PCT

世界知的所有権機関 際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 213/74, 213/84, 233/88, 215/38, 401/04, 401/12, 405/12, 409/12, 413/12, 417/12, 295/18, 295/22, 243/08, 243/06, A61K 31/415, 31/47, 31/55, 31/495, 31/54 A1

WO00/17163

2000年3月30日(30.03.00)

(21) 国際出願番号

PCT/JP99/05149

(22) 国際出願日

1999年9月21日(21.09.99)

(30) 優先権データ

特願平10/267508 特願平11/155398 1998年9月22日(22.09.98)

1999年6月2日(02.06.99)

(71) 出願人(米国を除くすべての指定国について)

山之内製薬株式会社

(YAMANOUCHI PHARMACEUTICAL CO., LTD.)[JP/JP]

〒103-8411 東京都中央区日本橋本町二丁目3番11号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ) 谷口伸明(TANIGUCHI, Nobuaki)[JP/JP]

木野山功(KINOYAMA, Isao)[JP/JP]

上久保隆(KAMIKUBO, Takashi)[JP/JP] **豊島 啓(TOYOSHIMA, Akira)[JP/JP]**

三水消寬(SAMIZU, Kiyohiro)[JP/JP]

何南英次(KAWAMINAMI, Eiji)[JP/JP]

今村雅一(IMAMURA, Masakazu)[JP/JP]

森友博幸(MORITOMO, Hiroyuki)[JP/JP]

松久 彰(MATSUHISA, Akira)[JP/JP]

平野祐明(HIRANO, Masaaki)[JP/JP]

(11) 国際公開番号

(43) 国際公開日

神徳 宏(KOUTOKU, Hiroshi)[JP/JP] 太田光昭(OHTA, Mitsuaki)[JP/JP] 〒305-8585 茨城県つくば市御幸が丘21

山之内製薬株式会社内 Ibaraki, (JP) (74) 代理人 長井省三、外(NAGAL Shozo et al.)

宫寄洋二(MIYAZAKI, Yoji)[JP/JP] 野澤栄典(NOZAWA, Eisuke)[JP/JP]

岡田 稔(OKADA, Minoru)[JP/JP]

〒174-8612 東京都板橋区連根三丁目17番1号 山之内製薬株式会社 特許部内 Tokyo, (JP)

AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調查報告書

(54) Title: CYANOPHENYL DERIVATIVES

(54)発明の名称 シアノフェニル誘導体

(57) Abstract

Novel piperazino-substituted cyanophenyl derivatives in which a substituted carbamoyl or sulfamoyl group bearing an optionally substituted aryl or heterocyclic group or the like is bonded to the nitrogen atom constituting the piperazine ring. These derivatives exhibit antiandrogen activities and are therefore useful in the prevention or treatment of prostatic cancer, prostatic hypertrophy and so forth.

(57)要約

本願は、置換基を有していてもよいアリール又はヘテロ環等を有する置換カルバモ イル又は置換スルファモイル基がピペラジン環上の窒素原子に結合したピペラジノ 置換新規シアノフェニル誘導体に関する。本願化合物は抗アンドロゲン作用を有し、 前立腺癌,前立腺肥大症等の予防又は治療に有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

```
KZC PUI/MI A PUI/MI
```

PCT/JP99/05149

WO 00/17163

明細書

シアノフェニル誘導体

技術分野

本発明は、医薬、殊に抗アンドロゲン薬として有用な、新規シアノフェニル誘導体 及びその塩並びに医薬組成物に関する。

背景の技術

ステロイドホルモンの一種であるアンドロゲンは精巣や副腎皮質から分泌され、男性ホルモン作用を引き起こす。アンドロゲンは標的細胞内に取り込まれて、アンドロゲン受容体に作用し、アンドロゲンが結合した該受容体は2量体を形成する。次いでこの2量体がDNA上のアンドロゲンーレスポンスーエレメントに結合してm-RNAの合成を促進し、アンドロゲン作用を司るタンパクを誘導する事により、生体内で種々の作用を発現させる(Prostate Suppl.,6,1996, 45-51, Trends in Endocrinology and Metabolism, 1998, 9(8), 317-324)。

アンドロゲンが増悪因子となる疾患には、前立腺癌、前立腺肥大症、男性化症、多 毛症、禿頭症、ざ瘡、脂漏等が挙げられる。よって、これらアンドロゲンが関与する 疾患の治療には、抗アンドロゲン剤が使用されている。

現在臨床で用いられている抗アンドロゲン剤としては、基質類似のステロイド骨格を有する化合物と、非ステロイド骨格を有する化合物が知られている。前者としてクロルマジノンアセテート等が知られているが、これらの化合物は、構造類似の他のステロイドとの作用分離が十分でないため、血中ホルモンレベルの変動をきたし、リビドーの低下等重大な副作用を生じる事が知られている(Jpn.J.Clin.Oncol., 1993, 23(3), 178-185)。

一方非ステロイド骨格を有する化合物として、フルタミド(特開昭 49-81332)、ビカルタミド(GB 8221421,WO 95/19770)等のアシルアニリド誘導体が公知であるが、これらは抗アンドロゲン作用が十分でない。そのため前立腺ガンの治療においてはLH-RHアゴニストとの併用療法が一般的である(Nipponrinsho, 1998, 56(8), 2124-2128)。

ピペラジノシアノフェニル骨格を有する化合物としては WO95/25443 にオキシトシン及びバソプレシン受容体拮抗作用を有する物質が、WO96/02525 号に5 HTレセプター拮抗作用を示す物質が、DE 4234295 には細胞間相互作用阻害剤として、WO97/2245 には細胞接着阻害剤の製造中間体として、WO98/00402 及びWO98/21648 には抗癌作用を有する物質が開示されているが、抗アンドロゲン作用については何ら開示も示唆もされていない。

発明の開示

本発明の目的は、強力な抗アンドロゲン作用を有する新規シアノフェニル誘導体及びその塩を提供すること、更にはこれらを含有する医薬を提供することである。

本発明者らは、既存の抗アンドロゲン剤に付随する上述の問題点を解決するべく鋭意研究を行ったところ、意外にも置換カルバモイル又は置換スルファモイル基が結合した新規シアノフェニル誘導体が強い抗アンドロゲン作用を有し、良好な経口活性を有する事を見出し本発明を完成させるに至った。

即ち,本発明は下記一般式(I)で示されるシアノフェニル誘導体又はその塩に関する。

$$\begin{array}{c|c}
R^{1} & R^{2} & R^{3} \\
\hline
R^{1} & N & N & R^{5} \\
\hline
R & Z_{2}^{2} & (1)
\end{array}$$

(式中の記号は,以下の意味を示す。

R:シアノ又は二トロ基

 R^{1} : 水素原子,ハロゲン原子,シアノ,ハロゲノ低級アルキル,ニトロ,カルボキシル,低級アルキル, $R^{5}-A-$, $R^{7}-S$ (O) $_{p}-$,低級アルキル-C(=O)-又は低級アルキル-O-C(=O)-基

 R^2 , R^3 , R^4 : 同一又は異なって水素原子, 低級アルキル基, 1又は2個の低級アルキル基で置換されていてもよいカルバモイル基, 低級アルキル-C(=O)-又は低級アルキル-O-C(=O)-基なお, R^2 , R^3 は環上の任意の炭素原子に結合する。

R⁵:低級アルキル,アリールー低級アルキルー〇一,カルボキシル,低級アル

キルー〇-C(=〇)-,低級アルキル基で1又は2置換されていてもよいアミド,又は置換基を有していてもよいアリール,ヘテロ環,若しくはシクロアルキル基,若しくはN(R^{13}) R^{14} -低級アルキルー〇-但し,m=1のとき, R^4 と R^5 が一体となって他のヘテロ原子を有していてもよい5又は6員ヘテロ環を形成しても良い

R⁶:ハロゲノ低級アルキル、アリール、又は、N(R⁹) R¹⁰、OH若しくは 低級アルキル-O-で置換されていてもよい低級アルキル

R⁷: 低級アルキル, アリール, 又はN(R¹¹) R¹²-

R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴:水素, 低級アルキル,

又はアリール

但し、R⁶及びR⁸、R⁹及びR¹⁰、又はR¹³及びR¹⁴はそれぞれ一体となって他のヘテロ原子を有していてもよく置換基を有していてもよい含窒素シクロアルキルを形成することができる

k又はn:1,2又は3

m: 0又は1

p:0,1又は2

A:酸素原子, 又はNR®

X = -C (=O) -, -C (=S) -, 又は-S (O), -基

Y:結合,低級アルキレン,-C(=O)-,又は-S(O),-基

但し、R 5 が低級アルキル基のときは、Y は低級アルキレン以外の基を示す。 Z_1 又は Z_2 : 同一又は異なってC H 又は窒素原子

但し、 R^1 が水素原子のときは、 R^2 、 R^3 の少なくとも一方は低級アルキルである。)

好ましくは、Rがシアノ基である請求の範囲第1項記載のシアノフェニル誘導体又はその塩;

好ましくは、 R^1 がハロゲン原子、シアノ、ハロゲノ低級アルキル、ニトロ又は低級アルキル $-O-;R^2$ 、 R^3 : 少なくとも一方は低級アルキル基; R^4 : 水素原子、低級アルキル基; R^5 : 置換基を有していてもよいアリール、ヘテロ環、若しくはシクロアルキル基; R^3 : $R^$

の塩;

更に好ましくは、R⁵の置換基を有していてもよいアリール、ヘテロ環、若しくはシクロアルキル基の置換基が、ハロゲン原子、ハロゲノ低級アルキル、低級アルキル・S(O)ー、低級アルキル・S(O)ー、低級アルキル・S(O)ー、低級アルキル・S(O)ー、低級アルキル・S(O)ー、低級アルキル・S(O)ー、1又は2個の低級アルキルで置換されていてもよいスルファモイル、ハロゲノ低級アルキル・Oー、シアノ、ニトロ、オキソ(=O)、低級アルキル・C(=O)ー、アリール・C(=O)ー、1又は2個の低級アルキル若しくは低級アルキル・C(=O)ー若しくは低級アルキル・OーC(=O)ーで置換されていてもよいアミノ、アリール・Oー、アミノ・Oー、低級アルキルで置換されていてもよいカルバモイル、カルボキシル、低級アルキル・OーC(=O)ー、ヘテロ環又はOH基からなる群から選択される基である請求の範囲第1又は2項記載のシアノフェニル誘導体:

最も好ましくは、(2R,5S)-4-(4-シアノ-3-トリフルオロメチルフェニル)-N-(6-メトキシ-3-ピリジル)-2,5-ジメチルピペラジン-1-カルボキサミド;(2R,5S)-N-(2-アミノ-4-ピリミジル)-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキサミド;(2R,5S)-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチル-N-(6-トリフルオロメチル-3-ピリジル)ピペラジン-1-カルボキサミド;(2R,5S)-4-(4-シアノ-3-トリフルオロメチルフェメチルフェニル)-N-(2-フルオロ-4-ピリジル)-2,5-ジメチルピペラジン-1-カルボキサミド;(2R,5S)-N-(2-プロモ-4-ピリジル)-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキサミドから選択される化合物又はその塩:

また、本発明の別の目的として、一般式(1)のシアノフェニル誘導体又はその塩 を有効成分とする医薬組成物;

好ましくは一般式(□)のシアノフェニル誘導体又はその塩を有効成分とする抗ア ンドロゲン剤;

更に好ましくは、一般式(I)で示されるシアノフェニル誘導体又はその製薬学的 に許容される塩を有効成分とするアンドロゲンが増悪因子となる疾患の治療剤であ り、アンドロゲンが増悪因子となる疾患としては、前立腺癌、前立腺肥大症、男性化

症、多毛症、禿頭症、ざ瘡、脂漏である。

最も好ましくは、一般式(I)で示されるシアノフェニル誘導体又はその製薬学的 に許容される塩を有効成分とする前立腺癌、前立腺肥大症の治療のための医薬組成物 である。

一般式(1)で示される化合物について更に説明すると、次の通りである。

本明細書の一般式の定義において、特に断らない限り「低級」なる用語は炭素数が 1 乃至 6 個の直鎖又は分岐状の炭素鎖を意味する。

R²又はR³は,窒素原子2個を含む飽和環上の任意の同一又は異なった炭素原子に 結合する。

置換基を有していてもよいアリール、ヘテロ環、若しくはシクロアルキル基は、環上に1乃至3個の置換基を有していてもよく、好ましくは、ハロゲン原子、ハロゲノ低級アルキル、低級アルキル、低級アルキルー〇一、低級アルキルーS一、低級アルキルで置換されていてもよいスルファモイル、ハロゲノ低級アルキルー〇一、シアノ、ニトロ、オキソ(=〇)、低級アルキルー〇(=〇)ー、アリールー〇(=〇)ー、1又は2個の低級アルキル若しくは低級アルキルー〇(=〇)ー若しくは低級アルキルー〇一〇(=〇)ーで置換されていてもよいアミノ、アリールー〇一、アミノー〇一、低級アルキルで置換されていてもよいアミノ、アリールー〇一、アミノー〇一、低級アルキルで置換されていてもよいカルバモイル、カルボキシル、低級アルキルー〇一〇(=〇)ー、置換基を有していてもよいヘテロ環又は〇日基である。

「低級アルキル」は直鎖状または分枝状の炭素数 $1 \sim 6$ の低級アルキル基が好ましく,たとえばメチル,エチル,n-プロピル,イソプロピル,n-ブチル,イソブチル,sec-ブチル,tert-ブチル,n-ペンチル,n-ヘキシルなどがあげられる。

置換基を有してもよい低級アルキル基-O-の置換基は、アリール基等の置換基が 挙げられる。

「低級アルキレン」は直鎖状または分枝状の炭素数1~6の低級アルキレン基が好ましく、たとえばメチレン、エチレン、プロピレン、イソプロピレン、ブチレン、ペンタメチレン、ヘキサメチレンなどがあげられ、好ましくは炭素数1~3のアルキレンである。

「アリール」は炭素数6~12の芳香族炭素水素基が好ましく、たとえばフェニル、

 α - ナフチル, β - ナフチル,ビフェニリルなどがあげられる。更には,炭素数 6 - 1 0 のものが好ましい。

「ハロゲン原子」としてはたとえば、フッ素、塩素、臭素又はヨウ素原子などがあげられる。

「ハロゲノ低級アルキル」の低級アルキル基は上記の C_{1-6} アルキル基が好ましく、ハロゲノ C_{1-6} アルキル基としてはたとえば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、2ーフルオロエチル、2、2ージフルオロエチル、2、2ートリフルオロエチル、2ークロエチル、2、2ージクロロエチル、2、2ートリクロロエチル、2ープロモエチル、2ーヨードエチルなどがあげられ、トリフルオロメチルが好ましい。

「シクロアルキル基」は炭素数 3 ~ 1 0 からなる 3 ~ 8 員脂環状炭化水素基が好ましく、たとえばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどがあげられる。

「ヘテロ環」とは、窒素原子、酸素原子又は硫黄原子から選択されるヘテロ原子1 乃至4個を含む5又は6員ヘテロアリール基或いは飽和ヘテロ環,または、ベンゼン 環や他のヘテロ環と縮合した2環系ヘテロアリール基,を意味し,該ヘテロアリール としては、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、 ピリダジン、トリアゾール、チオフェン、チオピラン、フラン、ピラン、ジオキソラ ン、チアゾール、イソチアゾール、チアジアゾール、チアジン、オキサゾール、イソ キサゾール、オキサジアゾール、フラザン、ジオキサゾール、オキサジン、オキサジ アジン、ジオキサジン等が挙げられ、飽和ヘテロ環としては、ピロリジニル基、ピペ リジニル基、ピペラジニル基、モルホリル基、チオモルホリル基等が挙げられ、縮合 したヘテロアリールとしてはインドール、イソインドール、インダゾール、キノリン、 キナゾリン、キノキサリン、イソキノリン、ベンゾイミダゾール、ベンゾチオフェン、 ベンゾチアゾール、ベンゾフラン、ベンゾフラザン、イミダゾピリジン、イミダゾピ ラジン,ピリドピリジン,フタラジン,ナフチリジン,インドリジン,プリン,キノ リジン、シンノリン、イソクマリン、クロマン等が挙げられる。好ましくは、ピリジ ン、ピリミジン、チオフェン、フラン等の窒素原子、酸素原子又は硫黄原子から選択 されるヘテロ原子1乃至2個を含む5又は6員ヘテロアリール基である。

「m=1のとき、R4とR5が一体となって他のヘテロ原子を有していてもよい5又

は6員へテロ環を形成しても良い」とは、R*が結合している窒素原子の他に、窒素原子、酸素原子又は硫黄原子から選択されるヘテロ原子1乃至3個を含む5又は6員、ヘテロアリール基或いは飽和ヘテロ環を意味し、オキソ基等の置換基を有していてもよい。具体的には該ヘテロアリールとしては、ピロール、イミダゾール、ピラゾール、ピリジン、ピリミジン、ピリダジン、トリアゾール等が、飽和ヘテロ環としては、ピロリジニル基、ピペリジニル基、ピペラジニル基、モルホリル基、チオモルホリル、1、4ージアゼパン、チオモルホリンー1ーオキシド、チオモルホリンー1、1ージオキシド、1、4ーオキサゼパン基等が挙げられる。好ましくはR*が結合している窒素原子の他に、窒素原子、酸素原子又は硫黄原子から選択されるヘテロ原子1個を含む5又は6員飽和ヘテロ環であり、更に好ましくはチオモルホリノ基である。

「R⁶及びR⁸, R⁸及びR¹⁰, 又はR¹³及びR¹⁴はそれぞれ一体となって他のヘテロ原子を有していてもよく置換基を有していてもよい合窒素シクロアルキル」とは、R⁶及びR⁸, R⁹及びR¹⁰, 又はR¹³及びR¹⁴が結合している窒素原子の他に、他のヘテロ原子として窒素原子、酸素原子又は硫黄原子から選択されるヘテロ原子 1 個を含んでいても良い5又は6員飽和ヘテロ環であり、オキソ基、低級アルキル、アリール等の置換基を1-2個有していてもよい。好ましくは、ピロリジノ、ピペリジノ、モルホリノ、ピペラジン、チオモルホリノ基である。

本発明化合物において3級アミン又はスルフィドを有する化合物は当該窒素原子 又は硫黄原子が適当な酸化段階にオキシド化されていてもよく,それらのオキシド化 誘導体をすべて包含するものである。

