CS 577- Intro to Algorithms

Dynamic Programming (Part 2)

Dieter van Melkebeek

September 24, 2020

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Examples

- Computing Fibonacci numbers
- Weighted interval scheduling

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Examples

- Computing Fibonacci numbers
- Weighted interval scheduling
- Knapsack problem
- RNA secondary structure

Setting

Setting

▶ System consisting of *n* components.

Setting

- System consisting of *n* components.
- ► Each component can be in any of a finite number of states.

Setting

- System consisting of *n* components.
- ► Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Setting

- System consisting of *n* components.
- ► Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Notation

 $\mathsf{OPT}(I)$ denotes the optimal value of the objective for instance I.

Setting

- System consisting of *n* components.
- ▶ Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Notation

 $\mathsf{OPT}(I)$ denotes the optimal value of the objective for instance I.

Setting

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Notation

 $\mathsf{OPT}(I)$ denotes the optimal value of the objective for instance I.

Weighted interval scheduling

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$, end time $e_i \in \mathbb{R}$, and importance $w_i \in \mathbb{R}$.

Setting

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Notation

 $\mathsf{OPT}(I)$ denotes the optimal value of the objective for instance I.

Weighted interval scheduling

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$, end time $e_i \in \mathbb{R}$, and importance $w_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and $\sum_{i \in S} w_i$ is maximized.

Principle

Optimal solution to I with additional constraint that component i^* is set to s^* can be expressed in terms of optimal solutions to instances I' without additional constraints and fewer components.

Principle

Optimal solution to I with additional constraint that component i^* is set to s^* can be expressed in terms of optimal solutions to instances I' without additional constraints and fewer components.

Recursion on input a nontrivial instance I

- 1. Pick some component i^* .
- 2. For all possible states s^* for i^* , find optimal solution to I with i^* set to s^* .
- 3. Return best one.

Principle

Optimal solution to I with additional constraint that component i^* is set to s^* can be expressed in terms of optimal solutions to instances I' without additional constraints and fewer components.

Recursion on input a nontrivial instance I

- 1. Pick some component i^* .
- 2. For all possible states s^* for i^* , find optimal solution to I with i^* set to s^* .
- 3. Return best one.

Weighted interval scheduling

 $\mathsf{OPT}(I) = \mathsf{max}(\mathsf{OPT}(I \; \mathsf{without} \; i^*), w_{i^*} + \mathsf{OPT}(I \; \mathsf{without} \; C(i^*))$ where $C(i^*)$: meetings that overlap with i^* .

Approach

Approach

► State reduction: What (minimal) information about decisions made suffices to continue the process?

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

Weighted interval scheduling

Meetings in given order:

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

Weighted interval scheduling

Meetings in given order: subsets of meetings considered / to consider

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

Weighted interval scheduling

Meetings in given order: subsets of meetings considered / to consider $-2^{\Theta(n)}$ distinct subproblems

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

- Meetings in given order: subsets of meetings considered / to consider $-2^{\Theta(n)}$ distinct subproblems
- ▶ Meetings in order of earliest deadline first:

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

- Meetings in given order: subsets of meetings considered / to consider $-2^{\Theta(n)}$ distinct subproblems
- ▶ Meetings in order of earliest deadline first: prefixes / suffixes

Approach

- ► State reduction: What (minimal) information about decisions made suffices to continue the process?
- Explicit description of subproblems: What (minimal) set of parameters suffice to describe all subproblems?

- Meetings in given order: subsets of meetings considered / to consider $-2^{\Theta(n)}$ distinct subproblems
- ▶ Meetings in order of earliest deadline first: prefixes / suffixes $-\Theta(n)$ distinct subproblems

Knapsack Problem Problem

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value

 $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

Principle of optimality

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

Principle of optimality

► Case $i^* \notin S$:

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

Principle of optimality

► Case $i^* \notin S$: Remains to solve given instance with i^* removed.

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

- ► Case $i^* \notin S$: Remains to solve given instance with i^* removed.
- ▶ Case $i^* \in S$

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

- ► Case $i^* \notin S$: Remains to solve given instance with i^* removed.
- ▶ Case $i^* \in S$ (only an option if $w_{i^*} \leq W$):

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

- ► Case $i^* \notin S$: Remains to solve given instance with i^* removed.
- ► Case $i^* \in S$ (only an option if $w_{i^*} \leq W$): Remains to solve given instance with i^* removed and weight limit $W - w_{i^*}$.

