One-Shot Coding over General Noisy Networks **ISIT 2024**

Yanxiao Liu and Cheuk Ting Li

The Chinese University of Hong Kong

Background

Background

 \bullet 0000

Some key questions/challenges in network information theory

- Blocklength in information transmission: asymptoticity & finite blocklength & one-shot achievability?
- **Noisy network coding**: capacity of noisy networks & coding schemes?
- Unified Coding Scheme: channel coding & source coding & coding for computing?

One-shot information theory

Background 00000

- Conventional Shannon theory: asymptotic information transmission rates based on the law of large numbers.
- Finite-blocklength regime^a: maximal information transmission rate at a given blocklength and error probability?
- **One-shot** achievability^b: What if the blocklength can be as short as 1 (each source and channel is only used once)?
 - 1 Sources and channels can be arbitrary: no need to be memoryless or ergodic.
 - Q Goal: can recover existing (first-order and second-order) asymptotic results when applied to memoryless sources and channels.

^aPolyanskiy, Yury, H. Vincent Poor, and Sergio Verdú. "Channel coding rate in the finite blocklength regime. "IEEE Transactions on Information Theory 56, no. 5 (2010): 2307-2359.

^bLi, Cheuk Ting, and Venkat Anantharam. "A unified framework for one-shot achievability via the Poisson matching lemma. "IEEE Transactions on Information Theory 67, no. 5 (2021): 2624-2651.

Noisy Network Coding

- Noisy network coding^a: communicating messages between multiple sources and destinations over a general noisy network.
- Generalizing:
 - Noiseless network coding by Ahlswede, Cai, Li and Yeung.
 - 2 Compress-forward coding for relay channels by Cover and El Gamal.
 - 3 Coding for relay networks, coding for erasure networks, etc.

Background 00000

^aLim, Sung Hoon, Young-Han Kim, Abbas El Gamal, and Sae-Young Chung. "Noisy network coding. IEEE Transactions on Information Theory 57, no. 5 (2011): 3132-3152.

Background: A Unified Random Coding Bound

A Unified random coding bound

- Unified random coding bound^a: work for any combination of channel coding and source coding problems.
- Unifying and generalizing known relaying strategies; can yield bounds without error analysis.
- Useful for designing automated theorem proving tools.

 $^{^{\}rm a}$ Lee, Si-Hyeon, and Sae-Young Chung. "A unified random coding bound." IEEE Transactions on Information Theory 64, no. 10 (2018): 6779-6802.

Our contributions

Background

- A unified one-shot coding scheme
- over general noisy acyclic discrete networks (ADN)
- that is applicable to any combination of source coding, channel coding and coding for computing problems,
- proved by our exponential process refinement lemma.

Special cases

- Novel one-shot achievablity results for:
 - One-shot relay channels
 - One-shot primitive relay channels
 - Compress-and-forward bound
 - Partial-decode-and-forward bound
- Recovered one-shot & asymptotic results on:
 - Source and channel coding
 - @ Gelfand-Pinsker, Wyner-Ziv and coding for computing
 - Multiple access channels
 - Broadcast channels

Poisson functional representation

- For a finite set \mathcal{U} , let $\mathbf{U} := (Z_u)_{u \in \mathcal{U}}$ be i.i.d. $\mathrm{Exp}(1)$ random variables.
- Given a distribution P over \mathcal{U} , Poisson functional representation^a:

$$\mathbf{U}_{P} := \operatorname{argmin}_{u} \frac{Z_{u}}{P(u)} \tag{1}$$

- We have $\mathbf{U}_P \sim P$.
- Various applications: minimax learning, neural network compression, differential privacy, etc.

^aLi, Cheuk Ting, and Abbas El Gamal. "Strong functional representation lemma and applications to coding theorems." IEEE Transactions on Information Theory 64, no. 11 (2018): 6967-6978.

