Solucionário de Curso de Análise Vol. 2 Elon Lages Lima

Andre Kowacs

9 de dezembro de 2018

Capítulo 1

Ex.2.3)

Afirmação: Ax = b tem solução $\iff b \in \ker(A^*)^{\perp}$

De fato, se Ax = b, então $b \in Im(A)$. Assim, dado $a \in \ker(A^*)$, temos que:

$$\langle b, a \rangle = \langle Ax, a \rangle = \langle x, A^*a \rangle = 0$$

Logo $b \in \ker(A^*)^{\perp}$.

Reciprocamente, seja $0 \neq b \in \ker(A^*)^{\perp}$. Suponha que $b \notin Im(A)$. Então $\exists c \in Im(A)^{\perp}$ tal que $\langle b, c \rangle \neq 0$. Mas daí $AA^*c \in Im(A)$, logo:

$$||A^*c||^2 = \langle A^*c, A^*c \rangle = \langle AA^*c, c \rangle = 0$$

Logo $A^*c=0 \implies x \in \ker(A^*)$. Mas daí $b \in \ker(A^*)^{\perp} \implies \langle b,c \rangle = 0$ contradição. Logo $b \in Im(A)$. Ou seja, $Im(A) = \ker(A^*)^{\perp} \wedge Im(A^*) = \ker(A)^{\perp}$ Seja $\dim(Im(A)) = k \leq n$. Então $\dim(\ker(A)) = n - k \implies \dim(\ker(A)^{\perp}) = n - (n - k) = k = \dim(Im(A^*))$

Ex 2.10

Para $t \in (0,1)$ e |a| < r, $|b| \le r$ ou $|a| \le r$, |b| < r:

$$|(1-t)a + tb| \le (1-t)|a| + t|b| < (1-t)r + tr = r$$

Se |a| = |b| = r, então como $a \neq b$, $\langle a, b \rangle < |a| |b| \le r^2$.

E, portanto, para $t \in (0,1)$:

$$|(1-t)a+tb|^{2} = \langle (1-t)a+tb, (1-t)a+tb \rangle = (1-t)^{2}r^{2} + 2(1-t)t\langle a, b \rangle + t^{2}r^{2}$$

$$< (1-2t+t^{2})r^{2} + (2t-2t^{2})r^{2} + t^{2}r^{2} = r^{2}$$

$$\therefore$$

$$|(1-t)a+tb| < r \quad \Box$$

Ex.5.5)

De fato, \langle , \rangle contínua e $\lim x_k = a$ implica

$$\lim_{k\to\infty}\langle x_k,y\rangle=\langle a,y\rangle,\,\forall y.$$

Agora suponha que $\lim_{k\to\infty}\langle x_k,y\rangle=\langle a,y\rangle, \, \forall y$. Tome $\{e_1,...,e_n\}$ base ortonormal. Então $\forall i=1,...,n, \exists k_i:$

$$|\langle x_k, e_i \rangle - \langle x_l, e_i \rangle| < \epsilon/n, \forall k, l > K_i.$$

Tome $K = \max K_i$. Então:

$$|\langle x_k, e_i \rangle - \langle x_l, e_i \rangle| = |\langle x_k - x_l, e_i \rangle| < \epsilon / \sqrt{n}, \forall k, l \ge K, \forall i = 1, ..., n.$$

Mas então:

$$|x_k - x_l| = \left| \sum \langle x_k - x_l, e_i \rangle e_i \right| \le \sum |\langle x_k - x_l, e_i \rangle| \, |e_i| < \epsilon \forall l, k \ge K$$

Logo x_k é de Cauchy e claramente $x_k \to a$.