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

- ► Case $i^* \notin S$: Remains to solve given instance with i^* removed.
- ► Case $i^* \in S$ (only an option if $w_{i^*} \leq W$): Remains to solve given instance with i^* removed and weight limit $W - w_{i^*}$.

$$\mathsf{OPT}(I) = \mathsf{max} (\mathsf{OPT}(I \; \mathsf{without} \; i^*), \ v_{i^*} + \mathsf{OPT}(I \; \mathsf{without} \; i^* \; \mathsf{and} \; \mathsf{weight} \; \mathsf{limit} \; W - w_{i^*}))$$

Problem

Input: items $i \in [n]$ specified by weight $w_i \in \mathbb{Z}^+$ and value $v_i \in \mathbb{R}$; weight limit $W \in \mathbb{Z}^+$

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized.

- ► Case $i^* \notin S$: Remains to solve given instance with i^* removed.
- ► Case $i^* \in S$ (only an option if $w_{i^*} \leq W$): Remains to solve given instance with i^* removed and weight limit $W - w_{i^*}$.

$$\mathsf{OPT}(I) = \mathsf{max} (\mathsf{OPT}(I \; \mathsf{without} \; i^*), \ v_{i^*} + \mathsf{OPT}(I \; \mathsf{without} \; i^* \; \mathsf{and} \; \mathsf{weight} \; \mathsf{limit} \; W - w_{i^*}))$$

► State reduction:

State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification:

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- ► Subproblem specification: $OPT(k, w) = OPT(\text{items } \{k, ..., n\} \text{ and weight limit } w)$

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification: $\mathsf{OPT}(k,w) = \mathsf{OPT}(\mathsf{items}\ \{k,\ldots,n\} \ \mathsf{and}\ \mathsf{weight}\ \mathsf{limit}\ w)$ where $1 \le k \le n+1$ and $0 \le w \le W$
- Recurrence: OPT(k, w) =

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification: $\mathsf{OPT}(k,w) = \mathsf{OPT}(\mathsf{items}\ \{k,\ldots,n\} \ \mathsf{and}\ \mathsf{weight}\ \mathsf{limit}\ w)$ where $1 \le k \le n+1$ and $0 \le w \le W$
- Recurrence: $OPT(k, w) = max(OPT(k+1, w), v_k + OPT(k+1, w-w_k))$ only if $w_k \le w$

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification: $\mathsf{OPT}(k,w) = \mathsf{OPT}(\mathsf{items}\ \{k,\ldots,n\} \ \mathsf{and}\ \mathsf{weight}\ \mathsf{limit}\ w)$ where $1 \le k \le n+1$ and $0 \le w \le W$
- Recurrence: $OPT(k, w) = \max(OPT(k+1, w), v_k + OPT(k+1, w-w_k))$ only if $w_k \le w$
- Base cases

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification: $\mathsf{OPT}(k,w) = \mathsf{OPT}(\mathsf{items}\ \{k,\ldots,n\} \ \mathsf{and}\ \mathsf{weight}\ \mathsf{limit}\ w)$ where $1 \le k \le n+1$ and $0 \le w \le W$
- Recurrence: $OPT(k, w) = \max(OPT(k+1, w), v_k + OPT(k+1, w-w_k))$ only if $w_k \le w$
- ▶ Base cases (k = n + 1):

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification: $\mathsf{OPT}(k,w) = \mathsf{OPT}(\mathsf{items}\ \{k,\ldots,n\} \ \mathsf{and}\ \mathsf{weight}\ \mathsf{limit}\ w)$ where $1 \le k \le n+1$ and $0 \le w \le W$
- Recurrence: $OPT(k, w) = \max(OPT(k+1, w), v_k + OPT(k+1, w-w_k))$ only if $w_k \le w$
- ▶ Base cases (k = n + 1): OPT(n + 1, w) = 0

- State reduction: $\Theta(n \cdot W)$ states last item considered, total weight thus far
- Subproblem specification: $\mathsf{OPT}(k,w) = \mathsf{OPT}(\mathsf{items}\ \{k,\ldots,n\} \ \mathsf{and}\ \mathsf{weight}\ \mathsf{limit}\ w)$ where $1 \le k \le n+1$ and $0 \le w \le W$
- Recurrence: $OPT(k, w) = \max(OPT(k+1, w), v_k + OPT(k+1, w-w_k))$ only if $w_k \le w$
- ▶ Base cases (k = n + 1): OPT(n + 1, w) = 0
- ightharpoonup Answer: OPT(1, W)

Pseudocode

```
1: procedure RETRIEVE-SOLUTION

2: S \leftarrow \emptyset

3: w \leftarrow W

4: for k = 1 to n do

5: if w_k \leq w cand \mathrm{OPT}(k, w) = v_k + \mathrm{OPT}(k+1, w-w_k)

6: then S \leftarrow S \cup \{k\}; w \leftarrow w-w_k

7: return S
```