本発明化合物(I)は、アミド結合に基づく幾何異性体が存在する。置換基の種類によっては、1個乃至複数個の炭素、窒素、硫黄等の不斉中心や軸不斉を有する場合もあり、これに基づく(R)体、(S)体等の光学異性体、ラセミ体、ジアステレオマー等が存在する。また、置換基の種類によっては、二重結合を有するので、(Z)体、(E)体等や、さらにシクロヘキサン等に基づくシス体、トランス体等の幾何異性体が存在する。本発明は、これらの異性体の分離されたものあるいは混合物を全て包含する。

本発明化合物は塩を形成する。具体的には、無機酸若しくは有機酸との酸付加塩、 あるいは無機若しくは有機塩基との塩であり、製薬学的に許容しうる塩が好ましい。

これらの塩としては、具体的には塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸若しくは燐酸等の鉱酸、またはギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸若しくは、トルエンスルホン酸等の有機酸、又はアスパラギン酸若しくはグルタミン酸などの酸性アミノ酸との付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、リチウムなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オルニチンなどの塩基性アミノ酸との塩等を挙げることが出来る。更に4級アンモニウム塩であることもできる。4級アンモニウム塩は、具体的には低級アルキルハライド、低級アルキルトリフラート、低級アルキルトシラートまたはベンジルハライド等であり、好ましくはメチルヨージドまたはベンジルクロリド等である。

更に、本発明化合物は水和物、エタノール等との溶媒和物や結晶多形を形成することができる。

(製造法)

第一製法

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{5} $R^$

(式中の記号は、前記のとおりである。)

本製造法は、一般式(II)で示される置換アミン又はその塩と、一般式(III) で示される化合物又はその反応性誘導体とを反応させ、保護基を有するときは保護基 を除去する事により本発明化合物(I)を製造する方法である。

化合物(!||)の反応性誘導体としては、カルボン酸のメチルエステル、エチルエステル、イソブチルエステル、tertーブチルエステル、などの通常のエステル、pーニトロフェニルエステルなどのフェニルエステル、酸クロリド、酸プロミドの如き酸ハライド、酸アジド、2、4ージニトロフェノールなどのフェノール系化合物や1ーヒドロキシスクシンイミド、1ーヒドロキシベンゾトリアゾール(HOBt)な

どのN-ヒドロキシアミン系化合物等と反応させて得られる活性エステル、対称型酸無水物、アルキル炭酸ハライドなどのハロカルボン酸アルキルエステルやピバロイル、ハライドなどと反応させて得られる有機酸系混合酸無水物や、トリフェニルホスフィンなどの有機燐化合物とN-ブロモスクシンイミド等の活性化剤の組み合わせで得られる燐酸系の混合酸無水物などの混合酸無水物、スルホニルクロリド、イソシアナートが挙げられる。

またカルボン酸を遊離酸で反応させるとき、又は活性エステルを単離せずに反応させる時など、ジシクロヘキシルカルボジイミド(DCC)、カルボニルジイミダゾール、ジフェニルホスホリルアジド、ジエチルホスホリルシアニドや1ーエチルー3(3ージメチルアミノプロピル)カルボジイミド塩酸塩(WSC)等の縮合剤を使用するのが好適である。

特に本発明においては酸クロリド法、活性エステル化剤との共存下に反応させる方法、イソシアナート及びチオイソシアナートとの縮合反応が有利である。

尚,イソシアナートは、カルボン酸、アミド、酸ヒドラジド等のカルボン酸誘導体から既知の転移反応を利用することにより合成することが出来る。カルボン酸からイソシアナートに変換する際は、一旦酸クロリドや混合酸無水物等に変換した後アジ化ナトリウム等と反応させ、酸アジドを得、ついで加熱等によりイソシアナートへと変換する方法が有利である。またこの際ジフェニルホスホリルアジド(DPPA)等を使用すると一挙にイソシアナートへと変換が可能である。また、カルボン酸および(コー) 共存下にDPPAを作用させることにより(コ)を得ることも可能である。一方、対応するアミン誘導体をホスゲン、またはホスゲン等価体と反応させ、イソシアナートとする事も可能である。このような等価体としてホスゲンダイマー、トリホスゲン、カルボニルジイミダゾールや、ジェ・エーブチルジカーボナート(DIBOC)および4ー(N、Nージメチルアミノ)ビリジン(DMAP)の組み合わせ等が挙げられる。またチオイソシアナートも、チオホスゲンやチオカルボニルジイミダゾール等を利用した公知の反応を利用することにより、合成可能である。

また、対応するアミン誘導体を、一旦フェニルカーボナートに代表される脱離基を有する活性な中間体に誘導した後、(I I) と反応させる事により(I) を得ることもできる。

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジクロロメタ

ン,ジクロロエタン,クロロホルムなどのハロゲン化炭化水素類,ベンゼン,トルエン,キシレン等の芳香族炭化水素類,エーテル,テトラヒドロフラン等のエーテル類,酢酸エチルエステル等のエステル類,アセトニトリル,N,Nージメチルホルムアミド(DMF),N,Nージメチルアセトアミド,Nーメチルピロリドンやジメチルイミダゾリジノン等の反応に不活性な有機溶媒中,反応性誘導体によっては冷却下,冷却下乃至室温下,又は室温乃至加熱下に行われる。

尚,反応に際して、置換アミン(II)を過剰に用いたり、Nーメチルモルホリン、トリメチルアミン、トリエチルアミン、N,Nージメチルアニリン、ピリジン、DMAP、ピコリン、ルチジン、コリジン、1,8ージアザビシクロ[5.4.0]ウンデクー7ーエン (DBU) などの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。ピリジンなどは溶媒とすることもできる。

この際分子内に存在する酸素原子、硫黄原子、窒素原子等は保護基と結合していることが望ましい場合があり、このような保護基としては Greene 及び Wuts 著、「Protective Groups in Organic Synthesis」第2版に記載の保護基等を挙げることができ、これらを反応条件に応じて適宜使い分けることができる。

第二製法

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{5} $R^$

(式中の記号は、前記のとおりである。)

本製造法は、一般式(II)で示される置換アミン又はその塩を、Xを有する、または等価な反応性化合物と反応させた後、一般式(IV)で示される化合物を作用させ、保護基を有するときは保護基を除去する事により本発明化合物(I)を製造する方法である。

Xを有する、または等価な反応性化合物として、生成物が尿素誘導体の際は、ホスゲン、ホスゲンダイマー、トリホスゲン、カルボニルジイミダゾールまたは公知の等価体が使用可能である。生成物がスルファミド誘導体の場合には、スルファミドやスルフリルクロリド等の公知の試薬が使用可能である。

尚反応に際し、第一製法で示した条件が使用可能である。

第三製法

(式中,Qはフッ素,塩素,臭素,ヨウ素等ハロゲン,又はトリフルオロメタンスルホナート,ベンゼンスルホナート等の脱離基を表す。)

本製造法は、一般式(VI)で示される置換アミン又はその塩と、一般式(V)で示される化合物を反応させ、本発明化合物(I)を製造する方法である。

尚,反応に際して,置換アミン(VI)を過剰に用いたり,N-メチルモルホリン,トリメチルアミン,トリエチルアミン,ジイソプロピルエチルアミン,N,N-ジメチルアニリン,ピリジン,DMAP,ピコリン,ルチジン,1,8-ビストリメチルアミノナフタレン,DBU などの有機塩基又は炭酸カリウム,炭酸ナトリウム,炭酸カルシウム,炭酸水素ナトリウム,水酸化ナトリウム,炭酸セシウム等の無機塩基の存在下に反応させるのが,反応を円滑に進行させる上で有利な場合がある。ピリジンなどは溶媒とすることもできる。更に触媒として有機金属触媒を用いることも好適である。反応は使用する基質や条件によっても異なるが,通常ジクロロメタン,ジクロロエタン,クロロホルムなどのハロゲン化炭化水素類,ベンゼン,トルエン,キシレン等の芳香族炭化水素類,エーテル,テトラヒドロフラン等のエーテル類,酢酸エチルエステル等のエステル類,エタノール,メタノール等のアルコール性溶媒,アセトニトリル,DMF,N,N-ジメチルアセトアミド,N-メチルピロリドン,N,N-ジメチルイミダゾリジノンやジメチルスルホキシド等の反応に不活性な有機溶媒中,反応性誘導体によっては冷却下,冷却下乃至室温下,又は室温乃至加熱下に行われる。

第四製法

(式中の記号は、前記のとおりである。)

本製造法は、一般式($I': R^4 = H$)で示される本発明化合物をアルキル化またはアシル化し、本発明化合物(I)を製造する方法である。

本反応において、ヨウ化メチル、ヨウ化エチル、ベンジルブロミドなどのハロゲン 化アルキル、硫酸ジメチルなどの硫酸エステル、メタンスルホナート、メチル トリフルオロメタンスルホナートなどのスルホナート類のようなアルキル化剤が使用可能である。又はアセチルクロリドの様な酸クロリド、無水酢酸等の酸無水物の様なアシル化剤が使用される。この際トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、リチウムジイソプロピルアミン、ソジウムヘキサメチルジシラジド等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基を用いてもよい。

反応は、通常ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、DMFやN、Nージメチルアセトアミドやジメチルスルホキシド等の反応に不活性な有機溶媒中、反応性誘導体によっては冷却下、冷却下乃至室温下、又は室温乃至加熱下に行われる。

第五製法

(式中の記号は、前記のとおりである。)

本製造法は、一般式(VII)で示される化合物を環化させて、本発明化合物(I)を製造する方法である。

本反応に置いて、アルデヒド又はケトン及びアセタール、ケタール、チオケタール等

のカルボニル等価体が環化に使用される。反応は一般に酸性条件又は塩基性条件が使用可能であり、 通常ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、DMFやN、N-ジメチルアセトアミドやジメチルスルホキシド等の反応に不活性な有機溶媒中、反応性誘導体によっては冷却下、冷却下乃至室温下、又は室温乃至加熱下に行われる。中でも酢酸、トリフルオロ酢酸等の有機酸が特に好適である。

上記の製法に従って合成した、本発明化合物は、公知の反応を用いた官能基等の変 換により、他の本発明化合物に変換可能であり、その一部を実施例に示した。

このようにして製造された本発明化合物は、遊離のまま、その塩、その水和物、その溶媒和物、あるいは結晶多形の物質として単離精製される。本発明化合物(I)の塩は、常法の造塩反応に付すことにより製造することもできる。

単離精製は、抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー 等の通常の化学操作を適用して行われる。

各種の異性体は、適当な原料化合物や反応剤または反応条件を使用することにより 選択的に合成するか、または異性体間の物理的性質の差を利用して分離することがで きる。例えば、光学異性体は適当な原料を選択することにより、あるいはラセミ化合 物のラセミ分割法(例えば、一般的な光学活性な塩基とのジアステレオマー塩に導き、 光学分割する方法等)により、立体化学的に純粋な異性体に導くことができる。

本発明化合物又はその塩の1種又は2種以上を有効成分として含有する製剤は、通常製剤化に用いられる担体や賦形剤、その他の添加剤を用いて調製される。

投与は錠剤,丸剤,力プセル剤,顆粒剤,散剤,液剤等による経口投与,あるいは静注,筋注等の注射剤,坐剤,経皮等による非経口投与のいずれの形態であってもよい。投与量は症状,投与対象の年令,性別等を考慮して個々の場合に応じて適宜決定されるが,通常経口投与の場合成人1日当り0.01~50mg程度,非経口投与の場合成人1日当り0.001~5mg程度であり,これを1回で,あるいは2~4回に分けて投与する。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用い

られる。このような固体組成物においては、一つまたはそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸、アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グルコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の胃溶性あるいは腸溶性物質のフィルムで被膜してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80(商品名)等がある。このような組成物はさらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含んでいてもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

【実施例】

以下に実施例を掲記し、本発明を更に詳細に説明する。本発明は、これらの実施例に何ら制限されるものではない。なお、実施例で用いられる原料化合物の製造方法を 参考例として説明する。

参考例1-1

トランス-4-(2,5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル

4-フルオロ-2-トリフルオロメチルベンゾニトリル1gとトランス-2,5-ジメチルピペラジン2.4gを,DMF30mlに溶解し、80℃にて一昼夜加熱した。反応溶液に水を加え、酢酸エチルで抽出し、無水硫酸ナトリウム上乾燥後、減圧にて溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルム-メタノール(10:1、v/v)溶出部より表題化合物1.3gを得た。参考例1-1と同様に、参考例1-2乃至1-17を合成した。これらの構造及び物性値は表1乃至表3に示す。

参考例2

t ープチル 3 ーメチルピペラジン-1-カルボキシレートの合成

水冷下でDIBOC10.9gのテトラヒドロフラン(THF)溶液15mlを2 ーメチルピペラジン10gのTHF溶液150mlに加えた。一夜攪拌後、溶媒を減 圧下留去した。残渣に水を加え、酢酸エチルで抽出後、有機層を洗浄乾燥し、減圧下 溶媒を留去する事により表題化合物8.94gを黄色油状物質として得た。

参考例3

t ープチル 4 - (4 - シアノ - 3 - トリフルオロメチルフェニル) - 3 - メチルピペラジン-1 - カルボキシレート

参考例2で合成した t ーブチルー3ーメチルピペラジンー1ーカルボキシレート4.46g,4ーフルオロー2ートリフルオロメチルベンゾニトリル6.74g,及びジイソプロピルエチルアミン7.76mlをDMF50ml中,100℃で2日間攪拌した。反応液を水で希釈し、酢酸エチルで抽出後、有機層を洗浄後乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに付しヘキサン一酢酸エチル(3:1, ∨ / ∨)を用いて溶出し、表題化合物5.6gを白色結晶として得た。

参考例 4

4-(2-x+) ピペラジン-1-4ル) -2- トリフルオロメチルベンゾニトリル 参考例 3 で合成した t- ブチル 4-(4- シアノ-3- トリフルオロメチルフェニル) -3- メチルピペラジン-1- カルボキシレート 2. 85 g をトリフルオロ酢酸 50 m 1 中,0 \mathbb{C} ~室温で 2 時間攪拌した。溶媒を減圧下留去し,飽和重曹水で中

和後酢酸エチルで抽出後、有機層を洗浄乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーを用いて精製し、クロロホルムーメタノールー2 8%アンモニア水(10:1:0.1, v/v/v)溶出部より、表題化合物5.6 gを薄黄白色結晶として得た。

参考例2乃至4の物性値は表4に示す。

参考例 5-1

4 - (4 - ベンジル-2-エチル-3-オキソピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル

ジイソプロピルアミン0.94mlを無水THF10mlに溶解し、-20℃で1.47Mのブチルリチウム/ヘキサン溶液4.5mlを加え、10分間攪拌した後-78℃に冷却した。参考例1-15で合成した4-(4-ベンジル-3-オキソピペラジン-1-イル)-2-トリフルオロメチルベンソニトリル2gの無水THF溶液20mlを滴下し、20分間攪拌後、ヨウ化エチル0.67mlを加えた。-10℃まで昇温させた後、反応液を飽和塩化アンモニウム水溶液でに注ぎ、酢酸エチルで抽出後、有機層を洗浄した後乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーを用いて精製し、ヘキサン-酢酸エチル(1:1、v/v)溶出部より、表題化合物1.5gを白色泡状物質として得た。

参考例5-1と同様に、参考例5-2及び5-3を合成した

参考例 6-1

4 - (4 - ベンジル-2 - エチルピペラジン-1 - イル) -2 - トリフルオロメチル ベンゾニトリル

参考例 5 - 1 で合成した4 - (4 - ベンジル - 2 - エチル - 3 - オキソピペラジン - 1 - イル) - 2 - トリフルオロメチルベンゾニトリル1. 4 7 g の無水THF溶液 3 0 m | 中に0℃にて1 Mポラン-THF溶液 5 m | を滴下し, 4 時間攪拌した。メタノール1 0 m | , 1 規定塩酸 3 8 m | を加え攪拌した後,反応液を減圧下濃縮し,飽和重曹水で中和後酢酸エチルで抽出し,有機層を洗浄後乾燥し,溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーを用いて精製し,ヘキサン-酢酸エチル(5:1. ∨ / ∨)溶出部より,表題化合物 0.67 g を黄色油状物質として

得た。

参考例6-1と同様に、参考例6-2及び6-3を合成した。

参考例 7-1

4-(2-エチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル 参考例 6 - 1 で合成した 4 - (4 - ベンジルー 2 - エチルピペラジンー 1 - イル) -2-トリフルオロメチルベンゾニトリルO.65gおよび10%パラジウムカーボ ン65mgをメタノール中,常圧水素雰囲気下室温で6時間攪拌した。不溶物をセラ イトを用いて違別し、濾液を減圧下濃縮後、残渣をシリカゲルカラムクロマトグラフ ィーを用いて精製し、クロロホルムーメタノールー29%アンモニア水(10:1: 0.1、 y / y / y) 溶出部より、表題化合物 0.4 6 g を黄色油状物質として得た。 参考例7-1と同様に、参考例7-2及び7-3を合成した

参考例5-1乃至参考例7-3の構造及び物性値を表5に示す。

参考例8

トランス-4-(2,5-ジメチルピペラジン-1-イル)フタロニトリル

4-ヒドロキシフタロニトリル1.52gをアセトニトリル30.0mlに溶解し, トリエチルアミン2. 1 m l を加え、-10℃にて攪拌した。反応液に無水トリフル オロメタンスルホン酸 1.8 m | を加え、0℃にて30分攪拌した後、室温に昇温し、 DMF15m | を加え2時間攪拌した。減圧下溶媒を留去し、残渣に酢酸エチルを加 え、飽和炭酸水素ナトリウム水溶液で洗浄し、有機層を硫酸ナトリウムで乾燥した。 減圧下溶媒を留去した後、残渣をアセトニトリル20mlに溶解し、2、5-トラン スジメチルピペラジン2.30gを加え,2時間加熱還流し,室温にて一晩攪拌した。 減圧下溶媒を留去し、残渣に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム 水溶液、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、表 題化合物を得た。

参考例 9-1

1-[2-(4-シアノ-3-トリフルオロメチルアニリノ)-1,1-ジメチルエ チル] - 3 - (4 - フルオロフェニル) ウレア

4-(2-アミノ-2-メチルプロピルアミノ)-2-トリフルオロメチルベンゾニトリルをジクロロメタン60mlに溶解し、4-フルオロフェニルイソシアナート0.49mlを滴下し、室温にて1時間攪拌した。析出した結晶を遮取し、ジクロロメタンにて洗浄後乾燥し、表題化合物1.30gを得た。

