

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Level In Statistics 1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2024
Question Paper Log Number P76183A
Publications Code WST01_01_2410_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)

Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN:

- bod benefit of doubt
- ft follow through
 - \circ the symbol $\sqrt{}$ ill be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ★ The answer is printed on the paper or ag- answer given
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - a) If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - b) If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number		Scheme	Mar	ks
1 (a)	[Mode =	1 137	B1	
. ,				(1)
	<i>a</i> = 106		B1	
(b)	b = 129		B1	
	<i>c</i> = 126		B1	
				(3)
(c) (i)	mean =	$=\frac{4016}{31}=$]129.5	B1	
(ii)	[Standard	d deviation = $\sqrt{\frac{525056}{31} - \left(\frac{4016}{31}\right)^{\frac{2}{3}}}$ or $\sqrt{\frac{31}{30} \left(\frac{525056}{31} - \left(\frac{4016}{31}\right)^{\frac{2}{3}}\right)}$	M1	
	=12.4 o	r 12.6	A1	
				(3)
(d)	'129.5'- '12.4	$\frac{137}{4} = -0.6$	M1	
	Negative	[skew]	A1ft	
	_			(2)
(e)		t difference of the average or a correct difference of the spread average action films run for longer than comedy films as the median is 29 > 117	B1ft	
				(1)
(a)	D1	Notes	Total	10
(a)	B1	Cao Must be seen in part (a)		
(b)	B1	$a = 106$ Must be attached to a (Condone Q_1 /lower quartile for a)		
	B1	$b = 129$ Must be attached to b (Condone Q_2 /median for b)		
	B1	$c = 126$ Must be attached to c (Condone Q_3 /upper quartile for c)		
(c) (i)	B1	awrt 130		
(ii)	M1	For a correct method (including the square root) to find the standard deviation. Et their mean		
	A1	awrt 12.4 or awrt 12.6 if sample standard deviation is calculated Correct answer only	y scores 2	2/2
(d)	M1	For substitution of the mode, the mean and the standard deviation into the expression mode, their mean and their standard deviation. Allow awrt -0.6 if no working shown		r
	A1ft	A correct interpretation ft their expression. Ignore any reference to correlation		
(e)	B1ft	for a correct comment, referring to length , with reference to a correctly named state include the correct figures compared. Ft their values. Ignore any reference to skew		lust

The following table may be useful (but not an exhaustive list of possible answers)

Statistic	A	C	Comment
Median	129	117	On average action films run for longer as the median is greater 129 > 117
Mean	129.5	114.5	On average action films have a greater running time as the mean is greater 129.5 > 114.5
Mode	137	127	On average comedy films are shorter in length as the mode is less 127 < 137
IQR	17	20	Comedy films have a greater spread of running times as the IQR is greater 20 > 17
Range	57	39	Action films have a larger variation of running times as the range is greater $57 > 39$
SD	12.4	11.9	Comedy films show less variability in the length of films as the SD is less 11.9 < 12.4

Question Number	Scheme			
2 (a) (i)	$S_{yy} = 819$	$S_{yy} = 81938.5 - \frac{2015^2}{50} [= 734] *$		
(ii)	$r = \frac{219.55}{\sqrt{734 \times 72.25}} = 0.95338$ awrt 0.953			
			(3)	
(b)	e.g. [In g	general] the longer the rabbit the greater the weight	B1ft (1)	
(c)	Consister	nt/Yes as r/PMCC is close to 1	(1) B1ft	
(0)	Consister	ing res as 7/1 Mee is close to 1	(1)	
(d)	$b = \frac{219.5}{734}$	$\frac{55}{4} = 0.2991$	M1 A1	
	$a = \left(\frac{125}{50}\right)$	$\left(\frac{5}{5}\right) - b' \left(\frac{2015}{50}\right) [= -9.554]$	M1	
	w = -9.5	65 + 0.299y	A1	
			(4)	
(e)	'-9.55'+	$0.299 \times 45 = 3.905$ awrt 3.91	M1 A1ft	
			(2)	
() (')	D1*	Notes	Total 11	
(a)(i)	B1*	Answer is given so a correct numerical expression and no incorrect working seen		
(ii)	M1	For use of $\frac{S_{yw}}{\sqrt{S_{yy} \times S_{ww}}}$ May be implied by awrt 0.953		
	A1	awrt 0.953		
		A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increase	es the	
(b)	B1ft	weight/w increases Ignore any figures quoted. Do not accept comments about correlations		
(a)	B1ft	A correct statement with a correct reason ft their r value (provided that $ r < 1$) Allow	$v 0.953 \approx 1$	
(c)	DIII	Allow 'my value' to imply r		
(d)	M1	A correct method to find the gradient (May be implied by awrt 0.299 or $\frac{4391}{14680}$)		
	awrt 0.299 (Condone awrt 0.3 if M1 scored) May be implied by a correct gradient in the regression line.			
	M1 A correct method to find the intercept ft their b (May be implied by awrt -9.55)			
	A1	For $w = (awrt) - 9.55 + (awrt)0.299 y$ Must be seen in part (d)		
(e)	M1	For substitution of 45 into their regression equation		
	A1ft For awrt 3.91 or ft their regression line, provided their final answer is > 0. If regression line is not correct, then you will need to check their answer			

