MATH808K - Brauer Groups

Haoran Li

2022/03/17

Contents

1	Overview	2
2	Quaternion Algebras	2
3	Projective Conics	4
4	Central Simple Algebras	4
5	Galois Splitting Fields	5
6	Brauer Groups	5

1 Overview

The goals of the this course:

- 1. Define central simple k-algebras(CSA/k)
- 2. Classify CSA's
- 3. Define the Brauer group(motivate Galois cohomology)
- 4. Blackbox Galois cohomology
- 5. Computing Brauer gorups of some special fields

Example 1.1 (CSA/k(Central simple k-algebras)). 1. \mathcal{C} is a category, $\operatorname{Hom}_{\mathcal{C}}(A, B)$ are finite dim vector spaces, $\operatorname{End}_{\mathcal{C}}(A)$ are finite dim k-algebras

- 2. C' is the category of finite dim vector spaces, $\operatorname{End}_{C'}(k^{\oplus n}) = M_n(k)$
- 3. \mathcal{C} is the cat of local Artinian k-algebras, $\operatorname{Hom}_{\mathcal{C}}(A,B) \subseteq \operatorname{Hom}_{\mathcal{C}'}(A,B)$
- 4. X proj k-var and V, W vector bundles over X

$$\operatorname{Hom}(V,W) = \Gamma(X,\operatorname{Hom}(V,W)) = \Gamma(X,V^{\vee}\otimes W) = H^0(X,V^{\vee}\otimes W)$$

Example 1.2 (Examples of finite k-algebras). F/k finite field extension, $k[x]/(x^2)$, $k[x,y]/(x^2,y^2,xy)$, $M_n(k)$, $M_n(F)$

2 Quaternion Algebras

First let's assume Char $k \neq 2$

Definition 2.1. $a, b \in k^{\times}$, the generalized quaternion algebra is denoted as $(a, b) = k[i, j]/(i^2 = a, j^2 = b, ij = -ji)$, for q = x + yi + zj + wij, write $\bar{q} = x - yi - zj - wij$, and $||q||^2 = q\bar{q} = \bar{q}q = x^2 + ay^2 + bz^2 + abw^2$

Definition 2.2. We say a k-algebra A has division if A is a division ring. We say A split if $A \cong M_n(k)$ for some n. We call $f: A \xrightarrow{\cong} M_n(k)$ a splitting of A

Example 2.3.
$$(-1,-1)/\mathbb{R}$$
 has division: $q^{-1} = \frac{\bar{q}}{\|q\|^2} = \frac{x-yi-zj-wij}{x^2+y^2+z^2+w^2}$ for $q = x+yi+zj+wij$. $(-1,-1)/\mathbb{C}$ splits with splitting $f: Q \to M_2(\mathbb{C}), f(i) = \begin{bmatrix} -i \\ i \end{bmatrix}, f(j) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Proposition 2.4. Suppose Q = (a, b)/k, then the following are equivalent

- 1. Q split
- 2. Q doesn't have division
- 3. There is a nontrivial solution over k to $x^2 ay^2 bz^2 + abw^2 = 0$
- 4. There is a solution over k to either $a = x^2 by^2$ or $b = z^2 aw^2$

Remark. $(-1,-1)/\bar{k}$ always split

Proof.

- $(1)\Rightarrow(2)$: E_{ij} has no inverse
- (2) \Rightarrow (3): Assume not, then $q^{-1} = \frac{\bar{q}}{\|q\|^2}$ is defined
- $(3) \Rightarrow (4)$:
- $(4) \Rightarrow (1)$:

Lemma 2.5. 1. $(a,b) \cong (b,a)$

- 2. $(a,b) \cong (au^2,b)$ for all $u \in k^{\times}$
- 3. $(1,b) \cong M_2(k)$

Proof.