Ex.6.2)

Seja X tal que todo ponto é isolado. Assim, dados $x, y \in X$, $\exists \delta_x, \delta_y$ tal que:

$$B(x, \delta_x) \cap X \setminus \{x\} = \emptyset, B(y \operatorname{delta}_y) \cap X \setminus \{y\} = \emptyset$$

Assim, seja $r_x = \inf\{|x-z|; z \in X\}$, $r_y = \inf\{|y-z|; z \in X\}$. Note que $r_x \ge \delta_x > 0$, $r_y \ge \delta_y > 0$. Tomando $B_x = B(x, r_x/2)$, $B_y = B(y, r_y/2)$, segue que $B_x \cap B_y = \emptyset$. Como $x \in y$ foram arbitrários, segue. \square

Ex.6.3) Seja $X \subset \mathbb{R}^n$ discreto. Então todo ponto é isolado, logo pelo Ex.6.2, $\forall x \in X, \exists B_x$ vizinhança de x tal que $B_x \cap B_y = \emptyset$, $x \neq y$. Assim, seja $(q_n)_n \subset \mathbb{R}^n$ enumeração de \mathbb{Q}^n . Então $\forall x, \exists q_{n_x}$ tal que $q_{n_x} \in B_x$. Note que isso define uma injeção:

$$f: A \subset \mathbb{Q}^n \to X$$
$$q_{n_n} \mapsto x$$

pois $x \neq y \implies q_{n_x} \in B_x$, $q_{n_y} \in B_y$, $q_{n_x} \neq q_{n_y}$ pois $B_x \cap B_y = \emptyset$. Logo X é enumerável.

E.7.9)

De fato, se X é limitado, então \overline{X} também o é, logo \overline{X} é compacto. Segue que $f|_{\overline{X}}$ é uniformemente contínua, donde $f|_{X}$ também o é, pois é restrição da outra.

Ex.9.7)

Seja B a bola fechada e ponha

$$h: int(B) \to \mathbb{R}^n$$
 $T: \mathbb{R}^n \to \mathbb{R}^n$ $x \mapsto \frac{x}{1 - ||x||}$ $x \mapsto x + a$

Temos que h é homeomorfismo entre int(B) e \mathbb{R}^n , com $h^{-1}(x) = \frac{x}{1+||x||}$, e T é homeomorfismo entre \mathbb{R}^n e \mathbb{R}^n , $T^{-1}(x) = x - a$. Assim:

$$\phi = h^{-1} \circ T \circ h : int(B) \to int(B)$$
$$x \mapsto \frac{(1 - ||x||)a + x}{(1 - ||x||) + ||(1 - ||x||)a + x||}$$

é homeomorfismo. Além disso, dado $b \in \partial B$, ||b|| = 1, logo:

$$\lim_{x \to b} \phi(x) = \lim_{x \to b} \frac{b}{||b||} = b$$

Logo, podemos estender continuamente ϕ para $\bar{\phi}: B \to B$ pondo $\bar{\phi}(x) = \lim_{y \to x} \phi(y)$ e temos que $\bar{\phi}$ é homeomorfismo entre B e B tal que $\bar{\phi}(x) = x$, $\forall x \in \partial B$. Além disso, $\bar{\phi}(0) = \frac{1}{1 + ||a||} \in int(B)$. Assim, de modo análogo, tomando a_1, a_2 tal que $\frac{1}{1 + ||a_1||} = c$, $\frac{1}{1 + ||a_2|| = d}$, obtemos os homeomorfismos $\bar{\phi}_1, \bar{\phi}_2$ tais que $\bar{\phi}_1(0) = c$, $\bar{\phi}_2(0) = d$.

Assim $\gamma = \bar{\phi}_2 \circ \bar{\phi}_1^{-1}$ é homeo que preserva a fronteira e $\gamma(c) = d$

Ex.10.9)

De fato, $GL(n) = \det^{-1}(\mathbb{R} \setminus \{0\})$ e det é contínua, $\mathbb{R} \setminus \{0\}$ é aberto.

Ex.10.12)

Seja $T \in I$ onde $I \subset \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ é o conjunto das aplicações injetivas. T é injetiva $\iff \exists c > 0 \ ||Tx|| \ge c||x||, \ \forall x \in \mathbb{R}^n$. Assim, $||T' - T|| < c/2 \implies ||(T' - T)x|| \le c/2||x||$, ou seja:

$$||Tx|| - ||T'x|| \le ||x|| \implies ||T'x|| \ge ||Tx|| - c/2||x|| \ge c||x|| - c/2||x|| = c/2||x||$$

Logo T' é injetiva, isto é, $B(T, c/2) \subset I$. Logo I é aberto.

