Zurich University of Applied Sciences

zh

Machine Learning V07: ML System Design

System development: What to give priority?

Example: Learning to read checks end-to-end

With material from Andrew Y. Ng, Coursera

See also [LeCun et al, "Gradient-Based Learning...", 1998]

zh aw

Educational objectives

- Remember error- and ceiling analysis as well as the initial 24h hack as tools to be successful in ML
- Know how to design and prioritize complete machine learning system pipelines
- Appreciate the elegance of the design that enables end-to-end learning for the check reading application of LeCun et al.

1. SYSTEM DEVELOPMENT: WHAT TO GIVE PRIORITY?

Source: http://www.todayifoundout.com/index.php/2010/09/how-the-word-spam-came-to-mean-junk-message/

Example 1: Building a spam classifier

From: cheapsales@buystufffromme.com

To: stdm@zhaw.ch Subject: Buy now!

Deal of the week! Buy now!
Rolex w4tchs - \$100
Medlcine (any kind) - \$50
Also low cost M0rgages
available.

From: Renate Stadelmann

To: stdm@zhaw.ch

Subject: Holiday plans

Hi Thilo,
was talking to Philipp about
plans for New Year. Sauna and
surfing in winter? ;-)
Love, Renate

Supervised learning task

x: features of email → y: 1 (spam) or 0 (non-spam)

Practical features

List of 50'000 most frequent words in training set

$$x = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{array}{l} \#Thilo \\ \#buy \\ \#deal \\ \#discount, \ x_j = \begin{cases} 1 : word \ occurrs \ in \ mail \\ 0 : otherwise \\ \vdots \\ \#now \\ \vdots \\ \vdots \end{array}$$

Example 1: Building a spam classifier (contd.) How to prioritize *algorithmic* work?

How to best invest the time to make it work (i.e., have low error)?

- Collect lots of data (e.g., "honeypot" project)?
- **Develop** sophisticated **features**?
 - ...based on email routing information from email header
 - ...for message body
 - → Treat "discount" and "discounts" as same word? "Deal" and "Dealer"?
 - → Features about punctuation?
- Develop sophisticated algorithm to detect misspellings?
 - → e.g. "m0rtgage", "med1cine", "w4tches"

Advice

- Take **24h** to implement (rather: **hack**) a **complete system** including scoring
- Use diagnostics to decide where to improve
- In deep learning, follow Andrej Karpathy's recipe to stay sane (see appendix)

Recommendation

- 1. Start with a simple algorithm that can be implemented quickly
 - → Implement it and test it on cross-validation data
- 2. Plot learning curves to diagnose if more data, more features, etc. are likely to help
- Error analysis: Manually examine the CV examples that were misclassified
 - → Is there a **systematic trend** in what type of examples are **misclassified**?

Example 1: Building a spam classifier (contd.)

Error analysis

Assume the following experimental outcome

- $N_{CV} = 500$ emails in CV set
- 100 emails are misclassified

Example 1: Building a spam classifier (contd.)

Error analysis

Assume the following experimental outcome

- $N_{CV} = 500$ emails in CV set
- 100 emails are misclassified
- → Manually examine the 100 errors

Categorization e.g. based on

- 1. Type of email
- 2. Cues (feature candidates) that would have helped the algorithm to classify correctly

Туре	Number
Pharma	12
Replica / faked goods	4
Phishing	53
Other	31

Cues	Number	quite rare
Deliberate misspellings ("m0rgage", "med1cine", etc.)	5	quite rare
Unusual email routing	16	
Unusual punctuation ("!!!!!!!" etc.)	32	this might help

Example 1: Building a spam classifier (contd.) The importance of numerical evaluation (error analysis 2)

Should a stemmer **be used** (e.g., free "Porter stemmer")?

- Treats "discount" / "discounts" / "discounted" / "discounting" as the same word
- Makes e.g. "universe" / "university" indistinguishable
- → Error analysis doesn't help much in deciding

Solution

- **Try** with & without
- Compare numerical results → need a single performance metric for that (e.g. CV error; F-score)

Method	CV error	
Original: without stemming	5%	good idea!
With stemming	3%	
Additional: distinguishing upper vs. lower case	3.2%	doesn't help

- Attention: If classes are **skewed** (e.g., cancer prediction), **regard** recall-precision **trade-off**
 - → Use for example the F-measure instead of pure error (→ compare V03)
 - → Give the rare class the label 1 (or: true)

Example 2: Check reading application

courtesv

amount

Zurich University of Applied Sciences

Problem description:

- Read amount of \$6
- Easy for humans, but time-consuming
- → Automation wanted

legal amount

Challenge:

- Which number?
- Diversity

Example 2: Check reading application (contd.) What part of the *pipeline* to improve next?

