- **1.** Let $\phi: \mathbf{X} \to \mathbf{Y}$ be an affine morphism. Show that
 - 1. ϕ is injective if and only if $lin(\phi)$ is injective.
 - 2. ϕ is surjective if and only if $lin(\phi)$ is surjective.
 - 3. ϕ is bijective if and only if $lin(\phi)$ is bijective.
- 2. Consider $\mathbf{v}(2,1,1) \in \mathbb{R}^3$ and $Q(2,2,2) \in \mathbf{A}^3(\mathbb{R})$.
 - 1. Give the matrix form for the parallel projection on the plane $\pi: z = 0$ along the line $Q + \langle \mathbf{v} \rangle$.
 - 2. Give the matrix form for the parallel reflection in the plane $\pi: z = 0$ along the line $Q + \langle \mathbf{v} \rangle$.
- 3. Write down the vector forms and matrix forms for parallel projections and reflections in $A^3(K)$.
- **4.** In $A^2(K)$, for the lines/hyperplanes

$$\pi: ax + by + c = 0$$
, $\ell: \frac{x - x_0}{v_1} = \frac{y - y_0}{v_2}$

with $\pi \not\parallel \ell$, deduce the matrix forms of $Pr_{\pi,\ell}$ and $Ref_{\pi,\ell}$.

- 5. Let H be a hyperplane and let \mathbf{v} be a vector. Use the deduced compact matrix forms to show that
 - 1. $Pr_{H,\mathbf{v}} \circ Pr_{H,\mathbf{v}} = Pr_{H,\mathbf{v}}$ and
 - 2. $\operatorname{Ref}_{H,\mathbf{v}} \circ \operatorname{Ref}_{H,\mathbf{v}} = \operatorname{Id}$.
- **6.** Give Cartesian equations for the line passing through the point M(1,0,7), parallel to the plane $\pi: 3x y + 2z 15 = 0$ and intersecting the line

$$\ell: \frac{x-1}{4} = \frac{y-3}{2} = \frac{z}{1}.$$

7. Give Cartesian equations for the projection of the line

$$\ell : 2x - y + z - 1 = 0 \cap x + y - z + 1 = 0$$

on the plane $\pi: x+2y-z=0$ parallel to the direction of $\overrightarrow{u}(1,1,-2)$. Write down Cartesian equations of the line obtained by reflecting ℓ in the plane π parallel to the direction of \overrightarrow{u} .

8. Consider the Euclidean space \mathbb{E}^3 . Show that the orthogonal reflection $\operatorname{Ref}_{\pi}^{\perp}(x)$ in the plane π : $\langle n, x \rangle = p$ is given by

$$Ref_{\pi}(x) = Ax + b$$

where $A = (I - 2 \frac{nn^t}{||n||^2})$ and $b = \frac{2p}{||n||^2}n$.

9. Give the matrix form for the orthogonal reflections in the planes

$$\pi_1: 3x - 4z = -1$$
 and $\pi_2: 10x - 2y + 3z = 4$ respectively.

- **10.** Let **X** be an affine space. Show that the set T of all translations is a subgroup of AGL(X). Show that T is a normal subgroup of AGL(X).
- **11.** Show that $AGL(\mathbb{R}^n)$ is a subgroup of $GL(\mathbb{R}^{n+1})$.