ГРУППЫ И ИХ ПРОСТЕЙШИЕ СВОЙСТВА

В этой лекции мы вводим понятия группы, подгруппы, порядка групп, подгрупп и элементов, и приводим первые примеры.

§ 1. Группы

Определение. Непустое множество G называется **группой**, если на нем задана бинарная операция $G \times G \longrightarrow G$, $(x,y) \mapsto xy$, обладающая следующими тремя свойствами:

- **G1.** Ассоциативность: (xy)z = x(yz) для любых $x, y, z \in G$;
- **G2.** Существование нейтрального элемента: существует $e \in G$ такой, что xe = x = ex для любого $x \in G$:
- **G3.** Существование обратного элемента: для любого $x \in G$ существует обратный элемент $x^{-1} \in G$ такой, что $xx^{-1} = e = x^{-1}x$.

Бинарная операция на G, превращающая G в группу, называется **групповым законом**. Мощность |G| группы G обычно называется ее **порядком**. Группа G, содержащая конечное число элементов, называется **конечной**. В противном случае группа G называется **бесконечной**.

Определение. Говорят, что элементы x и y группы G коммутируют, если xy = yx. Группа, в которой любые два элемента коммутируют, называется коммутативной или абелевой.

Иными словами, в абелевой группе в дополнение к аксиомам G1–G3 выполняется аксиома G4. Коммутативность: xy = yx для любых $x, y \in G$.

Абелевы группы названы так в честь Нильса Абеля, который доказал разрешимость в радикалах уравнений с абелевой группой Галуа. Абелевы группы обычно записываются аддитивно, так что вместо xy пишется x+y, 0 вместо e и -x вместо x^{-1} . Термин абелева группа в этом смысле был впервые употреблен в 1882 году Генрихом Вебером.

Некоторые свойства групп можно вывести уже непосредственно из определения группы. Например, из свойства G1 несложно вывести следующее утверждение.

Упражнение 1. Пусть G – группа, n – натуральное число и g_1, \ldots, g_n – элементы группы G. Тогда произведение $g_1g_2\ldots g_n$ не зависит от расстановки скобок в этом выражении.

Приведем три простейших свойства обратных элементов, которые в дальнейшем постоянно используются без явных ссылок:

Предложение 1. Пусть G – группа, $x, y \in G$. Тогда

- 1. элемент, обратный κ x, существование которого гарантируется свойством G3, является единственным
- 2. $(xy)^{-1} = y^{-1}x^{-1}$
- 3. $(x^{-1})^{-1} = x$.

Доказательство. Действительно, пусть x^{-1} и x' два элемента группы G такие, что $xx^{-1}=x^{-1}x=e=xx'=x'x$. Но тогда

$$x' = x'e = x'(xx^{-1}) = (x'x)x^{-1} = ex^{-1} = x^{-1}.$$

Для доказательства второго утверждения достаточно заметить, что $(y^{-1}x^{-1})(xy) = y^{-1}(x^{-1}x)y = y^{-1}ey = y^{-1}y = e$. А значит $y^{-1}x^{-1}$ по определению является элементом, обратным к xy. Аналогично, $xx^{-1} = e$, значит также по определению x является элементом, обратным к x^{-1} , а такой элемент, как мы уже знаем, единственный.

Обратите внимание на порядок множителей во втором утверждении предложения выше. Если две операции не коммутируют, то он весьма существен. Надевают обычно сначала пиджак, а потом пальто, а снимают, соответственно, наоборот, сначала пальто, и только потом пиджак. С другой стороны, если два преобразования коммутируют, как, например, надевание левой и правой перчаток, то коммутируют и обратные к ним преобразования, так что снимать их можно в произвольном порядке.

§ 2. Первые примеры групп

Много примеров групп встречалось уже в школьном курсе математики. Тем не менее, некоторые примеры из приведенных ниже, могут быть непонятны начинающему. Если это произошло с вами, не паникуйте!