- 1. Switch i, j
- 2. Consider $i \mapsto ui$
- $3. \ i \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \, j \mapsto \begin{bmatrix} 0 & b \\ 1 & 0 \end{bmatrix}$

Proposition 2.6 (Classification of finite division k-algebra of dimension 1,2,3,4). 1. $\dim_k A = 1$: A = k

2. $\dim_k A=2$: $A=k1\oplus ki$, hence A is commutative, therefore A/k is a quadratic field extension

- 3. $\dim_k A = 3$: Consider Z(A), we have the following cases
 - (a) $\dim_k Z(A) = 3$: A is commutative, hence A/k is a cubic field extension
 - (b) $\dim_k Z(A) = 2$: we may assume $A = k1 \oplus ki \oplus kj$ and $Z(A) = k1 \oplus ki$, but then ij = ji and $\dim_k Z(A) = 3$
 - (c) $\dim_k Z(A)=1$: we may assume $A=k1\oplus ki\oplus kj,\ Z(A)=k$ and $ij\neq ji$. Let's write $i^2=a+bi+cj$, then $ai+bi^2+cij=ii^2=i^2i=ai+bi^2+cji\Rightarrow c(ij-ji)=0\Rightarrow c=0$,

hence $i^2 = a + bi$. Then multiply by i as a matrix would look like $\begin{vmatrix} 0 & a & x \\ 1 & b & y \\ 0 & 0 & z \end{vmatrix} =: M$

for some $x, y, z \in k$, so $\exists v \neq 0$ such that iv = zv, but then (i - z)v = 0 which is impossible

4. $\dim_k A = 4$: $A \cong (a, b)$ for some $a, b \in k^{\times}$

Lemma 2.7. Let D be a 4 dimensional, k-central division algebra, and assume there exists a k-subalgebra $E \subseteq A$ so that $E \cong k(\sqrt{a}), a \notin k^{\times 2}$, then $A \cong (a, b)$ for some $b \in k^{\times}$

If Char k = 2 (note that -1 = 1), things are more complicated

Definition 2.8. $a \in k, b \in k^{\times}$, define $[a,b) = k[i,j]/(i^2+i=a,j^2=b,ij=ji+j)$, suppose q=x+yi+zj+wij, then $\bar{q}=x+y(1+i)+zj+wij=(x+y)+yi+zj+wij$, since the minimal polynomials of i,j,ij are x^2+x+a , x^2+b and x^2+ab [since $(ij)^2=ijij=i(ij+j)j=i^2j^2+ij^2=(i+a)b+ib=ab$]

Exercise 2.9. Suppose Char k=2, the following are equivalent

- 1. [a,b) split
- 2. [a, b) doesn't have division
- 3. b is a norm from $k(\alpha)/k$ where α is a root of $x^2 + x + a = 0$
- 4. The conic $ax^2 + by^2 = z^2 + zw$ has a k point

3 Projective Conics

For $a, b \in k^{\times}$, consider

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & b & 0 \\ a & 0 & 0 \\ 0 & 0 & ab \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} bx_1 \\ ax_0 \\ abx_2 \end{bmatrix}$$

Then conics $V(ay_0^2 + by_1^2 - y_2^2) = V(a(bx_1)^2 + b(ax_0)^2 - (abx_2)^2) = V(ax_0^2 + bx_1^2 - abx_2^2)$

Proposition 3.1. (a,b), (c,d) are two quaternion algebras over k, then $(a,b) \cong (c,d)$ iff $C_{a,b} = V(ax_0^2 + bx_1^2 - x_2^2)$ and $C_{c,d} = V(cx_0^2 + dx_1^2 - x_2^2)$ define the same conics up to $PGL_2(k)$

Proposition 3.2. (a,b)/k split iff $C_{a,b}(k) \neq \emptyset$

Let's briefly recall Hensel's lemma

Hensel's lemma

Lemma 3.3 (Hensel's lemma). $f(x) \in \mathbb{Z}_p[x], \ a \in \mathbb{Z}_p, \ f(a) \equiv 0 \mod p, \ f'(a) \not\equiv 0 \mod p$, then there exists $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ in \mathbb{Z}_p and $\alpha \equiv a \mod p$

Example 3.4 (Non-isomorphic quaternion algebras with divisions). $Q_1 = (-1,7)/\mathbb{Q} \not\cong Q_2 = (-1,3)/\mathbb{Q}$.

