JC20 Rec'd PCT/PTO 14 0CT 2005

P802022/WO/1

DaimlerChrysler AG

5

15

20

Air supply device for an automotive seat

The invention relates to an air supply device for an automotive seat of the type indicated in the preamble of patent claim 1.

An air supply device of this type has already been made known from DE 100 54 009 A1, in which device an air duct is arranged on the delivery side of a fan and has at least one air outlet opening provided in the upper region of the seat for supplying the head, shoulder and neck region of a seat occupant with a flow of air. The flow of air is heated here by arranging a heating element inside the air duct between the fan and the air outlet opening. The flow of air emerging from the air outlet opening can be controlled here by means of a sensor for detecting an external parameter value, for example the driving speed or the outside temperature.

- 25 It is the object of the invention to provide an air supply device of the initially mentioned type whose flow of air can be controlled in a more universal manner.
- This object is achieved according to the invention by means of an air supply device having the features of patent claim 1. Advantageous embodiments together with expedient developments of the invention are given in the subclaims.

35

In the air supply device according to the invention, at least one sensor, which can be used, for example, to detect the temperature and/or the quantity of the flow

10

15

of air, is arranged inside the air duct between the air outlet opening and the heating element. If, example, the temperature of the flow of air emerging from the air outlet opening in the direction of the seat occupant is too high, owing for example to high an ambient temperature, the heating element and/or the fan are/is switched back or off. If the temperature falls below a predetermined temperature, the fan and the heating element can be switched on again or the air quantity or temperature can be increased again. value supplied by the sensor additionally makes possible to recognize if, for example, the air outlet opening is partially or completely concealed in inadmissible manner and the temperature consequently exceeds an admissible upper limit. In this case, the heating element and/or the fan are/is likewise switched back or off.

Further advantages, features and details of the invention will become apparent from the following description of two preferred exemplary embodiments and also with reference to the drawings, in which:

figs 1a, b show a schematic, perspective front view
and a schematic side view of the
backrest of an automotive seat having
the integrated air supply device
according to the invention;

30 fig. 2 shows a rear view of the air supply device according to figures 1a, b, of which it is possible to see a fan in the lower region and, above the fan, the air supply duct with the air outlet opening arranged at the upper end;

figs 3a, b show a front view and a perspective view of the upper end of the air duct

according to figure 2 with the air outlet opening, the sensor according to the invention being arranged close to the air outlet opening; and

5

10

figs 4a, b show a front view and a perspective view of the upper end of the air duct according to figure 2 according to a further embodiment of the invention, in which the sensor according to the invention is integrated into a grating element.

Figures 1a and 1b illustrate the backrest 10 of automotive seat in a schematic perspective front view 15 and in a schematic side view respectively. A rear covering piece 12 and a head restraint 14 is all that can be seen of the backrest 10 in figure 1a. automotive seat here is designed as an integral seat, 20 with the head restraint 14 overlapping and in front of the backrest 10. The arranged restraint 14 is height-adjustable with respect to the backrest 10 by way of guide means (not shown). An air supply device 16 is fastened to the rear covering piece 12 of the backrest 10, the key components of this 25 device being a schematically illustrated fan 18 at the lower end of the air supply device and an air duct 20 arranged above the fan 18. Provided inside the air duct 20 at a distance above the fan 18, on the delivery side thereof, is a heating element 22 which can be used to 30 heat the flow of air produced by the fan 18, this heating element 22 being illustrated only by broken lines in figure 1a. The vertically extending air duct 20 is bent forward into an L shape at the upper end and 35 terminates in an air outlet opening 24. The air duct 20 terminates, in the region of the air opening 24, in a plane with the front side 26 of the head restraint 14. A grating element 32 is illustrated 10

inside the air duct 20 close to the air outlet opening 24 and will be explained in more detail below with reference to figures 3a and 3b and 4a and 4b. Figure 1b additionally shows a lateral flank 28 of the backrest 10 and also, indicated by broken lines, the profile of the upholstery cover 30 in the central panel region of the backrest 10. It can also be seen from this figure that the air supply device 16 is completely arranged inside the backrest 10 and only the air outlet opening 24 is visible from outside. The sensor (which will be explained below) inside the air duct 20 is not represented in figures 1a and 1b.

