

Artificial Intelligent – Week 2

Dr Salem Ameen S.A.AMEEN1@SALFORD.AC.UK

Lecture 3: Adversarial Search In Week 1&2:

- Al
- Search
- Logic

Lecture 3: Optimization & Uncertainty

- Optimization
- Uncertainty
 - Estimation

Lecture 3: AI Paradigm

Modeling

Inference

Learning

Lecture 3: Agent Types

Reflex

 $\mathcal{M}(f_2)$

 $\mathcal{M}(KB)$

 $\mathcal{M}(f_3)$

Credit: Courtesy Percy Liang

Lecture 3: Optimization & Uncertainty

Part 1: Optimization

Lecture 3 – Part 1: Outline

- ☐ Optimization :
 - Minimize, Maximize
- ☐ Algorithms:
 - Hill Climbing
 - Simulated Annealing
 - Genetic algorithm
- □ Examples
 - Travelling salesman problem
 - 8 queen

Lecture 3: Optimization

find max(g(x)) = max(-f(x)) = min(f(x)).

8

If you want to minimize f(x) and your optimizer program seeks to maximize the objective function, then define g(x) = -f(x) and

Similarly, if your optimization problem needs to maximize f(x) and your optimizer program seeks to minimize the objective function, define g(x) = f(x) and find min(g(x)) = min(-f(x)) = max(f(x))

30/01/2023

Lecture 3: Optimization

The potential limitation in the optimization algorithm, where it can get stuck in one of the local minima (plural) and fails to reach the global minimum (singular) in the problem's state space.

not convex

Lecture 3: Optimization Example : 8 queen: Representation

8			A					
7								
6								A
5								
4				A				
3							A	
2								
1		3						
·	1	2	3	4	5	6	7	8

30/01/2023 S. Ameen 10

Lecture 3: Optimization Example : 8 queen: Representation

In the n-Queens problem, we call local or global minima since the objective function to minimize the value. When the objective function is to maximize the value, we call the peaks as either local or global maxima as shown in the figure below.

Lecture 3: Optimization Example: Travelling salesman problem

30/01/2023 S. Ameen 12

Hill Climbing is also known as *greedy local search*.

- This algorithm only looks to the immediate neighbours without knowing where to go next.
- The algorithm evaluates the values of immediate neighbours and continually moves to the direction of the increasing value, hence the name "hill climbing".
- The algorithm will terminate at a *peak* where there are no higher values among the neighbours.

30/01/2023 S. Ameen 13

Hill Climbing algorithm is said to
be incomplete because it can get stuck
in a local maximum and does not
guarantee finding the global maximum.

Solution ???

Hill Climbing algorithm is said to
be incomplete because it can get stuck
in a local maximum and does not
guarantee finding the global maximum.

shoulder

local maximum

"flat" local maximum

current
state

global maximum

Solution : Random Restart

objective function

Optimization - Simulated Annealing algorithm

- **SA:** is inspired by the *annealing* process in metallurgy.
- An annealing process reshapes a hard metal or glass by exposing it to a high temperature and gradually cool it down until it maintains the new shape.
- Unlike the Hill Climbing algorithm, which can get stuck in the local maxima, Simulated Annealing is guaranteed to find the global maximum.

Optimization - Simulated Annealing algorithm


```
For t=1 to ∞ do
    T ← SCHEDULE(t)
    if T=0: return current
    next ← GET_RANDOM_SUCCESSOR(current)
    if Δe>0: current ← next
    else: current ← next with probability e^(ΔE/T)
```

schedule(t) function, the temperature will be decreased at each step. When temperature is zero, it will return the current state.

Optimization - Simulated Annealing algo. Example: Travelling salesman problem

Code

Lecture 3: Optimization - Genetic algorithm

Blood types: A, B, AB and O

Optimization - Genetic algorithm Example : 8 queen: Representation

30/01/2023 S. Ameen 21

Optimization - Genetic algorithm Example: 8 queen: Representation

8-Queens Representation

For this board, give us the string that represents the position of each piece.

Optimization - Genetic algorithm Example : 8 queen: Representation

8-Queens Representation

For this board, give us the string that represents the position of each piece.

16257483

Fitness function ??

