

SEQUENCE LISTING

Rother, Russell P.
Faas-Knight, Susan
Wu, Dayang
Carr, Francis J.
Hamilton, Anita

<120> DE-IMMUNIZED ANTI-CD3 ANTIBODY

<130> ALXN-P01-106

<140> US 10/559,543

<141> 2007-02-26

<150> US 60/475,155

<151> 2003-06-02

<150> PCT/US2004/017219

<151> 2004-05-28

<160> 83

<170> PatentIn version 3.2

<210> 1

<211> 819

<212> DNA

<213> murine

<400> 1
aagcttatga atatgcaa at cctctgaatc tacatggtaa atatagg ttt gtctatacca 60
caaacagaaa aacatgagat cacagt tctc tctacagttt ctgagcac ac aggac ctca c 120
catggatgg agctgtatca tcctcttctt ggttagcaaca gctacaggta aggggctcac 180
at tagcaggc ttgaggtctg gacatata tgggtgacaa tgacatccac tttgccttc 240
tctccacagg tgtccactcc cagg tccagc tgcaacagtc tggggctgaa ctcgcaagac 300
ctggggcctc agtgaagatg tcctgcaagg cttctggcta cacgttact aggtacacga 360
tgcactgggt aaaacagagg cctggacaag gtttggatg gattggatac attaacccta 420
gccgtggata tactaattac aatcagaagt tcaaggacaa ggccacactg actacagaca 480
aatcttccag cacagcctac atgcaactga gcagcctgac atctgaggac tccgcagtct 540
attactgtgc aagatattat gatgatcatt actgtctcgat cta ctactgggc caaggcacca 600
ctttgacagt ctcctcaggat gagtccttac aacctctctc ttcttattcag cttaaataga 660
ttttactgca tttgttgggg gggaaatgtg tgtatctgaa tttcaggta tgaaggacta 720
gggacacctt gggagtcaga aagggtcatt gggagccccgg gctgatgcag acagacatcc 780
tcagctccca gacttcatgg ccagagattt ataggatcc 819

<210> 2

<211> 15

<212> PRT

<213> murine

<400> 2

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
1 5 10 15

<210> 3

<211> 617

<212> DNA

<213> murine

<400> 3

aagcttatga atatgcaa at cctctgaatc tacatggtaa atataggttt gtctatacca 60
caaacagaaa aacatgagat cacagttctc tctacagtta ctgagcacac aggacctcac 120
catggatgg agctgtatca tcctcttctt ggttagcaaca gctacaggta aggggctcac 180
agtagcaggc ttgaggtctg gacatatata tgggtgacaa tgacatccac tttgccttc 240
tctccacagg tgtccactcc caaattgttc tcacccagtc tccagcaatc atgtctgcat 300
ctccaggaga aaaggtcacc atgacatgca gtgccagctc aagtgtaaat tacatgaact 360
ggtaccagca gaagtcaggc acctccccca aaagatggat ttatgacaca tcaaaactgg 420
cttctggagt accggctcac ttcagggca gtgggtctgg gacctcttac tctctcacaa 480
tctcaggat ggaagctgaa gatgccgcaa cttattactg ccagcagtgg tcaagtaacc 540
cattcacgtt cggatctggt acaaagttgg aaatcaaacg tgagtagaat ttaaactttg 600
cttcctcagt tggatcc 617

<210> 4

<211> 15

<212> PRT

<213> murine

<400> 4

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
1 5 10 15

<210> 5

<211> 6058

<212> DNA

<213> artificial sequence

<220>

<223> vector

<400> 5

acgcgttgac attgatttatt gactagttat taatagtaat caattacggg gtcattagtt 60
catagcccat atatggagtt ccgcgttaca taacttacgg taaatggccc cgccctggctg 120
accgccccaaac gaccccccggcc cattgacgac aataatgacg tatgttccca tagtaacgcc 180
aatagggact ttccattgac gtcaatgggt ggactattta cggttaactg cccacttggc 240

agtacatcaa gtgtatcata tgccaagttac gccccctatt gacgtcaatg acggtaaatg 300
gcccgcctgg cattatgccc agtacatgac cttatggac tttcctactt ggcagtacat 360
ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tggcagtaca tcaatggcg 420
tggatagcgg tttgactcac ggggattcc aagtctccac cccattgacg tcaatggag 480
tttgtttgg cacccaaatc aacgggactt tccaaaatgt cgtaacaact ccgccccatt 540
gacgcaaatg ggccgttaggc gtgtacggtg ggaggcttat ataagcagag ctcgtttagt 600
gaaccgtcag aattctgttg ggctcgcggt tgattacaaa ctcttcgcgg tctttccagt 660
actcttggat cgaaaaacccg tcggccctccg aacggtactc cgccaccgag ggacctgagc 720
gagtccgcatt cgaccggatc ggaaaacctc tcgactgttg gggtgagttac tccctctcaa 780
aagcggcat gacttctgct ctaagattgt cagttccaa aaacgaggag gatttgatat 840
tcaccttggcc cgccgtgatg cctttaggg tggccgcgtc catctggtca gaaaagacaa 900
tcttttgtt gtcaagcttg aggtgtggca ggctttagat ctggccatac acttgagtga 960
caatgacatc cacttgcct ttctctccac aggtgtccac tcccaggatcc aactgcaggt 1020
cgaccggctt ggtaccgagc tcggatccgg accatcatga agtggagctg ggttattctc 1080
ttcctcctgt cagtaactgc cgccgtccac tcccaggatc aggtccagca gtctgggct 1140
gagctggcaa gaccttgggc ttcagtgaag ttgtcctgca aggcttctgg ctacaatttt 1200
aatagttact ggtgcagtg ggtaaaacag aggcttggac agggtctgga atggatttgg 1260
gctatttatac ctggagatgg tgatactagc tacactcaga agttcagggg caaggccaca 1320
ttgactgcag ataaatcctc cagcacagcc tacatgcaac tcagcagctt ggcacatctgag 1380
gactctgcgg tctattactg tgcaagacgt acggtagggag gctactttga ctactgggct 1440
caaggcacca ctctcacagt ctcctcagcc tccaccaagg gcccatccgt cttccccctg 1500
gcgcctgct ccaggagcac ctccgagagc acagccgccc tgggctgcct ggtcaaggac 1560
tacttccccg aaccggtgac ggtgtcgtgg aactcaggcg ccctgaccag cggcgtgcac 1620
accttccccg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt ggtgaccgt 1680
ccctccagca gcttgggcac gaagacctac acctgcaacg tagatcacaa gcccagcaac 1740
accaagggtgg acaagagaggt tggtgagagg ccagcacagg gagggagggt gtctgctgga 1800
agccaggctc agccctcctg cctggacgca ccccggtgt gcagccccag cccagggcag 1860
caaggcatgc cccatctgtc tcctcaccgg gaggcctctg accacccac tcatgctcag 1920
ggagagggtc ttctggattt ttccaccagg ctccggcac cacaggctgg atgccccatc 1980
cccaggccct ggcatacag ggcagggtgt gcgcgtcagac ctgccaagag ccataatccgg 2040
gaggaccctg cccctgaccc aagcccaccc caaaggccaa actctccact ccctcagctc 2100
agacaccctc tctcctccca gatctgagta actcccaatc ttctctctgc agagtccaaa 2160

