Statistical Models for the Prediction of Fantasy Football Points

Adam Jauregui

California State University, Fresno

Math REU Summer 2015

Outline

What is it?

Outline

Adam Jauregui

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSIVE STATISTICS	DEFENSE / SPECIAL TEAMS
Touchdown	6 points
Safety	2 points
Interception	2 points
Fumble Recovery	2 points
Sack	1 point
Points Allowed	0 = 10 points
	1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 21-27 = 0 points 28-34 = -1 points
	35+ = -4 points

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSIVE STATISTICS	DEFENSE / SPECIAL TEAMS
Touchdown	6 points
Safety	2 points
Interception	2 points
Fumble Recovery	2 points
Sack	1 point
Points Allowed	0 = 10 points
	1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 21-27 = 0 points 28-34 = -1 points
	35+ = -4 points

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSE / SPECIAL TEAMS
6 points
2 points
2 points
2 points
1 point
0 = 10 points
1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 20-34 = -1 points 35+ = -4 points

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSIVE STATISTICS	DEFENSE / SPECIAL TEAMS
Touchdown	6 points
Safety	2 points
Interception	2 points
Fumble Recovery	2 points
Sack	1 point
Points Allowed	0 = 10 points
	1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 21-27 = 0 points 28-34 = -1 points
	35+ = -4 points

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSE / SPECIAL TEAMS
6 points
2 points
2 points
2 points
1 point
0 = 10 points
1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 20-34 = -1 points 35+ = -4 points

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSIVE STATISTICS	DEFENSE / SPECIAL TEAMS
Touchdown	6 points
Safety	2 points
Interception	2 points
Fumble Recovery	2 points
Sack	1 point
Points Allowed	0 = 10 points
	1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 21-27 = 0 points 28-34 = -1 points
	35+ = -4 points

- A skills-based game played mainly online
- Choose a lineup of NFL players that you predict will play well in their real-life upcoming games
- Compete against other people in online tournaments
- The person who chose the lineup that accrues the most fantasy points wins!

OFFENSIVE STATISTICS	QB, WR, RB, TE, K
Touchdown (Passing)	4 points
Touchdown (Rushing or Receiving)	6 points
Passing Yards	1 point for every 25 yards
Rushing Yards	1 point for every 10 yards
Receiving Yards	1 point for every 10 yards
2 point conversion	2 points
Interception	-2 points
Fumble Lost	-2 points
Field Goal	0-49 yards = 3 points 50+ yards = 5 points
Extra Point	1 point
Offensive Fumble Recovery Touchdown	6 points

DEFENSIVE STATISTICS	DEFENSE / SPECIAL TEAMS
Touchdown	6 points
Safety	2 points
Interception	2 points
Fumble Recovery	2 points
Sack	1 point
Points Allowed	0 = 10 points
	1-6 = 7 points 7-13 = 4 points 14-20 = 1 points 21-27 = 0 points 28-34 = -1 points
	35+ = -4 points

The Research Question

The Goal

To build a model that can make an accurate point-wise prediction of an NFL quarterback's weekly fantasy points prior to the start of the NFL regular season

The Research Question

The Goal

To build a model that can make an accurate point-wise prediction of an NFL quarterback's weekly fantasy points prior to the start of the NFL regular season

The Research Question

The Goal

To build a model that can make an accurate point-wise prediction of an NFL quarterback's weekly fantasy points prior to the start of the NFL regular season

The Research Question

The Goal

To build a model that can make an accurate point-wise prediction of an NFL quarterback's weekly fantasy points prior to the start of the NFL regular season

Dataset Classical Approach Bayesian Approach

Outline

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on..
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on..
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - quarterback's career data from Week 2
- and so on..
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on...
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on...
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on...
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on...
- 20 NFL quarterbacks were analyzed

- "Test Data:" 2014 NFL regular season (comprised of 16 games, 17 weeks)
- Started a minimum of 1 game in the 2014 NFL regular season
- Started a minimum of 32 NFL regular season games prior to the 2014 NFL season (two full season's worth)
- Chose to work with the QB's weekly fantasy points
 - To make a prediction for Week 1 in 2014, we used said quarterback's career data from Week 1
 - To make a prediction for Week 2 in 2014, we used said quarterback's career data from Week 2
 - and so on...
- 20 NFL quarterbacks were analyzed

Dataset Classical Approach Bayesian Approach

Outline

Maximum Likelihood Estimation (MLE) Model

MLE model where the respective mean and variance paramete θ and σ^2 vary weekly

- X is the data of random values
- ullet heta is some fixed parameter, usually the mean of the data

