United College of Engineering and Research, Allahabad

Department of Computer Science & Engineering

B.Tech CSE- III Semester

Set-3

Course Name: Discrete Structure and Theory of Logic AKTU Course Code: KCS-303

Time: 45 Minutes Max. Marks: 30

• All Questions are compulsory.

• All Questions carry one mark.

Q. No.	Questions	CO
1	Let a set S = {2, 4, 8, 16, 32} and <= be the partial order defined by S <= R if a divides b. Number of edges in the Hasse diagram of is a) 6 b) 5 c) 9 d) 4	CO3
2	The less-than relation, <, on a set of real numbers is a) not a partial ordering because it is not asymmetric and irreflexive equals anti-symmetric b) a partial ordering since it is asymmetric and reflexive c) a partial ordering since it is anti-symmetric and reflexive d) not a partial ordering because it is not anti-symmetric and reflexive	CO3
3	The inclusion of sets into R = {{1, 2}, {1, 2, 3}, {1, 3, 5}, {1, 2, 4}, {1, 2, 3, 4, 5}} is necessary and sufficient to make R a complete lattice under the partial order defined by set containment. a) {1}, {2, 4} b) {1}, {1, 2, 3} c) {1} d) {1}, {1, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}	CO3
4	Consider the ordering relation $a \mid b \subseteq N \times N$ over natural numbers N such that $a \mid b$ if there exists c belong to N such that $a*c=b$. Then	CO3

5	A partial order \leq is defined on the set $S = \{x, b_1, b_2,b_n, y\}$ as $x \leq b_i$ for all i and $b_i \leq y$ for all i , where $n \geq 1$. The number of total orders on the set S which contain the partial order \leq is a) $n+4$ b) n^2 c) $n!$ d) 3					
6	Let (A, \leq) be a partial order with two minimal elements a, b and a maximum element c. Let P:A \rightarrow {True, False} be a predicate defined on A. Suppose that P(a) = True, P(b) = False and P(a) \Rightarrow P(b) for all satisfying a \leq b, where \Rightarrow stands for logical implication. Which of the following statements cannot be true? a) P(x) = True for all x S such that $x \neq b$ b) P(x) = False for all $x \in S$ such that $b \leq x$ and $b \leq x$ c) P(x) = False for all $b \leq x$ such that $b \leq x$ and $b \leq x$	CO3				
7	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as a) sublattice b) lattice c) trail d) walk	CO3				
8	If every two elements of a poset are comparable then the poset is called a) sub ordered poset b) totally ordered poset c) sub lattice d) semigroup	CO3				
9	The graph given below is an example of a) non-lattice poset b) semilattice c) partial lattice d) bounded lattice	CO3				
10	Every poset that is a complete semilattice must always be a	CO3				

	a) sublattice b) complete lattice							
	c) free lattice							
	d) partial lattice							
11	Consider the following Boolean expression. $F = (X+Y+Z)(X'+Y)(Y'+Z)$							
	Which of the following Boolean expressions is/are equivalent to F' (complement of F)?							
	(A) (X'+Y'+Z')(X+Y')(Y+Z')							
	(B) XY'+Z'							
	(C) (X+Z')(Y'+Z')							
	(D) XY'+YZ'+X'Y'Z'							
12	The following is the Hasse diagram of the poset [{a, b, c, d, e}, ≤]							
	bo c o d							
	The poset is							
	(A) not a lattice							
	(B) a lattice but not a distributive lattice							
	(C) a distributive lattice but not a Boolean algebra							
	(D) a Boolean algebra							
13	In a lattice defined by the Hasse diagram given in figure 3.3, how many							
	<u>a</u>							
	b g c							
	e d d							
	complements does the element 'e' have? (A) 2							
	(B) 3							
L								

	(C) 0						
	(C) 0						
	(D) 1						
14	A partial order \leq is defined on the set $S = \{x, a_1, a_2,a_n, y\}$ as $x < a_i$ for all i and $a_i \leq y$ for all i , where $n \geq 1$. The number of total orders on the set S which contain the partial order \leq is (A) $n!$						
	(B) n+2						
	(C) n						
	(D) 1						
15	Let X= $\{2, 3, 6, 12, 24\}$, Let \leq be the partial order defined by X \leq Y if x divides y. Number of edges in the Hasse diagram of (X,\leq) is (A) 3						
	(B) 4						
	(C) 9						
	(D) None of the above						
16	Consider the set $X=\{a,b,c,d,e\}$ under partial ordering $R=\{(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(b,c),(b,e),(c,c),(c,e),(d,d),(d,e),(e,e)\}$						
	The Hasse diagram of the partial order (X,R) is shown below.						
	c d d						
	The minimum number of ordered pairs that need to be added to R to make (X,R) a lattice is						
	(A) 0 (B) 1 (C) 2 (D) 3						

		1
	a) (A' + B)(C' + D) b) (A + B')(C' + D) c) (A' + B)(C' + D) d) (A + B')(C + D')	
21	There are numbers of Boolean functions of degree n.	
	a) n b) 2 ^{2*(n)} c) n ³ d) n ^(n*2)	
22	Evaluate the expression: $(X + Z)(X + XZ') + XY + Y$.	
22	a) XY+Z' b) Y+XZ'+Y'Z c) X'Z+Y d) X+Y	
23	If an expression is given that $x+x'y'z=x+y'z$, find the minimal expression of the function $F(x,y,z)=x+x'y'z+yz$? a) $y'+z$ b) $xz+y'$ c) $x+z$ d) $x'+y$	
24	Minimize the Boolean expression using Boolean identities: A'B+ABC'+BC'+AB'C'. a) B(AC)' + AC' b) AC' + B' c) ABC + B' + C d) BC' + A'B	
25	Simplify the expression using K-maps: $F(A,B,C,D)=\Sigma$ (1,3,5,6,7,11,13,14). a) $AB+BC'D+A'B'C$ b) $BCD'+A'C'D+BD'$ c) $A'D+BCD+A'BC+AB'C'$ d) $AC'D'+BC+A'BD+C'D'$	
26	Simplify the expression using K-maps: $F(A,B,C) = \Sigma$ (1,3,5,6,7). a) $AC'+B'$ b) $AB+C$ c) $AB'+B'C'$ d) $A'BC+B'C+AC$	
27	Use Karnaugh map to find the simplified expression of the function: F = x'yz + xy + xy'z'. a) xz'+y'z' b) xy'z+xy c) y'z+x'y+z d) yz+xy+xy'z	
28	Determine the number of essential prime implicants of the function $f(a, b, c, d) = \Sigma m(1, 3, 4, 8, 10, 13) + d(2, 5, 7, 12)$, where m denote the minterm and d	

	denotes the don't care condition. a) 2³ b) 3 c) 643 d) 128	
29	How many number of prime implicants are there in the expression $F(x, y, z) = y'z' + xy + x'z$. a) 7 b) 19 c) 3 d) 53	
30	Determine the number of prime implicants of the following function F? $F(a, b, c, d) = \Sigma m(1, 3, 7, 9, 10, 11, 13, 15)$ a) 621 b) 187 c) 3^5 d) 5	

<u>Answer</u>

1-B	2-A	3-C	4-D	5-C	6-D	7- B	8-B	9-A	10-B
11-	12-B	13-B	14-A	15-B	16-A	17-A	18-A	19-B	20-B
B,C,D									
21-B	22-D	23-C	24-A	25-C	26-B	27-D	28-B	29-C	30-D