Slide 1: Multilevel Interventions in Policy & Genomic Medicine

NCI Multilevel Interventions in Health Care: Building the Foundation for Future Research

E. Hawk, MD, MPH UT MD Anderson Cancer Center Duncan Family Institute

Las Vegas, Nevada March 4-5, 2011

National Cancer Institute
U.S. Department of Health and Human Services
National Institutes of Health

Slide 2: 2011 - A Time of Incredible Change in Magnitude, Breadth, Depth, & Pace of American Health Care

- Poor public understanding of
 - o Cancer and its cause
 - o Risk & risk: benefit balance
- Poor public tolerance of
 - Complexity
 - Personal risk
 - o Explosive technologic advances that pressure deliberative decision-making
 - o IT (EMRs)
 - o Communications
 - o Imaging
 - Social connections
 - Molecular tools
- Transitioning of medical care system
 - o Guidelines
 - o Reimbursement reforms
 - o Checklists
 - o Specialization vs generalization
 - o Health care systems
 - Need to demonstrate value = Quality/cost
- Universal cost-cutting

- o 2010 Health care reform = "I pay less/they pay more"
- Rising public expectations

Good Intention - Effective & efficient actions - Improved outcomes

Slide 3: Linking Multilevel Approaches to Issues in Health Policy – Warnecke, et al.

- Policies tools often conceived at the national or state level to address a population concern
 - o Always, well-intended
 - o Hopefully, linked to evidence
 - O Usually represent a compromise between science, fiscal concerns, and political maneuvering, and therefore, rarely the best of any of these
- Administration & implementation of policies can influence their ultimate impact on cancer incidence and outcomes at the local and individual levels
 - o Access
 - o Quality
 - o Environmental stress
- The trans-level process of implementation (i.e., "signal transduction") is critical to effectively link

Slide 4: Rising Disparities in Breast Cancer Mortality – What's the Cause?

- Four possibilities:
 - o Poor/limited access to screening mammography
 - o Poor quality of screening
 - Poor quality of treatment
 - Biologic differences

Slide 5: A Remarkable Communal Approach to the Problem

- March 2006 102 individuals from 74 organizations form the Metro Chicago Breast Cancer Task
 Force
 - Health care providers
 - Administrators of safety net health care centers
 - Community leaders
 - Cancer survivors
 - o Cancer organizations
 - o Researchers

- o How did this form? Key champions? Aligned motives?
- October 2006 task force report identifies 37 specific, pragmatic, evidence-based recommendations for policy changes to address local factors contributing to disparities
 - o How were these identified, agreed upon?
 - o Criteria? Roles/responsibilities?
 - o Was this a MLI? Would it have been better if it was?

Slide 6: A Remarkable Communal Approach to the Problem

- March 2008 Illinois General Assembly passes ground breaking legislation to reduce disparities
 - o Elimination of co-pays and deductibles for mammograms
 - o Patient navigation system
 - o Were all TF recommendations incorporated? If not all, which?
 - Based on evidence that was generated and mentioned in the report, or independent of it?
- Follow-up
 - o Was breast cancer mortality reduced? If not yet, when will we know?
 - o Which elements of the intervention were most critical to success?
 - o What, if anything, wasn't done as a result? Were the trade-offs worth it?
 - Childhood vaccination or obesity program
 - Tobacco cessation/quitline program
 - HPV vaccination
 - Prostate cancer screening
 - o How should we think about prioritization of opportunities?

Slide 7: Multilevel Approaches and Challenges of Implementing Genomic Medicine – Khoury, et al.

- Rapid pace of discovery
- Long and complex translational paths to establish validity, especially against "hard" outcomes of greatest interest...those representing "clinical benefit"
 - o Even in phases T0 & T1 alone
 - o Later phases remain largely unexplored, but critical to success
- Opportunities far exceed investments
- Fundamentally, a problem of biomarkers

Slide 8: Possible Clinical Applications of Biomarkers

ТҮРЕ	APPLICATION	EXAMPLE
RISK or SCREENING	INDICATOR OF RISK OF DEVELOPING DISEASE	Cholesterol for CVD risk; PSA for prostate cancer
DIAGNOSIS	ONE MEASURABLE ELEMENT OF A PATHOLOGIC EVALUATION	c-kit for gastrointestinal stromal tumors
PROGNOSIS	INDICATOR CORRELATED W/ OUTCOME IN UNTREATED PATIENTS OR W/ SURVIVAL OF HETEROGENEOUSLY TREATED PATIENTS	CA125 for overall survival and progression-free survival in ovarian cancer
PREDICTION	MARKER THAT PREDICTS OUTCOME TO SPECIFIC TREATMENT	KRAS as predictor of efficacy of panitumumab/cetuximab in advanced CRC; Oncotype DX in ER+/N- breast cancer
MONITORING/ SURVEILLANCE	MARKER TO ESTIMATE DISEASE STATUS FOLLOWING INTERVENTION	CEA in resected CRC
SURROGATE ENDPOINT	MARKER INTENDED TO SUBSTITUTE FOR A "CLINICAL BENEFIT" ENDPOINT	BP for CV mortality & morbidity; tumor response

Slide 9: Biomarkers in Cancer Screening

[image]

Article on "Mortality Results from a Randomized Prostate-Cancer Screening Trial" by Gerald L. Andriole, M.D.

