机器学习-点集分类

韩琳 hanlin3309@163.com

Abstract

该报告使用Decision Trees, AdaBoost + DecisionTrees, SVM方法对月亮形状数据集进行分类,并且对于SVM方法尝试了三种核函数,最终Decision Trees, AdaBoost + DecisionTrees, SVM (rbf Kernel)得到较准确的分类结果,SVM (linear Kernel)、SVM (poly Kernel)分类结果不佳,体现了Decision Trees,SVM (rbf Kernel)两种方法在处理非线性数据时具有较好的效果

Introduction

二分类是模式识别的基础任务,广泛用于医疗诊断、欺诈检测等。Decision Trees, AdaBoost + DecisionTrees, SVM等算法是常见的二分类解决算法,决策树易于解释, AdaBoost提升分类性能, 非线性核函数的SVM擅长处理高维数据, 三者各有优势。

Methodology

1.Decision Tree

决策树是一种流行且功能强大的工具,用于机器学习和数据挖掘,用于分类和回归任务。它是一个树状结构模型,其中内部节点表示对属性的测试,分支表示这些测试的结果,叶节点表示 决策结果或类标签。从根到叶的路径表示分类规则或回归路径。

```
# 决策树分类器

dt_clf = DecisionTreeClassifier(random_state=42)

dt_clf.fit(X_train, y_train)

dt_pred = dt_clf.predict(X_test)

print("Decision Tree Performance:")

print(classification_report(y_test, dt_pred))

print("Accuracy:", accuracy_score(y_test, dt_pred))

# 绘制决策树结果

plot_predictions(X_test, y_test, dt_pred, 'Decision Tree Predictions')
```

本实验调用**sklearn**库中的 **DecisionTreeClassifier**方法,选取random_state=42的随机等价划分保证结果的可重复性并且控制随即结果,训练结果在测试集上的Accuracy达到0.94

Decision	Tree	Performance:			
		precision	recall	f1-score	support
	0.0	0.95	0.92	0.94	250
	1.0	0.93	0.96	0.94	250
accur	racy			0.94	500
macro	avg	0.94	0.94	0.94	500
weighted	avg	0.94	0.94	0.94	500
Accuracy:	0.94	4			

Decision Tree Predictions

2.Decision Trees+AdaBoost

AdaBoost 背后的核心原则是将一系列弱学习器(即,仅比随机猜测稍好一点的模型,例如小决策树)拟合反复修改的数据版本。然后,通过加权多数票(或总和)将所有这些预测组合在一起,以生成最终预测。

```
# AdaBoost + 決策树分类器
ab_clf =
AdaBoostClassifier(estimator=DecisionTreeClassifier(random_state=40),
n_estimators=50, random_state=42)
ab_clf.fit(X_train, y_train)
ab_pred = ab_clf.predict(X_test)
print("\nAdaBoost + Decision Tree Performance:")
print(classification_report(y_test, ab_pred))
print("Accuracy:", accuracy_score(y_test, ab_pred))
plot_predictions(X_test, y_test, ab_pred, 'AdaBoost Predictions')
```

本实验调用**sklearn**库中的 **AdaBoostClassifier**方法,选取random_state=40的随机等价划分子决策树,选用选取random_state=42划分Adaboost本身,保证结果的可重复性并且控制随即结果,n_estimators取50表示使用50个决策树进行集成,训练结果在测试集上的Accuracy达到0.944,准确率略微高于Decision Trees,效果提升不明显

AdaBoost + Decision Tree Performance: precision recall f1-score support							
0.0	0.97	0.92	0.94	250			
1.0	0.92	0.97	0.95	250			
accuracy			0.94	500			
macro avg	0.95	0.94	0.94	500			
weighted avg	0.95	0.94	0.94	500			
Accuracy: 0.944							

