数据科学与工程数学基础作业提交规范及第11次作业

教师: 黄定江

助教:陈诺、刘文辉

2023年2月17日

作业提交规范

- 1. 作业提交形式: **使用 Word 或 LATEX 编写所得到的电子文档**。若使用 Word 编写,将其另 存为 PDF 形式,然后提交 PDF 文档。若使用 LATEX 编写,将其编译成 PDF 形式,然后提 交 Tex 和 PDF 两个文档。
- 2. 作业命名规范: 提交的电子文档必须命名为: "**学号_姓名**"。命名示例: 50000000000_刘 某某。
- 3. 作业提交途径:点击打开每次作业的传送门网址:第11次作业提交传送门,无需注册和登录,直接上传作业文档即可。注意:传送门将会在截至时间点到达后自动关闭。
- 4. 作业更改说明:如果需要修改已经提交的作业,只要在截至日期前,再次上传更改后的作业(切记保持同名),即可覆盖已有作业。
- 5. 作业评分说明:正常提交作业的按照实际评分记录;逾期补交作业的根据逾期情况在实际评分基础上酌情扣分;未交作业的当次作业记为 0 分。

第11次作业

① 提交截至时间: 2023/01/21 周六 12:00 (中午)

→ 1. 写出下述非线性规划的 KKT 条件并求解

$$\begin{array}{ll} (1) & \textit{maximize} & f(x) = (x-3)^2 \\ \\ \textit{suject to} & 1 \leq x \leq 5 \end{array}$$

(2) minimize
$$f(x) = (x-3)^2$$

suject to $1 \le x \le 5$

解. (1) 原问题等价于

$$\begin{cases} \textit{minimize} & -f(x) = (x-3)^2 \\ g_1(x) = -x+1 \leq 5 \\ g_2(x) = x-5 \leq 0 \end{cases}$$

求目标函数和约束函数的梯度得

$$\nabla_x f(x) = -2(x-3), \nabla_x g_1(x) = -1, \nabla_x g_2(x) = 1$$

将约束引入广义 Lagrange 乘子 v_1, v_2 , 在 KKT 条件上有

$$\begin{cases}
-2(x^* - 3) - v_1^* + v_2^* = 0 \\
v_1^*(-x^* + 1) = 0 \\
v_2^*(x^* - 5) = 0 \\
v_1^* \ge 0, v_2^* \ge 0
\end{cases}$$

若 $v_1^* \neq 0, v_2^* \neq 0$, 无解.

若
$$v_1^* = 0, v_2^* \neq 0$$
, 得 $x^* = 5, v_2^* = 4, -f(x^*) = -4$.

若
$$v_1^* \neq 0, v_2^* = 0$$
, 得 $x^* = 1, v_1^* = 4, -f(x^*) = -4$.

因此最优点 $x^* = 1$ 或 $x^* = 5$, maximize f(x) = 4.

(2) 原问题等价于

$$\begin{cases} \textit{minimize} & f(x) = (x-3)^2 \\ g_1(x) = -x + 1 \le 5 \\ g_2(x) = x - 5 \le 0 \end{cases}$$

求目标函数和约束函数的梯度得,

$$\nabla_x f(x) = -2(x-3), \nabla_x g_1(x) = -1, \nabla_x g_2(x) = 1$$

将约束引入广义 Lagrange 乘子 v_1, v_2 , 在 KKT 条件上有

$$\begin{cases} 2(x^* - 3) - v_1^* + v_2^* = 0 \\ v_1^*(-x^* + 1) = 0 \\ v_2^*(x^* - 5) = 0 \\ v_1^* \ge 0, v_2^* \ge 0 \end{cases}$$

若 $v_1^* \neq 0, v_2^* \neq 0$, 无解.

若 $v_1^* = 0, v_2^* \neq 0$, 得 $x^* = 5, v_2^* = -4 < 0$, 不是 KKT 点.

若 $v_1^* \neq 0, v_2^* = 0$, 得 $x^* = 1, v_1^* = -4 < 0$, 不是 KKT 点.

