Bidirectional Convolutional LSTM for the Detection of Violence in Videos

Alex Hanson*, Koutilya PNVR*, Sanjukta Krishnagopal, Larry Davis *equal contribution

Goal

Propose Spatiotemporal Encoder architecture for violence detection on benchmark datasets:
Bidirectional Convolutional LSTM (BiConvLSTM).

Contribution

- Run ablation studies to evaluate key modules of this architecture.
- Propose a simpler Spatial Encoder architecture that works on certain datasets.

Takeaways

- Matches state-of-the-art on two benchmark datasets.
- Demonstrates a need for larger, more complex datasets in the violence detection domain.

Figure 2: Comparing Spatiotemporal and Spatial Encoders on Hockey (left); Violent Flows (right) datasets

Figure 3: Ablation study of different modules on Violent Flows: BiConvLSTM vs ConvLSTM (left); Elementwise Maxpooling vs Last representation (right)

Method Comparison

Method	Hockey	Movies	Violent Flows
MoSIFT+HIK	90.9%	89.5%	_
ViF	$82.9 \pm 0.14\%$	_	$81.3 \pm 0.21\%$
MoSIFT+KDE+Sparse Coding	$94.3 \pm 1.68\%$	_	$89.05 \pm 3.26\%$
Deniz et al.	$90.1 \pm 0\%$	$98.0 \pm 0.22\%$	_
Gracia et al.	$82.4 \pm 0.4\%$	$97.8 \pm 0.4\%$	_
Substantial Derivative	_	$96.89 \pm 0.21\%$	$85.43 \pm 0.21\%$
Bilinski et al.[1]	93.4%	99%	$\boldsymbol{96.4\%}$
MoIWLD[2]	$96.8{\pm}1.04\%$	_	$93.19 \pm 0.12\%$
ViF+OViF	$87.5 \pm 1.7\%$	_	$88 \pm 2.45\%$
Three streams + LSTM	93.9	_	_
Proposed: Spatiotemporal Encoder	$96.54 {\pm} 1.01\%$	$100 \!\pm\! \mathbf{0\%}$	$92.18 \pm 3.29\%$
Proposed: Spatial Encoder	$96.96{\pm}1.08\%$	$100{\pm}0\%$	$90.63 \pm 2.82\%$
Swathikiran et al.[3]	$97.1 \pm 0.55\%$ *	100±0%*	$94.57 \pm 2.34\%$ *
Proposed: Spatiotemporal Encoder	$97.9 \pm 0.37\%$ *	100±0%*	$96.32{\pm}1.52\%*$
Proposed: Spatial Encoder	$98.1{\pm}0.58\%$ *	100±0%*	$93.87 \pm 2.58\%$ *

Table 1: Performance comparison of different methods for Hockey Fights, Movies, and Violent Flows datasets. In the Hockey and Movies datasets our proposed methods match the state-of-the-art performance. For Violent Flows, our method is comparable to existing methods.

*Following accuracy calculation from [3, 4]

References

- [1] Piotr Tadeusz Bilinski and François Brémond. Human violence recognition and detection in surveillance videos. 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 30–36, 2016.
- Tao Zhang, Wenjing Jia, Xiangjian He, and Jie Yang. Discriminative dictionary learning with motion weber local descriptor for violence detection. *IEEE Trans. Cir. and Sys. for Video Technol.*, 27(3):696–709, March 2017.

 Swathikiran Sudhakaran and Oswald Lanz. Learning to detect violent videos using convolutional long
- Swathikiran Sudhakaran and Oswald Lanz. Learning to detect violent videos using convolutional long short-term memory. In Advanced Video and Signal Based Surveillance (AVSS), 2017 14th IEEE International
- Conference on, pages 1–6. IEEE, 2017.

 4] Swathikiran Sudhakaran. Personal communication.

Results

- The accuracy of the Spatiotemporal Encoder architecture is comparable to existing recent methods on the Violent Flows dataset
- The simpler Spatial Encoder architecture is sufficient to match state-of-the-art accuracy on the Hockey and Movies datasets.

Code

https://github.com/koutilya40192/ BiConvLSTM_Violence_Detection