

CALCIA CLINKER AND MANUFACTURE

Patent number: JP61256961
Publication date: 1986-11-14
Inventor: HACHIMOTO ISAO; FUKUDA TAKAO
Applicant: SHIN NIHON KAGAKU KOGYO KK
Classification:
- international: C04B35/02
- european:
Application number: JP19850095226 19850502
Priority number(s): JP19850095226 19850502

Abstract not available for JP61256961

Data supplied from the **esp@cenet** database - Worldwide

BEST AVAILABLE COPY

BEST AVAILABLE COPY

⑰ 公開特許公報 (A)

昭61-256961

⑯ Int.Cl.

C 04 B 35/02

識別記号

庁内整理番号

7412-4G

⑯ 公開 昭和61年(1986)11月14日

審査請求 未請求 発明の数 2 (全10頁)

④発明の名称 カルシア質クリンカーとその製造方法

⑤特 願 昭60-95226

⑥出 願 昭60(1985)5月2日

⑦発明者 八本 功 いわき市小名浜字渚2の4 新日本化学工業株式会社内

⑧発明者 福田 隆生 いわき市小名浜字渚2の4 新日本化学工業株式会社内

⑨出願人 新日本化学工業株式会社 大阪市北区堂島浜1丁目2番6号
社

⑩代理人 弁理士 小松 秀岳 外1名

明細書

1. 発明の名称

カルシア質クリンカーとその製造方法

2. 特許請求の範囲

(1) CaO-MgOを主成分としてMgOを1重量%より多く含有し、Fe₂O₃、Al₂O₃、B₂O₃、TiO₂の1種または2種以上を合量で2重量%以下の含有量で、相対密度が96%以上で開気孔率が2%以下であり、さらに表面部分のCaOが炭酸化されてできたCaCO₃層の厚さが0.05~4μmであることを特徴とするカルシア質クリンカー。

(2) 表面部分のCaOが炭酸化されてできたCaCO₃層の厚さが0.1~2μmである特許請求の範囲第(1)項記載のカルシア質クリンカー。

(3) CaO-MgOを主成分としてMgOを1重量%より多く含有し、Fe₂O₃、Al₂O₃、B₂O₃、TiO₂の1種また

は2種以上を合量で2重量%以下の含有量で、相対密度が96%以上で開気孔率が2%以下であるカルシア質クリンカーを、CO₂を分圧で15%以上含有するガス中で5分間以上380~830℃に加熱し、CaOの一部を炭酸化することを特徴とするカルシア質クリンカーの製造方法。

(4) CO₂を分圧で15%以上含有するガス中で5分間以上600~700℃に加熱する特許請求の範囲第(3)項記載のカルシア質クリンカーの製造方法。

(5) CO₂を分圧で15%以上含有するガスが、さらに水蒸気を分圧で0.5~10%含有するガスである特許請求の範囲第(3)または(4)項記載のカルシア質クリンカーの製造方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、耐消食性に優れるカルシア質クリンカーとその製造方法に関する。

〔従来の技術〕

近年、製鋼において鋼の高級化、操業の合理化に伴なって、連続鋳造・脱ガスの強化、取鋼精練が行なわれ、高温出鋼等の苛酷な条件下での炉の操業がなされるようになってきた。したがって使用される耐火物も従来に増して熱衝撃、機械的衝撃、化学的安定性に優れたものが要求されるようになってきた。

転炉の内張り材としては、従来よりMgO、MgO-Cr₂O₃等の塩基性耐火物が使われている。また、取鋼の内張りも前述のように精錬過程導入により珪酸質、ジルコン質土から塩基性耐火物への切替えが行なわれている。

塩基性耐火物としては、主にMgO系が使われてきた。それに対してCaOは耐熱衝撃や耐スラグ侵蝕性に優れ、また溶鋼中のAl₂O₃を除去する作用をもつ点ではMgOを上まわり、さらに資源的にも恩まれ安価に入手されるにもかかわらず、水に対する耐消化性の低さゆえに取扱いや貯蔵、レンガの製造に難があり、製鋼炉用耐火物としてはほとんど実用化されていない。

Al₂O₃ 1.0wt%以下を含み、かつ前記 Fe₂O₃、TiO₂、SiO₂、Al₂O₃の合量を 0.5~3.0wt%とした方法、などが知られている。

また(b)の方法については、文献 Amer. Ceram. Soc. Bull., 49(5), 531 (1970) で、CaO焼結体をCO₂雰囲気下で加熱処理し、表面にCaCO₃層を形成させると、耐消化性が良くなるという報告がなされている。また、焼結法ではないが、溶融法のCaO耐火粒子を加熱炭酸化して耐消化性を向上させることについても、特開昭56-88825号公報すでに知られている。

