Лекция 2. Dataset. Pandas

Классификация

Классификация

Кошки и собаки

В задаче классификации целевая переменная принимает ограниченный набор значений (классов):

- Бинарная классификация всего два класса (например, «выжил» или «не выжил» на Титанике, «спам» или «не спам»).
- Мультиклассовая классификация три и более класса (например, типы новостей: спорт, политика, экономика).
- Мульти-лейбл классификация каждый пример может одновременно принадлежать нескольким классам (например, теги статей).

Классификация

У нас есть набор обучающих данных:

$$\{(x^{(i)},y^{(i)})\}_{i=1}^N$$

где:

 $x^{(i)}$ — вектор признаков для примера і

 $y^{(i)} \in \{0,1\}$ — метка класса

Наша цель — построить функцию f(x), которая будет предсказывать класс для нового примера x.

Классификация

- <u>Логистическая регрессия</u> простой и интерпретируемый метод, хорошо подходит для линейно разделимых данных.
- <u>Дерево решений</u> строит дерево с правилами «если-то».
- <u>Случайный лес (Random Forest)</u> ансамбль деревьев, более устойчивая модель.
- <u>Метод опорных векторов (SVM)</u> хорош для сложных границ между классами.
- <u>К ближайших соседей (KNN)</u> прогнозирует класс по наиболее близким примерам.
- Нейронные сети мощный инструмент для нелинейных зависимостей.

Регрессия

Если классификация предсказывает класс (категорию), то задача регрессии заключается в прогнозе непрерывного числового значения на основе входных признаков.

Регрессия — это задача предсказания вещественной (непрерывной) целевой переменной у по вектору признаков х: $y = f(x) + \varepsilon$

Регрессия

Цены на дома

Линейная регрессия

Один из самых простых и популярных методов регрессии — линейная регрессия. Она предполагает, что зависимость между признаками и целевой переменной линейна:

$$\hat{y} = w^T x + b$$

где:

w — вектор коэффициентов (весов),

b — свободный член (intercept).

Пример: прогноз цены квартиры:

$$Price = w_1 \times Area + w_2 \times Number of Rooms + b$$

Интерпретация коэффициентов

Коэффициенты www показывают, насколько сильно каждый признак влияет на результат:

 $w_i > 0$: увеличение признака і увеличивает прогноз.

 $w_i < 0$: увеличение признака уменьшает прогноз.

Чем больше по модулю, тем сильнее влияние признака.

Это делает модель интерпретируемой — мы можем объяснить, как она принимает решения.

Функция потерь

Чтобы «научить» модель находить лучшие коэффициенты, мы минимизируем функцию потерь. Для линейной регрессии обычно используют среднеквадратичную ошибку (MSE):

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Обучение модели

Задача обучения — найти такие w и b, которые минимизируют MSE. Обычно это делается методами оптимизации:

- Аналитически (через нормальное уравнение) для простых случаев.
- Градиентный спуск для больших датасетов.

Обновление весов по градиентному спуску:

$$w \leftarrow w - \eta \frac{\partial L}{\partial w}$$
 $b \leftarrow b - \eta \frac{\partial L}{\partial b}$

Кластеризация

Кластеризация — это задача группировки объектов в такие подмножества (кластеры), внутри которых объекты похожи друг на друга и отличаются от объектов других кластеров.

Формально, имея множество объектов $X=\{x(1),x(2),...,x(N)\}$, мы хотим разбить его на K подмножеств $C_1,C_2,...,CK$ так, чтобы:

- внутри каждого кластера объекты были как можно более похожими,
- между кластерами как можно более различными.

Важно понимать фундаментальное отличие!

- Классификация задача обучения на размеченных данных. У нас есть метки классов, и модель учится их предсказывать.
- Кластеризация задача на неразмеченных данных. У нас нет правильных ответов. Мы ищем структуру сами.

K-средних (K-Means)

Один из самых простых и широко используемых алгоритмов.

- Пользователь задаёт число кластеров К.
- Алгоритм случайно инициализирует центры кластеров.

На каждом шаге:

- Назначает каждый объект ближайшему центру.
- Пересчитывает центры как среднее объектов в кластере.
- Повторяет, пока центры не перестанут меняться.

Отличие от классификации и регрессии

- Регрессия: есть непрерывная целевая переменная.
- Классификация: есть известные классы (размеченные данные).
- Кластеризация: нет разметки мы пытаемся «открыть» структуру.

