

OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2016.03.30 MAT372 K.T.D.D. - Arasınav N. Course

Adi:	ÖRNEKTİR	Süre: 60 dk.
Soyadi:		
Öğrenci No:		Sınav sorularından 2 tanesini seçerek
İMZA:		cevaplayınız.

Do not open the exam until you are told that you may begin. Sınavın başladığı yüksek sesle söylenene kadar sayfayı çevirmeyin.

- 1. You will have 60 minutes to answer 2 questions from a choice of 3. If you choose to answer more than 2 questions, then only your best 2 answers will be counted.
- 2. The points awarded for each part, of each question, are stated next to it.
- All of the questions are in English. You may answer in English or in Turkish.
- 4. You must show your working for all questions.
- 5. Write your student number on every page.
- 6. This exam contains 8 pages. Check to see if any pages
- 7. If you wish to leave before the end of the exam, give your exam script to an invigilator and leave the room quietly. You may not leave in the first 20 minutes, or in the final 10 minutes, of the exam.
- 8. Calculators, mobile phones and any digital means of communication are forbidden. The sharing of pens, erasers or any other item between students is forbid-
- 9. All bags, coats, books, notes, etc. must be placed away from your desks and away from the seats next to you. You may not access these during the exam. Take out everything that you will need before the exam starts.
- 10. Any student found cheating or attempting to cheat will receive a mark of zero (0), and will be investigated according to the regulations of Yükseköğretim Kurumları Öğrenci Disiplin Yönetmeliği.

- 1. Sınav süresi toplam 60 dakikadır. Sınavda 3 soru sorulmuştur. Bu sorulardan 2 tanesini seçerek cevap-2'den fazla soruyu cevaplarsanız, en yüksek puanı aldığınız 2 sorunun cevapları geçerli olacaktır.
- 2. Soruların her bölümünün kaç puan olduğu yanlarında belirtilmistir.
- Tüm sorular İngilizce'dir. Cevaplarınızı İngilizce yada Türkçe verebilirsiniz.
- Sonuca ulaşmak için yaptığınız işlemleri ayrıntılarıyla gösteriniz.
- Öğrenci numaranızı her sayfaya yazınız.
- 6. Sınav 8 sayfadan oluşmaktadır. Lütfen eksik sayfa olup olmadığını kontrol edin.
- 7. Sınay süresi sona ermeden sınayınızı teslim edip çıkmak isterseniz, sınav kağıdınızı gözetmenlerden birine veriniz ve sınav salonundan sessizce çıkınız. Sınavın ilk 20 dakikası ve son 10 dakikası içinde sınav salonundan çıkmanız yasaktır.
- Sınav esnasında hesap makinesi, cep telefonu ve dijital bilgi alışverisi vapılan her türlü malzemelerin kullanımı ile diğer silgi, kalem, vb. alışverişlerin yapılması kesinlikle yasaktır.
- 9. Çanta, palto, kitap ve ders notlarınız gibi eşyalarınız sıraların üzerinden ve yanınızdaki sandalyeden kaldırılmalıdır. Sınav süresince bu tür esvaları kullanmanız yasaktır, bu nedenle ihtiyacınız olacak herşeyi sınav başlamadan yanınıza alınız.
- 10. Her türlü sınav, ve diğer çalışmada, kopya çeken veya kopya çekme girişiminde bulunan bir öğrenci, o sınav ya da çalışmadan sıfır (0) not almış sayılır, ve o öğrenci hakkında Yükseköğretim Kurumları Öğrenci Disiplin Yönetmeliği hükümleri uyarınca disiplin kovuşturması vapılır.

