

Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition

Yandong Wen^{‡, §}, Zhifeng Li [§] *, Yu Qiao [§]

*School of Electronic and Information Engineering, South China University of Technology § Shenzhen Key Lab of Comp. Vis. & Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China

IEEE 2016 Conference on Computer Vision and Pattern Recognition

CVPR2016

Introduction

- Age-invariant face recognition (AIFR) still remains a challenging problem despite of considerable progresses on face recognition by deep learning.
- > Common deep model is trained on general face dataset. It yields age-sensitive features, resulting in inferior performance on AIFR.
- > Our goal: Learning age-invariant deep features for AIFR.

Fig. 1 Cross-age faces processed by the proposed method.

Our contributions

- We propose latent factor guided convolutional neural networks (LF-CNNs) to specifically address the AIFR task.
- ➤ To our best knowledge, it is the first work to show the effectiveness of deep CNNs in AIFR and achieve the best results on several famous face aging datasets (MORPH, FG-NET, and CACD-VS).

Convolutional Feature Learning Convolutional Feature Learning Convolutional Feature Learning Age-Invariant Identity Loss supervise Age-Invariant Identity Loss Invariant Features Latent Identity Analysis Inage Pair with Vi Convolution Unit (Prozen) Latent Factor FC Layer (Prozen) Age-Invariant Feature Contrastive Contrastive Contrastive Contrastive Contrastive Contrastive Local Conv4 3x3+1(S) 3x3+1(S) 2x2+2(S) Shared Size 2x2 2x2 2x2 Conv Layer A Conv Layer

Fig. 2 The architecture of the proposed LF-CNNs and its training process. Frozen layer only performs regular forward and backward calculations, but does not update their parameters. The two parallel convolution units are corresponding to a physical module in two stages (frozen and not frozen).

Discussion

- > LF-CNN model is very beneficial to AIFR problem.
- minimizing the classification error (softmax loss and contrastive loss), aiming to learn discriminative face representations.
- maximizing the likelihood probability in factor analysis, aiming to improve the age-invariance of the deeply learned features.
- > Latent identity analysis (LIA) plays an essential role.
- inferring the effective identity factor to guide the learning process of the LF-CNNs.
- largely reducing the parameter scale and preventing the potential over-fitting.

Experimental results

➤ MORPH Album 2 & FG-NET Dataset

	Method	MORPH (Rank-1	FG-NET (Rank-1
		Identification Rates)	Identification Rates)
	Pak et al. (2010) [24]	_	37.4%
	Li et al. (2011) [18]	_	47.5%
	HFA (2013) [7]	91.14%	69.0%
	CARC (2014) [4]	92.80%	_
	MEFA+SIFT+MLBP (2015) [8]	94.59%	76.2%
	Method (2015) in [16]	87.13%	_
	LPS+HFA (2016) [17]	95.87%	_
	CNN-baseline (fine-tuned by MORPH training data)	95.13%	84.4%
	LF-CNNs (fine-tuned by MORPH training data)	97.51%	88.1%

CACD Verification Subset

Method	Verification Accuracy	
High-Dimensional LBP (2013) [5]	81.6%	
HFA (2013) [7]	84.4%	
CARC (2014) [8]	87.6%	
Human, Average (2015)	85.7%	
Human, Voting (2015)	94.2%	
LF-CNNs	98.5%	

> LFW Dataset

Method	Images	Networks	Acc.
DeepFace (2014) [33]	4M	3	97.35%
DeepID-2+ (2015) [32]	_	25	99.47%
FaceNet (2015) [29]	200M	1	99.65%
Deep Embedding (2015) [20]	1.2M	10	99.77%
Deep FR (2015) [25]	2M	1	98.95%
LF-CNNs (single) LF-CNNs (ensemble)	700K 700K	1 25	99.10% 99.50%