Fisiologia sensoriale: Si prende il sistema biologico, si va a studiare le componenti più piccole e si va a capire l'organizzazione del sistema nelle componenti più piccole per capire come funzionano i sottosistemi un po' più grandi (bottom-up).

Psicofisica e psicologia sperimentale: Approccio top-down, perturbazione del sistema tutto intero e osservazione delle reazioni.

Caratteristiche dei recettori:

Specificità: Specializzati per una data modalità sensoriale, per una gamma ristretta dello stimolo.

Sensibilità: Risponde anche a stimoli di piccola intensità, a volte ai limiti fisici.

Es. Coni della retina, il cono rosso non ha il picco di sensbilità nel rosso ma è quello che risponde di più al rosso.

Processo di trasduzione dello stimolo: Trasformazione di uno stimolo in un'altro stimolo di differente natura.

Processo di amplificazione: spesso la trasduzione genera una variazione chimica nella cellula molto piccola, serve un'amplificazione del segnale trasdotto, i meccanismi variano molto da recettore a recettore, alcuni amplifcano moltissimo come i bastoncelli e i recettori olfattivi.

Una volta trasdotto e amplifcato il segnale deve essere comunicato al sistema nervoso tramite sinapsi.

Curva di tuning: L'informazione ricevuta da un singolo fotorecettore è sempre ambigua, non si può ricostruire lo stimolo che ha generato il segnale osservando ad esempio solo i coni di una tipologia. Caratteristica comune a tutti i recettori. Può accadere anche che il segnale sia causato da uno stimolo diverso da quello per cui è specifico il recettore (es. i fotorecettori possono rispondere anche a stimoli meccanici). Nella retina il problema della specificità è risolto inserendo più tipi di recettori con curve di tuning diverse. Assumere che il rapporto tra l'attivazione dei fotorecettori si mantenga costante al variare dell'intensità luminosa mantenendo costante la lunghezza d'onda implica che la riposta all'intensità sia lineare, molto raramente è così.

Codifica di popolazione: Metodo di codifica estremamente usato nel sistema nervoso.

Limiti della codifica di popolazione: Nella realtà gli stimoli non sono mai monocromatici (tranne i laser). Stimoli policromatici possono produrre lo stesso segnale con combinazioni molto diverse di intensità delle varie lunghezze d'onda, processo sfruttato nel sistema RGB (**metamerismo**). Il sistema alternativo è il sistema a linee dedicate, in cui serve un recettore per ogni singola lunghezza d'onda con una curva di tuning molto stretta, in questo caso sarebbe possibile fare un'analisi spettrale molto precisa. Ciò avrebbe portato ad una complessità della retina e dei circuiti associati probabilmente insostenibile.

Funzione psicometrica: Rapporto tra intensità dello stimolo e intensità percepita.

Il valore di intensità dello stimolo percepita dal 50% della popolazione prende il nome di **soglia percettiva assoluta**, misurata in assenza di stimolo di background.

La soglia misurata in presenza di background invece si chiama soglia differenziale.

Legge di Weber: Se si aumenta il background la soglia differenziale aumenta proporzionalmente secondo un fattore detto costante di Weber. (legge empirica).

La legge di Weber non è sempre valida, se lo fosse basterebbe abbassare il backgound per ottenere una soglia che tende a 0. In realtà per stimoli molto piccoli il rumore di fondo impedisce il discernimento del segnale e per stimoli molto forti il recettore o le vie che trasportano il segnale vanno in saturazione.

La valutazione psicometrica ha difetti: dipende dal soggetto di prova. Per evitare le variazioni dovute all'umore si applica la tecnica della scelta forzata, costringendo il soggetto a rispondere sempre.

Codifica dell'intensità dello stimolo e adattamento:

Alcuni recettori trasducono direttamente in uno stimolo nervoso. La frequenza delle scariche aumenta con l'intensità dello stimolo. Si può avere lento adattamento (informazione statica) o rapido adattamento (informazione dinamica). L'adattamento interessa tutti i recettori, alcuni adattano poco, ma mai zero.

Alcuni recettori non generano potenziali d'azione ma variano il loro potenziale di membrana (es. fotorecettori). Anche il fotorecettore presenta adattamento, un aumento dello stimolo causa un picco (negativo) del segnale seguido da un piccolo ritorno verso il potenziale iniziale. L'adattamento è fondamentale per evidenziare le novità, ovvero i cambiamenti negli stimoli.

Campionamento

Compromesso tra la densità spaziale dei recettori e la complessità della circuiteria necessaria all'elaborazione del segnale. I sensi devono essere sufficientemente precisi da distinguere una preda da un predatore ma abbastanza semplici da limitare la complessità e quindi l'ingombro ed il consumo energetico del sistema di elaborazione. Es. sensibilità tattile molto precisa sui polpastrelli, più grossolana sulla schiena.

Convergenza: Se si disponessero i recettori lontani tra loro avremmo zone funzionalmente cieche, invece se si fanno convergere i segnali di più recettori su un numero minore di neuroni di second'ordine si semplifica il circuito senza generare zone cieche.

Aliasing: I recettori devono campionare lo spazio sensoriale ad intervalli adeguati a rappresentare fedelmente le frequenze tipiche degli stimoli. Succede quando la lunghezza d'onda dello stimolo (la distanza tra i picchi, possono essere ad esempio bande in un'immagine o punte di un pettine) approccia la distanza tra i recettori (tecnicamente il doppio della distanza tra recettori).

Perchè non percepiamo l'aliasing? Nell'occhio la soluzione è fornita dalla leggera sfocatura dell'immagine dovuta alle imperfezioni dell'occhio. Nella percezione tattile dalla rigidità dell'epidermide: irregolarità la cui distanza approccia la distanza tra recettori l'epidermide non può formare una singola indentazione per ogni sporgenza della superficie, così si eliminano le frequenze alte che genererebbero segnali aberranti.

Un'altra soluzione è la convergenza: facendo convergere più recettori sugli stessi neuroni post-sinaptici si eliminano ugualmente le frequenze alte aberranti.

La retina in realtà presenta una densità di coni blu inferiore, si riesce infatti a generare aliasing usando pattern blu in un soggetto con vista buona. Parallelamente alla convergenza si ha anche divergenza quando è necessario notificare uno stimolo a più sistemi neuronali diversi. L'adattamento avviene a livello neuronale piuttosto che recettoriale (?).

Eliminazione del Rumore: generato dai processi biologici che possono sovrastare la trasduzione generata da stimoli deboli generando falsi positivi (NdA e falsi negativi). Una possibilità per ridurre il rumore è la convergenza (facendo la media del segnale proveniente da più recettori si riduce il rumore perché ha natura additiva ed essendo casuale la sua distribuzione è una gaussiana con media 0). Altra strategia simile è la coincidenza dell'attivazione di più recettori.

La Visione

Non comparare troppo rigidamente l'occhio umano ad una macchina fotografica!

Nelle macchine la distribuzione dei fotositi è uniforme, nell'occhio umano la "risoluzione" è più alta al centro del campo visivo rispetto alla periferia. In realtà la distribuzione di coni e bastoncelli è uniforme ma la retina periferica presenta una convergenza maggiore.

Alcuni animali hanno retine uniformi, ad esempio i topi, in questi animali i movimenti oculari sono molto ridotti rispetto all'uomo.

Adattamento alla luce: è necessario adattare la sensibilità alla luce per evitare di saturare i neuroni a qualche punto della catena percettiva. L'adattamento alla luce non è un fenomeno globale ma avviene in maniera locale.

Nesso tra movimento e percezione: La percezione del mondo scaturisce dall'integrazione di informazioni visive e motorie. Il sistema nervoso tiene conto dei comadi inviati ai muscoli oculomotori e sottrae l'alterazione che si aspetta dovuta al movimento oculare dalla percezione visiva.

Luminanza delle superfici: Misura della luce emessa per unità di superficie (unità di misura: 1 candela/m^2). Circa la luminanza di una superficie bianca illuminata da una candela alla distanza di 1 metro. La percezione della luminanza non dipende dalla distanza dell'occhio dalla superficie perché al diminuire dei fotoni che colpiscono la retina diminuisce anche di pari passo l'area di retina sulla quale si proietta l'immagine della

superficie.

La retina mantiene la capacità di percepire informazioni in un range che va da 10\dagged-6 a 10\dagged Cd/m\dagge2 (12 ordini di grandezza). Oltre 10\dagged circa iniziano i danni retinici, come limite inferiore abbiamo la soglia assoluta di percezione.

I coni non vanno in saturazione, i bastoncelli sì.

Fattori che permettono un così ampio range di funzionamento:

- Diametro pupillare: varia da 8 a 2 mm, fattore = 16, 1.2 ordini di grandezza.
- Presenza di recettori diversi: coni e bastoncelli (si pensa che i bastoncelli lavorino fino a circa 100 Cd/m^2, i coni lavorano da 10^-3 fino al limite massimo).
- Meccanismi biochimici di adattamento alla luce ed al buio.
- Meccanismi di adattamento sinaptico.

