Abitur 1976 Mathematik LK Infinitesimalrechnung I

Gegeben ist die Schar von Funktionen $f_k: x \mapsto f_k(x) = \frac{k e^x}{k - e^x}, k \in \mathbb{R}$ und $k \neq 0$ mit jeweils maximalem Definitionsbereich D_k .

Teilaufgabe 1a (3 BE)

Bestimmen Sie D_k mit einer Fallunterscheidung bezüglich k.

Teilaufgabe 1b (5 BE)

Wie verhält sich $f_k(x)$, wenn x gegen die Grenzen von D_k strebt?

Teilaufgabe 1c (10 BE)

Berechnen Sie, soweit vorhanden, Achsenschnittpunkte, Extrem- und Wendepunkte der den Funktionen f_k zugeordneten Graphen.

[Zur Kontrolle:
$$f'_k(x) = \frac{k^2 e^x}{(k - e^x)^2}$$
]

Teilaufgabe 1d (4 BE)

Geben Sie den Wertebereich W_k von f_k an.

Teilaufgabe 1e (4 BE)

Skizzieren Sie die zu f_2 und f_{-2} gehörigen Graphen unter Berücksichtigung der gewonnenen Ergebnisse (Querformat; Ursprung in Blattmitte; Längeneinheit 2cm).

Für jedes $k \neq 1$ ist eine Integralfunktion F_k festgelegt durch $x \mapsto F_k(x) = \int_0^x f_k(t) dt$ mit maximalem Definitionsbereich B_k .

Teilaufgabe 2a (5 BE)

Bestimmen Sie B_k , wobei zwischen k < 0, 0 < k < 1 und k > 1 zu unterscheiden ist.

Teilaufgabe 2b (6 BE)

Geben Sie nun eine integralfreie Darstellung von $F_k(x)$ an.

Teilaufgabe 2c (5 BE)

Für welche Werte von k existiert $\lim_{x\to -\infty} F_k(x)$? Wie lässt sich in diesen Fällen der Grenzwert geometrisch deuten?

Teilaufgabe 3a (6 BE)

Warum besitzt jede Funktion f_k eine Umkehrfunktion g_k ? Geben Sie jetzt die Gleichung von g_k in der Form $y = g_k(x)$ an. Welchen Definitionsbereich hat g_k ?

Teilaufgabe 3b (2 BE)

Tragen Sie die Graphen von g_2 und g_{-2} in das Koordinatensystem von 1e) ein.

Abitur 1976 Mathematik LK Infinitesimalrechnung II

Gegeben ist die Funktion $f: x \mapsto f(x) = \arcsin(2x - 1)$ mit maximalem Definitionsbereich D_f .

Teilaufgabe 1a (2 BE)

Bestimmen Sie D_f und geben Sie den Wertevorrat W_f an.

Teilaufgabe 1b (6 BE)

Zeigen Sie, dass für alle $|d|<\frac{1}{2}$ folgende Beziehung gilt:

$$f\left(\frac{1}{2} - d\right) = -f\left(\frac{1}{2} + d\right)$$

Wie lässt sich diese Aussage für den Graphen G_f der Funktion f deuten?

Teilaufgabe 1c (5 BE)

Berechnen Sie nun die Ableitungsfunktion f' und geben Sie deren Definitionsbereich $D_{f'}$ an.

[Teilergebnis:
$$f'(x) = \frac{1}{\sqrt{x(1-x)}}$$
]

Untersuchen Sie das Verhalten von f' an den Grenzen von $D_{f'}$.

Teilaufgabe 1d (3 BE)

Skizzieren Sie den Graphen G_f unter Verwendung der gewonnenen Ergebnisse in ein Koordinatensystem (Hochformat; Längeneinheit 4 cm; $\pi \approx 3$).

Teilaufgabe 1e (4 BE)

Für welche
$$x \in D_{f'}$$
 gilt: $f'(x) < \frac{4}{3} \cdot \sqrt{3}$?

Teilaufgabe 2 (6 BE)

Zeigen Sie, dass die Funktion f umkehrbar ist und berechnen Sie dann die Gleichung der Umkehrfunktion g in der Form y = g(x). Geben Sie den Definitionsbereich G_g an und skizzieren Sie den Graphen G_g in das schon angelegte Koordinatensystem.

Teilaufgabe 3 (5 BE)

Eine zur Funktion f gehörende Integralfunktion J hat die Gleichung $J(x) = \int_{0}^{x} f(t) dt$.

Wie lautet deren maximaler Definitionsbereich D_J ?

Entscheiden Sie, ohne das Integral zu berechnen, ob die Funktion J Nullstellen bzw. Extrema besitzt; geben Sie, jeweils mit kurzer Begründung, die entsprechenden Stellen von D_J an.

Zuletzt sei noch die Funktion $h: x \mapsto h(x) = 2 \cdot \arcsin(\sqrt{x})$ mit $D_h = \{x | 0 \le x \le 1\}$ zur Funktion f in Vergleich gesetzt.

Teilaufgabe 4a (4 BE)

Weisen Sie nach, dass zwischen den Funktionen h und f folgender Zusammenhang besteht:

$$h(x) = f(x) + \frac{\pi}{2}$$
, $x \in D_h$

Tragen Sie den Graphen G_h als dritte Kurve in die Zeichnung ein.

Teilaufgabe 4b (5 BE)

Bestimmen Sie den Wert des Integrals $\int_{0}^{1} 2 \cdot \arcsin(\sqrt{x}) dx$.

(Die Berechnung lässt sich durch Verwendung früherer Ergebnisse vereinfachen.)

Teilaufgabe 4c (10 BE)

Berechnen Sie allgemein $\int_0^x 2 \cdot \arcsin\left(\sqrt{t}\right)$ dt unter Verwendung der Teilaufgabe 4a.

Abitur 1978 Mathematik LK Infinitesimalrechnung I

Der Graph G_f einer Funktion f besteht aus den Punkten P(x|y) mit $x = \ln t$ und $y = \ln \left(1 + \frac{1}{t}\right)$. Dabei durchläuft der reelle Parameter t den größtmöglichen Bereich B.

Teilaufgabe Teil 1 1a (5 BE)

Geben Sie B an und schließen Sie hieraus unmittelbar auf den Definitionsbereich D_f und den Wertebereich W_f der Funktion f.

Teilaufgabe Teil 1 1b (5 BE)

Geben Sie die Koordinaten der zu $t \in \{1, 2, 3, 4, 5, 6\}$ gehörenden Kurvenpunkte an und tragen Sie diese Punkte in ein Koordinatensystem ein (Längeneinheit 5 cm; Querformat).

Teilaufgabe Teil 1 1c (3 BE)

Stellen Sie nun die Funktionsgleichung y = f(x) auf, zeigen Sie, daß der Graph G_f monoton fällt und untersuchen Sie das Krümmungsverhalten.

[Ergebnis:
$$f(x) = \ln (1 + e^{-x})$$
]

Teilaufgabe Teil 1 1d (8 BE)

Weisen Sie nach, daß die beiden Geraden mit den Gleichungen y=0 und y=-x Asymptoten von G_f sind. Skizzieren Sie nun unter Verwendung aller Ergebnisse den Graphen G_f .

