

Head Office: EKLAVYA ENGINEERING HUB.
B-191, NEW ASHOKA GARDEN, BHOPAL- 462023

SONENDRA GUPTA, 9893455006, 9329443789

Chapter - 1 VECTOR CALCULUS (VELOCITY AND ACCELERATION)

- If be the unit vector in the direction of **r**, Show that $\hat{\mathbf{r}} \times d\hat{\mathbf{r}} = \frac{\mathbf{r} \times d\mathbf{r}}{2}$
- A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. Find the component of its velocity and acceleration at t = 1 in the direction i + j + 3k.
- A particle moves along the curve $x = 3t^2$, $y = t^2 2t$, $z = t^3$, where t is the time. Find the velocity and acceleration at
- If $\mathbf{f} = (2x^2y x^4)\mathbf{i} + (e^{xy} y\sin x)\mathbf{j} + x^2\cos y\mathbf{k}$, verify $\frac{\partial^2 \mathbf{f}}{\partial x \partial y} = \frac{\partial^2 \mathbf{f}}{\partial y \partial x}$
- If $\phi(x, y, z) = x y^2 z$ and $\mathbf{f} = x z \mathbf{i} x y \mathbf{j} + y z^2 \mathbf{k}$, show that $\frac{\partial^3}{\partial x^2 \partial z} (\phi \mathbf{f})$ at (2, -1, 1) is $4 \mathbf{i} + 2 \mathbf{j}$.
- If **a**, **b** are constant vectors, ω is a constant and **r** is a vector function of the scalar variable t is given by $\mathbf{r} = \mathbf{a} \cos \omega t + \mathbf{b} \sin \omega t$, Show that :
 - (i) $\mathbf{r} \times \frac{d\mathbf{r}}{dt} = \omega \mathbf{a} \times \mathbf{b}$ (ii) $\frac{d^2\mathbf{r}}{dt^2} = -\omega^2\mathbf{r}$ [RGPV Dec. 2007]
- If $\mathbf{r} = \cos \operatorname{nt} \mathbf{i} + \sin \operatorname{nt} \mathbf{j}$ where n is constant, show that :
 - (i) $\mathbf{r} \times \frac{d\mathbf{r}}{dt} = n \mathbf{k}$ (ii) $\frac{d^2 \mathbf{r}}{dt^2} = -n^2 \mathbf{r}$

Chapter-2

Gradient, Divergence, Curl and Directional Derivative

- Show that the following.
 - (i) $\operatorname{div} \mathbf{r} = 3$, (ii) $\operatorname{Curl} \mathbf{r} = \mathbf{0}$ (iii) $\operatorname{Curl} (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$, (iv) $\operatorname{div} (\mathbf{a} \times \mathbf{r}) = 0$
- Show that
 - (i) r^n **r** is a Solenoidal. If n = -3[RGPV June 2010]

(ii) $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ [RGPV Dec. 2001, 02, 2010 June 05. 08]

- Prove that div (grad r^n) = $n(n+1)r^{n-2}$ [RGPV June. 2003, 08, Feb. 2008]
- Find the value of A when div (grad r^m) = A r^{m-2} , where $r^2 = x^2 + y^2 + z^2$
- Show that the following vector is Solenoidal: (x+3y)i+(y-3z)j+(x-2z)k[RGPV Dec. 2003.10 Feb. 2010]

BE. IInd Semester-August -2011, M-2

- Find div **F** and Curl **F**, when $F = \nabla (x^3 + y^3 + z^3 3xyz)$ is irrotational 6. [RGPV Dec. 2003, 07, June 07, 08, 2011, Feb. 10]
- If $\mathbf{F} = (x + y + 1)\mathbf{i} + \mathbf{j} (x + y)\mathbf{k}$, show that \mathbf{F} Curl $\mathbf{F} = 0$

[RGPV June. 2004, Feb 06]

