Corrigés des exercices de Réductions (chapitre 6)

1. * Soit
$$E = \mathcal{C}(\mathbb{R})$$
 et $\varphi : f \in E \mapsto \varphi(f)$ où $\varphi(f)(x) = \int_0^x t f(t) dt$.

- a) Montrer que $\varphi \in \mathcal{L}(E)$. φ est-il injectif? surjectif?
- b) Etudier les valeurs propres de φ .

a) $\varphi(f) \in E$ car $x \mapsto xf(x)$ est continue (et même $\varphi(f)$ est \mathcal{C}^1).

$$\varphi(\lambda f + \mu g)(x) = \int_0^x t(\lambda f(t) + \mu g(t))dt = \lambda \varphi(f)(x) + \mu \varphi(g)(x) \text{ donc } \varphi \in \mathcal{L}(E).$$

 $\varphi(\lambda f + \mu g)(x) = \int_0^x t(\lambda f(t) + \mu g(t))dt = \lambda \varphi(f)(x) + \mu \varphi(g)(x) \text{ donc } \varphi \in \mathcal{L}(E).$ Si $\varphi(f) = 0$, $\int_0^x tf(t)dt = 0$ pour tout x, donc, en dérivant, xf(x) = 0 soit f(x) = 0 si $x \neq 0$, mais f est continue en 0, donc f = 0 et φ est injective.

Analyse. Soit $g \in E$ et $f \in E$ avec $\varphi(f) = g$. Donc g est \mathcal{C}^1 et g'(x) = xf(x). On a aussi

 $\frac{g'(x) - g'(0)}{x - 0} = \frac{g'(x)}{x}$ doit donc avoir une limite en 0, donc g doit être 2 fois dérivable en 0. Soit $g \in \mathcal{C}^1(\mathbb{R})$ avec g(0) = g'(0) = 0 et g deux fois dérivable en 0. Si

$$f: \begin{cases} x \neq 0 \mapsto \frac{g'(x)}{x} \\ 0 \mapsto g''(0) \end{cases}, f \in E \text{ et } \int_0^x tf(t)dt = \int_0^x g'(t)dt = g(x) - g(0) = g(x), i.e. \ \varphi(f) = g.$$

Donc im g est l'ensemble de telles g. (φ est injective, non surjective - on est en dimension infinie). b) \rightarrow 0 n'est pas valeur propre.

 \rightarrow Si $\lambda \neq 0$, $\varphi(f) = \lambda f$ implique d'abord que f est \mathcal{C}^1 , et que $\lambda f'(x) = xf(x)$, donc $e^{-\frac{x^2}{2\lambda}}f'(x) - \frac{x}{\lambda}e^{-\frac{x^2}{2\lambda}}f(x) = 0 = \left(e^{-\frac{x^2}{2\lambda}}f(x)\right)'$ et $f(x) = Ce^{-\frac{x^2}{2\lambda}}$. Mais f(0) = 0, car $\varphi(f) = \lambda f$, donc C = 0... et f = 0. Ainsi, φ n'a pas de valeur propre.

2. * Soit $E = \mathcal{C}(\mathbb{R})$. Pour $f \in E$, on définit $u(f) : x \mapsto \int_{-x}^{x} f(t)dt$. Montrer que u est un endomorphisme de E, et donner ses éléments propres.

La linéarité de u est liée à celle de l'intégrale. Par ailleurs, soit, pour $f \in E, F(x) =$ f(t)dt. La continuité de f implique la classe \mathcal{C}^1 de F, donc u(f)(x) = F(x) - F(-x) définit bien une fonction continue car de classe \mathcal{C}^1 . Notons que u(f) est impaire.

Si u(f) = 0, F(x) = F(-x) donne en dérivant f(x) = -f(-x), donc f est impaire. Réciproquement, si f est impaire, on a bien u(f) = 0.

Si $u(f) = \lambda f$, avec $\lambda \neq 0$, alors $f = \frac{1}{\lambda} u(f)$ donc f est impaire, et alors u(f) = 0: il n'y a pas d'autre valeur propre que 0.

3. ** Soit
$$E = \mathbb{R}^{\mathbb{N}^*}$$
 et $\varphi : E \to E$; $(u_n) \mapsto (v_n)$ où $v_n = \frac{1}{n^2} \sum_{p=1}^n p u_p$. Montrer que $\varphi \in \mathcal{L}(E)$.

Quels sont ses éléments propres ?

$$\varphi((\alpha u_n + \alpha' u_n')) = \left(\frac{1}{n^2} \sum_{p=1}^n p(\alpha u_p + \alpha' u_p')\right) = \alpha \varphi((u_n)) + \alpha' \varphi((u_n')).$$

$$\varphi((u_n)) = \lambda(u_n)$$
 si et seulement si, pour tout n , on a (L_n) : $\frac{1}{n^2} \sum_{p=1}^n p u_p = \lambda u_n$. On a

$$(L_1): u_1(1-\lambda) = 0, (L_{n+1}): \frac{1}{(n+1)^2} \sum_{p=1}^{n+1} p u_p = \lambda u_{n+1} = \frac{1}{(n+1)^2} [n^2 \lambda u_n + (n+1)u_{n+1}], \text{ soit}$$

 $n^2 \lambda u_n = (n+1)^2 \left[\lambda - \frac{1}{n+1}\right] u_{n+1} \text{ pour } n \ge 1.$

a) $\lambda \notin \{\frac{1}{n} ; n \in \mathbb{N}^*\}$, alors $u_1 = 0$ et $u_{n+1} = \psi(\lambda, n)u_n$ donne par récurrence, $u_n = 0$. b) $\lambda = \frac{1}{n_0}$

• Si $n_0 = 1$, u_1 est quelconque et $u_{n+1} = \frac{n}{n+1}u_n$, d'où $nu_n = \text{cte} = u_1$ i.e. $u_n = \frac{u_1}{n}$. Finalement $E_1(\varphi) = \mathbb{R}((\frac{1}{n})_{n \ge 1})$.

• Si $n_0 \ge 2$, $u_1 = 0$ et, pour $2 \le n \le n_0 - 1$, alors $(\lambda - \frac{1}{n})u_n = \frac{(n-1)^2}{n^2}\lambda u_{n-1}$ donc $u_n = 0$. Par contre, si $n \ge n_0$, $\frac{n^2}{n_0}u_n = (n+1)^2 \frac{n+1-n_0}{n_0(n+1)}u_{n+1}$, soit $u_{n+1} = \frac{n^2}{(n+1)(n+1-n_0)}u_n$, puis $u_{n+1} = \frac{n^2}{(n+1)(n+1-n_0)} \frac{(n-1)^2}{n(n-n_0)} \cdots \frac{n_0^2}{(n_0+1) \times 1} u_{n_0} = (\frac{n!}{(n_0-1)!})^2 \frac{n_0!}{(n+1)!(n+1-n_0)!} u_{n_0} = \frac{n_0!(n+1)!}{(n+1)^2 n_0!(n+1-n_0)!} u_{n_0} = (\frac{n_0}{n+1})^2 C_{n+1}^{n_0} u_{n_0}$. Donc $E_{\frac{1}{n_0}}(\varphi) = \mathbb{R} u^{(n_0)}$ où $u_n^{(n_0)} = 0$ si $n < n_0$ et $u_n^{(n_0)} = (\frac{n_0}{n})^2 C_n^{n_0}$ si $n \ge n_0$.

4. ** $E = \mathcal{C}^{\infty}(\mathbb{R})$. Pour $f \in E$, on pose $L(f)(x) = 3f(0) + \int_{1}^{x} f(t)dt$. Montrer que $L \in \mathcal{L}(E)$. Donner ker L, im L, ainsi que les éléments propres de L.

- $L(f) \in \mathcal{C}^{\infty}$, par récurrence : si g = L(f), g est \mathcal{C}^1 , avec g' = f, donc $g' \in \mathcal{C}^{\infty}$, soit g est \mathcal{C}^{∞} .
 - Si L(f)(x) = 0: g(x) = 0, donc g' = 0 = f: ker $L = \{0\}$.
- Soit g = L(f): g' = f, puis L(f)(x) = 3g'(0) + g(x) g(1), d'où 3g'(0) = g(1), et im $L = \{g \in E ; 3g'(0) = g(1)\}$.
 - $L(f) = \lambda f$ donne, $\lambda \neq 0$ et $\lambda f' = f$, d'où $f(x) = Ce^{\frac{x}{\lambda}}$.

Réciproquement, $3 - \lambda e^{\frac{1}{\lambda}} = 0$, en injectant, ou parce que $f \in \text{im}L$. Or $3 = te^{\frac{1}{t}}$ ou $3X = e^X$ $(X = \frac{1}{t})$. On pose $\varphi(t) = -3t + e^t$, $\varphi'(t) = -3 + e^t$,

t	$-\infty$		$\ln 3$		$+\infty$
$\varphi(t)$	$+\infty$	\	$3 - 3 \ln 3$	7	$+\infty$

avec $3-3\ln 3<0$: il y a donc 2 valeurs propres et $E_{\lambda}(L)=\mathbb{R}(x\mapsto e^{\frac{x}{\lambda}})$.

$$[5.]$$
 *** Soit $A: \mathcal{C}([-1,1],\mathbb{R}) \to \mathcal{F}([-1,1],\mathbb{R}), f \mapsto Af: x \mapsto \int_{-1}^{-x} f(t)dt.$

a) Montrer que A est un endomorphisme de $\mathcal{C}([-1,1],\mathbb{R})$; déterminer son noyau et son image.

b) Déterminer les éléments propres de A.

