Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 4, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 2. An Introduction to Forwards and Options

Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

§ 2.1 Forward contracts

§ 2.2 Call options

§ 2.3 Put options

§ 2.4 Summary of forward and option positions

§ 2.5 Problems

Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5
- 2. A forward contract requires no initial payment or premium

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5
- 2. A forward contract requires no initial payment or premium.

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5
- 2. A forward contract requires no initial payment or premium

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium.

$$Long = buy$$
 $short = sell$

Definition 2.1-2 Payoff for a contract is its value at expiration. In particular, for forward contracts,

Payoff for Long forward = Spot price at expiration - Forward price

Payoff for Short forward = Forward price - Spot price at expiration

Remark 2.1-2 Payoff and profit (net payoff) are the same for forward contracts because there is no initial payment – premium.

Example 2.1-1 S&R (special and rich) index:

Today: Spot price = \$1,000 6-month forward price = \$1,020

In six months at contract expiration: Spot price = \$1,050.

What are the payoff of long/short forward?

Solution

Long position payoff = \$1,050 - \$1,020 = \$30,

Short position payoff = \$1,020 - \$1,050 = (\$30).

7

Example 2.1-1 S&R (special and rich) index:

Today: Spot price = \$1,0006-month forward price = \$1,020In six months at contract expiration: Spot price = \$1,050.

What are the payoff of long/short forward?

Solution.

Long position payoff = \$1,050 - \$1,020 = \$30,

Short position payoff = \$1,020 - \$1,050 = (\$30).

Payoff diagram for a forward price = \$1,020

Forward versus outright purchase

We will see this through the following example:

Example 2.1-2 S&R 6-month forward contract with a zero-coupon bound (e.g., Treasury bills). The 6-month interest rate is 2%. Spot price today = \$1,000.

g

 $1,000 \text{ today is worth } 1,000 \times 1.02 = 1,020 \text{ in } 6 \text{ months}$.

Outright purchase² is equivalent to forward + bond³

because

Payoff of forward+bond = Spot price at expiration
$$-\$1,020$$
 + $\$1,020$
Forward payoff Bound payoff

= Spot price at expiration

= Payoff of outright purchase

²It is also called long physical index.

³Invest \$1,000 to bond for 6 month and enter long position of forward contract at the same time.

 $1,000 \text{ today is worth } 1,000 \times 1.02 = 1,020 \text{ in } 6 \text{ months}$.

Long forward is equivalent to borrow-to-buy⁴

because

= Payoff of long forward.

⁴Borrow money (\$1,000) to outright buy physical index and at expiration pay back the money (\$1,020).

Type of settlement

- ► Cash settlement: less costly and more practical
- Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ▶ Suppose that the S&R index at expiration is \$1,040.
- The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960
- ► The long position would have a payoff of -\$60
- ► The short would have a payoff of \$60.

Type of settlement

► Cash settlement: less costly and more practical

► Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- Suppose that the S&R index at expiration is \$1,040.
- I he long position has a payon of \$20.
- Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

Type of settlement

► Cash settlement: less costly and more practical

► Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- Suppose that the S&R index at expiration is \$1,040.
- I he long position has a payon of \$20.
- Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ► Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

Suppose that the S&R index price at expiration had instead been \$960.

[►] The long position would have a payoff of —\$60.

[►] The short would have a payoff of \$60

Type of settlement

► Cash settlement: less costly and more practical

Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

[▶] Suppose that the S&R index price at expiration had instead been \$960...

[▶] The long position would have a payoff of -860.

[►] The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

[▶] Suppose that the S&R index price at expiration had instead been \$960.

[►] The long position would have a payoff of —560.

[►] The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

[▶] Suppose that the S&R index price at expiration had instead been \$960.

[►] The long position would have a payon of −500.

[►] The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

Cash settlement in this case entails the long paying \$60 to the short

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60
- ► The short would have a payoff of \$60

- Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

Type of settlement

- ► Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

Credit risk

All derivatives contracts have credit risk, which is the possibility that the counterparty who owes money fails to make a payment.

► Major issue for over-the-counter (OTC) contracts

Credit check Credit protections such as collateral and bank letter of credit

Exchange guarantees transactions, requires collateral

Credit risk

All derivatives contracts have **credit risk**, which is the possibility that the counterparty who owes money fails to make a payment.

