Scilab Textbook Companion for Electronic Devices and Circuits by I. J. Nagrath¹

Created by
Ashutosh Kumar
B.Tech.
Computer Engineering
Dr. A.P.J. Abdul Kalam Technical University
College Teacher
None
Cross-Checked by
Chaitanya

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices and Circuits

Author: I. J. Nagrath

Publisher: Prentice-hall Of India Pvt.ltd

Edition: 1

Year: 2007

ISBN: 9788120331952

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	SEMICONDUCTORS DIODE AND DIODE CIRCUITS	5
2	TRANSISTORS AND OTHER DEVICES	32
3	SMALL SIGNAL MODELS AMPLIFICATION AND BIASING	42
4	SMALL SIGNAL AMPLIFIERS FREQUENCY RESPONS	E 71
5	Large Signals Amplifiers	97
6	Feedback Amplifiers And Oscillators	110
7	Operational Amplifiers	119
8	Multivibrators And Switching Regulators	130
9	Integrated Circuit Fabrication	139
10	Circuit Theory	142
11	Cathode Ray Oscilloscope	149

List of Scilab Codes

Exa 1.1	Example													5
Exa 1.2	Example													6
Exa 1.3	Example													6
Exa 1.4	Example													7
Exa 1.5	Example													8
Exa 1.6	Example													8
Exa 1.7	Example													9
Exa 1.9	Example													10
Exa 1.11	Example													11
Exa 1.12	Example													11
Exa 1.13	Example													12
Exa 1.14	Example													13
Exa 1.15	Example													14
Exa 1.16	Example													15
Exa 1.17	Example													17
Exa 1.18	Example													17
Exa 1.19	Example													18
Exa 1.20	Example													19
Exa 1.24	Example													20
Exa 1.25	Example													20
Exa 1.26	Example													22
Exa 1.27	Example													23
Exa 1.28	Example													23
Exa 1.29	Example													25
Exa 1.30	Example													27
Exa 1.32	Example													27
Exa 1.33	Example													28
Eva 1 34	Example													29

Exa 1.35	Example											30
Exa 1.36	Example											31
Exa 2.1	Example											32
Exa 2.2	Example											33
Exa 2.3	Example											34
Exa 2.4	Example											34
Exa 2.5	Example											35
Exa 2.7	Example											36
Exa 2.8	Example											36
Exa 2.10	Example											37
Exa 2.13	Example											38
Exa 2.14	Example											38
Exa 2.15	Example											39
Exa 2.16	Example											40
Exa 3.1	Example											42
Exa 3.2	Example											43
Exa 3.3	Example											43
Exa 3.4	Example											44
Exa 3.5	Example											45
Exa 3.6	Example											45
Exa 3.7	Example											46
Exa 3.8	Example											47
Exa 3.9	Example											48
Exa 3.10	Example											49
Exa 3.11	Example											51
Exa 3.12	Example											51
Exa 3.13	Example											52
Exa 3.14	Example											53
Exa 3.15	Example											55
Exa 3.16	Example											55
Exa 3.17	Example											56
Exa 3.18	Example											58
Exa 3.19	Example											59
Exa 3.20	Example											60
Exa 3.21	Example											61
Exa 3.22	Example											62
Exa 3.23	Example											64
Exa 3 24	Example											64

Exa 3.25	Example																			65
Exa 3.26	Example																			66
Exa 3.28	Example																			67
Exa 3.29	Example																			68
Exa 3.30	Example																			69
Exa 3.31	Example																			70
Exa 4.1	Example																			71
Exa 4.2	Example																			72
Exa 4.3	Example																			72
Exa 4.4	Example																			73
Exa 4.5	Example																			74
Exa 4.6	Example																			75
Exa 4.7	Example																			76
Exa 4.8	Example																			77
Exa 4.9	Example																			78
Exa 4.10	Example																			80
Exa 4.11	Example																			82
Exa 4.12	Example																			83
Exa 4.13	Example																			83
Exa 4.14	Example																			84
Exa 4.15	Example																			85
Exa 4.16	Example																			87
Exa 4.17	Example																			88
Exa 4.18	Example																			89
Exa 4.19	Example																			91
Exa 4.21	Example																			93
Exa 4.23	Example																			95
Exa 5.1	Example																			97
Exa 5.2	Example																			98
Exa 5.3	Example																			99
Exa 5.4	Example																			100
Exa 5.5	Example																			101
Exa 5.6	Example																			102
Exa 5.7	Example																			104
Exa 5.8	Example																			105
Exa 5.9	Example																			106
Exa 5.10	Example																			107
Exa 5 12	Example	٠	•	 •	٠	-	·	,	-	•	·	-	•	-	•	-		•		108

Exa 5.13	Example												109
Exa 6.1	Example												110
Exa 6.2	Example												111
Exa 6.3	Example												111
Exa 6.4	Example												112
Exa~6.5	Example												112
Exa 6.7	Example												113
Exa 6.8	Example												114
Exa 6.9	Example												115
Exa 6.10	Example												116
Exa 6.11	Example												117
Exa 6.12	Example												117
Exa 6.13	Example												118
Exa 7.1	Example												119
Exa 7.2	Example												120
Exa 7.3	Example												120
Exa 7.4	Example												121
Exa 7.6	Example												121
Exa 7.7	Example												122
Exa 7.8	Example												123
Exa 7.9	Example												124
Exa 7.10	Example												124
Exa 7.11	Example												125
Exa 7.14	Example												126
Exa 7.21	Example												127
Exa 7.22	Example												127
Exa 7.23	Example												128
Exa 8.1	Example												130
Exa 8.2	Example												131
Exa 8.3	Example												132
Exa 8.4	Example												133
Exa~8.5	Example												134
Exa 8.6	Example												135
Exa 8.7	Example												136
Exa 8.8	Example												137
Exa 9.2	Example												139
Exa 9.3	Example												140
Exa 9.4	Example												140

Exa 9.5	Example														141
Exa 10.1	Example														142
Exa 10.2	Example														142
Exa 10.3	Example														143
Exa 10.4	Example														144
Exa 10.5	Example														144
Exa 10.6	Example														145
Exa 10.7	Example														145
Exa 10.9	Example														146
Exa 10.10	Example														147
Exa 10.11	Example														148
Exa 11.2	Example														149
Exa 11.3	Example														150
Exa 11 4	Example		_												151

Chapter 1

SEMICONDUCTORS DIODE AND DIODE CIRCUITS

Scilab code Exa 1.1 Example

```
1 // Variable declaration
2 A=6.022*10**23
                         //avagadro 's number (/m<sup>3</sup>)
                         //density of aluminium conductor(
3 d=2.7*10**6
      g/m^3
4 a = 26.98
                         // atomic weight aluminium
      conductor (g/g-atom)
5 D=10**4.
                        //current density(A/m^2)
6 \text{ e=1.6*10**-19}
                         //electronic charge(C)
8 // Calculations
9 // Part a
10 \quad n=A*d/a
                         //\text{number of atoms}(n/m^3)
11
12 // Part b
                         //drift velocity (m/s)
13 \text{ u=D/(n*e)}
14
15 // Results
16 printf ("number of atoms per cubic meter is \%.3 \, \mathrm{f} *
      10**28/\text{m}^3", n/10**28)
```

Scilab code Exa 1.2 Example

```
1 // Variable declaration
2 n=10**23
                     //\text{number of electrons} (n/m^3)
3 e=1.6*10**-19
                      //electronic charge(C)
                      //mobility(m<sup>2</sup>/Vs)
4 u = 0.4
5 a=10**-7
                      // cross sectional area (m^2)
6 \quad 1 = 15 * 10 * * -2
                      //conductor length (m)
8 // Calculations
9 //Part a
                      //conductivity(S/m)
10 \quad G=n*e*u
11
12 // Part b
13 R=1/(a*G)
                     //resistance (ohm)
14
15 // Results
16 printf ("conductivity of the conductor is \%.1e \text{ S/m}",
17 printf ("resistance of the conductor is %.1f ohm", R)
```

Scilab code Exa 1.3 Example

```
// hole mobility (m^2/V.s)
8 \text{ up} = 0.19
9
10 // Calculations
11 // Part a
12 \quad nA = A * d/a
                       //number of atoms (nA/m<sup>3</sup>) using
      avagadro's law
                      //Germanium atoms/electron hole
13 x=nA/ni
      pair
14
15 // Part b
16 \text{ g=(un+up)*e*ni}
                      //intrinsic conductivity (S/m)
17 r = 1/g
                      //intrinsic resistivity (ohm.m)
18
19 //Results
20 printf ("the relative concentration of Ge and
      electron hole pairs is %.2e atoms/electron-hole
      pair",x)
21 printf ("the intrinsic resistivity of Ge is %.3f ohm
      .m",r)
```

Scilab code Exa 1.4 Example

```
1 // Variable declaration
2 \text{ ni} = 1.5 * 10 * * 16
                       //intrinsic concentration(electron-
      hole pairs/m<sup>3</sup>)
3 n=4.99*10**28
                       //number of Si atoms (atoms/m<sup>3</sup>)
4 un = 0.13
                       // electron mobility (m^2/V.s)
5 \text{ up} = 0.05
                       //hole mobility (m^2/V.s)
6 \text{ e=1.6*10**-19}
                       //electronic charge(c)
8 // Calculation
9 // Part a
10 \text{ g=e*ni*(un+up)}
                      //intrinsic conductivity(S/m)
11 r=1/g
                      //interinsic resistivity (ohm.m)
12 Nd=n/10**8
                      //doped silicon(atoms/m^3)=nn,
```

```
majority carriers
13 pn=ni**2/Nd //minority carrier density(holes/m
      ^3)
14
15 // Part b
16 \text{ k=e*un*Nd}
                 //conductivity (S/m)
                 //using Nd in place of nn as Nd=nn
17
                 //resistivity (ohm.m)
18 \text{ rho}=1/k
19
20 //Results
21 printf ("the minority carrier density of Si is \%.2\,\mathrm{e}
      holes/m^3 ",pn)
22 printf ("the resistivity of Si is %.2e ohm.m", rho)
```

Scilab code Exa 1.5 Example

Scilab code Exa 1.6 Example

1

```
3 // Variable declaration
           //Ge diode carries current (mA)
4 I=10
5 V = 0.2
            //forward bias voltage(V)
7 // Calculation
8 //Part a
9 Is=I/(\exp(40*V)-1) //reverse current (mA)
10
11 //part b
12 I1=1*10**3
13 V1 = (\log(1/3.355*10**3 + 1))/40
                                            //voltage(V)
14 I2=100*10**-3
                                           //current (mA)
15 V2 = (\log(100/3.355*10**3+1))/40
                                           //voltage(V)
16
17 // Part c
18 Is1=4*Is
                                //reverse saturation
      current doubles for every 10 degree celcius temp
      rise, so for 20 degree rise it will be 4 timese/
19 \quad x = 37.44
                               // let x=e/kT
20 I3=Is1*(\exp(x*V)) //current when temp doubles (mA)
21
22 // Results
23 printf ("the reverse current is \%.3 \,\mathrm{f} mA", Is/1e-3)
      //incorrect units given in the textbook
24 printf ("bias voltages are \%.3 \,\mathrm{f} V and \%.3 \,\mathrm{f} V resp",
      V1, V2)
25 printf ("Is at 20 degree is %.2f uA and diode
      current at 0.2~\mathrm{V} is \%.2~\mathrm{f} mA", Is1/1e-3, I3)
```

Scilab code Exa 1.7 Example

```
ohm)
4 Rfa=20
                      //forward resistance(ohm)
5 \text{ Vt} = 0.7
                     //Thevinine's voltage(V)
                      //forward resistance(ohm)
6 \text{ Rfb=0}
8 // Calculations
9 // Part a
                      //current(A)
10 I=V/Req
11
12 // Part b
13 Id=(V-Vt)/Req //diode current (mA)
14
15 // Part c
                          //forward resistance(ohms)
16 Rf = 20
17 Id1=(V-Vt)/(Req+Rfa) //diode current (mA)
18
19 // Results
20 printf ("current in this case is %.2 f A", I)
21 printf ("diode current is \%.2 \, \text{f mA}",(Id/1E-3))
22 printf ("diode current is \%.2 \text{ f mA}", (Id1/1E-3))
```

Scilab code Exa 1.9 Example

```
1 // Variable declaration
2 Vx = 1.4
                            // voltage at point X(V)
3 \text{ Vt} = 0.7
                            //diode voltage(V)
                            //cathode voltage(V)
4 \text{ Vcc}=5
                            //circuit resistance(ohm)
5 R=1
6 Vs = Vx - Vt
                            //supply voltage(V)
8 // Calculations
9 I1 = (Vcc - Vt - Vs)/R
                             //\text{current throgh D1(mA)} for 0<
      Vs < 0.7
10 I2=0
                              //current through D2 and D3
11 I1 = (Vcc - Vt - Vs)/R
                          // \text{for Vs} > 0.7 \text{ as D2 and D3}
```

```
conducts

12

13 //Results

14 printf ("I1 for 0<Vs<0.7 is %.1 f mA",I1)

15 printf ("I2 for 0<Vs<0.7 is %.1 f mA",I2)

16 printf ("I1 and I2 for Vs>0.7 is %.1 f mA",I1)
```

Scilab code Exa 1.11 Example

```
1 // Variable declaration
2 Vz = 100
                       //zener voltage(V)
                       //diode resistance(ohm)
3 Rz = 25
4 I1=0.05
                       //load current(A)
                       //zener diode current(A)
5 Iz=0.01
                       //supply resistance(ohm)
6 \text{ Rs} = 250
7
8 // Calculations
                          //load voltage(V)
9 V1=Vz+(Iz*Rz)
10 \text{ Vs=Vl+(Il+Iz)*Rs}
                          //supply voltage(V)
11 VL=V1*1.01
                          //increase in Vl(V)
                          //increase in zener current
12 IZ = (VL - Vz)/Rz
13 \text{ VS=Vl+(Il+IZ)*Rs}
                          //increase in supply voltage(V)
                          //%increase in supply voltage(V)
14 \text{ Vss} = (\text{VS} - \text{Vs}) / \text{Vs}
                          //power consumed (W)
15 P=I1*VL
16
17 //Results
18 printf ("load voltage is %.2f V", V1)
19 printf ("supply voltage is \%.2 \, \mathrm{f} V", Vs)
20 printf ("increase in supply voltage is \%.3 \, \mathrm{f} \, \mathrm{V}", VS)
21 printf ("power consumed is \%.2 \, \mathrm{f} \, \mathrm{W}",P)
```

Scilab code Exa 1.12 Example

```
1 // Variable declaration
2 Vbb=5
                     //bias voltage(V)
3 R1=1
                     //resistance(ohm)
                      //from the figure (mA)
4 Id=4.4
6 //Part a
7 i = Vbb/R1
                     //load line intercepts the Id axis
      at i (mA)
  Vl = Id * Rl
                     //load voltage(V)
10 // Part b
                     //diode voltage(V)
11 \quad Vd = Vbb - Vl
12 P = Vd * Id
                     //power absorbed in diode (mW)
13
14 // Part c
15 Ida=1.42
                       //diode current (mA) for 2V
16 \text{ Idb} = 7.35
                       //diode current (mA) for 8V
17
18 // Part d
19 \text{ Idc} = 8.7
                     //diode current (mA) for Rl=0.5k ohm
20 \text{ Idd} = 2.2
                     //diode current (mA) for Rl=2k ohm
21
22 // Results
23 printf ("diode current is %.1f mA and voltage across
       the load is \%.1 \, f \, V", Id, V1)
24 printf ("power absorbed in diode is %.2 f mW',P)
25 printf ("diode current for Vbb=2V is %.2 f mA and for
       Vbb=8V is \%.2 f mA", Ida, Idb)
26 printf ("diode current for Rl=0.5 kohm is \%.1 f mA
      and for Rl=2 kohm is \%.1 \text{ f mA}", Idc, Idd)
```

Scilab code Exa 1.13 Example

```
1 // Variable declaration
2 T=300 //temperature(k)
```

Scilab code Exa 1.14 Example

```
1
2
3 // Variable declaration
4 \, \text{Idc} = 0.1
                        //dc current (A)
5 Rf = 0.5
                        //forward resistance (ohms)
6 R1 = 20
                        //load resistance (ohm)
7 \text{ Rs} = 1
                        //secondary resistance of
      transformer (ohm)
9 // Calculations
10 // Part a
11 Vdc=Idc*Rl
                                          //dc voltage(V)
12 Vm = (\%pi/2) * (Vdc + Idc * (Rs + Rf)) / mean voltage(V)
13 Vrms=Vm/sqrt(2)
                                    //rms value of voltage(V
14
15 // Part b
16 Pdc=Idc**2*R1
                                       //dc power supplied
      to the load
17
```

```
18 // Part c
19 PIV=2*Vm
                                        //PIV rating for each
       diode (V)
20
21 // Part d
22 \text{ Im} = (\%\text{pi}/2) * \text{Idc}
                                  //peak value of current (mA
23 Irms=Im/sqrt(2)
                                 //rms calue of current(A)
24 Pac=Irms**2*(Rs+Rf+R1)
                                       //ac power input (W)
25
26 // Part e
27 eta=(Pdc/Pac)*100
                                       //conversion
      efficiency
28
29 // Part f
                                       //voltage regulation (V
30 \text{ Vr} = ((Rs + Rf)/R1)*100
31
\frac{32}{results}
33 printf ("rms value of voltage is %.2f V", Vrms)
34 printf ("dc power supplied to load is %.1f W',Pdc)
35 printf ("PIV rating for each diode \%.2\,\mathrm{f} V",PIV)
36 printf ("ac input power is \%.3 \, \mathrm{f} \, \mathrm{W}", Pac)
37 printf ("conversion efficiency %.1f %%", eta)
38 printf ("voltage regulation %.1 f %%", Vr)
```

Scilab code Exa 1.15 Example

```
8 // Calculations
9 // Part a
10 theta1= asind((Vt+V1)/Vm)
11 theta2=180-theta1
12 / Rl = ((2*Vm*cos(theta1)) - (2*(\%pi-2*theta1)*(Vt+Vl)))
      /(Idc*%pi)
13 R1=(2*sqrt(2)*45*cosd(11.8) - (2*(%pi-2*0.206)*(Vt+
     V1)))/(Idc*%pi)
14
15 function ans = ft(wt)
       ans = ((((sqrt(2)*45*sin(wt))-(Vt+V1))/R1)*wt)
17 endfunction
18 // Part b
19 integ = intg(theta1, theta2, ft)
20 disp (integ)
21 Irms = (integ/\%pi)**0.5
22 Pl=Irms**2*Rl
                                 //power loss in
      resistance (W)
23
24 // Part c
25 P=V1*Idc
                                //power supplied to
      battery (W)
26
27 //results
28 printf ("Resistance to be added is %.2 f Ohms", R1)
29 printf ("power supplied to battery is %.f W",P)
```

Scilab code Exa 1.16 Example

```
1
2
3 // Variable declaration
4 Rf=5 // forward resistance (ohms)
```

```
5 \text{ Vo} = 20
                               //output voltage(V)
6 \text{ Rs} = 10
                               //secondary resistance of
      transformer (ohm)
7
8 // Calculations
9 // Part a
10 \, \text{Idc} = 0.1
                               //dc current (A)
11 Vm=Vo*(sqrt(2)) //mean voltage(V)
12 Vdc = (2*Vm/(\%pi)) - Idc*(Rs+2*Rf) //dc voltage(V)
13
14 // Part b
15 Idc1=0.2
                               //full load dc current(A)
16 Vdc2 = ((2*(sqrt(2))*Vo)/(%pi)) - Idc1*(Rs+2*Rf) // full
      load dc voltage (V)
                                 //load resistance (ohm)
17 Rl=Vdc2/Idc1
18 x = ((2*Rf+Rs)/R1)*100
                                 //% regulation
19
20 // Part c
21 \, \text{Idc} = 0.2
                                //dc current (A)
                           //peak current (mA)
22 \text{ Im} = (\%\text{pi}) * \text{Idc}/2
23 Ilrms=Im/sqrt(2)
                          //rms current (mA)
24 Vlrms=Ilrms*Rl
                                //load rms voltage(V)
25
26 // Part d
27 \text{ Vldc}=14
                                               //load dc
      voltage (V)
  Vlacrms=sqrt(Vlrms**2-Vldc**2)
                                       //rms value of ac
      component (V)
29
30 //Results
31 printf ("dc voltage \%.f V", Vdc)
32 printf ("regulation is \%.2 f \%",x)
33 printf ("rms value of output voltage at dc load
      current is %.2 f V", Vlrms)
34 printf ("rms value of ac component of voltage %.2 f V
      ", Vlacrms)
```

Scilab code Exa 1.17 Example

```
1 // Variable declaration
2 \text{ Vh} = 60.
                     //higher output voltage(V)
3 V1 = 45.
                     //lower output voltage(V)
                     //frequency(Hz)
4 \text{ fz} = 50.
5 Vr = 15.
                     //peak to peak ripple voltage(V)
                     //resistance (ohms)
6 R1 = 600.
8 // Calculations
9 Vldc = (Vh + Vl)/2
                    //avg load dc voltage(V) as voltage
       drops from 60 to 45
                     //dc current(A)
10 Idc=Vldc/Rl
11 T=1/fz
                     //discharging time (ms)
                     //linear discharge rate(uF)
12 C=(Idc*T)/Vr
13 C1=C*2
                     //new capacitance(uF)
14
15 Vr1 = (20*120*1000)/(1200*254)
16 Idc1 = (Vh - (Vr1/2))/R1
                                         //dc load current
      (mA)
17
18 // Results
19 printf ("value of capacitance is %.f uF", C/1E-6)
20 printf ("Vr1 is %d V", Vr1)
21 printf ("dc load current Idc is %.f mA", Idc1/1E-3)
22 printf("Note: Answer may be vary because of
      rounding off error.")
```

Scilab code Exa 1.18 Example

1 2

```
3 // Variable declaration
4 \text{ Vdc}=30
                                       //dc voltage(V)
                                       //source voltage(V)
5 V1=220
                                       //frequency(Hz)
6 f = 50
7 R1=1000
                                       //load resistance(k
      ohms)
8 \ Vr = 15
9
10 // Calculations
11 C = 100/f * R1
                                       //as Vdc/Vr=100
12 Vm = Vdc + 0.01*(30/2)
                                            //peak voltage(
     V)
13 V2=Vm/(sqrt(2))
                                 //secondary voltage(V)
14 r = V1/V2
                                       //transformer turn
      ratio
15
16 // Results
17 printf ("capacitor filtor is %.f uF",C)
18 printf ("transformer turn ratio is %.2f",r)
```

