E2 205: Error-Control Coding

Chapter 3: Mathematical Prelimaries

Navin Kashyap

Indian Institute of Science

Groups

A group (G, \circ) is a non-empty set G equipped with a binary operation \circ that satisfies the following properties (axioms):

- ▶ [Closure] $a \circ b \in G$ for all $a, b \in G$
- ▶ [Associativity] $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$
- ▶ [Identity element] $\exists e \in G$ such that $a \circ e = e \circ a = a \ \forall \ a \in G$
- ▶ [Inverse] for each $a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$

Groups

A group (G, \circ) is a non-empty set G equipped with a binary operation \circ that satisfies the following properties (axioms):

- ▶ [Closure] $a \circ b \in G$ for all $a, b \in G$
- ▶ [Associativity] $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$
- ▶ [Identity element] $\exists e \in G$ such that $a \circ e = e \circ a = a \ \forall \ a \in G$
- ▶ [Inverse] for each $a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$

If, furthermore, we have

▶ [Commutativity] $a \circ b = b \circ a$ for all $a, b \in G$ then (G, \circ) is called a commutative or abelian group.

Groups

A group (G, \circ) is a non-empty set G equipped with a binary operation \circ that satisfies the following properties (axioms):

- ▶ [Closure] $a \circ b \in G$ for all $a, b \in G$
- ▶ [Associativity] $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$
- ▶ [Identity element] $\exists e \in G$ such that $a \circ e = e \circ a = a \ \forall a \in G$
- ▶ [Inverse] for each $a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$

If, furthermore, we have

▶ [Commutativity] $a \circ b = b \circ a$ for all $a, b \in G$ then (G, \circ) is called a commutative or abelian group.

Examples of abelian groups:

- $ightharpoonup (\mathbb{Z},+), (\mathbb{R},+), (\mathbb{C},+) \text{ etc.}$
- $\qquad \qquad (\mathbb{R} \setminus \{0\}, \times), \ (\mathbb{C} \setminus \{0\}, \times)$
- \triangleright (\mathbb{Z}_n , +), i.e., the integers modulo-n under addition modulo-n

- ▶ The set of non-singular $m \times m$ matrices (m > 1) over \mathbb{R} or \mathbb{C} , under matrix multiplication, is a non-abelian group.
- $ightharpoonup (\mathbb{Z}, \times)$ is not a group, since 0 has no inverse.
- ▶ $(\mathbb{Z} \setminus \{0\}, \times)$ is also not a group (why?)

- ▶ The set of non-singular $m \times m$ matrices (m > 1) over \mathbb{R} or \mathbb{C} , under matrix multiplication, is a non-abelian group.
- $ightharpoonup (\mathbb{Z}, \times)$ is not a group, since 0 has no inverse.
- ▶ $(\mathbb{Z} \setminus \{0\}, \times)$ is also not a group (why?)
- ▶ $(\mathbb{Z}_n \setminus \{0\}, \times)$ is a group iff n is prime.

- ▶ The set of non-singular $m \times m$ matrices (m > 1) over \mathbb{R} or \mathbb{C} , under matrix multiplication, is a non-abelian group.
- $ightharpoonup (\mathbb{Z}, \times)$ is not a group, since 0 has no inverse.
- ▶ $(\mathbb{Z} \setminus \{0\}, \times)$ is also not a group (why?)
- ▶ $(\mathbb{Z}_n \setminus \{0\}, \times)$ is a group iff n is prime.

(Only if) If $n = a \cdot b$ for 1 < a, b < n, then $a, b \in \mathbb{Z}_n \setminus \{0\}$ are such that $a \times b = 0 \pmod{n}$. This violates the closure property.

- ▶ The set of non-singular $m \times m$ matrices (m > 1) over \mathbb{R} or \mathbb{C} , under matrix multiplication, is a non-abelian group.
- $ightharpoonup (\mathbb{Z}, \times)$ is not a group, since 0 has no inverse.
- ▶ $(\mathbb{Z} \setminus \{0\}, \times)$ is also not a group (why?)
- ▶ $(\mathbb{Z}_n \setminus \{0\}, \times)$ is a group iff n is prime.

(Only if) If $n = a \cdot b$ for 1 < a, b < n, then $a, b \in \mathbb{Z}_n \setminus \{0\}$ are such that $a \times b = 0 \pmod{n}$. This violates the closure property.

(If) If *n* is prime, all the group properties are easy to check, except for the existence of inverses. The existence of inverses follows from the extended Euclidean division algorithm. [See Math module covering prime fields]

Derived Properties of Groups

Some properties of groups can be derived from the axioms.

If G is a group, then

- ▶ The identity element of *G* is unique.
- ▶ Each $a \in G$ has a unique inverse in G.

For proofs, see the Math module for groups.

Subgroups

If (G, \circ) is a group, and for some $H \subseteq G$, (H, \circ) constitutes a group by itself, then H is said to be a subgroup of G (with respect to the \circ operation).

Examples:

- ▶ H = G and $H = \{e\}$ are trivial subgroups of any group G, where e is the identity element of G.
- $ightharpoonup \mathbb{Z}$ is a subgroup of \mathbb{R} under addition.
- ▶ The set, $2\mathbb{Z}$, of even integers form a subgroup of \mathbb{Z} under addition.

