Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

Out[1]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	Scho	
0	0	Paul Bradley	М	9th	Huang High School	66	79		
1	1	Victor Smith	M	12th	Huang High School	94	61		
2	2	Kevin Rodriguez	M	12th	Huang High School	90	60		
3	3	Dr. Richard Scott	M	12th	Huang High School	67	58		
4	4	Bonnie Ray	F	9th	Huang High School	97	84		
39165	39165	Donna Howard	F	12th	Thomas High School	99	90		
39166	39166	Dawn Bell	F	10th	Thomas High School	95	70		
39167	39167	Rebecca Tanner	F	9th	Thomas High School	73	84		
39168	39168	Desiree Kidd	F	10th	Thomas High School	99	90		
39169	39169	Carolyn Jackson	F	11th	Thomas High School	95	75		
39170 rows × 11 columns									
4								•	

District Summary

- Calculate the total number of schools
- Calculate the total number of students
- Calculate the total budget
- · Calculate the average math score
- · Calculate the average reading score
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Calculate the percentage of students who passed math and reading (% Overall Passing)
- Create a dataframe to hold the above results
- · Optional: give the displayed data cleaner formatting

```
In [2]:
            # Get unique school names and count of that by using len() function
            total schools = len(school_data_complete["School ID"].unique())
            # Get total Number of students by applying count() function on student id
            total students = len(school data complete["Student ID"].unique())
            # Total budget : Get the total budget by using sum() function on Budget
            total budget = school data["budget"].sum()
            # Get Avg Scores by using mean function
            avg math score = school data complete["math score"].mean()
            avg_reading_score = school_data_complete["reading_score"].mean()
            # Calculating percentage of students with a passing math score (70 or greater
            stu_math_passing_count = school_data_complete.loc[school_data_complete["math_
            stu_math_pass_percent = (stu_math_passing_count / total_students) * 100
            # Calculating percentage of students with a passing reading score (70 or grea
            stu_reading_passing_count = school_data_complete.loc[school_data_complete["re
            stu_reading_pass_percent = (stu_reading_passing_count / total_students) * 100
            # Calculating the percentage of students who passed math and reading (% Overa
            overall passing count = school data complete.loc[(school data complete["math
            overall_passing_percent = (overall_passing_count/total_students)*100
            # Create a summary data frame with obtained values
            district summary df = pd.DataFrame({"Total Schools" : [total schools],
                                                 "Total Students" : [total_students],
                                                "Total Budget" : [total budget],
                                                 "Average Math Score" : [avg math score],
                                                "Average Reading Score" : [avg_reading_sc
                                                "% Passing Math" : [stu math pass percent
                                                "% Passing Reading" : [stu_reading_pass_p
                                                "% Overall Passing" : [overall passing pe
                                               })
            # Formating of columns
            district_summary_df["Total Students"] = district_summary_df["Total Students"]
            district_summary_df["Total Budget"] = district_summary df["Total Budget"].mar
            # Display Data Frame
            district summary df
```

Out[2]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
0	15	39.170	\$24.649.428	78.985371	81.87784	74.980853	85.805463	65.172326

School Summary

Create an overview table that summarizes key metrics about each school, including:

- School Name
- School Type
- Total Students
- Total School Budget
- Per Student Budget
- Average Math Score
- Average Reading Score
- % Passing Math
- % Passing Reading
- % Overall Passing (The percentage of students that passed math **and** reading.)
- Create a dataframe to hold the above results

```
In [3]:
            # Groupby Object by School Name
            grouped_school = school_data_complete.groupby("school_name")
            # Get the school type by school name from original DF
            school_type = school_data.set_index("school_name")["type"]
            # Get the total students on grouped by school
            sch_total_student = grouped_school["Student ID"].count()
            # Get the budget by school name from original DF
            school_budget = school_data.set_index("school_name")["budget"]
            # Calculating per student budget
            sch_per_stu_budget = school_budget / sch_total_student
            # Calculating Average math & reading score
            sch_avg_math_score = grouped_school["math_score"].mean()
            sch_avg_read_score = grouped_school["reading_score"].mean()
            # Calculating % passing math by school
            math_pass_sch_count = school_data_complete.loc[school_data_complete["math_scd"]
            sch_math_pass_percent = math_pass_sch_count / sch_total_student * 100
            # Calculating % passing reading by school
            read_pass_sch_count = school_data_complete.loc[school_data_complete["reading_
            sch_read_pass_percent = read_pass_sch_count / sch_total_student * 100
            # Calculating overall % passing
            sch overall passing count = school data complete.loc[(school data complete["m
            sch_overall_pass_percent = sch_overall_passing_count / sch_total_student * 1@
            # Create a data frame with values obtained above
            school_summary_df = pd.DataFrame({"School Type" : school_type,
                                               "Total Students" : sch total student,
                                               "Total School Budget" : school_budget,
                                               "Per Student Budget" : sch per stu budget,
                                               "Average Math Score" : sch_avg_math_score,
                                               "Average Reading Score" : sch_avg_read_scor
                                               "% Passing Math" : sch_math_pass_percent,
                                               "% Passing Reading" : sch read pass percent
                                               "% Overall Passing" : sch_overall_pass_perc
                                             })
            # Formating the columns
            school_summary_df["Total School Budget"] = school_summary_df["Total School Bu
            school_summary_df["Per Student Budget"] = school_summary_df["Per Student Budg
            # Display data frame
            school_summary_df
```

Out[3]:

Per Average Average School Total Total School Student Math Reading Passing Passi Type Students Budget Budget Score Score Math Readi

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	Passi Readi
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064	81.9332
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.0398
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.7392
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.2990
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.1389
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.8629
Holden High School	Charter	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855	96.2529
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.3164
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.2224
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.9459
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.2200
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121	95.8546
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.3088
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.5396
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333	96.611 ⁻
4								

Top Performing Schools (By % Overall Passing)

• Sort and display the top five performing schools by % overall passing.

```
In [4]: # Sory the above summary DF by % Overall Passing in descending order
school_summary_df = school_summary_df.sort_values(by = "% Overall Passing" ,

# Displaye top 5 records of sorted data frame
school_summary_df.head()
```

Out[4]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946
4								>

Bottom Performing Schools (By % Overall Passing)

• Sort and display the five worst-performing schools by % overall passing.

```
In [5]: # Sory the above summary DF by % Overall Passing in ascending order
school_summary_df = school_summary_df.sort_values(by = "% Overall Passing" ,
# Displaye top 5 records of sorted data frame
school_summary_df.head()
```

Out[5]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	Passi Readi
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.2200
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.7392
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.3164
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.8629
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.2224

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

Out[6]:

	9th	10th	11th	12th
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

Perform the same operations as above for reading scores

Out[7]:

	9th	10th	11th	12th
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score

- % Passing Math
- % Passing Reading
- Overall Passing Rate (Average of the above two)

```
In [8]:
         ▶ #Get the Min & Max budget per student
            min_budget = school_summary_df["Per Student Budget"].min()
            max_budget = school_summary_df["Per Student Budget"].max()
            min budget, max budget
   Out[8]: ('$578.00', '$655.00')
In [9]:
            # Convert the values to Int.
            #If data type is not changed then will get an error of operation is not suppo
            school_summary_df["Per Student Budget"] = school_summary_df["Per Student Budget"]
            school_summary_df["Per Student Budget"] = pd.to_numeric(school_summary_df["Pe
            school_summary_df["Average Math Score"] = pd.to_numeric(school_summary_df["Av
            school_summary_df["Average Reading Score"] = pd.to_numeric(school_summary_df[
            # Create bins and labels
            bins = [0, 584, 629, 644, 675]
            budget_labels = ["<$585", "$585-629", "$630-644", "$645-675"]
            # Categorized schools as per sudent budget bns & add a column as Spending Ran
            school summary df["Spending Ranges(Per Student)"] = pd.cut(school summary df[
            #Display a dataframe
            school summary df.head()
```