Pseudocode

```
1: procedure RETRIEVE-SOLUTION

2: S \leftarrow \emptyset

3: w \leftarrow W

4: for k = 1 to n do

5: if w_k \leq w cand \mathrm{OPT}(k, w) = v_k + \mathrm{OPT}(k+1, w-w_k)

6: then S \leftarrow S \cup \{k\}; w \leftarrow w-w_k

7: return S
```

Pseudocode

```
1: procedure RETRIEVE-SOLUTION

2: S \leftarrow \emptyset

3: w \leftarrow W

4: for k = 1 to n do

5: if w_k \leq w cand \mathrm{OPT}(k, w) = v_k + \mathrm{OPT}(k+1, w-w_k)

6: then S \leftarrow S \cup \{k\}; w \leftarrow w-w_k

7: return S
```

Analysis

▶ Time: $O(n \cdot W)$ with or without retrieval.

Pseudocode

```
1: procedure RETRIEVE-SOLUTION

2: S \leftarrow \emptyset

3: w \leftarrow W

4: for k = 1 to n do

5: if w_k \leq w cand \mathrm{OPT}(k, w) = v_k + \mathrm{OPT}(k+1, w-w_k)

6: then S \leftarrow S \cup \{k\}; w \leftarrow w-w_k

7: return S
```

- ▶ Time: $O(n \cdot W)$ with or without retrieval.
- ▶ Space: $O(n \cdot W)$ with retrieval; O(W) without.

DNA

DNA

- ▶ String over $\{A, C, G, T\}$
- ▶ Complementary strands: $A \sim T$ and $C \sim G$

DNA

- ▶ String over $\{A, C, G, T\}$
- ▶ Complementary strands: $A \sim T$ and $C \sim G$

RNA

DNA

- ▶ String over $\{A, C, G, T\}$
- ▶ Complementary strands: $A \sim T$ and $C \sim G$

RNA

- **▶** String over {*A*, *C*, *G*, *U*}
- Single strand
- ▶ Self-stabilizes forming bonds $A \sim U$ and $C \sim G$

DNA

- ▶ String over $\{A, C, G, T\}$
- ▶ Complementary strands: $A \sim T$ and $C \sim G$

RNA

- ▶ String over $\{A, C, G, U\}$
- Single strand
- lacktriangle Self-stabilizes forming bonds $A\sim U$ and $C\sim G$
- Example: Escherichia coli

```
Input: string R[1, ..., n] over alphabet \{A, C, G, U\}
```

Input:

string R[1, ..., n] over alphabet $\{A, C, G, U\}$

Output:

Input:

string R[1, ..., n] over alphabet $\{A, C, G, U\}$

Output:

set S of pairs $(i,j) \in [n] \times [n]$ with i < j of maximum size |S| s.t.:

▶ [Complementarity] For each $(i,j) \in S$, $R[i] \sim R[j]$.

Input:

string R[1, ..., n] over alphabet $\{A, C, G, U\}$

Output:

- ▶ [Complementarity] For each $(i,j) \in S$, $R[i] \sim R[j]$.
- ▶ [Matching] Each $i \in [n]$ appears in at most one pair of S.

Input:

string R[1, ..., n] over alphabet $\{A, C, G, U\}$

Output:

- ▶ [Complementarity] For each $(i,j) \in S$, $R[i] \sim R[j]$.
- ▶ [Matching] Each $i \in [n]$ appears in at most one pair of S.
- ▶ [No sharp turns] For each $(i,j) \in S$, $j \ge i + 5$.

Input:

string R[1, ..., n] over alphabet $\{A, C, G, U\}$

Output:

- ▶ [Complementarity] For each $(i,j) \in S$, $R[i] \sim R[j]$.
- ▶ [Matching] Each $i \in [n]$ appears in at most one pair of S.
- ▶ [No sharp turns] For each $(i,j) \in S$, $j \ge i + 5$.
- ▶ [No crossings] For no $(i,j), (k,\ell) \in S$, $i < k < j < \ell$.

Algorithm

Algorithm

Principle of optimality

► Case position 1 is not matched:

Principle of optimality

Case position 1 is not matched: Remains to solve problem for R[2,...,n].

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \ge 5$ and $R[1] \sim R[k]$):

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \geq 5$ and $R[1] \sim R[k]$): Remains to solve problem for $R[2, \ldots, k-1]$ and for $R[k+1, \ldots, n]$.

