TENSOR NORMAL MODELS ON DIRECTED ACYCLIC GRAPHS

Abstract here.

1. Introduction

Maximum Likelihood Estimation (MLE) is a fundamental problem in statistics, and recently it has been studied from the lens of algebra. The MLE problem is to find a point in a model that 'best' fits some data. The idea of 'fitting' a data is given by a likelihood function, and the problem of finding a point that 'best' fits the data translates to maximizing the likelihood function. A point that maximizes the likelihood function is called the maximum likelihood estimate.

Throughout we will use the calligraphic font \mathcal{G} to denote a directed acyclic graph (DAG) and the normal font G to denote a group. \mathcal{M} , with some subscript containing an object, will be used to denote a model. For example, \mathcal{M}_G is the model associated to a group G. PD_m will refer to the cone of symmetric $m \times m$ positive definite matrices.

2. Main Results

The main paper [1] deals mainly about Gaussian group models and section 5 talks about certain DAG models and their relationship with Gaussian group models. Anna Seigal suggested to deal with the model $\mathcal{M}(\mathcal{G}_1, \mathcal{G}_2) := \{\Psi_1 \otimes \Psi_2 : \Psi_i \in \mathcal{M}_{\mathcal{G}_i}\}$ when two DAGs $\mathcal{G}_1, \mathcal{G}_2$ are given, and raised the primary question that when are such models Gaussian group models, that is, when is $\mathcal{M}(\mathcal{G}_1, \mathcal{G}_2) = \mathcal{M}_G$ for some group G of matrices. For the one-parameter case, such models have been studied. Given a DAG \mathcal{G} , one considers the set of matrices

$$G(\mathcal{G}) = \{X \in GL_{|V(\mathcal{G})|} : X_{ij} = 0 \text{ for } i \neq j \text{ with } j \not\to i \text{ in } \mathcal{G}\}.$$

This is relevant in the 'good' case when $\mathcal{M}_{\mathcal{G}} = \mathcal{M}_{G(\mathcal{G})}$ as indicated in theorem 3.2.

The problem on $\mathcal{M}(\mathcal{G}_1, \mathcal{G}_2)$ naturally starts by considering

$$G\left(\mathcal{G}_{1},\mathcal{G}_{2}\right)\coloneqq\left\{ \Psi_{1}\otimes\Psi_{2}:\Psi_{i}\in G\left(\mathcal{G}_{i}\right)
ight\} =G\left(\mathcal{G}_{1}\right)\otimes G\left(\mathcal{G}_{2}\right).$$

It can be directly proven that

Proposition 2.1. $G(\mathcal{G}_1, \mathcal{G}_2)$ is a group iff both \mathcal{G}_i are TDAGs. If both \mathcal{G}_i 's are TDAGs, the model $M = \{\Psi_1 \otimes \Psi_2 : \Psi_i \in \mathcal{M}_{\mathcal{G}_i}\}$ is exactly $\mathcal{M}_{G(\mathcal{G}_1, \mathcal{G}_2)}$.

My main contribution is to define a construction $\mathcal{G}_1 \otimes \mathcal{G}_2$ such that $G(\mathcal{G}_1) \otimes G(\mathcal{G}_2) \cong G(\mathcal{G}_1 \otimes \mathcal{G}_2)$. In fact such a construction is commutative (upto relabelling) and associative. Thus it extends to $\mathcal{G}_1 \otimes \cdots \otimes \mathcal{G}_n$ so that $\bigotimes_{i=1}^n G(\mathcal{G}_i) \cong G\left(\bigotimes_{i=1}^n \mathcal{G}_i\right)$. That is, this construction extends to the tensor normal models on n DAGs.

3. Background

3.1. Maximum likelihood estimation. We will focus on multivariate Gaussian distributions of mean zero and covariance matrix Σ , whose density is given by

$$f_{\Sigma}(\boldsymbol{y}) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}\boldsymbol{y}^{\mathsf{T}}\Sigma^{-1}\boldsymbol{y}\right)$$

where $\mathbf{y} \in \mathbb{R}^m$ and $\Sigma \in \mathrm{PD}_m$. The corresponding $\Psi = \Sigma^{-1}$ will be its concentration matrix. A Gaussian model is a set of m-dimensional Gaussian distributions with mean zero. Such a model is given by a set of $m \times m$ symmetric positive definite covariance matrices. Equivalently they are also determined by a set of concentration matrices in PD_m . We will refer to this as the Gaussian model, instead of the set of densities themselves. So a Gaussian model \mathcal{M} is just a subset of PD_m whose elements are to be thought of as concentration matrices.