Примеры абелевых групп

- Аддитивные группы чисел. Числовые множества \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} образуют группы по сложению. Иногда чтобы подчеркнуть, что речь идет именно об аддитивных структурах на этих множествах, пишут \mathbb{Z}^+ , \mathbb{Q}^+ и т. д. Эти группы называются аддитивными группами целых, рациональных, вещественных и комплексных чисел, соответственно.
- Мультипликативные группы чисел. Множества ненулевых рациональных, вещественных или комплексных чисел \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* образуют группы по умножению, называемые мультипликативными группами рациональных, вещественных и комплексных чисел, соответственно.
- Мультипликативные группы чисел, cont. Множества $\mathbb{Q}_{>0} = \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x > 0\}$ и $\mathbb{R}_{>0} = \mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$ положительных рациональных и вещественных чисел представляют собой группы по умножению.
- Группа углов (circle group). Множество $\mathbb T$ комплексных чисел модуля 1 также представляет собой группу по умножению. Заметим, впрочем, что операция в этой группе (группе поворотов эвклидовой плоскости или группе углов) обычно записывается **аддитивно**, что согласуется со следующей ее интерпретацией. Группа $\mathbb T$ истолковывается как аддитивная группа вещественных чисел $\mathbb R^+$ по модулю $2\pi\mathbb Z$ (читается целые кратные 2π). Иными словами, $\mathbb T$ представляется как полуинтервал $[0,2\pi)$, операция сложения \oplus на котором определяется следующим образом: если $x+y<2\pi$, то $x\oplus y=x+y$, а если $x+y\geq 2\pi$, то $x\oplus y=x+y$. В действительности, конечно, операция в $\mathbb T$ записывается обычным знаком + (сложение углов). Подробнее эта конструкция будет обсуждаться в лекции о фактор-группах.
- Группа корней из 1. Этот пример будет понятен тем, кто уже знаком с понятием комплексного корня из 1. Мультипликативная группа $\{1\}$ состоит из одного элемента, а $\{\pm 1\}$ из двух. Вообще, корни n-й степени из 1 в поле $\mathbb C$ комплексных чисел образуют группу по умножению, обозначаемую обычно μ_n . Эти группы конечны.
- Булева группа. Множество 2^X подмножеств в X является группой относительно симметрической разности (ака булевой суммы) Δ . При этом нейтральный элемент этой операции равен \emptyset , а $Y\Delta Y=\emptyset$, так что каждый элемент является обратным сам себе.
- Векторные группы. Пусть снова K обозначает одно из полей $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ в школьной программе обычно рассматривался случай $K=\mathbb{R}$. Если рассмотреть n-мерное векторное пространство $V=K^n$ и забыть о том, что векторы можно умножать на скаляры, а оставить на V только аддитивную структуру (сложение векторов), то V называется **векторной группой** (vector group). Как мы узнаем в одной из последующих лекций, она является прямой суммой n экземпляров аддитивной группы K^+ .
- Группы трансляций. Группу V можно заставить действовать на себе, а именно, каждому вектору $u \in V$ сопоставляется аффинное преобразование $T_u : V \longrightarrow V, v \mapsto v + u$, называемое трансляцией, или параллельным переносом. Группа $T(V) = \{T_u \mid u \in V\}$ называется группой трансляций. В случае, когда $K = \mathbb{R}$, группа T(V) состоит из эвклидовых движений пространства V.

Примеры неабелевых групп

Предшествующие примеры дают совершенно превратное представление о том, что такое группа — группы, фигурирующие во всех этих примерах, абелевы. В действительности, группа гораздо больше похожа не на множество чисел, а на множество взаимно однозначных преобразований чего-то, сохраняющих, быть может, какую-то дополнительную структуру. Следующий пример архетипичен, как мы вскоре увидим, каждая группа есть множество преобразований.

• Симметрическая группа. Пусть G — множество всех взаимно однозначных отображений множества X на себя. Тогда G является группой относительно композиции, называемой симметрической группой множества X и обозначаемой S_X или S(X) (symmetric group). В самом деле, как мы знаем, композиция отображений ассоциативна; композиция двух биекций снова является биекцией; тождественное отображение является биекцией и служит нейтральным элементом композиции и, наконец, любая биекция ображение заможение в поставление в поставление

тима, причем обратное отображение также является биекцией. Мы посвятим изучению симметрической группы конечного множества отдельную лекцию. Заметим, что в случае $|X| \ge 3$ эта группа некоммутативна. В частности, при n=3 получаем **группу симметрий правильного треугольника** S_3 порядка 6 — самую маленькую неабелеву группу.

- Группы преобразований. Специализируя этот пример, т.е. рассматривая не все биекции X на себя, а только те, которые сохраняют имеющуюся на X структуру (например, алгебраическую, геометрическую, топологическую, или какую-то их комбинацию), можно получить множество новых примеров групп. Эти примеры будут постоянно возникать далее в нашем курсе.
- Группа кватернионов. Рассмотрим группу Q, состоящую из 8 элементов $\{\pm 1, \pm i, \pm j, \pm k\}$; причем +1=1 действительно действует как единица группы, квадраты всех отличных от ± 1 элементов равны -1, знаки подчиняются обычному правилу (т.е., например, (-i)(-k)=ik), а попарно различные i,j,k умножаются как орты \mathbb{R}^3 относительно векторного умножения: $ij=-ji=k,\ jk=-kj=i,\ ki=-ik=j$. Так определенное умножение ассоциативно, а все элементы обратимы, например, $i^{-1}=-i$ и, соответственно, $(-i)^{-1}=i$. Группа Q обычно называется группой кватернионов (quaternion group, Quaternionengruppe), хотя правильнее называть ее группой кватернионных единиц. Эта группа была использована Гамильтоном в 1842 году при построении тела кватернионов \mathbb{H} .
- ullet Полная линейная группа. Пусть K поле, например, $K=\mathbb{Q},\mathbb{R},\mathbb{C}.$ Тогда множество

$$GL(n, K) = \{ q \in M(n, K) \mid \det(q) \neq 0 \}$$

всех невырожденных матриц порядка n над полем K является группой относительно умножения, называемой **полной линейной группой** степени n над K. Обозначение $\mathrm{GL}(n,K)$ является сокращением английского General Linear group.

