Today's Agenda

Evaluating simple OLS regressions

Justin Leinaweaver (Spring 2022)

For Today

Finish the model building work from class today

Use the four steps outlined in Wilson, Keating, and Beal-Hodges (2012) chapters 4 and 5 to evaluate the fit of our models of earnings.

Can we build a useful model of yearly earnings in the Ross (1990) dataset?

Can we build a useful model of yearly earnings in the Ross (1990) dataset?

	Earnings (2021)		
	(1)	(2)	(3)
Height	3.08* (0.25)		
Age		0.22* (0.06)	
Education			5.57* (0.36)
Constant	$-162.54^{*} \ (16.46)$	33.17* (2.64)	-31.34* (4.89)
Observations Adjusted R ²	1,815 0.08	1,815 0.01	1,813 0.11
Residual Std. Error F Statistic	40.28 (df = 1813) 155.52* (df = 1; 1813)	41.81 (df = 1813) 14.22* (df = 1; 1813)	39.50 (df = 1811) 235.79* (df = 1; 1811

Note:

Earnings (2021) (1) (2) (3) Height 3.08* (0.25)Age 0.22* (0.06)Education 5.57* (0.36)Constant -162.54*33.17* -31.34*(16.46)(2.64)(4.89)Note: p < 0.05

For someone of average height in the sample?

Avg height of 66.6 = \$42.6k

For someone of average age in the sample?

• Avg age of 42.9 = \$42.6k

For someone of average education in the sample?

Avg education of 13.2 = \$42.2k

Model 1: Height

Avg = \$42.6k vs Maximum = ?

Model 2: Age

Avg = \$42.6k vs Maximum = ?

Model 3: Education

• Avg = \$42.2k vs Maximum = ?

Model 1: Height

Avg = \$42.6k vs Maximum (82) = ?

Model 2: Age

• Avg = 42.6k vs Maximum (91) = ?

Model 3: Education

• Avg = 42.2k vs Maximum (18) = ?

Model 1: Height

• Avg = 42.6k vs Maximum (82) = 90k

Model 2: Age

• Avg = 42.6k vs Maximum (91) = 53.2k

Model 3: Education

• Avg = 42.2k vs Maximum (18) = 68.9k

	Earnings (2021)		
	(1)	(2)	(3)
Height	3.08* (0.25)		
Age		0.22* (0.06)	
Education			5.57* (0.36)
Constant	$-162.54^{*} \ (16.46)$	33.17* (2.64)	-31.34* (4.89)
Observations Adjusted R ²	1,815 0.08	1,815 0.01	1,813 0.11
Residual Std. Error F Statistic	40.28 (df = 1813) 155.52* (df = 1; 1813)	41.81 (df = 1813) 14.22* (df = 1; 1813)	39.50 (df = 1811) 235.79* (df = 1; 1811

Note:

	Earnings (2021)
Education	5.57*
	(0.36)
Constant	-31.34*
	(4.89)
Observations	1,813
Adjusted R ²	0.11
Residual Std. Error	$39.50 \; (df = 1811)$
F Statistic	235.79* (df = 1; 1811)
Note:	*p < 0.05

	Earnings (2021)
Education	5.57*
	(0.36)
Constant	-31.34*
	(4.89)
Observations	1,813
Adjusted R ²	0.11
Residual Std. Error	39.50 (df = 1811)
F Statistic	235.79* (df = 1; 1811)
Note:	*n < 0.05

Alternative Hypothesis (H_A)

 Higher levels of education are associated with larger incomes.

Null Hypothesis (H_0)

 Level of education is not associated with income.

P-Values: A shortcut to determining statistical significance

"The p-value is the probability of observing another computed test statistic ... that is more extreme (either positive or negative) than the one computed for your sample. ... Therefore, the smaller the p-value, the more support for the alternative hypothesis" (p82).