A maximum likelihood estimate is a point Ψ in the model which maximizes the likelihood of observing some sample data point $\vec{Y} = (y_1, \dots, y_n)$. Mathematically, we want a $\Psi \in \mathcal{M}$ that maximizes the likelihood func-

tion
$$L_{\vec{Y}}(\Psi) = \prod_{i=1}^n f_{\Psi^{-1}}(y_i)$$
. Often, it is easier to maximize $l_{\vec{Y}} \coloneqq \log L_{\vec{Y}}$

instead of $L_{\vec{\mathbf{v}}}$ itself, and they have the same maximizers. Note that

$$\begin{split} l_{\vec{\boldsymbol{Y}}}(\Psi) &= \log L_{\vec{\boldsymbol{Y}}}(\Psi) \\ &= \sum_{i=1}^n \left(-\frac{1}{2} \log \det(2\pi \Psi^{-1}) - \frac{1}{2} \boldsymbol{y}_i^{\mathsf{T}} \Psi \boldsymbol{y}_i \right) \\ &\Longrightarrow \frac{2}{n} l_{\vec{\boldsymbol{Y}}} = -\log \det(2\pi \Psi^{-1}) - \frac{1}{n} \sum_{i=1}^n \boldsymbol{y}_i^{\mathsf{T}} \Psi \boldsymbol{y}_i \\ &= -m \log(2\pi) + \log \det \Psi - \frac{1}{n} \sum_{i=1}^n \boldsymbol{y}_i^{\mathsf{T}} \Psi \boldsymbol{y}_i \\ &\Longrightarrow \frac{2}{n} l_{\vec{\boldsymbol{Y}}} + m \log(2\pi) = \log \det \Psi - \frac{1}{n} \sum_{i=1}^n \operatorname{Tr} \left(\boldsymbol{y}_i^{\mathsf{T}} \Psi \boldsymbol{y}_i \right) \\ &= \log \det \Psi - \operatorname{Tr} \left(\frac{1}{n} \sum_{i=1}^n \Psi \boldsymbol{y}_i^{\mathsf{T}} \boldsymbol{y}_i \right) \\ &= \log \det \Psi - \operatorname{Tr} \left(\Psi \frac{1}{n} \sum_{i=1}^n \boldsymbol{y}_i \boldsymbol{y}_i^{\mathsf{T}} \right) \\ &= \log \det \Psi - \operatorname{Tr} \left(\Psi S_{\vec{\boldsymbol{V}}} \right) \end{split}$$

where $S_{\vec{Y}} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{y}_i \boldsymbol{y}_i^{\mathsf{T}}$ is the sample covariance matrix. This is clearly symmetric positive semi-definite. The above calculation shows that $\underset{\Psi \in \mathcal{M}}{\operatorname{argmax}} \left\{ l_{\vec{Y}}(\Psi) \right\} = \underset{\Psi \in \mathcal{M}}{\operatorname{argmax}} \left\{ \log \det \Psi - \operatorname{Tr} \left(\Psi S_{\vec{Y}} \right) \right\}$. Take $\ell_{\vec{Y}}(\Psi) \coloneqq \log \det \Psi - \operatorname{Tr}(\Psi S_{\vec{Y}})$. Observe that $\ell_{\vec{Y}}(\Psi)$ is invariant under similarity of Ψ and similarity of $S_{\vec{Y}}$. Further $\Psi, S_{\vec{Y}}$ are real symmetric matrices, hence have real eigenvalues and are diagonalizable. This means that if $\{\lambda_i\}_{i=1}^m \subseteq \mathbb{R}^{>0}$ and $\{\mu_i\}_{i=1}^m \subseteq \mathbb{R}^{\geq 0}$ are eigenvalues of Ψ and $S_{\vec{Y}}$ respectively, then $\ell_{\vec{Y}}(\Psi) = \sum \log \lambda_i - \sum \lambda_i \mu_i$. Note that if $S_{\vec{Y}}$ is invertible,

