Economic Data Analysis Project via Federal Reserve Economic Data (FRED)

Esse projeto foi inspirado no vídeo do canal: https://www.youtube.com/watch?v=R67XuYc9NQ4&t=14s, com dados da plataforma americana FRED (Federal Reserve Economic Data - https://fred.stlouisfed.org/) e tem como objetivo praticar coletar, limpar e explorar dados econômicos de forma eficiente. Através de técnicas de raspagem de dados, limpeza e exploração, o projeto busca fornecer insights valiosos sobre indicadores econômicos. Os dados serão coletados via API do próprio site.

1. Importando as bibliotecas que iremos usar:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
from fredapi import Fred
import time

# Estilo dos gráficos:

plt.style.use('fivethirtyeight')
pd.set_option("display.max_columns", 500)
color_pal = plt.rcParams["axes.prop_cycle"].by_key()["color"]
```

2. Baixando os dados iniciais:

```
!pip install fredapi >/dev/null
# >/dev/null para não aparecer todo o texto de instalação!
# Inserindo a api coletada do site:
fred_key = '48c84796306d7592190e31e2b816f182' # Solcite a sua api pelo site no informativo do projeto
# Criando um objeto FRED:
fred = Fred(api_key=fred_key)
# Fazendo a busca:
fred.search('S&P')
```


	id	realtime_start	realtime_end	title	observation_start	observation_end	frequency
series id							
CSUSHPINSA	CSUSHPINSA	2024-12-27	2024-12-27	S&P CoreLogic Case- Shiller U.S. National Home	1987-01-01	2024-09-01	Monthly
CSUSHPISA	CSUSHPISA	2024-12-27	2024-12-27	S&P CoreLogic Case- Shiller U.S. National Home	1987-01-01	2024-09-01	Monthly
SP500	SP500	2024-12-27	2024-12-27	S&P 500	2014-12-29	2024-12-26	Daily, Close
SPCS20RSA	SPCS20RSA	2024-12-27	2024-12-27	S&P CoreLogic Case- Shiller 20- City Composite H	2000-01-01	2024-09-01	Monthly
SPCS20RNSA	SPCS20RNSA	2024-12-27	2024-12-27	S&P CoreLogic Case- Shiller 20- City Composite H	2000-01-01	2024-09-01	Monthly
CRDQARAPABIS	CRDQARAPABIS	2024-12-27	2024-12-27	Total Credit to Private Non- Financial Sector,	1940-04-01	2024-04-01	Quarterly, End of Quarter
QARPAMUSDA	QARPAMUSDA	2024-12-27	2024-12-27	Total Credit to Private Non- Financial Sector,	1990-01-01	2024-04-01	Quarterly, End of Quarter
QCOPAMXDCA	QCOPAMXDCA	2024-12-27	2024-12-27	Total Credit to Private Non- Financial Sector,	1996-10-01	2024-04-01	Quarterly, End of Quarter
QCOPAMUSDA	QCOPAMUSDA	2024-12-27	2024-12-27	Total Credit to Private Non- Financial Sector,	1996-10-01	2024-04-01	Quarterly, End of Quarter
M0854AUSM498NNBR	M0854AUSM498NNBR	2024-12-27	2024-12-27	Labor Turnover, Total Separation Rate, Manufac	1919-01-01	1930-12-01	Monthly
1000 rows × 15 columns							
4							>

[#] Ordenando por popularidade:

fred.search('S&P', order_by='popularity')

	id	realtime_start	realtime_end	title	observation_start	observation_end	freque
series id							
BAMLH0A0HYM2	BAMLH0A0HYM2	2024-12-27	2024-12-27	ICE BofA US High Yield Index Option- Adjusted S	1996-12-31	2024-12-26	D. Cl
CSUSHPINSA	CSUSHPINSA	2024-12-27	2024-12-27	S&P CoreLogic Case-Shiller U.S. National Home	1987-01-01	2024-09-01	Mon
SP500	SP500	2024-12-27	2024-12-27	S&P 500	2014-12-29	2024-12-26	D. Cl
BAMLH0A0HYM2EY	BAMLH0A0HYM2EY	2024-12-27	2024-12-27	ICE BofA US High Yield Index Effective Yield	1996-12-31	2024-12-26	D. Cl
BAMLC0A0CM	BAMLC0A0CM	2024-12-27	2024-12-27	ICE BofA US Corporate Index Option- Adjusted Sp	1996-12-31	2024-12-26	D. CI

DDDI12SMA156NWDB	DDDI12SMA156NWDB	2024-12-27	2024-12-27	Private Credit by Deposit Money Banks and Othe	2001-01-01	2020-01-01	Anr
Q03069USQ605NNBR	Q03069USQ605NNBR	2024-12-27	2024-12-27	Revenue Freight Tons Originated, Less Than Car	1920-01-01	1943-07-01	Quart
CSHICPCZA156NRUG	CSHICPCZA156NRUG	2024-12-27	2024-12-27	Share of Gross Capital Formation at Current Pu	1990-01-01	2019-01-01	Anr
CSHXCPVEA156NRUG	CSHXCPVEA156NRUG	2024-12-27	2024-12-27	Share of Merchandise Exports at Current Purcha	1950-01-01	2019-01-01	Anr
CSHMCPNPA156NRUG	CSHMCPNPA156NRUG	2024-12-27	2024-12-27	Share of Merchandise Imports at Current Purcha	1960-01-01	2019-01-01	Anr
1000 rows × 15 columns							•
4							>

