Serie 07: Schliessende Statistik

Punktschätzung

Aufgabe 1

Wir betrachten eine Grundgesamtheit mit Erwartungswert μ und Varianz σ^2 . Es sei X_1, X_2, X_3 eine einfache Zufallsstichprobe aus dieser Grundgesamtheit. Folgende drei Schätzfunktionen sind gegeben:

$$\Theta_1 = \frac{1}{3}(X_1 + X_2 + X_3), \, \Theta_2 = \frac{1}{4}(2X_1 + 2X_3), \, \Theta_3 = \frac{1}{3}(2X_1 + X_2)$$

- a) Welche dieser Schätzfunktionen sind erwartungstreu?
- b) Welche dieser Schätzfunktionen ist am effizientesten, welche am wenigsten effizient?

Hinweis: Verwenden Sie die Eigenschaften von Erwartungswert und Varianz aus 4.3 sowie den Satz zur Varianz einer Summe von stochastisch unabhängigen Zufallsvariablen aus 4.5.

Aufgabe 2

Wir betrachten eine Grundgesamtheit, die nach der Verteilungsdichte (PDF) $f(x) = \lambda \cdot e^{-\lambda x}$, $x \ge 0$ verteilt ist. Es wird daraus eine Zufallsstichprobe X_1, X_2, \dots, X_n entnommen, um den unbekannten Parameter $\lambda > 0$ zu schätzen. Definieren Sie die Likelihood-Funktion für dieses Problem und bestimmen Sie durch Differenzieren eine Schätzfunktion für den unbekannten Parameter $\lambda > 0$.

Aufgabe 3

Im Vorfeld einer Abstimmung soll mithilfe einer 0,1-wertigen Zufallsstichprobe X_1, \ldots, X_n der unbekannte Anteil p an Ja-Stimmen geschätzt werden (1 für ja, 0 für nein). Definieren Sie eine Likelihood-Funktion für dieses Problem und bestimmen Sie durch Differenzieren eine Schätzfunktion für den unbekannten Parameter 0 .

Intervallschätzung

Aufgabe 4

Wir nehmen an, dass der Durchmesser X der auf einer Maschine hergestellten Schrauben eine normalverteilte Zufallsvariable ist. Eine Stichprobe vom Umfang n=100, entnommen aus einer Tagesproduktion, ergab das folgende Ergebnis: $\bar{x}=0.620$ cm, s=0.035 cm. Bestimmen Sie die Vertrauensgrenzen für den unbekannten Mittelwert μ bei einer Irrtumswahrscheinlichkeit $\alpha=5\%$.

Aufgabe 5

Gegeben ist eine normalverteilte Zufallsvariable X mit dem unbekannten Mittelwert μ und der ebenfalls unbekannten Varianz σ^2 . Eine Stichprobe vom Umfang n=10 ergab den arithmetischen Mittelwert $\bar{x}=102$ und die empirische Varianz $s^2=16$. Bestimmen Sie für μ und σ^2 jeweils ein Vertrauensintervall zum Vertrauensniveau von $\gamma=99\%$.

Aufgabe 6

Für einen Autotyp wurde ein bestimmter Motor weiterentwickelt, dessen Leistung als eine normalverteilte Zufallsvariable betrachtet werden kann. Eine Stichprobenuntersuchung an n=8 zufällig herausgegriffenen Motoren ergab das folgende Ergebnis:

i	1	2	3	4	5	6	7	8
x_i in PS	100.5	96.5	99.0	97.8	100.4	103.5	100.3	98.0

Bestimmen Sie für μ und σ^2 jeweils ein Vertrauensintervall zu einer Irrtumswahrscheinlichkeit von $\alpha = 5\%$.

Aufgabe 7

Bei einer Qualitätskontrolle eines elektronischen Bauteils befanden sich 27 defekte Teile in einer Stichprobe vom Umfang n = 500. Bestimmen Sie den Schätzwert für den unbekannten Ausschussanteil p der Gesamtproduktion und ein Vertrauensintervall für diesen Parameter zum Vertrauensniveau (a) $\gamma = 95\%$ und (b) $\gamma = 99\%$.

Aufgabe 8

Aus einer Sonderprägung wurden n=100 Münzen nach dem Zufallsprinzip ausgewählt und ihre Masse m bestimmt. Man erhielt dabei den Stichprobenmittelwert $\bar{x}=5.43\,\mathrm{g}$ mit der Streuung $s^2=0.09\,\mathrm{g}^2$. Der Verteilungstyp der Zufallsvariablen ist jedoch unbekannt. Bestimmen Sie mit Hilfe einer Normalapproximation die Vertrauensintervalle für den unbekannten Mittelwert μ und die unbekannte Standardabweichung σ auf einem Vertrauensniveau von $\gamma=95\%$.

Aufgabe 9

Ein Drehautomat fertigt Bolzen. Es ist bekannt, dass der Durchmesser der von dem Automaten gefertigten Bolzen normalverteilt ist mit Standardabweichung $\sigma = 0.5$ mm. Wie gross muss die Stichprobe mindestens sein, damit die Länge des 99%-Vertrauensintervalls für μ höchstens 0.4 mm beträgt?

Aufgabe 10

Bei einer Stichprobe von n=5 Robotern wird die maximale Dauergreifkraft eines Greifers gemessen. Es ergeben sich die folgenden Werte (in N): 200, 199, 198, 200, 198. Wir gehen davon aus, dass die Werte normalverteilt sind. Berechnen Sie ein 99%-Vertrauensintervall für den Mittelwert μ der maximalen Dauergreifkraft in der gesamten Produktion.