Доска улик

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Володя мечтает стать детективом. Поэтому Володя нередко читает книги, в которых рассказывается об невероятных историях раскрытия преступных группировок. Изучая очередное дело Володя наткнулся на интересные подробности следствия.

Всего в деле было n подозреваемых. На доске улик были изображены все n подозреваемых. Изначально у детективов не было никаких связей между подозреваемыми.

Однако в ходе расследования поочерёдно возникали новые улики. Каждая улика связывала двух подозреваемых, причём ранее эти подозреваемые не имели никакой связи друг с другом, даже косвенной, через несколько других подозреваемых.

Рассмотрим, что происходило, когда у детективов возникала улика, указывающая на связь между подозреваемыми A и B. Кроме имён подозреваемых, у каждой улики было три параметра: c_A — сила доказательства против B, а также w_{AB} — общая сила улики. По естественным соображениям сила улики не могла превышать суммарную силу доказательств против A и B, то есть для каждой улики **обязательно** выполнялось $w_{AB} \leqslant c_A + c_B$. Получив такую улику, детективы проводили на доске ребро (линию) между изображениями A и B, назначая этому ребру вес равный силе улики, w_{AB} . А также на изображение подозреваемого A наклеивался стикер с числом c_A , а на B наклеивался стикер с числом c_B . Причём, если на изображении уже были другие стикеры, новый стикер наклеивался поверх старых.

Дело было раскрыто ровно в тот момент, когда все подозреваемые оказались связаны, через n-1 улику. После раскрытия преступления, доска в неизменном виде была помещена в музей.

Вдохновлённый таким подходом Володя посетил музей, в котором сохранилась доска с этого расследования, и подробно изучил ее. Володя увидел, что изображение подозреваемого v содержало стикеры с числами $c_{v,1},\ldots,c_{v,deg_v}$ пронумерованных **от верхнего к нижнему**. Здесь deg_v обозначает количество улик, связанных с подозреваемым v. Также Володя запомнил, что i-я улика соединяла подозреваемых a_i и b_i и имела силу доказательства w_i , однако улики были пронумерованы произвольным образом и их номера не обязательно соответствовали тому порядку, в котором они появлялись во время следствия.

Из-за путаницы с номерами улик, информация на доске не помогала воссоздать полную картину следствия. Чтобы полностью восстановить историю дела, Володе необходимо восстановить любой возможный хронологический порядок, в котором улики могли появляться у детективов. Но эта задача для него непосильно трудна. Помогите ему! Если есть несколько возможных вариантов восстановления, подойдёт любой из них. Также возможна ситуация, что музей подделал часть информации, и подходящего порядка не существует.

Формат входных данных

В первой строке входных данных даны два целых числа n и g ($2 \le n \le 200\,000,\ 0 \le g \le 9$) — количество подозреваемых в деле и номер группы тестов.

В следующих n-1 строках описываются улики. В i-й строке даны три целых числа a_i, b_i и w_i ($1 \le a_i, b_i \le n, 1 \le w_i \le 10^9, a_i \ne b_i$) — номера подозреваемых, которых связывает i-я улика, и общая сила i-й улики. Гарантируется, что улики связывают всех подозреваемых между собой.

В следующих n строках описываются числа, написанные на стикерах. В i-й строке дано deg_i целых чисел $c_{i,1},\ldots,c_{i,deg_i}$ ($0\leqslant c_{i,j}\leqslant 10^9$) — числа написанные на стикерах на изображении i-го подозреваемого от верхнего к нижнему. Напомним, что deg_i равняется количеству улик, связанных с подозреваемым i.

Формат выходных данных

Если подходящего под условия задачи хронологического порядка восстановления улик не существует, в единственной строке выведите «No» (без кавычек).

Иначе, в первой строке выведите «Yes» (без кавычек). Во второй строке выведите n-1 чисел — подходящий хронологический порядок возникновения улик. Улики пронумерованы от 1 до n-1 в таком же порядке, как они заданы во входных данных. Если возможных порядков несколько, выведите любой из них.

Примеры

стандартный ввод	стандартный вывод
5 0	Yes
1 2 3	1 4 2 3
1 3 1	
3 4 12	
3 5 6	
0 4	
2	
6 1 3	
8	
3	
7 0	Yes
1 2 4	5 1 2 3 6 4
2 3 4	312304
3 4 4	
4 5 4	
5 6 4	
674	
2	
1 2	
2 3	
1 2	
3 2	
1 2	
179	
4 0	No
1 2 7	
1 3 6	
1 4 5	
3 2 1	
5	
4	
3	

Замечание

В первом тесте из условия один из возможных порядков — [1,4,2,3]. Первая, в хронологическом порядке, улика связывает A=1 и B=2, $c_A=4,$ $c_B=2,$ $w_{AB}=3,$ $3\leqslant 2+4$ — улика корректная. Вторая, в хронологическим порядке, улика связывает A=3 и B=5, $c_A=3,$ $c_B=3,$ $w_{AB}=6,$ $6\leqslant 3+3$ — улика корректная. Третья, в хронологическом порядке, улика связывает A=1 и B=3, $c_A=0,$ $c_B=1,$ $w_{AB}=1,$ $1\leqslant 0+1$ — улика корректная. Четвёртая, в хронологическом порядке, улика связывает A=3 и B=4, $C_A=6,$ $C_B=8,$ $C_A=6,$ $C_B=8,$ $C_A=6,$ $C_A=6,$ $C_B=8,$ $C_A=6,$ $C_A=6,$ C

Система оценки

Тесты к этой задаче состоят из девяти групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Оffline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Группа Балл	Баллы	Доп. ограничения		Необх.	Комментарий
	Баллы	n	a_i, b_i, c_i, w_i	Группы	Комментарии
0	0	_	_	_	Тесты из условия.
1	10	$n \leqslant 10$	-	0	_
2	15	_	$a_i=i, b_i=i+1$ для всех i	_	_
3	8	_	$a_i=1, b_i=i+1$ для всех i	_	_
4	9	_	$a_i \leqslant 2, b_i = i+1$ для всех i	3	_
5	7	$n \leqslant 1000$	$c_{i,1}\leqslant c_{i,2}\leqslant\ldots\leqslant c_{i,deg_i}$ для всех i	_	_
6	7	$n \leqslant 1000$	$c_{i,j}=0$ для всех $1\leqslant i\leqslant n$ и $j\geqslant 2$	_	_
7	17	_	$\sum_{v=1}^{n} \sum_{i=1}^{deg_v} c_{v,i} = \sum_{i=1}^{n-1} w_i$	_	-
8	16	$n \leqslant 1000$	_	0, 1, 5, 6	_
9	11	_	_	0 - 8	Offline-проверка.