

GRID DA DISCIPLINA

CURSO: Engenharia de Computação

DISCIPLINA: Sistemas Digitais

PROFESSOR: Clayton Jones Alves da Silva, MSc

I - OBJETIVO

Objetivo 1: Analisar expressões booleanas de circuitos digitais e minimizá-las aplicando teoremas e axiomas da álgebra booleana e mapas de *Karnaugh*

Objetivo 2: Analisar e projetar circuitos digitais combinacionais lógicos e aritméticos, codificadores/decodificadores, multiplexadores/demultiplexadores, utilizando portas AND, OR, NAND, NOR e inversores

Objetivo 3: Analisar e projetar circuitos digitais sequenciais, registradores, contadores e registradores de deslocamento (*shift registers*), utilizando *flip-flops* de vários tipos

Objetivo 4: Analisar e projetar circuitos digitais combinacionais e sequenciais, utilizando componentes com integração média escala (MSI)

Objetivo 5: Analisar, projetar e aplicar circuitos conversores analógico-digital (A/D) e digital-analógico (D/A)

II - CONTEÚDOS

- **1.** Álgebra Booleana: variáveis e constantes booleanas; Funções booleanas; Teoremas e axiomas da Álgebra Booleana; Minimização de expressões booleanas; Mapas de *Karnaugh*.
- 2. Elementos básicos de sistemas digitais: portas lógicas AND, OR e inversores; análise e projeto de circuitos digitais elementares.
- **3.** Elementos básicos de sistemas digitais: Portas lógicas universais NAND, NOR e portas EXOR; análise e projeto de circuitos digitais elementares.
- **4.** Grandezas numéricas nos sistemas digitais: sistemas de numeração de base 2 (binários) e de base 16 (hexadecimais); aritmética binária; representação de números negativos e de números de ponto flutuante; codificação.
- 5. Famílias lógicas: sinais elétricos; famílias lógicas TTL e CMOS.
- **6.** Circuitos digitais combinacionais lógicos e aritméticos: comparadores; somadores, subtratores, multiplicadores e divisores; circuitos combinacionais lógicos e aritméticos com integração em média escala (MSI).
- **7.** Circuitos digitais combinacionais codificadores e decodificadores: teoria da informação; codificação e decodificação; codificação de caracteres; codificação para correção e detecção de erros; decodificação de endereços; circuitos digitais elementares de codificação/decodificação (coder/decoder); circuitos digitais codificadores/decodificadores com integração em média escala (MSI).

- **8.** Circuitos digitais combinacionais multiplexadores e demultiplexadores: multiplexação; técnicas de multiplexação; circuitos multiplexadores/demultiplexadores elementares; circuitos MUX/DEMUX com integração em média escala (MSI).
- **9.** Flip-flops e registradores: flip-flops tipo S-R, tipo D, tipo T e tipo J-K; temporização e multiestabilidade; aplicações com flip-flops.
- **10.** Circuitos contadores: máquinas de estados finitos; contadores síncronos e assíncronos.
- **11.** Circuitos registradores de deslocamento (*shift registers*): conceitos básicos; conversão serial-paralela; conversão paralela-serial.
- **12.** Circuitos conversores A/D e D/A: amostragem, quantização e codificação do sinal analógico; tipos de conversores Analógico Digital; aplicações de conversão A/D e D/A.
- **13.** Microprocessadores e microcontroladores: arquitetura interna; *set* de instruções de microprocessadores; programação em *assembly*; *assembler* e IDE para aplicações sobre Atmel ATmega V-2560.
- **14.** Sistemas embarcados: sensores e atuadores; aplicações de sistemas embarcados.

III - BIBLIOGRAFIA

BIBLIOGRAFIA BÁSICA:				
Autor	Título / Publicação	Editora	Ano	
TOCCI, RONALD J.;WIDMER, NEAL S.; MOSS, GREGORY L.	SISTEMAS DIGITAIS princípios e aplicações	PEARSON Prenticce Hall	2007	
FLETCHER, WILLIAM I.	ENGENEERING APPROACH TO DIGITAL DESIGN	Prentice-Hall International	1980	
CAPUANO, Francisco Gabriel C.	Sistemas digitais: Circuitos combinacionais e sequenciais (*)	Editora Érica	2018	

BIBLIOGRAFIA COMPLEMENTAR:

Autor	Título / Publicação	Editora	Ano
KLEITZ, WILLIAM	DIGITAL ELETRONIC a practical approach with VHDL	Pearson	2012
FLOYD, Thomas	Sistemas Digitais: Fundamentos e Aplicações, 9. ed. (*)	Bookman	2011
VAHID, Frank Vahid e LASCHUK, Anatólio	Sistemas Digitais: Projeto, Otimização e HDLs (*)	Bookman	2008
Thomas Floyd	Sistemas Digitais: Fundamentos e Aplicações	Bookman	2007
Tales Pimenta	Circuitos Digitais - Análise e Síntese Lógica: Análise e Síntese Lógica - Aplicações em FPGA	LTC	2016

(*) Disponível na Biblioteca Virtual