

EC800M-CN

硬件设计手册

LTE Standard 模块系列

版本: 1.2

日期: 2023-04-13

状态: 受控文件

上海移远通信技术股份有限公司(以下简称"移远通信")始终以为客户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司

上海市闵行区田林路 1016 号科技绿洲 3 期(B区)5号楼 邮编: 200233

电话: +86 21 5108 6236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录: http://www.quectel.com/cn/support/sales.htm。

如需技术支持或反馈我司技术文档中的问题,请随时登陆网址:

http://www.quectel.com/cn/support/technical.htm 或发送邮件至: support@quectel.com。

前言

移远通信提供该文档内容以支持客户的产品设计。客户须按照文档中提供的规范、参数来设计产品。同时,您理解并同意,移远通信提供的参考设计仅作为示例。您同意在设计您目标产品时使用您独立的分析、评估和判断。在使用本文档所指导的任何硬软件或服务之前,请仔细阅读本声明。您在此承认并同意,尽管移远通信采取了商业范围内的合理努力来提供尽可能好的体验,但本文档和其所涉及服务是在"可用"基础上提供给您的。移远通信可在未事先通知的情况下,自行决定随时增加、修改或重述本文档。

使用和披露限制

许可协议

除非移远通信特别授权,否则我司所提供硬软件、材料和文档的接收方须对接收的内容保密,不得将其用于除本项目的实施与开展以外的任何其他目的。

版权声明

移远通信产品和本协议项下的第三方产品可能包含受移远通信或第三方材料、硬软件和文档版权保护的相关资料。除非事先得到书面同意,否则您不得获取、使用、向第三方披露我司所提供的文档和信息,或对此类受版权保护的资料进行复制、转载、抄袭、出版、展示、翻译、分发、合并、修改,或创造其衍生作品。移远通信或第三方对受版权保护的资料拥有专有权,不授予或转让任何专利、版权、商标或服务商标权的许可。为避免歧义,除了正常的非独家、免版税的产品使用许可,任何形式的购买都不可被视为授予许可。对于任何违反保密义务、未经授权使用或以其他非法形式恶意使用所述文档和信息的违法侵权行为,移远通信有权追究法律责任。

商标

除另行规定,本文档中的任何内容均不授予在广告、宣传或其他方面使用移远通信或第三方的任何商标、商号及名称,或其缩略语,或其仿冒品的权利。

第三方权利

您理解本文档可能涉及一个或多个属于第三方的硬软件和文档("第三方材料")。您对此类第三方材料的使用应受本文档的所有限制和义务约束。

移远通信针对第三方材料不做任何明示或暗示的保证或陈述,包括但不限于任何暗示或法定的适销性或特定用途的适用性、平静受益权、系统集成、信息准确性以及与许可技术或被许可人使用许可技术相关的不侵犯任何第三方知识产权的保证。本协议中的任何内容都不构成移远通信对任何移远通信产品或任何其他硬软件、设备、工具、信息或产品的开发、增强、修改、分销、营销、销售、提供销售或以其他方式维持生产的陈述或保证。此外,移远通信免除因交易过程、使用或贸易而产生的任何和所有保证。

隐私声明

为实现移远通信产品功能,特定设备数据将会上传至移远通信或第三方服务器(包括运营商、芯片供应商或您指定的服务器)。移远通信严格遵守相关法律法规,仅为实现产品功能之目的或在适用法律允许的情况下保留、使用、披露或以其他方式处理相关数据。当您与第三方进行数据交互前,请自行了解其隐私保护和数据安全政策。

免责声明

- 1) 移远通信不承担任何因未能遵守有关操作或设计规范而造成损害的责任。
- 2) 移远通信不承担因本文档中的任何因不准确、遗漏、或使用本文档中的信息而产生的任何责任。
- 3) 移远通信尽力确保开发中功能的完整性、准确性、及时性,但不排除上述功能错误或遗漏的可能。除非另有协议规定,否则移远通信对开发中功能的使用不做任何暗示或法定的保证。在适用法律允许的最大范围内,移远通信不对任何因使用开发中功能而遭受的损害承担责任,无论此类损害是否可以预见。
- **4)** 移远通信对第三方网站及第三方资源的信息、内容、广告、商业报价、产品、服务和材料的可访问性、安全性、准确性、可用性、合法性和完整性不承担任何法律责任。

版权所有©上海移远通信技术股份有限公司 2023, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2023.

安全须知

为确保个人安全并保护产品和工作环境免遭潜在损坏,请遵循如下安全须知。产品制造商需要将下列安全须知传达给终端用户,并将所述安全须知体现在终端产品的用户手册中。移远通信不会对用户因未遵循所述安全规则或错误使用产品而产生的后果承担任何责任。

道路行驶,安全第一! 开车时请勿使用手持移动终端设备,即使其有免提功能。请先停车,再打电话!

登机前请关闭移动终端设备。在飞机上禁止开启移动终端的无线功能,以防止对飞机通讯系统的干扰。未遵守该提示项可能会影响飞行安全,甚至触犯法律。

出入医院或健康看护场所时,请注意是否存在移动终端设备使用限制。射频干扰可能会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障在任何情况下均能进行有效连接,例如在设备欠费或 USIM 卡无效时。如果设备支持紧急呼叫功能,请使用紧急呼叫,同时请确保设备开机并且位于信号强度足够的区域。因不能保证所有情况下网络都能连接,故在紧急情况下,不能将带有紧急呼叫功能的设备作为唯一的联系方式。

移动终端设备在开机时会接收和发射射频信号。当靠近电视、收音机、电脑或者其他电子设备时都会产生射频干扰。

确保移动终端设备远离易燃易爆品。当靠近加油站、油库、化工厂或爆炸作业场所时,请关闭移动终端设备。在任何有潜在爆炸危险的场所操作电子设备均存在安全 隐患。

文档历史

修订记录

版本	日期		变更表述
-	2022-05-13	Kelly WANG/Janko LI/	文档创建
1.0	2022-08-31	Yule DENG Kelly WANG/Janko LI/ Yule DENG	受控版本
1.1	2022-09-20	Kelly WANG/Janko Ll/ Yule DENG	更新 ADC 接口最大电压值及电阻值范围;新增 电阻精度值要求(第4.7章)。
1.2	2023-04-13	Mark YANG/Cuby LI/ Yule DENG	 更新短消息功能为可选(表 4)。 更新 USIM2 功能为可选(表 4、第 2.4、2.5、4.3 章)。 更新 LTE 特性的 3GPP 协议规范要求;新增网络协议特性相关说明(表 4)。 新增 RESERVED 引脚 44 为 GNSS 备电引脚的相关备注(第 2.4、2.5 章)。 新增 1.8 pF 和 3.9 pF 电容及 1 个 0 Ω 电阻,并更新模块供电参考电路(第 3.4.3 章)。 新增 1 个 1 kΩ 电阻并更新按键开机参考设计框图(第 3.5.1 章)。 更新 RESET_N 按键复位参考设计框图(图 15)。 更新 GNSS 的电压驻波比范围(表 31)。 更新模块功耗数据(表 34)。 更新模块焊盘部分对应的钢网推荐厚度;更新吸热区升温斜率、回流焊区升温斜率和冷却降温斜率并新增相关备注(第 8.2 章)。 新增模块贴片方向章节(第 8.3.3 章)。

目录

安全	须知	3
文档	历史	4
目录		5
表格	索引	8
图片	索引	10
1	引言	12
'	기 등	
2	产品综述	13
	2.1. 频段及功能	13
	2.2. 关键特性	14
	2.3. 功能框图	16
	2.4. 引脚分配图	
	2.5. 引脚描述表	
	2.6. 评估板套件	22
3	工作特性	23
	3.1. 工作模式	
	3.2. 休眠模式	
	3.2.1. UART 应用场景	
	3.2.2. USB 应用场景	
	3.2.2.1. 支持 USB 挂起和唤醒及 USB 远程唤醒功能	
	3.2.2.2. 支持 USB 挂起和唤醒及 RI 功能	
	3.2.2.3. 不支持 USB 挂起功能	
	3.3. 飞行模式	
	3.4. 电源设计	
	3.4.1. 电源接口	28
	3.4.2. 供电参考	28
	3.4.3. 电压稳定性要求	29
	3.5. 开机	30
	3.5.1. PWRKEY 开机	30
	3.6. 关机	32
	3.6.1. PWRKEY 关机	32
	3.6.2. AT 命令关机	32
	3.7. 复位	33
4	应用接口	35
•	4.1. USB 接口	
	4.2. 紧急下载接口	
	4.3. USIM接口	
	4.4. UART	
	4.5. PCM 接口和 I2C 接口	
	~	-

	4.6. 模	拟音频接口	43
	4.6.1.	音频接口设计注意事项	44
	4.6.2.	麦克风接口电路	44
	4.6.3.	听筒接口电路	45
	4.6.4.	扬声器接口电路	46
	4.7. AD	DC 接口	46
		示信号	
	4.8.1.	网络状态指示	47
	4.8.2.	STATUS	48
	4.8.3.	MAIN_RI	48
5	計频性性	_	50
J		窝网络	
	5.1. sp		
	5.1.1.		
	5.1.2.		
	5.1.3. 5.1.4.		
		多名以口	
	5.2.1.		
	5.2.1.		
	5.2.3.	· ··-	
		.2.3.1. GNSS 有源天线	
		.2.3.2. GNSS 无源天线	
	_	频信号线布线指导	
		线设计要求	
	- / *	频连接器推荐	
6	_	印可靠性	
	_	对最大额定值	
		源额定值	
	6.3. 功		
		字逻辑电平	
		电防护	
	6.6. 工·	作和存储温度	64
7	结构与规格	у	65
	7.1. 机	械尺寸	65
	7.2. 推	荐封装	67
	7.3. 俯	视图和底视图	68
8	存储、生产	和包装	69
		分	
	8.2. 生	········· 产焊接	70
	8.3.1.		
	8.3.2.	胶盘	73