Fitness function = non-attacking

Fitness function = non-attacking

non-attacking = Total-attacking – attacking

Fitness function = non-attacking

non-attacking = Total-attacking – attacking

Total-attacking The maximum fitness value for this problem is 28 (8 chooses 2)

Board state 32752411 with 5 pairs of attacking queens

Fitness function = non-attacking = Total-attacking – attacking = 28 - 5 = 23

Board state 32752411 with 5 pairs of attacking queens

Fitness function

24748552 ??

32752411 ??

24415124 ??

32543213 ??

Fitness function

24748552 24

32752411 23

24415124 20

32543213 11

Fitness function

24748552 24 ??

32752411 23 ??

24415124 20 ??

32543213 11 ??

Fitness function

24748552 24 31%

32752411 23 29%

24415124 20 26%

32543213 11 14%

Fitness function

24748552 24 31%

32752411 23 29%

24415124 20 26%

32543213 11 14%

30/01/2023x S. Ameen 36

Fitness function

55

24 31% 24748552

32752411 **23 29**%

24415124 20 26%

32543213 **11 14**%

Fitness function

55

24748552 24 31% 32752411

32752411 23 29%

24415124 20 26%

32543213 11 14%

Fitness function

11

 24748552
 24
 31%
 32752411

 32752411
 23
 29%

 24415124
 20
 26%

 32543213
 11
 14%

Fitness function

11

Fitness function

33

Fitness function

80

Fitness function

80

24748552	24	31%	32752411
32752411	23	29%	24748552
24415124	20	26%	32752411
32543213	11	14%	24415124

Fitness function

Fitness function

Crossover

Fitness function

Crossover

Fitness function

Crossover

Mutation = Randomness

Lecture 3 – Part 2

Part 2: Uncertainty

Lecture 3 – Part 2: Outline

- ☐ Probabilities:
 - Dependence, Independence, Conditional Independence
- ☐ Parameter estimation:
 - Maximum Likelihood Estimation (MLE)
 - Maximum Aposteriori (MAP)
- ☐ Anomaly detection

Lecture 3 - Outline

- Probabilities:
 - Dependence, Independence, Conditional Independence
- ☐ Parameter estimation:
 - Maximum Likelihood Estimation (MLE)
 - Maximum Aposteriori (MAP)
- ☐ Anomaly detection

Lecture 3: Probability

Lecture 3: Conditional Probability

The soul of statistics

Three important tools:

- Multiplication rule
- Independent
- Total probability theorem
- Bayes' rule (→ inference)

- Random Variables
 - Discrete Random Variables
 - Continuous Random Variables
 - Combination
 - [0,2] U { e , 2.7}

- CUMULATIVE DISTRIBUTION FUNCTION (CDF)
- PROBABILITY MASS FUNCTION (PMF)
- PROBABILITY DENSITY FUNCTION (PDF)

	Discrete	Continuous
Prob. Fun.	pmf - p	pdf - f
≥ 0	$p(x) \ge 0$	$f(x) \ge 0$
∑ = 1	$\sum p(x) = 1$	$\int f(x)dx = 1$
P(A)	$\sum_{x \in A} p(x)$	$\int_{x \in A} f(x) dx$
F(X)	$\sum_{u \leq x} p(u)$	$\int_{-\infty}^{x} f(u) du$
$\mu = E(X)$	$\sum xp(x)$	$\int x f(x) dx$
V(X)	$\sum (x-\mu)^2 p(x)$	$\int (x-\mu)^2 f(x) dx$

- ❖Bernoulli
- Binomial
- Poisson
- ❖Geometric
- ❖Negative Binomial (Pascal)
- Hypergeometric
- Discrete Uniform
- **❖**More

- **Uniform**
- **❖**Normal
- Exponential
- The Cauchy
- **♦** More

Lecture 3 - Parameter Estimation

- ☐ Probabilities:
 - Dependence, Independence, Conditional Independence
- ☐ Parameter estimation:
 - Maximum Likelihood Estimation (MLE)
 - Maximum Aposteriori (MAP)
- ☐ Anomaly detection

Lecture 3: Maximum Likelihood Estimation (MLE for Binomial)

Data,
$$D=$$

$$D=\{X_i\}_{i=1}^n,\ X_i\in\{\mathrm{H},\mathrm{T}\}$$

$$P(Heads) = \theta$$
, $P(Tails) = 1-\theta$

MLE: Choose θ that maximizes the probability of observed data

• MLE: Choose θ that maximizes the probability of observed data

$$\hat{ heta}_{MLE} = rgmax_{ heta} \ P(D; heta)$$

MLE: Choose θ that maximizes the probability of observed data

$$egin{aligned} \hat{ heta}_{MLE} &= rgmax_{ heta} P(D; heta) \ &= rgmax_{ heta} inom{n_H + n_T}{n_H} heta^{n_H} (1 - heta)^{n_T} \end{aligned}$$

$$p(X = k) = \binom{n}{k} p^k q^{n-k}$$
 for $x = 0, 1, 2, 3 \dots, n$ and $q = 1 - p$.

