Ph.D. Qualifying Exam, Real Analysis

Fall 2023, part I

Do all five problems. Write your name on the solutions. Use separate pages for separate problems.

You may write on the both sides of a page. If you use more than one page for a problem, please staple them together with the stapler provided and make sure that you are stapling pages in the correct order.

Let μ be a finite Borel measure on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ such that $\lim_{n \to \infty} \int_{\mathbb{T}} z^n d\mu(z) = 0$. Prove that for any $f : \mathbb{T} \to \mathbb{C}$, $f \in L^1(\mathbb{T}, \mu)$, we have

$$\lim_{n \to \infty} \int_{\mathbb{T}} z^n f(z) \, \mathrm{d}\mu(z) = 0.$$

2 Fix $f \in L^1(\mathbb{T})$, where $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. For each $\tau \in \mathbb{T}$, define f_{τ} , a translate of f by τ , using $f_{\tau}(x) = f(x - \tau)$. Consider the sets \mathcal{B}_f and \mathcal{M}_f defined by

$$\mathcal{B}_f = \Big\{ \sum_{i=1}^N a_i f_{\tau_i}(x) : N \in \mathbb{N}, \ a_i \in \mathbb{R}, \ \tau_i \in \mathbb{T} \Big\}, \quad \mathcal{M}_f = \{ f \star g : g \in L^1(\mathbb{T}) \}.$$

Show that $\overline{\mathcal{M}_f} = \overline{\mathcal{B}_f}$, where the overlines denote the $L^1(\mathbb{T})$ -closures.

3 Let X be a Banach space and $\mathcal{I} \subset \mathcal{L}(X,X)$ be the set of invertible bounded linear operators.

a. Prove that $\mathcal{I} \subset \mathcal{L}(X,X)$ is open with respect to the operator norm topology.

b. Is $\mathcal{I} \subset \mathcal{L}(X,X)$ necessarily open with respect to the strong operator topology? Prove this or give a counterexample.

a. Prove that there is a constant $C_1 > 0$ such that $\int_0^1 w^2(t) dt \le C_1 \int_0^1 (w')^2(t) dt$ for all $w \in C^{\infty}([0,1])$ satisfying w(0) = 0 = w(1).

b. Prove that there is a constant $C_2 > 0$ such that $\int_{-\infty}^{\infty} u^6(t) dt \le C_2 \int_{-\infty}^{\infty} (u')^2(t) dt$ for all $u \in C_c^{\infty}(\mathbb{R})$ satisfying $\int_{-\infty}^{\infty} u^2(t) dt = 1$. (Hint: Justify the change of variables $s = \int_{-\infty}^{\infty} u^2(y) dy$.)

 $\mathbf{5} \qquad \text{For } E \subset \mathbb{R}^n \text{ and } f: E \to \mathbb{R}^n \text{, let}$

4

$$F = \{x \in E : \text{there is } \{x_k\}_{k=1}^{\infty} \subset E \setminus \{x\} \text{ with } x_k \to x \text{ and } f(x_k) \to f(x)\}.$$

Prove that $E \setminus F$ is at most countable.

Ph.D. Qualifying Exam, Real Analysis Fall 2023, part II

Do all five problems. Write your name on the solutions. Use separate pages for separate problems.

You may write on the both sides of a page. If you use more than one page for a problem, please staple them together with the stapler provided and make sure that you are stapling pages in the correct order.

- Let $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ denote the spaces of Schwartz functions and tempered distributions, respectively.
 - **a.** For every t > 0, define $P_t : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ by $(P_t f)(x) = f(tx)$. Show that P_t extends (weak-*) continuously to a map $\bar{P}_t : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$.
 - **b.** We say that $u \in \mathcal{S}'(\mathbb{R}^n)$ is homogeneous of degree d if $\bar{P}_t u = t^d u$ for all t > 0. Show that if $u \in \mathcal{S}'(\mathbb{R}^n)$ is homogeneous of degree d, then its Fourier transform is homogeneous of degree -n d.
 - **c.** Show that if $u \in \mathcal{S}'(\mathbb{R}^n)$ is a compactly supported distribution which is homogeneous of some degree d, then u is a differentiated delta distribution, and d is an integer $\leq -n$.
- For $f \in C^2(\mathbb{R})$, let $M_k = \sup_x |f^{(k)}(x)|$.
 - **a.** Prove that $M_1 \leq 2\sqrt{M_0M_2}$.
 - **b.** Show that if equality holds in (a), then f is a constant function.
- 3 Let $\mathcal{L}f$ denote the Laplace transform

$$\mathcal{L}f(s) = \int_0^\infty e^{-xs} f(x) \, \mathrm{d}x.$$

Prove that \mathcal{L} is a bounded operator on $L^p([0,+\infty))$ if and only if p=2.

- 4 Suppose H is a closed subspace of $L^2([0,1])$ such that $H \subset C([0,1])$. Prove that H is finite-dimensional.
- Let H be a separable Hilbert space and $\{e_j\}_{j=1}^{\infty}$ be an orthonormal basis. A bounded operator A on H is called Hilbert–Schmidt if

$$\sum_{j=1}^{\infty} ||Ae_j||^2 < \infty. \tag{1}$$

- **a.** Show that (1) implies that $\sum_{j=1}^{\infty} ||Ae'_j||^2 < \infty$ for any orthonormal basis $\{e'_j\}_{j=1}^{\infty}$ of H.
- **b.** Prove that the set of Hilbert–Schmidt operators on H is itself a Hilbert space, with inner product $\langle A, B \rangle = \sum_{j=1}^{\infty} \langle Ae_j, Be_j \rangle$.
- **c.** If $H = L^2([0,1]; dx)$, prove that the Volterra operator

$$Vu(x) = \int_0^x u(y) \, dy, \quad x \in [0, 1],$$

is Hilbert-Schmidt.