ТЕОРЕТИЧЕСКИЕ ДОМАШНИЕ ЗАДАНИЯ

Математическая логика, ИТМО, М3235-М3239, весна 2022 года

Задание №1. Знакомство с классическим исчислением высказываний.

1. Будем говорить, что высказывание α выводится из гипотез $\gamma_1, \gamma_2, \ldots, \gamma_n$ (и записывать это как $\gamma_1, \gamma_2, \ldots, \gamma_n \vdash \alpha$), если существует такой вывод $\delta_1, \delta_2, \ldots, \delta_n$, что $\alpha \equiv \delta_n$, и каждый из δ_i есть либо гипотеза, либо аксиома, либо получается из каких-то предыдущих высказываний по правилу Modus Ponens. Несколько гипотез мы можем обозначить какой-нибудь большой буквой середины греческого алфавита $(\Gamma, \Delta, \Pi, \Sigma, \Xi)$: например, $\Gamma, \alpha, \beta \vdash \sigma$; здесь Γ обозначает какое-то множество гипотез.

Докажите:

(a)
$$\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$$

(b)
$$\vdash A \& B \rightarrow B \& A$$

(c)
$$\vdash A \& B \rightarrow A \lor B$$

(d)
$$\vdash A \rightarrow \neg \neg A$$

(e)
$$A \& \neg A \vdash B$$

(f)
$$\vdash \neg (A \& \neg A)$$

2. Известна теорема о дедукции: $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$. Теорема доказывается конструктивно, то есть она даёт метод для перестроения одного вывода в другой. В рамках данного задания разрешается результат её применения вписать как часть другого вывода как «чёрный ящик» (как макроподстановку). Докажите с её использованием:

(a)
$$\neg A, B \vdash \neg (A \& B)$$

(b)
$$A, \neg B \vdash \neg (A \& B)$$

(c)
$$\neg A, \neg B \vdash \neg (A \& B)$$

(d)
$$\neg A, \neg B \vdash \neg (A \lor B)$$

(e)
$$A, \neg B \vdash \neg (A \rightarrow B)$$

(f)
$$\neg A, B \vdash A \rightarrow B$$

(g)
$$\neg A, \neg B \vdash A \rightarrow B$$

(h)
$$\vdash A \& (B \& B) \rightarrow A \& B$$

(i)
$$\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$$

$$(j) \vdash (A \to B) \to (\neg B \to \neg A)$$
 (закон контрапозиции)

$$(k) \vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$$
 (правило де Моргана)

(1)
$$\vdash \neg(\neg A \& \neg B) \rightarrow A \lor B$$
 (правило де Моргана)

$$(m) \vdash A \& (B \lor C) \rightarrow (A \& B) \lor (A \& C)$$
 (дистрибутивность 1)

$$(n) \vdash A \lor (B \& C) \rightarrow (A \lor B) \& (A \lor C)$$
 (дистрибутивность 2)

- 3. Существует несколько аналогов схемы аксиом 10 (аксиомы снятия двойного отрицания). Докажите при любых высказываниях α и β :
 - (a) $\vdash \alpha \lor \neg \alpha$ (правило исключённого третьего)
 - (b) $\vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha \ (\exists a \kappa o n \ \Pi u p c a)$
 - (c) Предположим, 10 схема аксиом заменена на две другие схемы аксиом: $((\alpha \to \beta) \to \alpha) \to \alpha$ и $\alpha \to \neg \alpha \to \beta$. В этих условиях покажите $\neg \neg \alpha \to \alpha$.
 - (d) Предположим, 10 схема аксиом заменена на две другие схемы аксиом: $\alpha \vee \neg \alpha$ и $\alpha \to \neg \alpha \to \beta$. В этих условиях покажите $\neg \neg \alpha \to \alpha$.
- 4. Докажите следующие «странные» формулы:
 - (а) $\vdash (A \to B) \lor (B \to A)$. В самом деле, получается, что из любых двух наугад взятых фактов либо первый следует из второго, либо второй из первого. Например «выполнено как минимум одно из утверждений: (а) если сегодня пасмурно, то курс матлогики все сдадут на A; (б) наоборот, если все сдадут курс матлогики на A, то сегодня пасмурно».

- (b) Обобщение предыдущего пункта: при любом $n \geqslant 1$ и любых $\alpha_1, \ldots, \alpha_n$ выполнено $\vdash (\alpha_1 \rightarrow \alpha_2) \lor (\alpha_2 \rightarrow \alpha_3) \lor \cdots \lor (\alpha_{n-1} \rightarrow \alpha_n) \lor (\alpha_n \rightarrow \alpha_1)$
- 5. В рамках данного задания неравными высказываниями будем называть высказывания α и β , у которых нет такого переименования переменных, чтобы их таблицы истинности совпали. Например, A и B & B равные высказывания, ведь высказывания E и E & E имеют одну и ту же таблицу истинности:

$$\begin{array}{c|c}
E & E \& E \\
\hline
\Pi & \Pi \\
\hline
\Pi & \Pi
\end{array}$$

Однако, высказывания A и $A \rightarrow A$ не равны.

Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\alpha \neq \beta$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\alpha \neq \gamma$ и $\beta \neq \gamma$.

6. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.

Задание №2. Теоремы о корректности и полноте классического исчисления высказываний. Интуиционистская логика.