For additional information contact: NCIDCCPSMLI@mail.nih.gov

¹ Anticancer Res 30:2407-2414, 2010 ² http://www.ovarianresearch.com/content/2/1/13 ³ J Clin Oncol 27:4027-4034, 2009

⁴ The National Academies Press http://www.nap.edu/catalog.php?record_id=12869

Slide 10: No Title

[image]

Article on "Mortality results from the Goteborg randomised population=based prostate-cancer screening trial" by Jonas Hugosson.

For additional information contact: MCIDCCPSMLI@mail.nih.gov [end image]

Slide 11: Levels of Evidence Guiding Biomarker Utility – The Path to Validity

Level	Type of Evidence	
1	 Single, adequately powered prospective study designed to test the marker; 	
	 Randomized controlled trial guided by the biomarker; 	
	 Meta-analysis or overview of LOE II/III studies; 	
	Prospective trial with a primary objective of associating a marker and one or	
	more clinical outcomes	
2	Prospective therapeutic trial involving markers as a secondary objective	
3	Large, retrospective studies evaluating associations in post-hoc analyses	
4	Small retrospective studies; may be matched, case-control	
5	Small pilot studies designed to estimate distribution of markers in a sample	
	population; not designed to determine clinical utility	

Hayes DF: Biomarkers in DeVita, Hellman & Rosenberg's Cancer: Principles & Practice of Oncology, 8^{th} ed.; Lippincott Williams & Wilkins, 2008

Slide 12: Necessary Criteria for a Biomarker to Be Incorporated into Routine Clinical Use

- 1. Intended use clearly delineated
- 2. Magnitude of clinical outcomes associated with marker status sufficient to affect a clinical decision
- 3. Estimate of magnitude accurate, reliable, & validated
 - Assay technically stable, accurate, and reproducible

- Clinical study appropriately designed & powered to address the intended use and externally validated
- Analysis statistically rigorous

Slide 13: Clinical Activity in Biomarker Requests at MD Anderson Cancer Center FY01 to FY10

[image]

Line graph showing increase requests (actual) from Fiscal year 2001 to Fiscal year 2010 with a sharp increase from 2009 to 2010.

For additional information contact: NCIDCCPSMLI@mail.nih.gov

[end image]

Slide 14: Four Elements of Personalized Cancer Care Potentially Improved By Genomic Assessments

- Patient selection
 - o Germline genetics & pharmacogenetics
- Target identification
 - o Somatic genomics
- Environmental assessment
 - o Lifestyle choices & exposures
- Agent(s) selection

Slide 15: "Infrastructures" Needed To Transform New Scientific Discoveries into Clinical Advances

- Internationally standardized, harmonized electronic medical records
 - o Incorporating baseline/follow-up data on patients, treatments, outcomes
- Modernized clinical care guidelines incorporating standardized, serial sampling of patients and tumors with accommodation for fresh/frozen tissues
- Large, well-annotated repositories of blood, tissues, biospecimens
- "Hyper-specialization"

- Multi-institutional biospecimen-focused research consortia
- Innovative trial designs, including elements of adaptive randomization, biomarker-based eligibility, nested biomolecular analyses
- Recognition of time as one of the most critical and valuable components of medical research/care
- More inclusive, critical, and routine evaluations of risk/benefit and risk/risk
- Approaches to monitor and address the real possibility of increasing disparities in care as medicine incorporates more high-tech risk assessments and interventions

Slide 16: Multilevel Approaches and Challenges of Implementing Genomic Medicine – Khoury, et al.

- Because of the complexity, speed, potential for misunderstandings and miscommunications, as well as insufficient regulatory oversight involved in developing and applying genomic technologies in a world insufficiently prepared, there is the very real potential for INCREASED
 - o Harms,
 - o Worries,
 - o Litigation,
 - o Costs, and
 - o Disparities
 - o ...without improving outcomes, at least uniformly.
- No clear or easy path forward

Slide 17: Tremendous Opportunities to Model the Necessary Connections to Facilitate Translational Progress Within Government

[image]

Showing connections; from top to bottom:

- NCIDCB
- N C I DCDT/DCP
- N C I DCCPS
- NIH
- FDA
- CDC
- AHRO
- CMS

[end image]

Slide 18: Genomic Medicine & Multi-level Research - Great Challenges, Incredible Opportunities

"Nature is probabilistic and information incomplete, Outcomes are valued, Resources limited, ...decisions unavoidable"

Weinstein MC & Fineberg HV Clinical Decision Analysis. Saunders, London, 1980

[End Presentation]