Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника» Кафедра «Радиоэлектронные системы и устройства(РЛ1)»

Лабораторная работа №4
«Исследование биполярного транзистора в режиме переключения»
по дисциплине
«Электроника»

Выполнил ст. группы РЛ6-41 Мухин Г.А. Филимонов С.В. Проверил доцент Крайний В.И.

Оценка в баллах_____

Цель работы: исследование импульсных свойств биполярного транзистора, определение их зависимостей от режима работы транзистора.

Приборы и измерительные устройства: Два источника питания "Марс", резисторы сопротивлением 2 кОм и 5 1кОм, биполярный транзистор, осциллограф АСК1022, генератор импульсов Г3-63.

Параметры исследуемых элементов:

КТ203Б:

Транзистор универсальный кремниевый эпитаксиально-планарные p-n-p усилительный маломощный.

Максимально допустимое (импульсное) напряжение коллектор-база 30 В.

Максимально допустимое (импульсное) напряжение коллектор-эмиттер 30 В.

Максимально допустимый постоянный (импульсный) ток коллектора 10(50)мA.

Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода (с теплоотводом) 0.15 Вт.

Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером 30-150. Обратный ток коллектора <=1 мкА. Граничная частота коэффициента передачи тока в схеме с общим эмиттером =>5 МГц.

Начертим принципиальную схему для исследования транзистора в режиме переключения с указанием полярности включения приборов и источников питания, указав дополнительно типы измерительных приборов.

Снимем семейство выходных характеристик транзистора.

График 1 - к таблице 1

График 2 - к таблице 2

График 3 - к таблице 3

График 4 - к таблице 4

Вывод: На основе биполярного транзистора может быть построен электронный ключ - устройство, которое под действием управляющего сигнала замыкает или размыкает электрическую цепь. При этом транзистор в режиме отсечки эквивалентен разомкнутому ключу, а в режиме насыщения — замкнутому

Транзистор переходит в режим насыщения, когда напряжение на коллекторном переходе меняет знак, т. е. становится прямым. Для этого нужно, чтобы I_6 превысил базовый ток насыщения $I_{6\text{H}}$, тогда при дальнейшем росте I_6 ток коллектора остается неизменным и равным коллекторному току насыщения $I_{\text{кн}} = \beta I_{6\text{H}}$, а $U_{\text{кэ}}$ также остается неизменным и равным $U_{\text{кэ}}$ нас

Переход транзистора из режима отсечки в режим насыщения и наоборот происходит не мгновенно. Длительность процессов включения и выключения определяется процессами накопления и рассасывания зарядов в базе транзистора, а также перезарядом емкостей его переходов.

Время задержки сигнала рассчитывается по формуле:

$$t_{3A} = \tau_{BX} \ln \left[\frac{U_{OTH} - U_{3AH}}{U_{OTH} - U_{E3HOP}} \right]$$

Отпирающее напряжение:

$$U_{omn} = I_6 R_6 + U_{69 nac}$$

$$t_{H} = \tau_{\beta \ni KB} \ln \left[\frac{\beta I_{EOTH}}{\beta I_{EOTH} - I_{KH}} \right] = \tau_{\beta \ni KB} \ln \left[\frac{S}{S - 1} \right]$$

Ток насыщения коллектора:

$$I_{\kappa\mu} = (E_{\kappa} - U_{\kappa \nu \mu ac}) / R_{\kappa} \approx E_{\kappa} / R_{\kappa}$$

Время нарастания сигнала рассчитывается по формуле:

Для изменения Ек:

$$t_{H} = \tau_{\beta \supset KB} \ln \left[\frac{\beta I_{EOTTI}}{\beta I_{EOTTI} - I_{KH}} \right]$$

В ходе эксперимента мы увеличивали Ек поэтому знаменатель под логарифмом уменьшался, следовательно увеличивалось и время нарастания сигнала, так как $\tau_{\beta \to KB}$ остается неизменной в ходе изменения Ек. То же самое происходит при увеличении Еб.

При увеличении R_{κ} уменьшается параметр $I_{\kappa h}$, а также уменьшается скорость убывания знаменателя и с ростом сопротивления логарифм будет уменьшатся относительно предыдущего, следовательно уменьшается время нарастания.

Что согласуется с экспериментальными данными.

Токи базы и коллектора на интервале t_4 - t_5 , а также рекомбинация носителей заряда в базе являются причиной рассасывания заряда в базе, т. е. уменьшения накопленного в базе заряда с постоянной времени $\tau_{\text{нак}}$. Время рассасывания t_0 = t_5 - t_4 может быть определено по формуле:

$$t_{P} = \tau_{HAK} \ln \left[\frac{I_{EOTTI} + I_{E3AII}}{I_{KH}/\beta + I_{E3AII}} \right].$$

При увеличении E_6 и E_κ знаменатель логарифма увеличивается, так как возрастает I= , а значит уменьшается сам логарифм, как и время рассасывания вместе с ним.

При увеличении R_{κ} знаменатель логарифма уменьшается, значение логарифма увеличивается, а следовательно и увеличивается время рассасывания.

Что согласуется с экспериментальными данными.

На интервале t_5 - t_6 коллекторный ток уменьшается с постоянной времени τ_{β} экв, стремясь к уровню - β I₆ зап. Однако в момент t_6 коллекторный ток уменьшается до I_{кбо}, близкого к нулю, и транзистор входит в режим отсечки. Время спада тока коллектора t_c = t_6 - t_5 может быть определено по формуле:

$$t_C = \tau_{\beta \ni KB} \ln \left[1 + \frac{I_{KH}}{\beta I_{E3AII}} \right]$$

Здесь с увеличением E_{κ} уменьшается логарифм а следовательно должно уменьшаться и время спада коллектора. С увеличением R_{κ} логарифм уменьшается и время спада коллектора должно уменьшаться, однако по экспериментальным данным оно увеличивается.

Итак, по итогам проведенных работ мы получили совпадение результатов эксперимента с теоретическими выкладками. А также мы ознакомились теоретически со схемой импульса входного и выходного сигнала и убедились в зависимостях между такими величинами, как $E_{\rm K}$, $E_{\rm G}$, $R_{\rm K}$, $t_{\rm c}$, $t_{\rm p}$, $t_{\rm h}$.