

SECRET

8 Feb 1956

TIME SCHEDULE FOR [redacted]

25X1

23 Jan-13 Feb 3 weeks	Design transistorized audio amplifier to feed MINIFON.	X
13 Feb-27 Feb 2 weeks	Design matching section from Microstrip horn to crystal.	
27 Feb-5 Mar 1 week	Cut for crystal conference.	
5 Mar-26 Mar 3 weeks	Cold test amplifiers and compensate for temperature range.	
26 Mar-9 Apr 2 weeks	Cold test batteries and design power pack.	△
9 Apr-30 Apr 3 weeks	RF test antenna and detector unit to obtain optimum sensitivity and sensitivity calibration over the frequency range required.	X
30 Apr-7 May 1 week	Design external switch.	△
7 May-14 May 1 week	[redacted]	△
14 May-23 May 2 weeks	Pot amplifiers and make final adjustments on demand system.	
23 May-11 June 2 weeks	Complete assembly of final model.	
11 June-13 June 1 week	Final test.	

25X1

Present estimated delivery dates for components of the project
are as follows:

Hewlett Packard test equipment	1 April (approx)
--------------------------------	------------------

Haydon timing motor	1 Mar
---------------------	-------

Miniature relay	27 Mar
-----------------	--------

SECRET

DOC <u>B</u>	REV DATE <u>2-12-80</u>	BY <u>008632</u>
ORIG COMP	ORIG GLASS	TYPE
<u>S</u>	<u>S</u>	<u>C</u>
JUST <u>22</u>	NEXT REV <u>2010</u>	AUTH: MR 73-2

Antenna

16 Mar 56

ACS

acsfor 56GAIN

the gain of the antenna can be calculated from the formulas and/or nomographs on pp. 586-589 in Siburt's, Microwave Antenna Theory & Design which is volume 12 of the Rad. Lab Series.

Using his notation:

$$a = 4" \quad l_a = 5.47"$$

$$b = 1" \quad l_b = 6.875"$$

thus:

	λ	a/λ	b/λ	l_a/λ	l_b/λ
(HMC)	(ins)				
2	5.9	.68	.17	.93	1.16
4	2.95	1.35	.34	1.85	2.33
6	1.97	2.03	.51	2.78	3.49
8	1.47	2.72	.68	3.72	4.68
10	1.18	3.39	.85	4.63	5.82

$$G_E = \frac{64\pi b}{\pi^2 k_b} \left[C^2 \left(\frac{b}{\sqrt{2\pi k_b}} \right) + S^2 \left(\frac{b}{\sqrt{2\pi k_b}} \right) \right]$$

where C and S are the Fresnel integrals which are tabulated in Tables of Functions by Jahnke and Emde, P. 31.

thus

$$\frac{64}{\pi} \frac{9}{5} = 81.5$$

(3)

$$G_H = \frac{4\pi b la}{\lambda_a} \left\{ [c(u) - c(v)]^2 + [s(u) - s(v)]^2 \right\}$$

$$\text{where } u = \frac{1}{\sqrt{2}} \left[\frac{\sqrt{\lambda} I_a}{a} + \frac{q}{\sqrt{\lambda} I_a} \right]$$

$$v = \frac{1}{\sqrt{2}} \left[\frac{\sqrt{\pi} la}{a} - \frac{a}{\sqrt{\pi} la} \right]$$

Cont on next page

(7)

cont.

freq. (Kmc)	$S(u)$	$S(v)$	$[C(u) - C(v)]^2$	$[S(u) - S(v)]^2$
2	.696	.068	.0025	.395
4	.715	0	.268	.511
6	.712	.011	.056	.492
8	.696	.061	.0016	.403
10	.665	.15	.053	.423
	$\frac{[C(u) - C(v)]^2 + [S(u) - S(v)]^2}{\frac{4\pi b}{a} \frac{la}{\lambda}}$ 6H			
2	.397	2.92	1-16	
4	.779	5.8	4-52	
6	.548	8.73	4.79	
8	.405	11.7	4.75	
10	.476	14.5	6.9	

$$\frac{4\pi b}{a} = \pi$$

(5)