参考例 9-1 と同様に、以下の参考例 9-2 を合成した 1-[4-(4-2) - 3-1] - 3-(4-2) フルオロフェニル)ウレア

参考例10

ベンジル 3-メチルピペラジン-1-カルボキシレート

2 - メチルピペラジン4 g をジクロロメタン40 m l に溶解し、-78 ℃にてベンジルクロロホルメート1.71 g を滴下した。1時間攪拌後水を加え洗浄し、乾燥後溶媒を留去し、表題化合物2.0 g を得た。

参考例11-1

(+/-) ートランス-4-(2,5-ジメチルピペラジン-1-イル)-2ートリフルオロメチルベンゾニトリル 10gをエタノールー水混合溶媒 20ml に溶解し、(-) ージベンゾイルーLー酒石酸[(-)ーDIBETA]6.6gを用いて分別再結晶を繰り返し塩を得た。この塩を5規定の水酸化ナトリウム溶液に加え、遊離した油状物を酢酸エチルで抽出した後、溶媒を留去して表題化合物2gを得た。

参考例11-2

参考例12-1

(3S, 6R) -1-ベンジル-3, 6-ジメチルピペラジン-2, 5-ジオン

0℃に冷却したDCC 1.07g のジクロロメタン 50ml 溶液にN-tert-ブトキシカルボニルーL-アラニン 0.98g を加え、5 分間攪拌した。この溶液にN-ベンジルーD-アラニン メチルエステル 1.0g のジクロロメタン 10ml 溶液を加え、室温にて2日間攪拌した。白色の沈殿物を濾別し、ジエチルエーテルで洗浄し、滤液を濃縮した。残渣を減圧下乾燥し、ジクロロメタン 30ml を加え、0℃に冷却し、トリフルオロ酢酸 5 ml を加え室温で 3 時間攪拌した。反応液を飽和重曹水で中和した後、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥、濾過の後、濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し n-ヘキサンー酢酸エチル(1:5, v/v)で精製し表題化合物 10g を無色の油状物として得た。

参考例12-2

(2R, 5S) - 1 - ベンジル-2, 5 - ジメチルピペラジン

参考例12-3

(2S, 5R)-4-(4-ベンジル-2, 5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル

参考例12-4

(2S, 5R) - 4 - (2, 5 - ジメチルピペラジン- 1 - イル) - 2 - トリフルオロメチルベンゾニトリル

(2 S, 5 R) -4-(4-ベンジル-2, 5-ジメチルピペラジン-1-イル) -2-トリフルオロメチルベンゾニトリル 0.31 g のジクロロエタン 20 ml 溶液に 1-クロロエチル クロロホルメート 0.92 ml を加え、加熱還流条件下 2 日攪拌した。反応液を濃縮し、メタノール 20 ml を加え加熱還流条件下 1 日攪拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーに付しクロロホルムーメタノール(9:1, <math>v/v)で精製し、表題化合物 0.19 g を黄色油状物として得た。

本化合物の比旋光度及び光学活性 HPLC カラム(ダイセル化学工業, CHIRALCEL OD-H)での保持時間は、参考例 1 - 1 の(-) - DIBETA を用いて分割した化合物に一致した。

参考例13

6-トリフルオロメチルニコチン酸

5-シアノ-2-トリフルオロメチルピリジン2.9g および濃塩酸30mlを90度にて13時間攪拌した。反応溶液を室温まで放冷し水を加え、次いで28%アンモニア水にてpHを2-3に調整した。析出した結晶を濾取した後、水にて洗浄し表題化合物2.22gを得た。

参考例14

2-メトキシカルボニルイソニコチン酸

ピリジン-2,4-ジカルボン酸5.0gのメタノール50ml溶液に濃硫酸1.7mlを加え、1時間10分加熱還流した。冷後、氷水に注ぎ、5℃で3時間攪拌し析出した白色固体を濾取した。本品5.7gをメタノール100mlに加熱溶解し、冷後室温で攪拌した。析出した白色固体を濾取し表題化合物2.5gを得た。

参考例 1 5

3 - シアノ - 6 - シクロプロピル - 2 - オキソ - 1,2 - ジヒドロピリジン - 4 - カルボン酸エチルエステル

2,4-ジオキソシクロプロパンブチル酸エチルエステル41.9gのエタノール300ml 溶液に室温攪拌下,2-シアノアセタミド19.2gを加えた。65℃に昇温させ,試薬を完全に溶解させた後,ピペラジン7.4mlを滴下した。1時間後,室温まで冷却させ,さらに15時間30分攪拌した。析出した結晶を適取した後,ジエチルエーテルを用いて洗浄し表題化合物24.1gを得た。この化合物はこれ以上の精製を行うことなく次の反応に用いた。

参考例 1 6

2-シクロプロピルー6-メトキシイソニコチン酸メチルエステル

3 ーシアノー6 ーシクロプロピルー2 ーオキソー1,2 ージヒドロピリジンー4 ーカルボン酸エチルエステル12.0gの濃塩酸100ml溶液を5時間40分加熱還流した。冷後、溶媒留去し粗カルボン酸15.0gを得た。本化合物13.9gをベンゼン250mlに懸濁し室温攪拌下、ヨウ化メチル7.7ml、炭酸銀19.9gを順次加え50℃に昇温させた。74時間後、室温まで冷却させセライトを用いて濾過後、溶媒留去した。残留物をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチルーヘキサン(1:6, v/v)溶出部より表題化合物957mgを得た。

参考例17

4-アミノー2-プロモピリジン

67%エタノール水溶液450 ml中に2-プロモ-4-二トロピリジンN-オキシド8.78 g, 鉄粉11.2 gおよび塩化アンモニウム1.2 gを順次添加した後,約30分間加熱還流させた。不溶物を遽去して得られた濾液を減圧留去し、生じた残留物に適量の飽和重曹水を注ぎ酢酸エチルにて抽出した。有機層を水洗・乾燥させ、減圧留去により生じた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルム-メタノール-28%アンモニア水 (200:9:1, v/v/v)溶出部より、淡橙色結晶の表題化合物4.4 gを得た。

参考例18

4-アミノ-2-(t-ブトキシカルボニルアミノ) ピリミジン

t-プタノール150 ml中に 2 、 4-ジアミノピリミジン5.52 gを添加し、約60 $^{\circ}$ に加温して溶解させた後、室温まで放冷させ、続いて DIBOC12.38 gを添加後、約

3日間室温攪拌した。減圧留去により生じた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルム-メタノール-28%アンモニア水 (200:9:1, v/v/v)溶出部より、白色結晶の表題化合物7.02 gを得た。

参考例19

2 - シアノ - 4 - ピリジルカルバミン酸 t - ブチルエステル

2 ーシアノイソニコチン酸1.5gの t ーブタノール100ml溶液に室温攪拌下, トリエチルアミン1.8ml, DPPA2.8mlを順次加え, 4 時間 2 5 分加熱還流した。室温まで冷却させ, 反応溶液に水を加え, 酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し, 無水硫酸ナトリウムを用いて乾燥後, 減圧にて溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィーにて精製し, 酢酸エチルーヘキサン(1:2, v/v)溶出部より表題化合物1.34gを得た。

参考例20

2 - アセチル- 4 - ピリジルカルバミン酸 t - ブチルエステル

2-シアノ-4-ピリジルカルバミン酸 t-ブチルエステル1.58gのTHF30ml溶液に氷冷攪拌下、メチルマグネシウムブロミド-3 Mジエチルエーテル溶液7.2mlを加えた。40分後1規定塩酸水溶液を加え、室温まで冷却させ酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムを用いて乾燥後、減圧にて溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチルーへキサン(1:2, v/v)溶出部より表題化合物(1.16g)を得た。

参考例21

5-アミノメチル-2-メトキシピリジン

5-シアノ-2-メトキシピリジン1.00gをエタノール30ml及び28%アンモニア水10mlに溶解し、ラネーニッケル1gを添加し水素気流下常圧常温にて4時間攪拌した。セライトを用いて濾過した後溶媒を留去し、表題化合物962mgを得た。

参考例22

2-(1-イミダゾリル)ピリジン N-オキシド

イミダゾール 0.76g を N,N-ジメチルホルムアミド 7ml に添加し、氷冷下 90% リチウムヒドリド 0.2g を添加後 4 0 分攪拌した。次いで 2 - プロモピリジン N-オキシド塩酸塩 2.17g を徐々に添加し、室温下約 1 時間攪拌、さらに 80 $^{\circ}$ で約 1 時間加熱させた後、溶媒留去により得られた混合物をシリカゲルカラムクロマトグラフィーに付し、クロロホルムーメタノール- 2 8 %アンモニア水(10:0.9:0.1、 $_{\circ}$ $_{\circ}$ $_{\circ}$ $_{\circ}$ $_{\circ}$ で溶出し、淡黄色結晶の表題化合物 1.21g を得た。

参考例23

2-(1-イミダゾリル)-4-ニトロピリジン N-オキシド

2-(1-イミダゾリル)ピリジン N-オキシド 3.22g を濃硫酸 7.6g に添加し、氷冷下で発煙硝酸 5.2g および濃硫酸 2.6g の混合液を徐々に滴下後、130℃で約 2.5 時間加熱させた。反応液を放冷させ氷冷水 150g 中に注いだ後、炭酸カリウムで中和し酢酸エチル 300ml で抽出した。有機層を乾燥後、濃縮して得られた混合物をシリカゲルカラムクロマトグラフィーに付し、クロロホルムーメタノール-28%アンモニア水(200:0.9:0.1、v/v/v)で溶出し、黄色結晶の表題化合物 0.12g を得た。

参考例 2 4

4-アミノ-2-(1-イミダゾリル)ピリジン

2-(1-イミダゾリル)-4-二トロピリジン N-オキシド 0.12g を 70%エタノール水溶液 14ml に懸濁させ, 鉄粉 0.32g および塩化アンモニウム 20mg を順次添加した後, 100℃ で約 20 分加熱させた。反応後直ちに不溶物を適去して、得られた適液を減圧留去することにより表題化合物 0.1g を得た。

参考例 2 5

2-アミノメチル-6-クロロピリジン

ラネーニッケル 3.3g をエタノール 30ml に懸濁し、2 ーシアノー 6 ークロロピリジン 1.42g 及び 2 8 %アンモニア水 10ml を加え、水素気流下室温で 4 時間攪拌した。 反応混合物をセライトを用いて濾過し、濾液を濃縮し表題化合物 1.38g を混合物として得た。

参考例26

2-モルホリノイソニコチン酸メチル

2-クロロイソニコチン酸5.0g及びモルホリン6.91gをイソプロパノール16mlに懸濁し、封管中150℃にて27時間攪拌した。溶媒を留去し、次いでメタノール70ml及び濃硫酸5ml)を加え、6.5時間加熱還流した。溶媒を留去しクロロホルムに溶解し、飽和重曹水で洗浄した。溶媒留去後、得られた混合物をシリカゲルカラムクロマトグラフィーに付し、ヘキサンー酢酸エチル(4:1, v/v)にて溶出し、表題化合物の結晶4.42gを得た。

参考例 2 7

2-イソプロピルイソニコチン酸

4-シアノ-2-イソプロピルピリジン2.7gのエタノール溶液50mlに8規定水酸化カリウム水溶液7.5mlを加え、12時間加熱還流した。室温まで冷却させ、反応溶液に水とジエチルエーテルを加え水層を分離した。水層を4規定塩酸を用いて酸性pHを3とし、食塩で飽和した。酢酸エチルーイソプロパノール(5:1,v/v)混合溶液で抽出し、無水硫酸マグネシウムを用いて乾燥後、減圧下溶媒を留去し表題化合物3.1gを得た。

参考例 2 8

2-(2,2,2-トリフルオロエトキシ)イソニコチン酸

2-クロロイソニコチン酸 7.5g, tert-ブトキシカリウム 16g 及び2,2,2-トリフルオロエタノール 100ml を封管中,170 度にて5日攪拌した。溶媒を留去した後水及び4規定塩酸を加えクロロホルムにて抽出した。溶媒を水洗し,無水硫酸マグネシウムにて乾燥後濃縮し得られた結晶をヘキサンで洗浄し表題化合物 7.7g を得た。

参考例29

6 一メチルアミノニコチン酸

6一クロロニコチン酸10g,40%メチルアミン水溶液27mlのピリジン20ml溶液を封管中150度で24時間加熱した。室温まで放冷後,水を加え1規定塩酸水溶液でpH3に調整した。析出した結晶を濾取し、表題化合物5.82gを灰白色結晶として得た。

参考例30

6一アセチルメチルアミノニコチン酸の合成

6一メチルアミノニコチン酸1.5gを無水酢酸20ml中,1時間半加熱還流した。溶媒を減圧下留去し飽和重曹水を加え、水層を酢酸エチルで洗浄後、濃塩酸を用いてpH3に調整した。クロロホルムで抽出後、有機層を洗浄、乾燥し、溶媒を減圧下留去し、表題化合物280mgを白色結晶として得た。

参考例31-1

2-イソプロポキシイソニコチン酸メチル

参考例31-1と同様に参考例31-2を合成した。

2-(2-モルホリノエトキシ) イソニコチン酸メチル

参考例32-1

トランス-4-(2,5-ジメチルピペラジン-1-イル)-2-メトキシベンゾニ トリル

THF5mlにポタシウムーtertーブトキシド1.35g及びメタノール0.48 m l を加え,30分攪拌した。次いで実施例1-4で合成したトランス-4-(2,5-ジメチルピペラジン-1-イル)-2-フルオロメチルベンゾニトリル934m g を加え,室温にて2日攪拌した。飽和食塩水を加え酢酸エチルで抽出し,有機層を水洗したのち,溶媒を留去し,得られた混合物をシリカゲルカラムクロマトグラフィーに付し,酢酸エチルーメタノールー28%アンモニア水(9:1:0.2,v/v/v)にて溶出し表題化合物900mgを得た。

参考例32-1と同様に参考例32-2及び32-3を合成した。

参考例32-2

トランス-4-(2,5-ジメチルピペラジン-1-イル)-2-(2-メトキシエトキシ) ベンゾニトリル

参考例32-3

トランス-4-(2,5-ジメチルピペラジン-1-イル)-2-(2-モルホリノ エトキシ)ベンゾニトリル

参考例8乃至32の物性値を表6に示す。

上記参考例化合物の構造及び物性値を以下の表に示す。

なお、表中の記号は以下の意味を示す。

Ref.No. : 参考例番号

DATA : 物理化学的性状

NMR :核磁気共鳴スペクトル

(特に明記しない限り、DMSO-dg, TMS 内部標準で測定)

MS : 質量分析值

Me :メチル

Et:エチル

Ph : フェニル

備考: R², R³を有する化合物の立体配置(特に記載のないものはラセミ

体もしくは立体異性体のない化合物を示す)、又は塩を形成したもの

については塩を示す。

1	Ę,	" "
, H	Z	7
-K	NC_A	7

備老	trans		trans	trans	trans	trans	trans	trans	trans		trans
DATA	le NMR(CDCl3) δ :1.20(6H,d,J=7),2.72(1H,dd,J=5,13),3.02-3.16 (1H,m),3.26-3.49(3H, m),3.70-3.82 (1H,m),4.01-4.14 (1H,m),6.96(1H,dd,J=2,9),7.11(1H,d,J=2),7.62(1H,d,J=9)	H NMR: 8:2.41(11,br),2.78-2.83(4H,m),3.33-3.38(4H,m), 7.21(1H,dd,J=2,7),7.27(1H,d,J=2),7.81(1H,d,J=7)	le NMR(CDCI3) δ:1.11(3H,d,J=6),1.16(3H,d,J=7),2.69(1H,dd,J=6,13),2.90(1H,dd,J=6,12), 3.17-3.31(3H,m),3.49-3.59(1H,m),7.49-7.54(2H,m),7.65-7.72(2H,m)	le NMR(CDCl3) δ :1.20(6H,d,J=6),2.70(1H,dd,J=5,13),3.03-3.12(1H, m),3.24-3.36(3H,m),3.65- 3.76(1H,m),6.54 (1H,dd,J=2,13),6.62(1H,dd,J=2,9),7.39(1H,dd,J=8,9)	le NMR(CDCI3) δ :1.17-1.21(6H,m),2.66-2.72(1H,m),3.02-3.07(1H,m), 3.23-3.34(3H,m),3.66- 3.71(1H,m),6.72-6.76(1H,m), 6.87(1H,d,J=2),7.45(1H,d,J=9)	le NMR(CDCI3) δ :1.18(3H,d,J=6),1.19(3H,d,J=7),2.69(1H,dd,J=5,13),2.99-3.08(1H,m),3.23- 3.35(3H,m),3.61-3.74(1H,m), 6.79(1H,dd,J=2,9),7.05(1H,d,J=2),7.45(1H,d,J=9)	le NMR: 8:1.06(6H,d,J=6),2:37(3H,s), 2.46-2.53(1H,m), 3.05-3.21(4H,m), 3.70-3.81(1H,m),6.75-6.81(1H,m), irans 6.83-6.87(1H,m),7.47(1H,d,J=8)	le NMR(CDCI3) δ :0.96(3H,d,J=6),1.07(3H,d,J=7),2.40(1H,dd,J=10,11), 2.72(1H,dd,J=10,12),3.01- 3.22(4H,m),7.12-7.17 (1H,m),7.32(1H,dd,J=2,11),7.38-7.41(1H,m)	le NMR(CDCI3) δ :0.75(3H,d,J=6),1.02(3H,d,J=6),2.24-2.31(1H,m), 2.73(1H,dd,J=11,12), 2.91(1H,dd,J=3,11),2.98-3.09(3H,m), 7.52(1H,d,J=8),7.81-7.83(1H,m),7.95-7.97(1H,m)	le NMR: 8 :1.03(3H,d,J=6),2.37-2.47 (1H,m),2.63-2.84 (3H,m),2.91-2.99 (1H,m),3.80-3.92(2H,m),7.21(1H,dd,J=2,9),7.25-7.29(1H,m),7.79(1H,d,J=9)	le NMR(CDCi3) 8 :1.19(3H,d,J=7),1.27(3H,d,J=7),1.56(1H,br),2.68(1H,dd,J=3,13),3.28-3.41(5H, m),3.90-3.97(1H, m),4.33-4.41(1H,m),6.53(1H,d,J=9), 7.58(1H,dd,J=2.9),8.02(1H,br),8.39(1H,d,J=2)
Ъ			Me	I>			-		Ş		
R	Me	Ξ	Me	Σ	Me	Me	Me	Me	Σ	I	Me
17	ᆼ	공	공	ᆼ	ᆼ	ᆼ	공	공	ᆼ	공	z
Я	2-CF3	2-CF3	I	2-F	2-CI	2-Br	2-Me	3-Е	3-CF3	2-CF3	I
Ref.No.	1-1	-	- 1	1-4	1-5	1-6	1-7	1-8	1-9	1-10	1-11

