NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-518

Radial Rib Antenna Surface Deviation Analysis Program

John V. Coyner, Jr.

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

December 15, 1971

Technical Memorandum 33-518

Radial Rib Antenna Surface Deviation Analysis Program

John V. Coyner, Jr.

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

December 15, 1971

Grande Commission Contra

Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration

Preface

The work described in this report was done for the Telecommunications Division by the Engineering Mechanics Division of the Jet Propulsion Laboratory. The author wishes to thank Dr. Ron Ross for his help in developing the optimization routine used in the program.

CONTENTS

I.	Introduction	•	•	1					
II.	Program Description		•	1					
III.	Program Usage	•	•	8					
IV.	Program Requirements	•		10					
v.	Job Preparation	•	•	11					
VI.	Examples and Sample Output	•		12					
VII.	References	•	•	15					
VIII	.Appendix A Program Listing	•	•	16					
IX.	Appendix B Typical Computer Printout .		•	39					
Tables									
1.	Data Defining Three Examples Cases	•	•	12					
Figu	res								
1.	Radial Rib		•	2					
2.	Deformed Membrane Element	•		5					
3.	Antenna Section	•		6					
4.	Typical Node Locations for Mesh Shape Analysis		•	14					

JPL Technical Memorandum 33-518

Abstract

A digital computer program has been developed which analyzes any radial rib antenna which has ribs radiating from a center hub. The program has the capability to; calculate the antenna surface contour (reversed pillowing effect), calculate the optimum rib shape which minimizes the RMS surface error, calculate the actual RMS surface error, compensate for rib deflection due to mesh tension and catenary cable tension, and determine the pattern from which the mesh gores are cut.

I. INTRODUCTION

This report describes the program capabilities, mathematical formulation, numerical solution, program usage and requirements, and typical printout of the radial rib antenna analysis program (RRAMRO).

The radial rib antenna analysis program calculates the antenna surface contour of the mesh that is stretched between two radial ribs (reverse pillowing effect), calculates the optimum radial rib shape which minimizes the RMS surface error, compensates for the rib deflection produced by the mesh tension and catenary cable tension, and determines the pattern from which the mesh gores are cut. The program is designed to run on the JPL Univac 1108, EXEC 8 system and is written in Fortran V language.

II. PROGRAM DESCRIPTION

Program Capabilities

RRAMRO is a radial rib antenna analysis program which is designed to provide antenna mesh contours, RMS surface errors, optimum rib shapes, rib deflections due to mesh and catenary cable tensions, and mesh cutting patterns for any radial rib antenna (Figure 1). The program's major capabilities and requirements are described in the following sections.

Mesh Contour Determination: The computer program will calculate the antenna mesh contour for any radial rib antenna. The user must specify the mesh unit tensions in the two orthogonal directions. The first unit tension (radial) is parallel to a centerline between the ribs, and the second unit tension (circumferential) is perpendicular to this centerline. The tension parallel to the centerline produces the reversed pillowing effect, while the tension perpendicular to the centerline tends to flatten the mesh.

RMS Surface Error Calculation: The computer program will determine the RMS surface error of the calculated antenna mesh contour with respect to the desired ideal parabolic antenna. The RMS error may be weighted by the antenna surface area associated with each node or the projected surface area is determined by projecting the actual antenna surface area on a plane normal to the antenna axis of symmetry. The RMS error may also be weighted by an illumination factor "E" which describes the intensity of illumination at each point on the antenna. For constant illumination intensity, this factor equals 1.0 at all points. The illumination weighting function used in the program is

where
$$K = \frac{\left(\frac{1 + \cos \theta}{2}\right) * \cos^{2}(K*\theta)}{\theta_{o}}$$
and
$$\theta_{o} = 2* \tan^{-1}\left(\frac{D}{4F}\right)$$

JPL Technical Memorandum

D = antenna diameter F = antenna focal length θ_{O} and θ are in radians

 θ is the angle between the ray through the focal point and the node on the antenna being considered, and the ray on the antenna axis of symmetry through the focal point. Additional weighting functions can be substituted simply by programming the equations in the form of a subroutine and replacing the existing weighting function subroutine with the new subroutine. The user may request illumination weighting or no illumination weighting.

Rib Optimization: The computer program will calculate the optimum rib shape which will minimize the electrical performance degradations due to the deviation of the mesh surface from the ideal parabola. The program alters the rib shape and determines the associated mesh contour and RMS surface error. The program continues to do this until it finds the rib shape with the minimum RMS surface error. The final equation of the optimum rib is

$$Z = \frac{\text{(Radius)}}{8 \text{*FPD*RO}} + \text{A1*}(\rho) + \text{A2*}(4 \text{*}\rho^3 - 3 \text{*}\rho)$$
$$+ \text{A3*}(16 \text{*}\rho^5 - 20 \text{*}\rho^3 + 5 \text{*}\rho)$$

where $\rho = \frac{Radius - RI}{RO - RI}$ is the normalized radius and A1, A2, A3 are the optimization variables, and Radius = $\sqrt{x^2 + y^2}$

