HIGHER KAC-MOODY

BW: Everything here is essentially in Kapranov, Hennion, ...

1. THE LOCAL LIE ALGEBRA

Let X be a fixed complex d-fold and let $\mathfrak g$ be a Lie algebra. (We assume it is an ordinary Lie algebra, but slight modifications will allow one to handle dg Lie or L_∞ algebras.) For each open set $U \subset X$ define

$$\mathfrak{g}^X(U) = \Omega^{0,*}(U) \otimes \mathfrak{g}.$$

The $\bar{\partial}$ differential for U extended naturally to $\mathfrak{g}^X(U)$ by $\bar{\partial}\otimes 1$. Moreover, $\mathfrak{g}^X(U)$ has a natural Lie bracket defined by the rule

$$[\omega \otimes X, \omega' \otimes X'] = \omega \wedge \omega' \otimes [X, X']_{\mathfrak{g}}$$

where $[-,-]_{\mathfrak{g}}$ is the Lie bracket for \mathfrak{g} . Thus, $\mathfrak{g}^X(U)$ has the structure of a dg-Lie algebra.

Lemma 1.1. The assignment $\mathfrak{g}^X : U \mapsto \mathfrak{g}^X(U)$ defines a local Lie algebra.

1.1. **dg vs** L_{∞} . Suppose *V* is a dg vector space. Then, the symmetric algebra

$$\operatorname{Sym}(V) := \prod_{k} \operatorname{Sym}^{k}(V)$$

has the natural structure of a dg cocommutative coalgebra.

Definition 1.2. An L_{∞} algebra is a dg vector space V together with a coderivation

$$D: \operatorname{Sym}(V) \to \operatorname{Sym}(V)$$
.

A morphism of L_{∞} algebras $f:(V,D)\to (V',D')$ is a morphism of dg cocommutative coalgebras

$$f: (\operatorname{Sym}(V), D) \to (\operatorname{Sym}(V'), D')$$
.

Denote the category of L_{∞} algebras by L_{∞} Alg.

We may a remark about dg Lie algebras and their close relatives, L_{∞} algebras.

Theorem 1.3. BW: Kriz and May? Every L_{∞} algebra (V,D) is quasi-isomorphic (in the category L_{∞} Alg) to a dg Lie algebra.

By an L_{∞} algebra model for a dg Lie algebra \mathfrak{g} , we mean an L_{∞} algebra (L,D) together with a quasi-isomorphism $(L,D) \simeq \mathfrak{g}$.

Suppose \mathfrak{g} is a dg Lie algebra. Let $\theta \in C^*_{\text{Lie}}(\mathfrak{g})$ be a cocycle of degree 2, so its cohomology class is an element $[\theta] \in H^2_{\text{Lie}}(\mathfrak{g})$. By BW: ref, we know that θ determines a central extension in the category of dg Lie algebras:

$$0 \to \mathbb{C} \cdot K \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

that only depends, up to isomorphism, on the cohomology class of θ .

The explicit dg Lie algebra structure on $\widehat{\mathfrak{g}}$ may be tricky to describe. However, if we are willing to work in the category of L_{∞} algebras, there is an explicit model for \mathfrak{g} as an L_{∞} algebra. The underlying dg vector space for the L_{∞} algebra is the same as that of the dg Lie algebra, $\widehat{\mathfrak{g}} \oplus \mathbb{C} \cdot K$. To equip this with an L_{∞} structure we need to provide a coderivation $D = D_1 + D_2 + \cdots$ for the cocommutative coalgebra $\operatorname{Sym}(\mathfrak{g} \oplus \mathbb{C} \cdot K) = \prod_k \operatorname{Sym}^k(\mathfrak{g} \oplus \mathbb{C} \cdot K)$. Indeed, we define

$$\begin{array}{lcl} D_1(X_1) & = & \mathrm{d}_{\mathfrak{g}}(X_1) + \theta(X_1) \\ D_2(X_1, X_2) & = & [X_1, X_2]_{\mathfrak{g}} + \theta(X_1, X_2) \\ D_k(X_1, \dots, X_k) & = & \theta(X_1, \dots, X_k) \ , \ \text{for} \ k \geq 3. \end{array}$$

One immediately checks that $(\mathfrak{g} \oplus \mathbb{C}, D)$ is an L_{∞} model for $\widehat{\mathfrak{g}}$.