表

171	63					
	備考				٦	cis
(=)	DATA	NMM: 8 : 1.69-1.77(2H,m), 2.29(1H,br), 2.61-2.66(2H,m), 2.82-2.87(2H,m), 3.55-3.60(2H,m), 3.62-3.68(2H,m), 7.00-7.05(2H,m), 7.74(1H,d,J=8)	NMR; 8 : 1.06(6H,s),1.51(2H,br),3.02 (2H,d,J=6),6.90-6.97(1H,m),7.04-7.11 (1H,m),7.15(1H,br),7.68(1H,d,J=9)	NMR: 6:1.36(2H,br),1.38-1.47(2H,m), 1.52-1.62 (2H,m),2.53-2.60(2H,m), 3.09-3.18(2H,m),6.80-6.84 (1H,m), 7.01(1H,br),7.26-7.34(1H,m), 7.70(1H,d, J=9)	NMR: 6:3.37-3.44(2H,m),3.69-3.76 (2H,m),4.17(2H,s), 4.62(2H,s),7.20(1H,dd,J=2,9),7.25-7.39(6H,m), 7.86(1H,d,J=9)	NMR: δ :1.03 (6H, d, J=6), 2.24-2.39 (2H, m), 2.67-2.82 (2H, m), 3.83-3.93 (2H, m), 7.27-7.31 (1H, m), 7.80 (1H, d, J=9)
	ō	HN N-	ZI /	HN N NH	O N N Ph	W W W
	Ref.No.	1-12	1-13	1-14	1-15	1-16

表3

-92:	
DATA NMR(CDCl3) δ:1.20-1.25 (6H, m), 2.74 (1H, dd, J=4, J=13), 3.18 (1H, dd, J=4, J=12), 3.29-3.43 (3H, m), 3.76-	
// We NH	ΦE
17 F ₃ C 0 ₂ N	••••

表2

X	
Ref.No.	DATA
7	NMR: 6:0.92(3H,d,J=6),1.39(9H,s), 2.13-2.35(1H,m), 2.43-2.55(2H,m), 2.74-2.83(1H,m),3.65-3.78(2H,m)
က	NMR: 6:1.05(3H,d,J=7),1.42(9H,s), 2.93-3.25(3H,m), 3.68-3.81(2H,m), 3.84-3.99(1H,br),4.23-4.36(1H,br), 7.15-7.21(1H,m),7.22-
	7.27(1H,m),7.83-7.87(1H,m)
4	NMR: 6:1.12(3H,d,J=6),2.30-2.50(1H,br),2.60-2.70 (1H,m),2.78-2.88(2H,m),2.93-3.03(2H,m),3.58-3.65 (1H,m),4.12-4.21(1H,m),
•••••	7.19(1H,m), 7.22(1H,d,J=2), 7.81(1H,d,J=9)

WO 00/17163

※5

ſ	O
n S	NC Y

DATA	NMR: 8:0.95(3H1,J=7),1.88-1.98(2H,m),3.33-3.39 (1H,m),3.41-3.50(1H,m),3.52-3.62(1H,m), 3.93(1H,dt,J=5,13),4.50(1H,d,J=15),4.56(1H,t,J=7),4.67(1H,d,J=15),7.19-7.28(5H,m),7.29-7.38(2H,m), 7.81(1H,d,J=8)	NMR: ō :0.97(3H,d,J=6),1.07(3H,d,J=6),2.19-2.33 (1H,m),3.43-3.50(2H,m),3.59-3.69(1H,m),3.76-3.86 (1H,m),4.36(1H,d,J=7),4.43(1H,d,J=15),4.71(1H,d,J=15),7.21-7.28(5H,m),7.28-7.38(2H,m),7.81(1H,d,J=8)	NMR: 8:1.52(6H,s),3.34-3.39(2H,m),3.55-3.61(2H,m), 4.59(2H,s),7.24-7.41(5H,m),7.46-7.52(2H,m), 7.94(1H,d,J=8)	NMR: <i>6</i> :0.72(3H,t,J=7),1.41-1.56(1H,m),1.77-1.90(1H,m),2.04-2.16(2H,m),2.82(1H,d,J=11),2.86- 2.95(1H,m),3.14(1H,dt,J=3,13),3.40(1H,d,J=13),3.60(1H,d,J=13),3.74-3.83(1H,m),3.99-4.07(1H,m),7.13- 7.18(1H,m),7.20-7.22(1H,m),7.23-7.31(1H,m),7.32-7.36(4H,m),7.79(1H,d,J=9)	NMR: ô :0.66(3H,d,J=7),0.81(3H,d,J=7),1.93-2.00(1H,m),2.01-2.11(1H,m),2.50-2.61(1H,m),2.82- 2.94(2H,m),3.17-3.28(1H,m),3.35(1H,d,J=13), 3.57(1H,d,J=13),3.77-3.91(2H,m),7.15-7.22(2H,m), 7.24- 7.30(1H,m),7.30-7.35(4H,m),7.73(1H,d,J=9)
70	NMR: 6:0.95(3H,t,J=7),1.88-1.98(2H,m),3.33-3.39 (1H,m),3.41-3.50(1H,m),3.52-3.62(1H,m),3.93(1H,dt,J=5,13),4.50(1H,d,J=15),4.56(1H,t,J=7),4.67(1H,d,J=15),7.19-7.28(5H,m),7.29-7.37(1H,d,J=8)	NMR. ō :0.97(3H,d,J=6),1.07(3H,d,J=6),2.19-2.33 (1H,t) (1H,m),4.36(1H,d,J=7),4.43(1H,d,J=15),4.71(1H,d,J=15)	NMR: 6 :1.52(6H,s),3.34-3.39(2H,m),3.55-3.61(2H,m), 7.94(1H,d,J=8)	NMR: 6:0.72(3H,t,J=7),1.41-1.56(1H,m),1.77-1.90(1H,m),2.04-2.16(2H,m),2.8 2.95(1H,m),3.14(1H,dt,J=3,13),3.40(1H,d,J=13),3.60(1H,d,J=13),3.74-3.83(1H) 7.18(1H,m),7.20-7.22(1H,m),7.23-7.31(1H,m),7.32-7.36(4H,m),7.79(1H,d,J=9)	NMR: 6:0.66(3H,d,J=7),0.81(3H,d,J=7),1.93-2.00(1H,m 2.94(2H,m),3.17-3.28(1H,m),3.35(1H,d,J=13), 3.57(1H, 7.30(1H,m),7.30-7.35(4H,m),7.73(1H,d,J=9)
σ	Er O	e a	O Y Z	Er —N Ph	- N
Ref.No.	5-1	5-2	5-3	6-1	6-2

Ref.No.	a	DATA
6-3	ta N	NMR: 8:1.17(6H,s),2.30(2H,s),2.49-2.54(2H,m),3.26-3.31(2H,m),3.51(2H,s),7.23-7.35(5H,m),7.46-7.51 (2H,m),7.95(1H,d,J=9)
7-1	E E	NMR: 8:0.83(3H,t,J=7),1.41-1.56(1H,m),1.75-1.92(1H,m),2.37-2.50(1H,br),2.57-2.76(2H,m),2.90-3.05(3H,m),3.60-3.69(1H,m),3.84-3.93(1H,m),7.12-7.21(2H,m),7.77(1H,d,J=9)
2-2	7	NMR: \$:0.68(3H,d,J=7),0.97(3H,d,J=7),2.26-2.44(1H,br),2.52-2.66(3H,m),2.84-2.92(1H,m),3.00- 3.14(2H,m),3.63-3.77(2H,m),7.12-7.19(2H,m),7.71(1H,d,J=9)
7-3	HN N-	NMR: ð :1.16(6H,s),2.61(2H,s),2.80-2.86(2H,m),3.12-3.19(2H,m),3.25-3.39(1H,br),7.42- 7.47(2H,m),7.92(1H,d,J=9)

	(1	-	
ł		1	2	

S X	
Ref.No.	DATA
8	NMR(CDCl3) 8:1.20-1.24(6H,m),2.72(1H,dd,J=4,13),3.11-3.19(1H, m),3.29-3.40(3H, m),3.72-3.82(1H,m).
	6.99(1H,dd,J=3,9),7.09(1H,d,J=3),7.56(1H,d,J=9)
9-1	NMR: 8: 1.28(6H,s),3.46-3.57(2H,m),6.93-6.97(1H,m), 7.04(2H,dd,J=9.9),7.16-7.25(2H,m),7.31-7.37(1H,m).
	7.64(1H,d,J=8),8.32(1H,br)
8-5	NMR: 8: 1.47-1.64(4H,m),3.09-3.19(4H,m),6.15-6.21 (1H,m),6.81-6.86(1H,m),7.01(1H,br), 7.04(2H,dd,J=9.9),7.24-7.29(1H,m),7.36-
	7.42(2H,m), 7.69(1H,d,J=8),8.51(1H,br)
10	NMR(CDCi3) 6:1.05(3H,d,J=6),1.51(1H,br),2.47(1H,br),2.65-3.02 (4H,m),4.03(1H,br),5.08-5.18(2H,m),7.24-7.38(5H,m)
11-1	MS(FAB) 284 [M+H]+ ; [α] _D 25=+100.6 (c=1.018, ΕtOH)
11-2	MS(FAB) 284[M+H]+; [α] _D 25=-97.04 (c=1.014, EtOH)
12-1	NMR(CDCI3):1.42 (3H, d, J=7), 1.54 (3H, d, J=7), 3.86 (1H, q, J=7), 4.09 (1H, d, J=15), 4.14 (1H, q, J=7), 5.17 (1H, d, J=15), 6.98 (1H,
	br s), 7.22-7.36 (5H, m) ; [α] ₀ 25=-17.15 (c=1.0, CHCl3)
12-2	NMR(CDCi3):0,94 (3H, d, J=6), 1.14 (3H, d, J=6), 1.49 (1H, br s), 1.63 (1H, dd, J=10, 11), 2.17-2.28 (1H, m), 2.60-2.70 (2H, m), 2.74-
	2.83 (1H, m), 2.91 (1H, dd, J=3, 12), 3.09 (1H, d, J=14), 4.10 (1H, d, J=14), 7.22-7.32 (5H, m) : [a l ₁ 25=-133.5 (c=1.0, CHCl3)
12-3	NMR(CDCl3):1.08 (3H, d, J=7), 1.24 (3H, d, J=7), 2.46 (1H, dd, J=2, 6), 2.89 (1H, dd, J=4, 12), 3.15 (1H, m), 3.37 (1H, d, J=12), 3.48
•••••	(1H, dd, J=3, 12), 3.57 (1H, d, J=14), 3.67 (1H, d, J=14), 4.00 (1H, m), 6.89 (1H, dd, J=3, 9), 7.06 (1H, d, J=3), 7.29-7.39 (5H, m), 7.58
	(1H, d, J=9)
3	NMR:8.03-8.09 (1H m) 8 51-8 58 (1H m) 9 20-9 24 (1H m) 13 91 (1H hr.e.)

Ref.No.	DATA
14	NMR:3.92 (3H, s), 8.06 (1H, dd, J=2, 5), 8.38-8.40 (1H, m, 8.92 (1H dd, J=1, 5)
15	MS(FAB) (m/z):233[(M+H)+1
16	NMR(CDCl3):0:90-1.11 (4H, m), 1:95-2:07 (1H, m), 3:89 (3H s), 3:92 (3H s), 7:01 (1H d 1-1), 7:29 (1H d 1-1)
17	NMR:6.36 (2H, br s), 6.44 (1H, dd, J=2, 6), 6.63 (1H, d, J=2), 7.74 (1H, d, J=6)
18	
19	NMR:1.50 (9H, s), 7.66 (1H, d, J=3), 7.91-7.96 (1H, m). 8.47-8.56 (1H, m). 10.24-10.33 (1H m)
20	NMR(CDCi3):1.54 (9H, s), 2.71 (3H, s), 6.85-6.98 (1H, m). 7.75-7.82 (2H, m). 8.49-8.55 (1H, m)
21	NMR(CDCI3):1.30-1.55 (2H, m), 3.84 (1H, br s), 3.93 (3H, s), 6.78 (1H, d, J=8), 7.53-7.62 (1H, m) 8.05-8 11 (1H, m)
22	MS (FAB) m/z 162 [(M+H)+]
23	MS (FAB) m/z 207 [(M+H)+]
24	MS (FAB) m/z 161 [(M+H)+]
25	MS (EI) m/z142 [M+]
56	MS (FAB) m/z 223 [(M+H)+]
27	NMR:1.26 (6H, d, J=7), 3.06-3.30 (1H, m), 7.63 (1H, dd, J=2. 5), 7.68-7.71 (1H m) 8 68 (1H dd, 1=1. 5) 13 6 (1H hr s)
28	NMR(CDCl3):4.80 (2H, q, J=9), 7.46-7.51 (1H, m), 7.56 (1H, dd, J=1, 5), 8.26 (1H, dd, J=1, 6)
29	MS (FAB) m/z 153 [(M+H)+]
30	MS (FAB) m/z 195 [(M+H)+]
31-1	MS (FAB) m/z 196 [(M+H)+]
31-2	MS (FAB) m/z 267[(M+H)+]
32-1	NMR(CDCI3) 8:1.12(3H,d,J=6),1.17(3H,d,J=7),1.54(1H,br),2.69(1H,dd,J=6.13), 2.88(1H,dd,J=6.12),3.15-3.34(3H,m), 3.48-
	3.57(1H,m),3.90(3H,s),6.41(1H,d,J=2), 6.52(1H,dd,J=2,8),7.39(1H,d,J=8)
32-2	MS (FAB) m/z 290[(M+H)+]
32-3	MS (FAB) m/z 345 [(M+H)+]

実施例1-1

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-4'-フルオロ -2,5-ジメチルピペラジン-1-カルボキシアニリド

参考例1-1で合成したトランス-4-(2,5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル300mgを,ジクロロメタン10m Iに溶解し,氷冷下p-フルオロベンズイソシアナート0.13mIを滴下し,室温にて1時間攪拌した。反応溶液を水洗した後,溶媒を留去し得られた残渣をシリカゲルカラムクロマトグラフィーで精製し,クロロホルムーメタノール(99:1, v/v)溶出部より表題化合物390mgを無色油状物として得た。次いでアセトンージイソプロピルエーテルより結晶化を行い,165mgの無色結晶として得た。実施例1-1と同様に,実施例1-2乃至1-56を合成した。

実施例2-1

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチル-N-(2-チエニル)ピペラジン-1-カルボキサミド

2-テノイルクロリド 0.32mlをアセトニトリル10mlに溶解し、氷冷下トリエチルアミン0.49mlを加え、続いてアジ化ナトリウム290mgを加え、室温にて3時間攪拌した。反応溶液を氷水に注ぎ、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、淡褐色の結晶を得た。

得られた結晶をトルエン10mlに溶解し、100℃で3時間攪拌した。反応溶液を放冷し、アセトニトリル10mlを加えた後、参考例1-1で合成したトランス-4-(2、5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンソニトリル450mgを加え、20分攪拌した。減圧下溶媒を留去し、残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、酢酸エチルーヘキサン(1:1、∨/∨)溶出部より淡黄色の表題化合物504mgを得た。

実施例2-1と同様に、実施例2-2乃至2-10を合成した。

実施例3-1

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチル. -N-フェネチルピペラジン-1-カルボキサミド

ヒドロシンナミック酸 $180 \, \text{mg}$ にアセトニトリル $5 \, \text{m}$, トリエチルアミン $0.1 \, 7.\, \text{m}$ I, DPPA $0.26 \, \text{m}$ I を加え、 $1.5 \, \text{時間加熱還流した。反応溶液を放冷し、$ $参考例 <math>1-1 \, \text{で合成したトランス} - 4-(2,5-ジメチルピペラジン-1-イル)$ -2- トリフルオロメチルベンゾニトリル $280 \, \text{mg}$ を加え、室温にて $1 \, \text{時間攪拌し}$ た。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、酢酸エチルークロロホルム(2:1, v/v)溶出部より表題化合物 $204 \, \text{mg}$ を無色油状物として得た。

実施例3-1と同様に、実施例3-2乃至3-4を合成した。

実施例4

トランス-2', 4'-ジプロモ-4-(4-シアノ-3-フルオロフェニル)-2, 5-ジメチルピペラジン-1-カルボキシアニリド

2,4-ジプロモアニリン300mgをTHF10mlに溶解し、氷冷下トリホスゲン153mgを加えた後、室温にて4時間攪拌した。次いで、参考例1-1で合成したトランス-4-(2,5-ジメチルピペラジン-1-イル)-2-フルオロベンゾニトリル427mgおよびトリエチルアミン460mgのTHF溶液5mlを滴下し、更に1時間攪拌した。溶媒を留去後、得られた残留物を酢酸エチルに溶解し、飽和重曹水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、クロロホルム-ヘキサン(1:1、v/v)溶出部より淡黄色の表題化合物390mgを得た。

実施例5-1

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチル-N-(1-メチル-1-フェニルエチル)ピペラジン-1-カルボキサミド

DIBOC532mgをアセトニトリル10mlに溶解し、DMAP124mgおよびクミルアミン235mgのアセトニトリル溶液3mlを滴下し、室温にて10分間攪拌した。次いで参考例1-1で合成したトランス-4-(2,5-ジメチルピペ

ラジン-1-イル) -2-トリフルオロメチルベンゾニトリル300mgを加え、室温にて5時間攪拌した。減圧下溶媒を留去し、得られた残留物を酢酸エチルに溶解し、飽和重曹水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、酢酸エチルーヘキサン $(1:1, \vee/\vee)$ 溶出部より表題化合物475mgを得た。

実施例5-1と同様に、実施例5-2及び5-3を合成した。

実施例6-1

(2R, 5S) - N - (2 - プロモー4 - ピリジル) - 4 - (4 - シアノー3 - トリフルオロメチルフェニル) - 2,5 - ジメチルピペラジン <math>- 1 - カルボキサミド

