Anwendungen der AR: Education

Praktische Anwendungen

Tobias Klingenberg
04.07.2024

Supervisor: David A. Plecher

Inhalt

- Einleitung
- Warum AR / Entwicklung
- AR-Tools und Plattformen
- Anwendungen in verschiedenen Bildungsstufen
 - Primär, Sekundär
 - Hochschule
- Weiterbildung in der Industrie
- Fallstudien / reale Beispiele
- Demo

EinleitungThemen

Warum AR in Bildung?

- Stärkere Gedächtnisleistung
 - Visuelle, interaktive Inhalte
- Personalisiertes Lernen
 - Individuell an Bedürfnisse anpassbar
- Kontextualisierte Lernerfahrungen
 - Anwenden von theoretischem Wissen in simulierten Umgebungen
- Hohe Motivation
 - Spielerische Ansätze

Entwicklung bis 2024

Immer höhere Nachfrage Wachstum durch:

 Generelles Bedürfnis nach technologischen Innovationen

- Abheben von konservativen Bildungsmethoden
- Akzeptanz durch COVID-19
 - Umstellung auf Fernunterricht
 - Immersives Lernen trotz r\u00e4umlicher Trennung

[W1]

Entwicklung bis 2024

Erste
Integration
Experimentell
Machbarkeit /
Potential
Forschung

Mobile
Technologie
(Tablets,
Smartphones)
Google Glass

Kostengünstig ere Plattformen (Google Expeditions)

Verbesserte
Hardware
(Meta Quest,
Vision Pro)
Anpassung
and
Lerninhalte

1990-2000

2010er

2020er

2024

[4]

AR Tools und Plattformen

- Sinnvolle Hard- und Software
- Kriterien
 - Günstig
 - Weit verbreitet
 - Benutzerfreundlich
 - Vielseitig einsetzbar
 - Ggf. bereits vorhanden (Siehe Demo)

AR Tools und Plattformen

Hardware

- ARCore / LiDAR fähige Tablets / Smartphones (Schule)
- AR-Brillen / Headsets (Uni, Industrie)
- Spezialisierte AR Education Hardware (Merge Cube, ZSpace)

Software

- Google Expeditions
- Metaverse
- Fachspezifisch
 - Anatomy 4D
 - Labster
 - CoSpaces Edu

ZSpace [W2]

Virtuelle Klassenräume

Vor Ort (Sekundär)

Einsatz von AR-Hardware gemeinsam im Klassenraum

- Parallel "normaler" Unterricht
- Unterstützende Aufgabe
- Visualisierung des Themas
- Kleine Aufgaben zum lösen

INSEAD and Actiview's classroom.

Virtuelle Klassenräume

Von Zuhause (Primär)

Augmentieren einzelner Personen oder ganzer Räume in einen

anderen Raum

Potential:

- Fernunterricht aufgrund von
 - Quarantäne (Pandemisch, Individuell)
 - Unzureichend vorhandener Infrastruktur (Teilweise unzumutbaren Schulentfernungen)

Exemplarisch [W3]

Hürden:

- Noch nicht vollständig entwickelte Technik (teuer)
 - Echtzeit Scannen von ganzen Personen und Räumen

Anwendungen in Bildungsstufen

Grundbildung (K-12 Education)

- Motivationsbedingt (Gamification)
- Komplexe Konzepte visualisieren (Geschichte, Biologie, Physik)
- Projektarbeiten, soziales Lernen
- Herausforderungen:
 - Kosten, mangelnde technische Unterstützung, Lehrerfortbildung
 - Sinnvolle Integration in bestehenden Lehrplan

Anwendungen in Bildungsstufen

Hochschule

- Visualisierung von traditionell schwer greifbaren Konzepten
 - v.A. Medizin, Ingenieurwesen, Naturwissenschaften, Architektur
- Experimentelles Lernen (Labor)
 - Realistische Simulationen und Übungsmöglichkeiten (Medizin Praktika, Chemie Laboranten, Maschinenbau)

