Autómatas, Teoría de Lenguajes y Compiladores (72.39) Parcial 1

Lic. Ana María Arias Roig

Ej 1	Ej 2	Ej 3	Ej 4	Ej 5	Nota
·				·	
2,5	1,5	2	2	2	

Condición mínima de aprobación: Acumular 6 puntos IMPORTANTE:

- El examen tiene por objetivo que el alumno demuestre conocimientos adquiridos en la presente asignatura **Autómatas**, **Teoría de Lenguajes y Compiladores**. Por ello, todos los ejercicios deben resolverse utilizando los algoritmos, conceptos y vocabulario vistos en la clase teórica, en la clase práctica o en la bibliografía. En caso de que un ejercicio no sea resuelto utilizando los algoritmos de la presente asignatura, no será considerado (valdrá **cero**.)
- Se pueden usar propiedades previamente demostradas, pero si no fueron demostradas en clase (o en la práctica) hay que demostrarlas.
- Debe usarse la notación y vocabulario propios de la asignatura para justificar o explicar lo realizado.
 Eso significa que usar un vocabulario coloquial descontará puntos.
- El examen se evalúa por lo que está **escrito**. Por lo tanto, revisar muy bien que las justificaciones y el desarrollo de los ejercicios estén claramente explicados y en el orden correcto.
- Para el caso de tener que obtener un autómata que reconozca el lenguaje asociado a una expresión regular de hasta dos símbolos terminales, se puede escribir directamente. Pero si la expresión regular contiene más de dos símbolos terminales (iguales o distintos) del alfabeto, debe explicar cómo se obtiene el autómata.

Ejercicios

1. El conjunto $P_1 \subseteq \Sigma^*$, donde $\Sigma = \{a, b\}$ se define **recursivamente** de la siguiente manera:

 $\lambda \in P_1$

• si $x \in P_1 \Rightarrow a(bx)^r \in P_1$

• si $x \in P_1 \Rightarrow xx \in P_1$

a) Demostrar que $(\alpha^r)^n = (\alpha^n)^r$, $\forall n \geq 0$.

b) Demostrar por inducción estructural que $P_1 \subset L_1 = \{\omega \in \{a,b\}^* / \omega = (ab)^n, n \geq 0\}$

2. Construir el **Autómata Finito Determinístico Mínimo** M_2 que acepte el lenguaje L_2 , tal que $L_2 = \{\omega \in \{0,1,2\}^*/\omega \text{ NO contiene la subcadena 01 y } \omega \text{ NO contiene la subcadena 12}\}.$

3. Obtener la Expresión Regular correspondiente al autómata $M_3 = \langle \{a,b\}, \{P,Q,R,S\}, \delta, P, \{S\} \rangle$ Con δ dada por la tabla:

δ	a	b	λ
$\rightarrow P$	$\{P,Q\}$	$\{Q\}$	Ø
Q	$\{R\}$	$\{R,Q\}$	$\{S\}$
R	$\{R\}$	$\{R\}$	$\{Q\}$
*S	Ø	$\{S\}$	Ø

- 4. Obtener el **Autómata Finito Determinístico Mínimo** correspondiente a la expresión regular $R = (ab)^*a + (ba)^*(ba)$
- **5.** Demostrar que el lenguaje $L = \{\omega \in \{0,1\}^*/\omega = \alpha\beta, |\alpha| = 2.|\beta| \land |\omega|_0 = 2.|\omega|_1\}$ no es regular.

```
Ejeracio 1
0. Demostrar que (ar) = (an) , Yn >0
Lo vamos a solucionar por inducción en n.
Coso base: n=0 => (ar) = > y (a0) = > = > (ar) = (a0) = o se cumple
Paso inductivo:
Definimos P(k): (ar) = (ak) , Vk30
HI) P(k), k sn
TI) P(n+1)
Partiendo de k = n+1 tenemos (\alpha^{n+1})^r = (\alpha^n \alpha)^r = \alpha^r (\alpha^n)^r
Conclusion: Vn > 0 Se cumple (an) = (ar)
Obs: (ana) = ar (an) se hace mediante (a propiedod (aB) = Braf
b. Demostrar por inducción estructural que Pi C L1 = Ew € Ea. 63 × /w = (ab) n, n≥03.
Coso bose: A ∈PI = D A ∈ L1 pues es el coso en que n = 0 = D se cumple
Paso inauctivo:
Se puede formar una cadena de P1 a partir de otra cadena de P1 de dos formas.
(1) Seo XEP1 => W = a(bx).
Por HI, x € L1 y es de la forma (ab) = D W = a (b (ab) ) = a ((ab) ) b. Por lo de mostrado en el
ejecucio anterior, ((ab)^n)^r = ((ab)^r)^n = (ba)^n = \omega = a(ba)^n b.
· Sin=0 => w = ab & L1 (caso n=1)
· Si n > 0 => tomo el primer b y ultimo a de (ba) => w = ab (ab) - ab = (ab) - Eli
(2) Seo \pi \in P_{\ell} = \mathcal{D} \ \omega = \pi \pi.
```

Por HI, x Ell y es de la forma (ab) = w = (ab) (ab) = (ab) = (ab) = 1.