Der Graph G_f und die positiven Halbachsen des Koordinatensystems begrenzen eine sich ins Unendliche erstreckende Fläche F, von der nun untersucht werden soll, ob sie endlichen Inhalt besitzt.

Teilaufgabe Teil 1 2a (12 BE)

Betrachten Sie zunächst jene Teilfläche von F, die zwischen den zu x=0 und $x=\ln n$, $n\in\mathbb{N}$ und $n\neq 1$, gehörenden Ordinaten liegt.

Welches Integral gibt den Inhalt J_n dieser Teilfläche an?

Geben Sie nun für dieses Integral eine Obersumme S_n an, indem Sie im Intervall [0; ln] die Teilungspunkte $\ln 2, \ln 3, \ldots, \ln (n-1)$ einführen und die entsprechenden Flächenteile durch umbeschriebene Rechtecke ersetzen (Zeichnen Sie einige dieser Rechtecke in die Skizze ein!)

Hinweis: Das Ergebnis kann in der Form $S_n = \sum_{k=1}^{n-1} \left(\ln \frac{k+1}{k} \right)^2$ geschrieben werden.

Teilaufgabe Teil 1 2b (7 BE)

Erläutern Sie kurz anhand einer Nebenskizze die folgenden Ungleichungen: $\ln x \le x-1$

Verwenden Sie diese Ungleichung, um die in Teilaufgabe 2a gefundene Obersumme S_n durch $\sum_{k=1}^{n-1} \left(\frac{1}{k}\right)^2$ abzuschätzen.

Teilaufgabe Teil 1 2c (7 BE)

Für x > 1 gilt $\frac{1}{x^2} < \frac{1}{x-1} - \frac{1}{x}$. Begründen Sie diese Beziehung. Vergröbern Sie mit Hilfe dieser Ungleichung die in Teilaufgabe 2b gewonnene Abschätzung

für S_n .

Teilaufgabe Teil 1 2d (3 BE)

Zeigen Sie nun mehr, daß die oben beschriebene Fläche F einen endlichen Inhalt J besitzt, für den die Abschätzung J < 2 gilt.

Gegeben ist die in \mathbb{R} definierte Schar der Funktionen

$$f_k: x \to f_k(x) = \left\{ \begin{array}{ccc} x^{-k} \cdot e^{-\frac{1}{|x|}} & & \text{für } x \neq 0 \\ 0 & & \text{für } x = 0 \end{array} \right. \quad \text{mit } k \in \mathbb{N}_0$$

Jede dieser Funktionen ist auch bei x=0 stetig (Nachweis nicht verlangt!).

Teilaufgabe Teil 2 1a (3 BE)

Beweisen Sie, daß die zugehörigen Graphen G_k für gerades k achsensymetrisch und für ungerades k punktsymetrisch sind.

Teilaufgabe Teil 2 1b (4 BE)

Berechnen Sie $f'_k(0)$ unmittelbar aus der Definition der Ableitung.

Teilaufgabe Teil 2 1c (10 BE)

Zeigen Sie, daß für x > 0 gilt: $f'_k(x) = \frac{e^{-\frac{1}{x}}}{x^{k+2}} \cdot (1 - kx)$ und geben Sie ohne Benützung der 2. Ableitung die Extrempunkte von G_k in \mathbb{R} an.

Teilaufgabe Teil 2 1d (1 BE)

Weisen Sie nach, daß alle Graphen G_k für x = 1 einen gemeinsamen Punkt haben.

Teilaufgabe Teil 2 1e (4 BE)

Berechnen Sie für die Funktionen f_0 und f_2 die Grenzwerte für $x \to \infty$ sowie die Ableitungswerte an der Stelle x = 1.

Teilaufgabe Teil 2 1f (11 BE)

Skizzieren Sie die Graphen G_0 und G_2 unter Berücksichtigung der bisher gewonnenen Ergebnisse (Längeneinheit 5 cm).

Nun wird die ebenfalls in \mathbb{R} definierte Integralfunktion $F: x \to F(x) = \int_0^x f_2(t) dt$ betrachtet.

Teilaufgabe Teil 2 2a (4 BE)

Welches Symmetrieverhalten zeigt der zugehörige Graph G_F ? Begründen Sie kurz Ihre Antwort.

Teilaufgabe Teil 2 2b (7 BE)

Geben Sie für x > 0 mit Hilfe der Substitutionsmethode eine integralfreie Darstellung von F(x) an. Begründen Sie die Zulässigkeit des Verfahrens.

Teilaufgabe Teil 2 2c (3 BE)

Ist F mit F_0 identisch? Wie lautet der Funktionsterm F(x) für x < 0?

Teilaufgabe Teil 2 2d (3 BE)

Welchen Wert hat $\lim_{x\to\infty} F(x)$? Bestimmen Sie jene Stelle x_0 , für die gilt: $F(x_0) = \frac{1}{2}$, und geben Sie eine geometrische Deutung dieses Ergebnisses.

Leistungskurs Mathematik: Abiturprüfung 1979 Infinitesimalrechnung I

Gegeben ist die in R definierte Funktion $f: x \to f(x) = \frac{2}{1 + e^x}$

1. a) Berechnen Sie f'(x).

Begründen Sie die strenge Monotonie von f und untersuchen Sie das Verhalten von f und f' für $x \to \pm \infty$.

5

5

7

4

8

5

3

4

- b) Zeigen Sie: Der Graph der Funktion φ mit dem Definitionsbereich R ist genau dann symmetrisch zum Punkt (0|1), wenn für jedes $x \in R$ gilt: $\varphi(x) + \varphi(-x) = 2$. Weisen Sie nach, daß die Funktion f dieser Bedingung genügt.
- c) Berechnen Sie f'(0) und zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse den Graphen G_f von f im Bereich $|x| \le 4$ (Querformat; Längeneinheit 2 cm).
- 2. a) Weisen Sie nach, dass in R folgende Ungleichung gilt: $f(x) < 2 \cdot e^{-x}$. Folgern Sie daraus, daß die im 1. Quadranten liegende, von G_f und den Koordinatenachsen begrenzte Fläche einen endlichen Inhalt J hat.
 - Welche Abschätzung ergibt sich hierbei für *J*?

 b) Verifizieren Sie die Umformung $f(x) = 2 \frac{2e^x}{1 + e^x}$ und berechnen Sie damit den exakten
- 3. Nun werde die Menge der Stammfunktionen zu der in \mathbb{R} definierten Funktion $h: x \to h(x) = f(x) 1$ betrachtet.

Wert des in Teilaufgabe 2a) genannten Flächeninhalts J.

a) Zeigen Sie allein unter Berufung auf die Eigenschaften von h, daß der Graph der Funktion $H_0: x \to H_0(x) = \int\limits_0^x h(t)dt$

symmetrisch zur y-Achse ist und genau ein Maximum hat. Was folgt daraus für den Graphen einer beliebigen Stammfunktion von *h*?

b) Berechnen Sie nun die Gleichung derjenigen Stammfunktion H, deren Graph den Punkt (0|2) enthält.