```
# Ordenando a busca por popularidade e atribuindo a uma variável:
```

```
sp_search = fred.search('S&P', order_by='popularity')
```

```
sp500 = fred.get_series(series_id = 'SP500')
sp500.plot(figsize = (10, 5), title = 'SP500', lw = 2, color = 'r')
plt.plot()
```

[#] Baixando esses dados para a memória do nosso notebook:

O gráfico apresenta a evolução do índice S&P 500 (O S&P 500 é um índice que mede o desempenho de 500 grandes empresas listadas nas bolsas dos EUA, sendo usado como referência da economia americana e dos mercados de ações globais) entre 2015 e 2024, mostrando um crescimento constante com destaque para a queda abrupta em 2020, causada pela pandemia de COVID-19 possivelmente, seguida de uma rápida recuperação e contínua valorização até alcançar novos picos em 2024. Esse comportamento reflete a resiliência do mercado financeiro americano, impulsionado por políticas de estímulo econômico e avanços tecnológicos.

3. Juntando a outros data-sets:

```
# Levantando os data frames das taxas de desemprego nos EUA:
unemp_df = fred.search('unemployment rate state', filter=('frequency','Monthly'))
unemp_df
```


	id	realtime_start	realtime_end	title	observation_start	observation_end	frequency	frequency_
series id								
UNRATE	UNRATE	2024-12-27	2024-12-27	Unemployment Rate	1948-01-01	2024-11-01	Monthly	
UNRATENSA	UNRATENSA	2024-12-27	2024-12-27	Unemployment Rate	1948-01-01	2024-11-01	Monthly	
LNS14000006	LNS14000006	2024-12-27	2024-12-27	Unemployment Rate - Black or African American	1972-01-01	2024-11-01	Monthly	
UNEMPLOY	UNEMPLOY	2024-12-27	2024-12-27	Unemployment Level	1948-01-01	2024-11-01	Monthly	
LNU03000000	LNU03000000	2024-12-27	2024-12-27	Unemployment Level	1948-01-01	2024-11-01	Monthly	
INBART5URN	INBART5URN	2024-12-27	2024-12-27	Unemployment Rate in Bartholomew County, IN	1990-01-01	2024-10-01	Monthly	
MOPRURN	MOPRURN	2024-12-27	2024-12-27	Unemployment Rate in Perry County, MO	1990-01-01	2024-10-01	Monthly	
PENS812UR	PENS812UR	2024-12-27	2024-12-27	Unemployment Rate in Pensacola- Ferry Pass- Bren	1990-01-01	2024-10-01	Monthly	
AKRO439UR	AKRO439UR	2024-12-27	2024-12-27	Unemployment Rate in Akron, OH (MSA)	1990-01-01	2024-10-01	Monthly	
PORT912UR	PORT912UR	2024-12-27	2024-12-27	Unemployment Rate in Port St. Lucie, FL (MSA)	1990-01-01	2024-10-01	Monthly	
1000 rows × 15	columns							
4								+

[#] Filtrando os que são mais interessantes para o nosso caso

