Announcements

Make sure to sign in on the google form (I send a list of which section questions are useful for which pset questions afterwards)

Pset 1 due Friday 9/22

Introductions (again)

- Name
- One question or thought related to lecture last week (ANOVA, F-test, ranks)

Manipulating new distributions

Let $T_n \sim t_n$. Find the following:

- 1. Distribution of T_n^2 . Hint: Think about the representation of T_n .
- 2. Distribution of T^{-2}
- 3. Let $X_1, ..., X_n \sim \text{Expo}(\alpha)$. Find the k (in terms of α) such that $k \sum_{i=1}^n X_i \sim \chi_{2n}^2$.

Simulations

1. Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Then, let $X_{i,1} = X_i + \epsilon_{i,1}$ and $X_{i,2} = X_i + \beta + \epsilon_{i,2}$ with $\epsilon_{i,j} \sim \mathcal{N}(0, \sigma^2)$. Suppose we simulate many paired and unpaired t-tests for the difference in the mean of the $X_{i,1}$ s vs. the mean of the $X_{i,2}$ s. If β is non-zero, which color is the paired t-test?

- 2. Suppose we have some β_i for $i \in \{1, ..., n_\beta\}$ that are not equal. Let $X_{i,j} = \beta_i + \epsilon_{i,j}$ for j = 1 to n with $\epsilon_{i,j} \sim \mathcal{N}(0, \sigma^2)$. We want to test whether $\beta_1 = \beta_2 = \cdots = \beta_{n_\beta}$. We'll run a simulation in which we consider two cases:
- In the first case, we use the proper groupings of the $X_{i,j}$; that is, there are n observations in each group, all with the same β_i .
- In the second case, we'll subdivide each of these groups into 2 so that there are n/2 observations in each group with two groups for each β_i .

We'll run an ANOVA in each case and repeat this many times. Which color is which case?

3. Let $X_i \sim \mathcal{N}(0,1)$ for i from 1 to n. Let $Y_i \sim -1 + \operatorname{Expo}(1)$ for i from 1 to n. Suppose we conduct a two-sided, one-sample t-test for $H_0: \mu = 0$ vs. $H_a: \mu \neq 0$ and record the p-value. The plots below show p-values from simulations repeating this many times for the two distributions and n = 5 or n = 20. Identify which is which.

4. Which of the two comparisons do you expect to have the lower p-value? The one with a larger difference in sample means or the one with more data points (40 vs 400)?

Variance by decomposition

Let $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(m, p)$. Let X + Y = r.

1. Find the variance of X|r by using the variance of a known distribution (See 3.9.2 in the Stat 110 book for a hint).

2. Find the variance of X|r by using the fact that Var(X+Y|r)=0 and treating X and Y as the sum of Bernoulli random variables. Verify that the two answers are the same. (Hint: Once you get to the Bernoulli random variables, think about how knowing the sum is r makes p irrelevant.)

Hypothesis testing on real data

These problems will deal with a dataset of country-level statistics from UNdata and Varieties of Democracy.

1. Suppose we want to test for a difference in mean 2010 GDP per capita between democracies and non-democracies. The following plots show the distributions. Which tests would be valid?

2. Perform a formal rank-sum test for the difference in GDP per capita between democracies and non-democracies.

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: dem_gdps and nondem_gdps
## W = 5443, p-value = 7.754e-08
## alternative hypothesis: true location shift is not equal to 0
```

3. Perform a formal log-transformed t-test for the difference in GDP per capita between democracies and non-democracies. Give a 95% confidence interval for the ratio of medians.

```
##
## Welch Two Sample t-test
##
## data: log(dem_gdps) and log(nondem_gdps)
## t = 5.8451, df = 169.64, p-value = 2.533e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.8196649 1.6556519
## sample estimates:
## mean of x mean of y
## 9.015952 7.778294
```

4. Suppose we wanted to test whether there was a difference in the mean number of doctors per country between 2019 and 2020. What would be a good way to do so?

5. Perform a formal analysis of variance for the difference in 2010 log GDP per capita by world region.

```
## Df Sum Sq Mean Sq F value Pr(>F)
## Region 21 6.977e+10 3.322e+09 12.84 <2e-16 ***
## Residuals 187 4.839e+10 2.588e+08
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 23 observations deleted due to missingness</pre>
```

6. Comment on the assumptions of the test.

##		Region	Variance	Number
##	1	Caribbean	0.80	22
##	2	Central America	0.49	8
##	3	Central Asia	1.15	5
##	4	Eastern Africa	1.28	18
##	5	Eastern Asia	2.95	7
##	6	Eastern Europe	0.60	10
##	7	Melanesia	1.56	5

##	8	Micronesia	0.55	5
##	9	Middle Africa	1.72	9
##	10	Northern Africa	0.47	6
##	11	Northern America	0.15	4
##	12	Northern Europe	0.52	10
##	13	Oceania	0.16	2
##	14	Polynesia	0.84	5
##	15	South America	0.35	12
##	16	South-eastern Asia	2.17	11
##	17	Southern Africa	0.57	5
##	18	Southern Asia	0.96	9
##	19	Southern Europe	0.89	14
##	20	Western Africa	0.43	16
##	21	Western Asia	1.44	17
##	22	Western Europe	0.31	9