4

then

$$\ell_{\vec{Y}}(\Psi) = \log \det \Psi - \operatorname{Tr} \left(\Psi S_{\vec{Y}} \right)$$

$$= \log \det \Psi - \log \det S_{\vec{Y}}^{-1} + \log \det S_{\vec{Y}}^{-1}$$

$$- \operatorname{Tr} \left(\Psi S_{\vec{Y}} \right) + \operatorname{Tr} \mathbf{1}_{m} - \operatorname{Tr} \left(S_{\vec{Y}}^{-1} S_{\vec{Y}} \right)$$

$$= \sum_{i=1}^{m} \log(\lambda_{i}\mu_{i}) + \log \det S_{\vec{Y}}^{-1} - \sum_{i=1}^{m} \lambda_{i}\mu_{i} + m - \operatorname{Tr} \left(S_{\vec{Y}}^{-1} S_{\vec{Y}} \right)$$

$$= \sum_{i=1}^{m} \left[\log(\lambda_{i}\mu_{i}) - \lambda_{i}\mu_{i} \right] + m + \ell_{\vec{Y}} \left(S_{\vec{Y}}^{-1} \right)$$

$$\leq \sum_{i=1}^{m} (-1) + m + \ell_{\vec{Y}} \left(S_{\vec{Y}}^{-1} \right) = \ell_{\vec{Y}} \left(S_{\vec{Y}}^{-1} \right)$$

If $S_{\vec{Y}}$ is singular, assume WLOG $\mu_1 = 0$, then $\ell_{\vec{Y}}(\Psi) = \log \lambda_1 + \sum_{i\geq 2} (\log \lambda_i - \lambda_i \mu_i)$ diverges to $+\infty$ as $\lambda_1 \to \infty$.

3.2. Gaussian group models. The Gaussian group model given by a group $G \subseteq GL(\mathbb{R}^n)$ is the multivariate Gaussian model comprising all densities of mean zero and concentration matrices given by

$$\mathcal{M}_G := \left\{ X^{\mathsf{T}} X : X \in G \right\}.$$

The importance of such models is that finding an MLE is equivalent to an optimization problem. This is seen by the following calculation

(1)
$$-\ell_{\vec{\boldsymbol{Y}}}\left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right) = \frac{1}{n}\sum \operatorname{Tr}\left(\left(\boldsymbol{X}\boldsymbol{y}_{i}\right)^{\mathsf{T}}\boldsymbol{X}\boldsymbol{y}_{i}\right) - \log \det \left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right)$$

(2)
$$= \frac{1}{n} \left| \left| X \cdot \vec{Y} \right| \right|_2^2 - \log(\det X)^2$$

So maximizing $\ell_{\vec{Y}}(X^{\mathsf{T}}X)$ is equivalent to minimizing $\frac{1}{n} \left| \left| X\vec{Y} \right| \right|_2^2 - \log \det (X^{\mathsf{T}}X)$ which consists of minimizing norms. The exact statement is captured in the following theorem in [1, Proposition 3.4]:

Proposition 3.1. Let $\vec{Y} \in V^n$ be a tuple of samples. If the group $G \subseteq GL(V)$ is closed under non-zero scalar multiples, the supremum of the log-likelihood $\ell_{\vec{V}}(\Psi)$ over \mathcal{M}_G is the double infimum

$$-\inf_{\lambda>0} \left(\frac{\lambda}{n} \left(\inf_{H \in G_{\mathrm{SL}}^{\pm}} \left| \left| H \cdot \vec{Y} \right| \right|^{2} \right) - \dim(V) \log \lambda \right).$$

The MLEs, if they exist, are the matrices $\frac{n \dim V}{\left|\left|H \cdot \vec{Y}\right|\right|^2} H^{\mathsf{T}} H$, where H minimizes $\left|\left|H \cdot \vec{Y}\right|\right|$ under the action of G_{SL}^{\pm} on V^n .

In the above, $G_{SL}^{\pm} = \{X \in G : \det X = \pm 1\}.$

What the above proposition says is that $\ell_{\vec{Y}}(X^{\mathsf{T}}X)$ can be maximized in two steps:

- (1) Minimize the norm $\left| \left| H \cdot \vec{\mathbf{Y}} \right| \right|^2$ over $H \in G_{\mathrm{SL}}^{\pm}$.
- (2) Find a scalar $\mu \in \mathbb{R}$ so that $X := \mu H$ minimizes $-\ell_{\vec{Y}}(X^{\mathsf{T}}X)$ in eq. (2).