Poisson functional representation

Given a distribution P over \mathcal{U} , Poisson functional representation:

$$\mathbf{U}_P := \mathrm{argmin}_u \frac{Z_u}{P(u)}$$

Generalized Poisson matching lemma

- Let $\mathbf{U}_P(1), \dots, \mathbf{U}_P(|\mathcal{U}|) \in \mathcal{U}$ be the elements of \mathcal{U} sorted in ascending order of $Z_u/P(u)$, let $U_p^{-1}: \mathcal{U} \to [|\mathcal{U}|]$ for the inverse function of $i \mapsto U_P(i)$.
- Generalized Poisson matching lemma^a: For distributions P, Q over \mathcal{U} , we have the following almost surely:

$$\mathsf{E}\left[\mathsf{U}_Q^{-1}(\mathsf{U}_P)\,\Big|\,\mathsf{U}_P\right] \leq \frac{P(\mathsf{U}_P)}{Q(\mathsf{U}_P)} + 1.$$

^aLi, Cheuk Ting, and Venkat Anantharam. "A unified framework for one-shot achievability via the Poisson matching lemma. "IEEE Transactions on Information Theory 67, no. 5 (2021): 2624-2651.

Techniques

Refining a distribution by an exponential process

For a joint distribution $Q_{V,U}$ over $\mathcal{V} \times \mathcal{U}$, the refinement of $Q_{V,U}$ by **U**:

$$Q_{V,U}^{\mathsf{U}}(v,u) := \frac{Q_V(v)}{\left(\mathbf{U}_{Q_{U|V}(\cdot|v)}^{-1}(u)\sum_{i=1}^{|\mathcal{U}|}i^{-1}\right)} \tag{2}$$

for all (v, u) in the support of $Q_{V,U}$.

- The refinement is for the **soft decoding**.
- If the distribution $Q_{V,U}$ represents our "prior distribution" of (V,U), then the refinement $Q_{V,U}^{U}$ is our updated "posterior distribution" after taking the exponential process **U** into account.

Exponential Process Refinement Lemma

• For a distribution P over \mathcal{U} and a joint distribution $Q_{V,U}$ over a finite $\mathcal{V} \times \mathcal{U}$, for every $v \in \mathcal{V}$, we have, almost surely,

$$\mathbf{E}\left[\frac{1}{Q_{V,U}^{\mathsf{U}}(v,\mathbf{U}_P)}\middle|\mathbf{U}_P\right] \leq \frac{\ln|\mathcal{U}|+1}{Q_V(v)}\left(\frac{P(\mathbf{U}_P)}{Q_{U|V}(\mathbf{U}_P|v)}+1\right). \tag{3}$$

Purpose

It keeps track of the evolution of the "posterior probability" of the correct values of a large number of random variables through the refinement process.

- Limitation of one-shot setting: unable to model cyclic networks:
 - two-way communication channels;
 - 2 conventional relay channels that depend on its past.
- One-shot version of relay-with-unlimited-look-ahead^a.
- "Best one-shot approximation" of the conventional relay channel.

^aEl Gamal, Abbas, Navid Hassanpour, and James Mammen. "Relay networks with delays."IEEE Transactions on Information Theory 53, no. 10 (2007): 3413-3431.

One-Shot Relay Channel

- **1** Encoder observes $M \sim \text{Unif}[L]$ and outputs X, which is passed through the channel $P_{Y_r|X}$.
- 2 Relay observes Y_r and outputs X_r .
- 3 (X, X_r, Y_r) is passed through the channel $P_{Y|X,X_r,Y_r}$.
 - Y depends on all of X, X_r, Y_r and X_r may interfere with (X, Y_r) .
- 4 Decoder observes Y and recovers \hat{M}

Practical in scenarios where the relay outputs X_r instantaneously or the channel has a long memory, or it is a storage device.