[Ergebnis: $H(x) = x - 2\ln(1 + e^x) + 2 + \ln 4$]

c) Begründen Sie, daß die Gerade y = x + 2 + ln 4 für x → -∞ Asymptote des Graphen von H ist.
Wie lautet auf Grund der Symmetrie die Gleichung der Asymptote für x → +∞?
Skizzieren Sie nun den Graphen G_H von H in das bereits angelegte Koordinatensystem.

- 4. Die Graphen G_f und G_H werden von einer Geraden $x = k \ (k \in \mathbb{R})$ in den Punkten P bzw. Q geschnitten.
 - a) Für welchen Wert k_0 sind die Tangenten in P und Q zueinander parallel? (Hinweis für die Berechnung: Substitution $e^k = u$.)
 - b) Die Zeichnung läßt erkennen, daß es für die Streckenlänge \overline{PQ} ein relatives Maximum gibt (Nachweis nicht verlangt). Zeigen Sie, daß dieses Maximum nur an der Stelle $x = k_0$ auftreten kann.

3

Abitur 1985 Mathematik LK Infinitesimalrechnung I

Gegeben ist die in R definierte Funktion

$$f: x \mapsto (x-1)e^{-|x|}.$$

- 1. (a) Geben Sie die Nullstelle und das Verhalten von f für $|x| \to \infty$ an. (3 BE)
 - (b) Untersuchen Sie f an der Stelle x = 0 auf Stetigkeit und Differenzierbarkeit. (7 BE)
 - (c) Bestimmen Sie Koordinaten und Art der Extrempunkte (4 BE)
 - (d) Berechnen Sie f(-1) und f(-2), und skizzieren Sie den Graphen G_f unter Verwendung der bisherigen Ergebnisse in ein Koordinatensystem (Längeneinheit 3 cm, Hochformat, Ursprung in Blattmitte). (6 BE)
 - (e) Berechnen Sie den Inhalt des Flächenstücks, das der Graph G_f mit den Koordinatenachsen im 4. Quadranten einschließt. (4 BE)
- 2. Nun wird die Funktion $g: x \mapsto \ln(f(x))$ mit maximaler Definitionsmenge \mathbb{D}_g betrachtet.
 - (a) Geben Sie \mathbb{D}_g an, und untersuchen Sie das Verhalten von g an den Grenzen von \mathbb{D}_g . (3 BE)
 - (b) Bestimmen Sie Koordinaten und Art des Extrempunktes, und geben Sie die Wertemenge \mathbb{D}_g an. (4 BE)
 - (c) Skizzieren Sie den Graphen G_g in das Koordinatensystem von Teilaufgabe 1d. (3 BE)
- 3. Die Integralfunktion $G: x \mapsto \int\limits_2^x g(t) \, \mathrm{d}t$ ist für x>1 definiert.
 - (a) Zeigen Sie, dass G genau eine Nullstelle und der Graph von G genau einen Wendepunkt hat. (5 BE)
 - (b) Geben Sie eine integralfreie Darstellung von G(x) an. Zeigen Sie, dass $\lim_{x\to 1} G(x) = \frac{5}{2} \text{ ist. } (\lim_{z\to 0} (z \ln z) = 0 \text{ kann verwendet werden.}) \tag{7 BE}$
 - (c) Skizzieren Sie unter Verwendung der gewonnenen Ergebnisse den Graphen von G in das vorhandene Koordinatensystem; zeichnen Sie auch die Wendetangente ein. (4 BE)

Abitur 1985 Mathematik LK Infinitesimalrechnung II

Gegeben ist die in R\{2} definierte Funktion

$$f: x \mapsto \frac{1-x^2}{2(2-x)}.$$

- (a) Bestimmen Sie die Schnittpunkte des Graphen G_f mit den Koordinatenachsen, und untersuchen Sie das Verhalten von f in der Umgebung von x = 2. (4 BE)
- (b) Zeigen Sie, dass für $x \neq 2$ gilt:

$$\frac{1-x^2}{2(2-x)} = \frac{1}{2}x + 1 - \frac{3}{2(2-x)}.$$

Begründen Sie, dass G_f für $|x| \to \infty$ eine Asymptote hat. Für welche Werte von x verläuft G_f oberhalb dieser Asymptote? (5 BE)

- (c) Zeigen Sie für h∈ R⁺: f(2+h) 2 = 2 f(2-h).
 Deuten Sie diese Beziehung geometrisch.
 (6 BE)
- (d) Weisen Sie nach, dass die Kurvenpunkte mit horizontaler Tangente auf der Winkelhalbierenden des 1. und 3. Quadranten liegen. (5 BE)
- (e) Skizzieren Sie G_f unter Verwendung der erhaltenen Ergebnisse (Längeneinheit 2 cm, Querformat, Ursprung 10 cm vom linken und 7 cm vom unteren Blattrand entfernt). (5 BE)
- (f) Berechnen Sie das bestimmte Integral $\int_{-1}^{1} \frac{3}{2(2-x)} dx$.

Kennzeichnen Sie in der Zeichnung von Teilaufgabe 1e das Flächenstück, dessen Inhalt damit berechnet wurde. (6 BE)

2. Gegeben ist weiter die Funktion $g :\mapsto \arccos \frac{3}{2(2-x)}$.

- (a) Zeigen Sie, dass die Funktion g im Bereich $\mathbb{D}_g = \mathbb{R} \setminus]\frac{1}{2}; \frac{7}{2}[$ definiert ist. (4 BE)
- (b) Untersuchen Sie das Verhalten von g an den Grenzen von D_g . (3 BE)
- (c) Bestätigen Sie: $g'(x) = \frac{-3}{|2-x|\cdot\sqrt{4(2-x)^2-9}}$.

Untersuchen Sie das Verhalten von g' an den Grenzen $x=\frac{1}{2}$ und $x=\frac{7}{2}$. Warum kann aus g'(x)<0 in $\mathbb{D}_{g'}$ nicht auf die Monotonie von g in $\mathbb{D}_{g'}$ geschlossen werden? (8 BE)

(d) Skizzieren Sie unter Verwendung der erhaltenen Ergebnisse den Graphen von g in ein neues Koordinatensystem (Längeneinheit 1 cm). (4 BE)

Abitur 1986 Mathematik LK Infinitesimalrechnung I

Gegeben ist die Schar von Funktionen

$$f_a: x \mapsto 4x\mathrm{e}^{-ax^2}$$

mit $a \in \mathbb{R}^+$ und $\mathbb{D}_{f_a} = \mathbb{R}$.

- 1. (a) Bestimmen Sie die gemeinsame Nullstelle der Funktionen f_a und die Symmetrieeigenschaft ihrer Graphen G_a . (4 BE)
 - (b) Berechnen Sie die Koordinaten der Hoch-, Tief- und Wendepunkte von G_a.

