Milestone 5 - Term Project

```
# Import packages
In [194...
           import warnings
           import matplotlib.pyplot as plt
           import numpy as np
           import pandas as pd
           from sklearn.metrics import mean_absolute_error, mean_squared_error
           from sklearn.metrics.pairwise import cosine_similarity
           from statsmodels.tsa.holtwinters import ExponentialSmoothing
           # Import data
In [195...
           data = pd.read_csv("jewelry - Copy.csv")
In [196...
           # Dataframe check
           type(data)
          pandas.core.frame.DataFrame
Out[196]:
In [197...
          # Dataframe shape
           print(f'Data dimensions: {data.shape}')
          Data dimensions: (95911, 13)
In [198...
          # Preview first row of dataset
           data.head(1).stack()
          0 order_datetime
                                2018-12-01 11:40:29 UTC
Out[198]:
                                    1924719191579951782
              order_id
                                    1842195256808833386
             product_id
             qty
                                  1806829201890738432.0
              category_id
              category_alias
                                        jewelry.earring
             brand_id
                                                     0.0
             price
                                                  561.51
                                  1515915625207851264.0
             user_id
             main_color
                                                     red
             main_metal
                                                    gold
                                                diamond
             main_gem
          dtype: object
```

I noticed some rows had empty values in the 'user_id' and 'price' columns because the values were shifted two spaces to the left. I observed this issue while inspecting the data in Excel, so it's best to correct it now.

```
# New dataframe that contains the rows that contain
In [199...
           # NaN values in the 'user_id' column
           empty_users = data[data["user_id"].isnull()]
          # Count of rows that contain NA values in the 'user_id' column
In [200...
          len(empty_users)
          5352
Out[200]:
          # 'Moves' the misplaced data to the correct columns
In [201...
          for idx, row in empty_users.iterrows():
               # Sets price value equal to category_alias value
               row["price"] = row["category alias"]
               row["category_alias"] = np.nan # Sets category_alias value to NaN
               row["user_id"] = row["brand_id"] # Sets user_id value equal to brand_id value
               row["brand_id"] = np.nan # Sets brand_id value to NaN
               data.loc[idx] = row # Updates the original dataset with these changes
In [202...
          # Count of rows that contain NaN values in the 'user id' column
          # after making the above changes
          data['user_id'].isnull().sum()
Out[202]:
```

I will replace empty values in the 'product_gender' column with 'u', which represents unisex. To fill in this column, I can use the 'category_alias' column as a reference. For instance, every record with 'jewelry.necklace' has 'f' in the 'product_gender' column. However, since there can be male or unisex necklaces, I have decided to use 'u' for the null values.

Null values in the 'main_gem' column will be filled with 'unknown-gem'. There is already a value 'unknown-color' in the 'main_color' column, so this approach maintains consistency with the existing dataset.

Null values in the 'brand_id' column will be replaced with -1 to indicate that the product does not have a brand.

These are the null values that will be addressed. The remaining null values will be dropped from the dataset altogether.

```
In [203... # Fill in NaN values in the data
    data['product_gender'].fillna('u', inplace = True)
    data['main_gem'].fillna('unknown-gem', inplace = True)

In [204... # Create new dataframe using copy() and dropna() functions
    dropped_na_data = data.copy().dropna()

In [205... # Filling in some of the NaN values has helped keep a large amount of records
    print(f'Original record count: {len(data)}')
    print(f'New record count: {len(dropped_na_data)}')
    print(f'Records lost: {len(data) - len(dropped_na_data)}')
```

