REMARKS

Reconsideration of the above-identified application in view of the present amendment is respectfully requested.

By the present amendment, claim 33 was amended to recite that the mixture of metal powder and oxidizer particles are uniformly dispersed and that the ignition material is free of a binder. Support for these limitations can be found on page 14, lines 13-20.

Claim 42 was amended to recite that the ignition material consists essentially of a uniformly dispersed metal powder and particulate oxidizer. Claim 42 was also amended to clarify the wording of the claim. Claim 42 now recites that the metal power is present in the ignition material in an amount of about 25% to about 50%, by weight of the ignition material.

Additionally, claim 45 was added to application. Claim 45 contains similar limitations as claim 33 as well as additional limitations directed to the use of an electrically actuatable igniter in an apparatus that includes a vehicle occupant protection device and a gas generating material. Support for these limitations can found in the specification on page 3, lines 5-20.

Below is a discussion of the 35 U.S.C. §112 rejection of claims 42-44 (item 5), the 35 U.S.C. §102(e)/§103(a) rejection of claims 33 and 35-44 (item 6), the 35 U.S.C. §103(a) rejection of claims 33 26-42 and 44 (item 7), and the 35 U.S.C. §103(a) rejection of claims 33 and 35-44 (item 8).

1. 35 U.S.C. §112, second paragraph, rejection of claims 42-44

Claims 42-44 were rejected under 35 U.S.C. §112, second paragraph, as being indefinite for fail to particularly point out and distinctly claim the subject matter that the applicant regards as the invention.

The Office Action states that it is not clear how "said ignition material" can comprise 25-50% of "the ignition material" and therefore the claims are unclear.

Claim 42 was amended to clarify the claim. Claim 42 now recites that the metal power is present in the ignition material in an amount of about 25% to about 50%, by weight of the ignition material. Thus, the ignition material includes about 25% to about 50% metal powder, with the percentages being measured relative to the weight of the ignition material. Thus, withdrawal of the 35 U.S.C. §112, second paragraph, rejection of claim 33 is respectfully requested.

2. <u>35 U.S.C. §102(e)/103(a) rejection of claims 33 and</u> 35-45.

Claims 33 and 35-44 were rejected under 35 U.S.C. §102(e) as being anticipated by Martin et al. or under 35 U.S.C §103(a) as being unpatentable over Martin et al.

Claims 33 and 35-45 are neither anticipated by nor obvious in view of Martin et al. because Martin et al. do not teach or suggest an electrically actuatable igniter that includes an

ignition material comprising uniformly dispersed mixture of a metal powder and a particulate oxidizer, having an average particle size of about 1 μ m to about 30 μ m, and that is free of a binder.

Martin et al., as noted in the Office Action, teach that nano-aluminum powder and a particulate oxidizer are combined to form a propellant mixture and that the propellant mixture is ignited by a hot wire igniter. Martin et al., however, do not teach that the propellant mixtures ignited by the hot wire igniter comprise uniformly dispersed mixtures of a metal powder and a particulate oxidizer that are free of binders.

In Examples 1-4, Martin et al. teach forming propellant mixtures, which are free of binder, from nano-aluminum powder and particulate ammonium perchlorate. The ammonium perchlorate in these examples is dissolved in a solution to which the nano-aluminum powder is added. The dissolved ammonium perchlorate and nano-aluminum powder are precipitated out of solution to form dry agglomerates of ammonium perchlorate/nano-aluminum matrix. (Column 11, lines 55-57). Agglomerates of ammonium perchlorate/nano-aluminum matrix are not uniformly dispersed metal powders and particulate oxidizer. More particularly, Martin et al. do not teach that agglomerates of ammonium perchlorate/nano-aluminum matrix are uniformly dispersed mixtures of metal powder and oxidizer having an average particle size of about of about 1 µm to about 30 µm.

In Examples 6-8, Martin et al. teach mixing the nano-aluminum powder with particles of ammonium perchlorate in a non-polar solvent, but these Examples all teach using a binder. Claim 33 specifically recites that the ignition material is free of a binder. Claim 42, the other independent claim, recites that the ignition material consists essentially of the metal powder and the particulate oxidizer, which precludes the addition of the binder taught in Martin et al.

Moreover, Martin et al. provide no suggestion or teaching to form a uniformly dispersed mixture of metal powder and a particulate oxidizer for use in an electrically actuatable igniter. The compositions in Martin et al. are all used solely for propellant mixtures. The only suggestion of use with an electrically actuatable igniter is in the Examples, which as noted above do not teach the invention recited in the claims. Thus, Martin et al. do not teach or suggest all of the limitations of claims 33 and 42. Therefore, withdrawal of this rejection is respectfully requested.

Claims 35-41 depend either directly or indirectly from claim 33 and therefore should be allowable for the same reasons recited with respect to claim 33 and for the specific limitations recited in claims 35-41.

Claims 43-44 depend either directly or indirectly from claim 42 and therefore should be allowable for the same reasons recited with respect to claim 42 and for the specific limitations recited in claims 43 and 44.

Claim 45 contains limitations similar to claim 33 and therefore should be allowable for the same reasons as claim 33 and for the specific limitations recited in claim 45.

3. 35 U.S.C. §103(a) rejection of claims 33, 36-42, and 44

Claims 33, 36-42, and 44 were rejected under 35 U.S.C. 103(a) as being unpatentable over Kelley et al., in view of Higa et al., Martin et al., Dixon et al., Wheatley, and Lundstrom.

Claim 33 is patentable over Kelley et al. in view of Higa et al., Martin et al., Wheatley, and Lundstrom. because: (1) Kelley et al. in view of Higa et al., Martin et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material that includes an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to vary the particle size of the oxidizer in Kelley et al. based on the teachings of Higa et al., Martin et al., Dixon et al., Wheatley, and Lundstrom and the holdings of In re Boesch and In re Aller.

Kelley et al., as noted in the Office Action teach a thermite composition in contact with a bridgewire of an electrically actuated igniter, comprising a pair of electrodes, a bridge wire and an ignition material of thermite. The thermite composition includes iron oxide having a particle size of about 0.5 microns and aluminum, having a particle size of about 1 micron. Kelley et al. do not teach that the aluminum is an electro-exploded metal powder, the oxidizer has a particle size between about 1 and about 30 microns, and that the particles sizes of the aluminum and the iron oxide can be adjusted,.

Higa et al. teach that fine aluminum particles having particle sizes less than about 3000 nm can be used in a pyrotechnic composition or thermite. Higa et al. teach that the fine aluminum particles can be formed by electro-exploding aluminum wire. Higa et al. do not teach that the thermite includes an oxidizer having a particle size between about 1 micron and about 30 micron or that it would be desirable to use fine aluminum particles with an oxidizer that has a particle size between about 1 micron and about 30 microns.

Martin et al., as noted above, teach agglomerates of ammonium perchlorate/nanoaluminum matrix and composites of ammonium perchlorate, nano-aluminum particles, and binder that can be used in a propellant mixture. Martin et al. do not teach or suggest that the particle size of an oxidizer used in a thermite composition ranges from about 1 microns to about 30 microns and that it would be desirable to use an oxidizer that has a particle size between about 1 and about 30 microns if nano-aluminum particles are used. Moreover, Martin et al. do not teach the desirability of using a nano-aluminum powder in a thermite composition.

Wheatley teaches a gas generating composition that includes an ammonium nitrate or a strontium nitrate based oxidizer mixture. (Column 2, lines 21-23). The gas generating composition also includes exploded aluminum powder. The exploded aluminum powder is

used as a combustion modifying additive to increase the burning rate and lower the pressure exponent of the ammonium nitrate or strontium nitrate gas generating composition. (Column 3, lines 31-35).

Wheatley does not teach that the oxidizer has an average particle size of about 1 μ m to about 30 μ m. Moreover, it would not have been obvious to use the electro-exploded powder taught in Wheatley in the ignition compositions taught in Baginski and Halcomb et al. Wheatley teaches using exploded aluminum as an additive to an ammonium nitrate based gas generating composition to lower the pressure exponent and increase the burning rate of the ammonium nitrate gas generating composition. The ignition compositions taught in Kelley et al., however, do not include ammonium nitrate and would therefore not have a high pressure exponent and a low burning rate, which is caused by ammonium nitrate. Hence, there would be no reason to add electro-exploded aluminum to the ignition compositions of Kelley et al.

Lundstrom teaches a chlorate free auto-ignition composition that includes an azodiformamidine dinitrate, an oxidizer, and an accelerator. The accelerator used in conjunction with the azodiformamidine dinitrate preferably includes a fine iron oxide powder, which has an average particle size of about 3 nm.

Lundstrom does not teach an ignition material that includes a metal powder selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder. Lundstrom also does not teach using an oxidizer that has an average particle size of about 1 μ m to about 30 μ m.

Thus, Kelley et al. in view of Higa et al., Martin et al., Wheatley, and Lundstrom do not teach or suggest an ignition material that includes an oxidizer that has a particle size of about 1 to about 30 microns.

Additionally, the about 1 micron to about 30 micron particle size of the oxidizer would not be obvious based on the holdings of In re Boesch and In re Aller. The holdings of In re Boesch and In re Aller provide that where the general conditions of a claim are known it is not inventive to discover the optimum or workable ranges by routine experimentation. The cited references, *i.e.*, Kelley et al. in view of Higa et al., Martin et al., Wheatley, and Lundstrom, however, do not teach or suggest the general conditions of claim 33. Nowhere in Kelley et al., Higa et al., Martin et al., Wheatley, and Lundstrom is it disclosed to provide the fuel portion (*i.e.*, the electro-exploded metal powder) with a very small particle size and the oxidizer with a much greater particle size (i.e., about 1 micron to about 30 microns). More specifically, none of the above noted references teach or suggest it is advantageous or desirable to experiment with the particle size of an oxidizer for autoignition material when used with an electro-exploded metal powder. The present invention found that this was

necessary for ignition materials to prevent the auto-ignition of the ignition powder as a result of external stress, such as shock. So absent a disclosure of these "general conditions", the particle size of the oxidizer used in the ignition material would not be obvious. Thus, claim 33 is not obvious over Kelley et al., Higa et al., Martin et al., Wheatley, and Lundstrom. Therefore, allowance of claim 33 is respectfully requested.

Claims 36-41 depend either directly or indirectly from claim 33 and therefore should be allowable for the same reasons recited with respect to claim 33 and for the specific limitations recited in claims 36-41.

Claim 42 contains limitations similar to claim 33 and therefore should be allowable for the same reasons as claim 33 and for the specific limitations recited in claim 42.

Claims 43-44 depend either directly or indirectly from claim 42 and therefore should be allowable for the same reasons recited with respect to claim 42 and for the specific limitations recited in claims 43-44.

Claim 45 contains limitations similar to claim 33 and therefore should be allowable for the same reasons as claim 33 and for the specific limitations recited in claim 45.

4. 35 U.S.C. §103(a) rejection of claims 33 and 35-45

Claims 33 and 35-44 were rejected under 35 U.S.C. 103(a) as being unpatentable over Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom.

Claim 33 recites an electrically actuatable igniter that comprises a pair of electrodes, a heating element electrically connected between said electrodes, and an ignition material in contact with said heating element. The ignition material comprises a uniformly dispersed mixture of a metal powder and a particulate oxidizer that exothermically reacts with the metal powder. The oxidizer has an average particle size of about 1 µm to about 30 µm. The metal powder is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder. The ignition material deflagrates when the heating element is heated to a temperature of at least about 250°C. The ignition material is also free of a binder.

Claim 33 is patentable over Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom because: (1) Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder which is selected f m the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been

obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al.

Baginski, as noted in the Office Action, teaches the basic invention of explosive primers with a pyrotechnic mix around a bridgewire. The pyrotechnic compound can include zirconium and potassium perchlorate, or alternatively other pyrotechnic compounds, such as titanium hydride potassium perchlorate and boron potassium nitrate.

Baginski does not teach an ignition material that includes a metal powder selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder. Baginski also does not teach using an oxidizer that has an average particle size of about 1 µm to about 30 µm.

Halcomb et al. teach a thermite composition that uses a finely divide aluminum powder and a metal oxide such as iron oxide, copper oxide, tungsten oxide, or chromium oxide.

Halcomb et al. do not teach an ignition material that includes a metal powder selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder. Halcomb et al. also do not teach using an oxidizer that has an average particle size of about 1 μ m to about 30 μ m.

Dixon et al. teach a lead free combustion primer that includes a metastable interstitial composite. The metastable interstitial composite includes aluminum and molybdenum trioxide having a particle size of about 0.1 µm or less.

Dixon et al. do not teach a metal powder selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder. Dixon et al. only disclose that the aluminum particles have a particle size of less than 0.1 µm not that they are formed by electro-explosion. As noted above and in the specification, electro-exploded metals form nano-sized particles that agglomerate into micron-sized powders. Dixon et al. neither disclose nor suggest that the aluminum particles in Dixon et al. have this feature. Dixon et al. only discloses that the particles form metastable interstitial composites.

Moreover, Dixon et al. state that the particle size of the oxidizer (i.e., MoO_3) is preferably less than 0.1 μm . Whereas, in the invention recited in claim 1, the oxidizer has a particle size of about 1 μm to about 30 μm .

Wheatley teaches a gas generating composition that includes an ammonium nitrate or a strontium nitrate based oxidizer mixture. (Column 2, lines 21-23). The gas generating composition also includes exploded aluminum powder. The exploded aluminum powder is

used as a combustion modifying additive to increase the burning rate and lower the pressure exponent of the ammonium nitrate or strontium nitrate gas generating composition. (Column 3, lines 31-35).

Wheatley does not teach that the oxidizer has an average particle size of about 1 μ m to about 30 μ m. Moreover, it would not have been obvious to use the electro-exploded powder taught in Wheatley in the ignition compositions taught in Baginski and Halcomb et al. Wheatley teaches using exploded aluminum as an additive to an ammonium nitrate based gas generating composition to lower the pressure exponent and increase the burning rate of the ammonium nitrate gas generating composition. The ignition compositions taught in Baginski and Halcomb et al., however, do not include ammonium nitrate and would therefore not have a high pressure exponent and a low burning rate, which is caused by ammonium nitrate. Hence, there would be no reason to add electro-exploded aluminum to the ignition compositions of Baginski and Halcomb et al.

The Office Action suggests that one using the electro-exploded aluminum in a similar pyrotechnic composition would expect similar results, and therefor its substitution would have been obvious. The pyrotechnic compositions taught in Baginski and Halcomb et al. are not similar pyrotechnic compositions to the gas generating composition taught in Wheatley. The pyrotechnic compositions taught in Baginski and Halcomb et al. are primary ignition composition that use a metal as the primary fuel in combination with an oxidizer. The composition of Wheatley, in contrast, is a gas generating composition that includes an organic fuel, an oxidizer, and a metal additive. It is mere speculation, at best, whether the addition of a metal additive, which is used to increase the burning rate and lower the pressure exponent of a gas generating composition, would also increase the burning rate and lower the pressure exponent of an ignition composition. Further, there is nothing in the prior art that suggests that that the addition of electro-exploded aluminum to a pyrotechnic composition would even be desirable.

Lundstrom teaches a chlorate free auto-ignition composition that includes an azodiformamidine dinitrate, an oxidizer, and an accelerator. The accelerator used in conjunction with the azodiformamidine dinitrate preferably includes a fine iron oxide powder, which has an average particle size of about 3 nm.

Lundstrom does not teach an ignition material that includes a metal powder selected from the group consisting of electro-exploded aiuminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder. Lundstrom also does not teach using an oxidizer that has an average particle size of about 1 µm to about 30 µm.

Thus, claim 33 is not obvious over Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom. Therefore, allowance of claim 33 is respectfully requested.

and the first place of the second second second

Claim 35 depends from claim 33 and further recites that the oxidizer is selected from the group consisting of alkali metal nitrates, alkaline earth metal nitrates, alkali metal perchlorates, alkaline earth metal perchlorates, alkaline earth metal chlorates, alkaline earth metal chlorates, ammonium perchlorates, ammonium nitrate, and mixtures thereof.

As noted above with respect to claim 33, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is electro-exploded aluminum, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 34 is allowable for the same reasons as claim 33 and for the specific limitations recited with respect to claim 34.

Claim 36 depends from claim 33 and further recites that the electro-exploded metal powder is electro-exploded aluminum.

As noted above with respect to claim 36, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is electro-exploded aluminum, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 36 is allowable for the same reasons as claim 33 and for the specific limitations recited with respect to claim 36.

Claim 37 depends from claim 33 and further recites that the electro-exploded metal powder is about 15% to about 75% by weight of the ignition material.

As noted above with respect to claim 33, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of a pout 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 37 is allowable for the same reasons as claim 33 and for the specific limitations recited with respect to claim 37.

Claim 38 depends from claim 33 and further recites that the amount of oxidizer is about 25% to about 85% by weight of the ignition material.

As noted above with respect to claim 33, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 38 is allowable for the same reasons as claim 33 and for the specific limitations recited with respect to claim 38.

Claim 39 depends from claim 33 and further recites that the ignition material upon deflagration produces an ignition product with a temperature of about 3000°C to about 6000°C.

As noted above with respect to claim 33, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al.

Moreover, none of the references disclose or suggests an ignition material, which upon deflagration, produces an ignition product with a temperature of about 3000°C to about 6000°C. The only reference that discloses a temperature, is Wheatley. Wheatley, however, teaches that the combustion temperature is below 2300K.

Therefore, claim 39 is allowable for the same reasons as claim 33 and for the specific limitations recited with respect to claim 39.

Claim 40 depends from claim 33 and further recites that the ignition material does not thermally decompose at temperatures up to about 120°C.

As noted above with respect to claim 33, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of

electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 μ m to about 30 μ m; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 40 is allowable for the same reasons as claim 1 and for the specific limitations recited with respect to claim 40.

Claim 41 depends from claim 1 and further recites that the metal powder has a surface area of about 15 square meters per gram.

As noted above with respect to claim 41, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 41 is allowable for the same reasons as claim 33 and for the specific limitations recited with respect to claim 41.

Claim 42 recites an electrically actuatable igniter that comprises a pair of electrodes, a heating element electrically connected between the electrodes, and an ignition material in contact with the heating element. The ignition material consists essentially of a uniformly dispersed mixture of a metal powder and a particulate oxidizer. The metal powder comprises about 25% to about 50%, by weight of the ignition material. The oxidizer has an average particle size of about 1 μ m to about 30 μ m. The metal powder consists of electro-exploded aluminum powder and the ignition material deflagrates when the heating element is heated to a temperature of at least about 250°C.

Claim 42 contains limitations, which are similar, to the limitations recited in claim 33. As noted above with respect to claim 33, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al.

Moreover, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose that the metal powder comprises about 25% to about 50% by weight of the ignition material and the oxidizer comprises about 50% to about 75% by weight of the ignition material.

Baginski and Halcomb et al. do not teach the percentages of the metal fuel and the oxidizer in each of their respective ignition compositions. Dixon et al. teach aluminum at a percentage of 45% and MoO₃ at a percentage of 55%; however, Dixon et al. do not teach that the aluminum is electro-exploded or that the MoO₃ has a particle size of about 1 μm to about 30 μm. Wheatley teach adding electro-exploded aluminum to a gas generating composition, but only in a weight percentage of up to 20% by weight of the gas generating material. Likewise, Lundstrom teach adding super fine iron oxide to a gas generating composition, but only in an amount of up to about 10%.

Therefore, claim 42 is patentable over the Baginski in view of Halcomb et al. Dixon et al., Wheatley, and Lundstrom and allowance of claim 42 is respectfully requested.

Claim 43 depends from claim 42 and further recites that the oxidizer is selected from the group consisting of alkali metal nitrates, alkaline earth metal nitrates, alkali metal perchlorate, alkaline earth metal perchlorates, alkaline earth metal chlorates, alkaline earth metal chlorates, and mixtures thereof.

As noted above with respect to claim 42, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 µm to about 30 µm; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 43 is allowable for the same reasons as claim 42 and for the specific limitations recited in claim 43.

Claim 44 depends from claim 42 and further recites that the ignition material upon deflagration produces an ignition product with a temperature of about 3000°C to about 6000°C.

As noted above with respect to claim 42, Baginski in view of Halcomb et al., Dixon et al., Wheatley, and Lundstrom do not disclose or suggest an ignition material for an electrically actuatable igniter that deflagrates when heated to a temperature of at least about 250°C and that includes a metal powder, which is selected from the group consisting of electro-exploded aluminum powder, electro-exploded titanium powder, electro-exploded

copper powder, electro-exploded zinc powder, and electro-exploded yttrium powder, and an oxidizer, which has an average particle size of about 1 μ m to about 30 μ m; and (2) it would not have been obvious to use the electro-exploded particles taught in Wheatley in the ignition compositions of Baginski or Halcomb et al. Therefore, claim 44 is allowable for the same reasons as claim 42 and for the specific limitations recited in claim 44.

Claim 45 contains limitation similar to claim 33 and therefore would be allowable for the same reasons as claim 33 and for the specific limitations recited in claim 45.

In view of the foregoing, it is respectfully submitted that the above-identified application is in condition for allowance, and allowance of the above-identified application is respectfully requested.

Please charge any deficiency or credit any overpayment in the fees for this amendment to Deposit Account No. 20-0090.

Respectfully submitted,

Richard A. Sutkus Reg. No. 43,941

TAROLLI, SUNDHEIM, COVELL & TUMMINO L.L.P. 526 Superior Avenue – Suite 1111 Cleveland, Ohio 44114-1400 Phone:(216) 621-2234

Fax: (216) 621-4072 Customer No.: 26294