Package 'EngrEcon'

April 3, 2024

April 3, 2024
Title Engineering Economics Analysis for Engineering Projects Cost Analysis
Version 1.0.0
Maintainer Liya Abera <liya.eshetu.abera@gmail.com></liya.eshetu.abera@gmail.com>
Description Computing economic analysis in civil infrastructure and ecosystem restoration projects is a typical activity. This package contains Standard cost engineering and engineering economics methods that are applied to convert between present, future, and annualized costs. Newnan D. (2020) <isbn 9780190931919=""> "Engineering Economic Analysis".</isbn>
License GPL-3
<pre>URL GitHub (<https: github.com="" usace-wrises="">)</https:></pre>
Encoding UTF-8
RoxygenNote 7.3.1
Depends R (>= $4.1.0$)
NeedsCompilation no
Author Liya Abera [aut, cre] (https://orcid.org/0000-0001-6720-8955), S. Kyle McKay [aut] (https://orcid.org/0000-0003-2703-3841)
Repository CRAN
Date/Publication 2024-04-03 19:53:00 UTC
R topics documented:
annual_to_future annual_to_present cashflow effective_i future_to_annual future_to_present gradient_to_annual gradient_to_future gradient_to_future gradient_to_present interest_during_construction

2 annual_to_future

	om_distribute . present_to_annu present_to_futur	al .	 										 				13
Index																	15

annual_to_future

Calculate future value from a uniform annual payment annual_to_future Compute future values from uniform annual payments using uniform series compound amount factor (uscaf)

Description

Calculate future value from a uniform annual payment

annual_to_future Compute future values from uniform annual payments using uniform series compound amount factor (uscaf)

Usage

```
annual_to_future(i, n, A)
```

Arguments

i discount rate in percent per year

n life span in years

A series of uniform annual payments

Value

FV

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: FV = 5664161
annual_to_future(0.08, 30, 50000)
```

annual_to_present 3

annual_to_present	Calculate present value from a uniform annual payment
	annual_to_present Compute present value from uniform an-
	nual payments using uniform series present worth factor (uswf)

Description

Calculate present value from a uniform annual payment

annual_to_present Compute present value from uniform annual payments using uniform series present worth factor (uswf)

Usage

```
annual_to_present(i, n, A)
```

Arguments

i	discount rate in	percent per year
1	discount rate in	percent per year

n life span in years

A series of uniform annual payments

Value

pr.value

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: pr.value = $337733.5
annual_to_present(0.08, 30, 30000)
```

4 cashflow

cashflow

Calculate present value and annual value from a given future payments of cash flows cashflow Compute a given cash flow data's present value and annual value. The first column is the cash flow year; the rest is the cash flow money. The number of rows is the lifespan

Description

Calculate present value and annual value from a given future payments of cash flows

cashflow Compute a given cash flow data's present value and annual value. The first column is the cash flow year;the rest is the cash flow money. The number of rows is the lifespan

Usage

```
cashflow(i, cashflowdata)
```

Arguments

i annual interest rate in percentage

cashflowdata cash flow data containing the life span and money value of the cash flow for each year

Value

cash.flow.table

```
# Result : cash.flow.table
# Result : future value = 232540.78
# Result : present value = 206330.96
year = c(1:5)
capital = c(63000,1300,1300,1600,1300)
year1 = c(60000,0,10000,0,0)
year2 = c(0,0,30000,50000,0)
cashflowdata <- data.frame (year, capital, year1, year2)
cashflow(0.055, cashflowdata)</pre>
```

effective_i 5

effective_i	Calculate effective annual interest rate for a known nominal rate and
	compounding period per year effective_i Compute future value
	nominal rate and compounding period per year, and frequency.

Description

Calculate effective annual interest rate for a known nominal rate and compounding period per year effective_i Compute future value nominal rate and compounding period per year, and frequency.

Usage

```
effective_i(r, m = c("yearly", "quarterly", "monthly"))
```

Arguments

r nominal interest rate in decimal number

m number of compounding period per year monthly = 12 Quarterly = 4 yearly = 1

Value

```
effective_i
```

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. (2020). Engineering Economic Analysis (14th ed.). New York, Oxford University Press.

