

CLAIMS

What is claimed is:

1 1. A vehicle internetwork comprising a plurality of network elements
2 including at least one node and at least one vehicle bus coupled among at least
3 one peripheral electronic device, wherein functions of the plurality of network
4 elements are remotely controllable, wherein the at least one node manipulates
5 node information including configuration and security information to provide
6 secure interoperability among the plurality of network elements and the at least
7 one peripheral electronic device.

1 2. The vehicle internetwork of claim 1, wherein the at least one vehicle bus
2 comprises at least one bus selected from a group consisting of at least one
3 Original Equipment Manufacturer (OEM) bus, at least one Automotive
4 Multimedia Interface Consortium (AMI-C) bus, at least one external network,
5 and at least one local development network.

1 3. The vehicle internetwork of claim 2, wherein the at least one local
2 development network accesses the at least one node for the performance of
3 application upgrades, diagnostics, and programming.

1 4. The vehicle internetwork of claim 2, wherein the at least one local
2 development network supports manipulation and transfer of entertainment
3 software, wherein the entertainment software comprises at least one
4 entertainment feature selected from a group consisting of video, audio, movies,
5 television shows, music, games, and simulations.

1 5. The vehicle internetwork of claim 1, wherein the at least one vehicle bus
2 comprises at least one legacy automotive bus selected from a group consisting
3 of Audio Control Protocol (ACP) buses and Standard Corporate Protocol (SCP)
4 buses.

1 6. The vehicle internetwork of claim 1, wherein the at least one peripheral
2 electronic device comprises at least one device coupled to at least one OEM bus

3 selected from a group consisting of climate control devices, actuator devices,
4 position location devices, Global Positioning System (GPS) devices,
5 communication devices, cellular telephony devices, processing devices,
6 diagnostic devices, modems, video devices, audio devices, multimedia devices,
7 electronic game devices, sensor devices, switch devices, and device
8 subnetworks.

1 7. The vehicle internetwork of claim 1, wherein the at least one peripheral
2 electronic device comprises at least one device coupled to at least one AMI-C
3 bus selected from a group consisting of communication devices, position
4 location devices, GPS devices, communication devices, pager devices, cellular
5 telephony devices, processing devices, modems, video devices, audio devices,
6 multimedia devices, electronic game devices, personal digital assistants (PDAs),
7 and wireless local area network (LAN) devices.

1 8. The vehicle internetwork of claim 1, wherein the at least one node
2 comprises at least one interface port selected from a group consisting of
3 Intelligent Data Bus (IDB-C) ports, MOST ports, Institute of Electrical and
4 Electronics Engineers (IEEE) 1394 ports, On-Board Diagnostic-II (OBD-II)
5 ports, Standard Corporate Protocol (SCP) ports, Audio Control Protocol (ACP)
6 ports, Bluetooth ports, Personal Communications Service (PCS) ports, Global
7 System for Mobile Communications (GSM) ports, and Ethernet ports.

1 9. The vehicle internetwork of claim 1, wherein the functions are hosted on
2 a central network element, wherein the functions are distributed among the
3 plurality of network elements in response to a coupling of additional peripheral
4 electronic devices to the at least one vehicle bus.

1 10. The vehicle internetwork of claim 1, wherein the at least one node
2 includes at least one gateway node and at least one port node, wherein the at
3 least one node provides at least one function selected from a group consisting of
4 data processing, data storage, access control, protocol translation, security
5 including service discovery and device authentication, and network control.

1 11. The vehicle internetwork of claim 10, wherein the at least one gateway
2 comprises at least one interface port, at least one real-time interface processor
3 (RTIP), and at least one application processor, wherein the at least one RTIP
4 performs real-time operations and the at least one application processor
5 performs high level processing functions.

1 12. The vehicle internetwork of claim 11, wherein the at least one gateway
2 functions as an Internet Protocol (IP) router, wherein the at least one RTIP
3 comprises a high-speed bus controlled by at least one coupled device.

1 13. The vehicle internetwork of claim 11, wherein the at least one interface
2 port has at least one function selected from a group consisting of a tag, a bridge,
3 and an interface.

