Mathematical Notations

Kunal Singh

May 23, 2022

Set Theory

1 Set is denoted by $\{\}$. Set with 2 and 3 is denoted by $\{2, 3\}$.

Let A be a set of n elements. Then $A = \{1, 2, ..., n\}$.

Then assert a is present in A is denoted by $a \in A$. And assert b is not present in A is denoted by $b \notin A$.

Some Predefined Sets:

1.1 Natural numbers is denoted by \mathbb{N} .

$$\mathbb{N} = \{1, 2, 3, \dots\}.$$

1.2 Integers is denoted by \mathbb{Z} .

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

1.3 Rational number is denoted by \mathbb{Q} .

$$\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}.$$

For example:

$$\frac{1}{3} \in \mathbb{Q}, \ \frac{-1}{34} \in \mathbb{Q}, \ \sqrt{2} \notin \mathbb{Q}, \ \pi \notin \mathbb{Q}.$$

1.4 Real number is denoted by \mathbb{R} .

$$\mathbb{R} = \{x | -\infty < x < \infty\}.$$
 eg. $-67.343 \in \mathbb{R}$.

1.5 Compex number is denoted by \mathbb{C} .

i.e
$$\mathbb{C} = \{z \mid z = a + bi, -\infty < a < \infty, -\infty < b < \infty\};$$

If set A is a subset of B, then we write $A \subseteq B$.

this means $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$.

If set A is a proper subset of B, then we write $A \subset B$.

 $Suchthat \mid Symbol$.

$$A = \{x | x \subseteq \mathbb{R}, x < 0\}.$$

Intersection \cap : object that belong to set A and set B.

 $Union \cup :$ object that belong to set A or set B.

If set A is **not** a subset of B, then we write $A \not\subset B$.

Power Set: All subsets of A.

Represented by 2^A or P(A) or $\mathbb{P}(A)$.

Equality = Symbol.

A = B if and only if $A \subseteq B$ and $B \subseteq A$.

when both set have same elements, then they are equal.

Complement A^c or A': Set of all elements that are not in set A.

Relative complement $A \setminus B$ or A - B: object that belong to A but not to B.

Symmetric difference $A\Delta B$ or $A\Theta B$: object that belong to A or B but not to their intersection.

Orderedpair(a, b): collection of two elements.

 $Cartesian\ product\ A\times B$: set of all ordered pairs from A and B.

 $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

Cardinality |A| or #A: number of elements in set A.

 \aleph_0 : infinite cardinality of natural numbers set.

 \aleph_1 : cardinality of countabel ordinal numbers set.

 \emptyset : empty set. $\emptyset = \{\}$.

 $\mathbb U$: Universal set. Set of all possible set.