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \ge 5$ and $R[1] \sim R[k]$): Remains to solve problem for $R[2, \ldots, k-1]$ and for $R[k+1, \ldots, n]$.

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \ge 5$ and $R[1] \sim R[k]$): Remains to solve problem for $R[2, \ldots, k-1]$ and for $R[k+1, \ldots, n]$.

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \ge 5$ and $R[1] \sim R[k]$): Remains to solve problem for $R[2, \ldots, k-1]$ and for $R[k+1, \ldots, n]$.

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \le i \le j \le n$.

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \ge 5$ and $R[1] \sim R[k]$): Remains to solve problem for $R[2, \ldots, k-1]$ and for $R[k+1, \ldots, n]$.

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \leq i \leq j \leq n$.

Recurrence (for
$$i < j$$
)

$$OPT(i,j) = max(OPT(i+1,j),$$

Principle of optimality

- Case position 1 is not matched: Remains to solve problem for R[2,...,n].
- Case position 1 is matched with k (only an option if $k \ge 5$ and $R[1] \sim R[k]$): Remains to solve problem for $R[2, \ldots, k-1]$ and for $R[k+1, \ldots, n]$.

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j]) \text{ where } 1 \leq i \leq j \leq n.$$

Recurrence (for
$$i < j$$
)

$$\begin{aligned} \mathsf{OPT}(i,j) &= \mathsf{max} \left(\mathsf{OPT}(i+1,j), \right. \\ \mathsf{max}_{i+5 < k < j, R[i] \sim R[k]} (1 + \mathsf{OPT}(i+1,k-1) + \mathsf{OPT}(k+1,j)) \right) \end{aligned}$$

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \le i \le j \le n$.

Recurrence (for
$$i < j$$
)

$$\begin{aligned} &\mathsf{OPT}(i,j) = \max(\mathsf{OPT}(i+1,j), \\ &\max_{i+5 \leq k \leq j, R[i] \sim R[k]} (1 + \mathsf{OPT}(i+1,k-1) + \mathsf{OPT}(k+1,j))) \end{aligned}$$

Subproblem specification

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \leq i \leq j \leq n$.

Recurrence (for i < j)

$$\begin{aligned} \mathsf{OPT}(i,j) &= \mathsf{max} \big(\mathsf{OPT}(i+1,j), \\ \mathsf{max}_{i+5 \leq k \leq j, R[i] \sim R[k]} \big(1 + \mathsf{OPT}(i+1,k-1) + \mathsf{OPT}(k+1,j) \big) \big) \end{aligned}$$

Time

Subproblem specification

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \leq i \leq j \leq n$.

Recurrence (for i < j)

$$\begin{aligned} \mathsf{OPT}(i,j) &= \mathsf{max} \left(\mathsf{OPT}(i+1,j), \right. \\ \mathsf{max}_{i+5 \leq k \leq j, R[i] \sim R[k]} (1 + \mathsf{OPT}(i+1,k-1) + \mathsf{OPT}(k+1,j)) \right) \end{aligned}$$

Time

- $ightharpoonup \Theta(n^2)$ table entries
- \triangleright O(n) operations to evaluate recurrence for a given table entry
- $ightharpoonup O(n^3)$ time overall

Subproblem specification

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \leq i \leq j \leq n$.

Recurrence (for i < j)

$$\begin{aligned} \mathsf{OPT}(i,j) &= \mathsf{max} \left(\mathsf{OPT}(i+1,j), \\ \mathsf{max}_{i+5 \leq k \leq j, R[i] \sim R[k]} (1 + \mathsf{OPT}(i+1,k-1) + \mathsf{OPT}(k+1,j)) \right) \end{aligned}$$

Time

- \triangleright $\Theta(n^2)$ table entries
- \triangleright O(n) operations to evaluate recurrence for a given table entry
- $ightharpoonup O(n^3)$ time overall

Space

Subproblem specification

$$\mathsf{OPT}(i,j) = \mathsf{OPT}(R[i,\ldots,j])$$
 where $1 \leq i \leq j \leq n$.

Recurrence (for i < j)

$$\begin{aligned} \mathsf{OPT}(i,j) &= \mathsf{max} \left(\mathsf{OPT}(i+1,j), \\ \mathsf{max}_{i+5 \leq k \leq j, R[i] \sim R[k]} (1 + \mathsf{OPT}(i+1,k-1) + \mathsf{OPT}(k+1,j)) \right) \end{aligned}$$

Time

- \triangleright $\Theta(n^2)$ table entries
- \triangleright O(n) operations to evaluate recurrence for a given table entry
- $ightharpoonup O(n^3)$ time overall

Space

 $O(n^2)$ with or without retrieval.