[発明が解決しようとする問題点]

しかし、(a)のことくCaOおよびMgO以外の酸化物の添加による方法ではカルシア質クリンカーの耐消化性は良くなるものの、低融点化合物を生成し耐火度を損うといった欠点がある。例えばFe₂O₃やAl₂O₃を添加した場合、2CaO·Fe₂O₃ (融点1447°C)、

い。したがって、CaO系材料を耐火物として利用するには、その酸化防止が大きな課題となっている。

CaO含量の高い耐火物の消化性を改善する方法としては次のようなものが主に知られている。

(a) 種々の添加材によってCaOの結晶を被覆する。

(b) CaO粒子表面を炭酸化する。

(c) CaO粒子表面に油類を塗布する。

この中で特に(a)の方法については種々な試みがなされている。例えば、特開昭54-131612号公報に記載されているように、CaOまたはCaO-MgOにFe₂O₃、Cr₂O₃、TiO₂の1種または2種以上を合量で10%以下含有させて耐消化性を向上させる方法や、特開昭59-35060号公報に記載されているように、焼成状態でCaOまたはCaO-MgOを主成分とし、Fe₂O₃ 0.4~1.2wt%、TiO₂ 0.1~0.5wt%、SiO₂ 1.5wt%以下、

2CaO·Al₂O₃ (融点1360°C)等が生成する。

また(b)の方法は、引用した文獻にある試験のように高純度のCaOに対して炭酸化処理が行なわれている。しかし、高純度のCaOを用いた場合、たしかに炭酸化によって耐消化性は向上するが、摩擦等の機械的衝撃が起り易く、剥離した部分より急激に水和が始まってしまう。したがって、この方法では十分な耐消化性を得るには炭酸化の割合を大きくし、CaCO₃層を厚くしなければならない。しかるに、CaOの焼結体を得る際に、CaCO₃を焼成したものは焼結性が悪く、焼結体密度が上がらないことはすでに知られているが、CaOの耐消化性を向上させるために炭酸化の割合を大きくすると、これを用いて耐火レンガを作る場合、その焼結性が悪くなり、熱衝撃強度の著しい低下をもたらす。あるいは、炭酸化の割合が大きいと、不焼成レンガの場合には高温でCaCO₃が分解してレンガに大きな空隙を生じる等の欠

点が生じる。

[問題点を解決するための手段]

本発明の目的は、第3成分として他の酸化物を添加することなく本質的にCaO-MgOよりなる耐消化性に優れたカルシア質クリンカーとその製造方法を提供することにある。

本発明者らは、カルシア質クリンカーの性状(組成と物性)、および炭酸化の条件を研究した結果、カルシア質クリンカーの性状を選び適正な炭酸化条件を選ぶことによって上記問題を解決できることを見出した。

前記目的を達するクリンカーは、CaO-MgOを主成分としてMgOを1重量%より多く含有し、Fe₂O₃、Al₂O₃、B₂O₃、TiO₂の1種または2種以上を含量で2重量%以下の含有量で、相対密度が96%以上で開気孔率が2%以下であり、さらに表面部分のCaOが炭酸化されてできたCaCO₃層の厚さが0.05～4μmであることを特徴とするものである。このカルシア質クリンカーの製造方法は、

質クリンカーの見かけ比重の値である。また、開気孔率とは、同委員会で定められた方法に基づいて測定した見かけ気孔率である。

本発明に用いるカルシア質クリンカーの性状は、組成がCaO-MgOを主成分として、MgOを1%より多く含有するものであって、Fe₂O₃、Al₂O₃、B₂O₃、TiO₂の1種または2種以上を合わせた含有量が2重量%以下のものである。また物性として、相対密度が96%以上であり、開気孔率は2%以下とする。このように、CaOと低融点化合物を生成する不純物の量を抑え、相対密度を上げることによって、CaOのもつ熱膨張率等の特性を十分に發揮させることができる。また、MgOを1重量%より多く含有させ、また、開気孔率を2%以下にすることによって、表面にCaCO₃層を薄く形成しても従来の炭酸化する方法に比べて著しく耐消化性を向上させることができる。

