Model-based matching for causal inference in observational studies

Kellie Ottoboni with Philip B. Stark

Department of Statistics, UC Berkeley

March 14, 2016

Observational Studies vs Experiments

- Problem: Estimate the causal effect of a treatment on outcome of interest
- In randomized experiments, treatment is assigned to individuals at random.
- In observational studies, the way individuals select into treatment groups is unknown.

Observational Studies vs Experiments

- Problem: Estimate the causal effect of a treatment on outcome of interest
- In randomized experiments, treatment is assigned to individuals at random.
- In observational studies, the way individuals select into treatment groups is unknown.

Matching

- Ideal: group individuals by important confounders to estimate subgroup treatment effects and then average over subgroups
- Reality: many covariates, perhaps continuous, make it difficult to stratify

- **Solution:** use a one-dimensional score to match or group individuals
- Stratify on \hat{Y} , the "best" prediction of the response based on all covariates except for the treatment

Estimation

• Under standard assumptions, we can estimate the **average** treatment effect nonparametrically using the difference in average residuals, $Y-\hat{Y}$, between treated and controls

Hypothesis testing: example

- Test the strong null hypothesis of no relationship between salt consumption and country-level mortality rates
- ullet Control for other health predictors: look at residuals $Y-\hat{Y}$
- Stratified permutation test requires no distributional assumptions

Future Directions

- Do different test statistics give greater power when the treatment effect is nonlinear?
- What is the optimal way to stratify?
- How to quantify uncertainty standard errors and confidence intervals?