LIFLC – Logique classique

CM6 – Logique du premier ordre: formules

Licence informatique UCBL – Automne 2018–2019

- Prédicats
- 2 Syntaxe
- Sémantique
- 4 Substitutions et renommages
- Théories logiques
- 6 Déduction naturelle

Faits et objets

Termes : valeur dans l'univers ${\cal U}$

Formules : valeur booléenne

Quel lien?

Signature - étendue

Definition

Une signature S = (C, F, P, ar):

- ullet ${\cal C}$: ensemble (non vide) de **symboles** de constantes
- $oldsymbol{\circ}$: ensemble de **symboles** de fonction
- P : ensemble de **symboles** de prédicats
- $ar: \mathcal{F} \cup P \to \mathcal{N}^*$: nombre d'arguments de chaque symbole de fonction et de prédicat

Notation

```
f/n signifie ar(f) = n
 p/n signifie ar(p) = n
```

Exemples

 $\mathsf{Entiers}\; (\mathsf{de}\; \mathsf{Peano}): \mathcal{S}_{\mathit{peano}} = (\mathcal{C}_{\mathit{peano}}, \mathcal{F}_{\mathit{peano}}, \mathit{ar}_{\mathit{peano}})$

- $C_{peano} = \{zero\}$
- $\mathcal{F}_{peano} = \{succ/1, plus/2, mult/2\}$
- $P_{peano} = \{inf/2, pair/1\}$

Chaînes de caractères : $\mathcal{S}_{char} = (\mathcal{C}_{char}, \mathcal{F}_{char}, ar_{char})$

- $C_{char} = \{a, b, c\}$
- $\mathcal{F}_{char} = \{concat/2\}$
- $P_{char} = \{ suff/2, pref/2 \}$

- Prédicats
- Syntaxe
- Sémantique
- 4 Substitutions et renommages
- Théories logiques
- 6 Déduction naturelle

Quantificateurs

Deux quantificateurs :

- ∀, ∃
- lie une variable

Formules

Le plus petit ensemble stable par les règles suivantes

- Si $t_1, ..., t_n \in \mathcal{T}$ et si $P/n \in P$ alors $P(t_1, ..., t_n)$ est une formule
- ullet Si t_1 , $t_2 \in \mathcal{T}$ alors $t_1 \doteq t_2$ est une formule
- ⊥ est une formule
- Si A est une formule, alors $(\neg A)$ est une formule
- Si A et B sont des formules, alors $(A \vee B)$, $(A \wedge B)$ et $(A \Rightarrow B)$ sont des formules
- Si A est une formule et $x \in \mathcal{V}$ alors $(\forall x \ A)$ et $(\exists x \ A)$ sont des formules

Exemples de formule

- $(x \doteq succ(y)) \land inf(x, y)$
- $\exists y \ inf(succ(x), y)$
- $\forall x \ \forall y \ (x \doteq succ(y) \land succ(x) \doteq y)$
- $\forall x \ inf(x, succ(x))$
- $\forall x \ \forall y \ (\inf(x,y) \Rightarrow \inf(x,\operatorname{succ}(y))$
- $inf(x, zero) \Rightarrow \exists y \ succ(y) \doteq zero$
- $inf(x, zero) \Rightarrow \exists x \ succ(x) \doteq zero$

Variables de termes

V(t): variables de t

- $V(x) = \{x\}$ si $x \in \mathcal{V}$
- $V(c) = \emptyset$ si $c \in \mathcal{C}$ $V(f(t_1, ..., t_n)) = \bigcup_{i=1}^n V(t_i)$

Variables libres

Variables non masquées par un quantificateur

FV(A): variables libres de A

- $FV(P(t_1, ..., t_n)) = \bigcup_{i=1}^n V(t_i)$
- $FV(t_1 \doteq t_2) = V(t_1) \cup V(t_2)$
- $FV(\neg A) = FV(A)$
- $FV(A \lor B) = FV(A \land B) = FV(A \Rightarrow B) = FV(A) \cup FV(B)$
- $FV(\forall x \ A) = FV(\exists x \ A) = FV(A) \setminus \{x\}$

