Instrumentation avancée

Partie 1 : Acquisition de données et analyse spectrale

Auteur : Christophe Ayrault Enseignants : Guqi Yan, Valentin Zorgnotti Université du Maine, Licence SPI 2ème année

Décembre 2012, MAJ 2015

1 / 68

Généralités

- Contexte :
 - L1 SPI : instrumentation (chaîne d'excitation et de mesure),
 - L2 SPI : acquisition et traitement des données (après le conditionnement)

Généralités

- 3 parties :
 - Acquisition et traitement des données : Guqi Yan, Valentin Zorgnotti
 - 4h cours TD
 - 8h TP: enregistrement de données, caractéristiques d'une carte d'acquisition, analyse spectrale en bandes fines et n-ième d'octave, analyse de système.
 - Interfaçage des appareils numériques et interface virtuelle (LabView) : Emmanuel Malandin
 - Codage des signaux : Florent Carlier

Généralités sur l'acquisition et le traitement des données

- Propos génériques valables pour un analyseur portable ou un système carte d'acquisition et logiciel d'analyse ("analyseur") sur PC :
- Même philosophie ou procédure avec pour éventuels changements :
 - les noms des commandes
 - leur organisation dans les menus ou sur la façade de l'appareil ou de l'écran
- Dénomination commune : analyseur
- Techniquement :
 - Boitiers externes autonomes, cartes d'acquisition externes ou internes au PC et traitement sur PC
 - Différentes gammes fréquentielles d'analyse :
 - analyseurs de réseaux ou de spectre : jusqu'à 100 MHz ou GHz
 - analyseurs "audio" : jusqu'à 100 kHz
 - Nombre de voies d'acquisition variable : 1, 2, 4, 8, 16 ...

Oragnisation des menus pour une acquisition

- Réglages des entrées (input) : conditionnement du signal
- Type de mesure (measurement) : conditionnement du calcul
- Affichage (display): visualisation, outils de mesure
- Postraitement (maths) : opérations mathématiques
- Outils système (system): stockage, gestion des données pour impression, export ...

Préalable : numérisation d'un signal

Echantillonnage

- ullet prise d'échantillons à intervalles de temps réguliers T_e
- fréquence d'échantillonnage $f_e = \frac{1}{T_e}$

Préalable : numérisation d'un signal

Quantification

- conversion analogique / numérique (CAN) : attribution d'une valeur approchée de la valeur du signal à chaque temps kT_e
- ullet Gamme d'entrée de la carte d'acquisition $\pm \Delta V$
- Nombre de bits : N
- pas de quantification : $\delta V \simeq {2\Delta V \over 2^N}$
- dynamique de la carte : $20 \log \left(\frac{2\Delta V}{\delta V} \right) = 6N$

Décembre 2012, MAJ 2015

- Dynamique d'entrée
- Synchronisation
- Couplage
- Entrées flottantes
- Repliement
- Sensibilité
- Alimentation des capteurs

Dynamique d'entrée :

- Objectif: avoir la dynamique la mieux adaptée au signal, soit le meilleur Rapport Signal sur Bruit (RSB) possible
- Exemple de sinus Quid ? Nombre de bits de l'analyseur ?

• Dynamique d'entrée :

• Autre exemple de sinus

Quid ? (50 mVc, gain d'entrée = 20 mVc)

• Dynamique d'entrée :

• Autre exemple de sinus

- Dynamique d'entrée :
 - réglage de la dynamique (range) automatique :
 - down: évite d'avoir une quantification trop faible (underload)
 - up : évite d'avoir un saturation (écrêtage) (overload)
 - up and down : évite les deux
 - réglage de la dynamique (range) nanuelle : très utile pour un signal non stationnaire (marteau d'impact (impulsion) dans les études vibratoires ...)
- EXERCICES 1 ET 2

- Couplage AC/DC (Alternative / Direct component)
 - AC : retire la composante continue
 - DC : conserve le signal tel quel
- Impact d'un offset sur le spectre : exemple de sinus (30 Hz, 50 mVcac, offset = 500 mV).

• Entrées flottantes (float) : permet de déconnecter la masse des entrées du chassis relié à la terre pour supprimer l'impact des boucles de masse.