[Zur Kontrolle: $f_a''(x) = 8ax(2ax^2 - 3)e^{-ax^2}$] (12 BE)

- (c) Die Extrempunkte aller Graphen G_♠ liegen auf einer Kurve k. Geben Sie eine Gleichung von k an. (2 BE)
- (d) Ermitteln Sie die Gleichung der Tangente in einem beliebigen Punkt P(t|f_a(t)) von G_a. (4 BE)
- 2. Für die weiteren Aufgaben ist $a = \frac{1}{6}$.
 - (a) W sei der im 1. Quadranten liegende Wendepunkt von $G_{\frac{1}{6}}$. Zeigen Sie, dass die Wendetangente w in W die x-Achse im Punkt S(4,5|0) schneidet. (4 BE)
 - (b) Zeichnen Sie in einem Koordinatensystem unter Verwendung der gewonnenen Ergebnisse den Graphen $G_{\frac{1}{6}}$ im Bereich $-6 \le x \le 6$ ein (Längeneinheit 1 cm). Tragen Sie auch die Kurve k und die Wendetangente w ein. (6 BE)
- 3. (a) Bestimmen Sie mit Hilfe der Substitutionsmethode eine Stammfunktion F von $f_{\frac{1}{k}}.$

[Zur Kontrolle: z. B. $F(x) = -12e^{-\frac{1}{9}x^2}$] (4 BE)

- (b) Berechnen Sie den Inhalt der sich ins Unendliche erstreckenden Fläche, die im 1. Quadranten vom Graphen $G_{\frac{1}{8}}$ und der x-Achse begrenzt wird. (2 BE)
- 4. Vom Punkt S aus (Teilaufgabe 2a) gibt es neben der Geraden w noch eie weitere Tangente an den Graphen $G_{\frac{1}{2}}$. Zeigen Sie, dass die Abszisse des Berührpunktes dieser Tangente der Gleichung $2x^3 9x^2 + 27 = 0$ genügt. (Beachten Sie dabei Teilaufgabe 1d). Bestimmen Sie aus dieser Gleichung die Abszisse des Berührpunkts. Berücksichtigen Sie dabei, dass bereits eine Lösung der Gleichung bekannt ist.

(12 BE)

Abitur 1986 Mathematik LK Infinitesimalrechnung II

Gegeben ist die Funktion f mit

$$f: x \mapsto \arctan \frac{x^2-1}{2\cdot |x|}$$

und $\mathbf{D}_f = \mathbf{R} \setminus \{0\}$.

- (a) Untersuchen Sie den Graphen G_f auf Symmetrie. Geben Sie die Nullstellen von f an.
 - (b) Bestimmen Sie das Verhalten von f(x) für |x| → ∞. Weisen Sie nach, dass die Definitionslücke von f stetig behebbar ist. (4 BE)
 - (c) Zeigen Sie, dass für $x \in \mathbb{R}^+$ gilt: $f'(x) = \frac{2}{1+x^2}$. Begründen Sie: Für $x \in \mathbb{R}^+$ gilt: $f(x) = -\frac{\pi}{2} + 2 \arctan x$. (6 BE)
 - (d) Zeichnen Sie den Graphen G_f unter Verwendung aller bisherigen Ergebnisse sowie von $\lim_{x \to 0} f'(x)$ (Längenheinheit 2 cm). (5 BE)
- 2. Betrachten Sie nun die stetige Fortsetzung f^* von f

$$f^*: x \mapsto egin{cases} f(x) & ext{für} & x
eq 0 \ -rac{\pi}{2} & ext{für} & x = 0 \end{cases}$$

sowie die Integralfunktion $F: x \mapsto \int_0^x f^*(t) dt$; $D_F = R$. Die Teilaufgaben abis e sollen ohne Berechnung des Integrals gelöst werden.

- (a) Begründen Sie, dass der Graph G_F punktsymmetrisch bezüglich des Koordinatenursprungs ist. (2 BE)
- (b) Bestimmen Sie die Extremstellen von F und die Art dieser Extrema. (4 BE)
- (c) Begründen Sie, dass für alle $x \in [2; \infty[$ gilt: $f^*(x) \ge f^*(2) > 0$. Zeigen Sie damit, dass $\lim_{x \to \infty} F(x) = \infty$. (6 BE)
- (d) Begründen Sie, dass F drei Nullstellen besitzt. (5 BE)
- (e) Begründen Sie, dass der Graph G_F in x = 0 einen Wendepunkt besitzt. (3 BE)
- (f) Stellen Sie nun F(x) für $x \in \mathbb{R}_0^+$ integralfrei dar. [Ergebnis: $F(x) = 2x \cdot \arctan x - \ln(1 + x^2) - \frac{\pi}{2} \cdot x$] (5 BE)
- (g) Zeichnen Sie den Graphen G_F unter Verwendung aller bisherigen Ergebnisse. Berechnen Sie dazu noch F(1), F(2) und F(3) (auf 2 Stellen nach dem Komma gerundet). Tragen Sie auch die Wendetangente ein. (8 BE)

Abitur 1987 Mathematik LK Infinitesimalrechnung I

Gegeben ist die Schar der auf R definierten Funktionen

$$f_a: x \mapsto x^2 e^{-|x-a|}$$

mit $0 \le a \le 1$. Der Graph der Funktion f_a wird mit G_a bezeichnet.

- 1. (a) Geben Sie $f_a(x)$ abschnittsweise ohne Betragszeichen an. Bestimmen Sie die Nullstellen von f_a und untersuchen Sie das Verhalten von $f_a(x)$ für $x \to \pm \infty$. (4 BE)
 - (b) Es sei $0 \le a_1 < a_2 \le 1$. Untersuchen Sie, ob und an welchen Stellen die Graphen G_{a_1} und G_{a_2} gemeinsame Punkte haben. Untersuchen Sie dazu die drei Bereiche $x \le a_1$, $a_1 < x < a_2$ und $a_2 \le x$. (9 BE)
- 2. (a) Ermitteln Sie $f'_a(x)$ für $x \neq a$, und untersuchen Sie das Verhalten von $f'_a(x)$ bei Annäherung an die Stelle x = a. Zeigen Sie, dass f_0 die einzige Funktion der Schar ist, die in ganz $\mathbb R$ differenzierbar ist. (7 BE)
 - (b) Berechnen Sie die Stellen, an denen der Graph G_a eine waagrechte Tangente hat. (5 BE)
 - (c) Berechnen Sie für die beiden Funktionen f_0 und f_1 die Funktionswerte an den Stellen -2, 0, 1, 2 (auf zwei Stellen nach dem Komma gerundet). Zeichnen Sie die Graphen G_0 und G_1 mit verschiedenen Farben unter Berücksichtigung aller Ergebnisse der vorausgegangenen Teilaufgaben (Querformat; Ursprung 5 cm unterhalb der Blattmitte; Längeneinheit 5 cm). (12 BE)
- 3. (a) Eine Stammfunktion F_a von f_a im Bereich x < a hat als Funktionsterm $F_a(x) = (c_0 + c_1 x + c_2 x^2) \cdot e^{x-a}$ mit geeigneten Konstanten c_0, c_1, c_2 . Bestimmen Sie diese Konstanten. (9 BE)
 - (b) Berechnen Sie den Inhalt J(a) der Fläche im zweiten Quadranten, die sich zwischen G_a und der x-Achse ins Unendliche erstreckt. (4 BE)

Abitur 1987 Mathematik LK Infinitesimalrechnung II

Gegeben ist die auf R. definierte Funktionen

$$f: x \mapsto \arccos \frac{1}{\sqrt{|x|+1}}.$$

Der Graph von f wird mit G_f bezeichnet.