Rib Deflection Due to Mesh Tension and Catenary Cable Tension: The computer program calculates the rib deflection due to (1) the mesh tension, (2) the tension in the catenary cable connecting the rib tips. To obtain the desired optimum rib shape after the cable and mesh are applied, the predeflected rib shape must differ from the desired optimum rib by an amount equal to the predicted rib deflection. Therefore, when the mesh and cable are applied, the rib will be deflected to its optimum shape. The program prints this predeflected rib shape in both tabular form and also in equation form. The equation has the same form as the optimum rib shape equation. The final equation of the predeflected rib shape (machined shape) is

$$Z = \frac{\text{(Radius)}}{8*\text{FPD*RO}} + B1*(\rho) + B2*(4*\rho^3 - 3*\rho)$$
$$+ B3*(16*\rho^5 - 20*\rho^3 + 5*\rho)$$

where $\rho = \frac{\text{Radius} - \text{RI}}{\text{RO} - \text{RI}}$ and B1, B2, B3 are the variables

determined during the curve fitting of the equation through the node points on the predeflected rib shape.

Catenary Cable Effect: The computer program will accept either a straight rigid boundary between rib tips or a catenary cable attached between the ribs. The rib deflection analysis can only be run when using the catenary cable as an upper boundary. When using the straight rigid boundary, the program only calculates the optimum rib shape and RMS error and not the predeflected rib shape.

Mesh Cutting Pattern: The program will calculate the required mesh pattern for cutting out the mesh gores for the antenna. This pattern includes the curved boundary which is fastened to the catenary cable.

Mathematical Formulation

In the design of unfurlable antennas with reflectors composed of mesh materials stretched between radial ribs, one of the problems is the determination of the deviations of the mesh surface from an ideal paraboloid. The general nature of the deviation can be seen by examining an umbrella in its open position. The cloth membrane is pulled taut between two curved, relatively rigid ribs. Due to the curvature of the ribs and the mesh tension in the radial direction, the membrane takes a doubly curved contour bowing in toward the concave side of the antenna. The greater the curvature and the greater the tension in the radial direction, the greater the deviation from the ideal surface. To calculate this deviation at points on the antenna mesh, a program was developed to find the equilibrium contour of the mesh for any radial rib antenna (given the orthogonal tensions in the radial and circumferential directions). The mesh surface is assumed to be a membrane with negligible bending stiffness with all forces acting in the plane of the membrane. The solution of the membrane equilibrium equation is approximated by applying an iterative relaxation process to a finite difference approximation to the equations. The scope of the mesh contour calculation program also includes the capability to calculate the radial rib shape which produces the minimum electrical performance degradation due to the deviation of the mesh surface from the parabola. The optimization of the rib shape is accomplished by superimposing three Chebychev polynomials on the generating parabola of the ideal paraboloid and using the simplex method to optimize the polynomial constants.

The mesh contour analysis is formulated by considering the equilibrium of forces acting on an element of a deformed membrane (Figure 2).

The unit tensions N_ξ and N_η in two orthogonal directions are assumed to be uniform throughout the surface. Let i_ξ and i_η be unit tangent vectors along orthogonal curves β and α respectively. X_ξ is the curvature of a line formed by the intersection of the surface and a plane containing i_ξ and $i_h = i_\xi \times i_\eta$, while X_η is the curvature of a line formed by the intersection of the surface with a plane containing i_η and i_h . Equating forces along i_h to zero (Reference 1), and neglecting the cross term,

$$N_{\xi} X_{\xi} + N_{\eta} X_{\eta} = 0$$
 (1)

Figure 2. Deformed Membrane Element

To obtain the governing equation of the antenna mesh in terms of (x, y, z) coordinates, one section between two ribs of the antenna is considered. Let F be the rigid frame formed by the parabolic ribs and the top and bottom relatively rigid members (Figure 3).

This frame is filled with a surface formed by straight line generators parallel to the x-axis. If the frame is filled with a membrane, the resulting surface will be displaced from the straight line surface. Letting ξ and η correspond to x and y respectively, and letting U = displacement of the membrane in the z direction,

$$x_{\eta} = \frac{\partial^{2} U / \partial Y^{2}}{\left[1 + \left(\frac{\partial U}{\partial Y}\right)^{2}\right]^{3/2}}$$

Figure 3. Antenna Section

Let θ be the angle between the normal to the surface and the x-z plane, and let

$$K_{x} = \frac{\partial^{2} U/\partial x^{2}}{\left[1 + \left(\frac{\partial U}{\partial x}\right)^{2}\right]^{3/2}}$$
 (3)

and

$$\cos^{\theta} = \frac{1}{\left[1 + \left(\frac{\partial U}{\partial Y}\right)^2\right]^{1/2}} \tag{4}$$

where

$$X_{\xi} = K_{x} \cos \theta$$

Substitution of Equations (2) and (3) and (4) into Equation (1) yields

$$N_{\xi} \frac{\partial^{2} U/\partial X^{2}}{\left[1 + \left(\frac{\partial U}{\partial X}\right)^{2}\right]^{3/2}} \left\{ \frac{1}{\left[1 + \left(\frac{\partial U}{\partial Y}\right)^{2}\right]^{1/2}} \right\} + N_{\eta} \frac{\partial^{2} U/\partial Y^{2}}{\left[1 + \left(\frac{\partial U}{\partial Y}\right)^{2}\right]^{3/2}} = 0$$
 (5)

or

$$\frac{\partial^{2} U}{\partial x^{2}} + \frac{N_{\eta}}{N_{\xi}} \left\{ \frac{\left[1 + \left(\frac{\partial U}{\partial x}\right)^{2}\right]^{3/2}}{\left[1 + \left(\frac{\partial U}{\partial y}\right)^{2}\right]} \right\} \frac{\partial^{2} U}{\partial y^{2}} = 0$$
 (6)

