Data Mining: Assignment Week 7: Clustering

A. Low inter-cluster distance and low intra-cluster distance

B. Low inter-cluster distance and high intra-cluster distance

1. A good clustering is one with ?

C. High inter-cluster distance and low intra-cluster distance D. High inter-cluster distance and high intra-cluster distance Ans: C **Explanation:** A good clustering technique is one which produces high quality clusters in which intra-cluster similarity (i.e. intra cluster distance) is low and the inter-cluster similarity (i.e. inter cluster distance) is high. 2. The leaves of a dendrogram in hierarchical clustering represent? A. Individual data points B. Clusters of multiple data points C. Distances between data points D. Cluster membership value of the data points Ans: A **Explanation:** Refer to Dendrogram usage in HAG clustering. 3. Which of the following is a hierarchical clustering algorithm? A. Single linkage clustering B. K-means clustering C. DBSCAN D. None of the above Ans: A

Explanation: single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of

elements not yet belonging to the same cluster as each other.

- 4. Which of the following is not true about the DBSCAN algorithm?
- A. It is a density based clustering algorithm
- B. It requires two parameters MinPts and epsilon
- C. The number of clusters need to be specified in advance
- D. It can produce non-convex shaped clusters

Ans: C

Explanation: Density-based spatial clustering of applications with noise (DBSCAN) is a density-based clustering non-parametric algorithm. DBSCAN requires two parameters: ϵ (epsilon) and the minimum number of points required to form a dense region (minPts).

- 5. Which of the following clustering algorithm uses a minimal spanning tree concept?
- A. Complete linkage clustering
- B. Single linkage clustering
- B. Average linkage clustering
- C. DBSCAN

Ans: B

Explanation: The naive algorithm for single-linkage clustering has time complexity $O(n^3)$. An alternative algorithm is based on the equivalence between the naive algorithm and Kruskal's algorithm for minimum spanning trees. Instead of using Kruskal's algorithm, Prim's algorithm can also be used.

- 6. Distance between two clusters in single linkage clustering is defined as:
- A. Distance between the closest pair of points between the clusters
- B. Distance between the furthest pair of points between the clusters
- C. Distance between the most centrally located pair of points in the clusters
- D. None of the above

Ans: A

Explanation: Mathematically, the linkage function – the distance D(X,Y) between clusters X and Y is described by the expression:

 $\mathbf{D}(\mathbf{X},\mathbf{Y}) = \mathbf{min} \ \mathbf{d}(\mathbf{x},\mathbf{y}) \ \text{s.t.} \ x \in X \ \text{and} \ y \in Y \ \text{where} \ X \ \text{and} \ Y \ \text{are any two sets of elements} \ \text{considered} \ \text{as clusters, and} \ d(x,y) \ \text{denotes the distance between the two elements} \ x \ \text{and} \ y.$

- 7. Distance between two clusters in complete linkage clustering is defined as:
- A. Distance between the closest pair of points between the clusters
- B. Distance between the furthest pair of points between the clusters
- C. Distance between the most centrally located pair of points in the clusters
- D. None of the above

Ans : B

Explanation: Mathematically, the linkage function – the distance D(X,Y) between clusters X and Y is described by the expression:

 $\mathbf{D}(X,Y) = \mathbf{max} \ \mathbf{d}(x,y)$ s.t. $x \in X$ and $y \in Y$ where X and Y are any two sets of elements considered as clusters, and d(x,y) denotes the distance between the two elements x and y.

- 8. Consider a set of five 2-dimensional points $p_1=(0, 0)$, $p_2=(0, 1)$, $p_3=(5, 8)$, $p_4=(5, 7)$, and $p_5=(0, 0.5)$. Euclidean distance is the distance function used. Single linkage clustering is used to cluster the points into two clusters. The clusters are:
- A. $\{p_1, p_2, p_3\} \{p_4, p_5\}$
- B. $\{p_1, p_4, p_5\}$ $\{p_2, p_3\}$
- C. $\{p_1, p_2, p_5\}$ $\{p_3, p_4\}$
- D. $\{p_1, p_2, p_4\} \{p_3, p_5\}$

Ans: C

Explanation: find the Euclidean distance between the points and cluster together points having minimum Euclidean distance.

	P1	P2	Р3	P4	P5
P1	0				
P2	1	0			
Р3	9.4	8.60 2	0		
P4	8.60 2	7.81	1	0	
P5	0.5	0.5	9.01	8.2	0

{P1, P5} and {P2, P5} has minimum distance. We will choose {P1, P5} and cluster them together.

We will evaluate the distance of all the points from the cluster {P1, P5}. Taking minimum distance.

	P1, P5	P2	P3	P4
P1, P5	0			
P2	0.5	0		
P3	9.01	8.602	0	
P4	8.2	7.81	1	0

(P1, P5) and P2 has minimum distance. We will cluster them together.

	P1, P2, P5	P3	P4
P1, P2, P5	0		
P3	8.602	0	
P4	7.81	1	0

(P3, P4) has minimum distance. They will be clustered together.

We have got two clusters the process of clustering stops.

Two clusters obtained are **{P1, P2, P5}** and **{P3, P4}**.

- 9. Which of the following is not true about K-means clustering algorithm?
- A. It is a partitional clustering algorithm
- B. The final cluster obtained depends on the choice of initial cluster centres
- C. Number of clusters need to be specified in advance
- D. It can generate non-convex cluster shapes

Ans: D

Explanation: K-means clustering cannot generate non-convex cluster shapes.

10. Consider a set of five 2-dimensional points $p_1=(0, 0)$, $p_2=(0, 1)$, $p_3=(5, 8)$, $p_4=(5, 7)$, and $p_5=(0, 0.5)$. Euclidean distance is the distance function. The k-means algorithm is used to cluster the points into two clusters. The initial cluster centers are p_1 and p_4 . The clusters after two iterations of k-means are:

A.
$$\{p_1, p_4, p_5\}$$
 $\{p_2, p_3\}$

B.
$$\{p_1, p_2, p_5\}$$
 $\{p_3, p_4\}$

C.
$$\{p_3, p_4, p_5\}$$
 $\{p_1, p_2\}$

D.
$$\{p_1, p_2, p_4\} \{p_3, p_5\}$$

Ans: B

Explanation: 1st iteration

Initial centres are P1 and P4

	c1 =P1=		Closest
	(0,0)	(5,7)	Centre
P1	0	8.602	c1
P2	1	7.81	c1
P3	9.4	1	c2
P4	8.602	0	c2
P5	0.5	8.2	c1

2nd iteration

Clusters after 1st iteration are:

 $C1 = \{P1, P2, P5\}$ cluster centre is c1 = (0, 0.5)

 $C2 = \{P3, P4\}$ cluster centre is c2 = (5, 7.5)

	c1= (0, 0.5)	c2= (5, 7.5)	Closest centre
P1	0.5	9.01	c1
P2	0.5	8.2	c1
Р3	9.01	0.5	c2
P4	8.2	0.5	c2
P5	0	8.6	c1

Clusters formed after 2nd iteration are {P1, P2, P5} and {P3, P4}.