Hydroxysafflor Yellow A 与 Piezo1 对接

2024-02-02

LiChuang Huang

@ 立效研究院

Contents

1	摘要	1
2	前吉	1
3	材料和方法 3.1 材料	1 1 1
4	分析结果	1
5	结论	1
6	附:分析流程 6.1 分子对接	1
\mathbf{R}_{0}	eference	2
\mathbf{L}	ist of Figures	
	1 Overall combining Affinity	

List of Tables

1 摘要

需求:

Hydroxysafflor Yellow A(InChIKey: IAVUBSCVWHLRGE-UXEKTNMQSA-N)与 Piezo1 对接

结果:

见 Fig. 1

- 2 前言
- 3 材料和方法
- 3.1 材料
- 3.2 方法

Mainly used method:

- ullet The CLI tools of AutoDock vina and ADFR software used for auto molecular docking $^{1-5}$.
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.
- 4 分析结果
- 5 结论
- 6 附:分析流程
- 6.1 分子对接

Figure 1 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 1: Overall combining Affinity

Figure 2 (下方图) 为图 HYA binding PIEZO1 概览。

(对应文件为 Figure+Table/6443665_into_piezo1.png)

Figure 2: HYA binding PIEZO1

Reference

- 1. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).
- 2. Zhang, Y., Forli, S., Omelchenko, A. & Sanner, M. F. AutoGridFR: Improvements on autodock affinity maps and associated software tools. *Journal of computational chemistry* **40**, 2882–2886 (2019).
- 3. Zhang, Y. & Sanner, M. F. AutoDock crankpep: Combining folding and docking to predict protein-peptide complexes. *Bioinformatics (Oxford, England)* **35**, 5121–5127 (2019).
- 4. Ravindranath, P. A. & Sanner, M. F. AutoSite: An automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms. *Bioinformatics (Oxford, England)* 32, 3142–3149 (2016).
- 5. Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J. & Sanner, M. F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. *PLoS computational biology* 11, (2015).