• MLE: Choose θ that maximizes the probability of observed data

$$egin{aligned} \hat{ heta}_{MLE} &= rgmax_{ heta} P(D; heta) \ &= rgmax_{ heta} inom{n_H + n_T}{n_H} heta^{n_H} (1 - heta)^{n_T} \ &= rgmax_{ heta} \log inom{n_H + n_T}{n_H} + n_H \cdot \log(heta) + n_T \cdot \log(1 - heta) \end{aligned}$$

MLE: Choose θ that maximizes the probability of observed data

$$egin{aligned} \hat{ heta}_{MLE} &= rgmax_{ heta} P(D; heta) \ &= rgmax_{ heta} inom{n_H + n_T}{n_H} heta^{n_H} (1 - heta)^{n_T} \ &= rgmax_{ heta} \log inom{n_H + n_T}{n_H} + n_H \cdot \log(heta) + n_T \cdot \log(1 - heta) \ &= rgmax_{ heta} n_H \cdot \log(heta) + n_T \cdot \log(1 - heta) \end{aligned}$$

MLE: Choose θ that maximizes the probability of observed data

$$egin{aligned} \hat{ heta}_{MLE} &= rgmax_{ heta} P(D; heta) \ &= rgmax_{ heta} inom{n_H + n_T}{n_H} heta^{n_H} (1 - heta)^{n_T} \ &= rgmax_{ heta} \log inom{n_H + n_T}{n_H} + n_H \cdot \log(heta) + n_T \cdot \log(1 - heta) \ &= rgmax_{ heta} n_H \cdot \log(heta) + n_T \cdot \log(1 - heta) \end{aligned}$$

We can then solve for θ by taking the derivative and equating it with zero. This results in

$$rac{n_H}{ heta} = rac{n_T}{1- heta} \Longrightarrow n_H - n_H heta = n_T heta \Longrightarrow heta = rac{n_H}{n_H + n_T}$$

- MLE: Choose θ that maximizes the probability of observed data
- Simple scenario: coin toss with prior knowledge

Assume you have a hunch that θ is close to 0.5. But your sample size is small, so you don't trust your estimate.

Simple fix: Add m imaginery throws that would result in θ' (e.g. $\theta=0.5$). Add m Heads and m Tails to your data.

$$\hat{ heta} = rac{n_H + m}{n_H + n_T + 2m}$$

For large n, this is an insignificant change. For small n, it incorporates your "prior belief" about what θ should be. Can we derive this formally?

Let us try Gaussians...
$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) = \mathcal{N}_x(\mu, \sigma)$$

$$\hat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)$$

Likelihood:

$$p(\lbrace x_i \rbrace | \mu, \sigma)$$

Observed data Unknown parameters

$$\hat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)$$

Likelihood:

$$p(\lbrace x_i \rbrace | \mu, \sigma)$$

$$\hat{\mu}, \hat{\sigma} = \arg \max_{\mu, \sigma} p(\{x_i\} | \mu, \sigma)$$

$$\hat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)$$

$$\hat{\mu}, \hat{\sigma} = \arg \max_{\mu, \sigma} p(\{x_i\} | \mu, \sigma)$$

$$\hat{\mu}, \hat{\sigma} = \arg \max_{\mu, \sigma} \prod_{i=1}^{N} p(x_i | \mu, \sigma)$$

$$\hat{\mu}, \hat{\sigma} = \arg \max_{\mu, \sigma} \sum_{i=1}^{N} \frac{\ln p(x_i | \mu, \sigma)}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{(x_i - \mu)^2}{2\sigma^2} \right\}$$

$$= \left\{ -\frac{(x_i - \mu)^2}{2\sigma^2} - \ln \sigma - \ln \sqrt{2\pi} \right\}$$

$$\hat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)$$

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

Note: MLE for the variance of a Gaussian is biased [Expected result of estimation is not the true parameter!]

