INB255/INN255 Security

Lecture 9 Network Security

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

Basic Network Concepts

- Network: A number of computers and devices, connected by communications channels, and hardware and software to enable data exchange
- The connections can be:
 - Physical
 - Examples: cable, fibre optic
 - Wireless
 - Example: Radio signal, Infrared, Satellite

Basic Network Concepts

- Network types and information security:
 - Need to secure both
 - the devices and
 - the communication channels.
 - Easier to do this for a LAN with physical connections: can provide physical protection at the location to restrict access to authorised users
 - For wireless connections and larger networks, the communication may extend beyond physical boundaries of organization

Outline

- Basic network concepts
- Communication protocols
 - HTTP authentication
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

Communication Protocols

- Communication Protocols
 - Are sets of standard rules required for data representation, authentication, error detection etc. to send information over communications channels
 - The protocols permit the communications themselves to be separated from the communication media
 - Communication is independent of whether the media is coax cable, optical fibre, wireless, etc

Communication protocols

Protocol Stacks

- Layered architecture for communications
 - Each layer performs different activities required to enable communications
- ISO Open Systems Interconnection (OSI) model consists of 7 layers:
 - Application: User level data
 - Presentation: Data standardisation, blocking, compression
 - Session: Message sequencing
 - Transport: Flow control, error detection and correction
 - Network: Routing, blocking messages into uniformly sized packets
 - Data Link: Separating packets into frames, error recovery
 - Physical: Actual communication bit transmission

Communication protocols

Protocol Stacks

- Transmission Control Protocol/Internet Protocol (TCP/ IP) can be considered as four layers:
 - Application: Prepares messages from users
 - Transport: Converts messages to packets
 - Internet: Converts packets to datagrams
 - Physical: Transmission as bits
- TCP packet: data structure containing information such as sequence number, source and destination port numbers, data
- Different applications have different port numbers. For example:
 - HTTP port 80
 - SMTP port 25

Communications Protocols

- Network-related security protocols in common use include:
 - Transport Layer Security (TLS):
 Used extensively on the web and is often referred to in privacy policies as a means of providing confidential web connections.
 - IP Security (IPSec):
 Provides security services at the IP level and is used to provide Virtual Private Network (VPN) services.

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

SSL/TLS

History:

- Originally Netscape's Secure Sockets Layer (SSL) protocol
- SSL Versions: SSLv2 in 1995, SSLv3 in 1996
- Standardized as Transport-Layer Security (TLSv1)
 by Internet Engineering Task Force (IETF) in
 RFC2246

TLS versions:

- TLSv1.0 specified in RFC2246 in 1999
- TLSv1.1 specified in RFC 4346 in 2006
- TLSv1.2 specified in RFC 5246 in 2008

SSL/TLS

- Transport Layer Security (TLS) is a cryptographic protocol that operates at the transport layer (actually, above the transport layer)
 - Say, on top of Transmission Control Protocol (TCP)
- Uses encryption and PKI to provide protection for network communication protocols operating at higher levels
 - For example, to protect HTTP communications
 - Use X.509 certificates to obtain public keys
- Can be used to provide confidentiality and authentication Semester 1, 2014

TLS Transport Layer Security Protocol

TLS

 Encryption and authentication layer added to the protocol stack between TCP and applications.

TLS and HTTP

- SSL/TLS is the most commonly used encryption standard for Internet communications
 - Fast adoption because it is built into web browsers Safari,
 Firefox (TLSv1.0), IE8 (TLSv1.2)
 - Intended to facilitate web commerce used to encrypt credit card numbers and passwords sent to web sites
- TLS can be used to provide protection for HTTP communications:
 - Port 443 is reserved for HTTP over TLS
 - HTTPS is the name of the URL scheme used with this port.
 - http://www.develop.com implies the use of standard HTTP using port 80.
 - https://www.develop.com implies the use of HTTP over TLS using port 443.

