Exemplu subject:

1. Fie vectorii $a=[2\ 2]^T, b=[-1\ -1]^T$ și funcția $f:\mathbb{R}^2\to\mathbb{R}$ definită de

$$f(x) = \log\left(e^{a^T x} + e^{b^T x}\right).$$

- a. Este funcția f convexă ?
- b. Determinați punctele de optim și natura lor corespunzătoare funcției f?
- 2. Fie funcția $f:\mathbb{R}^2 \to \mathbb{R}$ definită de

$$f(x) = x_1^4 + x_1 x_2 + (1 + x_2)^2.$$

- a. Calculați prima iterație z_1 a metodei gradient cu pas constant $\alpha=0.1$ pornind din $z_0=[11]^T$.
- b. Iterația z_1 de la punctul a) face o descreștere mai mare decât prima iterație a metodei Newton cu pas $\alpha=1$?
- **3.** Fie matricea: $A = [1 \ 2 \ 3; \ -1 \ 2 \ -1]$. Pentru problema de optimizare constrânsă:

$$\min_{x \in \mathbb{R}^3} \ 3x_1^2 + x_2^2 + 2x_3^2 - x_1x_2 + 2(x_1 + x_2 + x_3)$$
 s.l. $||Ax||_{\infty} \le 1$.

- a. Puneți problema în forma standard QP și determinați problema duală
- b. Determinați punctele KKT și natura acestora