1 14. The vehicle internetwork of claim 11, wherein the at least one interface
2 port includes at least one port selected from a group consisting of wired
3 communication ports and wireless communication ports.

1 15. The vehicle internetwork of claim 10, wherein the at least one gateway
2 includes a first gateway coupled to a second gateway.

1 16. The vehicle internetwork of claim 10, wherein the at least one port node
2 is coupled to at least one subnetwork.

1 17. The vehicle internetwork of claim 10, wherein the at least one gateway
2 node couples a first vehicle bus and a second vehicle bus, wherein the at least
3 one port node couples the at least one vehicle bus to the at least one peripheral
4 electronic device.

1 18. The vehicle internetwork of claim 10, wherein the at least one port node
2 comprises at least one device selected from a group consisting of at least one
3 processor, at least one memory cache, at least one wireless modem, at least one
4 network protocol, at least one policy, and at least one wired local area network
5 (LAN).

1 19. The vehicle internetwork of claim 10, wherein the at least one port node
2 comprises at least one device selected from a group consisting of at least one
3 micro real-time interface processor (RTIP), at least one appliance interface, at
4 least one communication interface, and at least one memory device.

1 20. The vehicle internetwork of claim 19, wherein the at least one appliance
2 interface is coupled to at least one sensor, wherein the at least one
3 communication interface is coupled to at least one radio.

1 21. The vehicle internetwork of claim 10, wherein the at least one port node
2 comprises at least one port node selected from a group consisting of a serial
3 network interface connector (SNIC) and a public network port (PNP), wherein
4 the at least one port node interacts with at least one corresponding proxy to
5 enable the at least one peripheral electronic device to operate within the
6 network.

1 22. The vehicle internetwork of claim 1, wherein the at least one node
2 comprises at least one hybrid switch, wherein the at least one hybrid switch
3 includes at least one interface port coupled among at least one switch of a first
4 speed and at least one switch of a second speed, wherein each of the at least one
5 switch of a first speed and the at least one switch of a second speed are coupled
6 to at least one port.

1 23. The vehicle internetwork of claim 1, wherein the at least one hybrid
2 switch distributes at least one switching function among the plurality of network
3 elements of a host vehicle.

1 24. The vehicle internetwork of claim 22, wherein at least one application of
2 a first type is coupled through the at least one port to the at least one switch of a
3 first speed, wherein at least one application of a second type is coupled through
4 the at least one port to the at least one switch of a second speed.

6 25. The vehicle internetwork of claim 1, wherein the at least one node
7 couples to at least one subnetwork, wherein the at least one subnetwork
8 comprises at least one device selected from a group consisting of sensor
9 devices, actuator devices, wired network devices, and wireless network devices.

1 26. The vehicle internetwork of claim 1, further comprising at least one
2 router that couples to the Internet using at least one device selected from a
3 group consisting of at least one bus and at least one communication device,
4 wherein the at least one bus is selected from a group consisting of an IEEE 1394
5 bus, a MOST bus, an IDB-C bus, and an Ethernet bus, wherein the at least one
6 communication device is selected from a group consisting of a Bluetooth
7 modem, an IEEE 802.11 radio, and a mobile telephone.

1 27. The vehicle internetwork of claim 1, wherein the at least one node
2 generates at least one hierarchy of communication alternatives in response to a
3 determined position of a host vehicle, wherein a selected communication
4 alternative is used to communicate with at least one local site.

1 28. The vehicle internetwork of claim 1, wherein data processing is
2 controlled using at least one processing hierarchy that controls at least one event
3 selected from a group consisting of data classifications, data transfers, data
4 queuing, data combining, processing locations, and communications among the
5 plurality of network elements.

1 29. The vehicle internetwork of claim 1, wherein the functions are
2 distributed among the plurality of network elements.

1 30. The vehicle internetwork of claim 1, wherein the functions of the at least
2 one node include at least one function selected from a group consisting of data
3 acquisition, data processing, communication management, data routing, data
4 security, programming, node operation, protocol translation, network
5 management, and interfacing with at least one communication physical layer
6 including cellular telephony, wireline telephone, satellite telephony, packet
7 radio, microwave, optical.