Подготовка данных

Scikit-learn работает с данными в виде таблиц признаков (X) и целевой переменной (y):

- X обычно NumPy-массив или Pandas DataFrame размером (n_samples, n_features)
- у одномерный массив длиной n_samples

Age	Fare	Pclass	• • •
22	7.25	3	•••
38	71.3	I	a

2. Разделение данных

Чтобы проверить качество модели, данные делят на обучающую и тестовую выборки:

```
1 from sklearn.model_selection import train_test_split
2
3 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

test_size=0.2 означает, что 20% данных пойдут на тест.

3. Создание модели

```
1 from sklearn.linear_model import LogisticRegression
2
3 model = LogisticRegression()
```

Аналогично можно выбрать:

- DecisionTreeClassifier
- RandomForestRegressor
- KMeans
- и т. д.

4. Обучение модели

Чтобы «подогнать» модель к данным:

```
1 model.fit(X_train, y_train)
```

После этого модель «выучила» зависимости.

5. Предсказания

На новых (или тестовых) данных:

```
1 y_pred = model.predict(X_test)
```

Некоторые модели также могут выдавать вероятности:

```
1 y_proba = model.predict_proba(X_test)
```

6. Оценка качества

Для классификации:

```
1 from sklearn.metrics import accuracy_score
2
3 accuracy = accuracy_score(y_test, y_pred)
4 print("Accuracy:", accuracy)
```

Для регрессии:

```
1 from sklearn.metrics import mean_squared_error
2
3 mse = mean_squared_error(y_test, y_pred)
4 print("MSE:", mse)
```

Для кластеризации:

```
1 from sklearn.metrics import silhouette_score
2
3 score = silhouette_score(X, labels)
4 print("Silhouette:", score)
```

!pip install pandas scikit-learn	Установка необходимых библиотек	
pd.read_csv('train.csv')	Загрузка обучающих данных из CSV	
df.shape	Размерность таблицы (строки, столбцы)	
df.head()	Просмотр первых строк таблицы	
df.isnull().sum()	Подсчёт пропущенных значений в таблице	
fillna(value)	Заполнение пропущенных значений	
mode()[o]	Нахождение моды (самого частого значения)	
concat([df1, df2])	Объединение таблиц	
LabelEncoder().fit_transform()	Преобразование категориальных признаков в числовые	
drop(columns)	Удаление ненужных признаков (например, Name, Ticket)	
train_test_split(X, y, test_size=0.2)	Разделение выборки на обучение и валидацию	
RandomForestClassifier()	Инициализация модели случайного леса	
model.fit(X_train, y_train)	Обучение модели	
model.predict(X_test)	Предсказания на новых данных	
accuracy_score(y_true, y_pred)	Подсчёт точности (accuracy) модели	
submission.to_csv('submission.csv')	Сохранение предсказаний в CSV-файл для отправки на	
plt.figure(figsize=(6,4))	Создание графика с указанным размером	
sns.countplot(x='Sex', hue='Survived',)	Столбчатая диаграмма по признаку	
sns.histplot(, hue='Survived', multiple='stack')	Гистограмма с группировкой по выжившим	
sns.heatmap(df.corr(), annot=True, cmap=)	Матрица корреляций между числовыми признаками	
select_dtypes(include=['number'])	Выбор только числовых признаков из таблицы	

- 1. Загрузите данные train.csv и test.csv в Pandas.
- 2. Посмотрите таблицы: сколько в них строк и столбцов? Какие есть признаки?
- 3. Найдите пропущенные значения и заполните их:

Age

Embarked

Fare

- 4. Закодируйте категориальные признаки с помощью LabelEncoder.
- 5. Удалите ненужные для начала колонки.
- 6. Разделите данные на тренировочные и валидационные через train_test_split.
- 7. Обучите модель RandomForestClassifier.
- 8. Посчитайте точность (accuracy) на валидационной выборке.
- 9. Сделайте файл с предсказаниями для Kaggle (submission.csv).

Обязательно постройте хотя бы 4 графика с помощью seaborn и matplotlib:

- Распределение выживших и невыживших
- Зависимость выживания от пола
- Выживание по классу билета
- Распределение возраста среди выживших и невыживших

Используя тот же датасет Titanic, попробуйте ответить на вопрос: От чего зависел шанс выжить?

Δ ля этого:

Проведите свой анализ данных:

Постройте графики зависимости выживания от признаков.

Посмотрите на корреляции числовых признаков.

Можете придумать свои визуализации.

2. Попробуйте улучшить модель:

Попробуйте другие модели (логистическую регрессию, дерево решений).

Проведите подбор параметров через GridSearchCV.