9	附录 参考文	档及术语缩写	.75
	8.3.4.	包装流程	.74
	8.3.3.	模块贴片方向	.73

表格索引

	特殊符号	
	模块基本信息	
表 3:	频段及功能	13
表 4:	模块关键特性	14
表 5:	参数定义	18
表 6:	模块引脚描述	18
表 7:	工作模式	23
表 8:	电源接口引脚定义	28
表 9:	PWRKEY 接口引脚定义	30
表 10	: 复位引脚定义	33
表 11	: USB接口引脚定义	35
表 12	: USB_BOOT 接口引脚定义	36
表 13	: USIM 接口引脚定义	37
表 14	: UART 接口信息	39
表 15	: UART接口引脚定义	40
表 16	: I2C 接口引脚定义	41
表 17	: PCM 接口引脚定义	42
表 18	: 模拟音频接口引脚定义	43
表 19	: ADC 接口引脚定义	46
表 20	: ADC 特性	47
表 21	: 指示接口引脚定义	47
表 22	: 网络状态指示引脚的工作状态	47
表 23	: MAIN_RI 指示方式	49
表 24	: 主天线接口引脚定义	50
表 25	: 工作频段	50
表 26	: 射频发射功率	51
表 27	: 射频接收灵敏度	51
表 28	: GNSS 接口引脚定义	52
表 29	: 工作频段	53
表 30	: GNSS 性能	53
表 31	: 天线设计要求	57
表 32	: 绝对最大额定值	60
表 33	: 模块电源额定值	60
表 34	: 功耗	61
表 35	: 1.8 V I/O 要求	62
表 36	: USIM 卡 1.8 V I/O 要求	62
表 37	: USIM 卡 3.0 V I/O 要求	63
表 38	: ESD 性能参数(温度: 25~30 ℃,湿度: 40 ±5 %)	63
表 39	: 工作和存储温度	64
表 40	: 推荐的炉温测试控制要求	70
表 41	: 载带尺寸表(单位: 毫米)	72

表 42:	胶盘尺寸表(单位:毫米)	73
表 43:	参考文档	75
表 44:	术语缩写	75

图片索引

		功能框图	
, ,		引脚分配俯视图	
		休眠模式下模块功耗示意图	
		UART 休眠应用	
		带 USB 远程唤醒功能的休眠应用	
图	6:	带 MAIN_RI 功能的休眠应用	26
		不支持 USB 挂起功能的休眠应用	
图	8:	供电输入参考电路图	29
图	9:	突发传输电源要求	29
图	10:	模块供电参考电路图	30
图	11:	开集驱动开机参考设计框图	30
图	12:	按键开机参考设计框图	31
图	13:	开机时序图	31
, ,		关机时序图	
图	15:	开集驱动复位参考设计框图	33
图	16:	RESET_N 按键复位参考电路	33
图	17:	RESET_N 复位时序图	34
图	18:	USB 接口参考设计	35
图	19:	USB_BOOT 参考设计	36
图	20:	进入强制下载模式的时序	37
图	21:	8-pin USIM 接口参考电路图	38
图	22:	6-pin USIM 接口参考电路图	38
图	23:	电平转换芯片参考设计	40
图	24:	三极管电平转换电路参考设计	41
图	25:	短帧模式时序图	42
图	26:	PCM 和 I2C 接口电路参考设计	43
图	27:	带偏置电路麦克风接口参考电路	44
图	28:	不带偏置电路麦克风接口参考电路	45
图	29:	听筒输出参考电路	45
图	30:	扬声器接口参考电路	46
图	31:	网络状态指示参考电路图	48
图	32:	STATUS 参考电路图	48
图	33:	射频参考电路图	52
图	34:	GNSS 有源天线参考电路	54
图	35:	GNSS 无源天线参考电路	54
图	36:	两层 PCB 板微带线结构	55
图	37:	两层 PCB 板共面波导结构	55
图	38:	四层 PCB 板共面波导结构(参考地为第三层)	56
图	39:	四层 PCB 板共面波导结构(参考地为第四层)	56
图	40:	天线座尺寸(单位: mm)	58
图	41:	与天线座匹配的插头规格(单位: mm)	58

图 42:	射频连接器安装图(单位: mm)	59
图 43:	模块俯视及侧视尺寸图(单位: mm)	65
图 44:	模块底视尺寸图	66
图 45:	推荐封装	67
图 46:	模块俯视图和底视图	68
图 47:	推荐的回流焊温度曲线	70
	载带尺寸图	
图 49:	胶盘尺寸图	73
图 50:	模块贴片方向	73
图 51:	包装流程	74

1 引言

文档介绍了 EC800M-CN 及其与客户应用相连接的硬件接口和空中接口,可以帮助客户快速了解模块的硬件接口特性、射频特性、电气特性、机械规范以及其他相关信息。

1.1. 特殊符号

表 1: 特殊符号

符号 定义

若无特别说明,模块功能、特性、接口、引脚名称、AT 命令或参数后所标记的星号(*)表示该功能、特性、接口、引脚、AT 命令或参数正在开发中,因此暂不支持;模块子型号后所标记的星号(*)表示该子型号暂无样品。

2 产品综述

模块为贴片式模块,封装紧凑,能满足大部分 M2M 和 IoT 领域的应用需求,如 OTT、CPE、POS、定位器、数据卡、安防及工业级 PDA 等。

表 2: 模块基本信息

EC800M-CN	
封装	LCC + LGA
引脚数	109 个
尺寸	(17.7 ±0.15) mm × (15.8 ±0.15) mm × (2.4 ±0.2) mm
重量	约 1.4 g

2.1. 频段及功能

表 3: 频段及功能

频段及功能	EC800M-CN
LTE-FDD	B1/B3/B5/B8
LTE-TDD	B34/B38/B39/B40/B41
GNSS (可选)	GPS/BDS/Galileo/GLONASS

备注

模块的 GNSS 功能可选:

- 选择带 GNSS 功能的模块时,若需要使用模拟音频输入功能,需增加外部麦克风偏置电路,且必须使用低噪声 LDO,并确保 MICBIAS 供电电源为 1.8 V;此时模块仅支持 USIM1 卡接口。
- 选择不带 GNSS 功能的模块时,若需要使用模拟音频输入功能,无需增加外部麦克风偏置电路;此时模块支持双 USIM 卡功能。

2.2. 关键特性

表 4: 模块关键特性

参数	说明
供电电压	● 供电电压范围: 3.4~4.3 V
M.G.GTE	● 典型值: 3.8 V
	● 文本和 PDU 模式
短消息(SMS)(可	● 点对点短消息收发
选的选	● 短消息小区广播
<u>/u</u> /	● 短消息存储:存储至 USIM 卡和 ME,默认存储至 ME
	● 默认 SGS 短消息,IMS 短消息可选
USIM 卡接口	● 支持 USIM 卡: 1.8 V 和 3.0 V
OOM PIX II	● USIM2 可选
	● 支持 1 路数字音频接口: PCM 接口
音频特性 (可选)	● 支持 1 路模拟音频输入和 1 路模拟音频输出
	● 回音消除和噪声抑制
	● 用于音频使用,需要外接 codec 芯片
PCM 接口(可选)	● 支持 16 位线性编码格式
	● 支持短帧模式:模块仅做主设备
I2C接口(可选)	● 支持 1 路 I2C 接口
120 按片(引起)	● 符合 I2C 总线协议规范
	● USB 2.0(只支持从模式),数据传输速率最大到 480 Mbps
USB 接口	● 用于 AT 命令通信、数据传输、软件调试、固件升级、GNSS NMEA 语句输出
00D jg ii	● USB 转串口驱动: 支持 Windows 7/8/8.1/10/11, Linux 2.6~5.18, Android
	4.x~12.x 等操作系统下的 USB 驱动
	主 UART:
	● AT 命令通信和数据传输
	● 波特率默认为 115200 bps
	● 支持 RTS 和 CTS 硬件流控
UART	调试 UART:
071111	● 用于部分日志输出和 GNSS NEMA 语句输出
	● 波特率为 115200 bps
	辅助 UART*:
	● 用于与外设通信
	● 波特率为 115200 bps
网络指示	NET_STATUS 指示网络状态
AT 命令	● 支持 3GPP TS 27.007 和 3GPP TS 27.005 定义的命令
AI 即文	● 支持移远通信增强型 AT 命令
天线接口	● 主天线接口(ANT_MAIN)
八划女口	● GNSS 天线(ANT_GNSS)(可选)

	50 Ω 特性阻抗
4. 4. 4. 4.	● LTE-FDD 频段: Class 3 (23 dBm ±2 dB)
发射功率	● LTE-TDD 频段: Class 3 (23 dBm ±2 dB)
	● 最大支持 3GPP Rel-13 Cat 1 bis FDD 和 TDD
	● 支持 1.4/3/5/10/15/20 MHz 射频带宽
LTE 特性	● LTE-FDD:最大下行速率 10 Mbps,最大上行速率 5 Mbps
	● LTE-TDD:最大下行速率 8.96 Mbps,最大上行速率 3.1 Mbps
定位	● 支持 Wi-Fi Scan 定位 ¹ (共用主天线)
是型	● 支持 GNSS 定位技术(可选)
	● 符合 TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX*/HTTPS/FTPS/SSL/
网络协议特性 2	FILE/MQTT/MMS*/SMTP*/SMTPS*协议
	● 符合 PPP 协议的 PAP 和 CHAP 认证
	● 正常工作温度 ³ : -35 °C ~ +75 °C
温度范围	● 扩展工作温度 ⁴ : -40 °C ~ +85 °C
	● 存储温度: -40 °C ~ +90 °C
固件升级	可通过 USB 2.0 接口或 DFOTA 升级
RoHS	所有器件完全符合 EU RoHS 标准

