

Meet The Team

Daphne Lin

Nicole Liu

Tanmay Mahapatra

Jun Park

Agenda

- Project Problem
- EDA
- Feature Engineering
- Modeling Pipeline
- Models and Experiment Results
- Conclusion and Next Steps

Project Statement and Description

Issue

- Impact on Schedules/Routes
 - Delays, Diversion, Cancellation
- Impact on Cargo
 - Delayed Delivery
 - Damage to perishable items
- Impact on Airports
 - Congestion and capacity
- Impact on Passengers
 - Accommodation costs

Proposed Project

- Goal: Predict delays in advance to drive actionable insights for airlines and airports
- Method: Develop predictive models to forecast departure delays with logistic regression as a baseline
- Main Metrics: F-2 = 2, Recall (Reduce False Negatives)
- Target audience: Airport authority, Airline Carriers, Passengers

EDA - Flights

- Raw airlines dataset contains74,177,433 records
- After removing duplicates, the dataset consists of 42,430,592 records
- Approximately 2.02% of flights are cancelled flights
- Cancelled flights, represented by null values in the DEP_DEL15 feature, are removed from the dataset due to irrelevance and minimal occurrence

	Metric	Value
0	Total Flights	42430592
1	Number of Unique Carriers	20
2	Number of Unique Airports	388
3	Flights delayed over 15mins	7119338
4	Delayed Flights %	16.78%
5	On-Time Flights %	81.20%
6	Canceled Flights %	2.02%

EDA - Flights Contd.

- Class imbalance: 16.78% of flights are delayed by more than 15 minutes, while 81.20% are on time, indicating potential prediction bias towards on-time flights
- Future steps involve addressing class imbalance by applying a balancing ratio using a weight column
- The DEP_DELAY_GROUP field displays delay times grouped in 15-minute intervals, skewed towards shorter delays

EDA - Origin Airports and Carriers

- 5 airports with the highest number of delays: Atlanta (ATL), Orlando (ORD), Dallas-Fort Worth (DFW), Denver (DEN), Los Angeles (LAX)
- Top 5 carriers (IATA Code): Southwest Airlines (WN), American Airlines (AA), Delta Airlines (DL), SkyWest Airlines (OO), United Airlines (UA)

EDA - Origin Airports Contd.

- Scatter plot analysis reveals a subtle, increasing linear relationship between airport business and the proportion of delayed flights
- Significant variance within the data,
 suggesting that the origin airport as a feature
 in predictive models could be helpful
- Feature engineering involves integrating average delay by airport before departure into the predictive modeling process
- Understanding the relationship between airport business and flight delays aids in optimizing feature selection for improved delay predictions

EDA - Holiday Impact

- 2 dips denoted by dotted lines on 2 occasions (holidays): 04/07, 12/25
- Indicators highlight that travel is usually before or after a holiday

EDA - Time factors

- Thursday and Friday have slightly more delays in a week.
- Day of Month has close to uniform distribution.
- Slightly more delays in Q2 and Q3
- June to August and December have more delays in a year

EDA - Weather

- Weather dataset contains 898,983,399 records
- There were no duplicates
- 15,027 unique weather stations
- Earliest recorded date within the considered dataset 01/01/2015
- Earliest recorded date within the considered dataset 12/31/2021
- Most of the data is null

	Metric	Value
0	Total Weather Records	898983399
1	Number of Unique Weather Stations	15027
2	Earliest Date of recorded weather	2015-01-01
3	Latest Date of recorded weather	2021-12-31

Joined Dataset

- Airport Codes dataset shared with us that houses IATA as well as ICAO codes
- Airport codes dataset can be joined with Station dataset by joining on ICAO code to 'neighbor_call'
- Station dataset can be joined with Weather by joining 'station_id' to STATION
- Airport Codes dataset can be combined with the Weather dataset based on IATA code
- Join the result with Flights dataset on IATA code to create final Joined Dataset

EDA - Joined Dataset

- Histogram of Average Delay by Flight
 Distance showcases the relationship
 between departure delay and flight
 distance, organized into 250-mile intervals
- Distribution demonstrates a nearly uniform pattern across flight distances, with group 2 accounting for the largest number of flights (n = 7,475,393)
- Notably, flights categorized as middle-distance (group 5) exhibit a slightly higher average delay, with an average delay time of about 11 minutes

New Feature Creation

Is near a major holiday	 Recorded dates of major holidays identified in the EDA (Christmas, Thanksgiving, New Years, 4th of July) Days within a 3 day window of the holiday were recorded as 'is_near_holiday'
% delays at origin airport (2-4 hours before departure)	Calculated the % of delays at the origin airport for flights within the 2-4 hour window before departure.
% delays at dest airport (2-4 hours before departure)	Calculated the % of delays at the destination airport for flights within the 2-4 hour window before departure.
Average tail delay time (2 hours before departure, previous 4 flights)	Calculated average tail number delay time for the last 4 flights 2 hours prior to departure.

