普通高等教育"十一五"国家级规划教材教育部2011年精品教材

网络安全—技术与实践 (第2版) 刘建伟 王育民 编著 清华大学出版社



#### 课件制作人声明

- 本课件总共有17个文件,版权属于刘建伟所有,仅供选用此教材的教师和学生参考。
- 本课件严禁其他人员自行出版销售,或未经 作者允许用作其他社会上的培训课程。
- 对于课件中出现的缺点和错误,欢迎读者提出宝贵意见,以便及时修订。

课件制作人:刘建伟 2016年10月11日

#### 电子商务:如何确保账户信息安全?















#### 双钥密码体制(一)



公钥密码体制的基本概念



RSA公钥密码算法



ElGamal公钥签名算法



其它公钥密码

#### 专题:双钥密码体制(一)



公钥密码体制的基本概念



RSA公钥密码算法



ElGamal公钥签名算法



**型** 其它公钥密码

#### 1.1 公钥密码的历史

- 1968年,ARPA启动"资源共享计算机网络"建设项目,建成了ARPANET,将4所大学的计算机联网。40年多来,随着因特网的迅猛发展,其商业应用得到普及,迫切需要解决保密通信问题。
- 1976年,美国斯坦福大学电气工程系的研究员Diffie和Hellman 教授在奠基性论文 "密码学的新方向"中提出公开密钥密码体 制的概念,旨在解决网络通信的两大安全问题:保密与认证。
- 公钥密码体制的基础,是计算复杂度理论。
  - ✓ 单向函数/单向陷门函数
  - ✓ 计算上困难问题/NP完全问题

#### 为什么需要公钥密码——单钥体制的不足



#### 回顾:对称(单钥)密码体制



#### 1.2 公钥密码学



#### D-H算法的设计者

1976年,美国的两位著名的密码学家W. Diffie和M. Hellman提出了公钥密码体制,并尝试构造公钥密码算法,并用他们的名字命名,称为Diffie-Hellman算法。

W. Diffie, M. Hellman. *New directions in cryptography*. IEEE Transactions on Information Theory, 1976, No. 6, Vol. 22, 644-654.



**Whitfield Diffie** 



**Martin Hellman** 

#### Diffie-Hellman公钥密码思想



#### D-H协议的核心思想



Alice



公 $K_P^A$ 







$$K = f(K_S^A, K_P^B) \longleftrightarrow K = f(K_S^B, K_P^A)$$



Bob







#### 1.3 理论基础——单向函数

定义1:令函数f是集A到集B的映射,用 $f: A \to B$ 表示。若对于任意 $x1 \neq x2$ ,x1,  $x2 \in A$ ,有 $f(x1) \neq f(x2)$ ,则称f为单射,或1-1映射,或可逆的函数。

定义2:一个可逆函数 $f: A \rightarrow B$ ,若它满足:

- (1) 对所有 $x \in A$ ,易于计算f(x);
- (2) 对 "几乎所有  $x \in A$ ",由 f(x)求 x 极为困难,以至于几乎是不可能的,则称 f是一个单向函数。

注意:定义中的"极为困难"是相对现有的计算机资源和算法而言。

#### 1.4 理论基础——陷门单向函数

定义3:陷门单向函数是一类满足下述条件的单向函数:

 $f_z$ :  $A_z \rightarrow B_z$  ,  $z \in Z$  , Z是陷门信息集合。

(1) 对所有  $z \in \mathbb{Z}$  , 在给定 z 下容易找到一对算法  $E_z$ 和  $D_z$  , 使对所有  $x \in \mathbb{A}$  , 易于计算  $f_z$ 及其逆 , 即: $f_z(x) = E_z(x)$ 

$$D_z(f_z(x)) = x$$

(2) 对所有 $z \in \mathbb{Z}$ , 当只给定  $E_z$ 和  $D_z$ 时, 对所有  $x \in \mathbb{A}$ , 很难从  $y=f_z(x)$ 计算出 x 。

区别:单向函数是求逆困难的函数,而陷门单向函数是在不知道陷门信息下求逆困难的函数。当知道陷门信息后,求逆易于实现。

#### 1.5 用于构造双钥密码的单向函数

多项式求根

离散对数DL (Discrete Logarithm)

大整数分解FAC (Factorization Problem)