- 1. Теоремы о корректности и полноте классического исчисления высказываний.
 - (a) Заполните пробел в доказательстве корректности исчисления высказываний: покажите, что если $\vdash \alpha$ и в доказательстве высказывание δ_n получено с помощью Modus Ponens из δ_j и $\delta_k \equiv \delta_j \to \delta_n$, то $\models \delta_n$.
 - (b) Покажите, что если $\Gamma \vdash \alpha$, то $\Gamma \models \alpha$.
 - (c) Покажите, что если $\Gamma \models \alpha$, то $\Gamma \vdash \alpha$.
- 2. Предложите топологические пространства и оценку для пропозициональных переменных, опровергающие следующие выскзывания:
 - (a) $A \vee \neg A$ (на лекции приводился пример в \mathbb{R} ; в данном же задании предложите оценку в каком-то другом пространстве, например в \mathbb{R}^2)
 - (b) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
 - (c) $\neg \neg A \rightarrow A$
 - (d) $(A \rightarrow (B \lor \neg B)) \lor (\neg A \rightarrow (B \lor \neg B))$
 - (e) $(A \to B) \lor (B \to C) \lor (C \to A)$
 - (f) $\bigvee_{i=1}^{n} ((A_i \to A_{(i \mod n)+1}) \& (A_{(i \mod n)+1} \to A_i))$
- 3. Доказуемы ли следующие высказывания в интуиционистской логике?
 - (a) $\neg \neg \neg \neg A \rightarrow \neg \neg A$
 - (b) $\neg A \lor \neg \neg A \lor \neg \neg \neg A$
 - (c) $A \vee B \rightarrow \neg (\neg A \& \neg B)$
 - (d) $\neg(\neg A \lor \neg B) \to A \& B$
 - (e) $(A \rightarrow B) \rightarrow (\neg A \lor B)$
 - (f) $(\neg A \lor B) \to (A \to B)$
- 4. Известно, что в классической логике любая связка может быть *выражена* как композиция конъюнкций и отрицаний: существует схема высказываний, использующая только конъюнкции и отрицания, задающая высказывание, логически эквивалентное исходной связке. Например, для импликации можно взять $\neg(\alpha \& \neg \beta)$, ведь $\alpha \to \beta \vdash \neg(\alpha \& \neg \beta)$ и $\neg(\alpha \& \neg \beta) \vdash \alpha \to \beta$. Возможно ли в интуиционистской логике выразить через остальные связки:
 - (а) конъюнкцию?
 - (b) дизъюнкцию?
 - (с) импликацию?

(d) отрицание?

Если да, предложите формулу и два вывода. Если нет — докажите это (например, предложив соответствующую модель).

- 5. Теорема Гливенко. Обозначим доказуемость высказывания α в классической логике как $\vdash_{\kappa} \alpha$, а в интуиционистской как $\vdash_{\mathfrak{u}} \alpha$. Оказывается возможным показать, что какое бы ни было α , если $\vdash_{\kappa} \alpha$, то $\vdash_{\mathfrak{u}} \neg \neg \alpha$. А именно, покажите, что:
 - (a) Если α аксиома, полученная из схем 1–9 исчисления высказываний, то $\vdash_{\mathbf{u}} \neg \neg \alpha$.
 - (b) $\vdash_{\mathsf{M}} \neg \neg (\neg \neg \alpha \to \alpha)$
 - (c) $\neg \neg \alpha, \neg \neg (\alpha \rightarrow \beta) \vdash_{\mathbf{H}} \neg \neg \beta$
 - (d) Докажите утверждение теоремы ($\vdash_{\kappa} \alpha$ влечёт $\vdash_{\mathbf{u}} \neg \neg \alpha$), опираясь на предыдущие пункты, и покажите, что классическое исчисление высказываний противоречиво тогда и только тогда, когда противоречиво интуиционистское.
- 6. Возможно ли предложить такой набор множеств S из \mathbb{R} (формально: $S \subseteq \mathcal{P}(\mathbb{R})$), чтобы при выборе его в качестве истинностного множества \mathbb{V} , при сохранении правил вычисления значений связок для интуиционистской логики, получилась бы полная и корректная модель для классического исчисления высказываний?
- 7. Пусть S некоторое множество. Рассмотрим $\mathbb{V} = \mathcal{P}(S)$, определим связки так:

Также, будем считать, что $\models \alpha$, если $\llbracket \alpha \rrbracket = S$.

Покажите, что получившееся:

- (a) корректная модель классического исчисления высказываний. Для уменьшения рутинной работы достаточно показать выполнение схем аксиом 5,9,10 и правила Modus Ponens.
- (b) полная модель классического исчисления высказываний.

Задание №3. Интуиционистская логика и натуральный вывод.

