Diszkrét matematika II. feladatok

1. Csoportelmélet

- 1. Melyik csoport az alábbiak közül, és ha nem, milyen feltételek teljesülnek:
 - a) a természetes számok az összeadással; b) a páros számok az összeadással; c) a páratlan számok a szorzással;
 - d) egészek a kivonással; e) páros számok a szorzással; f) 7 többszörösei az összeadással;
 - g) racionális számok az összeadással; h) racionális számok a szorzással;
 - i) nem nulla racionális számok a szorzással; j) $\{m/n : m \in \mathbb{Z}, n \in \{1,2\}\}$ az összeadással.
- 2. Melyik félcsoport, illetve csoport az alábbiak közül:
 - **a)** (\mathbb{Z}, \circ) , ha $a \circ b = (a+b)/2, (a, b \in \mathbb{Z});$ **b)** (\mathbb{Q}, \circ) , ha $a \circ b = (a+b)/2, (a, b \in \mathbb{Q});$ **c)** $(\mathbb{R}, \text{ osztás});$
 - d) ($\mathbb{R} \setminus \{0\}$, osztás); e) a 8-adik komplex egységgyökök a szorzással; f) az n-edik egységgyökök halmaza a szorzással, ahol n rögzített pozitív egész; g) az n-edik egységgyökök halmaza a szorzással, ahol n befutja a pozitív egész számokat; h) (\mathbb{R} , \circ), ha $x \circ y = ax + by$, ($a, b, x, y \in \mathbb{Q}$) és a, b rögzítettek.
- 3. Legyen (G, \cdot) csoport, $u \in G$ rögzített elem. Definiáljunk G-n egy új o műveletet $a \circ b := a \cdot u \cdot b$ segítségével. Csoport lesz-e (G, \circ) ?
- 4. Egész számok körében definiáljuk az $m \star n = m + n mn$ műveletet. Mutassuk meg, hogy egységelemes félcsoportot kapunk! Mely elemeknek van inverze?
- 5. Melyik igaz? (a) ha egy csoport rendje véges, akkor minden eleme véges rendű; (b) ha egy csoport minden eleme véges rendű; akkor a csoport rendje is véges.
- 6. Lássuk be, hogy ha egy csoport minden elemének inverze önmaga, akkor a csoport kommutatív.
- 7. Bizonyítsuk be, hogy ha a (G,\cdot) csoport minden a,b elempárjára $(a \cdot b)^2 = a^2 \cdot b^2$, akkor a csoport kommutatív.
- 8. Írjuk fel a modulo 7 összeadás és szorzás műveleti tábláját. Mennyi a 3 rendje a két struktúrában?
- 9. a) A 8-adik komplex egységgyökök szorzással alkotott csoportjában határozzuk meg a csoport rendjét és az egyes elemek rendjét; b) Ciklikus-e ez a csoport?
- 10. Bizonyítsuk be, hogy (G,\cdot) csoportban a és a^{-1} rendje egyenlő!
- 11. Bizonyítsuk be, hogy (G, \cdot) csoportban a és $b^{-1} \cdot a \cdot b$ rendje egyenlő!
- 12. Legyen (G, \cdot) véges, páros rendű csoport. Bizonyítsuk be, hogy G-nek van olyan az egységelemtől különböző eleme, amelynek az inverze önmaga.
- 13. Egy multiplikatív csoport c elemére $c^{100} = e$ és $c^{1999} = e$. Határozzuk meg c-t.
- 14. Bizonyítsuk be, hogy ha egy (G, \cdot) csoportnak van az egységelemtől különböző véges rendű eleme, akkor van prímrendű eleme is.

A D_n diédercsoport a síknak egy szabályos n oldalú sokszögét önmagába vivő egybevágósági transzformációkból áll, művelet a transzformációk egymás utáni végrehajtása. Ha φ a $2\pi/n$ -nel való forgatást, τ pedig egy szimmetriatengelyre való tükrözést jelöl, akkor D_n elemei

$$\{e,\varphi,\varphi^2,\ldots,\varphi^{n-1},\tau,\tau\varphi,\tau\varphi^2,\ldots,\tau\varphi^{n-1}\}.$$

A számolás szabálvai:

$$\varphi^n = \tau^2 = e, \quad \varphi^k \tau = \tau \varphi^{n-k}.$$

Belátható, hogy D_n a fenti művelettel csoportot alkot.

- 15. Írjuk fel D_2 és D_3 műveleti tábláját. Határozzuk meg a két csoport részcsoportjait és a részcsoportok rendjét.
- 16. A D_5 diédercsoport minden részhalmazára határozd meg az általa generált részcsoportot.
- 17. Bizonyítsd be, hogy az m-edik egységgyökök multiplikatív csoportja izomorf \mathbb{Z}_m additív csoportjával.

