2017학년도 1학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	공	교수명	분 반		
시 험 일 시	2017년 6월 12일 (오전 10:00-11:40)	성 명		점 수	

1번 -9번은 단답형 문제(1번 10점, 2-9번 각 5점) 2 . 극방정식으로 주어진 곡선 $r = \sin 2 heta$ 에 입니다. 풀이과정은 쓸 필요 없고 답만 쓰면 됩니 $\theta = \frac{\pi}{4}$ 에서 접선의 방정식을 구하여라.

- 1. 다음 급수의 수렴 또는 발산을 판정하여라. (문항당 2점)
- a) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} \sqrt{n}}{\sqrt{n}}$ b) $\sum_{n=2}^{\infty} \ln\left(1 \frac{1}{n^2}\right)$
- c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan \frac{1}{\sqrt{n}}$ d) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$
- e) $\sum_{n=2}^{\infty} \frac{(-1)^n \ln n}{n}$

3. 정적분 $\int_{0}^{\sqrt{3}} x \tan^{-1} x dx$ 의 값을 구하여라.

답: a)

b)

d)

e)

답:

2017학년도 13	017학년도 1학기 (기말고사) 학과			감!	독교수확인		
과 목 명	일반수학 1	학 번					
출제교수명	땅	교수명		분 반			
시 험 일 시	2017년 6월 12일 (오전 10:00-11:40)	성 명				점 수	

4.	멱급수 $\sum_{n=1}^{\infty}$	$\frac{n!}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)} (x-1)^n \mathfrak{Q}$	수렴
반지	름과 수렴-	구간을 구하여라.	

6. 극한
$$\lim_{x\to 0} \frac{\sin(x^4) - x^4 + \frac{1}{6}x^{12}}{x^{20}}$$
 를 구하여라.

답: 수렴반지름=

수렴구간=

 $5. \ x=0$ 에서 함수 $\dfrac{\tan^{-1}x}{1+3x}$ 의 3차 테일러 다항식 $P_3(x)$ 을 구하여라.

답:

7. x = 0에서 함수 $f(x) = \frac{1}{1 + x + x^2}$ 의 매클로린 급수의 x^{100} 의 계수를 구하여라.

답:

답:

2017학년도 1학	학기 (기말고사)	학 과				감.	독교수확인
과 목 명	일반수학 1	학 번					
출제교수명	공 동	교수명		분 반			
시 험 일 시	2017년 6월 12일 (오전 10:00-11:40)	성 명				점 수	

8.	극방정식	$r^2 = 4\sin\theta$ 로	둘러싸인	영역의	넓이를	구히
여	라.					

10번~14번은 서술형 문제(각 10점 만점)입니다. 풀 이과정을 모두 서술하여야 합니다.

10. 무한급수 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln(1+n)}{1+n^2}$ 의 절대수렴, 조건수렴, 발산을 판정하여라.

답:

9. 정적분
$$\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \sin^2 \theta} d\theta$$
 의 값을 구하여라.

답:

2017학년도 1학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	공	교수명	분 반		
시 험 일 시	2017년 6월 12일 (오전 10:00-11:40)	성 명		점 수	

[(오선 10:00-11:40)]	
11. 극방정식으로 주어진 곡선 $r = \frac{1}{\theta}$ $(1 \le \theta \le \sqrt{3})$	의 $\left 12. $ 두 곡선 $y = \frac{x^2}{(x-2)(x^2+1)}$ 와 $y = \frac{1}{x-3}$ 으로 둘러
길이를 구하여라.	$(x-2)(x^2+1) \qquad x-3$
	싸인 영역의 넓이를 구하여라.

2017학년도 1학	17학년도 1학기 (기말고사) 학과			감:	독교수확인		
과 목 명	일반수학 1	학 번					
출제교수명	공동	교수명		분 반			
시 험 일 시	2017년 6월 12일 (오전 10:00-11:40)	성 명				점 수	

13. $x=0$ 에서 현	함수 $f(x) = \int$	$t \ln(1+t^2)dt$ 의	매클로린	14. 두	타원 3 <i>x</i>	$x^2 + y^2 =$	3 과 x²+	$3y^2 = 3$ 의	공통내부인
				영역의	넓이를	극좌표를	이용하여	구하여라.	
급수와 수렴구간	할 각각 구하역	다.							