

CEVA-XM4™

DDMA User Guide

Rev. 1.0
June 2016

i

Documentation Control

History Table

Version	Date	Description	Remarks
1.0	8 June 2016	Initial version	

Disclaimer and Proprietary Information Notice

The information contained in this document is subject to change without notice and does not represent a commitment on any part of CEVA®, Inc. CEVA®, Inc. and its subsidiaries make no warranty of any kind with regard to this material, including, but not limited to implied warranties of merchantability and fitness for a particular purpose whether arising out of law, custom, conduct or otherwise.

While the information contained herein is assumed to be accurate, CEVA®, Inc. assumes no responsibility for any errors or omissions contained herein, and assumes no liability for special, direct, indirect or consequential damage, losses, costs, charges, claims, demands, fees or expenses, of any nature or kind, which are incurred in connection with the furnishing, performance or use of this material.

This document contains proprietary information, which is protected by U.S. and international copyright laws. All rights reserved. No part of this document may be reproduced, photocopied, or translated into another language without the prior written consent of CEVA®, Inc.

CEVA®, CEVA-XCTM, CEVA-XC5TM, CEVA-XC321TM, CEVA-XC323TM, CEVA-XC8TM, CEVA-XtendTM, CEVA-XC4000TM, CEVA- $XC4100^{TM}$, $CEVA-XC4200^{TM}$, $CEVA-XC4210^{TM}$, $CEVA-XC4400^{TM}$, CEVA-XC4410TM, CEVA-XC4500TM, CEVA-XC4600TM, CEVA-TeakLiteTM, CEVA-TeakLite-IIITM, CEVA-TeakLite-IIITM, TL3210TM, CEVA-TL3211TM, CEVA-TeakLite-4TM, CEVA-TL410TM, CEVA-TL411TM, CEVA-TL420TM, CEVA-TL421TM, CEVA-QuarkTM, CEVA-TeakTM, CEVA-XTM, CEVA-X1620TM, CEVA-X1622TM, CEVA-X1641TM, CEVA-X1643TM, Xpert-TeakLite-IITM, Xpert-TeakTM, CEVA-XS1100ATM, CEVA-XS1200TM, CEVA-XS1200ATM, CEVA-TLS100TM, Mobile-MediaTM, CEVA-MM1000TM, CEVA-MM2000TM, CEVA-SPTM, CEVA-VPTM, CEVA-MM3000TM, CEVA-MM3100TM, MM3101TM, CEVA-XMTM, CEVA-XM4TM, CEVA-X2TM, AudioTM, CEVA-HD-AudioTM, CEVA-VoPTM, CEVA-BluetoothTM, CEVA-SATATM, CEVA-SASTM, CEVA-ToolboxTM, SmartNcodeTM are trademarks of CEVA, Inc.

All other product names are trademarks or registered trademarks of their respective owners.

Support

CEVA® makes great efforts to provide a user-friendly software and hardware development environment. Along with this, CEVA provides comprehensive documentation, enabling users to learn and develop applications on their own. Due to the complexities involved in the development of DSP applications that might be beyond the scope of the documentation, an online Technical Support Service has been established. This service includes useful tips and provides fast and efficient help, assisting users to quickly resolve development problems.

How to Get Technical Support:

- FAQs: Visit our website http://www.ceva-dsp.com or your company's protected page on the CEVA website for the latest answers to frequently asked questions.
- **Application Notes**: Visit our website http://www.ceva-dsp.com or your company's protected page on the CEVA website for the latest application notes.
- **Email**: Use the CEVA central support email address <u>cevasupport@ceva-dsp.com</u>. Your email will be forwarded automatically to the relevant support engineers and tools developers who will provide you with the most professional support to help you resolve any problem.
- **License Keys**: Refer any license key requests or problems to sdtkeys@ceva-dsp.com. For SDT license keys installation information, see the SDT Installation and Licensing Scheme Guide.

