Tektronix 4052/4054 opcode Decoding table (gray cells 6800 unused, red on 4052/4054&A, 4052A/4054A ONLY=blue + green 6800 16-bit ext)

MSB \ LSB	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
0_	TEST	NOP	NOP	SFA	LDAG D	LDAG X	TAP	TPA	INX	DEX	CLV	SEV	CLC	SEC	CLI	SEI
	(INH)	(INH)	(INH)	(INH)	(DIR)	(DIR)	(INH)	(INH)	(INH)	(INH)	(INH)	(INH)	(INH)	(INH)	(INH)	(INH)
1_	SBA	CBA	TAPX	TPAX	ADXI I	ASPI I	TAB	TBA	SDA	DAA	LDXX	ABA	LDAX	LDBX	STAX	JMPAX
	(INH)	(INH)	(INH)	(INH)	(IMM)	(IMM)	(INH)	(INH)	(INH)	(INH)	(INH)	(ACC)	(INH)	(INH)	(INH)	(INH)
2_	BRA	SDB	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI	BGE	BLT	BGT	BLE
	(REL)	(INH)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)	(REL)
3_	TSX	INS	PUL A	PUL B	DES	TXS	PSH A	PSH B	JMPIN	RTS	FPSH D	RTI	FPSH X	FPSH	WAI	SWI
	(INH)	(INH)	(ACC)	(ACC)	(INH)	(INH)	(ACC)	(ACC)	(EXT)	(INH)	(DIR)	(INH)	(IDX)	(EXT)	(INH)	(INH)
4_	NEG A (ACC)	FPSH I (IMM*)	FPUL D (DIR)	COM A (ACC)	LSR A (ACC)	FPUL X (IDX)	ROR A (ACC)	ASR A (ACC)	ASL A (ACC)	ROL A (ACC)	DEC A (ACC)	FPUL (EXT)	INC A (ACC)	TST A (ACC)	FDUP (INH)	CLR A (ACC)
5_	NEG B (ACC)	FSWAP (INH)	FADD (INH)	COM B (ACC)	LSR B (ACC)	FSUB (INH)	ROR B (ACC)	ASR B (ACC)	ASL B (ACC)	ROL B (ACC)	DEC B (ACC)	FMUL (INH)	INC B (ACC)	TST B (ACC)	FDIV (INH)	CLR B (ACC)
6_	NEG X	FNRM	PSHRET	COM	LSR	RTRN	ROR	ASR	ASL	ROL	DEC	PSHX	INC	TST	JMP	CLR
	(IDX)	(INH)	(DIR)	(IDX)	(IDX)	(DIR)	(IDX)	(IDX)	(IDX)	(IDX)	(IDX)	(INH)	(IDX)	(IDX)	(IDX)	(IDX)
7_	NEG	STRK	VECT	COM	LSR	PULX	ROR	ASR	ASL	ROL	DEC	STAG D	INC	TST	JMP	CLR
	(EXT)	(INH)	(INH)	(EXT)	(EXT)	(INH)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(DIR)	(EXT)	(EXT)	(EXT)	(EXT)
8_	SUB A	CMP A	SBC A	STAG X	AND A	BIT A	LDA A	ADDG D	EOR A	ADC A	ORA A	ADD A	CPX A	BSR	LDS	ADDG X
	(IMM)	(IMM)	(IMM)	(IDX)	(IMM)	(IMM)	(IMM)	(DIR)	(IMM)	(IMM)	(IMM)	(IMM)	(IMM)	(REL)	(IMM)	(IDX)
9_	SUB A	CMP A	SBC A	SUBD G	AND A	BIT A	LDA A	STA A	EOR A	ADC A	ORA A	ADD A	CPX A	SUBD X	LDS	STS
	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(IDX)	(DIR)	(DIR)
A_	SUB A (IDX)	CMP A (IDX)	SBC A (IDX)	INXSTX (DIR)	AND A (IDX)	BIT A (IDX)	LDA A (IDX)	STA A (IDX)	EOR A (IDX)	ADC A (IDX)	ORA A (IDX)	ADD A (IDX)	CPX A (IDX)	JSR (IDX)	LDS (IDX)	STS (IDX)
B_	SUB A	CMP A	SBC A	LDAG	AND A	BIT A	LDA A	STA A	EOR A	ADC A	ORA A	ADD A	CPX A	JSR	LDS	STS
	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)	(EXT)
C_	SUB B (IMM)	CMP B (IMM)	SBC B (IMM)	STAG (EXT)	AND B (IMM)	BIT B (IMM)	LDA B (IMM)	C7-ESC	EOR B (IMM)	ADC B (IMM)	ORA B (IMM)	ADD B (IMM)	ADAX (INH)	WADGX (INH)	LDX (IMM)	
D_	SUB B	CMP B	SBC B	LDAG I	AND B	BIT B	LDA B	STA B	EOR B	ADC B	ORA B	ADD B	SBUG	CBUG	LDX	STX
	(DIR)	(DIR)	(DIR)	(EXT)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(DIR)	(INH)	(INH)	(DIR)	(DIR)
E_	SUB B (IDX)	CMP B (IDX)	SBC B (IDX)	MOVLR (INH)	AND B (IDX)	BIT B (IDX)	LDA B (IDX)	STA B (IDX)	EOR B (IDX)	ADC B (IDX)	ORA B (IDX)	ADD B (IDX)	MOVRL (INH)	WADX (EXTI)	LDX (IDX)	STX (IDX)
F_	SUB B (EXT)	CMP B (EXT)	SBC B (EXT)	CPCH (INH)	AND B (EXT)	BIT B (EXT)	LDA B (EXT)	STA B (EXT)	EOR B (EXT)	ADC B (EXT)	ORA B (EXT)	ADD B (EXT)	FC-ESC	PCH (IMM)	LDX (EXT)	STX (EXT)
FC_	PSHG (INH)	PULG (INH)	ADDG I (EXTI)	ADDG (EXT)	SUBG I (EXTI)	SUBG (EXT)	CMPGX (INH)	CMPSYM (INH)	LDAGX (INH)	STAGX (INH)						
C7_	TGX (INH)	TXG (INH)	CLRGH (INH)	IFLOAT (INH)	FIXRND (INH)	TMULT (INH)	BUFIN (INH)	BUFOUT (INH)	SEABNK (INH)	DEVIN (INH)	DEVOUT (INH)					

Abbreviations:

4052/4054 and 4052A/4054A Addressing modes (same as 6800):

ACC - Accumulator

In accumulator addressing, either accumulator A or accumulator B is specified. These are 1- byte instructions.

Ex: ABA adds the contents of accumulators and stores the result in accumulator A

IMM - Immediate

In immediate addressing, operand is located immediately after the opcode in the second byte of the instruction in program memory (except LDS and LDX where the operand is in the second and third bytes of the instruction). These are 2-byte or 3-byte instructions.

Ex: LDAA #\$25 loads the number (25)H into accumulator A

DIR - Direct

In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes of the memory, i.e, locations 0 through 255. Enhanced execution times are achieved by storing data in these locations. These are 2-byte instructions.

Ex: LDAA \$25 loads the contents of the memory address (25)_H into accumulator A

EXT - Extended

In extended addressing, the address contained in the second byte of the instruction is used as the higher eight bits of the address of the operand. The third byte of the instruction is used as the lower eight bits of the address for the operand. This is an absolute address in the memory. These are 3-byte instructions.