NB : sur un analyseur, chaque entrée flottante est indépendante.

- Filtre anti-repliement (Anti-aliasing) :
 - Exemple de sinus : $f_e = 262 \, kHz$; sinus à $f_0 = 200 \, kHz$

Avec ou sans FAR ? Quelle fréquence mesure-t-on ?

Filtre anti-repliement (Anti-aliasing)

• Exemple de sinus : $f_e = 262 \, kHz$; sinus à $f_0 = 200 \, kHz$

Avec ou sans FAR ? Niveau d'atténuation à fo ?

• Filtre anti-repliement (Anti-aliasing)

• Exemple de signal carré : $f_e = 262 \, kHz$, $f_0 = 15 kHz$,

Avec ou sans FAR?

- Filtre anti-repliement (Anti-aliasing)
 - Exemple de signal carré : $f_e = 262 \, kHz$, $f_0 = 15 \, kHz$,

Avec ou sans FAR?

EXERCICE 4

- Synchronisation (trigger) :
 - libre (bruit blanc ...)
 - sur le signal (front montant ou descendant, niveau de seuil de déclenchement) : existence d'un pré-trigger qui affiche ce qui précéde le seuil de déclenchement.
 - externe (EXT) : sur le signal TTL du générateur.
- Exemple avec un chirp [100 920] Hz synchronisé. NB: La fenêtre temporelle de l'analyseur ne permet pas ici de visualiser l'ensemble du signal temporel qui a une durée plus longue ici. L'analyseur, synchrone avec le signal, voit donc ici le début du signal et il rate la fin, d'où une analyse spectrale limitée.

- Synchronisation (trigger) :
 - libre (bruit blanc ...)
 - sur le signal (front montant ou descendant, niveau de seuil de déclenchement): Existence d'un pré-trigger qui affiche ce qui précéde le seuil de déclenchement.
 - externe (EXT) : sur le signal TTL du générateur.
- Exemple avec un chirp [100 920] Hz non synchronisé. NB: ici, l'analyseur, non synchrone avec le signal, voit par exemple la fin du signal et le début, il rate le milieu, d'où une analyse spectrale erronée.

Sensibilité :

 sur certains systèmes, il est possible de réaliser une calibration des capteurs. La grandeur affichée est alors directement la grandeur physique mesurée (pression ...)

Alimentation des capteurs :

 les systèmes récents fournissent l'alimentation pour les capteurs ICP qui ne nécessitent pas de pré-amplificateur en plus

- Signaux d'excitation
- Fenêtrage
- Gamme fréquentielle d'études
- Précision
- Moyennage

Signaux d'excitation

- Fonction source de l'analyseur ou carte d'acquisition / génération :
 - génération et acquisition synchrones sur une carte
 - synchornisation à choisir sur un analyseur (source trigger)

Grandeurs basiques (rappels)

- valeur crête : valeur maximale
- valeur crête-à-crête :_différence entre valeurs max et min
- valeur moyenne $\frac{1}{T} \int_0^T x(t) dt$,
- valeur efficace : $\sqrt{\frac{1}{T} \int_0^T x(t)^2 dt} = \sqrt{P} = \sqrt{\frac{E}{T}}$, $E = \int_0^T x(t)^2 dt$ est l'énergie du signal fournie sur une durée donnée, $P = \frac{1}{T} \int_0^T x(t)^2 dt$ est la puissance du signal,
- facteur de crête (1 / Rapport Signal sur Bruit (RSB)) : $F_c = 20 \log \left(\frac{A_{max}}{A_{\alpha}} \right)$

- Signaux d'excitation [Meynial2001]
 - Sinus:
 - énergie concentrée à une fréquence, meilleur RSB possible, facteur de crête F_c le plus faible (3 dB)

Signaux d'excitation [Meynial2001]

- Dérivé du sinus : sinus glissant à variation de fréquence discrète
 - + : mêmes caractéristiques que le sinus, utilisé quand on veut une très grande précision sur une largeur de bande donnée
 - - : long

Signaux d'excitation [Meynial2001]