Original record count: 95911 New record count: 78391 Records lost: 17520

Next, I'll update the column data types as needed.

```
# View column data types
In [206...
           dropped_na_data.dtypes
          order datetime
                              obiect
Out[206]:
                               int64
          order_id
          product_id
                               int64
                               int64
          qty
          category_id
                             float64
          category_alias
                              object
          brand id
                             float64
          price
                              object
          user_id
                             float64
                              object
          product_gender
          main_color
                              object
          main metal
                              object
          main_gem
                              object
          dtype: object
In [207...
           # Use this to convert 'order_datetime' to datetime format
           dropped_na_data['order_datetime'] = pd.to_datetime(dropped_na_data['order_datetime'])
           # Set as index and drop original 'order_datetime' column
           dropped na data.set index('order datetime', inplace = True)
In [208...
           # Convert columns to appropriate data types
           dropped_na_data["category_id"] = dropped_na_data["category_id"].astype('Int64')
           dropped na data["category alias"] = dropped na data["category alias"].astype(str)
           dropped_na_data["brand_id"] = dropped_na_data["brand_id"].astype(int)
           dropped_na_data["price"] = dropped_na_data["price"].astype(float)
           dropped na data["user id"] = dropped na data["user id"].astype('Int64')
           dropped_na_data["product_gender"] = dropped_na_data["product_gender"].astype(str)
           dropped_na_data["main_color"] = dropped_na_data["main_color"].astype(str)
           dropped_na_data["main_metal"] = dropped_na_data["main_metal"].astype(str)
           dropped_na_data["main_gem"] = dropped_na_data["main_gem"].astype(str)
           # Ensure the changes were made correctly
In [209...
           dropped_na_data.dtypes
          order_id
                               int64
Out[209]:
          product_id
                               int64
                               int64
          aty
          category_id
                               Int64
          category_alias
                              object
          brand_id
                               int32
                             float64
          price
          user id
                               Int64
          product_gender
                              object
          main_color
                              object
          main_metal
                              object
          main gem
                              object
          dtype: object
```

```
# Preview first row of data after updating column data types
In [210...
          dropped_na_data.head(1).stack()
          order_datetime
Out[210]:
          2018-12-01 11:40:29+00:00 order_id
                                                      1924719191579951782
                                     product_id
                                                      1842195256808833386
                                     aty
                                                    1806829201890738432
                                     category_id
                                     category_alias
                                                           jewelry.earring
                                     brand_id
                                     price
                                                                    561.51
                                     user_id
                                                      1515915625207851264
                                     product_gender
                                     main_color
                                                                      red
                                     main_metal
                                                                     gold
                                                                   diamond
                                     main_gem
          dtype: object
```

Product Recommender System - Content-Based Filtering

```
In [211...
          # Create a copy of the dataset and name it something different
          rec_sys = dropped_na_data.copy()
In [212...
          # Drop duplicates based on product_id
           features = rec_sys[['product_id', 'category_alias', 'product_gender',
                               'main_color', 'main_metal']].drop_duplicates()
In [213...
          # One-hot encode the categorical features
           encoded = pd.get_dummies(features, columns = ['category_alias', 'product_gender',
                                                          'main_color', 'main_metal'])
          # Create item-feature matrix with product_id as index
In [214...
           item_feature_matrix = encoded.set_index('product_id')
In [215...
          # Compute cosine similarity between items
           item_similarity = cosine_similarity(item_feature_matrix)
           item_similarity_df = pd.DataFrame(item_similarity,
                                             index = item_feature_matrix.index,
                                             columns = item_feature_matrix.index)
          # Function that returns 10 recommended items from the store.
In [216...
           # These items have not been purchased by the user.
           def recommend_items(user_id, df, item_similarity_df, top_n = 10):
               # Get items purchased by the user
               user_purchases = df[df['user_id'] == user_id]['product_id']
               # Calculate scores for items not purchased by the user
               scores = pd.Series(0, index = item_similarity_df.columns)
               for item in user_purchases:
                   if item in item_similarity_df.index:
                       similar_items = item_similarity_df[item]
                       scores += similar items
```

```
# Remove items already purchased by the user
scores = scores.drop(user_purchases, errors = 'ignore')

# Return top N recommended items
return scores.sort_values(ascending = False).head(top_n)
```

```
# User with the most purchases will be used
chosen_user = rec_sys['user_id'].mode().iloc[0]
recommendations = recommend_items(chosen_user, rec_sys, item_similarity_df)
```

```
# Display output and loop through returned series
In [218...
          print(f"The following store items are recommended for user {chosen user}.")
          print()
          string1 = "product_id: category_alias - product_gender - "
          string2 = "main_color - main_metal - main_gem - price"
          print(string1 + string2)
          for product_id in recommendations.index:
              category = rec_sys[rec_sys['product_id'] == product_id]['category_alias'].iloc[0]
              gender = rec_sys[rec_sys['product_id'] == product_id]['product_gender'].iloc[0]
              color = rec_sys[rec_sys['product_id'] == product_id]['main_color'].iloc[0]
              metal = rec_sys[rec_sys['product_id'] == product_id]['main_metal'].iloc[0]
              gem = rec_sys[rec_sys['product_id'] == product_id]['main_gem'].iloc[0]
              price = rec_sys[rec_sys['product_id'] == product_id]['price'].iloc[0]
              string3 = f"{product_id}: {category} - {gender} - '
              string4 = f"{color} - {metal} - {gem} - ${price}"
              print(string3 + string4)
```

