Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial

Departamento de Matemática Universidade da Beira Interior

Matemática Computacional

Tabela de Conteúdos - Capítulo 6

Questão 6.1 Questão 6.2 Questão 6.3 Questão 6.4

Tabela de Conteúdos - Capítulo 6

Questão 6.1 Questão 6.2 Questão 6.3 Questão 6.4 Questão 6.5 Questão 6.6

6.1 Método dos Coeficientes Indeterminados

a) Determine o polinómio de terceiro grau da forma $y = ax^3 + bx^2 + cx + d$ que "passa" pelos pontos (1,10), (2,26), (-1,2) e (0,4), utilizando o método de eliminação de Gauss para o resolver.

6.1 Método dos Coeficientes Indeterminados

a) Determine o polinómio de terceiro grau da forma $y = ax^3 + bx^2 + cx + d$ que "passa" pelos pontos (1,10), (2,26), (-1,2) e (0,4), utilizando o método de eliminação de Gauss para o resolver.

b) A seguinte tabela corresponde à função $f(x) = \frac{1}{x}$

	Х	3.35	3.4	3.5	3.6
ĺ	f(x)	0.298507	0.294118	0.285714	0.277778

Encontre valores aproximados para f(3.44) utilizando a interpolação linear, quadrática e cúbica. Calcule o valor do erro para cada um dos casos.

Resolução

6.2 Polinómio Interpolador de Lagrange

a) Uma função g é conhecida exclusivamente através da tabela

X	-2	-1	1	2	3
g(x)	-16	0	2	0	4

i) Calcule uma estimativa de g(1.65), usando o polinómio interpolador de lagrange de grau 2.

6.2 Polinómio Interpolador de Lagrange

a) Uma função g é conhecida exclusivamente através da tabela

X	-2	-1	1	2	3
g(x)	-16	0	2	0	4

- i) Calcule uma estimativa de g(1.65), usando o polinómio interpolador de lagrange de grau 2.
 - ▶ Sugestão
- → Solução
- ▶ Resolução
- ii) Determine a melhor estimativa de g(1.65) que os dados permitem.
 - ▶ Sugestão

- ▶ Solução
- ▶ Resolução

6.2 Polinómio Interpolador de Lagrange

a) Uma função g é conhecida exclusivamente através da tabela

X	-2	-1	1	2	3
g(x)	-16	0	2	0	4

- i) Calcule uma estimativa de g(1.65), usando o polinómio interpolador de lagrange de grau 2.
 - ▶ Sugestão
- ► Solução
- ► Resolução
- ii) Determine a melhor estimativa de g(1.65) que os dados permitem.
 - Sugestão
- ▶ Solução
- ▶ Resolução
- **b)** Determine o polinómio de Lagrange, P(x), que passa pelos pontos (-3,1), (-2,2), (1,-1) e (3,10). Calcule P(0).
 - Sugestão

▶ Solução

Resolução

c) Determine aproximações de $cos(\frac{\pi}{8})$ usando os polinómios interpoladores de Lagrange de grau 2 e 4 no intervalo $[0,\pi]$. Compare os resultados obtidos e indique um majorante para o erro.

c) Determine aproximações de $cos(\frac{\pi}{8})$ usando os polinómios interpoladores de Lagrange de grau 2 e 4 no intervalo $[0,\pi]$. Compare os resultados obtidos e indique um majorante para o erro.

d) A seguinte tabela lista a população, em milhares de pessoas, de 1930 a 1980 num certo país.

Ano	1930	1940	1950	1960	1970	1
população	123.203	131.669	150.697	179.323	203.212	22

Utilize o polinómio de Lagrange para estimar a população no ano 1965.

▶ Resolução

e) O tempo t que um automóvel leva a passar de uma velocidade inicial, de 30 Km/h, para uma velocidade v, está descrito na seguinte tabela

v, Km/h				
t, s	0.0	1.8	4.3	9.4

Estime o tempo necessário para atingir 48 Km/h.

▶ Resolução

e) O tempo t que um automóvel leva a passar de uma velocidade inicial, de 30 Km/h, para uma velocidade v, está descrito na seguinte tabela

v, Km/h				
t, s	0.0	1.8	4.3	9.4

Estime o tempo necessário para atingir 48 Km/h.