若 $v_1^* = 0$, $v_2^* = 0$, 得 $x^* = 3$, $f(x^*) = 0$.

因此最优点 $x^* = 3$, minimize f(x) = 0.

习题 2. 考虑等式约束的最小二乘问题

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

suject to
$$Gx = h$$

其中 $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank $(\mathbf{A}) = n$, $\mathbf{G} \in \mathbb{R}^{p \times n}$, rank $(\mathbf{G}) = p$. 给出 KKT 条件, 推导原问题最优解 x^* 以及对偶问题最优解 v^* 的表达式.

解. 求得 Lagrangian 函数为

$$L(x, v) = ||Ax - b||_2^2 + v^T (Gx - h)$$

= $x^T A^T A x + (G^T v - 2A^T b)^T x - v^T h$

可通过如下最优性条件得到函数最小值. 令梯度为 0 得,

$$\nabla_x L(x, v) = 2A^T A x + G^T v - 2A^T b = 0$$

因此当 $x=\frac{1}{2}(A^TA)^{-1}(G^Tv-2A^Tb)$ 时, Lagrangian 函数取得最小值. 对偶函数为 $g(x)=-\frac{1}{4}(G^Tv-2A^Tb)^T(A^TA)^{-1}(G^Tv-2A^Tb)-v^Th$. 最优性条件为

$$\begin{cases} 2A^T(Ax^* - b) + G^Tv^* = 0\\ Gx^* = h \end{cases}$$

解方程得,

$$\begin{cases} v^* = 2(G(A^TA)^{-1}G^T)^{-1}(G(A^TA)^{-1}A^Tb - h) \\ x^* = (A^TA)^{-1}(A^Tb - G^T(G(A^TA)^{-1}G^T)^{-1}(G(A^TA)^{-1}A^Tb - h)) \end{cases}$$

习题 3. 用 Lagrange 乘子法证明: 矩阵 $A \in \mathbb{R}^{m \times n}$ 的 2 范数

$$||A||_2 = \max_{||x||_2 = 1, x \in \mathbb{R}^n} ||Ax||_2$$

的平方是 $A^{T}A$ 的最大特征值。

证明. 优化问题为

maximize
$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}$$

suject to $\mathbf{x}^{\mathrm{T}} \mathbf{x} = 1$

Lagrange 函数为:

$$L(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \lambda (\mathbf{x}^{\mathrm{T}} \mathbf{x} - 1)$$
$$\frac{\partial L}{\partial \mathbf{x}} = 2\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} - 2\lambda \mathbf{x}$$

 $\Rightarrow \frac{\partial L}{\partial \mathbf{r}} = 0$, 有:

$$A^{\mathrm{T}}Ax = \lambda$$

这表示在 f(x) 的极大值点, $x \in A^{T}A$ 的特征向量, λ 是对应的特征值。此时,

$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathrm{T}} \lambda \mathbf{x} = \lambda \mathbf{x}^{\mathrm{T}} \mathbf{x} = \lambda$$

因此说明,为使 $f(\mathbf{x})$ 最大, $f(\mathbf{x}) = \lambda_{max}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$,其中 λ_{max} 表示最大特征值。即

$$||A||_2^2 = \lambda_{max}(A^{\mathsf{T}}A)$$

习题 4. 用 Lagrange 乘子法求欠定方程 Ax=b 的最小二范数解,其中 $A\in\mathbb{R}^{m\times n}, m\leq n, \operatorname{rank}(A)=m$

证明. 优化问题为

maximize
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$$
 suject to $A\mathbf{x} = \mathbf{b}$

Lagrange 函数为:

$$L(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} - \boldsymbol{\lambda}^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$
$$\frac{\partial L}{\partial \boldsymbol{x}} = \boldsymbol{x} - \boldsymbol{A}^{\mathrm{T}} \boldsymbol{\lambda}$$

 $\Rightarrow \frac{\partial L}{\partial \mathbf{r}} = 0$, 有:

$$\mathbf{x} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda}$$
$$g(\boldsymbol{\lambda}) = -\frac{1}{2} \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda} + \boldsymbol{\lambda}^{\mathsf{T}} \boldsymbol{b}$$

