Mean-field Theory: Drift and the Mean Drift

Binan Gu

Department of Mathematical Sciences, New Jersey Institute of Technology

New Jersey Institute of Technology Optimization & Machine Learning Seminar Spring 2022

Overview

Background

Mean-Field Approximation

Mathematical Procedures

Wireless Sensor Networks

Each sensor is a (random) vertex/node/agent.

Wireless Sensor Networks

- Each sensor is a (random) vertex/node/agent.
- It collects and transmits data to the next node.

Wireless Sensor Networks

- Each sensor is a (random) vertex/node/agent.
- It collects and transmits data to the next node.
- Large amount of nodes, so effective planning of transmission paths is important.

Wireless Sensor Networks

- Each sensor is a (random) vertex/node/agent.
- It collects and transmits data to the next node.
- Large amount of nodes, so effective planning of transmission paths is important.

Example (Routing Algorithm)

Wireless Sensor Networks

- Each sensor is a (random) vertex/node/agent.
- It collects and transmits data to the next node.
- Large amount of nodes, so effective planning of transmission paths is important.

Example (Routing Algorithm)

Each node is associated with battery energy (and other constraints, e.g. storage, capacity, bandwidth, etc.).

Wireless Sensor Networks

- Each sensor is a (random) vertex/node/agent.
- It collects and transmits data to the next node.
- Large amount of nodes, so effective planning of transmission paths is important.

Example (Routing Algorithm)

- Each node is associated with battery energy (and other constraints, e.g. storage, capacity, bandwidth, etc.).
- ► The goal is to maximize the lifetime of the network, i.e. preserving connectivity and preventing energy burnouts.

Wireless Sensor Networks

- Each sensor is a (random) vertex/node/agent.
- It collects and transmits data to the next node.
- Large amount of nodes, so effective planning of transmission paths is important.

Example (Routing Algorithm)

- Each node is associated with battery energy (and other constraints, e.g. storage, capacity, bandwidth, etc.).
- ► The goal is to maximize the lifetime of the network, i.e. preserving connectivity and preventing energy burnouts.
- ▶ Data transmission between the nodes is like a queue, with random arrival and processing times.

Mean-field Interaction Models

Population processes in which individuals behave similarly.

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.
- Symmetric reduction on the state space to gain efficiency in analysis.

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.
- Symmetric reduction on the state space to gain efficiency in analysis.
- Continuous and deterministic approximation of population processes in their first moment.

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.
- Symmetric reduction on the state space to gain efficiency in analysis.
- Continuous and deterministic approximation of population processes in their first moment.

Thomas G. Kurtz

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.
- Symmetric reduction on the state space to gain efficiency in analysis.
- Continuous and deterministic approximation of population processes in their first moment.

Thomas G. Kurtz

University of Wisconsin-Madison.

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.
- Symmetric reduction on the state space to gain efficiency in analysis.
- Continuous and deterministic approximation of population processes in their first moment.

Thomas G. Kurtz

- University of Wisconsin-Madison.
- Convergence, approximation and representation of several important classes of Markov processes.

Mean-field Interaction Models

- Population processes in which individuals behave similarly.
- Care about "proportions of agents in a certain state" rather than the individual status of each agent.
- Symmetric reduction on the state space to gain efficiency in analysis.
- Continuous and deterministic approximation of population processes in their first moment.

Thomas G. Kurtz

- University of Wisconsin-Madison.
- Convergence, approximation and representation of several important classes of Markov processes.
- Systems biology, population genetics, telecommunications networks and mathematical finance.

Example: Radio transmission in a single channel

Saturated nodes: every node always has a message to send. Each transmission has success probability depending on the number of nodes using the channel,

$$p_{s}(n)=2^{-n}.$$

Two states:

- 1. Waiting to send, with p_1 to initiate.
- 2. Initiated but failed, and try to retransmit with p_2 . If transmission is successful in state 1, then the node stays in

state 1 or otherwise goes to 2. Once retransmission is successful in state 2, it goes back to 1.