- 1. Напомним определения: замкнутое множество такое, дополнение которого открыто. Внутрен- ностью множества A° назовём наибольшее открытое множество, содержащееся в A. Замыканием множества \overline{A} назовём наименьшее замкнутое множество, содержащее A. Назовём окрестностью точки x такое открытое множество V, что $x \in V$. Будем говорить, что точка $x \in A$ внутреняя, если существует окрестность V, что $V \subseteq A$. Точка $x \in A$ граничная, если любая её окрестность V пересекается как с A, так и с его дополнением.
 - (a) Покажите, что A открыто тогда и только тогда, когда все точки A внутренние. Также покажите, что $A^{\circ} = \{x | x \in A \& x$ внутренняя точка $\}$.
 - (b) Покажите, что A замкнуто тогда и только когда, когда содержит все свои граничные точки. Также покажите, что $\overline{A} = \{x | x \in A \& x$ внутренняя или граничная точка $\}$. Верно ли, что $\overline{A} = X \ ((X \backslash A)^{\circ})$?
 - (с) Покажите, что внутренность и замыкание корректно определены (что существуют соответствующие наибольшее и наименьшее множества).
 - (d) Введём топологию на деревьях способом, рассмотренным на лекции. Рассмотрим некоторое множество вершин V. Опишите множества V° и \overline{V} . Какие вершины будут являться граничными для V?
 - (e) Пусть $A\subseteq B$. Как связаны A° и B° , а также \overline{A} и \overline{B} ?
 - (f) Верно ли $(A \cap B)^\circ = A^\circ \cap B^\circ$ и $(A \cup B)^\circ = A^\circ \cup B^\circ$?
 - (g) Покажите, что $\overline{\left(\overline{A^{\circ}}\right)^{\circ}} = \overline{A^{\circ}}$.

- (h) Задача Куратовского. Будем применять операции взятия внутренности и замыкания к некоторому множеству всевозможными способами. Сколько различных множеств может всего получиться?
- 2. Примеры топологий. Для каждого из примеров ниже покажите, в нём задано топологическое пространство и ответьте следующие вопросы: каковы окрестности точек в данной топологии; каковы будут внутренность и замыкание для данного множества (определите это прямо); каковы замкнутые множества в данной топологии; является ли данная топология моделью для классической логики; связно ли данное пространство.
 - (a) Топология Зарисского на \mathbb{R} : $\Omega = \{\varnothing\} \cup \{X \subseteq \mathbb{R} \mid \mathbb{R} \setminus X \text{ конечно}\}$, то есть пустое множество и все множества с конечным дополнением.
 - (b) Топология стрелки на \mathbb{R} : $\Omega = \{\emptyset, \mathbb{R}\} \cup \{(x, +\infty) | x \in \mathbb{R}\}$, то есть пустое, всё пространство и все открытые лучи.
 - (c) Множество всех бесконечных подмножеств \mathbb{R} : $\Omega = \{\emptyset\} \cup \{X \subseteq \mathbb{R} \mid X \text{ бесконечно}\}$
 - (d) Множество всевозможных объединений арифметических прогрессий: $A(a) = \{a \cdot x \mid x \in \mathbb{Z}\};$ $X \in \Omega$, если $X = \emptyset$ или $X = \bigcup_i A(a_i)$ (все $a_i > 0$). Будет ли это топологическим пространством, если мы будем рассматривать арифметические прогрессии в полной форме, в виде $a \cdot x + b$?
- 3. Связность.
 - (a) Связны ли \mathbb{Q} и $\mathbb{R}\backslash\mathbb{Q}$ как топологические подпространства \mathbb{R} ?
 - (b) Связно ли множество $\{0,1\}$ в топологии стрелки и в топологии Зарисского?
 - (с) Покажите, что дерево с отмеченным корнем (с рассмотренной на лекции топологией) связно.
 - (d) Покажите, что если лес связен в топологическом смысле, то он состоит из одного дерева.
- 4. Натуральный вывод был описан на лекции, но примеров доказательств не приводилось. Приведём такой пример:

$$\frac{\overline{\alpha \& \beta \vdash \alpha \& \beta}}{\underline{\alpha \& \beta \vdash \beta}} \qquad \frac{\overline{\alpha \& \beta \vdash \alpha \& \beta}}{\alpha \& \beta \vdash \alpha}$$

Постройте следующие доказательства в натуральном выводе:

- (a) $\alpha \vdash \neg \neg \alpha$
- (b) $\neg \alpha \lor \beta \vdash \alpha \to \beta$
- (c) $\alpha \to \beta \vdash \neg \beta \to \neg \alpha$
- (d) $\alpha \vee \beta \vdash \neg(\neg \alpha \& \neg \beta)$
- 5. Чтобы избежать путаницы, обозначим выводимость в ИИВ «гильбертовского стиля» как $\vdash_{\mathbf{r}}$, а знак \vdash в ИИВ «системы натурального (естественного) вывода» как $\vdash_{\mathbf{n}}$.

Напомним, что языки гильбертовского и натурального выводов отличаются (обозначим эти языки как \mathcal{L}_{r} и \mathcal{L}_{h} соответсвенно.

Определим функции, отображающие языки друг в друга: $|\cdot|_{\tt h}:\mathcal{L}_{\tt r}\to\mathcal{L}_{\tt h}$ и $|\cdot|_{\tt r}:\mathcal{L}_{\tt h}\to\mathcal{L}_{\tt r}$. Они сохраняют почти все значения, кроме лжи (\bot) и отрицания (\neg) :

$$|\sigma|_{\mathbf{H}} = \begin{cases} |\alpha|_{\mathbf{H}} \to \bot, & \sigma \equiv \neg \alpha \\ |\alpha|_{\mathbf{H}} \star |\beta|_{\mathbf{H}}, & \sigma \equiv \alpha \star \beta \\ X, & \sigma \equiv X \end{cases} \qquad |\sigma|_{\mathbf{\Gamma}} = \begin{cases} A \& \neg A, & \sigma \equiv \bot \\ |\alpha|_{\mathbf{\Gamma}} \star |\beta|_{\mathbf{\Gamma}}, & \sigma \equiv \alpha \star \beta \\ X, & \sigma \equiv X \end{cases}$$

Естественным образом расширим эти операции на контексты: $|\gamma_1, \gamma_2, \dots, \gamma_n| = |\gamma_1|, |\gamma_2|, \dots, |\gamma_n|$.

