

1 5. (Original) A method for assembling an integrated circuit package, comprising:
2 applying an epoxy to an integrated circuit;
3 placing a thermal element adjacent to the epoxy; and,
4 curing the epoxy with energy at a microwave frequency.

1 6. (Previously Amended) The method of claim 5, further comprising [the step of]
2 mounting the integrated circuit to a substrate.

1 7. (Previously Amended) The method of claim 6, further comprising [the step of]
2 attaching a solder ball to the substrate.

1 8. (Previously Amended) The method of claim 5, further comprising [the step of]
2 molding an encapsulant onto the substrate and the integrated circuit.

1 9. (Original) A method for assembling an integrated circuit package, comprising:
2 applying an epoxy to a thermal element;
3 placing the epoxy and the thermal element onto an integrated circuit; and,
4 curing the epoxy with energy at a microwave frequency.

1 10. (Previously Amended) The method of claim 9, further comprising mounting the
2 integrated circuit to a substrate.

1 11. (Previously Amended) The method of claim 10, further comprising attaching a
2 solder ball to the substrate.

1 12. (Previously Amended) The method of claim 9, further comprising molding an
2 encapsulant onto the substrate and the integrated circuit.

1 13. (Original) The method of claim 5, wherein said thermal element is a heat
2 spreader.

1 14. (Original) The method of claim 5, wherein prior to applying said epoxy, the

2 method further comprises providing a thermally conductive filler to a resin to form said epoxy.

1 15. (Original) The method of claim 14, wherein said thermally conductive filler
2 includes carbon particles.

1 16. (Original) The method of claim 5, wherein said placing of said thermal element
2 includes attaching said thermal element to said epoxy.

1 17. (Original) The method of claim 5, wherein said curing of the epoxy includes
2 selecting the microwave frequency to cure the epoxy without damaging the integrated
3 circuit or heating other components within the integrated circuit package; and
4 generating energy at the microwave frequency by a microwave generator directed toward
5 the epoxy.

1 18. (Original) The method of claim 9, wherein prior to applying said epoxy to the
2 thermal element, the method further comprises providing a thermally conductive filler to a resin
3 to form said epoxy.

1 19. (Currently Amended) The method of claim [10] 9 further comprising baking [the]
2 a substrate into which the integrated circuit is to be mounted before curing the epoxy.

1 20. (Original) The method of claim 9, wherein said curing of the epoxy includes
2 selecting the microwave frequency to cure the epoxy without damaging the integrated
3 circuit or heating other components within the integrated circuit package; and
4 generating energy at the microwave frequency by a microwave generator directed toward
5 the epoxy.

1 21. (New) The method of claim 6, wherein prior to curing the epoxy, the method
2 further comprising baking a substrate onto which the integrated circuit is to be mounted.

1 22. (New) A method comprising:
2 applying an epoxy to a thermal element;
3 mounting the thermal element on an integrated circuit placed in an integrated circuit

4 package, the epoxy interposed between the thermal element and the integrated circuit; and
5 curing the epoxy by radiating energy at a microwave frequency toward the epoxy to cure
6 the epoxy without damaging the integrated circuit or heating other components of the integrated
7 circuit package.

1 23. (New) The method of claim 22, wherein the epoxy is a thermal conductive filler
2 with carbon particles.