

MAT 3007 — Optimization Convexity and Algorithms for Unconstrained Optimization Problems

Lecture 15 July 13th

Andre Milzarek SDS / CUHK-SZ

Repetition

Second-Order Conditions: Comparison

Unconstrained

Constrained

First-Order Cond.: x^* local minimum (+ LICQ)

KKT-conditions.

Second-Order Cond.: x^* local minimum (+ LICQ)

- $\triangleright \nabla f(x^*) = 0$
- ▶ $\nabla^2 f(x^*)$ is positive semidefinite (on \mathbb{R}^n).
- KKT-conditions
- ▶ $\nabla_{xx}^2 L(x^*, \lambda, \mu)$ is positive semidefinite on $C(x^*)$.

Second-Order Sufficient Cond.

- $ightharpoonup \nabla f(x^*) = 0$ and
- ▶ $\nabla^2 f(x^*)$ is positive definite (on \mathbb{R}^n).
- ▶ *x** is KKT-point and
- ▶ $\nabla^2_{xx} L(x^*, \lambda, \mu)$ is positive definite on $C(x^*)$.
- $\implies x^*$ is strict local minimum

Solving Nonlinear Programs: Strategy

General Strategy:

- Derive KKT-conditions; [Check LICQ (if required)].
- Discuss different easy cases via the complementarity conditions (set multiplier or constraints to 0) to find all KKT-points.
- ▶ Calculate $C(x^*)$ and $\nabla^2_{xx}L(x^*,\lambda,\mu)$ at KKT-points.
- Check second-order conditions.

Additional Information:

- ▶ Check if f is coercive or if Ω is bounded \rightsquigarrow the problem has global solutions (which must be KKT-points)!
- ▶ If the LICQ holds, then λ and μ are always unique!
- ▶ Finding maximizer: apply all steps to -f.

Logistics & Agenda

Logistics:

- ► The fifth sheet is online since Saturday. It is due on Monday, July 20th, 11:00 am.
- ▶ The midterm project is due on Saturday, July 18th, 11:00 pm.
- ► The tentative final examination period for summer courses is from August 24th to September 5th.
- CTE will be conducted from July 20th to July 24th. (Online system).

Agenda:

- Convexity.
- First Algorithms for Unconstrained Problems.

Convex Functions and Convex Problems

Convexity

Motivation: So far we have been discussing local minimizers:

- ▶ When is a local minimizer also a global minimizer?
- ► We discuss a class of optimization problems that guarantees this property \rightsquigarrow convex optimization.

Definition: Convex Function

A function f on a convex set Ω is said to be convex if for every $x_1, x_2 \in \Omega$ and any $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

▶ We call f a concave function if and only if -f is convex.

Illustration of Convex Functions

Convexity and Concavity via Derivatives: Updated

Theorem: Convexity via Hessian

Let Ω be a convex set and let f be twice cont. differentiable on an open set containing Ω . Then f is convex on Ω if and only if its Hessian matrix is positive semidefinite, i.e.,

$$d^{\top}\nabla^2 f(x)d \geq 0 \quad \forall \ d \in \mathbb{R}^n, \quad \forall \ x \in \Omega.$$

Theorem: Concavity via Hessian

Let Ω be a convex set and let f be twice cont. differentiable on an open set containing Ω . Then f is concave on Ω if and only if its Hessian matrix is negative semidefinite, i.e.,

$$d^{\top}\nabla^2 f(x)d \leq 0 \quad \forall \ d \in \mathbb{R}^n, \quad \forall \ x \in \Omega.$$

Properties and Convex Calculus

Lemma: Sum Rule

If $a_1,...,a_m \ge 0$, and $f_1,...,f_m$ are convex (concave) functions, then $a_1f_1+\cdots+a_mf_m$ is a convex (concave) function.

• Examples: $x_1^2 + x_2^2$, $e^x + |x|$.

Lemma: Composition with Linear Functions

If $f: \mathbb{R}^m \to \mathbb{R}$ is convex (concave) and $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are given, then $g: \mathbb{R}^n \to \mathbb{R}$, g(x) := f(Ax + b), is convex (concave).

► Examples: e^{2x+3} , $(x_1 - x_2)^2 + (x_2 + x_3)^2$, ||Ax - b||, $\log(-2x_1 + 3x_2 + 5)$ (concave).

Further Properties

Lemma: Taking Maximum

If $f_1, ..., f_m$ are convex functions, then $f(x) = \max\{f_1(x), ..., f_m(x)\}$ is a convex function (this can be extended to uncountably many).

► Examples: $|x| = \max\{-x, x\}$, $\max\{a_i^\top x + b_i\}$.