备注

必须使用 6.0.1 及以上版本的 QFlash 工具进行固件升级。

_

¹ Wi-Fi Scan 和主天线共用天线接口,两种功能不可同时使用,时分复用。Wi-Fi Scan 只接收,不发送。

² PPP、FTP、HTTP、PING、CMUX*、HTTPS、FTPS、FILE、MQTT、MMS*、SMTP*和 SMTPS*协议栈可选,符合 PPP 协议的 PAP 和 CHAP 认证可选。详情请咨询移远通信技术支持。

³ 表示当模块在此温度范围工作时,模块的相关性能满足 **3GPP** 标准要求。

⁴ 表示当模块在此温度范围工作时,模块仍能保持正常工作状态,具备语音、短消息、数据传输、紧急呼叫*等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响。仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

2.3. 功能框图

下图为模块的功能框图,阐述了其如下主要功能器件:

- 电源管理
- 基带部分
- 存储器
- 射频部分
- 外围接口

图 1: 功能框图

2.4. 引脚分配图

图 2: 引脚分配俯视图

备注

- 1. 模块 RESERVED 引脚 44 可选为 GNSS 备电引脚。电压域为 1.65~3.6 V,典型值 1.8 V,外部需提供 50 μA 电流。靠近模块引脚需放置 1 μF 滤波电容。详情请咨询移远通信技术支持。
- 2. 模块的 GNSS 功能可选:
 - 选择带 GNSS 功能的模块时,若需要使用模拟音频输入功能,需增加外部麦克风偏置电路,且必须使用低噪声 LDO,并确保 MICBIAS 供电电源为 1.8 V;此时模块仅支持 USIM1 卡接口。
 - 选择不带 GNSS 功能的模块时,若需要使用模拟音频输入功能,无需增加外部麦克风偏置电路;此时模块支持双 USIM 卡功能。PCM、I2C、USIM2 和模拟音频接口均为可选功能,客户可根据实际需求进行选择,不用则悬空。
- 3. 所有 RESERVED 和不用的引脚需悬空,所有 GND 引脚需接地。

- 4. 在模块开机成功前,禁止将 USB BOOT 脚下拉到低电平。
- 5. 确保模块下方有完整的参考地平面,且地平面尽量靠近模块层,模块下方第一层不能有其他走线,推 荐至少四层板设计。
- 6. 必须使用 6.0.1 及以上版本的 QFlash 工具进行固件升级。

2.5. 引脚描述表

表 5:参数定义

参数	描述
Al	模拟输入
AIO	模拟输入/输出
AO	模拟输出
DI	数字输入
DIO	数字输入/输出
DO	数字输出
OD	漏极开路
PI	电源输入
PO	电源输出

DC 特性包含电压域、额定电流信息等。

表 6: 模块引脚描述

电源					
引脚名	引脚号	I/O	描述	DC 特性	备注
VBAT	42、43	PI	模块主电源	Vmax = 4.3 V Vmin = 3.4 V Vnom = 3.8 V	外部电源需提供2A 的载流能力;建议外 部增加 TVS 管。
VDD_EXT	24	PO	外部电路 1.8 V 供电	$Vnom = 1.8 V$ $I_0max = 50 mA$	可为外部 GPIO 提供 上拉; 建议预留测试点。

GND							
引脚名	引脚号	引脚号					
GND	1、10、2	7、34、	36、37、40、41、45~48、	70~73、88~95			
开关机/复位							
引脚名	引脚号	I/O	描述	DC 特性	备注		
PWRKEY	7	DI	模块开/关机	V_{IL} max = 0.5 V Vnom = VBAT	控制模块开/关机。		
RESET_N	15	DI	模块复位	$V_{IL}max = 0.5 V$ Vnom = 1.8 V	低电平有效;建议预 留测试点。		
状态指示接口							
引脚名	引脚号	I/O	描述	DC 特性	备注		
NET_STATUS	16	DO	网络状态指示	1.8 V	不用则悬空。		
STATUS	25	DO	运行状态指示	1.0 V	小 用则总工。		
USB 接口							
引脚名	引脚号	I/O	描述	DC 特性	备注		
USB_DP	59	AIO	USB 差分数据(+)		符合 USB 2.0 规范;		
USB_DM	60	AIO	USB 差分数据(-)		- 要求 90 Ω 差分阻抗; 须预留测试点。		
USB_VBUS	61	Al	USB 检测	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	须预留测试点。		
USIM 接口							
引脚名	引脚号	I/O	描述	DC 特性	备注		
USIM1_DATA	11	DIO	USIM1 卡数据				
USIM1_RST	12	DO	USIM1 卡复位				
USIM1_CLK	13	DO	USIM1 卡时钟	1.8/3.0 V			
USIM1_VDD	14	РО	USIM1 卡供电电源		模块自动识别 1.8 V 或 3.0 V USIM 卡。		
USIM1_DET	79	DI	USIM1 卡插拔检测	1.8 V	不用则悬空。		
USIM2_VDD	65	РО	USIM2 卡供电电源	1.8/3.0 V	模块自动识别 1.8 V 或 3.0 V USIM 卡。		
USIM2_DATA	64	DIO	USIM2卡数据				

USIM2_CLK	62	DO	USIM2 卡时钟			
USIM2_RST	63	DO	USIM2 卡复位	USIM2 卡复位		
辅助 UART*						
引脚名	引脚号	I/O	描述	DC 特性	备注	
AUX_RXD	28	DI	辅助 UART 接收	4.0.1/	不用则目的	
AUX_TXD	29	DO	辅助 UART 发送	- 1.8 V	不用则悬空。	
主 UART						
引脚名	引脚号	I/O	描述	DC 特性	备注	
MAIN_RXD	17	DI	主 UART 接收			
MAIN_TXD	18	DO	主 UART 发送	_		
MAIN_DTR	19	DI	主 UART 数据终端就绪	_	不用则悬空。	
MAIN_RI	20	DO	主 UART 输出振铃提示	1.8 V		
MAIN_DCD	21	DO	主 UART 输出载波检测			
MAIN_CTS	22	DO	DTE 清除发送	_	连接至 DTE 的 CTS; 不用则悬空。	
MAIN_RTS	23	DI	DTE 请求发送	_	连接至 DTE 的 RTS; 不用则悬空。	
调试 UART						
引脚名	引脚号	I/O	描述	DC 特性	备注	
DBG_RXD	38	DI	调试 UART 接收	4.0.1/	土 4-7 同(取) 克瓦克	
DBG_TXD	39	DO	调试 UART 发送	- 1.8 V	须预留测试点。	
I2C 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
I2C_SDA	66	OD	I2C 串行数据		需要外部 1.8 V 上	
I2C_SCL	67	OD	I2C 串行时钟	I2C 串行时钟		
PCM 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
PCM_CLK	30	DO	PCM 时钟	1.8 V	不用则悬空。	

PCM_SYNC	31	DO	PCM 帧同步			
PCM_DIN	32	DI	PCM 数据输入			
PCM_DOUT	33	DO	PCM 数据输出	_		
模拟音频接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
MIC_P	3	Al	麦克风输入通道(+)		不田矶目穴	
MIC_N	4	AI	麦克风输入通道(-)		—— 不用则悬空。	
SPK_P	5	АО	模拟音频差分输出通道 (+)		用于听筒接口。 最大输出功率	
SPK_N	6	AO	模拟音频差分输出通道(-)		37 mW @ THD = 1%, R = 32 Ω。 若输出功率无法满足 需求,可用此接口驱 动外部功放器件。不 用则悬空。	
射频天线接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
ANT_GNSS	2	Al	GNSS 天线接口		50 Ω 特性阻抗; 不用则悬空; 部分型号可选。	
ANT_MAIN	35	AIO	主天线接口		50 Ω特性阻抗。	
ADC 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
ADC0	9	Al	- 通用 ADC 接口	1.2 V	不用则悬空。	
ADC1	96	AI	- 旭用 ADC 按口	1.2 V	小用则态工。	
USB_BOOT 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
USB_BOOT	82	DI	强制模块进入紧急下载 模式	1.8 V	低电平有效;模块正常开机前禁止下拉此引脚; 建议预留测试点。	
预留引脚						

引脚名	引脚号	备注
RESERVED	8、26、44、49~58、68、69、74~78、80、81、83~87、97~109	保持悬空。

备注

- 1. 模块 RESERVED 引脚 44 可选为 GNSS 备电引脚。电压域为 1.65~3.6 V,典型值 1.8 V,外部需提供 50 μA 电流。靠近模块引脚需放置 1 μF 滤波电容。详情请咨询移远通信技术支持。
- 2. 模块的 GNSS 功能可选:
 - 选择带 GNSS 功能的模块时,若需要使用模拟音频输入功能,需增加外部麦克风偏置电路,且必须使用低噪声 LDO,并确保 MICBIAS 供电电源为 1.8 V,此时模块仅支持 USIM1 卡接口。
 - 选择不带 GNSS 功能的模块时,若需要使用模拟音频输入功能,无需增加外部麦克风偏置电路; 此时模块支持双 USIM 卡功能。
- 3. PCM、I2C、USIM2 和模拟音频接口均为可选功能,客户可根据实际需求进行选择,不用则悬空。
- 4. 所有 RESERVED 和不用的引脚需悬空,所有 GND 引脚需接地。
- 5. 在模块开机成功前,禁止将 USB_BOOT 脚下拉到低电平。

2.6. 评估板套件

移远通信提供评估板(UMTS & LTE EVB)及相关配件,用于模块的测试和使用,更多详细信息,请参考文档 [1]。

3 工作特性

3.1. 工作模式

表 7: 工作模式

模式	功能					
人力化掛一	空闲 软件运行正常。模块注册上网络,但与网络无数据交互。					
全功能模式	语音/数据 网络连接正常。模块功耗取决于网络设置和数据传输速率。					
最少功能模式	● 在不断电情况下,AT+CFUN=0可以将模块设置成最少功能模式。 ● 射频和 USIM 卡均不工作。					
飞行模式	● AT+CFUN=4 可以将模块设置成飞行模式。 ● 射频不工作。					
休眠模式	模块的功耗将会降至极低水平,但模块仍可接收寻呼、短消息、电话和 TCP/UDP 数据。					
关机模式	PMU 停止给基带和射频部分的电源供电,软件停止工作;但 VBAT 仍然通电。					

