Convolutional Neural Networks

Rodrigo Gonzalez, PhD

Hello!

I am Rodrigo Gonzalez, PhD

You can find me at rodralez@gmail.com

Summary

- 1. Main ideas
- 2. Basic CNN architecture
- 3. Padding and stride
- 4. CNN in Keras

Common neural network approach

CNN approach

Locality

Translation invariance

Translation invariance

2. Basic CNN architecture

Kernel and pooling

Basic CNN architecture

Convolution

2D convolution is a **dot product** between an image (nxn matrix) and a **kernel** (3x3)

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolution

2D convolution is a **dot product** between an image (nxn matrix) and a **kernel** (3x3)

30	3	2	1	0
02	02	10	3	1
30	1	2	2	3
2	0_	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Edge detector

Ke	rnel			
	1	-1	-1	
2	1	8	-1	
] -	1	-1	-1	l

Sharpening

Kernel		
-1	-1	-1
-1	9	-1
-1	-1	-1

Gaussian

Kernel 1 2 3 2 1 2 4 5 4 2 3 5 6 5 3 2 4 5 4 2 1 2 3 2 1

Smoothing

Smoothing

Don't worry! The CNN will learn the kernels!

A Convolution Layer

Basic CNN architecture

Pooling

Pooling

Pooling

- Pooling is image compression
- Reduce computation

Max pooling and Average pooling

No need to learn a Max Pooling

3	13	17	11
5	3	1	23
7	1	2	3
11	17	1	4

Max Pooling

13 23 17 4

 $A_{Vergae} \xrightarrow{Pooling} 6 \quad 13$

3. Padding and stride

Padding

In general, a 2D convolution reduces the size of the image

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Padding

In general, a 2D convolution reduces the size of the image

Stride

Stride is the number of rows and columns traversed per slide. In general, a 2D convolution the kernel moves 1 row at a time in both directions.

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Stride

Stride of 2 vertically and 2 horizontally.

- Computational efficiency
- O Downsampling

CNN in Keras

Keras

Listing 8.1 Instantiating a small convnet

```
from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(10, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
```


LeNet-5

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, *Proceedings of the IEEE*, 86(11):2278-2324, *November* 1998, \cite{lecun-98}.

5. Book

Deep Learning with Python, 2nd Ed. by Francois Chollet

O Chapter 8

Thanks!

Any questions?

You can find me at: rodralez@gmail.com