Example 1.4. As an example, consider the following L_{∞} model for the dg Lie algebra $\widehat{\mathfrak{g}}_{d,\theta}$. As a dg vector space $\widehat{\mathfrak{g}}_{d,\theta}$ is of the form $A_d \otimes \mathfrak{g} \oplus \mathbb{C} \cdot K$. The only nonzero components of the coderivation determining the L_{∞} structure are D_1,D_2 , and D_{d+1} and they are determined by $D_1(aX) = (\bar{\partial}a)X$, $D_2(aX,bY) = (a \wedge b)[X,Y]_{\mathfrak{g}}$, and

$$D_{d+1}(a_0X_0,\ldots,a_dX_d) = \mathop{\rm Res}_{z=0} \left(a_0 \wedge \partial a_1 \wedge \cdots \wedge \partial a_d\right) \theta(X_0,\ldots,X_d) \cdot K.$$

2. LOCAL COCYCLES FROM POLYNOMIALS

Being a local Lie algebra we can consider its local Chevalley-Eilenberg complex. It defined as

$$C^*_{loc}(\mathfrak{g}^X) =$$

Recall, a local k-cocycle of a local Lie algebra determines a (k-2)-shifted central extension, by the constant sheaf $\underline{\mathbb{C}}$. We are interested in (-1)-shifted central extensions, and hence, local 1-cocycles. For \mathfrak{g}^X we can describe such a family of 1-cocycles.

Let P be an invariant polynomial of $\mathfrak g$ of homogenous degree d+1. That is, $P \in \operatorname{Sym}^{d+1}(\mathfrak g^{\vee})^{\mathfrak g}$. We can extend P to a functional on $\Omega^{0,*}(X) \otimes \mathfrak g$ by the rule

$$P^X: \quad \operatorname{Sym}^{d+1}(\Omega^{0,*}(X) \otimes \mathfrak{g}) \to \mathbb{C}$$
$$(\omega_1 \otimes X_1, \dots, \omega_{d+1} \otimes X_{d+1}) \mapsto (\omega_1 \wedge \dots \wedge \omega_{d+1}) P(X_1, \dots, X_{d+1})$$

Proposition 2.1. The assignment

$$J: \operatorname{Sym}^{d+1}(\mathfrak{g}^{\vee})^{\mathfrak{g}}[-1] \to C_{\operatorname{loc}}^*(\mathfrak{g}^X)$$

sending and invariant polynomial P, of homogeneous degree d + 1, to the local functional

$$(\alpha_1,\ldots,\alpha_{d+1})\mapsto \int P^X(\alpha_1,\partial\alpha_2,\ldots,\partial\alpha_{d+1})$$

is a cochain map. Moreover, it is injective at the level of cohomology.

Remark 2.2. We extend the operator $\partial: \Omega^{k,l} \to \Omega^{k+1,l}$ to $\Omega^{0,*}(X) \otimes \mathfrak{g} \to \Omega^{1,*}(X) \otimes \mathfrak{g}$ by the operator $\partial \otimes 1$.

3. THE FACTORIZATION ALGEBRA

Given any cocycle $\theta \in C^*_{loc}(\mathfrak{g}^X)$ of degree one we define a factorization algebra on X.

Definition 3.1. Let θ be a local cocycle of \mathfrak{g}^X of cohomological degree one. Define $KM_{\mathfrak{g},\theta}^X$ to be the factorization algebra on X that assigns to an open set $U \subset X$ the cochain complex $C_*^{Lie,\theta}\left(\mathfrak{g}^X(U)\right)$. In other words, $KM_{\mathfrak{g},\theta}^X$ is the twisted factorization envelope $U_{\theta}^{fact}(\mathfrak{g}^X)$.

Explicitly, on an open set $U\subset X$, the cochain complex $\mathrm{KM}_{\mathfrak{g},\theta}^X(U)$ has as its underlying graded vector space

$$\operatorname{Sym}\left(\mathfrak{g}_{c}^{X}(U)[1]\oplus\mathbb{C}\cdot K\right)$$

and the differential is given by $\bar{\partial} + d_{\mathfrak{g}} + \theta$ where $d_{\mathfrak{g}}$ is the extension of the Chevalley-Eilenberg differential for \mathfrak{g} to the Dolbeault complex, and where θ is extended to the full symmetric algebra by the rule that it is a (graded) derivation.

Example 3.2. As an example, using the map J of Proposition 2.1, we can construct a factorization algebra on X for any invariant polynomial $P \in \operatorname{Sym}^{d+1}(\mathfrak{g}^{\vee})^{\mathfrak{g}}$. Since j is injective, we obtain a unique factorization algebra for every such polynomial, hence it makes sense to denote $\operatorname{KM}_{\mathfrak{g},P}^X := \operatorname{KM}_{\mathfrak{g},i(P)}^X$.

4. HIGHER LOOP ALGEBRAS

In this section we restrict to the complex manifold $X = \mathbb{C}^d$. We will extract from the Kac-Moody factorization algebra on \mathbb{C}^d an associative algebra...

4.1. **A model for the annulus.** Recall, the polydisk centered at $z \in \mathbb{C}^d$ of radius r was defined to be the following open subset

$$PD_r^d(z) = \{(w_1, ..., w_d) \in \mathbb{C}^d \mid |w_i - z_i| < r\} \subset \mathbb{C}^d.$$

For $z \in \mathbb{C}^d$, and $0 < r < R < \infty$ define the following open subset

$$A_{r< R}^d(z) = PD_R^d(z) \setminus \overline{PD_r^d(z)}$$

We think of this as a model for the *d*-dimensional annulus. When z = 0 we simply denote this by $A_{r < R}^d$.