4-アミノ-2-ブロモピリジン 1.66g をピリジン 1.4ml に溶解し、フェニルクロロホルメート 2.0g を加え室温にて4日間攪拌した。次いで参考例 1 1-1で合成した(2 S, 5 R) -4-(2, 5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル 2g を加え 100 度にて1時間 3 0 分加熱した。溶媒を留去した後、残留物を酢酸エチルに溶解し、水次いで飽和食塩水で洗浄後、硫酸マグネシウムにて乾燥した。溶媒留去後、残留物をシリカゲルカラムクロマトグラフィーに付し、クロロホルム-メタノール(3 0:1, v/v)で溶出し得られた画分を酢酸エチルーへキサンより結晶化を行い表題化合物 2.7 g を得た。

NMR:1.10 (3H, d, J=6), 1.20 (3H, d, J=6), 3.35-3.52 (2H, m), 3.68-3.80 (1H, m), 3.82-3.96 (1H, m), 4.28-4.60 (2H, m), 7.22-7.35 (2H, m), 7.50-7.58 (1H, m), 7.80-7.90 (2H, m), 8.14 (1H, d, J=5), 9.19 (1H, s)

実施例6-1と同様の操作で実施例6-2乃至6-16を合成した。 実施例6-13

(2R, 5S) -4-(4-シアノ-3-トリフルオロメチルフェニル) -N-(6 -メトキシ-3-ピリジル) -2,5-ジメチルピペラジン-1-カルボキサミド NMR:1.11 (3H, d, J=7), 1.18 (3H, d, J=7), 3.30-3.45 (2H, m), 3.70-3.76 (1H, m), 3.80(3H, s), 3.84-3.90 (1H, m), 4.36-4.45 (2H, m), 6.75(1H, d, J=9), 7.24-7.33 (2H, m), 7.27(1H, dd, J=3, 9), 7.85 (1H, d, J=9), 8.19 (1H, d, J=3), 8.56(1H, s)

実施例7一1

トリホスゲン 252mg のジクロロメタン 10ml 溶液に氷冷下(2 S, 5 R) -トランス-4-(2,5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル 700mg 及びトリエチルアミン 274mg のジクロロメタン 10ml 溶液を加え,1時間攪拌した。参考例で合成した5-アミノメチル-2-メトキシピリジン 409mg 及びトリエチルアミン 274mg のジクロロメタン 10ml 溶液を滴下し,室温にて一夜攪拌した。溶媒を留去し、得られた残留物に水を加え、酢酸エチルで抽出後、乾燥し溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィーに付し、クロロホルム-メタノール(50:1,v/v)で溶出し、表題化合物 1.02g を得た。

同様に実施例7-2乃至7-11を合成した。

実施例8--1

3-(4-シアノ-3-トリフルオロメチルフェニル)-N-(4-フルオロフェニル)-5,5-ジメチル-1-イミダゾリジンカルボキサミド

参考例 9-1 で合成した $1-[2-(4-\nu)7/-3-h)$ フルオロメチルアニリノ) -1, $1-\nu$ メチルエチル] -3-(4-7) フルオロフェニル)ウレア 1. 0 gを酢酸 1 0 m 1 に溶解し、ホルマリン 0. 4 m 1 を加え 5 0 ∞ で 2 時間加熱した。溶媒を留去して、得られた残留物をシリカゲルカラムクロマトグラフィーにて精製し、クロホルムーメタノール(30:1,v/v)溶出部より得た化合物を、ジイソプロピルエーテルで洗浄し表題化合物 7.5.1 m g を得た。

実施例8-1と同様に、実施例8-2を合成した。

実施例9

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-N-(4-フルオロフェニル)-2,5-ジメチルピペラジン-1-スルホンアミド

参考例 1-1 で合成したトランス-4-(2,5-ジメチルピペラジン-1-イル) -2-トリフルオロメチルベンゾニトリル1.21 gおよびスルファミド2.0

5gをピリジン15ml中1.5時間加熱還流した。次いで4-フルオロアニリン4.05mlを加え更に4時間加熱還流した。溶媒を留去した後、残留物をシリカゲルカ.ラムクロマトグラフィーにて精製し、トルエンー酢酸エチル溶出部より表題化合物701mgを得た。

実施例10

トランス-4'-アミノ-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキシアニリド

実施例1-4で合成したトランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチル-4'-ニトロピペラジン-1-カルボキシアニリド450mgをメタノール8mlに溶解し、水4ml、鉄粉280mg及び塩化アンモニウム30mgを加え5時間加熱還流した。反応溶液に再度鉄粉280mg及び塩化アンモニウム30mgを加え,更に2時間加熱還流した。反応溶液をセライトを用いて減過し、減液を減圧下溶媒を留去した。残渣を酢酸エチルに溶解し、水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(メタノールークロロホルム)で精製し、無色結晶の表題化合物260mgを得た。

実施例11

トランス-4'-アセトアミノ-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキシアニリド

実施例10で合成したトランス-4'-アミノ-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキシアニリド300mg及び無水酢酸88mgをジクロロエタン10mlに溶解し、室温で10時間攪拌した。溶媒を留去した後、残渣を酢酸エチルに溶解し、水、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、残渣を酢酸エチルーへキサンから結晶化させ、表題化合物195mgを無色結晶として得た。

実施例12-1

 $(2R, 5S) - 4 - \{[4 - (4 - シアノ - 3 - トリフルオロメチルフェニル) - 2, 5 - ジメチルピペラジン <math>- 1 - カルボニル]$ アミノ $\}$ ピリジン - 2 - カルボン酸

実施例 18-3 で合成した(2R, 5S) $-4-\{[4-(4-シアノ-3-トリフルオロメチルフェニル) <math>-2$, 5-ジメチルピペラジン <math>-1- カルボニル] アミノ -2 ピリジン -2- カルボン酸エチル 3.36 g の THF40 ml 溶液に 1 規定水酸化ナトリウム水溶液 40 ml を滴下し,室温で 1 時間攪拌した。氷冷下 4 規定塩酸を加えて -2 に調節し,生成した沈殿物を濾取し,精製水で洗浄後,-2 度で減圧にて乾燥し表題化合物 2.80 g を得た。

同様に実施例12-2及び12-3を合成した。

実施例13-1

 $(2R, 5S) - 4 - (4 - \nu T / - 3 - h)$ フルオロメチルフェニル $) - 2, 5 - \nu Y$ ジメチル $- N - (2 - \nu Y + \nu T)$ ルバモイル $- 4 - \nu T$ ピリジル) ピペラジン $- 1 - \mu T$ キサミド

実施例 1 2 - 1 で合成した (2 R, 5 S) - 4 - { [4 - (4 - シアノ - 3 - トリフルオロメチルフェニル) - 2, 5 - ジメチルピペラジン - 1 - カルボニル] アミノ} ピリジン - 2 - カルボン酸 1.10 g の DMF30 ml 懸濁溶液に氷冷下, HOB t 332 mg 及びW S C 519mg を順次加え,室温に昇温し 1.5 時間攪拌した。再び氷冷し,40% メチルアミン水溶液 10 ml を一挙に加えた後,一晩攪拌した。精製水を加えた後,酢酸エチルを用いて抽出し,得られた有機層を飽和食塩水で 2 回洗浄し,無水硫酸マグネシウムで乾燥後濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し,メタノール - 酢酸エチル (1:9, v/v) 溶出部より表題化合物 674 mg を得た。

NMR:1.10 (3H, d, J=6), 1.21 (3H, d, J=6), 2.81 (3H, d, J=5), 3.40 (1H, dd, J=4, 13), 3.46 (1H, br d, J=11), 3.75 (1H, dd, J=2, 13), 3.96 (1H, br d, J=14), 4.33-4.43 (1H, m), 4.49-4.60 (1H, m), 7.27 (1H, dd, J=2, 9), 7.31 (1H, d, J=2), 7.83 (1H, dd, J=2, 5), 7.85 (1H, d, J=9), 8.17 (1H, d, J=2), 8.38 (1H, d, J=5), 8.69 (1H, dd, J=5), 9.23 (1H, s)

同様に実施例13-2乃至13-4を合成した。

実施例 1 4

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチル-4'-(メチルアミノ)スルホニルピペラジン-1-カルボキシアニリド

チルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル400mgのジクロロメタン溶液5mlを滴下し、1時間同温度で攪拌した。次いで40%メチルアミンメタノール溶液400mgを加え室温にて1時間攪拌した。溶媒を留去し、残留物を酢酸エチルに溶解し、希塩酸、飽和重曹水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、酢酸エチルーヘキサン(1:1、v/v)溶出部より表題化合物340mgを得た。

実施例15-1

トランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-4'-フルオロ -N, 2, 5-トリメチルピペラジン-1-カルボキシアニリド

60%水素化ナトリウム69mgをDMF6mlに懸濁し、氷冷下実施例1-1で合成したトランス-4-(4-シアノ-3-トリフルオロメチルフェニル)-4'-フルオロ-2,5-ジメチルピペラジン-1-カルボキシアニリド660mgを加え、50度で10分間攪拌した。反応溶液を氷冷し、ヨウ化メチル0.11mlを滴下し室温にて2時間攪拌した。反応溶液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、酢酸エチルーへキサン溶出部より表題化合物620mgを得た。

実施例 15-1 と同様に、実施例 15-2 及び 15-3 を合成した。なお実施例 15-2 ではヨウ化メチルの替わりに無水酢酸を使用した。

実施例16-1

4-[トランス-2,5-ジメチル-4-(1-オキソ-1 λ 4-チオモルホリン-4-カルボニル)ピペラジン-1-イル]-2-トリフルオロメチルベンゾニトリル実施例7-6で合成した4-[2,5-ジメチル-4-(チオモルホリン-4-カルボニル)ピペラジン-1-イル]-2-トリフルオロメチルベンゾニトリル270mgをジクロロメタン7mlに溶解し、-78℃にて炭酸水素ナトリウム110mg及びメタクロロパーベンゾイックアシド(MCPBA)155mgを加え、同温度で6時間攪拌した。反応溶液にクロロホルムを加え、1規定水酸化ナトリウム水溶液及

び飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、メタノールークロロホルム(1:50, v/v)溶出部より表題化合物232mgを得た。

実施例16-1と同様に、実施例16-2乃至16-5を合成した。尚、MCPBAの使用量は、生成物の酸化状態に応じて適宜調整した。

実施例17

4-[4-ベンジルオキシカルボニル-2-メチル-1-ピペラジニル]-2-トリフルオロメチルベンゾニトリル

参考例 10 で合成したベンジル 3-メチルピペラジン-1-カルボキシレート 1.01 g及び4-フルオロ-2-トリフルオロメチルベンゾニトリル814 m g及 び炭酸カリウム 2.38 gを DMF 20 m 1 に加え 100 ℃にて 20 時間攪拌した。 水を加え酢酸エチルで抽出し,乾燥後溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィーで精製し,酢酸エチルーへキサン(3:1, v/v)溶出部より表題化合物 440 m g を得た。

実施例18-1

(2R, 5S) -トランス-4-(4-シアノ-3-トリフルオロメチルフェニル) -N-(2-クロロ-4-ピリジル)-2,5-ジメチルピペラジン-1-カルボキサ ミド

2 ークロロイソニコチン酸 3.4g をアセトニトリル 50ml に懸濁し、オキザリルクロリド 2.64ml 及び DMF 3 滴を加え、室温にて40分攪拌した。次いでアジ化ナトリウム 2.81g 及びトリエチルアミン 9.03ml を加え、室温にて1時間攪拌した。反応溶液に水を加え、エーテルにて抽出後、溶媒を留去し粗酸アジドを得た。これをトルエン30ml に溶解し 45 分間加熱還流した後、室温にて参考例 11-1で合成した(25、5R)-4-(2、5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル 2g を加え 30 分攪拌した。溶媒留去後、得られた混合物をシリカゲルカラムクロマトグラフィーに付し、クロロホルムーメタノール(50:1、v/v)で溶出し表題化合物 3.44g を得た。次いで酢酸エチルーへキサンより結晶化を行い表題化合物の結晶 2.51g を得た。

NMR:1.10 (3H, d, J=6), 1.20 (3H, d, J=6), 3.36-3.51 (2H, m), 3.71-3.78 (1H, m), 3.86-3.93 (1H, m), 4.31-4.43 (1H, m), 4.46-4.56 (1H, m), 7.21-7.35 (2H, m), 7.45-7.55 (1H, m), 7.69 (1H, d, J=2), 7.86 (1H, d, J=9), 8.17 (1H, d, J=6), 9.22 (1H, s)

以下, ラセミ又は対応する光学活性なトランス-4-(2,5-ジメチルピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル,トランス-2-クロロー4-(2,5-ジメチルピペラジン-1-イル)ベンゾニトリル,4-(ピペラジン-1-イル)-2-トリフルオロメチルベンゾニトリル,又はトランス-4-(2,5-ジメチルピペラジン-1-イル)-2-(2-モルホリノエトキシ)ベンゾニトリルを用いて実施例18-1と同様に実施例18-2乃至18-30の合成を行った。一部の化合物は常法により塩酸塩として単離した。

実施例18-2

(2R, 5S) - 4 - (4-シアノ-3-トリフルオロメチルフェニル) - 2, 5-ジメチル-N-(4-ピリジル)ピペラジン-1-カルボキサミド 1塩酸塩 NMR:1.11 (3H, d, J=7), 1.23 (3H, d, J=7), 3.15-3.90 (3H, m), 3.93-4.29 (1H, m), 4.30-4.50 (1H, m), 4.52-4.85 (1H, m), 7.20-7.40 (2H, m), 7.86 (1H, d, J=9), 8.15 (2H, d, J=7), 8.59 (2H, d, J=7), 10.78 (1H, s), 14.87 (1H, br s)

実施例18-4

 $(2R, 5S) - 4 - (4 - \nu T / - 3 - h)$ フルオロメチルフェニル $) - 2, 5 - \nu Y$ ジメチル- N - (6 - h) フルオロメチル $- 3 - \nu U$ ジル) ピペラジン- 1 - h ルボキサミド

NMR:1.12 (3H, d, J=6), 1.22 (3H, d J=7), 3.35-3.55(2H, m), 3.72-3.79(1H, m), 3.87-3.98 (1H, m), 4.32-4.59 (2H, m), 7.24-7.34 (2H, m), 7.80 (1H, d, J=9), 7.86 (1H, d, J=7), 8.15-8.22 (1H, m), 8.86 (1H, d, J=2), 9.17 (1H, s)

実施例18-5

(2R, 5S) -4-(4-シアノ-3-トリフルオロメチルフェニル)-N-(6-フルオロ-3-ピリジル)-2, 5-ジメチルピペラジン-1-カルボキサミド NMR:1.11 (3H, d, J=6), 1.20 (3H, d, J=7), 3.39 (1H, dd, J=4, 13), 3.44 (1H, dd, J=3,

14), 3.75 (1H, dd, J=1, 13), 3.89 (1H, br d, J=14), 4.30-4.42 (1H, m), 4.45-4.55 (1H, m), 7.09 (1H, dd, J=2, 9), 7.27 (1H, dd, J=2, 9), 7.31 (1H, d, J=2), 7.85 (1H, d, J=9), 8.05 (1H, ddd, J=3, 8, 9), 8.29 (1H, dd, J=1, 2), 8.83 (1H, s)

実施例18-7

(2R, 5S) -N-(6-シアノ-3-ピリジル) -4-(4-シアノ-3-トリフルオロメチルフェニル) -2, 5-ジメチルピペラジン-1-カルボキサミド NMR:1.11 (3H, d, J=7), 1.22 (3H, d, J=6), 3.36-3.54 (2H, m), 3.68-3.82 (1H, m), 3.84-3.98 (1H, m), 4.31-4.45 (1H, m), 4.46-4.60 (1H, m), 7.20-7.36 (2H, m), 7.86 (1H, d, J=9), 7.91 (1H, d, J=9), 8.15 (1H, dd, J=2, 9), 8.85 (1H, d, J=2), 9.26 (1H, s)

実施例18-8

(2R, 5S) -4-(4-シアノ-3-トリフルオロメチルフェニル) -N-(2-フルオロ-4-ピリジル) -2, 5-ジメチルピペラジン-1-カルボキサミド NMR:1.09 (3H, d, J=7), 1.20 (3H, d, J=7), 3.35-3.52 (2H, m), 3.68-3.82 (1H, m), 3.89 (1H, d, J=13), 4.30-4.44 (1H, m), 4.45-4.57 (1H, m), 7.22-7.35 (3H, m), 7.40 (1H, d, J=6), 7.86 (1H, d, J=9), 8.00 (1H, d, J=6), 9.29 (1H, s)

実施例18-9

NMR:1.10 (3H, d, J=6), 1.21 (3H, d, J=6), 3.40 (1H, dd, J=6, 14), 3.47 (1H, br d, J=12), 3.76 (1H, br d, J=12), 3.91 (1H, d, J=14), 4.34-4.43 (1H, m), 4.48-4.56 (1H, m), 7.29 (1H, dd, J=2, 9), 7.31 (1H, d, J=2), 7.79 (1H, dd, J=2, 6), 7.86 (1H, d, J=9), 8.06 (1H, d, J=2), 8.51 (1H, d, J=6), 9.37 (1H, s)

実施例19-1

2-メトキシー6-メチルー4-ピリジンカルボン酸エチルエステル 1.20g の THF10ml 溶液に、1 規定水酸化ナトリウム水溶液 6.1ml を加え、室温で1時間 20分 . 攪拌した後、反応溶媒を留去し2-メトキシー6-メチルー4ーピリジンカルボン酸ナトリウム塩を得た。次いで実施例 1 8-1 と同様の操作により表題化合物を得た。 NMR:1.08 (3H, d, J=6), 1.17 (3H, d, J=6), 2.30(3H, s), 3.35-3.45 (2H, m), 3.69-3.75 (1H, m), 3.78(3H, s), 3.83-3.89 (1H, m), 4.32-4.40 (1H, m), 4.45-4.54(1H, m), 6.82-6.85(1H, m), 6.97-6.99(1H, m), 7.23-7.31(2H, m), 7.84 (1H, d, J=9), 8.83(1H, s)

同様に実施例19-2乃至19-6を合成した

実施例19-2

NMR:0.80-0.93 (4H, m), 1.84-1.95 (1H, m), 3.73 (3H, s), 6.78 (1H, d, J=2), 7.03 (1H, d, J=2), 7.21-7.33 (2H, m), 7.85 (1H, d, J=9), 8.82 (1H, s)