Ex: LDAA \$1000 loads the contents of the memory address (1000)_H into accumulator A

IDX - Indexed

In indexed addressing, the address contained in the second byte of the instruction is added to the index register's lowest eight bits. The carry is then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a temporary address register so there is no change to the index register. These are 2-byte instructions.

Ex: LDX #\$1000 or LDAA \$10.X

Initially, LDX #\$1000 instruction loads 1000_H to the index register (X) using immediate addressing. Then LDAA \$10,X instruction, using indexed addressing, loads the contents of memory address ($10)_H + X = 1010_H$ into accumulator A.

INH - Implied (Inherent)

In the implied addressing mode, the instruction gives the address inherently (i.e., stack pointer, index register, etc.). Inherent instructions are used when no operands need to be fetched. These are 1-byte instructions.

Ex: INX increases the contents of the Index register by one. The address information is "inherent" in the instruction itself.

INCA increases the contents of the accumulator A by one.

DECB decreases the contents of the accumulator B by one.

REL - Relative

The relative addressing mode is used with most of the branching instructions on the 6802 microprocessor. The first byte of the instruction is the opcode. The second byte of the instruction is called the *offset*. The offset is interpreted as a *signed 7-bit number*. If the MSB (most significant bit) of the offset is 0, the number is positive, which indicates a forward branch. If the MSB of the offset is 1, the number is negative, which indicates a backward branch. This allows the user to address data in a range of -126 to +129 bytes of the present instruction. These are 2-byte instructions.

Ex:

PC Hex Label Instruction 0009 2004 BRA 0FH

Data Space - A 0x0000-FFFF 56KB of DRAM + 8KB of DATA ROM

Fetch Space - B 0x0000-FFFF 48KB of BASIC ROM at 0x4000-0xFFFF plus 16KB of bank switched BASIC or option ROM Pack at 0x0000

6800, 4052/4054 &A and 4052A/4054A only registers:

- **ACCA** Accumulator A = AL (6800 compatible)
 - Extended to 16-bits AE = AH and AL
- ACCG is 16-bit extension of A where A is low order 8-bits
- ACCB Accumulator B=BL (6800 compatible)
 - Extended to 16-bits BE = BH and BL
- ACCX is Accumulator ACCA or ACCB
- X Index register XH and XL
- PC Program Counter PCH and PCL
- SP Stack Pointer SPH and SPL
- CC Status register

CC status register:

Bit 0	C Carry/Borrow status
Bit 1	V Two's complement / overflow indicator
Bit 2	Z Zero status
Bit 3	N Sign/Negative status
Bit 4	I Interrupt Mask status
Bit 5	H Half carry
Bit 6	D Data Space Indicator (1 → A)
Bit 7	F Fetch Space Indicator (1 → B)

Symbols in the STATUSES column:

- (blank) operation does not affect status
- x operation affects status
- 0 flag is cleared by the operation
- 1 flag is set by the operation

data8 8-bit immediate data
data16 16-bit immediate data
addr8 8-bit direct address
addr16 16-bit extended address
disp 8-bit signed address displacement

(HI) bits 15-8 from 16bit value

(LO) bits 7-0 from 16bit value

[...] content of ...

[[...]] implied addressing (content of [content of ..])

∧ Logical AND

v Logical OR

← Data is transferred in the direction of the arrow

Figure 1- 4052/4054 and 4052A/4054A Registers

Opcodes	added for the 4052/4054	SDB	Set Data Space to B	PSHG	Push G on the Stack
		SFA	Set Fetch Space to A	PULG	Pull G from the Stack
ADAX	Add A to Index Register	STAX	Store B Register	SEABNK	Search for a CALL name in a
ADXI	Add to Index Register		Double- Indexed		ROM bank
	Immediate	STRK	Compute Stroke	STAG	Store G Accumulator
ASPI	Add to Stack Pointer Immediate	TAP	A> CC Not including	STAGX	Store G Accumulator
CBUG	Clear Debug Interrupt Vectors		Space Bits	SIMON	Double-Indexed
CPCH	Call Code in Patch Space	TAPX	A> CC Including Space Bits	SUBG	Subtract from G Accumulator
CPX	Compare Index Register	TEST	Microcode Restart		
FADD	Floating Point Add	TPA	CC> A Not including	TGX	Transfer G to the Index Register
FDIV	Floating Point Divide		Space Bits	TMULT	Multiply a 6-byte Integer by 10
FDUP	Duplicate Floating Point	TPAX	CC> A Including Space Bits	TXG	Transfer the Index Register to G
FMUL	Floating Point Multiply	VECT	Compute Vector	WADGX	Add G to Index Extended
FNRM	Normalize Floating Point	WADX	Add Memory to Index		
FPSH	Push Floating Point			16-bit Ext	ensions to 6800 instructions
FPUL	Pull Floating Point			for 4052A	/4054A
FSUB	Floating Point Subtract				
FSWP	Swap Floating Point	Opcodes a	dded to 4052A/4054A	ABA	Add 16-bit BE to 16-bit AE
JMPAX	Jump Double-Indexed			ADD	Add 8-bit value to AE or BE
JMPIN	Jump Indirect	ADDG	Add to G Accumulator	$\overline{\mathrm{ASL}}$	Arithmetic Shift Left AE or BE
LDAX	Load A Register	BUFIN	Read a buffer from the GPIB	CLR	Clear AE or BE
	Double-Indexed	BUFOUT	Write a buffer to the GPIB	$\frac{\text{COM}}{\text{COM}}$	Complement AE or BE
LDBX	Load B Register.	CLRGH	Clear High Byte of G	DEC	Decrement AE or BE
	Double-Indexed	CMPGX	Compare G and X	INC	Increment AE or BE
LDXX	Load X Register	CMPSYM	Compare Name in a Symbol		
	Double-Indexed		Table Record	<u>LDA</u>	Load AE or BE from Memory
MOVLR	Block Move Low to High	DEVIN	Read a buffer from an I/O	<u>PUL</u>	Pull Data from Stack to AE BE
MOVRL	Block Move Low to High	DELLOLIE	Device	RTI	Return from Interrupt
NEG	Negate (2's complement)	DEVOUT		\underline{SBA}	Subtract BE from AE
PCH	Jump to Code in Patch Space	FIXRND	Round a Float to an Integer	<u>SUB</u>	Subtract Memory from AE BE
PSHRET	Push Return Address on	IFLOAT	Convert an Integer to a Float	\underline{SWI}	Software Interrupt
DOLLA	Special Stack	INXSTX	Increment Index Register and	TAB	Transfer AE to BE
PSHX	Push X on the Stack	IDAC	Store It	<u>TBA</u>	Transfer BE to AE
PULX	Pull X from the Stack	LDAG	Load G Accumulator	$\underline{\text{WAI}}$	Wait for Interrupt
RTRN	Return Via the Special Stack	LDAGX	Load G Accumulator	<u>—</u>	-
SBUG	Set Debug Interrupt Vectors		Double-Indexed		
SDA	Set Data Space to A				

