SAE J1939协议在重型车OBD中的应用

钟祥麟,李孟良,王务林 (中国汽车技术研究中心,天津 300162)

摘要:重型车OBD的法规要求和相关研究在国内刚刚起步,本文根据国际上重型车OBD诊断通信协议的发展现 状和国内相关标准的制定情况,对SAE J1939和SAE J1939-73的技术内容作了简要概述。

关键词: 重型车; OBD; SAE J1939; SAE J1939-73

中图分类号: U463.6 文献标识码: A 文章编号: 1003-8639(2009)07-0001-03

Application of SAE J1939 Protocol in OBD on Heavy-duty Vehicles

ZHONG Xiang-lin, LI Meng-liang, WANG Wu-lin

(China Automotive Technology & Research Center, Tianjin 300162, China)

Abstract: The legal regulation and related research of OBD on heavy-duty vehicles are just started in China. The author briefly introduces the technical contents about SAE J1939 and SAE J1939-73 protocols according to current international situation of OBD communication protocols and related standard issues in China.

Key words: heavy-duty vehicle; OBD; SAE J1939; SAE J1939-73

汽车车载诊断系统 (OBD) 是对汽车发动机全 寿命周期排放进行有效控制的必要保证、作为OBD 技术的一个重要基础、诊断通信协议是关键的一个 技术环节。从轻型车OBD系统的发展历史和经验 看,汽车故障诊断标准和协议经历了一个由分散到 逐渐统一的过程。目前,在国内轻型车领域使用比 较多的是ISO14230和ISO15765、后者实质上是随着 汽车总线技术的发展而对前者的继承和发展,简言 之, ISO14230是基于K线的KWP2000, ISO15765是 基于CAN总线的KWP2000。

为了协调统一世界各国重型车OBD的研究和立 法工作, 2006年11月, 世界车辆法规协调论坛及其 管理委员会第140次会议中、全体《1998年协定书》 缔约方一致通过了《重型发动机车载诊断系统 (WWH-OBD)》。WWH-OBD在技术上参考并协调 了国际上现有的有关车辆和发动机排放OBD的技术 法规。在制定过程中还参考了有关的国际标准和美 国SAE标准。由于国际汽车工业界和欧美汽车技术 法规目前一般都允许自由选用ISO15765-4或SAE J1939-73, 因此WWH-OBD同时引用了ISO15765-4、 SAE J1939-73、ISO27415三项标准作为诊断通信协 议,即在前期各缔约方可以自由选用其中任何一种 通信协议,但今后将逐步统一到ISO27415系列标准 规定的通信协议上。

2008年6月24日,我国环境保护部发布了《车用 压燃式、气体燃料点燃式发动机与汽车车载诊断 (OBD) 系统技术要求》行业标准,从2008年7月1日 起实施。标准中规定了生产商可以自由选择ISO15765 和SAE J1939。由于我国OBD法规要求起步较晚, 汽车诊断技术发展比较落后,考虑到技术成熟度, 许多重型车多采用轻型车领域广泛应用的ISO15765 作为诊断通信协议、所以、国内重型车领域存在 ISO15765和SAE J1939两种协议并存的局面。例如, 玉柴公司的YC6L-40系列满足国 要求的发动机采 用ISO15765协议;东风康明斯发动机公司的ISDe系 列国 发动机采用SAE J1939-73协议。

由于重型车多以SAE J1939作为总线通信协议, 而且我国目前正在以SAE J1939为蓝本起草《商用 车控制系统局域网络 (CAN总线) 通信协议》系列 国家标准(该标准由全国汽车标准化技术委员会汽 车电子标准工作组组织行业有关单位制定,以SAE J1939为蓝本,技术内容完全等同,目前处于征求 意见稿阶段),本文将对SAE J1939协议在重型车 OBD中的应用作简要介绍。

1 SAE J1939简介

SAE J1939是由美国汽车工程师协会 (SAE) 制定的,目前在载货汽车及客车等重型车辆中广泛 应用的一个通信协议。其以CAN2.0B作为网络核心 协议,在其基础上定义了网络层和应用层,遵循7 层OSI (Open Systems Interconnection) 网络结构, 并对每个被实现的层使用不同的文件进行描述、通

修改稿收稿日期: 2009-04-01

作者简介: 钟祥麟 (1974-) 男, 工程师, 博士, 研究方向为发动机排放控制技术。

过提供一个标准的框架,使电控单元 (ECU) 之间 可以实现网络互联通信而不需要额外的功能接口, 通信速率可达到250 kb/s。

SAE J1939协议主要由表1所示的10个文件组成, 我国起草的《商用车控制系统局域网络 (CAN) 通 信协议》也主要是基于这些文件。《协议》第6部分、 对应于SAE J1939-73 (2004), 规定了"应用层-诊断"的技术要求,在下文将以SAE J1939-73 (2004) 为依据作技术说明。