Rings

- A ring $(R, +, \cdot)$ is a non-empty set R equipped with two binary operations + and \cdot that satisfy the following properties (axioms):
- (R1) (R,+) is an abelian group
- (R2) [Closure under \cdot] $a \cdot b \in R$ for all $a, b \in R$.
- (R3) [Associativity of \cdot] $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$
- (R4) [Distributivity of \cdot over +] For all $a, b, c \in R$,
 - $ightharpoonup a \cdot (b+c) = a \cdot b + a \cdot c$
 - $(b+c) \cdot a = b \cdot a + c \cdot a$

Rings

- A ring $(R, +, \cdot)$ is a non-empty set R equipped with two binary operations + and \cdot that satisfy the following properties (axioms):
- (R1) (R,+) is an abelian group
- (R2) [Closure under \cdot] $a \cdot b \in R$ for all $a, b \in R$.
- (R3) [Associativity of \cdot] $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$
- (R4) [Distributivity of \cdot over +] For all $a, b, c \in R$,
 - $ightharpoonup a \cdot (b+c) = a \cdot b + a \cdot c$
 - $(b+c) \cdot a = b \cdot a + c \cdot a$
 - ▶ The identity element w.r.t. + is usually called the zero element, and is denoted by 0: a + 0 = 0 + a = a for all $a \in R$.
 - ▶ The inverse of $a \in R$ under + is usually denoted by -a.

Rings

A ring $(R, +, \cdot)$ is a non-empty set R equipped with two binary operations + and \cdot that satisfy the following properties (axioms):

- (R1) (R, +) is an abelian group
- (R2) [Closure under \cdot] $a \cdot b \in R$ for all $a, b \in R$.
- (R3) [Associativity of \cdot] $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$
- (R4) [Distributivity of \cdot over +] For all $a, b, c \in R$,
 - $ightharpoonup a \cdot (b+c) = a \cdot b + a \cdot c$
 - $(b+c) \cdot a = b \cdot a + c \cdot a$
 - ▶ The identity element w.r.t. + is usually called the zero element, and is denoted by 0: a + 0 = 0 + a = a for all $a \in R$.
 - ▶ The inverse of $a \in R$ under + is usually denoted by -a.

Example: $(\mathbb{Z}_n, +, \cdot)$ the integers mod n under mod-n arithmetic.

More Definitions

- ▶ A ring $(R, +, \cdot)$ is commutative if $a \cdot b = b \cdot a$ for all $a, b \in R$.
- ▶ A ring with unity is a ring $(R, +, \cdot)$ in which \cdot has an identity element.
- ► The identity element w.r.t. · (if it exists) is usually called the unity element, and is denoted by 1:

$$a \cdot 1 = 1 \cdot a = a$$
 for all $a \in R$

Fields

A field is a commutative ring with unity, in which every non-zero element has an inverse w.r.t. · .

Fields

A field is a commutative ring with unity, in which every non-zero element has an inverse w.r.t. · .

Equivalently, a field $(\mathbb{F},+,\cdot)$ is a non-empty set \mathbb{F} equipped with two binary operations + and \cdot that satisfy the following properties (field axioms):

- (F1) $(\mathbb{F},+)$ is an abelian group (with identity element 0)
- (F2) $(\mathbb{F} \setminus \{0\}, \cdot)$ is an abelian group (with identity element 1)
- (F3) [Distributivity of \cdot over +]

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 for all $a, b, c \in \mathbb{F}$

Fields

A field is a commutative ring with unity, in which every non-zero element has an inverse w.r.t. \cdot .

Equivalently, a field $(\mathbb{F},+,\cdot)$ is a non-empty set \mathbb{F} equipped with two binary operations + and \cdot that satisfy the following properties (field axioms):

- (F1) $(\mathbb{F},+)$ is an abelian group (with identity element 0)
- (F2) $(\mathbb{F} \setminus \{0\}, \cdot)$ is an abelian group (with identity element 1)
- (F3) [Distributivity of \cdot over +] $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in \mathbb{F}$

Examples: \mathbb{Q} , \mathbb{R} , \mathbb{C} equipped with the usual addition and multiplication operations.

Examples of Rings That Are Not Fields

- $ightharpoonup (\mathbb{Z},+,\cdot)$
- ► The set of n × n matrices over a field F, equipped with the usual matrix addition and multiplication. (This is a non-commutative ring.)
- ($\mathbb{F}[x], +, \cdot$), where
 - ▶ $\mathbb{F}[x]$ is the set of all polynomials in the indeterminate x, taking coefficients from a field \mathbb{F} , i.e., $\mathbb{F}[x] = \{\sum_{j=0}^d a_j x^j : a_j \in \mathbb{F} \text{ and } d \geq 0 \text{ an integer}\}$
 - + and · are polynomial addition and multiplication, respectively
- ▶ $(\mathbb{Z}_n, +, \cdot)$ when n is not a prime. (We have seen that in this case $(\mathbb{Z}_n \setminus \{0\}, \cdot)$ is not a group.)

