GLRT optimization

Gravitational Wave Data Analysis School in China Soumya D. Mohanty

UTRGV

Binary inspiral search

The numerical optimization problem is

- 1. Intrinsically difficult
 - Large number of maxima
 - Becomes worse as the number of parameters increases

2. Computationally expensive

- Binary inspiral network analysis for ground-based detectors grid based search: $\approx 10^8$ points in $\Theta_{intrinsic}$ space with $\approx 10^7$ floating point operations per point (1 hour segments) \Rightarrow 0.3 Tflops to just keep up with the incoming data rate
- Computational bottleneck ⇒ current searches follow a sub-optimal approach ⇒ Lower sensitivity ⇒ Reduced rate of detections

7

GLRT optimization approaches

Grid-based search

- High computational cost
- forces the use of sub-optimal methods
- Examples:
 - Binary inspiral network analysis: network GLRT used only when single detector GLRT+MLE find signals that are coincident in time
 - Search for continuous waves from deformed pulsars: Hierarchical search strategy where the first step is just GLRT over 1 day intervals (GLRT required over 1 year data!)

Stochastic search

- Random walk in parameter space
- Markov Chain Monte Carlo (MCMC): still very expensive
- Particle Swarm Optimization (PSO): Proving to be cheap and effective

Optimization terminology

OPTIMIZATION: OBJECTIVE

- Continuous optimization problem: Find the minimum value of a function $f(\bar{x})$ in a specified domain $\bar{x} \in \mathbb{D} \subseteq \mathbb{R}^D$
- Minimizer: The location, \bar{x}^* , of the minimum $f(\bar{x}^*) \leq f(\bar{x}), \bar{x}^* \in \mathbb{D}, \bar{x} \in \mathbb{D}$
- Alternatively

$$f(\bar{x}^*) = \min_{\bar{x} \in \mathbb{D}} f(\bar{x})$$
$$\bar{x}^* = \arg\min_{\bar{x} \in \mathbb{D}} f(\bar{x})$$

- $f(\bar{x})$ is called the fitness function (also objective function)
- D is called the search space (or constraint set)
- *Maximization of $f(\bar{x})$ is equivalent to minimization of $-f(\bar{x})$

GLRT and optimization terminology

- $L_G = \max_{\Theta} \langle \bar{y}, \bar{q}(\Theta) \rangle^2$
 - Fitness function is: $-\langle \bar{y}, \bar{q}(\Theta) \rangle^2$ (Because we only consider minimization)
 - Search space is the space of parameters $\Theta = (\theta_1, \theta_2, ..., \theta_D)$ left after amplitude maximization
- $L_G = \max_{\Theta} [\langle \overline{y}, \overline{q}_0(\Theta) \rangle^2 + \langle \overline{y}, \overline{q}_1(\Theta) \rangle^2]$
 - ► Fitness function is : $-(\langle \bar{y}, \bar{q}_0(\Theta) \rangle^2 + \langle \bar{y}, \bar{q}_1(\Theta) \rangle^2)$
 - ► Search space is the space of parameters $\Theta = (\theta_1, \theta_2, ..., \theta_{D-1})$ left after amplitude and initial phase

Standardized coordinates

Hypercube search space:

- If each parameter can be varied independently in some interval: $\theta_i \in [a_i, b_i]$
- Caution: Parameters may not be independent in some problems!

Standardized coordinates:

$$\theta_i \to x_i = \frac{\theta_i - a_i}{b_i - a_i}$$

$$0 \le x_i \le 1$$
 for $\theta_i \in [a_i, b_i]$

This Photo by Unknown Author is licensed under CC BY-SA

Particle swarm optimization

Selected topics from Chapters 4 and 5 of textbook

PARTICLE SWARM OPTIMIZATION

- A swarm intelligence method inspired by the flocking behavior of birds
- Each agent moves under random attraction towards the best food sources that it and the swarm have found

PARTICLE SWARM OPTIMIZATION

Initialization

- Particle: agent location
- Particle fitness: Fitness value at location
- Particle "velocity": Displacement vector to new position

Velocity update

- New velocity: sum of old velocity + acceleration terms
- Acceleration strengths are random

Position update

Particles move to new positions

VELOCITY UPDATE

A particle explores the search space randomly but constantly feels an attractive force towards:

- I. Personal best: best location it has found so far and ...
- 2. Global best: the best location found by the swarm so far

PSO terminology

Term	Definition	
Particles	Locations in <i>D</i> -dimensional search space	
$ar{x}^{(i)}[k]$	• Position of i^{th} particle in k^{th} iteration • $\bar{x}^{(i)}[k]=(x_0^{(i)}[k],x_1^{(i)}[k],\dots,x_D^{(i)}[k])$	
$ar{v}^{(i)}[k]$	• Velocity of i^{th} particle in k^{th} iteration • $\bar{v}^{(i)}[k]=(v_0^{(i)}[k],v_1^{(i)}[k],\dots,v_D^{(i)}[k])$	
$pbest \ (ar{p}^{(i)}\left[k ight])$	Best location found by the i^{th} particle over iterations 1 through k	
gbest $(ar{g}[k])$	Best location found by any particle over iterations 1 through \boldsymbol{k}	
v_{max}	Maximum velocity "Velocity Clamping": $v_j^{(i)}[k] \in [-v_{max}, v_{max}]$	