Для читателей, не знакомых с линейной алгеброй, определим полную линейную группу степени 2 явно. Назовем матрицей порядка 2 упорядоченную четверку A=(a,b,c,d) элементов поля K, традиционно записываемую в виде квадратной таблицы $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Назовем определителем $\det(A)$ матрицы A элемент

поля K, вычисляемый как ad-bc. Умножение матриц $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ и $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ зададим следующей формулой

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}.$$

Упражнение 2. Докажите, что множество

$$\mathrm{GL}(2,K) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in K, \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \neq 0 \right\}$$

образует группу относительно операции умножения, введенной выше. При этом нейтральным элементом этой группы является матрица $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, а обратный элемент вычисляется следующим образом

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

• Линейные группы, cont. Мы можем специализировать предыдущий пример, рассмотрев не все матрицы данного порядка, а лишь удовлетворяющие определенному свойству. Несложно видеть, что следующие множества матриц образуют группы относительно матричного умножения и обращения матриц,

введенных в предыдущем пункте:

$$\begin{split} &\mathrm{SL}(n,K) = \{g \in M(n,K) \mid \det(g) = 1\} \\ &\mathrm{SL}(2,K) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in K, ad - bc = 1 \right\} \\ &\mathrm{D}(2,K) = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \mid a,d \in K \setminus \{0\} \right\} \\ &\mathrm{B}(2,K) = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a,b,d \in K, ad \neq 0 \right\} \\ &\mathrm{U}(2,K) = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in K \right\}. \end{split}$$

Группа SL(n,K) называется специальной линейной группой порядка n над полем K, группы D(2,K), B(2,K) и U(2,K) – группами диагональных, верхнетреугольных и верхних унитреугольных матриц, соответственно.

§ 3. Подгруппы

Определение подгруппы

Определение. Подмножество $H\subseteq G$ называется **подгруппой** в G, если оно само является группой относительно тех же операций. Иными словами, для того, чтобы H было подгруппой, необходимо выполнение следующих трех условий:

- i) $h, g \in H \Longrightarrow hg \in H$,
- ii) $h \in H \Longrightarrow h^{-1} \in H$,
- iii) $e \in H$.

Обычно эти свойства вербализуют следующим образом: подгруппа **замкнута** относительно произведения, перехода к обратному и нейтрального элемента. Чтобы подчеркнуть, что H является подгруппой в G, а не просто подмножеством, в этом случае вместо $H \subseteq G$ обычно пишут $H \le G$. Запись $G \ge H$ имеет тот же смысл, что и $H \le G$, любая группа G, содержащая H в качестве подгруппы, называется надгруппой H.

Непустое подмножество группы, удовлетворяющее условию і) называется подполугруппой, а условию іі) — симметричным подмножеством. Условия і) и іі) независимы. Пусть, например, $G = \mathbb{Z}^+$ — аддитивная группа целых чисел. Тогда \mathbb{N}^+ является подполугруппой в \mathbb{Z}^+ , а $\{\pm 1\}$ — симметричным подмножеством, но, очевидно, ни то ни другое множество не является подгруппой. Для конечных групп аналог первого из этих примеров построить не удастся.

Произведение подмножеств группы.

Пусть $X,Y\subseteq G$ — два подмножества группы. Тогда **произведением** XY называется их *произведение по Минковскому*

$$XY = \{xy \mid x \in X, y \in Y\}.$$

Аналогично, множество

$$X^{-1} = \{x^{-1} \mid x \in X\}$$

— это **обратное по Минковскому** к множеству X.

В терминах этих операций определение подгруппы выглядит следующим образом. Условие i) означает, что $HH \subseteq H$, а условие ii) — что $H^{-1} \subseteq H$. Разумеется, если для непустого множества H выполнены оба эти условия, то включения здесь можно заменить на равенства, так как тогда $1 \in H$. На самом деле несложно видеть, что достаточно даже требовать лишь выполнения включения $HH^{-1} \subseteq H$.

Первые примеры подгрупп.

Приведем несколько примеров подгрупп.

 \bullet Тривиальная и несобственная подгруппы. В каждой группе G есть по крайней мере две подгруппы.

А именно, очевидно, что $\{e\} \leq G$. Эта подгруппа называется **тривиальной** и часто обозначается просто e или 1, а в случае аддитивной записи, естественно, 0; обычно это не ведет к недоразумениям. Столь же очевидно, что $G \leq G$. Эта подгруппа называется **несобственной**. Все подгруппы H < G, отличные от G, называются **собственными**. Подгруппы 1 и G называются **очевидными** подгруппами группы G. Заметим, что в случае G = 1 эти подгруппы совпадают.

