

Report No.:F17030211

FCC 47 CFR PART 15 SUBPART C **TEST REPORT**

FOR

15W Wireless charger Transmitter

Model: WBT-001500XB

Trade Mark: BEAR TA

Issued to

Solar Global Co.,Ltd. 9F.-3, No.111, Zhongyang S. Rd., Sanchong Dist., New Taipei City 241, Taiwan (R.O.C.)

Issued by

WH Technology Corp.

Ор	en Site	No.120, Ln. 5, Hudong St., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)				
EMC Test Site	Xizhi Office and Lab	7F., No.262, Sec. 3, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)				
Tel.: +886-2-7729-7707 Fax: +886-2- 8648-1311						

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of WH Technology Corp. This document may be altered or revised by WH Technology Corp. Personnel only, and shall be noted in the revision section of the document.

I ABLE O	F CONTENTS	2
1. GENE	RAL INFORMATION	- 3
2. REPO	RT OF MEASUREMENTS AND EXAMINATIONS	- 4
2.1 L	IST OF MEASUREMENTS AND EXAMINATIONS	- 4
	RIPTION OF THE TESTED SAMPLES	
3. TEST	METHODOLOGY	- 6
3.1 GENI	ERAL TEST PROCEDURES	6
	PART 15.205 RESTRICTED BANDS OF OPERATIONS	
	CRIPTION OF TEST MODES	
	CRIPTION OF THE SUPPORT EQUIPMENTS	
	AND MEASUREMENT EQUIPMENT	
	ALIBRATION	
	QUIPMENT	
5. SECTI	ON 15.209 REQUIREMENTS (GENERAL RADIATED EMISSION)	12
5.1 T	EST SETUP	12
	IMIT	
	EST PROCEDURE	
	ESULT: PASSED	
5.5 T	EST DATA:	16
6. SECTI	ON 15.207 REQUIREMENTS (POWERLINE CONDUCTED EMISSIONS)	22
6.1 T	EST SETUP	22
6.2 L	IMIT	22
6.3 T	EST PROCEDURE	22
	EST SPECIFICATION	
	ESULT: PASSED	_
6.6 T	EST DATA:	23

APPENDIX 1 PHOTOS OF TEST CONFIGURATION

APPENDIX 2 PHOTOS OF EUT

Report No.:F17030211

GENERAL INFORMATION 1.

Applicant Solar Global Co.,Ltd.

Address 9F.-3, No.111, Zhongyang S. Rd., Sanchong Dist., New Taipei

City 241, Taiwan (R.O.C.)

Manufacturer SUBTLE ELECTRONIC CO.,LTD.

Address 3F.,NO.168, Liancheng Rd., Zhonghe Dist., New Taipei City

235, Taiwan

EUT 15W Wireless charger Transmitter

Model Name WBT-001500XB

Model Differences N/A

Is here with confirmed to comply with the requirements set out in the FCC Rules and Regulations Part 15 Subpart C and the measurement procedures were according to ANSI C63.4-2014. The said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

FCC part 15 subpart C

Receipt Date: 03/02/2017 Final Test Date: 04/05/2017

Tested by:

Bell Wei/ Engineer

Reviewed by:

Mike Lee / Manager

(Date) (Signature) Designation Number: TW1083

2. REPORT OF MEASUREMENTS AND EXAMINATIONS

2.1 LIST OF MEASUREMENTS AND EXAMINATIONS

FCC Rule	Description of Test	Result
15.207	. Conducted Emission	Pass
15.205 15.209	. Radiated Emission	Pass

2.2 DESCRIPTION OF THE TESTED SAMPLES

EUT Name : 15W Wireless charger Transmitter

Model Number :: WBT-001500XB

FCCID Number 2AK8E0015TX0001

Receipt Date : 03/02/2017

Output Power : DC 5V / 2A

Operate Frequency : 125kHz

Antenna Type : Coil Antenna

Report No.:F17030211

TEST METHODOLOGY 3.

All testing as described bellowed were performed in accordance with ANSI C63.4:2014 and FCC CFR 47 Part 15 Subpart C.

3.1 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.4:2014. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors.

