Svar till tentamen i Dator- och telekommunikation den 21 oktober 2013

Uppgift 1

- a) Eftersom man alltid räknar upp antalet kunder i kösystem 1 vid en ankomst så finns det oändligt många buffertplatser.
- b) En betjäning startas alltid om det efter en ankomst finns 1 eller 2 kunder i systemet. Det innebär att det måste finnas 2 betjänare.
- c) Det bör bli något i den här stilen:

```
if (NoInSystem2 < 13)
   NoInSystem2++;
if (NoInSystem2 <= 3)
   InsertEvent(Ready2, time + serviceTimeIn2);
if (NoInSystem1 > 1)
   InsertEvent(Ready1, time + 0.1);
```

Observera att uppgiften kan lösas på många sätt.

d) Här är ett förslag:

```
if (NoInSystem2 > 2)
   InsertEvent(Ready2, time + serviceTimeIn2);
```

Uppgift 2

a) Man kan redovisa med en tabell som kan se ut enligt nedan. Observera att man kan välja nod F i rad 3 i tabellen, det ger samma slutresultat.

Α	В	С	D	E	F
0	∞	∞	∞	∞	∞
	1(A)	∞	10(A)	∞	1(A)
		3(B)	10(A)	∞	1(A)
		2(F)	10(A)	3(F)	
			10(A)	3(F)	
			4(E)		

b) Även här kan vi göra en tabell:

Steg	Α			В		С		D				
1	Tom tabell		Х	2	4	Υ	2	3	Z	2	3	
	Х	9	1	Х	2	4	Υ	2	3	Z	2	3
2				Υ	20	2	Х	20	1	Х	4	1
				Z	4	3	Z	4	2	Υ	4	2
	Χ	9	1	Χ	2	4	Υ	2	3	Oförändrad		
3	Υ	27	1	Υ	6	3	Χ	6	2			
	Z	11	1	Z	4	3	Z	4	2			
	Х	9	1	Oförändrad			Oförändrad			Oförändrad		
4	Υ	13	1									
	Z	11	1									
5	Oförändrad		Oförändrad		Oförändrad		Oförändrad					

Uppgift 3

- I. Sant
- II. Falskt (man fick rätt också för sant eftersom frågan var dåligt formulerad)
- III. Falskt
- IV. Falskt
- V. Falskt
- VI. Sant
- VII. Falskt
- VIII. Falskt
 - IX. Falskt
 - X. Sant

Uppgift 4

a) Vi börjar med att beräkna λ_{eff} :

$$\lambda_{eff} = \frac{E(N)}{E(T)} = \frac{3}{0,012} = 250 \text{ s}^{-1}$$

Nu får vi spärrsannolikheten:

$$\frac{\lambda - \lambda_{eff}}{\lambda} = \frac{400 - 250}{400} = 37.5$$

b) Medeltiden som en kund tillbringar i bufferten är skillnaden mellan medeltiden i hela systemet och medelbetjäningstiden d.v.s. 12 - 2 = 10 ms. Littles sats ger nu medelantal kunder i bufferten:

$$E(N_b) = \lambda_{eff} \cdot E(T_b) = 250 \cdot 0.01 = 2.5$$

sss

- c) 10 ms
- d) Det blir så många som betjänaren kan klara av under en minut. Eftersom medelbetjäningstiden är 2 ms så klarar den av 500 kunder per sekund vilket blir $500 \cdot 60 = 30\,000$ på en minut.

Uppgift 5

- a) Se avsnitt 7.3.3 i läroboken.
- b) Se avsnitt 7.3.3 i läroboken.
- c) Jitter innebär att fördröjningen mellan sändare och mottagare varierar. Det kan uppkomma genom att köerna i routrar varierar i längd och ibland genom att datagram som tillhör en förbindelse inte väljer samma väg.
- d) Mottagaren har positionen (30, 0). Rita en figur!

Uppgift 6

- a) Se avsnitt 6.2 i läroboken.
- b) Man gör så här:

$$W_1 = [1]$$

$$W_2 = \begin{bmatrix} W_1 & W_1 \\ W_1 & -W_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

c) Om det som sändare i ska sända är 0 så sätts d_i till -1, om det som ska sändas är 1 så sätts d_i till 1, om ingenting ska sändas så sätts d_i till 0. Antag att sändare i har tilldelats r_i (vilket är rad i i Walsh-matrisen. Det som sänds är då:

$$\sum_{i} d_i r_i$$

där summan tas över alla sändare. En mottagare kan beräkna vad sändare i har sänt genom att ta skalärprodukten av det som tas emot och r_i . Blir den positiv sändes 1, blir den negativ sändes 0, blir den 0 så sändes ingenting.

d) Se avsnitt 6.3.2 i läroboken.