実施例20

(2 R, 5 S) - N- (2-アセチル-4-ピリジル) - 4- (4-シアノ-3-トリフルオロメチルフェニル) - 2, 5-ジメチルピペラジン-1-カルボキサミド2-アセチル-4-ピリジニルカルバミン酸 t ーブチルエステル1.41gのクロロホルム12.5ml 溶液に氷冷攪拌下,トリフルオロ酢酸12.5ml を加えた。ただちに室温まで昇温させ,2時間40分攪拌した。減圧にて溶媒を留去し粗アミンを得た。本化合物をピリジン25ml に溶解させ氷冷攪拌下,フェニルクロロホルメート0.83ml を加えただちに室温まで昇温させた。8時間30分後,(2 S, 5 R) - 4-(2, 5-ジメチルピペラジン-1-イル) - 2-トリフルオロメチルベンゾニトリル1.4gのピリジン10ml 溶液を加えた後,1時間加熱還流した。室温まで冷却させ反応溶液に水を加え,クロロホルムで抽出した。有機層を飽和食塩水溶液で洗浄し無水硫酸ナトリウムを用いて乾燥後,減圧にて溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィーにて精製し、メタノールークロロホルム(1:99,v/v)溶出部より表題化合物1.03gを得た。

NMR:1.10 (3H, d, J=7), 1.20 (3H, d, J=7), 2.61 (3H, s), 3.34-3.52 (2H, m), 3.75 (1H, d,

J=14), 3.92 (1H, d, J=14), 4.28-4.45 (1H, m), 4.46-4.62 (1H, m), 7.20-7.35 (2H, m), 7.78-7.91 (2H, m), 8.12 (1H, d, J=2), 8.48 (1H, d, J=6), 9.24 (1H, s)

実施例 2 1

(2 R, 5 S) - N - (2 - アミノー4 - ビリミジル) - 4 - (4 - シアノー3 - トリフルオロメチルフェニル) - 2, 5 - ジメチルピペラジン- 1 - カルボキサミド実施例 6 - 2で合成した(2 R, 5 S) - 4 - (4 - シアノー3 - トリフルオロメチルフェニル) - N - [2 - (1, 1 - ジメチルエトキシカルボニル) アミノー4 - ビリミジル] - 2,5 - ジメチルピペラジン- 1 - カルボキサミド 2.8 g のジクロロエタン 60 ml 溶液にトリフルオロ酢酸 15 ml を添加し、室温下約 12 時間攪拌した。反応液を減圧下留去して得られた残留物に飽和重曹水を添加した後、クロロホルムにて抽出した。得られた有機層を水洗後、無水硫酸マグネシウムにて乾燥させ、溶媒留去により得られた粗生成物をシリカゲルカラムクロマトグラフィーに付し、クロロホルム-メタノール (30:1, v/v)溶出部より表題化合物 1.97 g を得た。次いで酢酸エチル-ヘキサンにて結晶化を行い、表題化合物 1.51 g を結晶として得た。

NMR:1.08 (3H, d, J=7), 1.16 (3H, d J=7), 3.36-3.43 (2H, m), 3.70 (1H, dd, J=2, 13), 3.88 (1H, d, J=13), 4.33 (1H, br s), 4.50 (1H, br s), 6.19 (2H, s), 6.99 (1H, d, J=6), 7.23 (1H, dd, J=2, 9), 7.29 (1H, d, J=2), 7.83 (1H, d, J=9), 8.01 (1H, d, J=6), 9.17 (1H, s)

実施例22-1

(+/-) -トランス-N-(2-アセチルアミノ-4-ピリミジル)-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキサミド

実施例 2 1 と同様に合成した(+/-)-トランス-N-(2-アミノ-4-ピリミジル)-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキサミド 0.51g を含むピリジン 10 ml 溶液中に無水酢酸 1.2 ml を添加し室温下約 12 時間攪拌後,さらに 70℃で約 1 時間加熱した。反応液を減圧下留去して得られた残留物に 0.5 規定水酸化ナトリウム水溶液を添加した後,クロロホルムにて抽出した。得られた有機層を水洗した後,無水硫酸マグネシウムにて乾燥させ,溶媒留去により得られた粗生成物をシリカゲルカラムクロマトグラフィーにて

単離し、クロロホルム-メタノール-28%アンモニア水(500:9:1,v/v/v)溶出部 より表 題化合物 0.46 g を得た。さらに酢酸エチル-ヘキサン溶液にて結晶化を行うことによ り白色結晶 0.31 g を得た。

同様に実施例22-2を合成した。

実施例23-1

(+/-) ートランスーNー (2ーアミノー4ーピリジル) ー4ー (4ーシアノー3 ートリフルオロメチルフェニル)ー2,5ージメチルピペラジンー1ーカルボキサミド 実施例12ー1と同様に合成した(+/ー)ートランスー4ー { [4ー(4ーシアノー3ートリフルオロメチルフェニル)ー2,5ージメチルピペラジンー1ーカルボニル] アミノ} ピリジンー2ーカルボン酸1.38g, DPPA1.5ml およびトリエチルアミン1.5mlのtーブタノール50ml溶液を8時間加熱還流後,減圧下溶媒を留去した。これにトリフルオロ酢酸30mlを加え室温にて1時間攪拌し,減圧下溶媒を留去後,飽和重曹水でアルカリ性とした。次いで酢酸エチルで抽出し有機層を精製水次いで飽和食塩水で洗浄し,無水硫酸ナトリウムで乾燥後,減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィーにて精製し,クロロホルムーメタノール(10:1,v/v)溶出部より表題化合物0.94gを得た。これを酢酸エチルーへキサンより結晶化することにより,表題化合物0.72gを白色結晶として得た。

同様に実施例23-2を合成した。

実施例24

トランス-N-(6-アミノスルホニル-3-ピリジル)-4-(4-シアノ-3-トリフルオロメチルフェニル)-2,5-ジメチルピペラジン-1-カルボキサミド

トランス-4- (4-シアノ-3-トリフルオロメチルフェニル) -N-(6-メタンスルホニル-3-ピリジル)-2,5-ジメチルピペラジン-1-カルボキサミド2.48gのTHF溶液100mlに、ターシャリーブチルリチウムの1.54Mペンタン溶液7.3mlを-78℃にて滴下後-30℃で15分間攪拌した。再び-78℃に冷却後、トリノルマルブチルボランの1.0Mテトラヒドロフラン溶液15.5mlを加え、1時間かけて室温に昇温後、18時間加熱還流した。氷冷下、酢酸ナトリウム5.91g、水50ml及びヒドロキシルアミン-O-スルホン酸491mgを加え、室温にて一晩攪拌した。反応溶液

を酢酸エチルにより抽出後、有機層を飽和重曹水、飽和食塩水にて順次洗浄し硫酸マ グネシウムにて乾燥後溶媒を留去した。得られた混合物をシリカゲルカラムクロマト グラフィーに付し、クロロホルム-メタノール(9:1, v/v)で溶出し表題化合物 414mg を得た。次いでエタノールより 2 回結晶化を行い表題化合物の結晶 271mg を 得た。

また、上記実施例の他に、明細書に開示した製造方法や、通常の合成法を適応して 実施例25乃至28の化合物も同様に合成できる。

以下の表に上記実施例の構造及び物性値を示す。

: イミダゾール

なお、表中の記号は参考例の表と同様の意味を有し、それ以外の記号については以下 の意味を有する。

Qy : キノリル Ex. : 実施例番号 : モルホリル Mor DATA:物理化学的性状

AcOEt : 酢酸エチル mp :融点℃(再結晶溶媒) EtOH : エタノール MS : 質量分析值

(Et)2O : ジエチルエーテル i-Pr : イソプロピル

1,2-diCl-Et: 1, 2 - ジクロロエタン t-Bu : t-ブチル

(i-Pr)2O : ジイソプロピルエーテル Ac : アセチル

MeOH : メタノール c-Pr :シクロプロピル i-PrOH : イソプロパノール Py : ピリジル

: ヘキサン

Hex Pm : ピリミジル

		備考	trans		trans	trans	trans	Irans	trans	trans	trans	trans	cis	trans	trans	trans	trans					trans	trans	trans	trans	trans	trans
		DATA	mp: 200-203 (acetone-i-Pr2O)	mp: 179-180 (AcOEt)	MS (FAB) m/z 487 [(M+H)*]	MS (FAB) m/z 446 [(M-H)-]	MS (FAB) m/z 433 [(M+H)+]	MS (FAB) m/z 428 [(M+H)+j	MS (FAB) m/z 475 [(M+H)+]	MS (FAB) m/z 445 [(M+H)+]	MS (FAB) m/z 457 [(M+H)+]	MS (FAB) m/z 449 [(M+H)+]	mp: 205 (AcOEt)	MS (FAB) m/z 353 [(M+H)+]	MS (FAB) m/z 371 [(M+H)+]	MS (FAB) m/z 385 [(M+H)+]	MS (FAB) m/z 421 [(M+H)+]	mp: 197-199 (AcOEt-i-Pr2O)	тр: 180-182 (AcOEt-i-Pr2O)	MS (FAB) m/z 435 [(M+H)+]	MS (FAB) m/z 425 [(M+H)+]	MS (FAB) m/z 409 [(M+H)+]	MS (FAB) m/z 349 [(M+H)+]	MS (FAB) m/z 355 [(M+H)+]	MS (FAB) m/z 354 [(M+H)+]	mp: 175-176 (AcOEt-Hex)	mp: 179-180 (AcOEt-Hex)
	 Y_m_R⁵	R ⁵ の置換基	4-F	4-F	4-OCF3	4-NO2	4-OMe	4-CN	4-C00Et	4-Ac	2,4,6-triF	4-SMe	4-F	4-F	4-F	4-CN	4-F	4-F	4-F	4-F	2,4-diF				4-F	4-F	2,4-diF
·~	I-Ż X Z X	Вŝ	Ph	Ph.	Ph	Ph H	뚭	뭅	Ph H	F.	Ph	Ph	-Ph	r.	-F	Cyclohexyl	t-Bu	ជ	윤	ዋ	Ph						
~_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ε	-	-	-	-	_	-	-	,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Œ	, _\2\\\2\\\2\\\2\\\2\\\2\\\2\\\2\\\2\\\	٠/>	١,	.			,	•	١.	١.		١.	١.	١.		.	•	•	١.	١.				١.	١.		١.
	- <u>X</u> =(×	8	8	8	8	ပ္ပ	ဝ္ပ	ဗ	္ပ	8	ဗ္ပ	8	8	ဗ္ဗ	ဗြ	8	8	8	8	8	8	8	ဗ	8	ပ္ပ	8
	α ,	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		*	~	က	2	2	2	2	8	2	0	2	1	2	1		ì	2	2	2	2	1	2	2	2	2	2
		2	5-Me	I	5-Me	6-Me	5-Me	5-Me	5-Me	5-Me	T	I	I	I	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me							
		H2	2-Me		ı			2-Me		1			1		1			1	1	1	1	1	i i	1	1	1	1
		23	占	동	동	동	동	동	동	동	동	F	동	동	공	동	딍	동	동	딩	동	동	딩	동	동	동	동
		7	딩	동	동	동	동	동	동	F	동	F	공	공	공	딍	딩	동	동	공	동	동	공	동	z	동	E E
_		æ	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3		3-CF3		7.F	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.CF3	3-CF3	3-CF3	3-CF3	1-19 3-CF3	3-CF3	20.6	3-CF3	I	3-F	3-Br
		Ä			1 5	4	1-5	9-		8	6	1-10		1. 1.	1 6	144	1 2	1-16	1-17	1-18	1-19	1-20	1-21	1-22	1-23 H	1-24	1-25

																		,		,	٠,	,				,				,
貓光	trans	trans	trans	cis	trans	trans	trans		trans	trans				trans																
DATA	·Hex)	mp: 197-198 (AcOEt)	M+H)+]	mp: 181-182 (i-Pr2O)	MS (FAB) m/z 437 [(M+H)+]	MS (FAB) m/z 449 [(M+H)+]	MS (FAB) m/z 418 [(M+H)+]	mp: 214-217 (CH2Cl2)	MS (FAB) m/z 403 [(M+H)+]	MS (FAB) m/z 471 [(M+H)+]	MS (FAB) m/z 437 [(M+H)+]	MS (FAB) m/z 421 [(M+H)+]	MS (FAB) m/z 421 [(M+H)+]	MS (FAB) m/z 417 [(M+H)+]	MS (FAB) m/z 495 [(M+H)+]	MS (FAB) m/z 445 [(M+H)+]	MS (FAB) m/z 439 [(M+H)+]	MS (FAB) m/z 439 [(M+H)+]	MS (FAB) m/z 481 [(M+H)+]	MS (FAB) m/z 428 [(M+H)+]	MS (FAB) m/z 439 [(M+H)+]	MS (FAB) m/z 433 [(M+H)+]	MS (FAB) m/z 433 [(M+H)+]	MS (FAB) m/z 387 [(M+H)+]	MS (FAB) m/z 378 [(M+H)+]	mp: 257-260 (i-Pr2O)	mp: 179-180 (AcOEt-i-Pr2O)	mp: 144-145 (AcOEt-i-Pr2O)	mp: 146-148 (AcOEt-Hex)	MS (FAB) m/z 465 [(M+H)+]
R ⁵ の置換基	2,4-diF	2,4-diF	4-F	4-F	4-F	4-F	1	4-F	-	4-CF3	4-Cl	3-F	2-F	•	4-OPh	4-i-Pr	3,4-diF	2,4-diF	4-Br	3-CN	3,5-diF	2-OMe	3-OMe	4-F	4-F	4-F	4-F	2,4-diF	2-CF3,4-F	2-Br, 4-F
R,	Æ	Æ	윤	£	Æ	£	-0-CH2-Ph	F.	ዊ	유	윤	R	Ph	F.	A.	Ph	Ph	Ph H	Ph	Рh	H.	币	ᄯ	F.	문	P.	윤	Ph	Ph	Ph
E	-	-	0	0	-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
>			,			ဗ္ဗ	١.		١.	١.			١.	CH2			١,			١.		•	١.		•	•	•			$ \cdot $
×	8	8	802	8	ဗ္ဗ	8	8	8	ဗ္ပ	ဗ	8	ပ္ပ	8	8	8	႘	၀	8	႘	႘	8	8	8	ဗြ	8	8	8	8	႘	႘
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
*	2	2	2	2	2	2	2	2	~	2	2	2	2	~	2	2	2	7	2	7	2	2	2	~	ŀ	2	2	2	2	2
Ę	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	I	5-Me	5-Me	3-Me	I	I	5-Me																
H2	2-Me	2-Me	2-Me	3-Me	2-Me	2-Me	2-Me	I	2-Me	2-Me	3-Me	2-Me	2-Me	2-Me																
72	동	占	팡	끙	동	당	동	동	동	동	F	F	동	동	동	동	동	공	동	동	동	동	동	등	동	동	동	동	F	동
7,	동	동	동	동	동	동	공	동	동	동	동	동	동	동	동	동	F	동	동	동	동	동	동	당	동	공	동	동	동	ᆼ
В	3-OMe	3-Me	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3				3-CF3	3-CF3	3-CF3	3-CI
ŭ	1-26	1	Ι.							1-36	1-37		1-39	4-	14-1	1-42	1-43		1-45	1-46	1-47	1-48	1-49	1.50	15	1-52	1-53	1-54	1-55	1-56

中 继	E.	trans	
0.444	UAIA	mp: 182 (AcOEt)	
	類類	F ₃ C Me N C C C C C C C C C C C C C C C C C C	Me
7	Ě	1-33	