David, W., & Terry, R. (2012). Fundamentals of Engineering Economics and Decision Analysis. Springer Nature.

```
# Result: effective_i =
effective_i (0.08, m = "yearly")
```

future_to_annual

future_to_annual	Compute annual payment value from future value future_to_annual
	calculate annual value from future value using the accumulated
	amount after years using sinking fund factor (sff)

Description

Compute annual payment value from future value

future_to_annual calculate annual value from future value using the accumulated amount after years using sinking fund factor (sff)

Usage

```
future_to_annual(i, n, FV)
```

Arguments

i discount rate in percent per year

n life span in years

FV accumulated (future) value

Value

A

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: A = 5737.83
future_to_annual(0.08, 30, 650000)
```

future_to_present 7

future_to_present	Compute present values from future payments (or cash flow)
	future_to_present calculate present value from future value using
	present worth factor (pwf)

Description

Compute present values from future payments (or cash flow)

future_to_present calculate present value from future value using present worth factor (pwf)

Usage

```
future_to_present(i, n, FV)
```

Arguments

i discount rate in percent per year

n life span in years

FV future value

Value

pr.value

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: pr.value = 2981.32
future_to_present(0.08, 30, 30000)
```

8 gradient_to_annual

Description

Calculate annual value from uniform gradient payment

gradient_to_annual Compute annual value from uniform gradient payments using uniform grapresent worth factor (ugaw)

Usage

```
gradient_to_annual(i, n, G, A)
```

Arguments

i discount rate in j	percent per year
----------------------	------------------

n life span in years

G uniform gradient payments

A initial annual payment

Value

ann.value

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: ann.value = $ 105138.30
gradient_to_annual(0.08, 30, 6000, 50000)
```

gradient_to_future 9

Description

Calculate future value from uniform gradient payment

gradient_to_future Compute future value from uniform gradient payments using uniform gradient present worth factor (ugfw)

Usage

```
gradient_to_future(i, n, G)
```

Arguments

- i discount rate in percent per year
- n life span in years
- G uniform gradient payments

Value

fr.value

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: fr.value = $ 312312
gradient_to_future(0.08, 30,300)
```

10 gradient_to_present

Description

Calculate present value from uniform gradient payment

gradient_to_present Compute present value from uniform gradient payments using uniform gradient present worth factor (ugpw)

Usage

```
gradient_to_present(i, n, G)
```

Arguments

- i discount rate in percent per year
- n life span in years
- G uniform gradient payments

Value

pr.value

References

#' Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: pr.value = 310367.40
gradient_to_present(0.08, 30, 3000)
```

 $interest_during_construction$

Compute interest during construction interest_during_construction calculate interest during construction using a monthly discount factor

Description

Compute interest during construction

interest_during_construction calculate interest during construction using a monthly discount factor

Usage

```
interest_during_construction(i, duration, capital)
```

Arguments

i interest rate in percent per year duration construction duration in months capital first/capital cost

Value

idc

References

Engineer, U. S. A., & Resources, W. National Economic Development (NED) Procedures Manual-National Development Costs. U.S. Army Corps of Engineers Humphreys Engineer Center Support Activity Institute for Water Resources, DACWC72-90(June)1993.

```
# Result: idc ($) = 18992.14
interest_during_construction (0.027, 25, 700000)
```

om_distribute

om_distribute	Calculate the present value of periodic operations and maintenance costs om_distribute Distribute periodic present value operations and maintenance costs over a project life span, discount over project, and compute present value

Description

Calculate the present value of periodic operations and maintenance costs

om_distribute Distribute periodic present value operations and maintenance costs over a project life span, discount over project, and compute present value

Usage

```
om_distribute(i, n, fq, OM)
```

Arguments

i	discount rate in percent per year
n	life span in years
fq	frequency of cost in years
OM	operation and maintenance cost incurred at each interval in present value

Value

OM_dist

References

Add citation as needed.

```
#Result is the present value cost of periodic operations and maintenance expenses. # Result: idc ($) = 8174.547 om_distribute(0.03, 50, 3, 1000)
```

present_to_annual 13

present_to_annual	Compute annual payment from present value present_to_annual Compute uniform series annual payments from present value using capital recovery factor (crf)
	capital recovery factor (etg)

Description

Compute annual payment from present value

present_to_annual Compute uniform series annual payments from present value using capital recovery factor (crf)

Usage

```
present_to_annual(i, n, PV)
```

Arguments

i discount rate in percent per year

n life span in years

PV present value

Value

ann.value

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: ann.value = $17765.49
present_to_annual(0.08, 30, 200000)
```

present_to_future

present_to_future

Compute future values from present value

Description

present_to_future calculate future value from present value using compound amount factor (caf)

Usage

```
present_to_future(i, n, PV)
```

Arguments

i discount rate in percent per year

n life span in years PV present value

Value

fr.value

References

Newnan, D. G., Eschenbach, T. G., Lavelle, J. P., & Oxford, N. Y. Engineering Economic Analysis, 14th ed. New York, Oxford University Press, 2020

David, W., & Terry, R. Fundamentals of Engineering Economics and Decision Analysis. Springer Nature, 2012

```
# Result: fr.value = 9056391
present_to_future (0.08, 30, 900000)
```

Index

```
annual_to_future, 2
annual_to_present, 3

cashflow, 4

effective_i, 5

future_to_annual, 6
future_to_present, 7

gradient_to_annual, 8
gradient_to_future, 9
gradient_to_present, 10

interest_during_construction, 11

om_distribute, 12

present_to_annual, 13
present_to_future, 14
```