- Determine the constant a, b, c so that [RGPV Feb. 2005] $\mathbf{F} = (x + 2y + az)\mathbf{i} + (bx - 3y - z)\mathbf{j} + (4x + cy + 2z)\mathbf{k}$, is irrotational. Find the scalar potential ϕ such that $\mathbf{F} = \text{grad } \phi$.
- 9. Prove that Curl (**A**) = **0**, where $\mathbf{A} = 2xyz^3 \mathbf{i} + x^2z^3 \mathbf{j} + 3x^2yz^2 \mathbf{k}$
- 10. Prove that div $(\mathbf{R}/r^3) = 0$, where $\mathbf{R} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ and $\mathbf{r} = |\mathbf{R}|$
- 11. Show that the vector field:

 $V = (\sin y + z) \mathbf{i} + (x \cos y - z) \mathbf{j} + (x - y) \mathbf{k}$ is irrotational.

[RGPV Dec. 2005, June 2009]

- 12. If $\mathbf{V} = e^{xyz} (\mathbf{i} + \mathbf{j} + \mathbf{k})$, find Curl \mathbf{V} .

 13. Prove that

 (i) Curl grad $\mathbf{r}^{m} = \mathbf{0}$ (ii) Curl $\left(\frac{\mathbf{a} \times \mathbf{r}}{\mathbf{r}^{3}}\right) = -\frac{\mathbf{a}}{\mathbf{r}^{3}} + \frac{3(\mathbf{a} \cdot \mathbf{r})\mathbf{r}}{\mathbf{r}^{5}}$
- 14. A vector field is given by $\mathbf{A} = (x^2 + xy^2)\mathbf{i} + (y^2 + x^2y)\mathbf{j}$. Show that the field is irrotational and find the scalar potential.

[RGPV July 2006]

- 15. Prove that: $\nabla \mathbf{r}^{\mathbf{n}} = \mathbf{n} \mathbf{r}^{\mathbf{n}-2} \mathbf{R}$, where $\mathbf{R} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$; $|\mathbf{R}| = r$ [RGPV Feb. 2007]
- 16. A fluid motion is given by $\mathbf{V} = (y + z)\mathbf{i} + (z + x)\mathbf{j} + (x + y)\mathbf{k}$. Show that the motion is irrotational and hence find the velocity potential function.

(**Hint**: $V = \nabla \phi$, then find the value of ϕ)

- 17. If $\phi = x^3yz^2$, find grad ϕ at the point (1, 1, 1). [RGPV Dec. 2007]
- 18. Prove that the vector : $\mathbf{V} = 3y^4z^2\mathbf{i} + 4x^3z^2\mathbf{j} 3x^2y^2\mathbf{k}$ is Solenoidal.
- 19. Find the directional derivative of $\phi = x^2y z + 4xz^2$ in the direction the vector 2 i - j - 2 k at the point (1, -2, -1).
- 20. Evaluate the directional derivative of the function $\phi = x^2 y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line PQ where Q has coordinates (5, 0, 4).
- 21. Find the magnitude of D.D for the function $\phi = \frac{y}{x^2 + y^2}$ which makes an angle of

 30° with the positive direction of x – axis at the point (0, 1).

22. What is the greatest rate of increases of $u = xyz^2$ at the point (1, 0, 3)?

[RGPV June. 2003, Feb. 2008]

- 23. Find the values of constants a, b, c so that the D.D of $\phi = axy^2 + byz + cz^2x^3$ at (1, 2, -1) has a maximum magnitude 64 in the direction parallel to z-axis.
- 24. Find the D.D of f (x, y, z) = $x^2y^2z^2$ at the point (1, 1, -1) in the direction of the tangent to the curve $x = e^t$, $y = 2 \sin t + 1$, $z = t - \cos t$, at t = 0.

mathematics

SONENDRA GUPTA, 9893455006, 9329443789

25. Find a unit vector normal to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2).

[RGPV June 2007, 09, Feb. 2010, Dec. 2010]

- 26. Find the directional derivative of $\phi = 5x^2y 5y^2z + 2.5$ z^2x at the point P (1, 1, 1) in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$
- 27. Find the unit vector normal to the surface $x^4 3xyz + z^2 + 1 = 0$ at the point (1, 1, 1).
- 28. Find the directional derivative of the function ϕ (x, y, z) = $xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ [RGPV June 2010]
- 29. Show that the vector field given by: $\mathbf{F} = (x^2 yz)\mathbf{i} + (y^2 xz)\mathbf{j} + (z^2 xy)\mathbf{k}$ is irrotational and find the scalar potential.

