Chapter 1

Probability

1.1 Basic concepts and results

A **random experiment** is when a set of all possible outcomes is known, but it is impossible to predict the actual outcome of the experiment. A **sample space**, denoted as Ω , contains all possible outcomes of the experiment. An **event** is a subset of Ω . We say that $A \subset \Omega$ has occrred if and only if the outcome of the experiment is an element of A. Formally, the family of events forms a σ -algebra of subsets of Ω that we denote by \mathcal{A} .

Note:

- $\Omega \in \mathcal{A}$
- $A \in \mathcal{A} \Rightarrow \bar{A} \in \bar{\mathcal{A}}$,where \bar{A} indicates the compliment of A
- $A_1, A_2, \dots \in \mathcal{A}$
- $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

1.1.1 Probability measures

Definition 1.1.1: Kolmogorov's axioms

- $P(A) \ge 0$
- $P(\Omega) = 1$
- If $A_i \cap A_j = \emptyset$, $i \neq j$, then $P(\cup_i A_i) = \sum_i P(A_i)$

Probability measure $P: \mathcal{A} \to \mathbb{R}$ satisfying Kolmogorov's axioms has the following properties:

- $P(\emptyset) = 0$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $0 \le P(A) \le 1$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(\bar{A}) = 1 P(A)$
- $P(A B) = P(A \cap \overline{B}) = P(A) P(A \cap B)$

Definition 1.1.2: Conditional probability

If P(B) > 0,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

We are re-evaluating the probability of A given the B space.

Let $\{A_1, A_2, \dots\}$ denote a partition of $\Omega: \cup_i A_i = \Omega; A_i \cap A_j = \emptyset, i \neq j$. Meaning union makes up Ω and are mutually exclusive. Then if $P(A_i) > 0$ for all i

Theorem 1.1.1 Total probability theorem

$$P(B) = \sum_{i} P(B|A_i)P(A_i)$$

$$B = B \cap \Omega = B \cap [\cup_i A_i] = \cup_i (B \cap A_i)$$
 and $P(\cup_i B \cap A_i) = \sum_i P(B \cap A_i)$

Theorem 1.1.2 Bayes' theorem

If P(B) > 0

$$P(A_i|B) = \frac{P(B|A_j)P(A_j)}{\sum_i P(B|A_i)P(A_i)}$$

$$P(\underbrace{A_j}_{\text{explanation}} \mid \underbrace{B}_{\text{evidence}}) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j)P(A_j)}{P(B)}$$
substitute with total probability theorem

1.1.2 Random variables

Definition 1.1.3: Random variable

Function defined in Ω and taking values in \mathbb{R}

 $X:\Omega \to \mathbb{R}$

 $\omega \mapsto X(\omega) = x$

A random variable induces a probability measure in $\mathbb R$ that we denote by P_X : if $B \subset \mathbb R$, $P_X(B) = P(A)$, where $A = X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$. Formally, there must be a σ -algebra of subsets of $\mathbb R, \mathcal B$, and we have to verify that for every set $B \in \mathcal B$ we have $X^{-1}(B) \in \mathcal A$. Typically, $\mathcal B$ is the so called Borel σ -algebra and it suffices to make sure that X satisfies $X^{-1}((-\infty, x]) \in \mathcal A$, $\forall x \in \mathbb R$.

Basically what it means is that we don't know if $X^{-1}(B) \in \mathcal{A}$ and for which B can I compute $P_X(B)$. If $X^{-1}(B) \in \mathcal{A}$ for B is in the Borel σ -algebra, then X is measurable.

Definition 1.1.4: Distribution function of a random variable

X: for all $x \in \mathbb{R}$

$$F_X(x) = P_X((-\infty, x]) = P(X \le x)$$

It is suffice to know $F_X(\cdot)$ to be able to compute $P_X(B)$ for all $B \in \mathcal{B}$.

- For all a > b, $P(a < X \le b) = F_X(b) F_X(a)$
- $F_X(-\infty) = 0$; $F_X(\infty) = 1$

- F_X is right-continuous and non-decreasing
- The set of points at which F_X is discontinuous is either finite or countable (at most countable)

Definition 1.1.5: Discrete random variable

X is a discrete random variable if D_X is such that $P_X(D_X) = 1$

The probability mass function of X is defined as $f_X(x) = F_X(x) - \lim_{y \to x} F_X(y) = \begin{cases} P(X = x) & \text{if } x \in D_X \\ 0 & \text{otherwise} \end{cases}$

Any *f* satisfying the following is a probability mass function

- $f(x) \ge 0$ for all x
- f(x) > 0 iff $x \in D$, where $D \subset \mathbb{R}$ is finite or countable
- $\sum_{x \in D} f(x) = 1$

For any event $B \subset \mathbb{R}$, $P(X \in B) = \sum_{x \in B \cap D_X} f_X(x)$.

 $F_X(x) = \sum_{y < x} f_X(y)$

 $F_X(x) = P(X \le x)$ cumulative distribution function

 $f_X(x) = P(X = x)$ probability mass function where $0 \le f_X(x) \le 1$

Discrete distribution include Bernoulli, binomial, Poisson, geometric, negative binomial, multinomial, hypergeometric, etc.

Definition 1.1.6: Continuous random variable

X is continuous if $P_X(D_X)=0, D_X=\emptyset$ and if additionally there is f_X such that for all $x\in\mathbb{R}$

- $f_X(x) \ge 0 \rightarrow$ probability density function
- $F_X(x) = \int_{-\infty}^{+\infty} f(x) dx = 1$

At the points where F_X is differentiable, we have $F_X'(x) = f_X(x)$.

Any f satisfying the following conditions is a probability density function

- $f(x) \ge 0$ for all x
- $\int_{-\infty}^{+\infty} f(x) \, dx = 1$

Continuous distributions include uniform, exponential, gamma, chi-squared, normal. t-student, F-Snedcor, beta, Pareto, Weibull, log-normal, etc.

