1 MODEL

```
\mu ::= \mathsf{wk} \qquad (\mathsf{Weak}) \qquad \qquad \varsigma ::= \mathsf{cta} \qquad (\mathsf{Thread\ group}) \\ | \mathsf{rlx} \qquad (\mathsf{Relaxed}) \qquad \qquad | \mathsf{gpu} \qquad (\mathsf{Processor}) \\ | \mathsf{ra} \qquad (\mathsf{Release/Acquire}) \qquad \qquad | \mathsf{sys} \qquad (\mathsf{System}) \\ | \mathsf{sc} \qquad (\mathsf{Sequentially\ Consistent})
```

Orders/Relations in model

- ⊴ is the old ≤ (without coherence stuff from F4 and P5B). This provides the NO-TAR axiom.
- ≤ is a the *happens-before* suborder, which only includes rf when they are morally strong. This serves as a cross-location transitive kernel for the per-location order.
- is a per-location order that relates morally strong and poloc accesses

 This includes ≤ for morally strong accesses.

This provides the SC-PER-LOC axiom.

Write $d \triangle e$ if they conflict (ie, read/write or write/write, same location).

Write $d \triangleq e$ if they conflict and are morally strong

Definition 1.1. A pomset with preconditions is a tuple $(E, \lambda, \leq, \leq, \sqsubseteq)$ where

- (M1) E is a set of events
- (M2) $\lambda: E \to (\Phi \times \mathcal{A})$ is a *labeling* from which we derive functions
 - $\Phi: E \to \Phi$ (formulae)
 - $\mathcal{A}: E \to \mathcal{A} \ (actions)$
- (M3) $\leq \subseteq (E \times E)$, $\leq \subseteq (E \times E)$, and $\subseteq \subseteq (E \times E)$ are partial orders
- (M4) $\bigwedge_{e} \Phi(e)$ is satisfiable (consistency)
- (M5) if $d \le e$ then $\Phi(e)$ implies $\Phi(d)$ (causal strengthening)
- (M6) if $d \le e$ then $d \le e$
- (M7) if $d \le e$ and d conflicts with e then $d \sqsubseteq e$

We say d < e when $d \le e$ and $d \ne e$, and similarly for \triangleleft and \square .

Definition 1.2 (Strong fulfillment). We say $\mathcal{A}(d) = (\mathsf{W} xv)$ fulfills $\mathcal{A}(e) = (\mathsf{R} xv)$ if

- (F3A) *d* ⊲ *e*
- (F3B) d < e if d is morally strong with e
- (F3c) $d \sqsubseteq e$ (if d is not morally strong with e)
- (F4) $\forall \mathcal{A}(c) = (\mathbf{W}x..)$ either $c \sqsubseteq d$ or $e \sqsubseteq c$,

Definition 1.3 (Weak fulfillment). We say $\mathcal{A}(d) = (Wxv)$ fulfills $\mathcal{A}(e) = (Rxv)$ if

- (F3A) *d* ⊲ *e*
- (F3B) d < e if d is morally strong with e
- (F3C) $e \not\sqsubseteq d$ (if d is not morally strong with e)
- (F4) $\forall \mathcal{A}(c) = (\mathsf{W}x..)$ either $c \sqsubseteq d$ or $e \sqsubseteq c$, where

$$d \sqsubseteq e$$
 when
$$\begin{cases} d \sqsubseteq e & \text{if } d \text{ is morally strong with } e \\ e \not\sqsubseteq d & \text{otherwise} \end{cases}$$

If all accesses are morally strong with each other, weak fulfillment degenerates to

- (F3) $d < \epsilon$
- (F4) $\forall \mathcal{A}(c) = (\mathbf{W}x..)$ either $c \sqsubseteq d$ or $e \sqsubseteq c$

If no accesses are morally strong with each other, weak fulfillment degenerates to

(F3)
$$e \not\sqsubseteq d$$

(F4) $\not\supseteq \mathcal{A}(c) = (\mathsf{W}x..)$ both $d \sqsubseteq c$ and $c \sqsubseteq e$

