

GOVERNMENT OF ASSAM

Report on the Crop Estimation Surveys on principal Food and Non-Food Crops in Assam

1970-71

DEPARTMENT OF ECONOMICS AND STATISTICS
GOVERNMENT OF ASSAM
SHILLONG

GOVERNMENT OF ASSAM

REPORT ON THE CROP ESTIMATION SURVEYS ON PRINCIPAL FOOD AND NON-FOOD CROPS IN ASSAM 1970-71

DEPARTMENT OF ECONOMICS AND STATIST GOVERNMENT OF ASSAM SHILLONG.

CONTENTS

1.	Introduction		; ;
2.	Coverage	4 • • • • • • • • • • · ·	7.
3.	Design		1
4.	Organisation	0	2
5.	Training	0060600000	2
6	Equipments	0 * * * * * * * * *	3
7 。	Response	0 c # • • • • • • n	3
3.	Supervision	0 6 4 6 6 6 8 8 9 6 0	3
9 .	Procedure of calculation of Average Yield of different crops		4
10	Estimates of Average Yield	0 * * * * * * * * * * * * * * * * * * *	5
11.	Analysis of Variance		6
12.	Weather and Grop condition	00000000000	6 9
13	Tables	9	9 73
14	. Appendix	v • • • • • • • • •	74 - 75

.

List of Tables

	List of Tables	Page.
Table 1.1 -	Number of experiments Planned, Conducted successfully and percentage response.	9 -10
fable 2.1 -	Estimates of Average yields of Autumn Rice with their sampling errors	11
Table 2.2 -	Estimates of Average yields of Winter Rice with their sampling errors	12
Table 2.3 -	Estimates of Average yields of Potato with their sampling errors	13
Table 2.4 -	Estimates of Average yields of Sugarcane with their sampling errors	14
Table 2.5 -	Estimates of Average yields of Jute (Dry fibres) with their sampling errors	15
Pable 2.5 -	Estimates of Average yields of Rape and Mustari with their sampling errors	16
Table 2.7 -	Estimates of Average yields of Matikalai with their sampling errors	17
Table 3.1 -	Estimates of Production of Autumn Rice	18
Table 3.2 -	Estimates of Production of Winter Rice	19
Pable 3 3 -	Estimates of Production of Potato	20
Table 3.4 -	Estimates of Production of Jute	21
Table 3.5	Estimates of Production of Sugarcane	22
Table 3 A -	Estimates of Production of Rape and Mustard	23
Pable 3.7 -	Estimates of Production of Matikalai	24
3.1 (A)	Area, Projuction and yield rate of Autumn Paddy over five years	25
3.2 (A) -	Area, Production and yield rate of Winter baldy over five years.	2€
3.3.(A) -	Area, Production and yweld rate of Potato over five years	27
3.4 (A) -	Area, Production and yield rate of Jute over five years	28
3.5 (A) -	Area, Production and yield rate of Sugarcane over five years.	29
3.6 (A) -	Area, Production and yield rate of Rane and Mustard over five years.	30
3.7 (A) -	Area, Production and yield rate of Matikalai over five years.	31
	Frequency distribution of Plot Yields. Autumn Rice.	32
	Frequency distribution of Plot Yields - Winter Rice	33
	Frequency distribution of Plot Yields -Potato	34
rable 4.4 -	Frequency distribution of Plot Yields-Jute	35

List or Tables- Contr

Table	4.5 -	Frequency distribution of Plot Yields - Sugarcane	
Table	4.6 -	Frequency distribution of Plot Yields - Rape and Mustard.	
Table	4.7 -	Frequency distribution of Plot yields = Matikalai	
Table	5.1 -	Analysis of Variance Autumn Rice	39
Table	5 .2 -	Analysis of Variance - Winter Rice	4 Ů
Table	5.3 -	Analysis of Variance - Potato	41
Table	5.4(A)-	Analysis of Variance - Jute (Green yield)	42
Table	5.4(B)-	Analysis of Variance - Jute (Percentage ratio of dry to green yield)	43
Table	5.5 -	Analysis of Variance - Sugarcane	44
Table	5.6 -	Analysis of Variance - Rape and Mustard	45
rable	5.7 ~	Analysis of Variance - Matikalai	46
Table	6.1 -	Number of villages required for Estimating the Average yield with different Sampling Errors - Autumn Rice	47
Table		Number of villages required for Estimating the Average yield with different Sampling Errors - Winter Rice	.វុ អ
Table	6.3 -	do Potato	49
lable	54(A)-	(Plot yield of green harvest)	50
r _{able}	6.4(B)-	Jute (Percentage ratio of dry and green weight)	5%
Table	6.4(C)-	do Jute	5%
		(Expected percentage Sampling error of ary fibres)	
Table	6.5 -	do Sugardane	53
Table	6.6 -	do Rape and Mistard	54
Table	5. 7 ~	do Matikalai	55
Table	7.1 -	Estimates of Average yield based on the results of the experiments supervised at harvest stage and their comparison with the general- Antigm Rigoresults.	56
Table	7.2	do Rine	57
Table	7.3 -	dofot.ato	5 8
l'able	7.4 -		59
Table		do Supercane	60
Table		Ac Mustard	6!
Table	7.7 -	do datokalaî	62

List of Tables (Conti)

			r w R a
Table	8.1	- Number of experiments supervised in Pre- assigned villages and others at the harvest- stage.	63 - 64
Pable	ಶ _ಿ 2	- Number of experiments supervised at different stages.	65 - 66
Table	9.1	- Number of experiments Planned and accepted for analysis for Gentral Driage Experiments.	67
Table	9.2	- Results of Driage Experiments - 1970-71	68
Table	10.1	- Details of Non-response - 1970-71	69
Table	11.1	- Details of work-load of Primary Starf, 1970-71	70
Table	12.1	- Details of Equipment supplied to the field staff - 1970-71.	71
Table	13.1	- Statement showing the details of Training to the rieli staff engages in Crop Estimation Surveys - 1970-71	72 - 73

建建长松木杉松木木4 长龄

REPORT ON CROP ESTIMATION SURVEYS ON PRINCIPAL FOOD AND NON-FOOD CROPS IN ASSAM 1970-71

1. Introduction

- 1.1 Crop estimation survey on principal food and non-food crops is one of the normal programmes of the Department of Economics and Statistics. The surveys are conducted every year in the different districts of the State, and this report presents the results of the surveys conducted during 1970-71 in the State of Assam (excluding Meghalaya).
- 1.2 The surveys conducted during the year covered the usual principal Kharif and Rabi crops viz. Autumn paddy, Winter paddy, Jute, Rape and Mustard, Potato, Sugarcane and Matikalai. The object of the surveys was to determine the yield rates of the crops and to estimate the productions of those crops for individual districts and for the State as a whole.

2. Coverage.

- The surveys on Autumn paidy and Winter paddy were conducted in all the districts except Mizo district. The coverage was restricted in case of Jute, to the four main Jute growing listricts viz. Goalpara, Kamrup, Darrang and Nowgong. The survey was conducted in all the seven plains districts in case of Potato while in respect of Matikalai the surveys was confined to five plains districts only viz. Goalpara, Kamrup, Darrang, Nowgong and Sibsagar. The surveys on Rape and Mustard and Sugarcane were conducted in all the seven plains districts and also in Mikir and N.J.Hills.
- 2.2 The table below shows the total area under each crop in the State as per final forecast 1970-71 and the area covered by crop estimation surveys during the year under those crops with their percentages to the total area.

Grop	Total area according to final forecast 1970-71 (Hectares)	Area covered by crop estimation surveys (Hectares)	
1	2	3	
1. Autumn paddy	5,27,330	5,27,830	100%
2. Winter paddy	14,46,755	14,14,330	97,75%
3. Potato	24,570	24,190	98,01%
4. Jute	1,29,355	1,21,230	93.723
5. Sugarcane	32,830	32,230	99 178
6. Rape and Mustar	1 1,37,140	1,37,140	100%
7. Matikalai	49,565	44,480	89 . 74%

3. Design.

- 3.1 The statistical design adopted for the crop estimation surveys is one of the multi-stage stratified random sampling with the Revenue circles or Sub-divisions as the strata. The units in the different stages were taken as follows: villages as the first-stage units, fields growing the crop under survey as second stage units and the experimental plots of specified size in the selected field as the ultimate stage units. In case of Autumn paidy, Winter paidy, potato and Rape and Mustard, the Revenue circles were taken as the strata while in respect of Jute, Sugarcane and Matikalai, the Sub-divisions were considered as the strata in the plains districts. In case of Mikir and Noc.Hills, the district itself was considered as strata.
- 3.2 Within each stratum, a certain number of officers were selected at random for each crop, the number of selected viles of larger against in proportion to the area under the individual crops in the respective at rates. In case

- 3 -

of Mikir and N.C.Hills the list of villages growing the individual crops constituted the sampling frame for selection of villages.

- In each selected village, two fields growing the crop were selected at random and in each selected field a plot of size 5m x 5m was random—ly located for conducting the crop cutting experiments except in case of potato. As the cultivation of potato in the plains districts is in row-system, the size of the experimental plot varied from field to field depending on the spacing between the rows. The experimental plot in case of potato consisted of seven consecutive rows each measuring 5 metres in length. Locating and marking the experimental plots, harvesting and threshing the produce, recording the weight of the produce etc. were the different stages of the experiments.
- The driage experiments in respect of Autumn paddy. Winter paidy, Rape and Mustard and Matikalai were conducted centrally in the Statistical Offices at district/sub-division level under the direct supervision of the Statistical Officers with a view to arrive at an estimate of the percentage recovery of try grains from the freshly harvested grains. These experiments were confined to a sub-sample of villages only.
- In case of Jute, supplementary operations like retting, extraction of fibres, drying of fibres, recording of final weights etc. were carried out only in 50 p. \sim of the selected villages. For arriving at an estimate of ratio of case to gur, subsequent operations like extraction of juice, preparation of gur etc. were conjected in a limitel number of experiments.
- 3.6 The number of driage experiments planned and actually conducted in different districts for all crops are shown in table 9.1.

4. Organisation.

- The crop estimation surveys were conflucted under the administrative and technical control of the Director of Statistics. Assame in consultation with the Chief Director, National Sample Survey, Govt. of India. All the technical works such as, Planning of the survey including selection of villages, imparting training to the field staff, carrying out analysis of the results etc. were done by the technical staff of the Agricultural Statistics section of the Department of Economics and Statistics, Assame
- The field work of the surveys was carried out by the Field Assistants of the Department of Economics and Statistics, Assam, under the direct control and supervision of the Statistical Officers in the different districts and Sub-divisions. The lists of selected villages for the surveys were supplied to the respective Statistical Officer from the Hendquarters at Shillong well in advance and the Statistical Officers in the districts and Sub-divisions in their turn, alloted the villages to the Field Assistants for conducting crop estimation surveys. The work load of the field-staff engaged in the different crop estimation surveys in the different districts is shown in table 14.1.

5. Training.

A programme of refresher's training is generally arranged for the benefit of the field staff just before the commencement of different crop estimation surveys every year. During the year under report, necessary training was imparted to the Field Assistants in the technique of field experimentation before starting the actual field work. During the year, the training was organised in three centres viz. at Gauhati, Nowgong and Jorhat in the month of October. The supervisory and field staff of Goalpara, Darrang and Kamrup districts participated in the training organised at Gauhati and those of Gachar Mikir and NoJ. Hills and Nowgong at Nowgong centre. The supervisory and field staff of Lakhimpur and Sibsagar districts participated in the training organised at Jorhat. The training was imparted by the officers deputed from Head quarters and the supervisory staff of the National Sample Survey Organisation posted at Shillong. Out of the total strength of 49 Field Assistants 30 had attended the training. Of the rest 19 Field Assistants not attending the training, 3 posts were vacant, 8 Field Assistants were on leave, one was sick, one Field Assistant was under order of transfer at the time of the training.

_ 3 _

The other staff of the districts such as Statistical Officers. Inspector of Statistics, Sub-Inspectors of Statistics, Primary Investigators also attended the training.

The details of training and attendence of the staff are given in table 13.1.

6. Equipments.

All the essential equipments required for successful operations of the field work such as tape, balance, standard weight, string, hessian cloth kit-box etc. were supplied except the pegs which were locally produced by the field staff. The details of equipments supplied to the field staff in the different districts are given in table 12.1.

