Zadania domowe. Blok 1. Zestaw 1

Maciej Poleski

 $3~\mathrm{marca}~2012$

1 Tablica nieskończona

Rozwiązanie składa się z dwóch częsci:

- 1. Znalezienie górnego ograniczenia rozmiaru tablicy
- 2. Klasyczny binary serach w wyznaczonym przedziale

W rozwiązaniu zakładam że ∞ jest większe od każdej liczby całkowitej oraz że $\infty \geqslant \infty$.

Faza 1

```
Wejście: A - tablica zgodnie z oznaczeniami z zadania Wyjście: m - liczba naturalna taka że 2n>m\geqslant n int m; for(m=1 ; A[m]\neq\infty ; m*=2);
```

Najpierw zauważmy że $A[m] = \infty$. Jest to warunek stopu pętli. Następnie $m \ge n$. Gdyby było inaczej to $A[m] \ne \infty$ a więc nie zaszedłby warunek stopu. W każdym kroku pętli m rośnie dwókrotnie oznacza to że jeżeli $A[m] = \infty$ to $A[\frac{m}{2}] \ne \infty$. Czyli $\frac{m}{2} < n$ więc m < 2n i w końcu $2n > m \ge n$. Oznacza to że algorytm zwraca poprawny wynik pod warunkiem że się zakończy. Zakończy się dlatego że funkcja wykładnicza 2^k jest rosnąca. A n jest skończone.

Na koniec zastanówmy się nad złożonością. m rośnie dwókrotnie przy każdym obiegu pętli. Początkowo m=1, a na koniec m<2n. Więc złożoność całego algorytmu wynosi $\Theta(\lg m)$. Funkcja logaryrytm binarny jest rosnąca więc $\lg m<\lg 2n$. Oznacza to że złożoność algorytmu wynosi $O(\lg 2n)=O(1+\lg n)=O(\lg n)$

Faza 2

Dysponując obliczoną wartością m z fazy 1 natychmiast rozpoczynamy fazę 2.

Algorytm binary_search został omówiony na wykładzie. Przykładową implementację można odnaleźć w moim rozwiązaniu zadań A i B oraz conajmniej kilku zadaniach z WdP. Oczekuję zachowania takiego jak

std::lower_bound, czyli pierwszy argument to początek przeszukiwanego przedziału, drugi to koniec przeszukiwanego przedziału, trzeci to poszukiwana wartość. Poszukiwana wartość jeżeli istnieje to jest w tym przedziale ponieważ jest liczbą całkowitą, a zgodnie z założeniem każda liczba całkowita jest mniejsza niż ∞ oraz $A[m] = \infty$ a tablica jest posortowana niemalejąco. Wynikiem algorytmu jest pozycja, a więc po odjęciu pozycji początku przedziału uzyskujemy pozycję wewnątrz zadanego przedziału.

Złożoność algorytmu $std::lower_bound$ to $O(\lg m)$. Uwzględniając fazę pierwszą złożoność obliczeniowa całego rozwiązania to $O(\lg n)$.