

Can Machines Learn Beauty?

DataTalks 2019

Our technology makes it easy for everyone to get online with a stunning, professional and functional web presence.

Wix ADI

Wix Editor

Corvid

Novice Expert

Registered Users

Paying Customers

IT'S THAT EASY

START STUNING

IT'S THAT EASY

START STUNING

BUSINESS GOALS

DATA CURATION

DATA SCIENTISTS

ENGINEERING

We work with LOTS OF DATA

Images

Website Structure

Financial

Text

User Actions

Object Cutout

Auto Enhance

Revenue Forecasting

Support ticket analysis

And many many many many more...

Teaching Machine Beauty

https://www.youtube.com/watch?v=YAgVF_6NnEI

THE GOAL:

Help Users Create More Beautiful Logos

THE GOAL:

Help Users Create More Beautiful Logos

Let's build a model which understands Beauty...

Data Labeling

Can Machines Learn Beauty

INPUTS

WHAT?

Likert scale: 1-4

WHO?

Domain experts: Designers

WHERE?

In-house: Wix Studio

Velocity

Crowdsourcing Services

- Crowd Intelligence
- Custom Job Creation
- Ability to blacklist "bad" labelers
- Instant Feedback
- Price
- FAIL FAST

How would you rate this logo? (required)

- Beautiful
- ─ Good
- Bad
- Ugly

Is the logo beautiful? (required)

- Yes
- No

How would you rate the design of this logo from 1-5? (1=poor, 5=excellent)

- \bigcirc 5
- \bigcirc 4
- 3
- **2**
- \bigcirc 1

Pairwise Comparison

A

В

Which logo is more beautiful? (required)

 \bigcirc A

 \bigcirc B

New Labeling Experiment Results

	Rank 1-5	Pairwise Comparison
Feedback Score (1-5)	2.4	4.2
% of Success	26%	87%
Time	11h	6h
Price	0.15\$/logo	0.11\$/logo

From Pairwise Comparison To Label

ELO Rating System - 1960

The difference in the ratings between two players serves as a predictor of the outcome of a match.

32	Age	25
50	Fights	15
50	Won	8
0	Lost	7
209cm	Heights	190cm

Elo Rating Logic

Step 1: Calculate expected outcome of the game

$$E_A = \frac{1}{1 + 10^{(R_B - R_A)/400}} = \frac{1}{1 + 10^{(50 - 100)/400}} = \frac{1}{1 + 0.74} = 0.57$$

$$R_A = 100$$

$$R_B = \frac{1}{1 + 10^{(R_A - R_B)/400}} = \frac{1}{1 + 10^{(100 - 50)/400}} = \frac{1}{1 + 1.33} = 0.42$$

Step 2: Update the rating depending on the actual outcome of the game

$$R'_A = R_A + K(S_A - E_A) = 100 + 100(0 - 0.57) = 100 - 57 = 43$$

 $R'_B = R_B + K(S_B - E_B) = 50 + 100(1 - 0.43) = 50 + 57 = 107$

,where **S** is the outcome of the match (1-won, 0 - lost, 0.5 - draw);

K - scaling value helps to control the amount of change that can occur per game

Pairwise Comparison - How to?

Number of pairwise comparisons with N candidates: O(N^2)

$$\frac{N(N-1)}{2} = \frac{1000(1000-1)}{2} = 499,500$$

When using sorting algorithms, in our case Elo score, we are able to reduce the complexity to O(NlogN)

$$N\log_2 N = 1000\log_2 1000 = 9,956$$

Threshold:

0

F1 Score:

Threshold:

10

F1 Score:

Threshold:

20

F1 Score:

Threshold:

-10

F1 Score:

Threshold:

-20

F1 Score:

Threshold:

-30

F1 Score:

Threshold:

-20

F1 Score:

Can Machines Learn Beauty

Training Dataset

Not Beautiful

Beautiful

Sample Weight

Sample Weight

Not beautiful

Beautiful

Not beautiful

Beautiful

Feature Generation & Modeling

▼ object {2}

logoId: 007fcec4-8487-4eec-91de-999de9aa09bd

▼ cords {3}

▶ icon {4}

▶ companyName {4}

▼ tagline {4}

width: 192.90625

height: 14.171875

x : 94

y : 34.375

Onboarding Information Elements Properties

Generated Features

- Symmetry
- Alignment
- Proportions
- Aspect Ratio

has_icon	1	has_tagline	has_frame	icon_area	tagline_area	company_name_area	frame_area	icon_horizontal_symmetry_score
- //	0	1	1	0	0.112993752	0.121884511	0.056152565	
	1	1	0	0.34877725	0.049326412	0.174252467	0	3.86E-08
	1	0	0	0.27035488	0	0.19482105	0	01

Model: XGBoost classifier

Result: F1 Score 86.2

Going to Production (POC)

Presets Page

Choose a logo to customize

Edit your font, icon, colors and more. S Replace Icon DataHack DataHack DataHack DATAHACK DataHack DataHack DataHack DATAHACK DataHack

Presets Page determines the first impression of a customer with the Logo Maker

Presets Recommendation

Candidates 200 generated logos

Relevance probability score of Beauty Prediction Model

Model sorted list of logos based on the relevance score

Presets Recommendation

Candidates 200 generated logos

Relevance probability score of Beauty Prediction Model

Model sorted list of logos based on the relevance score

Flaw similar logos will be positioned next to each other

Presets Recommendation

Candidates 200 generated logos

Relevance probability score of Beauty Prediction Model

Diversity calculate Maximal Marginal Relevance (MMR)

Model sorted list of logos based on the MMR score

MMR - Combining Relevance & Diversity

$$\begin{aligned} \text{MMR} &= \underset{D_i \in R\backslash S}{\text{max}} \left[\lambda \underbrace{\text{Sim}_{I}(D_i, Q)}_{D_i \in S} - (I - \lambda) \underbrace{\text{max Sim}_{2}(D_i, D_j)}_{D_j \in S} \right] \\ &= \underset{(Prediction\ Probability)}{\text{Relevance}} \\ &= \underset{(Cosine\ Similarity\ between\ presets)}{\text{Endiction}} \end{aligned}$$

- High λ = Higher Relevance
- Low λ = Higher Diversity

Can Machines Learn Beauty

SORTING

Wix.com

Start Stunning

SORTING

Can Machines Learn Beauty

OLD SORTING

NEW SORTING

But Does It Really Work?

YES!!!

And it's just the beginning...

Lessons Learned

Machines can learn anything, but we people aren't always good teachers

Test your assumptions

Fail, fail again and fail better...

Questions?

Thank You!

DataTalks 2019