

HS

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Davis, Roger J.
Raingeaud, Joel
Gupta, Shashi
Derijard, Benoit

(ii) TITLE OF INVENTION: CYTOKINE-, STRESS-, AND
ONCOPROTEIN-ACTIVATED HUMAN PROTEIN KINASE
KINASES

(iii) NUMBER OF SEQUENCES: 16

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Fish & Richardson P.C.
(B) STREET: 225 Franklin Street
(C) CITY: Boston
(D) STATE: MA
(E) COUNTRY: USA
(F) ZIP: 02110-2804

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/530,950
(B) FILING DATE: 19-SEP-1995
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Fasse, J. Peter
(B) REGISTRATION NUMBER: 32,983
(C) REFERENCE/DOCKET NUMBER: 04020/090001

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 617/542-5070
(B) TELEFAX: 617/542-8906
(C) TELEX: 200154

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2030 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGGCTGGCAA TGGCCTTGCT GACCTCGAGC CGGGCCCACG TGGGGACCTT TGGAGCACAG	60
CCTACGATCC TGGTGCAAGG CCGGTGGATG CAGAGGCCAG TCCATATAACC ACCCAGGCCT	120
GCGAGGAGCG TGGTCCCCAC CCATCCAGCC CATATGTGCA AGTGCCCTTG ACAGAGAGGC	180

TGGTCATATC CATGGTGACC ATTTATGGGC CACAACAGGT	240
CCCCCATCTGC GCAGTGAACC	
CTGTGCTGAG CACCTTGCAG ACGTGATCTT GCTTCGTCCCT	300
GCAGCACTGT CGGGGGCAGG	
AAAATCCAAG AGGAAGAAGG ATCTACGGAT ATCCTGCATG	360
TCCAAGCCAC CCCGACCCAA	
CCCCACACCC CCCCGGAACC TGGACTCCCG GACCTTCATC	420
ACCATTGGAG ACAGAAACTT	
TGAGGTGGAG GCTGATGACT TGGTGACCAT CTCAGAACTG	480
GGCCGTGGAG CCTATGGGT	
GGTAGAGAAG GTGCGGCACG CCCAGAGCGG CACCATCATG	540
GCCGTGAAGC GGATCCGGC	
CACCGTGAAC TCACAGGAGC AGAACGGCT GCTCATGGAC	600
CTGGACATCA ACATGCCAC	
GGTCGACTGT TTCTACACTG TCACCTTCTA CGGGGCACTA	660
TTCAGAGAGG GAGACGTGTG	
GATCTGCATG GAGCTCATGG ACACATCCTT GGACAAGTTC	720
TACCGGAAGG TGCTGGATAA	
AAACATGACA ATTCCAGAGG ACATCCTTGG GGAGATTGCT	780
GTGTCTATCG TGCGGGCCCT	
GGAGCATCTG CACAGCAAGC TGTGGTGAT CCACAGAGAT	840
GTGAAGCCCT CCAATGTCCT	
TATCAACAAG GAGGGCCATG TGAAGATGTG TGACTTTGGC	900
ATCAGTGGCT ACTTGGTGGA	
CTCTGTGCC AAGACGATGG ATGCCGGCTG CAAGCCCTAC	960
ATGGCCCTG AGAGGATCAA	
CCCAGAGCTG AACCAAGAAGG GCTACAATGT CAAGTCCGAC	1020
GTCTGGAGCC TGGGAGTGTG	
CATGATTGAG ATGGCCATCC TGCAGTTCCC TTACGAGTCC	1080
TGGGGACCC CGTTCCAGCA	
GCTGAAGCAG GTGGTGGAGG AGCCGTCCCC CCAGCTCCCA	1140
GCCGACCGTT TCTCCCCCGA	
GTTTGTGGAC TTCACTGCTC AGTGCCTGAG GAAGAACCCC	1200
GCAGAGCGTA TGAGCTACCT	
GGAGCTGATG GAGCACCCCT TCTTCACCTT GCACAAAACC	1260
AAGAACGG ACATTGCTGC	
CTTCGTGAAG AAGATCCTGG GAGAACACTC ATAGGGCTG	1320
GGCCTCGGAC CCCACTCCGG	
CCCTCCAGAG CCCCACAGCC CCATCTGCAG GGGCAGTGCT	1380
CACCCACACC ATAAGCTACT	
GCCATCCTGG CCCAGGGCAT CTGGAGGAA CCGAGGGGC	1440
TGCTCCACC TGGCTCTGTG	
GCGAGCCATT TGTCCCAAGT GCCAAAGAAG CAGACCATTG	1500
GGGCTCCAG CCAGGCCCTT	
GTCGGCCCTCA CCAGTGCCTC TCCCTGCTGC TCCTAGGACC	1560
CGTCTCCAGC TGCTGAGATC	
CTGGACTGAG GGGGCCTGGA TGCCCCCTGT GGATGCTGCT	1620
GCCCCTGCAC AGCAGGCTGC	
CAGTGCCTGG GTGGATGGGC CACCGCCTTG CCCAGCCTGG	1680
ATGCCATCCA AGTTGTATAT	
TTTTTTAATC TCTCGACTGA ATGGACTTTG CACACTTTGG	1740
CCCAGGGTGG CCACACCTCT	
ATCCCGCTT TGGTGCAGGG TACACAAGAG GGGATGAGTT	1800
GTGTGAATAC CCCAAGACTC	
CCATGAGGGA GATGCCATGA GCCGCCAAG GCCTCCCT	1860
GGCACTGGCA AACAGGGCCT	
CTGCGGAGCA CACTGGCTCA CCCAGTCCTG CCCGCCACCG	1920
TTATCGGTGT CATTCACCTT	
TGGTGTGTTT TTTAATTTAT CCTCTGTTGA TTTTTCTTT	1980
TGCTTTATGG GTTGGCTTG	
TTTTTCTTGC ATGGTTGGA GCTGATCGCT TCTCCCCAC CCCCTAGGGG	2030

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 318 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Lys Pro Pro Ala Pro Asn Pro Thr Pro Pro Arg Asn Leu Asp
1 5 10 15

