S2e APP5 – Examen formatif – solutionnaire

Hiver 2022

Le miroir de courant

Considérez le circuit suivant où les deux transistors Q_1 et Q_2 sont identiques et idéaux (sans effet Early, $r_0=\infty$).

- a) Dans quel régime est le transistor Q₁?
- b) Que vaut V_{GS}?
- c) Dans quel régime est le transistor Q2?
- d) Que valent la tension V_o et le courant I_o ?
- e) Que devient lo si le $K_{Q2} = 3 \times K_{Q1}$?

$$I_{REF} = 15 \text{ mA}$$
 $K_{Q1} = K_{Q2} = 10 \text{ mA/V}^2 \text{ et Vto} = 0.75$

Solution

- a) On note que $V_{GS}=V_{DS}$ grâce au fils placé entre la grille et le drain. Ainsi la condition de saturation $V_{DS} > V_{GS}-V_{to}$ est toujours respectée : Q_1 est forcément en saturation (I_{REF} n'impose aucune condition sur V_{DS}).
- b) La source I_{REF} impose un courant dans Q_1 : les tensions V_{GS} et V_{DS} sont induites de telle sorte que le courant I_{REF} circule dans Q_1 .

Ceci est possible parce que V_{GS}=V_{DS} grâce au fils placé entre la grille et le drain.

On part ainsi de l'équation du courant de saturation

$$i_D = K(v_{GS} - V_{to})^2$$

pour laquelle seul V_{GS} n'est pas défini.

En isolant, on obtient V_{GS}=1.97 V.

- c) Q_2 n'est pas en cut-off car son $V_{GS,Q2}$ est égal au $V_{GS,Q1}$ de Q_1 . Cependant, comme rien de permet détermine la tension V_{DS} , on ne peut affirmer qu'il est en saturation.
- d) Considérant la conclusion de c), il y aura 2 solutions possibles :

Hypothèse 1 : en saturation $V_{DS,Q2} > V_{GS,Q2}-V_{to}$

Le courant I_o sera identique à IREF si V_o=V_{DS,Q2} > 1.22 V

Hypothèse 2 : en triode V_{DS,Q2} < V_{GS,Q2}-V_{to}

Il faut utiliser l'équation propre à ce régime.

Comme le courant est fonction de V_o et que celui-ci n'est pas spécifié, on ne peut donner le courant dans ce cas.

e) Le courant Io sera triplé

Le miroir de courant (suite)

Quelle est la plus grande valeur de R qui permet de maintenir Q₂ en saturation?

 $I_{REF} = 15 \text{ mA}, V_{DD} = 5 \text{ V}$ $K = 10 \text{ mA/V}^2 \text{ et Vto} = 0.75 \text{ V}$

Solution

Le courant I_o provoque une chute de tension dans R qui force V_o à

$$V_o = V_{DD} - RI_o$$

Considérant la condition Vo > 1.22 V trouvée en d), on en conclu que

$$\begin{split} V_{DD} - RI_o &> 1.22 \, V \\ RI_o &< V_{DD} - 1.22 \, V \\ R &< \frac{V_{DD} - 1.22 \, V}{I_o} = 252 \, \Omega \end{split}$$

Complément

Un transistor non idéal présente une dépendance de I_D en fonction de V_{DS} , i.e. I_D n'est pas constant en régime de saturation (Fig. 11.21 de Hambley).

Le circuit équivalent du miroir de courant ressemble plutôt à celui-ci où à chaque transistor idéal, on associe une résistance parasite qui relie le drain et la source.

Le courant $I_{D,Q1} = I_{REF} - I_{r,Q1} = I_{D,Q2}$ est le même si Q_1 est en saturation mais le courant dans r_d augmente lorsque V_{DS} augmente.

Le courant I_o n'est donc égal au courant I_{REF} qu'à la condition stricte V_{DS,Q2}=V_{DS,Q1}.