Question Number		Scheme	Marks
3 (a)	Cooking Travel 29 14 17 11 42 32 Sport		
(b) (i)	'14'		(3)
(b) (i)	200	L. 1401, 1001 - 410	B1ft (1)
(ii)	-	$\frac{(+42+32)}{200} = \frac{118}{200} \text{or} \frac{200-29-22-14-17}{200} = \frac{118}{200}$	M1 A1
	'1 4	1, 1111 25	(2)
(c)	$\frac{'14'+'11'}{'14'+'11'+'22'+'33'} = \frac{25}{80}$		
		Natas	(2) Total 8
(a)	For a fully correct Venn diagram (B2 for at least 6 numbers in the correct place on the Venn diagram) (B1 for at least 3 numbers in the correct place on the Venn diagram) Treat blanks on the diagram as zero Condone correct probabilities instead of frequencies e.g. ²² / ₂₀₀ oe or 0.11 as 22		
(b) (i)	B1ft	For $\frac{14'}{200}$ oe ft their Venn diagram	
(ii)	M1	$\frac{\frac{200}{33'+\frac{11}{42'+\frac{32}{200}}}}{200} \text{ or } \frac{200-\frac{29}{20'-\frac{14}{20'-\frac{14}{20'}}}}{200} \text{ ft their Venn diagram. Ma}$ by $\frac{118}{200}$ oe	ny be implied
	A1	For $\frac{118}{200}$ oe	
(c)	M1	$\frac{n}{'14'+'11'+'22'+'33'}$ provided the answer gives a probability and $0 < n < 80$ ft the Venn diagram for the denominator or $\frac{m}{'0.4'}$ where $0 < m < 0.4$ ft the Venn diagram for the denominator	
	A1	For $\frac{25}{80}$ oe Allow 0.313	

Question Number	Scheme					
4 (a)	<i>X</i> □ N(1	$X \square N(170,16^2)$				
	$P(X > 190) = P(Z > \frac{190 - 170}{16}) [= P(Z > 1.25)]$					
	[=1-0.8	[944] = 0.1056 awrt 0.106	A1			
			(2)			
(b)	P(X > d)	() = 0.9				
	$\frac{d-170}{16} =$	$\frac{d-170}{16} = -1.2816$ or $\frac{170-d}{16} = 1.2816$ (Calc value ± 1.28155)				
	d = 149.4	d = 149.494 awrt 149				
		Notes	Total 5			
		NB correct answers with no working scores no marks				
(a)	M1	For standardising using 190, 170 and 16 (May be implied by 1.25)				
	A1	A1 awrt 0.106 Do not ISW				
(b)	M1	For standardising and setting = z value, where $1 < z < 2$				
	A1 A fully correct standardisation = a correct compatible z value to 4 dp or better.					
	dA1 Dependent on previous A1 149.5 or awrt 149					

