

# HyperionSolarNet

Solar Panel Detection from Aerial Images

Nathan Nusaputra | Poonam Parhar | Ryan Sawasaki | Felipe Vergara

UC Berkeley

## Motivation



- Fight climate change by reducing greenhouse gas emissions
- Idea originated from Professor Paolo D'Odorico, Chair of the Department of Environmental Science at UC Berkeley
- HyperionSolarNet uses deep learning methods and satellite images to develop a database of solar panel locations and their total surface area



## HyperionSolarNet



- Start with input data of satellite images from Google Maps
- Binary image classification model separating into solar and no-solar classes
- Segmentation model performs the task of classifying each pixel to its specific class
- Predicted masks are further processed to determine the area and number of solar panels



## Data



INTRODUCTION

DATA

MODELS

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION

- Images from Arizona, California, Colorado, Florida, Hawaii, Idaho, Louisiana, Massachusetts, Nevada, New Jersey, New York, Oregon, Texas, Washington
- Zoom 20 and 21
- Sizes 416x416 and 600x600
- Residential and Commercial
- For no-solar images, focus on objects that could be misclassified as solar panels, for example:

| Classification Dataset |     |      |      |  |  |
|------------------------|-----|------|------|--|--|
| Solar No-Solar Total   |     |      |      |  |  |
| Training               | 668 | 1295 | 1963 |  |  |
| Validation             | 168 | 324  | 492  |  |  |
| Berkeley Testset       | 321 | 1922 | 2243 |  |  |

| Segmentation Dataset |     |  |  |
|----------------------|-----|--|--|
| Training             | 668 |  |  |
| Validation           | 168 |  |  |
| Berkeley Testset     | 321 |  |  |





Crosswalks



Side of tall buildings



## Data Labeling



INTRODUCTION

DATA

MODELS

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION

### Classification:

- Manually grouped images into solar and no-solar classes
- Time spent locating quality and diverse solar panel images

### Segmentation:

- Used LabelBox platform to annotate solar panel images and create segmentation masks (labels)
- Labeling of 1,200 images required additional resources

Solar





No-solar









Human annotated images in LabelBox





## Classification Model



NTRODUCTION DATA MODELS

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION

Transfer Learning

Fine-tuned EfficientNet-B7 for solar panel images





# Semantic Segmentation Model



INTRODUCTION

DATA

MODELS

EXPERIMENT

**APPLICATION** 

CONCLUSION

- U-Net is one of the most popular deep learning based semantic segmentation method
- U-Net architecture with EfficientNet-B7 backbone
- Images augmentation using Albumentations library
- Model training using Segmentation Models library



## Performance Metrics



- Accuracy, Precision, Recall and F1-score for the Classification Model
- IoU and F1-score for the Segmentation Model



## Classification Model Performance



INTRODUCTION

DATA

**MODELS** 

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION

| Model            | Accuracy Precision |      | Recall | F1 Score |
|------------------|--------------------|------|--------|----------|
| Baseline         | 0.7240             | 0.66 | 0.81   | 0.73     |
| HyperionSolarNet | 0.9764             | 0.95 | 0.98   | 0.97     |





## Segmentation Model Performance





# Segmentation Examples



INTRODUCTION

DATA

MODELS

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION



## Number and Size Estimation



INTRODUCTION

DATA

MODELS

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION

- Segmentation model produces 600x600 matrix of 1's and 0's
- Function inputs are latitude, zoom and matrix from segmentation model
- Meters per pixel calculation is derived from Mercator Projection

```
meters_per_pixel = 156543.03392 * math.cos(latitude * math.pi / 180) / math.pow(2, zoom)
```

• Output is the total area and number of solar panels in the image



# Berkeley Testset





| Class    | Precision | Recall | F1   | Support |
|----------|-----------|--------|------|---------|
| no-solar | 0.98      | 0.97   | 0.98 | 1922    |
| solar    | 0.82      | 0.91   | 0.86 | 321     |

# Berkeley Testset



| Segmentation                   | IoU    | F1     |
|--------------------------------|--------|--------|
| Berkeley Testset<br>Evaluation | 0.8243 | 0.8922 |

| 100               | N   |     |     |     |     |
|-------------------|-----|-----|-----|-----|-----|
| 200               |     |     |     |     |     |
| 300 -             |     |     | N   | 查   |     |
| 400 -             |     |     | V   |     | 1   |
| 500 - Google<br>0 | 100 | 200 | 300 | 400 | 500 |





| Berkeley Testset | Area (sq. ft.) | Number of Solar<br>Panels |
|------------------|----------------|---------------------------|
| Actual           | 101,765.48     | 5,787                     |
| Predicted        | 102,609.72     | 5,828                     |







# Berkeley Final Results





| Berkeley City                      | Area (sq. ft.) | Number of Solar<br>Panels |
|------------------------------------|----------------|---------------------------|
| Estimated Berkeley Solar<br>Panels | 1,082,431.98   | 61,480                    |

# System Architecture





## Offline Inference







| API                | Input             | Output                                                                                                                                          | Method | Example curl                                                      |
|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------|
| api/classification | Form-data: bounds | <ol> <li>JSON with tiles information</li> <li>Prediction whether image tiles contain solar panels</li> </ol>                                    | POST   | curllocationrequest POST 'http://www.hyperionsolarnet.com//api/cl |
| api/segmentation   | Form-data: bounds | <ol> <li>JSON with tiles information</li> <li>Number of solar panels within bounds</li> <li>Total area of solar panels within bounds</li> </ol> | POST   | curllocationrequest POST  'http://www.hyperionsolarnet.com/api/se |

# Web Application Demo





## Conclusion



INTRODUCTION

DATA

**MODELS** 

**EXPERIMENT** 

**APPLICATION** 

CONCLUSION

- Future Work includes:
  - Applying HyperionSolarNet to diverse locations around the world
  - Use results for further improvement of model
  - Integrate solar irradiance models to predict total solar energy output
- For additional information, please see:

### WEBSITE

https://groups.ischool.berkeley.edu/HyperionSolarNet



### **RESEARCH PAPER**



#### **WEB APPLICATION**

http://hyperionsolarnet.com





# **Thank you! Any Questions?**

### Acknowledgements

- Alberto Todeschini
- Puya Vahabi
- Colorado Reed
- Professor Paolo D'Odorico
- Our colleagues at UC Berkeley MIDS
- Jia Lu, Gunnar Mein, Thaddeus Segura, Karen Wong
  - William Sawasaki
    - Alexandra Gray