- a) Si $x \in [-1,1]$, $-x \in [-1,1]$ et $\int_{-1}^{-x} f(t)dt$ est bien défini. Si F est une primitive de f, on a Af(x) = F(-x) F(-1). f est continue, donc F est de classe C^1 donc $x \mapsto F(-x) F(-1)$ est également de classe C^1 . En particulier, $Af \in C([-1,1],\mathbb{R})$ et A est évidemment linéaire. Donc A est un endomorphisme de $C([-1,1],\mathbb{R})$.
- ker $A = \{f ; Af = 0\}$. Si Af = 0, alors (Af)'(x) = 0 pour tout $x \in [-1,1]$. Or (Af)'(x) = -f(-x) donc f(-x) = 0 pour tout $x \in [-1,1]$, d'où f(u) = 0 pour tout $u \in [-1,1]$ (u = -x) et f = 0 donc ker $A = \{0\}$.
- Si Af = g, alors g'(x) = -f(-x) et f(x) = -g'(-x). On doit donc avoir g(1) = 0 car Af(1) = 0 et g de classe \mathcal{C}^1 car g'(x) = -f(-x) avec f continue. Réciproquement, si g est de classe \mathcal{C}^1 et vérifie g(1) = 0, soit f(x) = -g'(-x): f est continue de [-1, 1] sur \mathbb{R} et

$$Af(x) = \int_{-1}^{-x} f(u)du = \int_{-1}^{-x} -g'(-u)du = \int_{1}^{x} g'(t)dt = g(x) - g(1) = g(x)$$

donc $\text{Im} A = \{ g \in \mathcal{C}^1([-1, 1], \mathbb{R}) ; g(1) = 0 \}.$

b) On cherche les couples (λ, f) vérifiant $Af = \lambda f$, soit $\int_{-1}^{-x} f(t)dt = \lambda f(x)$ pour tout $x \in [-1, 1]$. Nécessairement, f(1) = 0 et $f \in \mathcal{C}^1([-1, 1], \mathbb{R})$, c'est-à-dire $f \in \text{Im}A$. En dérivant, on obtient $-f(-x) = \lambda f'(x)$: $\lambda \neq 0$ car ker $A = \{0\}$, donc $f'(x) = -\frac{1}{\lambda}f(-x)$ d'où f' est de classe \mathcal{C}^1 au moins. En redérivant, on obtient $f''(x) = -\frac{1}{\lambda} \times (-f'(-x)) = -\frac{1}{\lambda^2}f(x)$.

Soit $(E): y'' + \frac{1}{\lambda^2}y = 0: f$ doit être solution de (E) et vérifier f(1) = 0 et $f(-x) + \lambda f'(x) = 0$.

$$f(x) = C\cos\frac{x}{\lambda} + D\sin\frac{x}{\lambda} \text{ avec } \begin{cases} C\cos\frac{1}{\lambda} + D\sin\frac{1}{\lambda} = 0\\ C\cos\frac{x}{\lambda} - D\sin\frac{x}{\lambda} - C\sin\frac{x}{\lambda} + D\cos\frac{x}{\lambda} = 0 \end{cases},$$

donc D = -C et $\tan \frac{1}{\lambda} = 1$, soit $\frac{1}{\lambda} = \frac{\pi}{4} + k\pi$. Finalement, $\operatorname{Sp} A = \{\frac{1}{\pi}(\frac{1}{4} + k)^{-1} ; k \in \mathbb{Z}\}$ avec, pour $\lambda \in \operatorname{Sp} A$, $\operatorname{Vect}(x \mapsto \cos \frac{x}{\lambda} - \sin \frac{x}{\lambda})$.

6. ** Soit $(a,b) \in \mathbb{C}^2 \setminus \{(0,0)\}$. Soit u l'endomorphisme de $\mathbb{C}[X]$ défini par u(P) = [(aX+b)P]'. Déterminer les éléments propres de u. Que peut-on dire de la restriction de u à $\mathbb{C}_n[X]$?

- Si $a=0,\,u(P)=bP'$. Pour des raisons de degré, la seule valeur propre est 0 et $E(0,u)=\mathbb{C}.$
- On suppose maintenant $a \neq 0$. $u(P) = \lambda P$ avec $P \neq 0$ équivant sur $\mathbb{C}[X]$ à $\frac{\lambda a}{aX + b} = \frac{P'}{P}$.

Sur \mathbb{C} , P est scindé, et, si $P = \mu \prod_{i=1}^{r} (X - a_i)^{n_i}$, on a $\frac{P'}{P} = \sum_{i=1}^{r} \frac{n_i}{X - a_i}$. L'unicité de la

décomposition en éléments simples implique alors que r=1, $a_1=-\frac{b}{a}$ et $\lambda-a=ka$ avec $k\in\mathbb{N}$. Réciproquement, les valeurs propres sont les $\lambda_k=a(k+1)$ pour $k\in\mathbb{N}$, avec $E(\lambda_k,u)=\mathbb{C}P_k$ où $P_k=(X+\frac{b}{a})^k$.

Il est clair que $\mathbb{C}_n[X]$ est stable par u. Soit u_n l'endomorphisme de cet espace induit par u. u_n a n+1 valeurs propres distinctes (prendre $0 \le k \le n$), donc u_n est diagonalisable.

7. * Soit $E = K_3[X]$, $A = X^4 - 1$, $B = X^4 - X$ et $\varphi : E \to E$; $P \to \text{reste de la division euclidienne}$ de AP par B. Montrer que $\varphi \in \mathcal{L}(E)$ et trouver les éléments propres de φ .

AP = BQ + R avec $\deg R < \deg B = 4$ d'où $\varphi(E) \subset E$. $A(\lambda_1 P_1 + \lambda_2 P_2) = B(\lambda_1 Q_1 + \lambda_2 Q_2) + 2A(\lambda_1 Q_1 + \lambda_2 Q_2) + 2A$

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \text{ et } \chi_M(\lambda) = \begin{vmatrix} -1 - \lambda & 0 & 0 & 0 \\ 1 & -1 - \lambda & 0 & 1 \\ 0 & 1 & -1 - \lambda & 0 \\ 0 & 0 & 1 & -1 - \lambda \end{vmatrix}. \text{ On développe d'abord}$$

par rapport à (L_1) : $\chi_M(\lambda) = -(1+\lambda) \begin{vmatrix} -1-\lambda & 0 & 1 \\ 1 & -1-\lambda & 0 \\ 0 & 1 & -1-\lambda \end{vmatrix}$. On fait ensuite $L_1 \leftarrow L_1 + (1+\lambda)L_2$: $\chi_M(\lambda) = -(1+\lambda) \begin{vmatrix} 0 & -(1+\lambda)^2 & 1 \\ 1 & -1-\lambda & 0 \\ 0 & 1 & -1-\lambda \end{vmatrix} = (1+\lambda) \begin{vmatrix} -(1+\lambda)^2 & 1 \\ 1 & -(1+\lambda) \end{vmatrix}$.

$$L_1 + (1+\lambda)L_2: \chi_M(\lambda) = -(1+\lambda) \begin{vmatrix} 0 & -(1+\lambda)^2 & 1\\ 1 & -1-\lambda & 0\\ 0 & 1 & -1-\lambda \end{vmatrix} = (1+\lambda) \begin{vmatrix} -(1+\lambda)^2 & 1\\ 1 & -(1+\lambda) \end{vmatrix}.$$

D'où $\chi_M(\lambda) = (1+\lambda)((1+\lambda)^3 - 1) = \lambda(1+\lambda)(\lambda^2 + 3\lambda + 1)$

• $\lambda = 0$; $E_0(\varphi) = \ker(\varphi) = K(X + X^2 + X^3)$ (résolution matricielle).

•
$$\lambda = -1$$
; $M_{\mathcal{B}}(\varphi) + I_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. Donc $E_{-1}(\varphi) = K(X^3 - 1)$.

Si $K = \mathbb{R}$, c'est fini ! φ n'est donc pas diagonalisable. Si $K = \mathbb{C}$, $\lambda^2 + 3\lambda + 3 = \frac{(\lambda + 1)^3 - 1}{\lambda}$, d'où $\lambda \in \{j - 1, j^2 - 1\}$ et φ est diagonalisable avec $E_{j-1}(\varphi) = K(X^3 + jX^2 + j^2X)$ et $E_{j^2-1}(\varphi) = K(X^3 + j^2X^2 + jX).$

8. ** Soit
$$A = \begin{pmatrix} 0 & 1 & & (0) \\ n-1 & \ddots & \ddots & \\ & \ddots & \ddots & n-1 \\ (0) & 1 & 0 \end{pmatrix} \in M_n(K).$$

- a) Trouver $u \in \mathcal{L}(K_{n-1}[X])$ tel que $M_{\mathcal{B}}(u) = A$ (où $\mathcal{B} = (1, \dots, X^n)$).
- b) A est-elle diagonalisable ?

a)
$$u(1) = (n-1)X$$
, $u(X^j) = jX^{j-1} + (n-j-1)X^{j+1}$ pour $1 \le j \le n-2$ et $u(X^{n-1}) = (n-1)X^{n-2}$.

On remarque que $u(X^j) = (n-1)X^{j+1} + (1-X^2)jX^{j-1}$, soit $u(P) = (n-1)XP + (1-X^2)P'$ pour $P \in \{X, \dots, X^{n-2}\}$ et que cette relation est encore vraie pour P = 1 et pour $P = X^{n-1}$ donc elle est vraie pour tout élément de la base. On a donc $u(P) = (n-1)XP + (1-X^2)P'$.

b)
$$\lambda \in \text{sp}(u)$$
 si et seulement si $(n-1)XP + (1-X^2)P' = \lambda P$, soit $((n-1)X - \lambda)P + (1-X^2)P' = 0$ ou bien $\frac{P'}{P} = \frac{(n-1)X - \lambda}{X^2 - 1} = \frac{\lambda + n - 1}{2(X-1)} + \frac{-\lambda + n - 1}{2(X-1)}$. Or, si $P = \prod_{i=0}^{r} (X - a_i)^{n_i}$,

alors $\frac{P'}{P} = \sum_{i=0}^{n} \frac{n_i}{X - a_i}$. Pour $0 \le k \le n - 1$, prenons $\lambda_k = 2k - (n - 1)$. On a alors $\frac{\lambda_k + n - 1}{2} = k$ et $\frac{-\lambda_k + n-1}{2} = -k + (n-1)$ et $P_k = (X+1)^k (X-1)^{n-1-k}$ qui est de degré n-1 vérifie bien $u(P_k) = \tilde{\lambda}_k P_k$. On a ainsi n valeurs propres distinctes et A est bien diagonalisable.

