```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
```

```
In [2]: def analysis(col, tops = 10):
            temp = train[col].value counts()
            temp = temp.iloc[:tops].index
            #temp = train.index
            temp df = train[train[col].isin(temp)]
              prob = temp df[col].value counts(normalize=True)
              draw = np.random.choice(prob.index, p=prob, size=len(temp df))
              output = pd.Series(draw).value counts(normalize=True).rename('simu
        lated')
              zeros = set(temp df[col].dropna().unique()).difference(set(output.
        index))
              output = output.append(pd.Series([0 for i in zeros], index = zero
        s)) / (temp df[col].value counts())
            temp df['shuffle'] = temp df['HasDetections'].sample(replace=False,
        n=len(temp df)).reset index(drop=True)
            output = temp_df[temp_df['shuffle'] == 1][col].value_counts() / temp
        df[col].value_counts()
            pd.DataFrame({'train_data': temp_df[temp_df['HasDetections'] == 1][c
        ol].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}).plot(kind = 'bar', figs
        ize=(20,10))
            plt.title('Percent of Has detections by {} (most of the catogaries)'
        .format(col))
            display(pd.DataFrame({'train_data': temp_df[temp_df['HasDetections']
        == 1][col].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}))
            return stats.ks 2samp(temp df[temp df['HasDetections'] == 1][col].va
        lue counts(normalize = True),
                        output)
        #stats.chi2 contingency([temp df.groupby(col).HasDetections.mean(),
                          temp df.groupby(col).random data.mean()])
```

```
In [4]: train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
```

```
In [5]: train.head()
```

## Out[5]:

|   | <b>AVProductStatesIdentifier</b> | AVProductsInstalled | AVProductsEnabled | HasDetections |
|---|----------------------------------|---------------------|-------------------|---------------|
| 0 | 53447.0                          | 1.0                 | 1.0               | 0             |
| 1 | 53447.0                          | 1.0                 | 1.0               | 0             |
| 2 | 53447.0                          | 1.0                 | 1.0               | 0             |
| 3 | 53447.0                          | 1.0                 | 1.0               | 1             |
| 4 | 53447.0                          | 1.0                 | 1.0               | 1             |

```
In [6]: #General analysis
```

```
In [7]: #1.1 AVProductStatesIdentifier
#Top 20 categories detection
```

Out[8]: Text(0, 0.5, 'count')



```
In [9]: train[train[COLS[1]]==53447.0].HasDetections.value_counts(normalize=True
).plot("bar", title='Proportion of 53447 configuration being infected')
plt.xlabel("whether being infected")
plt.ylabel("proportion")
```

Out[9]: Text(0, 0.5, 'proportion')

# Proportion of 53447 configuration being infected



In [10]: analysis(COLS[1], 100)

|         | train_data | random_data |
|---------|------------|-------------|
| 2558.0  | 0.168525   | 0.474461    |
| 3371.0  | 0.338305   | 0.477813    |
| 4786.0  | 0.536552   | 0.495636    |
| 5439.0  | 0.304536   | 0.482259    |
| 6407.0  | 0.285132   | 0.479037    |
| 6465.0  | 0.262006   | 0.471441    |
| 6630.0  | 0.282516   | 0.481675    |
| 7073.0  | 0.284089   | 0.495114    |
| 7681.0  | 0.252316   | 0.475068    |
| 7945.0  | 0.348334   | 0.479703    |
| 8925.0  | 0.173160   | 0.467787    |
| 9471.0  | 0.254769   | 0.481998    |
| 11280.0 | 0.198155   | 0.477631    |
| 12202.0 | 0.256114   | 0.475834    |
| 13513.0 | 0.189224   | 0.480837    |
| 22728.0 | 0.429469   | 0.478450    |
| 22847.0 | 0.322525   | 0.485222    |
| 23141.0 | 0.344138   | 0.470654    |
| 23283.0 | 0.435090   | 0.486606    |
| 23657.0 | 0.411926   | 0.477298    |
| 23796.0 | 0.313957   | 0.477504    |
| 23962.0 | 0.364146   | 0.474878    |
| 24213.0 | 0.357153   | 0.477913    |
| 27277.0 | 0.223556   | 0.473394    |
| 29199.0 | 0.489096   | 0.476560    |
| 30961.0 | 0.425086   | 0.487019    |
| 32113.0 | 0.427595   | 0.478979    |
| 38993.0 | 0.191431   | 0.463096    |
| 39975.0 | 0.403295   | 0.485373    |
| 40431.0 | 0.306254   | 0.474026    |
|         |            |             |
| 50397.0 | 0.510341   | 0.484150    |
| 51431.0 | 0.460695   | 0.485192    |
| 51954.0 | 0.521178   | 0.476204    |

|         | train_data | random_data |
|---------|------------|-------------|
| 52365.0 | 0.546349   | 0.470471    |
| 52627.0 | 0.480683   | 0.484372    |
| 53002.0 | 0.369352   | 0.471840    |
| 53235.0 | 0.498149   | 0.492694    |
| 53300.0 | 0.496026   | 0.469536    |
| 53386.0 | 0.324058   | 0.484497    |
| 53447.0 | 0.556365   | 0.479063    |
| 53644.0 | 0.422093   | 0.476636    |
| 53742.0 | 0.446748   | 0.492356    |
| 54229.0 | 0.296696   | 0.491099    |
| 55336.0 | 0.437007   | 0.471176    |
| 56914.0 | 0.298531   | 0.478456    |
| 57629.0 | 0.192626   | 0.475020    |
| 59792.0 | 0.466745   | 0.476236    |
| 60052.0 | 0.224161   | 0.478859    |
| 60573.0 | 0.398634   | 0.472131    |
| 61100.0 | 0.345621   | 0.483156    |
| 61168.0 | 0.334874   | 0.490935    |
| 61343.0 | 0.325536   | 0.478360    |
| 61859.0 | 0.280933   | 0.480332    |
| 62412.0 | 0.311499   | 0.483536    |
| 62773.0 | 0.382132   | 0.478700    |
| 63682.0 | 0.787928   | 0.480876    |
| 64391.0 | 0.553157   | 0.490700    |
| 67732.0 | 0.507315   | 0.477141    |
| 68585.0 | 0.398314   | 0.477391    |
| 70262.0 | 0.194309   | 0.478992    |

100 rows × 2 columns

Out[10]: Ks\_2sampResult(statistic=0.99, pvalue=1.2251433537012255e-44)



Out[12]: 1.0 6208893 2.0 2459008 3.0 208103 4.0 8757 5.0 471 6.0 28 7.0 1

0.0

Name: AVProductsInstalled, dtype: int64

1

In [13]: # hypothesis: Different Antivirius product installed will have different performance over the virius detection

```
In [14]: analysis(COLS[2], 3)
```

|     | train_data | random_data |
|-----|------------|-------------|
| 1.0 | 0.548581   | 0.498079    |
| 2.0 | 0.396906   | 0.497881    |
| 3.0 | 0.291596   | 0.497114    |



In [15]: #Need deep analysis

In [16]: # hypothesis: Different Antivirius product installed will have different performance over the virius detection

In [27]: train[COLS[3]].value\_counts()

Out[27]: 1.0 8654101 2.0 198652 0.0 25958 3.0 6075 4.0 453 5.0 23

Name: AVProductsEnabled, dtype: int64

```
In [17]: analysis(COLS[3], 2)
```

|     | train_data | random_data |
|-----|------------|-------------|
| 1.0 | 0.504636   | 0.496984    |
| 2.0 | 0.336422   | 0.497433    |