1 31. The vehicle internetwork of claim 30, wherein data processing functions
2 of at least one peripheral electronic device are distributed among at least one
3 other processor selected from a group consisting of the at least one node and the
4 at least one peripheral electronic device.

1 32. The vehicle internetwork of claim 1, wherein the at least one node
2 implements at least one security method selected from a group consisting of
3 confounder codes, encrypted transmissions, security policy-based
4 communication protocols, blocking coupling with unauthorized devices, and
5 blocking commands from at least one class of device.

1 33. The vehicle internetwork of claim 32, wherein the at least one security
2 method is implemented in at least one gateway node and at least one port node.

1 34. The vehicle internetwork of claim 32, wherein the at least one security
2 method includes blocking denial of service attacks by decoupling at least one
3 port node through which unauthorized access is attempted and blocking at least
4 one application at a decoupled port node.

1 35. The vehicle internetwork of claim 32, wherein the at least one security
2 method further includes at least one method selected from a group consisting of
3 an ignition key, a password device, and a security display.

1 36. The vehicle internetwork of claim 32, wherein the at least one security
2 method further includes a designated authorization port, wherein at least one
3 connector is coupled to the designated authorization port to receive
4 authorization for coupling a device to the plurality of network elements.

1 37. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements automatically organize in response to the node information, wherein
3 the automatic organizing comprises automatically controlling data transfer,
4 processing, and storage among the plurality of network elements.

1 38. The vehicle internetwork of claim 1, wherein at least one level of
2 synchronization is supported among different subsets of the plurality of network
3 elements, wherein a first level of synchronization is supported among a first
4 subset of the plurality of network elements, wherein a second level of
5 synchronization is supported among a second subset of the plurality of network
6 elements.

1 39. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements are self-assembling, wherein search and acquisition modes of the at
3 least one node search for participating ones of the plurality of network elements,
4 wherein a determination is made whether each of the participating ones of the
5 plurality of network elements are permitted to join the vehicle internetwork
6 using a message hierarchy, wherein the plurality of network elements are
7 surveyed at random intervals for new nodes and missing nodes.

1 40. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements are self-assembled into a multi-cluster network, wherein a start node is
3 selected as a base node, wherein the base node communicates an assembly
4 packet throughout the vehicle internetwork, wherein information of the
5 assembly packet alternates with each successive communication between
6 directing a node to become a base node of a particular cluster number and
7 directing a node to become a remote node of a particular cluster number,
8 wherein the particular cluster number is incrementally changed with each
9 successive communication of the assembly packet.

1 41. The vehicle internetwork of claim 1, wherein the at least one node
2 performs service discovery, wherein service discovery comprises synchronizing
3 the at least one node, authenticating the at least one node, determining at least
4 one communication mode for the at least one node, and informing the at least
5 one node of resources available among the plurality of network elements.

1 42. The vehicle internetwork of claim 1, wherein data is collected by the at
2 least one node, wherein at least one operation is performed on the data in

3 response to parameters established by a user, the at least one operation selected
4 from a group consisting of classification, routing, processing, storing, and
5 fusing.

1 43. The vehicle internetwork of claim 42, wherein the data is vehicle
2 diagnostic data, wherein diagnostic operations are performed in response to the
3 data.

1 44. The vehicle internetwork of claim 42, wherein routing comprises
2 selecting at least one communication type and at least one communication
3 coupling for use in routing the collected data.

1 45. The vehicle internetwork of claim 42, wherein routing comprises
2 selecting at least one data type for routing, selecting at least one of the plurality
3 of network elements to which to route the selected data, selecting at least one
4 route to the selected at least one of the plurality of network elements, and
5 routing the selected at least one data type to the selected at least one of the
6 plurality of network elements.