鑩	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans		trans		
DATA	T	7 [(M+H)+]		П	\neg		ヿ					mp: 167 (AcOEt-Hex)	MS (FAB) m/z 435[(M+H)+]	MS (FAB) m/z 509,	511[(M+H)+]	mp: 152.5-153.5 (AcOEt-Hex)	MS (FAB) m/z 404[(M+H)+]	
H ⁵ の置換基	,	•	•	2-F	•	6-Me	2-OMe	S-CN	S-CN	•			4-F	2,4-diBr		•	4	
πĵ	2-Thienyl	2-Furyl	3-Py	3-Py	4-Py	3-Py	3-Py	Ph.	3-Py	-Ph	1-Naphtyl	Pyrazine-2-yl	Ph	듄		Ph	3-Py	
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
>					,	1			•	(CH2)2	践		CH2	,		-C(CH3)2-	•	
×	8	8	8	8	8	8	ဗ္ဗ	8	8	8	8	8	8	8		ဗ္ဗ	ဗ္ပ	
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
~	~	0	2	2	2	~	~	1 2	~	2	2	2	2	2	ł	2	2	
E.	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me)	5-Me	3-Me	
75	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	NA PMP	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me) !	2-Me	3-Me	
ă	2.1	2.5	2.3	2-4	255	2 6	2-7	8	0.0	1 6	3-2	6	3-4	4	•	r.	5-2	
	H³ K n X Y m H³ H³の置換基 DATA	R² R³ k n X Y m R³ R⁵の蹬煥基 DATA 2-Me 5-Me 2 1 CO - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+1] trans	R² R³ R³O窗換基 DATA 2-Me 5-Me 2 1 CO - 1 2-Thieny - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-Furyl - NS (FAB) m/z 407 [(M+H)+] trans	R² R³ k n X Y m R³ R³ R³ DATA 2-Me 2-Me 2 1 CO 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-Furyl - MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - mp: 183 (AcOEt) trans	R ² Right Right DATA 2-Me 5-Me 2 1 CO - 1 2-Thienyl - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+1] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 407 [(M+H)+1] trans 2-Me 5-Me 2 1 CO - 1 3-Py - mp: 183 (AcOEt) trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-F MS (FAB) m/z 422 [(M+H)+1] trans	R² R³ R³ R³ DATA 2-Me 5-Me 2 1 CO 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-Furyl - MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 [(M+H)+] trans	R² R³ R³の置換基 DATA 2-Me 5-Me 2 1 CO 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-F MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans	R ² R ³ k n X Y m R ³ O B換基 DATA 2-Me 5-Me 2 1 CO 1 2-Thienyl - MS (FAB) m/z 407 (M+H)+1 trans 2-Me 5-Me 2 1 CO - 1 2-F MS (FAB) m/z 407 (M+H)+1 trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 402 (M+H)+1 trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 (M+H)+1 trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 (M+H)+1 trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 (M+H)+1 trans 2-Me 5-Me 2 1 CO - 1 3-Py - - MS (FAB) m/z 404 (M+H)+1 trans <	R ² R ³ R ³ O	R ² R ³ R ³ R ³ DATA 2-Me 5-Me 2 1 CO - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-F MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - OMe mp: 233-234 (AcOEt) trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-OMe mp: 174-176 (AcOEt) trans 2-Me 5-Me	R ² R ³ R i o i o i o i o i o i o i o i o i o i	R ² R ³ R F DATA 2-Me 5-Me 2 1 CO - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-Furyl - MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 428 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-OMe mp: 174-176 (AcOEt) trans 2-Me 5-Me	R ² R ³ k n X Y m R ³ O B B B DATA 2-Me 5-Me 2 1 CO - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 404 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - COMe mp: 174-1	R ² R ³ R N F DATA 2-Me 5-Me 2 1 CO - 1 2-Furyl - MS (FAB) m/z 409 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 2-Furyl - MS (FAB) m/z 407 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-F MS (FAB) m/z 404 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 404 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-OMe mp: 174-176 (AcOEt) trans 2-Me 5-Me 5-Me 1 CO - 1 3-Py 2-OMe mp: 174-176 (AcOEt) trans 2-Me 5-Me 5-Me 1 CO - 1 3-Py 2-CN MS (FAB) m/z 429 [(M+H)+] trans 2-Me<	R ² R ³ R N F F DATA 2-Me 5-Me 2 1 2-Thienyl MS (FAB) m/z 409 ([M+H)+] trans 2-Me 5-Me 2 1 CO 1 2-Fuyl - MS (FAB) m/z 407 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 407 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 402 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 4-Py - MS (FAB) m/z 402 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 402 ([M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - MS (FAB) m/z 402 ([M+H)+] trans 2-Me 5-Me 2 1 CO <td>R² R³ k n X Y m R³OB換基 DATA 2-Me 5-Me 2 1 CO 1 2-Thienyl MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-F MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-F MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-F MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-P MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe mp: 174-176 (ACOE!) trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe mp: 174-176 (ACOE!) trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe MS (FAB) m/z 428 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe MS (FAB) m/z 428 [(M+H)+] trans 2-Me 5-Me 2 1 CO CH2 1 Ph</td> <td>R² R³ k n X Y m H⁵の階換基 DATA 2-Me 5-Me 2 1 2-Thienyl - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 2-Furyl - mp: 183 (AcOE!) trans 2-Me 5-Me 2 1 3-Py - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 2 1 3-Py - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 1 CO - 1 3-Py 2-OMe mp: 174-176 (AcOE!) trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-CN MS (FAB) m/z 426 [(M+H)+] trans 2-Me 5-Me 2 1 CO CH2)2 <</td> <td>R² R³ R N N N N N N N N N N N N N N N N N N N</td>	R ² R ³ k n X Y m R ³ OB換基 DATA 2-Me 5-Me 2 1 CO 1 2-Thienyl MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-F MS (FAB) m/z 407 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-F MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-F MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-P MS (FAB) m/z 422 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe mp: 174-176 (ACOE!) trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe mp: 174-176 (ACOE!) trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe MS (FAB) m/z 428 [(M+H)+] trans 2-Me 5-Me 2 1 CO 1 3-Py 2-OMe MS (FAB) m/z 428 [(M+H)+] trans 2-Me 5-Me 2 1 CO CH2 1 Ph	R ² R ³ k n X Y m H ⁵ の階換基 DATA 2-Me 5-Me 2 1 2-Thienyl - 1 2-Thienyl - MS (FAB) m/z 409 [(M+H)+] trans 2-Me 5-Me 2 1 2-Furyl - mp: 183 (AcOE!) trans 2-Me 5-Me 2 1 3-Py - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 2 1 3-Py - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 2 1 CO - 1 3-Py - - MS (FAB) m/z 402 [(M+H)+] trans 2-Me 5-Me 1 CO - 1 3-Py 2-OMe mp: 174-176 (AcOE!) trans 2-Me 5-Me 2 1 CO - 1 3-Py 2-CN MS (FAB) m/z 426 [(M+H)+] trans 2-Me 5-Me 2 1 CO CH2)2 <	R ² R ³ R N N N N N N N N N N N N N N N N N N N

備老		(2R. 5S)	100	(ZR, 55)	trans	trans	trans	trans 1 塩酸塩	trans	trans	trans		Irans	trans	trans	(2R, 5S)	trans	trane	II CALLO	trans I 温暖場	
DATA	mp: 173-174 (AcOEt-Hex)	MS (FAR) m/7 482 [(M+H)+]		2-tBuOCONH- MS (FAB) m/z 518 [(M+H)+j	mp: 238-240 (AcOEt-Hex)	MS (FAB) m/z 508 [(M+H)+]	MS (FAB) m/z 408[(M+H)+]	mp: >210 (EtOH)	MS (FAB) m/z 411[(M+H)+]	mp: 180-182 (AcOEt-Hex)	mn. 190-192 (AcOEt-Hex)		MS (FAB) m/z 460 [(M+H)+]	MS (FAB) m/z 443 [(M+H)+]	mp: 195-197 (AcOEt-EtOH)	mp: 184-185 (AcOEt-Hex)	MS (FAB) m/z 417[(M+H)+]	100 114 D. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	MS (FAB) m/z 44/ [(M-H)-]	mp:119.5-121.0	
R ₂ の置換基		o Dr	10-2	2-tBuOCONH	2-lm-1-yl	3-COPh	5-Me	4-lm-1-yl			1-140	Olat-1	•	-		6-OMe			2-N02	3-Ме	
æ	Pvrazine-2-vl		4-ry	4-Pm	4-Py	4-Pv	Isoxazol-3-vl	Ph	1.3.4-Thiaziazol-2-vl	Thiazol-2-vl	1. C m	IIII-2-y:	Benzothiazol-6-yl	Benzoimidazol-2-yl	2-Pv	3-Pv	Totrazol, S.vl	1 611 azol-3-yı	3-Py	2-Py	
Ε	-	- -	-	-	-	-	-	-	-	-	- •	-	-	-	-	-	-	-	-	-	
>			•																•	•	
×	2	3 8	3	8	8	S	8 8	3 2		3 2	3	3	၀	8	5	8 2	3 8	3	00	8	
-	-	-	_	-	-	-		- -	- -	- -	- .	_	-	-	-	- -	- -	-	-	-	
_	: (۰	N	7	0	۱۱۹	1 6	1/0	4 0	4	١	N	2	0	۱۱۹	1 6	٠ļ٠	Ŋ	7	8	
2	27.0	2 - NIG	5-Me	5-Me	A.M.	S.Mo	N C	N W	N C	N V	DINI-0	5-Me	5-Me	5-Me	S We		PIMI-C	2-Me	5-Me	5-Me	
P ₂		o-twe	2-Me	2-Me	2.Mo	S Mo	S NO	P NO	2 MG	DIAL C	AW-2	2-Me	2-Me					2-Me	2-Me	2-Me	
à		2	<u>.</u>	6.5	1 6			0 0	10	6 6	p	တ တ	6-10	7	2 2	5 0	2	6-14	6-15	6-16 2	

R. H. L.	OF 3 C N X LN X TW L	T. J. S.	
	ਹ	2	

	室机	(2R, 5S)	trans	trans	Elans	trans	
	DATA	MS (FAB) m/z 448 [(M+H)+]	MS (FAB) m/z 440 [(M+H)+]		mp:142-143.5 (ACUEI-FIEX)	110 (EAD) m/- 413 [(MILH)1]	MS (FAD) 111/2 + 15 (MIT) CM
	H ⁵ の置換基	6-OMe			•		
	Н³				Tetrahydrofuran-2-yl		ij
		1 3-Py	Ž		Tetra		COOE
	٤	-	┍	-	_	ŀ	-
:	>	강	CHO)	2/2110)	CH2		CH2
	, E	Ξ	-	-	I		I
	×	8	5	3	ပ္ပ		8
	=	: -	1	-	-	١	-
	 ×	: ~	ا	Z	~	١	N
	'n	5-Me		alvi-c	5-Me		5-Me
	2	7-1 2-Me 5-Me		S-IMB	2.Me		2-Me
	ď	1/2		7-7	6.7		7-4

表9

١	i			1	1	ļ				ļ		li	<u></u>	ļ	28	<u></u>										١	Ì		
備老	trans	trans	trans	trans	trans	trans	trans	trans		trans	trans	trans	(2R, 5S)	trans	(2R, 5	(2R, 5S	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	trans	
DATA	MS (FAB) m/z 432 [(M+H)+]	MS (FAB) m/z 413 [(M+H)*]	MS (FAB) m/z 452 [(M+H)+]	mp: 157-159 (AcOEt-Hex)	mp: 138-139 (AcOEt-Hex)	mp:118.5-120.5 (AcOEt-Hex)	MS (FAB) m/z 432 [(M+H)+]	mp: 199-200 (i-Pr2O)	mp: 163-164 (i-Pr2O)	MS (FAB) m/z 457 [(M+H)+]			MS (FAB) m/z 446 [(M-H)-]	MS (FAB) m/z 447 [(M+H)+]	MS (FAB) m/z 448[(M+H)+]		1	1	MS (FAB) m/z 446 [(M+H)+]	MS (FAB) m/z 496 [(M+H)+]	MS (FAB) m/z 435 [(M+H)+]	MS (FAB) m/z 481 [(M+H)+]	MS (FAB) m/z 432 [(M+H)+]	mp: 173-175 (AcOEt-Hex)	MS (FAB) m/z 481 [(M+H)+]	MS (FAB) m/z 466 [(M+H)+]	MS (FAB) m/z 482 [(M+H)+]	mp: 243-245 (AcOEt)	
105の昭後井	1000		6-CI	6-CI			3-Me	4-F	4-F	4-F	4-NH2	4-NHCOMe	2-COOH	4-COOH	9-соон	2-CONHMe	4-CONHMe	4-CONMe2	4-CONH2	4-SO2NHMe	4-F	2,4-diF			4-SO2Me	2-SOMe	e-SOMe		
90	1 A.D.	R4+B5:Thiomorpholino-4-vl	1 3-Pv	1 2-Pv	1 3-Py	1 Pyrazine-2-yl	1 2-Py	1 Ph	1 Ph	1 Ph	1 Ph	- Ph	1 4-Py	1 Ph	1 3-Pv	1 4-Py	1 Ph	1 Ph	1 Ph	1 Ph	1 Ph	1 Ph	1 2-Py	R4+R5:1-oxo-thiomorpholino-4-yl	1 Ph	1 4-Py	1 3-Py	R4+R5:1,1-dioxo-thiomorpholino-4-yl	
>	S	R4+B5:Thic	CHO	CH2	CHS	CH2	CH2			•							1			1	- 6	Λe .	CH2	R4+R5:1-0x0	•			34+R5:1,1-dio	
č	د ع	E	Ī	: =	I	Ŧ	I	I	ᆂ	I	エ	I	I	I	I	=	Ĭ	F	I	I	Me	COMe	Me		I	I	I		
,	۶ ۶	3 5		3 8	8	8	8	8	8	802	ဗ	8	8	ဗြ	င်	8	8	8	8	8	ဗြ	8	8	ဗြ	8	8	8	8	
1	= •	- -	• -	- -	-	-	- -	-	က	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ŀ	- 1	2	-	1	1	۱۹		1	-	2	0	2	10	7	1	10	١١٥	1 2	2	12	2	2	2	2	2	2	2	2	
i		2-Me	2 2	A.M.	N G	M-R	2 A	2-Me	F	5-Me	5-Me	5-Me	5-Me	5-Me	A.M.	-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	
ļ	r :	2-Me		2-Me	N C	2-Ma	2-Me	2-Me	I	2-Me	2-Me	2-Me	2-Me	2-Me	2.Mo	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Ma	2-Me	2-Me			
	בׁן וונג	7-5		7-7				- 4	1		5	=	12.4	15.5	1 2	13.1		13-3		4	5-1	15.2	15.3	16-1	16-2	16-3	16-4	16-5	

	br	THE PERSON	温酸温								数値									1 塩酸塩			
	霊が	(2R, 5S)	(2R, 5S)	(2R, 5S)	(2H, 55)	(2R, 5S)	(2R, 5S)	(2R, 5S)	(2R, 5S)	(2R, 5S)	trans 1 塩酸塩	(2R, 5S)	trans	trans	trans		(2R, 5S)	(2R, 5S)	(2S, 5R)	(2S, 5R)	(2R, 5S)	(2R, 5S)	(2R, 5S)
13 FV, H N X N H E	DATA	mp:212-214(AcOEt-Hex)	mp:>200(EtOH-iPr2O)	MS (FAB) m/z 462 [(M+H)+]	mp:181-183(AcOEt-Et2O)	mp:163-165(AcOEt-Hex)	MS (FAB) m/z 450 [(M+H)+]	mp:220-222(AcOEt)	MS (FAB) m/z 422 [(M+H)+]	MS (FAB) m/z 472 [(M+H)+]	mp:179-184(EtOH)	MS (FAB) m/z 502[(M+H)+]	MS (FAB) m/z 496 [(M+H)+]	mp:175-177(AcOEt-Hex)	MS (FAB) m/z 450 [(M+H)+]	mp:>200(AcOEt)	MS (FAB) m/z 434 [(M+H)+]	MS (FAB) m/z 418 [(M+H)+]	mp:213-215(AcOEt-Hex)	mp:>200(i-Pr2O)	MS (FAB) m/z 438 [(M+H)+]	MS (FAB) m/z 418 [(M+H)+]	MS (FAB) m/z 502 [(M+H)+]
H2 H3	R5の置換基	2-CI		2-COOMe	6-CF3	6-F	2-SMe	e-cn	2-F	2-CF3		OCH2CF3	2-0Ph	2-tBu	6-SMe	2-F	2-OMe	2-Me	2-CI		5-CI		2-OCH2CF3
	ВŞ	4-Py	4-Py	4-Py	3-Py	3-Ру	4-Py	3.Py	4-Py	4-Py	4-Py	3-Py	3-Py	4-Py	3-Py	4-Py	4-P	4-Py	4-Py	4-Py	3-P	3-Py	4-Py
N C	×	တ္ပ	ဝ	ဥ	၀	ပ္ပ	ဗ	8	8	ဗ	ဗ	ဗ	8	8	္ပ	8	ဝ	8	8	8	8	္ပ	႘
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	×	2	7	2	2	2	2	2	2	2	2	2	1	2	2	2	2	1	2	2	2	2	9
	č	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	I	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me
	Ŗ,	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	I	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me
	Z ₂	동	동	동	동	동	동	동	동	동	동	동	동	동	공	동	E	딩	동	동	동	동	동
	7	동	F	H	공	끙	동	F	占	동	F	공	동	동	동	동	Ę	동	占	동	당		동
	Œ	3-CF3	3-CF3		3-CF3		3-0-5	3-CF3 CH	3-CF3 CH	3-CF3	200	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	2.0F3	3-CF3 C	1	3-CF3	3-CF3	3-CF3 CF	3-CF3 CF
<u>-</u>	Ä	18-1	18-2	18-3	18-4	18-5	18-6	18-7	18-8	18-9	18-10	1-8-1	18-12	18-13	18-14	18-15	18.18	18-17	18-18	18-19	18-20	18-21	18-22

51

備考	(2R, 5S)	trans	trans	trans	trans	(2R, 5S)	(2R, 5S)	(2R, 5S)	trans	trans 1 塩酸塩	trans	trans 1 塩酸塩	(2H, 5S) / 2 塩酸塩	(2R, 5S)	(2R, 5S)	trans	trans	trans	(2R, 5S)	trans	trans	trans	trans	trans
DATA	MS (FAB) m/z 432 [(M+H)+]	mp: 171-174 (AcOEt-Hex)	MS (FAB) m/z 422 [(M+H)+]	MS (FAB) m/z 462[(M+H)+]	MS (FAB) m/z 475[(M+H)+]	MS (FAB) m/z 454 [(M+H)+]	MS (FAB) m/z 444 (M+)	MS (FAB) m/z 448 [(M+H)+]	MS (FAB) m/z 474 [(M+H)+]	mp:235-247(EtOH-AcOEt)	MS (FAB) m/z 462 [(M+H)+]	MS (FAB) m/z 462 [(M+H)+]	CO 4-Py 2-(4-Mor-(CH2)2-O)-MS (FAB) m/z 533 [(M+H)+] (2R, 5S)/	MS (FAB) m/z 446 [(M+H)+]	MS (FAB) m/z 420 [(M+H)+]	mp:191-193(AcOEt-Hex)	mp: 172-174 (AcOEt)	mp:208-211(AcOEt-Hex)	MS (FAB) m/z 419 [(M+H)+]	mp: 147-153(EtOH)				
Ro個換基	2,6-diMe	2-i-Pr	2-F	6-CO2Me	6-NMeAc	-	4-Benzofurazanyl -	4-Py 2-OMe, 6-Me	4-Py 2-c-Pr, 6-OMe	4-Py 2-Mor	4-Py 2-Et, 6-OMe	4-Py 2-0-i-Pr	2-(4-Mor-(CH2)2-	4-Py 2-Ac	4-Pm 2-NH2	4-Pm 2-NHAc	4-Pm 2-NHSO2Me	2-NH2	6-NH2	6-SO2NH2	6-OMe	2-Et	2-F	6-CF3
'n	4-Py	4-Py	3-Py	3-Py	3-Py	2-Q	4-Ben	4-Py	4-Py	4-Py	4-Py	1	4-Py 2		4-Pm			4-Py	3-Py	3-Py	3-Ру	4-Py	4-Py	3-Py
×	ပ္ပ	ဗ	္ပ	္ပ	ဗ	ဗ	္ပ	႘	႘	ဗ	8	8	ဗ	႘	ဗ	႘	္ပ	ဗ	ဗ	႘	႘	္ပ	္ပ	ဗ
۲	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ㅗ	2	2	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3 2	2
Ŗ	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	.5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me	5-Me
R ²	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Ме	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me	2-Me
22	Ы	동	뚱	공	동	동	동		동	동	동	동	끙	동	동	동	동	동	ᆼ	동	동	ᆼ	ᆼ	ᆼ
77	F	F	F	동	끙	F	F	ᆼ	동	F	F	F	F	F	팡	동	F.	딩	F.	딩	ᆼ	끙	F	핑
æ	3-CF3	3-CF3 CF	3-CF3 CH	3-CF3	3-CF3 CH	3-CF3 CF	3-CF3 CF	3-CF3 CF	3-CF3	3-CF3 CF	3-CF3 CF	3-CF3 CF	3-CF3 CF	3-CF3 CH	3-CF3 CH	3-CF3 CH	3-CF3	3-CF3 CF	3-CF3	3-CF3	3-CI	9-CI	3-CI	3-CI
页	18-23	18-24			18-27	18-28	18-29	19-1	19-2	19-3	19-4	19-5	19-6	8	21	22-1	25-2	23-1	23-2	24	22	56	27	28

