Université A. Mira de Béjaia Faculté des Sciences Exactes Département de Mathématiques

Concours national d'entrée en Doctorat LMD

Spécialité: Mathématiques

Options: Analyse, Probabilités et Statistiques

08/10/2016

Epreuve commune : Mathématiques de base

Durée: 02 heures

Problème 1 (10 points):

Soit f la fonction réelle d'une variable réelle définie par :

$$f(x) = \begin{cases} 0 & \text{si } x = 0 \\ \frac{x}{\ln x} & \text{sinon} \end{cases}.$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est de classe \mathscr{C}^1 sur [0,1].
- 3. Etudier les variations de f sur son domaine de définition.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n}{\ln u_n} & (\forall n \in \mathbb{N}) \end{cases}.$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, on a : $u_n \geq e$.
- (b) Montrer que la suite $(u_n)_n$ est convergente puis déterminer sa limite.
- (c) Montrer que pour tout réel $x \ge e$, on a : $0 \le f'(x) \le \frac{1}{4}$.
- (d) En se servant du théorème des accroissements finis, montrer qu'on a pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - e| \le \frac{1}{4} |u_n - e|.$$

- (e) En déduire qu'on a pour tout $n \in \mathbb{N}$: $|u_n e| \leq (\frac{1}{4})^n$.
- (f) Sachant que $4^5 > 1000$, déterminer un entier n_1 à partir duquel u_n est une valeur approchée du nombre e à 10^{-12} près.
- 5. Considérons l'équation différentielle (en y = y(x)) suivante :

$$-x^2y' + xy = y^2 (\mathcal{E}_1)$$

- (a) Montrer que si y est une solution de (\mathcal{E}_1) alors $z = \frac{1}{y}$ est une solution d'une équation différentielle linéaire de premier ordre (\mathcal{E}_2) que l'on demande de préciser.
- (b) Résoudre l'équation (\mathcal{E}_2) sur $]0, +\infty[$ puis justifier que ces solutions sont toutes de la forme $z(x) = \frac{\ln(ax)}{x}$ (avec a > 0).
- (c) En déduire les solutions de l'équation (\mathscr{E}_1) .

Problème 2 (10 points):

Pour tout ce qui suit, a et b désignent deux nombres réels. On note par $\mathbb{R}_1[x]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels, ayant un degré inférieur ou égale à 1. Pour tout $Q \in \mathbb{R}_1[x]$, on pose :

$$f(Q) = (x - a)(x - b)Q' - (x - \frac{a+b}{2})Q$$
.

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_1[x]$.
- 2. Déterminer la matrice A associée à f relativement à la base canonique de $\mathbb{R}_1[x]$ (rappelons que la base canonique de $\mathbb{R}_1[x]$ est $B_c := \{1, x\}$).
- 3. En déduire la condition nécessaire et suffisante sur a et b pour que f soit un isomorphisme de $\mathbb{R}_1[x]$.
- 4. On suppose dans cette question que $a \neq b$.
 - (a) Montrer que la famille $B := \{(x-a), (x-b)\}$ constitue une base de $\mathbb{R}_1[x]$.
 - (b) Déterminer la matrice D associée à f relativement à la base B.
 - (c) Déterminer la matrice de passage P de la base B_c vers la base B, puis calculer P^{-1} .
 - (d) Donner les valeurs propres et les vecteurs propres de A.
 - (e) Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$A^n = PD^nP^{-1}$$
.

- (f) En déduire l'expression explicite de A^n en fonction de n (où n est un entier naturel).
- 5. Soit E l'ensemble défini par :

$$E = \left\{ \alpha \, \mathbf{I}_2 + \beta \, A + \gamma \, A^2 \, ; \, \alpha, \beta, \gamma \in \mathbb{R} \right\}.$$

- (a) Montrer que E est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$ (rappelons que $\mathscr{M}_2(\mathbb{R})$ est le \mathbb{R} -espace vectoriel des matrices carrées d'ordre 2 à coefficients réels).
- (b) Calculer A^2 et en déduire une base pour E puis sa dimension.

Bon travail