Matrix Decompositions 1 of 2

Matrix Decompositions

At it's core matrix decompositions is:

- The re-expression of the original matrix into a number of sub-components or parts.
- Typically in the form of matrix products or weighted sums of matrices.
- The re-expression typically exposed fundamental aspects of the original matrix in a more direct manner.

A simple example of this concept is in the context of natural numbers:

- For any $x \in \mathbb{N}$ we can rewrite x as a product of primes.
- For example $24 = 2 \times 2 \times 2 \times 3 = 2^33$

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Determinant

Determinants are only defined for square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$

• We denote the determinate of **A** as

$$\det\left(\mathbf{A}\right) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

where

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

 Before we define how to calculate the determinate the application of it is worth briefly exploring

Testing for Matrix Invertibility

Recall from Chapter 2 that in the case of a 2×2 matrix we could get an explicit formula for an inverse as follows:

ullet Let ${f A} \in \mathbb{R}^{2 imes 2}$ then ${f A}^{-1}$ can be calculated as

$$\mathbf{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \tag{1}$$

- Now the inverse only exist if and only if $a_{11}a_{22} a_{12}a_{21} \neq 0$
- This denominator is in fact det(A)
 - ▶ So the inverse of our 2×2 matrix exist if and only if $det(\mathbf{A}) \neq 0$

Testing for Matrix Invertibility

Theorem 4.1

For any square matrix $\bm{A}\in\mathbb{R}^{n\times n}$ it holds that \bm{A} is invertible if and only if $\det(\bm{A})\neq 0$.

We can directly obtain the inverse for n = 1, 2, 3 with relative ease

•
$$n = 1$$

$$\det(\mathbf{A}) = \det(a_{11}) = a_{11} \quad \exists \mathbf{z} = \mathbf{b}$$

$$\mathbf{z} = \mathbf{b} \quad a \neq 0$$
(2)

•
$$n = 2$$

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \tag{3}$$

•
$$n = 3$$
 Sarrus' rule
$$det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23}$$

 $-a_{31}a_{22}a_{13}-a_{11}a_{32}a_{23}-a_{21}a_{12}a_{33}$

Triangular Matrices and a Simple Determinant Formula

Triangular matrix

Let $\mathbf{T} \in \mathbb{R}^{n \times n}$ then

- **T** is upper-triangular matrix if T_{ij} =0 for i > j.
- **T** is lower-triangular matrix if T_{ij} =0 for i < j.

Upper-triangular matrix example:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Lower-triangular matrix example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$

Triangular Matrices and a Simple Determinant Formula

If $\mathbf{T} \in \mathbb{R}^{n \times n}$ is Triangular then

$$\det(\mathbf{T}) = \prod_{i=1}^{n} T_{ii} \tag{5}$$

But what if **T** is not triangular?

- We need a generalized algorithm.
- The most common is to use the Laplace expansion which is a recursive approach.

Determinant Calculation

Laplace Expansion

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, then for all $j = 1, \dots, n$:

Expansion along column j

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det(\mathbf{A}_{k,j})$$

$$\tag{6}$$

Expansion along row j

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} \det(\mathbf{A}_{j,k})$$
 (7)

where $\mathbf{A}_{k,j} \in \mathbb{R}^{(n-1)\times (n-1)}$ is the submatrix of \mathbf{A} that we obtain when deleting row k and column j.

Determinant Calculation: Example

Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

If we us approach 2 and select the first row we arrive at:

$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = (-1)^{1+1} \cdot 1 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} + (-1)^{1+2} \cdot 2 \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} + (-1)^{1+3} \begin{vmatrix} 3 & 1 \\ 0 & 0 \end{vmatrix}$$
$$= 1(1-0) - 2(3-0) + 3(0-0)$$
$$= -5$$

Determinant Calculation: Example

Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

We can also make our lives easy and pick the 3rd row.

