IN THE SPECIFICATION

Please amend the paragraph at page 32, line 16 to page 33, line 4, as follows:

By using the values obtained of the electrical resistivity, the Seebeck coefficient and the thermal conductivity, the dimensionless figure-of-merit ZT was determined according to the aforementioned formula (1). The values of the electrical resistivity, the Seebeck coefficient, the lattice thermal conductivity and the dimensionless figure-of-merit ZT all obtained at temperatures of 300K and 700K were as follows.

300K: Electrical resistivity = $8.62 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = -333 μ V/K;

Lattice thermal conductivity = 3.05 W/mK;

TZ = 0.12ZT = 0.12

700K: Electrical resistivity = $2.35 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = -328 μ V/K;

Lattice thermal conductivity = 1.95W/mK;

TZ = 1.2 ZT = 1.2

Please amend the paragraph at page 33, line 21 to page 34, line 14, as follows:

99.9% pure Zr, 99.9% pure Hf, 99.99% pure Ni and 99.99% pure Sn were prepared as raw materials, which were then weighed respectively so as to meet a composition formula of: $Zr_{0.5}Hf_{0.5}NiSn$. By using the raw powder weighed in this manner, a sintered body was manufactured by the same procedures as explained in Example I-1 and the resultant sintered body was evaluated with respect to the thermoelectric characteristics thereof. The values of the electrical resistivity, the Seebeck coefficient, the lattice thermal conductivity and the dimensionless figure-of-merit ZT all obtained at temperatures of 300K and 700K were as follows.

300K: Electrical resistivity = $9.6 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = -180 μ V/K;

Lattice thermal conductivity = 3.95 W/mK;

TZ = 0.02 ZT = 0.02

700K: Electrical resistivity = $2.3 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = -272 μ V/K;

Lattice thermal conductivity = 3.49 W/mK;

TZ = 0.53 ZT = 0.53

Please amend Table 1 on page 36, shown on the following page, as follows:

700K	Dimen-	sionless	performance	figure-of-	merit index	1.20	1.01	1.00	1.00	1.05	1.03	1.02	1.10	1.08	1.07	1.17	1.20	1.09	1.07	1.10	1.16	1.13	1.11	1.18	1.16	1.15
	Lattice	thermal	conduc-	tivity		1.95	2.50	2.51	2.55	2.40	2.45	2.47	2.10	2.16	2.20	1.90	1.95	2.25	2.08	2.15	2.10	1.99	2.05	2.05	2.01	2.02
300K	Dimen-	sionless	performance	figure-of-	merit index	0.12	90.0	0.05	0.05	0.07	0.07	0.06	0.08	0.08	60.0	0.13	0.12	0.08	0.07	0.07	0.10	60.0	0.10	0.12	0.12	0.11
1	Tattice	thermal	conduc-	tivity		3.05	3.66	3.7	3.71	3.61	3.79	3.80	3.55	3.50	3.58	2.95	3.00	3.67	3.45	3.55	3.36	3.20	3.28	3.27	3.18	3.23
Table	of Hf	 	ı			0.35	0.98	0.01	0.01	0.49	0.49	0.02	8.0	0.1	0.1	0.35	0.3	0.45	0.45	0.1	0.4	0.4	0.2	0.25	0.25	0.5
Content	of 2.r	- [0.35	0.01	0.98	0.01	0.49	0.02	0.49	0.1	0.8	0.1	0.3	0.35	0.45	0.1	0.45	0.4	0.2	0.4	0.25	0.5	0.25
Content	of Ti	a	•			0.3	0.01	0.01	0.98	0.02	0.49	0.49	0.1	0.1	0.8	0.35	0.35	0.1	0.45	0.45	0.2	0.4	0.4	0.5	0.25	0.25
						T-1	I-2	I-3	I-4	I-5	9-I	1-7	8-I	1-9	I-10	I-11	I-12	I-13	I-14	I-15	I-16	I-17	I-18	I-19	I-20	1-21
						Examples	4																			

Please amend Table 1 on page 37, shown on the following page, as follows:

