#### Politechnika Poznańska Wydział Elektryczny Instytut Automatyki i Inżynierii Informatycznej

## Baza danych dokumentów podpisanych Stemplami czasowymi

Autorzy:

MACIEJ MARCINIAK nr indeksu: 121996

e mail:

maciej.r.marcniak@student.put.poznan.pl

Damian Filipowicz nr indeksu: 122002

e mail:

Damian.Filipowicz@student.put.poznan.pl

Krzysztof Łuczak nr indeksu: 122008

e mail:

krzysztof.t.luczak@student.put.poznan.pl

DAWID WIKTORSKI nr indeksu: 122056

e mail:

dawid.wiktorski@student.put.poznan.pl

25 kwietnia 2017

# Spis treści

| 1 Ogólny opis systemu |                                | olny opis systemu         | 3 |
|-----------------------|--------------------------------|---------------------------|---|
| 2                     | Organizacja pracy              |                           |   |
|                       | 2.1                            | Podział zadań             | 4 |
|                       | 2.2                            | Harmonogram pracy         | 5 |
|                       | 2.3                            | Repozytiorium GitHub      | 5 |
| 3                     | Schemat idei stempli czasowych |                           | 6 |
| 4                     | Diagramy UML systemu           |                           |   |
|                       | 4.1                            | Diagram przypadków użycia | 8 |
|                       | 4.2                            | Diagramy sekwencii        | 9 |

# Ogólny opis systemu

System ten będzie służyć do uzyskiwania podpisów cyfrowych ze stemplem czasowym, który będzie wiarygodny poprzez zastosowanie urzędu certyfikacyjnego w postaci serwera połączonego z bazą danych. Użytkownik przy pomocy aplikacji lub strony internetowej będzie przesyłał dokument wraz z funkcją skrótu, następnie serwer będzie swoim własnym podpisem dawał stempel czasowy, który będzie umieszczał w bazie danych i odsyłał użytkownikowi (do aplikacji lub strony WWW) dokument wraz z podpisem cyfrowym zawierającym stempel czasowy. Dzięki temu dokumenty będą miały wiarygodny stempel czasowy pozwalający określić dokładną godzinę zatwierdzenia dokumentu w systemie autentykacji.

W skład systemu będzie wchodzić:

- aplikacja serwerowa z bazą danych,
- aplikacja webowa,
- aplikacja mobilna,
- aplikacja desktopowa.

# Organizacja pracy

#### 2.1 Podział zadań

Realizacja projektu odbywać się będzie w modułach tworzonych współbieżnie:

- dokumentowania projektu,
- tworzenia aplikacji serwerowej,
- tworzenia aplikacji webowej,
- tworzenia aplikacji mobilnej,
- tworzenia aplikacji desktopowej,
- mechanizm uwierzytelniania.

Wyszczególniony podział modułów pomiędzy członków zespołu przedstawiony został w Tabeli 2.1.

Tabela 2.1: Podział zadań projektowych

| Osoba             | Rola                                     |
|-------------------|------------------------------------------|
| Maciej Marciniak  | Kierownik, programista: dokumentacja,    |
|                   | organizacja zespołu, aplikacja serwerowa |
| Dawid Wiktorski   | Programista: aplikacja mobilna na system |
|                   | Android, aplikacja serwerowa             |
| Krzysztof Łuczak  | Programista: aplikacja webowa, aplikacja |
|                   | serwerowa, mechanizm uwierzytelniania    |
| Damian Filipowicz | Programista, aplikacja desktopowa,       |
|                   | aplikacja serwerowa                      |

## 2.2 Harmonogram pracy

Harmonogram pracy zespołu przedstawiony został na wykresie Gantta, który znajduje się w linku poniżej do arkusza Google: Harmonogram prac

## 2.3 Repozytiorium GitHub

Repozytorium GitHub

# Schemat idei stempli czasowych

Na dokument podpisany stemplem czasowym składają się trzy pliki:

- podpisywany dokument,
- stempel czasowy,
- wygenerowany certyfikat uwierzytelniający stempel czasowy.

# Tworzenie dokumentu podpisanego stemplem czasowym

Tworzenie certyfikatu odbywa się po stronie zaufanego urzędu poprzez dodanie do funkcji skrótu podpisywanego dokumentu, stempla czasowego, a następnie z utworzonej paczki ponownie tworzy się funkcję skrótu. Ostatecznie skrót obu plików szyfruje się kluczem prywatnym i przesyła się z powrotem do użytkownika.

Schemat przebiegu tworzenia dokumentu przedstawiony jest na Rysunku 3.1.

#### Trusted timestamping



Rysunek 3.1: Diagram tworzenia stempli czasowych

# Weryfikacja dokumentu podpisanego stemplem czasowym

Weryfikacja certyfikatu odbywa się po stronie użytkownika poprzez wykonanie funkcji skrótu dokumentu, następnie dodanie do niej dołączonego stempla czasowego i ponowne wykonanie funkcji skrótu. Certyfikat należy odszyfrować kluczem publicznym użytkownika, po czym porównać utworzone ciągi znaków. Jeżeli otrzymane pliki są identyczne, to dokument został podpisany o podanej godzinie, która umieszczona jest w dołączonym pliku stempla czasowego.

Schemat przebiegu weryfikacji dokumentu przedstawiony jest na Obrazie 3.2.

#### Checking the trusted timestamp



Rysunek 3.2: Diagram weryfikacja stempli czasowych

# Diagramy UML systemu

## 4.1 Diagram przypadków użycia



Rysunek 4.1: Diagram przypadków użycia

# 4.2 Diagramy sekwencji

### Rejestracja użytkownika



Rysunek 4.2: Diagram sekwencji rejestracji użytkownika

## Logowanie użytkownika



Rysunek 4.3: Diagram sekwencji logowanie użytkownika

## Podpis pliku stemplem czasowym



Rysunek 4.4: Diagram sekwencji podpisu pliku stemplem czasowym

## Weryfikacja stempla czasowego



Rysunek 4.5: Diagram sekwencji weryfikacji stempla czasowego