Challenge

- Identify correct character string (e.g., «342») on a piece of paper
- Therefore:
 - 1. Detect all handwritten strings
 - 2. [**Identify** correct string (containing the amount)]
 - 3. Find correct segmentation
 - 4. Recognize individual characters

System pipeline

- What part of the pipeline should you spend the most time trying to improve?
- Note: Identification of the correct string is omitted here (could be placed at the end)

Example 2: Check reading application (contd.)

Ceiling analysis: Attributing errors to individual components

Ceiling analysis

1. Baseline → measure the (CV) performance of the complete pipeline

Example 2: Check reading application (contd.)

Ceiling analysis: Attributing errors to individual components

- Baseline → measure the (CV) performance of the complete pipeline
- 2. Replace first component with ground truth (perfect results) → measure performance

Example 2: Check reading application (contd.)

Ceiling analysis: Attributing errors to individual components

- Baseline → measure the (CV) performance of the complete pipeline
- 2. Replace first component with ground truth (perfect results) → measure performance
- 3. Replace next component with ground truth → measure performance

zh

Example 2: Check reading application (contd.)

Ceiling analysis: Attributing errors to individual components

- Baseline → measure the (CV) performance of the complete pipeline
- 2. Replace first component with ground truth (perfect results) → measure performance
- 3. Replace next component with ground truth → measure performance

Zurich University of Applied Sciences

Example 2: Check reading application (contd.)

Ceiling analysis: Attributing errors to individual components

- Baseline \rightarrow measure the (CV) performance of the complete pipeline
- Replace first component with ground truth (perfect results) -> measure performance
- Replace next component with ground truth > measure performance

2. SYSTEM EXAMPLE: LEARNING TO READ CHECKS END-TO-END

Source: https://en.wikipedia.org/wiki/Yann_LeCun#/media/File:Yann_LeCun_at_the_University_of_Minnesota.jpg

A landmark work in Machine Learning

LeCun et al., "Gradient-Based Learning Applied to Document Recognition", 1998

DROC OF THE IEEE NOVEMBER 1008

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

Multilayer Neural Networks trained with the backpropa-Multilayer Neural Networks trained with the backpropa-gation algorithm constitute the best example of a successful Gradient-Based Learning technique. Given an appropriate network architecture, Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns such as handwritten charclassity high-dimensional patterns such as handwritten char-acters, with minimal preprocessing. This paper reviews var-ious methods applied to handwritten character recognition and compares them on a standard handwritten digit recog-nition task. Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are ing recognition.

ically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmenta-tion, recognition, and language modeling. A new learning paradigm, called Graph Transformer Networks (GTN), al-lows and multi-module systems to be trained globally using Gradient-Based methods so as to minimize an overall per-

Two systems for on-line handwriting recognition are de-scribed. Experiments demonstrate the advantage of global training, and the flexibility of Graph Transformer Networks. A Graph Transformer Network for reading bank check is also described. It uses Convolutional Neural Network char-acter recognizers combined with global training techniques to provides record accuracy on business and personal checks It is deployed commercially and reads several million checks

Keywords— Neural Networks, OCR, Document Recogni-tion, Machine Learning, Gradient-Based Learning, Convo-lutional Neural Networks, Graph Transformer Networks, Finite State Transducers

NOMENCLATURE

- GT Graph transformer.
- · GTN Graph transformer network. . HMM Hidden Markov model
- . HOS Heuristic oversegmentation
- K-NN K-nearest neighbor.
- · OCR Optical character recognition.
- · PCA Principal component analysis. · RBF Radial basis function.
- · RS-SVM Reduced-set support vector method.
- . SDNN Space displacement neural network
- SVM Support vector method.
- TDNN Time delay neural network.
- V-SVM Virtual support vector method.