Unbiased variance estimator: $\hat{\sigma}_{unbiased}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$

Lecture 3: The Bayesian Way

Model θ as a random variable, drawn from a distribution P(θ)

$$P(heta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}$$

- \circ P(θ) is the **prior** distribution over the parameter(s) θ, before we see any data.
- \circ P(D| θ) is the **likelihood** of the data given the parameter(s) θ .
- \circ P(θ|D) is the **posterior** distribution over the parameter(s) θ after we have observed the data.

Lecture 3: Maximum a Posteriori Probability Estimation (MAP)

• MAP Principle: Find $\hat{\theta}$ that maximizes the posterior distribution P($\theta|D$):

$$\hat{ heta}_{\mathit{MAP}} = rgmax_{ heta} \ P(heta \mid D)$$

• MAP Principle: Find $\hat{\theta}$ that maximizes the posterior distribution P($\theta|D$):

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax_{ heta} \ P(heta \mid D) \ &= rgmax_{ heta} \ \log P(D \mid heta) + \log P(heta) \end{aligned}$$

$$P(\theta \mid D) = rac{P(D|\theta)P(\theta)}{P(D)}$$

30/01/2023 • S. Ameen 73

• MAP Principle: Find $\hat{\theta}$ that maximizes the posterior distribution P($\theta|D$):

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax_{ heta} \ P(heta \mid D) \ &= rgmax_{ heta} \ \log P(D \mid heta) + \log P(heta) \end{aligned}$$

For out coin flipping scenario, we get:

$$\begin{split} \hat{\theta}_{\mathit{MAP}} &= \operatorname*{argmax}_{\theta} \ P(\theta|Data) \\ &= \operatorname*{argmax}_{\theta} \ \frac{P(Data|\theta)P(\theta)}{P(Data)} \\ &= \operatorname*{argmax}_{\theta} \ \log(P(Data|\theta)) + \log(P(\theta)) \end{split}$$

$$P(heta) = rac{ heta^{lpha-1}(1- heta)^{eta-1}}{B(lpha,eta)}$$

30/01/2023 • S. Ameen 74

• MAP Principle: Find $\hat{\theta}$ that maximizes the posterior distribution P($\theta|D$):

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax_{ heta} \ P(heta \mid D) \ &= rgmax_{ heta} \ \log P(D \mid heta) + \log P(heta) \end{aligned}$$

For out coin flipping scenario, we get:

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax & P(heta|Data) \ &= rgmax & rac{P(Data| heta)P(heta)}{P(Data)} \ &= rgmax & \log(P(Data| heta)) + \log(P(heta)) \ &= rgmax & n_H \cdot \log(heta) + n_T \cdot \log(1- heta) + (lpha-1) \cdot \log(heta) + (eta-1) \cdot \log(1- heta) \end{aligned}$$

(By Bayes rule)

30**/**01**/**2023 • S. Ameen 75

• MAP Principle: Find $\hat{\theta}$ that maximizes the posterior distribution P($\theta|D$):

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax_{ heta} \ P(heta \mid D) \ &= rgmax_{ heta} \ \log P(D \mid heta) + \log P(heta) \end{aligned}$$

For out coin flipping scenario, we get:

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax & P(heta|Data) \ &= rgmax & rac{P(Data| heta)P(heta)}{P(Data)} \ &= rgmax & \log(P(Data| heta)) + \log(P(heta)) \ &= rgmax & n_H \cdot \log(heta) + n_T \cdot \log(1- heta) + (lpha-1) \cdot \log(heta) + (eta-1) \cdot \log(1- heta) \ &= rgmax & (n_H + lpha - 1) \cdot \log(heta) + (n_T + eta - 1) \cdot \log(1- heta) \end{aligned}$$

(By Bayes rule)

30/01/2023 S. Ameen 76

• MAP Principle: Find $\hat{\theta}$ that maximizes the posterior distribution P($\theta|D$):

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax_{ heta} \ P(heta \mid D) \ &= rgmax_{ heta} \ \log P(D \mid heta) + \log P(heta) \end{aligned}$$