Exemples

- $FV((x \doteq succ(y)) \land inf(x, y)) = \{x, y\}$
- $FV(\exists y \ inf(succ(x), y)) = \{x\}$
- $FV(\forall x \ \forall y \ (x = succ(y) \land succ(x) = y)) = \emptyset$
- $FV(\forall x \ inf(x, succ(x))) = \emptyset$
- $FV(\forall x \ \forall y \ (inf(x,y) \Rightarrow inf(x,succ(y))) = \emptyset$
- $FV(inf(x, zero) \Rightarrow \exists y \ succ(y) \doteq zero) = \{x\}$
- $FV(inf(x, zero) \Rightarrow \exists x \ succ(x) \doteq zero) = \{x\}$

Fermetures

Ajout de quantificateurs pour les variables libres

Fermeture universelle

Si $FV(A) = \{x_1, ..., x_n\}$ alors sa fermeture universelle (notée $\forall A$) est

$$\forall x_1 \dots \forall x_n A$$

Fermeture existentielle

Si $FV(A) = \{x_1, ..., x_n\}$ alors sa fermeture existentielle (notée $\exists A$) est

$$\exists x_1 \dots \exists x_n A$$

- Prédicats
- 2 Syntaxe
- Sémantique
- 4 Substitutions et renommages
- Théories logiques
- 6 Déduction naturelle

Interprétations

Interprétation I des symboles dans \mathcal{C} , \mathcal{F} et P

- Si $c \in \mathcal{C}$ alors $I(c) \in \mathcal{U}$
- Si $f/n \in \mathcal{F}$ alors $I(f) : \mathcal{U}^n \to \mathcal{U}$
- Si $P/n \in P$ alors $I(P) \subseteq \mathcal{U}^n$

Évaluation - 1

Fonction récursive $eval(I, \zeta)(A)$:

- Si $A = P(t_1, ..., t_n)$ Si $eval(I, \zeta)(t_1) = u_1 ... eval(I, \zeta)(t_n) = u_n$ et si I(P/n) = Ralors $eval(I, \zeta)(A) = 1$ ssi $(u_1, ..., u_n) \in R$
- Si $A = (t_1 \doteq t_2)$ Si $eval(I, \zeta)(t_1) = u$ et $eval(I, \zeta)(t_2) = u$ alors $eval(I, \zeta)(A) = 1$ sinon $eval(I, \zeta)(A) = 0$
- $eval(I, \zeta)(\neg B) = non(eval(I, \zeta)(B))$
- $eval(I, \zeta)(B \lor C) = ou(eval(I, \zeta)(B), eval(I, \zeta)(C))$
- $eval(I, \zeta)(B \wedge C) = et(eval(I, \zeta)(B), eval(I, \zeta)(C))$
- $eval(I, \zeta)(B \Rightarrow C) = implique(eval(I, \zeta)(B), eval(I, \zeta)(C))$

Évaluation - 2

- Si $A = \forall x \ B$ et pour tous les $u \in \mathcal{U}$ alors si $eval(I, \zeta[x := u])(B) = 1$ alors $eval(I, \zeta)(A) = 1$ sinon $eval(I, \zeta)(A) = 0$
- Si $A = \exists x \ B$: si on peut trouver $u \in \mathcal{U}$ tel que $eval(I, \zeta[x := u])(B) = 1$, alors $eval(I, \zeta)(A) = 1$ sinon $eval(I, \zeta)(A) = 0$

$$\zeta[x := u]: \quad x \mapsto u$$

 $y \mapsto \zeta(y) \text{ si } x \neq y$

Interprétation dans les entier naturels

Univers $\mathcal{U}_{\mathcal{N}} = \mathcal{N}$ entiers naturels

$$I_{\mathcal{N}}(zero) = 0$$

 $I_{\mathcal{N}}(succ) = n \mapsto n + 1$
 $I_{\mathcal{N}}(plus) = n, m \mapsto n + m$
 $I_{\mathcal{N}}(mult) = n, m \mapsto n \times m$
 $I_{\mathcal{N}}(inf) = \{(n, m) \mid n < m\}$
 $I_{\mathcal{N}}(pair) = \{n \mid n\%2 = 0\}$