The numerical solution of the above equation was obtained by a finite difference method using successive over-relaxation to increase convergence (Reference 2).

To minimize the electrical performance degredation due to the deviation of the mesh surface from the ideal paraboloid, a program to optimize the shape of the radial ribs was added. To define this optimum shape in terms of a few variables, Chebychev polynomials are superimposed on the original parabola to define the new shape. The equation of the rib becomes,

$$Z = (x^{2} + y^{2})/8*FPD*RO + A1*(\rho) + A2*(4*\rho^{3} - 3*\rho) + A3*(16*\rho^{5} - 20*\rho^{3} + 5*\rho)$$
(7)

where ρ is the normalized radius and Z is the distance from the plane through the vertex of the parabola and normal to the antenna axis of symmetry to a point on the rib. The variables Al, A2, A3 are varied to obtain a rib shape which produces a membrane deflection with the least RMS surface error. The simplex method of Nelder and Mead is used to iterate toward the minimum from an initial estimate (Reference 3). This method obtains a minimization of a function of N variables by comparison of function values at the (N + 1) vertices of a general simplex. Then the highest value vertex is replaced by another of lower value.

Since the optimum rib shape is the shape desired after assembly of the antenna, the as-manufactured rib shape must deviate for the optimum rib shape by an amount equal to the deflection of the rib when the mesh and catenary cable are applied. This predicted deflection is subtracted for the optimum shape so that when the mesh and cable are applied to the rib, the deflection due to the applied tensions produces the desired optimum rib shape. The rib deflection due to the mesh tension is determined from the equation,

$$\frac{d^2u}{ds^2} + \frac{u}{R} = - \frac{M(s)}{E*I(s)}$$

where

u = deflection normal to the rib

s = distance along rib

R = radius of curvature of rib

M = moment applied to rib from mesh and cable

E = modulus of elasticity of rib

I = moment of inertia of rib section

The equation is solved using trapezoidal integration.

III. PROGRAM USAGE

RRAMRO is a main program designed to be used in batch mode. The input parameters which define the radial rib antenna's configuration and material properties are read in from data cards using namelist names DATA1 and DATA2. Any number of antenna configurations can be generated in a single computer run by including one or more data groups in the run stream. A data group consists of a DATA1 card and, when required, a DATA2 card. All input data must be supplied to the computer program in the same basic units. If these basic units are centimeters, grams, and seconds, then all dimensions or combinations of dimensions must use these units. The user cannot mix centimeters and meters, grams and kilograms, or seconds and minutes, etc. The program then outputs all calculated data in the user's basic units.

NAMELIST/DATA1/ contains 23 parameters which may be assigned values in any data group. Since the parameter assignments of previous data groups are used if not reassigned, data groups following the first need contain only those parameter assignments which are changes from those in the previous data group. The first 13 parameters listed below are all preset to nominal values during compilation, and only those parameters differing from the preassigned values need be inputed. The other 10 parameters must be assigned a value in the first data group. A DATA1 card must be supplied for each data group.

The following parameters belong to NAMELIST/DATA1/ and may be included in any order.

General Parameters

- LOOP = An integer to be used in the first data group to indicate the number of data groups to be read. RRAMRO reads LOOP data groups including the first. Parameter preset to a nominal value of 1.
- NB = An integer used to define the grid size for the finite difference analysis. I specifies a coarse grid, and 2 specifies a fine grid. Since the CPU time increases by a factor of three for the fine grid as compared to the coarse grid, the fine grid should be used only when the configuration being analyzed is a final analysis. For parametric studies looking at relationships between the RMS surface error and antenna parameters such as number of ribs, orthogonal tension ratios, antenna diameters, etc., the coarse grid should be used. Parameter preset to a nominal value of 1.
- NOPTIM = An integer used to define whether the antenna rib will be optimized.

 O specifies no rib optimization, and 1 specifies rib optimization.

 Parameter preset to a nominal value of 0.
- NWEIGH = An integer used to define whether the antenna has constant illumination intensity throughout the antenna surface or has varying illumination intensity. O specifies varying intensity and 1 specifies constant intensity. Parameter preset to a nominal value of 1.
- NAREA = An integer used to define whether the surface errors will be weighted by the actual antenna surface area associated with each node or weighted by the projected surface area associated with each node. O specifies projected area, while I specifies surface area. Parameter preset to a nominal value of 1.

