Trigonometric Integrals Part 2 Method of Partial Fractions Part 1

Dr. Ronald Koh ronald.koh@digipen.edu (Teams preferred over email)

AY 23/24 Trimester 1

Table of contents

- Recap/Revision
- Trigonometric Integrals Part 2
 - Powers of tan x and sec x
- Method of Partial Fractions Part 1
 - Proper and Improper Rational Functions
 - Distinct, Non-repeating Linear Factors
 - Repeated Linear Factors

Integration by parts, sine/cosine integrals

 We have learnt how to integrate the product of functions; i.e. integration by parts:

$$\int u\,dv=uv-\int v\,du.$$

- We have learned how to choose u using the LIATE prioritization tool, based on the difficulty of integration.
- We have also learned how to integrate $\sin^m x \cos^n x$:
 - \underline{m} is odd: take out one copy of $\sin x$, convert rest to $\cos x$ using $\sin^2 x = 1 \cos^2 x$, sub $u = \cos x$.
 - <u>n is odd</u>: take out one copy of $\cos x$, convert rest to $\sin x$ using $\cos^2 x = 1 \sin^2 x$, sub $u = \sin x$.
 - Both *m* and *n* even: use double angle formulae:

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
 and $\cos^2 x = \frac{1 + \cos(2x)}{2}$.

Ronald Koh Joon Wei Week 4 Lecture 3/28

Evaluate $\int \sec^4 x \, dx$.

Ronald Koh Joon Wei Week 4 Lecture 4 / 28

Evaluate $\int \tan^3 x \sec x \, dx$.

Week 4 Lecture Ronald Koh Joon Wei 5/28 Evaluate $\int \sec x \, dx$.

Ronald Koh Joon Wei Week 4 Lecture 6 / 28

Method for integrating powers of tangent/secant (1)

Method for integrating $\int \tan^m x \sec^n x \, dx$:

• If n is **even**, then n = 2k for some integer k. Then

$$\int \tan^m x \sec^n x \, dx = \int \tan^m x \sec^{2k-2} x \sec^2 x \, dx$$
$$= \int \tan^m x (\sec^2 x)^{k-1} \sec^2 x \, dx$$
$$= \int \tan^m x (\tan^2 x + 1)^{k-1} \sec^2 x \, dx.$$

Then apply substitution $u = \tan x$. See Example 1.

→ロト→部ト→ミト→ミト ミーかへ(

7 / 28

Ronald Koh Joon Wei

Method for integrating powers of tangent/secant (2)

• If m is **odd** and $n \ge 1$, then m = 2k + 1 for some integer k. Then

$$\int \tan^m x \sec^n x \, dx = \int \tan^{m-1} x \sec^{n-1} x \sec x \tan x \, dx$$

$$= \int \tan^{2k} x \sec^{n-1} x \sec x \tan x \, dx$$

$$= \int (\tan^2 x)^k \sec^{n-1} x \sec x \tan x \, dx$$

$$= \int (\sec^2 x - 1)^k \sec^{n-1} x \sec x \tan x \, dx.$$

Then apply substitution $u = \sec x$. See Example 2.

- 4 ロ > 4 個 > 4 差 > 4 差 > - 差 - 釣 Q C

Ronald Koh Joon Wei

Method for integrating powers of tangent/secant (3)

There are other cases, e.g.

$$\int \tan^2 x \sec^3 x \, dx,$$

where things are not so "black and white". They usually can be done by converting all the $\tan^2 x$ to $\sec^2 x$ (since m is even), then applying integration by parts on integrals of $\sec^n x$. **See Exercise 1 Q3** for a base example. We will cover more of these cases in Week 4 Tutorial.

9/28

Ronald Koh Joon Wei Week 4 Lecture

Evaluate the following integrals.

Ronald Koh Joon Wei

Ronald Koh Joon Wei 11 / 28

What are rational functions?

For the remaining of this lecture, we focus on the integration of **rational functions**. Rational functions are functions of the form

$$f(x) = \frac{P(x)}{Q(x)}$$

where P and Q are polynomials. A polynomial of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

with $a_n \neq 0$ has degree n, denoted by $\deg(P) = n$. If $\deg(P) < \deg(Q)$, we say that the rational function f is **proper**.

If $deg(P) \ge deg(Q)$, we say that the rational function f is **improper**.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ か Q (~)

Ronald Koh Joon Wei Week 4 Lecture 12 / 28

Integration of rational functions

If the integrand is an **improper** rational function, then **long division** is required to convert it from improper to proper before integration; we need to find functions S and R such that

$$f(x) = \frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$$

where $\frac{R(x)}{Q(x)}$ is a proper rational function. Then

$$\int f(x) dx = \int \underbrace{\frac{P(x)}{Q(x)}}_{\text{improper}} dx = \int S(x) + \underbrace{\frac{R(x)}{Q(x)}}_{\text{proper}} dx.$$

◆ロト ◆団ト ◆豆ト ◆豆 → りへで

13 / 28

Ronald Koh Joon Wei Week 4 Lecture

Figure out which of these rational functions are proper or improper. For those that are improper, use long division to convert it to $S(x) + \frac{R(x)}{Q(x)}$.

where $\frac{R(x)}{Q(x)}$ is proper.

$$\bullet \frac{x^3 + x}{x - 1}$$

$$2 \frac{x+5}{x^2+x-2}$$

$$3 \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1}$$

Ronald Koh Joon Wei Week 4 Lecture 15 / 28

Partial fraction decomposition

From this point on, we will assume that you have converted the improper rational function to a proper one. The whole idea of partial fraction decomposition is

• Factorizing Q(x) into linear and irreducible quadratic factors. E.g. if $Q(x) = x^4 - 16$, then

$$Q(x) = (x^2 - 4)(x^2 + 4) = (x + 2)(x - 2)(x^2 + 4).$$

Writing $\frac{R(x)}{Q(x)}$ as a decomposition into different fractions, each fraction tagged to a linear/irreducible quadratic factor of Q. E.g. for the example $Q(x) = x^4 - 16$,

$$\frac{R(x)}{Q(x)} = \frac{A}{x+2} + \frac{B}{x-2} + \frac{Cx+D}{x^2+4}.$$

4□▷ 4₫▷ 4 ₹▷ 4 ₹▷ ₹ *)Q(*)

Partial fraction decomposition

Depending on the factors of Q, we have different partial fraction decompositions. There are **four** different cases:

- Q is a product of distinct, non-repeating linear factors. E.g. Q(x) = (x-2)(x+2).
- ② Q contains repeated linear factors. E.g. $Q(x) = (x-2)^3(2x+2)(x-3)^2$.
- ② Q contains a non-repeated irreducible quadratic factor. E.g. $Q(x) = (x-2)^3(6x-3)(x^2+9)$.
- ② Q contains repeated irreducible quadratic factors. E.g. $Q(x) = (x-1)^2(2x^2+1)^2$.

In this course, we only cover cases (1), (2) and (3).

Method for distinct, non-repeating linear factors

The first case is when Q(x) factors only into distinct, non-repeating factors $(a_1x + b_1)$, $(a_2x + b_2)$,..., $(a_nx + b_n)$. Then there exist constants A_1, A_2, \ldots, A_n such that

$$\frac{R(x)}{Q(x)} = \frac{A_1}{(a_1x + b_1)} + \frac{A_2}{(a_2x + b_2)} + \cdots + \frac{A_n}{(a_nx + b_n)}.$$

We can find these constants A_i by multiplying Q(x) to both sides of the equation, substituting the roots corresponding to these linear factors to solve for A_i .

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Let a be a constant. Evaluate $\int \frac{1}{x^2 - a^2} dx$.

Ronald Koh Joon Wei Week 4 Lecture 19 / 28

Method for Repeated Linear Factors

When Q(x) has a repeated linear factor, i.e. $(ax + b)^m$ where m is the **multiplicity** of the factor, then there must be m repeating terms in the partial fraction decomposition of $\frac{R(x)}{Q(x)}$; there exists constants B_1, B_2, \ldots, B_m such that

$$\frac{B_1}{(ax+b)}+\frac{B_2}{(ax+b)^2}+\cdots+\frac{B_m}{(ax+b)^m}.$$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ かへの

Ronald Koh Joon Wei

Evaluate
$$\int \frac{x^2 + 2x}{x^3 - x^2 - x - 1} dx.$$

Ronald Koh Joon Wei Week 4 Lecture 22 / 28

Evaluate the following integrals.

Ronald Koh Joon Wei Week 4 Lecture 24 / 28

Evaluate the following integrals.

$$\int \frac{1}{x^3 + x^2} dx$$

Ronald Koh Joon Wei Week 4 Lecture 26 / 28

Ronald Koh Joon Wei Week 4 Lecture 27 / 28

Ronald Koh Joon Wei Week 4 Lecture 28 / 28