- Dérivé du sinus : chirp ou sinus glissant à variation de fréquence continue
 - + : mêmes caractéristiques que le sinus, rapide
 - - : ne pas utiliser pour une grande précision

- Signaux d'excitation [Meynial2001]
 - Impulsion en théorie : Dirac
 - ullet + : simple et rapide, adaptée aux études temporelles (temps de vol ...)
 - - : énergie répartie sur toutes les fréquences, RSB faible, facteur de crête F_c le plus élevé (plusieurs dizaines de dB)

Signaux d'excitation [Meynial2001]

- Impulsion en pratique : fenêtre rectangle
 - + : on peut adapter la largeur de bande
 - : plus elle est large, plus F_c diminue. Attention, le spectre est normalisé ici, mais il décroît en amplitude quand la largeur diminue. Voir transparent suivant.

Signaux d'excitation [Meynial2001]

- Impulsion en pratique : centrée autour d'une fréquence, **burst** ou salves de *N* périodes de sinus
 - + : on peut adapter la largeur de bande,
 - - : plus elle est large, plus F_c diminue.

- Signaux d'excitation [Meynial2001]
 - Bruit : exemple du bruit blanc
 - + : large bande, rapide,
 - - : $F_c \simeq 20 dB$ assez élevée

Fenêtrage

• Fenêtrage par défaut : fenêtre rectangle f(n) = 1

Fenêtrage

• Fenêtre de hanning $f(n) = 0.5 \left[1 - \cos\left(\frac{2\pi n}{N}\right)\right]$

Fenêtrage

• Fenêtre de hamming $f(n) = 0.54 - 0.46cos\left(\frac{2\pi n}{N}\right)$

Fenêtrage

• Fenêtre de blackmann $f(n) = \sum_{k=1,2} a_k \cos\left(\frac{2k\pi n}{N}\right)$

Fenêtrage

• Fenêtre flattop $f(n) = \sum_{k=1-4} a_k \cos\left(\frac{2k\pi n}{N}\right)$

Fenêtrage

• Sinus 1024 Hz, fenêtre rectangle

Fenêtre adaptée ou pas ? Pourquoi ?

Fenêtrage

• Sinus 1025 Hz, fenêtre rectangle

Fenêtre adaptée ou pas ? Pourquoi ?

Fenêtrage

• Sinus 1025 Hz, fenêtre hanning

Lobes secondaires beaucoup plus faibles que ceux de la fenêtre rectangle : => resserrement de l'information autour de la fréquence souhaitée. Lobe central plus large : + ou - suivant l'objectif

Fenêtrage

Sinus 1024 Hz, fenêtre rectangle / hanning

1000 1050 Fréquence (Hz)

rectangle: meilleure "précision" en fréquence, moins bonne precision en ampitude

hanning : le contraire (flattop idéale pour l'amplitude)

Fenêtrage

- chirp fenetre [0 102] kHz
- Fenêtres ?:

Pour un signal fini (non stationnaire), la fenêtre rectangle s'impose.

- Fenêtrage : résumé
 - Signaux stationnaires (sinus, sinus glissant à variations de fréquence discrète, bruits): fenêtre de type hanning (hamming, blackman, ...)
 - **Signaux non stationnaires** et/ou finis (chirp, impulsions (fenêtre, burst)) : **fenêtre de type rectangle** (force, exponentielle)
 - Système résonant :
 - estimation d'une fréquence de résonance : fenêtre de type rectangle (lobe central étroit)
 - estimation de l'amplitude d'une résonance : fenêtre flattop (lobe central large)

Gamme fréquentielle d'études

- A adapter au signal d'excitation et au système étudié (dynamique fréquentielle)
- Exemple : système excité par un haut-parleur médium dans la gamme fréquentielle :

50 *kHz*

12 *kHz*

Précision

- Nombre de points N :
 - Transformée de Fourrier dicrète (TFD) sur un signal temporel de durée T avec N points => spectre de N points de 0 à f_{ech}
- Pas fréquentiel Δf :
 - $\Delta f = \frac{f_{ech}}{N} = \frac{1}{T}$
 - Analyseurs :

1 voie : N =2048 points pour la TFD => spectre (jusqu'à $f_{\rm ech}/2$) de 800 points en raison de la coupure du FAR

2 voies : valeurs divisées par 2.