Canonical Forms:

$$\begin{split} Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu &= G \\ A^* &= A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2 \\ B^* &= 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y \\ C^* &= A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2 \\ D^* &= A\xi_{xx} + B\xi_{xy} + C\xi_{yy} + D\xi_x + E\xi_y \\ E^* &= A\eta_{xx} + B\eta_{xy} + C\eta_{yy} + D\eta_x + E\eta_y \\ F^* &= F \\ G^* &= G \\ H^* &= -D^*u_\xi - E^*u_\eta - F^*u + G^* \\ \frac{dy}{dx} &= \frac{B \pm \sqrt{\Delta}}{2A} \end{split}$$

Fourier Transforms:

$$F(\omega) = \mathcal{F}[f](\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$
$$f(x) = \mathcal{F}^{-1}[F](x) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega x} d\omega$$

$$f(x) = \mathcal{F}^{-1}[F](x) = \int_{-\infty} F(\omega)e^{i\omega x} d\omega$$

$$f(x) \qquad F(\omega)$$

$$u_t(x,t) \qquad U_t(\omega,t)$$

$$u_x(x,t) \qquad i\omega U(\omega,t)$$

$$e^{-\alpha x^2} \qquad \frac{1}{\sqrt{4\pi\alpha}}e^{-\frac{\omega^2}{4\omega}}$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} f(\xi)g(x-\xi) d\xi \quad F(\omega)G(\omega)$$

$$\delta(x-x_0) \qquad \frac{1}{2\pi}e^{-i\omega x_0}$$

$$f(x-\beta) \qquad e^{-i\omega\beta}F(\omega)$$

$$xf(x) \qquad iF_{\omega}(\omega)$$

$$\frac{2\alpha}{x^2+\alpha^2} \qquad e^{-|\omega|\alpha}$$

$$f(x) = \begin{cases} 0 & |x| > a \\ 1 & |x| < a \end{cases} \frac{\sin a\omega}{\pi\omega}$$

Famous PDEs:

 $u_t = k u_{xx}$ heat equation $u_{tt} - c^2 u_{xx} = 0$ wave equation $\nabla^2 u = 0$ Laplace's Equation Fourier Series:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi}{L} x + b_k \sin \frac{k\pi}{L} x$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \ dx$$

$$a_k = \frac{1}{L} \int_{-L}^L f(x) \cos \frac{k\pi}{L} x \ dx$$

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{k\pi}{L} x \ dx$$

If $f(x) = \sum_{k=1}^{\infty} a_n \cos \frac{n\pi x}{L}$ then

$$f'(x) = \sum_{k=1}^{\infty} -\left(\frac{n\pi}{L}\right) a_n \sin\frac{n\pi x}{L}.$$

If $f(x) = \sum_{k=1}^{\infty} b_n \sin \frac{n\pi x}{L}$ then

$$f'(x) = \frac{1}{L} \Big[f(L) - f(0) \Big] + \sum_{k=1}^{\infty} \Big[\frac{n\pi}{L} b_n + \frac{2}{L} \Big((-1)^n f(L) - f(0) \Big) \Big] \cos \frac{n\pi x}{L}.$$

ODEs:

The solution of $\phi' = \mu \phi$ is

$$\phi(x) = Ae^{\mu x}$$
.

The solution of $\phi'' = \mu^2 \phi$ is

$$\begin{split} \phi(x) &= A e^{\mu x} + B e^{-\mu x} \\ &= C \cosh \mu x + D \sinh \mu x. \end{split}$$

The solution of $\phi'' = -\mu^2 \phi$ is

$$\phi(x) = A\cos\mu x + B\sin\mu x.$$

The solution of $x(x\phi')' - \mu^2 \phi = 0 \ (\mu \neq 0)$ is

$$\phi(x) = Ax^{-\mu} + Bx^{\mu}.$$

The solution of $x(x\phi')' = 0$ is

$$\phi(x) = A \log x + B.$$

Soru 1 (Characteristics) Consider the PDE

$$\frac{\partial u}{\partial t} + \frac{u}{3} \frac{\partial u}{\partial x} = 0 \tag{1}$$

with the initial condition

$$u(x,0) = \begin{cases} 1 & x < 2 \\ 3 & x > 2. \end{cases}$$
 (2)

- (a) [1p] Please write your student number at the top right of this page.
- (b) [5p] Replace (1) by a system of 2 ODEs.

