

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra II

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Índice general

1.	Gru	pos: definición, generalidades y ejemplos	5
	1.1.	Grupos diédricos D_n	17
		1.1.1. Motivación	18
		1.1.2. Definición y primeras propiedades	23
	1.2.	Generadores de un grupo	24
	1.3.	Grupos Simétricos S_n	27
		1.3.1. Signatura	
		1.3.2. Grupos Alternados A_n	
	1.4.	Grupos de matrices	
		1.4.1. Grupo lineal $GL_n(\mathbb{F})$	
		1.4.2. Grupo lineal especial $SL_n(\mathbb{F})$	
	1.5.	Homomorfismos de grupos	46
		1.5.1. Ejemplos	
	1.6.	Resumen de grupos	53
2.	Sub	grupos, Generadores, Retículos y Grupos cíclicos	55
	2.1.	Generadores de subgrupos	58
	2.2.	Retículo de subgrupos de un grupo	59
		2.2.1. Ejemplos	63
	2.3.	Índice y Teorema de Lagrange	71
	2.4.	Propiedades de grupos cíclicos	77
3.		pos cocientes y Teoremas de isomorfía	83
	3.1.	Subgrupos normales	
	3.2.	Teoremas de isomorfía	
		3.2.1. Cuarto Teorema de Isomorfía	96
	3.3.	Producto directo	
		3.3.1. Caracterización del grupo directo por isomorfismo	
		3.3.2. Producto directo de una familia de grupos	
		3.3.3. Producto directo de una familia finita de subgrupos	108
	3.4.	Producto directo interno	
		3.4.1. Producto directo interno de una familia finita de subgrupos	112
	3.5.	Producto directo de grupos cíclicos	113

Álgebra II Índice general

En Álgebra I el objeto principal de estudio fueron los anillos conmutativos, conjuntos en los que teníamos definidas dos operaciones, una usualmente denotada con notación aditiva y otra con notación multiplicativa.

Posteriormente, el estudio se centró en los dominios de integridad (DI), anillos conmutativos donde teníamos más propiedades con las que manejar nuestros elementos (como la tan característica propiedad cancelativa). Después, el objeto de estudio fueron los dominios euclídeos (DE), donde ya podíamos realizar un estudio sobre la divisibilidad de los elementos del conjunto.

Finalmente, nos centramos en los dominios de factorización única (DFU), donde realizamos una breve introducción a la irreducibilidad de los polinomios.

En esta asignatura el principal objeto de estudio serán los grupos, conjuntos en los que hay definida una sola operación que entendemos por "buena¹". Por tanto, los grupos serán estructuras menos restrictivas que los anillos conmutativos, aunque su estudio no será menos interesante.

¹La operación cumplirá ciertas propiedades deseables.

1. Grupos: definición, generalidades y ejemplos

Comenzamos realizando la primera definición necesaria para entender el concepto de grupo, que es entender qué es una operación dentro de un conjunto.

Definición 1.1 (Operación binaria). Sea G un conjunto, una operación binaria en G es una aplicación

$$\begin{array}{cccc} *: & G \times G & \longrightarrow & G \\ & (a,b) & \longmapsto & a*b \end{array}$$

Ejemplo. Ejemplos de operaciones binarias sobre conjuntos que ya conocemos son:

- 1. La suma y el producto de números en \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- 2. Dado un conjunto X, los operadores \cap y \cup son operaciones binarias sobre el conjunto $\mathcal{P}(X)$.

Antes de dar la definición de grupo, daremos la de monoide, que es menos restrictiva que la de grupo.

Definición 1.2 (Monoide). Un monoide es una tripleta (G, *, e) donde G es un conjunto no vacío, * es una operación binaria en G y e es un elemento destacado de G de forma que se verifica:

i) La propiedad asociativa de *:

$$(x*y)*z = x*(y*z) \quad \forall x, y, z \in G$$

ii) La existencia de un elemento neutro (el elemento destacado de G):

$$\exists e \in G \mid e * x = x * e = x \qquad \forall x \in G$$

Proposición 1.1. En un monoide, el elemento neutro es único.

Demostración. Sea (G, *, e) un monoide y sea $f \in G$ tal que f * x = x * f = x $\forall x \in G$:

$$f = f * e = e$$

Ejemplo. Ejemplos de monoides ya conocidos son:

1.
$$(\mathbb{N}, +, 0), (\mathbb{N}, \cdot, 1)$$

2. Dado un conjunto $X: (\mathcal{P}(X), \cap, X), (\mathcal{P}(X), \cup, \emptyset)$

Definición 1.3 (Grupo). Un grupo es una tripleta (G, *, e) donde G es un conjunto no vacío, * es una operación binaria en G y e es un elemento destacado de G de forma que se verifica:

i) La propiedad asociativa de *:

$$(x*y)*z = x*(y*z) \qquad \forall x, y, z \in G$$

ii) La existencia de un elemento neutro por la izquierda (el elemento destacado de G):

$$\exists e \in G \mid e * x = x \qquad \forall x \in G$$

iii) La existencia de un elemento simétrico por la izquierda para cada elemento de G:

$$\forall x \in G \quad \exists x' \in G \mid x' * x = e$$

Si además se cumple:

iv) La propiedad conmutativa de *:

$$x * y = y * x \qquad \forall x, y \in G$$

Entonces, diremos que (G, *, e) es un grupo conmutativo o abeliano.

Notación. Para una mayor comodidad a la hora de manejar grupos, introducimos las siguientes notaciones:

- 1. Cuando dado un conjunto no vacío G sepamos por el contexto a qué grupo (G, *, e) nos estamos refiriendo, indicaremos simplemente G (o en algunos casos (G, *), para hacer énfasis en la operación binaria) para referirnos al grupo (G, *, e).
- 2. En algunos casos, usaremos (por comodidad) la notación multiplicativa de los grupos. De esta forma, dado un grupo $(G, \cdot, 1)$, en ciertos casos notaremos la operación binaria \cdot simplemente por yuxtaposición:

$$x \cdot y = xy \qquad \forall x, y \in G$$

Además, nos referiremos al elemento neutro como "uno" y al simétrico de cada elemento como "inverso", sustituyendo la notación de x' por la de x^{-1} .

3. Otra notación que también usaremos (aunque de forma menos frecuente que la multiplicativa) será la aditiva. Dado un grupo (G, +, 0), nos referiremos al elemento neutro como "cero" y al simétrico de cada elemento como "opuesto", sustituyendo la notación de x' por la de -x.

Ejemplo. Ejemplos de grupos que se usarán con frecuencia en la asignatura son:

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con su respectiva suma son grupos abelianos.

2. $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ con su respectivo producto son grupos abelianos.

Notemos la importancia de eliminar el 0 de cada conjunto para que todo elemento tenga inverso, así como que \mathbb{Z}^* no es un grupo, ya que el inverso de cada elemento (para el producto al que estamos acostumbrados) no está dentro de \mathbb{Z}^* .

- 3. $\{1,-1,i,-i\}\subseteq\mathbb{C}$ con el producto heredado¹ de \mathbb{C} también es un grupo abeliano.
- 4. $(\mathcal{M}_2(\mathbb{R}), +)$ es un grupo abeliano.
- 5. Dado un cuerpo K, el grupo lineal de orden 2 con coeficientes en dicho cuerpo:

$$\operatorname{GL}_2(\mathbb{K}) = \{ M \in \mathcal{M}_2(\mathbb{K}) : \det(M) \neq 0 \}$$

con el producto heredado de $\mathcal{M}_2(\mathbb{K})$ es un grupo que no es conmutativo.

- 6. \mathbb{Z}_n con su suma es un grupo abeliano, $\forall n \in \mathbb{N}$.
- 7. $\mathcal{U}(\mathbb{Z}_n) = \{[a] \in \mathbb{Z}_n \mid \operatorname{mcd}(a, n) = 1\}$ con el producto es un grupo abeliano, $\forall n \in \mathbb{N}$. También lo notaremos por \mathbb{Z}_n^{\times} .
- 8. Dado $n \ge 1$, consideramos:

$$\mu_n = \{ \text{raíces complejas de } x^n - 1 \} = \left\{ \xi_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} : k \in \{0, \dots, n - 1\} \right\}$$
$$= \left\{ 1, \xi, \xi^2, \dots, \xi^{n-1} : \xi = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \right\}$$

Este conjunto es un grupo abeliano con el producto heredado de \mathbb{C} .

9. Dado un cuerpo K, el grupo lineal especial de orden 2 sobre dicho cuerpo:

$$\mathrm{SL}_2(\mathbb{K}) = \{ M \in \mathcal{M}_2(\mathbb{K}) : \det(M) = 1 \}$$

con el producto heredado de $\mathcal{M}_2(\mathbb{K})$ es un grupo que no es conmutativo.

10. Sean $(G, \Box, e), (H, \triangle, f)$ dos grupos, si consideramos sobre $G \times H$ la operación binaria $*: (G \times H) \times (G \times H) \to G \times H$ dada por:

$$(x, u) * (y, v) = (x \square y, u \triangle v) \qquad \forall (x, u), (y, v) \in G \times H$$

Entonces, $G \times H$ es un grupo, al que llamaremos grupo directo de G y H. Este será abeliano si y solo si G y H lo son.

11. Si X es un conjunto no vacío y consideramos

$$S(X) = \{ f : X \to X \mid f \text{ biyectiva} \} = \text{Perm}(X)$$

es un grupo no abeliano con la operación de composición de funciones o.

En el caso en el que X sea finito y tenga n elementos: $X = \{x_1, x_2, \dots, x_n\}$, notaremos:

$$S_n = S(X)$$

¹Será común hablar de "operación heredada" cuando consideramos un subconjunto de un conjunto en el que ya hay definida una operación interna, haciendo referencia a la restricción en dominio y recorrido de dicha operación interna al subconjunto considerado.

12. Sea (G, *, e) un grupo y X un conjunto, consideramos el conjunto:

$$\mathrm{Apl}(X,G) = G^X = \{f : X \to G \mid f \text{ aplicación}\}\$$

junto con la operación binaria $*: G^X \times G^X \to G^X$ dada por:

$$(f * g)(x) = f(x) * g(x)$$
 $\forall x \in X, \forall f, g \in G^X$

Entonces, $(G^X, *, g)$ es un grupo, con elemento neutro:

$$g(x) = e \quad \forall x \in X$$

de esta forma, dada $f \in G^X$, la aplicación simétrica de f será:

$$f'(x) = (f(x))' \quad \forall x \in X$$

Casos a destacar son:

- a) Si $X = \emptyset$, entonces $G^X = {\emptyset}$.
- b) Si $X = \{1, 2\}$, entonces G^X se identifica con $G \times G$.
- 13. El grupo más pequeño que se puede considerar es el único grupo válido sobre un conjunto unitario $X=\{e\}$. Es decir, el grupo (X,*,e) con $X=\{e\}$ y $*: X\times X\to X$ dada por:

$$e * e = e$$
 $e \in X$

A este grupo (independientemente de cual sea el conjunto X, ya que todos tendrán la misma² estructura) lo llamaremos grupo trivial.

Ejemplo. Consideramos en \mathbb{Z} la operación binaria $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ dada por:

$$a * b = a + b + 1 \qquad \forall a, b \in \mathbb{Z}$$

Donde usamos + para denotar la suma de \mathbb{Z} . Se pide demostrar que $(\mathbb{Z},*)$ es un grupo abeliano.

Demostración. Demostramos cada una de las propiedades de la definición de grupo abeliano:

■ La propiedad asociativa de * es consecuencia de las propiedades asociativa y conmutativa de +:

$$(a*b)*c = (a+b+1)*c = a+b+1+c+1 = a+b+c+2$$

$$a*(b*c) = a*(b+c+1) = a+b+c+1+1 = a+b+c+2$$

$$\forall a,b,c \in \mathbb{Z}$$

²Concepto que luego formalizaremos.

■ Buscamos $x \in \mathbb{Z}$ de forma que x * a = a para todo $a \in \mathbb{Z}$, por lo que queremos resolver la ecuación:

$$X * a = a \iff X + a + 1 = a \implies X = -1$$

Por lo que $-1 \in \mathbb{Z}$ es el elemento neutro para *:

$$-1*a = -1 + a + 1 = a \qquad \forall a \in \mathbb{Z}$$

■ Fijado $x \in \mathbb{Z}$, tratamos de buscar un elemento simétrico para x, por lo que buscamos resolver la ecuación:

$$X * x = -1 \iff X + x + 1 = -1 \iff X = -x - 2$$

Por lo que dado $x \in \mathbb{Z}$, su elemento simétrico es $-x - 2 \in \mathbb{Z}$:

$$(-x-2) * x = -x-2 + x + 1 = -1$$
 $\forall x \in \mathbb{Z}$

■ La propiedad conmutativa de * es consecuencia de la propiedad conmutativa de +:

$$a*b=a+b+1=b+a+1=b*a \qquad \forall a,b\in\mathbb{Z}$$

Propiedades

Aunque estas propiedades parezcan ya conocidas y familiares (por ejemplo para el caso $(\mathbb{Z}, +, 0)$), es una buena observación darnos cuenta de que son válidas para **cualquier grupo** que consideremos, por raros y difíciles que sean sus elementos y operación interna.

Proposición 1.2. Sea (G, *, e) un grupo, destacamos sus primeras propiedades:

- $i) \ x * x' = e \ \forall x \in G.$
- ii) $x * e = x \ \forall x \in G.$
- iii) El elemento neutro de * es único. Simbólicamente:

$$\exists_1 e \in G \mid e * x = x \qquad \forall x \in G$$

iv) Fijado $x \in G$, el simétrico de x es único. Simbólicamente:

$$\forall x \in G \quad \exists_1 x' \in G \mid x' * x = e$$

Demostración. Demostramos cada una a partir de la anterior:

i) En primer lugar, observemos que:

$$x' * (x * x') = (x' * x) * x' = e * x' = x'$$
(1.1)

Ahora:

$$x * x' = e * (x * x') = ((x')' * x') * (x * x') = (x')' * (x' * (x * x')) \stackrel{(*)}{=} (x')' * x' = e$$

Donde en (*) hemos usado (1.1).

ii) Usando i) en (*):

$$x * e = x * (x' * x) = (x * x') * x \stackrel{(*)}{=} e * x = x$$

iii) Sea $f \in G$ de forma que $f * x = x \ \forall x \in G$, entonces:

$$f = f * e \stackrel{(*)}{=} e$$

Donde en (*) hemos usado ii).

De otra forma, podríamos haber argumentado que gracias a ii), todo grupo es un monoide, por lo que podemos aplicar la Proposición 1.1 y ya habríamos terminado.

iv) Dado $x \in G$, sea $x'' \in G$ de forma que x'' * x = e, entonces:

$$x'' = x'' * e \stackrel{(*)}{=} x'' * (x * x') = (x'' * x) * x' = e * x' = x'$$

Donde en (*) hemos usado i).

Notación. A partir de ahora, dado un grupo (G, *, e), comenzaremos a usar (por comodidad) la notación multiplicativa de los grupos:

$$xy = x * y \qquad \forall x, y \in G$$

Y denotando a x' (el elemento simétrico de x) por x^{-1} .

Proposición 1.3. En un grupo G se verifica la propiedad cancelativa (tanto a la izquierda como a la derecha):

$$\forall x, y, z \in G: \begin{cases} xy = xz \Longrightarrow y = z \\ xy = zy \Longrightarrow x = z \end{cases}$$

Demostración. Para la primera, supongamos que xy = xz:

$$y = ey = (x^{-1}x)y = x^{-1}(xy) = x^{-1}(xz) = (x^{-1}x)z = ez = z$$

Ahora, para la segunda, supongamos que xy = zy y la demostración es la misma que la anterior pero en el otro sentido y tomando $e = yy^{-1}$.

$$x = xe = x(yy^{-1}) = (xy)y^{-1} = (zy)y^{-1} = z(yy^{-1}) = z$$

Proposición 1.4. Sea G un grupo, entones:

1.
$$e^{-1} = e$$
.

2. $(x^{-1})^{-1} = x, \forall x \in G$.

3.
$$(xy)^{-1} = y^{-1}x^{-1}, \forall x, y \in G.$$

Demostración. Cada caso se demuestra observando sencillamente que:

- 1. ee = e.
- 2. $xx^{-1} = e$.
- 3. $(y^{-1}x^{-1})(xy) = y^{-1}x^{-1}xy = y^{-1}ey = e$.

Proposición 1.5. Sea G un conjunto no vacío con una operación binaria * asociativa, son equivalentes:

- i) G es un grupo.
- ii) Para cada par de elementos $a, b \in G$, las ecuaciones³:

$$aX = b$$
 $Xa = b$

Tienen solución en G, es decir: $\exists c, d \in G \mid ac = b \land da = b$.

Demostración. Demostramos las dos implicaciones:

- $i) \Rightarrow ii)$ Tomando $c = a^{-1}b, d = ba^{-1} \in G$ se tiene.
- $(ii) \Rightarrow i)$ Basta demostrar que $\exists e \in G \text{ con } ex = x \ \forall x \in G \text{ y que fijado } x \in G$, entonces $\exists x' \in G \text{ con } x'x = e$:
 - 1. Dado $a \in G$, sabemos que la ecuación Xa = a tiene solución, por lo que existe $e \in G$ de forma que ea = a.

Veamos que no depende de la elección de a; es decir, que es un elemento neutro para cualquier elemento de G. Para ello, dado cualquier $b \in G$, sabemos que la ecuación aX = b tiene solución, por lo que existirá un $x_b \in G$ de forma que $ax_b = b$. Finalmente:

$$eb = e(ax_b) = (ea)x_b = ax_b = b$$
 $\forall b \in G$

2. Fijado $x \in G$, sabemos que la ecuación Xx = e tiene solución, por lo que existe $x' \in G$ de forma que x'x = e, para cualquier $x \in G$.

Proposición 1.6 (Ley asociativa general). Sea G un grupo, dados $n, m \in \mathbb{N}$ con n > m > 0, se tiene que:

$$\left(\prod_{i=1}^{m} x_i\right) \left(\prod_{i=m+1}^{n} x_i\right) = \prod_{i=1}^{n} x_i \qquad \forall x_i \in G, \quad i \in \{1, \dots, n\}$$

Demostración. Por inducción sobre $n \in \mathbb{N}$:

■ Para n = 0, n = 1: No hay nada que probar: $\nexists m \in \mathbb{N}$ con 0 < m < n.

 $^{^3}$ Donde hemos usado X para denotar la incógnita y que no se confunda con un elemento de G.

■ Para n = 2: Dado $m \in \mathbb{N}$ con 0 < m < n (entonces m = 1):

$$\left(\prod_{i=1}^{m} x_i\right) \left(\prod_{i=m+1}^{n} x_i\right) = x_1 x_2 = \prod_{i=1}^{n} x_i \qquad \forall x_1, x_2 \in G$$

- Supuesto para n, veámoslo para n+1: Dado $m \in \mathbb{N}$ con 0 < m < n+1:

$$\left(\prod_{i=1}^{m} x_i\right) \left(\prod_{i=m+1}^{n+1} x_i\right) = \left[x_1 \left(\prod_{i=2}^{m} x_i\right)\right] \left[\left(\prod_{i=m+1}^{n} x_i\right) x_{n+1}\right]$$

$$= x_1 \left(\prod_{i=2}^{m} x_i \prod_{i=m+1}^{n} x_i\right) x_{n+1} \stackrel{(*)}{=} x_1 \left(\prod_{i=2}^{n} x_i\right) x_{n+1} = \prod_{i=1}^{n+1} x_i$$

$$\forall x_i \in G, \quad i \in \{1, \dots, n+1\}$$

Donde en (*) hemos usado la hipótesis de inducción, ya que 0 < m - 1 < n.

Definición 1.4 (Potencia). Sea (G, \cdot, e) un grupo, dado $x \in G$ y $n \in \mathbb{Z}$, podemos definir:

 $x^{n} = \begin{cases} \prod_{i=1}^{n} x & \text{si } n > 0\\ e & \text{si } n = 0\\ (x^{-1})^{-n} & \text{si } n < 0 \end{cases}$

Notación. En grupos aditivos (G, +, 0), en lugar de x^n escribiremos $n \cdot x$, que se define de igual forma pero en el caso n > 0, en lugar de escribir \prod , escribiremos \sum .

Proposición 1.7. Sea G un grupo, se verifica que:

$$x^{n+m} = x^n \cdot x^m \qquad \forall x \in G, \quad n, m \in \mathbb{Z}$$

Demostración. Aunque la demostración es sencilla, hemos de distinguir bastantes casos, pues hemos de asegurarnos de que el límite superior de cada producto sea siempre un número positivo. Fijado $x \in G$, distinguimos en función de los valores de $n, m \in \mathbb{Z}$:

1. $\underline{n > 0}$:

a) m > 0:

$$x^{n+m} = \prod_{i=1}^{n+m} x = \left(\prod_{i=1}^{n} x\right) \cdot \left(\prod_{i=n+1}^{n+m} x\right) = \left(\prod_{i=1}^{n} x\right) \cdot \left(\prod_{i=1}^{m} x\right) = x^n \cdot x^m$$

b) $\underline{m=0}$: $x^{n+0} = x^n = x^n \cdot e = x^n \cdot x^0$

c) $\underline{m < 0}$: En este caso, no sabemos el signo de n+m. Por tanto, hemos de distinguir casos: 1) n + m > 0: Entonces, n > -m. Tenemos:

$$x^{n} \cdot x^{m} = \left(\prod_{i=1}^{n} x\right) \cdot \left(x^{-1}\right)^{-m} = \left(\prod_{i=1}^{n} x\right) \cdot \left(\prod_{i=1}^{-m} x^{-1}\right) = \prod_{i=1}^{n-(-m)} x = \prod_{i=1}^{n+m} x = x^{n+m}$$

2) n + m = 0: Entonces, n = -m. Tenemos:

$$x^{n+m} = x^0 = e = \left(\prod_{i=1}^n x\right) \cdot \left(\prod_{i=1}^n x^{-1}\right) = x^n \cdot \left(\prod_{i=1}^{-m} x^{-1}\right) = x^n \cdot \left(x^{-1}\right)^{-m} = x^n \cdot x^m$$

3) n+m < 0: Entonces, n < -m. Tenemos:

$$x^{n} \cdot x^{m} = \left(\prod_{i=1}^{n} x\right) \cdot \left(x^{-1}\right)^{-m} = \left(\prod_{i=1}^{n} x\right) \cdot \left(\prod_{i=1}^{-m} x^{-1}\right) = \prod_{i=1}^{-m-n} x^{-1} = \prod_{i=1}^{-(n+m)} x^{-1} = (x^{-1})^{-(n+m)} = x^{n+m}$$

2. n = 0:

$$x^{0+m} = x^m = e \cdot x^m = x^0 \cdot x^m$$

3. n < 0:

a) m > 0:

$$x^{n+m} = x^{m+n} = x^m \cdot x^n = \prod_{i=1}^m x \cdot \prod_{i=1}^{-n} x^{-1} = x^n \cdot x^m$$

donde en la primera igualdad hemos usado la propiedad conmutativa de la suma en \mathbb{Z} , en la segunda hemos empleado el caso anteriormente demostrado, y en la última igualdad hemos empleado que $xx^{-1} = e = x^{-1}x$.

b) m = 0:

$$x^{n+0} = x^n = x^n \cdot e = x^n \cdot x^0$$

c) m < 0:

$$x^{n} \cdot x^{m} = (x^{-1})^{-n} \cdot (x^{-1})^{-m} = \left(\prod_{i=1}^{-n} x^{-1}\right) \cdot \left(\prod_{i=-1}^{-m} x^{-1}\right) =$$
$$= \prod_{i=1}^{-n-m} x^{-1} = (x^{-1})^{-(n+m)} = x^{n+m}$$

Definición 1.5 (Grupos finitos e infinitos). Sea G un grupo, si G como conjunto tiene⁴ $n \in \mathbb{N} \setminus \{0\}$ elementos, diremos que es un grupo finito. En dicho caso, diremos que n es el "orden del grupo", notado por: |G| = n.

Si G no fuera finito, decimos que es un grupo infinito.

⁴Excluimos n=0 ya que en la definición de grupo exigimos que $G \neq \emptyset$.

Definición 1.6 (Tabla de Cayley). En un grupo finito $G = \{x_1, x_2, \dots, x_n\}$, se llama tabla de Cayley (o de multiplicar⁵) a la matriz $n \times n$ de forma que su entrada (i, j) es $x_i x_j$.

Ejemplo. A continuación, mostramos ejemplos de posibles tablas de Cayley para ciertas operaciones sobre determinados grupos. Como podemos ver, la finalidad de la tabla es mostrar en cada caso cómo se comporta la operación binaria cuando se aplica a distintos elementos del grupo.

1. Si $G = \{0,1\}$, podemos considerar sobre G las operaciones $*_1$ y $*_2$, cuya definición puede obtenerse a partir de sus tablas de Cayley:

2. Si $G = \{0, 1, 2\}$, podemos considerar sobre G la siguiente operación binaria:

$$\begin{array}{c|ccccc} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \\ \end{array}$$

3. Si $G = \{0, 1, 2, 3\}$, podemos considerar sobre G las siguientes operaciones binarias:

	0	1	2	3			0	1	2	3
	0				-	0	0	1	2	3
1	1	2	3	0		1	1	0	3	2
	2									
3	3	0	1	2		3	3	2	1	0

A partir de la definición de la tabla de Cayley para la operación binaria de un grupo pueden deducirse ciertas propiedades que estas tienen, las cuales no demostraremos, entendiendo que pueden deducirse de forma fácil a partir de la definición de grupo:

- Si consideramos un grupo abeliano, su tabla de Cayley será una matriz simétrica.
- Todos los elementos del grupo aparecen en todas las filas o columnas de la tabla de Cayley, ya que en la Proposición 1.5 vimos que las ecuaciones aX = b y Xa = b tenían que tener solución $\forall a, b \in G$, para que G fuese un grupo.
- lacktriangle Como para que G sea un grupo tiene que haber un elemento que actúe de neutro, esto se refleja en la tabla con un elemento que mantiene igual los encabezados en una fila y en una columna.

Definición 1.7 (Orden de un elemento). Sea $(G, \cdot, 1)$ un grupo, el orden de un elemento $x \in G$ es el menor $n \in \mathbb{N} \setminus \{0\}$ (en caso de existir) que verifica: $x^n = 1$. En cuyo caso, notaremos⁶: $O(x) = \operatorname{ord}(x) = n$.

Si para un elemento $x \in G$ dicho n no existe, se dice que su orden es infinito: $O(x) = +\infty$.

⁵Entendiendo que en este caso hacemos uso de la notación multiplicativa.

⁶Podremos encontrarnos cualquiera de las dos notaciones.

Notación. Si consideramos un grupo con notación aditiva, (G, +, 0), interpretando la anterior definición con esta notación diremos que $x \in G$ tendrá orden $n \in \mathbb{N} \setminus \{0\}$ si n es el menor natural no nulo de forma que verifica $n \cdot x = \sum_{i=1}^{n} x = 0$.

Proposición 1.8. Sea G un grupo, $x \in G$ con O(x) = n y sea $m \in \mathbb{N} \setminus \{0\}$:

$$x^m = 1 \iff n \mid m$$

Demostración. Demostramos las dos implicaciones:

 \Longrightarrow) Si O(x)=n, entonces no puede ser m < n, ya que si no el orden de x no sería n sino m, por lo que $m \geqslant n$. En cuyo caso, $\exists q, r \in \mathbb{N}$ de forma que:

$$m = nq + r$$
 $con 0 \le r < n$

Pero entonces:

$$1 = x^m = x^{nq+r} = x^{nq}x^r = x^r \stackrel{(*)}{\Longrightarrow} r = 0$$

Donde en (*) hemos usado que r < n, ya que si r no fuese 0, tendríamos que O(x) = r.

 \iff Si $n \mid m$, entonces $\exists q \in \mathbb{N}$ de forma que m = qn, luego:

$$x^m = x^{qn} = (x^n)^q = 1^q = 1$$

Proposición 1.9. Sea G un grupo, se verifica que:

- 1. $O(x) = 1 \iff x = 1$.
- 2. $O(x) = O(x^{-1}) \ \forall x \in G$.
- 3. Si $O(x) = +\infty$ para cierto $x \in G$, entonces todas las potencias de x son elementos distintos de G.
- 4. Si G es finito, entonces $O(x) \neq +\infty$ para todo $x \in G$.
- 5. Si $O(x) = n \in \mathbb{N} \setminus \{0\}$ para cierto $x \in G$, entonces x tiene n potencias distintas. Más aún, sean $p, q \in \mathbb{N}$ de forma que $x^p = x^q$ con q > p, entonces:

$$x^{q-p} = 1 \Longleftrightarrow n \mid (q-p)$$

Demostración. Demostramos todas las propiedades:

- 1. Por doble implicación:
 - \iff Trivial.
 - \implies) Si aplicamos la definición de O(x) y de x^1 :

$$1 = x^1 = \prod_{i=1}^{1} x = x$$

- 2. Distinguimos dos casos:
 - Fijado $x \in G$ con O(x) = n, entonces $x^n = 1$, por lo que:

$$x^{-1} = x^{n-1}$$

Veamos en primer lugar que $O(x^{-1}) \leq n$. Para ello, vemos que $(x^{-1})^n = 1$:

$$(x^{-1})^n = (x^{n-1})^n = x^{n(n-1)} = (x^n)^{n-1} = 1$$

Veamos ahora que $O(x^{-1}) \ge n$. Supongamos ahora que $O(x^{-1}) = k$, entonces:

$$(x^{-1})^k = 1 \Longrightarrow x^{(n-1)k} = 1 \Longrightarrow n \mid (n-1)k$$

Por tanto, como $n \nmid (n-1)$ y mcd(n, n-1) = 1, entonces $n \mid k$, por lo que $n \leq k = O(x^{-1})$. Por tanto, tenemos que:

$$n \leqslant O(x^{-1}) \leqslant n \Longrightarrow O(x^{-1}) = n$$

■ Si tenemos que $O(x) = +\infty$, por reducción al absurdo, supongamos que $\exists n \in \mathbb{N} \setminus \{0\}$ de forma que $O(x^{-1}) = n$.

Que $O(x) = +\infty$ significa que $\nexists m \in \mathbb{N} \setminus \{0\}$ de forma que $x^m = 1$. Como $O(x^{-1}) = n$, tenemos que:

$$(x^{-1})^n = 1 \Longrightarrow x = (x^{-1})^{-1} = (x^{-1})^{n-1}$$

De donde llegamos a que:

$$x^{n} = ((x^{-1})^{n-1})^{n} = ((x^{-1})^{n})^{n-1} = 1^{n-1} = 1$$

Contradicción, puesto que $O(x) = +\infty$. Deducimos que si $O(x) = +\infty$, entonces ha de ser $O(x^{-1}) = +\infty$.

3. Por reducción al absurdo, supongamos que existen $p, q \in \mathbb{N}$ con p < q de forma que $x^p = x^q$, luego:

$$x^{q-p} = 1$$

De donde deducimos que $O(x) < +\infty$, contradicción, luego $x^p \neq x^q$ para todo $p, q \in \mathbb{N}$ con $p \neq q$.

- 4. Por reducción al absurdo, supongamos que $\exists x \in G \text{ con } O(x) = +\infty$. En este caso, podemos construir una aplicación $\phi : \mathbb{N} \to G$ dada por $\phi(n) = x^n$ $\forall n \in \mathbb{N}$. Esta aplicación es inyectiva gracias al punto 3, lo que contradice que G sea un grupo finito. Concluimos que $O(x) \in \mathbb{N} \setminus \{0\}$ para todo $x \in G$.
- 5. Si O(x) = n, consideramos la sucesión:

$$x, x^2, x^3, \dots, x^{n-1}, x^n = 1$$

Si seguimos calculando potencias, está claro que se repetirá este patrón, por lo que tratamos de ver que todos los elementos de la sucesión son distintos

entre sí. Por reducción al absurdo, supuesto que existen $p, q \in \mathbb{N}$ de forma que $p < q \leq n$ con $x^p = x^q$, entonces $x^{q-p} = 1$ con $q - p \leq n$, lo que contradice que O(x) = n.

Para ver que si $p, q \in \mathbb{N}$ con $x^p = x^q$, entonces:

$$x^{q-p} = 1 \iff n \mid (q-p)$$

Basta aplicar la Proposición 1.8 con m = q - p.

