1) The B+ power supply voltage in a tube guitar amplifier may vary according to a number of factors, including AC line voltage, winding tolerances of the power transformer, bias currents of the tubes, and thermal drift. A sample of 41 voltage measurements was taken and the results are  $\bar{x}$  = 441.2 V and s = 7.23 V, with unknown population variance. On the last exam, we wrote a 95% confidence interval on the population mean B+ power supply voltage and found it to be  $439.0 < \mu < 443.4$  (V)

If the power supply voltage is supposed to be 440 V, test the following hypotheses at  $\alpha$  = 0.05 using the confidence interval approach:

 $H_0$ :  $\mu = 440 \text{ V}$ 

 $H_0: \mu \neq 440 \text{ V}$ 



Now test the same hypotheses using the fixed-  $\alpha$  approach. Include a sketch of the appropriate distribution to support

your work.





Finally, test the hypotheses using the p-value approach, with a sketch.

$$P-Value = P(Z > 1.063) + P(Z < -1.063)$$
 (+1)  
 $P(Z < -1.06) = 0.144572$  (+1) (table)

- MAM

P>X



so fail to reject t



Test the following hypotheses on the standard deviation of the B+ power supply voltage at  $\alpha$  = 0.05 using the *p*-value approach:

 $H_0$ :  $\sigma$  = 5 V

H₁: σ>6 V

Include a supporting sketch.

$$\sqrt{\frac{2}{8^2}} = \frac{(n-1)^2}{8^2} = \frac{40.7.23^2}{6^2} = 58.08 | (+1)$$

$$\chi^{2}$$
 $\chi^{2}$ 
 $\chi^{2$ 

p-value