The authors are with the Speech and Image Processing Services Research Laboratory, AT&T Labs-Research, 100 Schulz Drive Red Bank, NJ 07701. E-mail: {yann_leoub_yoshua,haflare}Tersearch_att.com. Yoshua Bengio also with the Département d'Informatique et de Recherche pérationelle. Université de Montréal, C.P. 6128 Succ. Centre-Ville. 2920 Chemin de la Tour, Montréal, Québec, Canada H3C 3J7.

Over the last several years, machine learning techniques particularly when applied to neural networks, have played an increasingly important role in the design of pattern recognition systems. In fact, it could be argued that the availability of learning techniques has been a crucial factor in the recent success of pattern recognition applications such as continuous speech recognition and handwrit-

I INTRODUCTION

is made possible by recent progress in machine learning and computer technology. Using character recognition as a case study, we show that hand-crafted feature extraction can be advantageously replaced by carefully designed learning machines that operate directly on pixel images. Using document understanding as a case study, we show that the traditional way of building recognition systems by manually integrating individually designed modules can be replaced by a unified and well-principled design paradigm, called Graph Transformer Networks, that allows training all the modules to optimize a global performance criterion.

Since the early days of pattern recognition it has been known that the variability and richness of natural data, be it speech, glyphs, or other types of patterns, make it almost impossible to build an accurate recognition system entirely by hand. Consequently, most pattern recognition systems are built using a combination of automatic learning techniques and hand-crafted algorithms. The usual method of recognizing individual patterns consists in dividing the system into two main modules shown in figure 1. The first module, called the feature extractor, transforms the input patterns so that they can be represented by lowdimensional vectors or short strings of symbols that (a) can be easily matched or compared, and (b) are relatively invariant with respect to transformations and distortions of the input patterns that do not change their nature. The feature extractor contains most of the prior knowledge and is rather specific to the task. It is also the focus of most of the design effort, because it is often entirely hand-crafted. The classifier, on the other hand, is often general-purpose and trainable. One of the main problems with this approach is that the recognition accuracy is largely determined by the ability of the designer to come up with an appropriate set of features. This turns out to be a daunting task which, unfortunately, must be redone for each new problem. A large amount of the pattern recognition literature is devoted to describing and comparing the relative

Outline

- Gradient-Based MI ✓
- Convolutional Neural Nets ✓ (→ DL module)
- Comparison with other Methods
- Multi-Module Systems & Graph Transformer Networks (GTNs)
- Multiple Object Recognition & Heuristic Oversegmentation
- Space Displacement Neural Networks
- GTN's as General Transducers
- On-Line Handwriting Recognition System
- Check Reading System
- → GTNs have not been adopted widely, but pioneered end-to-end deep learning
- → Here explained in some completeness as an historical example

Standard and sequential supervised learning

Supervised Learning

Typical assumptions on data:

- i.i.d.
- Surrounding tasks deemed simple(r)

Sequential Supervised Learning

Typical assumptions on data:

- Sequence information matters
- Overall task has many challenging components
 (e.g., segmentation → recognition → sequence assembly)

See M. Gori, «What's Wrong with Computer Vision?», ANNPR'18

zh

Approaches to classifying sequential data

«A bird in the hand...» approach

 Train standard classifier, extend it using a sliding window and post-processing (e.g., smoothing)

Direct modeling approach

 Train a generative (statistical) model of the sequence generation process (e.g., HMM)

«...two in the bush» approach

 Build a unified pattern recognition processing chain, optimize it globally with a unique criterion

See also:

- T.G. Dietterich, «Machine Learning for Sequential Data A Review», 2002
- J. Choi, «Deep Learning for Sequential Data», 2018 (online: http://sail.unist.ac.kr/talks/Deep_Learning_Winter_School_Time_Series.pdf)

zh

Proposed Solution: Global Learning

Example: Reading handwritten strings

Challenge

- Identify correct character string («342») on a piece of paper
- Therefore: Find correct segmentation & recognize individual characters

Images sources for this section: → see references slide in appendix

Global Learning Learning end-to-end

What we know: Traditional pattern recognition system architecture

best interpretation Built by hand and Linguistic/Contextual grammar manually adjusted. postprocessor recognition hypotheses Hand crafted features. Classifier trained on **Character Recognizer** segmented characters. segmentation hypotheses Built by hand and Segmentor manually adjusted. \$5.34 field image Built by hand and Field locator manually adjusted. document image five Dollars...