Data Extraction (1 Year OTPW Data) Data Preparation Exploratory Data Analysis (EDA) Data Preprocessing / Data Cleaning Feature Engineering Data Checkpoint Data Splitting Train, Test Splits Downsampling/Weighting Training Data Data Checkpoint

Model Pipeline

Feature Transformation

Dataset: OTPW 2015 full year

1 binary prediction

Stage 1: Feature elimination	Stage 2: Data processing St	age 3: Data split
 Co-linearity with other features Info not known 2 hrs in advance Irrelevant Contains a lot of null values 	 Handle null values Transform categorical to one-hot encoding Extract hour data 	Train / Test split based on time series
Stage 4: Model training • 18-22 base features	Stage 5: Model iteration and improved: • Metrics (focus on recall, f-2 score)	

Perform experiments

Hyperparameter (Grid search)

Experiment Type	Data Source	Input Features	Train Results	Test Results
Baseline: no class weights	1 Year OPTW (no downsampling)	10 Numerical (Flight Distance, Hourly Weather) 10 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.0335 F-2: 0.0409 F-1: 0.0614
With class weights, regParam = 0.1, elasticNetParam = 0.5, maxIter = 20	1 Year OPTW (no downsampling)	10 Numerical (Flight Distance, Hourly Weather) 10 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.6636 F-2: 0.4775 F-1: 0.3361
With class weights; regParam = 0.1, elasticNetParam = 0.5, maxIter = 20, add tail number, flight number as categorical features	1 Year OPTW (no downsampling)	10 Numerical (Flight Distance, Hourly Weather) 12 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.6637 F-2: 0.4775 F-1: 0.3361
(no class weights after downsampling) regParam = 0.1, elasticNetParam = 0.5, maxIter = 20	5 Year OPTW (with downsampling)	4 Feature Engineered (Holiday, Delay at Origin/Destination, Avg Delay for Plane) + 10 Numerical (Flight Distance, Hourly Weather) 11 Categorical (Time, Airline Info, Origin, Destination)	Recall: 0.5473 F-2: 0.5684 F-1: 0.6032	Recall: 0.5593 F-2: 0.4798 F-1: 0.3954
GridSearch; regParam = 0.01, elasticNetParam = 0.0, maxIter = 10	5 Year OPTW (with downsampling)	4 Feature Engineered (Holiday, Delay at Origin/Destination, Avg Delay for Plane) + 10 Numerical (Flight Distance, Hourly Weather) 11 Categorical (Time, Airline Info, Origin, Destination)	Recall: 0.5902 F-2: 0.6054 F-1: 0.6297	Recall: 0.6026 F-2: 0.6054 F-1: 0.4070

Experiment	Input Features	Train Results	Test Results
MLP with 1 Hidden Layer (size 4) maxIter = 50, stepSize = 0.03, blockSize = 128 (1 hour training time) Neural Network Architecture: MLP-718 - 4 Sigmoid - 2 Softmax	10 Numerical (Flight Distance, Hourly Weather) 8 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.5577 F-2: 0.4031 F-1: 0.2847
MLP with 2 Hidden Layers (both size 4) maxIter = 50, stepSize = 0.03, blockSize = 128 (1 hour training time) Neural Network Architecture: MLP-718 - 4 Sigmoid - 4 Sigmoid - 2 Softmax	10 Numerical (Flight Distance, Hourly Weather) 8 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.4924 F-2: 0.3793 F-1: 0.2821
GridSearch CV MLP w/ 1 Hidden Layer maxIter = 50, stepSize = 0.01, blockSize = 128 (4 hour training time) Neural Network Architecture: MLP-718 - 10 Sigmoid - 2 Softmax	10 Numerical (Flight Distance, Hourly Weather) 8 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.6230 F-2: 0.4237 F-1: 0.2863

