Suites arithmétiques

1 Définition

Définitions : suite arithmétique / raison Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- (u_n) est une suite arithmétique si, et seulement si, il existe un réel r tel que : $\forall n \in \mathbb{N}, u_{n+1} = u_n + r.$
- r est appelé la raison de la suite arithmétique.

2 Terme général

Dans tout ce qui suivra, on considèrera (u_n) une suite arithmétique de premier terme u_0 et de raison r.

Les propositions suivantes sont équivalentes :

- $\forall n \in \mathbb{N}, u_{n+1} = u_n + r$
- $\forall n \in \mathbb{N}, u_n = u_0 + nr$

Attention: Ceci est vrai si la suite est définie sur \mathbb{N} ! Pour $n \in \mathbb{N}^*$, on a $u_n = u_1 + (n-1)r$. On retiendra: $u_n = \text{premier}_{\text{terme}} + \text{nombre}_{\text{de termes}} \times \text{raison}$.

3 Somme des termes d'une suite arithmétique

On veut calculer $S = \underbrace{u_0 + u_1 + u_2 + u_3 + \dots + u_n}_{n+1 \text{ termes}}$. On a $S = (n+1) \frac{u_0 + u_n}{2}$

Attention! Ceci est vrai si on a n+1 termes dans la somme! On a $u_1+u_2+...+u_n=n\frac{u_1+u_n}{2}$.

On retiendra : $S = \text{nombre}_{\text{de termes}} \times \frac{\text{premier}_{\text{terme}} + \text{dernier}_{\text{termes}}}{2}$.

4 Sens de variations des suites arithmétiques

Remarque Pour calculer le sens de variation d'une suite, il est **très** souvent **très** efficace de s'intéresser au signe de $u_{n+1} - u_n$.

Dans le cas des suites arithmétiques, on a $u_{n+1} = u_n + r$, i.e. $u_{n+1} - u_n = r$. Donc :

- Si r > 0, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- Si r < 0, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.

5 Calcul du nombre de termes

Pour calculer le nombre de termes, on s'intéresse à l'indice du premier et à l'indice du dernier, et on a : nombre_{de termes} = indice_{du premier terme} - indice_{du dernier terme} $\boxed{+1}$.

1

Suites arithmétiques : exemples rédigés

1 Autour de la suite...

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n=3n-5$.

1.1 Calcul des premiers termes

- $u_0 = 3 \times 0 5 = -5$
- $u_1 = 3 \times 1 5 = -2$
- $u_2 = 3 \times 2 5 = 1$
- $u_3 = 3 \times 3 5 = 4$
- $u_4 = 3 \times 5 5 = 7$

1.2 Prouver qu'il s'agit d'une suite arithmétique (passage à l'expression par récurrence)

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = 3(n+1) - 5$
= $3n + 3 - 5$
= $3n - 5 + 3$
= $u_n + 3$

D'où $\forall n \in \mathbb{R}, u_{n+1} = u_n + 3.$

Donc $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de 1^{er} terme $u_0=5$ et de raison r=3.

1.3 Sens de variation

On a pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$, c'est-à-dire $u_{n+1} - u_n = 3$.

Donc $u_{n+1} - u_n > 0$, on en déduit que $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.

2 Autour de la somme des termes de la suite...

2.0.1 Exercice nº 1 : la suite de Gauß, exemple

Soit $S = 1 + 2 + 3 + 4 + \dots + n$. Donner la valeur de S.

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite arithmétique de premier terme $u_1=1$ et de raison 1.

On peut écrire $S = u_1 + u_2 + u_3 + u_4 + ... + u_n$

Donc
$$S=n\frac{1+n}{2}$$
 Ainsi,
$$\boxed{1+2+3+4+\ldots+n=\frac{n\left(n+1\right)}{2}}$$

Attention Cet exemple est fondamental, et le résultat encadré est à connaître par cœur!