```
unemp_df = fred.search('unemployment rate state', filter=('frequency','Monthly'))
unemp_df = unemp_df.query('seasonal_adjustment == "Seasonally Adjusted" and units == "Percent"')
unemp_df
```

		_
٢	4	_
-	ッ	~

	id	realtime_start	realtime_end	title	observation_start	observation_end	fre
series id							_
UNRATE	UNRATE	2024-12-27	2024-12-27	Unemployment Rate	1948-01-01	2024-11-01	ı
LNS14000006	LNS14000006	2024-12-27	2024-12-27	Unemployment Rate - Black or African American	1972-01-01	2024-11-01	ľ
U6RATE	U6RATE	2024-12-27	2024-12-27	Total Unemployed, Plus All Persons Marginally	1994-01-01	2024-11-01	1
CAUR	CAUR	2024-12-27	2024-12-27	Unemployment Rate in California	1976-01-01	2024-11-01	r
TXUR	TXUR	2024-12-27	2024-12-27	Unemployment Rate in Texas	1976-01-01	2024-11-01	1
***						***	
M08311USM156SNBR	M08311USM156SNBR	2024-12-27	2024-12-27	Unemployment Rate, Married Males, Spouse Prese	1954-11-01	1968-01-01	1
LNS13008397	LNS13008397	2024-12-27	2024-12-27	Of Total Unemployed, Percent Unemployed Less T	1948-01-01	2024-11-01	1
LBSSA20	LBSSA20	2024-12-27	2024-12-27	Labor Force Participation Rate for Kansas	1976-01-01	2024-11-01	1
LNS14000150	LNS14000150	2024-12-27	2024-12-27	Unemployment Rate - Married Men	1955-01-01	2024-11-01	1
NEIPTERM156SFRBRIC	NEIPTERM156SFRBRIC	2024-12-27	2024-12-27	Hornstein- Kudlyak-Lange Non- Employment Index i	1994-01-01	2024-11-01	ľ
158 rows × 15 columns							,
4							•

Pegando apenas aqueles que falam de 'Unemployment Rate' na coluna title e colocando na lista com todos os resultados:

```
all_results = []
for myid in unemp_df.index:
    results = fred.get_series(myid)
    results = results.to_frame(name=myid)
    all_results.append(results)
    time.sleep(0.1) # Não requisitar muito rápido e ser bloqueado! (limite de 500 estabelecido na primeira linha)
uemp_results = pd.concat(all_results, axis=1) # Concatena todos juntos
```

Clique duas vezes (ou pressione "Enter") para editar

4. Verrificando a existencia de nulos:

```
# Fazendo o check dos valores nulos
uemp_results.isna()
```


uemp_results.isna().sum()

Vemos que temos muitos valores nulos

4

uemp_results

```
cols_to_drop = []
for i in uemp_results:
    if len(i) > 4:
        cols_to_drop.append(i)
uemp_results = uemp_results.drop(columns = cols_to_drop, axis=1)

