Basics

Ohmsches Gesetz

Widerstand =
$$\frac{Spannung}{Stromstärke}$$
 $R = \frac{U}{I}$ $[R] = \frac{V}{A} = \Omega(Ohm)$

• Leistung: $P = U \cdot I$

$$[P] = Watt$$

Schaltsymbole

Komponente	Schaltsymbol	Wert
Spannungsquelle	U	Spannung U
Stromquelle	I	Stromstärke I
Verbraucher	R	Ohm'scher Widerstand R
	R	Potentiometer

Komponente	Schaltsymbol
Leiter	—
Schalter	
Voltmeter	<u></u> <u>✓</u> <u>V</u>
Amperemeter	<u> </u>

Knotenregel

- Knotenregel:
- "Die Summe aller Ströme an einem Knoten (zufließende Ströme sind positiv, abfließende Ströme sind negativ zu zählen) ist gleich null."

$$\sum_{i} \pm I_i = 0$$

• Beispiel:

$$\sum_{i} I_{i} = 0 \Rightarrow I_{1} + I_{2} - I_{3} + I_{4} - I_{5} = 0$$

Maschenregel

- Maschenregel:
- "Die Summe aller Spannungen eines Maschenumlaufs (gleichsinnige Spannungen sind positiv, ungleichsinnige Spannungen sind negativ zu zählen) ist gleich null."

$$\sum_{i} \pm U_i = 0$$

• Beispiel:

$$\sum_{i} U_{i} = 0 \Rightarrow -U_{1} + U_{2} + U_{3} - U_{4} = 0$$

Reihenschaltung / Parallelschaltung

Reihenschaltung

• Gesamtwiderstand:

$$R_{ges} = R_1 + R_2 + \dots$$

Spannungsteilerregel:

$$\frac{U_1}{U_0} = \frac{R_1}{R_{ges}}$$

Parallelschaltung

Gesamtwiderstand:

$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Stromteilerregel:

$$\frac{I_1}{I} = \frac{R_{ges}}{R_1} \qquad \mathcal{R}_1 = \frac{R_{ges}}{R_1 + R_2}$$

Ideale Quellen

• Eine ideale <u>Spannung</u>squelle erzeugt eine vom Strom unabhängige, konstante Spannung

Ideale Spannungsquellen dürfen <u>nicht</u> parallel geschaltet oder kurzgeschlossen werden.

Reihenschaltungen mehrerer Quellen oder Leerlauf sind möglich.

• Eine ideale Stromquelle erzeugt einen von der Spannung unabhängigen, konstanten Strom

Ideale Stromquellen dürfen <u>nicht</u> in Reihe geschaltet oder im Leerlauf betrieben werden.

Parallelschaltungen mehrerer Quellen oder Kurzschluss sind möglich.

Reale Spannungsquelle

- Reale Spannungsquelle
 - Reihenschaltung aus Spannungsquelle und Widerstand
 - Leerlaufspannung U_L
 - Innenwiderstand R_i

Reale Stromquelle

- Reale Stromquelle
 - Parallelschaltung aus Stromquelle und Widerstand
 - Kurzschlussstrom I_K
 - Innenwiderstand R_i

Analyse von Schaltungen

- Ziel: Berechnung von Strömen und Spannungen in einem gegebenen Netzwerk
- Zunächst: Zählpfeile für Strom und Spannung festlegen
 - Richtungen beliebig wählbar
 - Aber: Am Verbraucher (Widerstand) müssen Strom und Spannung gleichsinnig sein
- Anwendung der Kirchhoff'schen Regeln und des Ohm'schen Gesetzes liefert notwendiges
 Gleichungssystem
- Systematische Vorgehen durch:
 - Maschenstromverfahren
 - Knotenpotentialverfahren
 - Ersatzspannungsquelle / Ersatzstromquelle
 - Überlagerungssatz

Ersatzquellen

- Anwendung:
 - Es werden Strom und Spannung in einem bestimmten Zweig gesucht
- Methode:
 - Berechnung von Leerlaufspannung, Kurzschlussstrom und Innenwiderstand des verbleibenden Netzwerkes

ODER:

- Das gesamte Netzwerk außerhalb des relevanten Zweiges wird durch eine Ersatzquelle dargestellt
- Schrittweise Umwandlung und Zusammenfassung einzelner Netzwerkteile zu realen Strom-/Spannungsquellen