Gliederung

- 1. Einführung
- 1. Berechenbarkeitsbegriff
- 2. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Die Ackermannfunktion
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

Ziel: Intuitiver Begriff → mathematische Formalisierung.

Quelle: de.wikipedia.org/wiki/Bleistift#/media/File:Bleistiftzwinge_fcm.jpg

- ▶ DFA ~> endlicher Speicher nicht "berechnungsmächtig" genug
- Turing-Maschine

- ▶ DFA ~> endlicher Speicher nicht "berechnungsmächtig" genug
- ► Turing-Maschine ~ Speichergröße unbeschränkt

- ▶ DFA ~> endlicher Speicher nicht "berechnungsmächtig" genug
- ► Turing-Maschine ~ Speichergröße unbeschränkt
- ► LOOP-/WHILE-/GOTO- Programme

- ► DFA ~> endlicher Speicher nicht "berechnungsmächtig" genug
- ► Turing-Maschine ~ Speichergröße unbeschränkt
- ► LOOP-/WHILE-/GOTO- Programme ~ Variablengröße unbeschränkt

- ▶ DFA ~> endlicher Speicher nicht "berechnungsmächtig" genug
- ► Turing-Maschine → Speichergröße unbeschränkt
- ► LOOP-/WHILE-/GOTO- Programme ~ Variablengröße unbeschränkt

(Intuitive) Berechenbarkeit von Funktionen:

- ► DFA ~ endlicher Speicher nicht "berechnungsmächtig" genug
- ► Turing-Maschine ~ Speichergröße unbeschränkt
- ► LOOP-/WHILE-/GOTO- Programme ~ Variablengröße unbeschränkt

Bemerkung: leichte Diskrepanz zu modernen Computern

(Intuitive) Berechenbarkeit von Funktionen:

Bemerkung: leichte Diskrepanz zu modernen Computern

Frage: Sind Turing-Maschinen mit endlichem Band genauso "mächtig" wie DFAs?

Definition

Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **berechenbar**, wenn es einen endlichen Algorithmus \mathcal{A} gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m$

 \iff

bei Eingabe (n_1, \ldots, n_k) hält \mathcal{A} nach endlicher Zeit mit Ausgabe \underline{m} .

Definition

Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **berechenbar**, wenn es <u>einen</u> endlichen Algorithmus \mathcal{A} gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m$ \iff

bei Eingabe (n_1, \ldots, n_k) hält \mathcal{A} nach endlicher Zeit mit Ausgabe m.

Bemerkung: existenzielle Aussage!

Definition

Eine (eventuell partielle) Funktion $f: \mathbb{N} \to \mathbb{N}$ heißt **berechenbar**, wenn es einen endlichen Algorithmus \mathcal{A} gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_{\underline{k}}) = \underline{m}$ \iff

bei Eingabe (n_1,\ldots,n_k) hält ${\mathcal A}$ nach endlicher Zeit mit Ausgabe m.

Bemerkung: existenzielle Aussage!

Definition

Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **berechenbar**, wenn es einen endlichen Algorithmus \mathcal{A} gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt

$$f(n_1,\ldots,n_k)=r$$
 \iff

bei Eingabe (n_1, \ldots, n_k) hält \mathcal{A} nach endlicher Zeit mit Ausgabe m.

fa Íseli

Bemerkung: existenzielle Aussage!

```
Beispiel 1 (k=1)

1 INPUT (n)
2 WHILE true DO {}

\Omega: \mathbb{N} \to \mathbb{N} \text{ mit } n \mapsto \bot
```

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i \rfloor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot \mathbf{10}^i \rfloor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n)=1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

- 1. approximiere π "ausreichend genau"
- 2. vergleiche mit Eingabe

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n)=1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

- 1. approximiere π "ausreichend genau"
- 2. vergleiche mit Eingabe

Beispiel 3

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i,j,p \in \mathbb{N}} \ \mathsf{sodass} \ 10^j > n \ \mathsf{und} \ \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