Scilab code Exa 1.19 Example

```
1
3 // Variable declaration
4 Idc = 60 * 10 * * -3
                                           //dc current(A)
5 \text{ Vm} = 60
                                           //peak volage(V)
                                           //frequency (Hz)
6 f = 50
                                           //capacitance(F)
7 C=120*10**-6
9 // Calculations
10 // Part a
11 Vrms = Idc/(4*(sqrt(3))*f*C*Vm) //rms voltage(V)
12 Vr=2*(sqrt(3))*Vrms
                                      //ripple factor(V)
13
```

Scilab code Exa 1.20 Example

```
1
3 // Calculations
4 // Part a
           200 * 1.141
                               -(1 - \cos 628t)
6 //v1(t) = ---
7 //
                   3.14
                                    3
               200*1.141
                                   800 * 1.141
   //v2(t) =
                                                  \cos (628 t + < (V2/V1)
       ))
10 //
                  3.14
                                    3*3.14
11 //
12 /V2/V1 | w=0 = 0.8; V2/V1 | w=628 = 6.43*10^-4 < V2/V1 | w
       =628 = 180
   //v2(t) = 72.02 + 0.0538 \cos 628t
14
15
16 // Part b
17 \text{ vrms} = 0.0538
18 \text{ vdc} = \text{sqrt}(2) * 72.02
19 r=vrms/vdc
20
```

```
21 //Results
22 printf ("ripple factor is %.2e",r)
```

Scilab code Exa 1.24 Example

```
1
2
3 // Variable declaration
4 \forall z=2
                              //zener voltage(V)
5 r1=10
                              //resistance after reducing
      circuit by the vinin (ohms)
6 r2=20
                              //resistance after reducing
      circuit by the vinin (ohms)
7 V1 = 7.5
                             //voltage after circuit
      reduction (V)
8 V2 = 15
                             //voltage after circuit
      reduction (V)
9 Rz = 100/3
                             //zener resistance (ohms)
10
11 // Calculations
                                             //thevinin
12 Vab=V2-(((V2-V1)/(r1+r2))*r2)
      voltage at ab(V)
13 Rth=(Vab*r2)/(Vab+r2)
                                             //thevinin
      resistance at ab (ohms)
14 Vd=Vab-Vz
                                             //diode
      voltage (V)
15 Id=Vd/(Rth+Rz)
                                             //diode
      current (A)
16
17 // Results
18 printf ("diode current is %.2 f A", Id)
```

Scilab code Exa 1.25 Example

```
1 // Variable declaration
2 \text{ Vd=0.7}
                                        //diode voltage(V)
3 \text{ Ro} = 18
                                        //output resistance(k
       ohms)
4 R1=2
                                        //diode1 resistance(k
       ohms)
5 R2 = 2
                                        //diode2 resistance(k
       ohms)
7 // Calculations
8 //Part a
9 V1=10
                                        //\operatorname{voltage} to D1(V)
                                        //\operatorname{voltage} to D2(V)
10 V2=0
                                        //output current (mA)
11 Io = (V1 - Vd) / (R1 + Ro)
                                        //output voltage(V)
12 Vo=Io*Ro
13
14 // Part b
15 V1=5
                                        //voltage to D1(V)
                                        //\operatorname{voltage} to \mathrm{D2}(\mathrm{V})
16 V2=0
                                        //output current (mA)
17 Io = (V1 - Vd) / (R1 + Ro)
                                        //output voltage(V)
18 Vo1=Io*Ro
19
20 // Part c
                                       //\operatorname{voltage} to \operatorname{D1}(V)
21 V1=10
                                       //voltage to D2(V)
22 V2 = 5
                                       //as D1 only conducts, so,
23 \text{ Vo} = 8.37
       Vo is same as in part a
24 Vd1=V2-Vo
                                       //assume D1 conducts
25 \text{ Vo}2=8.37
                                       //D2 does not conduct as
       as Vd1 is negative
26
27 // Part d
28 V1=5 ; V2=5
                                         //voltage to D1 and D2(
       V)
29 Id1 = (V1 - Vd - Vo)/2
                                    //diode1 current (mA)
                                    //output current (mA)
30 Io=Vo/Ro
                                    //\operatorname{output} \operatorname{voltage}(V)
31 Vo3 = (Ro*(V1-Vd))/(Ro+1)
32
```

```
33 printf ("a)output voltage is %.2 f V", Vo)
34 printf ("b)output voltage is %.2 f V", Vo1)
35 printf ("c)output voltage is %.2 f V", Vo2)
36 printf ("d)output voltage is %.2 f V", Vo3)
```

Scilab code Exa 1.26 Example

```
1 // Variable declaration
2 \text{ Vs} = 10.
                                     //supply voltage(V)
3 Rs = 1
                                     //supply resistane (ohm)
                                     //load voltage(V)
4 V1 = 10.
                                     //nput voltage(V)
5 \text{ Vi} = 50.
6 Iz = 32
                                     //zener diode current(
      mA)
                                     //supply current (mA)
7 Is = 40
8
9 // Calculations
10 / Part a (Rl is min when Iz=0)
11 Is=(Vi-Vs)/Rs
                                   //source current (mA)
12 Rlmin=Vl/(Vi-Vs)
                                   //load resistance
      minimum (ohm)
13
14 // Part b (Rl is maximum when Iz=32 mA)
15 Il=(Is-Iz)*10**-3
                                  //load current (A)
16 \text{ Rlmax=Vl/Il}
                                  //maximum load resistance
      (k ohms)
17 P=V1*Iz
                                  //max diode wattage
      consumed (mW)
18
19 // Results
20 printf ("Range of Rl is \%.2\,\mathrm{f} ohm to \%.2\,\mathrm{f} k ohm", (
      Rlmin/1E-3), (Rlmax/1E+3))
21 printf ("Il = \%.e A", Il)
22 printf ("max power consumed is %.f mW',P)
```

Scilab code Exa 1.27 Example

```
1 // Variable declaration
2 \ Vz = 20
                     //zener voltage(V)
                     //maximum zener current (mA)
3 Izmax = 50
4 Rz = 0
                     //zener resistance (ohms)
5 R1 = 2.
                     //load resistance (ohm)
                     // as Vz=Vl(V)
6 V1 = 20.
                     //source resistance(k ohms)
7 \text{ Rs} = 0.25
9 // Calculations
10 // Part a
11 Il=V1/R1
                        //load current (mA)
12 Vsmin=(Rs+R1)*I1
                        //as Iz is floating so Iz=0
13
14 // Part b
                        //source current (mA)
15 Is=Izmax+I1
16 \quad Vsmax = Vz + (Is*Rs)
                        //maximum source voltage(V)
17
18 //Results
19 printf ("Vsmin %.1 f V", Vsmin)
20 printf ("Range of input voltage is %.1f to %.1f V",
      Vsmin, Vsmax)
```

Scilab code Exa 1.28 Example

```
5 \text{ Rs} = 10.
                                   //source resistance(k ohms
      )
6 V1=16.015
                                 //load voltage(V)
                                 //nominal load voltage(V)
7 V11=16.
8 \ Vs = 20
                                 //source voltage(V)
9 \ Vz = 16
                                 //zener diode voltage(V)
10
11 // Calculations
12 // Case 1 (i)
13 Iz=(V1-V11)/Rz
                                 //zener current (mA)
                                 //supply current(A)
14 \text{ Is=Iz+Ilmax}
15
16 //Case 1 (ii)
17 Is1=(Vs-Vz)/(Rs+Rz)
                                       //supply current (mA)
                                       //voltage(V)
18 V12 = V11 + (Is1 * Rz)
19 Vr = ((V12 - V1) / V11) * 100
                                      //voltage regulation
20
21 //Case 2 (i)
22 \ Vs = 18
                                      //supply voltage(V)
                                      //load current max(A)
23 \quad Ilmax=0.1
24 V1=16.005
                                      //load voltage(V)
25 \text{ Iz} = (V1 - V11) / Rz
                                      //zener current (mA)
                                      //supply current(A)
26 \text{ Is} 2 = \text{Ilmax} + \text{Iz}
27
28 //Case 2 (ii)
29 Ilmin=0
30 \text{ Iz1} = (Vs - Vl1) / (Rs + Rz)
                                     //minimum diode current(
      mA)
31 V1=V11+(Iz*Rz)
                                     //load voltage at Ilmin (
      V)
32
33 // Part a
34 // Variable declaration
35 \text{ Is} = 0.4
                                //supply current(A)
36 \ Vs = 20
                                 //supply voltage(V)
37 V1=16.015
                                //load voltage(V)
38 Iz=0.3
                                 //zener current (mA)
39
```

```
40 // Calculations
41 P=Is**2*Rs
                                //power dissipated by Rs(W)
42
43 // Part b
44 \text{ Pd=Vl*Iz}
                                 //power dissipated (W)
                                 //output power (W)
45 \text{ Po} = (Vs**2)/Rs
46
47 printf ("maximum power dissipated by Rs is %.1f W",P
48 printf ("maximum power dissipated by diode is %.3 f W
      ",Pd)
49 printf ("minimum diode current is %.3f A", Iz1)
50 printf ("voltage regulation is \%.2 \text{ f } \%\%", \forall r)
51 printf ("output shorted will be %.1 f W", Po)
```

Scilab code Exa 1.29 Example

```
1
3 // Variable declaration
4 Vrms=20
                                //secondary voltage(V)
                                //Winding resistance (ohm)
5 \text{ Rs} = 10
6 Rf = 5
                                //diode has forward
      resistance (ohms)
  Idc = 2 * 10 * * -3
                                //load current (mA)
9 // Calculations
10 // Part a
11 Vdc = (Vrms * (sqrt(2))) / (%pi) //no load Vdc
12
13 // Part b
14 Vldc=Vdc-(Idc*(Rs+Rf))
                                                   //dc
      output voltage when load is 20mA
15
16 // Part c
```

```
//load
17 Rl=Vldc/Idc
      resistance (ohms)
18 r = ((Rs + Rf)/R1)*100
      percentage regulation (%)
19
20 // Part d
                                                //peak
21 Im=Idc*(%pi)
      current (mA)
22 \quad Ilrms = Im/2
                                                     //rms
      load current (mA)
23 Vlrms=Ilrms*Rl
                                                     //rms
      load voltage (V)
24 Vlrmsac=sqrt((Vlrms**2)-(Vldc**2))
                                           //Ripple
      voltage rms(V)
                                                     //rippLe
25 f=50*2
      frequency (Hz)
26
27 // Part e
28 eta=(((2*(\%pi))**2)/(1+((Rs+Rf)/R1)))*100
      efficiency
29
30 // Part f
                                                //peak
31 PIV=Vrms*(sqrt(2))
      inverse voltage (V)
32 \text{ Vm} = \text{PIV}
33 //Results
34 printf ("no load dc voltage is %.f V", Vdc)
35 printf ("dc output voltage when the load is drawing
      20 \text{ mA is } \%.2 \text{ f } \text{ V", Vldc})
36 printf ("percentage regulation at this load is \%.2 \,\mathrm{f}
      \%\%", (r/1E-1))
37 printf ("ripple voltage rms is %.2f V and ripple
      frequency is \%.f Hz", Vlrmsac,f)
38 printf ("power conversion efficiency is \%.1 f \%\%",(
      eta/1E+2))
39 printf ("PIV is %.f V", PIV)
```

Scilab code Exa 1.30 Example

```
1
2
3 // Variable declaration
                                  //battery voltage(V)
4 V1=24
5 \text{ Vm}=60*(\text{sqrt}(2))
                            //peak voltage(V)
6 \text{ Ip=2.5}
                                  //peak current(A)
7 c = 20
                                  //charge(Ah)
9 // Calculations
10 // Part a
11 theta=asin(Vl/Vm) //angle at which conduction
      begins
                                 //source resistance (ohms)
12 Rs = (Vm - V1)/Ip
13
14 // Part b
15 Idc = (Vm/(\%pi)*Rs)*(cos(theta))-(((\%pi)-(2*theta))/2*
      %pi)*(V1/Rs) //load current(A)
16 \text{ T=c/Idc}
      //time to deliver 20Ah(h)
17
18 // Results
19 printf ("resistance connected in series is %.1f ohm"
20 printf ("time required to deliver a charge of 20 Ah
      is \%.1 f h, (T/1E-3))
21 printf ("Idc \%.2 f A",(Idc/1E+3))
```

Scilab code Exa 1.32 Example

```
1
2
3 // Variable declaration
                            //external resistance (ohms)
4 R = 25.
5 \text{ Vm} = 200.
                            //peak value of voltage(V) as
      vs = 200 \sin wt
6 \text{ Rf} = 50.
                            //forward resistance (ohms)
7
8 // Calculations
9 //Part a
                           //diode current(peak)
10 Id=Vm/(2*Rf+R)
11
12 // Part b
13 Idc = (2*Id) / \%pi // dc current (A)
14
15 // Part c
16 \text{ PIV=Vm/2}
                              //peak value of voltage
      across D1
17 PIVac=100/%pi
                         //average value of voltage across
       D1
18
19 // Part d
                              //peak value of current(A)
20 \text{ Im} = \text{Id}
21 Irms=Im/(sqrt(2)) //rms value of current(A)
22
23 // Results
24 printf ("peak value of current is %.1f A",Id)
25 printf ("dc currect is \%.2 \, \mathrm{f} A", Idc)
26 printf ("across D1 are peak voltage is %.1f V and
      average voltage is %.1 f V", PIV, PIVac)
27 printf ("Irms is \%.2 \text{ f A}", Irms)
```

Scilab code Exa 1.33 Example

1

```
3 // Variable declaration
4 f = 50.
                        //frequency (Hz)
                        //difference between maximum and
5 \, dv = 7.
      minimum (25-18) voltages across the load (V)
                        //load current (mA)
  Ic=100.
7
8 // Calculations
                       //time of discharge (seconds)
9 dt = 1/(2*f)
10 C=Ic/(dv/dt)
                       //capacitance(uF)
11
12 // Results
13 printf ("value of capacitor is \%.2 \, \text{f uF}", (C/1E-3))
```

Scilab code Exa 1.34 Example

```
1
3 // Variable declaration
4 \ Vr = 10.
                                        //peak to peak
      ripple voltage (V)
5 \text{ Vm} = 50.
                                        //peak output
      voltage (V)
                                        // Capacitance (uF)
6 C = 300.
7 R1 = 470.
                                        //load resistance(
      ohms)
8 f = 50.
                                        //frequency(Hz)
10 // Calculations
11 // Part a
12 Vdc=Vm-(Vr/2)
                                        //dc voltage(V)
                                        //capacitance (mF)
13 C=Vdc/(f*Vr*R1)
14
15 // Part b
                                         //capacitance is
16 C1=300*10**-6
```

Scilab code Exa 1.35 Example

```
1
2
3 // Variable declaration
                               //instantaneous voltage(V)
4 \text{ vo} = 7.5
                               //resistance(k ohms)
5 R1=15
6 \quad Von=0.5
                               //voltage of diode when on (V
8 // Calculations
9 Rth=(R1*vo)/(R1+vo)
                                             //equivalent
      resistance (V)
10 T = 2*(\%pi)/10**4
                                         //time period (ms)
11 t1=(asin(Von/2.5))/10**4
                                       //timings when D1
      conducts (ms)
12 t2 = (T/2) - t1
13
14 //Results
15 printf ("time period is \%.3 \,\mathrm{f} ms", (T/1E-3))
16 printf ("t1 is \%.3e ms",t1)
17 printf ("t2 is \%.3 \, \text{f ms}",(t2/1E-3))
```

Scilab code Exa 1.36 Example

```
1
3 // Variable declarations
4 v = 12
                                     //output voltage(V)
5 \text{ vm} = 20.
                                     //peak voltage(V)
                                     //output voltage(V) for
6 v1 = 8
       negative half cycle
7 \text{ vm1} = 20.
                                     //peak voltage(V) for
      negative half cycle
8
9 // Calculations
10 t1 = (asin(v/vm))/10**4
                                      //for positive half
      cycle when D1 conducts
11 t2=(0.1*\%pi)-t1/1e-3
12 t3=(asin(v1/vm1))/10**4
                                      //for negative half
      cycle when D2 conducts
13 t4=(0.1*(\%pi))+t3/1e-3
14 t5 = (0.2*(\%pi)) - t3/1e - 3
15
16 //Results
17 printf ("t1 is \%.3 \, \text{f ms}", t1/1e-3)
18 printf ("t2 is %.2f ms",t2)
19 printf ("t3 is \%.3 \, \text{f ms}",t3/1e-3)
20 printf ("t4 is %.3f ms",t4)
21 printf ("t5 is \%.3 \,\mathrm{f} ms",t5)
22 printf ("vo is -5.33+6.66*\sin(10**4*.15)")
```

Chapter 2

TRANSISTORS AND OTHER DEVICES

Scilab code Exa 2.1 Example

```
1 // Variable declaration
2 Rb = 200
                               //base resistance(ohm)
3 \ Vbe=0.7
                               //base emitter voltage drop(
      V) in active region
                               //base voltage of bipolar
4 Vbb=5
      transistor (V)
5 \text{ beeta=100}
                               //current gain
                               //collector resistance(k
6 \text{ Rc} = 3
      ohms)
                               //voltage given to the
7 \text{ Vcc} = 10
      collector (V)
9 // Calculations
10 Ib=(Vbb-Vbe)/Rb
                                 //base current (mA)
                                 //collector current (mA)
11 Ic=beeta*Ib
                                 //collector base voltage
12 Vcb = -Vbe - (Rc*Ic) + Vcc
      drop(V)
13
14 // Results
```

Scilab code Exa 2.2 Example

```
1 // Variable declaration
2 \text{ Vbb=5}
                          //base voltage of bipolar
      transistor (V)
3 \text{ Vbe} = 0.7
                          //base emitter voltage drop(V)
      in active region
                          //base resistance(ohm)
4 \text{ Rb} = 150
                          //curret gain
5 beeta=125
                          //collector resistance(k ohms)
6 \text{ Rc} = 3
                         //supply voltage(V)
7 \text{ Vcc} = 10
                          //collector to emitter voltage(V
8 \ Vce = 0.2
9
10 // Calculations
11 // Part a
12 Ib=(Vbb-Vbe)/Rb
                         //base current (mA)
                           //collector current (mA)
13 Ic=beeta*Ib
14 Vcb=-Vbe-(Rc*Ic)+Vcc //collector base voltage drop(
15
16 // Part b -for npn transistor
17 Vbe=0.8
                          //base emitter voltage drop(V)
      in saturation
18 Ic=(Vcc-Vce)/Rc
                         //collector current (mA)
                         //base current (mA)
19 Ib=(Vbb-Vbe)/Rb
20 Ibmin=Ic/beeta
                          //minimum base current (mA) to go
       into saturation (mA)
21
22 // Results
```

Scilab code Exa 2.3 Example

```
1 // Variable declaration
2 Vbb=5
                            //base voltage of bipolar
      transistor (V)
3 \text{ Vbe=0.7}
                            //base emitter voltage drop(V)
       in active region
4 Rb = 50
                            //base resistance(ohm)
5 \text{ beeta} = 50
                            //current gain
6 \text{ Re} = 1.8
                            //emitter resistance(k ohms)
7 \ \ Vcc=10
                            //supply voltage(V)
8 \ Vce=0.2
                            //collector to emitter voltage
      (V)
9
10 // Calculations
11 Ib=(Vbb-Vbe)/(Rb+Re*(beeta+1))
                                            //base current(
      mA)
12 Ic=beeta*Ib
                                            //collector
      current (mA)
13 Ie=Ib+Ic
                                            //emitter
      current (mA)
14
15 // Results
16 printf ("values are Ib: %.2 f mA, Ic: %.2 f mA and Ie
      : \%.2 f mA", Ib, Ic, Ie)
```

Scilab code Exa 2.4 Example

```
1 // Variable declaration
2 \text{ Vbe=0.7}
                                     //base to emitter
      voltage (V)
3 \text{ Rb} = 250
                                     //base resistance(k
      ohms)
                                     //supply voltage(V)
4 \text{ Vcc}=10
                                     //load resistance(k
5 R1 = 0.5
      ohms)
7 // Calculations
                                     //collector current (mA)
8 Ic=Vcc/Rl
9 IbQ = (Vcc - Vbe)/Rb
                                     //Ib at operating point
      (uA)
10 \text{ IcQ=8}
                                     //Ic at operating point
      (mA)
                                     //Vce at operating
11 VceQ=6
      point (V)
12
13 // Results
14 printf ("values are IbQ: %.4f uA, IcQ: %.f mA and
      Vcc : \%. f V", IbQ, IcQ, Vcc)
15 printf ("collector current Ic is %d mA and output
      voltage, vL=6-2 sinwt V", Ic)
```

Scilab code Exa 2.5 Example

```
10 // Calculations
11 Id=K*((Vds-Vt)^2) // drain current at Vds=8V
12 Rd=(Vdd-Vds)/Id // drain resistance(k ohms)
13
14 // Result
15 printf ("diode resistance is %.f ohms", Rd)
```

Scilab code Exa 2.7 Example

Scilab code Exa 2.8 Example

```
10 // Result
11 printf ("diode current is %.1f mA", Id)
```

Scilab code Exa 2.10 Example

```
1 // Variable declaration
2 beeta=160
                               //current gain
                               //emitter voltage(V)
3 \ \text{Vee} = 10
                               //base resistance(k ohms)
4 Rb = 400
                               //emitter to base voltage(V)
5 \text{ Veb=0.8}
                               //emitter resistance(k ohms)
6 \text{ Re} = 2.5
7 \text{ Rc} = 1.5
                               //collector resistance(k
      ohms)
8
9 // Calculations
10 // Part a
11 Ib=(Vee-Veb)/((Re*(1+beeta))+Rb)
                                              //base current(
      uA)
                                              //collector
12 Ic=beeta*Ib
      current (mA)
13 Ie=(beeta+1)*Ib
                                              //emitter
      current (mA)
14 Vce=Vee-(Re*Ie)-(Rc*Ic)
                                              //emitter to
      collector voltage(V)
15 \, \text{Vce} = - \text{Vce}
                                              //collector to
      emitter voltage (V)
16
17 // Part b
18 beeta=80
                                              //current gain
  Ib1 = (Vee - Veb) / ((Re*(1+beeta)) + Rb)
                                              //base current(
      uA)
20 Ic1=beeta*Ib1
                                              //collector
      current (mA)
21 Ie1=(beeta+1)*Ib1
                                              //emitter
      current (mA)
```