- $[\mathbf{9}]$ * Soit $A \in \mathcal{M}_n(\mathbb{C})$, non nulle, et $u: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, $M \mapsto \operatorname{tr}(A)M + \operatorname{tr}(M)A$.
- $\overline{\mathbf{a})}$ Montrer que u est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.
- b) Déterminer les éléments propres de u.
- c) u est-il diagonalisable?
- a) $M \mapsto \operatorname{tr}(A)M$ est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$, de même que $M \mapsto \operatorname{tr}(M)A$ par la linéarité de la trace. Donc, u est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.
- b) Analyse. Si $u(M) = \lambda M$, on a $[\lambda \operatorname{tr}(A)]M = \operatorname{tr}(M)A$. Donc, soit $\lambda = \operatorname{tr}(A)$, et dans ce cas $\operatorname{tr}(M) = 0$, soit $M = \frac{\operatorname{tr}(M)}{\lambda - \operatorname{tr}(A)} A \in \mathbb{C}A$.

Synthèse. • $u(M) = \operatorname{tr}(A)M$ équivaut à $\operatorname{tr}(M) = 0$, donc $\operatorname{tr}(A)$ est valeur propre, et le sous-espace propre associé est ker(tr), qui est un hyperplan de $\mathcal{M}_n(\mathbb{C})$ puisque tr est une forme linéaire non nulle.

- $u(A) = 2\operatorname{tr}(A)A$, donc, si $\operatorname{tr}(A) \neq 0$, on obtient une deuxième valeur propre qui est $2\operatorname{tr}(A)$. Le sous-espace propre associé est $\mathbb{C}A$ par l'analyse.
- c) Si $tr(A) \neq 0$, u a deux valeurs propres qui sont tr(A) et 2tr(A). Au niveau des dimensions des sous-espaces propres, on a $n^2 - 1 + 1 = n^2$, donc u est diagonalisable.
 - Si tr(A) = 0, 0 est la seule valeur propre et u n'est pas diagonalisable car $n^2 1 < n^2$.

10. * Soit
$$A = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}) \ ((a,b,c) \neq (0,0,0)).$$
 Étudier la diagonalisabilité de A .

A ayant c_1 , c_2 , c_3 comme vecteurs colonnes, si $e = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, on a $c_1 = ae$, $c_2 = be$, $c_3 = ce$, donc im $A \subset \mathbb{R}e$, et comme $(a, b, c) \neq (0, 0, 0)$, im $A = \mathbb{C}e$ et $\operatorname{rg}(A) = 1$.

Donc, 0 est valeur propre avec $\dim(\ker(A)) = \dim(E_0(A)) = 2$ et $E_0(A)$ est le plan de \mathbb{C}^3 d'équation ax + by + cz = 0.

S'il y a une valeur propre non nulle λ , $E_{\lambda}(A) \subset \operatorname{im}(A)$ donc $E_{\lambda}(A) = \operatorname{im}(A)$ par la dimension. Or, $Ae = (a^2 + b^2 + c^2)e$ donc:

- $a^2 + b^2 + c^2 = 0$: sp $(A) = \{0\}$ et A n'est pas diagonalisable. $a^2 + b^2 + c^2 \neq 0$: sp $(A) = \{0, a^2 + b^2 + c^2\}$ avec $E_{a^2 + b^2 + c^2} = \mathbb{C}e$ et A est diagonalisable car 1 + 2 = 3.

11. ** Diagonalisabilité de
$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & b \\ a & b & 0 \end{pmatrix}$$
.

La somme des colonnes est constante donc, avec $\sum C_i \to C_1$,

$$\chi_A(\lambda) = (a+b-\lambda) \begin{vmatrix} 1 & a & b \\ 1 & -\lambda & b \\ 1 & b & -\lambda \end{vmatrix} = (a+b-\lambda) \begin{vmatrix} 1 & a & b \\ 0 & -a-\lambda & 0 \\ 0 & b-a & -\lambda-b \end{vmatrix} = (a+b-\lambda)(b+\lambda)(a+\lambda).$$

Notons que cette propriété sur la somme des colonnes assure aussi que (1, 1, 1) est vecteur propre pour a + b.

- Si a = b = 0, A = 0.
- Si $a = b \neq 0$, 2a est valeur propre simple et -a est valeur propre double. On a $A + aI_3 = a(1)$ qui est de rang 1, donc la multiplicité de -a est égale à dim E(a, A), soit 2, et, comme c'est aussi le cas pour 2a qui est simple, on en déduit que A est diagonalisable.
 - Si $b = -2a \neq 0$, -a est valeur propre double et 2a est simple.

$$A + 2aI_3 = \begin{pmatrix} a & a & -2a \\ a & a & -2a \\ a & -2a & a \end{pmatrix}$$

est de rang 2, donc A n'est pas diagonalisable, et elle ne l'est pas non plus si $a=-2b\neq 0$.

• Dans les autres cas, A a trois valeurs propres distinctes, donc elle est diagonalisable.

12. ** Soit
$$M = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- a) Montrer que M est diagonalisable.
- b) Trouver $\alpha \in \mathbb{R}$ et $J \in \mathcal{M}_3(\mathbb{R})$ tels que $M = \alpha I_3 + cJ + bJ^2$.
- c) Trouver les éléments propres de M.
- a) M est symétrique réelle donc diagonalisable.

b) Si
$$J = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, alors $J^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ et $\alpha I_3 + cJ + bJ^2 = \begin{pmatrix} \alpha + b & c & b \\ c & \alpha + 2b & c \\ b & c & \alpha + b \end{pmatrix}$

donc $\alpha = a - b$ convient.

- c) Étudions d'abord J. On a $\chi_J = 2X X^3 = X(2 X^2)$ donc J est diagonalisable et ses sous-espaces propres sont des droites.
 - ▷ Dans J, $c_1 c_3 = 0$ donc $E_0(J) = \mathbb{R}(1, 0, -1)$.
 - \triangleright Dans $J \sqrt{2}I_3$, $c_1 + \sqrt{2}c_2 + c_3 = 0$ donc $E_{\sqrt{2}}(J) = \mathbb{R}(1, \sqrt{2}, 1)$
 - \triangleright Dans $J + \sqrt{2}I_3$, $c_1 \sqrt{2}c_2 + c_3 = 0$ donc $E_{-\sqrt{2}}(J) = \mathbb{R}(1, -\sqrt{2}, 1)$.

Si
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \sqrt{2} & -\sqrt{2} \\ -1 & 1 & 1 \end{pmatrix}$$
 et $D = \text{diag}(0, \sqrt{2}, -\sqrt{2}), \ J = PDJ^{-1}$ donc $A = PBP^{-1}$ où

 $B = (a-b)I_3 + bD + cD^2 = \operatorname{diag}(a-b, a+b+c\sqrt{2}, a+b-c\sqrt{2})$. Hormis le cas a=b=c=0, on a les cas suivants.

$$ho c = 0$$
 et $(a,b) \neq (0,0)$. Alors sp $(A) = \{a-b,a+b\}$ et $E_{a-b}(A) = E_0(J)$, $E_{a+b}(J) = E_{\sqrt{2}}(J) \oplus E_{-\sqrt{2}}(J)$ (plan $x = y$).

$$\Rightarrow c = -\sqrt{2}b \neq 0$$
. Alors $\operatorname{sp}(A) = \{a - b, a + b - c\sqrt{2} = a + 3b\}$ et $E_{a-b}(A) = E_0(J) \oplus E_{\sqrt{2}}(J)$, $E_{a+3b}(J) = E_{-\sqrt{2}}(J)$.

$$\Rightarrow c = \sqrt{2}b \neq 0$$
. Alors sp $(A) = \{a - b, a + b + c\sqrt{2} = a + 3b\}$ et $E_{a-b}(A) = E_0(J) \oplus E_{-\sqrt{2}}(J)$, $E_{a+3b}(J) = E_{\sqrt{2}}(J)$.

$$\triangleright c \neq 0 \text{ et } c^2 \neq 2b^2. \text{ Alors sp}(A) = \{a-b, a+b+c\sqrt{2}, a+b-c\sqrt{2}\} \text{ et } E_{a-b}(A) = E_0(J), E_{a+b+c\sqrt{2}} = E_{\sqrt{2}}(J), E_{a+b-c\sqrt{2}b}(J) = E_{-\sqrt{2}}(J).$$

13. * Diagonalisabilité de
$$A = \begin{pmatrix} 0 & -1 & \cdots & -1 \\ 1 & \ddots & & (0) \\ \vdots & (0) & \ddots & \\ 1 & & & 0 \end{pmatrix}$$
.

On a $rg(A) = 2$, et $E_0(A)$:
$$\begin{cases} \sum_{i=0}^{n} x_i = 0 \\ x_0 = 0 \end{cases}$$
.

On a rg(A) = 2, et
$$E_0(A)$$
:
$$\begin{cases} \sum_{i=0}^{n} x_i = 0 \\ x_0 = 0 \end{cases}$$
.

Pour $\lambda \neq 0$, comme A contient beaucoup de 0, on regarde $AX = \lambda X$: $\begin{cases} -\sum_{1} x_{i} = \lambda x_{0} \\ x_{0} = \lambda x_{1} \\ \vdots \\ x_{0} = \lambda x_{n} \end{cases}$

$$x_i = \frac{1}{\lambda} x_0$$
 pour $i \in \{1, \dots, n\}$ et $x_0 \neq 0$ (sinon $X = 0$). D'où $-\sum_{1}^{n} \frac{1}{\lambda} = \lambda$, i.e. $\lambda^2 = -n$.

• Si $K = \mathbb{R}$, on arrête : il n'y a pas de valeur propre supplémentaire et $\mathbb{R}^n \neq E_0(A)$.

