Solved Exercises in Physical Measurements

Notes from the Exercises component of the third-year undergraduate course *Fizikalna merjenja* (Physical Measurements), led by doc. dr. Gregor Kladnik at the Faculty of Mathematics and Physics at the University of Ljubljana in the academic year 2020-21. The course covers a selection of practical topics related to instrumentation and physical measurements. Credit for the material covered in these notes is due to professor Kladnik, while the voice, typesetting, and translation to English in this document are my own.

Disclaimer: Mistakes—both simple typos and legitimate errors—are likely. Keep in mind that these are the notes of an undergraduate student in the process of learning the material himself—take what you read with a grain of salt. If you find mistakes and feel like telling me, for example by email, I'll be happy to hear from you, even for the most trivial of errors.

For more notes like this, visit ejmastnak.github.io/fmf

Contents

1	Firs	t Exercise Set	5
	1.1	Theory: Propagation of Uncertainty	5
	1.2	The Fundamental Frequency of a Harmonic String	6
2	Sec	ond Exercise Set	9
	2.1	Frequency-time uncertainty principle	9
	2.2		10
	2.3		12
3	Thi	rd Exercise Set	.5
	3.1	Theory: Combining Two Quantities with Equal Variance	15
	3.2		15
	3.3	·	١7
	3.4		18
	3.5	·	19
	3.6	·	19
	0.0	Theory: Error Propagation with two Depondent variables 1.1.1.1.1.1.1	
4	Fou	rth Exercise Set	21
	4.1	Simple Cases of Error Propagation	21
			21
			21
	4.2		22
	4.3		23
	4.4		24
		Theory Taminar First a Search variable V.	
5	Fift	h Exercise Set	26
	5.1	Kalman Filter for a Ball Bouncing Down Stairs	26
	5.2		28
	5.3	·	28
6	Sixt	h Exercise Set	3
	6.1	Kalman Filter for Geometrical Optics	33
	6.2	A Ping-Pong Ball on a Rough Table	34
7	Sev	enth Exercise Set	8
	7.1	Ball Falling Through an Optical Gate	38
	7.2	•	10
8	Eigl	nth Exercise Set 4	13
	8.1		13
	8.2		14
			14
		1	15
			16
		5.2.5 Temponio to quadrationing input	- 0

9	Nint	th Exercise Set	47
	9.1	Theory: First-Order Sensor with Non-Zero Initial Input	47
	9.2	Example: First-Order Sensor with Non-Zero Initial Input	47
	9.3	Theory: Second-Order Sensors	49
	9.4	Example: Response of Second-Order Sensors to Common Inputs	49
		9.4.1 Delta Function Input	49
		9.4.2 Linearly Increasing Input	50
10		th Exercise Set	52
		Theory: Response of Sensors to Periodic Inputs	52
		Theory: Bode Plots	54
	10.3	Example: RC Low-Pass Filter	55
11	Flor	venth Exercise Set	57
11		Ideal Integration Circuit	57
		Example: CR High-Pass Filter	
		Ideal Differentiator	58
			59
		Theory: Active Circuits and the Operational Amplifier	59 59
	11.5	Examples of Op-Amp Circuits	59 59
		11.5.1 Differentiator	
		11.5.2 Integrator	60
12	Twe	lfth Exercise Set	62
	12.1	Circuits Using Op-Amps	62
		12.1.1 Inverting Amplifier	62
		12.1.2 Non-Inverting Amplifier	62
		12.1.3 Voltage Follower	63
	12.2	A Differential Amplifier	64
		An Amplifying Feedback Loop	65
		Bandpass Filter	67
19	This	rteenth Exercise Set	70
13			70
		Bandpass Filter (continued)	
		Band-Stop Filter	71
		Theory: Statistics	72
		Theory: The Chi-Square Distribution	73
		Theory: Student's t Distribution	75 76
	13.6	Example: Simple Estimation of Population Mean	76
14	Four	rteenth Exercise Set	77
	14.1	Theory: Hypotheses Testing	77
		14.1.1 Mean Testing	77
		14.1.2 Variance Testing	77
		14.1.3 Comparing Two Sample Means	77
	14.2	Example: Hypotheses Testing of Sample Mean	78
		14.2.1 Single-Sample Test	78
		14.2.2 Two-Sample Test	79
	14.3	Theory: Goodness-of-Fit Tests	80
		14.3.1 Pearson Chi-Square Test	80
	14 4	Example: Pearson Chi-Square Test	81

14.5 Theory: Linear Least Squares	82
15 Fifteenth Exercise Set	83
15.1 Example: Linear Least Squares for $z_i = x_0 t_i + r_i$	83
15.2 Theory: Linear Least Squares for $z_i = x_0t_i + x_1 + r_i$	83
15.3 Exercise: Linear Least Squares with a Quadratic Model	85
A Standard Normal Cumulative Distribution Function	88
B The Chi-Square Distribution's Inverse Survival Function	89
C Student's t Distribution's Inverse Survival Function	91

1 First Exercise Set

1.1 Theory: Propagation of Uncertainty

• Consider a quantity u that is a function of n known quantities x_1, x_2, \ldots, x_n , i.e.

$$u = f(x_1, x_2, \dots, x_n).$$

In practice, x_1, x_2, \ldots, x_n would represent measured quantities, and u would represent a derived quantity computed from the measured quantities. Our goal is, given the uncertainties $\delta x_1, \delta x_2, \ldots, \delta x_n$ in the input quantities, to find the corresponding uncertainty δu in the derived quantity u. For the time being, we will assume the uncertainties δx_i are positive and consider only deviations from the measured values of the form $x_i + \delta x_i$, where $\delta x_i > 0$. We will treat the more general case $x_i \pm \delta x_i$ in a future exercise.

• In general terms the situation may be written

$$u + \delta u = f(x_1 + \delta x_1, \dots, x_n + \delta x_n) \tag{1.1}$$

Before going further, we introduce the more compact vector notation

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \delta x = \begin{pmatrix} \delta x_1 \\ \vdots \\ \delta x_n \end{pmatrix}, \quad \left(\frac{\partial f}{\partial x} \right) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}_x.$$

In vector notation, Equation 1.1 then reads

$$u + \delta u = f(x + \delta x).$$

• Assuming $\delta x_i \ll x_i$, i.e. that the uncertainty of each input is much smaller than the value of the input itself, we may reasonable perform a first-order Taylor expansion of $u + \delta u$ about u = f(x), which reads

$$u + \delta u = f(x) + \left(\frac{\partial f}{\partial x_i}\right)_x \delta x_1 + \dots + \left(\frac{\partial f}{\partial x_n}\right)_x \delta x_n + \mathcal{O}(\delta x_i),$$

where the partial derivatives are evaluated at x. The terms u and f(x) = u cancel from both sides of the equation, leaving

$$\delta u = \left(\frac{\partial f}{\partial x_i}\right)_{\boldsymbol{x}} \delta x_1 + \dots + \left(\frac{\partial f}{\partial x_n}\right)_{\boldsymbol{x}} \delta x_n + \mathcal{O}(\delta x_i)$$
$$= \delta \boldsymbol{x}^\top \cdot \left(\frac{\partial f}{\partial \boldsymbol{x}}\right)_{\boldsymbol{x}}.$$

The corresponding relative uncertainty in δu is

$$\frac{\delta u}{u} = \frac{1}{f(\boldsymbol{x})} \delta \boldsymbol{x}^{\top} \left(\frac{\partial f}{\partial \boldsymbol{x}} \right)_{\boldsymbol{x}}.$$
 (1.2)

• Note: Keep in mind the assumption that all δ_i are positive! What we have done: increase the value of x_i by δx_i , and shown (approximately) how δu correspondingly increases as a result. This is not a general treatment for deviations from x_i of the form $x_i \pm x_i$.

1.2 The Fundamental Frequency of a Harmonic String

A harmonic string of length l and mass m is fixed between two points with a tension force of magnitude F. Estimate the relative precision $(\delta \nu_0)/\nu_0$ of the fundamental frequency.

- We will denote the string's amplitude during oscillation by y.
- When the string's amplitude changes from its equilibrium position, the string stretches slightly, and its length changes from l to $l + \delta l$, while the tension force increases from F to $F + \delta F$.
- Our first step is to find a function expressing the string's oscillation frequency ν . For simple harmonic motion, we assume ν is not a function of x and use the general wave formula

$$c = \nu \lambda \implies \nu = \frac{c}{\lambda},$$

where λ is the wave's wavelength. From Klasična fizika the string's fundamental frequency is $\lambda_0 = 2l$, while the wave speed on a string with linear mass density μ held at a tension F is

$$c = \sqrt{\frac{F}{\mu}},$$

where $\mu = m/l$ is the string's linear mass density, calculated in the *equilibrium* position. (Note that μ changes as the string oscillates and its length l changes.)

• The expression for the fundamental wave frequency ν_0 is then

$$\nu_0 = \frac{c}{\lambda_0} = \frac{1}{2l} \cdot \sqrt{\frac{F}{\mu}} \equiv f(l, F, \mu). \tag{1.3}$$

For compactness, we will write our input quantities as the vector

$$oldsymbol{x} = egin{pmatrix} l \ f \ \mu \end{pmatrix}.$$

• Our goal is to find $\frac{\delta\nu_0}{\nu_0}$. From Equation 1.2, the general expression takes the form

$$\frac{\delta \nu}{\nu} = \frac{1}{f(\mathbf{x})} \delta \mathbf{x}^{\top} \left(\frac{\partial f}{\partial \mathbf{x}} \right). \tag{1.4}$$

Our plan is to find the effect of oscillation amplitude y on $(\delta \nu)/\nu$ indirectly, by first finding the effect of y on length l and force F, and then finding the effect of l and F on $\delta \nu$.

Simplification: recall that the string length l arises from the relationship $\lambda_0 = 2l$. But (for this problem's simplified assumption of harmonic oscillation) wavelength λ does not depend on amplitude y. So we could really write $\boldsymbol{x} = (F, \mu)^{\top}$ and $\nu_0 = f(F, \mu)$. Similarly, the vectors $\delta \boldsymbol{x}$ and $\frac{\partial f}{\partial \boldsymbol{x}}$ simplify to

$$\delta \boldsymbol{x} = \begin{pmatrix} \delta F \\ \delta \mu \end{pmatrix}$$
 and $\begin{pmatrix} \frac{\partial f}{\partial \boldsymbol{x}} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial F} \\ \frac{\partial f}{\partial \mu} \end{pmatrix}$.

Using the expression for ν_0 in Equation 1.3, we then compute

$$\frac{\partial f}{\partial F} = \frac{1}{4l} \frac{1}{\sqrt{\mu F}}$$
 and $\frac{\partial f}{\partial \mu} = -\frac{1}{4l} \frac{\sqrt{F}}{\mu^{3/2}}$.

• From Equation 1.4, the relative uncertainty in the string's frequency is then

$$\frac{\delta\nu}{\nu} = \frac{1}{f(\boldsymbol{x})} \delta \boldsymbol{x}^{\top} \left(\frac{\partial f}{\partial \boldsymbol{x}} \right) = \left(2l \sqrt{\frac{\mu}{F}} \right) \cdot \left(\delta F, \delta \mu \right)^{\top} \cdot \frac{1}{4l} \begin{pmatrix} \frac{1}{\sqrt{\mu F}} \\ -\frac{\sqrt{F}}{\mu^{3/2}} \end{pmatrix} \\
= \frac{1}{2} \left(\frac{\delta F}{F} - \frac{\delta \mu}{\mu} \right).$$

• Next, we write changes in F and μ in terms of the amplitude y. First, using $\mu = m/l$, where the string mass m is constant, the relative change in mass density corresponding to relative change in length $(\delta l)/l$ is simply

$$\frac{\delta\mu}{\mu} = -\frac{\delta l}{l}.$$

We find the relative change in force $\frac{\delta F}{F}$ from the general elastomechanical relationship

$$\frac{\delta F}{S} = E \frac{\delta l}{l} \implies \frac{\delta F}{F} = \frac{ES}{F} \frac{\delta l}{l},$$

where E and S are the string's Young's modulus and cross-sectional area.

• Using the just-derived results, the relative uncertainty in frequency is then

$$\frac{\delta\nu}{\nu} = \frac{1}{2} \left(\frac{\delta F}{F} - \frac{\delta\mu}{\mu} \right) = \frac{1}{2} \left(\frac{ES}{F} \frac{\delta l}{l} + \frac{\delta l}{l} \right) = \frac{1}{2} \frac{\delta l}{l} \left(1 + \frac{ES}{F} \right)$$

This is almost the desired result—it tells us how relative uncertainty in ν depends on the string length l, together with the constant parameters E, S and F and l. We now just want to write this in terms of amplitude y.

Relating Length l and Amplitude y

- We assume the oscillation amplitude is small, i.e. that $y \ll l$. Note that this is usually realistic: consider a guitar string where amplitude is much less than the string length.
- Length after displacement is $l + \delta l$. The length of half of the string is thus $(l + \delta l)/2$ Model: (to avoid elliptic integrals) We model the displaced string as an isosceles triangle with base l, equal side lengths $(l + \delta l)/2$, and height y.

The Pythagorean theorem applied to one half of the triangle gives

$$\left(\frac{l+\delta l}{2}\right)^2 \approx y^2 + \left(\frac{l}{2}\right)^2$$

We then multiply through by four and rearrange to get

$$l^2 + 2\delta l \cdot l + (\delta l)^2 = 4y^2 + l^2$$

Assuming $\delta l \ll l$, we neglect the second-order term $(\delta l)^2$. We then divide through by l^2 to get the desired relationship between δl and y:

$$\frac{\delta l}{l} = 2\left(\frac{y}{l}\right)^2.$$

¹This step is not really thorough, because δl is of the same order as oscillation amplitude y, and we aren't neglecting y. That's okay though, this is just an approximation.

• The relative uncertainty in fundamental frequency is then

$$\frac{\delta\nu}{\nu} = \frac{1}{2}\frac{\delta l}{l}\left(1 + \frac{ES}{F}\right) = \left(\frac{y}{l}\right)^2\left(1 + \frac{ES}{F}\right),\,$$

which is written only in terms of the displacement y and the constant parameters F and initial length l, and in terms of amplitude y.

2 Second Exercise Set

2.1 Frequency-time uncertainty principle

How long must an observer listen to a note with fundamental frequence $\nu_0 = 440\,\mathrm{Hz}$ to be able to determine the tone to a half-tone accuracy.

• This problem rests on the frequency-time uncertainty principle

$$\Delta \nu \Delta t \geq \frac{1}{2} \gtrsim 1.$$

When used only as an estimate, we make the approximation $1/2 \approx 1$.

• Our goal is to determine the required observation time Δt such that $\Delta \nu$ is accurate to a half-tone. This is simply, using the rough uncertainty principle estimate,

$$\Delta t \gtrsim \frac{1}{\Delta \nu}$$
.

The problem reduces to finding the correct expression for $\Delta\nu$. Note that ν_0 in practice would not be known exactly and a priori—this problem is artificial.

• The half-tone has a well-defined quantitative value, using the 12 tone equal temperament (12-TET) tuning system. In 12-TET, the ratio between any two neighboring tones is constant and equal to

$$\frac{\widehat{\nu}_{i+1}}{\widehat{\nu}_i} = \sqrt[12]{2} \equiv x,$$

where we have used hats to denote well-defined semitones and we have defined $x = \sqrt[12]{2}$ for shorthand.

• The next tone above ν_0 is ν_1 . Our expression for $\Delta \nu$ is thus

$$\Delta \nu = \widehat{\nu}_1 - \widehat{\nu}_0 = x \widehat{\nu}_0 - \widehat{\nu}_0 = \widehat{\nu}_0(x-1).$$

The required frequency accuracy, to determine ν_0 to half-tone accuracy, is thus

$$\Delta \nu = \nu_0 \left(\sqrt[12]{2} - 1 \right) \approx 0.0595 \cdot \nu_0 = 0.0595 \cdot 440 \,\mathrm{Hz} \approx 26 \,\mathrm{Hz},$$

and the required measurement time for this accuracy is

$$\Delta t \gtrsim \frac{1}{\Delta \nu} = \frac{1}{26\,\mathrm{Hz}} \approx 38\,\mathrm{ms}.$$

• This result comes from a general relationship between time and frequency in periodic quantities—we have to listen long enough to be able to detect frequencies. This should make sense—if we listen less time than the signal's period, we have no way to determine the frequency. The longer we listen to a periodic signal, the more accurately we can determine the frequency.

A similar uncertainty relation holds between any two quantities related by a Fourier transform—for example position and momentum in quantum mechanics.

2.2 Theory: Dependent Measurements

- First, here are the relevant quantities involved in the coming discusion:
 - 1. Some physical quantity x of which multiple experiments will take measurements. We will denote measurements of x by z, to stress that distinction between the actual physical quantity and measurements of it.
 - 2. An experiment, say A, which makes makes measurements $z_1^{(a)}, z_2^{(a)}, z_3^{(a)}, \ldots$ of x; let \overline{z}_a and σ_a^2 denote the average value and variance, respectively, of the measurements from experiment A.
 - 3. A second experiment B which makes makes measurements $z_1^{(b)}, z_2^{(b)}, z_3^{(b)}, \ldots$ of x; let \overline{z}_b and σ_b^2 denote the average value and variance, respectively, of the measurements from experiment B.

We will assume that, treated as a random variable, the average values \overline{z}_a and \overline{z}_b are normally distributed about the true value of the physical quantity x with variance σ_a^2 and σ_b^2 , respectively.

• For review from $Verjetnost\ v\ fiziki$, the assumption that \overline{z}_a and \overline{z}_b are normally distributed is written in symbols as

$$\overline{z}_a \sim \mathcal{N}(x, \sigma_a^2)$$
 and $\overline{z}_b \sim \mathcal{N}(x, \sigma_b^2)$.

The mean value of \overline{z}_a is $E[\overline{z}_a] = \langle \overline{z}_a \rangle = x$, while the variance of \overline{z}_a is

$$\operatorname{Var}\left[\overline{z}_{a}\right] \equiv \left\langle \left(\overline{z}_{a} - \left\langle \overline{z}_{a} \right\rangle\right)^{2} \right\rangle = \left\langle \left(\overline{z}_{a} - x\right)^{2} \right\rangle = \sigma_{a}^{2}.$$

• We could also model \overline{z}_a in the form

$$\overline{z}_a = x + r_a$$

where r is random variable representing normally-distributed noise with mean zero and variance σ_a^2 , i.e. $r_a \sim \mathcal{N}(0, \sigma_a^2)$.

Dependence

• Going forward, we will mostly write measurements in terms of noise in the form

$$\overline{z}_a = x + r_a$$
 and $\overline{z}_b = x + r_b$.

The average measurements \overline{z}_a and \overline{z}_b are dependent if their noise can be written as

$$r_b = \alpha r_a + w$$

where the term αr_a encodes the dependence between \overline{z}_a and \overline{z}_b , while w is an independent term, which may be zero, and is normally distributed as $w \sim \mathcal{N}(0, \sigma_w^2)$. In the context of dependent noise, we are interested more in the αr_1 term.

We will take two variables to be independent if the expected value of their product is zero. For example, r_a and r_b are independent if

$$\langle r_a r_b \rangle = 0.$$

• We return to $r_b = \alpha r_a + w$, and assume r_a and r_b are dependent. The variance of r_b is

$$\sigma_b^2 = \langle r_b^2 \rangle - \langle r_b \rangle^2 = \langle r_b^2 \rangle + 0 = \langle (\alpha r_a + w)^2 \rangle = \langle \alpha^2 r_a^2 + w^2 + 2\alpha r_a w \rangle.$$

Using the expectation value's linearity, this reduces to

$$\sigma_b^2 = \langle r_b^2 \rangle = \alpha^2 \sigma_a^2 + \sigma_w^2 + 2\alpha \langle r_a w \rangle = \alpha^2 \sigma_a^2 + \sigma_w^2,$$

where we have used $\langle r_1 w \rangle = 0$. The result is

$$\sigma_b^2 = \alpha^2 \sigma_a^2 + \sigma_w^2.$$

We then divide through by σ_b^2 and get

$$1 = \left(\alpha \frac{\sigma_a}{\sigma_b}\right)^2 + \left(\frac{\sigma_w}{\sigma_b}\right)^2.$$

• Note that both squared terms are positive and their sum is one, so we can bound each individual term in the range (0,1). We thus have

$$0 \le \left(\alpha \frac{\sigma_a}{\sigma_b}\right)^2 \equiv \rho_{ab}^2 \le 1,$$

where we have defined the *correlation coefficient* ρ_{ab} . We then take the square root of both sides of $\rho_{ab}^2 \leq 1$ to get

$$\rho_{ab} \in [-1, 1].$$

Special Cases

- When $\rho_{ab} = 0$, the variables r_a and r_b are uncorrelated. This follows mathematically from $\rho_{ab} = 0 \implies \alpha = 0$ (since $\sigma_a, \sigma_b \neq 0$). In this case $r_b = \alpha r_a + w = 0 + w = w$.
- When $\rho_{ab} = \pm 1$ we have

$$1 = (\rho_{ab})^2 + \left(\frac{\sigma_w}{\sigma_b}\right)^2 = 1 + \left(\frac{\sigma_w}{\sigma_b}\right)^2 \implies \left(\frac{\sigma_w}{\sigma_b}\right)^2 = 0 \implies \sigma_w = 0.$$

The result $\sigma_w = 0$ means r_a and r_b are completely dependent. This relationship is called correlation for $\rho = 1$ and anti-correlation for $\rho = -1$

Covariance

• The covariance of the random variables r_a and r_b is defined as

$$\sigma_{ab} = \langle r_a r_b \rangle = \langle r_a (\alpha r_a + w) \rangle = \alpha \langle r_a^2 \rangle + \langle r_a w \rangle = \alpha \sigma_a^2 + 0.$$

Note that covariance has the same units as variance σ_{α}^2 , even though it is written without a squared superscript.

• First we note the relationship

$$\rho_{ab} = \alpha \frac{\sigma_a}{\sigma_b} \implies \alpha \sigma_a = \rho_{ab} \sigma_b.$$

We then see the correlation coefficient ρ_{ab} and covariance σ_{ab} are related by

$$\sigma_{ab} = \alpha \sigma_a^2 = \alpha \sigma_a \cdot \sigma_a = (\rho_{ab}\sigma_b) \cdot \alpha_a$$

The relationship between covariance and the correlation coefficient is thus

$$\sigma_{ab} = \rho_{ab}\sigma_a\sigma_b$$
.

2.3 Theory: Optimal Combination of Dependent Measurements

• Goal: combine two estimates of the quantity x to get a more precise (i.e. lower-variance) estimate of x. We will denote the lower-variance estimate by \hat{x} .

Definition: For our purposes, an optimal combination of several random variables is the combination with minimum possible variance.

• Begin with $\overline{z}_a = x + r_a$ and $\overline{z}_b = x + r_b$ as in the previous section. Our goal is to combine these optimally into the quantity \widehat{x} , which we will write as

$$\hat{x} = x + \hat{r}$$
.

Note that

$$\langle \widehat{x} \rangle = x$$
 and $\langle (\widehat{x} - x)^2 \rangle = \langle \widehat{r}^2 \rangle = \widehat{\sigma}^2$.

In particular, we aim to find the variance $\hat{\sigma}^2$ of the optimal combination. We begin with the known \bar{z}_a and \bar{z}_b and σ_a and σ_b

• Write the optimal combination as a linear combination of the input values of the form, using the ansatz

$$\widehat{x} = \alpha \overline{z}_a + \beta \overline{z}_b.$$

We require a *linear* combination so that the combined result \hat{x} will also be normally distributed, and so that $\langle \hat{x} \rangle = x$.

 \bullet We then substitute in the expressions for z to get

$$\widehat{x} = \alpha(x + r_a) + \beta(x + r_b) = x(\alpha + \beta) + \alpha r_a + \beta r_b.$$

We then write $\hat{x} = x + \hat{r}$ to get

$$x(\alpha + \beta) + \alpha r_a + \beta r_b = x + \hat{r}.$$

We then combine the random variables on each side of the equation. The x terms are constant and the r terms are variable.

- Next, we require that $\alpha + \beta = 1$ and thus $\alpha = 1 \beta$. This requirement comes from the constant x terms being linearly independent of the r terms so the x must be equal to $\alpha + \beta = 1$. Keep in mind that the x terms and the random noise terms $r_{a,b}$ are independent.
- Using $\alpha + \beta = 1$ we get

$$\widehat{x} = \alpha \overline{z}_a + \beta \overline{z}_b = (1 - \beta) \overline{z}_a + \beta \overline{z}_b = \overline{z}_a + \beta (\overline{z}_b - \overline{z}_a),$$

and the end result is

$$\widehat{x} = \overline{z}_a + \beta(\overline{z}_b - \overline{z}_a).$$

Our goal is to find the particular β_{opt} such that $\hat{\sigma}^2$ is minimized.

• To find the optimal β_{opt} , first combine $\hat{x} = \alpha \overline{z}_a + \beta \overline{z}_b$ with $\hat{x} = x + \hat{r}$ to get

$$\widehat{r} = \alpha r_a + \beta r_b = (1 - \beta)r_a + \beta r_b.$$

Then by definition

$$\widehat{\sigma}^2 = \left\langle (\widehat{r})^2 \right\rangle = \left\langle [(1-\beta)r_a + \beta r_b]^2 \right\rangle = (1-\beta)^2 \sigma_a^2 + \beta^2 \sigma_b^2 + 2\beta(1-\beta) \left\langle r_a r_b \right\rangle.$$

Substituting in $\sigma_{ab} = \langle r_a r_b \rangle$, the optimal variance $\hat{\sigma}^2$ then reads

$$\widehat{\sigma}^2 = (1 - \beta)^2 \sigma_a^2 + \beta^2 \sigma_b^2 + 2\beta (1 - \beta) \sigma_{ab}.$$

• We find the optimal coefficient β with basic calculus—we search for the β satisfying

$$\frac{\partial \widehat{\sigma}^2}{\partial \beta} = -2(1-\beta)\sigma_a^2 + 2\beta\sigma_b^2 + 2(1-2\beta)\sigma_{ab} = 0.$$

We cancel like terms and rearrange to get

$$\beta(\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}) = \sigma_a^2 - \sigma_{ab}.$$

The optimal value of the coefficient β is thus

$$\beta_{\text{opt}} = \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}}.$$

• We then substitute β_{opt} into \hat{x} to get the desired optimal combination \hat{x} , which is

$$\widehat{x} = \overline{z}_a + \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}} \cdot (\overline{z}_b - \overline{z}_a)$$

Some vocabulary: $\overline{z}_b - \overline{z}_a$ is called *innovation*. The term $\frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}}$ is called *amplification* or *gain*. Having found the optimal estimate \widehat{x} , we now aim to find its variance $\widehat{\sigma}^2$.