Scilab code Exa 2.13 Example

```
1
2 // Variable declaration
3 K = 2
                                  //device parameter
4 Rd=2.5*10**3
                              //drain resistance(k ohms)
5 \text{ Rs} = \text{Rd}
6 R1 = 100 * 10 * * 3
                                  //resistance (ohms)
                                  //resistance(ohms)
7 R2 = 200 * 10 * * 3
                                  //drain voltage(V)
8 \text{ Vdd}=12
9 Vt=4
                                  //threshold voltage(V)
10
11 // Calculations
12 Vgg = (R2*Vdd)/(R1+R2)
13 syms Id
14 expr=solve([Id**2-3.28*Id+2.56],[Id])
15 disp(expr)
16 Id=1.28
17 \text{ Vds} = \text{Vdd} - 5 * \text{Id}
18
19 // Result
20 printf ("Id is %.2 f mA and Vds is %.1 f V", Id, Vds)
```

Scilab code Exa 2.14 Example

```
1 // Variable declaration
2 k=2.
                                  //device parameter
3 \text{ Vt} = -1.
                                  //threshold voltage(V)
                                  //drain voltage(V)
4 \text{ Vdd} = -12.
5 R1 = 300.
                                  //resistance (kohms)
6 R2 = 100.
                                  //resistance (kohms)
8 // Calculations
9 // Part a
10 \ Vgs = -2
                              //gate to source voltage(V)
                               //gate voltage(V)
11 Vgg = (R2 * Vdd) / (R1 + R2)
                               //drain current (mA)
12 Id=k*((Vgs-Vt)**2)
                               //source resistance(k ohms)
13 Rs=(Vgs-Vgg)/Id
      as Id=Is, Kvl in GS loop
14 \text{ Is=Id}
15
16 // Part b
17 \, \text{Vds} = -4
                                 //drain to source voltage(
18 Rd=(-Vdd+Vds-(Is*Rs))/Id //applying kvl in DS loop
19
20 // Part c
21 \text{ Vt} = -1.5
                                     //threshold voltage(V)
22 \text{ Vgg} = -1.5
                                     //gate voltage using Id
       formula
23 R2new=(Vgg*R1)/(Vdd-Vgg) //new resistance(k ohms
24
25 // Results
26 printf ("a) source resistance is %.1f kohm", Rs)
27 printf ("b) drain resistance is %.1f kohm", Rd)
28 printf ("c) R2new is \%.2 \text{ f kohm}, R2new)
```

Scilab code Exa 2.15 Example

```
1
2
3 // Variable declaration
4 \ Vp = -4
                               //peak voltage(V)
5 Idss=10
                               //drain current for Vgs(V)
                               //drain voltage(V)
6 \text{ Vdd}=18
7 \text{ Rs} = 2
                        //source resistance (ohms)
8 Rd=2
                        //drain resistance (ohms)
                               //resistance(ohms)
9 R1=450*10**3
                               //resistance(ohms)
10 R2=90*10**3
11
12 // Calculations
13 Vgg = (R2*Vdd)/(R1+R2)
14 syms Id
15 expr=solve([20*Id**2-148*Id+245],[Id])
16 disp (expr)
17 Id1=2.5
18 Vds=Vdd-((Rs+Rd)*Id1)
19
20 //Result
21 printf ("Id is %.1f mA and Vds is %.1f V", Id1, Vds)
```

Scilab code Exa 2.16 Example

Chapter 3

SMALL SIGNAL MODELS AMPLIFICATION AND BIASING

Scilab code Exa 3.1 Example

```
1 // Variable declaration
2 beeta=100
                         //current gain
                         //collector current (mA)
3 \text{ Ic} = 2.5
4 Io = -0.5
                         //output current (mA)
5 R1 = 2.5
                         //load resistance (kohm)
7 // Calculations
8 rpi=beeta*(25/Ic) //dynamic resistance(ohms)
                        //as Io=-beeta*Ib
9 Ib=Io/(-beeta)
                        //signal voltage(V)
10 Vs=rpi*Ib
                        //output voltage (V)
11 Vo=R1*Io
                        //voltage gain
12 Av=Vo/Vs
13 Ai = Io/Ib
                        //current gain
14
15 // Results
16 printf ("signal voltage is %.1f mV", Vs)
17 printf ("current gain is %.1f", Ai)
```

Scilab code Exa 3.2 Example

```
1
2
3 // Variable declaration
4 Id=1.6
                           //drain current (mA)
5 \text{ Vgs} = -3
                           //gate to source voltage(V)
6 \text{ Id1} = .4
                           //drain current (mA)
7 \ Vgs1 = -4
                           //gate to source voltage(V)
8 \ Vp = -5
                           //peak voltage(V) by solving
      equations 1.6 = Idss(1+3/Vp)^2 and .4 = Idss(1+4/Vp)
      ^2
  Idss=10
                           //small signal drain current (mA
      by solving equations 1.6 = Idss(1+3/Vp)^2 and .4 = Idss(1+3/Vp)^2
      Idss(1+4/Vp)^2
10
11 // Calculations
12 \text{ gmo} = -(2*Idss)/Vp
                                       //transconductance(
      mS)
13 gm=gmo*(sqrt(Id/Idss)) //transconductance(uS)
14 gm1=gmo*(sqrt(Id1/Idss)) //transconductance(uS)
15
16 // Results
17 printf ("Idss and Vp are %.f mA and %.f V", Idss, Vp)
18 printf ("gmo is %.f mS",gmo)
19 printf ("gm at Id is %.f gm at Id1 is %.f uS",gm/1E
      -3, gm1/1E-3)
```

Scilab code Exa 3.3 Example

```
1 // Variable declaration
```

```
//gm(us)
2 \text{ gm} = 1600
                           //resistance(kohms)
3 \text{ rd} = 50
4 R1=5
                           //load resistance (kohms)
5
  // Calculations
                           //Vgs=Vs from circuit model
7 Av = -gm * R1
8
                           //Vo=-(gm*Vgs)*Rl
                           //as Av=Vo/Vs=-gm*Rl
9
10
11 //Result
12 printf ("voltage gain of the circuit is \%.f", Av/1E
      +3)
```

Scilab code Exa 3.4 Example

```
1 // Variable declaration
2 \text{ beta=100}.
                     //current gain
3 rpi=2*10**3
                     //dynamic resistance (ohms)
                     //resistance (ohms)
4 rx = 500
5 ro=250*10**3
                     //output resistance (ohms)
6 R1=50*10**3
                     //resistance(k ohms)
7 R2=10*10**3
                     //resistance(k ohms)
                     //collector current(k ohms)
8 \text{ Rc} = 5 * 10 * * 3
                     //load current(k ohms)
9 R1=5*10**3.
                     //source resistance(k ohms)
10 \text{ Rs} = 1 * 10 * * 3
11
12 // Calculations
                                         //equivalent
13 Rb = (R1 * R2) / (R1 + R2)
      resistance of R1 and R2(kohms)
                                         //series resistance
14 r = rpi + rx
       of rpi and rx(k ohms)
   gm=beta/rpi
                                         //transconductance(
      mS)
16 Vo = -gm*((Rc*R1)/(Rc+R1))*.526
                                         //output voltage(V)
       as
```

Scilab code Exa 3.5 Example

```
1 // Variable declaration
2 \text{ beta=100}.
                      //current gain
3 rd=50*10**3
                      //internal dynamic resistance (ohms
                      //transconductance (mS)
4 \text{ gm} = 5 * 10 * * -3
5 R1 = 50 * 10 * * 3
                      //resistance (ohms)
6 R2 = 10 * 10 * * 3
                       //resistance (ohms)
                       //source current (ohms)
7 \text{ Rs} = 10 * 10 * * 3
                       //gate resistance (ohms)
8 \text{ Rg} = 1 * 10 * * 6.
9 Rd=10*10**3
                       //drain resistance (ohms)
10
11 // Calculations
12 Vgs = (Rg/(Rs+Rg))
                                          //gate to source
      voltage (V) as Vgs=Vs((Rg/(Rs+Rg))
                                           //voltage gain, Av=
13 Av = -Vgs *gm *((rd*Rd)/(rd+Rd))
      Vo/Vs and Vo=-gmVgs(rd||Rd)
14 Ai = Av * ((Rs + Rg)/Rd)
                                          //current gain
15
16 //Results
17 printf ("source to load voltage gain is %.f", Av)
18 printf ("source to load current gain is %.f", Ai)
```

Scilab code Exa 3.6 Example

```
1 // Variable declaration
2 \text{ Rs} = 500
                       //collector current(k ohms)
3 \text{ Io} = -1*10**-3
                       //output current (mA)
                        //collector resistance (ohms)
4 Rc=5*10**3.
5 hie=2*10**3
6 hoe=10*10**-6.
7 hfe=100.
8 \text{ hre} = 5*10**-4
9 Rb = 50 * 10 * * 3.
                       //base resistance (ohms)
10
11 // Calculations
12 Io1 = -1/(1 + Rc * hoe) * hfe
                               // as Io = -1/(1 + Rc * hoe) * hfe * Ib
13 Ib = -1/Io1
                                //base current (uA)
14 \text{ Vo=Io*Rc}
                               //output voltage(V)
15 Vi=hie*Ib+Vo*hre
                               //input voltage(V)
                               //source current (ohms)
16 \text{ Is=Ib+Vi/Rb}
17 Ai=Io/Is
                               //current gain
18 Vs = (Is*Rs) + Vi
                               //source voltage(V)
19 Av=Vo/Vs
                                //voltage gain
20
21 // Results
22 printf ("source to load voltage gain is \%.f", Av/1E
23 printf ("source to load current gain is \%.f", Ai/1E
      -3)
```

Scilab code Exa 3.7 Example

```
8
9 // Calculations
10 Ib=Ic/beeta
                                            //base current (mA
  Rb = (Vcc - Vbe - ((Ib + Ic) * Re)) / Ib
                                            //as \ Vcc = (Ib*Rb) +
      Vbe+(Ib+Ic)*Re
  Ib = (Vcc - Vbe - 8) / (Rb + Re)
                                            //as Vcc=Rb*Ib+
12
      Vbe+(Ib+Ic)*Re
13 Ic1=abeeta*Ib
                                            //collector
      current (mA)
14 deltaIc=Ic-Ic1
                                            //change in
      collector current (mA)
15
16 // Result
17 printf ("change in Ic when beeta=40 is %.1 f mA",
      deltaIc)
```

Scilab code Exa 3.8 Example

```
1 // Variable declaration
2 Rb1=36
                               //base resistance 1(kohms)
                               //base resistance 2(kohms)
3 Rb2=12
4 Rc=4
                               //emitter resistancce(kohms
5 \text{ Re} = 1.8
                               //emitter resistance(kohms)
                               //supply voltage(V)
6 \text{ Vcc}=12
                               //base to emitter voltage(V
  Vbe=0.7
8
9 // Calculations
10 Rb = (Rb1 * Rb2) / (Rb1 + Rb2)
                               //base resistance (ohms)
                               //voltage supply to base(V)
11 Vbb=Vcc*(Rb2/(Rb1+Rb2))
                               //(10.8*Ib) + (1.8*Ic) = 2.3
12
                                      equation 1...solving
                                  -Vbb+RbIb+Vbe+(Ib+IC)Re
```

```
//(1.8*Ib) + (5.8*Ic) + Vce = 12
13
                                      equation 2 solving -
                                    Vcc+RcIc+Vce+(Ob+Ic)Re
14 // Part a
15 beeta=50
                            //current gain
16 Ib=2.3/100.8
                            //(10.8*Ib) + (90*Ib) = 2.3, using
       -Vbb+Rb*Ib+Vbe+(Ib+Ic)*Re
                            //as Ic=50Ib and putting this
17
                               in equation 1
18 \text{ Icq=Ib*beeta}
19 Vceq=Vcc-(1.8*Ib)-(5.8*Icq) //from equation 2
20
21 // Part b
                          //current gain
22 beeta=150
                          // (10.8*Ib) + (270*Ib) = 2.3, using
23 Ib=2.3/280.8
      -Vcc+Rc*Ic+Vce+(Ib+Ic)*Re
                          //as Ic=150Ib and putting this
24
                             in equation 1
25 \text{ Icq1=Ib*beeta}
26 \text{ Vceq1=Vcc-}(1.8*\text{Ib})-(5.8*\text{Icq1})
                                              //from
      equation 2
27
28 // Results
29 printf ("when beeta increases by 300%%, Icq increases
       by \%.1 f \%\%, (Icq1-Icq)/Icq1*100)
30 printf ("when beeta increases by 300%%, Vceq
      increases by \%. f \%\%", (Vceq-Vceq1)/Vceq*100)
```

Scilab code Exa 3.9 Example

```
//base resistance (kohms)
5 \text{ Rb2} = 24
6 \text{ Vbe} = 0.7
                                 //base to emitter voltage(
      V)
7 Rc=4
                                //collector current(kohm)
8 Re=2
                                //emitter resistance (kohms)
                                //base current (mA)
9 \text{ Ib} = 0.04
10
11 // Calculations
12 // Part a
13 Vcc=(Ic*Rc)+Vce+Ic*Re
                                     //from formula Vcc=
      IcRc+Vce+(Ic+Ib)Re..eq 1
14
15 // Part b
16 Rb1=Rb2*(Vcc-(Vbe+Ic*Re))/((Vbe+Ic*Re)+Ib)
                                                      //from
      eq 1 and also from Vbb= Vcc(Rb2/(Rb1+Rb2))
                                                      //base
17 Rb = (Rb1 * Rb2) / (Rb1 + Rb2)
      resistance (ohms)
18 Vbb = (Vcc*Rb2)/(Rb1+Rb2)
                                                      //supply
       to base (V)
19
20 // Part c
                                                    //actual
21 abeeta=40
      current gain
  Ib1 = ((Vbe + Re * Ic) - Vbe) / ((1 + abeeta) * 2 + Rb)
                                                    //from
      equation Vbb=IbRb+Vbe+(Ic+Ib)Re
23
  Ic1=abeeta*Ib1
                                                    //
      collector gain
24
25 // Results
26 printf ("a) Vcc is \%.1 f V", Vcc)
27 printf ("b) values are Rb1: %.2 f KOhms, Rb : %.2 f kohm
       and Vbb : %.2 f V", Rb1, Rb, Vbb)
28 printf ("c) actual value of Ic1 : %.2 f mA", Ic1)
```

Scilab code Exa 3.10 Example

```
1 // Variable declaration
2 \ Vcc = 10
                  //supply voltage(V)
3 \text{ Rc} = 4.7
                  //collector current(kohms)
                  //base resistance (kohms)
4 Rb = 250
5 \text{ Re} = 1.2
                  //emitter resistance(kohms)
6 \text{ beeta=100}
                  //current gain
                  //base to emitter voltage(V)
7 \text{ Vbe} = 0.7
8
9 // Calculations
10 // Part a
11 Ib=(Vcc-Vbe)/(Rb+(beeta*(Rc+Re)))
                                             //base current(
      uA)
12 Ic=beeta*Ib
                                             //collector
      current (mA)
13 Vce=Vcc-Ic*(Rc+Re)
                                             //collector to
      emitter voltage (V)
14 // Part b
15 beeta1=150
                                             //current gain
16 Ib1=(Vcc-Vbe)/(Rb+(beeta1*(Rc+Re)))
                                             //base current(
      mA)
17 Ic1=beeta1*Ib1
                                             //collector
      current (mA)
18 Vce1=Vcc-Ic1*(Rc+Re)
                                             //collector to
      emitter voltage (V)
19 deltaIc=((Ic1-Ic)/Ic)*100
                                             //small change
      in Ic (mA)
20 deltaVce=((Vce-Vce1)/Vce)*100
                                             //small change
      in Vce(V)
21
22 //Results
23 printf ("values of Ic is \%.2\,\mathrm{f} mA and Vce : \%.2\,\mathrm{f} V",
      Ic, Vce)
24 printf ("values of Ic1 is \%.2\,\mathrm{f} mA and Vce1 is \%.2\,\mathrm{f} V
      ", Ic1, Vce1)
25 printf ("\%% change in Ic is \%.2 f \%% and in Vce is \%
      .2 f %% ",deltaIc,deltaVce)
```

Scilab code Exa 3.11 Example

```
1 // Variable declaration
2 Id=3
                          //drain current (mA)
                          //\operatorname{drain}\ \operatorname{source}\ \operatorname{voltage}\left(V\right)
3 \text{ Vds} = 12
                          //gate source voltage(V)
4 \text{ Vgs} = -3
                          //drain voltage(V)
5 \text{ Vdd}=36
                          //gate voltage(V)
6 \text{ Vgg}=12
7 Rg = 12
                          //gate resistance (Mohms)
9 // Calculations
                                      //resistance (Mohms)
10 R1=(Rg*Vdd)/Vgg
                                      //resistance(kohms)
11 R2 = (Rg*R1)/(R1-Rg)
                                      //resistance(kohms)
12 Rs = (Vgg - Vgs)/Id
                                      //as Vdd-IdRd-Vds-IdRs
13 Rd=(Vdd-Vds-Id*Rs)/Id
14 \text{ Vgs} = -3.6
                                      //consider Vgs increases
        by 20%
  Idnew=(Vgg-Vgs)/Rs
                                      //new drain current (mA)
15
16
17 // Results
18 printf ("value of R1: %.f MOhm, R2: %.f Mohms, Rs
       : %. f KOhm and Rd: %. f kohms", R1, R2, Rs, Rd)
19 printf ("new Id is %.2 f mA", Idnew)
```

Scilab code Exa 3.12 Example

```
7
8 // Calculations
9 Vgs = (sqrt(Id0/k)) + 4 //as Id=k(Vgs-Vt)^2
                                 //as Vds=Vdd-IdRd and Vgs=
10 \text{ Rd} = -(\text{Vgs} - \text{Vdd})/\text{Id}0
      Vds = 7.87
11 k=0.0003
                                 //device parameter
12
13 syms Id
14 \text{ expr} = \text{solve}([Id**2-7.5*Id+13.7],[Id])
15 printf ("equation has 2 solutions")
16 disp(expr)
      putting value of k=0.0003 in eq of Id,
17
  Id1=3.15
                                                       // we
      get Vgs=Vds=24-5.4Id and putting Vgs again in Id
      we get,
                                             // Id^2 - 7.5 Id
18
                                                +13.7 = 0
19
20 Idchange=((Id1-Id0)/Id0)*100
      //changed Id (mA)
21
22 //Result
23 printf ("change in Id is %.1f %% increase", Idchange)
```

Scilab code Exa 3.13 Example

```
voltage (V)
8
9 // Calculations
10 // Part a
11 \text{ Vgs1=4}
                                                                //
       gate to source voltage (V)
  Id1=k*(Vgs1-Vt)**2
      //drain current (mA)
13
14 // Part b
15 \text{ Vgg}=3*\text{Vgs}1
      //gate voltage(V)
  R2 = (Vdd/Vgg) - 1
                                                                //
       resistance (Mohms)
17 Rs = (Vgg - Vgs1)/2
      //source resistance(k ohms)
  Rd = (Vdd - Vds - Id1 * Rs)/2
18
19
20 // part c
21 K = 1.5 * k
                                   //increased by 50%
22 Vgs2=3.67
                                   // solving 12=Vgs+4Id and
      Id = 0.75 (Vgs - 2)^2
  Id2 = 2.08
                                    //drain current when k is
23
        increased (mA)
24 \text{ Vds1=Vdd-Id2*(Rd+Rs)}
                                   //drain to source voltage(
      V)
25
  //Results
26
27 printf ("drain current defined by Vgs=4 and Vds=10
      is \%.1\,\mathrm{f} mA", Id1)
28 printf ("value of Rs,Rd,R2 are %.1f k ohms %.1f k
      ohms %.1 f Mohms resp.", Rs, Rd, R2)
29 printf ("actual value of Id and Vds are \%.2\,\mathrm{f} mA \%.2\,\mathrm{f}
       mA and \%.2 f V resp.", Id2, Vds1, Vds)
```

Scilab code Exa 3.14 Example

```
1 // Variable declaration
                                  //collector current (mA)
2 Ic = 10
3 \text{ beeta=100}
                                  //current gain
4 \text{ Vbe} = 0.7
                                  //base to emitter
      voltage (V)
                                  //supply voltage(V)
5 \text{ Vcc}=10
7 // Calculations
8 // Part a
9 R=(beeta*(Vcc-Vbe))/((beeta+2)*Ic)
                                                          //
      resistance (kohms)
10 \text{ beeta1} = 200
      current gain
  Ic1=(beeta1/(beeta1+2))*((Vcc-Vbe)/R)
                                                          //
      collector current (mA)
12 Icchange=((Ic-Ic1)/Ic)
                                                          //
      change in collector current (mA)
13
14 // Part b
15 Ic2=0.1
                                                          //
      collector current (mA)
16 R1=(beeta*(Vcc-Vbe))/((beeta+2)*Ic)
      resistance (k ohms)
17
  Ic3=(beeta1/(beeta1+2))*((Vcc-Vbe)/R1)
      collector current (mA)
  Icchange1=((Ic2-Ic3)/Ic2)
                                                          //
      change in collector current (mA)
19
20 // Results
21 printf ("%% change in Ic is %.1f %% increase",
      Icchange)
22 printf ("%% change in Ic is %.1f %% increase",
      Icchange1)
```

Scilab code Exa 3.15 Example

```
1 // Variable declaration
2 \text{ Vcc=6}
                                 //supply voltage(V)
3 R = 1.2
                                 //resistance(k ohms)
4 \ Vbe=0.7
                                 //base to emitter voltage
      (V)
                                 //current gain
5 beeta=100.
7 // Calculations
8 //Part a
9 \text{ Ir=(Vcc-Vbe)/R}
                                 //current (mA)
10 I=(beeta/(beeta+3))*Ir
                                // current (mA) as
      transistors are identifical, I=Ie
11
12 //Result
13 printf ("load current I is %.2 f mA",I)
```