	700K	Dimen-	sionless	performance	figure-of-	merit index	0.53	0.48	0.35	0.27	0.24	0.20	0.39	0.48	0.30	0.33
		Lattice Dimen-	thermal	conduc-	tivity		3.49	3.61	4.05	6.35	5.55	5.15	4.15	3.85	4.50	4.22
	300K	Dimen-	thermal sionless	conduc- performance	figure-of-	merit index ZT	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
		Lattice Dimen-	thermal	-conduc-	tivity		3.95	4.11	4.65	9.75	8.25	7.75	5.35	4.45	5.81	4.92
Table 1	Content	of Hf	CJ				0.5	0.5	0.0	0.0	0.0	1.0	0.15	0.3	0.0	0.0
	Content Content Content	of Zr	p1				0.5	0.0	0.5	0.0	1.0	0.0	0.85	0.7	0.85	7.0
	Content	of Ti	aı				0.0	0.5	0.5	1.0	0.0	0.0	0.0	0.0	0.15	6
							1-1	I-2	I-3	I-4	I-5	9-I	1-7	1-8	1-9	T-10
							Comparative I-1	Examples	•							

Please amend Table 2 on page 40, shown on the following page, as follows:

Table 2

				Table 2			
		Substituting Content of	Content of	30	300K	7.0	700K
		elements X	substituting Lattice	Lattice	Dimensionless	Lattice	Dimensionless
			elements e	thermal	performance	thermal	performance
				conductivity	figure-of-	conductivity	figure-of-
				-	merit index		merit index
					ZT		ZT
	I-22	Λ	0.003	3.21	0.24	1.93	1.19
	I-23	Λ	0.01	3.10	0.27	1.84	1.27
	I-24	Λ	0.03	3.04	0.24	1.81	1.20
	I-25	Λ	0.10	2.95	0.22	1.77	1.08
	I-26	qN	0.003	3.08	0.26	1.85	1.24
	I-27	qN	0.01	3.05	0.28	1.81	1.29
	I-28	qN	0.03	3.01	0.27	1.77	1.22
	I-29	qN	0.10	2.95	0.25	1.70	1.10
s	I-30	Ta	0.003	3.00	0.27	1.83	1.26
этс	I-31	Ta	0.01	2.94	0.28	1.79	1.30
am!	I-32	Ta	0.03	2.90	0.28	1.74	1.28
жæ	I-33	Ta	0.10	2.85	0.24	1.69	1.23

Please amend Table 3 on page 42 as follows:

Table 3

Table 3	ent of 300K 700K	stituting Lattice Dimensionless Lattice Dimensionless	nents e thermal performance thermal performance	conductivity figure-of-	merit index	ZZ	0.003 3.35 0.21 2.08 1.17	0.01 3.26 0.24 2.00 1.24	0.03 3.20 0.20 1.95 1.16	0.10 3.06 0.18 1.90 1.06	0.003 3.22 0.24 2.00 1.21	0.01 3.19 0.26 1.95 1.26	0.03 3.14 0.24 1.90 1.18	0.10 3.09 0.21 1.83 1.08	0.003 3.13 0.25 1.98 1.23	0.01 3.07 0.27 1.93 1.28	0.03 3.04 0.26 1.87 1.24	
lable		substituting Lattice	elements e thermal	conductivity														79 6
	Substituting Content of	elements X s					Δ	Λ	Λ	Λ	dN	Nb	dN	dN	Ta	Ta	Ta	Ē
					1111		I-34	I-35	I-36	I-37	I-38	I-39	I-40	I-41	n I-42	1-43	II-44	4 +

Please amend Table 4 on page 45, shown on the following page, as follows:

	700K	Dimensionless	performance	figure-of-	merit index	ZT	1.21	1.28	1.22	1.17
	70	Lattice	thermal	conductivity figure-of-			1.89	1.83	1.79	1.73
Table 4	300K	Dimensionless Lattice	performance	figure-of-	merit index	ZT	0.26	0.29	0.26	0.24
F	30	Lattice	thermal	conductivity figure-of-			3.15	3.08	3.01	2.96
	Content of	substituting Lattice	elements f				0.003	0.01	0.03	0.10
					-		I-46	I-47	I-48	I-49
							s	этс	am.	×з