- 1. (a) Untersuchen Sie f auf Symmetrie und Nullstellen. Wie verhält sich f(x) für $|x| \to \infty$? (3 BE)
 - (b) Zeigen Sie, dass für x > 0 gilt: $f'(x) = \frac{1}{2\sqrt{x}(x+1)}$. Geben Sie f'(x) für x > 0 an, und untersuchen Sie, sie sich f'(x) und der Graph G_f in Der Umgebung von x = 0 verhalten. (7 BE)
 - (c) Bestimmen Sie die Monotoniebereiche und das Extremum von f. (2 BE)
 - (d) Berechnen Sie die Funktionswerte an den Stellen ¹/₂, 1, 2 und 3 (auf zwei Stellen nach dem Komma gerundet). Zeichnen Sie den Graphen G_f unter Verwendung aller bisherigen Ergebnisse (Längeneinheit 2 cm, Ursprung in Blattmitte).
 (6 BE)
- Die Einschränkung der Funktion f auf die Definitionsmenge R₀⁺ hat eine Umkehrfunktion g.
 - (a) Bestimmen Sie die Funktionsgleichung von g in der Form x = g(y), und geben Sie die Definitionsmenge D_g und die Wertemenge W_g an. (4 BE)
 - (b) Zeigen Sie, dass für $x \in \mathbb{R}$ gilt: $f(x) = \arctan \sqrt{|x|}$. (4 BE)
- 3. Gegeben ist die Funktion $F:x\mapsto\int\limits_0^x\arctan\sqrt{|t|}~\mathrm{d}t$ mit $\mathbb{D}_F=\mathbb{R}.$
 - (a) Begründen Sie ohne Berechnung des Integrals: F besitzt genau eine Nullstelle, und der Graph G_F von F hat dort einen Terassenpunkt. (3 BE)
 - (b) Stellen Sie F(x) für x ≥ 0 integralfrei dar. Beginnen Sie dazu mit der Substitution z = √t.
 [Zur Kentrelle: F(x) = (x + 1) ergten √x = √x

[Zur Kontrolle: $F(x) = (x + 1) \cdot \arctan \sqrt{x} - \sqrt{x}$] (9 BE)

(c) Die Graphen der Funktionen

$$g: x \mapsto g(x) = \frac{\pi}{4}x + \frac{\pi}{4} - 1$$
 und $h: x \mapsto h(x) = \frac{\pi}{2}x - 1$

sind Geraden durch den Punkt(1|F(1)) (Nachweis nicht erforderlich). Untersuchen Sie das Monotonieverhalten der Differenzfunktionen $D_1: x\mapsto F(x)-g(x)$ und $D_2: x\mapsto h(x)-F(x)$ im Bereich x>1. (6 BE)

(d) Skizzieren Sie in das angelegte Koordinatensystem den Graphen G_F sowie im Bereich x ≥ 1 die Graphen von g und h unter Verwendung der Ergebnisse der Teilaufgabe 3a und 3c. (6 BE)

L 1. INFINITESIMALRECHNUNG

1.

BE

Gegeben ist die Schar der Funktionen

$$f_a: x \mapsto x^2 - \ln(x^2 + a^2)$$
 mit $a \in \mathbb{R}^+$ und $D = \mathbb{R}$.

5

1. a) Untersuchen Sie die Graphen G_a von f_a auf Symmetrie. Bestimmen Sie das Verhalten der Funktionen f_a für $x \to \pm \infty$.

12

b) Zeigen Sie, daß für die Ableitung gilt: $f_a^i(x) = \frac{2x(x^2+a^2-1)}{x^2+a^2}$.

Untersuchen Sie das Monotonieverhalten der Scharfunktionen in Abhängigkeit von a und bestimmen Sie damit Lage und Art der Extrema. Folgern Sie, daß jede Scharfunktion einen minimalen Funktionswert $\,m_a^{}$ besitzt, und berechnen Sie diesen Wert.

 $\begin{bmatrix} m_a = 1 - a^2 & \text{für } a < 1 \\ \text{Teilergebnis:} & m_a = -2 \ln a & \text{für } a \ge 1 \end{bmatrix}$

6

c) Welche Scharkurven G_a haben mit der x-Achse Punkte gemeinsam, und wie viele derartige Punkte gibt es dann? Begründen Sie Ihre Antwort.

5

d) Weisen Sie nach, daß für $a_1 < a_2$ der Graph G_{a_1} stets oberhalb des Graphen G_{a_2} liegt.

7

e) Zeichnen Sie unter Verwendung der bisherigen Ergebnisse und der Funktionswerte $f_2(1)$, $f_2(2)$, $f_{0,5}(2)$ die Graphen G_2 und $G_{0,5}$ im Intervall $-2 \le x \le 2$ in ein Koordinatensystem mit Längeneinheit 2 cm ein.

8

2. a) Bestimmen Sie unter Verwendung partieller Integration eine Stammfunktion $\mathbf{F_a}$ von $\mathbf{f_a}$.

[Mögliches Ergebnis: $F_a(x) = \frac{1}{3}x^3 + 2x - x \ln(x^2 + a^2) - 2a \arctan_a$]

9

b) Berechnen Sie den Inhalt A des zwischen den Graphen ${\rm G_2}$ und ${\rm G_{0,5}}$ liegenden Flächenstücks.

Hinweis: Unter Verwendung der bekannten Abschätzung 1n z ≤ z - 1 für ż ∈ R+ können Sie zeigen:

 $\lim_{x \to +\infty} x \cdot \ln \frac{x^2 + a_2^2}{x^2 + a_1^2} = 0.$

50

BE

3

8

5

4

4

8

Gegeben ist für a $\in \mathbb{R}$ die Schar von Funktionen $f_a\colon x\mapsto \frac{x^2+ax}{x+1}$ mit maximater Definitionsmenge D. Die zugehörigen Graphen werden mit G_a bezeichnet.

- 1. Wir setzen zunächst voraus, daß a + 1 ist.
 - a) Bestimmen Sie D und in Abhängigkeit von a die Nullstellen von $f_{\tilde{a}}$
 - b) Zeigen Sie, daß in D gilt: $f_a(x) = x + (a-1) \frac{a-1}{x+1}$. Geben Sie die Gleichungen aller Asymptoten von G_a an.
 - c) Berechnen Sie die Ableitung $f_a(x)$.

 Zeigen Sie, daß jeder Graph G_a entweder zwei Stellen oder keine Stell mit horizontaler Tangente besitzt (Fallunterscheidung bezüglich a).
 - d) Skizzieren Sie unter Verwendung der bisherigen Ergebnisse für a=3 den Graphen G_3 im Bereich [-5; 5]. Zeichnen Sie auch die dazugehörige Asymptoten ein (Längeneinheit 1 cm).
- 2. Nun wird für a=1 die Funktion f_{\uparrow} betrachtet. Vereinfachen Sie den Funktionsterm $f_{\uparrow}(x)$, und zeichnen Sie den Graphen G_{\uparrow} in ein neues Koordinatensystem ein.
- 3. Gegeben ist für x > -1 die Funktion F: $x \mapsto \frac{1}{2}x^2 + 2x 2\ln(x+1) + 5$.
 - a) Weisen Sie nach, daß F eine Stammfunktion von f_3 für x > -1 ist.
 - b) Berechnen Sie den Inhalt A(b) der im ersten Quadranten liegenden endlichen Fläche, die von G_3 , der dazugehörigen schrägen Asymptote sowie den Geraden x = 0 und x = b mit b > 0 begrenzt wird (siehe Teilaufgabe 1d).
 - c) Untersuchen Sie das Verhalten von A(b) für b $\rightarrow \infty$.