- NTENS = An integer used to define whether the rib deflection due to the mesh and cable tension will be considered. O specifies no rib deflection analysis, and 1 specifies the rib deflection will be analyzed. Parameter preset to a nominal value of O. SAG must be set to O.O when NTENS = O.
- NCHECK = An integer used to define whether the expanded output will be printed. The differences between the expanded output and the standard output are described in the sample output section. O specifies the standard output, and I specifies the expanded output. Parameter preset to a nominal value of O.
- NPUNCH = An integer used to define whether punched cards are outputed. These cards describe the antenna's surface contour in (x, y, z) coordinates where z is the distance from a plane normal to the antenna axis of symmetry through the vertex of the parabolic antenna to the node point being considered. O specifies no cards outputed, while 1 specifies punched cards outputed. Parameter preset to a nominal value of 0.
- NGORE = An integer used to define whether the mesh gore cutting pattern is printed. O specifies no gore pattern, while I specifies the printing of the gore pattern. Parameter preset to a nominal value of O.
- SAG = The deflection from a straight line of the catenary cable attached at the rib tips. For a straight rigid boundary, this value is 0.0. Parameter preset to a nominal value of 0.0.
- A1,A2,A3= The variables multiplying the Chebychev polynomials which perturb the rib shape. If a case has been run and the optimum rib shape determined (A1, A2, A3 known), and if the user wants to rerun that case with the same DATA1 data but with new DATA2 data, he may input the previously calculated values of A1, A2, and A3 and set NOPTIM = 0. This saves CPU time, since the optimum rib is inputed instead of calculated. Parameters preset to nominal values of 0.0.
- RO = The radius of the antenna.
- RI = The radius of the antenna hub.
- FPD = The focal length of the antenna divided by the diameter of the antenna.
 Unitless quantity.
- DIFM = The maximum allowable surface error at any point on the antenna.
- DHUBR = The subdish primary blockage radius.
- ERRHUB = The RMS surface error of the central rigid dish. The central rigid dish is part of the main reflector surface and lies within the hub of of the main reflector surface. When RI > DHUBR, the central dish is included in the overall RMS error computation.
- TYC = The mesh tension per unit length in the radial direction.
- TXT = The mesh tension per unit length in the circumferential direction at the inner radius of the mesh.

TXB = The mesh tension per unit length in the circumferential direction at the outer radius of the mesh. Using TXT and TXB, the program is capable of calculating the mesh contour and deflected rib shape for a linearly varying circumferential tension.

NRIBS = An integer defining the number of antenna ribs. Must be greater than 4.

The following 7 parameters belong to NAMELIST/DATA2/ and may be included in any order. All 7 parameters must be assigned values in the first DATA2 card. Since the parameter assignments of previous data groups are used if not reassigned, data groups following the first DATA2 card need contain only those parameter assignments which are changes from those previously assigned. A DATA2 card must be supplied whenever the rib deflection analysis is run; i.e., when NTENS = 1.

General Parameters

WIDTH = The effective width of the fin attached to the rib. If no fin is attached to the rib, this value is set to 0.0.

HEIGHT = The effective height of the fin attached to the rib. If no fin is attached to the rib, this value should be set to 0.0.

TROB = The outside radius of the rib at its base.

TRIB = The inside radius of the rib at its base.

TROT = The outside radius of the rib at the rib tip.

TRIT = The inside radius of the rib at the rib tip.

ERIB = The modulus of elasticity of the rib and fin divided by 10⁶. The rib and fin are assumed to be made of the same material.

IV. PROGRAM REQUIREMENTS

Storage: RRAMRO requires approximately 22,000 words of storage.

<u>Timing</u>: RRAMRO requires approximately 15 seconds to run one mesh shape calculation with the coarse grid and approximately 45 seconds with the fine grid. Mesh shape calculation and rib optimization requires approximately 45-60 seconds with the coarse grid and 90-120 seconds with the fine mesh. Compilation time is approximately 15 seconds and should be added to the total estimated computation time.

V. JOB PREPARATION

 $\mbox{\it RRAMRO}$ and related subroutines are available in source deck. The complete run stream is as follows.

```
@RUN....
@FOR, IS RRAMRO, RRAMRO

...

@XQT
$DATA1...$
$DATA1...$
$DATA1...$

@FIN
```

VI. EXAMPLES AND SAMPLE OUTPUT

In order to demonstrate the program's use, example problems are considered in Table 1. The units are specified by the user (L. = Length, F. = Force)

