p-adic Numbers and Skolem's Method

Daniel Grunkin

University of Copenhagen

June 21, 2024

What we will cover

- Introduction
 - The general question
 - Connecting the question to algebraic number theory
- 2 Thue's Theorem
 - General considerations
 - Proof of Thue's theorem
- 3 An attempt to generalize Thue's theorem
 - First attempt
 - Second attempt
 - Improvements of lemma
- Alan Baker's improvements

Diophantine equations

What is a Diophantine equation?

Diophantine equations

Question: Given a Diophantine equation, can we determine if it has infinitely many solutions?

Hilbert's 10th problem

There is no algorithm that can determine if an arbitrary Diophantine equation has a solution.

An equation where we can answer the question

Consider the equation

$$x^2 - 2y^2 = 7.$$

A solution is x = 3 and y = 1 and if (x, y) is a solution then so is (3x + 4y, 2x + 3y). Thus, there are infinitely many solutions to this equation.

Another approach

Let $K = \mathbb{Q}(\sqrt{2})$. Then

$$N_{K/\mathbb{Q}}(x+y\sqrt{2})=x^2-2y^2$$

Let $\mathfrak D$ be the coefficient ring for $\langle 1,\sqrt{2}\rangle$. By Dirichlet's Unit theorem

$$\mathfrak{D}^* = W \times V$$

with W finite and V free abelian with rank r+s-1=2+0-1=1. Consider again

$$x^2 - 2y^2 = 7$$

Consider Pell's equation $x^2 - ny^2 = 1$, n not a square.

A more general case

Let K be a number field, $\mu_1, ..., \mu_n$ a basis and assume

$$F(x_1,...,x_n)=N_{K/\mathbb{Q}}(x_1\mu_1+\cdots+x_n\mu_n)$$

Does $F(x_1,...,x_n)=c, c\in\mathbb{Q}$, have infinitely many solutions?

Let $M=\langle \mu_1,...,\mu_n\rangle$. Then there is a finite set Γ of elements of norm c and independent units of norm 1, $\epsilon_1,...,\epsilon_t\in\mathfrak{D}^*$, so that for all $\alpha\in M$ we have

$$N_{K/\mathbb{Q}}(\alpha) = c$$

if and only if

$$\alpha = \gamma \epsilon_1^{u_1} ... \epsilon_t^{u_t}$$

Here t = r + s - 1. So to answer the question...

Thue's Theorem

Theorem (Thue)

Suppose f(x, y) is an irreducible form of degree $n \ge 3$. Then there are only finitely many integer solutions to the equation f(x, y) = c, for any non-zero $c \in \mathbb{Q}$.

With the additional requirement that f(x,1) has an imaginary root, Thoralf Skolem proved this theorem.

Some general considerations

Suppose K is a number field with basis $\mu_1,...,\mu_n$ and suppose F is an irreducible form so that $F(x_1,...,x_m)=N_{K/\mathbb{Q}}(x_1\mu_1+\cdots+x_m\mu_m)$ with m< n. Consider the equation

$$F(x_1,...,x_m) = c$$

Does this equation have finitely many solutions?

Let

$$M = \langle \mu_1, ..., \mu_m \rangle$$
 and $M' = \langle \mu_1, ..., \mu_m, \mu_{m+1}, ..., \mu_n \rangle$

Finding the solutions to

$$F(x_1,...,x_m)=c$$

is the same as finding $\alpha := x_1 \mu_1 + ... + x_n \mu_n \in M'$ so that $N_{K/\mathbb{Q}}(\alpha) = c$ under the requirement

$$x_{m+1} = ... = x_n = 0$$

Now,

$$x_{m+1} = \dots = x_n = 0$$

is the same as

$$\operatorname{Tr}_{K/\mathbb{Q}}(\mu_{m+1}^*\alpha)=...=\operatorname{Tr}_{K/\mathbb{Q}}(\mu_n^*\alpha)=0$$

which is again the same as the equations

$$\sum_{i=1}^{n} \sigma_{i}(\mu_{i}^{*}\alpha) = 0, \text{ for } i \in \{m+1, ..., n\}$$

Daniel Grunkin (University of Copenhagen) p-adic Numbers and Skolem's Method June 21, 2024 15 / 43

