Genetické algoritmy

Jiří Vomlel

Laboratoř inteligentních systémů Vysoká škola ekonomická Praha

Tato prezentace je k dispozici na:

http://www.utia.cas.cz/vomlel/

Motivace z Darwinovy teorie evoluce

Přírodní evoluce je úspěšná a robustní metoda adaptace v biologických systémech.

- děti dědí vlastnosti rodičů
- lepší jedinci lépe přežívají a mají tudíž více potomků

Evoluce v přírodě vyžaduje čas - ovšem pomocí počítačů můžeme vytvořit a ohodnotit tisíce umělých individuí během zlomku vteřiny.

Korespondence s Darwinovou teorií evoluce

v přírodě	v genetických algoritmech
jedinec	řetězec symbolů, např. $h=(1001)$
přírodní výběr	výběr podle hodnotící funkce $f(h)$
křížení	kombinace dvou řetězců
	např. $(000 \mid 1) + (101 \mid 0) \rightarrow (0000) + (1011)$
mutace	náhodná záměna 0 a 1 v řetězci
	např. $(0010) \rightarrow (1010)$

Příklad

převzatý z http://cs.felk.cvut.cz/~xobitko/ga/

Je dána funkce $f:X\mapsto\mathbb{R}$ a cílem genetického algoritmu je najít $x\in X$ v němž funkce nabývá globálního minima.

počáteční generace

elitářství - nejlepší jedinci přecházejí přímo do nové generace

dva jedinci jsou vybráni pro křížení

vznikli noví potomci, kteří jsou přesnými klony rodičů

dochází k mutaci genetické informace potomků

potomci jsou přidáni do nové populace

opět dva jedinci jsou vybráni pro křížení

dochází ke křížení

dochází k mutaci

potomci jsou opět přidáni do nové populace

a po čase je uvedeným postupem vytvořena nová generace

nová generace nahrazuje starou

po několika dalších generacích

závěrečná generace

Genetický algoritmus - pojmy

- *h* jedinec (hypotéza)
- f hodnotící funkce (angl. fitness) jedinců
 - f(h) obvykle udává kvalitu jedince h, t.j. chceme f maximalizovat.
- t prahová maximální hodnota pro hodnotící funkci
- p velikost populace
- P_c pravděpodobnost křížení
- P_m pravděpodobnost mutace

Genetický algoritmus

- Inicialize: H je náhodná počáteční populace
- Ohodnocení: pro každé $h \in H$, spočti f(h)
- Pokud $\max_h f(h) < t$ opakuj
 - Pravděpodobnostní výběr $(1 P_c) \cdot p$ jedinců z H do H'.
 - Křížení:

Pravděpodobnostní výběr $P_c \cdot \frac{p}{2}$ dvojic jedinců z H. Pro každou dvojici vytvoř dva potomky křížením. Přidej potomky do H'.

- Mutace: Invertuj náhodně vybrané bity u jedinců z H' s pravděpodobností P_m .
- Aktualizace: $H \leftarrow H'$
- Ohodnocení: pro každé $h \in H$, spočti f(h)
- Navrať jedince $h \in H$ nabývajícího nejvyšší hodnoty f(h)

Metody náhodného výběru

- Proporcionálně k hodnotící funkci, t.j. $P(h_i) = \frac{f(h_i)}{\sum_{j=1}^p f(h_j)}$. Existuje nebezpečí sekupení všech jedinců blízko sebe.
- Pomocí turnaje
 - Vyber náhodně dva jedince h_1, h_2 . Každý jedinec má stejnou pravděpodobnost výběru.
 - S pravděpodobností P_t vyber jedince s vyšší hodnotou f, jinak vyber jedince s nižší hodnotou f.
- Podle pořadí.
 - Seřaď jedince podle jejich hodnotící funkce (sestupně).
 - Pravděpodobnost výběru jedince je inverzně proporcionální vzhledem k jeho pořadí.

Reprezentace jedinců

Volba vhodné reprezentace:

- Řetězec by měl nějakým způsobem odrážet vlastnosti objektu, který reprezentuje.
- Je žádoucí, aby všichni jedinci reprezentovali přípustná řešení problému, neboť vyřazování nepřípustných řešení může výrazně zpomalit algoritmus.

Jedinec může být například reprezentován

- řetězcem nul a jedniček binární reprezentace nebo
- řetězcem čísel číselná reprezentace nebo
- řetězcem písmen abecedy znaková reprezentace
- stromem nějakých objektů (např. funkcí nebo příkazů programovacího jazyka) - genetické programování

Binární reprezentace

- (+) snadná implementace genetických operátorů
- (-) pro mnoho problémů není však přirozená

Příklady

Hledání minima funkce:

 $f: N \mapsto \mathbb{R}$, kde N je množina celých čísel od 0 do 255.

Pro celá čísla použijeme binární řetězce délky 8.

Např. 23 = (00010111)

Problém batohu (Knapsack problem):

- V místnosti jsou věci různé velikosti a různé ceny.
- Zloděj chce do batohu určité omezené kapacity zabalit věci tak, aby maximalizoval celkovou hodnotu věcí v batohu.

Každý bit v reprezentaci říká, zda-li odpovídající věc je nebo není v batohu.

Způsoby křížení

Initial strings Crossover Mask Offspring Single-point crossover: <u>11101</u>001000 11101010101 11111000000 00001001000 00001010101 *Two-point crossover:* 11<u>10100</u>1000 11001011000 00111110000 00001010101 00101000101 *Uniform crossover:* 10001000100 <u>1</u>11<u>01</u>0<u>0</u>10<u>00</u> 10011010011 01101011001 0<u>00</u>01<u>0</u>1<u>01</u>01 Point mutation: 11101001000 _ 11101011000

Problém obchodního cestujícího (TSP)

- Obchodní cestující dostane seznam měst, která má navštívit.
- Jsou mu známy vzdálenosti mezi jednotlivými městy. Obchodní cestující má navštívit všechna města (právě jednou) a vrátit se do výchozího bodu.
- Cílem je minimalizovat celkovu vzdálenost, kterou urazí.

TSP - kódování a křížení

Kódování

- Každému městu je přiřazeno celé číslo.
- Města se v řetězci vyskytují v pořadí jakém jsou navštívena.
- Např. (9340125768)

Hladové křížení (angl. Greedy crossover)

- Vyber první město jednoho rodiče.
- Porovnej druhá města u obou rodičů a vyber to, které je blíže k prvnímu vybranému.
- Jestliže město je již v řetězci, vyber město od druhého rodiče.
- Jestliže i toto město je již v řetězci vyber náhodně nějaké město, které v řetězci ještě není.
- Obdobně pokračuj pro třetí, čtvrté, ... město.

TSP - mutace

Hladové přehození (angl. Greedy swap)

- Vyber náhodně dvě města a prohoď je v řetězci.
- Pokud je nově vytvořená cesta kratší, přijmi mutaci, jinak zachovej původní cestu.
- Např. $(0123456) \rightarrow (0321456)$.

Mutace 2opt

Demo: TSPApp. exe 200 měst v kruhu - porovnání p=10 a p=100, heuristics (2opt mutace) 0 a 5.

Cvičení - problém osmi dam na šachovnici

Úkolem je umístit osm dam na šachovnici 8×8 , tak aby žádná dáma neohrožovala žádnou jinou.

Cvičení: Navrhněte genetický algoritmus pro řešení problému osmi dam. To znamená navrhnout:

- vhodnou reprezentaci řešení problému pomocí řetězce,
- hodnotící funkci,
- operátor křížení, a
- operátor mutace.

Genetické programování - příklad

Aproximující funkce

Cílem je nalezení funkce, která by nejlépe aproximovala dané trojice hodnot

$$(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_n, y_n, z_n).$$

T.j. pro daná první dvě čísla z trojice x_i , y_i by vrátila výstup z_i' co nejblíže třetímu číslu trojice z_i .