tatggtcccc catgcccata atgcccaggta aagccaaaccc aggcctcgcc ctccagctca	2220
aggcgggaca ggtgccctag agtagcctgc atccaggga cggcccccagc cgggtgctga	2280
cgcacatccacc tccatctctt cctcagcacc tgagttcctg gggggaccat cagtcttcct	2340
gttccccca aaacccaagg acactctcat gatctcccg acccctgagg tcacgtgcgt	2400
ggtgtggac gtgagccagg aagaccccga ggtccagttc aactggtacg tggatggcgt	2460
ggaggtgcat aatgccaaga caaagcccg gggaggcag ttcaacagca cgtaccgtgt	2520
ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaac ggcaaggagt acaagtgcaa	2580
ggtctccaac aaaggcctcc cgtcctccat cgagaaaacc atctccaaag ccaaagggtgg	2640
gacccacggg gtgcgagggc cacacggaca gaggccagct cggcccaccc tctgcccgg	2700
gagtgaccgc tgtgccaacc tctgtcccta cagggcagcc ccgagagcca caggtgtaca	2760
ccctgcccc atcccaggag gagatgacca agaaccaggta cagcctgacc tgcctggtca	2820
aaggcttcta ccccaagcgc acatcgccgtgg agtgggagag caatgggcag ccggagaaca	2880
actacaagac cacgcctccc gtgctggact ccgacggctc cttcttcctc tacagcaggc	2940
taaccgtgga caagagcagg tggcaggagg ggaatgtctt ctcatgctcc gtgatgcatg	3000
aggctctgca caaccactac acacagaaga gcctctccct gtctctgggt aaatgagtgc	3060
cagggccggc aagcccccgcc tccccatcca tcacactggc ggccgctcga gcatgcattct	3120
agaacttggtt tattgcagct tataatggtt acaaataaag caatagcatc acaaatttca	3180
caaataaagc atttttttca ctgcattcta gttgtggttt gtccaaactc atcaatgttat	3240
cttatcatgt ctggatcgat cccgcatgg tatcaacgcc atatttctat ttacagttagg	3300
gacctttcg ttgtgttaggt accgctgtat tcctaggaa atagtagagg caccttgaac	3360
tgtctgcattc agccatatag ccccgctgt tcgacttaca aacacaggca cagttactgac	3420
aaaccatac acctcctctg aaataccat agttgttagg gctgtctccg aactcattac	3480
accctccaaa gtcagagctg taatttcgcc atcaaggga gcgaggcctt ctccagataa	3540
aatagcttct gccgagagtc ccgttaagggt agacacttca gctaattccct cgatgaggtc	3600
tactagaata gtcagtgcgg ctcccatttt gaaaattcac ttacttgatc agttcagaa	3660
gatggcggag ggcctccaaac acagtaattt tcctcccgac tcttaaaata gaaaatgtca	3720
agtcaattaa gcaggaagtg gactaactga cgcagctggc cgtgcgacat cctttttaa	3780
ttagttgcta ggcaacgccc tccagaggc gtgtggttt gcaagaggaa gcaaaaggct	3840
ctccacccag gcctagaatg tttccacccaa atcattacta tgacaacagc tgttttttt	3900
agtattaagc agaggccggg gacccctggg cccgcttact ctggagaaaa agaagagagg	3960
cattgttagag gcttccagag gcaacttgc taaaacaggag tgcttctatt tctgtcacac	4020
tgtctggccc tgtcacaagg tccagcacct ccataccccc tttataaagc agtttggaa	4080