What we want: Train all parameters to optimize a global performance criterion

Foundation: Gradient-based learning

i.e., gradient descent

A trainable system composed of heterogeneous modules:

Backpropagation can be used if...

- cost (loss) function is differentiable w.r.t. parameters
- modules are differentiable w.r.t. parameters
- → Gradient-based learning is the unifying concept behind many machine learning methods (→ see V02)
- → Object-oriented design approach: Each module is a class with a fprop() and bprop() method

→ Graph transformer network (GTN)

- General architecture to train individual components collectively via backpropagation
- ...using graph structures as input and output

zh

Graph Transformer Networks

Network of pattern recognition modules that successively refine graph representations of the input

GTNs

 Operate on graphs of the input (b) instead of fixed-size feature vectors (a)

 Graph: DAG with numerical information ("penalties") at the arcs

Layer Graph Transformer

Layer Graph Transformer

(a) (b)

→ GTN takes gradients w.r.t. both module parameters and numerical data at input arcs

zh

Example: Heuristic over-segmentation ...for reading handwritten strings

Zurich University of Applied Sciences

Example: Heuristic over-segmentation

...for reading handwritten strings

«Viterbi» training

«Viterbi» training

Problems:

- 1. Trivial solution possible (Recognizer ignores input & sets all outputs to small values)
- 2. Penalty does not take competing answers into account (i.e., ignores training signals)

«Viterbi» training

Problems:

- 1. Trivial solution possible (Recognizer ignores input & sets all outputs to small values)
- 2. Penalty does not take competing answers into account (i.e., ignores training signals)

«Viterbi» training

Discriminative training

Solved: Discriminative training builds the class-"separating surfaces rather than modeling individual classes independently of each other'

L=0 if best path is a correct path.

How to train? Discriminative training wins

Problems:

- Trivial solution possible (Recognizer ignores input & sets all outputs to small values)
- Penalty does not take competing answers into account (i.e., ignores training signals)

Zurich University

of Applied Sciences

«Viterbi» training

Discriminative training

Solved: Discriminative training builds the class-"separating surfaces rather than modeling individual classes independently of each other' L=0 if best path is a correct path.

Zurich University of Applied Sciences

How to train? Discriminative training wins

Problems:

- Trivial solution possible (Recognizer ignores input & sets all outputs to small values)
- Penalty does not take competing answers into account (i.e., ignores training signals)

«Viterbi» training

Discriminative training

Remarks

Discriminative training

- Uses all available training signals
- Utilizes "penalties", not probabilities
 - → No need for normalization
 - → Enforcing normalization is "complex, inefficient, time consuming, illconditions the loss function" [according to paper]
- Is the easiest/direct way to achieve the objective of classification (as opposed to Generative training, that solves the more complex density estimation task as an intermediary result)

List of possible GT modules

- All building blocks of (C)NNs (layers, nonlinearities etc.)
- Multiplexer (though not differentiable w.r.t. to switching input)
 - → can be used to dynamically rewire GTN architecture per input
- **min**-function (though not differentiable everywhere)
- Loss function

Conclusions?

Less need for manual labeling

• **Ground truth only** needed **for final** result (not for every intermediate result like e.g. segmentation)

Early errors can be adjusted later due to...

- ...unified training of all pattern recognition modules under one regime
- ...postponing hard decisions until the very end

No call upon probability theory for modeling / justification

- Occam's razor: Choose easier discriminative model over generative one Vapnik: Don't solve a more complex problem than necessary
- No need for normalization when dealing with "penalties" instead of probabilities → no "other class" examples needed
- Less constrains on system architecture and module selection

Conclusions?

Zurich University

Less need for manual labeling

 Ground truth only needed for final result (not for every intermediate result like e.g. segmentation)

served learning better

Early errors can be adjusted later due to...

- ...unified training of all pattern recognition modules under one regime
- ...postponing hard decisions until the very end

No call upon probability theory for modeling / justification

- Occam's razor: Choose easier discriminative model over generative one Vapnik: Don't solve a more complex problem than necessary
- No need for normalization when dealing with "penalties" instead of probabilities → no "other class" examples needed
- Less constrains on system architecture and module selection

*) Meier, Stadelmann, Stampfli, Arnold & Cieliebak (2017). *«Fully Convolutional Neural Networks for Newspaper Article Segmentation»*. ICDAR'2017. Tuggener, Elezi, Schmidhuber & Stadelmann (2018). *«Deep Watershed Detector for Music Object Recognition»*. ISMIR'2018.