Maximum Likelihood Estimation (MLE) Model

MLE model where the respective mean and variance parameter θ and σ^2 vary weekly

- X is the data of random values
- ullet is some fixed parameter, usually the mean of the data

Maximum Likelihood Estimation (MLE) Model

MLE model where the respective mean and variance parameter θ and σ^2 vary weekly

- X is the data of random values
- ullet is some fixed parameter, usually the mean of the data

Maximum Likelihood Estimation (MLE) Model

MLE model where the respective mean and variance parameter θ and σ^2 vary weekly

- X is the data of random values
- ullet is some fixed parameter, usually the mean of the data

Step 1: Choose a distribution that fits the data (Normal, Exponential, Poisson, etc.)

- We think the data follows a normal distribution
- Thus, the ML estimators are

$$\hat{\theta}_j = \bar{X}_j, \tag{1}$$

$$\frac{s^2}{j} = \frac{n-1}{n}s^2,$$
 (2)

- X_i is the mean fantasy points of the j-th week
- σ_i^2 is the fantasy point variance of the *j*-th weeks
- s² is the sample variance.

- We think the data follows a normal distribution
- Thus, the ML estimators are

$$\hat{\theta}_j = \bar{X}_j, \tag{1}$$

$$\hat{\sigma}_j^2 = \frac{n-1}{n} s^2,\tag{2}$$

- \bar{X}_{j} is the mean fantasy points of the *j*-th week
- σ_j^2 is the fantasy point variance of the *j*-th week
- s^2 is the sample variance.

- We think the data follows a normal distribution
- Thus, the ML estimators are

$$\hat{\theta}_j = \bar{X}_j, \tag{1}$$

$$\hat{\sigma}_j^2 = \frac{n-1}{n} s^2,\tag{2}$$

- \bar{X}_{j} is the mean fantasy points of the *j*-th week
- σ_j^2 is the fantasy point variance of the *j*-th week
- s^2 is the sample variance.

- We think the data follows a normal distribution
- Thus, the ML estimators are

$$\hat{\theta}_j = \bar{X}_j, \tag{1}$$

$$\hat{\sigma}_j^2 = \frac{n-1}{n} s^2,\tag{2}$$

- \bar{X}_j is the mean fantasy points of the *j*-th week
- σ_i^2 is the fantasy point variance of the *j*-th week
- s^2 is the sample variance.

- We think the data follows a normal distribution
- . Thus, the ML estimators are

$$\hat{\theta}_j = \bar{X}_j, \tag{1}$$

$$\hat{\sigma}_j^2 = \frac{n-1}{n} s^2,\tag{2}$$

- \bar{X}_j is the mean fantasy points of the *j*-th week
- σ_j^2 is the fantasy point variance of the *j*-th week
- s^2 is the sample variance.

- We think the data follows a normal distribution
- . Thus, the ML estimators are

$$\hat{\theta}_j = \bar{X}_j, \tag{1}$$

$$\hat{\sigma}_j^2 = \frac{n-1}{n} s^2,\tag{2}$$

- \bar{X}_j is the mean fantasy points of the *j*-th week
- σ_j^2 is the fantasy point variance of the *j*-th week
- s^2 is the sample variance.

Step 3: Random sample!

Let y_j^{new} be our predictive value for each j-th week of the 2014 NFL regular season. Then

$$y_j^{new} \sim N(\hat{\theta}_j, \hat{\sigma}_j^2)$$
 (3)

where $\hat{\theta_j}$ and $\hat{\sigma}_j^2$ are the respective mean fantasy points for the j-th week

- Sampled from this distribution 1000 times
- Obtained 1000 predictions for each week of 2014

Frequentist Approach

Step 3: Random sample!

Let y_j^{new} be our predictive value for each j-th week of the 2014 NFL regular season. Then

$$y_j^{new} \sim N(\hat{\theta}_j, \hat{\sigma}_j^2)$$
 (3)

where $\hat{\theta_j}$ and $\hat{\sigma}_j^2$ are the respective mean fantasy points for the j-th week

- Sampled from this distribution 1000 times
- Obtained 1000 predictions for each week of 2014

Frequentist Approach

Step 3: Random sample!