We will need a convenient model for the Dolbeault complex $\Omega^{0,*}(A^d_{r< R})$ of this d-dimensional annulus. For d=1 the $\bar{\partial}$ -cohomology of $A^d_{r< R}$ is concentrated in degree zero (in fact, any open subset of $\mathbb C$ is Stein).

For d > 1, the $\bar{\partial}$ -cohomology of $A^d_{r < R}$ is concentrated in degrees 0 and d - 1. In degree zero, of course, $H^0_{\bar{\partial}}(A^d_{r < R})$ is identified with holomorphic functions on $A^d_{r < R}$. In degree d - 1 ...

There is a natural action of the *d*-dimensional torus $(S^1)^d = S^1 \times \cdots \times$ on $A_{r < R}$ given by rotating each coordinate:

$$(\lambda_1,\ldots,\lambda_d)\cdot(z_1,\ldots,z_d)=(\lambda_1z_1,\ldots,\lambda_dz_d).$$

We obtained an induced action of S^1 via the diagonal embedding $S^1 \to S^1 \times \cdots \times S^1$. This induces an action on the Dolbeault complex of $A^d_{r < R}$. Let

$$\left(\Omega^{0,*}(A^d_{r< R})\right)^{(k)}\subset\Omega^{0,*}(A^d_{r< R})$$

denote the weight *k* subspace.

BW: Recall Jouanolou model, denoted A_d .

There is a map of commutative dg algebras

$$j: A_d \to \Omega^{0,*}(\mathbb{C}^d \setminus 0).$$

If $a \in A_d$ we will denote the resulting element in the Dolbeault complex of $\mathbb{C}^d \setminus 0$ by a(z) := j(a).

4.2. First we will consider the higher Kac-Moody factorization algebra on \mathbb{C}^d "at level zero". That is, the factorization algebra $KM_{\mathfrak{g},0}^{\mathbb{C}^d}$. There is a natural way to obtain an associative algebra out of this factorization algebra. Namely, we look at its restriction to $\mathbb{C}^d \setminus 0$ and consider the radial projection map

$$\mathrm{rad}:\mathbb{C}^d\setminus 0 \to \mathbb{R}_{>0}$$

sending $z=(z_1,\ldots,z_d)$ to $|z|=\sqrt{|z_1|^2+\cdots+|z_d|^2}$. We obtain a factorization algebra on $\mathbb{R}_{>0}$ via pushing forward the higher Kac-Moody factorization algebra $\mathrm{rad}_*\mathrm{KM}_{\mathfrak{g},0}^{\mathbb{C}^d\setminus 0}$. Explicitly, to an open set $I\subset\mathbb{R}_{>0}$ it assigns the dg vector space

$$C^{\operatorname{Lie}}_*\left(\Omega^{0,*}_c(\operatorname{rad}^{-1}(I))\otimes\mathfrak{g})\right).$$

When $I = (-\epsilon, \epsilon) \subset \mathbb{R}_{>0}$ is an interval, the subset $\operatorname{rad}^{-1}(I) \subset \mathbb{C}^d$ is an ϵ -neighborhood of the 2d-1 sphere. It is homeomorphic to $S^{2d-1} \times (-\epsilon, \epsilon)$.

We wish to compare this one-dimensional factorization algebra to the higher loop Lie algebra we described above, $A_d \otimes \mathfrak{g}$. Consider the associative algebra given by the universal enveloping algebra of this dg Lie algebra $U(A_d \otimes \mathfrak{g})$. BW: define We construct a map of factorization algebras on $\mathbb{R}_{>0}$ from the factorization algebra corresponding to the associative algebra $U(A_d \otimes \mathfrak{g})$ to $\mathrm{rad}_*\mathrm{KM}_{\mathfrak{g},0}^{\mathbb{C}^d \setminus 0}$.

Let $I \subset \mathbb{R}_{>0}$ be an open subset. There is the natural map $\operatorname{rad}^*: \Omega^*_c(I) \to \Omega^*_c(\operatorname{rad}^{-1}(I))$ sending a form φ to the pull-back $\operatorname{rad}^* \varphi$. We can post-compose this with the natural projection $\operatorname{pr}_{\Omega^{0,*}}: \Omega^*_c \to \Omega^{0,*}_c$ to obtain a map of commutative algebras $\operatorname{pr}_{\Omega^{0,*}} \circ \operatorname{rad}^*: \Omega^*_c(I) \to \Omega^{0,*}_c(\operatorname{rad}^{-1}(I))$. Now, consider the map

$$\begin{split} \Phi = \left(\mathrm{pr}_{\Omega^{0,*}} \circ \mathrm{rad}^* \right) \otimes j : & \; \; \Omega_c^*(I) \otimes A_d \quad \rightarrow \quad \quad \Omega_c^{0,*} \left((\rho^{-1}(I) \right) \\ & \; \; \varphi \otimes a \quad \quad \mapsto \quad \left(\left(\mathrm{pr}_{\Omega^{0,*}} \circ \mathrm{rad}^* \right) \varphi \right) \wedge j(a) \end{split}$$