- Любая подгруппа в \mathbb{Z}^+ имеет вид $m\mathbb{Z}$ для некоторого $n \in \mathbb{Z}$.
- Знакопеременная группа является подгруппой симметрической группы: $A_n \leq S_n$.
- Транзитивность. Пусть $F \leq H \leq G$. Тогда $F \leq G$. В частности, $\mathbb{Z}^+ \leq \mathbb{Q}^+ \leq \mathbb{R}^+ \leq \mathbb{C}^+$ являются полгруппами в \mathbb{C}^+ .
- Положительные числа. Произведение двух положительных чисел положительно, обратное к положительному числу положительно, поэтому $\mathbb{R}_+ = \{\lambda \in \mathbb{R} \mid \lambda > 0\}$ подгруппа в \mathbb{R}^* .
- \bullet Подгруппы Q. Всего в группе кватернионов Q имеется 6 подгрупп, из которых следующие 4 неочевидные:

$$\{\pm 1\}, \{\pm 1, \pm i\}, \{\pm 1, \pm j\}, \{\pm 1, \pm k\}.$$

• Пересечения подгрупп. Несложно видеть, что если $H, F \leq G$, то и $F \cap H$ является подгруппой в G. На самом деле, пересечение любого (не обязательно конечного) семейства подгрупп является подгруппой.

§ 4. Центр, централизатор и нормализатор

Центр группы.

Множество элементов, коммутирующих со всеми элементами G, называется **центром** группы G и обозначается C(G) (от английского **centre** или американского **center**):

$$C(G) = \{ g \in G \mid \forall x \in G, gx = xg \}.$$

Также употребительно обозначение Z(G) (от немецкого Zentrum). Элементы C(G) называются **центральными**. Легко видеть, что $C(G) \leq G$. В действительности, как мы узнаем в лекции о нормальных подгруппах, центр является даже *нормальной* подгруппой, $C(G) \leq G$. Любая подгруппа $H \leq C(G)$ называется **центральной подгруппой** в G. Группа G в том и только том случае абелева, когда G = C(G). Группа G, для которой C(G) = 1, называется группой **с тривиальным центром**.

Централизатор элемента.

Пусть $x \in G$. Определим **централизатор** элемента x в группе G следующим образом:

$$C_G(x) = \{ g \in G \mid gx = xg \}.$$

Легко проверить, что $C_G(x) \leq G$.

Лемма 2. Для любого $x \in G$ имеем $C_G(x) \leq G$.

Доказательство. В самом деле, x1=x=1x, поэтому $C_G(x)$ содержит 1. Если $h,g\in C(G)$, то (hg)x=h(gx)=h(xg)=(hx)g=(xh)g=x(hg), так что $hg\in C(G)$. С другой стороны, если $h\in C(G)$, то умножая равенство hx=xh на h^{-1} справа и слева, получаем $xh^{-1}=h^{-1}x$, так что $h^{-1}\in C(G)$.

Отсюда, конечно, сразу следует, что $C(G) \leq G$. В самом деле, $C(G) = \bigcap C_G(x)$, где пересечение берется по всем $x \in G$.

Задача 3. Убедитесь, что если $H \leq G$, $x \in H$ и $g \in G$, то i) $C_G(x^g) = C_G(x)^g$, ii) $C_H(x) = G_G(x) \cap H$.

Централизатор подмножества.

Пусть теперь $X \subseteq G$ – любое подмножество в G. Определим **централизатор** X как $C_G(X) = \bigcap C_G(x)$, где пересечение берется по всем $x \in X$. Иными словами, $C_G(X)$ состоит из всех элементов, *поэлементно* коммутирующих с X:

$$C_G(X) = \{ g \in G \mid \forall x \in X, gx = xg \}.$$

Так как пересечение любого семейства подгрупп само является подгруппой, $C_G(X)$ — подгруппа в G.

Нормализатор подмножества.

Пусть снова $X \subseteq G$ — любое подмножество в G. Определим **нормализатор** X как множество элементов, которые коммутируют с X e uenom:

$$N_G(X) = \{ g \in G \mid gX = Xg \}.$$

Понятие нормализатора (но не соответствующий термин!) было введено Силовым. Легко убедиться, что $N_G(X)$ подгруппа в G. Совершенно ясно, что для одноэлементных подмножеств нормализатор совпадает с централизатором: если $X = \{x\}$, то $N_G(\{x\}) = C_G(x)$. В общем случае $C_G(X) \leq N_G(X)$.

§ 5. Порядок элемента и экспонента группы

Если G – любая группа, то мы можем определить степень любого элемента $g \in G$ с любым целым показателем. В самом деле, положим $g^0 = e$ и $g^n = g^{n-1}g$, $n \in \mathbb{N}$. Далее для любого $n \in \mathbb{N}$ мы можем дополнительно положить $g^{-n} = (g^{-1})^n = (g^n)^{-1}$. Ясно, что для любых $m, n \in \mathbb{Z}$ имеет место равенство $g^{m+n} = g^m g^n$. Таким образом, множество $\{g^n \mid n \in \mathbb{Z}\}$ всех степеней элемента g в действительности образует подгруппу группы G. Так как любая подгруппа, содержащая g обязана содержать также все степени g, то это наименьшая подгруппа, содержащая g. Эта подгруппа обозначается $\langle g \rangle$ и называется **циклической подгруппой** в G, порожденной элементом g.