The following store items are recommended for user 1515915625245643008.

```
product_id: category_alias - product_gender - main_color - main_metal - main_gem - pr
ice

1515966222980043408: jewelry.ring - f - red - gold - diamond - $335.48

1515966223158066417: jewelry.ring - f - red - gold - diamond - $280.68

1855231075249291734: jewelry.ring - f - red - gold - diamond - $123.15

1515966223275024801: jewelry.ring - f - red - gold - fianit - $123.15

1515966223478625523: jewelry.ring - f - red - gold - diamond - $343.15

1515966223183803116: jewelry.ring - f - red - gold - unknown-gem - $168.36

1956663848211579723: jewelry.ring - f - red - gold - emerald - $280.68

1852230387330188242: jewelry.ring - f - red - gold - unknown-gem - $308.08

1839998982592397760: jewelry.ring - f - red - gold - diamond - $177.95

1956663847666319768: jewelry.ring - f - red - gold - topaz - $102.6
```

The recommender will be extremely useful as it suggests items that are very similar. I excluded the 'main_gem' column during the development phase to ensure some variability in the recommendations.

Inventory Management - Exponential Smoothing

I encountered some issues with my dataset while trying to create an ARIMA model for inventory management. As a result, I decided to use an Exponential Smoothing model instead. For the model analysis, I selected the product with the most occurrences in the dataset. I have also included a preview of the variables that describe the item I will be using.

```
# A preview of the variables that describe the product we are going to use
In [219...
          # for analysis
           q = 'product id == 1956663840242401751'
           dropped_na_data.query(q)[['category_alias', 'brand_id', 'price',
                                     'product_gender', 'main_color', 'main_metal',
                                     'main_gem']].iloc[0]
          category_alias
                             jewelry.ring
Out[219]:
          brand_id
                                   259.97
          price
          product_gender
                                        f
          main_color
                                      red
          main_metal
                                     gold
          main_gem
                              unknown-gem
          Name: 2019-01-20 17:03:41+00:00, dtype: object
          # Aggregate sales data by month
In [220...
          monthly_sales = dropped_na_data.groupby([pd.Grouper(freq = 'M'),
                                                     'product_id'])['qty'].sum().reset_index()
           # Select a specific product id for analysis
           product_id = 1956663840242401751
           product_sales = monthly_sales[monthly_sales['product_id'] == product_id]
           # Set 'order datetime' as index
           product_sales.set_index('order_datetime', inplace = True)
          with warnings.catch_warnings():
In [221...
               warnings.simplefilter('ignore')
               # Apply Exponential Smoothing (Holt-Winters' multiplicative seasonal method)
               model = ExponentialSmoothing(product_sales['qty'], trend = 'add',
                                            seasonal = 'mul', seasonal_periods = 12)
               fit = model.fit()
               # Forecasting
               forecast_periods = 12
               forecast = fit.forecast(steps = forecast_periods)
               # Generate future dates for plotting
               variable = pd.DateOffset(months = 1)
               future_dates = pd.date_range(start = product_sales.index[-1] + variable,
                                            periods = forecast_periods,
                                           freq = 'M')
          # Plotting
In [222...
          plt.figure(figsize = (12, 6))
           plt.plot(product_sales.index, product_sales['qty'], label='Observed', color='blue')
           plt.plot(product sales.index, fit.fittedvalues, label='Fitted', color='orange')
           plt.plot(future_dates, forecast, label='Forecast', color='red')
          # Title and axis labes
           plt.title('Exponential Smoothing Forecast')
           plt.xlabel('Date')
           plt.ylabel('Quantity')
          # Add Legend and show plot
```

```
plt.legend()
plt.show()
```



```
# Use the fitted model to make in-sample predictions
in_sample_predictions = fit.fittedvalues

# Calculate MAE and MSE
mae = mean_absolute_error(product_sales['qty'], in_sample_predictions)
mse = mean_squared_error(product_sales['qty'], in_sample_predictions)

print(f"Mean Absolute Error: {mae:.2f}")
print(f"Mean Squared Error: {mse:.2f}")
```

Mean Absolute Error: 2.85 Mean Squared Error: 21.43

On average, each forecast deviates by 2.85 units. Given the size of the dataset (78,391 records), this level of error is very reasonable. This an improvement from the previous value of 5.13.

Resources

Kechinov, M. (2021, December 1). ECommerce purchase history from Jewelry Store. Kaggle. https://www.kaggle.com/datasets/mkechinov/ecommerce-purchase-history-from-jewelry-store

Drive more revenue with niche-specific personalization engine. REES46. (n.d.). https://rees46.com/

GeeksforGeeks. (2024b, May 23). Movie Recommender based on plot summary using TF-IDF vectorization and cosine similarity. https://www.geeksforgeeks.org/movie-recommender-based-on-plot-summary-using-tf-idf-vectorization-and-cosine-similarity/