Jaypee Institute of Information Technology, Noida T1 Examination, EVEN Semester 2020 B. Tech I Year, II Semester

Course Name: Mathematics 2 Course Code: 15B11MA211 Maximum Marks: 20 Maximum Time: 1 Hr.

Aller	explain different methods for solving ordinary differential equations of second order.
1001100000	1 U.C. and the state methods of convergence for infinite series.
	solve series solution of differential equations, Legendre's polynomials and Bessel's functions.
CO3	solve series solution of differential equations, Degendre's polynomias and best solve them
CO4	identify the partial differential equations and apply Fourier series to solve them.
005	avalsing the concept of singularities, residues and transformations.
CO6	apply the concept of singularities, resolve the problems of complex differentiation and

Note: Attempt all the questions.

integrations.

91.	Solve the differen	tial equation	$y'' - 2y' + y = \frac{e^x}{x}, x > 0$	by using	variation	of	[4, CO1]
	parameters method.						

Q2. Find the part of complimentary function and use it to solve the differential equation $x^2 y'' - 2x(1+x)y' + 2(1+x)y = 0$

Q3. Discuss the nature of x = 0 for the differential equation $y'' - xy' + x^2y = 0$ and also [4, CO3] find its series solution about x = 0.

Q4. Classify the following infinite series as absolute or conditionally convergent [3, CO2]

$$\frac{1}{\sqrt{2} + \sqrt{1}} - \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{4} + \sqrt{3}} - \dots$$

Q5. Test the convergence of the following infinite series

infinite series [1+2, CO2]

(i)
$$\sum_{n=1}^{\infty} \frac{n^3}{n^{9/2} + 1}$$
, (ii) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2} \right)^n$

Q6. Test for uniform convergence of the series $\sum_{n=1}^{\infty} \frac{\sin(n x^2 + 2 x^2)}{n(n+2)}, x \in \mathbb{R}$ [2, CO2]