Ser Arg Thr Phe Ile Thr Ile Gly Asp Arg Met Phe Glu Val Glu Ala
20 25 30

Asp Asp Leu Val Thr Ile Ser Glu Leu Gly Arg Gly Ala Tyr Gly Val
35 40 45

Val Glu Lys Val Arg His Ala Gln Ser Gly Thr Ile Met Ala Val Lys
50 55 60

Arg Ile Arg Ala Thr Val Asn Ser Gln Glu Gln Lys Arg Leu Leu Met
65 70 75 80

Asp Leu Asp Ile Asn Met Arg Thr Val Asp Cys Phe Tyr Thr Val Thr
85 90 95

Phe Tyr Gly Ala Leu Phe Arg Glu Gly Asp Val Trp Ile Cys Met Glu
100 105 110

Leu Met Asp Thr Ser Leu Asp Lys Phe Tyr Arg Lys Val Leu Asp Lys
115 120 125

Asn Met Thr Ile Pro Glu Asp Ile Leu Gly Glu Ile Ala Val Ser Ile
130 135 140

Val Arg Ala Leu Glu His Leu His Ser Lys Leu Ser Val Ile His Arg
145 150 155 160

Asp Val Lys Pro Ser Asn Val Leu Ile Asn Lys Glu Gly His Val Lys
165 170 175

Met Cys Asp Phe Gly Ile Ser Gly Tyr Leu Val Asp Ser Val Ala Lys
180 185 190

Thr Met Asp Ala Gly Cys Lys Pro Tyr Met Ala Pro Glu Arg Ile Asn
195 200 205

Pro Glu Leu Asn Gln Lys Gly Tyr Asn Val Lys Ser Asp Val Trp Ser
210 215 220

Leu Gly Ile Thr Met Ile Glu Met Ala Ile Leu Arg Phe Pro Tyr Glu
225 230 235 240

Ser Trp Gly Thr Pro Phe Gln Gln Leu Lys Gln Val Val Glu Glu Pro
245 250 255

Ser Pro Gln Leu Pro Ala Asp Arg Phe Ser Pro Glu Phe Val Asp Phe
260 265 270

Thr Ala Gln Cys Leu Arg Lys Asn Pro Ala Glu Arg Met Ser Tyr Leu

275

280

285

Glu Leu Met Glu His Pro Phe Phe Thr Leu His Lys Thr Lys Lys Thr
 290 295 300

Asp Ile Ala Ala Phe Val Lys Lys Ile Leu Gly Glu Asp Ser
 305 310 315

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1602 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TAGCTGCAGC ACAGCCTTCC CTAACGTTGC AACTGGGGGA AAAATCACIT	60
TTTGCAAGGT GTGCATTTC C ATCTTGATTC CCTGAAAGTC CATCTGCTGC ATCGGTCAAG	120
AGAAA ACTCCA CTTGCATGAA GATTGCACGC CTGCAGCTTG CATCTTTGTT GCAAAACTAG	180
CTACAGAAGA GAAGCAAGGC AAAGTCTTTT GTGCTCCCCCT CCCCCATCAA AGGAAAGGGG	240
AAAATGTCTC AGTCGAAAGG CAAGAACGCA AACCCCTGGCC TTAAAATTCC AAAAGAACGA	300
TTTGAACAAC CTCAGACCAAG TTCCACACCA CCTAGAGATT TAGACTCCAA GGCTTGCATT	360
TCTATTGGAA ATCAGAACTT TGAGGTGAAG GCAGATGACC TGGAGCCTAT AATGGAAC	420
GGACGAGGTG CGTACGGGTG GGTGGAGAAG ATGCCGCACG TGCCCAGCGG GCAGATCATG	480
GCAGTGAAGC GGATCCGAGC CACAGTAAT AGCCAGGAAC AGAAACGGCT ACTGATGGAT	540
TTGGATATT CCATGAGGAC GGTGGACTGT CCATTCACTG TCACCTTTTA TGGGGCACTG	600
TTTCGGGAGG GTGATGTGTG GATCTGCATG GAGCTCATGG ATACATCACT AGATAAAATT	660
TACAAACAAG TTATTGATAA AGGCCAGACA ATTCCAGAGG ACATCTTAGG GAAAATAGCA	720
GTTTCTATTG TAAAAGCATT AGAACATTCA CATACTAACGC TGTCGTCA TCACAGAGAC	780
GTCAAGCCTT CTAATGTACT CATCAATGCT CTCGGTCAAG TGAAGATGTG CGATTTGGA	840
ATCAGTGGCT ACTTGGTGGGA CTCTGTTGCT AAAACAATTG ATGCAGGTTG CAAACCATA	900
ATGGCCCTG AAAGAATAAA CCCAGAGCTC AACCCAGAAGG GATACAGTGT GAAGTCTGAC	960
ATTTGGAGTC TGGGCATCAC GATGATTGAG TTGGCCATCC TTGCGATTCC CTATGATTCA	1020
TGGGAACTC CATTTCAGCA GCTCAAACAG GTGGTAGAGG AGCCATGCC ACAACTCCC	1080
GCAGACAAGT TCTCTGCAGA GTTTGTTGAC TTTACCTCAC AGTGCCTAAA GAAGAATTCC	1140
AAAGAACGGC CTACATACCC AGAGCTAATG CAACATCCAT TTTTCACCCT ACATGAATCC	1200
AAAGGAACAG ATGTGGCATC TTTTGTAAAA CTGATTCTTG GAGACTAAAA AGCAGTGGAC	1260
TTAACCGGTT GACCCTACTG TGGATTGGTG GGTTTCGGGG TGAAGCAAGT TCACTACAGC	1320

ATCAATAGAA AGTCATCTT GAGATAATT AACCCCTGCCT CTCAGAGGGT TTTCTCTCCC	1380
AATTTTCTTT TTACTCCCCC TCTTAAGGGG GCCTTGAAAT CTATAGTATA GAATGAACTG	1440
TCTAGATGGA TGAATTATGA TAAAGGCTTA GGACTTCAAA AGGTGATTAA ATATTTAATG	1500
ATGTGTCATA TGAGTCCTCA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA	1560
AAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AA	1602

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 334 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ser Gln Ser Lys Gly Lys Lys Arg Asn Pro Gly Leu Lys Ile Pro	
1 5 10 15	
Lys Glu Ala Phe Glu Gln Pro Gln Thr Ser Ser Thr Pro Pro Arg Asp	
20 25 30	
Leu Asp Ser Lys Ala Cys Ile Ser Ile Gly Asn Gln Asn Phe Glu Val	
35 40 45	
Lys Ala Asp Asp Leu Glu Pro Ile Met Glu Leu Gly Arg Gly Ala Tyr	
50 55 60	
Gly Val Val Glu Lys Met Arg His Val Pro Ser Gly Gln Ile Met Ala	
65 70 75 80	
Val Lys Arg Ile Arg Ala Thr Val Asn Ser Gln Glu Gln Lys Arg Leu	
85 90 95	
Leu Met Asp Leu Asp Ile Ser Met Arg Thr Val Asp Cys Pro Phe Thr	
100 105 110	
Val Thr Phe Tyr Gly Ala Leu Phe Arg Glu Gly Asp Val Trp Ile Cys	
115 120 125	
Met Glu Leu Met Asp Thr Ser Leu Asp Lys Phe Tyr Lys Gln Val Ile	
130 135 140	
Asp Lys Gly Gln Thr Ile Pro Glu Asp Ile Leu Gly Lys Ile Ala Val	
145 150 155 160	
Ser Ile Val Lys Ala Leu Glu His Leu His Ser Lys Leu Ser Val Ile	
165 170 175	
His Arg Asp Val Lys Pro Ser Asn Val Leu Ile Asn Ala Leu Gly Gln	
180 185 190	
Val Lys Met Cys Asp Phe Gly Ile Ser Gly Tyr Leu Val Asp Ser Val	
195 200 205	
Ala Lys Thr Ile Asp Ala Gly Cys Lys Pro Tyr Met Ala Pro Glu Arg	
210 215 220	

Ile Asn Pro Glu Leu Asn Gln Lys Gly Tyr Ser Val Lys Ser Asp Ile
 225 230 235 240
 Trp Ser Leu Gly Ile Thr Met Ile Glu Leu Ala Ile Leu Arg Phe Pro
 245 250 255
 Tyr Asp Ser Trp Gly Thr Pro Phe Gln Gln Leu Lys Gln Val Val Glu
 260 265 270
 Glu Pro Ser Pro Gln Leu Pro Ala Asp Lys Phe Ser Ala Glu Phe Val
 275 280 285
 Asp Phe Thr Ser Gln Cys Leu Lys Lys Asn Ser Lys Glu Arg Pro Thr
 290 295 300
 Tyr Pro Glu Leu Met Gln His Pro Phe Phe Thr Leu His Glu Ser Lys
 305 310 315 320
 Gly Thr Asp Val Ala Ser Phe Val Lys Leu Ile Leu Gly Asp
 325 330