Radiated Emissions

The EUT is a placed on a turn table, which is 0.8 m above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

Report No.:F17030211

3.2 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5 (²)

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

3.3 DESCRIPTION OF TEST MODES

The EUT was tested under following modes:

Modes:

1. Continuous transmitting

Channels:

1. 125kHz

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Report No.:F17030211

3.4 DESCRIPTION OF THE SUPPORT EQUIPMENTS

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

EUT

Report No.:F17030211

Support Equipment

Peripherals Devices:

	OUTSIDE SUPPORT EQUIPMENT										
No.	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade name	Data Cable	Power Cord				
1.	Notebook	HSTNN-Q 95C	5CD5514 JLJ	R3A304	HP	N/A	Unshielded 1.8m				

Note: All the above equipment /cable were placed in worse case position to maximize emission signals during emission test

Grounding: Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.

Report No.:F17030211

TEST AND MEASUREMENT EQUIPMENT

4.1 **CALIBRATION**

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2 EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

List of Test and Measurement Equipment • CALIBRATION INTERVAL OF INSTRUMENTS LISTED ABOVE IS ONE YEAR

Test Site	Instrument	Manufacturer	Model No.	S/N	Next Cal. Date
	Spectrum (9K3GHz)	R&S	FSP3	833387/01 0	2017/09/20
	EMI Receiver	R&S	ESHS10	830223/00 8	2017/05/22
Conduction	LISN	Rolf Heine Hochfrequenztech nik	NNB-2/16z	98062	2017/05/25
	ISN	Schwarzbeck	8-Wire ISN CAT5	CAT5-8158 -0094	2017/09/21
	RF Cable	N/A	N/A	EMI-3	2017/10/19
	Bilog antenna(30M- 1G)	ETC	MCTD2786B	BLB16M0 4004/JB-5- 004	2017/05/03
	Double Ridged Guide Horn antenna(1G-18 G)	ETC	MCTD 1209	DRH15N0 2009	2017/11/23
	Horn antenna (18G-26G)	com-power	AH-826	81000	2017/08/15
	Pre amplifier (30M-1G)	EMC INSTRUMENT	EMC9135	980334	2017/05/04
	Microwave Preamplifier (1G-18G)	EMC INSTRUMENT	EMC051845	980108&A T -18001	2017/10/23
Radiation	Pre amplifier (18G~26G)	MITEQ	JS4-18002600-30- 5A	808329	2017/08/10
	EMI Test Receiver	R&S	ESVS30 (20M-1000MHz)	863342/012	2017/11/28
	RF Cable (open site)	EMCI	N male on end of both sides (EMI4)	30m	2017/10/19
	RF CABLE (1~26.5G)	HARBOUT INDUSTRIES	LL142MI(4M+4M)	NA	2018/03/08
	RF CABLE (1~26.5G)	HARBOUR INDUSTRIES	LL142MI(7M)	NA	2017/08/11
	Spectrum (9K7GHz)	R&S	FSP7	830180/006	2018/02/25
	Spectrum (9K40GHz)	AGILENT	8564EC	4046A0032	2018/01/03
Software	e3	AUDIX	N/A	N/A	N/A

SECTION 15.209 REQUIREMENTS (GENERAL RADIATED EMISSION) 5.

5.1 TEST SETUP

9 kHz to 30 MHz emissions:

Report No.:F17030211

5.2 LIMIT

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in section 15.209 as below.

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
1.705-30	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500*	3

^{*}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz,

174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the above emission table, the tighter limit applies at the band edges.

Frequency of Emission	Field S	Field Strength			
(MHz)	μV/m	dBμV/m	Distance (meters)		
0.009-0.49	2400/F(kHz)	67.6-20logf(kHz)	300		
0.49-1.705	24000/F(kHz)	87.6-20logf(kHz)	30		
1.705-30	30	29.5	30		
30-88	100	40	3		
88-216	150	43.5	3		
216-960	200	46	3		
Above 960	500	54	3		

5.3 TEST PROCEDURE

- 1. The EUT was placed on a turntable, which was 0.8m above ground plane.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT was set at 3m away from the receiving antenna, which was varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was maximized by changing the polarization of receiving antenna, both horizontal and vertical.
- 6. Repeated above procedures until the measurements for all frequencies are completed.

5.4 RESULT: PASSED

5.5 TEST DATA:

All frequencies not described in this test report and within the range of the general radiated emission limits are not detectable significantly. The table as below is representing worst emissions found.

