3D Scanning & Motion Capture

Exercise - 2

Dejan Azinović, Manuel Dahnert

Exercises – Overview (1/5)

1. Exercise → Camera Intrinsics, Back-projection, Meshes

Exercises – Overview (2/5)

2. Exercise → Surface Representations

Exercises – Overview (3/5)

3. Exercise → Coarse Alignment (Procrustes)

Exercises – Overview (4/5)

4. Exercise → Optimization

$$f(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}}$$

Find $\mu \& \sigma$ for points

Exercises – Overview (5/5)

5. Exercise → Object Alignment, ICP

Exercises – Overview

- 1. Exercise → Camera Intrinsics, Back-projection, Meshes
- 2. Exercise > Surface Representations
- 3. Exercise → Coarse Alignment (Procrustes)
- 4. Exercise → Optimization
- 5. Exercise → Object Alignment, ICP

Exercise 2

Surface Represenations

Tasks

- 1. Project dependencies & CMake configuration
- 2. Implicit Surfaces
 - Implement the functions defining the surfaces of spheres and tori
- 3. Linear Interpolation
 - Implement the linear interpolation between two points in 3D
- 4. Hoppe
 - Convert a point cloud to an implicit surface
- 5. Radial Basis Functions
 - Setup and solve system of linear equations

Task 2) Implicit Functions – Sphere / Torus

$$f(x, y, z) = x^2 + y^2 + z^2 - R^2$$

$$f(x,y,z) = (x^2 + y^2 + z^2 + R^2 - a^2)^2 - 4R^2(x^2 + y^2)$$

Task 3) Marching Cubes

- Regular grid/volume → Extract iso-surface
 - Check for zero-crossings within each cell

Marching Squares (2D)
16 configurations

Marching Cubes (3D) 256 configurations

Task 3) Linear Interpolation

- Compute the linear interpolated point using the provided distances
 - (a) shows the basic implementation
 - (b) shows an example with isolevel = 0, valp1 = +1 and valp2 = -2.

Task 3) Linear Interpolation

- Without linear interpolation
 - i.e. taking midpoint of each edge

With linear interpolation

Task 4) Hoppe

Piecewise linear surface approximation

Task 5) Radial Basis Functions (RBF)

Task 5) Radial Basis Functions (RBF)

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot ||\vec{p}_{i} - \vec{x}||^{3} + \vec{\mathbf{b}} \cdot \vec{x} + \mathbf{d}$$

Questions?