Порядок $|\langle g \rangle|$ циклической подгруппы $\langle g \rangle$ обозначается через o(g) или $\operatorname{ord}(g)$ (от английского $\operatorname{order})$ и называется порядком элемента g. Иными словами, o(g) это либо наименьшее натуральное число n такое, что $g^n=1$, либо ∞ . Если порожденная g подгруппа бесконечна, то говорят, что g — элемент бесконечного порядка и пишут $o(g)=\infty$, в противном случае g называется элементом конечного порядка. Группа G называется периодической, или группой кручения, если все ее элементы имеют конечный порядок. Группа G называется группой без кручения, если все ее неединичные элементы имеют бесконечный порядок.

Задача 4. Докажите, что если $g^m = 1$, то o(g)|m.

Решение. Деление с остатком в \mathbb{Z} . Если $o(g) \nmid m$, то поделив m с остатком на o(g), мы видим, что $m = q \cdot o(g) + r$, где 0 < r < o(g). Тогда $1 = g^m = (g^{o(g)})^q g^r = g^r$, что противоречит минимальности o(g).

Теорема 3. Пусть G — произвольная группа, $g \in G$, o(g) = n. Тогда порядок элемента g^m равен $n/\gcd(m,n)$.

Доказательство. Как мы только что выяснили, порядок элемента g^m — это наименьшее натуральное число k такое, что $(g^m)^k = g^{mk} = e$. Так как o(g) = n, это означает, что n|mk, или, что то же самое, nq = mk для некоторого $q \in \mathbb{Z}$. Последнее равенство можно сократить на $d = \gcd(m,n)$ и заключить, что (n/d)q = (m/d)k, т.е. (n/d)|(m/d)k. Так как $\gcd(m/d,n/d) = 1$, отсюда следует, что k делится на n/d. Но наименьшее натуральное число с таким свойством и есть n/d, таким образом, действительно, $o(g^m) = n/\gcd(m,n)$.

Наименьшее $m \geq 1$ такое, что $g^m = 1$ для всех $g \in G$, называется **экспонентой** или **показателем** группы G. Такого m может не существовать, но если оно существует, то говорят, что группа G имеет **конечную экспоненту** или **конечный показатель**. Для этого необходимо, чтобы порядки всех элементов были ограничены в совокупности. В этом случае экспоненту можно определить также как наименьшее общее кратное порядков элементов группы G.

§ 6. Подгруппа, порожденная подмножеством

В этом параграфе мы изложим важный общий метод построения подгрупп.

Определение. Пусть $X \subseteq G$. Наименьшая подгруппа в G, содержащая X, называется **подгруппой, порожденной** X и обозначается $\langle X \rangle$.

Так как пересечение любого множества подгрупп снова является подгруппой, то $\langle X \rangle$ действительно существует, достаточно взять пересечение scex подгрупп в G, содержащих X. Эта подгруппа допускает вполне конкретное описание, подобное тому, которое дано в предыдущем пункте для циклической подгруппы. А именно, для любого подмножества $Y \subseteq G$ обозначим через Y^n множество всех произведений элементов множества Y по n штук:

$$Y^n = \{y_1 \dots y_n \mid y_i \in Y\}.$$

Тем самым $Y^0 = \{e\}$, $Y^1 = Y$, $Y^2 = YY$ и т. д. Обозначим через M(Y) множество **всевозможных** произведений образующих Y, т. е. $M(Y) = \bigcup Y^n$, $n \in \mathbb{N}_0$.

Теорема 4. Для любого подмножества $X \subseteq G$

$$\langle X \rangle = M(X \cup X^{-1}) = \{x_1 \dots x_n \mid x_i \in X \cup X^{-1}, n \in \mathbb{N}_0\}.$$

Доказательство. Докажем вначале, что подгруппа $\langle X \rangle$ содержится в $H = M(X \cup X^{-1})$. Для этого заметим, что H — подгруппа, содержащая X. В самом деле, по условию e является пустым произведением и, следовательно, принадлежит H. С другой стороны, если $u = x_1 \dots x_m$ и $v = y_1 \dots y_n$ — два каких-то элемента H, то $uv = x_1 \dots x_m y_1 \dots y_n$ также принадлежит H. Тем самым, $HH \subseteq H$. Далее, для $u = x_1 \dots x_m$ имеем $u^{-1} = x_m^{-1} \dots x_1^{-1}$. Тем самым, $H^{-1} = H$. Это и значит, что H есть подгруппа. Так как по определению $\langle X \rangle$ — наименьшая среди всех подгрупп, содержащих X, то $\langle X \rangle \leq H$.

Обратно, пусть теперь F — любая подгруппа, содержащая X. Тогда $X^{-1} \subseteq F^{-1} = F$. Тем самым F содержит все слова длины ≤ 1 в образующих $X \cup X^{-1}$. Далее рассуждаем индукцией по длине слова. Любое слово $w \in (X \cup X^{-1})^n$ длины $n \geq 2$ в образующих $X \cup X^{-1}$ имеет вид w = ux, где $u \in (X \cup X^{-1})^{n-1}$ — слово длины n-1 в тех же образующих, а $x \in X \cup X^{-1}$. По индукционному предположению $u \in F$, а по базе индукции $x \in F$. Тем самым $w = ux \in FF \subseteq F$. Но это значит, что $F \geq H$. Поскольку это верно для любой подгруппы, содержащей X, то $\langle X \rangle \geq H$.

