algebraic structure

· 为 G 上的一个二元代数运算, 满足以下条件的 代数结构 (G,\cdot) 称为:

closure groupoid

① 集合对于乘法是封闭的 \rightarrow **群胚** (元素可以是任何东西, 特点: 无序性, 不重复, 不独立) associativity semigroup

② 群胚的乘法满足结合律 $(ab)c=a(bc)\to$ 半群 (为了定义三个元素相乘) (除法, 减法不行) identity monoid idempo

③ 半群中存在 单位元 $e \ (\ \forall a \in G, \ ae = ea = a) \rightarrow$ **幺半群 / 逆群** 定理 只有单位元是 幂等元 $a^2 = a$ inverse

④ 幺半群中所有元素存在 逆元 $(\forall a \in G, \exists a^{-1} \in G \notin aa^{-1} = a^{-1}a = e) \rightarrow \mathbb{Z}$ 定理 单位元, 逆元唯一

定理 $(a^{-1})^{-1}=a$ 穿脱原理 $(ab)^{-1}=b^{-1}a^{-1}$ 定理 方程 ag=b 在 G 中有唯一解 $g=a^{-1}b$, ga=b 有 $g=ba^{-1}$ 例 不是群: $(\mathbb{N},+)$, (\mathbb{N},\times) , (\mathbb{Z},\times) , $(\{\vec{v}\},\cdot)$,是群: $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{R}-\{0\},\times)$, $(\mathbb{C}-\{0\},\times)$ order infinite group

群中元素的个数称为群的M | G|,无限个元素 $\rightarrow \overline{$ 无限群

Abelian group / commutative group

若群的乘法可交换 $ab=ba \rightarrow \overline{\mathbf{ppn}}$ / 交换群

——一些数论=

|模 m 剩余类加群| $(\mathbb{Z}_m,+), \mathbb{Z}_m=\{\overline{0},\overline{1},\overline{2},\ldots,\overline{m-1}\}, \overline{a}=\{x\in\mathbb{Z}|x\equiv a\pmod{m}\}$,阿贝尔群

模 m 单位群 $(U(m),\times)$, $U(m)=\{\overline{a}\in\mathbb{Z}_m|(a,m)=1\}$, 阿贝尔群, m 为素数时, $U(p)=\mathbb{Z}_p^*=\{\overline{1},\overline{2},\ldots,\overline{p-1}\}$

例 $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$,除单位元外元素阶均为 4, $U(15) \cong U(3) \otimes U(5)$

封闭性: a,b 和 m 互质, 则 ab 和 m 互质, 乘法有结合律, $\overline{1}$ 为单位元,

 $(a,m)=1 \rightarrow \exists x,y \notin ax+my=1, (x,m)=1, \overline{ax}=\overline{ax}=\overline{ax}=\overline{ax}+\overline{my}=\overline{1}$

 $|U(m)| = \varphi(m)$ 欧拉函数 $\varphi(m)$ 是 $\leq m$ 的与 m 互质的正整数数目

定理 设 $m = \prod p_i^{r_i}$, 则 $\varphi(m) = \prod (p_i^{r_i} - p_i^{r_i-1}) = m \prod (1 - p_i^{-1})$

n 次单位根群 (U_n, \times) , $U_n = \{e^{\frac{2k\pi}{n}} | k=0,1,\ldots,n-1\}$,阿贝尔群 例 $U_4 = \{1, \mathbf{i}, -1, -\mathbf{i}\}$ greatest common divisor

最大公约数 常用圆括号记 **最小公倍数** 常用中括号记

最大公约数和最小公倍数的运算有可结合律

凯莱表-

Cayley table

凯莱表 即乘法表,单位元列最前,左列乘上排 (上排先做) 性质 凯莱表对称 ⇔交换群

重排定理 aG=G, 凯莱表每一行 (列) 都是所有元素的重排 (数独的表不一定是群, 还需验证结合律)

凯莱表	e	r_1	r_2	a	b	c
e	e	r_1	r_2	a	b	c
r_1	r_1	r_1 r_2	e	c	a	b
r_2	r_2	e	r_1	b	c	a
a	a	O	c	e	r_1	r_2
b	b	c	a	r_2	e	r_1
c	c				r_2	

 D_3 例 正三角形不变操作, a 为绕 a 轴翻转, r_1 为逆时针转

$$r_1 a \stackrel{\text{A}}{\underset{\text{B}}{\wedge}} = r_1 \stackrel{\text{A}}{\underset{\text{C}}{\wedge}} = \stackrel{\text{B}}{\underset{\text{A}}{\wedge}} = c \stackrel{\text{A}}{\underset{\text{B}}{\wedge}}$$

Cayley graph

凯莱图 节点表示元素,箭头表示生成元乘 (约定全部为左乘)

子群

subgroup

H 是群 G 的非空子集, 若 H 按 G 的运算也构成群, 则称为 $\boxed{\textbf{2 extbf{3}}}$ $H \leqslant G$ trivial subgroup proper subgroup

平凡子群 最小子群 $\{e\}$ 和最大子群 G, 除去 G 的子群称为 **真子群** H < G

定理 H 的单位元就是 G 的单位元 [消去律]

定理 $H \leqslant G \Leftrightarrow \forall a, b \in H, ab^{-1} \in H$ (把封闭 $ab \in H$ 有逆 $a^{-1} \in H$ 合为一个条件) [封闭有逆可推出单位元] \rightarrow 子群之交还是子群 $[ab^{-1} \in H_1, ab^{-1} \in H_2]$ (之并不一定) (之积不一定, 需 $H_1H_2 = H_2H_1$)

定义子集相乘 $AB = \{ab | a \in A, b \in B\}, A = \{a\}$ 时可记为 aB 性质 $|AB| \leq |A||B|$

③ **子群乘积幂等律** 对于有限群 $H \leqslant G \Leftrightarrow H^2 = H$ ④ **乘积定理** $A \leqslant G, B \leqslant G, \emptyset AB \leqslant G \Leftrightarrow AB = BA$ 推论 $H \leqslant G$, 则对任意 $g \in G$, $gHg^{-1} \leqslant G$

——陪集

(陪集是子群概念的延伸)

left coset

right coset

 $H \leq G$, $a \in G$, 则 aH 称为 H 的 **左陪集**, Ha 称为 **右陪集** (左右陪集可一一对应)

性质 ① $a \in H \Leftrightarrow aH = H \Leftrightarrow aH \leqslant G$ 「封闭性, 没单位元 | ② |aH| = |H| 「 $h \mapsto ah$ 是双射 |

③ $(aH)\cap(bH)=\emptyset$ 「若有公共元 $g=ah_1=bh_2$,推出 $aH=ah_1H=bH$ 」 \to 各陪集或完全相同或不相交 \to 陪集中任意元素均可作 代表元

结论 群 G 的子群 H 的全体左陪集构成群 G 的一个分类, 各陪集等大不交

H 在 G 中不同陪集的个数称为 H 在 G 中的 <mark>指数</mark> [G:H]

Lagrange theorem

|<mark>拉格朗日定理</mark>| $|G|=|H|[G:H] \rightarrow |G/N|=[G:H]$ <mark>推论</mark> 子群的阶是母群的因子

推论 素数阶群必为循环群, 除 e 外所有元素都可作生成元, 无非平凡子群

ightarrow **费马小定理** 素数 p 与整数 a 互质, 则 $a^{p-1} \equiv 1 \pmod{p}$ $\lceil \overline{a} \in \mathbb{Z}_n^*, (\overline{a})^{p-1} = \overline{1} \rceil$

——共轭类—

relation

关系 对集合 G 中任意有序元素对 a,b, 总能确定是否满足条件 \sim , 则称 \sim 是 G 中的一个二元关系 equivalence relation

等价关系 ① 反身性 $\forall a \in G, a \sim a$ ② 对称性 $a \sim b \rightarrow b \sim a$ ③ 传递性 $a \sim b, b \sim c \rightarrow a \sim c$ (2,3 不能推出 1) conjugacy class

共轭 $\exists g \in G$, 使 $gag^{-1} = b$, 则 $a \sim b$, 易证共轭是一种等价关系 [共轭类] g 取遍群元素,

性质 ① 类或全同或不交 ② 阿贝尔群每个元素自成一类 (讨论类没意思) ③ 单位元总是自成一类

④ 同一共轭类的元素有相同的阶 ⑤ 有限群的每个共轭类的元素个数是群阶数的因子

——正规子群—

normal subgroup / invariant subgroup

正规子群 / 不变子群 $N \triangleleft G$, 对 $\forall g \in G$ 都有 gN = Ng (或 $gNg^{-1} = N$) \Leftrightarrow 包含完整的类的子群

常用 $H \triangleleft G \Leftrightarrow \forall g \in G, h \in H$ 有 $ghg^{-1} \in H \rightarrow$ 正规子群之交, 之积仍为正规子群

 \mathbf{D}_3 例 4 个子群: $\tilde{\mathbf{a}} = \{e, a\}$ 等 3 个, 正规子群 $\mathbf{d}_3 = \{e, r_1, r_2\}$, $\mathbf{D}_3/\mathbf{d}_3 = \{e, a\}$

定理 ① 平凡子群正规 ② [G:H]=2 的 $H \triangleleft G \mid eH=He,$ 另一个只能相等」 ③ 阿贝尔群的子群正规

注 子群可传递, 正规子群不一定

定理 $H \leqslant G, N \leqslant G \to HN \leqslant G$ 定理 $H \leqslant G, H \leqslant K \leqslant G \Rightarrow H \leqslant K \quad (H \leqslant K \leqslant G 未必 H \leqslant G)$

center

群 G 的 中心 $C(G) = \{g \in G | gx = xg, \forall x \in G\}$ 推论 $C(G) \triangleleft G$

tentralizer

a 在群 G 的 中心化子 $C(a) = \{g \in G | ga = ag\}$ 推论 $C(a) \leqslant G$

normalizer

 $H \leqslant G$, 正规化子 $N(H) = \{g \in G | gH = Hg\}$ 推论 $N(H) \leqslant G, H \leqslant N(H)$

commutator

(符号和对易冲突, 仅此处用) 换位子 $[a,b]=a^{-1}b^{-1}ab$ 推论 $[G,G] \triangleleft G, G/[G,G]$ 是阿贝尔群

正规子群的陪集构成集合, 陪集的乘法 $aN \cdot bN = (ab)N$ (只有正规能保证左右乘无歧义) \rightarrow quotient group

商群 $G/N = \{aN | a \in G\}$, a 称为 代表元 (从陪集中任选), 单位元 N, 逆元 $a^{-1}N$

性质 阿贝尔群的商群仍阿贝尔 定理 G/C(G) 是循环群, 则 G 是阿贝尔群

商群不一定和某个子群同构 (否则就没研究的意思了...)

simple group

若群 G (\neq {e}) 只有平凡的正规子群,则称为 $\boxed{\textbf{单群}}$ (只有平凡子群 \Leftrightarrow 素数阶循环群)

|有限单群分类定理| 所有有限单群已全部发现: 素阶循环群, 交错群 $\mathbf{A}_n(n>4)$, 李型单群, 26 个散在单群

循环群

(相当于谐振子的地位)

cyclic group

[循环群] $\mathbf{C}_n = \{a^r | r \in \mathbb{Z}\}$, $a^n = e$,均为阿贝尔群,乘法 $a^i a^j = a^{(i+j) \operatorname{mod} n}$,逆元 $(a^i)^{-1} = a^{n-i}$ generator

由一个元素 a 生成的循环群 $\langle a \rangle = \{a^r | r \in \mathbb{Z}\}$, a 称为 **生成元** , 定义群元素 a 的阶 $|a| \equiv |\langle a \rangle|$

推导 $\forall m \in \mathbb{N}, a^m \neq e \rightarrow |a| = \infty$ (数学系常用另一种等价的: $\forall m, n \in \mathbb{Z}, a^m \neq a^n$, 可导出更多结论)

循环群结构定理 n 阶循环群同构于 $(\mathbb{Z}_n,+)$, 无限阶同构于 $(\mathbb{Z},+)$

性质 $|a^{-1}|=|a|$ 定理 循环群的子群仍为循环群 推论 对于有限群, |a| 是 |G| 的因子 |B| 为是子群 |B|

生成元组 $S = \{a_{1 \sim r}\}$ 是群 G 的非空子集, 生成子群 $\langle S \rangle = \langle a_{1 \sim r} \rangle$ 定理 $\langle S \rangle$ 是 G 中包含 S 的最小子群 (不唯一, 必存在, 对于有限群只能用排除法找最少数量) 群元素化简为生成元组可减少群表示工作量 定理 生成元至多需 $\mathbb{Ib} | G |$ 个「增加一个额外元素, | G | 至少要翻倍 |

 \mathbf{D}_3 **例** \mathbf{D}_3 的生成元组: $\{a,b\}$ (不唯一) **例** ($\mathbb{Z},+$) 的生成元组是 $\{1,-1\}$ (有的习惯是逆都省略不写)