Interprétation dans les chaînes de caractères

Univers $\mathcal{U}_{\textit{str}} = \{\mathfrak{a},\mathfrak{b},\mathfrak{c}\}^*$: chaînes de caractères sur l'alphabet $\mathfrak{a},\mathfrak{b},\mathfrak{c}$

```
I_{str}(a) = \mathfrak{a}
I_{str}(b) = \mathfrak{b}
I_{str}(c) = \mathfrak{c}
I_{str}(concat) = s_1, s_2 \mapsto s_1 s_2
I_{str}(pref) = \{(s_1, s_2) \mid s_2 \text{ commence par } s_1\}
I_{str}(suff) = \{(s_1, s_2) \mid s_2 \text{ fini par } s_1\}
```

Évaluation : exemple

$$\zeta: x \mapsto 4$$

$$y \mapsto 3$$

$$eval(I_{\mathcal{N}}, \zeta)((x = succ(y)) \land inf(x, y))$$

$$et 0$$

$$\underbrace{x}_{4} = succ(\underbrace{y}_{3}) \quad 1 \quad inf(\underbrace{x}_{4}, \underbrace{y}_{3}) \quad 0$$

Évaluation : exemple - avec quantificateur

$$eval(I_{\mathcal{N}}, \zeta)(\forall x \ \forall y \ (inf(x, y) \Rightarrow inf(x, succ(y)))) = 1$$

Vérification compliquée car pas directement calculable

Modèle

Interprétation "correspondant" à la formule :

Définition

Soit un univers $\mathcal U$ et une interprétation I. L'interprétation est un modèle de A (noté $I\models A$) si **pour toute valuation** $\zeta:\mathcal V\to\mathcal U$:

$$eval(I,\zeta)(A)=1$$

Satisfiabilité - validité

Définition : satisfiabilité

Une formule est satisfiable si elle admet un modèle.

Définition : validité

Une formule est *valide* si toute interprétation est un modèle de cette formule.

Conséquence logique

Définition

Soit *E* un ensemble de formules et *A* une formule.

E a pour conséquence logique A (noté $E \models A$) si **pour tout** univers \mathcal{U} , interprétation I et valuation ζ

• si pour toute formule $B \in E$:

$$eval(I,\zeta)(B)=1$$

alors

$$eval(I,\zeta)(A)=1$$

Équivalence de formule

Définition

A est logiquement équivalente à B (noté $A \equiv B$) ssi :

$$A \models B$$
 et

$$B \models A$$

- Prédicats
- 2 Syntaxe
- Sémantique
- Substitutions et renommages
- Théories logiques
- 6 Déduction naturelle

Application de substitution sur une formule

Substitution $\sigma: \mathcal{V} \to \mathcal{T}$

•
$$P(t_1, ..., t_n)\sigma = P(t_1\sigma, ..., t_n\sigma)$$

•
$$(t_1 \stackrel{.}{=} t_2)\sigma = (t_1\sigma) \stackrel{.}{=} (t_2\sigma)$$

•
$$(\neg A)\sigma = \neg (A\sigma),$$

 $(A \lor B)\sigma = (A\sigma) \lor (B\sigma),$
 $(A \land B)\sigma = (A\sigma) \land (B\sigma),$
 $(A \Rightarrow B)\sigma = (A\sigma) \Rightarrow (B\sigma)$

$$(A \Rightarrow B)\sigma = (A\sigma) \Rightarrow (B\sigma)$$

$$(\forall x \ A)\sigma = \forall x \ (A\sigma)$$
$$(\exists x \ A)\sigma = \exists x \ (A\sigma)$$

$$\left\{ \begin{array}{l} (\forall x \ A)\sigma = \forall x \ (A\sigma) \\ (\exists x \ A)\sigma = \exists x \ (A\sigma) \end{array} \right\} \text{ si } x \not\in dom(\sigma) \text{ et } x \not\in \bigcup_{y \in dom(\sigma)} V(\sigma(y))$$

Exemple

$$((x = succ(y)) \land inf(x, y))[x := succ(y), y := plus(zero, z)]$$

$$= (succ(y) = succ(plus(zero, z))) \land inf(succ(y), plus(zero, z))$$

Exemple - 2

$$(\exists y \; inf(succ(x), y))[x := z] = \exists y \; inf(succ(z), y)$$

$$(\exists y \; inf(succ(x), y))[y := z] \quad \text{non défini}$$

$$(\exists y \; inf(succ(x), y))[x := y] \quad \text{non défini}$$

Équivalences remarquables

Renommage de variable :