Definition 1.4. Let $P' \in (\phi \mid a) \Rightarrow \mathcal{P}$ when $(\exists P \in \mathcal{P}) \ (\forall e \in E)$

(P1)
$$E' = E \cup \{d\}$$

$$(P2) \leq' \supseteq \leq, \leq' \supseteq \leq, \text{ and } \sqsubseteq' \supseteq \sqsubseteq$$

(P3A)
$$\mathcal{A}'(e) = \mathcal{A}(e)$$

(P3B)
$$\mathcal{A}'(d) = a$$

(P4A)
$$\Phi'(d)$$
 implies $\phi \wedge (d \notin E \vee \Phi(d))$

(P4B) if
$$d \neq (R..)$$
 then $e = d$ or $\Phi'(e)$ implies $\Phi(e)$

(P4C) if
$$d = (Rvx)$$
 then $e = d$ or $\Phi'(e)$ implies $\Phi(e)[v/x]$

(P5A) if
$$d = (R..)$$
, $e = (W..)$ then $e = d$ or $\Phi'(e)$ implies $\Phi(e)$ or $d \leq' e$

- (P5B) if d conflicts with e then $d \sqsubseteq' e$
- (P5c) if d is an acquire or e is a release then $d \leq' e$
- (P5D) if *d* is an SC write and *e* is an SC read then $d \leq' e$
- (P5E) if *d* reads, and *e* is an acquiring fence, then $d \le' e$
- (P5F) if *d* is a releasing fence, and *e* writes, then $d \le' e$

2 IMM EXAMPLES

Interpreting this definition for the IMM:

- No wk, default is rlx
- All threads in same cta (only one scope)
- Actions are morally strong when both are ra/sc, mimicking happens-before
- Strong fulfillment may do the right thing

Disallowed by IMM:

$$x := 2; y^{ra} := 1 \quad || \quad r := y^{ra}; x := 1$$

$$\underbrace{\mathbb{W}x2}_{\text{coe}} \stackrel{\text{ffe}}{\text{W}}_{\text{ra}} y1 \xrightarrow{\text{rfe}} \underbrace{\mathbb{R}^{\text{ra}} y1}_{\text{coe}} \stackrel{\text{bob}}{\text{W}}_{\text{v1}}$$

$$(\forall x) \quad \forall x \in \mathbb{R}^{\text{ra}} y1 \xrightarrow{\text{re}} \underbrace{\mathbb{W}x1}_{\text{ra}} y1 \xrightarrow{\text{re}} \underbrace{\mathbb{W}x1}_{\text{ra$$

Allowed by IMM, but not by Power/ARMv7/ARMv8/TSO:

$$\overline{(Wx2)} \quad \overline{(W^{ra}y1)} \longrightarrow \overline{(Ry1)} \quad \overline{(Wx1)}$$

Anton says we could potentially disallow by adding an axiom to IMM forbidding cycles in co $\cup([W]; \mathsf{rfe}^?; ([R^{\mathsf{ra}}] \cup \mathsf{po}; [FW^{\mathsf{ra}}]); \mathsf{ar}^*; [W])$

Weak Pomsets 3

Need ⊴ to prevent thin air on rlx:

$$y := x \parallel x := y$$

$$Rx1 \longrightarrow Wy1 \longrightarrow Ry1 \longrightarrow Wx1$$

$$\begin{array}{ccc}
(Rx1) \longrightarrow (Wy1) & (Ry1) \longrightarrow (Wx1)
\end{array}$$

$$(x_1)$$
 (y_1) (x_1) (x_2)

Example from talk:

Comment: Two order idea from OOPLSA talk does not work for this example. In this setting it corresponds to:

 $r := x; x := 1 \parallel y := x \parallel x := y$

• Require: $d \sqsubseteq e$ when $d \le e$ and they conflict

Using this, we would have a cycle (weak/strong fulfillment not relevant here):

$$(Rx1) \longrightarrow (Rx1) \longrightarrow (Ry1) \longrightarrow (Ry1) \longrightarrow (Ry1)$$

3 PTX EXAMPLES

Based on [Lustig et al. 2019; NVIDIA 201].