#Need deep analysis

In [18]:

Out[17]: Ks\_2sampResult(statistic=0.5, pvalue=0.8438198245415606)



```
In [ ]:
In [ ]:
In [ ]:
           trial w/ random forest
In [19]:
In [20]: def skl(col):
             nominal transformer = Pipeline(steps=[
                  ('onehot', OneHotEncoder(handle unknown='ignore'))
             preproc = ColumnTransformer(transformers=[('onehot', nominal transfo
         rmer, col)],\
                                                    remainder='drop')
             clf = RandomForestClassifier(n estimators=7, max depth=60)
             pl = Pipeline(steps=[('preprocessor', preproc),
                              ('clf', clf)
                              ])
             return pl
```

```
In [21]: X train, X test, y train, y test = train test split(train.dropna().drop(
          'HasDetections',axis = 1)\
                                                                   , train.dropna()['Ha
          sDetections'], test_size=0.25)
          N = len(y_test)
          y_random = y_test.sample(replace=False, frac = 1)
In [22]: output = pd.DataFrame(columns = ['Observation accuracy', 'Random Data ac
          curacy'], index = COLS[1:])
          for i in COLS[1:]:
              pl = skl([i])
              pl.fit(X_train, y_train)
              pred_score = pl.score(X_test, y_test)
              rand_score = pl.score(X_test, y_random)
              output.loc[i, 'Observation accuracy'] = pred_score
              output.loc[i, 'Random Data accuracy'] = rand score
          pl = skl(COLS[1:])
          pl.fit(X_train, y_train)
          pred score = pl.score(X_test, y_test)
          rand_score = pl.score(X_test, y_random)
          output.loc['combined', 'Observation accuracy'] = pred_score
output.loc['combined', 'Random_Data accuracy'] = rand_score
```

# In [23]: output

#### Out[23]:

|                                  | Observation accuracy | Random_Data accuracy |
|----------------------------------|----------------------|----------------------|
| <b>AVProductStatesIdentifier</b> | 0.577934             | 0.500461             |
| <b>AVProductsInstalled</b>       | 0.568239             | 0.500398             |
| <b>AVProductsEnabled</b>         | 0.509382             | 0.500699             |
| combined                         | 0.578303             | 0.500456             |

```
In [30]: output.plot(kind = 'barh', ylim = (0.45, 0.65), figsize=[12,10])
```

Out[30]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a22697438>



In [25]: #Conclusion, when using random forest clustering, 'AVProductStatesIdenti fier' will dominate the performance
#of prediction, compare the comparison with random data, 'AVProductState sIdentifier' have a significant imporvement
#in identifying malware.

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
```

In [2]: def analysis(col, tops = 10):

```
temp = train[col].value counts()
            temp = temp.iloc[:tops].index
            #temp = train.index
            temp df = train[train[col].isin(temp)]
              prob = temp df[col].value counts(normalize=True)
              draw = np.random.choice(prob.index, p=prob, size=len(temp df))
              output = pd.Series(draw).value counts(normalize=True).rename('simu
        lated')
              zeros = set(temp df[col].dropna().unique()).difference(set(output.
        index))
              output = output.append(pd.Series([0 for i in zeros], index = zero
        s)) / (temp df[col].value counts())
            temp df['shuffle'] = temp df['HasDetections'].sample(replace=False,
        n=len(temp df)).reset index(drop=True)
            output = temp_df[temp_df['shuffle'] == 1][col].value_counts() / temp
        df[col].value_counts()
            pd.DataFrame({'train_data': temp_df[temp_df['HasDetections'] == 1][c
        ol].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}).plot(kind = 'bar', figs
        ize=(20,10))
            plt.title('Percent of Has detections by {} (most of the catogaries)'
        .format(col))
            display(pd.DataFrame({'train_data': temp_df[temp_df['HasDetections']
        == 1][col].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}))
            return stats.ks 2samp(temp df[temp df['HasDetections'] == 1][col].va
        lue counts(normalize = True),
                        output)
        #stats.chi2 contingency([temp df.groupby(col).HasDetections.mean(),
                         temp df.groupby(col).random data.mean()])
In [3]: COLS = [
            'HasDetections',
            'Platform',
```

```
'OsBuild'
```

```
In [4]: | train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
```

In [5]: train.head()

# Out[5]:

|   | Platform  | OsBuild | HasDetections |
|---|-----------|---------|---------------|
| 0 | windows10 | 17134   | 0             |
| 1 | windows10 | 17134   | 0             |
| 2 | windows10 | 17134   | 0             |
| 3 | windows10 | 17134   | 1             |
| 4 | windows10 | 17134   | 1             |

In [6]: analysis(COLS[1])

|             | train_data | random_data |
|-------------|------------|-------------|
| windows10   | 0.500032   | 0.499803    |
| windows8    | 0.506720   | 0.500540    |
| windows7    | 0.486511   | 0.498930    |
| windows2016 | 0.349593   | 0.489040    |

Out[6]: Ks\_2sampResult(statistic=0.75, pvalue=0.10749046502096637)



In [7]: # virius and platform is not likely revelent

In [8]: analysis(COLS[2])

|       | train_data | random_data |
|-------|------------|-------------|
| 17134 | 0.520727   | 0.498950    |
| 16299 | 0.492128   | 0.498968    |
| 15063 | 0.478875   | 0.499143    |
| 14393 | 0.462269   | 0.499039    |
| 10586 | 0.465831   | 0.500046    |
| 10240 | 0.486584   | 0.499478    |
| 9600  | 0.506720   | 0.497872    |
| 7601  | 0.486432   | 0.499368    |
| 17692 | 0.443467   | 0.499058    |
| 17738 | 0.445117   | 0.502421    |

Out[8]: Ks\_2sampResult(statistic=1.0, pvalue=1.8879793657162556e-05)



In [9]: # We assmue malware detection may have no significant relation with oper ating system

In [ ]:

In [10]: # random forest clustering to comfirm

```
In [13]: output = pd.DataFrame(columns = ['Observation accuracy', 'Random_Data accuracy'], index = COLS[1:])
    for i in COLS[1:]:
        pl = skl([i])
        pl.fit(X_train, y_train)
        pred_score = pl.score(X_test, y_test)
        rand_score = pl.score(X_test, y_random)
        output.loc[i, 'Observation accuracy'] = pred_score
        output.loc[i, 'Random_Data accuracy'] = rand_score
    pl = skl(COLS[1:])
    pl.fit(X_train, y_train)
    pred_score = pl.score(X_test, y_test)
    rand_score = pl.score(X_test, y_random)
    output.loc['combined', 'Observation accuracy'] = pred_score
    output.loc['combined', 'Random_Data accuracy'] = rand_score
```

# In [14]: output

### Out[14]:

#### Observation accuracy Random\_Data accuracy

| Platform | 0.500503 | 0.500177 |
|----------|----------|----------|
| OsBuild  | 0.518036 | 0.500423 |
| combined | 0.518036 | 0.500423 |

