçoamento; SWIG; Encerramento da Disciplina.
16 (25/04)	**Apresentação Projeto Final.	**Prova de recuperação.

02/02 até 09/02 – Aprender a mexer no Github Sugestão – Live 05/02 e 06/02 @TeoCalvo, Monitoria PP 09/02

12/02 até 16/02 – Estudar ambiente de desenvolvimento do código (IDE) + Configuração + Verificar comunicação Sugestão – Canal Fernando K tecnologia

19/02 até 23/02 – Fazer testes simples: ligar o LED da ESP32, ligar um LED externo, testar buzzer, sensores, etc

* será que cada um consegue ficar com uma esp32 em casa testando?

26/02 até 01/03 - Introdução ao MQTT, conceitos básicos, e configuração de um broker MQTT

04/03 até 04/04 – Implementar o código 25/03 até 04/04 – Foco maior na Interface

- * talvez fazer uma reunião nesse período*
- Início da implementação do alarme, focando na lógica geral do sistema + discussão sobre Interface.
- > Quem for da frente da interface, interessante já ter pesquisado bibliotecas e formas de implementação para chegar "pronto" antes do dia 25/03

Possíveis divisões no back-end:

- Desenvolvimento da lógica para configurar horários de medicamento, utilizando a Real-Time Clock (RTC) do ESP32 para garantir precisão + exibicão no LCD.
- Conexão do buzzer ao ESP32, seleção de música e integração com controle de volume.
- Botão para enviar mensagem de medicamento tomado com sucesso.

04/04 até 18/04 – Definir quem vai fazer o relatório escrito, os slides e atualizar a documentação do README.md + Ajustes finais

IDE's possíveis: Arduino, PlatformIO, Espressif IDF (alguns dá para integrar com o VS Code), etc. Simuladores de microcontrolador: Tinkercad, Wokwi, Proteus, etc.

Criar esquemático: Kicad, etc.