Fig. 1. The behaviour of a node in Example 1. The number of transmitting nodes is n.

Agent Processes

Consider N agents with

▶ discrete time horizon $T = \mathbb{N}$.

Agent Processes

Consider N agents with

- ▶ discrete time horizon $T = \mathbb{N}$.
- ightharpoonup discrete state space S.

Agent Processes

Consider N agents with

- ightharpoonup discrete time horizon $T = \mathbb{N}$.
- ightharpoonup discrete state space S.
- igwedge $\Big\{X_i^{(N)}(t):t\in\mathcal{T}\Big\}$, \mathcal{S} -valued discrete time Markov chains.

Agent Processes

Consider N agents with

- ▶ discrete time horizon $T = \mathbb{N}$.
- ightharpoonup discrete state space S.
- igwedge $\Big\{X_{i}^{(N)}\left(t
 ight):t\in\mathcal{T}\Big\},\,\mathcal{S} ext{-valued discrete time Markov chains.}$
- ▶ Each $X_i^{(N)}(t)$ follows a transition map $K_i : S^N \times S \rightarrow [0, 1]$, namely, the probability $K_i(\mathbf{v}, s)$ that agent i transitions from
 - $\mathbf{v} \in \mathcal{S}^N$, state of the entire system (including agent i's current state) to
 - $ightharpoonup s \in \mathcal{S}$, the next state.

Transition Types

Transition Types

1. Fully synchronized (i.e. synchronous DTMCs).

Transition Types

- 1. Fully synchronized (i.e. synchronous DTMCs).
- 2. Independent time slots (occurring at the same rate over sufficiently long intervals of time).

Transition Types

- 1. Fully synchronized (i.e. synchronous DTMCs).
- 2. Independent time slots (occurring at the same rate over sufficiently long intervals of time).

We discuss type 2, known as the *clock independence* assumption. This implies no simultaneous transitions (think of a property of the Poisson process). This assumption is not free.

Transition Types

- 1. Fully synchronized (i.e. synchronous DTMCs).
- 2. Independent time slots (occurring at the same rate over sufficiently long intervals of time).

We discuss type 2, known as the *clock independence* assumption. This implies no simultaneous transitions (think of a property of the Poisson process). This assumption is not free.

Let *D* be the time resolution (number of subintervals for one unit of time), and define $\epsilon = 1/D$ to form *global time*

$$T_G = \{0, \epsilon, 2\epsilon, \ldots\}$$
.

Transition Types

- 1. Fully synchronized (i.e. synchronous DTMCs).
- Independent time slots (occurring at the same rate over sufficiently long intervals of time).

We discuss type 2, known as the *clock independence* assumption. This implies no simultaneous transitions (think of a property of the Poisson process). This assumption is not free.

Let *D* be the time resolution (number of subintervals for one unit of time), and define $\epsilon = 1/D$ to form *global time*

$$T_G = \{0, \epsilon, 2\epsilon, \ldots\}$$
.

The transition $K_i(\mathbf{v}, s)$ is then modified into:

$$\widehat{K}_{i}(\mathbf{v}, \mathbf{s}) = \begin{cases} \epsilon K_{i}(\mathbf{v}, \mathbf{s}), & \text{if } \mathbf{s} \neq \mathbf{v}_{i} \\ 1 - \epsilon (1 - K_{i}(\mathbf{v}, \mathbf{s})), & \text{if } \mathbf{s} = \mathbf{v}_{i} \end{cases}$$

Associated Stochastic Process

With the time-rescaled transition maps, we associate the collection of them with a new DTMC

$$Y^{(N)}(t) = \left(\widehat{X}_1^{(N)}(t), \dots, \widehat{X}_N^{(N)}(t)\right)$$

with transition map (via independence of transitions)

$$\mathcal{K}^{(N)}\left(\boldsymbol{v},\boldsymbol{v}'\right) = \prod_{i=1}^{N} \widehat{K}_{i}\left(\boldsymbol{v},\boldsymbol{v}'_{i}\right)$$