Since $\alpha \in M'$ and $N_{K/\mathbb{O}}(\alpha) = c$ we can write

$$\alpha = \gamma \epsilon_1^{u_1} ... \epsilon_t^{u_t}$$

for $u_i \in \mathbb{Z}$ and $\gamma \in \Gamma$. So

$$\sum_{i=1}^{n} \sigma_{j}(\gamma \mu_{i}^{*}) \sigma_{j}(\epsilon_{1})^{u_{1}} ... \sigma_{j}(\epsilon_{t})^{u_{t}} = \sum_{i=1}^{n} \sigma_{j}(\mu_{i}^{*} \alpha) = 0, \text{ for } i \in \{m+1, ..., n\}.$$

Suppose $K = \mathbb{Q}(\beta)$ and set $N = \mathbb{Q}(\sigma_1(\beta), ..., \sigma_n(\beta))$. Pick a prime \mathfrak{p} of O_N . We get a valuation $v_{\mathfrak{p}}$ on N and it extends to the completion $N_{\mathfrak{p}}$. Let $O_{\mathfrak{p}}$, the valuation ring in $N_{\mathfrak{p}}$.

Consider again

$$\sum_{j=1}^{n} \sigma_j(\gamma \mu_i^*) \sigma_j(\epsilon_1)^{u_1} ... \sigma_j(\epsilon_t)^{u_t} = 0$$

The $\epsilon_i \in \mathfrak{D}^*$ can be chosen so that it makes sense to allow $u_i \in O_{\mathfrak{p}}$. Setting $A_{ij} = \sigma_j(\gamma \mu_i^*)$ and $L_j(u_1,...,u_t) = \sum_{i=1}^t u_i \log(\sigma_j(\epsilon_i))$ we now define

$$G_i(u_1,...,u_t) := \sum_{j=1}^n A_{ij} \exp L_j(u_1,...,u_t)$$

Suppose $F(x_1,...,x_m)=c$ has infinitely many solutions. Then there is $\gamma\in\Gamma$ so that $S_\gamma=\{\gamma\epsilon_1^{u_1}...\epsilon_t^{u_t}\mid u_i\in\mathbb{Z}\}\subseteq M$ is an infinite set of elements with norm c. We have an injective homomorphism $\iota:S_\gamma\hookrightarrow O_\mathfrak{p}^t$. Let α_s be a sequence of unique elements of S_γ . Then $U_s=\iota(\alpha_s)$ is a sequence of unique elements of $O_\mathfrak{p}^t$. Hence there is a convergent subsequence U_s^* of U_s converging to $u^*=(u_1^*,...,u_t^*)\in O_\mathfrak{p}$ \Longrightarrow infinitely many points in any neighborhood of u^* . Note also that we now have a subsequence α_s^* of α_s so that $U_s^*=\iota(\alpha_s^*)$.

Shifting to the origin

Let
$$(u_1,...,u_t) \in O^t_{\mathfrak{p}}$$
 and write $u_k = u_k^* + v_k$ and set $A^*_{ij} = A_{ij} \exp L_j(u_1^*,...,u_t^*)$. We get for $i \in \{m+1,...,n\}$

$$G_i(u_1,...,u_t) = \sum_{j=1}^n A_{ij}^* \exp L_j(v_1,...,v_t) =: H_i(v_1,...,v_t)$$

The H_i define a local manifold, V, and it contains infinitely many points in any ϵ -neighborhood of the origin. Hence V contains an analytic curve.

Let us continue...

$$\prod_{i \le k < l \le n} (L_k(v_1, ... v_t) - L_l(v_1, ..., v_t)) = 0$$

$$\prod_{i \le k < l \le n} (L_k(v_1, ... v_t) - L_l(v_1, ..., v_t)) = 0$$

Assume $\omega_1(X),...,\omega_t(X)$ is a curve on V.

$$\prod_{i \le k < l \le n} (L_k(v_1, ... v_t) - L_l(v_1, ..., v_t)) = 0$$

Assume $\omega_1(X),...,\omega_t(X)$ is a curve on V. This means that we have

$$\sum_{j=1}^n A_{ij}^* \exp L_j(\omega_1(X),...,\omega_t(X)) = 0$$

for i = m + 1, ..., n.

$$\prod_{i \leq k < l \leq n} (L_k(v_1, ... v_t) - L_l(v_1, ..., v_t)) = 0$$

Assume $\omega_1(X),...,\omega_t(X)$ is a curve on V. This means that we have

$$\sum_{j=1}^n A_{ij}^* \exp L_j(\omega_1(X),...,\omega_t(X)) = 0$$

for i = m + 1, ..., n. Suppose we have $k \neq l$ so that

$$L_k(\omega_1(X),...,\omega_t(X)) = L_l(\omega_1(X),...,\omega_t(X))$$

22 / 43

In other words, under our assumption, if a curve is on V then it is also on W so $V\subseteq W$.

