

The movement of the bees is recorded in three phases

Employed Phase-

- · Generate a new solution.
- · Calculate new fitness.
- Apply greedy selection.

Onlooker Phase-

- Calculate the probabilities.
- Produce a new solution depending on probability.
- · Calculate new fitness.
- · Apply greedy selection.

Scout Phase-

Find the abandoned solution (based on the value of *limit*)

 Generate a new solution randomly to replace them.

Working Rule (Algorithm)

Phases of the MATLAB Code:

Phase 1: Input parameter

Phase 2: Defining Objective & Fitness Function

Phase 3: Generate Initial Population

ABC Main ITERATION Loop Start

Phase 4: Perform Employed & Onlooker Phases
Select variable & Partner
Generate New Solution
Perform Greedy Selection

Phase 5: Memorize the Best Solution

Phase 6: Perform Scout Phase

Phase 7: Plot the result

Illustrative Example

Minimize f(X)

$$= x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where
$$-5 \le x_1, x_2 \le 5$$

MATLAB CODE: EXPLANATION

Phase 1: Input parameter

%% Phase 1: Input pa	rameters	
FoodSource = 100;	% Food Sources Bees	
D = 2;	% Dimension of the problem	
1b = [-5 -5];	% Lower bound of the variables	
ub = [5 5];	% Upper bound of the variables	
max_iter = 100;	% Maximum number of iteration	
N = FoodSource./2;	% Population Size	
limit = (N.*D);	% Used for Scoutt Phase	
trial=zeros(N,1);	% Initialize to ZERO	

Illustrative Example

Minimize f(X)

$$= x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where
$$-5 \le x_1, x_2 \le 5$$

MATLAB CODE: EXPLANATION

%% Phase 2: Defining the objective function & Fitness function

Defining Objective Function

Illustrative Example

Minimize f(X)

$$= x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where $-5 \le x_1, x_2 \le 5$

Maximize

$$\mathbf{fit} = \begin{cases} \frac{1}{1+f} \; ; \; f \ge 0 \\ 1+|f| \; ; \; f < 0 \end{cases}$$

MATLAB CODE: EXPLANATION

%%% Calculate fitness

```
function out = fns(X)
    x1 = X(:,1);
    x2 = X(:,2);
    fx = x1.^2-x1.*x2+x2.^2+2.*x1+4.*x2+3;

for i=1:size(fx,1)
    if fx(i,:)>=0
        fit(i,:) = 1./(1+fx(i,:));
    elseif fx(i,:)<0
        fit(i,:) = 1+abs(fx(i,:));
    end
    end
    out = fit;</pre>
```

Illustrative Example

Minimize f(X)

$$= x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where
$$-5 \le x_1, x_2 \le 5$$

Use
$$x = \underline{L} + \underline{rand}.*(U - L)$$

MATLAB CODE: EXPLANATION

Phase 3: Generate Initial Population

%% Phase 3: Generate Initial Population randomly

for i=1:N
for j = 1:D

$$pos(i,j) = lb(:,j) + rand.*(ub(:,j)-lb(:,j));$$
end
$$position$$

Illustrative Example

Minimize f(X)

$$= x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where
$$-5 \le x_1, x_2 \le 5$$

MATLAB CODE: EXPLANATION

Phase 3: Generate Initial Population

%% Phase 3: Generate Initial Population randomly

```
for i=1:N

for j = 1:D

pos(i,j) = lb(:,j) + rand.*(ub(:,j)-lb(:,j));

end

end

fx = fns1(pos); %% Minimize Objective Function

fx1 = fns(pos); %% Maximize Fitness Function
```

6

Illustrative Example

Minimize f(X)

$$= x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where
$$-5 \le x_1, x_2 \le 5$$

MATLAB CODE: EXPLANATION

Phase 3: Generate Initial Population

%% Phase 3: Generate Initial Population randomly

```
for i=1:N
    for j = 1:D
        pos(i,j) = lb(:,j) + rand.*(ub(:,j)-lb(:,j));
    end
end
```

```
fx = fns1(pos); %% Minimize Objective Function
fx1 = fns(pos); %% Maximize Fitness Function
```

Select update Variable & Partner

· Generate a new solution

$$X_{new} = X + \phi(X - X_p)$$

$$\phi \in [-1,1];$$

- · Calculate new fitness.
- Apply greedy selection (accept new solution if it is better).

$$f_{new} < f_{old};$$

Employed bee Phase:

Employed bee Phase Select the random variable to change:	e :	food Source	
Select the random partner:			
Create a new food location			
Perform greedy selection:			
Trial Value:			
Employed bee Phase:		food Source $f(x)$	
1^{st} employed bee: [3.1472 -4.0246]		[31,472 _4,0246] [31,9645]	
Coloret the way days sociable to show a		3.1472 -4.0246 31.9645 4.0579 -2.2150 32.6168	
Select the random variable to change:		-3.7301 0.4688 ; 13.2971	
Let it be : [3.1472] -4.0246]		4.1338 4.5751 1.3236 4.6489 48.6753 41.4537	
Select the random partner			
Let partner be 4: (4.1338) 4.5751]			
Employed bee Phase:	MATLAB CO	ODE: EXPLANATION	
Select the random variable to change:	Phase 4: Employed bee Phase:		
	for i=1:N	improved too i maso.	
Select the random partner:			
Create a new food location:		<pre>% Choose the Variable to change N); % Choose the Partner</pre>	

