HW8 MATH 4540

Anthony Jones

April 2022

1 Exercises

1. Because $\{f_n\}$ is equicontinuous, it follows that for every $\epsilon > 0$, there exists some distance $\delta > 0$ such that

$$|f_n(x) - f_n(y)| = |f(nx) - f(ny)| < \epsilon$$

whenever $x,y\in [0,1]$ and $|x-y|<\delta.$ Consider now $a=\frac{x}{n}$ and $b=\frac{y}{n};$ then clearly $a,b\in [0,1]$ and

$$|a-b| = \left|\frac{x}{n} - \frac{y}{n}\right| = \frac{|x-y|}{n} < \delta.$$

Thus it follows similarly that

$$|f_n(a) - f_n(b)| = |f(x) - f(y)| < \epsilon.$$

Hence f is uniformly continuous. Furthermore, suppose $\epsilon = |f(x) - f(y)|$. Then we reach a contradiction, as |f(x) - f(y)| < |f(x) - f(y)|. Hence it must follow that $|f(x) - f(y)| \le 0$, and thus by definition x = y.

2. By the Stone-Weierstrass Theorem, there exists a sequence of polynomials $\{P_n\}$ that converges uniformly to f on [0,1]. Note, for each polynomial

$$P_n(x) = \sum_{k=1}^n a_k x^k$$

 $(a_k \in \mathbb{R} \text{ for all } 1 \leq k \leq n)$, that

$$\int_0^1 f(x)P_n(x) dx = \int_0^1 f(x) * \sum_{k=1}^n a_k x^k dx = \sum_{k=1}^n a_k * \int_0^1 f(x)x^k dx$$
$$= \sum_{k=1}^n a_k * 0 = 0.$$

Furthermore, because $\{P_n\}$ converges uniformly,

$$\lim_{n \to \infty} \int_0^1 P_n(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x$$

(Rudin's 7.16), and thus

$$\lim_{n \to \infty} \int_0^1 f(x) P_n(x) \, \mathrm{d}x = \int_0^1 f^2(x) \, \mathrm{d}x.$$

Note that f^2 is continuous and bounded, and since f maps to \mathbb{R} , that $f^2 \geq 0$. Hence if

$$\int_0^1 f^2(x) \, \mathrm{d}x = 0,$$

it must follow that f = 0, as if otherwise f(t) > 0 for $t \in [0, 1]$, then

$$\int_{t-\epsilon}^{t+\epsilon} f^2(x) \, \mathrm{d}x > 0$$

whenever $\epsilon \to 0$, and hence a contradiction is reached.

3. Because $\{f_n\}$ is a uniformly bounded set of functions, there exists a number M such that

$$|f_n(x)| < M$$

 $(x \in [a, b], n = 1, 2, 3, \dots)$. Hence

$$|F_n(x)| = \int_a^x |f_n(t)| dt < \int_a^x M dt = M(x - a).$$

Thus for $\phi(x) = M(x-a)$, it follows that $F_n(x)$ is pointwise bounded, as

$$|F_n(x)| < \phi(x)$$

 $(x \in [a, b], n = 1, 2, 3, ...)$. Consider also, without loss of generality, that if $x < y \in [a, b]$, then

$$|F_n(x) - F_n(y)| \le \left| \int_a^x f_n(t) dt - \int_a^y f_n(t) dt \right| = \left| \int_y^x f_n(t) dt \right|.$$

Suppose $\epsilon > 0$. Then for any $x, y \in [a, b]$ such that $|x - y| < \epsilon/M$,

$$|F_n(x) - F_n(y)| \le \left| \int_y^x M \, \mathrm{d}t \right| = M|x - y| < \epsilon;$$

and hence $\{F_n\}$ is equicontinuous. Noting that $[a,b] \subset \mathbb{R}$ is compact, it thus follows that $\{F_n\}$ must contain a uniformly convergent subsequence (Rudin's 7.25).

4. Note that

$$|2^{-n}f(3^{2n-1}t)| \le 2^{-n}$$

and

$$|2^{-n}f(3^{2n}t)| \le 2^{-n},$$

and that $\sum_{k=1}^{\infty} 2^{-n} \to 1$. Then it follows that both sequences converge uniformly, to x(t) and y(t), respectively (Rudin's 7.10). Thus each function is continuous (Rudin's 7.12), and hence so must be their product $\phi(t) = (x(t), y(t))$. To see that $\phi(t)$ is onto, we consider any arbitrary $(a, b) \in [0, 1]^2$. Then it follows that a can be represented in binary by

$$a = \sum_{k=1}^{\infty} \frac{a_k}{2^k},$$

where each $a_k \in \{0,1\}$. Similarly, for each $b_k \in \{0,1\}$,

$$b = \sum_{k=1}^{\infty} \frac{b_k}{2^k}.$$

Consider $k \in \mathbb{N}$. Whenever $a_k = 1$ and $b_k = 0$,

$$t = 3^{-2k} \implies f(3^{2k-1}t) = f(1/3) = 0$$

and

$$t = 3^{-2k} \implies f(3^{2k}t) = f(1) = 1;$$

and hence $x(3^{-2k}) = a_k$ and $y(3^{-2k}) = b_k$. Whenever $a_k = 0$ and $b_k = 1$,

5. Let $x_1, x_2 \in S^1$ be distinct points on the unit circle. Note than that

$$f(e^{i\theta}) = e^{i\theta}$$

is contained in the algebra provided, and hence $f(x_1) = x_1 \neq x_2 = f(x_2)$. Thus \mathscr{A} separates points on S^1 . Consider now

$$g(e^{i\theta}) = e^{-i\theta}.$$

Note that g is a composition of continuous functions e^x and -ix, and thus is continuous on S^1 . Then by the Stone-Weierstrass Theorem, there exists a sequence $\{P_n\}\subseteq\mathscr{A}$ of polynomials that converged uniformly to g on S^1 . Consider however that

$$\int_0^{2\pi} g(e^{i\theta})e^{i\theta} d\theta = \lim_{n \to \infty} \int_0^{2\pi} P_n(e^{i\theta})e^{i\theta} d\theta$$

$$= \int_0^{2\pi} e^{-i\theta} e^{i\theta} d\theta = \int_0^{2\pi} 1 d\theta = 2\pi \neq 0$$

Hence because the integral of P_n does not converge to 0, there exists some $N \in \mathbb{N}$ such that, when n > N,

$$\int_0^{2\pi} P_n(e^{i\theta}) e^{i\theta} \, \mathrm{d}\theta \neq 0.$$

This is a contradiction, because by assumption each $P_n \in \mathcal{A}$, and hence each integral should be zero. Thus g is not in the uniform closure of S^1 .