定理 无限阶循环群仅有两个生成元 $\{a,a^{-1}\}$

定理 n 阶循环群恰有 $\varphi(n)$ 个生成元, a^r 是生成元 $\Leftrightarrow (n,r)=1$

推论 偶数阶群必含有阶为 2 的元素

群同构

两个群 $a,b \in (G_1,\cdot)$ 和 $(G_2,*)$,有映射 $f:G_1 \to G_2$,若映射 **保乘** $f(a\cdot b)=f(a)*f(b)$,则

nomomorphism epimorphism isomorphism endomorphism automorphism

同态 $\stackrel{f}{\sim}$, f 为满射称为 满同态, 双射称为 同构 \cong , 群 G 到自身的映射称为 自同态, 自同构

恒等同构 $\forall g \mapsto g$ 零同构 $\forall g \mapsto e$ 自同构群 $\mathbf{Aut}(G)$, 所有自同构关于变换的乘法构成群

(凯莱表一样则同构) $\boxed{M} f(a) = 2^a : (\mathbb{R}, +) \cong (\mathbb{R}^+, \times)$ 定理 同构是等价关系

性质 同态保单位元, 保逆,|f(a)| 整除 |a|, 同构保阶 |f(a)|=|a|, 同构群阶相等, 阿贝尔性相同

定理 素数阶群只有循环群 * 阶数为两不同素数积的交换群都是循环群

给定阶数的不同构的群个数,尚无通项公式,下标为其中阿贝尔群个数

低阶群的个数	1	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	8	9	$\overline{10}$	11	$\overline{12}$	13	$\overline{14}$	$\overline{15}$	16	$\overline{17}$	18	19	$\overline{20}$
1~20 阶	11	1_1	1_1	2_2	1_1	2_1	1_1	$\boxed{5_3}$	2_2	2_1	1_1	5_2	1_1	2_1	1_1	$\boxed{14_5}$	1_1	5_2	1_1	5_2
21~40 阶	2_1	2_1	1_1	15_3	2_2	2_1	5_3	4_2	1_1	4_1	1_1	51_7	1_1	2_1	1_1	144	1_1	2_1	2_1	143
41~60 阶	11	6_1	1_1	4_2	2_2	2_1	1_1	52_5	2_2	5_2	1_1	5_2	1_1	15_{3}	2_1	13_{3}	2_1	2_1	1_1	13_{2}
61~80 阶	11	2_1	4_2	267_{11}	1_1	4_1	1_1	5_2	1_1	4_1	1_1	50_{6}	1_1	2_1	3_2	4_2	1_1	6_1	1_1	52_{5}
81~100 阶	15_{5}	2_1	1_1	15_{2}	1_1	2_1	1_1	12_{3}	1_1	10_{2}	1_1	4_2	2_1	2_1	1_1	231	1	5	2	16
101~120 阶	1	4	1	14	2	2	1	45	1	6	2	43	1	6	1	5	4	2	1	47

最多数依次出现在: 128 阶: 2328₁₅, 256 阶: 56092₂₂, 512 阶: 10494213₃₀, 1024 阶: 49487365422₄₂

推论 G 是阿贝尔群 $\Leftrightarrow f:g\mapsto g^{-1}$ 是同构映射

inner automorphism

可以证明 $f:q\mapsto aqa^{-1}$ 是同构映射, 称为由 a 导出的 内自同构,

其集合构成 内自同构群 $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$ 定理 $\operatorname{Inn}(G) \cong G/C(G)$

image

inverse image

定义同态的[g] $f(H_1) = \{f(a) | a \in H_1\}$ [g] $f^{-1}(H_2) = \{a \in G_1 | f(a) \in H_2\}$ (单射则不一定有原像)

定理 $H_1 \leqslant G_1 \Rightarrow f(H_1) \leqslant G_2, H_2 \leqslant G_2 \Rightarrow f^{-1}(H_2) \leqslant G_1$,换成正规子群亦成立 kernel

同态映射的 | 核 单位元的原像 $\operatorname{Ker} f = f^{-1}(\{e_2\}) \triangleleft G_1$ (单同态 $\Leftrightarrow \operatorname{Ker} f = \{e\}$) (以下满单同态均适用)

定理 $f^{-1}(f(a)) = a \operatorname{Ker} f$ 定理 $H \leqslant G, f^{-1}(f(H)) = H \operatorname{Ker} f$

|群同态基本定理| $(G_1/\operatorname{Ker} f) \cong G_2$ |第一同构定理| 把 G_2 缩小为 $f(G_1)$ |例 $\mathbb{Z}/\langle m \rangle \cong \mathbb{Z}_m$ | 取映射 $a \mapsto \overline{a}$ |

|第二同构定理| $H \leqslant G, N \leqslant G, \ \mathbb{M}$ $(H \cap N) \leqslant H$ 且 $H/(H \cap N) \cong HN/N \ [f:H \to HN/N, h \mapsto hN]$

第三同构定理 $N \triangleleft G, K \triangleleft G, K \subseteq N, 则 G/N \cong (G/K)/(N/K)$

群直积

external direct product

外直积 $G_1 \otimes G_2 = \{(g_1, g_2) | g_1 \in G_1, g_2 \in G_2\}$, 运算 $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)$, 构成群, 单位元 (e_1, e_2)

性质 ① $|G_1 \otimes G_2| = |G_1||G_2|$ ② $G_1 \otimes G_2 \cong G_2 \otimes G_1$ ③ $G_1 \otimes G_2 \otimes G_3 \cong G_1 \otimes (G_2 \otimes G_3) \cong (G_1 \otimes G_2) \otimes G_3$

定理 ① $|(g_1,g_2)|=[|g_1|,|g_2|]$ (最小公倍数) ② $G_1\otimes G_2$ 阿贝尔 $\Leftrightarrow G_1,G_2$ 都阿贝尔

③ G_1, G_2 是 m, n 阶循环群, 则 $G_1 \otimes G_2$ 是循环群 $\Leftrightarrow (m, n) = 1$ ④ $C(G) = C(G_1) \otimes C(G_2)$

internal direct product

 $N_1 \triangleleft G, N_2 \triangleleft G, N_1 N_2 = G, N_1 \cap N_2 = \{e\}$ (否则分解不唯一),则称 G 为 N_1, N_2 的 **内直积**

 $\Leftrightarrow \forall g \in G$ 可唯一表为 $n_1 n_2$ 的形式, 且全部都有 $n_1 n_2 = n_2 n_1$

 $\Rightarrow N_1 \otimes N_2 \cong G \lceil (n_1, n_2) \mapsto n_1 n_2 \rceil$ 性质 $G/N_1 \cong N_2, G/N_2 \cong N_1$

 \Leftarrow 若 $G=H_1\otimes H_2$, 则存在 G 的正规子群 N_1,N_2 与 H_1,H_2 同构, 构成内直积 $\lceil h_1\mapsto (h_1,e_2),\ h_2\mapsto (e_1,h_2) \rfloor$ (故以后不必区分内外直积)

semidirect product

| **半直积** 改为只有一个是正规子群(约定正规的写前面),性质变为只有 $G/N_1\cong H_2$

例 $(\mathbb{C},+)\cong(\mathbb{R},+)\otimes(\mathbb{R},+)$ \mathbf{D}_3 例 $\mathbf{D}_3=\mathbf{d}_3\otimes_s\tilde{\mathbf{a}}$

例 洛仑兹群表示旋转 $\mathbf{O}(3,1)$,直积上平移群才是所有的间隔不变 \rightarrow **庞加莱群** $\mathbf{P} = \mathbf{O}(3,1) \otimes_s T$

群作用

有群 G 和非空集合 X, 若 $\forall g \in G, x \in X$, $\exists ! y = g * x \in X$, 且 ① e * x = x ② $(g_1g_2) * x = g_1 * (g_2 * x)$ action

则称 * 是 G 在 X 上的一个 作用, 以下记作 g(x)

例 共轭变换 $g(x)=gxg^{-1}$ 是 G 在自身上的一个作用

transitive

称 X 的子集 $O_x = \{g(x) | g \in G\}$ 为 x 在 G 作用下的 **轨道**,若 $O_x = X$ 则称作用是 **传递的 定理** O_x 与 O_y 或全同或不交

stabilizer

称 $S_x = \{g | g(x) = x\}$ 为 x 在 G 中的 **稳定子** 定理 $S_x \leq G$ (对于共轭作用, S_x 就是中心化子 C(x))

定理 $f:O_x \to G/S_x, \ gx \mapsto gS_x$ 为双射 例 求正六面体群阶数, X=6 个面, $|G|=|O_1||S_1|=6\times 4=24$ the euqation of finite group

| | | $G|=\sum_x [G:C(x)]=|C(G)|+\sum_{\# \neq \circlearrowleft} [G:C(x)] \rightarrow$ **| 柯西定理** | 群阶数的素因子必存在该阶的元素

fixed element

不动元素 g(x)=x,其集合记作 F_g 伯恩萨德引理 X 在 G 作用下轨道数 $n=\frac{1}{|G|}\sum_{x\in G}|F_g|$

 $\boxed{\textbf{\textit{M}}}$ 求 a 种颜色各 b 个珠子可串成多少种手链 \Leftrightarrow ab 颗珠子所有排列为 X, 求它在 ab 边形对称变换群 G 作用下的轨道数

Sylow

p **群** 有限群 G 的阶为某素数的幂 $|G|=p^k,\ k\geqslant 1$ 西罗 p **子群** $P\leqslant G,\ |P|=p^n,\ \text{且 }p^{n+1}$ 不能被 |G| 整除 p 为素数, $n\geqslant 1$, 设有限群 $|G|=p^nm,\ (p,m)=1$

西罗第一定理 $0 < k \le n$,则 G 必有 p^k 阶子群 推论 群阶数的素因子必存在该阶的西罗 p 子群

西罗第二定理 H 为 p 子群, P 为西罗 p 子群, 则 $\exists a \in G$ 使 $H \subseteq aPa^{-1}$ 推论 |G| 的任两西罗 p 子群共轭

西罗第三定理 |G| 的西罗 p 子群个数 $n_p \not\in |G|$ 的因子且满足 $n_p \equiv 1 \pmod{p}$

环域

环 对加减乘封闭 <mark>域</mark> 除了除 0 外对四则运算封闭 数域之交仍为数域, 之并不一定

集合R≠Ø,定义运算+·,满足(R,+)为阿贝尔群,(R,·)为半群

且满足·对+左右分配律 a·(b+c)= ab+a·c (b+c)·a= ba+c·a

则(R,+,-)为一个环 交换环·还满足交换律 单位元 a·e = e·a = a (若存在则唯一)

要元加法的单位元 负元加法逆元 可逆元(单位) 习6 ER使 a·6 = 6·a = e (若可逆则唯一)

F是有单位元的交换环,且非零元都有逆元,则F为一个域⇔交换的降环 体救换的降环

*单位群 U(R) 所有可逆元兼群 \$\P\$的中心 $C(R) = \{r \in R \mid rx = xr, \forall x \in R\} \leq R$

整数环(ℤ,+,·)含的交换 偶数环(2ℤ,+,·)不含的交换

有理数/实数/复数域

模 m 剩 余类环 (Zm,+,-) 有单位元下的灸缺环

全矩阵环 数域 F上全体 n(>1) 阶方阵 Mn(F) 关于矩阵加坡夹结构或有单位元非交换环

性质 ① $a \cdot 0 = 0 \cdot a = 0$ ② -(-a) = a ③ $a \cdot (-b) = (-a) \cdot b = -ab$ ④ $(-a) \cdot (-b) = ab$ 倍数法则 $m, n \in \mathbb{Z}$, $a,b \in \mathbb{R}$ ① ma + na = (m + n)a ② m(a + b) = ma + mb ③ m(na) = (mn)a = n(ma) ④ m(ab) = (ma)b = a(mb) 指数法则 $m, n \in \mathbb{N}$, $a,b \in \mathbb{R}$ ② $(a^m)^n = a^{mn}$ ② $a^m \cdot a^n = a^{m+n}$ ($(a \cdot b)^n \neq a \in \mathbb{R}$ ④ $(a \cdot b)^n \neq a \in \mathbb{R}$ ② $(a \cdot b)^n \neq a \in \mathbb{R}$ ③ $(a \cdot b)^n \neq a \in \mathbb{R}$ ③ $(a \cdot b)^n \neq a \in \mathbb{R}$ ④ $(a \cdot b)^n \neq a \in \mathbb$

S是环R-个非空子集,若S关于R的运算也构成环,则S为R-个子环,记S $\leqslant R$ 平R \Rightarrow \Re

定理 $\emptyset \neq S \subseteq \text{环R}$, 则 $S \leqslant R$ \iff $S \notin R$ 的 加出 $A \notin S \notin S$. $a \in S$. $a \in S$. $a \in S$. $a \in S$

子环之交还是子环

 $a,b \neq 0 \in \Re R$, 苦 $a \cdot b = 0$, $\Re a \land R - \uparrow E$ 要因子, $b \land R - \uparrow G$ 要因子 整环 无零因子的 (有单位元) 灸换环 \Rightarrow 集法左右以法律成立 ($c \neq o$) 除环 每个非零元都可能的有单位元环 \Rightarrow 无零因子

