МФТИ ФУПМ, 474

Вычислительная математика

Курсовая работа

Алексеев Василий

Содержание

1	Введение	2
2	Задача	2
3	Методы	3
	3.1 "Наивный"	3
	3.2 Лакс	5
	3.3 Курант-Изаксон-Рис	6
	3.4 Лакс-Вендрофф	7
	3.5 МакКормак	8
4	Заключение	9
5	Графики	10

1 Введение

В данной работе предлагается несколько методов численного решения задачи, связанной с уравнением Хопфа. Проводится исследование предложенных схем на аппроксимацию и устойчивость.

2 Задача

$$\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, & 0 < x < 2, \ t > 0 \\ u(0, x) = f(x) \\ u(t, 0) = f(0) \end{cases} \tag{1}$$

Предлагаемые далее способы решения задачи (1) иллюстрировались на примере двух функций

$$f_1(x) = 1 - x$$

$$f_2(x) = x$$
(2)

Шаг по пространству

$$h_1 = 0.050 h_2 = 0.025$$
 (3)

Шаг по времени au выбирался при заданном h, так чтобы число Куранта

$$\sigma \equiv \tau / h \tag{4}$$

было меньше единицы. Если говорить точнее, рассматривалось два значения числа Куранта

$$\sigma \in \{0.5, \ 0.9\} \tag{5}$$

3 Методы

3.1 "Наивный"

$$\begin{cases} \frac{u_m^{n+1} - u_m^{n-1}}{2\tau} + u_m^n \frac{u_{m+1}^n - u_{m-1}^n}{2h} = 0, & m = 1 \div (M-1), n = 1 \div (N-1) \\ u_m^0 = f_m \\ u_0^n = f_0 \\ u_m^1 = f_m - f_m f_m' \tau \\ \frac{u_m^{n+1} - u_m^n}{\tau} - \frac{w_M^n - w_{M-1}^n}{h} = 0 \\ w_m^n = (u_m^n)^2 / 2 \end{cases}$$

$$(6)$$

Поясним выражение для первого слоя u_m^1

$$u_m^1 = u_m^0 + (u_m^0)_t'\tau$$

= $u_m^0 - u_m^0 (u_m^0)_x'\tau$
= $f_m - f_m f_m'\tau$

Аппроксимация

Из основного уравнения: $O(\tau^2) + ||u_m^n|| \cdot O(h^2) = O(\tau^2, h^2)$.

Из начального условия для первого слоя: $O(\tau^2)$.

Из условия на правой границе u_M : O(au,h).

Итоговый порядок аппроксимации: $O(\tau,h)$.

Устойчивость

Используем спектральный признак. Полагаем $u_m^n = \lambda^n e^{im\varphi}$. Подставляем в основное уравнение (замораживая коэффициент при пространственной производной)

$$\frac{\lambda - 1/\lambda}{2\tau} + a \frac{e^{i\varphi} - e^{-i\varphi}}{2h} = 0$$
$$\lambda^2 + \frac{2a\tau}{h} i \sin \varphi \lambda - 1 = 0$$

По теореме Виета, получаем, что

$$\lambda_1 \lambda_2 = -1$$

Выражение для корней

$$\lambda = -\frac{a\tau\sin\varphi}{h}i \pm \sqrt{1 - \left(\frac{a\tau\sin\varphi}{h}\right)^2}$$

Видно, что при выполнении условия

$$\left| \frac{a\tau \sin \varphi}{h} \right| \leqslant \frac{\|u_m^n\|\tau}{h} \leqslant 1$$

схема (6) устойчива.

По результатам вычислительных экспериментов построены графики, представленные в таблице <mark>1</mark>.

3.2 Лакс

$$\begin{cases}
\frac{u_m^{n+1} - \frac{1}{2} \left(u_{m+1}^n + u_{m-1}^n \right)}{\tau} + \frac{w_{m+1}^n - w_{m-1}^n}{2h} = 0, & m = 1 \div (M-1), & n = 0 \div (N-1) \\
u_m^0 = f_m \\
u_0^m = f_0 \\
u_M^{n+1} - u_m^n - \frac{w_M^n - w_{M-1}^n}{h} = 0 \\
w_m^n = (u_m^n)^2 / 2
\end{cases} \tag{7}$$

Аппроксимация

Подставляя в основное разностное уравнение проекцию точного решения [u] и раскладывая всё в окрестности точки $[u_m^n]$, получаем порядок $O\left(\tau,h^2,\frac{h^2}{\tau}\right)$. С учётом уравнения для границы u_M , получаем в итоге аппроксимацию порядка $O\left(\tau,h,\frac{h^2}{\tau}\right)$.

