Forma diferencial	Forma integral	Comentario
$ abla \cdot \mathbf{D} = ho_{v}$	$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{\mathcal{V}} \rho_{\mathcal{V}} d\mathcal{V}$	Ley de Gauss
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	No existencia de monopolos
$ abla extbf{X} extbf{E} = -rac{\partial extbf{B}}{\partial t}$	$\oint_{L} \mathbf{E} \cdot dl = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot dS$	Ley de Faraday
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{L} \mathbf{H} \cdot dl = \int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$	Ley de circuitos de Ampere

Table 1: Leyes de Maxwell

0.1 Leyes de maxwell

Se presentan las ecuaciones de Maxwell en la tabla 1. Donde es necesario recordar el operador DEL (??)

- El gradiente de un escalar V: ∇V
- La divergencia de un vector A: $\nabla \cdot A$
- La rotacional de un vector A: $\nabla \times A$
- El Laplaciano de un escalar V: $\nabla^2 V$

Además se tienen ecuaciones auxiliares:

Relación entre la Densidad de Campo Eléctrico y la Intensidad de Campo Eléctrico.

$$\mathbf{D} = \varepsilon \mathbf{E} \tag{1a}$$

Relación entre la Densidad de Campo Magnético y la Intensidad de Campo Magnético.

$$\mathbf{B} = \mu \mathbf{H} \tag{1b}$$

Densidad de Corriente de conducción.

$$\mathbf{J} = \sigma \mathbf{E} \tag{1c}$$

Densidad de Corriente de convección en función de la densidad de carga volumétrica.

$$\mathbf{J} = \boldsymbol{\rho}_{\boldsymbol{\nu}} \mathbf{v} \tag{1d}$$

Hay ligeras modificaciones si son para conductores malos (aislantes):

$$\mathbf{D} = \varepsilon \mathbf{E} + P \tag{2a}$$

$$\mathbf{B} = \mu(\mathbf{H} + M) \tag{2b}$$

Donde P es el campo de polarización y M es el campo de magnetización, cuando el dieléctrico es lineal se tiene:

$$P = \chi_e \varepsilon_0 \mathbf{E} \qquad \qquad M = \chi_m \mathbf{H}$$

(a) Ecuación de onda para campos eléctricos.

(b) Ecuación de onda para campos magnéticos.

Figure 1: Ecuaciones de onda

Los sistemas numéricos son los siguientes: los binarios son escritos: 0bxxxx_xxxx, los hexadecimales son: 0xxx y los decimales son: \$xx. El AVR trabaja en hexadecimal pero se pueden ingresar datos en otros sistemas, pero los cálculos internos son en hexadecimal. Las entradas binarias se transforman en hexadecimales: Puedes ingresar 0b1001_0011 o 0x93 como también \$147.