ı

Gegeben ist die Funktionenschar $f_c: x \mapsto \frac{x^2+c-4}{x+2}, x \in \mathbb{R} \setminus \{-2\}, c \in \mathbb{R}^+.$

- a) Bestimmen Sie die Schnittpunkte der Scharkurven mit den Koordinatenachsen, und geben Sie die Gleichungen der Asymptoten an. Führen Sie, falls nötig, Fallunterscheidungen durch.
 - b) Bestimmen Sie die Extrema der Scharfunktionen f_c , und ermitteln Sie die Ortskurve der Tiefpunkte aller Scharkurven.

Teilergebnis: $f_c(x) = 1 - \frac{c}{(x+2)^2}$

- c) Zeichnen Sie unter Verwendung der gewonnenen Ergebnisse im Bereich -6 ≤ x ≤ 4 die Asymptoten, den Graphen der Funktion f₁ und die Ortskurve der Tiefpunkte (Hochformat, Ursprung des Koordinatensystems in Blattmitte, Längeneinheit 1 cm).
- d) Weisen Sie nach, daß jede Scharkurve/punktsymmetrisch ist.
- 2. Betrachtet wird nun die Funktion F: $x \not \longrightarrow \int_0^x f_1(t) dt$, x > -2.
 - a) Geben Sie, ohne die Integration auszuführen, die Abszissen der Hoch-, Tief- und Wendepunkte des Graphen von F an.
 - b) Untersuchen Sie, ebenfalls ohne Ausführung der Integration, das Monotonieverhalten von F in \mathbb{R}^+ , und begründen Sie, warum F dort genau eine Nullstelle x_n besitzt.

In den Teilaufgaben 2c und 2d sind Rechenergebnisse jeweils auf zwei Stellen nach dem Komma zu runden.

c) Bestimmen Sie eine integralfreie Darstellung von F(x). Berechnen Sie F($-\sqrt{3}$) und F($\sqrt{3}$), und geben Sie den Inhalt A des von der x-Achse und dem Graphen von f_1 eingeschlossenen Flächenstücks an.

[Teilergebnis: $F(x) = \frac{x^2}{2} - 2x + \ln(x+2) - \ln 2$]

- d) Zur genaueren Bestimmung von x_0 (Teilaufgabe 2b) wird nun die Funktion g: $x \mapsto x \sqrt{3}$, $x \in \mathbb{R}$, eingeführt. Zeigen Sie, daß für $x \ge \sqrt{3}$ gilt: $g(x) \ge f_1(x)$.

 Bestimmen Sie die reelle Zahl $a > \sqrt{3}$ so, daß $\int_0^x f_1(t) dt + \int_0^x f(t) dt = 0$ gilt. Entscheiden Sie, ob $x_0 \le a$ oder $x_0 \ge a$ ist. Begründen Sie Ihre Antwort. Berechnen Sie $f(2\sqrt{3})$, und geben Sie dann ohne weitere Rechnung mit Hilfe der gefundenen Ergebnisse ein möglichst kleines Intervall an, in dem x_0 liegt.
- e) Untersuchen Sie das Verhalten von F am linken Rand des Definitionsbereichs und skizzieren Sie den Graphen von F unter Verwendung der gewonnenen Ergebnisse in das Koordinatensystem der Teilaufgabe 1c.

5

7

6

5

3

=

8

50

8

8

5

4

7

5

3

2

3

Gegeben ist die Schar der Funktionen $f_a: x \mapsto \frac{2 \cdot e^x}{a + e^{2x}}$ mit $a \in \mathbb{R}^+$ und $D = \mathbb{R}$; die Graphen werden mit G_a bezeichnet.

- a) Zeigen Sie die Gültigkeit der folgenden Beziehung:
 f_a(ln√a + d) = f_a(ln√a d) mit d∈R.
 Welche geometrische Bedeutung hat diese Beziehung für die Graphen G_a?
 - b) Untersuchen Sie das Verhalten von f_a(x) für x → ± ∞. Geben Sie die Monotoniebereiche sowie Lage und Art des Extrempunktes an. Bestimmen Sie die Ortskurve der Extrempunkte aller Graphen G_a.
 - c) Berechnen Sie die Funktionswerte $f_1(1)$, $f_1(2)$ und $f_{0,25}(0)$. Zeichnen Sie unter Verwendung der bisherigen Ergebnisse die Graphen G_1 , $G_{0,25}$ sowie die Ortskurve der Extrempunkte (Ursprung des Koordinatensystems in Blattmitte; Längeneinheit 2 cm).
- Gegeben ist die Integralfunktion F: x → ∫ f₁(t) dt mit D_F = R; der Graph von F wird mit G_F bezeichnet.
 Die Teilaufgaben 2a, 2b und 2c sind ohne Berechnung des Integrals zu bearbeiten.
 - a) Weisen Sie nach, daß F streng monoton steigt und daß der Graph G_F zum Ursprung symmetrisch ist.
 - b) Zeigen Sie, daß G_r genau einen Wendepunkt W hat, und geben Sie seine Koordinaten an. Ermitteln Sie eine Gleichung der Wendetangente.
 - c) Für b > 0 gilt: F(b) > b f₁(b).
 Begründen Sie diese Aussage anschaulich mit Hilfe einer Flächen-betrachtung. Zeigen Sie, daß sich die Graphen G_F und G₁ im Bereich 0<x<1 genau einmal schneiden.</p>
 - d) Bestimmen Sie mit Hilfe der Substitutionsmethode eine integralfreie Darstellung von F(x). [Zur Kontrolle: F(x) = 2-arctan $e^x - \frac{\pi}{2}$]
 - e) Berechnen Sie den Inhalt der sich beidseitig ins Unendliche erstreckenden Fläche zwischen G₁ und der x-Achse.
 - f) Bestimmen Sie x_0 so, daß $F(x_0) = 1$ ist.
 - g) Skizzieren Sie nun unter Verwendung der erhaltenen Ergebnisse den Graphen $G_{\bf r}$ in das bereits angelegte Koordinatensystem.

9

7

6

3

4

50

L 1. INFINITESIMALRECHNUNG

Ĭ.

Gegeben ist die Funktion f: $x \mapsto \begin{cases} 4 \cdot (1-x) \cdot e^{x-1} & \text{für } x \leq 1 \\ -\frac{4 \cdot \ln x}{x} & \text{für } x > 1 \end{cases}$

Der Graph der Funktion f wird mit G, bezeichnet.

- 1. a) Geben Sie die Nullstelle der Funktion f an, und bestimmen Sie das Verhalten von f(x) für $x \to \pm \infty$.
 - b) Ermitteln Sie die 1. Ableitung von f. Untersuchen Sie insbesondere, ob diese Ableitung auch an der Stelle x = 1 existiert.

