Meta Learning at a Glance

Seminar 2 on Nôm OCR

Problem statement: MNIST vs. Omniglot

Omniglot:

many classes, few examples

MNIST:

few classes, many examples

Transfer learning via fine-tuning approach

Key idea: Solve target task \mathcal{T}_b after solving source task(s) \mathcal{T}_a by *transferring* knowledge learned from \mathcal{T}_a .

Common assumption: Cannot access data \mathcal{D}_a during transfer.

Some problems/applications where transfer learning might make sense: When \mathcal{D}_a is very large and \mathcal{D}_b When you don't care about solving is somehow smaller. \mathcal{T}_a & \mathcal{T}_a simultaneously.

Transfer learning on Omniglot

Model's backbone consists of four CNNs with ReLUs and Maxpooling layers

Pre-training split: contains N = 1200 characters/classes.

Fine-tuning split: contains another N = 423 characters/classes.

The goal: is to obtain a model that is initialized with the pre-trained parameters and can distinguish between new 423 classes after being fine-tuned.

How does transfer learning work on Omniglot?

Accuracy of pre-training vs. fine-tuning phases on validation sets

Meta Learning

Learning to Learn

From Transfer Learning to Meta-Learning

Transfer learning: Initialize model. Hope that it helps the target task.

Meta-learning: Can we explicitly *optimize* for transferability?

Given a set of training tasks, can we optimize for the ability to learn these tasks quickly? so that we can learn new tasks quickly too.

Scenario: what if dataset \mathcal{D}_i^{tr} for task \mathcal{T}_i is small? (number of examples per class is small)

Learning a task: $\mathcal{D}_i^{tr} \xrightarrow{f_{\theta}} \theta$ Can we optimize this function f_{θ} ?

How does meta-learning work? An example

Given 1 example of 5 classes:

training data \mathcal{D}^{tr}

Classify new examples

test set x^{ts}

How does meta-learning work? An example

Can replace image classification with: regression, language generation, any ML problem.

Meta Learning problem

Transfer Learning with Many Source Tasks

Given data from $\mathcal{J}_1, \mathcal{J}_2, \ldots, \mathcal{J}_n$, solve new task \mathcal{J}_{test} more quickly/proficiently/stably. **Key assumption:** meta-training tasks and meta-test task drawn i.i.d. from same task distribution $\mathcal{J}_1, \ldots, \mathcal{J}_n \sim p(\mathcal{J}), \ \mathcal{J}_{test} \sim p(\mathcal{J}).$

Tasks must share underlying structure

What do the tasks correspond to?

- ► Recognizing handwritten digits from different languages,
- Giving feedback to different students on different exams,
- ► Classifying flower species in different regions of the world,
- ► A robot performing different tasks.

How many tasks do we want for a training stage?

The more the better.

Some terminologies

k-shot learning: learning with k examples per class **N-way classification**: choosing between N classes

Meta-Learning formulation

Conventional supervised learning:

Meta supervised learning:

inputs:
$$\mathcal{D}^{tr} \quad \mathbf{x}^{ts}$$
 outputs: \mathbf{y}^{ts} Data: $\{\mathcal{D}_i\}$ $\{(\mathbf{x}, \mathbf{y})_{1:K}\}$ \mathcal{D}_i : $\{(\mathbf{x}, \mathbf{y})_i\}$

 θ is called meta-parameters

Meta-Learning on Omniglot

Model: Using the backbone mentioned in the slide earlier.

Training and evaluating meta-learning algorithms on **5-way 1-shot** tasks with **15 query examples** per task.

exactly from the *pre-training split*

Data: *

- ► Training set: contains 1100 characters/classes,
- lacktriangle Validation set: contains 100 characters/classes,
- ► Testing set: contains 423 characters/classes.

Only some minor changes in the training setups are introduced to produce a highly fair comparison.

* The three sets are disjoint with each other, of course.

Some Meta-Learning Algorithms

- ► Prototypical Networks
- ► Model-Agnostic Meta-Learning
- ► Proto-MAML

Prototypical Networks concept

Key idea: *Mapping* images to features such that images of same class are *close to each other* in feature space.

Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." Advances in neural information processing systems 30 (2017).