备注

更多详细 AT 命令信息,请参考*文档 [2]*。

3.2. 休眠模式

图 3: 休眠模式下模块功耗示意图

备注

DRX 周期值由基站通过无线网络发送。

3.2.1. UART 应用场景

如果模块和主机通过主 UART 进行通信,需同时满足如下 2 个条件使模块进入休眠模式:

- 执行 AT+QSCLK=1。
- 确保 MAIN_DTR 保持高电平或悬空。

模块和主机之间的连接参考下图:

图 4: UART 休眠应用

- 通过主机拉低模块的 MAIN_DTR 可唤醒模块。
- 当模块有 URC 需要上报时,MAIN_RI 信号将会唤醒主机;有关 MAIN_RI 的详细功能,请参考 第 4.8.3 章。

3.2.2. USB 应用场景

对于主机"支持 USB 挂起和唤醒及 USB 远程唤醒功能"和"支持 USB 挂起和唤醒及 RI 功能"的两种情况,需同时满足如下 3 个条件使模块进入休眠模式:

- 执行 AT+QSCLK=1。
- 确保 MAIN DTR 保持高电平或悬空。
- 连接至模块 USB 接口的主机 USB 总线进入挂起状态。

3.2.2.1. 支持 USB 挂起和唤醒及 USB 远程唤醒功能

主机支持 USB 挂起和唤醒以及 USB 远程唤醒功能。模块和主机之间的连接请参考下图:

图 5: 带 USB 远程唤醒功能的休眠应用

- 通过 USB 向模块发送数据将会唤醒模块。
- 当模块有 URC 上报时,模块会通过 USB 总线发送远程唤醒信号以唤醒主机。

3.2.2.2. 支持 USB 挂起和唤醒及 RI 功能

如果主机支持 USB 挂起和唤醒但不支持 USB 远程唤醒功能,则需要由模块的 MAIN_RI 信号唤醒主机。模块和主机之间的连接参考下图:

图 6: 带 MAIN_RI 功能的休眠应用

- 通过 USB 向模块发送数据将会唤醒模块。
- 当模块有 URC 上报时,模块会通过 MAIN_RI 唤醒主机,有关 MAIN_RI 的详细功能,请参考 第4.8.3 章。

3.2.2.3. 不支持 USB 挂起功能

主机不支持 USB 挂起功能时, 需同时满足如下 3 个条件使模块进入休眠模式:

- 执行 AT+QSCLK=1。
- 确保 MAIN_DTR 保持高电平或悬空。
- 断开 USB_VBUS 供电。

模块和主机之间的连接参考下图:

图 7: 不支持 USB 挂起功能的休眠应用

恢复 USB_VBUS 供电即可唤醒模块。

备注

- 1. 请注意第3.2章中模块和主机之间虚线连接的信号间的电平匹配。
- 2. 关于 AT 命令详细信息请参考文档 [2]。

3.3. 飞行模式

当模块进入飞行模式时,射频功能不可使用,而且所有与射频相关的 AT 命令不可访问。可通过以下方式使模块进入飞行模式:

软件方式:

模式可以通过发送 AT+CFUN=<fun>来设置。<fun>参数可以选择 0、1 或 4。

● AT+CFUN=0: 最少功能模式(关闭射频和 USIM 卡)。

AT+CFUN=1: 正常工作模式(默认)。 AT+CFUN=4: 飞行模式(关闭射频)。

备注

更多详细 AT 命令信息,请参考文档 [2]。

3.4. 电源设计

3.4.1. 电源接口

模块共有2个VBAT电源引脚用于连接外部电源:

表 8: 电源接口引脚定义

引脚名	引脚号	I/O	描述	备注
VBAT	42、43	PI	模块主电源	外部电源需提供 2 A 的载流能力。 建议外部增加 TVS 管。
GND	1、10、27、3	4、36、37、4	0、41、45~48、70~7	3、88~95

3.4.2. 供电参考

电源设计对模块性能至关重要。必须选择至少能够提供 2 A 电流能力的电源。若输入电压与模块供电电压之间的电压差较小,则建议选择 LDO。若输入与供电电压之间的电压差较大,则建议使用开关电源转换器。

下图是5V供电电路的参考设计。

图 8: 供电输入参考电路图

备注

为避免损坏模块内部存储芯片中的数据,不要在模块正常工作时关断电源。只有当模块通过 PWRKEY 或 AT 命令关机后,才能关断电源。

3.4.3. 电压稳定性要求

模块的供电范围为 3.4~4.3 V,需要确保输入电压不低于 3.4 V。

图 9: 突发传输电源要求

为了减少电压跌落,需要使用低 ESR(ESR \leq 0.7 Ω)的 100 μF 滤波电容。同时建议给 VBAT 预留 5 个具有良好 ESR 性能的片式多层陶瓷电容(MLCC)(1.8 pF、3.9 pF、10 pF、33 pF 和 100 nF)以及 1 个 0 Ω 电阻以便后期调试使用(电阻封装不小于 0603),且电容应靠近 VBAT 引脚放置。外部供电电源连接模块时,VBAT 走线宽度应不小于 2 mm。原则上,VBAT 走线越长,线宽越宽。

另外,为了保证电源稳定,建议在电源前端加 V_{RWM} = 4.7 V,低钳位电压和高峰值脉冲电流 lpp 的 TVS 管。参考电路如下:

图 10: 模块供电参考电路图

3.5. 开机

3.5.1. PWRKEY 开机

表 9: PWRKEY 接口引脚定义

引脚名	引脚号	I/O	描述	备注
PWRKEY	7	DI	模块开/关机	控制模块开/关机。

模块在关机状态下,可以通过拉低 PWRKEY 至少 700 ms 使模块开机。推荐使用开集或开漏驱动电路来控制 PWRKEY。

图 11: 开集驱动开机参考设计框图

也可以直接通过按键开关来控制 PWRKEY,为防止接触产生的静电冲击,因此按钮附近需放置一颗 TVS 管及 $1 \land 1 \land \Omega$ 电阻用于 ESD 防护。

图 12: 按键开机参考设计框图

图 13: 开机时序图

备注

- 1. 在拉低 PWRKEY 之前, 需保证 VBAT 电压稳定。建议 VBAT 上电稳定至少 30 ms 后再拉低 PWRKEY。
- 2. 如果需要上电自动开机且不需要关机功能,则可以把 PWRKEY 直接下拉到地,下拉电阻建议 4.7 kΩ。

3.6. 关机

3.6.1. PWRKEY 关机

在开机状态下拉低 PWRKEY 至少 650 ms 后释放,模块将执行关机流程。

图 14: 关机时序图

3.6.2. AT 命令关机

执行 AT+QPOWD 可使模块关机,此操作与拉低 PWRKEY 关机的时序和效果相同。详情请参考*文档* [2] 中的 AT+QPOWD。

备注

- 1. 当模块正常工作时,不要立即切断模块电源,以避免损坏模块内部存储芯片中的数据。建议先通过 PWRKEY 或者 AT 命令使模块关机后,再断开电源。
- 2. 使用 AT 命令关机时,请确保在关机命令执行后,PWRKEY 一直处于高电平状态,否则模块完成关机后,会再次自动开机。

3.7. 复位

拉低 RESET_N 至少 300 ms 后释放可令模块复位。RESET_N 信号对干扰比较敏感,建议模块接口走线应尽量短,且需包地处理。

表 10: 复位引脚定义

引脚名	引脚号	I/O	描述	备注
RESET_N	15	DI	模块复位	低电平有效,建议预留测试点。

复位参考电路与 PWRKEY 控制电路类似,可使用开集或开漏驱动电路或按键来控制 RESET_N。

图 15: 开集驱动复位参考设计框图

也可以使用按键控制 RESET_N:

图 16: RESET_N 按键复位参考电路

图 17: RESET_N 复位时序图

备注

- 1. RESET_N 复位功能建议仅在使用 AT+QPOWD 和 PWRKEY 进行关机均失败后再使用。
- 2. 确保 PWRKEY 和 RESET_N 的负载电容不超过 10 nF。

4 应用接口

4.1. USB 接口

模块提供了 1 个 USB 接口,但仅支持 USB 从模式。此接口符合 USB 2.0 规范。USB 2.0 支持高速模式,最高速率达 480 Mbps,且向下兼容 12 Mbps 全速模式。此接口可用于 AT 命令通信、数据传输、GNSS NMEA 语句输出、软件调试、固件升级等。

表 11: USB 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USB_DP	59	AIO	USB 差分数据(+)	符合 USB 2.0 规范; — 要求 90 Ω 差分阻抗;
USB_DM	60	AIO	USB 差分数据(-)	一 安尔 90 tz 左方阻抗; 须预留测试点。
USB_VBUS	61	Al	USB 检测	典型值 5.0 V; 须预留测试点。

设计时,建议将 USB 2.0 接口用于固件升级,须预留测试点以便用于调试。

图 18: USB 接口参考设计

建议在 MCU 与模块间串联一个共模电感 L1 来抑制 EMI 干扰。同时,建议在模块与测试点之间串联 R1 和 R2 电阻以便于调试,且电阻默认不贴。为了满足 USB 数据线信号完整性的要求,L1、R1 和 R2 应靠近模块放置,且电阻之间需要靠近放置,连接测试点的桩线应保持尽量短。

为确保性能, USB 接口的电路设计应遵循以下原则:

- USB 要求按照 90 Ω 阻抗差分线设计,建议内层走线且立体包地处理。
- USB 走线远离晶振、振荡器、磁性装置和射频信号等,避免造成干扰。
- USB 数据线上的 ESD 器件选型需特别注意,其寄生电容不要超过 2 pF,尽量靠近 USB 接口放置。

