Lecture 12: Bayerian Inférence - I

Bayes' Theorem:

Consider two events A and B, defined

on the sample space S. Then

 $P(A|B) = P(A \land B) = P(A)P(B|A)$ P(B) = P(B)

 $= \frac{P(A)P(B|A)}{P(A\cap B)+P(A'\cap B)}$

 $= \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}$

Here P(A) = prior probability of A P(A|B) = posteror probability of A P(B|A) = bibelilood

Now Consider a r.v. X that has a probability distribution that depends on O, where O is an element of a well-defined set I. For example, if the symbol o is the mean of a normal distribution, then -2 may be the real line (R). het & be a r.v. that is distributed over the set -2. Let h(0) be the pdf of (D. Then h(0) is the prior pdf of (A). Thus, f(x(0), is the conditional pdf of X. We have X (On f(x/0), An h(0). Suppose X1, X2, --, Xn is a random sample from f(x(0). When the likelihood function L(210) = f(0,0) f(20) ... f(20)

defines the joint anditional pdf of X, given $\Phi = 0$.

The joint pdf of X and (A) is g(x,0) = L(x|0)h(0)

So $g(x) = \int_{-\infty}^{\infty} g(x, \sigma) d\sigma$ if Θ is continuous

The conditional pdf & given X, is

 $\mu(\theta|\mathbf{z}) = g(\mathbf{z}, \theta) = \mu(\mathbf{z}|\theta)h(\theta)$ $g_{i}(\mathbf{z})$ $g_{i}(\mathbf{z})$

Here, $\kappa(0|2)$ is called the posteror pdf of Θ .

Example 1:

Consider the model

Xi (0 ~ iid Poisson (0)

(D~ M(x, B), where d, B one Known

$$L(2|0) = \int_{i=1}^{\infty} 0^{x_i} e^{-0/x_i}, x_i = 0,1,2,-...$$

and the prior pdf is

$$h(\theta) = \frac{0^{d-1}e^{-0/\beta}}{\Gamma(d)\beta^{\alpha}}, 0 < \infty$$

The joint pdf

$$= \begin{bmatrix} 0^{\lambda_1} e^{-\theta} & ... & 0^{\lambda_n} e^{-\theta} \end{bmatrix} \begin{bmatrix} 0^{\lambda_n} e^{-\theta/\beta} \end{bmatrix}$$

$$= \begin{bmatrix} 0^{\lambda_1} e^{-\theta} & ... & 0^{\lambda_n} e^{-\theta} \end{bmatrix} \begin{bmatrix} 0^{\lambda_n} e^{-\theta/\beta} \end{bmatrix}$$

$$= \begin{bmatrix} x_1! & x_n! & M(\alpha) \beta^{\alpha} \end{bmatrix}$$

provided that $x_i = 0, 1, 2, 3, -.., i = 1, 2, -.., n$ and

02860.

The marginal dishibition of the sample $g(x) = \int_0^{\infty} \frac{\partial z_{x+x-1}}{\partial z_{x+1}} \frac{\partial z_{x+x-1}}{\partial z_{x+x-1}} \frac{\partial z_{x+x-1}}{\partial z_{x+1}} \frac{\partial z_{x+x-1}}{\partial z_{x+1}} \frac{\partial z_{x+x-1}}{\partial z_{x+1}} \frac{\partial z_{x+x-1}}{\partial z_{x+x-1}} \frac{\partial z_{x+x-1}}{\partial z_{x+x-1}}$

=
$$\prod (\widehat{Z}xi + \alpha)$$

 $x_1! - x_n! \prod (\alpha) \beta^{\alpha} (n+1/\beta) \widehat{Z}xi + \alpha$
The postenor pdf of (\widehat{A}) , given $X = x + x$

$$k(0|2) = L(2|0)h(0)$$

$$g_{1}(x)$$

$$= \frac{2\pi i + x - 1}{e^{-\theta/(\beta/n\beta + 1)}}$$

$$= \frac{1}{2\pi i + x} \left[\frac{\beta}{(n\beta + 1)}\right] \frac{\pi}{2\pi i + x}$$

provided that 0 < 0 < 0 < 0. This

Conditional pdf is of the gamma type, with parameters

$$\chi^* = \sum_{i=1}^{n} \chi_i + \chi$$

$$\beta^* = \beta/(n\beta+1)$$

Note that it is not really necessary to determine the marginal pdf g, (2) to find the postenor paf K(O(Z). Dividing L(2|0)h(0) by $g_1(2)$ yields c(2) $\theta^{\sum xi+x-1} e^{-\theta/E\beta/(n\beta+1)}$, where C(x) does not depend on o Merefore u(0/2) = c(2) 0 = c(2 provided that 0 LOC 00, and 21 = 0,1,2, -.., [=1,2,--,n. However, c(2) must be a constant needed to make K(O(2) a pdf i.e. $C(z) = \frac{1}{\Gamma(Zxi+x)[\beta/(n\beta+i)]^{2xi+x}}$ So, k(0/2) & L(2/0) h(0)

