Исследование методов обнаружения вторжений в компьютерные системы путем имитационного моделирования

Неплохов Алексей Андреевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Кривулин Н.К. Рецензент: к.ф.-м.н., доц. Христинич В.Б.

Санкт-Петербург 2007г.

Введение

- Данная работа посвящена теме компьютерной безопасности.
- Повсеместное внедрение компьютерных систем и объединение их в сети делают проблему обеспечения безопасности очень актуальной.
- Создание эффективного средства обнаружения вторжений — достаточно сложная задача по целому ряду причин:
 - сложные и разнообразные компоненты изучаемых систем;
 - широкая география элементов сетей, большое их количество;
 - малоизученность проблемы в связи с относительно недавним возникновением последней.

Основные подходы к обнаружению вторжений

 Средства анализа сценариев. Сравнивают сетевую активность и поведение отдельных элементов системы с фиксированной базой данных сценариев.

Достоинства: высокая скорость работы,

малое число ложных срабатываний.

Недостатки: необходимость обновления,

необнаружение новых типов атак.

 Методы обнаружения аномалий. Оперируют статистическими данными по сетевой активности.
Выявляют отклонения от нормального поведения.

Достоинства: невысокая потребность в обновлениях,

широкий спектр применений

Недостатки: сложность создания и развертывания,

необходимость анализа результатов.

Основные подходы к обнаружению вторжений

 Средства анализа сценариев. Сравнивают сетевую активность и поведение отдельных элементов системы с фиксированной базой данных сценариев.

Достоинства: высокая скорость работы,

малое число ложных срабатываний.

Недостатки: необходимость обновления,

необнаружение новых типов атак.

 Методы обнаружения аномалий. Оперируют статистическими данными по сетевой активности.
Выявляют отклонения от нормального поведения.

Достоинства: невысокая потребность в обновлениях,

широкий спектр применений.

Недостатки: сложность создания и развертывания,

необходимость анализа результатов.

Ограничения в контексте данной работы

В данной работе был рассмотрен определенный класс вторжений: атака на отказ в обслуживании.

Отличительные особенности:

- в основе этого типа атак лежат различные методы захвата системных ресурсов жертвы;
- цель атаки прекращение нормального функционирования системы вплоть до выведения ее из строя.

Причина выбора этого типа атак — популярность, как следствие простоты их реализации и высокой эффективности. Сыграла свою роль и доступность данных, необходимых для анализа.

Ограничения в контексте данной работы. Цель работы.

Отличительные особенности протокола TCP/IP:

- любой элемент сети имеет IP адрес;
- соединение между элементами производится посредством порта;
- обмен данными между элементами сети происходит пакетами, в заголовке каждого из которых указан адрес, порт отправителя и получателя.

Основная цель работы: изучение методов обнаружения аномалий в сетевой активности и сравнение их эффективности.

Первый метод: оценка разветвленности

- Поток последовательность пакетов с одинаковыми адресами отправителя и адресами получателя в заголовке.
- Разветвленность источника параметр элемента сети, напрямую зависящий от количества исходящих потоков.
- Супер-источник элемент сети, генерирующий большое количество исходящих потоков.
- Результатом работы метода на основе анализа разветвленности источника является таблица.
- Каждая строка таблицы содержит адрес источника и оценку его разветвленности.
- Данные в таблице анализируются на предмет поиска источника со значительно превышающей среднее значение степенью разветвленности.

Первый метод: оценка разветвленности

- Поток последовательность пакетов с одинаковыми адресами отправителя и адресами получателя в заголовке.
- Разветвленность источника параметр элемента сети, напрямую зависящий от количества исходящих потоков.
- Супер-источник элемент сети, генерирующий большое количество исходящих потоков.
- Результатом работы метода на основе анализа разветвленности источника является таблица.
- Каждая строка таблицы содержит адрес источника и оценку его разветвленности.
- Данные в таблице анализируются на предмет поиска источника со значительно превышающей среднее значение степенью разветвленности.