Ejemplo. Mostramos ahora ejemplos de órdenes de ciertos elementos en distintos grupos, entendiendo que cuando consideramos conjuntos susceptibles de ser anillos (conjuntos con suma y multiplicación), si dejamos el 0 en el conjunto consideramos el grupo con su suma (e = 0) y que cuando quitamos el 0 del conjunto consideramos el grupo con su multiplicación (e = 1).

- 1. Si cogemos $x \neq 1$ en $\mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*$ con la multiplicación: $O(x) = +\infty$.
- 2. Si consideramos \mathbb{C}^* con su multiplicación: O(i) = 4, ya que $i^4 = 1$.
- 3. En \mathbb{Z}_9 , $O(\overline{6}) = 3$:

$$\overline{6} \neq \overline{0}$$

$$\overline{6+6} = \overline{12} = \overline{3} \neq \overline{0}$$

$$\overline{6+6+6} = \overline{18} = \overline{0}$$

- 4. En $\mathbb{Z}_7^* = \mathcal{U}(\mathbb{Z}_7)$:
 - $O(\overline{2}) = 3:$

$$O(\overline{3}) = 6.$$

$$\overline{3} \neq \overline{1}$$

$$\overline{3 \cdot 3} = \overline{9} = \overline{2} \neq \overline{1}$$

$$\overline{3 \cdot 3 \cdot 3} = \overline{27} = \overline{6} \neq \overline{1}$$

$$\overline{3 \cdot 3 \cdot 3 \cdot 3} = \overline{81} = \overline{3} \neq \overline{1}$$

$$\overline{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = \overline{243} = \overline{5} \neq \overline{1}$$

$$\overline{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = \overline{729} = \overline{1}$$

1.1. Grupos diédricos D_n

A continuación, estaremos interesados en el estudio de una familia⁷ de grupos conocida como los "grupos diédricos", cuyo estudio se desarrollará a lo largo de la asignatura.

⁷Donde con "familia" hacemos referencia a un conjunto de grupos que guardan cierta similitud entre ellos.

1.1.1. Motivación

Para entender estos grupos, conviene destacar la forma en la que surgieron ciertos objetos geométricos que luego fueron interesantes desde el punto de vista algebraico, por formar un grupo.

Ejemplo. Si pensamos en un triángulo equilátero (el menor polígono regular) sobre el plano centrado en el origen como el de la Figura 1.1, donde hemos numerado los vértices del mismo, es interesante preguntarnos sobre las isometrías del plano en el plano que dejan invariante al mismo.

Figura 1.1: Triángulo equilátero con centro en el origen de coordenadas.

En Geometría II se vio que las únicas isometrías que podemos considerar en el plano son los giros y las simetrías axiales o centrales, por lo que procedemos a distinguir casos:

Giros. Como vemos en la Figura 1.2, de forma intuitiva vemos que giros (pensando que todos son en sentido antihorario) que dejan el triángulo invariante solo hay 3:

- El giro de ángulo $\frac{2\pi}{3}$.
- El giro de ángulo $\frac{4\pi}{3}$.
- El giro de ángulo 2π .

Figura 1.2: Todos los giros que dejan invariánte al triángulo.

Simetrías. Como vemos en la Figura 1.3, de forma intuitiva vemos que hay 3 simetrías axiales que dejan invariante al triángulo y que no hay ninguna simetría central que lo deje invariante:

- La simetría respecto a la mediatriz del segmento 2, 3.
- La simetría respecto a la mediatriz del segmento 3, 1.

• La simetría respecto a la mediatriz del segmento 1, 2.

Notemos la forma en la que hemos nombrado las rectas respecto a las cuales se hace la simetría: la recta l_i contiene al vértice i-ésimo.

Figura 1.3: Todas las reflexiones que dejan invariante al triángulo.

Con el fin de estudiar las isometrías que mantienen polígonos regulares en el plano, conviene introducir las siguientes definiciones y notaciones:

Definición 1.8 (Permutación). Sea X un conjunto, una permutación del mismo es cualquier aplicación biyectiva $f: X \to X$.

Si X es el conjunto $\{1, 2, \ldots, n\}$, es usual notar:

$$S_n = \operatorname{Perm}(X) = \{f : X \to X \mid f \text{ es una permutación}\}\$$

Definición 1.9 (Ciclo). Sea $\{a_1, a_2, \ldots, a_m\} \subseteq \{1, 2, \ldots, n\}$, un ciclo de longitud $m \leq n$ es una permutación $\sigma \in S_n$ de forma que:

- 1. $\sigma(a_i) = a_{i+1}$ para todo $i \in \{1, \dots, m-1\}$.
- 2. $\sigma(a_m) = a_1$.
- 3. $\sigma(a_j) = a_j$ para todo $a_j \notin \{a_1, a_2, \dots, a_m\}$.

En dicho caso, representaremos a σ por:

$$\sigma = (a_1 \ a_2 \ \dots \ a_m)$$

Observación. Notemos que podemos notar a un ciclo de longitud m, σ , de m formas distintas:

$$\sigma = (a_1 \ a_2 \ \dots \ a_m) = (a_2 \ \dots \ a_m \ a_1) = \dots = (a_m \ a_1 \ a_2 \ \dots \ a_{m-1})$$

De esta forma, el número de ciclos de longitud m son todas las posibles combinaciones de los m elementos entre n, pero como cada vez aparecen m:

$$\frac{V_m^n}{m}$$

A los 2-ciclos los llamaremos transposiciones.

Ejemplo. Para familiarizarnos con los ciclos, observamos que:

- En S_3 , los ciclos de longitud 2 que podemos considerar son: (1 2), (1 3) y (2 3). Estos se interpretan respectivamente como:
 - Mantener el 3 fijo e intercambiar el 1 con el 2.
 - Mantener el 2 fijo e intercambiar el 1 con el 3.
 - Mantener el 1 fijo e intercambiar el 2 con el 3.
- En S_3 , los únicos ciclos de longitud 3 que podemos considerar son: (1 2 3) y (3 2 1), cuya definición debe estar clara.

Notación. Es claro que no toda permutación es un ciclo. Sin embargo, hay ciertas permutaciones como por ejemplo la aplicación $\sigma: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ dada por:

$$\sigma(1)=2$$

$$\sigma(2) = 1$$

$$\sigma(3) = 4$$

$$\sigma(4) = 3$$

Que restringida a $\{1,2\}$ da el ciclo $(1\ 2)$ y que restringida al $\{3,4\}$ da el ciclo $(3\ 4)$. Será usual denotar permutaciones como esta por⁸:

$$\sigma = (1\ 2)(3\ 4)$$

Aprovechando la notación para los ciclos previamente definida, si por ejemplo extendemos σ a $\{1, 2, 3, 4, 5\}$ definiendo:

$$\sigma(5) = 5$$

Entonces, la notación para σ será la misma: (1 2)(3 4), ya que el 5 "no se mueve".

Ejemplo. Volviendo al ejemplo anterior del triángulo y de las isometrías que lo dejan invariante, si notamos por:

- r al giro de ángulo $\frac{2\pi}{3}$.
- s a la simetría axial cuya recta pasa por el vértice 1.

Puede comprobarse de forma geométrica que a partir de composiciones de r y de s obtenemos los otros 4 movimientos restantes (notaremos la composición de aplicaciones por yuxtaposición, ya que estamos buscando un grupo con estas aplicaciones):

- El giro de ángulo $\frac{4\pi}{3}$ es $r^2 = rr$.
- El giro de ángulo 2π es r^3 .
- La simetría respecto a la recta l_2 es sr^2 .
- La simetría respecto a la recta l_3 es sr.

 $^{^8\}mathrm{M}$ ás adelante formalizaremos bien esta notación, aunque por ahora empecemos a usarla desde un punto de vista más intuitivo.

Notemos que el giro de ángulo 2π es la identidad, que es el elemento neutro para la composición, por lo que el elemento neutro del futuro grupo que definamos será r^3 , que podemos denotar por 1. Además, la composición de aplicaciones es una operación asociativa y se deja como ejercicio demostrar que cada elemento del conjunto:

$$D_3 = \{1, r, r^2, s, sr, sr^2\}$$

Tiene un elemento simétrico respecto de la composición. Podemos ver que $(D_3, \circ, 1)$ es un grupo.

Ejemplo. Continuando con la motivación para los grupos diédricos, nos preguntamos ahora qué pasa si en vez de considerar las isometrías que mantienen invariante a un triángulo equilátero, consideramos las isometrías del plano que mantienen invariantes los vértices de un cuadrado sobre el plano; un cuadrado como el de la Figura 1.4.

Figura 1.4: Cuadrado con centro en el origen de coordenadas.

Es fácil ver que las únicas isometrías que dejan invariante al cuadrado son (Véase la Figura 1.5):

- Los giros de ángulos $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$ y 2π .
- Las simetrías axiales respecto a las rectas:
 - La recta que une los vértices 1 y 3.
 - La recta que une los vértices 2 y 4.
 - La recta que es mediatriz del segmento 1, 2.
 - La recta que es mediatriz del segmento 2, 3.

Todos estos movimientos pueden verse como aplicaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal y como se hace en geometría o aprovecharnos de que todas ellas mantienen el cuadrado invariante, por lo que podemos pensar en ellas como si fueran permutaciones del conjunto $\{1, 2, 3, 4\}$. Aprovechando esta dualidad, vemos que:

- El giro de ángulo $\frac{\pi}{2}$ es (1 2 3 4).
- El giro de ángulo π es $(1\ 3)(2\ 4)$.
- El giro de ángulo $\frac{3\pi}{2}$ es (1 4 3 2).
- El giro de ángulo 2π es la identidad, (1).

Figura 1.5: Giros y simetrías que dejan invariante al cuadrado

- La simetría respecto a la recta que une 1 y 3 es (2 4).
- La simetría respecto a la recta que une 2 y 4 es (1 3).
- La simetría respecto a la mediatriz de 1 y 2 es (1 2)(3 4).
- La simetría respecto a la mediatriz de 2 y 3 es (1 4)(2 3).

Dejamos como ejercicio hacer esta correspondencia (notar las isometrías como su correspondiente permutación) con los movimientos que teníamos en el triángulo. Si ahora hacemos como hicimos anteriormente con el triángulo y notamos por:

- r al giro de ángulo $\frac{\pi}{2}$.
- s a la reflexión respecto a la recta que pasa por el vértice 1.

Podemos obtener los otros 6 movimientos (o permutaciones desde el punto de vista algebráico) con la composición de r y s:

- r^2 es $(1\ 3)(2\ 4)$.
- r^3 es $(1 \ 4 \ 3 \ 2)$.
- r^4 es 1 (la aplicación identidad).
- sr es (1 4)(2 3).
- sr^2 es (1 3).
- sr^3 es $(1\ 2)(3\ 4)$.

De esta forma, si consideramos el conjunto:

$$D_4 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$$

Tenemos que $(D_4, \circ, 1)$ es un grupo. Más aún, podemos completar su tabla de Cayley para observar cómo se comporta \circ dentro de D_4 :

		r						
		r						
r	r	r^2	r^3	1	sr^3	s	sr	sr^2
r^2	r^2	r^3	1	r	sr^2	sr^3	s	sr
r^3	r^3	1	r	r^2	sr	sr^2	sr^3	s
s	s	sr	sr^2	sr^3	1	r	r^2	r^3
sr	sr	sr^2	sr^3	s	r^3	1	r	r^2
sr^2	sr^2	sr^3	s	sr	r^2	r^3	1	r
sr^3	sr^3	s	sr	sr^2	r	r^2	r^3	1

1.1.2. Definición y primeras propiedades

Una vez comprendida la motivación de los grupos diédricos, estamos preparados para dar su definición. No demostraremos que, dado $n \in \mathbb{N}$, el conjunto de isometrías que dejan invariante al polígono regular de n lados forma un grupo si consideramos sobre dicho conjunto la composición de aplicaciones, ya que no es interesante para esta asignatura.

Sin embargo, aceptaremos la definición como válida (animamos al lector a investigar más sobre los grupos diédricos y su definición) y procedemos a destacar las propiedades algebraicas de estos grupos, que es lo que nos interesa.

Definición 1.10 (Grupos diédricos D_n). Sea D_n el conjunto de isometrías que dejan invariante al polígono regular de n lados. Sabemos que D_n tiene 2n elementos:

- n rotaciones de ángulo $\frac{2k\pi}{n}$, con $k \in \{1, \ldots, n\}$.
- \bullet *n* simetrías axiales:
 - Si n es par, tenemos:
 - o n/2 simetrías respecto a las mediatrices.
 - \circ n/2 simetrías respecto a unir vértices opuestos.
 - Si n es impar, tenemos n simetrías respecto a las mediatrices.

Se verifica que $(D_n, \circ, 1)$ es un grupo. Además, destacamos dos elementos suyos:

- r, la rotación de ángulo $\frac{2\pi}{n}$.
- s, la simetría axial respecto a la recta que pasa por el origen de coordenadas y el vértice nombrado 1.

De esta forma, todos los elementos de D_n son:

$$D_n = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}\$$

Proposición 1.10. Dado $n \in \mathbb{N}$, en D_n se cumple que:

1. $1, r, r^2, \ldots, r^{n-1}$ son todos distintos y $r^n = 1$, es decir, O(r) = n.

- 2. $s^2 = 1$. En particular, O(s) = 2.
- 3. $s \neq r^i, \forall 0 \leqslant i \leqslant n-1$.
- 4. $sr^i con 0 \leq i \leq n-1 son simetrías$.
- 5. $sr^i \neq sr^j$ para todo $i \neq j$, con $i, j \in \{1, \dots, n-1\}$.
- 6. $sr = r^{-1}s$.
- 7. $sr^i = r^{-i}s$.

Demostración. Demostramos cada una de las propiedades:

- 1. La primera parte es compentencia de Geometría. Para la segunda, basta ver que r^n es componer n veces el giro de ángulo $\frac{2\pi}{n}$, que es lo mismo que considerar el giro de ángulo $n \cdot \frac{2\pi}{n} = 2\pi$, que es la identidad.
- 2. Es competencia de Geometría.
- 3. Es competencia de Geometría, que puede probarse de distintas formas:
 - Viendo que s tiene puntos fijos y r^i no.
 - Viendo que s es un movimiento inverso y que r^i es directo.
- 4. Es competencia de Geometría.
- 5. Basta aplicar 1.
- 6, 7. Son competencia de Geometría.

Usaremos los resultados de la Proposición 1.10 con frecuencia, como las propiedades básicas de los grupos diédricos. Notemos que a partir de estas puede construirse la tabla de Cayley para cualquier grupo diédrico D_n .

Ejercicio. Construya la tabla de Cayley para D_4 y D_5 usando los resultados de la Proposición 1.10.

1.2. Generadores de un grupo

Definición 1.11 (Conjunto de generadores de un grupo). Sea G un grupo, diremos que $S \subseteq G$ es un conjunto de generadores de G si todo elemento $x \in G$ puede escribirse como producto finito de elementos de S y de sus inversos. En dicho caso, notaremos: $G = \langle S \rangle$.

Si S es un conjunto finito, $S = \{x_1, x_2, \dots, x_n\} \subseteq G$, podemos escribir:

$$G = \langle x_1, x_2, \dots, x_n \rangle$$

Y diremos que G es finitamente generado.

Si S está formado solo por un elemento, diremos que G es un grupo cíclico.

Observación. Sea G un grupo y $S \subseteq G$, equivalen:

- i) S es un conjunto de generadores de G.
- ii) Dado $x \in G, \exists x_1, x_2, \dots, x_p \in S$ de forma que:

$$x = x_1^{\gamma_1} x_2^{\gamma_2} \dots x_p^{\gamma_p} \qquad \gamma_i \in \mathbb{Z}, \quad i \in \{1, \dots, p\}$$

Ejemplo. Como ejemplos a destacar, vemos que:

- 1. $\mathbb{Z} = \langle 1 \rangle$ si pensamos en $(\mathbb{Z}, +, 0)$, ya que dado $x \in \mathbb{Z}$:
 - Si x > 0, entonces:

$$x = \underbrace{1 + 1 + \ldots + 1}_{x \text{ veces}}$$

• Si x < 0, entonces (-1 es el simétrico de 1):

$$x = \underbrace{-1 - 1 - \ldots - 1}_{x \text{ veces}}$$

- Si x = 0, entonces: x = 1 1.
- 2. $D_n = \langle r, s \rangle$, ya que $D_n = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$.

Definición 1.12 (Presentación de un grupo). Sea G un grupo y $S \subseteq G$, si $G = \langle S \rangle$ y existe un conjunto de relaciones R_1, R_2, \ldots, R_m (igualdades entre elementos de S, $\{1\}$ y los elementos simétricos de S) tal que cualquier relación entre los elementos de S puede deducirse de estas, entonces, decimos que estos generadores y relaciones constituyen una presentación de G, notado:

$$G = \langle S \mid R_1, R_2, \dots, R_n \rangle$$

Ejemplo. Veamos algunos ejemplos de presentaciones, observando que dar una presentación es equivalente a dar la definición del propio grupo, ya que a partir de la presentación pueden deducirse todos los elementos del grupo y las relaciones que estos guardan entre sí.

1. En el diédrico D_n , tenemos que:

$$D_n = \langle r, s \mid rs = sr^{-1}, r^n = 1, s^2 = 1 \rangle$$

2. $D_1 := \langle s \mid s^2 = 1 \rangle$.

En este caso, vemos que $D_1 = \{1, s\}.$

3. $D_2 := \langle r, s \mid r^2 = s^2 = 1, sr = rs \rangle$.

Ahora, tenemos: $D_2 = \{1, r, s, rs\}$.

4. $C_n = \langle x \mid x^n = 1 \rangle$ es un grupo cíclico de orden n.

Vemos que: $C_n = \{1, x, x^2, x^3, \dots, x^{n-1}\}$

5. $V^{\text{abs}} = \langle x, y \mid x^2 = 1, y^2 = 1, (xy)^2 = 1 \rangle$ es el grupo de Klein abstracto.

En primer lugar, sabemos que $\{1, x, y\} \subseteq V^{\text{abs}}$. Como x e y son de orden 2, sabemos que $x^{-1} = x$ y que $y^{-1} = y$. Además, vemos que $xy \in V^{\text{abs}}$ y que:

$$(xy)^2 = 1 \iff xyxy = 1 \iff xy = yx$$

Por lo que xy también está en V^{abs} , con $(xy)^{-1} = yx$. Vemos que no hay más elementos que puedan estar en V^{abs} , con lo que:

$$V^{\text{abs}} = \{1, x, y, xy\}$$

Observamos que el grupo nos recuerda a D_2 .

6. $Q_2^{\text{abs}} = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$.

Inicialmente, $\{1, x, y\} \subseteq Q_2^{\text{abs}}$. De la primera relación vemos que también tenemos $\{x^2, x^3\} \subseteq Q_2^{\text{abs}}$. Reescribimos la última relación, para buscar más elementos de forma cómoda:

$$yxy^{-1} = x^{-1} \Longleftrightarrow yx = x^{-1}y$$

Como yx no guarda ninguna relación con x e y, sabemos que también está en el grupo, junto con yx^2 y yx^3 . De esta forma:

$$Q_2^{\rm abs} = \{1, x, x^2, x^3, y, yx, yx^2, yx^3\}$$

Ejemplo. Las similitudes que hemos encontrado entre distintos grupos como entre V^{abs} y D_2 las formalizaremos con ayuda de un concepto algebraico que luego definiremos, pero merece la pena destacar ahora una similaritud entre Q_2^{abs} , el grupo de los cuaternios $Q_2 = \{\pm 1, \pm i, \pm j, \pm k\}$ y unos elementos del grupo $\text{SL}_2(\mathbb{C})$. Para familiarizarnos con los cuaternios, estos cumplen que:

$$i^{2} = j^{2} = k^{2} = -1$$

$$ij = k \quad jk = i \quad ki = j$$

$$ji = -k \quad kj = -i \quad ik = -j$$

Productos que pueden recordarse observando la Figura 1.6

Figura 1.6: Dirección en la que se multiplican los cuaternios de forma positiva.

Se deja como ejercicio ver en qué forma podemos entender que los grupos Q_2 , Q_2^{abs} y el subconjunto de matrices de $\mathrm{SL}_2(\mathbb{C})$ con la operación heredada del mismo:

$$C = \left\{ \begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{array} \right), \begin{pmatrix} i & 0 \\ 0 & -i \end{array} \right), \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{array} \right), \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{array} \right\} \subseteq \operatorname{SL}_{2}(\mathbb{C})$$

Si pensamos en relacionar los elementos de la Tabla 1.1.

$Q_2^{ m abs}$	C	Q_2
1	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	1
x	$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$	i
y	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	j
x^2	$\left(\begin{array}{ccc} -1 & 0 \\ 0 & -1 \end{array} \right)$	-1
x^3	$\left(\begin{array}{cc} -i & 0 \\ 0 & i \end{array}\right)$	-i
xy	$\left(\begin{array}{cc} 0 & -i \\ -i & 0 \end{array}\right)$	k
x^2y	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	-j
x^3y	$\left(\begin{array}{cc}0&i\\i&0\end{array}\right)$	-k

Tabla 1.1: Elementos que se relacionan.

1.3. Grupos Simétricos S_n

Recordamos que dado un conjunto X, podemos considerar el conjunto de todas sus permutaciones:

$$S(X) = \{ f : X \to X \mid f \text{ biyectiva} \}$$

Definición 1.13 (Grupos Simétricos S_n). Dado $n \in \mathbb{N}$, consideramos $X = \{1, 2, ..., n\}$ y definimos $S_n = S(X)$, el conjunto de todas las permutaciones de X. Se verifica que S_n junto con la operación de composición de aplicaciones es un grupo:

- La composición de aplicaciones es asociativa.
- La aplicación $id: X \to X$ es el elemento neutro.
- Como las permutaciones son biyecciones, cada una tiene su elemento simétrico.

Llamaremos a (S_n, \circ, id) el n-ésimo grupo simétrico, que recordamos tiene orden:

$$|S_n| = n!$$

Notación. Estaremos interesados en ver cómo se comportan de forma algebraica las permutaciones de conjuntos de n elementos, por lo que tendremos que conocer en cada caso cuáles son las aplicaciones con las que estamos trabajando.

Para abreviar, en muchos casos usaremos la notación matricial de las permutaciones. Sea $\sigma \in S_n$, sabemos que dar σ es equivalente a dar $\sigma(a)$ para cualquier $a \in X$. De esta forma, podemos dar una matriz $2 \times n$ de la forma:

$$\left(\begin{array}{cccc} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{array}\right)$$

Observemos que, conocida la matriz anterior, conocemos σ .

Ejemplo. En este ejemplo, vemos los grupos simétricos más pequeños:

- 1. Si consideramos S_0 , son todas las permutaciones del \emptyset en el \emptyset , que solo hay una: $\sigma:\emptyset\to\emptyset$.
- 2. Si consideramos S_1 , solo hay una permutación: $id: \{1\} \to \{1\}$.
- 3. En S_2 , tenemos $S_2 = {\sigma_1, \sigma_2}$, con:

$$\sigma_1 = id = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Hasta ahora, todos estos grupos son abelianos.

4. En S_3 , tenemos:

$$S_{3} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

Que ya es un ejemplo de grupo simétrico no abeliano, ya que si tomamos:

$$\sigma = \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right), \quad \tau = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right)$$

Vemos que $\sigma \tau \neq \tau \sigma$:

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \tau\sigma$$

De esta forma, acabamos de probar que S_n con $n \ge 3$ no es abeliano, ya que si estamos en S_n , podemos considerar las extensiones de σ y τ a S_n :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 1 & 3 & 2 & 4 & \cdots & n \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 1 & 3 & 4 & \cdots & n \end{pmatrix}$$

Y tendremos que $\sigma \tau \neq \tau \sigma$.

Ejemplo. Sean $s_1, s_2 \in S_7$ dadas por:

$$s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 2 & 1 & 4 & 3 \end{pmatrix}, \quad s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 1 & 7 & 6 \end{pmatrix}$$

Se pide calcular s_1s_2 , s_2s_1 y s_2^2 .

$$s_1 s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 6 & 7 & 2 & 3 & 5 & 4 \end{pmatrix}$$

$$s_2 s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 2 & 1 & 5 & 3 & 4 \end{pmatrix}$$

$$s_2^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 7 & 5 & 2 & 6 \end{pmatrix}$$

Proposición 1.11. Se verifica que:

- 1. Dado $\sigma \in S_n$, existe $m \in \mathbb{N}$ de forma que $\sigma^{m+1}(x) = x$, $\forall x \in X = \{1, \dots, n\}$.
- 2. Todo ciclo es una permutación.
- 3. El orden de un ciclo de longitud m es m.
- 4. Si $\sigma = (x_1 \ x_2 \ \dots \ x_{m-1} \ x_m)$, entonces: $\sigma^{-1} = (x_m \ x_{m-1} \ \dots \ x_2 \ x_1)$.

Demostración. Demostramos cada propiedad:

1. Por la Proposición 1.9, como S_n es un grupo finito, sabemos que $\exists n \in \mathbb{N} \setminus \{0\}$ de forma que $O(\sigma) = n$. Tomando m = n - 1, tenemos que:

$$\sigma^{m+1}(x) = \sigma^n(x) = x \qquad \forall x \in X$$

- 2. Se tiene directamente por la definición de ciclo.
- 3. Sea $\sigma \in S_n$ un ciclo de longitud m:

$$\sigma = (x_1 \ x_2 \ \dots \ x_m) \qquad x_1, x_2, \dots, x_m \in X$$

Queremos ver que $O(\sigma) = m$. Para ello:

- En primer lugar, veamos que $\sigma^m = 1$:
 - Si $x \in X$ con $x \neq x_i$ para todo $i \in \{1, ..., m\}$, entonces $\sigma(x) = x$, luego:

$$\sigma^{m}(x) = \sigma^{m-1}(\sigma(x)) = \sigma^{m-1}(x) = \sigma^{m-2}(\sigma(x)) = \dots = x$$

• Si ahora consideramos x_i con $i \in \{1, ..., m\}$, tendremos que:

$$x_i \underbrace{\stackrel{\sigma}{\longmapsto} x_{i+1} \stackrel{\sigma}{\longmapsto} \dots \stackrel{\sigma}{\longmapsto} x_{m-1} \stackrel{\sigma}{\longmapsto}}_{\sigma^{m-i}} x_m \underbrace{\stackrel{\sigma}{\longmapsto} x_1 \stackrel{\sigma}{\longmapsto} \dots \stackrel{\sigma}{\longmapsto} x_{i-1} \stackrel{\sigma}{\longmapsto}}_{\sigma^i} x_i$$

Luego: $1 = \sigma^{m-i}\sigma^i = \sigma^{m-i+i} = \sigma^m$

- Supongamos ahora que existe k < m de forma que $\sigma^k = 1$, esto significaría que $\sigma^k(x_1) = x_1$, pero como σ es un ciclo de longitud m, se tiene que $\sigma^k(x_1) = x_k$ y $x_k \neq x_1$, contradicción, con lo que $k \geqslant m$.
- 4. Recordamos por la definción de ciclo que si $\sigma = (a_1 \ a_2 \ \dots \ a_{m-1} \ a_m)$, entonces se ha de cumplir que:

$$\sigma(x) = x \qquad x \neq x_i, \quad i \in \{1, \dots, m\}$$

$$\sigma(x_i) = x_{i+1} \qquad i \in \{1, \dots, m-1\}$$

$$\sigma(x_m) = x_1$$

Si vemos σ como aplicación y tratamos de buscarle su aplicación inversa σ^{-1} , esta ha de cumplir que:

$$\sigma^{-1}(x) = x$$
 $x \neq x_i, i \in \{1, ..., m\}$
 $\sigma^{-1}(x_{i+1}) = x_i$ $i \in \{1, ..., m-1\}$
 $\sigma^{-1}(x_1) = x_m$

Sin embargo, vemos que entonces σ^{-1} también es un ciclo:

$$\sigma^{-1} = (x_m \ x_{m-1} \ \dots \ x_2 \ x_1)$$

Con el siguiente teorema veremos que los ciclos son una parte interesante de los grupos simétricos, tanto que cualquier permutación pueda expresarse como una composición de ciertos ciclos de longitud mayor o igual que 2. Para ello, será necesario primero realizar una definición:

Definición 1.14 (Ciclos disjuntos). Sean $\sigma_1, \sigma_2 \in S_n$ ciclos, decimos que son disjuntos si no existe $i \in X = \{1, 2, ..., n\}$ de forma que:

$$\sigma_1(i) = j$$
, $\sigma_2(i) = k$ con $j, k \in X, i \neq j \neq k \neq i$

Es decir, si no hay ningún elemento que se mueva en ambos ciclos.

Ejemplo. Ejemplos de ciclos disjuntos son:

$$\sigma_1 = (1 \ 3 \ 5), \quad \sigma_2 = (2 \ 4 \ 6), \quad \sigma_3 = (7 \ 8)$$

Un ejemplo de dos ciclos que no son disjuntos son:

$$\tau_1 = (1 \ 3 \ 5 \ 8), \quad \tau_2 = (2 \ 4 \ 5 \ 9)$$

Ya que $\tau_1(5) = 8$ y $\tau_2(5) = 9$, con $5 \neq 8 \neq 9 \neq 5$. Es decir, el 5 se mueve en ambos ciclos.

Teorema 1.12. Toda permutación $\sigma \in S_n$ con $\sigma \neq 1$ se expresa en la forma:

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_k$$

siendo los γ_i con $i \in \{1, ..., k\}$ ciclos disjuntos de longitud mayor o igual que 2. Además, dicha descomposición es única, salvo el orden de los factores.

Demostración. Supuesto que estamos trabajando con permutaciones sobre el conjunto $X = \{1, 2, ..., n\}$, sea $\sigma \in S_n$ con $\sigma \neq 1$, definimos la relación:

$$yRx \iff \exists m \in \mathbb{Z} \mid y = \sigma^m(x)$$

Que es una relación de equivalencia:

- Propiedad reflexiva. Se tiene gracias a la Proposición 1.11.
- Propiedad simétrica. Sean $x, y \in X$ de forma que yRx, tenemos que $\exists m \in \mathbb{Z}$ de forma que $y = \sigma^m(x)$, pero entonces:

$$\sigma^{-m}(y) = \sigma^{-m}(\sigma^m(x)) = x \Longrightarrow xRy$$

Propiedad transitiva. Sean $x, y, z \in X$ de forma que yRx y que zRx, entonces: $\exists p, q \in \mathbb{Z}$ de forma que:

$$\left. \begin{array}{l} y = \sigma^p(x) \\ z = \sigma^q(y) \end{array} \right\} \Longrightarrow z = \sigma^q(\sigma^p(x)) = \sigma^{p+q}(x) \Longrightarrow zRx$$

De esta forma, dado $x \in X$, podemos considerar su clase de equivalencia:

$$\overline{x} = {\sigma^m(x) \mid m \in \mathbb{Z}} \in X/R$$

Que es un conjunto finito, ya que gracias a la Proposición 1.11, existe $m \in \mathbb{N}$ de forma que $\sigma^{m+1}(x) = x$, con lo que:

$$C_x = \overline{x} = \{x, \sigma(x), \sigma^2(x), \dots, \sigma^m(x)\}$$

Si consideramos ahora el ciclo:

$$\gamma_x = (x \ \sigma(x) \ \sigma^2(x) \ \cdots \ \sigma^m(x)) \in S_n$$

Tenemos que:

$$\gamma_x(y) = \begin{cases} \sigma(y) & \text{si } y \in C_x \\ y & \text{si } y \notin C_x \end{cases}$$

De esta forma, tenemos una partición de X en clases de equivalencia, cada una de las C_x con $x \in X$, que llevan asociado un ciclo γ_x .