Here, we write K(0/2) & 07xi+d-1e-0/[B/(nB+1)] 010 LO La. Clearly, K(0/2) is a gamma pdf with parameters $x^* = \frac{2}{2}x_i + \alpha$, $\beta^* = \beta/(n\beta+1)$ Now suppose that there exists a sufficient statistic = 4(x) for O So that $L(x|\theta) = g[u(x)|\theta]H(x)$, where g(y/o) is the pdf of Y, given (H) = 0. Then K(0/2) x g[u(2) (0]h(0), Since H(x) does not depend on o and hence can be dropped. We can then write K(O(y) & g(y/o) h(o). In the continous case, g((y) = for g(y/o)h(o)do.

Bayerian Point Estimation

Suppose we wish to find a point astimator of O. Then we must select a deasion function $\delta(x)$, so that $\delta(x)$ is a predicted value of & when both the Computed value & and conditional pdf K(O(2) are known. The choice of this decision function depends on a loss function L(O, S(N)) in such a way that the conditional expectation of the loss is a minimum. So a Bayes extimate is a decision function S(2) that minimizes

$$E\left\{ \mathcal{L}(\Theta, \mathcal{S}(\mathbf{x})) \middle| \mathbf{X} = \mathbf{x}^{2} \mathbf{y} = \int_{\infty}^{\infty} \mathcal{L}(\mathbf{0}, \mathcal{S}(\mathbf{x})) \, \mathbf{x}(\mathbf{0}|\mathbf{x}) \, d\mathbf{0} \right\}$$

i.e
$$\delta(z) = \operatorname{argmin} \left(\sum_{\alpha} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\partial_{\alpha} \delta(\alpha) \right) \mu(\partial(z)) d\theta \right)$$

Note:

a) If
$$L(0, S(x)) = (0 - S(x))^2$$
, then

when
$$b = E(W)$$
.

b) If
$$d(0,\delta(x)) = |\theta-\delta(x)|$$
, then

$$\delta(x) = \text{med}(\Phi(x), \text{ the median of}$$

the conditional distribution.

This follows from the fact that E([W-6]) is a minimum when b= median of the dishibution of W. But the Conditional expectation of the loss function, given X=x is a v.v that is a function of x. Its expected value is $\int_{\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$ $=\int_{-\infty}^{\infty}\int_{$ Here $\int_{0}^{\infty} \int_{0}^{\infty} (0, \delta(x)) L(x(0)) dx = R(0, \delta)$, the So O above defines the mean risk or

expected risk

Thus, a Bayes estimate E(Z) minimize $\int_{-\infty}^{\infty} \mathcal{L}(0,S(x)) \, \mathbb{K}(0|2) \, d0 \quad \text{for every } x$ for which g(x) > 0, also minimizes the mean value of the risk. Example 2: Consider Xiloniid b(1,0) (A) beta(d,B), & and B are known

i.e $h(\theta) = \prod(d+\beta) \theta^{d-1} (1-\theta)^{\beta-1}$, $0 < \theta < 1$ $\prod(d) \prod(\beta)$

We are seeking for $\delta(z)$ that is a

Bayes solution.

Now, $Y = \sum_{i=1}^{n} X_i$ is a sufficient Statistic for 0, and $Y \sim b(n, 0)$

$$g(y|0) = {n \choose y} \theta^y (1-\theta)^{n-y}, y = 0,1,2,...$$

i.e
$$K(0|y) = \frac{\prod(n+d+\beta)}{\prod(d+y)\prod(n+\beta-y)} 0^{y+d-1} (1-0)^{n-y+\beta-1}$$

For
$$\mathcal{L}(0, \delta(y)) = [0 - \delta(y)]^2$$
, (square error loss),

$$\delta(y) = \alpha + y$$
 $d + \beta + n$

$$= \left(\frac{n}{\lambda + \beta + n}\right) \frac{y}{n} + \left(\frac{\lambda + \beta}{\lambda + \beta + n}\right) \frac{\lambda}{\lambda + \beta},$$

a weighted average of the MLE of 0 and the mean d/(d+B) of the power pdf of the parameter. For large n, the Bayes estimate is close to the MCE of & and S(Y) is a consistent estimator of &.