For out coin flipping scenario, we get:

$$\begin{split} \hat{\theta}_{MAP} &= \underset{\theta}{\operatorname{argmax}} \ P(\theta|Data) \\ &= \underset{\theta}{\operatorname{argmax}} \ \frac{P(Data|\theta)P(\theta)}{P(Data)} \\ &= \underset{\theta}{\operatorname{argmax}} \ \log(P(Data|\theta)) + \log(P(\theta)) \\ &= \underset{\theta}{\operatorname{argmax}} \ n_H \cdot \log(\theta) + n_T \cdot \log(1-\theta) + (\alpha-1) \cdot \log(\theta) + (\beta-1) \cdot \log(1-\theta) \\ &= \underset{\theta}{\operatorname{argmax}} \ (n_H + \alpha - 1) \cdot \log(\theta) + (n_T + \beta - 1) \cdot \log(1-\theta) \\ &\Longrightarrow \hat{\theta}_{MAP} = \frac{n_H + \alpha - 1}{n_H + n_T + \beta + \alpha - 2} \end{split}$$

(By Bayes rule)

30/01/2023 S. Ameen 77

Lecture 3: MAP vs MLE

$$\hat{ heta}_{\mathit{MAP}} = rac{n_H + lpha - 1}{n_H + n_T + eta + lpha - 2}$$

$$\hat{ heta} = rac{n_H + m}{n_H + n_T + 2m}$$

Lecture 3: MAP vs MLE Bayesians vs Frequentists

$$\hat{ heta}_{MAP} = rac{n_H + lpha - 1}{n_H + n_T + eta + lpha - 2}$$

$$\hat{ heta} = rac{n_H + m}{n_H + n_T + 2m}$$

You are no good when sample is small

You give a different answer for different priors

Lecture 3: Multivariate Gaussian Distribution (Estimation)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})\right\}$$

- Σ Covariance *matrix*
 - * Diagonal terms: variance
 - * Off-diagonal terms: correlation

- D Number of Dimensions
- **X** Variable
- μ Mean *vector*
- Σ Covariance matrix

(Dimension = 2)

$$\Sigma = \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1 x_2}^2 \\ \sigma_{x_2 x_1}^2 & \sigma_{x_2}^2 \end{bmatrix} \quad (\sigma_{x_1 x_2}^2 = \sigma_{x_2 x_1}^2)$$

Lecture 3: Multivariate Gaussian Distribution (Estimation)

mean = [0, 0] cov = [[1, 0], [0, 1]]

mean = [0, 0] cov = [[0.5, 0], [0, 0.5]]

mean = [0, 0] cov = [[3, 0], [0, 3]]

Lecture 3: Multivariate Gaussian Distribution (Estimation)

Lecture 3: Anomaly detection (Estimation)

Lecture 3: Anomaly detection (Estimation)

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2$$

Lecture 3: Anomaly detection (Estimation)

Anomaly Detection using the Multivariate Gaussian Distribution

1. Fit model p(x) by setting

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} - \mu (x^{(i)} - \mu)^{T}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Lecture 3: Anomaly detection (Estimation)

Anomaly Detection using the Multivariate Gaussian Distribution

1. Fit model p(x) by setting

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Lecture 3: Anomaly detection (Estimation) Applications

- Fraud Detection
- * Manufacturing (e.g. aircraft engines)
- Monitoring Machines in a data centre

Lecture 3: MAP vs MLE Machine Learning and estimation

Generative Model vs Discriminative Model

In supervised Machine learning you are provided with training data D. You use this data to train a model, represented by its parameters θ . With this model you want to make predictions on a test point x_t .

- MLE Prediction: $P(y|x_t;\theta)$ Learning: $\theta = \operatorname{argmax}_{\theta} P(D;\theta)$. Here θ is purely a model parameter.
- MAP Prediction: $P(y|x_t,\theta)$ Learning: $\theta = \operatorname{argmax}_{\theta} P(\theta|D) \propto P(D\mid\theta)P(\theta)$. Here θ is a random variable.

MLE we maximize $\log[P(D;\theta)]$ + Regularization

MAP we maximize $\log[P(D|\theta)] + \log[P(\theta)]$

30/01/2023 S. Ameen 88

Lecture 3 : Summary:

- ☐ Optimization :
 - Minimize, Maximize
- ☐ Algorithms:
 - Hill Climbing
 - Simulated Annealing
 - Genetic algorithm
- □ Examples
 - Travelling salesman problem
 - 8 queen

- Probabilities:
 - Dependence, Independence, Conditional Independence
- ☐ Parameter estimation:
 - Maximum Likelihood Estimation (MLE)
 - Maximum Aposteriori (MAP)
- ☐Anomaly detection

Lecture 3: Next

Machine Learning

Any Question