Functions of a random variable

Let *X* be a r.v. and Y = h(X) where $h : \mathbb{R} \to \mathbb{R}$

In general, if X = q(Y) with q invertible and differentiable, and X continuous, we have

$$f_Y(y) = |g'(y)| f_x(g(y))$$

Proof. $\frac{\partial F_X(x)}{\partial x} = f_X(x)$ Using chain rule: $(f \circ g)'(x) = [f(g(x))]' = f'(g(x))g'(x) \blacksquare$

Definition 1.1.7: Expected value

Let Y = h(X), a linear function.

The expected value of Y is defined by $E[Y] = \begin{cases} \sum_{x} h(x) f_X(x) & \text{if } X \text{ discrete} \\ \int_{-\infty}^{+\infty} h(x) f_X(x) dx & \text{if } X \text{ continuous} \end{cases}$

Formally, we must additionally verify that the integral or series are absolutely convergent. E[Y] may not exist.

There are two ways to compute E[Y] with Y = h(X), either use the definition above, or first obtain the distribution of Y and compute $E[Y] = \begin{cases} \sum_y y \ f_Y(y) & \text{if } Y \text{ discrete} \\ \int_{-\infty}^{+\infty} y \ f_Y(y) \ dy & \text{if } Y \text{ continuous} \end{cases}$. The two methods are equivalent.

Definition 1.1.8: Raw moment of oder *k*

$$\mu_k' = E[X^k]$$

Definition 1.1.9: Central moment of order *k*

$$\mu_k = E[(X - \mu)^k], \mu = E[X]$$

Definition 1.1.10: Moment generating function

 $M_X(s) = E[e^{sX}]$ whenever the expectation exists for s in a neighborhood of the origin.

- If $M_X(s)$ exists, then X has moments of all orders and $M^{(k)}(0) = E[X^k]$
- The moment generating function, when it exists, identifies the probability distribution

Some useful **properties**:

- $E[h_1(X) + h_2(X)] = E[h_1(X)] + E[h_2(X)]$
- If $c \in \mathbb{R}$, then E[cX] = cE[X]; E[c] = c
- If $c \in \mathbb{R}$, then $Var(cX + b) = c^2 Var(X)$
- $Var(X) = E[X^2] (E[X])^2$
- $Var(X) \ge 0$; $Var(X) = 0 \Leftrightarrow P(X = c) = 1$ for some $c \in \mathbb{R}$

1.1.4 Bivariate random variables

$$(X, Y) : \Omega \to \mathbb{R}^2$$

 $\omega \mapsto (X(\omega), Y(\omega)) = (x, y)$

If (X, Y) discrete, we define the joint probability mass function as f(x, y) = P(X = x, Y = y). If (X; Y) continuous, then there exists the joint probability density function, f(x, y) such that for all $(x, y) \in \mathbb{R}^2$,

4

- $f(x, y) \ge 0$
- $F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) dv du$

Example 1.1.1

 $X = weight, Y = height \Rightarrow Z = BMI$

Definition 1.1.11: Marginal distributions

$$f_X(x) = \begin{cases} \sum_y f(x, y) & \text{if } (X, Y) \text{ discrete} \\ \int_{-\infty}^{+\infty} f(x, y) \, dy & \text{if } (X, Y) \text{ continuous} \end{cases}$$

Definition 1.1.12: Expectation of Z = h(X, Y)

$$E[Z] = \begin{cases} \sum_{x} \sum_{y} h(x, y) f(x, y) & \text{if } (X, Y) \text{ discrete} \\ \int_{-\infty}^{+\infty} h(x, y) f(x, y) dy dx & \text{if } (X, Y) \text{ continuous} \end{cases}$$

Definition 1.1.13: Conditional didstributions

$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}, y \text{ fixed: } f_Y(y) > 0$$

function of *x* for every *y* where $f_Y(y) > 0$

Definition 1.1.14: Raw moment of order (r, s)

$$\mu'_{(r,s)} = E[X^r Y^s]$$

Definition 1.1.15: Central moment of order (r, s)

$$\mu_{(r,s)} = E[(X-\mu_X)^r \, (Y-\mu_Y)^s]$$

Definition 1.1.16: Covariance

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = \mu_{(1,1)}$$

If x and y are positively associated $\rightarrow \text{Cov}(x, y) > 0 \rightarrow \text{If } x$ is larger than its mean, then typically y is larger than its mean.

Some useful **properties**:

- Cov(X, Y) = E[X, Y] E[X]E[Y]
- Cov(X, Y) = Cov(Y, X)
- $Cov(cX, Y) = cCov(X, Y), c \in \mathbb{R}$
- Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
- $Var(X \pm Y) = Var(X) + Var(Y) \pm 2 Cov(X, Y)$

Example 1.1.2 (Portfolio management)

Cov(x, y) < 0

Var(x, y) < Var(x) + Var(y)

Theorem 1.1.3 Law of iterated expectation

If
$$Z = h(X, Y)$$
 then $E[Z] = E_X[E[Z|X]]$

Theorem 1.1.4 Law of total variance

$$Var(Y) = Var_X(E[Y|X]) + E_X[Var(Y|X)]$$

Other useful tricks:

- E[h(X) Y | X = x] = h(x) E[Y | X = x]
- Cov(X, Y) = Cov(X, E[Y|X])

Proof.

$$Cov(X, E[Y|X]) = E[X E[Y|X]] - E[X] E[E[Y|X]]$$
$$= E[E[XY|X]] - E[X] E[Y]$$
$$= E[XY] - E[X] E[Y]$$
$$= Cov(X, Y)$$

1.1.5 Independence

Definition 1.1.17: Stochastic independence

X and *Y* are stochastically independent if and only if $\forall (x, y) \in \mathbb{R}^2$, $f(x, y) = f_X(x) f_Y(y)$

If *X* and *Y* are independent, then

• Var(X + Y) = Var(X) + Var(Y)

Proof.
$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \times \underbrace{Cov(X, Y)}_{\rightarrow 0} \blacksquare$$

