# Perhitungan struktur elektronik berdasarkan teori fungsional kerapatan dengan fungsi basis Lagrange: Implementasi awal

## Fadjar Fathurrahman

Pusat Penelitian Nanosains dan Nanoteknologi, Institut Teknologi Bandung

This is the abstract.

### I. PENDAHULUAN

Peran komputasi dalam nanosains dan nanoteknologi. Teori fungsional kerapatan (density functional theory). Peran teori fungsional kerapatan

#### II. TEORI

Berdasarkan teori fungsional kerapatan, energi total dari sistem yang terdiri dari elektron yang berinteraksi dengan suatu potential eksternal  $V_{\rm ext}({\bf r})$  dapat dinyatakan sebagai

$$E[\rho(\mathbf{r})] = -\frac{1}{2} \sum_{i} f_{i} \int d\mathbf{r} \ \psi_{i}^{*}(\mathbf{r}) \nabla^{2} \psi_{i}(\mathbf{r}) + \int d\mathbf{r} \ \rho(\mathbf{r}) V_{\text{ext}}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \ d\mathbf{r}' \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{xc}}[\rho(\mathbf{r})]$$
(1)

LDA XC:

$$E_{\rm xc}[\rho(\mathbf{r})] = \int d\mathbf{r} \, \varepsilon_{\rm xc}(\rho(\mathbf{r}))\rho(\mathbf{r}) \tag{2}$$

$$V_{\rm xc}(\mathbf{r}) = \varepsilon_{\rm xc}(\rho(\mathbf{r})) + \rho(\mathbf{r}) \frac{\mathrm{d}\varepsilon_{\rm xc}(\rho)}{\mathrm{d}\rho}$$
(3)

Persamaan sentral pada teori fungsional kerapatan adalah persamaan Kohn-Sham yang dapat ditulis sebagai berikut.

$$\left[ -\frac{1}{2} \nabla^2 + V_{\text{Ha}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r}) + V_{\text{ext}}(\mathbf{r}) \right] \psi_i(\mathbf{r}) = \epsilon_i \psi_i(\mathbf{r})$$
(4)

Suku potensial pertama pada persamaan (4),  $V_{\text{Ha}}(\mathbf{r})$  menyatakan potensial Hartree,

$$V_{\text{Ha}}(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$
 (5)

dengan  $\rho(\mathbf{r})$ adalah kerapatan (muatan) elektron yang dapat ditulis sebagai

$$\rho(\mathbf{r}) = \sum_{i} f_i \, \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r}) \tag{6}$$

Suku potensial ketida adalah  $V_{\text{ext}}(\mathbf{r})$  yang menyatakan potensial eksternal yang dirasakan oleh elektron.

## III. FUNGSI BASIS LAGRANGE

Untuk suatu interval  $[0, L_{\alpha}]$  yang diberikan, dengan  $L_{\alpha} > 0$ , titik grid  $x_{\alpha}$  sesuai untuk fungsi basis Lagrange periodik dapat dinyatakan dengan persamaan berikut.

$$x_{\alpha} = \frac{L_{\alpha}}{2} \frac{2\alpha - 1}{N_a} \tag{7}$$



Fungsi basis Lagrange periodik yang akan digunakan memiliki bentuk sebagai berikut.

$$\phi_{\alpha}(x) = \frac{1}{\sqrt{N_{\alpha}L_{\alpha}}} \sum_{n_{\alpha}=1}^{N_{\alpha}} \cos \left[ \frac{\pi}{L_{\alpha}} (2n_{\alpha} - N_{\alpha} - 1)(x - x_{\alpha}) \right]$$
(8)

Test

Sembarang fungsi periodic  $f(x) = f(x + L_{\alpha})$  dapat diekspansi dalam fungsi basis Lagrange

$$f(x) = \sum_{\alpha}^{N_{\alpha}} c_{\alpha} \phi_{\alpha}(x) \tag{9}$$

dengan  $c_{\alpha}$  adalah koefisien ekspansi. Nilai fungsi f(x) pada titik grid  $x_{\alpha}$  dapat diperoleh langsung dari koefisien ekspansi melalui hubungan  $c_{\alpha} = \sqrt{L_{\alpha}/N_{\alpha}}f(x_{\alpha})$ .

Ekspansi persamaan Kohn-Sham dengan fungsi basis

Lagrange:

## IV. PERHITUNGAN

Potensial eksternal berupa fungsi Gaussian:

$$\psi_i(\mathbf{r}) = \sum_{\alpha\beta\gamma} C^i_{\alpha\beta\gamma} \Phi_{\alpha\beta\gamma}(\mathbf{r}) \tag{10}$$

$$V_{\rm ext}(r) = A \exp(-\alpha r^2) \tag{12}$$

Menggunakan bagian lokal dari pseudopotensial HGH Contoh molekul diatomik:  $\rm H_2$  dan LiH Visualisasi orbital molekul

dengan fungsi basis [1]

# V. KESIMPULAN

 $\Phi_{\alpha\beta\gamma}(\mathbf{r}) = \phi_{\alpha}(x)\phi_{\beta}(y)\phi_{\gamma}(z)$  (11) Implementasi

[1] D. Baye, Physics Reports **565**, 1 (2015).