```
In [15]: output.plot(kind = 'bar', ylim = (0.45, 0.57))
```

Out[15]: <matplotlib.axes.\_subplots.AxesSubplot at 0x23d8044c908>



In [16]: #Conclusion, In general, Operating system has a slightly influence to ma
 lware detection (not very significant)
 #'OSBuild' will have a more significant influence when we proceed random
 forest clustering,
 #and 'Platform' may have no affect to malware detection. When we combine
 two 'OSBuild' will dominate the
 #clf.

In [ ]:

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
```

```
In [2]: def analysis(col, tops = 10):
            temp = train[col].value counts()
            temp = temp.iloc[:tops].index
            #temp = train.index
            temp df = train[train[col].isin(temp)]
              prob = temp df[col].value counts(normalize=True)
              draw = np.random.choice(prob.index, p=prob, size=len(temp df))
              output = pd.Series(draw).value counts(normalize=True).rename('simu
        lated')
              zeros = set(temp df[col].dropna().unique()).difference(set(output.
        index))
              output = output.append(pd.Series([0 for i in zeros], index = zero
        s)) / (temp df[col].value counts())
            temp df['shuffle'] = temp df['HasDetections'].sample(replace=False,
        n=len(temp df)).reset index(drop=True)
            output = temp_df[temp_df['shuffle'] == 1][col].value_counts() / temp
        df[col].value_counts()
            pd.DataFrame({'train_data': temp_df[temp_df['HasDetections'] == 1][c
        ol].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}).plot(kind = 'bar', figs
        ize=(20,10))
            plt.title('Percent of Has detections by {} (most of the catogaries)'
        .format(col))
            display(pd.DataFrame({'train_data': temp_df[temp_df['HasDetections']
        == 1][col].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}))
            return stats.ks 2samp(temp df[temp df['HasDetections'] == 1][col].va
        lue counts(normalize = True),
                        output)
        #stats.chi2 contingency([temp df.groupby(col).HasDetections.mean(),
                          temp df.groupby(col).random data.mean()])
In [3]: COLS = [
            'HasDetections',
             'Census ProcessorCoreCount',
```

```
'Census PrimaryDiskTotalCapacity',
'Processor'
```

```
In [4]: train = pd.read csv("train.csv", sep=',', engine='c', usecols=COLS)
```

In [5]: train.head()

Out[5]:

|   | Processor | Census_ProcessorCoreCount | Census_PrimaryDiskTotalCapacity | HasDetections |
|---|-----------|---------------------------|---------------------------------|---------------|
| 0 | x64       | 4.0                       | 476940.0                        | 0             |
| 1 | x64       | 4.0                       | 476940.0                        | 0             |
| 2 | x64       | 4.0                       | 114473.0                        | 0             |
| 3 | x64       | 4.0                       | 238475.0                        | 1             |
| 4 | x64       | 4.0                       | 476940.0                        | 1             |

In [6]: #barplot of random\_data and chi-square test statiscs over the proportion
#only takes majority of large data to proceed analyis

In [7]: analysis(COLS[1])

|      | train_data | random_data |
|------|------------|-------------|
| 1.0  | 0.295042   | 0.494843    |
| 2.0  | 0.459875   | 0.496916    |
| 3.0  | 0.456038   | 0.501915    |
| 4.0  | 0.507915   | 0.497158    |
| 6.0  | 0.566400   | 0.498798    |
| 8.0  | 0.555008   | 0.496822    |
| 12.0 | 0.584691   | 0.497994    |
| 16.0 | 0.561587   | 0.498032    |
| 24.0 | 0.503519   | 0.491608    |
| 32.0 | 0.498596   | 0.493446    |

Out[7]: Ks\_2sampResult(statistic=0.9, pvalue=0.00017011925273829756)



In [8]: analysis(COLS[2])

|          | train_data | random_data |
|----------|------------|-------------|
| 29820.0  | 0.424125   | 0.439374    |
| 114473.0 | 0.545365   | 0.437663    |
| 122104.0 | 0.527792   | 0.439861    |
| 228936.0 | 0.577324   | 0.440526    |
| 238475.0 | 0.483430   | 0.441772    |
| 244198.0 | 0.530764   | 0.438167    |
| 305245.0 | 0.440135   | 0.440824    |
| 476940.0 | 0.500258   | 0.440021    |
| 715404.0 | 0.507006   | 0.440239    |
| 953869.0 | 0.536908   | 0.440147    |

Out[8]: Ks\_2sampResult(statistic=1.0, pvalue=1.8879793657162556e-05)



```
In [9]: analysis(COLS[3])
```

|       | train_data | random_data |
|-------|------------|-------------|
| x64   | 0.511446   | 0.499851    |
| x86   | 0.384202   | 0.499226    |
| arm64 | 0.014451   | 0.471098    |



```
In [10]: #First step assumption:
    #Based on plot and statistics above, we first assmue Processor > TotalDi
    skCapacity > Processor Core count
```

In [ ]:

```
In [11]: # deep study
```

```
In [13]: X train, X test, y train, y test = train test split(train.dropna().drop(
         'HasDetections',axis = 1)\
                                                              , train.dropna()['Ha
         sDetections'], test_size=0.25)
         N = len(y_test)
         y_random = y_test.sample(replace=False, frac = 1)
In [14]: output = pd.DataFrame(columns = ['Observation accuracy', 'Random Data ac
         curacy'], index = COLS[1:])
         for i in COLS[1:]:
             pl = skl([i])
             pl.fit(X_train, y_train)
             pred_score = pl.score(X_test, y_test)
             rand_score = pl.score(X_test, y_random)
             output.loc[i, 'Observation accuracy'] = pred score
             output.loc[i, 'Random_Data accuracy'] = rand_score
         pl = skl(COLS[1:])
         pl.fit(X_train, y_train)
         pred_score = pl.score(X_test, y_test)
         rand_score = pl.score(X_test, y_random)
         output.loc['combined', 'Observation accuracy'] = pred_score
         output.loc['combined', 'Random Data accuracy'] = rand_score
```

In [15]: output

#### Out[15]:

|                                 | Observation accuracy | Random_Data accuracy |
|---------------------------------|----------------------|----------------------|
| Census_ProcessorCoreCount       | 0.524082             | 0.499893             |
| Census_PrimaryDiskTotalCapacity | 0.533193             | 0.499547             |
| Processor                       | 0.521055             | 0.49966              |
| combined                        | 0.543938             | 0.499912             |

```
In [16]: output.plot(kind = 'bar', ylim = (0.45, 0.57))
```

Out[16]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21b00045748>



```
In [17]: # Conclusion, hardware can influence the prediction under random forest classifer of malware # The features combined has significant imporvement, which means it help
```

with malware detection

# when we combines features.

In [ ]:

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
```

In [2]: def analysis(col, tops = 10):

```
temp = train[col].value counts()
            temp = temp.iloc[:tops].index
            #temp = train.index
            temp df = train[train[col].isin(temp)]
              prob = temp df[col].value counts(normalize=True)
              draw = np.random.choice(prob.index, p=prob, size=len(temp df))
              output = pd.Series(draw).value counts(normalize=True).rename('simu
        lated')
              zeros = set(temp df[col].dropna().unique()).difference(set(output.
        index))
              output = output.append(pd.Series([0 for i in zeros], index = zero
        s)) / (temp df[col].value counts())
            temp df['shuffle'] = temp df['HasDetections'].sample(replace=False,
        n=len(temp df)).reset index(drop=True)
            output = temp_df[temp_df['shuffle'] == 1][col].value_counts() / temp
        df[col].value_counts()
            pd.DataFrame({'train_data': temp_df[temp_df['HasDetections'] == 1][c
        ol].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}).plot(kind = 'bar', figs
        ize=(20,10))
            plt.title('Percent of Has detections by {} (most of the catogaries)'
        .format(col))
            display(pd.DataFrame({'train_data': temp_df[temp_df['HasDetections']
        == 1][col].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}))
            return stats.ks 2samp(temp df[temp df['HasDetections'] == 1][col].va
        lue counts(normalize = True),
                        output)
        #stats.chi2 contingency([temp df.groupby(col).HasDetections.mean(),
                         temp df.groupby(col).random data.mean()])
In [3]: COLS = [
            'HasDetections',
            'IsBeta',
```