Nella retina umana coni e bastoncelli non sono distribuiti in modo uniforme. Altri animali hanno ditribuzioni differenti, ad esempio la retina del topo non è un buon modello per la retina foveale umana, ma di quella periferica. La similitudine tra retina murina e umana periferica si pensa dipenda agli antenati comuni che si muovevano di notte (bastoncelli) perché di giorno erano attivi grandi rettili. La retina umana è adattata alla visione notturna tranne la fovea, filogeneticamente più recente. L'inserzione del nervo ottico genera un punto cieco a circa 15° in direzione temporale, normalmente non ci accorgiamo della sua presenza perché il sistema nervoso lo riempe (tipo filtri photoshop).

L'assenza di bastoncelli nella fovea fa sì che la sensibilità alle sorgenti di luce deboli sia migliore nella visione periferica: di giorno dobbiamo scorrere lo sguardo, di notte no ma vediamo di meno al centro del campo visivo.

Origine filogenetica dei fotorecettori:

Il fotorecettore ancestrale era con ogni probabilità un cono, le modificazioni dei bastoncelli sono frutto di specializzazioni successive. La formazione di nuovi dischi nei primi stadi è apparentemente uguale nel cono e nel bastoncello.

Il versante sinaptico del cono è una struttura "a nastro" e forma contatti con molte cellule, per lo più neuroni bipolari.

La sinapsi del bastoncello è molto più piccola e contatta meno cellule.

Il segmento esterno del bastoncello è molto più grande rispetto a quello del cono, infatti non si vedono i segmenti esterni dei coni.

La retina periferica rappresenta la maggior parte della retina quindi quasi tutta la retina è in realtà costituita da segmenti esterni dei bastoncelli (conferiscono migliore visione notturna).

La captazione dei fotoni e l'amplificazione del segnale avvengono nel segmento esterno, il contatto sinaptico in quello interno. Per trasferire il segnale da un lato all'altro del neurone si usa il potenziale di membrana.

Nel segmento esterno non ci sono canali ionici significativi, nel segmento tra segmento esterno ed il nucleo ci sono canali per il K+ **non** modulati dal potenziale di membrana, la fuoriuscita di potassio porta ad iperpolarizzazione di potassio che tende al potenziale di riposo del potassio. Agiscono anche altri canali (HCN), che fanno passare sodio e potassio attivati da iperpolarizzazione, K è vicino all'equilibrio e ne passa poco, Na è molto lontano dall'equilibrio ed entra in grande quantità. Si mantiene così l'equilibrio elettrico, per quello chimico c'è la Na/K ATPasi. Alla luce saturante il potenziale si stabilizza a circa -70 mV, il bottone sinaptico non rilascia neurotrasmettitore.

Al buio si aprono i canali CNG che fanno entrare Na e Ca generando una corrente depolarizzante che si propaga al segmento interno tramite il ciglio che collega segmento esterno e segmento interno. I canali HCN si chiudono (sono aperti dalla iperpolarizzazione) Il nuovo equilibrio è a circa -45 mV. Nel segmento esterno c'è uno scambiatore Na, Ca, K attivo secondario che importa sodio ed estrude calcio. In luce saturante il calcio è a circa 100 nM, al buio circa 500 nM.

Quando il potenziale supera la soglia nel bottone sinaptico entra calcio che fa rilasciare le vescicole di glutammato.

Pigmenti visivi: cromoforo + apoproteina

Opsine: Recettori accoppiati a proteine G (trasducina). Formano legame covalente con residuo Lys 296 con gruppo prostetico derivato da vit. A (11-cis-retinale). Lo spettro di assorbimento è modulato dalla struttura della proteina.

L'assorbimento di un fotone fa trasformare l'11-cis-retinale in retiale tutto-trans che induce cambiamento conformazionale nella proteina cromoforo e nell'onsina.

I recettori associati a proteine G sono trans-membrana, si trovano con un capo nel disco (organello intracellulare) e con l'altro nel citosol. I recettori associati a proteine G tendono ad essere associati a coppie, sembra che questi dimeri si associno a formare "binari" tutti orientati parallelamente (mantenuti in posizione dal citoscheletro) (modelli da rivedere perché in questo caso i recettori sono stazionari e sono le proteine G a diffondere). Si conoscono 3 conopsine e 1 rodopsina, si pensa che siano originate da duplicazioni e successive mutazioni dello stesso gene primordiale (spiega anche il motivo della sovrapposizione delle curve di tuning, la conopsina verde e quella rossa sono di origine relativamente recente e le loro sequenze amminoacidiche sono ancora molto simili, molto di più rispetto alle conopsine blu e verde).

Come si fa a determinare la curva di tuning di un fotorecettore?

Si misura il potenziale di membrana di un cono/bastoncello isolato ed adattato al buio che viene esposto a flash di luce a lunghezza d'onda diversa ma di intensità costante (costante il numero di fotoni medio che colpiscono una unità di superficie). Per rappresentare in un grafico il grande range di intensità luminosa a cui risponde un fotorecettore si usa una scala logaritmica dell'intensità luminosa.

In realtà il potenziale del fotorecettore non è un segnale "pulito" ma contiene rumore dovuto all'attivazione termica degli enzimi legati alla catena di trasduzione, l'iperpolarizzazione non puù essere più misurata quando la sua ampiezza è inferiore a quella del rumore.

In realtà secondo le leggi della percezione viste prima la sensibilità (e quindi la iperpolarizzazione) non scende mai a zero ma diventa molto piccola. Per misurare sensibilità molto piccole si può fissare un obiettivo di iperpolarizzazione e aumentare l'intensità luminosa fino ad ottenere l'iperpolarizzazione voluta.

Il numero di fotoni (intensità luminosa) necessario ad ottenere la stessa iperpolarizzazione varia enormemente al variare della lunghezza d'onda, per questo si rende necessario il grafico in scala logaritmica.

Se spostiamo la lunghezza d'onda verso il rosso la sensibilità precipita verso valori infinitesimali, se invece ci spostiamo verso l'ultravioletto la sesnibilità cala poco.

Perchè allora non vediamo gli ultravioletti? Perchè cornea e cristallino si presentano praticamente opachi nell'ultravioletto e li filtrano (ecco perché si danneggiano).

Il grafico che otteniamo in questo modo in realtà si "impenna" verso il rosso (aumentano i fotoni necessari per ottenere la stessa stimolazione). Come si ottiene allora il grafico bellino?

- Invertiamo il segno del logaritmo.
- Poniamo il valore (logaritmico) a cui si trova il picco a 0 (normalizziamo).

Esperimento di psicofisica (https://www.jneurosci.org/content/jneuro/30/37/12495.full.pdf)

Obiettivo dell'esperimento: determinare la soglia percettiva assoluta del topo per uno flash luminoso di breve durata e di piccole dimensioni. I topi non possono parlare quindi i ricercatori si sono inventati questo metodo per rilevare se il topo ha visto o meno lo stimolo: addestrare i topi che possono smettere di correre (ai topi piace molto correre sulla ruota di notte) per andare a bere solo se hanno visto un flash luminoso (l'abbeveratoio eroga acqua solo per 12 s in seguito allo stimolo luminoso). Lo stomolo viene presentato ad intervalli casuali da 200 a 500 giri di ruota, è considerato come rilevato se il topo si verma entro due giri di ruota dopo la presentazione dello stimolo.

Risultato: la soglia assoluta misurata per uno stimolo a 500 nm con un angolo di ampiezza di 5.3° è stata di 67 ± 6 (intervallo di confidenza 95%) fotoni misurati alla cornea (molto simile a quanto misurato nell'uomo da Hecht et al., 1941). Considerando che uno stimolo di questa ampiezza si

proietta su un'area di retina che contiene circa 8350 bastoncelli la probabilità che uno di essi abbia ricevuto più di un fotone è trascurabile (<0.003) ne deduciamo che i bastoncelli sono capaci di rispondere ad un singolo fotone (che causa una singola isomerizzazione del retinale).

Da qui l'esperimento prosegue per analizzare la sommazione spaziale dello stimolo variando la dimensione del disco luminoso. Si osserva che per stimoli sufficientemente piccoli la soglia risulta inversamente proporzionale alla dimensione del disco (come previsto dalla legge di Ricco), mentre per stimoli la cui proiezione sulla retina è compresa tra $1000 \text{ e } 10000 \, \mu\text{m}^2$ ($400\text{-}4000 \, \text{bastoncelli}$) la soglia è molto più bassa del previsto (effetto di **supersommazione spaziale**). Il modello sviluppato dai ricercatori per spiegare questo fenomeno si basa su tre assunzioni:

- 1. Singole isomerizzazioni delle rodopsine possono essere rilevate e trasmesse dai bastoncelli ai neuroni di livello più elevato. (Provata nella prima parte dell'esperimento e da Hecht et al. 1941, Barlow et al. 1971, Mastronarde 1983).
- 2. Le isomerizzazioni che avvengono a causa dell'agitazione termica ("al buio" perché non dipendono dai fotoni, le possiamo considerare come falsi positivi) avvengono e sono indistinguibili da quelle indotte da stimoli luminosi. (Provata da Barlow et al. 1971, Mastronarde 1983, Baylor et al. 1979).
- 3. Cellule gangliari tappezzano la retina ed hanno campi ricettivi descritti da gaussiane che si sovrappongono tra cellule gangliari vicine.

