Ch.8 - Backpropagation

Created	@January 18, 2024 3:36 PM
Book Book Society Soc	Deep Learning: Foundations and Concepts

o

Backpropagation

Gradients

Single Layer

General Network

Numerical Differentiation

Automatic Differentiation

Forward Mode

Reverse Mode

Forward vs Reverse

Gradients

Single Layer

 $\{x_n, t_n\}$

A simple linear model where the outputs $y_k = \sum_i w_{ki} x_i$ together with a sum-of-squares error function:

$$E_n = \frac{1}{2}\sum_k (y_{nk}-t_{nk})^2$$

The gradient with respect to ith parameter associated with the output unit is as follows.

$$\frac{\partial E(w)}{\partial w_{ji}} = (y_{nj} - t_{nj})x_{ni} \tag{1}$$

This simple result can be extended to more complex neural networks.

General Network

For a generalized neural network where multiple layers are connected, we can derive a recurrent relationship in respect to pre-activation a_j and calculate $\frac{\partial E(w)}{\partial w_{ji}}$ for gradient descent.

(1)
$$a_j$$
 , z_j , δ_j

$$a_j = \sum w_{ji} z_i, \; z_j = h(a_j), \; \delta_j = rac{\partial E(w)}{\partial a_j}$$

where i is the previous layer, j the current, and k the next.

(2) $\partial \delta_i$

From the relationship $a_k=\sum_j w_{kj}z_j$ and $z_j=h(a_j)$, and $\frac{\partial E(w)}{\partial a_k}=\delta_k$, we can derive the recurrent equation on the right. Note that δ_j gets the error signal from all the units in the next layer, as the error function.

$$egin{aligned} \delta_j &= rac{\partial E(w)}{\partial a_j} = \sum_k rac{\partial E(w)}{\partial a_k} rac{\partial a_k}{\partial a_j} \ &= h'(a_j) \sum_k w_{kj} \delta_k \ (\because rac{\partial a_k}{\partial a_j} = h'(a_j) w_{kj}) \end{aligned}$$

(3) ∂w_{ji}

Once we got the recurrent relationship of δ_j , it's easy to run gradient descent for parameters.

$$rac{\partial E(w)}{\partial w_{ji}} = rac{\partial E(w)}{\partial a_j} rac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$$

This process of sending gradient backward to adjust parameters is call **backpropagation**.

Numerical Differentiation

An alternative way to calculate a gradient of $\frac{\partial E(w)}{\partial w_{ji}}$ is to use the definition of derivation.

$$rac{\partial E(w)}{\partial w_{ji}} = rac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon}$$

This gives a critical issue where it needs to compute O(w) for the new error function for each weight, resulting in a feed-forward complexity of $O(w^2)$ instead of O(w).

However, this can play a useful role to **check on the correctness** of the deep neural network.

Automatic Differentiation

There essentially are four ways to evaluate the gradient of a neural network.

Back-propagation by hand

Manual derivation of gradient

equations

Numerical differentiation

Using the definition of derivation

Symbolic differentiation

Manipulates the original expression

Accurate to numerical precision

Hard to adapt to software change, prone to error

No need to implement back-propagation equations

Poor time complexity of $O(W^2)$

Completely mechanistic process

▼ Redundant computation → can become exponentially longer to compute

$$f(x)=u(x)v(x) \ f'(x)=u'(x)v(x)+u(x)v'(x)$$

Automatic differentiation

Manipulates blocks of computer program

Able to exploit intermediate variables → efficient

Ch.8 - Backpropagation 3

Forward Mode

In forward mode automatic differentiation, we follow these steps to get the derivative $\frac{\partial f}{\partial x_i}$.

- 1. Visualize the evaluation with a graph
- 2. Define each node as $rac{ t primal}{ t v}$ variable v_i
- 3. Define tangent variables $\dot{v}_i = rac{\partial v_i}{\partial x_i}$

$$\dot{v_i} = rac{\partial v_i}{\partial x_i} = \sum_{j \in parent(i)} rac{\partial v_j}{\partial x_i} rac{\partial v_i}{\partial v_j}$$

4. Finally compute $\frac{\partial f}{\partial x_i}$

< Evaluation Trace of x1x2 + exp(x1x2) - sin(x2) >

▼ Example of

$$f(x_1,x_2)=x_1x_2+e^{x_1x_2}-sin(x_2)$$

< Primal Variables >

$$v_1 = x_1$$

$$v_2 = x_2$$

$$v_3 = v_1 v_2$$

$$v_4 = \sin(v_2)$$

$$v_5 = \exp(v_3)$$

$$v_6 = v_3 - v_4$$

$$v_7 = v_5 + v_6$$

< Tangent Variables >

$$\dot{v}_1 = 1$$

$$\dot{v}_2 = 0$$

$$\dot{v}_3 = v_1 \dot{v}_2 + \dot{v}_1 v_2$$

$$\dot{v}_4 = \dot{v}_2 \cos(v_2)$$

$$\dot{v}_5 = \dot{v}_3 \exp(v_3)$$

$$\dot{v}_6 = \dot{v}_3 - \dot{v}_4$$

$$\dot{v}_7 = \dot{v}_5 + \dot{v}_6.$$

The steps continue by evaluating a tuple of $(v_i, \dot{v_i})$ until it gets to the last derivative.

Reverse Mode

In reverse mode automatic differentiation, the process is much the same as the error back-propagation applied to differentiation. In contrast to forward mode, it proceeds from parents to children so that we denote adjoint $\bar{v}_i = \frac{\partial f}{\partial v_i}$ instead of tangent.

- 1. Visualize the evaluation with a graph
- 2. Define each node as primal variable v_i
- 3. Define adjoint variables $ar{v_i}$
- 4. Finally compute $ar{x}_i = rac{\partial f}{\partial x_i}$

$$ar{v_i} = rac{\partial f}{\partial v_i} = \sum_{j \in child(i)} rac{\partial f}{\partial v_j} rac{\partial v_j}{\partial v_i}$$

▼ Example of

$$f(x_1,x_2) = x_1x_2 + e^{x_1x_2} - sin(x_2)$$

$$\overline{v}_7 = 1$$

$$\overline{v}_6 = \overline{v}_7$$

$$\overline{v}_5 = \overline{v}_7$$

$$\overline{v}_4 = -\overline{v}_6$$

$$\overline{v}_3 = \overline{v}_5 v_5 + \overline{v}_6$$

$$\overline{v}_2 = \overline{v}_2 v_1 + \overline{v}_4 \cos(v_2)$$

$$\overline{v}_1 = \overline{v}_3 v_2.$$

Forward vs Reverse

(1) Jacobian

If we expand to a model with D inputs $\{x_1,x_2,\cdots,x_D\}$ and K outputs $\{f_1,f_2,\cdots,f_K\}$, a single parallel computation of AD produces:

ullet Forward mode: a single column of J

ullet Reverse mode: a single row of J

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_K}{\partial x_1} & \dots & \frac{\partial f_K}{\partial x_D} \end{bmatrix}.$$

(2) Gradient of Unit

If forward/reverse mode is applied to a neural network, each unit u_i would hold the gradient of

• Forward Mode: Derivative of a unit with respect to input $\rightarrow \frac{\partial u_i}{\partial x_i}$

• **Reverse Mode**: Derivative of an output with respect to unit $\rightarrow \frac{\partial f}{\partial u_i}$