Sequence and Series

Gunja Sachdeva

August 22, 2024

Recall lim an = 1 meaning the sequence land converges and it converges to 1.

For each 250, 7 N (depends on 2) sit anti, antz, - ... E (l-E, l+E) Results 1. the limit l'of a sequence sant is unique 2. Every convergent sequence is bodd

Equivalently, if $\{a_n\}$ is not bounded, then $\{a_n\}$ is not convergent. Example. The sequence $\{(-1)^n n : n \in \mathbb{N}\}$ is divergent because it is not bounded.

• A bounded sequence need not be convergent. For example, the sequence $\{(-1)^n : n \in \mathbb{N}\}$ is bounded but not convergent.

Gunja Sachdeva Sequence and Series August 22, 2024 2/92

Limit theorems

Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences that converge to A and B respectively. Then:

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n)=AB$.
- $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.

Find the limits.

• $\lim_{n\to\infty}\frac{-1}{n}=(-1)\lim_{N\to\infty}\frac{1}{N}=(-1)\times 0=0$

Limit theorems

Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences that converge to A and B respectively. Then:

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n)=AB$.
- $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.

Find the limits.

• $\lim_{n\to\infty}\frac{-1}{n}=-\lim_{n\to\infty}\frac{1}{n}=0.$

$$\lim_{n\to\infty} \frac{n+1}{n} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right) = \lim_{n\to\infty} 1 + \lim_{n\to\infty} 1$$

$$= 1 + 0 = 1$$

Limit theorems

Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences that converge to A and B respectively. Then:

- $\lim(a_n \pm b_n) = A \pm B$.
- $\lim(a_nb_n)=AB$.
- $\lim(ca_n) = cA$ for $c \in \mathbb{R}$.
- $\lim \frac{a_n}{b_n} = \frac{A}{B}$, provided (b_n) is a sequence of non-zero real numbers and $B \neq 0$.

Find the limits.

- $\lim_{n\to\infty}\frac{-1}{n}=-\lim_{n\to\infty}\frac{1}{n}=0.$
- $\lim_{n\to\infty} \frac{n+1}{n} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right) = 1.$

•
$$\lim_{n\to\infty} \frac{4-7n^6}{n^6+3}$$
 = $\lim_{N\to\infty} \frac{4/n^6-7}{1+3/n^6}$ = $\lim_{N\to\infty} \frac{4}{n^6-7}$ = $\lim_{N\to\infty} \frac{4-7n^6}{n^6+3}$ = $\lim_{N\to\infty} \frac{4-7n^6}{n^6-7}$ = $\lim_{N\to\infty} \frac{4-7n$

•
$$\lim_{n\to\infty} \frac{4-7n^6}{n^6+3} = \lim_{n\to\infty} \frac{\left(\frac{4}{n^6}-7\right)}{1+\frac{3}{n^6}} = \frac{0-7}{1+0} = -7.$$

•
$$\lim_{n\to\infty} \frac{n^7 + 2n - 1}{n^6 + n^2 + 1} =$$

Sandwich Theorem.

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

Examples:

(i)
$$\lim_{n\to\infty} \frac{\cos n}{n}$$

 $\lim_{n\to\infty} \frac{\cos n}{n}$
 $\lim_{n\to\infty} \frac{\cos n}{n}$

Sandwich Theorem.

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

Examples:

(i)
$$\lim_{n\to\infty} \frac{\cos n}{n}$$

 $-1 \le \cos n \le 1$. Therefore $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ and $\lim_{n\to\infty} \frac{\cos n}{n} = 0$.

(ii)
$$\lim_{n \to \infty} \frac{1}{2^n}$$
 $\therefore 2^n > n$ $0 < \frac{1}{2^n} < \frac{1}{n}$ $\therefore 2^n > n$ $\therefore 2^n > n$

Sandwich Theorem.

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be three sequences of real numbers and there is a natural number m such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq m$.

If $\lim a_n = \lim c_n = \ell$, then (b_n) is convergent and $\lim b_n = \ell$.