Since this is a map of commutative dg algebras it defines a map of dg Lie algebras

$$\Phi \otimes \mathrm{id}_{\mathfrak{g}} : (\Omega_{c}^{*}(I) \otimes A_{d}) \otimes \mathfrak{g} = \Omega_{c}^{*}(I) \otimes (A_{d} \otimes \mathfrak{g}) \to \Omega^{0,*}(\mathrm{rad}^{-1}(I)) \otimes \mathfrak{g}$$

which maps $\varphi \otimes a \otimes X \mapsto \Phi(\varphi \otimes a) \otimes X$. BW: Explicitly... . We will drop the $\mathrm{id}_{\mathfrak{g}}$ from the notation and will denote this map simply by Φ . Clearly, this map is compatible with inclusions and hence extends to a map of cosheaves of dg Lie algebras

$$\Phi: \Omega^*_{\mathbb{R}_{>0},c} \otimes (A_d \otimes \mathfrak{g}) \to \operatorname{rad}_*(\Omega^{0,*}_{\mathbb{C}^d \setminus 0,c} \otimes \mathfrak{g}).$$

BW: factorization Lie algebras

Proposition 4.1. The map Φ is a map of factorization Lie algebras on $\mathbb{R}_{>0}$. Hence, it induces a map of factorization algebras

$$C_*(\Phi): (U(A_d \otimes \mathfrak{g}))^{fact} \to \operatorname{rad}_*\left(\operatorname{KM}_{\mathfrak{g},0}^{C^d}|_{\mathbb{C}^d \setminus 0}\right).$$

Theorem 4.2. There is a map of factorization algebras on $\mathbb{R}_{>0}$

$$(U\widehat{\mathfrak{g}}_{d,\theta})^{fact} \to \operatorname{rad}_*\left(\operatorname{KM}_{\mathfrak{g},\theta}^{\mathbb{C}^d}|_{\mathbb{C}^d\setminus 0}\right).$$

Moreover, its image is quasi-isomorphic to the subfactorization algebra consisting of the S^1 -eigenspaces

$$\mathcal{A}_{d,\mathfrak{g},\theta} := \bigoplus_{k \in \mathbb{Z}} \mathrm{rad}_* \left(\mathrm{KM}_{\mathfrak{g},\theta}^{\mathbb{C}^d}|_{\mathbb{C}^d \setminus 0} \right)^{(k)} \subset \mathrm{rad}_* \left(\mathrm{KM}_{\mathfrak{g},\theta}^{\mathbb{C}^d}|_{\mathbb{C}^d \setminus 0} \right).$$

We will write down a sequence of maps of factorization Lie algebras

First, we introduce the factorization Lie algebra $\mathfrak{G}_0 := \Omega_{\mathbb{R},c}^* \otimes \widehat{\mathfrak{g}}_{d,\theta}$. To an open set $I \subset \mathbb{R}$, it assigns the dg Lie algebra $\mathfrak{G}_0(I) = \Omega_c^*(I) \otimes \widehat{\mathfrak{g}}_{d,\theta}$. The differential and Lie bracket are determined by the fact that we are tensoring a commutative dg algebra with a dg Lie algebra. This factorization Lie algebra is a central extension of the factorization Lie algebra $\Omega_{\mathbb{R},c}^* \otimes (A_d \otimes \mathfrak{g})$ by the trivial module $\Omega_c^* \oplus \mathbb{C} \cdot K$. The cocycle determining the central extension is given by

$$\theta_0(\varphi_0\alpha_0,\ldots,\varphi_d\alpha_d)=(\varphi_0\wedge\cdots\wedge\varphi_d)\theta_{A_d}(\alpha_1,\ldots,\alpha_d).$$

A slight variant of Proposition 3.4.0.1 in [?] shows that there is a quasi-isomorphism of factorization algebras on $\mathbb R$

$$(U\widehat{\mathfrak{g}}_{d,\theta})^{fact} \xrightarrow{\simeq} C_*^{\text{Lie}}(\mathfrak{G}_0).$$

We define the factorization dg Lie algebra \mathcal{G}_1 on \mathbb{R} . First, consider the factorization dg Lie algebra on \mathbb{R} given by $\Omega_{\mathbb{R},c}^* \otimes (A_d \otimes \mathfrak{g})$. This assigns to an open set $I \subset \mathbb{R}$ the dg Lie algebra $\Omega_c^*(I) \otimes (A_d \otimes \mathfrak{g})$. Equivalently, this is the compactly supported sections of the local Lie algebra $\Omega_{\mathbb{R}}^* \otimes (A_d \otimes \mathfrak{g})$.