Exercise (fill in missing steps)

Consider $Xi[0 \ n \ iid \ N(0, \sigma^2), \sigma^2 \ known$ (A) $N(0_0, \delta_0^2)$, where 0_0 and δ_0^2 are

Vnono

Then Y = X is a sufficient statistic

Equivalent formulation:

 $Y(\theta \sim N(\theta, \sigma^2/n)$

 $\Theta \sim N(\theta_0, G_0^2)$

Here $K(\theta|y) d \frac{1}{\sqrt{2\pi} \sigma / \sqrt{5} \sqrt{50}} = \exp\left[\frac{-(y-\theta)^2 - (\theta-\theta_0)^2}{2(\sigma^2 / \sqrt{5} \sqrt{50})^2}\right]$

After eliminating all constant factors, we

have $K(\Theta|y) \propto \exp\left[-\frac{[5_0^2 + (5_1^2/n)] \delta^2 - 2[y \sigma_0^2 + \theta_0(\sigma_0^2)]}{2(\sigma_0^2/n) \sigma_0^2}\right]$

This can be simplified by completing the square to become:

 $K(\Theta|Y)$ $X exp \left[-\left(\Theta - \frac{y c_0^2 + \Theta_0(\sigma^2/h)}{c_0^2 + (\sigma^2/h)}\right)^2 \right]$ $\frac{2(\sigma^2/h) c_0^2}{[c_0^2 + (\sigma^2/h)]}$

So, the posterior pdf of the parameter is normal with mean

$$\frac{y 60^{2} + \theta_{o}(5^{2}/n)}{60^{2} + (5^{2}/n)} = \left(\frac{60^{2}}{60^{2} + (5^{2}/n)}\right)^{y} + \left(\frac{5^{2}/n}{60^{2} + (5^{2}/n)}\right)^{\theta_{o}}$$

and variance (5/h) 50/[502+(5/h)]

If the squared-env loss function is used, then this posteror mean is the Bayes estimator, which is a weighted average of MLE y= 2 and the prior mean o. For large n, the bayes extraator is close to the MLE and S(Y) 'n consistent D. If the absolute-error loss function was used, the Bayes solution, E(Y), would be the median of the posterior distribution.

Bayerian Interval Estimation

To obtain an interval estimate of o, we find two functions u(x) and v(x) so that $P(u(x) < \oplus < v(x) \mid X = x)$ $= \left(\frac{\sqrt{2}}{\sqrt{9}} \right) d\theta$ is large, say 0.95. The interval (u(x), v(x)) is an interval estimate of D in that the conditional probability of (being there is 0.95 (say). Such an internal is called

credible or probability interval.

In the Exercise above, the posterior pdf of

(H) given \(= y \) had mean \(\frac{460^2 + 00(5^2/n)}{50^2 + (5^2/n)} \)

and variance (52/n) 502/(502+(52/n)).

Thus, a credible interval of probability 0.95 for θ is $\frac{y_{0}^{2} + \theta_{0}(5^{2}/n)}{5_{0}^{2} + (5^{2}/n)} + 1.96 \int \frac{(5^{2}/n)_{0}^{2}}{5_{0}^{2} + (5^{2}/n)}$

In Example 1, the posteror pdf was

M(y+d, B/(nB+1)), where y = Zii (the

sufficient sfahshz for O).

 $\delta(y) = \beta(y+x) = (n\beta) y_n + (d\beta)$ $n\beta+1 = (n\beta+1) y_n + (n\beta+1)$

Note that 2(nB+1) A 2(df=2(Zxi+x))

Therefore, the 100(1-d) 6 credible intenal

for O is:

 $\left(\frac{\beta}{2(n\beta+1)}\chi^{2}_{1-\alpha/2}\left(\frac{\pi}{2}\chi_{i}+\lambda\right),\frac{\beta}{2(n\beta+1)}\chi^{2}_{\alpha/2}\left(\frac{\pi}{2}\chi_{i}+\lambda\right)\right)$