	$\mathbf{the} \mathbf{DT} \frac{\mathbf{corner}}{N/N: \lambda x. x} \mathbf{rooms} \mathbf{NNS} \mathbf{which} \mathbf{RB} \\ \frac{\mathbf{DT}}{N/N: \lambda x. (\mathbf{corner}_{0.0}, x)} \frac{\mathbf{N}: \mathbf{room}_{0.0}}{N: \mathbf{room}_{0.0}} > \frac{\mathbf{WDT}}{(N/N)/(S_{dcl} \setminus NP): \lambda x. \lambda y. ((x \ y)^{\sim 2})} \\ \mathbf{of} \frac{\mathbf{N}}{N} \mathbf{N}: $		$ \frac{\text{Michigan}}{\text{NNP}} \frac{\text{Ave}}{\text{NNP}} \qquad \frac{\text{Ave}}{\text{NNP}} \qquad \frac{\text{the}}{\text{NNP}} \qquad \frac{\text{Wrigley}}{\text{NNP}} \qquad \frac{\text{building}}{\text{NNP}} \\ \frac{NNP}{\text{NNP}} \qquad \frac{\text{NNP}}{\text{NNP}} \qquad \frac{\text{and}}{\text{CC}} \qquad \frac{\text{DT}}{N/N:\lambda x.(\text{Wrigley}_{0.0},x)} \qquad \frac{N: \text{Wrigley}_{0.0}, \text{building}_{0.0}}{N: \text{Wrigley}_{0.0}, \text{building}_{0.0}} \\ \frac{N: \text{Michigan}_{0.0}, \text{Ave}_{0.0}}{N: \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac{\text{CC}}{(NP_{nb}\backslash NP_{nb})/NP_{nb}:\lambda x.\lambda y.(x,y)} \qquad \frac{NP_{nb}: \text{Wrigley}_{0.0}, \text{building}_{0.0}}{NP_{nb}: \text{Wrigley}_{0.0}, \text{building}_{0.0}, y.} \\ \frac{NP_{nb}: \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}}{NP_{nb}: \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac{NP_{nb} \cdot \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Ave}_{0.0}}{N: \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac{NP_{nb} \cdot \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}}{N: \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac{NP_{nb} \cdot \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}}{N: \text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac{NP_{nb} \cdot \text{Wrigley}_{0.0}, \text{Ave}_{0.0}}{N: \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac{NP_{nb} \cdot \text{Wrigley}_{0.0}}{N: \text{Michigan}_{0.0}, \text{Ave}_{0.0}} > \frac$	
one CD	IN $NP_{nb}: corner_{0.0}, room_{0.0}$		$ \operatorname{dey}_{0.0}(\operatorname{building}_{0.0},\operatorname{Michigan}_{0.0},\operatorname{Ave}_{0.0}),y)) > \\$	
	$NP \setminus NP)/NP : \lambda x. \lambda y. \operatorname{of}_{0.0}^2(x,y)$	$NP: \mathrm{west}_{1.0}^2(\mathrm{look}_{0.0}^0(\mathrm{toward}_{0.0}^0(\mathrm{Wrigley}_{0.0},\mathrm{building}_{0.0},\mathrm{Michigan}_{0.0},\mathrm{Ave}_{0.0}),\mathrm{corr}_{0.0}$		
$\frac{\mathbf{TO}}{\mathbf{PP}(NP_{\bullet}) + 0.00} \frac{NP : \mathrm{one}_{0.0}}{NP_{\bullet}}$		$NP \setminus NP : \lambda y. \text{of}_{0.0}^2(\text{west}_{1.0}^2(\text{look}_{0.0}^0(\text{toward}_{0.0}^0(\text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}), \text{corner}_{0.0}, \text{room}_{0.0}^0(\text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{building}_{0.0}, \text{corner}_{0.0}, \text{corner}_{0.0}, \text{corner}_{0.0})$	(x,y)	
$ got \qquad VBN \qquad PP/NP : \lambda x. to_{0.0}^{0}(x) $	·	$NP: \text{of}_{0.0}^2(\text{west}_{1.0}^2(\text{look}_{0.0}^0(\text{toward}_{0.0}^0(\text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}), \text{corner}_{0.0}, \text{room}_{0.0})), \text{one}_{0.0})$	->	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P	$P: to_{0.0}^{0}(\text{of}_{0.0}^{2}(\text{west}_{1.0}^{2}(\text{look}_{0.0}^{0}(\text{toward}_{0.0}^{0}(\text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}), \text{corner}_{0.0}, \text{room}_{0.0})), \text{one}_{0.0}))$		>
		$\frac{2}{0.0} (\text{west}_{1.0}^2 (\text{look}_{0.0}^0 (\text{toward}_{0.0}^0 (\text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}), \text{corner}_{0.0}, \text{room}_{0.0})), y)$		>
PRP $(S_X \backslash NP)/(S_X \backslash NP) : \lambda x.(x_{\bullet 1.0})$		$_{0.0}^{0}(\text{toward}_{0.0}^{0}(\text{Wrigley}_{0.0}, \text{building}_{0.0}, \text{Michigan}_{0.0}, \text{Ave}_{0.0}), \text{corner}_{0.0}, \text{room}_{0.0})), \text{one}_{0.0})), y)$		· ·
$NP: we_{0.0}$		$\operatorname{rigley}_{0.0}, \operatorname{building}_{0.0}, \operatorname{Michigan}_{0.0}, \operatorname{Ave}_{0.0}), \operatorname{corner}_{0.0}, \operatorname{room}_{0.0})), \operatorname{one}_{0.0})), y)$		· · · · · · · · · · · · · · · · · · ·
		$\operatorname{ilding}_{0.0}, \operatorname{Michigan}_{0.0}, \operatorname{Ave}_{0.0}), \operatorname{corner}_{0.0}, \operatorname{room}_{0.0})), \operatorname{one}_{0.0})), \operatorname{we}_{0.0})$		$<$ $S_{dcl} \setminus S_{dcl} : \lambda x.x$
	$S_{dcl}: \operatorname{upgrade}_{1.0}^{0}(\operatorname{to}_{0.0}^{0}(\operatorname{of}_{0.0}^{2}(\operatorname{west}_{1.0}^{2}(\operatorname{look}_{0.0}^{0}(\operatorname{toward}_{0.0}^{0}(\operatorname{Wr}_{0.0}^{0}(\operatorname{west}_{0.0}^{2}($	$igley_{0.0}, building_{0.0}, Michigan_{0.0}, Ave_{0.0}), corner_{0.0}, room_{0.0})), one_{0.0})), we_{0.0})$		`