```
'ProductName'
```

```
In [4]: | train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
```

```
In [5]: train.head()
```

# Out[5]:

|   | ProductName  | IsBeta | HasDetections |
|---|--------------|--------|---------------|
| 0 | win8defender | 0      | 0             |
| 1 | win8defender | 0      | 0             |
| 2 | win8defender | 0      | 0             |
| 3 | win8defender | 0      | 1             |
| 4 | win8defender | 0      | 1             |

# In [6]: analysis(COLS[1])

|   | train_data | random_data |
|---|------------|-------------|
| 0 | 0.499793   | 0.499793    |
| 1 | 0.492537   | 0.462687    |

Out[6]: Ks\_2sampResult(statistic=0.5, pvalue=0.8438198245415606)



In [7]: train.groupby('ProductName').HasDetections.mean()

# Out[7]: ProductName

| fep           | 0.428571 |
|---------------|----------|
| mse           | 0.484448 |
| mseprerelease | 0.490566 |
| scep          | 0.454545 |
| win8defender  | 0.499958 |
| windowsintune | 0.125000 |

Name: HasDetections, dtype: float64

In [8]: analysis(COLS[2])

|               | train_data | random_data |
|---------------|------------|-------------|
| fep           | 0.428571   | 0.571429    |
| mse           | 0.484448   | 0.499626    |
| mseprerelease | 0.490566   | 0.603774    |
| scep          | 0.454545   | 0.409091    |
| win8defender  | 0.499958   | 0.499794    |
| windowsintune | 0.125000   | 0.750000    |



In [9]: # We assume there has significantly difference between Defender State and Malware detection

In [ ]:

In [10]: # random forest clustering to confirm our assumption

```
In [13]: output = pd.DataFrame(columns = ['Observation accuracy', 'Random_Data accuracy'], index = COLS[1:])
    for i in COLS[1:]:
        pl = skl([i])
        pl.fit(X_train, y_train)
        pred_score = pl.score(X_test, y_test)
        rand_score = pl.score(X_test, y_random)
        output.loc[i, 'Observation accuracy'] = pred_score
        output.loc[i, 'Random_Data accuracy'] = rand_score
    pl = skl(COLS[1:])
    pl.fit(X_train, y_train)
    pred_score = pl.score(X_test, y_test)
    rand_score = pl.score(X_test, y_random)
    output.loc['combined', 'Observation accuracy'] = pred_score
    output.loc['combined', 'Random_Data accuracy'] = rand_score
```

```
In [14]: output
```

#### Out[14]:

## Observation accuracy Random\_Data accuracy

| IsBeta      | 0.500057 | 0.500054 |
|-------------|----------|----------|
| ProductName | 0.500058 | 0.500058 |
| combined    | 0.500056 | 0.500057 |

3/25/2019 Scenario 4 Defender State

```
In [15]: output.plot(kind = 'bar', ylim = (0.45, 0.57))
```

Out[15]: <matplotlib.axes.\_subplots.AxesSubplot at 0x27d00074a20>



In [16]: # Conclusion: defender state has no influence to malware detection.

In [ ]:

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set_option('display.max columns', 500)
```

```
In [2]: def analysis(col, tops = 10):
            temp = train[col].value counts()
            temp = temp.iloc[:tops].index
            #temp = train.index
            temp df = train[train[col].isin(temp)]
              prob = temp df[col].value counts(normalize=True)
              draw = np.random.choice(prob.index, p=prob, size=len(temp df))
              output = pd.Series(draw).value counts(normalize=True).rename('simu
        lated')
              zeros = set(temp df[col].dropna().unique()).difference(set(output.
        index))
              output = output.append(pd.Series([0 for i in zeros], index = zero
        s)) / (temp df[col].value counts())
            temp df['shuffle'] = temp df['HasDetections'].sample(replace=False,
        n=len(temp df)).reset index(drop=True)
            output = temp_df[temp_df['shuffle'] == 1][col].value_counts() / temp
        _df[col].value_counts()
            pd.DataFrame({'train_data': temp_df[temp_df['HasDetections'] == 1][c
        ol].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}).plot(kind = 'bar', figs
        ize=(20,10))
            plt.title('Percent of Has detections by {} (most of the catogaries)'
        .format(col))
            display(pd.DataFrame({'train_data': temp_df[temp_df['HasDetections']
        == 1][col].value_counts()/ temp_df[col].value_counts(),
                                  'random data': output}))
            return stats.ks 2samp(temp df[temp df['HasDetections'] == 1][col].va
        lue counts(normalize = True),
                        output)
        #stats.chi2 contingency([temp df.groupby(col).HasDetections.mean(),
                          temp df.groupby(col).random data.mean()])
In [3]: COLS = [
            'HasDetections',
            'GeoNameIdentifier',
             'CountryIdentifier'
In [4]: | train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
```

In [5]: #top 40 contries analysis

In [6]: analysis(COLS[1], 40)

|       | train_data | random_data |
|-------|------------|-------------|
| 10.0  | 0.511848   | 0.425225    |
| 15.0  | 0.439316   | 0.427997    |
| 24.0  | 0.441928   | 0.424914    |
| 35.0  | 0.507216   | 0.426260    |
| 45.0  | 0.469069   | 0.425998    |
| 52.0  | 0.510999   | 0.425478    |
| 53.0  | 0.517883   | 0.426859    |
| 57.0  | 0.540070   | 0.427874    |
| 68.0  | 0.454544   | 0.425157    |
| 76.0  | 0.548960   | 0.426389    |
| 89.0  | 0.473733   | 0.426760    |
| 98.0  | 0.452187   | 0.426772    |
| 101.0 | 0.476334   | 0.431922    |
| 115.0 | 0.463466   | 0.425081    |
| 117.0 | 0.537920   | 0.427493    |
| 119.0 | 0.495623   | 0.427324    |
| 120.0 | 0.592210   | 0.425788    |
| 125.0 | 0.508966   | 0.427463    |
| 126.0 | 0.484070   | 0.427763    |
| 129.0 | 0.435529   | 0.425826    |
| 138.0 | 0.480256   | 0.428146    |
| 157.0 | 0.495774   | 0.429770    |
| 167.0 | 0.521564   | 0.427963    |
| 181.0 | 0.483826   | 0.425507    |
| 201.0 | 0.547603   | 0.426698    |
| 202.0 | 0.532145   | 0.425885    |
| 204.0 | 0.478396   | 0.429171    |
| 205.0 | 0.487162   | 0.426353    |
| 211.0 | 0.501151   | 0.427972    |
| 224.0 | 0.486248   | 0.424333    |
| 237.0 | 0.463296   | 0.428922    |
| 240.0 | 0.498015   | 0.425391    |
| 251.0 | 0.431757   | 0.429458    |
| 255.0 | 0.506378   | 0.428539    |

|       | train_data | random_data |
|-------|------------|-------------|
| 258.0 | 0.559801   | 0.424347    |
| 267.0 | 0.516551   | 0.427381    |
| 274.0 | 0.547439   | 0.424971    |
| 276.0 | 0.466328   | 0.426719    |
| 277.0 | 0.511857   | 0.427246    |
| 287.0 | 0.573277   | 0.426770    |

