Project Component 1

Himanshu, MDS202327

2023-09-19

Introduction

TBA

Data Description

6859 103.91

names(df)

Variables in the data

The data contains six air pollution parameters like PM2.5, PM10, NO2, NH3, SO2, Ozone for 12 stations in New Delhi, collected from CPCB website from 08-02-2018 to 02-01-2021 on daily basis.

```
# Importing libraries
library(tidyverse)
library(dplyr)
library(ggplot2)
library(TSstudio)
library(plotly)
# Reading the data into data frame
df <- read.csv("delhi.csv", header = TRUE)</pre>
set.seed(5)
df[sample(nrow(df), 5), ]
##
                                       Date PM2.5
                                                      PM10
                                                             NO2
                                                                          S02
               siteName siteCode
                                                                    NH3
## 13122
            Sonia Vihar 1432 2019-03-16 76.24 128.73 26.19
                                                                  26.79 10.62
                            1430 2019-06-01 109.17 308.58 33.36 107.17 10.02
## 12139
                 Rohini
                           1431 2019-01-10 171.10 249.96 34.45 71.82 5.30
## 10937
             Patparganj
## 2255 Dwarka-Sector 8
                            1422 2018-06-22 59.46 269.33 26.90
                                                                  4.00 5.28
                            1427 2019-06-21 71.17 145.08 39.99 36.66 20.66
## 6859
              Najafgarh
##
          Ozone
         49.66
## 13122
## 12139 48.77
## 10937 18.40
## 2255
          3.83
```

```
## [1] "siteName" "siteCode" "Date" "PM2.5" "PM10" "NO2" "NH3" ## [8] "SO2" "Ozone"
```

```
# Dimension of the data
dim(df)
## [1] 15900
# Variable types
# Note the Date column has type chr which must be converted to date type.
## 'data.frame':
                 15900 obs. of 9 variables:
## $ siteName: chr "Ashok Vihar" "Ashok Vihar" "Ashok Vihar" "...
: chr "2018-02-08" "2018-02-09" "2018-02-10" "2018-02-11" ...
## $ Date
           : num 237 250.5 269.7 146.4 82.1 ...
   $ PM2.5
## $ PM10 : num 406 423 499 315 200 ...
            : num 110 79.4 183.9 41.8 23.2 ...
## $ NO2
## $ NH3
            : num
                  31.4 33.5 22.7 36.7 34.8 ...
## $ SO2
                 11.2 13.24 7.16 8.38 4.43 ...
            : num
## $ Ozone
            : num 33.4 39.3 44.5 43 37.9 ...
df$Date <- as.Date(df$Date)</pre>
df[sample(nrow(df), 5), ]
##
                            siteName siteCode
                                                 Date PM2.5
                                                              PM10
## 13177
                         Sonia Vihar
                                       1432 2019-05-10 87.55 319.71
## 1833 Dr. Karni Singh Shooting Range
                                       1421 2020-03-21 51.39 122.20
## 3797
                        Jahangirpuri
                                       1423 2019-10-17 148.79 288.54
## 13534
                         Sonia Vihar
                                       1432 2020-05-01 60.58 153.08
## 7239
                           Najafgarh
                                       1427 2020-07-05 28.64 50.76
##
             NO2
                  NH3
                           SO2 Ozone
## 13177 29.910000 27.54 12.990000
                                56.83
## 1833 45.230000 28.76 17.140000
                                76.75
## 3797 80.240000 56.53 26.090000 88.46
## 13534 3.375843 30.27 3.270609 111.14
## 7239
        9.210000 31.50 9.430000 44.39
str(df)
## 'data.frame':
                 15900 obs. of 9 variables:
   $ siteName: chr "Ashok Vihar" "Ashok Vihar" "Ashok Vihar" "Ashok Vihar" ...
   : Date, format: "2018-02-08" "2018-02-09" ...
## $ Date
## $ PM2.5
            : num 237 250.5 269.7 146.4 82.1 ...
## $ PM10
            : num 406 423 499 315 200 ...
## $ NO2
            : num 110 79.4 183.9 41.8 23.2 ...
## $ NH3
            : num 31.4 33.5 22.7 36.7 34.8 ...
## $ SO2
            : num 11.2 13.24 7.16 8.38 4.43 ...
   $ Ozone
            : num 33.4 39.3 44.5 43 37.9 ...
```

unique(df\$siteName)

```
##
    [1] "Ashok Vihar"
                                               "Dr. Karni Singh Shooting Range"
    [3] "Dwarka-Sector 8"
                                               "Jahangirpuri"
    [5] "Jawaharlal Nehru Stadium"
                                               "Major Dhyan Chand National Stadium"
##
                                               "Narela"
    [7] "Najafgarh"
##
                                               "Okhla Phase-2"
   [9] "Nehru Nagar"
##
  [11] "Patparganj"
                                               "Rohini"
## [13] "Sonia Vihar"
                                               "Vivek Vihar"
## [15] "Wazirpur"
par(mfrow = c(2,3))
hist(df[df\$siteCode==1420,]\$PM2.5, probability = TRUE, main = "", xlab = "PM2.5", ylab = "")
hist(df[df\siteCode==1420,]\PM10, probability = TRUE, main = "Ashok Vihar", xlab = "PM10", ylab = "")
hist(df[df\siteCode==1420,]\notin NO2, probability = TRUE, main = "", xlab = "NO2", ylab = "")
hist(df[df\$siteCode==1420,]\$NH3, probability = TRUE, main = "", xlab = "NH3", ylab = "")
hist(df[df$siteCode==1420,]$S02, probability = TRUE, main = "", xlab = "S02", ylab = "")
hist(df[df\siteCode==1420,]\subseteq0zone, probability = TRUE, main = "", xlab = "Ozone", ylab = "")
```



```
par(mar=c(2,2,2,2))
par(mfrow=c(5,3))
for (i in unique(df$siteName)) {
   plot(df[df$siteName==i,]$Date, df[df$siteName==i,]$PM2.5, type = "1",
   main = i, xlab = "", ylab = "")
}
```


Figure: The above graph shows the time series plot of PM2.5 parameter for all 15 stations in the data.

```
par(mar=c(2,2,2,2))
par(mfrow=c(5,3))
for (i in unique(df$siteName)) {
   plot(df[df$siteName==i,]$Date, df[df$siteName==i,]$PM2.5, type = "1",
   main = i, xlab = "", ylab = "PM2.5")
}
```


Results

Conclusion