Teilergebnis:
$$f': x \mapsto \begin{cases} -4x \cdot e^{x-1} & \text{für } x < 1 \\ 4x^{-2} \cdot (\ln x - 1) & \text{für } x > 1 \end{cases}$$

Berechnen Sie die 2. Ableitung von f für $x \ne 1$, und bestimmen Sie den linksseitigen und den rechtsseitigen Grenzwert der 2. Ableitung an der Stelle x = 1.

- c) Bestimmen Sie Lage und Art der Extrempunkte sowie die Wendepunkte des Graphen G_f . Prüfen Sie, ob für x=1 ein Wendepunkt vorliegt.
- d) Zeichnen Sie den Graphen G_f für $-3 \le x \le 5$ unter Verwendung der gewonnenen Ergebnisse in ein Koordinatensystem (Querformat; Längeneinheit 2 cm). Tragen Sie auch die Tangente bei x = 1 ein.
- 2. Nun wird die Funktion g: $x \mapsto \int_{1}^{x} f(t)dt$ mit $D_g = \mathbb{R}$ betrachtet.
 - a) Zeigen Sie ohne Ausführung der Integration, daß g genau eine Nullstelle hat, und bestimmen Sie die Abszissen der Extrem- und der Wendepunkte sowie die Art der Extrempunkte des Graphen G_g von g. Begründen Sie Ihre Antworten.
 - b) Ermitteln Sie für $x \le 1$ eine integralfreie Darstellung von g(x).
 - c) Geben Sie den Inhalt A des Flächenstücks an, das für $x \le 1$ vom Graphen G_t und der x-Achse begrenzt wird.
 - d) Für $x \ge e$ gilt: $f(x) \le -\frac{4}{x}$. Begründen Sie damit, daß das für $x \ge 1$ vom Graphen G_f und der x-Achse begrenzte Flächenstück keinen endlichen Inhalt hat.

3

3

6

5

5

II.

Gegeben ist die Funktionenschar f_a : $x \mapsto f_a(x) = \arctan\left(1 - \frac{2}{ax}\right)$ mit $a \in \mathbb{R}^+$. Der Graph der Funktion f_a wird mit G_f bezeichnet.

- 1. a) Bestimmen Sie die maximale Definitionsmenge D_{f_a} und die Nullstellen der Scharfunktionen f_a . Untersuchen Sie das Verhalten der Scharfunktionen, wenn x gegen die Grenzen von D_f strebt.
 - b) Bestimmen Sie, soweit vorhanden, die Extrempunkte und die Wendepunkte der Graphen G_f in Abhängigkeit von a . Stellen Sie eine Gleichung für die Schar der Wendetangenten t_a auf.

Zur Kontrolle:
$$f'_a(x) = \frac{a}{a^2 x^2 - 2ax + 2}$$

- c) Untersuchen Sie das Monotonieverhalten der Funktionen f.
- d) Die Tangenten an die Graphen streben bei links- bzw. rechtsseitiger Annäherung an die Definitionslücke bestimmten Grenzlagen zu. Geben Sie die entsprechenden Geradengleichungen an.
- e) Berechnen Sie die Funktionswerte f₅(-2) und f₅(2).
 Zeichnen Sie im Bereich -2 ≤ x ≤ 2 den Graphen G_{f5} unter Verwendung der bisherigen Ergebnisse in ein Koordinatensystem (Querformat; Ursprung des Koordinatensystems in Blattmitte; Längeneinheit 5 cm).
- 2. Nun werden die Funktionen

$$g_a: x \mapsto \int_{\frac{2}{a}}^{x} \frac{a}{(at-1)^2+1} dt, x \ge 0, a \in \mathbb{R}^+$$

betrachtet.

- a) Berechnen Sie eine integralfreie Darstellung von $g_a(x)$ mit Hilfe der Substitutionsmethode. [Ergebnis: $g_a(x) = \arctan(ax-1) - \frac{\pi}{4}$]
- b) Zeigen Sie, daß g_a und f_a in IR+ übereinstimmen.

BE 8	c) Begründen Sie, daß g_a umkehrbar ist. Berechnen Sie den Term $g_a^{-1}(x)$ der Umkehrfunktion von g_a , und zeichnen Sie den Graphen von g_5^{-1} in das bereits angelegte Koordinatensystem.
7	 Berechnen Sie den Inhalt des im 4. Quadranten liegenden Flächenstücks das von den Koordinatenachsen und dem Graphen Gf begrenzt wird.
50	Hinweis: Verwenden Sie die in Teilaufgabe 2 erkannten Zusammenhänge.

•

LM1. INFINITESIMALRECHNUNG

I.

Gegeben ist die Schar der in IR definierten Funktionen $f_k : x \mapsto (2x + k) \cdot e^{-\frac{x}{k}}$ mit k > 0. Der Graph von f_k wird mit G_k bezeichnet.

4

1. a) Bestimmen Sie die Schnittpunkte von G_k mit den Koordinatenachsen. Untersuchen Sie das Verhalten der Scharfunktionen für $x \to +\infty$ und für $x \to -\infty$.

9

b) Bestätigen Sie:

$$f_{k}'(x) = -\frac{1}{k}(2x - k) \cdot e^{-\frac{x}{k}} \text{ und } f_{k}''(x) = \frac{1}{k^{2}}(2x - 3k) \cdot e^{-\frac{x}{k}}$$

Bestimmen Sie Lage und Art des Extrempunktes von G_k . Zeigen Sie, daß G_k einen Wendepunkt hat, und geben Sie dessen Koordinaten an.

3

c) Weisen Sie nach, daß die Extrempunkte aller Graphen G_k auf einer Geraden liegen, und geben Sie eine Gleichung dieser Geraden an.

2

d) Zeigen Sie, daß die Wendetangenten aller Graphen der Schar zueinander parallel sind.

4

e) Berechnen Sie die Gleichung der Wendetangente von G₂ und den Schnittpunkt dieser Wendetangente mit der x - Achse.

7

f) Zeichnen Sie die Graphen G_2 und G_4 unter Berücksichtigung aller bisherigen Ergebnisse in ein Koordinatensystem (Längeneinheit 1 cm).

3

g) $P(p \mid 0)$ ist ein Punkt der x - Achse. Für welche Werte von p gibt es eine Tangente von G_2 durch P? Anschauliche Überlegung am Graphen genügt.

8

2. Der Graph G_k und die x - Achse schließen ein Flächenstück ein, das sich im 1. Quadranten ins Unendliche ersteckt. Zeigen Sie, daß diesem Flächenstück für alle k ein endlicher Inhalt I_k zugeordnet werden kann. Geben Sie den Wert von I_k an.

40

BE

L 1. INFINITESIMALRECHNUNG

Gegeben ist die Schar der Funktionen

$$f_a: x \mapsto \frac{ax}{1+x^2}$$
 mit $D_{f_a} = \mathbb{R}$ und $a \in \mathbb{R}^+$.

Der Graph der Funktion f_a wird mit G_{fa} bezeichnet.

