HW Math 350H

Pranav Tikkawar

September 14, 2024

Section 1.2

Question 7

Let $S = \{0, 1\}$ and F = R. In $\mathcal{F}(S, F)$, show that f = g and f + g = h where f(t) = 2t + 1, $g(t) = 1 + 4t - 2t^2$, and $h(t) = 5^t + 1$

We can prove this by proving each case separately.

Proof of f = g

Let
$$t = 0 \implies f(0) = g(0) \implies 2(0) + 1 = 1 + 4(0) - 2(0)^2 \implies 1 = 1$$

Let $t = 1 \implies f(1) = g(1) \implies = 2(1) + 1 = 1 + 4(1) - 2(1)^2 \implies 3 = 3$

Proof of f + g = h

Let
$$t = 0 \implies f(0) + g(0) = h(0) \implies 2(0) + 1 + 1 + 4(0) - 2(0)^2 = 5^0 + 1 \implies 2 = 2$$

Let $t = 1 \implies f(1) + g(1) = h(1) \implies 2(1) + 1 + 1 + 4(1) - 2(1)^2 = 5^1 + 1 \implies 6 = 6$

Question 8

In any vector space V, show that (a+b)(x+y) = ax+ay+bx+by for any $x, y \in V$ and $a, b \in F$

We can initially treat x + y as a single vector and thus use (VS 7) to distribute the scalars then use (VS 8) on each of the resulting vectors to lead to 4 vectors.

$$(a + b)(x + y)$$

= $a(x + y) + b(x + y)$, (VS 7)
= $(ax + ay) + (bx + by)$, (VS 8)

Note that the there are multiple parentesis representaions for this sum as follows:

$$= ((ax + ay) + bx) + by$$

$$= (ax + ay) + (bx + by)$$

$$= (ax + (ay + bx)) + by$$

$$= ax + (ay + (bx + by))$$

$$= ax + ((ay + bx) + by)$$

These solutions are equivalent as by (VS 2) we can rearrange the order of parentesis along vector addition:

$$((ax + ay) + bx) + by = (ax + (ay + bx)) + by(VS2)$$

$$(ax + (ay + bx)) + by = ax + ((ay + bx) + by)(VS2)$$

$$ax + ((ay + bx) + by) = ax + (ay + (bx + by))(VS2)$$

$$ax + (ay + (bx + by)) = (ax + ay) + (bx + by)(VS2)$$

Finally we can see that ((ax + ay) + (bx + by)) is equivalent to ax + ay + bx + byBy the transitive property of equality, we can conclude that (a + b)(x + y) = ax + ay + bx + by regardless of the parenthesis representations we choose to distribute the term out by.

Question 9

Prove Corollaries 1 and 2 of Theorem 1.1 and Theorem 1.2 (c)

Corollary 1: The vector $\underline{0}$ in (VS 3)is unique.

Proof: Assume there are two zero vectors 0 and 0' in V.

Thus $\forall x \in V$ we have x + 0 = x and x + 0' = x

Thus by transitivity we have x + 0 = x + 0'

By theorem 1.1 we have 0 = 0'

This is a contradiction as we assumed there were two distinct zero vectors.

Thus the zero vector is unique.

Corollary 2: The vector y in (VS 4) is unique.

Proof: Assume there are two vectors y and y' in V such that x + y = 0 and x + y' = 0

Thus by transitivity we have x + y = x + y'

Thus by theorem 1.1 we have y = y'

This is a contradiction as we assumed there were two distinct vectors.

Thus the vector y is unique.

Theorem 1.2 (c): $a\underline{0} = \underline{0}, \forall a \in F$

Proof: Let $a \in F$, Need $a\underline{0} = \underline{0}$

```
Consider a\underline{0} + a\underline{0}
Thus by (VS 7) we have a\underline{0} + a\underline{0} = a(\underline{0} + \underline{0})
Thus by (VS 3) we have a(\underline{0} + a\underline{0}) = a\underline{0}
By (VS 4) We let y = -a\underline{0} and add y to both sided
Thus we have a0 = 0 as desired
```

Note that $\forall x \in V \implies x = 0$ Since V has only one element.