Variance of Optimal Estimate

• We first make the auxiliary calculation

$$1 - \beta_{\text{opt}} = 1 - \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}} = \frac{\sigma_b^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}} \equiv \frac{\sigma_b^2 - \sigma_{ab}}{I},$$

where we have defined $I \equiv \sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}$ for shorthand. For clarity, in one place:

$$\beta_{\rm opt} = \frac{\sigma_a^2 - \alpha_{ab}}{I}$$
 $1 - \beta_{\rm opt} = \frac{\sigma_b^2 - \alpha_{ab}}{I}$, where $I \equiv \sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}$

• We now find the variance of the optimal estimate \hat{x} . This is

$$\widehat{\sigma}^2 = (1 - \beta_{\text{opt}})^2 \sigma_a^2 + \beta_{\text{opt}}^2 \sigma_b^2 + 2\beta_{\text{opt}} (1 - \beta_{\text{opt}}) \sigma_{ab}.$$

We then substitute in the earlier auxiliary calculations to get

$$\widehat{\sigma}^2 = \left(\frac{\sigma_b^2 - \alpha_{ab}}{I}\right)^2 \sigma_a^2 + \left(\frac{\sigma_a^2 - \alpha_{ab}}{I}\right)^2 \sigma_b^2 + \frac{1}{I^2} \cdot 2\left(\sigma_a^2 - \sigma_{ab}\right) (\sigma_b^2 - \sigma_{ab}) \sigma_{ab}.$$

We factor out the I^2 and get

$$\widehat{\sigma}^2 = \frac{1}{I^2} \Big\{ (\sigma_a^2 - \sigma_{ab}) \Big[(\sigma_a^2 - \sigma_{ab}) \sigma_b^2 + (\sigma_b^2 - \sigma_{ab}) \sigma_{ab} \Big] + (\sigma_b^2 - \sigma_{ab}) \Big[(\sigma_b^2 - \sigma_{ab}) \sigma_a^2 + (\sigma_a^2 - \sigma_{ab}) \sigma_{ab} \Big] \Big\},$$

then multiply out the terms in the square brackets and simplify to get

$$\begin{split} \widehat{\sigma}^2 &= \frac{1}{I^2} \Big[(\sigma_a^2 - \sigma_{ab}) (\sigma_a^2 \sigma_b^2 - \sigma_{ab}^2) + (\sigma_b^2 - \sigma_{ab}) (\sigma_a^2 \sigma_b^2 - \sigma_{ab}^2) \Big] \\ &= \frac{1}{I^2} (\sigma_a^2 \sigma_b^2 - \sigma_{ab}^2) \Big[(\sigma_a^2 - \sigma_{ab}) + (\sigma_a^2 - \sigma_{ab}) \Big] \\ &= \frac{1}{I^2} (\sigma_a^2 \sigma_b^2 - \sigma_{ab}^2) (\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}). \end{split}$$

Recognizing $(\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}) = I$, cancelling, and using $\sigma_{ab} = \rho_{ab}\sigma_a\sigma_b$ we then get

$$\begin{split} \widehat{\sigma}^2 &= \frac{1}{I} \left(\sigma_a^2 \sigma_b^2 - \sigma_{ab}^2 \right) = \frac{1}{I} \left(\sigma_a^2 \sigma_b^2 - \rho_{ab}^2 \sigma_a^2 \sigma_b^2 \right) = \frac{\sigma_a^2 \sigma_b^2}{I} (1 - \rho_{ab}^2) \\ &= (1 - \rho_{ab}^2) \cdot \frac{\sigma_a^2 \sigma_b^2}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}}. \end{split}$$

We will commonly express $\hat{\sigma}^2$ in the equivalent form

$$\widehat{\sigma}^2 = (1 - \rho_{ab}^2) \left(\frac{1}{\sigma_a^2} + \frac{1}{\sigma_b^2} - \frac{2\rho_{ab}}{\sigma_a \sigma_b} \right)^{-1}.$$
 (2.1)

Just to review: $\widehat{\sigma}^2$ is the variance of \widehat{x} , which is the optimally-combined estimate for x, derived from the two dependent measurements \overline{z}_a and \overline{z}_b , each with variance σ_a and σ_b and covariance

$$\langle (\overline{z}_a - x)(\overline{z}_b - x) \rangle = \sigma_{ab} \neq 0.$$

3 Third Exercise Set

3.1 Theory: Combining Two Quantities with Equal Variance

- Suppose we have two estimates of a quantity x with known and equal dispersions $\sigma_a = \sigma_b = \sigma$ and an arbitrary correlation coefficient ρ_{ab} .
- We begin with Equation 2.1 for the variance of the optimal combination, which reads

$$\widehat{\sigma}_{\text{opt}}^2 = (1 - \rho_{ab}^2) \left(\frac{1}{\sigma_a^2} + \frac{1}{\sigma_b^2} - \frac{2\rho_{ab}}{\sigma_a \sigma_b} \right)^{-1}.$$
 (3.1)

Meanwhile, the value of the optimal estimate is

$$\widehat{x}_{\text{opt}} = \overline{z}_a + \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}} \cdot (\overline{z}_b - \overline{z}_a). \tag{3.2}$$

• First we define the amplification factor

$$K \equiv \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}} = \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\rho_{ab}\sigma_a\sigma_b}.$$

In our case of equal variances, with $\sigma_a = \sigma_b$, the amplification factor reduces to

$$K = \frac{\sigma^2 - \rho_{ab}\sigma^2}{2(\sigma^2 - \rho_{ab}\sigma^2)} = \frac{1 - \rho_{ab}}{2(1 - \rho_{ab})} = \frac{1}{2}.$$

Lesson: the amplification factor for two estimates with equal variances is K = 1/2.

• Using K = 2 in Equation 3.2 reads, the optimal combination x_{opt} of two equal-variance estimates is

$$\widehat{x}_{\text{opt}} = \overline{z}_a + K \cdot (\overline{z}^2 - \overline{z}_a) = \overline{z}_a + \frac{1}{2}(\overline{z}_b - \overline{z}_a) = \frac{\overline{z}_a - \overline{z}_b}{2}$$

Lesson: the optimal combination of the two equal-variance estimates is simply the average of the measurements. In other words, averaging is the optimal form of combination for measurements with *equal variances*.

3.2 Theory: Variance of the Mean

- Next, we consider an arbitrary number N of estimates, like the above \overline{z}_a . The above formula is defined only for two estimates; in practice we have many estimates. What to do then?
- Next, we consider an arbitrary number N of (in general) dependent measurements $\{z_i\}_{i=1}^N$, distributed normally as

$$z_i \sim \mathcal{N}(x, \sigma_i^2),$$

where $\sigma_{ij} \neq 0$.

 \bullet We define the *mean* of the N measurements with the familiar formula

$$\overline{z} = \frac{1}{N} \sum_{i} z_{i}.$$

Using $\langle z_i \rangle = x$, the average \overline{z} 's expectation value is

$$\mathrm{E}\big[\overline{z}\big] = \langle \overline{z} \rangle = \left\langle \frac{1}{N} \sum_{i} z_{i} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \langle z_{i} \rangle = \frac{1}{N} \sum_{i=1}^{N} x = x.$$

Lesson: the expected value of the average of N measurements is still the quantity x being measured.

• We now aim to find the variance of the mean, which we write as

$$\sigma_{\rm m}^2 = \left\langle (\overline{z} - \langle \overline{z} \rangle)^2 \right\rangle = \left\langle (\overline{z} - x)^2 \right\rangle = \left\langle \left(\frac{1}{N} \sum_{i=1}^N z_i - x \right)^2 \right\rangle.$$

where we have used the just-derived identity $E[\overline{z}] = \langle \overline{z} \rangle = x$. The coefficient 1/N is constant; we factor it out and get

$$\sigma_{\mathrm{m}}^{2} = \frac{1}{N^{2}} \left\langle \left(\sum_{i=1}^{N} z_{i} - Nx \right)^{2} \right\rangle = \frac{1}{N^{2}} \left\langle \left(\sum_{i=1}^{N} (z_{i} - x) \right)^{2} \right\rangle.$$

• We then expand the squared term into diagonal and mixed terms. In the mixed terms, we don't sum over i = j because that's accounted for in the diagonal term:

$$\sigma_{\rm m}^2 = \frac{1}{N^2} \left\langle \left[\sum_{i=1}^N (z_i - x)^2 + \sum_{i \neq j} (z_i - x)(z_j - x) \right] \right\rangle.$$

Simplification: in the mixed sum we have double terms: e.g. i = 1, j = 2 and j = 1, i = 2. Notating that (i, j) terms equal (j, i) terms, we can rewrite the sum as

$$\sigma_{\rm m}^2 = \frac{1}{N^2} \left\langle \left[\sum_i (z_i - x)^2 + 2 \sum_{i < j} (z_i - x)(z_j - x) \right] \right\rangle.$$

Then substitute in known variances of measurements and covariances of different measurements

$$\sigma_{
m m}^2 = rac{1}{N^2} \left(\sum_i \sigma_i^2 + 2 \sum_{i < j}^N \sigma_{ij}
ight).$$

Lesson: This is how to find the variance of a mean \overline{z} of N dependent measurements $\{z_i\}$; the mean itself being given by

$$\overline{z} = \frac{1}{N} \sum_{i=1}^{N} z_i.$$

Some Special Cases

• If the measurements $\{z_i\}$ are independent, i.e. if $\sigma_{ij} = 0$ for $i \neq j$, the variance of the mean \overline{z} simplifies to

$$\sigma_{\rm m}^2 = \frac{1}{N^2} \sum_{i=1}^N \sigma_i^2. \tag{3.3}$$

• If the measurements $\{z_i\}$ are all independent with equal variance $\sigma_i \equiv \sigma$, the variance of the mean simplifies further to

$$\sigma_{\rm m}^2 = \frac{1}{N^2} (N \sigma^2) = \frac{\sigma^2}{N} \implies \sigma_{\rm m} = \frac{\sigma}{\sqrt{N}}.$$

Lesson: the dispersion of the mean of N independent equal-variance measurements $\{z_i\}$ falls with the square root of the number of measurements.

Generally, we can assume variances of measurements are equal when we measure the quantity x with the same instrument or sensor.

3.3 Optimal combination of GPS measurements

A GPS receiver at the top of a mountain twice measures the height about sea level and produces two measurements: $h_1 = (2139 \pm 12) \,\mathrm{m}$ and $h_2 = (2130 \pm 6) \,\mathrm{m}$. The measurements are uncorrelated.

- 1. Find the average of the measurements and the associated error.
- 2. Find the optimal combination of the two measurements and the associated uncertainty. How does the error of the average compare to the error of the optimal combination?
- The average of the two measurements is

$$\overline{h} = \frac{h_1 + h_2}{2} = 2134.5 \,\mathrm{m}.$$

The average of the mean, using Equation 3.3, is

$$\sigma_{\rm m}^2 = \frac{1}{N^2} \sum_{i=1}^N \sigma_i^2 = \frac{1}{4} (12^2 + 6^2) {\rm m}^2 = 45 {\rm m}^2.$$

The estimate for the average's error is thus

$$\sigma_{\rm m} \approx 6.7 \, \rm m.$$

Note that the error of the average is larger than the error $\sigma_1 = 6 \,\mathrm{m}$ of the second measurement. In other words, the process of raw averaging actually worsened our estimate (increased the uncertainty) of height.

• We now optimally combine the two measurements. Using Equation 3.2 with $\sigma_{12} = 0$ for independent measurements, the optimal combination \hat{h} is

$$\hat{h} = h_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (h_2 - h_1).$$

The optimal estimate's variance, using Equation 3.1, with $\sigma_{12} = 0$ and $\rho_{12} = 0$, is

$$\widehat{\sigma}^2 = 1 \cdot \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}.$$

Note that in terms of the optimal variance $\widehat{\sigma^2}$, the optimal estimate \widehat{h} may be written

$$\widehat{h} = h_1 + \frac{\widehat{\sigma}^2}{\sigma^2} (h_2 - h_1).$$

• We now compute numerical the results. The optimal estimate is is

$$\hat{h} = 2139 \,\mathrm{m} + \frac{28.8 \,\mathrm{m}^2}{(6 \,\mathrm{m})^2} (2130 - 2139) \mathrm{m} \approx 2132 \,\mathrm{m},$$

while the optimal variance is

$$\hat{\sigma}^2 = \frac{12^2 \cdot 6^2}{12^2 + 6^2} \text{m}^2 = 28.8 \,\text{m}^2$$
 and $\hat{\sigma} \approx 5.4 \,\text{m}$.

The key takeaway here is that $\hat{\sigma}$ is less than the standard deviation of either of the individual measurements.

3.4 Theory: Kalman Filter for a Constant Quantity

• We measure a constant quantity x with measurements z_i of the form

$$z_i = x + r_i$$
.

We call the r_i the measurement noise, and assume this noise uncorrelated, which translates mathematically to the condition

$$\langle r_i r_j \rangle = \sigma_i^2 \delta_{ij}.$$

- We have a continuous stream of measurements z_i . Our goal is to continuously compute the current optimal estimate of x. We first make some assumptions:
 - After n measurements, we assume we have an optimal estimate \hat{x}_n and $\hat{\sigma}_n^2$.
 - At the time n+1 we obtain a new measurement z_{n+1} and variance σ_{n+1}^2

Our goal is to optimally combine the previous optimal estimate $(\widehat{x}_n, \widehat{\sigma}_n^2)$ and the new measurement $(z_{n+1}, \sigma_{n+1}^2)$ into an improved optimal estimate $(\widehat{x}_{n+1}, \widehat{\sigma}_{n+1}^2)$. Without proof (refer to lecture notes), this optimal estimate is

$$\widehat{x}_{n+1} = \widehat{x}_n + \frac{\widehat{\sigma}_n^2}{\widehat{\sigma}_n^2 + \sigma_{n+1}^2} (z_{n+1} - \widehat{x}_n).$$
 (3.4)

The corresponding optimal variance is

$$\widehat{\sigma}_{n+1}^2 = \frac{\widehat{\sigma}_n^2 \sigma^2}{\widehat{\sigma}_n^2 + \sigma^2} \quad \text{or} \quad \widehat{\sigma}_{n+1}^{-2} = \widehat{\sigma}_n^{-2} + \sigma_{n+1}^{-2}. \tag{3.5}$$

Equations 3.4 and 3.5 constitute the *Kalman filter* for measuring an unknown, constant, scalar quantity x.

Initializing the Filter

- In the above discussion we started with \hat{x}_n . But how do we start the filter algorithm?
- We begin with

$$\widehat{x}_1 = \widehat{x}_0 + \frac{\widehat{\sigma}_0^2}{\widehat{\sigma}_0^2 + \sigma_1^2} (z_1 - \widehat{x}_0)$$

But we do not know \hat{x}_0 . In fact, for all we know its value could be arbitrary! Since \hat{x}_0 could be anything, we assume the corresponding variance is $\hat{\sigma}_0^2 \to \infty$. An infinite

variance is necessary if \hat{x}_0 could assume any value. We then have, applying the limit $\hat{\sigma}_0^2 \to \infty$, the initial value

$$\hat{x}_1 = \hat{x}_0 + 1 \cdot (z_1 - \hat{x}_0) = z_1 \implies \hat{x}_1 = z_1.$$

The corresponding initial variance, from Equation 3.5, is

$$\widehat{\sigma}_1^2 = \lim_{\widehat{\sigma}_0^2 \to \infty} \left(\widehat{\sigma}_0^{-2} + \sigma_1^{-2} \right)^{-1} = \sigma_1^2.$$

• The limit approach with $\hat{\sigma}_0^2 \to \infty$ is evidently equivalent to initializing the filter as $(\hat{x}_1, \hat{\sigma}_1^2) = (z_1, \sigma_1^2)$. The lesson is:

We initialize the Kalman filter for measuring a constant quantity x using the initial values $(\widehat{x}_1, \widehat{\sigma}_1^2) = (z_1, \sigma_1^2)$, where z_1 is the initial measurement and σ_1^2 is the initial measurement's variance.

3.5 Theory: Variance-Weighted Combination

- The Kalman filter combines measurements serially, and is useful in situations in which a continuous stream of measurements arrives sequentially one after the other.
- Suppose instead that we are given N measurements all at once, in one bunch. In this case, rather than proceeding one by one as in the Kalman filter, we may optimally combine measurements with "weighted averaging".
- The optimal combination \hat{h} of N measurements $\{h_i\}_{i=1}^N$ with variances $\{\sigma_i^2\}_{i=1}^N$ is

$$\hat{h} = \frac{\sum_{i=1}^{N} \frac{h_i}{\sigma_i^2}}{\sum_{i=1}^{N} \sigma_i^{-2}} \equiv \frac{\sum_{i} w_i h_i}{\sum_{i} w_i}, \text{ where } w_i \equiv \sigma_i^{-2}.$$

In the last equality, for shorthand, we have defined the variance weights w_i .

• The variance $\hat{\sigma}^2$ of the above optimal combination \hat{h} is

$$\hat{\sigma}^{-2} = \sum_{i=1}^{N} \sigma_i^{-2} = \sum_{i=1}^{N} w_i.$$

Exercise for the reader: the derivation of the above equations for \widehat{h} and $\widehat{\sigma}^{-2}$ appears on the course website. See https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Variance_weights for more on this combination technique.

Homework! Take the equations for \hat{h} and $\hat{\sigma}^2$, and use them to derive the Kalman filter equations. In other words, show the above equations for \hat{h} and $\hat{\sigma}^2$ give an equivalent result to Kalman filter.

3.6 Theory: Error Propagation with Two Dependent Variables

• Let x and y be two measured quantities, and let u be a derived quantity computed from x and y via the function u = f(x, y). Suppose multiple measurements of x and y are known, with (average, variance) pairs $(\overline{x}, \sigma_{\overline{x}}^2)$ and $(\overline{y}, \sigma_{\overline{y}}^2)$, respectively. We will use $\sigma_{\overline{x}}^2$ and $\sigma_{\overline{y}}^2$ as estimates of the uncertainties in x and y.

• Our goal is to find the corresponding uncertainty $\sigma_{\overline{u}}^2$ in the derived quantity u = f(x, y). We will do this with the definition of variance:

$$\sigma_{\overline{u}}^2 = \langle (\overline{u} - u)^2 \rangle$$

Using u = f(x, y), this variance reads

$$\sigma_{\overline{u}}^2 = \left\langle \left(\overline{f(x,y)} - f(x,y) \right)^2 \right\rangle$$

We will then make the Taylor expansion of f(x,y) about the measured values (assume small enough uncertainties that a first-order Taylor expansion gives a good approximation of the true value)

$$f(x,y) = f(\overline{x}, \overline{y}) + \left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}} (x - \overline{x}) + \left(\frac{\partial f}{\partial y}\right)_{\overline{x},\overline{y}} (y - \overline{y}) + \mathcal{O}(x^2, y^2)$$

• Now we find the average value of f(x,y), i.e. $\overline{f(x,y)}$. This is just the equivalent of averaging the expression of f(x,y). This is

$$\overline{f(x,y)} = f(\overline{x},\overline{y}) + 0 + 0$$

The first value $f(\bar{x}, \bar{y})$ and the partial derivatives are scalars, while the averages of the differences are zero

• Substitute $\overline{f(x,y)}$ and f(x,y) into variance. Dropping the $\mathcal{O}(2)$ we have

$$\begin{split} \sigma_{\overline{u}}^2 &\approx \left\langle \left(f(\overline{x}, \overline{y}) - \left[f(\overline{x}, \overline{y}) + \left(\frac{\partial f}{\partial x} \right)_{\overline{x}, \overline{y}} (x - \overline{x}) + \left(\frac{\partial f}{\partial y} \right)_{\overline{x}, \overline{y}} (y - \overline{y}) \right] \right)^2 \right\rangle \\ &= \left\langle \left(\left(\frac{\partial f}{\partial x} \right)_{\overline{x}, \overline{y}} (x - \overline{x}) + \left(\frac{\partial f}{\partial y} \right)_{\overline{x}, \overline{y}} (y - \overline{y}) \right)^2 \right\rangle \end{split}$$

After multiplying out, this reads

$$\sigma_{\overline{u}}^{2} \approx \left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}}^{2} \left\langle (x-\overline{x})^{2} \right\rangle + \left(\frac{\partial f}{\partial y}\right)_{\overline{x},\overline{y}}^{2} \left\langle (x-\overline{x})^{2} \right\rangle$$
$$+ 2\left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}} \left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}} \left\langle (x-\overline{x})(y-\overline{y}) \right\rangle$$

After evaluating the expectation values, the result is

$$\sigma_{\overline{u}}^2 = \left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}}^2 \sigma_{\overline{x}}^2 + \left(\frac{\partial f}{\partial y}\right)_{\overline{x},\overline{y}}^2 \sigma_{\overline{y}}^2 + 2\left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}} \left(\frac{\partial f}{\partial x}\right)_{\overline{x},\overline{y}} \sigma_{\overline{xy}}.$$

4 Fourth Exercise Set

4.1 Simple Cases of Error Propagation

4.1.1 Linear Sum of Two Variables

• We first consider the linear function

$$u = f(x, y) = ax + by,$$

and assume x and y are independent, so that $\rho_{\overline{xy}} = 0$.

Assume we are given $(\overline{x}, \sigma_{\overline{x}}^2)$ and $(\overline{y}, \sigma_{\overline{y}}^2)$ and $\rho_{\overline{xy}} = 0$.

 \bullet To first order, the estimate of u is

$$\overline{u} = f(\overline{x}, \overline{y}) = a\overline{x} + b\overline{y}$$

The error is

$$\sigma_{\overline{u}}^2 - \left(\frac{\partial f}{\partial x}\right)_{(\overline{x},\overline{y})}^2 \sigma_{\overline{x}}^2 + \left(\frac{\partial f}{\partial y}\right)_{(\overline{x},\overline{y})}^2 \sigma_{\overline{y}}^2$$

where derivatives evaluated at $(\overline{x}, \overline{y})$. We evaluate derivatives and get

$$\sigma_{\overline{u}}^2 = a^2 \sigma_{\overline{x}}^2 + b^2 \sigma_{\overline{y}}^2.$$

Lesson: Error propagates in squares. In other words, variances add.

4.1.2 Powers

• We now consider the product of two variables of the form

$$u = f(x, y) = Ax^a y^b$$

We again assume x and y are independent, and have known estimated values and variances $(\overline{x}, \sigma_{\overline{x}}^2)$ and $(\overline{y}, \sigma_{\overline{y}}^2)$.

• The estimate for u using the estimates \overline{x} and \overline{y} is

$$\overline{u} = A\overline{x}^a \cdot \overline{u}^b$$
.

To find the corresponding variance, we first make the auxiliary calculations

$$\frac{\partial f}{\partial x} = Aax^{a-1}y^b \implies \left(\frac{\partial f}{\partial x}\right)_{(\overline{x},\overline{y})}^2 = A^2a^2\overline{x}^{2(a-1)}\overline{y}^{2b},$$

and

$$\frac{\partial f}{\partial y} = Abx^{\delta}y^{b-1} \implies \left(\frac{\partial f}{\partial y}\right)_{(\overline{x},\overline{y})}^2 = A^2b^2\overline{x}^{2a}\overline{y}^{2(b-1)}.$$

Using these derivatives, the variance of the estimate \overline{u} is

$$\sigma_{\overline{u}}^2 = A^2 a^2 \overline{x}^{2a} \overline{x}^{-2} \overline{y}^{2b} \sigma_{\overline{x}}^2 + A^2 b^2 \overline{x}^{2a} \overline{y}^{2\phi} \overline{y}^{-2} \sigma_{\overline{y}}^2.$$

• In this case, for products the product of two variables, a useful quantity is relative error. We first find

$$\overline{u}^2 = A^2 \overline{x}^{2a} \overline{u}^{2b}$$

In this case relative error $\sigma_{\overline{u}}/\overline{u}$ (squared) is fairly simple:

$$\left(\frac{\sigma_{\overline{u}}}{\overline{u}}\right)^2 = a^2 \left(\frac{\sigma_{\overline{x}}}{\overline{x}}\right)^2 + b^2 \left(\frac{\sigma_{\overline{y}}}{\overline{y}}\right)^2,$$

where we have recognized the expression for the relative errors of the input quantities x and y.

4.2 Theory: The Normal (Gaussian) Distribution

• Let z be a random variable distributed with mean μ and variance σ^2 as

$$z \sim f(z) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(z-\mu)^2}{2\sigma^2}},$$

which we write in shorthand as

$$z \sim \mathcal{N}(\mu, \sigma^2)$$
.

(Note: random variable z's probability density function is conventionally written $\frac{dP}{dz}$ at FMF, but I have opted for f(z), which is more common in conventional statistical literature.)

• Typically we are interested in the probability P that the variable z is less than some value x. Write this as

$$P(z \le x) = \int_{-\infty}^{x} f(z) dz \equiv F(x; \mu, \sigma^{2}),$$

where we have defined the cumulative distribution function (CDF) F. The normal distribution's CDF is not easily expressed in terms of elementary functions—in principle, it would have to calculated anew for each pair (μ, σ^2) . To avoid recalculating the normal CDF for all (μ, σ^2) pairs, it is conventional to transform a general normally-distributed variable to a corresponding variable distributed according to the standardized normal distribution, which is just a normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1$. The standardized variable u associated with a general $z \sim \mathcal{N}(\mu, \sigma^2)$ is constructed according to

$$u \equiv \frac{z - \mu}{\sigma} \implies dz = \sigma du.$$

This new variable u is distributed as

$$u \sim f(u) = \frac{\mathrm{d}P}{\mathrm{d}u} = \frac{\mathrm{d}P}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}u} = \frac{\mathrm{d}P}{\mathrm{d}z} \cdot \sigma$$

and has the probability density function

$$f(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}} = \mathcal{N}(0, 1).$$

Because it is possible to transform an arbitrary normally-distributed variable to a variable distributed according to the standard normal distribution, one only needs to know solutions to the standard normal CDF. The standard normal CDF is

$$\Phi(x) = \int_{-\infty}^{x} \frac{\mathrm{d}P}{\mathrm{d}u} \,\mathrm{d}u.$$

As before, we still must compute $\Phi(x)$ numerically. But we only need to do this for a single CDF. In practice, we simply tabulate values of $\Phi(x)$ for typical values of x. Tabulated values of the standard normal distribution's cumulative distribution function appear in Appendix A.

• For future reference, the standard normal CDF obeys the following identities:

$$\Phi(-\infty) = 0 \qquad \Phi(0) = \frac{1}{2} \qquad \Phi(\infty) = 1 \qquad \Phi(-x) = 1 - \Phi(x).$$

The last identity is particularly useful—it means we only need to tabulate values of $\Phi(x)$ only for e.g. positive x, and use $\Phi(-x) = 1 - \Phi(x)$ to compute corresponding values of $\Phi(-x)$.

Probability of finding a normally-distributed variable in a given range

• Next, we consider the probability for finding a random variable $z \sim \mathcal{N}(\mu, \sigma^2)$ in the region e.g. (α, β) , which we write as $P(\alpha < z < \beta)$. This probability can be written

$$P(\alpha < z < \beta) = P(z < \beta) - P(z < \alpha) = F(\beta) - F(\alpha).$$

It is more computationally practical to define this probability in terms of the standardized variable u, defined as

$$u = \frac{z - \mu}{\sigma}$$
.

The values of α and β transform into

$$u_{\alpha} = \frac{\alpha - \mu}{\sigma}$$
 and $u_{\beta} = \frac{\beta - \mu}{\sigma}$,

and the probability $P(\alpha < z < \beta)$ then becomes

$$P(\alpha < z < \beta) = P(u_{\alpha} < u < u_{\beta}) = P(u < u_{\beta}) - P(u < u_{\alpha})$$
$$= \Phi(u_{\beta}) - \Phi(u_{\alpha})$$
$$= \Phi\left(\frac{\beta - \mu}{\sigma}\right) - \Phi\left(\frac{\alpha - \mu}{\sigma}\right).$$

• Next, we consider a special case, if $\alpha = \mu - \sigma$ and $\beta = \mu + \sigma$, i.e. if the limits are placed symmetrically one standard deviation away from the mean value μ . In this case we have

$$P(\mu - \sigma < z < \mu + \sigma) = \Phi(1) - \Phi(-1) = f(1) - [1 - \Phi(1)] = 2\Phi(1) - 1.$$

The value of $\Phi(1)$ may be found from a standard table; it is $\Phi(1) \approx 0.8413$. The above probability is then

$$P(\mu - \sigma < z < \mu + \sigma) = 2 \cdot 0.8413 - 1 \approx 0.68 \approx \frac{2}{3}.$$

Finally we note the identity

$$P(\mu - n\sigma < z < \mu + n\sigma) = 2\Phi(n) - 1.$$

4.3 Estimating Reflection Probability with a Normal Distribution

We know the kinetic energy of a particle to an accuracy of four percent. The particle is incident on a potential barrier, which is one percent lower than the particle's kinetic energy. Determine the probability for reflection.

- The key step in this problem is inferring that the particle's kinetic energy is not exactly known, and should instead be modelled as a random variable. Since the variable's distribution is not specified, we may assume it is normally distributed; we will treat the quoted uncertainty as a standard deviation.
- Concretely, we will assume the particle's kinetic energy is distributed normally with mean \overline{T} and standard deviation $\sigma_T = 0.04\overline{T}$.