Please amend Table 5 on page 47, shown on the following page, as follows:

		onless	ance	- j	идеж		17	25	17	12
	700K	Dimensionless	performance	figure-	merit index	ZZ	1.17	1.25	1.17	1.12
	70	Lattice	thermal	conductivity figure-of-			1.95	1.90	1.82	1.78
Table 5	300K	Dimensionless Lattice	performance	figure-of-	merit index	ZT	0.22	0.26	0.21	0.19
F	30	Lattice	thermal	conductivity figure-of-			3.30	3.21	3.11	3 06
	Content of	substituting Lattice	elements f				0.003	0.01	0.03	01.0
							I-46	I-47	I-48	T-49
							s	эŢс	am <u>r</u>	×Э

Please amend Table 6 on page 50, shown on the following page, as follows:

Table 6

Table o	Content of 300K 700K	substituting Lattice Dimensionless Lattice Dimensionless	elements g thermal performance thermal performance	conductivity figure-of-	merit index	ZT	0.003 3.07 0.29 1.95 1.07	0.01 3.01 0.32 1.89 1.19	0.03 2.95 0.28 1.83 1.14	0.10 2.91 0.25 1.77 1.08	0.003 2.97 0.29 1.81 1.04	0.01 2.90 0.33 1.72 1.15	0.03 2.83 0.29 1.67 1.11	
	Substituting Content of	elements X					Sb	Sb	Sb	Sb	Bi	Bi	Bi	
	0,7						I-54	I-55	I-56	I-57	g I-58	I-59	1-60	×

Please amend Table 7 on page 52, shown on the following page, as follows:

	700K	Dimensionless	performance	figure-of-	merit index	77	1.20	1.22	1.16	1.12	1.15	1.19	1.13	1.08
	07	Lattice	thermal	conductivity figure-of-			2.05	1.98	1.94	1.86	1.90	1.83	1.77	1.70
	300K	Dimensionless Lattice	performance	figure-of-	merit index	7.7	0.26	0.28	0.27	0.23	0.26	0.29	0.28	0.26
Table 7	3(Lattice	thermal	conductivity figure-of-			3.27	3.21	3.14	3.10	3.16	3.10	3.04	2.96
	Content of	substituting	elements g				0.003	0.01	0.03	01.0	0.003	0.01	0.03	0.10
	Substituting Content of	elements X					Sb	qs	qs	qs	Bi	Bi	Bi	Bi
		Suk ele					I-62	I-63	I-64	I-65	99-I	I-67	I-68	69-I

Exsmples

Please amend the paragraph at page 69, lines 8-23, as follows:

By using the values obtained of the electrical resistivity, the Seebeck coefficient and the thermal conductivity, the dimensionless figure-of-merit ZT was determined according to the aforementioned formula (1). The values of the electrical resistivity, the Seebeck coefficient, the lattice thermal conductivity and the dimensionless figure-of-merit ZT all obtained at temperatures of 300K and 700K were as follows.

300K: Electrical resistivity = $47.5 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = 351 μ V/K;

Lattice thermal conductivity = 3.18 W/mK;

TZ = 0.02 ZT = 0.02

700K: Electrical resistivity = $2.82 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = 311 μ V/K;

Lattice thermal conductivity = 1.79 W/mK;

TZ = 1.04 ZT = 1.04

Please amend the paragraph at page 70, line 15 to page 71, line 8, as follows:

99.9% pure Y, 99.9% pure Er, 99.99% pure Pd, and 99.99% pure Sb were prepared as raw materials, which were then weighed respectively so as to meet a composition formula of: $Y_{0.5}Er_{0.5}PdSb$. By using the raw powder weighed in this manner, a sintered body was manufactured by the same procedures as explained in Example II-1 and the resultant sintered body was evaluated with respect to the thermoelectric characteristics thereof. The values of the electrical resistivity, the Seebeck coefficient, the lattice thermal conductivity and the dimensionless figure-of-merit ZT all obtained at temperatures of 300K and 700K were as follows.

300K: Electrical resistivity = 29.0×10^{-3} cm;

Seebeck coefficient = 155 μ V/K;

Lattice thermal conductivity = 2.97 W/mK;

TZ = 0.00 ZT = 0.00

700K: Electrical resistivity = $2.1 \times 10^{-3} \Omega \text{ cm}$;

Seebeck coefficient = 190 μ V/K;

Lattice thermal conductivity = 1.29 W/mK;

TZ = 0.57 ZT = 0.57