

SM-1402 Basic Statistics

Chapter 4: Analysis of qualitative data [handout version]

Dr. Haziq Jamil Mathematical Sciences, Faculty of Science, UBD https://haziqj.ml

Semester II 2022/23

Learning outcomes

- Be familiar with the binomial distribution and its relationship to the normal distribution when *n* is large.
- Calculate sample proportions and construct a confidence interval to quantify the statistical uncertainty.
- Perform a statistical test for testing hypothesis regarding proportions.
- Perform a Chi-squared test of independence for frequency tables.

Required reading

• Madsen (2016) Chapter 5.

Motivation

Introduction

In this chapter we look at qualitative data. They can be

- 1. Binary
 - Questionnaire survey: "Yes" / "No" type questions.
 - o Games: "Heads" / "Tails"
- 2. Categorical (more than 2 categories)
 - Likert scale responses: "S. Agree" / "Agree" / "Neutral" / "Disagree" / "S. Disagree"
 - Faculties in UBD: "FOS" / "FIT" / "FASS" / "IHS" / "Others".

Remark

If we have more than 2 categories, we can always "collapse" the data into binary. As an example, the 5-point scale can be converted to binary ("Agree" vs "Disagree").

Introduction

Binomial distribution

Uncertainty in sample surveys

Statistical tests

Contingency tables

Binomial distribution

The binomial distribution describes the distribution of the number of "successes" in n independent and identical binary trials. That is, suppose we have a situation such that

- i. A finite number of trials n are carried out.
- ii. Each trial is independent of each other.
- iii. The outcome of each trial is either "success" or "failure".
- iv. The probability success $p \in (0,1)$ is the same for each trial.

Definition 1 (Binomial distribution)

Let X be the number of success outcomes in n trials. Then X has a binomial distribution, written $X \sim \text{Bin}(n,p)$. The probability that exactly X = x success are obtained is

$$\Pr(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}.$$

Example

Example 2

At a supermarket, 60% of customers pay by credit card. Find the probability that in a randomly selected sample of ten customers,

- (a) exactly two pay by credit card.
- (b) more than seven pay by credit card.

Let X be the number of customers in sample of ten who pay by credit card. Consider 'paying by credit card' as a *success*, so p = 0.6. Assume also independence of n = 10 trials. Then $X \sim \text{Bin}(10, 0.6)$.

- (a) $Pr(X = 2) = {}^{10}C_2(0.6^2)(0.4^8) = 0.011.$
- (b)

$$Pr(X > 7) = Pr(X = 8) + Pr(X = 9) + Pr(X = 10)$$

$$= {}^{10}C_8(0.6^8)(0.4^2) + {}^{10}C_9(0.6^9)(0.4^1) + {}^{10}C_{10}(0.6^{10})(0.4^0)$$

$$= 0.17$$

Mean and variance of binomial

Proposition 3

Let $X \sim \text{Bin}(n, p)$. Then

- Mean = $np [\mu]$
- Variance = np(1-p) [σ^2]
- SD = $\sqrt{np(1-p)}$

Example 4

Consider throwing a dice 48 times, and consider a "success" to be throwing a six. The total number of successes, X, follows Bin(48, 1/6). So

- $\mu = 48 \times 1/6 = 8$ throws, while
- $\sigma = \sqrt{48 \times 1/6 \times 7/6} = 2.58$.

Mean and variance of binomial (cont.)

The bar plot of the binomial distribution with n=48 and p=1/6.

Relationship to the normal distribution

For large n, $X \approx N(np, np(1-p))$. [Needs np > 5 and n(1-p) > 5]

Introduction

Binomial distribution

Uncertainty in sample surveys

Statistical tests

Contingency tables

Uncertainty in sample surveys

In a population, we may want to find out *proportions* relating to something of interest.

- How many voters for Conservatives in the UK?
- How many support new Mon-Fri working week?
- How many Liverpool FC supporters?

These may be unknown quantities, but can be *estimated* through sample surveys. Because of randomness, there is some uncertainty involved.

Idea

Take a sample of size n. Let X be the quantity (frequency) we are interested in. There is a probability p that we get a "successful" outcome. Then $X \sim \text{Bin}(n,p)$.