P为毒数⇔Zp为整环(基础)Zp是域, *有限壁环必是域。[取a:乘遍环元毒,成子集,元素互不同,1数叉相同, a, a; 会为单位元] 高斯整环 Z[i]={a+3i|a,6∈Z} 复数+·

quaternion field 囚元数体 $H = \{a|+b|+c|+dk|a,b,c,d\in\mathbb{R}\}$ A = a+b|+c|+dk $i^2 = j^2 = k^2 = ijk = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j复矩阵形式 $H = \{ \begin{bmatrix} \alpha & \beta \\ -\overline{\rho} & \overline{\alpha} \end{bmatrix} | \alpha, \beta \in \mathbb{C} \}$ $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad i = \begin{bmatrix} \sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{bmatrix} \quad j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad k = \begin{bmatrix} 0 & \sqrt{-1} \\ -\overline{1} & 0 \end{bmatrix}$

相约于毛型分环。

TAR

理想之炎 $I \cap J$ 、 之和 $I + J = \{a + b \mid a \in I, b \in J\}$ 还是理想,有限个和,任意个灸还是理想

生成理想R中包含S的最小的理想 <a1, ... a>={∑xay+xa+ay+ma|x,yeR,meZ} 若R於鈴伯元交換环, $S=\{a\}$, 由 a生成的主理想 $\langle a \rangle = \{ra \mid r \in R\}$

[取 1 中最小正整数,带拿降法全0] 卫的任何理想都是主理组 主理想整环任何理想者是主理想的整环,记PID 《》*Z[x]不是PID F[x] 是主理想.整环 [取]中少数最低首1多项式,带条降供全0] *多元F[x,y]未必

I为R的理想,记 陪集F=r+I . 则阿贝尔加群的商群 $R/I=\{F|r\in R\}$ 商环 $R/I = \{r+I \mid r \in R\}$ 陪集的加法 $(r+I)+(r_1+I)=(r_1+r_2)+I$ 维法 $(r+I)\cdot(r_1+I)=(r_1\cdot r_2)+I$ 复红无歧义] 裔环含≤交换←R含≤交换(单位元 $\overline{e}=e+I$ 零元 $\overline{o}=0+I=I$) \overline{e} $\overline{I}=\overline{0}=\overline{I}$

P是含绞换环R的真理想, $Va,b\in R$, $ab\in P\Rightarrow a$ 或 $b\in P$,称P是R的一个素理想(造否同理) <п>为 Z的毒理想 ⇔ n为毒数

(R是含≤交换环) R/I 足整环 ⇔ I 足 R的毒理想. (R夏整环未公 R/I 是整环)

(R是含6灸换环) R/I 是域⇔ I是R的极大理想 (极大理想 ⇒ 素理想)

 $eta(R,+,\circ)$ 和 $(R',\oplus,*),f:R\to R'$,满足 $f(a+b)=f(a)\oplus f(b),f(a\circ b)=f(a)*f(b),$ $\forall a,b\in G$ f单射称单同态,f满射和满同态,f--对应称同构,记f:R \R 愛同意,f:R→R',a→O', Ya∈R

性质同态①f(o)= 0'[加法幂等元]②f(na)= nf(a), ne Z ③f(an)=[f(a)] ne N RR'84, 田广满,则广(e)=e' 图R'无零因子, 广(e) ≠ 0',则广(e)=e' (Bf(e)=e',则在/右逆元对反到在/右逆元

环同态f的核 $Ker f = \{a \in R | f(a) = 0'\}$ Kerf ≥R I ≥ R, 高环 P_L , 则 $\pi: R \to R_L$, $r \mapsto r = r + I$ 是满射. 构成自然同态 $k_{er}\pi = I$ 环同态基本定理 $R_{kerf} \cong f(R)$ (推广到第一月构) [同构映射 $F \mapsto f(r)$] 环的第二同构定理 S≤R, I≥R 则 SNI≥S且 S/(SNI) 些 (S+I)/T (为3分为同时扩大!) Characteristic 特征使(Ya ER) na=0 的最水正整数n 若不存在, 纪 Char R = 0 定理 R为含幺环,则 Char R= |e| ,若 e关于加法的P介为无穷,则 Char R=0 R为含幺环,则扩 $\mathbb{Z} \to R$, $n \mapsto ne$ 是环同态 (未必单/端) [貨幣运算] (/ 若 Char R = n > 0 , 则 R 包含一个与 Zn 同构的子环 [{me | m ∈ Z}] ,则R包含一个与Z同构的于环 毒城不含任何真子域的域 F为域、若CharF=0,则F包含一个与Q同构的毒域 若Char F = 囊数P,则F包含-个与 Zp同构的毒域 * 灸换环 R的特征为毒数 P ,则(Σa) $^P = \Sigma a^P$ [杂数都有因子 P] 女亦字环 \mathbb{Z}_2 ◎[x] 一元有理多项式 Q[JZ] = {a+b, 52 | a, 8 ∈ Q} $Q(x) = \left\{\frac{f(x)}{g(x)} \mid f, g \in Q[x], g \neq 0\right\}$ 有理函数域 收数 deg f(x) = n , $a_n \neq 0$, $deg 0 = -\infty$ R为含幺环,作 $R[x] = \{a_0 + a_1 x + \cdots + a_n x^n | n > 0, a_i \in R\}$ 特为R上的以x为未定元的(-元)多项式环 性质①若R=R'则R[x]=R'[x] ② R的零元、单位元、可逆元就是 R[时的零多项式、有单位元、可逆元 ③ R 无零因子、交换、整环 ⇒ R[x] 也是 *形式幂级数环 R[[x]] n无限制 $R[x] \leq R[[x]]$ 性质同理 D为整环, $D \times D^* = \{(a,b) \mid a,b \in D, b \neq 0\}$, 定义等价关系 $(a,b) \sim (c,d) \iff ad = bc$ D的商域(分式域) $F = D \times D^*/_{\sim} = \left\{\frac{a}{b} \mid a, b \in D, b \neq 0\right\}, \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ 史理每一个整环都可扩充为一个域 *域的角域就是本身 唯一分解理环人数绝》 主理想整环的任一理想可由一元零生成的任一理想 [={ra|reR} 整环 Z[x]不是PID] D为整环, ∃ Ø: D-{0} → N,使 ∀a,6 € D(8≠0),带金降结存在(∃2,r € D使 a=8e+r 且&cr)<Ø(6)或r=0) 则称D为欧几里得整环、记ED 推论ED公为PID 卫是ED. 对绝对值 Z[i]是ED, Ø为模为 xx 1 29/19/08/19

linear representation

对于抽象群 $\{g\}$, 寻找一个矩阵群 $\{A(g)\}$ 与之同态, 称 A 是群 G 的一个 线性表示

identity representation

若同构则称为 忠实表示,通常映射可多对一,如 恒等表示 所有群元素都映射到单位算符

性质 表示必为方阵, 单位元必表为单位阵, 迹 $\operatorname{tr} A(e) = \overline{\mathbf{表示空间}} V$ 的维数, 保逆 $A(q^{-1}) = [A(q)]^{-1}$

若已知群元素 g 表示的是对向量 \overrightarrow{r} 的某种变换 $\overrightarrow{r}' = \hat{A}(g)\overrightarrow{r}$, 则有 选基求表示法: 取线性空间 V 中一 组基 $\{\vec{e_i}\}\$ 「要求完备」, 群元素作用上去 $\hat{A}(g)\vec{e_i} = \sum_i A_{ji}(g)\vec{e_j}$ 「可证保乘」 $\xrightarrow{\mathbb{E}^{\times}} A_{ii}(g) = \langle \vec{e_i}, \hat{A}(g)\vec{e_i} \rangle$

 \mathbf{D}_3 例 已知群元素对应的变换含义, 在欧氏空间做群表示 $A(e)=I_3, A(r_2)=A^{-1}(r_1)=A^T(r_1)$

$$A(r_1) = \begin{bmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A(a) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, A(b) = \begin{bmatrix} 1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, A(c) = \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- ① 用基表示的主动变换 (物动, 基动坐标不变) $\hat{A}(r_1)\vec{x} = \vec{x}' = \cos\theta\vec{x} + \sin\theta\vec{y} + 0\vec{z}$, 系数竖写第一列
- ② 用坐标表示的主动变换 (物动, 基不动坐标变) $x'=r\cos(\theta+\varphi)=\cos\theta x-\sin\theta y$, 系数横写第一行
- ③ 被动变换 (物不动, 基动坐标变) $x'=r\cos(\varphi-\theta)=\cos\theta x+\sin\theta y$, 系数横写第一行

不可约表示

equivalent representation

等价表示 对于矩阵: \exists 同阶非奇异阵 X, 使 $\forall q$, $A'(q) = X^{-1}A(q)X$ (维数不同显然不等价)

对于空间: $(e_i')=X(e_i)$

reducible

可约表示 对于矩阵: 有零块

decomposable

有三角块结构称为 可分表示 completely reducible

 $0 \mid C$

block-diagonalized structure (不可能有三个零块,没有逆,不是群) 有对角块结构称为 $\boxed{$ **完全可约表示** $} A= \bigoplus m_i A_i^{(\mathrm{IR})}$

所有矩阵能同时对角化 (通过相似变换同时化三角型) 的充要条件是对易 (可交换) 〈高代〉

对于空间: 存在非平凡不变子空间 $W, V=W \oplus \overline{W}$ Irreducible Representation

在所有等价表示(基)都没有零块则称 |不可约表示| (一维的都是不可约表示)

囫 $(\mathbb{R}^*,+)$ 有表示 $A(x)=e^{mx}$, 不同的 m 都是不等价表示, 还可有二维不可分表示 $A(x)=\begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix}$

幺正表示 $A^{\dagger} = A^{-1}$, 荷载表示的空间 V 为复内积空间 定理 幺正表示可约则完全可约(不存在可分)

|全部| 即完备 (以下把「全部不等价不可约幺正表示」简记为∀≠IUR)|

Maschke's theorem

|**马施克定理**||有限群的任何表示都等价于一个幺正表示 (有限群不存在可分表示)

幺正 \Leftrightarrow 保内积, 设在某基下有非幺正表示 $\langle A(g)x_1|A(g)x_2\rangle \neq \langle x_1|x_2\rangle$, 用群平均定义新内积 $\langle \langle x_1|x_2\rangle \rangle \equiv$ $\frac{1}{n}\sum_{a}\langle A(g)x_{1}|A(g)x_{2}\rangle$, 根据重排定理 $\langle\langle A(g_{i})x_{1}|A(g_{i})x_{2}\rangle\rangle = \langle\langle x_{1}|x_{2}\rangle\rangle$ (选了非正交基, 导致所见不幺正) Schur's lemma 1

舒尔引理 I A 为 IR, 若 $\exists X \in V$ 和 $\forall A(g)$ 对易 (维数必相同),则 $X = \lambda I$ (常用其逆否判断不可约) 设 $X\vec{r} = \lambda \vec{r}$, 因 $X(A\vec{r}) = A(X\vec{r}) = \lambda(A\vec{r})$, 则 $A(g)\vec{r}$ 也是 λ 下的本征矢, A(G) 构成不变子空间, 又 A不可约, 故 A(G) 就是整个 V, 即对 V 中任意向量 $\overrightarrow{R} = \sum c_i \overrightarrow{r_i}$ 都有 $X \overrightarrow{R} = \lambda \overrightarrow{R}$, 只能为常数阵

定理 阿贝尔群 (包括无限群) 的 IR 都是一维的

|舒尔引理 II| A,B 为不等价 IR (维数可不同), 若 $\forall g$ 有 XA(g)=B(g)X, 则 X=0 (常用逆否, 不为零 则必等价)

group representation function

群函数 $\varphi:G\to\mathbb{C}$, **群表示函数** $\varphi:A(G)\to\mathbb{C}$ (例如矩阵元 $A_{ij}(g)$, 特征标, 都是群函数)

每行可视作 n 维矢量 \rightarrow 记 **群函数空间** V_G 的基为 $\{\varphi_k\}$ **定理** n 阶有限群只有 n 个线性独立的群函数

 \rightarrow 群函数值表 $\{\varphi_k\}$ 是个方阵

 D_3 例 前面的欧氏三维表示可轻易约为 χ^{Γ} , χ^{A}

(以下括号 (A) 表示 IR, n 为群维数, S_A 为 A 的维数)

群函数内积 用 **群平均** 定义 $\langle \varphi_1, \varphi_2 \rangle \equiv \frac{1}{n} \sum_i^n \varphi_1^*(g_i) \varphi_2(g_i)$

orthogonality theorem

群函数表	e	r_1	r_2	a	b	c
S	1	1	1	1	1	1
A	1	1	1	-1	-1	-1
Γ_{11}	1	-1/2	-1/2	-1	1/2	1/2
Γ_{12}	0	$-\sqrt{3}/2$	$\sqrt{3}/2$	0	$\sqrt{3}/2$	$-\sqrt{3}/2$
Γ_{21}	0	$\sqrt{3}/2$	$-\sqrt{3}/2$	0	$\sqrt{3}/2$	$-\sqrt{3}/2$
Γ_{22}	1	-1/2	-1/2	1	-1/2	-1/2

正交性定理 群函数值表各行正交(列没有), $\langle A_{ij}^{(p)},A_{i'j'}^{(q)}\rangle\equiv\frac{1}{n}\sum_g A_{ij}^{(p)*}(g)A_{i'j'}^{(q)}(g)=\frac{1}{S_p}\delta_{pq}\delta_{ii'}\delta_{jj'}$ 矢量长度的平方 (分量的平方和) 为 $\frac{1}{S}$ \rightarrow { $\sqrt{S}\varphi_k$ } 构成正交归一基