(c) [15p] Plot the characteristics (t against x) for this problem.

fan-like characteristics shock wave characteristics neither both (e) [15p] Solve

$$\frac{\partial u}{\partial t} + \frac{u}{3} \frac{\partial u}{\partial x} = 0$$

subject to

$$u(x,0) = \begin{cases} 1 & x < 2 \\ 3 & x > 2. \end{cases}$$

$$u(x,t) = \begin{cases} & \\ & \end{cases}$$

(f) $[3 \times 4p]$ Sketch the graph (u against x) of the solution at times t = 0, t = 1 and t = 2.

Soru 2 (Change of variables) Consider the second order, linear PDE

$$A(x,y)u_{xx} + B(x,y)u_{xy} + C(x,y)u_{yy} + D(x,y)u_x + E(x,y)u_y + F(x,y)u = G(x,y).$$
 (3)

Suppose that $\xi(x,y)$ and $\eta(x,y)$ are twice continuously differentiable functions of x and y. Using the chain rule, we can calculate that

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = u_{\xi} \xi_x + u_{\eta} \eta_x.$$

- (a) [1p] Please write your student number at the top right of this page.
- (b) [24p] Use the chain rule to find formulae for u_y , u_{xy} , u_{xx} and u_{yy} in terms of $u_{\xi\xi}$, $u_{\xi\eta}$, $u_{\eta\eta}$, u_{ξ} , u_{η} , u, ξ_{xx} , ξ_{xy} , ξ_{yy} , ξ_{x} , ξ_{y} , η_{xx} , η_{xy} , η_{yy} , η_{x} and η_{y} .

$$u_y =$$

$$u_{xy} = (u_x)_y$$

= $(u_\xi \xi_x + u_\eta \eta_x)_y$
=

$$u_{xx} =$$

$$u_{yy} =$$

By substituting your answers to part (b) into (3), we obtain an equation of the form

$$A^*(\xi,\eta)u_{\xi\xi} + B^*(\xi,\eta)u_{\xi\eta} + C^*(\xi,\eta)u_{\eta\eta} + D^*(\xi,\eta)u_{\xi} + E^*(\xi,\eta)u_{\eta} + F^*(\xi,\eta)u = G^*(\xi,\eta).$$
 (4)

(c) [25p] Show that

$$B^{*}(\xi, \eta) = 2A\xi_{x}\eta_{x} + B(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + 2C\xi_{y}\eta_{y}.$$

7/7/ 7	77 77	$\overline{\Pi}$	777	777	Öğrenci No.	77

Soru 3 (General Solution) Consider the partial differential equation

$$u_{xx} - \frac{1}{c^2}u_{yy} = -\frac{4}{c^2}y - \frac{4}{c^3}x\tag{5}$$

where $c \neq 0$ is a constant.

(a) [1p] Please write your student number at the top right of this page.

(b) [1p] Equation (5) is a

2nd order PDE; 3rd order PDE; 4th order PDE. 1st order PDE;

(c) [1p] Equation (5) is a

homogeneous PDE; non-homogeneous PDE.

(d) [1p] Equation (5) is

non-linear AND quasilinear; linear; non-linear, but not quasilinear.

The discrimant of (5) is $\Delta = B^2 - 4AC = \frac{4}{c^2} > 0$.

(e) [1p] Equation (5) is a/an

hyperbolic PDE; parabolic PDE; elliptic PDE.

The characteristic equation of (5) is

$$\frac{dy}{dx} = \frac{B \pm \sqrt{\Delta}}{2A} = \pm \frac{1}{c}$$

which has solutions $y + \frac{x}{c} = (\text{constant})$ and $y - \frac{x}{c} = (\text{constant})$.

(f) [22p] Find a canonical form for (5).

Let $\xi =$ and $\eta =$. Then

$$=$$
 $\eta_x =$

$$\xi_{xy} = \eta_{xy} =$$

$$\xi_{yy} = \eta_{yy} =$$

and

$$A^* =$$

$$B^* =$$

$$C^* =$$

$$D^* =$$

$$E^* =$$

$$F^* = G^* =$$

, we have that Since $-\frac{4}{c^2}y - \frac{4}{c^3}x =$

It follows that a canonical form for (5) is

(g) [23p] Find the general solution to

$$u_{xx} - \frac{1}{c^2}u_{yy} = -\frac{4}{c^2}y - \frac{4}{c^3}x$$

where $c \neq 0$ is a constant.