The factorization dg Lie algebra \mathcal{G}_1 is a central extension of $\Omega^*_{\mathbb{R}.c}\otimes (A_d\otimes \mathfrak{g})$

$$0 \to \mathbb{C} \cdot K[-1] \to \mathcal{G}_1 \to \Omega^*_{\mathbb{R}} \otimes (A_d \otimes \mathfrak{g}) \to 0$$

determined by the following cocycle. For an open interval I write $\varphi_i \in \Omega_c^*(I)$, $\alpha_i \in A_d \otimes \mathfrak{g}$. The cocycle is defined by

(1)
$$\theta_1(\varphi_0\alpha_0,\ldots,\varphi_d\alpha_d) = \left(\int_I \varphi_0 \wedge \cdots \varphi_d\right) \theta_{A_d}(\alpha_0,\ldots,\alpha_d)$$

Recall, if we write $\alpha_i = a_i X_i$ for $a_i \in A_d$, $X_i \in \mathfrak{g}$ the cocycle θ_{A_d} is given by

$$\theta_{A_d}(a_0X_0,\ldots,a_dX_d) = \mathop{\mathrm{Res}}\limits_{z=0}\left(a_0 \wedge \partial a_1 \wedge \cdots \wedge \partial a_d\right)\theta(X_0,\ldots,X_d).$$

The functional θ_1 actually determines a local cocycle in $C^*_{loc}(\Omega^*_{\mathbb{R}} \otimes (A_d \otimes \mathfrak{g}))$ of degree one. As above, if We define a map of factorization Lie algebras $\Phi_1: \mathcal{G}_0 \to \mathcal{G}_1$. On and open set $I \subset \mathbb{R}$, we define

$$\Phi_1(\varphi\alpha,\psi K) = \left(\varphi\alpha, \int \psi \cdot K\right)$$

For a fixed open set $I \subset \mathbb{R}$, the map Φ_1 fits into the commutative diagram of short exact sequences

$$0 \longrightarrow \Omega_{c}^{*}(I) \otimes \mathbb{C} \cdot K \longrightarrow \mathfrak{G}_{0}(I) \longrightarrow \Omega_{c}^{*}(I) \otimes (A_{d} \otimes \mathfrak{g}) \longrightarrow 0$$

$$\downarrow \int \qquad \qquad \downarrow \Phi_{1} \qquad \qquad \parallel$$

$$0 \longrightarrow \mathbb{C} \cdot K[-1] \longrightarrow \mathfrak{G}_{1}(I) \longrightarrow \Omega_{c}^{*}(I) \otimes (A_{d} \otimes \mathfrak{g}) \longrightarrow 0.$$

To see that Φ_1 is a map of dg Lie algebras we simply observe that the cocycles determining the central extensions are related by $\theta_1 = \int \circ \theta_0$, where $\int : \Omega_c^*(I) \to \mathbb{C}$ as in the diagram above.

We now define the factorization dg Lie algebra \mathfrak{G}'_1 . Like \mathfrak{G}_1 , it is a central extension of $\Omega^*_{\mathbb{R},c} \otimes (A_d \otimes \mathfrak{g})$. The cocycle determining the central extension is defined by

$$\theta_1'(\varphi_0 a_0 X_0, \ldots, \varphi_d a_d X_d) = \theta_1(\varphi_0 a_0 X_0, \ldots, \varphi_d a_d X_d) + \widetilde{\theta}_1(\varphi_0 a_0 X_0, \ldots, \varphi_d a_d X_d)$$

where θ_1 was defined in Equation (1). Before writing down the explicit formula for $\widetilde{\theta}_1$ we introduce some notation. Set

$$E = r \frac{\partial}{\partial r'},$$
$$d\vartheta = \sum_{i} \frac{dz_{i}}{z_{i}}.$$

We view *E* as a vector field on $\mathbb{R}_{>0}$ and $d\vartheta$ as a (1,0)-form on $\mathbb{C}^d \setminus 0$. The functional

$$\widetilde{\theta}_1(\varphi_0 a_0 X_0, \dots, \varphi_d a_d X_d) = \frac{1}{2} \sum_{i=1}^d \left(\int_I \varphi_0(E \cdot \varphi_i) \varphi_1 \cdots \widehat{\varphi_i} \cdots \varphi_d \right) \left(\oint (a_0 a_i d\vartheta) \, \partial a_1 \cdots \widehat{\partial a_i} \cdots \partial a_d \right) \theta(X_0, \dots, X_d).$$

The functional $\widetilde{\theta}$ defines a local functional in $C^*_{loc}\left(\Omega^*_{\mathbb{R}_{>0}}\otimes (A_d\otimes \mathfrak{g})\right)$ of cohomological degree one. One immediately checks that it is a cocycle.

