(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-314405

(43)公開日 平成8年(1996)11月29日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
G 0 9 G	3/28		4237 - 5H	G 0 9 G	3/28	В
			4237 - 5H			Н

		審査請求	未請求 請求項の数4 OL (全 7 頁)
(21)出願番号	特願平7-118585	(71)出願人	000005223 富士通株式会社
(22)出願日	平成7年(1995)5月17日		神奈川県川崎市中原区上小田中4丁目1番 1号
		(72)発明者	グェン タン ニヤン 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内
		(72)発明者	中原 裕之 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内
		(74)代理人	弁理士 久保 幸雄

(54) 【発明の名称】 AC型PDPの駆動方法

(57)【要約】

【目的】放電維持電圧の印加回数を増大させることなく 輝度の向上を図ることを目的とする。

【構成】誘電体層によって被覆された一対の表示電極 X, Yに対して、放電開始電圧Vfより低い放電維持電 圧Vs を交互に印加し、誘電体層の蓄積電荷による壁電 圧Vwa 1 1を利用して周期的に放電を生じさせる場合 に、放電維持電圧Vsを印加する通電期間TS1の直後 に、両方の表示電極X, Yの電位を接地電位とする通電 休止期間TS2を設け、通電期間TS1中に壁電圧Vw al1が放電開始電圧Vf以上となるように誘電体層を 帯電させておき、通電休止期間TS2に壁電圧Vwa1 1による自己放電を生じさせる。

本発明の駆動方法を示す電圧波形図

1

【特許請求の範囲】

【請求項1】誘電体層によって被覆された一対の表示電極に対して、放電開始電圧より低い放電維持電圧を交互に印加し、前記誘電体層の蓄積電荷による壁電圧を利用して周期的に放電を生じさせるAC型PDPの駆動方法であって、

前記放電維持電圧を印加する通電期間の直後に、両方の前記表示電極の電位を接地電位とする通電休止期間を設け、

前記通電期間中に前記壁電圧が前記放電開始電圧以上と 10 なるように前記誘電体層を帯電させておき、前記通電休 止期間に前記壁電圧による自己放電を生じさせることを 特徴とするAC型PDPの駆動方法。

【請求項2】前記通電期間の長さを選択的に短縮し、当該通電期間の終了時の前記壁電圧を前記放電開始電圧より低くすることによって、前記自己放電の生じない前記通電休止期間を選択的に設ける請求項1記載のAC型PDPの駆動方法。

【請求項3】前記通電期間における前記放電維持電圧を選択的に低くし、当該通電期間の終了時の前記壁電圧を 20前記放電開始電圧より低くすることによって、前記自己放電の生じない前記通電休止期間を選択的に設ける請求項1又は請求項2記載のAC型PDPの駆動方法。

【請求項4】表示の階調レベルに応じて、前記自己放電の生じる前記通電休止期間の総数と、前記自己放電の生じない前記通電休止期間の総数との比率を設定する請求項2又は請求項3記載のAC型PDPの駆動方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、AC型のPDP (Plas 30 ma Display Panel:プラズマディスプレイパネル) の駆動方法に関する。

【0002】PDPは、視認性に優れた自己発光型の表示デバイスであり、ハイビジョン用の大画面表示手段として注目されている。このような状況の中で、いっそうの高輝度化に適した駆動方法が望まれている。

[0003]

【従来の技術】AC型PDPは、表示電極を放電空間に対して被覆する誘電体層を有したPDPである。

【0004】周知のように、AC型PDPでは、放電セ 40 ルを画定する一対の表示電極間で放電が生じると、放電 ガスの電離で生じた荷電粒子(電子又はイオン)が表示 電極に引き寄せられ、各表示電極の電位極性と反対の極 性の壁電荷が誘電体層に蓄積する。誘電体層の帯電にともなって、壁電荷による表示電極間の電圧(壁電圧)が 上昇する。このとき、壁電圧は表示電極に印加する駆動 電圧と反対の極性であるので、駆動電圧と壁電圧とを合わせた実効電圧(セル電圧ともいう)が低くなって放電 が停止する。次に以前と反対の極性の駆動電圧を印加すると、今度は駆動電圧と壁電圧とが互いに同一の極性で 50