7. Response.

The district-wise details of number of experiments planned conducted and accepted for analysis with their percentage responses are given in table 1.1. The overall response was found to be satisfactory for all the crops. The percentage responses for the State as a whole were above 96 p.c. for all crops except for Rape and Mustard and Matikalai. In case of Rape and Mustard the response was 92.2 p.c., while the response in case of Matikalai was 85.6 per cent. Cent percent response was achieved in all the districts in case of Autumn paddy. The over all responses in all the districts were above 90 p.c. During the year cent percent response was achieved in Sibsagar district. In Mikir and North Cachar Hills and Lakhimpur District also cent percent response was achieved for all the crops except sugarcane in Mikir and North Hills and Potato in Lakhimpur. In case of Winter paddy the over all response, was 98.8 p.c. For this crop cent percent response was achieved in all the districts other than Kamrup, Nowgong and Cachar. The statement of numbersponse is shown in table 10.1.

8. Supervision.

- The supervision of field work in the different crop estimation 8,1 surveys was entrusted to the District/Sub-divisional supervisory staff. The programme of supervision in pre-assigned villages was arranged in a sub-sample of about 25 p.c. of the sample villages selected randomly in all the in respect of Autumn paddy, Winter pally and Jute surveys for ensuring the quality of the data for the surveys as well as for judging the accuracy of the overall estimates. A total of 376 experiments were planned for such supervision of which only 303 experiments could be supervised by the supervisory staff, the percentage of response being 80.59 percent. Beside these pre-assigned experiments some other experiments were also supervised at harvest stage. In respect of Potato, Sugarcane, Rape and Mustard and Matikalai harvest stage supervision was carried out on 226 experiments or 17.29 percent of the total number of experiments planned for those crops. The details of supervision carried out in the different districts are shown in table 8.1. It will be seen from the table that the over-all supervision at harvest stage was 21.1 percent of the total no, of experiments planned.
- 8.2 In addition to harvest stage supervision, some experiments were supervised by the district supervisory staff at pre-harvest and post-harvest stages. The total no. of experiments supervised at pre-harvest stage was 102 while the no. of experiments supervised at post-harvest-stage was 111 in the State. The particulars of those experiments are presented in table 3.2 of this report.
- 8.3 The supervisory staff of the Directorate of National Sample Survey (Agricultural Statistics Section), Government of India, posted at Shillong carried out independent supervision in case of different crop estimation surveys. The no. of experiments supervised by them at different stages are shown below:

Crops	Pre-	Harvest	Post-	Driage	Total	Total (excludive)
	2	, 3	1 4	7 5	6	7
1. Autumn paidy	17	62	6	-	85	78
2. Winter paidy	46	77	5	-	128	114
3. Jute	13	17	12	6	48	48
4. Potato	19	23	4	esp.	46	45
5. Rape and Mustare	12	18	26	-	56	52
6. Sugarcane	17	25	13	-	55	52
7. Matikalai		1.5	3	••	26	26
Total	132	237	69	6	444	415

In case/supervisions in different crop estimation surveys by the State supervisory staff and the supervisory staff of the National Sample Survey Organisation, posted at Shillong, it was observed that the quality of field work was good and no mistakes in technical aspects of the different crop estimation surveys were noticed. The primary workers were found trained and fully conversant with the technique of crop estimation surveys.

The supervisory staff of Central NSSO, posted at Shillong contacted thirty seven primary workers during Kharif season in seven districts out of 44 primary workers. Eighty four percent of the primary workers contacted were allotted with more than twenty experiments each and 16 page between nine to twenty experiments each. During the Rabi season 1970-71 they contacted 29 primary workers in six districts and noted that all the primary workers were allotted with twenty experiments and above.

It was observed during the supervisions that substitution of survey numbers/fields were done in few cases due to prior harvest of the experimental crops. Information on harvest dates was available at the office of the Statistical Officers about two weeks in advance in respect of all crops except for sugarname. Harvesting of Sugarcane depends on the availability of the crushing machine and as such no advance intimation of harvest dates could be available like other crops.

9. Procedure of calculation of Average yield of different crops.

9.1 Paidy: In case of paidy, the plot yields recorded in the returns were in terms of grains immediately after thrushing. These plot yields were converted to iry and clean rice in kilogram per hectars. The results of the driage experiments showed that the average moisture contents in the grains was 10.44 percent in case of Autumn padly and 3.62 percent in case of Winter paidy for the State as a whole (Table 9.2). The dry paddy was then converted to rice by adopting the official conversion factor (62.5 percent) for recovery of rice from paddy.

The stratum average yields were obtained as simple arithmetic mean of the results of all the experiments in the stratum whereas the district average yields were obtained as the weighted average of the stratum average yields, weights being the actual areas under the crop in the respective stratum during the year 1969-70. In case of Mikir and N.C.Hills districts, the district as a whole was considered as a stratum. The average yield for the entire region covered by the survey was obtained as the weighted average of the district averages, weights being the areas under the crop as per final forecast, 1970-71.

9.2 Potato: The stratum average yields were obtained as simple arithmetic mean of the results of all experiments in the stratum expressed in kilogram

per hectare, whereas the listrict and pooled average yields were obtained as the weighted average yields, weights being the actual area in the respective strata during 1969-70 and district areas as per final forecast, 1970-71 respectively.

- 9.3 Sugarcane

 The stratum average yields and the pooled estimates for the districts and the state were estained in the same procedure as adopted in case of potato. The supplementary operations were carried out in all the 26 experiments planned for obtaining the ratio of gur to cane and the results of the experiments were applied for estimating production in terms of gur. The politic of the experiments showed that the ratio of gur to cane was 10.51 p.c. (table 9.2).
- 3.4 Rape and Mustari: The experimental yields recorded in the returns were in terms of freshly harvested seeds. Before further analysis the plot yields were corrected for reducted of moisture after driage. The central driage experiments showed an average moisture content of 3.14 percent for the entire region covered by the survey (table 9.2).
- 9.5 Jute The average weight of the "green" harvest for each stratum was obtained as the simple arithmetic mean of the results of the experiments in the stratum. The district and pooled average yields of "green" harvest were obtained as weighted averages, weights being the area under jute in the different sub-distions during 1969-70 and districts areas as per final forecast 1970-71 respectively.

From the results of the subsequent operations carried out in a sub-sample of 50% of the selected villages, estimates of ratio of dry fibres to "green" weight were worked out for individual districts which are shown below along with the district average of "green" weight. The district estimates of average yields of dry fibres were worked out from the average vields of "green" weight and average percentage ratio of dry to green vields, assuming them to be independent variables.

District	Average yield., in green weight (Kg./plot.)	Percentage sampling . error.	Average percen- tage ratio of dry to green vield.	Percentage sampling error.
	2		4	5
Goalpara	80	4.14	4.87	3,35
Kamrup	62	3.69	4.46	9.22
Darrang	50	10.18	5 . 50	3.19
Nowgong	51	6.13	5.47	5,48
Pooled	65	3.43	5.06	2, 87

9.6 Matikalai. The plot yields recorded in the returns were in terms of freshly harvested grains. Before carrying out further statistical analysis the results were converted to dry grains. The results of the central driage experiments showed that the average moisture content in the freshly harvested grains was 5.79 p.c. for all the districts taken together (Table 9.2). The district estimates of average yields were obtained as the weighted averages of the stratum averages, weights being the actual areas under the crop in the respective strata during, 1969-70. Similarly the pooled estimate was obtained as the weighted average of the district averages, weights being the district area as per final forecast, 1970-71.

10. Estimates of Average Yiel1.

10.1 The following table shows the estimates of average yields of the different crops by districts along with the corresponding nocled estimates for the region covered by the surveys.

						(in Kg./He	at.)
District	'Autumn Pally	Winter Padly	Potato	Jute	Sugarcane (in terms of cane)	Rape and	. Matikalai
	1 ?	1 3	1 4	5	6	1 7	ا الح
L. Goalpara	747	877	5645	1.558	45510	406	369
2.Kamrup	5 97	933	4753	1.106	35072	344	249
3.Darrang	746	1195	4454	1100	32754	463	465
4 Nowgong	520	1033	2430	1335	35907	294	410
5.Sibsagnr	778	1300	54 55	NE.	43116	436	342
6 Lakhimpur	904	1135	4354	145	38975	547	er E.
7, Cachar	974	1253	1831	~~	19132	376	•
P. United Mikir and N.C. Hills.	1499	1515	••	-	15472	959	41
Corl ed	731	1125	4524	1304	37217	412	347

10.2 The area under, production and yields rates of the different crops over a period of five years are presented in tables 3.1(A) to 3.7(A) for their comparisons.

11. Analysis of Variance.

It is the results of the analysis of variance of plot yields are given in tables 5.1 to 5.7. The total variation between plot yields was analysed into two component variation viz the variation between villages and variation between fields within village which are given by the corresponding mean squares.

The mean square between fields within vallage is an estimate of the corresponding true variance while the mean square between villages does not provide an estimate of the corresponding variance. The latter is a function of the two estimated mean squares, the number of villages and the number of fields in the sample, and can readily be computed. Tables 6.1 to 6.7 show the number of villages with varying not of fields required for estimating the average yield at different level of precision in terms of percentage sampling errors.

The formula used for calculating the mean squares and the sampling variance for pally are given in the appendix.

12. Weather and Grop condition.

12.1 Autumn Paily: The weather in general was more or less favourable to this crop barring, of course, Lakhimpur, Darrang and Cachar districts where excessive rainfall hampared the growth of the crop.

There was considerable image to the crop by flood in some of the districts at flowering stage. The area under the crop had decreased to a considerable extent in Mikir and N.C. Hills due to draught during the sowing period. However the weather was favourable for the crop in the later stages. The area under the crop was 5,27,330 hectares during 1970-71 against 5,20,335 hectares (excluding Meghalaya) in 1969-70.

The average yields were lower than those of the previous year in most of the districts except in Goalpara, Sibsagar and Mikir and N.C. Hills. Damage by insectpest, were infestation, rice bug and stenborers were negligible during the year. The estimated production of Autumn rice during 1970-71 was 3,79,573 tonnes as against the production of 3,72,441 tonnes (excluding Maghalaya) during 1969-70.

12.2 Minter Padiy: The weather in general was favourable to the emone except in few districts in the State during the year under report. In some of the listricts draught condition prevailed at the time of transplantation and as a result the areas under cultivation of this crop in those districts had gone foun in comparison to the previous year. The standing crops were affected by flood in some districts. Minor damages by insect pests were reported from a convergions of the State. The area under the crop decreased during the year in Kamrup, Darrang and Nowgong districts in comparison to previous year. The sotal area during 1970-71 under the crop in the State, which was estimated at 14,45,770 hectares showed an increase of about 0.7 p.c. only over the area of 14,35,431 hectares (excluding Meghalaya) during 1969-70.

The average yields were found to be higher in all the districts except in Coalpara, Lakhimpur and Mikir and NaCaHills in comparison to the amprage viells of the previous year.

The total production of Winter rice for the State of estimated at 10,000.317 tours against 13,35,351 tours inting 1963-70 (explained Me malaya) showing an increase of about 15.70 p.m.

The weather was found to be moderately far smalle to the crop at the time of preparation of land and sowing paration.

The total area under the crop was estimate! 1.3. 300 heatares during 1370-71 against 1.22,012 heatares (excluding Medicina) haring, 1363-70. The increase in area was mainly be to favourable weather condition of the primary stage of eneration. But the growth of the crop was dupled by first in almost all the districts and as a result, the yield rates of favoidable during the year under report. The production of Julie laring 1970-70 was estimated at 9,35,775 bales of 180 kg, each against the production of Julie 150 kg, lare halos to 1969-70 (excluding the production in lare Hills under Meghalgia).