cgggtgcggg tcttactccg cccatcccgc ccctaactcc gcccagttcc gcccattctc	4140
cgcggccatgg ctgactaatt ttttttattt atgcagaggc cgaggccgcc tcggcctctg	4200
agctattcca gaagtagtga ggaggcttt ttggaggcct aggctttgc aaaaaggagc	4260
tcccagcaaa aggccaggaa cgtaaaaag gccgccttgc tggcgcccccc 4320	
cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca	4380
ggactataaa gataccaggc gttccccc ggaagctccc tcgtgcgctc tcctgttccg	4440
accctgccgc ttaccggata cctgtccgccc tttctccctt cgggaagcgt ggcgccttct	4500
caatgctcac gctgttaggta tctcagttcg gtgttaggtcg ttcgctccaa gctgggctgt	4560
gtgcacgaac cccccgttca gcccgaccgc tgcgcccttat ccggtaacta tcgtcttgag	4620
tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc	4680
agagcgaggt atgttaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac	4740
actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cgaaaaaaga	4800
gttggtagct cttgatccgg caaacaacc accgctggta gcgggttttt ttttgttgc	4860
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcccttgcat ctttctacg	4920
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggcat gagattatca	4980
aaaaggatct tcacctagat ctttttaaat taaaaatgaa gttttaaatc aatctaaagt	5040
atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca	5100
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg	5160
atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca	5220
ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtgg	5280
cctgcaactt tatccgcctc catccagtct attaattgtt gccggaaagc tagagtaagt	5340
agttcgccag ttaatagtt gcgcaacgtt gttgccattt ctacaggcat cgtggtgtca	5400
cgctcgtcgt ttggatggc ttcattcagc tccgggttccc aacgatcaag gcgagttaca	5460
tgtatccccca tggatggcaaa aaaagcggtt agctccttcg gtcctccgat cggtgtcaga	5520
agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact	5580
gtcatgccat ccgtaaagatg cttttctgtg actgggtgagt actcaaccaa gtcattctga	5640
gaatagtgtt tgccggcgacc gagttgctct tgccggcggt caatacggga taataccgcg	5700
ccacatagca gaactttaaa agtgctcatc attggaaaac gttttcgaaa gcgaaaactc	5760
tcaaggatct taccgcgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga	5820
tcttcagcat cttttacttt caccagcggt tctgggtgag caaaaacagg aaggcaaaat	5880
gccgcaaaaa agggataaag ggcgacacgg aatgttcaa tactcatact cttcctttt	5940
caatatttattt gaagcatttta tcagggttat tgtctcatga gcggatacat atttgaatgt	6000

atttagaaaa ataaacaaat aggggttccg cgcacattc cccgaaaagt gccacctg 6058

<210> 6
<211> 235
<212> PRT
<213> human

<400> 6

Met Lys Trp Ser Trp Val Ile Leu Phe Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Val Gln Ser Gly Ala Glu Leu Ala Arg
20 25 30

Pro Trp Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Asn Phe
35 40 45

Asn Ser Tyr Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
50 55 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asp Gly Asp Thr Ser Tyr Thr
65 70 75 80

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val
100 105 110

Tyr Tyr Cys Ala Arg Arg Thr Val Gly Gly Tyr Phe Asp Tyr Trp Gly
115 120 125

Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
130 135 140

Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala
145 150 155 160

Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
165 170 175

Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
180 185 190

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
195 200 205

Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His
210 215 220

Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val
225 230 235

<210> 7
<211> 6057
<212> DNA
<213> artificial sequence

<220>
<223> vector

<400> 7
acgcgttgac attgattatt gactagttat taatagtaat caattacggg gtcattagtt 60
catagccat atatggagtt ccgcgttaca taacttacgg taaatggccc cgccctggctg 120
accgccccaaac gaccccccgc cattgacgtc aataatgacg tatgttccca tagtaacgcc 180
aatagggact ttccattgac gtcaatgggt ggactattt cggtaaactg cccacttggc 240
agtacatcaa gtgtatcata tgccaagtac gccccctatt gacgtcaatg acggtaaatg 300
gccccgcctgg cattatgccc agtacatgac cttatggac tttcctactt ggcagtacat 360
ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tggcagtaca tcaatggcg 420
tggatagcgg tttgactcac ggggatttcc aagtctccac cccattgacg tcaatggag 480
tttgttttgg caccaaaatc aacgggactt tccaaaatgt cgtaacaact cgcgcgcatt 540
gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat ataagcagag ctcgttttagt 600
gaaccgtcag aattctgttg ggctcgcggt tgattacaaa ctcttcgcgg tctttccagt 660
actcttggat cggaaacccg tcggccctccg aacggtactc cgccaccgag ggacctgagc 720
gagtccgcattt cgaccggatc ggaaaaacctc tcgactgttgg 990 ggttgagttac tccctctcaa 780
aagcgggcat gacttctgcg ctaagattgt cagttccaa aaacgaggag gatttgat 840
tcacctggcc cgcggtagatc ctttgaggg tggccgcgtc catctggtca gaaaagacaa 900
tctttttgtt gtcaagcttg aggtgtggca ggcttgagat ctggccatac acttgagtga 960
caatgacatc cactttgcct ttctctccac aggtgtccac tcccaggatcc aactgcaggt 1020
cgaccggctt ggtaccgagc tcggatccgg accatcatga agtggagctg ggttattctc 1080
ttcctccgtt cagtaactgc cggcgtccac tcccaggatcc aggtccagca gtctggggct 1140
gagctggcaa gaccttgggc ttcaagtgaag ttgtcctgca aggcttctgg ctacaatttt 1200
aatagttact ggatgcagtg ggtaaaacag aggccctggac agggtctgga atggattggg 1260
gctatttatac ctggagatgg tgatactagc tacactcaga agttcagggg caaggccaca 1320
ttgactgcag ataaatcctc cagcacagcc tacatgcaac tcagcagctt ggcacatctgag 1380
gactctgcgg tctattactg tgcaagacgt acggtaggag gctactttga ctactggggc 1440
caaggcacca ctctcacagt ctccctcagcc tccaccaagg gcccacatccgt cttccccctg 1500

