

Inteligência Computacional Sistema Fuzzy Linguístico e Funcional

João Gustavo Silva Guimarães Pedro Henrique Pires Dias

26 de maio de 2025

Motivação e Objetivo

- Objetivo: Desenvolver um sistema fuzzy linguístico (Mamdani) que ajusta a ventilação com base em temperatura, umidade e ocupação
- Por que controlar a ventilação? Conforto térmico e qualidade do ar
- Por que controlar a ventilação com fuzzy? Para economia de energia utilizando sistemas computacionais inteligentes
- Aplicações reais: salas, escritórios, laboratórios, automação residencial

Metodologia Geral

- Modelo de inferência fuzzy Mamdani (SE... ENTÃO)
- Operadores lógicos: AND (mínimo), OR (máximo)
- Defuzzificação: Centroide, Bissetriz, Média dos Máximos (MoM)
- Implementação em Python

Variáveis Fuzzy e Funções de Pertinência

Entradas:

- Temperatura: baixa, média, alta
- Umidade: baixa, média, alta
- Pessoas: poucas, moderado, muitas

Saída:

Ventilação: fraca, moderada, forte

Base Normativa: ASHRAE 55:2017

- A modelagem dos conjuntos fuzzy foi fundamentada na norma
 ASHRAE 55:2017, que define condições ambientais de conforto térmico para ocupação humana.
- Para ambientes internos, a norma recomenda:
 - Temperatura de conforto: 20 ℃ a 26 ℃
 - Umidade relativa: 30% a 60%
- Os conjuntos linguísticos "baixa", "média"e "alta"para temperatura e umidade foram ajustados de modo a refletir essas faixas.
- Isso garante que o sistema fuzzy opere com base em parâmetros reconhecidos internacionalmente.

ANSI/ASHRAE Addendum d to ANSI/ASHRAE Standard 55-2017

Thermal Environmental Conditions for Human Occupancy

Base de Regras Fuzzy (27 Regras)

- Regras do tipo SE... ENTÃO com combinações de 3×3×3 = 27 possibilidades
- Modelo:

SE condição 1 E condição 2 E condição 3 ENTÃO ação.

- Exemplo 1:
 - Se temperatura é alta E umidade é alta E pessoas são muitas, então ventilação é forte.
- Exemplo 2:

Se temperatura é **baixa** E umidade é **média** E pessoas são **poucas**, então ventilação é **fraca**.

Configuração dos Cenários de Teste

- Foram definidos 5 cenários para testar a resposta do sistema fuzzy
- As combinações variam temperatura, umidade e número de pessoas
- Operadores AND/OR e métodos de defuzzificação foram combinados nos testes

Cenário 1 - ('cenario_1', [18, 25, 2], 'AND', 'centroid')

- Temperatura baixa (18 ℃)
- Umidade baixa (25%)
- Ocupação moderada (2 pessoas)
- Ventilação fraca (19.27)

Cenário 2 - ('cenario_2', [25, 50, 6], 'AND', 'bisector')

- Temperatura média (25 °C)
- Umidade média (50%)
- Ocupação moderada (6 pessoas)
- Ventilação moderada (50.00)

Cenário 3 - ('cenario_3', [35, 80, 15], 'AND', 'mom')

- Temperatura alta (35 ℃)
- Umidade alta (80%)
- Ocupação intensa (15 pessoas)
- Ventilação forte (89.50)

Cenário 4 - ('cenario_4', [22, 70, 8], 'OR', 'centroid')

- Temperatura média (22 °C)
- Umidade alta (70%)
- Ocupação intensa (8 pessoas)
- Ventilação moderada (50.00)

Cenário 5 - ('cenario_5', [30, 40, 5], 'OR', 'bisector')

- Temperatura alta (30 ℃)
- Umidade baixa (40%)
- Ocupação baixa (5 pessoas)
- Ventilação moderada (51.00)

Resultados dos Cenários

Cenário	Temp.	Umid.	Pessoas	Defuzz.	Saída
1	18	25	2	centroid	19.27
2	25	50	6	bisector	50.00
3	35	80	15	mom	89.50
4	22	70	8	centroid	50.00
5	30	40	5	bisector	51.00

Fraca = até 40 Moderada = 41–70 Forte = acima de 70

Conclusão

- O sistema fuzzy com Mamdani gerou saídas coerentes com os cenários simulados e com o objetivo de manter o conforto térmico.
- Observou-se que a escolha dos operadores e métodos de defuzzificação pode alterar o valor final da saída, o que reforça a importância da configuração.
- A estrutura de regras linguísticas torna o sistema compreensível e de fácil interpretação, o que pode ser útil em aplicações reais.
- Para trabalhos futuros, o modelo pode ser integrado a sensores físicos e microcontroladores para testes práticos em ambientes controlados.

Sistema Fuzzy Funcional

- Item 1
- Item 2
- Item 3
- Item 4

Referências

- 1 P. H. P. Dias, "Sistema Fuzzy para Controle de Ventilação em Ambientes Fechados utilizando o modelo de Mamdani," GitHub. [Online]. Disponível em: https://github.com/peudias/ic_atv02. 2025.
- 2 J. G. S. Guimarães, "modelagem_Fuzzy" GitHub. [Online]. Disponível em: https://github.com/jAzz-hub/modelagem_Fuzzy. 2025.
- 3 ASHRAE, ANSI/ASHRAE Standard 55-2017 Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers. [Online]. Disponível em:

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2017_d_20200731.pdf. 2017.

Dúvidas

Dúvida é o começo da sabedoria.