如需了解更多 USB 规范信息,请访问 http://www.usb.org/home。

4.2. 紧急下载接口

USB_BOOT 是紧急下载接口。如果在模块开机前将 USB_BOOT 引脚下拉至 GND,则模块在开机时将进入强制下载模式。在此模式下,模块可通过 USB 2.0 接口升级固件,从而节省升级时间。

表 12: USB_BOOT 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USB BOOT	82	DI	强制模块进入紧急下载模式	低电平有效; 模块正常开机前禁止
036_6001	02	ы	强刑侯坏近八条芯下软侠八	下拉此引脚;建议预留测试点。

图 19: USB_BOOT 参考设计

图 20: 进入强制下载模式的时序

- 1. 在拉低 PWRKEY 之前, 需保证 VBAT 电压稳定。建议 VBAT 上电稳定至少 30 ms 后再拉低 PWRKEY。
- 2. 使用 MCU 控制模块进入强制下载模式时需按照如上时序图进行控制,手动强制下载方式按照**图 19** 所示短接测试点即可。
- 3. 若将 USB BOOT 下拉至 GND, 下拉电阻阻值建议为 $4.7 \text{ k}\Omega$ 。
- 4. 必须使用 6.0.1 及以上版本的 QFlash 工具进行固件升级。

4.3. USIM 接口

USIM 接口符合 ETSI 和 IMT-2000 规范, 支持 1.8 V 和 3.0 V USIM 卡。USIM2 功能可选。

表 13: USIM 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USIM1_DATA	11	DIO	USIM1 卡数据	
USIM1_RST	12	DO	USIM1 卡复位	
USIM1_CLK	13	DO	USIM1 卡时钟	
USIM1_VDD	14	РО	USIM1 卡供电电源	模块自动识别 1.8 V 或 3.0 V USIM 卡。
USIM1_DET	79	DI	USIM1 卡插拔检测	不用则悬空。

USIM2_VDD	65	РО	USIM2 卡供电电源	模块自动识别 1.8 V 或 3.0 V USIM 卡。
USIM2_DATA	64	DIO	USIM2 卡数据	
USIM2_CLK	62	DO	USIM2 卡时钟	
USIM2_RST	63	DO	USIM2 卡复位	

模块支持 USIM 卡热插拔,且同时支持高/低电平检测。功能默认关闭,可以通过 AT+QSIMDET 进行配置。关于该命令的详细信息,请参考文档 [2]。

8-pin USIM 接口参考电路如下:

图 21: 8-pin USIM 接口参考电路图

如果无需使用 USIM 卡检测功能,请保持 USIM_DET 引脚悬空。下图为 6-pin USIM 接口参考电路:

图 22: 6-pin USIM 接口参考电路图

为了确保 USIM 卡的良好性能和可靠性,在电路设计中建议遵循以下原则:

- USIM 卡座靠近模块摆放,尽量保证 USIM 卡信号线布线长度不超过 200 mm。
- USIM 卡信号线布线远离射频线和 VBAT 电源线。
- 请确保 USIM VDD 与 GND 之间的旁路电容容值不大于 1 µF, 且尽可能靠近 USIM 卡座放置。
- 为防止 USIM_CLK 信号与 USIM_DATA 信号相互串扰,两者布线不能太靠近,并且在两条走线之间需增加地屏蔽。
- 为确保良好的 ESD 性能,建议在 USIM 卡引脚增加 TVS 阵列,选择 TVS 阵列的寄生电容不大于 15 pF。在模块和 USIM 卡之间串联 0 Ω 的电阻便于调试。在 USIM_DATA、USIM_CLK 和 USIM_RST 线上并联 33 pF 电容用于滤除射频干扰。USIM 卡的外围器件应尽量靠近 USIM 卡座 摆放。
- USIM_DATA 上的上拉电阻有利于增加 USIM 卡的抗干扰能力。当 USIM 接口的走线过长,或者在 离干扰源比较近的情况下,建议靠近 USIM 卡座位置增加上拉电阻。

备注

- 1. 若选择带 GNSS 功能的模块时,模块仅支持 USIM1 接口;若选择不带 GNSS 功能的模块时,模块支持双 USIM 卡功能。
- 2. 仅 USIM1 支持热插拔功能。

4.4. UART

模块提供了3个UART接口:主 UART、调试UART和辅助UART*。

表 14: UART 接口信息

接口类型	支持波特率(bps)	默认波特率(bps)	功能描述
主 UART	4800、9600、19200、38400、 57600、115200、230400、 460800、921600	115200	用于数据传输和 AT 命令通信
调试 UART	115200	115200	用于部分日志输出和 GNSS NEMA 语句输出
辅助 UART*	115200	115200	用于与外设通信

表 15: UART 接口引脚定义

引脚名	引脚号	I/O	描述	备注	
MAIN_RXD	17	DI	主 UART 接收		
MAIN_TXD	18	DO	主 UART 发送		
MAIN_DTR	19	DI	主 UART 数据终端就绪	不用则悬空。	
MAIN_RI	20	DO	主 UART 输出振铃提示	_	
MAIN_DCD	21	DO	主 UART 输出载波检测	_	
MAIN_CTS	22	DO	DTE 清除发送	连接至 DTE 的 CTS。 不用则悬空。	
MAIN_RTS	23	DI	DTE 请求发送	连接至 DTE 的 RTS。 不用则悬空。	
AUX_RXD*	28	DI	辅助 UART 接收	不田剛县穴	
AUX_TXD*	29	DO	辅助 UART 发送	- 不用则悬空。	
DBG_RXD	38	DI	调试 UART 接收	/范茲·內/加丁十上	
DBG_TXD	39	DO	调试 UART 发送	- 须预留测试点。	

模块的 UART 电平为 1.8 V。若外部主机系统电平为 3.3 V,则需在模块和主机的 UART 连接中增加电平转换电路。推荐使用 Texas Instruments 公司的型号为 TXS0108EPWR 的电平转换器。下图为使用电平转换芯片的参考电路设计:

图 23: 电平转换芯片参考设计

另一种电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向:

图 24: 三极管电平转换电路参考设计

备注

- 1. 三极管电平转换电路不适用于波特率超过 460 kbps 的应用。
- 2. 请务必留意, UART 硬件流控 CTS、RTS 引脚采用直连方式,并注意输入输出方向。

4.5. PCM 接口和 I2C 接口

模块提供 1 个 PCM 接口和 1 个 I2C 接口。

表 16: I2C 接口引脚定义

引脚名	引脚号	I/O	描述	备注	
I2C_SDA	66	OD	I2C 串行数据	零	
I2C_SCL	67	OD	I2C 串行时钟	一 需要外部 1.8 V 上拉。不用则悬空。	

表 17: PCM 接口引脚定义

引脚名	引脚号	I/O	描述	备注
PCM_CLK	30	DO	PCM 时钟	
PCM_SYNC	31	DO	PCM 帧同步	 1.8 V 电压域;
PCM_DIN	32	DI	PCM 数据输入	不用则悬空。
PCM_DOUT	33	DO	PCM 数据输出	

模块的 PCM 接口支持短帧模式,模块仅做主设备。

模块支持 16 位线性编码格式。下图为短帧模式时序图(PCM_SYNC = 8 kHz, PCM_CLK = 2048 kHz)。

图 25: 短帧模式时序图

短帧模式下,数据在 PCM_CLK 下降沿采样、上升沿发送。PCM_SYNC 下降沿代表高有效位。当 PCM_SYNC 达 8 kHz 时,PCM_CLK 支持 256 kHz、512 kHz、1024 kHz 和 2048 kHz; 当 PCM_SYNC 达 16 kHz 时,PCM_CLK 支持 4096 kHz。

通过 AT 命令,可以配置 PCM 的时钟和模式,默认配置为短帧模式、PCM_CLK = 2048 kHz、PCM SYNC = 8 kHz。详情请参考文档 [3]中的 AT+QDAI。

图 26: PCM 和 I2C 接口电路参考设计

- 1. PCM 和 I2C 接口均为可选功能,客户可根据实际需求进行选择,不用则悬空。
- 2. 建议在 PCM 的信号线(特别是 PCM_CLK 信号线)上预留 RC(R = 0Ω 、C = 33 pF)电路。
- 3. 模块在与 PCM 接口和 I2C 接口有关的应用中均只能作为主设备。

4.6. 模拟音频接口

模块提供了 1 路模拟音频输入通道和 1 路模拟音频输出通道:

表 18: 模拟音频接口引脚定义

引脚名	引脚号	I/O	描述	备注	
MIC_P	3	AI	麦克风输入通道(+)	不 田剛县穴	
MIC_N	4	AI	麦克风输入通道(-)	- 不用则悬空。	
SPK_P	5	AO	模拟音频差分输出通道(+)	用于听筒接口。 — 最大输出功率 37 mW @ THD =	
SPK_N	6	АО	模拟音频差分输出通道(-)	一 取入制出为平 37 mw @ Tib = 1%, R = 32 Ω。 若输出功率无法满足需求,可用此接口驱动外部功放器件。 不用则悬空。	

- 音频输入通道为差分输入通道,可用作麦克风输入。麦克风通常选用驻极体麦克风。
- 音频输出通道为差分输出通道,可用作扬声器、听筒输出。
- 模块内置音频功放默认配置为 AB 类功放。

- 1. 模拟音频接口为可选功能,客户可根据实际需求进行选择,不用则悬空。
- 2. 若选择带 GNSS 功能的模块时,模拟音频输入接口需要增加麦克风偏置电路,且必须使用低噪声 LDO,确保 MICBIAS 供电电源为 1.8 V;若选择不带 GNSS 功能模块时,模拟音频输入接口无需增加外部麦克风偏置电路。

4.6.1. 音频接口设计注意事项

建议采用内置射频滤波双电容(如 10 pF 和 33 pF)的驻极体麦克风;从干扰源头滤除射频干扰,更大程度减少耦合噪音。需知,由于电容的谐振点很大程度上取决于电容的材料以及制造工艺,因此选择电容时,需要咨询电容的供应商,选择最合适的容值来滤除工作时的高频噪声。