• $M_{X+Y}(s) = M_X(s) M_Y(s)$

Proof.
$$M_{X+Y}(s) = E[e^{s(X+Y)}] = E[\underbrace{e^{sx}}_{u} \underbrace{e^{sy}}_{v}]$$

x and y independent stochastically $\Rightarrow u$ and v independent

$$M_{X+Y}(s) = E[e^{sx}] \, E[e^{sy}] = M_X(s) \, M_Y(s) \, \blacksquare$$

• Cov(X, Y) = 0

Proof.
$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = \underbrace{E[XY]}_{X, \text{Yuncorrelated}} - E[X]E[Y] = E[X]E[Y] - E[x]E[Y] = 0$$

- $E[X^rY^s] = E[X^r]E[Y^s]$
- E[Y | X = x] = E[Y]; E[X | Y = y] = E[X]
- $f_{X|Y=y}(x) = f_X(x)$; $f_{Y|X=x}(y) = f_Y(y)$

Proof.
$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)} = \frac{f_X(x)f_Y(y)}{f_Y(y)} = f_X(x) \blacksquare$$

Definition 1.1.18: Mean independence

Y is mean independent of X iff E[Y | X = x] does not depend on x for all x.

Proof. E[Y|X=x]=c

$$E[Y|X] = c \Rightarrow E[E[Y|X]] = c \Rightarrow E[Y] = c \rightarrow \text{conditional is equal to marginal } \blacksquare$$

Definition 1.1.19: Uncorrelatedness

X and Y are uncorrelated iff Cov(X, Y) = 0

Useful results:

- If *X* and *Y* are stochastically independent, then *Y* is mean-independent of *X*, and *X* is mean independent of *Y*.
- If Y is mean-independet of X, then X and Y are uncorrelated. The converse is not true.

Proof. Y mean independence of $X \Rightarrow \text{Cov}(X, Y) = \text{Cov}(X, E[Y|X]) = \text{Cov}(X, c) = 0 \Rightarrow \text{uncorrelated} \blacksquare$

- If Y is uncorrelated with X, then E[XY] = E[X]E[Y]
- If *Y* is mean-independent of *X*, then $E[X^kY] = E[X^k]E[Y]$ for all *k*
- If Y and X are stochastically independent, then $E[X^kY^r] = E[X^k]E[Y^r]$ for all k, r

Note:

stochastic independence \Rightarrow mean independence \Rightarrow uncorrelatedness

1.2 Convergence of sequences of random variables

If $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables and X is a random variable,

$$X_n: \underbrace{\Omega}_{\text{exists probability, } \sigma\text{-algebra}} o \mathbb{R}$$
 $X_n \longrightarrow X \quad \text{as } n \to +\infty$

n can be population size, or can be the number of iterations for Monte Carlo simulation.

1.2.1 Notions of convergence of sequences

Notions of **convergence of sequences**: let $f_n, f : [0, 1] \to \mathbb{R}$

- Point wise convergence: $f_n(x) \to f(x)$ for all $x \in [0,1]$
- Uniform convergence: $\sup_{x \in [0,1]} |f_n(x) f(x)| \to 0$
- Convergence in L^P : $\int_0^1 |f_n(x) f(x)|^P dx \to 0$
- Convergence in measure: $\mu(A_{n,\epsilon}) \to 0$ for all $\epsilon > 0$ where $A_{n,\epsilon} = \{x \in [0,1] : |f_n(x) f(x)| > \epsilon\}$

7

Example 1.2.1

 $f_n:[0,1]\to\mathbb{R}$

$$f_n(x) = \begin{cases} 0 & 1/n \le x \le 1\\ n - n^2 x & 0 \le x < 1/n \end{cases}$$

As $n \to \infty$, a becomes smaller, b becomes bigger.

• Point wise convergence

$$\forall x \in [0, 1]$$

$$\forall x^* > 0, f_n(x^*) = 0 \text{ for } n > N \text{ except } f_n(0) = 0 \to \infty$$

$$\Rightarrow f_n(x) \to \begin{cases} 0 & \text{if } x \in [0,1] \\ \infty & \text{if } x = 0 \end{cases} \Rightarrow f_n \text{ is not converging pointwise to the null function}.$$

• Uniform convergence |f(x)| = n

 $\max |f_n(x)| = n \to +\infty$ $x \in [0,1] \Rightarrow f_n$ does not converge uniformly to the null function.

• Convergence in $L^1 \rightarrow P = 1$

$$\int_0^1 |f_n(x)| \, dx = \frac{1}{2} = \underbrace{\frac{1}{n} \times n \times \frac{1}{2}}_{n} \implies f_n \text{ does not converge in } L^1 \text{ to the null function.}$$

area under the triangle

• Convergence in measure

$$A_{n,\epsilon} \subset [0,\frac{1}{n}]$$

 $\mu(A_{n,\epsilon}) \leq \mu([0,\frac{1}{n}]) = \frac{1}{n} \to \text{as } n \to \infty, \mu \to \infty \Rightarrow f_n \text{ converges to the null function in measure.}$

1.2.2 Convergence of random variables

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables and X is a random variable, all defined in the same probability space (Ω, \mathcal{A}, P) .

Definition 1.2.1: Almost surely convergence

 X_n converges to X almost surely, or with probability 1, $X_n \xrightarrow{\text{a.s.}} X$, iff

$$P[\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}] = 1$$

Similar to pointwise convergence, no need for expectation.

Note:
$$P(X_n(\omega) \to x(\omega)) = 1$$
set point

set of which it happens has a probability of 1

Definition 1.2.2: Convergence in the rth mean

 X_n converges to X in the rth mean, $r \ge 1$, $X_n \xrightarrow{r} X$, iff

$$E[|X_n - X|^r] \to 0$$

Each point will be weighted with the same probability. Expectation is involved in this case.

Note:

When r = 2, it is the mean square convergence, often used for quality checking.

Definition 1.2.3: Convergence in probability

 X_n converges in probability to $X, X_n \xrightarrow{P} X$, iff for all $\epsilon > 0$

$$P(|X_n - X| > \epsilon) \to 0$$

It is similar to measure in convergence. Often used to check for quality of estimator. Note that this is no longer a Lebesque measure, it is now a probability measure. $P\{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon\} \to 0$ as $n \to 0$.

