



## GLL-based Context-Free Path Querying for Neo4j

Vadim Abzalov, Vlada Pogozhelskaya, Vladimir Kutuev, Olga Bachishche, **Semyon Grigorev** 

Saint Petersburg State University

October 31, 2025

# Formal Language Constrained Path Querying



Navigation through an edge-labeled graph

- Path specifies a word formed by the labels of the edges
- Paths constraint is a language: the word specified by the path should be in the given language
- The expressiveness of constraints is related to formal languages classes

# Regular Path Queries (RPQ)



## Regular languages as constraints

- Which nodes are reachable from C by arbitrary number of R and Down edges?
- Regular language  $\mathcal{L} = (R \mid Down)^*$

Part of GQL and SQL/PGQ (ISO/IEC 9075-16:2023)

## Context-Free Path Queries (CFPQ)



## Context-free languages as constraints

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Down<sup>n</sup> Down<sup>n</sup> between A and B?
- Context-free grammar:  $SameLvl o \overline{Down}$   $SameLvl Down \mid \varepsilon$

# Context-Free Path Queries (CFPQ)



### Context-free languages as constraints

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Down<sup>n</sup> Down<sup>n</sup> between A and B?
- Context-free grammar:  $SameLvl \rightarrow \overline{Down} \ SameLvl \ Down \ | \ \varepsilon$

### **Applications**

- Static code analysis [T. Reps, et al, 1995]
- Graph segmentation [H. Miao, et al, 2019]
- Bio data analysis [P. Sevon, et al, 2008]
- ...

#### Problem Statement

- J. Kuijpers, et al<sup>1</sup>: existing algorithms are too slow to be used in practical applications (in the context of Neo4j)
- Reachability in the focus
  - Paths needed in some applications
  - Not for all pairs, but for specified start vertices

? How to create faster multiple source context-free all paths querying algorithm?

<sup>&</sup>lt;sup>1</sup>Jochem Kuijpers, George Fletcher, Nikolay Yakovets, and Tobias Lindaaker. 2019. An Experimental Study of Context-Free Path Query Evaluation Methods.

## **Proposed Solution**

- Generalized LL (GLL)<sup>2</sup> as a base
  - ► Arbitrary grammars (including left-recursive and ambiguous) without transformations
  - Shared Packed Parse Forest (SPPF) is a native representation of all paths
  - Directed native support of source vertices
- Recursive State Machine (RSM) to represent constraints
  - ▶ Instead of grammar in (E)BNF

## Generalized LL for CFPQ: The Idea

## Current descriptor: (u, a, g)



Just read the terminal

New descriptor: (v, p, g)
// For all terminal edges



Call: start handling
of M on position u

h: (M, u)

Return address

New descriptor: (u, r, h)
// r: start state for M
// For all Nonterminal edges

q is a final state



Pop is not destructive. Just move pointer alongside outgoing edges New descriptors: (u, p, h) (u, r, f) // For each outgoing edge

## SPPF is a Representation of All Paths of Interest



### Trees And Paths



Trees extracted from SPPF for the following paths:



## Context-Free Languages Are Closed Under Intersection With Regular Ones



# Implementation Details

- !!!
- !!!
- !!!

## **Evaluation Setup**

- Ubuntu 18.04, Intel Core i7-6700 CPU, 3.4GHz, DDR4 64Gb RAM
- Graphs are stored in RedisGraph augmented with our extensions
- Queries are generated with template for the given size of the start set
- The union of all start sets is denoted V

## **Evaluation Setup**

- Ubuntu 18.04, Intel Core i7-6700 CPU, 3.4GHz, DDR4 64Gb RAM
- Graphs are stored in RedisGraph augmented with our extensions
- Queries are generated with template for the given size of the start set
- The union of all start sets is denoted V

| Graph        | #V      | #E        | Q              |
|--------------|---------|-----------|----------------|
| core         | 1323    | 4342      | g <sub>1</sub> |
| pathways     | 6238    | 18 598    | $g_1$          |
| gohierarchy  | 45 007  | 980 218   | $g_1$          |
| enzyme       | 48 815  | 109 695   | $g_1$          |
| eclass_514en | 239 111 | 523 727   | $g_1$          |
| geospecies   | 450 609 | 2 311 461 | geo            |
| go           | 272 770 | 534 311   | $g_1$          |

