University of Salzburg

Maglina I agenina (011 926)

Machine Learning (911.236)

Exercise sheet **C**

Exercise 1. 5 P.

Let X be our domain and $\mathcal{Y} = \{0, 1\}$ our label set. Further, let D_1, \ldots, D_m be a sequence of distributions over X. We define

 $\bar{D}_m = \frac{1}{m}(D_1 + \cdots + D_m) ,$

and assume that our *finite* hypothesis class \mathcal{H} of binary classifiers contains the true labeling function $f: \mathcal{X} \to \mathcal{Y}$. In other words $f \in \mathcal{H}$. Now, we are given a training set S of size m where the instances x_i are <u>not</u> identically distributed, but independent. Specifically, x_i is drawn from D_i and labeled by f, f is drawn from f and labeled by f are f and labeled by f are f and labeled by f and labeled by f and labeled by f are f and labeled by f and labeled by f and labeled by f are f and labeled by f and labeled by f and labeled by f are f and labeled by f and labeled by f are f and f are f are f and f are f are f and f are f and f are f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f are f are f are f and f are f are f are f and f are f are f are f are f are f are f and f are f are f are f are f are f and f are f

$$S = ((x_1, y_1), \dots, (x_m, y_m))$$
 with $x_i \sim D_i$ and $y_i = f(x_i)$.

Now, fix $\epsilon \in (0, 1)$ and show

$$\mathbb{P}\left[\exists h \in \mathcal{H} \text{ s.t. } L_{\bar{D}_m,f}(h) > \epsilon \text{ and } L_S(h) = 0\right] \leq |\mathcal{H}|e^{-\epsilon m}$$

Strategy: Fix a *bad* hypothesis, i.e., one that has $L_{\bar{D}_m,f}(h) > \epsilon$, i.e.,

$$\frac{\mathbb{P}_{x \sim D_1}[h(x) \neq f(x)] + \cdots \mathbb{P}_{x \sim D_m}[h(x) \neq f(x)]}{m} > \epsilon .$$

We can now try to bound the probability that such a hypothesis achieves 0 empirical error on S, i.e., $L_S(h) = 0$. Along this way, we can use the *inequality of arithmetic and geometric means* (AM-GM), i.e., for any nonnegative real numbers x_1, \ldots, x_n , it holds that

$$\frac{1}{n}(x_1+\cdots+x_n)\geq (x_1\cdots x_n)^{1/n}.$$

Lecturer: Roland Kwitt