• Si
$$K = \mathbb{C}$$
: Soit $\omega = i\sqrt{n}$, $\lambda_1 = -\omega$, $\lambda_2 = \omega$, $(\lambda = \varepsilon\omega)$, et $E_{\varepsilon\omega} = \mathbb{C}\begin{pmatrix} \varepsilon\omega \\ 1 \\ \vdots \\ 1 \end{pmatrix}$: A est

diagonalisable,

$$A = P \begin{pmatrix} -\omega & & & \\ & \omega & & \\ & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} P^{-1}$$

où
$$P = \begin{pmatrix} -\omega & \omega & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & -1 & & (0) \\ \vdots & \vdots & & \ddots & \\ 1 & 1 & (0) & & -1 \end{pmatrix}.$$

rgA = n - 2, donc $0 \in \operatorname{sp}(A)$, et dim $E_0(A) = n - 2$. $E_0(A)$ est l'intersection de 2 hyperplans de $K^n \begin{cases} x_n = 0 \\ x_1 + \dots + x_n = 0 \end{cases}$, avec rg $\begin{pmatrix} 0 & \dots & 0 & 1 \\ 1 & \dots & 1 & 1 \end{pmatrix} = 2 \begin{pmatrix} \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \neq 0 \end{pmatrix}$, donc c'est un sous-espace de dimension n - 2, de base $(e_1 - e_2, \dots, e_1 - e_{n-1})$ ($\mathcal{C} = (e_1, \dots, e_n)$ canonique). Comme il y a beaucoup de "0" dans A, on peut regarder $AX = \lambda X$, $\begin{cases} x_n = \lambda x_1 \\ \vdots \\ x_n = \lambda x_{n-1} \\ x_1 + \dots + x_n = \lambda x_n \end{cases}$

pour $\lambda \neq 0$. D'où $x_1 = \cdots = x_{n-1} = \frac{x_n}{\lambda}$, puis $\frac{n-1}{\lambda}x_n + x_n = \lambda x_n$. $x_n = 0$ implique X = 0, donc

$$x_n \neq 0$$
 et $\lambda^2 - \lambda - (n-1) = 0$. $\Delta = 4n - 3 > 0$, d'où $\lambda_1 = \frac{1 + \sqrt{4n - 3}}{2}$ et $\lambda_2 = \frac{1 - \sqrt{4n - 3}}{2}$, et aussi $X_k = x_1(1, \dots, 1, \lambda_k)$, donc $E_{\lambda_k} = K(1, \dots, 1, \lambda_k)$. $n = (n-2) + 1 + 1$, donc A est

diagonalisable, avec
$$A = P \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} P^{-1}$$
, où $P = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & -1 & & (0) \\ \vdots & \vdots & & \ddots & \\ 1 & 1 & (0) & & -1 \\ \lambda_1 & \lambda_2 & 0 & \cdots & 0 \end{pmatrix}$.

15. *
$$A = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (0) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$
: valeurs propres et dimension des sous espaces propres de A .

 $\rightarrow A$ est symétrique réelle donc diagonalisable.

l'intersection de 2 hyperplans
$$\begin{cases} x_1 + x_2 + \dots + x_n = 0 \\ x_1 + x_n = 0 \end{cases}$$
, soit
$$\begin{cases} x_2 + \dots + x_{n-1} = 0 \\ x_1 + x_n = 0 \end{cases}$$
.

$$\rightarrow AX = \lambda X \text{ équivaut à} \begin{cases} x_1 + x_2 + \dots + x_n = \lambda x_1 \\ x_1 + x_n = \lambda x_2 \\ \vdots \\ x_1 + x_n = \lambda x_{n-1} \\ x_1 + x_2 + \dots + x_n = \lambda x_n \end{cases}$$
. Pour $\lambda \neq 0$, cela donne $x_2 = \dots = 0$

 $(x_1 + x_2 + \dots + x_n = \lambda x_n)$ $x_{n-1} \text{ et } x_1 = x_n, \text{ donc } 2x_1 + (n-2)x_2 = \lambda x_1 \text{ et } 2x_1 = \lambda x_2 \text{ donc } 2x_1 + (n-2)\frac{2}{\lambda}x_1 = \lambda x_1. \text{ Si}$ $x_1 = 0, \text{ alors } X = 0, \text{ donc } x_1 \neq 0 \text{ et } \lambda^2 - 2\lambda - 2(n-2) = 0. \quad \Delta = 4 + 8(n-2) = 8n - 12 > 0$ d'où $\lambda_1 = \frac{2 + \sqrt{8n - 12}}{2} = 1 + \sqrt{2n - 3}$ et $\lambda_2 = 1 - \sqrt{2n - 3}$. L'espace propre associé à λ_i est $\mathbb{R}\left(1, \frac{2}{\lambda_i}, \cdots, \frac{2}{\lambda_i}, 1\right) = \mathbb{R}(\lambda_i, 2, \cdots, 2, \lambda_i)$.

16. * Diagonalisabilité de
$$A = \begin{pmatrix} 1 & -a_1 & \cdots & -a_n \\ a_1 & \ddots & & (0) \\ \vdots & (0) & \ddots & \\ a_n & & 1 \end{pmatrix}$$
.

$$B = A - I = \begin{pmatrix} 0 & -a_1 & \cdots & -a_n \\ a_1 & \ddots & & (0) \\ \vdots & (0) & \ddots & \\ a_n & & 0 \end{pmatrix} : \operatorname{rg}(B) = 2 \text{ car il existe } i_0 \text{ tel que } a_{i_0} \neq 0, \text{ d'où}$$
$$0 \in \operatorname{sp}(B), \text{ et } E_0(B) : \begin{cases} \sum_{i=0}^{n} a_i x_i = 0 \\ x_0 = 0 \end{cases}.$$

$$\text{Pour } \lambda \neq 0, \, BX = \lambda X \text{ \'equivaut \`a} \left\{ \begin{array}{l} -\sum_{1}^{n} a_{i}x_{i} = \lambda x_{0} \\ a_{1}x_{0} = \lambda x_{1} \\ \vdots \\ a_{n}x_{0} = \lambda x_{n} \end{array} \right., \, x_{i} = \frac{a_{i}}{\lambda}x_{0} \text{ pour } i \in \{1, \cdots, n\} \text{ et } \\ \vdots \\ a_{n}x_{0} = \lambda x_{n} \\ x_{0} \neq 0 \text{ (sinon } X = 0). \text{ D'où } -\sum_{1}^{n} \frac{a_{i}^{2}}{\lambda} = \lambda, \, i.e. \, \lambda^{2} = -\sum_{1}^{n} a_{i}^{2}.$$

• Si $K = \mathbb{R}$, on arrête, (B est antisymétrique...)

•
$$\underline{\text{Si } K = \mathbb{C}}$$
: Soit ω une racine de $-\sum_{1}^{n} a_{i}^{2}$, $\lambda_{1} = -\omega$, $\lambda_{2} = \omega$, $(\lambda = \varepsilon \omega)$, et $E_{\varepsilon \omega} = \mathbb{C} \begin{pmatrix} \varepsilon \omega \\ a_{1} \\ \vdots \\ a_{n} \end{pmatrix}$

:
$$B$$
 est diagonalisable, $B=P\begin{pmatrix} -\omega & & & & \\ & \omega & & & \\ & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}P^{-1},$

$$d'où A = P \begin{pmatrix} -\omega + 1 & & & & \\ & \omega + 1 & & & \\ & & & 1 & & \\ & & & & \ddots & \\ & & & & 1 \end{pmatrix} P^{-1}, où P = \begin{pmatrix} -\omega & \omega & 0 & \cdots & 0 \\ a_1 & a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & -a_1 & & (0) \\ \vdots & \vdots & & \ddots & \\ a_n & a_n & (0) & & -a_1 \end{pmatrix}, \text{ par }$$

exemple, si $a_1 \neq 0$.

17. *** Soit A une matrice carrée.

- a) Montrer que $\operatorname{Sp}(A) \subset \bigcup_i \overline{D}(a_{ii}, \rho_i)$ avec $\rho_i = \sum_{j \neq i} |a_{ij}|$.
- b) Montrer que $A=\left(\begin{array}{cccc} 3 & 2 & & (0)\\ 1 & \ddots & \ddots\\ & \ddots & \ddots & 2\\ (0) & & 1 & 3 \end{array}\right)$ est inversible.
- c) Trouver D diagonale telle que DAD^{-1} soit symétrique. Retrouver l'inversibilité de A.

a) Soit
$$AX = X$$
 avec $X \neq 0$. On a donc $\sum_{j} a_{ij}x_{j} = \lambda x_{i}$, soit $\sum_{j\neq i} a_{ij}x_{j} = (\lambda - a_{ii})x_{i}$.
Si $|x_{i_{0}}| = \max\{|x_{i}|, 1 \leq i \leq n\}$, alors $|x_{i_{0}}| > 0$ car $X \neq 0$, et $|\lambda - a_{i_{0}i_{0}}| = \sum_{j\neq i_{0}} |a_{i_{0}j}| \frac{|x_{j}|}{|x_{i_{0}}|} \leq \sum_{j\neq i_{0}} |a_{i_{0}j}| = \rho_{i_{0}}$. Donc $\lambda \in D'(a_{i_{0}i_{0}}, \rho_{i_{0}})$, soit $\lambda \in \bigcup_{i=1}^{n} D'(a_{ii}, \rho_{i})$.

b) On a $\rho_1 = 2$, $\rho_n = 1$ et $\rho_i = 3$ si $i \in \{2, \dots, n-1\}$, ainsi que $a_{ii} = 3$ donc $\bigcup_{i=1}^n D'(a_{ii}, \rho_i) = D'(3,3)$, soit $\operatorname{Sp}(A) \subset D'(3,3)$.

