Change of Measure II

Taorui Wang

• 1.Review of the change of measure formula

• 2. Martingale as the Radon Nikodym Theorem

• 1.Review of the change of measure formula

• 2. Martingale as the Radon Nikodym Theorem

Review

Change of the measure for the expectation

$$\mathbb{E}^{\mathbb{Q}}[Y] = \mathbb{E}^{\mathbb{P}}[Y\frac{d\mathbb{Q}}{d\mathbb{P}}].$$

• Change of the measure for the conditional expectation

$$\mathbb{E}^{\mathbb{Q}}[Y|\mathcal{G}]\mathbb{E}^{\mathbb{P}}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{G}\right] = \mathbb{E}^{\mathbb{P}}\left[Y\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{G}\right].$$

• 1.Review of the change of measure formula

• 2. Martingale as the Radon Nikodym Derivative

Radon Nikodym Derivative Process

 We construct such process with the exponential martingale

Proposition 1.10. Assume that $\mathbb{E}^{\mathbb{P}}[\mathcal{E}_{\sigma}(T)] = 1$, where $\mathcal{E}_{\sigma}(t)$ is defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and M_t is an adapted process w.r.t. a filtration \mathcal{F}_t . A probability measure \mathbb{Q} is defined by

$$\mathbb{Q}(A) = \int_{A} \mathcal{E}_{\sigma}(T) d\mathbb{P}, \text{ or } \frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}_{\sigma}(T).$$

Then M_t is a \mathbb{Q} -martingale if and only if $M_t\mathcal{E}_{\sigma}(t)$ is a \mathbb{P} -martingale.

• 1.Review of the change of measure formula

• 2. Martingale as the Radon Nikodym Theorem

Girsanov Theorem

Theorem 2.3 (Girsanov Theorem). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and B_t $(0 \le t \le T)$ be a standard Brownian motion w.r.t. \mathbb{P} . Then

$$B_t^{\mathbb{Q}} = B_t - \int_0^t \sigma_s \, ds,$$

is a standard Brownian motion w.r.t. \mathbb{Q} , where $\mathbb{Q}(A) = \int_A \mathcal{E}_{\sigma}(T) d\mathbb{P}$, $A \in \mathcal{F}$ and $\mathcal{E}_{\sigma}(t)$ is defined in (1.1) and $\mathbb{E}^{\mathbb{P}}[\mathcal{E}_{\sigma}(T)] = 1$.