

SBD: Robotic Metallic Debris Collector

Yee Aung

Christian Brice

Mohammed Karim

Nam Igwe

Tyler Brown

Ying Ying Choi

Industry Advisor: Mr. Christopher Haile

Project Advisor: Dr. Linda Milor

Overview - What is it?

- What it should do:
 - Autonomous navigation
 - Obstacle avoidance
 - Metallic debris collection
 - nails, screws, staples and small scraps of metal
- How it will do it:
 - Ubiquity Robotics Magni Silver
 - built-in sensors
 - Robot Operating System (ROS)
 - Natural magnet
 - Pathfinding algorithm
- Projected Cost
 - \$7000

Motivation - Why is it needed?

- Saves time and money...
 - Two types of cleanup:
 - i. construction laborers
 - (1-3 hours of labor)
 - ii. third-party companies
 - (50 cents/sq ft)
 - Can work unsupervised
- Improves Safety...
 - Tetanus
 - Flesh wounds

Project Description - Hardware

- Magni Silver (<u>platform</u>)
- Arrays of ultrasonic sensors (<u>feedback</u>)
- Pi camera (<u>localization</u>)
- IMU (navigation)
- Magnet (manipulation)
 - Mounted on the front of the robot
 - Will be attached to a forklift

Project Description - Software

Goals and Add-Ons

Current Goals:

- Patrol the unbounded area of the worksite.
- Avoid collision and collect small metallic debris on the ground.
- Deliver the debris to a designated, static drop zone.

Extra Features:

- Detection and collection of non-ferrous metallic debris.
- Integration of Robotic arm for bigger debris collection.
- Dynamic drop zone without the need for fiducial markers.
- More robust collection routine and pattern.

Technical Specifications

Magni Silver Platform		
Feature	Technical Specification	
Payload	100kg	
Odometry	Hall sensor odometry (accurate to 2mm)	
Software	Ubuntu 16.04, ROS Kinetic + Core Magni Packages	
Computer Raspberry Pi		
Camera	Single upward facing	
Navigation	Ceiling fiducial-based navigation	
Included sensor package	Sonar array	

Technical Specifications

Forklift		
Feature Technical Specifications		
Payload	At least 20 kg	
Height off the ground for collecting debris	2 cm minimum distance off the ground	
Servo	12 V power rating	

Operational Specs		
Feature	Technical Specifications	
Bounded Area	10 meter diameter radius	
Size of Debris	Under 5 inches in length and 200 grams i weight	

Design Approach - Hardware

Modified Magni Silver controlled by Raspberry Pi3 A+:

- The RasPi runs ROS Kinetic operating system on Ubuntu 16.04.
- Responsible for controlling both 200 W hub motors, with course-correction via Hall sensors and onboard sonar.
 - Cheap, spinning lidar sensor on loan from SBD.
 - SLAM packages available for Magni Silver (ROS).
- Can output 5V or 12V DC power at 7A for peripherals not included in the package (i.e. IMU, metal detector).
- Collection system will consist of natural magnet attached to a solenoid with a thin, plastic sheet under the magnet.

Design Approach - Software

ROS (Robot Operating System):

- Infrastructure nodes control hardware.
- Capability nodes deal with data (i.e. sonar).
- Action nodes run algorithms.

Plan:

- Roomba-like random walk algorithm is most efficient (with smallest development time). Enhanced with odometry, IMU.
 - Robot will navigate max. 10m away from start for demo.
- Obstacle avoidance via sonar suite and possibly Pi camera.
- Returns debris to start (i.e. drop zone) by following odometry or via SLAM algorithm.
- Unbounded area consider geofencing, lidar, or SLAM.

Codes and Standards

- C++ and Python programming standards (set by ISO/IEC 14882:2017 and PEP 8, respectively).
 - Ubuntu Linux is built upon C++ and Python.
- Raspberry Pi3 A+ with ARM A9 core uses <u>ARMv7-</u> <u>A microarchitecture</u>.

(NOTE: ROS is not an OS – it is middleware – thus it does not have specific codes or standards associated with it.)

Alternatives and Tradeoffs

Navigation:

- Hall Sensor Odometry least accurate, but can chart the path of the robot since start.
- <u>Ceiling Fiducial Markers</u> recognition algorithms widely available, but many, markers needed for accuracy.
 - DECISION: use both! Odometry to keep precise track of current location, and ceiling markers to correct errors.

Obstacle Avoidance:

- Sonar familiarity, limited field-of-view, slower (sound).
- <u>Lidar (SLAM)</u> 360 degree field-of-view, much faster (light). Provided test unit is cheap and buggy, however.
 - DECISION: test Lidar unit, but build algorithm based on Sonar just in case.

Tasks and Schedule

We have divided our team into two sub-team:

1. Hardware team:

Yee Aung (leader), Christian Brice, Nam Igwe

1. Software Team:

Tyler Brown(leader), mohammad karim, Ying Ying Choi.

Following Table contains a list of all of the tasks and corresponding leader. The goal of this project is to finish the design portion before March 2019 and then conduct hardware tests and software debugging throughout March and April (until April 20th).