- 1. approximiere π "ausreichend genau"
- 2. vergleiche mit Eingabe

Beispiel 3

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i,j,p \in \mathbb{N}} \ \mathsf{sodass} \ 10^j > n \ \mathsf{und} \ \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n in der Dezimalbruchentwicklung von π vorkommt

$$n = 41$$

 $n = 926$

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

igotimesapproximiere π "ausreichend genau"

2. vergleiche mit Eingabe

Beispiel 3

Erläuterung:

?

f(n) = 1 genau dann, wenn \underline{n} in der Dezimalbruchentwicklung von π vorkommt

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

- 1. approximiere π "ausreichend genau"
- 2. vergleiche mit Eingabe

Beispiel 3

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i,j,p \in \mathbb{N}} \ \mathsf{sodass} \ 10^j > n \ \mathsf{und} \ \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n)=1 genau dann, wenn n in der Dezimalbruchentwicklung von π vorkommt

Beispiel 4

$$f(n) := egin{cases} & ext{falls} & \exists_{i,j,p\in\mathbb{N}} & ext{sodass} & j > n ext{ und} \ 1, & \lfloor \pi \cdot 10^i - p \cdot 10^j
floor & = \underbrace{11 \dots 1}_{ imes n} \ 0, & ext{sonst} \end{cases}$$

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

- 1. approximiere π "ausreichend genau"
- 2. vergleiche mit Eingabe

Beispiel 3

$$f(n) := egin{cases} 1, & ext{falls } \exists_{i,j,p\in\mathbb{N}} ext{ sodass } 10^j > n ext{ und} \ & \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = n \ 0, & ext{ sonst} \end{cases}$$

Erläuterung:

f(n)=1 genau dann, wenn n in der Dezimalbruchentwicklung von π vorkommt

Beispiel 4

$$f(n) := egin{cases} & ext{falls } \exists_{i,j,p \in \mathbb{N}} ext{ sodass } j > n ext{ und} \ 1, & \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = \underbrace{11 \dots 1}_{ imes n} \ 0, & ext{ sonst} \end{cases}$$

Erläuterung:

f(n)=1 genau dann, wenn die Dezimalbruchentwicklung von π n konsekutive einsen enthält

Beispiel 2

$$f(n) := egin{cases} 1, & \mathsf{falls} \ \exists_{i \in \mathbb{N}} \lfloor \pi \cdot 10^i
floor = n \ 0, & \mathsf{sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n genau den "ersten Dezimalstellen" von π entspricht

Algorithmus

- 1. approximiere π "ausreichend genau"
- 2. vergleiche mit Eingabe

12 1am in TT: n 1 2 3 ... 12 13 ... 12 13 ... 12 13 ...

Beispiel 3

$$f(n) := egin{cases} 1, & ext{falls } \exists_{i,j,p\in\mathbb{N}} ext{ sodass } 10^j > n ext{ und } \ \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = n \ 0, & ext{ sonst} \end{cases}$$

Erläuterung:

f(n) = 1 genau dann, wenn n in der Dezimalbruchentwicklung von π vorkommt

Beispiel 4

$$f(n) := egin{cases} ext{falls } \exists_{i,j,p \in \mathbb{N}} ext{ sodass } j > n ext{ und} \ 1, \quad \lfloor \pi \cdot 10^i - p \cdot 10^j
floor = \underbrace{11 \ldots 1}_{ imes n} \ 0, \quad ext{sonst} \end{cases}$$

Erläuterung:

f(n)=1 genau dann, wenn die Dezimalbruchentwicklung von π n konsekutive einsen enthält

Problem: Berechenbarkeitsbegriff basiert auf Definition von "Algorithmus"...

Problem: Berechenbarkeitsbegriff basiert auf Definition von "Algorithmus"...

Church'sche These
Intuitive Berechenbarkeit = Turing-Berechenbarkeit

Problem: Berechenbarkeitsbegriff basiert auf Definition von "Algorithmus"...

Church'sche **These**

Intuitive Berechenbarkeit = Turing-Berechenbarkeit

Bemerkung:

noch kein echt "mächtigeres" Berechnungsmodell als Turing-Maschine entdeckt

Problem: Berechenbarkeitsbegriff basiert auf Definition von "Algorithmus"...