Examples:

(i)
$$\lim_{n\to\infty} \frac{\cos n}{n}$$

 $-1 \le \cos n \le 1$. Therefore $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ and $\lim_{n\to\infty} \frac{\cos n}{n} = 0$.

(ii)
$$\lim_{n \to \infty} \frac{1}{2^n} = 0$$
as $0 \le \frac{1}{2^n} \le \frac{1}{n}$

(iii)
$$\lim_{n\to\infty} (-1)^n \frac{1}{n} = 0.$$

Examples

(iv) Let
$$a_{n} := \frac{n^{3} + 3n^{2} + 1}{n^{4} + 8n^{2} + 2}$$
 for $n \in \mathbb{N}$.

$$0 < \frac{n^{3} + 3n^{2} + 1}{n^{4} + 8n^{2} + 2} = \frac{n^{3}}{n^{4} + 8n^{2} + 2} + \frac{3n^{2}}{n^{4} + 8n^{2} + 2} + \frac{1}{n^{4} + 8n^{2} + 2}$$

$$< \frac{n^{3}}{n^{4}} + \frac{3n^{2}}{n^{4}} + \frac{1}{n^{4}}$$

$$= \frac{1}{n} + \frac{3}{n^{2}} + \frac{1}{n^{4}}$$

$$= \frac{1}{n} + \frac{3}{n^{2}} + \frac{1}{n^{4}}$$

$$> 0$$

$$\Rightarrow \int a_{n} = 0$$

$$\Rightarrow \int a_{n} = 0$$

Examples

(iv) Let
$$a_n := \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2}$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$, since $0 \le a_n \le \frac{1}{n} + \frac{3}{n^2} + \frac{1}{n^4} \to 0$.

(iii) Let
$$a_n:=rac{1}{n}\sin\left(rac{1}{n}
ight)$$
 for $n\in\mathbb{N}.$ Then $a_n o 0$, since $|a_n|\leq rac{1}{n} o 0$.

Continuous function theorem for Sequences

Remark

- If (a_n) is a sequence and if f is any function from $\mathbb{R} \to \mathbb{R}$, is $f(a_n)$ a sequence? Yes
- What can we say about convergence of $f(a_n)$ if we know about convergence of a_n ?

Continuous function theorem for Sequences

Remark

- If (a_n) is a sequence and if f is any function from $\mathbb{R} \to \mathbb{R}$, is $f(a_n)$ a sequence? Yes
- What can we say about convergence of $f(a_n)$ if we know about convergence of a_n ?

Theorem

Theorem 3: Let (a_n) be a sequence of real numbers. If

- $a_n \rightarrow \ell$ and
- if \underline{f} is a function that is continuous at ℓ and defined at all a_n , then

$$f(a_n) o f(\ell).$$

• Show that $\sqrt{\frac{(n+1)}{n}} \to 1$.

- Show that $\sqrt{\frac{(n+1)}{n}} \to 1$. We know that $\frac{n+1}{n} \to 1$ and $f(x) = \sqrt{x}$ is continuous at $\ell = 1$. So by Theorem 3, $(\sqrt{\frac{(n+1)}{n}}) \to 1$.
- Show that $(2^{\frac{1}{n}}) \rightarrow 1$.

$$\begin{cases}
1 & \text{and} = 1 \\
1 & \text{and} = 1
\end{cases}$$

$$\begin{cases}
f: \text{IR} \longrightarrow 1 \\
2 & \text{and} = 1
\end{cases}$$

