Group Report on Recent Work

Ma Hsuning

Physics of NKU maxn@ihep.ac.cn

November 10, 2014

Introduction to recent work

- Input-output check upon the branching ratio of $\eta_c \to K_S K \pi$.
- Observation of the signals of η_c and h_c .

Input-output check

We generated 200K MC sample of the decay

$$\psi(3686) \to \pi^0 h_c,$$

 $h_c \to \gamma \eta_c,$
 $\eta_c \to K_S K \pi.$

And we generated 200K MC sample of the decay

$$\psi(3686) \rightarrow \pi^0 h_c$$
,
 $h_c \rightarrow \gamma \eta_c$,
 $\eta_c \rightarrow \{anything\}$.

Input-output check results

	Reconstruction		Recoil	
Decay channel	via K_S , K and π		$\mid \mid$ via γ and $\pi^0 \mid \mid$	
	N _{obs}	N _{tot}	N _{obs}	N _{tot}
$\eta_c o K_S K \pi$	27646	200K	43412	200K
$\eta_{c} o \{anything\}$	599	200K	75686	200K

Table: Input-output check results

Analysis is on the following page.

Input-output check results analysis and existing problems

From the table on previous page, we can see that:

• With reconstruction via K_S , K and π , we have

$$Br(\eta_c \to K_S K \pi) = \frac{N_{obs}(\eta_c \to \{anything\}) \times N_{tot}(eta_c \to K_S K \pi)}{N_{tot}(\eta_c \to \{anything\}) \times N_{obs}(eta_c \to K_S K \pi)}$$

$$= 599/27646$$

$$= 0.02167,$$

which corresponds the branching ratio we used in the MC-generating, which is 0.0288.

• With recoil via γ and π^0 , we don't under stand the reason why $N_{obs}(eta_c \to K_S K \pi)$ and $N_{obs}(eta_c \to \{anything\})$ are on the same level yet different.

Optimized selection

We used the following optimized selections:

•
$$0 < \chi_{1C}^2 < 5$$
;

•
$$0.11 < m_{inv}^{\gamma\gamma} < 0.145$$
;

•
$$0.46 < E(\gamma_{E1}) < 0.53$$
;

•
$$|m_{recoil}(\pi^0\pi^0) - M_{J/\psi}| < 0.06$$
;

•
$$|m_{recoil}(\gamma) - M_{\chi_{c0}}| < 0$$
;

•
$$|m_{recoil}(\gamma) - M_{\chi_{c1}}| < 0.013;$$

•
$$|m_{recoil}(\gamma) - M_{\chi_{c2}}| < 0.0$$
;

•
$$|m_{recoil}(\pi^+\pi^-) - M_{J/\psi}| < 0.009.$$

Distribution of recoil mass of γ and π^0

We can see that the signal of recoil of γ and π^0 is NOT that obvious as expected.

Distribution of the recoil mass of π^0

The signal corresponds with the results in the reference Measurement of $h_c(^1P_1)$ in ψ' Decays(PRL 104, 132002(2010)).