ASEN 5070 Exam No. 1 July 2, 2003 Open Book and Notes

1. (35%) Given that the observations are related to the state by

$$y_i = (t_i - 1)x_1 + (t_i^2 + 1)x_2 + \varepsilon_i$$
 $i = 1, 2$

Observations y_i are taken at $t_1=0$, $t_2=1$, and y_1 is as accurate as y_2 .

The values of the observations are: $Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. The state vector is $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Assume *a priori* information is given: $\overline{X} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\overline{W} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- a. Write the observation-state equation in the form $Y=HX + \epsilon$.
- b. Compute the least squares estimate of X including the *a priori* information.
- c. Compute the best estimate of ε .
- 2. (35%) Given the system

$$\dot{x}_1 = \alpha x_1 + \beta x_2$$

$$\dot{x}_2 = \alpha x_2$$

- a. Write the equations in state space form, $\dot{X} = AX$, where $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- b. Determine the state transition matrix for this system.
- c. Assuming $t_0 = 0$, write the expression for X at t = 1 in terms of the initial conditions $x_1(t_0)$ and $x_2(t_0)$.
- 3. (30%) Answer the following questions true or false.
 - a. In problem 1 the observation state relationship is nonlinear_____
 - b. If the state vector is n x 1 and the observation vector in m x 1 the H matrix will be m x n _____
 - c. If there are fewer observations than unknowns but we are given apriori state information with a full rank weighting matrix it is possible to obtain a least squares estimate for the state _____
 - d. Range observations of a satellite from two different ground stations at the same instant in time generally will not be independent
 - e. The differential equation $\ddot{x} + 3\dot{x} + 2x^2 = 0$ is linear _____