CA5 - Normal Distribution, Moment Generating Functions, Law of Large Numbers, and Central Limit...

Add Instructions...

1 Multiple Choice 5 points

X is a random variable with mean $E\left[X
ight]=\mu$ and variance $Var\left(X
ight)=\sigma^2$. We standardize X to get the new random variable Z:

$$Z = rac{X - \mu}{\sigma}$$

What are the **mean** and **variance**, respectively, of Z?

- 0, 1
- 2, 1
- 0 1,0
- 2,0

Suppose X is normally distributed with mean 5 and standard deviation 0.4. Using the standard transformation $Z=\frac{X-\mu}{\sigma}$, we find $P\left(X\leq X_0\right)=P\left(Z\leq 1.3\right)$.

What is the value of X_0 ?

- 6.9
- 0 4.48
- 2.00
- 5.52

3 True or False 2 points

If $X_1, X_2, ..., X_n$ are independent identically distributed random variables with mean μ and variance σ^2 . We define the sample mean to be:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

The following statement is True or False?

The value of the standard deviation of the sample mean \overline{X} is always greater than the standard deviation of the population, i.e., σ .

- O True
- False

Multiple Choice 5 points

Suppose that $X\sim N$ (2,1) and $Y\sim N$ (3,2). Assuming that X and Y are independent, what is the distribution of X+Y?

- O N(3,5)
- N(5,3)
- O N(3,3)
- O N(5,5)

Suppose $X\sim N$ (5,9) . What is P $(X\leq 8)$ in terms of the standard normal random variable $Z\sim N$ (0,1)?

- $\bigcap P(Z \leq -1)$
- O $P(Z \leq 0.6)$
- O $P(Z \leq -0.6)$
- O $P(Z \le 1.67)$