AdaBoost Predictions

3.SVM

支持向量机(Support Vector Machine, SVM) 是一种经典的有监督机器学习算法,主要用于分类和回归任务。其核心思想是通过在特征空间中寻找一个最大化间隔的超平面,将不同类别的数据点分开,从而实现对新样本的高效分类。

```
# SVM 分类器 (线性核)
svm linear = SVC(kernel='linear', random state=42)
svm linear.fit(X train, y train)
svm_linear_pred = svm_linear.predict(X_test)
print("\nSVM (Linear Kernel) Performance:")
print(classification_report(y_test, svm_linear_pred))
print("Accuracy:", accuracy_score(y_test, svm_linear_pred))
plot predictions(X test, y test, svm linear pred, 'SVM (linear Kernel)
Predictions')
# SVM 分类器 (多项式核)
#多个degree值的多项式核SVM分类器
svm poly = SVC(kernel='poly', degree=3, random state=42)
svm poly.fit(X train, y train)
svm poly pred = svm poly.predict(X test)
print("\nSVM (Polynomial Kernel) Performance:")
print(classification_report(y_test, svm_poly_pred))
print("Accuracy:", accuracy_score(y_test, svm_poly_pred))
```

```
plot_predictions(X_test, y_test, svm_poly_pred, 'SVM (poly Kernel)
Predictions')

# SVM 分类器 (RBF核)
svm_rbf = SVC(kernel='rbf', random_state=42)
svm_rbf.fit(X_train, y_train)
svm_rbf_pred = svm_rbf.predict(X_test)
print("\nSVM (RBF Kernel) Performance:")
print(classification_report(y_test, svm_rbf_pred))
print("Accuracy:", accuracy_score(y_test, svm_rbf_pred))
plot_predictions(X_test, y_test, svm_poly_pred, 'SVM (rbf Kernel)
Predictions')
```

本实验调用**sklearn**库中的 **SVM**方法,选取random_state=42,并且使用linear、poly、rbf 三种核函数,其中poly核函数调用了3次多项式进行拟合,得到三个核函数的预测结果,其中 rbf核函数准确率最高,poly核函数其次,linear核函数方法准确率最低

linear kernel

SVM (Linear Kernel) Performance:						
	precision recal		f1-score	support		
0.0	0.67	0.66	0.66	250		
1.0	0.66	0.67	0.67	250		
accuracy			0.67	500		
macro avg	0.67	0.67	0.67	500		
weighted avg	0.67	0.67	0.67	500		
Accuracy: 0.666						

SVM (linear Kernel) Predictions

• poly kernel

SVM (Polynomial Kernel) Performance:							
	precision	recall	f1-score	support			
0.0	0.79	0.95	0.86	250			
1.0	0.93	0.74	0.83	250			
accuracy			0.85	500			
macro avg	0.86	0.85	0.84	500			
weighted avg	0.86	0.85	0.84	500			
Accuracy: 0.846							

SVM (poly Kernel) Predictions

• rbf kernel

SVM (RBF Kern	el) Performa	nce:			
	precision	recall	f1-score	support	
0.0	0.98	0.96	0.97	250	
1.0	0.96	0.98	0.97	250	
accuracy			0.97	500	
macro avg	0.97	0.97	0.97	500	
weighted avg	0.97	0.97	0.97	500	
Accuracy: 0 972					

SVM (rbf Kernel) Predictions

Conclusions

本实验使用的几种分类方法中, Decision Trees, AdaBoost + Decision Trees, RBF SVM分 类准确率达到了0.94以上,其中RBF SVM方法分类效果最好,这体现了高斯核SVM在处理非 线性数据二分类时的优势,能够在超平面高维度将数据准确划分,**多项式核方法以及线性核方** 法准确率不佳,体现了这两种核函数在处理简单非线性数据时的局限性,启示我使用SVM方法 时要根据数据的先验特征选取适合的核函数方法核参数,决策树算法在处理非线性问题时也同 样体现出较好的性能, AdaBoost 通过集成弱决策树, 在非线性拟合和泛化能力上优于单决策 树。若数据接近线性,线性核 SVM 足够高效;若存在复杂非线性,高斯核 SVM 和集成方法 (如 AdaBoost) 更优。

方法	非线性拟 合能力	泛化能力	参数复杂 度	噪声 鲁棒 性	决策边 界特性	适用数据 类型
高斯核 SVM	最强(无 限维)	强(间隔 最大化)	低 (2参 数)	强	连续平滑曲面	复杂非线 性数据
AdaBoost 决 策树	较强(集 成分裂)	较强(降 低方差)	中(基学 习器参 数)	中等	集成阶 梯边界	中等非线性数据
决策树	中等(单棵分裂)	弱(易过 拟合)	低(剪枝 参数)	弱	单棵阶 梯边界	简单非线 性数据
多项式核 SVM	有限(固 定多项 式)	弱(高次 过拟合)	高(3参 数)	弱	固定多 项式曲 面	明确多项 式关系数 据
线性核 SVM	无 (仅线 性)	中等 (依 赖 C)	最低 (1参 数)	中等	线性超 平面	严格线性 可分数据