	Earnings (2021)
Education	5.57* (0.36)
	, ,
Constant	-31.34*
	(4.89)
Observations	1,813
Adjusted R ²	0.11
Residual Std. Error	39.50 (df = 1811)
F Statistic	235.79* (df = 1; 1811)
Note:	*p < 0.05

Earnings (2021)
3.01
(2.26)
37.17*
(4.07)
1,814
0.0004
41.97 (df = 1812)
1.77 (df = 1; 1812)
*p < 0.05

	Earnings (2021)		
	(1)	(2)	(3)
Height	3.08* (0.25)		
Age		0.22* (0.06)	
Education			5.57* (0.36)
Constant	$-162.54^{*} \ (16.46)$	33.17* (2.64)	-31.34* (4.89)
Observations Adjusted R ²	1,815 0.08	1,815 0.01	1,813 0.11
Residual Std. Error F Statistic	40.28 (df = 1813) 155.52* (df = 1; 1813)	41.81 (df = 1813) 14.22* (df = 1; 1813)	39.50 (df = 1811) 235.79* (df = 1; 1811

Note:

Step 4: Include a plot of the model's residuals

Step 4: Plot the Model's

Input		
Input Y Range:	\$C\$1:\$C\$51 ±	
Input X Range:	\$D\$1:\$D\$51 ★	
✓ Labels	Constant is Zero	
Confidence Level: 95	96	
Output options		
Output Range:	SIS1 ±	
New Worksheet Ply:		
O New Workbook		
Residuals		
	Residual Plots	
Residuals Standardized Residuals	Line Fit Plots	

Step 4 Goal: Homoscedastic Errors

Bad: Heteroscedastici

Bad: Nonlinear Residu

Residuals: Regressing Earnings on Height

Residuals: Regressing Earnings on Age

Residuals: Regressing Earnings on Education

	Earnings (2021)		
	(1)	(2)	(3)
Height	3.08* (0.25)		
Age		0.22* (0.06)	
Education			5.57* (0.36)
Constant	$-162.54^{*} \ (16.46)$	33.17* (2.64)	-31.34* (4.89)
Observations Adjusted R ²	1,815 0.08	1,815 0.01	1,813 0.11
Residual Std. Error F Statistic	40.28 (df = 1813) 155.52* (df = 1; 1813)	41.81 (df = 1813) 14.22* (df = 1; 1813)	39.50 (df = 1811) 235.79* (df = 1; 1811

Note:

Which is a better model of personal income (earnk):

- Mother's education level, or
- Personal exercise

Which is a better model of personal income (earnk):

- Mother's education level, or
- Personal exercise

Step 1: Fit and evaluate both models

Scatterplots, regression tables and residuals plots

	Earnings (2021)	
	(1)	(2)
Mother's Education	6.21*	
	(0.43)	
Exercise		1.88*
		(0.42)
Constant	-40.64^{*}	36.69*
	(5.87)	(1.62)
Observations	1,570	1,815
Adjusted R ²	0.12	0.01
Residual Std. Error	40.45 (df = 1568)	41.75 (df = 1813)
F Statistic	212.09* (df = 1; 1568)	$19.83^* (df = 1; 1813)$
Note:		*p < 0.05

-		
	Earnings (2021)	
	(1)	(2)
Mother's Education	6.21* (0.43)	
Exercise		1.88* (0.42)
Constant	-40.64* (5.87)	36.69* (1.62)
Observations Adjusted R ²	1,570 0.12	1,815 0.01
Note:	*	p < 0.05

Step 4 - Check the Residuals

Step 2: Make four predictions

Mother's Education Model

- Mother completed high school (12)
- Mother completed college (16)

Strenuous Exercise Model

- No strenuous exercise (1)
- Strenuous exercise > 3x per week (7)

Step 2: Make four predictions

Mother's Education Model

- Mother completed high school (12) = \$33.9k
- Mother completed college (16) = \$58.7k

Strenuous Exercise Model

- No strenuous exercise (1) = \$38.6k
- Strenuous exercise > 3x per week (7) = \$49.8k

For Tuesday

Use chapter 5 of the textbook to add confidence intervals to our four model predictions.