Serial I/O

ELEC 330

Digital Systems Engineering

Dr. Ron Hayne

Images Courtesy of Ramesh Gaonkar and Delmar Learning

Serial I/O

- Serial I/O (Communication)
 - One bit transferred at a time
 - Over one line
- To transmit data serially
 - Microcontroller must convert its parallel word into a stream of serial bits
 - Parallel-to-serial conversion
- To receive data serially
 - Microcontroller must convert a stream of serial bits into a parallel word
 - Serial-to-parallel conversion

Basic Concepts

- Transmission issues
 - Synchronous vs Asynchronous
 - Simplex vs Duplex
 - Data Rate
 - Errors and Error Checks
 - Standards and Protocol

Synchronous vs Asynchronous

330_13

Simplex vs Duplex

- Simplex
 - Data flow in only one direction
 - Such as from a PC to its peripheral
- Full duplex
 - Data flow in both directions simultaneously
 - Such as a telephone conversation or communication via a modem
- Half duplex
 - Data flow in both directions, only one direction at a time
 - Such as a conversation over a CB radio

Rate of Transmission

- Baud and bits per second (BPS)
 - Baud is a measure of the "signaling rate"
 - Number of changes to the transmission medium per second in a modulated signal
 - At slow speeds
 - Only one bit of information is encoded in each electrical change
 - Baud and bits per second are equal
 - At higher speeds
 - Multiple bits are encoded in one electrical change
 - Generally expressed in bits per second (bps)

Transmission Errors

- Framing error
 - Start and Stop bits improperly frame a character
 - Recognized when the Stop bit is zero
 - Expected to be one
 - Flag in control register
- Overrun error
 - New byte overwrites the earlier byte
 - Before the receiver completes reading
 - Flag in control register

Error Checks

- Parity
 - Last bit is used as a parity bit
 - Either an even or odd number of 1s
- CheckSum
 - Used when blocks of data are transmitted
 - All bytes transmitted are XORed
 - Sent as the last byte
- Receiver recalculates Parity or CheckSum
 - Compares to the one transmitted
 - No match generates an error

Standards and Protocols

- EIA-232 (formerly known as RS-232)
- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
- One-wire (1-Wire®) Bus
- Controller Area Network Bus (CAN)
- Local Interconnect Network (LIN)

PIC18 Serial Communications

- Includes two serial communication modules
 - Universal Synchronous Asynchronous Receiver Transmitter (USART)
 - Implements EIA-232
 - Also known as Serial Communications Interface (SCI)
 - Master Synchronous Serial Port (MSSP)
 - Also known as Serial Peripheral Interface (SPI)
 - Also implements I2C mode

EIA-232 Serial I/O Standard

- Negative logic
 - Logic 1: -3 V to -25 V or Mark
 - Logic 0: +3 V to + 25 V or Space
- Connector
 - DB25 subminiature

DB9 connector

• Nine pins

EIA-232 Serial I/O Standard

◆ EIA 232 DTE and DCE Minimum Connection

330_13 12

Framing

◆ ASCII Character Y (59H) – 9600 BAUD

330_13 13

PIC18 USART Module

- Configuration Modes
 - Asynchronous
 - Full duplex
 - PC serial communication
 - EIA-232 protocol
 - Synchronous
 - Master or slave half duplex
 - Used to communicate with peripherals
 - A/D and D/A converters
 - Serial EEPROM

PIC18 USART Module

- Control Registers
 - SPBRG
 - Baud Rate Generator
 - TXSTA
 - Transmit Status and Control
 - RCSTA
 - Receive Status and Control
 - BAUDCON
 - Baud Rate Control

USART Transmission

USART Reception

330_13 17

Interrupts

- PIE1
 - TXIE (Bit4)
 - Transmit Interrupt Enable
 - RCIE (Bit5)
 - Receive Interrupt Enable
- PIR1
 - TXIF (Bit4)
 - Transmit Interrupt Flag
 - Bit is 1 when TXREG (Transmit Register) is empty
 - RCIF (Bit5)
 - Receive Interrupt Flag
 - Bit is 1 when RCREG (Receive Register) is full

Master Synchronous Serial Port

- Master Synchronous Serial Port (MSSP)
 - Serial interface used in communicating with other peripheral devices
- Can operate in one of two modes
 - Serial Peripheral Interface (SPI)
 - Inter-Integrated Circuit (I²C)

330_13

Serial Peripheral Interface (SPI)

- Serial synchronous data exchange protocol
 - High-speed serial communication
 - Between a microcontroller and its peripheral devices
 - Between a master and a slave device
 - EEPROMs, data converters, and display drivers
 - Four-wire Interface
 - Clock, data in, data out, and slave select
 - Synchronous protocol
 - Clock signal is provided and controlled by the master device
 - Master-Slave protocol
 - Can communicate with multiple slave devices
 - Data Exchange protocol
 - Each device has two data lines

MSSP: SPI Mode

- Transmits and receives data simultaneously
- Uses following pins
 - Serial Data Out (SDO)
 - pin RC5/SDO on PORTC
 - Serial Data In (SDI)
 - pin RC4/SDI/SDA on PORTC
 - Serial Clock (SCK)
 - pin RC3/SCK/SCL on PORTC
 - Slave Select (/SS)
 - Available pin on a PORT
- Internal Registers
 - SSPSR (Shift Register)
 - SSPBUF (Buffer Register)

SPI Mode

- Write and Read operations
 - Must be performed for each byte
 - Some of data bytes may not have any use in a given application
 - Transmission
 - Master sends data and receives dummy data from slave device
 - Transmission and Reception
 - Both exchange data
 - Reception
 - Master receives data and sends dummy data to slave device

SPI Applications

- SPI-compatible peripherals include
 - Converters (ADC and DAC)
 - Memories (EEPROM and Flash)
 - Sensors (temperature and pressure)
 - Real Time Clock (RTC)
 - Display (LCD)
 - Shift registers
- Master-slave configuration
 - One master device and multiple slave devices

Master and Multiple Independent Slave Connection

330_13

Example

◆ Interfacing 74HC – Shift Register in SPI Mode

Inter-integrated Circuit Protocol

- ◆ Inter-integrated Circuit (I²C)
 - Two-wire interface
 - Two open drain/collector lines
 - One for clock and one for data
 - Synchronous
 - Data are transferred with a synchronous clock initiated by the master device
 - Rate of data transfer is 100 kbps in standard mode
 - 400 kbps in fast mode
 - Master/Slave or Many Masters
 - Bus may have one master and many slaves or multiple masters

330_13

I²C Protocol

330_13 27

MSSP: I²C Mode

- Implements all master and slave functions
 - Provides interrupts on Start and Stop bits
- Uses the following pins
 - SCL (Serial Clock)
 - pin RC3/SCK/SCL on PORTC
 - SDA (Serial Data)
 - pin RC4/SDI/SDA on PORTC
- Internal Registers
 - SSPSR (Shift Register)
 - SSPBUF (Buffer Register)
 - SSPADD (Address Register)