COMP 2322 Computer Networking

Homework 4

Name: ZHOU Siyu

Questions:

1.

Interface	Address range	Number of addresses in			
number		address range			
Interface 0	00 000000 through 00 111111	$2^6 = 64$			
Interface 1	010 00000 through 010 11111	$2^5 = 32$			
Interface 2	011 00000 through 011 11111	$2^5 + 2^6 = 64 + 32 = 96$			
	10 000000 through 10 111111				
Interface 3	10 000000 through 10 111111	$2^6 = 64$			
Interface 4	11 000000 through 11 111111	$2^6 = 64$			

2.

Length of MP3 file = 3×10^6 bytes

Length of MP3 file in a datagram = 1500 - 20 - 20 = 1460 bytes

Number of datagrams = $\frac{3 \times 10^6}{1460}$ = 2054.79 = 2055

3.

Step	N'	D(a),	D(b),	D(c),	D(d),	D(e),	D(f),	D(g),
		p(a)	p(b)	p(c)	p(d)	p(e)	p(f)	p(g)
0	h	∞	∞	∞	∞	∞	2, h	5, h
1	hf	∞	10, f	∞	∞	∞		5, h
2	hfg	∞	10, f	∞	9, g	13, g		
3	hfgb	12, b		16, b	9, g	13, g		
4	hfgbd	12, b		15, d		13, g		
5	hfgbde	12, b		14, a				
6	hfgbdea			14, a				
7	hfgbdeac							

Shortest path of h-a: h-f-b-a

Shortest path of h-b: h-f-b

Shortest path of h-c: h-f-b-a-c

Shortest path of h-d: h-g-d

Shortest path of h-e: h-g-e

Shortest path of h-f: h-f

Shortest path of h-g: h-g

Find shortest path from h to all network nodes using Dijkstra's algorithm.

[Initialization] Distance = $(h: \underline{0})$, $(f: \underline{\infty})$, $(g: \underline{\infty})$, $(b: \underline{\infty})$, $(d: \underline{\infty})$, $(e: \underline{\infty})$, $(a: \underline{\infty})$, $(a: \underline{\infty})$, $(c: \underline{\infty})$

[Iteration 1] Extract vertex h, update vertices f, g

$$h: d = 0$$

$$D = (f: \underline{2}), (g: \underline{5}), (b: \underline{\infty}), (d: \underline{\infty}), (e: \underline{\infty}), (a: \underline{\infty}), (c: \underline{\infty})$$

[Iteration 2] Extract vertex f, update vertex b

$$h: d = 0, f: d = 2$$

$$D = (g: \underline{5}), (b: \underline{10}), (d: \underline{\infty}), (e: \underline{\infty}), (a: \underline{\infty}), (c: \underline{\infty})$$

[Iteration 3] Extract vertex g, update vertices d, e

$$h: d = 0, f: d = 2, g: d = 5$$

$$D = (b: \underline{10}), (d: \underline{9}), (e: \underline{8}), (a: \underline{\infty}), (c: \underline{\infty})$$

[Iteration 4] Extract vertex b, update vertices a, c

$$h: d = 0, f: d = 2, g: d = 5, b: d = 10$$

$$D = (d: 9), (e: 8), (a: 12), (c: 16)$$

[Iteration 5] Extract vertex d, update vertex c

$$h: d = 0, f: d = 2, g: d = 5, b: d = 10, d: d = 9$$

$$D = (e: 8), (a: 12), (c: 15)$$

[Iteration 6] Extract vertex *e*, no update vertex

$$h$$
: $d = 0$, f : $d = 2$, g : $d = 5$, b : $d = 10$, d : $d = 9$, e : $d = 8$

$$D = (a: \underline{12}), (c: \underline{15})$$

[Iteration 7] Extract vertex *a*, update vertex c

$$h: d = 0, f: d = 2, g: d = 5, b: d = 10, d: d = 9, e: d = 8, a: d = 12$$

$$D = (c: 14)$$

[Iteration 8] Extract vertex c, no update vertex

$$h: d = 0, f: d = 2, g: d = 5, b: d = 10, d: d = 9, e: d = 8, a: d = 12,$$

$$c: d = 14$$

$$D = \emptyset$$