HPSC - Lecture 20

Outline:

- Heat equation and discretization
- · Iterative methods

Sample codes:

- /codes/openmp/jacobi1d omp1.f90
- /codes/openmp/jacobi1d omp2.f90

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for u(x, t) in one space dimension and time.

u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for u(x, t) in one space dimension and time.

u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.

The PDE is

$$ut(x, t) = Duxx(x, t) + f(x, t)$$

where subscripts represent partial derivatives,

D = diffusion coefficient (assumed constant in space & time),

f(x, t) =source term (heat or chemical being added/removed).

Heat Equation / Diffusion Equation

Partial differential equation (PDE) for u(x, t) in one space dimension and time.

u represents temperature in a 1-dimensional metal rod.

Or concentration of a chemical diffusing in a tube of water.

The PDE is

$$ut(x, t) = Duxx(x, t) + f(x, t)$$

where subscripts represent partial derivatives,

D =diffusion coefficient (assumed constant in space & time),

f(x, t) =source term (heat or chemical being added/removed).

Also need initial conditions u(x, 0) and boundary conditions $u(x_1, t)$, $u(x_2, t)$.

If f(x, t) = f(x) does not depend on time and if the boundary conditions don't depend on time, then u(x, t) will converge towards steady state distribution satisfying

$$0 = Duxx(x) + f(x)$$

(by setting ut = 0.)

This is now an ordinary differential equation (ODE) for u(x).

If f(x, t) = f(x) does not depend on time and if the boundary conditions don't depend on time, then u(x, t) will converge towards steady state distribution satisfying

$$0 = Duxx(x) + f(x)$$

(by setting ut = 0.)

This is now an ordinary differential equation (ODE) for u(x).

We can solve this on an interval, say $0 \le x \le 1$ with

Boundary conditions:

$$u(0) = a,$$
 $u(1) = \beta.$

More generally: Take D = 1 or absorb in f,

$$uxx(x) = -f(x)$$
 for $0 \le x \le 1$,

Boundary conditions:

$$u(0) = a,$$
 $u(1) = \beta.$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

More generally: Take D = 1 or absorb in f,

$$uxx(x) = -f(x)$$
 for $0 \le x \le 1$,

Boundary conditions:

$$u(0) = a,$$
 $u(1) = \beta.$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

Example: a = 20, $\beta = 60$, f(x) = 0 (no heat source)

Solution: $u(x) = a + x(\beta - a)$ $\Rightarrow u''(x) = 0.$

No heat source \Rightarrow linear variation in steady state (uxx = 0).

More generally: Take D = 1 or absorb in f,

$$uxx(x) = -f(x)$$
 for $0 \le x \le 1$,

Boundary conditions:

$$u(0) = a,$$
 $u(1) = \beta.$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

More interesting example:

Example: a = 20, $\beta = 60$, $f(x) = 100e^x$,

Solution: $u(x) = (100e - 60)x + 120 - 100e^x$.

For more complicated equations, numerical methods must generally be used, giving approximations at discrete points.

Define grid points $x_i = i\Delta x$ in interval $0 \le x \le 1$, where

$$\Delta x = \frac{1}{n+1}$$

So $x_0 = 0$, $x_{n+1} = 1$, and the n grid points x_1, x_2, \ldots, x_n are equally spaced inside the interval.

Define grid points $xi = i\Delta x$ in interval $0 \le x \le 1$, where

$$\Delta x = \frac{1}{n+1}$$

So $x_0 = 0$, $x_{n+1} = 1$, and the n grid points x_1, x_2, \ldots, x_n are equally spaced inside the interval.

Let $U_i \approx u(x_i)$ denote approximate solution.

We know $U_0 = a$ and $U_{n+1} = \beta$ from boundary conditions.

Define grid points $xi = i\Delta x$ in interval $0 \le x \le 1$, where

$$\Delta x = \frac{1}{n+1}$$

So $x_0 = 0$, $x_{n+1} = 1$, and the n grid points x_1, x_2, \ldots, x_n are equally spaced inside the interval.

Let $U_i \approx u(x_i)$ denote approximate solution.

We know $U_0 = a$ and $U_{n+1} = \beta$ from boundary conditions.