- Check Q_1 has division, suppose not, then $7 = z^2 + w^2$ has a solution, but since $0 = z^2 + w^2$ has no non-trivial solution in \mathbb{F}_7 , hence we have $7 = (7\alpha)^2 + (7\gamma)^2 = 49(\alpha^2 + \gamma^2)$ which is impossible
- Check Q_2 has division, suppose not, then $3 = z^2 + w^2$ has a solution, but since $0 = z^2 + w^2$ has no non-trivial solution in \mathbb{F}_3 , hence we have $3 = (3\alpha)^2 + (3\gamma)^2 = 9(\alpha^2 + \gamma^2)$ which is impossible
- $(-1,3)/\mathbb{Q}_7$ split, consider $x^2+y^2-3z^2-3w^2=0$, let y=z=1, w=0 and $f(x)=x^2-2$, then $f(3)\equiv 0 \bmod 7$ and $f'(3)\equiv 1 \bmod 7$, by Hensel's lemma 3.3 we know there exists $\mathbb{Q}_7\ni\alpha\equiv3$ such that $f(\alpha)=0$

Example 3.5. Quaternion algebras over $\mathbb{F}_q(q = p^n, p \neq 2)$ split, just consider $1^2 - ax^2 - by^2 + 0^2 = 0 \Rightarrow ax^2 = 1 - by^2$, write $S_a = \{ax^2\}$, $S_b = \{1 - by^2\}$, then $|S_a| = |S_b| = |\{x^2\}| = \frac{q-1}{2} + 1 = \frac{q+1}{2}$, so S_a and S_b cannot be disjoint

4 Central Simple Algebras

Definition 4.1. A k-algebra A is a simple if the only two-sided ideals of A is 0 and A. A k central algebra is a finite k-algebra with Z(A) = k

Example 4.2. $M_n(k)$ as a left module is not simple, for example, consider left ideal generated by $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

Example 4.3. 1. $M_n(k)$

2. Quaternion algebra A/k, F/k is a quadratic field extension such that A splits over F, i.e. $A \otimes_k F \cong M_2(F)$, thus $Z(A) \otimes_k F \subseteq Z(A \otimes_k F) = Z(M_2(F)) = F$, which implies that Z(A) = k. (Similarly, if $I \subseteq A$ is a two-sided ideal, then $I \otimes_k F$ is either $M_2(F)$ or 0, which implies that I = A or I = 0 respectively)

Proposition 4.4. A, B are finite k-algebras, then $Z(A \otimes_k B) = Z(A) \otimes_k Z(B)$

Proposition 4.5. A is CSA/k, B finite k-alg, then two-sided ideals of $A \otimes_k B$ are of the form $A \otimes_k J$ where $J = I \cap (1 \otimes_k B)$ is a two-sided ideal in B

Example 4.6. If D=(a,b)/k, D'=(a,b')/k, then $D\otimes_k D'\cong (a,bb')\otimes_k M_2(k)$

Example 4.7. D is a k-central division algebra, then $M_n(k) \otimes_k D \to M_n(D)$ $(a_{ij}) \otimes d \mapsto (a_{ij}d)$ is an iso, in particular $M_n(k) \otimes M_m(k) \to M_{nm}(k)$ is the Kronecker product

4

Theorem 4.8 (Wedderburn's theorem). A is a finite simple k-alg, then $A \cong M_n(D)$ for some division k-alg and some n, D is unique up to iso, n is unique. Moreover, if A is k-central, so is D

As a corollary of a Theorem 4.8, $\dim_k(A) = n^2$, so we can define

Definition 4.9. The the *degree* of a simple k-algebra is the square root of its dimension

The notion of a CSA is really irrelevant with respect to base change, as the following proposition asserts

Proposition 4.10. A is a finite k-algebra, F/k field extension. Then A is a CSA/k iff $A \otimes_k F$ is a CSA/F for all F(for some F)

Lemma 4.11. If D is a finite division \bar{k} algebra, then $D \cong \bar{k}$

Theorem 4.12. A finite k-algebra A is CSA/k iff $A \otimes_k \bar{k} \cong M_n(\bar{k})$

Proof.

5 Galois Splitting Fields

6 Brauer Groups

Theorem 6.1 (Relative Skolem-Noether theorem). S is a CSA/k, $R \hookrightarrow S$ is a simple k-algebra, suppose $f, g: R \to S$ are are homomorphisms, there exists automorphism $\alpha: S \to S$ such that $\alpha \circ f = g$

Consider A is a CSA/k with E being a maximal subfield where E/k is finite Galois with Galois group G, then for each $\sigma \in G$, we can find $x_{\sigma} \in A^{\times}$ such that $x_{\sigma}ax_{\sigma}^{-1} = \sigma(a)$, $\forall a \in E$. If y_{σ} is another choice, then x_{σ}, y_{σ} differ by E^{\times} , hence this defines $x_{\sigma}x_{\tau} = \alpha_{\sigma,\tau}x_{\sigma\tau}$ $\alpha : G \times G \to E^{\times}$ is actually a 2-cocycle