- not much formulae during the year. However, in comparison to deviation areas were trought independent value in Kamrup, Darrang, Sibragar, bakhings and Mikir Mills describes. Renords from the districts revealed that the weather during flowering stage was by in some of the districts are this advandly after their the growth of the crop, the estimated area under Rame and Mistard during 1970-71 was 1.77,140 hectares as against the area of 1,34,200 hectares (excluding Maghalaya) in 1959-70. During the year under report, the average yields shown an increase in Jachar, Kamrup, Darrang, Lakhimbur and Mikir Hills districts over those in the proving years. The estimated production during 1970-71 showed an increase of about 11.12 p.c. over the production of 1969-70. The production was estimated at 56,468 tonnes during 1970-71.
- Our field reports from all over the State show I than the over all weather condition was none too favourable for Sugarane during the gear unit of conort. In Jachar and Kammip districts excessive rainfold was partly responsible for the image of the crop. In Mikir Hills dry weather at this processive sowing stage was the cause of delay in early operations. However, the weather was favourable for the crop in the subsequent operations in the district. Insect pests acred some damages in certain parts of the State. The estimated area under Sugarcane and 32,830 hectares in the State during 1970-71 against 32,850 he dares in 1969-70 (excluding Meghalaya). The average yields recorded a decrease in all the districts except in Mikir and N.J.Hills during the year in a meanistable to those of 1969-70. The over all production of Sugarcane in terms of gur was 1,28,416 tonnes in the State during 1970-71 against 1,61963 tonnes during 1969-70 (excluding Meghalaya).
- The general weather for the crop was more or less favourable to the crop in the after stages in the State except in Tachar it. Tiet. Draughty condition prevailed at the sowing period in some of the districts during the year and as a result the area under the crop recorded a decrease in Those districts as against the area during the previous year. In Tachar district the crop was subjected to damage by excessive rainfall and flood. The extent of damage was estimated at 20 to 50 p.c. in the district. The yield rates in all the districts except in Cachar showed an increase over the previous year. Reports of damage by insect pests were received from Taalcara, Born and last impur and some parts of Kamrup districts.

The area under the crop was estimated at 24,670 hectares in the State during 1970-71 against 25,250 hectares juring 1969-70.

The estimated production for 1970-71 was 1,11,617 tonnes as against 93,782 tonnes in 1969-70 which meant an increase of about 19.02 p.c.

12.7 Matikalai: The weather was not favourable for the crop at the sowing and post sowing Stages in almost all the districts. The crop was damaged by rainwater in some regions of Kamrup and Nowgong districts and as a result as many as 25 experiments were lost in Kamrup district. The average yields had decreased in Goalpara, Nowgong and Sibsagar districts in comparison to the previous year. The estimated area under the crop had decreased from 56,390 hece tares during 1369-70 to 49,565 hectares in 1970-71. The production of Matikalai was estimated at 17,199 tonnes, in the State during 1970-71 as against 21,086 tonnes during 1969-70.

Contd.

	ert.	utum paddy	dy	7	Winter pa	paddy		Potatq	σ	Rape a	and mustard	ard	Sugarcane	Cane	- 	ا ا آرے	Jute	!!!
District	Ω4	0	۳. ۳.	Δ.	: : : .	P.R.	<u>γ</u>	o '	P.R.	Ь	O	P.R.	a,	ပ	P.R.	Δ,	O	P.R.
 	2	13	4-	101	Φ,	7 - 1	(m)	6	10	11.	1.2	120	14	15	1.6	17	1.9	19
1.Goelpara	8	8	100°0	75	84	100.0	88	. 35	95,3	90	28	96.6	24	, 22	1 9	¦ \$; ' %	100.0
2.Kazrup	100	100	100.0	112	109	97.3	73	73	10000	72	62	36,1	42	33	90.4	25	8	100.0
3.Darrang	63	89	100,0	78	78	100.0	64	64	100°0	53	58	100.0	24	24	100.0	42	42	1000
4.Nowgong	9	90	100.0	7.4	73	98°6	32	26	31,2	8	46	76,6	32	딺	96,8	8	8	97.6
5,Sibsagar	ß	ß	100°0	8	8	100°0	34	34	100.0	33	ဗ	100.0	9	09	100.0	ı	ı	•
6. Lakin 1 mpur	52	52	100.0	88	82	100.0	8	46	92,0	8	8	100.0	8	တ္ထ	100,0	ı	•	
7. Cachar	90	9	100,0	72	69	95.8	36	36	100°0	8	18	90°D	36	36	100°0	•	0	ı
Plains Total	470	470	100.00	592	585	98,8	330	366	96,3	338	310	91.7	243	241	97.1	296	294	99.3
3.United Mikir & N.C.Hills.	. 6 .	4	10001	44	1 44	100°0	! ! !	1 1 1	! ! ! !	28	22	100,0	22	1 7 &	90°9			
Hills Total	34 1	1 9 1	10000	14	*	1.00.0		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 22 1	52	100,0	22	1 &	6°06	i i		
State	510	510	£00°0	636	629	89°9	390	366	6 °96	360	332		270	1 162	1 96.6	966	294	666

. 10 -

		Matikalai		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Totel	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
District	e.	ပ	P.R.	ч.	ပ	P.R.
1	8	ឥ	82	\$3	**	13
1. Goalpara	72	99	91.6	490	476	97.1
2. Kanrup	%	79	70°9	574	532	92°2
3. Darrang	49	44	91.6	385	378	98°8
4. Nougong	35	97	95,1	398	366	91.9
5. Sibsagar	6	94	100.0	312	312	100.0
6. Lakhimpur	ı	ı	ı	244	240	98°3
7. Cachar	•	•	•	224	219	97.7
Plains Total	006	257	95.6	2624	2523	96.1
unite N.C.	1			128	882	4,800
Hills Total				128	126	98°4
State Total	300	257	35.6	2752	2649	! ! ! ! !
: ; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ;	† † † † † † † † † † † † † † † † † † †	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * * * * * * * * * * * * * * * * * *

P = Planned, C = Conducted, P.R. Percentage Response.

Table -2.1.

Estimates of Average yields of Autumn Rice with their sampling errors

	Average Yield Kg./hec.	Sampling error Kg./hec.	Percentage sampling error	Average Tield (in terms of pathy) Kg./hec.
1. Goalpara	747	46.63	6.2 6	1195
2. Kamrup	597	43.62	8,31	955
3. Darrang	746	46.64	6.25	1194
4. Nougong	520	58.38	11.23	832
5. Sibsagar	776	157.23	20°58	1242
6. Lakhimpur	\$ 06	60°59	5.67	1446
7. Cachar	974	68,90	7.08	1558
9. United Mikir and N.C.Hills.	1499	72.34	4.83	2398
Pooled	731	23.43	3,21	1170

Table -2.2.

Estimates of Average Yields of Winter Rice with their Sampling errors.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	Bull Canon Co. T	
District	Avera Kg.	Sampling error Kg./hec.	Percencage semplants error.	(in terms of paddy) Kg./hec.
1				
			3.71	1403
	877	32.51		1 5.80
1. Coalpare		80 9V	4.64	50C-1
	993	C 0°C.₹	•	1912
2. Kantup		55.51	5.48	
	1195		5.15	1733
0	1083	55.78		Cecc
4. Nowgong		78.37	4.30	? Cy
F	1300		ର ଜ	1816
4 4 8 8	1135	3651	22	
6. Lakhimpur		39,13	3,11	2013
7. Cachar	1 531			2424
ted Mikir and	1515	4.6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N.C.Hills		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.902
•	1126	19.14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

able - 2.3

Estimates of Average Yields of Potato with their Sampling errors.

#IC	Jistrict Kg./hec.	Sampling error Kg./hec.	Percentage sampling error.
1. Goalpara	5645	444.09	7.87
2. Kamrup	4758	\$52°	7.63
3. Darrang	4454	337.48	7.58
4. Nowgong	2420	220•30	9.10
5. Sibsagar	54.56	725.77	13.30
6. Lakhimpur	4384	258,99	5.91
Gachar	1931	250.53	32
Pooled	7257	167.48	3.70

[able - 2.4.

Estimates of Average Yiells of Sugarcane with their Sampling errors.

Jistrict	Average Yield (in terms of cane) Kg./hec.	Sampling error Kg./hec.	Percentage sampling error.	Average yield (in terms of Jur) Kg./hec.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1. Goalpara	45510	4736.04	10.41	4783
2. Kanrup	35072	3265,31	9,31	36.96
3. Darrang	32754	4517.78	13.79	3442
4. Nowgong	36 90 7	3590,46	9.73	3368
5. Sibsagar	43116	3309.49	7.68	4531
6. Lakhimpur	33375	2879.30	7.41	4086
7. Cachar	19132	2331.27	15.06	2011
d Mikkr an Hils.	45472	3363.41	7.40	4779
Pooled	ಸ	1337	3°29	3912

- 15 Table - 2.5

Estimates of Average Yields of Jute (Dry Fibre) with their Sampling errors.

District	Average Tield Kg./hec.	Sampling error Kg./hec.	Percentage sampling error
1. Goalpara	1558	33	5.33
2. Kaurip	1106	140	12,66
3. Darrang	1100	117	10.67
4. Novgong	1335	110	8.22
Pooled	1304	58	4.47
Pooled	1304	288	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

Table - 2.5.

Estimates of Average Yiells of Rape and Mustard with their Sampling errors.

406	19.65
344	32.29
463	44.21
294	50.01
436	87.71
547	29.00
376	144.06
859	56.53

Table - 2.7

Estimates of Average Yields of Matikalai with their Sampling erroffs.

Table -3.1

Estimates of Production of Autumn rice.

3,79,573

5,19,434

5,27,880

- 19 -Table -3.2.

Estimates of Production of Winter gice

District	Area as per final fore-cast,1970-71 (in hectare)	Area corrected for bunds 1.54%	Production in tonnes
1. Goalpara	1,98,300	1,95,246	1,71,231
2. Kanrup	2,54,950	2,50,925	2,49,169
3. Darrang	1,79,630	1,76,913	2,11,411
4. Nougong	1,50,000	1,57,536	1,70,611
5. Sibsagar	2,30,000	2,26,458	2,94,395
6. Lakhimpur	1,99,000	1,94,951	2,21,269
7. Gachar	1,51,650	1,49,315	1,87,838
9. United Mikir and N.C. Hills.	41,300	41,255	62,501
Pooled	14,14,390	13,92,599	
State	14,46,755	-	15,04,317

Table -3.3
Estimates of Production of Potato

Projection in tomnes	38,725	23,790	19,010	3,7%	5,729	14,248	4,138	1,09,400	1 1
Area as per final for cast, 1970-71 (in h	980	2,000	4,270	1,50	1,030	3,250	2,800	, %	OL9 78
District	1. Coalpara	2. Kanrup	3. Darrang	4. Nougant	5. Sibeagar	6. Lakhimpur	7. Gambar	Pooled	State of the state

Table -3.4

Estimates of Production of Jute

District	ast, 1970-71(in hectare)	Production in bales of 190 kg. each.	Production in tonnes.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1. Goalpara	35,000	3,02,944	54,530
2. Kanrup	29,600	1,31,375	32,738
3. Darrang	20,510	1,25,950	22,671
4. Nowgong	36,020	2,57,148	48,087
Pooled	 	8,77,917	1,58,026
State	1,29,355	9,36,779	1,58,620

Table -3.5
Estimates of Production of Sugarrane

District	Area as per final fore- , cast, 1970-71 (in hectare)	Production in terms of cane (in tonnes)	Production in terms of Jur
1. Goalpara	2,430	1,10,589	11,623
2. Kamrup	4,540	1,59,227	16,735
3. Darrang	2,670	87,453	191
4. Nowgong	3,380	1,24,408	13,075
5. Sibsagar	050°6	3,90,200	41,012
6. Lakhimpar	3,400	1,32,175	13,892
7. Cachar	4,250	41,311	3,546
8. United Mikir and N.C. Hills.	2,510	1,14,135	11,995
Pooled	32,230	11,99,498	1,26,069
State	32,930	12,21,928	28.4

Estimates of Production of Rape & Mustard.