 \mathbf{D}_3 例 验证 Γ_{11} 行内积 Γ_{11} 行归一: $\frac{1}{n}\sum_g^n\Gamma_{11}^*\Gamma_{11}=\frac{1}{6}[1^2+(-\frac{1}{2})^2+(-\frac{1}{2})^2+1^2+(-\frac{1}{2})^2+(-\frac{1}{2})^2]=\frac{1}{2}$ completeness theorem

完备性定理 有限群的 $\forall \neq \text{IUR}$ 产生的群表示函数 $(\sum S^2 \land)$ 集合, 构成空间 V_G (n 维) 的完备基 Burnside's theorem r

 \rightarrow **伯恩萨德定理** $\sum_{i=1}^{n} S_i^2 = n$, 其中 r 为 $\forall \neq \text{IUR}$ 的个数

推论 所有群都有一个恒等表示, 故 5 阶及以下群只有一维 IR

(类数多的伯恩萨德分解可能不唯一, 如狄拉克群 $32=1\cdot4^2+16\cdot1^2=5\cdot2^2+12\cdot1^2$)

特征标-

class function

在同一个共轭类上取常值的函数称为类函数

characte

与基的选择无关的矩阵函数, 如矩阵的迹在相似变换下不变 \rightarrow 特征标 $\chi^A(g) \equiv \operatorname{tr} A(g)$ 性质 $\chi^A(e) = S_A$

判断可约 IUR 的特征标的模 $\langle \chi^{(A)}, \chi^{(A)} \rangle = \frac{1}{n} \sum_{g} |\chi(g)|^2 = 1$,可约则 $\langle \chi^A, \chi^A \rangle > 1$

判断等价 不等价 IUR 的特征标正交 $\rightarrow \langle \chi^{(A)}, \chi^{(B)} \rangle = \delta_{AB}$ 定理 等价表示 \Leftrightarrow 特征标相等

约化 可约表示 $A = \bigoplus m_i(A)_i$ 的特征标, 等于它所包含的 IR 的特征标之和 $\chi^A = \sum m_i \chi^{(A)_i}$

 $m_i = \langle \chi^{(A)}, \chi^A \rangle$ 为该类中元素个数, 即重复次数, m_i 确定即表明 A 的约化完成 (不用确定顺序)

性质 同类元素的特征标相等 (记类中元素个数为 n_i , 求和公式中可合并) 群的 $\forall \neq IUR$ 的个数等于群中类的个数 $r \rightarrow$ 特征标表是方阵

第一正交性关系 特征标表各行正交 $\frac{1}{n}\sum^r n_i \chi^{(p)*}(g) \chi^{(q)}(g) = \frac{\delta_{pq}}{\delta_{pq}}$

第二正交性关系 特征标表各列正交 $\frac{n_i}{n}\sum_{p}^r \chi^{(p)*}(g_i)\chi^{(p)}(g_{i'}) = \frac{\delta_{ii'}}{\delta_{ii'}}$

特征标	e	r_1, r_2	a, b, c
χ^S	1	1	1
χ^A	1	1	-1
χ^{Γ}	2	-1	0

(以上讲的性质都是对同一个群,不同构的群也可能碰巧有相同的特征标表)

 \mathbf{D}_3 例 验证 χ^{Γ} 行归一 $\langle \chi^{\Gamma}, \chi^{\Gamma} \rangle = \frac{1}{n} \sum^r n_i \chi^{\Gamma*} \chi^{\Gamma} = \frac{1}{6} [1 \cdot 2 \cdot 2 + 2 \cdot (-1) \cdot (-1) + 3 \cdot 0 \cdot 0] = 1$

 \mathbf{D}_3 例 验证第 2 列归一 $\frac{n_2}{n} \sum_{p=0}^{3} \chi^{p*}(g_2) \chi^p(g_2) = \frac{2}{6} [1 \cdot 1 + 1 \cdot 1 + (-1) \cdot (-1)] = 1$

—群表示直积—

(一个群的两个表示直积, 不是两个群直积)

① 群的两个表示的直积也是该群的表示「证保乘」② $\chi^{A\otimes B} = \chi^A \chi^B$ 「迹的乘法」 Clebsch-Gordan reduction coefficient

 $\boxed{\mathrm{CG}\ \mathbf{ET}}\ (A)_i \otimes (A)_j = \bigoplus_k a_{ijk}(A)_k$,利用特征标定 $\boxed{\mathbf{90 L 系数}}\ (求出出现次数就约化完工了)$

$$a_{ijk} = \langle \chi^{(A)_k}, \chi^{(A)_i \otimes (A)_j} \rangle = \frac{1}{n} \sum_{i=1}^{n} \chi^{(A)_k *}(g) \chi^{(A)_i}(g) \chi^{(A)_j}(g) = \frac{1}{n} \sum_{i=1}^{r} n_i \chi^{(A)_k *} \chi^{(A)_i} \chi^{(A)_j}(g)$$

性质 任何表示与恒等表示的直积等于该表示, IR 与一维表示的直积等于该 IR

结论 当且仅当两个互为共轭表示的直积表示中, 才会出现且只出现一次恒等表示

「恒等表示的特征标都是 1, 按定义计算 $a_{ij,S} = \langle \chi^{(A)_i}, \chi^{(A)_{j*}} \rangle = \delta_{ij}$

 \mathbf{D}_3 例 求 A 在 $\Gamma \otimes \Gamma$ 中的次数 $a_{\Gamma \otimes \Gamma,A} = \langle \chi^A, \chi^{\Gamma \otimes \Gamma} \rangle = \frac{1}{n} \sum^r n_i \chi^{A*} \chi^{\Gamma} \chi^{\Gamma} =$

simple reducibility

 $\frac{1}{6}[1\cdot 1\cdot 2\cdot 2+2\cdot 1\cdot (-1)\cdot (-1)+3\cdot (-1)\cdot 0\cdot 0]=1$ **结论** $\Gamma\otimes \Gamma=S\oplus A\oplus \Gamma$ 简单可约 所有约化系数均不超过 1 〈高量〉 CG 系数 本质: 耦合分解, 好量子数: 提炼不可约表示

承数基

设 $g \in G$ 表示 \overrightarrow{r} 的向量空间中的旋转 (如由 $\overrightarrow{r_0}$ 转到 $\overrightarrow{r_1}$), 另外又定义个函数空间 $\psi(\overrightarrow{r})$ (如空间 \overrightarrow{r} 处 的温度),则 $\hat{T}(g)\psi(\vec{r})=\psi'(\vec{r})=\psi(g^{-1}\vec{r})$ (旋转后 $\vec{r_1}$ 处的温度 $\psi'(\vec{r_1})$ 是旋转前 $\vec{r_0}$ 处的温度 $\psi(g^{-1}\vec{r_1})$) 「可以证明 $\hat{T}(g_2)\hat{T}(g_1)\psi(\vec{r})=\psi(g_1^{-1}g_2^{-1}\vec{r})=\psi((g_2g_1)^{-1}\vec{r})$ |

注意 \hat{T} 代表的是对函数 $\hat{T}\psi=\psi$, 变换, 和 g 表示对矢量 $g\vec{r_0}=\vec{r_1}$ 变换不一样, 称为由 g **诱导** 出的 \hat{T} 把 ψ 写成坐标(基的分量) 的函数 $\hat{T}(g)\psi(r_{1\sim s})=\psi(r_{1\sim s})$,则 $r_j'=\sum_i A_{ij}(g^{-1})r_i$

由函数基 ψ_i 得矩阵表示 $\hat{T}(g)\psi_i(\vec{r}) = \psi_i(g^{-1}\vec{r}) = \sum_j A_{ji}(g)\psi_j(\vec{r})$

 \mathbf{D}_3 **例** 取函数基 $\psi_{1\sim6} = \{x^2, y^2, z^2, xy, yz, zx\},$ (线性无关, 但不正交归一)

 $T(r_1)\psi_1 = x'^2, \ x' = x\cos(\frac{2}{3}\pi) + y\sin(\frac{2}{3}\pi) = \frac{1}{2}x + \frac{\sqrt{3}}{2}y \ \to T(r_1)\psi_1 = \frac{1}{4}\psi_1 + \frac{3}{4}\psi_2 + \frac{\sqrt{3}}{2}\psi_4, \ \text{坚写第一列}$

$$A(e) = I_6, A(r_2) = A^T(r_1), A(a) = \operatorname{diag} \begin{bmatrix} 1 & 1 & 1 & -1 & -1 & 1 \end{bmatrix}$$

$$A(r_1) = \begin{bmatrix} 1/4 & 3/4 & 0 & -\sqrt{3}/2 & 0 & 0 \\ 3/4 & 1/4 & 0 & \sqrt{3}/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \sqrt{3}/2 & -\sqrt{3}/2 & 0 & -1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1/2 & -\sqrt{3}/2 \\ 0 & 0 & 0 & \sqrt{3}/2 & -1/2 \end{bmatrix}, \ A(b,c) = \begin{bmatrix} 1/4 & 3/4 & 0 & \pm\sqrt{3}/2 & 0 & 0 \\ 3/4 & 1/4 & 0 & \mp\sqrt{3}/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \pm\sqrt{3}/2 & \mp\sqrt{3}/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & \mp\sqrt{3}/2 \\ 0 & 0 & 0 & 0 & \mp\sqrt{3}/2 & -1/2 \end{bmatrix}$$

从荷载可约表示的基中把荷载 IR 的基挑选出来方法 ① 算 CG 系数, 麻烦 ② 广义投影算符 设 A,B 是两个 IR,A 表示的函数基为 $\{\psi_{1\sim s}\}$, 前面有 $\hat{T}_g\psi_i=\sum_j A_{ji}(g)\psi_j$ 两边左乘 B* 对群元素求和, 用正交性定理,

$$\begin{split} \sum_g B_{kl}^*(g) \hat{T}_g \psi_i = & \sum_g \sum_j B_{kl}^*(g) A_{ji}(g) \psi_j = \sum_j \frac{n}{s} \delta_{AB} \delta_{kj} \delta_{li} \psi_j = \frac{n}{s} \delta_{AB} \delta_{li} \psi_k \\ \text{generalized projection operator / transfer operator} \\ \text{记 [广义投影算符 / 转移算符]} \ P_{kl}^{(B)} = & \frac{s}{n} \sum_g B_{kl}^*(g) \hat{T}_g, \ \text{则有 } P_{kl}^{(B)} \psi_i^{(A)} = & \delta_{AB} \delta_{li} \psi_k^{(A)} \end{split}$$

若 A=B,l=i, 则 P_{ki} 就是把第 i 个基分量 ψ_i 变成同一 IR 的第 k 个基分量 ψ_k

有 s^2 个矩阵元就有 s^2 个投影算符, 故 n 阶有限群有 n 个广义投影算符

下标相同的话记为一个指标 $P_k \equiv P_{kk}$, 自身到自身的, 作用上去之后没有转动, 幂等 $P_k^2 = P_k$

 D_3 例 现要把 2 维的 Γ 从那个 6 维表示函数基中投影出来

用一个
$$s=2$$
 维 IR 可构造 s^2 个投影算符, 但只需选取 s 个就够了, 先选投影算符 $P_{11}^{(\Gamma)} = \frac{s}{n} \sum_g \Gamma_{11}^*(g) T_g = \frac{2}{6} [T_e - \frac{1}{2} T_{r_1} - \frac{1}{2} T_{r_2} - T_a + \frac{1}{2} T_b + \frac{1}{2} T_c]$

$$\begin{array}{c} n \frac{1}{g} & 0 & 2 & 2 & 2 & 2 & 2 \\ (\text{虽然 T_g 的表达式不知道,} \ \text{但它作用在} \ \psi_1 \ \text{上的结果是知道的,} \ \text{结果就写在} \ A_{6\times 6} \ \text{的第一列}) \\ P_{11}^{(\Gamma)} \psi_1 = P_1^{(\Gamma)} \psi_1 = \frac{1}{3} (\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1/4 \\ 3/4 \\ 0 \\ \sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1/4 \\ 3/4 \\ 0 \\ \sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1/4 \\ 3/4 \\ 0 \\ -\sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1/4 \\ 3/4 \\ 0 \\ -\sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1/4 \\ 3/4 \\ 0 \\ \sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1/4 \\ 3/4 \\ 0 \\ -\sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix}) = 0 \\ \Psi = \sum^S \phi_i, \ \vec{\pi} \ P_1 \Psi = 0, \ \vec{\mathcal{W}} \ \vec{\mathcal{H}} \ \Psi \ \vec{\mathcal{H}} \ \vec{\mathcal{H}$$

$$P_{12}^{(\Gamma)}\psi_{1} = \frac{2}{6}\left(-\frac{\sqrt{3}}{2} \begin{bmatrix} \frac{1/4}{3/4} \\ \frac{3}{4} \\ 0 \\ \frac{\sqrt{3}/2}{0} \\ 0 \end{bmatrix} + \frac{\sqrt{3}}{2} \begin{bmatrix} \frac{1/4}{3/4} \\ 0 \\ -\sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix} - \frac{\sqrt{3}}{2} \begin{bmatrix} \frac{1/4}{3/4} \\ \frac{3}{4} \\ 0 \\ \frac{\sqrt{3}/2}{3/2} \\ 0 \\ 0 \end{bmatrix} + \frac{\sqrt{3}}{2} \begin{bmatrix} \frac{1/4}{3/4} \\ \frac{3}{4} \\ 0 \\ -\sqrt{3}/2 \\ 0 \\ 0 \end{bmatrix}\right) = xy$$