Perform greedy selection:

Trial Value:

Employed bee Phase:

Select the random variable to change:

MATLAB CODE: EXPLANATION

Phase 4: Employed bee Phase:

partner = ceil(rand*N);

p2c = ceil(rand*D); % Choose the Variable to change

Select the random partner:

L=L

Create a new food location:

while (partner==i)

for i=1:N

Perform greedy selection:

Trial Value:

Employed bee Phase:

Select the random variable to change:

Select the random partner:

Create a new food location:

$$X_{new} = X + \phi(X - X_p)$$

$$A \phi \in [-1,1];$$

Perform greedy selection:

Trial Value:

MATLAB CODE: EXPLANATION

Phase 4: Employed bee Phase:

```
for i=1:N
 Xnew = pos(i,:);
                  % For new solution "i" FoodSource
                     % Choose the Variable to change
  p2c = ceil(rand*D);
  while(partner==i)
     partner = ceil(rand*N);
```


Employed bee Phase:

Select the random variable to change:

Select the random partner:

Create a new food location:

$$X_{new} = X + \phi(X - X_p)$$

$$... \phi \in [-1,1];$$

Perform greedy selection:

Trial Value:

MATLAB CODE: EXPLANATION

Phase 4: Employed bee Phase:

Employed bee Phase:

Select the random variable to change:

Select the random partner:

Create a new food location:

$$X_{new} = X + \phi(X - X_p)$$

$$\phi \in [-1,1];$$

Perform greedy selection:

Trial Value:

MATLAB CODE: EXPLANATION

Phase 4: Employed bee Phase:

Employed bee Phase:

Select the random variable to change:

Select the random partner:

Create a new food location:

$$X_{new} = X + \phi(X - X_p)$$

$$A \phi \in [-1,1];$$

Perform greedy selection:

Minimization

Trial Value:

MATLAB CODE: EXPLANATION

Phase 4: Employed bee Phase:

```
Xnew(p2c) = X + (rand-0.5).*2.*(X-Xp);
%%% Perform Greedy Selection
    fnew = fns1(Xnew);

if fnew < fx(i,:)
    pos(i,:) = Xnew;
    fx(i,:) = fnew;
    trial(i)=0;
else
    trial(i)=trial(i) + 1;
end</pre>
```

Calculate probabilities

Select the random number (r)

If r < prob.

• New solution is generated with the help of partner solution (X_p) by

$$X_{new} = X + \phi(X - X_p)$$

$$\phi \in [-1,1];$$

Perform greedy selection:

$$f_{new} < f_{old};$$

then Update the solution, otherwise NOT

Onlooker phase

MATLAB CODE: EXPLANATION

```
%%%% ONLOOKER BEE PHASE START %%%%%%
prob = fx./sum(fx);

for i=1:N
    if(rand<prob(i))</pre>
```

Calculate probabilities

Select the random number (r)

Calculate probabilities

Select the random number (r)

If r < prob.

New solution is generated with the help of partner solution (X_p) by

$$X_{new} = X + \phi(X - X_p)$$

$$\phi \in [-1,1];$$

MATLAB CODE: EXPLANATION

```
%%%%% ONLOOKER BEE PHASE START %%%%%%
prob = fx./sum(fx);

for i=1:N
   if(rand<prob(i))
      Xnew = pos(i,:);
   p2c = ceil(rand*D);
   partner = ceil(rand*N);
   while(partner==i)
      partner=ceil(rand*N);
   end
   X = pos(i,p2c);
   Xp = pos(partner,p2c);
   Xnew(p2c) = X + (rand-0.5).*2.*(X-Xp);</pre>
```

Calculate probabilities

Select the random number (r)

If r < prob.

• New solution is generated with the help of partner solution (X_v) by

$$X_{new} = X + \phi(X - X_p)$$

$$\phi \in [-1,1];$$

• Perform greedy selection:

$$f_{new} < f_{old};$$

then Update the solution, otherwise NOT

MATLAB CODE: EXPLANATION

```
%%% Check the bounds
   for j = 1:D
      if Xnew(j)>ub(j)
          Xnew(j) = ub(j);
      elseif Xnew(j)<lb(j)
           Xnew(j) = lb(j);
       end
   end
%%% Perform Greedy Selection
fnew = fns1(Xnew);
if fnew < fx(i,:)
    pos(i,:) = Xnew;
    fx(i,:) = fnew;
   trial(i)=0;
else
    trial(i)=trial(i)+1;
end
```


MATLAB CODE: EXPLANATION

Memorize the best answer

Scout Phase-

Find the abandoned solution (based on the value of *limit*)

 Generate a new solution randomly to replace them.

MATLAB CODE: EXPLANATION

```
H = find(trial>limit);

if length(H)>0
%%% Generate Population randomly for such "H"
for j = 1:D
    pos(H,j) = lb(:,j) + rand.*(ub(:,j)-lb(:,j));
end
fx(H,:)=fns1(pos(H,:));
end
```

MATLAB CODE: EXPLANATION

Phase 7: Plot the result

```
plot(Fbest1, 'r', 'LineWidth', 2);
xlabel('Iteration');
ylabel('Fitness Value');
grid on;
```

Page