表1 SAE J1939协议的文件主要构成

	5:12 6 1565 5 5545 7 1 2 2 1 3 7 5
文件名称	文件内容
J1939	概括地描述了J1939网络、OSI分层结构、 下级文档的结构
J1939-01	载货汽车及客车的控制与通信网络
J1939-11	物理层,采用250 kb/s的屏蔽双绞线
J1939-13	物理层,诊断连接器
J1939-15	物理层,采用250 kb/s的非屏蔽双绞线
J1939-21	数据链路层,帧定义及格式
J1939-31	网络层,网络结构及各部件功能
J1939-71	应用层——车辆
J1939-73	应用层——诊断
J1939-81	J1939网络管理协议

若重型车OBD系统遵循SAE J1939协议,诊断 连接器需符合SAE J1939-13的要求。有关"应用 层——诊断"的技术要求在SAE J1939-73中作了详 细规定,作为其中规定的一个基本要求,影响整车 排放性能并满足OBD 或OBD要求的控制模块,最 基本应能支持表2中的功能要求。

表2 排放相关部件PGN和SPN支持

功能	PGN	缩写	描述
	65226	DM1	所有当前诊断故障代码
读取诊断故障码	65236	DM12	排放相关的当前诊断 故障代码
清除诊断故障码	65235	DM11	清除当前诊断故障代 码和诊断信息
间际区图双焊 词	62228	DM3	清除历史诊断故障代 码和诊断信息
读取冻结帧数据	65229	DM4	冻结帧定义和支持
存取实时信息			
存取最后出错 测试结果	65231	DM6	未决故障码
存取系统就绪码	65230	DM5	OBD规范, 历史故障 代码及当前故障代码的 计数, 支持的监控及状态,诊断就绪状态
报告VIN	65260	VI	车辆识别代码
报告CVN	54016	DM19	标定信息
监视性能率	49664	DM20	表示监视完成数相比 汽车行驶循环数的比率

表2 (续)

		` '	
功能	PGN	缩写	描述
	65262	ET1	发动机冷却液温度
	65265	CCVS	基于轮速计算的车速
应用层PGN	65270	IC1	增压压力,进气歧管温度
(SAE J1939–71)	62443	ECC2	加速踏板位置,当前 速度下的百分比负荷
	61444	EEC1	发动机实际输出的百 分比转矩,发动机转速
	65159	IT6	实际点火正时
	60416	TP.CMXX	连接管理
数据链路层PGN	59392	ACKM	应答报文
效加键哈法PGN	59904	RQST	请求报文
	60160	TP.DT	数据传送

2 故障码DTC

SAE J1939-73中定义的诊断故障码 (DTC) 长 度为4个字节、由SPN、FMI和CM以及OC 4个独立 部分组合形成特定的诊断故障代码。这4个部分是: ①可疑参数的编号 (SPN), 19位; ②故障模式标志 (FMI), 5位; ③发生次数 (OC), 7位; ④可疑参 数编号的转化方式 (CM), 1位。

可疑参数编号 (SPN) 的19位数字用于识别报 告的诊断项目。初始的511个SPN使用与在SAE J1587中使用的参数标志符 (PID) 完全相同的编 号, 所有其他的SPN将从512开始继续编号。例如在 报告加速踏板故障时、该参数标志符在SAE J1587 中定义为PID 91, 而SPN的编号就定义为SPN 91。 最多可有4096个SPN由生产商自行定义、编号范围 为520 192~524 287。可疑参数与参数组中相关参数 或与诊断项目——对应,但并不是参数组中的参数 本身。可疑参数编号与发送故障诊断信息的控制模 块的地址编码无关, 但是, 通过控制模块的地址编 码,我们可以确定故障诊断信息是由网络上的哪个 控制器来执行诊断的。

故障模式标志符 (FMI) 的5位数字定义了在 SPN标识的子系统中发现的故障类型,数据范围 0~31。其中FMI=20~30为SAE保留,如果需要定义 额外的故障模式,将在保留的FMI中安排指定。需 要注意的是该故障可能不是电子故障,反而可能是 需要报告给维修技师或操作者的子系统故障或情 况、这些情况包括需要报告的系统事件或状态。

