Rudin.

3.1

Prop: (Sn) converges => (|Sn|) converges.

 $|S_n - S| < \varepsilon \quad \forall n > N.$

 $|S_n - S| \ge |S_n| - |S|| \Rightarrow |S_n - |S|| < \varepsilon \quad \forall n > N$

 \leq_{\circ} ($|S_{n}|$) \longrightarrow |3|

Prop: (ISnI) comerges does not necessarily imply (Sn) converges,

(Sn)=(1,-1,1,-1,1,...) does not comerge but.

 $\left(\left|S_{n}\right|\right) = \left(\left|S_{n}\right|\right) - \left(\left|S_{n}\right|\right) - \left|S_{n}\right|\right) \longrightarrow \left(\left|S_{n}\right|\right) - \left|S_{n}\right|$

3.2

 $\sqrt{n^{2}+n} - n = \frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n} = \frac{1}{\sqrt{1+\frac{1}{n}+1}}$

 $\lim_{N\to\infty} \left(\sqrt{n^2 + n} - N \right) = \lim_{N\to\infty} \left(\sqrt{\frac{1}{1+\frac{1}{N}+1}} \right) = \frac{1}{1+1} = \frac{1}{2}$

3-5.

 (a_n) , $(b_n) \in \mathbb{R}$. Prop. $\limsup_{n \to \infty} (a_n + b_n) \not\leq \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$

 $PB:=\limsup_{n\to\infty}A:=\limsup_{n\to\infty}a_n \quad , \quad B:=\limsup_{n\to\infty}b_n$

If $A = +\infty$, $B \neq -\infty$ or $B = +\infty$, $A \neq -\infty$, then.

it is obvious that proposition holds.

So we can assume $A, B \neq +\infty$.

For any E>O, JN1, N2EN such that

 $a_n < A + \frac{\epsilon}{2}$ for all $n > N_1$

 $b_n < B + \frac{\varepsilon}{2}$ for all $n > N_2$

Let N = max {N, N2}. Then me have =

 $\forall \mathcal{E} = 0$, $a_n + b_n < A + B + \mathcal{E}$ $\forall n > N$

C:= lim sup (an+bn) is the supremum of subsequential limits of (an+bn).

Suppose C > A + B Let $C = \frac{C - (A + B)}{4}$, $E = \frac{C - (A + B)}{4}$. By definition of C, there exists a subsequence $(a_{n_i} + b_{n_i}) \longrightarrow C_n$ within $C = c_n$ neighborhood of C. Terms $a_{n_i} + b_{n_i}$ such that $c_n > N$ must exist and are larger than $C = c_n$. This contradicts $c_n + c_n < C = A + B + E$ $c_n > N$. Hence $c_n < C < A + B$.

3.20.

Prop. Subsequence (P_{n_i}) of Cauchy sequence (P_n) in metrix space. X converges to $P \in X \implies (P_n) \rightarrow P$

 (p_n) is Coupling $\Rightarrow \exists N_2 \text{ S-t.} |p_n - p_m| < \frac{\epsilon}{2} \text{ for all } n, m \ge N_2$.

Let N= max {N1, N2}

For all $n, n_i > N$, $|P_n - P| \leq |P - P_n| + |P_n - P| = \varepsilon$

 $\implies (p_n) \rightarrow p$

(- The set of subsequential limits of {xn} is closed.

Pf: Denote this set as \widetilde{X} . L is the set of h mit. points of \widetilde{X}

If L is finite, then $L = \widetilde{\chi}$, L is closed.

If L is infinite, for any S ∈ L*:

S = lim (yn) for some sequence (yn) consisting of subsequential limits.

There - exists y; in $\frac{3\epsilon}{4}$ neighborhood of s.

 $y_j = \lim_{n \to \infty} x_n$. There exists an infinite subset of $\{x_{n_i}\}$ that is entirely contained in $\frac{\epsilon}{4}$ neighborhood of y_j

 \Rightarrow There exists an infinite subset of $\{X_n\}$ denoted K, such that for any $X_j \in K$ we have .

 $|X_i - s| \leq |X_i - y| + |y - s| < \frac{\varepsilon}{4} + \frac{3\varepsilon}{4} = \varepsilon$

We can form a subsequence with elements in K, and it is a Subsequence of $\{X_n\}$ that converges to S. \Rightarrow $S \in L$

L*= L, L is dosed

$$\frac{1}{1} \lim_{n \to \infty} \frac{n + (-1)^{n}}{n - (-1)^{n}} = \lim_{n \to \infty} \frac{1}{n^{2} - (-1)^{2n}}$$

$$= \lim_{n \to \infty} \frac{n^{2} + 2n(-1)^{n} + 1}{n^{2} - 1}$$

$$= \lim_{n \to \infty} \frac{n^{2} - 1}{n^{2} - 1} + \frac{2n(-1)^{n} + 2}{n^{2} - 1}$$

$$= \lim_{n \to \infty} \frac{2(-1)^{n} + 2}{n^{2} - 1}$$

$$= \lim_{n \to \infty} \frac{2(-1)^{n} + 2}{1 - \frac{1}{n^{2}}}$$

$$= \lim_{n \to \infty} \frac{2(-1)^{n} + 2}{1 - \frac{1}{n^{2}}}$$

$$= \lim_{n \to \infty} \frac{2(-1)^{n} + 2}{1 - \frac{1}{n^{2}}}$$

$$= \lim_{n \to \infty} \frac{2(-1)^{n} + 2}{1 - \frac{1}{n^{2}}}$$

$$\lim_{n\to\infty} \left(\frac{1}{2} + \dots + \frac{1}{2^n} \right) = \lim_{n\to\infty} \frac{\frac{1}{2} \left(1 - \frac{1}{2^n} \right)}{1 - \frac{1}{2}}$$

$$= \lim_{n\to\infty} \left(1 - \frac{1}{2^n} \right)$$

$$= 1$$

Hence. $\lim_{n\to\infty} X_n = \frac{1+\sqrt{29}}{2}$