カルシア質クリンカー表面にCaCO₃層を

CaO-MgOを主成分としてMgOを1重量%より多く含有し、Fe₂O₃、Al₂O₃、B₂O₃、TiO₂の1種または2種以上を含量で2重量%以下の含有量で、相対密度が96%以上で開気孔率が2%以下であるカルシア質クリンカーを、CO₂を分圧で15%以上含有するガス中で5分間以上380～830℃に加熱し、CaOの一部を炭酸化することを特徴とする。また、上記CO₂含有ガスでさらに水蒸気を分圧で0.5～10%含有するガスを用いて炭酸化することもある。ここで、相対密度とは、CaOの理論密度を3.37、MgOの理論密度を3.65(以上化学便覧、丸善)とし、CaOの含有量をa重量%、MgOの含有量をb重量%としたときに、次の式で表わされる値である。

$$\frac{3.37 \times a + 3.65 \times b}{100} \times 100 (\%)$$

式中でBDは、日本学術振興会第124委員会で定められた方法に基づいて測定したカルシア

形成させるためには、CO₂雰囲気下で加熱処理することが必要である。炭酸化に必要な温度範囲は380～830℃であって、特に600～700℃が望ましい。380℃より低い温度、および830℃より高い温度では炭酸化する速度が遅く、十分な厚さのCaCO₃層を得ることが難しい。処理温度については対象とするカルシア質クリンカーの成分すなわち含有するMgOの割合によって適当な幅をもち、その範囲内で希望の耐消化性の得られる条件を選択すれば良い。例えばCaOを90重量%含有するクリンカーでは炭酸化する温度は380℃以上であるが、MgOを30重量%含有するクリンカーの場合は500℃以上の温度で処理することが望ましい。CaCO₃層は、処理時間と温度との兼ね合いで望みの厚さを形成することができる。例えば、CaOが97重量%のクリンカーの場合、500℃で炭酸化処理すると10分間で約0.08μm、60分間で約0.2μm、850℃で処理すると10分間で約0.2μm、60分間で約0.6μmの厚さの

CaCO₃層を形成させることができる。

また炭酸化処理する際CO₂含有ガス中に水蒸気を存在させると炭酸化の速度が増し、同じ時間炭酸化処理した場合のCaCO₃層の厚さは存在しない場合の約2倍となる。したがってCO₂含有ガス中に水蒸気を含有させることによって炭酸化処理時間が短縮でき、処理するための装置を小型化できる利点がある。炭酸化処理用のガス中に含まれる水蒸気は少量で良いが分圧として0.5~10%が必要である。0.5%より少ないと水蒸気の効果はほとんどなく、また10%より多く存在してもそれ以上は効果に変りがない。

炭酸化処理したカルシア質クリンカーの耐消化性は生成したCaCO₃層の厚さによって異なるが、0.05~4μmの厚さが必要である。特に0.1~2μmであることが望ましい。

CaCO₃層の厚さが0.05μmより薄い場合は、

①十分な耐消化性を得ることが難しい。

ーが遊離してレンガ強度が低下する。

といった欠点がある。

CaCO₃層の厚さは、日立一明石社製走査型電子顕微鏡、型式MSM-4にて確認した。第1図に炭酸化処理前の、第2図に炭酸化処理後のCaOを97重量%、MgOを1.7重量%含有するクリンカーの電子顕微鏡写真を示す。炭酸化処理したクリンカーは表面をCaCO₃の多結晶が一様に覆い、亀裂などではなく、生成したCaCO₃層も緻密なものであることがわかる。この層がCaCO₃であることは、X線回折によって確認した。また第3図に炭酸化処理後の、CaOを69.3重量%、MgOを30.1重量%含有するクリンカーの、表面の電子顕微鏡写真を示す。矢印①は、炭酸化されたCaOの部分、矢印②はMgOの部分である。CaCO₃層の厚さは、さらに熱分析あるいは化学分析によるCO₂の定量によって求めることができる。第4図にCaO含量が97重量%のクリンカーを炭酸化処理したときの粒径(半径)と炭酸化率

②CaCO₃層の強度が低く、クリンカー粒間の摩擦、衝撃等によく疲れやすい。

といった欠点がある。また、CaCO₃層を4μmより厚くすると、

③炭酸化の速度はCaCO₃層が厚くなるにつれて遅くなり、4μm以上の厚さにするには数時間の処理が必要である。また、4μm以上の厚さにしても耐水和性は頭打ちとなり、したがっていたずらにCaCO₃層を厚くすることは経済的ではない。