Questo modello sostiene che la sommazione spaziale per i target più piccoli sia soddisfatta perché lo stimolo cade principalmente su un singolo campo ricettivo e quindi eccita una cellula gangliare molto più delle circostanti. Invece la supersommazione avviene per target che generano un simile livello di eccitazione in due o più cellule gangliari vicine, l'effetto combinato delle isomerizzazioni termiche e quelle luminose fa in modo che la stimolazione delle cellule gangliari superi la soglia dei neuroni a valle nella catena di trasmissione verso il sistema nervoso.

Modello alternativo: Una spiegazione alternativa attribuisce alle cellule amacrine AII la supersommazione, la plausibilità di questa spiegazione dipende dalle dimensioni del campo ricettivo delle cellule amacrine nel topo. Studi nella retina di gatto (che ha una densità di bastoncelli molto vicina a quella del topo) hanno evidenziato che una cellula amacrina AII riceve afferenze da circa 300 bastoncelli, mentre studi nel topo hanno mostrato che le gap-junctions potrebbero ampliare il campo ricettivo fino 4 volte. Se il campo ricettivo delle cellule amacrine AII è di circa 1200 bastoncelli (vicino ai 2000 per i quali l'effetto di supersommazione è massimo) non si può escludere questa seconda ipotesi.

Un'altra ricerca (quale?) misurò la soglia minima del sistema visivo umano a 5-6 foto-isomerizzazioni.

Perchè la dimensione ottimale è proprio quella che è? Osservando le cellule gangliari sulla retina si nota che l'albero dendritico dell maggior parte di esse ha un diametro pari a quello della proiezione del disco avente il diametro ottimale misurato prima. È la cellula gangliare ad integrare i segnali ricevuti da circa 3000 recettori ed attivarsi solo se si rilevano circa 12 trasduzioni. (non torna proprio tanto).

Alcune specie presentano il **tapetum lucidum**, uno strato di tessuto riflettente oltre la retina che riflette la luce di nuovo attraverso i bastoncelli. Aumenta la sensibilià alla luce ma produce una leggera sfocatura, è tipico di animali che hanno vita notturna e non presentanto una fovea sviluppata.

Quale è l'iperpolarizzazione generata da un singolo fotone?

Non si può "sparare" un singolo fotone, si devono usare filtri attenuatori in modo da avere statisticamente la probabilità che un singolo fotone colpisca il recettore. Si tratta quindi sempre di fenomeni probabilistici che richiedono analisi di tipo statistico.

Classicamente si era stimata la variazione di potenziale di un bastoncello in risposta ad un singolo recettore a circa 1 mV, più recentemente (Cangiano et al. 2012, https://doi.org/10.1113/jphysiol.2011.226878) si è misurata nella retina di ratto una variazione di potenziale (media della variazione di potenziale/media del numero di fotoni assorbiti) di 3.32 mV (Standard Deviation 1.18) oppure (aumento di varianza/risposta media) 3.55 mV (SD 1.55) a 24°C (vicino alla temperatura ambiente) mentra a 36°C (vicino alla temperatura corporea) si è misurata una risposta (media della variazione di potenziale/media del numero di fotoni assorbiti) di 2.35 mV (SD 0.82) oppure (aumento di varianza/risposta media) 2.57 mV (SD 1.33)

Catena fototrasduttiva del bastoncello

- 1. Attivazione della rodopsina. Una singola rodopsina rimane attiva per un tempo medio di 36 ms.
- 2. Attivazione delle proteine G: In media sembra che una singola rodopsina attivi 20 proteine G.
- 3. Attivazione della fosfodiesterasi: Le proteine G si legano e disinibiscono la fosfodiesterasi che aumenta la sua attività catalitica degradando cGMP (presente in elevata concentrazione nel segmento esterno).
- 4. Idrolisi della cGMP: Al buio si ha un equilibrio tra sintesi e degradazione, alla luce PDE ne degrada grandi quantità.
- 5. Chiusura dei canali ionici: Al buio cGMP tiene aperta una piccola parte dei canali di membrana, (canali CNG, cyclicnucleotide gated) (meccanismo cooperativo tra più molecole, l'apertura dei canali varia con il cubo della concentrazione di cGMP quindi una piccola diminuizione della concentrazione di cGMP si traduce in una grande diminuizione dei canali aperti).

La chiusura di canali altera il potenziale come detto prima.

La corrente che attraversa il segmento esterno è misurata con le micropipette a suzione, per convenzione la corrente al buio si indica come negativa, in condizioni di saturazione la corrente si porta a 0 (una volta chiusi tutti i canali non se ne possono chiudere altri).

In un bastoncello di anfibio (molto più grande) la risposta è molto più lenta (perché la stessa velocità delle reazioni in un volume maggiore impiega più tempo a produrre la stessa depolarizzazione).

La risposta alla luce dei recettori ha andamento quadratico (il grafico è una parabola), nella pratica questo comportamento è seguito solo dalla primissa fase di attivazione, poi si ha una deviazione della quale è responsabile il meccanismo di spegnimento della risposta.

Elettroretinogramma (ERG)

Si applica un elettrodo alla cornea (tramite lente a contatto) ed un altro in un'altra parte del corpo e si misura la differenza di potenziale transretinica (tra versante corneale e versante sclerale). La genesi del segnale è complessa per via delle correnti in gioco che prendono percorsi diversi. Per flash deboli si ottiene solo un'onda positiva detta **onda b,** per flash più intensi la risposta è bifasica, si presenta prima un'**onda a** negativa e poi

L'onda a è dovuta ai fotorecettori ed alle loro correnti generate dalla catena trasduttiva, l'onda b è generata dalle cellule bipolari.

Perchè con flash deboli si vede solo l'onda b? Perchè grazie alla grande convergenza le cellule bipolari si attivano già per stimolazioni sparse dei bastoncelli.

ERG scotopico: studia solo i bastoncelli.

ERG fotopico: studia i coni.

L'andamento iniziale dell'onda a ha andamento parabolico, dopo un certo tempo la risposta reale diverge da quella prevista dal modello, da ciò deduciamo che nel modello manchi la descrizione di una parte del fenomeno reale, tale parte è la **terminazione della risposta alla luce.**

Terminazione della risposta alla luce:

Dobbiamo spegnere la rodopsina attivata, se ne occupa la rodopsina chinasi, la rodopsina si può fosforilare in più punti, ogni fosfato aggiunto rallenta la risposta della rodopsina. L'arrestina blocca completamente l'attività della rodopsina. In un occhio adattato al buio l'emivita della rodopsina è di circa 36 ms.

Per spegnere la fosfodiesterasi la trsducina idrolizza il suo GTP e si stacca dalla fosfodiesterasi, la quale interrompe la sua attività.

Al contempo cala la concentrazione intracellulare di calcio a seguito della chiusura dei canali CNG, ciò porta a:

- Dissociazione della recoverina dalla rodopsina chinasi (disinibizione dell rodopsina chinasi)
- Modifica conformazionale della GCAP (guanylate cyclase activating protein, sensore di calcio) con facilitazione della guanilato ciclasi.
- Dissociazione della calmodulina dai canali CNG (aumento della loro sensibilità al cGMP).

Al buio l'attività della rodopsina chinasi è tenuta bassa dal calcio, quando cala la concentrazione di calcio aumenta l'attività della chinasi che riduce l'attività della rodopsina.

La guanilato ciclasi è costitutivamente (poco) attiva perché inibita dalla GCAP, in caso di bassa concentrazione di calcio la GCAP è meno attiva

perciò aumenta l'attività della guanilato ciclasi che ripristina la concentrazione di cGMP (che era calata in risposta allo stimolo luminoso).

La calmodulina in presenza di calcio inibisce l'apertura dei canali CNG, in carenza di calcio i canali CNG si aprono.

Se lo stimolo luminoso è molto forte si ha un plateau più lungo (saturazione) perché il calo di concentrazione di cGMP è importante ed è necessario più tempo perché venga ripristinata.

I coni hanno meccanismi più efficienti di recupero quindi resistono meglio alla saturazione.

Nel grafico della risposta ai flash saturanti si osserva un picco di iperpolarizzazione, a cosa è dovuto? (#TODO)

I coni hanno una sensibilità alla luce minore di circa due ordini di grandezza inferiore a quella dei bastoncelli. Cos'è che conferisce ai bastoncelli di operare così tanto al di sotto della soglia del sistema dei coni? La convergenza delle vie nervose.

Grazie ai meccanismi di terminazione l'emivita dell'opsina attivata è di circa 36 ms nei bastoncelli e 3 ms nei coni.

La variazione di potenziale in risposta ad un singolo fotone è di circa 2 mV nei coni e inferiore a 0.2 mV nei coni. Il problema nella ricerca sui coni è che la loro risposta è inferiore al rumore biologico (la fosfodiesterasi è termicamente instabile).

Nella maggior parte dei casi però il nostro sistema visivo non è attivato da flash luminosi, è continuamente esposto ad una intensità luminosa di base. Esperimento: manteniamo una luce costante ed esponiamo i recettori a flash.