- 1. Sean $\bar{i}, \bar{j} \in X/R$ con $\bar{i} \neq \bar{j}$, entonces los elementos que se mueven en γ_i son los elementos de C_i , mientras los elementos que se mueven en γ_j son los de C_j . Como se tiene que $C_i \cap C_j = \emptyset$ por ser C_i y C_j clases de equivalencia distintas, llegamos a que γ_i y γ_j son ciclos disjuntos, para $\bar{i} \neq \bar{j}$.
- 2. Sea $\tau = \gamma_1 \gamma_2 \dots \gamma_n$, sea $y \in X$, entonces:

$$\tau(y) = \gamma_1 \gamma_2 \dots \gamma_n(y) = \gamma_1 \gamma_2 \dots \gamma_y(y) = \gamma_1 \gamma_2 \dots \gamma_{y-1}(\sigma(y)) = \gamma_1(\sigma(y)) = \sigma(y)$$

Ya que anteriormente vimos que:

$$\gamma_j(y) = \begin{cases} \sigma(y) & \text{si } y \in C_j \\ y & \text{si } y \notin C_j \end{cases} \quad \forall j \in X$$

Y se verifica que $y, \sigma(y) \in C_y$. Por tanto, tenemos que $\tau = \sigma$. Si ahora despreciamos de la expresión de τ los ciclos de longitud menor que 2 (la identidad), la permutación σ no cambia y tenemos que σ se expresa como producto de ciclos disjuntos (por el apartado 1) de longitud mayor o igual que 2.

Notación. A partir del Teorema 1.12, podemos introducir una nueva notación basada en los ciclos disjuntos. Dado $\sigma \in S_n$, como existe una única descomposición en ciclos disjuntos:

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_k$$

Teníamos una notación estandar para cada ciclo. Ahora podemos notar σ como el producto de todas esas notaciones.

Como acabamos de decir, a partir del Teorema 1.12, podremos notar a las permutaciones como su descomposición en ciclos disjuntos. Sin embargo, merece la pena preguntarse sobre el orden de los ciclos en esta descomposición, pregunta a la que contestamos con la siguiente proposición:

Proposición 1.13. Se verifican:

1. Si $\gamma_1, \gamma_2 \in S_n$ son dos ciclos disjuntos, entonces:

$$\gamma_1 \gamma_2 = \gamma_2 \gamma_1$$

Es decir, el producto de ciclos disjuntos es conmutativo.

2. Sea $\sigma \in S_n$ una permutación, si consideramos su descompoisición en ciclos disjuntos:

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_k$$

Entonces, se tiene que:

$$\sigma^{-1} = \gamma_1^{-1} \gamma_2^{-1} \dots \gamma_k^{-1}$$

Demostración. Demostramos cada uno de los resultados:

1. Supongamos que:

$$\gamma_1 = (x_1 \ x_2 \ \dots \ x_n), \qquad \gamma_2 = (y_1 \ y_2 \ \dots \ y_m)$$

 $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m \in X$ todos ellos distintos

Tenemos entonces que:

• Si $x \neq x_i, x \neq y_j$ para $i \in \{1, ..., n\}, j \in \{1, ..., m\}$:

$$\gamma_1(\gamma_2(x)) = \gamma_1(x) = x = \gamma_2(x) = \gamma_2(\gamma_1(x))$$

• Si consideramos $i \in \{1, \dots, n-1\}$:

$$\gamma_1(\gamma_2(x_i)) = \gamma_1(x_i) = x_{i+1} = \gamma_2(x_{i+1}) = \gamma_2(\gamma_1(x_i))$$

Donde hemos usado que $x_i \neq y_j$ para todo $j \in \{1, \dots, m\}$.

• Si consideramos ahora $j \in \{1, \dots, m-1\}$:

$$\gamma_1(\gamma_2(y_i)) = \gamma_1(y_{i+1}) = y_{i+1} = \gamma_2(y_i) = \gamma_2(\gamma_1(y_i))$$

Donde hemos usado que $y_j \neq x_j$ para todo $i \in \{1, ..., n\}$.

• Faltan los casos de x_n y y_m , que son análogos:

$$\gamma_1(\gamma_2(x_n)) = \gamma_1(x_n) = x_1 = \gamma_2(x_1) = \gamma_2(\gamma_1(x_n))$$
$$\gamma_1(\gamma_2(y_m)) = \gamma_1(y_1) = y_1 = \gamma_2(y_m) = \gamma_2(\gamma_1(y_m))$$

Como hemos visto que $\gamma_1(\gamma_2(x)) = \gamma_2(\gamma_1(x))$ para todo $x \in X$, concluimos que $\gamma_1\gamma_2 = \gamma_2\gamma_1$.

2. Dado $\sigma = \gamma_1 \gamma_2 \dots \gamma_k$, buscamos una permutación $\tau \in S_n$ que verifique que:

$$\sigma \tau = \gamma_1 \gamma_2 \dots \gamma_{k-1} \gamma_k \tau = 1$$

Observamos que como τ podemos tomar:

$$\tau = \gamma_k^{-1} \gamma_{k-1}^{-1} \dots \gamma_2^{-1} \gamma_1^{-1}$$

sin embargo, como los γ_i con $i \in \{1, ..., k\}$ eran ciclos disjuntos, por la Proposición 1.11, sabemos que los γ_i^{-1} también seguirán siendo ciclos disjuntos y por 1 sabemos que su producto es conmutativo, por lo que podemos escribir:

$$\tau = \gamma_1^{-1} \gamma_2^{-1} \dots \gamma_k^{-1}$$

Como $\sigma \tau = 1$, concluimos que $\tau = \sigma^{-1}$.

Ejemplo. En S_{13} , consideramos:

De forma por ciclos disjuntos, podemos notar:

$$\sigma = (1\ 12\ 8\ 10\ 4)(2\ 13)(5\ 11\ 7)(6\ 9)$$

Dada una permutación en notación de ciclos disjuntos, sabemos que para calcular la permutación inversa basta calcular la inversa de cada uno de los ciclos:

$$\sigma^{-1} = (4\ 10\ 8\ 12\ 1)(2\ 13)(7\ 11\ 5)(6\ 9)$$

Del Teorema 1.12 deducimos el siguiente corolario:

Corolario 1.13.1. El orden de una permutación $\sigma \in S_n$ es el mínimo común múltiplo de las longitudes de los ciclos disjuntos en los que se descompone.

Demostración. Supongamos que σ se descompone de la forma:

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_k$$

como $\gamma_i \gamma_j = \gamma_j \gamma_i$ para $i, j \in \{1, \dots, k\}$, tenemos que $\forall m \in \mathbb{N}$:

$$\sigma^m = \gamma_1^m \gamma_2^m \dots \gamma_k^m$$

Si $m = O(\sigma)$, entonces:

$$\sigma^m = 1 \Longleftrightarrow \gamma_i^m = 1 \stackrel{(*)}{\Longrightarrow} O(\gamma_i) | m \quad \forall i \in \{1, \dots, k\}$$

Donde en (*) hemos usado la Proposición 1.8. Concluimos que m es el mínimo común múltiplo de los órdenes de los ciclos, que por la Proposición 1.11, coincide con el mínimo común múltiplo de las longitudes de los ciclos.

Ejemplo. Para familizarnos con la notación de permutaciones por ciclos disjuntos, vamos a enumerar todos los elementos de S_n para n = 2, 3, 4:

1. Para n = 2, tenemos $X = \{1, 2\}$ y por tanto:

$$S_2 = \{id, (1\ 2)\}$$

2. Para n = 3, tenemos $X = \{1, 2, 3\}$ y:

$$S_3 = \{id, (1\ 2\ 3), (1\ 3\ 2), (1\ 2), (1\ 3), (2,3)\}$$

3. Para n = 4, tenemos $X = \{1, 2, 3, 4\}$ y:

$$S_4 = \{id, (1\ 2), (1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4), (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), (1\ 2\ 3\ 4), (1\ 3\ 2\ 4), (1\ 2\ 4\ 3), (1\ 4\ 2\ 3), (1\ 4\ 3\ 2), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

Definición 1.15 (Elementos conjugados). Sea G un grupo y $a, c \in G$, decimos que son conjugados si $\exists b \in G$ de forma que $a = bcb^{-1}$.

Proposición 1.14. Si $\gamma \in S_n$ es un ciclo de longitud m, también lo será cualquier conjugado suyo. Es decir, si $\tau \in S_n$ y γ es un ciclo, entonces $\tau \gamma \tau^{-1}$ es un ciclo de longitud m.

Demostración. Si $\gamma = (x_1 \ x_2 \ \dots \ x_m)$, sea $\tau \in S_n$, entonces veamos que:

$$\alpha = \tau \gamma \tau^{-1} = (\tau(x_1) \ \tau(x_2) \ \dots \ \tau(x_m))$$

Luego α será un ciclo de longitud m. Para ello, sea $y \in \{1, \ldots, n\}$:

• Si
$$\tau^{-1}(y) = x_i \Longrightarrow y = \tau(x_i) \text{ con } i \in \{1, \dots, m-1\}$$
:

$$y \stackrel{\tau^{-1}}{\longmapsto} x_i \stackrel{\gamma}{\longmapsto} x_{i+1} \stackrel{\tau}{\longmapsto} \tau(x_{i+1}) = \alpha(\tau(x_i))$$

• Si $\tau^{-1}(y) = x_m \Longrightarrow y = \tau(x_m)$:

$$y \xrightarrow{\tau^{-1}} x_m \xrightarrow{\gamma} x_1 \xrightarrow{\tau} \tau(x_1) = \alpha(\tau(x_m))$$

• Si $\tau^{-1}(y) = x \Longrightarrow y = \tau(x)$ con $x \neq x_i$ para todo $i \in \{1, \dots, m\}$:

$$y \xrightarrow{\tau^{-1}} x \xrightarrow{\gamma} x \xrightarrow{\tau} \tau(x) = \alpha(\tau(x))$$

Concluimos que $\alpha = (\tau(x_1) \ \tau(x_2) \ \dots \ \tau(x_m)).$

Ejemplo. Veamos la última Proposición en un caso práctico. Si consideramos:

$$\tau = (1 \ 3 \ 4), \quad \gamma = (2 \ 4 \ 5 \ 3), \quad \tau^{-1} = (4 \ 3 \ 1)$$

Y tratamos de estudiar la imagen de $X = \{1, 2, 3, 4, 5\}$ bajo $\alpha = \tau \gamma \tau^{-1}$:

$$1 \stackrel{\tau^{-1}}{\longmapsto} 4 \stackrel{\sigma}{\longmapsto} 5 \stackrel{\tau}{\longmapsto} 5$$
$$2 \longmapsto 2 \longmapsto 4 \longmapsto 1$$
$$3 \longmapsto 1 \longmapsto 1 \longmapsto 3$$
$$4 \longmapsto 3 \longmapsto 2 \longmapsto 2$$
$$5 \longmapsto 5 \longmapsto 3 \longmapsto 4$$

Tenemos entonces que α es también un ciclo de longitud 4:

$$\alpha = \tau \gamma \tau^{-1} = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 & 4 \end{array} \right) = (1 \ 5 \ 4 \ 2)$$

Proposición 1.15. Sea $\sigma \in S_n$ una permutación de forma que se descompone en ciclos disjuntos de la forma:

$$\sigma = \gamma_1 \dots \gamma_k$$

Entonces, podemos calcular su conjugado mediante $\tau \in S_n$ componiendo el conjugado de cada uno de los ciclos disjuntos en los que se descompone:

$$\tau \sigma \tau^{-1} = \tau \gamma_1 \tau^{-1} \dots \tau \gamma_k \tau^{-1}$$

Demostración.

$$\tau \sigma \tau^{-1} = \tau \gamma_1 \dots \gamma_k \tau^{-1} = \tau \gamma_1 i d \gamma_2 i d \dots i d \gamma_k \tau^{-1} = \tau \gamma_1 \tau^{-1} \tau \gamma_2 \tau^{-1} \dots \tau \gamma_k \tau^{-1}$$

Ejemplo. Para practicar la conjugación de ciclos aplicando las Proposiciones 1.14 y 1.15, se plantea dados:

$$\sigma = (1\ 12\ 8\ 10\ 4)(2\ 13)(5\ 11\ 7)(6\ 9), \qquad \tau = (4\ 8\ 12\ 7\ 5\ 9)$$

calcular $\tau \sigma \tau^{-1}$. Para ello, sabemos por la Proposición 1.15 que si⁹ $\sigma = \gamma_1 \gamma_2 \gamma_3 \gamma_4$, entonces basta calcular:

$$\tau \gamma_1 \tau^{-1}$$
, $\tau \gamma_2 \tau^{-1}$, $\tau \gamma_3 \tau^{-1}$, $\tau \gamma_4 \tau^{-1}$

Por la Proposición 1.14, sabemos que:

$$\tau \gamma_1 \tau^{-1} = (\tau(1) \ \tau(12) \ \tau(8) \ \tau(10) \ \tau(4)) = (1 \ 7 \ 12 \ 10 \ 8)$$

$$\tau \gamma_2 \tau^{-1} = (\tau(2) \ \tau(13)) = (2 \ 13)$$

$$\tau \gamma_3 \tau^{-1} = (\tau(5) \ \tau(11) \ \tau(7)) = (9 \ 11 \ 5)$$

$$\tau \gamma_4 \tau^{-1} = (\tau(6) \ \tau(9)) = (6 \ 4)$$

Si lo escribimos todo junto:

$$\tau \sigma \tau^{-1} = (1 \ 7 \ 12 \ 10 \ 8)(2 \ 13)(9 \ 11 \ 5)(6 \ 4)$$

Proposición 1.16. Toda permutación es un producto de transposiciones.

Demostración. Dada $\sigma \in S_n$, esta tiene su descomposición en ciclos disjuntos:

$$\sigma = \gamma_1 \dots \gamma_k$$

Basta demostrar que todo ciclo es producto de transposiciones. En efecto, sea $\gamma = (x_1 \ x_2 \ \dots \ x_m)$, podemos escribir:

$$(x_1 \ x_2 \ \dots \ x_m) = (x_1 \ x_m)(x_1 \ x_{m-1})\dots(x_1x_3)(x_1x_2)$$

 $^{^9 \}text{Observar}$ la descomposición hecha ya de $\sigma.$

Para verlo, observemos qué hace la aplicación de la derecha con cada elemento (léase la descomposición de derecha a izquierda):

$$x_{1} \longmapsto x_{2}$$

$$x_{2} \longmapsto x_{1} \longmapsto x_{3}$$

$$x_{3} \longmapsto x_{1} \longmapsto x_{4}$$

$$\vdots$$

$$x_{i} \longmapsto x_{1} \longmapsto x_{i+1}$$

$$\vdots$$

$$\vdots$$

$$x_{m} \longmapsto x_{1}$$

O también podemos escribir:

$$(x_1 \ x_2 \ \dots \ x_m) = (x_1 \ x_2)(x_2 \ x_3) \dots (x_{m-1} \ x_m)$$

Para verlo:

$$\begin{array}{l} x_1 \longmapsto x_2 \\ x_2 \longmapsto x_3 \\ x_3 \longmapsto x_4 \\ \vdots \\ x_i \longmapsto x_{i+1} \\ \vdots \\ x_m \longmapsto x_{m-1} \longmapsto x_{m-2} \longmapsto \ldots \longmapsto x_3 \longmapsto x_2 \longmapsto x_1 \end{array}$$

Ejemplo. Sea $\sigma = (1\ 2\ 3\ 4\ 5)$, veamos que σ se puede descomponer en transposiciones de la forma:

$$\sigma = t_1 t_2 t_3 t_4$$

Con
$$t_1 = (1 \ 5), \ t_2 = (1 \ 4), \ t_3 = (1 \ 3), \ t_4 = (1 \ 2).$$

Para ello, escribamos la imagen de $X = \{1, 2, 3, 4, 5\}$ mediante la permutación resultante de componer las 4 transposiciones $\gamma = t_1 t_2 t_3 t_4$ y veamos que coincide con la de σ :

$$\begin{vmatrix}
1 & \stackrel{t_4}{\longmapsto} 2 & \stackrel{t_3}{\longmapsto} 2 & \stackrel{t_2}{\longmapsto} 2 & \stackrel{t_1}{\longmapsto} 2 \\
2 & \longmapsto 1 & \longmapsto 3 & \longmapsto 3 & \longmapsto 3 \\
3 & \longmapsto 3 & \longmapsto 1 & \longmapsto 4 & \longmapsto 4 \\
4 & \longmapsto 4 & \longmapsto 4 & \longmapsto 1 & \longmapsto 5 \\
5 & \longmapsto 5 & \longmapsto 5 & \longmapsto 5 & \longmapsto 1
\end{vmatrix}
\Longrightarrow
\begin{cases}
1 & \stackrel{\gamma}{\longmapsto} 2 \\
2 & \longmapsto 3 \\
3 & \longmapsto 4 \\
4 & \longmapsto 5 \\
5 & \longmapsto 1
\end{cases}$$

De esta forma:

$$\gamma = t_1 t_2 t_3 t_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \sigma$$

Si ahora consideramos la descomposición de la forma:

$$\sigma = r_1 r_2 r_3 r_4$$

Con $r_1 = (1\ 2)$, $r_2 = (2\ 3)$, $r_3 = (3\ 4)$, $r_4 = (4\ 5)$, escribimos ahora la imagen de X mediante la permutación $\tau = r_1r_2r_3r_4$:

$$\begin{vmatrix}
1 \stackrel{r_4}{\longmapsto} 1 \stackrel{r_3}{\longmapsto} 1 \stackrel{r_2}{\longmapsto} 1 \stackrel{r_1}{\longmapsto} 2 \\
2 \longmapsto 2 \longmapsto 2 \longmapsto 3 \longmapsto 3 \\
3 \longmapsto 3 \longmapsto 4 \longmapsto 4 \longmapsto 4 \\
4 \longmapsto 5 \longmapsto 5 \longmapsto 5 \longmapsto 5 \\
5 \longmapsto 4 \longmapsto 3 \longmapsto 2 \longmapsto 1
\end{vmatrix} \Longrightarrow \begin{cases}
1 \stackrel{\gamma}{\longmapsto} 2 \\
2 \longmapsto 3 \\
3 \longmapsto 4 \\
4 \longmapsto 5 \\
5 \longmapsto 1
\end{cases}$$

Vemos igual que antes que $\tau = \sigma$.

Proposición 1.17. Una permutación admite varias descomposiciones en productos de transposiciones, pero todas ellas coinciden en la paridad del número de transposiciones.

1.3.1. Signatura

Definición 1.16 (Signatura). Consideraremos el siguiente polinomio de n variables:

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j) \in \mathbb{Z}[x_1, \dots, x_n]$$

Y definimos para cada $\sigma \in S_n$:

$$\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

Podemos ahora definir la aplicación signatura $\varepsilon:S_n\longrightarrow \{-1,1\}$ dada por:

$$\varepsilon(\sigma) = \begin{cases} 1 & \text{si } \sigma(\Delta) = \Delta \\ -1 & \text{si } \sigma(\Delta) = -\Delta \end{cases}$$

- Si $\varepsilon(\sigma) = 1$, diremos que σ es una permutación par.
- Si $\varepsilon(\sigma) = -1$, diremos que σ es una permutación impar.

Observación. A partir de la definición anterior, tenemos que $\sigma(\Delta) = \varepsilon(\sigma)\Delta$.

Ejemplo. Sea n=4, estaremos interesados en el polinomio:

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j) = (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_2 - x_3)(x_2 - x_4)(x_3 - x_4)$$

Si consideramos $\sigma=(1\ 2\ 3\ 4)$, queremos comprobar cual es la signatura de σ . Como¹⁰:

$$\sigma(\Delta) = (x_2 - x_3)(x_2 - x_4)(x_2 - x_1)(x_3 - x_4)(x_3 - x_1)(x_4 - x_1) = -\Delta$$

Deducimos que $\varepsilon(\sigma) = -1$, es decir, σ es una permutación impar.

¹⁰Marcamos en rojo los factores que se invierten.

Proposición 1.18. La aplicación signatura verifica que:

$$\varepsilon\left(\prod_{i=1}^m \sigma_i\right) = \prod_{i=1}^m \varepsilon(\sigma_i)$$

Con $\sigma_1, \sigma_2, \ldots, \sigma_m \in S_n$.

Demostración. Por inducción sobre m:

■ Para m=2: Queremos ver que dadas $\sigma, \tau \in S_n$, entonces:

$$\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau)$$

Para ello, si vemos que $(\sigma\tau)(\Delta) = \sigma(\tau(\Delta))$ y que $\sigma(-\Delta) = -\sigma(\Delta)$, basta distinguir casos:

- Si σ es par:
 - Si τ es par, se tendrá $\sigma(\tau(\Delta)) = \sigma(\Delta) = \Delta$, con lo que $\sigma\tau$ es par.
 - o Si τ es impar, se tendrá $\sigma(\tau(\Delta)) = \sigma(-\Delta) = -\sigma(\Delta) = -\Delta$, con lo que $\sigma\tau$ es impar.
- Si σ es impar:
 - Si τ es par, se tendrá $\sigma(\tau(\Delta)) = \sigma(\Delta) = -\Delta$, con lo que $\sigma\tau$ es impar.
 - o Si τ es impar, se tendrá $\sigma(\tau(\Delta)) = \sigma(-\Delta) = -\sigma(\Delta) = \Delta$, con lo que $\sigma\tau$ es par.
- Supuesto para m-1:

$$\varepsilon\left(\prod_{i=1}^{m}\sigma_{1}\right)=\varepsilon\left(\left(\prod_{i=1}^{m-1}\sigma_{i}\right)\sigma_{m}\right)=\varepsilon\left(\prod_{i=1}^{m-1}\sigma_{i}\right)\varepsilon(\sigma_{m})\overset{(*)}{=}\prod_{i=1}^{m-1}\left(\varepsilon(\sigma_{i})\right)\varepsilon(\sigma_{m})=\prod_{i=1}^{m}\varepsilon(\sigma_{i})$$

Donde en (*) hemos usado la hipótesis de inducción.

Proposición 1.19. Se verifican los siguientes resultados:

- 1. Las transposiciones son permutaciones impares.
- 2. Una permutación es par si y solo si se descompone en el producto de un número par de transposiciones.
- 3. Un ciclo de longitud $m \ge 2$ es par si y solo si m es impar.
- 4. Una permutación es par si y solo si el número de ciclos de longitud par en su descomposición en ciclos disjuntos es par.

Demostración. Demostramos cada uno de los resultados:

1. Sea $\sigma = (i \ j)$ una transposición (con $1 \le i < j \le n$), estudiemos qué sucede con $\sigma(\Delta)$:

 \Box

- Por una parte, está claro que hay un cambio de signo tras aplicar σ al factor $(x_i x_j)$, ya que este pasa a ser $(x_j x_i)$.
- Está claro que los factores de la forma $(x_a x_b)$ con $a, b \notin \{i, j\}$ se mantienen invariantes ante σ , por lo que no hay cambio de signo en estos.
- Además, los factores de la forma $(x_a x_y)$ con $y \in \{i, j\}$ y a < i tampoco alteran el signo de Δ , ya que al aplicar σ :

$$(x_a - x_i) \xrightarrow{\sigma} (x_a - x_j)$$

 $(x_a - x_j) \longmapsto (x_a - x_i)$

Tenemos que un factor va al otro, por lo que no alteran el signo.

■ De forma análoga, los factores de la forma $(x_y - x_b)$ con $y \in \{i, j\}$ y b > j tampoco alteran el signo de Δ :

$$(x_i - x_b) \xrightarrow{\sigma} (x_j - x_b)$$

 $(x_j - x_b) \longmapsto (x_i - x_b)$

■ Finalmente, los únicos factores que nos quedan por considerar son los de la forma $(x_i - x_a)$ y $(x_a - x_j)$, con i < a < j. En este caso:

$$(x_i - x_a) \xrightarrow{\sigma} (x_j - x_a) = -(x_a - x_j)$$
$$(x_a - x_j) \longmapsto (x_a - x_i) = -(x_i - x_a)$$

Fijado a con i < a < j, tanto el factor $(x_i - x_a)$ como el $(x_a - x_j)$ cambian de signo, por lo que el doble cambio de signo se compensa, luego estos factores no alteran el signo de Δ al aplicar σ .

Concluimos que al aplicar $\sigma = (i \ j)$ sobre Δ , el signo obtenido es el mismo salvo por el factor $(x_i - x_j)$, que cambia de signo, por lo que:

$$\sigma(\Delta) = -\Delta$$

y llegamos a que σ es impar.

2. Sea $\sigma \in S_n$ una permutación, sabemos que puede descomponerse en k transposiciones:

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_k$$

Usando la Proposición 1.18 y 1, tenemos que:

$$\varepsilon(\sigma) = \prod_{i=1}^{k} \varepsilon(\gamma_i) = \prod_{i=1}^{k} (-1) = (-1)^k$$

Por lo que:

- Si k es par, entonces $\varepsilon(\sigma) = 1$.
- Si k es impar, entonces $\varepsilon(\sigma) = -1$.

3. Para m=2, un ciclo de longitud m es una transposición, que ya sabemos que es impar. Sea τ un ciclo de longitud $m \ge 3$, en la Proposición 1.16 vimos que τ se podía descomponer como producto de m-1 transposiciones:

$$\tau = \gamma_1 \gamma_2 \dots \gamma_{m-1}$$

Por tanto, y aplicando 2, tenemos que:

- Si m es par, entonces m-1 es impar, con lo que τ es impar.
- Si m es impar, entonces m-1 es par, con lo que τ es par.
- 4. Sea $\sigma \in S_n$, esta se puede descomponer como producto de k ciclos disjuntos de longitud mayor o igual que 2:

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_k$$

Usando la Proposición 1.18, tenemos que:

$$\varepsilon(\sigma) = \prod_{i=1}^{k} \varepsilon(\gamma_i)$$

Si consideramos la siguiente partición de $\{1, \ldots, k\}$:

$$A = \{i \in \{1, \dots, k\} \mid \gamma_i \text{ tiene longitud impar}\}$$
$$B = \{i \in \{1, \dots, k\} \mid \gamma_i \text{ tiene longitud par}\}$$

Por 3 tenemos que $\varepsilon(\gamma_i) = 1$ para todo $i \in A$ y que $\varepsilon(\gamma_j) = -1$ para todo $j \in B$. De esta forma:

$$\varepsilon(\sigma) = \left(\prod_{i \in A} \varepsilon(\gamma_i)\right) \left(\prod_{i \in B} \varepsilon(\gamma_i)\right) = \left(\prod_{i \in A} 1\right) \left(\prod_{i \in B} -1\right) = \prod_{i \in B} -1 = (-1)^{|B|}$$

Por tanto:

- Si |B| es par, tenemos que σ es par.
- Si |B| es impar, tenemos que σ es impar.

Con esta Proposición, la demostración de la Proposición 1.17 se hace ya evidente.

Ejemplo. Ahora, es fácil determinar la signatura de cualquier permutación. Por ejemplo, si consideramos:

$$\sigma = (1\ 12\ 8\ 10\ 4)(2\ 13)(5\ 11\ 7)(6\ 9)$$

Como tiene 2 ciclos de longitud par (un número par), σ es una permutación par.

1.3.2. Grupos Alternados A_n

Definición 1.17 (Grupos Alternados A_n). En S_n consideramos el conjunto:

$$A_n = \{ \sigma \in S_n \mid \sigma \text{ es par} \}$$

Se verifica que $(A_n, \circ, 1)$ es un grupo:

- La asociatividad de \circ es heredada de la de \circ en S_n .
- El producto de dos permutaciones pares es par, luego está bien definido el grupo.
- La identidad es una permutación par, que es el neutro de la operación binaria.
- Dado $\sigma \in A_n$, escribimos su descomposición en ciclos disjuntos e invertimos cada ciclo. La longitud de los ciclos no cambia, luego la paridad del ciclo inverso tampoco, por lo que σ^{-1} sigue siendo una permutación par.

Al grupo A_n lo llamamos el grupo alternado de grado n, que verifica:

$$|A_n| = \frac{n!}{2}$$

Observación. Notemos que si definimos $B_n = \{ \sigma \in S_n \mid \sigma \text{ es impar} \}$, entonces sobre B_n no podemos tener una estructura de grupo con la operación \circ , ya que el neutro para \circ de S_n no está en B_n , sino en A_n .

Ejemplo. Listar todos los elementos de los grupos alternados es fácil si previamente listamos todos los elementos de su grupo simétrico correspondiente:

1. Para n = 3:

$$S_3 = \{1, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

$$A_3 = \{1, (1\ 2\ 3), (1\ 3\ 2)\}$$

2. Para n = 4:

$$S_4 = \{1, (1\ 2), (1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4), (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (1\ 2\ 4\ 3), (1\ 2\ 4), (1\ 3) (2\ 4), (1\ 4) (2\ 3)\}$$

$$A_4 = \{1, (1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 2), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), (1\ 2), (1\ 3), (1\ 2), (1\ 3), (1$$

Proposición 1.20. Se tiene que:

(a)
$$S_n = \langle (1 \ 2), (2 \ 3), \dots, (n-1, n) \rangle$$

(b)
$$S_n = \langle (1 \ 2), (1 \ 2 \ \dots \ n) \rangle$$

(c)
$$S_n = \langle (1\ 2), (1\ 3), \dots, (1\ n) \rangle$$

(d)
$$A_n = \langle (x_1 \ x_2 \ x_3) \rangle \ con \ n \geqslant 3$$

(e)
$$A_n = \langle (1 \ x \ y) \rangle \ con \ n \geqslant 3$$

Demostración. Veamos cada uno de los enunciados:

(a) Sabemos que (por la Proposición 1.16):

$$S_n = \langle (i \ j) \mid i, j \in \{1, \dots, n\}, \ i < j \rangle$$

Supuesto que i < j, vemos que:

$$(i \ j) = (i \ i+1)(i+1 \ i+2) \dots (j-2 \ j-1)(j-1 \ j)(j-1 \ j-2) \dots (i+2 \ i+1)(i+1 \ i)$$

(b) Por el apartado anterior, basta obtener cualquier transposición de la forma $(i \ i+1)$ con $i \in \{1, \ldots, n-1\}$ a partir de $\sigma = (1 \ 2 \ldots n)$ y $(1 \ 2)$. Para ello, como se tiene que:

$$\sigma^{i-1}(1) = i$$
 $\sigma^{i-1}(2) = i+1$

Podemos considerar el conjugado de (1 2) mediante σ^{i-1} :

$$\sigma^{i-1}(1\ 2)(\sigma^{i-1})^{-1} = \sigma^{i-1}(1\ 2)\sigma^{1-i} = (\sigma^{i-1}(1)\ \sigma^{i-1}(2)) = (i\ i+1)$$

(c) Basta ver que $(1\ 2\ \dots\ n)$ se puede obtener por composición de transposiciones de la forma $(1\ j)$ con $j\in\{2,\dots,n\}$, lo que ya se hizo en la Proposición 1.16:

$$(1\ 2\ \dots\ n) = (1\ n)(1\ n-1)\dots(1\ 3)(1\ 2)$$

(d) Podemos suponer que $x_1 < x_2 < x_3$, ya que:

$$(x_1 \ x_3 \ x_2) = (x_1 \ x_2 \ x_3)^2$$

Sabemos que si $\sigma \in A_n$, entonces será producto de un número par de transposiciones, por lo que basta expresar estos productos en función de ciclos de la forma $(x_1 \ x_2 \ x_3)$.

• Si hay elementos comunes, escribiremos:

$$(x_1 \ x_2)(x_2 \ x_3) = (x_1 \ x_2 \ x_3)$$

 Si no hay elementos comunes (tenemos dos transposiciones disjuntas), entonces:

$$(x_1 \ x_2)(x_3 \ x_4) = (x_1 \ x_2 \ x_3)(x_2 \ x_3 \ x_4)$$

(e) Usando el apartado anterior, tenemos que cualquier terna ordenada $(x_1 \ x_2 \ x_3)$ podemos escribirla de la forma:

$$(x_1 \ x_2 \ x_3) = (1 \ x_3 \ x_2)(1 \ x_1 \ x_2)(1 \ x_1 \ x_3)$$

Ejemplo. Usando la Proposición 1.20, veamos distintos conjuntos generadores para varios grupos:

- (a) Destacamos:
 - $S_3 = \langle (1\ 2), (2\ 3) \rangle$ y buscamos expresar la última transposición como producto de estas:

$$(1\ 3) = (1\ 2)(2\ 3)(2\ 1)$$

• En $S_4 = \langle (1\ 2), (2\ 3), (3\ 4) \rangle$ mostramos por ejemplo que:

$$(1 \ 4) = (1 \ 2)(2 \ 3)(3 \ 4)(3 \ 2)(2 \ 1)$$

- (b) Ahora:
 - En $S_3 = \langle (1\ 2), (1\ 2\ 3) \rangle$:

$$(2\ 3) = (1\ 2\ 3)(1\ 2)(1\ 2\ 3)^{-1}$$

• En $S_4 = \langle (1\ 2), (1\ 2\ 3\ 4) \rangle$:

$$(2 3) = (1 2 3 4)(1 2)(1 2 3 4)^{-1}$$
$$(3 4) = (1 2 3 4)^{2}(1 2)(1 2 3 4)^{-2}$$

(d) Recordamos los elementos de A_4 :

$$A_4 = \{1, (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), (1\ 2), (1\ 3), (1\ 3), (2\ 3), (1$$

Tenemos que:

$$A_4 = \langle (1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (2\ 3\ 4) \rangle$$

Por ejemplo, podemos escribir:

$$(1\ 2)(3\ 4) = (1\ 2\ 3)(2\ 3\ 4)$$

(e) Tenemos:

$$A_4 = \langle (1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4) \rangle$$

1.4. Grupos de matrices

Sea \mathbb{F} un cuerpo, las matrices cuadradas de orden n sobre \mathbb{F} las denotaremos por:

$$\mathcal{M}_n(\mathbb{F})$$

Sabemos que $(\mathcal{M}_n(\mathbb{F}), +, \cdot)$ es un anillo, aunque estaremos interesados en ver el conjunto $\mathcal{M}_n(\mathbb{F})$ como un grupo en su forma más interesante, es decir, como grupo con notación multiplicativa.

