Monte Carlo with the repelled Poisson point process

Diala Hawat, Raphaël Lachièze-Rey, and Rémi Bardenet

Université de Lille, CNRS, Centrale Lille ; UMR 9189 – CRIStAL, F-59000 Lille, France.

Université Paris Cité, Map5, Paris, France.

Numerical integration

2 Repelled point process +

3 Conclusion <u></u>

Let f be a continuous fonction supported on a compact K.

Let f be a continuous fonction supported on a compact K.

■ Estimating: $\int_{\mathcal{K}} f(\mathbf{x}) d\mathbf{x} \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i)$

Let ${\mathcal X}$ be a (simple) point process of intensity ho

Let ${\mathcal X}$ be a (simple) point process of intensity ho

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\mathcal{X}\cap\mathcal{K}}\frac{1}{\rho(\mathbf{x})}f(\mathbf{x})\right]=\int_{\mathcal{K}}f(\mathbf{x})d\mathbf{x}.$$

Let ${\mathcal X}$ be a (simple) point process of intensity ho

$$\mathbb{E}\Big[\sum_{\mathbf{x}\in\mathcal{X}\cap\mathcal{K}}\frac{1}{\rho(\mathbf{x})}f(\mathbf{x})\Big]=\int_{\mathcal{K}}f(\mathbf{x})d\mathbf{x}.$$
Unbiased estimator := $\widehat{I}(f)$

NORDSTAT 2023

Numerical integration 2

Numerical integration
NORDSTAT 2023

Simple Monte Carlo:

- **\blacksquare** \mathcal{X} a homogeneous Poisson point porcess (PPP) of intensity ρ of \mathbb{R}^d .
- lacksquare Sampling from $\mathcal X$ is fast.

A. B. Owen. Monte Carlo theory, methods and examples. 2013.

Diala Hawat Repelled point process

Numerical integration ≥ NORDSTAT 2023

- Monte Carlo with DPP ^{1 2 3} : Convergence rate $\mathcal{O}(N^{-1-1/d})$ (with PPP we had $\mathcal{O}(N^{-1})$).
- Sampling from the DPP is expensive ($\sim \mathcal{O}(N^3)$).
- ¹S. M. Ermakov and V. G. Zolotukhin. Polynomial approximations and the monte- carlo method. Theory of Probability & Its Applications, 1960.
- 2 R. Bardenet and A. Hardy. Monte Carlo with determinantal point processes. The Annals of Applied Probability, 2020.
- 3 J.-F. Coeurjolly, A. Mazoyer, and P.-O. Amblard. Monte Carlo integration of non-differentiable functions on $[0,1]^i$, i=1,...,d, using a single determinantal point pattern defined on $[0,1]^d$. Electronic Journal of Statistics, 2021.

Diala Hawat Repelled point process 4

Repelled point process >

 \mathcal{X} a (simple) stationary point process of intensity ρ of \mathbb{R}^d .

Poisson

 \mathcal{X} a (simple) stationary point process of intensity ρ of \mathbb{R}^d .

Force:

$$F_{\mathcal{X}}(\mathbf{x}) := \sum_{\substack{\mathbf{z} \in \mathcal{X} \setminus \{\mathbf{x}\} \\ \|\mathbf{x} - \mathbf{z}\|_2 \uparrow}} \frac{\mathbf{x} - \mathbf{z}}{\|\mathbf{x} - \mathbf{z}\|_2^d}.$$

Repulsion operator:

$$\Pi_{\varepsilon}: \mathcal{X} \longmapsto \{\boldsymbol{x} + \varepsilon F_{\mathcal{X}}(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{X}\}.$$

Poisson

Diala Hawat Repelled point process 6

Chatterjee, Sourav, Ron Peled, Yuval Peres, and Dan Romik. "Gravitational Allocation to Poisson Points." Annals of Mathematics, 2010.

 \mathcal{X} a (simple) stationary point process of intensity ρ of \mathbb{R}^d .

