

Outline Introduction to SPICE DC Analysis Transient Analysis Subcircuits Optimization Power Measurement Logical Effort Characterization

Introduction to SPICE

- □ Simulation Program with Integrated Circuit Emphasis
 - Developed in 1970's at Berkeley
 - Many commercial versions are available
 - HSPICE is a robust industry standard
 - · Has many enhancements that we will use
- ☐ Written in FORTRAN for punch-card machines
 - Circuits elements are called cards
 - Complete description is called a SPICE deck

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

3

Writing Spice Decks

- ☐ Writing a SPICE deck is like writing a good program
 - Plan: sketch schematic on paper or in editor
 - · Modify existing decks whenever possible
 - Code: strive for clarity
 - Start with name, email, date, purpose
 - Generously comment
 - Test:
 - · Predict what results should be
 - · Compare with actual
 - Garbage In, Garbage Out!

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

Source DC Source Vdd vdd gnd 2.5 Piecewise Linear Source Vin in gnd pwl Ops 0 100ps 0 150ps 1.0 1ns 1.0 Pulsed Source Vck clk gnd PULSE 0 1.0 Ops 100ps 300ps 800ps PULSE v1 v2 td tr tf pw per v2 v1 v1 RESPICE Simulation CMOS VLSI Design 4th Ed. 7

	SPICE Eleme	ntc
	SPICE Elellie	1112
Letter	Element	
R	Resistor	
С	Capacitor	
L	Inductor	
K	Mutual Inductor	
V	Independent voltage source	
	Independent current source	
M	MOSFET	
D	Diode	
Q	Bipolar transistor	
W	Lossy transmission line	
Χ	Subcircuit	
E	Voltage-controlled voltage source	
G	Voltage-controlled current source	
Н	Current-controlled voltage source	
F	Current-controlled current source	

Units

Letter	Unit	Magnitude
а	atto	10 ⁻¹⁸
f	fempto	10 ⁻¹⁵
р	pico	10 ⁻¹²
n	nano	10 ⁻⁹
u	micro	10 ⁻⁶
m	milli	10 ⁻³
k	kilo	10 ³
х	mega	10 ⁶
g	giga	10 ⁹

Ex: 100 femptofarad capacitor = 100fF, 100f, 100e-15

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

MOSFET Elements

M element for MOSFET

Mname drain gate source body type

- + W=<width> L=<length>
- + AS=<area source> AD = <area drain>
- + PS=<perimeter source> PD=<perimeter drain>

8: SPICE Simulation

CMOS VLSI Design $^{4\text{th Ed.}}$


```
Subcircuits

Declare common elements as subcircuits

. subckt inv a y N=4 P=8

M1 y a gnd gnd NMOS W='N' L=2

+ AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'

M2 y a vdd vdd PMOS W='P' L=2

+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'

. ends

□ Ex: Fanout-of-4 Inverter Delay

- Reuse inv

- Shaping

- Loading

- Loading

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

15
```

```
FO4 Inverter Delay
* Parameters and models
.param SUPPLY=1.0
.param H=4
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post
* Subcircuits
.global vdd gnd
.include '../lib/inv.sp'
* Simulation netlist
       vdd
Vdd
               gnd 'SUPPLY'
                       PULSE 0 'SUPPLY' Ops 20ps 20ps 120ps 280ps
Vin
               gnd
                                    * shape input waveform
X1
       a
                       inv
                                      * reshape input waveform
                              M='H'
X2
                       inv
                      CMOS VLSI Design 4th Ed.
8: SPICE Simulation
                                                              16
```

```
FO4 Inverter Delay Cont.
                                  M='H**2' * device under test
X4
        d
                                  M='H**3' * load
                                  M='H**4' * load on load
x5
                         inv
* Stimulus
.tran 0.1ps 280ps
.measure tpdr
                                          * rising prop delay
     TRIG v(c) VAL='SUPPLY/2' FALL=1
TARG v(d) VAL='SUPPLY/2' RISE=1
                                          * falling prop delay
.measure tpdf
     TRIG v(c) VAL='SUPPLY/2' RISE=1
     TARG v(d) VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2'
                                          * average prop delay
.measure trise
                                                   * rise time
                         VAL='0.2*SUPPLY' RISE=1
        TRIG v(d)
        TARG v(d)
                         VAL='0.8*SUPPLY' RISE=1
                                                   * fall time
.measure tfall
                         VAL='0.8*SUPPLY' FALL=1
        TRIG v(d)
                         VAL='0.2*SUPPLY' FALL=1
        TARG v(d)
.end
8: SPICE Simulation
                            CMOS VLSI Design 4th Ed.
                                                                     17
```


Optimization

- ☐ HSPICE can automatically adjust parameters
 - Seek value that optimizes some measurement
- Example: Best P/N ratio
 - We've assumed 2:1 gives equal rise/fall delays
 - But we see rise is actually slower than fall
 - What P/N ratio gives equal delays?
- Strategies
 - (1) run a bunch of sims with different P size
 - (2) let HSPICE optimizer do it for us

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

19

P/N Optimization

```
* fo4opt.sp
```

* Parameters and models

.param SUPPLY=1.0 .option scale=25n

.include '../models/ibm065/models.sp'

.temp 70

.option post

* Subcircuits

.global vdd gnd

.include '../lib/inv.sp'

* Simulation netlist

vdd gnd 'SUPPLY' a gnd PULSE 0 'SUPPLY' Ops 20ps 20ps 120ps 280ps Vdd a gnd
a b
b c
c d inv P='P1' * shape input waveform inv P='P1' M=4 * reshape input X1 **X2**