Industrie

- Komplex, industrielle Prozesse visualisieren
- Weiterbildung von Technikern auf spezielle, neue Maschinen und Systeme
- Echtzeitinformationen und Anweisungen bei Wartungsund Reparaturarbeiten
- Schulung durch Remote-Unterstützung
- Herausforderungen:
 - Hohe Investition und technische Infrastruktur

Fallstudie - Primär

- Cooking Math
- Lehren von grundlegenden mathematischen Aufgaben (Griechisches Curriculum)
- Basiert auf "Kochaufgaben" (Rezepte)

Fallstudie - Primär

Gleichungen

(1.2)
(3)
(3)
(Δοκλήρωσε

Rationale Zahlen

Geometrie

[8]

Fallstudie - Hochschule

- University of Edinburgh's Medical School
- EdAR
- Unterrichten von X-Ray Methoden an komplexen Körperteilen (Becken)

Fallstudie - Hochschule

- Modifzierung der axial, coronal und sagittalen Ebenen
- Anzeigen der möglichen X-Ray Ergebnisse

Fallstudie - GeoGebra

- GeoGebra AR (ARCore)
- 3-dimensionale Objekte
- Vektorräume
- Visualisierung im Unterricht
- Anwendungsaufgaben

[W4]

Demo

lydr.io/ar

© AR.js [W5]

© AR.js [W5]

Hiro

3D Model Copyright: https://www.turbosquid.com/ 3d-models/human-skeleton-1-587567

Tobias Klingenberg

Literaturquellen

- [1] H. Cetin, "A Systematic Review of Studies on Augmented Reality Based Applications in Primary Education", IJELS, 2022
- [2] Dunleavy, M., Dede, C., & Mitchell, R. (2009). "Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning". *Journal of Science Education and Technology*.
- [3] Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J.,
 & Kato, H, "Augmented Reality Learning Experiences: Survey of Prototype Design and Evaluation". *IEEE Transactions on Learning Technologies*, 2014
- [4] Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk, "Augmented Reality Trends in Education: A Systematic Review of Research and Applications". Educational Technology & Society, 2014
- [5] J. Zhang, G. Li, Q. Huang, Q. Feng and H. Luo, "Augmented Reality in K–12 Education A Systematic Review and Meta-Analysis of the Literature from 2000 to 2020", MDPI, 2022

Technische Universität Münch

Literaturquellen

- [6] Akçayır, M., & Akçayır, G., "Advantages and challenges associated with augmented reality for education: A systematic review of the literature". Educational Research Review, 2017
- [7] Chen, P., Liu, X., Cheng, W., & Huang, R., "A review of using augmented reality in education from 2011 to 2016". Innovations in Smart Learning, 2017
- [8] Volioti, Christina, Christos Orovas, Theodosios Sapounidis, George Trachanas, and Euclid Keramopoulos. "Augmented Reality in Primary Education: An Active Learning Approach in Mathematics" *Computers* 12, 2023
- [9] D. Korre and A. Sherlock, "Augmented reality in higher education: a case study in medical education", EdAR, Immersive Learning Research Network, 2023

Technische Universität Münch

Webquellen

- [W1] https://www.marketresearchfuture.com/reports/ar-vr-in-education-market-10834 (letzter Zugriff 03.07.2024 20:38)
- [W2] https://zspace.com/ (letzter Zugriff 03.07.2024 20:38)
- [W3] https://www.wired.com/story/spatial-vr-ar-collaborative-spaces/ (letzter Zugriff 03.07.2024 20:38)
- [W4] https://www.geogebra.org/m/agpb7bq7 (letzter Zugriff 03.07.2024 20:38)
- [W5] https://ar-js-org.github.io/AR.js-Docs/ (letzter Zugriff 03.07.2024 20:38)