Let y_j^{new} be our predictive value for each j-th week of the 2014 NFL regular season. Then

$$y_j^{new} \sim N(\hat{\theta}_j, \hat{\sigma}_j^2)$$
 (3)

where $\hat{\theta_j}$ and $\hat{\sigma}_j^2$ are the respective mean fantasy points for the j-th week

- Sampled from this distribution 1000 times
- Obtained 1000 predictions for each week of 2014

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

- X is the dataset of fixed values
- ullet is the random variable, usually the mear

Bayesian Approach

- Bayesian Model #1 (BM1): assign prior probability to the mean parameter θ
- Bayesian Model #2 (BM2): assign prior the mean and variance parameter θ and σ^2

$p(\theta|X) \propto p(X|\theta)p(\theta)$

- X is the dataset of fixed values
- ullet is the random variable, usually the mean

- Bayesian Model #1 (BM1): assign prior probability to the mean parameter θ
- Bayesian Model #2 (BM2): assign prior the mean and variance parameter θ and σ^2

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

- X is the dataset of fixed values
- ullet is the random variable, usually the mean

- Bayesian Model #1 (BM1): assign prior probability to the mean parameter θ
- Bayesian Model #2 (BM2): assign prior the mean and variance parameter θ and σ^2

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

- X is the dataset of fixed values
- ullet θ is the random variable, usually the mean

- Bayesian Model #1 (BM1): assign prior probability to the mean parameter θ
- Bayesian Model #2 (BM2): assign prior the mean and variance parameter θ and σ^2

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

- X is the dataset of fixed values
- ullet is the random variable, usually the mean

- Bayesian Model #1 (BM1): assign prior probability to the mean parameter θ
- Bayesian Model #2 (BM2): assign prior the mean and variance parameter θ and σ^2

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

- X is the dataset of fixed values
- ullet θ is the random variable, usually the mean

Step 1: Assign prior probability to a variable

- Two parameters: mean $heta_j$ and variance σ_j^*
- Assigned prior probability on θ_j and left σ_j^2 fixed

$$\theta_j \sim N(\mu, \tau^2)$$
 (4)

where μ and τ^2 are the quarterback's respective career mean and variance fantasy points

Step 1: Assign prior probability to a variable

- ullet Two parameters: mean $heta_j$ and variance σ_j^2
- Assigned prior probability on θ_j and left σ_i^2 fixed

$$\theta_j \sim N(\mu, \tau^2)$$
 (4)

where μ and τ^2 are the quarterback's respective career mean and variance fantasy points

Step 1: Assign prior probability to a variable

- Two parameters: mean θ_j and variance σ_j^2
- Assigned prior probability on θ_j and left σ_j^2 fixed

$$\theta_j \sim N(\mu, \tau^2)$$
 (4)

where μ and τ^2 are the quarterback's respective career mean and variance fantasy points

Step 2: Compute posterior distribution

$$\theta_j | \bar{X}_j \sim N(\lambda, \rho)$$
 (5)

where λ is the posterior mean represented by

$$\lambda = \frac{\tau^2}{\frac{\sigma^2}{n} + \tau^2} \bar{X}_j + \frac{\frac{\sigma^2}{n}}{\frac{sigma^2}{n} + \tau^2} \mu$$

and ρ is the posterior variance represented by

$$\rho = \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}$$

Step 2: Compute posterior distribution

$$\theta_j | \bar{X}_j \sim N(\lambda, \rho)$$
 (5)

where λ is the posterior mean represented by

$$\lambda = \frac{\tau^2}{\frac{\sigma^2}{n} + \tau^2} \bar{X}_j + \frac{\frac{\sigma^2}{n}}{\frac{sigma^2}{n} + \tau^2} \mu$$

and ρ is the posterior variance represented by

$$\rho = \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}$$

Step 2: Compute posterior distribution

$$\theta_j | \bar{X}_j \sim N(\lambda, \rho)$$
 (5)

where λ is the posterior mean represented by

$$\lambda = \frac{\tau^2}{\frac{\sigma^2}{n} + \tau^2} \bar{X}_j + \frac{\frac{\sigma^2}{n}}{\frac{sigma^2}{n} + \tau^2} \mu$$

and ρ is the posterior variance represented by

$$\rho = \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}$$

Step 3: Random Sample! Let y_j^{new} be our predictive value for each j-th week of the 2014 NFL regular season. Then

$$y_j^{new} \sim N(\lambda, \sigma^2 + \rho)$$
 (6)

- Sampled from this distribution 1000 times
- Obtained 1000 predictions for each j-th week of 2014

Step 3: Random Sample! Let y_j^{new} be our predictive value for each j-th week of the 2014 NFL regular season. Then

$$y_j^{new} \sim N(\lambda, \sigma^2 + \rho)$$
 (6)