PCB 上的射频滤波电容摆放位置要尽量靠近音频器件或音频接口,且走线要尽量短,要先经过滤波电容再到其他点。

为减少辐射干扰,天线位置离音频元件和音频走线应尽量远;电源走线和音频走线不能平行,且电源 走线应尽量远离音频走线。

差分音频走线必须遵循差分信号的布线规则。

4.6.2. 麦克风接口电路

图 27: 带偏置电路麦克风接口参考电路

图 28: 不带偏置电路麦克风接口参考电路

- 1. 由于麦克风通道对 ESD 较为敏感,建议不要省略麦克风通道的 ESD 防护器件。
- 2. 若选择模拟音频输入功能:
 - 选择带 GNSS 功能的模块时,需要增加麦克风偏置电路,且必须使用低噪声 LDO,确保 MICBIAS 供电电源为 1.8 V,可参考 **图 27** 来设计麦克风接口电路;
 - 选择不带 GNSS 功能的模块时,无需增加外部麦克风偏置电路,可参考**图 28** 来设计麦克风接口电路。

4.6.3. 听筒接口电路

图 29: 听筒输出参考电路

4.6.4. 扬声器接口电路

图 30: 扬声器接口参考电路

关于差分输入输出音频功放,请访问网址 <u>http://www.ti.com/</u>,以获取所需的器件。市场上亦有很多同等性能的音频功放可供选择。

4.7. ADC 接口

模块提供了 2 路通用模数转换接口(ADC 接口)。ADC 接口在布线时,为了提高接口的电压测量准确度,建议进行包地处理。

表 19: ADC 接口引脚定义

引脚名	引脚号	I/O	描述	备注
ADC0	9	Al	── 通用 ADC 接口	不 用则且 应
ADC1	96	Al		不用则悬空。

使用 AT+QADC=<port>可以读取 ADC 接口各引脚的电压值:

- **AT+QADC=0**: 可用于读取 ADC0 的电压值
- AT+QADC=1: 可用于读取 ADC1 的电压值

如需了解更多相关 AT 命令的信息,请参考文档 [2]。

表 20: ADC 特性

参数	最小值	典型值	最大值	単位
ADC0 电压	0	-	1.2	V
ADC1 电压	0	-	1.2	V
ADC 分辨率	-	-	12	位

备注

- 1. ADC 接口设计时必须预留分压电路,每路分压电路的两个电阻阻值选型都要求大于 100 kΩ;
- 2. 分压电阻精度对 ADC 采样误差会有影响,推荐使用精度为 1 %电阻,如果对 ADC 精度要求更高,则建议使用精度为 0.5 %电阻。详细信息请参考*文档 [4]*。

4.8. 指示信号

表 21: 指示接口引脚定义

引脚名	引脚号	I/O	描述	备注
NET_STATUS	16	DO	网络状态指示	_
STATUS	25	DO	运行状态指示	不用则悬空。
MAIN_RI	20	DO	主 UART 输出振铃提示	_

4.8.1. 网络状态指示

作为指示引脚,NET_STATUS 用来指示模块的网络状态,同时驱动对应的 LED 指示灯。

表 22: 网络状态指示引脚的工作状态

引脚名	电平状态	模块网络状态
	慢闪(200 ms 高/1800 ms 低)	搜网状态
NET_STATUS	慢闪(1800 ms 高/200 ms 低)	待机状态
	快闪(125 ms 高/125 ms 低)	数据传输模式

高电平 通话中

图 31: 网络状态指示参考电路图

4.8.2. STATUS

STATUS 用于指示模块的运行状态。当模块正常开机时,STATUS 输出高电平。

图 32: STATUS 参考电路图

4.8.3. MAIN_RI

可以使用 AT+QCFG="risignaltype", " physical"来配置 MAIN_RI 指示动作,即不管通过主 UART、USB AT 端口或 USB 调制端口中任一端口上报 URC,都会触发物理 MAIN_RI 的指示动作。

通过 **AT+QURCCFG**,可将主 UART、USB AT 端口或 USB 调制端口设置为 URC 输出 UART。默认设置为 USB AT 端口。

MAIN_RI 作为指示信号可以有多种指示方式,但默认如下:

表 23: MAIN RI 指示方式

状态	电平状态
空闲	高电平
新 URC 返回时	MAIN_RI 输出至少 120 ms 的低电平,数据输出完成后再变为高电平。

MAIN_RI 的指示方式可以通过多条命令来配置,例如可通过 AT+QCFG="urc/ri/ring"来配置来电 URC 上报时 MAIN_RI 的指示方式,详细信息请参考文档 [2]。

5 射频特性

5.1. 蜂窝网络

5.1.1. 主天线接口和工作频段

表 24: 主天线接口引脚定义

引脚名	引脚号	I/O	描述	备注
ANT_MAIN	35	AIO	主天线接口	50 Ω 特性阻抗。

备注

模块支持 Wi-Fi Scan 功能。由于共用主天线接口,两种功能不可同时使用,时分复用,Wi-Fi Scan 只接收不发送。

表 25: 工作频段

工作频段	发送(MHz)	接收(MHz)
LTE-FDD B1	1920~1980	2110~2170
LTE-FDD B3	1710~1785	1805~1880
LTE-FDD B5	824~849	869~894
LTE-FDD B8	880~915	925~960
LTE-TDD B34	2010~2025	2010~2025
LTE-TDD B38	2570~2620	2570~2620
LTE-TDD B39	1880~1920	1880~1920
LTE-TDD B40	2300~2400	2300~2400
LTE-TDD B41	2535~2675	2535~2675

B41 仅支持 140 MHz (2535~2675 MHz)。

5.1.2. 发射功率

表 26: 射频发射功率

频段	最大值	最小值
LTE-FDD B1/B3/B5/B8	23 dBm ±2 dB	< -39 dBm
LTE-TDD B34/B38/B39/B40/B41	23 dBm ±2 dB	< -39 dBm

5.1.3. 接收灵敏度

表 27: 射频接收灵敏度

频段		接收灵敏度(3GPP 要求	
	主集	分集	主集 + 分集	(主集 + 分集)
LTE-FDD B1 (10 MHz)	-99.5 dBm	-	-	-96.3 dBm
LTE-FDD B3 (10 MHz)	-99.0 dBm	-	-	-93.3 dBm
LTE-FDD B5 (10 MHz)	-98.5 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-99.0 dBm	-	-	-93.3 dBm
LTE-TDD B34 (10 MHz)	-100.0 dBm	-	-	-96.3 dBm
LTE-TDD B38 (10 MHz)	-99.0 dBm	-	-	-96.3 dBm
LTE-TDD B39 (10 MHz)	-100.0 dBm	-	-	-96.3 dBm
LTE-TDD B40 (10 MHz)	-100.5 dBm	-	-	-96.3 dBm
LTE-TDD B41 (10 MHz)	-99.0 dBm	-	-	-94.3 dBm

5.1.4. 参考设计

天线连接参考电路如下图所示。为获取更佳的射频性能,需预留 π型匹配电路。电容默认不贴。

图 33: 射频参考电路图

备注

- 1. 为减少共存问题,避免接收灵敏度受到干扰,推荐各个天线之间的隔离度在 20 dB 以上。
- 2. 图中 π型匹配元件 (R1、C1、C2) 应尽量靠近天线放置。

5.2. GNSS

模块的 GNSS 功能可选。模块的相关 GNSS 信息如下:

- 支持 GPS、BDS、GLONASS 和 Galileo 定位系统。
- 支持 NMEA 0183 协议,NMEA 语句默认不输出,可通过 AT 命令设置 USB 接口或调试 UART 接口输出(数据更新率为 1 Hz)。
- GNSS 功能默认关闭,需通过 AT 命令启用。

相关 AT 命令请参考文档 [5]。

5.2.1. 天线接口和工作频段

表 28: GNSS 接口引脚定义

引脚名	引脚号	I/O	描述	备注
ANT_GNSS	2	AI	GNSS 天线接口	50 Ω特性阻抗。 不用需悬空,部分型号可选。

表 29: 工作频段

天线类型	频段	单位
GPS	1575.42 ±1.023 (L1)	
BDS	1561.098 ±2.046 (B1I)	NALI-
Galileo	1575.42 ±2.046 (E1)	– MHz
GLONASS	1597.5~1605.8 (L1)	_

5.2.2. GNSS 性能

表 30: GNSS 性能

参数	条件	典型值	单位	
灵敏度	捕获	-146		
	重捕	-160	dBm	
	追踪	-160	_	
	冷启动 @ 空旷区域	28		
首次定位时间	温启动 @ 空旷区域	27	S	
	热启动 @ 空旷区域	3.7 ⁵	_	
定位精度	CEP-50	2	m	

备注

- 1. 追踪灵敏度:模块可以保持对导航信号的跟踪和定位所需的最低信号电平(持续定位至少3分钟)。
- 2. 重捕灵敏度: 模块接收的导航信号失锁后 3 分钟内, 重新捕获导航信号并正常定位所需的最低信号电平。
- 3. 捕获灵敏度:模块进行冷启动后3分钟内,捕获导航信号并成功定位所需的最低信号电平。

⁵ 包含推送固件包时间。

5.2.3. 参考设计

5.2.3.1. GNSS 有源天线

GNSS 有源天线连接参考电路如下图所示:

图 34: GNSS 有源天线参考电路

外部 GNSS 有源天线的供电电压范围为 2.8~4.3 V,典型值为 3.3 V。

5.2.3.2. GNSS 无源天线

GNSS 无源天线连接参考电路如下图所示:

图 35: GNSS 无源天线参考电路

建议预留由 C1、R1 和 C2 组成的匹配电路,以用于天线阻抗的调节。其中 C1 和 C2 缺省不贴,R1 只贴 0Ω 电阻。射频走线的阻抗应控制在 50Ω 左右,且走线越短越好。