Production in tonnes.		10,678	11,000	10,774	6 ₉ 433	601,3	7,658	534	2,912	56,468	56,468
Area as per final fo	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56,300	32,130	23,270	21,890	14,700	14,000	1,420	06£³£	1,37,140	1,37,140
		1. Joulpara	2. Kampip	3. Darrang	4. Nowgong	5. Sibsagar	6. Lekhimpur	7. Gachar	8. United Mikir and N.C.Hills.	Pooled	State

Table -3.7 Estimates of Production of Matikalai

	in tonnes							
	Production in	3,864	₹ ,009	3,646	2,911	1,005	15,435	17,199
	Area as per final fore- cast, 1970-71 (in hectare)	10,500	16,100	7,940	7,100	2,940	44,480	49,56
*	District	1. Goalpara	2. Kamup	3. Darrang	4. Novgong	5. Sibsagar	Pooled	State

·	•	-	Statement	Statement showing the		Tabl area, production	25 - Table -3.1(A)	ie -3.1(A). and yield rate	over five	five years		of Autumn paddy	nex age (age (age)	ctar in ela	tonnes. in Kg./hect.
	! ! ,	1966-67	; ; ; ;		1957–69	1	1961	1969-69	! ! !	! !	1969-70	 !	! +-! ! !	1970-71	f I I
מושבעוספ	Area	Produ-	Av.	Area	Pro- Av.	Av. y1014.	Area	t 100	Av.	Area	Produ-	Av. yieli.	Area	1 2	
		 m 	1 1 141 1 1	51	9		 G)	1 6	10.	11-7	121	13 1	14 - 1	15	
1. Cacher	36422	23219	648	38443	41159	1083	39445	23105	611	38445	39562	1046	39000	37378	974
2.Goalpara	123429	68122	561	121406	83403	740	131523	93651	724	127476	34025	670	131520	96674	747
3. Kemup	149734	74243	504	161974	109747	633	174015	113651	664	172901	111351	655	173600	101981	597
4. Darrang	57061	37219	663	57370	51705	808	61715	53054	874	61715	47904	789	62320	45747	146
2.Nowgong	33539	16655	504	34 343	19303	563	45134	35348	790	14515	23123	528	4 8000	24561	520
6.Sibsagar	18211	6772	378	20234	14793	743	20234	12031	607	21353	15630	727	21 350	15634	776
7.Lakhimpur	23472	20529	839	29542	22935	739	33346	34078	1039	33346	31199	951	33390	29702	904
8.Unitel Mikir and N.C.Hills	15733	13338	829	16997	19130	1037	17906	21455	1225	20234	19647	987	18200	26846	1499
9.Garo Hills	29137	18083	631	29137	19312	691	37595	26254	710	37595	26445	715	, ,	, ;	
Pooled	486333	2781.85	581	510349	386037	769	560313	413187	749	557980	3983%	727	527390	379573	731
State	496838	2781.85	581	510348	396037	169	560813	413137	749	557980	398886	727	527930	379573	731
1 1 1 1 1	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	;	1		!!!!	1	1 1	1	1 1 1	1 1		1 1

121.18-3 2(A)

Area in heatares. Production in tonnes. Average yield in kg/heet.

Joan energy Seconding the areas numbered on and gield rate ever five years of Winter paddy

	•			•	E 30 , 25 4						Q-6 %		රා :	ر ارک: ارک:	1
3,5° 2408	T P P	Froite - tion.	1 00 1	A SOLUTION IN	The state of the s		i i i i i i i i i i i i i i i i i i i			Ares	Profession tron	। क्य	Area	Frodu Av	
E Y E E E E E E E E E E E E E E E E E E		1 1	, 4 , 4	1 20 1	*)	* , \ \ .V }	i i i i i i i i i i i i i i i i i i i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		# #!	F 1		: 1 7	i i i _{ira} i ,di	
Jechar 1	145637	136:33	1250	्राह्म ११ १५ १५ १९ १९	196403	* 63.	157323	55863	1249	149734	132592	328	157550	189338	771 26
S. Joalpara	198896	169560	370	200320	145530	ur C	* \$2\$5.	## 00 11	275	£ 9€ 873	181729	076	195300	177231	Ė
3.Kanrup	169512	198499	733	250308	\$6.655 T		1 5 m 1 5 m	55.86.87	<u>የ</u> ተ መነ	257583	38€03€	76.5	254850	249169	.a. Sp
4.Darrang	£73062	. 36.5	1039	1.904.40	196330	1105	304 3C	213852	100 P	190895	174613	06.5	1,9690	221421	40 31
5.Nowgong	162634	1,56014	g, Qu	4 t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330	1635.	23383	03:1	1888 9 T	550501	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	160000	1706.1	
6.Sibsagar	2241 96	232142	1053	222577	%; 36 8	500	2246C1	3100€3	1257	388232	028133	1101	230000	294395	1300
7.Lakhimpur	169963	173060	1064	174015	137333	200 4-4 4-4	17.9062	831106	1319	192226	531756	1884	19.000	221269	1135
3.United Mikir and N.C.Hills,	30351	45274	5.5	30351	1. Co	4 1 Ch (7)	323.5 5	46129	1448	33455	1 4 174 184 184 187	1342	41,900	70529	1515
9.Ggro Hills	2.044	25030	1203	21155	21085	1012	22258	25355	1181	22253	25107	1282	y	ť	0
10, K & J. H11.s	36017	44647	1259	35017	45311	1273	36017	58303	1562	37.338	52700	1414	1 1	, !	1
Pooled	1415996	1106719	1003	1431893	1454524	2032 14	1447963	1641751	1152	1464155	14357C?	966	1414380	1568425 1126	i 1126
State	1456465	1446005	1003	1472353	1433904	1032	1439437	1637625	1152	1495530	1467468	966	1446755	1604317	7 1126

27

ı

Statement showing area, production and yield rate over five years of Potato, Average yield in kg/hect.

+ C ***********************************		955-67	1		1967-63		.	1963-69			1569-70]] 		1970-72	! : !
מומר היים ביים ביים ביים ביים ביים ביים ביים	Area	Frodus Av.	Av.	Arce	Produce Av.	Av.	Area	Produc-	1 Av. 1	Area	Produ-	yieli	Area	Produ-	Av. Tield.
1. Jachar	2064	7265	3520	2104	6104	2901	2204	· 元	3128	77	7944	3644	2200	4138	28.13 18.83
2.Coalpara	6890	38225	5556	5330	37059	5333	1437	38663	5164	7280	34100	4684	6860	38725	5645
3.Kamrup	50 29	20325	4018	50 59	23959	4736	1956	30452	6271	5260	18626	3541	2000	23790	4758
4.Jarrang	4452	17728	3932	4654	12515	26 99	4654	16540	3554	4050	10323	2549	4270	19019	4454
5.Nowgong	2226	4392	1973	2104	2996	1424	2023	5033	3007	1620	3295	2034	1550	3751	2430
5.Sideagar	1214	(623	3803	1093	5333	4873	1093	5373	6233	1900	5423	2354	1050	5729	5456
7 ş Lakh impu r	3237	12961	4004	3237	19613	5750	3237	22133	6339	3230	11641	3549	3250	14248	4384
Pooled	25132	105521	4199	25131	106589	4241	25454	127330	2005	25570	91352	3573	24190	109400	4524
State	28305	119944	41.99	23591	121263	4241	29914	144636	2005	29390	105002	3573	24670	111617	4 524

Table -3.4(A)

Statement showing area, production and yield rate over five years of Jute | bales of 190 kg. &v. yield in | Kg./hec.

					,	,					~		,		
7 1 1 1 1	! ! •• .	1965-67	1	f ¹⁷⁷ 1 1 1 1	1967-68	1	1 1 1 1 1 1 1 1	1968-69	r !	1961	1969-70	', ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1970-72	, , ,
District	Area	Area tion, yield		Area	Area tion, yieli	Āv. yieli.	Area	Fronce tion,	Av	Area	Produc- Av	'Av.	Area	Produ- etion.	Av. yieli.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	182	2 3 4	41		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	61	10			100	14	1 2 1	9
1.Goalpara	34398	293143	1508	34398	263436 1405	1405	22259	199933	1603	39375	330595	1933	35000	302944	1558
2.Kannip	12375	203063	1129	331%	199299	1031	25091	154031	1105	30351	292064	1732	29600	181875	1106
3.Darrang	17604	173302	1772	17604	194353	1935	15378	125587	1470	16137	149460	1642	20610	125950	1100
4.Novgong	40671	24018	1063	48562	321588	1192	32577	210122	1161	35203	240001	1227	36020	267148	1335
5, Garo Hills	6070	49707	1474	6070	30 826	915	6070	41613	1234	6070	49032	1454	ı	1	1
Pooled	131119			139918	139918 1004581	1293	101374	730191	1296	120191	1061122	1589	121230	877917	1304
State	136196	991393 1310	1310	146010	3490	1293	103112	504	1296	128082	1130782	1589	129355	936779	1304

Table -3.5(A)

Statement showing area, production and yield rate over five years of Sugarcane

• • • • • • • • •

Area in hectares.

Fromction in tonnes.

(in terms of came)

Average yield in kg/hect.

in ferms of came)

												-	40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
1 1 1	1 1	1966-67	67	d 1 1	1967-68	1	1	1963-69	1	1 1	1969-70 1970-71	1	1	1970-71	
District		Produc-	Āv.	A 1	Produc-	ĀV	1	"Produc-	 } }	, i.	Product Ar Product Av Product Av	AV		Produc	Av
	ATOR	tion.	yie ld	ATER	tion。	yieli.	M. W.	; tion.	yield	Area	tion。	yieli	Area	tion	yield.
	18	1 1 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118-1	: 	101	1 7 -	, ω,	1 9 1	1 10		12	1 13	1 14	151	16
1.Cachar	3642	99245	27250	4163	11 5233	27547	4163	128370	30799	4460	145079	32529	4250 81311	81311	19132
2.Goalpara	2630	75563	29733	2226	5 5000	24703	2630	33710	31 329	2630	165203	62915	24.30	110589	45510
3.Kamrup	4452	138724	31160	4452	134904	30302	4654	106013	22779	\$ 6 60	230372	49436	4540	159227	35072
4. Darrang	2428	124333	51416	2428	97521	40155	26 30	135416	51439	2730	149064	54236	2670	97453	32754
5.Novgong	3237	76319	23577	3237	90545	27972	3440	112760	32779	3520	199052	53708	3390	124408	36907
6.Sibsagar	3094	297256	35490	81.75	293679	35924	3296	304737	36739	8900	392446	44095	9050	390200	43116
7. Laktı impur	34 90	112506	40950	34 90	159417	45522	34 30	144051	41394	3140	209543	60915	3400	132175	33875
3.United Mikir and N.C.Hills	1902	46397	24394	*2023	¥67396	33562	1942	97295 14946	14946	2510	2510 94225 37540	37540	2510	114135	
Pooled	29865	29865 990953	33173	30139	1013195 33562	33562	31 240	1	35233	32850	1102392 35293 32850 1573989 47914 32230 1199498 37217	47914	32230	1199498	37217
State	30634	1016367	33173	30953	1039003 33562	33562	32009	1129529	35293	33020	33020 1582134 47914	47914	32830	32830 1221828 37217	37917

^{*} No crop estimation survey was conducted. Estimated figures are given, based on final forecast figures.

ا

Table -3.5(A).

Area in hectares. Promotion in tonnes.

Average yield in

kg/hect.

Statement showing area, production and yield rate over five years of Rape and Mustard

based given, No crop estimation survey was conducted. Estimated figures are on final forecast figures.

ı

ı

A).	
7	
-3°	
Table	1
F	١

Statement showing a	Table -3.7(A). Area in hectares. Frontier in tone: Frontier in tone: Average yield in kg	rate over five years	of Matikalai	Area in hectares. [Frontion in tonne: Average yield in kg.
1966-67	9	1969—69 1969—69 1969—7 1969—197	1969~70	191
1 - 1	1			

	1 1 1 1	1956-67	•	* 	* 1967-65			1969-69			1969~70		1	1970-71	1
District	Area	Produc-Av.		Area	Produc-	Av. Tiela	Area	Product	Av.	Area	Produc-	Av.		Produce	Av. y ie 14.
	Q1			 w	1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1 1 101 1 1	10-1		175	123	14	1 15 1	9
l°Goalpara	12487	6231	503	12865	6092	474	12790	3300	258	12600	5242	416	10500	3564	368
2.Kamrup	14340	4402	307	14340	4402	307	14390	3103	216	16292	3926	241	16100	4009	249
3. Derrang	6348	3985	612	6637	4065	612	6645	2548	332	6695	2879	430	7340	3646	465
Buogac N. 1	7213	2635	365	7557	2757	365	9030	3485	3.96	9630	4025	418	7100	2911	410
5.Sibsagar	3309		511	4211	9153	511	4700	2280	495	4900	2630	543	2940	1005	342
Pooled	43702	18394	432	45610	19469		47555	4.1		Ξ .	13702	374	41430	15435	347
State	49958	21598	432	52113	52590	427	54061	16731	309	26390	21036	374	49565	17199	347

* Crop estimation survey was not conjucted during the year. The estimated figures are given based on final forecast.