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3497 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CTAGGGTCCC CGGCCGCAGG CCACCCGGCC	GTCAGCAGCA TGCAGGGTAA ACGCAAAGCA	60
CTGAAGTTGA ATTTGCAAA TCCACCTTC AAATCTACAG	CAAGGTTTAC TCTGAATCCC	120
AATCCTACAG GAGTTCAAAA CCCACACATA GAGAGACTGA	GAACACACAG CATTGAGTCA	180
TCAGGAAAC TGAAGATCTC CCCTGAACAA CACTGGGATT	TCACTGCAGA GGACTTGAAA	240
GACCTTGGAG AAATTGGACG AGGAGCTTAT GGTTCTGTCA	ACAAAATGGT CCACAAACCA	300
AGTGGCAAA TAATGGCAGT TAAAAGAATT CGGTCAACAG	TGGATGAAAA AGAACAAAAA	360
CAACTTCTTA TGGATTTGGA TGTAGTAATG CGGAGTAGTG	ATTGCCATA CATTGTTCAG	420
TTTTATGGTG CACTCTTCAG AGAGGGTGAC TGTTGGATCT	GTATGGAACT CATGTCTACC	480
TCGTTTGATA AGTTTTACAA ATATGTATAT AGTGTATTAG	ATGATGTTAT TCCAGAAGAA	540
ATTTTAGGCA AAATCACTTT AGCAACTGTG AAAGCACTAA	ACCACTTAAA AGAAAACCTG	600
AAAATTATTC ACAGAGATAT CAAACCTTC CAAATCTTC	TGGACAGAAG TGGAAATATT	660
AAGCTCTGTG ACTTCGGCAT CAGTGGACAG CTTGTGGACT	CTATTGCCAA GACAAGAGAT	720
GCTGGCTGTA GGCCATACAT GGCACCTGAA AGAATAGACC	CAAGCGCATH ACGACAAGGA	780
TATGATGTCC GCTCTGATGT CTGGAGTTG GGGATCACAT	TGTATGAGTT GGCCACAGGC	840
CGATTTCCCTT ATCCAAAGTG GAATAGTGTAA TTTGATCAAC	TAACACAAAGT CGTGAAAGGA	900
GATCCTCCGC AGCTGAGTAA TTCTGAGGAA AGGGAATTCT	CCCCGAGTTT CATCAACTTT	960

GTCAACTTGT	GCCTTACGAA	GGATGAATCC	AAAAGGCCAA	AGTATAAAGA	GCTTCTGAAA	1020
CATCCCTTA	TTTGATGTA	TGAAGAACGT	GCCGTTGAGG	TCGCATGCTA	TGTTTGTAAA	1080
ATCCTGGATC	AAATGCCAGC	TACTCCCAGC	TCTCCCAGT	ATGTCGATTG	ATATCGTGCT	1140
ACATCAGACT	CTAGAAAAAA	GGGCTGAGAG	GAAGCAAGAC	GTAAAGAATT	TTCATCCCCT	1200
ATCACAGTGT	TTTTATTGCT	CGCCCAGACA	CCATGTGCAA	TAAGATTGGT	GTTCGTTCC	1260
ATCATGTCTG	TATACTCCTG	TCACCTAGAA	CGTGCATCCT	TGTAATACCT	GATTGATCAC	1320
ACAGTGTAG	TGCTGGTCAG	AGAGACCTCA	TCCTGCTCTT	TTGTGATGAA	CATATTGATG	1380
AAATGTGGAA	GTCAGTACGA	TCAAGTTGTT	GACTGTGATT	AGATCACATC	TTAAATTGAT	1440
TTCTAGACTC	AAAACCTGGA	GATGCAGCTA	CTGGAATGGT	GTTTTGTCAG	ACTTCCAAAT	1500
CCTGGAAGGA	CACAGTGATG	AATGTAATAT	ATCTGAACAT	AGAAAACCTGG	GCTTGAGTGA	1560
GAAGAGCTTG	CACAGCCAAC	GAGACACATT	GCCTTCTGGA	GCTGGGAGAC	AAAGGAGGAA	1620
TTTACTTCT	TCACCAAGTG	CAATAGATTA	CTGATGTGAT	ATTCTGTTGC	TTTACAGTTA	1680
CAGTTGATGT	TTGGGGATCG	ATGTGCTCAG	CCAAATTTC	TGTTTGAAT	ATCATGTTAA	1740
ATTAGAAATGA	ATTTATCTTT	ACCAAAAACC	ATGTTGCCGTT	CAAAGAGGTG	AACATTAAAA	1800
TATAGAGACA	GGACAGAAATG	TGTTCTTTTC	TCCTCTACCA	GTCCTATTTT	TCAATGGAA	1860
GAETCAGGAG	TCTGCCACTT	GTCAAAGAAG	GTGCTGATCC	TAAGAATT	TCATTCTCAG	1920
AATTCCGTGT	GCTGCCAACT	TGATGTTCCA	CCTGCCACAA	ACCAACCAGGA	CTGAAAGAAG	1980
AAAACAGTAC	AGAAGGCAA	GTTTACAGAT	GTTTTAATT	CTAGTATT	ATCTGGAAACA	2040
ACTTGTAGCA	GCTATATATT	TCCCCTTGGT	CCCAAGCCTG	ATACTTTAGC	CATCATAACT	2100
CACTAACAGG	GAGAAGTAGC	TAGTAGCAAT	GTGCCTTGAT	TGATTAGATA	AAGATTCTA	2160
GTAGGCAGCA	AAAGACCAA	TCTCAGTTGT	TTGCTTCTTG	CCATCACTGG	TCCAGGTCTT	2220
CAGTTTCCGA	ATCTCTTCC	CTTCCCTGT	GGTCTATTGT	CGCTATGTGA	CTTGCCTTA	2280
ATCCAATATT	TTGCCTTTT	TCTATATCAA	AAAACCTTTA	CAGTTAGCAG	GGATGTTCC	2340
TACCGAGGAT	TTTTAACCCC	CAATCTCTCA	TAATCGCTAG	TGTTAAAAG	GCTAAGAATA	2400
GTGGGGCCCA	ACCGATGTGG	TAGGTGATAA	AGAGGCATCT	TTTCTAGAGA	CACATTGGAC	2460
CAGATGAGGA	TCCGAAACGG	CAGCCTTAC	GTTCATCACC	TGCTAGAAC	TCTCGTAGTC	2520
CATCACCATT	TCTTGGCATT	GGAATTCTAC	TGGAAAAAAA	TACAAAAAGC	AAAACAAAAC	2580
CCTCAGCACT	GTTACAAGAG	GCCATTAAAG	TATCTTGTGC	TTCTTCACCT	ACCCATTAGC	2640
CAGGTTCTCA	TTAGGTTTTG	CTTGGGCCTC	CCTGGCACTG	AACCTTAGGC	TTTGTATGAC	2700
AGTGAAGCAG	CACTGTGAGT	GGTCAAGCA	CACTGGAATA	AAAAACAGTC	ATGGCCTGAG	2760
ATGCAGGTGA	TGCCATTACA	GAACCAAATC	GTGGCACGTA	TTGCTGTGTC	TCCTCTCAGA	2820

GTGACAGTCA TAAATACTGT CAAACAATAA	AGGGAGAATG	GTGCTGTTTA	AAGTCACATC	2880
CCTGTAAATT GCAGAATTCA AAAGTGATTA	TCTCTTGAT	CTACTTGCCT	CATTTCCCTA	2940
TCTTCTCCCC CACGGTATCC TAAACTTTAG	ACTTCCCCT	GTTCTGAAAG	GAGACATTGC	3000
TCTATGTCTG CCTTCGACCA CAGCAAGCCA	TCATCCTCCA	TTGCTCCCGG	GGACTCAAGA	3060
GGAATCTGTT TCTCTGCTGT CAACCTCCCA	TCTGGCTCAG	CATAGGGTCA	CTTTGCCATT	3120
ATGCAAATGG AGATAAAAAGC AATTCTGGCT	GTCCAGGAGC	TAATCTGACC	GTTCTATTGT	3180
GTGGATGACC ACATAAGAAG GCAATTTAG	TGTATTAATC	ATAGATTATT	ATAAAACATA	3240
AACTTAAGGG CAAGGAGTTT ATTACAATGT	ATCTTTATTA	AAACAAAAGG	GTGTATAGTG	3300
TTCACAAACT GTGAAAATAG TGTAAGAACT	GTACATTGTG	AGCTCTGGTT	ATTTTTCTCT	3360
TGTACCATAG AAAAATGTAT AAAAATTATC	AAAAAGCTAA	TGTGCAGGGA	TATTGCCTTA	3420
TTTGTCTGTA AAAAATGGAG CTCAGTAACA	TAACTGCTTC	TTGGAGCTTT	GGAATATTTT	3480
ATCCTGTATT CTTGTTT				3497