Write

$$\iota(\alpha_s^*) = (u_{1s}, ..., u_{ts})$$
$$u_{is} = u_i^* + v_{is}$$

Set $V_s = (v_{1s}, ..., v_{ts})$. Then $V_s \in V$ converges to the origin so there is $N \in \mathbb{N}$ so that $V_s \in W$ for all $s \geq N$. Thus there are $k \neq l$ so that $L_k(V_s) - L_l(V_s) = 0$ for all $s \geq N$. Consider

$$\{\alpha_s^* \mid L_k(V_s) - L_l(V_s) = 0 \text{ for } s \ge N\}$$

If this is a finite set then $F(x_1,...,x_m)=c$ has finitely many solutions.

A case where we can overcome the two obstructions

If m=2 and one of the σ_j is a complex embedding, then we can overcome these obstructions. Let us see why.

In this case, consider again

$$\{\alpha_s^* \mid L_k(V_s) - L_l(V_s) = 0 \text{ for } s \ge N\}$$

Why is this set finite?

We also need to show that there exists $k \neq l$ so that

$$L_k(\omega_1(X),...,\omega_t(X)) = L_l(\omega_1(X),...,\omega_t(X))$$

A consequence of what we have just shown

Let $\omega_1(X),...,\omega_t(X)$ be a curve on V. Define $P_j(X)=L_j(\omega_1(X),...,\omega_t(X))$ for $j\in\{1,...,n\}$. There exists a matrix B_{ij} with linearly independent rows so that

$$\sum_{j=1}^n A_{ij}^* \exp P_j = 0$$
, for all $i \in \{m+1,...,n\}$ $\sum_{j=1}^n B_{ij} P_j = 0$, for all $i \in \{1,...,n-t\}$,

The matrix (A_{ij}^*) has linearly independent rows.

A useful lemma

Let L be a field of characteristic 0 and let $n, n_1, n_2 \in \mathbb{N}$ so that $n_1 = n-2$ and $n_2 \geq 2$ and suppose we have formal power series, $P_1, ..., P_n \in L[[X]]$ with zero constant term so that

$$\sum_{j=1}^{n} a_{ij} \exp P_j = 0$$
, for all $i \in \{1,...,n_1\}$
 $\sum_{j=1}^{n} b_{ij} P_j = 0$, for all $i \in \{1,...,n_2\}$,

where both matrices (a_{ij}) and (b_{ij}) have linearly independent rows. Then there are two indices $k \neq l$ so that $P_k = P_l$.

Let us compare the last two slides

We have t=r+s-1 and n=2s+r. Set $n_1=n-m$ and $n_2=n-t$. To apply the lemma we need m=2. Also, $n_1\in\mathbb{N}$ if and only if $n_1=n-2\geq 1$ if and only if $n\geq 3$. We also have $n_2=2s+r-(r+s-1)=s+1$. So $n_2\geq 2$ if and only if $s\geq 1$.

Conclusion: The lemma can be applied with $n_1 = n - 2$ and $n_2 = n - t$ if and only if there is at least one pair of complex conjugate embeddings and $n \ge 3$.

Thue's Theorem

Theorem (Thue)

Suppose f(x,y) is an irreducible form of degree $n \ge 3$ and f(x,1) has an imaginary root. Then there are only finitely many integer solutions to the equation f(x,y) = c, for any non-zero $c \in \mathbb{Q}$.

Proof of Thue's theorem

Let θ be a root of f(x,1). First show that $f(x,y) = N_{K/\mathbb{Q}}(x+y\theta)$ with $K = \mathbb{Q}(\theta)$. We the special case from before.

The general case again

Suppose K is a number field with basis $\mu_1,...,\mu_n$ and suppose F is an irreducible form so that $F(x_1,...,x_m)=N_{K/\mathbb{Q}}(x_1\mu_1+\cdots+x_m\mu_m)$ with m< n. Consider the equation

$$F(x_1, ..., x_m) = c$$

Does this equation have finitely many solutions?

Consider the equation

$$N_{\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}}(x+y\sqrt{2}+z\sqrt{3})=1$$

Setting z = 0 we have

$$\begin{split} N_{\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}}(x+y\sqrt{2}) &= N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(N_{\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2})}(x+y\sqrt{2})) \\ &= N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}((x+y\sqrt{2})^2) \\ &= N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(x+y\sqrt{2})^2 = 1 \end{split}$$

Definition

Let K be a number field and M a module with generators $\mu_1,...,\mu_m$ and consider the vector space $L = \operatorname{span}_{\mathbb{Q}} \{\mu_1, ..., \mu_m\}$. If L contains a subspace L' so that $\gamma K' = L'$ for some subfield K' of K and $\gamma \in K$ and K' is neither \mathbb{Q} or a quadratic imaginary field then we say that M is degenerate.

