Diszkrét matematika 2

2. előadás Számelmélet

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Prímszámok

"The obvious mathematical breakthrough would be development of an easy way to factor large prime numbers." – Bill Gates

(Nagy matematikai áttörés lenne nagy prímszámok faktorizációja (szorzattá bontása).)

Definíció

Egy $p \neq 0, \pm 1$ szám prímszám, ha

$$p = a \cdot b \Longrightarrow p = \pm a$$
 vagy $p = \pm b$.

Példa 2, 3, 5 számok prímek, a $4 = 2 \cdot 2$, $6 = 2 \cdot 3$ nem prímek.

- Ekvivalens definíció: $p \mid a \cdot b \Longrightarrow p \mid a$ vagy $p \mid b$.
- Nagy matematikai áttörés lenne nagy számok prímfaktorizációja, azaz megtalálni nagy számok prímosztóit.

Precízen: adott két prímszám p, q, a szorzatból $p \cdot q$ számoljuk ki p-t.

Prímszámok

Definíció

Egy $p \neq 0, \pm 1$ szám prímszám, ha

$$p = a \cdot b \Longrightarrow p = \pm a$$
 vagy $p = \pm b$.

A prímszámok azok az elemek az oszthatósági hálóban, melyek rögtön az 1 fölött helyezkednek el.

Számelmélet alaptétele

Tétel

Minden $n \neq 0, \pm 1$ egész szám sorrendtől és előjeltől eltekintve egyértelműen

felírható prímszámok szorzataként: $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell} = \pm \prod_{i=1}^{n} p_i^{\alpha_i}$, ahol p_1, p_2, \ldots, p_ℓ pozitív prímek, $\alpha_1, \alpha_2, \ldots, \alpha_\ell$ pozitív egészek.

Következmény (HF)

Legyenek n, m > 1 pozitív egészek: $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell}, m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_\ell^{\beta_\ell}$, (ahol most $\alpha_i, \beta_i \geq 0$ nemnegatív egészek).

Ekkor

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_\ell^{\min\{\alpha_\ell,\beta_\ell\}},$$

 $[a,b] = p_1^{\max\{\alpha_1,\beta_1\}} p_2^{\max\{\alpha_2,\beta_2\}} \cdots p_\ell^{\max\{\alpha_\ell,\beta_\ell\}},$
 $(a,b) \cdot [a,b] = a \cdot b.$

Prímekről

Tétel (Euklidesz)

Végtelen sok prím van.

Bizonyítás

Indirekt tfh csak véges sok prím van.Legyenek ezek p_1,\ldots,p_k . Tekintsük az $n=p_1\cdots p_k+1$ számot. Ez nem osztható egyetlen p_1,\ldots,p_k prímmel sem, így n prímtényezős felbontásában kell szerepelnie egy újabb prímszámnak.

Figyelem: $p_1 \cdot \cdot \cdot p_k + 1$ nem feltétlen prím: $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1 = 59 \cdot 509$

Prímszámtétel:

x-ig a prímek száma $\sim \frac{x}{\ln x}$.

(Sok prím van!)

x	prímek száma	$x/\ln x$
10	4	4,34
100	25	21,71
1000	168	144,76
10000	1229	1085,73

Osztási maradékok

Példa sin(x) = 0, ha $x = 2k\pi$ vagy $x = \pi + 2k\pi$ ($k \in \mathbb{Z}$)

Példa Jelenleg 11 óra 43 perc van. Hány óra lesz 2 óra múlva? És 35 óra múlva? És 683625755919 óra múlva?

- 2 óra múlva 13 óra 43 perc lesz.
- Mivel 35 24 = 11, így 35 óra múlva 22 óra 43 perc.
- Osszuk el 683625755919-et 24-gyel maradékosan: 683625755919 mod 24 = 3, így 683625755919 óra múlva 14 óra 43 perc lesz.

Osztási maradékok

Sokszor nem egész számokkal, csak osztási maradékokkal számolunk.

Kongruenciák

Két számot azonosnak tekintünk, ha osztási maradékuk megegyezik.

Példa 0h azonos 12h-val, 1h azonos 13h-val, 3h azonos 683625755919h-val, ...

Definíció

Adott $n \neq 0$ és a, b egészek esetén, a kongruens b-vel modulo n,

$$a \equiv b \mod n \quad \text{ha} \quad n \mid a - b.$$

Példa $0 \equiv 12 \mod 12$, $1 \equiv 13 \mod 12$, $683625755919 \equiv 3 \mod 12$.

