REG NO : 16MIS0011

NAME : V.GOPIKA

COURSE CODE : SWE3002

COURSE TITLE : INFORMATION AND SYSTEM SECURITY

SLOT : C21+C22+TC23

FACULTY NAME : Prof. SUMAIYA THASEEN I

PURPOSE : J COMPONENT REVIEW - I

DATE : 18-06-2019

<u>J COMPONENT REVIEW - I</u>

INTRUSION DETECTION USING MACHINE LEARNING

I. LITERATUE SUMMARY TABLE WITH ADVANTAGES AND DISADVANTAGES

S. N O	PAPER TITLE	TECHNIQUES USED	ADVANTAGES	DISADVANTAGES
1	Network Intrusion Detection System (NIDS) using Machine Learning Perspective	 Support Vector Machine (SVM) Decision Tree Naïve Bayes 	 Provides more attack detection accuracy. It increases the attack detection performance in short span of time. 	 Long Training time is required for large datasets to get good accuracy. High Algorithmic Complexity and extensive memory required.
2	Network Intrusion Detection Using Machine Learning	1. Support Vector Machine (SVM) 2. Proposed Method(Modified SVM)	• It provides high accuracy and lower false positive rate and false negative rate.	• Feature Selection is one of the most important parts, whereas the detection accuracy depends on feature selection.

3	Machine Learning Methods for Network Intrusion Detection	 J48 Tree Multilayer Perceptron (MLP) Bayes Network 	• Easy To Use and approximate any kind of input or output.	• The training is very slow and the training samples required is three times larger than normal training data set.
4	Network Intrusion Detection System Using Machine Learning	1. Decision Tree Classifier	 Processes both numerical and categorical data. It handles high dimensional data. 	 The output created may be more complex than expected. Chances of detecting abnormal behavior as normal and normal as abnormal.
5	Intrusion Detection Using Machine Learning: A Comparison Study	 Naïve Bayes Support Vector Machine Decision Tree Neural Network K Nearest Neighbor (KNN) 	 High accuracy and speed is more. Simple in implementati on and easy to understand the flow. 	 Lack of available probability of data. The probability of the outcome is unstable.
6	A Review of Intrusion Detection System using	 Decision Tree Naïve Bayes 	Both Accuracy and Performance	• The complexity is little higher.

	Machine Learning Approach	 3. K Nearest Neighbor 4. K Means 5. Support Vector Machine 6. Principle Component Analysis 	 Runs efficiently on large data sets with many features. 	Maintaining and updating the system may be difficult.
7	Evaluation of Machine Learning Algorithms for Intrusion Detection System	 J48 Random Forest Random Tree Decision Table Multi Layer Perceptron (MLP) Naïve Bayes Bayes Network 	• The results obtained are more acceptable and the performance of the system was also good along with the pattern recognition.	• The time taken to detect the intrusion was higher than the regular time along with huge memory is required for computation
8	Intrusion Detection System using AI and Machine Learning Algorithm	 K Means Clustering Support Vector Machine K Nearest Neighbors 	• The results obtained from both evaluation and real life time was good.	• Selecting the appropriate data set determines the rest of the result.
9	Intrusion detection model using machine learning	 Support Vector Machine (SVM) Spark Chi-SVM Proposed Model 	 Process, and analyze data with high speed. 	• The high dimensionality makes the classification process more

	algorithm			complex and
	on Big Data			takes long
	environment			time.
10	Application	1. Support Vector	Very	• Removal of
	of Machine	Machine (SVM)	efficient to	redundant and
	Learning		train and	irrelevant
	Approaches	2. Decision Tree	easy to	features for
	in Intrusion		implement	data training is
	Detection	3. Naïve Bayes	as well as	a key factor
	System: A		easy to	which
	Survey	4. Logistic	measure the	determines
		Regression	performance	system
			of complex	performance.
		5. K Nearest	algorithms.	
		Neighbor		

II. LITERATURE SUMMARY TABLE WITH DATASETS USED AND ACCURACY OBTAINED

S.	PAPER	TECHNIQUES	ACCURACY	DATASETS USED
N	TITLE	USED	OBTAINED	
0				
1	Network	1. Support Vector	91%	
	Intrusion	Machine (SVM)		
	Detection			
	System	2. Decision Tree	89%	
	(NIDS) using			KDDCup Dataset
	Machine	3. Naïve Bayes	82%	
	Learning			
	Perspective			
2	Network	1. Support Vector	88.03%	
	Intrusion	Machine		
	Detection	(SVM)		ACCS (Australian