1 46. The vehicle internetwork of claim 42, wherein processing comprises
2 selecting at least one data type for processing, selecting at least one processing
3 type, selecting at least one of the plurality of network elements to perform the
4 selected at least one processing type, and transferring the selected at least one
5 data type to the selected at least one of the plurality of network elements using
6 at least one route through the sensor network.

1 47. The vehicle internetwork of claim 46, wherein data processed in a
2 plurality of nodes is aggregated for further processing by other nodes.

1 48. The vehicle internetwork of claim 46, wherein data processed by the at
2 least one node is aggregated for reporting to at least one user.

1 49. The vehicle internetwork of claim 42, wherein storing comprises
2 selecting at least one data type for storage, selecting at least one storage type,

3 selecting at least one of the plurality of network elements to perform the
4 selected at least one storage type, and transferring the selected at least one data
5 type to the selected at least one of the plurality of network elements using at
6 least one route through the plurality of network elements.

1 50. The vehicle internetwork of claim 42, wherein fusing comprises a first
2 node transmitting at least one query request to at least one other node, wherein
3 the first node collects data from the at least one other node in response to the at
4 least one query request, and processes the collected data.

1 51. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements comprise a plurality of application programming interfaces (APIs),
3 wherein the APIs include APIs for application support, database services,
4 routing, security, network management, and deployment.

1 52. The vehicle internetwork of claim 51, wherein the APIs for application
2 support, database services, and routing are hosted on at least one gateway node,
3 wherein the APIs for security, network management, and deployment are shared
4 among at least one gateway node and at least one port node.

1 53. The vehicle internetwork of claim 51, wherein the plurality of APIs are
2 layered, wherein the plurality of APIs enable distributed resource management
3 by providing network resource information among the plurality of network
4 elements, wherein information transfer among the plurality of network elements
5 is controlled using a synchronism hierarchy established in response to the
6 network resource information.

1 54. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements support atomic transaction methods.

1 55. The vehicle internetwork of claim 1, wherein the at least one node
2 includes sensing, processing, communications, and storage devices supporting a
3 plurality of processing and protocol layers.

1 56. The vehicle internetwork of claim 1, wherein the at least one node
2 supports at least one communication mode selected from a group consisting of
3 wireless communications, wired communications, and hybrid wired and
4 wireless communications.

1 57. The vehicle internetwork of claim 1, wherein the at least one node is
2 coupled to the at least one remote computer using the plurality of network
3 elements, wherein the plurality of network elements includes at least one
4 element selected from a group consisting of at least one station gateway, at least
5 one server, at least one repeater, at least one interrogator, and at least one
6 network, wherein the at least one network includes wired networks, wireless
7 networks, and hybrid wired and wireless networks.

1 58. The vehicle internetwork of claim 57, wherein the at least one network
2 comprises at least one network selected from a group comprising the Internet,
3 local area networks, wide area networks, metropolitan area networks, and
4 information service stations.

1 59. The vehicle internetwork of claim 57, wherein the plurality of network
2 elements provides remote accessibility using World Wide Web-based tools to
3 data, code, control, and security functions, wherein data includes signals,
4 wherein code includes signal processing, decision support, and database
5 elements, and wherein control includes operation of the plurality of network
6 elements.

1 60. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements comprise a plurality of network element sets, wherein the plurality of
3 network element sets are layered.

1 61. The vehicle internetwork of claim 1, wherein the at least one node
2 comprises a plurality of node types, wherein the plurality of node types includes
3 at least one node of a first type and at least one node of a second type, wherein a
4 first network having a first node density is assembled using the at least one node

5 of a first type, wherein a second network having a second node density is
6 assembled using the at least one node of a second type, wherein the second
7 network is overlaid onto the first network.

1 62. The vehicle internetwork of claim 1, wherein software and data are
2 transferable among the plurality of network elements, wherein the transfer is
3 remotely controllable, wherein the software and the data are downloadable from
4 at least one location selected from a group consisting of storage devices of the
5 plurality of network elements, external storage devices, and remote storage
6 devices.

1 63. The vehicle internetwork of claim 1, wherein the plurality of network
2 elements are managed as a distributed and active database using a distributed
3 resource management protocol, wherein the plurality of network elements are
4 reused among different applications, wherein the network elements are used in
5 multiple classes of applications.

