7 mai 2015 Mat363

Contrôle continu 2

Exercice 1. Montrer que la fonction $(x, y) \mapsto e^{-y} \sin 2xy$ est intégrable pour la mesure de Lebesgue sur $[0, 1] \times (0, +\infty)$; en déduire la valeur de

$$\int_0^{+\infty} \frac{1}{y} (\sin y)^2 e^{-y} \, dy.$$

Exercice 2. Soient a, b > 0, et f et g les fonctions définies sur \mathbb{R}^n par $f(x) = e^{-\frac{a|x|^2}{2}}$ et $g(x) = e^{-\frac{b|x|^2}{2}}$. Calculer f * g(x).

Exercice 3. 1. Montrer que toute fonction f de $L^p(\mathbb{R})$ pour $1 \leq p < +\infty$ vérifie que $\lim ||f - f\mathbf{1}_{[-n,-n]}||_p = 0$.

2. On dit qu'une suite f_n de $L^2(\mathbb{R})$ converge faiblement vers f dans $L^2(\mathbb{R})$ si pour tout g de $L^2(\mathbb{R}) < f - f_n, g >$ tend vers 0. Soit $\{f_n\}_{n \in \mathbb{N}}$ la suite de fonctions définies par :

$$f_n(x) = \frac{1}{\sqrt{n}} \mathbf{1}_{[n,2n]}(x).$$

- (a) Montrer que f_n converge faiblement vers 0 dans $L^2(\mathbb{R})$ mais ne converge pas dans $L^2(\mathbb{R})$.
- (b) Montrer que f_n converge vers 0 dans $L^p(\mathbb{R})$ pour p > 2.

Exercice 4. Pour t > 0 on définit :

$$F(t) = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{\sin^2(x) + t^2 \cos(x)^2}} \quad \text{et } G(t) = \int_0^{\frac{\pi}{2}} \frac{\cos(x)dx}{\sqrt{\sin^2(x) + t^2 \cos(x)^2}}.$$

- 1. Etudier la limite $\lim_{t\to 0^+} (F(t) G(t))$.
- 2. Calculer G(t) pour $t \in]0,1[$.
- 3. En déduire la limite $\lim_{t\to 0^+} (F(t) + \ln(t))$.

Exercice 5. On considère une application $f:]0, +\infty[\to \mathbb{C}$ intégrable et on définit

$$F(t) = \int_0^{+\infty} e^{-tx} f(x) dx.$$

- 1. Montrer que F est continue sur \mathbb{R}_+ et C^{∞} sur $]0,+\infty[$.
- 2. Si $f(x) = \frac{1}{1+x^2}$, F est-elle dérivable à droite en 0?