

Introduction aux télécommunications

Modulateur/Démodulateur bande de base : optimisation conjointe

- 1) Génération du signal => Efficacité spectrale
- 2) Interférence entre symboles => Critère de Nyquist
- 3) Impact du bruit => Filtrage adapté
- 4) Calcul du taux d'erreur binaire (TEB) => Efficacité en puissance

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

<u>Critères de performance :</u>

- → Efficacité spectrale : bande B nécessaire pour transmettre le débit Rb souhaité.
- → Efficacité en puissance : SNR par bit souhaité à l'entrée du récepteur pour atteindre le TEB souhaité.
- → Robustesse vis-à-vis des non linéarités : le signal est-il à enveloppe constante ?

Quelques exemples de signaux

Modélisation générale

Débit symbole = nombre de symboles transmis par seconde :

Exemple (NRZ, M=4):

Exemple en Matlab

Génération d'un NRZ polaire

```
%Durée symbole en nombre d'échantillons (Ts=NsTe)
Ns=4;
%Nombre de bits générés
nb bits=100;
%Génération de l'information binaire
bits=randi([0,1],1,nb_bits);
%Mapping binaire à moyenne nulle : 0->-1, 1->1
Symboles=2*bits-1;
%Génération de la suite de Diracs pondérés par les symbols (suréchantillonnage)
Suite diracs=kron(Symboles, [1 zeros(1,Ns-1)]);
%Génération de la réponse impulsionnelle du filtre de mise en forme (NRZ)
h=ones(1,Ns)
%Filtrage de mise en forme
x=filter(h,1,Suite diracs);
%Affichage du signal généré
figure; plot(x);
axis([0 nb bits-1 -1.5 1.5]);
%Calcul de la DSP du signal par périodogramme
DSP x=(1/length(x))*abs(fft(x,2^nextpow2(length(x)))).^2;
%Affichage de la DSP du signal généré
figure; plot(linspace(0,1,length(DSP x)), DSP x);
```

QUESTION

Le mapping et la réponse impulsionnelle du filtre de mise en forme utilisés pour générer ce signal sont :

 \bigcirc Mapping : 0 -> -1, 1 -> +1

Mapping: 0 -> +1, 1 -> -1

Mapping: 0 -> -1, 1 -> +1

Pas assez d'éléments pour répondre à la question

QUESTION

Le débit symbole sera :

- égal au débit binaire
- plus grand que le débit binaire
- plus petit que le débit binaire
- Pas assez d'éléments pour répondre à la question

Modélisation générale

Modulation PAM (Pulse Amplitude Modulation) d'ordre M (M-PAM)

= Modulation linéaire en bande de base = DSP du signal transmis autour de la fréquence 0

$$S_{x}(f) = \frac{\sigma_{a}^{2}}{T_{s}} \left| H(f) \right|^{2} + 2 \frac{\sigma_{a}^{2}}{T_{s}} \left| H(f) \right|^{2} \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_{a}(k) e^{j2\pi f k T_{s}} \right] + \frac{\left| m_{a} \right|^{2}}{T_{s}^{2}} \sum_{k} \left| H\left(\frac{k}{T_{s}}\right) \right|^{2} \delta \left(f - \frac{k}{T_{s}} \right)$$

où:
$$\sigma_a^2 = E\left[|a_k - m_a|^2\right]$$
; $m_a = E\left[a_k\right]$; $R_a(k) = \frac{E\left[a_m^* a_{m-k}\right] - \left|m_a\right|^2}{\sigma_a^2}$

$$a_k \in \{\pm 1, \pm 3\}$$

Quelques exemples de spectres

→ Mise en forme NRZ à 2 niveaux (forme d'onde du GPS)

Quelques exemples de spectres

→ Mise en forme Biphase ou Manchester (forme d'onde Ethernet : IEEE802.3)

Quelques exemples de spectres

→ Mise en forme en racine de cosinus surélevé (forme d'onde du DVB-C et DVB-S)

Efficacité spectrale

→ <u>Définition de la bande occupée par le signal transmis :</u>

• Définition 1 : bande de fréquence B concentrant x % de l'énergie du signal (valeurs typiques : 95 à 99 %)

$$\frac{\int_0^B S_x(f)df}{\int_0^\infty S_x(f)df} = \frac{x}{100}$$

• Définition 2 : bande de fréquence B au délà de laquelle l'atténuation minimale est de x dB (valeurs typiques : 20 à 30 dB)

→ Efficacité spectrale (en bits/s/Hz):

$$\eta = \frac{R_b}{B} = \frac{\log_2(M)}{k}$$
 Symboles M-aires
$$B = kR_s$$

QUESTION

L'efficacité spectrale de la transmission sera :