2

2.0.2 Exercice nº 2

Soit S = 7 + 18 + 29 + 40 + ... + 2856. Donner la valeur de S.

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite arithmétique de premier terme $u_1=7$ et de raison r=11.

La somme des termes de la suite est donnée par $S = n \frac{u_1 + u_n}{2}$.

On cherche à connaître le rang n du terme $u_n = 2856$.

$$u_n = u_1 + (n-1)r$$

= $7 + 11(n-1)$
= $7 + 11n - 11$
= $11n - 4$

On a donc
$$11n - 4 = 2856$$

 $11n = 2860$
 $n = 260$

D'où
$$S = n \frac{u_1 + u_n}{2}$$

= $260 \times \frac{7 + 2856}{2}$
= $372 \ 190$

D'où S = 372 190.

2.0.3 Exercice no 3

Soit S = 3 + 8 + 13 + 18 + ... + 1003. Donner la valeur de S.

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite arithmétique de premier terme $u_1=3$ et de raison r=5.

La somme des termes de la suite est donnée par $S = n \frac{u_1 + u_n}{2}$.

On cherche à connaître le rang n du terme $u_n = 1003$.

$$u_n = u_1 + (n-1)r$$

= $3 + 5(n-1)$
= $3 + 5n - 5$
= $5n - 2$

On a donc
$$5n - 2 = 1003$$

 $5n = 1005$
 $n = 201$

D'où
$$S = n \frac{u_1 + u_n}{2}$$

= $201 \times \frac{3 + 1003}{2}$
= $101 \ 103$

D'où $S = 101 \ 103$.

3 Exercice récapitulatif

- 1. Soit $(u_n)_{u \in \mathbb{N}}$ la suite arithmétique décroissante définie par : $\begin{cases} u_0 + u_1 + u_2 = 270 \\ u_0 \times u_1 \times u_2 = 720000 \end{cases}$ Déterminer u_0 , u_1 et u_2
- 2. Soit $S = u_0 + u_1 + u_2 + ... + u_n$. Déterminer *n* tel que S = 450.
- 1. On peut dire que $u_1 = u_0 + r$ et $u_2 = u_0 + 2r$. On peut aussi dire $u_0 = u_1 - r$ et $u_2 = u_1 + r$.

On a alors
$$(u_1 - r) + u_1 + (u_1 + r) = 270$$

Ainsi,
$$3u_1 = 270$$
 et $u_1 = 90$.

On sait que
$$u_0 \times u_1 \times u_2 = 720000$$

Il vient que
$$(90 - r) \times 90 \times (90 + r) = 720000$$
.

$$(90 - r)(90 + r) = \frac{720000}{90}$$

$$8100 - r^2 = 8000$$

$$-r^2 = -100$$

$$r^2 = 100$$

Donc
$$r = 10$$
 ou $r = -10$.

Cependant, on sait que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. Donc r<0.

Ainsi,
$$r = -10$$
.

On a donc
$$u_0 = 100$$
, $u_1 = 90$ et $u_2 = 80$.

2. On cherche à déterminer n tel que S=450, i.e. n tel que $(n+1)\frac{u_0+u_n}{2}=450$

 $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de premier terme $u_0=100$ et de raison r=-10.

On a
$$u_n = u_0 + nr = 100 - 10n$$

Donc on résout
$$(n+1) \frac{100 + (100 - 10n)}{2} = 450$$

$$(n+1) (100 - 5n) = 450$$

$$100n - 5n^2 + 100 - 5n = 450$$

$$-5n^2 + 95n - 350 = 0$$

$$n = 5 \text{ ou } n = 14$$

Et en effet:

$$u_0 + u_1 + u_2 + u_3 + u_4 + u_5 + u_6 + u_7 + u_8 + u_9 + u_{10} + u_{11} + u_{12} + u_{13} + u_{14}$$

 $100 + 90 + 80 + 70 + 60 + 50 + 40 + 30 + 20 + 10 + 0 - 10 - 20 - 30 - 40$