Mean Field Interaction Models and Population Processes

Definition (Mean Field Interaction Models (MFIM)) $Y^{(N)}(t)$ is an MFIM if

$$\mathcal{K}^{(N)}\left(\mathbf{v},\mathbf{v}'\right) = \mathcal{K}^{(N)}\left(\pi\left(\mathbf{v}\right),\pi\left(\mathbf{v}'\right)\right)$$

for any permutation π on the agents.

Mean Field Interaction Models and Population Processes

Definition (Mean Field Interaction Models (MFIM))

 $Y^{(N)}(t)$ is an MFIM if

$$\mathcal{K}^{(N)}\left(\mathbf{v},\mathbf{v}'\right) = \mathcal{K}^{(N)}\left(\pi\left(\mathbf{v}\right),\pi\left(\mathbf{v}'\right)\right)$$

for any permutation π on the agents.

Note: this transition map may depend on the number agents in each state, but not on the state of a certain agent.

The Mean-Field Procedure

Occupation Measures

Proportion of Agents in State s

$$M_s^{(N)}(t) = \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1} \left(\widehat{X}_n^{(N)}(t) = s \right)$$

whose values form an alternative representation Δ of the state space. The *agent model* $\left(\widehat{X}_{1}^{(N)}\left(t\right),M^{(N)}\left(t\right)\right):t\in T_{G}$ is also Markov with (double) transition $P_{1}^{(N)}$.

Infinitesimal Generator for Arbitrary Agent

$$Q_{s,s'}^{(N)}(\mathbf{m}) = \lim_{D \to \infty} DP_{s,s'}^{(N)}(\mathbf{m})$$

where $P_{s,s'}^{(N)}(\mathbf{m})$ is the marginal transition probability of an arbitrary agent.

Right-continuation with left limit (càdlàgs) of the process $M^{(N)}(t)$ via

$$\overline{M}^{(N)}(t) = M^{(N)}(\epsilon \lfloor Dt \rfloor).$$

Right-continuation with left limit (càdlàgs) of the process $M^{(N)}(t)$ via

$$\overline{M}^{(N)}(t) = M^{(N)}(\epsilon \lfloor Dt \rfloor).$$

Know: $Q_{s,s'}^{(N)}(\mathbf{m})$, rate of any agent given current proportion \mathbf{m} .

Right-continuation with left limit (càdlàgs) of the process $M^{(N)}(t)$ via

$$\overline{M}^{(N)}(t) = M^{(N)}(\epsilon \lfloor Dt \rfloor).$$

Know: $Q_{s,s'}^{(N)}(\mathbf{m})$, rate of any agent given current proportion \mathbf{m} .

Want: $\mathbb{E}\left[\overline{M}^{(N)}(t)\right]$, expected proportion of each state in time.

Right-continuation with left limit (càdlàgs) of the process $M^{(N)}(t)$ via

$$\overline{M}^{(N)}(t) = M^{(N)}(\epsilon \lfloor Dt \rfloor).$$

Know: $Q_{s,s'}^{(N)}(\mathbf{m})$, rate of any agent given current proportion \mathbf{m} .

Want: $\mathbb{E}\left[\overline{M}^{(N)}(t)\right]$, expected proportion of each state in time.

Thus want: generator $F^{(N)}$ of $\overline{M}^{(N)}(t)$.

Right-continuation with left limit (càdlàgs) of the process $M^{(N)}(t)$ via

$$\overline{M}^{(N)}(t) = M^{(N)}(\epsilon \lfloor Dt \rfloor).$$

Know: $Q_{s,s'}^{(N)}(\mathbf{m})$, rate of any agent given current proportion \mathbf{m} .