Reflection occurs if the particle's kinetic energy is less than the height of the potential barrier, which is $V_0 = 0.99\overline{T}$. In symbols, the reflection probability reads

$$P_{\rm r} = P_T(T < V_0) = F(V_0),$$

where the quantity $P_T(T < V_0)$ is the probability that the particle's kinetic energy T is less than the height of the potential barrier.

• The standardized variable corresponding to T, which we will denote by \mathcal{T} , is

$$\mathcal{T} = \frac{T - \mu_T}{\sigma_T} = \frac{T - \overline{T}}{0.04 \cdot \overline{T}} \implies \mathcal{T}(V_0) = \frac{V_0 - \overline{T}}{0.04 \cdot \overline{T}} = \frac{0.99 \cdot \overline{T} - \overline{T}}{0.04 \cdot \overline{T}} = -\frac{1}{4}.$$

The reflection probability $P_T(T < V_0) = F(V_0)$ then transforms to

$$F(V_0) = \Phi\left(\frac{V_0 - \overline{T}}{0.04 \cdot \overline{T}}\right) = \Phi(\mathcal{T}(V_0)) = \Phi\left(-\frac{1}{4}\right) = 1 - \Phi\left(\frac{1}{4}\right) \approx 1 - 0.65 = 0.35,$$

where the value of $\Phi(1/4)$ can be found in Appendix A.

Note that we should expect the probability for reflection be less than 0.5, since the particle's kinetic energy is lower than the height of the barrier.

4.4 Theory: Kalman Filter for a Scalar Variable

• We begin with a review from lecture of the Kalman filter for measuring a scalar variable. Assume we are interested in measuring a physical quantity x = x(t), which we assume obeys the first order linear differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = A(t)x(t) + b(t). \tag{4.1}$$

This model of x's dynamics is, evidently, continuous. We then transform the continuous model into a discrete model with the difference equation

$$\frac{x_{n+1} - x_n}{T} = A(nT) \cdot x(nT) + b(nT) \equiv A_n x_n + b_n,$$

where T is the time between subsequent measurements of the quantity x.

 \bullet We then multiply through by T and rearrange to get

$$x_{n+1} = x_n [1 + A(nT) \cdot T] + c_n,$$

where we have defined

$$\Phi_n \equiv 1 + A_{nT} \cdot T$$
 and $c_n \equiv b_n \cdot T$.

In this notation, the continuous dynamics equation (Eq. 4.1) reads

$$x_{n+1} = \Phi_n x_n + c_n.$$

• Finally, allowing for dynamic noise (more commonly called process noise in conventional literature), we write the equation as

$$x_{n+1} = \Phi_n x_n + c_n + \Gamma_n w_n,$$

where w_n is dynamic noise with variance $\langle w_n^2 \rangle \equiv Q$, while the Γ_n term is included only for similarity to the dynamics of a vector variable, which we will see a few sections later.

- Next: assume that at time t = Tn we have an optimal estimate \hat{x}_n of the quantity being measured, together with the corresponding variance $\hat{\sigma}_n^2$. We then read off a new measurement $(z_{n+1}, \sigma_{n+1}^2)$.
- We proceed by mapping the previous optimal estimate $(\widehat{x}_n, \widehat{\sigma}_n^2)$ forward in time to get the extrapolated value $(\overline{x}_{n+1}, \overline{\sigma}_{n+1}^2)$. We make this extrapolation with the assumed-to-be-known dynamics governing the quantity x.
- The next step is to optimize the extrapolated value $(\overline{x}_{n+1}, \overline{\sigma}_{n+1}^2)$ using the measured value $(z_{n+1}, \sigma_{n+1}^2)$ and the known Kalman filter procedure for a scalar constant.
- We first define the variances with the quantities

$$P_n \equiv \widehat{\sigma}_n^2$$
 $M_{n+1} \equiv \overline{\sigma}_{n+1}^2$ $R_{n+1} \equiv \sigma_{n+1}^2$.

The extrapolation step (see lecture notes for a derivation) is given by the equations

$$\overline{x}_{n+1} = \Phi_n \widehat{x}_n + c_n,$$

$$M_{n+1} = \Phi_n^2 P_n + \Gamma_n^2 Q_n.$$

• The second step, i.e. optimizing the extrapolated estimate, reads

$$\widehat{x}_{n+1} = \overline{x}_{n+1} + \frac{M_{n+1}}{M_{n+1} + R_{n+1}} (z_{n+1} - \overline{x}_{n+1}) \equiv \overline{x}_{n+1} + K_{n+1} (z_{n+1} - \overline{x}_{n+1})$$

$$P_{n+1} = \frac{M_{n+1}R_{n+1}}{M_{n+1} + R_{n+1}} = M_{n+1} - \frac{M_{n+1}^2}{M_{n+1} + R_{n+1}},$$

where we have define the amplification factor

$$K_{n+1} = \frac{M_{n+1}}{M_{n+1} + R_{n+1}} = \frac{P_{n+1}}{R_{n+1}}.$$

• Finally note that if we are not performing measurements, i.e. if the value of z_{n+1} is arbitrary, then $R_{n+1} \to \infty$ since z_{n+1} could be anything.

The optimal estimate the reduces to $\widehat{x}_{n+1} = \overline{x}_{n+1}$, which makes sense, since we don't have any more information than the extrapolation itself. The corresponding variance of the optimal estimate is then $P_{n+1} = M_{n+1}$.

5 Fifth Exercise Set

5.1 Kalman Filter for a Ball Bouncing Down Stairs

A ball rolls to the top of a staircase of five equally tall stairs with exactly known height $\overline{H} = 30 \, \mathrm{cm}$ and zero uncertainty, $\sigma_H^2 = 0 \, \mathrm{m}$. The ball rolls down the stairs, bouncing exactly once on each stair. During each bounce, the ball looses half of its kinetic energy associated with vertical motion.

Determine the maximum height of the final bounce and the associated dispersion. There is no measurement of height during the intermediate bounces. Neglect dynamic noise. The initial height of the ball is zero, but is known only up to the standard deviation σ_0 .

• We will solve the problem with the Kalman filter. Our first step is to determine the ball's dynamics, and write the dynamics in the form matching the Kalman filter algorithm, which reads

$$x_{n+1} = \Phi_n x_n + c_n.$$

The variable of interest is the ball height h; we aim to write the ball's height after the n-th bounce in the form

$$h_{n+1} = \Phi_n h_n + c_n,$$

which will allow us to determine Φ_n and c_n .

- Note that we need the Kalman filter only to compute the final uncertainty σ_5 . We can find the height with basic mechanics.
- Let $\delta = 1/2$ be the fraction of conserved kinetic energy.
- Let h_0 denote the ball's initial height above the first step. (In our case we have $h_0 = 0$ cm, but we will solve in the general case.)
- The ball's potential energy U_1 after the first bounce is

$$U_1 = \delta \cdot U_0 \implies mgh_1 = \delta \cdot mg(h_0 + H) \implies h_1 = \delta h_0 + \delta H.$$

Note: formally we should use the mean \overline{H} instead of H, but because H is assumed to be known with zero uncertainty the use of H is acceptable.

Continuing the pattern, the potential energy after the second bounce is

$$U_2 = \delta \cdot U_1 \implies mgh_2 = \delta \cdot mg(h_1 + H) \implies h_2 = \delta h_1 + \delta H$$

The height on the RHS is the height of the stair H plus the height h_n above the stair at the top of the n-th bounce.

• Generalizing the pattern, the relationship between heights at successive bounces is

$$h_{n+1} = \delta \cdot h_n + \delta H.$$

This is the desired dynamic equation. Compared to the general Kalman filter equation $h_{n+1} = \Phi_n h_n + c_n$, we see $\Phi_n = \delta$ and $c_n = \delta H$.

• Return to dynamic equation

$$h_{n+1} = \delta h_n + \delta H,$$

where we have identified $\Phi_n = \delta$ and $c_n = \delta H$.

• Next, turn to computing h_5 . We begin by finding a recursive height relation; the goal is to express h_n in terms of h_0 . Begin with, for example

$$h_2 = \delta h_1 + \delta \overline{H} = \delta(\delta h_0 + \delta \overline{H}) + \delta \overline{H} = \delta^2 h_0 + \overline{H}(\delta + \delta^2)$$

For h_3 , we then have

$$h_3 = \delta h_2 + \delta \overline{H} = \delta \left[\delta^2 h_0 + \overline{H} (\delta + \delta^2) \right] + \delta \overline{H} = \delta^3 h_0 + \overline{H} (\delta + \delta^2 + \delta^3)$$

From here we can identify the general expression for the height h_n above the n-th step. This reads

$$h_n = \delta^n h_0 + \overline{H} \sum_{k=1}^n \delta^k.$$

Finally we simplify the sum

$$S_n \equiv \sum_{k=1}^n \delta^k = \delta(1 + S_n - \delta^n) \implies S_n = \delta \frac{1 - \delta^n}{1 - \delta}$$

The maximum height above the n-th step is then

$$h_n = \delta^n h_0 + \overline{H} \cdot \delta \frac{1 - \delta^n}{1 - \delta}.$$

• For the concrete case in our problem with $n=5, \, \delta=1/2$ we have

$$h_5 = \overline{H} \cdot \frac{1}{2} \cdot \frac{1 - (1/2)^5}{1 - 1/2} = \overline{H} \cdot \left(1 - \frac{1}{32}\right) = \frac{31}{32} \cdot \overline{H}$$

• Next, we use the Kalman filter to find the variance σ_5^2 of the height h_5 .

In our case we only have one step in the Kalman filter, since their are no in-between measurements of height during each bounce. In other words, we can only estimate the height with the ball's known dynamics, but we don't have measurements to improve each estimate.

Writing a hat to match the Kalman filter notation, we have

$$\sigma_5^2 \to \widehat{\sigma}_5^2 = P_5$$

Because we have no in-between measurements, we have $P_{n+1} = M_{n+1}$. This is then

$$P_{n+1} = M_{n+1} = \Phi_n^2 P_n + \underbrace{\Gamma_n^2 Q_n}_{=0} \implies P_{n+1} = \Phi_n^2 P_n.$$

Using the known coefficient $\Phi_n = \delta$, we have

$$P_{n+1} = \delta^2 P_n$$
 and $P_n = (\delta^2)^n P_0$.

• First, we note that P_0 is the initial variance of the ball's height; this is $P_0 = \sigma_0^2$. Our goal is to write P_n in terms of the known P_0 . This is simply

$$P_n = \left(\delta^2\right)^n P_0 = \delta^{2n} \sigma_0^2$$

We are interested in dispersion (standard deviation in this case) and not variance. This is

$$\widehat{\sigma}_n = \sqrt{P_n} = \delta^n \cdot \sigma_0.$$

In our case with $\delta = 1/2$ and n = 5 we have

$$\widehat{\sigma}_5 = \frac{\sigma_0}{32}.$$

The hat because this expression is our optimal estimate for the fifth height's variance.

Note that we would have an even lower value of $\hat{\sigma}_5$ if measurements were known during each bounce. Even so, the variance decreases from the initial value because of the problem's dynamics alone.

5.2 Theory: Kalman Theory for Vector Measurements

TODO: refer to the derivation in lecture.

5.3 Kalman Filter for an Elastic Collision

Two bodies with masses m_1 and m_2 and speeds v_1 and v_2 collide elastically. The uncertainties in speed are known and equal to σ_1 and σ_2 . Determine the covariance matrix for the vector quantity $\mathbf{v}' = (v_1', v_2')^{\top}$ representing the bodies' velocities after the collision. Assume the pre-collision velocities v_1 and v_2 are uncorrelated, and that the bodies' dynamics are exactly known.

• We first define the vector quantities

$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 and $v' = \begin{pmatrix} v'_1 \\ v'_2 \end{pmatrix}$,

which represent the bodies' speeds before and after the collision, respectively. The covariance matrix for the pre-collision velocity vector is

$$\mathbf{P} = \begin{pmatrix} \sigma_1^2 & 0\\ 0 & \sigma_2^2 \end{pmatrix},\tag{5.1}$$

where σ_1^2 and σ_2^2 are the variances (given in the instructions) of the pre-collision speeds v_1 and v_2 .

Some notes:

- For simplicity, we will assume the bodies slide without friction, to avoid the dynamics of rolling.
- We don't have measurements, so the Kalman filter involves only an extrapolation step.

Note that hats for optimal estimates are implicit.

• Our goal is to find \mathbf{P}' , the velocity covariance matrix after the collision. We will find \mathbf{P}' with the Kalman filter equation

$$\mathbf{P}' = \mathbf{M}' = \mathbf{\Phi} \mathbf{P} \mathbf{\Phi}^{\top} + \underbrace{\mathbf{\Gamma} \mathbf{Q} \mathbf{\Gamma}^{\top}}_{=\mathbf{0}} \implies \mathbf{P}' = \mathbf{\Phi} \mathbf{P} \mathbf{\Phi}^{\top}, \tag{5.2}$$

where \mathbf{M}' is the covariance matrix of the extrapolation after the collision, and is equal to \mathbf{P}' because there are no measurements. Since the bodies' dynamics are known exactly, the dynamic noise \mathbf{Q} is zero. Our problem thus reduces to finding the matrix $\mathbf{\Phi}$, which governs the dynamics of the two bodies.

Dynamics

• To find the matrix Φ , we must write the two-ball system's dynamics in the form

$$v' = \Phi v + c$$
.

In other words, we aim to write the post-collision velocity v' in terms of the precollision velocity v; the coefficients of the v terms will then determine Φ .

• We will solve the collision problem in the center-of-mass (CMS) system, where the dynamics of the collision are simpler, which will make it easier to define Φ .

The center of mass speed v^* in the lab frame is given by

$$v^* = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

In the center of mass frame, we will write speeds as u. Before the collision, the CMS speeds of two bodies are

$$u_1 = v_1 - v^*$$
 and $u_2 = v_2 - v^*$.

• Assuming an elastic collision, both the system's momentum and kinetic energy are conserved. In the CMS system, the general expressions for conservation of momentum p and kinetic energy T for a collision of n bodies are

$$\sum_{i=1}^{n} p_{i} = \sum_{i=1}^{n} m_{i} u_{i} = 0 \quad \text{and} \quad \sum_{i=1}^{n} T_{i} = \sum_{i=1}^{n} T'_{i},$$

where T_i and T'_i are the kinetic energies of the *i*-th body before and after the collision.

• We begin with conservation of momentum. Before the collision, this reads

$$m_1 u_1 + m_2 u_2 = 0 \implies u_2 = -\frac{m_1}{m_2} u_1,$$

while after the collision we have

$$m_1 u_1' + m_2 u_2' = 0 \implies u_2' = -\frac{m_1}{m_2} u_1'.$$

 \bullet Next, we apply conservation of kinetic energy. After cancelling 1/2 factors, this produces

$$m_1 u_1^2 + m_2 u_2^2 = m_1 (u_1')^2 + m_2 (u_2')^2,$$

which we combine with the expressions for u_2 and u_2' from momentum conservation to get

$$m_1 u_1^2 + \frac{m_1^2}{m_2} u_1^2 = m_1 (u_1')^2 + \frac{m_1^2}{m_2} (u_1')^2.$$

We then factor and cancel like terms, producing

$$u_1^2 \left(m_1 + \frac{m_1^2}{m_2} \right) = (u_1')^2 \left(m_1 + \frac{m_1^2}{m_2} \right) \implies (u_1')^2 = u_1^2 \implies \boxed{u_1' = \pm u_1}.$$

We choose the solution with a negative sign.² The first body's post-collision velocity in the center of mass system is thus $u'_1 = -u_1$.

²The solution $u'_1 = +u_1$, in which the post-collision speed and direction equal their initial values, would mean no collision at all! The negative sign corresponds to a change of direction after collision.

• Deriving the second body's post-collision speed is completely analogous, and we simply quote the result:

$$u_2' = -u_2.$$

Alternatively, we could simply note that all of the above kinematic equations are invariant under change of index. We could then simply change indices in the above derivation and get $u'_2 = -u_2$.

Transformation Back to Lab System

• We now transform the CM speeds back into the lab system using the general relationship $u_i = v_i - v^*$ together with the results $u'_i = -u_i$, and the fact that the center of mass velocity v^* is preserved for an elastic collision.

For example, for the first body we have

$$v'_1 - v^* = u'_1 = (-u_1) = -(v_1 - v^*) \implies v'_1 = -v_1 + 2v^*.$$

Substituting in the center of mass velocity, making a common denominator, and combining like terms produces

$$v_1' = -v_1 + 2v^* = -v_1 + 2\frac{m_1v_1 + m_2v_2}{m_1 + m_2} = \frac{v_1(m_1 - m_2) + 2m_2v_2}{m_1 + m_2}$$
$$\equiv \frac{v_1(1 - \mu) + 2\mu v_2}{1 + \mu},$$

where we have defined the constant $\mu \equiv m_2/m_1$.

• An analogous calculation for the second body (or simply applying the index invariance argument discussed above) results in

$$v_2' = \frac{v_2(m_2 - m_1) + 2m_1v_1}{m_1 + m_2} = \frac{v_2(\mu - 1) + 2v_1}{1 + \mu}.$$

Kalman Filter Dynamics

ullet Recall that we aim to find the matrix $oldsymbol{\Phi}$ in the Kalman filter equation

$$v' = \Phi v + c$$
.

To identify Φ and c, we write the just-derived expressions for v'_1 and v'_2 in the form

$$v_1' = \frac{1-\mu}{1+\mu}v_1 + \frac{2\mu}{1+\mu}v_2$$
$$v_2' = \frac{2}{1+\mu}v_1 + \frac{\mu-1}{1+\mu}v_2.$$

• From the coefficients of v_1 and v_2 , we can then read off the matrix equation

$$\begin{pmatrix} v_1' \\ v_2' \end{pmatrix} = \frac{1}{1+\mu} \begin{pmatrix} 1-\mu & 2\mu \\ 2 & \mu-1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Evidently, we have c=0, while the desired dynamics matrix Φ reads

$$\mathbf{\Phi} = \frac{1}{1+\mu} \begin{pmatrix} 1-\mu & 2\mu \\ 2 & \mu-1 \end{pmatrix}.$$

Covariance

• Next, using the just-derived dynamics matrix Φ , we will find the velocity covariance matrix \mathbf{P}' after the collision using Equation 5.2, which for review reads

$$\mathbf{P}' = \mathbf{\Phi} \mathbf{P} \mathbf{\Phi}^{\top}$$
.

Using the known velocity covariance matrix **P** from Equation 5.1, this comes out to

$$\mathbf{P}' = \mathbf{\Phi} \mathbf{P} \mathbf{\Phi}^{\top} = \frac{1}{(1+\mu)^2} \begin{pmatrix} 1-\mu & 2\mu \\ 2 & \mu-1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \begin{pmatrix} 1-\mu & 2 \\ 2\mu & \mu-1 \end{pmatrix}$$

$$= \frac{1}{(1+\mu)^2} \begin{pmatrix} 1-\mu & 2\mu \\ 2 & \mu-1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 (1-\mu) & 2\sigma_1^2 \\ 2\mu\sigma_2^2 & \sigma_2^2 (\mu-1) \end{pmatrix}$$

$$= \frac{1}{(1+\mu)^2} \begin{pmatrix} (1-\mu)^2 \sigma_1^2 + 4\mu^2 \sigma_2^2 & 2(1-\mu)\sigma_1^2 + 2\mu(\mu-1)\sigma_2^2 \\ 2(1-\mu)\sigma_1^2 + 2\mu(\mu-1)\sigma_2^2 & 4\sigma_1^2 + (\mu-1)^2\sigma_2^2 \end{pmatrix}$$
(5.3)

• *Tip*: when multiplying matrices with complicated matrix elements, write the matrix elements as shorthand constants, and only substitute back at the end. In our case this would read

$$A \equiv \frac{1}{1+\mu} \quad a \equiv 1-\mu \quad b \equiv 2\mu \quad c \equiv 2 \implies \Phi = A \begin{pmatrix} a & b \\ c & -a \end{pmatrix}.$$

The matrix multiplication the reads

$$\mathbf{P}' = A^2 \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \begin{pmatrix} a & c \\ b & -a \end{pmatrix}$$
$$= A^2 \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \begin{pmatrix} a\sigma_1^2 & c\sigma_1^2 \\ b\sigma_2^2 & -a\sigma_2^2 \end{pmatrix}$$
$$= A^2 \begin{pmatrix} a^2\sigma_1^2 + b^2\sigma_2^2 & ac\sigma_1^2 - ab\sigma_2^2 \\ ac\sigma_1^2 - ab\sigma_2^2 & c^2\sigma_1^2 + a^2\sigma_2^2 \end{pmatrix}$$

After substituting the constants back in, the result is

$$\mathbf{P}' = \frac{1}{(1+\mu)^2} \begin{pmatrix} (1-\mu)^2 \sigma_1^2 + 4\mu^2 \sigma_2^2 & 2(1-\mu)(\sigma_1^2 - \mu \sigma_2^2) \\ 2(1-\mu)(\sigma_1^2 - \mu \sigma_2^2) & 4\sigma_1^2 + (1-\mu)^2 \sigma_2^2 \end{pmatrix}, \tag{5.4}$$

in agreement with Equation 5.3. Using single-letter constants tends to reduces the risk of arithmetic errors.

Tip: Covariance matrices are always symmetric. Leverage this symmetry either to save time and skip calculating matrix elements, or, if you do calculate all matrix elements, as a safety check to ensure your computations came out correctly.

- We will now analyze the covariance matrix in Equation 5.4 for a few special cases.
 - 1. First, we consider the case $\sigma_1 = \sigma_2 \equiv \sigma$, i.e. when the uncertainties in initial speeds are equal. This produces

$$\mathbf{P}' = \frac{\sigma^2}{(1+\mu)^2} \begin{pmatrix} (1-\mu)^2 + 4\mu^2 & 2(1-\mu)^2 \\ 2(1-\mu)^2 & 4 + (1-\mu)^2 \end{pmatrix}.$$

2. Next, consider the further case $\sigma_1 = \sigma_2$ and $m_2 = m_1$, in which case $\mu = 1$. This gives

$$\mathbf{P}' = \frac{\sigma^2}{4} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \sigma^2 \mathbf{I} = \mathbf{P}.$$

In other words, variance after the collision equals the variance before the collision.

3. Finally, we consider the case $\sigma_1 \neq \sigma_2$ and $m_1 = m_2 \implies \mu = 1$. This produces post-collision covariance matrix

$$\mathbf{P}' = \frac{1}{4} \begin{pmatrix} 4\sigma_2^2 & 0\\ 0 & 4\sigma_1^2 \end{pmatrix} = \begin{pmatrix} \sigma_2^2 & 0\\ 0 & \sigma_1^2. \end{pmatrix}$$

Recall that the initial, pre-collision covariance matrix reads

$$\mathbf{P} = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}.$$

In other words, the role of uncertainties in \mathbf{P}' and \mathbf{P} are switched before and after the collision. Interpreted physically, this occurs because speeds switch in an elastic collision of two equal masses.

Homework

- Consider the same problem, but for a completely inelastic collision. The two bodies collide and stick together; we have $v'_1 = v'_2$.
- In this case it works to solve the problem in the lab system.
- Momentum is conserved, while kinetic energy is not conserved.
- Goal, as before, is to solve P'.

6 Sixth Exercise Set

6.1 Kalman Filter for Geometrical Optics

A ray of light with an initial covariance matrix

$$\mathbf{P} = \begin{pmatrix} \sigma_y^2 & 0\\ 0 & \sigma_\theta^2 \end{pmatrix}$$

is incident on a convex boundary. What is the covariance matrix after the ray passes through the convex boundary?

We will use the paraxial approximation in which tan φ ≈ φ.
Encode a ray with the parameters y and θ, packed into the vector y = (y, θ).
We write the passage of light through the boundary using a transfer matrix Φ.

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \mathbf{\Phi} \begin{pmatrix} y \\ \theta \end{pmatrix}$$

• Without proof, the transfer matrix for a convex boundary reads

$$\mathbf{M} = \begin{pmatrix} 1 & 0\\ \frac{n_1 - n_2}{n_2 R} & \frac{n_1}{n_2} \end{pmatrix}$$

- Note that $y' = \Phi y$ has the same form as the Kalman dynamics equation $y' = \Phi y$. If we know the optical transfer matrix Φ , then we know the dynamics matrix Φ .
- In our case the Kalman dynamics matrix is just the optical transfer matrix

$$\mathbf{\Phi} = \begin{pmatrix} 1 & 0 \\ \frac{n_1 - n_2}{n_2 R} & \frac{n_1}{n_2} \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}$$

• We aim to find the covariance matrix

$$\mathbf{P}' = \Phi \mathbf{P} \Phi^{\top}$$

This product is

$$\mathbf{P}' = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} \sigma_y^2 & 0 \\ 0 & \sigma_\theta^2 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} \sigma_y^2 & a\sigma_y^2 \\ 0 & b\sigma_\theta^2 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_y^2 & a\sigma_y^2 \\ a\sigma_y^2 & a^2\sigma_y^2 + b^2\sigma_\theta^2 \end{pmatrix}$$

Substitute in values of parameters a and b and get

$$\mathbf{P}' = \begin{pmatrix} \sigma_y^2 & \frac{1}{R} \left(\frac{n_1}{n_2} - 1 \right) \sigma_y^2 \\ \frac{1}{R} \left(\frac{n_1}{n_2} - 1 \right) \sigma_y^2 & \frac{1}{R^2} \left(\frac{n_1}{n_2} - 1 \right)^2 \sigma_y^2 + \left(\frac{n_1}{n_2} \right)^2 \sigma_\theta^2 \end{pmatrix}$$

This is the desired covariance matrix after passage of light through the curved boundary.

• Next consider variances:

$$(\sigma_y^2)' = \sigma_y^2$$

There is no change because there is no change in y for the passage through the (assumed to be infinitely thin) boundary.

Meanwhile, a considerable change occurs for

$$(\sigma_{\theta}^2)' = \frac{1}{R^2} \left(\frac{n_1}{n_2} - 1 \right)^2 \sigma_y^2 + \left(\frac{n_1}{n_2} \right)^2 \sigma_{\theta}^2$$

This change is considerable because the angle changes when passing through the boundary. Note that if $n_1 = n_2$, in which case the angle θ is unchanged, then $(\sigma_{\theta}^2)' = \sigma_{\theta}^2$.

6.2 A Ping-Pong Ball on a Rough Table

Consider a circular table of radius $R=2\,\mathrm{m}$ with a rough, wavy surface, so that a ball dropped on the table will bounce around in random directions. From experiment, we find that a ping-pong ball dropped vertically onto the table's center with no uncertainty in the radial position (and without any initial velocity in the radial direction) reaches the table's edge in an average time of 5 s. How long will such a ping-pong ball take to reach the table's edge if the ball is dropped from an initial position with an uncertainty $\sigma_{r_0}=20\,\mathrm{cm}$ in the radial direction?

Review of theory: continuous-time vector Kalman filter

 \bullet We first briefly review the relevant theory from lecture. Consider a vector variable x obeying the continuous-time dynamics equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{A}x + \mathbf{c} + \mathbf{\Gamma}\mathbf{w}$$

ullet The vector Kalman filter equations for $oldsymbol{x}$ are then

$$\begin{aligned} \frac{\mathrm{d}\widehat{x}}{\mathrm{d}t} &= \mathbf{A}\widehat{x} + c + \mathbf{K}(z - \mathbf{H}\widehat{x}) \\ \mathbf{K} &= \mathbf{P}\mathbf{H}^{\top}\mathbf{R}^{-1} \\ \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} &= \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^{\top} + \mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^{\top} - \mathbf{P}\mathbf{H}^{\top}\mathbf{R}^{-1}\mathbf{H}\mathbf{P} \end{aligned}$$

Terms in order: first two terms are effect of dynamics, dynamics noise, and fourth sharpening/optimization because of measurements. We will neglect the fourth term because in our problems we will not consider measurements, only dynamics.

Solving the problem

• When the ball is dropped with zero radial uncertainty, we are given the uncertainty $\sigma_{r_0} = 0$ cm and average time $\tau_0 = 5$ s to reach the edge.