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 363 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met	Gln	Gly	Lys	Arg	Lys	Ala	Leu	Lys	Leu	Asn	Phe	Ala	Asn	Pro	Pro
1					5				10					15	
Phe	Lys	Ser	Thr	Ala	Arg	Phe	Thr	Leu	Asn	Pro	Asn	Pro	Thr	Gly	Val
							20		25				30		
Gln	Asn	Pro	His	Ile	Glu	Arg	Leu	Arg	Thr	His	Ser	Ile	Glu	Ser	Ser
					35			40				45			
Gly	Lys	Leu	Lys	Ile	Ser	Pro	Glu	Gln	His	Trp	Asp	Phe	Thr	Ala	Glu
						50		55			60				
Asp	Leu	Lys	Asp	Leu	Gly	Glu	Ile	Gly	Arg	Gly	Ala	Tyr	Gly	Ser	Val
						65		70		75		80			
Asn	Lys	Met	Val	His	Lys	Pro	Ser	Gly	Gln	Ile	Met	Ala	Val	Lys	Arg
						85			90			95			
Ile	Arg	Ser	Thr	Val	Asp	Glu	Lys	Glu	Gln	Lys	Gln	Leu	Leu	Met	Asp
					100			105			110				
Leu	Asp	Val	Val	Met	Arg	Ser	Ser	Asp	Cys	Pro	Tyr	Ile	Val	Gln	Phe
						115		120			125				
Tyr	Gly	Ala	Leu	Phe	Arg	Glu	Gly	Asp	Cys	Trp	Ile	Cys	Met	Glu	Leu
						130		135			140				
Met	Ser	Thr	Ser	Phe	Asp	Lys	Phe	Tyr	Lys	Tyr	Val	Tyr	Ser	Val	Leu

145	150	155	160
Asp Asp Val Ile Pro Glu Glu Ile Leu Gly Lys Ile Thr Leu Ala Thr			
165	170	175	
Val Lys Ala Leu Asn His Leu Lys Glu Asn Leu Lys Ile Ile His Arg			
180	185	190	
Asp Ile Lys Pro Ser Asn Ile Leu Leu Asp Arg Ser Gly Asn Ile Lys			
195	200	205	
Leu Cys Asp Phe Gly Ile Ser Gly Gln Leu Val Asp Ser Ile Ala Lys			
210	215	220	
Thr Arg Asp Ala Gly Cys Arg Pro Tyr Met Ala Pro Glu Arg Ile Asp			
225	230	235	240
Pro Ser Ala Ser Arg Gln Gly Tyr Asp Val Arg Ser Asp Val Trp Ser			
245	250	255	
Leu Gly Ile Thr Leu Tyr Glu Leu Ala Thr Gly Arg Phe Pro Tyr Pro			
260	265	270	
Lys Trp Asn Ser Val Phe Asp Gln Leu Thr Gln Val Val Lys Gly Asp			
275	280	285	
Pro Pro Gln. Leu Ser Asn Ser Glu Glu Arg Glu Phe Ser Pro Ser Phe			
290	295	300	
Ile Asn Phe Val Asn Leu Cys Leu Thr Lys Asp Glu Ser Lys Arg Pro			
305	310	315	320
Lys Tyr Lys Glu Leu Leu Lys His Pro Phe Ile Leu Met Tyr Glu Glu			
325	330	335	
Arg Ala Val Glu Val Ala Cys Tyr Val Cys Lys Ile Leu Asp Gln Met			
340	345	350	
Pro Ala Thr Pro Ser Ser Pro Met Tyr Val Asp			
355	360		

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3553 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CAACAAATGGC GGCTCCGAGC CCGAGCGGTG CGGGCGGCAG CGGCACCCCCC GGCCCCGTAG	60
GGTCCCCGGC GCCAGGCCAC CGGGCCGTCA GCAGCATGCA GGGTAAACGC AAAGCACTGA	120
AGTTGAATTT TGCATAATCCA CCTTTCAAAT CTACAGCAAG GTTTACTCTG AATCCCAATC	180
CTACAGGAGT TCAAAACCCA CACATAGAGA GACTGAGAAC ACACAGCATT GAGTCATCAG	240
GAAAAGTCAA GATCTCCCCT GAACAACACT GGGATTCAC TGCAGAGGAC TTGAAAGACC	300
TTGGAGAAAT TGGACGAGGA GCTTATGGTT CTGTCAACAA AATGGTCCAC AAACCAAGTG	360

GGCAAATAAT GGCAAGTTAAA AGAATTCCGT CAACAGTGGG TGAAAAAGAA CAAAAACAAC	420
TTCTTATGGA TTTGGATGTA GTAATGCCGA GTAGTGATTG CCCATACATT GTTCAGTTT	480
ATGGTGCACT CTTCAGAGAG CGTGAUTGTT GGATCTGTAT GGAACATCATG TCTACCTCGT	540
TTGATAAGTT TTACAAATAT GTATATAGTG TATTAGATGA TGTTATTCCA GAAGAAATT	600
TAGGCAAAAT CACTTTAGCA ACTGTGAAAG CACTAAACCA CTAAAAGAA AACTTGA	660
TTATTACAG AGATATCAA CCTTCCAATA TTCTTCTGGG CAGAAGTGGG AATATTAAGC	720
TCTGTGACTT CGGCATCAGT GGACAGCTTG TGGACTCTAT TGCCAAGACA AGAGATGCTG	780
GCTGTAGGCC ATACATGGCA CCTGAAAGAA TAGACCCAAG CGCATCACGA CAAGGATATG	840
ATGTCCGCTC TGATGTCTGG AGTTGGGGG TCACATTGTA TGAGTTGGCC ACAGGCCGAT	900
TTCCATTATCC AAAGTGGAAAT AGTGTATTG ATCAACTAAC ACAAGTCGTG AAAGGAGATC	960
CTCCGCAGCT GAGTAATTCT GAGGAAAGGG AATTCTCCCC GAGTTTCATC AACTTGTCA	1020
ACTTGTGCCT TACGAAGGGAT GAATCCAAA GCCCAAAGTA TAAAGAGCTT CTGAAACATC	1080
CCTTTATTTT GATGTATGAA AACGTCGCCG TTGAGGTCGC ATGCTATGTT TGAAAATCC	1140
TGGATCAAAT GCCAGCTACT CCCAGCTCTC CCATGTATGT CGATTGATAT CGTGTACAT	1200
CAGACTCTAG AAAAAGGGC TGAGAGGAAG CAAGACGTAAGAAGATTTCA TCCCCTATCA	1260
CAGTGTGTTT ATTGCTCGCC CAGACACCCT GTGCAATAAG ATTGGTGTTC GTTCCATCA	1320
TGTCTGTATA CTCCCTGTAC CTAGAACGTG CATCCTGTA ATACCTGATT GATCACACAG	1380
TGTTAGTGCT GGTCAAGAGAG ACCTCATCCT GCTCTTTGT GATGAACATA TTCATGAAAT	1440
GTGGAAGTCA GTACGATCAA GTTGTGACT GTGATTAGAT CACATCTAA ATTCAATTCT	1500
AGACTCAAAA CCTGGAGATG CAGCTACTGG AATGGTGTGTT TGTCAGACTT CCAAATCCTG	1560
GAAGGACACA GTGATGAATG TACTATATCT GAACATAGAA ACTCGGGCTT GAGTGAGAAG	1620
AGCTTGCACA GCCAACGAGA CACATTGCCCT TCTGGAGCTG GGAGACAAAG GAGGAATT	1680
CTTTCTTCAC CAAGTGCAAT AGATTACTGA TGTGATATTC TGTTGCTTTA CAGTTACAGT	1740
TGATGTTGG GGATCGATGT GCTCAGCCAA ATTCCTGTT TGAAATATCA TGTTAAATTA	1800
GAATGAATT ATCTTTACCA AAAACCATGT TGCCTCAGAA GAGGTGAACA TTAAATATA	1860
GAGACAGGAC AGAATGTGTT CTTTCTCCT CTACCACTGC TATTTTCAA TGGGAAGACT	1920
CAGGAGTCTG CCACTTGTCA AAGAAGGTGC TGATCCTAAG AATTTTCAAT TCTCAGAATT	1980
CGGTGTGCTG CCAACTTGAT GTTCCACCTG CCACAAACCA CCAGGACTGA AAGAAGAAAA	2040
CAGTACAGAA GGCAAAGTTT ACAGATGTT TTAATTCTAG TATTTTATCT GGAACAACTT	2100
GTAGCAGCTA TATATTTCCC CTTGGTCCCAGCCTGATAC TTTAGCCATC ATAACACT	2160
AACAGGGAGA AGTAGCTAGT AGCAATGTGC CTTGATTGAT TAGATAAAGA TTTCTAGTAG	2220

