第一章 引论

第二章 语法分析

2.1 文法

终结字符, 非终结字符

规则, 重写规则, 产生式, 生成式 $\alpha \rightarrow \beta$, $\alpha := \beta$

文法 $G = (V_N, V_T, P, S), V_N$: 非终结符, V_T : 终结符, P: 规则集合, S: 识别符, 开始符, 一种文法的开始

推导, 归约 对于 $a \to b \to c$, a 直接推导 b, b 直接归约到 a $(a \Rightarrow b)$, a 推导 c, c 归约到 a $(a \overset{*/+}{\Longrightarrow} b)$

句型, **句子** $S \stackrel{*}{\Rightarrow} x$, x 为**句型**, 若 x 为终结符组成称为**句子**

例 2.1.1 已知语言 $L(G) = a^n b^m c^m | n \ge 1, m \ge 0,$ 求 G[S]

解 $S \rightarrow AB$

 $A \to aA|a$

 $B \to bBc|\epsilon$

注意: S 写最前面

2.1.1 文法类型

- 0 型文法: 全都是
- 1 型 (上下文有关) 文法: $aBc \rightarrow aDcc, |aBc| \leq |aDcc| \text{ or } A \rightarrow \epsilon,$ ($|a| \rightarrow length a$)

- 2型 (上下文无关) 文法: $a \rightarrow bCd$, 其中 a 为单个终结符
- 3型 (正规) 文法: $A \rightarrow \epsilon |a| aB$

2.1.2 句型分析

最右推导(规范推导) 优先展开最右非终结符,推出的句型称为**右(规范)** 句型

对于右句型 (Sd(T)db),

短语 S_1 , $({}_2T_3)_2$, $S_1d_1({}_2T_3)_2$, b, $S_1d_1({}_2T_3)_2d_2b$, $({}_1S_1d_1({}_2T_3)_2d_2b)_1$ 直接短语,简单短语 S_1 , $({}_2T_3)_2$, b句柄 (最左直接短语,仅在右句型中适用) S_1

2.2 自顶向下

FIRST 产生的句子的可能的第一个符号

- $FIRST(\epsilon) = \{\epsilon\}$
- $FIRST(a...) = \{a\}$
- $FIRST(A...) = FIRST(A), A \rightarrow \epsilon$

2.3 自底向上 5

FOLLOW 符号的下一个可能符号, 末尾为#

• $FOLLOW(S) = \# \cup \dots$

SELECT 读取下一个符号可推导

- LL(1) 从左到右 (Left), 最左推导 (Left derivation), 向后读取一个符号
- $\mathbf{LL}(1)$ 判别方式 $SELECT(A \rightarrow X) \cap SELECT(A \rightarrow Y) = \emptyset$

2.2.1 常见非 LL(1)

- 1. 左公因子 $A \to aX|aY$ 转化为 $A \to aA'$, $A' \to X|Y$
- 2. 左递归 $A \rightarrow Aa|b|c$ 转化为右递归 $A \rightarrow bA'|cA', A' \rightarrow aA$

2.2.2 例题

P93 4.5.2

2.3 自底向上

第三章 词法分析

正规式 1(0|1)*0

NFA 不确定的有穷自动机

NFA 转 DFA

状态/输入	0	1
A {a}	-	B {b, c, d}
$B \{b, c, d\}$	ϵ -closue $(c, e) = \mathbf{C} \{c, d, e\}$	$D \{c, d\}$
\mathbf{C} {c, d, \mathbf{e} }	\mathbf{C}	D
$D \{c, d\}$	C	D

DFA 确定的有穷自动机

DFA 化简 (确定法, 最小化) $\{\{A,B,D\},\{C\}\},$ 若状态任意输入后下一个状态在其他组则独立出来, 最后同组内合并

状态/输入	0	1
A	_	В
В	\mathbf{C}	В
\mathbf{C}	\mathbf{C}	В

第四章 语义分析

综合属性 自底向上传播 **继承属性** 自顶向下传播

第五章 中间代码生成

• AST: 抽象语法树

解

while x + y > 3:

• TAC: 三地址码, 四元式

5.1 考试用汇编

```
JEZ c _ addr 如果 c 为假跳转到 addr, 逆波兰: c(addr)(jez)

JMP _ addr 跳转到 addr, 逆波兰: (addr)(jez)

if c: # 0x01: JEZ c _ 0x05
    x # 0x02 - 0x03: x

else # 0x04: JMP _ 0x09
    y # 0x05 - 0x08: y
    # 0x09:

while c: # 0x01: JEZ c _ 0x05
    x # 0x02 - 0x03: x
    # 0x04: JMP _ 0x05

A # 0x04: JMP _ 0x01

# 0x05
```

$$a = c + 3 * b$$

 $b = a + e - f * e$

逆波兰 xy+3>(26)(jez) ac3b+= bae+fe=1(jmp)

12:

第六章 中间代码优化

TAC 转 DAG P273

索引

产生式, 3 生成式,3 词法分析, 1 推导, 3 代码优化,1 文法, 3 非终结字符,3 归约, **3** 语法分析, 1 规则, 3 语义分析, 1 句型, 3 中间代码生成,1 句子, **3** 终结字符, 3 目标代码生成,1 重写规则, 3