- $\forall x \ A \equiv \forall y \ A[x := y] \text{ si } y \notin FV(A)$
- $\exists x \ A \equiv \exists y \ A[x := y] \text{ si } y \notin FV(A)$

Autres équivalences

- $\forall x \forall y \ A \equiv \forall y \forall x \ A$
- $\bullet \ \exists x \exists y \ A \equiv \exists y \exists x \ A$
- $\exists x \ \neg A \equiv \neg \forall x \ A$
- $\forall x \neg A \equiv \neg \exists x A$

Inversions ∃∀ : pas d'équivalence

- $\exists y \ \forall x \ A \models \forall x \ \exists y \ A$
- $\forall x \exists y A \not\models \exists y \forall x A$

- Prédicats
- 2 Syntaxe
- Sémantique
- 4 Substitutions et renommages
- Théories logiques
- 6 Déduction naturelle

Raisonnement sur une interprétation difficile

- Possible de raisonner sur un univers fini en faisant des vérifications systématiques
 - Très coûteux en général
- Pas toujours possible sur un univers infini : pas de vérification systématique
- Infinité d'interprétation possibles

Représenter les hypothèses / la connaissance

Utiliser des formules pour représenter ce que l'on sait.

Théorie : ensemble de formules représentant la connaissance d'un domaine

Savoir si une formule est "vraie" : savoir si elle est conséquence logique de la théorie

- Prédicats
- 2 Syntaxe
- Sémantique
- 4 Substitutions et renommages
- Théories logiques
- 6 Déduction naturelle

Extension de la déduction naturelle au premier ordre

Règles additionnelles pour les quantificateurs et pour \doteq

Manipulation des termes à travers des substitutions

Théories à gauche dans les séquents

Règles propositionnelles

Axiome

$$\overline{\Gamma, A \vdash A}$$
 (ax)

Affaiblissement

$$\frac{\Gamma \vdash A}{\Gamma. B \vdash A}$$
 (aff)

Règles pour ⇒

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \ (\Rightarrow_i)$$

$$\frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \ (\Rightarrow_e)$$

Règles pour \perp

$$\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ (\bot_i) \ \mathsf{ou} \ (\lnot_e)$$

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \ (\bot_e)$$

Règles pour ¬

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} (\neg_i)$$

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} (\neg_c)$$

Règles propositionnelles - 2

règles pour ∧

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ (\land_i)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\land_e^g)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\land_e^d)$$

règles pour V

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor_i^g) \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor_i^d)$$

$$\frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor_e)$$

Règles sur les quantificateurs et l'égalité

Règles pour ∀

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x \ A} \ (\forall_i) \ \mathsf{si} \ x \not\in FV(\Gamma)$$

$$\frac{\Gamma \vdash \forall x \ A}{\Gamma \vdash A[^t/_x]} \ (\forall_e)$$

Règles pour ∃

$$\frac{\Gamma \vdash A[^t/_{\times}]}{\Gamma \vdash \exists_{\times} A} \ (\exists_i)$$

$$\frac{\Gamma \vdash \exists x \ B \quad \Gamma, B \vdash A}{\Gamma \vdash A} \ (\exists_e) \ \mathsf{si} \ x \not\in FV(\Gamma, B)$$

Règle pour ≐

$$\frac{1}{\Gamma \vdash t \stackrel{.}{=} t} \stackrel{(=_i)}{=}$$

$$\frac{\Gamma \vdash A[^t/_x] \quad \Gamma \vdash t \stackrel{.}{=} t'}{\Gamma \vdash A[^{t'}/_x]} \ (\stackrel{.}{=}_e)$$

Exemple de dérivation

$$\Gamma = \forall x \ \forall y \ (inf(x,y) \Rightarrow inf(x,succ(y)), \ \forall x \ inf(x,succ(x))$$
$$\frac{\overline{\Gamma \vdash \forall x \ inf(x,succ(x))}}{\Gamma \vdash inf(zero,succ(zero))} \stackrel{\text{(ax)}}{(\forall_e)}$$