Idea: Replace differential equation for u(x) by system of n algebraic equations for U_i values (i = 1, 2, ..., n).

$$U_i \approx u(x_i)$$

$$u_x(x_{i+1/2}) \approx \frac{U_{i+1} - U_i}{\Delta x}$$

$$u_x(x_{i-1/2}) \approx \frac{U_{i} - U_{i-1}}{\Delta x}$$

$$U_i \approx u(x_i)$$

 $u_x(x_{i+1/2}) \approx \frac{U_{i+1} - U_i}{\Delta x}$
 $u_x(x_{i-1/2}) \approx \frac{U_i - U_{i-1}}{\Delta x}$

So we can approximate second derivative at x_i by:

$$u_{xx}(x_i) \approx \frac{1}{\Delta x} \left(\frac{U_{i+1} - U_i}{\Delta x} - \frac{U_i - U_{i-1}}{\Delta x} \right)$$
$$= \frac{1}{\Delta x^2} \left(U_{i-1} - 2U_i + U_{i+1} \right)$$

$$U_i \approx u(x_i)$$

 $u_x(x_{i+1/2}) \approx \frac{U_{i+1} - U_i}{\Delta x}$
 $u_x(x_{i-1/2}) \approx \frac{U_i - U_{i-1}}{\Delta x}$

So we can approximate second derivative at *xi* by:

$$u_{xx}(x_i) \approx \frac{1}{\Delta x} \left(\frac{U_{i+1} - U_i}{\Delta x} - \frac{U_{i-1} U_{i-1}}{\Delta x} \right)$$
$$= \frac{1}{\Delta x^2} \left(U_{i-1} - 2U_i + U_{i+1} \right)$$

This gives coupled system of n linear equations:

$$\frac{1}{\Delta x^2} (U_{i-1} - 2U_i + U_{i+1}) = -f(x_i)$$

for
$$i = 1, 2, ..., n$$
. With $U_0 = a$ and $U_{n+1} = \beta$.

Tridiagonal linear system

$$a - 2U_1 + U_2 = -\Delta x^2 f(x_1)$$
 (i = 1)
 $U_1 - 2U_2 + U_3 = -\Delta x^2 f(x_2)$ (i = 2)
Etc.

For n = 5:

$$\begin{bmatrix} -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \end{bmatrix} = -\Delta x^2 \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \\ f(x_5) \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \\ 0 \\ \beta \end{bmatrix}$$

Tridiagonal linear system

$$a - 2U_1 + U_2 = -\Delta x^2 f(x_1)$$
 (i = 1)
 $U_1 - 2U_2 + U_3 = -\Delta x^2 f(x_2)$ (i = 2)
Etc.

For n = 5:

$$\begin{bmatrix} -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \end{bmatrix} = -\Delta x^2 \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \\ f(x_5) \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \\ 0 \\ \beta \end{bmatrix}$$

General $n \times n$ system requires $O(n^3)$ flops to solve.

Tridiagonal $n \times n$ system requires O(n) flops to solve.

Could use LAPACK routine dgtsv.

Heat equation in 2 dimensions

One-dimensional equation generalizes to

$$ut(x,y,t) = D(uxx(x,y,t) + uyy(x,y,t)) + f(x,y,t)$$

on some domain in the x-y plane, with initial and boundary conditions.

We will only consider rectangle $0 \le x \le 1$, $0 \le y \le 1$.

Heat equation in 2 dimensions

One-dimensional equation generalizes to

$$ut(x,y,t) = D(uxx(x,y,t) + uyy(x,y,t)) + f(x,y,t)$$

on some domain in the x-y plane, with initial and boundary conditions.

We will only consider rectangle $0 \le x \le 1$, $0 \le y \le 1$.

Steady state problem (with D = 1):

$$ux(x, y) + uy(x, y) = -f(x, y)$$

This is a PDE in two spatial variables. (Poisson Problem)

Heat equation in 2 dimensions

One-dimensional equation generalizes to

$$ut(x,y,t) = D(uxx(x,y,t) + uyy(x,y,t)) + f(x,y,t)$$

on some domain in the x-y plane, with initial and boundary conditions.

We will only consider rectangle $0 \le x \le 1$, $0 \le y \le 1$.

Steady state problem (with D = 1):

$$ux(x, y) + uy(x, y) = -f(x, y)$$

This is a PDE in two spatial variables. (Poisson Problem)

Laplace's equation if $f(x, y) \equiv 0$. $\nabla^2 = (\partial_x^2 + \partial_y^2)$ is the Laplacian operator.