La presenza del background luminoso implica una continua attivazione della catena fototrasduttiva. Il calcio in presenza del backgound luminoso non è al suo valore al buio ma è più basso.

Come abbiamo visto il calo di [Ca] promuove la terminazione della risposta, in questo caso la risposta è continuamente terminata. A parità di densità di fotoni che colpiscono la retina al momento del flash si hanno infatti risposte che terminano più rapidamente, però sono anche più piccole, ciò succede perché durando meno hanno anche meno tempo per essere amplificate.

I meccanismi di adattamento alla luce lavorano sul meccanismo di terminazione più che su quello di risposta, così facendo si riduce anche la sensibilità.

La capacità di discriminare stimoli molto vicini nel tempo (flicker) migliora all'aumentare del background luminoso.

Aumenta anche la soglia differenziale.

Uscita dalla saturazione

Il passaggio dal buio alla luce intensa può temporaneamente chiudere tutti i canali CNG. La diminuizione di calcio fa parzialmente riaprire i canali CNG grazie ai tre meccanismi di terminazione visti prima. Il fotorecettore esce dalla saturazione.

La corrente in uscita dal bastoncello si attesta attorno ad un certo valore al buio, in risposta allo stimolo luminoso tende a zero. In condizioni di luce saturante ci si aspetta che la corrente vada a zero e rimanga lì, rendendo il recettore incapace di rispondere ad ulteriori stimoli. In realtà i meccanismi di adattamento riaprono parzialmente i canali CNG riportando il recettore rapidamente in una condizione in cui è in grado di rispondere ad ulteriori stimoli. In queste condizioni (adattato alla luce) uno stimolo pari al primo non è più in grado di mandare il recettore in saturazione.

All'aumentare del background luminoso il potenziale a riposo si abbassa e sono necessari stimoli più intensi per produrre la stessa variazione di potenziale.

Per studiare la sensiblità dei bastoncelli in un contesto psicofisico si usano pazienti affetti da acromatopsia congenita completa che non hanno funzionalità dei coni.

Si osserva che per un ampio range di intensità la legge di Weber è rispettata, ci si discosta solo per intensità molto alte o molto basse.

Per intensità molto basse abbiamo la soglia percettiva determinata dal rumore termico (attivazioni spontanee). In realtà la rodopsina è abbastanza stabile, il problema è che in un bastoncello se ne trovano decine di milioni, quindi statisticamente ogni qualche decina di secondi al massimo una si attiva spontaneamente, l'attivazione termica è indistinguibile dalla fotoattivazione.

Date queste proprietà statistiche **si può trattare il tasso di attivazione termica come una debole fonte luminosa**. Inserendo questa luce teorica nel modello della legge di Weber ("dark light") si ottiene un modello che descrive bene il comportamento reale del paziente anche a livelli molto bassi di illuminazione.

Per intensità molto alte la curva sale tendendo ad infinito, i bastoncelli a questo livello sono saturi e non possono rispondere a stimoli ulteriormente più forti.

Lo stesso esperimento è difficile da fare in un soggetto con visione complementare, ad esempio la localizzazione dello stimolo modifica i risultati (a seconda che lo stimolo cada sulla fovea o sulla retina periferica). Si osserva, combinando i dati di più esperimenti, che entrambi i sistemi (coni e bastoncelli) seguono la legge di Weber ed hanno una propria soglia assoluta. Le porzioni che seguono la legge di Weber "classica" non sono sovrapposte. La costante di Weber dei coni è più piccola rispetto a quella dei bastoncelli, se potessimo confrontare la risposta dei coni e dei bastoncelli "ad armi pari" i coni avrebbero una soglia incrementale più bassa.

Nel fotorecettore i dischi contenenti le opsine vengono continuamente sostituiti: inseriti alla base e fagocitati all'apice. Il ciclo vitale del disco è stimato in circa 15-20gg. Mazzolini et al. nel 2015 hanno dimostrato che con l'invecchiamento i dischi perdono progressivamente efficienza.

Ruolo dell'epitelio pigmentato

Assorbendo fotoni il colore della rodopsina vira dal rosso-viola (spettro della luce bianca a cui vanno sottratte le lunghezze d'onda assoorbite) al giallo chiaro (bleaching) a causa della isomerizzazione del retinale. Continuamente è sostituito dal retinale 11-cis (ciclo visivo). L'enzima limitante è RPE65. I coni sfruttano anche un ciclo parallelo mediato dalle cellule di Muller (perciò sono più resistenti alla saturazione).

Adattamento al buio

Non si tratta di una semplice inversione dell'adattamento alla luce (cambiare il livello di calcio).

Quando si pone il paziente al buio i meccanismi visti prima reagiscono entro pochi secondi, però l'adattamento è molto più lento. Nell'adattamento si osserva un plateau: il miglioramento iniziale avviene grazie ai coni che si adattano, poi si adattano i bastoncelli.

Quando veniamo da un ambiente ad alta intensità luminosa abbiamo una retina parzialmente "bleached", le rodopsine "bleached" devono essere rigenerate prima che sia possibile adattarsi a nuovi livelli luminosi.

Es. domanda d'esame: se ho il 90% delle rodopsine "bleached" di quanto aumenta la soglia? 10 volte perché ho solo il 10% di rodopsine capaci di rispondere allo stimolo luminoso. In realtà non è così, da esperimenti si è visto che in realtà il fattore è molto più grande.

L'adattamento al buio dei coni dura pochi minuti, quello dei bastoncelli dura anche mezz'ora.

Bleaching adaptation: teoria sviluppata negli anni '90 secondo cui anche la rodopsina in forma bleached o in forma di apoproteina (priva di retinale) ha una debole attività catalitica generando lo stesso effetto della "dark light" virtuale vista prima addizionandosi a questo e contribuendo ad innalzare la soglia percettiva. L'elemento limitante nell'adattamento al buio diventa quindi il ripristino delle opsine legate a retinale fotosensibile.

Riassumendo questo fenomeno propone che l'adattamento alla luce dipenda dal parziale bleaching di rodopsine (aggiungendo attivazioni non foto-dipendenti) riduca il tempo di inattivazione e quindi ci adatti alla luce mentre una frazione di opsine "bleached" rallenti l'adattamento al buio. Perchè l'adattamento dei coni è molto più rapido? Perchè le conopsine possono essere rigenerate da un meccanismo parallelo grazie alle cellule di

L'adattamento alla luce coinvolge anche le vie nervose superiori alla retina (vale per tutte le vie sensoriali).

La Retina

Lo strato più esterno è l'epitelio pigmentato.

Più internamente si trova lo strato dei segmenti esterni.

Poi si ha lo strato nucleare esterno che contiene i segmenti interni dei fotorecettori.

Strato plessiforme esterno: sinapsi.

Strato nucleare interno: Corpi delle cellule bipolari ed amacrine.

Strato plessiforme interno: sinapsi tra bipolari, amacrine e gangliari.

Cellule gangliari.

Lo strato plessiforme interno è molto spesso a causa della presenza di complessi circuiti neuronali preposti all'elaborazione dei segnali visivi. Citotipi presenti:

- Fotorecettori (4 tipi)
- Bipolari (>10)
- Orizzontali (2-3)
- Amacrine (>30)
- Gangliari (>15)

Le cellule amacrine non hanno assone.

Campi ON e campi OFF

Centro: Si definisce in funzione della cellule (neuroni diversi hanno centri diversi). È centro la zona del campo recettivo del neurone la cui stimolazione porta a variare il potenziale del neurone per via diretta. Il centro del campo recettivo della gangliare è più grande del centro del campo recettivo della cellula bipolare. Il centro del cono coincide con il suo segmento esterno.

I recettori normalmente vivono in un "mare" di luce ambientale, la visione è quindi l'effetto della modulazione del livello di illuminazione, e quindi di potenziale di membrana, del fotorecettore.

Passando da una situazione di luce ambientale normale (non buio!) ad una di illuminazione più alta il cono riduce il suo rilascio di glutammato, che a sua volta riduce la sua azione di "freno" sulla conduttanza ionica della cellula bipolare (tramite recettori metabotropici). Aumenta la corrente ionica che entra nelle cellule bipolari (depolarizzazione) si ha così inversione di polarità del segnale dal fotorecettore alla cellula bipolare. A sua volta la cellula bipolare rilascia glutammato che interagisce con recettori ionotropici sulla cellula gangliare. La cellula gangliare di centro ON che viene stimolata nel centro del suo campo recettivo aumenta la sua frequenza di scarica (codifica in frequenza). Nella cellula gangliare si osserva il fenomeno dell'adattamento.

Se invece il centro del campo recettivo viene sitmolato di meno la cellula bipolare si iperpolarizza e la cellula gangliare si silenzia (temporaneamente). La via centro ON ha la caratteristica porta le gangliari centro ON a segnalare l'aumento di stimolo del proprio centro tramite aumento della frequenza di scarica.

Nella retina sono disposti due circuiti paralleli nella via dei coni.