6800 ins	6800 instructions ABA ADD B to A		Unconditional branch to Subroutine located relative to PC contents	<u>NEG</u>	NEGATE the Accumulator or . Memory
ABA	ADD B to A	BVC	Branch if overflow clear	NOP	No operation
ADC	ADD Memory contents + Carry	$\overline{\mathrm{BVS}}$	Branch if overflow set	ORA	OR the Accumulator
	to Accumulator	$\overline{\text{CBA}}$	Compare A AND B. Only status is .	PSH	Push Accumulator onto the Stack
ADD	ADD Memory contents to		affected	PUL	Pull Data from Stack to .
	Accumulator	CLC	Clear the Carry flag		Accumulator
AND	Memory contents AND the	CLI	Clear the Interrupt flag to enable	ROL	Rotate Left through Carry
	Accumulator to the Accumulator		Interrupts	ROR	Rotate Right through Carry
<u>ASL</u>	Arithmetic Shift Left.	<u>CLR</u>	Clear ACC, Memory or Overflow	<u>RTI</u>	Return from Interrupt
	Bit 0 set 0 (multiplying by two)	<u>CLV</u>	Clear overflow flag	<u>RTS</u>	Return from Subroutine
<u>ASR</u>	Arithmetic Shift Right.	<u>CMP</u>	Compare Memory contents AND	SBA	Subtract B from A
	Bit 7 stays the same		Accumulator. Only Status affected	<u>SBC</u>	Subtract Memory and Carry flag.
BCC	Branch if Carry Clear	<u>COM</u>	Complement ACC or Memory		from Accumulator
BCS	Branch if Carry Set	<u>CPX</u>	Compare Memory contents to X	<u>SEC</u>	Set the Carry flag
BEQ	Branch if Equal to zero	<u>DAA</u>	Decimal Adjust Accumulator A	<u>SEI</u>	Set the Interrupt flag
<u>BGE</u>	Branch if Greater or Equal to zero	<u>DEC</u>	Decrement Accumulator or Memory	<u>SEV</u>	Set the Overflow flag
<u>BGT</u>	Branch if Greater than zero	<u>DES</u>	Decrement Stack Pointer	<u>STA</u>	Store Accumulator in Memory
<u>BHI</u>	Branch if Accumulator contents	<u>DEX</u>	Decrement Index register X	<u>STS</u>	Store Stack Pointer
	higher than comparand	EOR	Memory Exclusive OR Accumulator	\underline{STX}	Store Index Register X
<u>BIT</u>	Memory contents AND the	<u>INC</u>	Increment Accumulator or Memory	<u>SUB</u>	SUBTRACT Memory contents .
	Accumulator, only Status is affected	<u>INS</u>	Increment the Stack Pointer		from Accumulator
<u>BLE</u>	Branch if Less than or Equal zero	<u>INX</u>	Increment the Index Register X	<u>SWI</u>	Software Interrupt
<u>BLS</u>	Branch if Accumulator contents	<u>JMP</u>	Jump	<u>TAB</u>	Transfer A to B
	less than or same as comparand	<u>JSR</u>	Jump to Subroutine	<u>TAP</u>	Transfer A to Status Register
$\underline{\text{BLT}}$	Branch if Less Than zero	<u>LDA</u>	Load Accumulator from Memory	<u>TBA</u>	Transfer B to A
\underline{BMI}	Branch if Minus	<u>LDS</u>	Load the Stack Pointer	<u>TPA</u>	Transfer Status Register to A
<u>BNE</u>	Branch if Not Equal zero	<u>LDX</u>	Load the Index Register X	<u>TST</u>	Test the Accumulator
$\underline{\mathrm{BPL}}$	Branch if Plus	<u>LSR</u>	Logical Shift Right	<u>TSX</u>	Move Stack Pointer to X and INC
\underline{BRA}	Unconditional branch relative to	•	Bit7 set to zero.(dividing by two)	<u>TXS</u>	Move X to Stack Pointer and DEC
	present Program Counter contents			$\underline{\text{WAI}}$	Wait for Interrupt

6800 OPCODE DETAILS

MNEMO	SYNTAX	MODE	BYTES	CODE	CYCLES	С	z	s	0	A		SYMBOLIC OPERATION	DESCRIPTION
ABA	АВА	ACC	1	\$1B	2	x	x	X	x	x	-	[A] ← [A] + [B] For 4052A & 4054A: [AE] ← [AE] + [BE]	Add <u>B</u> to <u>A</u> Condition Codes based on low byte of A-same as 6800
	ADC <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$89	2							[A] ← [A] + data8 + C	10W byte of A-same as 0000
	ADC A addr8	DIR	2	\$99	3							[<u>A</u>] ← [<u>A</u>] + [<u>addr8</u>] + C	
	ADC A data8,X	<u>IDX</u>	2	\$A9	5							[A] ← [A] + [data8 + [X]] + C	
	ADC A addr16	EXT	3	\$B9	4	x						[<u>A</u>] ← [<u>A</u>] + [<u>addr16</u>] + C	Add contents of Memory +
ADC	ADC B #data8	<u>IMM</u>	2	\$C9	2		X	X	Х	Х	-	[<u>B</u>] <u>←</u> [<u>B</u>] + <u>data8</u> + C	Carry Flag to Accumulator
	ADC <u>B</u> addr8	DIR	2	\$D9	3							[<u>B</u>] <u>←</u> [<u>B</u>] + [<u>addr8</u>] + C	
	ADC <u>B</u> data8,X	IDX	2	\$E9	5							[<u>B</u>] <u>←</u> [<u>B</u>] + [<u>data8</u> + [<u>X]</u>] + C	
	ADC <u>B</u> addr16	<u>EXT</u>	3	\$F9	4							[<u>B</u>] <u>←</u> [<u>B</u>] + [<u>addr16</u>] + C	

	ADD <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$8B	2							[A] ← [A] + data8 For 4052A & 4054A: [AL] ← [AL] + data8 [AH] ← [AH] + C	
	ADD <u>A</u> <u>addr8</u>	DIR	2	\$9B	3							[A] ← [A] + [addr8] For 4052A & 4054A: [AL] ← [AL] + [addr8] [AH] ← [AH] + C	
ADD	ADD <u>A</u> <u>data8,X</u>	<u>IDX</u>	2	\$AB	5	x	x	x	x	x	_	[A] ← [A] + [data8 + [X]] For 4052A & 4054A: [AL] ← [AL] + [X] [AH] ← Trash bits	Add Memory contents to the Accumulator Condition Codes based on low byte of A - same as 6800
	ADD <u>A</u> addr16	<u>EXT</u>	3	\$BB	4							[A] ← [A] + [addr16] For 4052A & 4054A: [AL] ← [AL] + [addr16] [AH] ← [AH] + C	
	ADD <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$CB	2							[B] ← [B] + data8 For 4052A & 4054A: [BL] ← [BL] + [data8] [BH] ← [BH] + C	

	ADD <u>B</u> addr8	DIR	2	\$DB	3							[B] ← [B] + [addr8] For 4052A & 4054A: [BL] ← [BL] + [addr8] [BH] ← [BH] + C	
	ADD <u>B</u> data8,X	<u>IDX</u>	2	\$EB	5							[B] ← [B] + [data8 + [X]] For 4052A & 4054A: [BL] ← [BL] + [data8 + [X]] [BH] ← Trashed bits	
	ADD <u>B</u> addr16	EXT	3	\$FB	4							[B] ← [B] + [addr16] For 4052A & 4054A: [BL] ← [BL] + [addr16] [BH] ← [BH] + C	
	AND <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$84	2							[A] <u>←</u> [A] <u>∧</u> data8	
	AND <u>A</u> <u>addr8</u>	DIR	2	\$94	3							[A] ← [A] ∧ [addr8]	
AND	AND <u>A</u> data8,X	<u>IDX</u>	2	\$A4	5	-	x	x	0	-	-	[<u>A</u>] <u>←</u> [<u>A</u>] <u>∧</u> [<u>data8</u> + [<u>X</u>]]	Memory contents AND the Accumulator to the Accumulator
	AND <u>A</u> addr16	<u>EXT</u>	3	\$B4	4							[A] ← [A] ∧ [addr16]	
	AND <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$C4	2							[B] <u>←</u> [B] <u>∧</u> <u>data8</u>	