- (а) Пусть $\Gamma \vdash_{\Gamma} \alpha$. Покажите, что $|\Gamma|_{\tt H} \vdash_{\tt H} |\alpha|_{\tt H}$: предложите общую схему перестроения доказательства, постройте доказательства для трёх случаев базы (схема аксиом 2, схема аксиом 5, схема аксиом 9) и одного случая перехода индукции.
- (b) Пусть $\Gamma \vdash_{\mathbf{H}} \alpha$. Покажите, что $|\Gamma|_{\mathbf{r}} \vdash_{\mathbf{r}} |\alpha|_{\mathbf{r}}$ (постройте схему доказательства, и покажите один случай базы и три случая перехода индукции).
- (c) Покажите аналог теоремы о дедукции: $\Gamma \vdash_{\text{H}} \alpha \to \beta$ тогда и только тогда, когда $\Gamma, \alpha \vdash_{\text{H}} \beta$.

- 6. Покажите, что открытые множества топологического пространства c отношением порядка (\subseteq) образуют импликативную решётку c нулём.
- 7. Напомним, что линейным порядком называется такой порядок $\langle X, \leq \rangle$, что для любых $x,y \in X$ выполнено $x \leq y$ или $y \leq x$. Задаёт ли линейный порядок решётку? Дистрибутивна, импликативна ли она, есть ли в ней 0 и 1?
- 8. Рассмотрим \mathbb{N}_0 (натуральные числа с нулём) с традиционным отношением порядка как решётку. Каков будет смысл операций (+), (\cdot) и (\rightarrow) в данной решётке, определены ли 0 или 1? Верно ли, что $2 \cdot 2 = 4$ или 2 + 2 = 4? Приведите каких-нибудь три свойста традиционных определений (+) и (\cdot) , которые будут всё равно выполнены при таком переопределении, и три свойства, которые перестанут выполняться.
- 9. Постройте следующие примеры:
 - (a) непустого частично-упорядоченного множества, имеющего операцию (+) для всех элементов, но не имеющего (\cdot) для некоторых; имеющего опреацию (\cdot) для всех элементов, но не имеющего (+) для некоторых.
 - (b) решётки, не являющейся дистрибутивной решёткой; импликативной решётки без 0.
 - (с) дистрибутивной, но не импликативной решётки (эта решётка не может быть конечной).
- 10. Покажите, что в дистрибутивной решётке (всегда $a + (b \cdot c) = (a + b) \cdot (a + c)$) также выполнено и $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$.
- 11. Покажите следующие тождества и свойства для импликативных решёток:
 - (a) ассоциативность: a + (b + c) = (a + b) + c и $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
 - (b) монотонность: пусть $a \le b$ и $c \le d$, тогда $a + c \le b + d$ и $a \cdot c \le b \cdot d$;
 - (c) Законы поглощения: $a \cdot (a+b) = a$; $a + (a \cdot b) = a$;
 - (d) $a \le b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (e) из $a \le b$ следует $b \to c \le a \to c$ и $c \to a \le c \to b$;
 - (f) из $a \leq b \rightarrow c$ следует $a \cdot b \leq c$;
 - (g) $b \le a \to b \text{ if } a \to (b \to a) = 1$;
 - (h) $a \to b \le ((a \to (b \to c)) \to (a \to c));$
 - (i) $a \le b \to a \cdot b \text{ if } a \to (b \to (a \cdot b)) = 1$
 - (j) $a \to c \le (b \to c) \to (a + b \to c)$
 - (k) импликативная решётка дистрибутивна: $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 12. Докажите, основываясь на формулах предыдущих заданий, что ИИВ (вариант натурального вывода) корректно, если в качестве модели выбрать импликативную решётку с 0, а функции оценок определить так:

Оценка турникета определяется через импликацию: $[\![\gamma_1,\ldots,\gamma_n\vdash\alpha]\!]=[\![\gamma_1\to\ldots\gamma_n\to\alpha]\!].$

Задание №4. Интуиционистская логика.

- 1. Покажите, что какая бы ни была формула α и модель Крипке, если $W_i \Vdash \alpha$ и $W_i \leq W_j$, то $W_i \Vdash \alpha$.
- 2. Общезначимы ли следующие высказывания в ИИВ? Опровергните, построив модель Крипке, или докажите, построив натуральный вывод.
 - (a) $P \vee \neg P$:
 - (b) $\neg \neg P \rightarrow P$:
 - (c) $P \vee \neg P \vee \neg \neg P \vee \neg \neg \neg P$;
 - (d) $((P \to Q) \to P) \to P$;