- Carte d'acquisition : N est quelconque ...
- Précision : $\frac{\Delta f}{2}$
 - Pour augmenter la résolution (i.e. diminuer le pas fréquentiel Δf), on peut diminuer f_{ech} ou augmenter N. Pour diminuer Δf , on peut aussi augmenter artificiellement la durée du signal en rajoutant des zéros (zéro-padding). La résolution n'est cependant pas améliorée car l'on ne pourra pas extraire d'informations plus fines que le Δf initial.

Moyennage

- Essentiellement destiné aux signaux aléatoires
- 1, 5, 10, 20, 50, 100 moyennes

Moyennage

- Quelques dizaines de moyennes seulement sont nécessaires. Au-delà, l'écart-type ne diminue plus (ou trop lentement).
- Un moyennage d'un facteur 2 augmente le RSB de 3 dB.
- $RSB = 10 \log \left(\frac{P_{signal}}{P_{bruit}} \right)$ avec $P_{s,b} = \sigma_{s,b}^2$ la puissance et $\sigma_{s,b}$ l'écart type du signal ou du bruit :

$$P = \frac{1}{T} \int_0^T x(t)^2 dt$$

$$\sigma^2 = \frac{1}{N-1} \sum_k [x(k) - \overline{x}]^2$$

Analyse temporelle

- signal x(t),
- autocorrélation :

$$R_{xx}(au) = \int_{-\infty}^{\infty} x(t)x(t- au)dt = TFD^{-1}(Densite Spectrale Puissance)$$

intercorrélation :

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y(t-\tau)dt = TFD^{-1}(Interspectre)$$

• ..

- spectre bandes fines $X = |X|e^{j\phi}$: complexe, module et phase (sens de la phase ?)
- spectre par bandes (1/n)-ième d'octave :
 - bandes de fréquences $[f_0 * \frac{1}{2^{1/2n}}; f_0 * 2^{1/2n}]$ centrées en $2^{1/n} * f_0$,
 - n=1 : bande d'octave
 - n=3 : bande tiers d'octave
 - Energie dans une bande : $X_{bande} = \sqrt{\sum_i X_i^2}$
 - Energie totale : $X_{total} = \sqrt{\sum_{bandes} X_{bandes}^2}$

Analyse fréquentielle

• Exemple de spectres bandes fines et tiers d'octave :

EXERCICE 5

Analyse fréquentielle

• Densité Spectrale de Puissance (DSP) :

$$G_{XX} = \frac{XX^*}{N} = \frac{|X|^2}{N}$$
 (unité de X^2 ou unité de $X^2.s^{-1}$), réel

• Interspectre de deux signaux :

$$G_{XY} = \frac{XY^*}{N} = |X||Y|e^{j(\phi_X - \phi_Y)}$$
 complexe (amplitude et phase)

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Notion de SYSTEME LINEAIRE INVARIANT :

entrée : x(t), sortie : y(t),

effet du système caractérisé par sa réponse impulsionnelle h(t)

$$y(t) = x(t) * h(t)$$
$$y(t) = \int_{-\infty}^{\infty} x(t - \tau)h(\tau)d\tau$$
$$Y(f) = X(f)H(f)$$

- La phase d'un spectre seul n'ayant pas de référence, la FRF H(f) est ainsi calculée : $H(f) = \frac{G_{XY}(f)}{G_{YY}(f)}$ (ou $\frac{G_{YY}(f)}{G_{YY}(f)}$)
- Exemple de système : un haut-parleur émet dans un tuyau. Deux microphones sont placés dans le tuyau.

Entrée du système : un microphone,

Sortie: l'autre microphone

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Exemple de système : première mesure de FRF

Que doit-on penser de cette FRF? ...

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Exemple de système : deuxième mesure de FRF

... et de celle-ci?

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Seule la cohérence peut renseigner sur la validité de la FRF [BK1984]

$$COH = \frac{|G_{XY}|^2}{G_{XX}G_{YY}}$$

- $COH \in [0-1]$. Si COH = 0, la FRF n'a pas de sens Si $COH \simeq 1$, la FRF a du sens
- Si bruit b(t) à la sortie ou à l'entrée : $COH \simeq \frac{1}{1 + \frac{G_{BB}}{G_{YY,QU,XX}}}$.

