

0.1 Modéliser la cinématique d'un ensemble de solides

Exercice 1 - Mouvement T - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 35.

Exercice 2 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 44.

Exercice 3 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 *Quel est le mouvement de 2 par rapport* à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Corrigé voir 37.

Exercice 4 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir 38.

Exercice 5 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 39.

Exercice 6 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 40.

Exercice 7 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 41.

Exercice 8 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 50.

Exercice 9 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 2 Déterminer $\Gamma(B \in 1/0)$.

Corrigé voir 43.

Exercice 10 - Mouvement R *

B2-13

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$.

Question 1 Déterminer $V(B \in 1/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 44.

Exercice 11 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 45.

Exercice 12 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 46.

Exercice 13 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 47.

Exercice 14 - Mouvement RT *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Indications: 1. $\overrightarrow{V(C \in 2/0)} = \dot{\lambda}(t)\overrightarrow{i_0} + R\dot{\theta}\overrightarrow{j_2}$. 2. $\{\mathscr{V}(2/0)\} = \left\{\begin{array}{c} \overrightarrow{\Omega(2/0)} = \dot{\theta}\overrightarrow{k_0} \\ \overrightarrow{V(C \in 2/0)} \end{array}\right\}_C$. 3. $\overrightarrow{\Gamma(C \in 2/0)} = \ddot{\lambda}(t)\overrightarrow{i_0} + R\left(\ddot{\theta}\overrightarrow{j_2} - \dot{\theta}^2\overrightarrow{i_2}\right)$.

Corrigé voir 48.

Exercice 15 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Corrigé voir 41.

Exercice 16 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C*.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 50.

Exercice 17 - Mouvement RT - RSG ** B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 2/0)$.

Corrigé voir ??.

Exercice 18 - Pompe à palettes *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \ \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t) \ \overrightarrow{i_1}$. De plus $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir 52.

Exercice 19 - Pompe à pistons radiaux *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \ \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \ \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir 53.

Exercice 20 - Système bielle manivelle *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 54.

Exercice 21 – Système de transformation de mouvement \star

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(3/0)\}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 3/0)$.

Corrigé voir 55.

Exercice 22 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(3/2) \}$ au point B.

Corrigé voir 56.

Exercice 23 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

On a

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$:

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice **??**). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point G.

Question 2 *Déterminer* $\Gamma(G \in 1/0)$.

Corrigé voir 57.

Exercice 24 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(4/0) \}$ *au point G*.

Question 2 *Déterminer* $\Gamma(G \in 4/0)$.

Corrigé voir 58.

Exercice 25 - Mouvement RR - RSG $\star\star$

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = L \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir 59.

0.2 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$. On note m_1 la masse du solide et $I_B(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & -D_1 & C_1 \end{pmatrix}$.

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir 60.

Exercice 27 - Mouvement R *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm. On note m_1 la masse du solide 1, B son centre

d'inertie et
$$I_G(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}_{\mathcal{B}_1}$$

Méthode 1 - Déplacement du torseur dynamique

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Méthode 2 – Calcul en A

Question 3 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Masse ponctuelle

On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en *B*.

Question 4 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}$

Question 5 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir 61.

Exercice 28 - Mouvement TT - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer les torseurs cinétiques $\{\mathscr{C}(1/0)\}\$ et $\{\mathscr{C}(2/0)\}\$.

Question 2 Exprimer les torseurs dynamiques $\{\mathcal{D}(1/0)\}\$ et $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 En déduire $\{\mathcal{D}(1+2/0)\}\$ en B.

Corrigé voir 62.

Exercice 29 - Mouvement RR *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}L\overrightarrow{i_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}$

Question 3 Déterminer $\delta(A, 1+2/0) \cdot \overline{k_0}$

Corrigé voir 63.

Exercice 30 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{A}}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en A.

Question 2 Déterminer $\delta(A, 1+2/0) \cdot \overrightarrow{k_0}$

Corrigé voir 64.

Exercice 31 - Mouvement RT *

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}$ en B.

Question 2 Déterminer $R_d(1+2/0) \cdot \vec{i_0}$

Indications:

1.
$$\{\mathscr{D}(2/0)\} = \begin{cases} \ddot{\lambda}(t)\overrightarrow{i_0} + R(\ddot{\theta}\overrightarrow{j_2} - \dot{\theta}^2\overrightarrow{i_2}) \\ C_1\ddot{\theta}\overrightarrow{k_1} + R(-\sin\theta\ddot{\lambda}(t)\overrightarrow{k_0} + R\ddot{\theta}\overrightarrow{k_2}) \end{cases}_B$$

2.
$$\overline{R_d(1+2/0)} \cdot \overrightarrow{i_0} = m_1 \ddot{\lambda}(t)$$

 $m_2(\ddot{\lambda}(t) - R(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta)).$

Corrigé voir 65.

Exercice 32 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$. De plus :

- $G_1=B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1)=\begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$;
- G_2 désigne le centre d'inertie de $\mathbf{2}$ tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B.

Question 2 Déterminer $\delta(A, 1+2/0)$.

Corrigé voir 66.

Exercice 33 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

• G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$;

• $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{j_0}$

Corrigé voir 68.

Exercice 34 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$ Question 2 Déterminer $\overleftarrow{\delta(I, 1 + 2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 68.

0.3 Modéliser la cinématique d'un ensemble de solides

Exercice 35 - Mouvement T - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 36 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 37 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de **2** par rapport à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Exercice 38 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point C*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Exercice 39 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 40 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 41 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Exercice 42 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point B.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Exercice 43 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 1/0)$.

Exercice 44 - Mouvement R *

B2-13

Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(B \in 1/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 1/0)$.

Exercice 45 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Exercice 46 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 47 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 48 - Mouvement RT *

B2-13

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Méthode 1 - Dérivation vectorielle

$$\overrightarrow{V(C \in 2/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} + \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{BC}\right]_{\mathcal{R}_0} = \dot{\lambda}(t) \,\overrightarrow{i_0} + R \,\frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{i_2}\right]_{\mathcal{R}_0} = \dot{\lambda}(t) \,\overrightarrow{i_0} + R \,\dot{\theta} \,\overrightarrow{j_2}$$
Question 2 Donner le torseur cinématique {\psi(2/0)} au point C.

$$\{\mathscr{V}(2/0)\} = \left\{\begin{array}{c} \overrightarrow{\Omega(2/0)} = \dot{\theta} \overrightarrow{k_0} \\ \overrightarrow{V(C \in 2/0)} \end{array}\right\}_C.$$

Question 3 *Déterminer* $\Gamma(C \in 2)$

$$\overrightarrow{\Gamma(C \in 2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C \in 2/0)} \right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\theta} \overrightarrow{j_2} \right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right).$$

Exercice 49 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 50 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 51 - Mouvement RT - RSG **

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Déterminer* $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 Déterminer $\Gamma(B \in 2/0)$.

Exercice 52 - Pompe à palettes *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.


```
Question 2 Déterminer \Gamma(B \in 2/0).
```

Exercice 53 - Pompe à pistons radiaux *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Exercice 54 - Système bielle manivelle *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 Déterminer $\Gamma(C \in 2/0)$.

Exercice 55 - Système de transformation de mouvement *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 3/0)$.

Exercice 56 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(3/2)\}$ au point B.

Exercice 57 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point G* .

Question 2 Déterminer $\Gamma(G \in 1/0)$.

Exercice 58 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107,1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_{\Delta}}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(4/0) \}$ *au point G* .

Question 2 Déterminer $\Gamma(G \in 4/0)$.

Exercice 59 - Mouvement RR - RSG **

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 2/0)$.

0.4 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Exercice 60 - Mouvement T - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Exercice 61 - Mouvement R *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Méthode 1 - Déplacement du torseur dynamique

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B puis en A.

Méthode 2 – Calcul en A

Question 3 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Masse ponctuelle

On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en B.