あるので、実効電圧が放電開始電圧(Vf)を越えて再び放電が生じる。

【0005】つまり、AC型PDPでは、一対の表示電極に対して、それらの電位極性が交互に入れ代わるように駆動電圧を印加することにより、壁電荷を利用して放電開始電圧(例えば200V)より低い駆動電圧(例えば180V)で放電を発生させることができる。そして、駆動電圧の極性反転周期を短くすれば、視覚の上で連続した発光状態を得ることができる。

【0006】さて、多数の放電セルが縦横に配置されたマトリクス表示方式のAC型PDPにおいては、1画面の表示期間がアドレス期間とそれに続くサステイン期間とに分かれる。

【0007】アドレス期間は表示内容を設定する期間であり、サステイン期間は表示内容を維持する期間である。すなわち、アドレス期間では、書込みアドレス法又は消去アドレス法によって、1ラインずつ順に点灯(発光)すべき放電セルのみに壁電荷を蓄積させる。そして、サステイン期間では、本発明の実施例を示す図3(A)のように、全てのラインについて、第1及び第2の表示電極X、Yに対して交互にサステインパルスPsを印加する。このとき、サステインパルスPsの波高値(放電維持電圧Vs)を放電開始電圧Vfより低い値に選定する。サステインパルスPsの印加毎に表示電極X、Y間の相対電位関係が反転し、各サステインパルスPsの立上がり時点で、あらかじめ壁電荷が蓄積された放電セルのみにおいて放電が生じる。

[0008]

【発明が解決しようとする課題】従来では、サステイン期間中の発光回数(放電回数)がサステインパルス P s の数、すなわち放電維持電圧 V s の印加回数と同数であった。そのため、輝度を高めるために単位時間当たりの発光回数を増大させようとすると、それに応じて駆動周波数を高くする必要があった。

【0009】駆動周波数を高くして発光回数を増大させると、放電によるイオン衝撃の発生回数も増大するので、寿命が短くなってしまう。また、駆動回路の負担が増し、発熱量も増えてしまう。

【0010】本発明は、上述の問題に鑑みてなされたもので、放電維持電圧の印加回数を増大させることなく輝度の向上を図ることを目的としている。

[0011]

【課題を解決するための手段】請求項1の発明の方法は、誘電体層によって被覆された一対の表示電極に対して、放電開始電圧より低い放電維持電圧を交互に印加し、前記誘電体層の蓄積電荷による壁電圧を利用して周期的に放電を生じさせるAC型PDPの駆動方法であって、前記放電維持電圧を印加する通電期間の直後に、両方の前記表示電極の電位を接地電位とする通電休止期間を設け、前記通電期間中に前記壁電圧が前記放電開始電

.3

圧以上となるように前記誘電体層を帯電させておき、前 記通電休止期間に前記壁電圧による自己放電を生じさせ る方法である。

【0012】請求項2の発明の方法は、前記通電期間の 長さを選択的に短縮し、当該通電期間の終了時の前記壁 電圧を前記放電開始電圧より低くすることによって、前 記自己放電の生じない前記通電休止期間を選択的に設け るものである。

【0013】請求項3の発明の方法は、前記通電期間における前記放電維持電圧を選択的に低くし、当該通電期 10間の終了時の前記壁電圧を前記放電開始電圧より低くすることによって、前記自己放電の生じない前記通電休止期間を選択的に設けるものである。

【0014】請求項4の発明の方法は、表示の階調レベルに応じて、前記自己放電の生じる前記通電休止期間の総数と、前記自己放電の生じない前記通電休止期間の総数との比率を設定するものである。

[0015]

【作用】通電期間において、一対の表示電極間には、放電維持電圧と壁電圧とを合わせた電圧(以下、実効電圧 20 という)が加わる。

【0016】通電期間の開始時点では、放電維持電圧と 壁電圧とが同一極性であって、実効電圧が放電開始電圧 を越えて放電が生じる。放電によって壁電圧が一旦消失 した後、直ちに放電維持電圧による誘電体層の帯電が始 まり、以前と反対の極性の壁電圧が生じる。この壁電圧 が上昇して実効電圧が所定値まで降下した時点で放電が 停止する。ただし、放電が停止した後も、通電期間中は 表示電極に放電維持電圧が印加されているので、放電空 間内の浮遊電荷が表示電極に引き付けられて誘電体層の 30 帯電が進み、壁電圧の上昇が続く。