④CaCO₃層を4μm以上の厚さにすると不純物としてのCaCO₃の割合が多くなり、耐火レンガを製造する際に焼結性が低下する。

⑤カルシア質クリンカーを用いて不焼成耐火レンガが、例えばカーボンレンガを製造した場合、高温で使用するとカルシア質クリンカー表面のCaCO₃が分解してCO₂が発生する。このときCaCO₃層が4μmより厚いと、

CaCO₃の分解によってできるクリンカーとカーボンとの間の空隙が大きくなり、クリンカ

ーが遊離してレンガ強度が低下する。

といった欠点がある。

CaCO₃層の厚さは、日立一明石社製走査型電子顕微鏡、型式MSM-4にて確認した。第1図に炭酸化処理前の、第2図に炭酸化処理後のCaOを97重量%、MgOを1.7重量%含有するクリンカーの電子顕微鏡写真を示す。炭酸化処理したクリンカーは表面をCaCO₃の多結晶が一様に覆い、亀裂などではなく、生成したCaCO₃層も緻密なものであることがわかる。この層がCaCO₃であることは、X線回折によって確認した。また第3図に炭酸化処理後の、CaOを69.3重量%、MgOを30.1重量%含有するクリンカーの、表面の電子顕微鏡写真を示す。矢印①は、炭酸化されたCaOの部分、矢印②はMgOの部分である。CaCO₃層の厚さは、さらに熱分析あるいは化学分析によるCO₂の定量によって求めることができる。第4図にCaO含量が97重量%のクリンカーを炭酸化処理したときの粒径(半径)と炭酸化率

との関係を示した。ここで、粒径とはクリンカーの三軸算術平均径(短軸径と長軸径と高さ[厚さ]の算術平均値)を示し、また、炭酸化率とはもとのCaOのうちCaCO₃に変化した割合を示す。

実際に炭酸化処理カルシア質クリンカーを製造するには、例えばロータリーキルンで焼成後、冷却途中にあるクリンカーをタンクに溜め、タンク中にCO₂含有ガスを供給し、冷却とともにクリンカー表面の炭酸化を行なうといった方法が考えられる。

[実施例]

次に本発明の実施例および比較例を示す。なお、実施例および比較例での耐消化性試験は、粒径が2.00~4.76mmのクリンカーを気温25℃、湿度70%の空気中で2週間静置する方法で行ない、その時の重量増加率(重量%)を測定し、耐消化性を評価した。

実施例1および比較例1

Ca(OH)₂およびMg(OH)₂を原料

として、カルシア質クリンカーを得た。この一部を用いて、CO₂ 分圧 5%であるガス中で、700°C、60分間炭酸化処理を行なった。この炭酸化処理した試料および未処理の試料について耐消化性の評価を行なった。第1表に試料の化学組成、相対密度、開気孔率および耐消化性評価結果を示した。また炭酸化処理した試料のCaCO₃層の厚さは、クリンカー破面の電子顕微鏡観察から、試料No.6が0.8μm、試料No.7が0.2μmであった。

第1表より本発明のクリンカーが耐消化性の優れていることがわかる。

第1表

	試料No.	化学組成(重量%)							相対密度 (%)	開気孔率 (%)	耐消化性重 量増加率 (重量%)	
		CaO	MgO	Fe ₂ O ₃	Al ₂ O ₃	B ₂ O ₃	TlO ₂	CO ₂				
比 較 例 1	1	98.70	0.50	0.05	0.10	0.10 >	0.01 >	—	0.6	92.3	3.6	1.32
	2	99.20	0.20	0.03	0.10	0.10 >	0.01 >	—	0.5	96.5	1.2	0.88
	3	97.30	1.75	0.05	0.09	0.01 >	0.01 >	—	0.8	96.2	1.0	0.53
	4	69.32	30.06	0.04	0.08	0.12	0.01 >	—	0.4	97.1	1.7	0.09
	5	99.20	0.20	0.03	0.10	0.01 >	0.01 >	0.08	0.5	96.3	1.1	0.03
実施例 1	6	97.20	1.75	0.05	0.09	0.01 >	0.01 >	0.10	0.6	96.5	1.1	0.005
	7	69.60	30.06	0.04	0.08	0.12	0.01 >	0.03	0.4	97.0	1.5	0.001 >

粒度：2.00～4.76 mm

第1表に示した試料 No.3、No.4で粒径が2.00～4.76mmのクリンカーをCO₂の分圧が95%であるCO₂含有ガス中、700℃で炭酸化処理をした。処理後のクリンカーの相対密度および開気孔率の値は、3時間処理した場合でも未処理試料に比べて変化はなかった。このときの処理時間と生成したCaCO₃層の厚さとの関係を第5図に示す。これより処理時間とともにCaCO₃層が厚くなること、厚くなるにつれて炭酸化の速度が遅くなること、そしてMgOの含有量によって炭酸化の速度が異なることがわかる。

次に、上記の如く炭酸化処理した試料No.3、No.4のクリンカーの低消化性試験を行なった。このときの生成したCaCO₃層の厚さと重量増加率との関係を第6図、第7図に示す。なお、CaCO₃層の厚さが0における重量増加率の値は比較例1の炭酸化処理をしていない試料No.3、試料No.4の値を示す。これより本発

明にしたがい、0.95μm程度のCaCO₃層を形成させることによって、重量増加率が未処理試料の約10分の1に、0.4μmでは約100分の1になり、カルシア質クリンカーの耐消化性が大幅に改善されることがわかった。

実施例3および比較例2

第1表に示した試料No.3で粒径が2.00～4.76mmのクリンカーをCO₂分圧が95%であるCO₂含有ガス中で、380℃(以上、実施例3)、200℃、350℃、870℃(以上、比較例2)の各温度にて、60分間炭酸化処理し、各試料について耐消化性試験を行なった。実施例3および比較例2の結果をあわせて第8図に示す。これより炭酸化処理に有効な温度範囲は380～830℃であることがわかる。

実施例4

第1表に示した試料No.3で粒径が2.00～4.76mmのクリンカーをCO₂分圧が95%であるCO₂含有ガス中で、400℃、500℃、600℃、700℃、800℃の各温度にて60分間炭酸化

処理し、各試料について耐消化性試験を行なった。ただし、ここでは静置期間を4週間とした。結果を第2表に示す。これより、処理温度としては600～700℃が特に有効であることがわかる。

第2表

処理温度(℃)	重量増加率(重量%)
400	0.49
500	0.26
600	0.13
700	0.08
800	0.18

実施例5および比較例3

第1表に示した試料No.3で粒径が2.00～4.76mmのクリンカーをCO₂分圧が、2%、15%、50%、95%であるCO₂含有ガス中で、600℃で60分間炭酸化処理し、耐消化性試験を行なった。ここで用いたCO₂含有ガスは、CO₂分圧99.95%の溶接用炭酸ガスと、空気とを混合したガスで、CO₂分圧は、オルザッ

ト・ガス分析器を用いて分析した。結果を第3表に示す。これよりCO₂分圧が15%以上で、炭酸化処理効果があり、耐消化性の向上がみられる。

第3表

	CO ₂ (%)	重量増加率(重量%)
比較	未処理	0.53
例3	2	0.55
	15	0.01
実施	50	0.008
例5	95	0.003

実施例6および比較例4

第1表に示した試料No.3、No.4で粒径が2.00～4.76mmのクリンカーを、CO₂および水蒸気を含有するガス中、700℃で60分間炭酸化処理を行なった。処理に用いたガスのCO₂分圧、水蒸気分圧と処理後のCaCO₃層の厚さの結果を第4表に示す。これよりCO₂含有ガス中に水蒸気が存在することによってCaCO₃層は厚くなり、短時間処理で必

要とする厚さの CaCO_3 層が得られる。ただし、水蒸気の量は多くなるとも効果が大きくなるわけではない。

第4表

	CO_2 分圧 (%)	水蒸気分圧 (%)	CaCO_3 層厚	
			No.3	No.4
比例	97	0.0	0.58	0.22
比較例	98	0.1	0.55	0.23
実施例	93	0.9	1.10	0.44
実施例	96	1.8	0.94	0.41
実施例	85	10.0	0.88	0.50
比例				
比較例	78	14.8	1.00	0.56

実施例7および比較例5

第1表に示した試料No.2、No.3、No.4で粒径が2.00～4.76mmのクリンカーを第5表に示す条件で炭酸化処理を行なった。そのときの CaCO_3 層の厚さもあわせて第5表に示す。これら炭酸化処理した試料No.8～No.11を直径9cm、高さ13cmの円筒形のポリ容器に約

200g入れ、30分間、振とう機を用いて振とうさせた。振とう機の周波数は振幅が5cm、振動数が毎分240回である。振とう後の試料について耐消化性試験を行なった。結果を第6表の示す。これより CaCO_3 層が薄いと機械的な衝撃に弱い。しかし、0.1μm程度の厚さであっても、炭酸化処理しない試料に比べて重量増加率は10分の1程度であり、実用に耐えうる強度である。また、 CaCO_3 層が剥離してもMgO含有量の高いクリンカーほど耐消化性に優れている。

第5表

炭酸化 処理後 試料No.	炭酸化 処理前 試料No.	CO_2 分圧 (%)	処理時間 (分)	CaCO_3 層の厚さ (μm)
8	3	95	3	0.03
9	2	96	10	0.09
10	3	96	10	0.09
11	4	94	30	0.11

第6表

試料No.	重量増加率(重量%)
比 較 例 実 施 例 10 11	0.88 0.53 0.09 0.22 0.09 0.05 0.001

実施例8および比較例6

第1表に示した試料No.3と同じ化学組成のクリンカーを、次の粒度で配合した。

3.36～2.00mm 50g

2.00～1.00mm 50g

1.00～0.25mm 50g

こうして粒度配合した試料を CO_2 の分圧が97%である CO_2 含有ガス中、700℃で炭酸化処理した。このとき、処理時間を変えて、 CaCO_3 層の厚さの異なる、粒度分布の等しい試料を得た。このときの電子顕微鏡観察より

得られた CaCO_3 層の厚さを第7表に示す。これら試料No.12～16各々に対して、粒度が0.25mm以下であるMgO微粉を100g加え、さらにエチルシリケートをバインダーとして加えて混練し、25×125mmの長方形金型に試料を入れて、1ton/cm²で加圧成型した。この成型体を、1700℃で2時間焼成し、できたレンガの1200℃での熱間曲げ強度を第9図に示す装置で測定した。このときの CaCO_3 層の厚さとレンガの熱間曲げ強度との関係を第10図に示す。図の縦軸の目盛は試料No.12すなわち炭酸化処理しない CaO を用いて作成したレンガの、熱間曲げ強度の値を1.0としたときの相対値で示した。これより CaCO_3 層の厚さが4μmを越えると急激にレンガの強度が低下することがわかる。

第7表

	試料No.	CaCO_3 層の厚さ (μm)
比較例6	12	0(未処理)
実施例8	13	0.5
	14	1.7
	15	3.3
比較例6	16	4.5

〔発明の効果〕

本発明によれば、耐消化性に優れたカルシア質クリンカーが得られる。また、該クリンカーを用いてつくった耐火レンガは熱間曲げ強度の優れたものである。

4. 図面の簡単な説明

第1図および第2図は、炭酸処理前と同処理後のクリンカーの結晶構造を示す電子顕微鏡写真、第3図は炭酸処理後のクリンカーの表面の結晶構造を示す電子顕微鏡写真、第4図はクリンカーの粒径と炭酸化率との関係を示すグラフ、第5図は処理時間と CaCO_3 層の厚さとの関

係を示すグラフ、第6図、第7図は CaCO_3 層の厚さと重量増加率との関係を示すグラフ、第8図は炭酸化処理温度と重量増加率との関係を示すグラフ、第9図は熱間曲げ強度測定装置の説明図、第10図は CaCO_3 層の厚さと熱間曲げ強度との関係を示すグラフである。

特許出願人 新日本化学工業株式会社

代理人 弁理士 小松秀岳

代理人 弁理士 旭 宏

1 図
カ
ル

ガ 5 図

ガ 4 図

ガ 7 図

ガ 6 図

ガ 8 図

ガ 10 図

ガ 9 図

手続補正書 (自発)

昭和60年6月12日

特許庁長官 志賀 学

1. 事件の表示

特願昭60-95226号

2. 発明の名称

カルシア質クリンカーとその製造方法

3. 補正をする者

事件との関係 特許出願人

名 称 新日本化学工業株式会社

4. 代理人

〒 107 (電話586-8854)

住 所 東京都港区赤坂4丁目13番5号

赤坂オフィスハイツ

氏 名 (7899) 弁理士 小松秀岳 (代理人名)

5. 補正命令の日付 (自発)

6. 補正の対象

明細書中、発明の詳細な説明の箇

7. 補正の内容

方 式 審査

(1) 明細書中、第 6 頁第 7 行の「…衝撃が起り易く…」を「衝撃を受けられた場合、炭酸化した部分の剥離が起り易く…」に訂正する。

(2) 同第 17 頁第 4~5 行の「炭酸処理」を「炭酸化処理」と補正する。

(3) 同第 18 頁第 9 行の「… 380°C (以上、実施例 3)」を「… 380°C、500°C、600°C、700°C、830°C (以上実施例 3)」に訂正する。

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.