Ex.10.13)

Seja $I \subset \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, $n \leq m$ o conjunto das aplicações inejtivas. Dada $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, $\epsilon > 0$, mostremos que $\exists T' \in I$, $||T - T'|| \leq \epsilon$. Se $T \in I$, então tome T' = T. Se $T \notin I$, então $\ker(T) \neq \{0\}$. Seja $0 < \dim \ker(T) = k \leq n$.

Segue que $\dim(Im(T)) = n - k < n$, donde $\dim(Im(T)^{\perp}) = m - n + k \ge k$. Logo $\dim(\ker(T)) = k \le \dim(Im(T)^{\perp})$. Segue que $\exists S$ linear injetiva:

$$S: \ker(T) \to Im(T)^{\perp}$$

Assim, defina:

$$U: \ker(T)^{\perp} \to Im(T)$$

Onde $U = T|_{\ker(T)^{\perp}}$. Então é claro que $\ker(U) = \{0\}$, Im(U) = Im(T). Note que $\ker(T) \bigoplus \ker(T)^{\perp} = \mathbb{R}^n$, logo $\forall x \in \mathbb{R}^n$, $\exists ! x_1 \in \ker(T), x_2 \in \ker(T)^{\perp}, x = x_1 + x_2$.

Defina $T': \mathbb{R}^n \to \mathbb{R}^m$, pondo

$$T'x = Ux_1 + \frac{\epsilon}{||S||}Sx_2$$

Assim $T'x=0 \iff Ux_1+\frac{\epsilon}{||S||}Sx_2=0 \iff x_1\in \ker(U) \land x_2\in \ker(S) \implies x_1,x_2=0 \text{ ou } x_1,x_2\in \operatorname{Im}(U)\cap\operatorname{Im}(S)=\{0\} \implies x_1,x_2=0.$

Logo $x = x_1 + x_2 = 0$ e ker $(T') = \{0\}$, isto é, $T' \in I$. Ainda, $\forall x \in \mathbb{R}^n$:

$$||T'x - Tx|| = ||Ux_1 + \frac{\epsilon}{||S||} Sx_2 - T|_{\ker(T)^{\perp}} x_1|| \le \frac{\epsilon}{||S||} ||S||||x_2|| \le \epsilon ||x||$$

Portanto $||T' - T|| \le \epsilon$

Ex.11.10)

Sejam $x_1, x_2 \in \overline{A}$. Dado $t \in [0, 1]$, seja $y = tx_1 + (1 - t)x_2$. Dado $\epsilon > 0$ Como $x_1, x_2 \in \overline{A}$, $\exists a_1, a_2 \in A$, $|x_1 - a_1| < \epsilon/2$, $|x_1 - a_1| < \epsilon/2$.

Então $ta_1 + (1-t)a_2 \in A$ e

$$|tx_1 + (1-t)x_2 - ta_1 + (1-t)a_2| \le t|x_1 - a_1| + (1-t)|x_2 - a_2|$$

$$< t\epsilon/2 + (1-t)\epsilon/2 = \epsilon$$

Logo $tx_1 + (1-t)x_2 \in \overline{A}$, logo \overline{A} é convexo.

Ex.11.11)

Por 11.10 temos que \overline{A} é convexo. Note que $\forall x \in A, y \in \overline{A}, tx + (1-t)y \in A, t \in [0,1)$. De fato, A aberto $\Longrightarrow \exists \delta, B(x,\delta) \subset A$. Logo $\forall z \in B(x,\delta), tx + (1-t)z \in A, t \in [0,1]$.

Mas $y \in \overline{A} \implies \exists u \in A, y \in B(u \epsilon)$. Pelo acima, $u + t(y - u) \in A$, $t \in [0, 1)$. Denotando o segmento fechado entre dois pontos j, i por [j, i] e fechado e aberto por [j, i), temos então que [x, u], $[u, y) \subset A \implies [x, y) \subset A$.