gcgcccgtct ccaggagcac ctccgagagc acagccgccc tgggctgcct ggtcaaggac 1560
tacttccccg aaccgggtgac ggtgtcggtg aactcaggcg ccctgaccag cggcgtgcac 1620
accttcccg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt ggtgaccgtg 1680
ccctccagca acttcggcac ccagacctac acctgcaacg tagatcacaa gcccagcaac 1740
accaagggtgg acaagacagt tggtgagagg ccagctcagg gagggagggt gtctgctgga 1800
agccaggctc agccctcctg cctggacgca ccccggtgt gcagccccag cccagggcag 1860
caaggcagggc cccatctgtc tcctcaccgg gaggcctctg cccgccccac tcatgctcag 1920
ggagaggggtc ttctggcttt ttccaccagg ctccaggcag gcacaggctg ggtgccccta 1980
ccccaggccc ttcacacaca ggggcaggtg cttggctcag acctgccaaa agccatatcc 2040
gggaggaccc tgccctgac ctaagccgac cccaaaggcc aaactgtcca ctccctcagc 2100
tcggacacct tctctccctcc cagatccgag taactcccaa tcttctctt gcagagcgc 2160
aatgttgtgt cgagtgcaca ccgtgcccag gtaagccagc ccaggcctcg ccctccagct 2220
caaggcggga caggtgcctt agagtagcct gcatccaggg acaggccca gctgggtgct 2280
gacacgtcca cttccatctc ttccctcagca ccacctgtgg caggaccgtc agtcttcctc 2340
ttccccccaa aacccaagga caccctcatg atctcccgga cccctgaggt cacgtgcgtg 2400
gtggtggacg tgagccagga agaccccgag gtccagttca actggtagt ggatggcgtg 2460
gaggtgcata atgccaagac aaagccgcgg gaggagcagt tcaacagcac gtaccgtgtg 2520
gtcagcgtcc tcaccgtcct gcaccaggac tggctgaacg gcaaggagta caagtgcag 2580
gtctccaaca aaggcctccc gtcctccatc gagaaaacca tctccaaagc caaagggtgg 2640
acccacgggg tgcgagggcc acacggacag aggccagctc ggcccaccct ctgccctggg 2700
agtgaccgct gtgccaacct ctgtccctac agggcagccc cgagagccac aggtgtacac 2760
cctgccccca tcccaggagg agatgaccaa gaaccaggc acctgaccc gcctggtaa 2820
aggcttctac cccagcgaca tcgcccgtga gtgggagagc aatgggcagc cggagaacaa 2880
ctacaagacc acgcctcccg tgctggactc cgacggctcc ttcttcctt acagcaggct 2940
aaccgtggac aagagcaggt ggcaggaggg gaatgtcttc tcatgctccg tcatgtcatga 3000
ggctctgcac aaccactaca cacagaagag cctctccctg tctctggta aatgagtgcc 3060
agggccggca agcccccgct ccccatccat cacactggcg gccgctcgag catgcacatcta 3120
gaacttggttt attgcagctt ataatggta caaataaagc aatagcatca caaatttcac 3180
aaataaagca ttttttac tgcattctag ttgtggtttgc tccaaactca tcaatgtatc 3240
ttatcatgtc tggatcgatc cgcgcattgtt atcaacgcca tatttctatt tacagtaggg 3300
acctcttcgt tggatcgatc cgcgcattgtt atcaacgcca tatttctatt tacagtaggg 3360
gtctgcata gccatatagc ccccgctgtt cgacttacaa acacaggcac agtactgaca 3420

aaccctatac cctccctctga aataccata gttgctaggg ctgtctccga actcattaca 3480
ccctccaaag tcagagctgt aatTCGCCA tcaagggcag cgagggcttc tccagataaa 3540
atagcttctg ccgagagtcc cgtaaggta gacacttcag ctaatccctc gatgaggct 3600
actagaatag tcagtgcggc tcccatttg aaaattcact tacttgatca gttcagaag 3660
atggcggagg gcctccaaca cagtaattt cctccgact cttaaaaatag aaaatgtcaa 3720
gtcagtttaag caggaagtgg actaactgac gcagctggcc gtgcacatc ctctttat 3780
tagttgctag gcaacgcctt ccagagggcg tgtggtttg caagaggaag caaaagcctc 3840
tccacccagg cctagaatgt ttccacccaa tcattactat gacaacagct gttttttta 3900
gtattaagca gaggccgggg acccctggc ccgcttactc tggagaaaaa gaagagaggc 3960
attgttaggg cttccagagg caacttgtca aaacaggact gcttctattt ctgtcacact 4020
gtctggccct gtcacaaggt ccagcacctc cataccccct ttaataagca gtttgggAAC 4080
gggtgcgggt cttaactccgc ccattccgccc cctaactccg cccagttccg cccattctcc 4140
gccccatggc tgactaattt ttttattta tgcagaggcc gaggccgcct cggcctctga 4200
gctattccag aagtagtgag gaggctttt tggaggccta ggctttgca aaaaggagct 4260
cccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgttttc cataggctcc 4320
gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 4380
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgtct cctgttccga 4440
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaaagcgtg ggcctttctc 4500
aatgctcacg ctgttaggtat ctcagttcgg ttaggtcg tgcgtccaag ctggctgtg 4560
tgcacgaacc ccccgttcag cccgaccgct gcgccttatac cggtaactat cgtcttgagt 4620
ccaaccgggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 4680
gagcgaggta ttaggcgggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 4740
ctagaaggac agtatttggt atctgcgtc tgctgaagcc agttaccttc ggaaaaagag 4800
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggttt tttgtttgca 4860
agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg 4920
ggtctgacgc tcagtgaaac gaaaactcac gttaaggat tttggtcatg agattatcaa 4980
aaaggatctt cacctagatc ctttaaatt aaaaatgaag ttttaatca atctaaagta 5040
tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag 5100
cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtagtataactacga 5160
tacgggaggc ttaccatct ggccccagtg ctgcaatgat accgcgagac ccacgctcac 5220
cggtccaga ttatcagca ataaaccagc cagccggaag ggccgagcgc agaagtggtc 5280
ctgcaactt atccgcctcc atccagtcta ttaattgttgcggaaagct agagtaagta 5340

<210> 8
<211> 235
<212> PRT
<213> human

<400> 8

Met Lys Trp Ser Trp Val Ile Leu Phe Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Val Gln Gln Ser Gly Ala Glu Leu Ala Arg
20 25 30

