Problem Sets

D. Zack Garza

January 22, 2020

Contents

2	1.3*															1																	
	1.1 1.2																																
1	1.1																																1

1 1.1

1.1 a

If $M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces M_{μ} for which $\mu \in [\lambda]$. Prove that $M^{[\lambda]}$ is a $U(\mathfrak{g})$ -submodule of M and that M is the direct sum of finitely many such submodules.

1.2 b

Deduce that the weights of an indecomposable module $M \in \mathcal{O}$ lie in a single coset of $\mathfrak{h}^{\vee}/\Lambda_r$.

2 1.3*

Show that $M(\lambda)$ has the following property: for any $M \in \mathcal{O}$,

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda), M) = \operatorname{Hom}_{U(\mathfrak{g})} \left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}, M \right) \cong \operatorname{Hom}_{U(\mathfrak{b})} \left(\mathbb{C}_{\lambda}, \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}} M \right).$$