Agora, tome $y \in int(\overline{A})$. Então $\exists r > 0$, $B(y,r) \subset \overline{A}$. Tome $y' \in A$. Então $\exists \epsilon > 0$ tal que $y' + (1 + \epsilon)(y - y') = t + \epsilon(y - y') \in B(y,r) \subset \overline{A}$. Mas pelo argumento acima, $[y', y + \epsilon(y - y')) \subset A$. Mas $y \in [y', y + (\epsilon(y - y')), \log y \in A$. A inclusão reversa é trivial.

Ex.11.18)

De fato, dada $M \in \mathcal{L}(\mathbb{R}^n)$, exceto para um número finito de λ 's $(M - \lambda Id)$ é invertível (pois $\det(M - \lambda Id)$ é um polinômio. Assim, $\exists (\lambda_n)_n \subset \mathbb{R}$, $\lambda_n \to 0$ tais que $M_n = M - \lambda_n Id$ é invertível, $M_n \to M : \overline{GL(n)} = \mathbb{R}^{\setminus}$. $\Box \text{Ex.} 12.2$) É fechado, pois dada $(O_n)_n \subset O(n)$, $O_n \to T$, tomando $x \in \mathbb{R}^n$, temos $||O_n x|| = ||x||, \forall n \Longrightarrow ||O_n x|| \to ||x||$. Pela continuidade da norma, segue que $||O_n x|| \to ||Tx|| = ||x||$. Como x foi arbitrário, segue que $||Tx|| = ||x|| \forall x : T \in O(n)$. Segue que O(n) é fechado. Além disso, $\forall O \in O(n)$, $||Ox|| = ||x|| \forall x : ||O|| = 1$. Logo O(n) é limitado e portanto compacto.

Ex.12.3)

De fato, se todo ponto de X é isolado, então $\bigcup_{x \in X} \{x\}$ é cobertura aberta de X sem cobertura finita. Logo X não é compacto. Se X possui ao menos 1 ponto não isolado, \bar{x} , então $\exists (x_n)_n \subset X$ $x_n \neq x \forall n, x_n \to \bar{x}$. Assim $(x_n)_n \subset X$ é subconjunto não fechado em X, logo não compacto.

Ex.12.6)

De fato, $X \cong X \implies X$ limitado. Então $\exists \bar{x} \in \overline{X}, \ \bar{x} \notin X$, ou seja, $\exists (x_n)_n \subset X, \ x_n \to \bar{x} \notin X$. Defina:

$$f: X \to \mathbb{R}^n$$
$$x \mapsto \frac{x - \bar{x}}{||x - \bar{x}||^2}$$

Então é claro que f é contínua. Além disso,

$$f^{-1}: f(X) \to X$$
$$y \mapsto \frac{y}{||y||^2} + \bar{x}$$

É inversa de f, também claramente contínua. Logo f é homeomorfismo e $X \cong f(X)$. Mas note que f(X) é ilimitado:

De fato:

$$||f(x_n)|| = \frac{||x_n - \bar{x}||}{||x_n - \bar{x}||} = \frac{1}{||x_n - \bar{x}||} \to +\infty$$

Contradição. Logo X é fechado. Portanto $X \subset \mathbb{R}^n$ é fechado e limitado, logo, compacto.

Ex.12.7)

Claramente, $X \cong X \implies X$ fechado.

Suponha que X não é limitado. Defina:

$$f: X \to \mathbb{R}^n$$

$$x \mapsto \frac{x}{1 + ||x||}$$

Claramente f é contínua e sua inversa:

$$f^{-1}: f(X) \to X$$
$$y \mapsto \frac{y}{1 - ||y||}$$

também. Mas note que $\forall y \in f(X), \ y = \frac{x}{1+||x||}, \ \log ||y|| = \frac{||x||}{1+||x||} < 1.$