Pro Trp Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Asn Phe
35 40 45

Asn Ser Tyr Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
50 55 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asp Gly Asp Thr Ser Tyr Thr
65 70 75 80

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val
100 105 110

Tyr Tyr Cys Ala Arg Arg Thr Val Gly Gly Tyr Phe Asp Tyr Trp Gly
115 120 125

Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
130 135 140

Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala
145 150 155 160

Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
165 170 175

Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
180 185 190

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
195 200 205

Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His
210 215 220

Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val
225 230 235

<210> 9
<211> 2026
<212> DNA
<213> human

<400> 9
ggatccctcta gattgagctt tctggggcag gccaggcctg accttggtcg ggggcaggga 60
gggggctaag gtgacgcagg tggcgccagc caggtgcaca cccaatgccc atgagccag 120
acactggacc ctgcatggac catcgccgat agacaagaac cgaggggcct ctgcgcctg 180
ggcccaagtc tgtccccacac cgccgtcaca tggcaccacc tctcttgcag cttccaccaa 240
ggcccatcc gtcttcccccc tggcgccctg ctccaggagc acctccgaga gcacagccgc 300
cctgggctgc ctggtaagg actactccc cgaaccggtg acggtgtcgt ggaactcagg 360
cgccctgacc agccgcgtgc acacccccc ggctgtccta cagtccctcag gactctactc 420
cctcagcagc gtggtaaccg tgccctccag caacttcggc acccagacct acacctgcaa 480
cgtagatcac aagcccaagca acaccaaggt ggacaagaca gttggtgaga ggccagctca 540
gggagggagg gtgtctgctg gaagccaggc tcagccctcc tgccctggacg cacccggct 600
gtgcagcccc agcccaaggc agcaaggcag gccccatctg tctccctcacc cggaggcctc 660
tgcccgcccc actcatgctc agggagaggg tcttctggct ttttccacca ggctccaggg 720
aggcacaggc tgggtgcccc tacccaggc cttcacaca caggggcagg tgcttggctc 780
agacctgcca aaagccatat ccgggaggac cctgccccctg acctaagccg accccaaagg 840
ccaaactgtc cactccctca gctcggacac cttctctcct cccagatccg agtaactccc 900

aatcttctct	ctgcagagcg	caaatgttgt	gtcgagtgcc	caccgtgccc	aggtaagcca	960
gcccaggcct	cgcctccag	ctcaaggcgg	gacaggtgcc	ctagagtagc	ctgcatccag	1020
ggacaggccc	cagctgggtg	ctgacacgtc	cacctccatc	tcttcctcag	caccacctgt	1080
ggcaggaccg	tcaagtttcc	tcttcccccc	aaaacccaag	gacaccctca	tgatctcccg	1140
gaccctgag	gtcacgtgcc	tggtggtgga	cgtgagccag	gaagaccccg	aggccagtt	1200
caactggtag	gtggatggcg	tggaggtgca	taatgccaag	acaaagccgc	gggaggagca	1260
gttcaacagc	acgtaccgtg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	1320
cggcaaggag	tacaagtgca	aggtctccaa	caaaggcctc	ccgtcctcca	tcgagaaaaac	1380
catctccaaa	gccaaagggtg	ggaccacgg	ggtgcgaggg	ccacatggac	agaggtcagc	1440
tcggcccacc	ctctgcccctg	ggagtgaccg	ctgtgccaac	ctctgtccct	acagggcagc	1500
cccgagagcc	acaggtgtac	accctgcccc	catcccagga	ggagatgacc	aagaaccagg	1560
tcagcctgac	ctgcctggtc	aaaggcttct	accccagcga	catcgcctg	gagtggaga	1620
gcaatgggca	gccggagaac	aactacaaga	ccacgcctcc	cgtgctggac	tccgacggct	1680
ccttcttcct	ctacagcagg	ctaaccgtgg	acaagagcag	gtggcaggag	ggaaatgtct	1740
tctcatgctc	cgtgatgcat	gaggctctgc	acaaccacta	cacacagaag	agcctctccc	1800
tgtctctggg	taaatgagtg	ccagggccgg	caagccccgg	ctccccgggc	tctcggggtc	1860
gcfgcaggat	gcttggcacf	tacccgtct	acatacttcc	caggcaccca	gcatggaaat	1920
aaagcaccca	ccactgccc	ggcccccgt	gagactgtga	tggtttttc	cacgggtcag	1980
gccgagtcg	aggcctgagt	gacatgagga	attcagatct	ggatcc		2026

<210> 10
 <211> 119
 <212> PRT
 <213> murine

<400> 10

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser Thr Ala Tyr
Page 12

65

70

75

80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Leu Thr Val Ser Ser
115

<210> 11
<211> 119
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized heavy chain variable region

<400> 11

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 12
<211> 119
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized heavy chain variable region

<400> 12

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 13

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 13

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 14
<211> 119
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized heavy chain variable region

<400> 14

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Val
50 55 60

Lys Asp Arg Phe Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 15
<211> 119
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized heavy chain variable region

<400> 15

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 16
<211> 119
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized heavy chain variable region

<400> 16

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
Page 16

85

90

95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 17
<211> 119
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized heavy chain variable region

<400> 17

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Val
50 55 60

Lys Asp Arg Phe Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser
115

<210> 18
<211> 106
<212> PRT
<213> murine

<400> 18

Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr
85 90 95

Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn
100 105

<210> 19

<211> 106

<212> PRT

<213> artificial sequence

<220>
<223> de-immunized light chain variable region

<400> 19

Gln Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Thr Cys Ser Ala Ser Ser Ser Ala Ser Tyr Met
20 25 30

Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn Ser Leu Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr
85 90 95

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 20

<211> 106

<212> PRT
<213> artificial sequence

<220>
<223> de-immunized light chain variable region

<400> 20

Gln Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn Ser Leu Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr
85 90 95

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 21
<211> 819
<212> DNA
<213> artificial sequence