Definition 6.2. Suppose H is an abelian group with a G action, $Z^2(G,H)$ consists of $\alpha:G\times G\to H$ such that $\alpha_{\rho\sigma,\tau}\cdot\alpha_{\rho,\sigma}=\rho(\alpha_{\sigma,\tau})\cdot\alpha_{\rho,\sigma\tau}.$ $B^2(G,H)$ consists of $\gamma_{\sigma,\tau}=\frac{\sigma(f_\tau)\cdot f_\sigma}{f_{\sigma\tau}}$

Lemma 6.3. Suppose A is a finite dimensional k-algebra, $E/k \subseteq A$ is a finite Galois extension with Galois group G, and if $\{x_{\sigma}\}_{\sigma \in G} \subseteq A^{\times}$ such that $x_{\sigma}ax_{\sigma}^{-1} = \sigma(a)$, $\forall a \in E$. Then x_{σ} are E-linear independent in A

Proof.

Proposition 6.4. Suppose $\alpha: G \times G \to E^{\times}$ is a 2-cocycle, There is a k-algebra $(E/k, \alpha) := \bigoplus Ex_{\sigma}$ with $x_{\sigma}x_{\tau} = \alpha_{\sigma,\tau}x_{\sigma\tau}$, $x_{\sigma}ax_{\sigma}^{-1} = \sigma(a)$, $\forall a \in E$. This is a CSA/k. Moreover, $(E/k, \alpha) \cong (E/k, \beta)$ if $\alpha \sim \beta$

Proof.

Theorem 6.5. Consider $\phi : Br(E/k) \to H^2(G, E^{\times})$

Proof. Consider the inverse $\phi^{-1}: H^2(G, E^{\times}) \to Br(E/k), [\alpha] \mapsto (E/k, \alpha)$

Definition 6.6. Suppose H is a group with a G-action, then

$$H^{0}(G, H) = Z^{0}(G, H) = H^{G} = \{ h \in H | \sigma(h) = h, \forall \sigma \in G \}$$

If H is not abelian, this is a pointed set

Remark. A sequence of pointed set is $L \xrightarrow{\pi} M \xrightarrow{\rho} N$, and every element in ker ρ has an preimage in L. If $N = \{*\}$, then π is surjective, but even if $L = \{*\}$, ρ might be non-injective

Proposition 6.7. Suppose $1 \to A \to B \to C \to 1$ is an exact sequence of groups with G-action, then there is the long exact sequence

$$1 \to H^0(G,A) \xrightarrow{(1)} H^0(G,B) \xrightarrow{(2)} H^0(G,C) \xrightarrow{\delta^1} H^1(G,A) \xrightarrow{(3)} H^1(G,B) \xrightarrow{(4)} H^1(G,C)$$

Moreover, if A is central in B, then δ^2 exists and we can extend this with $\xrightarrow{\delta^2} H^2(G,A) \to H^2(G,B) \to H^2(G,C)$

Proof.

Example 6.8.

$$1 \to E^{\times} \to \mathrm{GL}_n(E) \to \mathrm{PGL}_n(E) \to 1$$

Then we get $H^1(G, E^{\times}) \to H^1(G, \mathrm{PGL}_n(E)) (\cong CSA/k) \xrightarrow{\delta^2} H^2(G, \times E) (\cong \mathrm{Br}(E/k))$

Proposition 6.9. 1. For CSA/k A, B with deg A = n, deg B = m, $\delta_{nm}^2([A \otimes_k B]) = \delta_n^2([A])\delta_m^2([B])$

2. For CSA/k A with deg A = n, $\delta_n^2([A]) = 0 \iff A \cong M_n(k)$

3. If [E:k]=n, then δ_n^2 is surjective, and $\phi^{-1}\circ\delta_n^2([(E/k,\alpha)])=[(E/k,\alpha)^{\mathrm{op}}]$

Proposition 6.10. Suppose A is a CSA/k with ind A = d, then ind $A^{\otimes r} \mid {d \choose r}$, $r \leq d$. In particular, $A^{\otimes r}$ split, and Br(E/k) are torsion

Proof. Let E/k be finite Galois extension that splits A, G = Gal(E/k), $V = E^{\oplus d}$, we get the following commutative diagram

Here $\pi(\phi) = \bigwedge^r \phi$, so we get exact squares

References