- (e) $(A \to B) \lor (B \to C) \lor (C \to A)$;
- (f) $\neg(\neg A \& \neg B) \rightarrow A \lor B$;
- (g) $(\neg A \lor B) \to (A \to B)$;
- (h) $(A \rightarrow B) \rightarrow (\neg A \lor B)$;
- (i) $\neg \bot$.
- 3. Рассмотрим некоторую модель Крипке $\langle \mathfrak{W}, \leq, \Vdash \rangle$. Пусть $\Omega = \{ \mathcal{W} \subseteq \mathfrak{W} \mid \text{ если } W_i \in \mathcal{W} \text{ и } W_i \leq W_j, \text{ то } W_j \in \mathcal{W} \}$. Пусть $\mathcal{W}_{\alpha} := \{ W_i \in \mathfrak{W} \mid W_i \Vdash \alpha \}$ (множество миров, где вынуждена формула α).
 - (a) На лекции формулировалась теорема без доказательства, что пара $\langle \mathfrak{W}, \Omega \rangle$ топологическое пространство. Докажите её.
 - (b) Пусть W_{α} и W_{β} открытые множества. Выразите $W_{\alpha \& \beta}$ и $W_{\alpha \lor \beta}$ через W_{α} и W_{β} и покажите, что они также открыты.
 - (c) Пусть W_{α} и W_{β} открытые множества. Выразите $W_{\alpha \to \beta}$ через них и покажите, что оно также открыто.
 - (d) Покажите, что Ω в точности множество всех множеств миров, на которых может быть вынуждена какая-либо формула. А именно, покажите, что для любой формулы α множество миров \mathcal{W}_{α} , где она вынуждена, всегда открыто ($\mathcal{W}_{\alpha} \in \Omega$) и что для любого открытого множества найдётся формула, которая вынуждена ровно на нём (для $Q \in \Omega$ существует формула α , что $\mathcal{W}_{\alpha} = Q$).
- 4. Постройте топологическое пространство, соответствующее (в смысле предыдущего задания) модели Крипке, опровергающей высказывание $\neg \neg P \rightarrow P$. Постройте соответствующую ему табличную модель.
- 5. Назовём древовидной моделью Крипке модель, в которой множество миров $\mathfrak W$ упорядочено как дерево: (a) существует наименьший мир W_0 ; (b) для любого $W_i \neq W_0$ существует единственный предшествующий мир $W_k: W_k < W_i$.
 - (а) Докажите, что любое высказывание, опровергаемое моделью Крипке, может быть опровергнуто древовидной моделью Крипке.
 - (b) Найдите высказывание, которое не может быть опровергнуто древовидной моделью Крипке высотой менее 2.
 - (c) Покажите, что для любого натурального n найдётся опровержимое в моделях Крипке высказывание, неопровергаемое никакой моделью с n мирами.
- 6. Покажите, что модель Крипке с единственным миром задаёт классическую модель (в ней выполнены все доказуемые в КИВ высказывания).
- 7. Пусть заданы алгебры Гейтинга \mathcal{A}, \mathcal{B} , гомоморфизм $\varphi : \mathcal{A} \to \mathcal{B}$ и согласованные оценки $[\![]_{\mathcal{A}}$ и $[\![]_{\mathcal{B}}: \varphi([\![\alpha]\!]_{\mathcal{A}}) = [\![\alpha]\!]_{\mathcal{B}}.$
 - (a) Покажите, что гомоморфизм сохраняет порядок: если $a_1 \leq a_2$, то $\varphi(a_1) \leq \varphi(a_2)$.
 - (b) Покажите, что если $\llbracket \alpha \rrbracket_{\mathcal{A}} = 1_{\mathcal{A}}$, то $\llbracket \alpha \rrbracket_{\mathcal{B}} = 1_{\mathcal{B}}$.
- 8. Пусть заданы алгебры Гейтинга \mathcal{A}, \mathcal{B} . Всегда ли можно построить гомоморфизм $\varphi : \mathcal{A} \to \mathcal{B}$?
- 9. Пусть $\mathcal{A}-$ алгебра Гейтинга. Покажите, что $\Gamma(\mathcal{A})-$ алгебра Гейтинга и гёделева алгебра.
- 10. Пусть \mathcal{A} булева алгебра. Всегда ли (возможно ли, что) $\Gamma(\mathcal{A})$ будет булевой алгеброй?

Задание №5. Исчисление предикатов

- 1. Докажем теоремы про подстановку и свободу для подстановки:
 - (a) Рассмотрим замену $\alpha[x := y]$. Пусть в этой замене есть свобода для подстановки y вместо x в α и y не входит свободно в α . Необходимы ли оба условия или какое-нибудь следует из другого?
 - (b) Если y свободен для подстановки вместо x в α , то $[\![\alpha[x:=y]\!]\!] = [\![\alpha]\!]^{x:=y}$.
 - (c) Если θ свободна для подстановки вместо x в α , то $\llbracket \alpha \llbracket x := \theta \rrbracket \rrbracket = \llbracket \alpha \rrbracket^{x := \theta}$.