发生次数 (OC) 的7位数字是指一个故障从先 前激活状态到当前激活状态的变化次数。当DTC处 于当前激活状态时,是指故障正在发生;先前激活 状态是指故障发生过但当前没有发生。DTC首次变 为激活状态时, OC由0变为1, 进入先前激活状态 后维持不变,再次变为激活状态时计数加1;计数 向上累加,最大值为126,溢出时,该计数器值保

持为126。假如次数未知不确定、则该域所有位的 数值均设为1(值为127)。

SPN转化方式 (CM) 数据长度为1位, 取值0表 示按照下面定义的方案4进行转换, 取值1表示按照 下面定义的方案1、2、3进行转换。4种转换方案 如下。

方案1. 首先发送SPN的最高有效位。

方案2. SPN对高16位采用英特尔格式加上与 FMI值共用字节里的低3位共19位的格式。

方案3、SPN对所有的19位均采用英特尔格式

(首先发送低位)。

方案4、SPN对所有的19位均采用英特尔格式并 且SPN转化方式设为0。

一般来讲, CM推荐取值为0, 举例来说:

SPN: 1208=4B8₁₆=0000000010010111000₂ (19位)

FMI: 3=3₁₆=00011₂ (5位)

OC: $10=A_{16}=0001010_2$ (7位)

 $CM: 0_{16}=0_2$ (1位)

由于CM=0, 所以以方案4转换, 转换结果如表3 所示。

表3 位域CM设为0时SPN转化方式

	DTC																														
			字	节3					字节4							字节4 字节5								字节6							
	SPN	ⅳ的亻	氐8位	有?	效位	(3	第8		SPN第2字节(第8位为最						SPN高3位有效位与FMI(第							第									
13	2为量	最高?	有效	位)				高	高有效位)							8位为SPN的最高有效位及					及										
																第5位为FMI的最高有效位))									
	SPN														I	MI			CM				OC								
8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
1	0	1	1	1	0	0	0	0	0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0						0	1	0	1	0												

3 诊断参数组

用于诊断的参数组定义,格式不同于SAE J1939-71中的参数组定义,为了适应SAE J1939中 关于OBD II的要求, SAE J1939设计了诊断参数组 DM。SAE J1939-73 (2004) 中定义了DM1~DM21, 这些DM按照链路层(SAE J1939-21)中的协议实 现要求和应答,以及长报文的管理。

通过这些DM,可以完成以下这些功能,①周 期性广播活动诊断故障代码;②确定控制器诊断灯 状态; ③读取或清除诊断故障代码; ④读写控制器 存储区; ⑤提供安全功能; ⑥停止/起动报文广播; ⑦报告诊断就绪状态; ⑧监测发动机参数。

下面以当前激活状态的诊断故障代码参数组 (DM1) 为例简要说明。DM1包含的诊断信息仅限 于当前正处于激活状态的可改变指示灯状态的故障 码。故障码和指示灯两者都是电子控制模块用来通 知网络上其它成员该模块自身的诊断状态。该数据 信息包括:指示灯状态,一列诊断代码以及当前 激活状态诊断故障代码的发生次数,这也包括排 放相关的诊断故障代码。DM1参数组详细组成如 表4所示。

当前已定义的指示灯(故障指示灯,红色停止 灯,琥珀色报警灯,保护灯)都与诊断故障代码相 关。若电子控制模块未检测到当前故障码,那么它 发出的指示灯的状态信息提示可以关闭指示灯、但 直接控制指示灯的部件必须权衡影响该指示灯的所 有在线控制模块的诊断信息后,才能决定是否改变 指示灯的状态。

一旦有DTC成为激活的故障,就会有DM1消息 被传输,并在之后以每秒仅一次的正常速度更新。 如果故障激活的时间是1 s或更长, 然后变为不激活 的状态,则应传输DM1消息以反映这种状态的改变。 如果在1 s的更新期间有不同的DTC改变状态,则要 传输新的DM1消息反映这个DTC。为了避免因高频 率的间断故障而引起高的信息传输率,协议建议每 个DTC每秒只有一个状态改变被传输。需要注意的 是、当不止一个激活的DTC存在时、这个参数组将 会要求使用"多包传输"参数组来实现长报文传输。