Question 4 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.


```
Question 5 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B puis en A.
Exercice 62 - Mouvement TT - *
                  C2-08
                  C2-09
                                                      Pas de corrigé pour cet exercice.
             Question 1 Exprimer les torseurs cinétiques \{\mathscr{C}(1/0)\}\ et \{\mathscr{C}(2/0)\}\.
             Question 2 Exprimer les torseurs dynamiques \{\mathcal{D}(1/0)\}\ et \{\mathcal{D}(2/0)\}\ en B.
             Question 3 En déduire \{\mathcal{D}(1+2/0)\} en B.
Exercice 63 - Mouvement RR *
                  C2-08
                  C2-09
                                                     Pas de corrigé pour cet exercice.
             Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en A.
             Question 2 Exprimer le torseur dynamique \{\mathcal{D}(2/0)\}\ en B.
             Question 3 Déterminer \overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}
Exercice 64 - Mouvement RT *
                  C2-08
                  C2-09
                                                      Pas de corrigé pour cet exercice.
             Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\} en A.
             Question 2 Déterminer \delta(A, 1+2/0) \cdot k_0
Exercice 65 - Mouvement RT *
                  C2-08
                  C2-09
             Question 1 Exprimer le torseur dynamique \{\mathcal{D}(2/0)\} en B.
            Expression de la résultante dynamique \overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2 \in 2/0)} = m_2 \frac{d^2}{dt^2} \left[\overrightarrow{AC}\right]_{\Re_0} \frac{d^2}{dt^2} \left[\overrightarrow{AC}\right]_{\Re_0} = \frac{d^2}{dt^2} \left[\overrightarrow{AB}\right]_{\Re_0}
 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \Big[\overrightarrow{BC}\Big]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}^2}{\mathrm{d}t^2} \Big[\overrightarrow{i_2}\Big]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}t} \Big[\dot{\theta} \overrightarrow{j_2}\Big]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \Big(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2}\Big).
Méthode 1 : Calcul en G_2 = C puis déplacement du torseur dynamique
             • Calcul du moment cinétique en G_2: G_2 = C est le centre de gravité donc \overrightarrow{\sigma(C,2/0)} = I_C(2) \dot{\theta} \overrightarrow{k_0} = C_1 \dot{\theta} \overrightarrow{k_1}.
             • Calcul du moment dynamique en G_2: G_2 = C est le centre de gravité donc \overrightarrow{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[ \overrightarrow{\sigma(C,2/0)} \right]_{\infty} =
            • Calcul du moment dynamique en B: \overrightarrow{\delta(B,2/0)} = \overrightarrow{\delta(C,2/0)} + \overrightarrow{BC} \wedge \overrightarrow{R_d(2/0)} = C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R \overrightarrow{i_2} \wedge (\ddot{\lambda}(t) \overrightarrow{i_0} + R (\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2}))
                     =C_1\ddot{\theta} \vec{k_1} + R(-\sin\theta \ddot{\lambda}(t)\vec{k_0} + R\ddot{\theta} \vec{k_2})
           = C_1 \theta \, k_1 + R \left( -\sin \theta \, \lambda(t) \, k_0 \right) = \begin{cases} m_2 \left( \ddot{\lambda}(t) \, \overrightarrow{i_0} + R \left( \ddot{\theta} \, \overrightarrow{j_2} - \dot{\theta}^2 \, \overrightarrow{i_2} \right) \right) \\ C_1 \ddot{\theta} \, \overrightarrow{k_1} + R \left( -\sin \theta \, \ddot{\lambda}(t) \, \overrightarrow{k_0} + R \, \ddot{\theta} \, \overrightarrow{k_2} \right) \end{cases}_B.
            Question 2 Déterminer \overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}
On a \overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = m_1 \ddot{\lambda}(t) \overrightarrow{i_0} + m_2 \left( \ddot{\lambda}(t) \overrightarrow{i_0} + R \left( \ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right) \right). On projette alors sur \overrightarrow{i_0}, \overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} = \overrightarrow{R_d(1/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} = \overrightarrow{R_d(1/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} = \overrightarrow{R_d(1
\overrightarrow{i_0} = m_1 \ddot{\lambda}(t) + m_2 (\ddot{\lambda}(t) - R(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta)).
Exercice 66 - Mouvement RR 3D **
                  C2-08
                  C2-09
                                                      Pas de corrigé pour cet exercice.
             Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B.
             Question 2 Déterminer \delta(A, 1+2/0) \cdot \vec{k_0}
Exercice 67 - Mouvement RR 3D **
                  C2-08
                  C2-09
                                                      Pas de corrigé pour cet exercice.
             Question 1 Exprimer le torseur dynamique \{\mathcal{D}(2/0)\} en B.
             Question 2 Déterminer \delta(A, 1+2/0) \cdot \overrightarrow{j_0}
Exercice 68 - Mouvement RT - RSG **
                  C2-08
                  C2-09
                                                     Pas de corrigé pour cet exercice.
             Question 1 Déterminer \overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}
```

Question 2 Déterminer $\delta(I, 1+2/0) \cdot \overline{k_0}$