

Introduction to Deep Learning

PhD. Msc. David C. Baldears S. PhD(s). Msc. Diego López Bernal

Machine Learning Types

- Supervised: learning with labeled data
 - Example: email classification, image classification
 - Example: regression for predicting real-valued outputs
- Unsupervised: discover patterns in unlabeled data
 - Example: cluster similar data points
- Reinforcement learning: learn to act based on feedback/reward
 - o Example: learn to play Go

Computer Vision Tasks

Computer vision has been the primary area of interest for ML

The tasks include: classification, localization, object detection, instance segmentation

ML vs. Deep Learning

- Conventional machine learning methods rely on human-designed feature representations
- ML becomes just optimizing weights to best make a final prediction

ML vs. Deep Learning

- Deep learning (DL) is a machine learning subfield that uses multiple layers for learning data representations
 - DL is exceptionally effective at learning patterns

Machine Learning

ML vs. Deep Learning

- DL applies a multi-layer process for learning rich hierarchical features (i.e., data representations)
 - Input image pixels → Edges → Textures → Parts → Objects

Why is DL Useful?

- DL provides a flexible, learnable framework for representing visual, text, linguistic information
 - Can learn in supervised and unsupervised manner
- DL represents an effective end-to-end learning system
- Requires large amounts of training data
- Since about 2010, DL has outperformed other ML techniques
 - o First in vision and speech, then NLP, and other applications