\$DATA1

Para	meter	Nominal Values P in Program	reset	Case 1	Case 2	Case 3
1 41 4	mecci	In Hogiam		Case 1	0000 2	<u> </u>
LO	OP	1		3	*	*
NB		1		*	*	*
	PTIM	0		*	1	0
	EIGH	1		0	*	1
	REA	1		*	*	*
	ENS	0		1	*	0
	HECK	0		*	1	0
	UNCH	0		*	1	0
	ORE	. 0		*	1	0
SA		0.0 L.		1.0	*	0.0
A1		0.0		-0.0807598	0.0	*
A2		0.0		-0.0001072	0.0	*
A3		0.0		0.0011375	0.0	*
RO		- L.		84.0	*	60.0
RI		- L.		27.0	*	20.0
FP	D	- L./L	•	0.42	*	0.5
DI	FM ⁻	- L.		0.03	*	0.8
DH	UBR	- L.	•	18.0	*	20.0
ER	RHUB	- L.		0.008	*	*
TY	С	- F./L	•	0.03	*	0.04
TX	T	- F./L		0.09	0.12	0.08
TX	В	- F./L	•	0.09	0.12	0.08
NR	IBS	_		48	*	38
\$DATA2						
WI	DTH	- L.		0.1875	*	x
HE	IGHT	- L.		0.045	*	x
TR	ОВ	- L.		0.5625	*	x
TR	IB	- L.		0.5425	*	x
TR	OT	- L.		0.5625	*	x
TR	IT	- L.		0.5425	*	x
ER		- mega	force/L. ²	10.0	*	x

The (-) indicates no preset value is supplied for that variable. The (*) indicates preassigned values are used. The (x) indicates that no value need be assigned.

Table 1 - Data defining three example cases.

The following data cards were used to input the three cases.

```
$DATA1 LOOP=3, NWEIGH=0, NTENS=1, SAG=1.0, A1=-.0807598, A2=-.0001072, A3=.0011375, RO=84., RI=27., FPD=.42, DIFM=.08, DHUBR=18., ERRHUB=.008, TYC=.03, TXT=.09, TXB=.09, NRIBS=48$

$DATA2 WIDTH=.1875, HEIGHT=.045, TROB=.5625, TRIB=.5425, TROT=.5625, TRIT=.5425, ERIB=10.$

$DATA1 NOPTIM=1, NCHECK=1, NPUNCH=1, NGORE=1, A1=0.0, A2=0.0, A3=0.0, TXT=.12, TXB=.12$

$DATA2 WIDTH=.1875$

$DATA1 NOPTIM=0, NWEIGH=1, NTENS=0, NCHECK=0, NPUNCH=0, NGORE=0, SAG=0.0, RO=60., RI=20., FPD=.5, DIFM=.8, DHUBR=20., TYC=.04, TXT=.08, TXB=.08, NRIBS=385
```

For Case 1, only those variables that are not preassigned or are redefined have been inputed. Cases 2 and 3 reflect the fact that preceding cases have redefined some of the variables, and only those variables different from the previous cases are inputed. Note that for Case 1, the variables A1, A2, and A3 are read in, and no rib optimization is performed (NOPTIM = 0). Previously, the same set of DATA1 data had been run and A1, A2, and A3 were determined. For Case 2, new circumferential tensions are assigned; therefore, a new rib optimization is required. Although no changes are made in DATA2 variables from Case 1 to Case 2, a DATA2 card is still required for Case 2 since NTENS = 1. For Case 3, no rib deflection analysis is performed; therefore, no DATA2 card is required. Also, for Case 3, no solid central dish is considered in the RMS error calculation since the hub radius (RI=20) and the subdish primary blockage radius (DHUBR=20) are equal.

Description of the Output for Case 2

Case 2 represents a standard mesh contour calculation, rib optimization, and rib deflection analysis and is printed using the expanded output. Appendix B is the output for case 2 data.

The output of the node coordinates and z-deflections is in the form of an array of numbers, with the left hand column being the centerline of a mesh between two ribs. Only half of the mesh panel is printed, since it is symmetric. The right hand element in each row is the node on the rib. Figure 4 shows a typical array of elements.

Case 2 also has card punch output. The format is described below. The first seven cards list the parameters RO, RI, half angle between ribs, FPD, TYC, TXT, TXB. The next punched card has the variables, focal length, Y_1 and Y_2 (from Figure 5), half angle between ribs, and A_1 , A_2 , A_3 , listed in a (4F10.4, 3E13.8) format. The next group of cards list the (X, Y, Z) coordinates, node numbers (I, J), and node card number. The format is (3F10.4, 3I10). The final card has the total number of node cards printed. This total is added to 1,000,000 and printed in a (50X, I10) format. This card can be used as a check to see if all node cards are in the deck.

Figure 4 - Typical node locations for mesh shape analysis.

VII. REFERENCES

- 1. Utku, S., and C. H. Norrs, "Utilization of Digital Computers in the Analysis of Thin Shells," Bulletin Rilem No. 19.
- 2. Smith, G. D., <u>Numerical Solution of Partial Differential Equations</u>, Oxford University Press, London, England, pp. 150-151, 1965.
- 3. Nelder, J. A., and R. Mead, "A Simplex Method for Function Minimization," Computer Journal, Vol. 7, pp. 308-13, January 1965.