GCAGCAAAAG ACCAAATCTC AGTTGTTGC TTCTTGCAT CACTGGCCA GGTCTTCAGT	2280
TTCCGAATCT CTTTCCCTTC CCCTGTGGTC TATTGTCGCT ATGTGACTTG CGCTTAATCC	2340
AATATTTGC CTTTTTCTA TATCAAAAAA CCTTTACAGT TAGCAGGGAT GTTCCCTTACC	2400
GAGGATTTT AACCCCCAAT CTCTCATAAT CGCTAGTGT TAAAAGGCTA AGAATAGTGG	2460
GGCCCAACCG ATGTGGTAGG TGATAAAAGAG GCATCTTTC TAGAGACACA TTGGACCAGA	2520
TGAGGATCCG AAACGGCAGC CTTTACGTTC ATCACCTGCT AGAACCTCTC GTAGTCCATC	2580
ACCATTCTT GGCAATTGGAA TTCTACTGGA AAAAAATACA AAAAGCAAAA CAAAACCCTC	2640
AGCACTGTTA CAAGAGGCCA TTTAAGTATC TTGTGCTTCT TCACTTACCC ATTAGCCAGG	2700
TTCTCATTAG GTTTGCTTG GGCTCCCTG GCACTGAACC TTAGGCTTTG TATGACAGTG	2760
AAGCAGCACT GTGAGTGGTT CAAGCACACT GGAATATAAA ACAGTCATGG CCTGAGATGC	2820
AGGTGATGCC ATTACAGAAC CAAATCGTGG CACGTATTGC TGTGTCTCCT CTCAGAGTGA	2880
CAGTCATAAA TACTGTCAA CAATAAAGGG AGAATGGTGC TGTTTAAAGT CACATCCCTG	2940
TAATTGCAG AATTCAAAAG TGATTATCTC TTTGATCTAC TTGCCTCATT TCCCTATCTT	3000
CTCCCCCACG GTATGCTAAA CTTTAGACTT CCCACTGTTC TGAAAGGAGA CATTGCTCTA	3060
TGTCTGCCCT CGACCACAGC AAGCCATCAT CCTCCATTGC TCCCGGGGAC TCAAGAGGAA	3120
TCTGTTCTC TGCTGTCAAC TTCCCCTCTG GCTCAGCATA GGGTCACTTT GCCATTATGC	3180
AAATGGAGAT AAAAGCAATT CTGGCTGTCC AGGAGCTAAT CTGACCGTTC TATTGTGTGG	3240
ATGACCACAT AAGAAGGCAA TTTTAGTGT A TTAATCATAG ATTATTATAA ACTATAAACT	3300
TAAGGGCAAG GAGTTTATTA CAATGTATCT TTATTAAAAC AAAAGGGTGT ATAGTGTCA	3360
CAAACGTGA AAATAGTGT AAGAACTGTAC ATTGTGAGCT CTGGTTATTT TTCTCTGT	3420
CCATAGAAAA ATGTATAAAA ATTATCAAAA AGCTAATGTG CAGGGATATT GCCTTATTTG	3480
TCTGTAAAAA ATGGAGCTCA GTAACATAAC TGCTTCTTGG AGCTTTGGAA TATTTATCC	3540
TGTATTCTTG TTT	3553

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 393 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

```

Met Ala Ala Pro Ser Pro Ser Gly Gly Gly Gly Ser Gly Thr Pro Gly
1           5                   10                  15

