

Exploration of Optimizing Federated Learning on Client Selection with Reinforcement Learning

Reported by Zhouli Fan Time: 2024.04.18

Catalogue

- Reinforcement Learning
- FAVOR
- FLASH-RL
- Future Work

Introduction

Reinforcement Learning (RL): a computational method in which machines achieve goals by interacting with the environment.

A round of interaction:

The machine making an action in a state of environment, and feedback the change and rewards to the next state.

Basic composition

Q-Learning

The key of the Q-Learning is **Q-Table**, Q-Table includes columns and rows, which contain a reward list for the best behavior of each state in a specific environment.

Q-Table can help agents understand which actions may bring rewards, which is used to update tuples (s, a, r, s') as Q(s, a)

	Q-Table			
Charla.	State-Action	Values(Rewards)		
State	-	0	Q-val	ue
Action	-	0		
	•••••	•••••		
	-	0		

Deep Q-Learning

Deep Q-Learning(DQL) is used to solve large-scale problems that Q-Learning can not solve, using function fitting methods to estimate Q-values, which is an approximate method that uses **neural networks** to represent the action value function Q(s, a)

Deep Q-Learning example: Cartpole

State

《Optimizing Federated Learning on Non-IID Data with Reinforcement Learning》

A experience-driven control framework that intelligently chooses the clients to participate in each round of federated learning.

DQN Agent interacting with the FL Server

FAVOR

DQN Design

• State

$$s_t = (w_t, w_t^{(1)}, w_t^{(2)}, \dots, w_t^{(N)})$$

Action

Select K clients of Top-K values of $Q^*(s_t, a)$

Rewards

$$r_t = C^{(w_t - \Omega)} - 1$$

$$R = \sum_{t=1}^{T} \gamma^{t-1} r_t = \sum_{t=1}^{T} \gamma^{t-1} (C^{(w_t - \Omega)} - 1)$$

Principle component analysis (PCA)

PCA of CNN weights on the MNIST dataset

FAVOR

- 1 all N clients check in with the FL Server
- ② each client download w_{init} and train one epoch to get $\{w_t^{(k)}, k \in [N], t=1\}$
- ③ DQN computes $Q(s_t, a)$ for all clients
- 4 Selects K clients from top-K $Q(s_t, a)$
- ⑤ upload $\{w_{t+1}^{(k)}, k \in [N]\}$ to the server
- 6 Move into round t+1 and repeat 3-6

《FLASH-RL: Federated Learning Addressing System and Static Heterogeneity using Reinforcement Learning》

FLASH-RL improves the State and rewards of DQN based on FAVOR which adds clients' CPU cores, CPU frequency, bandwidth, and size of dataset to the State, and makes the rewards more comprehensive.

Approach	Algorithm	Static Heterogeneity	System Heterogeneity	Number of Agents
FAVOR	DDQL	٧	×	1
Adaptive CS in DRL	DDQL	×	٧	1
Trust-Augment RL	DDQL	×	٧	1
Multi-Agent RL	MARL	٧	٧	N

Comparison of STATE-OF-THE-ART RL client selection

Handling System Heterogeneity: Latency

Total latency

$$l_t^k = T_t^{local_k} + T_t^{transmission_k}$$

Local computing time

$$T_t^{local_k} = \frac{\left| D_{t,k} \right| g_k}{c_k f_{t,k}}$$

• Transmission time

$$T_t^{transmission_k} = \frac{\sigma(m_k)}{b_{t,k}}$$

Handling Static Heterogeneity: Reputation and Utility

Reputation-based function

$$\psi_t^k = \lambda (A_t^k - A_{t-1}) + (1 - \lambda) \psi_{t-1}^k$$

Reputation-based utility function

$$\psi_t^k = \lambda \zeta_t^k + (1 - \lambda) \psi_{t-1}^k$$

Utility function

Utility function
$$d(w_t^k, w_t) = \frac{1}{|w_t|} \sum_{j=1}^{|w_t|} \left| \frac{w_t^{k,j} - w_t^j}{w_t^j} \right|, \quad \zeta_t^k = \begin{cases} e^{-|d(w_t^k, w_t)|}, & \text{if } P_t > P_{t-1} \\ 1 - e^{-|d(w_t^k, w_t)|}, & \text{if } P_t \leq P_{t-1} \end{cases}$$

Rewards by Combining System and Static Heterogeneity

• Reputation-based utility function with System and Static Heterogeneity

$$\psi_t^k = \lambda(\alpha_1 \zeta_t^k - \alpha_1 l_t^k) + (1 - \lambda) \psi_{t-1}^k$$

DQN Design

• State

$$s_t = (s_t^1, s_t^2, s_t^3, \dots, s_t^N), \ s_t^k = (w_t^k, n_t^k, c_k, f_{t,k}, b_{t,k})$$

Action

Select K clients of Top-K values of $Q^*(s_t, a)$

Rewards

$$\psi_t^k = \lambda(\alpha_1 \zeta_t^k - \alpha_1 l_t^k) + (1 - \lambda) \psi_{t-1}^k$$

Edge Equipment Simulated Specifications

Name	CPU Frequency (MHZ)	Number of Cores	
Hardware Spec. 1	921	128	
Hardware Spec. 2	1300	256	
Hardware Spec. 3	800	384	
Hardware Spec. 4	1100	384	
Hardware Spec. 5	1377	384	
Hardware Spec. 6	350	4	
Hardware Spec. 7	1500	4	
Hardware Spec. 8	700	1	
Hardware Spec. 9	3950	2	
Hardware Spec. 10	4300	4	
Hardware Spec. 11	4400	4	
Hardware Spec. 12	4400	8	

Transfer Protocols Specifications

Name	Bandwidth (Mb/s)
Wi-Fi 1	6
Wi-Fi 3	33
Wi-Fi 4	336
Fast Ethernet	100

DQN'S Rewards with CIFAR10

Comparative experiments on MNIST

Comparative experiments on CIFAR10

Comparative accuracy on MNSIT/CIFAR10 with three methods

Comparative Latency on CIFAR10 /MNIST with three methods

Future Work

Continue reading some of the methods mentioned in the FLASH-RL

- Think and consider the next innovation direction
 - Rewards function, action selection, RL strategies
 - Environmental innovation

Thanks