Jedinci jsou funkce ve stromu. Např. funkce $sin(x) + \sqrt{x^2 + y}$

Genetické programování - příklad křížení

Schémata

Schéma = řetězec obsahující 0, 1, * ("cokoliv")

Příklad schématu:

Jedinci odpovídající výše uvedenému schématu:

```
100000, 100001, 100100, 100101, 101000, 101001, 101100, 101101.
```

Charakteristika populace:

```
p ... počet jedinců v populaci m_t(s) ... počet jedinců odpovídajících schématu s v čase t f(h) ... hodnota (fitness) jedince (hypotézy) h ... průměrná hodnota populace v čase t \mathcal{H}_t(s) ... množina jedinců odpovídajících schématu s v čase t
```

Věta o schématech (pro výběr)

$$\bar{f}_t(s)$$
 ... průměrná hodnota jedinců z množiny $\mathcal{H}_t(s)$

$$= \frac{1}{m_t(s)} \cdot \sum_{h \in \mathcal{H}_t(s)} f(h)$$

$$E[m_{t+1}(s)]$$
 ... očekávaný počet jedinců odpovídajících schématu s v čase $t+1$

$$P(h)$$
 ... pravděpodobnost výběru jedince h

$$P(h) \stackrel{df}{=} \frac{f(h)}{\sum_{i=1}^{p} f(h_i)} = \frac{f(h)}{p \cdot \bar{f}_t}$$

$$P(h \in \mathcal{H}_{t+1}(s)) = \sum_{h' \in \mathcal{H}_t(s)} \frac{f(h')}{p \cdot \bar{f}_t} = \frac{\bar{f}_t(s) \cdot m_t(s)}{p \cdot \bar{f}_t}$$

$$E[m_{t+1}(s)] = p \cdot P(h \in \mathcal{H}_{t+1}(s)) = \frac{f_t(s)}{\overline{f_t}} \cdot m_t(s)$$

Věta o schématech

(jednobodové křížení a mutace)

$$P_c$$
 ... pravděpodobnost aplikace operátoru křížení

$$\ell$$
 ... délka řetězce, který reprezentuje jedince

$$d(s)$$
 ... vzdálenost mezi definovanými prvky schématu s nejvíce vpravo. Např.

u
$$s = (***0*1*110**)$$
 je vzdálenost $|9-3| = 6$.

$$o(s)$$
 ... počet definovaných prvků ve schématu s

$$\left(1-P_c\cdot rac{d(s)}{\ell}
ight)$$
 ... dolní odhad pravděpodobnosti, že křížení nenaruší schéma

$$(1-P_m)^{o(s)}$$
 ... pravděpodobnost, že mutace nenaruší schéma

$$E[m_{t+1}(s)] \geq \frac{\bar{f}_t(s)}{\bar{f}_t} \cdot m_t(s) \cdot \left(1 - P_c \cdot \frac{d(s)}{\ell}\right) \cdot (1 - P_m)^{o(s)}$$

Vlastnosti genetických algoritmů

- (+) Dají se použít pro řešení problémů jinak těžko řešitelných (například, když interakce mezi jednotlivými částmi jsou těžko popsatelné).
- (+) Většinou neuváznou v lokálním maximu.
- (+) Vždy poskytnou nějaké řešení.
- (+) Jsou snadno implementovatelné a paralerizovatelné.
- (-) Nemáme žádnou záruku, že nalezené řešení je optimální.
- (-) Někdy mohou být velmi pomalé (obzvášť pokud nejsou dobře navrženy reprezentace jedinců a operátory křížení a mutace).
- (–) Vyžadují vhodné nastavení většího množství parametrů algoritmu (např. P_C , P_M , p).

Stručná historie genetických algoritmů

- 1960: Ingo Rechenberg představuje myšlenku evolučních výpočtů ve své práci "Evolution strategies"
- 1975: John Holland poprvé popisuje genetický algoritmus a vydává svoji knihu "Adaptation in Natural and Artificial Systems"
- 1992: John Koza použil genetický algoritmus pro vývoj programů, které mají plnit určité zadané úlohy. Svoji metodu nazval genetické programování.

Příklady aplikací genetických algoritmů dle encyklopedie wordIQ.com

- Optimalizace nákládání kontejnerů.
- Učení chování robotů.
- Optimalizace infrastruktury pro mobilní komunikaci.
- Optimalizace struktury molekul.
- Návrh uspořádání výrobních hal.
- Různé plánovací problémy (např. když jednotlivé úlohy jsou navzájem závislé).
- Predikce akciových trhů.