Let $U_{ij} \approx u(x_i, y_j)$.

Replace differential equation

$$ux(x,y) + uyy(x,y) = -f(x,y)$$

by algebraic equations

$$\frac{1}{\Delta x^2} \left(U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right) + \frac{1}{\Delta y^2} \left(U_{i,j-1} - 2U_{i,j} + U_{i,j+1} \right) = -f(x_i, y_j)$$

Let $U_{ij} \approx u(x_i, y_j)$.

Replace differential equation

$$ux(x,y) + uyy(x,y) = -f(x,y)$$

by algebraic equations

$$\frac{1}{\Delta x^2} \left(U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right) + \frac{1}{\Delta y^2} \left(U_{i,j-1} - 2U_{i,j} + U_{i,j+1} \right) = -f(x_i, y_j)$$

If
$$\Delta x = \Delta y = h$$
:

$$\frac{1}{h^2}(U_{i-1,j}+U_{i+1,j}+U_{i,j-1}+U_{i,j+1}-4U_{i,j})=-f(x_i,y_j).$$

$$\frac{1}{h^2}(U_{i-1,j}+U_{i+1,j}+U_{i,j-1}+U_{i,j+1}-4U_{i,j})=-f(x_i,y_j).$$

On $n \times n$ grid ($\Delta x = \Delta y = 1/(n+1)$) this gives a linear system of n^2 equations in n^2 unknowns.

The above equation must be satisfied for i = 1, 2, ..., n and j = 1, 2, ..., n.

Matrix is $n^2 \times n^2$, e.g. on 100 by 100 grid, matrix is 10, 000 \times 10,000. Contains $(10,000)^2 = 100,000,000$ elements.

$$\frac{1}{h^2}(U_{i-1,j}+U_{i+1,j}+U_{i,j-1}+U_{i,j+1}-4U_{i,j})=-f(x_i,y_j).$$

On $n \times n$ grid ($\Delta x = \Delta y = 1/(n+1)$) this gives a linear system of n^2 equations in n^2 unknowns.

The above equation must be satisfied for i = 1, 2, ..., n and j = 1, 2, ..., n.

Matrix is $n^2 \times n^2$, e.g. on 100 by 100 grid, matrix is 10, 000 \times 10,000. Contains $(10,000)^2 = 100,000,000$ elements.

Matrix is sparse: each row has at most 5 nonzeros out of n^2 elements! But structure is no longer tridiagonal.

Matrix has block tridiagonal structure:

$$A = rac{1}{h^2} \left[egin{array}{cccc} T & I & & & \ I & T & I & & \ & I & T & I & \ & & I & T & I \end{array}
ight]$$

$$A = rac{1}{h^2} \left[egin{array}{cccc} T & I & & & & & & & \\ I & T & I & & & & & & \\ & I & T & I & & & & & & \\ & & I & T & & & & & & \\ & & & I & T & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Iterative methods

Back to one space dimension first...

Coupled system of n linear equations:

$$(U_{i-1} - 2U_i + U_{i+1}) = -\Delta x^2 f(x_i)$$

for i = 1, 2, ..., n. With $U_0 = a$ and $U_{n+1} = \beta$.

Iterative method starts with initial guess $U^{[0]}$ to solution and then improves $U^{[k]}$ to get $U^{[k+1]}$ for $k=0,1,\ldots$

Note: Generally does not involve modifying matrix *A*.

Do not have to store matrix A at all, only know about stencil.

Jacobi iteration

$$(U_{i-1} - 2U_i + U_{i+1}) = -\Delta x^2 f(x_i)$$

Solve for *Ui*:

$$U_{i} = \frac{1}{2} (U_{i-1} + U_{i+1} + \Delta x^{2} f(x_{i})).$$

Note: With no heat source, f(x) = 0, the temperature at each point is average of neighbors.

Jacobi iteration

$$(U_{i-1} - 2U_i + U_{i+1}) = -\Delta x^2 f(x_i)$$

Solve for *Ui*:

$$U_{i} = \frac{1}{2} (U_{i-1} + U_{i+1} + \Delta x^{2} f(x_{i})).$$

Note: With no heat source, f(x) = 0, the temperature at each point is average of neighbors.