Prime Fields

An important example of a field is $\mathbb{Z}_2=\{0,1\}$ under mod-2 arithmetic. We denote this as \mathbb{F}_2 .

More generally, the following is true.

Proposition:

When p is a prime, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ under mod-p arithmetic is a field.

Prime Fields

An important example of a field is $\mathbb{Z}_2=\{0,1\}$ under mod-2 arithmetic. We denote this as \mathbb{F}_2 .

More generally, the following is true.

Proposition:

When p is a prime, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ under mod-p arithmetic is a field.

Proof:

It is easy to verify that the field axioms (F1) $(\mathbb{Z}_p,+)$ is an abelian group and (F3) multiplication distributes over addition are true.

Prime Fields

An important example of a field is $\mathbb{Z}_2=\{0,1\}$ under mod-2 arithmetic. We denote this as \mathbb{F}_2 .

More generally, the following is true.

Proposition:

When p is a prime, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ under mod-p arithmetic is a field.

Proof:

- It is easy to verify that the field axioms (F1) $(\mathbb{Z}_p,+)$ is an abelian group and (F3) multiplication distributes over addition are true.
- To check that the field axiom (F2) (Z_p \ {0},·) is an abelian group also holds, the only non-trivial property to verify is the existence of (multiplicative) inverses.

Existence of Multiplicative Inverses in $\mathbb{Z}_p \setminus \{0\}$

In the following, all addition and multiplication operations are mod-p.

- ▶ Given $a \in \mathbb{Z}_p \setminus \{0\}$, consider $a, 2 \cdot a, 3 \cdot a, \ldots, (p-1) \cdot a$.
- Note that $b \cdot a \neq 0$ for any $b \in \{1, 2, \dots, p-1\}$. $(b \cdot a = 0 \text{ holds iff } p \mid ba$, which in turn holds iff either $p \mid a$ or $p \mid b$, both of which are impossible.)
- Also, note that $b \cdot a \neq c \cdot a$ for $b, c \in \{1, 2, \dots, p-1\}$, $b \neq c$. (Otherwise, we would have $(b-c) \cdot a = 0$, which is not possible for the same reason as above.)
- ▶ Consequently, a, $2 \cdot a$, $3 \cdot a$, ..., $(p-1) \cdot a$ cover all the nonzero integers in \mathbb{Z}_p .
- ▶ In particular, we must have $b \cdot a = 1$ for some $b \in \{1, 2, ..., p 1\}$.
- ▶ This *b* is the multiplicative inverse of *a* in $\mathbb{Z}_p \setminus \{0\}$.

Some Remarks

- ▶ When p is a prime, we denote by \mathbb{F}_p the field of integers modulo p.
- ▶ The multiplicative inverse of any nonzero $a \in \mathbb{F}_p$ can be computed using the extended Euclidean division algorithm for details, refer to the Math module on prime fields.
- Fields with a finite number of elements (such as \mathbb{F}_p) are called finite fields. We will study them in more detail later.

Derived Properties of Fields

Some properties of fields can be derived from the axioms.

▶ $a \cdot 0 = 0$ for all $a \in \mathbb{F}$

Proof:

• $a \cdot (1+0)$ can be expressed in two different ways:

$$a \cdot (1+0) = a \cdot 1 = a$$

 $a \cdot (1+0) = a \cdot 1 + a \cdot 0 = a + a \cdot 0$

▶ Hence, $a = a + a \cdot 0$. Now, add -a to both sides.

Derived Properties of Fields

Some properties of fields can be derived from the axioms.

▶ $a \cdot 0 = 0$ for all $a \in \mathbb{F}$

Proof:

• $a \cdot (1+0)$ can be expressed in two different ways:

$$a \cdot (1+0) = a \cdot 1 = a$$

 $a \cdot (1+0) = a \cdot 1 + a \cdot 0 = a + a \cdot 0$

- ▶ Hence, $a = a + a \cdot 0$. Now, add -a to both sides.
- No zero divisors:

$$a \cdot b = 0 \implies a = 0 \text{ or } b = 0 \text{ (or both)}$$

Proof:

- ▶ Suppose $a \cdot b = 0$, but $a \neq 0$.
- ▶ Then, multiply both sides of $a \cdot b = 0$ by a^{-1} to get b = 0. \square

Vector Spaces

A vector space $(V,+,\mathbb{F},\cdot)$ consists of a non-empty set V of "vectors", a field \mathbb{F} of "scalars", and two operations

- '+' representing vector addition, and
- '·' representing scalar multiplication

that satisfy the following properties (vector space axioms):

- (V1) (V, +) is an abelian group (with identity element **0**).
- (V2) $\alpha \cdot \mathbf{v} \in V$ for all $\alpha \in \mathbb{F}$ and $\mathbf{v} \in V$.
- (V3) $\alpha \cdot (\beta \cdot \mathbf{v}) = (\alpha \beta) \cdot \mathbf{v}$ for all $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v} \in V$.
- (V4) $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$ for all $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v} \in V$, $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$ for all $\alpha \in \mathbb{F}$ and $\mathbf{v}, \mathbf{w} \in V$.
- (V5) $1 \cdot \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in V$, where 1 is the multiplicative identity element of the field \mathbb{F} .

