MI-PAA

úkol č.2

Řešení problému přelévání vody

Zadání

Navrhněte a implementujte heuristiku řešící zobecněný problém přelévání vody. Heuristiku
otestujte na všech zkušebních instancích a srovnejte s prohledáváním stavového prostoru do
šířky (BFS).

Řešení

Implementováno jako prohledávání stavového prostoru do šířky, kde přechody mezi stavy byly vyjádřeny operací s vodou/kbelíkem. Jednotlivými operacemi bylo:

- vyprázdnění kbelíku
- naplnění plného kbelíku
- přelití vody z jednoho kbelíku do druhého, omezeno velikostí cílového kbelíku.

Vygenerované stavy byly umisťovány do fronty, odkud byly později přebírány k dalšímu zpracování. Rozdílem mezi řešením hrubou silou a jednoduchou heuristikou byla právě tato fronta, jež byla v heuristice zaměněna za za frontu prioritní. Prioritou v tomto případě byl počet již správně naplněných kbelíků, podle požadovaného výsledku.

Implementační detaily (HW či programovací jazyk) nejsou pro toto řešení důležité, neboť nedocházelo k měření žádných implementačně ovlivnitelných specifik, byly měřeny údaje pouze související s algoritmickou efektivitou řešení.

Naměřené výsledky

V tabulce jsou zobrazeny výsledky, rozdělené podle obou metod. Hrubou silou při prohledávání do šířky bylo nalezeno nejoptimálnější řešení, jež bylo i v jednom případě manuálně ověřeno jako řešení korektní (v přiloženém souboru $cesta_k_reseni_id11$). Méně optimální řešení bylo vždy nalezeno také zvolenou heuristikou, kde u stejné instance bylo řešení taktéž ověřeno (soubor $cesta_k_reseni_heur_id11$). Při manuální kontrole jsem objevil jisté nadbytečné operace, které by zřejmě bylo možné odstranit nějakou jednoduchou optimalizací výsledku. Konkrétně v instanci 11 jde o operace v první třetině řešení, na počátku naplnění kbelíku číslo jedna, a po několika operacích, jež s tímto kbelíkem vůbec nesouvisí, opět vylití onoho kbelíku. Zde by tedy případná optimalizace výrazně zpřesnila řešení, nicméně jde o rozšíření a zesložitění zvolené heuristiky, jež by nebylo možné přímo porovnat s řešením hrubou silou.

rel chyba míra, o kolik je naměřená heuristická hloubka stromu horší proti optimální (zjištěné hrubou silou). V průměru byla dosažená hloubka o cca. jednou tolik větší, tedy dvojnásobná.

Zrychleni ukazuje, kolik procent operací původního výpočtu bylo použito k vypočtení heuristického

výsledku.

	ideal/brute force			heuristika			
instance id	hloubka	prohledano stavu	vygenerovano stavu	hloubka	orohledano stavu	vygenerovano stavu	rel chyba Zrychleni [%]
11	. 10	8926	8991	18	96	1046	0,8 1,0755097468
12	2	6039	8083	17	422	1840	1,125 6,9879119059
13	8 8	5703	7915	10	21	. 172	0,25 0,3682272488
14	1 3	3 28	174	4	5	55	0,3333333333333333333333333333333333333
21	16	49273	49349	47	378	3345	1,9375 0,7671544253
22	2 12	2 34978	41670	34	259	2468	1,8333333333 0,7404654354
23	11	27514	35752	23	312	2852	1,0909090909 1,1339681617
24	. 5	5 253	872	8	13	106	0,6 5,1383399209
25	5 7	7 2880	6326	19	140	1250	1,7142857143 4,8611111111
31	. 14	1 28984	59199	40	258	2279	1,8571428571 0,8901462876
32	2 12	55889	58771	29	184	2043	1,4166666667 0,3292239976
33	10	28213	40908	24	171	1560	1,4 0,6061035693
34	. 5	383	1461	7	24	214	0,4 6,2663185379
35	5 7	7 3624	9155	13	33	347	0,8571428571 0,9105960265
36	5 9	16056	27773	18	81	. 631	1 0,5044843049
						průměr chybovosti:	1,1076875902

Vizualizace výsledků

Porovnání dosažených výsledků

V tomto grafu je vidět porovnání počtu operací s kbelíky pro konkrétní instance. Lze vysledovat určitý trend prohloubení heuristického hledání s větší hloubkou optimálního hledaní, nicméně na potvrzení či vyvrácení této hypotézy je k dispozici příliš málo dat.

Vygenerované stavy

Zde je porovnání nutného počtu vygenerovaných stavů k dosažení nějakého výsledku, podle jednotlivých metod. Porovnáme-li náročnost hrubé síly s optimální hloubkou stromu, uvidíme cca

přímou úměru, která však v porovnání se zvolenou heuristikou u hlubších stromů výrazně ztrácí na zajímavosti, neboť u zvolené heuristiky roste mnohem pomaleji, a ne zcela přímo úměrně.

Závěr

Pro konkrétní aplikovatelnost a užitečnost zvolené heuristiky by bylo třeba dopředu alespoň částečně vědět optimální hloubku stromu, aby mohla být případně vyřazena a nahrazena hrubou silou, neboť v instancích s malou optimální hloubkou se může stát, že delší teoretický výpočet může v průmyslovém užití být ve výsledku o polovinu rychlejší než některá z heuristik (výpočet 20 místo 2 minut a lití 6 hodin místo tří). V každém případě nám tato vcelku rychlá heuristika dá nějaký rozumný horní odhad, a na tomto základě se dá provést rozhodnutí, zda má cenu snažit se o plně optimální řešení. Ve velkých instancích však nemusí být plná optimalizace možná, díky jejímu příliš strmému růstu.