 $\Rightarrow \frac{\partial g}{\partial \lambda} = 0$:

$$-\mathbf{A}\mathbf{A}^{\mathrm{T}}\lambda + \mathbf{b} = 0$$

由 $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank $(\mathbf{A}) = m$ 得 $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ 可逆,因此

$$\boldsymbol{\lambda} = (\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})^{-1}\boldsymbol{b}$$

因此, x 满足 Ax = b 的最小二范数解:

$$\boldsymbol{x} = \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}})^{-1} \boldsymbol{b}$$

习题 5. 用最速下降法和精确线搜索计算 $\min f(x) = x_1^2 + x_2^2 + x_3^2$,初始点 $x^{(0)} = (2,2,1)^T$. 当 $(f(x^{(n+1)}) - f(x^{(n)})) < 0.001$ 时迭代终止.

解. 由题意得,
$$f(x) = x^T x$$
, $\nabla_x f(x) = 2x$, 设最速下降法的步长为 λ , 那么

$$f(x - \lambda \nabla_x f(x)) = (x - \lambda \nabla_x f(x))^T (x - \lambda \nabla_x f(x))$$
$$= x^T x - 2\lambda \nabla_x f(x)^T x + \lambda^2 \nabla_x f(x)^T \nabla_x f(x)$$

 $extit{ } x - \lambda \nabla_x f(x)$ 方向上, 使 f(x) 最小的 λ 满足

$$\frac{\partial f(x - \lambda \nabla_x f(x))}{\partial \lambda} = -2\nabla_x f(x)^T x + 2\lambda \nabla_x f(x)^T \nabla_x f(x)$$

得

$$\lambda = \frac{\nabla_x f(x)^T x}{\nabla_x f(x)^T \nabla_x f(x)} = \frac{1}{2}$$

所以,

$$x^{(1)} = x^{(0)} - \frac{1}{2} \nabla_x f(x^{(0)}) = (0, 0, 0)^T$$
$$f(x^{(1)}) = 0$$
$$x^{(2)} = x^{(1)} - \frac{1}{2} \nabla_x f(x^{(1)}) = (0, 0, 0)^T$$
$$f(x^{(2)}) = 0$$

同理可得, $f(x^{(n)}) = 0 (n > 0)$, 因此当 $|(f(x^{(n+1)}) - f(x^{(n)}))| = 0 < 0.001$ 时, 迭代终止.

习题 6. 使用梯度下降法和固定步长 $\lambda=0.01$ 计算 $\min f(x)=(x_1-1)^2+16(x_2-2)^2$,初始点 $x^{(0)}=(2,3)^T$, 迭代两步后终止.

解. 具体迭代结果:

k	$x^{(k)^{\mathrm{T}}}$	$g_k^{ m T}$	f_k	$\ g_k\ _{\infty}$
0	(2,3)	(2, 32)	17	32
1	(1.98, 2.68)	[1.96, 21.76]	8.3588	21.76
2	(1.96, 2.46)	[1.9208, 14.7968]	4.3434	14.7968

习题 7. 考虑问题

$$\min f(x) = 3x_1^2 + 3x_2^2 - x_1^2 x_2.$$

从初始点 $x^{(0)}=(1.5,1.5)^{\rm T}$ 出发, 用 Newton 方法求迭代两步后该问题的解(可用编写程序辅助计算).

 \mathbf{M} . f(x) 的一、二阶导数分别为

$$g(x) = (6x_1 - 2x_1x_2, 6x_2 - x_1^2)^{\mathrm{T}}, \quad G(x) = \begin{bmatrix} 6 - 2x_2 & -2x_1 \\ -2x_1 & 6 \end{bmatrix}$$

f(x) 有三个稳定点: 极小点 $x_{(1)}=(0,0)^{\mathrm{T}}$, 鞍点 $x_{(2)}=(3\sqrt{2},3)^{\mathrm{T}}$ 和 $x_{(3)}=(-3\sqrt{2},3)^{\mathrm{T}}$. 在这三个点的 Hesse 矩阵分别为

$$G\left(x_{(1)}\right) = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}, \quad G\left(x_{(2)}\right) = \begin{bmatrix} 0 & -6\sqrt{2} \\ -6\sqrt{2} & 6 \end{bmatrix}$$
$$G\left(x_{(3)}\right) = \begin{bmatrix} 0 & 6\sqrt{2} \\ 6\sqrt{2} & 6 \end{bmatrix}.$$

