Physics 11 Formulas

Fundamental Constants and Equations

1 Physics Formulas

1.1 CH1,2,3: Kinematics

$$\vec{v} = \frac{\Delta \vec{d}}{\Delta t} \qquad \vec{a} = \frac{\Delta \vec{v}}{\Delta t} \qquad v_{\rm f} = v_{\rm i} + at$$

$$d = \left(\frac{v_{\rm i} + v_{\rm f}}{2}\right)t \qquad d = v_{\rm i}t + \frac{1}{2}at^2 \qquad v_{\rm f}^2 = v_{\rm i}^2 + 2ad$$

$$d = d_0 + \bar{v}t \qquad \bar{v} = \frac{v_0 + v_f}{2} \qquad v = v_0 + at$$

$$d = d_0 + v_0t + \frac{1}{2}at^2 \qquad a = \frac{2d}{t^2} \text{ (if } d_0 = v_0 = 0) \qquad v^2 = v_0^2 + 2a \text{ } (d - d_0)$$

1.2 CH4,5,6: Dynamics, Projectile Motion, and Rotational Motion

1.2.1 Newton's Laws and Forces (CH4.1-4.4)

First Law:
$$\mathbf{F}_{\rm net} = 0 \text{ or } \Sigma \mathbf{F} = 0$$
 (equilibrium)

Second Law: $\vec{F}_{\rm net} = m\vec{a}$ $\mathbf{W} = m\mathbf{g}$

Forces: $F_{\rm g} = G \frac{m_1 m_2}{r^2}$ $F_{\rm f} = \mu F_{\rm N}$
 $F_{\rm s} = k\Delta x$ $\mathbf{N} = m\mathbf{g}$ (horizontal) $\mathbf{T} = m\mathbf{g}$ (at rest)

1.2.2 Projectile Motion (CH5.1-5.3)

$$h = \frac{\mathbf{v}_{0y}^2}{2\mathbf{g}} \qquad \qquad R = \frac{\mathbf{v}_0^2 \sin 2\theta_0}{\mathbf{g}}$$

1.2.3 Rotational Motion (CH6.1-6.2)

Angle & Angular Velocity:	$\Delta heta = rac{\Delta s}{r}$	$\omega = \frac{\Delta \theta}{\Delta t}$
Tangential Speed:	$v = r\omega$	
Centripetal Motion:	$\mathbf{a}_{\mathrm{c}} = rac{v^2}{r} = r\omega^2$	$\mathbf{F}_{\mathrm{c}} = m \frac{v^2}{r} = m r \omega^2$

1.3 CH8: Momentum

Linear momentum $\mathbf{p} = m\mathbf{v}$

Impulse-momentum theorem $\Delta \mathbf{p} = \mathbf{F}_{\text{net}} \Delta t$

Conservation of momentum $\mathbf{p}_{tot} = constant, \text{ or } \mathbf{p}_{tot} = \mathbf{p}'_{tot}$

Elastic collision (1D) $m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 = m_1 \mathbf{v}_1' + m_2 \mathbf{v}_2'$

2D collision (x-axis) $m_1 \mathbf{v}_1 = m_1 \mathbf{v}_1' \cos \theta_1 + m_2 \mathbf{v}_2' \cos \theta_2$

Angular momentum $\mathbf{L} = I\omega$

1.4 CH9: Work, Energy, and Power

1.4.1 Work, Power, and Work-Energy Theorem

Kinetic Energy: $KE = \frac{1}{2}m\mathbf{v}^2$

Work: $W = \mathbf{f}d$

Power: $P = \frac{W}{t}$

Work Equivalencies: $W = PE_e = \Delta KE = \mathbf{f} m\mathbf{g} = \frac{1}{2}m\mathbf{v}_2^2 - \frac{1}{2}m\mathbf{v}_1^2$

1.4.2 Conservation of Energy

$$KE_1 + PE_1 = KE_2 + PE_2$$

1.4.3 Simple Machines

General IMA: Lever IMA: Wheel and Axle IMA:

 $IMA = \frac{\mathbf{F}_r}{\mathbf{F}_e} = \frac{d_e}{d_r}$ $IMA = \frac{L_e}{L_r}$ $IMA = \frac{R}{r}$

Inclined Plane IMA: Wedge IMA: Pulley IMA: $IMA = \frac{L}{h}$ $IMA = \frac{L}{t}$ IMA = N

Screw IMA: Input Work: Output Work: $IMA = \frac{2\pi L}{P}$ $W_i = \mathbf{F}_i d_i$ $W_o = \mathbf{F}_o d_o$

Efficiency: % efficiency = $\frac{W_o}{W_i} \times 100$

1.5 CH11: Thermal Physics

1.5.1 Temperature and Thermal Energy

 $C \to F$: $C \to K$: $F \to K$: $T_K = \frac{9}{5}T_C^{\circ} + 32$ $T_K = T_C^{\circ} + 273.15$ $T_K = \frac{5}{9}(T_F^{\circ} - 32) + 273.15$

 $\begin{array}{ll} {\rm F} \rightarrow {\rm C}; & {\rm K} \rightarrow {\rm C}; & {\rm K} \rightarrow {\rm F}; \\ T_{\rm C}^{\circ} = \frac{5}{9} (T_{\rm F}^{\circ} - 32) & T_{\rm C}^{\circ} = T_{\rm K} - 273.15 & T_{\rm F}^{\circ} = \frac{9}{5} (T_{\rm K} - 273.15) + 32 \end{array}$

