

Mikroprocesszorok működése

Megszakítás

A processzorok hatékony működése érdekében szükség lehet olyan programrészletek indítására melyeket előre nemlátható időpillanatban (általában valamilyen külső esemény bekövetkezésekor) kell végrehajtani. Éppen a program indítási pillanatának előre meghatározhatatlan volta indokolja, hogy a processzornak rendelkeznie kell váratlan események beköveztét jelző bemenettel. Ez (vagy ezek) a bemenet (vagy bemenetek) a megszakítás (ok).

A megszakítás azt jelenti, hogy a processzor felfüggeszti az éppen végrehajtás alatt álló tevékenységét és a megszakításhoz hozzárendelt feladatot kezdi végrehajtani. Mikor ezt a soron kívüli feladatot befejezte, folytatja az előzőleg felfüggesztett tevékenységét. Ezt a mechanizmust nevezzük megszakításkiszolgálásnak.

Példa a számítógép megszakítására:

Billentyű kiszolgálás. A processzor folyamatosan dolgozik és idejét nem kötjük le a billentyűzet rendszeres lekérdezésével. Mivel a billentyűzetet a felhasználó előre meg nem jósolható időben használja a leghatékonyabb billentyűkezelést megszakítással lehet megvalósítani. Amikor leütünk egy billentyűt, az eszköz megszakítási jelet küld a processzornak, ami ennek hatására felfüggeszti eredeti tevékenységét és kiolvassa a billentyű által küldött üzenetet (leütött billentyű kódját) majd visszatér az eredeti program végrehajtásához.

Megszakítás

A megszakítás kiszolgálásának menetét a jobb oldali ábra szemlélteti.

Az utasításokat (- szimbólum) a processzor szekvenciálisan (egymást követően) hajtja végre.

Az első megszakítás az éppen "aktuális utasítás" végrehajtása idején érkezik.

- A processzor befejezi az utasítás végrehajtását.
- Elmenti a programszámláló értékét.
- Beállítja a programszámlálót a megszakítás kiszolgáló program első utasítására.
- Elkezdi végrehajtani a kiszolgáló programot.
- A program végén visszaállítja az elmentett programszámláló értékét ami most a főprogram soron következő utasításra mutat.
- Folytatja a főprogramot.

A szaggatott vonallal jelzett vezérlésátadási folyamat egy későbbi időpontban bekövetkezett megszakítás kiszolgálását szemlélteti. Fontos észrevenni, hogy ugyanannak a megszakítást kiszolgáló programnak az utolsó utasításának hatására most máshova tér vissza a vezérlés!

Megszakítás

A megszakításokból történő visszatéréshez a processzornak el kell mentenie az aktuális programszámláló értékét.

A leggyakrabban alkalmazott megoldás a veremtár melyet már az első processzorok is tartalmaztak.

Az ábrán az Intel 4004-es (az első kereskedelmi forgalomba hozott mikrochipbe integrált processzor) processzorának blokkvázlatán jól látható a 3 elemű veremtár.

A veremtár természetesen egyéb, átmeneti adattárolásra is alkalmas, de a megszakítások visszatérési címének tárolását a mai napig így oldják meg a processzorok.

Megszakítási szintek

A megszakítások esetében felmerülő kérdés, hogy az éppen megszakítást kiszolgáló processzor újra megszakítható-e.

Amennyiben a megszakítás kiszolgálása során újabb megszakítás nem lehetséges, gondoskodni kell a megszakítás kiszolgálásának megkezdése előtt a megszakítás tiltásáról majd a kiszolgálás végeztével a megszakítás újbóli engedélyezéséről.

Amennyiben a megszakítás kiszolgálása során újabb megszakítás kiszolgálás is lehetséges, gondoskodni kell a több visszatérési pont tárolásáról, azaz a veremtár megfelelő méretéről.

Egy szintű megszakítás

Az egy szintű megaszakítás esetén számolni kell azzal, hogy a megszakítás kiszolgálásának ideje alatt érkező újabb megszakítási igények elvesznek, azaz ezeket az igényeket a processzor nem fogja kiszolgálni.

Több szintű megszakítás

A több szintű megaszakítás esetén számolni kell azzal, hogy a megszakítás mélységének korlátja részben a rendelkezésre álló veremtár mérete, részben a kiszolgáló rutinok futásideje. Gyakori megszakításokkal a főprogram lelassítható és gyakorlati szempontból üzemképtelenné tehető.

Megszakítási szintek

A processzorok kezdeti szakaszában jól megfigyelhető a veremtár bővítése.

Míg az első Intel processzornál (i4004) mindössze 3 elemű a verem, egy évvel később i8008 –as processzornál már 7 elemű verem látható. További két évvel később az i8080-as processzorában pedig már a verem mutató regiszter 16 bites!

Megszakítási szintek

Pusztán az egyes megaszakításokhoz tartozó visszatérési címek (programszámláló értékek) tárolása nem indokolja a nagy méretű veremtár szükségességét.