Устойчивость

$$u_m^n = w_n^m = \lambda^n e^{im\varphi}$$

Подставляя в уравнение, получаем

$$\frac{\lambda - \frac{1}{2}(e^{i\varphi} + e^{-i\varphi})}{\tau} + \frac{e^{i\varphi} - e^{-i\varphi}}{2h} = 0$$

$$\lambda = \underbrace{\cos \varphi}_{x} + i \underbrace{\left(-\frac{\tau}{h}\sin \varphi\right)}_{y}$$

$$x^2 + \frac{y^2}{(\tau/h)^2} = 1$$

Получаем условие для устойчивости по спектральному признаку

$$\frac{\tau}{b} \leqslant 1$$

Графики для расчётов по схеме Лакса находятся в таблице 2.

3.3 Курант-Изаксон-Рис

$$\begin{cases}
\frac{u_m^{n+1} - u_m^n}{\tau} + \begin{cases}
\frac{w_{m+1}^n - w_m^n}{h} = 0, \ u_m^n < 0 \\
\frac{w_m^n - w_{m-1}^n}{h} = 0, \ u_m^n > 0
\end{cases} = 0, \quad m = 1 \div (M - 1), \quad n = 0 \div (N - 1)$$

$$\begin{cases}
u_m^0 = f_m \\
u_0^m = f_0 \\
\frac{u_M^{n+1} - u_m^n}{\tau} - \frac{w_M^n - w_{M-1}^n}{h} = 0 \\
w_m^n = (u_m^n)^2 / 2
\end{cases} \tag{8}$$

Аппроксимация

Данная схема похожа на схему (6), только теперь учитывается знак тангенса угла наклона характеристики dx/dt. Поэтому порядок аппроксимации также $O(\tau, h)$.

Устойчивость

$$u_m^n = \lambda^n e^{im\varphi}$$

Подставляя выражение для u_m^n , например, в уравнение при $u_m^n < 0$, получаем

$$\frac{\lambda - 1}{\tau} + \frac{e^{i\varphi} - 1}{h} = 0$$

$$\lambda = 1 - \frac{\tau}{h} \left(e^{i\varphi} - 1 \right)$$

Схему можно считать устойчивой при $\tau/h \to 0$.

Иллюстрации работы метода на примере функций (2) находятся в таблице 3.

3.4 Лакс-Вендрофф

Аппроксимация

Подставляя в первое уравнение-предиктор проекцию решения и раскладывая всё около $[u_m^n]$, а также учитывая, что

$$u_t + w_x = 0$$
$$u_{tt} + w_{xt} = 0$$
$$u_{tx} + w_{xx} = 0$$

получаем первый порядок по времени и пространству $O(\tau,h)$. Очевидно, второе уравнение-предиктор даст то же самое. Теперь обратимся к уравнению-корректору. Проделывая и с ним аналогичные преобразования, получаем порядок $O(\tau,h^2)$. В итоге порядок аппроксимации $O(\tau,h)$.

Устойчивость

$$u_m^n=w_m^n=\lambda^n e^{im\varphi}$$

Подставляем в корректор

$$\frac{\lambda - 1}{\tau} + \frac{\sqrt{\lambda}(e^{i\varphi/2} - e^{-i\varphi/2})}{h} = 0$$
$$\lambda + 2i\sin\frac{\varphi}{2} \cdot \frac{\tau}{h} \cdot \sqrt{\lambda} - 1 = 0$$

Не углубляясь в анализ расположения корней полученного уравнения, можно сразу сказать, что при $\tau / h \to 0$ получаем $\lambda = 1$, и схему можно считать устойчивой.

С графиками можно ознакомиться в таблице 4.