Suppose $U^{[k]}$ is a approximation to solution. Set

$$U_i^{[k+1]} = \frac{1}{2} \left(U_{i-1}^{[k]} + U_{i+1}^{[k]} + \Delta x^2 f(x_i) \right)^{\square}$$
 for $i = 1, 2, ..., n$.

Repeat for $k = 0, 1, 2, \ldots$ until convergence.

Can be shown to converge (eventually... very slow!)

Slow convergence of Jacobi

Slow convergence of Jacobi

Slow convergence of Jacobi

Iterative methods

Jacobi iteration is about the worst possible iterative method. But it's very simple, and useful as a test for parallelization.

Better iterative methods:

- Gauss-Seidel
- Successive Over-Relaxation (SOR)
- Conjugate gradients
- Preconditioned conjugate gradients
- Multigrid

Iterative methods – initialization

```
! allocate storage for boundary points too:
allocate (x(0:n+1), u(0:n+1), f(0:n+1))
dx = 1.d0 / (n+1.d0)
!$omp parallel do
do i=0,n+1
    ! grid points:
    x(i) = i*dx
    ! source term:
    f(i) = 100.*exp(x(i))
    ! initial guess (linear function):
    u(i) = alpha + x(i) * (beta-alpha)
    enddo
```

Jacobi iteration in Fortran

```
uold = u ! starting values before updating
do iter=1,maxiter
  dumax = 0.d0
  do i=1,n
     u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
     dumax = max(dumax, abs(u(i)-uold(i)))
     enddo
  ! check for convergence:
  if (dumax .lt. tol) exit
  uold = u ! for next iteration
  enddo
```

Note: we must use old value at i-1 for Jacobi.

Otherwise we get the Gauss-Seidel method.

```
u(i) = 0.5d0*(u(i-1) + u(i+1) + dx**2*f(i))
```

Jacobi iteration in Fortran

```
uold = u ! starting values before updating

do iter=1,maxiter

  dumax = 0.d0

  do i=1,n
     u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
     dumax = max(dumax, abs(u(i)-uold(i)))
     enddo

! check for convergence:
   if (dumax .lt. tol) exit

  uold = u ! for next iteration
  enddo
```

Note: we must use old value at i-1 for Jacobi.

Otherwise we get the Gauss-Seidel method.

```
u(i) = 0.5d0*(u(i-1) + u(i+1) + dx**2*f(i))
```

This actually converges faster!

Jacobi with OpenMP parallel do (fine grain)

See: /codes/openmp/jacobi1d_omp1.f90

```
uold = u ! starting values before updating
do iter=1, maxiter
    dumax = 0.d0
    !$omp parallel do reduction(max : dumax)
    do u(i), = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
      dumax = max(dumax, abs(u(i)-uold(i)))
      enddo
    ! check for convergence: if (dumax .lt. tol) exit
    !$omp parallel do do i=1,n
         uold(i) = u(i) ! for next iteration
         enddo
    enddo
```

Note: Forking threads twice each iteration.

Jacobi with OpenMP – coarse grain

General Approach:

- Fork threads only once at start of program.
- Each thread is responsible for some portion of the arrays, from i=istart to i=iend.
- Each iteration, must copy u to uold, update u, check for convergence.
- Convergence check requires coordination between threads to get global dumax.
- Print out final result after leaving parallel block

See code in the repository or the notes: codes/openmp/jacobi1d_omp2.f90

Jacobi with MPI

Each process is responsible for some portion of the arrays, from i=istart to i=iend.

No shared memory: each process only has part of array.

Updating formula:

```
u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
```

Need to exchange values at boundaries:

```
Updating at i=istart requires uold(istart-1)
Updating at i=iend requires uold(istart+1)
```

Example with n = 9 interior points (plus boundaries):

```
Process 0 has istart = 1, iend = 5
Process 1 has istart = 6, iend = 9
```


Jacobi with MPI — Sending to neighbors

```
call mpi comm rank (MPI COMM WORLD, me, ierr)
. . .
do iter = 1, maxiter
      uold = u
      if (me > 0) then
! Send left endpoint value to "left"
    call mpi isend(uold(istart), 1, MPI_DOUBLE_PRECI
                  me -1, 1, MPI COMM WORLD, reg1, ierr)
         end if
      if (me < ntasks-1) then
            ! Send right endpoint value to "right" call mpi isend(uold(iend), 1, MPI DOUBLE PRECISI me +-1, 2, MPI COMM WORLD, req2, ierr)
         end if
      end do
```

Note: Non-blocking mpi_isend is used,

Different tags (1 and 2) for left-going, right-going messages.