Kongruenciák

A kongruencia úgy viselkedik, mint az egyenlőség.

Tétel

A kongruencia ekvivalencia reláció.

Bizonyítás.

- Reflexivitás: $a \equiv a \mod n$ u.i. $n \mid a a = 0$.
- Tranzitivitás: $a \equiv b \mod n$ és $b \equiv c \mod n \Longrightarrow a \equiv c \mod n$, u.i.

$$n \mid a-b, n \mid b-c \implies n \mid (a-b)+(b-c)=a-c.$$

• Szimmetria: $a \equiv b \mod n \Longrightarrow b \equiv a \mod n$, u.i.

$$n \mid a - b \implies n \mid (-1) \cdot (a - b) = b - a$$

Kongruenciák

A kongruencia kompatibilis az összeadással és szorzással.

Tétel

Legyenek $a, b, c, d, n \in \mathbb{Z}$, $n \neq 0$. Ekkor

- $a \equiv b \mod n$ és $c \equiv d \mod n$ esetén $a + c \equiv b + d \mod n$.
- $a \equiv b \mod n$ és $c \equiv d \mod n$ esetén $a \cdot c \equiv b \cdot d \mod n$.

Bizonyítás. HF.

Példa

- $1 \equiv 13 \mod 12, 2 \equiv 14 \mod 12 \Longrightarrow (1+2) = 3 \equiv 27 = (13+14) \mod 12.$
- $1 \equiv 7 \mod 6 \Longrightarrow (2 \cdot 1) = 2 \equiv 14 = (2 \cdot 7) \mod 6$

Azonban

 \bullet 2 \equiv 8 mod 6 \Longrightarrow 1 \equiv 4 mod 6.

Példa: ISBN

Az ISBN egy 13 jegyű azonosító, egy számjegy elgépelését jelzi.

Egy $a_1a_2a_3 - a_4a_5a_6 - a_7a_8a_9 - a_{10}a_{11}a_{12} - a_{13}$ utolsó a_{13} számjegyét úgy határozzák meg, hogy

$$a_1 + 3 \cdot a_2 + a_3 + 3 \cdot a_4$$

+ $a_5 + 3 \cdot a_6 + a_7 + 3 \cdot a_8$
+ $a_9 + 3 \cdot a_{10} + a_{11} + 3 \cdot a_{12} + a_{13} \equiv 0 \mod 10$

Példa

$$9+3\cdot 7+8+3\cdot 9+6+3\cdot 3+5+3\cdot 6$$

 $+8+3\cdot 0+0+3\cdot 0+9\equiv$
 $9+1+8+7+6+9+5+8$
 $+8+0+9\equiv 0\mod 10$

Példa

ISBN: 978-963-568-000-9

Emlékeztető:

 \bullet 2 \equiv 8 mod 6 \Longrightarrow 1 \equiv 4 mod 6.

Tétel

Legyenek $a, b, c, n \in \mathbb{Z}$, $n \neq 0$. Ekkor

$$ab \equiv ac \mod n \iff b \equiv c \mod \frac{n}{(a,n)}.$$

Példa

•
$$2 \equiv 8 \mod 6 \Longrightarrow 1 \equiv 4 \mod 3 = \frac{6}{2}$$
.

Tétel

Legyenek $a, b, c, n \in \mathbb{Z}$, $n \neq 0$. Ekkor

$$ab \equiv ac \mod n \iff b \equiv c \mod \frac{n}{(a,n)}$$
.

Bizonyítás. Legyen d = (a, n) és tfh. $n \mid ab - ac = a(b - c)$. Ekkor

$$\frac{n}{d} \cdot d \mid \frac{a}{d} \cdot d(b-c)$$

azaz létezik olyan $k \in \mathbb{Z}$, hogy

$$k \cdot \frac{n}{d} \cdot d = \frac{a}{d} \cdot d(b - c).$$

Egyszerűsítve d-vel kapjuk, hogy

$$\frac{n}{d} \mid \frac{a}{d}(b-c).$$

Azonban n/d és a/d relatív prímek, így $\frac{n}{d} \mid (b-c)$. (A másik irány triviális.)

Mi történik, ha nem egyszerűsíteni, hanem osztani szeretnénk, azaz szeretnénk az $ax \equiv b \mod n$ kongruenciát megoldani.