VIII. APPENDIX A PROGRAM LISTING

```
-FOR, IS
        MAIN, MAIN
     DIMENSION Y(321), LIM(321), U(321, 25), X(3), UP(321, 2)
     COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
    1, DM, DIFMX, DIFM, RIBN, UP, SAG, NCHECK, NPUNCH, NGORE
     COMMON/NGG/NOPTIM, TYC, THETA, EROR, NB, DHURR, ERRHUB
     COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
 1020 FORMAT(1H ,28H***
                             NUMBER OF RIBS = , 15 , 28H
                                                             ANTEN
    1NA RADIUS = , F7 . 3 , 12H
                                ***)
 NMESH=150
     NAMELIST/DATA1/LOOP, NB, NOPTIM, NWEIGH, NAREA, NTENS, NCHECK, NPUNCH,
    INGORE, SAG, A1, A2, A3, RO, RI, FPD, DIFM, DHURR, ERRHUB, TYC, TXR, TXT, NRIBS
     DATA LOOP, NB, NOPTIM, NWEIGH, NAREA, NTENS/1, 1, 0, 1, 1, 0/
    1NCHECK, NPUNCH, NGORE, SAG, A1, A2, A3/0,0,0,0,0,0,0,0,0,0,0,0,0,0
     LOP=0
 10
     LOP=LOP+1
     READ(5,DATA1)
     X(1)=A1
     X(2)=A2
     X(3) = A3
     RIBN=NRIPS
     WRITE(6,1040)
     WRITE(6,1050)
     WRITE(6,1020)NRIBS,RO
     WRITE(6,1050)
     WRITE(6,1050)
     THETA=180./RIBN
     CALL SMAIN(X)
     IF(SAG.EQ.0.0)GO TO 20
     IF(NTENS.NE.O)CALL RIBDEF(X) -
 20
     IF(LOP.LT.LOOP)GO TO 10
     STOP
     END
```

```
-FOR, IS
          SMAIN, SMAIN
      SUBROUTINE SMAIN(X)
      DIMENSION Y(321), LIM(321), U(321,25), X(3), UP(321,2)
      REAL LENGTH
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1.DM.DIFMX.DIFM.RISN.UP.SAG.NCHECK.NPUNCH.NGORE
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
      COMMON/NOQ/NOPTIM, TYC, THETA, EROR, NR, DHUER, ERRHUB, TT
      COMMON/RAB/FMAX, SINTTH, SINTTV, SINTTD
 1010 FORMAT(1H0,38HOUTPUT UNITS EQUIVALENT TO INPUT UNITS)
 1020 FORMAT(1H0,46HRMS ERROR IS WEIGHTED BY ILLUMINATION FUNCTION)
 1030 FORMAT(1HO, 50HRMS ERROR IS NOT WEIGHTED BY ILLUMINATION FUNCTION)
 1040 FORMAT(1H0,48HRMS ERROR IS WEIGHTED BY SURFACE AREA OF ANTENNA///)
 1050 FORMAT(1HO, 50HRMS ERROR IS WEIGHTED BY PROJECTED AREA OF ANTENNA//
     1/1
 1059 FORMAT(1H0,45H***INPUT PARAMATERS FOR RADIAL RIB ANTENNA***)
                                             =,F10.31
 1060 FORMAT(1H0,25HANTENNA RADIUS
 1061 FORMAT(1H0,25HHUB RADIUS
                                             = F10.3
 1062 FORMAT(1H0,25HHALF ANGLE BETWEEN RIBS =,F10.3)
 1063 FORMAT(1H0,25HFOCAL LENGTH TO DIAMETER=,F10.3)
 1064 FORMAT(1H0,25HFOCAL LENGTH
 1065 FORMAT(1H0,25HTENSION RADIAL DIRECTION=,F10.3)
 1067 FORMAT(1H0,25HTENSION CIRCUM. DIR, TOP =,F10.3)
 1068 FORMAT(1H0,25HTENSION CIRCUM. DIR,5ASE=,F10.3)
 1072 FORMAT(1H0,25HMAX NORMAL SURFACE ERROR=,F10,3)
 1073 FORMAT(1H0,25HSUBDISH BLOCKAGE RADIUS =,F10.3)
 1074 FORMAT(1HO, 25HRIGID DISH RMS FRROR
                                             = .F10.31
 1075 FORMAT(1H0,25HCABLE SAG
                                             = • F10 • 3)
 1076 FORMAT(1H0,25HGRID SIZE PARAMETER
                                             = .110)
 1110 FORMAT(1H0,43HRIB OPTIMIZATION VARIABLES A(1) TO A(3) = .3(E12.6)
     1)
 1130 FORMAT(1H0,31HDIMENSION 25 ON MATRIX EXCEEDED,110)