1 64. The vehicle internetwork of claim 1, further comprising at least one
2 database, wherein the at least one database includes at least one storage device
3 selected from a group consisting of storage devices coupled to at least one of the
4 plurality of network elements and storage devices of the at least one node.

1 65. The vehicle internetwork of claim 1, wherein at least one coupling
2 among the at least one node and at least one external network supports data
3 transfer among the at least one node of a host vehicle, wherein the data includes
4 vehicle service data, diagnostic data, maintenance history data, security data,
5 electronic mail, and entertainment software.

1 66. The vehicle internetwork of claim 1, wherein at least one coupling
2 among the at least one peripheral electronic device and at least one external
3 network supports data transfer among the at least one node of a host vehicle,
4 wherein the data includes vehicle service data, diagnostic data, maintenance
5 history data, security data, electronic mail, and entertainment software.

1 67. The vehicle internetwork of claim 1, wherein the at least one node is
2 coupled to at least one diagnostic device of a host vehicle.

1 68. The vehicle internetwork of claim 1, wherein the at least one node
2 comprises at least one diagnostic node of a host vehicle.

3 69. The vehicle internetwork of claim 1, wherein the at least one node
4 manipulates at least one data item selected from a group consisting of vehicle
5 assembly data, vehicle maintenance data, vehicle diagnostics data, vehicle
6 position data, vehicle operations profile data, fleet management data, fleet
7 reliability analysis data, security system data, entertainment system data, and
8 targeted advertising data.

1 70. The vehicle internetwork of claim 1, wherein at least one subset of the
2 plurality of network elements comprise at least one sensor network, wherein the
3 at least one subset further includes at least one sensor node, at least one gateway
4 station, at least one server, at least one gateway network, and at least one client
5 computer hosting a World Wide Web browser, wherein the at least one node is
6 configured as the at least one gateway station and the at least one sensor node.

1 71. The vehicle internetwork of claim 70, wherein the at least one sensor
2 node is coupled among a monitored environment and the at least one client
3 computer, wherein functions of the at least one sensor node are remotely
4 controllable using the at least one client computer, wherein the at least one
5 sensor node provides the node information including node resource cost and
6 message priority to the plurality of network elements, wherein data processing
7 is distributed among the plurality of network elements in response to the node
8 information.

1 72. The vehicle internetwork of claim 70, wherein at least one redundant
2 communication pathway is established among the plurality of network elements.

1 73. The vehicle internetwork of claim 70, wherein the at least one gateway
2 station performs at least one function selected from a group consisting of
3 protocol translation, sensor network management, management of transmissions
4 from a remote user, and interfacing with at least one communication physical
5 layer including wired local area networks, packet radio, microwave, optical,
6 wireline telephony, cellular telephony, and satellite telephony.

1 74. The vehicle internetwork of claim 70, wherein the at least one gateway
2 network includes wired networks, wireless networks, and hybrid wired and
3 wireless networks, wherein the at least one gateway network comprises at least
4 one network selected from a group comprising the Internet, local area networks,
5 wide area networks, metropolitan area networks, and information service
6 stations.

1 75. A vehicle internetwork comprising a plurality of network elements
2 including at least one electronic device coupled among at least one node and at
3 least one vehicle bus, wherein the plurality of network elements are remotely
4 accessible via at least one wireless Internet coupling with at least one remote
5 computer, wherein the plurality of network elements manipulate network data
6 including configuration and security data to provide secure interoperability
7 among the plurality of network elements.

1 76. A vehicle internetwork, comprising:
2 means for coupling a plurality of network elements including at least
3 one node and at least one vehicle bus among at least one peripheral electronic
4 device;
5 means for manipulating node information including configuration and
6 security information;
7 means for automatically assembling and configuring the plurality of
8 network elements in response to the node information;
9 means for remotely controlling at least one function of the plurality of
10 network elements; and

11 means for providing secure interoperability among the plurality of
12 network elements in response to the node information.