- ▶ Sugestão
- ▶ Solução
- ► Resolução
- f) Determine o polinómio de Lagrange, de grau 2 em x e de grau 3 em y, interpolador da função $f(x,y) = -2y^3 + x^2 + 4y^2 3x 1$, no conjunto $(x,y) \in [0,1] \times [0,1]$.
 - ▶ Sugestã

- ▶ Solução
- ▶ Resolução

a) Suponha que é dada a seguinte tabela relativa à função $f(x) = \sqrt{x}$

Xi	1.00	1.01	1.02	1.03	1.04	1.05
$f(x_i)$	1.0000	1.0050	1.0100	1.0149	1.0189	1.0247

i) Construa a tabela da diferenças divididas.

a) Suponha que é dada a seguinte tabela relativa à função $f(x) = \sqrt{x}$

Xi	1.00	1.01	1.02	1.03	1.04	1.05
$f(x_i)$	1.0000	1.0050	1.0100	1.0149	1.0189	1.0247

- i) Construa a tabela da diferenças divididas.
 - ► Sugestão
- ▶ Solução
- ▶ Resolução
- ii) Determine uma aproximação para $\sqrt{1.005}$.
 - ▶ Sugestão
- ▶ Solução
- ▶ Resolução

a) Suponha que é dada a seguinte tabela relativa à função $f(x) = \sqrt{x}$

Xi	1.00	1.01	1.02	1.03	1.04	1.05
$f(x_i)$	1.0000	1.0050	1.0100	1.0149	1.0189	1.0247

- i) Construa a tabela da diferenças divididas.
 - ▶ Sugestão
- → Solução
- ► Resolução
- ii) Determine uma aproximação para $\sqrt{1.005}$.
 - ▶ Sugestão
- → Solução
- ▶ Resolução

- iii) Calcule o erro.
 - Sugest

▶ Solução

▶ Resolução

b) Seja f(x) dada pela seguinte tabela.

Xi	-2	0	2	4	6
$f(x_i)$	1	2	-1	2	3

Determine uma aproximação para o valor de f(-1.5) usando:

i) a fórmula interpoladora de Newton das diferenças divididas;

b) Seja f(x) dada pela seguinte tabela.

Xi	-2	0	2	4	6
$f(x_i)$	1	2	-1	2	3

Determine uma aproximação para o valor de f(-1.5) usando:

i) a fórmula interpoladora de Newton das diferenças divididas;

ii) a fórmula interpoladora de Newton das diferenças progressivas.

c) Dada a tabela de valores de uma determinada função real

X	0	1	2	4
y	2	2	3	6

 i) Determine o polinómio interpolador da função, de grau 2, usando a tabela das diferenças divididas, e calcule um majorante para o erro cometido.

c) Dada a tabela de valores de uma determinada função real

X	0	1	2	4
y	2	2	3	6

 i) Determine o polinómio interpolador da função, de grau 2, usando a tabela das diferenças divididas, e calcule um majorante para o erro cometido.

- ► Sugestão
- ▶ Solução
- ▶ Resolução
- ii) A partir do polinómio da alínea anterior, encontre o polinómio de grau 3 que interpola a função nos quatro pontos tabelados.
 - Sugestão

▶ Solução

▶ Resolução

c) Dada a tabela de valores de uma determinada função real

X	0	1	2	4
у	2	2	3	6

 Determine o polinómio interpolador da função, de grau 2, usando a tabela das diferenças divididas, e calcule um majorante para o erro cometido.

- ▶ Sugestão
- ► Solução
- ▶ Resolução

ii) A partir do polinómio da alínea anterior, encontre o polinómio de grau 3 que interpola a função nos quatro pontos tabelados.

- ▶ Sugestão
- ▶ Solução
- ▶ Resoluçã

iii) Indique a melhor estimativa de y(1.85), que os dados permitem.