Lemma: Taking Minimum

If $f_1, ..., f_m$ are concave function, then $f(x) = \min\{f_1(x), ..., f_m(x)\}$ is a concave function (this can be extended to uncountably many).

 $Examples: -|x| = \min\{-x, x\}, \min\{a_i^\top x + b_i\}.$

Another Example: Linear Programming

Consider the linear program

$$\begin{aligned} & \text{minimize}_{x} & & c^{\top}x \\ & \text{subject to} & & Ax = b \\ & & & x \geq 0 \end{aligned}$$

Given A and b fixed, the optimal value function is a function of c. We denote the function by V(c).

▶ In sensitivity analysis, we studied how V(c) changes with c.

Theorem: Properties of V

V is a concave function of c.

V is the minimum of a set of linear functions

$$V(c) = \min_{\{x: Ax = b, x \ge 0\}} \{c^{\top}x\}.$$

How Does Convexity Help?

Theorem: Convexity and Global Solutions

Let $f: \Omega \to \mathbb{R}$ be a convex function and $\Omega \subset \mathbb{R}^n$ be a convex set. Then any local minimizer of the problem:

$$\begin{aligned} \text{minimize}_{x} & f(x) \\ \text{s.t.} & x \in \Omega \end{aligned}$$

is a global minimizer.

Proof: By contradiction. Assume x^* is a local minimizer, however, there exists $\bar{x} \in \Omega$ such that $f(\bar{x}) < f(x^*)$. Then, using convexity, we have

$$f(\lambda \bar{x} + (1 - \lambda)x^*) \le \lambda f(\bar{x}) + (1 - \lambda)f(x^*) < f(x^*)$$

for any $0 < \lambda < 1$. This is a contradiction to: x^* is a local min. \square

Stationarity and Global Optimality

Theorem: Stationarity & Global Optimality

Let f be convex and suppose that $\Omega := \{x : g(x) \le 0, h(x) = 0\}$ is a convex set. Then, the KKT conditions for the problem

minimize_x
$$f(x)$$

s.t. $x \in \Omega$

are sufficient for global optimality.

Remarks:

- ▶ In a Nutshell: If f and Ω are convex, then stationary points and KKT-points are already local and global minimizer!
- ▶ If f is concave and Ω is convex, then stationary points and KKT-points of the problem $\min_{x \in \Omega} -f(x)$ are local and global maximizer of f.

Convex Optimization Problem

Convexity/concavity plays a very important role in optimization problems!

We call the optimization problems of the form:

- Minimize a convex function over a convex feasible region
- ► Maximize a concave function over a convex feasible region convex optimization problems.

Otherwise, the problem is called a non-convex optimization problem.

In optimization, convexity and non-convexity typically determine whether a problem is easy or hard.

Convex Constraints

Constraint Types

What constraints would make the feasible region convex?

Lemma: Convex Level Sets

Let f be a convex (concave) function. Then, for any c, the level set $L_{\leq c} = \{x : f(x) \leq c\} \ (L_{\geq c} = \{x : f(x) \geq c\})$ is a convex set.

Observation:

- ▶ If we have constraints of the form $g(x) \le 0$ and g is convex, then this is a convex constraint!
- ▶ If we have constraints of the form $g(x) \ge 0$ and g is concave, then this is a convex constraint!
- Linear constraints are always convex constraints.
- ▶ Sometimes, even if a constraint does noot appear to be in the above form, it still could be a convex constraint.

Being able to identify convex problems is an important skill.

Example I

Is this a convex optimization problem?

minimize
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$
 subject to $x_1^2 + x_2^2 \le 5$ $3x_1 + x_2 \ge 3$

Answer: Yes

What if we change the constraint $x_1^2 + x_2^2 \le 5$ to $x_1^2 + x_2^2 \ge 5$?

▶ Then it no longer is a convex optimization problem.

Example II

How about

minimize_{**X**}
$$x^{\top}Qx - c^{\top}x$$

s.t. $Ax = b$
 $Cx \ge d$
 $x \ge 0$

- The constraints are linear.
- ▶ It is a convex optimization problem if and only if *Q* is PSD.

Example III

Consider the optimization problem:

$$\begin{aligned} \mathsf{maximize}_{\mathsf{x},\mathsf{y},\mathsf{z}} & & x\mathsf{y} \mathsf{z} \\ \mathsf{s.t.} & & x+2\mathsf{y}+3\mathsf{z} \leq 3 \\ & & x,\mathsf{y},\mathsf{z} \geq 0 \end{aligned}$$

In order for a maximization problem to be a convex optimization problem, we need the objective function to be concave.

