1. Problem PS $3.1 \rightarrow$ Use induction to prove the following claims

(a)
$$P(n) = L_0 + L_1 + L_2 + ... + L_n = L_{n+2} - 1$$

- BASE CASE: $L_0 = L_2 1$
- $L_0 = 2, L_2 = 3, 2 = 3 1 \rightarrow 2 = 2$, base case is true
- INDUCTION: If $L_0 + L_1 + ... + L_n + L_{n+1} = L_{n+1+2} 1$
- LHS: $L_{n+2} 1 + L_{n+1}$
- We know that $L_n = L_{n-1} + L_{n-2}$
- Then, $L_{n+3} = L_{n+3-1} + L_{n+3-2} = L_{n+2} + L_{n+1}$
- We can substitute the LHS, it becomes $L_{n+3} 1$, which is the same as the RHS.
- With induction, we proved that the following statement is \mathbf{T} for all n. \blacksquare

(b)
$$L_n = F_{n-1} + F_{n+1}$$

- BASE CASE: $L_1 = F_0 + F_2$
- $L_1 = 1, F_0 = 0, F_2 = 1$
- 1 = 1, base case is true
- INDUCTION: $L_{n+1} = F_n + F_{n+2}$
- We know that $L_{n+1} = L_n + L_{n-1}$
- We can substitute L_n from above, $L_n = F_{n-1} + F_{n+1}$ and $L_{n-1} = F_{n-2} + F_n$
- With this, we get $F_{n-1} + F_{n+1} + F_{n-2} + F_n$
- Reorganize to get $F_{n-2} + F_{n-1} + F_n + F_n + 1$
- We can get $F_n + F_n + 2$ from this.
- ullet With induction, we proved that the following statement is ${f T}$ for all n. \blacksquare
- 2. Problem $3.2 \rightarrow$ Use induction to prove

(a)
$$2+6+12+...+(n^2-n)=\frac{n(n^2-1)}{3}$$

• BASE CASE: for n = 0: $0^2 - 0 = \frac{0(0^2 - 1)}{3} = 0$, base case is true

- INDUCTION: $2+6+12+...+(n^2-n)+((n+1)^2-(n+1))=\frac{(n+1)((n+1)^2-1)}{3}$
- work with LHS, simplify RHS as necessary, but don't change anything
- $\frac{n^3-n}{3} + (n^2+n) = \frac{(n+1)(n^2+2n)}{3}$
- simplify to get $\frac{n^3 n + 3(n^2 + n)}{3} = \text{RHS } \frac{n^3 + 3n^2 + 2n}{3}$
- simplify futher to get LHS $\frac{n^3-n+3n^2+3n}{3}=\frac{n^3+3n^2+2n}{3}$, which is the same as the RHS
- ullet With induction, we proved that the following statement is ${f T}$ for all n.
- 3. Prove that for $n \geq 1$, there is $k \geq 0$ and ℓ odd such that $n = 2^k \ell$
 - BASE CASE: n=1 and k=0, therefore plugging into $Q(n)=P(n)=2^k\ell$ becomes $1=2^0\ell$
 - in this case, $\ell = 1$, which makes it odd, base case passed
 - INDUCTION STEP: n = n + 1 and k = k + 1
 - $n+1=2^{k+1}\ell \to \text{plug in } n \text{ for } 2^k\ell$
 - $2^k \ell + 1 = 2^{k+1} \ell$, knowing that ℓ will be odd, we can substitute it for 2w + 1
 - $2^k(2w+1)+1=2^{k+1}\ell$
 - $2^k 2w + 2^k + 1 = 2^k \times 2 \times \ell$