- (d) Если нет свободы для подстановки θ вместо x в α , то бывает, что $[\![\alpha[x:=\theta]]\!]\neq [\![\alpha]\!]^{x:=\theta}$.
- (е) Возможны ли случаи, когда нет свободы для подстановки θ вместо x в α , но $[\![\alpha[x:=\theta]]\!] = [\![\alpha]\!]^{x:=\theta}$?
- 2. Покажите, что исчисление предикатов корректно:
 - (a) если $\vdash \alpha$, то $\models \alpha$;
 - (b) если $\Gamma \vdash \alpha$, то $\Gamma \models \alpha$
- 3. Докажите следующие формулы в исчислении предикатов:
 - (а) $(\forall x.\phi) \to (\forall y.\phi[x := y])$, если есть свобода для подстановки y вместо x в ϕ и y не входит свободно в ϕ .
 - (b) $(\exists x.\phi) \to (\exists y.\phi[x:=y])$, если есть свобода для подстановки y вместо x в ϕ и y не входит свободно в ϕ .
 - (c) $(\forall x.\phi) \rightarrow (\exists x.\phi)$
 - (d) $(\forall x. \forall x. \phi) \rightarrow (\forall x. \phi)$
 - (e) $(\forall x.\phi) \rightarrow (\neg \exists x. \neg \phi)$
 - (f) $(\exists x.\phi) \to (\neg \forall x.\neg \phi)$
 - (g) $(\forall x. \neg \phi) \rightarrow (\neg \exists x. \phi)$
 - (h) $(\exists x. \neg \phi) \rightarrow (\neg \forall x. \phi)$
- 4. Опровергните формулы $\phi \to \forall x.\phi$ и $(\exists x.\phi) \to (\forall x.\phi)$
- 5. Рассмотрим формулу α с двумя свободными переменными x и y (мы предполагаем, что эти метапеременные соответствуют разным переменным). Определите, какие из сочетаний кванторов выводятся из каких и приведите соответствующие доказательства или опровержения:
 - (a) $\forall x. \forall y. \alpha, \forall y. \forall x. \alpha$
 - (b) $\exists x. \exists y. \alpha, \exists y. \exists x. \alpha$
 - (c) $\forall x. \forall y. \alpha, \ \forall x. \exists y. \alpha, \ \exists x. \forall y. \alpha, \ \exists x. \exists y. \alpha$
 - (d) $\forall x. \exists y. \alpha, \exists y. \forall x. \alpha$
- 6. Научимся выносить квантор всеобщности «наружу»:
 - (a) Покажите, что если x не входит свободно в α , то

$$\vdash (\alpha \& \forall x.\beta) \rightarrow (\forall x.\alpha \& \beta) \quad \text{if} \quad \vdash ((\forall x.\beta) \& \alpha) \rightarrow (\forall x.\beta \& \alpha)$$

(b) Покажите, что

$$\vdash ((\forall x.\alpha) \& (\forall y.\beta)) \rightarrow \forall x.\forall y.\alpha \& \beta$$

где x не входит свободно в β , а y — в α .

- 7. Научимся вносить квантор всеобщности «внутрь»:
 - (a) Покажите, что если x не входит свободно в α , то

$$\vdash (\forall x.\alpha \& \beta) \to (\alpha \& \forall x.\beta) \quad \mathbf{u} \quad \vdash (\forall x.\beta \& \alpha) \to ((\forall x.\beta) \& \alpha)$$

(b) Покажите, что если x не входит свободно в β , а y- в α , то

$$\vdash (\forall x. \forall y. \alpha \& \beta) \rightarrow (\forall x. \alpha) \& (\forall y. \beta)$$

- 8. Научимся работать со спрятанными глубоко кванторами. Пусть $\vdash \alpha \to \beta$, тогда:
 - (а) Докажите:

$$\vdash \psi \lor \alpha \to \psi \lor \beta \quad \vdash \psi \& \alpha \to \psi \& \beta \quad \vdash (\psi \to \alpha) \to (\psi \to \beta) \quad \vdash (\beta \to \psi) \to (\alpha \to \psi)$$

- (b) Сформулируйте и докажите аналогичное свойство для отрицания.
- (c) Докажите $\vdash (\forall x.\alpha) \rightarrow (\forall x.\beta)$. Надо ли наложить на формулы α и β какие-либо ограничения?
- (d) Докажите $\vdash (\exists x. \alpha) \to (\exists x. \beta)$. Надо ли наложить на формулы α и β какие-либо ограничения?

Задание №6. Неразрешимость исчисления предикатов, аксиоматика Пеано и формальная арифметика

- 1. Постройте машины Тьюринга:
 - (a) Превращающую строку из 0 и 1 в пустую (заменяет все символы на ε);
 - (b) Прибавляющую 1 к двоичному числу на ленте;
 - (c) Разрешающую язык четверичных чисел, делящихся на 3 (оставляющую на ленте букву «д» или «н», в зависимости от делимости);
 - (d) Копирующую строку из 0 и 1, заканчивающуюся на *, на свободное место на ленте за звёздочкой. Например, 10100* станет 10100*10100.
- 2. Предложите способ закодировать машину Тьюринга в алфавите из конечного количества символов (количество не должно зависеть от машины).
- 3. Покажите в аксиоматике Пеано:
 - (а) ассоциативность сложения;
 - (b) коммутативность умножения;
 - (c) дистрибутивность $(a + b) \cdot c = a \cdot c + b \cdot c$;
 - (d) ассоциативность умножения;
- 4. Рассмотрим аксиоматику Пеано. Определим отношение «меньше или равно» так: $0 \le a$ и $a' \le b'$, если $a \le b$. Покажите, что:
 - (a) $x \leqslant x + y$;
 - (b) $x \le x \cdot y$ (укажите, когда это так в остальных случаях приведите контрпримеры);
 - (c) $a'' + b'' \leq (a'') \cdot (b'')$;
 - (d) Если существует n, что x + n = y, то $x \leq y$.
 - (e) Будем говорить, что a делится на b с остатком, если существуют такие p и q, что $a = b \cdot p + q$ и $0 \le q < b$. Покажите, что p и q всегда существуют и единственны, если b > 0.
- 5. Обозначим за \overline{n} представление числа n в формальной арифметике, по сути это ноль с n штрихами:

$$\overline{n} = \begin{cases} 0, & n = 0\\ (\overline{k})', & n = k + 1 \end{cases}$$

Докажите в формальной арифметике:

- (a) $\vdash \overline{2} \cdot \overline{2} = \overline{4}$ (теперь вы знаете правду);
- (b) $\vdash \forall p. (\exists q. q' = p) \lor p = 0$ (единственность нуля нужна ли здесь аксиома A3?);
- (c) $\vdash p \cdot q = 0 \rightarrow p = 0 \lor q = 0$ (отсутствие делителей нуля);
- 6. Будем говорить, что k-местное отношение R выразимо в формальной арифметике, если существует формула формальной арифметики ρ со свободными переменными x_1, \ldots, x_k , что:
 - (а) для всех $\langle a_1, \ldots, a_k \rangle \in R$ выполнено $\vdash \rho[x_1 := \overline{a_1}] \ldots [x_k := \overline{a_k}]$ (доказуема формула ρ с подставленными значениями a_1, \ldots, a_k вместо свободных переменных x_1, \ldots, x_k);
 - (b) для всех $\langle a_1, \ldots, a_k \rangle \notin R$ выполнено $\vdash \neg \rho[x_1 := \overline{a_1}] \ldots [x_k := \overline{a_k}]$.

Выразите в формальной арифметике (укажите формулу ρ и докажите требуемые свойства про неё):

- (a) «полное» отношение $R = \mathbb{N}^2$;
- (b) отношение (=);
- (c) унарное отношение «быть чётным числом».

Задание №7. Выразимость и представимость. Теорема Гёделя о неполноте арифметики.

- 1. Докажите, что следующие функции примитивно-рекурсивны. Для каждой функции предложите программу; например, на языке C++ (с шаблонами), или на любом другом языке, где можно формально записать выражение для рекурсивной функции.
 - (а) ограниченное вычитание:

$$a \doteq b = \left\{ egin{array}{ll} a-b, & a\geqslant b \\ 0, & {
m иначe} \end{array}
ight.$$

- (b) умножение;
- (с) возведение в степень;
- (d) целочисленное деление;
- (е) остаток от деления;
- (f) проверка числа на простоту;
- (g) поиск n-го простого числа;
- (h) наибольший общий делитель двух чисел;
- (і) частичный логарифм;
- (j) пусть $l = 2^{a_0} \cdot 3^{a_1} \cdot \dots \cdot p_{n-1}^{a_{n-1}}$, определите функцию «голова списка»;
- (k) хвост списка;
- (1) конкатенация списков.
- 2. Покажите, что функция Аккермана рекурсивна, для этого:
 - (а) реализуйте стек: функции добавления элемента в стек и изъятия элемента из стека;
 - (b) реализуйте функцию Аккермана.
- 3. Докажите (без пропусков частей доказательств), что следующие функции представимы в формальной арифметике:
 - (a) примитив Z;
 - (b) примитив N;
 - (с) декремент (ограниченное вычитание 1).
- 4. Найдите константы b и c бета-функции Гёделя для последовательности трёх чисел 10, 3, 7.
- 5. Определим характеристическую функцию для отношения R:

$$C_R(x_1,\ldots,x_n) = \begin{cases} 1, & \langle x_1,\ldots,x_n \rangle \in R \\ 0, & \text{иначе} \end{cases}$$

Покажите, что $C_R(x_1,\ldots,x_n)$ представимо в формальной арифметике тогда и только тогда, когда R выразимо в формальной арифметике.

- 6. Покажите, что в теории первого порядка доказуемы все формулы тогда и только тогда, когда доказуема формула $\overline{1} = 0$ (иными словами, когда теория противоречива).
- 7. Предложите непротиворечивую, но ω -противоречивую теорию первого порядка.

Задание 8. Теория множеств

- 1. Пусть заданы списки (в любом языке программирования) $L(\alpha)$, хранящие значения типа α . Реализуйте следующие функции, являющиеся аналогами конструктивных аксиом теории множеств:
 - (a) empty : $L(\alpha)$, строит пустой список, и pair : $(\alpha, \alpha) \to L(\alpha)$, формирует список из двух своих аргументов.
 - (b) flatten : $L(L(\alpha)) \to L(\alpha)$, соединяет все списки внутри списка в один.
 - (c) powerset : $L(\alpha) \to L(L(\alpha))$, делает из списка список всех возможных подсписков.

