Algorithms Cheat Sheet Pocket Edition

Marcin Woch

Mathematical Operations

Arithmetics

Operation	Name	Input	Output	Complexity
Addition	Schoolbook	Two n-digit numbers matrices	One $n + 1$ -digit number	O(n)
Subtraction	Schoolbook	Two n -digit numbers matrices	One $n + 1$ -digit number	O(n)
Multiplication	Schoolbook	Two n -digit numbers matrices	One $2n$ -digit number	$O(n^2)$
Multiplication	3-way Toom-Cook algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n^{\log_3 5}) \approx O(n^1)$
Multiplication	k-way Toom-Cook algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O\left(n^{\frac{\log(2k-1)}{\log k}}\right)$
Multiplication	Mixed-level Toom-Cook algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n2^{\sqrt{2\log n}}\log)$
Multiplication	Karatsuba algorithm	Two n-digit numbers matrices	One $2n$ -digit number	$O(n^{\log_2 3}) \approx O(n^1)$
Multiplication	Schönhage-Strassen algorithm	Two n-digit numbers matrices	One $2n$ -digit number	$O(n \log n \log \log n)$
Multiplication	Harvey-Hoeven algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n \log n)$
Multiplication	Pointer machine ¹	Two n -digit numbers matrices	One $2n$ -digit number	O(n)
Multiplication	Unit Cost RAM machine ¹	Two n -digit numbers matrices	One $2n$ -digit number	O(n)
Division	Schoolbook	Two n-digit numbers matrices	One n -digit number	$O(n^2)$
Division	Burnikel-Ziegler Divide-and-Conquer Division ²	Two n-digit numbers matrices	One n-digit number	$O(M(n)\log n)$
Division	Newton-Raphson division ²	Two n-digit numbers matrices	One n-digit number	O(M(n))
Square root	Newton's method ²	One n-digit number	One n-digit number	O(M(n))
Modular exponentation	Repeated multiplication and reduction ²	Two n-digit integers, k-bit exponent	One n -digit integer	$O(M(n)2^k)$
Modular exponentation	Exponentiation by squaring ²	Two n -digit integers, k -bit exponent	One n-digit integer	O(M(n)k)
Modular exponentation	Exponentiation with Montgomery reduction ²	Two n -digit integers, k -bit exponent	One n -digit integer	O(M(n)k)

 $^{^{1}}$ Theoretical model only 2 The complexity of an implemented multiplication algorithm

Matrix Algebra

Operation	Name	${\bf Input}$	Output	Complexity
Multiplication	Schoolbook	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^3)$
Multiplication	Strassen's	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{\log_2 7}) = O(n^{2.807})$
Multiplication	Alman-Williams	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{2.3728596})$
Multiplication	Schoolbook	One $n \times m$ matrix, one $m \times p$ matrix	One $n \times p$ matrix	O(nmp)
Inversion	Gauss-Jordan elimination	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^3)$
Inversion	Strassen algorithm	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^{2.807})$
Inversion	Coppersmith-Winograd algorithm	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^{2.376})$
Inversion	Optimised CW algorithm	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^{2.373})$
			One $m \times m$	_
SVD	Bidiagonalization, QR algorithm	One $m \times n$ matrix $(m \leq n)$	One $m \times n$ matrix	$O(m^2n)$
			One $n \times n$	
Determinant	Laplace expansion	One $n \times n$ matrix	One number	O(n!)
Determinant	Division free algorithm	One $n \times n$ matrix	One number	$O(n^4)$
Determinant	LU decomposition	One $n \times n$ matrix	One number	$O(n^3)$
Determinant	Bareiss algorithm	One $n \times n$ matrix	One number	$O(n^3)$
Determinant	Fast matrix multiplication	One $n \times n$ matrix	One number	$O(n^{2.373})$
Back substitution	Back substitution algorithm	Triangular matrix	n solutions	$O(n^2)$

Graphs

Operation	Name	Input	Comment	Bound
Explicit Graph Search	Depth First Search	V - vertices, E - edges		O(V + E)
Implicit Graph Search	Depth First Search	b - branching factor, d - depth		$O(b^d)$
Explicit Graph Search	Breadth First Search	V - vertices, E - edges		O(V + E)
Implicit Graph Search	Breadth First Search	b - branching factor, d - depth		$O(b^d)$
Shortest Path	Dijkstra's Algorithm	V - vertices, E - edges	Priority queue/heap	O(V + E)log V
Shortest Path	Dijkstra's Algorithm	V - vertices, E - edges	Array	$O(V ^2)$

Sorting

Name	Average	Worst	Stable
Quicksort	$n \log n$	n^2	No
Merge sort	$n \log n$	$n\log)$	Yes
In-place merge sort	-	$n \log^2 n$	Yes
Introsort	$n \log n$	$n \log n$	No
Heapsort	$n \log n$	$n \log n$	No
Insertion sort	n^2	n^2	Yes
Block sort	$n \log n$	$n \log n$	Yes
Timsort	$n \log n$	$n \log n$	Yes
Selection sort	n^2	$n^{\bar{2}}$	No
Cubesort	$n \log)$	$n \log n$	Yes
Shellsort	$n^{\frac{4}{3}}$	$n^{\frac{3}{2}}$	No
Bubble sort	n^2	n^2	Yes
Exchange sort	n^2	n^2	No
Tree sort	$n \log n$	$n \log n$	Yes
Cycle sort	n^2	$n^{\bar{2}}$	No
Library sort	$n \log)$	n^2	No
Patience sort	$n \log n$	$n \log n$	No
Smoothsort	$n \log n$	$n \log n$	No
Strand sort	n^2	n^2	Yes
Tournament sort	$n \log n$	$n \log n$	No
Cocktail shaker sort	n^2	n^2	Yes
Comb sort	n^2	n^2	No
Gnome sort	n^2	n^2	Yes
Odd-even sort	n^2	n^2	Yes