	AND <u>B</u> addr8	DIR	2	\$D4	3							[B] ← [B] <u>∧</u> [addr8]	
	AND <u>B</u> data8,X	<u>IDX</u>	2	\$E4	5							[B] ← [B] <u>∧</u> [data8 + [X]]	-
	AND <u>B</u> addr16	EXT	3	\$F4	4							[B] <u>←</u> [B] <u>∧</u> [addr16]	
	ASL <u>A</u>	ACC	1	\$48	2								
	ASL <u>B</u>	<u>ACC</u>	1	\$58	2							C ← 76543210 ← 0	Arithmetic Shift Left. Bit 0 is set to 0. (multiplying by two)
ASL	ASL <u>data8,X</u>	IDX	2	\$68	7	X	X	х	X	-	-	For 4052A & 4054A: C ← 16-bit ACCX ← 0	Condition Codes based on
	ASL addr16	EXT	3	\$78	6								low byte - same as 6800
	ASR <u>A</u>	<u>ACC</u>	1	\$47	2								
	ASR <u>B</u>	<u>ACC</u>	1	\$57	2								Avithmentia Chiff Direkt Dit 7
ASR	ASR <u>data8,X</u>	<u>IDX</u>	2	\$67	7	Х	x	x	x	-	-	76543210 → C	Arithmetic Shift Right. Bit 7 stays the same.
	ASR <u>addr16</u>	<u>EXT</u>	3	\$77	6								
всс	BCC <u>disp</u>	REL	2	\$24	4	-	-	-	-	-	-	(C == 0) ? {[<u>PC</u>] <u>←</u> [<u>PC</u>] + <u>disp</u> + 2}	Branch if carry clear
BCS	BCS disp	REL	2	\$25	4	_	-	_	_	-	_	(C == 1) ? {[<u>PC] ← [PC]</u> + <u>disp</u> + 2}	Branch if carry set

BEQ	BEQ <u>disp</u>	REL	2	\$27	4	-	-	-	-	-	-	(Z == 1) ? {[<u>PC</u>] <u>←</u> [<u>PC</u>] + <u>disp</u> + 2}	Branch if equal to zero
BGE	BGE disp	<u>REL</u>	2	\$2C	4	-	-	-	-	-	-	(S <u>∨</u> O == 0) ? {[<u>PC</u>] <u>←</u> [<u>PC</u>] + <u>disp</u> + 2}	Branch if greater than or equal to zero
BGT	BGT <u>disp</u>	<u>REL</u>	2	\$2E	4	-	-	-	-	-	-	(Z <u>∨</u> (S <u>∨</u> O) == 0) ? {[<u>PC</u>] <u>←</u> [<u>PC</u>] + <u>disp</u> + 2}	Branch if greater than zero
вні	BHI <u>disp</u>	REL	2	\$22	4	-	-	-	-	-	-	(C <u>∨</u> Z == 0) ? {[<u>PC</u>] ← [<u>PC</u>] + <u>disp</u> + 2}	Branch if Accumulator contents higher than comparand
	BIT <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$85	2							[<u>A</u>] <u>∧</u> <u>data8</u>	_
	BIT <u>A</u> <u>addr8</u>	DIR	2	\$95	3							[<u>A</u>] <u>∧</u> [addr8]	
	BIT <u>A</u> <u>data8,X</u>	<u>IDX</u>	2	\$A5	5							[A] <u>∧</u> [data8 + [X]]	_
	BIT <u>A</u> <u>addr16</u>	<u>EXT</u>	3	\$B5	4							[<u>A</u>] <u>∧</u> [addr16]	Memory contents AND the
BIT	BIT <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$C5	2	-	x	x	0	-	-	[B] <u>∧</u> <u>data8</u>	Accumulator, but only Status register is affected.
	BIT <u>B</u> <u>addr8</u>	<u>DIR</u>	2	\$D5	3						[<u>B</u>] <u>∧</u> [<u>addr8</u>]		
	BIT <u>B</u> <u>data8,X</u>	<u>IDX</u>	2	\$E5	5						[<u>B</u>] <u>∧</u> [<u>data8</u> + [<u>X</u>]]		
	BIT <u>B</u> <u>addr16</u>	<u>EXT</u>	3	\$F5	4							[<u>B</u>] <u>∧</u> [addr16]	

BLE	BLE <u>disp</u>	REL	2	\$2F	4	-	-	-	-	-	-	(Z <u>∨</u> (S <u>∨</u> O) == 1) ? {[<u>PC</u>] ← [<u>PC</u>] + <u>disp</u> + 2}	Branch if less than or equal to zero
BLS	BLS <u>disp</u>	<u>REL</u>	2	\$23	4	-	_	-	_	-	-	(C <u>∨</u> Z == 1) ? {[<u>PC</u>] <u>←</u> [<u>PC</u>] + <u>disp</u> + 2}	Branch if Accumulator contents less than or same as comparand
BLT	BLT <u>disp</u>	REL	2	\$2D	4	-	-	-	-	-	-	(S <u>∨</u> O == 1) ? {[<u>PC</u>] ← [<u>PC</u>] + <u>disp</u> + 2}	Branch if less than zero
ВМІ	BMI <u>disp</u>	REL	2	\$2B	4	-	-	-	-	-	-	(S == 1) ? {[PC] ← [PC] + disp + 2}	Branch if minus
BNE	BNE disp	<u>REL</u>	2	\$26	4	-	-	-	-	-	-	(Z == 0) ? {[PC] ← [PC] + disp + 2}	Branch if not equal to zero
BPL	BPL <u>disp</u>	<u>REL</u>	2	\$2A	4	-	-	-	-	-	-	(S == 0) ? {[PC] ← [PC] + disp + 2}	Branch if plus
BRA	BRA <u>disp</u>	<u>REL</u>	2	\$20	4	-	_	-	_	-	-	[<u>PC</u>] ← [<u>PC</u>] + <u>disp</u> + 2	Unconditional branch relative to present Program Counter contents.
BSR	BSR <u>disp</u>	REL	2	\$8D	8	_	-	_	_	-	-	$\begin{array}{l} [\underline{[SP]]} \leftarrow [\underline{PC(LO)}], \\ [\underline{[SP]} - 1] \leftarrow [\underline{PC(HI)}], \\ [\underline{SP]} \leftarrow [\underline{SP}] - 2, \\ [\underline{PC]} \leftarrow [\underline{PC}] + \underline{disp} + 2 \end{array}$	Unconditional branch to subroutine located relative to present Program Counter contents.
BVC	BVC <u>disp</u>	REL	2	\$28	4	-	-	-	-	-	-	(O == 0) ? {[PC] ← [PC] + disp + 2}	Branch if overflow clear