1.5.2 Heat, Specific Heat, and Heat Transfer

Heat Transfer:
$$Q = mc\Delta T$$

Density:
$$\rho = \frac{m}{V}$$

1.5.3 Phase Change and Latent Heat

Heat Transfer (Melting/Freezing):
$$Q = mL_f$$

Heat Transfer (Vaporization/Condensation):
$$Q = mL_v$$

1.6 CH12: Laws of Thermodynamics

First Law:
$$\Delta U = Q - W$$
 Entropy Change: $\Delta S = \frac{Q}{T}$

Pressure:
$$P = \frac{F}{A}$$

Heat Engine Efficiency: $Eff = \frac{W}{T}$

P-V Work:
$$W = P\Delta V$$
 Heat Engine Efficiency: $Eff = \frac{W}{Q_h}$

Ideal Gas Law:
$$PV = NkT$$
 Cyclical Work: $W = Q_h - Q_c$

1.7 CH5.5: Simple Harmonic Motion

$$\vec{F} = -k\vec{x}$$
 (Hooke's Law) $T = 2\pi\sqrt{\frac{m}{k}}, \quad f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$

$$T = 2\pi \sqrt{\frac{L}{g}}$$
 (Simple Pendulum)

1.8 CH13-14: Waves and Sound

$$v = f\lambda$$
, $T = \frac{1}{f}$, $f = \frac{1}{T}$
$$I = \frac{P}{A}$$
, $I = \frac{(\Delta p)^2}{2\rho v_w}$, $\beta \text{ (dB)} = 10 \log_{10} \left(\frac{I}{I_0}\right)$

$$f_{obs} = f_s \left(\frac{v_w}{v_w \pm v_s} \right)$$
 (moving source) $f_{obs} = f_s \left(\frac{v_w \pm v_{obs}}{v_w} \right)$ (moving observer)

$$f_B = |f_1 - f_2|$$
 (beat frequency)
$$f_n = n \frac{v}{4L}, n = 1, 3, 5...$$
 (closed pipe)

$$f_n=n\frac{v}{2L},\,n=1,2,3...$$
 (open pipe)

1.9 CH18: Electric Fields and Potential

Coulomb's Law:
$$F = \frac{kq_1q_2}{r^2}$$
 $\vec{E} = \frac{\vec{F}}{q_{\text{test}}}, \quad E = \frac{k|Q|}{r^2}$

$$\Delta U_E = -qE(x_f - x_i) \qquad \qquad U_E = \frac{kQq}{r}$$

$$\Delta V = -E(x_f - x_i) \qquad \qquad V = \frac{kQ}{r}$$

$$C = \frac{Q}{V}, \quad U_E = \frac{1}{2}CV^2$$
 $C = \kappa \varepsilon_0 \frac{A}{d}$

1.10 CH19: Current, Resistance, and Circuits

$$I = \frac{\Delta Q}{\Delta t}, \quad 1 \text{ A} = 1 \text{ C/s}$$

Ohm's Law: V = IR

Series:
$$R_{\text{equiv}} = R_1 + R_2 + \dots + R_N$$

Parallel:
$$R_{\text{equiv}} = \frac{1}{1/R_1 + 1/R_2 + \dots + 1/R_N}$$

$$P = IV$$

$$P = I^2 R = \frac{V^2}{R}$$

2 Mathematical Formulas

2.1 Right-angled Triangles

Figure 1: Right-angled triangle

$$a^2 + b^2 = c^2$$
 $\sin \theta = \frac{b}{c}$ $\cos \theta = \frac{a}{c}$ $\tan \theta = \frac{b}{a}$ $\operatorname{area} = \frac{1}{2}ab$

2.2 All Triangles

Figure 2: Non-Right-angled triangle

area = $\frac{1}{2}$ base × height Sine Law: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ Cosine Law: $c^2 = a^2 + b^2 - 2ab\cos C$

2.3 Circle and Sphere

Circle circumference: $2\pi r$ Circle area: πr^2 Sphere surface area: $4\pi r^2$ Sphere volume: $\frac{4}{3}\pi r^3$

2.4 Quadratic Equation

For $ax^2 + bx + c = 0$: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

3 Metric Prefixes and Cardinal Directions

Figure 3: Cardinal directions: North, South, East, and West

Prefix	Symbol	Numerical	Exponential
mega	M	1000000	10^{6}
kilo	k	1000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}
		1	10^{0}
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}

4 Fundamental Constants and Physical Data

Gravitational constant: $G = 6.67 \times 10^{-11} \text{Nm}^2/\text{kg}^2$ Coulomb's Law constant: $k = 9.00 \times 10^9 \text{Nm}^2/\text{C}^2$ Elementary charge: $e = 1.60 \times 10^{-19} \text{C}$ Electron mass: $m_e = 9.11 \times 10^{-31} \text{kg}$ Proton mass: $m_p = 1.67 \times 10^{-27} \text{kg}$ Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{Tm/A}$ Speed of light: $c = 3.00 \times 10^8 \text{m/s}$

4.1 Earth

Radius: $6.38 \times 10^6 \text{m}$ Mass: $5.98 \times 10^{24} \text{kg}$

Surface gravity: $g = 9.81 \text{m/s}^2$ Rotation period: $8.61 \times 10^4 \text{s}$

Orbit radius (Sun): $1.50 \times 10^{11} \text{m}$ Orbit period (Sun): $3.16 \times 10^7 \text{s}$

4.2 Moon

Radius: $1.74 \times 10^6 \text{m}$ Mass: $7.35 \times 10^{22} \text{kg}$

Rotation period: $2.36 \times 10^6 \text{s}$ Orbit radius (Earth): $3.84 \times 10^8 \text{m}$

Orbit period (Earth): $2.36 \times 10^6 \text{s}$ Surface gravity: $1.67 \,\text{m/s}^2$

4.3 Sun

Mass: $1.98 \times 10^{30} \text{kg}$