Experiment	Input Features	Train Results	Test Results
MLP with 1 Hidden Layer (size 4) maxIter = 50, stepSize = 0.03, blockSize = 128 (1 hour training time) Neural Network Architecture: MLP-804 - 4 Sigmoid - 2 Softmax	3 Feature Engineered (Holiday, Delay at Origin/Destination) 10 Numerical (Flight Distance, Hourly Weather) 8 Categorical (Time, Airline Info, Origin, Destination)	Recall: 0.9999 F-2: 0.8358 F-1: 0.6707	Recall: 1.000 F-2: 0.5378 F-1: 0.3176
MLP with 2 Hidden Layers (both size 4) maxIter = 50, stepSize = 0.03, blockSize = 128 (1 hour training time) Neural Network Architecture: MLP-804 - 4 Sigmoid - 4 Sigmoid - 2 Softmax	3 Feature Engineered (Holiday, Delay at Origin/Destination) 10 Numerical (Flight Distance, Hourly Weather) 8 Categorical (Time, Airline Info, Origin, Destination)	Recall: 1.0000 F-2: 0.8358 F-1: 0.6707	Recall: 1.0000 F-2: 0.5378 F-1: 0.3176
GridSearch CV MLP w/ 1 Hidden Layer maxIter = 50, stepSize = 0.01, blockSize = 128 (3 hour training time) Neural Network Architecture: MLP-804 - 10 Sigmoid - 2 Softmax	3 Feature Engineered (Holiday, Delay at Origin/Destination) 10 Numerical (Flight Distance, Hourly Weather) 8 Categorical (Time, Airline Info, Origin, Destination)	Recall: 0.5508 F-2: 0.5712 F-1: 0.6049	Recall: 0.5599 F-2: 0.4807 F-1: 0.3967

Experiment Type	Data Source	Input Features	Train Results	Test Results
With class weights, Num_round = 50, max_depth=6	1 Year OPTW (no downsampling)	10 Numerical (Flight Distance, Hourly Weather) 10 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.4588 F-2: 0.3786 F-1: 0.3000
With class weights, Num_round = 100, max_depth=6,	1 Year OPTW (no downsampling)	10 Numerical (Flight Distance, Hourly Weather) 10 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.4588 F-2: 0.3786 F-1: 0.3000
With class weights, Num_round = 100, scalePosWeight=4, min_child_weight=1, max_depth=6, subsample=0.8, colsample_bytree=0.8	1 Year OPTW (no downsampling)	10 Numerical (Flight Distance, Hourly Weather) 10 Categorical (Time, Airline Info, Origin, Destination)	[not recorded]	Recall: 0.4588 F-2: 0.3786 F-1: 0.3000
(no class weights after downsampling) Num_round = 20, min_child_weight=1, max_depth=6, subsample=0.8, colsample_bytree=0.8	5 Year OPTW (with downsampling)	4 Feature Engineered (Holiday, Delay at Origin/Destination, Avg Delay for Plane) + 10 Numerical (Flight Distance, Hourly Weather) 11 Categorical (Time, Airline Info, Origin, Destination)	Recall: 0.6114 F-2: 0.6231 F-1: 0.6415	Recall: 0.6348 F-2: 5192 F-1: 0.4079
Early stopping: Same parameters as above + except num_round = 1000, num_early_stopping_rounds = 10, eval_metric = "logloss", maximize_evaluation_metrics = False	5 Year OPTW (with downsampling)	4 Feature Engineered (Holiday, Delay at Origin/Destination, Avg Delay for Plane) + 10 Numerical (Flight Distance, Hourly Weather) 11 Categorical (Time, Airline Info, Origin, Destination)	Train: Recall: 0.6259 F-2: 0.6340 F-1: 0.6466 Val: Recall: 0.6673 F-2: 0.6622 F-1: 0.6548	Recall: 0.6066 F-2: 0.4979 F-1: 0.3924

Experiment	Input Features	Test Results
Ensemble Method	GridSearch Logistic Regression Model GridSearch MLP Neural Network Model XGBoost w/o Early Stopping Model	Recall: 0.3229 F-2: 0.2853 F-1: 0.2428

Existing Feature Importance Scores

Conclusion / Next Steps

Conclusion

- Added 4 new features
- 3 sets of models
- Best models (logistic regression)
 - 10 numeric + 10 categorical
 - o Recall: 0.8383; F-2: 0.5009
- Top features
 - Date related
 - Airline ID
 - Origin

Next Steps

- Include new features into model training
- Grid search on XGBoost
- Cross validation
- Clean up end-to-end pipeline
- Gap analysis

Appendix Dataset

Datasets

Airlines Data:

- https://www.transtats.bts.gov/Tables.asp?QO_VQ=EFD&QO_anzr=Nv4yv0r%FDb0-gvzr%FDcr4s1
 4zn0pr%FDQn6n&QO_fu146_anzr=b0-gvzr
- Airline performance data from the TranStats data compilation, specifically focusing on on-time performance of passenger flights (2015) supplied by the Department of Transportation (DOT)
- Weather Data:
 - https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
 - Weather dataset (2015) gathered from the National Oceanic and Atmospheric Administration (NOAA) repository
- Stations Data:
 - Airline Station dataset with the necessary keys for merging Flight data with Weather data
- OTPW Data (Airlines + Weather):
 - Joined dataset provided to us that combines the Airlines and Weather datasets

THANK YOU Questions?