Want: $\mathbb{E}\left[\overline{M}^{(N)}(t)\right]$, expected proportion of each state in time.

Thus want: generator $F^{(N)}$ of $\overline{M}^{(N)}(t)$.

Procedure: prove a Dynkin-type formula

$$\mathbb{E}\left[\overline{M}^{(N)}\left(t\right)\mid\overline{M}^{(N)}\left(0\right)\right]$$

$$=\overline{M}^{(N)}\left(0\right)+\int_{0}^{t}\mathbb{E}\left[F^{(N)}\left(\overline{M}^{(N)}\left(s\right)\right)\mid\overline{M}^{N}\left(0\right)\right]ds$$

where a lot of ODE theory will apply (Picard, Gronwall, etc.)

Details

► Count number of transitions in $[t, t + \epsilon)$,

$$W_{s,s'}^{\left(N
ight)}\left(t
ight) = \sum_{k=1}^{N} \mathbf{1}\left\{\widehat{X}_{k}^{\left(N
ight)}\left(t
ight) = s,\,\widehat{X}_{k}^{\left(N
ight)}\left(t+\epsilon
ight) = s'
ight\}$$

Details

▶ Count number of transitions in $[t, t + \epsilon)$,

$$W_{\mathbf{s},\mathbf{s}'}^{(N)}\left(t
ight) = \sum_{k=1}^{N} \mathbf{1} \left\{ \widehat{X}_{k}^{(N)}\left(t
ight) = \mathbf{s}, \ \widehat{X}_{k}^{(N)}\left(t+\epsilon
ight) = \mathbf{s}'
ight\}$$

Express instantaneous change of the proportions,

$$\Delta \overline{M} = \overline{M}^{(N)}\left(t + \epsilon
ight) - \overline{M}^{(N)}\left(t
ight) = \sum_{oldsymbol{s}
eq oldsymbol{s}'} rac{W_{oldsymbol{s},oldsymbol{s}'}^{(N)}\left(t
ight)}{N}\left(oldsymbol{e}_{oldsymbol{s}'} - oldsymbol{e}_{oldsymbol{s}}
ight)$$

Details

Count number of transitions in $[t, t + \epsilon)$,

$$W_{s,s'}^{\left(N
ight)}\left(t
ight) = \sum_{k=1}^{N} \mathbf{1}\left\{\widehat{X}_{k}^{\left(N
ight)}\left(t
ight) = s,\,\widehat{X}_{k}^{\left(N
ight)}\left(t+\epsilon
ight) = s'
ight\}$$

Express instantaneous change of the proportions,

$$\Delta \overline{M} = \overline{M}^{(N)}(t + \epsilon) - \overline{M}^{(N)}(t) = \sum_{s \neq s'} \frac{W_{s,s'}^{(N)}(t)}{N} (e_{s'} - e_s)$$

Take an expectation, and then limit of rescale,

$$\widehat{F}^{(N)}\left(m{m}
ight) = \mathbb{E}\left[\Delta\overline{M} \mid \overline{M}^{(N)}\left(t
ight) = m{m}
ight] = \sum_{s,s'} m{m}_s P_{s,s'}^{(N)}\left(m{m}
ight) \left(e_{s'} - e_{s}
ight)$$

$$F^{(N)}(\mathbf{m}) = \lim_{D \to \infty} D\widehat{F}^{(N)}(\mathbf{m}) = \sum_{s,s'} \mathbf{m}_s Q_{s,s'}^{(N)}(\mathbf{m}) (e_{s'} - e_s)$$

The Propagation of Chaos

Definition (ρ-chaotic Sequence)