Jacobi with MPI — Receiving from neighbors

```
Note: uold(istart) from me+1 goes into uold(iend+1):
      uold(iend) from me-1 goes into uold(istart-1):
do iter = 1, maxiter
     ! mpi send's from previous slide
     if (me < ntasks-1) then
          ! Receive right endpoint value call mpi recv(uold(iend+1), 1, MPI DOUBLE PRECIS
               me + 1, 1, MPI COMM WORLD, mpistatus, ierr)
        end if
     if (me > 0) then
           ! Receive left endpoint value
          call mpi recv(uold (istart-1), 1, MPI DOUBLE PREC
                me -1, 2, MPI COMM WORLD, mpistatus, ierr)
        end if
     ! Apply Jacobi iteration on my section of array
do i = istart, iend
    u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i)
    dumax_task = max(dumax_task, abs(u(i) - uold(i))
          end do
     end do
```

Jacobi with MPI

Other issues:

- Convergence check requires coordination between processes to get global dumax.
 Use MPI_ALLREDUCE so all process check same value.
- Part of final result must be printed by each process (into common file heatsoln.txt), in proper order.

See code in the repository or the notes: /codes/mpi/jacobi1d mpi.f90

Jacobi with MPI — Writing solution in order

Want to write table of values x(i), u(i) in heatsoln.txt.

Need them to be in proper order, so Process 0 must write to this file first, then Process 1, etc.

Jacobi with MPI — Writing solution in order

Want to write table of values x(i), u(i) in heatsoln.txt.

Need them to be in proper order, so Process 0 must write to this file first, then Process 1, etc.

Approach:

Each process me waits for a message from me-1 indicating that it has finished writing its part. (Contents not important.)

Each process must open the file (without clobbering values already there), write to it, then close the file.

Jacobi with MPI — Writing solution in order

Want to write table of values x(i), u(i) in heatsoln.txt.

Need them to be in proper order, so Process 0 must write to this file first, then Process 1, etc.

Approach:

Each process me waits for a message from me-1 indicating that it has finished writing its part. (Contents not important.)

Each process must open the file (without clobbering values already there), write to it, then close the file.

Assumes all processes share a file system!

On cluster or supercomputer, need to either:

send all results to single process for writing, or write distributed files that may need to be combined later (some visualization tools handle distributed data!)

Jacobi in 2D

Updating point 7 for example (u_{32}):

$$U_{32}^{[k+1]} = \frac{1}{4} (U_{22}^{[k]} + U_{42}^{[k]} + U_{21}^{[k]} + U_{41}^{[k]} + h^2 f_{32})$$

With two processes: Could partition unknown into Process 0 takes grid points 1–8
Process 1 takes grid points 9–16

Each time step:

Process 0 sends top boundary (5–8) to Process 1, Process 1 sends bottom boundary (9–12) to Process 0.

With more grid points and processes...

Could partition several different ways, e.g. with 4 processes:

With more grid points and processes...

Could partition several different ways, e.g. with 4 processes:

The partition on the right requires less communication.

With m^2 processes on grid with n^2 points:

 $2(m^2-1)n$ boundary points on left,

4(m-1)n boundary points on right.

For partition on left: Natural to number processes 0,1,2,3 and pass boundary data from Process k to $k \pm 1$.

For $m \times m$ array of processors as on right: How do we figure out the neighboring process numbers?

Creating a communicator for Cartesian blocks

```
integer dims(2)
logical isperiodic(2), reorder
ndim = 2 ! 2d grid of processes
dims(1) = 4 ! for 4x6 grid of processes
dims(2) = 6
isperiodic(1) = .false. ! periodic in x?
isperiodic(2) = .false. ! periodic in y?
                          ! optimize ordering
reorder = .true.
call MPI CART CREATE (MPI COMM WORLD, ndim, &
     dims, isperiodic, reorder, comm2d, ierr)
```

Create communicator comm2d. See also:

MPI CART CREATE, MPI CART SHIFT, MPI CART COORDS.