TLS: Architecture Overview

- TLS Handshake Protocol: When establishing a TLS connection, the client and server must establish the version of TLS and the CipherSuite

 a set of cryptographic algorithms that will be used to secure transmissions
- TLS Record Protocol: the format for TLS records to provide basic services to higher level protocols
- Other TLS Protocols include:
 - TLS Alert Protocol error messages
 - TLS Change Cipher Spec Protocol turn on encryption or update keys

Client

Server

Client hello

- Advertises available cipher suites
- Most common cipher suite: RSA for key establishment, 3DES for encryption and HMAC-SHA1 for data authentication)

Server hello

- Returns the selected cipher suite (choose from list sent by client)
- Server adapts to client capabilities

Server Certificate

- X.509 digital certificate sent to client.
- Client verifies the certificate including that the certificate signer is in its acceptable Certificate Authority (CA) list.

19

Now the client has the server's certified public key.

Server done

To indicate that the server has finished sending messages.

Client Key Exchange

- Client selects a random 'pre-master secret'
- Client encrypts the 'pre-master secret' using the server's public key
- Client sends the encrypted 'pre-master secret' to the server.
- Server decrypts using its private key to recover the 'pre-master secret'.
- Both parties now compute the master secret using the premaster secret and other exchanged values.

- Completion
 Both client and server exchange
 - change_cipher_spec to indicate subsequent messages are encrypted and MAC'ed
 - finished message (already protected) to complete

TLS: Record Protocol Overview

- Provides two services for TLS connections.
 - Message Confidentiality:
 - Ensure that the message contents cannot be read in transit.
 - The Handshake Protocol is used to establish a symmetric key to be used to encrypt SSL/TLS payloads.
 - Message Integrity:
 - Ensure that the receiver can detect if a message is modified in transmission.
 - The Handshake Protocol establishes a shared secret key used to construct a MAC.

TLS: Record Protocol Operation

Application Data

Fragment

Compress

MAC

Encryption

Prepend Header

TLS security considerations

- Trust and digital certificates:
 - TLS uses public keys provided in digital certificates
 - Certificates should be verified requires tracing certificate pathways
 - Web browsers come with pre-configured lists of root certificates but users can add or remove root CAs
- One-way or mutual authentication?
 - Authentication is usually of server to client only, not mutual
 - Users usually do not have client certificates
 - Typically, authentication of users is not performed in handshake
 - Instead, password authentication over server-authenticated HTTPS channel

Semester 1, 2014 INB255/INN255 24

The Heartbleed Bug

- The Heartbeat Extension for the Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) protocols
- These protocols are extremely widely used from security vendors products to secure web browsing (when you log in to a site and see https://)
- Published and implemented in 2012
- Contains a buffer overflow bug that allows up to 64Kb of memory to be returned to malicious

SSL Heartbeat Message

http://en.wikipedia.org/wiki/File:Simplified_Heartbleed_explanation.svg

Malicious Heartbleed Message

http://en.wikipedia.org/wiki/File:Simplified_Heartbleed_explanation.svg

Heartbleed Bug Issues

- Affected versions of OpenSSL are OpenSSL 1.0.1 through 1.0.1f (inclusive)
- Patch as soon as possible
- After patching, private keys need to be renewed and passwords should be changed
- Many servers have been patched but clients are also vulnerable

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

IPSec: Introduction

- Internet Protocol Security (IPSec) is a framework of open standards for ensuring private, secure communications over Internet Protocol (IP) networks
- Operates at the Network or Internet layer, so can secure application and transport layer communications, including arbitrary TCP and UDP sessions.
- Uses encryption, authentication and key management algorithms to provide end-to-end security
- Specified in RFCs by Internet Engineering Task Force (IETF) Working Group
- URL: http://www.ietf.org/html.charters/ipsec-charter.html
- Provides a security architecture for both IPv4 and IPv6

IPSec: Security Services

- Message Confidentiality.
 - Protects against unauthorised data disclosure.
 - Accomplished by the use of encryption mechanisms.
- Traffic Analysis Protection.
 - A person monitoring network traffic cannot know which parties are communicating, how often, or how much data is being sent.
 - Provided by concealing IP datagram details such as source and destination address.
- Message Integrity.
 - IPsec can determine if data has been changed (intentionally or unintentionally) during transit.
 - Integrity of data can be assured by using a message authentication code (MAC).