Первый метод: оценка разветвленности. Алгоритм.

- **1** p вероятность выбора пакета из потока.
- $oldsymbol{2} \ r = h(< pkt.src, pkt.dst>)$ р.р. на интервале $[1,\ldots,w].$
- $oldsymbol{3}$ Если G[r]=1, то поток с соответствующей меткой обрабатывался ранее.
- $oldsymbol{G}$ Если G[r]=0, то $ilde{N_s}:= ilde{N_s}+rac{w}{u}$, G[r]:=1.
- ullet Для уменьшения погрешности введем u_{min} . Как только окажется, что $u < u_{min}$, запускаем новый период наблюдений.
- **6** Итоговая оценка разветвленности получается масштабированием $\frac{1}{p}$:

$$\tilde{F}_s = \frac{1}{p}\tilde{N}_s.$$

Второй метод: наблюдение за IP адресами источников

Определим типы активности:

- нормальное поведение,
- пиковая активность,
- атака на отказ в обслуживании.

Проблема: учет числа пакетов не позволяет различать

пиковую активность и вторжение.

Решение: более адекватные результаты дает

наблюдение за количеством новых адресов

отправителей в единицу времени.

Второй метод: наблюдение за IP адресами источников

Второй метод: наблюдение за IP адресами источников

- X_n доля ранее не встречавшихся источников за очередной промежуток времени Δ_n .
- y_n накапливает значения X_n , значительно превышающие средние при нормальных условиях.

Второй метод. Алгоритм.

- f 0 Весь период наблюдений разбиваем на интервалы $\Delta_n.$
- ② $X_n=rac{| au_n- au_n\cap\zeta_n|}{ au_n}$, где $E(X_n)=lpha<<1$ при нормальных условиях.
- $3 Z_n = X_n \beta.$
- $y_n = (y_{n-1} + Z_n)^+, \quad y_0 = 0.$
- $\mathbf{0} \ d_N(y_n) = 1$ означает вторжение на Δ_n .

Созданные программные средства

Модули программного комплекса.

- Эмулятор атаки: создает сетевую активность, характерную для атак на отказ в обслуживании.
- Конвертор: преобразовывает журнал сетевой активности к виду, необходимому для дальнейшей обработки.
- Подготовка данных: отбирает из всех пакетов только те, что предназначены "жертве", хеширует данные.
- Реализация метода на основе анализа разветвленности.
- Реализация метода наблюдения за адресами источников.

Взаимодействие элементов программного комплекса

Условия проведения экспериментов

Основные компоненты локальной вычислительной сети (ЛВС):

Условия проведения экспериметнов

Основные типы рассматриваемой активности:

Таблица с результатами эспериментов

Тип	Время	Время сигнала	Время сигнала
активности	начала атаки	первого метода	второго метода
"Атака 1"	129	не опред.	не опред.
"Атака 1"	400	не опред.	не опред.
"Атака 1"	797	814-817(вер.)	не опред.
"Атака 2"	553	528-530(лож.)	555-570(вер.)
		595-598(вер.)	и далее
"Атака 2"	682	682 (вер.)	555-570(вер.)
"Атака 3"	287	289-292(вер.)	315-330(вер.)
"Норм.1"	нет атаки	не опред.	не опред.
"Пиковая"	нет атаки	не опред.	не опред.
"Исключ."	нет атаки	не опред.	15-30(лож.)
"Норм.2"	нет атаки	не опред.	не опред.

Результаты. Выводы.

Проведенная работа включала в себя:

- изучение предметной области;
- исследование некоторых из методов обнаружения вторжения;
- получение алгоритмов и написание программного комплекса;
- проведение серии экспериментов и сравнение эффективности методов.

Были сделаны выводы:

- исследованные методы эффективно распознают угрозу;
- эффективность второго метода оказалась незначительно выше чем у первого;
- первый метод показал более адекватные результаты в неоднозначных ситуациях при слабой активности.