Let $\rho \in \mathcal{M}(\mathcal{S})$ be a probability measure. For $N \geq 1$, the sequence $\{\rho_N\}$ of measures, each in $\mathcal{M}\left(\mathcal{S}^N\right)$, is ρ -chaotic iff for any fixed natural number k and bounded functions $\{f_i\}_{i=1}^k$:

$$\lim_{N\to\infty}\int_{\mathcal{S}^N}f_1\left(\boldsymbol{v}_1\right)f_2\left(\boldsymbol{v}_2\right)\dots f_k\left(\boldsymbol{v}_k\right)\rho_N\left(d\boldsymbol{v}\right)=\prod_{i=1}^k\int_{\mathcal{S}}f_i\left(\boldsymbol{s}\right)\rho\left(d\boldsymbol{s}\right)$$

i.e. a chaotic sequence mains a form of independence in the observations of separate agents in the limit. This is not utilized in the drift computation.

Mean Drift ODEs

One can show that $\overline{Y}^{(N)}(t)$, the joint agent process in continuous time, is μ -chaotic, where $\mu(i) = \mathbb{E}\left[\overline{M}_i^{(N)}(t)\right]$ for $i \in \mathcal{S}$.

Mean Drift ODEs

One can show that $\overline{Y}^{(N)}(t)$, the joint agent process in continuous time, is μ -chaotic, where $\mu(i) = \mathbb{E}\left[\overline{M}_i^{(N)}(t)\right]$ for $i \in \mathcal{S}$.

Asymptotic independence implies,

$$\mathbb{P}\left\{\overline{M}_{i}^{(N)}\left(t\right) = \frac{k}{N}\right\} = \binom{N}{k} \text{Binomial stuff}$$

$$\approx \binom{N}{k} \left(\mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]\right)^{k} \left(1 - \mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]\right)^{N-k}$$

$$\approx e^{-N\mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]} \frac{\left(\mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]\right)^{k}}{k!}$$

Mean Drift ODEs

One can show that $\overline{Y}^{(N)}(t)$, the joint agent process in continuous time, is μ -chaotic, where $\mu(i) = \mathbb{E}\left[\overline{M}_i^{(N)}(t)\right]$ for $i \in \mathcal{S}$.

Asymptotic independence implies,

$$\mathbb{P}\left\{\overline{M}_{i}^{(N)}\left(t\right) = \frac{k}{N}\right\} = \binom{N}{k} \text{Binomial stuff}$$

$$\approx \binom{N}{k} \left(\mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]\right)^{k} \left(1 - \mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]\right)^{N-k}$$

$$\approx e^{-N\mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]} \frac{\left(\mathbb{E}\left[\overline{M}_{i}^{(N)}\left(t\right)\right]\right)^{k}}{k!}$$

Thus the generator can be computed using the asymptotically independent Poisson densities, extracting more information from the mere $Q_{s,s'}^{(N)}(\boldsymbol{m})$'s.

Example: Radio transmission in a single channel

Saturated nodes: every node always has a message to send. Each transmission has success probability depending on the number of nodes using the channel,

$$p_{s}(n)=2^{-n}.$$

Two states:

- 1. Waiting to send, with p_1 to initiate.
- 2. Initiated but failed, and try to retransmit with p_2 . If transmission is successful in state 1, then the node stays in state 1 or otherwise goes to 2. Once retransmission is

state 1 or otherwise goes to 2. Once retransmission is successful in state 2, it goes back to 1.

Fig. 1. The behaviour of a node in Example 1. The number of transmitting nodes is n.

Approximation comparisons

Fig. 2. Comparison between the proportion of nodes in the back-off state at time $t=1000~(\phi_2^{(N)}(1000))$ for different network sizes N, based on a transient analysis of the Markov models (the solutions of the Chapman-Kolmogorov equations) and a mean field analysis by the ODEs incorporating the mean-drift.

This shows that the mean drift approximation is good even when *N* is not that large.

References

Mahmoud Talebi and Jan Friso Groote and Jean-Paul M.G. Linnartz "The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications". *Analytical and Stochastic Modelling Techniques and Applications*. 2017.