Sugestão

Solução

Resolução

d) Num teste para determinar a elongação dum material em função da temperatura obtiveram-se os seguintes valores

Temperatura, ${}^{0}C$	70	78	83	90	95
Elongação, %	3	5	9	11	17

Preveja a elongação a obter se a temperatura for 80 °C.

d) Num teste para determinar a elongação dum material em função da temperatura obtiveram-se os seguintes valores

Temperatura,	0 <i>C</i>	70	78	83	90	95
Elongação,	%	3	5	9	11	17

Preveja a elongação a obter se a temperatura for 80^{-0} C.

- ► Sugestão
- ► Solução
- ► Resoluç

 e) A diferença de voltagem V que atravessa uma resistência para vários valores de corrente I foi medida e registada na tabela seguinte

1	0.25	0.75	1.25	1.5	2.0
V	-0.45	-0.60	0.70	1.88	6.0

Utilize a interpolação polinomial para estimar a voltagem para

- / = 1.1. → Sugestão
- ► Solução
- ▶ Resolução

f) Foi feito um teste para relacionar a tensão e a deformação numa barra de alumínio, tendo-se obtido os seguintes valores

Tensão	1	2	3	4	5	6	7	8	9	10	11	12
Deformação	2	4	6	6	6	7	8	7.5	7	7.5	8	7.5

Usando a interpolação determine o valor da deformação correspondente a uma tensão de 7.4. Indique uma estimativa do erro cometido.

► Resolução

a) Considere a tabela

X	-1	0	1
f(x)	0	1	0
f'(x)	0	0	0

a) Considere a tabela

X	-1	0	1
f(x)	0	1	0
f'(x)	0	0	0

- ▶ Sugestão
- 🕨 Solução
- Resolução
- Determine outra estimativa do mesmo valor, definindo o polinómio de Hermite unicamente no segmento que contém o 0.25
 - ► Sugestão
- → Solução
- ▶ Resolução

a) Considere a tabela

X	-1	0	1
f(x)	0	1	0
f'(x)	0	0	0

- ▶ Sugestão
- ▶ Solução

- Resolução
- Determine outra estimativa do mesmo valor, definindo o polinómio de Hermite unicamente no segmento que contém o 0.25
 - ▶ Sugestão
- Solução
- Resolução
- iii) Use a fórmula interpoladora de Newton para calcular uma terceira aproximação de f(0.25).
 - Sugestão

- Solução
- ▶ Resolução

a) Considere a tabela

X	-1	0	1
f(x)	0	1	0
f'(x)	0	0	0

- ▶ Sugestão
- ▶ Solução

- Resolução
- Determine outra estimativa do mesmo valor, definindo o polinómio de Hermite unicamente no segmento que contém o 0.25
 - ▶ Sugestão
- Solução
- Resolução
- iii) Use a fórmula interpoladora de Newton para calcular uma terceira aproximação de f(0.25).
 - Sugestão

- Solução
- ▶ Resolução

b) Construa o polinómio de Hermite de grau 3 para função g, definida a seguir.

X	1	2	3	4
g(x)	0	<u>15</u>	<u>80</u> 3	<u>255</u> 4
g'(x)	4	<u>49</u> 4	<u>244</u> 9	769 16

▶ Sugestão

▶ Resolução

a) Pretende-se interpolar a função $sin(\pi x)$ no intervalo [0, 1], por um spline cúbico natural, numa malha uniforme.

Construa o spline cúbico natural que interpola a função nos nós $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{3}{4}$, $x_4 = 1$

- a) Pretende-se interpolar a função $sin(\pi x)$ no intervalo [0, 1], por um spline cúbico natural, numa malha uniforme.
 - Construa o spline cúbico natural que interpola a função nos nós $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{3}{4}$, $x_4 = 1$
- ► Resolução
- **b)** Determine o spline cúbico natural que interpola a função $f(x) = x(1+x^2)$, nos pontos $x_0 = -1$, $x_1 = 0$, $x_2 = 1$.
 - → Sugestão
- ► Solução
- Resolução

a) Pretende-se interpolar a função $sin(\pi x)$ no intervalo [0, 1], por um spline cúbico natural, numa malha uniforme.