表10-2

Ex.	構造	DATA	備考
1-33	F ₃ C Me N H F	mp: 182 (AcOEt)	trans
2-10	MeO O Me NC N	MS (FAB) m/z 410 [(M+H)+]	trans 1 塩酸塩
18-30	NC N	MS (FAB) m/z 483[(M+H)+]	trans 1 塩酸塩

発明の効果

本発明化合物はアンドロゲン受容体に特異的に結合し、強力な抗アンドロゲン作用 を有する。また血中の性ホルモンへの影響が少なく、強力な抗アンドロゲン剤として 有用な化合物である。

従って、本発明化合物は前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ 瘡、脂漏等の治療又は予防剤として有用である。

本発明化合物の有用性は、下記の試験方法により確認されている。

ラット アンドロゲン受容体に対する結合活性の評価

(1) ラット前立腺細胞質分画の調製

精巣摘出 24 時間後の 20 週齢雄性 Wistarラットから腹側前立腺を摘出した。ホモジナイズ後,800×g×20 分間遠心分離後,上清をさらに 223,000×g×60 分間遠心分離し,上清を回収し細胞質分画を得た。

- (2) 前立腺細胞質アンドロゲン受容体に対する³ H ミボレロンの特異的結合の測定
- (1) で得た細胞質分画をタンパク濃度で 1 mg/ml に調製したものをラット アンドロゲン受容体溶液とした。ラット アンドロゲン受容体溶液 400μ l に 3 H 3 H 2 H 3 H 3

静置した後、0.05% デキストラン-T70および0.5% ダルコ G-60を含む溶液 $500~\mu$ | を加え混合し、4℃で 15 分間静置した後に遠心分離して上清を回収した。回収した上清 $600~\mu$ | にバイオフロー 5ml を加え混合後、放射活性を測定し、ラット アンドロゲン受容体への 3 H-ミボレロンの総結合量を求めた。 非特異的結合量は、上記の DMSO の代わりに非標識のミボレロンを含む DMSO 溶液を非標識ミボレロン最終濃度が $40~\mu$ M となるよう加え、上記と同様にして求めた。総結合量と非特異的結合量との差をアンドロゲン受容体に結合した特異的結合量とした。

(3) ³H-ミボレロンの特異的結合に対する本発明化合物の阻害活性

本発明化合物を含む DMSO 溶液を濃度を変えて 3 Hーミボレロンと同時に加え、(2)と同様に反応させ、本発明化合物が存在した場合のラット アンドロゲン受容体に結合した 3 Hーミボレロンの特異的結合量を求めた。この値と(2)で求めた値より、 3 Hーミボレロンの特異的結合に対する本発明化合物の阻害活性の 1 Cso を求めた。さらに 1 CSo から解離常数 Ki を Cheng and Prusoff の式 * により求めた。

*:Cheng Y.C. and Prusoff W.H., Relationship between the inhibition constant (Ki) and the concentration of inhibitor which cause 50% inhibition of an enzymatic reaction., Biochem.pharmacol., 22, 3099(1973)

以下の表に本発明化合物の実験結果を示す。

表11

1	上合物	ラット アンドロゲン受容体に対する結合活性 (Ki=nM)
	6-1	7.56
	6-13	3.58
実	13-1	1.91
施	18-4	5.01
(列	18-7	6.66
""	18-8	15.6
	21	1.81

上記試験結果より、本発明化合物は特異的にアンドロゲン受容体と結合し、アンドロゲンとアンドロゲン受容体との結合を阻害することが確認された。

成熟雄性ラットに対する前立腺縮小作用

10 週令の雄性 Wistarラットに対して、本発明化合物を 0.5% メチルセルロース溶液に 懸濁し1日1回15日間連続経口投与した。最終投与6時間後、腹側前立腺の湿重量 を測定し、本発明化合物の前立腺縮小作用を検討した。

本発明化合物の前立腺縮小作用は、本発明化合物を投与した群を試験群、メチルセルロースのみを投与した群を対照群、投与直前に去勢しその後メチルセルロースのみを投与した群を去勢群として、以下の計算式により算出した。

縮小率 (%) = 100 (B-A) / (B-C)

A:試験群の腹側前立腺湿重量

B:対照群の腹側前立腺湿重量

C:去勢群の腹側前立腺湿重量

これにより求めた縮小率から直線回帰法により EDso値を算出した。

上記試験結果により、表11に示した化合物の ED50 は 0.3~11mg/kg であり、現在使用されている抗アンドロゲン剤の中で最も強力な作用を有するビカルタミドよりも約2~60倍の活性を示した。

従って、本発明化合物は強力なアンドロゲン受容体阻害作用及び非常に優れた成熟 雄性ラットの前立腺縮小作用を有し、アンドロゲンが増悪因子となる前立腺癌、前立 腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の疾患の治療剤として有用であ る。 WO 00/17163

請求の範囲

1. 下記一般式(1)で示されるシアノフェニル誘導体又はその塩。

$$\begin{array}{c|c}
R^{2} & R^{3} \\
\hline
R^{1} & N \\
\hline
N & N
\end{array}$$

$$\begin{array}{c|c}
R^{4} & R^{5} \\
\hline
N & N
\end{array}$$

$$\begin{array}{c|c}
R^{5} & (1)
\end{array}$$

(式中の記号は、以下の意味を示す。

R:シアノ又はニトロ基

 R^1 :水素原子,ハロゲン原子,シアノ,ハロゲノ低級アルキル,ニトロ,カルボキシル,低級アルキル, R^6-A- , R^7-S (〇) $_p-$,低級アルキルー C(=O)-又は低級アルキル-O-C(=O)-基

 R^2 , R^3 , R^4 : 同一又は異なって水素原子, 低級アルキル基, 1又は2個の低級アルキル基で置換されていてもよいカルバモイル基, 低級アルキル-C(=O)-又は低級アルキル-O-C(=O)-基なお, R^2 , R^3 は環上の任意の炭素原子に結合する。

 R^5 : 低級アルキル,アリールー低級アルキルーO-,カルボキシル,低級アルキル-O-C(=O)-,低級アルキル基で 1 又は 2 置換されていてもよいアミド,又は置換基を有していてもよいアリール,ヘテロ環,若しくはシクロアルキル基,若しくはN(R^{13}) R^{14} -低級アルキル-O- 但し,m=1 のとき, R^4 と R^5 が一体となって他のヘテロ原子を有していてもよい 5 又は 6 員ヘテロ環を形成しても良い

R⁶: ハロゲノ低級アルキル、アリール、又は、N(R⁹) R¹⁰、OH若しくは 低級アルキル-O-で置換されていてもよい低級アルキル

R⁷: 低級アルキル,アリール,又はN(R¹¹)R¹²ー

R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴:水素, 低級アルキル,

又はアリール

但し、R⁶及びR⁸、R⁹及びR¹⁰、又はR¹³及びR¹⁴はそれぞれ一体となって他のヘテロ原子を有していてもよく置換基を有していてもよい含窒素シクロアルキルを形成することができる

k又はn:1,2又は3

m: 0又は1

p:0,1又は2

A:酸素原子,又はNR®

X=-C (=O) -, -C (=S) -, 又は-S (O) $_2$ -基

Y:結合, 低級アルキレン, -C(=O)-, 又は-S(O)₂-基

但し、 R^5 が低級アルキル基のときは、Yは低級アルキレン以外の基を示す。 Z_1 又は Z_2 : 同一又は異なってC H又は窒素原子

但し、 R^1 が水素原子のときは、 R^2 、 R^3 の少なくとも一方は低級アルキルである。)

- 2. Rがシアノ基である請求の範囲第1項記載のシアノフェニル誘導体又はその塩
- 3. R^1 がハロゲン原子、シアノ、ハロゲノ低級アルキル、ニトロ又は低級アルキル $-O-;R^2,R^3:$ 少なくとも一方は低級アルキル基; $R^4:$ 水素原子、又は低級アルキル基; $R^5:$ 置換基を有していてもよいアリール、ヘテロ環、若しくはシクロアルキル基;kは2、nは1;mは1;Xは-C(=O) -基;Yは結合; Z_1 又は Z_2 は共にCHを意味する請求の範囲第2項記載のシアノフェニル誘導体又はその塩
- 4. R⁵の置換基を有していてもよいアリール、ヘテロ環、若しくはシクロアルキル基の置換基が、ハロゲン原子、ハロゲノ低級アルキル、低級アルキル、低級アルキルーS (O) -、低級アルキルーS (O) -、低級アルキルーS (O) -、低級アルキルーS (O) -、1 又は2個の低級アルキルで置換されていてもよいスルファモイル、ハロゲノ低級アルキルー〇一、シアノ、ニトロ、オキソ (=O)、低級アルキルーC (=O) -、アリールーC (=O) -、1 又は2個の低級アルキル若しくは低級アルキルーC (=O) ー若しくは低級アルキルー〇一C (=O) ーで置換されていてもよいアミノ、アリールー〇一、アミノー〇一、低級アルキルで置換されていてもよいカルバモイル、カルボキシル、低級アルキルー〇一C (=O) ー、ヘテロ環又は〇日基からなる群から選択される基である請求の範囲第3項記載のシアノフェニル誘導体。
- 5. (2R, 5S) -4-(4-シアノ-3-トリフルオロメチルフェニル) -N-(6-メトキシ-3-ピリジル) -2,5-ジメチルピペラジン-1-カルボキ

- 6. 請求の範囲 1 記載のシアノフェニル誘導体又はその塩を有効成分とする医薬組成物。
- 7. 抗アンドロゲン剤である請求の範囲6記載の医薬組成物。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/05149

A. CLASS	IFICATION OF SUBJECT MATTER C1 ⁶ C07D213/74, 84, 233/88, 215 417/12, 295/18, 22, 243/08 A61K31/415, 47, 55, 495, 5	, 241, 08, 06,	409/12, 413/12,		
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
	SEARCHED				
Minimum do Int.	ocumentation searched (classification system followed l C1 C07D213/74, 84, 233/88, 215 417/12, 295/18, 22, 243/08 A61K31/415, 47, 55, 495, 5	/38, 401/04, 12, 405/12, , 241, 08,06,	409/12, 413/12,		
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN), REGISTRY (STN)					
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X A	RAVI, R.; SIVARAMAKRISHAN, H.; Nucleopholic Substitutions on 3 fluoronitrobenzene. Indian. J. Chem., Sect. B: Org. Vol. 36B, No. 4, pages 347-348	-Chloro-4- Chem. Incl. Med. Chem.,	1 2-7		
х	(see compound 8.) OGAWA, H.; TAMADA, S; FUJIOKA, T	r.; TERAMOTO, S.; KONDO,	1		
A	K.; YAMASHITA, S.; YABUUCHI, Y.; TOMINAGA, M.; NAKAGAWA, K. Studies on Positive Inotropic Agents. VI. Synthesis of 1-Aromatic Ring Substituted 4- (3,4-Dimethoxybenzoy1) - piperazine derivatives. Chem. Pharm. Bull., Vol. 36, No. 7, pages 2401-2409(1988) (see compound VII on pages 2402,2406.)				
X A	MIYAMOTO, T.; EGAWA, H.; MATSUMOTO, J. Pyridonecarboxylic Acids as Antibacterial Agents. VIII. An Alternative Synthesis of Enoxacin via Fluoronicotinic Acid Derivatives. Chem. Pharm. Bull., Vol. 35, No. 6, pages 2280-2285 (1987) (see compound 12b on pages 2282-2284)		1,2 3-7		
Further	r documents are listed in the continuation of Box C.	See patent family annex.			
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" "P" when the document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 08 December, 1999 (08.12.99) "T" later document published after the international filing date or priority date and not in conflict with the application but cited understand the principle or theory underlying the invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inven		the application but cited to carlying the invention cannot be red to involve an inventive claimed invention cannot be claimed invention cannot be to when the document is documents, such a skilled in the art family			
Name and mailing address of the ISA/		Authorized officer			
Japanese Patent Office		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/05149

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	AGRAWAL, V. K.; SHARMA, S.	1
A	Studies inPotential Filaricides: Part XV-Synthesis of 1- Acyl/aryl-4-substituted-piperazines as Dethylcarbamazine analogs. Indian. J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., Vol. 23B, No. 7, pages 650-654 (1984) (see compounds 33,34)	2-7
X A	Chmical Abstracts, Vol. 97, Abstract No. 97:109953(1981) ZHANG, X.; LI, G.; DAI, Z.; QIAN, Y.; CHEN, L. Synthesis and Antimararial Effects of Some Derivatives of 2, 4-Diamino-6-Substituted Piperazinylquinazolines. Xaozue Xuebao, Vol. 16, No. 6,pages 415-424 (1981)	1 2-7
	Registry No.82596-31-4 1-(3-cyano-4-nitrophenyl)-4-(methylsulphenyl)- piperazine, Registry No.82596-32-5	
	1-(3-cyano-4-nitrophenyl)-4-[(4-methylfonyl)-sulfonyl)] piperazine	
X A	JP, 63-44572, A (PFIZER LTD.), 25 February, 1988 (25.02.88),	1 2-7
x	(page 11, upper right column, 1-acetyle-4-nitro-3-metylphenyl)piperazine) & EP, 257864, A & US, 4797401, A	1,6
A	WO, 97/03054, A1 (SANDOZ LTD.), 30 January, 1997 (30.01.97), (see Example 28) & EP, 839136, A & US, 5885988, A & AU, 9666120, A	2-5,7
X A	WO, 95/17471, A1 (ZENECA LTD.), 29 June, 1995 (29.06.95), (Example 1(2) Acetylation compounds)	1 2-7
X A	& US, 5453495, A & AU, 9511151, A EP, 23569, Al (THOMAE, DR. KARL, GMBH), 11 February, 1981 (11.02.81), (specification, page 51 2-[4-(2-Furoyl)piperazino] -5-nitro-benzoesaure) & AU, 8060362, A	1,2-7

雷	際	fЩ	本	椒	4
	5K	6401	18	**	_

国際出願番号 PCT/JP99/05149

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. ⁶ C07D213/74, 84, 233/88, 215/38, 401/04, 12, 405/15 A61K31/415, 47, 55, 495, 54	2, 409/12, 413/12, 417/12, 295/18, 22, 243/08, 241, 08, 06,	
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl. * C07D213/74, 84, 233/88, 215/38, 401/04, 12, 405/15 A61K31/415, 47, 55, 495, 54	2, 409/12, 413/12, 417/12, 295/18, 22, 243/08, 241, 08, 06,	
最小限資料以外の資料で調査を行った分野に含まれるもの		
国際調査で使用した電子データベース(データベースの名称、 CA (STN), REGISTRY (STN)	、調査に使用した用語)	
C. 関連すると認められる文献		
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連する	関連する ときは、その関連する箇所の表示	
X A Nucleopholic Substitutions on 3- fluoronitrobenzene. Indian. J. Chem., Sect. B:Org. Chem. p. 347-348 (1997) (化合物 8 を参照。)	ARAJAN, K. 1 -Chloro-4- 2-7	
区 C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献	
国際調査を完了した日 08.12.99	国際調査報告の発送日 21.12.99	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 4 P 9164 寮藤 恵 印 電話番号 03-3581-1101 内線 3490	

国際調査報告

国際出願番号 PCT/JP99/05149

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X A	OGAWA, H.; TAMADA, S; FUJIOKA, T.; TERAMOTO, S.; KONDO, K.; YAMASHITA, S.; YABUUCHI, Y.; TOMINAGA, M.; NAKAGAWA, K. Studies on Positive Inotropic Agents. VI. Synthesis of 1-Aromatic Ring Substituted 4-(3,4-Dimethoxybenzoyl)-piperazine derivatives. Chem. Pharm. Bull., Vol. 36, No. 7, p. 2401-2409 (1988) (p. 2402,2406の化合物VIIを参照。)	1 2-7
X A	MIYAMOTO, T.; EGAWA, H.; MATSUMOTO, J. Pyridonecarboxylic Acids as Antibacterial Agents. VIII. An Alternative Synthesis of Enoxacin via Fluoronicotinic Acid Derivatives. Chem. Pharm. Bull., Vol. 35, No. 6, p. 2280-2285(1987) (p. 2282-2284のCompd. 12bを参照。)	1, 2 3-7
X A	AGRAWAL, V. K.; SHARMA, S. Studies in Potential Filaricides: Part XV-Synthesis of 1-Acyl/Aryl-4-substituted-piperazines as Dethylcarbamazine Analogs. Indian. J. Chem., Sect. B:Org. Chem. Incl. Med. Chem., Vol. 23B, No. 7, p. 650-654 (1984)	1 2-7
X A	(Compd 33,34を参照。) Chmical Abstracts, Abstract No.97:109953(1982)	1 2-7
	ZHANG, X.; LI, G.; DAI, Z.; QIAN, Y.; CHEN, L. Synthesis and Antimararial Effects of Some Derivatives of 2, 4-Diamino-6-Substituted Piperazinylquinazolines. Yaoxue Xuebao, Vol. 16, No. 6, p. 415-424(1981)	
	Registry No.82596-31-4 1-(3-cyano-4-nitrophenyl)-4-(methylsulfonyl)- piperazine,	
	Registry No.82596-32-5 1-(3-cyano-4-nitrophenyl)-4-[(4-methylphenyl)- sulfonyl)]piperazine	
X A	JP, 63-44572, A(PFIZER LTD.) 25.2月.1988 (25.02.88) (第11頁右上欄の1-アセチル-4-ニトロ-3-メチルフェニル)ピペラジンを参照。) &EP, 257864, A &US, 4797401, A	1 2-7
X A	WO, 97/03054, A1 (SANDOZ LTD.) 30.1月.1997 (30.01.97)・ (実施例28を参照。) &EP, 839136, A &US, 5885988, A &JP, 11-509197, A	1, 6 2-5, 7
X A	WO, 95/17471, A1 (ZENECA LTD.) 29.6月.1995 (29.06.95) (Example 1 (2) Acetylationの生成物を参照。) &US, 5453495, A &AU, 9511151, A1	1 2-7

国	際調	查報	ŧ
---	----	----	---

国際出願番号 PCT/JP99/05149

C欄の続き

引用文献のカテゴリー X 請求の範囲1 Y 2-7

EP, 23569, A1 (THOMAE, DR. KARL, GMBH) 11.2月.1981 (11.02.81) (明細書第51頁の2-[4-(2-Furoyl)piperazino]-5-nitro-benzoesaureを参照。) &AU, 8060362, A1