<220>
<223> de-immunized VH expression cassette

<400> 21
aagcttatga atatgcaa at cctctgaatc tacatggta atatagg ttt gtctatacca 60
caaacagaaa aacatgagat cacagtgtc tctacagtta ctgagcac ac aggacctcac 120
catggatgg agctgtatca tcctcttctt ggttagcaaca gctacaggta aggggctcac 180
agtagcaggc ttgagg tctg gacatata tgggtgacaa tgacatccac tttgccttc 240
tctccacagg tgtccactcc caggtccagc tggtagtgc tggggctgaa gtcaagaa ac 300
ctggggcctc agtgaagg tgc tcctgcaagg cttctggcta cacggctact aggtacacga 360
tgcactgggt aagacaggcg cctggacaag gtttggaa at gattggatac attaacccta 420
gccatggata tactaattac gctcagaatg tccaggacag ggtcacaatc actacagaca 480
aatcttccag cacagcctac ttgcaa atga acagcctgaa aactgaggac accgcagtc 540
attactgtgc aagatattat gatgatcatt actgtctcga ctactgggc caaggcacca 600

ctgtgacagt ctcctcagg gactccttac aacctctctc ttctattcag cttaaataga	660
tttactgca tttgttgggg gggaaatgtg tgtatctgaa tttcaggtca tgaaggacta	720
gggacacctt gggagtcaga aagggtcatt gggagcccg gctgatgcag acagacatcc	780
ttagctccc aacttcatgg ccagagattt ataggatcc	819

<210> 22
<211> 15
<212> PRT
<213> artificial sequence

<220>
<223> signal protein
<400> 22

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
1 5 10 15

<210> 23
<211> 617
<212> DNA
<213> artificial sequence

<220>
<223> de-immunized VK expression cassette

<400> 23
aagcttatga atatgcaa at cctctgaatc tacatggta atataggttt gtctatacca 60
caaacagaaa aacatgagat cacagttctc tctacagttt ctgagcacac aggacctcac 120
catggatgg agctgtatca tcctcttctt ggttagcaaca gctacaggta aggggctcac 180
atagcaggc ttgaggcttg gacatatata tgggtgacaa tgacatccac tttgcctttc 240
tctccacagg tgtccactcc caaattgttc tcaccagtc tccagcaacc ctctctttt 300
ctccaggggaa acgcgccacc ttgacatgca gtgccagctc aagtgcagg tacatgaact 360
ggtaccagca gaagccggc aaagctccca aaagatggat ttatgacaca tcaaaactgg 420
cttctggagt accgtctcgc ttcatggca gtgggtctgg gaccgattac tctctcacaa 480
tcaatagtct ggaagctgaa gatgccgcaa cttattactg ccagcagtgg tcaagtaacc 540
cattcacgtt cggacaaggta acaaagggtgg aaatcaaacg tgagtagaat ttaaactttg 600
cttcctcagt tggatcc 617

<210> 24
<211> 15
<212> PRT
<213> artificial sequence

<220>
<223> signal protein

<400> 24

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
1 5 10 15

<210> 25

<211> 467

<212> PRT

<213> murine

<400> 25

Met Glu Arg His Trp Ile Phe Leu Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg
20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Tyr Thr Phe Thr
35 40 45

Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
50 55 60

Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln
65 70 75 80

Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr
85 90 95

Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
100 105 110

Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly
115 120 125

Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Ala Pro Ser
130 135 140

Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser Val
145 150 155 160

Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Leu
165 170 175

Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala
180 185 190

Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Thr
195 200 205

Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn Val Ala His Pro
210 215 220

Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro Arg Gly Pro Thr
225 230 235 240

Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly
245 250 255

Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met
260 265 270

Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser Glu
275 280 285

Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val
290 295 300

His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu
305 310 315 320

Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly
325 330 335

Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile
340 345 350

Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val
355 360 365

Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr
370 375 380

Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Glu
385 390 395 400

Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro
405 410 415

Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val
420 425 430

Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val
435 440 445

His Glu Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg Thr
450 455 460

Pro Gly Lys
465

<210> 26
<211> 1570
<212> DNA
<213> murine

<400> 26
gaattccctt ctccacagac actgaaaact ctgactcaac atggaaaggc ctggatcttt 60
ctactccgt tgcagtaac tgcaggtgtc cactcccagg tccagctgca gcagtctgg 120
gctgaactgg caagacctgg ggcctcagtg aagatgtcct gcaaggcttc tggctacacc 180
tttacttaggt acacgatgca ctggtaaaa cagaggcctg gacagggtct ggaatggatt 240
ggatacatta atcctagccg tggttatact taattacaat cagaagttca aggacaaggc 300
cacattgact acagacaaat cctccagcac agcctacatg caactgagca gcctgacatc 360
tgaggactct gcagtctatt actgtgcaag atattatgtat gatcattact gccttgacta 420
ctggggccaa ggcaccactc tcacagtctc ctcagccaa acaacagccc catcggtcta 480
tccactggcc cctgtgtgtg gagatacaac tggctcctcg gtgactctag gatgcctgg 540
caagggttat ttccctgagc cagtgacctt gacctggAAC tctggatccc tgtccagtgg 600
tgtgcacacc ttcccagctg tcctgcagtc tgacctctac accctcagca gctcagtgac 660
tgtaacctcg agcacctggc ccagccagtc catcacctgc aatgtggccc acccggcaag 720
cagcaccaag gtggacaaga aaattgagcc cagagggccc acaatcaagc cctgtcctcc 780
atgcaaatgc ccagcaccta acctcttggg tggaccatcc gtcttcatct tccctccaaa 840
gatcaaggat gtactcatga tctccctgag cccatagtc acatgtgtgg tggtgatgt 900
gagcgaggat gacccagatg tccagatcag ctgggttgg aacaacgtgg aagtacacac 960
agctcagaca caaacccata gagaggatta caacagtact ctccgggtgg tcagtgcct 1020
ccccatccag caccaggact ggatgagtgg caaggagttc aaatgcaagg tcaacaacaa 1080
agacctccca gcgcccatcg agagaaccat ctcaaaaccc aaagggtcag taagagctcc 1140
acaggtatat gtcttgccctc cacccagaaga agagatgact aagaaacagg tcactctgac 1200
ctgcattggtc acagacttca tgcctgaaga catttacgtg gagtgacca acaacgggaa 1260
aacagagcta aactacaaga acactgaacc agtcctggac tctgatggtt cttacttcat 1320
gtacagcaag ctgagagtgg aaaagaagaa ctgggtggaa agaaatagct actcctgttc 1380
agtggtccac gagggtctgc acaatcacca cacgactaag agttctccc ggactccggg 1440
taaatgagct cagcacccac aaaactctca ggtccaaaga gacacccaca ctcatctcca 1500
tgcttccctt gtataaataa agcacccagc aatgcctggg accatgtaaa aaaaaaaaaaa 1560
aaaggaattc 1570