$$\text{then } G = \frac{\pi}{32} \left(\frac{\lambda}{b} G_H \right) \left(\frac{\lambda}{a} G_E \right)$$

freq Kmc	$G_H \cdot G_E \left(\frac{\pi}{32} \frac{G_H G_E}{ab} \right)$	G	$10 \log_{10} G$
2 1.45	.0356	1.24	.92
4 21.1	.515	4.48	6.4
6 50.9	1.25	4.85	6.85
8 86.8	2.12	4.58	6.6
10 202.3	11.95	6.9	8.38

$$\frac{\pi}{32 ab} = \frac{\pi}{128} = .0245$$

Declassified in Part - Sanitized Copy Approved for Release 2012/06/12 : CIA-RDP78-03535A000600010005-8

(6)

The gain is again calculated using the method of Braun, ("Some Data for the Design of Electromagnetic Horns," IRE Transactions on Antennas, Jan 1956):

freq. (Kmc)	a	b	l_E	l_H
----------------	---	---	-------	-------

2	.678	1.695	.927	1.165
---	------	-------	------	-------

4	1.355	.339	1.855	2.33
---	-------	------	-------	------

6	2.03	.508	2.78	3.49
---	------	------	------	------

8	2.72	.68	3.72	4.68
---	------	-----	------	------

10	3.37	.847	4.63	5.82
----	------	------	------	------

freq \ A B $\sqrt{\frac{50}{f_H}}$ $\sqrt{\frac{50}{f_E}}$

(Kmc)

2	4.44	1.245	6.55	7.35
---	------	-------	------	------

4	6.28	1.76	4.64	5.2
---	------	------	------	-----

6	7.68	2.16	3.78	4.24
---	------	------	------	------

8	8.88	2.49	3.27	3.67
---	------	------	------	------

10	9.94	2.78	2.93	3.29
----	------	------	------	------

f_H	f_E	8	$10 \log_{10} g$
2	45.04	-	

4	63.0	-
---	------	---

6	74.35	22.0	9.93	9.96
---	-------	------	------	------

8	84.7	25.35	17.6	12.45
---	------	-------	------	-------

10	91.4	28.3	26.4	14.2
----	------	------	------	------

(8)

the gain may also be approximated
from the formula:

$$\text{Gain} = 10 \cdot 2 \frac{ab}{\lambda^2}$$

so

freq	$10 \log_{10} G$
(rnc)	

2	1.16	0.64
---	------	------

4	4.65	6.67
---	------	------

6	10.04	10.17
---	-------	-------

8	18.6	12.7
---	------	------

10	29	14.62
----	----	-------

1) Input to detector mount should be 40Ω

If the microstrip feeding the mount has $h = 3/16"$, $b = 1.5"$, the impedance is about 45Ω

2) If microstrip of dimensions (b, h) tapers into horn (B, H) , the impedance ratio will be:

$$\frac{Z_2}{Z_1} = \frac{H}{B} \cdot \frac{b}{h} \text{ which in this case is}$$

$$\frac{Z_2}{Z_1} = 8 \frac{H}{B}$$

3) If $\frac{H}{B} = \frac{1}{4}$ and the reflections in the horn are to be kept small; the length in wavelengths at the lowest frequency must be:

$$\ln\left(8 \frac{H}{B}\right) = \ln(2) = .694$$

This means the horn must be 4.2" deep at 2.0 kcnc to minimize loss from reflections.

Declassified in Part - Sanitized Copy Approved for Release 2012/06/12 : CIA-RDP78-03535A000600010005-8

Declassified in Part - Sanitized Copy Approved for Release 2012/06/12 : CIA-RDP78-03535A000600010005-8

2 feb 1956

?

25X1

1.

2. Type of frequency coverage
desired

- a. broad band, low sensitivity
- b. restricted band, high sensitivity

3. Standby hours desired

✓

4. Video band width desired.

5

25X1

2.5 - 9.5

1N358

switch - completely off
standby

- video bandwidth - ok

25X1

~~SECRET~~

okay

25X1

3/30/56

25X1

folded.