$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix}$$
$$= 1(1-6)$$
$$= -5$$

Determinant: Useful Properties and Results

Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$

- det(AB) = det(A) det(B)
- $det(\mathbf{A}) = det(\mathbf{A}^T)$
- ullet If $oldsymbol{\mathsf{A}}$ is regular then $\det(oldsymbol{\mathsf{A}}^{-1})=rac{1}{\det(oldsymbol{\mathsf{A}})}$

- If **A** and **B** are similar matrices than $\det(\mathbf{A}) = \det(\mathbf{B})$
 - This means the determinant is invariant to the choice of basis of a linear mapping. $A = 5^{-1} R < Cov_{c} T < Cov_{c} T$
- Adding a multiple of a column/row to another one does not change det(A).

 det(A) = det(s b)

 add(A)
- $\det(\lambda \mathbf{A}) = \lambda^n \det(\mathbf{A})$

- $= \frac{1}{k} \det(B) k = \det(B)$
- Swapping two rows/columns changes the sign of det(A).
 - ▶ Because of the last three properties, we can use Gaussian elimination to compute det(**A**) by bringing **A** into row-echelon form.

Trace

Trace

The *trace* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} \tag{8}$$

The trace satisfies the following properties:

- tr(A + B) = tr(A) + tr(B) for $A, B \in \mathbb{R}^{n \times n}$
- 2 $tr(\alpha \mathbf{A}) = \alpha tr(\mathbf{A})$ for $\alpha \in \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{n \times n}$
- $(\mathbf{I}_n) = n$
- tr(AB) = tr(BA) for $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times n}$

It can be shown that only one function satisfies these four properties together— the trace (Gohberg et al., 2012).

Trace

 The fourth property actually generalizes to invariances under cyclic permutations, for example

$$tr(AKL) = tr(KLA)$$
 (9)

for matrices $\mathbf{A} \in \mathbb{R}^{a \times k}$, $\mathbf{K} \in \mathbb{R}^{k \times l}$, $\mathbf{L} \in \mathbb{R}^{l \times a}$.

- The fourth property has a important special case namely:
 - if $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ then

then
$$tr(\mathbf{x}\mathbf{y}^{T}) = tr(\mathbf{y}^{T}\mathbf{x}) = \mathbf{y}^{T}\mathbf{x}$$

$$(\mathbf{n} \times \mathbf{i}) \cdot (\mathbf{i} \times \mathbf{n}) \quad (\mathbf{n} \times \mathbf{i})$$

$$\Rightarrow (\mathbf{n} \times \mathbf{n}) \quad \Rightarrow \mathbf{i}$$

$$(\mathbf{n} \times \mathbf{n}) \quad \Rightarrow \mathbf{i}$$

Trace

Similar matrices and the trace

• If A and B are similiar then

$$tr(\mathbf{B}) = tr(\mathbf{S}^{-1}\mathbf{AS}) = tr(\mathbf{ASS}^{-1}) = tr(\mathbf{A})$$
 (11)

This means that the trace does not depend on the basis used.

Characteristic Polynomial

Characteristic Polynomial

For $\lambda \in \mathbb{R}$ and a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$p_{\mathcal{A}}(\lambda) := \det(\mathbf{A} - \lambda \mathbf{I}_n) \tag{12}$$

$$=c_0+c_1\lambda+c_2\lambda^2+\cdots+c_{n-1}\lambda^{n-1}+(-1)^n\lambda^n$$
 (13)

where $c_0, \ldots, c_{n-1} \in \mathbb{R}$, is the the characteristic polynomial of **A**. In particular,

$$c_0 = \det(\mathbf{A}) \tag{14}$$

$$c_{n-1} = (-1)^{n-1} tr(\mathbf{A})$$
 (15)

Eigenvalues and Eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix.

• Then λ is an eigenvalue of **A** and $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ is the corresponding eigenvector of **A** if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{16}$$

We call (16) the eigenvalue equation.

The following important statements are equivalent:

- λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$
- There exists an $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

•
$$rk(\mathbf{A} - \lambda \mathbf{I}_n) < n$$

•
$$\det(\mathbf{A} - \lambda \mathbf{I}_n) = 0$$

$$Ax = \lambda x$$

$$Ax = \lambda Ix$$

$$Ax - \lambda Ix = 0$$

$$(A - \lambda I)x = 0$$

$$Tx = 0 \text{ for } T = (A - \lambda I)$$

Collinearity and Codirection

Collinearity and Codirection

- Two vectors that point in the same direction are called *codirected*.
- Two vectors are collinear if they point in the same or the opposite direction

Non-uniqueness of eigenvectors).