Corollary (One-Shot Achievable Bound)

For any P_X , $P_{U|Y_r}$, function $x_r(y_r, u)$, there is a coding scheme for the one-shot relay channel such that the error probability satisfies

$$\textit{P}_{e} \leq \textbf{E} \bigg[\min \big\{ \gamma L 2^{-\iota(X;U,Y)} \big(2^{-\iota(U;Y)+\iota(U;Y_{r})} + 1 \big), 1 \big\} \bigg],$$

where $(X, Y_r, U, X_r, Y) \sim P_X P_{Y_r|X} P_{U|Y_r} \delta_{x_r(Y_r, U)} P_{Y|X, Y_r, X_r}$, and $\gamma := \ln |\mathcal{U}| + 1$.

Proof

- **1** "Random codebooks" U_1 , U_2 : independent exponential processes.
- **2** Encoder: $U_1 = (\mathbf{U}_1)_{P_{U_1} \times \delta_M}$.
- **3** Relay: $U_2 = (\mathbf{U}_2)_{P_{U_2 \mid Y_r}(\cdot \mid Y_r)}$, then outputs $X_r = x_r(Y_r, U_2)$.
- Decoder observes Y. and:
 - Refine $P_{U_2|Y}(\cdot|Y)$ to $Q_{U_2}:=P^{\mathsf{U}_2}_{U_2|Y}$. By Exponential Process Refinement Lemma:

$$\mathsf{E}\bigg[\frac{1}{Q_{U_2}(U_2)}\bigg|\ U_2, Y, Y_{\mathrm{r}}\bigg] \leq (\mathsf{ln}\,|\mathcal{U}_2|+1)\left(\frac{P_{U_2|Y_{\mathrm{r}}}(U_2)}{P_{U_2|Y}(U_2)}+1\right).$$

- Compute $Q_{U_2}P_{U_1|U_2,Y}$ over $\mathcal{U}_1 \times \mathcal{U}_2$, and let its U_1 -marginal be \tilde{Q}_{U_1} .
- Let $\tilde{U}_1 = (\mathbf{U}_1)_{\tilde{Q}_{U_1} \times P_M}$, and output its M-component.

Proof

$$\begin{split} & \mathbf{P}(\tilde{U}_{1} \neq U_{1} \,|\, X, Y_{\mathrm{r}}, U_{2}, X_{\mathrm{r}}, Y, M) \\ & \overset{(a)}{\leq} \mathbf{E} \left[\min \left\{ \frac{P_{U_{1}}(U_{1}) \delta_{M}(M)}{P_{U_{1} \mid U_{2}, Y}(U_{1} \mid U_{2}, Y) Q_{U_{2}}(U_{2}) P_{M}(M)}, 1 \right\} \, \middle|\, X, Y_{\mathrm{r}}, U_{2}, X_{\mathrm{r}}, Y, M \right] \\ & \overset{(b)}{\leq} \min \left\{ L \frac{P_{U_{1}}(U_{1})}{P_{U_{1} \mid U_{2}, Y}(U_{1} \mid U_{2}, Y)} (\ln |\mathcal{U}_{2}| + 1) \left(\frac{P_{U_{2} \mid Y_{\mathrm{r}}}(U_{2})}{P_{U_{2} \mid Y}(U_{2})} + 1 \right), 1 \right\} \\ & = \min \left\{ (\ln |\mathcal{U}_{2}| + 1) L 2^{-\iota(X; U_{2}, Y)} \left(2^{-\iota(U_{2}; Y) + \iota(U_{2}; Y_{\mathrm{r}})} + 1 \right), 1 \right\}. \end{split}$$

- (a) is by the Poisson matching lemma;
- (b) is by the refinement step and Jensen's inequality.

For some $P_{U|Y_r}$ and function $x_r(y_r, u_2)$, it yields the asymptotic achievable rate:

$$R \le I(X; U, Y) - \max \{I(U; Y_r) - I(U; Y), 0\}.$$

Y = (Y', Y'') and the channel $P_{Y|X,X_r,Y_r} = P_{Y'|X,Y_r} P_{Y''|X_r}$ can be decomposed into two orthogonal components.