- \bigcirc meilleure si je transmets le signal $x_1(t)$
- \bigcirc meilleure si je transmets le signal $x_2(t)$
- identique pour la transmission des deux signaux
- Pas assez d'éléments pour répondre à la question

Suite de bits à transmettre : 00100111

Mapping: -V -V +V -V -V +V +V +V

QUESTION

En utilisant un filtre de mise en forme en racine de cosinus surélevé l'efficacité spectrale obtenue sera :

- Plus grande qu'en utilisant un filtre de mise en forme rectangulaire
- Plus petite qu'en utilisant un filtre de mise en forme rectangulaire
- Identique à celle obtenue en utilisant un filtre de mise en forme rectangulaire
- Pas assez d'éléments pour répondre à la question

Optimisation conjointe avec le modulateur

Optimisation conjointe avec le modulateur

→ <u>Visualisation des interférences à l'entrée de l'échantillonneur : exemple</u>

- \rightarrow Suppression des interférences à t_0 +m T_s : critère de Nyquist
 - <u>Expression temporelle</u>:

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases} \longrightarrow z(t_0 + mT_s) = a_m g(t_0) + w(t_0 + mT_s)$$

<u>Expression fréquentielle</u>:

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases} \xrightarrow{\mathsf{TF}} \underbrace{\sum_{k} G^{(t_0)} \left(f - \frac{k}{T_s} \right) = cte}_{16} \quad \text{avec} \quad G^{t_0}(f) = FT \left[\frac{g(t + t_0)}{g(t_0)} \right]$$

Optimisation conjointe avec le modulateur

 \rightarrow Suppression des interference à t_0 +m T_s : critère de Nyquist dans le domaine fréquentiel

Bande de Nyquist

(Débit symbole maximum sans apparition d'interférences aux instants de décision)

Optimisation conjointe avec le modulateur

→ Exemple de filtre de Nyquist : filtre en cosinus surélevé (raised cosine filter, RCF)

$$\mathbf{G}^{(t_{o})}(\mathbf{f}) = \begin{cases} \mathbf{T}_{s} \text{ for } \left| \mathbf{f} \right| \leq \frac{1 - \alpha}{2 T_{s}} \\ \frac{\mathbf{T}_{s}}{2} \left[1 + \cos \left(\frac{\pi T_{s}}{\alpha} \left(\left| \mathbf{f} \right| - \frac{1 - \alpha}{2 T_{s}} \right) \right) \right] \text{pour } \frac{1 - \alpha}{2 T_{s}} \leq \left| \mathbf{f} \right| \leq \frac{1 + \alpha}{2 T_{s}} \\ 0 \text{ elsewhere} \end{cases}$$

Filtre en cosinus surélevé avec différents roll off α

Optimisation conjointe avec le modulateur

→ Exemple de filtre de Nyquist : filtre en cosinus surélevé (raised cosine filter, RCF)

$$g^{(t_0)}(t) = \sin c \left(\frac{\pi t}{T_S}\right) \frac{\cos \left(\frac{\alpha \pi t}{T_S}\right)}{1 - \left(2\alpha \frac{t}{T_S}\right)^2} \qquad (0 \le \alpha \le 1)$$

Filtre en cosinus surélevé avec différents roll off α

Optimisation conjointe avec le modulateur

→ Exemple de filtre de Nyquist : filtre en cosinus surélevé (raised cosine filter, RCF)

Quelques diagrammes de l'oeil sans bruit réalisés sur 2T_s

Sans bruit,
Deux filtres SRRCF (Square Root Raised
Cosine Filter) de roll off différents à
l'émission et à la réception :

Soit $g(t)=h(t)*h_c(t)*h_r(t)$ la réponse impulsionnelle globale de la chaine de transmission :

 $(T_s = durée symbole)$

QUESTION

La chaine de transmission :

- Respecte le critère de Nyquist
- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

Soit $g(t)=h(t)*h_c(t)*h_r(t)$ la réponse impulsionnelle globale de la chaine de transmission :

QUESTION

La chaine de transmission :

- Respecte le critère de Nyquist
- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

On donne le produit $H(f)H_r(f)$, où H(f) est la réponse en fréquence du filtre de mise en forme et $H_r(f)$ la réponse en fréquence du filtre de réception :

Et la réponse ne fréquence du canal de propagation, supposé AWGN à bande limitée :

QUESTION

La chaine de transmission :

- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

Optimisation conjointe avec le modulateur

$$z(t_0+mT_s) = \underbrace{a_m g(t_0)} + \sum_{k \neq m} a_k g(t_0+(m-k)T_s) + w(t_0+mT_s) \longrightarrow \boxed{\text{D\'ecisions}} \longrightarrow \{\widehat{a}_k\}$$

$$\text{Terme d'int\'er\^et} \qquad \begin{array}{c} \text{ISI aux instants} & \text{Bruit} \\ \text{d'\'echantillonnage} & \text{(filtr\'e et \'echantillonn\'e)} \end{array}$$

 \rightarrow Suppression des interference à t_0 +mT_s: critère de Nyquist Terme d'intérêt

$$z(t_0+mT_s)=\underbrace{a_mg(t_0)}_{ ext{Bruit filtré et échantillonné}}_{ ext{W}_m, ext{ variance }\sigma^2}$$

 \rightarrow Maximisation du SNR à t_0 +mT_s: filtrage adapté (à la forme d'onde reçue)

$$\text{Maximiser } \frac{SNR_{t_0+mT_s}}{\sigma^2} \Leftrightarrow \text{Maximiser } \frac{|g(t_0)|^2}{\sigma^2} \\ h_e(t) = h(t) * h_c(t)$$

$$\left[\frac{|g(t_0)|^2}{\sigma^2} \right]_{max} \text{pour } H_r(f) = \lambda H_e^*(f) e^{-j2\pi f t_0} \quad \xrightarrow{\mathsf{TF}^{-1}} \quad \underbrace{h_r(t) = \lambda h_e^*(t_0 - t)}_{max} \text{Filtre adapté}$$

$$\text{(Inégalité de Cauchy-Schwarz} \left| : \int_{-\infty}^{\infty} a(f)b^*(f)df \right|^2 \leq \int_{-\infty}^{\infty} a(f)a^*(f)df \int_{-\infty}^{\infty} b(f)b^*(f)df \ \ \text{, égalité pour } \ a(f) = kb(f) \ \ \text{)}$$

On donne la réponse impulsionnelle du filtre de mise en forme :

On donne la réponse impulsionnelle du filtre de réception :

QUESTION

Le rapport signal sur bruit aux instants de décision est maximisé :

- VRAI
- FAUX
- Pas assez d'éléments pour répondre à la question

On donne la réponse impulsionnelle du filtre de mise en forme :

On donne la réponse impulsionnelle du filtre de réception :

Le canal de transmission est considéré comme étant AWGN.

QUESTION

Le rapport signal sur bruit aux instants de décision est maximisé :

- VRAI
- B FAUX
- Pas assez d'éléments pour répondre à la question

Décisions sur les symboles

→ Règle de décision : Maximum A Posteriori

$$\widehat{a}_{m} = \arg \max_{\widetilde{a}_{m}} P\left(\widetilde{a}_{m}|z_{m}\right)$$

$$\widehat{a}_m = \arg \max_{\widetilde{a}_m} p\left(z_m | \widetilde{a}_m\right)$$

Pour des symboles équiprobables

Critère de Nyquist respecté : $z(t_0 + mT_s) \equiv z_m = a_m g(t_0) + w_m$

$$p(z_m|\widetilde{a}_m) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_m - \widetilde{a}_m g(t_0))^2}{2\sigma^2}\right)$$

Cas binaire: \widetilde{a}_m

$$\widetilde{a}_m \in \{\pm V\}$$

 $Regle \; de \; decision \; MAP \implies \left\{ \begin{array}{l} z_m \geq 0 : \widehat{a}_m = +V \\ z_m < 0 : \widehat{a}_m = -V \end{array} \right.$

Regle de decision MAP
$$\Longrightarrow$$

$$\begin{cases}
z_m \le -2Vg(t_0) : \widehat{a}_m = -3V \\
-2Vg(t_0) < z_m \le 0 : \widehat{a}_m = -V \\
0 < z_m \le 2Vg(t_0) : \widehat{a}_m = +V \\
z_m \ge 2Vg(t_0) : \widehat{a}_m = +3V
\end{cases}$$

Détecteur à seuil (Threshold detector or slicer)

Transmission numérique bande de base (M-PAM)

Performances

→ Taux d'erreur symbole (TES)

$$a_m \in \{\pm V\}$$

 $\frac{E_b}{N_0}$: SNR par bit à l'entrée du récepteur

Cas M-aire:

$$a_m \in \{\pm V, \pm 3V, ..., \pm (M-1)V\}$$

Nyquist & seuil de decision optimaux

Filtrage adapté

$$TES_{min} \stackrel{\checkmark}{=} 2 \left(\frac{M-1}{M} \right) Q \left(\frac{Vg(t_0)}{\sigma} \right) \stackrel{\checkmark}{=} 2 \left(\frac{M-1}{M} \right) Q \left(\sqrt{\frac{6log_2(M)}{M^2 - 1} \frac{E_b}{N_0}} \right)$$

Obtenu pour une modulation M-PAM (Bande de base), dans un canal de Nyquist, avec filtrage adapté.

