Lab 11a: Code Forensics and Ransomware

The code objectives of this part of the lab are to:

- Understand the lack of protection that .NET and Java have with code protection.
- Investigate methods of obfuscation of code.
- Create Microsoft .NET code in order to investigate a host.
- Analyse a ransomware evidence bag.

Lab demo:

1 http://www.youtube.com/watch?v=x1jhSIo-GoI

Microsoft .NET Obfuscation

A.1 Microsoft .NET does not have inherent protection against the reverse engineering of the code. To prove this, first create a C# program named **simple.cs**, with the contents of:

```
namespace simple {
   class simple {
     private static void Main(string[] args) {
        string s;
        System.Console.Write("What is your name?");
        s = System.Console.ReadLine();
        System.Console.WriteLine("Hello " + s);
    }
}
```

A.2 Compile the program, and program and make sure that it works. From the command prompt you can compile it with:

```
csc simple.cs
```

Note: To compile a .NET 2.0 program, you can access the compiler from:

c:\windows\Microsoft.NET\Framework\v2.0.50727\csc.exe

- **A.3** Next download the reverse engineering package from:
 - http://asecuritysite.com/exemplar.zip

and prove that you can reverse the code using:

```
exemplar simple.exe > mycode.cs
```

A.4 Next run the obfuscator (from 9Rays) with:

```
ob.exe FTBSNM4ALPERC9# /src=simple.exe
```

The obfuscator is downloaded from:

http://asecuritysite.com/ob.zip

A.5 Go into the /obfuscated folder, and copy the obfuscated EXE into the home folder. Show that the EXE is now obfuscated.

What has changed in the obfuscated EXE?

Is it still possible to compile the reverse engineered code? Yes/No

Using Google, which packages can be used to obfuscate .NET assemblies?

Which options in the obfuscator changes the names of the variables to non-printing characters?

Create the following C# file and compile it to an EXE:

```
using System;
namespace simple {
class simple {
public static int calc(int a, int b)
        return(a+b);
}
private static void Main(string[] args) {
string s;
        s="What is the capital of England";
        int val1=5;
        int val2=6;
        System.Console.Write(s);
        s = System.Console.ReadLine();
        if (s=="London")
        {
                System.Console.WriteLine("Correct");
        else
                System.Console.WriteLine("Incorrect");
        System.Console.WriteLine("Result is: "+Convert.ToString(calc(val1,val2)));
        }
 }
}
```

Now download ILSPY from:

http://ilspy.net/

```
Can you view your EXE in ILSPY?

Now obfuscated your EXE with the following options and observe the changes in ILSPY:
ob.exe NT /src=simple.exe

ob.exe 9 /src=simple.exe

ob.exe 8 /src=simple.exe
```

Java Reverse Engineering

A.6 Create a Java program (sample.java) with:

```
public class sample
{
   public static void main(String[] args)
   {
      int i;
      i=10;
      System.out.println("This is an example of the ");
      System.out.println("output from the standalone");
      System.out.println("program");
      System.out.println("The value of i is " + i);
   }
}
```

A.7 Next produce the byte code with:

```
javac sample.java
```

If your system does not find the Java compiler you can normally run from a folder on your system, such as:

C:\Program Files (x86)\Java\jdk1.7.0_71\bin\javac.exe

A.8 Finally download JAD, and try and decompile the byte code. Prove that you can reverse the code. The download for JAD is at:

http://asecuritysite.com/jad.zip

Using Google, which packages can be used to obfuscate Java class files?

Ransomware Analysis

The following page contains an evidence bag for the Cerber ransomware. Complete the tutorial:

https://asecuritysite.com/subjects/chapter87

Additional Python Lab

We normally detect a file with its magic number, which is often the first few bytes at the start of the file, or at the end. For example, a JPEG file begins with the hex sequence of 'FF' and 'D8'. The following is the Python code to determine a JPEG file:

Table 1 outlines some magic number (refer to http://asecuritysite.com/forensics/magic). Implement a Python program which detects file types for their magic numbers.

Table 1: Magic numbers

Description	Extension	Magic Number
Adobe Illustrator	.ai	25 50 44 46 [%PDF]
Bitmap graphic	.bmp	42 4D [BM]
JPEG graphic file	.jpg	FFD8
JPEG 2000 graphic file	.jp2	0000000C6A5020200D0A [jP]
GIF graphic file	.gif	47 49 46 38 [GIF89]
TIF graphic file	.tif	49 49 [II]
PNG graphic file	.png	89 50 4E 47 .PNG
Photoshop Graphics	.psd	38 42 50 53 [8BPS]
Windows Meta File	.wmf	D7 CD C6 9A
MIDI file	.mid	4D 54 68 64 [MThd]
Icon file	.ico	00 00 01 00
MP3 file with ID3 identity tag	.mp3	49 44 33 [ID3]
AVI video file	.avi	52 49 46 46 [RIFF]
Flash Shockwave	.swf	46 57 53 [FWS]
Flash Video	.flv	46 4C 56 [FLV]
Mpeg 4 video file	.mp4	00 00 00 18 66 74 79 70 6D 70 34 32 [ftypmp42]
MOV video file	.mov	6D 6F 6F 76 [moov]