Email: ceva-support@ceva-dsp.com

Visit us at: www.ceva-dsp.com

List of Sales and Support Centers

Israel	USA	Ireland	Sweden
2 Maskit Street	1174 Castro Street	Segrave House	Klarabergsviadukten
P.O. Box 2068	Suite 210	19/20 Earlsfort Terrace	70 Box 70396 107 24
Herzelia 46120	Mountain View, CA	3 rd Floor	Stockholm
Israel	94040	Dublin 2	Sweden
	USA	Ireland	
Tel : +972 9 961 3700	Tel : +1-650-417-7923	Tel : +353 1 237 3900	Tel : +46(0)8 506 362 24
Fax : +972 9 961 3800	Fax : +1-650-417-7924	Fax: +353 1 237 3923	Fax : +46(0)8 506 362 20
China (Shanghai)	China (Beijing)	China (Shenzhen)	Hong Kong
Unit 1203, Building E	Rm 503, Tower C	Rm 709, Tower A	Level 43, AIA Tower
Chamtime Plaza Office	Raycom InfoTech Park	SCC Financial Centre	183 Electric Road
Lane 2889, Jinke Road	No. 2, Kexueyuan South	No. 88 First Haide	North Point
Pudong New District	Road	Avenue	Hong Kong
Shanghai, 201203	Haidian District	Nanshan District	
China	Beijing 100190	Shenzhen 518064	
	China	China	
Tel : +86-21-20577000	Tel : +86-10-5982 2285	Tel : +86-755-8435 6038	Tel : +852-39751264
Fax : +86-21-20577111	Fax: +86-10-5982 2284	Fax : +86-755-8435 6077	
South Korea	Taiwan	Japan	France
#478, Hyundai Arion	Room 621	1-6-5 Shibuya	RivieraWaves S.A.S
147, Gumgok-Dong	No. 1, Industry E, 2nd	SK Aoyama Bldg. 3F	400, avenue Roumanille
Bundang-Gu	Rd	Shibuya-ku, Tokyo	Les Bureaux Green Side
Sungnam-Si	Hsinchu, Science Park	150-0002	5, Bât 6
Kyunggi-Do, 463-853	Hsinchu 300	Japan	06410 Biot - Sophia Antipolis
South Korea	Taiwan R.O.C		France
Tel : +82-31-704-4471	Tel : +886 3 5798750	Tel : +81-3-5774-8250	Tel : +33 4 83 76 06 00
Fax:+82-31-704-4479	Fax: +886 3 5798750		Fax : +33 4 83 76 06 01

Table of Contents

1.	INT	RODUCTION 1
	1.1	Scope1
	1.2	Audience1
	1.3	Related Documents
	1.4	Terminology1
	1.5	DMA Functions
2.	BAS	SIC APPLICATION
	2.1	Initialization
	2.2	Workflow3
	2.3	Code Example4
	2.4	Image Process6
Lis	st c	of Figures
Figu	re 2	-1: Basic Application Workflow3
Figu	re 2	-2: DDMA Algorithm Optimization6
Lis	st c	of Examples
Exar	mple	2-1: Basic Application Code4
Exar	mple	2-2: Image Process Code7
Lis	st c	of Tables
Tabl	e 1-	1: Terminology

1. Introduction

1.1 Scope

This document describes how to use direct memory access (DDMA) to do algorithm optimization for the CEVA-XM4TM core.

The CEVA-XM4 core is designed to deal with highly demanding image-processing applications. It includes a strong vector-processing unit that delivers outstanding performance. The CEVA-XM4 uses a very efficient Data DMA (DDMA) to handle data transfer from internal to external, external to internal, and internal to internal.

1.2 Audience

This document is intended for designers who want to optimize algorithms by using the PingPang buffer with the DDMA.

1.3 Related Documents

The following documents are related to the information in this document:

- 1. CEVA-XM4 Arch Spec Vol-I
- 2. CEVA-XM4_Arch_Spec_Vol-III_MSS
- 3. CEVA-XM4_DMA_Driver_doc.html

1.4 Terminology

Table 1-1 defines the terms that are used throughout this document.

Table 1-1: Terminology

Term	Definition
DDMA Queue	The DDMA can accept up to three pending requests using a dedicated queue. This enables the user to program the DDMA in advance.
DDMA Descriptor	Each DDMA transaction is configured using a DDMA task descriptor. Task descriptors are configured for the DDMA either using the CPM or by the QMAN.
DDMA Sync Point	The sync point is used to ensure that the DMA queue task is done.

1.5 DMA Functions

The following are the most commonly used DDMA functions:

- dma_create_2d_desc(): Creates a new DDMA descriptor
- dma_dma_enqueue_desc(): Enqueues a new DDMA descriptor
- **dma_enqueue_sync_point**(): Enqueues a new DDMA sync point, and then returns it to the user
- **dma_wait_sync_point()**: Waits for a specific DDMA sync point
- **dma_update_2d_desc_size()**: Updates a pre-existing DDMA descriptor with a different size for loading (instead of creating a new, different descriptor)

2. Basic Application

2.1 Initialization

Use the following functions to initialize the DDMA manager and queue:

- dma_init_manager();
- dma_allocate_queue(& g_queue_base, (unsigned int *)g_queue , 4, sizeof(g_queue) / sizeof (dma_desc_t));

2.2 Workflow

Figure 2-1 shows the workflow of a basic application with the DDMA.

Figure 2-1: Basic Application Workflow

2.3 Code Example

Example 2-1 demonstrates a basic application code of a DDMA workflow.

Example 2-1: Basic Application Code

```
void transfer 2d()
    unsigned int transfer width = 49;
    unsigned int transfer height = 20;
    unsigned int src_stride = 49;
    unsigned int dst stride = 64;
    unsigned int src_offset = 1039;
    unsigned int dst_offset = 2043;
    unsigned int sync_point_val;
    printf("Starting transfer 2d Test:\n");
    //Create one dimension task descriptor
    if (DMA STATUS OK != dma create 2d desc(&desc 2d,
transfer_width, transfer_height, src_stride, dst_stride,
DMA_DIR_EXTERNAL_INTERNAL, DMA_TYPE_LINEAR))
        printf("Error creating 2d descriptor - Test failed!\n");
    else
        //enqueue task
        if (DMA_STATUS_OK != dma_enqueue_desc(&myqueue_base,
&desc_2d, ext_buff + src_offset, int_buff+dst_offset))
             printf("Error enqueuing 2d descriptor - Test
failed!\n");
        else
```

4

2.4 Image Process

Figure 2-2 shows the DDMA algorithm optimization.

Figure 2-2: DDMA Algorithm Optimization

Example 2-2 demonstrates the code for a PingPang buffer with the DDMA.

Example 2-2: Image Process Code

```
void Img_process_with_DMA_demo()
    unsigned char ext buf[EXT BUF SIZE];
    unsigned char buf_A_in[BUF_SIZE];
    unsigned char buf_A_out[BUF_SIZE];
    unsigned char buf B in[BUF SIZE];
    unsigned char buf_B_out[BUF_SIZE];
    unsigned char*p_buf_src[2] = { buf_A_in, buf_B_in };
    unsigned char*p_buf_dst[2] = { buf_A_out, buf_B_out };
    //Create task descriptor
    dma_create_desc(&desc_2d, transfer_width, transfer_height,
src stride, dst stride, DMA DIR EXTERNAL INTERNAL,
DMA_TYPE_LINEAR))
        for (i = 0; i < row loop; i += row step)
             for (j = 0; j < line loop; j += line step)
                 //DMA process
                 dma_enqueue_desc(&myqueue_base, &desc_2d,
p_buf_src[], p_buf_dst[phase ^ 1]);
                 dma_enqueue_sync_point(&myqueue_base,
&sync_point_val[phase^ 1]););
                 //DSP core process
                 dma_wait_sync_point(&myqueue_base,
sync_point_val[phase]);
                 process(buffer[[phase])]);
                 phase ^= 1;
```