BVS	BVS <u>disp</u>	REL	2	\$29	4	-	-	-	-	-	-	(O == 1) ? {[PC] ← [PC] + disp + 2}	Branch if overflow set
СВА	СВА	<u>INH</u>	1	\$11	2	x	x	x	x	-	-	[A] - [B]	Compare contents of Accumulators <u>A</u> and <u>B</u> . Only the Status register is affected.
CLC	CLC	<u>INH</u>	1	\$0C	2	0	-	_	-	_	_	C <u>←</u> 0	Clear the Carry Flag
CLI	CLI	<u>INH</u>	1	\$0E	2	-	-	-	-	_	0	l <u>←</u> 0	Clear the Interrupt flag to enable interrupts
	CLR <u>A</u>	ACC	1	\$4F	2							[<u>A</u>] <u>←</u> 0 For 4052A & 4054A: [AE] ← 0	Clear the Accumulator
CLR	CLR <u>B</u>	ACC	1	\$5F	2	0	1	0	0	_	-	[<u>B</u>] <u>←</u> 0 For 4052A & 4054A: [BE] ← 0	Condition Codes based on low byte - same as 6800
	CLR <u>data8,X</u> CLR <u>addr16</u>	IDX EXT	2	\$6F \$7F	7							[<u>data8</u> + [X]] ← 0 [<u>addr16</u>] ← 0	Clear the Memory location
CLV	CLV	<u>INH</u>	1	\$0A	2	_	_	-	0	_	-	O <u>←</u> 0	Clear the Overflow flag

	CMP <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$81	2							[A] - <u>data8</u>	
	CMP A addr8	DIR	2	\$91	3	_						[A] - [addr8]	
	CMP A data8,X	<u>IDX</u>	2	\$A1	5							[A] - [data8 + [X]]	
	CMP <u>A</u> addr16	EXT	3	\$B1	4							[A] - [addr16]	Compare the contents of Memory and Accumulator.
CMP	CMP B #data8	<u>IMM</u>	2	\$C1	2	X	X	X	X	-	-	[B] - <u>data8</u>	Only the Status register is affected.
	CMP B addr8	DIR	2	\$D1	3							[<u>B</u>] - [addr8]	
	CMP B data8,X	<u>IDX</u>	2	\$E1	5							[<u>B</u>] - [<u>data8</u> + [<u>X</u>]]	
	CMP <u>B</u> <u>addr16</u>	<u>EXT</u>	3	\$F1	4							[B] - [addr16]	
	СОМ <u>А</u>	ACC	1	\$43	2							[A] ← \$FF - [A] For 4052A & 4054A:	Complement the Accumulator
												[AE] ← \$FFFF - [AE]	Condition Codes based on
СОМ	COM B	<u>ACC</u>	1	\$53	2	1	x x	x	0	-	-	[<u>B</u>] <u>←</u> \$FF - [<u>B</u>] For 4052A & 4054A: [<u>BE</u>] <u>←</u> \$FFFF - [<u>BE</u>]	low byte - same as 6800
	COM <u>data8,X</u>	<u>IDX</u>	2	\$63	7							[<u>data8</u> + [X]] <u>←</u> \$FF - [<u>data8</u> + [X]]	Complement the Memory Location

	COM <u>addr16</u>	EXT	3	\$73	6							[<u>addr16] ←</u> \$FF - [<u>addr16</u>]	
	CPX <u>addr8</u>	<u>DIR</u>	2	\$9C	4							[<u>X(HI)</u>] - [<u>addr8],</u> [<u>X(LO)]</u> - [<u>addr8</u> + 1]	
	CPX <u>data8,X</u>	<u>IDX</u>	2	\$AC	6							[<u>X(HI)]</u> - [<u>data8</u> + [<u>X]],</u> [<u>X(LO)]</u> - [<u>data8</u> + [<u>X]</u> + 1]	Compare the contents of
CPX	CPX # <u>data16</u>	<u>IMM</u>	3	\$8C	3	-	X	X	X	-	-	[X(HI)] - <u>data16(HI),</u> [X(LO)] - <u>data16(LO)</u>	Memory to the Index Register <u>X</u>
	CPX addr16	EXT	3	\$BC	5							[X(HI)] - [addr16(HI)], [X(LO)] - [addr16(LO)]	
DAA	DAA	<u>INH</u>	1	\$19	2	x	x	x	x	-	-		Decimal Adjust Accumulator <u>A</u>
	DEC A	ACC	1	\$4A	2							[A] ← [A] – 1 For 4052A & 4054A: [AE] ← [AE] – 1	Decrement the Accumulator
DEC	DEC B	ACC	1	\$5A	2	-	x	x	x	_	_	[B] ← [B] – 1 For 4052A & 4054A: [BE] ← [BE] – 1	Condition Codes based on low byte - same as 6800
	DEC data8,X	<u>IDX</u>	2	\$6A	7							<u>[data8</u> + <u>[X]] ←</u> <u>[data8</u> + <u>[X]]</u> - 1	Decrement the Memory Location

	DEC <u>addr16</u>	EXT	3	\$7A	6								[<u>addr16] ← [addr16]</u> - 1	
DES	DES	INH	1	\$34	4	-	-	-	-			_	<u>[SP] ← [SP]</u> - 1	Decrement the Stack Pointer
DEX	DEX	INH	1	\$09	4	-	х	-	-		- -	-	<u>[X] ← [X]</u> - 1	Decrement the Index Register <u>X</u>
	EOR <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$88	2								[<u>A] ← [A] ⊻ data8</u>	
	EOR <u>A</u> addr8	DIR	2	\$98	3								[A] <u>←</u> [A] ⊻ [addr8]	
	EOR A data8,X	<u>IDX</u>	2	\$A8	5								[A] <u>←</u> [A] <u>⊻</u> [data8 + [X]]	
	EOR A addr16	EXT	3	\$B8	4								[A] <u>←</u> [A] <u>⊻</u> [addr16]	Memory contents
EOR	EOR <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$C8	2	-	X	X	0) .	- -	-	[<u>B</u>] <u>←</u> [<u>B</u>] <u>⊻</u> <u>data8</u>	EXLCLUSIVE OR the Accumulator
	EOR <u>B</u> addr8	DIR	2	\$D8	3								[<u>B</u>] <u>←</u> [<u>B</u>] <u>¥</u> [addr8]	
	EOR <u>B</u> data8,X	IDX	2	\$E8	5								[<u>B</u>] <u>←</u> [<u>B</u>] <u>⊻</u> [<u>data8</u> + [<u>X</u>]]	
	EOR <u>B</u> addr16	EXT	3	\$F8	4								[<u>B] ← [B] ⊻ [addr16]</u>	
													[<u>A</u>] <u>←</u> [<u>A</u>] + 1	Increment the Accumulator
INC	INC <u>A</u>	ACC	1	\$4C	2	-	x	X	x		- -	-	For 4052A & 4054A: [<u>AE</u>] <u>←</u> [<u>AE</u>] + 1	Condition Codes based on low byte - same as 6800