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

P='P1' M=16

20

* device under test

P/N Optimization

```
P='P1'
                                               M=64
                                      P='P1'
                                               M=256
                                                        * load on load
* Optimization setup
                               * search from 4 to 16, guess 8
.param P1=optrange(8,4,16)
                                              * maximum of 30 iterations
.model optmod opt itropt=30
.measure bestratio param='P1/4'
                                              * compute best P/N ratio
* Stimulus
.tran 0.1ps 280ps SWEEP OPTIMIZE=optrange RESULTS=diff MODEL=optmod
.measure tpdr
                                              * rising propagation delay
        TRIG v(c) VAL='SUPPLY/2' FALL=1
        TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf
                                               * falling propagation delay
                          VAL='SUPPLY/2' RISE=1
VAL='SUPPLY/2' FALL=1
       TRIG v(c)
        TARG v(d)
.measure tpd param='(tpdr+tpdf)/2' goal=0 * average prop delay .measure diff param='tpdr-tpdf' goal = 0 * diff between delays
8: SPICE Simulation
                               CMOS VLSI Design 4th Ed.
                                                                            21
```

P/N Results

- ☐ P/N ratio for equal delay is 2.9:1
 - $-t_{pd} = t_{pdr} = t_{pdf} = 17.9 \text{ ps (slower than 2:1 ratio)}$
 - Big pMOS transistors waste power too
 - Seldom design for exactly equal delays
- What ratio gives lowest average delay?
 - .tran 1ps 1000ps SWEEP OPTIMIZE=optrange RESULTS=tpd MODEL=optmod
 - P/N ratio of 1.8:1
 - t_{pdr} = 18.8 ps, t_{pdf} = 15.2 ps, t_{pd} = 17.0 ps
- \Box P/N ratios of 1.5:1 2.2:1 gives t_{pd} < 17.2 ps

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

Power Measurement

- ☐ HSPICE can measure power
 - Instantaneous P(t)
 - Or average P over some interval
 - .print P(vdd)
 - .measure pwr AVG P(vdd) FROM=0ns TO=10ns
- □ Power in single gate
 - Connect to separate V_{DD} supply
 - Be careful about input power

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

23

Logical Effort

- ☐ Logical effort can be measured from simulation
 - As with FO4 inverter, shape input, load output

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

Logical Effort Data

☐ For NAND gates in IBM 65 nm process:

# of inputs	Input	Rising Logical Effort g _u	Falling Logical Effort g _u	Average Logical Effort g	Rising Parasitic Delay p _u	Falling Parasitic Delay p _d	Average Parasitic Delay p
2	A	1.40	1.12	1.26	2.46	2.48	2.47
	B	1.31	1.16	1.24	1.97	1.82	1.89
3	A	1.76	1.27	1.51	4.77 4.10 4.44 3.93 3.60 3.77		
	B	1.73	1.32	1.52	3.93	3.60	3.77
	C	1.59	1.38	1.48	3.05	2.43	2.74
4	A	2.15	1.42	1.78	7.63	5.94	6.79
	B	2.09	1.48	1.78	6.67	5.37	6.02
	C	2.08	1.53	1.80	5.32	4.51	4.91
	D	1.90	1.59	1.75	4.04	2.93	3.49

- Notes:
 - Parasitic delay is greater for outer input
 - Average logical effort is better than estimated

8: SPICE Simulation

CMOS VLSI Design 4th Ed.

				m	n	ari	isc	n			
		•			Ρ,	4	101				
	8888	******		*****				******	******		
Vendor		Orbit	HP	AMI	AMI	TSMC	TSMC	TSMC	IBM	IBM	IBM
Model							MOSIS		IBM	IBM	IBM
Feature Size f	nm	2000	800	600	600	350	250	180	130	90	65
V_{DD}	V	5	5	5	3,3	3,3	2.5	1.8	1.2	1.0	1.0
FO4 Delay	ps	856	297	230	312	210	153	75.6	46.0	37.3	17.2
τ	ps	170	59	45	60	40	30	15	9.0	7.4	3.3
-	1				Logical	Effort					
Inverter		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
NAND2			1.07	1.05	1.08	1.12	1.12	1.14	1.16	1.20	1.26
NAND3			1.21	1.19	1.24	1.29	1.29	1.31	1.35	1.41	1.51
NAND4	NAND4		1.37	1.36	1.42	1.47	1.47	1.50	1.55	1.62	1.78
NOR2		1.57	1.59	1.58	1.60	1.52	1.50	1.50	1.57	1.56	1.50
NOR3		2.16	2.23	2.23	2.30	2.07	2.02	2.00	2.12	2.08	1.96
NOR4		2.76	2.92	2.96	3.09	2.62	2.52	2.53	2.70	2.60	2.43
		•	•	Par	asitic Dela	y					
Inverter		1.08	1.05	1.18	1.25	1.33	1.18	1.03	1.16	1.07	1.20
NAND2		1.87	1.85	1.92	2.10	2.28	2.07	1.90	2.29	2.25	2.47
NAND3		3.34	3.30	3.40	3.79	4.15	3.65	3.51	4.14	4.10	4.44
NAND4		4.98	5.12	5.22	5.78	6.30	5.47	5.52	6.39	6.39	6.79
NOR2		2.86	2.91	3.29	3.56	3.52	2.95	2.85	3.35	3.01	3.29
NOR3		5.65	6.05	7.02	7.70	6.89	5.61	5.57	6.59	5.76	6.35
NOR4		9.11	10.3	12.4	13.9	11.0	8.76	8.95	10.54	9.11	10.16
	88888	***********		*******							