Proof of Exercise 9 Demo

Show that the solution for the problem:

$$\max_{a} \left\{ \frac{a^{\top} B a}{a^{\top} W a} \right\},\,$$

is obtained by setting a equal to the eigenvector of $W^{-1}B$ that corresponds to the largest eigenvalue.

W = measure of group dispersions B = dispersion between groups

Since the vector a can be scaled arbitrarily withouth affecting the ratio, we can formulate the problem as follows:

$$\max_{a} \left\{ a^{\top} B a \right\}$$
 s.t. $a^{\top} W a = 1$.

Let $W^{1/2}$ be the symmetric square root of W. Note that W is symmetric. Let $z=W^{1/2}a$ and $a=W^{-1/2}z$. Then

$$a^{\top} B a = \left(W^{-1/2} z \right)^{\top} B \left(W^{-1/2} z \right) = z^{\top} W^{-1/2} B W^{-1/2} z,$$

$$a^{\top} W a = \left(W^{-1/2} z \right)^{\top} W \left(W^{-1/2} z \right) = z^{\top} z.$$

Note that $W^{-1/2}BW^{-1/2}$ is symmetric and hereby the spectral decomposition exists $(W^{-1/2}BW^{-1/2} = \Gamma\Lambda\Gamma^{\top})$ and $\Gamma^{\top}\Gamma = I$,

$$z^{\mathsf{T}}W^{-1/2}BW^{-1/2}z = z^{\mathsf{T}}\Gamma\Lambda\Gamma^{\mathsf{T}}z = w^{\mathsf{T}}\Lambda w, \qquad \left(w = \Gamma^{\mathsf{T}}z\right)$$
$$z^{\mathsf{T}}z = z^{\mathsf{T}}\Gamma\Gamma^{\mathsf{T}}z = w^{\mathsf{T}}w.$$

Now we can reformulate the problem as

$$\max_{w} \left\{ w^{\top} \Lambda w \right\} = \max_{w} \left\{ \sum_{i=1}^{p} \lambda_{i} w_{i}^{2} \right\} \quad \text{s.t. } w^{\top} w = 1.$$

Since $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$, we choose the first element of w to be one and the rest to be 0. This means that $z = \Gamma w = \gamma_1$, where γ_1 is the first eigenvector of $W^{-1/2}BW^{-1/2}$ and $a = W^{-1/2}z = W^{-1/2}\gamma_1$.

Note that for any two matrices $A \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times n}$, the non-zero eigenvalues of AC and CA are the same and have the same multiplicity (Theorem A.6.2 of Mardia, Kent and Bibby). Now let $A = W^{-1/2}B$ and $C = W^{-1/2}$, this means that the non-zero eigenvalues of $CA = W^{-1}B$ are the same as $AC = W^{-1/2}BW^{-1/2}$. Hence, λ_1 is the largest eigenvalue of $W^{-1}B$. Since γ_1 is the eigenvector corresponding to the largest eigenvalue λ_1 of $W^{-1/2}BW^{-1/2}$, we have that

$$W^{-1}B\left(W^{-1/2}\gamma_1\right) = W^{-1/2}\left(W^{-1/2}BW^{-1/2}\gamma_1\right) = W^{-1/2}\lambda_1\gamma_1$$
$$= \lambda_1\left(W^{-1/2}\gamma_1\right).$$

This shows that $a = W^{-1/2}\gamma_1$ is the eigenvector of $W^{-1}B$ corresponding to its largest eigenvalue λ_1 .