- 18. Legyen (G,\cdot) csoport és $H\leq G$. Mutasd meg, hogy rögzített $g\in G$ esetén $g^{-1}Hg\leq G$
- 19. Legyen (G,\cdot) egy csoport és $H=\{g\in G: gx=xg, \forall x\in G\}$ azoknak a G-beli elemeknek a halmaza, amelyek minden más elemmel felcserélhetők. Mutasd meg, hogy $H \leq G$. (Ezt nevezik a csoport centrumának.)
- 20. Mutasd meg, hogy \mathbb{Q}^+ a szorzással a $\mathbb{Q}^*, \mathbb{R}^*$, illetve \mathbb{C}^* részcsoportja. Mennyi lesz a részcsoport indexe az egyes
- 21. Bizonyítsd be, hogy \mathbb{Z}_5 nemnulla elemei a szorzásra negyedrendű ciklikus csoportot alkotnak.
- 22. Bizonyítsd be, hogy \mathbb{Z}_9 szorzásra invertálható elemei a szorzással hatodrendű ciklikus csoportot alkotnak.
- 23. Normálosztó-e a) \mathbb{Z} -ben $3\mathbb{Z}$; b) D_6 -ban a 120°-os forgatás által generált részcsoport; c) D_6 -ban a 180°-os forgatás és egy tükrözés által generált részcsoport.
- 24. Mutasd meg, hogy izomorfak a következők:
 - a) $(\mathbb{Z}/n\mathbb{Z}, +)$ és $(\mathbb{Z}_n, +)$; b) $(\mathbb{C}/\mathbb{R}, +)$ és $(\mathbb{R}, +)$; c) $(\mathbb{C}^*/\mathbb{T}, \cdot)$ és (\mathbb{R}^+, \cdot) ; d) $(\mathbb{C}^*/\mathbb{R}^+, \cdot)$ és (\mathbb{T}, \cdot) ; e) $(\mathbb{R}/\mathbb{Z}, \cdot)$ és (\mathbb{T}, \cdot) ; f) $(\mathbb{C}/\mathbb{Z}, +)$ és (\mathbb{C}^*, \cdot) .
- 25. Keresd meg, hogy az alábbi csoportok közül melyek izomorfak: \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_8 , \mathbb{Z}_3^* , \mathbb{Z}_5^* , \mathbb{Z}_8^* , \mathbb{Z}_{12}^* , S_2 , A_3 , D_3 , D_4 , Q?

Gvűrűk, testek 2.

- 1. Vizsgáljuk meg, hogy gyűrűt, illetve testet alkotnak-e az alábbi kétműveletes struktúrák:
 - a) egész számok az összeadásra és szorzásra nézve; b) a páros számok az összeadásra és szorzásra nézve;
 - c) adott n egész szám többszörösei az összeadásra és szorzásra nézve (az n=0 esetet külön nézzük meg);
 - d) $\{a+b\sqrt{2}:a,b\in\mathbb{Z}\}$ az összeadásra és szorzásra nézve; e) $\{a+bi:a,b\in\mathbb{Z}\}$ az összeadásra és szorzásra nézve;
 - f) $n \times n$ -es egész elemű mátrixok a mátrix összeadásra és szorzásra nézve;
 - g) $n \times n$ -es valós elemű mátrixok a mátrix összeadásra és szorzásra nézve;
 - h) $(\mathbb{Z}_m, +, \cdot)$ a modulo m tekintett maradékosztályok a maradékosztály összeadásra és szorzásra.
- 2. Jelöljön (S, +) egy Abel-csoportot. Definiáljuk a o műveletet a következő módon: $a \circ b = 0$, ahol 0 az (S, +) egységeleme. Bizonyítsuk be, hogy az $(S, +, \circ)$ struktúra gyűrű! (Ezt nevezzük zérógyűrűnek.)
- 3. Testet alkotnak-e a modulo 2m maradékosztályok közül a párosak (tehát ez: $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \dots, \overline{2m-2}\}$) a maradékosztályok **b)** 2m = 20? közötti összeadásra és szorzásra, ha a) 2m = 10;
- 4. Vizsgáljuk meg, hogy gyűrűt, illetve testet alkotnak-e az alábbi kétműveletes struktúrák:
 - a) $\{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$ az összeadásra és szorzásra nézve;
 - b) A [-1,1] intervallumon értelmezett valós függvények a függvények pontotnkénti összeadására és szorzására nézve;
 - c) $\left\{ \left(\begin{array}{cc} a & b \\ 2b & a \end{array} \right) : a,b \in \mathbb{R} \right\}$ mátrixok a mátrix összeadásra és szorzásra.
- 5. Bizonyítsd be, hogy 2Z a Z-nek részgyűrűje! Ideál-e?
- 6. Melyek ($\mathbb{Z}_4, +, \cdot$) részgyűrűi? Van-e köztük ideál?
- 7. Tekintsük a racionális számok ($\mathbb{Q}, +, \cdot$) gyűrűjét. Bizonyítsuk be, hogy a páros egészek a racionális számok gyűrűjének részgyűrűjét alkotják, de nem ideálját!
- 8. Lássuk be, hogy a páros számok ($2\mathbb{Z}$) az egészek részgyűrűjét, sőt ideálját alkotják! Határozzuk meg a $\mathbb{Z}/2\mathbb{Z}$ maradékosztály gyűrűt!
- 9. Bizonyítsd be, hogy \mathbb{Z}_{12} -nek a 0,3,6,9 osztályai egy részgyűrűt alkotnak. Ideál, illetve főideál-e? Ha ideál, akkor a
- 10. Döntsd el, hogy a Gauss-egészek gyűrűjében az alábbi halmazok ideált alkotnak-e, és ha igen, határozd meg a fakb) $2\mathbb{Z} + 2i\mathbb{Z}$; torgyűrűt: a) \mathbb{Z} ; c) $4\mathbb{Z} + 6i\mathbb{Z}$.
- 11. Legyen $R = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathbb{Z} \right\}$ és $I = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in 2\mathbb{Z} \right\}$. Mutasd meg, hogy I ideál R-ben! Hány elemű az R/I faktorgyűrű?
- 12. Az következő faktorgyűrűk közül melyek izomorfak: $\mathbb{Z}_4/(\tilde{0}), \mathbb{Z}_8/(\tilde{4}), \mathbb{Z}_{16}/(\tilde{4}), 2\mathbb{Z}_{16}/(\tilde{8}), \mathbb{Z}/(4), 4\mathbb{Z}/(16)$?