Nella via centro OFF la differenza fondamentale è che le cellule bipolari presentano recettori ionotropici, quindi all'aumento dello stimolo la cellula bipolare si iperpolarizza e silenzia la cellula gangliare, mentre alla riduzione dello stimolo la cellula gangliare aumenta la sua frequenza di scarica. Le differenze nei tempi di risposta dei recettori metabotropici o ionotropici sono troppo piccole rispetto alle scale temporali della visione per essere rilevanti.

Nelle cellule gangliari non si hanno differenze costitutive tra centi ON e OFF, le niche differenze (funzionali) stanno solo nelle cellule gangliari con cui sinaptano. La distinzione avviene durante lo sviluppo embrionale.

A differenza delle cellule gangliari il cono sinapta sia con cellule bipolari ON che con cellule bipolari OFF contemporaneamente. Visto che esistono vari tipi di cellule bipolari è plausibile che ogni singolo cono sinapti con tutti i sottotipi di cellule bipolari ON e con tutti i sottotipi di cellule bipolari OFF (divergente, sinapsi estremamente complessa).

E la periferia?

Generata dalle cellule orizzontali, che sono cellule dotate di un'arborizzazione assonica molto ampia, la loro funzione è trasferire l'effetto della luce su una zona in una zona della retina che non è stata illuminata (generano comunicazione orizzontale nella retina). L'effetto è un feedback negativo: se un cono stimolato si iperpolarizza, gli altri coni con cui sinapta la cellula orizzontale vengono depolarizzati. È dibattuto se esista o meno un effetto di rigenerazione del potenziale lungo le arborizzazioni della cellula orizzontale.

La **periferia** è la zona di campo recettivo che ha un effetto sul neurone per via indiretta, si trova attorno al centro (forma una "corona"). Dipende dalle interazioni laterali mediate dalle cellule orizzontali.

Se la luce aumenta nella periferia di un cono (ma non nel suo centro) i coni nella periferia si iperpolarizzano mentre il cono preso in esame, grazie alle cellule orizzontali, si depolarizza.

Se analizziamo la risposta di un cono al flash si vede una (quasi) immediata iperpolarizzazione dovuta all'attivazione della catena fototrasduttiva, poi si ha una leggera iperpolarizzazione dovuta al segnale trasmesso dalla periferia (anch'essa fatta di coni stimolati dal flash) tramite le cellule orizzontali. È ritardata a causa della catena di cellule e meccanismi che trasmettono l'impulso.

Non è possibile che in caso di stimoli diffusi la stimolazione della periferia annulli lo stimolo nel centro? No perché c'è uno sfasamento temporale e la stimolazione della periferia produce un effetto più debole rispetto al centro.

Prendendo per riferimento il campo recettivo di una cellula gangliare ON:

L'attivazione della via periferica senza stimolazione del centro causa depolarizzazione dei coni al centro (non stimolati), quindi iperpolarizzazione della cellula bipolare ON e diminuizione della frequenza di scarica della cellula gangliare ON.

Tutti i discorsi fatti prima sono ovviamente una semplificazione perché un tasso di convergenza (anche se piccolo) c'è.

L'utilità del sistema organizzato in questo modo è dare risalto ai bordi degli oggetti, i campi ON rispondono al passaggio di un bordo da scuro a chiaro, i campi OFF viceversa.

E le vie dei bastoncelli?

Prendono almeno due vie:

Via primaria dei bastoncelli Comunicano con una singola bipolare di tipo ON la quale non comunica con le gangliari (non esiste la via diretta) ma comunica con le cellule amacrine AII, che sono cellule che rilasciano GABA e glicina, tra di loro formano un sincizio elettrico (gap junctions), le gap junctions non sono costitutivamente attive ma dipendono dall'adattamento al buio. Dalle cellule AII il segnale passa alle cellule gangliari dei coni, sia ON che OFF. Con le ON tramite gap junctions, con le gangliari OFF tramite rilascio di Glicina e GABA, si ha inversione di risposta, il risultato è che con un aumento della luce si depolarizzano le gangliari ON e si iperpolarizzano le OFF e viceversa. Elevatissima convergenza. Dalla struttura si evince che le vie dei bastoncelli siano più recenti delle vie dei coni e si siano collegate al sistema preesistente delle vie dei coni.

Le due unità logaritmiche di differenza nella sensibilità del sistema dei bastoncelli derivano dalla estrema convergenza della loro via di trasmissione. La saturazione dei bastoncelli di giorno non perturba la trasmissione del segnale dei coni grazie all'adattamento delle sinapsi.

Via secondaria: I bastoncelli comunicano con i coni tramite gap junctions, da lì si procede con le vie ON e OFF come già descritto.

La prevalenza della via primaria o secondaria dipende dall'intensità della luce, più debole e si usa la via primaria (maggiore convergenza, maggiore sensibilità, ad un certo punto satura), più forte e si usa la via secondaria.

In condizioni di luce debole ma già sufficienti per usare la visione dei coni (ad esempio con cielo annuvolato) la percezioni dei colori risulta meno vivida, e la luce sembra avere tonalità più fredde (bluastre), una teoria sul perché questo accada è che in queste condizioni i bastoncelli sono attivi così come sono attive le gap junctions che li collegano ai coni (via secondaria) e lo spettro di sensibilità dei bastoncelli è più spostato verso il blu/verde. Dalle sinapsi dei coni partono prolungamenti molto sottili che contattano con le sferule dei bastoncelli vicini tramite gap junctions.

Se non si lavora con cellule isolate si nota che la membrana del cono si iperpolarizza anche ad intensità a cui non dovrebbe, grazie alle gap junctions con i coni. Ad intensità maggiori si osserva un picco molto veloce (dovuto alla catena trasduttiva del cono stesso) seguito da un plateau dovuto alle gap junctions con i bastoncelli vicini. Ad un background più alto i bastoncelli sono saturi e non interferiscono con i coni.

Ottica Visiva

L'immagine proiettata sulla retina risulta invertita ma non è un problema perché bassta invertire le connessione neuronali.

Il modello ottico ideale è la proiezione attraverso un foro stenopeico, però la luce raccolta in questo modo è pochissima, per avere abbastanza luce da ottenere una proiezione capace di essere trasdotta dai recettori si usano le lenti.

Indice di rifrazione (IOR): parametro che indica la densità di un materiale dal punto di vista ottico. L'indice di rifrazione più basso è quello del vuoto, a cui assegnamo il valore di 1.00.

L'indice di rifrazione indica il rapporto tra la velocità della luce nel vuoto e la velocità della luce nel materiale in esame.

Nelle sostanze utilizzate nei sistemi ottici troviamo:

- Aria: circa 1, leggermente superiore.
- Acqua: 1.33
- Vetro ottico: tra 1.5 e 1.7
- Diamante: 2.47

La luce può essere descritta con la teoria ondulatoria oppure con la teoria particellare. Qui prendiamo in considerazione la teoria corpuscolare (altrimenti non avrebbe senso parlare di traiettoria).

Quando la luce passa da un mezzo di trasmissione ad un altro con IOR diverso cambia traiettoria.

Legge di Snell: Il prodotto tra l'IOR del mezzo e del seno dell'angolo di incidenza è costante. Se si passa in un mezzo con indice di rifrazione maggiore il seno dell'angolo diminuisce, quindi diminuisce l'angolo di incidenza, cioè la traiettoria si inclina verso la normale all'interfaccia. Effetto pratico: guardando attraverso un pannello di vetro in diagonale la visione risulta traslata.

Oltre al cambiamento di direzione si ha anche l'assorbimento dipendente dalla lunghezza d'onda.

Le lenti:

Lente convergente (biconvessa): intersezione tra due sfere, non necessariamente dello stesso raggio (le due facce possono avere diversa convessità). Perchè convergente? Perchè se attraversata da raggi di luce paralleli (sorgente a distanza teoricamente infinita) essi convergono verso un singolo punto per effetto della lente. **Distanza focale:** Distanza tra il centro della lente ed il **fuoco** ovvero il punto in cui convergono i raggi paralleli. La distanza focale dipende dalla convessità delle due facce (la distanza focale è direttamente proporzionale al raggio delle sfere che definiscono la lente). La lunghezza focale di un vetro piano è infinita.

1 Diottria: 1 / lunghezza focale della lente in metri.

Lente divergente (biconcava): Presentano due facce concave, il punto di fuoco (virtuale) è la distanza del punto da cui sembrano provenire i raggi paralleli che giungono dall'altra parte. In questo caso la lunghezza focale è negativa (ed anche il potere diottrico).

Cosa succede quando si compongono una lente convergente ed una lente divergente? Si ottiene una lente composta che dipende dalle proprietà delle lenti, il potere diottrico si somma. Se si accoppia una lente convergente con potere diottrico +1 ed una divergente con potere diottrico -1 si hanno le proprietà del vetro piano (lunghezza focale infinita). Però la traiettoria cambia, il fascio si restringe (o si allarga a seconda del lato da cui arrivano la luce).

Elementi ottici dell'occhio

Tutti i tessuti biologici hanno IOR uguale o maggiore di quello dell'acqua (1.33) perché l'acqua è il solvente a cui si aggiungono più o meno soluti.