COH tend vers O si les signaux sont noyés dans le bruit par exemple ou s'il n'y a pas linéarité entre entrée et sortie (G_{YY} représente ici la part du signal de sortie linéairement reliée à l'entrée).

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Exemple de système, première mesure de FRF ... microphone débranché ...

Niveau (dB) -100L 1000 2000 3000 4000 Fréquence (Hz)

FRF

COH 0.35 0.3 0.25 Amplitude 0.15 0.1 0.05 1000 2000 3000 4000 Fréquence (Hz)

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Exemple de système, deuxième mesure de FRF ... niveau d'émission très faible et fenêtre rectangle
 FRF
 COH

10 0 0 -10 -30 -40 500 1000 1500 2000 2500 3000 3500 Fréquence (Hz)

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Dans quelle bande analyser le système si on ne le connaît pas ?
 - 50 kHz ?

FRF

Niveau (dB) -50<u>L</u> 5 Fréquence (Hz) x 10⁴

COH

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Dans quelle bande analyser le système si on ne le connaît pas ?
 - 25 kHz ?

FRF

COH

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Dans quelle bande analyser le système si on ne le connaît pas ?
 - 12 kHz ?

FRF

COH

- Fonction de Réponse en Fréquence
 - Effet de la fenêtre : excitation en bruit blanc, fenêtre de hanning FRF

- Fonction de Réponse en Fréquence
 - Effet de la fenêtre : excitation en bruit blanc, fenêtre rectangle
 FRF
 COH

Analyse fréquentielle

- Fonction de Réponse en Fréquence
 - Effet de la saturation d'un signal : excitation en bruit blanc, fenêtre de hanning, saturation des deux microphones
 FRF

 COH

20 10 0 0 0 2 2 2 30 -40 -50 -60 0 1000 2000 3000 4000 Fréquence (Hz)

- Fonction de Réponse en Fréquence
 - Effet du signal d'excitation : chirp et fenêtre rectangle adaptée
 FRF
 COH

- Fonction de Réponse en Fréquence
 - Effet du signal d'excitation : chirp et fenêtre hanning non adaptée
 FRF
 COH

- Fonction de Réponse en Fréquence
 - Quelle valeur limite de cohérence accepter ? 0.95 minimum FRF COH

- Analyse fréquentielle
 - Fonction de Réponse en Fréquence
 - "On n'analyse pas une FRF avant d'avoir regardé la coherence"
 - "On analyse une FRF quand la cohérence vaut au moins 0.95"
 - Les chutes de cohérence aux anti-résonances ou résonances du système sont normales.

Visualisation des données

Affichage :

- choix de la fonction à visualiser (temporelle ou fréquentielle)
- module et phase, partie réelle et imaginaire,
- dynamique fréquentielle : lin / log (voir ci-dessous)
- dynamique en amplitude : automatique (scale) ou manuelle
- **Mesure** : curseurs => précision $\Delta f/2$
- Représentations linéaires ou log en amplitude et fréquence

 $\mathsf{dB} \; / \; \mathsf{f} \qquad \qquad \mathsf{dB} \; / \; \mathsf{f} \; \mathsf{en} \; \mathsf{log} \qquad \qquad \mathsf{A} \; \mathsf{lin\'{e}aire} \; \mathsf{et} \; \mathsf{f} \; \mathsf{en} \; \mathsf{log}$

Décembre 2012, MAJ 2015

Postraitement des données

- opération mathématiques diverses
- sauvegarde en interne, sur support externe (disquette! clé USB)
- impression
- exportation des données par interfaçage pour les analyseurs portables
 - définir l'analyseur en esclave (Address only)
 - pour les ports HPIB, définir l'adresse HPIB pour le logiciel d'interfaçage

Bibliographie

- [BK1984] Bruël & Kjaer ,"Dual Channel FFT Analysis (part I)", Technical Review, n°1, Bruël & Kjaer Editions, 1984.
- [Meynial2001] Informations sur l'analyseur, cours de DEUST VAS 2, 2001.