Algoritmos e Estruturas de Dados III Introdução à Teoria dos Grafos

Patrícia Lucas

Bacharelado em Sistemas de Informação IFNMG - Campus Salinas

Salinas Dezembro 2020

Conceito¹

Teoria dos grafos

- A teoria dos grafos é um subconjunto da matemática discreta.
- Um grafo é usado para modelar coisas que têm relações com outras coisas - essa definição vaga sugere a enorme flexibilidade dos grafos na resolução de problemas.
- O notável poder da teoria dos grafos foi usado para resolver problemas em praticamente todas as áreas.

Terminologia

Teoria dos grafos

Um grafo simples G = (V, E) consiste de um conjunto não vazio V de vértices e um conjunto que pode ou não ser vazio E de arestas, cada aresta sendo um conjunto de dois vértices (v_i, v_j) a partir de V, sendo $(v_i, v_j) = (v_j, v_i)$.

O número de vértices e arestas é denotado por |V| e |E|, respectivamente.

Exemplo: Grafo com |V| = 8 e |E| = 10

- O projeto do sistema de água municipal utiliza a teoria dos grafos para modelar o fluxo de água para garantir que os requisitos de pressão sejam atendidos.
- Redes sociais como Facebook e Twitter usam a teoria dos grafos para sugerir amigos e vender anúncios.
- A Netflix usa a teoria dos grafos para recomendar filmes.
- O Google Maps usa a teoria dos grafos para encontrar o caminho mais curto da sua casa até o seu destino.
- A infraestrutura da Internet se baseia na teoria dos grafos para rotear seu tráfego de nó em nó na infraestrutura física da internet.
- Os engenheiros de videogame usam a teoria dos grafos para direcionar os NPCs (personagens não jogadores) por seus mundos virtuais.

Representação da relação entre pessoas numa rede social.

Representação da ligação entre cidades e suas distâncias.

Dígrafos

Teoria dos grafos

Um **dígrafo** ou **grafo dirigido** consiste de um conjunto não vazio V de vértices e um conjunto E de arestas (que também podem ser chamadas de arcos), onde cada aresta é da forma (v_i, v_j) , sendo: $(v_i, v_j) \neq (v_j, v_i)$.

Facebook x Twitter

Multigrafo

Teoria dos grafos

Um **multigrafo** é um grafo que possui mais de uma aresta interligando os mesmos dois vértices (arestas múltiplas ou arestas paralelas).

Formalmente, um multigrafo G = (V, E, f 'e composto por um conjunto) de vértices V, um conjunto de arestas E e uma função f:

$$f: \{E \rightarrow v_i, v_j \in V \text{ e } v_i \neq v_j\}$$

Pseudogarfo

Teoria dos grafos

Um pseudografo é um multigrafo com a condição $v_i \neq v_j$ removida na função f, ou seja, um vértice pode ser unido a ele mesmo por uma aresta (laço).

Incidência

Teoria dos grafos

- Seja dois vértices v_i e v_j , e uma aresta $a_k = (v_i, v_j)$.
- A aresta a_k é dita **incidente** a ambos vértices v_i e v_j .
- Duas arestas n\u00e3o paralelas que s\u00e3o incidentes a um mesmo v\u00e9rtice s\u00e3o ditas adjacentes.
- Dois vértices que são ligados por uma mesma arestas também são ditos adjacentes.

Grau de um Vértice

Teoria dos grafos

O grau de um vértice é definido como o número de arestas incidentes em tal vértice.

Exercício

Teoria dos grafos

Teorema 1: a soma dos graus de todos os vértices de um grafo G é igual a duas vezes o número de arestas do grafo.

Teorema 2: o número de vértices de grau ímpar de um grafo é sempre par.

Pergunta: Se G é um grafo com 14 vértices e 25 arestas, cujos vértices têm grau 3 ou 5, quantos vértices tem grau 3 e quantos tem grau 5?