ProtoNet formulations

Using squared Euclidean distance to **measure distance** between $f_{\theta}(x)$ of an image x and each of the prototypes:

$$d(f_{\theta}(x), c_n) = ||f_{\theta}(x) - c_n||^2$$

Applying the softmax operation to classify the image by obtaining the proper probabilities over classes:

$$p(x, c_n) = p(y = n | x, c_n) = \frac{\exp(-d(f_{\theta}(x), c_n))}{\sum_{n'=1}^{N} \exp(-d(f_{\theta}(x), c_{n'}))}$$

ProtoNet algorithm

Algorithm ProtoNet for *N*-way *K*-shot Meta Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha: learning rate
 1: Randomly initialize meta-parameters \theta
 2: while not done do
            Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
 3:
            for all \mathcal{T}_i do
 4:
                   Sample K datapoints \mathcal{D}_i^{tr} from \mathcal{T}_i
 5:
                   Sample disjoint datapoints \mathcal{D}_i^{query} from \mathcal{T}_i
 6:
                  Compute prototypes c_{n \in 1:N} \leftarrow \frac{1}{K} \sum_{(x,y) \in \mathcal{D}_{i}^{tr}: y:=n} f_{\theta}(x_{j})
 7:
                  Compute distribution over classes \mathcal{P}_i \leftarrow p(x_j, c_{n \in 1:N})_{x_i \in \mathcal{D}_i^{query}}
 8:
 9:
                   Compute loss \ell_{\mathcal{T}_i} \leftarrow \mathcal{L}(\theta, \mathcal{P}_i)
            end for
10:
            Update \theta \leftarrow \theta - \alpha \nabla_{\theta} \sum_{\mathcal{T}} \ell_{\mathcal{T}_i}
11:
12: end while
```

ProtoNet result on Omniglot

Accuracy on query set during validating

Some Meta-Learning Algorithms

- ► Prototypical Networks
- ► Model-Agnostic Meta-Learning
- ► Proto-MAML

Model-Agnostic Meta-Learning concept

Key idea: To meta-learn initial θ that can be quickly adapted via gradient descent to a new task with a small amount of data.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International conference on machine learning. PMLR, 2017.

A high-level view of MAML

Objective: Learning initial parameters θ such that *small changes* in these parameters will produce *high* performance on any unseen task \mathcal{J}_{test} .

MAML algorithm

Algorithm MAML for *N*-way *K*-shot Meta Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks
```

Require: α, β : learning rates for inner and outer loop

- 1: Randomly initialize meta-parameters θ
- 2: while not done do
- Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3:
- for all \mathcal{T}_i do 4.
- Sample K datapoints \mathcal{D}_i^{tr} from \mathcal{T}_i 5:
- Sample disjoint datapoints \mathcal{D}_{i}^{query} from \mathcal{T}_{i} 6:
- 7: Initialize task-specific parameters $\phi_i \leftarrow \theta$
- Optimize $\phi_i \leftarrow \phi_i \alpha \nabla_{\phi_i} \mathcal{L}(\phi_i, \mathcal{D}_i^{tr})$ 8. 9:
 - Compute loss $\ell_{\mathcal{T}} \leftarrow \mathcal{L}(\phi_i, \mathcal{D}_i^{query})$
- end for 10.
- 11:
- Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\tau} \ell_{\tau}$ 12. end while

inner loop

First-order MAML approximation

Second-order derivatives!!!

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i} \ell_{\mathcal{T}_i}$ 11:

fo-MAML results on Omniglot

Pre- and Post-adaption accuracies on support set during validating

fo-MAML results on Omniglot

Accuracy on query set during validating

Some Meta-Learning Algorithms

- ► Prototypical Networks
- ► Model-Agnostic Meta-Learning
- ► Proto-MAML

Intergrating ProtoNet's outputing to MAML

Remember that ProtoNet use Euclidean distance $d(f_{\theta}(x), c_n)$ to classify image x?

The **output distance** with respect to a prototype c_n of ProtoNet can be unpacked as:

$$-d(f_{\theta}(\mathbf{x}), c_n) = -\|f_{\theta}(\mathbf{x}) - c_n\|^2 = -f_{\theta}(\mathbf{x})^{\mathsf{T}} f_{\theta}(\mathbf{x}) + 2c_n^{\mathsf{T}} f_{\theta}(\mathbf{x}) - c_n^{\mathsf{T}} c_n$$

$$= 2c_n^{\mathsf{T}} f_{\theta}(\mathbf{x}) - c_n^{\mathsf{T}} c_n + constant$$

$$w_n = 2c_n$$
just ignore
$$b_n = -c_n^{\mathsf{T}} c_n$$

A Dense output layer!!!

Triantafillou, Eleni, et al. "Meta-dataset: A dataset of datasets for learning to learn from few examples." arXiv preprint arXiv:1903.03096 (2019).

^{*} Since it is a class-independent scalar, it leaves the output probabilities unchanged.

fo-Proto-MAML result on Omniglot

Accuracy on query set during validating

Experimental results

Comparison of accuracy on query set over approaches during validating/testing time

Acknowledgements

This work was mostly derived from (1) the CS330 coursework at Stanford University, and (2) the UvA Deep Learning tutorial 16.

After credits

Codework repositories and their associated experiments:

- ► Three meta-learning algorithms on Omniglot: https://github.com/nthehai01/meta-learning-methods,
- ► Transfer learning on Omniglot: https://github.com/nthehai01/non-episodic-approach.