

Economics

"We love causal inference"

Experimentation

"We love causal inference"

Internal Customer Need

I believe my product is pretty great, but . . .

Internal Customer Need

...how do l know if it's impactful for customers?

Incrementality

Teams want to know the incremental impact of their work.

Incrementality is a Counterfactual Comparison

Impact = World With Product – World Without Product

Fundamental Problem

We can't observe the counterfactual

Ladder of Causation

Association
What if I see . . . ?
Prediction

P(y|x)

Ladder of Causation

Intervention What if I do ...?

P(y|do(x), z)

Association
What if I see ...?
Prediction

P(y|x)

Ladder of Causation

Intervention What if I do ...?

Causation!

Teams ask causal questions every day

• • •

Tools

... but often lack the tools to answer their causal questions.

Tools: Spectrum of Control 📂

Data Generating Process (DGP)

High Control of DGP

Low Control of DGP

Tools: Spectrum of Control

Data Generating Process (DGP)

High Control of DGP

Low Control of DGP

A/B Test

Causal Identification based on controlled random **assignment** of treatments

Tools: Spectrum of Control

Data Generating Process (DGP)

High Control of DGP

Low Control of DGP

A/B Test

Causal Identification based on controlled random assignment of treatments

Quasi-experimental

Causal Identification based on statistical adjustment

Two Floors

Two Floors

Octopus Experimentation Team
"We love causal inference
with experimental methods

Two Floors

Economics Team
"We love causal inference with quasi-experimental methods"

Octopus Experimentation Team
"We love causal inference
with experimental methods

Let's join up

Economics
"We love causal inference"

Experimentation"We love causal inference"

MISSION

Mission

We empower teams to measure their impact based on evidence they can trust.

Objectives

1. Trusted measurement

2. At Scale

MECHIONISMS

Scaling Trusted Measurement

Trusted Measurement

Custom Research

Helping

In the Centres of Excellence, a lot of our role is consulting and coaching others so they can be better researchers

Helping and Domain Expertise

Domain expertise is critical for causal modeling.

Our stakeholders have this expertise.

Need to help them access and use this knowledge to develop causal understanding

Scaling Trusted Measurement

Trusted Measurement

Custom Research

Semi-Automation (software, education, review)

At Scale

Right Tool Initiative (Link)

Causal Inference Peer Review (Link)

Guide for researchers

Guide for reviewers

Guide for editors

Submitting a research document

Overview

A/B test evaluation of pricing algorithms (2020-...

Plus Effect Estimation using Matching Method

0.23 Research paper

0.24 Review synthesis

Estimating the Value of an App-Install

CIPR GitHub

Consultation hour

Right Tool Initiative (RTI)

In some matching models, there were a few covariates of which the standardized difference of means increased a bit after matching (indicated by the black lines). It normally happens to covariates that have small differences before matching as they do not factor heavily into the propensity score model. For those well balanced covariates, the standardized difference of means remained less than 0.1. Therefore, we are not too concerned about it.

0.23.3 Effect estimation

After the matching process, we conduct statistical analysis as if the datasets had been generated through randomization (Choirat et al. (2015)). The matched treatment comes from the Plus paying members in the treatment group. ATT (Average Treatment Effects on the Treated) is relevant in this case, which is the expected causal effect of the treatment for individuals in the treatment group, instead of ATE (Average Treatment Effect).

$$E[\delta \mid D=1] = E[Y^1 - Y^0 \mid D=1] = E[Y^1 \mid D=1] - E[Y^0 \mid D=1] = E[Y^0 \mid D=1] =$$

Scaling Trusted Measurement

Trusted Measurement

Custom Research

Automated Services (Octopus)

Semi-Automation (software, education, review)

At Scale

Software & Services

Scaling Trusted Measurement

Trusted Measurement

Custom
Research
Semi

Automated Services (Octopus)

Semi-Automation (software, education, review)

At Scale

HOTTOPICS

Aligning Algorithms

Vision: Aligning Algorithms with the Zalando Group Strategy

Problem to Solve

The Zalando customer experience is increasingly created by automated decision-making systems. These systems optimise for different and potentially contradictory goals that in many cases are also not aligned with the Zalando Group Strategy.

The Aligning Algorithms Project aims to solve this problem by providing automated decisionmaking systems with the customer experience goals to optimise for that best advance the Zalando Group Strategy.

Strategy for Estimating Impact of Customer Events on CLV

Continuously Improving Downstream Impact Estimation

Proposition: optimising for the right thing badly is better than optimising for lots of different wrong things well.

How might we manage this process to move as quickly as possible from quick and dirty estimates of the downstream impact of what we can measure with minimal assumptions/research to a full featured and automatically updating catalog of events' downstream impact

Get Started Quick and Dirty

Ex: Stability Controlled Quas-Experiment (Hazlett 2019). Allows plausible average treatment effect on treated (ATT) with ~4 easily queried numbers. Manual work is required to define "plausible" baseline trend. Limited estimation heterogeneity.

Scale and Improve

Ex: Statistical Surrogacy (Athey et al. 2020 and Eckles et al. 2020). Utilises data generated by known process—short-term A/B tests—estimate proxy events' long-run impact. Could be automatically updated over time with more experiments (on even "unrelated" products).

In Production for Customers

Causal Machine Learning

Causal ID <> ML

If we can reformulate P(y|x',y')

as a set of prediction problems P(y|x)

we can take full advantage of machine/deep learning methods.

Ex 1. Controlled Rollouts

For Weave, we gradually expose products to bigger audiences. But no opportunity to A/B test.

Ex 1. Controlled Rollouts

Need some way to measure uplift with historical and cross-market data.

Estimating Weave Uplift

Causal Identification

$$ATT = E[KPI_{t \ge CW35}^{W=1} - KPI_{t \ge CW35}^{W=0} | W = 1]$$

$$E[KPI_{t \ge CW35}|W = 0, \{KPIj\}_{j=0}^{CW34}]$$

"I just ran hundreds of prediction models" -- Patrick Doupe

Ex 2. Surrogates of Long-run lift

Causal Identification

Effect Estimation

Estimated lift =
$$\hat{f}(KPI_1) - \hat{f}(KPI_2)$$

$$h_O(s,x) = \mathbf{E}_O[Y_{O,i} \mid S_{O,i} = s, X_{O,i} = x]$$

Sources of bias

Self-Selection Bias

Limitations (see <u>Bareinboim, Tian, and Pearl</u> 2014, 2411–2112)

Attribution Modelling

Attribution Modelling

X1 is not observed, even after the customer registers/logs in.

Understand and Mitigate

Our objective is to understand this selection bias and find mitigation strategies (both statistical and product)

SUTVA

Stable Unit Treatment Value Assumption (SUTVA)

Most causal models assume no interference between individuals under treatment.

If there is interference, we get biased causal estimates.

SUTVA Violations

Interference Networks/Spillovers

Treatment (*d*) impacts outcome for treated unit and others.

Think: social networks, markets

Requires new randomisation schemes and estimators

Information efficient inference

Learning is costly

Variance Reduction

Rapid Experiments

Adaptive Experiments

Bandits are an information efficient way to learn "best" treatment.

But they use biased assignment, biasing incremental effect estimates.

Adaptive Experimentation (e.g. bandits with causal estimators)