Question Number		Scheme	Marks		
5 (a)	[Time is] continuous	B1		
			(1)		
	_	ographers = 160 small squares or 64 photographers = 640 small squares			
(b)	or $\frac{16}{160}$	M1			
		= 0.1 or $\frac{64}{640}$ = 0.1 or $\frac{160}{16}$ = 10 or $\frac{640}{64}$ = 10			
		cy density = 1.6 or Correct scale on the frequency density axis $(20-12) \qquad (24-20)$			
	$\frac{x}{240} = \frac{1}{1}$	$\frac{16}{60}$ oe or $\frac{(20-12)}{10} \times 16 + \frac{(24-20)}{5} \times 14$	M1		
	= 24		A1		
			(3)		
(c)		Using n Using $n + 1$			
	$ O_2 = 120$	$Q + \frac{(32-21)}{35-21} \times (25-20)$ oe $[Q_2 =]20 + \frac{(32.5-21)}{35-21} \times (25-20)$ oe			
			M1		
	or 25-	$\frac{35-32}{35-21} \times (25-20)$ oe or $25-\frac{35-32.5}{35-21} \times (25-20)$ oe	1111		
	= awrt 2	= awrt 24.1	A1		
			(2) M1		
(d)		Mean = Median or Mean \approx Median e.g. Appropriate decision. Consistent with expectation for a normal distribution.			
	e.g. App	A1ft			
		Notes	(2) Total 8		
(a)	B1	Allow not discrete			
(b)	M1	For establishing a ratio between photographers and area or calculating frequency density (may l			
	M1	For a correct ratio or expression using areas for photographers from 12 to 24			
	A1	Cao			
(c)	M1	For a correct method to find median using either n or $n + 1$			
	A1	awrt 23.9 or awrt 24.1 if using $n + 1$			
		For a correct comment about mean and median ft their median			
(d)	M1	Allow mean is close to median to imply mean ≈ median			
		Ignore any comments made about the shape of the histogram For a correct compatible comment about Charlie's decision ft their median			
	For a correct compatible comment about Charlie's decision it their median If Mean = Median or Mean \approx Median, then the decision should be that a normal distribution is				
	A1ft suitable [due to symmetry]				
		If Mean < Median or Mean > Median or mean ≠ median, then the decision should	be that a		
		normal distribution is not suitable [due to the skew in the data]			