Scilab code Exa 3.16 Example

```
1
3 // Variable declaration
4 Idss=10
                            //drain current for zero bias (
      mA)
5 \ Vp = -4
                            //peak voltage(V)
6 \text{ Idq=2.5}
                        //quienscent drain current (mA)
7 Id=Idq
                            //voltage drain drain(V)
8 \text{ Vdd} = 24
                            //gate voltage(V)
9 Vgg=4
10 R1=22
                            //resistance (Mohms)
11
```

```
12 // Calculations
13 / Part a
14 Vgs=Vp*(1-(sqrt(Id/Idss)))
                                              //solving Id=Idss
      (1-Vgs/Vp)^2
15 Rs = (Vgg - Vgs)/Id
                                                     //as Vgg-Vgs
      -IdRs=0, Id=Is
                                                     //given
16 \text{ Rd} = 2.5 * \text{Rs}
                                                     //from Vgg=(
17 R2 = (Vgg*R1)/(R1-Vgg)
      R1*R2)/(R1+R2)
18
19 // Part b
20 \text{ gmo} = -(2*Idss)/Vp
                                                    //
      transconductance (mS)
21 gm=gmo*(sqrt(Id/Idss))
                                              //transconductance
       (mS)
22
23 // Part c
24 \text{ Av=-gm*Rd}
                                                    //voltage
       gain
25
26 // Results
27 printf ("values of Rs : %.1 f Kohms, Rd : %.1 f k ohms
        and R2 is \%.1 \, \text{f M ohms}", Rs, Rd, R2)
28 printf ("value of gm is \%.1\,\mathrm{f} mS and gmo is \%.1\,\mathrm{f} mS",
      gm, gmo)
29 printf ("voltage amplification is \%.1 \, \mathrm{f}", Av)
```

Scilab code Exa 3.17 Example

```
1
2
3 // Variable declaration
4 beeta=98. // current gain
5 rpi=1.275 // dynamic
resistance(k ohms)
```

```
6 \text{ Rb} = 220.
                                             //base resistance
      (k ohms)
                                             //emitter
7 \text{ Re} = 3.3
      resistance (k ohms)
                                             //supply voltage(
8 \text{ Vcc}=12.
      V)
9 \ Vbe=0.7
                                             //base to emitter
        voltage (V)
10
11 // Calculations
12 // Part a
13 \text{ x=rpi/(1+beeta)}
                                           //voltage gain
14 Av=Re/(Re+x)
15
16 // Part b
17 Zb=rpi+(1+beeta)*Re
                                         //impedance(k ohms)
18 Zi = (Zb*Rb)/(Zb+Rb)
                                         //input impedance(k
      ohms)
19 Zo=(Re*x)/(Re+x)
                                         //output impedance(k
      ohms)
20
21 // Part c
22 Ib=(Vcc-Vbe)/(Rb+(Re*(1+beeta)))
                                                // as Ie = (1 +
      beeta)*Ib
23 Ic=beeta*Ib
                                               //collector
      current (mA)
24 \text{ rpi=beeta*}(25/\text{Ic})
                                               //dynamic
      resistance (k ohms)
25
26 // Results
27 printf ("voltage gain is \%.3 \,\mathrm{f}", Av)
28 printf ("input impedance is %.1f KOhm and output
      impedance is \%.1 \, \text{f} ohms", Zi, Zo/1E-3)
29 printf ("value of Ic is %.3 f mA", Ic)
30 printf ("value of rpi is \%.3 \, \text{f k ohms}", rpi/1E+3)
```

Scilab code Exa 3.18 Example

```
1
3 // Variable declaration
4 Idss=16
                                               //drain current
       bias to zero (mA)
                                               //pinch off
5 \text{ Vp} = -4
       voltage (V)
6 \text{ Rg} = 1
                                               //gate resistance (
       ohms)
7 \text{ Rs} = 2.2
                                               //sourse
       resistance (ohm)
8 \text{ Vdd} = 9
                                               //drain drain
       voltage (V)
10 // Calculations
11 // Part a
12 //Id=Idss*(1-(Vgs/Vp))**2
13 // putting value of Vgs=2.2*Id inequation of Id, we
       get
14 / Id **2 - 3.84 Id + 3.31
15
16 \text{ syms Id}
17 expr=solve([Id**2-3.84*Id+3.31],[Id])
18 disp(expr)
19 Id1=1.3
20 \text{ Vgs} = -\text{Id1}*\text{Rs}
      //gate to source voltage(V)
21 \text{ gm0} = -(2*Idss)/Vp
       //transconductance (mS)
22 gm=gm0*(1-(Vgs/Vp))
       //transconductance (mS)
23 \text{ rm} = 1/\text{gm}
```

Scilab code Exa 3.19 Example

```
1
3 // Variable declaration
4 \text{ Re} = 0.56
                                        //emitter
      resistance (kohms)
                                        //current gain
5 beta=1600
                                        //resistance(k ohms
6 R1=110
                                        //resistance(k ohms
7 R2 = 330
8
9 // Calculations
10 // Part a
11 Av1=Re*(beta+1)
                                     //voltage gain
12
13 //part b
14 Rb = (R1*R2)/(R1+R2)
                                      //base resistance(k
      ohms)
```

```
//source voltage(V)
15 Vs = (1.56/(Re*(beta+1)))+1
16 \text{ Avs} = 1/\text{Vs}
17
18 //part c
19 R=1+(1+beta)*Re
       //resistance presented to Ib
20 I = Rb/(Rb+R)
       // I=Ib / I i
21 \text{ Ai}=(1+\text{beta})*I
       //current gain
22
23 //part d
24 Rl=10*10**3
                                                      //load
       resistance (ohm)
                                                      //emitter
25 \text{ Re1}=(\text{Re}*\text{Rl})/(\text{Re}+\text{Rl})
       resistance (kohms)
26 R1 = 1 + (1 + beta) * Re1
                                                      //resistance
        presented to Ib(k ohms)
27 \quad I1=Rb/(Rb+R1)
                                                      //I1=Ib/Ii
                                                      //current
28 \text{ Ai1} = (beta + 1) * I1
       gain
29 Av2=Re1*(1+beta)
                                                      //voltage
       gain
30
31 //Results
32 printf ("a) voltage gain is \%.2 \,\mathrm{f}", Av1)
33 printf ("b) Avs is \%.2 f", Avs)
34 printf ("c) Ai is \%.2 f ", Ai)
35 printf ("when output Vol feeds a load of 10 k ohms
       Ai is \%d and Av2 is \%. f", Ai1, Av2)
```

Scilab code Exa 3.20 Example

```
1 // Variable declaration
2 beeta1=120. // current gain
```

```
//current gain
3 \text{ beeta2=160}.
                                          //supply voltage(V)
4 \ \ Vcc=18
5 \text{ Rc} = 0.1
                                          //collector
      resistance (ohms)
6 Rb = 2 * 10 * * 3.
                                           //base resistance(
      ohms)
7 \ Vbe=0.7
                                          //base to emitter
      voltage (V)
9 // Calculations
10 Ib1=(Vcc-Vbe)/(Rb+(beeta1*beeta2*Rc))//base current(
      uA)
11 Ib2=beeta1*Ib1
                                             //base current(
      mA)
12 Ie1=(beeta1+1)*Ib1
                                             //emitter
      current (mA)
13 Ic=Ie1+(beeta2*Ib2)
                                             //collector
      current (mA)
14 Vo=Vcc-(Ic*Rc)
                                             //output voltage
      (V)
15 Vi=Vo-Vbe
                                             //input voltage(
      V)
16
17 // Results
18 printf ("dc biased current is %.1f mA", Ic)
19 printf ("output voltage %.2 f V", Vo)
20 printf ("input voltage \%.2 \, \mathrm{f} \, \mathrm{V}", Vi)
```

Scilab code Exa 3.21 Example

```
1
2
3 //Variable declaration
4 deltaId=2. //change in Id(mA)
```

```
//change in Vgs(V
5 \text{ deltaVgs} = 1.
                                           //change in Vds(V
6 deltaVds=5.
  Idss=10.
                                           //drain current
      biased to zero (mA)
  Id=5.
                                           //drain current(
      mA)
9 Vp = -6.
                                           //pinch off
      voltage (V)
10
11 // Calculations
12 // Part a
13 gm=(deltaId)/(deltaVgs)
      transconductance (mS)
14 rds=(deltaVds)/(deltaId)
                                           //resistance(k
      ohms)
15 \text{ gm0} = -(2*Idss)/Vp
      transconductance (mS)
16 gm=gm0*(sqrt(Id/Idss))
                                     //transconductance (mS)
17
18 // Part b
19 R1=4.5
                                           //resistance(k
      ohms)
                                           //resistance(k
20 R2 = 2
      ohms)
21 Av = gm * ((R1*R2)/(R1+R2))
                                           //voltage gain
22
23 // Results
24 printf ("drain current biased to zero is %.1f mA and
       pinch off voltage is %.1f V", Idss, Vp)
25 printf ("value of gm and rds are \%.2\,\mathrm{f} mS and \%.2\,\mathrm{f} k
      ohms", gm, rds)
26 printf ("small signal amplifier gain is %.2 f", Av)
```

Scilab code Exa 3.22 Example

```
1
2
3 // Variable declaration
4 \quad Idson=0.2
                                   //gate to source voltage(
5 \text{ Vgs} = 5
      V)
                                   //drain voltage(V)
6 \text{ Vdd}=12
                                   //thevinine voltage(V)
7 Vt=2
8 R1 = 100.
                                   //resistance(k ohms)
                                   //resistance(k ohms)
9 R2 = 100.
10 \text{ Rd} = 30
                                   //drain resistance (K ohms
                                   //source resistance(k
11 \text{ Rs} = 6
      ohms)
12 deltaVdd=0.3
                                   //change in Vdd(V)
13 \text{ rds} = 50
                                   //internal drain to
      source resistance()
14
15 // Calculations
16 // Part a
                                             //device
17 k=Idson/((Vgs-Vt)**2)
      parameter
18 Vgg=Vdd*(R1/(R1+R2))
                                             //gate voltage(V)
19 \text{ Vgs} = 4.89
                                             //gate to source
      voltage (V)
                                             //drain current(
20 Id=k*(Vgs-Vt)**2
      mA)
21 \text{ Vds=Vdd-((Rd+Rs)*Id)}
                                             //drain to source
        voltage (V)
22 gm=2*(sqrt(k*Id))
                                       //transconductance (mS)
23 deltaVgg=deltaVdd*(R2/(R1+R2))
                                            //change in Vgg(V
24
                                             // as \ vgs = 0.15 - 6 id
25 \text{ vgs} = 0.105
       where id=u*vgs/(rds+Rs+Rd)=0.74vgs after solving
26 id= 0.074*vgs*10**3
```

```
27
28 // Results
29 printf ("id is %.2f uA",id)
```

Scilab code Exa 3.23 Example

```
1
3 // Variable declaration
4 deltaId=1
                                            //change in Id(mA)
                                            //change in Vgs(V)
5 \text{ deltaVgs} = 0.75
6 \text{ rd} = 100
                                            //internal drain
      resistance (k ohms)
7 \text{ Rd} = 100
                                            //drain resistance
      (k ohms)
                                            //as Vgs= 2sinwt
8 \text{ Vgs}=2
10 // Calculations
11 gm=(deltaId)/(deltaVgs)
                                           //transconductance
12 Vo = -gm * Vgs * ((rd*Rd)/(rd+Rd))
                                            // as Vi=2sin (w*t)
13
14 // Results
15 printf ("value of Vo is %.f *sinwt mV", Vo)
```

Scilab code Exa 3.24 Example

```
7 R2=100*10**3
                           //resistance (ohms)
                           //transconductance (mS)
8 \text{ gm} = 2.5
9 \text{ rd} = 60
                           //internal drain resistance (
      ohms)
10
11 // Calculations
12 // Part b
13 Ro=Rs/(1+(((1+gm*rd)*Rs)/(rd+Rd))) //output
      resistance (ohms)
14
15 // Part c
16 Rd1=0
                                          //drain
      resistance
17 Ro1=Rs/(1+(((1+gm*rd)*Rs)/rd))
                                          //output
      resistance (ohms)
18
19 // Results
20 printf ("value of Ro is %.f ohms", Ro/1E-3)
21 printf ("value of Ro1 is %.f ohms", Ro1/1E-3)
```

Scilab code Exa 3.25 Example

```
1 // Variable declaration
2 \text{ beeta=100}
                                      //current gain factor
3 \text{ Vbe=0.7}
                                      //base to emitter
     voltage (V)
4 Rb = 250
                                      //base resistance(k
     ohms)
5 \ \ \text{Vee} = 10
                                      //emitter voltage(V)
                                      //emitter resistance (
6 \text{ Re}=1
     k ohms)
8 // Calculations
9 Ib=(Vee-Vbe)/(Rb+1+beeta) // solving Rb*Ib+Vbe
     +(Ic+Ib)=Vee and putting Ic+Ib=(1+beeta)Ib
```

Scilab code Exa 3.26 Example

```
1 // Variable declaration
                                      //current gain
2 beeta=125
                                      //transconductance(
3 \text{ gm} = 35
     mS)
4 Re=4
                                      //emitter resistance
      (k ohms)
5 \text{ Rb} = 1.5
                                      //base resistance(k
      ohms)
6
7 // Calculations
8 // Part a
9 rpi=beeta/gm
                                     //dynamic resistance (
      k ohms)
10 Ri=rpi+((1+beeta)*Re)
                                     //input resistance(k
      ohms)
11 Ro=((Rb+rpi)*Re)/((Rb+rpi)+((1+beeta)*Re)) //output
       resistance (ohms) as Ro=Vo/Isc
12
13 // Part b
14 f = ((1+beeta)*Re)/(Rb+rpi+((1+beeta)*Re)) // transfer
       function
15
```

```
16 //Results
17 printf ("value of Ri is %.1 f K ohms and Ro is %.4 f k
        ",Ri,Ro)
18 printf ("transfer function is %.2 f",f)
```

Scilab code Exa 3.28 Example

```
1 // Variable declaration
2 \text{ Vcc} = 16
                          //supply voltage(V)
3 \ Vc = 12
                           //collector voltage(V)
                           //collector current (mA)
4 Ic = 8
5 Ic1=12
                           //collector current(uA)
6 deltaIc=2000
7 deltaVce=4
                           //collector emitter voltage(
      Vce)
                           //base current (mA)
8 deltaIb=20
9 R1 = 2.
                           //load reistance(k ohms)
10
11 // Calculations
12 hfe=(deltaIc)/(deltaIb)
13 hoe=(deltaIc)/(deltaVce)
14 Rdc=Vcc/Ic
                                       //dc resistance(k
      ohms)
15 Rac=Vc/Ic1
                                       //ac resistance(k
      ohms)
                                       //emitter
16 Re=Rdc-Rac
      resistance (kohms)
17 Rac1=(Rac*R1)/(Rac+R1)
                                       //for load of 2
      kohms, Rc=Rac
18 Icq=Vcc/(Rac1+Rdc)
                                       //Ic at
      operatingpoint (mA)
  Vceq=Vcc-(Icq*Rdc)
                                       //Vc at operating
      point (V)
20
21 // Results
```

Scilab code Exa 3.29 Example

```
1 // Variable declaration
2 \text{ hfe} = 120
                            //current gain
                            //resistance(k ohms)
3 r1=1.5
                            //input voltage(V)
4 \text{ Vi}=1
5 hoe=50*10**-3
                            //output conductance with input
       open circuited
6 \text{ Rs} = 2
                            //source resistance(k ohms)
7 \text{ Vbe} = 0.7
                            //base to emitter voltage(V)
                            //supply voltage(V)
8 \, \text{Vcc} = 10
                            //resistance(k ohms)
9 \text{ r3} = 0.33
10 \text{ r4} = 5.8
                            //rsistance(k ohms)
11 r5 = 27
                            //rsistance(k ohms)
                            //output conductance with input
12 hoe=50*10**-3
       open circuited
13
14 // Calculations
15 // Part a
16 Vbb=Vcc*(r4/(r4+r5))
                                       //voltage to bae(V)
17 Rb = (r5*r4)/(r5+r4)
                                       // as Vbb-Vbe=RbIb+(
      hfe+1) Ib *R, here hfe=beeta
  ib=(Vbb-Vbe)/(Rb+(hfe+1)*r3)
                                       //instantaneous base
      current (mA)
19 hie=(0.02/ib)*10**3
                                      //base current (mA)
20 Ib=Vi/hie
21 h = hfe * Ib
22 \text{ Avo} = -h * r1
                                      //voltage gain
```

```
23
24 // Part b
25 r=1/hoe
                              //resistance(k ohms)
                              //resitance(k ohms)
26 R1 = (r*r1)/(r+r1)
27 R = (R1*Rs)/(R1+Rs)
                              //resistance(k ohms)
28 \text{ Ib1=1/(Rs+R)}
                             //base current (mA)
29 h1=hfe*Ib1
30 \text{ Avl} = -h1*R
                             //voltage gain
31
32 //Results
33 printf ("hie and Avo are \%. f and \%.1f", hie, Avo/1E-3)
34 printf ("Avl is \%.2 \,\mathrm{f}", Avl)
```

Scilab code Exa 3.30 Example

```
1 // Variable declaration
2 R1=20
                          //load resistance (ohms)
3 \text{ Vcc}=30
                          //supply voltage(V)
                          //current gain
4 \text{ beeta=150}
5 \text{ Re} = 2200
                          //emitter resistance (ohms)
                         //base resistance(k ohms)
6 \text{ Rb} = 350
                         //base to emitter voltage(V)
7 \text{ Vbe} = 0.7
                         //source current(A)
8 \text{ Is} = 10 * * -3
                          //resistance(ohms)
9 r1 = 2000
10
11 // Calculations
12 Ib = (Vcc - Vbe) / (Rb + (1 + beeta) * Re) / base current (uA)
13 Ic=beeta*Ib
                                       //collector current (mA
14 rpi=beeta*(25/Ic)
                                       //dynamic resistance (
      ohms)
15 R=(Re*R1)/(Re+R1)
                                       //resistance (ohms)
                                       //round the base
16 Ib1=17.95
      emitter (as Rb>>2 kohms, it it ignored)
17 Vl = (beeta+1)*Ib1*R
                                       //load voltage(V)
```

Scilab code Exa 3.31 Example

```
1 // Variable declaration
                         //supply voltage(V)
2 \text{ Vcc}=15
                         //current gain
3 \text{ beeta=30}
                       //emitter resistance(ohms)
4 R = .47
                         //base to emitter voltage(V)
5 \text{ Vbe} = 0.7
                         //output voltage(V)
6 \text{ Vo} = 5
8 // Calculations
9 Vbb = Vcc/2
                                                       //base
      voltage (V)
10 Ib=Vo/(R*930)
                   //from equation(i)
11 R1=((6.1-4.98)/0.0114)*2
      resistance (k ohms)
12
13 // Results
14 printf ("value of R1 is %.f K ohms", R1)
```

Chapter 4

SMALL SIGNAL AMPLIFIERS FREQUENCY RESPONSE

Scilab code Exa 4.1 Example

```
1
3 // Variable declaration
4 Vs = 1.
                          //source voltage(V)
5 C = 100*10^-6
                        //value of capacitance(uF)
6 r1 = 1
                        //resistance 1(k ohms)
7 r2 = 4
                         //resistance 2(k ohms)
                         // total resistance, R = r1+r2
8 R = 5
10 // Calculations
11 Imax = Vs/(r1+r2)*10^3
                                  //maximum current (uA)
12 fc = 1/(2*(\%pi)*C*R)
                                //critical frequency(Hz)
                                 //As w*C*R = 1 and w =
13
                                    2*pi*f
14 f = 10*fc
                                   //lowest frequency(Hz
15
```

```
16 //Results
17 printf ("maximum current %.1 f uA", Imax)
18 printf ("critical frequency %.3 f Hz", fc/1E+3)
19 printf ("lowest frequency %.2 f Hz", f/1E+3)
```

Scilab code Exa 4.2 Example

```
1
2
3 // Variable declaration
4 C = 100*10^{-6} // capacitance (uF)
                      //galvanometer resistance(k oms)
5 \text{ Rg} = 1.
6 \text{ R1} = 4.
                       //load resistance(k ohms)
8 // Calculations
9 Rth = (Rg*R1)/(Rg+R1) //thevinine's equivalent
      resistance
10 fc = 1/(2*(\%pi)*C*Rth) // critical frequency (Hz)
                                 //lowest frequency(Hz)
11 f = fc*C
12
13 // Results
14 printf ("lowest frequency at which the point A gets
      grounded is \%.1 f Hz", f/1E-2)
```

Scilab code Exa 4.3 Example

```
//source voltage(V)
6 \text{ Vs} = 5.
                               //source resistance (ohms)
7 \text{ Rs} = 400
8 R = 10
                               //resistance(k ohms)
9
10 // Calculations
11 Ib = Vs/(Rs+rpi)
                             //base current(uA)
                            //output voltage(V)
12 Vo = R*beta*Ib
                             //input resistance (ohms)
13 \text{ Rin} = \text{rpi}
14 \text{ Rout} = R
                              //output ewsistance(k ohms)
15
16 // Results
17 printf ("output voltage is %.1 f V", Vo)
18 printf ("input resistance %.1f ohms", Rin)
19 printf ("output resistance %.1 f k ohms", Rout)
```

Scilab code Exa 4.4 Example

```
1 // Variable declaration
                                     //transconductance (mS)
2 \text{ gm} = 1.
3 \text{ rd} = 40
                                     //dynamic drain
      resistance (kohms)
4 \text{ Rd1} = 40
                                     //JFET 1 drain resistance
       (k ohms)
5 \text{ Rd2} = 10
                                     //JFET 2 drain resistance
      (k ohms)
 7 // Calculations
8 \text{ Avo} = (-gm*((rd*Rd1)/(rd+Rd1)))*(-gm*((rd*Rd2)/(rd+Rd1)))
      Rd2)))
                              //voltage gain
9
10 //Results
11 printf ("Avo is \%.1 \,\mathrm{f} ", Avo)
```