Out[6]: Ks\_2sampResult(statistic=1.0, pvalue=6.133847783205273e-19)



In [7]: #from the histogram, we see there is a difference in top 4 counties

In [8]: analysis(COLS[2], 40)

|     | train_data | random_data |
|-----|------------|-------------|
| 9   | 0.506709   | 0.362701    |
| 12  | 0.459381   | 0.363193    |
| 19  | 0.452238   | 0.365839    |
| 29  | 0.505318   | 0.363857    |
| 35  | 0.476030   | 0.363344    |
| 41  | 0.507615   | 0.366280    |
| 43  | 0.512030   | 0.365131    |
| 44  | 0.533652   | 0.365011    |
| 50  | 0.458017   | 0.366223    |
| 51  | 0.478736   | 0.364130    |
| 59  | 0.570547   | 0.363931    |
| 60  | 0.492523   | 0.365513    |
| 66  | 0.484162   | 0.363982    |
| 68  | 0.479183   | 0.364715    |
| 80  | 0.469614   | 0.363214    |
| 88  | 0.530356   | 0.367622    |
| 89  | 0.589220   | 0.363697    |
| 91  | 0.501763   | 0.364579    |
| 93  | 0.492203   | 0.364471    |
| 97  | 0.483811   | 0.363961    |
| 101 | 0.459183   | 0.364113    |
| 107 | 0.481192   | 0.365178    |
| 141 | 0.519668   | 0.363257    |
| 142 | 0.490838   | 0.367251    |
| 149 | 0.490176   | 0.365425    |
| 155 | 0.538468   | 0.366261    |
| 158 | 0.519582   | 0.364786    |
| 159 | 0.546358   | 0.361953    |
| 160 | 0.475467   | 0.361555    |
| 164 | 0.477821   | 0.366351    |
| 169 | 0.468479   | 0.362477    |
| 171 | 0.496332   | 0.363675    |
| 173 | 0.477802   | 0.362556    |
| 195 | 0.546919   | 0.362091    |

|     | train_data | random_data |
|-----|------------|-------------|
| 201 | 0.510665   | 0.364352    |
| 203 | 0.496419   | 0.364436    |
| 205 | 0.521958   | 0.363683    |
| 207 | 0.483938   | 0.364686    |
| 214 | 0.606910   | 0.363608    |
| 220 | 0.463472   | 0.363520    |

Out[8]: Ks\_2sampResult(statistic=1.0, pvalue=6.133847783205273e-19)



In [9]: # We assume there is no significant influence when malware detection

### In [10]: # random forest clustering to confirm

```
In [13]: output = pd.DataFrame(columns = ['Observation accuracy', 'Random_Data accuracy'], index = COLS[1:])
    for i in COLS[1:]:
        pl = skl([i])
        pl.fit(X_train, y_train)
        pred_score = pl.score(X_test, y_test)
        rand_score = pl.score(X_test, y_random)
        output.loc[i, 'Observation accuracy'] = pred_score
        output.loc[i, 'Random_Data accuracy'] = rand_score
    pl = skl(COLS[1:])
    pl.fit(X_train, y_train)
    pred_score = pl.score(X_test, y_test)
    rand_score = pl.score(X_test, y_random)
    output.loc['combined', 'Observation accuracy'] = pred_score
    output.loc['combined', 'Random_Data accuracy'] = rand_score
```

In [14]: output

#### Out[14]:

#### Observation accuracy Random\_Data accuracy

| GeoNameIdentifier | 0.525165 | 0.500321 |
|-------------------|----------|----------|
| Countryldentifier | 0.528054 | 0.500553 |
| combined          | 0.532115 | 0.500415 |

```
In [15]: output.plot(kind = 'bar', ylim = (0.45, 0.57))
```

Out[15]: <matplotlib.axes.\_subplots.AxesSubplot at 0x17886078898>



```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set_option('display.max columns', 500)
```

```
In [2]: COLS1 = [
             'HasDetections',
             'AVProductStatesIdentifier','AVProductsInstalled', 'AVProductsEnable
        d'
         ]
        COLS2 = [
             'HasDetections',
             'Platform',
             'OsBuild'
         ]
        COLS3 = [
             'HasDetections',
             'Census ProcessorCoreCount',
             'Census PrimaryDiskTotalCapacity',
             'Processor'
        COLS4 = [
             'HasDetections',
             'IsBeta',
             'ProductName'
        COLS5 = [
             'HasDetections',
             'GeoNameIdentifier',
             'CountryIdentifier'
         ]
```

```
In [3]: train_1 = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS1)
    train_2 = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS2)
    train_3 = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS3)
    train_4 = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS4)
    train_5 = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS5)
```

```
In [4]: train_1.head()
```

### Out[4]:

|   | <b>AVProductStatesIdentifier</b> | AVProductsInstalled | AVProductsEnabled | HasDetections |
|---|----------------------------------|---------------------|-------------------|---------------|
| 0 | 53447.0                          | 1.0                 | 1.0               | 0             |
| 1 | 53447.0                          | 1.0                 | 1.0               | 0             |
| 2 | 53447.0                          | 1.0                 | 1.0               | 0             |
| 3 | 53447.0                          | 1.0                 | 1.0               | 1             |
| 4 | 53447.0                          | 1.0                 | 1.0               | 1             |

```
In [28]: train_1.describe()
```

## Out[28]:

|       | <b>AVProductStatesIdentifier</b> | AVProductsInstalled | AVProductsEnabled | HasDetections |
|-------|----------------------------------|---------------------|-------------------|---------------|
| count | 8.885262e+06                     | 8.885262e+06        | 8.885262e+06      | 8.921483e+06  |
| mean  | 4.784001e+04                     | 1.326779e+00        | 1.020967e+00      | 4.997927e-01  |
| std   | 1.403237e+04                     | 5.229272e-01        | 1.675544e-01      | 5.000000e-01  |
| min   | 3.000000e+00                     | 0.000000e+00        | 0.000000e+00      | 0.000000e+00  |
| 25%   | 4.948000e+04                     | 1.000000e+00        | 1.000000e+00      | 0.000000e+00  |
| 50%   | 5.344700e+04                     | 1.000000e+00        | 1.000000e+00      | 0.000000e+00  |
| 75%   | 5.344700e+04                     | 2.000000e+00        | 1.000000e+00      | 1.000000e+00  |
| max   | 7.050700e+04                     | 7.000000e+00        | 5.000000e+00      | 1.000000e+00  |

In [ ]:

In [5]: train\_2.head()

# Out[5]:

|   | Platform  | OsBuild | HasDetections |
|---|-----------|---------|---------------|
| 0 | windows10 | 17134   | 0             |
| 1 | windows10 | 17134   | 0             |
| 2 | windows10 | 17134   | 0             |
| 3 | windows10 | 17134   | 1             |
| 4 | windows10 | 17134   | 1             |

In [29]: train\_2.describe()