Suppose that in our sample we observe X=x "successes". Then an estimate of the unknown p is

$$\hat{\rho} = \frac{x}{n}.$$

Example

Example 5

In our Fitness Club example, what is the proportion of kids doing strength training? With probability p a randomly selected kid does strength training. Assume that out of n=30 kids in the sample, x=12 do strength training. Then an estimate of p is

$$\hat{p} = \frac{x}{n} = \frac{12}{30} = 0.40 = 40\%.$$

• If the sample is large enough, then we can approximate the binomial distribution with the normal distribution, i.e.

$$\hat{p} = \frac{x}{n} \sim N(p, p(1-p)/n)$$

• For the example above, the SD of our estimate \hat{p} is

$$\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.4(1-0.4)}{30}} = 0.09$$

Constructing intervals for proportions

Definition 6

The 95% confidence interval for proportion estimate is

$$\hat{p} \pm 1.96 \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $\hat{p} = x/n$.

Continuing our example above, the 95% confidence interval for p is

$$0.4 \pm 1.96 \times 0.09 = 0.40 \pm 0.18 = [0.22, 0.58].$$

Which is not very "confident" at all!

Definition 7 (Representative sample)

If we knew the true value of p, and it is contained within the 95% interval, we can say that the sample is representative.

Representativeness

A sample will always give incomplete information. The key is to ensure the best possible quality of information given the limited resources.

Common sources of bias:

- 1. Subjective choice of sample
- 2. Self-selection
- 3. Non-response
- 4. Convenience sampling
- Sampling from an incomplete list (sampling frame)

Warning: Biased and non-representative samples give inaccurate results!

Statistical uncertainty

Definition 8 (Statistical uncertainty for p)

The general formula for the statistical uncertainty u of a relative frequency is

$$u := 1.96 \times \sqrt{\frac{p(1-p)}{n}}$$

Remarks

- Use $\hat{p} = x/n$ instead of p in calculations.
- The above formula is valid when the sample size n is much smaller than the population size. (This has something to do with sampling without replacement)
- The uncertainty is related to
 - The true value of p; and
 - The sample size n.
- The uncertainty is independent of the population size! (Roughly)

Statistical uncertainty (cont.)

Relative statistical uncertainty

While it does seem that uncertainty is small when p is small, we should also consider the uncertainty *relative to* the proportion itself.

Definition 9 (Relative uncertainty)

The relative statistical uncertainty \tilde{u} for a relative frequency p is

$$\tilde{u} := \frac{u}{p} = \frac{1.96 \times \sqrt{p(1-p)/n}}{p}$$

Consider a sample survey with some amount of uncertainty $\it u$. For argument's sake, let $\it u=0.2$

- If the true value of p is large (say p = 0.9), then the uncertainty is relatively small ($\tilde{u} = 0.2/0.9 = 0.22$);
- If the true value of p is small (say p=0.1), then the uncertainty is relatively large ($\tilde{u}=0.2/0.1=2.0$).

Relative statistical uncertainty (cont.)

Introduction

Binomial distribution

Uncertainty in sample surveys

Statistical tests

Contingency tables

Statistical tests

Sometimes, you have a hypothesis that you want to confirm or reject. The idea is, you set up an "experiment" and analyse whether or not the data fits your original hypothesis probabilistically.

Example 10

I want to check whether a coin is biased-does it come up heads more often than tails? My hypothesis test is

$$H_0: p = 0.5$$
 v.s. $H_1: p \neq 0.5$

I then toss the coin n=20 times, and get the following results

If p = 0.5 truly, then we expect 10 H on average. Here, 15 H were observed. What is the probability of observing this event, or other events "just as bad" as this?

p-values

Events that would be "at least as bad" as x = 15 if truly p = 0.5 in n = 20 tosses would be

- x = 15, 16, 17, 18, 19, 20; or
- x = 0, 1, 2, 3, 4, 5

Adding up the red bars gives us a total probability value of 0.0414.

Concluding tests

If the p-value is small (typically less than 5%), we **reject** the hypothesis. Otherwise we "accept" it¹. If the p-value is small, then either

- the hypothesis is <u>actually true</u>, but we have observed a rare event (and made an error!); or
- the hypothesis is actually false.

Whatever the case, we can never know the truth, but only a measure of how likely the evidence is in if our hypothesis was true.

Definition 11 (Significance level)

The value of 5% is known as the *significance level*. It is also the probability of making a Type I error (rejecting a true hypothesis aka false positive).

 $^{^{1}}$ Logically speaking a statistical test does not have the capability to accept a hypothesis. It simply means that there was not enough evidence to reject. Absence of evidence \neq evidence of absence.

