Global variation in NPP: Bivariate and multiple regression analyses in R

Sean Michaletz 27 September 2013

Whittaker "climate space" diagram

- 1, tropical rainforest.
- **2,** temperate rainforest.
- **3,** tropical seasonal forest.
- **4,** temperate forest.
- **5,** tiaga.
- **6,** savanna.
- 7, woodland/shrubland.
- 8, tundra.
- 9, desert.

Red, 0 - 40 years;

grey, 41 – 80 years;

blue, 81 – 350 years.

Bivariate regression: NPP on MAT and MAP

A general mass-scaling model of NPP

$$NPP = CM_{tot}^{\alpha}$$

NPP – net primary productivity (g m⁻² yr⁻¹) C – proportionality constant (g^{1+ α} m⁻² yr⁻¹) M_{tot} – total stand biomass (g) α – mass-scaling exponent (dimensionless)

Bivariate regression: Model II SMA regression

Relationship between NPP and MAT may be confounded by growing season length!

A metabolic scaling theory of woody plant production: Annual net primary productivity

$$NPP = P^{\alpha_P} l_{gs}^{\alpha_{lgs}} a^{\alpha_a} e^{-E/kT} g_1 \frac{c_n}{A} \left[\frac{5c_m^{8/3}}{3c_n} \right]^{\alpha} M_{tot}^{\alpha}$$

Linearize as

$$\ln(NPP) = \beta_{0,1} + \alpha_P \ln(P) + \alpha_{l_{gs}} \ln(l_{gs}) + \alpha_a \ln(a) - \frac{E}{kT} + \alpha \ln(M_{tot})$$

where intercept
$$\beta_{0,1} = \ln(g_1) + \ln(c_n/A) + \ln\left(\left[5c_m^{8/3}/3c_n\right]^{\alpha}\right)$$

Most variation explained by biomass and age only!

- Full model $R^2 = 0.80$
 - Biomass partial $r^2 = 0.74$
 - Age partial $r^2 = 0.58$
 - Temp partial $r^2 = 0.06$
 - GS length partial $r^2 = 0.00$
 - Precip partial $r^2 = 0.00$

Partial residual plots:

- Compute the residuals of regressing the response variable against the independent variables but omitting X_i
- Compute the residuals from regressing X_i against the remaining independent variables
- Plotting the residuals from (1) against the residuals from (2).

A metabolic scaling theory of woody plant production: Annual net primary productivity

$$\frac{NPP}{l_{gs}} = P^{\alpha_P} a^{\alpha_a} e^{-E/kT} g_2 \frac{c_n}{A} \left[\frac{5c_m^{8/3}}{3c_n} \right]^{\alpha} M_{tot}^{\alpha}$$

Linearize as

$$\ln\left(\frac{NPP}{l_{gs}}\right) = \beta_{0,2} + \alpha_P \ln(P) + \alpha_a \ln(a) - \frac{E}{kT} + \alpha \ln(M_{tot})$$

where intercept
$$\beta_{0,2} = \ln(g_2) + \ln(c_n/A) + \ln(4c_m^{8/3}/3c_n)^{\alpha}$$

Most variation explained by biomass and age only!

- Full model $R^2 = 0.80$
 - Biomass partial $r^2 = 0.45$
 - Age partial $r^2 = 0.21$
 - Temp partial $r^2 = 0.02$
 - Precip partial $r^2 = 0.10$

Dependent variable	Covariate	Coefficient	Estimate	SE	t	p-value	Partial R ²
NPP (g m ⁻² yr ⁻¹)		β_0	8.24579	0.78843	10.459	< 2 x 10 ⁻¹⁶	0.0843
·	l _s <1/kT> _{gs}	E	0.16640	0.01957	-8.501	< 2 x 10 ⁻¹⁶	0.0573
	а	α_{a}	-0.64156	0.01586	-40.456	< 2 x 10 ⁻¹⁶	0.5794
	l _{gs}		-0.01314	0.02577	-0.510	0.6102	0.0002
	M_{tot}	α	0.79987	0.01397	57.248	< 2 x 10 ⁻¹⁶	0.7339
	P _{gs}	$\alpha_{\mathtt{p}}$	0.04740	0.01147	4.133	3.84 x 10 ⁻⁵	0.0142
NPP/I _{gs} (g m ⁻² mo ⁻¹)		βο	-3.05016	1.11337	-2.740	0.00624	0.0035
	<1/kT> _{gs}	Е	-0.11603	0.02761	4.202	2.84 x 10 ⁻⁵	0.0146
	а	α_{a}	-0.39132	0.02203	-17.766	< 2 x 10 ⁻¹⁶	0.2098
	M_{tot}	α	0.62029	0.02002	30.978	< 2 x 10 ⁻¹⁶	0.4466
	P_{gs}	α_{p}	-0.17351	0.01516	-11.443	< 2 x 10 ⁻¹⁶	0.0992

Simpler model is more parsimonious but explains roughly same variation in NPP as full model!