<210> 27
<211> 235
<212> PRT
<213> murine

<400> 27

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser
1 5 10 15

Val Ile Ile Ser Arg Gly Gln Ile Val Leu Thr Gln Ser Pro Ala Ile
20 25 30

Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser
35 40 45

Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser
50 55 60

Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro
65 70 75 80

Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
85 90 95

Ser Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp
100 105 110

Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn
115 120 125

Arg Ala Asp Thr Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu
130 135 140

Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe
145 150 155 160

Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg
165 170 175

Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser
180 185 190

Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu
195 200 205

Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser
210 215 220

Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys
225 230 235

<210> 28
<211> 943
<212> DNA
<213> murine

<400> 28
gaattcccaa agacaaaatg gatttcaag tgcagattt cagttcctg ctaatcagtg 60
cctcagtcat aatatccaga ggacaaattg ttctcaccca gtctccagca atcatgtctg 120
catctccagg ggagaaggtc accatgacct gcagtgccag ctcaagtgt a gttacatga 180
actggtagcca gcagaagtca ggcacccccc caaaaagatg gatttatgac acatccaaac 240
tggcttctgg agtccctgct cacttcaggg gcagtgggtc tgggacctct tactctctca 300
caatcagcgg catggaggct gaagatgctg ccacttatta ctgccagcag tggagtagta 360
accatttcac gttcggctcg gggacaaagt tggaaataaa ccgggctgat actgcaccaa 420
ctgtatccat cttccccacca tcagtgagc agttaacatc tggaggtgcc tcagtcgtgt 480
gcttcttcaa caacttctac cccaaagaca tcaatgtcaa gtggaaagatt gatggcagtg 540
aacgacaaaaa tggcgtcctg aacagttgga ctgatcagga cagcaaagac agcacctaca 600
gcatgagcag caccctcacy ttgaccaagg acgagttatga acgacataac agctataacct 660
gtgaggccac tcacaagaca tcaacttcac ccattgtcaa gagcttcaac aggaatgagt 720
gttagagaca aagggtcctga gacgccacca ccagctccca gctccatcct atttccctt 780
ctaaggctt ggaggcttcc ccacaagcgc ttaccactgt tgcggtgctc taaacccctt 840
cccacccct tctccctcctc ctcccttcc ttggctttta tcatgctaat atttgcagaa 900
aatattcaat aaagttagtc tttgccttga aaaaaaaaaaaa aaa 943

<210> 29
<211> 123
<212> PRT
<213> murine

<400> 29

Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala
1 5 10 15

Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr
20 25 30

Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly
35 40 45

Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr
Page 25

50

55

60

Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser
65 70 75 80

Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala
85 90 95

Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr
100 105 110

Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser
115 120

<210> 30

<211> 110

<212> PRT

<213> murine

<400> 30

Gly Val His Ser Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser
1 5 10 15

Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser
20 25 30

Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys
35 40 45

Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His
50 55 60

Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly
65 70 75 80

Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser
85 90 95

Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> 31

<211> 12

<212> PRT

<213> human

<400> 31

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro
1 5 10

<210> 32
<211> 110
<212> PRT
<213> human

<400> 32

Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 5 10 15

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30

Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr
35 40 45

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
50 55 60

Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
65 70 75 80

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95

Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys
100 105 110

<210> 33
<211> 107
<212> PRT
<213> human

<400> 33

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu
1 5 10 15

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
20 25 30

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gln Pro Glu
35 40 45

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
50 55 60

Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly
65 70 75 80

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Page 27

85

90

95

Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
100 105

<210> 34
<211> 12
<212> PRT
<213> human

<400> 34

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
1 5 10

<210> 35
<211> 109
<212> PRT
<213> human

<400> 35

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
1 5 10 15

Lys Asp Thr Leu Asn Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
20 25 30

Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val
35 40 45

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
50 55 60

Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
65 70 75 80

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly
85 90 95

Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys
100 105

<210> 36
<211> 107
<212> PRT
<213> human

<400> 36

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu
1 5 10 15

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
20 25 30

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
35 40 45

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
50 55 60

Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly
65 70 75 80

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
85 90 95

Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
100 105

<210> 37

<211> 43

<212> DNA

<213> artificial sequence

<220>

<223> oligonucleotide

<400> 37

gaagtcaaga aacctggggc ctcagtgaag gtgtcctgca agg

43

<210> 38

<211> 47

<212> DNA

<213> artificial sequence

<220>

<223> oligonucleotide

<400> 38

gccccaggtt tcttgacttc agccccagac tgtaccagct ggacctg

47

<210> 39

<211> 31

<212> DNA

<213> artificial sequence

<220>

<223> oligonucleotide

<400> 39

tggtaagac aggcgctgg acaaggttt g

31

<210> 40

<211> 29

<212> DNA

<213> artificial sequence

<220>		
<223>	oligonucleotide	
<400>	40	
	gtccaggcgc ctgtcttacc cagtgcac	29
<210>	41	
<211>	48	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	41	
	aggcgccctgt cttacccagt gcatcgtgta cctagtagcc gtgtagcc	48
<210>	42	
<211>	43	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	42	
	caatcagaag ttcaaggaca gggtcacaat cactacagac aaa	43
<210>	43	
<211>	43	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	43	
	cgctcagaag ttccaggaca gggtcacaat cactacagac aaa	43
<210>	44	
<211>	43	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	44	
	cgctgacagt gtcaaggca ggttcacaat cactacagac aaa	43
<210>	45	
<211>	43	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	