1.4.1. Grupo lineal $GL_n(\mathbb{F})$

Definición 1.18 (Grupo lineal $GL_n(\mathbb{F})$). Sea \mathbb{F} un cuerpo finito, en $\mathcal{M}_n(\mathbb{F})$ consideramos el conjunto:

$$\operatorname{GL}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) \mid \det(A) \neq 0 \}$$

Se verifica que $(GL_n(\mathbb{F}), \cdot, I)$ es un grupo:

- La asociatividad de · viene heredada de la de · en $\mathcal{M}_n(\mathbb{F})$.
- Como el determinante del producto es el producto de los determinantes, \cdot es una operación cerrada para $GL_n(\mathbb{F})$.
- $\det(I) = 1 \neq 0$ y se tiene que I es el elemento neutro para ·.
- Como consideramos las matrices con determinante no nulo, sabemos que todas estas tienen inversa.

A $GL_n(\mathbb{F})$ lo llamamos el grupo lineal de orden n.

Proposición 1.21. Sea $n \in \mathbb{N}$, si $|\mathbb{F}| = q$, entonces se verifica que:

$$|\operatorname{GL}_n(\mathbb{F})| = (q^n - 1)(q^n - q)\dots(q^n - q^{n-1}) = \prod_{k=1}^n (q^n - q^{k-1})$$

Demostración. Como $A \in GL_n(\mathbb{F}) \iff A$ es regular \iff sus filas son vectores linealmente independientes, basta contar de cuántas formas podemos elegir n vectores linealmente independientes con n entradas en \mathbb{F} (que recordamos tenía q elementos). Para ello:

- Para elegir el primer vector v₁ ∈ F¹, podemos elegir cualquiera, luego el problema es elegir n números de entre q posibilidades, q¹ posibles elecciones.
 Sin embargo, como queremos que v₁ sea linealmente independiente con el resto de vectores que forman las filas de una matriz, hemos de exigir v₁ ≠ 0, con lo que tenemos q¹ − 1 posibilidades para v₁.
- Una vez elegido v_1 , para elegir v_2 no podemos elegir un vector de $\mathcal{L}(v_1) \cong \mathbb{F}$, por lo que tenemos q vectores que no podemos elegir; elegimos un vector de los $q^n q$ restantes.
- Repitiendo el proceso, una vez elegido v_{k-1} , para elegir v_k (con $k \in \{2, ..., n\}$), no podemos elegir ningún vector de $\mathcal{L}(v_1, ..., v_{k-1}) \cong \mathbb{F}^{k-1}$, por lo que tenemos q^{k-1} vectores que no podemos elegir y elegimos entre los $q^n q^{k-1}$ restantes.

Este proceso ilusta que las posibles elecciones totales de vectores para las filas de una matriz de $GL_n(\mathbb{F})$ son:

$$\prod_{k=1}^{n} \left(q^n - q^{k-1} \right)$$

Por lo que este debe ser el cardinal de $|\operatorname{GL}_n(\mathbb{F})|$.

Ejemplo. Veamos:

• En $|\operatorname{GL}_2(\mathbb{Z}_2)| = (2^2 - 1)(2^2 - 2) = 6$:

$$GL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

Podemos escribirlos sin que se nos olvide ninguna pensando en que tenemos que escribir todas las matrices de forma que los vectores formados por las columnas sean linealmente independientes entre sí (para así conseguir un determinante no nulo).

- Tenemos $|\operatorname{GL}_3(\mathbb{Z}_2)| = 168$. Se deja como ejercicio escribir todas las matrices.
- Tenemos $|\operatorname{GL}_2(\mathbb{Z}_3)| = 48$.

1.4.2. Grupo lineal especial $SL_n(\mathbb{F})$

Definición 1.19 (Grupo lineal especial $\mathrm{SL}_n(\mathbb{F})$). Sea \mathbb{F} un cuerpo finito, en $\mathcal{M}_n(\mathbb{F})$ consideramos el conjunto:

$$\mathrm{SL}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) \mid \det(A) = 1 \}$$

Se verifica que $(\mathrm{SL}_n(\mathbb{F}), \cdot, I)$ es un grupo:

- La asociatividad de \cdot viene heredada de la de \cdot en $\mathcal{M}_n(\mathbb{F})$.
- Como el determinante del producto es el producto de los determinantes, \cdot es una operación cerrada para $\mathrm{SL}_n(\mathbb{F})$.
- det(I) = 1 y se tiene que I es el elemento neutro para \cdot .
- Como consideramos las matrices con determinante $1 \neq 0$, sabemos que todas estas tienen inversa.

A $SL_n(\mathbb{F})$ lo llamamos el grupo lineal especial de orden n.

Proposición 1.22. Sea $n \in \mathbb{N}$, si $|\mathbb{F}| = q$, entonces se verifica que:

$$|\operatorname{SL}_n(\mathbb{F})| = \frac{|\operatorname{GL}_n(\mathbb{F})|}{q-1}$$

Demostración. Sea $A \in GL_n(\mathbb{F})$, observemos que $\det(A)$ puede¹¹ tomar q-1 valores distintos, uno por cada elemento de \mathbb{F}^* . De esta forma, si dado $k \in \mathbb{F}^*$ definimos:

$$D_k = \{ A \in \operatorname{GL}_n(\mathbb{F}) : \det(A) = k \}$$

Es claro que estos conjuntos forman una partición de $GL_n(\mathbb{F})$:

$$\operatorname{GL}_n(\mathbb{F}) = \biguplus_{k \in \mathbb{F}^*} D_k$$

 $^{^{11}}$ De hecho los toma, es fácil comprobar que det : $GL_n(\mathbb{F}) \to \mathbb{F}^*$ es una aplicación sobreyectiva.

Veamos que $|D_k| = |D_1|$ para todo $k \in \mathbb{F}^*$. Para ello, sea $k \in \mathbb{F}^*$, definimos la aplicación $\varphi_k : \mathrm{GL}_n(\mathbb{F}) \to \mathrm{GL}_n(\mathbb{F})$ dada por:

$$\varphi_k(A) = \varphi_k((a_{ij})_{i,j}) = (\overline{a_{ij}})_{i,j} \quad \forall A = (a_{ij})_{i,j} \in GL_n(\mathbb{F})$$

Donde:

$$\overline{a_{ij}} = \begin{cases} ka_{ij} & \text{si } i = 1\\ a_{ij} & \text{si } i \neq 1 \end{cases}$$

Es decir, φ_k multiplica la primera fila de una matriz por k. De esta forma, las propiedades de los determinantes nos dicen que si $A \in D_1$, entonces:

$$\det(\varphi_k(A)) = k \cdot \det(A) = k$$

Por lo que $\varphi_k(A) \in D_k$ para todo $k \in \mathbb{F}^*$. Por tanto, podemos definir la aplicación $\psi_k : D_1 \to D_k$ de forma que $\psi_k = \varphi_{k|D_1}$. Veamos que ψ_k es biyectiva para terminar el razonamiento. Para ello, dada ψ_k para un cierto $k \in \mathbb{F}^*$, consideramos ψ_{k-1} . Como:

$$kk^{-1}a_{ij} = k^{-1}ka_{ij} = a_{ij} \qquad \forall a_{ij} \in \mathbb{F}^*$$

Concluimos que $\psi_k^{-1} = \psi_{k^{-1}}$ y además vemos que $\varphi_{k^{-1}}(D_k) \subseteq D_1$. Llegamos a que ψ_k es biyectiva, por lo que $|D_k| = |D_1|$ para todo $k \in \mathbb{F}^*$.

Sea ahora $\phi: \{1, \dots, q-1\} \to \mathbb{F}^*$ cualquier biyección de forma que $\phi(1) = 1$, como los D_k formaban una partición finita de $\mathrm{GL}_n(\mathbb{F})$, tenemos que:

$$|\operatorname{GL}_n(\mathbb{F})| = \sum_{k=1}^{q-1} |D_{\phi(k)}| = \sum_{k=1}^{q-1} |D_1| = (q-1)|D_1| = (q-1)|\operatorname{SL}_n(\mathbb{F})|$$

De donde deducimos que:

$$|\operatorname{SL}_n(\mathbb{F})| = \frac{|\operatorname{GL}_n(\mathbb{F})|}{q-1}$$

Ejemplo. Tenemos:

- $|\operatorname{SL}_2(\mathbb{Z}_3)| = 24.$
- $\operatorname{SL}_n(\mathbb{Z}_2) = \operatorname{GL}_n(\mathbb{Z}_2) \ \forall n \in \mathbb{N}$

1.5. Homomorfismos de grupos

Definición 1.20 (Homomorfismo). Dados dos grupos G y H, un homomorfismo de grupos de G en H es una aplicación $f: G \to H$ que verifica:

$$f(xy) = f(x)f(y) \qquad \forall x, y \in G$$

Proposición 1.23. Si $f: G \to H$ es un homomorfismo de grupos, entonces:

1.
$$f(1) = 1$$

2.
$$f(x^{-1}) = (f(x))^{-1}$$

3.
$$f(x^n) = (f(x))^n \ \forall n \in \mathbb{N}$$

Demostración. Veamos cada una:

1.
$$f(1) = f(1 \cdot 1) = f(1)f(1) \Longrightarrow f(1) = 1$$

2.
$$1 = f(1) = f(xx^{-1}) = f(x)f(x^{-1}) \Longrightarrow f(x^{-1}) = (f(x))^{-1}$$

3.
$$f(x^n) = f(\underbrace{x \cdot \dots \cdot x}_{n \text{ veces}}) = \underbrace{f(x) \cdot \dots \cdot f(x)}_{n \text{ veces}} = (f(x))^n$$

Definición 1.21. Sea $f: G \to H$ un homomorfismo de grupos, distinguimos:

•
$$\ker f = \{x \in G \mid f(x) = 1\}$$

•
$$Im f = \{ f(x) \mid x \in G \}$$

Ejemplo. Ejemplos de homomorfismos de grupos son:

- 1. Dado G un grupo, $id: G \to G$.
- 2. Dados G, H grupos, consideramos el siguiente homomorfismo, denominado homomorfismo trivial:

$$\begin{array}{ccc} f: & G & \longrightarrow & H \\ & x & \longmapsto & 1 \end{array}$$

3. La exponencial es también un homomorfismo:

$$\exp: (\mathbb{R}, +) \longrightarrow (\mathbb{R}^+, \cdot)$$
$$x \longmapsto e^x$$

4. La aplicación determinante de matrices con determinante no nulo:

$$\det: \operatorname{GL}_n(\mathbb{F}) \longrightarrow \mathbb{F}^*$$

$$A \longmapsto \det(A)$$

5. La aplicación signatura:

$$\varepsilon: S_n \longrightarrow \mathcal{U}(\mathbb{Z}) = \{-1, 1\}$$
 $\sigma \longmapsto \varepsilon(\sigma)$

Proposición 1.24. Sean $f: G \to H$ y $g: H \to T$ dos homomorfismos de grupos, entonces la aplicación $g \circ f: G \to T$ es un homomorfismo de grupos.

Demostración. Sean $x, y \in G$, entonces:

$$(q \circ f)(xy) = q(f(xy)) = q(f(x)f(y)) = q(f(x))q(f(y)) = (q \circ f)(x)(q \circ f)(y)$$

Definición 1.22. Dado $f: G \to H$ un homomorfismo de grupos, decimos que:

- \bullet f es un monomorfismo si es inyectiva.
- \bullet f es un epimorfismo si es sobreyectiva.
- f es un isomorfismo si es biyectiva.
- Si G = H, diremos que f es un endomorfismo.
- \blacksquare Si f es un endomorfismo biyectivo, diremos que es un automorfismo.

Proposición 1.25. Sea $f: G \to H$ un homomorfismo de grupos, entonces:

- $i) \ f \ es \ monomorfismo \iff \ker(f) = \{1\}$
- ii) f es $isomorfismo \iff f^{-1}$ es un isomorfismo.

Demostración. Veamos los dos resultados:

- i) Para el primero, demostramos las dos implicaciones:
 - \implies) $x \in \ker(f) \implies f(x) = 1 = f(1)$, pero como f es inyectiva, tenemos que x = 1.
 - \iff Sean $x, y \in G$ de forma que f(x) = f(y), entonces:

$$f(x)(f(y))^{-1} = 1 \Longrightarrow f(xy^{-1}) = 1 \Longrightarrow xy^{-1} = 1 \Longrightarrow x = y$$

Concluimos que f es invectiva.

- ii) Demostramos las dos implicaciones:
 - \Longrightarrow) Si f es un isomorfismo, entonces es biyectiva, por lo que tendrá una aplicación inversa f^{-1} , que por lo pronto ya sabemos que es biyectiva. Basta ver que esta aplicación es un homomorfismo. Para ello, sean $y, y' \in H$, por ser f un biyectiva, existirán $x, x' \in G$ de forma que f(x) = y y f(x') = y', luego $x = f^{-1}(y)$ y $x' = f^{-1}(y')$. Por tanto:

$$f^{-1}(yy') = f^{-1}(f(x)f(x')) = f^{-1}(f(xx')) = xx' = f^{-1}(y)f^{-1}(y')$$

Lo que demuestra que f^{-1} es un homomorfismo biyectivo, luego isomorfismo.

 \iff) Si f^{-1} es un isomorfismo, entonces por la implicación que acabamos de demostrar, $(f^{-1})^{-1} = f$ también es un isomorfismo.

Definición 1.23 (Grupos isomorfos). Sean G y H dos grupos, decimos que son isomorfos si existe un isomorfismo entre ellos, que se denotará por $G \cong H$.

Proposición 1.26. La propiedad de ser isomorfo es una relación de equivalencia.

Demostración. Demostramos cada una de las propiedades:

■ Propiedad reflexiva. Sea G un grupo, como $id: G \to G$ es un homomorfismo, tenemos que $G \cong G$.

- Propiedad simétrica. Sean G y H dos grupos de forma que $G \cong H$, entonces existe un isomorfismo $f: G \to H$. Por la Proposición 1.25, $f^{-1}: H \to G$ también será un isomorfismo, por lo que $H \cong G$.
- Propiedad transitiva. Sean G, H y T tres grupos de forma que $G \cong H$ y $H \cong T$, entonces existen dos isomorfismos: $f: G \to H$ y $g: H \to T$. Si consideramos $g \circ f: G \to T$, tenemos por la Proposición 1.24 que $g \circ f$ es un isomorfismo de G en T, por lo que $G \cong T$.

Proposición 1.27. Se verifican:

i) Si $f: X \to Y$ es una aplicación biyectiva, se tiene que la aplicación siguiente es un isomorfismo de grupos:

$$\varphi: \operatorname{Perm}(X) \longrightarrow \operatorname{Perm}(Y)$$

$$\sigma \longmapsto f\sigma f^{-1}$$

- ii) $Aut(G) = \{f : G \rightarrow G \mid f \text{ automorfismo}\}\ con \ la \ composición forman un grupo.$
- iii) Si $f: G \to H$ es un isomorfismo, entonces |G| = |H|.
- iv) Si G y H son isomorfos, entonces G es abeliano \iff H es abeliano.
- v) Si $f: G \to H$ es un isomorfismo, entonces se mantiene el orden:

$$O(x) = O(f(x)) \qquad \forall x \in G$$

vi) Si $f: G \to H$ es un epimorfismo y $S \subseteq G$ cumple que $G = \langle S \rangle$, entonces $H = \langle f(S) \rangle$.

Demostración. Veamos cada una:

- i) Hemos de ver que φ es un homomorfismo biyectivo:
 - Sean $\sigma, \tau \in \text{Perm}(X)$, entonces:

$$\varphi(\sigma\tau) = f\sigma\tau f^{-1} = f\sigma i d\tau f^{-1} = f\sigma f^{-1} f\tau f^{-1} = \varphi(\sigma)\varphi(\tau)$$

Definimos la siguiente aplicación:

$$\psi: \operatorname{Perm}(Y) \longrightarrow \operatorname{Perm}(X)$$

$$\tau \longmapsto f^{-1}\tau f$$

Veamos que ψ es la inversa de φ :

$$\psi(\varphi(\sigma)) = \psi(f\sigma f^{-1}) = f^{-1}f\sigma f^{-1}f = \sigma$$
$$\varphi(\psi(\tau)) = \varphi(f^{-1}\tau f) = f(f^{-1}\tau f)f^{-1} = \tau$$

Por tanto, φ es biyectiva.

Como φ es un homomorfismo biyectivo, es un isomorfismo.

- ii) La asociatividad viene heredada de la asociatividad de funciones, el neutro del grupo es $id: G \to G$ y como son automorfismos, son aplicaciones biyectivas, con lo que cada una tiene inversa.
- iii) Por ser f biyectiva, se tiene |G| = |H|.
- *iv*) Veamos las dos implicaciones:
 - \implies) Sean $x, y \in H$, existirá un isomorfismo $f: G \to H$, luego:

$$xy = f(f^{-1}(xy)) = f(f^{-1}(x)f^{-1}(y)) = f(f^{-1}(y)f^{-1}(x)) = f(f^{-1}(yx)) = yx$$

- \iff) Como $G\cong H\iff H\cong G$ por la propiedad simétrica, se tiene la otra implicación.
- v) Si O(x) = n, entonces:

$$(f(x))^n = f(x^n) = f(1) = 1$$

Por tanto, tenemos que $O(f(x)) \leq n$. Si suponemos ahora que $\exists m \in \mathbb{N}$ tal que $(f(x))^m = 1$, entonces $f(x^m) = 1 = f(1)$ y por inyectividad tenemos que $x^m = 1$, luego $n \leq m$. De todo esto deducimos que O(f(x)) = n.

Si $O(x) = +\infty$, basta observar que $f(x^n) = (f(x))^n$ para todo $n \in \mathbb{N} \setminus \{0\}$, para concluir que $O(f(x)) = +\infty$. Si $O(f(x)) = +\infty$, basta usar f^{-1} .

vi) Sea $y \in H$, buscamos una descomposición de y en función de los elementos $f(s_i)$. Para ello, como f es sobreyectiva, existirá $x \in G$ de forma que y = f(x). Como $G = \langle S \rangle$, tendremos que existen $s_1, \ldots, s_k \in S$ y $\gamma_1, \ldots, \gamma_k \in \mathbb{Z}$ de forma que:

$$x = s_1^{\gamma_1} s_2^{\gamma_2} \dots s_k^{\gamma_k}$$

Luego:

$$y = f(x) = f(s_1^{\gamma_1} s_2^{\gamma_2} \dots s_k^{\gamma_k}) = f(s_1)^{\gamma_1} f(s_2)^{\gamma_2} \dots f(s_k)^{\gamma_k}$$

Por lo que $H = \langle f(S) \rangle$.

1.5.1. Ejemplos

Teorema 1.28 (de Dyck). Sea G un grupo finito con una presentación

$$G = \langle S \mid R_1, R_2, \dots, R_k \rangle$$
 $S = \{s_1, \dots, s_m\}$

Sea H otro grupo finito con $\{r_1, \ldots, r_m\} \subseteq H$, y supongamos que cualquier relación satisfecha en G por los s_i con $i \in \{1, \ldots, m\}$ es también satisfecha en H para los r_i con $i \in \{1, \ldots, m\}$. Entonces existe un único homomorfismo de grupos $f: G \to H$ de forma que:

$$f(s_i) = r_i \qquad i \in \{1, \dots, n\}$$

- Si además $\{r_1, \ldots, r_m\}$ son un conjunto de generadores de H, entonces f es un epimorfismo.
- Más aún, si |G| = |H|, entonces f es un isomorfismo.

Ejemplo. Usando el Teorema 1.28, podemos dar muchos ejemplos de grupos isomorfos:

1. Si consideramos el grupo cíclico de orden n: $C_n = \langle x \mid x^n = 1 \rangle$.

Observamos que en \mathbb{Z}_n el elemento $\overline{1}$ también verifica la propiedad $x^n=1$, ya que:

$$n \cdot \overline{1} = \underline{\overline{1} + \ldots + \overline{1}} = 0$$

De esta forma, por el Teorema 1.28, sabemos que existe un homomorfismo $f: C_n \to \mathbb{Z}_n$, de forma que f(x) = 1.

Más aún, como $\mathbb{Z}_n = \langle \overline{1} \rangle$ y $|C_n| = n = |\mathbb{Z}_n|$, tenemos que f es un isomorfismo de grupos, por lo que $C_n \cong \mathbb{Z}_n$.

2. Si ahora consideramos el grupo de Klein abstracto:

$$V^{\text{abs}} = \langle x, y \mid x^2 = y^2 = 1, xy = yx \rangle$$

Podemos intentar relacionarlo con el grupo directo $\mathbb{Z}_2 \times \mathbb{Z}_2$, ya que los elementos (0,1) y (1,0) cumplen las relaciones enunciadas:

$$2 \cdot (0,1) = (0,1) + (0,1) = (0,0)$$
$$2 \cdot (1,0) = (1,0) + (1,0) = (0,0)$$
$$(0,1) + (1,0) = (1,1) = (1,0) + (0,1)$$

Por lo que existirá un homomorfismo $f:V^{\text{abs}}\to\mathbb{Z}_2\times\mathbb{Z}_2$ de forma que f(x)=(0,1) y f(y)=(1,0).

Más aún, como $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle (0,1), (1,0) \rangle$ y es claro que $|\mathbb{Z}_2 \times \mathbb{Z}_2| = 4 = |V^{\text{abs}}|$, tenemos que f es un isomorfismo, por lo que $V^{\text{abs}} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

3. Si tratamos ahora de relacionar el grupo de Klein abstracto (visto en el ejemplo anterior) con el grupo de Klein:

$$V = \langle (1\ 2)(3\ 4), (1\ 3)(2\ 4) \rangle = \{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

Como $(1\ 2)(3\ 4)\ y\ (1\ 3)(2\ 4)\ verifican que:$

$$(1 \ 2)(3 \ 4)^2 = (1 \ 2)(3 \ 4)(1 \ 2)(3 \ 4) = 1$$
$$(1 \ 3)(2 \ 4)^2 = (1 \ 3)(2 \ 4)(1 \ 3)(2 \ 4) = 1$$
$$(1 \ 2)(3 \ 4)(1 \ 3)(2 \ 4) = (1 \ 4)(2 \ 3) = (1 \ 3)(2 \ 4)(1 \ 2)(3 \ 4)$$

Por el Teorema de Dyck, existe un homomorfismo $g: V^{\text{abs}} \to V$ de forma que $g(x) = (1\ 2)(3\ 4)$ y $g(y) = (1\ 3)(2\ 4)$.

Como hemos visto ya que $V=\langle g(x),g(y)\rangle$ y que $|V^{\rm abs}|=4=|V|,\ g$ es un isomorfismo. Tenemos que $V^{\rm abs}\cong V.$

Como vimos que \cong es una relación de equivalencia, también tendremos que $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

4. Consideramos ahora el grupo diédrico de orden 3:

$$D_3 = \langle r, s \mid r^3 = 1, s^2 = 1, sr = r^2 s \rangle$$

Que vamos a intentar relacionar con S_3 . Como (1 2) y (1 2 3) verifican que:

$$(1\ 2\ 3)^3 = (1\ 2\ 3)(1\ 2\ 3)(1\ 2\ 3) = 1$$

 $(1\ 2)^2 = (1\ 2)(1\ 2) = 1$
 $(1\ 2)(1\ 2\ 3) = (2\ 3) = (1\ 3\ 2)(1\ 2) = (1\ 2\ 3)^2(1\ 2)$

Tenemos que existe un homomorfismo $f: D_3 \to S_3$ de forma que $f(r) = (1\ 2\ 3)$ y $f(s) = (1\ 2)$. Como además tenemos que $S_3 = \langle (1\ 2), (1\ 2\ 3) \rangle$ y que $|D_3| = 2 \cdot 3 = 6 = 3! = |S_3|$, concluimos que f es un isomorfismo, por lo que $D_3 \cong S_3$.

5. Si consideramos el grupo lineal de orden 2 sobre \mathbb{Z}_2 :

$$GL_2(\mathbb{Z}_2) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

Y tratamos de relacionarlo con $S_3 = \langle r, s \mid r^3 = 1, s^2 = 1, sr = r^2 s \rangle$, como tenemos que:

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Entonces, existe un homomorfismo $f: S_3 \to \mathrm{GL}_2(\mathbb{Z}_2)$ de forma que:

$$f(r) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad f(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Además, como (ver el Ejercicio??):

$$GL_2(\mathbb{Z}_2) = \left\langle \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\rangle$$

Y ambos tienen el mismo número de elementos, f es un isomorfismo.

6. Fijado $n \in \mathbb{N} \setminus \{0,3\}$, si ahora consideramos el grupo simétrico de orden n, S_n y el grupo diédrico de orden n, D_n , como $|D_n| = 2n \neq n! = |S_n|$ no vamos a tener un isomorfismo de grupos. Sin embargo, los elementos:

$$(1 \ 2 \ \dots \ n), \begin{pmatrix} 1 \ 2 \ 3 \ \dots \ n-1 \ n \\ 1 \ n \ n-1 \ \dots \ 3 \ 2 \end{pmatrix} \in S_n$$

¹²Esto se vio en la Proposición 1.20.

Verifican todas las propiedades de la presentación de D_n , por lo que existirá un homomorfismo $f:D_n\to S_n$ de forma que

$$f(r) = (1 \ 2 \dots n)$$

$$f(s) = \begin{pmatrix} 1 \ 2 \ 3 \ \dots \ n-1 \ n \\ 1 \ n \ n-1 \ \dots \ 3 \ 2 \end{pmatrix}$$

7. Si consideramos ahora:

$$Q_2^{\text{abs}} = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$$

Y pensamos en relacionarlo con $Q_2 = \{\pm 1, \pm i, \pm j, \pm k\}$, como tenemos que:

$$i^{4} = 1$$

 $j^{2} = -1 = i^{2}$
 $ji(-j) = j(-k) = -i$

Sabemos que existe un homomorfismo $f:Q_2^{\text{abs}}\to Q_2$ de forma que f(x)=i y f(y)=j. Además, como $Q_2=\langle i,j\rangle$ y $|Q_2^{\text{abs}}|=4=|Q_2|$, tenemos que f es un isomorfismo, por lo que $Q_2^{\text{abs}}\cong Q_2$.

8. Como último ejemplo, si consideramos $k, n \in \mathbb{N}, k \geqslant 3$ con $k \mid n$ y consideramos los grupos diédricos:

$$D_n = \langle r, s \mid r^n = 1, s^2 = 1, sr = r^{-1}s \rangle$$

$$D_k = \langle r_1, s_1 \mid r_1^k = 1, s_1^2 = 1, s_1r_1 = r_1^{-1}s_1 \rangle$$

Y tratamos de relacionarlos, como $k \mid n$, existirá $p \in \mathbb{N}$ de forma que n = kp. Como $r_1, s_1 \in D_k$ verifican que:

$$r_1^n = r_1^{kp} = (r_1^k)^p = 1^p = 1$$

 $s_1^2 = 1$
 $s_1 r_1 = r_1^{-1} s_1$

Tenemos por el Teorema 1.28 que existe un homomorfismo $f: D_n \to D_k$ de forma que $f(r) = r_1$ y $f(s) = s_1$.

1.6. Resumen de grupos

Para finalizar este capítulo, haremos un breve repaso de los grupos vistos hasta el momento, ya que los usaremos de forma constante a lo largo de la asignatura, por lo que conviene tenerlos siempre presentes.

Grupo Trivial. $(\{e\}, *, e)$.

Grupos de los enteros módulo n. $(\mathbb{Z}_n, +)$, $(\mathcal{U}(\mathbb{Z}_n), \cdot)$.

Grupo de raíces n-ésimas de la unidad.

$$\mu_n = \left\{1, \xi, \xi^2, \dots, \xi^{n-1} \mid \xi = \cos\left(\frac{2\pi}{n}\right) + i \operatorname{sen}\left(\frac{2\pi}{n}\right)\right\} \subseteq \mathbb{C}$$

Grupo lineal de orden n. Sea \mathbb{F} un cuerpo:

$$\operatorname{GL}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) \mid \det(A) \neq 0 \}$$

Grupo lineal especial de orden n. Sea \mathbb{F} un cuerpo:

$$\operatorname{SL}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) \mid \det(A) = 1 \}$$

Potencias de grupos. Sea G un grupo y X un conjunto:

$$G^X = Apl(X, G) = \{f : X \to G \mid f \text{ aplicación}\}\$$

n-ésimo grupo diédrico. Sea $n \in \mathbb{N}$:

$$D_n = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}\$$

n-ésimo grupo simétrico. Sea X un conjunto con $|X| = n \in \mathbb{N}$:

$$S_n = \operatorname{Perm}(X) = \{ f : X \to X \mid f \text{ biyectiva} \}$$

n-ésimo grupo alternado. Sea $n \in \mathbb{N}$:

$$A_n = \{ \sigma \in S_n \mid \sigma \text{ es par} \}$$

Grupo cíclico de orden n. Sea $n \in \mathbb{N}$:

$$C_n = \langle x \mid x^n = 1 \rangle = \{1, x, x^2, x^3, \dots, x^{n-1}\}$$

Grupo de los cuaternios.

$$Q_2 = \{\pm 1, \pm i, \pm j, \pm k\}$$

Grupo abstracto Q_2^{abs} .

$$Q_2^{\text{abs}} = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$$

= $\{1, x, x^2, x^3, y, yx, yx^2, yx^3\}$

Grupo de Klein. Sea $n \in \mathbb{N}$ con $n \geqslant 4$:

$$V = \{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} \subseteq S_n$$

Grupo de Klein abstracto.

$$V^{\text{abs}} = \langle x, y \mid x^2 = y^2 = 1, xy = yx \rangle = \{1, x, y, xy\}$$

2. Subgrupos, Generadores, Retículos y Grupos cíclicos

Definición 2.1 (Subgrupo). Dados dos grupos G y H, decimos que H es un subgrupo de G, denotado por H < G, si $H \subseteq G$ y la aplicación de inclusión $i: H \to G$ es un homomorfismo de grupos.

Observación. Dado un grupo (G, *, e), este tendrá siempre dos subgrupos:

- $(\{e\}, *, e)$, al que llamaremos subgrupo trivial.
- El propio (G, *, e)

Definición 2.2. Sea H un subgrupo de otro G, diremos que H es un subgrupo impropio de G si H es el grupo trivial o el propio G. En otro caso, diremos que H es un subgrupo propio de G.

Notación. Recordamos la notación que ya usábamos en Álgebra I para, fijado $n \in \mathbb{N} \setminus \{0\}$, denotar a todos los múltiplos de n en \mathbb{Z} :

$$n\mathbb{Z} = \{nm \mid m \in \mathbb{Z}\}\$$

Ejemplo. Vemos claramente que:

- 1. $(\mathbb{Z}, +) < (\mathbb{Q}, +) < (\mathbb{R}, +)$
- $2. \{r^k \mid k \leqslant n, r \in D_n\} < D_n$
- 3. $n\mathbb{Z} < \mathbb{Z}$ para todo $n \in \mathbb{N}$.
- 4. $\operatorname{SL}_n(\mathbb{F}) < \operatorname{GL}_n(\mathbb{F})$
- 5. $(\mathbb{Q}^*, \cdot) \not< (\mathbb{R}, +)$ No es un subgrupo, ya que $i(1) = 1 \neq 0$.
- 6. $(\mathbb{Z}^+,+) \not< (\mathbb{Z},+)$, ya que $(\mathbb{Z}^+,+)$ no es un grupo.
- 7. $D_6 \not< D_8$, ya que $D_6 \not\subseteq D_8$.