Windows Video file	.wmv	30 26 B2 75 8E 66 CF	
Windows Audio file	.wma	30 26 B2 75 8E 66 CF	
PKZip	.zip	50 4B 03 04 [PK]	
GZip	.gz	<u>1F 8B 08</u>	
Tar file	.tar	75 73 74 61 72	
Microsoft Installer	.msi	<u>D0 CF 11 E0 A1 B1 1A E1</u>	
Object Code File	.obj	<u>4C 01</u>	
Dynamic Library	.dll	4D 5A [MZ]	
CAB Installer file	.cab	4D 53 43 46 [MSCF]	
Executable file	.exe	4D 5A [MZ]	
RAR file	.rar	52 61 72 21 1A 07 00 [Rar!]	
SYS file	.sys	4D 5A [MZ]	
Help file	.hlp	3F 5F 03 00 [?]	
VMWare Disk file	.vmdk	4B 44 4D 56 [KDMV]	
Outlook Post Office file	.pst	21 42 44 4E 42 [!BDNB]	
PDF Document	.pdf	25 50 44 46 [%PDF]	
Word Document	.doc	D0 CF 11 E0 A1 B1 1A E1	
RTF Document	.rtf	7B 5C 72 74 66 31 [{ tf1]	
Excel Document	.xls	D0 CF 11 E0 A1 B1 1A E1	
PowerPoint Document	.ppt	D0 CF 11 E0 A1 B1 1A E1	
Visio Document	.vsd	D0 CF 11 E0 A1 B1 1A E1	
DOCX (Office 2010)	.docx	50 4B 03 04 [PK]	
XLSX (Office 2010)	.xlsx	50 4B 03 04 [PK]	
PPTX (Office 2010)	.pptx	50 4B 03 04 [PK]	
Microsoft Database	.mdb	53 74 61 6E 64 61 72 64 20 4A 65 74	
Postcript File	.ps	25 21 [%!]	
Jar File	.jar	50 4B 03 04 14 00 08 00 08 00	

There are more than 30 files contained in this evidence bag:

http://asecuritysite.com/evidence.zip

Now, using your Python program, see if you can match the magic number, and then change the file extension, and see if you can view them.

File	Туре	What it contains	
file01			
file02			
file03			
file04			
file05			
file06			

file07	
file08	
file09	
file10	
file11	
file12	
file13	
file14	
file15	
file16	
file17	
file18	
file19	
file20	
file21	
file22	
file23	
file24	
file25	
file26	
file27	
file28	
file29	
file30	
file32	
file33	

file34	
file35	
file36	
file37	
file38	
file39	
file40	

Lab 11b: Tunnelling

One of the most challenging areas within detecting a security breach is in tunneling. In this lab we will see some of the challenges.

First setup your firewall and hosts for Group A:

http://asecuritysite.com/csn11128/nets

Video: https://youtu.be/a-gFpW78IQE

1 Viewing details

No	Description	Result
1	Go to your Kali Linux instance on the DMZ. Run Wireshark and capture traffic from your network connection. Start a Web	Your IP address and TCP port:
	browser, and go to www.napier.ac.uk.	Napier's Web server IP address and TCP port:
	Stop Wireshark and identify some of your connection details:	Right-click on the GET HTTP request from the client, and follow the stream:
		What does the red and blue text identify?
		Can you read the HTTP requests that go from the client to the server? [Yes][No]
2	Go to your Windows 2003 instance on the DMZ. Run Wireshark and capture traffic from your network connection. Start a Web	Your IP address and TCP port:
	browser, and go to www.napier.ac.uk.	Napier's Web server IP address and TCP port:
	Stop Wireshark and identify some of your connection details:	Right-click on the GET HTTP request from the client, and follow the stream:

		What does the red and blue text identify? Can you read the HTTP requests that go from the client to the server? [Yes][No]
3	Go to your Kali Linux instance. Run Wireshark and capture traffic from your network connection. Start a Web browser, and go to Google.com. Stop Wireshark and identify some of your connection details:	Your IP address and TCP port: Google's Web server IP address and TCP port: Which SSL/TLS version is used: By examining the Wireshark trace, which encryption method is used for the tunnel: By examining the Wireshark trace, which hash method is used for the tunnel: By examining the Wireshark trace, what is the length of the encryption key: By examining the certificate from the browser which encryption method is used for the tunnel: By examining the certificate from the browser, which hash method is used for the tunnel: By examining the certificate from the browser is the length of the encryption key:

Go to your Windows 2003 instance. Run Wireshark and capture	
traffic from your network connection. Start a Web browser, and go to https://twitter.com.	Your IP address and TCP port:
Stop Wireshark and identify some of your connection details:	Twitter's Web server IP address and TCP port:
	Which SSL/TLS version is used:
	By examining the Wireshark trace, which encryption method is used for the tunnel:
	By examining the Wireshark trace, which hash method is used fo the tunnel:
	By examining the Wireshark trace, what is the length of the encryption key:
	By examining the certificate from the browser which encryption method is used for the tunnel:
	By examining the certificate from the browser, which hash method is used for the tunnel:
	By examining the certificate from the browser is the length of the encryption key:

2 OpenSSL

ised:
or the tunnel:
tunnel:
ı key:
tificate:
ised:
or the tunnel:
tunnel:
ı key:
1 1

Determine the following for these sites:

Site	Protocol	Encryption type	Enc key length	Hash method	Public key size	Cert Issuer
[Intel]	TLSv1	RC4	128-bít	SHA-1	2,048	Cyber Trust
[Adobe]						
[Symantec]						
[Reddit]						
[Wordpress]						
[LinkedIn]						
[Yahoo]						
[Wikipedia]						
[Barclays]						
[Asecuritysite.com]						

Crypto tunnel assessment

You have been asked to be a consultant for the assessment of a range of sites. First download the Crypto tool from:

https://it4kb.wordpress.com/2014/06/11/iis-crypto/

Then scan the following sites using the Qualys SSL Lab URL test:

Site	Crypto methods used and weaknesses identified	Grade (A, B, C)
google.com		
Microsoft.com		
asecuritysite.com		

What advice would you give each of these companies for the setup of their site?

3 Installing HTTPS and Heartbleed

No	Description	Result
1	Go to your Kali Linux instance. Setup a secure Web server using the commands: sudo apt-get install apache2 sudo a2enmod ssl sudo a2ensite default-ssl	Which OpenSSL is used on your Kali instance: Can you connect from Kali to your local host with: https://localhost
	sudo openssl req -new -x509 -days 365 -sha1 -newkey rsa:1024 -nodes -keyout server.key -out server.crt sudo /etc/init.d/apache2 restart	Can you connect to your Kali instance from a Web browser on Windows 2003:

		https://10.200.0.x
		[Yes][No]
2	On Kali, now download the following Python script to detect Heartbleed:	Is your server vulnerable?
	http://asecuritysite.com/heart.zip	
	Test your server with:	
	python heart.py 192.168.x.x	
3	On Wireshark, now repeat 2, and capture data packets.	Which SSL/TLS method has been used:
		Which encryption method is used for the tunnel:
		Which hash method is used for the tunnel:
		What is the length of the encryption key:
		Can you spot the packet which identifies the Heartbleed vulnerability?
		Hint: Look for tcp matches "\x18\x03"

4	Examine the Python script.	Can you identify the place where the Python scripts crafts the Heartbleed packet (Look for "18 03 01 00 03 01 40 00")? What does the "40 00" identify and by looking at the packets in the previous step, can you determine what is missing from the Heartbleed packet:
4	Now we will use Snort to detect a Heartbleed packet. On Windows 2003, create a Snort use which detects 18, 03, 02 and 00: alert tcp any any -> any 443 (msg:"Heartbeat request"; content:" 18 03 02 00 "; rawbytes;sid:100000)	Does Snort detect the Heartbleed packet: [Yes][No]

4 Examining traces

No	Description	Result
1	Download the following file, and examine the trace with Wireshark:	Client IP address and TCP port:
	http://asecuritysite.com/log/ssl.zip	Web server IP address and TCP port:
		Which SSL/TLS method has been used:
		Which encryption method is used for the tunnel:
		Which hash method is used for the tunnel:
		What is the length of the encryption key:
2	Download the following file, and examine the trace with Wireshark:	Client IP address and TCP port:
	http://asecuritysite.com/log/heart.zip	Web server IP address and TCP port:
		Which SSL/TLS method has been used:
		Which encryption method is used for the tunnel:
		Which hash method is used for the tunnel:
		What is the length of the encryption key:
		Can you spot the packet which identifies the Heartbleed vulnerability?

3	Download the following file, and examine the trace with Wireshark:	Which is the IP address of the client and of the server:
	http://asecuritysite.com/log/ipsec.zip	Which packet number identifies the start of the VPN connection (Hint: look for UDP Port 500):
		Determine one of the encryption and hashing methods that the client wants to use:
		Now determine the encryption and hashing methods that are agreed in the ISAKMP: