Lezione 2 Algebra 1

Federico De Sisti2024-10-03

1 Nelle lezioni precedenti...

Definizione 1

 (G,\cdot) gruppo $H \leq G$ $f,g \in G$ si dicono congruenti modulo H se $f^{-1} \cdot g \in H$

2 Classi di equivalenza

Notazione 1

classi di equivalenza:

$$G/H$$
.

Esempi importanti

 $(G,\cdot)=(\mathbb{Z},+)$ $H=(m)=\{am|a\in\mathbb{Z}\}$ con m fissato $G/H=\mathbb{Z}/(m)$

Attenzione

potete definire $f = g \mod H$ tramite la condizione $f \cdot g^{-1}$ Le due definizioni non sono equivalenti [La chiameremo congruenza destra]

Notazione 2

L'insieme delle classi di equivalenza destra si indica con

$$H \backslash G$$
.

Definizione 2

Gli elementi di G/H si chiamano laterali sinistri, quelli di $H\backslash G$ si chiamano laterali destri

Esercizio:

 (G,\cdot) gruppo

 $H \leq G$ $g \in G$ fissato

Allora il laterale sinistro a cui appartiene g è

$$gH = \{g \cdot h | h \in H\}.$$

Soluzione

fisso $f \in G$ e osserviamo che

$$g \equiv f \mod H$$
.

Se e solo se $g^{-1} \cdot f \in H$.

Questo è equivalente a

$$\exists h \in H \text{ tale che } g^{-1} \cdot f = h.$$

ovvero

 $\exists h \in H \text{ tale che } f = g \cdot h.$

Esercizio

 $H \leq G$

Allora $|G/H| = |H \backslash G|$

Soluzione

Basta eseguire un'applicazione biunivoca tra i due insiemi

Definizione 3

 (G,\cdot) gruppo $H\leq G$ si dice sottogruppo normale se gH=Hg $\forall g\in G$

Esempio

 $G=S_3$ ricordo che S_3 è il gruppo di permutazioni dell'insimee $\{1,2,3\}$ Quali sono gli elementi di S_3 ?

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2,3)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (3, 2, 1)$$

scambio il 3 con l'uno , il 2 con il 2

(2,3,1)

(1,3)

(1,2)

Ìď

$$H_1 = \langle (1,2) \rangle = \{id, (1,2)\}.$$

$$H_2 = <(3,2,1)> = \{id, (3,2,1), (2,3,1)\}.$$

Esercizio— Dimostrare che $H_1 \leq S_3$ non è normale, mentre $H_2 \leq S_3$ è normale

Notazione 3

Se $H \leq G$ è normale scriveremo

$$H \subseteq G$$
.

Esercizio

 $H \leq G$ sottogruppo dimostrare che l'applicazione $\phi: H \rightarrow gH$ $g \rightarrow g \cdot h$

Soluzione

 ϕ è suriettiva per definizione di gH

è anche iniettiva infatti se $h_1, h_1 \in H$ soddisfano

$$gh_1 = gh_2$$
 .

allora $h_1 = h_2$ (per la legge di cancellazione)

Ossercazione

 (G,\cdot) gruppo

 $H \leq G$ Allora

$$|gH| = |Hg| \ \forall g \in G.$$

anche se $gH \neq Hg$ poiché hanno entrambi la stessa cardinalità di H Inoltre tutti i laterali sinistri (e destri) hanno la stessa cardinalità

Definizione 4

 (G,\cdot) gruppo, $H \leq G$ l'indice di H in G è

$$[G:H] = |G/H|.$$

dove |G/H| è il numero di classi laterali sinistre

Osservazione

 $H \leq G$ sottogruppo

Se G è abeliano allora $H \leq G$

Il viceversa è falso! Possono esistere sottogruppi normali in gruppi non abeliani

Proposizione 1

 (G,\cdot) gruppo $H \leq G$ allora

$$|G| = [G:H]|H|.$$

Dimostrazione

Basta ricordare che la cardinalità di ciascun laterale sinistro è pari a |H| Osservazione

$$H \subseteq G \Longrightarrow [G:H] = \frac{|G|}{|H|}$$

Teorema 1 (Lagrange)

