Source:

1 | Problem: Axler 3.E exercise 18

Suppose $T \in \mathcal{L}(V, W)$ and U is a subspace of V. Let π denote the quotient map from V onto V/U. Prove that there exists $S \in \mathcal{L}(V/U, W)$ such that $T = S \circ \pi$ if and only if $U \subseteq \text{null } T$.

Intuitively, if we mod out part of the null T, then we should still be able to have a map that does what T would do. If we are able to do what T would do, then when modding out U we only removed part of null T and lost no information.

2 | Forward Direction

Intuitively, we can treat $S \circ \pi$ as a single map and take a basis of V to the same place that T would, and the maps would be equal.

~If \$V\$ is finite dimensional, suppose \$v_1, \ldots, v_n\$ is a basis of \$V\$ and \$v_1, \ldots, v_k\$ is a basis of \$U\$ (k = dim U and n = dim V). For each $k < j \le n$, \$\pi v_j \neq 0\$, and we can control where \$S\$ should send it. Let \$S\$ be defined by: \ S(\pi v_j) = T v_j \ Then, \$S \circ \pi\$ will send each vector in \$U\$ to 0 and each other vector where \$T\$ would send it. Because \$U \subseteq \text{null} \ T\$, \$S \circ \pi = T\$. ~~ This argument does not work for infinite dimensional vector spaces. Instead, perhaps we can send anything not in \$U\$ to where \$T\$ would send it and show that the resulting \$S\$ is linear? I'm not convinced by the following argument: ~~ Let \$S : V/U \ to W\$ s.t. \$S(\pi v) = Tv\$. Then, \$S \ circ \ pi = T\$. ~~ For \$S\$ to be linear, it needs to be additive and homogenous. For \$u, v \ in V\$ and \$\lambda \ in \mathbb F\$, \ S\pi u + S\pi v = Tu + Tv = T(u+v) = S(\pi u + \pi v) \ \ \ lambda S \ pi u = \ lambda T u = T(\lambda u) = S \ (\lambda \pi u) \

In other words, \$T\$ is linear thus \$S \circ \pi\$ is also linear.

Let $S: V/U \to W$ be defined by

$$S(U+v)=Tv$$

If S is well defined (every element in V/U is mapped to exactly one place), then S will inherit additivity and homogeneity from T and $S \circ \pi$ will equal T.

Let $v \in V$ and $v' \in V/U$ s.t. $v' = \pi v$ (v' is where π takes v).

For some \$u, v \in \text{range }T\$,

2.1 | define S(U + v) = T v

2.1.1 check that it is well defined

1. every element is sent to exactly one place

2.1.2 check that linearity is inhereted from T

3 | Reverse Direction by Contrapositive

Intuitively, if we lost information, then we can't reconstruct what T would do.

Exr0n · 2020-2021 Page 1

Assume $U \not\subseteq \text{null } T$. There exists $v \in U$ s.t. $Tv \neq 0$. This is some of the "information" that was "lost". Because $v \in U$,

$$\pi v = U + v = U$$

Because U is the additive identity (0) in V/U, and because linear maps take zero to zero, $S \in \mathcal{L}(V/U,W)$ must take $\pi v = 0$ to zero. Thus, either $S(\pi v) \neq Tv$ or S is not a linear map, both of which are contradictions.

This shows that if $U \nsubseteq \operatorname{null} T$, then $S \notin \mathcal{L}(V/U,W)$ or $T \neq S \circ \pi$. Thus, if $S \in \mathcal{L}(V/U,W)$ and $T = S \circ \pi$, then $U \subseteq \operatorname{null} T$.

Exr0n · **2020-2021** Page 2