Malheureusement, $O \in D'(3,3)$ donc cela ne dit pas si A est inversible.

$$AX=0$$
équivaut à
$$\left\{\begin{array}{l} 3x_1+2x_2=0\\ x_{j-1}+3x_j+2x_{j+1}=0\text{ pour }2\leq j\leq n-1\end{array}\right.$$
 Complètons par $x_0=0$ $x_{n-1}+3x_n=0$

et $x_{n+1}=0$. Alors $x_{j-1}+3x_j+x_{j+1}=0$ pour tout $j\in\{1,\cdots,n\}$. Or, puisque $r^3+3r+2=(r+1)(r+2)$, les suites (y_j) telles que $y_{j-1}+3y_j+2y_{j+1}=0$ pour tout $f\in\mathbb{N}^*$ sont celles de $\mathrm{Vect}((-1)^j,(-2)^j)$. On utilise alors celle qui est telle que $y_j=x_j$ si $j\in\{0,\cdots,n+1\}$, puis $y_{j+1}=-\frac{1}{2}[y_{j-1}+3y_j]$ si $j\geq n+1$ et elle fournit $x_j=\alpha(-1)^j+\beta(-2)^j$ si $j\in\{0,\cdots,n+1\}$. $x_0=0$ donne $\alpha+\beta=0$ soit $\alpha=-\beta$ puis $x_{n+1}=0$ donne $\alpha+\beta 2^{n+1}=0$ donc $\alpha=\beta=0$ et X=0, ainsi $0\notin\mathrm{Sp}(A)$.

c) Cherchons
$$D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 avec $\lambda_i \neq 0$: ainsi $D^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & & \\ & \ddots & \\ & & \frac{1}{\lambda_n} \end{pmatrix}$ et

$$DA = \begin{pmatrix} 3\lambda_1 & 2\lambda_1 & (0) \\ \lambda_2 & 3\lambda_2 & 2\lambda_2 & \\ & \ddots & \ddots & \ddots \\ (0) & & \lambda_n & 3\lambda_n \end{pmatrix} \text{ puis } DAD^{-1} = \begin{pmatrix} 3 & 2\frac{\lambda_1}{\lambda_2} & (0) \\ \frac{\lambda_2}{\lambda_1} & \ddots & \ddots & \\ & \ddots & \ddots & 2 \\ (0) & & \frac{\lambda_n}{\lambda_{n-1}} & 3 \end{pmatrix}. DAD^{-1} \text{ est}$$

symétrique si et seulement si $\frac{2\lambda_{i-1}}{\lambda_i} = \frac{\lambda_i}{\lambda_{i-1}}$ pour tout $i \in \{2, \dots, n\}$, soit $\lambda_i^2 = 2\lambda_{i-1}^2$. Donc, si on

prend
$$\lambda_i = 2^{\frac{i-1}{2}}$$
 pour $1 \le i \le n$, on a bien cette relation, et $DAD^{-1} = \begin{pmatrix} 3 & \sqrt{2} & (0) \\ \sqrt{2} & \ddots & \ddots \\ & \ddots & \ddots & \sqrt{2} \\ (0) & \sqrt{2} & 3 \end{pmatrix}$

est symétrique. Cette fois, $\rho_i \in \{\sqrt{2}, 2\sqrt{2}\}$, donc Sp $A \subset D'(3, 2\sqrt{2})$ et $0 \notin D'(3, 2\sqrt{2})$ car $2\sqrt{2} < 3$.

Bonus. On peut calculer $\operatorname{Sp}(A)$. Soit $P_n(\lambda)=\chi_A(\lambda)$ (A dépend de n). Suivant la première colonne, il vient $P_n(\lambda)=(3-\lambda)P_{n-1}(\lambda)-2P_{n-2}(\lambda)$. Donc, on retrouve une récurrence linéaire. Si $f(r)=r^2-(3-\lambda)r+2$, $\Delta=(3-\lambda)^2$. Dans l'immédiat, on ne regarde que $\lambda\in]3-2\lambda, 3+2\lambda[$ et on pose $\lambda-3=-2\sqrt{2}\cos\theta,\,\theta\in]0,\pi[$, donc

$$f(r) = r^2 - 2r\sqrt{2}\cos\theta + 2 = (r - \sqrt{2}e^{i\theta})(r - \sqrt{2}e^{-i\theta})$$

Ainsi, $P_n(\lambda) = (\sqrt{2})^n [\alpha e^{in\theta} + \beta e^{-in\theta}] = (\sqrt{2})^n [\gamma \cos(n\theta) + \delta \sin(n\theta)].$ Or $P_1(\lambda) = 3 - \lambda = 2\sqrt{2}\cos\theta = \sqrt{2}[\gamma\cos\theta + \delta\sin\theta]$ et

$$P_2(\lambda) = (3 - \lambda)^2 - 2 = 8\cos^2 - 2 = 4(\cos 2\theta + 1) - 2$$

= $4\cos 2\theta + 2 = 2(\gamma\cos 2\theta + \delta\sin 2\theta)$

$$\begin{cases} \gamma \cos \theta + \delta \sin \theta = 2 \cos \theta \\ \gamma \cos 2\theta + \delta \sin 2\theta = 2 \cos 2\theta + 1 = 4 \cos^2 \theta - 1 \end{cases}$$

donc $\gamma[2\cos^2\theta - \cos 2\theta] = 4\cos^2\theta - 2\cos 2\theta - 1$, soit $\gamma = 1$, puis $\delta = \frac{\cos\theta}{\sin\theta}$ donc

$$P_n(\lambda) = (\sqrt{2})^n \left[\cos(n\theta) + \frac{\cos \theta}{\sin \theta} \sin(n\theta) \right] = (\sqrt{2})^n \frac{\sin(n+1)\theta}{\sin \theta}$$

Pour $\theta \in]0, \pi[$, on a donc $P_n\left(3-2\sqrt{2}\cos\left(\frac{k\pi}{n+1}\right)\right)=0$ si $1 \leq k \leq n$, d'où les n valeurs propres distinctes. $\lambda_k = 3 - 2\sqrt{2}\cos\left(\frac{k\pi}{n+1}\right)$. Il n'y en a donc pas d'autres.

** Soit
$$x \in \mathbb{R}$$
. À quelle condition sur x la matrice $A = \begin{pmatrix} 1 & 0 & x \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ est-elle diagonalisable?

$$A(0)=\left(\begin{array}{ccc}1&0&0\\1&1&0\\1&1&1\end{array}\right) \text{ n'est pas diagonalisable car sp}(A(0))=\{1\} \text{ et } A(0)\neq I_3.$$

On suppose
$$x \neq 0$$
. $\chi_{A(x)}(\lambda) = \begin{vmatrix} 1 - \lambda & 0 & x \\ 1 & 1 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 + x - x(1 - \lambda).$

Soit
$$P(t) = t^3 - tx + x$$
. $P'(t) = 3t^2 - x$. Si $x < 0$, $P' > 0$ d'où

$$\begin{array}{|c|c|c|} \hline t & -\infty & +\infty \\ \hline P(t) & -\infty & \nearrow & +\infty \\ \hline \end{array}$$

P s'annule une fois et une seule , en λ_0 de multiplicité 1, donc A(x) n'est pas diagonalisable. Si $x>0,\ P(t)=0$ en $t^2=\frac{x}{3}$.

$$\begin{array}{|c|c|c|c|c|c|} \hline t & -\infty & -\sqrt{\frac{x}{3}} & 0 & \sqrt{\frac{x}{3}} & +\infty \\ \hline P(t) & -\infty & \nearrow & \searrow & x > 0 & \searrow & \nearrow & +\infty \\ \hline \end{array}$$

$$P\left(\sqrt{\frac{x}{3}}\right) = \sqrt{\frac{x}{3}} \left(\frac{x}{3} - x\right) + x = -\frac{2x}{3} \sqrt{\frac{x}{3}} + x = x \left(1 - \frac{2}{3} \sqrt{\frac{x}{3}}\right) \text{ est du signe de } 1 - \frac{2}{3} \sqrt{\frac{x}{3}} \text{ ou encore de } 1 - \frac{4x}{93} = 1 - \frac{4x}{27}.$$

 \rightarrow Si $x > \frac{27}{4}$, $P\left(\sqrt{\frac{x}{3}}\right) < 0$ donc P s'annule en trois valeurs distinctes et A(x) est diagonalisable

$$A\left(\frac{27}{4}\right) = \begin{pmatrix} 1 & 0 & \frac{27}{4} \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad B = A\left(\frac{27}{4}\right) + \frac{1}{2}I_3 = \begin{pmatrix} \frac{3}{2} & 0 & \frac{27}{4} \\ 1 & \frac{3}{2} & 0 \\ 1 & 1 & \frac{3}{2} \end{pmatrix}.$$

Vu ses 2 dernières colonnes, rg(B) = 2 donc $\dim E_{-1/2}\left(A\left(\frac{27}{4}\right)\right) = 1$ et $A\left(\frac{27}{4}\right)$ n'est pas diagonalisable.

Ainsi, A(x) est diagonalisable (sur \mathbb{R}) si et seulement si $x > \frac{27}{4}$

19. ** Soit

$$A = \begin{pmatrix} 1 & \cdots & 1 & a \\ \vdots & & \ddots & 1 \\ \vdots & & & \vdots \\ 1 & \cdots & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}),$$

avec $a \in \mathbb{C} \setminus \{1\}$.

- a) Montrer que A est diagonalisable si et seulement si $a \neq 1 n^2/4$.
- b) On se place dans le cas où $a=1-n^2/4$. Soit u l'endomorphisme de \mathbb{C}^n canoniquement associé à A, et $\mathcal{C}=(e_1,\ldots,e_n)$ la base canonique de \mathbb{C}^n . Calculer $(u-n/2Id_{\mathbb{C}^n})^2(e_1)$, et en déduire que A est

semblable à
$$\begin{pmatrix} 0 & 0 & & & & \\ & \ddots & \ddots & (0) & & \\ & 0 & 0 & & \\ & (0) & & \frac{n}{2} & 1 \\ & & & & \frac{n}{2} \end{pmatrix} .$$

a) Si x est vecteur propre associé à la valeur propre λ , on a

$$\begin{cases} x_1 + \dots + x_{n-1} + ax_n = \lambda x_1 \\ x_1 + \dots + x_{n-1} + x_n = \lambda x_2 = \dots = \lambda x_n \end{cases}$$

- On pose $s = x_1 + \dots + x_n$. On a alors $s = \lambda x_2 = \dots = \lambda x_n = \lambda x_1 + (1 a)x_n$. $\lambda = 0$ donne s = 0 et $x_n = 0$ puisque $a \neq 1$ (dim $E_0 = n 2$ car rgA = 2). Si $\lambda \neq 0$, $x_2 = \dots = x_n = \frac{s}{\lambda}$ et $s = x_1 + (n-1)x_n = \lambda x_1 + (1-a)x_n = x_1 + (n-1)\frac{s}{\lambda} = \lambda x_1 + (n-1)\frac{s}{\lambda}$ $(1-a)\frac{s}{\lambda}$ d'où $x_1 = \frac{s}{\lambda}\left[1 + \frac{a-1}{\lambda}\right]$. Si s = 0, alors $x_2 = \cdots = x_n$, puis $x_1 = 0$: impossible. D'où $s \neq 0$ et $\frac{1}{\lambda} \left[1 + \frac{a-1}{\lambda} \right] + (n-1)\frac{1}{\lambda} = 1$, soit $\lambda^2 - n\lambda - (a-1) = 0$. $\Delta = n^2 + 4(a-1) = n^2 + 4a - 4$.
- i) $a \neq 1 \frac{n^2}{4}$: il y a 2 valeurs propres distinctes et non nulles (le produit vaut 1-a): A_n est alors diagonalisable.