Schedule Table

Tasks

Name	Begin date	End date
Hardware	11/5/18	3/4/19
Tasks dealing with the hardware of the robot.		
Deciding on Hardware Examining specific hardware components for the harware element of the design.	11/5/18	11/19/18
Research BeagleBone Christian	11/5/18	11/19/18
Research Sensors, Motors, Batteries and IMUs Looking at different operating voltages. Nam	11/5/18	11/19/18
Research Robotic Arms Integrating the robotic arm with an electromagnet. Specifications for the arm. Yee	11/5/18	11/19/18
Prototype Test Platform Using rudimentary hardware.	11/20/18	12/4/18
Assembling the Robot Putting together all the pieces.	11/20/18	12/4/18
Secure Hardware Funding	1/7/19	1/11/19
Ordering Parts Order the parts we need.	1/14/19	1/18/19
Testing Ordered Parts	2/14/19	2/18/19
-Yee: test the robotic arm and electromagnet -Nam: test different motors speed, battery stress test, sensors inputs/outputs -Christian: more stress test on microcontroller		
Building the Platform	2/19/19	3/4/19
3D Printing Peripheral Mounts	2/19/19	2/22/19
Integrating Peripherals	2/25/19	3/4/19
Software	12/5/18	3/5/19
Prototype Pathfinding Algorithms Writing the algorithms to patrol the area.	12/5/18	12/13/18
Configuring Hardware APIs	1/21/19	2/4/19
Refining Pathfinding Algorithm	1/14/19	1/28/19
Debris Detection and Collection Algorithm Development	2/19/19	3/5/19
Delivery Algorithm Development	1/29/19	2/11/19

Tasks

Name	Begin date	End date
	5.0.000	
Project Proposal Paper	11/20/18	12/5/18
Trial Demo/Experimenting	3/6/19	4/1/19
· · · · · · · · · · · · · · · · · · ·		
Pathfinding/Navigation Debugging	3/6/19	3/13/19
Metallic Debris Detection Debugging	3/12/19	3/19/19
Pick Up/Drop Off Debugging	3/20/19	4/1/19

Task Distribution and Level of Importance

Task	Task Lead	Other Members	Importance
Secure Hardware Funding	СВ	YA, MK, NI	Medium
Ordering Parts	YA	MK, CB	Medium
Testing Ordered Parts	NI	CB, MK, YA	Low
Prototyping Path Finding Algorithm	ТВ	YC, MK	Medium
Configuring API	MK	TB, YC, CB	Medium
Refining Pathfinding Algorithm	ТВ	MK, YC	Medium
Debris Detection and Collection Algorithm Development	YC	MK, TB	Medium
Collision Detection and Avoidance Algorithm	MK	TB, YC	Medium
Delivery Algorithm Development	СВ	MK, YC, TB, YA, NI	High
Project Proposal Paper	СВ	YA, MK, TB, YC, NI	Medium
Trial Demo/Experiment/Debugging	СВ	MK, TB, YC, YA, NI	High

Project Demonstration

- Demo Details:
 - Indoors.
 - Smooth and even terrain.
 - Area will be randomly littered with metallic debris.
 - 10m radius around the start position
 - Artificial obstacles within the 10 meter radius.
 - Fiducial markers will be place strategically on the ceiling to help the robot navigate back to the drop off area.
 - The robot collection algorithm will be initiated at a predetermined spot with the internal timer set to three minutes.

Project Demonstration Goals

- Successful completion of the demo:
 - Robot navigated through the area autonomously...
 - avoided obstacles
 - successfully collected 80% of the metallic debris
 - was able to navigate to drop off location
 - was able to dump the metallic debris at the drop-off location
- Extra features that can be tested:
 - Relocating the drop off location halfway through the demo.
 - People moving through the demo area.
 - Collection of larger metallic debris and non-ferrous metallic objects.

Market Analysis

- Main competition: hiring a cleaning company to clean the construction site.
- One-time payments vs. reusability.
 - More cost-effective to use a robot if multiple sites need to be cleaned or a site is cleaned multiple times.

Cost to Clean a Construction Site			
National Average	Typical Range	Low End	High end
\$442	\$275 - 656	\$150	\$1000

Cost Analysis

Expense of Income Component	Amount	
Parts Cost	\$2,233.92	
Assembly Cost	\$20.00	
Testing Labor	\$10.00	
Fringe Benefits	\$9.00	
Subtotal	\$2,272.92	
Overhead	\$2,727.50	
Input Costs Subtotal	\$5,000.42	
Sales Expense	\$500.04	
Amortized Development Costs	\$50.00	
Subtotal, All Costs	\$5,550.46	
Profit	\$1,449.54	
Selling Price (Per Unit)	\$7,000.00	
Development Costs	\$85,083.09	

Current Status

- We have the following:
 - Magni Silver robotic platform, sonar suite (included with the platform), spinning lidar.
- Plan to talk to ECE "parts guy" to check his stockpile (magnet, metal and plastic sheets, motors for the lift mechanism).
 - If not, we will fill out an order sheet ASAP.