~~SECRET~~

3/30/58

25X1
25X1

(Summary of [redacted])

1. Work remaining.

a. Electrical (Relay for demand feature)

- (1) Attempt to reduce noise input from timing motor.
- (2) obtain data on motor speed -vs- battery voltage.
- (3) Run data on response -vs- PRF and pulse width.
- (4) Test system in local area.
- (5) Final Assembly.
- (6) Installation of Silver-cell batteries.
- (7) Photographs prior to assembly.

b. Mechanical

- (1) Arrange fasteners [redacted] to be readily removable.
- (2) Final mechanical assembly.

25X1

25X1

2. Info. from [redacted]

- (1) Max. idle time on battery \approx 1 month - charge not required with unit.

- (2) Switch arrangement ok.

- (3) Dc power from [redacted]

25X1

- (4) Desire entire [redacted] to be readily removable.

25X1

3. Info. from [redacted]

attached.

25X1

Norman:

Per telephone conversation with [redacted]

25X1

4.

Cells will be shipped fully charged via air freight on 2 of 3 rd of April
I am going to call him back and make arrangements for [redacted] to be informed of carrier 25X1
and date when the batteries are shipped - [redacted] will pick them up at National Airport. 25X1

Answers to questions:

Ideal storage conditions: Optimum temperature: minus 20 deg F.
Anything plus 32 to minus 20 deg F provides good
storage conditions.
Cells should be stored in fully charged state.

Expected shelf life:

fully charged [redacted]
partially charged [redacted] The charged condition has little bearing on shelf life.
fully discharged [redacted]

the cells will store in any condition for at least
6 mos. once wet
the cells will store for an indefinite period if
dry.
cells stored in a discharged state do not store as well
as those stored in a charged state.

Effects of temperature extremes: temperature below minus 40 deg F can do ~~HARM~~
~~harm is~~ period of time is long ~~XXXX~~ this will, however,
not destroy.

at temperatures above 100 deg F the cell will
self discharge - in direct proportion to how high the
temperature goes.
eg. at 165 deg F the cell will fully discharge
in 2 weeks
at 135 deg F the cell will discharge
25% in 1 month.

If you have another questions I have to call [redacted] back today 25X1
and can get the answers them.

[redacted] 25X1

Page Denied

$$R = K \sqrt{P_t G_r}$$

$$\frac{1}{2} f t = .9 \times 10^{-4} \text{ miles}$$

$$R = \frac{\lambda}{4\pi} \sqrt{\frac{P_t}{P_r} G_r G_t}$$

<i>freq.</i>	λ	P_t	G_r	$\frac{\lambda}{4\pi} \sqrt{\frac{G_r}{P_r}}$	K
time	miles $\times 10^{-4}$	watts $\times 10^{-8}$		miles/(watt) $^{1/2}$	
2	.9	5	1.2	.035	3.5
4	.45	10	4.4	.0238	2.4
6	.3	40	9.5	.0163	1.6
8	.225	40	19.5 0.91	.0011 .0125	1.15 1.2
10	.18	400	29 0.805	.00314 .00386	.314 .39

$$\frac{.9 \times 10^{-4}}{4\pi} \sqrt{\frac{1.2 \times 10^6}{5}}$$

	3.16	7.1	10	22.4	31.6	71	100	224
b_1	10	50	100	500	1000	5000	10000	50000
b_2	6.32							
50	10.26	14.2						
100	13.16	17.1	20					
500	25.56	29.5	32.4	44.8				
1000	34.66	38.7	41.6	54	65.2			
5000	74.2	78.1	81	93.4	102.6	142		
10000	103.2	107.1	110	122.4	131.6	171	200	
50000	227.2	231.1	234	246.4	255.6	295	324	448