Ahhoz, hogy a félbeszakított programot folytatni lehessen el kell menteni a processzor teljes állapotterét, más néven kontextusát. A gyakorlatban ez azt jelenti, hogy a programszámlálón túlmenően menteni kell az összes regiszter értékét és a FLAG regisztert is. (Természetesen egy adott programnál nem feltétlenül kell menteni a program által nem használt regisztereket.)

Mivel több szintű megszakítás kiszolgálás esetén az összes megszakított program kontextusa mentendő, a szükséges verem méret is jelentősen növekszik.

Érdemes megjegyezni, hogy a vermet a programok a megszakításoktól függetlenül is használhatják akár lokális adat tárolásra, akár alprogramok (szobrutinok) hívása során. Az alprogramok hívásának mechanizmusa megegyezik a megszakításnál megismert mechanizmussal, azaz a hívás megfeleltethető a megszakításkérésnek. Ekkor a verembe mentődik a visszatérési cím valamit a főprogram változói. Az alprogram végeztével a veremből történik a hívó program állapotának visszaállítása.

Megszakítási prioritások

Több szintű megszakításkezelés esetén szükség lehet a megszakítások fontossági sorrendbe állítására. Így elérhető, hogy csak azok a megszakítások kerüljenek kiszolgálásra amelyek magasabb fontossági (prioritási) szinten vannak, mint az aktuális megszakítást kiszolgáló alprogram.

A megszakítási szinteket vagy a konstruktőrök döntik el, vagy rendelkezik a számítógép egy a felhasználó által beállítható prioritáskezelő egységgel. Általában ez utóbbi esetben is van a processzorban egy vagy több, a tervezők által meghatározott magasabb megszakítás vagy megszakítások amiket a felhasználó nem tud felülbírálni.

A felülbírálható megszakításokat nevezzük <u>maszkolható</u> megszakításnak míg a nem felülbírálhatókat <u>nem maszkolható</u> megszakításnak nevezzük.

A megszakítási szinteket legegyszerűbben prioritásdekóder áramkörrel lehet kezelni. Ez vagy a processzor részét képező belső egység vagy a processzoron kívüli önálló áramkör.

Fejlett rendszerek esetében a processzorhoz gyártott megszakításvezérlő áramköröket alkalmaznak melyek a prioritás kezelésen túlmenően akár a processzor felé az adott megszakításhoz tartozó ugró címet (megszakítás vektort) is szolgáltatnak.

Prioritás dekóder

A prioritás dekóder egy kombinációs hálózat mely annyi bemenettel rendelkezik ahány jel (jelen esetben megszakítást kérő eszköz jele) prioritását képes kezelni (technikai okból a bemenetek száma kettő hatványi lehetnek, azaz 2, 4, 8, 16, stb.) valamint rendelkezik a bemenetek számától függő kimenetekkel melyek a legmagasabb sorszámú aktív bemenet sorszámát szolgáltatják bináris formában és egy további kimenetet amely akkor logikai igen (1) ha legalább egy bemeneti jel aktív.

A táblázat egy négy bemenetű prioritásdekóder igazságtábláját szemlélteti.

A négy bemenetre (Io-I3) a prioritások szintjének megfelelő (Io a legalacsonyabb, I3 a legmagasabb prioritású bemenet) megszakítást kérő eszközök csatlakoznak.

A két kimenet (00 és 01) a legmagasabb prioritású aktív bemenetének bináris kódját tartalmazza.

A "V" kimenet akkor aktív (1) ha legalább egy bemenet aktív.

Bemenet				Kimenet		
I 3	12	l1	lo	O ₁	Oo	V
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	x	1	1	1

Prioritás dekóder

A prioritás dekóder egy kombinációs hálózat melynek egy lehetséges megvalósítása látható az alábbi ábrán.

A részletes logikai egységet helyettesíthetjük az alábbi ábrával.

A priorizálás célja, hogy egy megszakítás kiszolgálását alacsonyabb szintű megszakítás igények ne tudják megszakítani. Látható, hogy a prioritás dekóder alkalmazásával az alacsonyabb szintű megszakításigények nem jutnak érvényre. Amennyiben más mechanizmust nem alkalmazunk, egy magasabb szintű megszakítás kiszolgálás során bekövetkező alacsonyabb szintű megszakításkérések elvesznek.

Megszakításvezérlő

Az Intel által gyártott megszakításvezérlő áramkör nyolc megszakítás kezelését teszi lehetővé. Egy rendszerben több megszakítáásvezérlő is alkalmazható, így tovább növelhető a kiszolgálható megszakítások száma.

A 8259-es megszakításvezérlő a felhasználó által programozható. Az egyes megszakításokhoz hozzá rendelhető megszakításvektor (ugrási cím) amely a megszakítások kiszolgálásához írt alprogramok kezdő címét (belépési pontjait) jelenti. Ez a módszer nagy mértékben megkönnyíti a programozó feladatait.

8259: Programmable Interrupt Controller