Espace propre associé : $x_2 = \cdots = x_n, x_n = 1$ donne alors $s = \lambda$ et $x_1 = \lambda - (n-1)$. D'où

$$E_{\lambda}(A) = \mathbb{C} \left(\begin{array}{c} \lambda - (n-1) \\ 1 \\ \vdots \\ 1 \end{array} \right).$$

ii) $\underline{a=1-\frac{n^2}{4}}$: il y a une seule valeur propre non nulle $\lambda=\frac{n}{2}$.

On a alors
$$X = \frac{s}{\lambda} \begin{pmatrix} \lambda - (n-1) \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{n}{2} + 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
, d'où une droite propre et A n'est pas

diagonalisable

b)
$$(u - \frac{n}{2}\mathrm{Id})^2(e_1) = (u - \frac{n}{2}\mathrm{Id})(\sum e_i - \frac{n}{2}e_1) = 0$$
 car $\sum e_i - \frac{n}{2}e_1$ dirige $E_{\lambda}(A)$. Soit $(\varepsilon_1, \dots, \varepsilon_{n-2}, (u - \frac{n}{2}\mathrm{Id})(e_1), e_1)$, famille de n vecteurs. Est-elle libre?

Supposons $\sum_{i} \alpha_{i} \varepsilon_{i} + \alpha_{n-1} (u - \frac{n}{2} \operatorname{Id})(e_{1}) + \alpha_{n} e_{1} = 0$. On applique $(u - \frac{n}{2} \operatorname{Id})$, d'où $-\sum_{i} \alpha_{i} \frac{n}{2} \varepsilon_{i} + \alpha_{n} e_{1} = 0$. $\alpha_n(u - \frac{n}{2}\mathrm{Id})(e_1) = 0$, car $u(\varepsilon_i) = 0$. Mais $\varepsilon_i \in E_0(A)$ et $(u - \frac{n}{2}\mathrm{Id})(e_1) \in E_\lambda(A)$. Donc $\alpha_n(u-\frac{\bar{n}}{2}\mathrm{Id})(e_1)\in E_0(A)\cap E_\lambda(A)=\{0\},\ \mathrm{d'où}\ \alpha_n=\alpha_1=\cdots=\alpha_{n-2},\ \mathrm{puis}\ \alpha_{n-1}=0.$ La

$$\textbf{20.} ** Soit $A = \begin{pmatrix} a & b & a & b & \dots & b \\ b & a & b & a & \dots & a \\ a & & \ddots & & & \\ \vdots & & & \ddots & & \\ \vdots & & & & \ddots & b \\ b & a & \dots & \dots & b & a \end{pmatrix} \in M_{2n}(K) \text{ (où } a \neq b). \text{ Eléments propres et diagolisabilité de A.}$$

nalisabilité de A.

On pose
$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 et $u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$. Alors $C_{2k+1} = au_1 + bu_2$, $C_{2k} = bu_1 + au_2$. (u_1, u_2) is libre, et
$$\begin{cases} aC_1 - bC_2 = (a^2 - b^2)u_1 \\ aC_2 - bC_1 = (a^2 - b^2)u_2 \end{cases}$$

est libre, et $\begin{cases} aC_1 - bC_2 = (a^2 - b^2)u_1 \\ aC_2 - bC_1 = (a^2 - b^2)u_2 \end{cases}$ • $a^2 = b^2$ soit a = -b; (C_1, C_2) est liée $(C_2 = -C_1)$ et $\operatorname{rg} A = 1$. On a en réalité $\operatorname{im} u_A = K(u_1 - u_2)$ et $\begin{cases} u_A(u_1) = u_A(e_1 + e_3 + \dots + e_{2n-1}) = C_1 + C_3 + \dots + C_{2n-1} \\ u_A(u_2) = u_A(e_2 + e_4 + \dots + e_{2n}) = C_2 + C_4 + \dots + C_{2n} \end{cases}$ D'où alors $u_A(u_1 - u_2) = C_1 - C_2 + \dots + C_{2n-1} - C_{2n} = 2nC_1 = 2na(u_1 - u_2)$. Finalement $\operatorname{sp}(A) = \{0, 2na\}$ avec $\begin{cases} E_0(u_A) = \ker u_A \text{ de dimension } 2n - 1 \\ E_{2na}(u_A) = \operatorname{IR}(u_1 - u_2) \end{cases}$ (A est diagonalisable). • $a^2 \neq b^2$; $\operatorname{im} u_A = \operatorname{Vect}(u_1, u_2)$ avec :

$$\begin{cases} u_A(u_1) = u_A(e_1 + e_3 + \dots + e_{2n-1}) = C_1 + C_3 + \dots + C_{2n-1} = n(au_1 + bu_2) \\ u_A(u_2) = u_A(e_2 + e_4 + \dots + e_{2n}) = C_2 + C_4 + \dots + C_{2n} = n(bu_1 + au_2) \end{cases}$$

De plus, keru est de dimension 2n-2, et engendré par $u_3=e_1-e_3$, $u_4=e_2-e_4$, $u_{2n-1}=e_1-e_3$

$$M_{\mathcal{B}}(u_1, u_2, e_3, \cdots, e_{2n}) = \begin{pmatrix} 1 & 0 & & & (0) \\ 0 & 1 & & & \\ 1 & 0 & 1 & & \\ \vdots & \vdots & & \ddots & \\ 0 & 1 & & & 1 \end{pmatrix} \in GL_{2n}(K), \text{ donc on a une base de } K^{2n}$$

Par blocs, $\chi_A(\lambda) = \lambda^{2n-2}(\lambda^2 - 2na\lambda + n^2(a^2 - b^2)) = \lambda^{2n-2}(\lambda - n(a+b))(\lambda - n(a-b))$. Donc $\mathrm{sp}(A) = \{0, n(a+b), n(a-b)\}$, avec dim $\mathrm{ker}u_A = 2n-2$ et: $\left\{ \begin{array}{l} u_A(u_1 + u_2) = n(a+b)(u_1 + u_2) \\ u_A(u_1 - u_2) = n(a-b)(u_1 - u_2) \end{array} \right.$ Donc A est diagonalisable.

21. *** Déterminer les sous-espaces de
$$\mathbb{R}^3$$
 stables par u_A où $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$

$$\chi_A(\lambda) = (1 - \lambda)(\lambda^2 - 1) = -(\lambda + 1)(\lambda - 1)^2.$$

$$A - I_3 = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \text{ de rang 2, avec } c_1 + c_2 = 0 : E_1(u_A) = \mathbb{R}(1, 1, 0).$$

$$A + I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \text{ de rang 2, avec } c_1 - c_2 = 0 : E_{-1}(u_A) = \mathbb{R}(1, -1, 0).$$

Les droites stables sont les droites propres.

Les plans stables : on a déjà $F = E_1(u_A) \oplus E_{-1}(u_A)$ (= im $(u_A - id)$). Si F est stable et si $F \neq E_1(u_A) \oplus E_{-1}(u_A)$, alors F ne contient pas e_1 ou bien e_{-1} et dans C adaptée à $\mathbb{R}^3 = F \oplus \mathbb{R}e_{\epsilon}$,

on a
$$M_{\mathcal{C}}(u_A) = \begin{pmatrix} A' & 0 \\ 0 & 0 \\ 0 & 0 & \epsilon \end{pmatrix}$$
.

• Si $\epsilon = 1$, $\chi_{A'}(\lambda) = (\lambda^2 - 1)$ et A' est diagonalisable donc A aussi!

• Si
$$\epsilon = -1$$
, $M_{\mathcal{C}}(u_A + I_3) = \begin{pmatrix} A' + I_2 & 0 \\ 0 & 0 \end{pmatrix}$.

Donc $\operatorname{im}(u_A + \operatorname{id}) \subset F$ et $\operatorname{im}(u_A + \operatorname{id}) = F$, par les dimensions $(= E_1(u_A) + \mathbb{R}(1, 1, 2))$.

22. *** Soit
$$S_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$
 et $A_n = I_n + 2S_n + \dots + nS_n^{n-1}$.

- a) Montrer que $n(n+1)/2 \in \operatorname{Sp}(A_n)$
- b) Montrer que toute autre valeur propre de A_n a une partie réelle égale à -n/2.
- c) Montrer que $Tr(A_n^2)$ est un polynôme de degré 4 en n.

a) On a facilement
$$A_n = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ n & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 3 \\ \vdots & \vdots & & \ddots & 2 \\ 2 & 3 & \dots & \dots & 1 \end{pmatrix}$$
. Si $e = (1, \dots, 1)$, la somme des vecteurs

colonnes de A_n vaut $\left[\sum_{k=1}^n k\right]e = \frac{n(n+1)}{2}e$, donc n(n+1)/2 est valeur propre de A_n et un vecteur propre est e.

b) On a $S_n^n = I_n$, donc S_n est diagonalisable, et ses valeurs propres figurent parmi les racines n-ièmes de l'unité. Si $S_n = P_n D_n P_n^{-1}$ avec D_n diagonale, alors $S_n^k = P_n D_n^k P_n^{-1}$, donc $A_n = P_n \sum_{k=0}^{n-1} (k+1) D_n^k P_n^{-1}$ est diagonalisable, et ses valeurs propres figurent parmi les $\sum_{k=0}^{n-1} (k+1) \omega^k$

avec $\omega^n = 1$. Or $\sum_{k=0}^{n-1} kX^k = X[\sum_{k=0}^n X^k]'$, et, dans le corps des fractions $\mathbb{C}(X)$,

$$X\left[\sum_{k=0}^{n} X^{k}\right]' = X\left[\frac{X^{n} - 1}{X - 1}\right]' = X\frac{(n-1)X^{n} - nX^{n-1} + 1}{(x-1)^{2}}.$$

Si $\omega \neq 1$, la valeur de cette expression en ω est $\lambda = -n\omega \frac{\omega^{n-1} - 1}{(\omega - 1)^2} = -\frac{n}{1 - \omega}$. Si $\omega = e^{i\theta}$, $|1 - \omega|^2 = 2(1 - \cos\theta) = 4\cos^2\frac{\theta}{2}$, et $\Re(1 - \overline{\omega}) = 2\cos^2\frac{\theta}{2}$, donc $\Re(\lambda) = -n/2$.