Corollary

For any P_X , P_{X_r} , $P_{U'|Y_r}$, there is a coding scheme for the one-shot primitive relay channel with $M \sim \text{Unif}[L]$ such that

$$P_e \leq \textbf{E} \Big[\text{min} \Big\{ \left(\text{ln}(|\mathcal{U}'||\mathcal{X}_r|) + 1 \right) \text{L2}^{-\iota(X;U',Y')} \big(2^{-\iota(X_r;Y'') + \iota(U';Y_r|Y')} + 1 \big), 1 \Big\} \Big],$$

$$(X,Y_{\mathrm{r}},U',Y')\sim P_X P_{Y_{\mathrm{r}}|X} P_{U'|Y_{\mathrm{r}}} P_{Y'|X,Y_{\mathrm{r}}}$$
 independent of $(X_{\mathrm{r}},Y'')\sim P_{X_{\mathrm{r}}} P_{Y''|X_{\mathrm{r}}}$.

Asymptotic rate

$$R \le I(X; U', Y') - \max\{I(U'; Y_r|Y') - C_r, 0\}$$

where $C_{\rm r} = \max_{P_{X_{\rm r}}} I(X_{\rm r}; Y'')$.

It recovers the compress-and-forward bound^a.

^aKim, Young-Han. "Coding techniques for primitive relay channels."In Proc. Forty-Fifth Annual Allerton Conf. Commun., Contr. Comput, p. 2007. 2007.

Corollary (Partial-Decode-and-Forward Bound)

Fix any $P_{X,V}$, $P_{U|Y_r,V}$, function $x_r(y_r,u,v)$, and J which is a factor of L. There exists a deterministic coding scheme for the one-shot relay channel with

$$\begin{split} P_e &\leq \textbf{E} \bigg[\min \bigg\{ J 2^{-\iota(V;Y_r)} + \big(\text{ln}(J|\mathcal{U}|) + 1 \big) \big(\text{ln}(J|\mathcal{V}|) + 1 \big) L J^{-1} 2^{-\iota(X;\mathcal{U},Y|\mathcal{V})} \\ &\quad \cdot \big(2^{-\iota(\mathcal{U};V,Y) + \iota(\mathcal{U};V,Y_r)} + 1 \big) \big(J 2^{-\iota(V;Y)} + 1 \big), 1 \bigg\} \bigg], \end{split}$$

where $(X, V, Y_r, U, X_r, Y) \sim P_{X,V} P_{Y_r|X,V} P_{U|Y_r,V} \delta_{x_r(Y_r,U,V)} P_{Y|X,Y_r,X_r}$.

 It recovers existing asymptotic partial-decode-and-forward bounds on primitive relay channel^a and on relay-with-unlimited-look-ahead^b.

^aCover, Thomas, and Abbas El Gamal. "Capacity theorems for the relay channel."IEEE Transactions on information theory 25, no. 5 (1979): 572-584.

^bEl Gamal, Abbas, Navid Hassanpour, and James Mammen. "Relay networks with delays."IEEE Transactions on Information Theory 53, no. 10 (2007): 3413-3431.

General Acyclic Discrete Network

Acyclic discrete network (ADN)

- Nodes are labelled by $1, \ldots, N$; node i sees $Y_i \in \mathcal{Y}_i$ and produces $X_i \in \mathcal{X}_i$.
- Y_i depends on all previous inputs and outputs X^{i-1} , Y^{i-1} .
- **ADN**: a collection of channels $(P_{Y_i|X^{i-1},Y^{i-1}})_{i\in[N]}$, where $P_{Y_i|X^{i-1},Y^{i-1}}$ is a conditional distribution from $\prod_{i=1}^{i-1} \mathcal{X}_j \times \prod_{i=1}^{i-1} \mathcal{Y}_j$ to \mathcal{Y}_i .