# Out[29]:

|       | OsBuild      | HasDetections |
|-------|--------------|---------------|
| count | 8.921483e+06 | 8.921483e+06  |
| mean  | 1.571997e+04 | 4.997927e-01  |
| std   | 2.190685e+03 | 5.000000e-01  |
| min   | 7.600000e+03 | 0.000000e+00  |
| 25%   | 1.506300e+04 | 0.000000e+00  |
| 50%   | 1.629900e+04 | 0.000000e+00  |
| 75%   | 1.713400e+04 | 1.000000e+00  |
| max   | 1.824400e+04 | 1.000000e+00  |

Out[31]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18391944710>



```
In [23]: train_2.pivot_table(index = 'Platform', columns = 'HasDetections', aggfu
nc = 'size').plot(kind = 'bar')
plt.title('bar chart of {}'.format('Platform'))
```

Out[23]: Text(0.5,1,'bar chart of Platform')



```
In [14]: fig, ax = plt.subplots(figsize=(11.7, 8.27))
    sns.kdeplot(train_2.loc[train_2['HasDetections'] == 0, 'OsBuild'], label
    ='NoDetection(0)')
    sns.kdeplot(train_2.loc[train_2['HasDetections'] == 1, 'OsBuild'], label
    ='HasDetection(1)')
```

Out[14]: <matplotlib.axes.\_subplots.AxesSubplot at 0x2868e0d2128>



```
In [ ]:
```

In [ ]:

In [9]: train\_3.head()

Out[9]:

|   | Processor | Census_ProcessorCoreCount | Census_PrimaryDiskTotalCapacity | HasDetections |
|---|-----------|---------------------------|---------------------------------|---------------|
| 0 | x64       | 4.0                       | 476940.0                        | 0             |
| 1 | x64       | 4.0                       | 476940.0                        | 0             |
| 2 | x64       | 4.0                       | 114473.0                        | 0             |
| 3 | x64       | 4.0                       | 238475.0                        | 1             |
| 4 | x64       | 4.0                       | 476940.0                        | 1             |

In [32]: train\_3.describe()

Out[32]:

|       | Census_ProcessorCoreCount | Census_PrimaryDiskTotalCapacity | HasDetections |
|-------|---------------------------|---------------------------------|---------------|
| count | 8.880177e+06              | 8.868467e+06                    | 8.921483e+06  |
| mean  | 3.989696e+00              | 3.089053e+06                    | 4.997927e-01  |
| std   | 2.082553e+00              | 4.451634e+09                    | 5.000000e-01  |
| min   | 1.000000e+00              | 0.000000e+00                    | 0.000000e+00  |
| 25%   | 2.000000e+00              | 2.393720e+05                    | 0.000000e+00  |
| 50%   | 4.000000e+00              | 4.769400e+05                    | 0.000000e+00  |
| 75%   | 4.000000e+00              | 9.538690e+05                    | 1.000000e+00  |
| max   | 1.920000e+02              | 8.160437e+12                    | 1.000000e+00  |

In [33]: train\_3.Processor.value\_counts()

Out[33]: x64 8105435 x86 815702 arm64 346

Name: Processor, dtype: int64

In [34]: train\_3.Processor.value\_counts().plot(kind = 'bar')

Out[34]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18391999dd8>



```
In [24]: train_3.pivot_table(index = 'Processor', columns = 'HasDetections', aggf
unc = 'size').plot(kind = 'bar')
plt.title('bar chart of {}'.format('Processor'))
```

Out[24]: Text(0.5,1,'bar chart of Processor')



Out[69]: Text(0.5,1,'KDE of Census\_ProcessorCoreCount')



Out[70]: Text(0.5,1,'KDE of Census\_PrimaryDiskTotalCapacity')



```
In [71]: log_train_3 = train_3.copy()
    log_train_3['Census_PrimaryDiskTotalCapacity'] = np.log(log_train_3['Census_PrimaryDiskTotalCapacity'])
```

```
In [72]: # 16TB = 16777216MB which is the largest capacity available, we use it a
    s the cutoff to avoid outliers
    np.log(16777216)
```

Out[72]: 16.635532333438686

```
In [74]: fig, ax = plt.subplots(figsize=(11.7, 8.27))
    ax = sns.boxplot(data=log_train_3, x='HasDetections', y='Census_PrimaryDiskTotalCapacity')
    plt.title('Boxplot of {}'.format('Census_PrimaryDiskTotalCapacity'))
```

Out[74]: Text(0.5,1,'Boxplot of Census\_PrimaryDiskTotalCapacity')



```
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [10]: train_4.head()
```

Out[10]:

|   | ProductName  | IsBeta | HasDetections |
|---|--------------|--------|---------------|
| 0 | win8defender | 0      | 0             |
| 1 | win8defender | 0      | 0             |
| 2 | win8defender | 0      | 0             |
| 3 | win8defender | 0      | 1             |
| 4 | win8defender | 0      | 1             |

```
In [35]: train_4.describe()
```

### Out[35]:

|       | IsBeta       | HasDetections |
|-------|--------------|---------------|
| count | 8.921483e+06 | 8.921483e+06  |
| mean  | 7.509962e-06 | 4.997927e-01  |
| std   | 2.740421e-03 | 5.000000e-01  |
| min   | 0.000000e+00 | 0.000000e+00  |
| 25%   | 0.000000e+00 | 0.000000e+00  |
| 50%   | 0.000000e+00 | 0.000000e+00  |
| 75%   | 0.000000e+00 | 1.000000e+00  |
| max   | 1.000000e+00 | 1.000000e+00  |

```
In [36]: train_4.ProductName.value_counts()
```

```
Out[36]: win8defender 8826520 mse 94873 mseprerelease 53 scep 22 windowsintune 8 fep 7
```

Name: ProductName, dtype: int64

```
In [38]: train_4.ProductName.value_counts().plot(kind = 'bar')
```

Out[38]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18391a311d0>



```
In [39]: train_4.IsBeta.value_counts()
```

Out[39]: 0 8921416 1 67

Name: IsBeta, dtype: int64

```
In [40]: train_4.IsBeta.value_counts().plot(kind = 'bar')
```

Out[40]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18391a89e80>



```
In [26]: train_4.pivot_table(index = 'ProductName', columns = 'HasDetections', ag
    gfunc = 'size').plot(kind = 'bar')
    plt.title('bar chart of {}'.format('ProductName'))
```

Out[26]: Text(0.5,1,'bar chart of ProductName')



```
Out[27]: Text(0.5,1,'bar chart of IsBeta')
```



```
In []: #special analysis of isbeta
In [46]: len(train_4[ (train_4.HasDetections == 1) & (train_4.IsBeta == 1)]) / (1 en(train_4[ (train_4.IsBeta == 1)]))
Out[46]: 0.4925373134328358
In [47]: len(train_4[ (train_4.HasDetections == 1) & (train_4.IsBeta == 0)]) / (1 en(train_4[ (train_4.IsBeta == 0)]))
Out[47]: 0.4997927459049102
In [48]: # same, isbeta ignored
In [11]: train_5.head()
Out[11]:
Country/deptifier GeoNameIdentifier HasDetections
```

|   | Countryldentifier | GeoNameIdentifier | HasDetections |
|---|-------------------|-------------------|---------------|
| 0 | 29                | 35.0              | 0             |
| 1 | 93                | 119.0             | 0             |
| 2 | 86                | 64.0              | 0             |
| 3 | 88                | 117.0             | 1             |
| 4 | 18                | 277.0             | 1             |

