Calculus and Analytical Geometry

Lecture no. 11

Amina Komal

April 2022

Topic: Application of Derivative: Intervals of increase and decrease, Concavity

Outline of the lecture:

- i. Increasing and decreasing functions
 - Definition
 - Theorem
 - Examples
- ii. Concavity
 - Definition
 - Theorem
 - Example
- iii. Inflection points
 - Definition
 - Example
- iv. Practice questions

> INCREASING AND DECREASING FUNCTIONS:

The terms increasing, decreasing and constant are used to describe the behavior of the function.

The function can be described as:

- Increasing to the left of 0
- Decreasing from the right of 0 to left of 2
- Increasing from the right of 2 to left of 4
- Constant to the right of 4

The following definition illustrate the idea precisely.

DEFINITION: Let f be defined on an interval, and let x_1 and x_2 denote points in that interval.

- (a) f is *increasing* on the interval if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- (b) f is **decreasing** on the interval if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.
- (c) f is **constant** on the interval if $f(x_1) = f(x_2)$ for all points x_1 and x_2 .

This figure also suggests:

- The function is **increasing** on any interval where each tangent line to its graph has a **positive** slope.
- The function is decreasing on any interval where each tangent line to its graph has a negative slope.
- The function is **constant** on any interval where each tangent line to its graph has a **zero** slope.

Ms. Amina Komal

THEOREM: Let f be a function that is continuous on a closed interval [a, b] and differentiable on an open interval (a, b)

- (a) If f'(x) > 0 for every value of x in (a, b), then f is increasing on [a, b].
- (b) If f'(x) < 0 for every value of x in (a, b), then f is decreasing on [a, b].
- (c) If f'(x) = 0 for every value of x in (a, b), then f is constant on [a, b].

Examples:

1. Find the intervals on which $f(x) = x^2 - 4x + 3$ the function is increasing and the intervals on which the function is decreasing.

Solution:

• Consider the graph of function:

The graph of the functions suggest that the function is decreasing for $x \le 2$ and increasing for $x \ge 2$.

• Differentiate the given function w.r.t x

$$f'(x) = \frac{d}{dx}(x^2 - 4x + 3)$$

= 2x - 4

It follows that,

$$f'(x) < 0 \quad if \ x < 2$$

$$f'(x) > 0 \quad if \ x > 2$$

Since the functions is continuous at every point of x, then according to the theorem

- f is decreasing on the interval $(-\infty, 2]$
- f is increasing on the interval $[2, +\infty)$
- 2. Find the intervals on which $f(x) = x^3$ the function is increasing and the intervals on which the function is decreasing.

Solution:

• Consider the graph of function:

The graph of the functions suggest that the function is decreasing for $x \le 2$ and increasing for $x \ge 2$.

• Differentiate the given function w.r.t x

$$f'(x) = \frac{d}{dx}(x^3)$$
$$= 3x^2$$

It follows that,

$$f'(x) > 0 \quad if \ x < 0$$

$$f'(x) > 0 \quad if \ x > 0$$

Since the functions is continuous at every point of x, then according to the theorem

- f is increasing on the interval $(-\infty, 0]$
- f is increasing on the interval $[0, +\infty)$
- We can conclude that the function is increasing on the whole real line $(-\infty, +\infty)$
- 3. Find the intervals on which $f(x) = 3x^4 + 4x^3 12x^2 + 2$ the function is increasing and the intervals on which the function is decreasing.

Solution:

• Consider the graph of function:

The graph of the functions suggests that:

- \triangleright The function is decreasing at $x \le -2$
- ightharpoonup The function is increasing from $-2 \le x \le 0$
- \triangleright The function is decreasing from $0 \le x \le 1$
- \triangleright The function is decreasing from $x \ge 1$
 - Differentiate the given function w.r.t x

$$f'(x) = \frac{d}{dx}(3x^4 + 4x^3 - 12x^2 + 2)$$
$$= 12x^3 + 12x^2 - 24x$$

Now we'll analysis the signs of f'(x) on each interval

Interval	f'(x)	Conclusion
x < -2	_	Increasing on $(-\infty, -2]$
-2 < x < 0	+	Increasing on [-2,0]
0 < x < 1	_	Decreasing on [0,1]
1 < x	+	Increasing on $[1,+\infty)$

> CONCAVITY

Concavity is the rate of change of function's derivative. Although the derivative reveals where the function is increasing or decreasing it does not reveal the direction of curvature.

CURVATURE:

Curvature is the amount by which a curve deviates from being a straight line.

CONCAVE UP OR CONCAVE DOWN:

DEFINITION: If f is differentiable on an open interval, then f is said to be

- *concave up* on the open interval if f is increasing on that interval,
- *f* is said to be *concave down* on the open interval if *f* is decreasing on that interval.

THEOREM: Let f be twice differentiable on an open interval.

- (a) If f''(x) > 0 for every value of x in the open interval, then f is concave up on that interval.
- (b) If f''(x) < 0 for every value of x in the open interval, then f is concave down on that interval

Example:

Suggest the function $f(x) = x^3$ is concave up or concave down.

Solution:

• Consider the graph of function:

The graph of the functions suggest that the function is decreasing for $x \le 2$ and increasing for $x \ge 2$.

• Differentiate the given function w.r.t x

$$f'(x) = \frac{d}{dx}(x^3)$$

$$= 3x^2$$

$$f''(x) = \frac{d}{dx}(3x^2)$$

$$= 6x$$

It follows that,

$$f''(x) < 0 \quad if \ x < 0$$
$$f''(x) > 0 \quad if \ x > 0$$

So, function is concave up for x > 0 and concave down for x < 0.

> INFLECTION POINT

DEFINITION: If f is continuous on an open interval containing a value x0, and if f changes the direction of its concavity at the point (x0, f(x0)), then we say that f has an *inflection point at* x0, and we call the point (x0, f(x0)) on the graph of f an *inflection point* of f

Example: Consider the function $f(x) = x^3 - 3x^2 + 1$. Use the first and second derivative to find on which intervals the function is increasing, decreasing, concave up and concave down. Locate the inflection points.

Solution:

$$f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 1)$$
$$= 3x^2 - 6x$$
$$f''(x) = 6x - 6 = 6(x - 1)$$

Interval	f'(x)	Conclusion
x < 0	+	Increasing on $(-\infty, 0]$
0 < x < 2	_	Decreasing on [0,2]
<i>x</i> < 2	+	Increasing on $[2, +\infty)$

Interval	f''(x)	Conclusion
<i>x</i> < 1	-	Decreasing on $(-\infty, 1]$
<i>x</i> < 1	+	Increasing on $[1, +\infty)$

> PRACTICE QUESTIONS:

Find the intervals on which the function is increasing, decreasing, concave up and concave down. Locate the Inflection points.

1.
$$f(x) = x^2 - 3x + 8$$

2.
$$f(x) = (2x + 1)^3$$

3.
$$f(x) = \frac{x}{x^2+2}$$