【0017】ここで、放電維持電圧の大きさ及び通電期間の長さを適切に設定することによって、すなわち放電の強度及び放電後の帯電時間の選定によって、通電期間中に壁電圧を放電開始電圧以上の電圧まで上昇させることができる。

【0018】通電期間が終了して通電休止期間になると、両方の表示電極の電位が接地電位となる。つまり、通電休止期間では、直前の通電期間中の帯電によって生じた壁電圧が実効電圧となる。壁電圧は放電開始電圧以 40上であるので、壁電圧による自己放電が生じ、誘電体層の蓄積電荷(壁電荷)の一部が放電空間で中和して消失する。自己放電は壁電圧が所定値(>0)まで降下した時点で停止し、誘電体層には次の放電に必要な電荷が残る。自己放電では、外部からの電圧の印加による放電と違って、表示電極に荷電粒子が引き寄せられないので、イオン衝撃が起こらない。

【0019】次の通電期間では、自己放電後の壁電圧が 放電に利用され、以前の通電期間と同様に新たに放電開 始電圧以上の壁電圧が発生する。以降においては、通電 50 期間と通電休止期間との繰り返しによって、通常の放電

と自己放電とが交互に発生する。つまり、放電回数(発 光回数)は放電維持電圧の印加回数の2倍になる。

[0020]

【実施例】図1は本発明に係るPDP1の分解斜視図であり、1つの画素(ピクセル)EGに対応する部分の基本的な構造を示している。

【0021】PDP1は、マトリクス表示の単位発光領域EUに一対の表示電極X、Yとアドレス電極Aとが対応する3電極構造の面放電型PDPであり、蛍光体の配置形態による分類の上で反射型と呼称されている。

【0022】面放電のための表示電極X, Yは、表示面 日側のガラス基板11上に設けられ、低融点ガラスから なる厚さ20μm程度の誘電体層17によって放電空間 30に対して被覆されている。すなわち、表示電極X, Yは、AC駆動における放電維持電極対12を構成す る。誘電体層17の表面には、保護膜として数千A程度 の厚さのMgO膜18が設けられている。なお、表示電 極X, Yは、放電空間30の前面側に配置されることか ら、面放電を広範囲とし且つ表示光の遮光を最小限とす るため、ネサ膜などの幅の広い透明導電膜41とその導 電性を補うための幅の狭い金属膜(バス電極)42とか ら構成されている。

【0023】また、アドレス電極Aは単位発光領域(サブピクセル)EUを選択的に発光させるための電極であって、背面側のガラス基板21上に表示電極X, Yと直交するように一定ピッチで配列されている。

【0024】各アドレス電極Aの間には、 150μ m程度の高さを有したストライプ状の隔壁29が設けられ、これによって放電空間30がライン方向(表示電極X、Yの延長方向)に単位発光領域EU毎に区画され、且つ放電空間30の間隙寸法が規定されている。画素EGの大きさは 660μ m× 660μ mであり、単位発光領域EUの大きさは 660μ m× 220μ mである。

【0025】ガラス基板21には、アドレス電極Aの上面及び隔壁29の側面を含めて背面側の内面を被覆するように、フルカラー表示用のR(赤), G(緑), B(青)の3原色の蛍光体28が設けられている。各色の蛍光体28は、面放電時に放電空間30内の放電ガスが放つ紫外線によって励起されて発光する。PDP1では、放電ガスとして、ネオンにキセノン(1~15%モル程度)を混合したペニングガスが500Torr程度の圧力で封入されている。

【0026】図2は図1のPDP1の電極構成を模式的に示す平面図である。PDP1は、マトリクス表示のラインL毎に、放電維持電極対12を構成する表示電極X,Yを有している。表示電極X,Yは、各ラインLにおいて50μm程度の放電間隙(面放電ギャップ)gを隔てて隣接するように配列されている。

【0027】このように配列された表示電極X, Yの

5

内、一方の表示電極 X は、駆動回路の簡単化のために複数のライン L 間で電気的に共通化されており、使用に際して図 2 (B) のように駆動回路 D X に一括に接続される。これに対して、他方の表示電極 Y は、ライン順次の画面走査を可能とするために、1ラインずつ独立した個別電極とされており、使用に際して個別の駆動回路 D Y に接続される。

【0028】各ラインLでは、表示電極X, Yによって 単位発光領域EU毎に面放電セルCが画定される。そし て、表示電極Yとアドレス電極Aとによって各面放電セ 10 ルCの点灯又は非点灯の選択 (アドレス) が行われる。