We aim to to find the time τ_1 to reach the edge when the initial radial uncertainty is $\sigma_{r_1}(0) = 20 \,\mathrm{cm}$.

• We will model the ball's random bounces on the rough table as dynamic noise, and analyze the ball's motion with the Kalman filter equation

$$rac{\mathrm{d}oldsymbol{x}}{\mathrm{d}t} = \mathbf{A}oldsymbol{x} + oldsymbol{c} + oldsymbol{\Gamma}oldsymbol{w}.$$

In the radial direction, the ball's dynamics are given by

$$m\ddot{r} = F(t) \implies \ddot{r} = \frac{F(t)}{m} \equiv w(t),$$

where F(t) represents random forces during bounces. This equation is a second-order equation, which we must convert to a system of two first-order equations in order to apply the Kalman filter. To do this, we define the new variable

$$v \equiv \dot{r} \implies \dot{v} = \frac{F(t)}{m}$$

Our vector quantity for the Kalman filter is

$$\boldsymbol{x} = \begin{pmatrix} r \\ v \end{pmatrix}$$

• We aim to write to ball's dynamics in the matrix form

$$egin{pmatrix} \dot{r} \ \dot{v} \end{pmatrix} = \mathbf{A} egin{pmatrix} r \ v \end{pmatrix} + oldsymbol{c} + oldsymbol{\Gamma} oldsymbol{w}$$

To do this, we write \dot{r} and \dot{v} in terms of r and v in the form

$$\dot{r} = 0 \cdot r + 1 \cdot v + 0$$

$$\dot{v} = 0 \cdot r + 0 \cdot v + w(t),$$

from which we can read off the corresponding matrix equation

$$\begin{pmatrix} \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r \\ v \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix},$$

 \bullet The vector x's covariance matrix is then given by the Kalman filter equation

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^{\top} + \mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma},$$

where we have dropped the measurement term. We proceed in steps, and first compute \mathbf{AP} which reads

$$\mathbf{AP} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} P_{11}(t) & P_{12}(t) \\ P_{21}(t) & P_{22}(t) \end{pmatrix} = \begin{pmatrix} P_{21} & P_{22} \\ 0 & 0 \end{pmatrix}.$$

Note that the components of \mathbf{P} are currently unknown—that's okay, we'll find them later. Next, taking advantage of \mathbf{P} 's symmetry (i.e. $\mathbf{P} = \mathbf{P}^{\top}$) and the general matrix identity $\mathbf{A}^{\top}\mathbf{B}^{\top} = (\mathbf{B}\mathbf{A})^{\top}$, we find $\mathbf{P}\mathbf{A}^{\top}$ according to

$$\mathbf{P}\mathbf{A}^{\top} = \mathbf{P}^{\top}\mathbf{A}^{\top} = (\mathbf{A}\mathbf{P})^{\top} = \begin{pmatrix} P_{21} & 0 \\ P_{22} & 0 \end{pmatrix}.$$

Finally, from lecture, the dynamic noise term $\mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^{\top}$ is found from the equation

$$\left\langle oldsymbol{\Gamma} oldsymbol{w} \cdot (oldsymbol{\Gamma} oldsymbol{w}
ight)^{ op}
ight
angle = \left\langle oldsymbol{\Gamma} oldsymbol{w} oldsymbol{v}^{ op}
ight
angle = oldsymbol{\Gamma} oldsymbol{Q} oldsymbol{\Gamma}^{ op}.$$

In our case, using $\Gamma w = (0, w)^{\top}$, this above equation reads

$$\mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^{\top} = \left\langle \begin{pmatrix} 0 \\ w \end{pmatrix} \cdot \begin{pmatrix} 0 & w \end{pmatrix} \right\rangle = \begin{pmatrix} 0 & 0 \\ 0 & \langle w^2 \rangle \end{pmatrix} \equiv \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix},$$

where we have defined $Q \equiv \langle w^2 \rangle$ to denote the variance of dynamic noise.

Covariance Matrix

• We can write the equation for **P** now. This is

$$\frac{d\mathbf{P}}{dt} = \begin{pmatrix} P_{21} & P_{22} \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} P_{21} & 0 \\ P_{22} & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix} = \begin{pmatrix} 2P_{21} & P_{22} \\ P_{22} & Q \end{pmatrix}.$$

So our goal has been to find differential equation for \mathbf{P} , so that we can solve for the elements of \mathbf{P} . Basically, we have

$$\begin{pmatrix} \dot{P}_{11} & \dot{P}_{12} \\ \dot{P}_{21} & \dot{P}_{22} \end{pmatrix} = \begin{pmatrix} 2P_{21} & P_{22} \\ P_{22} & Q \end{pmatrix}.$$

• The above matrix equation corresponds to the three differential equations

$$\dot{P}_{11} = 2P_{21} = 2P_{12}$$
 $\dot{P}_{12} = P_{22}$ $\dot{P}_{22} = Q$,

with the general solution

$$P_{22}(t) = Qt + P_{22}(0)$$

$$P_{12}(t) = \frac{1}{2}Qt^2 + P_{22}(0) \cdot t + P_{12}(0)$$

$$P_{11}(t) = \frac{1}{3}Qt^3 + P_{22}(0)t^2 + 2P_{12}(0) \cdot t + P_{11}(0),$$
(6.1)

where $P_{11}(0)$, $P_{12}(0)$ and $P_{22}(0)$ correspond to the initial variance in radial position, initial covariance $\sigma_{rv}(0)$ and initial variance in radial velocity, respectively.

Finding Variance of Dynamic Noise Q

• We first find Q using the first set of initial conditions, in which $\sigma_{r_0}^2 = 0$ cm and the ball reaches the table's edge at $t = \tau_0$. In this case all initial variables are known exactly (without uncertainty), and, writing all steps out, we have

$$\mathbf{P}(0) = \begin{pmatrix} P_{11}(0) & P_{12}(0) \\ P_{12}(0) & P_{22}(0) \end{pmatrix} = \begin{pmatrix} \sigma_{r_0}^2 & \sigma_{r_0 v_0} \\ \sigma_{r_0 v_0} & \sigma_{v_0}^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

In this case Equation 6.1 for $P_{11}(t)$ reduces to

$$P_{11}(t) = \frac{1}{3}Qt^3. (6.2)$$

• Interpretation: the randomly bouncing ball reaching the table's edge r = R at time τ_0 really mean's the uncertainty σ_r in the ball's radial position at $t = \tau_0$ is $\sigma_r(\tau_0) = R$. Combining this consideration with Equation 6.2 produces

$$P_{11}(\tau_0) = \sigma_r^2(\tau_0) = \frac{1}{3}Q\tau_0^3 \implies Q = \frac{3R^2}{\tau_0^3}.$$
 (6.3)

Last Part

• From the problem's instructions, we aim to find the time τ_1 at which the ball reaches the table's edge when the initial radial uncertainty is $\sigma_r(0) = \sigma_{r_0}$. The corresponding covariance matrix is

$$\mathbf{P}(t=0) = \begin{pmatrix} \sigma_{r_0}^2 & 0\\ 0 & 0 \end{pmatrix}.$$

In this case, Equation 6.1 for the variance in radial position reads

$$\begin{split} P_{11}(t) &= \frac{1}{3}Qt^3 + P_{11}(0) = \frac{1}{3}\left(\frac{3R^2}{\tau_0^3}\right)t^3 + \sigma_{r_0}^2 \\ &= R^2\left(\frac{t}{\tau_0}\right)^3 + \sigma_{r_0}^2, \end{split}$$

where we have substituted in Q from Equation 6.3.

• Again interpreting R as the uncertainty $\sigma_r(t)$ in radial position when the ball reaches the table's edge, this time at $t = \tau_1 \implies \sigma_r(\tau_1) = R$, we get the equation

$$P_{11}(\tau_1) = \sigma_r^2(\tau_1) = R^2 = R^2 \left(\frac{\tau_1}{\tau_0}\right)^3 + \sigma_{r_0}^2,$$

which we then solve for τ_1 to get

$$\tau_1 = \tau_0 \left(\frac{R^2 - \sigma_{r_0}^2}{R^2}\right)^{1/3} = \tau_0 \left(1 - \frac{\sigma_{r_0}^2}{R^2}\right)^{1/3}.$$

Note that, if $\sigma_{r_0} = 0$ (no uncertainty in initial radial position) we recover the earlier result $\tau_1 = \tau_0$. Meanwhile, if $\sigma_{r_0} \neq 0$ we have $\tau_1 < \tau_0$, in which case the ball reaches the table's edge sooner. This should make sense, because the ball's initial position is statistically more spread out from the table's center, and so has to travel less distance to reach the edge.

• For our concrete data, with $R=2\,\mathrm{m}$ and $\sigma_r(0)=20\,\mathrm{cm}$ and $\tau_0=5\,\mathrm{s}$, we have

$$\tau = 5 \,\mathrm{s} \cdot \left(1 - \frac{(20 \,\mathrm{cm})^2}{(2 \,\mathrm{m})^2}\right)^{1/3} \approx 4.93 \,\mathrm{s}.$$

7 Seventh Exercise Set

7.1 Ball Falling Through an Optical Gate

Two circular optical gates, both of radius R, are placed one above the other and separated by a vertical distance h. We perform an experiment in which we drop balls from a height h above the upper gate, and observe the roughly two thirds of all balls fall through the upper gate. Estimate the fraction of ball that also fall through the lower get. Assume the balls' initial position and velocity are exactly known.

- Define transverse direction as r. Define t_1 time at gate 1 and t_2 time at gate 2.
- Next interpret random forces in radial direction: $\langle F(t) \rangle = 0$ N. We then wrote $\langle r(t) \rangle = 0$ —interpret. Ah makes sense—r is transverse position; zero transverse force should be zero transverse displacement.
- Initial (transverse) position and speed of ball are exactly known: interpretation is $\mathbf{P}(0) = \mathbf{0}$.
- We assume $r \sim \mathcal{N}(0, \sigma_r^2(t))$. Note that the variance increases, and the corresponding Gaussian widens with time. Because $x \sim \mathcal{N}$, we can find the probability P_2 with standard Gaussian CDF.

First define the standardized variable

$$\rho \equiv \frac{r - \langle r \rangle}{\sigma_r} = \frac{r - 0}{\sigma_r} = \frac{r}{\sigma_r}.$$

We then have

$$\begin{split} P_2 &= P(-R \le r(t_2) \le R) = \Phi(u(R)) - \Phi(u(-R)) \\ &= \Phi\left(\frac{R}{\sigma_r(t_2)}\right) - \Phi\left(\frac{-R}{\sigma_r(t_2)}\right) \\ &= 2\Phi\left(\frac{R}{\sigma_r(t_2)}\right) - 1. \end{split}$$

Kalman Filter Dynamics

• Recall Kalman filter:

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^\top + \mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^\top$$

We will consider the transverse direction only, since we aim to find uncertainty in radial position r. Start

$$m\ddot{r} = F(t) \implies \ddot{r} = \frac{F(t)}{m} \equiv w$$

Write random forces as random noise. Having written random noise, introduce Kalman notation:

$$\dot{m{r}} = egin{pmatrix} \dot{r} \ \dot{v} \end{pmatrix} = \mathbf{A}m{r} + m{c} + \mathbf{\Gamma}m{w}.$$

Used Kalman dynamic equation. Reusing previous problem

$$\begin{pmatrix} \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r \\ v \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix}.$$

• The result is

$$\begin{split} \dot{\mathbf{P}} &= \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^{\top} + \mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^{\top} = \begin{pmatrix} P_{21} & P_{22} \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} P_{21} & 0 \\ P_{22} & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix} \\ &= \begin{pmatrix} 2P_{21} & P_{22} \\ P_{22} & Q \end{pmatrix}. \end{split}$$

The corresponding system of equations is

$$\dot{P}_{22} = Q \implies P(t) = Qt + P_{22}(0)$$

$$\dot{P}_{12} = P_{22} \implies P_{12}(t) = \frac{1}{2}Qt^2 + P_{22}(0) \cdot t + P_{12}(0)$$

$$\dot{P}_{11} = 2P_{21} \implies P_{11}(t) = \frac{1}{3}Qt^3 + P_{22}(0) \cdot t^2 + 2P_{12}(0) \cdot t + P_{11}(0)$$

From the initial condition $\mathbf{P}(0) = \mathbf{0}$ (corresponding to no initial uncertainty in any variables), the solution simplifies to

$$P_{22}(t) = Qt$$
 $P_{12} = \frac{1}{2}Qt^2$ $P_{11}(t) = \frac{1}{3}Qt^3$.

Finding Variance of Dynamic Noise Q

ullet To find Q, we recall the given experimental data

$$\mathcal{P}_1 = \mathcal{P}(-R \le r(t_1) \le R) \approx 2/3.$$

In other words, two third of all balls fall through first gate. The above probability corresponds to a Gaussian $1-\sigma$ interval, from which we can conclude

$$1 \cdot \sigma_r(t_1) \approx R$$
.

• From $\sigma_r(t_1) = R$ and $P_{11}(t) = \sigma_r(t)^2$ we can then conclude

$$P_{11}(t_1) \equiv \sigma_r^2(t_1) \approx R^2 = \frac{1}{3}Qt_1^3 \implies Q \approx \frac{3R^2}{t_1^3}.$$

Last Part

• Goal is to find $\sigma_r(t_2)$. From known Q we have

$$P_{11}(t_2) = \sigma_r^2(t_2) = \frac{1}{3}Qt_2^3 = \frac{1}{3}\left(\frac{3R^2}{t_1^3}\right)t_2^3 = R^2\left(\frac{t_2}{t_1}\right)^3.$$

We find the times t_1 and t_2 from known free fall kinematics, which give

$$t_1 = \sqrt{\frac{2h}{g}}$$
 and $t_2 = \sqrt{\frac{2 \cdot (2h)}{g}} \implies \frac{t_2}{t_1} = \sqrt{2}$.

• With known times, transverse position variance is then

$$\sigma_r^2(t_2) = R^2 \left(\frac{t_2}{t_1}\right)^3 = 2^{3/2} \cdot R^2.$$

The problem asks for uncertainty, which is

$$\sigma_r(t_2) = \sqrt{\sigma_r^2(t_2)} = 2^{3/4} \cdot R.$$

This is uncertainty in transverse position of falling ball when they reach the second gate. From the standard Gaussian distribution we then have

$$\mathcal{P}(-R \le r(t_2) \le R) = 2\Phi\left(\frac{R}{\sigma_r(t_2)}\right) - 1 = 2 \cdot F(2^{-3/4}) - 1$$
$$\approx 2 \cdot F(0.595) - 1 \approx 0.45.$$

7.2 Motion in Viscous Fluid

A small ball of mass m falls slowly in a viscous fluid; the ball's dynamics in the vertical direction are given by $F/m = -\beta v + w(t)$, where $-\beta v$ is a velocity-dependent damping term, while the term w(t) represents dynamic noises. Use Kalman filter with vector $\mathbf{x} = (z, v)^{\top}$ to follow the ball's motion through fluid. The initial and large-time uncertainties in velocity are known to be

$$\sigma_v^2(0) \equiv \sigma_{v_0}^2$$
 and $\lim_{t \to \infty} \sigma_v^2(t) = \frac{1}{4} \sigma_{v_0}^2$.

Determine the uncertainty in the ball's velocity at the time t_0 when $\beta t_0 = 1$.

• We choose our coordinate system so the z axis points in the direction of gravitational acceleration g.

After accounting for weight and buoyancy, which we write in terms of an effective acceleration g_{eff} , the ball's full dynamics in the z direction read

$$m\ddot{z} = mq_{\text{eff}} - m\beta v + F(t),$$

where F(t) is random noise in the vertical direction. We then solve for \ddot{z} to get

$$\ddot{z} = g_{\text{eff}} - \beta v + \frac{F(t)}{m} \equiv g_{\text{eff}} - \beta v + w(t), \tag{7.1}$$

where we have defined the dynamic noise term $w \equiv F/m$.

• Our next step is to write the dynamics in the Kalman form $\dot{x} = \mathbf{A}x + \mathbf{c} + \mathbf{\Gamma}w$. To do this, we decompose \ddot{z} into two variables

$$\dot{z} = v$$
 and $\dot{v} = q_{\text{eff}} - \beta v + w$,

in terms of which, in matrix form, Equation 7.1 becomes

$$\begin{pmatrix} \dot{z} \\ \dot{v} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & -\beta \end{pmatrix}}_{\mathbf{A}} \begin{pmatrix} z \\ v \end{pmatrix} + \underbrace{\begin{pmatrix} 0 \\ g_{\text{eff}} \end{pmatrix}}_{\mathbf{c}} + \underbrace{\begin{pmatrix} 0 \\ w(t) \end{pmatrix}}_{\mathbf{\Gamma} w}.$$

• We will then find the covariance matrix $\mathbf{P}(t)$ from the differential equation

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A} + \mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^{\top}.$$
 (7.2)

We first compute the product \mathbf{AP} according to

$$\mathbf{AP} = \begin{pmatrix} 0 & 1 \\ 0 & -\beta \end{pmatrix} \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} P_{21} & P_{22} \\ -\beta P_{21} & -\beta P_{22} \end{pmatrix}.$$

Next, using $\mathbf{P} = \mathbf{P}^{\top}$, we find $\mathbf{P}\mathbf{A}$ from

$$\mathbf{P}\mathbf{A}^{ op} = \mathbf{P}^{ op}\mathbf{A}^{ op} = (\mathbf{A}\mathbf{P})^{ op} = \begin{pmatrix} P_{21} & -\beta P_{21} \\ P_{22} & -\beta P_{22} \end{pmatrix}.$$

Finally, we compute

$$\boldsymbol{\Gamma} \mathbf{Q} \boldsymbol{\Gamma}^\top \equiv \left\langle (\boldsymbol{\Gamma} \boldsymbol{w}) \cdot (\boldsymbol{\Gamma} \boldsymbol{w})^\top \right\rangle = \begin{pmatrix} 0 & 0 \\ 0 & \left\langle w^2(t) \right\rangle \end{pmatrix} \equiv \begin{pmatrix} 0 & 0 \\ 0 & Q \end{pmatrix},$$

where we have defined $Q \equiv \langle w^2 \rangle$ as the variance of dynamic noise. After adding the terms in Equation 7.2, the complete differential equation for **P** is then

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \begin{pmatrix} \dot{P}_{11} & \dot{P}_{12} \\ \dot{P}_{21} & \dot{P}_{22} \end{pmatrix} \begin{pmatrix} 2P_{21} & P_{22} - \beta P_{21} \\ P_{22} - \beta P_{21} & Q - 2\beta P_{22} \end{pmatrix}.$$

• Note: we ran out of time at this point; the problem was actually comleted in the eighth exercise set, but I am completing here, in the seventh set, for the sake of continuity. Recall we aim to find the velocity variance $\sigma_v^2(t)$, which corresponds to the covariance term $P_{22}(t)$. The relevant differential equation is

$$\dot{P}_{22} \equiv \frac{\mathrm{d}P_{22}}{\mathrm{d}t} = Q - 2\beta P_{22}.\tag{7.3}$$

We solve the equation by defining the new variable

$$u \equiv Q - 2\beta P_{22} \implies \frac{\mathrm{d}u}{\mathrm{d}t} = -2\beta \frac{\mathrm{d}P_{22}}{\mathrm{d}t}$$

In terms of u, Equation 7.3 reads

$$\frac{\mathrm{d}P_{22}}{\mathrm{d}t} = Q - 2\beta P_{22} \iff -\frac{1}{2\beta} \frac{\mathrm{d}u}{\mathrm{d}t} = u \implies \frac{\mathrm{d}u}{u} = -2\beta \,\mathrm{d}t.$$

The final equation has the familiar exponential solution

$$u(t) = Ce^{-2\beta t}$$

where C is a constant. The corresponding solution for P_{22} , using $u = Q - 2\beta P_{22}$, is

$$Q - 2\beta P_{22}(t) = Ce^{-2\beta t}. (7.4)$$

• We find the constant C from the initial condition $P_{22}(0) = \sigma_{v_0}^2$, which gives

$$Q - 2\beta P_{22}(0) = C \cdot 1 \implies C = Q - 2\beta \sigma_{v_0}^2$$

We then substitute C into Equation 7.4 to get

$$Q - 2\beta P_{22}(t) = (Q - 2\beta \sigma_{v_0}^2)e^{-2\beta t}.$$
 (7.5)

We then find the variance of dynamic noise Q from the condition $\sigma_v^2 = P_{22}(t) \to \frac{1}{4}\sigma_{v_0}^2$ as $t \to \infty$, which gives

$$Q - 2\beta P_{22}(\infty) = 0 \implies Q = 2\beta P_{22}(\infty) = \frac{\beta \sigma_{v_0}^2}{2}.$$

We then substitute Q into Equation 7.5, which then reads

$$\frac{\beta \sigma_{v_0}^2}{2} - 2\beta P_{22}(t) = \left(\frac{\beta \sigma_{v_0}^2}{2} - 2\beta \sigma_{v_0}^2\right) e^{-2\beta t}.$$

After dividing through by 2β and rearranging, this gives

$$P_{22}(t) = \frac{\sigma_{v_0}^2}{4} - \left(\frac{\sigma_{v_0}^2}{4} - \sigma_{v_0}^2\right)e^{-2\beta t} = \frac{\sigma_{v_0}^2}{4}\left(1 + 3e^{-2\beta t}\right).$$

Finally, we aim to find $P_{22}(t_0)$, when $\beta t_0 = 1$, in which case we have

$$P_{22}(t_0) = \sigma_v^2(t_0) = \frac{\sigma_{v_0}^2}{4} (1 + 3e^{-2\beta t_0}) = \frac{\sigma_{v_0}^2}{4} (1 + 3e^{-2}).$$

The corresponding uncertainty σ_v in the ball's velocity is

$$\sigma_v(t_0) = \frac{\sigma_{v_0}}{2} (1 + 3e^{-2})^{1/2}.$$

8 Eighth Exercise Set

8.1 Theory: Introduction to Sensors

- For our purposes, sensors are system that transform an input signal, which we will denoted by x(t), into a corresponding output signal, which we will denote by z(t).
- For the sensors we will study in this course, the input and output will be related by a (generally linear, constant-coefficient) differential equation. It is more convenient to solve these differential equations in the Laplace domain—one applies the Laplace transform to the differential equation, which transforms the equation from a differential equation in the time domain to an algebraic equations in the Laplace domain.
- The Laplace transform of a time-domain function f(t) is defined as

$$\mathcal{L}(f(t)) = \lim_{\epsilon \to 0^{-}} \int_{\epsilon}^{\infty} f(t)e^{-st} dt \equiv \int_{0^{-}}^{\infty} f(t)e^{-st} dt = F(s).$$

By convention, we will write time domain functions in lower case (e.g. f(t)) and their Laplace transforms in uppercase (e.g. F(s)). (The above expression is the *unilateral* Laplace transform; there also exists a *bilateral* Laplace transform in which the integral over time runs from $-\infty$ to $+\infty$ instead of from 0 to $+\infty$.)

• Following is an important identity involving the Laplace transform of a function's time derivative. Using integration by parts, we have

$$\mathcal{L}(\dot{f}(t)) = \int_{0^{-}}^{\infty} \dot{f}e^{-st} \, dt = f(t)e^{-st} \Big|_{0^{-}}^{\infty} - \int_{0^{-}}^{\infty} (-s \cdot f(t)e^{-st}) \, dt$$
$$= -f(0^{-}) + s \int_{0^{-}}^{\infty} f(t)e^{-st} \, dt$$
$$= -f(0^{-}) + sF(s).$$

We have assumed t(t) decays rapidly enough at infinity that $f(t)e^{-st} \to 0$ as $t \to \infty$. In practice, we are interested in a sensor's response only from some given point in time forward. In this case, we can choose the origin so that f(0) = 0, in which case

$$\mathcal{L}(\dot{f}(t)) = s \cdot F(s)$$
 (this assumes $f(0) = 0$).

This identity generalizes straightforwardly to an n-th order time derivative as

$$\mathcal{L}\left(f^{(n)}(t)\right) = s^n F(s).$$

• In practice, one uses tables to find Laplace transforms of common functions (rather than computing the transforms analytically each time). Analogously, finding inverse transforms usually amounts to comparing a function of s to its known inverse in a table, often with some partial fraction decomposition or other algebraic manipulations in between, rather than computing the inverse transform analytically.

First Order Sensors

• All first-order sensors obey a differential equation of the form

$$z(t) = \tau \dot{x}(t) + x(t),$$

$f(t) = \mathcal{L}^{-1}(F(s))$	$F(s) = \mathcal{L}(f(t))$	$f(t) = \mathcal{L}^{-1}(F(s))$	$F(s) = \mathcal{L}(f(t))$
e^{at}	$\frac{1}{s-a}$	1	1/s
t^n	$\frac{n!}{s^{n+1}}$	$\delta(t)$	1
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\Theta(t-t_0)$	$\frac{1}{s}e^{-t_0s}$	$\int f(t-t_0)\Theta(t-t_0)$	$F(s)e^{-t_0s}$
$g(t)e^{at}$	G(s-a)	$\frac{\mathrm{d}^n}{\mathrm{d}t^n}g(t)$	$s^nG(s)$
$-t \cdot g(t)$	$\frac{\mathrm{d}}{\mathrm{d}s}G(s)$		

Table 1: Common Laplace transforms. The symbol $\Theta(t)$ denotes the Heaviside step function.

where τ is called the sensor's time constant. To find the sensor's output x(t), we first take Laplace transform of above equation and get

$$\tau s X(s) + X(s) = Z(s) \implies X(s) = \frac{Z(s)}{1 + \tau s},$$

which motivates the definition of a first order sensor's transfer function as

$$H(s) = \frac{1}{1 + \tau s}.$$

We then find the sensor's output x(t) with the inverse Laplace transform

$$x(t) = \mathcal{L}^{-1} \{ H(s) \cdot Z(s) \}.$$

8.2 Response of First Order Sensors to Common Signals

8.2.1 Response to a Delta Function

Find the response of a first-order sensor to a delta function input $z(t) = \delta(t)$.

• Begin with Laplace transform of general expression.

$$X(s) = H(s)Z(s) = \frac{1}{1+\tau s} \cdot Z(s).$$

From Table 1, the input signal's Laplace transform is

$$Z(s) = \mathcal{L}(z(t)) = \mathcal{L}(\delta(t)) = 1 \implies X(s) = H(s) \cdot 1 = \frac{1}{1 + \tau s}.$$

• We find the time-domain sensor output x(t) with the inverse transform

$$x(t) = \mathcal{L}^{-1} \left\{ \frac{1}{1 + \tau s} \right\},\tag{8.1}$$

where we find the inverse by using the Table 1 identity

$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a} \implies \mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}.$$
 (8.2)

To apply this identity to Equation 8.1, we rewrite

$$\frac{1}{1+\tau s} = \frac{1}{\tau} \cdot \frac{1}{s+1/\tau},$$

which matches Equation 8.2 if we choose $x = -1/\tau$. The sensor's output x(t) is thus

$$x(t) = \mathcal{L}^{-1} \left\{ \frac{1}{1+\tau s} \right\} = \frac{1}{\tau} e^{-t/\tau}.$$

8.2.2 Response to Linearly Increasing Input

Find the response of a first-order sensor to the linearly increasing input z(t) = kt.