Definition 1.2.4: Convergence in distribution

 X_n converges in distribution to $X, X_n \xrightarrow{d} X$, iff

$$F_n(x) \to F_n$$

for all x continuity point of F, where $F(x) = P(X \le x)$ and $F_n(x) = P(X_n \le x)$

Has nothing to do with the random variable. Often used for hypothesis testing. It does not need the requirement that all points are defined in the same probability space (Ω, \mathcal{A}, P) as there is no ω in the density function.

Some useful **remarks**:

- Convergence in distribution is really about the convergence of the sequence of probability functions and not the random variables themselves.
- When defining convergence in the *r*th mean, it is assumed that the corresponding expected values exist: $E[|X_n|^r] < \infty$ and $E[|X|^r] < \infty$
- When $X_n \xrightarrow{1} X$, we say that X_n converges to X in mean; when $X_n \xrightarrow{2} X$, we say that X_n converges to X in quadratic mean.

Proof. Convergence in mean implies convergence in probability

$$E[|X_n - X|] \to 0 \Rightarrow P(|X_n - X| > \epsilon) \to 0, \forall \epsilon > 0$$

Using Markov inequality: $P(|y| > a) \le \frac{|E[X_n - X|]}{\epsilon}$

$$0 \le \lim_{n \to \infty} P(|X_n - X| > \epsilon) \le \lim_{n \to \infty} \frac{\overbrace{E[|X_n - X|]}^{\to 0}}{\epsilon} = 0 \blacksquare$$

Proof. Proof of convergence in probability implies convergence in distribution

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} \Leftrightarrow P(|X_n - X| > \epsilon) \to 0 \Rightarrow P(X_n \le x) \to P(X \le x), \forall x$$

let $\epsilon > 0$.

$$F_n(x) = P(X_n \le x)$$

$$F(x) = P(X \le x)$$

Using the **total probability theorem**: $P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(A|B)P(B) + P(A|\overline{B})P(\overline{B})$

$$F_{n}(x) = P(\underbrace{X_{n} \leq x}) = P(\underbrace{X_{n} \leq x}, \underbrace{X \leq x + \epsilon}) + P(\underbrace{X_{n} \leq x}, \underbrace{X > x + \epsilon}) \leq F(x + \epsilon) * P(|X_{n} - x| > \epsilon)$$

$$F(x - \epsilon) - P(|X_{n} - X| > \epsilon) \leq F_{n}(x) \leq F(x + \epsilon) + \underbrace{P(|X_{n} - X| < \epsilon)}_{\rightarrow 0}$$

$$\text{as } n \to \infty, \underbrace{F(x - \epsilon)}_{\epsilon \to 0} \leq \lim_{n \to \infty} F_{n}(x) \leq \underbrace{F(x + \epsilon)}_{\epsilon \to 0} \blacksquare$$

Some **converses**:

- If $X_n \xrightarrow{P} X$, then there exists $\{n_k\}_{k=1}^{+\infty}$ such that $X_{n_k} \xrightarrow{a.s.} X$ when $k \to +\infty$
- If $|X_n|^r$ is uniformly integratable, then $X_n \overset{P}{\longrightarrow} X \Longrightarrow X_n \overset{r}{\longrightarrow} X$

Theorem 1.2.1 Skorokhod representation theorem

If $X_n \xrightarrow{d} X$ then there exists a probability space $(\Omega', \mathcal{A}', P')$ and r.v. $\{Y_n\}$ and Y, defined in Ω' such that

- $P'(Y_n \le y) = P(X_n \le y)$ and $P'(Y \le y) = P(X \le y)$ for all $y \in \mathbb{R}$. This means that X_n and Y_n are marginally equal in distribution, the same for X and Y.
- $Y_n \xrightarrow{a.s.} Y$

Other useful results:

• $X_n \xrightarrow{P} c \Leftrightarrow X_n \xrightarrow{d} c$, where $c \in \mathbb{R}$

Proof.
$$X_n \xrightarrow{d} x \Rightarrow X_n \xrightarrow{P} c \Leftrightarrow P(X_n \le x) \to \begin{cases} 0 & x < c \\ 1 & x < c \end{cases}$$
, not continuous at c $P(|X_n - c| > \epsilon) \to 0$, $\forall \epsilon > 0$

$$P(|X_n - c| > \epsilon) = P(X_n - c > \epsilon) + P(X_n - c < -\epsilon)$$

$$= P(X_n > \epsilon + c) + P(X_n < c - \epsilon)$$

$$= 1 - P(X_n \le \epsilon + c) + P(X_n < c - \epsilon)$$

$$\le 1 - P(X_n \le \epsilon + c) + P(X_n \le \epsilon - \epsilon)$$

$$> c$$

$$\Rightarrow 1 - 1 + 0 - 0$$

• Since $E[(X_n - \theta)^2] = \text{Var}(X_n) + (E[X_n] - \theta)^2$ if $\text{Var}(X_n) \to 0$ and $E[X_n] \to \theta$. We have convergence in mean square to θ , and hence convergence in probability to θ .