Observación. Si G, H y T son grupos de forma que G < H < T, entonces G < T.

Demostración. La transitividad de \subseteq nos da que $G \subseteq H \subseteq T$. Por otra parte, como las inclusiones $j: G \to H$ y $k: H \to T$ son homomorfismos, tendremos que $i = k \circ j: G \to T$ es un homomorfismo.

¹Viene dada por i(x) = x, para todo $x \in H$.

Proposición 2.1. Sea G un grupo $y \emptyset \neq H \subseteq G$, entonces son equivalentes:

- i) H < G
- ii) Se verifican:
 - (a) $Si \ x, y \in H \ entonces \ xy \in H$.
 - (b) $1 \in H$.
 - (c) Si $x \in H$, entonces $x^{-1} \in H$.
- iii) Si $x, y \in H$, entonces $xy^{-1} \in H$.

Demostración. Veamos las implicaciones de forma cíclica:

- $i) \Longrightarrow ii$) Como H es un grupo, por su definición se han de cumplir (a), (b) y (c).
- $(ii) \Longrightarrow (ii)$ Si $x, y \in H$, entonces $y^{-1} \in H$, por lo que tendremos que $xy^{-1} \in H$.
- $iii) \Longrightarrow i$) Como $\emptyset \neq H$, existirá al menos un $x \in H$, por lo que $xx^{-1} = 1 \in H$. Además, si $x \in H$ también tendremos que $1x^{-1} = x^{-1} \in H$. Para ver que Hes un grupo, tan solo nos falta ver que su operación interna está bien definida; es decir, que si $x, y \in H$, entonces $xy \in H$. Dados $x, y \in H$, tendremos que $y^{-1} \in H$, por lo que:

$$xy = x(y^{-1})^{-1} \in H$$

Con esto tenemos ya que H es un grupo. Al considerar en H la misma operación que en G, tenemos directamente que $i: H \to G$ es un homomorfismo, ya que $id: H \to H$ es un homomorfismo y al extender el codominio para considerar la aplicación inclusión i, seguirá siendo un homomorfismo².

Proposición 2.2. Sea G un grupo finito $y \emptyset \neq H \subseteq G$, entonces son equivalentes:

- i) H < G
- ii) $Si \ x, y \in H$, entonces $xy \in H$

Demostración. Veamos las dos implicaciones:

- $i) \Longrightarrow ii$) Se verifica por ser H un grupo.
- $ii) \Longrightarrow i$) Como G es finito, por la Proposición 1.9, para todo $x \in G$ existirá n > 0de forma que $x^n = 1$, por lo que $x^{-1} = x^{n-1}$. De esto deducimos que $x^{-1} \in H$ y que $1 = xx^{-1} \in H$. Por la Proposición 2.1, H < G.

Ejemplo. Se deja como ejercicio comprobar que:

1. $A_n < S_n$

 $^{^2}$ Notemos que si en ${\cal H}$ tenemos una operación distinta que en ${\cal G}$ esto no siempre será cierto y habrá que comprobar que $i: H \to G$ es un homomorfismo.

- 2. Todo subgrupo de \mathbb{Z} es de la forma $n\mathbb{Z}$ con $n \in \mathbb{N}$.
- 3. $V < S_4$
- 4. Si $n \mid m$, entonces $D_n < D_m$

Definición 2.3. Sea G un grupo, $f:G\to G'$ una aplicación, y $H\subseteq G, H'\subseteq G'$, definimos:

 \blacksquare El conjunto imagen directa de H por f como el conjunto:

$$f_*(H) = \{f(x) \mid x \in H\} \subseteq G'$$

• El conjunto imagen inversa de H' por f como el conjunto:

$$f^*(H') = \{x \in G \mid f(x) \in H'\} \subseteq G$$

Proposición 2.3. Sea $f: G \to G'$ un homomorfismo de grupos, entonces:

- i) Si H < G, entonces $f_*(H) < G'$
- ii) Si H' < G', entonces $f^*(H') < G$

Demostración. Demostramos las dos implicaciones:

i) Sean $x, y \in f_*(H)$, entonces $\exists a, b \in H$ de forma que x = f(a), y = f(b). Como H es un subgrupo de G, tendremos que $ab^{-1} \in H$, por lo que:

$$f(ab^{-1}) = f(a)f(b)^{-1} = xy^{-1} \in f_*(H)$$

Concluimos que $f_*(H)$ es un subgrupo de G'.

ii) Sean $x, y \in f^*(H')$, entonces $a = f(x), b = f(y) \in H'$. Por ser H' un subgrupo de G', tendremos que

$$ab^{-1} = f(x)f(y)^{-1} = f(xy^{-1}) \in H'$$

Por tanto, $xy^{-1} \in f^*(H')$. Concluimos que $f^*(H')$ es un subgrupo de G.

Proposición 2.4. Sea $\{H_i\}_{i\in I}$ una familia de subgrupos de G, entonces la intersección de todos ellos sigue siendo un subgrupo de G:

$$\bigcap_{i \in I} H_i < G$$

Demostración. En primer lugar, como $H_i < G$ para todo $i \in I$, se ha de verificar que $1 \in H_i \ \forall i \in I$, por lo que $1 \in \bigcap_{i \in I} H_i \neq \emptyset$. Como la intersección es no vacía, podemos pensar en aplicar el tercer punto de la Proposición 2.1 para comprobar que es un subgrupo de G.

Para ello, sean $x, y \in \bigcap_{i \in I} H_i$, entonces $x, y \in H_i$ para todo $i \in I$, por lo que por ser $H_i < G$, tendremos que $xy^{-1} \in H_i \ \forall i \in I$, luego:

$$xy^{-1} \in \bigcap_{i \in I} H_i$$

Concluimos que $\bigcap_{i \in I} H_i$ es un subgrupo de G.

Ejemplo. En general, la unión de subgrupos no es un subgrupo:

$$2\mathbb{Z} \cup 3\mathbb{Z} \not< \mathbb{Z}$$

Ya que $2, 3 \in 2\mathbb{Z} \cup 3\mathbb{Z}$ y $2 + 3 = 5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

2.1. Generadores de subgrupos

Definición 2.4 (Subgrupo generado). Sea G un grupo y $S \subseteq G$, definimos el subgrupo generado por S como el menor subgrupo de G que contiene a S, es decir:

$$\langle S \rangle = \bigcap \{ H < G \mid S \subseteq H \}$$

Observación. Notemos que, gracias a la Proposición 2.4, $\langle S \rangle$ efectivamente es un subgrupo de G.

Proposición 2.5. Sea (G, \cdot, e) un grupo, $S \subseteq G$, entonces:

- $Si S = \emptyset$, entonces $\langle S \rangle = \{e\}$, el grupo trivial.
- Si $S \neq \emptyset$, entonces $\langle S \rangle = \{x_1^{\gamma_1} x_2^{\gamma_2} \dots x_m^{\gamma_m} \mid m \geqslant 1, x_i \in S, \gamma_i \in \mathbb{Z}\}$

Demostración. Distinguimos casos:

■ Si $S = \emptyset$, entonces $\{e\} < G$ con $S \subseteq \{e\}$. Como $\{e\}$ solo tiene un elemento y todo subgrupo de G contiene a e, concluimos que:

$$\langle S \rangle = \bigcap \{ H < G \mid S \subseteq H \} = \{ e \}$$

- Si $S \neq \emptyset$, por doble inclusión:
 - \supseteq) Como $S \subseteq \langle S \rangle$ y $\langle S \rangle$ es un grupo, tendremos que:

$$x_1^{\gamma_1} x_2^{\gamma_2} \dots x_m^{\gamma_m} \in \langle S \rangle \qquad x_i \in S, \gamma_i \in \mathbb{Z} \quad \forall 1 \leqslant i \leqslant m$$

 \subseteq) Si llamamos A al conjunto de la derecha, A es un grupo, ya que si tomamos $a,b\in A$, existirán x_1,\ldots,x_p y y_1,\ldots,y_q en S y $\gamma_1,\ldots,\gamma_p,\alpha_1,\ldots,\alpha_q\in\mathbb{Z}$ de forma que:

$$a = x_1^{\gamma_1} \dots x_p^{\gamma_p} \qquad b = y_1^{\alpha_1} \dots y_q^{\alpha_q}$$

Por lo que

$$ab^{-1} = x_1^{\gamma_1} \dots x_p^{\gamma_p} y_q^{-\alpha_q} \dots y_1^{-\alpha_1} \in A$$

Lo que demuestra que A es un subgrupo de G. Además, como es claro que $S \subseteq A$, tenemos un grupo del que S es subconjunto, por lo que por ser $\langle S \rangle$ el menor subgrupo que contiene a S, está claro que $\langle S \rangle \subseteq A$. \square

Corolario 2.5.1. Si $S \subseteq G$ de forma que $\langle S \rangle = G$, entonces S es un conjunto de generadores de G.

Demostración. Por la Proposición 2.5, sabemos que si $\langle S \rangle = G$, entonces cualquier elemento $x \in G$ se puede expresar de la forma:

$$x = x_1^{\gamma_1} x_2^{\gamma_2} \dots x_m^{\gamma_m} \qquad x_i \in S, \gamma_i \in \mathbb{Z}, \quad \forall 1 \leqslant i \leqslant m$$

Por lo que S es un conjunto de generadores de G.

Ejemplo. Ejemplos interesantes de subgrupos generados por ciertos conjuntos son:

1. Si
$$S = \{r\} \subseteq D_n$$
, entonces $\langle S \rangle = \{1, r, r^2, \dots, r^{n-1}\}$

2. Si
$$S = \{s\} \subseteq D_n$$
, entonces $\langle S \rangle = \{1, s\}$

3. Si
$$S = \{(1\ 2)(3\ 4), (1\ 3)(2\ 4)\} \subseteq S_4$$
, entonces $\langle S \rangle = V$

4. Si
$$S = \{(x_1 \ x_2 \ x_3) \mid x_1 < x_2 < x_3\} \subseteq S_n$$
, entonces $\langle S \rangle = A_n$

5. Si
$$S = \left\{ \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} \subseteq GL_2(\mathbb{C}), \text{ entonces } \langle S \rangle < GL_2(\mathbb{C}).$$

En la Proposición 2.4 vimos que la intersección de una familia arbitraria de subgrupos era un subgrupo, mientras que con el ejemplo de $2\mathbb{Z} \cup 3\mathbb{Z} \subseteq \mathbb{Z}$, vimos que, en general, la unión de dos subgrupos no es un subgrupo. Sin embargo, cabe preguntarse de qué forma podemos hacer una operación parecida con subgrupos para sí obtener un subgrupo. De esto nace la siguiente definición.

Definición 2.5 (Compuesto). Sea $\{H_i\}_{i\in I}$ una familia de subgrupos de un grupo G, llamamos compuesto de los subgrupos H_i , denotado por $\bigvee_{i\in I} H_i$, al subgrupo:

$$\bigvee_{i \in I} H_i = \left\langle \bigcup_{i \in I} H_i \right\rangle$$

Cuando tengamos un número finito de subgrupos $\{H_1, H_2, \dots, H_n\}$, notaremos:

$$H_1 \vee H_2 \vee \ldots \vee H_n$$

Notemos que es natural la definición, ya que como la unión de subgrupos no es en general un subgrupo, buscamos el menor subgrupo que contenga a la unión de subgrupos, que por definición es el compuesto de la familia de subgrupos que queríamos unir.

2.2. Retículo de subgrupos de un grupo

Introduciremos ahora el concepto de retículo³, estructura algebraica de gran interés que usaremos brevemente para trabajar de forma cómoda con el conjunto de todos los subgrupos de un grupo.

³Que en el contexto de teoría de conjuntos o del orden puede tener otra definición.

Definición 2.6 (Retículo). Un retículo es una tripleta (L, \vee, \wedge) donde:

- L es un conjunto no vacío.
- \wedge y \vee son dos operaciones⁴ binarias en L que verifican las leyes:
 - *i*) Conmutativa:

$$a \lor b = b \lor a$$
 $a \land b = b \land a$

ii) Asociativa:

$$a \lor (b \lor c) = (a \lor b) \lor c$$
 $a \land (b \land c) = (a \land b) \land c$

iii) de Absorción:

$$a \lor (a \land b) = a$$
 $a \land (a \lor b) = a$

iv) de Idempotencia:

$$a \lor a = a$$
 $a \land a = a$

En el caso de que (L, \vee, \wedge) sea un retículo, es común definir una relación binaria notada por " \leq " y definida por:

$$a \leqslant b \iff a \lor b = b \iff a \land b = a$$

donde para la segunda equivalencia hemos empleado la conmutatividad y la propiedad de absorción.

Proposición 2.6. Todo retículo (L, \vee, \wedge) junto con la relación de orden \leq que se define a partir de sus operaciones es un conjunto parcialmente ordenado.

Demostración. Hemos de probar las propiedades:

• Reflexiva. Por la propiedad de idempotencia, dado $a \in L$, tenemos que:

$$a \lor a = a \Longrightarrow a \leqslant a$$

■ Antisimétrica. Sean $a, b \in L$ de forma que $a \leq b$ y $b \leq a$. Por definición de \leq , tenemos que:

$$a \lor b = b$$
 $b \lor a = a$

Y aplicando la conmutatividad de ∨ llegamos a que:

$$a = a \lor b = b \lor a = b$$

■ Transitiva. Sean $a, b, c \in L$ de forma que $a \leq b$ y $b \leq c$, es decir, $a \vee b = b$ y $b \vee c = c$, entonces:

$$a \lor c = a \lor (b \lor c) = (a \lor b) \lor c = b \lor c = c$$

De donde deducimos que $a \leq c$.

 $^{^4}$ Es común referirse a \vee por "supremo" y a \wedge por "ínfimo".

Ejemplo. Ejemplos de retículos son:

- 1. El retículo endoplasmático rugoso.
- 2. Dado un número $n \in \mathbb{N}$, el conjunto de divisores de n:

$$D(n) = \{ m \in \mathbb{N} : m \text{ divide a } n \}$$

Junto con las operaciones de:

$$a \lor b = \operatorname{mcm}(a, b)$$

$$a \wedge b = \operatorname{mcd}(a, b)$$

forma un retículo⁵. En este, la relación de orden que obtenemos es la de "ser divisor de"; es decir, si $a, b \in D(n)$, entonces:

$$a \leqslant b \iff a \mid b$$

3. En la asignatura LMD vimos que los álgebras de Boole eran retículos.

Lema 2.7. Sea G un grupo y T, U < G, entonces:

$$\langle \langle T \rangle \cup U \rangle = \langle T \cup U \rangle$$

Demostración. Hagamoslo por doble inclusión:

⊇) Basta ver que:

$$T \subseteq \langle T \rangle \Longrightarrow T \cup U \subseteq \langle T \rangle \cup U \Longrightarrow \langle T \cup U \rangle \subseteq \langle \langle T \rangle \cup U \rangle$$

 \subseteq) Sea $x \in \langle \langle T \rangle \cup U \rangle$, entonces existirán $\alpha_1, \ldots, \alpha_n \in \langle T \rangle, u_1, \ldots, u_m \in U$ y $\gamma_1, \ldots, \gamma_{n+m} \in \mathbb{Z}$ de forma que:

$$x = \alpha_1^{\gamma_1} \dots \alpha_n^{\gamma_n} u_1^{\gamma_{n+1}} \dots u_m^{\gamma_{n+m}}$$

Pero por ser $\alpha_1, \ldots, \alpha_n \in \langle T \rangle$, podemos encontrar $t_{ij} \in T$ y $\delta_{ij} \in \mathbb{Z}$ de forma que:

$$\alpha_1 = t_{11}^{\delta_{11}} \dots t_{1n_1}^{\delta_{1n_1}}$$

:

$$\alpha_n = t_{n1}^{\delta_{n1}} \dots t_{nn_n}^{\delta_{nn_n}}$$

Por lo que:

$$x = t_{11}^{\delta_{11}} \dots t_{1n_1}^{\delta_{1n_1}} \dots t_{nn_n}^{\delta_{nn_n}} u_1^{\gamma_{n+1}} \dots u_m^{\gamma_{n+m}} \in \langle T \cup U \rangle$$

 $^5\mathrm{Es}$ un buen ejercicio comprobarlo.

Proposición 2.8. Sea G un grupo, si definimos el conjunto de subgrupos de G:

$$\Lambda_G = \{ H \subseteq G \mid H < G \}$$

Se verifica que Λ_G es un retículo, junto con las operaciones:

$$T \lor U = \langle T \cup U \rangle$$
$$T \land U = T \cap U$$

Además, la relación de orden en Λ_G es \subseteq .

Demostración. De Álgebra I ya sabemos que la intersección de conjuntos es conmutativa, asociativa y que tiene la propiedad de idempotencia. Veamos estas para el compuesto de dos subgrupos, que se deducen a partir de las propiedades conmutativa, asociativa y de idempotencia para la unión de dos conjuntos:

• Conmutativa. Sean $T, U \in \Lambda_G$:

$$T \vee U = \langle T \cup U \rangle = \langle U \cup T \rangle = U \vee T$$

• Asociativa. Sean $T, U, V \in \Lambda_G$:

$$T \vee (U \vee V) = T \vee \langle U \cup V \rangle = \langle T \cup \langle U \cup V \rangle \rangle \stackrel{(*)}{=} \langle T \cup U \cup V \rangle$$

$$\stackrel{(*)}{=} \langle \langle T \cup U \rangle \cup V \rangle = \langle T \cup U \rangle \vee V = (T \vee U) \vee V$$

Donde en (*) hemos aplicado el Lema anterior.

• Idempotencia. Sea $T \in \Lambda_G$:

$$T \lor T = \langle T \cup T \rangle = \langle T \rangle \stackrel{(*)}{=} T$$

Donde en (*) hemos usado que T es un grupo, por ser subgrupo de G.

Finalmente, nos queda comprobar las <u>propiedades de absorción</u>. Para ello, sean $T,U\in\Lambda_G$:

$$T \vee (T \cap U) = \langle T \cup (T \cap U) \rangle = \langle (T \cup T) \cap (T \cup U) \rangle = \langle T \cap (T \cup U) \rangle = \langle T \rangle = T$$
$$T \cap (T \vee U) = T \cap \langle T \cup U \rangle = T$$

Para ver que la relación de orden es \subseteq , notemos que si $T, U \in \Lambda_G$, entonces:

$$A \subseteq B \iff A \cap B = A$$

Que es como se define la relación de orden para los retículos.

Al trabajar con retículos, una estructura que surge de forma natural son los diagramas de Hasse, que nos permiten comprender mucho mejor la estructura de un retículo concreto.

Definición 2.7 (Diagrama de Hasse). Sea (L, \leq) un conjunto finito parcialmente ordenado, definimos su diagrama de Hasse como el grafo dirigido (V, E) donde:

- Los vértices son cada uno de los elementos de L, es decir: V = L.
- Dados dos vértices $a, b \in V$ con $a \neq b$, tendremos una arista de a a b $(a \to b)$ si $a \leq b$ y no existe ningún elemento $c \in V$ con $a \neq c \neq b$ de forma que $a \leq c \leq b$.

Es decir, escribiremos $a \to b$ en el caso en el que $a \le b$, obviando los ciclos (ya que \le es una relación reflexiva) y las relaciones que puedan deducirse de la transitividad de \le : si $a \le b$ y $b \le c$, no consideraremos la arista $a \to c$.

Notación. Por comodidad y claridad a la hora de dibujar los diagramas de Hasse, no dibujaremos grafos dirigidos, sino lo que haremos será primero ordenar los vértices por "niveles" en función de la cardinalidad de los subgrupos: colocaremos en el nivel más bajo el menor subgrupo del grupo que consideremos (notemos que siempre será el subgrupo trivial $\{e\}$) e iremos subiendo en niveles por la cardinalidad del subgrupo, hasta llegar al nivel superior, donde colocaremos al grupo de mayor cardinal (que coincidirá con el grupo que consideramos inicialmente).

En segundo lugar, uniremos aquellos nodos que han de estar unidos mediante aristas no dirigidas (entendiendo que en realidad son aristas dirigidas, todas ellas apuntando hacia arriba, que es donde están los conjuntos más grandes).

De esta forma, tendremos el diagrama de Hasse ordenado por niveles, donde podremos ver "qué tan grande" es cada subgrupo, así como las relaciones de inclusión entre ellos gracias a las aristas.

2.2.1. Ejemplos

Ejemplo. Diagramas de Hasse para ciertos retículos⁶ son:

1. Para $D(30) = \{1, 2, 3, 5, 6, 10, 15, 30\}$:

Figura 2.1: Diagragama de Hasse para D(30).

2. Para \mathcal{B}^3 , el álgebra de Boole con 3 elementos, tenemos:

⁶Notemos que cualquier retículo es un conjunto parcialmente ordenado.

Figura 2.2: Diagragama de Hasse para \mathcal{B}^3 .

Centrándonos ya en los retículos que nos interesan, daremos a continuación varios ejemplos de retículos formados por los subgrupos de un grupo dado, que representaremos mediante sus diagramas de Hasse (en estos aparecerán las aristas etiquetadas con números, que por ahora ignoraremos, pero que luego señalaremos lo que significan).

Ejemplo. Veamos varios ejemplos con grupos de la forma \mathbb{Z}_n :

1. Para calcular el retículo de subgrupos de \mathbb{Z}_4 , hemos de pensar primero en todos los subgrupos posibles de \mathbb{Z}_4 . Para ello⁷, vemos que:

$$\langle 0 \rangle = \{0\}$$

$$\langle 1 \rangle = \mathbb{Z}_4$$

$$\langle 2 \rangle = \{0, 2\}$$

$$\langle 3 \rangle = \mathbb{Z}_4$$

Concluimos que $\Lambda_{\mathbb{Z}_4} = \{\{0\}, \{0, 2\}, \mathbb{Z}_4\}$. Pasamos ahora a ver cómo se relacionan mediante su diagrama de Hasse.

Figura 2.3: Diagrama de Hasse para los subgrupos de \mathbb{Z}_4 .

2. En \mathbb{Z}_6 tenemos que⁸:

$$\langle 1 \rangle = \langle 5 \rangle = \mathbb{Z}_6$$
$$\langle 2 \rangle = \langle 4 \rangle = \{0, 2, 4\}$$
$$\langle 3 \rangle = \{0, 3\}$$

⁷Al final del tema se entenderá por qué es suficiente con esto.

⁸Hemos escrito directamente los subgrupos de \mathbb{Z}_6 , pero lo que hemos hecho para buscarlos todos es pensar en todos los posibles conjuntos de generadores.

Y podemos dibujar su diagrama de Hasse:

Figura 2.4: Diagrama de Hasse para los subgrupos de \mathbb{Z}_6 .

3. En \mathbb{Z}_8 , tenemos que:

$$\langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle = \mathbb{Z}_8$$

 $\langle 2 \rangle = \langle 6 \rangle = \{0, 2, 4, 6\}$
 $\langle 4 \rangle = \{0, 4\}$

Figura 2.5: Diagrama de Hasse para los subgrupos de \mathbb{Z}_8 .

4. En \mathbb{Z}_{12} , tenemos:

$$\langle 1 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 11 \rangle = \mathbb{Z}_{12}$$

$$\langle 2 \rangle = \langle 10 \rangle = \{0, 2, 4, 6, 8, 10\}$$

$$\langle 3 \rangle = \langle 9 \rangle = \{0, 3, 6, 9\}$$

$$\langle 4 \rangle = \langle 8 \rangle = \{0, 4, 8\}$$

$$\langle 6 \rangle = \{0, 6\}$$

Figura 2.6: Diagrama de Hasse para los subgrupos de \mathbb{Z}_{12} .

Ejemplo. Si trabajamos ahora con otro tipo de grupos:

1. Si consideramos el grupo de Klein:

$$V = \{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

Todos sus subgrupos posibles son:

$$V, \langle (1\ 2)(3\ 4) \rangle, \langle (1\ 3)(2\ 4) \rangle, \langle (1\ 4)(2\ 3) \rangle, \{1\}$$

Figura 2.7: Diagrama de Hasse para los subgrupos del grupo de Klein.

2. En el grupo de los cuaternios:

$$Q_2 = \{\pm 1, \pm i, \pm j, \pm k\}$$

Los subgrupos posibles son:

$$Q_2, \langle i \rangle, \langle j \rangle, \langle k \rangle, \langle -1 \rangle, \{1\}$$

Figura 2.8: Diagrama de Hasse para los subgrupos del grupo de los cuaternios.

3. En $S_3 = \{1, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$, los posibles subgrupos son:

$$S_3, \langle (1\ 2\ 3) \rangle, \langle (1\ 2) \rangle, \langle (1\ 3) \rangle, \langle (2\ 3) \rangle, \{1\}$$

Figura 2.9: Diagrama de Hasse para los subgrupos de S_3 .

4. En $D_4 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, los posibles subgrupos son:

$$\langle r \rangle = \langle r^3 \rangle = \{1, r, r^2, r^3\}$$

$$\langle r^2 \rangle = \{1, r^2\}$$

$$\langle s \rangle = \{1, s\}$$

$$\langle sr \rangle = \{1, sr\}$$

$$\langle sr^2 \rangle = \{1, sr^2\}$$

$$\langle sr^3 \rangle = \{1, sr^3\}$$

$$\langle r^2, s \rangle = \{1, r^2, s, sr^2\}$$

$$\langle r^2, sr \rangle = \{1, r^2, sr, sr^3\}$$

Figura 2.10: Diagrama de Hasse para los subgrupos de D_4 .

Ejemplo. Obtenemos un ejemplo interesante al considerar los grupos:

$$G = \langle x, y \mid x^8 = y^2 = 1, xy = yx \rangle$$

$$H = \langle u, v \mid u^2 = v^8 = 1, vu = uv^5 \rangle$$

Donde H recibe el nombre de "grupo modular de orden 16", notemos que ambos grupos tienen orden 16. En general, si consideramos dos grupos isomorfos, obtendremos dos diagramas de Hasse que serán grafos isomorfos entre sí. Sin embargo, el recíproco no es cierto, si tenemos dos diagramas de Hasse que sean grafos isomorfos, los grupos de los que partían no tienen por qué ser isomorfos. En este ejemplo se pone de manifiesto, ya que G y H no son isomorfos (basta con observar que G es conmutativo y H no), pero veremos que tienen diagramas de Hasse isomorfos. Antes de ello, debemos calcular todos los subgrupos de cada uno, cosa que no vamos a detallar pero sí daremos aquellos subgrupos más grandes:

- G tiene 3 subgrupos de orden 8: $\langle x^2, y \rangle$, $\langle x \rangle$, $\langle xy \rangle$.
- H tiene 3 subgrupos de orden 8: $\langle u, v^2 \rangle$, $\langle u \rangle$, $\langle uv \rangle$.

Figura 2.11: Diagrama de Hasse para los subgrupos de G.

Figura 2.12: Diagrama de Hasse para los subgrupos de H.

A lo largo de todos estos ejemplos hemos debido darnos cuenta de una particularidad, que se pone de manifiesto especialmente en el ejemplo de los \mathbb{Z}_n . Resulta que los órdenes de los subgrupos que hemos ido obteniendo dividían al orden del grupo, resultado que luego demostraremos en general. Sin embargo, estamos ya en condiciones de demostrar que el contrarrecíproco no es cierto en general, es decir, no todos los divisores del orden de un grupo se corresponden con el orden de algún subgrupo suyo.

Proposición 2.9. El orden del subgrupo divide al orden del grupo, pero no todos los divisores del orden del grupo se corresponden con el orden de algún subgrupo suyo.

Veremos que el orden de todo subgrupo divide al orden del grupo (en caso de ser el grupo finito) en el Teorema de Lagrange (Teorema 2.13).

Ejemplo. Para ver que el recíproco no se cumple, consideramos:

$$A_4 = \{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (2\ 3\ 4), (1\ 3\ 2), (1\ 4\ 2), (1\ 4\ 3), (2\ 4\ 3)\}$$

Que recordamos tiene de orden:

$$|A_4| = \frac{4!}{2} = 4 \cdot 3 = 12$$

Y todos los posibles divisores de 12 son:

$$D(12) = \{1, 2, 3, 4, 6, 12\}$$

Sin embargo, A_4 tiene:

- Un subgrupo de orden 1, {1}.
- Cuatro subgrupos de orden 3.
- Un subgrupo de orden 4, $V < A_4$.
- Tres subgrupos de orden 2.
- Un subgrupo de orden 12, A_4 .

Más aún, veamos que es imposible que tenga un subgrupo de orden 6.

Demostración. Supongamos que existe $H < A_4$ de forma que |H| = 6. En dicho caso, viendo todos los elementos de A_4 , concluimos que H debe contener al menos un 3-ciclo:

$$(x_1 \ x_2 \ x_3) \in H$$

En dicho caso, por ser H un subgrupo de A_4 , también debe estar su elemento inverso:

$$(x_1 \ x_3 \ x_2) \in H$$

Ahora, distingamos casos:

■ Si H no tiene más 3—ciclos, la única posibilidad (observando nuevamente todos los elementos de A_4) es que H sea de la forma:

$$H = \{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (x_1\ x_2\ x_3), (x_1\ x_3\ x_2)\}$$

En cuyo caso, observemos que V < H. Sin embargo, $|V| = 4 \nmid 6 = |H|$, contradicción.

■ Si H tiene otro 3—ciclo, por ejemplo $(x_1 \ x_2 \ x_4)$, también ha de contener a su inverso, por lo que:

$$\{(x_1 \ x_2 \ x_3), (x_1 \ x_3 \ x_2), (x_1 \ x_2 \ x_4), (x_1 \ x_4 \ x_2)\} \subseteq H$$

Sin embargo, como:

$$(x_1 \ x_2 \ x_3)(x_1 \ x_4 \ x_2) = (x_1 \ x_4 \ x_3)$$

Concluimos que también $(x_1 \ x_4 \ x_3)$ y su inverso: $(x_1 \ x_3 \ x_4)$ deben estar en H, luego H es un subgrupo formado por 6 3—ciclos, contradicción, ya que H debe también contener al 1.

Concluimos que no puede existir un subgrupo de A_4 con 6 elementos.

2.3. Índice y Teorema de Lagrange

Definición 2.8. Sea G un grupo, H, K < G, definimos:

$$HK = \{hk \mid h \in H, k \in K\}$$

Proposición 2.10. Sea G un grupo, H, K < G, tenemos que HK es un subgrupo de G si y solo si HK = KH. En cuyo caso, tendremos que:

$$HK = H \vee K$$

Demostración. Por doble implicación:

- \Longrightarrow) Veamos que KH = HK por doble inclusión:
 - \subseteq) Sean $k \in K, h \in H$, tenemos que:

$$kh = (h^{-1}k^{-1})^{-1} \in HK \Longrightarrow KH \subseteq HK$$

 \supseteq) Observemos que la única hipótesis que tenemos es que HK es un subgrupo de G (nada tenemos sobre KH). Sean $h \in H, k \in K$:

$$hk = (k^{-1}h^{-1})^{-1} \in HK$$

Por lo que $k^{-1}h^{-1} \in HK$, luego existirán $h_1 \in H$, $k_1 \in K$ de forma que:

$$k^{-1}h^{-1} = h_1k_1$$

Finalmente:

$$hk = (k^{-1}h^{-1})^{-1} = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH$$

 \iff Sean $hk, h_1k_1 \in HK$, queremos ver qué pasa con $hk(h_1k_1)^{-1}$:

$$hk(h_1k_1)^{-1} = hkk_1^{-1}h_1^{-1} \stackrel{(*)}{=} hk_2h_2 \stackrel{(**)}{=} hh_3k_3 \in HK$$

Donde:

- En (*) hemos aplicado que K es un grupo, ya que si $k, k_1 \in K$, entonces $kk_1^{-1} \in K$, por lo que existirá $k_2 = kk_1^{-1} \in K$. De forma análoga, como $h_1 \in H$, tenemos que $h_1^{-1} \in H$, por lo que existirá $h_2 = h_1^{-1} \in H$.
- En (**) hemos aplicado que $k_2h_2 \in KH = HK$, por lo que existirán $h_3 \in H$, $k_3 \in K$ de forma que $k_2h_2 = h_3k_3$.