Transmission numérique bande de base (M-PAM)

Performances

→ Taux d'erreur binaire (TEB): optimisation du Mapping

Mapping en binaire « Naturel »

Exemple (voir TD, pour 4-PAM avec V=1, $N_0=10^{-3}$ V²/Hz, $R_b=1$ kbps):

$$\begin{array}{ll} \textbf{P}_{\textbf{e1}} \textbf{>>} \textbf{P}_{\textbf{e2}} & P\left(\widehat{a}_k = -V/a_k = -3V\right) = Q(2) - Q(6) = 0.0228 \\ P\left(\widehat{a}_k = +V/a_k = -3V\right) = Q(6) - Q(10) = 9.87 \ 10^{-10} \\ P\left(\widehat{a}_k = +3V/a_k = -3V\right) = Q(10) = 7.62 \ 10^{-24} \end{array}$$

Une erreur symbole = 2 bits erronnés

Mapping "de Gray"

bits	symboles
00	-3
01	-1
11	+1
10	+3

Un symbole erronné = 1 bit erronné

Transmission numérique bande de base (M-PAM)

Efficacité en puissance

Résultats obtenus pour une modulation bande de base M-aire (M-PAM), dans un canal de Nyquist, avec filtrage adapté et mapping de Gray

QUESTION

En considérant un filtre de réception de réponse impulsionnelle rectangulaire de durée T_s , t_0 = T_s et un détecteur à seuil avec seuils en -2V, 0, 2V pour prendre les décisions, le taux d'erreur symbole obtenu sera minimal :

VRAI

B FAUX

QUESTION

En considérant un filtre de réception de réponse impulsionnelle rectangulaire de durée T_s , $t_0=T_s$ et un détecteur à seuil avec seuils en $-2VT_s$, 0, $2VT_s$ pour prendre les décisions, le taux d'erreur binaire obtenu sera minimal :

VRAI

B FAUX

Modulateur/démodulateur bande de base : Bilan

Modulation/Démodulation Numérique en bande de base (M-PAM) : Etre capable de donner de construire le modulateur permettant d'obtenir le signal souhaité

Exemple de signaux :

Ordre de la modulation

M=nombre de symboles possibles

Etre capable de comparer des schémas de modulation bande de base en termes d'efficacité spectrale

$$S_{x}(f) = \frac{\sigma_{a}^{2}}{T_{s}}\left|H(f)\right|^{2} + 2\frac{\sigma_{a}^{2}}{T_{s}}\left|H(f)\right|^{2} \sum_{k=1}^{\infty} \mathfrak{Re}\left[R_{a}(k)e^{j2\pi fkT_{s}}\right] + \frac{\left|m_{a}\right|^{2}}{T_{s}^{2}} \sum_{k}\left|H\left(\frac{k}{T_{s}}\right)\right|^{2} \delta\left(f - \frac{k}{T_{s}}\right)$$

Densité spectrale de puissance de x(t)

Etant donné le modulateur, être capable de mettre en place un démodulateur permettant de minimiser le taux d'erreur symbole (TES)

Etant donné le modulateur, être capable de mettre en place un démodulateur permettant de minimiser le taux d'erreur symbole (TES)

Etant donné le modulateur, être capable de mettre en place un démodulateur permettant de minimiser le taux d'erreur symbole (TES)

Terme utile + bruit (terme IES =0) ET Maximisation du SNR

Etant donné le modulateur, être capable de mettre en place un démodulateur permettant de minimiser le taux d'erreur symbole (TES)

$$TES_{min} = 2\left(\frac{M-1}{M}\right)Q\left(\sqrt{\frac{6log_2(M)}{M^2-1}\frac{E_b}{N_0}}\right)$$

Etre capable de mettre en place un couple modulateur/démodulateur permettant de minimiser le taux d'erreur binaire (TEB)

Etre capable de comparer des schémas de modulation bande de base en termes d'efficacité en puissance

$$TEB_{min} \approx 2 \left(\frac{M-1}{Mlog_2(M)} \right) Q \left(\sqrt{\frac{6log_2(M)}{M^2 - 1} \frac{E_b}{N_0}} \right)$$