Church'sche **These**

 $Intuitive\ Berechenbarke it = Turing-Berechenbark e it$

Bemerkung:

noch kein echt "mächtigeres" Berechnungsmodell als Turing-Maschine entdeckt

Church'sche These ⇒ ein solches gibt es nicht

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **berechenbar**, wenn es einen endlichen Algorithmus \mathcal{A} gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff$ bei Eingabe (n_1, \ldots, n_k) hält \mathcal{A} nach endlicher Zeit mit Ausgabe m.

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **Turing-berechenbar**, wenn es eine $\mathbb{D}\mathsf{TM}$ $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff$ bei Eingabe (n_1, \ldots, n_k) hält M nach endlicher Zeit mit Ausgabe m.

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt Turing-berechenbar, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff$ bei Eingabe (n_1, \ldots, n_k) hält M nach endlicher Zeit mit Ausgabe m. $\iff \exists_{\mathbf{z} \in E} \ \overline{\mathsf{z}_0 \, \mathsf{BIN}(n_1) \# \dots \# \mathsf{BIN}(n_k)} \vdash_M^* \underline{\mathsf{z} \, \mathsf{BIN}(m)}$

$$\iff \exists_{z \in E} \ z_0 \ BIN(n_1) \# \dots \# BIN(n_k) \vdash_M^* \underline{z} \ BIN(m)$$
 wobei BIN zahlen auf ihre Binärdarstellung abbildet.

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **Turing-berechenbar**, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff$ bei Eingabe (n_1, \ldots, n_k) hält M nach endlicher Zeit mit Ausgabe m. $\Leftrightarrow \exists_{Z \in F} z_0 \text{BIN}(n_1) \# \ldots \# \text{BIN}(n_k) \vdash_M^* z \text{BIN}(m)$

wobei BIN zahlen auf ihre Binärdarstellung abbildet.

• Eine (eventuell partielle) Funktion $f: \underline{\Sigma}^* \to \Sigma^*$ heißt Turingberechenbar, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $x, y \in \Sigma^*$ gilt

$$\underline{f(x)} = \underline{y} \iff \exists_{\underline{z} \in E} \ \underline{z_0 x} \vdash_M^* \underline{z y}$$

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **Turing-berechenbar**, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \Box, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff$ bei Eingabe (n_1, \ldots, n_k) hält M nach endlicher Zeit mit Ausgabe m. $\Leftrightarrow \exists_{z \in E} z_0 \text{BIN}(n_1) \# \ldots \# \text{BIN}(n_k) \vdash_M^* z \text{BIN}(m)$

wobei BIN zahlen auf ihre Binärdarstellung abbildet.

• Eine (eventuell partielle) Funktion $f: \Sigma^* \to \Sigma^*$ heißt Turingberechenbar, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $x, y \in \Sigma^*$ gilt

$$f(x) = y \iff \exists_{z \in E} \ z_0 x \vdash_M^* z y$$

• Eine Sprache L heißt

entscheidbar wenn χ_L berechenbar ist und semi-entscheidbar wenn χ_L' berechenbar ist

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **Turing-berechenbar**, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff$ bei Eingabe (n_1, \ldots, n_k) hält M nach endlicher Zeit mit Ausgabe m.

$$\iff \exists_{z \in E} \ z_0 \ \mathsf{BIN}(n_1) \# \dots \# \ \mathsf{BIN}(n_k) \vdash_M^* z \ \mathsf{BIN}(m)$$

wobei BIN zahlen auf ihre Binärdarstellung abbildet.