• From Table 8.2, the input signal's Laplace transform is

$$Z(s) = k\mathcal{L}(t) = k \cdot \frac{1}{s^2} \implies X(s) = H(s)Z(s) = \frac{1}{1+\tau s} \frac{k}{s^2}$$

• To find x(t), we first need to transform X(s) into an easily-invertible form. We do this with the partial fraction decomposition.

$$X(s) = \frac{1}{1+\tau s} \frac{k}{s^2} = \frac{A}{1+\tau s} + \frac{Bs+C}{s^2}.$$
 (8.3)

Forming a common denominator leads to the equality

$$k = As^{2} + (1 + \tau s)(Bs + C) = As^{2} + \tau Bs^{2} + Bs + \tau Cs + C$$
$$= (A + \tau B)s^{2} + s(B + \tau C) + C,$$

and equating the powers of s leads to the system of equations

$$\underbrace{A + \tau B = 0}_{\text{from } s^2} \qquad \underbrace{B + \tau C = 0}_{\text{from } s^1} \qquad \underbrace{C = k}_{\text{from } s^0}.$$

This system has the solution $A = \tau^2 k$, $B = -\tau k$ and C = k. The decomposition of X(s) in Equation 8.3 is then

$$X(s) = \frac{\tau^2 k}{1 + \tau s} - \frac{\tau k}{s} + \frac{k}{s^2} = \frac{k}{\tau} \frac{1}{s + 1/\tau} - \tau k \cdot \frac{1}{s} + k \cdot \frac{1}{s^2}.$$

From Table 1, the inverse transformation is

$$x(t) = \mathcal{L}^{-1}(X(s)) = k\tau \mathcal{L}^{-1}\left\{\frac{1}{s+1/\tau}\right\} - \tau k\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} + k\mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\}$$
$$= k\tau e^{-t/\tau} - \tau k + kt$$
$$= kt - k\tau(1 - e^{-t/\tau}).$$

For large times, i.e. $t \gg \tau$, the sensor's output reads

$$\lim_{t \gg \tau} x(t) = kt - k\tau$$

In other words, the first-order sensor's output correctly captures the input's linear functional form $z(t) \propto kt$, but adds a constant offset $-k\tau$.

8.2.3 Response to Quadratically Increasing Input

Find the response of a first-order sensor to the quadratically increasing input $z(t) = at^2$.

• From Table 1, the input's Laplace transform is

$$Z(s) = \mathcal{L}\left\{at^2\right\} = \frac{2a}{s^3} \implies X(s) = H(s) \cdot Z(s) = \frac{1}{1+\tau s} \cdot \frac{2a}{s^3}$$

As in the previous problem, we first simplify X(s) with partial fraction decomposition, giving

$$X(s) = \frac{1}{1+\tau s} \cdot \frac{2a}{s^3} = \frac{A}{1+\tau s} + \frac{Bs^2 + Cs + D}{s^3}.$$

We then form a common denominator, producing the equality

$$2a = (A + \tau B)s^{3} + (B + \tau C)s^{2} + (C + D\tau)s + D,$$

before equating coefficients s to get the system of equations

$$A + \tau B = 0$$
 $B + \tau C = 0$ $C + \tau D = 0$ $2a = D$.

The solutions are

$$D = 2a$$
 $C = -2a\tau$ $B = 2a\tau^2$ $A = -2a\tau^3$.

and the corresponding decomposition for X(s) is

$$X(s) = \frac{2a}{s^3} - \frac{2a\tau}{s^2} + \frac{2a\tau^2}{s} - \frac{2a\tau^3}{1+\tau s}.$$

• We then find the time-domain output with the inverse transformation

$$x(t) = \mathcal{L}^{-1}(X(s)) = 2a\mathcal{L}^{-1}\left\{\frac{1}{s^3}\right\} - 2a\tau\mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} + 2a\tau^2\left\{\frac{1}{s}\right\} - 2a\tau^2e^{-t/\tau}$$
$$= at^2 - 2a\tau t + 2a\tau^2\left(1 - e^{-t/\tau}\right).$$

Note that for $t \gg \tau$, the sensor's output reads

$$\lim_{t \to \infty} x(t) = at^2 - 2a\tau t + 2a\tau^2$$

Note that the first-order sensor's output fails to correctly track the input $z(t) = at^2$, even for large times, because of the linearly increasing term $-2a\tau t$.

9 Ninth Exercise Set

9.1 Theory: First-Order Sensor with Non-Zero Initial Input

Input is Non-Zero at t = 0

- So far, we had assumed the sensor's input was zero when t = 0, i.e. that z(0) = 0. We now consider the more general case in which $z(0^-) = z_0 \neq 0$.
- Recall that a first-order sensor obeys the general equation

$$\tau \dot{x} + x = z. \tag{9.1}$$

If $z(0^-) \neq 0$, we proceed by defining the new variables $\chi = x - x_0$ and $\zeta = z - x_0$, in terms of which Equation 9.1 becomes

$$\tau \dot{\chi} + \chi = \zeta. \tag{9.2}$$

• For example, for a linear input $z(t) = z_0 + xt$, a sensor "sees" the effective input

$$z(t) = (\zeta(t) + x_0) = z_0 + kt \implies \zeta(t) = (z_0 - x_0) + kt$$

Procedure: with ζ known, solve for $\chi(t)$ using Equation 9.2, then transform back with $x(t) = x_0 + \chi(t)$ for $t \ge 0$.

Signal Begins at $t = t_0 \neq 0$

• Next consideration: what happens if a signal starts at $t = t_0 > 0$ and not at t = 0. In this case we write the input in the form

$$z(t) = k(t - t_0) \cdot \Theta(t - t_0), \tag{9.3}$$

where $\Theta(t)$ is the Heaviside step function. We then apply the general property

$$\mathcal{L}\{f(t-t_0)H(t-t_0)\} = F(s)e^{-t_0s}$$

in terms of which the Laplace transform of Equation 9.3 reads

$$Z(s) = \mathcal{L}\left\{z(t)\right\} = \frac{k}{s^2}e^{-t_0s}.$$

With Z(s) known, we would then follow the same procedure as in previous problems: we would first find the sensor's response X(s) in the Laplace domain from

$$X(s) = H(s) \cdot Z(s) = \frac{1}{1 + \tau s} \cdot \frac{k}{s^2} e^{-t_0 s},$$

then find the time-domain response x(t) with an inverse Laplace transform of X(s).

9.2 Example: First-Order Sensor with Non-Zero Initial Input

Find the response of a first-order sensor the linear input $z(t) = z_0 + kt$ where $z_0 \neq 0$.

• Important consideration: the input $z(t) = z_0 + kt$ is nonzero at t = 0. As a result, the sensor's output is also nonzero at t = 0, i.e. $x(t = 0) \equiv x_0 \neq 0$. We must take $x(0) \neq 0$ into consideration during the Laplace transform of the sensor's differential equation. The sensor's differential equation reads

$$z(t) = z_0 + kt = \tau \dot{x} + x.$$

Combining the general identity $\mathcal{L}(\dot{f}) = sF(s) - f(0^-)$ with the result $x(0) = x_0 \neq 0$, the differential equation's Laplace transform is

$$\tau \cdot \left[sX(s) - x(0) \right] + X(s) = Z(s) \implies X(s) = \frac{Z(s) + \tau x_0}{1 + \tau s}$$

The input's transform, using the standard transforms in Table 1, is

$$Z(s) = \mathcal{L}\{z(t)\} = \mathcal{L}\{z_0\} + k\mathcal{L}\{t\} = \frac{z_0}{s} + \frac{k}{s^2} = \frac{k + z_0 s}{s^2}.$$

Before writing down X(s), we first make the auxiliary calculation

$$Z(s) + \tau x_0 = \frac{k + z_0 s}{s^2} + \tau x_0 = \frac{\tau x_0 s^2 + z_0 \cdot s + k}{s^2},$$

in terms of which the sensor's Laplace domain output reads

$$X(s) = \frac{Z(s) + \tau x_0}{1 + \tau s} = \frac{1}{1 + \tau s} \cdot \frac{\tau x_0 s^2 + z_0 s + k}{s^2}.$$

• As usual, we will find x(t) from the partial fraction decomposition of X(s), which reads

$$X(s) = \frac{A}{1+\tau s} + \frac{Bs+C}{s^2}.$$

We then form a common denominator and combine like terms to get the equality

$$\tau x_0 s^2 + z_0 z + k = (A + \tau B) s^2 + (B + \tau C) s + C$$

and equate coefficients of powers of s to get the equations

$$C = k$$
 $B + \tau C = z_0$ $A + \tau B = \tau x_0$.

The solutions for A, B and C read

$$A = \tau x_0 - \tau z_0 + k\tau^2 \qquad B = z_0 - k\tau \qquad C = k,$$

and the partial fraction decomposition of X(s) reads

$$X(s) = \frac{k}{s^2} + \frac{z_0 - k\tau}{s} + \frac{x_0 - z_0 + k\tau}{s + 1/\tau}.$$

• The inverse transform, after some technically nonessential rearranging, comes out to

$$x(t) = \mathcal{L}^{-1} \{ X(s) \} = kt + (z_0 - k\tau) + (x_0 - z_0 + k\tau) e^{-t/\tau}$$

= $kt + x_0 + (z_0 - x_0) - k\tau + (x_0 - z_0) e^{-t/\tau} + k\tau e^{-t/\tau}$
= $kt + x_0 - (x_0 - z_0) \left(1 - e^{-t/\tau} \right) - k\tau \left(1 - e^{-t/\tau} \right).$

Note that $x(0) = x_0$, as expected.

9.3 Theory: Second-Order Sensors

• A second-order sensor obeys the general differential equation

$$\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2x = \omega_0^2z + 2\zeta\omega_0\dot{z},$$

where ω_0 and ζ are the sensor's resonant frequency and damping coefficient, respectively.

• In practice, sensors tend to be sensitive only to either the input z or the input's derivative \dot{z} , but not both. We will assume dependence on only z, in which case the sensor's equation reduces to

$$\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2x = \omega_0^2z.$$

- Without proof (refer to lecture notes), the sensor is optimally damped when $\zeta = \zeta_{\text{opt}} = \frac{1}{\sqrt{2}}$.
- Assuming $x(0^-) = 0$ and $z(0^-) = 0$, the sensor's equation's Laplace transform reads

$$s^{2}X(s) + 2\zeta\omega_{0}sX(s) + \omega_{0}^{2}X(s) = \omega_{0}^{2}Z(s).$$

We then solve for X(s) to get

$$X(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} Z(s),$$

which motivates the second-order transfer function as

$$H(s) \equiv \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}.$$

9.4 Example: Response of Second-Order Sensors to Common Inputs

9.4.1 Delta Function Input

Compute the response of a second-order sensor to the delta function input $z(t) = \delta(t)$.

• From Table 1, the input's Laplace transform is

$$Z(s) = \mathcal{L}\{\delta(t)\} = 1.$$

The sensor's output in the Laplace domain is then simply

$$X(s) = H(s) \cdot Z(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \cdot 1.$$

• For reasons that will soon be clear, we then write X(s)'s denominator in the form

$$s^{2} + 2\zeta\omega_{0}s + \omega_{0}^{2} = (s + \zeta\omega_{0})^{2} - \zeta^{2}\omega_{0}^{2} + \omega_{0}^{2}$$
$$= (s + \zeta\omega_{0})^{2} + \omega_{0}^{2}(1 - \zeta^{2})^{2}, \tag{9.4}$$

in terms of which X(s) reads

$$X(s) = \frac{\omega_0^2}{(s + \zeta\omega_0)^2 + \omega_0^2(1 - \zeta^2)} = \frac{\omega_0}{\sqrt{1 - \zeta^2}} \cdot \frac{\omega_0\sqrt{1 - \zeta^2}}{(s + \zeta\omega_0)^2 + \omega_0^2(1 - \zeta^2)}.$$
 (9.5)

We then compare this expression for X(s) to identity (constructed from Table 1)

$$\mathcal{L}\left\{e^{at}\sin\omega t\right\} = \frac{\omega}{(s-a)^2 + \omega^2},$$

which motivates the choice of $a = -\zeta \omega_0$ and $\omega^2 = \omega_0^2 (1 - \zeta^2)$, and in terms of which the sensor's time-domain response x(t) is then

$$x(t) = \frac{\omega_0}{\sqrt{1-\zeta^2}} \cdot e^{-\zeta\omega_0 t} \cdot \sin\left(\omega_0 \sqrt{1-\zeta^2}\right).$$

This is the response of a second-order sensor to a delta function input.

9.4.2 Linearly Increasing Input

Find a second-order sensor's response to the linearly increasing input z(t) = kt.

• The input's Laplace transform is

$$Z(s) = \mathcal{L}\{kt\} = \frac{k}{s^2}$$

and the sensor's output in the Laplace domain is then

$$X(s) = Z(s) \cdot H(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \cdot \frac{k}{s^2}.$$

• As usual, we proceed by computing the partial fraction decomposition

$$X(s) = \frac{1}{s^2} \frac{k\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} = k\omega_0^2 \left(\frac{As + B}{s^2 + 2\zeta\omega_0 s + \omega_0^2} + \frac{Cs + D}{s^2} \right).$$

After forming a common denominator and combining like terms, we get

$$1 = (A+C)s^{3} + (D+B+2\zeta\omega_{0}C)s^{2} + (C\omega_{0}^{2} + 2\zeta\omega_{0}D)s + D\omega_{0}^{2}$$

and equating coefficients of powers of s produces the system of equations

$$D\omega_0^2 = \omega_0^2 \implies D = \frac{1}{\omega_0^2}$$

$$C\omega_0^2 + 2\zeta\omega_0 D = 0 \implies C = -\frac{2\zeta}{\omega_0^3}$$

$$D + B + 2\zeta\omega_0 C = 0 \implies B = \frac{1}{\omega_0^2} \left(4\zeta^2 - 1 \right)$$

$$A + C = 0 \implies A = \frac{2\zeta}{\omega_0^3}.$$

The decomposition of X(s), after cancelling ω_0^2 and rearranging slightly, is then

$$X(s) = k \left(\frac{1}{s^2} - \frac{2\zeta}{\omega_0} \cdot \frac{1}{s} + \underbrace{\frac{2\zeta}{\omega_0} \cdot \frac{s}{s^2 + 2\zeta\omega_0 s + \omega_0^2}}_{= \text{II}} + \underbrace{\frac{4\zeta^2 - 1}{s^2 + 2\zeta\omega_0 s + \omega_0^2}}_{= \text{II}} \right),$$

where we have defined the terms I and II for convenience; we will further rearrange individually. Before proceeding further, we also quote the identities

$$\mathcal{L}\left\{e^{at}\sin(\omega t)\right\} = \frac{\omega}{(s-a)^2 + \omega^2} \tag{9.6}$$

$$\mathcal{L}\left\{e^{at}\cos(\omega t)\right\} = \frac{s-a}{(s-a)^2 + \omega^2}.$$
(9.7)

• We first consider term I. Following the exact same procedure that led to Equation 9.4 in the previous problem, we get

$$I = \frac{2\zeta}{\omega_0} \frac{s}{s^2 + 2\zeta\omega_0 s + \omega_0^2} = \frac{2\zeta}{\omega_0} \frac{s}{(s + \zeta\omega_0)^2 + \omega_0^2 (1 - \zeta^2)},$$

which, on comparison with the denominator in Equation 9.7, motivates the choice of terms $a = -\zeta \omega_0$ and $\omega^2 = \omega_0^2 (1 - \zeta^2)$. One more rearrangement then gives

$$I = \frac{2\zeta}{\omega_0} \frac{s + \zeta\omega_0}{(s + \zeta\omega_0)^2 + \omega_0^2(1 - \zeta^2)} - \frac{2\zeta}{\omega_0} \frac{\zeta\omega_0}{(s + \zeta\omega_0)^2 + \omega_0^2(1 - \zeta^2)}$$
$$= \frac{2\zeta}{\omega_0} \frac{s - a}{(s - a)^2 + \omega^2} - \frac{2\zeta^2}{(s - a)^2 + \omega^2},$$

where we have substituted in a and ω^2 .

• Next, we consider the term II; we will also add on the term $-\frac{2\zeta^2}{(s-a)^2+\omega^2}$ term added on above. After writing the denominator II in the familiar form $(s-a)^2+\omega^2$, we have

$$II - \frac{2\zeta^2}{(s-a)^2 + \omega^2} = \frac{4\zeta^2 - 1}{(s-a)^2 + \omega^2} - \frac{2\zeta^2}{(s-a)^2 + \omega^2} = \frac{2\zeta^2 - 1}{(s-a)^2 + \omega^2}$$
$$= \frac{2\zeta^2 - 1}{\omega} \cdot \frac{\omega}{(s-a)^2 + \omega^2}.$$

The final form of the sensor's Laplace-domain response X(s) is then

$$X(s) = k \left(\frac{1}{s^2} - \frac{2\zeta}{\omega_0} \cdot \frac{1}{s} + \frac{2\zeta}{\omega_0} \cdot \frac{s-a}{(s-a)^2 + \omega^2} + \frac{2\zeta^2 - 1}{\omega} \cdot \frac{\omega}{(s-a)^2 + \omega^2} \right).$$

The corresponding time-domain response, using Equations 9.6 and 9.7, is

$$x(t) = k \left(t - \frac{2\zeta}{\omega_0} + \frac{2\zeta}{\omega_0} e^{-\zeta\omega_0 t} \cos(\omega t) + \frac{2\zeta^2 - 1}{\omega} e^{-\zeta\omega_0 t} \sin(\omega t) \right).$$

Finally, we note that for an optimally-damped sensor with $\zeta_{\text{opt}} = \frac{1}{\sqrt{2}}$, x(t) reduces

$$x_{\mathrm{opt}}(t) = k \left[t - \frac{\sqrt{2}}{\omega_0} + \frac{\sqrt{2}}{\omega_0} \exp\left(-\frac{\omega_0 t}{\sqrt{2}}\right) \cdot \cos\frac{\omega_0 t}{\sqrt{2}} \right].$$

The last term with $\sin \omega t$ is vanishes for $\zeta_{\text{opt}} = \frac{1}{\sqrt{2}}$. For $t \to \infty$, the optimally-damped sensor's output is

$$\lim_{t \to \infty} x(t) = k \left(t - \frac{2\zeta}{\omega_0} \right).$$

The sensor's output thus follows the input with a time offset $\frac{2\zeta}{\omega_0}$.

10 Tenth Exercise Set

Note: The exercise "A Mechanical Sensor of Water Flow Speed", which we solved in class, is currently missing from these notes.

10.1 Theory: Response of Sensors to Periodic Inputs

• We now consider sensors with periodic, sinusoidal inputs of the form

$$z(t) = z_0 e^{i\omega t}, (10.1)$$

where ω is the input signal's angular frequency and $z_0 \in \mathbb{R}$ is the input signal's (assumed to be real) amplitude. Often, when working with periodic inputs, we will use the term *filter* instead of *sensor*.

• Our goal is as follows: given a filter's transfer function H(s) and an input signal z(t), find the filter's output x(t). In the Laplace domain, the relevant equation is

$$X(s) = H(s) \cdot Z(s).$$

• Claim: we can write an arbitrary transfer function in the form

$$H(s) = A \frac{P(s)}{D(s)},$$

where P and D are polynomials in s and $A \in \mathbb{R}$ is a real constant. Since P and D are polynomials, we may write H(s) in the product form

$$H(s) = A \frac{\prod_{a} (s - s_a)}{\prod_{b} (s - s_b)},$$
(10.2)

where s_a and s_b are the (in general complex) zeros of the polynomials P(s) and D(s) respectively. Thus s_a are the transfer function's zeros and s_b are the transfer function's poles. We then substitute Equation 10.2 into X(s) = H(s)Z(s) and get

$$X(s) = H(s) \cdot Z(s) = \left(A \frac{\prod_a (s - s_a)}{\prod_b (s - s_b)}\right) \cdot \frac{z_0}{s - i\omega},$$

where we have assumed the periodic input $z(t) = z_0 e^{i\omega t}$ in Equation 10.1 to get the Laplace transform Z(s). We proceed by writing X(s) as a partial fraction decomposition, which reads

$$X(s) = Az_0 \left(\frac{\alpha_0}{s - i\omega} + \sum_b \frac{\alpha_b}{s - s_b} \right), \tag{10.3}$$

where the $\alpha_i \in \mathbb{C}$ are (in general complex) to-be-determined constants. Referring to Table 1, this expression then transforms back into the time domain as

$$x(t) = Az_0 \left(\alpha_0 e^{i\omega t} + \sum_b \alpha_b e^{s_b t} \right). \tag{10.4}$$

Recall the s_b are the transfer function H(s)'s poles, which are in general complex. We thus write the poles in the explicitly complex form $s_b = \sigma_b + i\omega_b$, where σ_b and ω_b are s_b 's real and imaginary parts, respectively. Using $s_b = \sigma_b + i\omega_b$ this s_b , the terms in the above sum read

$$\alpha_b e^{s_b t} = \alpha_b e^{\sigma_b t} e^{i\omega_b t}.$$

This expression motivates the requirement $\sigma_b < 0$; otherwise x(t) would diverge exponentially with time because of the $e^{\sigma_b t}$ term. Assuming $\sigma_b < 0$, we then write the sum terms as

$$\alpha_b e^{s_b t} = \alpha_b e^{-|\sigma_b|t} e^{i\omega_b t}.$$

• Assumption: we will consider sensor outputs for large times only, and ignore transient phenomena. In this case we have

$$e^{-|\sigma_b|t} \to 0$$
 (for $t \gg 1/|\sigma_b|$),

in which the case the sum in Equation 10.4 vanishes, leaving only

$$x(t) = Az_0\alpha_0e^{i\omega t}$$
.

We stress that this simplified expression for x(t) neglects transient effects; however, transient phenomena often occur on such a short time scale that they can generally be neglected in non-specialized applications.

In any case, using $x(t) = Az_0\alpha_0e^{i\omega t}$, we then write the sensor's output in the time domain as

$$x(t) = Az_0 \alpha_0 e^{i\omega t} \equiv x_0 e^{i\omega t}, \tag{10.5}$$

where we have introduced the complex amplitude $x_0 \in \mathbb{C}$. Alternatively, in polar form, the complex amplitude reads

$$x_0 = |x_0|e^{i\delta},$$

where δ is the sensor's phase shift relative to the input. The sensor's output is then

$$x(t) = |x_0|e^{i\delta}e^{i\omega t}$$
.

Next Step: Finding α_0

• We now return to the sensor's Laplace-domain response in Equation 10.3, which for review reads

$$X(s) = Az_0 \frac{\prod_a (s - s_a)}{\prod_b (s - s_b)} \cdot \frac{1}{s - i\omega} = Az_0 \left(\frac{\alpha_0}{s - i\omega} + \sum_b \frac{\alpha_b}{s - s_b} \right).$$

Next, following the standard partial fraction decomposition procedure, we multiply through by the denominator $\prod_b (s - s_b) \cdot (s - i\omega)$ and cancel the common amplitude term Az_0 to get

$$\prod_{a} (s - s_a) = \alpha_0 \prod_{b} (s - s_b) + (s - i\omega) \prod_{b} (s - s_b) \sum_{b} \frac{\alpha_b}{s - s_b}.$$

Our goal is to determine the constant term α_0 , which corresponds to the periodic input $z(t) = z_0 e^{i\omega t}$. We can straightforwardly find α_0 by evaluating the above expression at $s = i\omega$. In this case most of the RHS vanishes, leaving only

$$\prod_{a} (i\omega - s_a) = \alpha_0 \prod_{b} (i\omega - s_b) \implies \alpha_0 = \frac{\prod_{a} (i\omega - s_a)}{\prod_{b} (i\omega - s_b)}$$

With α_0 known, the filter's time-domain response (recall Equation 10.5) is then

$$x(t) = Az_0 \alpha_0 e^{i\omega t} = Az_0 \frac{\prod_a (i\omega - s_a)}{\prod_b (i\omega - s_b)} e^{i\omega t} = A \frac{\prod_a (i\omega - s_a)}{\prod_b (i\omega - s_b)} z(t),$$

where we have recognized the original input signal $z(t) = z_0 e^{i\omega t}$. Comparing to the general expression $x(t) = H(s) \cdot z(t)$, we see the filter's transfer function is then

$$H(s) = A \frac{\prod_{a} (i\omega - s_a)}{\prod_{b} (i\omega - s_b)}.$$

However, noting that H is a function of only $i\omega$ and not the Laplace variable s, we write the filter's input-output relation (ignoring transient response) as

$$x(t) = H(i\omega)z(t).$$

Lesson: a sensor's transfer function in response to periodic input is just the general transfer function H(s) with s replaced by $i\omega$.

Finally, we recall the polar notation $x(t) = |x_0|e^{i\delta}e^{i\omega t}$ to get

$$x(t) = |x_0|e^{i\delta}e^{i\omega t} = H(i\omega) \cdot z_0e^{i\omega t} \implies H(i\omega) = \frac{|x_0|}{z_0}e^{i\delta}.$$

where z_0 is the sinusoidal input signal's (assumed to be) real amplitude.

Quantities We'll Be Interested In

- When analyzing filters with periodic inputs that may be written as $z(t) = z_0 e^{i\omega t}$, we will be interested in computing:
 - 1. The ratio of the input and output signal's amplitudes, i.e.

$$A \equiv \frac{|x_0|}{z_0} = |H(i\omega)|. \tag{10.6}$$

This quantity is called a filter's gain or amplification.

2. The phase shift δ of the output signal relative to the input signal, i.e.

$$\tan \delta = \frac{\operatorname{Im} \{H(i\omega)\}}{\operatorname{Re} \{H(i\omega)\}}.$$
(10.7)

10.2 Theory: Bode Plots

- Bode plots provide a graphical representation of a filter's gain |H| (Equation 10.6) and phase shift δ (Equation 10.7) as a function of the frequency ω of a periodic input—we will consider only gain as a function of frequency.
- Bode plots are drawn in logarithmic scale to accommodate the large range of values for frequency and gain. Specifically, for Bode plots showing gain, we plot:
 - the quantity $20 \log |H|$ on the ordinate axis, and
 - the quantity $\log(\omega \tau) \equiv \log(\omega/\omega_c)$ on the abscissa.

Note that both logarithms are base 10, not base e. The parameter τ is the circuit's time constant (characteristic response time to periodic inputs), and is reciprocally related to the filter's cut-off frequency ω_c , which is a characteristic frequency at which the filter's gain changes regimes, e.g. from approximately constant to increasing or decreasing.

• Although $20 \log |H|$ is technically a dimensionless quantity, it is assigned units of decibells (while $2 \log |H|$ would correspond to bells).

10.3 Example: RC Low-Pass Filter

• A first-order RC lowpass filter consists of a resistor R and capacitor C connected in the configuration show in Figure 1. The input and output signals U_{in} and U_{out}

Figure 1: A first-order RC lowpass filter.

are both measured relative to ground. Our first step is to find the circuit's transfer function, i.e. the relationship between input U_{in} and output U_{out} :

$$H(i\omega) = \frac{U_{\rm out}}{U_{\rm in}}.$$

For our analysis, we assume there is no current through the output node U_{out} , so any current through the resistor flows completely into the capacitor.

• We derive one equation from the voltage drop across the capacitor; this is

$$U_{\text{out}} - U_{\text{ground}} = U_{\text{out}} - 0 = Z_{\text{c}} \cdot I, \tag{10.8}$$

where Z_c is the capacitor's complex impedance. We derive a second equation from the voltage drop across the entire circuit, which reads

$$U_{\rm in} - U_{\rm ground} = U_{\rm in} - 0 = I(R + Z_{\rm c}) \implies I = \frac{U_{\rm in}}{R + Z_{\rm c}}.$$
 (10.9)

In these equations we have explicitly written the ground voltage $U_{\text{ground}} = 0 \text{ V}$ for completeness, but we will drop this in the future.

• Next, we combine Equations 10.8 and 10.9 to find the circuit's transfer function:

$$U_{\mathrm{out}} = Z_{\mathrm{c}}I = Z_{\mathrm{c}} \cdot \frac{U_{\mathrm{in}}}{R + Z_{\mathrm{c}}} \implies H(i\omega) = \frac{U_{\mathrm{out}}}{U_{\mathrm{in}}} = \frac{Z_{\mathrm{c}}}{R + Z_{\mathrm{c}}}.$$

Finally, we substitute in the capacitor's impedance $Z_{\rm c} = \frac{1}{i\omega C}$ to get

$$H(i\omega) = \frac{1}{1 + R/Z_c} = \frac{1}{1 + i\omega RC}.$$
 (10.10)

• Finally, we note that, writing $i\omega \to s$, the filter's transfer function reads

$$H(s) = \frac{1}{1 + sRC},$$

which, after defining $\tau \equiv RC$, exactly matches the general first-order sensor form

$$H(s) = \frac{1}{1 + s\tau}.$$

Gain

• We now compute the circuit's gain from the transfer function's absolute value. From Equation 10.6, this is

$$|H|^2 = HH^* = \frac{1}{1 + i\omega\tau} \cdot \frac{1}{1 - i\omega\tau} = \frac{1}{1 + (\omega\tau)^2}.$$

We then take the (positive) square root of $|H|^2$ to find the gain

$$A = |H| = \frac{1}{\sqrt{1 + (\omega \tau)^2}}.$$

• We now consider some limit cases. In the low-frequency limit $\omega \tau \ll 1$ the circuit's gain approaches

$$|H| \to 1$$
 (for $\omega \tau \ll 1$).