Proof. We want to minimize the function $f: G \to \mathbb{R}$ given by

$$f(X) = \frac{1}{n} \left\| X \cdot \vec{Y} \right\|_{2}^{2} - \log \left(\det X \right)^{2}.$$

Let $m=\dim V$. Observe that $f|_{G_{\mathrm{SL}}^{\pm}}$ determines f completely. This is because for any $X\in G$, take $Z:=\frac{1}{\mu_X}X$, where $\mu_X=(|\det X|)^{\frac{1}{m}}\in\mathbb{R}_{>0}$. Clearly $\det Z=\frac{\det X}{|\det X|}=\pm 1$. Then

$$f(X) = \frac{\mu_X^2}{n} \left\| \left| Z \cdot \vec{Y} \right| \right\|_2^2 - \log \left((\mu_X^m \det Z)^2 \right)$$
$$= \frac{\mu_X^2}{n} \left\| \left| Z \cdot \vec{Y} \right| \right|_2^2 - 2m \log \mu_X$$
$$= \mu_X^2 f(Z) - 2m \log \mu_X$$

Note that for K > 0, the function $s \mapsto sK - \log s$ minimizes at $s = \frac{1}{K}$ giving a min value of $1 + \log K$, the latter being an increasing function of K. Thus minimizing f(X) is equivalent to first minimizing the norm in the orbit of $G_{\rm SL}^{\pm}$ and then minimizing the overall expression with the previous minima. In other words,

$$\inf_{X \in G} f(X) = \inf_{\mu > 0} \left(\mu^2 \cdot \inf_{Z \in G_{SL}^{\pm}} \left| \left| Z \cdot \vec{Y} \right| \right|_2^2 - m \log \mu^2 \right).$$

Replacing $\lambda = \mu^2$ gives the expression in the expression in the proposition. The MLE, if it exists, is given by the point $\hat{X} = \hat{\mu}\hat{Z}$, where

 \hat{Z} minimizes $\left|\left|Z\cdot\vec{Y}\right|\right|_2^2$ and $\hat{\mu}=\frac{\sqrt{mn}}{\left|\left|\hat{Z}\cdot\vec{Y}\right|\right|_2}$, which corresponds to the input $\hat{\Psi}=\hat{X}^{\mathsf{T}}\hat{X}=\hat{\mu}^2\hat{Z}^{\mathsf{T}}\hat{Z}$.

3.3. **Transitive DAGs.** The relevance of transitive DAGs in the statistical context was introduced in [1, §5]. We briefly introduce the relevant details here. Every DAG \mathcal{G} has a model associated to them given by

$$\mathcal{M}_{\mathcal{G}} \coloneqq \left\{ \left(\mathbf{1} - \Lambda\right)^{\mathsf{T}} \Omega^{-1} (\mathbf{1} - \Lambda) : \Lambda, \Omega \in \mathbb{R}^{m_1 \times m_i}, \Lambda_{ij} \neq 0 \implies j \to i, \Omega \text{ diagonal and PD} \right\}.$$

Note that taking $\Omega = \mathbf{1}$, $\Lambda = \mathbf{0}$ forces $\mathbf{1} \in \mathcal{M}_{\mathcal{G}}$. These matrices $\Psi \in \mathcal{M}_{\mathcal{G}}$ are to be thought of as concentration matrices, so they define a model $\{f_{\Psi^{-1}}\}$ (which is just a collection of probability densities) given by

$$f_{\Sigma}(y) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}y^{\mathsf{T}}\Sigma^{-1}y\right)$$

where $\Sigma = \Psi^{-1}$.

 \mathcal{G} is said to be a transitive DAG (TDAG) if $i \to k$ is an edge in \mathcal{G} whenever $i \to j, j \to k$ are. They turn out to be the 'good' DAGs that help relate these models to Gaussian group models due to the following proposition in [1]:

Theorem 3.2. $G(\mathcal{G})$ is a group iff \mathcal{G} is a TDAG. In such a case, $\mathcal{M}_{\mathcal{G}} = \mathcal{M}_{G(\mathcal{G})}$.

3.4. ss.

References

[1] Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Invariant theory and scaling algorithms for maximum likelihood estimation. SIAM Journal on Applied Algebra and Geometry, 5(2):304–337, Jan 2021.