# Vamos dropar UNRANTE, pois não é um estado:
uemp_states = uemp_results.copy()#.drop('UNRATE', axis=1)
```


	CAUR	TXUR	NYUR	FLUR	PAUR	OHUR	MIUR	ALUR	MAUR	NCUR	ILUR	NJUR	GAUR	COUR	AZUR	WIUR	VAUR	KYUR	SCUR	NMUR	MNUR	TN
1929- 04-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
1929- 05-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ν
1929- 06-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ν
1929- 07-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ν
1929- 08-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ν
2024- 07-01	5.2	4.1	4.3	3.3	3.4	4.5	4.4	2.8	3.5	3.7	5.2	4.7	3.4	3.9	3.4	3.0	2.7	4.7	3.9	4.0	3.2	4
2024- 08-01	5.3	4.1	4.4	3.3	3.4	4.5	4.5	2.8	3.7	3.8	5.3	4.8	3.6	4.0	3.4	2.9	2.8	4.8	4.3	4.1	3.3	;
2024- 09-01	5.3	4.1	4.4	3.3	3.4	4.5	4.5	2.9	3.8	3.8	5.3	4.7	3.6	4.0	3.5	2.9	2.9	4.9	4.5	4.2	3.4	4
2024- 10-01	5.4	4.1	4.4	3.3	3.4	4.3	4.6	2.9	3.9	3.7	5.3	4.7	3.6	4.1	3.6	2.9	2.9	5.0	4.7	4.3	3.4	4
2024- 11-01	5.4	4.2	4.4	3.4	3.5	4.3	4.8	3.1	4.0	3.7	5.3	4.6	3.7	4.3	3.7	2.9	3.0	5.1	4.8	4.4	3.5	;
1136 rov	ws × 52	colum	ns																			

Verificando os NA values:

uemp_states

uemp_results.isna().sum(axis = 1).plot()

Em meados de 1980 foi quando se iniciou o fornecimento de dados mensais, por isso podemos apagar sem problemas os dados vazios!

```
# Tirando os valores NA:
uemp_states = uemp_results.copy()
uemp_states = uemp_states.dropna()
id_to_state = unemp_df['title'].str.replace('Unemployment Rate in ','').to_dict()
uemp_states.columns = [id_to_state[c] for c in uemp_states.columns]
```


	California	Texas	New York	Florida	Pennsylvania	Ohio	Michigan	Alabama	Massachusetts	North Carolina	Illinois	New Jersey	Georgia	Cı
1976- 01-01	9.2	5.8	10.3	9.7	8.0	8.1	9.9	6.6	10.5	6.4	6.6	10.3	8.4	_
1976- 02-01	9.2	5.8	10.3	9.7	8.1	8.1	9.9	6.6	10.5	6.4	6.6	10.3	8.4	
1976- 03-01	9.1	5.9	10.2	9.6	8.1	8.1	9.9	6.6	10.5	6.4	6.6	10.3	8.4	
1976- 04-01	9.1	5.9	10.2	9.5	8.1	8.0	9.8	6.5	10.3	6.3	6.6	10.3	8.3	
1976- 05-01	9.0	5.9	10.1	9.3	8.1	7.8	9.6	6.4	10.1	6.1	6.6	10.3	8.1	
2024- 07-01	5.2	4.1	4.3	3.3	3.4	4.5	4.4	2.8	3.5	3.7	5.2	4.7	3.4	
2024- 08-01	5.3	4.1	4.4	3.3	3.4	4.5	4.5	2.8	3.7	3.8	5.3	4.8	3.6	
2024- 09-01	5.3	4.1	4.4	3.3	3.4	4.5	4.5	2.9	3.8	3.8	5.3	4.7	3.6	
2024- 10-01	5.4	4.1	4.4	3.3	3.4	4.3	4.6	2.9	3.9	3.7	5.3	4.7	3.6	
2024- 11-01	5.4	4.2	4.4	3.4	3.5	4.3	4.8	3.1	4.0	3.7	5.3	4.6	3.7	
585 row	s × 52 columns	S												
4														•

Plotando o indice de desemprego por estado:

px.line(uemp_states)

 \overline{z}

5. Maio 2020

Vemos que em maio de 2020 há um pico gigantesco, vamos avaliar mais de perto!

ax.set_xlabel('% Unemployed')
plt.show()

O gráfico mostra a taxa de desemprego nos estados dos EUA em maio de 2020, evidenciando um forte impacto econômico da pandemia de COVID-19. Estados como Nevada e Hawaii apresentam as maiores taxas, próximas de 25%, refletindo a dependência de setores como turismo, enquanto Nebraska, South Dakota e North Dakota registram as menores, abaixo de 8%, devido a economias mais estáveis e menos afetadas. Há uma disparidade significativa entre estados, com áreas urbanas e industriais, como Michigan e New York, também sofrendo altas taxas. Essas variações regionais destacam a necessidade de políticas econômicas direcionadas para apoiar os estados mais impactados.

6. Trazendo a paritcipação por estado:

Mandand

Para investigar mais de perto essa questão vamos trazer uma planilha de "participation rate state" seguindo o mesmo modelo!