Examples

- $ightharpoonup \mathbb{F}^n = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F} \text{ for all } i\}$, where \mathbb{F} is a field.
 - $(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$
- ▶ $\mathbb{F}_d[x] = \{\sum_{j=0}^d a_j x^j : a_j \in \mathbb{F} \text{ for all } j\}$, for a fixed $d \in \mathbb{Z}_+$ (set of polynomials of a fixed degree d, taking coeffs from \mathbb{F})

This vector space is isomorphic to \mathbb{F}^{d+1} via the bijection

$$\sum_{j=0}^{a} a_j x^j \iff (a_0, a_1, \dots, a_d)$$

▶ $\mathbb{F}[x] = \left\{ \sum_{j=0}^{d} a_j x^j : a_j \in \mathbb{F} \text{ for all } j, \ d \in \mathbb{Z}_+ \right\}$ (set of all polynomials taking coefficients from \mathbb{F})

Some properties of vector spaces can be derived from the axioms.

1).
$$0 \cdot \mathbf{v} = \mathbf{0}$$
 for all $\mathbf{v} \in V$

Proof:

• $(0+0) \cdot \mathbf{v}$ can be expressed in two different ways:

$$(0+0) \cdot \mathbf{v} = 0 \cdot \mathbf{v}$$
 (since $0+0=0$ in \mathbb{F})
 $(0+0) \cdot \mathbf{v} = 0 \cdot \mathbf{v} + 0 \cdot \mathbf{v}$ (using axiom (V4))

▶ Hence, $0 \cdot \mathbf{v} = 0 \cdot \mathbf{v} + 0 \cdot \mathbf{v}$. Now, add $-(0 \cdot \mathbf{v})$ to both sides.

Some properties of vector spaces can be derived from the axioms.

1).
$$0 \cdot \mathbf{v} = \mathbf{0}$$
 for all $\mathbf{v} \in V$

Proof:

• $(0+0) \cdot \mathbf{v}$ can be expressed in two different ways:

$$(0+0) \cdot \mathbf{v} = 0 \cdot \mathbf{v}$$
 (since $0+0=0$ in \mathbb{F})
 $(0+0) \cdot \mathbf{v} = 0 \cdot \mathbf{v} + 0 \cdot \mathbf{v}$ (using axiom (V4))

▶ Hence, $0 \cdot \mathbf{v} = 0 \cdot \mathbf{v} + 0 \cdot \mathbf{v}$. Now, add $-(0 \cdot \mathbf{v})$ to both sides. \square

2).
$$\alpha \cdot \mathbf{0} = \mathbf{0}$$
 for all $\alpha \in \mathbb{F}$

Proof:

• $\alpha \cdot (\mathbf{0} + \mathbf{0})$ can be expressed in two different ways:

$$\alpha \cdot (\mathbf{0} + \mathbf{0}) = \alpha \cdot \mathbf{0}$$
 (since $\mathbf{0} + \mathbf{0} = \mathbf{0}$ in V)
 $\alpha \cdot (\mathbf{0} + \mathbf{0}) = \alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}$ (using axiom (V4))

▶ Hence, $\alpha \cdot \mathbf{0} = \alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}$. Add $-(\alpha \cdot \mathbf{0})$ to both sides.

3). $\alpha \cdot \mathbf{v} = \mathbf{0} \iff \text{ either } \alpha = 0 \text{ or } \mathbf{v} = \mathbf{0} \text{ (or both)}$

Proof:

$$(\Leftarrow)$$
 is proved in items 1) and 2).

$$(\Longrightarrow)$$
 Suppose $\alpha \cdot \mathbf{v} = \mathbf{0}$, but $\alpha \neq 0$. Then,

$$\alpha^{-1} \cdot (\alpha \cdot \mathbf{v}) = \alpha^{-1} \cdot \mathbf{0} = \mathbf{0}$$
 (as previously shown)

$$\alpha^{-1} \cdot (\alpha \cdot \mathbf{v}) \stackrel{\text{(V3)}}{=} (\alpha^{-1}\alpha) \cdot \mathbf{v} = 1 \cdot \mathbf{v} \stackrel{\text{(V5)}}{=} \mathbf{v}$$

Thus,
$$\mathbf{v} = \mathbf{0}$$
.

3).
$$\alpha \cdot \mathbf{v} = \mathbf{0} \iff \text{ either } \alpha = 0 \text{ or } \mathbf{v} = \mathbf{0} \text{ (or both)}$$

Proof:

(\iff) is proved in items 1) and 2).

(\implies) Suppose $\alpha \cdot \mathbf{v} = \mathbf{0}$, but $\alpha \neq 0$. Then,

$$\alpha^{-1} \cdot (\alpha \cdot \mathbf{v}) = \alpha^{-1} \cdot \mathbf{0} = \mathbf{0} \text{ (as previously shown)}$$

$$\alpha^{-1} \cdot (\alpha \cdot \mathbf{v}) \stackrel{(\vee 3)}{=} (\alpha^{-1}\alpha) \cdot \mathbf{v} = 1 \cdot \mathbf{v} \stackrel{(\vee 5)}{=} \mathbf{v}$$

4).
$$(-1) \cdot \mathbf{v} = -\mathbf{v}$$
 for all $\mathbf{v} \in V$.