▶ However, xyz is not a concave function in x, y, z.

But we can transform this into maximizing log(xyz). The problem becomes:

maximize
$$\log x + \log y + \log z$$

s.t. $x + 2y + 3z \le 3$
 $x, y, z \ge 0$

which is a convex optimization problem.

Constraints and Convexity

Strategies:

- Often, we can apply monotone transformations or variable substitutions.
- Sometimes one has to look at the defined region explicitly.

Examples:

- ▶ $\{x: x^3 1 \le 0\}$. $g(x) = x^3$ is not a convex function. However, this constraint defines a convex feasible region $(\equiv \{x: x \le 1\})$.
- ► $\{z^2 xy \le 0, \ x, y, z \ge 0\}$. $g(x, y, z) = z^2 - xy$ is not a convex function. The Hessian is

$$\nabla^2 g(x, y, z) = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

with eigenvalues -1, 1 and 2. But this gives a convex region.

Software to Solve Convex Optimization Problems

MATLAB has its own functions: fmincon and fminunc.

► However, in general they are not very scalable nor fast. (One has to provide the right information + adjust parameter).

We suggest to use CVX. CVX can solve a large range of nonlinear optimization problems.

- CVX can only solve convex optimization problems (that is what it is named for).
- ▶ It can only recognize certain classes of convex functions.
- Sometimes, one has to manually convert a problem into a recognizable form before inputting into CVX.

Examples

Example 1:

minimize
$$(x_1 - 1)^2 + (x_2 - 1)^2$$

s.t. $x_1 + x_2 = 1$

Example 2:

minimize
$$e^{x_1+x_2} + (x_1 - 0.5x_2)^2 + 2.75x_2^2$$

s.t. $x_1 + 2x_2 = 1$

Point Clouds and Circles

Let $y^1, y^2, ..., y^k \in \mathbb{R}^2$ be k different points.

We want to find a circle in \mathbb{R}^2 with minimum radius that contains all of these points:

$$\begin{array}{ll} \min_{y\in\mathbb{R}^2,r\in\mathbb{R}} & r \\ \text{subject to} & \|y-y^1\|\leq r, \ \|y-y^2\|\leq r, \ \dots \ , \|y-y^k\|\leq r, \\ & r\geq 0. \end{array}$$

- ▶ This is a convex optimization problem.
- ► The equivalent (differerentiable) formulation $||y y^i||^2 \le r^2$ will be rejected by CVX!

Algorithms for Unconstrained Problems

Upcoming Agenda

We now discuss how to solve nonlinear optimization problems.

- ▶ In many cases, the KKT conditions can be used to solve the optimization problem.
- However, those are ad hoc situations. In most situation, it is too complicated to directly find the optimal solution from the KKT conditions.
- ▶ We want to have a robust procedure (an algorithm) that allows to solve the optimization problem.

Unconstrained Problems

We start with the unconstrained problem:

$$minimize_{x \in \mathbb{R}^n}$$
 $f(x)$

We are going to study the following methods:

- Bisection search.
- Golden section search.
- Gradient descent method.
- Newton's method

General Process: Ideas

Typically, optimization algorithms are iterative procedures:

- ► Starting from some point x^0 , we generate a sequence of iterates $\{x^k\}$.
- ▶ The sequence terminates when either no progress can be made or when we know that the current step is already satisfactory.
- ▶ Typically, we want to have $f(x^{k+1}) < f(x^k)$, i.e., each step we can improve the objective value.
- And hopefully, the sequence $\{x^k\}$ converges to a local minimizer x^* (or global minimizer).

Recall the algorithms we have studied so far: the simplex method and the interior point method.

They both follow the above paradigm.

Some Useful Concepts: Convergent Sequences

Definition: Convergence

Let $\{x^k\}$ be a sequence of real vectors. Then $\{x^k\}$ converges to x^* if and only if for every $\epsilon>0$, there exists a positive integer K such that $\|x^k-x^*\|<\epsilon$ for all $k\geq K$.

In all our discussions, we assume that $\|\cdot\|$ is the Euclidean norm, which means:

$$||x|| = \sqrt{x^{\top}x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Examples of convergent sequences:

- $\triangleright x^k := 1/k$ for all k; then $x^k \to 0$.
- $x^k := (1/2)^k$ for all k; then $x^k \to 0$.

Convergence: Illustration

Convergence: Illustration

Problems in $\mathbb R$

Single Variable Problem

Assume $f : \mathbb{R} \to \mathbb{R}$ is a single variable function.

Our Objective: find a local minimizer of f.

We introduce two methods:

- Bisection method.
- Golden section method.