$$0 & \text{begin } 2^{\infty} = 1$$

:
$$f(s)$$
 cont. at $s(s)$ = $2^{1/n}$ = $2^{1/n}$ = $2^{1/n}$

- Show that $\sqrt{\frac{(n+1)}{n}} \to 1$. We know that $\frac{n+1}{n} \to 1$ and $f(x) = \sqrt{x}$ is continuous at $\ell = 1$. So by Theorem 3, $(\sqrt{\frac{(n+1)}{n}}) \to 1$.
- Show that $(2^{\frac{1}{n}}) \to 1$. $\frac{1}{n} \to 0$ and $f(x) = 2^x$ is continuous at x = 0. Thus $2^{\frac{1}{n}} \to 1$.
- Find the limit of the sequence $\sin\left(\frac{1+n}{n^2}\right)$ $\alpha_n = \frac{1+n}{n^2} \rightarrow 0$
- Find the limit of the sequence $e^{\frac{2n^2+3}{n^3+5n+6}}$ $f: \mathbb{R} \to \mathbb{R}$ $S: \mathbb{R} \to \mathbb{R}$

$$e^0 = 1$$

8 / 92

Functions and sequences

Theorem

Suppose that f(x) is a function defined for all $x \ge n_0$ and that (a_n) is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x\to\infty} f(x) = \ell \implies \lim_{n\to\infty} a_n = \ell.$$

(i) Show that $\lim_{n\to\infty} \frac{\log n}{n} = 0$.

f: IR = 8 IR

$$x \mapsto \log x$$
, $x \ge 1$
 $\lim_{x \to \infty} \log x$ Apply L'Hopital

 $\lim_{x \to \infty} \int_{0}^{1} x dx$

Sequence and Sories

August 22 2024

Functions and sequences

Theorem

Suppose that f(x) is a function defined for all $x \ge n_0$ and that (a_n) is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x\to\infty} f(x) = \ell \implies \lim_{n\to\infty} a_n = \ell.$$

(i) Show that $\lim_{n \to \infty} \frac{\log n}{n} = 0$. We take $f(x) = \frac{\log x}{x}$ and f(x) is defined for $x \ge 1$. Therefore $\lim_{n \to \infty} \frac{\log n}{n} = \lim_{x \to \infty} \frac{\log x}{x} = 0$.

(ii) Let $a_n = (\frac{n+1}{n-1})^n$. Does a_n converge? Where?

$$f(x) = \begin{cases} \frac{1-1}{x} \\ \frac{1-1}{x} \end{cases} = \begin{cases} \frac{1-1}{x} \\ \frac{1-1}{x} \end{cases} = \begin{cases} \frac{1-1}{x} \\ \frac{1-1}{x} \end{cases}$$

$$f(x) = \begin{cases} \frac{1-1}{x} \\ \frac{1-1}{x} \end{cases} = \begin{cases} \frac{1-1}{x} \\ \frac{1-1}{x} \end{cases}$$

$$\lim_{x \to \infty} \log \left(\frac{|x|}{|x|} \right)^{x} = x \log \left(\frac{|x+1|}{|x-1|} \right) = \lim_{x \to \infty} \log \left(\frac{|x+1|}{|x-1|} \right)$$

$$= \lim_{x \to \infty} \log \left(\frac{|x+1|}{|x-1|} \right) = \lim_{x \to \infty} \log \left(\frac{|x+1|}{|x-1|} \right)$$

$$= \lim_{x \to \infty} \log \left(\frac{|x+1|}{|x-1|} \right) = \lim_{x \to \infty} \log \left(\frac{|x+1|}{|x-1|} \right)$$

(ii) Let $a_n = (\frac{n+1}{n-1})^n$. Does a_n converge? Where? The limit leads to the indeterminate form 1^{∞} . We can apply l'Hopital's rule if we first change the form by taking the natural logarithm of a_n .

$$\lim_{n \to \infty} \ln(a_n) = \lim_{n \to \infty} n \ln(\frac{n+1}{n-1})$$

$$= \lim_{n \to \infty} \frac{\ln(\frac{n+1}{n-1})}{1/n}$$

$$= \lim_{n \to \infty} \frac{-2/(n^2 - 1)}{-1/n^2}$$

$$= \lim_{n \to \infty} \frac{2n^2}{n^2 - 1} = 2.$$

Since $ln(a_n) \to 2$ and $f(x) = e^x$ is continuous, $a_n \to e^2$.