Chapter - 3 Vector Integration

- 1. Given that $\mathbf{r}(t) = \begin{cases} 2\mathbf{i} \mathbf{j} + 2\mathbf{k}, & \text{when } t = 2 \\ 4\mathbf{i} 2\mathbf{j} + 3\mathbf{k}, & \text{when } t = 3 \end{cases}$, Show that $\int_{2}^{3} \mathbf{r} \cdot \frac{d\mathbf{r}}{dt} dt = 10.$
- 2. If $\mathbf{r}(t) = 5t^2 \mathbf{i} + t \mathbf{j} t^3 \mathbf{k}$, Show that $\int_{2}^{2} \mathbf{r} \times \frac{d^2 \mathbf{r}}{dt^2} dt = -14 \mathbf{i} + 75 \mathbf{j} 15 \mathbf{k} \left[\mathbf{RGPV July. 2006} \right]$
- 3. Prove that $\int_{1}^{1} [\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})] dt = 0, \text{ Where } \mathbf{A} = \mathbf{t} \, \mathbf{i} 3 \, \mathbf{j} + 2 \mathbf{t} \, \mathbf{k}, \, \mathbf{B} = \mathbf{i} 2 \, \mathbf{j} + 2 \, \mathbf{k},$ $\mathbf{C} = 3 \, \mathbf{i} + \mathbf{t} \, \mathbf{j} \mathbf{k}$
- 4. If $\mathbf{r} \times \mathbf{dr} = \mathbf{0}$, Show that $\hat{\mathbf{r}} = \text{constant}$.

[RGPV Feb. 2007]

Chapter - 4

Line Integral , Surface integral and Volume integral

LINE INTEGRAL

- 1. Evaluate $\int_{C} \mathbf{F} . d\mathbf{r}$ where $\mathbf{F} = (\mathbf{x}^2 \mathbf{y}^2) \mathbf{i} + \mathbf{x} \mathbf{y} \mathbf{j}$ and C is the arc of the curve $\mathbf{y} = \mathbf{x}^3$ in the xy-plane from (0, 0) to (2, 8).
- 2. Evaluate $\int \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = 3xy \mathbf{i} y^2 \mathbf{j}$ and C is the arc of the parabola $y = 2x^2$ from

BE. IInd Semester-August -2011, M-2

(0,0) to (1,2).

- 3. Using the line integral, compute the work done by the force $\mathbf{F} = (2y+3)\mathbf{i} + xz\mathbf{j} + (yz-x)\mathbf{k}$ when it moves a particle from the point (0,0,0) to the point (2,1,1) along the curve $x=2t^2$, y=t, $z=t^3$
- 4. Find the total work done in moving a particle in a force field by $\mathbf{F} = 3xy\,\mathbf{i} 5z\,\mathbf{j} + 10x\,\mathbf{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2. [RGPV Dec. 2002, Feb. 2008]
- 5. If $F = 2y \mathbf{i} z \mathbf{j} + x \mathbf{k}$, evaluate $\int_{c} \mathbf{F} . d\mathbf{r}$ along the curve $x = \cos t$, $y = \sin t$, $z = 2 \cos t$ from t = 0, to $t = \pi / 2$.
- 6. Find the value of $\int_{c} \mathbf{F} . d\mathbf{r}$, where $\mathbf{F} = \mathbf{e}^{\mathbf{x}} \sin y \, \mathbf{i} + \mathbf{e}^{\mathbf{x}} \cos y \, \mathbf{j}$, the vertices of the rectangle C are (0,0), (1,0) $(1,\pi/2)$ and $(0,\pi/2)$.