背包问题 (Knapsack problem)

Diffie-Hellman问题DHP

二次剩余问题QR (Quadratic Residue)

模n的平方根问题 (SQROOT)

## 1.6 公钥密码体制的原理

• 公钥密码,又称非对称密码或双钥密码(Public-key/Two-key/Asymmetric),其加密和解密数据使用不同的密钥。



#### 1.7 公钥密钥体制的密钥管理

- →公钥密钥体制解决了密钥的发布和管理问题
- →通信双方可以公开其公开密钥,而保留私钥

- →发方可以用收方公钥对发送的信息进行加密
- ▶收方用自己的私钥对收到的密文进行解密

## 1.8 公钥密码体制的特点

● 每个用户都拥有两个密钥:

公钥(public-key):可以被任何人知道,用于加密或验证签名

私钥(private-key):只能由持有者知道,用于解密或签名

- 由私钥及其他密码信息容易计算出公开密钥
- 而由公钥及算法描述,计算私钥却非常困难。

#### 1.9 公钥加密方案



注意:当Alice给Bob发信息时,她必须采用Bob的公钥K1对消息加密,而不是采用Alice的公钥对消息加密。Bob采用自己的私钥K2对密文解密。这是同学们最容易搞混的地方。

#### 1.9 公钥加密方案



#### 公钥(双钥)密码体制



17/22

## 1.10 公钥算法的用途

用于密钥分发

- 用于交换秘密信息,
- 常用于交换对称加密密钥

用于消息加密

- 用于对消息直接加密
- 用公钥加密,用私钥解密
- 公钥加密能够用于密钥分配

用于数字签名

- 用用户私钥对消息进行签名
  - 接收方用公钥对签名进行验证

#### 1.11 公钥的安全性

- ✓ 安全性依赖于解数学上的困难问题。
- ✓ 穷搜索 (exhaustive search) 在理论上能够破解 公钥密码, 当密钥足够长时, 破解极其困难。
- ✓ 目前,通常要求足够大的密钥长度(>1024 bits)
- ✓ 密钥太长会导致加密速度缓慢,因此公钥算法 仅用于密钥传递,而不用于实时的数据加密。

## 双钥密码体制(一)



公钥密码体制的基本概念



RSA公钥密码算法



ElGamal公钥签名算法



**型** 其它公钥密码

# 二、RSA公钥密码算法



RSA算法,于1978由Rivest, Shamir, Adleman三人共同提出。

#### 2.1 RSA公钥算法说明

- Rivest, Shamir和Adleman 于1977年研制并且1978年首次公开发表。
- RSA是一种分组密码,其理论基础是一种特殊的可逆模指数运算,其安全性基于分解大整数的困难性。
- 既可以用于消息加密,也可用于数字签名。
- 硬件实现时,比DES慢约1000倍。软件实现时比DES 慢约100倍。
- 已被许多标准化组织(如ISO、ITU、IETF和SWIFT等)接纳,目前多使用RSA公司的PKCS系列标准;
- RSA-155(密钥长度512 bit)于1999年分别被分解。

#### 2.1 RSA公钥算法说明

- 设n 是两个不同奇素数之积,即 $n = p \times q$ ,计算其欧 拉函数值 $\varphi(n) = (p-1)(q-1)$ 。
- 随机选一整数e,  $1 < e < \varphi(n)$ ,  $(\varphi(n), e) = 1$  因而在模  $\varphi(n)$ 下, e有逆元:  $d = e^{-1} \operatorname{mod} \varphi(n)$
- 取公钥为 $n, e, \Lambda$  私钥为d(p, q不再需要,可以销毁,但绝不可泄露)
  - ✓ 加密变换为  $m \rightarrow c = m^e \mod n$

$$\checkmark$$
 解密变换为  $c \rightarrow c^d = m \mod n$ 

#### 2.2 RSA算法的关键技术



- 模数大于1024bit , p, q为大素数
- p-1 , q-1有大的素因子
- *e*不能太小,最常用的 *e* 值为3,17,65537 (2<sup>16</sup>+1)