Falta ver que si HK < G con HK = KH (que ya sabemos que son equivalentes), entonces:

$$HK = H \vee K$$

- \subseteq) Sea $x \in HK$, entonces $\exists h \in H, k \in K$ de forma que $x = hk \in \langle H \cup K \rangle = H \vee K$.
- ⊇) Sea $x \in H \vee K$, entonces sabemos que existen $\alpha_1, \ldots, \alpha_n \in H \cup K$ y $\gamma_1, \ldots, \gamma_n \in \mathbb{Z}$ de forma que:

$$x = \alpha_1^{\gamma_1} \dots \alpha_n^{\gamma_n}$$

Como HK = KH, tras varias conmutaciones de términos, existirán $h_1, \ldots, h_p \in H$, $k_{p+1}, \ldots, k_n \in K$ y $\delta_1, \ldots, \delta_n \in \mathbb{Z}$ de forma que:

$$x = h_1^{\delta_1} \dots h_p^{\delta_p} k_{p+1}^{\delta_{p+1}} \dots k_n^{\delta_n}$$

Y por ser H y K grupos, tendremos que:

$$h = h_1^{\delta_1} \dots h_p^{\delta_p} \in H$$
$$k = k_{p+1}^{\delta_{p+1}} \dots k_n^{\delta_n} \in K$$

Por lo que $x = hk \in HK$.

Definición 2.9. Sea G un grupo y H < G, definimos dos relaciones binarias en G:

• La relación $_{H}\sim$ definida por:

$$y_H \sim x \iff x^{-1}y \in H$$

• La relación \sim_H definida por:

$$y \sim_H x \iff yx^{-1} \in H$$

Proposición 2.11. Sea G un grupo y H < G, se verifica que $_H$ $\sim y$ \sim_H son relaciones de equivalencia en G. Además, dado $x \in G$, se tiene que sus clases de equivalencia son de la forma:

$$_{H}[x] = \{xh \mid h \in H\}$$
$$[x]_{H} = \{hx \mid h \in H\}$$

Demostración. Comprobemos primero que $H \sim Y \sim_H$ son relaciones de equivalencia:

 $^{^9\}mathrm{Que}$ denotaremos por $_H[x]$ y por $[x]_H$ respectivamente.

■ Propiedad reflexiva. Como H es un grupo, $1 \in H$, por lo que dado $x \in G$:

$$xx^{-1} = x^{-1}x = 1 \in H$$

De donde deducimos que $x \sim_H x$ y $x_H \sim x$, de forma respectiva.

- Propiedad simétrica. Sean $x, y \in G$:
 - Si $x_H \sim y$, entonces $y^{-1}x \in H$, pero por ser H un grupo, también tendremos:

$$(y^{-1}x)^{-1} = x^{-1}y \in H$$

De donde deducimos que $y_H \sim x$.

• Si $x \sim_H y$, entonces $xy^{-1} \in H$, y por ser H un grupo:

$$(xy^{-1})^{-1} = yx^{-1} \in H$$

De donde deducimos que $y \sim_H x$.

- Propiedad transitiva. Sean $x, y, z \in G$:
 - Si $x_H \sim y$ y $y_H \sim z$, entonces: $y^{-1}x, z^{-1}y \in H$ y por ser H un grupo, deducimos que:

$$(z^{-1}y)(y^{-1}x) = z^{-1}x \in H$$

De donde $x_H \sim z$.

• Si $x \sim_H y$ y $y \sim_H z$, entonces $xy^{-1}, yz^{-1} \in H$ y por ser H un grupo:

$$(xy^{-1})(yz^{-1}) = xz^{-1} \in H$$

De donde $x \sim_H z$.

Concluimos que $_{H}\sim \ \mathrm{y}\sim_{H}$ son relaciones de equivalencia en G. Falta comprobar las igualdades:

$$_{H}[x] \stackrel{(1)}{=} \{xh \mid h \in H\}$$
$$[x]_{H} \stackrel{(2)}{=} \{hx \mid h \in H\}$$

1. Sean $x, y \in G$, tenemos que:

$$\begin{array}{c} x_{H} \sim y \Longleftrightarrow y^{-1}x \in H \Longleftrightarrow \exists h \in H \text{ con } y^{-1}x = h \Longleftrightarrow \exists h \in H \text{ con } y^{-1} = hx^{-1} \\ \Longleftrightarrow \exists h \in H \text{ con } y = xh^{-1} \Longleftrightarrow \exists h' \in H \text{ con } y = xh' \end{array}$$

Concluimos que se cumple (1).

2. Sean $x, y \in G$:

$$x \sim_H y \iff xy^{-1} \in H \iff \exists h \in H \text{ con } xy^{-1} = h \iff \exists h \in H \text{ con } y = h^{-1}x$$

$$\iff \exists h' \in H \text{ con } y = hx$$

Concluimos que también se cumple (2).

Definición 2.10. Sea G un grupo y H < G:

■ Si consideramos la relación H^{∞} , dado $x \in G$, definimos la clase lateral por la izquierda de G en H definida por x a la clase de equivalencia de x por la relación de equivalencia H^{∞} , que denotamos por:

$$xH = \{xh \mid h \in H\}$$

De esta forma, tendremos que el conjunto cociente dado por la relación es de la forma:

$$G/_{H} \sim = \{xH \mid x \in G\}$$

■ Si consideramos ahora la relación \sim_H , dado $x \in G$, definimos la clase lateral por la derecha de G en H definida por x a la clase de equivalencia de x por la relación de equivalencia \sim_H , denotada por:

$$Hx = \{ hx \mid h \in H \}$$

Y consideraremos el conjunto cociente:

$$G/\sim_H=\{Hx\mid x\in G\}$$

Ejemplo. En $S_3 = \{1, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$, si consideramos como H: $H = \langle (1\ 2) \rangle = \{1, (1\ 2)\}$

Podemos calcular todas las clases laterales por la izquierda de G en H si consideramos la relación $_{H}\sim$:

$$1H = \{1 \cdot 1, 1(1\ 2)\} = \{1, (1\ 2)\} = H$$

$$(1\ 2)H = \{(1\ 2)1, (1\ 2)(1\ 2)\} = \{(1\ 2), 1\} = H$$

$$(1\ 3)H = \{(1\ 3)1, (1\ 3)(1\ 2)\} = \{(1\ 3), (1\ 2\ 3)\}$$

$$(2\ 3)H = \{(2\ 3)1, (2\ 3)(1\ 2)\} = \{(2\ 3), (1\ 3\ 2)\}$$

$$(1\ 2\ 3)H = \{(1\ 2\ 3)1, (1\ 2\ 3)(1\ 2)\} = \{(1\ 2\ 3), (1\ 3)\} = (1\ 3)H$$

$$(1\ 3\ 2)H = \{(1\ 3\ 2)1, (1\ 3\ 2)(1\ 2)\} = \{(1\ 3\ 2), (2\ 3)\} = (2\ 3)H$$

Por lo que el conjunto cociente $G/_{H}\sim$ vendrá dado por:

$$G/_{H} {\sim} = \{H, (1\ 3)H, (2\ 3)H\}$$

Si ahora calculamos todas las clases laterales por la derecha de G en H, considerando la relación \sim_H , entonces:

$$H1 = \{1 \cdot 1, (1\ 2)1\} = \{1, (1\ 2)\} = H$$

$$H(1\ 2) = \{1(1\ 2), (1\ 2)(1\ 2)\} = \{(1\ 2), 1\} = H$$

$$H(1\ 3) = \{1(1\ 3), (1\ 2)(1\ 3)\} = \{(1\ 3), (1\ 3\ 2)\}$$

$$H(2\ 3) = \{1(2\ 3), (1\ 2)(2\ 3)\} = \{(2\ 3), (1\ 2\ 3)\}$$

$$H(1\ 2\ 3) = \{1(1\ 2\ 3), (1\ 2)(1\ 2\ 3)\} = \{(1\ 2\ 3), (2\ 3)\} = H(2\ 3)$$

$$H(1\ 3\ 2) = \{1(1\ 3\ 2), (1\ 2)(1\ 3\ 2)\} = \{(1\ 3\ 2), (1\ 3)\} = H(1\ 3)$$

Por lo que el conjunto cociente G/\sim_H vendrá dado por:

$$G/\sim_H = \{H, H(1\ 3), H(2\ 3)\}$$

Proposición 2.12. Sea G un grupo, H < G y $x \in G$, entonces:

- $i) \ x \in xH \ y \ x \in Hx.$
- ii) Los conjuntos H, xH y Hx son biyectivos.
- iii) Los conjuntos cocientes $G/_{H} \sim y G/_{H}$ son biyectivos.

Demostración. Veamos cada una de ellas:

i) Como H es un grupo, tendremos que $1 \in H$, por lo que:

$$x = x \cdot 1 \in xH$$
 $x = 1 \cdot x \in Hx$

ii) Sean $f: xH \longrightarrow H, g: H \longrightarrow Hx$ dadas por:

$$f(xh) = h$$
 $\forall xh \in xH$
 $g(h) = hx$ $\forall h \in H$

Es fácil comprobar que f y g son biyectivas, por lo que xH es biyectivo con H y H es biyectivo con Hx. Basta considerar $g \circ f$ para obtener una biyección de xH con Hx.

iii) Sea $f:G/_{H}{\sim}\longrightarrow G/\sim_{H}$ dada por:

$$f(xH) = Hx^{-1} \qquad \forall xH \in G/_{H} \sim$$

En primer lugar, hemos de ver que f está bien definida. Para ello, sean $x,y\in G$ de forma que xH=yH, entonces $x_H\sim y$, luego $y^{-1}x\in H$, pero por ser H un grupo:

$$(y^{-1}x)^{-1} = x^{-1}y \in H \Longrightarrow x^{-1} \sim_H y^{-1}$$

Por lo que $Hx^{-1}=Hy^{-1}$, luego f está bien definida. Finalmente, es fácil ver que f es biyectiva.

Definición 2.11 (Índice de un grupo en un subgrupo). Sea G un grupo y H < G, en la Proposición 2.12, vimos que:

$$|G/_{H}{\sim}| = |G/\sim_{H}|$$

Los cardinales de estos conjuntos recibirán el nombre de <u>índice de G en H</u>, y los denotaremos por [G:H].

Ejemplo. En los diagramas de Hasse de las Figuras 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 y 2.10, los números que dibujábamos en las aristas de los diagramas de Hasse eran los índices de los grupos en los respectivos subgrupos marcados por la arista. Por ejemplo, en la Figura 2.9, observamos que $[S_3 : \langle (1 \ 2) \rangle] = 3$, algo que comprobamos en el último ejemplo, donde tomábamos:

$$H = \langle (1\ 2) \rangle = \{1, (1\ 2)\}$$

En esta situación, teníamos que $[S_3:H]=|G/\sim_H|=|G/_{H}\sim|=3.$

Teorema 2.13 (de Lagrange). Sea G un grupo finito y H < G, entonces:

$$|G| = [G:H]|H|$$

Observemos que a partir de esta igualdad deducimos que |H| divide a |G|.

Demostración. Como $_{H}\sim$ es una relación de equivalencia, tenemos una partición de G a partir de las clases de equivalencia dadas por esta relación:

$$G = \bigcup_{x \in G} xH$$

Como G es finito, habrá un número finito de clases de equivalencia. Si elegimos un elemento en cada una de estas, tendremos un conjunto con cada uno de los representantes de las clases $\{x_1, x_2, \ldots, x_n\}$, con lo que:

$$|G| = |x_1H| + |x_2H| + \ldots + |x_nH| \stackrel{(*)}{=} n|H|$$

Donde en (*) hemos usado la Proposición 2.12, ya que como xH es biyectivo con H para cualquier $x \in G$, concluimos que $|x_iH| = |x_1H|$ para todo $i \in \{1, ..., n\}$. Sin embargo, n es el número de clases de equivalencia distintas del conjunto cociente, es decir, n = [G:H], con lo que:

$$|G| = [G:H]|H|$$

Observación. Notemos que a partir del Teorema de Lagrange podemos deducir resultados ya vistos y demostrados, como por ejemplo, la Proposición 1.22, donde deducíamos el orden de los grupos $|\operatorname{SL}_n(\mathbb{F})|$, pero resulta que $[\operatorname{GL}_n(\mathbb{F}):\operatorname{SL}_n(\mathbb{F})]=q-1$ si $|\mathbb{F}|=q$, por lo que:

$$|\operatorname{GL}_n(\mathbb{F})| = (q-1)|\operatorname{SL}_n(\mathbb{F})|$$

Corolario 2.13.1. Sea G un grupo finito, el orden de cualquier elemento de G divide a |G|.

Demostración. Sea $x \in G$, basta ver que $O(x) = |\langle x \rangle|$. Sin embargo, por la Proposición 1.9, ya vimos que por ser G un grupo finito, entonces $\exists n \in \mathbb{N} \setminus \{0\}$ de forma que O(x) = n. En esta misma Proposición vimos que entonces x tenía n potencias distintas, por lo que:

$$\langle x \rangle = \{1, x, x^2, \dots, x^{n-1}\} \Longrightarrow |\langle x \rangle| = n$$

Basta aplicar el Teorema de Lagrange, puesto que $\langle x \rangle < G$.

Corolario 2.13.2. Sea G un grupo finito y K < H < G, entonces:

$$[G:K]=[G:H][H:K] \\$$

Demostración. Por el Teorema de Lagrange, sabemos que:

$$|G| = [G:K]|K| \\ |G| = [G:H]|H| = [G:H][H:K]|K| \\ \right\} \Longrightarrow [G:K] = [G:H][H:K]$$

2.4. Propiedades de grupos cíclicos

Terminaremos este capítulo repasando varias propiedades de los grupos cíclicos que debemos conocer, no sin antes recordar la definición de un grupo cíclico. Decimos que un grupo G es cíclico si $\exists a \in G$ de forma que $G = \langle a \rangle$. En cuyo caso, todos los elementos de G serán potencias de G: si G0, existirá G1, existirá G2, existirá G3, existirá G4, existirá G5, existirá G6, existirá G7, existirá G8, existirá G9, existirá G9,

Antes de continuar, recordamos una propiedad de los grupos cíclicos: sea $G=\langle a\rangle$ un grupo cíclico, entonces:

$$|G| = O(a)$$

Proposición 2.14. Si G es un grupo con |G| = p primo, entonces G es cíclico.

Demostración. Sea $a \in G$, $a \neq 1$ (como p es primo, $p \geqslant 2$), observamos que:

$$\{1\} \neq \langle a \rangle < G$$

Por el Teorema de Lagrange, $1 \neq |\langle a \rangle|$ divide a |G|, pero p es primo, por lo que $|\langle a \rangle| = p$ y ha de ser $\langle a \rangle = G$.

Lema 2.15. Sea G un grupo, $a \in G$, existe un homomorfismo de grupos

$$\varphi_a:\mathbb{Z}\to G$$

De forma que $\varphi_a(1) = a$ y $Im(\varphi_a) = \{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$.

Demostración. Definimos φ_a como la aplicación:

$$\varphi_a(n) = a^n \quad \forall n \in \mathbb{Z}$$

Es claro que $\varphi_a(1) = a$ y que $Im(\varphi_a) = \{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$. Falta ver que φ_a es un homomorfismo. Para ello:

$$\varphi_a(n+m) = a^{n+m} = a^n a^m = \varphi_a(n)\varphi_a(m) \quad \forall n, m \in \mathbb{Z}$$

Teorema 2.16. Sea G un grupo cíclico, entonces:

- Si G es infinito, $G \cong \mathbb{Z}$.
- $Si |G| = n, G \cong \mathbb{Z}_n.$

Demostración. Como G es cíclico, existirá $a \in G$ de forma que $\langle a \rangle = G$. El Lema anterior nos da una aplicación $\varphi_a : \mathbb{Z} \to G$ sobreyectiva, veamos cómo conseguir la inyectividad:

■ Si G es infinito, entonces ha de ser $O(a) = +\infty$, por lo que $\nexists n \in \mathbb{N} \setminus \{0\}$ de forma que $\varphi_a(n) = a^n = 1$, por lo que:

$$\ker(\varphi_a) = \{0\} \Longrightarrow \varphi_a \text{ inyectiva}$$

Concluimos que $G \cong \mathbb{Z}$.

- Si G es finito y tiene cardinal $n \in \mathbb{N} \setminus \{0\}$, entonces tendremos que O(a) = n, por lo que $\varphi_a(n) = a^n = 1$ y φ_a no será inyectiva por ser $\{0, n\} \subseteq \ker(\varphi_a)$. Sin embargo, podemos definir la aplicación $\psi_a : \mathbb{Z}_n \to G$ dada por $\psi_a(\overline{r}) = a^r$ para todo $\overline{r} \in \mathbb{Z}_n$:
 - ψ_a está bien definida, ya que si $\overline{r}, \overline{s} \in \mathbb{Z}_n$ de forma que $\overline{r} = \overline{s}$, entonces:

$$r - s \in n\mathbb{Z} \Longrightarrow \exists t \in \mathbb{Z} \text{ con } a^{r-s} = a^{nt} = (a^n)^t = 1 \Longrightarrow a^r = a^s$$

• ψ_a es un homomorfismo:

$$\psi_a(\overline{r} + \overline{s}) = a^{r+s} = a^r a^s = \psi_a(\overline{r})\psi_a(\overline{s}) \qquad \forall \overline{r}, \overline{s} \in \mathbb{Z}_n$$

• ψ_a es inyectiva, ya que si $\overline{r} \in \mathbb{Z}_n$ con $\psi_a(\overline{r}) = a^r = 1$, entonces $n \mid r$, luego $\overline{r} = \overline{0}$ y se tiene que:

$$\ker(\psi_a) = \{\overline{0}\}\$$

• Como $\langle a \rangle = G$ y |G| = n = O(a), está claro que ψ_a es sobreyectiva.

Por todo esto, concluimos que ψ_a es un isomorfismo, luego $G \cong \mathbb{Z}_n$.

Proposición 2.17. Sea $G = \langle a \rangle$ un grupo cíclico con O(a) = n, entonces para cada divisor m de n, existe un único subgrupo de G de orden m, el subgrupo cíclico $\langle a^{\frac{n}{m}} \rangle$. Además, estos son los únicos subgrupos de G.

Demostración. Sea m un divisor de n, veamos que $\langle a^{\frac{n}{m}} \rangle$ es un grupo cíclico de orden m. Para ello, veamos que $O\left(a^{\frac{n}{m}}\right) = m$:

• En primer lugar, tenemos que:

$$\left(a^{\frac{n}{m}}\right)^m = a^n = 1$$

• Sea $t \in \mathbb{N} \setminus \{0\}$ de forma que:

$$\left(a^{\frac{n}{m}}\right)^t = 1 \Longrightarrow n \mid \frac{nt}{m}$$

En cuyo caso, existe $r \in \mathbb{N}$ de forma que:

$$\frac{nt}{m} = rn \Longrightarrow t = rm \Longrightarrow m \mid t$$

Concluimos que $O(a^{\frac{n}{m}}) = m$. Ahora, si H < G, nos gustaría probar que si |H| = m, entonces:

$$m \in Div(n)$$
 y $H = \langle a^{\frac{n}{m}} \rangle$

En primer lugar, observemos que si H < G, por el Teorema de Lagrange tenemos que $m \mid n$. Para ver la igualdad, sea:

$$k = \min\{t \in \mathbb{N} \setminus \{0\} \mid a^t \in H\}$$

Veamos que $H = \langle a^k \rangle$:

- \supseteq) Se tiene por la definición de k.
- \subseteq) Sea $b \in H < G = \langle a \rangle$, entonces $\exists s \in \mathbb{N}$ de forma que $b = a^s$. Si dividimos s entre k, tenemos que $\exists q, r \in \mathbb{N}$ de forma que:

$$s = kq + r$$
 $0 \le r < k$

Y por ser $a^s, a^k \in H$, vemos que:

$$a^r = a^s a^{-kq} \in H$$

Por esto, concluimos que r = 0, ya que k era el menor natural no nulo que cumplía esta propiedad (y r < k), por lo que s = kq y:

$$b = \left(a^k\right)^q \in \langle a^k \rangle$$

Falta finalmente ver que k = n/m. Para ello, como $a^n = 1 \in H$ por ser H un grupo, tenemos que $k \leq n$ y si dividimos n entre k, $\exists q, r \in \mathbb{N}$ de forma que:

$$n = qk + r \qquad 0 \leqslant r < k$$

De donde: $1 = a^n = a^{qk}a^r$, pero por ser $1 \in H$ y $a^{qk} \in H$, deducimos que $a^r \in H$ con r < k, luego ha de ser r = 0 (ya que si no entraría en contradicción con la definición de k), por lo que $k \mid n$. De aquí deducimos que:

$$m = |H| = O(a^k) \stackrel{(*)}{=} \frac{n}{k} \Longrightarrow k = \frac{n}{m}$$

Donde en (*) hemos usado que $O(a^k) = \frac{n}{k}$, ya que:

■ En primer lugar:

$$\left(a^{k}\right)^{\frac{n}{k}} = a^{n} = 1$$

• Si $t \in \mathbb{N}$ de forma que:

$$\left(a^{k}\right)^{t} = 1 = a^{n}$$

Como O(a) = n, por la Proposición 1.8, tenemos que $n \mid kt$, luego existe s de forma que:

$$ns = kt \Longrightarrow \frac{n}{k}s = t$$

Por lo que $\frac{n}{k} \mid t$.

Lo que nos dice que $O(a^k) = \frac{n}{k}$.

Observación. De la Proposición anterior, deducimos que dado G un grupo cíclico con |G|=n, entonces la aplicación $\phi:Div(n)\to\Lambda_G$ con:

$$\Lambda_G = \{ H \subseteq G \mid H < G \}$$

dada por:

$$\phi(m) = \left\langle a^{\frac{n}{m}} \right\rangle \qquad \forall m \in Div(n)$$

Es una biyección.

Ejemplo. A partir de esta última observación, es muy fácil calcular todos los subgrupos de cualquier grupo cíclico, ya que el problema se reduce a estudiar todos los divisores del orden del grupo. Ilustramos el procedimiento con el grupo cíclico de orden 12:

$$C_{12} = \langle x \mid x^{12} = 1 \rangle$$

Tenemos que:

$$Div(12) = \{1, 2, 3, 4, 6, 12\}$$

Y usando nuestra aplicación ϕ , podemos listar todos los subgrupos de C_{12} :

$$1 \stackrel{\phi}{\longmapsto} \left\langle x^{\frac{12}{1}} \right\rangle = \left\langle x^{12} \right\rangle = \left\langle 1 \right\rangle = \left\{ 1 \right\}$$

$$2 \longmapsto \left\langle x^{\frac{12}{2}} \right\rangle = \left\langle x^6 \right\rangle = \left\{ 1, x^6 \right\}$$

$$3 \longmapsto \left\langle x^{\frac{12}{3}} \right\rangle = \left\langle x^4 \right\rangle = \left\{ 1, x^4, x^8 \right\}$$

$$4 \longmapsto \left\langle x^{\frac{12}{4}} \right\rangle = \left\langle x^3 \right\rangle = \left\{ 1, x^3, x^6, x^9 \right\}$$

$$6 \longmapsto \left\langle x^{\frac{12}{6}} \right\rangle = \left\langle x^2 \right\rangle = \left\{ 1, x^2, x^4, x^6, x^8, x^{10} \right\}$$

$$12 \longmapsto \left\langle x^{\frac{12}{12}} \right\rangle = \left\langle x \right\rangle = C_{12}$$

Por lo que su diagrama de Hasse será de la forma:

Figura 2.13: Diagrama de Hasse para los subgrupos de C_{12} .

Corolario 2.17.1. Si tenemos un grupo cíclico de orden p^n con p primo, entonces todos sus subgrupos serán cíclicos y de orden p^r , con $0 \le r \le n$.

Proposición 2.18. Sea G un grupo, $a \in G$ con O(a) = n y $k \in \mathbb{N} \setminus \{0\}$, entonces:

$$\langle a^k \rangle = \langle a^d \rangle$$
 siendo $d = \operatorname{mcd}(n, k)$

En cuyo caso, $O(a^k) = \frac{n}{d}$.

Demostración. Por doble inclusión:

 \subseteq) Como $d \mid k$, tenemos que k = dt para cierto t, luego $a^k = a^{dt} \in \langle a^d \rangle$.

 \supseteq) Como $d = \operatorname{mcd}(n, k)$, entonces la ecuación:

$$nX + kY = d$$

tiene solución¹⁰, por lo que existen $u, v \in \mathbb{N}$ de forma que nu + kv = d, luego:

$$a^{d} = a^{nu}a^{kv} = (a^{n})^{a^{r}} (a^{k})^{v} \in \langle a^{k} \rangle$$

Para ver que $O(a^k) = n/d$, como $\langle a^k \rangle = \langle a^d \rangle$, tenemos que $O(a^k) = O(a^d)$ y como:

■ Tenemos que:

$$\left(a^d\right)^{\frac{n}{d}} = a^n = 1$$

• Si $t \in \mathbb{N}$ de forma que:

$$(a^d)^t = 1 \Longrightarrow n \mid dt \Longrightarrow \frac{n}{d} \mid t$$

Concluimos que $O(a^k) = O(a^d) = n/d$.

Ejemplo. Por ejemplo, ¿por qué en \mathbb{Z}_{12} el subgrupo generado por el 8 coincide con el generado por el 4? Porque 4 = mcd(8, 12).

Corolario 2.18.1. Sea G un grupo $y \ a \in G$ con O(a) = n, entonces:

$$\langle a^p \rangle = \langle a^q \rangle \iff \operatorname{mcd}(n, p) = \operatorname{mcd}(n, q)$$

Demostración. Veamos la doble implicación:

 \iff Si mcd(n, p) = d = mcd(n, q), entonces (por la Proposición anterior):

$$\langle a^p \rangle = \langle a^d \rangle = \langle a^q \rangle$$

 $\Longrightarrow)$ Si $\langle a^p\rangle=\langle a^q\rangle,$ entonces (por la Proposición anterior):

$$\frac{n}{\operatorname{mcd}(n,p)} = O(a^p) = O(a^q) = \frac{n}{\operatorname{mcd}(n,q)} \Longrightarrow \operatorname{mcd}(n,p) = \operatorname{mcd}(n,q)$$

Corolario 2.18.2. Sea $G = \langle a \rangle$ un grupo cíclico con O(a) = n, entonces:

$$G = \langle a^k \rangle \iff \operatorname{mcd}(k, n) = 1$$

Es decir, el número de generadores de G es $\varphi(n)$, siendo φ la función de Euler:

$$\varphi(n) = |\{m \in \mathbb{N} \mid 1 \leqslant m \leqslant n \land \operatorname{mcd}(n, m) = 1\}|$$

Demostración. Basta usar el Corolario anterior:

$$G = \langle a \rangle = \langle a^k \rangle \iff 1 = \operatorname{mcd}(n, 1) = \operatorname{mcd}(n, k)$$

Ejemplo. En \mathbb{Z}_{12} :

$$\mathbb{Z}_{12} = \langle \overline{1} \rangle = \langle \overline{5} \rangle = \langle \overline{7} \rangle = \langle \overline{11} \rangle$$

¹⁰Se vió en Álgebra I, se trata de la Identidad de Bezout.

3. Grupos cocientes y Teoremas de isomorfía

Este tema se centrará en las relaciones de equivalencia $_{H}\sim$ y \sim_{H} definidas en el capítulo anterior, donde ya vimos propiedades de estas relaciones (recordamos la Proposición 2.12), como que $G/_{H}\sim$ y $G/_{H}\sim$ eran biyectivos o el Teorema de Lagrange. Estaremos especialmente interesados en el caso de que los conjuntos cocientes de estas dos relaciones de equivalencia coincidan, propiedad que nos dará los Teoremas de Isomorfía, que son el principal objeto de estudio de este tema.

3.1. Subgrupos normales

Definición 3.1 (Subgrupos normales). Sea G un grupo y H < G, diremos que H es un subgrupo normal de G, denotado por $H \triangleleft G$, si las clases laterales de cada elemento coinciden, es decir, si:

$$xH = Hx \qquad \forall x \in G$$

En cuyo caso, tendremos que $G/_{H} \sim = G/_{H}$, y notaremos a este conjunto como G/H, al llamaremos conjunto de las clases laterales de H en G.

Definición 3.2 (Conjugado). Sea G un grupo, $H \subseteq G$ y $x \in G$, definimos el conjugado de H por x como el conjunto:

$$xHx^{-1} = \{xhx^{-1} \mid h \in H\}$$

Proposición 3.1. Sea G un grupo, H < G y $x \in G$, entonces $xHx^{-1} < G$.

Demostración. Para ello, sean $xh_1x^{-1}, xh_2x^{-1} \in xHx^{-1}$, entonces:

$$xh_1x^{-1}(xh_2x^{-1})^{-1} = xh_1x^{-1}xh_2^{-1}x^{-1} = xh_1h_2^{-1}x^{-1} \in xHx^{-1}$$

Ya que como H es un subgrupo de G, entonces $h_1h_2^{-1} \in H$.

Buscamos ahora formas cómodas de detectar cuándo un subgrupo de un grupo es normal o no, ya que es tedioso comprobar la igualdad xH = Hx para todo elemento x del grupo que estemos considerando en cada caso.

Proposición 3.2 (Caracterización de subgrupos normales). Sea G un grupo y H < G, son equivalentes:

- i) $H \triangleleft G$.
- $ii) xhx^{-1} \in H \ \forall x \in G, \forall h \in H.$
- $iii) xHx^{-1} \subseteq H \ \forall x \in G.$
- $iv) xHx^{-1} = H \ \forall x \in G.$

Demostración. Veamos todas las implicaciones:

 $i) \Longrightarrow ii)$ Sean $x \in G$ y $h \in H$, entonces $xh \in xH = Hx$ por ser $H \triangleleft G$, lo que nos dice que $\exists h' \in H$ de forma que xh = h'x y multiplicando por x^{-1} a la derecha, llegamos a que:

$$xhx^{-1} = h' \in H$$

- $ii) \iff iii$) Es claro.
- $iii) \Longrightarrow iv$) Sea $h \in H$ y dado $x \in G$, en particular tendremos que $x^{-1} \in G$, por lo que usando la hipótesis, tenemos que $x^{-1}hx \in X^{-1}Hx \subseteq X$, por lo que $x^{-1}hx \in X$ y tendremos que:

$$xx^{-1}hxx^{-1} = h \in xHx^{-1}$$

- $iv) \Longrightarrow i$) Fijado $x \in G$, veamos que xH = Hx:
 - \subseteq) Si $xh \in xH$, entonces tendremos que:

$$xhx^{-1} \in xHx^{-1} = H$$

Con lo que existirá $h' \in H$ de forma que $xhx^{-1} = h'$. Si multilicamos por x a la derecha, obtenemos que:

$$xh = h'x \in Hx$$

 \supseteq) Para la otra inclusión, si $hx \in Hx$, tendremos que:

$$x^{-1}hx \in x^{-1}Hx = H$$

Por lo que existirá $h' \in H$ de forma que $x^{-1}hx = h'$. Si multiplicamos por x a la izquierda:

$$hx = xh' \in xH$$

Ejemplo. Hemos caracterizado ya a los grupos normales, pero veamos ejemplos de ellos:

- 1. Dado un grupo G, los dos subgrupos impropios de G siempre son subgrupos normales del mismo:
 - Para el caso $H = \{e\}$:

$$xex^{-1} = xx^{-1} = e \in \{e\} \qquad \forall x \in G$$

Y por la Proposición anterior, tenemos que $\{e\} \triangleleft G$.

• Para el caso H = G:

$$xhx^{-1} \in G \qquad \forall x \in G, \forall h \in G$$

Y por la misma razón, también tenemos que $G \triangleleft G$.

2. En un grupo abeliano G, todos sus subgrupos son normales (sea H < G):

$$xH = \{xh \mid h \in H\} = \{hx \mid h \in H\} = Hx \qquad \forall x \in G$$

3. Todo subgrupo de índice 2 es normal, es decir, si H < G con [G:H] = 2, entonces $H \triangleleft G$.

Para verlo, si tomamos $x \in G \setminus H$, como [G:H] = 2, tenemos que:

$$H \cup xH = G = H \cup Hx$$

En ambos casos, como son particiones disjuntas, tenemos que xH = Hx para todo $x \in G \setminus H$ (y si $x \in H$, entonces xH = H = Hx), con lo que $H \triangleleft G$.