Below 30MHz

Horizontal

Below 30 MHz

Remarks:	: Fa	ctor=Ins	ertion los	s+Cable lo	OSS		
		Read			Limit	Over	
	Freq	Level	Factor	Leve1	Line	Limit	Remark
· ——	MHz	<u>dBuV</u>	dB/m	dBuV/m	$\overline{dBuV/m}$	dB	
1	0.13	72.88	10.74	83.62	105.67	-22.05	Average
1 2 3 4	2.83				69.50		
3					69.50		
4	11.59	39.28	12.15	51.43	69.50	-18.07	OP
5 @	15.50	41.53	12.22	53.75	69.50	-15.75	OP
6	17.48				69.50		

Vertical

Remarks:	: Fa	: Factor=Insertion loss+Cable loss					
		Read			Limit	Over	
	Freq	Leve1	Factor	Level	Line	Limit	Remark
	MHz	d BuV	dB/m	$\overline{dBuV/m}$	$\overline{dBuV/m}$	d B	
1 @	0.13	80.64	10.74	91.38	105.67	-14.29	Average
2	4.62	38.18	11.13	49.31	69.50	-20.19	QP
3	6.88	34.75	11.59	46.34	69.50	-23.16	OP
4	11.58	31.12	12.15	43.27	69.50	-26.23	OP
5	15.55	32.34	12.22				
6	17.27		12.25				

Above 30MHz

Horizontal

Remarks:	: Factor=Insertion loss+Cable loss						
		Read		Level	Limit	Over Limit	Remark
	MHz	dBu∇	dB/m	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 @ 3 4 5	110.51 229.82 280.26 372.41 557.68 775.93	55.53 51.65 43.28 43.55	-17.05 -14.45 -12.07 -9.04	38.48 37.20 31.21 34.51	46.00 46.00 46.00 46.00	-7.52 -8.80 -14.79 -11.49	QP QP QP QP

Vertical

: Factor=Insertion loss+Cable loss Remarks:

		Read			Limit	Over	
	Freq		Factor				Remark
	MHz	dBu∇	dB/m	dBuV/m	dBuV/m	dB	
1 @	183.26	54.27	-19.11	35.16	43.50	-8.34	OP
2 3	272.50						
3	455.83						
4 5	565.44	45.95	-9.07	36.88	46.00	-9.12	QP
5	679.90	37.39	-7.21	30.18	46.00	-15.82	QP
6	858.38	35.12	-4.59	30.53	46.00	-15.47	QP

Note:

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Measurements from 9 kHz to 150 kHz, Peak detector setting: 100 Hz RBW
- 5. Measurements from 150 kHz to 30MHz, Peak detector setting: 10 kHz RBW
- 6. Measurements from 30 MHz to 1000 MHz, Peak detector setting: 100 kHz RBW
- 7. Measurements from 9 kHz to 150 kHz, CISPR Quasi-Peak detector: 200 Hz RBW
- 8. Measurements from 150 kHz to 30MHz, CISPR Quasi-Peak detector: 9 kHz RBW
- 9. Measurements from 30 MHz to 1000 MHz, CISPR Quasi-Peak detector: 120 kHz RBW
- 10. Peak detector measurement data will represent the worst case results.

Report No.:F17030211

SECTION 15.207 REQUIREMENTS (POWERLINE CONDUCTED 6. **EMISSIONS)**

6.1 TEST SETUP

6.2 LIMIT

Frequency range (MHz)	CLASS B	
	QP	Average
	dB(uV)	dB(uV)
0.15-0.5	66 - 56 dBuV	56 - 46 dBuV
0.5-5.0	56 dBuV	46 dBuV
5.0-30.0	60 dBuV	50 dBuV

Remark: In the above table, the tighter limit applies at the band edges.

6.3 **TEST PROCEDURE**

The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). It provides a 50 ohm / 50 µH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm / 50 µH coupling impedance with 50 ohm termination. (Please refer to the block diagram of the test setup and photograph.)

Both sides of AC line are checked for the maximum conducted emission interference. In order to find the maximum emissions, the relating positions of equipment and all of the interference cables must be changed according to EN 55022 regulations: The measurement procedure on conducted emission interference.

The resolution bandwidth of the field strength meter is set at 9 KHz.

6.4 TEST SPECIFICATION

According to PART15.207

6.5 RESULT: N/A.

EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150KHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9KHz

6.6 TEST DATA: N/A

Date of Issue: Apr. 05, 2017 Report No.:F17030211

APPENDIX 1 PHOTOS OF TEST CONFIGURATION

Photograph - Radiated Emission Test Setup

P Date of Issue: Apr. 05, 2017 Report No.:F17030211

APPENDIX 2 PHOTOS OF EUT

