Simple realizability of complete abstract topological graphs simplified

Jan Kynčl

Charles University, Prague

Graph: $G = (V, E), V \text{ finite, } E \subseteq {V \choose 2}$

Graph: $G = (V, E), V \text{ finite, } E \subseteq \binom{V}{2}$

Topological graph: drawing of an (abstract) graph in the plane

vertices = points edges = simple curves **Graph:** $G = (V, E), V \text{ finite, } E \subseteq \binom{V}{2}$

Topological graph: drawing of an (abstract) graph in the

plane

vertices = points edges = simple curves

forbidden:

simple: any two edges have at most one common point

complete: $E = \binom{V}{2}$

simple: any two edges have at most one common point

or

complete: $E = \binom{V}{2}$

topological graph drawing

simple complete topological graph simple drawing of K_5

$$A = (G, \mathcal{X}); G = (V, E)$$
 is a graph, $\mathcal{X} \subseteq \binom{E}{2}$

$$A = (G, \mathcal{X}); G = (V, E)$$
 is a graph, $\mathcal{X} \subseteq \binom{E}{2}$

- T is a simple realization of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - \mathcal{X} is the set of crossing pairs of edges in T

$$A = (G, \mathcal{X}); G = (V, E)$$
 is a graph, $\mathcal{X} \subseteq \binom{E}{2}$

- T is a **simple realization** of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - \mathcal{X} is the set of crossing pairs of edges in T
- AT-graph A is simply realizable if it has a simple realization

Example:
$$A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$$

simple realization of A:

$$A = (K_5, \emptyset)$$

$$A = (G, \mathcal{X}); G = (V, E)$$
 is a graph, $\mathcal{X} \subseteq \binom{E}{2}$

- T is a **simple realization** of (G, \mathcal{X}) if
 - T is a simple drawing of G and
 - \mathcal{X} is the set of crossing pairs of edges in T
- AT-graph A is simply realizable if it has a simple realization

Example:
$$A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$$

simple realization of A:

 $A = (K_5, \emptyset)$ is not simply realizable

Simple realizability

instance: AT-graph A

question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989)

Simple realizability of AT-graphs is NP-complete.

Theorem: (K., 2011)

Simple realizability of complete AT-graphs is in P.

"Unfortunately, the algorithm is of rather theoretical nature."

— P. Mutzel, 2008

"The proof in [..] only gives a highly complex testing procedure, but no description in terms of forbidden minors or crossing configurations."

— M. Chimani, 2011

Main result

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y} = \mathcal{X} \cap \binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph *A* with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but *A* itself is not.

Main result

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y} = \mathcal{X} \cap \binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph *A* with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but *A* itself is not.

 Theorem 1 ⇒ straightforward O(n⁶) algorithm (but does not find the drawing)

Main result

def.: (H, \mathcal{Y}) is an **AT-subgraph** of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y} = \mathcal{X} \cap \binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph *A* with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but *A* itself is not.

- Theorem 1 \Rightarrow straightforward $O(n^6)$ algorithm (but does not find the drawing)
- Ábrego, Aichholzer, Fernández-Merchant, Hackl, Pammer, Pilz, Ramos, Salazar and Vogtenhuber (2015) generated a list of simple drawings of K_n for $n \le 9$

Proof of Theorem 1 (sketch)

Let $A = (K_n, \mathcal{X})$ be a given complete AT-graph with vertex set $[n] = \{1, 2, ..., n\}$.

Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.

three main steps:

- 1) computing the rotation system
- computing the homotopy classes of edges with respect to a star
- computing the minimum crossing numbers of pairs of edges

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system

- 1a) rotation systems of 5-tuples (up to orientation)
- 1b) orienting 5-tuples (here 6-tuples needed)
- 1c) rotations of vertices
- 1d) rotations of crossings

Ábrego et al. (pers. com.) verified that an abstract rotation system (ARS) of K_9 is realizable if and only if the ARS of every 5-tuple is realizable, and conjectured that this is true for any K_n .

Step 2: computing the homotopy classes of edges

- Fix a vertex v and a topological spanning star S(v), drawn with the rotation computed in Step 1
- for every edge e not in S(v), compute the order of crossings of e with the edges of S(v).

Step 2: computing the homotopy classes of edges

- Fix a vertex v and a topological spanning star S(v), drawn with the rotation computed in Step 1
- for every edge e not in S(v), compute the order of crossings of e with the edges of S(v).
- drill small holes around the vertices, fix the endpoints of the edges on the boundaries of the holes

Step 3: computing the minimum crossing numbers

cr(e, f) = minimum possible number of crossings of two curves from the homotopy classes of e and f

cr(e) = minimum possible number of self-crossings of a curve from the homotopy class of e

Fact: (follows e.g. from Hass–Scott, 1985) It is possible to pick a representative from the homotopy class of every edge so that in the resulting drawing, all the crossing numbers cr(e, f) and cr(e) are realized simultaneously.

We need to verify that

- cr(e) = 0,
- $\operatorname{cr}(e, f) \leq 1$, and
- $cr(e, f) = 1 \Leftrightarrow \{e, f\} \in \mathcal{X}$.

3a) characterization of the homotopy classes

- 3b) parity of the crossing numbers (4- and 5-tuples)
- 3c) crossings of adjacent edges (5-tuples)
- 3d) multiple crossings of independent edges (5-tuples)

Picture hanging without crossings

remove one nail:

similar concept with crossings: Demaine et al., Picture-hanging puzzles, 2014.

Independent \mathbb{Z}_2 -realizability

- T is an independent \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - \mathcal{X} is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is **independently** \mathbb{Z}_2 -realizable if it has an independent \mathbb{Z}_2 -realization

Obs.: simple realization \Rightarrow independent \mathbb{Z}_2 -realization **Example:**

$$A = (K_4, \{\{\{1,3\}, \{2,4\}\}, \{\{1,2\}, \{3,4\}\}, \{\{1,4\}, \{2,3\}\}\})$$
 independent \mathbb{Z}_2 -realization of A :

independent \mathbb{Z}_2 -realization of A:

$$A=(K_5,\emptyset)$$

Independent \mathbb{Z}_2 -realizability

- T is an independent \mathbb{Z}_2 -realization of (G, \mathcal{X}) if
 - T is a drawing of G and
 - X is the set of pairs of independent edges that cross an odd number of times in T
- AT-graph A is independently Z₂-realizable if it has an independent Z₂-realization

Obs.: simple realization \Rightarrow independent \mathbb{Z}_2 -realization **Example:**

$$A = (\dot{K}_4, \{\{\{1,3\}, \{2,4\}\}, \{\{1,2\}, \{3,4\}\}, \{\{1,4\}, \{2,3\}\}\}))$$

independent \mathbb{Z}_2 -realization of A:

 $A = (K_5, \emptyset)$ is not independently \mathbb{Z}_2 -realizable (Hanani–Tutte)

def.: Call an AT-graph (G, \mathcal{X}) even (or an even G) if $|\mathcal{X}|$ is even, and odd (or an odd G) if $|\mathcal{X}|$ is odd.

Theorem 3: Every complete AT-graph that is not independently \mathbb{Z}_2 -realizable has an AT-subgraph on at most six vertices that is not independently \mathbb{Z}_2 -realizable.

More precisely, a complete AT-graph is independently \mathbb{Z}_2 -realizable if and only if it contains no even K_5 and no odd $2K_3$ as an AT-subgraph.