





# Gadgetron Bordeaux Summer School

# MRD format: a necessary step for unified MR reconstruction with Gadgetron

**Maxime Yon** 

LIRYC | Restoring the rhythm of life

- Nowadays, all MR vendor have their own private reconstruction pipelines
- ➤ The rise of complex MR processing induces variability across vendors
- Only a unified, open source and adaptive reconstruction framework can allow a perfect reproducibility of MR processing



- Nowadays, all MR vendor have their own private reconstruction pipelines
- The rise of complex MR processing induces variability across vendors
- Only a unified, open source and adaptive reconstruction framework can allow a perfect reproducibility of MR processing



- A prerequisite for unified magnetic resonance (imaging) reconstruction is a common raw data format
- Gadgetron uses the ISMRM Raw Data format (MRD)



Converters exist for several commercial MRI vendors: Bruker, Siemens, General Electric or Philips.

- MRD format need to capture:
  - the raw k-space data in acquisition order before any transformation
  - the physics parameters of the data acquisition process required for image reconstruction
  - Optionally, the trajectory data or additional waveforms



## a) The MR unit

In MR acquisition the most simple unit is the readout



#### a) The MR unit

The MRD format captures this unit avoiding any vendor specific operation



- These readout are called « data chunck »
- For multiple coils acquisition, the signal of each coil is saved

#### b) The data header

Each data item is preceded by a fixed-size Data Header including data type, acquisition flags, encoding numbers...



These data chunks can have different sizes as they include navigator or calibration readout

#### c) The MRD dataset also contains:

A flexible XML Header containing an arbitrary number of fields accommodating all the parameters that may be meaningful for some experiments but not for others.

#### ISMRMRD Dataset



MRD dataset = XML general header + N \* (data\_header + data samples)
Dataset
Encoding Readout \* coils parameters
numbers

#### d) Waveforms and contours

- The MRD format also support waveform such as ECG
- It can include contours and landmark making it suitable for AI research



#### e) Full dataset:

MRD is also used to store images after Gadgetron reconstruction along with image header storing image and user-specified parameters



If you prefer DICOM or NIFTI, the conversion need to be performed by the client

#### f) MRD extension and type

- ➤ MRD uses the Hierarchical Data Format: HDF5
- Its extension is .h5
- Created to store big amount of data
- National Center for Supercomputing Applications in 1987
- Maintained by the HDF group
- ➤ It is Open-source, fast and thus widely used in the research community





#### a) Library

- ➤ The ISMRMRD library provides C/C++, Python, and MATLAB (Mathworks) interfaces for reading and writing MRD files.
- This library can be compiled on Linux, Windows, and Apple computers as described here: <a href="https://ismrmrd.github.io/">https://ismrmrd.github.io/</a>
- The library is also included in the precompiled packages which you already installed:

```
sudo add-apt-repository ppa:gradient-software/experimental
sudo apt-get update
sudo apt-get install gadgetron-all
pip3 install --user gadgetron
```

## b) Phantom generation

Let's create a shepp logan phantom with the Gadgetron

gadgetron

> In a new tab:

```
mkdir data
cd data
ismrmrd generate cartesian shepp logan
```

The result is the file: testdata.h5



#### c) ISMRMRD viewer

- ➤ ISMRMRDviewer is a convenient tool to explore the MRD dataset
- > It can be installed in a virtual python environment:

```
sudo apt-get install python3-venv
git clone https://github.com/ismrmrd/ismrmrdviewer.git
cd ismrmrdviewer/
python3 -m venv venv
. venv/bin/activate
python3 setup.py --verbose install
deactivate

Eile
Eile
```

- . venv/bin/activate
  python3 ismrmrdviewer
- Or directly with:

pip3 install --user ismrmrdviewer
ismrmrdviewer



#### d) Open .h5 with Matlab

➤ The ISMRMRD library provides MATLAB functions for reading .h5 file

```
addpath('/usr/local/share/ismrmrd/matlab')
filename = '/home/.../data/testdata.h5';
dset = ismrmrd.Dataset(filename, 'dataset');
header = ismrmrd.xml.deserialize(dset.readxml);
data_struct = dset.readAcquisition();
```

'header' is a structure containing the XML Header fields:

```
header.version 4
header.acquisitionSystemInformation.receiverChannels 8
header.acquisitionSystemInformation.institutionName
ISMRM Synthetic Imaging Lab
header.experimentalConditions.H1resonanceFrequency_Hz 63500000
header.encoding.encodedSpace.matrixSize.x 512
header.encoding.encodedSpace.matrixSize.y 256
header.encoding.encodedSpace.matrixSize.z 1
header.encoding.encodedSpace.fieldOfView_mm.x 600
header.encoding.encodedSpace.fieldOfView_mm.y 300
```

• • •

#### d) Open .h5 with Matlab

- ➤ The 'data\_struct' object contains the acquisition header, the complex data of each coils and optionally the trajectory
- The data are stored in single precision complex values



#### d) Open .h5 with Matlab

- The 'head object' object contain the fixed-size Data Header including data type, acquisition flags, encoding numbers...
- These parameters are defined for each data chunk, that is why the second dimension is 256 here