Theorem 1.2.2 Continous mapping theorem

Let $h: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then

•
$$X_n \xrightarrow{a.s.} X \Rightarrow h(X_n) \xrightarrow{a.s.} h(X)$$

•
$$X_n \xrightarrow{d} X \Rightarrow h(X_n) \xrightarrow{d} h(X)$$

•
$$X_n \xrightarrow{P} X \Rightarrow h(X_n) \xrightarrow{P} h(X)$$

Theorem 1.2.3 Slutsky theorem

Let $\{X_n\}$ and $\{Y_n\}$ be sequences of random variables, X a random variable and C a real number. If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} C$, then

•
$$X_n + Y_n \xrightarrow{d} X + c$$

•
$$Y_n X_n \xrightarrow{d} cX$$

•
$$X_n/Y_n \xrightarrow{d} X/c$$
 as long as $c \neq 0$

Wrong Concept 1.1: $X_n + Z_n \neq 2X$

Suppose that $X_n \xrightarrow{d} X$ where $X \sim N(0,1)$. Then with $Z_n = -X_n$ we have $Z_n \xrightarrow{d} X$. However, $X_n + Z_n = 0$, hence $X_n + Z_n$ does not converge in distribution to 2X as one might expect.

cdf of Z_n converges to cdf of X_n

$$Z_n \xrightarrow{d} X \Leftrightarrow P(Z_n \le z_n) \to \Phi(z_n), \ \forall z \in \mathbb{R}$$
$$\Leftrightarrow P(-X_n \le z) = P(X_n \ge -z) = 1 - P(X_n \le -z)$$
$$\to 1 - \Phi(-z)$$

$$\therefore Z_n \xrightarrow{d} X$$

This is why the Slutsky theorem is important, it showcases safe procedures.

Example 1.2.2 $(X_n \sim t(n) \Rightarrow X_n \xrightarrow{d} N(0,1)$ using Slutsky)

$$X_n \sim t(n), X_n = \frac{u_n}{\sqrt{\frac{v_n}{n}}}$$

Assumptions: $\begin{cases} u_n \text{ independent of } v_n \\ u_n \sim N(0, 1) \\ v_n \sim \chi^2(n) \end{cases}$

What would be nice is to show that $\sqrt{\frac{v_n}{n}}$ converges to 1 then we can apply the Slutsky theorem.

Using the mean square convergence, we have

$$\operatorname{Var}(\frac{v_n}{n}) = \frac{\operatorname{Var}(v_n)}{n} = \frac{2n}{n^2} = \frac{2}{n} \to 0$$
$$E[\frac{v_n}{n}] = \frac{E[v_n]}{n} = \frac{n}{n} = 1 \to 1$$

We now have mean square convergence to 1.

Using the Continuous mapping theorem, we have

$$\frac{v_n}{n} \xrightarrow{P} 1 \Rightarrow \sqrt{\frac{v_n}{n}} \xrightarrow{P} 1$$

$$\Rightarrow \frac{v_n}{n} \xrightarrow{2} 1$$
 and $\frac{v_n}{n} \xrightarrow{P} 1$

Now using the Slutsky theorem, we have

$$X_n = \frac{u_n}{\sqrt{\frac{v_n}{n}}} \xrightarrow{d} u_n \sim N(0, 1)$$

1.3 Important asymptotic results

Theorem 1.3.1 Weak law of large numbers

Let $\{X_n\}_{n=1}^{+\infty}$ be a sequence of independent and identically distributed random variables, with $E[X_n] = \mu$ and $Var(X_n) = \sigma^2 < \infty$. Let also $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then we have that

$$\overline{X}_n \xrightarrow{P} \mu$$

Proof. Goal:
$$\overline{X}_n \xrightarrow{P} \mu \Rightarrow P(|\overline{X}_n - \mu| > \epsilon) \to 0$$

Checking the validity of Chebychov's inequality,

$$E[\overline{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \underbrace{E[X_i]}_{\rightarrow \mu} = \frac{1}{n}n\mu = \mu$$

We can now apply the **Chebychov's inequality**: P(

$$|X - \mu|$$
 $> \epsilon) \le \frac{\operatorname{Var}(X)}{\epsilon^2}$

distance of distribution from its mean

$$P(|\overline{X}_n - \mu| > \epsilon) \le \underbrace{\frac{1}{\operatorname{Var}(\overline{X}_n)}}_{\epsilon^2} = \frac{\sigma^2}{n \, \epsilon^2} \to 0$$
1: $\operatorname{Var}(\overline{X}_n) = \frac{1}{n} \operatorname{Var}(\sum_{i=1}^n X_i) = \underbrace{\frac{1}{n^2} n \, \sigma^2}_{\text{Var}(\Sigma) = \sum \operatorname{Var} + 2\operatorname{Cov}} = \underbrace{\frac{1}{n^2} n \, \sigma^2}_{\text{iid=0}} = \underbrace{\frac{1}{n^2} n \, \sigma^2}_{\text{$

Intuitively, the WLLN tell us that \overline{X}_n becomes more and more concentrated around μ as n increases.

Theorem 1.3.2 Strong law of large numbers

Under the same conditions as above, we have

$$\overline{X}_n \xrightarrow{a.s.} \mu$$

Actually, it is only necessary to assume that $E[|X_i|] < +\infty$ for both laws to hold.

Theorem 1.3.3 Central limit theorem

Let $\{X_n\}_{n=1}^{+\infty}$ be a sequence of iid random variables possessing finite variance. Let $\mu = E[X_n]$ and $\sigma^2 = \text{Var}(X_n)$. Let also $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and

$$Z_n = \sqrt{n} \, \frac{\overline{X}_n - \mu}{\sigma} = \frac{\overline{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} = \frac{\overline{X}_n - E[\overline{X}]}{\sqrt{\operatorname{Var}(\overline{X})}} \xrightarrow{d} N(0, 1)$$

Then we have

$$Z_n \xrightarrow{d} Z$$

Proof. Proof with assumption of existance of mgf

Assume

1.
$$M_n(S) = E[e^{sX_n}]$$
 exists

2.
$$M_n(s) \to M(s)$$
 for $s \in (-s_0, s_0)$

then
$$M(s) = E[e^{sX}] \Rightarrow X_n \xrightarrow{d} X$$

Idea: X_n are iid r.v.

$$E[e^{sX_n}] = M_{X_n}(s)$$
 exists for $s \in (-s_0, s_0) \Rightarrow Z_n = \sqrt{n} \frac{X_{n-1}}{\sigma}$

 $E[e^{sX_n}] = M_{X_n}(s)$ exists for $s \in (-s_0, s_0) \Rightarrow Z_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$ Need to show $M_{Z_n}(s) \to M_{N(0,1)}(s) = e^{s^2/2} \to \text{mgf of } Z_n \text{ goes to } e^{s^2/2}$, the mgf of the normal distribution.