• Eine (eventuell partielle) Funktion $f: \Sigma^* \to \Sigma^*$ heißt Turingberechenbar, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $x, y \in \Sigma^*$ gilt

$$f(x) = y \iff \exists_{\mathbf{z} \in E} \ \mathbf{z_0} x \vdash_{\mathbf{M}}^* \mathbf{z} y$$

• Eine Sprache L heißt entscheidbar wenn χ_L berechenbar ist und semi-entscheidbar wenn χ'_L berechenbar ist

Charakteristische Funktion
$$\chi_L(x) = \begin{cases}
1, \text{ falls } x \in L \\
0, \text{ falls } x \notin L
\end{cases}$$

Halbe Charakteristische Fkt.

$$\chi'_{L}(x) = \begin{cases} 1, \text{falls } x \in L \\ \bot, \text{falls } x \notin L \end{cases}$$

Definition (Turing-Berechenbarkeit, Entscheidbarkeit)

• Eine (eventuell partielle) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt Turing-berechenbar, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1,\ldots,n_k)=m \iff \text{bei Eingabe } (n_1,\ldots,n_k) \text{ hält } M \text{ nach endlicher Zeit mit Ausgabe } m.$

$$\iff \exists_{\mathbf{z} \in E} \ \mathbf{z_0} \ \mathsf{BIN}(\mathit{n_1}) \# \ldots \# \ \mathsf{BIN}(\mathit{n_k}) \vdash_{\mathit{M}}^* \mathbf{z} \ \mathsf{BIN}(\mathit{m})$$

wobei BIN zahlen auf ihre Binärdarstellung abbildet.

• Eine (eventuell partielle) Funktion $f: \Sigma^* \to \Sigma^*$ heißt Turing**berechenbar**, wenn es eine DTM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ gibt, sodass für alle $x, y \in \Sigma^*$ gilt

$$f(x) = y \iff \exists_{\mathbf{z} \in E} \ \mathbf{z_0} x \vdash_{\mathbf{M}}^* \mathbf{z} y$$

• Eine Sprache L heißt entscheidbar wenn χ_I berechenbar ist und **semi-entscheidbar** wenn χ'_{I} berechenbar ist Charakteristische Funktion $\chi_L(x) = \begin{cases} 1, \text{ falls } x \in L \\ 0, \text{ falls } x \notin L \end{cases}$

Halbe Charakteristische Fkt.

$$\chi'_L(x) = \begin{cases} 1, \text{ falls } x \in L \\ \perp, \text{ falls } x \notin L \end{cases}$$

Frage: Wie hängen "Akzeptanz" und "(Semi-)Entscheidbarkeit" zusammen?

Turing-berechenbar?

1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$

Turing-berechenbar?

1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$

- 1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$
- 2. nirgends definierte "Funktion" Ω

- 1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$
- 2. nirgends definierte "Funktion" Ω

- 1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$
- 2. nirgends definierte "Funktion" Ω
- 3. χ_L für L vom Typ 3?

- 1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$
- 2. nirgends definierte "Funktion" Ω
- 3. χ_L für L vom Typ 3?

Turing-berechenbar?

1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$

2. nirgends definierte "Funktion" Ω

3. χ_L für L vom Typ 3? 4. χ_L für $L = \{0^n 1^n \mid n \in \mathbb{N}\}$?

- 1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$
- 2. nirgends definierte "Funktion" Ω
- 3. χ_L für L vom Typ 3? 4. χ_L für $L = \{0^n 1^n \mid n \in \mathbb{N}\}$?

- 1. Nachfolgerfunktion succ: $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$
- 2. nirgends definierte "Funktion" Ω
- 3. χ_L für L vom Typ 3? 4. χ_L für $\underline{L} = \{0^n 1^n \mid n \in \mathbb{N}\}$?

Mehrband-Turing-Maschinen I

...erlauben bequemeres Programmieren (um Berechenbarkeit zu zeigen)

Mehrband-Turing-Maschinen I

...erlauben bequemeres Programmieren (um Berechenbarkeit zu zeigen)

Überführungsfunktion
$$\delta: (Z \setminus E) \times \underline{\Gamma}^k \to \underline{Z} \times (\underline{\Gamma} \times \{\underline{L}, R, N\})$$

Überführungsfunktion $\delta \colon (Z \setminus E) \times \Gamma^k \to Z \times (\Gamma \times \{L, R, N\})^k$.

