CS 409M: Introduction to Cryptography

Fall 2024

Assignment 6 End of an Era

Instructor: Sruthi Sekar

TAs: Giriraj Singh, Gyara Pragathi, Nilabha Saha

Problem 1: One-Wayness

Let F be a length-preserving pseudorandom permutation.

- (a) Show that the function $f(x,y) = F_x(y)$ is not one-way.
- (b) Show that the function $f(y) = F_{0^n}(y)$ (where n = |y|) is not one-way.
- (c) Prove that the function $f(x) = F_x(0^n)$ (where n = |x|) is one-way.

Problem 2: OWF with Specific Bit-Hiding

Let $x \in \{0,1\}^n$ and denote $x = x_1 \cdots x_n$. Prove that if there exists a one-way function, then there exists a one-way function f such that for every i there is an algorithm A_i such that

$$\Pr_{x \leftarrow \{0,1\}^n} [A_i(f(x)) = x_i] \ge \frac{1}{2} + \frac{1}{2n}.$$

(This exercise demonstrates that it is not possible to claim that every one-way function hides at least one *specific* bit of the input.)

Problem 3: A New Key Exchange

Consider the following key exchange protocol:

- (a) Alice chooses uniform $k, r \in \{0, 1\}^n$, and sends $s := k \oplus r$ to Bob.
- (b) Bob chooses uniform $t \in \{0,1\}^n$, and sends $u := s \oplus t$ to Alice.
- (c) Alice computes $w := u \oplus r$ and sends w to Bob.
- (d) Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

Problem 4: KeyXCHG to CPA-PKE

Show that any two-round key-exchange protocol (that is, where each party sends a single message) satisfying Definition 10.1 (from the book¹) can be converted into a CPA-secure public-key encryption scheme.

Definition 10.1

A key exchange protocol Π is secure in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that

$$\Pr[KE_{\mathcal{A},\Pi}^{\text{eav}}(n) = 1] \le \frac{1}{2} + \text{negl}(n).$$

Problem 5: The ElGamal Variance Authority

Consider the following variant of ElGamal encryption. Let p = 2q + 1, let \mathbb{G} be the group of squares modulo p (so \mathbb{G} is a subgroup of \mathbb{Z}_p^* of order q), and let g be a generator of \mathbb{G} . The private key is (\mathbb{G}, g, q, x) and the public key is (\mathbb{G}, g, q, h) where $h = g^x$ and $x \in \mathbb{Z}_q$, choose a uniform $r \in \mathbb{Z}_q$, compute $c_1 := g^r \pmod{p}$ and $c_2 := h^r + m \pmod{p}$, and let the ciphertext be $\langle c_1, c_2 \rangle$. Is this scheme CPA-secure? Prove your answer.

Problem 6: Public Key Secure(?)-ity

Consider the following construction:

Construction

Let GenRSA be as usual, and define a public-key encryption scheme as follows:

- Gen: on input 1^n , run GenRSA (1^n) to obtain (N, e, d). Output the public key $pk = \langle N, e \rangle$, and the private key $sk = \langle N, d \rangle$.
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \{0, 1\}$, choose a uniform $r \in \mathbb{Z}_N^*$. Output the ciphertext $\langle [r^e \pmod{N}], \operatorname{lsb}(r) \oplus m \rangle$.
- Dec: on input a private key $sk = \langle N, d \rangle$ and a ciphertext $\langle c, b \rangle$, compute $r := [c^d \pmod{N}]$ and output $lsb(r) \oplus b$.

Prove that this scheme is CPA-secure.

Problem 7: Hard-Core RSA

Fix an RSA public key $\langle N, e \rangle$ and define

half(x) =
$$\begin{cases} 0 & \text{if } 0 < x < N/2 \\ 1 & \text{if } N/2 < x < N \end{cases}$$

Prove that half is a hard-core predicate for the RSA problem.

Hint: Reduce to hardness of computing lsb.

¹Introduction to Modern Cryptography, Second Edition - Jonathan Katz, Yehuda Lindell

Problem 8: Strong One-Time Signatures

A strong one-time signature scheme satisfies the following (informally): given a signature σ' on a message m', it is infeasible to output $(m, \sigma) \neq (m', \sigma')$ for which σ is a valid signature on m (note that m = m' is allowed).

Strong One-Time Signature Scheme

Let $\Pi = (Gen, Sign, Vrfy)$ be a signature scheme, and consider the following experiment for an adversary A and parameter n:

The strong one-time signature experiment Sig-forge $_{\mathcal{A},\Pi}^{1-\mathtt{strong}}(n)$:

- i. $Gen(1^n)$ is run to obtain keys (pk, sk).
- ii. Adversary \mathcal{A} is given pk and asks a single query m' to oracle $\operatorname{Sign}_{sk}(\cdot)$. Let σ' denote the signature that was returned. \mathcal{A} then outputs (m, σ) where $(m, \sigma) \neq (m', \sigma')$.
- iii. The output of the experiment is defined to be 1 if and only if $\mathsf{Vrfy}_{pk}(m,\sigma) = 1$.

A signature scheme $\Pi = (\texttt{Gen}, \texttt{Sign}, \texttt{Vrfy})$ is a strong one-time signature scheme if for all probabilistic polynomial-time adversaries \mathcal{A} , there exists a negligible function negl such that:

$$\Pr[\mathtt{Sig\text{-}forge}_{\mathcal{A},\Pi}^{1-\mathtt{strong}}(n)=1] \leq \operatorname{negl}(n).$$

- (a) Assuming the existence of one-way functions, show a one-way function for which Lamport's scheme is not a strong one-time-secure signature scheme.
- (b) Construct a strong one-time-secure signature scheme based on any assumption you've seen so far in class.

Hint: Use a particular one-way function in Lamport's scheme.

Problem 9: Varying Lamport

The Lamport scheme uses 2ℓ values in the public key to sign messages of length ℓ . Consider the variant in which the private key contains 2ℓ values $x_1, \ldots, x_{2\ell}$ and the public key contains the values $y_1, \ldots, y_{2\ell}$ with $y_i := f(x_i)$. A message $m \in \{0, 1\}^{\ell'}$ is mapped in a one-to-one fashion to a subset $S_m \subset \{1, \ldots, 2\ell\}$ of size ℓ . To sign m, the signer reveals $\{x_i\}_{i \in S_m}$. Prove that this gives a one-time-secure signature scheme. What is the maximum message length ℓ' that this scheme supports?

Problem 10: Soft-Core DLOG

Let \mathcal{G} be a polynomial-time algorithm that, on input 1^n , outputs a prime p with ||p|| = n and a generator g of \mathbb{Z}_p^* . The discrete logarithm problem is believed to be hard for \mathcal{G} . This means that the function (family) $f_{p,g}$ where $f_{p,g}(x) := [g^x \pmod{p}]$ is one-way. Let lsb(x) denote the least-significant bit of x. Show that lsb is not a hard-core predicate for $f_{p,g}$.