$$Z_n = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \underbrace{=}_{\text{Annex 1}} \frac{1}{\sqrt{n}} \sum_{i=1}^n y_i \tag{1.1}$$

Annex 1:

$$Y_i = \frac{X_i - \mu}{\sigma}, \text{ standardized version of the } X_i \text{'s}$$

$$\sum Y_i = \frac{\sum (X_i - \mu)}{\sigma} = \frac{\sum X_i - n\mu}{\sigma} = \frac{n\overline{X}_n - n\mu}{\sigma} = n\frac{\overline{X}_n - mu}{\sigma}$$

$$\frac{1}{\sqrt{n}} \sum Y_i = \frac{1}{\sqrt{n}} n\frac{\overline{X}_n - mu}{\sigma} = \sqrt{n}\frac{\overline{X}_n - \mu}{\sigma}$$

Using the moment generating function

$$\begin{split} M_{Z_n}(s) &= E[e^{sZ_n}] = E[e^{s\frac{1}{\sqrt{n}}\sum Y_i}] \\ &= M_{\sum Y_i}(\frac{s}{\sqrt{n}}) \\ &= M_{Y_1}(\frac{s}{\sqrt{n}}) \times M_{Y_2}(\frac{s}{\sqrt{n}}) \times \cdots \times M_{Y_n}(\frac{s}{\sqrt{n}}) \to \text{mgf of the sum of the variable is the product} \\ &= [M_Y(\frac{s}{\sqrt{n}})]^n \\ &= \sum_{k=0}^2 M_Y^{(k)}(0) \frac{s^k}{k!} + \underbrace{r(s)}_{\frac{r(s)}{s^2} \to 0 \text{ as } s \to 0} \to \text{Taylor's expansion of 2nd order, Annex 2} \end{split}$$

$$= 1 + \frac{s^2}{2!} + r(s)$$

Annex 2:

$$\begin{split} M_Y^{(k)}(0) &= E[Y^k] \\ M_Y^{(0)}(0) &= E[Y^0] = 1 \\ M_Y^{(1)}(0) &= E[Y^1] = 0 \\ M_Y^{(2)}(0) &= E[Y^2] = \frac{E[(x_i - \mu)^2]}{\sigma^2} = \frac{\sigma^2}{\sigma^2} = 1 \end{split}$$

Back to the moment generating function

$$M_{Z_n}(s) = [M_Y(\frac{s}{\sqrt{n}})]^n$$

$$= [1 + \frac{s^2/2}{n} + r(\frac{s}{\sqrt{n}})]^n$$

$$= [1 + \frac{\frac{s^2}{2} + n r(s/\sqrt{n})}{n}]^n \xrightarrow{\text{Apprex 3}} e^{s^2/2}$$
(1.3)

Annex 3:

$$[1+\frac{u_n}{v_n}]^{v_n} \to e^c, u_n \to c, v_n \to \infty$$

The CLT is often used to compute probabilities of the type $P(\overline{X}_n \le x)$ approximating them by $\Phi(\sqrt{n} \frac{(x-\mu)}{\sigma})$ for sufficiently large n.

$$P(\overline{X}_n \le x) = P(\sqrt{n} \frac{\overline{X} - \mu}{\sigma} \le \sqrt{n} \frac{x - \mu}{\sigma})$$

$$\approx \Phi(\sqrt{n} \frac{x - \mu}{\sigma})$$

$$P(Z_n \le z) \to \Phi(z)$$

Intuitively, the CLT tells us that the distribution of \bar{X}_n is well approximated by a normal distribution for sufficiently large n as long as the variance is finite. Additionally, if the distribution of X_n is close to symmetric, then the rate of convergence is faster. Rate of convergence is related to the coefficient of symmetry, $\frac{E[(X-\mu)^3]}{(\text{Var}(X))^{3/2}} = \gamma_1$. If the distribution is symmetric, $\gamma_1 = 0$.

Theorem 1.3.4 Lévy's continuity theorem

Suppose that $\{X_n\}_{n=1}^{+\infty}$ is a sequence of random variables and let $M_n(s)$ denote the mgf of $X_n, n=1, 2, \cdots$. Additionally assume that

$$\lim_{n\to+\infty}M_n(s)=M(s)$$

for *s* in a neighborhood of the origin, and that $M(\cdot)$ is the mgf of a random variable *X*.

In these circumstances,

$$X_n \xrightarrow{d} X$$

Example 1.3.1 (Application : Bernoulli)

 $\{X_n\}_{n=1}^{+\infty}$ iid $B(1,\theta)$ where $\theta \in (0,1)$. By the **central limit theorem**,

$$\sqrt{n} \frac{\overline{X}_n - \theta}{\sqrt{\theta(1 - \theta)}} \xrightarrow{d} N(0, 1)$$

On the other hand, the **WLLN** ensures that $\overline{X}_n \xrightarrow{d} \theta$. By the continuous mapping theorem

$$\frac{\sqrt{\theta(1-\theta)}}{\sqrt{\overline{X}_n(1-\overline{X}_n)}} \xrightarrow{P} 1$$

and Slutsky's theorem allows us to conclude that

$$\sqrt{n} \frac{\overline{X}_n - \theta}{\sqrt{\theta(1 - \theta)}} \frac{\sqrt{\theta(1 - \theta)}}{\sqrt{\overline{X}_n(1 - \overline{X}_n)}} = \sqrt{n} \frac{\overline{X}_n - \theta}{\sqrt{\overline{X}_n(1 - \overline{X}_n)}} \xrightarrow{d} N(1, 0)$$

which in practice means that, for large n

$$P\left(\frac{\overline{X}_n - \theta}{\sqrt{\overline{X}_n(1 - \overline{X}_n)}} \le x\right) \approx \Phi(x)$$

Proof. $X_i \sim B(1, \theta), \quad E[x_i] = \theta \quad Var(x_i) = \theta(1 - \theta)$