SURFACE AND VOLUME INTEGRAL

- 7. Evaluate $\iint_{S} \mathbf{F} \, \hat{\mathbf{n}} \, .ds$, where $\mathbf{F} = (\mathbf{x} + \mathbf{y}^2) \, \mathbf{i} 2\mathbf{x} \, \mathbf{j} + 2\mathbf{y} \mathbf{z} \, \mathbf{k}$ and S is the surface of the plane $2\mathbf{x} + \mathbf{y} + 2\mathbf{z} = 6$ in the first octant. [RGPV June 2007, Dec. 2010]
- 8. Evaluate $\iint_{S} \mathbf{F} \, \hat{\mathbf{n}} \, ds$, where $\mathbf{F} = yz \, \mathbf{i} + zx \, \mathbf{j} + xy \, \mathbf{k}$ and S is the part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant.
- 9. Evaluate $\iint_{S} \mathbf{A} \,\hat{\mathbf{n}}$.ds , where $\mathbf{A} = 12x^{2}y \,\mathbf{i} 3yz \,\mathbf{j} + 2y \,\mathbf{k}$ and S is the portion of the plane x + y + z = 1 included in the first octant.
- 10. Evaluate $\iint_{S} (\nabla \times \mathbf{F}) \,\hat{\mathbf{n}}$.ds, where $\mathbf{F} = y^2 \,\mathbf{i} + y \,\mathbf{j} xz \,\mathbf{k}$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$, and $z \ge 0$.
- 11. Evaluate $\iint_{S} \mathbf{F} \,\hat{\mathbf{n}} \, .ds$, where $\mathbf{F} = 18z \,\mathbf{i} 12 \,\mathbf{j} + 3y \,\mathbf{k}$ and S is the surface of the plane 2x + 3y + 6z = 12 in the first octant. [RGPV Feb. 2006]

mathematics

Head Office: EKLAVYA ENGINEERING HUB. **B-191, NEW ASHOKA GARDEN, BHOPAL- 462023**

SONENDRA GUPTA, 9893455006, 9329443789

- 12. If $\mathbf{F} = 2xz \, \mathbf{i} x \, \mathbf{j} + y^2 \, \mathbf{k}$, then evaluate $\iiint_V \mathbf{F} \, dV$, where V is the region bounded by the surfaces x = 0, y = 0, x = 2, y = 6, $z = x^2$, z = 4 [RGPV Feb. 2007]
- 13. If $\mathbf{F} = (2x^2 3z)\mathbf{i} 2xy\mathbf{j} 4x\mathbf{k}$, then evaluate $\iiint_V \nabla \mathbf{F} \, dV$, where V is the closed region bounded by the planes x = 0, y = 0, y = 0 and y = 0 and y = 0 region bounded by the planes y = 0, y

Chapter - 5 GAUSS DIVERGENCE THEOREM [rel ation between surface and volume integral]

- 1. Show that $\iint_{S} (ax \, \mathbf{i} + by \, \mathbf{j} + cz \, \mathbf{k}) \, \hat{\mathbf{n}} \, dS = \frac{4}{3} \pi (a + b + c)$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$
- 2. Verify Gauss's theorem and show that

 $\iint_{S} [(x^{3} - yz) \mathbf{i} - 2x^{2}y \mathbf{j} + 2\mathbf{k}] \hat{\mathbf{n}} dS = \frac{a^{5}}{3}$, where S denotes the surface of the cube bounded by planes $\mathbf{x} = 0$, $\mathbf{x} = \mathbf{a}$, $\mathbf{y} = 0$, $\mathbf{y} = \mathbf{a}$, $\mathbf{z} = 0$, $\mathbf{z} = \mathbf{a}$.