In the high-frequency limit $\omega \tau \gg 1$ the circuit's gain approaches

$$|H| \approx \frac{1}{\omega \tau} \to 0$$
 (for $\omega \tau \gg 1$).

The low- and high-frequency limits explain why the circuit is called a low-pass filter: low-frequency input signals are transmitted ("passed") unaffected with gain A=1, while high-frequency inputs are attenuated or "blocked", since $A\to 0$ for large frequencies.

Bode Plot for a Low-Pass Filter

• Table 2 shows the gain of a low-pass filter in characteristic frequency regimes.

	H	$20\log H $ [dB]
$\omega \tau \ll 1$	1	0
$\omega \tau \gg 1$	$1/(\omega \tau)$	$-20\log(\omega\tau)$
$\omega \tau = 1$	$1/\sqrt{2}$	$-3\mathrm{dB}$

Table 2: Characteristic frequency regimes for a low-pass filter's Bode plot.

- Interpret the large-frequency $(\omega \gg \omega_c)$ behavior of $20 \log |H|$, i.e. $-20 \log(\omega \tau)$ as a function of $\log(\omega \tau)$, as gain falling at 20 decibells per frequency decade.
 - Recall bode plots are logarithmic, so plotting $-20 \log(\omega \tau)$ as a function of $\log(\omega \tau)$ in $\log(\omega \tau)$ space is equivalent to plotting the line y = -20x on a linear xy scale.
- Terminology: negative gain is also called attenuation.

11 Eleventh Exercise Set

11.1 Ideal Integration Circuit

• An ideal integration circuit takes an input signal $U_{\rm in}$ and outputs a signal $U_{\rm out}$ obeying

$$U_{\text{out}}(t) = k \int_0^t U_{\text{in}}(t') \,dt'.$$
 (11.1)

To find the circuit's transfer function, we first take the time derivative to get

$$\dot{U}_{\rm out}(t) = kU_{\rm in}(t)$$
.

We then take the above equation's Laplace transform and, assuming $U_{\rm in}(0) = 0$, get

$$sU_{\mathrm{out}}(s) = kU_{\mathrm{in}}(s) \implies H_{\mathrm{int}}(s) = \frac{U_{\mathrm{out}}}{U_{\mathrm{in}}} = \frac{k}{s}.$$

For periodic input signals, where we can replace s with $i\omega$, an ideal integrator's transfer function reads

$$H_{\rm int}(i\omega) = \frac{k}{i\omega}.$$
 (11.2)

 \bullet Next, we recall from Equation 10.10 that a RC low-pass filter has a transfer function

$$H_{\mathrm{lpf}}(i\omega) = \frac{1}{1+i\omega\tau} \stackrel{\omega\tau\gg 1}{\longrightarrow} H_{\mathrm{lpf}}(i\omega) \approx \frac{1}{i\omega\tau}.$$

In other words, for high frequencies $\omega \tau \gg 1$, a low-pass filter behaves like an ideal integrator (Equation 11.1) with a constant $k=\frac{1}{\tau}$. However, an RC low-pass filter is not a particularly useful integrator. Here is the problem: for $\omega \tau \gg 1$, i.e. the regime in which a LPF behaves as an integrator, the filter also exponentially attenuates the input signal, so the integration circuit's output would be essentially zero, and obscured by thermal noise.

11.2 Example: CR High-Pass Filter

• A first-order RC highpass filter consists of a resistor R and capacitor C connected in the configuration show in Figure 2. Let I denote the current passing through C to R

Figure 2: A first-order RC highpass filter.

to ground. The voltage drop across resistor is then $U_{\text{out}} = RI$, while the voltage drop across the entire circuit is $U_{\text{in}} = I(Z_{\text{C}} + R)$. We equate currents in both expressions to get

$$\frac{U_{\text{out}}}{R} = I = \frac{U_{\text{in}}}{Z_{\text{C}} + R}.$$

We then solve for the transfer function $H(i\omega)$ and get

$$H(i\omega) \equiv \frac{U_{\text{out}}}{U_{\text{in}}} = \frac{R}{Z_{\text{C}} + R} = \frac{R}{1(i\omega C) + R} = \frac{i\omega RC}{1 + i\omega RC}$$
$$\equiv \frac{i\omega \tau}{1 + i\omega \tau}, \tag{11.3}$$

where we have defined the time constant $\tau \equiv RC$.

• We find the circuit's gain |H| from

$$|H|^2 = \frac{i\omega\tau}{1 + i\omega\tau} \cdot \frac{(-i)\omega\tau}{1 + (-i)\omega\tau} = \frac{(\omega\tau)^2}{(1 + (\omega\tau)^2)} \implies |H| = \frac{\omega\tau}{\sqrt{1 + (\omega\tau)^2}}.$$

• The high-pass filter's amplification behavior in three characteristic frequency regimes is shown in Table 3.

	H	$20 \log H [dB]$
$\omega \tau \ll 1$	$\omega \tau$	$20\log(\omega\tau)$
$\omega \tau \gg 1$	1	0
$\omega \tau = 1$	$1/\sqrt{2}$	$-3\mathrm{dB}$

Table 3: Characteristic frequency regimes for a high-pass filter's Bode plot.

In the highpass filter's Bode plot, gain |H| increases linearly at 20 decibells per frequency decade in the regime $\omega \tau \ll 1$, reaches $|H| = -3 \,\mathrm{dB}$ at $\omega \tau = 1$ and remains constant for $\omega \tau \gg 1$.

The circuit's amplification behavior shows why it is called a high-pass filter—low frequencies for $\omega \ll \omega_c$ are strongly attenuated, while high frequencies with $\omega \gg \omega_c$ are passed with gain one.

• Finally, we note the interpretation of a high-pass filter as a first-order sensor with the transfer function

$$H_{\rm hpf}(s) = \frac{\tau s}{1 + \tau s}, \quad {\rm where} \ \ \tau = RC.$$

11.3 Ideal Differentiator

• An ideal differentiation circuit takes an input signal $U_{\rm in}$ and outputs a signal $U_{\rm out}$ obeying

$$U_{\text{out}}(t) = k\dot{U}_{\text{in}}(t). \tag{11.4}$$

To find the circuit's transfer function, we first transform to the Laplace domain and, assuming $U_{in}(0) = 0$, get

$$U_{\mathrm{out}}(s) = ksU_{\mathrm{in}}(s) \implies H_{\mathrm{dif}}(s) = \frac{U_{\mathrm{out}}}{U_{\mathrm{in}}} = ks.$$

For periodic inputs, writing $s \to i\omega$, the ideal differentiator's transfer function reads

$$H_{\rm dif}(i\omega) = k \cdot i\omega. \tag{11.5}$$

• Next, recall from Equation 11.3 that a high-pass filter has a transfer function

$$H_{\rm hpf}(i\omega) = \frac{i\omega\tau}{1 + i\omega\tau} \stackrel{\omega\tau \ll 1}{\longrightarrow} H_{\rm hpf}(i\omega) \approx i\omega\tau.$$

In other words, a for low-frequency inputs $\omega \ll \omega_c$, a high-pass filter behaves as an ideal differentiator (Equation 11.4) with constant $k = \tau$. However, like the LPF when used as an integrator, a HPF is not a useful differentiator, since a HPF strongly attenuates its input signal in the differentiation regime $\omega \ll \omega_c$.

11.4 Theory: Active Circuits and the Operational Amplifier

- Active circuit elements are capable of supplying energy to a circuit, while passive elements cannot supply energy. A circuit containing one or more active circuit elements is called an active circuit; circuits with only passive elements are passive circuits.
- Resistors, capacitors and inductors are examples of passive elements, while batteries and other power supplies are active elements. We will now introduce another important active element called an *operational amplifier*, or simply op-amp.

Review of Op-Amp

• For review from analog electronics, an op-amp has two inputs: the non-inverting input U_+ and the inverting input U_- . An op-amp's transfer function can be modeled as

$$U_{\text{out}} = A(s)(U_{+} - U_{-}), \tag{11.6}$$

where A(s) is the amplifier's (in general frequency-dependent) gain.

• Table 4 summarizes the op-amps important properties

Ideal Op-Amp	Real Op-Amp
$A(s) \equiv A_0 = \text{constant}$	$A(s) = A_0 \cdot H_{\rm lpf}(s)$
$A_0 \to \infty$	$A_0 \sim 1 \cdot 10^4 \text{ to } 1 \cdot 10^6$
$Z_+, Z \to \infty$	$Z_+, Z \sim 1 \cdot 10^{10} \text{ to } 1 \cdot 10^{12} \Omega$
$I_+, I \to 0$	$I_{+}, I_{-} \lesssim 1 \cdot 10^{-12} \mathrm{A}$
$Z_{\mathrm{out}} \to 0$	$Z_{ m out} \sim 1 \cdot 10^{-3} \Omega$

Table 4: Comparison of an ideal and real-life operational amplifier's important properties.

11.5 Examples of Op-Amp Circuits

11.5.1 Differentiator

• An example op-amp differentiatior consists of an op-amp, resistor R, and capacitor C connected in the configuration show in Figure 3. The input signal U_{in} passes through the capacitor C and reaches a junction. One branch enter's the op-amp's inverting input and one branch passes through the op-amp's negative feedback loop through a resistor R before connecting to U_{out} . The op-amp's non-inverting input is grounded.

Figure 3: A standard op-amp differentiation circuit.

• Let I denote the current through the capacitor and assume the op-amp is ideal, so that (i) the potential at U_{-} will match the ground potential at U_{+} and (ii) the current into the inverting input is zero. Combining these properties gives

$$U_{\rm in} = IZ_{\rm C}$$
.

No current flows into U_{-} , so any current through C must flow through R, giving

$$-U_{\text{out}} = IR.$$

We then equate currents to get

$$U_{\rm out} = -\frac{R}{Z_{\rm C}} U_{\rm in} \implies H = \frac{U_{\rm out}}{U_{\rm in}} = -i\omega RC \equiv -i\omega \tau.$$

This matches the expression for an ideal differentiator (for periodic inputs) in Equation 11.5.

11.5.2 Integrator

• An example op-amp integrator consists of an op-amp, resistor R, and capacitor C connected in the configuration show in Figure 4. The input signal U_{in} passes through

Figure 4: A standard op-amp integration circuit.

the resistor R and reaches a junction. One branch enter's the op-amp's inverting input and one branch passes through the op-amp's negative feedback loop through a capacitor C before connecting to U_{out} . The op-amp's non-inverting input is grounded.

• Let I denote the current through the resistor and assume the op-amp is ideal, so that (i) the potential at U_{-} will match the ground potential at U_{+} and (ii) the current into the inverting input is zero. Combining these properties gives

$$U_{\rm in} = IR.$$

No current flows into U_{-} , so any current through R must flow through C, giving

$$-U_{\text{out}} = IZ_{\text{C}}.$$

We then equate currents to get

$$U_{\rm out} = -\frac{Z_{\rm C}}{R} U_{\rm in} \implies H = \frac{U_{\rm out}}{U_{\rm in}} = -\frac{1}{i\omega RC} \equiv -\frac{1}{i\omega \tau}.$$

This, assuming k=-1/(RC), matches the expression for an ideal integrator (for periodic inputs) in Equation 11.2

12 Twelfth Exercise Set

12.1 Circuits Using Op-Amps

12.1.1 Inverting Amplifier

• An op-amp inverting amplifier consists of an op-amp and two resistors R_1 and R_2 , connected in the configuration show in Figure 5.

Figure 5: An op-amp inverting amplifer.

Let I denote the current through $R_{\rm in}$ and assume the op-amp is ideal, so that (i) the potential at the inverting matches the ground potential at the non-inverting input and (ii) the current into the inverting input is zero. Combining these produces

$$U_{\rm in} = IR_{\rm in}$$
.

No current flows into U_{-} , so any current through $R_{\rm in}$ must flow through $R_{\rm f}$, giving

$$-U_{\text{out}} = IR_{\text{f}}.$$

We then equate currents to get

$$U_{\rm out} = -\frac{R_{\rm f}}{R_{\rm in}}U_{\rm in} \implies H = \frac{U_{\rm out}}{U_{\rm in}} = -\frac{R_{\rm f}}{R_{\rm in}}.$$

• Interpretation: an inverting amplifier's gain is $G = -R_f/R_{in}$ —because the amplifier reverses the sign of the input signal, it is called an inverting amplifier.

12.1.2 Non-Inverting Amplifier

• An op-amp non-inverting amplifier consists of an op-amp and two resistors R_1 and R_2 , connected in the configuration show in Figure 6.

Figure 6: An op-amp non-inverting amplifer.

• Let I denote the current through R_2 and assume the op-amp is ideal, so that (i) the potential at the non-inverting input will match the potential $U_{\rm in}$ at the non-inverting input and (ii) the current into the inverting input is zero, so all current through R_2 must flow via R_1 into ground. Combining these properties gives

$$U_{\text{out}} - U_{\text{in}} = IR_2$$
 and $U_{\text{in}} = IR_1$.

We then equate currents to get

$$U_{\rm out} - U_{\rm in} = \frac{R_2}{R_1} U_{\rm in} \implies H = \frac{U_{\rm out}}{U_{in}} = 1 + \frac{R_2}{R_1}.$$

The circuit is called a non-inverting amplifier ecause its preserves the input signal's sign.

12.1.3 Voltage Follower

• An voltage follower is a simple circuit consisting of an op-amp wired as in the configuration show in Figure 7.

Figure 7: A voltage follower.

In other words, a voltage follower is just an op-amp with an "empty" negative feedback loop. Neglecting transient effects, the input-out relationship is simply

$$U_{\text{out}} = U_{\text{in}} \implies H = 1.$$

Although it might appear pointless at first glance, a voltage follower is useful because of its high input impedance (very little current flows into the op-amp) and low output impedance. A voltage follower can be used to isolate two sub-circuits such that no current flows between them, as shown in the following example.

Example Use of Voltage Follower

• Consider the circuit shown in Figure 8, which is essentially two RC lowpass filters connected by a voltage follower.

If there were *not* a voltage follower between the lowpass filters, the circuit's output would *not* be simply $H_{\text{tot}} = H_{\text{lpf}}^{(1)} \cdot H_{\text{lpf}}^{(2)}$. This won't work because our derivation of the LPF transfer function assumed no current flows through its output; this clearly would not hold for the first lowpass filter.

But if a voltage follower, with its very large input impedance, is placed after the output of the first lowpass filter, essentially no current will flow out of the first LPF's output; it is then correct (or at least a good approximation) to write $H_{\text{tot}} = H_{\text{lpf}}^{(1)} \cdot H_{\text{lpf}}^{(2)}$.

Figure 8: Example use of a voltage follower as a buffer.

12.2 A Differential Amplifier

• Figure 9 shows an example (other configurations are also possible) of an op-amp differential amplifier. Note: this is not the differential amplifier circuit covered in the official exercises, but a more common version from the introductory analog electronics literature.

Figure 9: One example of a differential amplifier.

We analyze the circuit, with the superposition principle, which is a valid approach because both op-amps and resistors are linear elements, and so the circuit itself is linear. Our plan is to hypothetically ground each of the inputs U_+ and U_- in turn, and find the corresponding outputs, say y_+ and y_- . By the superposition principle, the circuit's output in response to the input $U_- + U_+$ will just be the sum of the individual outputs: $U_{\rm out} = y_+ + y_-$.

• If $U_{+}=0$, the circuit reduces to an inverting amplifier (Figure 5) with the output

$$y_{+} = -\frac{R_2}{R_1}U_{-}.$$

If $U_{-}=0$, the circuit is a non-inverting amplifier (Figure 6) with the output

$$y_- = \left(1 + \frac{R_2}{R_1}\right) U_+.$$

The sum of y_{-} and y_{+} is

$$U_{\text{out}} = y_{-} + y_{+} = -\frac{R_{2}}{R_{1}}U_{-} + \left(1 + \frac{R_{2}}{R_{1}}\right)U_{+}.$$

In the limit $\frac{R_2}{R_1} \gg 1$, we have $y_- \to \frac{R_2}{R_1} U_+$, giving the output:

$$U_{\text{out}} = \frac{R_2}{R_1}(U_+ - U_-).$$

In this regime the circuit is called a differential amplifier because its output is the amplified difference of its inputs.

12.3 An Amplifying Feedback Loop

Consider the negative feedback loop circuit shown in Figure 10 and described in the paragraphs below. If the system H(s)'s transfer function is

$$H(s) = \frac{\tau s}{1 + \tau s},$$

find the value of the feedback gain K such that, for a linearly-increasing input $U_{\rm in}(t) = \alpha t$, the circuit tracks the input signal's derivative three times as fast as it tracks the input itself.

Figure 10: The negative feedback circuit analyzed in Exercise 12.3. The system denoted by a triangle amplifies its input signal by a constant factor K.

Description of Circuit

- First consider an arbitrary system with transfer function H(s); let U_{in} denote the system's input and U_{out} denote the system's output. In this simple configuration $U_{\text{out}}(s) = H(s)U_{\text{in}}(s)$.
- We then add to this simple system a negative feedback loop in which the original output U_{out} is fed through an amplifier with gain K to get the amplified signal KU_{out} , subtracted from the original input U_{in} , and fed back into the system H(s). The input to H(s) is then $U_{\text{in}} KU_{\text{out}}$, and the total circuit's input-output relation is

$$U_{\text{out}}(s) = H(s) [U_{\text{in}}(s) - KU_{\text{out}}(s)].$$

Circuit Behavior Without the Feedback Loop

• In this case we consider just U_{in} through H(s), which outputs U_{out} . We begin with the Laplace transform

$$U_{\mathrm{out}}(s) = H(s)U_{\mathrm{in}}(s) = \frac{\tau s}{1 + \tau s} \cdot \frac{\alpha}{s^2},$$

which we evaluate with partial fraction decomposition and get

$$U_{\text{out}}(s) = \alpha \tau \left(\frac{A}{s} + \frac{B}{1 + \tau s}\right) \implies 1 + s(\tau A + B) + A.$$

From this we conclude

$$A = 1$$
 and $B = -\tau A = -\tau$,

in terms of which the circuit's Laplace-domain output equals

$$U_{\text{out}}(s) = \alpha \tau \left(\frac{1}{s} - \frac{1}{s + (1/\tau)}\right).$$

• Taking the inverse Laplace transform of $U_{\text{out}}(s)$, the circuit's time-domain output is then

$$U_{\text{out}}(t) = \alpha \tau \left(1 - e^{-t/\tau} \right).$$

From this we see that in the limit $t \gg \tau$ we have $U_{\rm out}(t) \to \alpha \tau \neq U_{\rm in}(t) = \alpha t$. In this case, up to a multiplicative constant, the circuit acts like a differentiation circuit since $U_{\rm out} = \alpha \tau \propto \frac{{\rm d} U_{\rm in}}{{\rm d} t} = \alpha$. However, we have a problem: as we speed up the circuit's response by decreasing τ , the circuit's output falls in amplitude, and would eventually be indistinguishable from noise.

Circuit Behavior With the Feedback Loop

• With the amplifying feedback loop present, as discussed in the introductory paragraph, the circuit's output is

$$U_{\text{out}} = H(s)(U_{\text{in}} - KU_{\text{out}}).$$

We first aim to find the entire circuit's transfer function

$$H_{\text{tot}}(s) = \frac{U_{\text{out}}}{U_{\text{in}}},$$

taking into consideration the combination of both H(s) and the feedback amplifier K.

• We begin with the Laplace domain relationship

$$U_{\text{out}} = H(s)(U_{\text{in}} - KU_{\text{out}}).$$

and rearrange to get

$$U_{\text{out}}(1+KH) = HU_{\text{in}} \implies H_{\text{tot}} = \frac{U_{\text{out}}}{U_{\text{in}}} = \frac{H}{1+KH}.$$

From the given transfer function $H = \frac{\tau s}{1+\tau s}$ we see that, after some straightforward algebra, the circuit's total transfer function is

$$H_{\text{tot}}(s) = \frac{\tau s}{1 + \tau s + K \tau s} = \frac{\tau s}{1 + (1 + K)\tau s}.$$

• We now aim to express H_{tot} in a way it will be clear that the circuit with the feedback loop still acts as a differentiator. We have

$$H_{\rm tot} = \frac{1}{1+K} \frac{(1+K)\tau s}{1+(1+K)\tau s} \equiv \frac{1}{1+K} \frac{\widetilde{\tau} s}{1+\widetilde{\tau} s}.$$

Our condition for three-times faster tracking of the derivative in feedback mode is

$$\widetilde{\tau} = \frac{\tau}{3} \implies (1+K)\tau = \frac{\tau}{3} \implies K = -\frac{2}{3}.$$

• We will now see that adding the feedback loop mitigates the problem of the output amplitude falling as the circuit's response time τ decreases. We then have (adapting previous non-feedback results), the output

$$U_{\text{out}}(t) = \frac{1}{1+K}\alpha \widetilde{\tau}(1-e^{-t/\widetilde{\tau}}).$$

Noting that $\tilde{\tau} = (1 + K)\tau$, we then have

$$U_{\text{out}}(t) = \alpha \tau (1 - e^{-t/\tilde{\tau}}).$$

Lesson: the amplitude of the circuit's output (i.e. $\alpha \tau$) is not any smaller than without the feedback loop, but the circuit's response time (i.e. $\tilde{\tau} = \tau/3$) is three times faster. In fact, the response time $\tilde{\tau}$ could be arbitrarily adjusted by changing the value of K, without affecting the output amplitude $\alpha \tau$.

12.4 Bandpass Filter

• Figure 11 shows an example of an analog bandpass filter.

Figure 11: A simple analog bandpass filter.

To analyze the filter, we first define an equivalent circuit in which the parallel CL branch is replaced by an element with impedance $Z_{\rm eq}$. Assume the current out of $U_{\rm out}$ is zero, so all current through R flows entirely through $Z_{\rm eq}$ and into ground. We then write the voltage drop equations

$$U_{\rm in} - U_{\rm out} = IR$$
 and $U_{\rm out} = IZ_{\rm eq}$

and equate currents to get

$$\frac{U_{\rm in} - U_{\rm out}}{R} = \frac{U_{\rm out}}{Z_{\rm eq}} \implies U_{\rm in} = U_{\rm out} \left(1 + \frac{R}{Z_{\rm eq}}\right).$$

We then solve for the circuit's transfer function, which comes out to

$$H = \frac{U_{\text{out}}}{U_{\text{in}}} = \frac{Z_{\text{eq}}}{Z_{\text{eq}} + R}.$$

• We will now find an explicit expression for the equivalent impedance Z_{eq} , which we compute from

$$Z_{\rm eq}^{-1} = Z_{\rm C}^{-1} + Z_{\rm L}^{-1} = i\omega C + \frac{1}{i\omega L} = \frac{1-\omega^2 LC}{i\omega L} \implies Z_{\rm eq} = \frac{i\omega L}{1-\omega^2 LC}.$$

In terms of the just-computed equivalent impedance Z_{eq} , the circuit's transfer function, after forming common denominators, is

$$H = \frac{i\omega L}{R - \omega^2 LCR + i\omega L}.$$

• Next, to match convention, we will write the transfer function in terms of the complex frequency $s = i\omega$, i.e.

$$H(s) = \frac{sL}{R + s^2 LCR + sL}.$$

We then divide numerator and denominator by LRC to get

$$H(s) = \frac{s/(RC)}{s^2 + s/(RC) + 1/(LC)}.$$

We then introduce the new variables $\omega_0^2 \equiv 1/(LC)$ (this is the undamped circuit's resonance frequency) and $\omega_c = 1/(RC)$, in terms of which the circuit's transfer function reads

$$H(s) = \frac{s\omega_{\rm c}}{s^2 + s\omega_{\rm c} + \omega_0^2}.$$

Interpretation

• We analyze the circuit's output by finding the transfer function's zero and poles. The only zero is the trivial zero s = 0, while the transfer function's poles are the solution to the quadratic equation

$$s^2 + s\omega_c + \omega_0^2 = 0$$

Using the quadratic formula, the poles are

$$s_{\pm} = -\frac{\omega_{\rm c}}{2} \pm \frac{1}{2} \sqrt{\omega_{\rm c}^2 - 4\omega_0^2} = -\frac{\omega_{\rm c}}{2} \pm \frac{i}{2} \sqrt{4\omega_0^2 - \omega_{\rm c}^2}.$$

We will consider the limit case $\omega_0 \gg \omega_c$, in which case the filter's range of passed frequencies is "narrow" (relative to?). Assuming $\omega_0 \gg \omega_c$ the two poles read

$$s_{\pm} = -\frac{\omega_{\rm c}}{2} \pm \frac{i}{2} \sqrt{4\omega_0^2 - \omega_{\rm c}^2} \approx -\frac{\omega_{\rm c}}{2} \pm i\omega_0.$$

Theory: Pole-Zero Plot

• We draw s in the complex plane with Re s on the x axis and Im s on the abscissa. Zeros are drawn with a cross \times symbol and poles with a circle \circ symbol. Without proof, the pole closest to ω_0 turns out to have the strongest effect on the transfer function's behavior.

Next

• We now aim to find width of band pass filter as a function of ω_0 and ω_c in a neighborhood of ω_0 . We quantify the band pass filter's width as the frequencies at which the BPF's $|H(\omega)|$ characteristic falls by $-3\,\mathrm{dB}$ relative to the maximum resonance value $|H|(\omega_0)$.

To do so, we first write the factored transfer function as

$$H(s) = \frac{s\omega_{\rm c}}{(s-s_+)(s-s_-)} \to \frac{i\omega\omega_{\rm c}}{(i\omega-s_+)(i\omega-s_-)}.$$

If we draw $\pm \omega_0$ on the Im s axis, we find that $s_+ = -(\omega_c/2) + i\omega_0$ is much closer to the resonance frequency ω_0 than s_- , especially in the limit $\omega_0 \gg \omega_c$.

We thus consider only the effect of s_+ on the transfer function, and introduce the new transfer function

$$\widetilde{H} = \frac{1}{s - s_{+}} = \frac{1}{i(\omega - \omega_{0}) + (\omega_{c}/2)}.$$

This transfer function is a good approximation for H(s) near the resonance frequency ω_0 in the limit $\omega_0 \gg \omega_c$.

We ran out of time at this point; the problem is completed in the next exercise set.

13 Thirteenth Exercise Set

13.1 Bandpass Filter (continued)

• Begin with approximation to transfer function for $\omega_0 \gg \omega_c$.

$$\widetilde{H} = \frac{1}{s - s_+} = \frac{1}{i\omega - i\omega_0 + \omega_c/2} \implies |\widetilde{H}| = \frac{1}{\sqrt{(\omega - \omega_0)^2 + (\omega_c/2)^2}}$$

Our goal is to find width of resonance peak $|\widetilde{H}|(\omega)$ at an attenuation of -3 dB. In other words, we aim to find the frequencies solving the equation

$$20\log\left(\frac{|\widetilde{H}|}{|\widetilde{H}|_{\max}}\right)dB = -3dB.$$

To avoid problems with square root in definition of $|\widetilde{H}|$ we take use logarithm identity

$$10\log\left(\frac{\left|\widetilde{H}\right|^{2}}{\left|\widetilde{H}\right|_{\max}^{2}}\right)dB = -3dB. \tag{13.1}$$

We then make the auxiliary calculation

$$\left|\widetilde{H}\right|_{\max}^2 = \left(\left|\widetilde{H}\right|(\omega_0)\right)^2 = \frac{1}{(\omega_c/2)^2} = \frac{4}{\omega_c^2}$$

which we substitute into Equation 13.1 and divide through by 10 to get

$$\log \left[\frac{\omega_{\rm c}^2}{4} \cdot \frac{1}{(\omega - \omega_0)^2 + (\omega_{\rm c}/2)^2} \right] = -\frac{3}{10} = -0.3.$$

We then exponentiate both sides with base 10 to eliminate the logarithm, leaving

$$\frac{\omega_{\rm c}^2}{4} \cdot \frac{1}{(\omega - \omega_0)^2 + (\omega_{\rm c}/2)^2} = -\frac{3}{10} = 10^{-0.3} = 0.501 \approx \frac{1}{2}.$$

We then solve the resulting polynomial equation for ω , which results it

$$(\omega - \omega_0)^2 = \frac{\omega_c^2}{4} \implies \omega_{\pm} = \omega_0 \pm \frac{\omega_c}{2}$$

The band pass filter's frequency band, i.e. the frequency range in which the filter's gain is greater than $-3 \, dB$, is thus

$$\Delta\omega_{-3\,\mathrm{dB}} = \omega_+ - \omega_- = \omega_\mathrm{c}$$
.