Question 11

0 = 0

Proof of VS 7:

Let $V = \{0\}$ consit of a single vector $\mathbf{0}$ and define 0 + 0 = 0 and c0 = 0 for each $c \in F$. Prove that V is a vector space over F

Thus for the following proofs I will simply state what needs to be proven and then implicitly let x, y, z be arbitrary elements of V which implies x, y, z = 0Proof of VS 1: Let $x, y \in V$ Nee $x + y = y + x \in V$ 0 + 0 = 0 + 00 = 0Proof of VS 2: Let $x, y, z \in V$ Need (x + y) + z = x + (y + z)(0+0)+0=0+(0+0)0 + 0 = 0 + 00 = 0Proof of VS 3: Let $x \in V$ Need $\exists 0 \in V, x + 0 = x$ Since 0 is the only element in V, $\underline{0} = 0$ Thus 0 + 0 = 00 = 0Proof of VS 4: Let $x \in V$ Need $\exists y \in V, x + y = 0$ Let y = 0x + y = 0 + 0 = 0 as desired Proof of VS 5: Let $x \in V$ Need 1x = x1 * 0 = 00 = 0Proof of VS 6: Let $a, b \in F, x \in V$ Need (ab)x = a(bx)ab0 = a(b0)0 = a0

Let
$$a \in F, x, y \in V$$
 Need $a(x + y) = ax + ay$
 $a(0 + 0) = a0 + a0$
 $0 = 0$
Proof of VS 8:
Let $a, b \in F, x \in V$ Need $(a + b)x = ax + bx$
 $(a + b)0 = a0 + b0$
 $0 = 0$

Question 12

A real-valued function f is defined on the set of all real numbers is called and even function if f(-t) = f(t) for all $t \in \mathbb{R}$. Prove that the set of even functions defined on the real line with the operations of addition and scalar multiplication defined by (f+g)(t) = f(t) + g(t) and (cf)(t) = c[f(t)] is a vector space over \mathbb{R}

Note that any for 2 even functions f,g their sum f+g is also even as:

$$(f+g)(-t) = f(-t) + g(-t)$$

= $f(t) + g(t)$
= $(f+g)(t)$

As well as for any scalar c:

 $f(t) + \underline{0} = f(t)$ as desired

$$(cf)(-t) = c[f(-t)]$$
$$= c[f(t)]$$
$$= (cf)(t)$$

Proof of VS 1:

Let
$$f, g \in V$$
, Need $f + g = g + f$
 $(f + g)(t) = f(t) + g(t) = g(t) + f(t)$
 $f(t) + g(t) = f(t) + g(t)$
 $f + g = g + f$ as desired
Proof of VS 2:
Let $f, g, h \in V$ Need $(f + g) + h = f + (g + h)$
 $((f + g) + h)(t) = (f + g)(t) + h(t) = f(t) + g(t) + h(t)$
 $(f + (g + h))(t) = f(t) + (g + h)(t) = f(t) + g(t) + h(t)$
Thus $(f + g) + h = f + (g + h)$ as desired
Proof of VS 3:
 $\exists 0 \in V, \forall f \in V \text{ Need } f + 0 = f$
 $(f + 0)(t) = f(t) + 0(t) = f(t)$
Let $0(t) = 0$

```
Note that 0 \in V as 0 is even since 0(t) = 0(-t) = 0
Proof of VS 4:
Let f \in V Need \exists g \in V s.t. f + g = 0
Let g = -1f
(f + -1f)(t) = f(t) + -1f(t) = 0 as desired
Note that g is even as g(t) = -1f(t) = -1f(-t) = g(-t)
Proof of VS 5:
Let f \in V Need 1f = f
(1f)(t) = 1f(t)
1f(t) = f(t)
Thus 1f = f as desired
Proof of VS 6:
Let a, b \in \mathbb{R}, f \in V Need (ab)f = a(bf)
(ab) f(t) = a(bf(t))
abf(t) = abf(t)
(ab) f = a(bf) as desired
Proof of VS 7:
Let a \in \mathbb{R}, f, g \in V Need a(f+g) = af + ag
a(f+g)(t) = a(f(t)+g(t)) = af(t) + ag(t) = af + ag as desired
Proof of VS 8:
\forall a, b \in \mathbb{R}, \forall f \in V, (a+b)f = af + bf
(a+b)f(t) = af(t) + bf(t) = af + bf as desired
```

Question 17

Let $V = \{(a_1, a_2) : a_1, a_2 \in F\}$. where F is a field. Define addition of elements of V coordinatewise, and for $c \in F$ and $(a_1, a_2) \in V$ define $c(a_1, a_2) = (a_1, 0)$ Is V a vector space over F with operations?

```
V is not a vector space as (VS 5) does not hold. Let x=(0,1), c=1.
Thus 1x=1(0,1)=(0,0)
Clearly (0,0)\neq (0,1)
```

Section 1.3

Question 5

Prove that $A + A^t$ is symmetric for any square matrix A

Let A be an n by n matrix with each entry $a_{i,j}$ corresponding to entry in the ith row and jth column.