- 3. Verify Divergence theorem for $F = x^2 \mathbf{i} + z \mathbf{j} + yz \mathbf{k}$, taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1 [RGPV Dec. 2003, June 2008, Feb. 2010]
- 4. Verify Divergence theorem for $F = x^2 \mathbf{i} + z \mathbf{j} + yz \mathbf{k}$, taken over the cube bounded by x = 0, x = a, y = 0, y = b, z = 0 and z = c [RGPV Feb. 2007]
- 5. Verify divergence theorem for $\mathbf{F} = 4 \times \mathbf{i} 2y^2 \mathbf{j} + z^2 \mathbf{k}$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3. [RGPV Dec. 2004, 2010 June 2004]
- 6. Find the value of $\iint_s \mathbf{F} \, \hat{\mathbf{n}} \, .ds$ when $\mathbf{F} = x \, \mathbf{i} y \, \mathbf{j} + (z^2 1) \, \mathbf{k}$ and S is a closed surface bounded by plane z = 0, z = 1 and cylinder $x^2 + y^2 = 4$. Verify the Gauss theorem also
- 7. Evaluate $\iint_{s} \mathbf{F} \, \hat{\mathbf{n}} \, .ds$, over the surface of the region above xy-plane bounded by curve $\mathbf{z}^2 = \mathbf{x}^2 + \mathbf{y}^2$ and the plane $\mathbf{z} = 4$, if $\mathbf{F} = 4\mathbf{x}\mathbf{z}\,\mathbf{i} + \mathbf{x}\mathbf{y}\mathbf{z}^2\,\mathbf{j} + 3\mathbf{z}\,\mathbf{k}$ [RGPV June 2011]
- 8. Evaluate by Gauss divergence theorem $\iint_{S} (y^{2} z^{2} \mathbf{i} + z^{2} x^{2} \mathbf{j} + z^{2} y^{2} \mathbf{k}) \hat{\mathbf{n}} dS$, where S is the part of the sphere $x^{2} + y^{2} + z^{2} = 1$ above XOY plane bounded by xy-

BE. IInd Semester-August -2011, M-2

Chapter - 6 STOKE'S and GREEN THEOREM [rel ation between surface and Line integral]

- 1. Verify Stoke's theorem for the vector field $\mathbf{F} = (x^2 y^2) \mathbf{i} + 2xy \mathbf{j}$, integrated round the rectangle in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a and y = b [RGPV June 2002, July 06, Dec. 06]
- Verify Stoke's theorem for the vector field $\mathbf{F} = (x^2 + y^2) \mathbf{i} 2xy \mathbf{j}$, integrated round the rectangle in the plane z = 0 and bounded by the line, $x = \pm a$, y = 0 and y = b[RGPV Feb. 2005, Feb. 2010, June 2011]
- 3. Verify Stoke's theorem for the vector field $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j}$, integrated round the square whose sides are x = 0, y = 0, x = a and y = a in the plane z = 0.
- 4. By using Stoke's theorem, evaluate $\int_C (zy dx + zx dy + xy dz)$, where C is the curve $x^2 + y^2 = 1$, $z = y^2$ [RGPV June 2005]
- 5. Apply Stoke's theorem to valuate $\int_C [(x+y) dx + (2x-z) dy + (z+y) dz]$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6). [RGPV Dec. 2003, Sept. 2009]
- 6. Apply Stoke's theorem to evaluate $\int_C [(x+2y) dx + (x-z) dy + (y-z) dz]$, where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6) oriented in the anticlockwise direction
- 7. Verify the Stoke's theorem for the vector $\mathbf{F} = (2x y)\mathbf{i} yz^2\mathbf{j} y^2z\mathbf{k}$, over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on xy-plane.

[RGPV Dec. 2005, 07, June 07, 08]

- 8. Use Stoke's theorem to evaluate $\oint_C V \ dr$, where $\mathbf{V} = \mathbf{y}^2 \mathbf{i} + \mathbf{x} \mathbf{y} \mathbf{j} + \mathbf{x} \mathbf{z} \mathbf{k}$, and C is the bounding curve of the hemisphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = 9$, $\mathbf{z} > 0$, oriented in the positive direction.
- 9. Apply Stoke's theorem to evaluate $\int_C (y \ dx + z \ dy + x \ dz)$, where C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a [RGPV June. 2004, Feb. 2008]

mathematics