Example 1: Assess the effects of age, gender, and race on risk of death following kidney transplant. Use an exponential accelerated failure time model.

Model Information				
Data Set	BST665.KIDNEY			
Dependent Variable	Log(Years)			
Censoring Variable	Died			
Censoring Value(s)	0			
Number of Observations	2582			
Noncensored Values	420			
Right Censored Values	2162			
Left Censored Values	0			
Interval Censored Values	0			
Number of Parameters	5			
Name of Distribution	Exponential			
Log Likelihood	-1691.172608			

Fit Statistics					
-2 Log Likelihood	3382.345				
AIC (smaller is better)	3392.345				
AICC (smaller is better)	3392.369				
BIC (smaller is better)	3421.627				

Type III Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
Age	1	10.6708	0.0011			
AgeSq	1	1.9466	0.1629			
Gender	1	0.0063	0.9366			
Race	1	0.8042	0.3699			

Example 1: Assess the effects of age, gender, and race on risk of death following kidney transplant. Use an exponential accelerated failure time model.

Analysis of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	95% Confidence Limits		Chi-Square	Pr > ChiSq
Intercept		1	6.2842	0.6184	5.0723	7.4962	103.28	<.0001
Age		1	-0.0891	0.0273	-0.1426	-0.0356	10.67	0.0011
AgeSq		1	0.0004	0.0003	-0.0002	0.0010	1.95	0.1629
Gender	Female	1	-0.0080	0.1009	-0.2057	0.1897	0.01	0.9366
Gender	Male	0	0.0000					
Race	Black	1	-0.1101	0.1228	-0.3507	0.1305	0.80	0.3699
Race	White	0	0.0000					
Scale		0	1.0000	0.0000	1.0000	1.0000		
Weibull Shape		0	1.0000	0.0000	1.0000	1.0000		

Lagrange Multiplier Statistics					
Parameter	Chi-Square Pr > ChiSq				
Scale	66.0205	<.0001			

Example 1: Assess the effects of age, gender, and race on risk of death following kidney transplant. Use a Weibull accelerated failure time model.

The LIFEREG Procedure

Model Information				
Data Set	BST665.KIDNEY			
Dependent Variable	Log(Years)			
Censoring Variable	Died			
Censoring Value(s)	0			
Number of Observations	2582			
Noncensored Values	420			
Right Censored Values	2162			
Left Censored Values	0			
Interval Censored Values	0			
Number of Parameters	6			
Name of Distribution	Weibull			
Log Likelihood	-1640.896931			

Fit Statistics					
-2 Log Likelihood	3281.794				
AIC (smaller is better)	3293.794				
AICC (smaller is better)	3293.826				
BIC (smaller is better)	3328.932				

Type III Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
Age	1	12.1627	0.0005			
AgeSq	1	3.3653	0.0666			
Gender	1	0.0417	0.8382			
Race	1	0.5741	0.4486			

Example 1: Assess the effects of age, gender, and race on risk of death following kidney transplant. Use a Weibull accelerated failure time model.

Analysis of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	95% Confidence Limits		Chi-Square	Pr > ChiSq
Intercept		1	8.7391	0.9869	6.8049	10.6733	78.42	<.0001
Age		1	-0.1450	0.0416	-0.2265	-0.0635	12.16	0.0005
AgeSq		1	0.0008	0.0004	-0.0001	0.0017	3.37	0.0666
Gender	Female	1	-0.0307	0.1504	-0.3254	0.2640	0.04	0.8382
Gender	Male	0	0.0000		•			
Race	Black	1	-0.1385	0.1829	-0.4969	0.2198	0.57	0.4486
Race	White	0	0.0000					
Scale		1	1.4908	0.0646	1.3695	1.6228		
Weibull Shape		1	0.6708	0.0290	0.6162	0.7302		

Example 1: Assess the effects of age, gender, and race on risk of death following kidney transplant. Use a log-logistic accelerated failure time model.

The LIFEREG Procedure

Model Information				
Data Set	BST665.KIDNEY			
Dependent Variable	Log(Years)			
Censoring Variable	Died			
Censoring Value(s)	0			
Number of Observations	2582			
Noncensored Values	420			
Right Censored Values	2162			
Left Censored Values	0			
Interval Censored Values	0			
Number of Parameters	6			
Name of Distribution	LLogistic			
Log Likelihood	-1642.557866			

Fit Statistics				
-2 Log Likelihood	3285.116			
AIC (smaller is better)	3297.116			
AICC (smaller is better)	3297.148			
BIC (smaller is better)	3332.254			

Type III Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
Age	1	12.9327	0.0003			
AgeSq	1	3.7013	0.0544			
Gender	1	0.0961	0.7566			
Race	1	0.3770	0.5392			

Example 1: Assess the effects of age, gender, and race on risk of death following kidney transplant. Use a log-logistic accelerated failure time model.