 1140 FORMAT(1HO, 72HUNABLE TO OPTIMIZE DUE TO MAX SURFACE ERROR ALLOWED,
     1SO ERROR INCREASED. /8H DIFMX = ,F10.5)
 1150 FORMAT(1HO, 10X, 43HCALCULATED ANTENNA MESH SHAPE Z-COORDINATES)
 1160 FORMAT(1H1,19HANTENNA RMS ERROR =,E12.6)
 1190 FORMAT(1H0,19HWEIGHTED RMS ERROR=,E12.6)
 1200 FORMAT(///1H0,10X,43HOPTIMIZED ANTENNA MESH SHAPE Z-COORDINATES //
     1.)
 1209 FORMAT(1H0,38HFINAL RECALCULATED WEIGHTED RMS ERROR=.E12.6)
 1210 FORMAT(1H0,38HFINAL RECALCULATED ANTENNA RMS ERROR =, F12.6)
 1240 FORMAT(1H1,50H
                        CATENARY CABLE TENSION CATENARY CABLE LENGTH)
 1260 FORMAT(1H ,5X,F15.5,10X,F15.5///)
 1280 FORMAT(1H1,10X,13HX-COORDINATES//)
 1288 FORMAT(7F10.4)
 1290 FORMAT(1H1,10X,13HY-COORDINATES//)
 1299 FORMAT(4F10.4,3E13.8)
 1300 FORMAT(3F10.4,3I10)
 1301 FORMAT(50X, I10)
 1310 FORMAT(1H1,18H***GORE PATTERN***)
 1320 FORMAT(1H0,17H LENGTH
                               WIDTH )
 1330 FORMAT(1H , 2F8.3)
 1340 FORMAT(1H0.16H UPPER BOUNDARY)
                       COOR
 1350 FORMAT(1H +17H
                              CURVE )
      NDELTU=0
      DM=+00001
      MAXITR=150
      DIFMX=DIFM
      FLE=2.*FPD*RO
      TT=THETA/57.29578
```

```
SAN=SIN(TT)
     CAS=COS(TT)
     DIS=RI*CAS
     RIC=RI*SAN
10
     ENB=NB
     HH=RIC/ENB
     HVT=(RO-RI)*CAS
     HVTT=HVT+RI*CAS
50
     WRITE(6,1010)
     IF (NWEIGH.NE.O)GO TO 60
     WRITE(6,1020)
     GO TO 70
60
     WRITE(6,1030)
     IF (NAREA . EQ.O)GO TO 80
70
     WRITE(6,1040)
     GO TO 90
80
     WRITE(6,1050)
90
     WRITE(6,1059)
     WRITE(6,1060)RO
     WRITE(6,1061)RI
     WRITE(6,1062)THETA
     WRITE(6,1063)FPD
     WRITE(6,1064)FLE
     WRITE(6,1065)TYC
     WRITE(6,1067)TXT
     WRITE(6,1068) TXB
     WRITE(6,1072)DIFMX
     WRITE(6,1073)DHUBR
     WRITE(6,1074) ERRHUB
     WRITE(6,1075)SAG
     WRITE(6,1076)NB
     WRITE(6,1110)(X(I),I=1,3)
110 LIM(1) = NB + 2
     ILIM=0
     Y(1)=DIS
     DO 150 I=2.321
     IF(ILIM.NE.O)GO TO 160
     XBNDM1=Y(I-1)*TAN(TT)
     SLOPE=SQRT(XBNDM1**2+Y(I-1)**2)/(4**FPD*RO*COS(TT))
     THETI=ATAN(SLOPE)
     ELMT=HH*COS(THETI)
     Y(I)=Y(I-1)+ELMT
     IF(Y(I).LT.HVTT)GO TO 120
     Y(I) = HVTT
     ILIM=I
     IF(Y(I)-Y(I-1) \cdot GT \cdot O \cdot 1*(Y(I-1)-Y(I-2)))GO TO 120
     ILIM=I-1
     Y(I-1)=HVTT
     GO TO 160
120
    XBND=Y(I)*TAN(TT)
     ELMNUM=XBND/HH
     NUMELM=ELMNUM
     LIM(I)=NUMELM+3
     FLMNU=NUMELM
     IF(ELMNUM-ELMNU.LT.O.O.T*HH)LIM(I)=LIM(I)-1
150
     CONTINUE
     JLIM=LIM(ILIM)
160
     IF(JLIM.GT.25)WRITE(6,1130)JLIM
     IF (JLIM.GT.25)GO TO 340
     IF(NOPTIM.EQ.O)GO TO 210
```

```
170 DIF=DIFMAX(X)
     IF(DIF.GT.DIFMX)GO TO 180
     GO TO 200
180
     CALL SIMPLX(X,-3,-2, ITER, 150,3, ERO, 1)
     NDELTU=0
     IF (FRO.LT.DIFMX) GO TO 200
     DIFMX=1.1*ERO
190
     WRITE(6,1140)DIFMX
200
     CALL SIMPLX(X,-3,-2, ITER, 150, 3, ERO, 0)
     GO TO 230
210
     CALL RMS(EROR, WEROR, X, 1,0)
     WRITE(6,1160) EROR
     IF(NWEIGH.EQ.O)WRITE(6,1190)WEROR
     WRITE(6,1150)
     GO TO 260
230 CALL RMS(EROR, WEROR, X,0,0)
     EROR1=EROR
     WEROR1=WFROR
     NDELTU=0
     CALL RMS(EROR, WEROR, X, 1,0)
