

Mean Value Theorems Ex 15.1 Q1(i)

$$f(x) = 3 + (x - 2)^{\frac{2}{3}}$$
 on [1, 3]

Differentiating it with respect to x,

$$f'(x) = \frac{2}{3} \times \frac{1}{(x-2)^{\frac{1}{3}}}$$

Clearly,
$$\lim_{x \to 2} = \frac{2}{3} \times \frac{1}{(x-2)^{\frac{1}{3}}}$$

Thus, f(x) is not differentiable at $x = 2 \in (1,3)$

Hene, Rolle's theorem is not applicable for f(x) in $x \in [1,3]$.

Mean Value Theorems Ex 15.1 Q1(ii)

Here, f(x) = [x] and $x \in [-1, 1]$, at n = 1

LHL =
$$\lim_{x \to (1-h)} [x]$$

= $\lim_{h \to 0} [1-h]$
= 0
RHL = $\lim_{x \to (1+h)} [x]$
= $\lim_{h \to 0} [1+h]$
= 1
LHL $\neq RHL$

So, f(x) is not continuous at $1 \in [-1,1]$

Hence, rolle's theorem is not applicable on f(x) in [-1,1]. Mean Value Theorems Ex 15.1 Q1(iii)

Here,
$$f(x) = \sin\left(\frac{1}{x}\right)$$
, $x \in [-1,1]$, at $n = 0$

LHS
$$= \lim_{x \to (0-h)} \sin\left(\frac{1}{x}\right)$$

$$= \lim_{h \to 0} \sin\left(\frac{1}{0-h}\right)$$

$$= \lim_{h \to 0} \sin\left(\frac{-1}{h}\right)$$

$$= -\lim_{h \to 0} \sin\left(\frac{1}{h}\right)$$

$$= -k \qquad \qquad \left[\text{Let } \lim_{h \to 0} \sin\left(\frac{1}{h}\right) = k \text{ as } k \in [-1,1]\right]$$

RHS =
$$\lim_{x \to (0+h)} \sin\left(\frac{1}{x}\right)$$

= $\lim_{h \to 0} \sin\left(\frac{1}{h}\right)$
= k

⇒ LHS≠RHS

 \Rightarrow f(x) is not continuous at n = 0

So, rolle's theorem is not applicable on f(x) in [-1,1]

Mean Value Theorems Ex 15.1 Q1(iv) Here, $f(x) = 2x^2 - 5x + 3$ on [1, 3]

Here, f(x) = 2x - 5x + 3 on [1,3] f(x) is continuous in [1,3] and f(x) is differentiable is (1,3) since

it is a polynomial function.

Now,

$$f(x) = 2x^{2} - 5x + 3$$

$$f(1) = 3(1)^{2} - 5(1) + 3$$

$$= 2 - 5 + 3$$

$$f(1) = 0 ---(i)$$

$$f(3) = 2(3)^{2} - 5(3) + 3$$

$$= 18 - 15 + 3$$

$$f(3) = 6 ---(ii)$$

From equation (i) and (ii),

$$f(1) \neq f(3)$$

So, rolle's theorem is not applicable on f(x) in [1,3].