Frequency distribution of plot yields - Autumn rice

THE PROPERTY OF THE PROPERTY O		F
0/ 100	2 4 4 7 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100/_ 200).44.	2,75
200/ 300	24	4,71
300/ 400	17	3°33
400/ 500	3.9	7,45
	31	ತ್ತೆ ೧ ೮
600/ 700	39	7.45
700 <u>/</u> 900	42	5, 2 4
006 7006	73	14,31
900/ 1000	33	5°47
1000/_ 1100	40	7, 54
1100/ 1200	39	7,65
1200/_ 1300	23	4° X
1300/ 1400	51	4,12
1400/ 1500	; d	1.37
1500/ 1600	നം	1,18
1600/ 1700	~1	1.37
1700/ 1500	C/A	0,99
1900 and above	12	ಗ್ಗ ಬ ಚ
T otal	510	100,00

4 of 1690/ HOCANTO

ı

Table -4.2.

Frequency distribution of Plot yields - Winter rice.

No. of experiments	11 1.75	35 0°35	9 1.43	6 0 0.95	3.62	13 2.36	3.97	41 6.52	43 6,94	11.92	42 6.67	61 9.70	43 7.63	8, 59		29 4.61	4.29	3.34	3,50	12 . 1.91	1.7	
Limit in Kg./hectare	001 70	200 7001	000 7002		005 7007	009 7005	001 7009	006 7001	006 7006	0007 7006	0011 70001	1100/ 1200	1200/ 1300	1300/ 1400	1400/1500	1500/1600	1600/1700	1700 /1900	1900/ 1900	1900/, 2000	2000 and above	

Mean yield = 1135 kg./hectare Co-efficient of variation = 33.9% Standard deviation = 440 kg./hectare.

Table 4.3

Frequency distribution of Plot yields - Potato

Limit in Kg./hectare	No. of Experiments	Percentage to total
005 70	4	1,91
200/1000	14	3,83
1000/1200	56	7,10
1500/2000	23	7.65
2000/2500	31	8.47
2500/3000	2.9	7.65
3000/3500	34	62°6
3500/4000	32	9.74
4000/4500	25	6.83
4500/5000	16	4.37
0055/0005	24	6.56
2200/0005	16	4.37
005970009	13	3.55
0001/0059	10	2.73
005.170001	en .	2,19
1500/2000	€0	2,19
005870008	S	1.37
0006/0056	6	2.46
9000 and above	38	9.74
Total	366	100.00

Mean yield = 4835 kg./hectare Go-efficient of variation = 59.5% Standard deviation = 2520 kg./hectare

Table 4.4 Frequency distribution of Plot yields - Jute.

.

Percentage	7.83	10.88	25,85	25,85	19,39	5,78	4.42	0°00	0.00	100.00
riments		32	7.	7.	57	1.7	13	0	•	294
	02 70	20/40	09 707	os 709	007 706	0217001	120/ 140	140/ 160	160 and above	Total

Mean yield = 65 kg./plot. = 1316 Kg./hec. Co-efficient of variation = 44.62% Standari deviation = 29 kg/plot = 587 kg/hec.

Rrequency distribution of Plot yields - Sugarcane.

46 45 45 37 37 35 15	20, 20 20, 20 40, 50 60, 20 30, 40 40, 50 30, 40 30	0/2 20 20/40 40/2 50 20/40 40/2 50 30/100 100/120 110/140 140/160 160 and above Total 2 23 3 46 46 46 46 46 47 39 110/120 110/120 110/120 110/140 115 110/140 115 110/140 115 110/140	Limit in kg./plot	1	
20, 20 20, 20 20, 40 40, 50 60, 30 30, 100, 120 100, 120 140, 160 160 and above Total 261 17 261 262 23 24 46 46 46 46 46 46 46 46 47 39 11 11 11 11 11 11 11 11 11 11 11 11 11	20, 20 20, 40 40, 60 40, 60 30, 10 100,120 1100,120 1400,160 1100 and above Total 23 33 45 37 1100,120 1100,120 115 1100 and above 115 1100 and above	0/20 20/40 40/50 11/40/100 120/140 100/120 140/160 15 1			m
23	23 46 39 45 45 37 37 35 15 16 115 261	20, 20 20, 40 40, 50 40, 50 39 50, 20 30, 10		1	2°30
46 45 45 45 37 37 35 4000 15 261 261	46 39 45 45 37 35 15 10 10 11 261	202 40 40 50 40 50 30 9 50 20 50 30 7 50 20 120 30 37 50 20 140 30 37 50 30 37 50 30 30 50 30 30 50 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 30 50 30 30 3	oz 7o		क %
46 39 45 37 37 35 35 4bove 15 15 261	46 39 45 37 37 35 15 261 261	402 50 402 50 502 30 502 10 502 10 502 140 502 140 503 15 604 10	207 40		64 64
39 45 37 37 35 36 above 15 15 10 11 261	39 45 37 37 35 35 15 15 15 261	10.20.20 30.20.		46	200/1
45 45 37 35 2bove 15 15 261	45 45 37 37 38 4bove 15 15 261	39 30/100 37 37 38 30/100 37 40/100 40/160 15 160 and above 15 160 and above 15 160 and above 15 160 and above 15 160 and above 15 160 and above 15 160 and above 160 and above 17 18 18 19 10 10 10 10 10 10 10 10 10 10	ne 7n a		14.94
# 1	45 37 35 above 15 15 261	30/100 37 .00/120 37 .20/140 .	06 709	39	6
261 10 11 11 11 11 11 11 11 11 11 11 11 11	237 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	007/00	45	1 (o & 4
37 35 15 261 10	37 35 15 15 16 261	20/120 20/140 40/160 15 160 and above T o t a l T o t a l Sean yield (in terms of Gane) = \$9 kg./plot (35600 kg./hec.) Sean yield (in terms of Gane) = 41 kg./plot (16400 kg./hec.)	207705		14.18
15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	261 16 261 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	15	100/120	3.5 2.5	13.41
above 15 261	#bove 15 10 261	15 160 and above 15 160 and above 1 o t a l 1 o t a l 261 261 261 261 262 263 264 264 264 265 264 264 265 267 267 268 268 269 269 260 260 260 261 261 262 263 264 264 265 265 266 267 268 268 269 269 260 260 260 260 260 260	· · · · · · · · · · · · · · · · · · ·	35	T30FT
15 above 15 a 1 261	261 16 261 16 16 17 16 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	140/160 160 and above 160 and above 1 261 1 0 t a l 2 261 2 261 2 0 t a l 2 261 2 0 t a l 3 2 0 t a l 3 2 0 t a l 3 2 0 t a l 3 2 0 t a l 3 2 0 t a l 4 1 t t c t a l 4 1 t t c t a l 5 2 1 t c t a l 6 2 1 t c t a l 7 2 1 t c t a l 8 2 1 t c t a l 9 10 t c a l 10 10 t c	C*17021	•	5.73
above 15 a 1 261	above 15 10 261 10 261	Total Total Z61 10 Total Z62 Z63 Z64 Z64 Z65 Z65 Z65 Z66 Z66 Z66	140/160	15	
261	792	Total Nean yield (in terms of Gane) = \$9 kg./plot (35600 kg./hec.) 1.	180 and abode	15	0.4°C
261	261	Total Nean yield (in terms of Cane) = 99 kg./plot (35600 kg./hec.) 1. **And at terms of Cane at the control of the control o			5
			Total	261	0000

Table -4.5

Frequency distribution of Plot yields - Rape and Mastard.

Limit in kg./hectare	No. of experiments	Fercentage to total
	8 F 7 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P	
007 700	42	12.65
0	45	13,55
006 7002	31	9°34
0	42	12.65
•	75	16,27
	₹8	7.23
	25	7,53
	35	10,54
	14	4.22
0	က	06°0
1000/1100	en .	06°0
1100/1200	G.	2,71
1200 and above	w	1.51
#-1 64 4-2	332	100.00

Mean yiell 55-efficient of variation = 66.5% Standard deviation = 292 kg./hectare.

Trequency distribution of Plot yields - Matikalai.

ts Percentage to t	30 11.67	53 20.62	30 11.67	60 23, 34	34 13.23	15 5.84	5 1.95	3.50	10 3.89	1 0.39	4 1.56	1 0.39	5 1.95	
Limit in Kg./hectare No.	007 700	100/ 200	00€ 7002	3007 400	4007 200	009 7005	001 7009	008 7001	006 7008	0001/006	1000/1100	1100/1200	1200 and above	

Mean yield = 360 kg./hectare So-efficient of variation = 72.2% Standard deviation = 260 kg./hectare.

Table-5.1 Analysis of Variance - Antumn Rice.

•

	1		1 1 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Between Districts	stricts	Between Circles	Jircles .	Between	n Villages	Between	sen Fields
District	, J. F.	M.S. in '00 (kg./nect)?	e e	(kg./hec.) ²	D. W.		D, F.	M.S. in '00 (kg./hec.) ²
	2		4	100		<u> </u>	1 1 1 1 1 1 1 1 1	101
1. Goalpara	1	1	14	2113	25	1421**	\$	292
2.Karup	ı	1	10	6567*	39	2836**	8	482
3. Derrang	1	1	ທ	3496	28	1409**	3€	378
4.Novgong	•	ı	7	1561	22	1961	8	1069
5.Sibsagar	•	ı	4	2723	17	2395**	25	613
6. Lakh Impur	ı	•	4	3613	18	1545**	26	568
7. Cachar	1	ı	S	11302**	24	2418	8	2625
8.United Mikir and N.C.Hills.	! ! !	! ! ! !	; ; ;	, , , ,	19	\$083##	&	77
Pooled	7	47563 **	55	4082**	192	2058**	255	722
1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* Significant at 5% level. ** Significiant at 1% level.

Analysis of variance - Winter Rice.

	3erween	Setween Districts		Siroles	Between	71 lages	Between	Fielis
1.00 mm	a ci	M.S. in '00' (kg./nec.) ²	! ! % ! 0	(kg,/nec.) ²		0.3. (kg./nec.)? 0.3. (kg./nec.)? (kg./nec.)?	1 1 1 1 1 1 1 1 1 1	(kg./hee.) ²
8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	2			lucal				
. Goalpara	0	1	છ 14	*6062	92	1013**	42	446
2. Kasrup	g	P	¢v3	5332**	41	2003**	3 5	405
3, Darrang		0	'n	9725*	33	3335	8	₹96 ₹
4.Nowgong	Q	b	7	7262*	53	2210**	92	879
5.Sibsagar	•	ı	6	6064	35	2926**	45	1013
6. Lakhimpur	0	1	~	2147	33	1231*	41	708
7. Gachar	1	ı	ហ	2817*	56	1024	34	1996
S.United Mikir and N.C. Hills.	1 1		1 1		a	1940**	22	179
Pooled	٠	26052**	61	¥ 947	247	1986**	313	943

* Significant at 5% level.

** Significant at 1% level.

- 41 Table-5,3,

Analysis of variance - Potato

	3etwen	3etween Districts	Jetwen J	Jiroles Jiroles	Setween Villages	Villages	3etween	Telds
District	F.	M.C. in 100 (ve/jee.) 2	 ដូ ពំ	(kg./hec.) ²		' %S, in '00 ' (kg,/hec.)2		M.S. in '00 (kg./hec.)?
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2				01		100	6
1. Goalpara	1	Û	12	413770**	88	11546 8##	41	50415
2. Kamrup	0	Q	Ħ	105066	27	103090 *	39	50057
3. Darrang	ı	1	ĸ	330033**	26	55173	32	35689
4. Nougong	B	į	63	364	6	29213	13	18949
5. Sibsagar	1	ı	Ψ	137461	10	141720**	17	80319
6. Lakhimour	i	0	7	152028*	15	39997#*	23	18563
7. Cachar	!	; ; ; ; ;		9313	1 13	23205	19	1,8367
Pooled	w	941057**	44 80	209533#+	128	30410**	8 7	35570
	, , ,							

* Significant at 5 % level. ** Significant at 1.% Level.

