Week 3, R Functions

Charlie

2023-04-22

This week we're intorducing R functions and how to write our own.

Q1. Write a function grade() to determine an overall grade from a vector of student homework assignment scores dropping the lowest single score. If a student misses a homework (i.e. has an NA value) this can be used as a score to be potentially dropped.

```
# Example input vectors to start with student1 <- c(100, 100, 100, 100, 100, 100, 100, 90) student2 <- c(100, NA, 90, 90, 90, 97, 80) student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
```

Guidelines from class - write a working code snippet to solve a simple problem

```
#Straight forward mean
student1 <- c(100, 100, 100, 100, 100, 100, 90)
mean(student1)
```

```
## [1] 98.75
```

However, we need to identify and drop the lowest score for each student.

```
#Which element of the student1 vector is the lowest? which.min(student1)
```

```
## [1] 8
```

If I want to drop (exclude) the lowest score from my mean calculation:

```
#This will return everything BUT the 8th element of my vector student1[-8]
```

```
## [1] 100 100 100 100 100 100
```

Now we can use the answer from which.min to find the answer to our question.

```
#Here is our first snippet of code.
mean(student1[-which.min(student1)])
```

```
## [1] 100
```

For Students 2 and 3 we will have to replace all NAs with 0

Student 2:

```
student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)
x <- student2
is.na(x)
```

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE

```
which( is.na(x))
```

```
## [1] 2
```

We've now identified the NA values we want to mask and replace NA with 0.

```
x[is.na(x)] <- 0
x
```

mean(x)

```
## [1] 79.625
```

Now we just drop the lowest score.

```
x[is.na(x)] <- 0
mean(x[-which.min(x)])</pre>
```

```
## [1] 91
```

Student 3:

```
student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
x <- student3
x[is.na(x)] <- 0
mean(x[-which.min(x)])</pre>
```

```
## [1] 12.85714
```

Now we're nearly there with our snippet!

##Now take the snippet and turn it into a function

4/22/23, 2:20 PM Week 3, R Functions

Every function has 3 parts: - A name (in our case <code>grade()</code>) - Input arguments, a vector of student scores - The body – our snippet

I will do this by selecting Code then Extract Function in Rstudio

```
grades <- function(x) {
    x[is.na(x)] <- 0
    mean(x[-which.min(x)])
}</pre>
```

```
grades(student1)
```

```
## [1] 100
```

```
grades(student2)
```

```
## [1] 91
```

```
grades(student3)
```

```
## [1] 12.85714
```

The code works! We just now need to add our comments to the function so that we can come back to this and understand it.

```
#' Calculate the average scroe for a vector of student scores, dropping the lowest value.
#' Missing values will be treated as 0
#'

#' @param x A numeric vector of student scores.
#'

#' @return Average score
#' @export
#'

#' @examples
#' student <- c(100, NA, 90, 97)
#' grade(student)
#'

#'

grades <- function(x) {
    #treat missing values as 0
    x[is.na(x)] <- 0
    #exclude lowest value from mean
    mean(x[-which.min(x)])}</pre>
```

Q2 Using your grade() function and the supplied gradebook, Who is the top scoring student overall in the gradebook?

```
url <- "https://tinyurl.com/gradeinput"
gradebook <- read.csv(url, row.names = 1)</pre>
```

```
apply(gradebook, 1, grades)
```

```
##
    student-1 student-2 student-3 student-4 student-5 student-6
                                                                       student-7
##
        91.75
                   82.50
                              84.25
                                         84.25
                                                     88.25
                                                                89.00
                                                                           94.00
##
    student-8 student-9 student-10 student-11 student-12 student-13 student-14
        93.75
                   87.75
##
                              79.00
                                         86.00
                                                     91.75
                                                                92.25
                                                                           87.75
##
  student-15 student-16 student-17 student-18 student-19 student-20
        78.75
                   89.50
                              88.00
                                         94.50
##
                                                     82.75
                                                                82.75
```

Can calculate highest perforrer using the apply() function

```
results <- apply(gradebook, 1, grades)
results
```

```
##
    student-1 student-2 student-3 student-4 student-5 student-6
                                                                       student-7
                                                                89.00
                                                                           94.00
##
        91.75
                   82.50
                              84.25
                                         84.25
                                                     88.25
    student-8 student-9 student-10 student-11 student-12 student-13 student-14
##
##
        93.75
                   87.75
                              79.00
                                         86.00
                                                     91.75
                                                                92.25
                                                                           87.75
## student-15 student-16 student-17 student-18 student-19 student-20
##
        78.75
                   89.50
                              88.00
                                         94.50
                                                     82.75
                                                                82.75
```

```
which.max(results)
```

```
## student-18
## 18
```

The highest performing student was student-18

Q3. Which homeowrk was the toughest??

```
avg.scores <- apply(gradebook, 2, mean, na.rm=TRUE)
avg.scores</pre>
```

```
## hw1 hw2 hw3 hw4 hw5
## 89.00000 80.88889 80.80000 89.63158 83.42105
```

```
which.min(avg.scores)
```

```
## hw3
## 3
```

4/22/23, 2:20 PM Week 3, R Functions

```
med.scores <- apply(gradebook, 2, median, na.rm=TRUE)
med.scores

## hw1 hw2 hw3 hw4 hw5
## 89.0 72.5 76.5 88.0 78.0

which.min(med.scores)

## hw2
## 2

Which is better?</pre>
```


Due to variation in the data, the median is a more reliable metric to use when answering this question.

The toughest homeowrk assignment was HW2

boxplot(gradebook)

Q4. From your analysis of the gradebook, which homework was most predictive of overall score?

4/22/23, 2:20 PM Week 3, R Functions

Are the final results (avg score distribtuion) correlated with the results for individual homeworks?

```
masked.gradebook <- gradebook
masked.gradebook[is.na(masked.gradebook)] <- 0
masked.gradebook</pre>
```

```
##
             hw1 hw2 hw3 hw4 hw5
## student-1 100 73 100 88
                             79
## student-2
              85 64 78 89
                             78
## student-3 83 69 77 100
                             77
## student-4
                  0 73 100
                             76
              88
## student-5
              88 100
                     75
                         86
                             79
## student-6
              89 78 100
                         89
                            77
## student-7
              89 100 74
                         87 100
## student-8
              89 100
                     76
                         86 100
## student-9
              86 100
                     77
                         88
## student-10 89 72 79
                          0 76
## student-11 82 66 78
                        84 100
## student-12 100
                 70 75
                        92 100
## student-13 89 100
                     76 100
                             80
## student-14 85 100 77
                         89
                             76
## student-15 85 65
                     76
                         89
## student-16 92 100
                     74
                         89
                             77
## student-17 88 63 100
                         86
                            78
## student-18 91
                  0 100
                         87 100
## student-19 91 68
                     75 86
                             79
## student-20 91
                 68
                     76
                        88
                             76
```

```
cor(results, gradebook$hw1)
```

```
## [1] 0.4250204
```

```
apply(masked.gradebook, 2, cor, x=results)
```

```
## hw1 hw2 hw3 hw4 hw5
## 0.4250204 0.1767780 0.3042561 0.3810884 0.6325982
```

HW5 is the best predictor of overall class grades

Q5. Make sure you save your Quarto document and can click the "Render" (or Rmarkdown"Knit") button to generate a PDF foramt report without errors. Finally, submit your PDF to gradescope.

Knit the document to produce a PDF (or HTML that you'll convert to PDF later if your computer is trash like mine)