Force:

$$F_{\mathcal{X}}(\mathbf{x}) := \sum_{\substack{\mathbf{z} \in \mathcal{X} \setminus \{\mathbf{x}\} \\ \|\mathbf{x} - \mathbf{z}\|_2 \uparrow}} \frac{\mathbf{x} - \mathbf{z}}{\|\mathbf{x} - \mathbf{z}\|_2^d}.$$

Repulsion operator:

$$\Pi_{\varepsilon}: \mathcal{X} \longmapsto \{\mathbf{x} + \varepsilon F_{\mathcal{X}}(\mathbf{x}) : \mathbf{x} \in \mathcal{X}\}.$$

Poisson

Repelled point process

 \mathcal{X} a (simple) stationary point process of intensity ρ of \mathbb{R}^d .

Force:

$$F_{\mathcal{X}}(\mathbf{x}) := \sum_{\substack{\mathbf{z} \in \mathcal{X} \setminus \{\mathbf{x}\} \\ \|\mathbf{x} - \mathbf{z}\|_2 \uparrow}} \frac{\mathbf{x} - \mathbf{z}}{\|\mathbf{x} - \mathbf{z}\|_2^d}.$$

Repulsion operator:

$$\Pi_{\varepsilon}: \mathcal{X} \longmapsto \{\mathbf{x} + \varepsilon F_{\mathcal{X}}(\mathbf{x}) : \mathbf{x} \in \mathcal{X}\}.$$

Repelled Poisson

Repelled point process +

 \mathcal{X} a (simple) stationary point process of intensity ρ of \mathbb{R}^d .

Poisson

Repelled Poisson

Diala Hawat Repelled point process 6

Let $P \in \mathbb{R}^d$ be a PPP of intensity $\rho > 0$ with $d \ge 3$.

■ For any $\varepsilon \in \mathbb{R}$, and any two distinct points \mathbf{x} , $\mathbf{y} \in \mathcal{P}$, we have a.s.

$$\mathbf{x} + \varepsilon F_{\mathcal{P}}(\mathbf{x}) \neq \mathbf{y} + \varepsilon F_{\mathcal{P}}(\mathbf{y}).$$

Moreover, $\Pi_{\varepsilon}\mathcal{P}$ is a stationary and isotropic point process of intensity ρ .

Let $\mathcal{P} \in \mathbb{R}^d$ be a PPP of intensity $\rho > 0$ with $d \geq 3$.

■ Let $\varepsilon \in (-1,1)$ and R > 0. For any positive integer m,

$$\mathbb{E}\left[\left(\sum_{\mathbf{x}\in\Pi_{\varepsilon}\mathcal{P}}\mathbb{1}_{B(0,R)}(\mathbf{x})\right)^{m}\right]<\infty.$$

Let $\mathcal{P} \in \mathbb{R}^d$ be a PPP of intensity $\rho > 0$ with $d \geq 3$.

■ Let $\varepsilon \in (-1,1)$. For any function $f \in C^2(\mathbb{R}^d)$ of compact support K, we have

$$\mathbb{V}ar\Big[\widehat{I}_{\Pi_{\varepsilon}\mathcal{P}}(f)\Big] = \mathbb{V}ar\Big[\widehat{I}_{\mathcal{P}}(f)\Big](1 - 2d\kappa_{d}\rho\varepsilon) + \mathcal{O}(\varepsilon^{2}).$$

■ For $\varepsilon > 0$ small enough,

$$\mathbb{V}ar\left[\widehat{I}_{\Pi_{\varepsilon}\mathcal{P}}(f)\right] < \mathbb{V}ar\left[\widehat{I}_{\mathcal{P}}(f)\right].$$

■ Computational complexity $\mathcal{O}(N^2)$ (parallalizable).

Experiment

Repelled point process >

Diala Hawat Repelled point process

Diala Hawat Repelled point process 10

D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. *On estimating the structure factor of a point process, with applications to hyperuniformity*. Statistics and Computing, 2023.

Repelled point process >

Variance d = 2

Diala Hawat Repelled point process 10

Scrambled Sobol

Repelled Scrambled Sobol

Repelled point process >

Variance d = 2

Variance d = 3

Diala Hawat Repelled point process 10 Conclusion
NORDSTAT 2023

Conclusion
NORDSTAT 2023

- Monte Carlo variance reduction with the repelled Poisson point process
- **②** Open source Python toolbox MCRPPy

THANK YOU

NORDSTAT 2023

Webpage: https://dhawat.github.io/

Experiment <u></u>

Experiment 🔟

Experiment 🔟

Experiment <u></u>

