Dir Criven a number n, print the first n natural numbers in increasing order recursively.

f(n) =if (n<1)
return; (2) f (n-1)
(2) print (n) Campaint funct n, natural numbers recensuity Cs if you've n<1

Cs we don't need to

Proceed HASsumption -> let's assume function f works correctly the first n-1 for n-1. i.e. f(n-1) correctly prints ratural rumbers for us. # Sefwork > point n.

Or Count the no. of Bunary Strings (Strings which only got O or 1) of length on, Such that there are no consecution ones. Ex 3 1 = 3 \rightarrow (000, 001, 010, 100, 101)

1 = 1 (00,01,10) n= & (000, 001, 010, 100, 101) n=3 (0000,0001,0010,0100,1000, 1= 4 1001, 1010, 0101, 125 Libonacci base can if (n = = 1) relurn 2; if (n==2) return s; There are N stones, numbered $1,2,\ldots,N$. For each i ($1\leq i\leq N$), the height of Stone i is h_i .

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

ullet If the frog is currently on Stone i, jump to Stone i+1 or Stone i+2. Here, a cost of $|h_i-h_j|$ is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

min tost

Frog It me mell by b emplore all possibilités from 1st stone, frog can jump either to the 2nd or 3nd stone. $1^{st} > 2^{nd} \rightarrow |h_1 - h_2|$ \rightarrow 3rd \rightarrow $|h_1-h_3|$

if we some how get the minimum Lost to reali N'ishne from 2nd stone (x) de the min cost to eleale N'il stone from 3nd stone (y) min (|h1-h2| +x, |h1-h3| +y) $\frac{1}{h_1 - h_3}$ 3^{rd} $\frac{1}{x}$ $\frac{1}{x}$

 $f(i,n) = \min \left(|hi + hin| + f(i+1,n), |hi - hinz| + f(i+2,n) \right)$ The the min

returns the min
cost to reach nth
Chone from its shone

nin cost horson nris Shore from (5+1)

final (1, n)

$$\frac{\partial \mathcal{H}}{\partial h_{i}^{2} - h_{i+1}^{2}}$$

the assumption assume that function of works correctly fer it I and it is i.e. function of correctly genes you mun cost to reach Nth stone from (iti) M stone & (itz) M stone. # Seffwerk > from it stone consider all forsibiliti and calculate min of it

f ('i', n) (if (i==n) return if (1>n) return 00; min lost Via i plus 1 = h[i] - h[i+1] | + f[i+1,7]; min(ost Vigi pluse = [h[i] - h[i+2]] + f(i+2,n); octors min (minlost Via i plus), minlost Via i plus j

JOIN THE DARKSIDE

There are N stones, numbered $1,2,\ldots,N$. For each i ($1\leq i\leq N$), the height of Stone i is h_i .

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

• If the frog is currently on Stone i, jump to one of the following: Stone $i+1, i+2, \ldots, i+K$. Here, a cost of $|h_i-h_j|$ is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

$$f(i,n) = min (|hi-hi+i|, f(i+1,n), |hi-hi+2|, f(i+2,n), |hi-hi+3|, f(i+3,n)$$

5 itl

f(i,n) = min (lhi-hing) + f(i+j,n))

let result = Infints

for (j=1; d=K; d+t) h

result = min (result, f(i+d,n) + lhlid -hlitd)

Let's say, you are standing on the top lift corner of a grid having demension 1xm. find the total no. of ways in which you can reach the bottom right guen the fact that from any cell of the grid you can move one slep down or one step right.

no. of ways hi mach n-1, m-1 from any cell i,

 $\int (ijj, n,m) = \int (ijd+1, n,m) + \int (i+1jd, n,m)$

assurp)

actual and -> f(0,0,31,m)

if (i = = n-1 and j = = m-1) if (i >= n or j >= m)relus n O;

```
function f(i, j, n, m) {
    if(i = n-1 && j = m-1) return 1;
    if(i ≥ n || j ≥ m) return 0;

return f(i, j+1, n, m) + f(i+1, j, n, m);
}

console.log(f(0, 0, 2,2));
```