In fact, we will show that $\hat{\theta}_1$ is actually an exact cocycle. We will see this by displaying an explicit cobounding functional. Define the local functional

$$\eta(\varphi_0 a_0 X_0, \dots, \varphi_d a_d X_d) = \sum_{i=1}^d \left(\int_I \varphi_0(\iota_E \varphi_i) \varphi_1 \cdots \widehat{\varphi_i} \cdots \varphi_d \right) \left(\oint (a_0 a_i d\vartheta) \partial a_1 \cdots \widehat{\partial a_i} \cdots \partial a_d \right) \theta(X_0, \dots, X_d).$$

Lemma 4.3. One has $d\eta = \widetilde{\theta}_1$, where d is the differential for the cochain complex $C^*_{loc}(\Omega^*_{\mathbb{R}_{>0}} \otimes (A_d \otimes \mathfrak{g}))$. In particular, the factorization Lie algebras \mathfrak{G}_1 and \mathfrak{G}'_1 are quasi-isomorphic. An explicit quasi-isomorphism is given by BW:

Finally, we define the factorization Lie algebra \mathcal{G}_2 . We have already seen that the local cocycle $J(\theta) \in C^*_{loc}(\mathfrak{g}^{C^d})$ determines a central extension of factorization Lie algebras

$$0 \to \mathbb{C} \cdot K[-1] \to \mathcal{G}_{J(\theta)} \to \Omega^{0,*}_{\mathbb{C}^d,c} \otimes \mathfrak{g} \to 0.$$

Of course, we can restrict $\mathcal{G}_{J(\theta)}$ to a factorization algebra on $\mathbb{C}^d \setminus 0$. The factorization algebra \mathcal{G}_2 is defined as the pushforward of this restriction along the radial projection: $\mathcal{G}_2 := \operatorname{rad}_* \left(\mathcal{G}_{J(\theta)}|_{\mathbb{C}^d \setminus 0} \right)$.

Recall the map $\Phi: \Omega^*_{\mathbb{R}_{>0},c} \otimes (A_d \otimes \mathfrak{g}) \to \operatorname{rad}_*(\Omega^{0,*}_{\mathbb{C}^d \setminus 0,c} \otimes \mathfrak{g})$ defined in BW: ref. On each open set $I \subset \mathbb{R}_{>0}$ we can extend Φ by the identity on the central element to a linear map $\Phi_2: \mathfrak{G}'_1(I) \to \mathfrak{G}_2(I)$.

Lemma 4.4. The map $\Phi_2: \mathcal{G}_1'(I) \to \mathcal{G}_2(I)$ is a map of dg Lie algebras. Moreover, it extends to a map of factorization Lie algebras $\Phi_2: \mathcal{G}_1' \to \mathcal{G}_2$.

Proof. Modulo the central element Φ_2 reduces to the map Φ , which we have already seen is a map of factorization Lie algebras in Proposition BW: ref. Thus, to show that Φ_2 is a map of factorization Lie algebras we need to show that it is compatible with the cocycles determing the respective central extensions. That is, we need to show that

(2)
$$\theta_1'(\varphi_0 a_0 X_0, \dots, \varphi_d a_d X_d) = \theta_2(\Phi(\varphi_0 a_0 X_0), \dots, \Phi(\varphi_d a_d X_d))$$

for all $\varphi_i a_i X_i \in \Omega_c^*(I) \otimes (A_d \otimes \mathfrak{g})$. The cocycle θ_1' is only nonzero if one of the φ_i inputs is a 1-form. We evaluate the left-hand side on the (d+1)-tuple $(\varphi_0 dr a_0 X_0, \varphi_1 a_1 X_1, \dots, \varphi_d a_d X_d)$ where $\varphi_i \in C_c^{\infty}(I)$, $a_i \in A_d$, $X_i \in \mathfrak{g}$ for $i = 0, \dots, d$. The result is

(3)
$$\left(\int_{I} \varphi_{0} \cdots \varphi_{d} dr \right) \left(\oint a_{0} \partial a_{1} \cdots \partial a_{d} \right) \theta(X_{0}, \dots, X_{d})$$

$$(4) + \frac{1}{2} \sum_{i=1}^{d} \left(\int_{I} \varphi_{0}(E \cdot \varphi_{i}) \varphi_{1} \cdots \widehat{\varphi_{i}} \cdots \varphi_{d} dr \right) \left(\oint \left(a_{0} a_{i} d\vartheta \right) \partial a_{1} \cdots \widehat{\partial a_{i}} \cdots \partial a_{d} \right) \theta(X_{0}, \dots, X_{d})$$

We wish to compare this to the right-hand side of Equation (2). Recall that $\Phi(\varphi_0 dr a_0 X_0) = \varphi(r) dr a_0(z) X_0$ and $\Phi(\varphi_i a_i X_i) = \varphi(r) a_i(z) X_i$. Plugging this into the explicit formula for the cocycle θ_2 we see the right-hand side of (2) is

$$\left(\int_{\operatorname{rad}^{-1}(I)} \varphi_0(r) dr a_0(z) \partial(\varphi_1(r) a_1(z)) \cdots \partial(\varphi_d(r) a_d(z))\right) \theta(X_0, \dots, X_d).$$

We pick out the term in (5) in which the ∂ operators only act on the elements $a_i(z)$, i = 1, ..., d. This term is of the form

$$\int_{\operatorname{rad}^{-1}(I)} \varphi_0(r) \cdots \varphi_d(r) dr a_0(z) \partial(a_1(z)) \cdots \partial(a_d(z)) \theta(X_0, \dots, X_d).$$

Separating variables we find that this is precisely the first term (3) in the expansion of the left-hand side of (2).