## **Evaluation Setup**

- Ubuntu 18.04, Intel Core i7-6700 CPU,
   3.4GHz, DDR4 64Gb RAM
- Graphs are stored in RedisGraph augmented with our extensions
- Queries are generated with template for the given size of the start set
- The union of all start sets is denoted V

| Graph        | #V      | #E        | Q              |
|--------------|---------|-----------|----------------|
| core         | 1323    | 4342      | g <sub>1</sub> |
| pathways     | 6238    | 18 598    | $g_1$          |
| gohierarchy  | 45 007  | 980 218   | $g_1$          |
| enzyme       | 48 815  | 109 695   | $g_1$          |
| eclass_514en | 239 111 | 523 727   | $g_1$          |
| geospecies   | 450 609 | 2 311 461 | geo            |
| go           | 272 770 | 534 311   | $g_1$          |

```
PATH PATTERN S =

()-/ [<:SubClassOf [~S | ()] :SubClassOf] | [<:Type [~S | ()] :Type] /->()

MATCH (src)-/ ~S /->()

WHERE {id_from} <= src.id and src.id <= {id_to}
```

RETURN count(\*)

# Multiple sources CFPQ reachability speedup (RSM over CFG) on RDF graphs





# Multiple sources CFPQ reachability results for queries related to RDF analysis





# Multiple source RPQ reachability results for queries related to RDF analysis and respective query (native solution failed with OOM on last two graphs)





#### Conclusion

- Full-stack support for CFPQ in real-world applications which use RedisGraph database with Cypher query language
  - ▶ No more context-free grammars
  - No more custom graph formats and storages
- Reasonable performance of context-free path queries
  - Multiple-source scenario
  - Space-time ratio can be tuned
- Context-free path queries can be used in applications with well-established tools

#### Future Research

- Mechanization of Cypher semantics in Coq
  - Semantics which includes path patterns
  - ▶ Goal: prove correctness of translation to linear algebra

#### Future Research

- Mechanization of Cypher semantics in Coq
  - Semantics which includes path patterns
  - ► Goal: prove correctness of translation to linear algebra
- Integration of tensor-based CFPQ algorithm<sup>3</sup> to RedisGraph
  - ► The algorithm constructs paths, not only reachability facts
  - ► The algorithm should be modified to get multiple-source version

<sup>&</sup>lt;sup>3</sup>Egor Orachev, Ilya Epelbaum, R. Azimov and S. Grigorev. 2020. Context-Free Path Querying by Kronecker Product

#### Future Research

- Mechanization of Cypher semantics in Coq
  - Semantics which includes path patterns
  - ► Goal: prove correctness of translation to linear algebra
- Integration of tensor-based CFPQ algorithm<sup>3</sup> to RedisGraph
  - ► The algorithm constructs paths, not only reachability facts
  - ► The algorithm should be modified to get multiple-source version
- Detailed evaluation
  - Include more graphs and queries, including RPQs
  - Evaluate the scalability of the solution
  - Compare with other graph query engines

<sup>&</sup>lt;sup>3</sup>Egor Orachev, Ilya Epelbaum, R. Azimov and S. Grigorev. 2020. Context-Free Path Querying by Kronecker Product

#### Contact Information

- Try it out (Docker image with extended RedisGraph):
   https://hub.docker.com/r/simpletondl/redisgraph
- RedisGraph extended with CFPQ: https://github.com/YaccConstructor/RedisGraph
- Cypher parser extended with path patterns: https://github.com/YaccConstructor/libcypher-parser

### Contact Information

- Try it out (Docker image with extended RedisGraph): https://hub.docker.com/r/simpletondl/redisgraph
- RedisGraph extended with CFPQ: https://github.com/YaccConstructor/RedisGraph
- Cypher parser extended with path patterns:
   https://github.com/YaccConstructor/libcypher-parser
- Semyon Grigorev: s.v.grigoriev@spbu.ru
- Arseniy Terekhov: simpletondl@yandex.ru
- Vlada Pogozhelskaya: pogozhelskaya@gmail.com
- Vadim Abzalov: vadim.i.abzalov@gmail.com
- Timur Zinnatulin: teemychteemych@gmail.com

## Contact Information

- Try it out (Docker image with extended RedisGraph): https://hub.docker.com/r/simpletondl/redisgraph
- RedisGraph extended with CFPQ: https://github.com/YaccConstructor/RedisGraph
- Cypher parser extended with path patterns: https://github.com/YaccConstructor/libcypher-parser

Thanks!

- Semyon Grigorev: s.v.grigoriev@spbu.ru
- Arseniy Terekhov: simpletondl@yandex.ru
- Vlada Pogozhelskaya: pogozhelskaya@gmail.com
- Vadim Abzalov: vadim.i.abzalov@gmail.com
- Timur Zinnatulin: teemychteemych@gmail.com