- Sampled from this distribution 1000 times
- Obtained 1000 predictions for each j-th week of 2014

Step 3: Random Sample! Let y_j^{new} be our predictive value for each j-th week of the 2014 NFL regular season. Then

$$y_j^{new} \sim N(\lambda, \sigma^2 + \rho)$$
 (6)

- Sampled from this distribution 1000 times
- Obtained 1000 predictions for each j-th week of 2014

$$\sigma^2 \sim Gamma(1,1) \tag{7}$$

- Code the model in R with JAGS (Just Another Gibbs Sampler)
- Random sampled from posterior predictive distribution
 - Sampled from this distribution 1000 times
 - ullet Obtained 1000 predictions for each j-th week of 2014

$$\sigma^2 \sim Gamma(1,1) \tag{7}$$

- Code the model in R with JAGS (Just Another Gibbs Sampler)
- Random sampled from posterior predictive distribution
 Sampled from this distribution 1000 times
 Obtained 1000 predictions for each i-th week of 2014

$$\sigma^2 \sim Gamma(1,1) \tag{7}$$

- Code the model in R with JAGS (Just Another Gibbs Sampler)
- Random sampled from posterior predictive distribution
 - Sampled from this distribution 1000 times
 - Obtained 1000 predictions for each j-th week of 2014

$$\sigma^2 \sim Gamma(1,1) \tag{7}$$

- Code the model in R with JAGS (Just Another Gibbs Sampler)
- Random sampled from posterior predictive distribution
 - Sampled from this distribution 1000 times
 - Obtained 1000 predictions for each j-th week of 2014

$$\sigma^2 \sim Gamma(1,1) \tag{7}$$

- Code the model in R with JAGS (Just Another Gibbs Sampler)
- Random sampled from posterior predictive distribution
 - Sampled from this distribution 1000 times
 - Obtained 1000 predictions for each j-th week of 2014

Background What is our goal? Methodology Results Discussion

Results of 3 Models Inflation-Adjusted Mode

Outline

MSE and MAD

Errors were measured in terms of "mean square error" and "mean absolute deviation"

$$MSE = \frac{1}{1000} \sum_{i=1}^{1000} (y_{j,test} - y_{i,j}^{new})^2$$
 (8)

and

$$MAD = \frac{1}{1000} \sum_{i=1}^{1000} |y_{j,test} - y_{i,j}^{new}|$$
 (9)

MSE Plots

arranged from most experience to least experienced

MLE (black line), BM1 (red line), and BM2 (green line)

Mean MSE Plot for Each Quarterback

arranged from most experienced to least experienced

MLE ("1"), BM1 ("2"), and BM2 ("3")

Background What is our goal? Methodology Results Discussion

Results of 3 Models Inflation-Adjusted Model

Outline

Fantasy Point Inflation?

- Recent changes in NFL rules and strategy have emphasized more passing statistics
- Given the advantages of today, might more experienced quarterbacks have scored more fantasy points?
- This would affect their career mean and variance

Fantasy Point Inflation?

- Recent changes in NFL rules and strategy have emphasized more passing statistics
- Given the advantages of today, might more experienced quarterbacks have scored more fantasy points?
- This would affect their career mean and variance

Fantasy Point Inflation?

- Recent changes in NFL rules and strategy have emphasized more passing statistics
- Given the advantages of today, might more experienced quarterbacks have scored more fantasy points?
- This would affect their career mean and variance

- Hypothesis: "Inflating" quarterback data will give us more accurate results
- Inflation Rate:

$$Y = \frac{100(B - A)}{A}$$
 (10)

where Y is our inflation rate, B is the average quarterback fantasy points scored per game in the current season, and A is the average quarterback fantasy score in the earlier season.

- Hypothesis: "Inflating" quarterback data will give us more accurate results
- Inflation Rate:

$$Y = \frac{100(B - A)}{A}$$
 (10)

where Y is our inflation rate, B is the average quarterback fantasy points scored per game in the current season, and A is the average quarterback fantasy score in the earlier season.

