## **ECEN 649 Pattern Recognition**

#### Introduction

Ulisses Braga-Neto

**ECE Department** 

Texas A&M University

## What is Pattern Recognition?

#### Possible answer:

"Mathematical, statistical, and computational methods that attempt to automatize the way humans routinely recognize familiar patterns."

### **Alternate Names**

- Machine Learning
- Decision Theory
- Pattern Classification
- Pattern Analysis
- Data Mining
- Artificial Intelligence

### The Prototypical PR System



### **Human PR is Sometimes "Too Good"**

#### The Infamous "Face" on Mars



Picture taken by Viking spacecraft in 1976



This is what the human mind "sees"

### **Human PR is Sometimes "Too Good"**

#### What is really there



Picture taken by Mars Global Surveyor spacecraft in 2001

### **Applications of Pattern Recognition**

- Image Analysis
- Remote Sensing
- Medical Imaging Diagnostics
- Speech Recognition
- Artificial Noses/Taste Buds
- Robotics
- Genomic Signal Processing

### **Functional Genomics**



Here, the patterns correspond to gene expression values corresponding to 4 types of gliomas: OL, GM, AA, AO.

Single genes can distinguish OL and GM types of Glioma.

From: Kim et al., "Identification of Combination Gene Sets for Glioma Classification," *Molecular Cancer Therapeutics*, 1:1229-1236, 2002

### **Functional Genomics**



Combination of three genes, or *features*, accomplishes discrimination of AO and AA

# **Basic Mathematical Setting of PR**

- In Pattern Recognition, we have:
  - A feature vector X, which contains relevant attributes of the observed entity (the process of obtaining X is called feature extraction/selection).
  - A *label* discrete variable Y (the "state of nature"). E.g., for binary classification,  $Y = \{0, 1\}$
- In a complete-information scenario, there is a function f such that Y = f(X).
- Such is rarely the case, however, due to noise (sensor imprecision, latent variables, etc.)

### **Stochastic Setting**



Due to noise, the relationship between Y and X is given by a *joint probability distribution*  $F_{XY}$ .

# **Pattern Recognition Example**

Automatic System for Fish-Processing Plant. Classes: salmon or sea-bass.

Y=0: salmon

Y = 1: sea-bass



## Pattern Recognition Example - II

Someone may have observed that sea-bass is generally longer than salmon. One may examine the *histogram* of past-observed lengths for each kind of fish.



### **Pattern Recognition Example - III**

Length does not seem to work so well, so someone says that sea-bass is generally *lighter* than salmon. One may then also examine the histogram of past-observed lightness for each kind of fish.



## Pattern Recognition Example - IV

One could also use more than one features and obtain a 2-D feature vector. This leads to a 2-D *feature space* and a 2-D *decision boundary* for our classifier.



### **Error Estimation**

- Notice from the previous example that there is an inevitable element of error in Pattern Recognition.
- There are three basic kinds of classification error:
  - Optimal classification error (minimum possible error).
  - True error of designed classifier.
  - Estimated error of designed classifier.
- Assessment of classification error (called error estimation) is a key component of the PR design cycle. This can be based on an independent test set, or on the training data itself.

### **Feature Selection**

- In addition, we can see from the example that the correct choice of features is fundamental to obtain a small classification error. This problem is known as feature selection.
- There are two types of feature selection approaches:
  - Filter Feature Selection
  - Wrapper Feature Selection
- More generally, feature selection is an example of dimensionality reduction.

# Pattern Recognition Design Cycle