- (d) filter : $(\alpha \to \mathsf{bool}) \to L(\alpha) \to L(\alpha)$, выделяет из списка все элементы, соответствующие условию.
- 2. На самом деле ординалы это не списки, а деревья. Перепишите задачу 1 соответствующим образом, и напишите функцию ordinal : int → set, строящую ординал, соответствующий заданному числу. Множество можно строить только через аналоги функций из 1 задания.
- 3. Определим упорядоченную пару $\langle a,b\rangle := \{\{a\},\{a,b\}\}$. Покажите, что:
 - (а) Упорядоченная пара множество.
 - (b) $\langle a,b\rangle = \langle c,d\rangle$ тогда и только тогда, когда a=c и b=d.
- 4. Докажите, что следующие конструкции являются множествами:
 - (a) пересечение всех элементов множества $(\bigcap a)$;
 - (b) $a \setminus b$ (разность множеств);
 - (c) $a \uplus b$ (дизъюнктное объединение множеств: $\{\langle x, 0 \rangle \mid x \in a\} \cup \{\langle x, 1 \rangle \mid x \in b\}$);
 - (d) $a \times b$ (декартово произведение множеств: $\{\langle p,q \rangle \mid p \in a, q \in b\}$).
- 5. Определите формулу $\varphi(x)$ для свойства «x конечный ординал». Укажите замкнутый вид для формулы ω .
- 6. Покажите, что если x ординал, то x' тоже ординал.
- 7. Верно ли, что если x' ординал, то x тоже ординал?
- 8. Покажите, что на множестве ω выполняется аксиоматика Пеано (полная формализация рассуждений не требуется, но из изложения должно быть понятно, как эту формализацию в рамках теории первого порядка получить):
 - (a) $\forall x.x \in \omega \rightarrow \neg x' = \varnothing$
 - (b) $\forall x. \forall y. x \in \omega \& y \in \omega \rightarrow x' = y' \rightarrow x = y$
 - (c) (указание к следующему пункту) покажите, что если $\vdash \forall x. \neg \phi(x) \rightarrow A \& \neg A$, то $\vdash \forall x. \phi(x)$.
 - (d) Если $\phi(\varnothing)$ и $\forall x.x \in \omega \to \phi(x) \to \phi(x')$, то $\forall x.x \in \omega \to \phi(x)$.
- 9. Проверьте следующие равенства (докажите или опровергните):
 - (a) $\omega \cdot \overline{2} = \overline{2} \cdot \omega$
 - (b) $\omega \cdot \overline{2} = \omega + \omega$
 - (c) $(\omega + \overline{1})^{\overline{2}} = \omega^{\overline{2}} + \overline{2} \cdot \omega + \overline{1}$
 - (d) $\omega^{\omega} = (\omega^{\overline{2}})^{\omega}$
 - (e) $\omega^{\omega+\overline{1}} = \omega^{\omega} + \overline{1}$
 - (f) Имеет ли место ассоциативность сложения и/или умножения?

Задание 9. Аксиома выбора. Мощность множеств

- 1. Верно ли, что $1^{\omega} = \omega$ и/или $\omega^1 = \omega$?
- 2. Зачёт за пункт ставится, если одновременно решены два подпункта: (i) Покажите, что множество ω^{ω} имеет счётную мощность. (ii) Определим $\uparrow k$ (башню из омег) так:

$$\uparrow k = \left\{ \begin{array}{ll} \omega, & k = 1 \\ \omega^{\uparrow n}, & k = n' \end{array} \right.$$

Скажем, $\uparrow 3 = \omega^{(\omega^{\omega})}$. Будет ли счётным ординал $\sup\{\uparrow k \mid k \in \omega\}$?

- 3. Существует ли ординал, которому соответствует множество неотрицательных рациональных чисел и упорядоченность на нём? То есть, существует ли ординал σ , что существует биекция $f: \mathbb{Q}^+ \to \sigma$, причём для всех $a,b \in \mathbb{Q}^+$ из $a \leq b$ следует $f(a) \leq f(b)$ (и обратно).
- 4. Верно ли, что для любого отношения полного порядка на счётном множестве существует соответствующий ему ординал, имеющий тот же порядок?

- 5. Покажите следующее (обозначим за $\mathcal{F}(p,q)$ множество функций из p в q):
 - (a) |a| = 0 тогда и только тогда, когда $a = \emptyset$;
 - (b) если $|a| \leq |b|$, то $|\mathcal{F}(g, a)| \leq |\mathcal{F}(g, b)|$;
 - (c) если $|a| \le |b|$ и $\overline{0} < |g|$, то $|\mathcal{F}(a,g)| \le |\mathcal{F}(b,g)|$;
 - (d) $|\mathcal{F}(\overline{0},a)| = \overline{1}, |\mathcal{F}(\overline{1},a)| = \overline{1};$ если |a| > 0, то $|\mathcal{F}(a,\overline{0})| = \overline{0};$
 - (е) если $|a| \geqslant \aleph_0$ и $0 < |n| < \aleph_0$, то $|\mathcal{F}(a,n)| = a$
- 6. Покажите эквивалентность следующих определений конечного множества (задание (k) предполагает доказательство импликации $(k) \to (k')$; возможно, некоторые из переходов потребуют аксиому выбора):
 - (a) a конечно, если каждое непустое семейство подмножеств a имеет максимальный по включению элемент. Например, при $a=\{0,1,2\}$ в семействе подмножеств $\{\varnothing,\{0,1\},\{1,2\}\}$ элементы $\{0,1\}$ и $\{1,2\}$ максимальны.
 - (b) a конечно, если $\mathcal{P}(a)$ не равномощно своему собственному подмножеству (собственное подмножество подмножество, не совпадающее с множеством).
 - (c) a конечно, если оно не равномощно своему собственному подмножеству.
 - (d) a конечно, если $|a| = \emptyset$ или $|a| \cdot \overline{2} > |a|$.
 - (e) a конечно, если $|a| = \emptyset$ или $|a| = \overline{1}$ или $|a|^2 > |a|$.
 - (f) a конечно, если $|a| < \aleph_0$.
- 7. Покажите, что функция $f: a \to b$ биективна (т.е. инъективна и сюрьективна) тогда и только тогда, когда $\forall y. \exists ! x. \phi(x,y)$. Здесь за $\phi(x,y)$ мы обозначаем формулу, представляющую функцию f в теории множеств, по аналогии с формальной арифметикой.
- 8. Покажите, что если a и b непустые множества, то существует функция из a в b (однако, функция не обязана быть инъективной или сюрьективной).
- 9. Если существует функция $f: a \to b$ на вполне упорядоченных множествах a и b, сохраняющая порядок (если x < y, то f(x) < f(y)), то либо она биекция, либо найдётся такой элемент $x \in b$, что $\{f(i)|i \in a\} = \{t \in b|t < x\}$.