$(part\ c)$ Define a function ComputeAFromT(T) which returns the adjacency n by n matrix A of G, by performing BFS on n by n matrix T.

ComputeAFromT(T) takes $O(n^2)$ since BFS on a n by n matrix(T) to find all entries less than 1 takes $O(n^2)$. And the function returns a correct adjacency matrix A of G, since every $(i,j) \in E$ has T[i,j] < 1, and every $(i,j) \notin E$ has $T[i,j] \ge 1$, so we can find all $(i,j) \in E$ to build A.

Define a function ComputePFromD(D) which takes an n by n distance matrix D of G and returns a n by n matrix P, by performing "mod 2" on each of D's entries

ComputePFromD(D) takes $O(n^2)$ since perform "mod 2" on each of D's entries takes n^2 times. And the function returns a correct matrix P, by the definition of P.

```
Def ComputeP(Dsq,T):

A := ComputeAFromT(T);
```

1 Question 2.3

Claim:

 $T[i,j]<1 \text{ iff } (i,j) \in E.$

First, if T[i,j]; 1, then $(i,j) \in E$.

prove by contradiction:

If $(i,j) \notin E$, then $i \notin \{k : (k,j) \in E\}$. So, \forall k in $\{k : (k,j) \in E\}$, $D_{sq}[i,k] \ge 1$. And since $\deg(j) = |\{k : (k,j) \in E\}|$, we now have $\sum_{k:(k,j)\in E} D_{sq}[i,k] \ge |\{k : (k,j) \in E\}| = deg(j)$, so $T[i,j] \ge 1$. Then, by contradiction, if T[i,j];1, then $(i,j) \in E$.

Second, if $(i,j) \in E$, then T[i,j]; 1. proof:

 $(i,j) \in E$, then $\forall k \in \{k : (k,j) \in E\}$, since $\delta(k,j)=1$, and $\delta(i,j)=1$, we have $\delta(i,k) \le 2$, implies $D_s q(i,k) \le 1$. And, $i \in \{k : (k,j) \in E\}$, means $\exists k \in \{k : (k,j) \in E\}$, such that $\delta(k,i)=0$. So, $\sum_{k:(k,j)\in E} D_{sq}[i,k] < deg(j)$, which implies T[i,j]; 1. We are done.

When $\delta(i,j) \geq 2$, let $b \in \mathbb{N}$.

Claim: When $\delta(i,j)$ is even, assume $\delta(i,j)=2b$. When $\delta(i,j)$ is odd, assume $\delta(i,j)=2b+1$. We have $b \leq T[i,j] < b+1$. Proof:

 $D_{sq}[i,j] = [\delta(i,j)/2]$, so D[i,j]=b if $\delta(i,j)$ is even, and so D[i,j]=b+1 if $\delta(i,j)$ is odd. For all k such that $(k,j) \in E$, $\delta(i,j) - 1 \le \delta(i,k) \le delta(i,j) + 1$ since $\delta(k,j)=1$, so

when $\delta(i,j)$ is even,

$$D_{sq}[i,k] = \lceil \delta(i,k)/2 \rceil == \begin{cases} b & \delta(i,k) = (\delta(i,j)-1) \text{ or } \delta(i,j), \\ b+1 & \delta(i,k) = \delta(i,j)+1 \end{cases}.$$

when $\delta(i,j)$ is odd,

$$D_{sq}[i,k] = \lceil \delta(i,k)/2 \rceil == \begin{cases} b & \delta(i,k) = \delta(i,j) - 1, \\ b+1 & \mid \delta(i,k) = \delta(i,j) \text{ or } (\delta(i,j)+1) \end{cases}.$$

Furthermore, there exist a k in the shortest path from i to j such that $\delta(i,k) = \delta(i,j) - 1$ (since $\delta(i,j) \geq 2$), which implies $D_{sq}[i,k] = b$ for such k (from above piecewise functions). By the justification above,since $T[i,j] = \frac{1}{\deg(j)} \sum_{k:(k,j) \in E} D_{sq}[i,k]$, $b \leq T[i,j]$ (since $D_{sq}[i,k] \geq b$) and T[i,j] < b+1 (since $D_{sq}[i,k] \leq b+1$ and there exist a k such that $D_{sq}[i,k] = b$). Then we get $b \leq T[i,j] < b+1$ (①. When $\delta(i,j)$ is even, we have [①, $D_{sq}[i,k] = b$ and T[i,j] = 0] (②. When $\delta(i,j)$ is odd, we have [①, $D_{sq}[i,k] = b+1$ and T[i,j] = 1] ③. From above (②) and (③), we know that Helper_ComputeP is correct. // this function computes (returns) P[i,j] according to given T[i,j] and $D_{sq}[i,k]$, where T[i,j] is from the given definition , $D_{sq}[i,k]$ is the entry in squared graph's distance matrix.

```
 \begin{array}{lll} Helper \setminus Compute P(T[\,i\,\,,j\,]\,, & D_{sq} \in [\,i\,\,,k\,]\,): \\ & if \ (T[\,i\,\,,j\,]\,'s \ integer \ part == D_{sq} \in [\,i\,\,,k\,]\,) \\ & return \ P[\,i\,\,,j\,] = 0 \\ & else \ // \ (T[\,i\,\,,j\,]\,'s \ integer \ part\,) \ +1 == D_{sq} \in [\,i\,\,,k\,] \\ & return \ P[\,i\,\,,j\,] = 1 \end{array}
```

It runs in linear time. So we can construct function Compute $P(D_{sq},T)$.

```
 \begin{array}{ll} Compute P (D_{\{sq\},T}) \colon \\ & for \ each \ [i\,,j] \\ & compute \ P[i\,,j] \ from \\ & Helper\_Compute P (T[i\,,j]\,, \ D_{\{sq\}[i\,,k])} \\ & return \ P. \end{array}
```

The above function is correct since Helper_ComputeP(T[i,j], D_sq[i,k]) is correct. And it runs linear time since each statement in for loop runs linear time, and the whole for loop runs $O(n^2)$ times.

Done.