```

Pro Val Gly Ser Pro Ala Pro Gly His Pro Ala Val Ser Ser Met Gln
20 25 30

Gly Lys Arg Lys Ala Leu Lys Leu Asn Phe Ala Asn Pro Pro Phe Lys
35 40 45

Ser Thr Ala Arg Phe Thr Leu Asn Pro Asn Pro Thr Gly Val Gln Asn
50 55 60

Pro His Ile Glu Arg Leu Arg Thr His Ser Ile Glu Ser Ser Gly Lys
65 70 75 80

Leu Lys Ile Ser Pro Glu Gln His Trp Asp Phe Thr Ala Glu Asp Leu
85 90 95

Lys Asp Leu Gly Glu Ile Gly Arg Gly Ala Tyr Gly Ser Val Asn Lys
100 105 110

Met Val His Lys Pro Ser Gly Gln Ile Met Ala Val Lys Arg Ile Arg
115 120 125

Ser Thr Val Asp Glu Lys Glu Gln Lys Gln Leu Leu Met Asp Leu Asp
130 135 140

Val Val Met Arg Ser Ser Asp Cys Pro Tyr Ile Val Gln Phe Tyr Gly
145 150 155 160

Ala Leu Phe Arg Glu Gly Asp Cys Trp Ile Cys Met Glu Leu Met Ser
165 170 175

Thr Ser Phe Asp Phe Tyr Lys Tyr Val Tyr Ser Val Leu Asp Asp
180 185 190

Val Ile Pro Glu Glu Ile Leu Gly Lys Ile Thr Leu Ala Thr Val Lys
195 200 205

Ala Leu Met His Leu Lys Glu Asn Leu Lys Ile Ile His Arg Asp Ile
210 215 220

Lys Pro Ser Asn Ile Leu Leu Asp Arg Ser Gly Met Ile Lys Leu Cys
225 230 235 240

Asp Phe Gly Ile Ser Gly Gln Leu Val Asp Ser Ile Ala Lys Thr Arg
245 250 255

Asp Ala Gly Cys Arg Pro Tyr Met Ala Pro Glu Arg Ile Asp Phe Ser
260 265 270

Ala Ser Arg Gln Gly Tyr Asp Val Arg Ser Asp Val Trp Ser Leu Gly
275 280 285

Ile Thr Leu Tyr Glu Leu Ala Thr Gly Arg Phe Pro Tyr Pro Lys Trp
290 295 300

Asn Ser Val Phe Asp Gln Leu Thr Gln Val Val Lys Gly Asp Pro Pro
305 310 315 320

Gln Leu Ser Asn Ser Glu Glu Arg Glu Phe Ser Pro Ser Phe Ile Asn
325 330 335

Phe Val Asn Leu Cys Leu Thr Lys Asp Glu Ser Lys Arg Pro Lys Tyr
340 345 350

Lys Glu Leu Leu Lys His Pro Phe Ile Leu Met Tyr Glu Glu Arg Ala
355 360 365

Val Glu Val Ala Cys Tyr Val Cys Lys Ile Leu Asp Gln Met Pro Ala
370 375 380

Thr Pro Ser Ser Pro Met Tyr Val Asp
385 390

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3576 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CTCCCAACAA TGGCGGCTCC GAGCCCGAGC GGCGGCGCG GCTCCGGGG CGGCAGCGC	60
AGCGGCACCC CCGGCCCCGT AGGGTCCCCG GCGCCAGGCC ACCCGGCCGT CAGCAGCATG	120
CAGGGTAAAC GCAAAGCACT GAAGTTGAAT TTTGCAAATC CACCTTCAA ATCTACAGCA	180
AGGTTTACTC TGAATCCCAA TCCTACAGGA GTTCAAAACC CACACATAGA GAGACTGAGA	240
ACACACAGCA TTGAGTCATC AGGAAAATG AAGATCTCCC CTGAACACACA CTGGGATTTC	300
ACTGCAGAGG ACTTGAAAGA CCTTGGAGAA ATTGGACGAG GAGCTTATGG TTCTGTCAAC	360
AAAATGGTCC ACAAAACCAAG TGGGCAAATA ATGGCAGTTA AAAGAATTG GTCAACAGTG	420
GATGAAAAAG AACAAAAACA ACTTCTTATG GATTTGGATG TAGTAATGCG GAGTAGTGAT	480
TGCCCATACA TTGTTCAGTT TTATGGTCA CTCTTCAGAG AGGGTGAATG TTGGATCTGT	540
ATGGAACTCA TGTCTACCTC GTTTGATAAG TTTTACAAAT ATGTATATAG TGTATTAGAT	600
GATGTTATTG CAGAAGAAAT TTTAGGCAGA ATCACTTTAG CAACTGTGAA AGCACTAAC	660
CACTTAAAG AAAACTTGAA AATTATTCAC AGAGATATCA AACCTTCCAA TATTCTCTG	720
GACAGAAGTG GAAATATTAA GCTCTGTGAC TTCGGCATCA GTGGACAGCT TGTGGACTCT	780
ATTGCCAAGA CAAGAGATGC TGGCTGTAGG CCATACATGG CACCTGAAAG AATAGACCCA	840
AGCGCATTCA GACAAGGATA TGATGTCCGC TCTGATGTCT GGAGTTGGG GATCACATTG	900
TATGAGTTGG CCACAGGCCG ATTTCTTAT CCAAAGTGGG ATAGTGTATT TGATCAACTA	960
ACACAAAGTCG TGAAAGGAGA TCCTCCGCAG CTGAGTAATT CTGAGGAAAG GGAATTCTCC	1020
CCGAGTTCA TCAACTTGT CAACTGTGCA CTTACGAAGG ATGAATCCAA AAGGCCAAAG	1080
TATAAAAGAGC TTCTGAAACA TCCCTTTATT TTGATGTATG AAGAACGTGC CGTTGAGGTC	1140
GCATGCTATG TTTGAAAT CCTGGATCAA ATGCCAGCTA CTCCCAGCTC TCCCAGTAT	1200
GTCGATTGAT ATCGCTGCTA CATCAGACTC TAGAAAAAG GGCTGAGAGG AAGCAAGACG	1260
TAAAGAATTTCATCCCGTA TCACAGTGT TTTATTGCTC GCCCAGACAC CATGTGCAAT	1320
AAGATTGGTG TTCGTTCCA TCATGTCTGT ATACTCCTGT CACCTAGAAC GTGCATCCTT	1380

GTAATACCTG ATTGATCACA CAGTGTAGT GCTGGTCAGA GAGACCTCAT CCTGCTCTTT	1440
TGTGATGAAC ATATTCACTGA AATGTGGAAG TCAGTACGAT CAAGTTGTTG ACTGTGATTA	1500
GATCACATCT TAAATTCACT TCTAGACTCA AAACCTGGAG ATGCAGCTAC TGGAATGGTG	1560
TTTTGTCAGA CTTCCAAATC CTGGAAAGGAC ACAGTGATGA ATGTACTATA TCTGAACATA	1620
GAAAATCGGG CTTGAGTGAG AAGAGCTTGC ACAGCCAACG AGACACATTG CCTTCTGGAG	1680
CTGGGAGACA AAGGAGGAAT TTACTTTCTT CACCAAGTGC AATAGATTAC TGATGTGATA	1740
TTCTGTTGCT TTACAGTTAC AGTTGATGTT TGGGGATCGA TGTGCTCAGC CAAATTCCT	1800
GTGAAATA TCATGTTAAA TTAGAATGAA TTTATCTTA CAAAAAACCA TGTTGCGTTC	1860
AAAGAGGTGA ACATTTAAAT ATAGAGACAG GACAGAATGT GTTCTTTCT CCTCTACCAG	1920
TCCTATTTTT CAATGGGAAG ACTCAGGAGT CTGCCACTG TCAAAGAAGG TGCTGATCCT	1980
AAGAATTTTT CATTCTCAGA ATTGGTGTG CTGCCAACTT GATGTTCCAC CTGCCACAAA	2040
CCACCRGGAC TGAAAGAAGA AACAGTACA GAAGGCAAAG TTTACAGATG TTTTAATTG	2100
TAGTATTTTA TCTGGAACAA CTTGTAGCAG CTATATATTT CCCCTGGTC CCAAGCCTGA	2160
TACTTTAGCC ATCAAAACTC ACTAACAGGG AGAAGTAGCT AGTAGCAATG TGCCCTGATT	2220
GATTAGATAA AGATTTCTAG TAGGCAGCAA AAGACCAAAT CTCAGTTGTT TGCTTCTTGC	2280
CATCACTGGT CCAGGTCTTC AGTTCCGAA TCTCTTCCC TTCCCTGTG GTCTATTGTC	2340
GCTATGTGAC TTGCGCTTAA TCCAATATTT TGCCCTTTTT CTATATCAA AAACCTTTAC	2400
AGTTAGCAGG GATGTTCCCT ACCGAGGATT TTTAACCCCC AATCTCTCAT AATCGCTAGT	2460
GTTTAAAAGG CTAAGAATAG TGGGCCCAA CCGATGTGGT AGGTGATAAA GAGGCATCTT	2520
TTCTAGAGAC ACATTGGACC AGATGAGGAT CCGAAACGGC AGCCTTACG TTCATCACCT	2580
GCTAGAACCT CTCGTAGTCC ATCACCAATT CTTGGCATTG GAATTCTACT GGAAAAAAAT	2640
ACAAAAAGCA AAACAAAACC CTCAGCACTG TTACAAGAGG CCATTTAAGT ATCTTGTGCT	2700
TCTTCACTTA CCCATTAGCC AGGTTCTCAT TAGGTTTGC TTGGGCCTCC CTGGCACTGA	2760
ACCTTAGGCT TTGTATGACA GTGAAGCAGC ACTGTGAGTG GTTCAAGCAC ACTGGAATAT	2820
AAAACAGTCA TGGCCTGAGA TGCAGGTGAT GCCATTACAG AACCAAATCG TGGCACGTAT	2880
TGCTGTGTCT CCTCTCAGAG TGACAGTCAT AAATACTGTC AAACAATAAA GGGAGAATGG	2940
TGCTGTTAA AGTCACATCC CTGTAATTG CAGAATTCAA AAGTGATTAT CTCTTTGATC	3000
TACTTGCCCTC ATTTCCCTAT CTTCTCCCC ACGGTATCCT AAACCTTACA CTTCCCACTG	3060
TTCTGAAAGG AGACATTGCT CTATGTCTGC CTTCGACCAC AGCAAGCCAT CATCCTCCAT	3120
TGCTCCGGG GACTCAAGAG GAATCTGTT CTCTGCTGTC AACCTCCCAT CTGGCTCAGC	3180
ATAGGGTCAC TTTGCCATTA TGCAAATGGA GATAAAAGCA ATTCTGGCTG TCCAGGAGCT	3240

AATCTGACCG TTCTATTGTG TGGATGACCA CATAAGAAGG CAATTTAGT GTATTAATCA	3300
TAGATTATTA TAAACTATAA ACTTAAGGGC AAGGAGTTA TTACAATGTA TCTTTATTAA	3360
AACAAAAGGG TGTATAGTGT TCACAAACTG TGAAAATAGT GTAAGAACTG TACATTGTGA	3420
GCTCTGGTTA TTTTCTCTT GTACCATAGA AAAATGTATA AAAATTATCA AAAAGCTAAT	3480
GTGCAGGGAT ATTGCCTTAT TTGTCTGTAA AAAATGGAGC TCAGTAACAT AACTGCTTCT	3540
TGGAGCTTG GAATATTTA TCCTGTATTC TTGTTT	3576