In [49]: train\_5.CountryIdentifier.value\_counts()

| 2017     |     |        |
|----------|-----|--------|
| Out[49]: | 43  | 397172 |
| 046[47]. |     |        |
|          | 29  | 347991 |
|          | 141 | 333411 |
|          | 93  | 283625 |
|          | 171 | 280572 |
|          | 60  | 231981 |
|          | 201 | 220622 |
|          | 207 | 211645 |
|          | 66  | 208579 |
|          | 89  | 200516 |
|          | 97  | 195161 |
|          | 214 | 191269 |
|          | 158 | 184766 |
|          | 44  | 182707 |
|          | 9   | 172594 |
|          |     |        |
|          | 107 | 168997 |
|          | 41  | 160533 |
|          | 68  | 160158 |
|          | 51  | 159940 |
|          | 203 | 158058 |
|          | 35  | 140027 |
|          | 160 | 132251 |
|          | 142 | 131907 |
|          | 195 | 131685 |
|          | 149 | 129578 |
|          | 205 | 117245 |
|          | 155 | 110779 |
|          | 164 | 108549 |
|          | 173 | 94129  |
|          | 159 | 91592  |
|          | 133 | 91392  |
|          | 74  | 775    |
|          |     |        |
|          | 192 | 740    |
|          | 182 | 696    |
|          | 134 | 689    |
|          | 196 | 681    |
|          | 198 | 656    |
|          | 123 | 654    |
|          | 75  | 643    |
|          | 114 | 590    |
|          | 126 | 566    |
|          | 64  | 565    |
|          | 28  | 553    |
|          | 215 | 543    |
|          | 105 | 507    |
|          | 5   | 459    |
|          | 174 | 449    |
|          | 14  | 446    |
|          | 79  | 444    |
|          | 187 | 438    |
|          | 216 | 379    |
|          | 200 | 355    |
|          | 10  | 327    |
|          |     |        |
|          | 128 | 303    |
|          | 212 | 299    |
|          | 186 | 227    |
|          | 165 | 213    |
|          |     |        |

 37
 212

 193
 207

 161
 206

 217
 120

Name: CountryIdentifier, Length: 222, dtype: int64

In [54]: train\_5.CountryIdentifier.nunique()

Out[54]: 222

In [55]: #222 countries

In [53]: train\_5.GeoNameIdentifier.value\_counts()

| 258.0 85291<br>129.0 84929<br>15.0 78629<br><br>215.0 27<br>231.0 19<br>37.0 18<br>95.0 14<br>292.0 13 | 129.0 84929<br>15.0 78629<br><br>215.0 27<br>231.0 19<br>37.0 18<br>95.0 14                      | Out[53]: | 211.0<br>53.0<br>89.0<br>240.0<br>35.0<br>167.0<br>276.0<br>267.0<br>126.0<br>98.0<br>119.0<br>138.0<br>255.0<br>57.0<br>10.0<br>52.0<br>204.0<br>120.0<br>181.0<br>45.0<br>205.0<br>202.0<br>224.0<br>157.0<br>201.0<br>117.0 | 1531929<br>423166<br>408807<br>360798<br>346568<br>345904<br>339845<br>296774<br>215812<br>198021<br>184459<br>181876<br>172941<br>162193<br>155478<br>143023<br>140200<br>137451<br>128907<br>127368<br>114902<br>114506<br>112056<br>101510<br>99616<br>92651<br>89426 |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        | 259.0 11<br>124.0 9<br>249.0 7<br>242.0 6<br>280.0 6<br>169.0 5<br>116.0 5<br>260.0 5<br>290.0 4 |          | 129.0<br>15.0<br>215.0<br>231.0<br>37.0<br>95.0                                                                                                                                                                                | 84929<br>78629<br><br>27<br>19<br>18<br>14                                                                                                                                                                                                                               |

1

1

```
14.0
197.0
279.0
132.0
```

Name: GeoNameIdentifier, Length: 292, dtype: int64

```
In [56]: train_5.GeoNameIdentifier.nunique()
```

Out[56]: 292

```
In [57]: # 292 Geonames
```

```
In [75]: fig, ax = plt.subplots(figsize=(11.7, 8.27))
    sns.kdeplot(train_5.loc[train_5['HasDetections'] == 0, 'CountryIdentifie
    r'], label='NoDetection(0)')
    sns.kdeplot(train_5.loc[train_5['HasDetections'] == 1, 'CountryIdentifie
    r'], label='HasDetection(1)')

plt.title('KDE of {}'.format('CountryIdentifier'))
```

Out[75]: Text(0.5,1,'KDE of CountryIdentifier')



```
In [78]: fig, ax = plt.subplots(figsize=(11.7, 8.27))
    sns.kdeplot(train_5.loc[train_5['HasDetections'] == 0, 'GeoNameIdentifie
    r'], label='NoDetection(0)')
    sns.kdeplot(train_5.loc[train_5['HasDetections'] == 1, 'GeoNameIdentifie
    r'], label='HasDetection(1)')
    plt.title('KDE of {}'.format('GeoNameIdentifier'))
```

Out[78]: Text(0.5,1,'KDE of GeoNameIdentifier')





```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingCla
        ssifier
        from sklearn.linear model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.linear model import SGDClassifier
        from sklearn.svm import LinearSVC
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
In [2]: COLS = [
              'HasDetections',
            'AVProductStatesIdentifier',
             'AVProductsInstalled',
            'GeoNameIdentifier',
             'CountryIdentifier',
             'OsBuild',
            'Census ProcessorCoreCount',
             'Census PrimaryDiskTotalCapacity',
            'Processor'
        ]
```

```
In [3]: train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
In [4]: X train, X test, y train, y test = train test split(train.dropna().drop(
        'HasDetections',axis = 1)\
                                                              , train.dropna()['Ha
        sDetections'], test_size=0.25)
        N = len(y_test)
        y random = y test.sample(replace=False, frac = 1)
In [5]: | output = pd.DataFrame(columns = ['Observation accuracy', 'Random Data ac
        curacy'])
In [6]: def skl(col):
            nominal_transformer = Pipeline(steps=[
                ('onehot', OneHotEncoder(handle_unknown='ignore'))
            preproc = ColumnTransformer(transformers=[('onehot', nominal transfo
        rmer, col)],\
                                                   remainder='drop')
            clf = RandomForestClassifier(n_estimators=7, max_depth=60)
            pl = Pipeline(steps=[('preprocessor', preproc),
                             ('clf', clf)
                             1)
            return pl
In [ ]: | pl = skl(COLS[1:])
        pl.fit(X train, y train)
        pred score = pl.score(X test, y test)
        rand score = pl.score(X test, y random)
        output.loc['LinearSVC', 'Observation accuracy'] = pred_score
        output.loc['LinearSVC', 'Random_Data accuracy'] = rand_score
In [ ]: output
```

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingCla
        ssifier
        from sklearn.linear model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.linear model import SGDClassifier
        from sklearn.svm import LinearSVC
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
In [2]: COLS = [
            'HasDetections',
            'AVProductStatesIdentifier',
            'AVProductsInstalled',
            'GeoNameIdentifier',
             'CountryIdentifier',
             'OsBuild',
            'Census ProcessorCoreCount',
             'Census PrimaryDiskTotalCapacity',
            'Processor'
        ]
```