Cornea: 1.38 Cristallino: 1.41 Umor vitreo: 1.34

Dall'esterno la prima cosa che si incontra è una superficie convessa (**cornea**) che si interfaccia con l'acqua e agisce da lente convergente. Dall'altra parte della cornea c'è una superficie concava (non convessa) però non si ha un'altra interfaccia con l'aria ma con liquido. La cornea contribuisce con circa +44 diottrie. Sostanzialmente la cornea non cambia forma quindi è un potere diottrico costitutivo.

Il **Cristallino** è una vera e propria lente convergente perché è biconvesso, ha IOR maggiore e si interfaccia da entrambe le parti con lo stesso mezzo. Il cristallino isolato è quasi sferico e sembra avere un potere diottrico enorme, non ci dobbiamo dimenticare però che in condizioni normali non è immerso in aria ma in acqua. Il potere diottrico del cristallino è variabile, ha un potere di 16D + accomodazione. La capacità di accomodazione diminuisce da 14D a 1D con l'età. Il processo di diminuizione della capacità di accomodazione del cristallino prende il nome di **presbiopia**. Nella vita di tutti i giorni molto spesso dobbiamo mettere a fuoco oggetti a distanza non infinita, in queste condizioni le lenti convergenti si comportano sempre allo stesso modo ma siccome i raggi incidenti sono divergenti il punto di fuoco si allontana. Il processo funziona finché la sorgente ha distanza maggiore della lunghezza focale, quando la distanza è pari alla lunghezza focale la lente non riesce a far convergere i raggi in un punto focale ma essi diventano paralleli. Se la distanza è inferiore essi rimangono convergenti.

Per adattarsi alla distanza variabile degli oggetti che vogliamo osservare non possiamo cambiare la distanza della retina dal cristallino, doobbiamo quindi cambiare il potere diottrico della lente (cristallino).

Un occhio capace di mettere a fuoco gli oggetti del mondo esterno da distanza infinita fino a 10-15 cm si dice **emmetrope**.

Difetti rifrattivi dell'occhio

Miopia: Il punto di fuoco è anteriore alla retina a causa di un allungamento del bulbo oculare, difficoltà nella messa a fuoco a distanza infinita. Si corregge conn lenti divergenti (con lunghezza focale negativa). Un occhio miope è in grado di mettere a fuoco oggetti più vicini di quanto è in grado di fare un occhio emmetrope.

Un metodo alternativo agli occhialiè la chirurgia laser della cornea "togliendo" alcune delle diottrie costitutive della cornea. È un'arma a doppio taglio perché con l'avanzare dell'età (tendenza verso la presbiopia) si avrebbe compensazione delle diottrie "in eccesso" fornite dalla miopia sulle diottire perse con la presbiopia.

Gli occhiali di un miope però non hanno due facce concave, perché? Perchè sono la fusione di una lente convergente con una lente divergente a potere diottrico assoluto maggiore in modo da ottenere una lente divergente con una faccia convessa.

Ipermetropia: caso opposto, il bulbo oculare si accorcia. Difetti nella messa a fuoco di oggetti vicini, si corregge con lenti convergenti. A differenza del miope si aggrava con l'età.

Nei paesi sviluppati si sta assistendo ad un'epidemia di miopia le cause sono probabilmente da ricercare nella scolarizzazione che costringe i soggetti in età di sviluppo a mantenere per lunghi periodi il cristallino adattato per la messa a fuoco da vicino.

Oltre al fastidio la miopia è un fattore di rischio per cataratta, glaucoma e distacco retinico.

Si pensa che ciò derivi dalla tendenza dell'occhio a mettere in atto una risposta omeostatica (forse sarebbe più corretto dire allostatica) per riportare la retina nel punto di fuoco, cioè più indietro. Si è visto che questo fenomeno è almeno in parte reversibile, l'adattamento avviene anche se viene sezionato il nervo ottico, avviene quindi completamente all'interno del bulbo oculare.

Lo spostamento della retina avviene in maniera diversa tra la fovea e la retina periferica.

È stato approvato l'uso di lenti a contatto varifocali (con potere diottrico diverso tra centro e periferia) ai primi segni di miopia nel bambino per

prevenire ulteriori degenerazioni.

Studiare con le luci accese aiuta perché porta al restringimento della pupilla e ciò aumenta la profondità di campo quindi aiuta la messa a fuoco.

Assorbimento degli UV

Verso gli UV la sensibilità dei fotorecettori non decade come verso gli infrarrossi, perché allora non vediamo gli UV? Perché le strutture ottiche dell'occhio assorbono gli UV prima che possano raggiungere la retina, nello specifico di ciò si occupano il cristallino e la cornea. Anche nell'ambito del visibile il cristallino ha un assorbimento maggiore nelle lunghezze d'onda più alte (blu), quindi il cristallino appare giallastro. Una piccola quota di raggi UV raggiunge comunque la retina e può causare danni retinici.

Il Sistema Somatosensoriale

Si divide in 3 categorie:

- 1. Esterocezione.
 - 1. Tatto.
 - 2. Termocezione.
 - 3. Dolore.
 - 1. Cangionocicezione.
 - 2. Termonocicezione.
 - 3. Chemonocicezione
- 2. Propriocezione.
 - 1. Misura della lunghezza muscolare e sua variazione.
 - 2. Tensione muscolare.
 - 3. Stiramento cutaneo.
- 3. Introcezione: Sensazioni coscienti e non che provengono dagli organi interni: dolore, destensione, parametri chimico-fisici.

I neuroni sensitivi primari sono neuroni pseudounipolari a T altamente mielinizzati, che presentano quindi alta velocità di conduzione.

Elettroneurografia: Tecnica che consiste nell'elettrostimolazione di un nervo e misurazione del potenziale ad una cera distanza, preferibilmente abbastanza alta da evidenziare bene la differenza di velocità tra fibre di tipo diverso. Il risultato è un segnale molto rumoroso e confuso a causa della piccola ampiezza dei segnali e della registrazione extracellulare. Si procede quindi applicando un filtro passa-basso al valore assoluto della registrazione.

Si riconoscono vari tipi di fibre, aumentando sempre più l'intensità dello stimolo si attivano prima le fibre più grandi (captano più corrente dalla stimolazione extracellulare) a maggiore velocità di conduzione.

Tini di fibre:

- A-alfa: Afferenze dal muscolo (fusi e organi tendinei).
- A-beta: Sensazione tattile, pressoria e vibratoria.
- A-gamma: Fibre dei motoneuroni gamma.
- A-delta: afferenze termiche e nocicettive, sensazione di dolore acuto.
- B: Fibre pregangliari del sistema simatico.
- C: Fibre nocicettive (dolore continuo e bruciante) e fibre postgangliari del simpatico. Del loro ruolo nella percezione tattile si sa molto poco.

Un altro modo di classificare le fibre è la classificazione morfologica per diametro (che si indica con i numeri romani).

Coefficiente di Hursch: Parametro empirico, per le fibre mieliniche la velocità di conduzione in m/s è pari al diametro in micron per un fattore pari a circa 5-6. Per le fibre amieliniche il fattore è circa 1.5-2.

Trasduzione della deformazione meccanica:

La trasduzione è mediata da canali ionici attivati dallo stiramento della membrana, sono detti canali **piezo** e sono permeabili a sodio e calcio. Hanno un ruolo fondamentale nella percezione tattile e propriocettiva. Sono presenti nei neuroni sensitivi primari, nelle cellule di Merkel e perfino nei cheratinociti.

Esistono anche canali TREK e TRAAK, permeabili al potassio, attenuano il potenziale recettoriale. Si sospetta la capacità da parte del sistema nervoso di modulare l'attività di questi canali.

Agendo direttamente sui canali non si ha l'amplificazione dei canali come si ha ad esempio nei fotorecettori ma si ha una risposta molto più rapida, si mantine la sensibilità fino a circa 500 Hz.

Recettori della cute glabra.

Si riconoscono 4 tipi di recettori:

- **Cellule di Merkel:** innervati da neuroni SA1 (il numero indica la profondità), a lento adattamento, danno informazioni sugli spigoli degli oggetti. Al confine tra derma ed epidermide.
- **Corpuscoli di Meissner:** innervati da neuroni RA1, ad adattamento rapido, Al confine tra derma ed epidermide. Perccepisce la trama degli oggetti in base alle vibrazioni prodotte dallo scorrimento.
- Corpuscolo del Pacini: fibre RA2 a rapido adattamento. Percezione degli urti con l'ambiente esterno.
- Corpuscoli del Ruffini: fibre SA2, a lento adattamento, aiutano a misurare gli angoli articolari delle falangi.

La cellula di Merkel: Le fibre SA1 ricevono circa 10 cellule di merkel (campo recettivo), che nel polpastrello corrisponde a circa 1 mm^2. È il minimo livello di convergenza (se si eccettuano i corpuscoli del Pacini che sono innervati 1 a 1 ma il loro campo recettivo è intrinsecamente enorme). Sono concentrate sui polpastrelli e sulla lingua, sono presenti anche a livello di alcuni bulbi piliferi. Sono praticamente assenti in distretti a bassa acuità spaziale (es. genitali).