Mas X ilimitado implica que $\exists (x_n)_n \subset X, ||x_n|| \to +\infty$. Segue que $||f(x_n)|| \to 1$. Como $(f(x_n)_n$ é limitada, $\exists (f(x_{n_k}))_k \subset (f(x_n))_n$ subsequência convergente, $f(x_{n_k}) \to \bar{y} \in \mathbb{R}^n$. Mas então $||x_{n_k}|| \to +\infty \implies ||\bar{y}|| = 1$, logo $\bar{y} \notin f(X)$, logo f(X) não é fechado, contradição. Segue que X é limitado. Concluímos que X é compacto. \Box

Ex.12.11)

- i) De fato, seja $x \in f^{-1}(y)$. Então $\exists r > 0$, $f|_{B(x,r) \cap X}$ é injetiva, logo $f^{-1}(y) \cap B(x,r) = \{x\}$, logo $\{x\}$ é aberto. Como x foi arbitrário, segue que $f^{-1}(y)$ é discreto.
- ii) Suponha que não. Então $\exists (x_n)_n \subset f^{-1}(y), x_n \neq x_m, n \neq m$. Mas $(x_n)_n \subset f^{-1}(y) \subset X$, logo admite subsequência convergente $x_{n_k} \to \bar{x} \in X$. Mas note que $f(x_n) \equiv y \Longrightarrow \lim_{n \to \infty} f(x_n) = y$. Mas f contínua $\Longrightarrow f(x_n) \to f(\bar{x}) : f(\bar{x}) = y$, logo $\bar{x} \in f^{-1}(y)$. Mas como $x_{n_k} \to \bar{x}$, este é ponto de acumulação de $f^{-1}(y)$, logo $\{\bar{x}\}$ não é aberto em $f^{-1}(y)$, contradição. Logo $f^{-1}(y)$ é finito.

Ex.12.17)

De fato, mostremos que $\mathbb{R}^m \setminus \pi(F)$ é aberto. Tomes $z \notin \pi(F)$. Então, $\forall k \in K, (z, k) \notin F$. Como este é fechado, para cada $(z, k) \in \{z\} \times K$, $\exists r_k, B((z, k), r_k) = B_k \cap F = \emptyset$. Mas note que $\{z\} \times K$ é compacto e que $\{B_k\}_{k \in K}$ é cobertura aberta de $\{z\} \times K$. Logo $\exists k_1, ..., k_n \in K$, tais que $\{z\} \times K \subset \bigcup_{i=1}^n B_{k_i}$. Tome $r = \min\{r_{k_i}\}$. Então $B(z, r) \subset \mathbb{R}^n \setminus \pi(F)$.

De fato, se $y \in B(z,r)$, $k \in K$ então $\exists i \in \{1,...,n\}$, $|k-k_i| < r_{k_i}$. Mas $|z-y| < r \le r_{k_i}$. $(y,x) \notin F, \forall x \in \mathbb{R}^n$ $y \notin \pi(F)$.

Ex.12.18)

Para cada $(a,k) \in \{a\} \times K$, $\exists r_k > 0$, $B((a,k),r_k) \subset U$. Assim, $\{B((a,k),r_k)\}_{k \in K}$ é cobertura aberta de $\{a\} \times K$. Como este é compacto, existem $k_1, ..., k_n$ tais que $\{a\} \times K \subset \bigcup_{i=1}^n B((a,k_i),r_{k_i})$. Ponha $r = \min_{1 \le i \le n} \{r_{k_i}\}$ e suponha, sem perda de generalidade, que a norma em \mathbb{R}^{n+m} é a norma $||(x,y)|| = \max\{||x||, ||y||\}$. Então, se $B = B(a,r) \subset \mathbb{R}^n$, $B \times K \subset U$. De fato, se $b \in B$, então $|b-a| < r \le r_{k_i}, \forall i = 1, ..., n$. Assim, se $k \in K$, $\exists i_0, |k-k_{i_0}| < r_{k_{i_0}}$. Mas daí $|(b,k)-(a,k_{i_0})| < \max\{r,r_{k_{i_0}}\} = r_{k_{i_0}}$. Logo $(b,k) \in B((a,k_{i_0}),r_{k_{i_0}}) \subset U$. Daí $B \times K \subset U$