 (G,\cdot) gruppo $H \leq G$ Allora l'ordine di H divide l'ordine di G

Dimostrazione

Dall'osservazione segue $\frac{|G|}{|H|} = [G:H] \in \mathbb{N}$

Corollario 1

 (G,\cdot) gruppo di ordine primo (ovvero |G|=p con p primo)

Allora G non contiene sottogruppi non banali (tutto il gruppo o il gruppo minimale)

Dimostrazione

 $Sia\ H \leq G\ allora\ per\ Lagrange\ abbiamo$

$$|H|$$
 divide p .

$$\Rightarrow |H| = 1 \ quindi \ H = \{e\}$$

$$oppure \Rightarrow |H| = p \ quindi \ H = H$$

Corollario 2

 (G, \cdot) gruppo (finito)

Dato $g \in G$ si ha ord(g) divide l'ordine di G

Dimostrazione

 $Dato g \in G \ considero$

$$\langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\}\$$

 $|\langle g \rangle| = ord(g).$

La tesi segue ora da Lagrange

3 Operazioni fra sottogruppi

Proposizione 2

 $\begin{array}{c} (G,\cdot) \ gruppo \ H,K \leq G \\ Allora \ H \cap K \leq G \end{array}$

Dimostrazione

 $H\cap K$ è chiuso rispetto all'operazione e agli inversi poiché sia H che K che lo sono $\hfill\Box$

Esercizio

Esibire due sottogruppi $H, J \leq G$ tali che $H \cup K$ non è un gruppo

Definizione 5

Dati $H, K \leq G$ definiamo il <u>sottoinsieme</u>

$$HK = \{h \cdot k | h \in H, k \in K\}.$$

Attenzione non è necessariamente un sottogruppo

Esercizio

Dimostrare che HK è un sottogruppo, di G se e solo se

$$HK = KH$$
.

Soluzione

Supponiamo che HK sia un sottogruppo

$$HK = (HK)^{-1} = \{(h \cdot k)^{-1} | h \in H, k \in K\} = K^{-1}H^{-1} = KH.$$

Viceversa supponiamo che HK = KH

1) Dimostro che KH è chiuso rispetto all'operazione. $h_1k_1 \in HK$ e $h_2 \cdot k_2 \in HK$

$$(h_1 \cdot k_1) \cdot (h_2 \cdot k_2) = h_1 \cdot (k_1 \cdot h_2) \cdot k_2 = h_1 \cdot h_3 \cdot k_3 \cdot k_2 = (h_1 \cdot h_3) \cdot (k_3 \cdot k_1).$$

2) HK è chiuso rispetto agli inversi

$$h \cdot k \in HK \leadsto (h \cdot k)^{-1} = k^{-1} \cdot h^{-1} = h_4 \cdot k_4 \in HK.$$

Definizione 6 (Sottogruppo generato da un sottoinsieme)

 (G,\cdot) gruppo $X\subseteq G$ sottoinsieme

Il sottogruppo generato da X è

$$< X > = \bigcap_{H \leq G, X \subseteq H} H.$$

Notazione 4

 $\cdot H, K \leq G$

$$< H, K > := < H \cup K >$$
.

 $g_1, g_n \in G$

$$< g_1, \ldots, g_n > := < \{g_1, \ldots, g_n\} > .$$

Caso Speciale

$$(G,\cdot)=(\mathbb{Z},+)\quad m\in\mathbb{Z}$$

$$(m) := < m >$$

4 Sottogruppi di Z

Ricordo

dato $a \in \mathbb{Z}$ si ha $(a) \leq \mathbb{Z}$

Obbiettivo

non esisotno altri sottogruppi

Teorema 2

 $H \leq \mathbb{Z}$ allora esiste $m \in \mathbb{Z}$ tale che H = (m)

Dimostrazione

Distinguiamo due casi:

- 1) H = (0) finito
- 2) $H \neq (0)$ allora H contiene (almeno) un intero positivo, Definiamo

$$m:=\min\{n\in\mathbb{Z}|n\geq 1, n\in H\}.$$

Vogliamo verificare che H=(m) Sicureamente $(m)\subseteq H$ poich $H\leq \mathbb{Z}$ Viceversasupponiamoche $\exists n\in Hx(n)$. Allora

$$n = qm - r$$
 per qualche $q \in \mathbb{Z}$ $0 < r < m$.

