

BAŞKENT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM-202 DEVRE TEORISI-2 LABORATUVARI

DENEY-4GÜÇ KOMPANZASYONU ve GÜÇ ÇARPANI DÜZELTİMİ

AMAÇ: Sinüsoidal devrelerde güç çarpanını (power factor) düzeltmeye çalışmaktır.

KURAMSAL BİLGİ: Örnek olarak; Şekil-1' de indüktif bir yükün güç çarpanı açısı sıfıra yaklaştırılmaktadır.

Bunun için; yüke paralel olarak bir kapasitör bağlanır. Eşdeğer empedansın gerçel yapılmasına çalışılır. Bu işleme *güç çarpanı düzeltimi* (power factor correction) adı verilir.

Şekil-1

ÖN ÇALIŞMA:

- 1. Şekil-1' deki devrede kaynak ve yük (çıkış) voltajlarının aynı fazda olması için yüke bağlanması gereken C' nin değerini hesaplayınız.
- 2. Şekil-2' deki devrede R_L 'ye maksimum gücün transfer edilmesi için R_L 'nin alması gereken değer ne olmalıdır?

DENEY:

1. Şekil-1'deki devreyi önce kapasitörsüz, sonra Tablo-1'de verilen C değerleri ile kurun ve ölçümleri kaydedin.

C	V _{out}	Δt (giriş-çıkış)
10 nF		
2.2 nF		
470 pF		

Tablo-1

2. Şekil-2'deki devrede Tablo-2 ile verilen dirençleri koyarak R_L'nin ortalama gücünü hesaplayınız.

Şekil-2

$ m R_L$	$ \mathbf{V_p} $	$P_{RL} = 0.5 V_{out} ^2 / R_L$
47		
90		
150		
430		
1k		
2.2k		

Tablo-2

SONUÇLAR ve YORUM

- **1.** Güç çarpanını 1'e yaklaştırmak istememizin sebebi nedir? Bu nasıl sağlanıyor? Devreye paralel bir kapasitör eklemenin devreye etkisi ne olmuştur?
- 2. İkinci devrede hangi R_L değeri için ortalama güç maksimum çıktı? Neden? Yorumlayın.