CHAPITRE 3	ACIDES	CARBOXYL	IOUES
-------------------	---------------	-----------------	--------------

3.1. Formule générale et nomenclature

Les acides carboxyliques forment une classe de composés caractérisés par la présence du groupe fonctionnel carboxyle suivant:

La formule générale des acides carboxyliques est R—C—OH ou RCOOH ou RCO₂H. R peut être un groupe alkyle tel que CH₃-, CH₃-CH₂-... ou un groupe aryle tel que G ou un atome d'hydrogène (H), par exemple :

O O O
$$H-C-OH$$
 $H_3C-C-OH$ O $II-OH$

Lorsque R est un groupe alkyle, les acides carboxyliques ont pour formule brute générale $C_nH_{2n}O_2$ ($n \ge 1$).

3.2. Nomenclature

La nomenclature des acides carboxyliques se présente sous deux formes : nomenclature usuelle et nomenclature IUPAC.

a) Nomenclature usuelle

De nombreux acides carboxyliques ont des noms usuels qui indiquent les sources naturelles à partir desquelles ils ont été isolés tel que l'acide formique existe à l'état naturel chez les fourmis ; l'acide acétique, du latin « *acetum* » (vinaigre)...

$$H$$
— C — OH H_3C — C — OH acide formique acide acétique

Dans le nom historique d'un acide carboxylique, la position d'un substituant est donnée par une lettre grecque. La position adjacent au groupe carboxyle est appelée position α (alpha). Les positions suivantes sont appelées dans l'ordre β (bêta), γ (gamma) et δ (delta).

b) Nomenclature IUPAC

Le nom de l'acide carboxylique dérive de celui de l'alcane possédant la même chaîne carbonée en remplaçant le « *e* » final par la terminaison « *oïque* » et en faisant précéder le nom ainsi formé du mot *acide*.

La chaîne carbonée est numérotée à partir du groupement carboxyle. Il est inutile d'indiquer l'indice du carbone fonctionnel puisqu'il est obligatoirement 1.

Si la molécule comporte plusieurs groupements, la chaîne principale est la chaîne la plus longue contenant le groupe -COOH. Le carbone de la fonction acide est toujours le n°1 en cas de numérotation nécessaire, le tout étant précédé du mot acide.

3.3. Les isomères

Les acides carboxyliques à partir de 4 atomes de carbone possèdent des isomères de constitution, par exemple, C₃H₇COOH a deux isomères de constitution suivants :

$$H_3C$$
— CH_2 — C — OH H_3C — CH — C — OH acide butanoïque acide méthylpropa-2-oïque

3.4. Propriétés des acides carboxyliques

a) Propriétés physiques des acides carboxyliques

Nom	Formule structurale	Température d'ébullition (°C)	Solubilité de l'eau à 20°C
		,	
acide méthanoïque	НСООН	100,8	soluble
acide éthanoïque	CH₃COOH	117,9	soluble
acide propanoïque	CH ₃ CH ₂ COOH	140,8	soluble
acide butanoïque	CH ₃ (CH ₂) ₂ COOH	163,3	soluble
acide pentanoïque	CH ₃ (CH ₂) ₃ COOH	185,5	peu soluble
acide hexanoïque	CH ₃ (CH ₂) ₄ COOH	205,7	peu soluble

Les acides carboxyliques de faibles nombres d'atomes de carbone sont infiniment solubles dans l'eau car la molécule d'acide carboxylique contient deux groupes fonctionnels polaires : groupe hydroxyle (-OH) et groupe carbonyle (-CO-). Puisque ces deux groupes sont polaires, les acides carboxyliques sont bien solubles dans l'eau mais la solubilité diminue par l'augmentation des nombres d'atomes de carbone. Les températures d'ébullition des acides carboxyliques s'accroissent par l'augmentation des nombres d'atomes de carbone et sont supérieures à celles des alcools de masse molaire comparable.

Les acides carboxyliques sont couramment utilisés. Ils sont en effet abondants à l'état naturel tel que dans les fruits acides : les tamarins, les citrons... le vinaigre. L'acide acétique concentré est utilisé comme solvant dans la fabrication des plastiques et des caoutchoucs synthétiques. L'acide méthanoïque est utilisé dans de latex brut pour former un caillot, dans l'industrie de tannage et des teintures.

b) Propriétés chimiques des acides carboxyliques

(1) La dissociation des acides carboxyliques en ions :

RCOOH +
$$H_2O \longrightarrow RCOO^- + H_3O^+$$

C $H_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$

(2) Réaction avec des métaux :

RCOOH + Na
$$\longrightarrow$$
 RCOONa + $\frac{1}{2}$ H₂
CH₃COOH + Na \longrightarrow CH₃COONa + $\frac{1}{2}$ H₂

(3) Réaction avec des oxydes :

RCOOH + CaO
$$\longrightarrow$$
 (RCOO)₂Ca + H₂O
2 CH₃CH₂COOH + CaO \longrightarrow (CH₃CH₂COO)₂Ca + H₂O

(4) Réaction avec des sels acides :

RCOOH + NaHCO₃
$$\longrightarrow$$
 RCOONa + CO₂ + H₂O
CH₃CH₂COOH + NaHCO₃ \longrightarrow CH₃CH₂COONa + CO₂ + H₂O

(5) Réaction avec des bases :

RCOOH + NaOH
$$\longrightarrow$$
 RCOONa + H₂O
CH₃CH₂COOH + NaOH \longrightarrow CH₃CH₂COONa + H₂O

(6) Réaction avec des alcools :

RCOOH + R'OH
$$\longrightarrow$$
 RCOOR' + H₂O
CH₃CH₂COOH + CH₃OH \longrightarrow CH₃CH₂COOCH₃ + H₂O

3.5. Préparation des acides carboxyliques

- Préparation de l'acide acétique.

Par la réaction du méthanol et du monoxyde de carbone à 180°C sous pression entre 30-40 atm :

 Préparation de l'acide formique à partir de la réaction du formiate de sodium et d'acide sulfurique.

EXERCICES

- 1. Écrire la formule semi-développée des acides carboxyliques suivants :
 - a. acide 2-méthylpentanoïque
- b. acide 2,3-diméthylpentanoïque
- c. acide α-chlorobutyrique
- d. acide propionique
- 2. Combien d'isomères possède l'acide carboxylique de formule C₄H₉COOH ? Écrire toutes les formules semi-développées possibles.
- 3. Nommer les acides carboxyliques suivants :
 - a. CH₃CH₂C(CH₃)₂COOH
- b. CH₃CH₂CH(CH₃)COOH
- c. CH₃C(CH₃)₂COOH
- d. CH₃CH₂C(CH₃)₂CH₂COOH