Out[9]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	Passi Readi
Rodriguez High School	District	3999	\$2,547,363.00	637.0	76.842711	80.744686	66.366592	80.2200
Figueroa High School	District	2949	\$1,884,411.00	639.0	76.711767	81.158020	65.988471	80.7392
Huang High School	District	2917	\$1,910,635.00	655.0	76.629414	81.182722	65.683922	81.3164
Hernandez High School	District	4635	\$3,022,020.00	652.0	77.289752	80.934412	66.752967	80.8629
Johnson High School	District	4761	\$3,094,650.00	650.0	77.072464	80.966394	66.057551	81.2224

```
In [10]:
             # Create groupby object based upon spending ranges
             spending range grouped = school summary df.groupby("Spending Ranges(Per Stude
             # Calculating average of Math, reading score & % math, reading, overall passi
             spending_range_avg_math = spending_range_grouped["Average Math Score"].mean()
             spending_range_avg_read = spending_range_grouped["Average Reading Score"].med
             spending_math_percent = spending_range_grouped["% Passing Math"].mean()
             spending read percent = spending range grouped["% Passing Reading"].mean()
             spending_overall_passing = spending_range_grouped["% Overall Passing"].mean()
             # Create data frame from values obtained above
             spending_summary_df = pd.DataFrame({"Average Math Score" : spending_range_ave
                                                  "Average Reading Score" : spending_range_
                                                  "% Passing Math" : spending_math_percent,
                                                 "% Passing Reading" : spending read perce
                                                 "% Overall Passing" : spending_overall_pa
                                                })
             # Format Data Frame
             spending summary df["Average Math Score"] = spending summary df["Average Math
             spending_summary_df["Average Reading Score"] = spending_summary_df["Average R
             spending_summary_df["% Passing Math"] = spending_summary_df["% Passing Math"]
             spending summary df["% Passing Reading"] = spending summary df["% Passing Rea
             spending_summary_df["% Overall Passing"] = spending_summary_df["% Overall Pas
             # Display Data Frame
             spending summary df
```

Out[10]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
Spending Ranges(Per Student)					
<\$585	83.46	83.93	93.46	96.61	90.37
\$585-629	81.90	83.16	87.13	92.72	81.42
\$630-644	78.52	81.62	73.48	84.39	62.86
\$645-675	77.00	81.03	66.16	81.13	53.53

Scores by School Size

Perform the same operations as above, based on school size.

```
In [11]:
             # Create bins and labels
             stu count bins = [0, 999, 1999, 5000]
             stu bin label = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]</pre>
             # Categorized schools as per total student count (size) & add a column as Sch
             school_summary_df["School Size"] = pd.cut(school_summary_df["Total Students"]
             # Create a groupby object on School Size
             school_size_grouped = school_summary_df.groupby("School Size")
             # Calculating average of Math, reading score & % math, reading, overall passi
             size_avg_math = school_size_grouped["Average Math Score"].mean()
             size_avg_read = school_size_grouped["Average Reading Score"].mean()
             size_math_percent = school_size_grouped["% Passing Math"].mean()
             size_read_percent = school_size_grouped["% Passing Reading"].mean()
             size_overall_passing = school_size_grouped["% Overall Passing"].mean()
             # Create data frame with values obtained above
             size_score_df = pd.DataFrame({"Average Math Score" : size_avg_math,
                                            "Average Reading Score" : size avg read,
                                            "% Passing Math" : size_math_percent,
                                            "% Passing Reading" : size_read_percent,
                                            "% Overall Passing" : size overall passing})
             size_score_df
```

Out[11]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Size					
Small (<1000)	83.821598	83.929843	93.550225	96.099437	89.883853
Medium (1000- 2000)	83.374684	83.864438	93.599695	96.790680	90.621535
Large (2000- 5000)	77.746417	81.344493	69.963361	82.766634	58.286003

Scores by School Type

• Perform the same operations as above, based on school type

Out[12]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Type					
Charter	83.473852	83.896421	93.620830	96.586489	90.432244
District	76.956733	80.966636	66.548453	80.799062	53.672208