Quality Factor

 \bullet In passing, we note that a resonance filter's quality factor Q is defined as

$$Q \equiv \frac{\omega_0}{\Delta \omega_{-3\,\mathrm{dB}}},$$

which in our case comes out to $Q = \omega_0/\omega_c$. The narrower a filter's resonance peak, the larger the filter's quality factor. In other words, a high-quality filter only passes a very narrow frequency range.

• Note that for the above band pass filter, for which $\omega_0^2 = 1/(LC)$ and $\omega_c = 1/(RC)$ we have

$$Q = \frac{\omega_0}{\omega_c} = \frac{RC}{\sqrt{LC}}.$$

Figure 12: A simple analog bandstop filter.

13.2 Band-Stop Filter

• Figure 12 shows an example of an analog bandstop filter.

To analyze the filter, we first define an equivalent circuit in which the series CL branch is replaced by an element with impedance

$$Z_{\rm eq} = Z_{\rm C} + Z_{\rm L} = \frac{1}{i\omega C} + i\omega L = \frac{1}{sC} + sL = \frac{1 + s^2 LC}{sC},$$

where we have replaced $i\omega$ with the Laplace-domain frequency s. We then write the voltage drop equations

$$U_{\rm in} - U_{\rm out} = IR$$
 and $U_{\rm out} = IZ_{\rm eq}$

and then equate currents to get

$$U_{\rm in} - U_{\rm out} = \frac{R}{Z_{\rm eq}} U_{\rm out} \implies H = \frac{U_{\rm out}}{U_{\rm in}} = \frac{Z_{\rm eq}}{R + Z_{\rm eq}}.$$

After substituting in the equivalent impedance, the filter's transfer function is

$$H(s) = \frac{1 + s^2 LC}{sRC + 1 + s^2 LC}.$$

We then divide numerator and denominator by LC to get the standard expression

$$H(s) = \frac{s^2 + (1/LC)}{s^2 + (R/L) \cdot s + 1/(LC)} \equiv \frac{s^2 + \omega_0^2}{s^2 + s\omega_c + \omega_0^2},$$

where we have defined the parameters $\omega_c = R/L$ and $\omega_0^2 = 1/(LC)$.

• Following an analogous procedure to the bandpass filter analysis in the previous exercise, we find that the bandstop filter's frequency width at $-3 \, dB$ attenuation is

$$\Delta\omega_{-3\,\mathrm{dB}} = \omega_{\mathrm{c}} = \frac{R}{L}.$$

The circuit's quality factor is

$$Q \equiv \frac{\omega_0}{\Delta \omega_{-3\,\mathrm{dB}}} = \frac{\omega_0}{\omega_\mathrm{c}} = \frac{L}{R} \frac{1}{\sqrt{LC}}.$$

13.3 Theory: Statistics

- Consider a set of N data points $\{z_i\}_{i=1}^N$, for example measurements of a physical quantity. We will call this set of points $\{z_i\}$ a sample.
 - Statistics assumes the sample points are drawn from a population described by a probability distribution with probability density function f(z). In the scope of this course, we will assume the sample values z_i come from a normally-distributed population, and thus obey $z_i \sim \mathcal{N}(\mu, \sigma^2)$; the values of the mean μ and variance σ^2 are said to parameterize the distribution. Importantly, the normal distribution's mean μ or variance σ^2 are in general unknown. One goal of statistics is to estimate the parameters of the distribution describing a sample of data points—in our case these parameters would be μ and σ^2 .
- Functions of the sample values z_i are called *sample statistics*, and can be used as *estimators* of the population parameters μ and σ^2 .

Estimator of Population Mean

• The estimator function for the population mean μ is just the average of the sample values $\{z_i\}$ and reads

$$\overline{z} = \frac{1}{N} \sum_{i=1}^{N} z_i.$$

• Formally, the factor 1/N comes from the requirement that the sample mean estimator \overline{z} be *unbiased*—this means that the expectation value of the estimator must equal the quantity it estimates (i.e. $\langle \overline{z} \rangle = \mu$).

To derive the coefficient 1/N, we first write the mean estimator in the general form

$$u = k \sum_{i=1}^{N} z_i,$$

where k is to be determined such that u is an unbiased estimator of population mean μ . The unbiased condition reads

$$\langle u \rangle = k \left\langle \sum_{i=1}^{N} z_i \right\rangle = k \sum_{i=1}^{N} \langle z_i \rangle = k N \mu \implies k = \frac{1}{N},$$

where we have used the identity $\langle z_i \rangle = \mu$, since the sample values are assumed to be normally distributed about the mean value μ . Requiring K = 1/N, the estimator of the population mean is then

$$u = \frac{1}{N} \sum_{i=1}^{N} z_i \equiv \overline{z}.$$

Estimator of Variance

• For a sample $\{z_i\}$ drawn for a population distributed as $\mathcal{N}(\mu, \sigma^2)$, the estimator of the population variance σ^2 is

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (z_{i} - \overline{z})^{2}, \qquad (13.2)$$

where \overline{z} is the sample mean. Without derivation, the coefficient 1/(N-1) comes from the requirement that $\langle s^2 \rangle = \sigma^2$, i.e. that s^2 is an unbiased estimator of σ^2 .

Comment: Estimating Variance if Mean is Known

• So far, for generality, we have assumed both the population mean μ and population variance σ^2 are unknown. Now, hypothetically assume we know the mean μ of the population from which a sample is drawn. In this case we define a new estimator for σ^2 according to

$$w^{2} = k \sum_{i=1}^{N} (z_{i} - \mu)^{2}.$$

We then apply the unbiased requirement $\langle w^2 \rangle = \sigma^2$ to get

$$\langle w^2 \rangle = k \sum_{i=1}^{N} \langle (z_i - a)^2 \rangle.$$

Now, by definition, $\langle (z_i - \mu)^2 \rangle = \sigma^2$, from which we have

$$\langle w^2 \rangle = kN\sigma^2 \implies k = \frac{1}{N}.$$

Lesson: if a sample's population mean μ is known, we can construct an unbiased estimator of the population variance σ^2 according to

$$w^{2} = \frac{1}{N} \sum_{i=1}^{N} (z_{i} - \mu)^{2}.$$

However, this is not a realistic situation. Normally the population mean μ is unknown, and we are limited to working with the sample mean \overline{z} , in which case we use the population variance estimator

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (z_{i} - \overline{z})^{2}.$$

13.4 Theory: The Chi-Square Distribution

• The chi-square distribution is used when estimating the population variance corresponding to a normally-distributed sample $\{x_i\}_{i=1}^N$. Assuming $x_i \sim \mathcal{N}(0,1)$, we first construct the chi-square statistic

$$\chi^2 = \sum_{i=1}^N x_i^2.$$

Without derivation, the thus-constructed statistic χ^2 is distributed according to

$$\chi^2 \sim \frac{\mathrm{d}P}{\mathrm{d}\chi^2} \equiv \chi^2(\nu),$$

where $\chi^2(\nu)$ denotes the chi-square distribution with ν degrees of freedom. The distribution's degrees of freedom depend on the size of the sample; if $x_i \sim \mathcal{N}(0,1)$ as above then $\nu = N$.

Note that, confusingly, both the sample statistic χ^2 and the corresponding probability distribution function are denoted by χ^2 .

• Now consider a general normally-distributed sample $\{z_i\}_{i=1}^N$ where $z_i \sim \mathcal{N}(\mu, \sigma^2)$. First, we construct the standardized variable

$$x_i = \frac{z_i - \mu}{\sigma} \sim \mathcal{N}(0, 1),$$

and then construct the χ^2 sample statistic according to

$$\chi^2 = \sum_{i=1}^{N} \frac{(z_i - \mu)^2}{\sigma^2} \sim \chi^2(N), \tag{13.3}$$

which is distributed as a chi-square distribution with N degrees of freedom.

In Practice

• In practice a sample's population mean μ is unknown, so the construction of the chi-square statistic in Equation 13.3 is not useful. Instead, we replace the population mean μ with its estimator \overline{z} to get

$$\chi^2 = \sum_{i=1}^{N} \frac{(z_i - \overline{z})^2}{\sigma^2} \sim \chi^2(N-1).$$

Note that when constructed with \overline{z} instead of μ , the chi-square statistic is distributed according to a chi-square distribution $\chi^2(N-1)$ with N-1 (and not N) degrees of freedom.

• Next, recalling the variance estimator s^2 in Equation 13.2, we can write the chi-square statistic as

$$\chi^2 = \sum_{i=1}^N \frac{(z_i - \overline{z})^2}{\sigma^2} = (N-1)\frac{s^2}{\sigma^2} \implies \sigma^2 = (N-1)\frac{s^2}{\chi^2}.$$

Now, we know that the sample statistic χ^2 is distributed according to a chi-square distribution with N-1 degrees of freedom. The chi-square distribution is defined for $\chi^2 \in (0, \infty)$, so the sample statistic χ^2 , and in turn σ^2 , could fall anywhere in the range $(0, \infty)$. In practice, we find a confidence interval (σ_-^2, σ_+^2) for which we can expect, at a given confidence level, that the true population variance σ^2 falls in the range (σ_-^2, σ_+^2) .

Confidence Interval

• Recall the equation

$$\sigma^2 = (N-1)\frac{s^2}{\chi^2}.$$

Define upper and lower confidence bounds χ_+^2 and χ_-^2 and corresponding bounds σ_+^2 and σ_-^2 .

• The confidence interval (σ_-^2, σ_+^2) is associated with a significance level α . The probability that $\sigma^2 < \sigma_-^2$ is $\alpha/2$ and likewise the probability that $\sigma^2 > \sigma_+^2$ is $\alpha/2$. The probability that the true population variance σ^2 falls outside of the confidence interval (σ_-^2, σ_+^2) is then α .

• We find the upper confidence level χ^2_+ from the value of χ^2 satisfying

$$P(\chi^2 > \chi_+^2) = \frac{\alpha}{2},$$

and the lower confidence limit χ^2 from the value of χ^2 satisfying

$$P(\chi^2 < \chi_-^2) = \frac{\alpha}{2}$$
 or $P(\chi^2 > \chi_-^2) = 1 - \frac{\alpha}{2}$.

In practice, the value of χ_+ for a given α and number of degrees of freedom is found from a table of the chi-squared distribution's inverse survival function, which is tabulated in Appendix B.

Using the confidence levels χ_{-}^2 and χ_{+}^2 , we find the population variance confidence levels σ_{+}^2 and σ_{-}^2 from

$$\sigma_{\pm}^2 = (N-1)\frac{s^2}{\chi_{\mp}^2}.$$

Note the signs of σ_{\pm}^2 and χ_{\mp}^2 are reversed.

13.5 Theory: Student's t Distribution

• Student's t distribution is used when estimating the population mean associated with a normally-distributed sample $\{z_i\}_{i=1}^N \sim \mathcal{N}(\mu, \sigma^2)$. Using the sample values z_i , we first construct the sample statistic

$$T \equiv \frac{\overline{z} - \mu}{s} \sqrt{N}$$

where \overline{z} , s and N are sample's mean, variance, and size, respectively. Without proof, the T statistic is distributed according to

$$T \sim \frac{\mathrm{d}P}{\mathrm{d}T} = S(\nu),$$

where $S(\nu)$ is Student's t distribution with ν degrees of freedom; $\nu = N-1$ for a T statistic constructed from a sample of size N.

• Next note that in terms of T, the population mean μ reads

$$\mu = \overline{z} - \frac{Ts}{\sqrt{N}}.\tag{13.4}$$

• Student's t distribution is symmetric, which motivates the definition of upper and lower confidence levels T_+ and T_- centered about T=0, such that $T_-=-T_+$. We then use T_- and T_+ to construct corresponding confidence intervals μ_{\pm} for the population mean using Equation 13.4.

A set of confidence levels μ_{-} and μ_{+} are associated with a significance level α such that the probability that the population mean μ exceeds μ_{+} is $\alpha/2$, while the probability that μ is less than μ_{-} is $\alpha/2$.

• We find the upper level T_+ from the value of T satisfying

$$P(|T| > T_+) = \alpha$$

while the lower level T_{-} is trivially found from $T_{-} = -T_{+}$. In practice, the value of T_{+} for a given α and number of degrees of freedom is found from a table of the t distribution's inverse survival function, which is tabulated in Appendix C.

With T_{\pm} known, the corresponding confidence levels μ_{\pm} for the population mean are

$$\mu_{\pm} = \overline{z} - T_{\pm} \frac{s}{\sqrt{N}}.$$

13.6 Example: Simple Estimation of Population Mean

Given a sample

$$Z = \{1.162, 0.25, -0.052, 0.014, -0.362, 0.756, 1.62, 0.608, -2.15\},\$$

which we may assume is drawn from a normally-distributed population $\mathcal{N}(\mu, \sigma^2)$, find the confidence interval μ_{\pm} for the population mean μ at the significance level $\alpha = 0.1$.

• We aim to estimate the population mean, so we will use the Student statistic

$$T = \frac{\overline{z} - \mu}{s} \sqrt{N}.$$

We first compute the sample mean \overline{z} and variance s^2 ; these come out to

$$\overline{z} = \frac{1}{N} \sum_{i} z_i = 0.205$$
 and $s^2 = \frac{1}{N-1} \sum_{i} (z_i - \overline{z})^2 = (1.082)^2$

The corresponding T statistic will be distributed according to Student's t distribution with $\nu = N - 1 = 8$ degrees of freedom.

• We find the upper confidence interval T_+ for the T statistic from the value of T_+ solving the equation $P(|T| > T_+)\alpha$; for $\nu = 8$ and $\alpha = 0.1$, using the table in Appendix C, this comes out to

$$T_{+} = 1.860 \implies T_{-} = -T_{+} = -1.860.$$

The corresponding confidence interval for μ , at the significance level $\alpha = 0.1$, is

$$\mu_{\pm} = 0.205 \pm 1.860 \cdot \frac{1.082}{3} \implies (\mu_{-}, \mu_{+}) = (0.877, -0.466).$$

14 Fourteenth Exercise Set

14.1 Theory: Hypotheses Testing

14.1.1 Mean Testing

- Consider a normally-distributed sample $\{z_i\}_{i=1}^N$ where $z_i \sim \mathcal{N}(\mu, \sigma^2)$. We then define a null hypotheses that $\mu = \mu_0$.
- Since we are working with the population mean μ we use the T statistic, which we construct under the hypotheses $\mu = \mu_0$ according to

$$T_0 = \frac{\overline{z} - \mu_0}{s^2} \sqrt{N}.$$

This produces a value of T_0 under the hypotheses $\mu = \mu_0$.

• To test the null hypotheses $\mu = \mu_0$ at the significance level α , we first find the critical value T_c solving the equation

$$P(|T| > T_{\rm c}) = \alpha,$$

assuming T is distributed according to Student's t distribution with $\nu = N-1$ degrees of freedom. Finally, we compare T_c to the value of T_0 computed under the hypotheses $\mu = \mu_0$. If $|T_0| > T_c$, we reject the null hypotheses $\mu = \mu_0$ at the significance level α . We cannot, however, confirm the null hypotheses if $|T_0| < T_c$.

14.1.2 Variance Testing

• In this case define the null hypotheses $\sigma^2 = \sigma_0^2$. We then compute the value of the chi-square sample statistic under the hypotheses $\sigma^2 = \sigma_0^2$ to get the value

$$\chi_0^2 = (N-1)\frac{s^2}{\sigma^2}.$$

• To test the hypotheses $\sigma^2 = \sigma_0^2$ at the significance level α , we then find the values χ^2_+ and χ^2_- for which

$$P(\chi^2 > \chi_+^2) = \frac{\alpha}{2}$$
 and $P(\chi^2 > \chi_-^2) = 1 - \frac{\alpha}{2}$,

assuming that the sample statistic χ^2 is distributed according to a chi-square distribution with $\nu=N-1$ degrees of freedom. Then if $\chi_0^2<\chi_-^2$ or $\chi_0^2>\chi_+^2$ (meaning that the chi-square value χ_0^2 found under the hypotheses $\sigma^2=\sigma_0^2$ falls outside the confidence interval χ_-^2,χ_+^2), we reject the null hypotheses $\sigma^2=\sigma_0^2$ at the significance level α .

14.1.3 Comparing Two Sample Means

• Consider two samples

$$\{X_i\}: X_i \sim \mathcal{N}(\mu_x, \sigma^2)$$
 and $\{Y_i\}: Y_i \sim \mathcal{N}(\mu_y, \sigma^2),$

which could represent, say, measurements of the same physical quantity with the same instrument but measured at two different times of the day. Importantly, we assume both samples have the same variance σ^2 , although the mean values μ_x and μ_y may differ.

• We then use these samples to define the sample statistic

$$T = \frac{(\overline{x} - \overline{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{1}{N_x} - \frac{1}{N_y}}} \cdot \frac{\sqrt{N_x + N_y - 2}}{\sqrt{s_x^2(N_x - 1) + s_y^2(N_y - 1)}},$$
 (14.1)

which, without proof, is distributed according to Student's t distribution with $\nu = N_x - N_y - 2$ degrees of freedom.

• Next, we define the equal-variance hypotheses $\mu_x = \mu_y$, which we use to compute the statistic in Equation 14.1. In this case $(\mu_x - \mu_y) = 0$, and we have

$$T_0 = \frac{(\overline{x} - \overline{y})}{\sqrt{\frac{1}{N_x} - \frac{1}{N_y}}} \cdot \frac{\sqrt{N_x + N_y - 2}}{\sqrt{s_x^2(N_x - 1) + s_y^2(N_y - 1)}}.$$

• To test the hypotheses $\mu_x = \mu_y$ at the significance level α , we compute the value of T_c solving the equation

$$P(|T| > T_c) = \alpha,$$

where we assume T is distributed according to Student's t distribution with $\nu = N_x - N_y - 2$ degrees of freedom.

Finally, if $|T_0| > T_c$, we reject the hypotheses $\mu_x = \mu_y$ at the significance level α .

14.2 Example: Hypotheses Testing of Sample Mean

14.2.1 Single-Sample Test

Given a six-measurement sample

$$x_i = \{0.44, 0.46, 050, 0.47, 0.48, 0.47\},\$$

which we may assume is drawn from a normally-distributed population $\mathcal{N}(\mu, \sigma^2)$, test the hypotheses $\mu = 0.50 \equiv \mu_0$ at the significance level $\alpha = 0.1$.

• Since we are working with population mean, we will use the T statistic

$$T = \frac{\overline{x} - \mu}{s} \sqrt{N},$$

which will distributed according to Student's t distribution with $\nu = N - 1 = 5$ degrees of freedom. We first make the intermediate calculations

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{6} x_i \approx 0.47$$
 and $s^2 = \frac{1}{N-1} \sum_{i=1}^{6} (x_i - \overline{x})^2 \approx (0.02)^2$,

and then compute the value of T under the hypotheses $\mu = \mu_0$. Using the just-computed values of \overline{x} and s^2 , this comes out to

$$T_0 = \frac{\overline{x} - \mu_0}{s} \sqrt{N} = -3.67.$$

• To test the hypotheses $\mu = \mu_0$ at the significance level α , we then find the critical T statistic value T_c solving the equation $P(|T| > T_c) = \alpha$ for $\nu = 5$ degrees of freedom. With the table in Appendix C, this comes out to

$$T_{\rm c}(\alpha = 0.1, k - 5) = 2.015.$$

• Finally, we test the hypotheses and find

$$|T_0| = 2.015 > T_c = -3.67,$$

on the basis of which we reject the null hypotheses $\mu = \mu_0$ at the significance level $\alpha = 0.1$ for our given sample. Interpretation: the result $|T_0| > T_c$ means that the value T_0 constructed under the hypotheses $\mu = \mu_0$ lies outside the confidence interval $[T_-, T_+]$ for the sample mean μ .

14.2.2 Two-Sample Test

We repeat the experiment above and get the new sample

$$y_i = \{0.52, 0.50, 0.55, 0.53, 0.52, 0.53\},\$$

where we may assume $y_i \sim \mathcal{N}(\mu_x, \sigma^2)$. Test the null hypotheses $\mu_x = \mu_y$ at the significance level $\alpha = 0.1$.

• We first compute the sample mean and variance

$$\overline{y} \approx \frac{1}{N_y} \sum_{i=1}^{6} y_i = 0.525$$
 and $s_y^2 = \frac{1}{N_y - 1} \sum_{i=1}^{6} (y_i - \overline{y})^2 \approx (0.016)^2$.

For review, the corresponding sample statistics for x sample were

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{6} x_i \approx 0.47$$
 and $s^2 = \frac{1}{N-1} \sum_{i=1}^{6} (x_i - \overline{x})^2 \approx (0.02)^2$.

• We then define the two-sample T statistic

$$T = \frac{(\overline{x} - \overline{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{1}{N_x} - \frac{1}{N_y}}} \cdot \frac{\sqrt{N_x + N_y - 2}}{\sqrt{s_x^2(N_x - 1) + s_y^2(N_y - 1)}},$$

which will be distributed according to the Student distribution with $\nu = N_x - N_y - 2$ degrees of freedom. Using this statistic, we then compute the value T_0 under the null hypotheses $\mu_x = \mu_y$. In this case $(\mu_x - \mu_y) = 0$ and we have

$$T_0 = \frac{(\overline{x} - \overline{y})}{\sqrt{\frac{1}{N_x} - \frac{1}{N_y}}} \cdot \frac{\sqrt{N_x + N_y - 2}}{\sqrt{s_x^2(N_x - 1) + s_y^2(N_y - 1)}} \approx 5.3$$

• To test the hypotheses $\mu_x = \mu_y$ at the significance level $\alpha = 0.1$, we then find the value T_c satisfying the equation

$$P(|T| > T_c) = \alpha.$$

Using the table of the t distribution's inverse survival function in Appendix C with $\nu = 10$, this comes out to

$$T_c(\alpha = 0.1, \nu = 10) \approx 1.81.$$

We then perform the hypotheses test and find

$$|T_0| = 5.3 > T_c = 1.81,$$

on the basis of which we reject the hypotheses $\mu_x = \mu_y$ at the significance level $\alpha = 0.1$ for our given samples $\{x_i\}$ and $\{y_i\}$.

14.3 Theory: Goodness-of-Fit Tests

Goodness-of-fit tests are used to test if a sample is distributed according to a given probability distribution. In symbols, given a sample $\{x_i\}$, we aim to test if $x_i \sim f(x)$ for a given probability distribution f(x).

14.3.1 Pearson Chi-Square Test

- We first consider the Pearson chi-square test, in which case we denote chi by $\chi_{\rm P}^2$. Given a sample of N measurements $\{x_i\}$, draw a histogram of the sample values using an "appropriate number of bins" (clarified below) and count the number of measurements falling into each bin, where we let N_k denote the number of measurements falling into the k-th bin.
- We then compare each N_k to the predicted number of samples in the k-th bin based on the assumed probability distribution; this is

$$N_{\mathbf{k}}^{\text{pred}} = Np_{\mathbf{k}},$$

where we of course require $N = \sum_{k} N_k$; we find the probability p_k from

$$p_k = \int_{x_{k-1}}^{x_k} \frac{\mathrm{d}P}{\mathrm{d}x} \, \mathrm{d}x.$$

• Using the values of N_k and p_k and N we then construct the sample statistic

$$\chi_{\rm P}^2 = \sum_{k=1}^B \frac{(N_k - Np_{\rm k})^2}{Np_{\rm k}},$$

where B is the number of bins. It turns out that the thus-constructed statistic $\chi_{\rm P}^2$ is (approximately) distributed as

$$\chi^2_{\rm P} \sim \chi^2(B-1),$$

i.e. a chi-square distribution with $\nu=B-1$ degrees of freedom. However, for $\chi^2_{\rm P}\sim\chi^2(B-1)$ to hold, we require $Np_k\gtrsim 5$ for each bin. If the condition $Np_k\gtrsim 5$ does not hold, we typically join adjacent bins to reach the required number Np_k of samples per bin.

• Assuming the condition $Np_k \gtrsim 5$ holds, we then aim to test the hypotheses that the sample $\{x_i\}$ is distributed according to $x_i \sim \frac{\mathrm{d}P}{\mathrm{d}x}$ at the significance level α . To do so, we first find the value of χ_c^2 satisfying

$$P(\chi^2 > \chi_{\rm c}^2) = \alpha$$

using a chi-square distribution with B-1 degrees of freedom. Finally, if $\chi_{\rm P}^2 > \chi_{\rm c}^2$, we reject the assumed distribution $\frac{{\rm d}P}{{\rm d}x}$ for the $\{x_i\}$ at the significance level α .

14.4 Example: Pearson Chi-Square Test

We roll a six-side die 60 times and get the results

Outcome	Number of events
1	5
2	8
3	9
4	8
5	10
6	20

Use the Pearson chi-square test to determine if the die is fair at the two confidence levels 0.99 and 0.95, i.e. $\alpha = 0.01$ and $\alpha = 0.05$.

- We divide the sample into the obvious choice of 6 bins, one for each possible outcome. In this case the N_k are just the number of events for each outcome in the table above, and $N = \sum_k N_k = 60$.
- Mathematically, a fair die means the outcomes are distributed according to a uniform distribution, i.e. $p_k = 1/6$ for k = 1, 2, ..., 6. Assuming a uniform distribution, we then find that

$$Np_k = 60 \cdot \frac{1}{6} = 10 \text{ for } k = 1, \dots, 6.$$

Since $Np_k > 5$ for all k, we can use the Pearson chi-square test.

• We then construct the Pearson chi-square statistic according to

$$\chi_{\rm P}^2 = \sum_{k=1}^B \frac{(N_k - Np_{\rm k})^2}{Np_{\rm k}},$$

Substituting in the values of N_k , p_k and N, we find

$$\chi_{\rm P}^2 = \frac{(5-10)^2}{10} + \frac{(8-10)^2}{10} + \frac{(9-10)^2}{10} + \frac{(8-10)^2}{10} + \frac{(10-10)^2}{10} + \frac{(20-10)^2}{10}$$

$$= 2.5 + 0.4 + 0.1 + 0.4 + 0.0 + 10$$

$$= 13.4.$$

• First, for $\alpha = 0.01$ and using a chi-square distribution with $\nu = B - 1 = 5$ degrees of freedom, we use the table of the chi-squared distribution's inverse survival function in Appendix B to find

$$P(\chi^2 > \chi_c^2) = \alpha \implies \chi_c^2 = 15.086.$$

We then perform the Pearson chi-square test and find

$$\chi_{\rm P}^2 = 13.4 < \chi_{\rm c}^2 = 15.086,$$

which means we *cannot* reject the hypotheses that the dies' outcomes are uniformly distributed at the significance level $\alpha = 0.99$.

• Meanwhile, for $\alpha = 0.05$, we find

$$P(\chi^2 > \chi_c^2) = \alpha \implies \chi_c^2 = 11.07.$$

In this case we perform the Pearson chi-square test and find

$$\chi_{\rm P}^2 = 13.4 > \chi_{\rm c}^2 = 11.07,$$

which means we can reject the hypotheses that the dice is uniformly distributed (i.e. that the dice is fair) at the significance level $\alpha = 0.05$.