Coding scheme

Public-randomness coding scheme $(\bar{P}_W, (f_i)_{i \in [N]})$

- **1** Generate public randomness $W \in \mathcal{W}$ available to all nodes;
- **2** Generate \tilde{Y}_i conditional on \tilde{X}^{i-1} , \tilde{Y}^{i-1} according to $P_{Y_i|X^{i-1},Y^{i-1}}$.
- **3 Encoding function** of node $i: f_i: \mathcal{Y}_i \times \mathcal{W} \to \mathcal{X}_i$.

In practice, the nodes share a common random seed to initialize their pseudorandom number generators before the scheme commences.

Main Theorem

Deterministic coding scheme

A sequence of encoding functions $(f_i)_{i \in [N]}$, where $f_i : \mathcal{Y}_i \to \mathcal{X}_i$. For $i = 1, \dots, N$:

- \tilde{Y}_i is generated conditional on \tilde{X}^{i-1} , \tilde{Y}^{i-1} according to $P_{Y_i|X^{i-1},Y^{i-1}}$.
- $\tilde{X}_i = f_i(\tilde{Y}_i)$.

Coding scheme

Achievability

- $\tilde{X}_i, \, \tilde{Y}_i$: actual random variables from the coding scheme.
- X_i , Y_i : random variables following an ideal distribution.
- "Achievability": $P_{\tilde{X}^N,\tilde{Y}^N}$ "approximately as good as" the P_{X^N,Y^N} , close in TV distance.

Theorem

Fix an ADN $(P_{Y_i|X^{i-1},Y^{i-1}})_{i\in[N]}$. For any collection of indices $(a_{i,j})_{i\in[N],j\in[d_i]}$ where $(a_{i,j})_{i \in [d_i]}$ is a sequence of distinct indices in [i-1] for each i, any sequence $(d_i')_{i \in [N]}$ with $0 \le d_i' \le d_i$ and any collection of conditional distributions $(P_{U_i|Y_i,\overline{U}_i'},P_{\chi_i|Y_i,U_i,\overline{U}_i'})_{i\in[N]}$ (where $\overline{U}_{i,\mathcal{S}}:=(U_{a_{i,j}})_{j\in\mathcal{S}}$ for $\mathcal{S}\subseteq[d_i]$ and $\overline{U}_i':=\overline{U}_{i,[d_i']}$), which induces the joint distribution of X^N,Y^N,U^N (the "ideal distribution"), there exists a public-randomness coding scheme s.t.

$$\delta_{\mathrm{TV}}\big(P_{\mathsf{X}^N,\mathsf{Y}^N},\,P_{\tilde{\mathsf{X}}^N,\tilde{\mathsf{Y}}^N}\big) \leq \mathbf{E}\bigg[\min\bigg\{\sum_{i=1}^N \sum_{j=1}^{d_i^i} B_{i,j},\,1\bigg\}\bigg],$$

where $\gamma_{i,j} := \prod_{k=i+1}^{d_i} \left(\ln |\mathcal{U}_{\mathsf{a}_{i,k}}| + 1 \right)$ and

$$B_{i,j} := \gamma_{i,j} \prod_{k=i}^{d_i} \left(2^{-\iota(\overline{U}_{i,k};\overline{U}_{i,[d_i]\setminus[j...k]},Y_i) + \iota(\overline{U}_{i,k};\overline{U}_{a_{i,k}},Y_{a_{i,k}})} + \mathbf{1}\{k > j\} \right).$$

ADN: Gelfand-Pinsker Problem

Gelfand-Pinsker Problem

- ADN: $Y_1 := (M, S), Y_2 := Y, P_{Y_2|Y_1,X_1}$ be $P_{Y|S,X}$, and $X_2 := M$.
- **Auxiliary** on node 1: $U_1 = (U, M)$ for some U following $P_{U|S}$ given S.
- **Decoding order**: on node 2 " U_1 " (i.e., it only wants U_1).

