Linear Systems Orthogonality

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

References

► S Boyd, Applied Linear Algebra: Chapters 5.

► G Strang, Linear Algebra: Chapters 3.

Orthogonality

► Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^\top \mathbf{y} = 0$.

▶ The set of non-zero vectors, $V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_r\}$ is a set of mutually orthogonal vectors, if and only if,

$$\mathbf{v}_i^{\top}\mathbf{v}_j = 0, \ 1 \leq i, j \leq r \text{ and } i \neq j$$

▶ *V* is also a linearly independent set of vectors. Why?

Orthogonality

▶ If $\|\mathbf{v}_i\| = 1$, then V is an **orthonormal** set of vectors.

A set of orthonormal vectors V also form an **orthonormal basis** of the subsapce $span\left(V\right)$.

▶ Is $\left\{ \begin{bmatrix} 1\\-2\\4 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$ an orthonormal set?. If no, how will you make it one?

Orthogonal Subspaces

Two subspaces $\mathcal{V}, \mathcal{W} \subset \mathbb{R}^n$ are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^{\top}\mathbf{w} = 0, \ \forall \mathbf{v} \in \mathcal{V} \text{ and } \forall \mathbf{w} \in \mathcal{W} \implies \mathcal{V} \perp \mathcal{W}$$

If $V + W = \mathbb{R}^n$, and $V \perp W$, then V and W are **orthogonal complements** of each other.

$$\mathcal{V}^{\perp}=\mathcal{W} ext{ or } \mathcal{W}^{\perp}=\mathcal{V}; \quad \left(\mathcal{V}^{\perp}
ight)^{\perp}=\mathcal{V}$$

Orthogonal Subspaces

$$\mathcal{V} = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}^{\top}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}^{\top} \right\} \text{ and } \mathcal{W} = span \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}^{\top} \right\}. \text{ Is } \mathcal{V}^{\perp} = \mathcal{W}? \text{ If we add } \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}^{\top} \text{ to } \mathcal{W}, \text{ is } \mathcal{V}^{\perp} = \mathcal{W} \text{ still true?}$$

 $\|\mathbf{e}\|$ is the distance of the point \mathbf{b} from the line along a. This distance is shortest when, $e \perp a$.

$$\mathbf{a}^{\top} (\mathbf{b} - \mathbf{p}) = \mathbf{a}^{\top} (\mathbf{b} - \alpha \mathbf{a}) = \mathbf{a}^{\top} \mathbf{b} - \alpha \mathbf{a}^{\top} \mathbf{a} =$$

$$\alpha = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a}$$

$$\mathbf{p} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^{\top}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

$$\mathbf{p} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

$$\mathbf{P} = rac{\mathbf{a} \mathbf{a}^{ op}}{\mathbf{a}^{ op} \mathbf{a}} \longrightarrow \mathsf{Project}$$
 matrix onto the subpsace spanned by \mathbf{a}

Find the orthogonal projection matrix associated ${\bf a}$, and find the projection of ${\bf b}$ on to $span\left(\{{\bf a}\}\right)$.

•
$$\mathbf{a} = \begin{bmatrix} -1\\2 \end{bmatrix}$$
; $\mathbf{b} = \begin{bmatrix} 2\\2 \end{bmatrix}$
• $\mathbf{a} = \begin{bmatrix} -1\\2 \end{bmatrix}$; $\mathbf{b} = \begin{bmatrix} 6\\3 \end{bmatrix}$
• $\mathbf{a} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$; $\mathbf{b} = \begin{bmatrix} -2\\-4\\-2 \end{bmatrix}$

- We can project vectors onto high dimensional subspaces.
- $lackbox{ }$ Consider the subspace $\mathcal{S}\subseteq\mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1,\mathbf{u}_2,\ldots\mathbf{u}_r\}$.
- We want to project a vector $\mathbf{b} \in \mathbb{R}^n$ onto \mathcal{S} $\mathbf{b}_{\mathcal{S}}$ the orthogonal projection of \mathbf{b} onto \mathcal{S} is given by the following,

$$\mathbf{b}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{ op}\mathbf{b}; \ \mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix
$$\mathbf{P}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{\top}$$

A projection matrix is **idempotent**, i.e. $\mathbf{P}^2 = \mathbf{P}$. What does this mean in terms of projecting a vector on to a subspace?

Find the orthogonal projection matrix associated $\mathcal{U} = \left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \right\}$, and find the

projection of
$$\mathbf{b} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
 on to $span(\mathcal{U})$.

Consider two matrices $\mathbf{U}_1, \mathbf{U}_2$ whose columns form an orthonormal basis of the subspace $\mathcal{S} \subseteq \mathbb{R}^m$, $\mathcal{C}(\mathbf{U}_1) = \mathcal{C}(\mathbf{U}_2)$.