Задача 5. Пусть X состоит из элементов конечного порядка. Докажите, что тогда

$$\langle X \rangle = M(X) = \{x_1 \dots x_n \mid x_i \in X, n \in \mathbb{N}_0\}.$$

Задача 6. Пусть H < G. Покажите, что $\langle G \setminus H \rangle = G$.

§ 7. Циклические группы и их подгруппы

Напомним, что группа G называется **циклической**, если она порождается одним элементом. Иными словами, это означает, что найдется такое $g \in G$, что каждый элемент группы G является степенью g, т. е. $G = \{g^n, n \in \mathbb{Z}\}$. По существу циклические группы изучали де Ферма, Эйлер и Гаусс, в связи с задачами теории чисел. Однако, явным образом класс циклических групп выделил только Кэли в 1891 году, он и придумал название cyclical group. Но, конечно, ϕ актически следующий результат был известен еще Эйлеру.

Теорема 5. Каждая подгруппа циклической группы $G = \langle g \rangle$ является циклической.

Доказательство. Пусть $H \leq G$. Если H = e, то она циклическая. Пусть поэтому $H \neq e$ и $g^m \in H$ для некоторого $m \neq 0$. Заменяя, если нужно, m на -m, можно считать, что $m \in \mathbb{N}$. Пусть $d \in \mathbb{N}$ — наименьшее натуральное число такое, что $g^d \in H$. Покажем, что тогда $H = \langle g^d \rangle$. В самом деле, пусть $g^m \in H$ для какого-то $m \in \mathbb{Z}$. Поделим m с остатком на d: m = qd + r, $0 \leq r < d$. Тогда $g^r = g^m(g^{qd})^{-1} \in H$, что противоречит минимальности d, если $r \neq 0$. Значит, r = 0 и все элементы H являются степенями g^d . \square

Отметим следующий важнейший частный случай этой теоремы.

Следствие 6. Каждая подгруппа аддитивной группы $\mathbb Z$ имеет вид $n\mathbb Z$ для некоторого $n\in\mathbb N_0$.

Если порядок $G=\langle g\rangle$ равен n, то $g^n=e$. Вообще, пусть $g^k=g^l$ для некоторых $k,l\in\mathbb{Z}$. Тогда $e=g^k(g^l)^{-1}=g^{k-l}$, так что k-l делится на n или, что то же самое, $k\equiv l\pmod n$. Это значит, что в этом случае $G=\{e=g^0,g,g^2,\ldots,g^{n-1}\}$. Это значит, что **порядок о(g) элемента** $g\in G$ может быть определен как наименьшее натуральное число такое, что $g^n=e$, или $o(g)=\infty$, если такого натурального числа не существует.

Рассмотрим теперь элемент g^m конечной циклической группы $G=\langle g \rangle$ и выясним, какую подгруппу он порождает. Так как $g^0=e$, можно считать, что $m\neq 0$. Так как образующими циклической группы G порядка n являются те и только те элементы, порядок которых равен n, мы сразу получаем такую характеризацию функции Эйлера φ , равную по определению количеству натуральных чисел, меньших n, взаимно-простых с n.

Следствие 7. Конечная циклическая группа $G = \langle g \rangle$ порядка n содержит $\varphi(n)$ образующих. Образующими G являются те и только степени g^m элемента g, для которых $\gcd(m,n) = 1$.

Следствие 8. Пусть $G = \langle g \rangle$ есть конечная циклическая группа порядка n. Тогда для каждого делителя d числа n в группе G существует единственная подгруппа порядка d.

Доказательство. Пусть $d\mid n$, тогда $g^{n/d}$ порождает подгруппу порядка d. Обратно, пусть H — произвольная подгруппа порядка d. Для d=1 доказывать нечего, поэтому в дальнейшем мы считаем, что $H\neq e$. Согласно теореме 1 мы уже знаем, что H циклическая, значит, $H=\langle g^m\rangle$ для некоторого m. По теореме порядок подгруппы, порожденной g^m , равен $d=n/\gcd(m,n)$. В частности, $(n/d)\mid m$. Это значит, что $H=\langle g^m\rangle$ содержится в подгруппе, порожденной $g^{n/d}$, но, так как их порядки совпадают, $H=\langle g^{n/d}\rangle$. \square

§ 8. Смежные классы

Сейчас мы введем одно из ключевых понятий теории групп, которое первым рассматривал Эварист Галуа.

Определение. Левым смежным классом G по подгруппе H называется любое множество вида $Hx = \{hx \mid h \in H\}$, где $x \in G$. При этом x называется **представителем** класса Hx. Аналогично, множество $xH = \{xh \mid h \in H\}$ называется **правым смежным классом** G по H с представителем x.