Bounded Sequences

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. The number α is an upper bound for (a_n) . If α is an upper bound for a_n but no number less than α is an upper bound for a_n , then α is **the least upper bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$. The number β is a lower bound for a_n . If β is a lower bound for a_n but no number greater than β is a lower bound for a_n , then β is **the greatest lower bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded** if there are real numbers α, β such that $\beta \leq a_n \leq \alpha$ for every $n \in \mathbb{N}$.

If a sequence is not bounded, it is said to be unbounded.

Monotone sequences and convergence

- A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.
- $\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots$ is monotone increasing
- A sequence (x_n) is said to be **monotone decreasing** or nonincreasing if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \ge x_2 \ge x_3 \ge \cdots$.
- $1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots$ is monotone decreasing.
- A sequence is monotone if it is either monotone increasing or monotone decreasing.

If a sequence (a_n) is both bounded and monotone, then the sequence converges.

In other words,

- A monotone increasing sequence that is bounded above, is convergent and it converges to the least upper bound.
- A monotone decreasing sequence that is bounded below, is convergent and it converges to the greatest lower bound.

Example:

Let
$$a_1 := \frac{3}{2}$$
 and $a_{n+1} := \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$ for $n \in \mathbb{N}$.

$$a_1 = \frac{3}{2} = 1.5 > 0 , \quad a_2 = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right) = \frac{1}{12} = 1.4 > 0$$

$$a_1 = \frac{3}{2} = 1.5 > 0 , \quad a_2 = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right) = \frac{1}{12} = 1.4 > 0$$

$$a_1 = \frac{1}{2} \times a_1 + \delta = \frac{13}{12} = 1.4 > 0$$

$$a_2 = a_1$$

$$a_1 = a_1 - a_1$$

$$a_1 = a_1$$

To show an - 2 > 0. We show it by induction $a_1^2 = \frac{9}{1} = 2.25 \ge 2$ $\Rightarrow a_1^2 - 2 \ge 0$ Assume an2-2>0 & apto n $a_{n+1} - 2 = (a_n^2 - 2)^2$ ≥ 0 fant is bodd below and decreasing => Sant converges (sans - sa), langs - a { an + 17 an { a + 1 } a = a +1

$$a^{2}=2 \Rightarrow a=f_{2}$$

$$\Rightarrow a=f_{2}$$

$$\Rightarrow a=f_{2}$$

$$\Rightarrow a=f_{2}$$

Example:

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Then $a_n > 0$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded below by 0.

Let us check whether the sequence (a_n) is decreasing. Since

$$a_n - a_{n+1} = a_n - \frac{a_n^2 + 2}{2a_n} = \frac{a_n^2 - 2}{2a_n}$$
 for all $n \in \mathbb{N}$,

 (a_n) is decreasing if and only if $a_n^2 - 2 \ge 0$ for all $n \in \mathbb{N}$. But

$$a_1^2 \ge 2$$
 and $a_{n+1}^2 - 2 = \frac{(a_n^2 - 2)^2}{4a_n^2} \ge 0$ for all $n \in \mathbb{N}$.

Hence the sequence (a_n) is decreasing.

It follows that (a_n) is convergent. Let $a_n \to a$. Then $a_{n+1} \to a$ also. But

$$a_{n+1}=\frac{1}{2}\left(a_n+\frac{2}{a_n}\right)\to \frac{1}{2}\left(a+\frac{2}{a}\right).$$

Since the limit of a sequence is unique, we see that $\frac{1}{2}\left(a+\frac{2}{a}\right)=a$, that is, $a^2=2$.

Also, $a_n > 0$ for all $n \in \mathbb{N}$ and $a_n \to a$, so that $a \ge 0$. Thus a is the positive square root of 2, that is, $a = \sqrt{2}$.

Exercises

Determine if the sequences is monotonic and bounded.

•
$$a_n = \frac{n}{n+1}$$

•
$$a_n = \frac{3n+1}{n+1}$$

•
$$a_n = \frac{(2n+3)!}{(n+1)!}$$