Esperimento: sono state prodotte due linee di topi transgenici inserendo nella membrana delle celllule di Merkel o la channelrodopsina2 (ChR2), proteina batterica che agisce da canale e depolarizza la cellula se stimolata da luce blu oppure Archaerodopsin3 (ArchT) che è una pompa per idrogenioni attivata da luce verde. Il rispettivo gene è stato inserito sotto al promotore della colecistochinina, molto espressa anche nel sistema nervoso e nelle cellule di Merkel.

Stimolando la cute con ChR2 con laser blu si depolarizzano le cellule di Merkel, dopo un breve lasso di tempo si osserva la comparsa di potenziali d'azione nella fibre che le innerva. Il ritardo non è dovuto alla ChR2 ma a qualche passaggio a monte.

Perdimostrare che la depolarizzazione della cellula di Merkel è fondamentale nella percezione tattile è necessario un altro esperimento:

Co l'altra linea di topo (ArchT) si stimola la cute per indentazione e si osserva la formazione di potenziali d'azione, stimolando al contempo con luce verde si sospende la generazione dei potenziali d'azione.

Osservando che la stimolazione meccanica non ha il ritardo che abbiamo visto con la luce blu viene il sospetto che le cellule di Merkel abbiano un ruolo nella fase più tardiva della percezione. La prima fase è a carico del terminale assonico. Questi canali sono a rapido adattamento, la cellula di Merkel inizia a indurre potenziali d'azione con un ritardo e trasforma quello che sarebbe un recettore a rapido e completo adattamento in un recettore a lento adattamento.

Corpuscolo di Meissner: Struttura globulare a lamelle, contiene le terminazioni di 2-5 assoni di fibre RA1, ciascuna fibra innerva 10-20 assoni, la curva di tuning temporale ha un picco intorno ai 30-40 Hz. Segnala lo scorrimento di un oggetto sotto la cute. Hanno una densità molto elecata sulle mani e all'apice dei polpastrelli (fino a 50 corpuscoli/mm^2).

Corpuscolo di Pacini: Struttura a cipolla di tessuto connettivo che riveste una singola terminazione Ab RA2 (nessuna convergenza). Sono più sparsi degli altri ma grazie alla dimensione e grande sensibilità hanno un campo ricettivo molto grande.

Il fluido tra le lamelle filtra le frequenze basse e le compressioni laterali, le frequene più alte raggiungono la terminazione. Agiscono da "sismografi" percependo le vibrazioni indotte dall'urto quando prendiamo in mano un oggetto. Un'altra funzione molto importante è la percezione di vibrazioni quando un oggetto che teniamo in mano urta qualcosa.

Il meccanismo di attenuazione inoltre mette in risalto le compressioni appena avvengono, le "novità".

La soglia percettiva assoluta dei corpuscoli di Pacini ha un minimo intorno ai 300 Hz, non tanto perché sia importante percepire la frequenza precisa dello stimolo quanto perché è importante percepire il momento esatto di inizio dello stimolo.

Corpuscolo di Ruffini: Capsula connettivale parallela alla superficie, contiene fibrille in cui si insinuano le fibre di un assone Ab SA2, mostrano grande variabilità morfologica a seconda dei distretti. Segnalano lo stiramento della cute in particolare sui lati dell'articolazione.

Acuità sensoriale:

Si ha un'acuità notevole a livello dei polpastrelli, che cala enormemente nel resto del corpo, ad esempio sul dorso, la convergenza diventa molto grande ma non ci sono punti ciechi.

La soglia diventa peggiore con l'età.

Analisi del campo recettivo SA1, fatto con l'esperimento delle punte sul tamburo, emergono sottozone a maggiore eccitazione, si pensa che corrispondano alle cellule di Merkel.

Acuità temporale del tatto

La soglia percettiva vibratoria è determinata dal contributo dei corpuscoli di Meissner e di Pacini.

La soglia percettiva è molto alta a frequenze molto basse (<10 Hz, >10 um). Quando la frequenza aumenta la curva scende rapidamente, intorno ai 200 Hz raggiunge qualche decina di nm, la dimensione delle grosse molecole, ecco perché anche gli urti più piccoli sono percepibili.

Dermatomeri:

Sono le zone di cute innervate da assoni che derivano da una coppia di nervi spinali, in realtà sono parzialmente sovrapposti.

Le vie che trasportano la sensazione tattile non si incrociano e non hanno neuroni intermedi nel midollo spinale. Le vie nocicettive e termocettive si incrociano ed hanno neuroni intermedi nel midollo. (visione semplificata, in realtà esistono vie indirette polisinaptiche anche nella percezione tattile). Una lesione unilaterale del midollo comporta difetti motori ipsilaterali, tattili ipsilaterali e termici controlaterali.

Le fibre tattili hanno un assone che va nel cordone dorale, comunica anche con circuiti neuronali in varie lamine.

Le fibre A-delta e C nocicettive e termocettive sinaptano in lamina I e lamina IV.

In lamina IV si hanno interneuroni importanti per i riflessi.

Al margine tra lamina III e IV si hanno neuroni che mandano assoni nel cordone gracile e cuneato. Il cordone posteriore presenta un misto di assoni di primo e di second'ordine. Questi neuroni ricevono anche assoni da interneuroni della lamina IV che ricevono a loro volta anche assoni dal tratto cortico-spinale (discendenti da corteccia somatosensioriale e motoria). **La corteccia somato-sensoriale ha la capacità di modulare il flusso ascendente di informazioni.** A differenza degli umani i roditori hanno fibre discendenti direttamente nel cordone posteriore.

Le vie sensoriali ascendenti stimolano interneuroni locali inibitori che inibiscono i neuroni di proiezioni eccitatori, l'effetto complessivo è dare priorità al centro del campo ricettivo, ovvero dare risalto ai bordi degli oggetti.

I nuclei delle colonne dorsal ricevono feedback sia positivo che negativo dalle aree primarie somatosensoriale e motoria: la corteccia seleziona attivamente gli aspetti del flusso informativo ascendente durante il movimento.

Numericamente le proiezioni discendenti della corteccia somatosensoriale superano quelle ascendenti.

Corteccia somatosensoriale primaria:

Prima zona di ingresso del flusso di informazioni, dal talamo le informazioni tattili arrivano nell'area 3b che proietta nell'area 1. Le informazioni propriocettiva arrivano dall'area 3a, che proietta ina area 2. Si ha integrazione delle informazioni tattili e propriocettive. Le informazioni tattili e propriocettive si proiettano anche in area S2 ed ippocampo e amigdala.

Magnificazione corticale:

Nella corteccia i campi ricettivi dei neuroni diventano sempre più grandi.

Segregazione colonnare della rappresentazione somatotipica:

Es. le vibrisse ("baffi") del topo sono uguali per numero e disposizione in ogni individuo, corrispondono ognuna ad una certa zona di corteccia detta "barile", sono un importante organo di senso per il topo, specialmente al buio.

L'aumento delle dimensioni dei campi ricettivi comporta la combinazione di informazioni sempre più complessi, ne deriva un livello di astrazione crescente.

Es.

Aree 3a e 3b: campi recettivi che interessano un singolo polpastrello, l'area 1 integra le informazioni da più polpastrelli di una mano, l'area 2 da tutte le dita di una mano. L'area 5 riceve informazioni dalle dita di entrambe le mani.

Analisi dei campi ricettivi:

Si piazza un elettrodo in corteccia che è conduttivo solo in punta, si registra così il potenziale di pochi neuroni soltanto, si misurano i potenziali eccitatori ed inibitori in risposta a stimoli tattili. Si sono identificate 3 tipologie di neuroni:

- Neuroni solo eccitatori: lo stimolo dura pochissimno.
- Neuroni ad inibizione sostitutiva: all'inizio eccitano e subito dopo inibiscono.
- Neuroni ad inibizione laterale e sostitutiva: provoca eccitazione centrale ed inibizione laterale, l'eccitazione centrale dopo poco si trasforma in inibizione sostititutiva.

L'obiettivo dell'inibizione sostitutiva è il dare risalto alle novità, ovvero alle variazioni nel tempo dello stimolo.

L'obiettivo dell'inibizione laterale è accentuare il contrasto spaziale.

Dsicriminazione direzionale:

Molti neuroni dell'area 1 sono sensibili alla direzione: reagiscono eccitandosi quando lo stimolo passa in una direzione e quando passa nella direzione ortogonale addirittura possono inibirsi.

Senso del dolore

Varie fibre trasportano l'informazione dolorifica, a seconda della scala temporale. Iniziano le fibre A-delta e poi subentrano le fibre C.

Le fibre che rilevano nocicezione e termocezione sono terminazioni libere, sono presenti dappertutto tranne che nel sistema nervoso.

Gli stimoli capaci di causare dolore sono meccanici, termici o chimici. La specificità non è alta.

Le fibre Ad di tipo I hanno soglia minore per gli stress meccanici e chimici.

Le fibre Ad di tipo II hanno soglia minore per dolore indotto da temperature alte o fredde.

Le fibre C polimodali rispondono ad insulti meccanici, termici e chimici, le soglie relative variano da fibra a fibra senza uniformità nella stessa classe.