Scilab code Exa 4.5 Example

```
1 // Variable declaration
                            //common emitter current gain
2 \text{ beta} = 125
3 \text{ rpi} = 2.5
                           //dynamic junction resistance(k
       ohms)
4 \text{ rd} = 40
                           //dynamic drain resistance(k
      ohms)
5 \text{ gm} = 2
                           //transconductance (mS)
6 \text{ Vs} = 1
                            //assume, source voltage(V)
                            //source resistance(k ohms)
7 \text{ Rs} = 10
8 \text{ Rc} = 1
                           //collector resistance(k ohms)
                           //resistance(k ohms)
9 \text{ rb} = 2
                            //gate to source voltage(V)
10 \text{ Vgs} = 1
11
12 // Calculations
13 // Part a
14 R = (rd*Rs)/(rd+Rs)
                                //equivalent resistance(k
      ohms)
15 Ib = gm*Vgs*(R/(rpi+R))
                                //base current (mA)
16 Vo = beta*Ib*Rc
                               //output voltage(V)
17 \text{ Avo} = \text{Vo}
                                //voltage gain
18
19 // Part b
20 Ib1 = Vs/(rb+rpi)
                                //base current (mA) after
      interchanging stages of JFET and BJT
21 \text{ Vgs1} = \text{beta*Ib1*Rc}
                               //gate to source voltage(V)
      after interchanging stages of JFET and BJT
  Vo1 = gm*Vgs1*R
                                //output voltage(V) after
      interchanging stages of JFET and BJT
                                //voltage gain after
  Avo1 = Vo1
      interchanging stages of JFET and BJT
24
25 //Results
26 printf ("Avo is \%.1 \,\mathrm{f} ", Avo)
27 printf ("Avol when BJT and FET stages are reversed
      is %. f", Avo1)
```

Scilab code Exa 4.6 Example

```
1
3 // Variable declaration
4 \text{ Cc1} = 1*10^-6
                                       //coupling capacitor
      1 (uF)
                                       //coupling capacitor 2
5 \text{ Cc2} = 1*10^-6
       (uF)
6 \text{ Rs} = 10^3
                                       //source resistance(k
      ohms)
7 \text{ rpi} = 2*10^3
                                       //dynamic junction
      resistance (kohms)
8 \text{ Rc} = 4500
                                        //collector
       resistance (ohms)
9 Rl = 9*10^3
                                       //load resistance(k
      ohms)
10 w = 100
                                         //corner frequency(
      rad/s)
11
12 // Calculations
13 \text{ w11} = 1/(\text{Cc1}*(\text{Rs+rpi}))
                                                      //corner
      frequency input circuit (rad/s)
14 \text{ w}12 = 1/(\text{Cc}2*(\text{Rc}+\text{Rl}))
                                                      //corner
      frequency output circuit (rad/s)
15 f = w11/(2*(\%pi))
                                                 //lower cutoff
       frequency (Hz)
16 Zin = complex((Rs+rpi), -(1/(w*Cc1)))
                                                      //input
      impedance (k ohms)
                                                      //output
  Zout = complex(Rc, -(1/(w*Cc2)))
      impedance (k ohms)
18
19 // Results
20 printf ("lower cut-off freq is %.f Hz",f)
```

```
21 disp ("ohms", Zin ," Zin")
22 disp ("ohms", Zout, "Zout")
```

Scilab code Exa 4.7 Example

```
1
3 // Variable declaration
4 \text{ Re} = 1.5*10^3
                                     //collector resistance (
      ohms)
5 \text{ Rc} = \text{Re}
                                        //source resistance(
6 \text{ Rs} = 600
      ohms)
7 Rl = 2*10^3
                                       //load resistance (ohms
                                         //common emitter
8 \text{ beta} = 100
      current gain
9 \text{ rpi} = 1*10^3
                                       //dynamic junction
      resistance (ohms)
10 f = 50
                                         //frequency (Hz)
11
12 // Calculations
                                    //corner frequency (rad/s)
13 \ w = 2*f*(\%pi)
                                        //capacitance(uF)
14 CE = 1/(w*(Rs+rpi))
                                       //capacitance(uF)
15 Ce = CE*(beta+1)
16 \text{ w} 11 = \text{w} / 10
                                         //corner frequency
      input circuit (rad/s)
17 \text{ w} 12 = \text{w} 11/20
                                         //corner frequency
      output circuit (rad/s)
18 Cc1 = 1/(w11*(Rs+rpi))
                                         //coupling capacitor
      1 (uF)
  Cc2 = 1/(w12*(Rc+R1))
                                         //coupling capacitor
      2 (uF)
20
21 // Results
```

```
22 printf ("Ce is %.f uF",Ce/1E-6)
23 printf ("Cc1 is %.1f uF",Cc1/1e-6)
24 printf ("Cc2 is %.2f uF",Cc2/1E-5)
```

Scilab code Exa 4.8 Example

```
1
3 // Variable declaration
4 \text{ gm} = 2.5*10^-3
                                   //transconductance (mS)
5 \text{ Rd} = 6*10^3
                                   //drain resistance (ohms)
6 \text{ rd} = 200*10^3
                                   //dynamic drain resistance
      (ohms)
7 \text{ Cc1} = 0.12*10^-6
                              //coupling capacitors (uF)
8 \text{ Cc2} = \text{ Cc1}
9 \text{ Rs} = 1*10^3
                                   //source resistance (ohms)
10 \text{ Rg} = 0.1*10^6
                                   //R1 | R2
11 \text{ Cgs} = 12*10^-9
                                   //gate to source capacitor
      (pF)
12 \text{ Cgd} = 2*10^-9
                                   //gate to drain capacitor(
      pF)
13 \text{ Co1} = 10
                                    // \text{ as } \text{Co1} = \text{Cl+Cw} = 10
14
15 // Calculations
16 // Part a
                                                  //equivalent
17 Ro = (rd*Rd)/(rd+Rd)
      resistance of rd and Rd(ohms)
18 Vo = -gm*((rd*Rd)/(rd+Rd))
                                                  //as Vgs = Vs
19 Avo = Vo
                                                  //Avo = Vo/Vs
      = (-gm*Vs*((rd*Rd)/(rd+Rd)))/Vs = Vo
20
21 // Part b
22 	f11 = 1/(2*(\%pi)*Cc1*(Rs+Rg))
23
24 // Part c
```

```
25 \quad Ceq = Cgs + (Cgd * (1 + gm * Ro))
                                                         //on
       application of miller theorem
26 \text{ Co} = \text{Col} + \text{Cgd} * (1 + (1/(\text{gm} * \text{Ro})))
      output capacitance (pF)
  f21 = 1/(2*(\%pi)*Ceq*((Rs*Rg)/(Rs+Rg)))
                                                    //input
       circuit cutoff frequency (MHz)
  f22 = 1/(2*(\%pi)*Co*Ro)*10^3
                                                   //output
       circuit cutoff frequency (MHz)
29
  fH = f22
      cutoff frequency of high frequency band (MHz)
30
31 //Results
32 printf ("a) mid freq gain is %.1f", Avo)
33 printf ("b)input circuit cut-off is %.1f Hz",f11)
34 printf ("c) high freq input cutoff is %.2f and output
        cutoff is \%.2 \text{ f MHz}", f21/1E+3, f22/1E-3)
35 printf ("high freq cut-off is \%.2 \, \text{f MHz}", fH/1E-3)
```

Scilab code Exa 4.9 Example

```
1
2
3 // Variable declaration
4 \text{ beta} = 50.
                               //common emitter current
      gain
5 R1 = 11.5
                              //resistance(k ohms)
6 R2 = 41.4
                              //resistance(k ohms)
7 \ Vcc = 10.
                               //supply voltage to
      collector (V)
                               //collector resistance(k
8 \text{ Rc} = 5.
      ohms)
9 \text{ Re} = 1.
                               //emitter resistance(k ohms)
10 \text{ Rs} = 1.
                               //source resistance(k ohms)
11 \text{ Vbe} = 0.7
                              //base emitter voltage(V)
12 R1 = 10.
                               //load resistance(k ohms)
```

```
13 Cc1 = 20*10^-6. //coupling capacitors (uF)
14 \text{ Cc2} = \text{Cc1}
                      //emitter capacitor(uF)
15 Ce = 150*10^-6.
16 \text{ Cpi} = 100
17 \text{ Cu} = 5.
18
19 // Calculations
20 // Part a
21 \text{ Rb} = (R1*R2)/(R1+R2)
                                               //R1 | | R2 ( k ohms
22 \text{ Vbb} = \text{Vcc}*(R1/(R1+R2))
                                                //suply voltage
      to base (V)
  Ib = (Vbb-Vbe)/(Rb+(Rs*(1+beta)))
                                              //base current(
      mA)
24 Ic = beta*Ib
                                              //collector
      current (mA)
25 Vce = Vcc-(Ic*Rc)-(Ic+Ib)*Re
                                               //collector to
      emitter voltage (V)
26 \text{ rpi} = (25*beta)*10^-3/Ic
                                                      //dynamic
      junction resistance (K ohms)
27
28 // Part b
29 \text{ rpi} = 1
                                                //dynamic
      junction resistance (K ohms)
30 R = (rpi*Rb)/(rpi+Rb)
                                                //equivalent
      resistance (rpi | Rb)
31 Vbe = (R*Rs)/(R+Rs)
                                                //base to
      emitter voltage (V)
  Ib1 = Vbe/rpi
                                                //base current(
      mA)
33 \text{ Ro} = (Rc*R1)/(Rc+R1)
                                                //Rc \mid \mid Rl(k \text{ ohms})
34 \text{ Vo} = -(beta*Ib1*Ro)
                                               //output voltage
      (V)
  Avo = Vo
                                                //voltage gain
35
36
37 // Part c
                                              //Rs | | Rb ( k ohms )
38 \text{ r1} = (Rs*Rb)/(Rs+Rb)
```

```
//low freq
39 \text{ w11} = 1/(\text{Cc1}*(\text{Rs+R}))
       cutoff (rad/s)
40 \text{ w12} = 1/(\text{Cc2}*(\text{Rc+R1}))
                                                   //high freq
       cutoff (rad/s)
41 w1p = 1/((Ce/(beta+1))*(r1+rpi)) //low cutoff freq
       (rad/s)
42
43 // Part d
44 \text{ Co1} = 5
                                               //as Co1 = Cw+Cl
                                               //transconductance(
45 \text{ gm} = \text{beta/rpi}
      mS)
46 Ceq = Cpi+(Cu*(1+(gm*Ro))) //equivalent
       capacitance (pF)
47 \text{ Rs1} = (\text{Rb*Rs})/(\text{Rb+Rs})
                                              //\mathrm{Rb} \mid | \mathrm{Rs}(k \text{ ohms})|
                                             //Rs1 | | rpi (k ohms)
48 \text{ r2} = (\text{Rs1*rpi})/(\text{Rs1+rpi})
49 \text{ w21} = 10^12/(\text{Ceq*r2*10^3})
                                                           //low freq
        cutoff (MHz)
50
51 // Results
52 printf ("a)dc bias values are Vbb : %.2f V, Ib : %.4
       f mA, Ic : %.2 f mA, Vce : %.3 f V, rpi : %. f k
       ohms", Vbb, Ib, Ic, Vce, rpi)
53 printf ("mid freq gain is \%.2 \,\mathrm{f} ", Avo)
54 printf ("low freq cut-off is \%. f rad/s", w1p/1E+3)
55 printf ("high cut-off freq is \%.2e \text{ rad/s}", w21)
```

Scilab code Exa 4.10 Example

```
9 // Calculations
10 // Part a
                                           //circuit
11 Qcircuit = f/BW
      inductance
12 L = 1/(((2*(\%pi)*f)^2)*C)
                                     //inductance (mH)
13
14 // Part b
15 R = Qcircuit*2*(\%pi)*f*L
                                      //resistance(k ohms)
16
17 // Part c
18 r = (2*(\%pi)*f*L)/Qcoil
                                      //internal
      resistance (ohms)
                                          //equivalent
19 \text{ req} = (Qcoil^2)*r
      resistance (kohms)
  ro = (R*req)/(req-R)
                                           //output
      resistance (kohms)
21
22 // Part d
23 \, \text{BW} = 5
                                            //bandwidth(kHz
                                            //circuit
24 Qcircuit = f/BW
      inductance
                                       //equivalent
  Req = Qcircuit*2*(%pi)*f*L
      resistance (kohms)
                                            //load
  R1 = (Req*R)/(R-Req)
26
      resistance (kohms)
27
28 // Results
29 printf ("a) coil inductance is %.2 f mH", L)
30 printf ("b) circuit output impedance atresonant freq
      is \%.2 f K ohms", R/1E+3)
31 printf ("c)internal resistance ro is %.2f k ohms", ro
      /1E+3)
32 printf ("d) value of load resistance is %.2f k ohms",
      R1/1E+3)
```

Scilab code Exa 4.11 Example

```
1
3 // Variable declaration
4 \text{ fo} = 50
                                           //output frequency
      (KHz)
5 L = 10^{-3}
                                          //inductance (H)
6 \text{ ro} = 100
                                           //output
      resistance (kohms)
7 Q = 80
                                           //coil inductance
8 \text{ Ri} = 10
                                           //input resistance
      (k ohms)
                                           //common emitter
9 \text{ beta} = 125
      current gain
10
11 // Calculations
12 // Part a
13 C = 1/(((2*(\%pi)*fo)^2)*L) //tunning capacitance(
      nF)
14 r = (2*(\%pi)*fo*L)/Q
                                       //internal resistance
      (k ohms)
15 \text{ req} = (Q^2)*r
                                           //equivalent
      resistance (kohms)
16 R = (ro*req)/(ro+req)
                                            //ro | | req (k ohms)
17 \text{ Avo} = -(\text{beta*R})/\text{Ri}
                                            //voltage gain
18
19 // Part b
20 Qcircuit = R/(2*(\%pi)*fo*L)
                                       //circuit inductance
21 BW = fo/Qcircuit
                                            //bandwidth
22
23 // Results
24 printf ("a) value of capacitance is %.f nF", C/1E-3)
25 printf (" gain is \%.1 \, \text{f}", Avo)
```

```
26 printf ("b) bandwidth is %.f Hz", BW/1E-3)
27 printf ("Note: value used for beta in texbook is wrong in the solution")
```

Scilab code Exa 4.12 Example

```
1 // Variable declaration
3 f = 1*10^6
                                  //radio frequency (Hz)
4 \text{ beta} = 50
                                    //common emitter
      current gain
  fT = 5*10^6
                                   //short circuit current
      gain bandwidth product (Hz)
7 // Calculations
8 \text{ betaf} = fT/f
                                    //measurement of short
      circuit current gain
                                    //frequency at beta(Hz)
9 	ext{ fbeta} = fT/beta
10
11 //Results
12 printf ("frequency is %.f Hz",fbeta)
13 if fbeta < 1 * 10 ^ 6 then
       printf ("transistor is not suitable for 1Mhz
14
           amplifier as fbeta is less than 1Mhz")
15 else
       printf ("transistor is suitable for 1Mhz
16
           amplifier")
17 \text{ end}
```

Scilab code Exa 4.13 Example

1 2

```
3 // Variable declaration
4 \text{ rpi} = 2
                                   //dynamic junction
      resistance (K ohms)
5 \text{ beta} = 50.
                                    //common emitter
      current gain
6 f = 1
                                    //frequency (MHz)
7 \text{ beta1} = 2.5
                                    //common emitter
      current gain
8 	 f1 = 20*10^6
                                   //frequency(Hz)
10 // Calculations
11 	ext{ fT} = beta1*f1
                                      //short circuit
      current gain bandwidth product (Hz)
12 fbeta = fT/beta
                                      //frequency at beta(
      Hz)
13 Cpi = 1/(2*(\%pi)*fbeta*rpi) //dynamic capacitance(
      pF)
14
15 // Results
16 printf ("fT is %.f MHz",fT/1e+6)
17 printf ("fB is \%.f MHz",fbeta/1e+6)
18 printf ("Cpi is \%. f pF", Cpi/1e-9)
```

Scilab code Exa 4.14 Example

```
collector (V)
10 \text{ Vbe} = 0.7
                               //base to emitter voltage(V)
11 \text{ beta} = 100
                               //common emitter current
      gain
12 \text{ Avo} = -30
                               //voltage gain
13
14 // Calculations
15 // Part a
16 \text{ Rb} = (R1*R2)/(R1+R2)
                                                //R1 | R2 ( k
      ohms)
17 Vth = (Vcc*R1)/(R1+R2)
                                                //thevinine 's
      voltage (V)
  Ib = (Vth-Vbe)/(Rb+(beta+1)*Re)
                                                //base current
18
      (uA)
19 Ic = Ib*beta
                                                //collector
      current (mA)
20 Vce = Vcc-(Rc*Ic)-((beta+1)*Ib*Re)
                                                //collector to
       emitter voltage (V)
21
22 // Part b
23 \text{ rpi} = ((25*beta)/Ic)*10^-3
                                            //dynamic
      junction resistance (k ohms)
24 r = (Rb*rpi)/(Rb+rpi)
                                             //resistance
      across Vs
25 Ib1 = r/((Rs+r)*rpi)
                                             //base current(
      mA)
26 R1 = (-Rc*Avo)/(Avo+(beta*Ib1*Rc))
                                             //load
      resistance (kohms)
27
28 // Results
29 printf ("value of Ic and Vce are \%.3\,\mathrm{f} mA and \%.2\,\mathrm{f} V"
      , Ic, Vce)
30 printf ("Rl is \%.2 \,\mathrm{f} k ohms", Rl)
```

Scilab code Exa 4.15 Example

```
1
2
3 // Variable declaration
4 R1 = 25.
                                       //resistances(k ohms)
5 R2 = 100.
                                       //resistances(k ohms)
6 \text{ Re} = 2.
                                       //emitter resistance(k
       ohms)
7 \ Vcc = 10.
                                       //supply voltage to
      collector
8 \text{ Vbe} = 0.7
                                      //base to emitter
      voltage (V)
9 \text{ beta} = 100.
                                       //common emitter
      current gain
10 \text{ Avo} = 160
                                      //voltage gain
                                      //source resistance(k
11 \text{ Rs} = 1
      ohms)
12 \ Vs = 1
                                      //source voltage(V)
13 R1 = 12.5
                                      //load resistance(k
      ohms)
14 \text{ Rc1} = 20.
                                       //collector resistance
      (k ohms)
15
16 // Calculations
17 // Part a
18 \text{ Rb} = (R1*R2)/(R1+R2)
                                            //R1 | R2
19 Vth = (Vcc*R1)/(R1+R2)
                                            //thevinines
      voltage (V)
                                            //base current(uA)
20 Ib = (Vth-Vbe)/(Rb+(beta+1)*Re)
21 Ic = Ib*beta
                                            //collector
      current (mA)
22 \text{ rpi} = (25*beta)*10^-3/Ic
                                                   //dynamic
      junction resistance (k ohms)
23
24 // Part b
25 Ib1 = 1/rpi
                                            //small signal
      analysis
26 \text{ Rc} = -\text{Avo}/(-\text{beta*Ib1})
                                            //collector
      resistance ()
```

```
27
28 // Part c
29 r = (Rc1*rpi)/(Rc1+rpi)
                                                   //Rc1 | | rpi1 (k
       ohms)
30 \text{ Ib2} = (Vs*r)/((1+r)*rpi)
                                                      //base curret
       (mA)
31 \text{ Rc2} = 6.84
                                                      //collector
       resistance (kohms)
32 \text{ Avo} = -(\text{beta*Ib2})*((\text{R1*Rc2})/(\text{R1+Rc2}))
                                                      //voltage
       gain
33
34 // Results
35 printf ("value of Ic %.3 f mA and rpi is %.2 f k ohms"
          , Ic, rpi)
36 printf ("Rc is \%.2 \,\mathrm{f} k ohms", Rc)
37 printf ("Avo is \%.1 \,\mathrm{f}", Avo)
```

Scilab code Exa 4.16 Example

```
1 // Variable declaration
2 R1 = 12.
                                //resistance(k ohms)
                                //resistance(k ohms)
3 R2 = 100.
                                //collector resistance(k
4 \text{ Rc} = 2
      ohms)
5 \text{ Ic} = 1.2
                                //collector current (mA)
6 \text{ beta} = 60
                                //common emitter current
      gain
7 \text{ Ib1} = 1
                                //(say)
8 \text{ Rs} = 1
                                //source resistance(k ohms)
9 \text{ Vs} = 1
                                 //source vcoltage(say)
10
11 // Calculations
12 // Part a
13 rpi = ((25*beta)/Ic)*10^-3 //dynamic junction
      resistance (kohms)
```

```
14 \text{ Rb} = (R1*R2)/(R1+R2)
                                         //R1 \mid R2 \text{ (k ohms)}
                                          //Rb | | rpi (k ohms)
15 r = (Rb*rpi)/(Rb+rpi)
16 \text{ Ro1} = (\text{Rc*rpi})/(\text{Rc+rpi})
                                          //Rc||rpi(k ohms)
17 Vo1 = -(beta*Ib1*Ro1)
                                   //base to emitter
       voltage (V)
18 \text{ Vbe2} = \text{Vo1}
19 Ib2 = Vo1/rpi
                                           //base current (mA)
                                           //current gain
20 Ai = Ib2/Ib1
21
22 // Part b
23 Ib11 = (Rs*r)/((Rs+r)*rpi)
                                                //base currents(
      mA)
24 \text{ Ib21} = \text{Ib11}*\text{Ai}
                                        //base current (mA)
25 \text{ Avol} = \text{Ib21*rpi} //voltage gain
26 \text{ Vol} = \text{Avol}
27
28 //Results
29 printf ("current gain is \%.2 \,\mathrm{f}", Ai)
30 printf ("overall voltage gain is \%.2 \, \mathrm{f}", Avo1)
31 printf ("Note: solution in the textbook is
       incorrect")
```

Scilab code Exa 4.17 Example

```
1 // Variable declaration
2 \text{ beta} = 50.
                                  //common emitter current
     gain
3 R1 = 25.
                                  //resistance(k ohms)
4 R2 = 75.
                                  //resistance(k ohms)
                                  //collector current (mA)
5 \text{ Ic} = 1.25
                                  //supply voltage to
6 \text{ Vcc} = 10
     collector (V)
7 s = 10*10^{-3}
                                 //signal strength(V)
8 \text{ Rs} = 0.5
                                 //output impedance(k ohms)
                                 //output voltage(V)
9 \ Vo = 1
```

```
//source voltage(V)
10 \ Vs = 1.
                                 //load at output terminal(
11 V1 = 12
      Vl)
                                 //base to emitter voltage(
12 \text{ Vbe} = 0.7
      V)
13 R1 = 12
14
15 // Calculations
16 \text{ rpi} = ((25*beta)/Ic)
                                           //dynamic junction
       resistance (kohms)
17 \text{ Rb} = (R1*R2)/(R1+R2)
                                            //R1 \mid R2 (k \text{ ohms})
18 r = (Rb*rpi*10^-3)/(Rb+rpi*10^-3)
                                                          //Rb
     || rpi(k ohms)
19 Avo = ((Vo*rpi)/Vcc)
                                                   //voltage
      gain
  Ib = (r*Vs)/(Rs+r)*Vs
                                                   //base
      current (mA)
21 Rc = (Rl*Avo)/(beta*Ib*Rl-Avo)
                                                  //collector
      resistance (k ohms)
22 \text{ Vth} = (\text{Vcc}*\text{R1})/(\text{R1}+\text{R2})
                                                   //thevinine
      's voltage (V)
  Ib1 = Ic/beta
                                                  //base
      current (mA)
24 Re = (Vth-Vbe-(Rb*Ib1))/((beta+1)*Ib1)
                                                    //emitter
      resistance (k ohms)
25
26 // Results
27 printf ("value of Rc is %.2f and Re is %.2f k ohms",
      Rc,Re)
28 printf (" Vth value is wrong substituted in the book
```