下面我们从 $x^{(0)} = (1.5, 1.5)^{T}$, 这时 Newton 方法在每一迭代步的信息见下表

\overline{k}	$x^{(k)^{T}}$	f_k	$\ g_k\ _{\infty}$
0	(1.5000, 1.5000)	10.1250	8.1125
1	(-3.7500, -2.2500)	89.0156	48.0633
2	(0.6250, -3.1250)	31.6895	20.6151
3	(0.3190, 0.0014)	0.3052	1.9155
4	(-0.0020, -0.0172)	0.0009	0.1037
5	(-0.0000, -0.0000)	0.0000	0.0000
6	(-0.0000, -0.0000)	0.0000	0.0000

▶ **8.** 试用 DFP 法计算下述二次函数的极小点

$$\min f(x) = 3x_1^2 + x_2^2 - 2x_1x_2 - 4x_1.$$

 \mathbf{W} . 假设我们从 $\mathbf{x}^{(0)} = (-2,4)^T$ 开始(没有规定时,可以随机选取一个初始点),并取

$$\overline{\boldsymbol{H}}^{(0)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\nabla f(\boldsymbol{x}) = [(6x_1 - 2x_2 - 4), (2x_2 - 2x_1)]^T$$

$$\nabla f(\boldsymbol{x}^{(0)}) = (-24, 12)^T$$

$$\boldsymbol{p}^{(0)} = -\overline{\boldsymbol{H}}^{(0)} \nabla f(\boldsymbol{x}^{(0)}) = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -24 \\ 12 \end{pmatrix} = \begin{pmatrix} 24 \\ -12 \end{pmatrix}$$

利用一维搜索,即 $\min_{\lambda} f(\mathbf{x}^{(0)} + \lambda \mathbf{p}^{(0)})$,可算得

$$\lambda_0 = \frac{5}{34}$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \lambda_0 \mathbf{p}^{(0)} = \begin{pmatrix} -2\\4 \end{pmatrix} + \frac{5}{34} \begin{pmatrix} 24\\-12 \end{pmatrix} = \begin{pmatrix} \frac{26}{17}, \frac{38}{17} \end{pmatrix}^T$$

$$\nabla f(\mathbf{x}^{(1)}) = \left(\frac{12}{17}, \frac{24}{17}\right)^T$$

$$\Delta \mathbf{x}^{(0)} = \mathbf{x}^{(1)} - \mathbf{x}^{(0)} = \left(\frac{26}{17}, \frac{38}{17}\right)^T - (-2, 4)^T = \left(\frac{60}{17}, -\frac{30}{17}\right)^T$$

$$\Delta \mathbf{g}^{(0)} = \nabla f(\mathbf{x}^{(1)}) - \nabla f(\mathbf{x}^{(0)}) = \left(\frac{6}{17}, \frac{12}{17}\right)^T - (-12, 6)^T = \left(\frac{210}{17}, -\frac{90}{17}\right)^T$$

$$\overline{\boldsymbol{H}}^{(1)} = \overline{\boldsymbol{H}}^{(0)} + \frac{\Delta \boldsymbol{x}^{(0)} (\Delta \boldsymbol{x}^{(0)})^T}{(\Delta \boldsymbol{g}^{(0)})^T \Delta \boldsymbol{x}^{(0)}} - \frac{\overline{\boldsymbol{H}}^{(0)} \Delta \boldsymbol{g}^{(0)} (\Delta \boldsymbol{g}^{(0)})^T \overline{\boldsymbol{H}}^{(0)}}{(\Delta \boldsymbol{g}^{(0)})^T \overline{\boldsymbol{H}}^{(0)} \Delta \boldsymbol{g}^{(0)}}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\begin{pmatrix} \frac{60}{17}, -\frac{30}{17} \end{pmatrix}^T \begin{pmatrix} \frac{60}{17}, -\frac{30}{17} \end{pmatrix}}{\begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix} \begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix}^T \begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} \frac{\begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix}^T \begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}{\begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{210}{17}, -\frac{90}{17} \end{pmatrix}^T}$$