#### d) Open .h5 with Matlab

The 'data\_struct' object contain the data chunks: 256 chunks corresponding to phase encode steps, with a readout of 512 points and 8 coils



The K-space matrix can be obtained by:

```
for ind=1:size(data_struct.data,2)
    Kspace(:,ind,:) = data_struct.data{1,ind};
end
```

Which gives a 512 x 256 x 8 complex single matrix

## d) Open .h5 with Matlab

> This matrix contain the 8 K-spaces corresponding to the 8 coils



> Their Fourier transform give the images of each of the 8 coils

Images = FFTKSpace2XSpace(FFTKSpace2XSpace(Kspace, 2), 1);



#### e) Gadgetron recon and output

- Of course, this reconstruction can also be performed with Gadgetron gadgetron
- ➤ In a new tab:

```
gadgetron ismrmrd client -f testdata.h5 -c default.xml -o out.h5
```

- > out.h5 can also be open on Matlab with the functions h5info and h5read
- > It contain the reconstructed image and a basic header

```
filename = '/home/maximey/mount/maxime.yon/Data/out.h5';
hinfo = hdf5info(filename);
Img =single(h5read(filename,hinfo.GroupHierarchy.Groups(1).Groups(1).Datasets(2).Name));
header=h5read(filename,hinfo.GroupHierarchy.Groups(1).Groups(1).Datasets(3).Name);
```

The image header is requiered if the image need to be send back to a scanner and displayed with the correct FOV, orientation...

## e) Gadgetron recon and output

➤ ISMRMRDviewer can also be used to open the output image

```
cd ismrmrdviewer/
. venv/bin/activate
python3 ismrmrdviewer
```

> Or:

ismrmrdviewer



#### a) 2D multisclices EPI dataset

Open the MRD EPI Dataset

```
addpath('/usr/local/share/ismrmrd/matlab')
filename = '/home/..../MRD intro hands on training/FID_ep2d_se_noIPAT_3slices.h5';
dset = ismrmrd.Dataset(filename, 'dataset');
header = ismrmrd.xml.deserialize(dset.readxml);
data_struct = dset.readAcquisition();
clearvars dset;
Workspace
Name 4
Value
```

data struct

filename

- header

1x1 Acquisition

1x1 struct

'/home/mygadg/...

Get the number of data chunk

```
N_data_chunk = size(data_struct.data,2);
```

➤ Here it is 393



## b) Exploring encoding limits

➤ In 2D multisclices EPI we expect these data chunk to come from each phase encode (blips) of each sclices

```
N_phase_encode = header.encoding.encodingLimits.kspace_encoding_step_1.maximum + 1;
N slices = header.encoding.encodingLimits.slice.maximum + 1;
```

 $\triangleright$  128 x 3 = 384, we have 9 additional data chunk

| Workspace      |                 |
|----------------|-----------------|
| Name △         | Value           |
| data_struct    | 1x1 Acquisition |
| 🕩 filename     | '/home/mygadg/  |
| 🕕 header       | 1x1 struct      |
| H N_data_chunk | 393             |
| H N_phase_en   | 128             |
| H N_slices     | 3               |
|                |                 |

#### b) Exploring encoding limits

➤ In 2D multisclices EPI we expect these data chunk to come from each phase encode (blips) of each sclices

```
N_phase_encode = header.encoding.encodingLimits.kspace_encoding_step_1.maximum + 1;
N slices = header.encoding.encodingLimits.slice.maximum + 1;
```

> 128 x 3 = 384, we have 9 additional data chunk

```
N_3D_encode = header.encoding.encodingLimits.kspace_encoding_step_2.maximum + 1;
N_average = header.encoding.encodingLimits.average.maximum + 1;
N_repetition = header.encoding.encodingLimits.repetition.maximum + 1;
N_contrast = header.encoding.encodingLimits.contrast.maximum + 1;
```

Not coming from additional encoding steps



#### c) Looking at Flags

➤ The additional data chunk can also come from parallel calibration, navigation data or phase correction data

```
parallel_calibration = data_struct.head.flagIsSet('ACQ_IS_PARALLEL_CALIBRATION');
navigation_data = data_struct.head.flagIsSet('ACQ_IS_NAVIGATION_DATA');
phase_corr_data = data_struct.head.flagIsSet('ACQ_IS_PHASECORR_DATA');

N_parallel_calibration = sum(parallel_calibration);
N_navigation_data = sum(navigation_data);
N_phase_corr_data = sum(phase_corr_data);
```

The 9 additional data chunk are phase correction readout used for ghost correction in EPI processing

| Workspace              |                 |  |
|------------------------|-----------------|--|
| Name ∠                 | Value           |  |
| data_struct            | 1x1 Acquisition |  |
| 🕩 filename             | '/home/mygadg/  |  |
| 🕕 header               | 1x1 struct      |  |
| H N_data_chunk         | 393             |  |
| N_navigation_data      | 0               |  |
| N_parallel_calibration | 0               |  |
| N_phase_corr_data      | 9               |  |
| □ navigation_data      | 1x393 double    |  |
| → parallel_calibration | 1x393 double    |  |
| phase_corr_data        | 1x393 double    |  |

