Fourier Transform

Fourier Transform from exponential Fourier series:

$$x_T(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
, $t_0 < t < t_0 + \frac{2\pi}{\omega_0}$

$$c_{k} = \frac{1}{T} \int_{t_{0}}^{t_{0} + \frac{2\pi}{\omega_{0}}} x_{T}(t) e^{-jk\omega_{0}t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jk\omega_0 t} dt$$

$$Tc_k = \int_{-T/2}^{T/2} x_T(t) e^{-jk\omega_0 t} dt$$

$$x_T(t) = x(t), -\infty < t < \infty$$

$$k\omega_0 \rightarrow \omega$$

$$Tc_n = x(\omega)$$

$$x(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

This is called Fourier transform of aperiodic signal x(t).

$$x(t) \stackrel{FT}{\hookrightarrow} x(\omega)$$

Inverse Fourier Transform

$$x_T(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 , $Tc_n = x(\omega)$, $c_n = \frac{x(\omega)}{T}$

$$=\sum_{n=-\infty}^{\infty}\frac{X(\omega)}{T}e^{jn\omega_0t}$$

If
$$\omega_0 = \frac{2\pi}{T} \Longrightarrow T = \frac{2\pi}{\omega_0}$$

$$x_T(t) = \sum\nolimits_{n = -\infty}^{\infty} \frac{X(\omega)}{2\pi} e^{jn\omega_0 t} \omega_0$$

If
$$T \to \infty$$
; $X_T(t) \to x(t)$, $\omega_0 = \frac{2\pi}{T}$, $n\omega_0 \to \omega$, $\omega_0 \to d\omega$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
 is called Inverse Fourier Transform.

Problem:

Find the Fourier transform of $x(t) = e^{-at} u(t)$. Find its magnitude and phase spectrum.

Solution:

$$x(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$x(\omega) = \int_{-\infty}^{\infty} e^{-at} \, u(t) e^{-j\omega t} \, dt = \int_{0}^{\infty} e^{-at} \, e^{-j\omega t} \, dt = \int_{0}^{\infty} e^{-(a+j\omega)t} dt = \frac{-1}{(a+j\omega)} \left\{ e^{-(a+j\omega)t} \right\}_{0}^{\infty}$$

$$x(\omega) = \frac{-1}{(a+j\omega)}(e^{-\infty} - 1) = \frac{1}{(a+j\omega)}$$

$$|x(\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$

ω	$ x(\omega) $
0	1/a
-∞	0
00	0

angle of
$$x(\omega) = -tan^{-1}\left(\frac{\omega}{a}\right)$$

ω	$ x(\omega) $
0	0
-∞	$\frac{\pi}{2}$
∞	$-\frac{\pi}{2}$

Properties of Continuous time Fourier transform

1. Linearity

$$a_1x1(t) + a_2x2(t) = a_1X_1(\omega) + a_2X_2(\omega)$$

2. Time Shifting

$$x(t-t_0) \leftrightarrow e^{-j\omega t_0}X(\omega)$$

3. Frequency Shifting

$$e^{j\omega_0 t} x(t) \leftrightarrow X(\omega - \omega_0)$$

4. Time scaling

$$x(at) \leftrightarrow \frac{1}{|a|} X(\frac{\omega}{a})$$

5. Time Reversal

$$x(-t) = X(-\omega)$$

6. Duality (or symmetry)

$$X(t) \leftrightarrow 2\pi x(-\omega)$$

7. Differentiation in time domain

$$\frac{d}{dt}(x(t)) \leftrightarrow j\omega X(\omega)$$

8. Differentiation in the frequency domain

$$(-jt)x(t) \leftrightarrow \frac{dX(\omega)}{d\omega}$$

9. Integration in time domain

$$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \pi X(0)\delta(\omega) + \frac{1}{j\omega}X(\omega)$$

10. Convolution

$$x_1(t) * x_2(t) \leftrightarrow X_1(\omega)X_2(\omega)$$

11. Multiplication

$$x_1(t)x_2(t) \leftrightarrow \frac{1}{2\pi}X_1(\omega) * X_2(\omega)$$

12. Additional properties

$$x(t) = x_e(t) + x_0(t)$$

Where, $x_e(t)$ and $x_0(t)$ are even and odd components of x(t).

$$X(t) \leftrightarrow X(\omega) = A(\omega) + jB(\omega)$$

Then,
$$X(-\omega) = X^*(\omega)$$

Then
$$x_e(t) \leftrightarrow Re\{X(\omega)\} = A(\omega)$$

$$x_o(t) \leftrightarrow jIm\{X(\omega)\} = jB(\omega)$$

13. Parseval's Relations

$$\int_{-\infty}^{\infty} x_1(t)x_2(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\omega)X_2(-\omega)d\omega$$

$$\int_{-\infty}^{\infty} |x_1(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_1(\omega)|^2 d\omega, \text{ is known as energy theorem.}$$

Problem: Using duality property, find out the Fourier transform $G(j\omega)$ of the signal

$$g(t) = \frac{2}{1+t^2}.$$

Solution:

The FT of g(t) is the x(t) for which $X(\omega) = \frac{2}{1+\omega^2}$

When
$$x(t) = e^{-|t|} \leftrightarrow \frac{2}{1+\omega^2}$$

So as per duality property:

FT of
$$g(t) = 2\pi e^{-|\omega|}$$
.

Some common Fourier Transform pairs

x(t)	$x(\omega)$
$x(t) \ \delta(t)$	1
$\frac{\delta(t)}{\delta(t-t_0)}$	$e^{-j\omega t_0}$
1	$2\pi\delta(\omega)$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\cos \omega_0 t$	$\pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$ $-j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$ 1
$\sin \omega_0 t$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
u(-t)	$\pi\delta(\omega) + \frac{1}{j\omega}$ $\pi\delta(\omega) - \frac{1}{j\omega}$
e^{-at} , $u(t)$ a>0	$\frac{1}{j\omega + a}$
$t e^{-at}$, $u(t)$ a>0	$\frac{1}{(j\omega + a)^2}$ $2a$
$e^{-a t }$ a>0	$ \frac{2a}{a^2 + \omega^2} $ $ e^{-a \omega } $
$\frac{1}{a^2 + t^2}$ $e^{-at^2} \ge 0$, and the second
g u, g	$\sqrt{\frac{\pi}{a}}e^{-\frac{\omega^2}{4a}}$
$P_a(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$	$2a \frac{\sin \omega a}{\omega a}$
sgn t	$\frac{2}{j\omega}$
$\sum_{k=-\infty}^{\infty} \delta(t - kT)$ $sgn at$	$\omega_0 \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0), \omega_0 = \frac{2\pi}{T}$
$\frac{sgn\ at}{\pi t}$	$P_{a}(\omega) = \begin{cases} 1 & \omega < a \\ 0 & \omega > a \end{cases}$