Corollary (Gelfand-Pinsker)

Fix $P_{U|S}$ and function $x: \mathcal{U} \times \mathcal{S} \to \mathcal{X}$. There exists a coding scheme for the channel $P_{Y|X,S}$ with $S \sim P_S$, $M \sim \text{Unif}[L]$ such that

$$P_e \leq \mathbf{E} \big[\min \big\{ \mathsf{L2}^{-\iota(U;Y) + \iota(U;S)}, 1 \big\} \big],$$

where $S, U, X, Y \sim P_S P_{U|S} \delta_{x(U,S)} P_{Y|X,S}$.

ADN: Wyner-Ziv Problem and Coding for Computing

$$Y_1 = X \longrightarrow \boxed{\text{Node 1}} \longrightarrow X_1 = M \longrightarrow \boxed{\text{Node 2}} \longrightarrow X_2 = Z$$

$$U_1 = (U, M)$$

Corollary (Wyner-Ziv)

Fix $P_{U|X}$ and function $z: \mathcal{U} \times \mathcal{Y} \to \mathcal{Z}$. There exists a coding scheme s.t.

$$P_e \leq \mathbf{E} \Big[\min \Big\{ \mathbf{1} \{ d(X, Z) > \mathsf{D} \} + \mathsf{L}^{-1} 2^{-\iota(U; T) + \iota(U; X)}, 1 \Big\} \Big],$$

where $X, Y, U, Z \sim P_X P_{Y|X} P_{U|X} \delta_{z(U,Y)}$.

Coding for Computing

Coding for computing: node 2 recovers a function f(X, T), $P_e \leq \mathbf{E}[\min\{\mathbf{1}\{d(f(X, T), Z) > D\} + L^{-1}2^{-\iota(U;T)+\iota(U;X)}, 1\}].$

ADN: Multiple Access Channel

Multiple Access Channel

- ADN: $Y_1 := M_1, Y_2 := M_2, Y_3 := Y \text{ and } X_3 := (M_1, M_2).$
- Auxiliaries: $U_1 := (X_1, M_1)$ and $U_2 := (X_2, M_2)$.
- Decoding order of node 3: " U_2 , U_1 " (i.e., decode U_1 (soft), and then U_2 (unique), and then U_1 (unique)).

Corollary (Multiple Access Channel)

Fix P_{X_1} , P_{X_2} . There exists a coding scheme for the multiple access channel $P_{Y|X_1,X_2}$ with

$$P_e \leq \textbf{E} \bigg[\min \bigg\{ \gamma L_1 L_2 2^{-\iota(X_1,X_2;Y)} + \gamma L_2 2^{-\iota(X_2;Y|X_1)} + L_1 2^{-\iota(X_1;Y|X_2)}, 1 \bigg\} \bigg],$$

where
$$\gamma := \ln(\mathsf{L}_1|\mathcal{X}_1|) + 1$$
, $(X_1, X_2, Y) \sim P_{X_1} P_{X_2} P_{Y|X_1, X_2}$.

Asymptotic region: $R_1 < I(X_1; Y|X_2), R_2 < I(X_2; Y|X_1), R_1 + R_2 < I(X_1, X_2; Y).$

Summary

Summary

- We provide a unified one-shot coding framework for communication and compression over general noisy networks.
- We design a proof technique "exponential process refinement lemma" that can keep track of a large number of auxiliary random variables.
- We provide novel one-shot results for various multi-hop settings.
- We recover existing one-shot and asymptotic results on various settings.

Future Directions

 A unified coding scheme is useful to design automated theorem proving tools, e.g., PSITIP^a. Extensions to one-shot results is left for future study.

^aLi, Cheuk Ting. "An automated theorem proving framework for information-theoretic results."IEEE Transactions on Information Theory (2023).