Stadelmann et al. (2018). *«Deep Learning in the Wild»*. ANNPR'2018.

Gregory To Speak

Gregory To Speak

At Coalition Rally

the Coalition Rally

The second of the coality of t

possible without crop marks?

Review

- ML systems are pipelines composed of individual components that can be developed collaboratively in a team
- Do ceiling analysis to decide which component in the pipeline is most likely to alter the result for good
- Do qualitative analysis of wrongly predicted examples to get insight what is going wrong
- Do numerical error analysis (i.e., compare CV scores) to prioritize algorithmic ideas
- Have a single performance metric (e.g., error or F-measure) to monitor the evolution of your system continuously
- Consider end-to-end training (global optimization via deep learning)

System design, expanded Reading & discussion task

GTNs are an historical example of end-to-end training; nowadays, deep learning is frequently used in this respect, and researchers strive to make more and more general functions learnable. Read the article *«Reinforcement Learning, Fast and Slow»* by Botvinick et al. (Trends in Cog. Sci., Vol. 23, No. 5, 2019*) and get an overview.

Then discuss at your table:

- What is reinforcement learning (RL)
- What is fast and slow learning in ML? In biological learning?
- How can current trends in RL help ML systems spread the range of their applicability?
- Is there a connection to fast and slow thinking (Kahneman, «Thinking, fast and slow», 2011**)?

*) Online: https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(19)30061-0)

^{**)} Online: https://en.wikipedia.org/wiki/Thinking, Fast and Slow

APPENDIX

zh

Karpathy's recipe for neural network training

See http://karpathy.github.io/2019/04/25/recipe/

- 1 Become one with the data
- 2. Set up the end-to-end training/evaluation skeleton + get dumb baselines
 - a) fix random seed
 - b) simplify (no augmentation, no fanciness, ...)
 - c) evaluate on full test set to add significance
 - d) verify loss @ init
 - e) initialize well
 - f) human baseline
 - g) input-independent baseline
 - h) overfit one batch
 - i) verify decreasing training loss
 - j) visualize just before the net
 - k) visualize prediction dynamics on fixed test batch
 - I) use backprop to chart dependencies
 - m) generalize a special case
- 3. Overfit
 - a) picking the model (don't be a hero)
 - b) adam is safe
 - c) complexify only one at a time
 - d) do not trust learning rate decay defaults

4. Regularize

- a) get more data
- b) data augment
- c) creative augmentation
- d) pretrain
- e) stick with supervised learning
- f) smaller input dimensionality
- g) smaller model size
- h) decrease the batch size
- i) use dropout (2D for CNNs; careful with batchnorm)
- i) increase weight decay
- k) early stopping to catch best model before overfitting
- I) try a larger (early stopped) model

5. Tune

- a) random over grid search
- b) hyper-parameter optimization
- 6. Squeeze out the juice
 - a) Ensembles (tops out after ~5 models)
 - b) leave it training

For RL-specific advice and a general research methodology, see:

- http://amid.fish/reproducing-deep-rl
- https://stdm.github.io/Great-methodology-delivers-great-theses/

zh

Further reading for end-to-end learning

- Original short paper: Bottou, Bengio & LeCun, "Global Training of Document Processing Systems using Graph Transformer Networks", 1997
 http://www.iro.umontreal.ca/~lisa/pointeurs/bottou-lecun-bengio-97.pdf
- Landmark long paper: LeCun, Bottou, Bengio & Haffner, "Gradient-Based Learning Applied to Document Recognition", 1998
 http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
- Slide set by the original authors: Bottou, "Graph Transformer Networks", 2001 http://leon.bottou.org/talks/gtn
- Overview: Dietterich, "Machine Learning for Sequential Data: A Review", 2002
 http://eecs.oregonstate.edu/~tgd/publications/mlsd-ssspr.pdf
- Recent work: Collobert, "Deep Learning for Efficient Discriminative Parsing", 2011 http://ronan.collobert.com/pub/matos/2011_parsing_aistats.pdf