【0029】図3は本発明の駆動方法を示す電圧波形図である。なお、図3(D)は発光の有無を示している。PDP1による表示に際しては、まず、従来と同様にアドレス期間TAにおいて、ライン順次の画面走査によって選択的に壁電荷を蓄積させる。このとき、前回の表示の影響を受けないように、画面走査に先立って全ラインLの壁電荷を一様に消去するための全面消去放電を生じさせる。アドレス期間TAの終了時点において、点灯させるべき面放電セルCには所定量の壁電荷が存在する。

【0030】次に、図3(A)のように、サステイン期間TSにおいて、全てのラインLについて、表示電極Xと表示電極Yとに対して同一極性のサステインパルスPs(波高値Vs)を交互に且つ一定の時間間隔を設けて印加する。

【0031】つまり、サステインパルスPsのパルス幅に相当する通電期間TS1の直後に通電休止期間TS2を設ける。通電期間TS1では、一方の表示電極X(又はY)の電位が接地電位よりVsだけ高い電位に保持され、通電休止期間TS2では、両方の表示電極X,Yの 30電位が実質的に接地電位(0V)に保持される。通電休止期間TS2は $1\sim1.5\mu$ 8程度でよい。

【0032】表示電極X, Yに対して交互にサステインパルスPsを印加することにより、図3(B)に破線で示すように、表示電極X, Y間の駆動電圧Vxyの極性が周期的に反転する。

【0033】 サステインパルスPsの波高値Vsは、放電開始電圧Vf(厳密には後述の通電休止期間TS2の放電開始電圧Vf)より低く且つ誤動作が起こらない範囲内の最も放電開始電圧Vfに近い値に選定する。例え 40ば放電開始電圧Vfが200Vの場合には195V程度とする。

【0034】さて、図3(B)のように、サステイン期間TSの開始時点において、点灯すべき面放電セルCには放電開始電圧Vfより低い所定レベルの壁電圧Vwal1が発生している。したがって、サステインパルスPsを印加すると、図3(C)のように実効電圧Veffが放電開始電圧Vfを越えて放電が生じ、その結果として当該セルに対応した蛍光体28が図3(D)のように所定色の発光L1を呈する。

6

【0035】放電によって誘電体層17に以前と反対の極性の壁電荷が蓄積する。それにともなって実効電圧Veffが降下して放電が停止する。放電が停止した後も、通電期間TS1中は壁電荷の蓄積が続き、壁電圧Vwallが緩やかに上昇する。

【0036】通電期間TS1を例えば3~4μs程度に 選定すれば、図3(B)のように、壁電圧Vwallが 通電期間TS1中に放電開始電圧Vfを越える。サステ インパルスPsが急激に立ち下がって両方の表示電極 X. Yの電位が接地電位になると、すなわち通電期間T S1から通電休止期間TS2に移ると、壁電圧Vwal 1がそのまま実効電圧Veffとなる。このとき、壁電 圧Vwallはプライミング効果を加味したその時点の 放電開始電圧Vfを越えているので、外部からの電圧印 加によらない自己放電が生じ、当該セルに対応した蛍光 体28が図3(D)のように所定色の発光L2を呈す る。自己放電によって壁電荷の一部が消失する。ただ し、次の放電に必要な壁電圧Vwallは確保される。 自己放電では、表示電極X. Yに荷電粒子が引き寄せら れないので、イオン衝撃の心配がない。また、駆動電流 が流れないので、表示電極X,Y及び駆動系の発熱が軽

【0037】このように自己放電を生じさせることにより、サステイン期間TS中の放電回数(発光回数)がサステインパルスPsの印加回数の2倍になり、駆動の高周波化によらずに輝度を高めることができる。

【0038】図4は本発明による階調表示の一例を示す図である。PDP1によってフルカラー表示を行う場合には、1画面の表示期間であるフレームFMを例えば7つのサブフィールド $f1\sim7$ に分割する。そして、各サブフィールド $f1\sim7$ における輝度の相対比率が1:2:4:8:16:32:64となるように、各サブフィールド $f1\sim7$ のサステイン期間 TSにおける発光回数を設定する。なお、以下の説明では、便宜的に自己放電時の発光 L2(図3参照)の強度が、通常の放電時の発光 L1と同一であって、自己放電と通常の放電との間に輝度の差がないものとする。