对称群

symmetry group

使图形不变形地变到与自身重合的操作, 关于变换的乘法构成 对称群

 $(注: 物理上找某量子体系的对称群是指 <math>[G,\hat{H}]=0$) dihedral group

平面正 n 边形对称群称为 2n 阶 \square **面体**群 \mathbf{D}_n (二面体是强调无厚度)

保持正 n 边形不变的全部操作: 1不动+(n-1)转动+n翻转=2n, 除了 n=2 外均为非阿贝尔群

定义关系 $W_i(g_1...g_m)=e$, 乘法表的化简方式 (i 需要多少目前尚无定论, 已证明肯定存在)

$$\mathbf{D}_{n} = \langle r, s | r^{n} = s^{2} = (sr)^{2} = e \rangle, \quad r \doteq \begin{bmatrix} \cos \frac{2\pi}{n} & -\sin \frac{2\pi}{n} \\ \sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{bmatrix}, \quad s \doteq \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad (\hat{\Sigma} \in \mathbb{R}) \times \mathbb{R} \times \mathbb{R}$$

一般地 a 表示欧氏空间中旋转 $2\pi/n$ 度 \rightarrow 生成循环群 \mathbf{C}_n , 「相同的转动角(正转或反转)属于一个共 轭类 | ① n 为偶数: \mathbf{C}_n 有 $\binom{n}{2}+1$) 个共轭类 (含单位元) ② n 为奇数: \mathbf{C}_n 有 $\binom{n+1}{2}$) 个共轭类 $\mathbf{C}_n \triangleleft \mathbf{D}_n$ 「由 $bab = a^{-1}$ 得 $ba^k b = a^{-k}$ | \rightarrow 除 a^k 之外的元素构成陪集, 可写成 ba^k 的形式, 阶均为 2 $\lceil (ba^k)^2 = e \mid$,表示欧氏空间中的翻转. $\lceil a^j (ba^k) a^{-j} = (a^j ba^j) a^{k-2j} = b^{-1} a^{k-2j} \mid ba^k \sim ba^{k-2j}$

别代表对称轴过顶点或边中点). \diamond ±1 按一切可能方式和 a,b 对应, 可

得 4 个 1 维表示. 欧氏空间的旋转变换可表示为:
$$a \doteq \begin{bmatrix} \cos \frac{2\pi m}{n} & -\sin \frac{2\pi m}{n} \\ \sin \frac{2\pi m}{n} & \cos \frac{2\pi m}{n} \end{bmatrix}, \quad b \doteq \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

(由于 ba^k 的存在, 上面的旋转矩阵表示不可约)

 $m \in \mathbb{Z}$,由于 χ^m 和 χ^{n-m} 同构,故 $0 < m < \frac{n}{2}$,共有 $(\frac{n}{2}-1)$ 个均为 2 维表 示. 由伯恩斯坦定理 $2n=4\cdot1^2+(\frac{n}{2}-1)\cdot2^2$ 知已找出全部不同构 UIRs.

② 若 n 为奇数,则所有反射操作构成 1 个共轭类, 1 维表示只有 2 个. 2维表示同偶数情形, 由伯恩斯坦定理 $2n=2\cdot 1^2+\left(\frac{n-1}{2}\right)\cdot 2^2$, 故已找出全部 不同构 UIRs.

特征标	a^k	ba^k
χ^1	1	1
χ^2	1	-1
χ^3	$(-1)^k$	$(-1)^k$
χ^4	$(-1)^k$	$-(-1)^k$
χ^m	$2 \frac{2\pi mk}{n}$	0
此 / 上	la.	7 lo

特征标	a^k	ba^k
χ^1	1	1
χ^2	1	-1
χ^m	$2 \cos \frac{2\pi mk}{n}$	0

circle group

|**圆群**| 圆的对称群是 \mathbf{T} \cong $\mathbf{SO}(2,\mathbb{R})$ ⟨ 线性群 ⟩

点群

point group

3 维 \rightarrow 点群 $\mathbf{O}(3)$ 的有限子群, $\mathbf{SO}(3)$ 的叫 第一类点群, 有反演的叫 第二类点群

<u>类点群基本方程</u> $\sum_{i=1}^l (1-\frac{1}{n_i}) = 2(1-\frac{1}{n})$ 「只可能有 l=2,3」 5 个解穷尽第一类点群: 循环群 \mathbf{C}_n , tetrahedral group octahedral group icosahedral group

二面体群 $\mathbf{D}_n(2n)$,四面体群 $\mathbf{T} \cong \mathbf{A}_4(12)$,八面体群 $\mathbf{O} \cong \mathbf{S}_4(24)$,二十面体群 $\mathbf{Y} \cong \mathbf{A}_5(60)$

(部分符号冲突, 仅限点群使用) 点群已研究完, 查表即可

1	177 (1 V 172) VEITEMITT VEITA) MITT = 717070, = 1721 V																
	$\mathbf{T} \left(\omega = \mathbf{e}^{\mathbf{i}\frac{2}{3}\pi}\right)$	e	(12)(34)	(123)	(132)	О	e	(12)	(123)	(1234)	(12)(34)	Y	e	(12)(34)	(123)	(12345)	(12354)
	元素个数	1	3	4	4		1	6	8	6	3		1	15	20	12	12
	χ^1	1	1	1	1		1	1	1	1	1		1	1	1	1	1
	χ^2	1	1	ω	ω^2		1	-1	1	-1	1		3	-1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
	χ^3	1	1	ω^2	ω		2	0	-1	0	2		3	-1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$
	χ^4	3	1	0	0		3	-1	0	1	-1		4	0	1	-1	-1
	χ^5						3	1	0	-1	-1		5	1	-1	0	0

Schoenflies

直积上反演群即相应第二类点群, 去掉同构的剩 9 种: | 熊夫利记号 $|S_{2n}, C_{nv}, C_{nh}, D_{nh}, D_{nd}, T_h, T_d, O_h, Y_h$

symmetric group

transformation group

非空集合 X 的全体可逆变换构成 $\boxed{\mathbf{2}$ 变换群 / 对称群 \mathbf{S}_X , 其子群称为 $\boxed{\mathbf{9}$ 换群 , X 置换群 permutation group

n 阶 **置换群** \mathbf{S}_n , $|\mathbf{S}_n| = n!$, $n \ge 3$ 均非阿贝尔, 置换相乘先右后左 (最右有波函数) \mathbf{M} $\mathbf{S}_3 \cong \mathbf{D}_3$ cycle notation transposition

 $\begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix}$, <mark>轮换记法</mark> $(a_1a_2...a_m)$, $f(a_i)=a_{i+1}$, <mark>对换</mark> 2 轮换, **邻换** 相邻元素对换

恒等置換 1 轮换 (a)=e,例 $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (132), \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13), (132)(123) = (1)$

定理 ① 不相交的轮换可交换顺序 ② 任一置换可唯一表为不相交轮换之积「数学归纳」

性质 轮换的长度就是该元素的阶 鲁菲尼定理 不相交轮换之积的阶为最小公倍数

③ 任一置换可表为对换之积 $(a_1a_2...a_m)=(a_1a_m)(a_1a_{m-1})...(a_1a_2)=(a_1a_2)(a_2a_3)...(a_{m-1}a_m)$

(不唯一, 但轮换结构不变) **推论** $(a_1a_2...a_m)^{-1} = (a_ma_{m-1}...a_1)$ odd / even permutation

|<mark>奇/偶置换</mark>| 奇/偶数个对换之积(奇数阶轮换 ⇔ 偶置换) <mark>定理</mark> 逆置换的奇偶性相同

定理 n>1 的 \mathbf{S}_n 有各 $\frac{n!}{2}$ 个奇偶置换,全体偶置换构成 \mathbf{S}_n 正规子群 \to $\overline{\mathbf{交错群}}$ \mathbf{A}_n , $\mathbf{S}_n/\mathbf{A}_n=\mathbf{C}_2$ ④ 任一对换都可写成邻换之积 结论 生成元就是 (n-1) 个邻换

Cayley

|凯莱定理| 任一群都同构于一个变换群, 有限群 (|G|=n) 都同构于一个置换群 $(\mathbf{S}_n$ 的一个子群)

取 $a \in G$, 定义 **左平移变换** $\phi_a(g) = ag$, 可证明 left regular representation

|<u>左正则表示</u>| $G_l = \{\phi_a | a \in G\}$ 是 \mathbf{S}_G 的一个子群

同理可定义 |右平移变换| $\psi_a(g)=ga^{-1}$ 和|右正则表示|

 \mathbf{D}_3 例 $a \cdot \{e, r_1, r_2, a, b, c\} = \{a, c, b, e, r_2, r_1\} \rightarrow A(a) =$

 $|r_2|$ |a|

结论 ① 忠实 ② 除了 $\chi(e)=n$ 外其它 $\chi(g)=0$ ③ IR 在正则表示中出现次数等于其维数(\rightarrow 伯恩萨德)

cycle structure

某一置换的 |轮换结构| $(i^{v_i}...)$, 分解出 v_i 个长度为 i 的轮换之积, i=1,...,k定理 共轭运算保持轮换结构不变 → 具有相同轮换结构的置换属于同一个类 总长度 $n=v_1+2v_2+\cdots+kv_k$, 重组 $\lambda_i\equiv v_i+\cdots+v_k$ $((1^n)\to [n], (n^1)\to [1\dots 1])$ $n = v_1 + v_2 + v_3 + \ldots + v_k$ $+v_3+\ldots+v_k$

则有 $n=\lambda_1+\cdots+\lambda_k$ 且 $\lambda_1\geqslant\ldots\geqslant\lambda_k>0$, 称为 n 的一个 划分, 记作 $[\lambda_1\ldots\lambda_k]$

定理 n 的划分的个数等于 \mathbf{S}_n 的共轭类个数 n!

「排列组合」每个类中元素个数为 $\rho^{[\lambda]} = \frac{n!}{\prod i^{v_i} \prod (v_i!)}$

例 $\rho^{[n]}=1$ (只有单位元) $\rho^{[1...1]}=(n-1)!$ (1 个长度为 n) Young diagram dual Young diagram

|<mark>杨图</mark>|[λ], 第 i 行有 λ_i 个格, 互为转置的称为 | <mark>对偶杨图</mark> Young tableau

在杨图中填入正整数 (表示单粒子态) → |杨盘

[1]

Weyl

(n 表示粒子个数) | **外尔盘**| ① 行 (全对称态) 从左到右不减小 ② 列 (反对称态) 从上到下严格增

standard Young tableau dictionary order

每格的数字都不重复 \rightarrow **标准杨盘** $T_i^{[\lambda]}$, 字典顺序 逐格比较, 数小的在前 「排列组合数学归纳」 定理 给定杨图的标盘个数 $f^{[\lambda]}$ =

$$T_1^{[21]} = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}, T_2^{[21]} = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$$

hook length

钩长 g_{ij} 该格子及其右方和下方的格子数 性质 对偶杨图的标盘个数相等 例 $f^{[n]}=f^{[1...1]}=1$

杨定理 \mathbf{S}_n 的对应杨图 [λ] 的 IR 的维数等于 $f^{[\lambda]}$ **例** \square \mathbf{S}_5 , 有 7 个类, 伯恩萨德验证: $5!=120=2\cdot(1^2+4^2+5^2)+6^2$ $f^{[41]} = f^{[2111]} = \frac{5!}{5 \cdot 3 \cdot 2} = 4, \ f^{[32]} = f^{[221]} = \frac{5!}{4 \cdot 3 \cdot 2} = 5, \ f^{[311]} = \frac{5!}{5 \cdot 2 \cdot 2} = 6$

row permutation

column permutation

「行置换」 $\hat{R}(T) \leq \mathbf{S}_n$,包含标盘 T 中同行数字间的置换及它们的乘积, **列置换** $\hat{C}(T) \leq \mathbf{S}_n$, 同理

例 对标盘 $\frac{1}{3}$ 有 \hat{R} ={e,(12),(34),(12)(34)}, \hat{C} ={e,(13),(24),(13)(24)}

symmetrizing operator

antisymmetrizing operator

对称化算符 $\hat{P}(T) = \sum g \in \hat{R}$ **反对称化算符** $\hat{Q}(T) = \sum \pm g \in \hat{C}$,奇置换取负,偶置换取正 Young operator

杨算符 $\hat{E}(T) = \hat{P}(T)\hat{Q}(T)$ 结论 同一杨图不同杨盘算出的杨算符不独立, 标盘的才独立

性质 若有两个数字既在杨盘 T_1 的同一行,又在杨盘 T_2 的同一列,则 $\hat{E}(T_1)\hat{E}(T_2)=0$

置换群表示

定理 同一杨图 [λ] 的不同标盘间必存在置换 σ_{ij} 使 $\sigma_{ij}T_i^{[\lambda]} = T_i^{[\lambda]}$ 例 $(23)T_1^{[21]} = T_2^{[21]}$