```
part_df = fred.search('participation rate state', filter=('frequency', 'Monthly'))
part_df = part_df.query('seasonal_adjustment == "Seasonally Adjusted" and units == "Percent"')

# Repare que estamos basicamente repetindo o que foi feito anteriormente:

part_id_to_state = part_df['title'].str.replace('Labor Force Participation Rate for ','').to_dict()

all_results = []

for myid in part_df.index:
    results = fred.get_series(myid)
    results = results.to_frame(name=myid)
    all_results.append(results)
    time.sleep(0.1) # Don't request to fast and get blocked

part_states = pd.concat(all_results, axis=1)
part_states.columns = [part_id_to_state[c] for c in part_states.columns]
```

7. Plorando Desemprego x Taxa de participação por estado

uemp_states

	California	Texas	New York	Florida	Pennsylvania	Ohio	Michigan	Alabama	Massachusetts	North Carolina	Illinois	New Jersey	Georgia	Cı
1976- 01-01	9.2	5.8	10.3	9.7	8.0	8.1	9.9	6.6	10.5	6.4	6.6	10.3	8.4	_
1976- 02-01	9.2	5.8	10.3	9.7	8.1	8.1	9.9	6.6	10.5	6.4	6.6	10.3	8.4	
1976- 03-01	9.1	5.9	10.2	9.6	8.1	8.1	9.9	6.6	10.5	6.4	6.6	10.3	8.4	
1976- 04-01	9.1	5.9	10.2	9.5	8.1	8.0	9.8	6.5	10.3	6.3	6.6	10.3	8.3	
1976- 05-01	9.0	5.9	10.1	9.3	8.1	7.8	9.6	6.4	10.1	6.1	6.6	10.3	8.1	
2024- 07-01	5.2	4.1	4.3	3.3	3.4	4.5	4.4	2.8	3.5	3.7	5.2	4.7	3.4	
2024- 08-01	5.3	4.1	4.4	3.3	3.4	4.5	4.5	2.8	3.7	3.8	5.3	4.8	3.6	
2024- 09-01	5.3	4.1	4.4	3.3	3.4	4.5	4.5	2.9	3.8	3.8	5.3	4.7	3.6	
2024- 10-01	5.4	4.1	4.4	3.3	3.4	4.3	4.6	2.9	3.9	3.7	5.3	4.7	3.6	
2024- 11-01	5.4	4.2	4.4	3.4	3.5	4.3	4.8	3.1	4.0	3.7	5.3	4.6	3.7	

585 rows × 52 columns

Repare que na coluna do estado Columbia, temos 'the District of Columbia', vamos mudar isso:

uemp_states = uemp_states.rename(columns={'the District of Columbia':'District Of Columbia'})

```
# Plotando multiplos gráficos para cada estado:
```

```
fig, axs = plt.subplots(10, 5, figsize=(30, 30), sharex=True)
axs = axs.flatten()

i = 0
for state in uemp_states.columns:
    if state in ["District Of Columbia","Puerto Rico"]:
        continue
    ax2 = axs[i].twinx()
    uemp_states.query('index >= 2020 and index < 2022')[state] \
            .plot(ax=axs[i], label='Unemployment')
    part_states.query('index >= 2020 and index < 2022')[state] \
            .plot(ax=ax2, label='Participation', color=color_pal[1])
    ax2.grid(False)
    axs[i].set_title(state)
    i += 1
plt.tight_layout()
plt.show()</pre>
```

California Texas New York Florida Pennsvlvania