Thus, $\mathbf{v} = \mathbf{0}$.

Proof:

$$\mathbf{v} + (-1) \cdot \mathbf{v} \stackrel{\text{(V5)}}{=} 1 \cdot \mathbf{v} + (-1) \cdot \mathbf{v} \stackrel{\text{(V4)}}{=} (1 + (-1)) \cdot \mathbf{v}$$

= $0 \cdot \mathbf{v} = \mathbf{0}$

Subspaces

A subspace of a vector space $(V, +, \mathbb{F}, \cdot)$ is a subset $W \subseteq V$ such that $(W, +, \mathbb{F}, \cdot)$ is itself a vector space.

Examples: The following are all the subspaces of \mathbb{R}^3 —

- $ightharpoonup \mathbb{R}^3$ itself
- **▶** {**0**}
- any line through the origin
- any plane through the origin

Testing if $W \subseteq V$ is a Subspace

Proposition:

Let $(V,+,\mathbb{F},\cdot)$ be a vector space. A subset $W\subseteq V$ is a subspace of V if and only if

$$\alpha \cdot \mathbf{w} + \mathbf{w}' \in W$$
 for all $\mathbf{w}, \mathbf{w}' \in W$ and $\alpha \in \mathbb{F}$. (1)

Proof: "Only if" is obvious from the definition of a subspace.

For the "if" direction, assume that (1) holds. We need to show that the vector space axioms (V1)–(V5) hold for $(W, +, \mathbb{F}, \cdot)$.

- V3)-(V5) directly follow from the fact that V is a vector space, and W ⊆ V.
- ► To verify (V1):
 - ▶ Set $\alpha = 1$ in (1) to get $\mathbf{w} + \mathbf{w}' \in W$ for all $\mathbf{w}, \mathbf{w}' \in W$.
 - ▶ Set $\alpha = -1$ and $\mathbf{w}' = \mathbf{w}$ in (1) to get $\mathbf{0} \in W$.
 - ▶ Set $\mathbf{w}' = \mathbf{0}$ and $\alpha = -1$ in (1) to get $-\mathbf{w} \in W$ for all $\mathbf{w} \in W$.
- To verify (V2):

Set
$$\mathbf{w}' = \mathbf{0}$$
 in (1) to get $\alpha \cdot \mathbf{w} \in W$ for all $\mathbf{w} \in W$.

Special Case: $\mathbb{F} = \mathbb{F}_2$

If V is a vector space over the *binary* field \mathbb{F}_2 , then the subspace test simplifies to:

 $W \subseteq V$ is a subspace \iff $\mathbf{w} + \mathbf{w}' \in W$ for all $\mathbf{w}, \mathbf{w}' \in W$

An Application of the Subspace Test

Proposition:

Let H be an $m \times n$ matrix over a field \mathbb{F} . Then,

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{F}^n : H\mathbf{x}^T = \mathbf{0} \}$$

is a subspace of \mathbb{F}^n . (This is called the nullspace of H.)

An Application of the Subspace Test

Proposition:

Let H be an $m \times n$ matrix over a field \mathbb{F} . Then,

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{F}^n : H\mathbf{x}^T = \mathbf{0} \}$$

is a subspace of \mathbb{F}^n . (This is called the nullspace of H.)

Proof: Apply the subspace test to C.

- ▶ Consider any $\mathbf{x}, \mathbf{x}' \in \mathcal{C}$ and $\alpha \in \mathbb{F}$. We must show that $\mathbf{y} = \mathbf{x}' + \alpha \cdot \mathbf{x}$ is in \mathcal{C} .
- ► To this end,

$$\begin{aligned} H\mathbf{y}^T &= H(\mathbf{x}' + \alpha \cdot \mathbf{x})^T \\ &= H\mathbf{x}'^T + \alpha \cdot H\mathbf{x}^T \quad \text{(by linearity of matrix multiplication)} \\ &= \mathbf{0} + \alpha \cdot \mathbf{0} \quad \quad \text{(since } \mathbf{x}, \mathbf{x}' \in \mathcal{C}) \\ &= \mathbf{0} + \mathbf{0} \quad = \quad \mathbf{0} \end{aligned}$$

▶ Hence, $\mathbf{y} = \mathbf{x}' + \alpha \cdot \mathbf{x}$ belongs to \mathcal{C}

Linear Combinations and Span

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in V.

Any vector of the form

$$\mathbf{w} = \alpha_1 \cdot \mathbf{v}_1 + \alpha_2 \cdot \mathbf{v}_2 + \dots + \alpha_m \cdot \mathbf{v}_m$$
, with $\alpha_j \in \mathbb{F}$ for all j is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$.

Linear Combinations and Span

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in V.

Any vector of the form

$$\mathbf{w} = \alpha_1 \cdot \mathbf{v}_1 + \alpha_2 \cdot \mathbf{v}_2 + \dots + \alpha_m \cdot \mathbf{v}_m$$
, with $\alpha_j \in \mathbb{F}$ for all j is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$.

It is easy to verify (using the subspace test) that the set

$$W = \left\{ \sum_{j=1}^{m} \alpha_j \cdot \mathbf{v}_j : \ \alpha_j \in \mathbb{F} \text{ for all } j \right\}$$

consisting of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a subspace of V; denoted by $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_m)$.