备注

- 1. 可根据有源天线类型选用外部 LDO。若选用无源天线,则无需设计 VDD 电路。
- 2. 天线接口 ESD 防护器件的结电容建议不超过 0.05 pF。
- 3. 模块的 GNSS 功能可选:
 - 选择带 GNSS 功能的模块时,若需要使用模拟音频输入功能,需增加外部麦克风偏置电路,且 必须使用低噪声 LDO,并确保 MICBIAS 供电电源为 1.8 V:此时模块仅支持 USIM1 卡接口:
 - 选择不带 GNSS 功能的模块时,若需要使用模拟音频输入功能,无需增加外部麦克风偏置电路; 此时模块支持双 USIM 卡功能。

5.3. 射频信号线布线指导

设计 PCB 时,所有射频信号线的特性阻抗应控制在50 Ω 。一般情况下,射频信号线的阻抗由材料的介电常数、走线宽度(W)、对地间隙(S)、以及参考地平面的高度(H)决定。PCB 特性阻抗的控制通常采用微带线与共面波导两种方式。为了体现设计原则,下面几幅图展示了阻抗线控制在50 Ω 时,微带线以及共面波导的结构设计。

图 36: 两层 PCB 板微带线结构

图 37: 两层 PCB 板共面波导结构

图 38: 四层 PCB 板共面波导结构 (参考地为第三层)

图 39: 四层 PCB 板共面波导结构 (参考地为第四层)

在射频天线接口的电路设计中,为了确保射频信号的良好性能与可靠性,建议遵循以下设计原则:

- 应使用阻抗模拟计算工具对射频信号线进行精确的50 Ω 阻抗控制。
- 与射频引脚相邻的地引脚不做热焊盘,要与地充分接触。
- 射频引脚到射频连接器之间的距离应尽量短,同时避免直角走线,建议走线夹角保持为**135**°。
- 建立连接器件的封装时,信号脚需与地保持距离。
- 射频信号线参考的地平面应完整;在信号线和参考地周边增加一定量的地孔可以帮助提升射频性能;地孔和信号线之间的距离应至少为2倍线宽(2×W)。
- 射频信号线必须远离干扰源,避免和相邻层的任何信号线交叉或平行。

更多关于射频布线的说明,请参考文档 [6]。

5.4. 天线设计要求

表 31: 天线设计要求

天线类型	要求
GNSS	 频率范围: L1: 1559~1609 MHz VSWR: ≤2(典型值) 无源天线增益: > 0 dBi 有源天线噪声系数: < 1.5 dB 有源天线增益: > -2 dBi 有源天线内嵌 LNA 增益: < 17 dB
LTE	 VSWR: ≤2 效率: > 30 % 最大输入功率: 50 W 输入阻抗: 50 Ω 插入线损: <1 dB: LB (< 1 GHz) <1.5 dB: MB (1~2.3 GHz) <2 dB: HB (> 2.3 GHz)

5.5. 射频连接器推荐

如果使用射频连接器的连接方式,则推荐使用 Hirose 的 U.FL-R-SMT 连接器。

图 40: 天线座尺寸(单位: mm)

可选择 U.FL-LP 系列的插头来搭配 U.FL-R-SMT 使用。

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	3	200	3.4	87	5 5 88
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

图 41: 与天线座匹配的插头规格(单位: mm)

下图为射频连接器安装尺寸:

图 42: 射频连接器安装图 (单位: mm)

详细信息请访问 http://www.hirose.com。

6 电气特性和可靠性

6.1. 绝对最大额定值

表 32: 绝对最大额定值

参数	最小值	最大值	单位
VBAT 电压	-0.3	6	V
USB_VBUS 电压	-0.3	5.5	V
数字接口电压	-0.3	2.3	V
ADC0 电压	-	1.2	V
ADC1 电压	-	1.2	V
VBAT 电流	-	2	А

6.2. 电源额定值

表 33: 模块电源额定值

参数	描述	条件	最小值	典型值	最大值	单位
VBAT	VBAT	实际输入电压必须在该范围之内	3.4	3.8	4.3	V
I_{VBAT}	峰值电流	LTE 最大发射功率等级下	-	1.5	2	Α
USB_VBUS	USB 连接检测	-	3.0	5.0	5.25	V

6.3. 功耗

表 34: 功耗

4-44	<i>₹ 1</i> 14.		典型值		
模式	条件	不带 GNSS	带 GNSS	─ 単位	
关机模式	模块关机	38	38	μΑ	
	AT+CFUN=0(USB 断开)	0.68	0.78	mA	
	AT+CFUN=4(USB 断开)	0.80	0.90	mA	
	LTE-FDD @ PF = 32(USB 断开)	1.64	1.75	mA	
	LTE-FDD @ PF = 64 (USB 断开)	1.22	1.33	mA	
	LTE-FDD @ PF = 64 (USB 挂起)	1.38	1.48	mA	
休眠模式	LTE-FDD @ PF = 128(USB 断开)	1.00	1.12	mA	
沙 玩侠八	LTE-FDD @ PF = 256(USB 断开)	0.90	1.02	mA	
	LTE-TDD @ PF = 32(USB 断开)	1.65	1.77	mA	
	LTE-TDD @ PF = 64(USB 断开)	1.24	1.34	mA	
	LTE-TDD @ PF = 64 (USB 挂起)	1.38	1.49	mA	
	LTE-TDD @ PF = 128(USB 断开)	1.01	1.12	mA	
	LTE-TDD @ PF = 256(USB 断开)	0.91	1.02	mA	
	LTE-FDD @ PF = 64(USB 断开)		17.27	mA	
公田 掛子	LTE-FDD @ PF = 64(USB 连接)		30.28	mA	
空闲模式	LTE-TDD @ PF = 64(USB 断开)		17.30	mA	
	LTE-TDD @ PF = 64 (USB 连接)		30.30	mA	
	LTE-FDD B1		537	mA	
LTE 数据传输	LTE-FDD B3		510	mA	
	LTE-FDD B5		515	mA	

LTE-FDD B8	490	mA
LTE-TDD B34	200	mA
LTE-TDD B38	180	mA
LTE-TDD B39	186	mA
LTE-TDD B40	180	mA
LTE-TDD B41	185	mA

6.4. 数字逻辑电平

表 35: 1.8 V I/O 要求

参数	描述	最小值	最大值	単位
VIH	输入高电平	0.7 × VDDIO	VDDIO + 0.2	V
V _{IL}	输入低电平	-0.3	0.3 × VDDIO	V
V _{OH}	输出高电平	VDDIO - 0.2	-	V
V _{OL}	输出低电平	-	0.2	V

表 36: USIM 卡 1.8 V I/O 要求

参数	描述	最小值	最大值	单位
USIM_VDD	供电	1.62	1.98	V
V _{IH}	输入高电平	0.7 × USIM_VDD	USIM_VDD	V
V _{IL}	输入低电平	0	0.2 × USIM_VDD	V
V _{OH}	输出高电平	0.7 × USIM_VDD	USIM_VDD	V
V _{OL}	输出低电平	0	0.15 × USIM_VDD	V

表 37: USIM 卡 3.0 V I/O 要求

参数	描述	最小值	最大值	単位
USIM_VDD	供电	2.7	3.3	V
VIH	输入高电平	0.7 × USIM_VDD	USIM_VDD	V
V _{IL}	输入低电平	0	0.15 × USIM_VDD	V
V _{OH}	输出高电平	0.7 × USIM_VDD	USIM_VDD	V
V _{OL}	输出低电平	0	0.15 × USIM_VDD	V

6.5. 静电防护

由于人体静电、微电子间带电摩擦等产生的静电会通过各种途径放电给模块,并可能对模块造成一定的损坏,因此应重视静电防护并采取合理的静电防护措施。例如:在研发、生产、组装和测试等过程中,佩戴防静电手套;设计产品时,在电路接口处和其他易受静电放电影响的点位增加防静电保护器件。

表 38: ESD 性能参数(温度: 25~30 ℃, 湿度: 40 ±5 %)

测试点	接触放电	空气放电	单位
VBAT 和 GND	±5	±10	kV
天线接口	±4	±8	kV
其他接口	±0.5	±1	kV

6.6. 工作和存储温度

表 39: 工作和存储温度

参数	最小值	典型值	最大值	单位
正常工作温度范围 6	-35	+25	+75	°C
扩展工作温度范围 7	-40	-	+85	°C
存储温度范围	-40	-	+90	°C

-

⁶ 表示当模块在此温度范围工作时,模块的相关性能满足 **3GPP** 标准要求。

⁷ 表示当模块在此温度范围工作时,模块仍能保持正常工作状态,具备语音、短消息、数据传输、紧急呼叫*等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响。仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

7 结构与规格

本章描述了模块的机械尺寸,所有的尺寸单位为mm。所有未标注公差的尺寸,公差为±0.2 mm。

7.1. 机械尺寸

图 43: 模块俯视及侧视尺寸图 (单位: mm)

图 44: 模块底视尺寸图

移远通信 EC800M-CN 模块的平整度符合 JEITA ED-7306 标准要求。

7.2. 推荐封装

图 45: 推荐封装

备注

为确保器件的焊接质量,方便后续的维修操作,客户主板上模块与其他元器件之间的距离至少为3mm。

7.3. 俯视图和底视图

图 46: 模块俯视图和底视图

备注

上图仅供参考,实际的产品外观和标签信息,请参照移远通信的模块实物。

8 存储、生产和包装

8.1. 存储条件

模块出货时,采用真空密封袋进行包装。模块的湿度敏感等级为3(MSL3),其存储需遵循如下条件:

- 1. 推荐存储条件: 温度 23 ±5 °C, 且相对湿度为 35~60 %。
- 2. 在推荐存储条件下,模块可在真空密封袋中存放 12 个月。
- 3. 在温度为 23 ±5 ℃、相对湿度低于 60 %的车间条件下,模块拆封后的车间寿命为 168 小时 ⁸。在 此条件下,可直接对模块进行回流生产或其他高温操作。否则,需要将模块存储于相对湿度小于 10 %的环境中(例如,防潮柜)以保持模块的干燥。
- 4. 若模块处于如下条件,需要对模块进行预烘烤处理以防止模块吸湿受潮再高温焊接后出现的 PCB 起泡、裂痕和分层:
 - 存储温湿度不符合推荐存储条件;
 - 模块拆封后未能根据以上第3条完成生产或存放;
 - 真空包装漏气、物料散装;
 - 模块返修前。
- 5. 模块的预烘烤处理:
 - 需要在 120 ±5 °C 条件下高温烘烤 8 小时;
 - 二次烘烤的模块须在烘烤后 24 小时内完成焊接,否则仍需在防潮柜内保存。