Conclusion: VWEP1, WELL & P1 CL1

Lz = EWE EO, 1, 23 */ w NO contiene la subcadena 01 y NO contiene la subcadena 123

Veamos si es minimal: To = EG: = Et3, Gz = Eqo, q., qz, qs}

8	0	1	ے
Qo	Q1	qz	Q ₃
Qı	91	t	Q3
Qz	Q1	Qz	Œ
Q3	91	Qz	Q3

Πι = EGι = EQι3, Gz = EQz3, G3 = EQo, Q33, Gu = Et3} Luego, como πο ≠ πι, segumos.

Tz = EG : = EQ:3, Gz = EQ:3, G3 = EQ:0,Q33, Gu = Et3}
Luego, como T: = Tz, terminomos.

Concusion: Hz = < Eqo, 9, 923, E0, 1, 23, 90, E90, 9, 923, 8>

S	0	1	Z
Qo	Qı	qz	Qo
Q.	Qı	ŧ	Qo
Qz	Q1	Qz	t

Ejeracio 3

Paso 1: transformar a AFND

- · C2(P) = EP3
- \cdot Ca(Q) = EQ.53
- · Ca(R) = [R,Q,S]
- · Ca(s) = Es3

=> VxEE, S(k, x) = Cx(k)

SAFND	a	Ь
P	EP.Q.53	EQ.S3
Q	[R,Q.S]	[R.Q.53
R	ER,Q,S3	[ત. ૦, ડાં
S	Ø	ES3

Paso z: transformar a AFD

SAFD	a	Ь	* estados finales
ρ	PQS	Q5	estodos nuevos
PQs *	RQS	RQS	
QS *	RQS	RQS	
RQS*	RQS	RQS	

Paso 3: minimizar AFD

SAFD	a	Ь	
P	PQS	Q5	₽ T: EG: EP3. Gz = EPQS, RQS, QS}
PQS *	ROS	605	Luego, como To = TT, terminamos.
ດs *	ROS	RQS	
205+	905	005	

AFD minimal:

- · GI = aGz + bGz
- · Gz = aGz + bGz + 7

Conclusion: ER = (a+b) (a+b)*

Ejeracio 4 $R = (ab)^*a + (ba)^*(ba)$ Por propiedod 14: R = 0(ba)* + (ba)*(ba) Por propiedad 11: R = a (ba)* + (ba) (ba)* Porpropiedod 3: R = (a + ba) (ba)* b a Veamos si es minimal: SAFD Ś t C A В C D πι = [Gι = [S, B, C], Gz = [A], G3 = [t3] SAFD a Ь S B luego, como To # TI, seguimos. t A C B A t t C =D πz = [G, = [S], Gz = [B, C], G3 = [A], G4 = [t] SAFO a 6 B S A Luego, como Ti + Tz, seguimos. **t** C A B A t t C =D π3 = EG, = ES), Gz = EB, C3, G3 = EA3, G4 = Et3) SAFO 6 **a** B S A Luego, como II2 = II3, terminamos A **t** C t) B A t C Conclusion: AFD = < ES,A,B3, Ea,B3, S, EA3, 8 >

S		Ь
s	A	В
A	ŧ	В
В	A	t

Ejercico 5 L = EW E EO, 13 / W = αβ, |α| = ZIBI A |W|0 = ZIW123 Supongamos que es un lenguaje regular > cumple el lema de bombeo. Recordemos: El lema de bombeo nos dice que VI, lenguaje regular sobre un E y N= < k, E, S, Qo, F> 10 SIF A E SILI A GIVEN A EXX = B/ "Z3 F.V, X E) Q SINI / JAK / IXI NOO OKQE , I = IHIJ SUR LOT XY LEL). Sea W = 1 POZP => se cumple | WI = 3p > p siendo p el numero de 1 Lema de Bombes. Ahora, expresomos wen terminos de x,y, & = x = 1, y = 1, y = 1, y = 1, 02. Condiciones cumplidas: 1xyl: r+s &p (t >0), s>1 y r+s+t =p Luego, tomomos i=0 =0 xyit = 1 (1+020 => | WIO = 21W11 = 2(1+5) < ZD ABS! Obs: ++++ t €p => +++ €p-5 1 => ++5 <p Conclusion: Lo obsurdo vino de suponer que les un lenguaje regular, luego no lo es.