

What is mgcv?

mgcv is an R package for fitting generalized additive models (GAMs). That means we can fit models where the predictors are smooth functions of the covariates. Often these smooth functions are splines, but that's not all they can be.

The main functions in mgcv

gam

For fitting GAMs

gamm

For fitting generalized additive mixed models. Can include correlation structures and performance can be better for random effects. You can specify random effects using lme syntax.

bam

For fitting big additive models. Includes some special tricks for fitting to large datasets.

Formula

formula=

We can write a model formula in mgcv just as we can when we use lm or glm, with some additions.

- s () is the general setup for a smooth.
- $\ensuremath{\text{te}}$ () interaction via tensor product.
- ± 2 () interaction via tensor product (via identity penalty matrices).

Distributions

family=

Continuous

Normal gaussian

Multivariate normal mvn

Normal location-scale gaulss

Scaled t scat

Inverse normal inverse.gaussian

Quasi quasi

Discrete

Binomial binomial
Quasi-binomial quasibinomial
Ordered categorical ocat
Multinomial multinom

Count

Poisson poisson
Quasi-Poisson quasipoisson
Tweedie tw or Tweedie
Tweedie location-scale
Negative binomial nb or negbin
Zero inflated Poisson
Zero inflated Poisson
location-scale ziplss

Range constrained

Beta betar
Gamma Gamma
Gamma location-scale gammals
Censored normal cnorm

Extremes

Generalized extreme value location-scale

Gumbel location-scale gumbls

Misc

Cox proportional hazards cox.ph
Sinh-arcsinh location-scaleshape
General family gfam

Smoothers

Using the bs= argument in s(), te(), etc. Further details can be found in ?smooth.construct.*.smooth.spec

Univariate only smoothers

Cubic regression splines cr

Cubic regression splines with shrinkage cs

B-splines bs

P-splines ps

Special smoothers

Cyclic cubic splines cc

Adaptive smoothers ad

Factor-smooth interactions sz

Random factor-smooth interactions

Smoothers in > 1 dimension

Thin plate regression splines tp

Thin plate regression splines within shrinkage ts

Duchon splines ds

Random effects re

Markov random fields mrf

Gaussian process smooths gp

Smoothers in 2 dimensions

Splines on the sphere ${\tt sos}$

Soap film smoothing so (sw and sf)

Resids vs. linear pred. Resids vs. linear pred. Histogram of residuals Response vs. Fitted Values Residuals Residuals Fitted Values

- Top left: Quantile-quantile plot: points should be close to the line, meaning residuals are normally distributed.
- Bottom left: Histogram of residuals: again, looking for normal(ish) distribution.
- Top right: Residuals vs. linear predictor: looking for no increase or decrease in spread with increasing linear predictor value, otherwise we have heteroskedasticity.
- Bottom right: Response vs. linear predictor, expecting tight line relationship indicating good agreement between the predictions and data.

Knots and basis complexity

General strategy: check ${\tt k}$ and double if too small. When do we know ${\tt k}$ is too small?

Example

> k.check(b)					
	k'	edf	k-index	p-value	
s(x0)	9	2.500168	1.0448166	0.8000	
s(x1)	9	2.401079	1.0267384	0.7200	
s(x2)	9	7.697714	0.9691083	0.2300	
s(x3)	9	1.000000	1.0297794	0.7325	

Check the p-value/k-index columns, if << 1 double k.

Prediction

predict

unconditional=TRUE the smoothing parameter uncertainty

type= argument changes the type of prediction

default on the link scale

"response" to put on the response scale

"iterms" to give per term predictions

"lpmatrix" for a prediction matrix

Fitting criterion method=

"GCV.Cp"	Generalized cross validation, default
"REML"	REstricted Maximum Likelihood, preferred
"ML"	Maximum Likelihood
"NCV"	Neighbourhood Cross-Validation

Extras

gam.mh	Metropolis-Hastings sampling of the posterior	
concurvity	Assess concurvity between terms	
gam.vcomp	Random effects style output	
gamSim	Simulate GAM-type data	
inSide/in.out	point-in-polygon test	
jagam	Generate JAGS/Nimble code	
new.name	Generate a variable name	
place.knots	Place knots evenly	
rmvn	Generate multivariate normal deviates	

Extra help

?gam.models	Fitting fancy models
?linear.functionals	How to use by=
?random.effects	Random effects syntax
?mgcv.FAQ	frequently asked questions
?mgcv.parallel	Info on parallelisation
?missing.data	What to do about missing data
?choose.k	How to select basis size
?one.se.rule	Making smoother smooth models

Other packages

scam	Shape constrained smoothing
gratia	Plotting with ggplot2
mgcViz	Fancy plotting
qgam	Quantile GAMs
cramm4	Random effects besed on lme4

Useful references

Wood. Generalized Additive Models. An Introduction with R. 2nd ed. CRC Press, 2017

Pedersen, Miller, Simpson and Ross. Hierarchical Generalized Additive Models in Ecology: An Introduction with mgcv. PeerJ (2019). https://doi.org/10.7717/peerj.6876