PTX requires weak fulfillment.

Default scope is cta. In examples, all threads in different ctas.

Default mode is wk.

(Rx0) must be forbidden. Before fulfilling the read:

$$x := 0; x := 1; y_{sys}^{ra} := 1 \parallel r := y_{sys}^{ra}; s := x$$
 (PUB1_{SYS})

 $(\mathsf{W} x 1) \sqsubseteq (\mathsf{R} x)$ is required by M7, enforcing publication.

(Rx0) must be allowed:

$$x := 0; x := 1; y^{ra} := 1 \parallel r := y^{ra}; s := x$$
 (PUB1_{CTA})

$$(\boxtimes Vx0) \qquad (Wx1) \longrightarrow (R^{ra}y1) \longrightarrow (Rx)$$

$$(\square)$$
 $\rightarrow (\square)$ (\square) (\square) (\square) (\square)

We do not have $(W^{ra}y1) \le (R^{ra}y1)$ since F3 only requires order for things that are morally strong.

Another example that may be of interest (nothing morally strong). Can this (Rx0)?

$$x := 0; x := 1 \parallel y := x \parallel if(y)\{r := x\}$$

PTX allows TC16 for events that are not mutually strong (TC16_{WK}), but disallows it when events are mutually strong (TC16_{SYS}). Note that \leq imposes no requirements here. Fulfillment imposes no order. This example shows that F3C cannot be strengthened to require that $d \sqsubseteq e$.

$$r := x; x := 1 \parallel s := x; x := 2$$
 (TC16_{WK})

$$Rx2$$
 $Wx1$ $Rx1$ $Wx2$

$$(Rx2)$$
 $(Wx1)$ $(Rx1)$ $(Wx2)$

$$(Rx2)$$
 $\rightarrow (Wx1)$ $(Rx1)$ $\rightarrow (Wx2)$

$$r := x_{sys}^{r|x}; x_{sys}^{r|x} := 1 \parallel s := x_{sys}^{r|x}; x_{sys}^{r|x} := 2$$
 (TC16_{SYS})

$$\begin{bmatrix}
R_{\mathsf{sys}}^{\mathsf{rlx}} x 2
\end{bmatrix} \qquad \begin{bmatrix}
W_{\mathsf{sys}}^{\mathsf{rlx}} x 1
\end{bmatrix} \qquad \begin{bmatrix}
W_{\mathsf{sys}}^{\mathsf{rlx}} x 2
\end{bmatrix} \qquad (\underline{\triangleleft} = \underline{\triangleleft})$$

$$\begin{array}{c|c} \hline (R_{\mathsf{sys}}^{\mathsf{rlx}} x2) & \rightarrow & W_{\mathsf{sys}}^{\mathsf{rlx}} x1 \\ \hline \end{array} \longrightarrow \begin{array}{c|c} \hline (R_{\mathsf{sys}}^{\mathsf{rlx}} x1) & \rightarrow & W_{\mathsf{sys}}^{\mathsf{rlx}} x2 \\ \hline \end{array}$$

About Release-Acquire semantics. Not sure the status of this example in C11 and IMM:

$$r := x_{\mathsf{sys}}^{\mathsf{rlx}}; \ y_{\mathsf{sys}}^{\mathsf{ra}} := 1 \quad \| \quad s := y_{\mathsf{sys}}^{\mathsf{rlx}}; \ x_{\mathsf{sys}}^{\mathsf{ra}} := 1$$
 (LB-REL)

4 OOPSLA COUNTEREXAMPLES

Anton example 1 (Allowed by ARM) [rfi-bob-coe-coe]

$$x := 2; r := x^{ra}; y := 1 \parallel y := 2; x^{ra} := 1$$
 $(\checkmark ARM8)$

