MTH 101 - Symmetry

Assignment 7

Notes: Given a group G, a subgroup N of G is said to be **normal** if for all $n \in N$ and $g \in G$, $gng^{-1} \in N$. If N is a normal subgroup of G, then the set of right cosets of N in G forms a group called the **quotient group.** We denote this group by G/N.

- 1. Let G be a group. Then prove that the following are normal subgroups of G.
 - i. $Z(G) = \{z \in G : zg = gz, \text{ for all } g \in G\}.$
 - ii. $[GG] = \{aba^{-1}b^{-1} : a, b \in G\}$
- 2. Let N be a normal subgroup of a group G. Then prove the following.
 - i. If *K* is a normal subgroup of *N*, then *K* is normal in *G*.
 - ii. Let $\phi: G \to G/N$ be the map given by $g \mapsto Ng$. Show that ϕ is an onto group homomorphism.
 - iii. Let K be a normal subgroup of G and $\phi: G/K \to G/N$ be a group homomorphism. Then prove that $K \subseteq N$.
 - iv. Let *K* be a subgroup of *G*. Then $NK = \{nk : n \in N, k \in K\}$ is a subgroup of *G*.
- 3. Let G be a group and fix an element $x \in G$. Let $\phi_x : G \to G$ be the map defined by $g \mapsto xgx^{-1}$. Prove that ϕ_x is a group isomorphism from G to G.
- 4. Let G be a group and for every $x \in G$, let $L_x : G \to G$ be the map defined by $g \mapsto xg$.
 - i. Prove that L_x is a bijection from G to G which is not a group homomorphism.
 - ii. Let $\mathbb{L}_G = \{L_x : x \in G\}$. Prove that \mathbb{L}_G is a group with respect to composition of maps and the map $L: G \to \mathbb{L}_G$ defined by $g \mapsto L_g$ is a group isomorphism.
- 5. Let H be a subgroup of G. Then prove that Hx = Hy for $x, y \in G$ if and only if $xy^{-1} \in H$. In particular when G is the set of all real 2×2 matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ such that $ad \neq 0$ and $H = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \}$ then show that H is a normal subgroup of G, $H\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = H\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ and hence G/H is abelian.