	INC <u>B</u>	<u>ACC</u>	1	\$5C	2							[B] ← [B] + 1 For 4052A & 4054A: [BE] ← [BE] + 1
	INC <u>data8,X</u>	<u>IDX</u>	2	\$6C	7	-						[data8 + [X]] ← [data8 + [X]] + 1 Increment the Memory
	INC addr16	<u>EXT</u>	3	\$7C	6							Location [addr16] ← [addr16] + 1
INS	INS	<u>INH</u>	1	\$31	4	_	_	_	-	-	. -	- [SP] ← [SP] + 1 Increment the Stack Pointer
INX	INX	<u>INH</u>	1	\$08	4	_	х	_	-	-	. -	- $[X] \leftarrow [X] + 1$ Increment the Index Register X
	JMP <u>data8,X</u>	<u>IDX</u>	2	\$6E	4							[PC] <u>←</u> data8 + [X]
JMP	JMP <u>addr16</u>	<u>EXT</u>	3	\$7E	3	-	-	-	-	-	-	- Jump [<u>PC</u>] <u>← addr16</u>
	JSR <u>data8,X</u>	<u>IDX</u>	2	\$AD	8							$[[\underline{SP}]] \leftarrow [\underline{PC(LO)}],$ $[[\underline{SP}] - 1] \leftarrow [\underline{PC(HI)}],$ $[\underline{SP}] \leftarrow [\underline{SP}] - 2,$ $[\underline{PC}] \leftarrow \underline{data8} + [\underline{X}]$
JSR						-	-	-	-	-	. -	- Jump to Subroutine
	JSR <u>addr16</u>	<u>EXT</u>	3	\$BD	9							[[SP]] ← [PC(LO)], [[SP] - 1] ← [PC(HI)], [SP] ← [SP] - 2, [PC] ← addr16

	LDA <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$86	2							[A] ← data8 For 4052A & 4054A: [AL] ← data8 [AH] ←0	
	LDA <u>A addr8</u>	DIR	2	\$96	3							[A] ← [addr8] For 4052A & 4054A: [AL] ← [addr8] [AH] ←0	
LDA	LDA <u>A</u> <u>data8,X</u>	<u>IDX</u>	2	\$A6	5	_	x	x	0	_	_	[A] ← [data8 + [X]] For 4052A & 4054A: [AL] ← data8 [AH] ← Trash bits	Load Accumulator from Memory
	LDA <u>A addr16</u>	EXT	3	\$B6	4							[A] ← [addr16] For 4052A & 4054A: [AL] ← [addr16] [AH] ←0	Condition Codes based on low byte - same as 6800
	LDA <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$C6	2							[B] ← data8 For 4052A & 4054A: [BL] ← data8 [BH] ←0	

	LDA <u>B</u> <u>addr8</u>	DIR	2	\$D6	3							F	<u>B]</u>	
	LDA <u>B</u> <u>data8,X</u>	<u>IDX</u>	2	\$E6	5							F [I	B] <u>← [data8</u> + [X]] For 4052A & 4054A: B <u>L] ← data8</u> BH] <u>← Trash bits</u>	
	LDA <u>B</u> <u>addr16</u>	EXT	3	\$F6	4							F [[<u>B] ← [addr16]</u> For 4052A & 4054A: B <u>L] ← [addr16]</u> BH] <u>←0</u>	
	LDS addr8	<u>DIR</u>	2	\$9E	4								<u>SP(HI)] ← [addr8],</u> <u>SP(LO)] ← [addr8</u> + 1]	
	LDS <u>data8,X</u>	<u>IDX</u>	2	\$AE	6								<u>SP(HI)] ← [data8 + [X]],</u> <u>SP(LO)] ← [data8 + [X]</u> + 1]	
LDS	LDS # <u>data16</u>	<u>IMM</u>	3	\$8E	3	-	X	X	0	-	- -	[3	<u>SP(HI)] ← data16(HI),</u> <u>SP(LO)] ← data16(LO)</u>	Load the Stack Pointer
	LDS <u>addr16</u>	<u>EXT</u>	3	\$BE	5								<u>SP(HI)] ← [addr16(HI)],</u> <u>SP(LO)] ← [addr16(LO)]</u>	
LDX	LDX <u>addr8</u>	<u>DIR</u>	2	\$DE	4	_	x	x	0	-	-		<u>X(HI)] ← [addr8],</u> X(LO)] <u>←</u> [addr8 + 1]	Load the Index Register

	LDX <u>data8,X</u>	IDX	2	\$EE	6								[X(HI)] ← [data8 + [X]], [X(LO)] ← [data8 + [X] + 1]	
	LDX # <u>data16</u>	<u>IMM</u>	3	\$CE	3								[X(HI)] ← data16(HI), [X(LO)] ← data16(LO)	
	LDX <u>addr16</u>	<u>EXT</u>	3	\$FE	5								[X(HI)] ← [addr16(HI)], [X(LO)] ← [addr16(LO)]	
	LSR <u>A</u>	ACC	1	\$44	2									
	LSR <u>B</u>	<u>ACC</u>	1	\$54	2									Logical Shift Right. Bit 7 is set
LSR	LSR <u>data8,X</u>	<u>IDX</u>	2	\$64	7	X	X	0) :	Х	-	-	$0 \to \boxed{76543210} \to C$	to 0. (dividing by two)
	LSR <u>addr16</u>	<u>EXT</u>	3	\$74	6									
	NEG <u>A</u>	<u>ACC</u>	1	\$40	2								[<u>A</u>] <u>←</u> 0 - [<u>A</u>]	
	NEG <u>B</u>	<u>ACC</u>	1	\$50	2								[<u>B</u>] <u>←</u> 0 - [<u>B</u>]	Negate the Accumulator
NEG	NEG <u>data8,X</u>	<u>IDX</u>	2	\$60	7	x	x	x		x	-	_	[<u>data8</u> + [<u>X</u>]] <u>←</u> 0 - [<u>data8</u> +	Negate the Memory Location
	NEG <u>addr16</u>	<u>EXT</u>	3	\$70	6								[<u>addr16</u>] <u>←</u> 0 - [<u>addr16</u>]	Negate the Memory Location
NOP	NOP	<u>INH</u>	1	\$01	2	_	_	_		_	_	_		No Operation

	ORA <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$8A	2							[<u>A</u>] <u>← [A] ⊻ data8</u>	
	ORA <u>A</u> <u>addr8</u>	DIR	2	\$9A	3							[A] ← [A] <u>∨</u> [addr8]	
	ORA <u>A</u> <u>data8,X</u>	<u>IDX</u>	2	\$AA	5							[A] ← [A] ⊻ [data8 + [X]]	
	ORA <u>A</u> addr16	EXT	3	\$BA	4							[<u>A</u>] <u>← [A] ⊻ [addr16]</u>	
ORA	ORA <u>B</u> #data8	<u>IMM</u>	2	\$CA	2	-	X	X	0) -	- -	[B] ← [B] <u>∨</u> data8	OR the Accumulator
	ORA <u>B</u> <u>addr8</u>	DIR	2	\$DA	3							[B] ← [B] <u>∨</u> [addr8]	
	ORA <u>B</u> <u>data8,X</u>	<u>IDX</u>	2	\$EA	5							[B] ← [B] ⊻ [data8 + [X]]	
	ORA <u>B</u> addr16	EXT	3	\$FA	4							[<u>B</u>] <u>← [B] ⊻ [addr16]</u>	
	PSH <u>A</u>	<u>ACC</u>	1	\$36	4							[[<u>SP]]</u> ← [A], [<u>SP]</u> ← [<u>SP]</u> - 1	
PSH	PSH <u>B</u>	<u>ACC</u>	1	\$37	4	-	-	-	-	-	- -	[[<u>SP]] ← [B],</u> [<u>SP] ← [SP]</u> - 1	Push Accumulator onto the Stack
PUL	PUL <u>A</u>	ACC	1	\$32	4	-	-	_	_	_	- -	[SP] ← $[SP]$ + 1, $[A]$ ← $[[SP]]For 4052A & 4054A:[AL]$ ← $[[SP+1]]$, [SP] ← $[SP]$ + 1 [AH] ← Trash bits	Pull Data from Stack to Accumulator Condition Codes based on low byte - same as 6800