表4 DM1参数组格式说明

			D1/11 9 X/-11 (11 20 00 //)
数据长	€度: □	可变;	数据页面:0;PDU格式:254;PDU细节:
202;默认	优先值	1:6;参	数组数编号:65226(00FECA ₁₆)
		8~7位	故障指示灯状态(00 灯灭,01 灯亮)
诊断	字节1	6~5位	红色停止灯状态(00 灯灭,01 灯亮)
故障灯 代码	1 lv r	4~3位	琥珀色报警灯状态(00 灯灭,01 灯亮)
(2字节)		2~1位	保护灯状态(00 灯灭,01 灯亮)
	字节2	8~1位	预留以用来表示任务灯状态
激活 状态的 DTC (4字节)	字节3	8~1位	SPN,SPN的低8位有效位(最高有效位为第8位)
	字节4	8~1位	SPN,SPN的第2个字节(最高有效位 为第8位)
	字节5	8~6位	SPN,有效位中的高3位(最高有效位 为第8位)
	7 192	5~1位	FMI(最高有效位为第5位)
	—	8位	可疑参数编号的转化方式(推荐默 认值为0)
	字节6	7~1位	发生次数(当发生次数未知时,应将 其所有位的数值设为1)

(下转第7页)

置和周围环境。这时用户在触摸屏式导航仪上、通 过移动光标来设定泊车的目标位置、同时启动智能 泊车系统。系统一旦启动会自行旋转转向盘, 然后 缓慢进行倒车,最后将车辆停在泊车位置附近。驾 驶者可以在注意周围有无障碍物的同时、控制油门 或制动调整泊车过程。

8.2 本田公司的泊车辅助系统 (Park Assist)

本田公司的Life改款车型中、提供一种通过转 向盘操作和语音导航来辅助泊车的泊车辅助系统作 为选配装置。

将车辆停在想用来停放车辆的车位前,起动泊 车辅助系统,车辆就会自动操纵转向盘,将车辆引 导至最佳倒车起始位置。从该位置开始、由驾驶者 在保持转向盘位置不变的情况下直接向后倒车。在 系统发出语音指示后再将转向盘打回中央位置,这 时不需要进行复杂的转向盘操作即可进行倒车泊车 及纵列泊车。

本田公司的泊车辅助系统在倒车时需要驾驶者

(上接第3页)

例如、已知: a=灯状态; b=SPN; c=FMI; d= CM和OC。信息格式如下: a, b, c, d, b, c, d, b, c, d, b, c, d······。在该例中, 因为需要8个 以上数据字节, 故将会用SAE J1939-21规定的传输 协议发送该信息。

4 结束语

随着汽车行业越来越重视汽车安全、环保等问 题, 电子技术在汽车上得到了广泛应用, 为了减少 线束的使用,实现系统之间的快速通信和数据共 享,现代汽车已广泛采用汽车总线技术。基于CAN 总线的SAE J1939协议以其体系完善、覆盖全面、 扩展性和灵活性好等优点已被越来越多的国家所采 操纵转向盘、自动程度不如丰田公司的智能泊车系 统。但是正是系统在倒车时是由驾驶者操纵转向 盘、因此不需要成本较高的监视器。由于系统简 单,因此选配价格相对低廉,小型轿车也可配备。

9 前景

根据研究机构的市场调查报告显示, 截至目前 为止,全球大约有2%的汽车搭载了先进驾驶辅助 系统。预计在法规和汽车驾驶者的迫切需求下, 2012年先进驾驶辅助系统在汽车上的安装率将达到 10%, 会有超过6 000万套的市场需求。

参考文献:

- [1] Yi K, Hong J, et al. A Vehicle Control Algorithm for stop-and-go Cruise Control[C]. Proc Instn Mech Engrs. 215, Part D, D1100, ImechE, 2001, 1099-1114.
- [2] 姚永平. 汽车智能驾驶辅助系统新技术[J]. 汽车与安全, (编辑 文 珍) 2002, (10): 69-71.

用。虽然国内许多重型车生产商引用了轻型车领域 广泛使用的ISO15765作为诊断通信协议, 我们仍然 需要积极开展SAE J1939协议在重型车OBD中的应 用研究, SAE J1939协议将有广阔的应用潜力。

参考文献:

- [1] Global technical regulation No.5, Technical Requirements For ON-BOARD DIAGNOSTIC System (OBD) For Road Vehicles. 2006.
- [2] SAE J1939, Recommended Practice for a Serial Control and Communications Vehicle Network[S]. 2005.
- [3] SAE J1939-73, Application Layer-Diagnostics [S]. 2004.
- [4] HJ 437-2008, 车用压燃式、气体燃料点燃式发动机与 汽车车载诊断 (OBD) 系统技术要求[S]. 2008.

(编辑

中国汽车电子电器企业名录

(湖南省科技厅资助 公益性企业名录)

免费查询 免费加盟

名录公开发布网址:www.qcdq.cn/corp.asp

(咨询电话:0731-82798408 E-mail:gcdg@gcdg.cn)

"名录"主办单位:汽车电器杂志社 "名录"主管单位:长沙汽车电器研究所 "名录"项目监督:湖南省科学技术厅

成就业内权威平台 《汽车电器》厚积薄发