Probabilistic inference reformulated as tensor networks

Jin-Guo Liu (刘金国) Quantum information & Scientific computing

Contents

- Reformulate probabilistic inference tasks in "tensor" language
- 2. A brief introduction to related toolchains

Probabilistic Modeling

Bayesian network: Asia

Each variable $\sim \{0, 1\}$, 0 for false, 1 for true.

Probabilistic Inference Tasks

- Probability of evidence (PR): Calculates the total probability of the observed evidence across all possible states of the unobserved variables.
- Marginal inference (MAR): Computes the probability distribution of a subset of variables, ignoring the states of all other variables.
- Maximum a Posteriori Probability estimation (MAP): Finds the most probable state of a subset of unobserved variables given some observed evidence.
- Marginal Maximum a Posteriori (MMAP): Finds the most probable state of a subset of variables, averaging out the uncertainty over the remaining ones.
- Sampling: Sample variables unbiasedly from the probability distribution.

Source: <u>Uncertainty in Artificial Intelligence (UAI) 2022 competition</u>

Mathematical Model	Tasks	Techniques		Software
Graphical models (Book: PRML)	Exact inference	Belief propagation		JunctionTrees.jl
	Approximate inference	Optimal tree decomposition (Althaus 2021)		Merlin, libDAI
			7	toulbar2
Tensor network (Orus 2013)	Generative Modeling (Han 2018)	Differential programming (Liao 2019) Hyper-optimized contraction order (Gray 2021)		<u>Pytorch</u>
				ITensor(s.il)
	Quantum simulation (Pan 2021, Gao 2021)			<u>Helisul(s.ji)</u>
				OMEinsum.jl
	Combinatorial optimization (Liu 2023)	Generic tensor network (Liu 2023)		

Tensor networks can computation the probability of a set of variables (PR)

Tensors : $\{T_{XE}, T_{DBE}, T_{ETL}, T_{BS}, T_{LS}, T_{S}, T_{TA}, T_{A}\}$

Probabilistic Model

$$p(A, X, D) = sum(p(X | E) * p(D | B, E)$$

$$* p(E | T, L)$$

$$* p(B | S) * p(L | S) * p(S)$$

$$* p(T | A) * p(A), \{S, T, L, B, E\})$$

Tensor Network

Variables A: {A, S, T, L, B, E, X, D}
Tensors T: {
$$T_{XE}$$
, T_{DBE} , T_{ETL} , T_{BS} , T_{LS} , T_{S} , T_{TA} , T_{A} }
Output σ_{o} : {A, X, D}

$$p(A, X, D) = contract(\Lambda, T, \sigma_0)$$

"contract" is the sum-product operation on tensor networks

Contracting a tensor network


```
\begin{split} &M_1 = \text{contract}(\{A, T\}, \{T_A, T_{AT}\}, \{A, T\}) \\ &M_2 = \text{contract}(\{S, L\}, \{T_S, T_{SL}\}, \{S, L\}) \\ &M_3 = \text{contract}(\{S, L, B\}, \{M_2, T_{SB}\}, \{L, B\}) \\ &M_4 = \text{contract}(\{E, L, B, D\}, \{M_3, T_{EBD}\}, \{E, D, L\}) \\ &M_5 = \text{contract}(\{T, L, E, A\}, \{M_1, T_{TLE}\}, \{A, L, E\}) \\ &M_6 = \text{contract}(\{A, L, E, D\}, \{M_4, M_5\}, \{A, E, D\}) \\ &p(A, X, D) = \text{contract}(\{A, E, D, L, E\}, \{M_5, M_6\}, \{A, X, D\}) \\ \end{split}
```

Tensor networks can compute marginal probabilities (MAR) efficiently

$$\rightarrow$$
 id = (1, 1)

Probabilistic Model

```
p(A) = sum(p(A, S, T, L, B, E, X, D), \{S, T, L, B, E, X, D\})

p(X) = sum(p(A, S, T, L, B, E, X, D), \{A, S, T, L, B, E, D\})

...
```

