

Modeling Infrastructure Degradation from Visual Inspections Using Network-Scale State-Space Models

Zachary Hamida ¹ James-A. Goulet ¹

Motivation

- Developing a deterioration model for network-scale visual inspections.
- Estimating the deterioration rate from visual inspection data.
- Quantifying the uncertainty of visual inspections.

Contributions

The main contributions of this work are:

- Model the deterioration behaviour based on visual inspection data taken from a network of bridges.
- Quantify the uncertainty of the inspectors performing visual inspections.
- Quantify inspections uncertainty based on the deterioration state of the structural element and the inspectors uncertainty.
- Validate and verify the proposed methods with real and synthetic datasets respectively.

Deterioration Behaviour Described by Kinematics:

$$\underbrace{\begin{bmatrix} x_t \\ \dot{x}_t \\ \ddot{x}_t \end{bmatrix}}_{\boldsymbol{x}_t} = \underbrace{\begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}}_{\boldsymbol{x}_t} \cdot \underbrace{\begin{bmatrix} x_{t-1} \\ \dot{x}_{t-1} \\ \ddot{x}_{t-1} \end{bmatrix}}_{\boldsymbol{x}_{t-1}} + \underbrace{\begin{bmatrix} w_t \\ \dot{w}_t \\ \ddot{w}_t \end{bmatrix}}_{\boldsymbol{w}_t}$$

Method: State-Space Models

transition model
$$m{x}_t = m{A} m{x}_{t-1} + m{w}_t, \ m{w}_t : m{W} \sim \mathcal{N}(m{w}; m{0}, m{Q}_t)$$
 process error observation model $m{y}_t = m{C} m{x}_t + m{v}_t, \ m{v}_t : m{V} \sim \mathcal{N}(m{v}; m{0}, m{R}_t)$

Inspector-Dependent Uncertainty

Proposed Degradation Model

State-Dependant Uncertainty

Figure 1. Transformation function g(.) with different n values.

Figure 2. Flowchart of structural deterioration model

Visual Inspections Database

Information hierarchy for the data of a visual inspections system.

Figure 3. Information Hierarchy for Visual Inspection System

m. Example of Inspection Data for a Structural Element:

Synthetic Inspection Data:

Synthetic Inspections

- # Structural Elements $\mathbf{E} = 10827$.

- # Inspectors I = 194.

Figure 4. Inspections $m{y}_{18}^{539}$ of Structural Element e_{18}^{539}

Real Inspections

Synthetic Data Analyses

Figure 5. Condition deterioration analysis based on the observations \tilde{y}_1^{792} of the synthetic structural element e_1^{792} with error bars representing the Inspectors true (wide whiskers) & estimated (narrow whiskers) uncertainties.

Figure 6. Scatter plot of inspectors true $\sigma_V(I_i)$ vs. estimated $\sigma_V(I_i)$ with a dashed line representing the initial value at the start of the optimization.

Real Data Analyses

Results: Verification & Validation

Figure 7. Condition deterioration analysis based on the observations \tilde{y}_1^{8233} of the structural element e_1^{8233} .

Figure 8. Deterioration condition validation for real structural elements.