Figure 2 represents the air supply device 16 according 15 to figures la and lb in a rear view. In the present exemplary embodiment, the fan 18 which is visible at the lower end of the air supply device 16 has a nonvisible inlet opening which is arranged at the front side of the fan 16. It is clear that a free space from 20 which air can be sucked in by the fan 18 must present here between the upholstery (indicated figure 1b) in the region of the panel surface of the backrest 10 and the inlet opening of the fan 18. A bulge-like widening 34 of the air duct 20 can be seen 25 at the delivery side above the fan 18, the heating element 22 being accommodated inside said widening, illustrated by broken lines. At the upper end of the supply device 16, the L-shaped part 36, which comprises the air outlet opening 24, is designed as an element which can be upwardly displaced telescopically 30 inside the air duct 20. By virtue of this arrangement, the L-shaped part 36 can be height-adjusted together with the head restraint 14. In the exemplary embodiment shown here, both the air duct 20 and the L-shaped part 36 are made of a plastic. The housing 38 of the fan 18 35 is at the same time connected in one piece to the air duct 20. The air duct 20 and the L-shaped part 36 have an approximately rectangular cross section

substantially over their entire length.

Figures 3a and 3b represent the upper part of the air 20 together with the L-shaped part 36 guided slideably therein in a perspective view and in a front view. It can be seen particularly from figure 3a that the upper part 38 of the L-shaped part 36 extends approximately horizontally. The grating element 32 is arranged inside this approximately horizontal duct part 10 38 close to the air outlet opening 24 and is arranged transversely with respect to the flow direction of the flow of air which flows through the air duct 20 or the upper duct part 38. In the exemplary embodiments shown, the grating element can be secured by means of latching 15 tongues 40 to openings 42 in the L-shaped part 36. The flow of air produced by the fan 18 and subjected to turbulence as it flows through the heating element 20 is made more uniform by means of the grating element 32 arranged inside the air duct 20 or the duct part 38. 20 Moreover, the grating element 32 has the effect that the flow of air which flows through is slightly banked up. As a result, the flow of air arrives at the seat occupant with somewhat lesser speed than without a grating element 32, a situation which has proved to be 25 particularly advantageous in terms of the feeling of comfort experienced by said occupant. The banking-up of air at the grating element 32 additionally ensures that the flow of air remains somewhat longer in the air duct 20 and close to the heating element 22. The heating 30 element 22 thus makes it possible to transmit more heat to the flow of air. A higher air outlet temperature in the region of the air outlet opening 24 thus results.

A sensor 44 for detecting a parameter value, which is 35 arranged between the air outlet opening 24 and the heating element 22, is additionally provided inside the L-shaped part 36 of the air duct 20 of the air supply device 16. In the exemplary embodiment according to

figures 3a and 3b, the sensor 44 is designed as a temperature sensor and is fitted into a drilled hole 46 in the underside of the L-shaped part 36, the sensor 44 being arranged close behind the grating element 32. this arrangement, the sensor 44 is connected via a lead 48 to a control device (not shown) of the air supply device 16, the lead 48 being dimensioned to be of such length that the height adjustment of the head restraint 14 and of the L-shaped part 36 is possible. The flow of emerging from the air outlet opening controlled as a function of the parameter value of the sensor 44. If, for example, the temperature of the flow of air emerging from the air outlet opening 24 is too high, for example as a result of too high an ambient temperature, the heating element 22 and/or the fan 18 are/is switched back or off by means of the control device. In this arrangement, it is possible first switch the heating element 22 down or off and only subsequently to switch the fan 18 down or off. When the temperature falls below a predetermined temperature, the fan 18 and the heating element 22 are switched on again or the air quantity or temperature is increased again. The value supplied by the sensor 44 additionally makes it possible to recognize if, for example, the air outlet opening 24 is partially or completely concealed in an inadmissible manner and the temperature of the flow of air consequently exceeds an admissible maximum value. In this case, the heating element 22 and/or the fan 18 are/is likewise switched back or off.

30

35

10

15

20

25

Figures 4a and 4b represent a further embodiment of the air supply device 16 in a schematic front view. In this instance, the sensor 44 is integrated into the grating element 32 and is borne by a socket part 50 which can be inserted from the front into a locating slot 52 at that end of the air duct 20 assigned to the air outlet opening 24. It is clear to see that the grating element 44 is correspondingly recessed in the region of the

sensor 44.