## Tópicos de Matemática Discreta

|       | ropicos de Matematica Discreta                                                                                                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | — segundo teste <b>A</b> — 8 de janeiro de 2020 — duração: 2 horas —                                                                                                                                             |
| nome  | e: número                                                                                                                                                                                                        |
|       | GRUPO I.                                                                                                                                                                                                         |
| Em c  | cada exercício deste grupo, apresente a sua resposta sem justificar.                                                                                                                                             |
| 1. [2 | valores] Considere as funções $f: \mathbb{N} \longrightarrow \mathbb{Z}, g: \mathbb{Z} \longrightarrow \mathbb{Z}$ e $h: \mathbb{Z} \longrightarrow \mathbb{Z}$ definidas por:                                   |
| f(    | $f(n) = (-1)^n 2n + \frac{1}{2}[(-1)^n - 1];$ $g(n) = -3n^2;$ $h(n) = \begin{cases} 2n, \text{ se } n \ge 0\\ 1, \text{ se } n < 0. \end{cases}$                                                                 |
| (a)   | $f({1,6,13}) = \underline{\hspace{1cm}}$                                                                                                                                                                         |
| (b)   | $f^{\leftarrow}(\{-15,0,24\}) = \underline{\hspace{2cm}}$                                                                                                                                                        |
| (c)   | $g^{\leftarrow}(\{-3,5\}) = $                                                                                                                                                                                    |
| (d)   | $(h \circ g)(n) = \underline{\hspace{1cm}}$                                                                                                                                                                      |
|       | <b>valores</b> ] Sejam $a,b\in\mathbb{R}$ e $g:\mathbb{R}\longrightarrow\mathbb{R}$ a função definida por $g(x)=ax+b$ . Indique ses para $a$ e $b$ de modo que                                                   |
| (a)   | $g(\mathbb{N}) \subseteq \mathbb{Z}^-$ : $b = \underline{\hspace{1cm}}$                                                                                                                                          |
| (b)   | $g$ não seja injetiva: $a=\underline{\hspace{1cm}}$ $b=\underline{\hspace{1cm}}$                                                                                                                                 |
| R =   | [2 valores] Dados $A = \{a, b, c\}$ e $B = \{1, 2, 3\}$ , considere as relações binárias $\{(a, 2), (a, 3), (b, 1), (c, 2)\}$ e $S = \{(2, a), (2, c), (3, a)\}$ de $A$ para $B$ e de $B$ para $A$ , etivamente. |
| (a)   | $R^{-1} \cap S = \underline{\hspace{2cm}}$                                                                                                                                                                       |
| (b)   | $S \circ R =$                                                                                                                                                                                                    |
| (c)   | $Dom(S^{-1}) \setminus Im(S \circ R) = \underline{\hspace{1cm}}$                                                                                                                                                 |

**4.** [3,5 valores] Considere o c.p.o.  $(A, \leq)$  definido pelo seguinte diagrama de Hasse.



Indique:

(a) os elementos maximais de A:

(b) o conjunto dos majorantes de  $X = \{7, 10\}$ :

(c) elementos  $a, b \in A$  incomparáveis tais que existe  $\sup(\{a, b\})$ :  $a = \underline{\qquad} b = \underline{\qquad}$ 

(d) elementos  $c, d \in A$  tais que não existe  $\inf(\{c, d\})$ :  $c = \underline{\qquad} d = \underline{\qquad}$ 

(e) um subconjunto Y de A com 4 ou mais elementos que seja uma cadeia: \_\_\_\_\_\_

**5.** [2 valores] Seja  $A=\{1,2,3,4,5\}$ . Considere a relação de equivalência R em A tal que  $[1]_R=\{1,3,5\}$  e  $(2,4)\not\in R$ .

(a)  $[2]_R =$ \_\_\_\_\_\_

(b) A/R =\_\_\_\_\_

6. [1 valor] Considere a matriz

$$A = \left[ \begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right].$$

(a) Se G=(V,E) é um grafo simples que tem A como matriz de adjacência, então

(i) o número de vértices de G é \_\_\_\_\_\_

(ii) G tem \_\_\_\_\_\_ vértices de grau par.

(b) Existe algum grafo simples que tem A como matriz de incidência? \_\_\_\_\_

7. [2 valores] Considere o grafo G = (V, E) representado por



- (a) Indique o tipo de qualquer matriz de incidência de G: \_\_\_\_\_\_
- (b) Indique um caminho de h para b, sem vértices repetidos, de comprimento 5.
- (c) Indique um ciclo com vértice inicial f.

## GRUPO II.

Responda às questões deste grupo justificando convenientemente as suas respostas.

- 1. [2 valores] Considere a função f definida no exercício 1. do grupo anterior. Mostre que é injetiva.
- **2.** [2,5 valores] Seja S a relação de equivalência em  $\mathbb{R} \setminus \{0\}$  definida por x S y se e só se  $xy^{-1} \in \{-1,1\}$ . Mostre que S é, de facto, simétrica e indique, justificando, a partição de  $\mathbb{R} \setminus \{0\}$  induzida por S.
- 3. [1 valor] Considere o grafo do exercício 7. do grupo anterior. Verifique se G é bipartido. Justifique a sua resposta.