

「競馬で始める機械学習」ハンズオン

株式会社GAUSS Yuta Miyawaki

アジェンダ

- 自己紹介
- ○機械学習について
- ◎競馬予測の手順
- 機械学習アルゴリズムの紹介
- ○環境構築
- 作業フォルダの構成
- ○予測AIのチューニング

自己紹介

```
<?xml version="1.0"?>
<speaker>
 <name>Yuta Miyawaki</name>
 <age>23</age>
 <lang>python, Japanese
 <drink>Monster Energy</drink>
 <twitter>@nami73nbj</twitter>
</speaker>
```


機械学習について

学習データから特徴・パターンを見つけ出し、 未知のデータに対する答えを見つけ出すタスク・アルゴリズム

予測結果と答えを比較して 次はより正しい答えを出せるよう更新する

競馬予測の手順

データの取得

- ・データを購入する
- ・Web上から取得する など

予測アルゴリズム 構築

・学習する仕組みの構造を作る

実際の予測

・実際に未知のデータを 予測してみる

- ・予測アルゴリズムの入力 に使える形に整形する
- ・正解データの作成

検証

性能をテストして、トラアンドエラーをする

競馬予測の手順

データの取得

- ・データを購入する
- ・Web上から取得する

など

予測アルゴリズム 構築

・学習する仕組みの構造を作る

実際の予測

・実際に未知のデータを 予測してみる

- ・予測アルゴリズムの入力 に使える形に整形する
- ・正解データの作成

検証

性能をテストして、トラアンドエラーをする

機械学習アルゴリズムの紹介

入力データから正しい結果を得られる条件分岐を学習

多数決・平均 によって、 予測結果を算出

機械学習アルゴリズムの紹介

・ニューラルネット

作業フォルダの構成 siva_hands_on_files

- | SIVA_hands_on.ipynb メイン作業ノート
- | util.py
- | preprocessing.py 前処理カンニング用
- | SIVA_hands_on_slide このスライド
- L data
 - | 一 data_train.csv 学習データ
 - | 一 data_test.csv 検証データ
 - |- data_today_fukushima_11r.csv 福島11Rの検証データ
 - |- data_today_tyukyo_11r.csv 中京11Rの検証データ
 - |- data_today_hakodate_llr.csv 函館llRの検証データ
 - |- horse_name_fukushima_11r.csv 福島11Rの馬名データ
 - |- horse_name_tyukyo_11r.csv 中京11Rの馬名データ
 - L horse_name_hakodate_11r.csv 函館11Rの馬名データ

環境構築

- ・リポジトリからGit clone 'git clone <u>https://github.com/nami73b/siva_hands_on'</u>
- ・Docker Imageのビルド 'docker build ./ -t siva_handson'
- ・Dockerコンテナの起動 'docker run -it -p 8888:8888 siva_handson'

前処理編

[例1]

目的変数の分類の閾値を変更する(デフォルト=3)

[例2]

空値を補完する数値を変更する(デフォルト=0)

特徴量編

[例1]

騎手コードの有無で精度を比較する

[例2]

走破タイムを「分.秒.コンマ秒」→「秒」などに変換する (注意)

実装した場合「drop_columns_list」から走破タイム_n走前を 取り除く必要がある

特徴量編

[例3]

開催日付ファクタを月と日付に分割する開催日付:1123 -> 開催月:11,開催日:12

[例4]

前走からの経過日数を計算する datatimeライブラリを使用する

特徴量編

[例5]

開催月、開催日を三角関数で表現する $df['開催月_sin'] = sin(\theta)$ $df['開催月_cos'] = cos(\theta)$

123456789101112

アルゴリズム編 ・ランダムフォレスト

fit関数のハイパーパラメータを調整する

-n_estimators:木の本数

-max_depth:木の深さの最大

-max_features:1つの木がランダムで選択するファクタ数

など

自由時間です!

各自チューニングした予測モデルで 本日の以下3レースを予測し、 各レース3頭を推奨し、ホワイトボードに記入してください

- ・函館11R 15:25 TVh杯
- ・中京11R 15:35 白川郷S
- ・福島11R15:45テレビユー福島賞