Через $H \setminus G = \{Hx \mid x \in G\}$ обозначается множество всех *левых* смежных классов G по H, а через $G/H = \{xH \mid x \in G\}$ — множество всех *правых* смежных классов.

Сейчас мы покажем, что смежные классы по подгруппе H задают разбиение группы G. Напомним, что разбиением множества X называется его представление в виде объединения попарно непересекающихся непустых подмножеств.

Теорема 9. Группа G является дизъюнктным объединением всех различных левых (или правых) смежных классов по подгруппе H.

Доказательство. Так как $x \in Hx$, то $G = \bigcup Hx$, где объединение берется по всем $Hx \in H\backslash G$. Таким образом, нужно лишь показать, что это объединение дизъюнктно. В самом деле, пусть Hx и Hy - два смежных класса G по H. Предположим, что $Hx \cap Hy \neq \emptyset$. Это значит, что найдется $z \in Hx \cap Hy$, т.е. найдутся такие $h,g \in H$, что z = hx = gy. Тем самым $y = g^{-1}(hx) = (g^{-1}h)x$, так что $y \in Hx$. Поэтому $Hy \subseteq H(Hx) = (HH)x = Hx$. Точно так же проверяется и включение $Hx \subseteq Hy$. Таким образом, окончательно, Hx = Hy. Тем самым, никакие два различных левых смежных класса не пересекаются, что и утверждалось. Доказательство для правых классов совершенно аналогично.

Эта теорема означает, что

$$G = | Hx, \quad Hx \in H \backslash G.$$

Разбиение на левые смежные классы G по H называется разложением группы G по подгруппе H (Nebenklassenzerlegung, coset decomposition). Одним из смежных классов является сама подгруппа H=H1=1H. Из наличия сокращения в группе сразу следует, что для каждого $x\in G$ отображение $H\longrightarrow Hx,\, h\mapsto hx$, задает биекцию H на смежный класс Hx, так что, в частности, |Hx|=|H|. Из только что доказанной теоремы вытекает, что для любого $x\notin H$ класс Hx не пересекается с H и, значит, не является подгруппой.

Задача 7. Пусть $H \leq G$. Докажите, что если $G \setminus H$ конечно, то либо G конечна, либо H = G.

Решение. Пусть G бесконечна, $H \neq G$. Если H конечна, то сравнение мощностей показывает, что $G \setminus H$ бесконечно. С другой стороны, если H бесконечна и $g \notin H$, то $G \setminus H$ содержит бесконечный смежный класс gH и, значит, снова бесконечно.

Задача 8. Пусть $F, H \leq G$. Докажите, что если Fx = Hy, то F = H.

Сравнение по модулю подгруппы.

Выше мы построили разбиения G на левые/правые классы смежности по H. Мы знаем, что с каждым разбиением связано некоторое отношение эквивалентности. Опишем получающиеся отношения эквивалентности явно.

Будем говорить, что x и y сравнимы по модулю H слева, и писать $x_H \equiv y$, если Hx = Hy. Это означает, что найдутся такие $h,g \in H$, что hx = gy. Тем самым, $xy^{-1} = h^{-1}g \in H^{-1}H = H$. С подгруппой H связано и второе отношение эквивалентности, сравнимость по модулю H справа: $x \equiv_H y$, если xH = yH. Легко видеть, что xH = yH эквивалентно включению $x^{-1}y \in H$. Таким образом, мы можем ввести отношение сравнимости по модулю H и не упоминая смежные классы.

Определение. Говорят, что элементы $x, y \in G$ сравнимы по модулю H слева (соответственно, справа), если $xy^{-1} \in H$ (соответственно, $x^{-1}y \in H$).

Из теоремы предыдущего пункта вытекает, что это действительно отношение эквивалентности, но это легко усмотреть и непосредственно из определения подгруппы. Посмотрим, скажем на сравнимость по модулю H слева. Это отношение pedлексивно, так как $xx^{-1} = e \in H$, cимметрично, так как $yx^{-1} = (xy^{-1})^{-1} \in H^{-1} = H$, и mранзитивно, так как $xz^{-1} = (xy^{-1})(yz^{-1}) \in HH = H$.

В случае, когда G коммутативна, Hx = xH так что сравнимости по модулю H слева и справа совпадают. В этом случае обычно говорят просто о сравнимости по модулю H, которая обозначается $x \equiv y \pmod{H}$. В общем случае отношения эквивалентности $H \equiv u \equiv_H$ различны.

§ 9. Индекс подгруппы, теорема Лагранжа

Заметим, прежде всего, что между множеством $H\backslash G$ левых смежных классов и множеством G/H правых смежных классов существует естественная биекция. Наивная попытка установить биекцию посредством $Hx\mapsto xH$ не приводит к желаемому результату, так как это соответствие, вообще говоря, не является корректным определением отображения: из Hx=Hy не следует, что xH=yH. Поэтому приходится поступать чуточку хитрее. Вспомним, прежде всего, определение обратного по Минковскому к множеству X, а именно, $X^{-1}=\{x^{-1}\mid x\in X\}$. Ясно, что $X=Y\Longleftrightarrow X^{-1}=Y^{-1}$. В интересующем нас случае $(Hx)^{-1}=x^{-1}H^{-1}=x^{-1}H$, так что $Hx=Hy\Longleftrightarrow x^{-1}H=y^{-1}H$. Это значит, что сопоставление $Hx\mapsto x^{-1}H$ корректно определяет биекцию $H\backslash G$ на G/H.