1. a) Geben Sie das Verhalten von $f_a(x)$ für $x \to \pm \infty$ an. Zeigen Sie, daß G_f zum Ursprung des Koordinatensystems symmetrisch ist.

b) Bestimmen Sie die Monotoniebereiche von fa sowie die Lage und die Art der Extrempunkte von G_{fa}. Geben Sie eine Gleichung der Tangente ta an Gfa im Ursprung an. ?

Zur Kontrolle:
$$f'_a(x) = \frac{a(1-x^2)}{(1+x^2)^2}$$

In den folgenden beiden Teilaufgaben c und d sei $a = 2\sqrt{2}$.

c) Zeigen Sie, daß G_{f_a} genau zwei Tangenten g und h besitzt, die auf der Tangente ta senkrecht stehen. Tragen Sie die Tangente ta sowie g und h in ein kartesisches Koordinatensystem (Querformat, Ursprung in Blattmitte, Längeneinheit 2 cm) ein.

d) Zeichnen Sie für $a = 2\sqrt{2}$ den Graphen G_{f_a} unter Berücksichtigung der bisherigen Ergebnisse. Verwenden Sie dabei auch die Funktionswerte an den Stellen $\frac{1}{4}$ und 4.

Zeigen Sie ohne Berechnung der 3. Ableitung, daß g und h Wendetangenten sind.

2. Nun wird die Schar der Funktionen $h_a: x \mapsto \ln f_a(x)$ mit $D_{h_a} = \mathbb{R}^+$ und $a \in \mathbb{R}^+$ betrachtet. Der Graph der Funktion h_a wird mit G_{h_a} bezeichnet.

a) Ermitteln Sie das Verhalten von h_a (x) an den Grenzen von D_{ha}.

b) Zeigen Sie: $h'_a(x) = \frac{1 - x^2}{x(1 + x^2)}$.

Wie wirkt sich somit eine Änderung des Parameterwertes a auf den Graphen G_{ha} aus?

BE 3

5

c) Weisen Sie nach, daß h_a die Wertemenge $\left|-\infty; \ln \frac{a}{2}\right|$ hat.

d) Bestimmen Sie für $a=2\sqrt{2}\,$ die Nullstellen der Funktion h_a , und zeichnen Sie G_{h_a} in das bereits angelegte Koordinatensystem ein. Verwenden Sie dabei auch die Funktionswerte an den Stellen $\frac{1}{4}$

e) Bestimmen Sie eine Stammfunktion H_a von h_a, indem Sie z. B. mi partieller Integration beginnen.

50

5

0

A

.1

BAYERN Abitur 1996 Mathematik Leistungskurs

Infinitesimalrechnung I

Gegeben ist die Schar der Funktionen

$$f_k: x \mapsto \frac{1}{x \cdot (k - \ln x)^2}$$

mit $k \in \mathbb{R}$ und maximaler Definitionsmenge \mathbb{D}_k . Der zu f_k gehörige Graph wird mit G_k bezeichnet.

1. (a) Begründen Sie, dass $\mathbb{D}_k = \mathbb{R}^+ \setminus \{e^k\}$ ist. Untersuchen Sie das Verhalten von f_k an den Rändern von \mathbb{D}_k .

Hinweis: $\lim_{x \to 0} x \cdot (\ln x)^n = 0$ mit $n \in \mathbb{N}$ kann verwendet werden. (6 BE)

(b) Zeigen Sie: $f_k'(x) = \frac{2-k+\ln x}{x^2\cdot (k-\ln x)^3}$.

Bestimmen Sie Koordinaten und Art des Extrempunkts von f_k und geben Sie das Monotonieverhalten von f_k an. (10 BE)

- (c) Berechnen Sie $f_1(e^2)$, $f_1(1)$ und $f'_1(1)$. Zeichnen Sie G_1 unter Verwendung aller bisherigen Ergebnisse (Längeneinheit 2 cm). (6 BE)
- 2. Jeder Graph G_k hat genau eine Tangente t_k , die durch den Ursprung geht.
 - (a) Bestimmen Sie die Funktionsgleichung für t_k und zeichnen Sie t_1 in das Koordinatensystem von Teilaufgabe 1c ein.

[Ergebnis: $t_k : x \mapsto e^{2-2k} \cdot x$] (7 BE)

- (b) Die Tangente t_k bildet mit der x-Achse und der Geraden $x = e^k$ ein Dreieck. Zeigen Sie, dass der Flächeninhalt dieses Dreiecks unabhängig von k ist. (2 BE)
- 3. (a) Bestimmen Sie mittels einer geeigneten Substitution eine Stammfunktion F_k von f_k .

[mögliches Ergebnis: $F_k(x) = \frac{1}{k - \ln x}$] (4 BE)

(b) Weisen Sie nach, dass die uneigentlichen Integrale

$$\int\limits_0^{\frac{\pi}{2}} f_1(t) \; \mathrm{d}t \quad ext{und} \quad \int\limits_{2\mathrm{e}}^{\infty} f_1(t) \; \mathrm{d}t$$

existieren und gleich sind. (5 BE)

7

5

3

LM1. INFINITESIMALRECHNUNG

Ĩ.

Gegeben ist die Schar der in IR^+ definierten Funktionen $f_k: x \mapsto \frac{1+k \cdot \ln x}{x}$ mit $k \in IR^+$. Der Graph von f_k wird mit G_k bezeichnet.

Hinweis: Im folgenden dürfen die Grenzwerte $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ und

 $\lim_{x \to 0} (x \ln x) = 0 \text{ ohne Beweis verwendet werden.}$

- 1. a) Zeigen Sie, daß $e^{-\frac{1}{k}}$ Nullstelle von f_k ist. Untersuchen Sie das Verhalten von f_k an den Rändern des Definitionsbereichs.
 - b) Weisen Sie nach, daß G_k den Hochpunkt $H_k(x_H | y_H)$ mit $x_H = e^{1-\frac{1}{k}}$ und $y_H = k \cdot e^{\frac{1}{k}-1}$ besitzt. Zeigen Sie, daß H_1 auf allen Graphen G_k liegt.
 - c) Berechnen Sie $f_k(e)$ für $k = \frac{1}{2}$ und k = 2. Zeichnen Sie die Graphen $G_{\frac{1}{2}}$ und G_2 unter Berücksichtigung aller bisherigen Ergebnisse (Längeneinheit 2 cm).
- 6 2. a) Welche Werte nimmt x_H aus Teilaufgabe 1b für k ∈ IR⁺ an? Begründen Sie Ihre Antwort.
 - b) Zeigen Sie, daß für y_H aus Teilaufgabe 1b gilt:

$$y_{H} = \frac{1}{x_{H} \cdot (1 - \ln x_{H})}$$

Wie verhält sich y_H für $x_H \stackrel{>}{>} 0$ und für $x_H \stackrel{\leq}{\to} e$?

- c) Skizzieren Sie unter Verwendung aller bisherigen Ergebnisse die Kurve K, auf der die Hochpunkte H_k liegen, in das Koordinatensystem von Teilaufgabe 1c.
- Bestimmen Sie k so, daß der Inhalt des endlichen Flächenstücks, das vom Graphen G_k, der x - Achse und der Geraden x = 1 begrenzt wird, den Wert 1 hat.