Tensor Network

Variables: Λ

Tensors: $\operatorname{augT} = \operatorname{T} \cup \{\operatorname{id}_{A}, \operatorname{id}_{S}, \operatorname{id}_{T}, \operatorname{id}_{L}, \operatorname{id}_{B}, \operatorname{id}_{E}, \operatorname{id}_{X}, \operatorname{id}_{D}\}$

Output: σ_0

 $\{p(A), p(X), ...\} = gradient(contract(\Lambda, augT, \sigma_o), \{id_A, id_X, ...\})$

"gradient(f(args...), vars)" computes the gradients $\{\partial f(args...)/\partial v \mid v \in vars\}$ with O(1) overhead

Tensor Network

Variables: Λ

Tensors: $\operatorname{augT} = \operatorname{T} \cup \{\operatorname{id}_{A}, \operatorname{id}_{S}, \operatorname{id}_{T}, \operatorname{id}_{I}, \operatorname{id}_{B}, \operatorname{id}_{S}, \operatorname{id}_{S}, \operatorname{id}_{S}\}$

Output: σ_o

- (1) contract(Λ , augT, σ_0) = contract(Λ , T, σ_0)
- (2) contract(Λ , augT, σ_0) = sum(p(v) * id_v(v), {v}) for any $v \in \Lambda$
- (3) gradient(contract(Λ , augT, σ_0), id_v) = p(v)
- (4) key: gradients on all leaf variables can be computed with a single pass. The overhead is a constant: 3.

Tensor networks can find the most probable state (MAP) efficiently

(Liu 2021)

Probabilistic Model

$$\begin{split} \log(p_{m}) &= \max(\log(p(A, S, T, L, B, E, X, D)), \{A, S, T, L, B, E, X, D\}) \\ m &= \text{argmax}(\log(p(A, S, T, L, B, E, X, D)), \{A, S, T, L, B, E, X, D\}) \end{split}$$

Tropical Tensor Network

```
Variables: \Lambda
Tensors: \log T = \{\log(t) \mid t \in \text{augT}\}
Output: \sigma_o = \{\}
\log(p_m) = \text{tropical\_contract}(\Lambda, \log T, \sigma_o)
= \max(\log(T_{XE}) + \log(T_{DBE}) + \log(T_{ETL}) + \log(T_{BS}) + \log(T_{LS})
+ \log(T_S) + \log(T_{TA}) + \log(T_A) + 0_A + 0_S + 0_T + 0_L
+ 0_B + 0_F + 0_X + 0_D, \Lambda)
```

Tensor networks can sample variables unbiasedly from the probability distribution.

Goal: $s \sim p(\Lambda)$

Algorithm:

- 1. Compute $sum(p(\Lambda), \Lambda)$, cache intermediate results.
- 2. Initialize a sample over empty set s \sim p({}).
- 3. **Back propagate** the sample s to leaves and obtain $s \sim p(\Lambda)$.

Samples can be "back-propagated"

1. Each variable is eliminated at most once

Given a sample for the remaining variables

s ~ p(remaining variables)
 the value of eliminated variable can be sampled unbiasedly
 t ~ p(eliminated variables | remaining variables)

Tool: **TensorInference**

TensorInference.jl

- OMEinsum (Tensor network -> binary contraction -> BLAS or CuBLAS)
 - Greedy
 - Local Search (with slicing)
 - Min-Cut
- TropicalGEMM and CuTropicalGEMM

Benchmarks

Reason: Tensor network contraction optimizer also optimizes the time complexity

Faster Tropical tensor operations (CPU)

Collaborator: Chris Elrod JuliaHub Inc.

Github repo: <u>TensorBFS/TropicalGEMM.il</u>

Faster Tropical tensor operations (GPU)

Student: Xuan-Zhao Gao Hong Kong University of Science and Technology (Guangzhou)

Github repo (work in progress): ArrogantGao/CuTropicalGEMM.jl

Summarize

- Tensor network language simplifies the probabilistic inference tasks
 - No "message"
 - Back-propagation is implicit
- Tensor network language improves performance
 - Contraction order optimization with reduced time complexity
 - Make use of GEMM packages
 - O GPU acceleration, slicing technique, et al.

Collaborator: Martin Roa Villescas Eindhoven University of Technology

Code: TensorBFS/TensorInference.il

JOSS paper under review:

openjournals/joss-reviews/issues/5684