	Analysis of Maximum Likelihood Parameter Estimates													
Parameter		DF	Estimate	Standard Error	95% Confidence Limits		Confidence		Confidence		Chi-Square	Pr > ChiSq		
Intercept		1	8.6086	0.9895	6.6692 10.5479		75.69	<.0001						
Age		1	-0.1519	0.0422	-0.2347	-0.0691	12.93	0.0003						
AgeSq		1	0.0009	0.0004	-0.0000	0.0017	3.70	0.0544						
Gender	Female	1	-0.0495	0.1596	-0.3623	0.2634	0.10	0.7566						
Gender	Male	0	0.0000											
Race	Black	1	-0.1199	0.1952	-0.5025	0.2627	0.38	0.5392						
Race	White	0	0.0000											
Scale		1	1.3983	0.0598	1.2858	1.5206								

Example 2: Use probability plots to assess the fits of the accelerated failure time models.

Example 2: Use probability plots to assess the fits of the accelerated failure time models.

Example 2: Use probability plots to assess the fits of the accelerated failure time models.

Example 3: Estimate percentiles of survival time.

Ty	Type III Analysis of Effects										
Effect	DF	Wald Chi-Square	Pr > ChiSq								
Age	1	12.1627	0.0005								
AgeSq	1	3.3653	0.0666								
Gender	1	0.0417	0.8382								
Race	1	0.5741	0.4486								

	Analysis of Maximum Likelihood Parameter Estimates													
Parameter		DF	Estimate	Standard Error	95% Confidence Limits		Confidence		Chi-Square	Pr > ChiSq				
Intercept		1	8.7391	0.9869	6.8049	10.6733	78.42	<.0001						
Age		1	-0.1450	0.0416	-0.2265	-0.0635	12.16	0.0005						
AgeSq		1	0.0008	0.0004	-0.0001	0.0017	3.37	0.0666						
Gender	Female	1	-0.0307	0.1504	-0.3254	0.2640	0.04	0.8382						
Gender	Male	0	0.0000											
Race	Black	1	-0.1385	0.1829	-0.4969	0.2198	0.57	0.4486						
Race	White	0	0.0000											
Race	white	0	0.0000											
Scale		1	1.4908	0.0646	1.3695	1.6228								
Weibull Shape		1	0.6708	0.0290	0.6162	0.7302								

Obs	Age	Gender	Race	_PROB_	pred
1	50	Male	Black	0.25	4.5152
2	50	Male	Black	0.50	16.7502
3	50	Male	Black	0.75	47.0745
4	60	Female	white	0.25	2.8621
5	60	Female	white	0.50	10.6176
6	60	Female	white	0.75	29.8396

Example 4: Plot the estimated survival function.

Example 5: Compare the survival estimates from the Weibull accelerated failure time model to those from Kaplan-Meier.

The LIFETEST Procedure

Example 5: Compare the survival estimates from the Weibull accelerated failure time model to those from Kaplan-Meier.

The LIFETEST Procedure

Example 6: Analyze left, right, and interval censored data.

Model Inform	mation
Data Set	BST665.REARREST2
Dependent Variable	Log(Start)
Dependent Variable	Log(Stop)
Number of Observations	432
Noncensored Values	84
Right Censored Values	318
Left Censored Values	30
Interval Censored Values	0
Number of Parameters	8
Name of Distribution	LLogistic
Log Likelihood	-321.1449972

Type III Analysis of Effects											
Effect	DF	Wald Chi-Square	Pr > ChiSq								
PriorGroup	2	8.4712	0.0145								
AgeGroup	3	16.1313	0.0011								
Aid	1	3.4200	0.0644								

	Ana	lysis	of Maxim	um Likelih	ood Par	ameter	Estimates							
Parameter		DF	Estimate	Standard Error	95% Confidence Limits		Confidence		Confidence		Confidence		Chi-Square	Pr > ChiSq
Intercept		1	3.9943	0.2385	3.5268	4.4617	280.49	<.0001						
PriorGroup	0	1	0.2802	0.3486	-0.4031	0.9635	0.65	0.4216						
PriorGroup	1-2	1	0.6069	0.2085	0.1982	1.0157	8.47	0.0036						
PriorGroup	3+	0	0.0000											
AgeGroup	20-29	1	0.8135	0.2411	0.3410	1.2860	11.39	0.0007						
AgeGroup	30-39	1	1.4408	0.4211	0.6156	2.2661	11.71	0.0006						
AgeGroup	40-49	1	1.0926	0.5883	-0.0604	2.2457	3.45	0.0633						
AgeGroup	< 20	0	0.0000											
Aid	0	1	-0.3617	0.1956	-0.7451	0.0216	3.42	0.0644						
Aid	1	0	0.0000											
Scale		1	0.8581	0.0868	0.7038	1.0463								

Example 7: Redo Example 1 using PROC NLMIXED to get confidence intervals. Use a Weibull accelerated failure time model

Specifications								
Data Set	KIDNEY							
Dependent Variable	Years							
Distribution for Dependent Variable	General							
Optimization Technique	Dual Quasi-Newton							
Integration Method	None							

Initial Parameters											
						Negative					
beta_0	beta_A	beta_S	beta_G	beta_R	alpha	Log Likelihood					
8.7391	-0.145	0.0008	-0.0307	-0.1385	0.6708	1598.39522					

Fit Statistics						
-2 Log Likelihood	3196.7					
AIC (smaller is better)	3208.7					
AICC (smaller is better)	3208.8					
BIC (smaller is better)	3243.9					

	Parameter Estimates														
Parameter	Estimate	Standard Error	DF	t Value	$ \mathbf{Pr}> \mathbf{t} $	95% Co Lir	Gradient								
beta_0	8.7391	1.0196	2582	8.57	<.0001	6.7398	10.7384	-2.81E-7							
beta_A	-0.1450	0.04268	2582	-3.40	0.0007	-0.2287	-0.06131	0.000847							
beta_S	0.000806	0.000451	2582	1.79	0.0744	-0.00008	0.001691	0.051652							
beta_G	-0.03070	0.1504	2582	-0.20	0.8382	-0.3256	0.2642	0.000026							
beta_R	-0.1385	0.1828	2582	-0.76	0.4487	-0.4970	0.2200	0.000448							
alpha	0.6708	0.02943	2582	22.80	<.0001	0.6131	0.7285	-0.00008							

Example 7: Redo Example 1 using PROC NLMIXED to get confidence intervals. Use a Weibull accelerated failure time model

	Additional Estimates												
Label	Estimate	Standard Error		t Value	Pr > t	Alpha	Lower	Upper					
HR for Gender	1.0208	0.1030	2582	9.91	<.0001	0.05	0.8189	1.2227					
HR for Race	1.0974	0.1346	2582	8.15	<.0001	0.05	0.8334	1.3613					
HR comparing 65-yr old to 60-yr old	1.1601	0.06211	2582	18.68	<.0001	0.05	1.0384	1.2819					

Example 7: Redo Example 1 using PROC NLMIXED to get confidence intervals. Use a log-logistic accelerated failure time model

Specifications						
Data Set	KIDNEY					
Dependent Variable	Years					
Distribution for Dependent Variable	General					
Optimization Technique	Dual Quasi-Newton					
Integration Method	None					

Initial Parameters								
						Negative		
beta_0	beta_A	beta_S	beta_G	beta_R	alpha	Log Likelihood		
8.6086	-0.1519	0.0009	-0.0495	-0.1199	0.71515	1600.77772		

Fit Statistics						
-2 Log Likelihood	3200.1					
AIC (smaller is better)	3212.1					
AICC (smaller is better)	3212.1					
BIC (smaller is better)	3247.2					

Parameter Estimates									
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient	
beta_0	8.6086	1.0118	2582	8.51	<.0001	6.6247	10.5926	-0.00031	
beta_A	-0.1519	0.04293	2582	-3.54	0.0004	-0.2361	-0.06771	-0.01906	
beta_S	0.000865	0.000456	2582	1.89	0.0583	-0.00003	0.001760	-0.97003	
beta_G	-0.04947	0.1596	2582	-0.31	0.7566	-0.3625	0.2635	-0.00012	
beta_R	-0.1199	0.1952	2582	-0.61	0.5392	-0.5026	0.2629	-0.00030	
alpha	0.7152	0.03090	2582	23.14	<.0001	0.6546	0.7758	0.000247	

Example 7: Redo Example 1 using PROC NLMIXED to get confidence intervals. Use a log-logistic accelerated failure time model

Additional Estimates										
Label	Estimate	Standard Error		t Value	Pr > t	Alpha	Lower	Upper		
OR for Gender	0.9652	0.1102	2582	8.76	<.0001	0.05	0.7492	1.1813		
OR for Race	0.9178	0.1281	2582	7.16	<.0001	0.05	0.6666	1.1691		
OR comparing 65-yr old to 60-yr old	0.8550	0.05012	2582	17.06	<.0001	0.05	0.7567	0.9532		