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Ala Ala Pro Ser Pro Ser Gly Gly Gly Ser Gly Gly Ser	
1 5 10 15	
Gly Ser Gly Thr Pro Gly Pro Val Gly Ser Pro Ala Pro Gly His Pro	
20 25 30	
Ala Val Ser Ser Met Gln Gly Lys Arg Lys Ala Leu Lys Leu Asn Phe	
35 40 45	
Ala Asn Pro Pro Phe Lys Ser Thr Ala Arg Phe Thr Leu Asn Pro Asn	
50 55 60	
Pro Thr Gly Val Gln Asn Pro His Ile Glu Arg Leu Arg Thr His Ser	
65 70 75 80	
Ile Glu Ser Ser Gly Lys Leu Lys Ile Ser Pro Glu Gln His Trp Asp	
85 90 95	
Phe Thr Ala Glu Asp Leu Lys Asp Leu Gly Glu Ile Gly Arg Gly Ala	
100 105 110	
Tyr Gly Ser Val Asn Lys Met Val His Lys Pro Ser Gly Gln Ile Met	
115 120 125	
Ala Val Lys Arg Ile Arg Ser Thr Val Asp Glu Lys Glu Gln Lys Gln	
130 135 140	
Leu Leu Met Asp Leu Asp Val Val Met Arg Ser Ser Asp Cys Pro Tyr	
145 150 155 160	
Ile Val Gln Phe Tyr Gly Ala Leu Phe Arg Glu Gly Asp Cys Trp Ile	
165 170 175	
Cys Met Glu Leu Met Ser Thr Ser Phe Asp Lys Phe Tyr Lys Tyr Val	
180 185 190	
Tyr Ser Val Leu Asp Asp Val Ile Pro Glu Glu Ile Leu Gly Lys Ile	
195 200 205	
Thr Leu Ala Thr Val Lys Ala Leu Asn His Leu Lys Glu Asn Leu Lys	

210

215

220

Ile Ile His Arg Asp Ile Lys Pro Ser Asn Ile Leu Leu Asp Arg Ser
 225 230 235 240

Gly Asn Ile Lys Leu Cys Asp Phe Gly Ile Ser Gly Gln Leu Val Asp
 . 245 250 255

Ser Ile Ala Lys Thr Arg Asp Ala Gly Cys Arg Pro Tyr Met Ala Pro
 260 265 270

Glu Arg Ile Asp Pro Ser Ala Ser Arg Gln Gly Tyr Asp Val Arg Ser
 275 280 285

Asp Val Trp Ser Leu Gly Ile Thr Leu Tyr Glu Leu Ala Thr Gly Arg
 290 295 300

Phe Pro Tyr Pro Lys Trp Asn Ser Val Phe Asp Gln Leu Thr Gln Val
 305 310 315 320

Val Lys Gly Asp Pro Pro Gln Leu Ser Asn Ser Glu Glu Arg Glu Phe
 325 330 335

Ser Pro Ser Phe Ile Asn Phe Val Asn Leu Cys Leu Thr Lys Asp Glu
 340 345 350

Ser Lys Arg-Pro Lys Tyr Lys Glu Leu Leu Lys His Pro Phe Ile Leu
 355 360 365

Met Tyr Glu Glu Arg Ala Val Glu Val Ala Cys Tyr Val Cys Lys Ile
 370 375 380

Leu Asp Gln Met Pro Ala Thr Pro Ser Ser Pro Met Tyr Val Asp
 385 390 395

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 393 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Pro Lys Lys Lys Pro Thr Pro Ile Gln Leu Asn Pro Ala Pro Asp
 1 5 10 15

Gly Ser Ala Val Asn Gly Thr Ser Ser Ala Glu Thr Asn Leu Glu Ala
 20 25 30

Leu Gln Lys Lys Leu Glu Glu Leu Glu Leu Asp Glu Gln Gln Arg Lys
 35 40 45

Arg Leu Glu Ala Phe Leu Thr Gln Lys Gln Lys Val Gly Glu Leu Lys
 50 55 60

Asp Asp Asp Phe Glu Lys Ile Ser Glu Leu Gly Ala Gly Asn Gly Gly
 65 70 75 80

Val Val Phe Lys Val Ser His Lys Pro Ser Gly Leu Val Met Ala Arg
 85 90 95

Lys Leu Ile His Leu Glu Ile Lys Pro Ala Ile Arg Asn Gln Ile Ile
 100 105 110
 Arg Glu Leu Gln Val Leu His Glu Cys Asn Ser Pro Tyr Ile Val Gly
 115 120 125
 Phe Tyr Gly Ala Phe Tyr Ser Asp Gly Glu Ile Ser Ile Cys Met Glu
 130 135 140
 His Met Asp Gly Gly Ser Leu Asp Gln Val Leu Lys Lys Ala Gly Arg
 145 150 155 160
 Ile Pro Glu Gln Ile Leu Gly Lys Val Ser Ile Ala Val Ile Lys Gly
 165 170 175
 Leu Thr Tyr Leu Arg Glu Lys His Lys Ile Met His Arg Asp Val Lys
 180 185 190
 Pro Ser Asn Ile Leu Val Asn Ser Arg Gly Glu Ile Lys Leu Cys Asp
 195 200 205
 Phe Gly Val Ser Gly Gln Leu Ile Asp Ser Met Ala Asn Ser Phe Val
 210 215 220
 Gly Thr Arg Ser Tyr Met Ser Pro Glu Arg Leu Gln Gly Thr His Tyr
 225 230 235 240
 Ser Val Gln Ser Asp Ile Trp Ser Met Gly Leu Ser Leu Val Glu Met
 245 250 255
 Ala Val Gly Arg Tyr Pro Ile Pro Pro Pro Asp Ala Lys Glu Leu Glu
 260 265 270
 Leu Met Phe Gly Cys Gln Val Glu Gly Asp Ala Ala Glu Thr Pro Pro
 275 280 285
 Arg Pro Arg Thr Pro Gly Arg Pro Leu Ser Ser Tyr Gly Met Asp Ser
 290 295 300
 Arg Pro Pro Met Ala Ile Phe Glu Leu Leu Asp Tyr Ile Val Asn Glu
 305 310 315 320
 Pro Pro Pro Lys Leu Pro Ser Gly Val Phe Ser Leu Glu Phe Gln Asp
 325 330 335
 Phe Val Asn Lys Cys Leu Ile Lys Asn Pro Ala Glu Arg Ala Asp Leu
 340 345 350
 Lys Gln Leu Met Val His Ala Phe Ile Lys Arg Ser Asp Ala Glu Glu
 355 360 365
 Val Asp Phe Ala Gly Trp Leu Cys Ser Thr Ile Gly Leu Asn Gln Pro
 370 375 380
 Ser Thr Pro Thr His Ala Ala Gly Val
 385 390

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 amino acids
 - (B) TYPE: amino acid

(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Leu Ala Arg Arg Lys Pro Val Leu Pro Ala Leu Thr Ile Asn Pro
1 5 10 15