3.5 МакКормак

Makkopmak
$$\begin{cases}
\begin{cases}
\frac{\tilde{u}_{m} - u_{m}^{n}}{\tau} + \frac{w_{m}^{n} - w_{m-1}^{n}}{h} = 0 \\
\frac{\tilde{u}_{m+1} - u_{m+1}^{n}}{\tau} + \frac{w_{m+1}^{n} - w_{m}^{n}}{h} = 0 \\
\frac{u_{m}^{n+1} - \frac{1}{2} \left(u_{m}^{n} + \tilde{u}_{m} \right)}{\tau} + \frac{\tilde{w}_{m+1} - \tilde{w}_{m}}{h} = 0, \quad m = 1 \div (M - 1), \quad n = 0 \div (N - 1) \\
u_{m}^{0} = f_{m} \\
u_{0}^{m} = f_{0} \\
u_{0}^{m+1} - u_{m}^{n}}{\tau} - \frac{w_{M}^{n} - w_{M-1}^{n}}{h} = 0 \\
w_{m}^{n} = (u_{m}^{n})^{2} / 2
\end{cases} \tag{10}$$

Аппроксимация

Выражая предсказания \tilde{u}_m и \tilde{u}_{m+1} из первых двух уравнений и подставляя это затем в третье уравнение, после разложения около u_m^n получаем порядок аппроксимации O(au,h).

Устойчивость

$$u_m^n = w_m^n = \lambda^n e^{im\varphi}$$

Подставляем в корректор, принимая, что $\tilde{u}_m \equiv u_m^{n+1/2}$

$$\frac{\lambda - \frac{1}{2} \left(1 + \sqrt{\lambda} \right)}{3\tau/4} + \frac{\sqrt{\lambda} e^{i\varphi} - \sqrt{\lambda}}{h} = 0$$

$$\lambda + \left(-\frac{1}{2} + \frac{3\tau/4}{h}e^{i\varphi} - \frac{3\tau/4}{h}\right)\sqrt{\lambda} - \frac{1}{2} = 0$$

Устремим $\tau/h \to 0$. Тогда получаем

$$\lambda - \frac{1}{2}\sqrt{\lambda} - \frac{1}{2} = 0$$

$$\left(\sqrt{\lambda} - 1\right)\left(\sqrt{\lambda} + \frac{1}{2}\right) = 0$$

Получаем, что при $\tau \Big/ h o 0$ максимальный λ по модулю равен 1, поэтому схему можно считать устойчивой.

Построенные графики размещены в таблице 5.

4 Заключение

В работе исследовалось несколько методов численного решения начально-краевой задачи с уравнением Хопфа с заданными значениями на левой границе (1): "Наивный" (схема крест) (6), Лакс (7), Курант-Изаксон-Рис (8), Лакс-Вендрофф (9) и МакКормак (10).

Порядок аппроксимация на всех схемах составил $O(\tau,h)$. На некоторых схемах он мог бы быть и выше, но предложенное разностное уравнение для вычисления значений на правой границе (левый уголок), которое использовалось во всех схемах, обеспечивало лишь первый порядок аппроксимации по времени и пространству.

Исследование устойчивости показало, что все представленные методы условно-устойчивы. Но при расчётах сеток для функций (2) и шага h (3) устойчивыми оказались лишь Лакс и Курант-Изаксон-Рис (по результатам для числа Куранта $\sigma=0.5$; для $\sigma=0.9$ — не лучше, чем для $\sigma=0.5$). "Наивный" был устойчив только для функции f_2 из (2). Поведение Лакса-Вендроффа было неустойчивым около x=1 в случае f_1 из (2) и при x=2 при расчётах для f_2 . При МакКормаке неустойчивости тоже были для обеих функций из (2), причём для f_1 пилообразные возмущения наблюдались на всём интервале (0,1), а для функции f_2 — только на конце, при $x \lesssim 2$.

5 Графики

Таблица 1: "Наивный" (<mark>3.1</mark>)

Таблица 2: "Лакс" (3.2)

Таблица 3: "Курант-Изаксон-Рис" (3.3)

Таблица 4: "Лакс-Вендрофф" (3.4)

Таблица 5: "МакКормак" (3.5)

