2次元掛け算layer

ヒューマンインタフェース研究室 助教

> はやし ひであき 早志 英朗

2018/6/1

Trainable Multiplication Layer

- 目的
 - 入力画像の局所自己相関を抽出(特に前半層)
 - 入力画像内の共起性を検出(特に後半層)

• 構造

計算の詳細

• 式変形

$$\prod_{i}^{I} x_{i}^{w_{i}} = \exp\left(\left[\log x_{1}, \dots, \log x_{I}\right] \begin{bmatrix} w_{1} \\ \vdots \\ w_{I} \end{bmatrix}\right)$$

・ 学習と制約

minimize
$$J = -\sum_{m=1}^{M} \sum_{k=1}^{K} T_k^{(m)} \log |O_k^{(m)}| + \lambda ||\mathbf{w}||_1$$
 $O_C^{(m)}$: Network output K : # of classes s.t.
$$\sum_{i=1}^{I} w_i = C_1, \ 0 \le w_i \le C_2$$
 M : # of training samples λ, C_1, C_2 : Constants

- 第1の制約は発散を抑えるために必須
- 第2の制約をつけると非零のマスクの数がおおよそ C_1/C_2 個になる

2種類の使い方

(a) Use as a discriminative higher-oder local auto-correlation extractor

(b) Use as a co-occurrence extractor

実験

- レイヤーの特性検証
 - 超パラメータ($C_1, C_2, カーネルサイズ)と学習されるカーネルの関係$
 - Discriminative HLAC extractorとして使った場合の特性
 - Co-occurrence extractorとして使った場合の特性

• 識別実験

- Dataset: MNIST, Brodatz, CIFAR10
- 識別手法:
 - Shallower: LeNet (5層), LeNet + HLAC, LeNet + Proposed (DHLAC, Co-occurrence)
 - Deeper: Deep CNN (11層), Deep CNN + HLAC, Deep CNN + Proposed (DHLAC, Co-occurrence)

第2制約のパラメータと非零要素

• $C_1 = 1.0, C_2 = 0.5$

第2制約のパラメータと非零要素

• $C_1 = 1.0, C_2 = 0.33$

マスクサイズ5 x 5

• Weights • Features 0 0 0 0 0 0 0 0000000 0000000 0000000

Filterと対応するresponse (size: 7x7)

 Weights Features

Discriminative HLACとしての特性

Co-occurrence extractorとしての特性

識別実験

Table. 1 Comparison of the recognition rates (%).

8	MNIST	Brodatz	CIFAR10
LeNet	99.22	74.77	74.28
LeNet + HLAC	99.15	75.96	74.81
LeNet + proposed layer (DHLAC)	99.20	76.28	73.48
LeNet + proposed layer (Co-occurrence)	99.09	77.26	77.4 0
Deep CNN	99.27	91.69	81.43
Deep $CNN + HLAC$	99.31	91.33	82.23
Deep CNN + proposed layer (DHLAC)	99.39	92.51	81.50
Deep CNN + proposed layer (Co-occurrence)	99.27	91.56	81.49

MNIST

Brodatz

CIFAR10

時系列識別に向けて

2018/6/1

ヒューマンインタフェース研究室 助教

> はやし ひであき 早志 英朗

1次元でやるとどうなるか

- 時系列波形の自己相関≒周波数を抽出してほしい
 - 離散時系列の自己相関関数

$$R(\tau) = \sum_{t} x[t]x[t - \tau]$$

・ 共起性レイヤの1次元版を実装し以下のNNを構築

14

時系列識別実験

- 実験データ
 - 2クラスの正弦波

- 周波数のみクラスごとで異なる
 - クラス1:10 [Hz], クラス2:14 [Hz]
- そのほかは統一
 - 時系列長: 1.0 [s], サンプリングレート: 50 [Hz]
 - 位相は各サンプルでランダムに変更
- 学習データ数: 20000, テストデータ数: 2000
- 認識率は99.8%

学習されたフィルタ

フィルタと対応する特徴量

全結合層直前の全サンプル平均

• 自己相関係数に相当する役割