Scilab code Exa 4.18 Example

1

```
2
3 // Variable declaration
4 \text{ Cpi} = 20*10^-9
                                //opening capacitor(F)
5 \text{ Cu} = 5*10^-9
                                //here C = Cl+Cw
6 C = 50*10^-9
7 \text{ rpi} = 3.75*10^3
                                //dynamic drain resistance (
      ohms)
                                //resistance(ohms)
8 r1 = 4*10^3
                                //resistance(ohms)
9 r2 = 42*10^3
10 \text{ r3} = 303*10^3
                                //resistance(ohms)
11 	 f = 20
                                 //frequency(Hz)
12 \text{ beta} = 100
                                //common emitter current
      gain
13 R1 = 10*10^3
                                //load resistance (ohms)
14
15 // Calculations
16 // Part a
17 Req = (((r1*r2)/(r1+r2)+rpi)*r3)/(((r1*r2)/(r1+r2)+
                   //equivalent resistance(ohms)
      rpi)+r3)
18 Ce = (beta+1)/(2*(\%pi)*f*Req)
                                       //emitter capacitance
      (uF)
19
20 // Part b
21 \text{ gm} = \text{beta/rpi}
                                        //transconductance
22 \text{ Ro} = (R1*r1)/(r1+R1)
                                         //output resistance
      (k ohms)
23 Ceq = Cpi+(Cu*(1+gm*Ro))
                                        //equivalent
      capacitance (pF)
24 Co = C+(Cu*(1+(1/(gm*Ro))))
                                         //output
      capacitance (pF)
25 r = (rpi*r1)/(rpi+r1)
                                         //rpi||r1
26 \text{ w21} = 1/(\text{Ceq*r})
                                         //lower cutoff
      frequency (MHz)
                                         //higher cutoff
27 \quad w22 = 1/(Co*Ro)
      frequenct (MHz)
28
29 // Part c
```

```
30 \text{ gm} = 79.2
31 \text{ Ro} = 0.75
                                               //as gain is
32 Ceqnew = 20+(5*(1+((gm*Ro))))
       reduced to 75% of original value
33 wHnew = (10^12)/(Ceqnew*r)/10**6
      //corner value of high frequency (Mrad/s)
34 fHnew = wHnew/(2*(\%pi))
                                                   //new
      value of higher frequency cutoff (KHz)
35
36 //Results
37 printf ("a) value of bypass capacitor Ce is %.f uF",
      Ce/1E-6
38
  if w21>w22 then
39
          printf ("higher frequency is w21")
40 else
       printf ("higher frequency is w22")
41
42 end
43
44 printf ("b) high frequency cut-off is \%.2 \, \text{f Mrad/s}",
      w22/1E+3)
45 printf ("c) high frequency cut-off is %.3 f MHz", fHnew
```

Scilab code Exa 4.19 Example

```
//source voltage(V)
9 \text{ Vs} = 3.
                                      //common emitter current
10 \text{ beta} = 200
        gain
11 \text{ r4} = 0.6
                                       //resistance (ohms)
12 \text{ r5} = 0.15
                                       //resistance (ohms)
13 \text{ Vbe} = 0.7
                                       //base to emitter
       voltage
                                       //resistance(k ohms)
14 r = 0.5
                                       //frequency(Hz)
15 \text{ fL} = 20
                                       //solving r | | (Rth+rpi+R
16 \text{ Req1} = 24.24
      ) | Re
17 	 f = 2
                                       //non dominant cutoff
      freq is fL/10 i.e 20/10
18
19 // Calculations
20 // Part a
21 Vth = Vs-(((Vcc-Vee)/(r1+r2))*r1)
       the vinine 's voltage (V)
22 Rth = (r1*r2)/(r1+r2)
       thevinine's voltage(V)
  Ib = (Vth-Vbe+Vcc)/(Rth+((r4+r5)*(beta+1)))
                                                           //base
       current (mA)
24 Ic = Ib*beta
                                                           //
       Collector current (mA)
25 \quad Vo = Vcc - (r3*Ic)
      output voltage (V)
26
27 // Part b
28 \text{ rpi} = (25*\text{beta})/\text{Ic}
                                                          //
      dynamic drain resistance (ohms)
29 R = r4*(beta+1)
      resistance (kohms)
                                                           //rpi||
30 \text{ ro} = (\text{rpi*R})/(\text{rpi+R})
      R(k ohms)
31 Req = r+((Rth*ro)/(Rth+ro))
       equivalent resistance (k ohms)
32 \text{ Cc1} = 1/(\text{Req}*2*(\%\text{pi})*fL)
                                                      //coupling
       capacitor (uF)
```

```
33
34 // Part c
35 Ce = 1/(2*(\%pi)*fL*Req1)
                                                 //emitter
      capacitance (uF)
36 CE = beta*Ce
                                                     //emitter
       capacitance (uF) after current gain
37
38 // Part d
                                               //emitter
39 Ce1 = 1/(2*(\%pi)*f*Req1)
      capacitance (uF)
40 CE1 = beta*Ce1
                                                   //emitter
      capacitance (uF) after current gain
41 Csum = Cc1+CE1
                                                    //total
      capacitance (uF)
42
43 // Results
44 printf ("a) Ic and Vo are \%.2 \text{ f mA} and \%. \text{ f V}", Ic, Vo)
45 printf ("b) Cc1 is \%.3 f uF", Cc1/1E-3)
46 printf ("c)Ce is %.1f uF",CE/1E-3)
47 printf ("d) Csum is \%.3 \, \text{f uF}", Csum/1E-2)
```

Scilab code Exa 4.21 Example

```
1
2
3 // Variable declaration
                                  //transconductance
4 \text{ gm} = 2
5 \text{ rd} = 200*10^3
                                 //dynamic drain resistance (
      ohms)
6 \text{ Cgs} = 10
                                  //gate to source
      capacitance (pF)
7 \text{ Cgd} = 0
                                  //gate to drain capacitance
      (pF)
8 \text{ Rs} = 1*10^3
                                 //source resistance (ohms)
9 \text{ Rg} = 1*10^6
                                 //Rg = R1 | R2
```

```
10 \text{ Rd} = 5*10^3
                                   //drain resistance (ohms)
                                    //resistance(k ohms)
11 Rs1 = 2
12 \text{ Cc1} = 0.1*10^-6
                               //coupling capacitors(F)
13 \text{ Cc2} = \text{Cc1}
14 \text{ Co} = 10*10^-12
                                   //output capacitance(F)
15 \text{ Vgs} = 1
                                     //gate to source voltage(V)
16
17 // Calculations
18 // Part a
19 R = (Rd*rd)/(Rd+rd)
                                  //Rd | | rd (k ohms)
                          //voltage gain
20 \text{ Avo} = -\text{Vgs*gm*R}
21 Vo = Avo
22
23 // Part b
24 \text{ w11} = 1/(\text{Cc1}*(\text{Rs}*\text{Rg}))
                                              //corner freq (rad/s)
                                              //input circuit
25 \text{ wL} = \text{w11}
       corner freq (rad/s)
26
27 // Part c
28 \text{ w} 22 = 10^12/((\text{Cgs*R})*10^3)
                                            //output circuit
       corner frequency (rad/s)
29 \text{ wH} = \text{w22/(2*\%pi)}
30
31 // Part d
32 G = -Avo*wH
                                                   //gain bandwidth
        product
33
34 // Part e
35 \text{ Rd} = 4*10^3
                                               //drain resistance
       reduced (ohms)
36 \text{ Rnew} = (\text{Rd*rd})/(\text{Rd+rd})
                                                //new resistance(
       ohms)
37 \text{ Avol} = -Vgs*gm*Rnew
                                                 //new voltage gain
38 BWnew = (10^8/\text{Rnew})/(2*\%\text{pi})
                                                            //new
       bandwidth (Mrad/s)
                                                  //gain bandwidth
39 \text{ Gnew} = -\text{Avol}*\text{BWnew}
       product new
40
```

```
41 //Results
42 printf ("a)Avo is %.2f",Avo/1E+3)
43 printf ("b)wL is %.2f rad/s",wL/1E-3)
44 printf ("c)wH is %.1f MHz",wH/1E+3)
45 printf ("d)G is %.2f MHz",G/1E+6)
46 printf ("e)Gnew is %.1f MHz",Gnew/1E+6)
```

Scilab code Exa 4.23 Example

```
1
3 // Variable declaration
4 \text{ gm} = 1
                                     //transconductance
5 \text{ rd} = 40
                                     //dynamic drain resistance
       (k ohms)
6 \text{ Cgs} = 5
                                     //gate to source
       capacitance (pF)
7 \text{ Cgd} = 1
                                     //gate to drain
       capacitance (pF)
8 \text{ Cds} = 1
                                     //drain to source
       capacitance (pF)
9 \text{ Avol} = 20.
                                     //voltage gain of JFET 1
10 \text{ Avo2} = 8.
                                     //voltage gain of JFET 2
                                     //resistance(k ohms)
11 R1 = 5
12 R2 = 20
                                     //resistance(k ohms)
13 R3 = 8
                                     //resistance(k ohms)
14
15 // Calculations
16 // Part a
17 \text{ Avo} = \text{Avo1} * \text{Avo2}
                                          //voltage gain
18 \text{ Ceq1} = \text{Cgs} + \text{Cgd} * (1 + \text{Avo1})
                                         //input crcuit for
       first JFET
19 Co1 = Cds + (Cgd * (1 + (1/Avo1)))
                                         //output crcuit for
       first JFET
20 \quad Ceq2 = Cgs+Cgd*(1+Avo2)
                                          //input crcuit for
```

```
second JFET
21 Co2 = Cds + (Cgd * (1 + (1/Avo2))) //output crcuit for
      second JFET
22
\frac{23}{\text{Part}} b
                                       //input circuit
24 \text{ w21} = 1/(R1*Ceq1)
      frequency
25 \text{ w2} = 10^12/(\text{R2}*10^3*(\text{Col}+\text{Ceq2}))
                                                  //common
       circuit frequency
26 \text{ w} 22 = 1/(R3*Co2)
                                       //output circuit
       frequency
27
28
29 // Results
30 printf ("a) Avo is %.1 f", Avo)
31 printf ("b) w21, w2, w22 are %.2 f Mrad/sec, %.2 f Mrad/
       sec and \%.2 f Mrad/sec", w21/1E-3, w2/1E+6, w22/1E-3)
32 printf ("nondominant corner freq is %.2f Mrad/sec",
      w2/1E+6)
```

Chapter 5

Large Signals Amplifiers

Scilab code Exa 5.1 Example

```
1
2
3 // Variable declaration
4 Rb=1*10**3
                                      //base resistance(ohms
5 \text{ Vcc}=20
                                      //supply voltage(V)
6 \text{ Rc} = 20
                                      //collector resistance
      (ohms)
7 \text{ beeta} = 25
                                      //current gain
8 \ \text{Vbe} = 0.7
                                      //base to emitter
      voltage (V)
9 ib=10*10**-3
                                      //base current (ohms)
10
11 // Calculations
12 Ibq=(Vcc-Vbe)/Rb
                                       //current (A)
                                       //current (A)
13 Icq=beeta*Ibq
                                       //collector voltage(V
14 Vceq=Vcc-(Icq*Rc)
                                       //collector current (A
15 ic=beeta*ib
16 Po=((ic/(sqrt(2)))**2)*Rc //output voltage(V)
```

Scilab code Exa 5.2 Example

```
1
2
3 // Variable declaration
4 R1=500
                                       //load resistance(
     ohms)
5 \text{ Vceq} = 50
                                       //queinscent
      collector voltage(V)
6 beetamin=30
                                       //current gain
     minimum (at Q)
7 Icq = 0.4
                                       //queinscent
      collector current (A)
                                       //queinscent base
  Ibq=8
      current (mA)
9
10 // Calculations
11 Rac=Vceq/Icq
                                         //ac resistance(
     ohms)
12 beeta=(Icq*10**-3)/Ibq
                                         //current gain
                                         //emitter
13 Re=5/Icq
      resistance (ohms)
14 Rc=(512.5*Rac)/(512.5-Rac)
                                         //as Re+Rl
      =500+12.5=512.5
15 Vcc=5+Vceq+(Icq*Rc)
                                         //supply voltage(
     V)
```

```
//base resistance
16 Rb=(beetamin*Re)/10
      (ohms)
17 R1=39.5
                                         // \text{solving} 125 = \text{Rc}
      | | (Rl+Re)  and Vbb=Vcc*(R1/(R1+R2))
18 R2=750
19 Pi=120*Icq
                                         //Vcc chosen as
      120
20 \quad r = (Rc*R1)/(Rc+R1)
21 Poac=(100/(2*sqrt(2)))**2/r //output power(W)
22 etamax=Poac/Pi
                                        //efficiency
23 Poac1=(100/(2*sqrt(2)))**2/R1 //ac power absorbed by
       load (W)
24 eta=Poac1/Pi
25 Pc=(Icq**2)*Rc
                                      //power lost in Rc(W
  Pe=(Icq**2)*Re
                                      //power lost in Re(W
                                        //power consumed (W
  Pd=Pi-Pc-Pe-Poac
28
29 // Results
30 printf ("input power is Pi %.1f W",Pi)
31 printf ("output power is Po %.2 f W", Poac)
32 printf ("dissipated power is %.2 f W", Pd)
33 printf ("values of R1, R2, Re and Rc are \%. 1 f ohms, \%
      .1 f ohms, %.1 f ohms and %. f ohms resp.", R1, R2, Re,
      Rc)
34 printf("Note: Calculated value of Rc is wrong in
      the book")
```

Scilab code Exa 5.3 Example

```
1
2
3 // Variable declaration
```

```
4 \text{ Pmax}=10
                                          //power maximum(W)
                                          //collector current(
5 Ic=1
      A)
6 \text{ Vcemax} = 100
                                          //max collector to
       emitter current (V)
7 Vcemin=2
                                          //min collector to
       emitter current(V)
8
9 // Calculations
10 // Part a
11 \ \text{Vceq}=46
                                        //Vce at Q point
                                        //Ic at Q point
12 \text{ Icq} = 0.21
                                        //supply voltage(V)
13 \ Vcc = 92
                                        //collector current(A)
14 ic=0.42
15
16 // Part b
17 Rl=Vceq/Icq
                                            //load resistance(
      ohms)
18
19 // Part c
20 \text{ Pi=Vcc*Icq}
                                            //input power (W)
                                      //output power(W)
21 Po=((ic/(2*sqrt(2)))**2)*R1
                                            //efficiency
22 \text{ eta} = (Po/Pi) * 100
23
24 // Results
25 printf ("Rl for maximum power input is %.f ohms", Rl)
26 printf ("input power is is \%.1 \, \mathrm{f} \, \mathrm{W}",Pi)
27 printf ("Po is %.1f",Po)
28 printf ("eta is \%.1 f \%\%", eta)
```

Scilab code Exa 5.4 Example

```
1 2 3 // Variable declaration
```

```
4 \text{ Vcc}=15
                                //supply voltage(V)
                                //current gain
5 beeta=40.
                                //Ic at Q(mA)
6 \text{ Icq=5}.
                               //Vce at Q(V)
7 \text{ Vceq} = 7.5
8 icswing=10
                                //swing in ic (mA)
10 // Calculations
11 / Part a
12 R1=Vceq/Icq*10**-3
                               //load resistance (ohms)
13
14 // Part b
15 Ibq=Icq/beeta
                                //base current at Q(uA)
16
17 // Part c
18 ibswing=icswing/beeta
                                                 //swing in
      ib (mA)
                                         //ac power (W)
19 Pac=R1*(icswing/(2*sqrt(2)))**2
20 Pdc=Vcc*(Icq*10**-3)
                                                 //dc power (W
                                                 //efficiency
21 eta=(Pac/Pdc)*100
22
23 // Results
24 printf ("a) value of Rl is %.f ohms", R1/1E-6)
25 printf ("b) Ibq is \%. f uA", Ibq/1E-3)
26 printf ("c) ac power output is \%.2 \text{ f mW}, Pac/1E-3)
27 printf ("efficiency is %.1 f %%", eta)
28 printf ("corresponding swing in ib is \%.2\,\mathrm{f} mA",
      ibswing)
```

Scilab code Exa 5.5 Example

```
1
2
3 // Variable declaration
4 Vcc=10 // supply voltage(V)
```

```
5 \ Vce = 10
6 Icq=140*10**-3
                                  //Ic at Q point (A)
                                  //load resistance (ohms)
7 R1 = 8
8 \text{ vce} = 16
                                  //instantaneous
      collector to emitter voltage (V)
9 ic = 235 * 10 * * -3
                                  //instantaneous
      collector current (A)
10
11 // Calculations
12 RL=Vcc/Icq
                                                  //load
13 r=sqrt(RL/R1)
      resistance for max ac swing (ohms)
14 Po=(vce*ic)/(2*sqrt(2)*2*sqrt(2))
                                            //output power(
      W)
15 Pi=Vcc*Icq
      input power (W)
16 eta=Po/Pi
      efficiency
17 Pd=Pi-Po
      dissipated power (W)
18
19 // Results
20 printf ("a) transformation ratio is %.f",r)
21 printf ("c) power output is %.2 f W', Po)
22 printf ("efficiency is %.2 f %%", eta*100)
```

Scilab code Exa 5.6 Example

```
8 \ \text{Vcemax} = 90
                                //from figure
9 \text{ Vcemin=} 10
                                 //from figure
                                 //max Ic (mA)
10 \quad Icmax = 730
11 \quad Icmin=30
                                 //\min Ic (mA)
12
13 // Calculations
14 // Part a
                                   //ac resistance (ohms)
15 Rac=Vceq/Icq
                             //as n=N1/N2 and Rac=(N1/N2)
16 n=sqrt(Rac/Rl)
      ^2*R1
17
18 // Part b
19 Vcc=Vceq+(Icq*Re)
                                  //supply voltage(V)
20
21 // Part c
22 vce=Vcemax-Vcemin
      instantaneous collector to emitter voltage (V)
23 ic=Icmax-Icmin
                                                 //
      instantaneous collector current (mA)
24 Po=(vce*ic)/((2*sqrt(2))*(2*sqrt(2)))
                                                    //output
      voltage (V)
25 Pi=Vcc*Icq
                                                      //input
       voltage (V)
26 \text{ eta} = (Po/Pi) * 100
                                                //efficiency
27 Pd=Pi-(Icq**2*Re)-Po*10**-3
                                   //dissipated power (W)
28
29 // Results
30 printf ("a) transformation ratio is %.2f",n)
31 printf ("b) Vcc is \%.1 f V", Vcc)
32 printf ("c) power efficiency for the load is %.1f %%"
      ,eta/1E+3)
33 printf ("power dissipated is %.1 f W",Pd)
```

Scilab code Exa 5.7 Example

```
2 // Variable declaration
                                     //supply voltage(V)
3 \text{ Vcc} = 30
4 R1=16
                                     //load resistance (ohms
                                     //transformation ratio
5 n=2
6 \text{ Im} = 1
                                     //peak value of
      current (A)
  etamax = 78.54
                                     //\max efficiency (%)
8
9 // Calculations
10 // Part a
11 Rl1=Rl*(n/2)**2
                                        //load resistance(
      ohms)
12 Pi=(2*Vcc*Im)/%pi
                                    //input power(W)
13 Pimax = (2*Vcc**2)/((\%pi)*Rl1) //input power max(W)
14
15 // Part b
                                        //output power(W)
16 Po = ((Im **2) *R11)/2
                                        //output power max(
17 Pomax = (Vcc**2)/(2*Rl1)
      W)
18
19 // Part c
20 eta=Po/Pi
                                        //efficiency
21
22
23 // Part d
P = ((2*Vcc*Im)/\%pi) - ((Im**2*Rl1)/2) //Power
      dissipated by transistors (W)
25 \text{ Pd=P/2}
                                               //power
      dissipated by each transistors
26 Pmax=(2*Vcc**2)/((%pi)**2*Rl1)
                                          //max power
```

```
dissipated by transistors

27 Pdmax=Pmax/2 //max power
dissipated by each transistor

28
29 //Results
30 printf ("a)input power is %.1f W and max input
power is %.2f W", Pi, Pimax)

31 printf ("b)output power %.1f W and max output power
is %.2f W", Po, Pomax)

32 printf ("c)power efficiency for the load is %.2f %%
and its max value is %.2f %%", eta/1E-2, etamax)

33 printf ("power dissipated by each transiator is %.1f
W and max value is %.1f W", Pd, Pdmax)
```

Scilab code Exa 5.8 Example

```
1
2 // Variable declaration
3 \text{ Pd} = 10
4
5 // Calculations
6 //Part a
7 Poacmax=10.
                                //as Pd=Po(ac)max by
      class A
8
9 //Part b
10 Pd=2*Poacmax
                                //power dissipated (W)
11 Poacmax1=146/2
                                //max output power by
      class B
12 f=Poacmax1/Poacmax
                              //factor by which power
      of class B is greater than class A
13
14 // Results
15 printf ("maximum signal output powerclass A produce
      is \%.1 f W, Poacmax)
```

```
16 printf ("maximum signal output powerclass produce
        is %.1 f W", Poacmax1)
17 printf ("factor by which power in class b is larger
        than power in class A transformer is %.1 f", f)
```

Scilab code Exa 5.9 Example

```
1
2
3 // Variable declaration
4 \ Vcc = 30.
                                       //supply voltage(V)
                                       //peak value of
5 Im = 1
      current (A)
6 \text{ Rl} = 10.
                                       //load resistance(
      ohms)
7
8 // Calculations
9 // Part a
10 Pi=(Vcc*Im)/%pi
                                 //input power(W)
11 Pimax=(Vcc**2)/(%pi*2*Rl)
                                //max input power (W)
12
13 // Part b
                                      //output power(W)
14 Po = ((Im **2) *R1)/2
                                      //output power max(W
15 Pomax = (Vcc**2)/(8*R1)
16
17 / Part c
                                    //efficiency
18 eta=Po/Pi
19 etamax=Pomax/Pimax
                                    //efficiency max
20
21 // Part d
22 Pd=Pi-Po
                                            //Power
      dissipated by transistors (W)
23 Pmax = (Vcc**2)/(2*(\%pi)**2*R1)
                                       //max power
      dissipated by transistors
```

```
24
25 // Results
26 printf ("a)input power is %.2 f W and max input power
        is %.2 f W', Pi, Pimax)
27 printf ("b)output power is %.1 f W and max output
        power is %.2 f W', Po, Pomax)
28 printf ("c)power efficiency for the load is %.2 f %%
        and its max value is %.2 f %%", eta/1E-2, etamax/1E
        -2)
29 printf ("power dissipated and its max value are %.2 f
        W and %.2 f W', Pd, Pmax)
```

Scilab code Exa 5.10 Example

```
1
2
3 // Variable declaration
                                         //transistor power(W)
4 P1=2
                                         //load resistance()
5 R1=5*10**3.
6 \text{ Ic} = 35
                                         //collector current (mA
8 // Calculations
9 \text{ Bo} = 40 - \text{Ic}
10 B1 = sqrt((2*P1)/R1)
11 B2=Bo
12 D2 = (B2/B1) * 100
                                         //second harmonic
       distortion (%)
13
14 // Results
15 printf ("second harmonic distortion is \%.2 \, \mathrm{f} \, \%\%", (D2
       /1E+3))
```

Scilab code Exa 5.12 Example

```
1
2
3
  //Variable declaration
4 \ \ Vcc=15.
                                          //supply voltage(
      V)
5 R1 = 10.
                                          //load resistance
      (ohms)
6
7 // Calculations
8 //Part a
9 \quad Immax = Vcc/R1
                                         //max peak current
      (A)
10 Irmsmax=Immax/(sqrt(2))
                                    //max rms current(A)
11 Pomax=Irmsmax**2*R1
                                         //max output power
      (W)
12 Pi=(2*Vcc*Immax)/%pi
                                     //max input power (W)
13 eta=Pomax/Pi
                                         //efficiency
14
15 // Part b
                                                  //peak
16 Im = (2*Vcc)/(\%pi*R1)
      current (A)
17 Pdmax = ((2*Vcc*Im)/(%pi)) - ((Im**2*R1)/2)
                                                  //max
      power dissipated (W)
18
  eta1=((Im**2)*R1*%pi)/(2*2*Vcc*Im)
      efficiency
19
20 // Results
21 printf ("a) max signal output power, collector
                    are \%.2 f W, \%.2 f W and efficiency
      dissipation
      is \%.2 \text{ f } \%\%", Pomax, Pi, eta/1E-2)
22 printf ("b) max dissipation of each transistor and
      corresponding efficiency is %.2 f W and %.1 f resp.
      ", Pdmax, eta1)
```

Scilab code Exa 5.13 Example

Chapter 6

Feedback Amplifiers And Oscillators

Scilab code Exa 6.1 Example

```
1 // Variable declaration
2 \text{ Vo} = 12.
                        //output voltage(V)
                        //frequency(Hz)
3 f=1.5*10**3
                        //second harmonic content(%)
4 h=0.25
5 \text{ ho} = 2.5
                        //reduced harmonic content of
      output (%)
6 \quad A = 100
                        //power amplifier gain
8 // Calculations
9 \text{ Vd=Vo*h}
                           //second harmonic content in
      output (V)
                            //reduced value of second
10 \text{ Vd1=Vo*ho}
      harmonic content (V)
11 beta=((Vd1/Vd)-1)/A
                           //feedback gain from formula
      Vd1=Vd/(1+beta*A)
                           //signal voltage(V) from
12 Vs=Vo*(1+beta*A)/A
      formula (A/(1+Beta*A))*Vs
13 V = V \circ / A
                            //signal input needed without
      feedback
```

Scilab code Exa 6.2 Example

```
1 // Variable declaration
2 w2 = 10 * * 4.
                           //corner frequency (rad/s)
                           //new corner frequency (rad/s)
3 \text{ w2new} = 10**5.
4 Ao=1000.
                           //high frquency response
6 // Calculations
7 beta=((w2new/w2)-1)/Ao //feedback factor
8 Anew=Ao/(1+beta*Ao)
                          //overall gain of amplifier
      from formula w2new=w2(1+beta*Ao)
9 p = w2 * Ao
                           //gain bandwidth product
      without feedback from formula Anew=Ao/1+beta*Ao
                           //gain bandwidth product with
10 pnew=Anew*w2new
      feedback
11
12 //Results
13 printf ("beta is \%.3 \, \mathrm{f}", beta)
14 printf ("overall gain is %.1f", Anew)
15 printf ("gain-bandwidth products with and without
      feedback are %.1f and %.1f resp.",p,pnew)
```

Scilab code Exa 6.3 Example

```
1 // Variable declaration
```

```
//high frquency
2 A = 100.
       response
3 \text{ Af} = 100
                                               //gain
                                              //forward gain
4 A1 = A * * 2
5 \quad \texttt{Alnew=50}
                                              //gain reduces
      to 50%
6
7 // Calculations
8 beta=((A1/Af)-1)/A1
                                              //feedback
      factor
9 Afnew=A1new**2/(1+beta*A1new**2)
                                              //new value of
10 g=Af-Afnew
                                              //reduction in
      overall gain
11
12 // Results
13 printf ("%% change in gain of feedback unit is %.2 f
      ",g)
```

Scilab code Exa 6.4 Example

Scilab code Exa 6.5 Example

Scilab code Exa 6.7 Example

```
1 // Variable declaration
2 Rbb=8*10**3
                                       //base resistance(k
      ohms)
3 \text{ eta=0.7}
                                      //efficiency
4 R1 = 0.2
                                      //R1(k \text{ ohms})
5 Rt = 40 * 10 * * 3
                                      //Rt (ohms)
6 Ct = 0.12*10**-6
                                      //capacitance(F)
                                      //capacitor is charged
7 Vv=2
       to voltage (V)
  Iv = 10 * 10 * * -3
                                      //current to capacitor (A
9 Ip=10*10**-3
                                       //peak current(A)
10 \text{ Vd} = 0.7
                                      //diode voltage(V)
11 V = 12.
                                       //\operatorname{voltage}(V)
12
13 // Calculations
14 // Part a
15 \text{ Rb1=eta*Rbb}
                      //base resistance (ohms)
16 Rb2=Rbb-Rb1
                                 //base resistance (ohms)
17
18 // Part b
```

```
19 Vp=Vd+((Rb1+R1)*V/(Rbb+R1)) // peak voltage(V)
20
21 // Part c
                                 //Rt minimum(k ohms)
22 Rtmin=(V-Vv)/Iv
23 Rtmax = (V-Vp)/Ip
                                 //Rt minimum(k ohms)
24
25 // Part d
26 Rb11=.12
                               //resistance during
      discharge (ohms)
27 t1 = Rt * Ct * 1.27
                               //charging time (mS)
                               //discharging time(uS)
28 t2 = (Rb11 + R1) * Ct * 1.52
29 T = t1 + t2
                               //cycle time
                               //oscillations frequency(Hz)
30 \text{ foscE=1/T}
                               //oscillations frequency(Hz)
31 \text{ foscA} = 1/(\text{Rt} * \text{Ct} * 1.2)
32
33 // Part e
34 \text{ vR1} = (\text{R1} * \text{V}) / (\text{R1} + \text{Rbb})
                                         //vR1 at discharging
       period
35 \text{ vR1d} = (R1*(Vp-Vd))/(R1+Rb11)
                                         //vR1 at
      discharging period
36
37 //Results
38 printf ("Rb1 and Rb2 are %.1f k ohms and %.1f k ohms
       resp.", Rb1/1E+3, Rb2/1E+3)
39 printf ("Vp is \%.1 \,\mathrm{f} V", Vp)
40 printf ("Rtmin is %.f k ohms and Rtmax is %.f k ohms
       , hence Rt is in the range", Rtmin/1E+3, Rtmax/1E+1)
41 printf ("foscE is %.f Hz and foscA is %.f Hz", foscE,
      foscA)
42 printf ("vR1 is %.3f and vRd1 is %.2f V ", vR1/1E-3,
43 printf("(range of Rt is wrong in the book)")
```

Scilab code Exa 6.8 Example

```
1 // Variable declaration
2 A = 1500
                                     //voltage gain
3 \text{ beta} = 1/25.
                                     //current gain
5 // Calculations
6 // Part a
                                      //voltage gain with
7 Af=A/(1+A*beta)
      feedback
9 //Part b
10 g = 0.1
                                  //amplifier gain
      changes by 10\% = 0.1
11 gf=g/(1+A*beta)
                                  //% by which its gain
      in feedback mode changes dAf/Af
12
13 // Results
14 printf ("Amplifier gain with feedback is %.1f", Af)
15 printf ("%% by which gain in feedback changes is %.3
      f %%", gf/1E-2)
```

Scilab code Exa 6.9 Example

```
1 // Variable declaration
                                 //voltage gain
2 A = 500
3 \text{ beta=1/20}.
                                 //current gain
4 Ro=50*10**3
                                 //output resistance (ohms)
5 Ri=1.5*10**3
                                 //input resistance (ohms)
7 // Calculations
8 // Part a
9 Af = A/(1+A*beta)
                                 //voltage gain with
      feedback
10
11 // Part b
12 Rif=Ri*(1+(A*beta))
                                  //input resistance(k
```

```
ohms)

13 Rof=Ro/(1+A*beta) //output resistance(k ohms)

14

15 //Results
16 printf ("Amplifier gain is %.2f", Af)
17 printf ("input resistance is %.f K ohms and output resistance is %.2f kW", Rif/1E+3, Rof/1E+3)
```

Scilab code Exa 6.10 Example

```
1 // Variable declaration
2 \text{ Ro} = 50 * 10 * * 3
                                   //output resistance (ohms
3 Rd=10*10**3
                                   //drain resistance (ohms)
                                   //resistance (ohms)
4 R1=800*10**3
                                   //resistance(ohms)
5 R2=200*10**3
6 \text{ gm} = 5500 * 10 * * -6
                                   //transconduuctance(us)
8 // Calculations
9 r = (Rd*Ro)/(Rd+Ro)
                                    //Rd | | Ro
10 R = R1 + R2
                                    //combined resistance
      of R1 and R2
11 Rl=(R*r)/(R+r)
                                    //load resistance (ohms)
12 A = -gm * R1
                                    //voltage gain without
      feedback
13 beta=R2/(R1+R2)
                                    //current gain
                                    //voltage gain with
14 Af=A/(1+A*beta)
      feedback
15
16 //Results
17 printf ("Amplifier gain with feedback is %.1f and
      without feedback is %.1f", Af/1E+1, A)
```

Scilab code Exa 6.11 Example

```
1 // Variable declaration
2 Re=1.25*10**3
                                   //emitter resistance (ohms
      )
3 \text{ Rc} = 4.8 * 10 * * 3
                                    //collector resistance (
      ohms)
4 Rb=800*10**3
                                   //base resistance (ohms)
                                   //dynamic resistance (ohms
5 rpi=900
                                   //supply voltage(V)
6 \text{ Vcc}=16
7 \text{ beta=100}.
                                   //current gain
9 // Calculations
                                  //amplifier voltage gain
10 A=-(beta/rpi)
11 B = -Re
12 V = (A * Rc) / (1 + B * A)
                                  //V = Vo/Vs
13
14 // Results
15 printf ("Amplifier voltage gain is %.1f", V)
```

Scilab code Exa 6.12 Example

```
9 Ceq=(C1*C2)/(C1+C2) //equivalent
capacitance(F)

10 fo=1/(2*%pi*sqrt(L*Ceq)) //output frequency(Hz)

11
12 //Results
13 printf ("the oscillation frequency is %.2 f KHz",fo/1
E+3)
```

Scilab code Exa 6.13 Example

```
1
2
3 // Variable declaration
4 C = 200 * 10 * * -9
                                   //capacitance(F)
                                   //shunt across L2
5 \text{ Lrcf} = 0.5*10**-3
6 L1=800*10**-6
                                   //inductance (H)
                                   //inductance(H)
7 L2=800*10**-6
8 M = 200 * 10 * * -6
10 // Calculations
11 L21=(L2*Lrcf)/(L2+Lrcf)
                                                   //effective
       value of L2(uH)
12 \text{ Leq=L1+L21+2*M}
      equivalent inductance (H)
                                        //output frequency(
13 fo=1/(2*%pi*sqrt(Leq*C))
      Hz)
14
15 // Results
16 printf ("the oscillation frequency is \%.2 \, \mathrm{f} KHz", fo/1
      E+3)
```

Chapter 7

Operational Amplifiers

Scilab code Exa 7.1 Example

```
1 // Variable declaration
                                //negative terminal Vn(uV)
2 V1=120
3 V2=80
                                // positive terminal Vp(uV)
                                //difference mode gain
4 Ad=10**3
7 // Calculations
8 \ Vd = V1 - V2
                               //difference mode signal(uV)
                               //common mode signal(uV)
9 \text{ Vc} = (\text{V1} + \text{V2})/2
10
11 // Part a
12 CMRR=100.
                                     //common mode rejection
       ratio
13 Vo = Ad * Vd * (1 + (Vc / (CMRR * Vd)))
                                     //output voltage (mV)
14
15 // Part b
16 CMRR=10**5.
                                       //common mode
      rejection ratio
17 Vo1=Ad*Vd*(1+(1/CMRR)*(Vc/Vd)) //output voltage (mV)
18
19 // Results
```

```
20 printf ("output voltage is %.f mV", Vo/1E+3)
21 printf ("output voltage is %.f mV", Vo1/1E+3)
```

Scilab code Exa 7.2 Example

Scilab code Exa 7.3 Example

```
1
2
3 // Variable declaration
                                    //OPAMP frequency (Hz)
4 f = 50 * 10 * * 3.
5 \text{ Vm} = 0.02
                                    //maximum value of
      signal voltage (V)
6 S = .5 * 10 * * 6
                                      //slew rate(V/s)
8 // Calculations
9 Kvf=S/(2*(\%pi)*f*Vm) //closed loop gain of
      amplifier
10
11 // Results
12 printf ("closed loop gain of amplifier is %.f", Kvf)
```

Scilab code Exa 7.4 Example

```
1 // Variable declaration
2 Ic = 100
                        //current at quinscent point(uA)
3 \text{ beta} = 2000.
                        //current gain
4 Ad = 250
                        //difference mode gain
                        //as 74 dB=5000, common mode
5 CMRR=5000
      rejection ratio (dB)
6
7 // Calculations
8 rpi=(25*beta)/Ic //dynamic internal resistance(k
      ohms)
9 gm=beta/rpi
                         //transconductance (mS)
                         //emitter resistance(k ohms)
10 Re=CMRR/gm
                         //collector resistance(k ohms)
11 Rc=(Ad*2)/gm
     from formula Ad=gmRc/2
12 Rin=2*rpi
                         //input resistance(k ohms)
13
14 // Results
15 printf ("Re is %.1 f k ohms", Re)
16 printf ("Rc is %.1 f k ohms", Rc)
17 printf ("input resistance is %.1f k ohms", Rin)
```

Scilab code Exa 7.6 Example

```
//emitter resistance(k ohms)
6 \text{ Re} = 16.
                            //supply voltage(V)
7 \text{ Vcc}=15.
9 // Calculations
10 // Part b
11 Ibq=Icq/beta
                             //Ib at Q(uA)
12 \text{ rpi}=(25*\text{beta})/\text{Icq}
                             //dynamic resistance(k ohms)
                             //transconductance
13 gm=beta/rpi
14
15 // Part b
16 \text{ vol=Vcc-(Icq*Rc)}
                            //terminal 1 voltage (V)
                            //terminal 2 voltage(V)
17 vo2=vo1
18
19 // Part c
20 Ad=(gm*Rc)/2
                            //differential mode gain
                           //common mode gain
21 Ac=Rc/(2*Re)
                            //common mode rejection ratio
22 CMRR=Ad/Ac
23
24 // Part d
25 Rid=2*rpi
                                        //differential input
       resistance (k ohms)
                                        //dynamic resistance(k
26 \text{ rpi} = 11.7
       ohms)
27 Ric=rpi+(2*(beta+1)*Re)
                                        //common mode input
       resistance (k ohms)
28
29 // Results
30 printf ("Icq is \%.3 \,\mathrm{f} mA, and Ibq is \%.2 \,\mathrm{f} uA", Icq, Ibq
31 printf ("vol and vol have same value as \%.1 \,\mathrm{f} V", vol)
32 printf ("Ad : \%.f , Ac : \%.3 f and CMRR is \%.f", Ad/1E
      -3, Ac, CMRR/1E-3)
33 printf ("Rid is \%.1\,\mathrm{f} K ohms and Ric is \%.2\,\mathrm{f}
      Rid/1E+3, Ric/1E+3)
```

Scilab code Exa 7.7 Example

```
1 // Variable declaration
2 R1 = 10.
                                //series resistance (K ohms)
3 \text{ Rf} = 10 * * 3.
                                //feedback resistance(k
      ohms)
4 \text{ vo} = -5.
                                //output voltage(V)
                                //input resistance(k ohms)
5 Ri = 1000
6 Av=2.5*10**5
                                //gain
8 // Calculations
9 v1 = -vo*(R1/Rf)
                                //input signal voltage(V)
10 vi = -vo/Av
                                //inverting voltage(V)
11 i1 = ((v1*10**-3)-vi)/R1
                                //current through R1(uA)
                                //inverting current (uA)
12 ii=vi/Ri
                                //forward current (uA)
13 \text{ iF} = -\text{ii}
14
15 // Results
16 printf ("value of vi is %.e mV", vi)
17 printf ("value of ii: %.e uA i1: %.e uA and iF is %.
      e uA", ii, i1, iF)
```

Scilab code Exa 7.8 Example

```
1 // Variable declaration
2 \text{ Vs} = 4
                                //source voltage(V)
                                 //resistance(k ohms)
3 R1 = 10.
4 Vb=2
                             //voltage at point A and point
      В
5 Va=2
6 \text{ Rf} = 30
                                //forward resistance(k ohms)
8 // Calculations
9 I = (Vs - Vb)/R1
                               // current (mA)
                               //output voltage(V)
10 Vo = (-I * Rf) + Vb
```

```
11
12 //Result
13 printf ("output voltage %.1 f V", Vo)
```

Scilab code Exa 7.9 Example

Scilab code Exa 7.10 Example

```
1 // Variable declaration
2 \text{ Ro} = 100.
                               //output resistance (ohms)
3 \text{ vo} = 10.
                               //output voltage(V)
4 A = 10 * * 5.
                               //gain
5 Ri=100*10**3
                               //input resistance (ohms)
                               //resistance (ohms)
6 Rs=1*10**3.
                               //load resistance (ohms)
7 R1 = 10 * 10 * * 3
9 // Calculations
10 // Part i
11 iL=vo/R1
                                 //load current (mA)
12 Avi=vo+(iL*Ro)
                                 //voltage gain without
      feedback
```

```
13 vi = Avi/A
                                   //voltage(V)
                                   //current(A)
14 ii=vi/Ri
                                   //source voltage(V)
15 \text{ vs=vo+ii*}(Rs+Ri)
16
17 //Part ii
18 \text{ Avf} = \text{vo/vs}
                                  //voltage gain with
      feedback
19
20
21 //Part iii
                               //input resistance (ohms)
22 Rif=vs/ii
23 Rof=Ro/A
                               //output resistance (ohms)
24
25 // Results
26 printf ("vs is \%.4 \,\mathrm{f} v", vs)
27 printf ("vo/vs that is Avf is \%.f", Avf)
28 printf ("input and output resistances are \%.2\,\mathrm{f} , \%.3
      f ohms", Rif, Rof)
```

Scilab code Exa 7.11 Example

```
1 // Variable declaration
                               //voltage at A and B
2 Vb=3
3 Va=Vb
4 R1=40*10**3.
                                   //input resistance (ohms)
5 t=50*10**-3
                                   //time after switch is
      open (mS)
6 V1=5
                                   //input voltage(V)
8 // Calculations
9 // Part a
10 \text{ vo} = -3
                                   //as Va=Vb=3
11
12 // Part b
13 i1 = (V1 - Vb)/R1
                                   //input current(A)
```

Scilab code Exa 7.14 Example

```
1
3 // Variable declaration
4 BW=30*10**3
                                //specified bandwidth(k Hz
5 fc=18*10**3
                                //centered frequency (Hz)
                                //resistance(k ohms)
6 R1 = 20
                                //resistance(k ohms)
7 R2 = 180
8 C=1.2*10**-9
                                //capacitance(F)
                                //pass band gain(dB)
9 G = 40
10 g = 20
                                //pass region gain(dB)
11
12 // Calculationsv
13 fc1=fc-(BW/2)
                                //high pass section
      frequency (Hz)
14 \text{ fc2=fc+(BW/2)}
                                //low pass section
      frequency (Hz)
15 Rfc1=1/(2*%pi*fc1*C) //high pass section resistance
      (k ohms)
16 \text{ Rfc2=1/(2*\%pi*fc2*C)}
                            //low pass section resistance (
      k ohms)
                                //gain at frequency 0.3KHz
17 \text{ Gfc1}=G-g
      (dB)
18 \text{ Gfc2=G-2*6}
                                //gain at frequency 132KHz
      (dB)
19
```

```
20 // Results
21 printf ("R1 and R2 are %.1f K ohms and %.1f K ohms",
        R1,R2)
22 printf ("Rfc1 is %.f k ohms and Rfc2 is %.f k ohms",
        Rfc1/1E+3,Rfc2/1E+3)
23 printf ("filter gain at frequencies 0.3 KHz is %.1f
        dB and 132 k Hz are %.1f dB",Gfc1,Gfc2)
```

Scilab code Exa 7.21 Example

```
1 // Variable declaration
2 R = 250
                      //resistance(k ohms)
3
4 // Calculations
5 //part a
6 R1 = -R/(-5)
                 //as vo=-5va+3vb(given), so when vb=0,
      vo/voa = -250/R1 = -5
8 //part b
9 R2=R1/(2-1)
                  //as va=0
10
                  //vx = (R1/R1+R)*vob = (1/6)*vb
11
                  //vy = (R2/R1+R2) *vb
                  //vx=vy
12
13
                  //(1/6)*vob=(R2/R1+R2)*vb
14
                  //vob=3vb
                  //(1/6)*3=R2/(50+R2)
15
16
17
  //Result
18 printf ("R1 and R2 are %.1f K ohms and %.1f K ohms",
      R1,R2)
```

