Course No.	Course Name	L-T-P Credits	Year of Introduction
CS363	Signals and Systems	3-0-0-3	2015

Pre-requisites

NIL

Course Objectives

- 1. To introduce fundamental concepts of continuous time and discrete time signals.
- 2. To introduce fundamental concepts of continuous time and discrete time systems.
- 3. To introduce frequency domain representation and analysis of signals.

Syllabus

Signals and systems –basic operations on signals – continuous time and discrete time signals – Continuous time and discrete time systems –properties of systems - Z-transform – region of convergence – properties of Z-transform – inverse Z-transform. Fourier transform (FT) of discrete time signals – properties of FT – relation between Z-transform and FT. Discrete Fourier transform (DFT) - Properties of DFT – inverse DFT - Fast Fourier transform (FFT) - Radix-2 FFT algorithms – butterfly structure. Digital filter structures –structures for IIR - Structures for FIR.

Expected Outcome

Student is able to

- 1. Identify different types of continuous time and discrete time signals.
- 2. Identify different types of continuous time and discrete time systems.
- 3. Analyse signals using Z Transform and FT.
- 4. Analyse signals using DFT and FFT.
- 5. Appreciate IIR digital filter structures.
- 6. Appreciate FIR digital filter structures.

Text Books

- 1. M.N. Bandyopadhyaya, Introduction to Signals and Systems and Digital Signal Processing, PHI.
- 2. S.D. Apte, Digital Signal Processing, Wiley India.

References

- 1. Li Tan, Digital Signal Processing, Fundamentals and Applications, Elsevier.
- 2. M. H. Hayes, Digital Signal Processing, Tata McGrawHill (SCHAUM'S OUTlines).
- 3. A.V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall Inc.
- 4. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition.
- 5. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan
- 6. S.K. Mitra, Digital Signal Processing, Wiley.
- 7. S.W. Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists, Elsevier India.
- 8. P. Ramesh Babu, Digital Signal Processing, Scitech Publications.
- **9.** D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Sanguine Publishers.

Course Plan				
Module	Contents		Sem. Exam Marks %	
	Signals and systems - introduction - basic operations on			
I	signals - continuous time and discrete time signals -step,	07	15 %	
	impulse, ramp, exponential and sinusoidal functions.			
	Continuous time and discrete time systems -properties of			
***	systems - linearity, causality, time invariance, memory,	05	45.0/	
II	stability, invertibility. Linear time invariant systems -	07	15 %	
	convolution.			
FIRST INTERNAL EXAM				
	Z-transform - region of convergence - properties of Z-			
III	transform - inverse Z-transform. Fourier transform (FT) of	07	450/	
	discrete time signals - properties of FT - relation between Z-	07	15 %	
	transform and FT.			
	Discrete Fourier transform (DFT) - Properties of DFT -			
IV	inverse DFT - Fast Fourier transform (FFT) - Radix-2 FFT	07	15 %	
	algorithms – butterfly structure.			
SECOND INTERNAL EXAM				

V	Digital filter structures - block diagram and signal flow			
	graph representation - structures for IIR - direct form	07	20 %	
	structure - Cascade form structure - parallel form structure			
	- lattice structure.			
	Structures for FIR - direct form structures - direct form			
VI	structure of linear phase system - cascade form structure -	07	20 %	
	frequency sampling structure – lattice structure.			
END SEMESTER EXAM				

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u> questions each having $\underline{9}$ marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks: 12
 - b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks: 18
 - b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u>questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40

- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

KTU STUDENTS