By the CLT,
$$\sqrt{n} - \frac{\overline{X}_n - \theta}{\sqrt{\theta(1 - \theta)}} \xrightarrow{d} N(0, 1)$$

issue in the denominator
$$\sqrt{n} \frac{\overline{X}_n - \theta}{\sqrt{\overline{X}_n (1 - \overline{X}_n)}} \xrightarrow{d} N(0, 1) = \underbrace{\sqrt{n} \frac{\overline{X}_n - \theta}{\sqrt{\theta (1 - \theta)}}}_{d N(0, 1) \text{ by CLT}} \underbrace{\frac{\sqrt{\theta (1 - \theta)}}{\sqrt{\overline{X}_n (1 - \overline{X}_n)}}}_{P 1, \text{ Annex 1}}$$

Annex 1:

- $\overline{X}_n \xrightarrow{P} E[X_i] = \theta$ by **WLLN**
- $\sqrt{\overline{X}_n(1-\overline{X}_n)} \to \sqrt{\theta(1-\theta)}$ by continuous mapping theorem

Example 1.3.2 (Application : $P(X \in A)$ using Simple Monte Carlo)

Notice that $P(X \in A) = E[Y]$ where $Y = I_A(X) = \begin{cases} 1 & , x \in A \\ 0 & , x \notin A \end{cases}$

Let X_1, X_2, \dots, X_M be iid r.v. with the same distribution as X, and $Y_i = I_A(X_i), i = 1, \dots, M$. Then by **SLLN**,

$$\bar{Y}_M = \frac{1}{M} \sum_{i=1}^{M} Y_i \xrightarrow{a.s.} E[Y] = P(X \in A)$$

where *M* is the simulation length.

For sufficiently large M,

$$P(X \in A) \approx \frac{1}{M} \sum_{i=1}^{M} y_i = \frac{1}{M} \underbrace{\#\{i = 1, \dots, M : x_i \in A\}}_{\text{observed proportions of } x_i \in A}$$

Simple Monte Carlo allows us to replace the analytical knowledge of a probability distribution by a sufficiently large sample of iid draws from the distribution since almost all aspects of that probability distribution can be arbitrarilly approximated using that sample.

Example 1.3.3 (Application : f(a) for some $a \in \mathbb{R}$ using Simple Monte Carlo)

For a continous distribution with density f,

$$f(a) = \lim_{\delta \to 0} \frac{F(a+\delta - F(a))}{\delta}$$
$$= \frac{1}{\delta} \frac{1}{M} \# \{ i = 1, \dots, M : a < x_i < a + \delta \}$$

That is, the histogram of x_1, \ldots, x_M is an approximation to the density of X.

Theorem 1.3.5 Delta method

Let $\{X_n\}_{n=1}^{+\infty}$ be a sequence of r.v. such that $\forall \theta \in \Theta$

$$\sqrt{n}(X_n - \theta) \xrightarrow{d} N(0, \sigma^2)$$

 $\in \Theta$ and g be a differentiable function such that $g'(\theta_0) \neq 0$. Then

$$\sqrt{n}(\underbrace{g(X_n)}_{\text{tynically non-linear}} -g(\theta_0)) \xrightarrow{d} N(0, \sigma^2[g'(\theta_0)]^2)$$

Proof. Using the 1st order Taylor expansion

$$g(x) = g(\theta_0) + g'(\theta_0)(x - \theta_0) + r(x - \theta_0), \quad \frac{r(x - \theta_0)}{x - \theta_0} \to 0 \text{ as } x \to \theta_0$$

$$g(x_n) - g(\theta_0) = g'(\theta_0)(x_n - \theta_0) + r(x_n - \theta_0)$$

$$\sqrt{n} (g(x_n) - g(\theta_0)) = \underbrace{\sqrt{n} (g(x_n) - g(\theta_0))}_{\text{Annex 1}} + \underbrace{\sqrt{n} r(x_n - \theta_0)}_{\text{Annex 2}}$$

$$\sqrt{n} (g(x_n) - g(\theta_0)) = \underbrace{\sqrt{n} (g(x_n) - g(\theta_0))}_{\theta_0} + \underbrace{\sqrt{n} r(x_n - \theta_0)}_{\theta_0}$$

Annex 1:

$$\sqrt{n}(x_n - \theta_0) \xrightarrow{d} N(0, \sigma^2)$$

Annex 1:
$$\sqrt{n}(x_n - \theta_0) \xrightarrow{d} N(0, \sigma^2)$$
 By **Slutsky's theorem**,
$$\underbrace{g'(\theta_0)}_{\text{constant}, \xrightarrow{P} g'(\theta_0)} \underbrace{\sqrt{n}(x_n - \theta_0)}_{\text{d}} \xrightarrow{d} g'(\theta_0) N(0, \sigma^2) = N(0 \times g'(\theta_0), [g'(\theta_0)]^2 \sigma^2)$$

$$\Rightarrow \sqrt{n}(x_n - \theta_0) \xrightarrow{d} N(0, [g'(\theta_0)]^2 \sigma^2)$$

$$\Rightarrow \sqrt{n}(x_n - \theta_0) \xrightarrow{d} N(0, [g'(\theta_0)]^2 \sigma^2)$$

Annex 2:

$$(T_n - \theta) = \underbrace{\frac{1}{a_n}}_{P} \underbrace{a_n(T_n - \theta)}_{P \to 0} \xrightarrow{d} 0 \times T(\cdot) = 0 \Rightarrow T_n \xrightarrow{d} \theta \qquad \Leftrightarrow \qquad T_n \xrightarrow{P} \theta$$
this applies because θ is a constant

$$\therefore \sqrt{n}(T_n - \theta) \xrightarrow{d} T \Longrightarrow T_n \xrightarrow{P} \theta$$

$$\sqrt{n}(x_n - \theta_0) \xrightarrow{d} N(0, \sigma^2)$$

By step 1, we can conclude that $x_n \xrightarrow{P} \theta_0 \quad X_n - \theta_0 \xrightarrow{P} 0$

We also know that $\frac{r(x)}{x} \to 0$

By continuous mapping theorem, $\frac{r(x_n - \theta_0)}{x_n - \theta_0} \stackrel{P}{\to} 0$