$$=\frac{1}{986} \begin{pmatrix} 269 & 299 \\ 299 & 862 \end{pmatrix}$$

$$\mathbf{p}^{(1)} = -\overline{\mathbf{H}}^{(1)} \nabla f(\mathbf{x}^{(1)}) = -\frac{1}{986} \begin{pmatrix} 269 & 299 \\ 299 & 862 \end{pmatrix} \begin{pmatrix} \frac{12}{17} \\ \frac{24}{17} \end{pmatrix} = -\begin{pmatrix} \frac{18}{29} \\ \frac{42}{29} \end{pmatrix}$$

再由一维搜索 $\min_{\lambda} f(\mathbf{x}^{(1)} + \lambda \mathbf{p}^{(1)})$,得

$$\lambda_1 = \frac{29}{34}$$

从而

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \lambda_1 \mathbf{p}^{(1)} = \begin{pmatrix} \frac{26}{17} \\ \frac{38}{17} \end{pmatrix} + \frac{29}{34} \begin{pmatrix} -\frac{18}{29} \\ -\frac{42}{29} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\nabla f(\mathbf{x}^{(2)}) = (0, 0)^T$$

可知 $\mathbf{x}^{(2)} = (1,1)^T$ 为极小点。

习题 9. 试用二次罚函数法求解如下优化问题:

$$\min f_0(\boldsymbol{x}) = \frac{1}{3} (x_1 + 1)^3 + x_2$$
s.t. $f_1(\boldsymbol{x}) = 1 - x_1 \le 0$

$$f_2(\boldsymbol{x}) = -x_2 \le 0$$

从初始点 $x^{(0)}=(2,0)^{\mathrm{T}}$ 开始,计算迭代两步后的解。

 \mathbf{W} , 我们不妨取 M1 = 1, c = 2。由此、构造无约束优化问题:

$$\min p_1(\boldsymbol{x}) = \frac{1}{3} (x_1 + 1)^3 + x_2 + [\min(0, x_1 - 1)]^2 + [\min(0, x_2)]^2$$

易求得在 $x^{(0)}$ 处的梯度(严格上是次梯度)为 $((x_1+1)^2,1)^T=(9,1)$ 。假设这里采用固定步长 $\lambda=0.1$,则 $x^{(1)}=(1.1-0.1)^T$ 。这里假定这是该无约束优化问题的最优解,实际上,需要迭代 至收敛。

然后,进行第二轮迭代,此时M2=c*M1=2。由此,构造无约束优化问题:

$$\min p_1(\boldsymbol{x}) = \frac{1}{3} (x_1 + 1)^3 + x_2 + 2 * [\min(0, x_1 - 1)]^2 + 2 * [\min(0, x_2)]^2$$

易求得在 $x^{(1)}$ 处的梯度为 $((x_1+1)^2,1+4x_2)^T=(4.41,0.6)$ 。仍假设这里采用固定步长 $\lambda=0.1$,则 $x^{(2)}=(0.659-0.16)^T$ 。这样,便求得两次迭代的解。实际上,我们可以注意到罚函数法的解是可能会违背约束条件,通过不断地加大惩罚使得它收敛在可行域内。

>> 10. 试用内点法求解如下优化问题:

$$\min f_0(\mathbf{x}) = \frac{1}{3} (x_1 + 1)^3 + x_2$$
s.t. $f_1(\mathbf{x}) = 1 - x_1 \le 0$

$$f_2(\mathbf{x}) = -x_2 \le 0$$

解. 参考讲义 Lec35, 例 3.