任意设函数 ψ_i 与标盘 T_i 对应, 然后由 $T_i = \sigma_{ii} T_i$ 得 $\psi_i = \sigma_{ii} \psi_i$, 由此得到 $f^{[\lambda]}$ 个基函数

定理 用杨算符可构造一组具有确定置换对称性的函数基 $\Psi_i = \hat{E}(T_i^{[\lambda]})\psi_i$ 来荷载不可约表示 $[\lambda]$

最后把 (n-1) 个生成元 $(12)\sim(k-1\ k)$ 作用到基 $\Psi_i(1,2,\ldots,n),\ i=1\sim f^{[\lambda]}$ 即可得 IR

 S_3 例 $T^{[3]} = 123$, $T^{[111]} = 1$, 表示均为 1 维, 设基函数为 $\psi = \psi(123)$, 则

 $\hat{E}(T^{[3]})\psi(123) = [(1) + (12) + (13) + (23) + (13)(12) + (12)(13)]\psi(123)$ (全对称)

> 元素作用在基上, 得恒等表示 $\Psi = \psi(123) + \psi(213) + \psi(321) + \psi(132) + \psi(231) + \psi(312)$

 $\hat{E}(T^{[111]})\psi(123) = [(1) - (12) - (13) - (23) + (13)(12) + (12)(13)]\psi(123)$ (同斯莱特行列式,全反对称)

 $\Psi = \psi(123) - \psi(213) - \psi(321) - \psi(132) + \psi(231) + \psi(312)$ (12) $\Psi = -\Psi \rightarrow A(12) = -1$

 $\{T_1^{[21]}, T_2^{[21]}\}$ 对应 2 维表示, 设 T_1 对应基函数为 $\psi_1 = \psi(123)$, 由 $T_2 = (23)T_1$ 得 $\psi_2 = \psi(132)$,

 $\Psi_1 = \hat{E}(T_1^{[21]})\psi_1 = [(1) + (12)][(1) - (13)]\psi(123) = \psi(123) + \psi(213) - \psi(321) - \psi(312)$

 $\Psi_2 = \hat{E}(T_2^{[21]})\psi_2 = [(1) + (13)][(1) - (12)]\psi(132) = \psi(132) + \psi(312) - \psi(231) - \psi(213)$

元素作用到基 $\Psi_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\Psi_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 上推出矩阵表示: $(12)\Psi_1 = \Psi_1$, $(12)\Psi_2 = -\Psi_1 - \Psi_2 \rightarrow A(12) = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$

求出 (n-1) 个生成元的表示即可 $A(23) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (然后还得幺正化)

后来马后炮总结出了 \mathbf{S}_n 的 $A_{ij}^{[\lambda]}(k-1,k)$ 的 UIR 的规律: 若 k-1 和 k ① 在标盘 $T_i^{[\lambda]}$ 同一行, 则 $A_{ii}=1$ ② 在标盘 $T_i^{[\lambda]}$ 同一列, 则 $A_{ii}=-1$

③ 不同行列,且 $(k-1,k)T_i^{[\lambda]} = T_j^{[\lambda]}$,则 $\begin{bmatrix} A_{ii} & A_{ij} \\ A_{ji} & A_{jj} \end{bmatrix}^{[\lambda]} = \begin{bmatrix} -\rho & \sqrt{1-\rho^2} \\ \sqrt{1-\rho^2} & \rho \end{bmatrix}$ ④ 其它 $A_{ij} = 0$ axial distance

 ρ 是|轴距离|的倒数 ρ^{-1} , 向左向下数 +1, 向右向上数 -1 (如相邻格子距离 ±1)

 \mathbf{S}_3 例 $A^{[21]}(12) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, A^{[21]}(23) = \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$

分支律

用轮换结构 $(i^{v_i}...)$ 来标记类 (便于数元素数)

S_3 特征标	(111)	(21)		(3)	
$\chi^{[3]}$	1	1		1	
$\chi^{[21]}$	2	0		-1	
$\chi^{[111]}$	1	-1		1	
S ₄ 特征标	(1111)	(211)	(22)	(31)	(4)
元素个数	1	6	3	8	6
$\chi^{[4]}$	1	1	1	1	1
$\chi^{[31]}$	3	1	-1	0	-1
$\chi^{[22]}$	2	0	2	-1	0
$\chi^{[211]}$	3	-1	-1	0	1
$\chi^{[1111]}$	1	-1	1	1	-1

分支律 $S_4 \downarrow S_3$

 $[S_4 中含有 S_3 元素的就那 3 个类]$

branching rule

|分支律| 就是对量子数取值的约束

例 $(\overrightarrow{L} \perp \overrightarrow{A}$ 限制了 $n_2 = 0$) 给定 n_1 ,则 $l = 0, 1, ..., (n_1 - 1)$ 给定 l,则 $m=-l,...,l \rightarrow$ 由群链给出氢原子波函数 $|nlm\rangle$

置换群直积

同一群的不同 IR 直积的分解尚无规律, 只有一个 定理 $[\lambda_1]$ 和 $[\lambda_2]$ 对偶 ⇔ 直积分解包含一次 $[1^n]$

两个群 $\mathbf{S}_{n_1}, \mathbf{S}_{n_2}$ 的 IR 的直积, 记为 $[\lambda] \otimes [\mu] = \bigoplus a_{\nu}[\nu]$, 其中 $[\nu]$ 是 $\mathbf{S}_{n_1+n_2}$ 的不可约表示 设各自的基为 $\Psi_{1\sim n_{\lambda}}^{[\lambda]}, \Phi_{1\sim n_{\mu}}^{[\mu]}$, 则新的基由 $\{\Psi_{i}\Phi_{j}\}$ 组成, 且还要考虑两组粒子 $n_{1}+n_{2}$ 之间的置换 \to

|利特伍德规则| 不同群的 IR 直积分解规律 ① 在杨图 $[\mu]$ 的第 i 行都标上数字 i

- ② 杨图 $[\nu]$ 由在杨图 $[\lambda]$ 上添加杨图 $[\mu]$ 的方格构成
- ③ 原来同行的不能同列(⇔同列标号严格增),原来同列的也不能同行「否则对称性反了」
- ④ 从右往左从上往下数, 无论数到哪, 小的数出现的次数总不少于大的数出现次数

例 两个双态直积分解为三重态和单态 $[2]\otimes[2]=[3]\oplus[1]$ $\square\otimes \square=\square\square\oplus[$

对于 SU(3), 一个方格表示夸克基本三重态 →

3 味夸克 +3 味反夸克 = 介子 8 重态 + 单态 $[3]⊗[\overline{3}]=[8]⊕[1]$

重子有十重态, 两种不同对称性的八重态, 单态 $[3] \otimes [3] = [10] \oplus [8]_1 \oplus [8]_2 \oplus [1]$

外尔盘

外尔盘的个数就是 $V_r^{[\lambda]}$ 中基矢量个数, 即 $\mathbf{GL}(n,\mathbb{C})$ 的 IR 的维数 $\overline{\mathbf{罗宾逊公式}}$ $\dim[\lambda] = \frac{\prod_{i,j}(n+j-i)}{g_{ij}}$ 例 对于 $\mathbf{SU}(2)$, 分子为 $\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$, 维数 = 2 对于 $\mathbf{SU}(3)$, 分子为 $\begin{bmatrix} 3 & 4 \\ 2 & 2 \end{bmatrix}$, 维数 = 8 $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \psi(22)$, $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \frac{1}{\sqrt{2}}[\psi(12) + \psi(21)]$, $\begin{bmatrix} 1 \\ 2 & 2 \end{bmatrix} = \frac{1}{\sqrt{2}}[\psi(12) - \psi(21)]$

应用: 经典李群的张量表示

结论 投影算符就是杨算子

 $V_r^{[\lambda]} = \hat{E}(T_r^{[\lambda]})V^{(k)}$ 是 **GL**(n) 的不变子空间

GL 的 IR 可用 $[\lambda]$ 标记 (表示还没做出来, 但名字能起出来了)

general linear group

special linear group

-般线性群 $|\operatorname{GL}(n,\mathbb{R}$ 或 $\mathbb{C})$, 要求 $|M| \neq 0$, 即 n 阶可逆矩阵乘群 |特殊线性群 $|\operatorname{SL}(n)$, 要求 |M| = 1 $\mathbf{SL}(n,\mathbb{R}) \leq \mathbf{GL}(n,\mathbb{R}), \ \mathbf{GL}(n,\mathbb{R})/\mathbf{SL}(n,\mathbb{R}) \cong \mathbb{R}^*$

orthogonal group

(本笔记均指实数域) 正交群 O(n) 需 $\frac{1}{2}n(n-1)$ 个独立参数 [约束方程 $O^TO=I$, 上下三角的 =0 对称 | $O(n) = SO(n) \otimes \{I, -I\} \mid O| = \pm 1 \mid O \mid O(1) = \{\pm 1\}, SO(1) = \{1\}$

二维空间转动群 $\mathbf{SO}(2) = \{R_z(\theta) | -\pi \leq \theta \leq \pi\}$ **例** \mathbf{D}_n 是 $\mathbf{O}(2)$ 的离散子群 (反射对应行列式 -1) (参数群可用数学分析方法) 由于 SO(2) 阿贝尔, 表示一维, 设 $A=\{a(\theta)\}$, 已知乘法关系为 $a(\theta_1+\theta_2)=$ $a(\theta_1)a(\theta_2)$, 两边对 θ_1 求导后令 $\theta_1=0$, 得 $a'(\theta_2)=a(\theta_2)a'(0)$, 为使幺正取 $a'(0)=\mathbf{i}m$ 纯虚, 解得 $a(\theta)=\mathbf{e}^{\mathbf{i}m\theta}$, 由周期性 $a(\theta) = a(\theta + 2\pi)$ (费米子是 $+4\pi$), 得 $m \in \mathbb{Z}$, 证不可约 $\frac{1}{2\pi} \int_0^{2\pi} \chi^{m*} \chi^{m'} d\theta = \delta_{mm'}$ 「特征标就是本身 | 群表示的直积 $\mathbf{T}^{(m_1)}\otimes\mathbf{T}^{(m_2)}=\mathbf{T}^{(m_1+m_2)}$

three dimensional rotation group

|三维空间转动群| SO(3) ♥O(3), 均由 3 个|**群参数**|表示 (独立, 实数), 群元素写法:

定理 $\forall g \in SO(3), \exists \vec{n} \in E^3, \notin g\vec{n} = \vec{n} \mid \Delta \vec{n} \neq |g-I| = 0 \mid \Delta \vec{n} \neq |g-I| \neq 0$ SO(3) 的 3 种表示方法:

① $R_{(\theta,\varphi)}(\psi)$, $0 \le \psi \le \pi$, $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi \to 映射到半径 <math>\pi$ 球面上 (ψ,θ,φ) (球面上的点是二对一 $R_n(\pi) = R_{-n}(\pi) \rightarrow$ 在四维空间连起来 〈拓扑〉)

② 固定系, $R_{(\theta,\varphi)}(\psi) = R_z(\varphi)R_y(\theta)R_z(\psi)R_y^{-1}(\theta)R_z^{-1}(\varphi)$, 其中 $R_z = \begin{bmatrix} \cos & -\sin & 0 \\ \sin & \cos & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $R_y = \begin{bmatrix} \cos & 0 & \sin \\ 0 & 1 & 0 \\ -\sin & 0 & \cos \end{bmatrix} \rightarrow$ 矩阵 (展开表达式很长, 此处略) 结论 迹为 $2\cos\psi+1$

共轭为 $gR_{\vec{n}}(\psi)g^{-1}$, ① 求其轴, $(gRg^{-1}g)\vec{n}=g\vec{n}$ → 轴为 $g\vec{n}$ ② 求转角, 相似保迹, 特征标 =2 $\cos\psi+1$ \rightarrow 转角还是 ψ ③ $gR_{\vec{n}}(\psi)g^{-1}=R_{q\vec{n}}(\psi)$, g 遍取 \rightarrow 定理 转角 ψ 相同的构成一类

- ③ 欧拉角 $g(\alpha,\beta,\gamma)=R_{z'}(\gamma)R_{v'}(\beta)R_{z}(\alpha)$, $0 \le \alpha < 2\pi$, $0 \le \beta \le \pi$, $0 \le \gamma < 2\pi$ 「见理力 | $=R_{z}(\alpha)R_{v}(\beta)R_{z}(\gamma)$
- → 同②写出矩阵形式 (缺点: $\beta=0$ 时, $\alpha+\gamma$ 相同的都对应同一旋转, $\beta=\pi$ 时, $\alpha-\gamma$ 都对应同一旋转)

rotations about a fixed point in four-dimensional Euclidean space

四维空间转动群 $SO(4) \cong SO(3) \otimes SO(3)$ 是一个非阿贝尔紧致 6 维李群 氢原子, ½ 势特殊, 有角动量守恒和龙格矢守恒

(正交群是实数版的幺正群, 是子群) 物理上, 正交群用于欧氏空间, 幺正群用于内禀空间 unitary group

(本笔记均指复数域) **幺正群** $\mathbf{U}(n)$ 需 n^2 个独立实参数 $\lceil 2n^2 -$ 对角线 $-2 \times$ 上三角 \rceil $\lceil |U|^2 = 1 \rightarrow |U| = e^{i\theta}$,要求 $\theta = 0 \rightarrow | \mathbf{SU}(n)$ 需 $(n^2 - 1)$ 个群参数

 $\mathbf{U}(n) = \mathbf{SU}(n) \otimes \mathbf{U}(1)$, 如 QCD 引入 $\lambda_0 = I_3 \rightarrow \mathbf{U}(3) = \mathbf{SU}(3) \otimes \mathbf{U}(1)$

例 $\mathbf{SU}(1) = \{e\}$ 例 $\mathbf{U}(1) = \{\mathbf{e}^{\mathbf{i}\theta}\} \cong \mathbf{T} \cong \mathbf{SO}(2) \cong \mathbb{R}/\mathbb{Z}, \ \theta \in \mathbb{R}, \ \text{描述轻子、重子数守恒,}$

局部 U(1) 描述 QED (生成元是电荷/弱超荷 Y)

two dimensional special unitary group

Cayley-Klein

 $\mathbf{SU}(2)$ $\stackrel{\mathbf{Z}:1}{\sim}$ $\mathbf{SO}(3)$ 定义零迹厄米矩阵 $h \equiv \overrightarrow{r} \cdot \hat{\overrightarrow{\sigma}} = \begin{bmatrix} z & x - \mathbf{i}y \\ x + \mathbf{i}y & -z \end{bmatrix}$, 在 $\mathbf{SU}(2)$ 中的变换 $uhu^{\dagger} = h' = \overrightarrow{r}' \cdot \hat{\overrightarrow{\sigma}}$, 对应到

SO(3) 中的变换 $\vec{r}' = R_u \vec{r}$, 因 $|h| = -x^2 - y^2 - z^2 = |h'|$ 矢长不变, 故 R_u 是正交变换, 再证保乘, $|R_u| = +1$

$$R_{u} = \begin{bmatrix} \frac{1}{2}(a^{2} + a^{*2} - b^{2} - b^{*2}) & \frac{i}{2}(-a^{2} + a^{*2} - b^{2} + b^{*2}) & -(ab + a^{*}b^{*}) \\ \frac{i}{2}(a^{2} - a^{*2} - b^{2} + b^{*2}) & \frac{1}{2}(a^{2} + a^{*2} + b^{2} + b^{*2}) & -\mathbf{i}(ab - a^{*}b^{*}) \\ (a^{*}b + ab^{*}) & \mathbf{i}(a^{*}b - ab^{*}) & (aa^{*} - bb^{*}) \end{bmatrix} \xrightarrow{a = \mathbf{e}^{-\mathbf{i}\alpha}, \ b = 0} \begin{bmatrix} \mathbf{e}^{-\mathbf{i}\alpha/2} & 0 \\ 0 & \mathbf{e}^{\mathbf{i}\alpha/2} \end{bmatrix} \rightarrow R_{z}(\alpha)$$

$$\underbrace{\begin{array}{c} \mathbf{CK} \bigstar \mathbf{K}} \ a = \cos \frac{\beta}{2} \, \mathbf{e}^{-\frac{\mathbf{i}}{2}(\alpha + \gamma)}, \ b = -\sin \frac{\beta}{2} \, \mathbf{e}^{-\frac{\mathbf{i}}{2}(\alpha - \gamma)} & \text{if } \mathbf{K} \end{array}}_{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\begin{array}{c} \mathbf{cos} \beta/2 & -\sin \beta/2 \\ \sin \beta/2 & \cos \beta/2 \end{array}}_{\mathbf{K}} \rightarrow R_{y}(\beta)$$

研究同态核, $\alpha=0,2\pi$ 对 SU(2) 来说不一样 $\rightarrow SO(3)$ 单位元的原像有两个: $\pm I_2$

求其它 IR 可以从已知 IR (那个忠实表示) 做直积然后分解直和得新 IR, 矩阵分解难, 用空间分解, 可用 基 $(\vec{e_1}, \vec{e_2})$ 或坐标 (x_1, x_2) 做, 选后者吧, $(x_1, x_2) \otimes (x_1, x_2) = (x_1^2, x_1 x_2, x_2 x_1, x_2^2)$, 规律: 齐次单项式, 故 选基 函数 $f_m^j = x_1^{j+m} x_2^{j-m}$, m = -j, ..., j (方便以后解释为角动量) 为使表示幺正还需除常数 $\sqrt{(j+m)!(j-m)!}$

作用上去, 把
$$(ax_1+bx_2)^{j+m}(-b^*x_1+a^*x_2)^{j-m}$$
 展开, 之后都是机械活 得 $\forall \neq \text{IUR}$ 为
$$A_{mm}^{(j)}(u) = \sum_{k} \frac{(-1)^{k-m+m'}\sqrt{(j+m)!(j-m)!(j+m')!(j-m')!}}{(j+m-k)!(j-m'-k)!(k-m+m')!k!} \times a^{j+m-k}(a^*)^{j-m'-k}b^k(b^*)^{k-m+m'}$$

 $A^{(j)}(u), j=0,\frac{1}{2},1,\frac{3}{2},\ldots, \max(0,m-m') \leq k \leq \min(j+m,j-m')$

① 证不等价: j 不同维数不同, ② 幺正: 后来除的常数, ③ 证完备: 先对角化成 $\operatorname{diag}\left[\mathbf{e}^{-\operatorname{im}\varphi\ldots}\right]$ 再求

特征标 $\chi^{(j)}(\varphi) = 1 + 2(\cos\frac{1}{2}\varphi + \cos\varphi + \cos\frac{3}{2}\varphi + \dots + \cos j\varphi),$ 当 j 遍取时 $\{1,\cos\frac{1}{2}\varphi,\cos\varphi,\cos\frac{3}{2}\varphi,\dots\}$ 是傅氏变换基, 故 $\chi^{(j)}(\varphi) = \sum_{i=1}^{j} e^{-im\varphi} \frac{\sinh(2j+1)\varphi/2}{\sin\varphi/2}$

定理 特征标是类函数空间完备系 ⇔全部的 UIR

④ 证不可约: 特征标内积正交归一, 群平均为积分 $\frac{1}{2\pi} \int_0^{2\pi} \chi^{(j_1)} \chi^{(j_2)} (1 - \cos \varphi) d\varphi = \delta_{j_1 j_2}$ (双值需积到 4π)

例
$$j=0$$
, 基 $f_0^0=1$, $A^{(0)}(u)=1$ $j=\frac{1}{2}$, 基 $f_{1/2}^{1/2}=x_1$, $f_{-1/2}^{1/2}=x_1$, $A^{(1/2)}(u)=u=\begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix}$

$$j=1, \ \pm f_1^1 = \frac{x_1^2}{\sqrt{2}}, \ f_0^1 = x_1 x_2, \ f_{-1}^1 = \frac{x_2^2}{\sqrt{2}}, \ A^{(1)}(u) = \begin{bmatrix} a^2 & \sqrt{2}ab & b^2 \\ -\sqrt{2}ab^* & a^*a - b^*b & \sqrt{2}a^*b \\ b^{*2} & -\sqrt{2}a^*b^* & a^{*2} \end{bmatrix}, \ \chi^{(1)}(\varphi) = \frac{\sin\frac{3}{2}\varphi}{\sin\frac{1}{2}\varphi} = 2\cos\varphi + 1$$

单位元的特征标等于维数 $\lim_{\varphi \to 0} \chi^{(j)}(\varphi) = 2j+1$

性质 奇偶性 $A^{j}(-u)=(-1)^{2j}A^{j}(u)$ (还可用球谐函数基, 后来的事了)

用 CK 关系换参数即得 $\mathbf{SO}(3)$ 的表示 $D^{(j)}$, 〈 高量 〉 还可分解为 $D^{(j)}_{mm}$, $(\alpha,\beta,\gamma) = \mathbf{e}^{-\mathbf{i}m\alpha}d^{(j)}_{mm}$, $(\beta)\mathbf{e}^{-\mathbf{i}m'\gamma}$ single-value representation

① j 取整数, $\pm u$ 对应同一个旋转, $D^{(j)}$ 是 SO(3) 的 单值表示

double-value representation

② j 取半奇数, $g(\alpha)$ 和 $g(\alpha+2\pi)$ 为同一旋转, 却对应不同矩阵 $D^{(j)}(\alpha)=-D^{(j)}(\alpha+2\pi)$, 推广 **双值表示** $d_{mm}^{(j)}, (\beta) = \sum_{k} \frac{(-1)^{k} \sqrt{(j+m)!(j-m)!(j+m')!(j-m')!}}{(j+m-k)!(j-m'-k)!(k-m+m')!k!} \times \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2k} \left(\sin\frac{\beta}{2}\right)^{2k-m+m'}$ 世质 $d_{mm}^{(j)}, (\beta) = (-1)^{m-m'} d_{m'm}^{(j)} (\beta) \qquad d_{mm}^{(j)}, (\beta) = d_{-m'-m}^{(j)} (\beta)$ $d_{mm}^{(j)}, (-\beta) = d_{m'm}^{(j)} (\beta) \qquad d_{mm}^{(j)}, (\pi-\beta) = (-1)^{j-m'} d_{-m'm}^{(j)} (\beta)$ [$\chi^{(j_1)}(\varphi)\chi^{(j_2)}(\varphi) = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} e^{-\mathbf{i}(m_1+m_2)\varphi} = \sum_{j=|j_1-j_2|}^{j_1+j_2} \sum_{m=-j}^{j} e^{-\mathbf{i}m\varphi}$] Clebsch-Gordon

$$d_{mm}^{(j)}(\beta) = (-1)^{m-m} d_{m,m}^{(j)}$$

$$a_{mm},(\beta) = a_{-m},_{-m}(\beta)$$

$$d_{mm}^{(j)},(-\beta)=d_{m,m}^{(j)}(\beta)$$

$$d_{mm}^{(j)},(\pi-\beta) = (-1)^{j-m'}d_{-m'm}^{(j)}(\beta)$$

Clebsch-Gordon

描述双态都是 SU(2), 分别自旋和同位旋 $SU_s(2)\otimes SU_T(2)$

自旋-轨道耦合是 $SU(2)\otimes SO(3)$

 $SU(1,1) \sim SO(2,1)$

SU(3), 8 个生成元, 可描述谐振子, 夸克的 3 色 $\lambda_{1\sim 8}$ 或 3 味 u,d,s

$$g \leftrightarrow r \qquad r \leftrightarrow b \qquad b \leftrightarrow g \qquad r \quad g \quad b$$

$$\lambda_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \lambda_{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \lambda_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \lambda_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \overline{p}$$

$$\lambda_{2} = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \lambda_{5} = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix} \qquad \lambda_{7} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix} \qquad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

单态 $\lambda_9 = \frac{1}{\sqrt{3}}(r\bar{r} + g\bar{g} + b\bar{b})$ 无色, 实验证明无色重子不互相作用, 故 $r\bar{r} + g\bar{g} + b\bar{b} = 0$ 9 种组合 $r\bar{r}, r\bar{g}, r\bar{b}, g\bar{r}, g\bar{g}, g\bar{b}, b\bar{r}, b\bar{g}, b\bar{b},$ 加上上面的条件, 只有 8 种线性独立的胶子 $SU(4)\cong O(6)$, 15 个生成元, 狄拉克群

 $SU(6)=3味\otimes 2$ 自旋

Interacting Boson Model |**相互作用玻色子模型**| 振动谱, 转动谱, γ 不稳定可用一个群描述

子群链为:
$$\mathbf{U}(6)\supset \left\{ \begin{array}{l} \mathbf{U}(5) \\ \mathbf{U}(3) \\ \mathbf{O}(6) \end{array} \right\} \supset \mathbf{O}(3)\supset \mathbf{O}(2)$$

张量: ① 多分量, 分量数目叫 \mathbf{K} ② 变换(逆变, 协变) 用途: ① 分类 ② 简化 $\langle jm|T|jm \rangle$ 的计算 P 是和坐标旋转变换 g 相联系的函数变换算符 $\psi(\vec{r}) \xrightarrow{\Psi \wedge \psi \leftrightarrow \psi} \psi'(\vec{r}) = P_g \psi(\vec{r})$, 幺正, T 是某算符 $T(\vec{r})\psi_1(\vec{r})=\psi_2(\vec{r})$ 「旋转后 $T'(\vec{r})\psi_1'(\vec{r})=\psi_2'(\vec{r})$ 成立 $T'P\psi_1=PT\psi_1$ | **结论** $T'(\vec{r})=PT(\vec{r})P^{\dagger}$ Irreducible Tensor Operator

SO(3) 群的 j 秩 不可约张量算符 $\{T_m^j\}, m=-j,-j+1,...,j,$ 满足:

① 群视角: 在 $P(\alpha,\beta,\gamma)$ 作用下它的 (2j+1) 个分量按 $D^{(j)}(\alpha,\beta,\gamma)$ 变换: $PT_m^j P^{\dagger} = \sum_m D_m^{(j)} T_m^j$ (如果定义成 $\sum_{m}, D_{m}^{(j)*} T_{m}^{j}$, 则为逆变 ITO)

② 代数: $[J_z, T_m^j] = mT_m^j$, $[J_\pm, T_m^j] = \sqrt{(j \mp m)(j \pm m + 1)}T_{m\pm 1}^j$, 其中 $J_\pm \equiv J_x \pm \mathbf{i}J_y$, (j 为整数, 否则双值)两种定义等价 [分别取参数 $(\alpha, -\frac{\pi}{2}, \frac{\pi}{2}), (0, \beta, 0), (0, 0, \gamma),$ 求偏导, 再取它 =0 |

||标量算符|| 按 $D^{(0)}$ 变换, 即空间旋转不变 \overline{M} 各向同性的 \hat{H} , 自旋轨道相互作用 $\overrightarrow{S} \cdot \overrightarrow{L}$

其中球谐分量 $J_0=J_z$, $J_{\pm 1}=\mp\frac{1}{\sqrt{2}}J_{\pm}$ (用笛卡尔分量的话就是个和 $D^{(1)}$ 相似的矩阵)

例 电多极跃迁 $er^lY_{lm}(\theta)$ 是 l 秩 ITO

厄米 ITO $\{T^j\}^{\dagger} = \{T^j\}$ $(\Leftrightarrow \forall m, \{T^j\}_m^{\dagger} = T_m^j)$ 要求 $(T_m^j)^{\dagger} = (-1)^m T_{-m}^j$

(对一般的 ITO 直接取厄米变成的是逆变的)

Wigner-Eckart

维格纳定理 ITO 在角动量表象 $|jm\rangle$ 下的矩阵元可分为 $\langle j'm'|T_q^k|jm\rangle = \langle j'||T^k||j\rangle \langle j'm'|kqjm\rangle$

(原 CG 系数的符号是 $\langle (j_1j_2)jm|j_1m_1j_2m_2\rangle$, 是实的所以反序也一样) dynamical property

reduced matrix element

约化矩阵元 $\langle j'||T^k||j\rangle$ 旋转不变, 包含系统的 动力学性质 (CG 系数反映几何性质)

例 标量算符 $\langle j'm'|T_0^0|jm\rangle = \delta_{i'i}\langle j'||T^0||j\rangle$

「取迹, 求和项为 $\sum_{im}\langle j||T^k||j\rangle\langle jm|kqjm\rangle \to k=0$ 」 推论 只有标量算符的迹才可能不为零

例 γ 跃迁(电多极辐射) 的选择定则 $\langle j_2m_2|Y_{lm}(\theta,\varphi)|j_1m_1\rangle = \langle j_2||Y_l||j_1\rangle\langle j_2m_2|lmj_1m_1\rangle$

CG 系数非零条件 $\rightarrow |j_1-j_2| \le l \le j_1+j_2, m=m_1-m_2$? (体现角动量守恒)

continuous group

连续群 群的元素是连续变量的函数

connected

连续且 连通群 群参数的连续变化可导致从群的任一元素到其它元素 Lie group

|李群| 群元素是有限个群参数的解析函数 (一致收敛/实光滑/连续可导)

generators 群元素 $g \in G$ 可写成 **生成元** T^{α} 的线性组合 $g = g(\theta_{1 \sim N}) = \mathbf{e}^{\mathbf{i} \sum \theta_{\alpha} \cdot T^{\alpha}} = \mathbf{e}^{\mathbf{i} \vec{\theta} \cdot \vec{T}}, \theta_{\alpha} \in \mathbb{R}$

(-般选择参数使 q(0)=I 便于展开)

classical

经典李群 保内积不变的线性群 $\mathbf{U}(n)(\mathbf{A}_n)$, $\mathbf{O}(n)(\mathbf{B}_n, \mathbf{D}_n)$, $\mathbf{Sp}(2n)(\mathbf{C}_n)$

non-compact

|**紧致**| 内积的形式为 $\sum x_i^2$ |**非紧致**| 内积的形式为 $\sum x_i^2 - \sum x_i^2$

$\mathbf{GL}(n,\mathbb{R})$	n^2	非连通	非紧
$\mathbf{SL}(n,\mathbb{R})$	$n^2 - 1$	连通	非紧
$\mathbf{O}(n,\mathbb{R})$	$\frac{1}{2}n(n-1)$	非连通	紧
$\mathbf{SO}(n,\mathbb{R})$	$\frac{1}{2}n(n-1)$	连通	紧
$\mathbf{Sp}(2n,\mathbb{R})$	n(2n+1)	连通	非紧

$\mathbf{GL}(n,\mathbb{C})$	$2n^2$	连通	非紧
$\mathbf{SL}(n,\mathbb{C})$	$2(n^2-1)$	连通	非紧
$\mathbf{O}(n,\mathbb{C})$	n(n-1)	非连通	非紧
$\mathbf{SO}(n,\mathbb{C})$	n(n-1)	连通	非紧
$\mathbf{U}(n,\mathbb{C})$	n^2	连通	紧
$\mathbf{SU}(n,\mathbb{C})$	$n^2 - 1$	连通	紧
$\mathbf{Sp}(2n,\mathbb{C})$	2n(2n+1)	连通	非紧

semisimple

|**单李群**| 没有非平凡的连续(李的) 正规子群 ⇒ |**半单李群**| 没有非平凡的连续阿贝尔正规子群

|例外李群| G_2 , F_4 , E_6 , E_7 , E_8

Lie algebra

Lie product / commutator

李代数 是一线性空间, 定义 李积 / 对易子 [x,y]=xy-yx, 该运算需满足:

bi-linearity anti-commutation Jacobi identity

① 封闭性 ② 双线性 ③ 反对易 ④ 雅可比恒等式

(代数就是有乘也有加) 何 向量积 ($\{\vec{v}\}, +, \times$) 满足李代数

structure constant

只要知道所有生成元的李积 $[T_i, T_j] = \sum C_{ij}^k T_k$ 就可确定任意元素李积 \rightarrow **结构常数** C_{ij}^k

性质 反对易 $\rightarrow C_{ij}^k = -C_{ji}^k$,雅可比 $\rightarrow \sum_{k=1}^n [C_{ij}^k C_{kq}^p + C_{jq}^k C_{ki}^p + C_{qi}^k C_{kj}^p] = 0$

李代数的维数是指生成元的个数,等于相应李群的群参数个数

囫 平移群, 阿贝尔, 实际上是 3 个 1 维李群之积

单李代数 除了零和本身之外没有其它理想 半单李代数 能表为单李代数的直和

infinitesimal group element

|李氏定理||李群的||无穷小群元素|| 满足上述李代数的定义 (李代数刻画李群在单位元邻域的性质) 设无穷小群元素 $\delta_U = I - \mathbf{i}T$, 由 $U^{-1} = U^{\dagger}$, 得 $T = T^{\dagger} \left[\mathbf{e}^T = \sum_{n=0}^{\infty} \frac{T^n}{n!} \right] \rightarrow U = \mathbf{e}^{-\mathbf{i}\theta T}$ (如果设 U=I+iT 就是 $e^{i\theta T}$, 即被动变换, 数学上甚至设 U=I+T 因为不管厄米)

群
$$\rightarrow$$
 代数: 微扰展开到一阶, 代数 \rightarrow 群: $\boxed{\mathbf{i}$ 指数映射 $\lim_{n\to\infty} (1+\frac{T}{n})^n = \mathbf{e}^T$ **例** 二阶矩阵可用泡利阵展开 $T = r_0 I_2 + \overrightarrow{r} \cdot \hat{\overrightarrow{\sigma}}$, $\left[(\hat{\overrightarrow{\sigma}} \cdot \overrightarrow{a}) (\hat{\overrightarrow{\sigma}} \cdot \overrightarrow{b}) \right]$ 公式可证完备 $\int \mathbf{SU}(2) r_0 = 0$,
$$\rightarrow U = \mathbf{e}^{-\mathbf{i} \overrightarrow{r} \cdot \hat{\overrightarrow{\sigma}}} = \sum_{n=0}^{\infty} \frac{(-\mathbf{i} \overrightarrow{r} \cdot \hat{\overrightarrow{\sigma}})^n}{n!} = \begin{bmatrix} \cos r - \mathbf{i} \frac{z}{r} \sin r & -\mathbf{i} \frac{y}{r} \sin r \\ -\mathbf{i} \frac{z}{r} \sin r + \frac{y}{r} \sin r \end{bmatrix}$$
 「证幺正, $\det = 1$ $\int \mathbf{SU}(2)$

3 个生成元: $\sigma_x, \sigma_y, \sigma_z$, 结构为 $[\sigma_x, \sigma_y] = 2i\sigma_z$

例 设
$$\delta_O = I_3 + \mathbf{i}J \begin{bmatrix} O^{-1} = O^T \end{bmatrix} J^T = -J$$
 反对称, 可用角动量基展开:
$$J_x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{bmatrix}, J_y = \begin{bmatrix} 0 & 0 & \mathbf{i} \\ 0 & 0 & 0 \\ -\mathbf{i} & 0 & 0 \end{bmatrix}, J_z = \begin{bmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \rightarrow$$
 可得 SO(3) 的表示之②

结构为 $[J_x,J_y]=\mathbf{i}J_z,\ \vec{J}=\frac{1}{2}\vec{\sigma}\to\mathfrak{su}(2)\cong\mathfrak{so}(3)$ **局部同构** 李代数相同,则在单位元附近一一对应 (种子一 样),但群参数空间不同 (SU(2) 是半径 2π 的球) (生长不一样),结果群不同构 $\mathfrak{so}(n) \cong \mathfrak{o}(n)$ 「因为单位元不在 $\det = -1$ 那一叶里 |

3 种求代数表示方法: Casimir operator

Cartan

① 构造 卡西米尔算符 和所有生成元都对易 (必存在) 剩下的两两重组成 嘉当算符 J[±] recurrence equation highest weight

得|递推关系|,由于是有限维不可约表示空间,故 m 必有最大值|最高权|最小值|最低权

例 $[J^2,J_i]=0$, 和 J_z 标记基函数 $|jm\rangle$, 用球谐形式 $J_{\pm 1}=\mp\frac{1}{\sqrt{2}}(J_x\pm \mathbf{i}J_y)$, 最高低权记为 $\pm j$

Conden-Shortley

 $\overline{\text{CS}}$ 惯例 J^- 开根号取正 $J^-|jm\rangle = \sqrt{\frac{1}{2}(j+m)(j-m+1)}, J^+$ 开根号取负 $J^+|jm\rangle = -\sqrt{\frac{1}{2}(j-m)(j+m+1)}$ (未来可保证 CG 的 S 矩阵实幺正)

boson realization

② <mark>玻色子实现</mark> 角动量算符 \hat{J} 的三个分量可用两组玻色子算符描述 $\hat{J} = \frac{1}{2}A^{\dagger}\hat{\sigma}A$, $A = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

可验证 $J^+=a_1^\dagger a_2$, $J^-=a_1 a_2^\dagger$, $J_z=\frac{1}{2}(n_1-n_2)$, $J^2=\frac{1}{4}(n_1+n_2)(n_1+n_2+2)$ 满足李代数结构

基函数天然就是 $|n_1,n_2\rangle = \frac{(a_1^{\dagger})^{n_1}(a_2^{\dagger})^{n_2}}{\sqrt{n_1!n_2!}}|00\rangle$ 得递推式同①

(一个玻色子也可以, 方法有无数种, 链接凝聚态中的 HP 变换)

③ 微分实现 $[\hat{a},\hat{a}^{\dagger}]=1 \leftrightarrow [\frac{\partial}{\partial x},x]=1,\ J^{+}=x\frac{\partial}{\partial y},J^{-}=y\frac{\partial}{\partial x},J_{z}=\frac{1}{2}(x\frac{\partial}{\partial x}-y\frac{\partial}{\partial y})$ 作用到坐标函数空间用同②的基函数 $|jm\rangle=\frac{x^{j+m}y^{j-m}}{\sqrt{(j+m)!(j-m)!}}$

反对易的叫 泊松代数

李积加上 $\{x,y\}$ 叫 <mark>超代数</mark>, 数学叫超群, 物理叫超对称

 $[x,y]_q = xy - qyx \rightarrow |$ 量子群|

去掉有限条件 → 无限维李代数

|参考文献

精

韩世安. 近世代数 (第二版). 科学出版社 (数学专业, 讲群环域, 推导很详细)

Elliott. Symmetries in Physics. Macmillan (完整讲群和群表示论以及物理应用)

□中译: 仝道荣. 物理学中的对称性. 科学出版社

清华大学群论课程讲义

参

Serre. Linear Representation of Finite Groups

└中译: 郝鈵新. 有限群的线性表示. 科学出版社

Greiner. Quantum Mechanics Symmetries. Springer (讲李群)

└中译: 钱裕昆. 量子力学: 对称性. 北京大学出版社 (不确定这本书是放数学还是放粒子物理里…)

韩其智. 群论. 北京大学出版社 (不适合初学)

笔记项目主页: http://leptc.github.io/lenote 编者: LePtC

Last compiled on 2015/06/30 at 16:50:00