IPSec: Security Services

- Message Replay Protection.
 - The same data is not delivered multiple times.
- Peer Authentication.
 - Each IPsec endpoint confirms the identity of the other
 IPsec endpoint with which it wishes to communicate.
 - Ensures that network traffic is being sent from the expected host.
 - IP addresses are used as host identifiers.

IPSec: Protocol Types

- Encapsulating Security Payload (ESP)
 - Confidentiality, authentication, integrity and replay protection
- Authentication Header (AH)
 - Authentication, integrity and replay protection.
 However there is no confidentiality
- Internet Key Exchange (IKE)
 - negotiate, create, and manage security associations

IPSec: Modes of operation

- Each protocol (ESP or AH) can operate in transport or tunnel mode.
- Transport mode:
 - Operates primarily on the payload (data) of the original packet.
 - Generally only used in host-to-host architectures.
- Tunnel mode:
 - Original packet encapsulated into a new one, payload is original packet.
 - Typical use is gateway-to-gateway architecture.

IPSec: Common Architectures

- The endpoints for communications secured using IPSec can be either hosts or gateways to secured networks.
- Combinations of these form three common architectures:
 - Gateway-to-gateway
 - Host-to-gateway
 - Host-to-host

IPSec: Common Architectures Gateway-to-Gateway

Source: NIST Special Publication 800-77

IPSec: Common Architectures Gateway-to-Gateway

- Provides secure network communications between two secure networks. Network traffic is routed through the IPsec connection, protecting it appropriately.
- A VPN connection is established between the two gateways.
- NOTE: This only provides protection for data between the two gateways.
- Commonly used for connecting two secured networks as an alternative to the more costly private wide area network (WAN).
- Example: linking a branch office to headquarters over the Internet.

IPSec: Common Architectures Host-to-Gateway

Source: NIST Special Publication 800-77

IPSec: Common Architectures Host-to-Gateway

- Provides secure communications over an insecure connection between a single host and a secure network.
- A VPN connection is established between the host and the gateway to the network.
- NOTE: This only provides protection for data between the host and the gateway – within the network the transmissions are not protected.
- Commonly used to provide secure remote access for a single user connecting over an untrusted network to resources on a secure company network.
- Example: providing access over the Internet for employee working from home (their local computer is the host) to resources located within the company headquarters.

IPSec: Common Architectures Host-to-Host

Source: NIST Special Publication 800-77

IPSec: Common Architectures Host-to-Host

- This is the only architecture that provides protection for data throughout its transit.
- All user systems and servers that will participate in VPNs need to have VPN software installed and/or configured.
- Key establishment is often accomplished through a manual process.
- Resource-intensive to implement and maintain in terms of user and host management
- Example: Could be used for special purpose, such as system administrators performing remote management of a single server.

IPSec: Benefits

- Is transparent to applications
 - Operates at Network/Internet layer so applications are not aware of its operation.
- If applied at a network gateway (firewall/router), strong security applies to all traffic crossing this boundary.
 - Internal workstations need not be reconfigured.
- Can be transparent to end users.
 - System administrator configures IPSec;
 the end user is not involved.

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

Firewalls

- Firewall: component or set of components
 - placed at the interface between two networks with differing security requirements
 - aims to control the flow of network traffic between a protected network and other networks.
- Frequently used to prevent unauthorized Internet users from accessing private networks (Intranet).
 - All messages entering or leaving the intranet pass through the firewall
 - Each message is examined, and those that do not meet the specified security criteria are blocked.
- Can be implemented in hardware, software, or a combination of both.

