Day32_Descriptive_Stats_Project

June 30, 2025

1 Agenda

In this project, we will perform Descriptive Statistical Analysis on a Household Income-Expense dataset. We will:

- 1. Import and understand the dataset
- 2. Perform basic descriptive statistics (mean, median, mode, std, var, IQR)
- 3. Visualize categorical and numerical data
- 4. Identify insights using group-by and correlation
- 5. Apply real-world use case: Coefficient of Variation for stock investment comparison

2 Import Required Libraries

We use: - pandas and numpy for data manipulation - matplotlib and seaborn for visualization - scipy.stats for skewness and kurtosis

```
[1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import skew, kurtosis
```

3 Load and Explore Dataset

This gives a quick preview of the dataset to understand the columns and values.

```
[3]: # Load the CSV file
income_df=pd.read_csv("D:/Assignment Practice/M2/27 May/27 May/26th, 27th -□

→Intro to Stats, Descriptive Stats/PROJECT/Inc_Exp_Data.csv")

# Display first 5 rows
income_df.head()
```

```
[3]:
        Mthly HH Income
                          Mthly_HH_Expense
                                              No_of_Fly_Members Emi_or_Rent_Amt
     0
                    5000
                                        8000
                                                                                2000
                                                                3
     1
                    6000
                                        7000
                                                                2
                                                                                3000
     2
                                                                2
                   10000
                                        4500
                                                                                   0
     3
                   10000
                                        2000
                                                                1
                                                                                   0
                   12500
                                       12000
                                                                                3000
```

	Annual_HH_Income	<pre>Highest_Qualified_Member</pre>	No_of_Earning_Members
0	64200	Under-Graduate	1
1	79920	Illiterate	1
2	112800	Under-Graduate	1
3	97200	Illiterate	1
4	147000	Graduate	1

4 Dataset Overview

- .info() tells us about column names, data types, and missing values.
- .shape gives number of rows and columns.

```
[4]: # Check structure and types income_df.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Mthly_HH_Income	50 non-null	int64
1	Mthly_HH_Expense	50 non-null	int64
2	No_of_Fly_Members	50 non-null	int64
3	Emi_or_Rent_Amt	50 non-null	int64
4	Annual_HH_Income	50 non-null	int64
5	<pre>Highest_Qualified_Member</pre>	50 non-null	object
6	No_of_Earning_Members	50 non-null	int64

dtypes: int64(6), object(1)
memory usage: 2.9+ KB

```
[5]: # Check dimensions income_df.shape
```

[5]: (50, 7)

5 Summary Statistics

This provides summary stats like count, mean, std, min, max, and quartiles for numerical columns.

```
[6]: # Basic descriptive statistics income_df.describe()
```

```
[6]:
            Mthly_HH_Income Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt
                  50.000000
                                    50.000000
                                                        50.000000
                                                                         50.000000
     count
               41558.000000
                                 18818.000000
                                                                       3060.000000
    mean
                                                         4.060000
     std
               26097.908979
                                 12090.216824
                                                         1.517382
                                                                       6241.434948
```

min	5000.000000	2000.000000	1.000000	0.000000
25%	23550.000000	10000.000000	3.000000	0.000000
50%	35000.000000	15500.000000	4.000000	0.000000
75%	50375.000000	25000.000000	5.000000	3500.000000
max	100000.000000	50000.000000	7.000000	35000.000000
	Annual_HH_Income	No_of_Earning_Members		
count	5.000000e+01	50.000000		
mean	4.900190e+05	1.460000		
std	3.201358e+05	0.734291		
min	6.420000e+04	1.000000		
25%	2.587500e+05	1.000000		
50%	4.474200e+05	1.000000		
75%	5.947200e+05	2.000000		
max	1.404000e+06	4.000000		

6 Check for Null Values

To ensure there are no missing values before performing analysis.

```
[7]: income_df.isnull().sum()
[7]: Mthly_HH_Income
                                  0
     Mthly_HH_Expense
                                  0
     No_of_Fly_Members
                                  0
     Emi_or_Rent_Amt
                                  0
     Annual_HH_Income
                                  0
     Highest_Qualified_Member
                                  0
     No_of_Earning_Members
                                  0
     dtype: int64
```

7 Measures of Central Tendency

Mean shows average, median shows middle value, and mode shows the most frequent value.

7.1 Mean of Monthly Household Expense

```
[9]: mean_expense = income_df["Mthly_HH_Expense"].mean()
print(f"Mean Monthly Household Expense: {mean_expense:,.2f}")
```

Mean Monthly Household Expense: 18,818.00

7.2 Median of Monthly Household Expense

```
[10]: median_expense = income_df["Mthly_HH_Expense"].median()
print(f"Median Monthly Household Expense: {median_expense}")
```

Median Monthly Household Expense: 15500.0

8 Mode (most frequent expense)

```
[11]: mode_expense = income_df["Mthly_HH_Expense"].mode()[0]
print(f"Most Frequent Monthly Expense: {mode_expense}")
```

Most Frequent Monthly Expense: 25000

9 Most Common Expense Value

```
[12]: most_common = income_df["Mthly_HH_Expense"].value_counts().idxmax()
print(f"The most common expense is: {most_common}")
```

The most common expense is: 25000

10 Visualize Categorical Variable

10.1 Highest Qualified Member

11 Interquartile Range (IQR)

IQR helps us understand the spread of middle 50% data and detect outliers.

```
[24]: Q1 = income_df["Mthly_HH_Expense"].quantile(0.25)
Q3 = income_df["Mthly_HH_Expense"].quantile(0.75)
IQR = Q3 - Q1
print("Q1 :",Q1)
print("Q3 :",Q3)
print(f"IQR for Monthly Household Expense: {IQR}")
```

Q1 : 10000.0 Q3 : 25000.0

IQR for Monthly Household Expense: 15000.0

12 Boxplot for Outliers

```
[15]: sns.boxplot(y=income_df["Mthly_HH_Expense"], color='orange')
    plt.title("Boxplot of Monthly Household Expense")
    plt.show()
```


13 Standard Deviation and Variance

0

```
[16]: # Std Dev for first 4 numeric columns
      std_df = income_df.iloc[:, 0:4].std()
      print("Standard Deviation:\n", std_df)
     Standard Deviation:
      Mthly_HH_Income
                           26097.908979
     Mthly_HH_Expense
                           12090.216824
     No_of_Fly_Members
                              1.517382
     Emi_or_Rent_Amt
                           6241.434948
     dtype: float64
[23]: # Variance for first 4 numeric columns
      var_df = income_df.iloc[:, 0:4].var()
      print("\nVariance:\n",var_df )
```

Variance:

Mthly_HH_Income 6.811009e+08 Mthly_HH_Expense 1.461733e+08 No_of_Fly_Members 2.302449e+00 Emi_or_Rent_Amt 3.895551e+07

dtype: float64

14 Correlation Matrix

This shows how strongly variables are related. e.g., income and expense might have a positive correlation.

```
[19]: plt.figure(figsize=(8, 6))
    sns.heatmap(income_df.corr(numeric_only=True), annot=True, cmap='coolwarm')
    plt.title("Correlation Matrix")
    plt.show()
```


15 Group Analysis – Qualification vs Income

Group-by helps analyze how income varies with education level.

16 Skewness and Kurtosis

- Skewness tells if data is symmetric (0 = perfect)
- Kurtosis tells if data has heavy/light tails compared to normal distribution

```
[21]: print("Skewness of Monthly Expense:", skew(income_df["Mthly_HH_Expense"]))
print("Kurtosis of Monthly Expense:", kurtosis(income_df["Mthly_HH_Expense"]))
```

Skewness of Monthly Expense: 1.1631728469608633

17 Coefficient of Variation (Real-life stock example)

Lower Coefficient of Variation (CV) is better. Stock B is more stable (CV = 0.5) than Stock A (CV = 0.67), so it's a better investment.

```
[22]: # Coefficient of variation = std / mean
std_A, mean_A = 10, 15
std_B, mean_B = 5, 10

cv_A = std_A / mean_A
cv_B = std_B / mean_B

print(f"Stock A CV: {cv_A:.2f}")
print(f"Stock B CV: {cv_B:.2f}")
```

Stock A CV: 0.67 Stock B CV: 0.50

18 Conclusion:

- The average monthly household expense is around 18,818.
- Most households have 1 earning member and qualification affects income.
- Monthly expenses are slightly skewed and have visible outliers.
- Stock B is less risky and more efficient based on CV.

This analysis used core descriptive statistics techniques, suitable for understanding household patterns and making informed decisions.