	10	50	100	300	1000	3000	10000	30000
10	8.95	16.6	18.6	31.2	39.0	55		
50	14.5	20.1	21.2	31.7	51.7	66.6		
100	18.6	24.2	28.3	35.8	56.9	71.6		
300	36.1	41.7	45.8	63.5	76.4	93.2		
1000	49.0	54.7	58.9	76.4	89.4	115		
5000	105	110.8	114.8	132	145	201		
10000	146	152	155.5	173	186	242	283	
50000	321	327	331	348.5	361	417	458	635

$$R^* = \sqrt{(h_1 + a)^2 - a^2} \\ + \sqrt{(h_2 + a)^2 - a^2}$$

$$= \sqrt{h_1^2 + 2h_1a} + \sqrt{h_2^2 + 2h_2a}$$

$$\approx h_1 \sqrt{2 \frac{a}{h_1} + 1} + h_2 \sqrt{2 \frac{a}{h_2} + 1}$$

$$= (\sqrt{h_1} + \sqrt{h_2}) \sqrt{2a}$$

$$\sqrt{2a} = \sqrt{2 \cdot 5280 \cdot 5280}$$

$$= \sqrt{2} \times 5280 (ft)^{\frac{1}{2}}$$

1.42 (

$$P_i \rightarrow G_1$$

IR

$$\theta = \frac{S}{R}$$

$$\Theta = \frac{A}{R^2}$$

$$\Phi = G_1 \cdot \Theta$$

$$\frac{P_i}{4\pi} \frac{G_1}{R^2} = \text{intensity at } \Theta$$

$$\frac{P_i G_1 A}{4\pi R^2} = \text{power at } \Theta$$

$$A = \frac{\pi^2}{4\pi} G_2$$

$$\frac{P_i G_1 G_2}{(4\pi)^2} \frac{\pi^2}{R^2} = \text{power at } \Theta$$

if P_2 is min detectable power
then

$$R = \frac{1}{4\pi} \sqrt{\frac{P_2}{P_i}} G_1 G_2$$

is the maximum range

$$\frac{1}{2R} = \theta$$

$$\Theta = \pi \theta$$

$$A = \frac{1}{\Theta} = \frac{\pi}{\pi \theta} = \frac{R^2}{P_i}$$

$$\theta = \frac{\lambda}{2r} \text{ CO}$$

$$\Theta = \frac{\lambda^2}{4r^2}$$

$$G = \frac{4\pi}{\lambda^2}$$

$$= \frac{16\pi r^2}{\lambda^2}$$

$$\theta_1 = \frac{\lambda}{a}, \theta_2 = \frac{\lambda}{b}$$

$$\Theta = \frac{\lambda^2}{ab}$$

$$Gain = \frac{4\pi}{\Theta}$$

$$= \frac{4\pi ab}{\lambda^2}$$

Plane angle and solid angle

$$\underline{\text{GAIN}}: = \frac{\text{Power / unit solid angle}}{\text{total power} / 4\pi}$$

Receiving cross-section:

$$\text{Power received} = \text{incident intensity} \times A$$

$$A = \frac{\pi^2}{4\pi} G$$

Beam width:

Gain varies inversely as beam solid angle. High gain antenna's must necessarily be sharply focused.

High gain antennas are achieved by exciting a large area (ab) in phase. Horns, parabolas, arrays, etc are all methods of doing this

D

D

$$r = 10 \text{ cm}$$

$$P_2 = -50 \text{ dBm} \quad \underline{10 \text{ cm}} = 10^{-4} \text{ km}$$

$$G_1 = 1$$

$$G_2 = 10$$

$$P_1 = 10 \text{ kW}$$

$$R = \frac{10^3}{4\pi}$$

$$\boxed{R = 800 \text{ km}}$$

=

$$P_2 = -90 \text{ dBm}$$

$$\frac{P_1}{P_2} = \frac{10^4}{10^{-8}} = 10^{12} \quad R =$$

$$R = \frac{\lambda}{4\pi} \times 10^7$$

The 10 db width in degrees
can be calculated from the formula
on page 365 of Silver:

$$\theta_H(\frac{1}{10}) = 31 + 79 \frac{2}{A} \text{ where } A = 4''$$

10.15 cm

so for:

freq.	R	λ/A	θ_H
-------	---	-------------	------------

(Kmc)	cm	degrees
-------	----	---------

2	15	1.475	148
---	----	-------	-----

4	7.5	.739	89
---	-----	------	----

6	5	.492	70
---	---	------	----

8	3.75	.369	60
---	------	------	----

10	3	.295	54
----	---	------	----