Thr Ile Ala Glu Gly Pro Ser Pro Thr Ser Glu Gly Ala Ser Glu Ala
20 25 30

Asn Leu Val Asp Leu Gln Lys Lys Leu Glu Glu Leu Glu Leu Asp Glu
35 40 45

Gln Gln Lys Lys Arg Leu Glu Ala Phe Leu Thr Gln Lys Ala Lys Val
50 55 60

Ser Glu Leu Lys Asp Asp Asp Phe Glu Arg Ile Ser Glu Leu Gly Ala
65 70 75 80

Gly Asn Gly Gly Val Val Thr Lys Val Gln His Arg Pro Ser Gly Leu
85 90 95

Ile Met Ala Arg Lys Leu Ile His Leu Glu Ile Lys Pro Ala Ile Arg
100 105 110

Asn Gln Ile Ile Arg Glu Leu Gln Val Leu His Glu Cys Asn Ser Pro
115 120 125

Tyr Ile Val Gly Phe Tyr Gly Ala Phe Tyr Ser Asp Gly Glu Ile Ser
130 135 140

Ile Cys Met Glu His Met Asp Gly Gly Ser Leu Asp Gln Val Leu Lys
145 150 155 160

Glu Ala Lys Arg Ile Pro Glu Glu Ile Leu Gly Lys Val Ser Ile Ala
165 170 175

Val Leu Arg Gly Leu Ala Tyr Leu Arg Glu Lys His Gln Ile Met His
180 185 190

Arg Asp Val Lys Pro Ser Asn Ile Leu Val Asn Ser Arg Gly Glu Ile
195 200 205

Lys Leu Cys Asp Phe Gly Val Ser Gly Gln Leu Ile Asp Ser Met Ala
210 215 220

Asn Ser Phe Val Gly Thr Arg Ser Tyr Met Ala Pro Glu Arg Leu Gln
225 230 235 240

Gly Thr His Tyr Ser Val Gln Ser Asp Ile Trp Ser Met Gly Leu Ser
245 250 255

Leu Val Glu Leu Ala Val Gly Arg Tyr Pro Ile Pro Pro Asp Ala
260 265 270

Lys Glu Leu Glu Ala Ile Phe Gly Arg Pro Val Val Asp Gly Glu Glu
275 280 285

Gly Glu Pro His Ser Ile Ser Pro Arg Pro Arg Pro Pro Gly Arg Pro
290 295 300

Val Ser Gly His Gly Met Asp Ser Arg Pro Ala Met Ala Ile Phe Glu
 305 310 315 320
 Leu Leu Asp Tyr Ile Val Asn Glu Pro Pro Pro Lys Leu Pro Asn Gly
 325 330 335
 Val Phe Thr Pro Asp Phe Gln Glu Phe Val Asn Lys Cys Leu Ile Lys
 340 345 350
 Asn Pro Ala Glu Arg Ala Asp Leu Lys Met Leu Thr Asn His Thr Phe
 355 360 365
 Ile Lys Arg Ser Glu Val Glu Val Asp Phe Ala Gly Trp Leu Cys
 370 375 380
 Lys Thr Leu Arg Leu Asn Gln Pro Gly Thr Pro Thr Arg Thr Ala Val
 385 390 395 400

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 668 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Glu Asp Lys Phe Ala Asn Leu Ser Leu His Glu Lys Thr Gly Lys
 1 5 10 15
 Ser Ser Ile Gln Leu Asn Glu Gln Thr Gly Ser Asp Asn Gly Ser Ala
 20 25 30
 Val Lys Arg Thr Ser Ser Thr Ser Ser His Tyr Asn Asn Ile Asn Ala
 35 40 45
 Asp Leu His Ala Arg Val Lys Ala Phe Gln Glu Gln Arg Ala Leu Lys
 50 55 60
 Arg Ser Ala Ser Val Gly Ser Asn Gln Ser Glu Gln Asp Lys Gly Ser
 65 70 75 80
 Ser Gln Ser Pro Lys His Ile Gln Gln Ile Val Asn Lys Pro Leu Pro
 85 90 95
 Pro Leu Pro Val Ala Gly Ser Ser Lys Val Ser Gln Arg Met Ser Ser
 100 105 110
 Gln Val Val Gln Ala Ser Ser Lys Ser Thr Leu Lys Asn Val Leu Asp
 115 120 125
 Asn Gln Glu Thr Gln Asn Ile Thr Asp Val Asn Ile Asn Ile Asp Thr
 130 135 140
 Thr Lys Ile Thr Ala Thr Thr Ile Gly Val Asn Ile Gly Leu Pro Ala
 145 150 155 160
 Thr Asp Ile Thr Pro Ser Val Ser Asn Thr Ala Ser Ala Thr His Lys
 165 170 175

Ala Gln Leu Leu Asn Pro Asn Arg Arg Ala Pro Arg Arg Pro Leu Ser
 180 185 190
 Thr Gln His Pro Thr Arg Pro Asn Val Ala Pro His Lys Ala Pro Ala
 195 200 205
 Ile Ile Asn Thr Pro Lys Gln Ser Leu Ser Ala Arg Arg Gly Leu Lys
 210 215 220
 Leu Pro Pro Gly Gly Met Ser Leu Lys Met Pro Thr Lys Thr Ala Gln
 225 230 235 240
 Gln Pro Gln Gln Phe Ala Pro Ser Pro Ser Asn Lys Lys His Ile Glu
 245 250 255
 Thr Leu Ser Asn Ser Lys Val Val Glu Gly Lys Arg Ser Asn Pro Gly
 260 265 270
 Ser Leu Ile Asn Gly Val Gln Ser Thr Ser Thr Ser Ser Thr Glu
 275 280 285
 Gly Pro His Asp Thr Val Gly Thr Thr Pro Arg Thr Gly Asn Ser Asn
 290 295 300
 Asn Ser Ser Asn Ser Gly Ser Ser Gly Gly Gly Leu Phe Ala Asn
 305 310 315 320
 Phe Ser Lys Tyr Val Asp Ile Lys Ser Gly Ser Leu Asn Phe Ala Gly
 325 330 335
 Lys Leu Ser Leu Ser Ser Lys Gly Ile Asp Phe Ser Asn Gly Ser Ser
 340 345 350
 Ser Arg Ile Thr Leu Asp Glu Leu Glu Phe Leu Asp Glu Leu Gly His
 355 360 365
 Gly Asn Tyr Gly Asn Val Ser Lys Val Leu His Lys Pro Thr Asn Val
 370 375 380
 Ile Met Ala Thr Lys Glu Val Arg Leu Glu Leu Asp Glu Ala Lys Phe
 385 390 395 400
 Arg Gln Ile Leu Met Glu Leu Glu Val Leu His Lys Cys Asn Ser Pro
 405 410 415
 Tyr Ile Val Asp Phe Tyr Gly Ala Phe Phe Ile Glu Gly Ala Val Tyr
 420 425 430
 Met Cys Met Glu Tyr Met Asp Gly Gly Ser Leu Asp Lys Ile Tyr Asp
 435 440 445
 Glu Ser Ser Glu Ile Gly Gly Ile Asp Glu Pro Gln Leu Ala Phe Ile
 450 455 460
 Ala Asn Ala Val Ile His Gly Leu Lys Glu Leu Lys Glu Gln His Asn
 465 470 475 480
 Ile Ile His Arg Asp Val Lys Pro Thr Asn Ile Leu Cys Ser Ala Asn
 485 490 495
 Gln Gly Thr Val Lys Leu Cys Asp Phe Gly Val Ser Gly Asn Leu Val
 500 505 510

Ala Ser Leu Ala Lys Thr Asn Ile Gly Cys Gln Ser Tyr Met Ala Pro
 515 520 525
 Glu Arg Ile Lys Ser Leu Asn Pro Asp Arg Ala Thr Tyr Thr Val Gln
 530 535 540
 Ser Asp Ile Trp Ser Leu Gly Leu Ser Ile Leu Glu Met Ala Leu Gly
 545 550 555 560
 Arg Tyr Pro Tyr Pro Pro Glu Thr Tyr Asp Asn Ile Phe Ser Gln Leu
 565 570 575
 Ser Ala Ile Val Asp Gly Pro Pro Arg Leu Pro Ser Asp Lys Phe
 580 585 590
 Ser Ser Asp Ala Gln Asp Phe Val Ser Leu Cys Leu Gln Lys Ile Pro
 595 600 605
 Glu Arg Arg Pro Thr Tyr Ala Ala Leu Thr Glu His Pro Trp Leu Val
 610 615 620
 Lys Tyr Arg Asn Gln Asp Val His Met Ser Glu Tyr Ile Thr Glu Arg
 625 630 635 640
 Leu Glu Arg Arg Asn Lys Ile Leu Arg Glu Arg Gly Glu Asn Gly Leu
 645 650 655
 Ser Lys Asn Val Pro Ala Leu His Met Gly Gly Leu
 660 665

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TTYTAYGGNG CNTTYTTYAT HGA

23

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ATBCTYTCNG GNGCCATKTA

20

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ASTYRYSASA SASASYS

17