	PUL <u>B</u>	<u>ACC</u>	1	\$33	4							$[SP] \leftarrow [SP] + 1,$ $[B] \leftarrow [[SP]]$ For 4052A & 4054A: $[BL] \leftarrow [[SP+1]],$ $[SP] \leftarrow [SP] + 1$ $[BH] \leftarrow Trash bits$
	ROL <u>A</u>	ACC	1	\$49	2							
	ROL <u>B</u>	<u>ACC</u>	1	\$59	2							
ROL	ROL data8,X	<u>IDX</u>	2	\$69	7	X	X	x	X	-	-	- C ← 76543210 ← C Rotate left through Carry.
	ROL <u>addr16</u>	<u>EXT</u>	3	\$79	6							
	ROR <u>A</u>	<u>ACC</u>	1	\$46	2							
	ROR <u>B</u>	<u>ACC</u>	1	\$56	2							
ROR	ROR <u>data8,X</u>	IDX	2	\$66	7	X	x	X	x	-	-	- $C \rightarrow 76543210 \rightarrow C$ Rotate right through Carry.
	ROR addr16	<u>EXT</u>	3	\$76	6							

RTI	RTI	<u>INH</u>	1	\$3B	10	x	x	x	x	x	x	$ [SR] \leftarrow [[SP] + 1], \\ [B] \leftarrow [[SP] + 2], \\ [A] \leftarrow [[SP] + 3], \\ [X(HI)] \leftarrow [[SP] + 4], \\ [X(LO)] \leftarrow [[SP] + 5], \\ [PC(HI)] \leftarrow [[SP] + 6], \\ [PC(LO)] \leftarrow [[SP] + 7], \\ [SP] \leftarrow [SP] + 7 $ $For 4052A & 4054A: \\ [SR] \leftarrow [[SP] + 1], \\ [SL] \leftarrow [[SP] + 2], \\ [AL] \leftarrow [[SP] + 2], \\ [AL] \leftarrow [[SP] + 3], \\ [X(HI)] \leftarrow [[SP] + 4], \\ [X(LO)] \leftarrow [[SP] + 6], \\ [PC(HI)] \leftarrow [[SP] + 6], \\ [PC(LO)] \leftarrow [[SP] + 7], \\ [BH] \leftarrow [[SP] + 8], \\ [BL] \leftarrow [[SP] + 9], (ignored) \\ [AH] \leftarrow [[SP] + 10], (G reg) \\ [AL] \leftarrow [[SP] + 11], (ignored) \\ [SP] \leftarrow [SP] + 11 $	Return from interrupt. Put registers from Stack and increment Stack Pointer. For 4052A & 4054A: RTI pops 11 bytes (6800 popped only 7) to restore the hardware registers to the state they were before an interrupt occurred (or SWI [ODT only] or WAI [not used in 4052 or 4054]). When the interrupt occurred, Status Register CC was pushed onto the stack and then the D and F bits in CC were set to 1 (1> Fetch B and Data A).
RTS	RTS	<u>INH</u>	1	\$39	5	-	-	-	-	-	-	[<u>PC(HI)</u>] ← [[<u>SP</u>] + 1], [<u>PC(LO)</u>] ← [[<u>SP</u>] + 2], [<u>SP</u>] ← [<u>SP</u>] + 2	Return from subroutine. Pull <u>PC</u> from top of Stack and increment Stack Pointer.
SBA	SBA	<u>INH</u>	1	\$10	2	x	x	x	x	_	_	[A] ← [A] - [B] For 4052A & 4054A: [AE] ← [AE] - [BE]	Subtract contents of Accumulator B from those of Accumulator A. Condition Codes based on low byte of A only - same as 6800

	SBC <u>A</u> # <u>data8</u>	<u>IMM</u>	2	\$82	2							[<u>A</u>] <u>←</u> [<u>A</u>] - <u>data8</u> - C	
	SBC A addr8	DIR	2	\$92	3							[A] ← [A] - [addr8] - C	
	SBC <u>A</u> data8,X	<u>IDX</u>	2	\$A2	5							[<u>A</u>] <u>← [A] - [data8</u> + [<u>X]]</u> - C	
	SBC <u>A</u> addr16	EXT	3	\$B2	4							[<u>A</u>] <u>←</u> [<u>A</u>] - [<u>addr16</u>] - C	Subtract Mem and Carry Flag
SBC	SBC <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$C2	2	X	X	X	X	-	-	[<u>B</u>] <u>←</u> [<u>B</u>] - <u>data8</u> - C	from Accumulator
	SBC <u>B</u> <u>addr8</u>	DIR	2	\$D2	3							[<u>B</u>] <u>←</u> [<u>B</u>] - [<u>addr8</u>] - C	
	SBC <u>B</u> <u>data8,X</u>	<u>IDX</u>	2	\$E2	5							[<u>B</u>] <u>←</u> [<u>B</u>] - [<u>data8</u> + [<u>X</u>]] - C	
	SBC <u>B</u> addr16	<u>EXT</u>	3	\$F2	4							[<u>B</u>] <u>←</u> [<u>B</u>] - [<u>addr16</u>] - C	
SEC	SEC	<u>INH</u>	1	\$0D	2	1	_	-	_	_	_	C <u>←</u> 1	Set the Carry Flag
SEI	SEI	<u>INH</u>	1	\$0F	2	_	-	_	-	-	1	l <u>←</u> 1	Set the Interrupt Flag to disable interrupts
SEV	SEV	INH	1	\$0B	2	_	_	_	1	_	_	O <u>←</u> 1	Set the Overflow Flag
	STA <u>A</u> <u>addr8</u>	DIR	2	\$97	4							 [addr8] ← [A]	
STA	STA <u>A data8,X</u>	IDX	2	\$A7	6	-	X	X	0	-	_	[<u>data8</u> + [X]] ← [A]	Store Accumulator in Memory
	STA <u>A</u> addr16	<u>EXT</u>	3	\$B7	5							[<u>addr16</u>] <u>←</u> [<u>A</u>]	

	STA <u>B</u> addr8	DIR	2	\$D7	4							[addr8] ← [B]	
	STA <u>B</u> data8,X	<u>IDX</u>	2	\$E7	6							[data8 + [X]] ← [B]	
	STA <u>B</u> addr16	EXT	3	\$F7	5							[addr16] <u>←</u> [B]	
	STS addr8	DIR	2	\$9F	5	_						[<u>addr8</u>] ← [<u>SP(HI)</u>], [<u>addr8</u> + 1] ← [<u>SP(LO)</u>]	
STS	STS <u>data8,X</u>	<u>IDX</u>	2	\$AF	7	-	X	x	0	-	_	[<u>data8</u> + [X]] ← [SP(HI)], [<u>data8</u> + [X] + 1] ← [SP(LO)]	Store the Stack Pointer
	STS addr16	EXT	3	\$BF	6							[<u>addr16(HI)</u>] <u>← [SP(HI)</u>], [<u>addr16(LO)</u>] <u>← [SP(LO)</u>]	
	STX <u>addr8</u>	DIR	2	\$DF	5							[<u>addr8</u>] ← [X(HI)], [<u>addr8</u> + 1] ← [X(LO)]	
STX	STX <u>data8,X</u>	<u>IDX</u>	2	\$EF	7	-	x	x	0	_	_	[<u>data8</u> + [X]] ← [X(HI)], [<u>data8</u> + [X] + 1] ← [X(LO)]	Store the Index Register X
	STX <u>addr16</u>	EXT	3	\$FF	6							[addr16(HI)] ← [X(HI)], [addr16(LO)] ← [X(LO)]	
SUB	SUB <u>A</u> # <u>data8</u>	<u>IMM</u>		2 \$80	2	x	x	x	x	-	-	[<u>A</u>] ← [<u>A</u>] - <u>data8</u> For 4052A & 4054A: [<u>AE</u>] ← [<u>AE</u>] - <u>data8</u>	Subtract Memory contents from Accumulator