Step 3:

$$\sqrt{n} \, r(x_n - \theta_0) \Leftrightarrow \underbrace{\sqrt{n}(x_n - \theta_0)}_{\stackrel{d}{\longrightarrow} N(0, \sigma^2)} \underbrace{\frac{r(x_n - \theta_0)}{x_n - \theta_0}}_{\stackrel{P}{\longrightarrow} 0}$$

By Slutsky's theorem,
$$\sqrt{n} r(x_n - \theta_0) \stackrel{d}{\to} 0 \Longrightarrow \sqrt{n} r(x_n - \theta_0) \stackrel{P}{\to} 0 \blacksquare$$

Example 1.3.4 (Application : log-odds ratio)

Suppose that X_1, \ldots, X_n are iid $B(1, \theta)$. Then the **CLT** ensures that

$$\sqrt{n} \frac{\bar{X}_n - \theta}{\sqrt{\theta(1 - \theta)}} \xrightarrow{d} N(0, 1)$$

which is equivalent to $\sqrt{n}(\bar{X}_n - \theta) \xrightarrow{d} N(0, \theta(1 - \theta))$.

- $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$ representing the proportion of successes in the random sample
- θ representing the probability of success in the population

Now we are interested in the asymptotic distribution of $Y_n = \ln \frac{\bar{X}_n}{1 - X_n}$ which is the empirical log odds of success, a non-linear function. With $g(x) = \ln \frac{x}{1-x}$, following $g'(x) = \frac{1}{x(1-x)}$. The **delta method** ensures that

$$\sqrt{n}(Y_n - \ln \frac{\theta}{1-\theta}) \xrightarrow{d} N(0, [\theta(1-\theta)]^{-1})$$

which is often written as

$$Y_n \stackrel{a}{\sim} N(\ln \frac{\theta}{1-\theta}, \frac{[\theta(1-\theta)]^{-1}}{n})$$

Proof. Asymptotic distribution of $T_n = \ln \frac{\bar{X}_n}{1 - \bar{X}_n}$

$$\sqrt{n} \frac{\bar{X}_n - \theta}{\sqrt{\theta(1-\theta)}} \xrightarrow{d} N(0,1) \Leftrightarrow \sqrt{n}(\bar{X}_n - \theta) \xrightarrow{d} N(0,\theta(1-\theta))$$

$$g(x) = \ln \frac{x}{1-x} \to g'(x) = \frac{\left(\frac{x}{1-x}\right)}{\left(\frac{x}{1-x}\right)} = \frac{\frac{1-x-(-1)x}{(1-x)^2}}{\frac{x}{1-x}} = \frac{1-x+x}{(1-x)^2} \cdot \frac{1-x}{x} = \frac{1}{x(1-x)}$$

Applying the **delta method**, $\sqrt{n}(T_n - g(\theta_0)) \xrightarrow{d} N(0, [g'(\theta_0)]^2 \sigma^2)$

$$\Rightarrow \sqrt{n}(T_n - \ln \frac{\theta_0}{1 - \theta_0}) \xrightarrow{d} N\left(0, \left(\frac{1}{\theta(1 - \theta)}\right)^2 \theta_0(1 - \theta_0)\right) \Leftrightarrow \sqrt{n}(T_n - \ln \frac{\theta_0}{1 - \theta_0}) \xrightarrow{d} N(0, [\theta_0(1 - \theta_0)]^{-1}) \blacksquare$$

Example 1.3.5 (Application : variance stabilizing)

Suppose X_1, \ldots, X_n are $B(0, \theta)$. Then the **CLT** ensures that

$$\sqrt{n} \frac{\bar{X}_n - \theta}{\sqrt{\theta(1 - \theta)}} \xrightarrow{d} N(0, 1)$$

Note that the asymptotic variance depends on the true value of θ , meaning that the variance, σ^2 is not fixed, thus giving us the motive to stabilize the variance. Our goal is to find a g such that $\sqrt{n}(g(\bar{X}_n) - g(\theta)) \stackrel{d}{\to} N(0,1)$, which is the same as solving for $g'(x) = \frac{1}{\sqrt{\theta(1-\theta)}}$.

$$[g'(x)]^2\theta(1-\theta)=1 \Leftrightarrow g'(x)=\tfrac{1}{\theta(1-\theta)}=\theta^{-1/2}(1-\theta)^{-1/2} \Rightarrow g(\theta)=2 \arcsin \sqrt{\theta}$$

After this, the asymptotic distribution would be normal with a constant variance.

$$\sqrt{n}(2 \arcsin \sqrt{\bar{X}_n} - 2 \arcsin \sqrt{\theta}) \xrightarrow{d} N(0, 1)$$

When can we apply this technique?

$$\sqrt{n}(X_n - \mu) \xrightarrow{d} N(0, \ln(\mu))$$

From **delta method**,
$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{d} N(0, [g'(\mu)]^2 ln(\mu))$$

the variance stabilizing transformation
$$g$$
 satisfies $[g'(x)]^2 \ln(\mu) = 1 \Leftrightarrow g'(\mu) = \frac{1}{\sqrt{\ln(\mu)}} \Rightarrow g(\mu) = \int_c^{\mu} \frac{1}{h(t)} dt$

c being some constant that ensures the integral exists, and with this c,

$$\sqrt{n}(g(x_n) - g(\mu)) \xrightarrow{d} N(0, 1)$$

Chapter 2

Classical Statistical Model

2.1 Probability versus statistical inference

- · Probability theory
- Statistical inference

2.2 Model specification

- Random sample
- · Sampling
- IID random sampling

2.3 Statistics

• Statistic definition

2.4 Sampling distribution

- Definition
- Methods to obtain the sampling distribution of a statistic
 - Monte Carlo simulation
- Sample distribution of the sample moments
 - Sample moments
 - Properties of the sample mean
 - Properties of the sample variance
 - Properties of the bias-corrected sample variance
 - Properties of central sample moments
 - Asymptotic distribution of \bar{X}
- Order statistics