Clearly A^t has the values of a_{ij} in the entries in the ith column and jth row. In other words, its values of a_{ji} in the ith row and jth column

Thus $A + A^t$ has entries of $a_{ij} + a_{ji}$ in the ith row and jth column.

This would be symmetric as for every symmetric matrix the for each entry $a_{ij} = a_{ji}$

Clearly $a_{ij} + a_{ji} = a_{ji} + a_{ij}$

Thus $A + A^t$ is symmetric

Question 8a

Determine if the following sets are subspaces of \mathbb{R}^3 under the operation of adition and scalar multiplication defined on \mathbb{R}^3 Justify your answers: $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}$

This is a subspace as the since W is a subset of a vector space (\mathbb{R}^3) it must satisfy the 8 properties of a vector space.

It also satisfies $0 \in W$ as for $a_2 = 0, (0, 0, 0) \in W$

It satisfies the closure property of addition as:

Let $x = (a_1, a_2, a_3)$ and $y = (b_1, b_2, b_3)$

Thus $x = (3a_2, a_2, -a_2)$ and $y = (3b_2, b_2, -b_2)$

 $x + y = (3a_2 + 3b_2, a_2 + b_2, -a_2 - b_2)$

 $x + y = (3(a_2 + b_2), a_2 + b_2, -(a_2 + b_2))$

Let $c = a_2 + b_2$

x + y = (3c, c, -c)

This clearly is also in W thus it satisfies closure.

It satisfies the closure property of scalar multiplication as:

Let $x = (a_1, a_2, a_3)$

 $x = (3a_2, a_2, -a_2)$

 $cx = (3ca_2, ca_2, -ca_2)$

 $cx = (3c(a_2), c(a_2), -c(a_2))$

Let $d = ca_2$

cx = (3d, d, -d)

This clearly is also in W thus it satisfies closure.

Question 8b

Determine if the following sets are subspaces of \mathbb{R}^3 under the operation of adition and scalar multiplication defined on \mathbb{R}^3 Justify your answers: $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2\}$

This is not a subspace as there is no element in the set that satisfies the condition $0 \in W$

```
Let x = (a_1, a_2, a_3)
Thus x = (a_3 + 2, a_2, a_3)
Clearly 0 \notin W since a_3 + 2 \neq a_3, \forall a_3 \in \mathbb{R}
```

Question 11

Is the set $W = \{ f \in P(F) : f(x) = 0 \text{ or } f(x) \text{ has degree } n \}$ a subspace of P(F) if $n \ge 1$? Justify your answer.

Yes, this is a subspece of P(F) as it satisfies the closure properties of addition and scalar multiplication as well has the 0 polynomial. Firstly: $0 \in W$ as f(x) = 0

Thus the zero polynomial is in W

Secondly: Let $f, g \in W$

Then f(x) = 0 or f(x) has degree n and can be represented as $\sum_{i=0}^{n} a_i x^i$. Then g(x) = 0 or g(x) has degree n and can be represented as $\sum_{i=0}^{n} b_i x^i$. Thus $f + g = \sum_{i=0}^{n} (a_i + b_i) x^i$. If f(x) = 0 and g(x) = 0 then f + g = 0.

If f(x) or g(x) has degree n and the other is 0, then f+g is either f or g (whichever one is of degree n) has degree n

If both f(x) and g(x) have degree n, then $f + g = \sum_{i=0}^{n} (a_i + b_i)x^i$ which also has degree n

Thus it is closed under addition

Thirdly: Let $f \in W, c \in \mathbb{R}$

Then f(x) = 0 or f(x) has degree n and be represented as $\sum_{i=0}^{n} a_i x^i$. Then $cf = c \sum_{i=0}^{n} a_i x^i$. Thus $cf \in W$ as cf = 0 or $cf = c \sum_{i=0}^{n} a_i x^i$ which has degree n.

Thus it is closed under scalar multiplication