▶ The projection matrix onto the subspace \mathcal{S} , $\mathbf{U}_1\mathbf{U}_1^\top = \mathbf{U}_2\mathbf{U}_2^\top$. We get the same projection matrix irrespective of which orthonormal basis one uses.

Let
$$\mathbf{U}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{U}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$. Find the corresponding projection matrices.

▶ Two subspaces $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$ are said to be **complementary subspaces** of \mathbb{R}^n , when

$$\mathcal{X} + \mathcal{Y} = \mathcal{V}$$
 and $\mathcal{X} \cap \mathcal{Y} = \mathbf{0}$

For complementary subspaces $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$, then any vector $\mathbf{v} \in \mathbb{R}^n$ can be uniquely represented as,

$$\mathbf{v} = \mathbf{v}_{\mathcal{X}} + \mathbf{v}_{\mathcal{Y}}, \ \mathbf{v}_{\mathcal{X}} \in \mathcal{X}, \ \mathbf{v}_{\mathcal{Y}} \in \mathcal{Y}$$

 $\mathbf{v}_{\mathcal{X}}, \mathbf{v}_{\mathcal{Y}}$ are the components of \mathbf{v} in \mathcal{X} and \mathcal{Y} , respectively.

▶ When $V \perp W$, then $\mathbf{v}^{\top}\mathbf{w} = 0$; \mathbf{v}, \mathbf{w} are orthogonal components.

▶ If P_S is the orthogonal projection matrix onto S, then what is the projection matrix onto S^{\perp} ?

▶ Let $\mathbf{u} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$. Find out the projection matrices $\mathbf{P}_{\mathbf{u}}$ and $\mathbf{P}_{\mathbf{u}^{\perp}}$?

Relationship between the Four Fundamental Subspaces of A

 $ightharpoonup \mathcal{C}\left(\mathbf{A}\right), \mathcal{N}\left(\mathbf{A}^{\top}\right) \subseteq \mathbb{R}^{m}$ are orthogonal complements.

$$\mathcal{C}(\mathbf{A}) \perp \mathcal{N}(\mathbf{A}^{\top}) \implies \mathcal{C}(\mathbf{A}) + \mathcal{N}(\mathbf{A}^{\top}) = \mathbb{R}^{m}$$

 $ightharpoonup \mathcal{C}\left(\mathbf{A}^{ op}
ight), \mathcal{N}\left(\mathbf{A}
ight) \subseteq \mathbb{R}^{n}$ are orthogonal complements.

$$\mathcal{C}\left(\mathbf{A}^{ op}
ight) \perp \mathcal{N}\left(\mathbf{A}
ight) \implies \mathcal{C}\left(\mathbf{A}^{ op}
ight) + \mathcal{N}\left(\mathbf{A}
ight) = \mathbb{R}^{n}$$

An orthogonal projection matrix $\mathbf{P}_{\mathcal{S}}$ onto a subspace \mathcal{S} represents a linear mapping, $\mathbf{P}_{\mathcal{S}}: \mathbb{R}^n \to \mathbb{R}^n$. What are the four fundamental subspaces of $\mathbf{P}_{\mathcal{S}}$?

$$\mathcal{C}\left(\mathbf{P}_{\mathcal{S}}\right) = \mathcal{S}; \quad \mathcal{N}\left(\mathbf{P}_{\mathcal{S}}\right) = \mathcal{S}^{\perp}$$
 $\mathcal{N}\left(\mathbf{P}_{\mathcal{S}}^{\top}\right) = \mathcal{S}^{\perp}; \quad \mathcal{C}\left(\mathbf{P}_{\mathcal{S}}^{\top}\right) = \mathcal{S}$

Relationship between the Four Fundamental Spaces

- \mathbf{x}_r and \mathbf{x}_n are the components of $\mathbf{x} \in \mathbb{R}^n$ in the row space and nullspace of \mathbf{A} .
 - ▶ Nullspace $\mathcal{N}(\mathbf{A})$ is mapped to $\mathbf{0}$.

$$\mathbf{A}\mathbf{x}_n = \mathbf{0}$$

▶ Row space $C(A^{\top})$ is mapped to the column space C(A).

$$\mathbf{A}\mathbf{x}_r = \mathbf{A}\left(\mathbf{x}_r + \mathbf{x}_n\right) = \mathbf{A}\mathbf{x} = \mathbf{b}$$

- ► The mapping from the **row space** to the **column space** is invertible, i.e. every \mathbf{x}_r is mapped to a unique element in $\mathcal{C}(\mathbf{A})$
- ▶ What sort of mapping does A[⊤] do?

