# CSC7066/CSC4066 Media Security

# Tutorial One SPREAD SPECTRUM WATERMARKING for MULTIMEDIA by Cox et al.

#### Generic Research Paper

- Introduction
  - Brief explanation of the problem
    - You are writing to the experts or to the researchers who are familiar with the subject.
  - Key ideas behind the research
  - Previous work if there is no section for it
- Previous Work
  - If there is no mentioned in the introduction
- Presentation of the Research
  - Break down into sections and subsections to make it easy to follow
  - Clear presentation
  - References to the previous works
- Results or Experiments
  - Good explanation of the experiments
    - » Others should repeat the experiments
  - Evaluation and Explanation of the results
- Conclusion
  - Appropriate conclusions from the work should be drawn.
- References

# Cox's paper

- What are the key points of the paper?
  - From Introduction
    - » Watermark Structure
    - » Insertion Strategy
  - Watermark structure
    - » Independent Identically Distributed (i.i.d) Gaussian signal; N(0,1)
      - Collusion attack
      - Quantisation attack
      - Structured to low false positive and false negative detection
  - Insertion Strategy
    - » Perceptually most significant spectral components
      - Without perceptual degradation
      - Most signal processing techniques leave them intact
    - » Spectra means that it is in the transform domain
      - Discrete Cosine Transform

#### Cox's paper

- What is the weakness of the paper?
  - Normally the weaknesses will be discovered by other authors later on.
  - Sometimes the authors pointed out the weaknesses as well.
  - NO PROOF of CONTENT OWNERSHIP !!!
    - » No countermeasure against watermark insertion.
  - HOWEVER THIS IS A KEY PAPER
    - » Spread Spectrum Concept

#### Spectral (Frequency) Domain Watermarking

#### Common Attacks

- Lossy Compression
  - » Eliminates high frequency components. WHY?
    - Human Visual System (HVS) is less sensitive to high frequency components.
- Geometric distortions
  - » Spectral domain spreads the watermark over the whole spatial domain
- Other attacks
  - » ????

#### Conclusion

Difficult to find a solution for all type of attacks

#### Where is the idea coming from?

- □ Spectral or frequency domain → Communication Channel
- Watermark → Signal to be transmitted
- □ Attacks → Noise

#### SPREAD SPECTRUM COMMUNICATION

- Transmit a narrowband signal over a much larger band signal
  - » Signal energy present in any single frequency is undetectable
- Watermark: narrow band; image: larger band
  - » Spread watermark over very many frequency bins of image spectra
  - » Small energy ; cannot be detectable

#### Which spectral bands?

- □ Fourier transform (FFT)
- Discrete Cosine Transform (DCT)
- Discrete Wavelet Transform (DWT)

#### Method

- Watermark
  - Gaussian N(0,1); length n
- □ DCT of whole image → DCT coefficient matrix
- Insert watermark into the n highest magnitude coefficients of the transform matrix, excluding the DC component.
  - WHY?

# Method (Cont.)



#### **Embedding**

#### Different embeddings

• 
$$V'_i = V_i + \alpha X_i$$
  
 $V'_i = V_i (1 + \alpha X_i)$   $\leftarrow$   
 $V'_i = V_i (e^{\alpha X_i})$ 

- What is  $\alpha$ ?
  - » Strength parameter: Determines the trade off between robustness and the fidelity
- What are the properties of these three approaches?
- Which one was used in the paper?

# **Extracting Watermark**



# Similarity of Watermarks

- FACT : Original watermark and the recovered one cannot be the same.
  - WHY?
- Measure: Correlation Coefficient

$$sim(X, X^*) = \frac{X^* \cdot X}{\sqrt{X^* \cdot X^*}}$$

 $\square$  sim(X,X\*) > Thr  $\Rightarrow$  Watermark is there!!!

#### Similarity of Watermark (cont.)

- Determining the threshold is not a trivial problem
- Empirical observation
  - Generate a large number of different watermarks
  - Insert the original one into this set
  - Calculate Sim(X,X\*) for all watermarks
  - If the original watermark presents in the image, its Sim value should be significantly larger than the other Sim values

# Interpretation



NO WATERMARK



WATERMARK is THERE