VE320 Homework 4

Due Oct. 29, 23:59pm

1. Consider a silicon sample at T=300K that is uniformly doped with acceptor impurity atoms at a concentration of $Na=10^{16}cm^{-3}$. At t=0, a light source is turned on generating excess carriers uniformly throughout the sample at a rate of $g'=8\times10^{20}cm^{-3}s^{-1}$. Assume the minority carrier lifetime is $\tau_{n0}=5\times10^{-7}s$, and assume mobility values of $\mu_n=900cm^2/V-s$ and $\mu p=380cm^2/V-s$. (a) Determine the conductivity of the silicon as a function of time for $t\geq0$.(b) What is the value of conductivity at (i) t=0 and (ii) $t=\infty$?

2.

A semiconductor is uniformly doped with $10^{17}cm^{-3}$ acceptor atoms and has the following properties: $D_n = 27cm^2/s$, $D_p = 12cm^2/s$, $\tau_{n0} = 5 \times 10^{-7}s$, and $\tau_{p0} = 10^{-7}s$. An external source has been turned on for t < 0 producing a uniform concentration of excess carriers at a generation rate of $g' = 10^{21}cm^{-3}s^{-1}$. The source turns off at time t = 0 and back on at time $t = 2 \times 10^{-6}s$.

- (a) Derive the expressions for the excess carrier concentration as a function of time for $0 \le t \le \infty$.
- (b) Determine the value of excess carrier concentration at (i) t = 0, (ii) $t = 2 \times 10^{-6} s$, and (iii) $t = \infty$.
- (c) Plot the excess carrier concentration as a function of time.

3.

Consider the n-type semiconductor shown below. Illumination produces a constant excess carrier generation rate, G'_0 , in the region -L < x < +L. Assume that the minority carrier lifetime is infinite and assume that the excess minority carrier hole concentration is zero at x = -3L and at x = +3L.

Find the steady-state excess carrier concentration versus x, for the case of low injection and for zero applied electric field.

A silicon pn junction in thermal equilibrium at T = 300 K is doped such that $E_F - E_{Fi} = 0.365$ eV in the n region and $E_{Fi} - E_F = 0.330$ eV in the p region. (a) Sketch the energy-band diagram for the pn junction. (b) Find the impurity doping concentration in each region. (c) Determine V_{bi} .

5. (a) Consider a uniformly doped silicon pn junction at T = 300 K. At zero bias, 25 percent of the total space charge region is in the n-region. The built-in potential barrier is $V_{bi} = 0.710$ V. Determine (i) N_a , (ii) N_d , (iii) x_n , (iv) x_p , and (v) $|E_{max}|$. (b) Repeat part (a) for a GaAs pn junction with $V_{bi} = 1.180$ V.

6.

8.

An "isotype" step junction is one in which the same impurity type doping changes from one concentration value to another value. An n-n isotype doping profile is shown in Figure P7.12. (a) Sketch the thermal equilibrium energy-band diagram of the isotype junction. (b) Using the energy-band diagram, determine the built-in potential barrier. (c) Discuss the charge distribution through the junction.

An ideal one-sided silicon p⁺n junction at T = 300 K is uniformly doped on both sides of the metallurgical junction. It is found that the doping relation is $N_a = 80$ N_d and the built-in potential barrier is $V_{bi} = 0.740$ V. A reverse-biased voltage of $V_R = 10$ V is applied. Determine (a) N_a , N_d ; (b) x_p , x_n ; (c) $|E_{\text{max}}|$; and (d) C'_j .

A silicon pn junction at T = 300 K has the doping profile shown in Figure P7.28. Calculate (a) V_{bi} , (b) x_n and x_p at zero bias, and (c) the applied bias required so that $x_n = 30 \mu m$.