Példa

Milyen x egészek elégítik ki a $2x \equiv 3 \mod 5$ kongruenciát.

- Ha $x \equiv y \mod 5$, akkor $2x \equiv 2y \mod 5$, így elég inkongruens számok között keresni, pl. $\{0, 1, 2, 3, 4\}$ halmazon. Véges számú lehetőség!
- A véges számú lehetőséget végigpróbálhatjuk:

$$2 \cdot 0 \equiv 0$$
, $2 \cdot 1 \equiv 2$, $2 \cdot 2 \equiv 4$, $2 \cdot 3 \equiv 1$, $2 \cdot 4 \equiv 3 \mod 5$.

Azaz a megoldások: $x\equiv 4\mod 5$. Figyelem, ez végtelen sok (de egymással kongruens) megoldás: $\{\ldots,-6,-1,4,9,14,\ldots\}$

Példa

Milyen x egészek elégítik ki a $2x \equiv 3 \mod 1267650600228229401496703205653$ kongruenciát. (Ez kb 2^{100} próbálkozás.)

Tétel

Legyenek a, b, n egész számok, n > 1. Ekkor az $ax \equiv b \mod n$ megoldható \iff $(a, n) \mid b$. Ez esetben pontosan (a, n) darab inkongruens megoldás van $\mod n$.

Bizonyítás. A bizonyítás algoritmikus.

$$ax \equiv b \mod n \iff ax + ny = b.$$

Szükséges feltétel: Mivel (a, n) osztja a bal oldalt, osztja a jobb oldalt is.

Elégséges feltétel: A bővített euklideszi algoritmus szerint létezik olyan x_0, y_0 , hogy $x_0a + y_0n = (a, n)$. Beszorozva b/(a, n)-el kapjuk a megoldást.

Megoldások száma: Legyen a' = a/(a,n), b' = b/(a,n), n' = n/(a,n). Ekkor (a',n') = 1.Ha (x_0,y_0) és (x_1,y_1) két megoldása az a'x + n'y = b' egyenletnek,akkor $a'(x_0 - x_1) + n'(y_0 - y_1) = 0$. Ekkor $x_0 \equiv x_1 \mod n'$. További megodások: $\frac{b}{(a,n)}x + k \cdot n'$ ahol $k = 0, \ldots, (a,n) - 1$.

Algoritmus

- Oldjuk meg az ax + ny = (a, n) egyenletet (bővített euklideszi algoritmus).
- **3** Ha $(a, n) \mid b$, akkor van (a, n) megoldás.
- megoldások: $x_i = \frac{b}{(a,n)}x + k\frac{n}{(a,n)}$: $k = 0, \ldots, (a,n) 1$.

Példa

Oldjuk meg a $23x \equiv 4 \mod 211$ kongruencát!

	r_n	q_n	x_i
-1	23	_	1
0	211	-	0
1	23	0	1
2	4	9	-9
3	3	5	46
4	1	1	-55
5	0	3	_

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
,
 $x_{-1} = 1$, $x_0 = 0$,
 $x_i = x_{i-2} - q_i x_{i-1}$

Lnko: $(23, 211) = 1 \mid 4 \Rightarrow$

Egy megoldás: $x = 4(-55) \equiv 202 \mod 211$.

Ekkor $23 \cdot 202 = 4646 \equiv 4 \mod 211$.

Összes megoldás $\{202 + 211 \cdot k, k \in \mathbb{Z}\}$

Algoritmus

- Oldjuk meg az ax + ny = (a, n) egyenletet (bővített euklideszi algoritmus).
- 3 Ha $(a, n) \mid b$, akkor van (a, n) megoldás.
- **1** megoldások: $x_i = \frac{b}{(a,n)}x + k\frac{n}{(a,n)}$: k = 0, ..., (a,n) 1.

Példa

Oldjuk meg a $10x \equiv 8 \mod 22$ kongruencát!

i	r_n	q_n	x_i
-1	10	_	1
0	22	_	0
1	10	0	1
2	2	2	-2
3	0	5	-

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x_{-1} = 1$, $x_0 = 0$, $x_i = x_{i-2} - q_i x_{i-1}$
Lnko: $(10, 22) = 2 \mid 8 \Rightarrow$ Egy megoldás pár: $x_1 = 4(-2) \equiv 14 \mod 22$ $x_2 = 4(-2) + \frac{22}{2} \equiv 14 + 11 \equiv 3 \mod 22$. Összes megoldás: