3a. Lista de Exercícios de MAT0206 e MAP0216

1° . semestre de 2021

- 1. Mostre que, se $a \in \mathbb{R}$ é um número positivo, então existe um único $x \in \mathbb{R}, x > 0$ tal que $x^2 = a$.
- 2. Prove que $\sqrt{3}$, $\sqrt{5}$ e $\sqrt{3} + \sqrt{5}$ são irracionais.
- 3. Sejam x e y números irracionais, e suponha que x^2-y^2 é um racional não nulo. Mostre que x+y e x-y são ambos irracionais.
- 4. Prove que $\frac{1-x^{n+1}}{1-x} = 1 + x + \cdots + x^n$, para todo $x \in \mathbb{R}, x \neq 1$ e todo $n \in \mathbb{N}$.
- 5. Prove que, se $x, y \in \mathbb{R}$, $x^2 + y^2 = 0$, então x = y = 0.
- 6. Sejam $\alpha \in \mathbb{R}$ fixado e $A = \{x \in \mathbb{R} : x < \alpha\}$. Mostre que $\sup A = \alpha$.
- 7. Sejam A e B subconjuntos de \mathbb{R} não vazios e limitados superiormente. Sendo $A+B=\{a+b:a\in A\ e\ b\in B\}$, mostre que A+B é não vazio, limitado superiormente e que $\sup(A+B)=\sup A+\sup B$. Sendo $C=-A=\{-a:a\in A\}$ mostre que $\inf C=\sup A$.
- 8. Seja $S := \{1/n : n \in \mathbb{N}\}$. Mostre que sup S = 1 e inf S = 0.
- 9. Mostre que, se A e B são conjuntos limitados de \mathbb{R} então $A \cup B$ é limitado. Mostre que (sup $A \cup B$) = sup{sup A, sup B}.
- 10. Seja $S \subset \mathbb{R}$ um conjunto limitado não vazio e limitado inferiormente. Mostre que inf $S = -\sup -S$, sendo $-S := \{-s : s \in S\}$.
- 11. Diz-se que uma função $f:A\subset\mathbb{R}\to\mathbb{R}$ é limitada superiormente quando sua imagem f(A) for um conjunto 0 limitado superiormente e escrevemos sup $f=\sup f(A)$. Prove que, se

- $f:A\subset\mathbb{R}\to\mathbb{R}$ e $g:A\subset\mathbb{R}\to\mathbb{R}$ forem limitadas superiormente, então $f+g:A\to\mathbb{R}$ é limitada superiormente e tem-se $\sup(f+g)\leq\sup f+\sup g$. Dê um exemplo no qual $\sup(f+g)<\sup f+\sup g$.
- 12. Dadas duas funções a valores reais limitadas e positivas f e g (ou seja limitadas superiormente e inferiromente), mostre que $f \cdot g$ é limitada e $\sup(f \cdot g) \leq \sup f \cdot \sup g$ e $\inf(f \cdot g) \geq \inf \cdot \inf g$. Dê um exemplo no qual ocorre desigualdade estrita.
- 13. Nas condições do exercício anterior, com f=g mostre que a igualdade ocorre sempre.