An introduction to probabilistic programming with PyMC3

Sean Meling Murray and Solveig Masvie

10. februar 2020

Table of contents

Introduction

Bayesian statistics

Markov Chains

inmeta 2/21

Road map

- Theory
 - ► The basics of Bayesianism
 - ► Markov chain Monte Carlo methods (MCMC)
- Practice
 - ▶ Probabilistic programming with PyMC3

inmeta 3/21

What is Bayesian data analysis?

"A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule."

inmeta 4/21

What is Bayesian data analysis?

- Richard McElreath: "Bayesian inference is just counting."
- Count all the ways observed data could have arisen according to assumptions
- Assumptions that can arise in more ways are more consistent with the data, and therefore more plausible

inmeta 5/21

The Frequentist vs. Bayesian debacle

- Frequentist statistics
 - Probability defined as the limiting frequency at which events occur
 - Uncertainty arises from sampling variation
- Bayesian statistics
 - Frequency and probability are different things
 - Uncertainty arises from our ignorance of the true state of the world

inmeta

Bayesian Analysis

The prior distribution combined with likelihood distribution (observed data) equals posterior distribution

$$P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)} \tag{1}$$

$$\mathscr{P} \propto \mathscr{L} \Pi$$
 (2)

inmeta 7/21

Bayesian Analysis

How do we find the posterior when the prior and likelihood distribution are complicated

inmeta 8/21

Monte Carlo Simulations

Simple definition

• Monte Carlo simulations are just a way of estimating a fixed parameter by repeatedly generating random numbers.

The basis of Monte Carlo simulations is the Law of Large Numbers:

• As the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean.

$$\frac{1}{N} \sum_{i=1}^{N} Z_i \to E[Z], N \to \infty$$
 (3)

inmeta 9/21

Monte Carlo Simulations - Example

Use case: Calculate the area of this bat sign:

10/21

inmeta

Monte Carlo Simulations - Example

inmeta _{11/21}

Markov Chain

- Sequences of events that have a probabilistic relation to one another
- Markov chains are memoryless. All we need to calculate the next event are available in the current state

inmeta _{12/21}

Bayesian MCMC

Steps in MCMC

- Define function for \mathcal{L} , Π and thus \mathscr{P}
- Define initial guess for θ (based on the prior)
- Try a jump in θ
- Accept/reject based on chosen method/sampler (Metropolis)
- Keep jumping
- After doing many steps remove burn-in steps

inmeta _{13/21}

Priors

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so. Mark Twain

inmeta _{14/21}

Likelihood

inmeta 15/21

Posterior

inmeta 16/21

Sampler

Metropolis rule

- If $\mathscr{P}_{new} > \mathscr{P}_i$ accept the jump so $\theta_{i+1} = \theta_i$
- If $\mathscr{P}_{new} < \mathscr{P}_i$ accept the jump with probability $\frac{\mathscr{P}_{new}}{\mathscr{P}_i}$

inmeta _{17/21}

Jump in θ

How to make a jump in θ

$$\theta_{new} = \theta_i + \mathcal{N}(0, \Delta\theta) \tag{5}$$

We call $\Delta\theta$ for the jump scale. Normally this must be tuned manually for every dimension. A rule of thumb is that we want a jump scale that gives a reasonable acceptance rate.

inmeta _{18/21}

A slide with a theorem and a proof.

Theorem (Integral)

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Bevis.

Here's the proof.

A slide with blocks

title of the bloc

bloc text

title of the bloc

bloc text

inmeta 20/21

A slide using pause

• Represent Abelian groups on the computer

inmeta 21/21

A slide using pause

- Represent Abelian groups on the computer
- Compute on Abelian groups

inmeta 21/21

A slide using pause

- Represent Abelian groups on the computer
- Compute on Abelian groups
- Solve equations, factor group homomorphisms

inmeta 21/21