VELOCITY UPDATE

$$v_j^{(i)}[k+1] = w \ v_j^{(i)}[k] + c_1 r_{1,j}(p_j^{(i)}[k] - x_j^{(i)}[k]) + c_2 r_{2,j}(g_j \ [k] - x_j^{(i)}[k])$$

 $r_{m,j}$: random variable with uniform distribution in [0,1]

 c_1, c_2 : "acceleration constants"

w: "inertia" $\rightarrow w v_j^{(i)}[k]$: "Inertia Term"

 $c_1 r_{1,j}(p_i^j[k] - x_i^j[k])$:"Cognitive term"

 $c_2 r_{2,j}(g[k] - x_i^j[k])$: "Social term"

INTERPRETATION

- Inertia term: promotes exploration
 - *w* < 1 to avoid "particle explosion"
 - Common choice: Linear decay of w
- Social and cognitive terms: promote exploitation
 - Randomization in these terms promotes exploration

PSO DYNAMICAL EQUATIONS

Velocity update

$$v_j^{(i)}[k+1] = w \ v_j^{(i)}[k] + c_1 r_{1,j} (p_j^{(i)}[k] - x_j^{(i)}[k]) + c_2 r_{2,j} (g_j [k] - x_j^{(i)}[k])$$

$$x_j^{(i)}[k+1] = x_j^{(i)}[k] + v_j^{(i)}[k+1]$$

INITIALIZATION AND TERMINATION

Initialization

- $x_j^{(i)}[0]$ is picked from a uniform distribution $U(a_j,b_j)$ over $[a_j,b_j]$
- Search space assumed to be a hypercube

Initial velocity

- Boundary constrained:
 - $v_j^{(i)}[0] \sim U(a_j x_j^{(i)}[0], b_j x_j^{(i)}[0])$ & velocity clamping

Termination condition

Number of iterations

BOUNDARY CONDITIONS

- "Let them fly": set fitness to +∞
 outside the boundary and continue
 to iterate the dynamical equations
 - pbest and gbest eventually pull the particle back
- "Reflecting walls": Change the sign of the velocity component perpendicular to the boundary surface
- "Absorbing Walls": zero the velocity component perpendicular to the boundary surface

 $+\bar{g}[k]$ Let them fly $rac{1}{\bar{v}^{(i)}[k]}$ $+\bar{g}[k]$ Reflecting $rac{1}{p^{(i)}[k]}$ $+\bar{g}[k]$ Absorbing

PSO VARIANTS

See textbook for more discussion

COMMUNICATION

$$v_{j}^{(i)}[k+1] = w[k]v_{j}^{(i)}[k] +$$

$$c_{1}r_{1,j}\left(p_{j}^{(i)}[k] - x_{j}^{(i)}[k]\right) +$$

$$c_{2}r_{2,j}(g_{j}[k] - x_{j}^{(i)}[k])$$

Local best PSO

 $\bar{g}[k] \rightarrow \bar{l}^{(i)}[k]$: best value in a neighborhood of the i^{th} particle

 $lbest: \overline{l}^{(i)}[k]$

lbest PSO

Local best PSO
$$\bar{g}[k] \rightarrow \bar{l}^{(i)}[k]$$

 Information about global best (e.g., particle #5) shared through common particles

$$\dots$$
, $(1, 2, 3)$, $(2, 3, 4)$
 $(2, 3, 4)$, $(3, 4, 5)$, \dots

- Information about global best propagates more slowly through the swarm
- Less social attraction: extended exploration

30D Generalized Griewank; $x_i \in [-600,600]$

lbest PSO PERFORMANCE

• Trade off between convergence and number of iterations: *lbest* PSO is computationally more expensive than *gbest* PSO

RECOMMENDED PSO PARAMETER SETTINGS

- Follows Bratton and Kennedy, 2007
- Optimum particle number (N_{part})
 - Too few \Rightarrow Less exploration
 - Too many ⇒ Premature convergence
- lbest PSO with ring topology (2 nearest neighbors)
 - Increases exploration
 - Slower convergence but often better probability of success

Standardized coordinates

Setting Name	Setting Value
Position initialization	$x_j^{(i)}[0]$ drawn from $U(x;0,1)$
	$v_j^{(i)}[0]$ drawn from
Velocity initialization	$U(x;0,1) - x_j^{(i)}[0]$
$v_{ m max}$	0.5
$N_{ m part}$	40
$c_1 = c_2$	2.0
w[k]	Linear decay from 0.9 to 0.4
Boundary condition	Let them fly
Termination condition	Fixed number of iterations
	Ring topology;
lbest PSO	Neighborhood size $= 3$

"BEST OF M RUNS" STRATEGY

probability of "success" in one run:

p

Probability of failure over M runs:

$$(1-p)^M$$

• Example: If p=0.5, failure probability over M=10 runs is $\simeq 0.001$

Tuning strategy: Target a moderately high p and pick best fitness from M runs

- Moderate tuning reduces the danger of over-tuning
- Reduces the effort needed to achieve good tuning

PRALLELIZATION IN BMR STRATEGY

BigDat 2019, Cambridge, UK