Ex.12.19)

De fato, é claro que f é contínua. Agora, se f(x) = f(y), então:

$$(1 - ||x||)a + x = (1 - ||y||)a + y$$
$$a(||y|| - ||x||) = y - x$$
$$|a|||y - x|| = ||y - x||$$

Mas $|a|<1 \implies ||y-x||<|||y||-||x|||$ ou |y-x|=0. Como o primeiro caso é falso por causa da desigualdade triangular, temos que $||y-x||=0 \iff x=y$. Portanto f é injetiva. Agora, dado $y\in B$, ponha $h_y(x)=y-f(x)+x$. Então:

$$||h_y(x) - h_y(z)|| = |a||x - z|| < ||x - z||$$

logo h_y é contração. Como B é fechada, logo completa, pelo teorema do ponto fixo de Banach $\exists ! x \in B, h_y(x) = x$. Mas então $x = y - f(x) + x \implies f(x) = y$. Logo f é sobrejetora. Como f é bijeção contínua de um compacto, é homeomorfismo.

Ex.12.20)

De fato, seja X compacto, $f:X\to Y$ localmente Lipschitz. Suponha que f não seja Lipschitz. Então $\forall n>0$, $\exists x_n,y_n\in X$ tais que:

$$||f(x) - f(y)|| > ||x_n - y_n|| (*)$$

Mas X compacto implica que existem subsequências $(x_{n_k})_k e(y_{n_{k_j}})_j$ tais que $x_{n_k} \to \bar{x} \in X$ e $y_{n_{k_j}} \to \bar{y}$. Para simplificar notação, seja $(x'_n)_{n'} = (x_{n_{k_j}})_j$, $(y_{n'})_{n'} = (y_{n_{k_j}})_j$. Então ambas convergem para os limites acima. Mas se $\bar{x} \neq \bar{y}$, então (*) implica que:

$$||f(x_n) - f(y_n)|| \to +\infty$$

Mas f continua implica que:

$$||f(x_n) - f(y_n)|| \to ||f(x) - f(y)||$$

Contradição. Então devemos ter $\bar{x} = \bar{y}$. Mas daí $\exists \delta > 0, C > 0$ tais que para $x_n, y_n \in B(\bar{x}, \delta), x_n \neq y_n$ implica:

$$||f(x_n) - f(y_n)|| \le ||x_n - y_n|| \implies \frac{||f(x_n) - f(y_n)||}{||x_n - y_n||} \le C(**)$$

Mas como ambas as sequência convergem para \bar{x} , $\exists N$, $\forall n \geq N, x_n, y_n \in B(\bar{x}, \delta)$. Logo (**) vale para todo $n \geq N$. Mas (*) implica que:

$$\frac{||f(x_n) - f(y_n)||}{||x_n - y_n||} > n$$

Logo para n > C temos uma contradição. Logo f é Lipschitz.

Ex.14.6)

De fato, seja X conexo. Note que f localmente constante implica f contínua. Tome $x \in X$. Então $\exists r > 0$ tal que $f|_{B(x,r)\cap X} \equiv f(x)$. Defina:

$$B = \{ y \in X; f(y) = f(x) \}$$

Claramente $B \neq \emptyset$, pois $x \in B$. B é aberto pois se $y_0 \in B$, $F(y_0) = f(x)$ e $\exists r', f|_{B(x,r)\cap X} \equiv f(x)$. Mas B também é fechado, pois f é contínua e $B = f^{-1}(\{f(x)\})$. Logo B = X, ou seja $f(y) = f(x) \forall y \in X$, isto é, f é constante. Agora suponha que toda aplicação localmente constante em X é constante e seja $X = A \cup B$ cisão. Tome $z \neq y \in \mathbb{R}^n$ e defina:

$$f: X \to \mathbb{R}^n$$

$$f(x) = \begin{cases} z, & x \in A \\ y, & x \in B \end{cases}$$

Então f é localmente constante. Por hipótese, f deve ser constante, diga $f \equiv z$. Então A = X, $B = \emptyset$, logo A é conexo.