SUB <u>A</u> <u>addr8</u>	DIR	2	\$90	3	[A] ← [A] - [addr8] For 4052A & 4054A: [AE] ← [AE] – [addr8] Condition Codes based low byte of A or B only - as 6800
SUB <u>A</u> <u>data8,X</u>	<u>IDX</u>	2	\$A0	5	[A] ← [A] - [data8 + [X]] For 4052A & 4054A: [AL] ← [AL] – [data8 + [X]] [AH] ← Trash bits
SUB <u>A</u> addr16	<u>EXT</u>	3	\$B0	4	[A] ← [A] - [addr16] For 4052A & 4054A: [AE] ← [AE] – [addr16]
SUB <u>B</u> # <u>data8</u>	<u>IMM</u>	2	\$C0	2	[B] ← [B] - data8 For 4052A & 4054A: [BE] ← [BE] - data8
SUB <u>B</u> <u>addr8</u>	DIR	2	\$D0	3	[B] ← [B] - [addr8] For 4052A & 4054A: [BE] ← [BE] – [addr8]
SUB <u>B</u> <u>data8,X</u>	<u>IDX</u>	2	\$E0	5	[B] ← [B] - [data8 + [X]] For 4052A & 4054A: [BL] ← [BL] – [data8 + [X]] [BH] ← Trash bits

	SUB <u>B</u> <u>addr16</u>	EX	<u>Γ</u>	3 \$F	0 4	4						[B] ← [B] - [addr16] For 4052A & 4054A: [BE] ← [BE] – [addr16]	
SWI	SWI	<u>INH</u>	1	\$3F	12	-	-	-	-	-	1	[[SP]] ← [PC(LO)], [[SP] - 1] ← [PC(HI)], [[SP] - 2] ← [X(LO)], [[SP] - 3] ← [X(HI)], [[SP] - 4] ← [A], [[SP] - 5] ← [B], [[SP] - 6] ← [SR], [SP] ← [SP] - 7, [PC(HI)] ← [\$FFFA], [PC(LO)] ← [\$FFFB] For 4052A & 4054A: [[SP]] ←[AL], [[SP] - 1] ←[AH], (G register) [[SP] - 2] ← [BL], [[SP] - 3] ← [BH], [[SP] - 4] ← [PC(LO)], [[SP] - 5] ← [PC(HI)], [[SP] - 6] ← [X(LO)], [[SP] - 7] ← [X(HI)], [[SP] - 8] ← [AL], [[SP] - 9] ← [BL], [[SP] - 9] ← [SP] - 11	Software Interrupt: push registers onto Stack, decrement Stack Pointer, and jump to interrupt subroutine. For 4052A & 4054A: RTI pops 11 bytes (6800 popped only 7) to restore the hardware registers to the state they were before an interrupt occurred (or SWI [ODT only] or WAI [not used in 4052 or 4054]). When the interrupt occurred, Status Register CC was pushed onto the stack and then the D and F bits in CC were set to 1 (1> Fetch B and Data A).
ТАВ	TAB	<u>INH</u>	1	\$16	2	-	x	x	0	-	-	[<u>B</u>] <u>← [A</u>] For 4052A & 4054A: [<u>BE</u>] <u>← [AE</u>]	Transfer <u>A</u> to <u>B</u>

													Condition Codes based on low byte of B only - same as 6800
TAP	TAP	<u>INH</u>	1	\$06	2	Х	Х	Х	Х	Х	-	[SR] ← [A]	Transfer A to Status Register
ТВА	ТВА	<u>INH</u>	1	\$17	2	-	x	x	0	-	-	[A] ← [B] For 4052A & 4054A: [AE] ← [BE]	Transfer <u>B</u> to <u>A</u> Condition Codes based on low byte of A only - same as 6800
TPA	TPA	INH	1	\$07	2	-	_	_	_	_	_	[A] ← [SR]	Transfer Status Register to <u>A</u>
	TST <u>A</u>	<u>ACC</u>	1	\$4D	2	0						[<u>A</u>] - 0	
	TST <u>B</u>	<u>ACC</u>	1	\$5D	2		x	x				[<u>B</u>] - 0	Test the Accumulator
TST	TST <u>data8,X</u>	<u>IDX</u>	2	\$6D	7				0	-	-	[<u>data8</u> + [X]] - 0	
	TST <u>addr16</u>	EXT	3	\$7D	6							[addr16] - 0	Test the Memory Location
TSX	TSX	<u>INH</u>	1	\$30	4	-	-	-	-	-	-	[X] ← [SP] + 1	Move Stack Pointer contents to Index register and increment.
TXS	TXS	<u>INH</u>	1	\$35	4	-	_	-	-	-	-	[<u>SP] ← [X]</u> - 1	Move Index register contents to Stack Pointer and decrement.

												$\begin{array}{l} [[\underline{SP}]] & \leftarrow [\underline{PC(LO)}], \\ [[\underline{SP}] - 1] & \leftarrow [\underline{PC(HI)}], \\ [[\underline{SP}] - 2] & \leftarrow [\underline{X(LO)}], \\ [[\underline{SP}] - 3] & \leftarrow [\underline{X(HI)}], \\ [[\underline{SP}] - 4] & \leftarrow [\underline{A}], \\ [[\underline{SP}] - 5] & \leftarrow [\underline{B}], \\ [[\underline{SP}] - 6] & \leftarrow [\underline{SR}], \\ [\underline{SP}] & \leftarrow [\underline{SP}] - 7 \end{array}$	Push registers onto Stack, decrement Stack Pointer, end wait for interrupt. If [I] = 1 when WAI is executed, a nonmaskable interrupt is required to exit the Wait state. Otherwise, [I] ← 1 when the interrupt occurs.
WAI	WAI	<u>INH</u>	1	\$3E	9	-	-	-	-	-	1	For 4052A & 4054A: $[[SP]] \leftarrow [AL],$ $[[SP] - 1] \leftarrow [AH], (G \text{ register})$ $[[SP] - 2] \leftarrow [BL],$ $[[SP] - 3] \leftarrow [BH],$ $[[SP] - 4] \leftarrow [PC(LO)],$ $[[SP] - 5] \leftarrow [PC(HI)],$ $[[SP] - 6] \leftarrow [X(LO)],$ $[[SP] - 7] \leftarrow [X(HI)],$ $[[SP] - 8] \leftarrow [AL],$ $[[SP] - 9] \leftarrow [BL],$ $[[SP] - 10] \leftarrow [SR],$ $[SP] \leftarrow [SP] - 11$	For 4052A & 4054A: RTI pops 11 bytes (6800 popped only 7) to restore the hardware registers to the state they were before an interrupt occurred (or SWI [ODT only] or WAI [not used in 4052 or 4054]). When the interrupt occurred, Status Register CC was pushed onto the stack and then the D and F bits in CC were set to 1