Version 13 Oct 2011

June 2006

4. A hyperbola has equation

$$2x^2 - 4x - y^2 - 4y = 4$$
.

- (a) Find the coordinates of the centre of the hyperbola.
- [5]

[4]

- (b) Find the coordinates of the foci and the equations of the directrices.
- 8. The line y = m(x 2) intersects the circle $x^2 + y^2 = 1$ at the points A and B.
 - (a) Show that the coordinates of M, the mid-point of AB, are

$$\left(\frac{2m^2}{1+m^2}, -\frac{2m}{1+m^2}\right).$$
 [5]

(b) Find the Cartesian equation of the locus of M as m varies.

June 2007

5. The ellipse E has equation

$$16x^2 + 25y^2 = 400.$$

(a) Find the coordinates of the foci of E.

[4]

[6]

(b) Show that the point P with coordinates $(5\cos\theta, 4\sin\theta)$ lies on E.

[1]

(c) (i) Show that the equation of the normal to E at P is

$$4y\cos\theta - 5x\sin\theta + 9\sin\theta\cos\theta = 0.$$

(ii) This normal intersects the x-axis at Q and the y-axis at R. Show that the locus of M, the mid-point of QR, is an ellipse. [10]

Version 13 Oct 2011

[3]

June 2008

- 5. (a) Show that the equation of the normal to the parabola $y^2 = 4ax$ at the point $P(ap^2, 2ap)$ is $y + px = ap(2 + p^2)$. [4]
 - (b) This normal meets the x-axis at Q and the mid-point of PQ is R.
 - (i) Find the coordinates of R.
 - (ii) The locus of *R* as *p* varies is a parabola. Find the equation of this parabola and the coordinates of its focus. [8]

June 2009

6. The ellipse E has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

(a) Show that the equation of the tangent to E at the point $(a\cos\theta, b\sin\theta)$ is

$$bx\cos\theta + ay\sin\theta = ab. ag{5}$$

(b) This tangent meets the coordinate axes at P and Q, and the mid-point of PQ is R. Find the Cartesian equation of the locus of R as θ varies. [7]

June 2010

8. A parabola has equation

$$x^2 + 8y = 0$$
.

- (a) Find the coordinates of the focus and the equation of the directrix.
- (b) (i) Show that the point $P(4p, -2p^2)$ lies on the parabola for all values of p.
 - (ii) Find the equation of the tangent to the parabola at the point P.
 - (iii) Given that this tangent passes through the point $(\lambda, 2)$, show that

$$2p^2 - \lambda p - 2 = 0.$$

Hence show that the two tangents to the parabola from any point on the line y = 2 are perpendicular. [7]

Version 13 Oct 2011

June 2011

The ellipse E has equation

$$2x^2 + 3y^2 - 4x + 12y + 8 = 0.$$

Find

(a) the coordinates of the centre of
$$E$$
, [3]

(b) the eccentricity of
$$E$$
, [4]

(c) the coordinates of the foci of
$$E$$
, [2]

(d) the equations of the directrices of
$$E$$
. [2]

June 2012

A parabola has equation

$$y^2 - 2y - 8x + 25 = 0.$$

- Find (a)
 - the coordinates of the vertex,
 - (ii) the coordinates of the focus,
 - (iii) the equation of the directrix. [6]
- The line y = mx cuts the parabola at the points P_1 and P_2 .
 - (i)
 - Obtain a quadratic equation whose roots are the x-coordinates of P_1 and P_2 . Hence find the gradients of the two tangents from the origin to the parabola. [7]