Analysis of variance - Jute.

(Green yield)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Between	Between Districts	Between Sul	Setueen Sub-divisions	Between W	Between Villages Between Fields	Between Fleids	lds
District	A C	,	e, Câ		D.F.	2	Ř Ř	M.S. (kg./plot) ²
	101		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				81	
1. Coalpara	1	•	જ	1675	39	895**	42	319
2. Kantup	1	•	લ્ય	3200	39	2231**	4 2	143
3. Darrang	1	ı	Ħ	102	19	1116*	ಸ	405
4. Nowgong	ı	1	1	1	41	1205**	7 5	176
Pooled	! ! m !	10150	 	1970	138	1395##	147	240

* Significant at 5% level

^{**} Significant at 1% level.

Table -5.4(9). Analysis of variance - Jute

(Percentage ratio of dry to green yield)

	-	V	Jetween .	divisions	36 t		Between F	1138
District	1 °4° 0	s s x	, , , , , , , , , , , , , , , , , , ,	S S	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	။ တို	Å,	, M.S.
9 ord							100	6
to Goalpara	ı	Ū	ຄ	0°73ft	19	1.1205**	22	0.1250
?. Kamrup	o	0	€V	1,8535	12	4.1400**	15	0.3707
3. Darrang	a	ı	ы	0.1512	Ot.	Q° 8300	11	0,5727
le Nowgong	0 1	1 1 1 1	1 1 0 1 1		19	3,5963	8 :	2,1290
Pooled	က	¥€302 *	ιn	1,0693	59	2.4876**	89	0.8410
	1 1 1	1	1 1 1	1 1 1	1 1 1 1			;

* Significant at 5 % Level.

^{**} Significant at 1 % Lovel.

Table -5.5.

Analysis of variance - Sugarcane.

; ; ; ;	f Between		Retueen :	Setween Sub-divisions	Setween		Retween	Helds
Discrict	,	' M. S. in (0000) , (kg./hec.) ²	 	7 %.S.17(COO) (kg./hec.) ²	!	(kg./hec.) ²	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(kg./hec.)?
	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1	
1. Goalpara	1	1	≈	255421*	æ	55546*	11	16236
2. Kamup	•	ı	es.	165997*	€	33325	6	3168
3. Darrang	ı	ı	1	324	10	45938	12	18931
4. Nowgong	1	ı	,	ì	, , 5,	39741**	15	5335
5, Sibsagar	ı	ı	6/3	533640	27	43552**	<u>8</u>	10541
6. Lakhimpur	ŧ	1	6)	62730	12	25237**	15	5107
7. Cachar	0	ı	લ	3744	۱.: ع	31722**	13	4450
8. United Mikir and N.O. Hills.	; ; ;		1 1 1	! ! ! ! !	6 1	22621**	10	829
Pooled	7	249714	 1	195952**	# 11 22	37103**	130	7892
	;	1 1 1 1 1 1 1	* * *		1 1	1 1 1 1 1 1 1 1	1 1 1 1 1	

* Significant at 5 % level. ** Significant at 1% level.

Analysis of variance - Rape and Mustard.

.00000000

1 1 1 1 1 1 1 1 1	* Betven		Between Circles	olo	P Between	Villages	Between	Between Fields
District		K.S. in [00]	D.F.	K.S. in (00) (Kg./hed.) ²		M.S. in (00) 1 D.F. (Kg./hec.)2 D.F.	i i i i i i i i i i i i i i i i i i i	M.S. in (00) (Kg./hec.) ²
	! ! ! !	! ! ! !	1 11	**************************************	 	। । दहर । । ।	1 1 6 1 6 1	188
2. Kantup	•	1	10	2833**	8	745**	Ħ	199
3. Derrang	•	1	ហ	1935	23	1108*	€.	335
4. Nougang	•	ı	ĸ	1713	17	1667**	. 23	358
5. Sibsagar	8	•	•	1050	14	1470**	19	332
6. Lakhimpur	0	1	ហ	1241*	თ	273**	15	53
7. Cachar	•	1	m	2401	w	4439	60	3011
8. United Mikir and N.C.Hills.	0 1	1	, !	1 1 1 1 1 1	10	***************************************	#	
Pooled	٢	3662##	43	2286**	416	1139**	165	369

* Significant at 5% level. ** Significant at 1% level.

Table -5.7
Analysis of variance - Matikalai.

• • • • • • • • •

elds	, M.S. in (00).		94	တ	310	5 8 5	122	210
Between Fields	D.F.		33	&	22	22	81	127
	M.S. in (00) (Kg./hec.) ²	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1136**	246**	320 6 4	1670**	**069	1314*
Between Vil		100	93	88	8	23	17	118
b- divisions	J.F. (Kg./hec.) ² D.F. (Kg.		366	537	1192	P	5413**	2435
Between Su	ا 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	। । । । चा	€ જ	લ	+	1		6
Between Districts	(Kg./hec.) ²	1 "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	į	,	t	1	1 1 1	3519
Between	i ki	C3	ı	0	- 1		1 1 1 1	ব •
; ; ;	District		1. Coalpara	2. Kamud	3. Darrang	4. Nowgong	5. Sibsagar	

* Significant at 5 % level. ** Significant at 1 % level.

Table -6.1

Number of villages required for estimating the average yield with different sampling errors - Autumn Rice.

	10	5 1 5 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	17	16	15
	w	104	77	68	\$	61
	4	153	120	106	66	95
	m	5 68 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	214	139	177	169
1	. ∾	059	88	425	397	380
	ਜ 1	2501	1926	1701	1599	1520
1	oentage sampling or. No. of fields per vill		ev.	က	4	ហ

Table -6.2

Mumber of villages required for estimating the average yield with different 'sampling errors- Winter Rice.

10	12	c o	•	v	. 0
	46	Ħ	5 2	5 7	22
	72	49	, 17	37	35
	128	37	73	99	82
8	289	196	165	150	140
	1155	784	629	598	561
Percentage sampling error	1	82	m	•	I n
No. of fields per village					

- 49 Table -6.3

Number of villages required for estimating the average yield with different sampling errors - Potsto

•

10	28	8	17	15	11
	113	79	67	19	88
	177	123	105	96	8
	31.5	218	136	170	160
N	708	491	419	383	361
	2933	1964	1675	1530	1443
Percentage eampling error. No. of fields per village	₩.	ભ	m	•	ທ

Table-6 .4(4)

Number of villages required for estimating the average yield with different sampling errors-Jute(Plot yield of green harvest)

•

Percentage sampling . No. of fields per village					1 10 1	10.5
4	1934	76	215	ਬ1	77	19
Q	1650	413	193	103	99	17
m	1555	389	173	76	6 2	16
•	1508	377	168	* 6	9	15
un.	1479	370	164	36	59	81

Table - 6.4(B)

Mumber of villages required for estimating the average yiell with different sampling errors—Jute (Percentage ratio of dry and green weight)

Percentage sampling sampling error. Fields per rillage	1 650 163 72 41 26 7	2 486 122 54 30 19 5	3 431 108 43 27 17 4	4 404 101. 45 25 16 4	5 387 97 43 24 15 4	'		•		4 14 8 25 25 25 25	26 28 19 11 11 11 11 11 11 1	
---	----------------------	----------------------	----------------------	-----------------------	---------------------	---	--	---	--	--------------------	--	--

Table -6.4(3)

Number of villages required for estimating the average yield with different Sampling, errors-

(Expected percentage Sampling Error of dry fibres)

Number of villages,			Mumber of willage	Mumber of villages taken for driage experiments	villages taken for driage experiments	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
taken for harves- ting experiments	•	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L	1 22	1 1 1	
; ; ; ; ; ; ; ; ;	! ! ! m !	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 	1 1 1 1 2 3 1	
150	ı	3.8	0.3	4.2	4.6	ທີ
93	ı	1	4.6	4.9	5.1	0.9
75	,	•	1	ຄື	ည်	9.
S	ı	ı	1	1	٠٠ ١٥	, 7.2

Table-6.5

Number of villages required for estimating the average yield with different Sampling errors - Sugarcane

10	16	13	12	12	12
	65	24	8	43	한- 역위
	102	₹	73	75	73
	180	149	138	133	130
	406	335	311	299	292
Percentage sampling error.	1624	1340	1245	1197	1169
Ho. of fields per village	ed	&	m	4	ហ

Table -6.6

Number of villages required for estimating the average yield with different Sampling errors-Rape & Mustard

100	2	34	8	8	82
1	gn.	4	Q		©
1 to 1 1 1 1 1 1	179	134	120	112	108
	278	200	187	176	169
1 1 1					
i en i	767	373	333	312	300
	1111	940	749	703	916
1 1					
1 1 1 1	4442	3358	2993	2810	2704
reage in g					
Percentage sampling error.	ન	~	m	4	ហ
lo. of Helds					

Table-6.7

Number of villages required for estimating the average yield with different Sampling errors - Matikalai

	ot	63	55	52	ß	6 →
		253	218	207	201	197
•		396	341	323	314	308
•		703	909	574	558	8 75
•		1582	1364	1292	1256	1233
		6328	54.56	5166	5025	4933
1	Percentage sampling error. No. of fields per village	1	N	m	₩.	w

.

i |Table-7,1

Estimates of average yield hased on the results of the experiments supervised at harvest-stage and their comparison with the general results.

!	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1	r Pre859	igned sample	For all experiments harvest stage	supervised at	General :	results
District	No. of experiments supervised	Average yieli (Kg./hec.)	No. of experiment supervised.	Average yield (Kg./hec.)	No, of experiments conducted	Average yield (Kg./hec.)
lpara	12	732	12	732	8	747
2. Kamup	22	562	22	562	100	597
Darrang	16	558	16	558	89	746
4. Howgong	œ	699	8	642	99	220
Sibsagar	R	912	vo	31.6	R	776
6. Lakhimpur	15	903	17	81.1	52	904
7. Gachar	16	972	16	972	98	974
United Mikir and N.C.Hills.	o s	1698	14	1604	9	1499
Pooled	100	719	121	704	510	18.

•

Table-7.2

Estimates of average yield based on the results of the experiments supervised at harvest-stage and their comparison with the general results.

	For pre-assigned sample	sample	For all experiments supervised	pervised at harves-	General results	ılts
District	No. of experi- ments super- vised.	Average yield (Kg./hec.)	No. of experiments supervised	Average yield (Kg./hec.)	No. of experi- ments conjucted	Average yield
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #				/*nem/of-
1. Goalpara	17	979	19	126	#	877
2. Kamup	25	927	25	927	109	866
3. Jarrang	18	1318	1.9	1318	78	1195
4. Novgong	19	919	21	1002	73	1083
5. Sibsagar	16	1463	32	1449	8	1300
6. Lakhimpur	&	1071	22	1134	82	1135
7. Cachar	16	1134	&	1170	69	1258
8. United Mikir and N.C. Hills.	œ	1425	œ	1425	44	1515
Pooled	138	1114	165	1139	529	1126

Table-7,3

Astimates of average yield based on the results of the experiments supervised at harvestage and their comparison. with the general results.