On peut même préciser : $S_n - \omega I_n$ est de rang supérieur à n-1 car en supprimant la première colonne et la dernière ligne, on a une matrice triangulaire supérieure inversible, donc les espaces propres sont des droites, et, comme leur somme directe est \mathbb{C}^n , il y en a n, et chaque valeur propre est simple, donc ce sont exactement les racines n-ièmes de l'unité.

c) Par commutation des puissances de J_n , il vient

$$A_n^2 = \sum_{k=0}^{2n-2} \sum_{p=0}^k (p+1)(k-p+1)J_n^k = \sum_{k=0}^{2n-2} \sum_{p=0}^k (p+1)(k-p+1)J_n^k.$$

Par ailleurs, $\text{Tr}(J_n^k) = 0$ si k n'est pas un multiple de n, et n s'il en est un. Donc, seuls k = 0 et k = n comptent dans les sommes ci-dessus et

$$\operatorname{Tr}(A_n^2) = n[1 + \sum_{p=0}^n (p+1)(n-p+1)]$$

$$= n + \frac{n^2(n+1)(n+2)}{2} - \frac{n^2(n+1)(2n+1)}{6} + n(n+1)$$

$$= \frac{n(n+4)(n^2+2n+3)}{6},$$

et on a le résultat.

23. ** Soit
$$A \in \mathcal{M}_n(\mathbb{C})$$
 et $B = \begin{pmatrix} 0 & I_n \\ 2A & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

- a) Montrer que $-2 \notin \operatorname{sp}(B)$.
- b) Montrer que $\lambda \in \operatorname{sp}(B)$ si et seulement si $\frac{\lambda^2}{\lambda+2} \in \operatorname{sp}(A)$.
- c) Donner une condition nécessaire et suffisante pour que B soit diagonalisable.

a) Soit
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
, avec $X_k \in \mathcal{M}_{n,1}(\mathbb{C})$. $BX = \begin{pmatrix} X_2 \\ 2AX_1 + AX_2 \end{pmatrix}$ donc $BX = \lambda X$ équivaut à $\begin{cases} X_2 = \lambda X_1 \\ 2AX_1 + AX_2 = \lambda X_2 \end{cases}$, soit à $\begin{cases} X_2 = \lambda X_1 \\ (2+\lambda)AX_1 = \lambda^2 X_1 \end{cases}$. Si $\lambda = -2$, $0 = \lambda^2 X_1$ donne $X_1 = 0$, puis $X_2 = 0$, donc $-2 \notin \operatorname{sp}(B)$.

b) • Si $\lambda \in \operatorname{sp} B$, $\lambda \neq -2$ et il existe $X \neq 0$ avec $BX = \lambda X$. Alors $AX_1 = \frac{\lambda^2}{2+\lambda} X_1$ (et $X_2 = \lambda X_1$) : $X_1 \neq 0$, sinon X = 0, soit $\frac{\lambda^2}{\lambda + 2} \in \operatorname{sp}(A)$.

• soit $\lambda \in \mathbb{C} \setminus \{-2\}$ tel que $\frac{\lambda^2}{\lambda + 2} \in \operatorname{sp}(A)$. Il existe X_1 tel que $AX_1 = \frac{\lambda^2}{2 + \lambda} X_1$ et alors $B\begin{pmatrix} X_1 \\ \lambda X_1 \end{pmatrix} = \lambda \begin{pmatrix} X_1 \\ \lambda X_1 \end{pmatrix} \operatorname{donc} X = \begin{pmatrix} X_1 \\ \lambda X_1 \end{pmatrix} \neq 0$ est bien vecteur propre de B pour $\lambda : \lambda \in \operatorname{sp}(B)$.

c) Par les calculs précédents, l'application $X_1 \mapsto \begin{pmatrix} X_1 \\ \lambda X_1 \end{pmatrix}$ est un isomorphisme de $E\left(\frac{\lambda^2}{\lambda+2},A\right)$ sur $E(\lambda,B)$, donc dim $E(\lambda,B) = \dim E\left(\frac{\lambda^2}{\lambda+2},A\right)$.

Par ailleurs, regardons $\frac{\lambda^2}{\lambda+2} = \mu$, soit $\lambda^2 - \mu\lambda - 2\mu = 0$.

 $\Delta = \mu(\mu + 8)$ donc :

• si $\mu \notin \{-8,0\}$, il y a 2 valeurs (complexes) de λ , soit $\lambda_1(\mu)$ et $\lambda_2(\mu)$, avec $\frac{\lambda_k^2(\mu)}{\lambda_k(\mu)+2} = \mu$. On a alors, si $\mu \in \operatorname{sp}(A)$, $\lambda_k(\mu) \in \operatorname{sp}(B)$ et $2 \dim E(\mu, A) = \dim E(\lambda_1(\mu), B) + \dim E(\lambda_2(\mu), B)$. Si $-8, 0 \notin \operatorname{sp}(A)$, $2 \sum_{\mu \in \operatorname{sp}(A)} \dim E(\mu, A) = \sum_{\lambda \in \operatorname{sp}(B)} \dim E(\lambda, B)$ et cette somme vaut 2n si et seule-

ment si $\sum_{\mu \in \operatorname{sp}(A)} \dim E(\mu, A) = n$ donc B est diagonalisable si et seulement si A l'est.

• En fait, $2\sum_{\mu\in\operatorname{sp}(A)\backslash\{-8,0\}}\dim E(\mu,A)+\dim E(-8,A)+\dim E(0,A)=\sum_{\lambda\in\operatorname{sp}(B)\backslash\{-4,0\}}\dim E(\lambda,B)+\dim E(-4,B)+\dim E(0,B),$ donc, si $0\in\operatorname{sp}(A)$ (resp. $-8\in\operatorname{sp}(A)$), donc $0\in\operatorname{sp}(B)$, (resp. $-4\in\operatorname{sp}(B)$), on ne peut avoir $\sum_{\lambda\in\operatorname{sp}(B)}\dim E(\lambda,B)=2n$ car alors $\sum_{\mu\in\operatorname{sp}(A)\backslash\{-8,0\}}\dim E(\mu,A)+\frac{1}{2}\dim E(-8,A)+\frac{1}{2}\dim E(0,A)=n\geq\sum_{\mu\in\operatorname{sp}(A)}\dim E(\mu,A)$ donc $\dim E(-8,A)+\dim E(0,A)\leq 0$ et les 2 dimensions sont nulles. Donc B est diagonalisable si et seulement si A l'est et $-8\notin\operatorname{sp}(A)$

et les 2 dimensions sont nulles. Donc B est diagonalisable si et seulement si A l'est, et $-8 \notin \operatorname{sp}(A)$ et $0 \notin \operatorname{sp}(A)$.

$$\boxed{\textbf{24.}} ** \text{Soit } A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

- a) Montrer que A n'est pas diagonalisable. Trigonaliser A.
- b) Trouver les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.
- a) On a

$$\chi_A(\lambda) = \begin{vmatrix}
-\lambda & 0 & 1 \\
2 & 1 - \lambda & 0 \\
0 & 0 & 1 - \lambda
\end{vmatrix} = -\lambda(1 - \lambda)^2,$$

et $\operatorname{rg}(A) = 2$, avec $c_1 - 2c_2 = 0$, donc $\operatorname{ker}(A) = \mathbb{R}(1, -2, 0) = \mathbb{R}e_1$. On a aussi $A - I_3 = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, de rang 2 avec $c_2 = 0$, donc $E(A, 1) = \mathbb{R}(0, 1, 0) = \mathbb{R}e_2$. La somme des dimensions vaut 2, donc A n'est pas diagonalisable.

Cependant, on peut compléter (e_1, e_2) par e_3 en une base : si P est la matrice de passage, on aura forcément $P^{-1}AP = T = \begin{pmatrix} 0 & 0 & a \\ O & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$, le troisième venant de l'invariance de la trace ou de χ_A par similitude. Prenons $e_3 = (0,0,1)$ par exemple. Alors, (e_1, e_2, e_3) est libre car $\det(P) = \det\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \neq 0$, et $Ae_3 = (1,0,1) = e_1 + 2e_2 + e_3$, soit $T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

b) Si $M^2 = A$, alors $M^3 = AM = MA$, donc les sous-espaces propres de A sont stables par M. Or, ce sont $\mathbb{R}e_1$ et $\mathbb{R}e_2$, donc, si $i = 1, 2, Me_i \in \mathbb{R}e_i$, et e_i est un vecteur propre pour M aussi, soit PMP^{-1} de la forme $N = \begin{pmatrix} \lambda_1 & 0 & a \\ 0 & \lambda_2 & b \\ 0 & 0 & \lambda_3 \end{pmatrix}$, avec $N^2 = T$, soit, comme

$$N^{2} = \begin{pmatrix} \lambda_{1}^{2} & 0 & a(\lambda_{1} + \lambda_{3}) \\ 0 & \lambda_{2}^{2} & b(\lambda_{2} + \lambda_{3}) \\ 0 & 0 & \lambda_{3}^{2} \end{pmatrix}, \text{ donc } \lambda_{1} = 0, \ \lambda_{2} = \varepsilon \text{ et } \lambda_{3} = \varepsilon', \text{ puis } a\varepsilon' = 1 \text{ et } b(\varepsilon + \varepsilon') = 2,$$

donc $\varepsilon = \varepsilon'$, car sinon leur somme est nulle, et alors $a = \varepsilon = b$, soit $N = \begin{pmatrix} 0 & 0 & \varepsilon \\ 0 & \varepsilon & \varepsilon \\ 0 & 0 & \varepsilon \end{pmatrix}$, les solutions étant les $P^{-1}NP$, avec $\varepsilon \in \{-1,1\}^2$, soit deux solutions.

