# FetNet: A Recurrent Convolutional Network for Occlusion Identification in Fetoscopic Videos

Sophia Bano, Francisco Vasconcelos, Jan Deprest, Sebastien Ourselin, Emmanuel Vander Poorten, Tom Vercauteren, and Danail Stoyanov

> Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK

> > ⊠sophia.bano@ucl.ac.uk













# Twin-to-Twin Transfusion Syndrome (TTTS)



TTTS is a fetal anomaly affecting identical twins sharing a monochorionic placenta

#### Consequence

- Unbalanced flow of blood
- Donor may experience much slower growth
- Recipient at risk of heart failure

#### Common treatment

Fetoscopic laser photocoagulation





# **Fetoscopic Laser Photocoagulation**



### Fetoscopic laser photocoagulation is a minimally invasive surgery

 Visually explore the placenta using fetoscopic camera to identify vascular anastomose

 Localize the target vessels and use the laser to ablate them





### Safe procedure requires

- Clear view of the placenta
- Clear path between the ablation tool and the target vessels



# Fetoscopic Video Analysis: Common Challenges





### Difficult visual conditions

- Poor visibility (low resolution, low illumination, amniotic fluid turbidity)
- Occlusion due to the fetus and working channel port
- Specular highlights resulting in glare and reflection



# **Fetoscopic Event Identification - Motivation**



### Identifying fetoscopic events can

- Assist surgeons during the TTTS procedure
- Provide context for navigation and mapping



Four event labels created are











- Integrates:
  - Convolutional Neutral Network (CNN) for encoding spatial cues







- Integrates:
  - Convolutional Neutral Network (CNN) for encoding spatial cues
  - Long Short-Term Memory (LSTM) for encoding temporal cues
- Multi-labels handled using sigmoid activation
  - Independent prediction probabilities









- Integrates:
  - Convolutional Neutral Network (CNN) for encoding spatial cues
  - Long Short-Term Memory (LSTM) for encoding temporal cues
- Multi-labels handled using sigmoid activation
  - Independent prediction probability
- Differential learning rates
  - Pretrained CNN weights





### **Dataset collection and annotation**



- Seven fetoscopic videos from different patients
- Average duration of each video is 800s
- Frame-level manual annotation for events







# **Quantitative Analysis and Comparison**



7-fold cross-validation

| Methods         |                                                              |
|-----------------|--------------------------------------------------------------|
| Ablation_detect | Fetoscopic ablation detection method [Vasconcelos_IJCAR2018] |
| VGGFE_SVM       | CNN features with SVM classifier [Cadene_arXiv2016]          |
| VGG16_fine      | Fine-tuning of VGG16 [Simonyan_ICLR2015]                     |
| VGG16_temporal  | Fine-tuning and temporal smoothing of VGG16 [Cadene_arXiv20] |
| FetNet_noDL     | Proposed without differential learning                       |
| FetNet_DL       | Proposed with differential learning                          |



Comparison

# **Quantitative Analysis and Comparison**



#### 7-fold cross-validation

| Class           |                   |       |           |      |          |         |
|-----------------|-------------------|-------|-----------|------|----------|---------|
| Class           |                   | Clear | Occlusion | Tool | Ablation | Average |
| Method          |                   |       |           |      |          |         |
| Ablation_detect | Precision         | -     | -         | -    | 0.81     | 0.81    |
|                 | $\mathbf{Recall}$ | -     | -         | -    | 0.71     | 0.71    |
|                 | F1-score          | -     | -         | -    | 0.76     | 0.76    |
| VGGFE_SVM       | Precision         | 0.52  | 0.55      | 0.68 | 0.32     | 0.52    |
|                 | Recall            | 0.42  | 0.70      | 0.50 | 0.19     | 0.45    |
|                 | F1-score          | 0.46  | 0.62      | 0.58 | 0.24     | 0.47    |
| VGG16_fine      | Precision         | 0.66  | 0.69      | 0.76 | 0.96     | 0.77    |
|                 | Recall            | 0.47  | 0.69      | 0.73 | 0.61     | 0.63    |
|                 | F1-score          | 0.55  | 0.69      | 0.74 | 0.75     | 0.68    |
| VGG16_temporal  | Precision         | 0.72  | 0.70      | 0.76 | 0.96     | 0.79    |
|                 | Recall            | 0.46  | 0.68      | 0.73 | 0.56     | 0.61    |
|                 | F1-score          | 0.56  | 0.69      | 0.74 | 0.71     | 0.68    |
| FetNet_noDL     | Precision         | 0.72  | 0.70      | 0.86 | 0.95     | 0.81    |
|                 | Recall            | 0.78  | 0.60      | 0.90 | 0.69     | 0.74    |
|                 | F1-score          | 0.74  | 0.65      | 0.88 | 0.80     | 0.77    |
| FetNet_DL       | Precision         | 0.86  | 0.69      | 0.92 | 0.96     | 0.86    |
|                 | Recall            | 0.84  | 0.79      | 0.94 | 0.95     | 0.88    |
|                 | F1-score          | 0.85  | 0.74      | 0.93 | 0.95     | 0.87    |





# **Qualitative Analysis**









# **Qualitative Analysis**



### Single label per frame

Ground-truth label
Predicted probability
VGG16\_fine
FetNet\_noDL
FetNet\_DL

Predicted label
VGG16\_fine
FetNet\_noDL
FetNet\_DL

FetNet\_DL

**Clip 1: Clear view or occlusion** 



**Clip 2: Tool or ablation** 





# **Qualitative Analysis**



### Multi-labels per frame

Ground-truth label
Predicted probability
VGG16\_fine
FetNet\_noDL
FetNet\_DL

Predicted label
VGG16\_fine
FetNet\_noDL
FetNet\_DL

FetNet\_DL

**Clip 3: Occlusion and tool** 



**Clip 4: Occlusion, tool and ablation** 





### Conclusion



### Proposed FetNet architecture

- Occlusion Identification in Fetoscopic Videos
- Obtained an overall F1-score of 87%
- Outperformed existing methods
- Online testing returned a frame rate of 114 fps

#### Future work

- Possible integration in real-world systems
- Clear view segmentations are suitable for the field-of-view expansion









**June 2020** 

# Thank you

⊠sophia.bano@ucl.ac.uk