Linear Combinations and Span

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in V.

► Any vector of the form

$$\mathbf{w} = \alpha_1 \cdot \mathbf{v}_1 + \alpha_2 \cdot \mathbf{v}_2 + \dots + \alpha_m \cdot \mathbf{v}_m$$
, with $\alpha_j \in \mathbb{F}$ for all j is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$.

▶ It is easy to verify (using the subspace test) that the set

$$W = \left\{ \sum_{i=1}^{m} \alpha_j \cdot \mathbf{v}_j : \ \alpha_j \in \mathbb{F} \text{ for all } j \right\}$$

consisting of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a subspace of V; denoted by $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_m)$.

Example: For a $k \times n$ matrix G over \mathbb{F} , with rows $\mathbf{g}_1, \dots, \mathbf{g}_k$, span $(\mathbf{g}_1, \dots, \mathbf{g}_k)$ is called the rowspace of G.

Linear Independence

Definition:

Vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent over a field \mathbb{F} if, for $\alpha_1, \dots, \alpha_m \in \mathbb{F}$, we have

$$\sum_{j=1}^{m} \alpha_j \cdot \mathbf{v}_j = \mathbf{0} \implies \alpha_1 = \dots = \alpha_m = \mathbf{0}.$$

Example:
$$\mathbf{v}_1 = [1 \ 1 \ 0], \ \mathbf{v}_2 = [1 \ 0 \ 1], \ \mathbf{v}_3 = [0 \ 1 \ 1]$$

▶ It is easy to check that these vectors are linearly independent over ℝ.

Linear Independence

Definition:

Vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent over a field \mathbb{F} if, for $\alpha_1, \dots, \alpha_m \in \mathbb{F}$, we have

$$\sum_{j=1}^{m} \alpha_j \cdot \mathbf{v}_j = \mathbf{0} \implies \alpha_1 = \dots = \alpha_m = \mathbf{0}.$$

Example:
$$\mathbf{v}_1 = [1 \ 1 \ 0], \ \mathbf{v}_2 = [1 \ 0 \ 1], \ \mathbf{v}_3 = [0 \ 1 \ 1]$$

- It is easy to check that these vectors are linearly independent over R.
- ▶ However, they are linearly dependent over \mathbb{F}_2 , since $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$ when vector addition is done modulo 2.

RREF and Rank

Let \mathbb{F} be a given field.

To determine if a collection of vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ from \mathbb{F}^n is linearly independent over \mathbb{F} , we can do the following:

Put the vectors into the rows of a matrix

- ▶ Using elementary row operations over \mathbb{F} , bring A into reduced row-echelon form (RREF)
- ▶ The number of non-zero rows in the RREF gives the maximum number of linearly independent vectors among $\mathbf{v}_1, \dots, \mathbf{v}_m$.

RREF and Rank

Let \mathbb{F} be a given field.

To determine if a collection of vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ from \mathbb{F}^n is linearly independent over \mathbb{F} , we can do the following:

Put the vectors into the rows of a matrix

$$A = \left[\begin{array}{cccc} & \mathbf{v}_1 & & \\ & & \vdots & \\ & & \mathbf{v}_m & \end{array} \right]$$

- ▶ Using elementary row operations over \mathbb{F} , bring A into reduced row-echelon form (RREF)
- ▶ The number of non-zero rows in the RREF gives the maximum number of linearly independent vectors among $\mathbf{v}_1, \dots, \mathbf{v}_m$.

Recall from linear algebra that

$$\operatorname{rank}_{\mathbb{F}}(A) \triangleq \operatorname{max.}$$
 no. of lin. indep. rows of A

$$= \operatorname{max.}$$
 no. of lin. indep. columns of $A = \operatorname{rank}_{\mathbb{F}}(A^T)$

Example

$$\textbf{v}_1 = [1 \ 1 \ 0], \quad \textbf{v}_2 = [1 \ 0 \ 1], \quad \textbf{v}_3 = [0 \ 1 \ 1]$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\mathsf{RREF} \ \mathsf{over} \ \mathbb{R}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \implies \begin{matrix} \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \\ \mathsf{sin.} \ \mathsf{indep.} \\ \mathsf{over} \ \mathbb{R} \end{matrix}$$

Example

$$\textbf{v}_1 = [1 \ 1 \ 0], \quad \textbf{v}_2 = [1 \ 0 \ 1], \quad \textbf{v}_3 = [0 \ 1 \ 1]$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\mathsf{RREF} \ \mathsf{over} \ \mathbb{R}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \implies \begin{matrix} \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \\ \mathsf{lin.} \ \mathsf{indep.} \\ \mathsf{over} \ \mathbb{R} \end{matrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\mathsf{RREF} \ \mathsf{over} \ \mathbb{F}_2} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \implies \begin{matrix} \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \\ \mathsf{lin.} \ \mathsf{dep.} \\ \mathsf{over} \ \mathbb{F}_2 \end{matrix}$$