备注

- 1. 为预防和减少模块因受潮导致的起泡、分层等焊接不良的发生,应严格进行管控,不建议拆开真空包装后长时间暴露在空气中。
- 2. 烘烤前,需将模块从包装取出,将裸模块放置在耐高温器具上,以免高温损伤塑料托盘或卷盘。若只需短时间烘烤,请参考 *IPC/JEDEC J-STD-033* 规范。
- 3. 拆包、放置模块时请注意 ESD 防护,例如,佩戴防静电手套。

⁸ 此车间寿命仅在车间环境符合 *IPC/JEDEC J-STD-033* 规范时适用;不确定车间温湿度环境是否满足条件,或相对湿度大于 60 %的情况下,请在拆封后 24 小时内完成贴片回流。请勿提前大量拆包。

8.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适。为保证模块印膏质量,模块焊盘部分对应的钢网厚度推荐为 0.15~0.20 mm。详细信息请参考文档 [7]。

推荐的回流焊温度为 235~246 ℃,最高不能超过 246 ℃。为避免模块因反复受热而损坏,强烈推荐客户在完成 PCB 板第一面的回流焊之后再贴模块。推荐的炉温曲线图(无铅 SMT 回流焊)和相关参数如下图表所示:

图 47: 推荐的回流焊温度曲线

表 40: 推荐的炉温测试控制要求

项目	要求
吸热区(Soak Zone)	
升温斜率	0~3 °C/s
恒温时间(A和B之间的时间: 150~200 ℃期间)	70~120 s
回流焊区(Reflow Zone)	
升温斜率	0~3 °C/s
回流时间(D: 超过 217°C的期间)	40~70 s

最高温度	235~246 °C
冷却降温斜率	-3~0 °C/s
回流次数	

- 1. 以上工艺参数要求,均针对焊点实测温度。PCB 上焊点最热点和最冷点均需要满足以上规范要求。
- 2. 在生产焊接或者其他可能直接接触移远通信模块的过程中,不得使用任何有机溶剂(如酒精,异丙醇, 丙酮,三氯乙烯等)擦拭模块屏蔽罩,否则可能会造成屏蔽罩生锈。
- 3. 移远通信洋白铜镭雕屏蔽罩可满足: 12 小时中性盐雾测试后,镭雕信息清晰可辨识,二维码可扫描 (可能会有白色锈蚀)。
- 4. 如需对模块进行喷涂,请确保所用喷涂材料不会与模块屏蔽罩或 PCB 发生化学反应,同时确保喷涂材料不会流入模块内部。
- 5. 请勿对移远通信模块进行超声波清洗,否则可能会造成模块内部晶体损坏。
- 6. 因 SMT 流程的复杂性,如遇不确定的情况或*文档 [7]*未提及的流程(如选择性波峰焊、超声波焊接), 请于 SMT 流程开始前与移远通信技术支持确认。

8.3. 包装规格

本章节仅用于体现包装的关键参数和包装流程,所有图示仅供参考,具体包材的外观、结构以实际交货为准。

此模块采用载带包装,具体方案如下:

8.3.1. 载带

载带包装的尺寸图表如下:

图 48: 载带尺寸图

表 41: 载带尺寸表(单位:毫米)

W	Р	Т	Α0	В0	K0	K1	F	E	
32	24	0.4	16.2	18.1	2.8	7.6	14.2	1.75	

8.3.2. 胶盘

图 49: 胶盘尺寸图

表 42: 胶盘尺寸表(单位:毫米)

øD1	øD2	W
330	100	32.5

8.3.3. 模块贴片方向

图 50: 模块贴片方向

8.3.4. 包装流程

将模块放入载带中,使用上带热封;再将热封后的载带缠绕到胶盘中,用保护带缠绕防护。1个胶盘可装载250片模块。

将包装完成的胶盘和 1 张湿敏卡、1 包干燥剂 放入真空袋中,抽真空。

将抽真空后的胶盘放入披萨盒内。

将 4 个披萨盒放入 1 个卡通箱内,封箱。1 个卡通箱可包装 1000 片模块。

图 51: 包装流程

9 附录 参考文档及术语缩写

表 43:参考文档

文档名称
[1] Quectel_UMTS<E_EVB_User_Guide
[2] Quectel_LTE_Standard(A)系列_AT 命令手册
[3] Quectel_LTE_Standard(A)系列_音频应用指导
[4] Quectel_EC800M-CN_Reference_Design
[5] Quectel_EC200N-CN&EC800M-CN&EG915N 系列_GNSS_应用指导
[6] Quectel_射频 LAYOUT_应用指导
[7] Quectel_模块_SMT_应用指导

表 44: 术语缩写

缩写	英文全称	中文全称
3GPP	3rd Generation Partnership Project	第三代合作伙伴计划
AMR	Adaptive Multi-Rate	自适应多速率
BDS	BeiDou Navigation Satellite System	北斗卫星导航系统
bps	Bits per second	比特每秒
CHAP	Challenge Handshake Authentication Protocol	挑战握手身份认证协议
CMUX	Connection MUX	多路复用协议
CPE	Customer-Premise Equipment	用户驻地设备
CTS	Clear To Send	清除发送
DFOTA	Delta Firmware Upgrade Over-The-Air	固件空中差分升级
·		

DRX	Discontinuous Reception	非连续接收
DTE	Data Terminal Equipment	数据终端设备
EFR	Enhanced Full Rate	增强型全速率
ESD	Electrostatic Discharge	静电释放
ESR	Equivalent Series Resistance	等效串联电阻
ETSI	European Telecommunications Standards Institute	欧洲电信标准研究所
EVB	Evaluation Board	评估板
FDD	Frequency Division Duplexing	频分双工
FILE	File Protocol	文件协议
FTP	File Transfer Protocol	文件传输协议
FTPS	FTP over SSL	基于 SSL 的 FTP
Galileo	Galileo Satellite Navigation System (EU)	伽利略卫星导航系统(欧盟)
GLONASS	Global Navigation Satellite System (Russia)	格洛纳斯导航卫星系统
GND	Ground	地
GNSS	Global Navigation Satellite System	全球导航卫星系统
GPS	Global Positioning System	全球定位系统
HTTP	Hypertext Transfer Protocol	超文本传输协议
HTTPS	Hypertext Transfer Protocol Secure	超文本传输安全协议
IMS	IP Multimedia Subsystem	IP 多媒体子系统
IMU	Inertial Measurement Unit	惯性测量单元
LCC	Leadless Chip Carrier (package)	无引脚芯片载体(封装)
LDO	Low-dropout Regulator	低压差线性稳压器
LED	Light Emitting Diode	发光二极管
LGA	Land Grid Array	栅格阵列封装
LTE	Long Term Evolution	长期演进
LTE	Long Term Evolution	长期演进

MCU	Microcontroller Unit	微型控制单元
ME	Mobile Equipment	移动设备
MLCC	Multi-layer Ceramic Capacitor	片式多层陶瓷电容器
MMS	Multimedia Messaging Service	彩信
MQTT	Message Queuing Telemetry Transport	消息队列遥测传输
NITZ	Network Identity and Time Zone	网络标识和时区
NMEA	National Marine Electronics Association	美国国家海洋电子协会
NTP	Network Time Protocol	网络时间协议
OTT	Over The Top	一种电视机顶盒
PA	Power Amplifier	功率放大器
PAP	Password Authentication Protocol	密码认证协议
PCB	Printed Circuit Board	印制电路板
PCM	Pulse Code Modulation	脉冲编码调制
PDA	Personal Digital Assistant	个人数字助理
PDU	Protocol Data Unit	协议数据单元
PING	Packet Internet Groper	分组因特网探测器
PMU	Power Management Unit	电源管理单元
POS	Point of Sale	销售终端
PPP	Point-to-Point Protocol	点对点协议
RAM	Random Access Memory	随机存储器
RF	Radio Frequency	射频
RoHS	Restriction of Hazardous Substances	《关于限制在电子电气设备 中使用某些有害成分的指令》
RTS	Request To Send	请求发送
SAW	Surface Acoustic Wave	声表面波
SMS	Short Message Service	短消息服务

SMTP	Simple Mail Transfer Protocol	简单邮件传输协议
SMTPS	Simple Mail Transfer Protocol Secure	简单邮件传输协议的安全协 议
SSL	Secure Sockets Layer	安全套接层
TCP	Transmission Control Protocol	传输控制协议
TDD	Time Division Duplexing	时分双工
THD	Total Harmonic Distortion	总谐波失真
TVS	Transient Voltage Suppressor	瞬变电压抑制二极管
UART	Universal Asynchronous Receiver/Transmitter	通用异步收发传输器
UDP	User Datagram Protocol	用户数据报协议
UMTS	Universal Mobile Telecommunications System	通用移动通信系统
URC	Unsolicited Result Code	非请求结果码
USB	Universal Serial Bus	通用串行总线
USIM	Universal Subscriber Identity Module	通用用户识别模块
Vmax	Maximum Voltage	最大电压值
Vnom	Nominal Voltage	标称电压值
Vmin	Minimum Voltage	最小电压值
V _{IH}	High-level Input Voltage	输入高电压值
V _{IL} max	Maximum Low-level Input Voltage	最大输入低电压值
V _{IL}	Low-level Input Voltage	输入低电压值
V _{OH}	High-level Output Voltage	输出高电压值
V _{OL}	Low-level Output Voltage	输出低电压值
VSWR	Voltage Standing Wave Ratio	电压驻波比