Predicting Sales of Hass Avocados

STA440 Individual Project

Outline

- Background
- Research Questions
- Existing Literature
- Methodology
- Results
- Conclusion
- Limitations and Future Steps
- Q & A

Background

From the perspective of a grower/marketer,

Can we predict the **sales volume** of avocados?

From the perspective of a buyer/consumer,

Can we predict the **price** of avocados?

Data

- Kaggle Avocado Prices dataset ← Hass Avocado Board
- Hass avocados, a cultivar of avocados
- Per-unit prices, total volumes sold, regions, and types of Hass avocados
- Weekly data from the January 2015 to March 2018

From the perspective of a grower/marketer,

Can we predict the **sales volume** of avocados?

From the perspective of a buyer/consumer,

Can we predict the **price** of avocados?

From the perspective of a grower/marketer,

Using the Kaggle dataset, can we reasonably predict the total number of conventional Hass avocados sold in the U.S.?

From the perspective of a buyer/consumer,

Can we predict the **price** of avocados?

From the perspective of a grower/marketer,

Using the Kaggle dataset, can we reasonably predict the total number of conventional Hass avocados sold in the U.S.?

From the perspective of a buyer/consumer,

Can we reasonably predict the average per-unit price of conventional Hass avocados in the U.S.?

Prediction Range?

From the perspective of a grower/marketer,

Using the Kaggle dataset, can we reasonably predict the total number of conventional Hass avocados sold in the U.S. from March 2017 to March 2018?

Volume vs. Price?

OLS...Maybe Not?

A Closer Look at Sales Volume

Volume of Conventional Avocados Sold in the U.S. Show Seasonal Pattern

Alternative Model

SARIMA, or

<u>Seasonal AutoRegressive Integrated Moving Average model</u>

Seasonal ARIMA $(p, d, q) \times (P, D, Q)_s$

Seasonal ARIMA
$$(p, d, q) \times (P, D, Q)_s$$
Non-Seasonal Part

Seasonal ARIMA $(p, d, q) \times (P, D, Q)_s$

Order of
<u>AutoRegression</u>
e.g. AR(1)

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t$$

Order of
$$\underline{\text{Auto}}\underline{\text{Regression}}$$
 e.g. AR(1)
$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t$$

Prediction of Sales Volume

Prediction of Sales Volume (With Uncertainty)

From the perspective of a buyer/consumer,

Can we reasonably predict the average per-unit price of conventional Hass avocados in the U.S. from March 2017 to March 2018?

A Closer Look at Per-Unit Prices

Price vs. Volume Sold...or Not?

Additional Predictors?

Per-Unit Price Prediction

New Data?

- 2015-2020 Data from the Hass Avocado Board
- Same format, same variables
- Existing literature:
 - Study by Evans et al. (2009) predicted avocado prices from
 2009-2010

Further Analysis?

Conclusion and Discussion

From the perspective of a grower/marketer,

Using the Kaggle dataset, can we reasonably predict the total number of conventional Hass avocados sold in the U.S.?

From the perspective of a buyer/consumer,

Can we reasonably predict the average per-unit price of conventional Hass avocados in the U.S.?

Limitations and Future Steps

- Additional predictors
 - o e.g. supply volume, import/export, tariff, weather, etc.

Spatial analysis

Q & A

Model Formulation

Seasonal ARIMA $(p,d,q) \times (P,D,Q)_s$:

$$\Phi_P(L^s)\,\phi_p(L)\,\Delta_s^D\,\Delta^d\,y_t = \delta + \Theta_Q(L^s)\,\theta_q(L)\,w_t$$

where

$$\begin{split} \phi_p(L) &= 1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p \\ \theta_q(L) &= 1 + \theta_1 L + \theta_2 L^2 + \ldots + \theta_p L^q \\ \Delta^d &= (1-L)^d \end{split}$$

$$\begin{split} \Phi_P(L^s) &= 1 - \Phi_1 L^s - \Phi_2 L^{2s} - \ldots - \Phi_P L^{Ps} \\ \Theta_Q(L^s) &= 1 + \Theta_1 L + \Theta_2 L^{2s} + \ldots + \theta_p L^{Qs} \\ \Delta_s^D &= (1 - L^s)^D \end{split}$$

Model Formulation: Volume Prediction

Seasonal ARIMA
$$(2,0,0) \times (0,1,2)_{12}$$

 $(1 - \phi_1 L - \phi_2 L^2)(1 - L^{12})y_t = \delta + (1 + \Theta_1 L^{12} + \Theta_2 L^{24})w_t$

Prediction of Sales Volume: No Exogenous Predictor

Per-Unit Price Prediction with Uncertainty

SARIMA: Full Expression

Seasonal ARIMA $(p,d,q) \times (P,D,Q)_s$:

$$\Phi_P(L^s)\,\phi_p(L)\,\Delta_s^D\,\Delta^d\,y_t = \delta + \Theta_Q(L^s)\,\theta_q(L)\,w_t$$

where

$$\begin{split} \phi_p(L) &= 1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p \\ \theta_q(L) &= 1 + \theta_1 L + \theta_2 L^2 + \ldots + \theta_p L^q \\ \Delta^d &= (1-L)^d \end{split}$$

$$\begin{split} \Phi_P(L^s) &= 1 - \Phi_1 L^s - \Phi_2 L^{2s} - \ldots - \Phi_P L^{Ps} \\ \Theta_Q(L^s) &= 1 + \Theta_1 L + \Theta_2 L^{2s} + \ldots + \theta_p L^{Qs} \\ \Delta_s^D &= (1 - L^s)^D \end{split}$$

Weekly Data: Volume vs. Price?

Weekly Data: OLS...Maybe Not?

Heteroscedasticity in Residuals vs. Fitted Value plot

Weekly Data: A Closer Look at Sales Volume

Weekly Data: Results

Weekly Data: Prediction of Sales Volume (With Uncertainty)

One-Year Prediction with 95% CI

Weekly Data: A Closer Look at Per-Unit Prices

Per-Unit Price of Conventional Avocados in the U.S. Show Seasonal Pattern

