Performance metrics

Technology convergence

Originally:

- Telephone networks for telephone calls
- Internet for file transfer & email
- Cable TV networks for broadcast video
- Cell phone networks for telephone calls

Now:

- telephone networks: telephone + Internet + video
- cable networks: video + Internet + telephone
- cellular networks: telephone + Internet + video

Convergence:

- email, web browsing, streaming, telephone calls, video chat, gaming, ...
- over all networks

Technology convergence

Different applications may have different Quality of Service (QoS) constraints

Packet Switching Performance metrics

End-to-end performance:

- Multi-hop
- Link (capacity, physical length, etc.)
- Node (processing speed, buffer)
- Topology
- Active end hosts

Packet Switching Performance metrics

- Packet Delay
- Packet Loss
- Throughput
- (Efficiency)

Performance metrics are interdependent

e.g.: no delay constraint = packet loss probability close to zero

Delay (node)

Kurose fig. 1.16

Processing delay

Defined by the hardware

Propagation delay

Propagation delay = distance / propagation speed

Example:

Packet = 512B (B = byte, b = bit)

Hop = 100 km

Transmission rate = 10Mbps

Propagation delay

 $= 100 \text{ km} / (3 * 10^8 \text{ m/s})$

 $= 333 \mu sec$

Transmission delay

distance

first bit transmitted

packet transmission delay

last bit transmitted

Packet transmission delay = packet size / transmission rate

Example:

Packet = 512B (B = byte, b = bit)

Hop = 100 km

Transmission rate = 10Mbps

Transmission delay

 $= (512B)(8b/B) / (10^7 bps)$

 $= (512*8)/(10^7) s$

 $= 4.096 * 10^{-4} s$

 $= 409.6 \mu sec$

time

Delay (node)

Kurose fig. 1.16

Congestion

demand in bits per second

Arrivals to a queue

Leon-Garcia fig. A.2

Arrivals and Departures

Queue Delay

Leon-Garcia fig. A.3

Network of queues

Leon-Garcia fig. A.5

Multiple hops

Queue

Leon-Garcia fig. A.1

Delay

What is the difference between the queue delay and the processing, transmission and propagation delay?

Queue delay is random

Processing, transmission and propagation delay are deterministic

Packet Loss

Throughput: fluid model

Throughput

- Throughput = bits per second, calculated over a time window of many seconds
- What throughput will the user see in this web page download?
 - $Min(R_s, R_c)$

Throughput

- What is the throughput on a single connection?
 - $Min(R_s, R/3, R_c)$

Kurose fig. 1.20

Efficiency

Data successfully delivered to the destination

Overall resource used

Includes overhead, idle time/frequency, lost packets, etc.

Resource sharing!