Ex.14.16)

De fato, pela forma canônica dos operadores ortogonais, temos que, dado $\theta \in O_+(n)$ existe base em \mathbb{R}^n tal que:

Onde o número de "-1"s é par. Mostremos que existe caminho $\theta \to Id_{n\times n}$, de modo que existe caminho entre quaisquer dois $\theta_1, \theta_2 \in O_+(n)$. De fato, ponha:

Então é claro que $O(t) \in)_+(n)$, $\forall t \in [0,1]$ e que $\theta(t)$ é contínua e $\theta(0) = \theta$, $\theta(1) = Id_{n \times n}$. Logo $O_+(n)$ é conexo por caminhos e logo conexo.

Já para $T \in GL_+(n)$, pela decomposição polar, temos que $\exists P$ auto-adjunta positiva, e $U \in O_+(n)$ tais que:

$$T = PU$$

Assim, vamos mostrar que existe caminho ligado T e Id novamente. Claro, como $U \in O_+(n)$, podemos tomar base tal que U é da forma acima e considerar U(t) da mesma forma que $\theta(t)$. Além disso, P auto-adjunta positiva implica

$$P = V^*DV$$

onde V é ortogonal e

$$[D] = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & 0 & \\ & & \ddots & \\ & 0 & & \lambda_n \end{bmatrix}$$

tais que $\lambda_1, ..., \lambda_n > 0$ são os autovalores de P. Assim, tome:

$$[D(t)] = \begin{bmatrix} (1-t)\lambda_1 + t & & & & \\ & (1-t)\lambda_2 + t & & 0 & \\ & & \ddots & & \\ & & & & (1-t)\lambda_n + t \end{bmatrix}$$

de modo que $det(D(t)) > 0 \forall t \in [0,1], D(0) = D, D(1) = Id$. Assim fica definido:

$$T(t) = P(t)U(t) = V^*D(t)VU(t)$$

onde $T(t)inGL_{+}(n), \forall t \in [0,1], T(0) = T, T(1) = Id$ e T(t) contínua. Como T foi arbitrária, temos que $GL_{+}(n)$ é conexo por caminhos e logo conexo.

Ex.14.17)

De fato, seja $X \subset \mathbb{R}^n$ aberto, $C \subset X$ componente conexa. Dado $x \in C$, $\exists r > 0$, $B(x, r \subset X)$, pois X é aberto. Mas então B(x,r) é um subconjunto de X conexo contendo x, logo $B(x,r) \subset C$ por definição. Logo C é aberta. \Box

Ex.15.2)

De fato, note que:

$$y = Ax \implies A^{-1}y = x$$
$$|y| = |Ax| \ge c|x| = c|A^{-1}y|$$
$$|A^{-1}y| \le \frac{1}{c}|y|$$

Daí:

$$||A^{-1}|| \le \frac{1}{c} \tag{1}$$

Assim, se ||A - X|| < c/2, então:

$$\begin{split} |(A-X)x| & \leq c/2|x| \\ |Ax-Xx| & \leq c/2|x| \\ |Ax| - |Xx| & \leq c/2|x| \\ -|Xx| & \leq c/2|x| - |aX| \leq c/2|x| - c|x| \\ |Xx| & \geq c/2|x| \end{split}$$

Assim, analogamente (1),

$$|X^{-1}| \le 2/c \tag{2}$$

Logo, por (1) e (2):

$$||X^{-1} - A^{-1}|| = ||X^{-1}(Id - XA^{-1})||$$

$$= |X^{-1}(A - X)A^{-1}||$$

$$\leq ||X^{-1}||||A - X||||A^{-1}||$$

$$< 2/c \cdot c/2 \cdot 1/c = 1/c$$
(3)

Ou seja, $f(B(A,c/2)) \subset B(A^{-1},1/c)$. Assim, note que tomando $\delta < c/2$, (2) ainda vale, portanto podemos reduzir (3) arbitrariamente. Logo $f(X) = X^{-1}$ é continua.