<400> 45		
caatcagaag gtcaaggaca ggttcacaat cactacagac aaa		43
<210> 46		
<211> 37		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 46		
gtccttgaac ttctgattgt aattagtata tccacgg		37
<210> 47		
<211> 37		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 47		
gtccttggAAC ttctgAGCgt aattagtata tccacgg		37
<210> 48		
<211> 37		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 48		
gcccttgaca ctgtcagcgt aattagtata tccacgg		37
<210> 49		
<211> 37		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 49		
gtccttgacc ttctgattgt aattagtata tccacgg		37
<210> 50		
<211> 35		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 50		
agcctgaaaa ctgaggacac cgcaGTCTAT tactg		35

<210> 51	
<211> 42	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 51	
gtcctcagtt ttcaggctgt tcatttgc aa gtaggctgtg ct	42
<210> 52	
<211> 30	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 52	
ccaaggcacc actgtgac ag tctcctcagg	30
<210> 53	
<211> 30	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 53	
cctgaggaga ctgtcacagt ggtgccttgg	30
<210> 54	
<211> 24	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 54	
ggtgtccact cccaggtcca gctg	24
<210> 55	
<211> 29	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 55	
cagctggacc tgggagtgga cacctgtgg	29
<210> 56	
<211> 37	
<212> DNA	
<213> artificial sequence	

<220>		
<223>	oligonucleotide	
<400>	56	
	gcatgttgac cctgacgcaa gcttatgaat atgcaaa	37
<210>	57	
<211>	36	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	57	
	gcgatagctg gactgaatgg atcctataaaa tctctg	36
<210>	58	
<211>	45	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	58	
	ccctctctttt ccctccaggga gaacgcgccaa ccttgacatg cagtg	45
<210>	59	
<211>	36	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	59	
	cctggagaaa gagagagggt tgctggagac tgggtg	36
<210>	60	
<211>	48	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
<400>	60	
	catgaactgg taccaggcaga agccccggcaa agctcccaaa agatggat	48
<210>	61	
<211>	38	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	

<400> 61		
cgggcttctg ctggtaccag ttcatgtaac ttacactt		38
<210> 62		
<211> 38		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 62		
cttctgctgg taccagttca tgtaacttgc acttgagc		38
<210> 63		
<211> 49		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 63		
gggtctggga ccgattactc tctcacaatc aatagtctgg aagctgaag		49
<210> 64		
<211> 47		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 64		
gtaatcggtc ccagacccac tgccactgaa gcgagacggt actccag		47
<210> 65		
<211> 38		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 65		
ttcacgttcg gacaaggtagc aaaggtggaa atcaaacg		38
<210> 66		
<211> 38		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide		
<400> 66		
ctttgtacct tgtccgaacg tgaatgggtt acttgacc		38

<210> 67	
<211> 21	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 67	
gcggatccag tcgacgaagc a	21
<210> 68	
<211> 45	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 68	
ctgaatggat ccaactgagg aagcaaagtt taaattctac tcacg	45
<210> 69	
<211> 28	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 69	
caaattgttc tcacccagtc tccagcaa	28
<210> 70	
<211> 32	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 70	
ttgctggaga ctgggtgaga acaatttggg ag	32
<210> 71	
<211> 41	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide	
<400> 71	
tggagactgg gtgagaacaa tttgggagtg gacacctgtg g	41
<210> 72	
<211> 36	
<212> DNA	
<213> artificial sequence	

<220>
<223> oligonucleotide

<400> 72
agagagggtt gctggagact gggtgagaac aatttg

36

<210> 73
<211> 37
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

<400> 73
gcatgttgac cctgacgcaa gcttatgaat atgcaaa

37

<210> 74
<211> 36
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

<400> 74
gcgatagctg gactgaatgg atccaaactga ggaagc

36

<210> 75
<211> 122
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized OKT3 VH

<400> 75

Val Ser Thr Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
1 5 10 15

Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala
20 25 30

Thr Arg Tyr Thr Met His Trp Tyr Arg Gln Ala Pro Gly Gln Gly Leu
35 40 45

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala
50 55 60

Gln Lys Phe Gln Gln Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser
65 70 75 80

Thr Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val
85 90 95

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Gly
115 120

<210> 76
<211> 110
<212> PRT
<213> artificial sequence

<220>
<223> de-immunized OKT3 VK

<400> 76

Gly Val His Ser Gln Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
1 5 10 15

Leu Ser Pro Gly Glu Arg Ala Thr Leu Thr Cys Ser Ala Ser Ser Ser
20 25 30

Ala Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
35 40 45

Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg
50 55 60

Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn Ser
65 70 75 80

Leu Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser
85 90 95

Asn Pro Phe Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105 110

<210> 77
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> reverse primer

<400> 77
ttgtgacgg atacaattt c

21

<210> 78
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 78
gtttcccaag tcacgacgtt gta 23

<210> 79
<211> 30
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 79
cttcgcggcct ccaccaaggg cccatccgtc 30

<210> 80
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 80
cccttggtgg aggctgcaag agagg 25

<210> 81
<211> 33
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 81
gagcctctcc ctgtctctgg gttaatgagt gcc 33

<210> 82
<211> 35
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 82
tcatttaccc agagacaggg agaggcttt ctgtg 35

<210> 83
<211> 35
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 83
tacccgggga tccagatctg aattcctcat gtcac

35