Определение. Пусть $H \leq G$. Мощность $|H \setminus G| = |G/H|$ множества смежных классов G по H называется **индексом** подгруппы H в группе G и обозначается |G:H|.

Понятие индекса оказывается особенно полезным в случае, когда множество смежных классов конечно. Если $|G:H|<\infty$, то H называется подгруппой конечного индекса в G.

Определение. Трансверсаль X к отношению сравнимости по модулю H слева/справа называется системой представителей левых/правых смежных классов G по H или, коротко, левой/правой трансверсалью к H в G.

Иными словами, система представителей левых смежных классов G по H — это такое подмножество $X\subseteq G$, что для любого $z\in G$ найдется $x\in X$ такое, что Hz=Hz и из того, что Hx=Hy для некоторых $x,y\in X$ следует, что x=y. С учетом этого определения можно заключить, что $G=\bigsqcup Hx,\ x\in X$. Ясно, что |X|=|G:H|. Аналогично, если Y — система представителей правых смежных классов, то $G=\bigsqcup yH,\ y\in Y$. Эти понятия особенно полезны для подгрупп конечного индекса. Например, если $X=\{x_1,\ldots,x_n\}$ — система представителей левых смежных классов, то группа G представляется в виде дизъюнктного объединения $G=Hx_1\sqcup\ldots\sqcup Hx_n$.

Теорема 10 (Лагранж). Если $H \leq G$, то |G| = |H||G : H|.

Доказательство. Как всегда, правильный способ доказательства равенства двух кардинальных чисел состоит в установлении биекции между некоторыми множествами. В самом деле, пусть X — любая система представителей левых смежных классов. Тогда |G:H|=|X|. Мы утверждаем, что отображение $H\times X\longrightarrow G,\ (h,x)\mapsto hx$ представляет собой биекцию. В самом деле, $G=\cup Hx,\ x\in X$, так что это отображение сюръективно. С другой стороны, если для некоторых $h,g\in H,\ x,y\in X$ имеет место равенство hx=gy, то Hx=Hy, и, значит, по определению трансверсали x=y. Сокращая равенство hx=gx на x справа, получаем h=g. Но это и значит, что $|G|=|H\times X|=|H||X|=|H||G:H|$.

Этот результат особенно важен для конечных групп, где из него вытекает важнейшее арифметическое ограничение на подгруппы.

Следствие 11. Пусть G — конечная группа, $H \leq G$. Тогда порядок G делится на порядок H.

В частности, применяя это следствие к циклическим подгруппам, мы видим, что порядок o(g) любого элемента конечной группы делит порядок |G| этой группы.

Следствие 12 (теорема Ферма). Пусть G — конечная группа, $g \in G$. Тогда $g^{|G|} = e$.

Теорема Лагранжа допускает следующее естественное обобщение, называемое общей теоремой об индексе (allgemeiner Indexsatz).

Теорема 13. Если $F \le H \le G$, то |G:F| = |G:H||H:F|.

Доказательство. План доказательства этой теоремы точно такой же, как в теореме Лагранжа. А именно, пусть X — система представителей левых смежных классов H по F, а Y — система представителей левых смежных классов G по H. Мы утверждаем, что XY является системой представителей левых смежных классов G F, а отображение $X \times Y \longrightarrow XY$, $(x,y) \mapsto xy$, устанавливает биекцию прямого произведения множеств X и Y с их произведением по Минковскому. Тем самым,

$$|G:F| = |XY| = |X \times Y| = |X||Y| = |H:F||G:H|,$$

что и доказывает теорему.

Проверим теперь высказанные в предыдущем абзаце утверждения. По условию $G=\bigcup Hy, y\in Y$, и $H=\bigcup Fx, x\in X$. Подставляя выражение для H из второй формулы в первую и пользуясь ассоциативностью, получаем, что $G=\bigcup F(xy), (x,y)\in X\times Y$. Поэтому нам осталось лишь доказать, что если $Fx_1y_1=Fx_2y_2$ для некоторых $x_1,x_2\in X$ и $y_1,y_2\in Y$, то $x_1=x_2$ и $y_1=y_2$. В самом деле, пусть $Fx_1y_1=Fx_2y_2$. Так как $x_1,x_2\in X\subseteq H$, это означает, что $Hy_1\cap Hy_2\neq\emptyset$. По теореме пункта 2 тогда $Hy_1=Hy_2$, и, значит, $y_1=y_2=y$ по определению трансверсали. Сокращая равенство $Fx_1y_1=Fx_2y_2$ на y справа, получаем $Fx_1=Fx_2$, так что, снова по определению трансверсали, $x_1=x_2$, что и требовалось доказать.

Теорема Лагранжа получается как частный случай этой теоремы в случае F=1.