Firewalls

- Firewall categories:
- Firewalls can be categorized according to two criteria:
 - the highest layer data in the network communication protocol stack (OSI or TCP/ IP) the firewall can examine; and
 - 2. whether or not the communication terminates at the firewall:
 - If the connection does not terminate, the firewall is a filter.
 - If the connection terminates, the firewall is called a proxy.

Firewalls:

Firewall categories

- Basic firewalls examine data associated with lower TCP/IP layers only.
 - Example: Simple packet filters operating at network level
- More sophisticated firewalls can examine application layer data.
 - Example: Application level gateway

Outline

- Basic network concepts
- Communication protocols
 - HTTP authentication
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture

Firewalls:

Simple packet filters

- A packet filter is a device or program that operates at the network layer
- Simple packet filters examine each packet independently of other packets
 - Even if they are part of the same connection
- The packet filter decides whether to pass or drop each packet
- Decisions based on information in packet headers, such as
 - IP header fields (Source or Destination IP Addresses)
 - The Protocol (UDP, TCP or ICMP)
 - TCP/UDP port numbers (Source or Destination Port Numbers)
 - Direction the packet is travelling (into/out of the internal network)

Firewalls:

Information layers - IPv4 and TCP headers

	0 0 1 2 3	4 5 6 7	8 9	1 0 1 2	2 3 4	5	6 7	8	9 0	1	2	3 4	4 5	6	7	8 9	3 9 0	1	
IPv4 Header	Version	IHL	Тур	oe of S	Service	,				To	otal	Цe	eng	th					
		Identif	catio	on			Flags Fragment Of)ffs	et	20						
	Time t	o Live		Proto	col				He	ad	er (Ch	ecl	(SI	um				20 bytes
	Source Address										es								
				De	stinat	o	n Add	dre	SS										
TCP Header		Source Port					Destination Port												
		Sequence Number								20									
				Ackn	owled	gr	nent	Nι	ımb	er									bytes
		Reserv	ed	F	ags						Wi	nd	ow						es
	Checksum					Urgent Pointer													
)a	ta												_

Which fields should a firewall use for filtering?

Semester 1, 2014 INB255/INN255 49

Firewalls: Simple Packet Filters

- Routers are commonly used as packet filters, in addition to performing normal routing duties
- To perform simple packet filtering a set of rules is required that specifies what sort of action to take for a given set of conditions.
- These rules should be consistent with the organisation's information security policy
- The rules are generally recorded in table form.

Firewalls: Simple Packet Filters

- A rule table specifies how to filter network traffic:
 - Each rule consists of conditions and an action
 - For each packet, the first matching rule is found
 - Two possible actions: allow or block
- Example rule table: inbound traffic to email (SMTP) server 1.2.3.10

Protocol	Src IP	Src port	Dst IP	Dst port	Action	Comment
TCP	4.5.6.7	*	1.2.3.10	25	Block	Stop this spammer
TCP	*	*	1.2.3.10	25	Allow	Inbound SMTP
TCP	1.2.3.10	25	*	*	Allow	SMTP responses
*	*	*	*	*	Block	Default rule

Firewalls: Simple Packet Filters

- Decision making can also consider the direction the packets are travelling:
 - Ingress filtering: filtering inbound traffic
 - Egress filtering: filtering outbound traffic
- To reduce the possibility of transmitting packets with spoofed addresses, a simple rule to implement is:
 - Ingress filtering: drop inbound packets with source addresses that belong to the local network
 - Egress filtering: drop outbound packets with source addresses that are not local

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

Firewalls: Stateful Packet Filters

- Stateful packet filters operate in the same way as simple packet filters
 - examining headers and comparing to ruleset to see if the packet transmission is allowed under the firewall rules
- BUT stateful packet filters are more 'intelligent' than simple packet filters
 - Also keep a 'state table' noting the state of each connection:
 - Is the connection being established, in use, or terminated?
- Stateful packet filters examine the state in the context of the of the conversation
 - If header values contradict the expected state, the packet will be dropped