► Major issue for over-the-counter (OTC) contracts

Credit check Credit protections such as collateral and bank letter of credit

► Less severe for exchange-traded contracts

Exchange guarantees transactions, requires collateral

§ 2.1 Forward contracts

\S 2.2 Call options

§ 2.3 Put options

§ 2.4 Summary of forward and option positions

§ 2.5 Problems

Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

Can one modify the forward contract so that the buyer can walk away from the deal at expiration?

Definition 2.2-1 A call option is a contract where the buyer has the right to buy, but not the obligation to buy.

- ► Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

Example 2.2-2 S&R index: Sellers' perspective

- ► Today: call seller is obligated to sell the index for \$1,020 in six months, if asker to do so
- In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 − \$1,100 = −\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

- ► Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = 1,100 - 1,020 = 80if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

- ► Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = 1,100 - 1,020 = 80if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

- ➤ Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

Example 2.2-2 S&R index: Sellers' perspective

- ➤ Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

- ➤ Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

Example 2.2-2 S&R index: Sellers' perspective

- ➤ Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

Buyer preserves the upside potential, while at the same time eliminates the unpleasant downside.

However

Seller has to be compensated by a initial premium for being at a disadvantage at expiration. Buyer preserves the upside potential, while at the same time eliminates the unpleasant downside.

However

Seller has to be compensated by a initial premium for being at a disadvantage at expiration.

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- Exercise: the act of paying the strike price to buy the asset.
- Expiration: the date by which the option must be exercised or become worthless
- Exercise style: specifies when the option can be exercised

Bermudan	

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- **Exercise**: the act of paying the strike price to buy the asset.
- Expiration: the date by which the option must be exercised or become worthless
- Exercise style: specifies when the option can be exercised.

Bermudan	

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- **Exercise:** the act of paying the strike price to buy the asset.
- ► Expiration: the date by which the option must be exercised or become worthless.
- Exercise style: specifies when the option can be exercised

Bermudan	

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- **Exercise**: the act of paying the strike price to buy the asset.
- ► Expiration: the date by which the option must be exercised or become worthless.
- ► Exercise style: specifies when the option can be exercised.

Style	can be exercised
European	only at expiration date
American	at any time before expiration
Bermudan	during specified periods

Payoff of purchased call = $\max(0, \text{spot price at expiration} - \text{strike price})$

 $\begin{aligned} \textbf{Profit of purchased call} &= \textbf{payoff of purchased call} \\ &- \textbf{future value of option premium} \end{aligned}$

Payoff of written call = $-\max(0, \text{spot price at expiration} - \text{strike price})$

Profit of written call = payoff of written call + future value of option premium

Example 2.2-3 S&R Index 6-month European call option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$93.81,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the purchased call option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $$1,100$,	If index value in six months = $$900$,
Payoff = $\max(0, \$1, 100 - \$1, 000)$	Payoff = $\max(0, \$900 - \$1, 000)$

Example 2.2-3 S&R Index 6-month European call option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$93.81,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the purchased call option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $$1,100$,	If index value in six months = $$900$,
Payoff = $\max(0, \$1, 100 - \$1, 000)$	Payoff = $\max(0, \$900 - \$1, 000)$
= \$100	
Profit = $$100 - 93.81×1.02	
= \$4.32.	

Example 2.2-3 S&R Index 6-month European call option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$93.81,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the <u>purchased</u> call option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $\$1,100$,	If index value in six months = $$900$,
Payoff = $\max(0, \$1, 100 - \$1, 000)$	Payoff = $\max(0, \$900 - \$1, 000)$
= \$100	= \$0
Profit = $$100 - 93.81×1.02	$Profit = \$0-\93.81×1.02
= \$4.32.	=-\$95.68.

Example 2.2-4 S&R Index 6-month European call option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$93.81,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the written call option if the index value in six months \$1,100 (resp. \$900).

Solution

If index value in six months = $$1,100$,	If index value in six months = $$900$,
	Payoff = $-\max(0, \$900-\$1,000)$

Example 2.2-4 S&R Index 6-month European call option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$93.81,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the written call option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $\$1,100$,	If index value in six months = $$900$,
Payoff = $-\max(0, \$1, 100 - \$1, 000)$	Payoff = $-\max(0, \$900-\$1, 000)$
=-\$100	
$Profit = -\$100 + \93.81×1.02	
= -\$4.32.	