Fesato

1 6 8	For experiments supervised	d at harrest-stage	feneral results	ilts
District	Mc, of experiments supervised	Arerage riell (Kg./kec.)	No. of experiments , conducted	Average yella (Kg./hec.)
t d d d d d d d d d d d d d d d d d d d				
	αι	5324	ઢ	5645
K. natip	16	50 9.º	73	ග හ අ
Darrane	18	\$265	64	4454
4. Nowone	εv	752	32	2420
5. Sibsagar	ភេ	4494	34	54.56
f. Lakhimour	u;	5333	Ą	4384
7. Cachar	12	1112	သို့	1882
9 0 8 0 5	6 6 6 0 0	6 6 6 7		
Pouled	ଦ	4357	366	7657

Table -7.4

Estimates of average yield based on the results of the experiments supervised at harvest-stage and their comparisms with the general results

Jute

6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	for pre-assigned s	8 dames	For all experiments supervised at harwst-stage	supervised at	deneral results	su 1 5.s	1
District	Nc. of experiment	Awerage yield (Kg./hec.)	No of experiments supervised.	Average vieli (Kg. Anc.)	Nc. of experiments	Average yield (Kg./hec.)	
		6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 H B C C C C C C C C C C C C C C C C C C				1
1. Goalpara	16	1500	8 1	130	. &	1558	
2. Kamrup	α ″1	: 927 + 1	† 39	1. te	₹	1106	
3. Darrang	ख _े ं न	1040	1.6	040	42	1100	
4. Nougong	นา ว *	1357	18	1337	3	1335	
; ; ; ; ; ; ;	7 ; ; ;	6 6 6 6 7 7	0 3 9 9 9 9				ı
Pooled	ω) Cu	1322	70	1322	294	1304	

Table -7.5
Estimates of average vield bases on the results of the experiments supervised at harvest stage and their comparismon with the general

Sugarcane

	For experiments supervised	d at harvest stage	- I I I I I I I I I I I I I I I I I I I	
Jistrict	No. of experiments :	Average yield	perim	~ ~ .
		(Kg./hec.)		(Kg., hec.)
1. Goglbere				
	S	64971	88	8 9 8
co rantup	∞	23460	1	455i0
Jarrang	84	0000	33	35072
4. Nowgong	· u	43371	54	32754
5; Sibsagar	,	£7360	31	36907
6. Lakhimpur	נ פ	30400	99	43116
Cachar	ი ი	38300	30	38373
8. United Mikir and	n	16050	36	19132
No.contaline.	2 1	00005	80	45472
10700.	47	36338		

Estimates of average yield based on the results of the experiments supervised at harvest-stage and their comparishon. with the general results -Rape & Mastard.

• • • • • • • • • • •

	For experiments supervised at harvest-stage	at harvest-stage	deneral results	sults
District	No. of experiments supervised	Average yield (Kg./hec.)	No. of experiments conducted	Average yfeld (Kg./hec.)
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1. Goalpara	1.7	336	88	406
2. Kampup	10	291	62	344
3. Darrang	1	,	53	463
4. Nowgong	เก๋	246	46	594
5. Sibsagar	12	360	38	436
6. Lakhimpur	6 0	526	30	547
7. Cachar	10	270	18	376
United M N.C. Hil	•	£ 26	22	9 29
Pooled	9	346	332	412

Table -7.7

Estimates of average yield based on the results of the experiments supervised at harvest-stage and their comparismon with the general results - Matikalai

.....

General results 368 249 No. of experiments conducted 덩 For experiments supervised at harvest-stage Average yield (kg./hec.) 148 522 No. of experiments super wised --------Matriot 1. Goalpara

465

46

166

Q

3. Darrang

2. Kamrup

4. Nowgong

794

467

2

5. Sibsagar

ı

1 1 1

\$

342

1 1 1	347
	257
	364
	42
	Pooled

Table -3.1 Mumber of experiments supervised in Pre-assigned villages and others at harvest stage.

1	1 1 1 1	! !	1	1 1 1 1	1 1 1 1	others at	naria	3 CB38 0		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	4 4 2 7	1 1 1	1 1 1
1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			Ared min party	1	1		Crisic Tachta	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		1 1 1 2 4 5 1
		Pre-assigned expriments supervi-	a a	- other experiments	Total expe-	Pre-assi experime	signed ments	other ; experime-	Total experime-	Pre-assigned	experiments	Other ex- perimentse mineral- a	x- isear tsexperiments - ameryised
r		stage.	at narvest	ised	supervised at harvest	See a	- Los esti	ervised	supervi-			ده ا	at hervest
ר	JISTFIGT	Planned	Super-	atage.		Planned !	36 d.	harvest stage	harvest stage.	Planned	Supervised	stage	o
1 1	1 1		 m1		. 1	191	1.	166	1 1 1 1 101 1 1	10111	11	125	13.
1. 6	1. Goalpara	ଷ	12	ı	12	&	17	N	19	&	16	۵	18
2°	2. Kamup	56	22	ı	22	56	88	1	22	22	18	ı	18
э. П	Darrang	13	16	ı	16	22	13	ı	18	16	16	ı	16
4. X	Novgong	16	æ	10	13	18	13	σ.	ಸ	22	15	m	18
ຸນ	Sibsagar	14	Q	*	vo	8	16	16	32	1	ı	•	ı
6.	Leich fapur	8	15	æ	17	22	8	N	83	ı	ı	ı	ı
7. 9	7. Gachar	16	16	1	16	13	16	4	8	ı	•	ı	1
8° T	United Mikir and N.C.Hills.	. 10	6	ភ	14	10	€0 I	1	60 (,	1	, ; , ;	, ,
1	Pooled	140	100	ಸ	121	156	138	25	165	8	65	1 100 1 1	2

64 -Table -3.1(Jont1.)

1 1 1 1	No. of exper	experiments super	vised at harwest	vest stage	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A11	crops	1 1 1 1 1	Percentage of
	1 ! ! !	1	, 1 !		Pre-assigned	experiments	Other exper		experiments sup-
District	Potato	Sugarcane	Rape and Mustard	Matikalai	Plamed	Supervised	rinents super vised at harvest stage	experiments supervised at harvest stage	ervised at har- vest stage to the total number of experiments, planned.
	; f	1121	16	17	19	19	8	21	778
1. Coalpara	c o	vo	11	14	9	45	49	*	19.2
2. Kamrup	16	ø	10	13	7.	65	47	112	19.5
3. Darrang	18	4	•	€	26	S	27	7.7	20.2
4. Novgong	N	က	ĸ	m	8	7	31	72	18.1
5. Sibsagar	S	•	12	10	*	18	53	Ľ	22.8
6. Lakhimpur	m	ស	c n	ı	42	35	25	8	24.6
7. Gachar	12	6 0	10	ı	3 E	32	34	8	29.5
ed Mikir an .Hills.	ı	&	vo	1	&	11	£.	6	23.4
Pooled	69		899	77	376 1	303	279	285	21.1

Table-8.2 Mumber of experiments supervised at different stages

0 0 0		Autum parky	y 9 9 9 0 0		Winter paidy				0 i	Rape and	1 Matari	
4 7 7 7 7	Stage o	anbe ;	!		Stage of supervi	falon	Stage o	adins.	uor	stage of	subervision	
20112617	i i pi i di H					, , , , , , , , , , , , , , , , , , ,	H . H		i di			
				ן ואן	1 1 1				or		1 1 2 1 1 1	
1. doalpara	0	12	ŧŪ	, a sale	сь "Т	0	0	3. -1	₹# ** }	e-d	t-	Q
. 2. Kamup	ന	22	ų)	თ	55	4D	٥,	13	ţ	67 67	, 01	rv.
3. Darrang	Ħ	9	d	N	5 0 +4	ŀ	ſ	10	P	£	g	1
4. Nowgong	ťγ	m rd	1	*1	21	C)	₹ř	61 F1	₹*	₹#	ພາ	82
5, Sibsagar	,	CV	чò	ŗ	32	च्या •-1	•	1	Ę	0	12	જ
6. Lakh fapur	Q	11	o 4	e۷	35	8	9	1	0	0	മ	0
7. Cachar	1	w	Q.	0	8	w	1	P	ſ	P	10	•
9. United Mikir and N.C.Hills.	(V	4 1	# # C U	9 9 9 9	en = 1	1 1 1	t t 1	9 1 1	1 1	0 0 1	(C)	1
Total	15	1 6	1 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-	1 00 1 00 1	1 P	62 g	1 - 120	70	1 (C) (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		1 69 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pre. H. = Pre-Harvest. H. = Harvest. P.H. = Post Harvest.

66 -Table -3.2 (Dontd.)

5 age of supervision Stage of supervision Stage of Free H. P.H. P.F. H. P.F. H. F.H. H. F.H. H. H. F.H. H. H. F.H. H. H. F.H. H.	''.		Sugarcane			Potato	1 1			1	1	Total	! !
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Stage of supervision	of supervisi	젊 !	on	Stage (of superv	••••	. Stage o		uci	Stage	r sucervisi	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. H.	, , , , , , , , , , , , , , , , , , ,	.		Б. Б.	## ##	E.	m m.	p:	P.H.	Pre.	## ## · · ·	Ë Å
- 15 - 14 12 4 94 6 13 - 4 13 3 31 112 6 13 - 2 2 9 77 6 2 - 6 3 5 44 72 7 5 - 6 - 74 72 8 - - - 44 72 9 - - - 71 9 - - - 71 10 - - - - 10 - - - - 10 - - - - 10 - - - - - 10 - - - - - - 10 - - - - - - - - 10 - - - - - - - - - - -	14 15 - 1	r - ! - !	ו- ר	16		1 1	191	เล	-21	22	23	24	
6 13 - 4 13 3 3 112 77 6 2 - - 6 3 5 44 72 - 5 - - 10 6 - 71 72 - 8 - - - 4 50 71 - 12 - - - 4 50 - 12 - - - 66 - - - - - - - - - - - - 66 -	છ	9		ı	1	æ	ഗ	P	14	õ	4	₹6	34
6 3 2 44 72 - 5 - 10 6 - 71 - 3 - 10 6 - 71 - 3 - - 4 50 - 12 - - 4 50 - 12 - - 66 - 66 - - - - - 66 - - 66 - - - - - - - - 66 - <	8	œ		ŧ	ı	1.5	ı	₹	13	m	33	112	15
6 2 6 3 5 44 72 - 5 - 71 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7	7	v		Ф	13	1	1	≈	N	б	7.7	6
- 5 - 10 6 - 71 - 8 - - 4 60 - 12 - - - 66 - - - - 66 - - - - 66 - - - - - 30 - - - - - - - - 12 69 6 10 42 28 102 532 1	ر د د	ر س	•		9	~	ı	φ	က	ĸ	44	72	14
- 12 4 - 12	9	, '	. '		ı	ហ	1	•	10	မှ	1	r r	88
- 12 - 2 2 2 12 69 6 10 42 28 102 5	I.	ı	,		ı	ത	ı	1	1	1	7	99	ed
69 6 10 42 28 102	80		Q		1	12	•	•	•	•	ı	99	c o
12 69 6 10 42 28 102	2	·	•		1	ı	1	•	•	1	લ	8	•
	14 47 3	47 8	1 60	1	12	69	1 1 9 1	10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 28	102	582	111

Pre. H. = Pre-Harrest. H. = Harvest. P.H. = Post harvest.

Table -9.1.
Number of experiments planned and accepted for analysis for central driage experiments.