Gram-Schmidt Orthogonalization

- ▶ Given a linearly independent set of vectors $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n\}$, where $\mathbf{x}_i \in \mathbb{R}^m, \ \forall i \in \{1, 2, \dots n\}$, how can we find a orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_n\}$ for $span(\mathcal{B})$? \longrightarrow Gram-Schmidt Algorithm
- Its an iterative procedure that can also detect if a given set $\mathcal B$ is linearly dependent.

```
 \begin{array}{c} \textbf{Data: } \left\{\mathbf{x}_i\right\}_{i=1}^n \\ \textbf{Result: } \text{ Return an orthonormal basis } \left\{\mathbf{u}_i\right\}_{i=1}^n \text{ if the set } \mathcal{B} \text{ is linearly independent, else return nothing.} \\ \textbf{for } i=1,2,\dots n \text{ do} \\ & 1. \ \tilde{\mathbf{q}}_i=\mathbf{x}_i-\sum_{j=1}^{i-1} \left(\mathbf{u}_j^{\top}\mathbf{x}_i\right)\mathbf{u}_i \longrightarrow \textbf{(Orthogonalization step)}; \\ 2. \ \textbf{If } \tilde{\mathbf{q}}_i=0 \text{ then return;} \\ 3. \ \mathbf{u}_i=\tilde{\mathbf{q}}_i/\left\|\tilde{\mathbf{q}}_i\right\| \longrightarrow \textbf{(Normalization step)}; \\ \textbf{end} \\ \textbf{return } \left\{\mathbf{u}_i\right\}_{i=1}^n; \end{array}
```

Gram-Schmidt Orthogonalization

▶ The algorithm can also be conveniently represented in a matrix form.

$$\mathcal{B} = \{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$$
 Let $\mathbf{U}_1 = \mathbf{0}_{m \times 1}$ and $\mathbf{U}_i = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_{i-1} \end{bmatrix} \in \mathbb{R}^{m \times (i-1)}$
$$\mathbf{U}_i^\top \mathbf{x}_i = \begin{bmatrix} \mathbf{u}_1^\top \mathbf{x}_i \\ \mathbf{u}_2^\top \mathbf{x}_i \\ \vdots \\ \mathbf{u}_{i-1}^\top \mathbf{x}_i \end{bmatrix} \quad \text{and} \quad \mathbf{U}_i \mathbf{U}_i^\top \mathbf{x}_i = \sum_{j=1}^{i-1} \left(\mathbf{u}_j^\top \mathbf{x}_i \right) \mathbf{u}_j$$

$$\mathbf{u}_i = \frac{\left(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^\top \right) \mathbf{x}_i}{\| \left(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^\top \right) \mathbf{x}_i \|}$$

QR Decomposition

- Gram-Schmidt procedure leads us to another form of matrix decomposition QR decomposition.
- Given a matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$, whose columns form a linearly independent set. Gramm-Schmidt algorithm produces a orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_n\}$ for $\mathcal{C}(\mathbf{A})$.

$$\mathbf{q}_1 = rac{\mathbf{a}_1}{r_1}$$
 and $\mathbf{q}_i = rac{\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^ op \mathbf{a}_i) \mathbf{q}_j}{r_k}$

where, $r_1 = \|\mathbf{a}_1\|$ and $r_k = \left\|\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^{\top} \mathbf{a}_i) \mathbf{q}_j \right\|$.

$$\mathbf{a}_1 = r_1 \mathbf{q}_1$$
 and $\mathbf{a}_i = r_i \mathbf{q}_i + \sum_{j=1}^{i-1} \left(\mathbf{q}_j^{ op} \mathbf{a}_i
ight) \mathbf{q}_j$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \dots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} r_1 & \mathbf{q}_1^\top \mathbf{a}_2 & \mathbf{q}_1^\top \mathbf{a}_3 & \dots & \mathbf{q}_1^\top \mathbf{a}_n \\ 0 & r_2 & \mathbf{q}_2^\top \mathbf{a}_3 & \dots & \mathbf{q}_2^\top \mathbf{a}_n \\ 0 & 0 & r_2 & \dots & \mathbf{q}_3^\top \mathbf{a}_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_n \end{bmatrix} = \mathbf{Q} \mathbf{R}$$

QR Decomposition

Find the ${f QR}$ factorization for the following, if possible.

$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \\ -4 & 1 & 3 \end{bmatrix}$$

QR Decomposition

$$\mathbf{A} = \mathbf{Q}\mathbf{R}; \ \mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m \times n}, \ \mathbf{R} \in \mathbb{R}^{n \times n}$$

- ightharpoonup The columns of $\mathbf Q$ form an orthonormal basis for $\mathcal C\left(\mathbf A\right)$, and $\mathbf R$ is upper-triangular.
- ightharpoonup A = QR can be used for used to solve Ax = b.

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \implies \mathbf{R}\mathbf{x} = \mathbf{Q}^{-1}\mathbf{b} = \mathbf{Q}^{\top}\mathbf{b}$$

► Solve the following through QR factorization.

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \\ -4 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix} = \mathbf{b}$$