Class 9: Halloween Mini-Project

Claire Lua A16922295

Table of contents

1. Data Import	1
2. What is your favorite candy?	2
3. Exploratory Analysis	2
4. Winpercent vs. Pricepercent	12
5. Correlation Structure	13
6. Principal Compunent Analysis (PCA)	15

Today we will take a wee setp back to some data we can taste and explore the correlation structure and principal components of some halloween candy.

1. Data Import

```
candy_file <- "candy-data.txt"
candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanu	tyalmondy	nouga	t crisped	ricewafer
100 Grand		1	0	1		0		0	1
3 Musketeers		1	0	0		0		1	0
One dime		0	0	0		0		0	0
One quarter		0	0	0		0		0	0
Air Heads		0	1	0		0		0	0
Almond Joy		1	0	0		1		0	0
	hard	bar p	pluribus	sugarpe	ercent	priceper	cent w	inpercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	

One quarter	0	0	0	0.011	0.511	46.11650
Air Heads	0	0	0	0.906	0.511	52.34146
Almond Jov	0	1	0	0.465	0.767	50.34755

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity == 1)
```

[1] 38

2. What is your favorite candy?

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Twix",]$winpercent
```

[1] 81.64291

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

3. Exploratory Analysis

We can use the **skimr** package to get a quick overview of a given dataset. This can be useful for the first time your encounter a new dataset.

skimr::skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

It looks like the last column candy\$winpercent is on a different scale to all others.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

It is representing whether the candy is a chocolate type. 1 means it is, while 0 means it is not.

Q8. Plot a histogram of winpercent values

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

No.

Q10. Is the center of the distribution above or below 50%?

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

The median appears to be lower than 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
choc.inds <- candy$chocolate == 1
choc.candy <- candy[choc.inds,]
choc.win <- choc.candy$winpercent
mean(choc.win)</pre>
```

[1] 60.92153

```
fru.inds <- candy$fruity == 1
fru.candy <- candy[fru.inds,]
fru.win <- fru.candy$winpercent
mean(fru.win)</pre>
```

[1] 44.11974

Q12. Is this difference statistically significant?

```
ans <- t.test(choc.win, fru.win)
ans</pre>
```

Welch Two Sample t-test

```
data: choc.win and fru.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

```
ans$p.value
```

[1] 2.871378e-08

Yes, with a P-value of 2.8713778×10^{-8} .

Q13. What are the five least liked candy types in this set?

There are two related functions that can help here, one is the classic sort() and order()

```
x \leftarrow c(5,10,1,4)
sort(x)
```

[1] 1 4 5 10

order(x)

[1] 3 4 1 2

inds <- order(candy\$winpercent) head(candy[inds,],5)</pre>

	chocolate	fruity	carar	nel 1	neanutvalm	nondv	ກດນອາt	
Nik L Nip	0	1	ouru	0	podiidoyain	0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	ewafer	hard	bar	pluribus	sugar	percent	pricepercent
Nik L Nip	•	0	0	0	1	O	0.197	
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	;						
Nik L Nip	22.44534	<u> </u>						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499)						
Super Bubble	27.30386	5						
Jawbusters	28.12744	<u> </u>						

Q14. What are the top 5 all time favorite candy types out of this set?

tail(candy[inds,],5)

	chocolate	fruity	cara	nel	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedri	cewafer	${\tt hard}$	bar	pluribus	suga	rpercent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546

Reese's Miniatures	0	0	0	0	0.034	
Reese's Peanut Butter cup		0	0	0	0	0.720
pricep	ercent	winpe	rcent			
Snickers	0.651	76.	67378			
Kit Kat	0.511	76.	76860			
Twix	0.906	81.	64291			
Reese's Miniatures	0.279	81.	86626			
Reese's Peanut Butter cup	0.651	84.	18029			

Q15. Make a first barplot of candy ranking based on winpercent values

```
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("yellow", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "lightgreen"
my_cols[as.logical(candy$bar)] = "lightblue"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Here we want a custom color vector to color each bar the way we want - with chocolate and fruity candy together with whether it is a bar or not

```
mycols <- rep("gray", nrow(candy))
mycols[as.logical(candy$chocolate)] <- "chocolate"
mycols[as.logical(candy$fruity)] <- "pink"
mycols[as.logical(candy$bar)] <- "brown"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=mycols)</pre>
```


ggsave("mybarplot.png", width=5, height=8)

> Q17. What is

the worst ranked chocolate candy? Sixiets

Q18. What is the best ranked fruity candy?