4. En S_3 , si consideramos $H = \langle (1\ 2) \rangle$, H no es un subgrupo normal de S_3 , como se vio en el correspondiente ejemplo del tema anterior, y podemos volverlo a comprobar con la caracterización, ya que:

$$(2\ 3)(1\ 2)(2\ 3)^{-1} = (1\ 3) \notin H$$

Igual les pasa a los subgrupos $\langle (2\,3) \rangle$ y $\langle (1\,3) \rangle$. Sea ahora $K = \{1, (1\,2\,3), (1\,3\,2)\}$, como $[S_3:K]=2$, tenemos que $K \triangleleft S_3$:

$$S_3/K = \{H, H(1\ 2)\} = \{K, (1\ 2)H\}$$

5. La relación de "ser un subgrupo normal de" no es transitiva, es decir, si G es un grupo con K < H < G, $K \lhd H$ y $H \lhd G$, entonces no necesariamente se tiene que $K \lhd G$. La situación es la descrita en la Figura 3.1

Figura 3.1: Situación descrita.

Por ejemplo, en A_4 consideramos el grupo de Klein V y $\langle (1\ 2)(3\ 4) \rangle$. Vamos a ver que $\langle (1\ 2)(3\ 4) \rangle \triangleleft V$ y que $V \triangleleft A_4$ pero no se cumple que $\langle (1\ 2)(3\ 4) \rangle \triangleleft A_4$:

- En primer lugar, $\langle (1\ 2)(3\ 4) \rangle \triangleleft V$, por ser $[V:\langle (1\ 2)(3\ 4) \rangle] = 2$.
- Veamos ahora que $V \triangleleft A_4$. Para ello, consideramos:

$$A_4 = \langle (1\ 2\ 3), (1\ 2\ 4) \rangle$$

Basta comprobar la caracterización para todos los generadores de A_4 :

$$(1 2 3)(1 2)(3 4)(1 2 3)^{-1} \in V$$

$$(1 2 3)(1 3)(2 4)(1 2 3)^{-1} \in V$$

$$(1 2 3)(1 4)(2 3)(1 2 3)^{-1} \in V$$

$$(1 2 4)(1 2)(3 4)(1 2 4)^{-1} \in V$$

$$(1 2 4)(1 3)(2 4)(1 2 4)^{-1} \in V$$

$$(1 2 4)(1 4)(2 3)(1 2 4)^{-1} \in V$$

• Veremos ahora que no se tiene que $\langle (1\ 2)(3\ 4) \rangle \triangleleft A_4$, ya que:

$$(1\ 2\ 3)(1\ 2)(3\ 4)(1\ 2\ 3)^{-1} = (1\ 4)(2\ 3) \notin H$$

Definición 3.3 (Centro). Sea G un grupo, definimos el <u>centro de G</u> como el conjunto de los elementos de G que conmutan con todos los demás, es decir, el conjunto:

$$Z(G) = \{ a \in G \mid ax = xa, \forall x \in G \}$$

Podemos entener Z(G) como "la parte abeliana del grupo" G.

Proposición 3.3. Sea G un grupo, se verifica:

- i) Z(G) < G.
- ii) $Z(G) \triangleleft G$.
- iii) Si G es abeliano, entonces L(G) = G.

Demostración. Demostramos las propiedades:

i) Sean $a, b \in Z(G)$ y dado $x \in G$, entonces:

$$(ab^{-1})x = a(b^{-1}x) = a(x^{-1}b)^{-1} = a(bx^{-1})^{-1} = a(xb^{-1}) = (ax)b = (xa)b = x(ab^{-1})$$

Por lo que $ab^{-1} \in Z(G)$, lo que nos dice que Z(G) es un subgrupo de G.

ii) Sea $x \in G$, entonces:

$$xZ(G) = \{xz \mid z \in Z(G)\} = \{zx \mid z \in Z(G)\} = Z(G)x$$

iii) Es evidente.

Ejemplo. Ejemplos interesantes:

▶ Veamos que $Z(S_n) = 1$ cuando $n \ge 3$. Para ello, supongamos que $n \ge 3$ y consideremos $1 \ne \sigma \in S_n$, con lo que existirán $i, j \in \{1, ..., n\}$ con $i \ne j$ de forma que $\sigma(i) = j$.

En dicho caso, $\exists k \in \{1, ..., n\}$ con $i \neq k \neq j$. Si consideramos $\tau = (j \ k)$:

$$\left. \begin{array}{l} \sigma \tau(i) = \sigma(i) = j \\ \tau \sigma(i) = \tau(j) = k \end{array} \right\} \Longrightarrow \sigma \tau \neq \tau \sigma$$

Por tanto, $\sigma \notin Z(S_n)$, para todo $\sigma \in S_n \setminus \{1\}$.

▶ Veamos que que $Z(A_n) = 1$ cuando $n \ge 4$. Para $n \ge 4$, $\exists i, j \in \{1, ..., n\}$ con $i \ne j$ de forma que $\sigma(i) = j$, con lo que podemos encontrar $k, l \in \{1, ..., n\}$, distintos entre sí y distintos de i y j. Consideramos:

$$\tau = (j \ k \ l) \in A_4$$

Y tenemos de la misma forma que:

$$\begin{array}{l} \sigma\tau(i) = k \\ \tau\sigma(i) = j \end{array} \} \Longrightarrow Z(A_n) = 1$$

Proposición 3.4. Sea G un grupo, H < G, entonces, equivalen:

- i) $H \triangleleft G$.
- $ii) \ \forall x,y \in G \mid xy \in H, \ entonces \ yx \in H$

Demostración. Veamos las dos implicaciones:

- $i) \Longrightarrow ii)$ Sean $x, y \in G$ con $xy \in H$, entonces $\exists h \in H$ de forma que xy = h, de donde $y = x^{-1}h \in x^{-1}H = Hx^{-1}$, por lo que $\exists h' \in H$ con $y = h'x^{-1}$ y multiplicando a la derecha por x, llegamos a que $yx = h' \in H$.
- $ii) \Longrightarrow i)$ Sean $x \in G$ y $h \in H$, tenemos que:

$$h = x^{-1}(xh) \in H$$

De donde deducimos por hipótesis que $xhx^{-1} \in H$, lo que nos dice que $H \triangleleft G$.

Teorema 3.5. Sea G un grupo $y \ H \lhd G$, entonces en el conjunto G/H podemos definir una operación binaria $G/H \times G/H \longrightarrow G/H$ que dota a G/H de estructura de grupo, de modo que la proyección canónica $p:G \to G/H$ sea un homomorfismo de grupos. De esta forma, llamaremos a G/H grupo cociente.

Demostración. Definimos la operación binaria $\cdot: G/H \times G/H \longrightarrow G/H$ dada por:

$$xH \cdot yH = xyH \qquad \forall xH, yH \in G/H$$

A esta operación la denotaremos a partir de ahora por yuxtaposición.

■ En primer lugar, comprobemos que está bien definida, es decir, si xH = x'H y yH = y'H, entonces xyH = x'y'H. Para ello:

Vemos ahora que dado $h \in H$:

 $(2) x'y'h = xh_1yh_2h \stackrel{(*)}{=} xyh'_1h_2h \in xyH$

Donde en (*) hemos usado que $H \triangleleft G$, por lo que Hy = yH y podemos encontrar un h'_1 de forma que $h_1y = yh'_1$. Tenemos $x'y'H \subseteq xyH$.

 $(xyh = x'h_1^{-1}y'h_2^{-1}h \stackrel{(*)}{=} x'y'h_1''h_2^{-1}h \in x'y'H$

Donde en (*) hemos usado una idea similar a la anterior, lo que nos da la otra inclusión.

- Que la operación es asociativa es claro, ya que la operación de G era asociativa.
- El elemento neutro de la operación es 1H = H.
- Fijado un elemento $xH \in G/H$, tendremos que $(xH)^{-1} = x^{-1}H$.

Concluimos que G/H es un grupo.

Ahora, consideramos la proyección canónica $p: G \to G/H$, que viene definida por p(x) = xH para todo $x \in G$. Gracias a la definición de la operación de G/H, tenemos que:

$$p(xy) = xyH = xHyH = p(x)p(y)$$
 $\forall x, y \in G$

Lo que demuestra que p es un homomorfismo de grupos.

Notemos la importancia de considerar en el teorema anterior H como subgrupo normal de G, ya que es lo que nos ha permitido comprobar que la operación de G/H estaba bien definida. Como propiedades a destacar del grupo cociente G/H:

• Sabemos por el capítulo anterior que el orden del grupo G/H es (si G es finito):

$$|G/H| = [G:H] = \frac{|G|}{|H|}$$

Además, tenemos que:

$$\ker(p) = \{x \in G \mid p(x) = H\} = \{x \in G \mid xH = H\} = \{x \in H\} = H$$

Ejemplo. Algunas consecuencias de que G/H sea un grupo:

1. En S_3 , si consideramos $H = \{1, (1\ 2\ 3), (1\ 3\ 2)\}$, tenemos que:

$$S_3/H = \{H, (1\ 2)H\}$$

Que por ser un grupo de orden 2, ya sabemos por el capítulo anterior que ha de ser $S_3/H \cong \mathbb{Z}_2$.

2. Si consideramos $H < \mathbb{Z}$, entonces $H \triangleleft \mathbb{Z}$, ya que \mathbb{Z} es abeliano. Además, sabemos que $\exists n \in \mathbb{Z}$ de forma que $H = n\mathbb{Z}$. De esta forma, tendremos que:

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$$

3. Veamos otra vez que A_4 no tiene subgrupos de orden 6. Si $H < A_4$ con |H| = 6, entonces:

$$[A_4:H] = \frac{A_4}{H} = 2$$

Por tanto, $H \triangleleft A_4$. De esta forma, $A_4/H \cong \mathbb{Z}_2$, por ser el único grupo de orden 2. Si el cociente es isomorfo con \mathbb{Z}_2 y consideramos $xH \in A_4/H$, entonces:

$$(xH)^2 = x^2H = H \qquad \forall x \in A_4$$

Por tanto, los cuadrados de los 8 3—ciclos de A_4 pertenecerían a H, de donde $|H| \ge 8$, contradicción.

Proposición 3.6. Sea G un grupo y H < G, entonces: H es normal si y solo si existe $f: G \to G'$ un homomorfismo de grupos de forma que $\ker(f) = H$.

Demostración. Veamos las dos implicaciones:

- \Longrightarrow) Si $H \triangleleft G$, entonces la proyección canónica $p: G \rightarrow G/H$ es un homomorfismo de grupos de forma que $\ker(p) = H$, gracias al Teorema 3.5.
- \iff Supongamos ahora que existe un homomorfismo $f:G\to G'$ de grupos de forma que $\ker(f)=H.$ Sea $x\in G$ y $h\in H$, tenemos que:

$$f(xhx^{-1}) = f(x)f(h)(f(x))^{-1} = f(x)(f(x))^{-1} = 1$$

De donde deducimos que $xhx^{-1} \in \ker(f) = H$, lo que nos dice que $H \triangleleft G$.

Observación. De esta forma, dado un homomorfismo de grupos $f: G \to G'$, tendremos siempre que $\ker(f) \lhd G$, ya que por ser $\{1\} < G'$ un subgrupo, tendremos que $\ker(f) = f^*(\{1\}) < G$ y por la Proposición 3.6, automáticamente tenemos que $\ker(f) \lhd G$.

Teorema 3.7 (Propiedad universal del grupo cociente). Sea G un grupo, $H \triangleleft G$, $p: G \rightarrow G/H$ la proyección canónica al cociente, entonces para cualquier homomorfismo $f: G \rightarrow G'$ tal que $H \subseteq \ker(f)$, existe un único homomorfismo de grupos $\varphi: G/H \rightarrow G'$ de forma que $\varphi \circ p = f$.

Más aún, tendremos que:

$$f \ sobreyectiva \iff \varphi \ sobreyectiva$$

 $H = \ker(f) \iff \varphi \ inyectiva$

La situación descrita podemos observarla en la Figura 3.2. Este resultado nos dice que el diagrama conmuta.

Demostración. Definimos $\varphi: G/H \to G'$ de la forma más natural posible:

$$\varphi(xH) = f(x) \qquad \forall xH \in G/H$$

■ En primer lugar, veamos que está bien definido. Para ello, sean $x, y \in G$ de forma que xH = yH, entonces $y^{-1}x \in H \subseteq \ker(f)$, de donde:

$$f(y^{-1}x) = (f(y))^{-1}f(x) = 1 \Longrightarrow f(x) = f(y)$$

• Veamos ahora que φ es un homomorfismo:

$$\varphi(xHyH) = \varphi(xyH) = f(xy) = f(x)f(y) = \varphi(xH)\varphi(xy) \quad \forall x, y \in G$$

• Veamos que $\varphi \circ p = f$:

$$(\varphi \circ p)(x) = \varphi(p(x)) = \varphi(xH) = f(x) \quad \forall x \in G$$

■ Supongamos que existe otra función $\psi:G/H\to G'$ de forma que $\psi\circ p=f$. En cuyo caso:

$$\psi(xH) = \psi(p(x)) = (\psi \circ p)(x) = f(x) = \varphi(xH) \qquad \forall xH \in G/H$$

Por lo que $\psi = \varphi$.

Veamos la relación entre la sobrevectividad de f y φ :

$$f$$
 sobrevectivo $\iff \varphi$ sobrevectivo

- \iff Como $f = \varphi \circ p$ y la composición de aplicaciones sobreyectivas es sobreyectiva, concluimos que f será sobreyectiva.
- \implies) Supongamos que f es sobreyectiva y sea $y \in G'$, por lo que $\exists x \in G$ de forma que f(x) = y, pero:

$$y = f(x) = \varphi(p(x)) = \varphi(xH)$$

Concluimos que φ es sobreyectiva.

Veamos ahora la relación de invectividad:

$$H = \ker(f) \iff \varphi \text{ inyectiva}$$

 \implies) Si $H = \ker(f)$ y $\varphi(xH) = 1$, entonces:

$$1 = \varphi(xH) = f(x) \Longrightarrow x \in \ker(f) = H$$

Con lo que xH = H, lo que nos dice que φ es inyectiva $(\ker(\varphi) = \{H\})$.

 \Leftarrow Vamos a ver que $\ker(f) \subseteq H$, ya que conocemos $H \subseteq \ker(f)$ por hipótesis. Para ello, sea $x \in \ker(f)$, entonces:

$$1 = f(x) = \varphi(p(x)) = \varphi(xH) \Longrightarrow xH \in \ker(\varphi)$$

Pero como φ es inyectiva, tenemos que $\ker(\varphi) = \{H\}$, con lo que xH = H, de donde $x \in H$.

La idea que subyace y que debemos entender de la propiedad universal del grupo cociente es la siguiente: G/H es la mejor forma de "colapsar H al elemento neutro sin perder las propiedades de grupo". Como ya vimos en el Teorema en el que definimos al grupo cociente y donde vimos que la proyección canónica era un homomorfismo, resulta que en el grupo cociente, H se identifica con el elemento neutro de la operación, por lo que hemos conseguido colapsar H al elemento neutro.

Ahora, la propiedad universal del grupo cociente nos dice que si tenemos cualquier homomorfismo que "mata a H" (es decir, lo envía al núcleo del homomorfismo), entonces necesariamente ese homomorfismo ha de pasar por G/H, es decir, que existirá un único homomorfismo $\varphi: G/H \to G'$ que haga que el diagrama siguiente conmute. Cualquier homomorfismo que "mate a H" podremos factorizarlo pasando por el grupo cociente, luego este grupo ha de ser el que mejor colapsa a H.

Figura 3.2: Situación del Teorema 3.7.

3.2. Teoremas de isomorfía

Teorema 3.8 (Primer Teorema de Isomorfía para grupos). Sea $f: G \to G'$ un homomorfismo de grupos, entonces existe un isomorfismo de grupos de forma que

$$G/\ker(f) \cong Imf$$

 $Y \ vendr\'a \ definido \ por \ x \ker(f) \longmapsto f(x).$

Demostración. En primer lugar, por a la Proposición 3.6, tenemos que $\ker(f) \triangleleft G$. De esta forma, podemos considerar la proyección canónica $p: G \to G/\ker(f)$. Consideramos ahora la restriccion de f a su codominio, lo que nos da un epimorfismo.

Por la propiedad universal del grupo cociente, tenemos que el siguiente diagrama conmuta:

$$G \xrightarrow{p} G/\ker(f)$$

$$\downarrow^{\varphi}$$

$$Im(f)$$

Lo que nos da un isomorfismo φ entre $G/\ker(f)$ y Imf (la sobreyectividad de φ viene gracias a la sobreyectividad de f restringiendo su codominio, y la inyectivididad viene de que el subgrupo normal que consideramos es $\ker(f)$).

Ejemplo. Como consecuencia del primer teorema de isomorfía: consideramos \mathbb{K} un cuerpo finito con $|\mathbb{K}| = q$ elementos. La aplicación det : $GL_n(\mathbb{K}) \to \mathbb{K}^*$ es un homomorfismo de grupos y tenemos que:

$$\ker(\det) = \operatorname{SL}_n(\mathbb{K})$$

Con lo que $GL_n(\mathbb{K})/SL_n(\mathbb{K}) \cong Im(\det) = \mathbb{K}^*$. Usémoslo para calcular $|SL_n(\mathbb{K})|$, ya que la isomorfía recién encontrada nos dice que:

$$|\mathbb{K}^*| = |\operatorname{GL}_n(\mathbb{K})/\operatorname{SL}_n(\mathbb{K})| = \frac{|\operatorname{GL}_n(\mathbb{K})|}{|\operatorname{SL}_n(\mathbb{K})|} \Longrightarrow |\operatorname{SL}_n(\mathbb{K})| = \frac{|\operatorname{GL}_n(\mathbb{K})|}{|\mathbb{K}^*|} = \frac{|\operatorname{GL}_n(\mathbb{K})|}{q-1}$$

Teorema 3.9 (Segundo Teorema de Isomorfía para grupos). Sea G un grupo, H, K < G de forma que $K \triangleleft G$, entonces:

$$H \cap K \triangleleft H$$

Y existe un isomorfismo de grupos de forma que

$$H/H \cap K \cong HK/K$$

Demostración. Como $K \triangleleft G$, tenemos que xK = Kx para todo $x \in G$, en particular para $x \in H$, con lo que HK = HK, lo que nos dice que HK < G. Además, vemos que $K \triangleleft HK$.

Consideramos ahora la composición de la inclusión en G con la proyección al cociente:

$$H \xrightarrow{i} G \xrightarrow{p} G/K$$

Con lo que:

$$Im(p \circ i) = \{(p \circ i)(h) \mid h \in H\} = \{p(h) \mid h \in H\} = \{hK \mid h \in H\} \stackrel{(*)}{=} \frac{HK}{K}$$

Calculemos el núcleo:

$$\ker(p \circ i) = \{ h \in H \mid (p \circ i)(h) = K \} = \{ h \in H \mid hK = K \} = \{ h \in H \mid h \in K \} = H \cap K$$

Lo que nos dice que $H \cap K \triangleleft H$. Por el Primer Teorema de Isomorfía:

$$\frac{H}{\ker(p \circ i)} \cong Im(p \circ i)$$

Lo que nos dice que:

$$\frac{H}{H\cap K}\cong \frac{HK}{K}$$

La igualdad (*) anterior puede parecer rara, pero es muy natural, veamos que:

$$\{hK\mid h\in H\}=\frac{HK}{K}$$

- \subseteq) Dado $h \in H$, en particular tendremos que $h = h \cdot 1 \in HK$, con lo que $hK \in \frac{HK}{K}$.
- \supseteq) Sea $hkK \in \frac{HK}{K}$ para ciertos $h \in H$, $k \in K$, por la definición del producto en el grupo cociente tenemos:

$$hkK = (hK)(kK) = (hK)K = hK \in \{hK \mid h \in H\}$$

El Segundo Teorema de Isomorfía para grupos puede recordarse fácilmente observando la siguiente figura, donde pensamos en que ${}^{HK}/{}_{K} \cong {}^{H}/{}_{H \cap K}$ bajo las hipótesis del Teorema, que podemos recordar observando las diagonales del paralelogramo:

Ejemplo. Sea $H < S_n$ un subgrupo conteniendo una permutación impar, entonces $[H: H \cap A_n] = 2$. Es decir, H tiene el mismo número de permutaciones pares que de impares.

Para verlo, sabemos que $[S_n:A_n]=2$, luego $A_n \triangleleft S_n$ y además, como H tiene una permutación impar, tenemos que $H \not\subseteq A_n$, por lo que tenemos:

$$HA_n = S_n$$

Que se puede deducir observando el retículo de subgrupos de S_n . Por el Segundo Teorema de Isomorfía, tenemos que:

$$H/H \cap A_n \cong S_n/A_n \cong \mathbb{Z}_2$$

Teorema 3.10 (Tercer Teorema de Isomorfía para grupos, o del doble cociente). Sea G un grupo, $N \triangleleft G$, entonces existe una biyección entre los subgrupos de G que contienen a N y los subgrupos de G/N, dada por $H \longmapsto H/N$.

Además, $H \triangleleft G \iff H/N \triangleleft G/N$. En este caso:

$$\frac{G/N}{H/N} \cong G/H$$

Demostración. Consideramos la proyección al cociente $p:G\to G/N$, así como los conjuntos:

$$\{N \subseteq H < G\} \xrightarrow{p_*} \{J < G/N\}$$

$${J < G/N} \xrightarrow{p^*} {N \subseteq H < G}$$

En primer lugar, veamos que p_* está bien definido. Para ello, sea H < G:

$$p_*(H) = \{p(h) \mid h \in H\} = \{hN \mid h \in H\} = H/N < G/N$$

Ahora, que p^* está bien definida. Sea J < G/N:

$$p^*(J) = \{x \in G \mid p(x) \in J\} < G$$

Vemos que:

$$p(n) = nN = N \in J \qquad \forall n \in N$$

En concluisión, $n \in p^*(J)$, con lo que $N \subseteq p^*(J)$.

Veamos ahora qué sucede con la composición de las aplicaciones:

$$p_* \circ p^*(J) = J$$

ya que p es sobreyectiva. Ahora, veamos si $H = (p^* \circ p_*)(H)$:

 \subseteq) Esto siempre ocurre, ya que:

$$h = p^*(p_*(h)) \subseteq p^*(p_*(H))$$

 \supseteq) Sea $x \in p^*(p_*(H))$, entonces:

$$xN = p(x) \in p_*(H) = H/N = \{hN \mid h \in H\}$$

Con lo que $x \in H$, lo que nos da la inclusión.

Veamos ahora la doble implicación de los subgrupos normales:

 \Longrightarrow) Sean $xN \in G/N$, $hN \in H/N$:

$$xNhN(xN)^{-1} = xNhNx^{-1}N = xhx^{-1}N \stackrel{(*)}{\in} H/N$$

Donde en (*) hemos aplicado que $H \triangleleft G$, con lo que $xhx^{-1} \in H$.

 \iff) Ahora, sean $x \in G$ y $h \in H$:

$$xhx^{-1}N = xNhN(xN)^{-1} \in H/N$$

De donde concluimos que $xhx^{-1} \in H$, con lo que $H \triangleleft G$.

Finalmente, veamos ahora el isomorfismo prometido. Para ello, consideramos:

$$G \xrightarrow{p_N} G/N$$

$$\downarrow^{\varphi}$$

$$G/H$$

Por la propiedad universal del conjunto cociente, existe un único isomorfismo φ que hace conmutar el diagrama, con lo que:

$$\varphi P_N = P_H$$

Si aplicamos ahora el Primer Teorema de Isomorfía:

$$\frac{G/N}{\ker(\varphi)} \cong Im(\varphi)$$

Por ser φ sobreyectiva (ya que las otras dos lo son), tenemos que $Im(\varphi) = G/H$. Basta ver que $\ker(\varphi) = H/N$.

Ejemplo. Recordando el retículo de subgrupos de D_4 :

Figura 3.3: Diagrama de Hasse para los subgrupos de D_4 .

Si consideramos los 5 grupos del centro del diagrama y los dividimos entre $\langle r^2 \rangle$, llegamos a que el conjunto que contiene a estos es isomorfo al grupo de Klein:

3.2.1. Cuarto Teorema de Isomorfía

Lema 3.11 (Ley modular o regla de Dedekind). Sea G un grupo y A, B, C < G con A < C, entonces:

$$A(B \cap C) = AB \cap C$$

Demostración. Por doble implicación:

- \subseteq) Sea $z \in A(B \cap C)$, entonces existen $a \in A$ y $x \in B \cap C$ de forma que z = ax, con lo que $ax \in AB$ y $ax \in AC = C$ por ser A < C, de donde deducimos que $z = ax \in AB \cap C$.
- \supseteq) Sea $z \in AB \cap C$, entonces:
 - Por una parte, como $z \in AB$, tenemos que $\exists a \in A \text{ y } b \in B$ de forma que z = ab.
 - Además, como $z \in C$, tenemos que $z = ab \in C$

Por ser A < C, tenemos que $a \in C$, por lo que $a^{-1} \in C$, de donde:

$$b = a^{-1}z \in C$$

Como además teniamos $b \in B$, llegamos a que $z = ab \in A(B \cap C)$.

Observación. Observemos que la hipótesis A < G no es necesaria, pero se obtiene directamente al suponer $A \subseteq G$ y A < C con C < G, con lo que no obtenemos más generalidad.

Lema 3.12. Sea G un grupo y A, B, C < G con $B \triangleleft A$, entonces:

- $i) \ B \cap C \lhd A \cap C \ y \ {}^{A \cap C/B \cap C} \cong {}^{B(A \cap C)/B}.$
- ii) Si además $C \triangleleft G$, entonces: $BC \triangleleft AC$ y $^{AC}/^{BC} \cong ^{A}/^{B(A \cap C)}$

Demostración. Veamos los dos apartados:

i) Aplicando el Segundo Teorema de Isomorfía sobre el diagrama (observamos el paralelogramo):

$$A \cap C/B \cap C \cong B(A \cap C)/B$$

ii) Ahora, si $C \triangleleft G$, tenemos que BC, AC < G, así como que BC < AC (por ser B < A). Para ver que es normal:

$$\left. \begin{array}{l} x = ac \\ x = bc' \end{array} \right\} \Longrightarrow xyx^{-1} = acbc'c^{-1}a^{-1} = aca^{-1}aba^{-1}acc'a^{-1} \stackrel{(*)}{\in} CBC$$

Y si usamos que $C \triangleleft G$, $B \triangleleft A$ y $C \triangleleft G$, llegamos a (*):

$$xyx^{-1} \in CBC = BCC = BC \Longrightarrow BC \lhd AC$$

Y como $C \triangleleft G$, tenemos que CB = BC. Ahora, aplicando el Segundo Teorema de Isomorfía sobre el siguiente diagrama:

Llegamos a que:

$$A/B(A\cap C) \cong AC/BC$$

Observación. Sin embargo, el Lema anterior se podría hacer también suponiendo solo que $A, B \subseteq G$ para A y B, solo es necesario suponer que C < G.

A continuación, veremos el Cuarto Teorema de Isomorfía, o Teorema de Zassenhaus, para el cual conviene pensar en la Figura 3.5 (aunque en esta figura el retículo de subgrupos está al revés: arriba los conjuntos de menor tamaño y debajo los caonjuntos mayores).

Figura 3.5: Situación del Teorema 3.13

Teorema 3.13 (Cuarto Teorema de Isomorfía para grupos). Sea G un grupo y $A_1, C_1, A_2, C_2 < G$ y $C_1 \lhd A_1$, $C_2 \lhd A_2$, entonces:

- $i) \ (A_1 \cap C_2)C_1 \lhd (A_1 \cap A_2)C_1.$
- $ii) (A_2 \cap C_1)C_2 \lhd (A_1 \cap A_2)(C_2).$
- $iii) (A_1 \cap A_2)C_1/(A_1 \cap C_2)C_1 \cong A_1 \cap A_2/(A_1 \cap C_2)(A_2 \cap C_1) \cong (A_1 \cap A_2)C_2/(A_2 \cap C_1)C_2$

Demostración. Veámoslo todo:

i) Si nos fijamos en este retículo, por el Segunto Teorema de Isomorfía tenemos que:

$$\frac{A_1 \cap A_2}{A_1 \cap C_2} \cong \frac{(A_1 \cap A_2)C_2}{C_2}$$

Así como que $A_1 \cap C_2 \triangleleft A_1 \cap A_2$. Utilizando el segundo apartado del último Lema, tenemos que:

$$(A_1 \cap C_2)C_1 \lhd (A_1 \cap A_2)C_1$$

- ii) Es análogo.
- iii) Si nos fijamos en, llegamos a que:

$$(A_1 \cap C_2)(C_1 \cap A_2) \lhd A_1 \cap A_2$$

Ya que teníamos que:

$$A_1 \cap C_2 \lhd A_1 \cap A_2$$

$$C_1 \cap A_2 \lhd A_1 \cap A_2$$

Y:

$$\frac{AC}{BC} = \frac{A}{B(A \cap C)}$$

Si cogemos:

$$B = (A_1 \cap C_2)(C_1 \cap A_2)$$
$$A = A_1 \cap A_2$$
$$C = C_1$$

3.3. Producto directo

En un ejemplo del Capítulo 1 vimos que dados dos grupos H y G podíamos definir de forma sencilla una operación en $H \times G$ en función de las operaciones de H y G, que nos dotaba a $H \times G$ de estructura de grupo. A este grupo lo llamábamos grupo directo de G y H, grupo que volveremos a definir a partir de ahora y en el que nos centraremos durante esta sección.

Definición 3.4 (Producto directo). Sean H y G dos grupos, definimos en el producto cartesiano $H \times G$ la operación

$$\begin{array}{cccc} \cdot : & (H \times G) \times (H \times G) & \longrightarrow & H \times G \\ & (h,k)(h',k') & \longmapsto & hh',kk' \end{array}$$

Se verifica que $H \times G$ junto con esta operación es un grupo:

- Es claro que la operación es asociativa, por ser las respectivas operaciones de H y G asociativas.
- El elemento $(1,1) \in H \times G$ es el elemento neutro para la operación.
- Dado un elemento $(h, k) \in H \times G$, tenemos que:

$$(h,k)(h^{-1},k^{-1}) = (hh^{-1},kk^{-1}) = (1,1)$$

Este grupo que hemos definido en $H \times G$ recibirá el nombre de <u>producto directo</u> de $H \times G$.

Algunos autores llaman al producto directo que hemos definido producto directo externo, para diferenciarlo del producto directo interno, que luego definiremos. Sin embargo, nosotros lo llamaremos simplemente producto directo.

Proposición 3.14. Si H y K son dos grupos finitos, entonces:

- $i) |H \times K| = |H||K|.$
- ii) $O(h, k) = mcm(O(h), O(k)) \ \forall (h, k) \in H \times K.$

Demostración. Veamos las dos propiedades:

- i) Se vió en Álgebra I.
- ii) Como H y K son finitos, también lo será $H \times K$ y como ya vimos en la Proposición 1.9, los órdenes de los elementos son finitos, por lo que el enunciado tiene todo el sentido.

Llamando m(h, k) = mcm(O(h), O(k)), en primer lugar vemos que:

$$(h,k)^{m(h,k)} = (h^{m(h,k)}, k^{m(h,k)}) = (1,1)$$

Donde en la primera igualdad hemos usado la definición del producto directo de H y K y en la segunda hemos usado que $m(h,k) \mid O(h)$ y que $m(h,k) \mid O(k)$.

Ahora, sea $t \in \mathbb{N} \setminus \{0\}$ de forma que $(h, k)^t = (1, 1)$, tenemos entonces que $h^t = 1$ y $k^t = 1$, con lo que $O(h) \mid t$ y $O(k) \mid t$, de donde deducimos que (por definición de mínimo común múltiplo) $m(h, k) \mid t$.

Definición 3.5 (Proyecciones e inyecciones). Dados H y G dos grupos, en el producto directo de H y G podemos definir 4 aplicaciones que nos serán útiles:

1. La proyección en la primera coordenada, $p_1: H \times G \to H$, dada por:

$$p_1(h,k) = h \qquad \forall (h,k) \in H \times G$$

2. La proyección en la segunda coordenada, $p_2: H \times G \to G$, dada por:

$$p_2(h,k) = k \qquad \forall (h,k) \in H \times G$$

3. La inyección en la primera coordenada, $i_1: H \to H \times G$, dada por:

$$i_1(h) = (h, 1) \quad \forall h \in H$$

4. La inyección en la segunda coordenada, $i_2: G \to H \times G$, dada por:

$$i_2(h) = (1, k) \quad \forall k \in G$$

Aplicaciones que podremos recordar fácilmente observando la Figura 3.6.

$$H \xrightarrow[p_1]{i_1} H \times G \xrightarrow[p_2]{i_2} G$$

Figura 3.6: Diagrama de las proyecciones y las invecciones.

Proposición 3.15. Se verifica que:

- 1. Las proyecciones y las inyecciones son homomorfismos de grupos.
- 2. $p_1i_1 = id = p_2i_2$ y las aplicaciones p_1i_2 y p_2i_1 son la aplicación constantemente igual a 1.
- 3. Las proyecciones son sobreyectivas y las inyecciones son inyectivas.
- 4. Se tiene que:

$$H' = Im(i_1) = \ker(p_2) = \{(h, 1) \mid h \in H\} \triangleleft H \times G$$

Además, $H' \cong H$.

5. De la misma forma:

$$G' = Im(i_2) = \ker(p_1) = \{(1, k) \mid k \in G\} \triangleleft H \times G$$

Además, $G' \cong G$.

- 6. $H' \cap G' = \{1\}.$
- 7. $xy = yx \ para \ todo \ x \in H', \ y \in G'.$

Demostración. Veamos cada apartado:

- 1. Tenemos 4 casos:
 - Para p_1 , vemos que:

$$p_1((h,k)(h',k')) = p_1(hh',kk') = hh' = p_1(h,k)p_1(h',k') \qquad \forall (h,k),(h',k') \in H \times G$$

Y la demostración para p_2 es análoga.

■ Para i_1 , vemos que:

$$i_1(hh') = (hh', 1) = (h, 1)(h', 1) = i_1(h)i_1(h') \quad \forall h, h' \in H$$

Y la demostración es análoga para i_2 .

2. Si los índices coinciden, tenemos que:

$$(p_1 \circ i_1)(h) = p_1(i_1(h)) = p_1(h, 1) = h$$
 $\forall h \in H$
 $(p_2 \circ i_2)(k) = p_2(i_2(k)) = p_2(1, k) = k$ $\forall k \in G$

Y si no coinciden, tenemos:

$$(p_1 \circ i_2)(k) = p_1(i_2(k)) = p_1(1, k) = 1$$
 $\forall k \in G$
 $(p_2 \circ i_1)(h) = p_2(i_1(h)) = p_2(h, 1) = 1$ $\forall h \in H$

3. Para comprobar que p_1 es sobreyectiva, vemos que dada $h \in H$, tenemos que $p_1(h,1) = h$ y para ver que p_2 es sobreyectiva, dado $k \in G$, tenemos que $p_2(1,k) = k$.

Para ver la inyectividad de i_1 , si dados $h, h' \in H$ de forma que:

$$(h,1) = i_1(h) = i_1(h') = (h',1)$$

De donde deducimos que h = h', por lo que i_1 es inyectiva. La demostración para i_2 es análoga.

4. En primer lugar:

$$Im(i_1) = \{i_1(h) \mid h \in H\} = \{(h, 1) \mid h \in H\}$$

$$\ker(p_2) = \{(h, k) \in H \times G \mid p_2(h, k) = 1\} = \{(h, k) \in H \times G \mid k = 1\}$$

$$= \{(h, 1) \in H \times G\} = \{(h, 1) \mid h \in H\}$$

Para ver que $H' = \{(h,1) \mid h \in H\} \triangleleft H \times G$, basta ver que $x(h,1)x^{-1} \in H'$ $\forall x \in H \times G, \forall h \in H$. Para ello, sean $h' \in H$ y $(h,k) \in H \times K$, tenemos que:

$$(h,k)(h',1)(h,k)^{-1} = (h,k)(h',1)\left(h^{-1},k^{-1}\right) = (hh'h^{-1},kk^{-1}) = (hh'h^{-1},1) \in H'$$

Donde hemos usado que $hh'h^{-1} \in H$, por ser H un grupo.

Para ver que $H' \cong H$, en el apartado 1 vimos que i_1 era un homomorfismo y aplicando 3 tenemos que, de hecho, es un monomorfismo. Como $Im(i_1) = H'$, la restricción al codominio de i_1 a su imagen nos da un isomorfismo entre H y H', con lo que $H' \cong H$.

5. Vemos que:

$$Im(i_2) = \{i_2(k) \mid k \in G\} = \{(1, k) \mid k \in G\}$$

$$\ker(p_1) = \{(h, k) \in H \times G \mid p_1(h, k) = 1\} = \{(h, k) \in H \times G \mid h = 1\}$$

$$= \{(1, k) \in H \times G\} = \{(1, k) \mid k \in G\}$$

Y de forma análoga a lo anterior, para ver que $G' = \{(1, k) \mid k \in G\} \triangleleft H \times G$, cogemos $k' \in G$ y $(h, k) \in H \times G$, donde vemos que:

$$(h,k)(1,k')(h,k)^{-1} = (h,k)(1,k')(h^{-1},k^{-1}) = (1,kk'k^{-1}) \in G'$$

Y finalmente, para ver que $G' \cong G$, tenemso que i_2 es un monomorfismo, por lo que la restricción en codominio a su imagen, $Im(i_2) = G'$ nos da un isomorfismo entre $G \vee G'$.

6. La igualdad se tiene porque:

$$H' \cap G' = \{(h, k) \in H \times G \mid k = 1 \land h = 1\} = \{(1, 1)\} = \{1\}$$

7. Sean $x \in H'$ y $y \in G'$, entonces $\exists h \in H$ y $k \in G$ de forma que x = (h, 1) y y = (1, k), de donde:

$$xy = (h, 1)(1, k) = (h, k) = (1, k)(h, 1) = yx$$

3.3.1. Caracterización del grupo directo por isomorfismo

Teorema 3.16 (Propiedad universal del producto directo). Sea G un grupo y sean $f_1: G \to H$, $f_2: G \to K$ dos homomorfismos de grupos, entonces existe un único homomorfismo de grupos $f: G \to H \times K$ tal que $p_1 f = f_1$ y $p_2 f = f_2$. Es decir, existe un único homomorfismo f que hace conmutar el siquiente diagrama:

Demostración. Definimos $f: G \to H \times K$ dada por:

$$f(x) = (f_1(x), f_2(x)) \quad \forall x \in G$$

Vemos las dos igualdades:

$$(p_1 \circ f)(x) = p_1(f(x)) = p_1(f_1(x), f_2(x)) = f_1(x) \qquad \forall x \in G$$

$$(p_2 \circ f)(x) = p_2(f(x)) = p_2(f_1(x), f_2(x)) = f_2(x) \qquad \forall x \in G$$

 \blacksquare Para ver que f es un homomorfismo:

$$f(xy) = (f_1(xy), f_2(xy)) = (f_1(x)f_1(y), f_2(x)f_2(y))$$

= $(f_1(x), f_2(x))(f_1(y), f_2(y)) = f(x)f(y) \quad \forall x, y \in G$

■ Sea $g: G \to H \times K$ un homomorfismo de grupos de forma que $p_1g = f_1$ y $p_2g = f_2$, entonces:

$$g(x) = (p_1(g(x)), p_2(g(x))) = (f_1(x), f_2(x)) = f(x)$$
 $\forall x \in G$

Por lo que g = f.

El producto directo es único salvo isomorfismos. Es decir, que si hay otro grupo que verifica la propiedad universal de grupo directo, este debe ser isomorfo al grupo directo.

Teorema 3.17. Sea L un grupo y sean $l_1: L \to H$, $l_2: L \to K$ dos homomorfismos de grupos de forma que si G es un grupo y $f_1: G \to H$ y $f_2: G \to K$ son otros dos homomorfismos que cumplen la tesis de la propiedad universal del producto directo para L (es decir, que existe un único homomorfismo $f: G \to L$ de forma que $l_1f = f_1$ y $l_2f = f_2$). Entonces, tendremos que:

$$L \cong H \times K$$

La situación es la descrita en el siguiente diagrama:

Demostración. En primer lugar, como $l_1: L \to H$ y $l_2: L \to K$ son dos homomorfismos, verifican las hipótesis de la propiedad universal del grupo cociente, por lo que existe un único homomorfismo $l: L \to H \times K$ de forma que:

$$p_1 l = l_1$$
$$p_2 l = l_2$$

Ahora, si tomamos $G = H \times K$ y consideramos $p_1 : H \times K \to L$ y $p_2 : H \times K \to K$, tenemos dos homomorfismos que por hipótesis pueden factorizarse pasando por L, es decir, existe un único homomorfismo $p : H \times K \to L$ de forma que:

$$l_1 p = p_1$$
$$l_2 p = p_2$$

Para terminar la demostración, basta ver que p y l son inversos el uno del otro. Para ello, observamos que:

$$l_1 = p_1 l = l_1 p l \Longrightarrow p l = i d_{H \times K}$$

 $p_1 = l_1 p = p_1 l p \Longrightarrow l p = i d_L$

Concluimos que $p^{-1} = l$, con lo que p y l son isomorfismos y $L \cong H \times K$.

Notemos que tanto en la propiedad universal del producto directo como en su unicidad por isomorfismo solo hemos usado las proyecciones p_1 y p_2 . Pues si consideramos resultados análogos para las inyecciones i_1 y i_2 , estos seguirán siendo ciertos:

Teorema 3.18. Sea G un grupo y $f_1: H \to G$, $f_2: K \to G$ dos homomorfismos de grupos verificando que:

$$f_1(h)f_2(k) = f_2(k)f_1(h) \qquad \forall h \in H, k \in K$$

Entonces, existe un único homomorfismo de grupos $f: H \times K \to G$ tal que $fi_1 = f_1$, $fi_2 = f_2$.

$$H \xrightarrow{f_1} H \times K \xleftarrow{f_2} K$$

Demostración. Definimos $f: H \times K \to G$ dada por:

$$f(h,k) = f_1(h)f_2(k) \quad \forall (h,k) \in H \times K$$

• Vemos que verifica las dos igualdades:

$$(f \circ i_1)(h) = f(i_1(h)) = f(h, 1) = f_1(h)f_2(1) = f_1(h)$$
 $\forall h \in H$
 $(f \circ i_2)(k) = f(i_2(k)) = f(1, k) = f_1(1)f_2(k) = f_2(k)$ $\forall k \in K$

• Vemos que f es un homomorfismo, ya que dados $(h, k), (h', k') \in H \times K$:

$$f((h,k)(h',k')) = f(hh',kk') = f_1(hh')f_2(kk') = f_1(h)f_1(h')f_2(k)f_2(k')$$
$$= f_1(h)f_2(k)f_1(h')f_2(k') = f(h,k)f(h',k')$$

■ Sea $g: H \times K \to G$ otro homomorfismo de grupos de forma que $gi_1 = f_1$ y $gi_2 = f_2$, entonces dado $(h, k) \in H \times K$:

$$g(h,k) = g((h,1)(1,k)) = g(h,1)g(1,k) = g(i_1(h))g(i_2(k)) = f_1(h)f_2(k) = f(h,k)$$

Teorema 3.19. Sea L un grupo $y l_1 : H \to L$, $l_2 : K \to L$ dos homomorfismos de grupos que verifican que

$$l_1(h)l_2(k) = l_2(k)l_1(h)$$
 $\forall h \in H, k \in K$

y que para todo grupo G y para todo par de homomorfismos $f_1: H \to G$ y $f_2: K \to G$ tales que

$$f_1(h)f_2(k) = f_2(k)f_1(h)$$
 $\forall h \in H, k \in K$

existe un único homomorfismo $f: L \to G$ tal que $fl_1 = f_1$ y $fl_2 = f_2$, entonces:

$$L \cong H \times K$$

Demostración. En primer lugar, por ser $l_1: H \to L$ y $l_2: K \to L$ dos homomorfismos de forma que $l_1(h)l_2(k) = l_2(k)l_1(h) \ \forall h \in H, k \in K$, tenemos que existe un único homomorfismo $l: H \times K \to L$ de forma que:

$$li_1 = l_1$$
$$li_2 = l_2$$

$$H \xrightarrow{l_1} H \times K \xleftarrow{l_2} K$$

Ahora, si tomamos $G = H \times K$ y consideramos $i_1 : H \to H \times K$ y $i_2 : K \to H \times K$, tenemos por la Proposición 3.15 que $i_1(h)i_2(k) = i_2(k)i_1(h)$ para todo $h \in H$ y $k \in K$, por lo que por hipótesis tenemos que existe un único homomorfismo $i : L \to H \times K$ de forma que:

$$il_1 = i_1$$
$$il_2 = i_2$$

Basta ver que i y l son inversos el uno del otro. Para ello, observamos que:

$$l_1 = lil_1 = lil_1 \Longrightarrow li = id_{H \times K}$$

 $i_2 = il_2 = ili_2 \Longrightarrow il = id_L$

Concluimos que $i^{-1} = l$, con lo que i y l son isomorfismos y $L \cong H \times K$.

3.3.2. Producto directo de una familia de grupos

Los resultados vistos para el producto directo de dos grupos G y H puede generalizarse para el conjunto cartesiano obtenido de multiplicar una familia arbitraria de grupos. Para estudiar este caso, fijaremos la notación en un inicio: sea Λ un conjunto arbitrariamente grande, si tenemos una familia de tantos grupos como elementos hay en Λ :

$$\{G_{\lambda} \mid \lambda \in \Lambda\}$$

Podemos considerar el producto cartesiano de todos ellos, que denotaremos por G:

$$G = \prod \{ G_{\lambda} \mid \lambda \in \Lambda \} = \prod_{\lambda \in \Lambda} G_{\lambda}$$

Proposición 3.20. Si $\{G_{\lambda} \mid \lambda \in \Lambda\}$ es una familia de grupos, definimos en su producto cartesiano $G = \prod_{\lambda \in \Lambda} G_{\lambda}$ la operación $\cdot : G \times G \to G$ dada por:

$$x \cdot y = z$$

De forma que la λ -ésima coordenada de z es el producto de la λ -ésima coordenadas de x por la λ -ésima coordenada de y. Se verifica que G con esta operación es un grupo.

Notación. Si $\Lambda = \{1, \dots, n\}$, notaremos:

$$G = \prod_{\lambda \in \Lambda} G_{\lambda} = G_1 \times G_2 \times \ldots \times G_n$$

Si por otra parte se tiene que $G_{\lambda} = H$ para todo $\lambda \in \Lambda$, entonces notaremos:

$$G = \prod_{\lambda \in \Lambda} G_{\lambda} = H^{\Lambda}$$

En el caso de que Λ sea finito y tenga n elementos, notaremos H^n .

Definición 3.6 (Proyecciones e inyecciones). Fijado $\lambda \in \Lambda$, definimos:

 \blacksquare La proyección en la $\lambda-$ ésima coordenada, $p_{\lambda}:G\to G_{\lambda}$ dada por:

$$p_{\lambda}(g) = g_{\lambda} \quad \forall g \in G$$

Siendo g_{λ} la λ -ésima coordenada de g.

■ La inyección en la λ -ésima coordenada, $i_{\lambda}: G_{\lambda} \to G$ dada por:

$$i_{\lambda}(x) = q \qquad \forall x \in G_{\lambda}$$

Donde $g_{\mu} = 1 \ \forall \mu \in \Lambda \setminus \{\lambda\} \ \text{y} \ g_{\lambda} = x.$

Proposición 3.21. Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$ una familia de grupos y sea $G = \prod_{\lambda \in \Lambda} G_{\lambda}$, se verifica:

1. p_{λ} y i_{λ} son homomorfismos de grupos, $\forall \lambda \in \Lambda$.

- 2. Las proyecciones son epimorfismos y las inyecciones son monomorfismos.
- 3. $p_{\lambda}i_{\lambda} = id_{G_{\lambda}} \ y \ (p_{\lambda}i_{\mu})(x) = 1 \ para \ todo \ x \in G_{\mu}, \ \forall \lambda \in \Lambda, \mu \in \Lambda \setminus \{\lambda\}.$
- 4. $G'_{\lambda} = Im(i_{\lambda}) \cong G_{\lambda}$ y es un subgrupo normal de G.

Teorema 3.22 (Propiedad universal del producto directo). Sea $\{G_{\lambda} \mid \lambda \in \Lambda\} \cup \{H\}$ una familia de grupos y $G = \prod_{\lambda \in \Lambda} G_{\lambda}$, si tenemos una familia de homomorfismos para cada coordenada $\{f_{\lambda} : H \to G_{\lambda} \mid \lambda \in \Lambda\}$, entonces existe un único homomorfismo $f : H \to G$ de forma que $f_{\lambda} = p_{\lambda}f$, $\forall \lambda \in \Lambda$. Además, cualquier otro grupo que verifique esta propiedad será isomorfo a G.

$$\begin{array}{ccc}
H & & & \\
\downarrow f & & \downarrow \\
G & \xrightarrow{p_{\lambda}} & G_{\lambda}
\end{array}$$

Teorema 3.23. Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$ una familia de grupos de forma que para cada $\lambda \in \Lambda$ tenemos $H_{\lambda} < G_{\lambda}$, entonces:

$$\prod_{\lambda \in \Lambda} H_{\lambda} < \prod_{\lambda \in \Lambda} G_{\lambda}$$

Teorema 3.24. Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$, entonces existe un monomorfismo

$$\prod_{\lambda \in \Lambda} Aut(G_{\lambda}) \longrightarrow Aut\left(\prod_{\lambda \in \Lambda} G_{\lambda}\right)$$

3.3.3. Producto directo de una familia finita de subgrupos

Teorema 3.25 (Ley asociativa general). Tenemos que:

1. Si G_1, G_2, G_3 son tres grupos, entonces:

$$(G_1 \times)G_2 \times G_3 \cong G_1 \times G_2 \times G_3 \cong G_1 \times (G_2 \times G_3)$$

2. Si G_1, G_2, \ldots, G_n son n grupos, entonces si $k \in \{1, \ldots, n-1\}$, se tiene:

$$\left(\prod_{j=1}^{k} G_{j}\right) \times \left(\prod_{j=k+1}^{n} G_{j}\right) \cong \prod_{j=1}^{n} G_{j}$$

Teorema 3.26. Sean G_1, G_2, \ldots, G_n n grupos $y G = G_1 \times G_2 \times \ldots \times G_n$:

- 1. $|G| = |G_1||G_2| \cdots |G_n|$. En particular, G es finito si y solo si G_k es finito, para todo $k \in \{1, \ldots, n\}$.
- 2. $O(g_1, \ldots, g_n) = \text{mcm}(O(g_1), \ldots, O(g_n)), \forall (g_1, \ldots, g_n) \in G.$

3.4. Producto directo interno

Qué sucede cuando H, K < G y caracterizar cuándo $H \times K \cong G$. En cuyo caso, diremos que G es producto directo interno de H y de K.

Definición 3.7 (Conmutador). El conmutador de dos elementos h y k se calcula:

$$[h, k] = hkh^{-1}k^{-1} = hk(kh)^{-1}$$

Que viene a decir cómo de abelianos son h y k.

Teorema 3.27 (Caracterización del producto directo interno). Sea G un grupo, H, K < G, equivalen:

- i) La aplicación $\phi: H \times K \to G$ dada por $\phi(h, k) = hk$ es un isomorfismo.
- ii) $H, K \triangleleft G, HK = G y H \cap K = \{1\}.$
- $iii) \ \forall h \in H, \ \forall k \in K$:

$$hk = kh$$
, $H \lor K = G$, $H \cap K = \{1\}$

 $iv) \ \forall h \in H, \ \forall k \in K$:

$$hk = kh$$

Y para todo $q \in G$, $\exists_1 h \in H, k \in K$ tal que q = hk.

Demostración. Veamos las implicaciones:

 $i) \Longrightarrow ii)$ Como ϕ es sobreyectiva, dado $g \in G$, existen $h \in HY$ $k \in K$ de forma que $\phi(h,k) = hk = g$, lo que nos dice que $G \subseteq HK$. La otra inclusión se tiene porque H, K < G.

Sea $g \in H \cap K$, entonces $g = \phi(g, 1) = \phi(1, g) = g$, pero por ser ϕ inyectiva, tenemos que (g, 1) = (1, g), de donde g = 1.

A partir de:

$$G$$

$$\phi \uparrow$$

$$H \leftarrow_{p_1} H \times K \xrightarrow{p_2} K$$

Tenemos que:

$$H = \ker(p_2\phi^{-1}) = \{(h, 1) \mid h \in H\}$$

$$K = \ker(p_1\phi^{-1}) = \{(1, k) \mid k \in K\}$$

De donde tenemos que $H, K \triangleleft G$.

 $ii) \Longrightarrow iii)$ Dados $h \in H$ y $k \in K$, veamos que [h, k] = 1, de donde deducimos que hk = kh:

$$[h, k] = (hkh^{-1})k^{-1} = h(kh^{-1}k^{-1})$$

Como K es normal, $hkh^{-1} \in K$, de donde $[h,k] \in K$, y como H es normal, $kh^{-1}k^{-1} \in H$, por lo que:

$$[h,k] \in H \cap K = \{1\} \Longrightarrow [h,k] = 1 \Longrightarrow hk = kh$$

 $iii) \Longrightarrow iv) \ \forall g \in G$, veamos la existencia:

$$g = h_1 k_1 \dots h_n k_n$$

Pero hk = kh para todo $k \in K$ y $h \in H$, de donde:

$$g = (h'_1 \dots h'_n)(k'_1 \dots k'_m) = hk \in HK$$

Para la unicidad, si $g = h_1 k_1 = h_2 k_2$, tenemos que:

$$h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K = \{1\} \Longrightarrow h_2 = h_1 \land k_1 = k_2$$

 $iv) \Longrightarrow i$) Tenemos:

$$\phi((h_1, k_1), (h_2, k_2)) = \phi(h_1 h_2, k_1 k_2) = h_1 h_2 k_1 k_2 = h_1 k_1 h_2 k_2 = \phi(h_1, k_1) \phi(h_2, k_2)$$

De donde ϕ es un homomorfismo. Para ver que ϕ es biyectivo, g está definido de forma única, dado g, existen unos únicos h y k.

Ejemplo. Ver si son o no producto directo interno:

1. $G = \mathbb{R}^*, H = \{\pm 1\}, K = \{x \in \mathbb{R} \mid x > 0\}.$

Sí es producto interno directo:

- G = HK.
- G es abeliano, luego $H, K \triangleleft G$.
- $H \cap K = \{1\}.$
- 2. Sean:

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \operatorname{GL}_{2}(\mathbb{R}) \right\}$$

$$H = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \in \operatorname{GL}_{2}(\mathbb{R}) \right\}$$

$$K = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}_{2}(\mathbb{R}) \right\}$$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ab \\ 0 & c \end{pmatrix}$$

Luego G = HK.

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & c \end{array}\right) = \left(\begin{array}{cc} a & bc \\ 0 & c \end{array}\right)$$

No son conmutativos.

3. $G = \mathbb{C}^*$, $H = \{z \in \mathbb{C} \mid |z| = 1\}$, $K = \mathbb{R}^+$ Tenemos que G = HK:

$$z = \frac{z}{|z|}|z| \in HK$$

Y como G es abeliano, tenemos que $H, K \triangleleft G$. Además:

$$H \cap K = \{1\}$$

Cómo se comportan los subgrupos con el producto directo:

Proposición 3.28. Sean H y K dos subgrupos, si $H_1 < H$, $K_1 < K$, entonces:

- 1. $H_1 \times K_1 < H \times K$.
- 2. Existe un monomorfismo $Aut(H) \times Aut(K) \rightarrow Aut(H \times K)$.

Demostración. Veamos que los dos se cumplen:

- 1. $H_1 \times K_1 \subseteq H \times K$. Además, como $H_1 < H$ y $K_1 < K$, $H_1 \times K_1$ va a ser cerrado para el producto, tendrá la unidad e inversos, de donde concluimos que $H_1 \times K_1 < H \times K$.
- 2. Sea $\psi : Aut(H) \times Aut(K) \to Aut(H \times K)$ dado por:

$$\psi(\alpha,\beta): H \times K \to H \times K$$
$$(h,k) \stackrel{\psi(\alpha,\beta)}{\longmapsto} (\alpha(h),\beta(k))$$

Que se comprueba de forma fácil que es un monomorfismo.

Veamos cuándo podemos hacerlo:

Teorema 3.29. Sean H, K dos grupos finitos tales que mcd(|H|, |K|) = 1, entonces:

1. $\forall L < H \times K$, $\exists_1 H_1 < H$, $K_1 < K$ de forma que:

$$L = H_1 \times K_1$$

2. La aplicación ψ de la Proposición anterior es un isomorfismo.

Demostración. Veamos los dos resultados:

1. Sea $L < H \times K$, cogemos:

$$H \leftarrow_{p_1} H \times K \xrightarrow{p_2} K$$

$$H_1 = p_1(L)$$
 $K_1 = p_2(L)$

En primer lugar, $L < H_1 \times K_1$. Ahora, veamos que $H_1 \times K_1 < L$:

$$\forall h \in H_1 \exists (h, k) \in L$$

Sea $n=|H|,\ m=|K|,$ por el Teorema de Bezout $\exists r,s\in\mathbb{Z}$ de forma que nr+ms=1, de donde:

$$L \ni (h,k)^{ms} = (h^{ms}, k^{ms}) = (h^{1-nr}, 1) = (h, 1)$$

De aquí deducimos que $(h,1) \in L$ para todo $h \in H_1$. De la misma forma, llegamos a que $(1,k) \in L$ para todo $k \in K_1$.

Ahora, para todo $(h, k) \in H_1 \times K_1$, tenemos que:

$$(h,k) = (h,1)(1,k) \in L$$

De donde $H_1 \times K_1 < L$. De la construcción realizada llegamos a la unicidad.

2. Basta ver que ψ es un epimorfismo. Para ello, aplicamos 1.

La segunda parte será utilizada en varios ejercicios.

3.4.1. Producto directo interno de una familia finita de subgrupos

Teorema 3.30. Sea G un grupo y $G_1, \ldots, G_n < G$ n subgrupos de G, definimos la aplicación $\phi: G_1 \times \ldots \times G_n \to G$ dada por:

$$\phi(g_1,\ldots,g_n)=g_1\cdot\ldots\cdot g_n \qquad \forall (g_1,\ldots,g_n)\in G_1\times\ldots\times G_n$$

Son equivalentes:

- i) ϕ es un isomorfismo.
- ii) $G_k \triangleleft G \ \forall k \in \{1, \dots, n\}, \ G_1 \dots G_n = G \ y \ (G_1 \dots G_{k-1}) \cap G_k = \{1\} \ para \ todo \ k \in \{2, \dots, n\}.$
- iii) $g_k g_h = g_h g_k$ para todo $g_h \in G_h$, $g_k \in G_k$ con $k \neq h$, $G = G_1 \vee \ldots \vee G_n y$ $(G_1 \ldots G_{k-1}) \cap G_k = \{1\}$ para todo $k \in \{2, \ldots, n\}$.
- iv) $g_kg_h = g_hg_k$ para todo $g_h \in G_h$, $g_k \in G_k$ con $k \neq h$, y todo elemento $g \in G$ se expresa de manera única como $g = g_1 \dots g_n$ con $g_k \in G_k$ para todo $k \in \{1, \dots, n\}$.

Teorema 3.31. Sean G_1, \ldots, G_n n grupos de forma que sus órdenes son primos relativos dos a dos, si $G = G_1 \times \ldots \times G_n$, entonces:

- 1. $\exists_1 H_k < G_k \text{ tal que } L = H_1 \times \ldots \times H_k \text{ para todo } L < G.$
- 2. $Aut(G_1) \times ... \times Aut(G_n) \cong Aut(G)$.

3.5. Producto directo de grupos cíclicos

Notación. Cuando hablemos de producto directo de dos grupos cíclicos, en vez de usar \times , usaremos como notación \oplus .

El producto directo de dos grupos cíclicos es un grupo cíclico? NO:

Ejemplo. Veamos varios ejemplos de que no se cumple:

1. Supongamos que $\mathbb{Z} \oplus \mathbb{Z}$ es cíclico. En cuyo caso, tenemos que $\exists (r,s) \in \mathbb{Z} \oplus \mathbb{Z}$ de forma que:

$$\mathbb{Z} \oplus \mathbb{Z} = \langle (r,s) \rangle$$

De donde para $(1,0) \in \mathbb{Z} \oplus \mathbb{Z} \ \exists n \in \mathbb{Z}$ de forma que:

$$(1,0) = n(r,s) \Longrightarrow \begin{cases} nr = 1 \\ ns = 0 \end{cases} \Longrightarrow \begin{cases} n,r \in \{\pm 1\} \\ s = 0 \end{cases} \Longrightarrow (r,s) = \begin{cases} (-1,0) \\ (1,0) \end{cases}$$

Sin embargo:

$$(0,1) = m(1,0) \Longrightarrow \left\{ \begin{array}{l} m = 0 \\ 1 = 0 \end{array} \right.$$

Contradicción, por lo que $\mathbb{Z} \oplus \mathbb{Z}$ no es cíclico.

2. Ahora, supongamos que $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ es cíclico, con lo que:

$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 = \langle (r,s) \rangle$$

Sin embargo:

$$O(r,s) = \text{mcm}(O(r), O(s)) = \begin{cases} 1 \Longleftrightarrow r = s = 0 \\ 2 \Longleftrightarrow r \neq 0 \lor s \neq 0 \end{cases}$$

En $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ no hay elementos de orden 4, pero:

$$|\mathbb{Z}_2 \oplus \mathbb{Z}_2| = 4$$

Un grupo de orden 4 que no tiene elementos de orden 4 nunca puede ser cíclico. De hecho, tendremos que $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \cong V$.

3. Un ejemplo de dos grupos cíclicos cuyo producto directo es cíclico es:

$$\mathbb{Z}_2 \oplus \mathbb{Z}_3$$

Como 2 y 3 son coprimos, podremos escribir:

$$\mathbb{Z}_2 \oplus \mathbb{Z}_3 = \langle (\overline{1}, \overline{1}) \rangle$$

Tenemos que $O(\overline{1},\overline{1})=6$, por lo que $\mathbb{Z}_2\oplus\mathbb{Z}_3\cong\mathbb{Z}_6$.

Proposición 3.32. Si G y H son grupos cíclicos finitos, entonces:

$$G \oplus H \iff \operatorname{mcd}(|G|, |H|)$$

Demostración. Veamos las dos implicaciones. Para ello, supongamos:

$$G = \langle x \rangle$$
, $O(x) = n$, $H = \langle y \rangle$, $O(y) = m$

 \iff Si mcd(n, m) = 1, entonces mcm(n, m) = nm, de donde:

$$O(x,y) = \text{mcm}(O(x), O(y)) = nm = |G \times H|$$

Tenemos un grupo de orden nm con un elemento de orden nm, luego $G \times H = \langle (x,y) \rangle$.

 \Longrightarrow) Si $G \oplus H = \langle (a,b) \rangle$, entonces:

$$mcm(O(a), O(b)) = O(a, b) = nm = |G \times H|$$

Como $O(a) \mid n, O(b) \mid m$, llegamos a que O(a) = n y O(b) = m. Finalmente:

$$mcd(n, m) = mcd(O(a), O(b)) = \frac{nm}{nm} = 1$$

Se puede generalizar por inducción para una cantidad finita:

Proposición 3.33.

$$\bigoplus G \ \textit{c\'iclico} \Longleftrightarrow \operatorname{mcd}(|G_i|,|G_j|) = 1 \quad i \neq j$$

Ejemplo. Tenemos que $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{30}$, pero por ejemplo: $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{30}$ no es cíclico.

Ejemplo. Demostrar que S_3 no es producto directo interno de subgrupos propios. Por reducción al absurdo, si fuera producto directo, como $|S_3| = 6$, tendría un

subgrupo de orden 2 y otro de orden 3, ambos isomorfos a C_2 y C_3 . Si tuviera dos subgrupos propios cuyo producto propio fuera el mismo, tendríamos:

$$S_3 \cong C_2 \oplus C_3 \cong C_6$$

Pero S_3 no es cíclico.