```
In [3]: train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
In [4]: X train, X test, y train, y test = train test split(train.dropna().drop(
        'HasDetections',axis = 1)\
                                                              , train.dropna()['Ha
        sDetections'], test_size=0.25)
        N = len(y_test)
        y random = y test.sample(replace=False, frac = 1)
In [5]: | output = pd.DataFrame(columns = ['Observation accuracy', 'Random Data ac
        curacy'])
In [6]: def skl(col):
            nominal transformer = Pipeline(steps=[
                ('onehot', OneHotEncoder(handle_unknown='ignore'))
            preproc = ColumnTransformer(transformers=[('onehot', nominal transfo
        rmer, col)],\
                                                   remainder='drop')
            clf = SGDClassifier()
            pl = Pipeline(steps=[('preprocessor', preproc),
                             ('clf', clf)
                             1)
            return pl
In [ ]: | pl = skl(COLS[1:])
        pl.fit(X train, y train)
        pred score = pl.score(X test, y test)
        rand score = pl.score(X test, y random)
        output.loc['SGDClassifier', 'Observation accuracy'] = pred_score
        output.loc['SGDClassifier', 'Random Data accuracy'] = rand score
In [ ]: output
```

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingCla
        ssifier
        from sklearn.linear model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.linear model import SGDClassifier
        from sklearn.svm import LinearSVC
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
In [2]: COLS = [
            'HasDetections',
            'AVProductStatesIdentifier',
            'AVProductsInstalled',
            'GeoNameIdentifier',
             'CountryIdentifier',
             'OsBuild',
            'Census ProcessorCoreCount',
             'Census PrimaryDiskTotalCapacity',
            'Processor'
        ]
```

```
In [3]: train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
In [4]: X train, X test, y train, y test = train test split(train.dropna().drop(
        'HasDetections',axis = 1)\
                                                              , train.dropna()['Ha
        sDetections'], test_size=0.25)
        N = len(y_test)
        y random = y test.sample(replace=False, frac = 1)
In [5]: | output = pd.DataFrame(columns = ['Observation accuracy', 'Random Data ac
        curacy'])
In [6]: def skl(col):
            nominal transformer = Pipeline(steps=[
                ('onehot', OneHotEncoder(handle_unknown='ignore'))
            preproc = ColumnTransformer(transformers=[('onehot', nominal transfo
        rmer, col)],\
                                                   remainder='drop')
            clf = SGDClassifier()
            pl = Pipeline(steps=[('preprocessor', preproc),
                             ('clf', clf)
                             1)
            return pl
In [ ]: | pl = skl(COLS[1:])
        pl.fit(X train, y train)
        pred score = pl.score(X test, y test)
        rand score = pl.score(X test, y random)
        output.loc['SGDClassifier', 'Observation accuracy'] = pred_score
        output.loc['SGDClassifier', 'Random Data accuracy'] = rand score
In [ ]: output
```

```
In [ ]: from sklearn.feature selection import RFE
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.preprocessing import LabelEncoder
        #from sklearn.impute import SimpleImputer
        import pandas as pd
        import numpy as np
        import lightgbm as lgb
In [ ]: | import numpy as np
        import pandas as pd
        import os
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        plt.style.use('ggplot')
        import lightgbm as lgb
        import time
        import datetime
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model selection import StratifiedKFold, KFold, TimeSeriesSp
        lit
        from sklearn.metrics import mean_squared_error, roc_auc_score
        from sklearn.linear model import LogisticRegression, LogisticRegressionC
        import qc
        from tqdm import tqdm notebook
        import warnings
        warnings.filterwarnings("ignore")
        import logging
In [ ]: #selecting columns we chosde, and ranking them in feature selection mode
        l via random forest
In [ ]: train = pd.read_csv("train.csv", sep=',', engine='c', keep_default_na =
        False)
In [ ]: train.head()
In [ ]: clf = RandomForestClassifier(n estimators=7, max depth=60)
In [ ]: selector = RFE(clf, n_features_to_select=20)
```

```
In [ ]: y = train['HasDetections']
        train = train.drop(['HasDetections', 'MachineIdentifier'], axis=1)
        test = test.drop(['MachineIdentifier'], axis=1)
        gc.collect()
        train.sort_values('AvSigVersion')
        train1 = train[:4000000]
        train = train[4000000:8000000]
        y1 = y[:4000000]
        y = y[4000000:8000000]
In [ ]: n_fold = 5
        folds = StratifiedKFold(n splits=n fold, shuffle=True, random state=15)
In [ ]: #imputer = SimpleImputer(missing values=np.nan, strategy='most frequen
        t')
        onehot = LabelEncoder()
In [ ]:
In [ ]: X = X.astype(str).apply(LabelEncoder().fit_transform)
        selector.fit(X, y)
In [ ]:
In [ ]: | selector.verbose
In [ ]:
```

3/25/2019 Additional features

```
In [ ]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        #import lightqbm as lqb
        from sklearn.model_selection import KFold
        import warnings
        import gc
        import time
        import sys
        import datetime
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import mean_squared_error
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings('ignore')
        from sklearn import metrics
        import scipy.stats as stats
        from sklearn.model_selection import permutation_test_score
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.base import BaseEstimator, ClassifierMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingCla
        ssifier
        from sklearn.linear model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.linear model import SGDClassifier
        from sklearn.svm import LinearSVC
        plt.style.use('seaborn')
        sns.set(font scale=2)
        pd.set option('display.max columns', 500)
```

3/25/2019 Additional features

```
In [ ]: # we selecting top 20 columns from the feature selection model of Recurs
        ive feature elimination
        COLS = [
             'HasDetections',
             'CountryIdentifier',
             'Census OSVersion',
             'GeoNameIdentifier',
             'Census OSBuildRevision',
             'OsBuildLab',
             'LocaleEnglishNameIdentifier',
             'Census FirmwareManufacturerIdentifier',
             'AppVersion',
             'AVProductStatesIdentifier',
             'SmartScreen',
             'AvSigVersion',
             'Census_OEMModelIdentifier',
             'Census FirmwareVersionIdentifier',
             'Census SystemVolumeTotalCapacity',
             'CityIdentifier',
             'Census OSVersion',
             'EngineVersion',
             'Census_OEMNameIdentifier',
             'Census_ProcessorModelIdentifier',
             'Census OSInstallTypeName'
        1
In [ ]: | train = pd.read_csv("train.csv", sep=',', engine='c', usecols=COLS)
In [ ]: | X train, X test, y train, y test = train test split(train.dropna().drop(
        'HasDetections',axis = 1)\
                                                              , train.dropna()['Ha
        sDetections'], test size=0.25)
        N = len(y test)
        y_random = y_test.sample(replace=False, frac = 1)
In [ ]: output = pd.DataFrame(columns = ['Observation accuracy', 'Random Data ac
        curacy'])
In [ ]: def skl(col):
            nominal transformer = Pipeline(steps=[
                 ('onehot', OneHotEncoder(handle unknown='ignore'))
            preproc = ColumnTransformer(transformers=[('onehot', nominal transfo
        rmer, col)],\
                                                   remainder='drop')
            clf = RandomForestClassifier()
            pl = Pipeline(steps=[('preprocessor', preproc),
                             ('clf', clf)
                             ])
            return pl
```

3/25/2019 Additional features