Speeding up the Manifesto Project: Active learning strategies for efficient automated political annotations

Felix Biessmann¹, Philipp Schmidt²

¹felix.biessmann@gmail.com

²schmidtiphil@gmail.com

Intro •00

Disclaimers

- (For us) This open source project is a hobby
- It has nothing to do with our job
- Apologies if we missed to cite somebody in this room
- We'd be excited to hear about more related work

- Automated political analysis required for

- Average media consumer

- Automated political analysis required for
 - Political scientists
 - Journalists
 - Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content
- → How to choose which texts to annotate

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017

- Automated political analysis required for
 - Political scientists
 - Journalists
 - Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content
- → How to choose which texts to annotate?

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017

- Automated political analysis required for
 - Political scientists
 - Journalists
 - Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content)
- → How to choose which texts to annotate

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017

- Automated political analysis required for
 - Political scientists
 - Journalists

- Average media consumer
- ML models need in-domain training data ³

³Bießmann [2016]

- Automated political analysis required for
 - Political scientists
 - Journalists
 - Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content)
- → How to choose which texts to annotate?

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017

- Automated political analysis required for
 - Political scientists
 - Journalists

- Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content)

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017]

- Automated political analysis required for
 - Political scientists
 - Journalists

- Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content)

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017]

- Automated political analysis required for
 - Political scientists
 - Journalists

- Average media consumer
- ML models need in-domain training data ³
- But annotation budget is often limited:
 - Temporal constraints (before elections) ⁴
 - Online news media (too much content)
- → How to choose which texts to annotate?

³Bießmann [2016]

⁴Merz [2017], Kühne et al. [2017]

- Given limited annotation budget, find the best model
- How?
 - Annotate difficult ones⁵ first
- Why?
 - Intuition:
 - Model learns most from difficult examples
 - Math:
 - Gradient of loss function is larger for difficult examples

⁵For which model is most uncertain

- Given limited annotation budget, find the best model
- How?
 - Annotate difficult ones⁵ first
- Why?
 - Intuition
 - Model learns most from difficult examples
 - Math
 - Gradient of loss function is larger for difficult examples

⁵For which model is most uncertain.

- · Given limited annotation budget, find the best model
- How?
 - Annotate difficult ones⁵ first
- Why?
 - Intuition:
 - Model learns most from difficult examples
 - Math
 - Gradient of loss function is larger for difficult examples

⁵For which model is most uncertain.

- Given limited annotation budget, find the best model
- How?
 - Annotate difficult ones⁵ first
- Why?
 - Intuition:

Model learns most from difficult examples

• Math:

Gradient of loss function is larger for difficult examples

⁵For which model is most uncertain.

- Given limited annotation budget, find the best model
- How?
 - Annotate difficult ones⁵ first
- Why?
 - Intuition:

 Model learns most from difficult examples
 - Math:
 Gradient of loss function is larger for difficult example.

⁵For which model is most uncertain.

- Given limited annotation budget, find the best model
- How?
 - Annotate difficult ones⁵ first
- Why?
 - Intuition:

Model learns most from difficult examples

• Math: Gradient of loss function is larger for difficult examples

⁵For which model is most uncertain.

Data

- All annotated German texts from: https://manifestoproject.wzb.eu/
- Custom python tooling for manifesto API: https://github.com/felixbiessmann/active-manifesto
- Only texts with more than 1000 observed labels

Model

- Preprocessing
 - Unigram Bag-of-Words features
 - Hashing Vectorizer
- Classification Model: Multinomial Logistic Regression

$$p(y = k | \mathbf{x}) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}} \text{ with } z_k = \mathbf{w}_k^\top \mathbf{x}.$$
 (1)

With

- Labels $y \in \{1, 2, \dots, K\}$ (manifesto code)
- $\mathbf{w}_1, \dots, \mathbf{w}_K \in \mathbb{R}^d$ weight vectors of kth manifesto code

- Train model on 1%, 10%, 20%, ..., 100% of training data
- Vary sampling strategies to select from unlabelled texts
- Compute accuracy on hold-out data

Active Learning Strategies

- Random Baseline: Uniform random sampling
- Uncertainty Sampling: Only top-prediction counts

$$\mathbf{x}_i = \underset{i,k}{\operatorname{argmax}} \left(1 - p(y = k | \mathbf{x}_i, \mathbf{W})\right) \tag{2}$$

Entropy Sampling: All predictions count

$$\mathbf{x}_i = \underset{i}{\operatorname{argmax}} \sum_k p(y = k | \mathbf{x}_i, \mathbf{W}) \log(p(y = k | \mathbf{x}_i, \mathbf{W}))$$
 (3)

Margin Sampling: Top 2 predictions count

$$\mathbf{x}_i = \underset{i}{\operatorname{argmin}} \left(p(y = k_1 | \mathbf{x}_i, \mathbf{W}) - p(y = k_2 | \mathbf{x}_i, \mathbf{W}) \right)$$
 (4)

Results: 'Perfect' Reference Model

manifesto code	precision	recall	f1-score	support
107	0.60	0.48	0.53	774
201	0.51	0.55	0.53	1194
202	0.63	0.57	0.60	983
305	0.46	0.59	0.52	783
403	0.52	0.48	0.50	1281
411	0.39	0.60	0.47	1535
501	0.61	0.55	0.58	1380
502	0.65	0.41	0.50	587
503	0.46	0.52	0.49	2083
506	0.63	0.48	0.54	1026
605	0.56	0.44	0.49	576
701	0.59	0.39	0.47	1123
avg / total	0.50	0.48	0.48	17559

Table: Precision, recall, F1 score and number of instances per class.

Active Learning Results

Median accuracy and the 5th/95th percentile across 100 repetitions

Conclusion

- Automated political analysis requires annotations
- Limited budged for annotations of political texts
- Active Learning
 - Helps to select which texts to annotate
 - Perfect model with 80% of data
 - Almost perfect (over 95%) with 50% of data
- → Active learning can speed up political annotations.
 - Code: https://github.com/felixbiessmann/active-manifesto

Limitations

- We used a simple model
- Random sampling is an unrealistic baseline
- We only performed offline experiments
- → More convincing: online experiments

Conclusion

Demo http://rightornot.info

- Goal: Collect Annotations with Active Learning
 - 1. For political analysis of non-manifesto texts
 - 2. For comparing manifesto annotations with laymen judgements
- Incentive for users:
 - 1. Estimate your political bias
 - 2. Escape your political filter bubble

Demo http://rightornot.info

Labels: Left, Neutral, Right

Demo http://rightornot.info

- F. Bießmann. Automating political bias prediction. CoRR, abs/1608.02195, 2016. URL http://arxiv.org/abs/1608.02195.
- S. Kühne, O. Schnuck, and R. Schöffel. Der computer sagt: Jamaika. https://web.br.de/interaktiv/wahlprogramm-analyse-bundestagswahl/, 2017.
- N. Merz. Alle wahlprogramme lesen? dauert nur 17 stunden. http://www.zeit.de/politik/deutschland/2017-08/bundestagswahl-wahlprogramme-parteien-computeranalyse, 2017.
- N. Merz, S. Regel, and J. Lewandowski. The manifesto corpus: A new resource for research on political parties and quantitative text analysis. Research & Politics, 3(2):2053168016643346, 2016. doi: 10.1177/2053168016643346. URL https://doi.org/10.1177/2053168016643346