1 1 1 1 1 1 1 1	Autum	!	Winter pa	vtl	Rape and Mus	Matard	Matik	slat
District	No. of experiments	No. of experiments accepted for analysis	No. of experiments planned	No. of experi- ments accepted for analysis	No. of experiments planned	No. of experiments accepted for analysis	No. of experiments planned	No. of experiments accepted for analysis
		1			101			
1. Goalpara	æ	14	ଛ	8	16	16	18	16
2. Kamrup	56	ı	25	25	13	14	22	11
3. Darrang	16	16	3 5	13	16	16	16	12
4. Novgong	16	13	18	17	16	12	16	12
5. Sibsagar	14	ı	22	22	14	14	12	12
6. Lakhimpur	&	1	55	22	12	vo	•	1
7. Sachar	16	16	13	18	စာ	Ø	•	ı
3. United Mikir and N.C.Hills.	nd 10	10	01	10	တ	æ	ı	; ;
6 0	138	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	158	152	108	76	' a '	93 1
1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	; ; ;		· · ·			

- 69 -<u>Rable-9.2</u>

Results of Irlage experiments, 1970-71

	Namb	Number of driage expe	experiments	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
do 🕫	Planned	Reported	Analysed	-Driage ratio applied for estimating	Tota plot befor	Fotal of plot griells after driage. (in kg.)	Romarks
	2			5			
1) Winter pality	159	152		ର ଜ ଜ ଜ	234,226	9	The driage re
b) Autumn paddy	€ € €	114	69	10.44.8	114,579	102,613	the state as a whole was used for estimating the yield.
c) Jute : A) Toalpara	44	44	44	4,37			The district est, main
B)Kanup	42	30	30	4.46			or average yreid
3)Jarrang	22	22	22	ى 30			iron the average justa of green harvest and
D)Nowgong	77	40	40	5.47			average percentuge ratio of iry to green. Tield
Total	152	1 30		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Justus
Rape an	103	7 6	¥ 6	00 44 44 60 60 60 60 60 60 60 60 60 60 60 60 60	72,217	66,342	The driage ratio for
e) Sugarcane	45	2¢	୪୧	10,514	2610,000	274,333	
f) Matikalai	76	53	ຄ	5,793	46,498	13, 306	
P		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ;	9 9		0 1 1 1 1	

		18	f	+	જ	88	14	43	gi (
	11. Tota	 				W	-	4	! !
	Experi- ments for which reasons are not known.	117	1	ı	ı	1	1	ı	1 1
	Sub to tell	16	0	1	1	'n	œ	4	
	other reasons	15.7	1	ı	•	м	ı	Ժ	,
	Experiments restricts respectively of the restricts respectively of the restricts restrict restricts restrict restricts restricts restricts restricts restricts restricts restrict restricts restricts restricts restricts restricts restrict restricts restricts restricts restrict restricts restricts restrict restricts restricts restricts restricts restricts restricts	4	ı	ı	ı	Q	ત્ય	ı	1
	Experies black data	113	ı	ı	•	•	ı	•	1
0-71	l l e el mad	121	ı	,	ı	1	1	ı	, ,
69 Table-10,1 of non-response-1970-71	experiments lost incom-fure the plete lable otal data data	11	, I	B	1	t	1	ı	' '
fable-10.1	(FD .)	10		7	≈	83	12	33	o 1
ឡ	Other reasons	6	,	m	ω.	•0	t	Ħ	en 1
	conducted due set availab-	801	y	ı	1	12	ø	₹.	-d+ 1
	TTO TO		ı	₩	ı	ស	4	*	ا م
	18 18	9	1	1	ı	0	Ç	0	, , ,
	Print not other other fent	101	ı	0	ţ	ı	ı	1	· · · · · · · · · · · · · · · · · · ·
	ry vor	9 41	ı	1	ı	ŧ	α	•	l
			210	629	294	332	366	257	261
	2000 Control of the c	12	510	636	296	360	380	300	270
	Q. C.		1. Artumn paddy	2.Winter paddy	3.Jute	4.Rape & Mistard	5.Winter Potato	6.Matikalai	7.Sugar-

Jetails of work load of Primary Staff, 1970- 15

.

	; ; ;	1 .	1 PA A 1	7	C ?	:	Φ	w	ยวิ	4	₹*	4 1 F. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	्न । 8 । 9 । 9 ।	5 to 8 expts.	1	ĵ	D	a	Û	ı	Q	8	U	1 1 1 1
1 1		1 44 2	eq!	i	9	0	•	1	0	g	E	1 1
Workers with	•	Nore than	100	۲	8 ~	٠	છ	40	ĸ	4	м	45
Primary Wor				e	ş. d	Û	0	0	ì	8	- -!	ev I t
No. of Pr		4 expts		í	0	0	9	e	g	li	O	C 1
*	7 1 1 1 1	More than sexpts.		(~·	(,,	ñ	ယ္	જ	Φ.	₹*	4	1 27 1
9 9 1	1 5.4	expts.	en!	•	0	û	1	0	0	1	¥	8 1
† ; ;	1	* expts.		0	Ŷ	,	ı	ı	¥	0	0	1 1 1 1
	as: gned	Potal	10 10 1	8	574	332	398	312	244	224	129	2752
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ments]]	242	278	194	173	172	110	92	44	1310
	experiments	Kharif Rabi	1 1-24 1 E 1	24.3	596	133	220	140	134	132	₹	1412
1	ا ادا وي د د د ادا د ا د ا	atron gth.		1	6	t~	9	•	છ	7	7	6 4. 1
• •	Azenes	Prink strens Ty stre field stre	t of	το	ta	4	E	I	W FI	н	ບ ◀	ا در ا
i i	4	40 F	1	1. Goalpara	2. Kanrap	3. Darrang	4. Nouzong	5. Sibaagar	ė. Lakhimour	7. Cachar	8. Unitel Mikir & N.C.Hills.	Total

ı

Table=12.1 Details of equipments supplied to the Field Staff, 1970-73

					7		6110 00 10777		1	1 1	
District	Designa- tion.	ilumber:	i apa	Jord 7x string	Hessian	: Bear : Balance	Standard weight	Spring balance	ige for i	44	Remarks.
() () () () () () () () () () () () () (i i i i i i i i i i i i i i i i i i i		4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		1001	, e				[] [] [] [] [] [] [] [] [] [] [] [] [] [
1. Goalpara	Field Assistant	ţ.~	Ł	perradne	0	t	One set to each 7/As	ኔ ~	54	٠	
2, Kamiup	-0 p	æ	თ	-qo=	C	αn	- 10:-	æ	Supplied as required	8 Field	In Kamrup one post of Li Assistant was warmt
3. Darrang	-qo-	7	7	-c1-	9	۴.	30.	£~	83	t-	
4. Nowgong	-cp-	v.	S	-01-	7	ထ	100	w	Supplied as required	v	
5, Sibsagar	700	w	စ	-10-	•	v	-qo-	ະາ	77	ษา	
6. Lakhimpur	-10-	9	w	() (()	U	9	-cp-	တ	24	w	
7. Sachar	-10-	€ #	स्म	÷ 13	I	₹H	e CK	< #	5	₹*	Pegs were locally procured,
8, United Mikir & N.J.Hills.	-0 Γ -	4	e#	−01°	,	4	-0 L -	« #	S S	4	

Tahle-13.1
Statement showing the 18talls of Training to the field staff engages in Grop Estimation Surveys.

1970 - 71.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 1	Remarks		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The post of Statis-	tical Officer was weart at that time.	Une inspector was in-charge of Statis-	for absence of one	Field Assistant was not known. Two Field	Assistant were on leave. One post of	Field Assistant was	One Field Assistant	was on leave and four posts were	wacant at that time.	One post of Field Assistant was vacant at that time and two Field Assistant were on earned leave.
1 1 1	† † † † † † † † † † † † † † † † † † †		attended	11111							- -1				
Participants	t 1	•	Jesignation	10						Assistant	Saperinten-	Jenc.			
N.S.S. Part	1	t 1	attended	1 6 1					-	1	•	٠,			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i j. i	tion.	1 1 1 1 1 1					Superin-	tendent	Assistant	Superinten-	1 1107		
1 1	ıff"	NO.	called attended	, L	•	ન્ન	က		H	67	*			ન	ਖਾ
ning	Primary Staff		. ~	19	ı	R	ø		₩1	67	· <				vo
ing Training	and Pri	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	strenth	5.	н	က	7		н	•	its 9			H	its 7
Officers imparting	Ď.	_	Designation	· · · · · · · · · · · · · · · · · · ·	Statistical Officar	Inspector of Statistics	Field Assistants		Statistical	Inspector of	Statistics Field Assistants			Statistical Officer	Field Assistants
f State Of	No of	deputed from	State Head quarters	 					N.						
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		Districts		1 1 2 1 2 1	1.Goalpara				2. Kantup				e e	3. Jarrang	
1 1 1 1		Gentre		1 1					Ganhati						

73 ~ Table=13.1(Contd.)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	One post of Field Assistant was vacant at that time.	Statistical Officer could not attend due to illness.	Statistical Officer could not attend due to illness of his wife.	ield Ason ear ne Fiel was sic	One Inspector of Statistics & one	on leave	The Statistical Officer could not attend as he was pre-occupined with other works. I.S. called was busy with other works. One F.A. was under order of transfer. One post of F.A. was vacant.
1 1	(e) (17) (or)		0			1 1	Assistant snoerinten=	iont,
1	(6)		↔			1	ed in	्त ,
1 1 1 1 1 1	(8)		Supe rintendent			2 0 1 1 4	Superintendent	
	(7)	। स्न स्न स्न -	ווט ן או	F 4-1 -1		 +4 +4	רע	11 11 21
1	69	! ! !નનન	ν +4 +4	सस्य		1 71 0	3 €	ન ન ળ
(conta.)) 	। स्त क्ल स्य	છ ∺ અ	ਜਿਜ ਚਾ		1 -4 0	2 € 0	H W 10
rable=13,1	(4)	Statistical Officer Inspector of Statistics Sub-Inspector of	Statistica Field Assistants Statistical Officer Field Assistants	Statistical Officer Inspector of Statistics Field Assistants		Statistical Officer	inspector of peacesours	Statistical Officer Inspector of Statistics Field Assistants
	(6)	 	cs			1 1 1 1	₽	
	(6)	1. Nowgong	2, Jachar	3. Mikir Hills		1. Sibaagar		2. Lekhimpur
			Nowgong			1 1 1 1		Jorna C

Mathematical Appendix

Let

- (a) X_{ijk} be the yield from the kth experimental plot of the jth village of the ith circle. Each plot is taken from $(\frac{1}{400})$ th of a hectare.
- (b) Xi be the average yield of the ith circle
- and (c) mi =number of villages in the ith circle.
- 1. The average yield for the ith circle is given by

$$\vec{X}_1 = \sum_{k \neq k} x_{ijk} / 2mi$$
 (K = 1,2, J= 1,2 m_i

Where sisk represents summation over villages and fields respectily. The average yield for the district is obtained by weighting the
average yields of circles in proportion to the respective circle
areas under paddy

Where ai - area under paddy in the ith circle and si denotes summation over circles. Similarly the average yield for the districts is obtained from the district average by using the relation.

$$\bar{x} = \sum_{si} - ai\bar{x} / sia_i$$

Where siai area under naddy in the district and si represents the summation over the districts.

Mean yield of dry paidy in kg/hect.= $X \times 400 \times d$ where d is the driage ratio of dry paidy to wet paidy. The weight of cleaned rice is reconed as 62.5 p.c. of dry paidy.

II. The mean square between fields within villages and that between villages are obtained from the plot yields.

For the ith circle the mean square between fields within villages is given by. $F = \frac{\sin k}{(\sin - \pi i)^2} / \min$

based on m₁ degrees of freedom, and the mean square between villages is $E=sj^2 (xij-x_i)^2/(mi-1)$

based on (mi - 1) degrees of freedom.

The mean square between circles in a district is given by $\sin^2(xi-x)^2$ /
L-1 based on L-1 degrees of freedom, L being the number of circles in the district.

The pooled mean squares for the individual districts and for the region as a whole are easily obtained by pooling the circle mean-squares and district mean-squares respectively.

It may be shown that F is andunbiased estimate of the true variance between fields within villages while E is an unbiased estimate of

$$KV + F$$
Where, $K = \frac{1}{m_1 - 1} (sjkj + \frac{sjkj^2}{siki})$

kj being the number of fields in the jth village,

Since kj = 2 for all j, the above reduces to 2V + F

Hence, an estimate of the true variance between villages is given by $\frac{E-F}{2}$

III. The sampling variance of the estimate of the circle average yield is given by

$$V(xi) = \frac{sjkj^{2}}{(sjkj)^{2}} \quad V + \frac{1}{sjkj} \quad F.$$

$$\frac{(2V + F)}{2m_{1}} \quad as \quad kj = 2 \text{ for all } j$$

$$= \frac{E}{2m_{1}}$$

The sampling variance of the estimate of the average yield for a district is given by

$$V(\bar{x}) = \frac{\sin^2 v(xi)}{(\sin x)^2}$$

Similarly the sampling variance of the estimate of average yield for the combined districts is given by

$$V(\bar{x}) = \frac{sa^2 V(\bar{x})}{(sa)^2}$$

The corresponding sampling errors are the square roots of the above variances. The S.E. in kg/heet is obtained by multiplying this root of variance by 400.

IV. It is known that the sampling variance of the estimated average yield for tract is given by

s given by
$$V(\bar{x}) = \frac{V}{m} + \frac{F}{mn}$$

Where m is the total number of selected villages

n is the number of fields per village

V is the true variance between villages

F is the true variance between fields.

The number of villages is distributed among the different strata in proportion to the area under the crop.

By using the values of X, V and F for the tract, above formula is used to judge the scale of sampling villages and experimental plots per village for any assigned degree of accuracy of the estimated average yields.

PRINTED AT THE ASSAM GOVERNMENT PRESS SHILLONG