Series (cont'd)

January 17, 2007

Series Laws

If $\sum a_n$ and $\sum b_n$ are convergent then so are the following series

•
$$\sum (a_n \stackrel{+}{-} b_n) = \sum a_n \stackrel{+}{-} \sum b_n;$$

•
$$\sum ca_n = c \sum a_n$$
.

Series Laws

If $\sum a_n$ and $\sum b_n$ are convergent then so are the following series

•
$$\sum (a_n \stackrel{+}{-} b_n) = \sum a_n \stackrel{+}{-} \sum b_n;$$

- $\sum ca_n = c \sum a_n$.
- Example: Find the sum of the following series

$$\sum_{n=1}^{\infty} \frac{4}{n(n+1)} + \frac{2^n}{3^n}.$$

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$.

- 1. If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- 2. If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

• Determine whether

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

is a convergent series.

• Determine whether

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

is a convergent series.

ullet For what values of p is the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

convergent?

• Determine whether

$$\sum_{n=1}^{\infty} ne^{-2n}$$

is a convergent series.

The Comparison Test

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- 1. If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- 2. If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

$$\bullet \ \sum_{n=1}^{\infty} \frac{5}{5n-1}$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{5}{5n-1}$$

$$\bullet \sum_{n=1}^{\infty} \frac{\sin^2(n)\sqrt{n}}{n^2}$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{5}{5n-1}$$

$$\bullet \sum_{n=1}^{\infty} \frac{\sin^2(n)\sqrt{n}}{n^2}$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{n}{n^3 + 2n + 1}$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{5}{5n-1}$$

$$\bullet \sum_{n=1}^{\infty} \frac{\sin^2(n)\sqrt{n}}{n^2}$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{n}{n^3 + 2n + 1}$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{1}{n!}$$