Below is a **step-by-step**, **scenario-style illustration** of how **AgACI** operates, without relying on an actual image. Imagine a **table** of "experts" and their interval predictions, and then how the aggregator merges them at each time step.

A Fictional Day-by-Day Example (ASCII/Step-by-Step Style)

Suppose we have **3 experts**, each corresponding to a **different** γ_k ($\gamma_1=0.01, \ \gamma_2=0.03, \ \gamma_3=0.07$). We have a time series $\{x_t,y_t\}$ for $t=1,2,\ldots$ Each day t:

- 1. Each Expert (i.e., each γ_k) runs ACI.
 - They have *their own* adapted $\alpha_{t,k}$.
 - \circ They produce *their own* prediction interval $\hat{C}_{t,k}$ = $[\hat{b}_{t,k}^{(\ell)},~\hat{b}_{t,k}^{(u)}]$.
- 2. We Observe y_t after the intervals are formed.
- 3. **We Compute a Loss** (pinball or similar) for each expert k to see how well their interval performed (did it miss? was it too large, etc.).
- 4. **We Combine** these intervals by weighting each expert's lower/upper bound using an online "expert aggregator."

ASCII Representation

Let's imagine a *table* at each day t:

Day t Expert k=1 (γ=0.01)	Expert k=2 (γ=0.03)		
Lower L_{t,1}	L_{t,2}	L_{t,3}	Weighted average of L_{t,k}
Upper U_{t,1}	U_{t,2}	U_{t,3}	Weighted average of U_{t,k}
(We see y_t, compute			

More Detail:

- 1. **Before** day t:
 - \circ Each expert k has a *running* coverage error record that yields a current $lpha_{t,k}$.
 - ullet They produce the day's interval $\hat{C}_{t,k} = [\hat{b}_{t,k}^{(\ell)},\hat{b}_{t,k}^{(u)}].$
- 2. Day t Observes y_t :
 - Suppose the aggregator sees these intervals:
 - lacktriangle Expert 1: $\hat{C}_{t,1} = [2.5, \, 6.0]$
 - ullet Expert 2: $\hat{C}_{t,2} = [1.2, \, 8.1]$
 - lacktriangle Expert 3: $\hat{C}_{t,3} = [3.4, \, 4.9]$
 - Then the actual label is $y_t = 5.5$.
 - Some intervals might be infinite if a certain γ_k had $\alpha_{t,k} < 0$. In that case, say Expert 3 gives an upper bound of ∞ , we clamp it to some large M.
- 3. Loss Calculation:
 - Each expert gets a pinball loss for its lower bound + upper bound w.r.t. y_t .
 - For example, if Expert 3's upper was only 4.9, but the true label is 5.5, Expert 3 missed coverage
 on the upper side → incurring a *large* pinball loss for the upper bound.
- 4. Weights Update:

- The aggregator keeps track of each expert's cumulative performance from previous days.
- If an expert's interval is "just right" (not too big, not missing coverage), it receives a smaller loss →
 the aggregator will increase that expert's weight.
- If an expert is frequently infinite or missing coverage, the aggregator decreases that expert's weight.

5. Aggregated Bounds:

- $\circ~$ Let's say the aggregator's new weights for each expert's **lower** side are $\omega_{t.1}^{(\ell)}=0.2,~\omega_{t,2}^{(\ell)}=0.5,~\omega_{t,3}^{(\ell)}=0.3.$
- Then the aggregator's final lower bound is

$$ilde{b}_t^{(\ell)} = rac{0.2 imes 2.5 + 0.5 imes 1.2 + 0.3 imes 3.4}{0.2 + 0.5 + 0.3} pprox 2.0.$$

- Similarly for the upper side with different weights.
- \circ So day t's final aggregator interval might be $C_t = [2.0, 6.7]$, a weighted average of the three experts' bounds.

6. **Day** t + 1:

- \circ Each expert γ_k now updates $lpha_{t+1,k}$ based on whether it personally missed coverage at day t.
- \circ The aggregator also updates each $\omega_{t+1,k}^{(\ell,u)}$ (or uses a standard formula for online weighting) based on how each bound performed.
- Next day, we do it all again.

2. Summary of the Process

At each day t:

- 1. **Multiple ACIs**: We run K different ACI procedures, each with a different γ_k .
- 2. Each Expert's Interval: We gather $\hat{C}_{t,k}$.
- 3. Clamping if infinite: If an expert's interval is infinite, we clamp it to a max size M.
- 4. **Pinball Loss**: The aggregator checks how each bound did on day t.
- 5. Weights: The aggregator updates each expert's weighting for lower vs. upper bounds.
- 6. **Aggregate**: A final interval emerges as a weighted average of lower and upper bounds from all experts.

Hence, you get a single final "aggregated" interval at each time t, pulling from whichever γ_k is performing well, in a smoother way than picking a single best γ_k or flipping among them.