Nik L Nip

4. Winpercent vs. Pricepercent

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 15)
```

Warning: ggrepel: 10 unlabeled data points (too many overlaps). Consider increasing max.overlaps


```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Tootsie Roll Midgies

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip, Nestle Smarties, Ring pop, Hershey's Krackel, and Hershey's Milk Chocolate. Nik L Nip is the least popular

5. Correlation Structure

```
library(corrplot)
```

corrplot 0.95 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


cij

	chocolate	fruity	caramel	${\tt peanutyalmondy}$	nougat
chocolate	1.0000000	-0.74172106	0.24987535	0.37782357	0.25489183
fruity	-0.7417211	1.00000000	-0.33548538	-0.39928014	-0.26936712
caramel	0.2498753	-0.33548538	1.00000000	0.05935614	0.32849280
peanutyalmondy	0.3778236	-0.39928014	0.05935614	1.00000000	0.21311310
nougat	0.2548918	-0.26936712	0.32849280	0.21311310	1.00000000
crispedricewafer	0.3412098	-0.26936712	0.21311310	-0.01764631	-0.08974359
hard	-0.3441769	0.39067750	-0.12235513	-0.20555661	-0.13867505
bar	0.5974211	-0.51506558	0.33396002	0.26041960	0.52297636
pluribus	-0.3396752	0.29972522	-0.26958501	-0.20610932	-0.31033884
sugarpercent	0.1041691	-0.03439296	0.22193335	0.08788927	0.12308135
pricepercent	0.5046754	-0.43096853	0.25432709	0.30915323	0.15319643
winpercent	0.6365167	-0.38093814	0.21341630	0.40619220	0.19937530
	crispedrice	ewafer	hard	bar plurik	ous
chocolate	0.341	20978 -0.344	117691 0.597	742114 -0.339675	519
fruity	-0.269	936712 0.390	067750 -0.519	506558 0.299725	522
caramel	0.213	311310 -0.122	235513 0.333	396002 -0.269585	501
peanutyalmondy	-0.017	764631 -0.205	555661 0.260	041960 -0.206109	932
nougat	-0.089	74359 -0.138	367505 0.522	297636 -0.310338	384
crispedricewafer	1.000	000000 -0.138	367505 0.423	375093 -0.224693	338

```
hard
                    -0.13867505
                              1.00000000 -0.26516504 0.01453172
bar
                    0.42375093 -0.26516504 1.00000000 -0.59340892
pluribus
                    sugarpercent
                    0.06994969 0.09180975 0.09998516 0.04552282
pricepercent
                    0.32826539 -0.24436534 0.51840654 -0.22079363
                    winpercent
               sugarpercent pricepercent winpercent
chocolate
                 0.10416906
                             0.5046754 0.6365167
                -0.03439296
                            -0.4309685 -0.3809381
fruity
caramel
                 0.22193335
                             0.2543271 0.2134163
peanutyalmondy
                             0.3091532 0.4061922
                 0.08788927
nougat
                 0.12308135
                             0.1531964 0.1993753
crispedricewafer
                             0.3282654 0.3246797
                 0.06994969
hard
                 0.09180975
                             -0.2443653 -0.3103816
bar
                 0.09998516
                             0.5184065 0.4299293
pluribus
                 0.04552282
                            -0.2207936 -0.2474479
sugarpercent
                 1.00000000
                             0.3297064 0.2291507
pricepercent
                 0.32970639
                             1.0000000 0.3453254
winpercent
                 0.22915066
                             0.3453254 1.0000000
```

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate & fruity.

```
round(cij["chocolate", "fruity"], 2)
```

[1] -0.74

Q23. Similarly, what two variables are most positively correlated?

Chocolate & winpercent.

```
round(cij["chocolate", "winpercent"], 2)
```

[1] 0.64

6. Principal Compunent Analysis (PCA)

We need to be sure to scale our input candy data before PCA as we have the winpercent column on a different scale to all others in the dataset.

```
pca <- prcomp(candy, scale=T)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                       PC5
                                                               PC6
                                                                       PC7
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Standard deviation
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

First main result figure is my "PCA plot"

```
ggplot(pca$x) +
  aes(PC1, PC2, label=rownames(pca$x)) +
  geom_point(col=mycols) +
  geom_text_repel(max.overlaps = 6, col=mycols) +
  theme_bw()
```

Warning: ggrepel: 67 unlabeled data points (too many overlaps). Consider increasing max.overlaps

The second main PCA result is in the pca\$rotation we can plot this to generate a so-called "loadings" plot.

```
ggplot(pca$rotation) +
  aes(PC1, reorder(rownames(pca$rotation), PC1), fill=PC1) +
  geom_col()
```


Q24. What original variables are pickedup strongly by PC1 in the positive direction? Do these make sense to you?

• Fruity is picked up stronghly by PC1 in the positive direction. This make sense because it is being separated from the popular chocolate variables.