Simulation of massive persistent sensor

Prof. Neil C. Rowe
ncrowe@nps.navy.mil
August 2004

Changing sensor technology

- Microsensors are getting smaller and smaller -think of dispersing millions of sensors in a battlespace (land, water, or air).
- New sensor types: chemical, biological, nuclear.
 So networks will be nonhomogeneous.
- Then the problems are: (1) finding the sensors;
 (2) wireless communications; (3) selforganization.
- A nice idea: many small primitive low-powered sensors plus a few sophisticated high-power "data collectors".

2

Simulation is important for researching sensor

The MSVES Institute Naval Postgraduate School

networks

- It's too hard to build real millionelement or billion-element networks.
- We can compare millions of implementations easily in a simulation.
- We can explore self-organization ideas easily.

Sensor network setup

- The WSVES

 Institute

 Naval Postgraduate School
- Randomly disperse small sensors (throw out of aircraft, etc.)
- Sensors can be located by sending targets through the sensor field and noting reports.
- Communications can be reduced by reporting only changes.
- Communications can be done by sounds, lights, and chemicals besides radio – will fool enemies better.

Sensor network from the Hynes thesis

Placement algorithms The MSVES

Algorithm Coverage Comparison

Number of Sensors

Tracking an intruder with connected sensors

For nondirectional sensors, one can triangulate from three signal strengths by solving 3 equations in 3 unknowns.

Analyzing moving

dimension, cluster to find behavioral episodes.

distance of target along path

9

time

Self-organizing

networks Military-setting processing load can vary greatly.

Load balancing is helps as well as redundancy.

Overloaded collector sensors can broadcast load-sharing requests.

With a persistent imbalance, streamlined communications channels can be created, amounting to a new hierarchy.

Additional issues

How does irregular terrain affect the communications of the sensors?

What if the entire sensor network moves, as in a convoy?

How many sensors does the enemy need to destroy to significantly hurt us?

Can deception confuse the enemy as to where our important sensors are?