Results

Farhad Sedaghati

40
Out of 40 points

14:09
Time for this attempt

Your Answers:

1 3/3 points

Which of the following indicate that the result from a simple linear regression model could be potentially misleading?

- O The error terms exhibit homoscedasticity
 - \checkmark The n $^{ ext{th}}$ error term (e_n) can be predicted with $e_n=0.91*e_{n-1}$
- The dependent and the independent variable show a linear pattern
- O The error terms follow a normal distribution

2 3/3 points

Consider a multiple linear regression model: $Y = 0.55 + 0.93x_1 + 1.88x_2$. Which one of the following interpretation of the coefficients is correct?

- \bigcirc Y is predicted to be equal to 0.55 when both x_1 and x_2 take the value of 1.
- lack A unit increase in $m{x_2}$ is associated with a 1.88 increase in $m{Y}$, keeping all else constant.
- \bigcirc A 0.93 increase in x_1 is associated with a 1.88 increase in x_2 .
- \bigcirc A unit increase in x_1 is associated with an 0.93 increase in Y.

True

) False

From the following regression model:

$$ext{Gold_Price_Per_oz} = eta_0 + eta_1 * M2 + eta_2 * VIX + eta_3 * War$$

Where M2 is a continuous variable of the M2 money supply, VIX is a continuous variable of the VIX index, and War is a categorical variable (0 is Time period at peace, 1 is Time period at war). Which of the following would be a part of the base case conditions?

- O A high VIX index
- O Period of inflation
 - **/**
- Time period at peace
- O Time period at war

7 3/3 points

Given the following model: $price = b_0 + b_1 * lot size + b_2 * lot size^2$; how can one interpret the coefficients? Select the best answer.

- \bigcirc Price increases by b_2 when lotsize is increased by 1 unit
- \bigcirc Price increases by b_1 when lotsize is increased by 1 unit
- A quadratic model does not allow for an isolated interpretation of coefficients
- \bigcirc Price increases by $b_0+b_1+b_2$ 2 when lotsize is increased by 1 unit

8 3/3 points

Select the model approximation that best matches the following statement: "As X increases by 1%, Y increases by $(b_1/100)$ units, holding all other factors constant."

- $\bigcap log(Y) = b_0 + b_1 * log(X)$
- $\bigcirc Y = b_0 + b_1 * X$
- $\bigcirc log(Y) = b_0 + b_1 * X$

Assume that you have concluded to use a log transformation on your data to model a relationship. However, on investigating the dataset, you found negative and zero values. Choose the best way to proceed.
O Use Log(x+1), where x is the variable you want to transform.
\bigcirc Use log(10 *x) where x is the variable you want to transform.
Use $\log(x + c + 1)$, where x is the variable you wish to transform and c is the absolute value of the most negative number.
O Throw out the data points which are negative or zero.
Feedback
Based on your answer While $\log(x + 1)$ will work for zero values, we need to offset the transformation to accommodate negative values, hence adding c . Here, c is the value of the most negative number.
0 4/4 points
The logit function is the log of the ratio of the probability of success (belonging to a group) to the probability of failure (not belonging to a group). It is also known as the log odds function.
✓ True
O False
1 4/4 points
Using the following confusion matrix, what is the sensitivity and specificity of the model? Note: For the confusion matrix below $1 = \text{True}$ and $0 = \text{False}$.
Predicted Value

	Predicted Value			
		1	0	Total
Actual	1	107	72	179
Value	0	23	798	821
	Total	130	870	1000

O Specificity: 0.591, Sensitivity: 0.778

O Specificity: 0.972, Sensitivity: 0.598

O Specificity: 0.917, Sensitivity: 0.879
O Specificity: 0.598, Sensitivity: 0.972
12 4/4 points
Which of the following case is referred to Type II error?
Null is false and we reject it.
Null is True, but we fail to reject it.
O Null is True but we mistakenly reject it.
Null is false but we fail to reject it.