Example

$$\textbf{v}_1 = [1 \ 1 \ 0], \quad \textbf{v}_2 = [1 \ 0 \ 1], \quad \textbf{v}_3 = [0 \ 1 \ 1]$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\mathsf{RREF} \ \mathsf{over} \ \mathbb{R}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \implies \begin{matrix} \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \\ \mathsf{lin.} \ \mathsf{indep.} \\ \mathsf{over} \ \mathbb{R} \end{matrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \overset{\mathsf{over}}{\longrightarrow} \mathbb{F}_2 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \implies \begin{matrix} \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \\ \mathsf{bin.} \ \mathsf{dep.} \\ \mathsf{over} \ \mathbb{F}_2 \end{matrix}$$

▶ $\operatorname{rank}_{\mathbb{R}}(A) = 3$, while $\operatorname{rank}_{\mathbb{F}_2}(A) = 2$

Finite-Dimensional Vector Spaces

A vector space V over \mathbb{F} is finite-dimensional if there is a *finite* set, S, of vectors in V such that V = span(S).

▶ In this course, we deal with finite-dimensional vector spaces only.

Finite-Dimensional Vector Spaces

A vector space V over \mathbb{F} is finite-dimensional if there is a *finite* set, S, of vectors in V such that V = span(S).

▶ In this course, we deal with finite-dimensional vector spaces only.

Example: The vector space $\mathbb{F}[x]$, consisting of all polynomials in x taking coefficients from \mathbb{F} , is not finite-dimensional!

Basis

Let V be a (finite-dimensional) vector space over a field \mathbb{F} .

A set of vectors that is linearly independent over $\mathbb F$ and that also spans V is called a basis of V.

Examples:

• $V = \mathbb{F}^n$ always has the standard basis

$$\mathbf{e}_1 = [1 \ 0 \ 0 \ \cdots \ 0], \ \mathbf{e}_2 = [0 \ 1 \ 0 \ \cdots \ 0], \ \ldots, \ \mathbf{e}_n = [0 \ 0 \ \cdots \ 0 \ 1].$$

Of course, other bases also exist: e.g.,

$$\mathbf{e}_1, \ \mathbf{e}_1 + \mathbf{e}_2, \ \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \ \dots, \ \mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_n$$

Basis

Let V be a (finite-dimensional) vector space over a field \mathbb{F} .

A set of vectors that is linearly independent over $\mathbb F$ and that also spans V is called a basis of V.

Examples:

• $V = \mathbb{F}^n$ always has the standard basis

$$\mathbf{e}_1 = [1 \ 0 \ 0 \ \cdots \ 0], \ \mathbf{e}_2 = [0 \ 1 \ 0 \ \cdots \ 0], \ \ldots, \ \mathbf{e}_n = [0 \ 0 \ \cdots \ 0 \ 1].$$

Of course, other bases also exist: e.g.,

$$\mathbf{e}_1, \ \mathbf{e}_1 + \mathbf{e}_2, \ \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \ \dots, \ \mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_n$$

▶ $\mathbb{F}_d[x]$: the vector space of polynomials over \mathbb{F} , in the indeterminate x, with degree $\leq d$

Standard basis: 1,
$$x$$
, x^2 , ..., x^d

Proposition B1:

Let $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ be a basis of a vector space V. Then, any $\mathbf{v} \in V$ can be uniquely expressed as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$.

Proposition B1:

Let $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ be a basis of a vector space V. Then, any $\mathbf{v} \in V$ can be uniquely expressed as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$.

Proof:

- ▶ Since $\mathbf{b}_1, \dots, \mathbf{b}_n$ spans V, any $\mathbf{v} \in V$ can be expressed as a linear combination of $\mathbf{b}_1, \dots, \mathbf{b}_n$.
- Suppose that

$$\mathbf{v} = \alpha_1 \cdot \mathbf{b}_1 + \alpha_2 \cdot \mathbf{b}_2 + \dots + \alpha_n \cdot \mathbf{b}_n \tag{2}$$

and
$$\mathbf{v} = \alpha_1' \cdot \mathbf{b}_1 + \alpha_2' \cdot \mathbf{b}_2 + \dots + \alpha_n' \cdot \mathbf{b}_n$$
 (3)

Then, subtracting (3) from (2), we obtain

$$\mathbf{0} = (\alpha_1 - \alpha_1') \cdot \mathbf{b}_1 + (\alpha_2 - \alpha_2') \cdot \mathbf{b}_2 + \dots + (\alpha_n - \alpha_n') \cdot \mathbf{b}_n.$$

▶ But $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ are linearly independent; so we must have $\alpha_j - \alpha'_j = 0$ for all j, i.e., $\alpha_j = \alpha'_j$ for all j.

Proposition B2:

Let S be a set of vectors that spans a vector space V, and let T be a linearly independent set of vectors from V. Then, $|S| \ge |T|$.

Proposition B2:

Let S be a set of vectors that spans a vector space V, and let T be a linearly independent set of vectors from V. Then, $|S| \ge |T|$.

Theorem:

All bases of a vector space have the same cardinality (i.e., size).

Proposition B2:

Let S be a set of vectors that spans a vector space V, and let T be a linearly independent set of vectors from V. Then, $|S| \ge |T|$.

Theorem:

All bases of a vector space have the same cardinality (i.e., size).