To allow this, weaken ra to rlx when read fulfilled by relaxed write of same thread (don't need to allow this when the write is part of an RMW).

$$x := 2; r := x^{ra}; y := 1 \parallel y := 2; x^{ra} := 1$$
 $(wx2)$
 $(wy1)$
 $(wy2)$
 $(wy2)$
 $(wy2)$
 $(wy3)$
 $(wy4)$

RF variant [rfi-bob-rfe-coe]:

$$x := 2; r := x^{\mathsf{ra}}; y := 1 \quad || \quad s := y; x^{\mathsf{ra}} := 1$$

$$(\checkmark ARM8)$$

Weak Pomsets 5

TSO variant [rfi-bob-fre-coe]:

$$x := 2; r := x^{ra}; s := y \parallel y := 2; x^{ra} := 1$$
 $(\checkmark ARM8)$

Double FRE variant [rfi-bob-fre-fre]:

$$x := 2; r := x^{ra}; s := y \parallel y := 2; F; r := x$$

$$\boxed{Wx2} \xrightarrow{\text{rfi}} \boxed{\mathbb{R}^{ra} x2} \xrightarrow{\text{bob}} \boxed{\mathbb{R} y0} \xrightarrow{\text{fre}} \boxed{Wy2} \xrightarrow{\text{bob}} \boxed{\mathbb{R} x0}$$

$$(\checkmark \text{ARM8})$$

It does not seem possible to do this only with rfe. ARM disallows this [data-rfi-bob-rfe-rfe]:

$$x := z; r := x^{ra}; y := 1 \parallel z := y$$

$$Rz1 \xrightarrow{\text{data}} Wx1 \xrightarrow{\text{rfi}} R^{ra}x1 \xrightarrow{\text{bob}} Wy1 \xrightarrow{\text{rfe}} Wy1 \xrightarrow{\text{data}} Wz1$$

$$(X \text{ARM8})$$

It also disallows [ctrl-rfi-bob-rfe-rfe]:

if
$$(z)$$
 {}; $x := 1$; $r := x^{ra}$; $y := 1 \parallel z := y$

ctrl

Rz1

Wx1

rfe

Wy1

rfe

Wy1

ARM8)

ARM allows some counterintuitive results for SC access [ctrl-rfi-bob-fre-rfe]:

$$if(x)\{\}; x := 2; r := x^{sc}; s := y^{sc} \parallel y^{sc} := 2; x^{sc} := 1$$

$$(ARM8)$$

Not possible with coe [ctrl-rfi-bob-coe-rfe]:

if
$$(x)$$
 {}; $x := 2$; $r := x^{sc}$; $y^{sc} := 1$ || $y^{sc} := 2$; $x^{sc} := 1$

$$(x)$$

This is not allowed with a data dependency instead of a control dependency [data-rfi-bob-fre-rfe]:

$$x := x+1; r := x^{sc}; s := y^{sc} \parallel y^{sc} := 1; x^{sc} := 1$$

$$(XARM8)$$

5 SC EXAMPLES

This execution is allowed by trailing-sync compilation to power [IRIW-aqc-sc] from [Lahav et al. 2017, §A.2].

$$x^{\text{sc}} := 1 \parallel x^{\text{sc}} := 1 \parallel r := x^{\text{ra}}; \ s := y^{\text{sc}} \parallel r := y^{\text{ra}}; \ s := x^{\text{sc}}$$

$$(\checkmark \text{POWER})$$

$$(\text{Wesc} y1) \qquad (\text{Resc} y0)$$

[Lahav et al. 2017, §A.2] claims that ARM8 allows this [RWC+acq+sc], but herd7 rejects it. Reason: they are citing the flowing/pop model [Flur et al. 2016] rather than [Pulte et al. 2018].