【0039】表示色に応じて適当に選択したサブフィールドにおいて面放電セルCを点灯させる場合、R, G, Bの各色の階調数は $128(=2^7)$ となり、原理的には約 $200(128^3)$ 色の表示が可能である。なお、1秒間の画面数が「60」であれば、フレームFMは約16.7msである。

【0040】さて、7つのサブフィールドf1~7の内、比較的に必要な発光回数が多い3つのサブフィールドf5~7おいては、通電期間TS1の長さをその終了時点で壁電圧Vwallが放電開始電圧Vfを越えるように設定し、通電休止期間TS2中に自己放電を生じさせる。すなわち、1つのサステインパルスPsで2回の50発光を生じさせる。したがって、サブフィールドf5~

7におけるサステインパルスР s の印加回数は、必要な 発光回数(放電回数)の半分になる。

【0041】これに対して、サブフィールド f1~4に おいては、通電期間TS1aの長さを短くし、放電が停 止した後の帯電を早期に終了させる。それによって、通 電期間TS1aの終了時点の壁電圧Vwallを放電開 始電圧Vfより低いレベルに抑え、後の通電休止期間T S2a中に自己放電が生じないようにする。

【0042】つまり、図4の例では、サステインパルス Ps, Psaのパルス幅を切り換えることによって、自 10 上を図ることができる。 己放電の有無が設定される。各サプフィールド f 1~7 におけるパルス数の相対比率は、1:2:4:8:8: 16:32である。

【0043】なお、サブフィールドf1~4の通電休止 期間TS2aをサブフィールド f 5~7の通電休止期間 TS2と同じ長さとすると、通電期間TS1aが短い分 だけサブフィールド f 1~4の所要時間を短縮すること ができ、サブフィールド数の増加による階調数の増大、 又はフレームFM自体の短縮による表示の高速化を図る ことができる。その場合、サブフィールド f 1~4の駆 20 動周波数がサブフィールド f 5~7より高くなるが、放 電回数が比較的に少ないので、イオン衝撃や発熱などの 影響は小さい。

【0044】図5は本発明による階調表示の他の例を示 す図である。サステインパルスPsbの波高値である放 電維持電圧Vs2と放電開始電圧Vfとの差を大きくす ると、通常の放電時における放電電流が小さくなって壁 電荷の蓄積量が減る。そのため、通電期間TS1bの終 了時に壁電圧Vwallが放電開始電圧Vfより低くな るので、通電期間TS1bの直後の通電休止期間TS2 30 TS1 通電期間 bでは自己放電が生じない。すなわち、放電維持電圧V s, V s 2の切り換えによって、各サブフィールド f 1~7における自己放電の有無を設定することができる。

【0045】上述の実施例においては、3電極構造の面 放電形式のPDP1に適用するものとして説明したが、

本発明は、AC型PDPであれば、他の電極構造の面放 電形式のPDP及び対向放電形式のPDPにも適用する ことができる。

【0046】放電維持電圧Vsを低くし、月つ通電期間 TS1を短くすることによって自己放電を生じさせない ようにしてもよい。

[0047]

【発明の効果】請求項1乃至請求項4の発明によれば、 放電維持電圧の印加回数を増大させることなく輝度の向

【0048】請求項2及び請求項3の発明によれば、容 易に階調表示を行うことができる。請求項4の発明によ れば、多階調の表示を行うことができる。

【図面の簡単な説明】

【図1】本発明に係るPDPの分解斜視図である。

【図2】図1のPDPの電極構成を模式的に示す平面図

【図3】本発明の駆動方法を示す電圧波形図である。

【図4】本発明による階調表示の一例を示す図である。

【図5】本発明による階調表示の他の例を示す図であ る。

【符号の説明】

1 PDP (AC型PDP)

17 誘電体層

18 MgO膜(誘電体層)

X, Y 表示電極

V f 放電開始電圧

Vs, Vs2 放電維持電圧

Vwall 壁電圧

TS1a, TS1b 通電期間

TS2 通電休止期間

TS2a, TS2b 通電休止期間(自己放電の生じな い通電休止期間)

【図5】

本発明による階調表示の他の例を示す図

【図1】

本発明に係るPDPの分解斜視図

【図2】

図1のPDPの電極構成を模式的に示す平面図

【図4】

【図3】
本発明の駆動方法を示す電圧波形図