Le fibre C prurinergiche sono attivate da molecole esogene irritanti.

Fibre C silenti: si attivano solo nel processo infiammatorio.

Le fibre C termocettive mediano sensazioni di caldo o fresco non dolorosi.

Termocezione e termonocicezione mediata da canali TRP:

Canali identificati per la prima volta nei fotorecettori di Drosophila, formati da 4 subunità aggreagate a formare un poro permeabile a sodio e calcio. Molte isoforme di TRP si attivano con stimoli meccanici, termici o chimici. Alcune isoforme sono espresse nei cheratinociti ma non nei neuroni. Le isoforme termosensibili hanno Q10 (fattore di cui varia la permeabilità con una differenza di 10°C) molto alto, superiore a 5, a volte oltre 100.

La percezione termica è molto poco compresa, nei topi knockout per una tipologia di canale non si ha perdita di percezione alla temperatura del canale stesso. Una teoria è che l'assenza della proteina nello sviluppo inneschi meccanismi di compensazione, ad esempio espressione di un'altra proteina che fa le veci di quella persa.

I canali TRP conferiscono multimodalità ai neuroni sensoriali: Essendo attivati da stimoli di natura diversa rendono i neuroni che li esprimono responsivi a stimoli di diversa natura.

Il TRPV1 lega anche capsaicina, etanolo, pH acido, temperatura >43°C.

TRPM8 è attivato da menta piperita.

Gli ASIC3 sono coinvolti nel dolore cardiaco da danno ischemico.

Iperalgesia: Aumento del dolore percepito dal paziente in risposta a stimoli che normalmente causano già stimolo doloroso.

Allodinia: Percezione di dolore in risposta a stimoli che normalmente non sono dolorosi.

Modulazione del dolore da parte di neuropeptidi endogeni ed esogeni

Nel SNC sono presenti recettori per neuropeptidi detti **oppioidi endogeni** data la loro affinità agli oppiacei estratti dalle piante (es. Papaver somniferum). Ciascun tipo esiste in varie isoforme, morfina e codeina si legano al recettore mu, il **naloxone** funge da inibitore competitivo legandosi allo stesso recettore.

I recettori mu sono presenti nelle corna posteriori del midollo e nella sostanza grigia periacqueduttale ed a livello aricolare (via utilizzata in sede post-operatoria).

Effetto placebo e neuropeptidi oppioidi

Esperimento: è stato fatto un test somministrando a due gruppi pillole fatte solo da eccipienti ma dicendo ad un gruppo che potrebbero riscontrare effetti eccitanti ed all'altro sedativi. I pazienti tendono a mostrare davvero i sintomi dei quali sono stati avvertiti ma a volte riferiscono anche altri sintomi. Somministrando naloxone l'effetto placebo è bloccato o attenuato, suggerendo che i recettori mu siano coinvolti nel meccanismo dell'effetto placebo.

Modulazione spinale discendente del dolore

Serotonina e noradrenalina prodotte dai nuclei del rafe e locus ceruleus:

- Agiscono su interneuroni locali che rilasciano encefaline (minore ingresso di calcio e ridotta efficacia sinaptica oltre ad aprire canali per potassio sui dendriti riducendo l'eccitabilità).
- Inibizione diretta dei neuroni di proiezione.

Controllo Motorio

La muscolatura scheletrica

Circa 640, agiscono tutti sullo scheletro tranne i muscoli mimici.

L'attivazione si divide classicamente in 3 livelli gerarchici (comparse probabilmente in ordine cronologico durante l'evoluzione del sistema nervoso):

- 1. Contrazioni evocate da riflessi posturali: ad esempio risposta a variazioni provenienti dall'esterno o risposte di allontanamento da minacce.
- 2. Attività ritmiche e stereotipate: locomozione (es. deambulazione, strisciamento, volo, respirazione).
- 3. **Movimenti complessi non stereotipati:** manipolazione di oggetti, fonazione, suonare strumenti musicali, ecc... Spesso associati alla volontarietà ma non è detto, ad esempio mimica facciale.

Gli effettori finali sono ovviamente i muscoli striati, che sono controllati da motoneuroni i quali a loro volta sono controllati da interneuroni di vari livelli e da neuroni nel tronco encefalico e altre zone.

I nuclei della base e del cervelletto servono all'apprendimento motorio.

Si svolgono contemporaneamente due componenti:

- Programmazione aticipatoria: Prevede i movimenti da fare in modo da eseguirli in modo più veloce e fluido quando è necessario.
- Correttiva: Corregge la sequenza motoria in base alla risposta dell'ambiente esterno e del corpo diverse da quanto previsto.

Come agiscono i muscoli sullo scheletro?

Il sistema nervoso deve saperlo per programmare l'attivazione muscolare in modo da ottenere i movimenti voluti.

Es. articolazione del gomito:

Si può considerare il **fulcro** come il centro della troclea dell'omero e **braccio di leva** come la distanza più breve tra il fulcro ed il punto di applicazione delle forze. (Dobbiamo considerare anche il muscolo antagonista che si oppone al movimento ed il peso degli arti, considerato come applicato al centro di massa o baricentro).

https://it.wikipedia.org/wiki/Leva_(fisica)

I bracci di leva fisiologici sono molto piccoli perhè i muscoli tendono ad inserirsi viciono al fulcrio mentre i carichi si applicano in punti più distanti. Il vantaggio di questa disposizione è che una piccola variazione di lunghezza del muscolo genere un grande spostamento dell'estremità dell'arto. Lo svantaggio è che i muscoli in quella piccola variazione di lunghezza devono applicare una forza enorme.

Un momento meccanico diverso da zero produce un'accelerazione (positiva o negativa) nella rotazione della leva. Se il momento meccanico netto è nullo si ha movimento avviene a velocità costante (può anche essere 0 se l'articolazione è ferma).

Nel controllo motorio vengono integrate informazioni provenienti da molte sfere sensoriali diverse:

- Percezioni di tipo estrinseco: Sulla localizzazione degli oggetti rispetto al corpo (vista, udito, somatosensoriale).
- Intrinseche di tipo cinematico: Valore, velocità e variazione degli angoli articolari. Fusi neuromuscolari e recettori tattili di stiramento.
- Intrinseche di tipo dinamico relative alle forze generate dai muscoli, percepite da organi tendinei del Golgi e recettori cutanei dello schiacciamento.

Come fa il cervello a decidere come comandare i muscoli per ottenere i movimenti desiderati?

- 1. Coscienza della traiettoria prescelta.
- 2. Trasformazione cinematica inversa: Determinare l'insieme di angoli articolari e la loro variazione per ottenere la traiettoria desiderata.
- 3. **Trasformazione dinamica inversa:** Determinare le forze da applicare tramite i muscoli per ottenere le variazioni prescelte negli angoli articolari.

Come fa tutto questo ad avvenire nei brevi tempi di risposta a cui siamo abituati?

Nel sistema nervoso sono presenti schemi già memorizzati per una grandissima varietà di movimenti, e questo database sta nel cervelletto.

Questi circuiti neuronali si sono sviluppati con i primi utilizzi di utensili, per il controllo nervoso un utensile fa parte del sistema muscolo-scheletrico. Ciascuna trasformazione inversa non ha una soluzione unica (esistono molti modi per ottenere lo stesso movimento) ciascuna è quindi modulabile sia nel breve che nel lungo periodo inn un processo di trial and error, **apprendimento motorio.**

Durante l'esecuzione del movimento il cervello esegue una previsione della progressione del movimento:

- 1. Trasformazione dinamica diretta: prevede gli angoli articolari prodotti dalla combinazione dei comandi motori.
- 2. **Trasformazione cinematica diretta:** prevede la traiettoria del corpo nello spazio e nel tempo.

Si calcola così l'effetto finale sul mondo esterno. Questo effetto previsto viene confrontato con le informazioni ottenute attraverso i sensi. Si elabora

così la differenza tra la previsione del movimento ed il movimento effettivamente eseguito e la si usa per correggere i controlli inviati agli effettori. Con questo meccanismo il sistema nervoso diventa capace di adattarsi ad eventi imprevedibili nell'ambiente esterno.

Il controllo del movimento si comporta in modo diverso a seconda della velocità del movimento. Se il movimento è rapido prevale la componente anticipatoria perché non si ha il tempo di applicare la correzione.

Il movimento rapido, senza correzione, prende il nome di movimento balistico.

Se lo stesso errore si verifica ogni volta il sistema di controllo motorio capisce che non è utile aggiungere tutte le volte una correzione ma viene modificata direttamente la trasformazione dinamica inversa, altro esempio di **apprendimento motorio**.

Il sistema di controllo motorio ha evoluto la capacità di realizzare movimenti rettilinei, però gli unici movimenti che possono fare le articolazioni sono rotazioni. L'evoluzione ha selezionato una modalità di movimento con accelerazione articolare "a campana" che ottimizza la precisione dei movimenti e l'efficienza energetica.

Legge di Fitt: La durata media del movimento quando deve essere precisa aumenta di un fattore che dipende dal logaritmo in base 2 del rapporto tra il doppio della distanza dal target ed il diametro del target nella direzione del movimento.