Konfiguration $\alpha_1 \underline{z} \beta_1$, $\alpha_2 \underline{\circ} \beta_2$, ..., $\alpha_k \underline{\circ} \beta_k$

Überführungsfunktion $\delta \colon (Z \setminus E) \times \Gamma^k \to Z \times (\Gamma \times \{L, R, N\})^k$. Konfiguration $\alpha_1 \mathbf{z} \beta_1, \ \alpha_2 \circ \beta_2, \dots, \ \alpha_k \circ \beta_k$ Startkonfiguration $\mathbf{z_0} \mathbf{x_1}, \ \mathbf{\underline{ox_2}}, \dots, \ \mathbf{\underline{ox_k}}$

Überführungsfunktion $\delta \colon (Z \setminus E) \times \Gamma^k \to Z \times (\Gamma \times \{L, R, N\})^k$. Konfiguration $\alpha_1 \mathbf{z} \beta_1, \ \alpha_2 \circ \beta_2, \dots, \ \alpha_k \circ \beta_k$ Startkonfiguration $\mathbf{z_0} \mathbf{x_1}, \ \circ \mathbf{x_2}, \dots, \ \circ \mathbf{x_k}$ Folgekonfiguration \vdash_M^1 entsprechend...

```
Überführungsfunktion \delta \colon (Z \setminus E) \times \Gamma^k \to Z \times (\Gamma \times \{L, R, N\})^k. Konfiguration \alpha_1 \mathbf{z} \beta_1, \ \alpha_2 \circ \beta_2, \dots, \ \alpha_k \circ \beta_k Startkonfiguration \mathbf{z}_0 \mathbf{x}_1, \ \circ \mathbf{x}_2, \dots, \ \circ \mathbf{x}_k Folgekonfiguration \vdash^1_M entsprechend...
```

Berechnung von Funktionen
$$(N_k)$$

$$(N$$

$$\text{für } \mathbf{z} \in Z \text{ und } \underline{\mathbf{z}_e} \in \underline{E} \text{ und } \alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k \in \Gamma^*.$$

Überführungsfunktion $\delta : (Z \setminus E) \times \Gamma^k \to Z \times (\Gamma \times \{L, R, N\})^k$.

Konfiguration $\alpha_1 \mathbf{z} \beta_1, \ \alpha_2 \circ \beta_2, \ \dots, \ \alpha_k \circ \beta_k$

Startkonfiguration $z_0x_1, \circ x_2, \ldots, \circ x_k$

Folgekonfiguration \vdash^1_M entsprechend...

Berechnung von Funktionen

$$z_0x_1, \circ x_2, \ldots, \circ x_k \vdash_M^* z_e \mathsf{BIN}(f(x_1, \ldots, x_k)), \alpha_2 \circ \beta_2, \ldots, \alpha_k \circ \beta_k$$

Akzeptanz von Sprachen

$$\underline{z_0} \underline{x}, \circ \square, \ldots, \circ \square \vdash_{M}^* \alpha_1 \underline{z_e} \beta_1, \alpha_2 \circ \beta_2, \ldots, \alpha_k \circ \beta_k$$

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit $\underline{T(M)} = \underline{T(Q)}$ (bzw. $f_M = f_Q$).

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: *Q* simuliert *M* mithilfe eines "fetten Bandes" mit 2*k* "Spuren":

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert \underline{M} mithilfe eines "fetten Bandes" mit 2k "Spuren":

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\underline{\beta_i[0]} \in \Gamma$ von $\underline{\beta_i}$ für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: *Q* simuliert *M* mithilfe eines "fetten Bandes" mit 2*k* "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert M mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand

Zu jeder k-Band-TM M gibt es eine Einband-TM Q mit T(M) = T(Q) (bzw. $f_M = f_Q$).

Beweisidee: Q simuliert \underline{M} mithilfe eines "fetten Bandes" mit 2k "Spuren":

"speichere" das ersten Zeichen $\beta_i[0] \in \Gamma$ von β_i für alle $i \leq k$ im Zustand