25. * Déterminer $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^3 - 2M^2 + M = 0$ et $\operatorname{tr}(M) = 0$.

On a $M(M - I_n)^2 = 0$ donc sp $(M) \in \{0, 1\}$.

Or M est trigonalisable sur \mathbb{C} et $\operatorname{tr}(M) = m_0(M) \times 0 + m_1(M) \times 1 = m_1(M)$ (y compris les multiplicités nulles). Ainsi $m_1(M) = 0$ et $1 \notin \operatorname{sp}(M) : M - I_n \in GL_n(\mathbb{R})$ donc $(M - I_n)^2 \in GL_n(\mathbb{R})$ et cette matrice est simplifiable, d'où M = 0.

26. Soit $A, B, C \in M_n(\mathbb{K})$ telles que $B \neq 0, C \neq 0$ et il existe λ, μ non nuls et distincts avec $A^p = \lambda^p B + \mu^p C$ pour $p \in \{1, 2, 3\}$. Montrer que A est diagonalisable et calculer A^p pour tout $p \in \mathbb{N}$.

 $\text{De} \left\{ \begin{array}{l} A = \lambda B + \mu C \\ A^2 = \lambda^2 B + \mu^2 C \end{array} \right. \text{, on d\'eduit, en particulier,} \left\{ \begin{array}{l} A^2 - \mu A = \lambda (\lambda - \mu) B \\ A^2 - \lambda A = \mu (\mu - \lambda) C \end{array} \right. \text{Comme } \lambda \neq \mu$ et $\lambda \mu \neq 0$, la troisième relation $(A^3 = \lambda^3 B + \mu^3 C)$ donne alors : $A^3 = \frac{\lambda^3}{\lambda (\lambda - \mu)} (A^2 - \mu A) + \frac{\mu}{\mu^3 (\mu - \lambda)} (A^2 - \lambda A) = \frac{\lambda^2 - \mu^2}{\lambda - \mu} A^2 + \frac{\mu \lambda}{\lambda - \mu} (-\lambda + \mu) A = (\lambda + \mu) A^2 - \mu \lambda A. \text{ Donc } A(A - \lambda I) (A - \mu I) = 0 \text{ et } A \text{ est diagonalisable.}$

Par récurrence, si pour $p \ge q$, on a $A^p = \lambda^p B + \mu^p C$, alors $A^{p+1} = (\lambda + \mu)A^p - \mu \lambda A^{p-1} = (\lambda + \mu)(\lambda^p B + \mu^p C) - \mu \lambda (\lambda^{p-1} B + \mu^{p-1} C) = \lambda^{p+1} B + \mu^{p+1} C$.

^{27.} ** Soit A, B dans $\mathcal{M}_n(\mathbb{C})$ telle que AB - BA = A.

a) Montrer que A est non inversible.

b) Montrer que, pour tout $k \in \mathbb{N}^*$, $A^k B - B A^k = k A^k$.

c) En déduire que A est nilpotente.

- a) Si A était inversible, on aurait $B = A^{-1}BA + I_n$ et B serait semblable à $B + I_n$. On
- aurait $\operatorname{tr}(B) = \operatorname{tr}(B+I_n)$, ce qui est faux donc A n'est pas inversible. b) C'est vrai pour k=1. Si $A^kB-BA^k=kA^k$, $A^{k+1}B=ABA^k+kA^{k+1}$. Or AB=BA+A donc $ABA^k=BA^{k+1}+A^{k+1}$ ce qui donne bien $A^{k+1}B=BA^{k+1}+(k+1)A^{k+1}$.
- c) Si A^k n'était jamais nulle, l'endomorphisme $M \mapsto MB BM$ de $\mathcal{M}_n(\mathbb{C})$ aurait une infinité de valeurs propres car tout k en serait une avec A^k comme vecteur propre associé. C'est impossible en dimension finie donc il existe k tel que $A^k = 0$.

28. ** On donne $\phi: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ ayant les deux propriétés suivantes :

b)
$$\phi\begin{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \lambda$$
.

Montrer que $\phi(X) = \det X$ [on pourra d'abord comparer $\phi(X)$ et $\phi(Y)$ quand X et Y sont semblables, puis discuter suivant la diagonalisabilité].

On a $\phi\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = 1$, donc, pour T inversible, on aura $\phi(T^{-1}) = (\phi(T))^{-1}$. Si X et Ysont semblables, $Y = T^{-1}XT$ et $\phi(Y) = (\phi(T))^{-1}\phi(X)\phi(T) = \phi(X)$.

Si X est diagonalisable, elle est semblable à $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}$ et $\begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}$ est semblable à $\begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, donc $\phi \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} = \lambda \mu$. Pour X diagonalisable, on a donc $\phi(X) = \det X$.

Si X est non diagonalisable, elle est semblable à $\begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$. Pour $\lambda \neq 0$, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix} =$ $\begin{pmatrix} \lambda & \mu \\ 0 & 2\lambda \end{pmatrix}$, et comme $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ et $\begin{pmatrix} \lambda & \mu \\ 0 & 2\lambda \end{pmatrix}$ sont diagonalisables, on aura encore $\phi(X) = \det X$.

Reste le cas où X est semblable à $\begin{pmatrix} 0 & \mu \\ 0 & 0 \end{pmatrix}$. Comme $\begin{pmatrix} 0 & \mu \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \mu \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, on aura $\phi\left(\begin{pmatrix} 0 & \mu \\ 0 & 0 \end{pmatrix}\right)^2 = \phi\left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\right)$. Enfin,

$$\phi\left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)\right) = \phi\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right)\right)\phi\left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)\right) = 2\phi\left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)\right)$$

donc $\phi\left(\begin{pmatrix}0&0\\0&0\end{pmatrix}\right)=0$. On obtient bien $\phi(X)=\det X$ pour tout X de $\mathcal{M}_2(\mathbb{C})$.

29. ** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que A soit symétrique, à coefficients dans $\{0,1\}$, de trace nulle, et

avec
$$A^2 + A - (d-1)I = J$$
 où $d \in \mathbb{N}^*$ et $J = (1)$. Soit $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n1}(\mathbb{R})$.

- a) Montrer que AU = dU. En déduire que $n = d^2 + 1$.
- b) Soit a, b les racines de $X^2 + X (d-1)$. Montrer que $\operatorname{sp}(A) \in \{a, b, d\}$.
- c) Montrer que $d \in \{1, 2, 3, 7, 57\}$.

a) On a
$$A^2 = \left(\sum_k a_{ik} a_{jk}\right)$$
 car $A = {}^t\!A$, donc $A_{ii}^2 = \sum_k a_{ik}^2 = \sum_k a_{ik}$ car $a_{ik} \in \{0,1\}$.

Donc, en regardant le terme i-i de $A^2+A-(d-1)I$, il vient $\sum_k a_{ik}+a_{ii}-d+1-1=0$.

Mais $\operatorname{tr} A = \sum_{i} a_{ii} = 0$, donc $a_{ii} = 0$, car $a_{ii} \geq 0$ et ainsi $\sum_{k} a_{ik} = d$, soit AU = dU car

$$AU = \left(\sum_{k} a_{ik}\right)_{i}$$
. On a donc $d^{2}U + dU - (d-1)U = JU = nU$ soit, car $U \neq 0$, $n = d^{2} + 1$.

b) $\operatorname{rg} J = 1$ donc $0 \in \operatorname{sp}(J)$, avec $m_0 = \dim E_0(J) = n - 1$ car J est diagonalisable (symétrique). Il manque une valeur propre : c'est n car $\operatorname{tr}(J) = n$.

Si $AX = \lambda X$, $X \neq 0$, $JX = (\lambda^2 + \lambda - (d-1))X$ donc $\lambda^2 + \lambda - d + 1 = 0$, soit $\lambda \in \{a,b\}$, ou $\lambda^2 + \lambda - d + 1 = n$, mais alors $X \in E_n(J) = \mathbb{R}U$, donc $\lambda = d$ par \mathbf{a}). c) Déjà $a \neq b$, car le discriminant Δ de $X^2 + X - d + 1$ vaut $4d - 3 \neq 0$ ($d \in \mathbb{N}^*$). En fait,

c) Déjà $a \neq b$, car le discriminant Δ de $X^2 + X - d + 1$ vaut $4d - 3 \neq 0$ ($d \in \mathbb{N}^*$). En fait, $a = \frac{1}{2}(-1 - \sqrt{4d - 3})$ et $b = \frac{1}{2}(-1 + \sqrt{4d - 3})$. AX = dX implique $JX = (d^2 + 1)X = nX$ donc $E_d(A) \subset E_n(J) = \mathbb{R}U$, soit $E_d(A) = E_n(J)$, car $U \in E_d(A)$. Si m_1 (resp. m_2) est la multiplicité de a (resp. b) (y compris 0), comme A est diagonalisable (symétrique), on a $n = m_1 + m_2 + 1$ (donc $d^2 = m_1 + m_2$).

 $\operatorname{tr}(A) = m_1 a + m_2 b + d$ en diagonalisant, donc $d = -m_1 a - m_2 b = \frac{1}{2} [m_1 + m_2 + (m_1 - m_2)\sqrt{4d - 3}] = \frac{1}{2} [d^2 + (m_1 - m_2)\sqrt{4d - 3}]$, soit $d^2 - 2d + (m_1 - m_2)\sqrt{4d - 3} = 0$.

 \rightarrow Si $m_1 \neq m_2$, on a $r = \sqrt{4d-3} \in \mathbb{Q}$, avec $r^2 \in \mathbb{N}$, donc $r \in \mathbb{N}$, avec $\frac{r^2+3}{4} = d$ donc

$$\frac{r^4 + 6r^2 + 9}{16} - \frac{r^2 + 3}{2} + (m_1 - m_2)r = 0$$

soit $r^4 - 2r^2 + 16(m_1 - m_2)r = 15$, donc r divise 15, soit $r \in \{1, 3, 5, 15\}$, puis $d \in \{1, 3, 7, 57\}$.