Example 2.2-4 S&R Index 6-month European call option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$93.81,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the written call option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $\$1,100$,	If index value in six months = $$900$,
Payoff = $-\max(0, \$1, 100-\$1, 000)$	Payoff = $-\max(0, \$900-\$1,000)$
=-\$100	= \$0
$Profit = -\$100 + \93.81×1.02	Profit = $$0 + 93.81×1.02
= -\$4.32.	= \$95.68.

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

Call option: Buyer can walk away.

???? option : Seller can walk away.

Definition 2.3-1 A put option gives the owner the right but not the obligation to sell the underlying asset at a predetermined price during a predetermined time period.

Remark 2.3-1 Similar to the call option case, a premium paid by the put buyer at the time the option is purchased is needed in order to compensate the put seller for being in a disadvantage position.

of put option	someone needs to		premium
seller	buy	has to buy if asked	receive
buyer	sell	can walk away	pay

Payoff of purchased put = $\max(0, \text{strike price} - \text{spot price at expiration})$

Profit of purchased put = payoff of purchased put - future value of option premium

Payoff of written put = $-\max(0, \text{strike price} - \text{spot price at expiration})$

Profit of written put = payoff of written put + future value of option premium

Example 2.3-1 S&R Index 6-month European put option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$74.20,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the purchased put option if the index value in six months \$1,100 (resp. \$900).

Solution

Payoff = $\max(0, \$1, 000 - \$1, 100)$ Payoff = $\max(0, \$1, 000 - \$1, 100)$	Rann)
Fayon = $\max(0, \$1, 000 - \$1, 100)$ Fayon = $\max(0, \$1, 000 - \$1, 000)$	

Example 2.3-1 S&R Index 6-month European put option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$74.20,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the purchased put option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $$900$,
Payoff = $\max(0, \$1, 000 - \$900)$

Example 2.3-1 S&R Index 6-month European put option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$74.20,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the purchased put option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $$1,100$,	If index value in six months = $$900$,
Payoff = $\max(0, \$1,000 - \$1, 100)$	Payoff = $\max(0, \$1,000 - \$900)$
= \$0	= \$100
Profit = $$0 - 74.20×1.02	$Profit = \$100 - \74.20×1.02
=-\$75.68.	= \$24.32.

Example 2.3-2 S&R Index 6-month European put option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$74.20,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the written put option if the index value in six months \$1,100 (resp. \$900).

Solution

If index value in six months = $$1,100$,	If index value in six months = $$900$,
Payoff = $-\max(0, \$1,000 - \$1,100)$	Payoff = $-\max(0, \$1, 000 - \$900)$

Example 2.3-2 S&R Index 6-month European put option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$74.20,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the written put option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $\$1,100$,	If index value in six months = $$900$,
Payoff = $-\max(0, \$1,000 - \$1, 100)$	Payoff = $-\max(0, \$1, 000 - \$900)$
= \$0	
Profit = $$0 + 74.20×1.02	
= \$75.68.	

Example 2.3-2 S&R Index 6-month European put option

$$\begin{aligned} \text{Strike price} &=\$1,000,\\ \text{Premium} &=\$74.20,\\ \text{6-month risk-free rate} &=2\%. \end{aligned}$$

Compute both payoff and profit of the written put option if the index value in six months \$1,100 (resp. \$900).

Solution.

If index value in six months = $\$1,100$,	If index value in six months = $$900$,
Payoff = $-\max(0, \$1,000 - \$1, 100)$	Payoff = $-\max(0, \$1,000 - \$900)$
= \$0	=-\$100
Profit = $$0 + 74.20×1.02	$Profit = -\$100 + \74.20×1.02
= \$75.68.	=-\$24.32.

A call option becomes more profitable when the underlying asset appreciates in value

A put option becomes more profitable when the underlying asset depreciates in value

Definition 2.3-2 Moneyness of an option describes whether the option payoff would be positive if the option were exercised immediately.

In particular, one has

Moneyness	payoff if exercised immediately
In-the-money option	> 0
At-the-money option	=0
Out-of-the money option	< 0

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- \S 2.4 Summary of forward and option positions

§ 2.5 Problems

Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

§ 2.1 Forward contracts

- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems

Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Summary of forward and option positions
- § 2.5 Problems