14.5 Theory: Linear Least Squares

• Given vector of N measurements $\boldsymbol{z} \in \mathbb{R}^N$, which each measurement z_i has the same uncertainty σ^2 , we aim to find the optimal values of the M parameters $\boldsymbol{x} \in \mathbb{R}^M$ for the model

$$z = \mathbf{H}x + r. \tag{14.2}$$

Concretely, we aim to find the parameter values \hat{x} minimizing the quadratic form

$$\chi^2 = \mathbf{r}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{r}$$
, where $\mathbf{R} = \sigma^2 \mathbf{I}$.

Solving for r in Equation 14.2, we see that χ^2 is computed according to

$$\chi^2 = (\boldsymbol{z} - \mathbf{H} \boldsymbol{x})^{\top} \mathbf{R}^{-1} (\boldsymbol{z} - \mathbf{H} \boldsymbol{x}).$$

Importantly, the quadratic form χ^2 is distributed as $\chi^2 \sim \chi^2(N-M)$, i.e. a chi-square distribution with $\nu = N-M$ degrees of freedom.

• Without derivation, the process of minimizing χ^2 with respect to the model parameters \boldsymbol{x} results in the equations

$$\hat{\boldsymbol{x}} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\boldsymbol{z}$$
 and $\mathbf{P} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\sigma^2$,

where \hat{x} holds the optimal parameter values and **P** is the corresponding covariance matrix for the optimal parameters \hat{x} .

 \bullet To find the *structure matrix* **H**, we first define a model

$$z_i = x_1 f_1(t_i) + \cdots + x_M f_M(t_i) + r_i \text{ for } i = 1, 2, \dots, N,$$

where M is the number of parameters. The structure matrix \mathbf{H} is then

$$\mathbf{H} = \begin{pmatrix} f_1(t_1) & f_1(t_1) & \cdots & f_M(t_1) \\ f_1(t_2) & f_1(t_2) & \cdots & f_M(t_2) \\ \vdots & \cdots & \ddots & \vdots \\ f_1(t_N) & f_1(t_N) & \cdots & f_M(t_N) \end{pmatrix}$$

Measurements with Different Variances

• If each measurement z_i has a different variance, e.g. σ_i^2 instead of σ^2 , we then have

$$(\mathbf{R})_{ij} = \sigma_i^2 \delta_{ij}$$

In this case the quadratic form χ^2 generalizes to

$$\chi^2 = (\boldsymbol{z} - \mathbf{H}\boldsymbol{x})^{\top} \mathbf{R}^{-1} (\boldsymbol{z} - \mathbf{H}\boldsymbol{x}),$$

while the optimal estimate and covariance matrix become

$$\widehat{\boldsymbol{x}} = (\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^{\top} \mathbf{R}^{-1} \boldsymbol{z}$$
 and $\mathbf{P} = (\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H})^{-1}$.

15 Fifteenth Exercise Set

15.1 Example: Linear Least Squares for $z_i = x_0 t_i + r_i$

• Consider a model with a single parameter x_0 of the form

$$z_i = x_0 t_i + r_i.$$

We will first determine structure matrix \mathbf{H} . We denote a hypothetical vector of N measurements as

$$oldsymbol{z} = egin{pmatrix} z_1 \ z_2 \ dots \ z_N \end{pmatrix},$$

while the vector of parameters for our simple one-parameter model is just $\mathbf{x} = (x_0)$. Recalling the general expression $z = x_0 f_0(t_i) + r_i$, we see that in our case $f_0 = t_i$, and the structure matrix reads

$$\mathbf{H} = egin{pmatrix} f_0(t_1) \\ f_0(t_2) \\ dots \\ f_0(t_N) \end{pmatrix} = egin{pmatrix} t_1 \\ t_2 \\ dots \\ t_n \end{pmatrix}.$$

• Next we compute

$$\mathbf{H}^{\top}\mathbf{H} = \begin{pmatrix} t_1 \ t_2 \ \cdots t_N \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix} = \sum_{i=1}^{N} t_i^2 \quad \text{and} \quad \mathbf{H}^{\top} \boldsymbol{z} = \begin{pmatrix} t_1 \ t_2 \ \cdots t_N \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \sum_{i=1}^{N} z_i t_i.$$

From here we find the covariance "matrix"

$$\mathbf{P} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\sigma^2 = \frac{\sigma^2}{\sum_{i=1}^{N} t_i^2} = \sigma_{\widehat{x}_0}^2,$$

while the corresponding optimal parameter is

$$\widehat{\boldsymbol{x}} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\boldsymbol{z} = \frac{\sum_{i=1}^{N} t_i z_i}{\sum_{i=1}^{N} t_i^2} = \widehat{x}_0.$$

15.2 Theory: Linear Least Squares for $z_i = x_0t_i + x_1 + r_i$

• In this section we will consider in detail the two-parameter model

$$z_i = x_0 t_i + x_1 + r_i.$$

The model's parameter vector and structure matrix are

$$m{x} = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \quad ext{and} \quad m{H} = \begin{pmatrix} t_1 & 1 \\ t_2 & 1 \\ dots & 1 \\ t_N & 1 \end{pmatrix}.$$

83

• First, we compute the product

$$\mathbf{H}^{\top}\mathbf{H} = \begin{pmatrix} t_1 & t_2 & \cdots & t_N \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & 1 \\ t_N & 1 \end{pmatrix} = \begin{pmatrix} \sum t_i^2 & \sum t_i \\ \sum t_i & N \end{pmatrix},$$

where the sums runs over i from 1 to N. We then compute inverse of $\mathbf{H}^{\top}\mathbf{H}$, using the general 2×2 matrix identity

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Applied to $\mathbf{H}^{\mathsf{T}}\mathbf{H}$ we have

$$(\mathbf{H}^{\top}\mathbf{H})^{-1} = \frac{1}{N \sum t_i^2 - (\sum t_i)^2} \begin{pmatrix} N & -\sum t_i \\ -\sum t_i & \sum t_i^2 \end{pmatrix}$$

The model's corresponding covariance matrix is then $\mathbf{P} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\sigma^2$, assuming the measurements $\{z_i\}$ used to construct the model all have the same variance σ^2 .

• To find the optimal parameters \hat{x} , we first max the auxiliary calculation

$$\mathbf{H}^{\top} oldsymbol{z} = \begin{pmatrix} t_1 & t_2 & \cdots & t_N \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} \sum t_i z_i \\ \sum z_i \end{pmatrix},$$

in terms of which the optimal parameters \hat{x} are then

$$\widehat{\boldsymbol{x}} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\boldsymbol{z} = \frac{1}{N\sum t_i^2 - \left(\sum t_i\right)^2} \begin{pmatrix} N\sum t_i z_i - \left(\sum t_i\right) \cdot \left(\sum z_i\right) \\ -\left(\sum t_i\right) \cdot \left(\sum t_i z_i\right) + \left(\sum t_i^2\right) \cdot \left(z_i\right) \end{pmatrix}.$$

• Next, for shorthand, we define the constant

$$C = N \sum t_i^2 - \left(\sum t_i\right)^2,$$

in terms of which the individual parameters \hat{x}_0 and \hat{x}_1 read

$$\widehat{x}_0 = \frac{1}{C} \left[N \sum t_i z_i - \left(\sum t_i \right) \cdot \left(\sum z_i \right) \right], \tag{15.1}$$

$$\widehat{x}_1 = \frac{1}{C} \left[\left(\sum t_i^2 \right) \cdot \left(\sum z_i \right) - \left(\sum t_i \right) \cdot \left(\sum t_i z_i \right) \right]$$
 (15.2)

• Next, we aim to express x_1 in terms of x_0 . We first multiply the equation for \widehat{x}_0 through by $C \sum t_i$ to get

$$C\widehat{x}_0\left(\sum t_i\right) = N\left(\sum t_i\right) \cdot \left(\sum t_i z_i\right) - \left(\sum t_i\right)^2 \left(\sum z_i\right),$$

and then multiply the equation for \hat{x}_1 through by CN to get

$$C\widehat{x}_1N = N\left(\sum t_i^2\right)\left(\sum z_i\right) - N\left(\sum t_i\right)\left(\sum t_iz_i\right).$$

We then add these equations and cancel common terms to get

$$C\left[\widehat{x}_{0}\left(\sum t_{i}\right)+\widehat{x}_{1}N\right]=N\left(\sum t_{i}^{2}\right)\left(\sum z_{i}\right)-\left(\sum t_{i}\right)^{2}\left(\sum z_{i}\right)$$

$$=\left(\sum z_{i}\right)\left[N\sum t_{i}^{2}-\left(\sum t_{i}\right)^{2}\right]$$

$$=\left(\sum z_{i}\right)\cdot C.$$

We then cancel C from both sides of the equation to get

$$\widehat{x}_0 \sum t_i + \widehat{x}_1 N = \sum z_i,$$

from which we can express \hat{x}_1 in terms of \hat{x}_0 as

$$\widehat{x}_1 = \frac{1}{N} \sum z_i - \frac{1}{N} \left(\sum t_i \right) \widehat{x}_0.$$

But the first is just the average of the measurements \overline{z} and second term's coefficient is the average \overline{t} of the independent variable. We thus have

$$\widehat{x}_1 = \overline{z} - \overline{t}\widehat{x}_0.$$

Next: \hat{x}_0

• Recall from Equation 15.1 that \hat{x}_0 is given by

$$\widehat{x}_0 = \frac{1}{N \sum t_i^2 + (\sum t_i)^2} \cdot \left[N \sum t_i z_i - \sum t_i \sum z_i \right].$$

$$= \frac{1}{N \sum t_i^2 + -N^2 \overline{t}^2} \cdot \left[N \sum t_i z_i - N^2 \overline{t} \overline{z} \right],$$

where we have recognized expressions for $N\bar{t}$ and $N\bar{z}$ in square bracket term and \bar{t} in denominator. We then cancel common N terms, factor out remaining N, then recognize \bar{t}^2 in denominator to get

$$\widehat{x}_0 = \frac{\overline{tz} - \overline{t}\overline{z}}{\overline{t^2} - \overline{t}^2}$$

Lesson: an equivalent expression for finding \overline{x}_0 for the linear model $z_i = x_0 t_i + x_1 + r_i$. We then can find \widehat{x}_1 from $\widehat{x}_1 = \overline{z} - \overline{t}\widehat{x}_0$.

• Main takeaway is to have equations for optimal parameters ready instead of finding these by definition from structure matrix.

15.3 Exercise: Linear Least Squares with a Quadratic Model

We are given the following data for a car's fuel consumption C as a function of its speed v:

$v [\mathrm{km} \mathrm{h}^{-1}]$	$\mathrm{C}\;[\mathrm{L}/100\mathrm{km}]$
60	4.8
72	5.0
90	7.1
120	8.2
150	11.0

The uncertainty on each measurement is $\sigma_C^2 = 0.5 \, L/100 \, km$. At the significance level $\alpha = 0.1$, test the hypotheses that the consumption obeys the quadratic model $C = C_0 + \beta v^2$.

Computing Optimal Model Parameters

• We will first find the optimal parameter values \widehat{C}_0 and $\widehat{\beta}$, then find the corresponding form χ^2 . To match the model $C = C_0 + \beta v^2$ to the model $z_i = x_0 t_i + x_1$ from the previous section, we first introduce the new notation $v^2 \to t$, $C \to z$ and define

$$\boldsymbol{x} = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \rightarrow \begin{pmatrix} \beta \\ C_0 \end{pmatrix}.$$

We can then directly use the previous section's results, which reveal that the optimal model parameters are

$$\widehat{x}_0 = \widehat{\beta} = \frac{\overline{tz} - \overline{t}\overline{z}}{\overline{t^2} - \overline{t}^2}$$
 and $\widehat{x}_1 = \widehat{C}_0 = \overline{z} - \overline{t}\widehat{x}_0.$ (15.3)

To find numeric values, we have to first compute \overline{z} , \overline{t} , $\overline{t^2}$ and \overline{tz} . Using a table for better organization, we have

	$z = C_0$	v	$t = v^2$	$t^2 [\times 10^4]$	tz
Γ	4.8	60	3600	1296	17280
	5.0	72	5184	2687	25920
	7.1	90	8100	6561	57510
	8.2	120	14400	20736	118080
	11.0	150	22500	50625	247500

From the table we find $\overline{z} = 7.22$ and $\overline{t} = 10756.8$ and $\overline{t^2} = 16381 \cdot 10^4$ and $\overline{tz} = 93258$, which we substitute into Equation 15.3 to get

$$\hat{\beta} = 3.24 \cdot 10^{-4} \, (\text{L}/100 \, \text{km}) \cdot \text{km h}^{-2}$$
 and $\hat{C}_0 = 3.73 \, \text{L km}^{-1}$.

Part Two: Confidence Interval for Fuel Consumption

• We begin with the general linear least squares quadratic form expression

$$\chi^2 = (\boldsymbol{z} - \mathbf{H}\widehat{\boldsymbol{x}})^{\top} \mathbf{R}^{-1} (\boldsymbol{z} - \mathbf{H}\widehat{\boldsymbol{x}}).$$

In our case z is simply the vector of measurements C_i , while $\mathbf{H}\hat{x}$ is the predicted consumption on the basis of the optimal model parameters, which we will denote by $C(v_i; \hat{x})$, and $\mathbf{R} = \sigma^2 \mathbf{I}$, in terms of which χ^2 comes out to

$$\chi^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{N} \left[C_{i} - C(v_{i}; \widehat{\boldsymbol{x}}) \right]^{2}.$$
 (15.4)

We then find the values C_i and $C(v_i; \hat{x})$ for each measurement v_i . The results are listed in the table below

C_i	$C(v_i, \widehat{\boldsymbol{x}})$
4.8	4.90
5.0	5.41
7.1	6.35
8.2	8.40
11.0	11.02

We then substitute these values into Equation 15.4 and find

$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^{N} \left[C_i - C(v_i; \hat{x}) \right]^2 = 3.1 \equiv \chi_0^2.$$

• Finally, we aim to test the hypotheses, at $\alpha = 0.1$, that the given data points are indeed distributed according to the quadratic model $C = C_0 + \beta v^2$.

Recall that the chi-square statistic in linear least squares obeys a chi-square distribution with $\nu=N-M$ degrees of freedom (N being number of data points and M number of parameters). Our current problem has N=5 and M=2, so $\nu=5-2=3$. We then find the one-sided confidence limit $\chi^2_{\rm c}$ solving the equation

$$P(\chi^2 > \chi_c^2) = \alpha \implies \chi_{c_+}^2(\alpha = 0.1, \nu = 3) = 6.25.$$

Performing the hypothesis test, we find

$$\chi_0^2 = 3.1 < \chi_c^2 = 6.25,$$

which means that we cannot reject the quadratic model on the basis of our measurements at the significance level $\alpha = 0.1$.

A Standard Normal Cumulative Distribution Function

x	0.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	5040	5080	5120	5160	5199	5239	5279	5319	5359
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0.2	5793	5832	5871	5910	5948	5987	6026	6064	6103	6141
0.3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0.4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
0.5	6915	6950	6985	7019	7054	7088	7123	7157	7190	7224
0.6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0.7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0.8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0.9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389
1.0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1.1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1.2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1.3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1.4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1.5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1.6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1.7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1.8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1.9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2.0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2.1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2.2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2.4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2.5	9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2.6	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
2.7	9965	9966	9967	9968	9969	9970	9971	9972	9973	9974
2.8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2.9	9981	9982	9982	9983	9984	9984	9985	9985	9986	9986
3.0	9987	9987	9987	9988	9988	9989	9989	9989	9990	9990
3.1	9990	9991	9991	9991	9992	9992	9992	9992	9993	9993
3.2	9993	9993	9994	9994	9994	9994	9994	9995	9995	9995
3.3	9995	9995	9995	9996	9996	9996	9996	9996	9996	9997
3.4	9997	9997	9997	9997	9997	9997	9997	9997	9997	9998
3.5	9998	9998	9998	9998	9998	9998	9998	9998	9998	9998
3.6	9998	9998	9999	9999	9999	9999	9999	9999	9999	9999
3.7	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
3.8	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999

Table 5: Tabulated values of the standard normal distribution's cumulative distribution function. Computed using scipy.stats.norm.cdf(x) with SciPy's implementation of the standard normal distribution's cumulative distribution function.

B The Chi-Square Distribution's Inverse Survival Function

df				p val	lue			
k	0.99	0.975	0.95	0.9	0.8	0.7	0.6	0.5
1	1.57e-4	9.82e-4	3.93e-3	1.58e-2	6.42e-2	0.1485	0.2750	0.4549
2	2.01e-2	5.06e-2	0.1026	0.2107	0.4463	0.7133	1.0217	1.3863
3	0.1148	0.2158	0.3518	0.5844	1.0052	1.4237	1.8692	2.3660
4	0.2971	0.4844	0.7107	1.0636	1.6488	2.1947	2.7528	3.3567
5	0.5543	0.8312	1.1455	1.6103	2.3425	2.9999	3.6555	4.3515
6	0.8721	1.2373	1.6354	2.2041	3.0701	3.8276	4.5702	5.3481
7	1.2390	1.6899	2.1673	2.8331	3.8223	4.6713	5.4932	6.3458
8	1.6465	2.1797	2.7326	3.4895	4.5936	5.5274	6.4226	7.3441
9	2.0879	2.7004	3.3251	4.1682	5.3801	6.3933	7.3570	8.3428
10	2.5582	3.2470	3.9403	4.8652	6.1791	7.2672	8.2955	9.3418
12	3.5706	4.4038	5.2260	6.3038	7.8073	9.0343	10.182	11.340
14	4.6604	5.6287	6.5706	7.7895	9.4673	10.821	12.078	13.339
16	5.8122	6.9077	7.9616	9.3122	11.152	12.624	13.983	15.338
18	7.0149	8.2307	9.3905	10.865	12.857	14.440	15.893	17.338
20	8.2604	9.5908	10.851	12.443	14.578	16.266	17.809	19.337
22	9.5425	10.982	12.338	14.041	16.314	18.101	19.729	21.337
24	10.856	12.401	13.848	15.659	18.062	19.943	21.652	23.337
26	12.198	13.844	15.379	17.292	19.820	21.792	23.579	25.336
28	13.565	15.308	16.928	18.939	21.588	23.647	25.509	27.336
30	14.953	16.791	18.493	20.599	23.364	25.508	27.442	29.336
35	18.509	20.569	22.465	24.797	27.836	30.178	32.282	34.336
40	22.164	24.433	26.509	29.051	32.345	34.872	37.134	39.335
45	25.901	28.366	30.612	33.350	36.884	39.585	41.995	44.335
50	29.707	32.357	34.764	37.689	41.449	44.313	46.864	49.335
60	37.485	40.482	43.188	46.459	50.641	53.809	56.620	59.335
70	45.442	48.758	51.739	55.329	59.898	63.346	66.396	69.334
80	53.540	57.153	60.391	64.278	69.207	72.915	76.188	79.334
90	61.754	65.647	69.126	73.291	78.558	82.511	85.993	89.334
100	70.065	74.222	77.929	82.358	87.945	92.129	95.808	99.334

Table 6: Solutions χ^2_+ to the equation $P(\chi^2 > \chi^2_+) = p$ for the chi-square distribution with k degrees of freedom. Computed using scipy.stats.chi2.isf(p, k) with SciPy's implementation of the chi-square distribution's inverse survival function.

df				p va	alue			
k	0.3	0.2	0.1	0.05	0.025	0.01	0.005	0.001
1	1.0742	1.6424	2.7055	3.8415	5.0239	6.6349	7.8794	10.828
2	2.4079	3.2189	4.6052	5.9915	7.3778	9.2103	10.597	13.816
3	3.6649	4.6416	6.2514	7.8147	9.3484	11.345	12.838	16.266
4	4.8784	5.9886	7.7794	9.4877	11.143	13.277	14.860	18.467
5	6.0644	7.2893	9.2364	11.070	12.833	15.086	16.750	20.515
6	7.2311	8.5581	10.645	12.592	14.449	16.812	18.548	22.458
7	8.3834	9.8032	12.017	14.067	16.013	18.475	20.278	24.322
8	9.5245	11.030	13.362	15.507	17.535	20.090	21.955	26.124
9	10.656	12.242	14.684	16.919	19.023	21.666	23.589	27.877
10	11.781	13.442	15.987	18.307	20.483	23.209	25.188	29.588
12	14.011	15.812	18.549	21.026	23.337	26.217	28.300	32.909
14	16.222	18.151	21.064	23.685	26.119	29.141	31.319	36.123
16	18.418	20.465	23.542	26.296	28.845	32.000	34.267	39.252
18	20.601	22.760	25.989	28.869	31.526	34.805	37.156	42.312
20	22.775	25.038	28.412	31.410	34.170	37.566	39.997	45.315
22	24.939	27.301	30.813	33.924	36.781	40.289	42.796	48.268
24	27.096	29.553	33.196	36.415	39.364	42.980	45.559	51.179
26	29.246	31.795	35.563	38.885	41.923	45.642	48.290	54.052
28	31.391	34.027	37.916	41.337	44.461	48.278	50.993	56.892
30	33.530	36.250	40.256	43.773	46.979	50.892	53.672	59.703
35	38.859	41.778	46.059	49.802	53.203	57.342	60.275	66.619
40	44.165	47.269	51.805	55.758	59.342	63.691	66.766	73.402
45	49.452	52.729	57.505	61.656	65.410	69.957	73.166	80.077
50	54.723	58.164	63.167	67.505	71.420	76.154	79.490	86.661
60	65.227	68.972	74.397	79.082	83.298	88.379	91.952	99.607
70	75.689	79.715	85.527	90.531	95.023	100.43	104.21	112.32
80	86.120	90.405	96.578	101.88	106.63	112.33	116.32	124.84
90	96.524	101.05	107.57	113.15	118.14	124.12	128.30	137.21
100	106.91	111.67	118.50	124.34	129.56	135.81	140.17	149.45

Table 7: Solutions χ_+^2 to the equation $P(\chi^2 > \chi_+^2) = p$ for the chi-square distribution with k degrees of freedom. Computed using scipy.stats.chi2.isf(p, k) with SciPy's implementation of the chi-square distribution's inverse survival function.

C Student's t Distribution's Inverse Survival Function

df				p va	alue			
ν	0.99	0.95	0.9	0.8	0.7	0.6	0.5	0.4
1	0.016	0.079	0.158	0.325	0.510	0.727	1.000	1.376
2	0.014	0.071	0.142	0.289	0.445	0.617	0.816	1.061
3	0.014	0.068	0.137	0.277	0.424	0.584	0.765	0.978
4	0.013	0.067	0.134	0.271	0.414	0.569	0.741	0.941
5	0.013	0.066	0.132	0.267	0.408	0.559	0.727	0.920
6	0.013	0.065	0.131	0.265	0.404	0.553	0.718	0.906
7	0.013	0.065	0.130	0.263	0.402	0.549	0.711	0.896
8	0.013	0.065	0.130	0.262	0.399	0.546	0.706	0.889
9	0.013	0.064	0.129	0.261	0.398	0.543	0.703	0.883
10	0.013	0.064	0.129	0.260	0.397	0.542	0.700	0.879
11	0.013	0.064	0.129	0.260	0.396	0.540	0.697	0.876
12	0.013	0.064	0.128	0.259	0.395	0.539	0.695	0.873
13	0.013	0.064	0.128	0.259	0.394	0.538	0.694	0.870
14	0.013	0.064	0.128	0.258	0.393	0.537	0.692	0.868
15	0.013	0.064	0.128	0.258	0.393	0.536	0.691	0.866
16	0.013	0.064	0.128	0.258	0.392	0.535	0.690	0.865
17	0.013	0.064	0.128	0.257	0.392	0.534	0.689	0.863
18	0.013	0.064	0.127	0.257	0.392	0.534	0.688	0.862
19	0.013	0.064	0.127	0.257	0.391	0.533	0.688	0.861
20	0.013	0.063	0.127	0.257	0.391	0.533	0.687	0.860
21	0.013	0.063	0.127	0.257	0.391	0.532	0.686	0.859
22	0.013	0.063	0.127	0.256	0.390	0.532	0.686	0.858
23	0.013	0.063	0.127	0.256	0.390	0.532	0.685	0.858
24	0.013	0.063	0.127	0.256	0.390	0.531	0.685	0.857
25	0.013	0.063	0.127	0.256	0.390	0.531	0.684	0.856
26	0.013	0.063	0.127	0.256	0.390	0.531	0.684	0.856
27	0.013	0.063	0.127	0.256	0.389	0.531	0.684	0.855
28	0.013	0.063	0.127	0.256	0.389	0.530	0.683	0.855
29	0.013	0.063	0.127	0.256	0.389	0.530	0.683	0.854
30	0.013	0.063	0.127	0.256	0.389	0.530	0.683	0.854
∞	0.013	0.063	0.126	0.253	0.385	0.524	0.674	0.842

Table 8: Solutions T_+ to the equation $P(|T| > T_+) = p$ for Student's t distribution with ν degrees of freedom. Computed using scipy.stats.t.isf(p/2, nu) with SciPy's implementation of the t distribution's inverse survival function.

df				p va	alue			
ν	0.3	0.2	0.1	0.075	0.05	0.02	0.01	0.005
1	1.963	3.078	6.314	8.449	12.71	31.82	63.66	127.3
2	1.386	1.886	2.920	3.443	4.303	6.965	9.925	14.09
3	1.250	1.638	2.353	2.681	3.182	4.541	5.841	7.453
4	1.190	1.533	2.132	2.392	2.776	3.747	4.604	5.598
5	1.156	1.476	2.015	2.242	2.571	3.365	4.032	4.773
6	1.134	1.440	1.943	2.151	2.447	3.143	3.707	4.317
7	1.119	1.415	1.895	2.090	2.365	2.998	3.499	4.029
8	1.108	1.397	1.860	2.046	2.306	2.896	3.355	3.833
9	1.100	1.383	1.833	2.013	2.262	2.821	3.250	3.690
10	1.093	1.372	1.812	1.987	2.228	2.764	3.169	3.581
11	1.088	1.363	1.796	1.966	2.201	2.718	3.106	3.497
12	1.083	1.356	1.782	1.949	2.179	2.681	3.055	3.428
13	1.079	1.350	1.771	1.935	2.160	2.650	3.012	3.372
14	1.076	1.345	1.761	1.923	2.145	2.624	2.977	3.326
15	1.074	1.341	1.753	1.913	2.131	2.602	2.947	3.286
16	1.071	1.337	1.746	1.904	2.120	2.583	2.921	3.252
17	1.069	1.333	1.740	1.897	2.110	2.567	2.898	3.222
18	1.067	1.330	1.734	1.890	2.101	2.552	2.878	3.197
19	1.066	1.328	1.729	1.884	2.093	2.539	2.861	3.174
20	1.064	1.325	1.725	1.878	2.086	2.528	2.845	3.153
21	1.063	1.323	1.721	1.873	2.080	2.518	2.831	3.135
22	1.061	1.321	1.717	1.869	2.074	2.508	2.819	3.119
23	1.060	1.319	1.714	1.865	2.069	2.500	2.807	3.104
24	1.059	1.318	1.711	1.861	2.064	2.492	2.797	3.091
25	1.058	1.316	1.708	1.858	2.060	2.485	2.787	3.078
26	1.058	1.315	1.706	1.855	2.056	2.479	2.779	3.067
27	1.057	1.314	1.703	1.852	2.052	2.473	2.771	3.057
28	1.056	1.313	1.701	1.849	2.048	2.467	2.763	3.047
29	1.055	1.311	1.699	1.847	2.045	2.462	2.756	3.038
30	1.055	1.310	1.697	1.845	2.042	2.457	2.750	3.030
∞	1.036	1.282	1.645	1.780	1.960	2.326	2.576	2.807

Table 9: Solutions T_+ to the equation $P(|T| > T_+) = p$ for Student's t distribution with ν degrees of freedom. Computed using scipy.stats.t.isf(p/2, nu) with SciPy's implementation of the t distribution's inverse survival function.