Now, note that we can rewrite the d-operator in terms of the radius r as

$$\partial = \sum_{i=1}^d \mathrm{d} z_i rac{\partial}{\partial z_i} = \sum_{i=1}^d \mathrm{d} z_i \overline{z}_i rac{\partial}{\partial (r^2)} = \sum_{i=1}^d \mathrm{d} z_i rac{r^2}{2z_i} rac{\partial}{\partial r}.$$

The remaining terms in (5) correspond to the expansion of

$$\partial(\varphi_1(r)a_1(z))\cdots\partial(\varphi_d(r)a_d(z)),$$

using the Leibniz rule, for which the ∂ operators act on at least one of the functions $\varphi_1, \ldots, \varphi_d$. In fact, only terms in which ∂ acts on precisely one of the functions $\varphi_1, \ldots, \varphi_d$ will be nonzero. For instance, consider the term

(6)
$$(\partial \varphi_1)a_1(z)(\partial \varphi_2)a_2(z)\partial(\varphi_3(z)a_3(z))\cdots\partial(\varphi_d(z)a_d(z)).$$

Now, $\partial \varphi_i(r) = \omega \frac{\partial \varphi}{\partial r}$ where ω is the one-form $\sum_i (r^2/2z_i) dz_i$. Thus, (6) is equal to

$$\left(\omega \frac{\partial \varphi_1}{\partial r}\right) a_1(z) \left(\omega \frac{\partial \varphi_2}{\partial r}\right) a_2(z) \partial(\varphi_3(z) a_3(z)) \cdots \partial(\varphi_d(z) a_d(z),$$

which is clearly zero as ω appears twice.

We observe that terms in the expansion of (5) for which ∂ acts on precisely one of the functions $\varphi_1, \ldots, \varphi_d$ can be written as

$$\sum_{i=1}^{d} \int_{\operatorname{rad}^{-1}(I)} \varphi_0(r) \left(r \frac{\partial}{\partial r} \varphi_i(r) \right) \varphi_1(r) \cdots \widehat{\varphi_i(r)} \cdots \varphi_d(r) dr \frac{r}{2z_i} dz_i a_0(z) a_i(z) \partial a_1(z) \cdots \widehat{\partial a_i(z)} \cdots \partial a_d(z).$$

Finally, notice that the function $z_i/2r$ is independent of the radius r. Thus, separating variables we find the integral can be written as

$$\frac{1}{2} \sum_{i=1}^{d} \left(\int_{I} \varphi_{0} \left(r \frac{\partial}{\partial r} \varphi_{i} \right) \varphi_{1} \cdots \widehat{\varphi_{i}} \cdots \varphi_{d} dr \right) \left(\oint \frac{dz_{i}}{z_{i}} a_{0} a_{i} \partial a_{2} \cdots \widehat{\partial a_{i}} \cdots \partial a_{d} \right).$$

This is precisely equal to the second term (4) above. Hence, the cocycles are compatible and the proof is complete.

5. MODULI SPACES

6. The determinant line

Let V be a representation of the Lie group G. There is an associate determinant line bundle on $\operatorname{Bun}_G(X)$ constructed as follows. Consider the universal G-bundle $\operatorname{Bun}_G(X)$ on $X \times \operatorname{Bun}_G(X)$. We can form the vector bundle $\operatorname{V}_{\operatorname{Bun}} = \operatorname{Bun}_G(X) \times^G \operatorname{V}$ on $X \times \operatorname{Bun}_G(X)$. Denote the projection $\pi: X \times \operatorname{Bun}_G(X) \to \operatorname{Bun}_G(X)$. The determinant line bundle associated to V is the line bundle on $\operatorname{Bun}_G(X)$ defined by

$$\theta_V := \det \left(\mathbb{R} \pi_* \mathcal{V}_{\mathcal{B}un} \right).$$

For $x \in X$, denote by $\theta_{V,x}$ the pull-back of this line bundle along the map $\operatorname{Bun}_G(X,x) \to \operatorname{Bun}_G(X)$.

Theorem 6.1. There is an action of the dg Lie algebra $\widehat{\mathfrak{g}}_{\operatorname{ch}_{d+1}(V),x}$ by infinitesimal symmetries on $\operatorname{Tot}(\theta_{V,x})$, where $\operatorname{Tot}(\theta_{V,x})$ is the total space of the determinant line bundle associated to V. Moreover, this action is compatible with the action of \mathfrak{g}_x on $\operatorname{Bun}_G(X,x)$.