$$x^{\text{sc}} := 1 \parallel r := x; F^{\text{acq}}; s := y^{\text{sc}} \parallel y^{\text{sc}} := 1; r := x^{\text{sc}}$$

$$w^{\text{sc}} x 1 \xrightarrow{\text{rfe}} Rx 1 \xrightarrow{\text{Facq}} R^{\text{sc}} y 0 \xrightarrow{\text{fre}} w^{\text{sc}} y 1 \xrightarrow{\text{Rsc}} R^{\text{sc}} x 0$$

$$x^{\text{sc}} x 1 \xrightarrow{\text{fre}} Rx 1 \xrightarrow{\text{fre}} Rx 1 \xrightarrow{\text{fre}} R^{\text{sc}} x 0$$

$$x^{\text{sc}} x 1 \xrightarrow{\text{fre}} Rx 1 \xrightarrow{\text{fre}} Rx 1 \xrightarrow{\text{fre}} Rx 1 \xrightarrow{\text{fre}} R^{\text{sc}} x 0$$

6 MORE MODEL

These definitions need to be updated to include the additional orders.

Definition 6.1. A pomset is x-closed if

- every $\mathcal{A}(e) = (Rx..)$ is fulfilled
- every $\Phi(e)$ is independent of x: $(\forall v. \Phi(e) \models \Phi(e)[v/x] \models \Phi(e))$

Definition 6.2. Let $P \in (vx.P)$ when $P \in P$ and P is x-closed

Definition 6.3. Let $P \in (\phi \triangleright \mathcal{P})$ when $P \in \mathcal{P}$ and $(\forall e \in E) \Phi(e)$ implies ϕ

Definition 6.4. Let
$$P' \in (\mathcal{P}[M/x])$$
 when $(\exists P \in \mathcal{P})$ $E' = E, \leq' = \leq, \mathcal{A}' = \mathcal{A}$, and $(\forall e \in E') \Phi'(e) = \Phi(e)[M/x]$

Definition 6.5. Let
$$P' \in (\mathcal{P}^1 \parallel \mathcal{P}^2)$$
 when $(\exists P^1 \in \mathcal{P}^1)$ $(\exists P^2 \in \mathcal{P}^2)$ $E' = E^1 \cup E^2$, $\leq' \supseteq \leq^1 \cup \leq'^2$, and $(\forall e \in E')$ either

$$e \notin E^2$$
, $\mathcal{A}'(e) = \mathcal{A}^1(e)$ and $\Phi'(e)$ implies $\Phi^1(e)$, $e \notin E^1$, $\mathcal{A}'(e) = \mathcal{A}^2(e)$ and $\Phi'(e)$ implies $\Phi^2(e)$, or $\mathcal{A}'(e) = \mathcal{A}^1(e) = \mathcal{A}^2(e)$ and $\Phi'(e)$ implies $\Phi^1(e) \vee \Phi^2(e)$

Language

Weak Pomsets 7

 $\nu ::= rel$ (Release) | acq (Acquire) | sc (SC)

A citation: [Jagadeesan et al. 2020]

REFERENCES

- Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. 2016. Modelling the ARMv8 architecture, operationally: concurrency and ISA. In *Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 22, 2016*, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 608–621. https://doi.org/10.1145/2837614.2837615
- Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with Preconditions: A Simple Model of Relaxed Memory. Proc. ACM Program. Lang. 4, OOPSLA, Article 194 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428262
- Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in C/C++11. In *Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation*, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618-632. https://doi.org/10.1145/3062341.3062352
- Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal Analysis of the NVIDIA PTX Memory Consistency Model. In *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019*, Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck (Eds.). ACM, 257–270. https://doi.org/10.1145/3297858.3304043
- $NVIDIA.\ 201?.\ CUDA\ Toolkit\ Documentation\ v11.1.1.\ https://docs.nvidia.com/cuda/parallel-thread-execution/index.html \#memory-consistency-model.$
- Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic and operational models for ARMv8. *PACMPL* 2, POPL (2018), 19:1–19:29. https://doi.org/10. 1145/3158107