• ${\bf x}$ is an eigenvector of ${\bf A}$ is associated with eigenvalue λ then for any $c\in \mathbb{R}\setminus \{{\bf 0}\}$ it holds that $c{\bf x}$ is an eigenvector of ${\bf A}$ with the same eigenvalue since

$$\mathbf{A}(c\mathbf{x}) = c\mathbf{A}\mathbf{x} = c\lambda\mathbf{x} = \lambda(c\mathbf{x}) \tag{17}$$

Thus, all vectors that are *collinear* to \mathbf{x} are also eigenvectors of \mathbf{A} .

Theorem 4.8

 $\lambda \in \mathbb{R}$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$ if and only λ is a root of the characteristic polynomial $p_{\mathbf{A}}(\lambda)$ of \mathbf{A}

Algebraic multiplicity

Let a square matrix **A** have an eigenvalue λ_i .

• The algebraic multiplicity of λ_i is the number of times the root appears in the characteristic polynomial.

Eigenspace and Eigenspectrum

For $\mathbf{A} \in \mathbb{R}^{n \times n}$ the set of all eigenvectors of \mathbf{A} associated with an eigenvalue λ spans a subspace eigenspace of \mathbb{R}^n ,

• which is called the *eigenspace* of **A** with respect to λ and is denoted E_{λ} .

The set of all eigenvalues of ${\bf A}$ is called the *eigenspectrum*, or just *spectrum*, of ${\bf A}$.

For a given eigenvalue, λ , of $\mathbf{A} \in \mathbb{R}^{n \times n}$ it is worth noting that

• E_{λ} is the solution space to the homogeneous system of linear equations

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \tag{18}$$

Geometrically, the eigenvector corresponding to a nonzero eigenvalue, points in a direction that is **stretched** by the linear mapping.

- The eigenvalue is the factor by which it is stretched.
- If the eigenvalue is negative, the direction of the stretching is flipped.

The Case of the Identity Matrix

A simple but interesting case worth considering is that of $I \in \mathbb{R}^{n \times n}$:

Note that

$$p_{\mathbf{I}}(\lambda) = \det(\mathbf{I} - \lambda \mathbf{I}) \tag{19}$$

$$(1-\lambda)^n \tag{20}$$

In order to find the eigenvalues we set $p_{\mathbf{I}}(\lambda) = 0$ as such

- ▶ The only solution is $\lambda = 1$ which will have multiplicity of n
- Moreover, $\mathbf{I}\mathbf{x} = \lambda\mathbf{x} = 1\mathbf{x}$ holds for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$
 - ▶ This means that E_1 of the identity matrix spans n dimensions,
 - ▶ and all *n* standard basis vectors of \mathbb{R}^n are eigenvectors of \mathbf{I} .

Eigenvalues and Eigenvectors: Useful Properties

Commonly used properties of eigenvalues and eigenvector

- ullet A matrix **A** and its transpose \mathbf{A}^T
 - but **not necessarily** the same eigenvectors.
- The eigenspace E_{λ} is the null space of $\mathbf{A} \lambda \mathbf{I}$ since

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \iff \mathbf{A}\mathbf{x} - \lambda\mathbf{x} = 0 \tag{21}$$

$$\iff (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{22}$$

$$\iff \mathbf{x} \in ker(\mathbf{A} - \lambda \mathbf{I})$$
 (23)

Eigenvalues and Eigenvectors: Useful Properties

Commonly used properties of eigenvalues and eigenvector

- Similar matrices possess the same eigenvalues.
 - ▶ Therefore, a linear mapping Φ has eigenvalues that are independent of the choice of basis of its transformation matrix.
 - So we know have three key characteristic parameters of a matrix that are independent of the choice of basis:
 - * eigenvalues
 - ★ determinant
 - ★ trace
- Symmetric, positive definite matrices always have positive, real eigenvalues.