Graph theory

Introduction and basic algorithms

Lorenzo Ferrari

Campus Bornholm

November 29, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- @ Graph traversals
 - BFS
 - DFS
- 3 Problems
 - MST
 - Connected components

Examples

Examples

Lorenzo Ferrari

Examples

Why graph theory?

- A huge number of problems can be converted in a graph problem
- Graph theory is fun \(^-^)/

We will study problems in abstract form. Their application can be found in the most diverse areas.

Typical graphs problems

- Given the description of a city, find the shortest path between locations A and B or determine that it is impossible to reach B from A.
- On an electronic board, choose a set of connections whose sum in length is minimal and which allows to pass through all points of interest.
- Given dependency relationships, find a suitable order to install some packages (or attend some classes) or determine that it is impossible.

Definitions

Definition: Graph

Graph
$$G = (V, E)$$

A graph is defined as a pair of sets:

- *V* is a set of vertexes/nodes
- E is a set of edges

Definitions

Definition: Vertexes and Edges

Vertex

- Vertexes are also called nodes
- Vertexes are denoted with labels

Edge

- Each edge is defined by a pair of vertexes
- An edge connects the vertexes that define it
- In some cases, the vertexes can be the same

Definitions

Example

- \bullet G = (V, E)
- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (1,3), (1,4), (2,4), (3,4)\}$

Directed and Undirected graphs: definition

Directed graph G = (V, E)

 E is a set of ordered pairs (u, v) of nodes

Undirected graph G = (V, E)

E is a set of unordered pairs
 [u, v] of nodes

Cyclic and Acyclic graphs: definition

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Cyclic and Acyclic graphs: definition

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Weighted graphs: definition

Weighted graph

- Each edge is assigned a wheight
- Weigth typically shows cost of traversing

Trees: definition

Tree

• *Connected* graph with m = n - 1

Rooted tree

• Connected graph with m=n-1 in which some special node is designed as root

Introduction

Representations

Two possible "classic" implementations

- Adjacency matrix
- Adjacency list

Adjacency matrix

$$m_{uv} = \begin{cases} 1, & \text{if } (u, v) \in E \\ 0, & \text{if } (u, v) \notin E \end{cases}$$

	0	1	2	3	4
0	0	1	0	0	0
1	0	0	1	0	0
2	0	0	0	0	1
3	1	0	1	0	1
4	0	0	1	0	0

Adjacency list

$$G.adj(u) = \{v \mid (u, v) \in E\}$$

0	\rightarrow	1	
1	\rightarrow	2	
7		1	

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components

Breadth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Breadth-first search (BFS)

Traverse the graph by visiting the nodes by levels: first nodes at distance 1 from the source, then distance 2, etc.

Application: shortest distances

Breadth-first search

```
def bfs(G, r):
  Q = deque()
  Q.append(r)
  visited = {r}
  while len(Q) > 0:
      u = Q.popleft()
      for v in G.adj(u):
      if not v in visited:
          visited.add(v)
          Q.append(v)
```

Depth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Depth-first search (DFS)

Traverse the graph by visiting all the nodes that can be reached by a node, and all the nodes that can be reached by those nodes, etc.

- Application: topological sort
- Application: cycle detection
- Application: connected components
- Application: strongly connected components

DFS

Depth-first search: iterative

```
def dfs(G, r):
  stack = [r]
  visited = {r}
  while len(st) > 0:
      u = stack.pop()
      for v in G.adj(u):
          if not v in visited:
              visited.add(v)
              stack.append(v)
```

DFS

Depth-first search: recursive

```
def dfs(G, u, visited):
visited.add(r)
for v in G.adj(u):
  if not v in visited
    dfs(G, v, visited)
```

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- @ Graph traversals
 - BFS
 - DFS
- Opening the second s
 - MST
 - Connected components

MST

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

MST

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

MST

Kruskal algorithm for MST

```
def mst(E):
  E.sort() # sort for increasing weight
  ans = []
  for edge in E:
      if not Cycle(ans, edge):
          ans.append(edge)
  return ans
```

Connected Components

Problem definition

Given an undirected graph G = (V, E), find the number of connected components.

Connected Components

```
def connectedComponents(G):
  visited = {}
  count = 0
  for u in G.V:
      if not u in visited:
          count += 1
          dfs(G, u, visited)
```