- 可以用软件/硬件实现
- 软件与硬件结合,可采用并行算法

#### 2.3 RSA算法的使用

- 设Bob的公钥为(e, n), 私钥为 d, 明文为m
- Alice用Bob的公钥计算:  $c=m^e \mod n$ , 发给B
- Bob用Bob的私钥计算:*m=c<sup>d</sup>* mod *n*
- 特点:
  - ✓ 即使A和B从来不认识,都可进行保密通讯,只要知道B的公钥。
  - 速度慢,它不适用于对图像、话音等进行实时数据加密。
- 要求对公开密钥进行保护,防止修改和替换。

#### 2.4 RSA算法的举例说明

- 1. 选p<sub>1</sub>=47, p<sub>2</sub>=71, 则n=47×71=3337, φ(n)=46×70=3220。若选e=79,可计算d=e<sup>-1</sup>(mod 3220)=1019
- 2. 公开钥n=3337和e=79, 秘密钥d=1019。销毁p<sub>1</sub>和p<sub>2</sub>。
- 3. 另明文为x=688 232 687 966 668 3 , 分组得x<sub>1</sub>=688, x<sub>2</sub>=232, x<sub>3</sub>=687, x<sub>4</sub>=966, x<sub>5</sub>=668, x<sub>6</sub>=3
- 4. 对x<sub>1</sub>加密为:(688)<sup>79</sup> mod <u>3337</u>=1570=C<sub>1</sub>
- 5. 同样可计算出其它各组密文: y=1570 2756 2714 2423 158
- 6. 对C<sub>1</sub>解密: (1570) <sup>1019</sup> mod 3337=668=x<sub>1</sub> 类似地可解出其它各组密文,恢复出明文。

## 2.5 RSA算法的安全性

| 密钥长(bit) | 所需MIPS年             |  |
|----------|---------------------|--|
| 116      | 400                 |  |
| 129      | 5000                |  |
| 512      | 30000               |  |
| 768      | 200 000 000         |  |
| 1024     | 300 000 000 000     |  |
| 2048     | 300 000 000 000 000 |  |

## 2.6 等价密钥长度——与单钥体制比较

| 单钥体制 | RSA体制 | 单钥体制  | RSA体制  |
|------|-------|-------|--------|
| 56 b | 384 b | 112 b | 1792 b |
| 64 b | 512 b | 128 b | 2304 b |
| 80 b | 768 b |       |        |

## 双钥密码体制(一)



公钥密码体制的基本概念



RSA公钥密码算法



ElGamal公钥签名算法

**型** 其它公钥密码

#### 三、ElGamal公钥算法

ElGamal于1985年 基于离散对数问题 提出了一个既可用 于数字签名又可用 于加密的密码体制 ;(此数字签名方案 的一个修改被NIST 采纳为数字签名标 准DSS)

ElGamal,Schnorr和 DSA签名算法都非 常类似。事实上, 它们仅仅是基于离 散对数问题的一般 数字签名的三个例 子。

ElGamal方案未申请专利。但受到DH专利的制约(DH专利已经在1997年4月29日到期)。

#### 3.1 ElGamal公钥密码算法

#### ElGamal公钥加密算法, 1985

- → 其安全性依赖于离散对数问题 (discrete logarithms problem)
- ▶ 参数: GF(p)上的本原元g
- ➡ 秘密钥: x in  $GF(p)^*$  (except 0)
- → 公钥: y=g<sup>x</sup> mod p
- → 选择一个随机数: k
- $\rightarrow$  encryption:  $m \rightarrow (g^k, my^k) \mod p = (r, s)$
- $\rightarrow$  decryption:  $m = sr^{-x} \mod p$

#### 专题:双钥密码体制(一)



- RSA公钥密码算法
- ElGamal公钥签名算法
- 四 其它公钥密码

#### 四、其它公钥密码

- 1 → Rabin密码体制,是RSA的一个特例。
- 2 ▶背包密码体制。

4

6

- →McEliece 体制。1978年,提出了一种基于纠错编码的公开钥密码系统,该系统使用了一类Goppa纠错码。
  - ▶LUC密码体制。新西兰学者Smith提出。
- →1985年, Neal Koblitz和V.S.Miller将椭圆曲线(ECC)用于公开钥密码,并用椭圆曲线实现了DH算法。
  - ▶有限自动机体制。中国学者陶仁骥等提出。
  - ➡概率加密体制。

#### 公钥密码体制的应用



# 谢谢!