Construa o spline cúbico natural que interpola a função nos nós $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{3}{4}$, $x_4 = 1$

► Resolução

- b) Determine o spline cúbico natural que interpola a função $f(x) = x(1+x^2)$, nos pontos $x_0 = -1$, $x_1 = 0$, $x_2 = 1$.
 - ► Sugestão
- ▶ Solução
- ► Resolução
- c) De uma função real conhecem-se apenas os valores

X	0.0	0.5	0.7	1.0
f(x)	0.0	0.6	1.2	2.2

- Determine o spline cúbico natural que interpola a função nos pontos dados.
 - ▶ Sugestão

Solução

▶ Resolução

a) Pretende-se interpolar a função $sin(\pi x)$ no intervalo [0, 1], por um spline cúbico natural, numa malha uniforme.

Construa o spline cúbico natural que interpola a função nos nós $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{3}{4}$, $x_4 = 1$

$$x_0 = 0, x_1 = \frac{\pi}{4}, x_2 = \frac{\pi}{2}$$

- ▶ Sugestão ► Solução
- b) Determine o spline cúbico natural que interpola a função $f(x) = x(1+x^2)$, nos pontos $x_0 = -1$, $x_1 = 0$, $x_2 = 1$.

- c) De uma função real conhecem-se apenas os valores

X	0.0	0.5	0.7	1.0
f(x)	0.0	0.6	1.2	2.2

- i) Determine o spline cúbico natural que interpola a função nos pontos dados.
 - ▶ Sugestão

- ii) Calcule uma estimativa de f(0.3).

d) As funções de Bessel aparecem muitas vezes em engenharia e no estudo de campos eléctricos. Estas funções são bastante complexas de avaliar directamente, por isso são muitas vezes compilados em tabelas, por exemplo

Estime $J_0(2.1)$

i) utilizando interpolação polinomial.

▶ Resolução

d) As funções de Bessel aparecem muitas vezes em engenharia e no estudo de campos eléctricos. Estas funções são bastante complexas de avaliar directamente, por isso são muitas vezes compilados em tabelas, por exemplo

Estime $J_0(2.1)$

- i) utilizando interpolação polinomial.
 - ► Sugestão
- ► Solução
- ► Resolução
- ii) utilizando splines cúbicos.
 - ▶ Sugestão

- ▶ Solução
- ▶ Resolução

d) As funções de Bessel aparecem muitas vezes em engenharia e no estudo de campos eléctricos. Estas funções são bastante complexas de avaliar directamente, por isso são muitas vezes compilados em tabelas, por exemplo

Estime $J_0(2.1)$

- i) utilizando interpolação polinomial.
 - ▶ Sugestão
- ▶ Solução
- ► Resolução
- ii) utilizando splines cúbicos.
 - ▶ Sugestão
- ▶ Solução
- ▶ Resolução
- iii) Calcule os erros das aproximações anteriores sabendo que o valor exacto é 0.1666.
 - Sugestão
- Solução
- ▶ Resolução

6.6 Método dos Mínimos Quadrados

 a) Uma dada função só é conhecida através da tabela que se segue

X	-2	-1	1	2
f(x)	1	-3	1	9

i) Recorrendo ao método dos mínimos quadrados, determine a equação da recta que melhor aproxima a função.

Resolução

 a) Uma dada função só é conhecida através da tabela que se segue

X	-2	-1	1	2
f(x)	1	-3	1	9

- i) Recorrendo ao método dos mínimos quadrados, determine a equação da recta que melhor aproxima a função.
 - ▶ Sugestão
- ➤ Solução
- ▶ Resolução
- ii) Calcule uma estimativa de f(0.5).
 - ▶ Suge

▶ Solução

Resolução

b) Os valores da função g são apresentados na tabela seguinte

							0.75	
Ì	g(x)	1.2	1.0	0.7	0.4	0.1	-0.2	-0.6

i) Aproxime a função g por uma parábola, recorrendo ao método dos mínimos quadrados, e defina uma estimativa de g(0.65).

▶ Resolução

b) Os valores da função g são apresentados na tabela seguinte

X	0.50	0.55	0.60	0.65	0.70	0.75	0.80
g(x)	1.2	1.0	0.7	0.4	0.1	-0.2	-0.6

i) Aproxime a função g por uma parábola, recorrendo ao método dos mínimos quadrados, e defina uma estimativa de g(0.65).