• Example:

- In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
- In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
- Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
- Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

- Example:
 - In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
 - In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
 - Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
 - Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

• Example:

- In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
- In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
- Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
- Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

• Example:

- In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
- In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
- Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
- Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

Fantasy Point Inflation Rate

Example:

- In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
- In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
- Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
- Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

Fantasy Point Inflation Rate

- Example:
 - In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
 - In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
 - Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
 - Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

Fantasy Point Inflation Rate

- Example:
 - In the 2013 NFL season, quarterbacks averaged 16.10 fantasy points per game
 - In the 1999 NFL season, quarterbacks averaged 14.12 fantasy points per game
 - Thus, the inflation rate Y is $Y = \frac{100(16.10-14.12)}{14.12} = 1.39$.
 - Multiply the 1999 quarterback fantasy point data by 1.39
- Run results again with same model BM2 except with inflated data
- Denote new model "Inf-BM2"

Mean MSE Plot

BM2 ("1") and Inf-BM2 ("2")

Background What is our goal? Methodology Results Discussion

Summary Acknowledgeme

Outline

- Our main objective was to formulate a model that could make an accurate point-wise prediction of an NFL quarterback's weeky fantasy points
- We tested three models under a frequentist and Bayesian approach.
 - Our second Bayesian model "BM2," with a prior distribution on the mean θ and variance σ^2 , outperformed the MLE model and our first Bayesian model "BM1"
 - Our choice for prior distribution, the quarterback's career mean and variance, was suspect
 - Our model "Inf-BM2" suggested that inflating data only works well for quarterbacks in their "peak" years

- Our main objective was to formulate a model that could make an accurate point-wise prediction of an NFL quarterback's weeky fantasy points
- We tested three models under a frequentist and Bayesian approach.
 - Our second Bayesian model "BM2," with a prior distribution on the mean θ and variance σ^2 , outperformed the MLE model and our first Bayesian model "BM1"
 - Our choice for prior distribution, the quarterback's career mean and variance, was suspect
 - Our model "Inf-BM2" suggested that inflating data only works well for quarterbacks in their "peak" years

- Our main objective was to formulate a model that could make an accurate point-wise prediction of an NFL quarterback's weeky fantasy points
- We tested three models under a frequentist and Bayesian approach.
 - Our second Bayesian model "BM2," with a prior distribution on the mean θ and variance σ^2 , outperformed the MLE model and our first Bayesian model "BM1"
 - Our choice for prior distribution, the quarterback's career mean and variance, was suspect
 - Our model "Inf-BM2" suggested that inflating data only works well for quarterbacks in their "peak" years

- Our main objective was to formulate a model that could make an accurate point-wise prediction of an NFL quarterback's weeky fantasy points
- We tested three models under a frequentist and Bayesian approach.
 - Our second Bayesian model "BM2," with a prior distribution on the mean θ and variance σ^2 , outperformed the MLE model and our first Bayesian model "BM1"
 - Our choice for prior distribution, the quarterback's career mean and variance, was suspect
 - Our model "Inf-BM2" suggested that inflating data only works well for quarterbacks in their "peak" years

- Our main objective was to formulate a model that could make an accurate point-wise prediction of an NFL quarterback's weeky fantasy points
- We tested three models under a frequentist and Bayesian approach.
 - Our second Bayesian model "BM2," with a prior distribution on the mean θ and variance σ^2 , outperformed the MLE model and our first Bayesian model "BM1"
 - Our choice for prior distribution, the quarterback's career mean and variance, was suspect
 - Our model "Inf-BM2" suggested that inflating data only works well for quarterbacks in their "peak" years

Future Research Ideas

- Add more parameters (e.g. location, week-to-week dependence)
- Researching a more suitable prior
- Make the model hierarchical

Future Research Ideas

- Add more parameters (e.g. location, week-to-week dependence)
- Researching a more suitable prior
- Make the model hierarchica

Future Research Ideas

- Add more parameters (e.g. location, week-to-week dependence)
- Researching a more suitable prior
- Make the model hierarchical

Background What is our goal? Methodology Results Discussion

Summary Acknowledgements

Outline

Final Frame: Acknowledgments

I would like to thank:

- The California State University, Fresno and the National Science Foundation for their financial support (NSF Grant #DMS-1156273)
- The California State University, Fresno Mathematics REU program, and
- My P.I., Dr. Chung for his support during the completion of the project.

THANK YOU!

Final Frame: Acknowledgments

I would like to thank:

- The California State University, Fresno and the National Science Foundation for their financial support (NSF Grant #DMS-1156273)
- The California State University, Fresno Mathematics REU program, and
- My P.I., Dr. Chung for his support during the completion of the project.

THANK YOU!

Final Frame: Acknowledgments

I would like to thank:

- The California State University, Fresno and the National Science Foundation for their financial support (NSF Grant #DMS-1156273)
- The California State University, Fresno Mathematics REU program, and
- My P.I., Dr. Chung for his support during the completion of the project.

THANK YOU!