Bisection Method

Bisection method uses the idea that the local minimizer must satisfy the first-order necessary conditions: f'(x) = 0.

Therefore, the problem becomes a root-finding problem for

$$g(x)=f'(x)=0.$$

Root Finding Algorithm: Bisection Method

Assume we can find x_ℓ and x_r such that $g(x_\ell) < 0$ and $g(x_r) > 0$.

By the intermediate value theorem, if g is continuous, there must exist a root of g in $[x_{\ell}, x_r]$.

Bisection Method

- 1. Define $x_m = \frac{x_\ell + x_r}{2}$.
- 2. If $g(x_m) = 0$, then output x_m .
- 3. Otherwise:
 - If $g(x_m) > 0$, then let $x_r = x_m$.
 - If $g(x_m) < 0$, then let $x_\ell = x_m$.
- 4. If $|x_r x_\ell| < \epsilon$: stop and output $\frac{x_\ell + x_r}{2}$, otherwise go back to step 1.

One can also set the stopping criterion based on $|g(x)| < \epsilon$.

Bisection Method

In the bisection method, each iteration will divide the search interval to half.

Therefore, to find an ϵ approximation of x^* , we need at most $\log_2 \frac{x_r - x_\ell}{\epsilon}$ many iterations.

Applying the bisection method to f', we can find an approximate stationary point. If f is convex, this is an (approximate) global minimizer of f.

► Although simple, the bisection method is very useful in practice because it is easy to implement.

Example: Use bisection method to maximize:

$$f(x) = \frac{xe^{-x}}{1 + e^{-x}} \quad \leadsto \quad f'(x) = \frac{e^{-x}(1 - x + e^{-x})}{(1 + e^{-x})^2}$$


```
function [x,gx] = bisection(g,xl,xr,options)
 3
    % Compute intial function values
4
    gr = g(xr); gl = g(xl); sl = sign(gl);
5
6
    if ql*qr > 0
        fprintf(1,'The input data not suitable!');
8
        x = []; gx = []; return
9
    end
11
    for i = 1:options.maxit
        xm = (xl + xr)/2; qm = q(xm);
13
14
        if abs(gm) < options.tol || abs(xl-xr) < options.tol</pre>
15
            x = xm: ax = am: return
16
        end
17
18
        if qm > 0
19
            if sl < 0, xr = xm; else, xl = xm; end
        else
21
            if sl < 0, xl = xm: else, xr = xm: end
        end
    end
```

Golden Section Method

Drawback of the bisection method: When solving (single variable, unconstrained) optimization problems, we require the knowledge (and computation) of f'.

► Sometimes, f' is not available. For example, f sometimes is only a black box, which does not admit an analytical form (thus, the derivative is hard to compute)

However, if we know that f has a unique local minimum x^* in the range $[x_{\ell}, x_r]$, then we still have a very efficient way to find x^* :

- ▶ We call f unimodal if it only has one single stationary point (on \mathbb{R}).
- Unimodal functions have the property that the local minimum is already global. (Similarly, if the stationary point is a local maximum).

Example of a Unimodal Function

Consider
$$f(x) = -\frac{xe^{-x}}{1+e^{-x}}$$
:

This is a unimodal function, but not a concave function.

Golden Section Method

Golden Section Method

Assume we start with $[x_{\ell}, x_r]$. Assume $0 < \phi < 0.5$.

- 1. Set $x'_{\ell} = \phi x_r + (1 \phi)x_{\ell}$ and $x'_r = (1 \phi)x_r + \phi x_{\ell}$.
- 2. If $f(x'_{\ell}) < f(x'_{r})$, then the minimizer must lie in $[x_{\ell}, x'_{r}]$, so set $x_{r} = x'_{r}$.
- 3. Otherwise, the minimizer must lie in $[x'_{\ell}, x_r]$, so set $x_{\ell} = x'_{\ell}$.
- 4. If $x_r x_\ell < \epsilon$, output $\frac{x_\ell + x_r}{2}$, otherwise go back to step 1.
- ▶ Suppose we update $x_r = x'_r$. We want to choose ϕ such that x'_r of the new iteration coincides with x'_ℓ of the old iteration.
- → This allows to save one function evaluation!
 - ► This is true when

$$\phi = \frac{3 - \sqrt{5}}{2}$$
 and $1 - \phi = \frac{\sqrt{5} - 1}{2} = 0.618$.

Illustration and Example

Both the bisection and golden section method can be easily adapted for maximization problems. (Just adjust the comparison).

Example Revisited: Use the Golden section method to maximize:

$$f(x) = \frac{xe^{-x}}{1 + e^{-x}}$$

Questions?