Otherwise the module is called non degenerate.

Proposition

Suppose $M \subseteq K$ is degenerate. Then there is $c \in \mathbb{Q}$ so that

$$N_{K/\mathbb{Q}}(\beta)=c$$

for infinitely many $\beta \in M$.

Proof.

Suppose $M\subseteq K$ is degenerate and let K' be a subfield of K and L' be a subspace of L so that $\gamma K'=L'$, with K' neither $\mathbb Q$ or a quadratic imaginary field. Define $M'=M\cap L'$. We have $K'=\gamma^{-1}L'$ so $\gamma^{-1}M'$ is a full module inside K'. Suppose

$$N_{K'/\mathbb{Q}}(\alpha) = c$$

for $\alpha \in \gamma^{-1}M'$. We have $\alpha \gamma \in M' \subseteq M$. Note that $\alpha \in \gamma^{-1}L' = K'$ so $N_{K/K'}(\alpha) = \alpha^m$ (m = [K : K']). Thus

$$N_{K/\mathbb{Q}}(\alpha) = N_{K'/\mathbb{Q}}(N_{K/K'}(\alpha)) = N_{K'/\mathbb{Q}}(\alpha^m) = c^m$$

So

$$N_{K/\mathbb{Q}}(\gamma \alpha) = N_{K/\mathbb{Q}}(\gamma) N_{K/\mathbb{Q}}(\alpha) = N_{K/\mathbb{Q}}(\gamma) c^m$$

- This is true when K is a quadratic imaginary field or \mathbb{Q} .
- We already know this is true when m = 2 and $n \ge 3$.

- This is true when K is a quadratic imaginary field or \mathbb{Q} .
- We already know this is true when m = 2 and $n \ge 3$.
- Using different techniques this is valid for m = 3.

- This is true when K is a quadratic imaginary field or \mathbb{Q} .
- We already know this is true when m = 2 and $n \ge 3$.
- Using different techniques this is valid for m = 3.

How to proceed?: A place to start could be to try to prove/disprove this for when n, the degree of K, is a prime. An alternative is to strengthen the lemma we used in the proof of Thue's theorem.

Improvements of lemma

Recall that we want $H_i(v_1,...,v_t)=0$, $i\in\{1+m,...,n\}$. So we have n-m equations in t variables. What happens when $n-m\geq t$?

Note that $n - m \ge t$ if and only if

$$(2s+r)-m\geq r+s-1$$

if and only if

$$s \ge m - 1$$

If we set $n_1 = n - m$ and $n_2 = n - t$ then $n_1 + n_2 = 2n - m - t$. Thus $n_1 + n_2 \ge n$ if and only if $n - m \ge t$.

Upgrade of lemma

Let L be a field of characteristic 0 and let $n, n_1, n_2 \in \mathbb{N}$ so that $n_1 = n - 2$ and $n_2 \ge 2$ $n_1 + n_2 \ge n$ and suppose we have formal power series, $P_1, ..., P_n \in L[[X]]$ with zero constant term so that

$$\sum_{j=1}^{n} a_{ij} \exp P_j = 0, \text{ for all } i \in \{1, ..., n_1\}$$

$$\sum_{j=1}^{n} b_{ij} P_j = 0, \text{ for all } i \in \{1, ..., n_2\},$$

with the a_{ij} and b_{ij} in L and where both matrices (a_{ij}) and (b_{ij}) have L-linearly independent rows. Then there are two indices $k \neq l$ so that $P_k = P_l$.

Thus, if the upgraded lemma was true and if $s \ge m-1$, we would be able to get past the first obstruction. It has been shown that the lemma holds in the special case where $n=5, n_1=2, n_2=3$.

Improvements by Alan Baker

Theorem

Assume K is a number field of degree d, let $\alpha_1,...,\alpha_n$ be distinct elements in O_K with $n \geq 3$ and let $\mu \in O_K$, $\mu \neq 0$. Then

$$(x - \alpha_1 y)...(x - \alpha_n y) = \mu$$

has finitely many solutions with $x, y \in O_K$ and these can be determined.

- Equation need not have coefficients in Q.
- x, y can take values in O_K , not just \mathbb{Z} .
- The solutions can be determined.