$$\rightarrow r = n - qm \in H$$

 $Ma \ r > 0, r < m \ quindi otteniamo l'assurdo per minimalità di <math>m$

Proposizione 3

 $a, b \in \mathbb{Z}$, Allora:

- $1)(a) \cap (b) = (n) \ dove \ m := mcm\{a, b\}$
- (a) + (b) = (d) dove $d := MCD\{a, b\}$

Osservazione

(a)+(b)è della forma HK con H=(a)e K=(b)

inoltre $(a) + (b) \leq \mathbb{Z}$ poich $(\mathbb{Z}, +)$ è abeliano

Dimostrazione

 $(1)(a) \cap (b)$ è il sottogruppo dei multipli di a e di b

Dunque $(a) \cap (b) = (m)$

$$(2)a + b \leq \mathbb{Z} \Rightarrow (a) + (b) = (d')$$
 per teorema

Dobbiamo verificare che d' = d

$$(d) = (a) + (b) \supseteq (a) \Rightarrow d'|a(d' \text{ divide } a).$$

$$\Rightarrow \begin{cases} d'|a \\ d'|b \end{cases} \Rightarrow d' \le d$$

 $d' \in (a) + (b) \Rightarrow \exists h, k \in \mathbb{Z} \text{ tale che } d' = ha + kb$ Dunque:

$$\begin{cases} d|a \\ d|b \end{cases} \Rightarrow d|d' => d \le d'$$

Allora d = d'

5 Gruppi D_n e C_n

Ricordo

 $n \ge 3$

Fissiamo un n - agono

 $D_n = \{\text{isometrie che preservano l'n-agono}\}$

 $C_n = \{\text{isometrie che preservano l'n-agono e l'orientazione}\}$

Teorema 3

 $n \geq 3$ Allora

$$|D_n| = 2n$$

$$|C_n| = n$$

Dimostrazione

Fissiamo un lato l dell'n-agono. Un'isometria $\varphi \in D_n$ è univocamente determinata dall'immagine di $\varphi(l)$

Ho n scelte per il lato e per ogniuna di queste ho 2 scelte per le orientazione (mando il lato in se stesso? in quello dopo? in quello dopo ancora?, posso anche invertire la sua orientazione, i successivi lati vengono definiti da dove viene mandato il primo)

se non scegliamo l'orientazione, ci rimane il gruppo ciclico, e ciò conclude la dimostrazione $\hfill\Box$

Osservazione

La dimostrazione prova che

$$C_n = <\rho>$$
.

dove ρ è la rotazione di angolo $\frac{2\pi}{n}$ attorno al centro dell'*n*-agono Infatti $\rho\in C_n\Rightarrow<\rho>\subseteq C_n$ ma l'ordine di questa rotazione è n

$$|<\rho>| = ord(\rho) = n = |C_n| => C_n =<\rho>.$$

Osservazione

Dalla dimostrazione segue che D_n è costituito da n rotazioni (della forma ρ^i $i \in \{1, ..., n\}$

e n riflessioni

Proposizione 4

 $n \geq 3$ Allora:

 $1)D_n = <\rho,\sigma>$

Dove σ è una rotazione qualsiasi $(\sigma \in D_n \setminus C_n)$

 $2)\rho^i\sigma = \sigma\rho^{n-i}$

${\bf Dimostrazione}$

1) Sicuramente
$$< \rho, \sigma > \subseteq D_n$$

 $H = < \rho > = \{Id, \rho, \rho^2, \dots, \rho^{n-1}\}$
 $K = < \sigma > = \{Id, \sigma\}$
 $H \cap K = \{Id\}$

$$|KH| = \frac{|H||K|}{|H \cap K|} = 2n.$$

 \Rightarrow $HK \subseteq D_n$ (In particolare HK è sottogruppo) \Rightarrow $D_n = HK = <\rho, \sigma>$ $\rho\sigma$ non preserva l'orientazione

- $\Rightarrow \rho^i \sigma \ \dot{e} \ riflessione$
- $\Rightarrow ord(\rho^i \sigma) = 2$
- $\Rightarrow \rho^i \sigma \dot{\rho^i} \sigma = Id$
- $\Rightarrow \rho^i \sigma \rho^i = \sigma$

$$\Rightarrow \sigma \rho^i = \rho^{n-1} \sigma$$