

# **RocksDB Festival**

Supported by IITP, StarLab.

August 23, 2021 송인호**,** 한예진

inhoinno@dankook.ac.kr , hbb97225@naver.com

TeamName: 멘탈모델을 만들고 싶어요



#### Contents

#### Last Week

- ✓ Leveled vs Universal Compaction Comparison
  - 13일 meeting feedback 정리
  - KSC 논문 그림 실험 재현
  - Read Amplification

#### This Week

- 관련 논문 조사
- Compaction 코드 리뷰
- KSC 논문 작성 진행

















# Read Amplification

How to estimate Read Amplification Factor?

$$RA = \frac{\text{READ\_AMP\_TOTAL\_READ\_BYTES}}{\text{READ\_AMP\_ESTIMATE\_USEFUL\_BYTES}}$$

$$= \frac{$$
실제  $read$ 에 사용된 총  $byte$  수  $load$ 된  $data\ block$ 의 총  $byte$  수

#### include/rocksdb/statistics.h

# // Read amplification statistics. // Read amplification can be calculated using this formula // (READ\_AMP\_TOTAL\_READ\_BYTES / READ\_AMP\_ESTIMATE\_USEFUL\_BYTES) // // REQUIRES: ReadOptions::read\_amp\_bytes\_per\_bit to be enabled READ\_AMP\_ESTIMATE\_USEFUL\_BYTES, // Estimate of total bytes actually used.

```
// REQUIRES: ReadOptions::read_amp_bytes_per_bit to be enabled

READ_AMP_ESTIMATE_USEFUL_BYTES, // Estimate of total bytes actually used.

READ_AMP_TOTAL_READ_BYTES, // Total size of loaded data blocks.
```

#### include/rocksdb/table.h

```
// If used, For every data block we load into memory, we will create a bitmap
// of size ((block_size / `read_amp_bytes_per_bit`) / 8) bytes. This bitmap
// will be used to figure out the percentage we actually read of the blocks.

// value => memory usage (percentage of loaded blocks memory)

// 1 => 12.50 %

// 2 => 06.25 %

// 4 => 03.12 %

// 8 => 01.56 % // Default: 0 (disabled)

// 16 => 00.78 % uint32_t read_amp_bytes_per_bit = 0;
```





# LVL vs Univ Read Amplification





Tiered Compaction (≠ RocksDB Universal Compaction)

- Readrandom
  - ✓ No difference.... (→ Due to Bloom filter)
- Range query
  - ✓ Big difference !!!





#### LVL vs Univ Read Amflification: Readrandom

- Readrandom result :: Read amplification
  - √ (K16, V64 readrandom, ~10GB)



- Bloom filters are useful for single-key lookups ("Is key 42 in SSTable?")
- No difference between LVL and Univ compaction style.





# LVL vs Univ Read Amplification: Rangequery

#### Range scan result :: Read amplification

✓ (K16, V64, seek random, ~10GB)

Range Scan: Read amplification comparison between different compaction style



- Bloom filters cannot handle range queries ("Are there keys between 42 and 1000 in the SSTable?")
- Big difference between LVL and Univ compaction style





# LVL vs Univ Read Amplification: Rangequery

- Range scan result :: Hit ratio
  - √ (K16, V64, seek random, ~10GB)



- Bloom filters cannot handle range queries

  ("Are there keys between 42 and 1000 in the SSTable?")
- Big difference between LVL and Univ compaction style





# LVL vs Univ Space Amplification

#### How to estimate Space Amplification Factor?

**Analyzing Space-Amplification.** We define space-amplification as the factor *amp* by which the overall number of entries N is greater than the number of unique entries unq:  $amp = \frac{N}{unq} - 1$ .

**Space-Amplification.** Levels 1 to L-1 contain a fraction of  $\frac{1}{T}$  of the dataset, and so they may render up to this fraction of entries obsolete at the largest level. In Level L, at most Z-1 of the runs may be completely filled with obsolete entries. We model space-amplification as the sum of these terms in Equation 13.

$$amp = Z - 1 + \frac{1}{T} \tag{13}$$

Niv Dayan, Stratos Idreos, Dostoevsky: BetterSpace-Time Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging, SIGMOD '18





# Discussion