Question Number		Scheme	Marks
6(a)	10k = 1	$\Rightarrow k = 0.1$	B1
	L	•	(1)
(b)	e.g. P(X	(-1) = 0.1 and $P(X = 2)[=F(2) - F(1)] = 0.1$	B1
	e.g. P(X	=3)[=F(3)-F(2)]=0.1	M1
	X	1 2 3 4 5 6	A1
	P(X = x)) 0.1 0.1 0.1 0.2 0.2 0.3	
(c)	a+a+a	+b+b+b+0.11+0.05=1 [3a+3b=0.84]	(3) M1
(C)		$3a + 4b + 5b + 6b + 0.77 + 0.4 = 4.02 [\Rightarrow 6a + 15b = 2.85]$	
		<u> </u>	M1 A1*
	e.g. 9a =	$=1.35 \Rightarrow a = 0.15 *$	(3)
(d)	b = 0.13		(-)
	$E(Y^2) =$	$1^2 \times 0.15 + 2^2 \times 0.15 + 3^2 \times 0.15 + 4^2 \times 0.13' + 5^2 \times 0.13' + 6^2 \times 0.13'$	M1
	$+7^2 \times 0.1$	$1+8^2 \times 0.05 = [20.7]$ *	A1*
			(2)
(e)	Var(Y)	$=]20.7 - 4.02^{2} [= 4.5396]$	M1
	Var(5-2	$2Y$) = $4Var(Y) = 4 \times '4.5396' = 18.1584$ awrt 18.2	M1 A1
			(3)
(f)	$0.1 \times 0.15 + 0.1 \times 0.15 = 0.03$		M1 A1
		Notes	$\begin{array}{c c} (2) \\ \hline \end{array}$
		110165	10tai 14
(a)	B1	For $k = 0.1$ oe	Total 14
(a) (b)	B1 B1		
	B1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability For correct use of $F(x)$ to find one other probability. May be implied by one other content of $F(x)$ to find one other probability.	lities
	B1 M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability For correct use of $F(x)$ to find one other probability. May be implied by one other coprobability	lities
	B1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability For correct use of $F(x)$ to find one other probability. May be implied by one other corprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values	lities rrect ust be
	B1 M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability for correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May	lities rrect ust be
(b)	B1 M1 A1 M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability For correct use of $F(x)$ to find one other probability. May be implied by one other correctability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$)	lities rrect ust be
(b)	B1 M1 A1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability for correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May	lities rrect ust be
(b)	B1 M1 A1 M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability for correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b	lities rrect ust be be implied
(b)	B1 M1 A1 M1 M1 A1*	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability for correct use of $F(x)$ to find one other probability. May be implied by one other correctability for a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be	lities rrect ust be be implied
(b)	B1 M1 A1 M1 M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability or correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$	lities rrect ust be be implied
(b) (c)	B1 M1 A1 M1 M1 A1*	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability for correct use of $F(x)$ to find one other probability. May be implied by one other correctability for a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be	lities rrect ust be be implied
(b) (c)	B1 M1 A1 M1 M1 A1* M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability or correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$ For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$ Allow $0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2$	lities rrect ust be be implied
(b) (c)	B1 M1 A1 M1 M1 A1* M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability or correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$ For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$ Allow $0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2$ For a correct expression for $Var(Y)$. May be implied by awrt 4.54	lities rrect ust be be implied
(b) (c) (d)	B1 M1 A1 M1 M1 A1* M1 A1*	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability or correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$ For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$ Allow $0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2$ For a correct expression for $Var(Y)$. May be implied by awrt 4.54 Allow $E(5 - 2Y) = -\frac{76}{25}$ oe and $E((5 - 2Y)^2) = \frac{137}{5}$	lities rrect ust be be implied n answer substituted
(b) (c) (d)	B1 M1 A1 M1 M1 A1* M1	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability or correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$ For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$ Allow $0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2$ For a correct expression for $Var(Y)$. May be implied by awrt 4.54	lities rrect ust be be implied n answer substituted
(b) (c) (d)	B1 M1 A1 M1 M1 A1* M1 A1*	For $k = 0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability or correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a + 3b = 0.84$) For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in a and b (May be implied by $6a + 15b = 2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$ For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$ Allow $0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2$ For a correct expression for $Var(Y)$. May be implied by awrt 4.54 Allow $E(5 - 2Y) = -\frac{76}{25}$ oe and $E((5 - 2Y)^2) = \frac{137}{5}$ For use of $4Var(Y)$ ft their $Var(Y)$ provided $Var(Y)$ is not 20.7 or 4.02 Do not allow 5.	lities rrect ust be be implied n answer substituted
(b) (c) (d)	B1 M1 A1 M1 A1* M1 A1* M1 A1*	For $k=0.1$ oe For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probability for correct use of $F(x)$ to find one other probability. May be implied by one other coprobability For a fully correct probability distribution. Need not be in a table but probabilities mattached to the correct X values For use of the sum of the probabilities = 1 to form a linear equation in a and b (May by $3a+3b=0.84$) For use of $\sum y \times P(Y=y) = 4.02$ to form a linear equation in a and b (May be implied by $6a+15b=2.85$) Answer is given so there must be a correct line between the 2 equations and the given For finding $E(Y^2)$ with their b (At least 4 correct terms). Values for a and b must be into their expression for $E(Y^2)$ For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$ Allow $0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2$ For a correct expression for $Var(Y)$. May be implied by awrt $Var(Y) = 0.05 + 0.05 $	lities rrect ust be be implied n answer substituted

Question Number		Scheme Marks			
7 (a)	$\frac{n}{2n+1}$	$ \begin{array}{c c} & n-1 \\ \hline 2n \\ \hline Red \\ \hline & n+1 \\ \hline 2n \\ \hline & n \\ \hline & Red \\ & Red \\ \hline & Red \\ \hline & Red \\ \hline & Red \\ \hline & Red \\ & Red \\ \hline & Red \\ \hline & Red \\ \hline & Red \\ & Red \\ \hline & Red \\ & Red$	$\frac{n}{2n+1}$ and $\frac{n+1}{2n+1}$ in the correct places on the tree diagram	B1	
	$\frac{n+1}{2n+1}$	Black Red	$\frac{n-1}{2n}$ and $\frac{n+1}{2n}$ in the correct places on the tree diagram	B1	
		$\frac{n}{2n}$ Black	$\frac{n}{2n}$ and $\frac{n}{2n}$ in the correct places on the tree diagram	B1	
<u> </u>				(3)	
(b)	2n+1	$\frac{(n+1)}{2n} + \frac{n+1}{2n+1} \times \frac{n}{2n}$		M1	
		$\frac{+1)}{+1)} = \frac{n+1}{2n+1} *$		A1*	
				(2)	
(c)	$\frac{n+1}{2n+1} = \frac{25}{49} \Rightarrow n = 24$ So 49 counters in the box			M1 A1	
				(2)	
(d)	$\frac{\frac{25}{49} \times \frac{24}{48}}{\frac{25}{49}} = \frac{1}{2}$ M1 A1				
				(2)	
			otes	Total 9	
(a)	B1	For $\frac{n}{2n+1}$ and $\frac{n+1}{2n+1}$ in the corre			
	B1	For $\frac{n-1}{2n}$ and $\frac{n+1}{2n}$ in the correct places on the tree diagram			
	B1	For $\frac{n}{2n}$ and $\frac{n}{2n}$ in the correct places on the tree diagram. Allow $\frac{1}{2}$ for $\frac{n}{2n}$ in both places			
(b)	M1		For use of $P(Red) \times P(Black) + P(Black) \times P(Red)$ ft their tree diagram		
	A1*	Answer is given so no incorrect working can be seen. Must have at least one correct line of working between M1 and the given answer.			
(c)	M1	For solving to find $n = 24$			
	A1	Cao			
(d)	For a correct ratio ft their n and their tree diagram Allow a correct ratio in terms of n e.g. $\frac{n+1}{2n+1} \times \frac{n}{2n}$ oe ft their tree diagram for the numerator $\frac{n+1}{2n+1}$			umerator	
			2n+1	<u> </u>	