Scilab code Exa 7.22 Example

```
1 // Variable declaration
2 R1=10*10**3
                                              //resistance(k
      ohms)
3 C1=10**-6
                                              //capacitance(uF)
                                              //capacitance(uF)
4 \quad C = 0.1 * 10 * * - 6
                                              //resistance(k
5 R=100*10**3
      ohms)
6
7 // Calculations
8 //part b
                                            //angular frequency(
9 \text{ wc1=1/C1*R1}
      rad/s)
10 wc2=1/C*R
                                            //angular frequency(
       rad/s)
                                       //angular frequency(rad/
11 \text{ wc=wc} 2
       s )
12 \text{ wc} 1 = \text{wc} 2
13
14 // Results
15 printf ("wc1 is \%.2 \,\mathrm{f} rad/s", wc1/1E+10)
16 printf ("wc2 is \%.2 \,\mathrm{f} rad/s", wc2/1e+10)
```

Scilab code Exa 7.23 Example

```
11 printf ("C1 is %.f uF",C1/1E+1)
12 printf ("vo1 is -5 V when Q=250 cm^3")
```

Chapter 8

Multivibrators And Switching Regulators

Scilab code Exa 8.1 Example

```
1 // Variable declaration
2 C=0.1
                                //capacitance (uF)
                                //resistance(k ohms)
3 R1 = 10
                                //resistance(k ohms)
4 R2 = 2.3
5 Vcc=12.
                                //supply voltage(V)
6 R1=10**3.
                                //resistance(k ohms)
8 // Calculations
9 // Part a
10 f=1/(0.693*C*(R2+R1/2)) //frequency(Hz)
11
12 // Part b
13 D=(1+(R2/R1))/(1+2*(R2/R1))*100
                                               //duty
      cycle
14
15 // Part c
16 //(i)
17 T1=0.693*C*(R1+R2)
                                                //time
      period through R1(ms)
```

```
18 T2=0.693*R2*C
                                                   //time
      period through R2(ms)
19 Pavg = (Vcc/R1) **2*(T1/(T1+T2))
                                                   //average
      power dissipated during current sourcing (mW)
20
21 // Part d
22 Pavg1=(T2/(T1+T2))*(Vcc/R1)**2
                                                 //average
      power dissipated during current sinking (mW)
23
24 // Results
25 printf (" \%.2 \,\mathrm{f} kHz",f)
26 printf ("duty cycle is \%.2 \text{ f } \%\%",D)
27 printf ("average power dissipated in current
      sourcing is \%.3 \, \text{f mW}, Pavg/1E-3)
28 printf ("average power dissipated in current sinking
       is \%.3 \text{ f mW}, Pavg1/1e-3)
```

Scilab code Exa 8.2 Example

```
1
3 // Variable declaration
4 t=1
                                           //time constant
                                           //e=R1/R2 \min=1.8
5 e=1.8
                                            //e1=R1/R2 max=9
6 \text{ e1=9}.
8 // Calculations
9 Betamin=1/(1+e)
                                        //current gain
      minimum
10 Betamax=1/(1+e1)
                                        //current gain
      maximum
11 Tmax = 2*t*log((1+Betamin)/(1-Betamin))
12 Tmin=2*t*log((1+Betamax)/(1-Betamax))
13 \text{ fmin=1/Tmax}
                                        //minimum freq (Hz)
                                        //maximum freq(k Hz)
14 \text{ fmax}=1/\text{Tmin}
```

```
15
16 //Results
17 printf ("fmin is %.f Hz and fmax is %.1f KHz",fmin/1
E-3,fmax)
```

Scilab code Exa 8.3 Example

```
1
2
3 // Variable declaration
                                 //capacitance(uF)
4 C=0.01
                                 //resistance(k ohms)
5 R2 = 15
                                 //voltage(V)
6 Va2=4
7 \ Vcc = 15.
                                 //supply voltage(V)
                                 //resistance(k ohms)
8 R1=33
9
10 // Calculations
                                 //voltage(V)
11 Va1=0.67*Vcc
                                 //Va maximum(V)
12 \quad Vamax = Va1 + Va2
                                 //Va minimum(V)
13 Vamin=Va1-Va2
14 T1max=C*(R1+R2)*(log((1-(Vamax/(2*Vcc)))/(1-(Vamax/)))
      Vcc))))
                 //time period (ms)
  T1min = C*(R1+R2)*(log((1-(Vamin/(2*Vcc)))/(1-(Vamin/
      Vcc))))
                 //time period (ms)
16 T2=0.693*R2*C
                                            //maximum
17 fmax=1/(T1min+T2)
      frequency (K Hz)
  fmin=1/(T1max+T2)
                                            //miniimum
18
      frequency (K Hz)
19
20
  //Results
21 printf ("minimum freq is %.2f",fmin)
22 printf ("maximum freq is \%.2 \,\mathrm{f}", fmax)
23 printf(" (solution given in the textbook is
      incorrect)");
```

Scilab code Exa 8.4 Example

```
1 // Variable declaration
                                        //input voltage(V)
2 \text{ Vi} = 25
                                        //supply voltage max(V
3 \ Vsmax=30
                                    //output minimum voltage
4 Vomin=12
      or load voltage (V)
5 V1=12
                                        //load voltage(V)
6 R1 = 20
                                        //output current (mA)
7 Io = 15.
                                        //quinscent current of
8 \text{ Iq} = 3.
        regulator (mA)
                                        //output voltage(V)
9 \text{ Vo} = 20.
10
11 // Calculations
12 // Part a
13 //(i)
14 Vimax=Vsmax
                                          //maximum
      permissible voltage (V)
                                          //for Vomin=beta=0
15 \text{ Ro} = 0
16 //(ii)
17 \quad Vomax = Vi - 2
                                                    //output
18 betaVomax=Vomax-Vomin
       voltage (V)
19 R2max = (R1*betaVomax)/(Vomax-betaVomax)
                                                    //R2max(k)
      ohms)
20 //(iii)
21 R3=betaVomax/Io
                                                    //R3(k \text{ ohms})
22
\frac{23}{\text{Part b}}
24 Vt=(Iq*betaVomax)/Io
                                                   //common
      terminal fall (V)
25 \quad Vomin1=V1+Vt
                                                   //voltage
```

```
output minimum (V)
26
27 // Part c
28 betaVo=Vo-V1
                                                //output
      voltage (V)
29 beta=betaVo/Vo
                                                //current gain
30 R2=(R1*betaVo)/(Vo-betaVo)
                                                //R2 (ohms)
31
32 //Results
33 printf ("a)i)max permissible supply voltage is %.1f
      V", Vimax)
34 printf ("ii) output voltage range for Vi=25V is \%.1 f
      V to %.1f V and R2max is %.f k ohms", Vomin, Vomax,
      R2max)
35 printf ("iii) R3 is \%.2 \,\mathrm{f} kohms kohms", R3)
36 printf ("b) Vomin is \%.1 \,\mathrm{f} V", Vomin1)
37 printf ("c)R2 is \%.2 \text{ f} ohms and R3 is \%.3 \text{ f} ohms", R2,
      R3)
```

Scilab code Exa 8.5 Example

```
1 // Variable declaration
2 A = .0025
                                  //voltage gain
3 \text{ Vi=8}
                                  //input voltage(V)
                                  //resistance 2(k ohms)
4 R2=1.5
                                  //resistance 1(k ohms)
5 R1=1
                                  //load voltage(V)
6 V1=5
8 // Calculations
9 beta=R2/(R1+R2)
                                    //current gain
                                    //output voltage(V)
10 Vo=V1/(1-beta)
                                    //output voltage
11 Vo1 = (A*Vi)/(1+(A*beta)-beta)
      ripple if Vi=8Vp-p
12
13 // Results
```

Scilab code Exa 8.6 Example

```
1 // Variable declaration
                                                //output
2 \text{ Ro} = 7.5
      resistance (ohms)
3 \text{ hfe}=50
4 \ \text{Ve} = 20
                                                //voltage given
       to emitter (V)
5 \text{ Vbe=0.8}
                                                //base to
      emitter voltage (V)
                                                 //collector
6 \text{ Vc} = 15
      voltage (V)
7 P = 12
                                                 //maximum power
        dissipation (W)
                                                //for minimum
  Ib1 = 5
      load current Il=0,Ib=5
10 // Calculations
                                                  //output
11 Io=(Vc/Ro)*10**3
      current (A)
12 I1=76
                                                  //load current
      (mA)
                                                  //supply
13 Is = I1 + 5
      current (mA)
14 Ic=Io-Is
                                                  //collector
      current (A)
15 Ib=Ic/hfe
                                                  //base current
      (mA)
16 Ie=Ic-Ib
                                                  //emitter
      current (mA)
                                                  //power
17 Pt = (Ve * Ie) - (Vc * Ic)
```

```
dissipated in transistor (W)
18 Pl = (Ve - Vbe) * Is - Vc * Il
                                               //power
      dissipated in LR
19 Vimax = (P + Vc * (Ic * 10 * * - 3)) / (Ie * 10 * * - 3)
                                              //input
      voltage maximum
                                               //output
20 Iomin=hfe*Ib1
      current minimum (mA)
21
22 // Results
23 printf ("power dissipated in the transistor is %.2 f
      W and in LR is \%.3 \text{ f W}, Pt/1E+3, Pl/1E+3)
24 printf ("maximum permissible input voltage is %.2 f V
      ", Vimax)
25 printf ("minimum load current for load voltage to
      remain stabalized is %.1f mA", Iomin)
```

Scilab code Exa 8.7 Example

```
1 // Variable declaration
2 VL=12
                       //load voltage(V)
                       //current at 12 V
3 I = 2.
4 V = 240
                       //dc source(V)
                       //duty cycle
5 d=17/50.
6 d1 = 0.6
                       //duty cycle
7 \text{ eta1} = 0.8
                       //efficiency
8 \text{ Vdc} = 12
9 // Calculations
10 P = VL * I
                                      //average load power(W
      )
11 Isav = (1*d)/2
                                      //average supply
      current (A)
12 Pav=V*Isav
                                      //average supply power
      (W)
13 eta=(P/Pav)*100
                                      //regulator efficiency
                                      //average supply
14 \text{ Isav1} = (1*d1)/2
```

Scilab code Exa 8.8 Example

```
1 // Variable declaration
2 \text{ Vs} = 200
                             //dc source voltage(V)
                             //\operatorname{current} to load \operatorname{voltage}(A)
3 I1=5
                             //load voltage(V)
4 V1=15
                             //efficiency
5 \text{ eta} = .85
                             //oscillator frequency(Hz)
6 f = 20
7 iSmax=2.6
                             //peak value of supply current
      (\mathbf{A})
8 P=100
                             //full load power supply (W)
9 \text{ pdf} = 0.4
                             //pulse duty factor
10
11 // Calculations
12 Isav=(V1*I1)/(Vs*eta)
                               //average peak supply
      current (A)
13 iS=(2*Isav)/pdf
                                //supply current (A)
                                //oscillation time period(uS
14 T = 1000/f
15 \text{ tp=pdf*T}
                                //transistor time(us)
                                //change in iS with respect
16 d=iS/tp
      to time (A/us)
17 tp1=iSmax/d
                                //transistor time(us)
18 \text{ pdf1=tp1/T}
                                //pulse duty factor
19 Isav1=(iSmax*pdf1)/2
                                //average peak supply
      current (A)
```

Chapter 9

Integrated Circuit Fabrication

Scilab code Exa 9.2 Example

```
1 // Variable declaration
2 t = 1
                            //thickness (mil)
3 e=1.6*10**-19
                            //charge on electron (C)
                            //concentration of phosphorous
4 Pp=10**17
      (atoms/cm<sup>3</sup>)
  Bn=5*10**16
                            //boron concentration(atoms/cm
      ^3)
6 un = .135
                            // \text{mobility} (\text{m}^2/\text{Vs})
8 // Calculations
9 n=(Pp-Bn)*10**6
                            //net concentration(atoms/cm
      ^3)
10 \text{ g=e*un*n}
                            //conductivity()
11 rho=10**6/(g*25)
                            //resistivity (ohm mil)
                            //sheet resistance (ohm mil^2)
12 Rs=rho/t
13
14 // Results
15 printf ("Sheet resistance is %.f ohm(mil**2)", Rs)
```

Scilab code Exa 9.3 Example

```
1 // Variable declaration
2 R=20*10**3
                             //resistance of resistor(
      ohms)
3 w = 25
                             //width (um)
4 \text{ Rs} = 200
                             //sheet resistance(ohm/
      square)
5 R1=5*10**3
                             //resistance (ohms)
7 // Calculations
8 //Part a
9 l=(R*w)/Rs
                             //length required to
      fabricate 20 kohms (um)
10
  //Part b
11
12 L=25
                     //length of resistor of 5 k ohms(um
13 w1 = (Rs*L)/R1
                     //width required to fabricate 5
      kohms (um)
14
15 // Results
16 printf ("length required to fabricate 20 kohms
      resistor is %.1f um",1)
17 printf ("width required to fabricate 5 kohms
      resistor is %.1f um", w1)
```

Scilab code Exa 9.4 Example

```
permitivity of free space

6
7 //Calculations
8 Er=(C*d)/(Eo*A) //relative dielectric constant
9
10 //Results
11 printf ("relative dielectric constant of SiO2 is %.f ",Er)
12 printf(" Note: Solution given in the textbook is incorrect")
```

Scilab code Exa 9.5 Example

```
1 // Variable declaration
                                  //capacitance(pF)
2 C=250*10**-12
                                  //thickness of SiO2
3 d=500*10**-10
      layer (amstrong)
4 Eo=8.849*10**-12
                                 //absolute electrical
      permitivity of free space
5 \text{ Er} = 3.5
                                  //relative dielectric
      constant
6
7 // Calculations
                                //chip area(um^2)
8 A = (C*d)/(Eo*Er)
10 // Results
11 printf ("chip area needed for a 250 pF MOS
      capacitor \%.2 \text{ f um}^2, A/1e-7)
12 printf("Note: Solution given in the textbook is
      incorrect")
```

Chapter 10

Circuit Theory

Scilab code Exa 10.1 Example

```
1 // Variable declaration
2 i1=4.
                    //current through r1(A)
                     //voltage(V)
3 v3 = 3
4 v4=8
                     //voltage(V)
                     //resistance(ohms)
5 r3 = 3
                     //resistance(ohms)
6 r2=2
                     //resistance (ohms)
7 r4 = 4
9 // Calculations
10 i3 = v3/r3
                              //current through r3(A)
                             //current through r4(A)
11 i4 = v4/r4
12 i2 = -(i3 + i4 - i1)/2
                             //current through r2(A)
                              //voltage through r2(V)
13 v2 = i2 * r2
14
15 //Result
16 printf ("v2 is %.1 f V", v2)
```

Scilab code Exa 10.2 Example

```
1 // Variable declaration
2 v1 = 6
                         //current through r1(A)
                         //voltage through r3(V)
3 i2=2
                         //voltage through r4(V)
4 i3=4
5 r3=2
                         //resistance(ohms)
6 v3 = 3
                         //voltage through r3(ohms)
7 r2=2
                         //resistance(ohms)
8 r4 = 3
                         //resistance(ohms)
9
10 // Calculations
                               //voltage through r2(ohms)
11 v2 = i2 * r2
                               //voltage through r3(ohms)
12 v3=i3*r3
13 \quad v4 = 4 * i2 + v3 - v2 - v1
                               //voltage through r4(ohms)
14 i4 = v4/r4
                               //current through r4(A)
15
16 // Result
17 printf ("i4 is %.f A",i4)
```

Scilab code Exa 10.3 Example

Scilab code Exa 10.4 Example

```
2 // Variable declaration
3 R = 20
                                       //resistance across
      which voltage is to be calculated (ohms)
5 // Calculations
6 \ a = [35 \ -20 \ ; \ -20 \ 50] \ //solving two linear mesh
      equations
7 b = [50; -100]
8 x = a b
9 i=x(1)-x(2)
                            //current through 20 ohms
      resistor (ohms)
                            //voltage across 20 ohms(V)
10 \ V = 20 * i
11
12 //Results
13 printf ("i is \%.2 \,\mathrm{f}",i)
14 printf ("voltage across 20 ohms is %.1 f V", V)
```

Scilab code Exa 10.5 Example

```
1 // Variable declaration
                         //source voltage(V)
2 \text{ Vs} = 16.
3
4 // Calculations
5 // Part b
                         //current through 10 V
6 I=0
                         //current of current source(A)
7 Is = -4*(I-(Vs/32))
9 //Part c
                         //current of current source(A)
10 Is1=16
                         //current through 10 V
11 I=0
12 Vs1 = (I + (Is1/4)) *32
                         //source voltage(V)
13
```

```
14 // Results
15 printf ("Is is %.f A", Is)
16 printf ("Vs1 is %.f V", Vs1)
```

Scilab code Exa 10.6 Example

```
1 // Variable declaration
                          //voltmeter of voltage(V)
2 V = 9
                          //ammeter current of 9V
3 i = 9
4 r1=1
                          //resistance(ohms)
5 r2=3
                          //resistance (ohms)
                          //resistance parallel to
6 r=5
      ammeter (ohms)
7
8 // Calculations
9 Isc=((i*r)-V)/(r1+r) //short circuiting a and
     b and converting current source to a voltage
      source (A)
10 Ro=((r+r1)*r2)/((r+r1)+r2) //output resistance (ohms)
11
12 // Results
13 printf ("Isc is %.f A", Isc)
14 printf ("Ro is %.f ohms", Ro)
```

Scilab code Exa 10.7 Example

Scilab code Exa 10.9 Example

```
1
2 // Variable declarations
3 \text{ syms V1 V2}
6 // Calculations
7 V = 0.3*V1
      voltage (V)
8 	 I1 = 0.007 * V1
      current
9 y11 = I1/V1
                                                          //y
      parameter
10
11 I2 = -V/40
      current
12 y21 = I2/V1
                                                            //y
      parameter
13
14 I2 = V2/(((40+100)*200.)/((40+100)+200.))
                        //y parameter
15 \text{ y}22 = \text{I}2/\text{V}2
                            //incorrect answer in textbook
             //y parameter
```

Scilab code Exa 10.10 Example

```
1 // Variable declaration
3 //port 2 open circuited, port 1 excited
4 z11= complex(1075,1075)
                                                   //as z11 =
      V1/I1 = (1.52 < 45)/(10**-3 < 0) = 1075 + 1075 j
                                                      //as z21
  z21 = complex(2022, -1075)
      =V2/I1 = (2.29 < -28)/(10**-3 < 0) = 2022 + 1075 j
7 //port 1 open circuited and port 2 excited
8 	 z12 = complex(0, -1075)
                                                      //as z12
      =V1/I2 = (1.075 < -90)/(10**3 < 0) = -1075j
                                                     //as z22=
  z22 = complex (751, -1073)
      V2/I2 = (1.31 < -55)/(10**-3 < 0) = 751 - j1073
10
11 // Calculations
12 z = z11 - z12
                                         //parameters with
      reference to circuit
13 z1=z22-z12
14 z2=z21-z12
```

```
15
16 //Results
17 printf ("z11-z12(z) is ")
18 disp(z)
19 printf ("z22-z12(z1) is")
20 disp(z1)
21 printf ("z21-z12(z2) is")
22 disp(z2)
```

Scilab code Exa 10.11 Example

Chapter 11

Cathode Ray Oscilloscope

Scilab code Exa 11.2 Example

```
1 // Variable declaration
2 E = 120
                             //electric field (V/m)
3 B=5*10**-5
                             //magnetic field (T)
4 q=1.6*10**-19
                             //charge on electron(C)
                             // velocity of electron (m/s)
5 u = 10 * * 6
                             //mass of electron (Kg)
6 m=9.1*10**-31
7 a=9.81
                             //acceleration of gravitation
      (m/s^2)
9 // Calculations
10 // Part a
11 fe=q*E
                            //force on electron due to
      electric field (N)
12
13 // Part
14 \text{ fm=B*q*u}
                           //force on electron due to
      magnetic field (N)
15
16 // Part c
                           //force on electron due to
17 \text{ fg=m*a}
      gravitational field (N)
```

Scilab code Exa 11.3 Example

```
1
2
3 // Variable declaration
4 T1 = 1200.
                                            //temperature(k)
                                            //temperature(k)
5 T2 = 1000.
6 Ww = 1.2 * 10 * * 5
                                            //work function (eV)
7 k=8.62
8 Ie1=200
                                           //emission current
       density
9 T3 = 1500.
                                           //temperature(k)
10
11 // Calculations
12 Ie2=Ie1*(T2/T1)**2*exp(-(Ww/k)*((1/T2)-(1/T1)))
                     //current density(mA/cm<sup>2</sup>) at 1000k
13 Ie3=Ie1*(T3/T1)**2*exp(-(Ww/k)*((1/T3)-(1/T1)))
                     //current density (mA/cm<sup>2</sup>) at 1000k
14
15 // Results
16 printf ("current density at 1000 \text{ k} is \%.2 \text{ f} mA/cm<sup>2</sup>",
17 printf ("current density at 1500 \text{ k} is \%.2 \text{ f} mA/cm<sup>2</sup>",
       Ie3)
```

Scilab code Exa 11.4 Example

```
1
3 // Variable declaration
4 \text{ Ls} = 40
                               //distance from screen (m)
5 d=1.5
                               //distance between plates (
     cm)
6 Va=1200
                               //accelerating potential(V
7 L=3
                               //length of CRT(m)
8 e=1.6*10**-19
                               //charge on electron(C)
9 m = 9.1 * 10 * * -31
                               //mass of electron (Kg)
10 Y = 4 * 10 * * -2
                               //vertical deflection(V)
11
12 // Calculations
13 // Part a
14 U=sqrt((2*e*Va)/m) //velocity of electron upon
      striking screen (m/s)
15
16 // Part
17 Vd = (2*d*Va*Y)/(L*Ls) // deflecting voltage(V)
18
19 // Part c
20 Vdmax = (m*d**2*U**2)/(e*L**2)
                                  //maximum allowable
      deflection (V)
21
22 // Results
23 printf ("velocity of electron upon stricking the
      screen is \%.3e m/s",U)
24 printf ("deflecting voltage is %.f V", Vd/1E-2)
25 printf ("maximum allowable deflection is %.f V",
      Vdmax)
```