	Using Machine Learning	2. Proposed Method(Modified SVM)	98.76%	Centre for Cyber Security)
3	Machine Learning Methods for Network Intrusion Detection	 J48 Tree Multilayer Perceptron (MLP) Bayes Network 	93.10% 91.90% 90.73%	KDD Dataset (Knowledge Discovery And Data Mining)
4	Network Intrusion Detection System Using Machine Learning	1. Decision Tree Classifier	90%	CICIDS 2017
5	Intrusion Detection Using Machine Learning: A Comparison Study	 Naïve Bayes Support Vector Machine Decision Tree Neural Network K Nearest Neighbor (KNN) 	82.66% 76.61% 90.88%	NSL-KDD
6	A Review of Intrusion Detection System using Machine Learning Approach	 Decision Tree Naïve Bayes K Nearest Neighbor K Means 	92% 94% 95% 96%	CIDDS-001 KDDCup99 NSL-KDD

		5. Support Vector Machine	92%	
		6. Principle Component Analysis	93%	
7	Evaluation of Machine	1. J48	93%	
	Learning Algorithms	2. Random Forest	93%	
	for Intrusion Detection	3. Random Tree	90%	KDD Intrusion
	System	4. Decision Table	92%	Dataset
		5. Multi Layer Perceptron (MLP)	91%	
		6. Naïve Bayes	91%	
		7. Bayes Network	90%	
8	Intrusion Detection System using	1. K Means Clustering	89%	
	AI and Machine Learning	2. Support Vector Machine	90%	CTU Dataset
	Algorithm	3. K Nearest Neighbors	91%	
9	Intrusion detection model using	1. Support Vector Machine (SVM)	94%	KDD99 Dataset
	machine learning algorithm on Big Data environment	2. Spark Chi-SVM Proposed Model	96%	Resilient Distributed Dataset (RDD)

10	Application	1. Support Vector	82%	
	of Machine	Machine (SVM)		
	Learning			
	Approaches	2. Decision Tree	89%	KDD Dataset
	in Intrusion			
	Detection	3. Naïve Bayes	94%	NSL-KDD Dataset
	System: A			
	Survey	4. Logistic	85%	KDD Cup 1999
		Regression		
		5. K Nearest Neighbor	93%	

III. REFERENCES

- [1]. Dhende, S., & Ingle, R. (2018). Network Intrusion Detection System (NIDS) using Machine Learning Perspective. *International Journal of Innovative Research in Science and Technology*, 7(1), 7644-7649.
- [2]. Chowdhury, M. N., Ferens, K., & Ferens, M. (2016). Network intrusion detection using machine learning. In *Proceedings of the International Conference on Security and Management (SAM)* (p. 30). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
- [3]. Alkasassebeh, M., & Almseidin, M. (2018). Machine Learning Methods for Intrusion Detection.

- [4] Jamadar, R. (2018). Network Intrusion Detection System Using Machine Learning. *Indian Journal of Science and Technogy*, 11(48).
- [5]. Biswas, S. K. (2018). Intrusion Detection Using Machine Learning: A Comparison Study. *International Journal of Pure and Applied Mathematics*, 118(19), 101-114.
- [6] Kok, S., Abdullah, A., Jhanjhi, N., & Supramaniam, M. (2019). A Review of Intrusion Detection System using Machine Learning Approach. *International Journal of Engineering and Technology*, 12(1), 8-15.
- [7]. Almseidin, M., Alzubi, M., Kovacs, S., & Alkasassbeh, M. (2017, September). Evaluation of machine learning algorithms for intrusion detection system. In 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) (pp. 000277-000282). IEEE.
- [8]. Repalle, A., & Ratnam, V. (2017). Intrusion Detection System using AI and Machine Learning Algorithm. *International Journal of Engineering and Technology*, 4(12), 1709-1715.
- [9]. Othman, S. M., Ba-Alwi, F. M., Alsohybe, N. T., & Al-Hashida, A. Y. (2018). Intrusion detection model using machine learning algorithm on Big Data environment. *Journal of Big Data*, *5*(1), 34.
- [10]. Haq, N. F., Onik, A. R., Hridoy, M. A. K., Rafni, M., Shah, F. M., & Farid, D. M. (2015). Application of machine learning approaches in intrusion detection system: a survey. *IJARAI-International Journal of Advanced Research in Artificial Intelligence*, 4(3), 9-18.