Question Number		Scheme		Marks		
8 (a)	$\frac{162 - \mu}{\sigma} = -1.2816 \text{ (Calculator gives } -1.28155)$ or $\frac{175 - \mu}{\sigma} = 1.04 \text{ (Calculator gives } 1.03987)$		M1 A1 A1			
		σ				
	ļ ·	$16\sigma = 162$				
	$\mu + 1.046$			13.54		
	2.3216σ		54 arrivet 160	dM1		
	$\sigma = 5.59$	95 awrt 5.6 $\mu = 169.176$	54 awrt 169	A1 (5)		
(1.)	0 - 208	26 or 0 -12 49		(5)		
(b)	1	$3.26 \text{ or } Q_3 - Q_1 = 13.48$	0.1.1.7/201.74.10.01	B1		
		$-1.5(221.74 - Q_1') = 241.96$ or '	-	M1		
	_	Probability of an outlier	1 – Probability of not an outlier			
	P(B >)	241.96')=				
	('	241.96'-215)				
	P Z>-	$\frac{241.96'-215}{10} \left[= P(Z > 2.70) \right]$	$\lceil P('188.04' < B < '241.96') = \rceil$			
	or	10		13.54		
	_	188.04')=	$P\left(\frac{188.04-215}{10} < Z < \frac{241.96-215}{10}\right)$	dM1		
		/ <u> </u>				
	$ P Z<\frac{1}{2}$	$\frac{188.04'-215}{10} \left[= P(Z < -2.70) \right]$	= P(-2.70) < Z < P(2.70)			
		10				
	or	(0.1.1	0.002 (0.1.1			
	k	6 (Calculator gives 0.0034883)	= 0.993 (Calculator gives 0.99298)	3.61		
	`	$(c) = 2 \times (0.0035)$	P(Outlier) = 1 - '0.993'	M1		
	= 0.007	(Calculator gives 0.006976) awrt 0.007	= 0.007 (Calculator gives 0.007017) awrt 0.007	A1		
		awit 0.007	awit 0.007	(5)		
		No	otes	Total 10		
(a)	M1	For standardising with μ and σ and	d setting = to a z value with $ z > 1$	•		
()	A1					
	A1	For one correct equation in any form with correct z value as given or better				
		For a 2^{nd} correct equation in any form allow 2dp or better for the z value Dependent on previous M1. For solving their 2 linear simultaneous equations (Can be i				
	dM1	both correct answers) If answers are incorrect then we need to see evidence of correct working				
	A1	For μ = awrt 169 and σ = awrt 5.6				
(b)	B1	For $Q_1 = 208.26$ or $Q_3 - Q_1 = 13.48$ Do not accept rounded values				
		For a correct method for finding 1 outlier limit, ft their Q_1 or their IQR. You will need to check				
	M1	that these are correct if no working shown.				
	dM1	Dependent on previous M1. For standardising using their limit(s), 215 and 10 (allow ±) May be				
	ulvii	implied by \pm awrt 2.70 or awrt 0.0035 or awrt 0.993 or final answer of awrt 0.007				
		If using the LHS of the MS: for mul	tiplying their probability by 2			
	M1	or If using the RHS of the MS: for 1 – their probability				
		May be implied by awrt 0.007	their probubility			
	A1	awrt 0.007				
<u> </u>	A1	awrt 0.007				