Summary

Workflow of a hypothesis test

The objective is to decide whether the hypothesis is supported by data from a sample (or an experiment)

- The hypothesis can either be true or false.
- We consider the hypothesis to be true (default), <u>unless</u> data indicate that it is false.

The practical approach is as follows:

- 1. Assume hypothesis is true.
- 2. Calculate the probability of outcomes "at least as rare" as the observed outcome.
- 3. If this probability is small (typically less than 5%), reject the hypothesis. Otherwise, accept it.

Introduction

Binomial distribution

Uncertainty in sample surveys

Statistical tests

Contingency tables

2×2 contingency tables

In the Fitness Club survey, we are still interested in proportion of kids doing strength training, but now we want to group data according to sex.

Table 1: Frequencies and proportions of kids who do srength training

Sex	Does strength training	No strength training	Freq.
Boys Girls	10 (58.8%) 2 (15.4%)	7 (41.2%) 11 (84.6%)	17 13
Total	12 (40.0%)	18 (60.0%)	30

Question: Is there an actual difference in the proportions between boys and girls? Can we test this?

Chi-square tests

Step 1: Assume hypothesis is true

Our (null) hypothesis is

 \mathcal{H}_0 : Same proportion between boys and girls doing strength training

which also speaks to *independence between rows and columns*. Now if H_0 was true, we would then **expect** the following frequencies:

- Does strength training (40% of kids)
 - Boys = $40\% \times 17 = 6.8$
 - Girls = $40\% \times 13 = 5.2$
- No strength training (60% of kids)
 - Boys = $60\% \times 17 = 10.2$
 - Girls = $60\% \times 13 = 7.8$

We now need a measure of how different ("bad") these are in relation to the observed frequencies.

Chi-square tests (cont.)

Step 2: Calculate p-value

Table 3: Expected frequencies of kids who do srength training

Sex	Does strength training	No strength training	Freq.
Boys	6.8 (40.0%)	10.2 (60.0%)	17
Girls	5.2 (40.0%)	7.8 (60.0%)	13
Total	12 (40.0%)	18 (60.0%)	30

Definition 12 (Chi-square test)

The chi-square test statistic is defined as

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

where O = observed frequencies and E = expected frequencies.

Chi-square tests (cont.)

Step 2: Calculate p-value

Observed:

S NS B 10 7 G 2 11 Expected:

S NS 3 6.8 10.2 G 5.2 7.8

For our example, the χ^2 value is

$$\chi^2 = \frac{(10 - 6.8)^2}{6.8} + \frac{(7 - 10.2)^2}{10.2} + \frac{(2 - 5.2)^2}{5.2} + \frac{(11 - 7.8)^2}{7.8} = 5.79$$

From the χ_1^2 tables, we see that $\Pr(\chi_1^2 > 3.841) = 0.05$, so definitely $\Pr(\chi_1^2 > 5.79) < 0.05$, so reject H_0 .

χ^2 table

Each table entry is x, where $\int_0^x f(x) \, dx = A$ with $X \sim \chi_k^2$.

k	0.010	0.050	0.100	0.250	0.500	0.750	0.900	0.950	0.990
1	0.000	0.004	0.016	0.102	0.455	1.323	2.706	3.841	6.635
2	0.020	0.103	0.211	0.575	1.386	2.773	4.605	5.991	9.210
3	0.115	0.352	0.584	1.213	2.366	4.108	6.251	7.815	11.345
4	0.297	0.711	1.064	1.923	3.357	5.385	7.779	9.488	13.277
5	0.554	1.145	1.610	2.675	4.351	6.626	9.236	11.070	15.086

General contingency tables

The χ^2 test can actually be used for the comparison of multiple rows and multiple columns. As an example, consider responses to the cardio workout and physical fitness questionnaire.

Table 4: Cardiovascular workout and physical fitness.

	Р			
Cardiovascular workouts?	Bad	Medium	Good	Total
No	6	6	3	15
Yes	3	6	6	15
Total	9	12	9	30

Now we have a 2×3 table. Apply the same technique as before:

- 1. Find the expected frequencies.
- 2. Calculate $\chi^2 = \sum \frac{(O-E)^2}{F}$.
- 3. Look up the χ^2 table.

Degrees of freedom

Proposition 13

The number of degrees of freedom for the χ^2 table is

$$df = (No. rows - 1) \times (No. columns - 1)$$

- That is why for the 2×2 table, we used df = 1.
- For the 2×3 table, we will use df = 2.