#### d) Create kspace matrix

Here we will simply discard them and create a matrix with the image readout only

The size of the kspace matrix is: 256 readout points

128 phase encode

26 coils

3 slices

#### **Command Window**

```
K>> size(kspace)
ans =
    256    128    26    3
```

#### e) is reversed flag

> In EPI the odd and even echoes are acquired in opposite direction

```
is_reversed_acq = data_struct.head.flagIsSet('ACQ_IS_REVERSE');
is_reversed_acq = is_reversed_acq(image_data);
kspace_flip = kspace;
kspace_flip (:,is_reversed_acq+1,:,:) = flip(kspace_flip (:,is_reversed_acq+1,:,:),1);
```

➤ This information is stored in the 'ACQ\_IS\_REVERSE' Flag and can be used to flip the readout



#### f) Fourier transform and oversampling

➤ A first approximation of the EPI images can be obtained by simple 2D Fourier transform

```
image_noRegrid = FFTKSpace2XSpace(FFTKSpace2XSpace(kspace_flip,1),2);
image_noRegrid = squeeze(sum(abs(image_noRegrid),3));
```

Oversampling can then be removed by cropping the image

```
if size(image_noRegrid,1)/header.encoding.encodedSpace.matrixSize.x(1,1) == 2
   image_noRegrid = image_noRegrid(round(size(image_noRegrid,1).*0.25)+1:
    round(size(image_noRegrid,1).*0.75),:,:);
end
```

```
figure()
subplot(1,3,1)
imagesc(image_noRegrid(:,:,1));
axis image
subplot(1,3,2)
imagesc(image_noRegrid(:,:,2));
axis image
subplot(1,3,3)
imagesc(image_noRegrid(:,:,3));
axis image
colormap gray
```







#### g) Regridding

- Readout acquisition is performed during the ramp time
- Gradient shape parameters are stored in user parameters

```
for ind = 1:size(header.encoding.trajectoryDescription.userParameterLong,2)
    parameters.(header.encoding.trajectoryDescription.userParameterLong(1,ind).name) =
header.encoding.trajectoryDescription.userParameterLong(1,ind).value;
end
for ind = 1:size(header.encoding.trajectoryDescription.userParameterDouble,2)
    parameters. (header.encoding.trajectoryDescription.userParameterDouble(1,ind).name)
= header.encoding.trajectoryDescription.userParameterDouble(1,ind).value;
end
parameters.readout = readout size;
parameters. N phase encode = N phase encode;
parameters.N phase recon = header.encoding.reconSpace.matrixSize.x(1,1);
parameters.N slices = N slices;
parameters.position = data struct.head.position(:,image data(1,1));
parameters.read dir = data struct.head.read dir(:,image data(1,1));
parameters.FOV 1 = header.encoding.encodedSpace.fieldOfView mm.x(1,1);
parameters.is reversed acq = is reversed acq;
```

## g) Regridding

- RampUpTime, rampDownTime, flatTopTime are used to perform the regridding
- > The 'ACQ\_IS\_REVERSE' flag and the readout size will also be used

| parameters × 1x1 struct with 16 fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |  |
| ☐ etl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128                        |  |
| → numberOfNavigators  → numberOfNavigat | 3                          |  |
| <b>⊞</b> ramp∪pTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                        |  |
| ☐ rampDownTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160                        |  |
| HatTopTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370                        |  |
| → acqDelayTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102                        |  |
| → numSamples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 256                        |  |
| dwellTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9000                     |  |
| <b>⊞</b> readout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256                        |  |
| ■ N_phase_encode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128                        |  |
| ■ N_phase_recon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 128                        |  |
| ☐ N_slices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                          |  |
| → position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [19.6126;-12.5666;-6.5375] |  |
| ⊞ read_dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0;5.9605e-08;-1.0000]     |  |
| ⊞ FOV_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250                        |  |
| ⊞ is_reversed_acq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1x384 double               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |  |

#### g) Regridding

- The function: EPI trapezoid regridding perform regridding, Fourier transform in dimension 1 and remove oversampling
- This allows to decrease ghost artefacts

```
[kspace corr] = EPI trapezoid regridding(parameters, kspace);
image Regrid = FFTKSpace2XSpace(kspace corr,2);
image Regrid = squeeze(sum(abs(image Regrid),3));
figure()
subplot(1,3,1)
imagesc(image Regrid(:,:,1));
axis image
subplot(1,3,2)
imagesc(image Regrid(:,:,2));
axis image
subplot(1,3,3)
imagesc(image Regrid(:,:,3));
axis image
colormap gray
```







## **Conclusion**

- MRD is a versatile format for storing raw MR data and the parameters required for reconstruction
- It support large datasets
- ➤ The HDF file format allows easy interfacing with C/C++ python or Matlab reconstruction code
- ➤ ISMRMRD library provides tools for opening or viewing MRD datasets