We will obtain a formal version of this result from the point of view of equivariant BV quantization. It will follow from a local version of Grothendieck–Riemann–Roch that we will obtain in terms of explicit Feynman diagrammatics.

To state the result we need to introduce the following BV theory. As above we fix a \mathfrak{g} -module V. Consider the following elliptic complex $\Omega^{0,*}(X)\otimes V$ with differential given by $\bar{\partial}\otimes 1$. One readily observes that the assignment $U\subset X\mapsto \Omega^{0,*}(U)\otimes V$ has the structure of an elliptic moduli problem as defined in [?]. Inasmuch, we can defined the associated *cotangent theory* $\mathcal{E}_V^X=T^*[-1](\Omega_X^{0,*}\otimes V)$. This is the classical BV theory; it's action functional can be described explicitly as follows. Label the fields with respect to the obvious decomposition of the shifted cotangent bundle as

$$\begin{array}{lcl} (\gamma,\beta) & \in & \left(\Omega^{0,*}(X) \otimes V\right) \oplus \left(\Omega^{0,*}(X) \otimes V\right)^! [-1] \\ & \cong & \left(\Omega^{0,*}(X) \otimes V\right) \oplus \left(\Omega^{d,*}(X) \otimes V^{\vee}\right) [d-1]. \end{array}$$

The action functional is

$$S^V(\gamma, \beta) = \int \langle \beta, \overline{\partial} \gamma \rangle_V$$

where $\langle -, - \rangle_V$ is the extension of the dual pairing between V and V^{\vee} to Dolbeault forms.

Proposition 6.2. *There is map of factorization algebras on X*

$$\Phi^{\mathrm{q}}:\mathrm{KM}^{\mathrm{X}}_{\mathfrak{g},\mathrm{ch}_{d+1}(V)} o\mathrm{Obs}^{\mathrm{q}}_{V}$$

which, when ...

6.0.1. The action of $\mathfrak g$ on V extends to an action of the local Lie algebra $\mathfrak g^X$ on the classical theory $\mathcal E_V^X$. In Chapter 14 of [?] it is shown that such an action is equivalent to a Maurer-Cartan element in the dg Lie algebra $C^*_{loc}(\mathfrak g^X) \otimes \mathcal O_{loc}(\mathcal E_V^X)[-1]$. Here, the dg Lie algebra structure is obtained by tensoring the dg Lie algebra structure on $\mathcal O_{loc}(\mathcal E_V^X)[-1]$ given by the BV bracket with the commutative algebra $C^*_{loc}(\mathfrak g^X)$. Thus, we have an element

$$I^{\mathfrak{g}} \in C^*_{\mathrm{loc}}(\mathfrak{g}^X) \otimes \mathcal{O}_{\mathrm{loc}}(\mathcal{E}^X_V)[-1]$$

that encodes the action of \mathfrak{g}^X on \mathcal{E}_V^X . Explicitly, the Maurer-Cartan equation reads

$$\overline{\partial} I^{\mathfrak{g}} + d_{\mathfrak{g}} I^{\mathfrak{g}} + \frac{1}{2} \{ I^{\mathfrak{g}}, I^{\mathfrak{g}} \} = 0.$$

The result about factorization algebras above is a consequence of an explicit calculation of the anomaly to having an inner action of g^X at the quantum level.

Proposition 6.3. The anomaly to having a quantum inner action of \mathfrak{g}^X on \mathcal{E}_V^X is a local cocycle $\Theta_V^X \in C^*_{loc}(\mathfrak{g}^X)$ of degree one. Moreover, with respect to the map j of Proposition 2.1 we have an identification $\Theta_V^X = aj\left(\operatorname{ch}_{d+1}^{\mathfrak{g}}(V)\right)$ for some nonzero complex number a. BW: need to nail down a.

First, we reduce this result to a calculation on $X=\mathbb{C}^d$. First, we consider the following general situation. A result of [?] states that the space of BV-theories on a fixed manifold X form a sheaf. In particular, a fixed BV theory \mathcal{E}^X on X can be enhanced to a sheaf of BV theories $\mathcal{E}^X:U\subset X\mapsto \mathcal{E}^U$. Suppose \mathcal{L} is a local Lie algebra on X that acts on \mathcal{E}^X . In particular, for each open set $U\subset X$ we have a local Lie algebra \mathcal{L}^U that acts on the BV theory \mathcal{E}^U .

Now, suppose we have an inclusion of open sets $i_U^V: U \subset V$ in X. There is an induced map of complexes $(i_U^V)^*: C^*_{loc}(\mathcal{L}^V) \to C^*_{loc}(\mathcal{L}^U)$.

Lemma 6.4. Let Θ^U be the obstruction to having a quantum inner action of \mathcal{L}^U on \mathcal{E}^U . Likewise, define Θ^V . The obstructions satisfy $(i_U^V)^*(\Theta^V) = \Theta^U$.

7. HIGHER VERTEX ALGEBRAS