Proof: Let B_1 and B_2 be two bases for V.

- ▶ As B_1 spans V and B_2 is a lin. indep. set, we have $|B_1| \ge |B_2|$.
- ▶ As B_2 spans V and B_1 is a lin. indep. set, we have $|B_2| \ge |B_1|$.

Hence,
$$|B_1| = |B_2|$$
.

Proposition B2:

Let S be a set of vectors that spans a vector space V, and let T be a linearly independent set of vectors from V. Then, $|S| \ge |T|$.

Theorem:

All bases of a vector space have the same cardinality (i.e., size).

Proof: Let B_1 and B_2 be two bases for V.

- ▶ As B_1 spans V and B_2 is a lin. indep. set, we have $|B_1| \ge |B_2|$.
- ▶ As B_2 spans V and B_1 is a lin. indep. set, we have $|B_2| \ge |B_1|$.

Hence,
$$|B_1| = |B_2|$$
.

The no. of elements in any basis of a vector space V over a field \mathbb{F} is called the dimension of V; denoted by $\dim_{\mathbb{F}}(V)$ or $\dim(V)$.

Proposition B3:

Let V be a n-dimensional vector space, i.e., dim(V) = n.

- (i). If $\mathbf{v}_1, \dots, \mathbf{v}_m$ is lin. indep., then $m \leq n$.
- (ii). If $\mathbf{v}_1, \dots, \mathbf{v}_m$ spans V, then $m \geq n$.

Proof: Take any basis B of V, so that |B| = n, and apply Proposition B2.

Proposition B3:

Let V be a n-dimensional vector space, i.e., dim(V) = n.

- (i). If $\mathbf{v}_1, \dots, \mathbf{v}_m$ is lin. indep., then $m \leq n$.
- (ii). If $\mathbf{v}_1, \dots, \mathbf{v}_m$ spans V, then $m \geq n$.

Proof: Take any basis B of V, so that |B| = n, and apply Proposition B2.

Thus,

- a basis is a maximal linearly independent set;
- a basis is a minimal spanning set.

Proposition B4:

Any linearly independent set of vectors from V can be extended (by adding more vectors if necessary) to a basis of V.

Proposition B4:

Any linearly independent set of vectors from V can be extended (by adding more vectors if necessary) to a basis of V.

Proof: Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be a lin. indep. set, and let $n = \dim(V)$.

- ▶ If m = n, then we already have a maximal lin. indep. set, i.e., a basis.
- So assume m < n. In this case, for $j = m, m+1, \ldots, n-1$, do the following:
 - Since $\mathbf{v}_1, \dots, \mathbf{v}_j$ is not a spanning set, find a $\mathbf{u} \in V$ such that $\mathbf{u} \notin \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_j)$.
 - Set $\mathbf{v}_{j+1} := \mathbf{u}$.

Then, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a maximal lin. indep. set, i.e., a basis.

The Rank-Nullity Theorem

Recall that, for a matrix A over \mathbb{F} ,

- ▶ $\operatorname{rank}_{\mathbb{F}}(A) \triangleq \operatorname{max.}$ no. of lin. indep. row vectors of A
- ▶ rowspace(A) \triangleq span_{\mathbb{F}}(row vectors of A)

Hence, $rank_{\mathbb{F}}(A) = dim_{\mathbb{F}}(rowspace(A))$

The Rank-Nullity Theorem

Recall that, for a matrix A over \mathbb{F} ,

- ▶ $\operatorname{rank}_{\mathbb{F}}(A) \triangleq \operatorname{max.}$ no. of lin. indep. row vectors of A
- ▶ rowspace(A) \triangleq span_{\mathbb{F}}(row vectors of A)

Hence,
$$\lceil \mathsf{rank}_{\mathbb{F}}(A) = \mathsf{dim}_{\mathbb{F}}(\mathsf{rowspace}(A))
vert$$

Definition: $\operatorname{nullity}_{\mathbb{F}}(A) \triangleq \dim_{\mathbb{F}}(\operatorname{nullspace}(A))$

The Rank-Nullity Theorem

Recall that, for a matrix A over \mathbb{F} ,

- ▶ $rank_{\mathbb{F}}(A) \triangleq max. no. of lin. indep. row vectors of A$
- ▶ rowspace(A) \triangleq span_{\mathbb{F}}(row vectors of A)

$$\mathsf{Hence}, \ \ \mathsf{rank}_{\mathbb{F}}(A) = \mathsf{dim}_{\mathbb{F}}(\mathsf{rowspace}(A))$$

Definition: $\operatorname{nullity}_{\mathbb{F}}(A) \triangleq \dim_{\mathbb{F}}(\operatorname{nullspace}(A))$

Theorem (The Rank-Nullity Theorem):

Let A be an $m \times n$ matrix over a field \mathbb{F} . Then,

$$\operatorname{\mathsf{rank}}_{\mathbb{F}}(A) + \operatorname{\mathsf{nullity}}_{\mathbb{F}}(A) = n.$$

Equivalently,

$$\dim_{\mathbb{F}}(\operatorname{rowspace}(A)) + \dim_{\mathbb{F}}(\operatorname{nullspace}(A)) = n.$$