- ▶ Sugestão
- ▶ Solução
- ▶ Resolução
- ii) Calcule o erro padrão da resposta da alínea anterior.
 - ▶ Sugestão
- ▶ Solução
- ▶ Resolução

b) Os valores da função g são apresentados na tabela seguinte

						1	0.75	
Ì	g(x)	1.2	1.0	0.7	0.4	0.1	-0.2	-0.6

i) Aproxime a função g por uma parábola, recorrendo ao método dos mínimos quadrados, e defina uma estimativa de g(0.65).

- ii) Calcule o erro padrão da resposta da alínea anterior.
- iii) Determine a aproximação dos mínimos quadrados de grau 3 para a função g e defina uma outra estimativa para g(0.65).
 - Sugestã

Solução

Resolução

- c) Pretende-se aproximar $f(x) = e^{-x}$ no intervalo [-1,1] por um polinómio.
 - i) Defina a parábola que melhor aproxima f no intervalo dado, recorrendo ao método dos mínimos quadrados e usando polinómios de Legendre.

- c) Pretende-se aproximar $f(x) = e^{-x}$ no intervalo [-1,1] por um polinómio.
 - Defina a parábola que melhor aproxima f no intervalo dado, recorrendo ao método dos mínimos quadrados e usando polinómios de Legendre.
 - ▶ Sugestão
- ▶ Solução
- ▶ Resolução
- ii) Calcule o erro padrão da resposta da alínea anterior.
 - ▶ Sugestão

- ▶ Solução
- ▶ Resolução

- c) Pretende-se aproximar $f(x) = e^{-x}$ no intervalo [-1,1] por um polinómio.
 - i) Defina a parábola que melhor aproxima f no intervalo dado, recorrendo ao método dos mínimos quadrados e usando polinómios de Legendre.
 - ▶ Sugestão
- ▶ Solução
- ► Resolução
- ii) Calcule o erro padrão da resposta da alínea anterior.
 - ▶ Sugestão
- ▶ Solução
- ► Resolução
- iii) Calcule o erro cometido em x = 0.7.
 - ▶ Suges

- ▶ Solução
- ▶ Resolução

d) Encontre a função do tipo $y=10^{c_0+c_1x}$ que melhor se aproxima, segundo os mínimos quadrados, aos dados da tabela seguinte

X	0	1	2	3
f(x)	0.01	0.1	10	100

▶ Sugestão

Resolução

d) Encontre a função do tipo $y=10^{c_0+c_1x}$ que melhor se aproxima, segundo os mínimos quadrados, aos dados da tabela seguinte

X	0	1	2	3	
f(x)	0.01	0.1	10	100	

▶ Sugestão

Solução

Resolução

e) É sabido que a maleabilidade do plástico varia em função do tempo gasto no tratamento térmico. A seguinte tabela foi obtida através de dados experimentais.

tempo	10	15	20	25	40	50	55	60	75
maleabilidade	4	20	18	50	30	48	80	60	78

Encontre a recta que melhor se adapta aos dados. Utilize a alínea anterior para estimar a maleabilidade ao fim de 30 min.

f) Os dados seguintes foram recolhidos para determinar a relação entre a pressão e a temperatura de uma quantidade fixa de 1 kg de nitrogénio.

T OC								
$p N/m^3$	7500	8104	8700	9300	9620	10200	11200	11700

Sabendo que o volume é $10~m^3$ aplique a lei para os gazes ideais pV = nRT e determine R com base nos dados. (note que T deve estar expresso em graus Kelvin)

▶ Resolução

1

▶ Voltar para a Questão 5.1

2

▶ Voltar para a Questão 5.1

3 ► Voltar para a Questão 5.2

4 ► Voltar para a Questão 5.2

5 → Voltar para a Questão 5.2

6 Voltar para a Questão 5.2

7 → Voltar para a Questão 5.2

8 Voltar para a Questão 5.2

Solução/Resolução

Solução/Resolução indisponível