Firewalls: Stateful Packet Filters

- Sometimes called dynamic packet filters due to their ability to add rules 'on the fly'.
- For example:
 - Can recognise an outgoing connection request being sent from an internal client to an external server,
 - Will add a temporary rule to allow reply traffic back through firewall.
 - When session is finished, the temporary rule is deleted.
- Common software packages for stateful packet filters include:
 - IPTables for Linux
 - Checkpoint Firewall-1
 - Cisco PIX (integrated hardware & software)
 - Microsoft Internet Security and Acceleration Server

Firewalls: Packet Filters

Strengths:

- Low overhead
- High throughput
- Operates at lower layers, so supports almost any application

Weaknesses:

- Do not examine application layer data/commands
 - May allow insecure operations to occur
 - Cannot perform content filtering or user authentication
- Allow direct connections between hosts inside & outside firewall
- Simple (stateless) packet filters only:
 - less secure (can be susceptible to IP spoofing)
 - more difficult to write complex rules

Firewalls: Personal Firewalls

- A personal firewall is a software program that is designed to protect the computer on which it is installed.
 - Frequently used by home users to provide protection against unwanted Internet traffic.
- Usually these are stateful packet filters.
- Examples:
 - Windows XP, Vista and Mac OSX all include a personal firewall.
 - Vendors such as ZoneAlarm, and Sygate provide a free version of their product for personal use.
- Some products include anti-virus software as well (maybe at extra cost).

Outline

- Basic network concepts
- Communication protocols
 - HTTP authentication
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture

Firewalls: Application Proxy Gateway

- Application level gateway filters traffic based on application data
 - Can examine application data, not just header info such as protocol and port numbers
- Known as an application proxy because the firewall needs to act on behalf of the client.
 - All connections terminate on the firewall.
 - Instead of a direct connection from client to server, the application proxies have an internal and external interface.
 - Two connections are made: connection from client to proxy and, if request is permitted, connection from proxy to requested destination
 - The proxy accepts the incoming connection, analyzes contents of packet and protocol to be used, determines if rules allow connection and, if connection is permitted, initiates a connection

Firewalls: Application Proxy Gateway

- Usually configured to support only specific applications or specific features of an application:
 - each application (email, web browser) must have its own proxy (specific gateway) in the firewall
 - If proxies are designed specifically for that protocol, they understand whether the traffic flowing is following the protocol and allowed by the policy rules
- Application layer firewalls have proxies for the most commonly used protocols
- Some 'generic' gateways can be used if a specific gateway does not exist, sometimes called circuit level gateways

Firewalls: Application Proxy Gateway

Firewalls: Application Proxy Gateway

Strengths:

- Provides potential for best security through control of application layer data/commands
- Better logging and audit of traffic
- Allows content filtering and user authentication

Weaknesses:

- Slower than packet filters requires time to examine packet data in details, so may be unsuitable for real-time applications
- Limited support for new applications additional time requirement for vendor to write new gateways for new applications
- Requires one additional connection (including processing resources) for each new connection

Firewalls: Dedicated Proxy Servers

- To deal with load problems in an application proxy gateway dedicated proxy servers can be used
- These are typically
 - Deployed behind traditional firewall platforms
 - Dedicated to one type of traffic such as HTTP, SMTP, FTP
- Can perform authentication and audit as well as filtering for content such as:
 - Active code such as Java applets
 - Email attachments of certain types
 - Viruses

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software
 - Viruses

Firewalls: Simple Firewall Architecture

Firewalls: DMZ Architecture

Firewall issues

- Firewalls are only effective if:
 - they are set up to implement a well formulated security policy.
 - That is, the most important aspect of a firewall is a clear conception of what it is meant to protect.
 - they are effectively administered, updated with the latest patches and monitored.
- The security policy must clearly define acceptable traffic
 - Only that traffic allowed to pass through the firewall;
 - everything else is considered unacceptable and must be blocked

Firewall issues

- Filtering should be performed on traffic in both directions:
 - Outbound connections should be filtered to prevent:
 - internal users accessing untrusted services or dangerous content
 - compromised internal machines spreading viruses to the Internet, or being used as part of distributed attacks
- Firewall rules can be difficult to configure
 - Order of rules matters
 - Configurations are usually fragile
 - Administrators can be afraid to modify configurations in case something breaks

Firewall issues

- Using firewalls to provide perimeter defence has serious limitations:
 - Errors in firewall configuration are common
 - There are other unfiltered communication routes, for example:
 - dial-up modem connections
 - unauthorised wireless access points
 - Unprotected laptops, USBs, etc move in and out of the intranet
 - In large networks there are often compromised nodes inside
 - Many new applications `bypass' firewalls by disguising as web traffic, using TCP port 80 and 443. For example, skype, bittorrent
- Given these limitations, firewalls should be complemented with intrusion detection systems

Outline

- Basic network concepts
- Communication protocols
 - SSL/TLS
 - IP Layer Security (IPSec)
- Firewalls
 - Simple packet filter
 - Stateful packet filter
 - Application-layer firewalls
 - And Network Architecture
- Malicious Software

Malicious Software

- Malware are programs that exploit system vulnerabilities.
- Types:
 - program fragments that need a host program
 - e.g. viruses, logic bombs, and backdoors
 - independent self-contained programs
 - e.g. trojan horses, worms, bots
 - replicating or not
- Sophisticated threat to computer systems!

Viruses

- A Virus is a piece of software that infects programs(host)
 - modifying them to include a copy of the virus
 - so it executes secretly when host program is run
- Usually specific to operating system
 - taking advantage of their details and weaknesses
- A typical virus goes through phases of:
 - Dormant: idle (not found in all viruses)
 - Propagation: copy itself into other programs/disk areas
 - Triggering: activated (date, file, disk limit)
 - Execution: perform the intended function(message, damage.

Virus Structure

- Components:
 - Infect enables replication
 - Trigger event that makes payload activate
 - Payload what it does
- May be prepended, postpended or embedded
- When infected program invoked, executes virus code then original program code

Infection strategies

- Nonresident viruses:
 - Search for other hosts that can be infected,
 - Infect those targets,
 - Transfers control to the infected program
- Resident viruses
 - Do not search for hosts when they are started.
 Instead, it loads itself into memory on execution and transfers control to the host program.
 - The virus stays active in the background and infects new hosts when those files are accessed by other programs or the operating system itself

Propagation

- Using infected programs the virus is executed every time the program is executed.
- Using interrupts that occurs each time an external disk drive or a DVD is inserted into a USB port.
 Once this interrupt occurs, the virus is executed as part of the interrupt-handling routine and it tries to infect the newly inserted volume.
- As an email attachment.
- Through infected software. Embed a virus or a Trojan horse in a useful program (a calculator, a nice clock, or a beautiful screen saver)

Trigger

- Any event in the PC can be used as a trigger by a virus
 - Date or time
 - Number of boots
 - Generation counter of the virus
 - Number of keypresses on the keyboard
 - Amount of free space on the hard drive
 - Amount of minutes the machine has been idle

Virus Payload

- The Virus Payload is the malicious "task" of a virus.
- Performed when the triggering condition is satisfied.
- Examples:
 - Display a message, such as "Gotcha," a political slogan, or a commercial advertisement
 - Read a certain sensitive or private file. Such a virus is in fact spyware.
 - Slow the computer down by monopolizing and exhausting limited resources.
 - Completely deny any services to the user.

Virus Payload

- Erase all the files on the host computer
- Select some files at random and change several bits in each file, also at random.
 - referred to as data diddling and may be more serious, because it results in problems that seem to be caused by hardware failures, not by a virus.
- Random change of permissions.
- Produce sounds, animation.

Virus Classification by Target

- Boot sector: Infects a master boot record or boot record and spreads when a system is booted from the disk containing the virus.
- File infector: Infects executable files
- Macro virus: Infects files with macro code that is interpreted by an application.

Virus Classification by Hiding Method

- Encrypted virus: creates a random encryption key, stored with the virus, and encrypts the remainder of the virus. Then, the virus uses the stored random key to decrypt the virus. Virus replicates, a different random key is selected.
- Stealth virus: designed to hide itself from detection by antivirus software. By restoring the size, modification date, and

Virus Classification by Hiding Method

- Polymorphic virus: Mutates and infects each new file as a different string of bits making detection by the "signature" of the virus impossible.
- Metamorphic virus: As with a polymorphic virus ,a metamorphic virus mutates with every infection but rewrites itself completely at each iteration, increasing the difficulty of detection

Virus Classification by Hiding Method

 Compression virus: In addition to mutating, a virus may hide itself in a compressed file in such a way that the bits with the virus part depend on the rest of the infected file and are therefore always different.

E-Mail Viruses

- e.g. Melissa
 - exploits MS Word macro in attached doc
 - if attachment opened, macro activates
 - sends email to all on users address list
 - and does local damage
- Then saw versions triggered reading email
- Much faster propagation

Virus Countermeasures

- Anti-virus
- Prevention ideal solution but difficult
- Need:
 - Detection
 - Identification
 - Removal
- If detect but can't identify or remove, must discard and replace infected program

Anti-Virus Evolution

- Virus and antivirus technologies have both evolved
- Anti-Virus generations
 - First signature scanners
 - Second heuristics rule (structure)
 - Third identify actions and unusual behaviour
 - Fourth combination packages

Spyware

- Programs, cookies, or registry entries that track your activity and send that data off to someone who collects this data for their own purposes
- The type of information stolen varies considerably
 - email login details
 - IP and DNS addresses of the computer
 - users' Internet habits
 - bank details used to access accounts or make online purchases etc...

Adware

- Software that is installed on your computer to show you advertisements
- These may be in the form of pop-ups, pop-unders, advertisements embedded in programs, or placed on top of ads in web sites, etc

Key loggers

- A program that captures and records user keystrokes
- E.g. whenever a user enters a password, bank account numbers, credit card number, or other information, the program logs the keystroke
- The keystrokes are often sent over the Internet to the hacker

Rootkit

- A set of tools and utilities that a hacker can use to maintain access once they have hacked a system.
- The rootkit tools allow them conceal their actions by hiding their files and processes and erasing their activity

Bot/Zombie

- These are programs that are inserted on computers by attackers to allow them to control the system remotely without the user's consent or knowledge
- Botnets: Groups of computers infected by bots and controlled remotely by the owner of the bots
- Computers that are infected with a bot are generally referred to as zombies

Exploit

- A piece of software, a command, or a methodology that attacks particular security vulnerability
- Takes advantage of a particular weakness e.g. OS, application programs

Phishing

- is not an application. It's the process of attempting to acquire sensitive user information with fake websites.
- It's an example of social engineering techniques used to fool users
- Common targets for phishing
 - Online payment systems such as e-bank, e-commerce are

Spam

- is unsolicited bulk e-mail which is sent in massive quantities to unsuspecting Internet email users.
- Most spam tries to
 - Sell products and services.
- A more dangerous category of spam tries to
 - Convince the recipient to share their bank account numbers, credit card numbers, or logins & passwords to their online banking systems/services
- It is also used for phishing and to spread malicious code

Summary

- Networks are computers and devices, connected by communications channels, and hardware and software to enable data exchange
- Different networks have different security requirements
- Defence in depth
 - Security for networks should consider both the perimeter and the interior of the network
- Firewalls
 - Remember these require understanding of policy, not just technology