     WRITE(6,1160) EROR1
     IF (NWEIGH.EQ.O) WRITE (6,1190) WEROR1
     WRITE(6,1210) EROR
     IF (NWEIGH . EQ. 0) WRITE (6, 1209) WEROR
     WRITE(6,1110)(X(I),I=1,3)
     WRITE(6,1200)
    IF(NPUNCH.EQ.O)GO TO 262
260
     NCARDP=0
     PUNCH 1060, RO
     PUNCH 1061,RI
     PUNCH 1062, THETA
     PUNCH 1063, FPD
     PUNCH 1065, TYC
     PUNCH 1067, TXT
     PUNCH 1068, TXB
     BASE=Y(1)
     TOP=Y(ILIM)
     PUNCH 1299, FLE, BASE, TOP, THETA, X(1), X(2), X(3)
     DO 261 I=1, ILIM
     NXQC=LIM(I)
     DO 261 J=2,NXQC
     NCARDP=NCARDP+1
     B1=XX(I,J)
     B2=Y(I)
     B3=U(I,J)
     PUNCH 1300,81,82,83,1,J,NCARDP
261 CONTINUE
     NCARDP=NCARDP+1000000
     PUNCH 1301, NCARDP
262
     IF(SAG.EQ.0.0)GO TO 301
     DO 270 I=1, ILIM
     LIMI=LIM(I)
     SAG1=U(I,2)-U(I,LIMI)
     UP(I+1)=2\cdot0*SAG1/XX(I+LIMI)
     UP(I,2)=SQRT(Y(I)**2+XX(I,LIMI)**2)
270
    CONTINUE
     XLL=2.*XX(ILIM,LIM(ILIM))
     XX2=XX(ILIM,LIM(ILIM))
290 FMAX=XX2*TYC*SQRT(1.0+XLL**2/(16.*SAG**2))
     S=XLL*(].+8.0*(SAG/XLL)**2/3.0-32.*(SAG/XLL)**4/5.)
```

```
CTAN=2.0*SAG/XX2
     DELTH=Y(ILIM)-Y(ILIM-2)
     DELTV=U(ILIM,2)-U(ILIM-2,2)
300 HVP=SQRT(DELTH**2+DELTV**2)
     ATHETA=ATAN(CTAN)
     SINTTH=SIN(ATHETA)*(DELTH/HVP)*COS(TT)
     SINTTV=SIN(ATHETA)*(DELTV/HVP)
     SINTTD=COS(ATHETA)*SIN(TT)
     IF(SAG.EQ.0.0)GO TO 301
     CALL CABLE(1)
     GO TO 303
301 CALL PRINT
    IF(NGORE.EQ.O)GO TO 309
303
     CCN=8.*FPD*RO
     WRITE(6,1310)
     WRITE(6,1320)
     LENGTH=0.0
     DO 305 I=1.ILIM
     NXQC=LIM(I)
     YC1=Y(I)
     XC= XX(I,LIM(I))
     RATIO=(YC1-DIS)/HVT
     IF (RATIO.LT.1.E+5)RATIO=0.
     DEFL=(XC*XC+YC1*YC1)/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X(
    13)*(16.*RATIC**5+20.*RATIC**3+5.*RATIC)
     IF(I.EQ.1)GO TO 304
     LENGTH=LFNGTH+SQRT((Y(I)-Y(I-1))**2+(DEFL-DEFLM1)**2)
304
     WIDTH=2.*XX(I.NXQC)
     WRITE(6,1330) LENGTH, WIDTH
     DEFLM1=DFFL
305
     CONTINUE
     WRITE(6,1340)
     WRITE(6,1350)
     NXQC=LIM(ILIM)
     DO 306 J=2, NXQC
     XSPEC=XX(ILIM,J)
     CDFFL=SAG-(4.0*SAG*XSPEC**2)/((2.0*XX(ILIM,NXQC))**2)
     WRITE(6,1330)XSPEC, CDEFL
306
    CONTINUE
309
     DO 310 I=1.ILIM
     NXCQ=LIM(I)
     DO 310 J=1, NXCQ
310
    (LeI)XX=(LeI)U
     WRITE(6,1280)
     IF (SAG. EQ. 0.0)GO TO 311
     CALL CABLE(3)
311
     CALL PRINT
     DO 320 I=1.ILIM
     NXCQ=LIM(I)
     DO 320 J=1. NXCQ
320 U(I_{\bullet}J)=Y(I)
     WRITE(6,1290)
     IF(SAG.EQ.0.0)GO TO 321
     CALL CABLE(4)
321
     CALL PRINT
     IF(SAG.FO.O.O)GO TO 340
330
     WRITE(6,1240)
     WRITE(6,1260) FMAX, S
340
    RETURN
     END
```

```
-FOR • IS
           SIMPLX, SIMPLX
      SUBROUTINE SIMPLX(X, AE, RE, ITER, MAXITR, N, FL, NCHEK)
      INTEGER AE, RE, ITER, MAXITR, WANTEM, N, I, PT, IPT, NPT, NP1,
             ITR, L, H, CC, IL, IH, LIM(321)
      RFAL X(3),P(420),PS(20),PSS(20),PB(20),F(21),FH,FL,FS,FSS,
             AER, RER, ALFA, BETA, GAMA, U(321, 25), UP(321, 2), Y(321)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1.DM, DIFMX, DIFM, RIBN, UP, SAG, NCHECK, NPUNCH, NGORE
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
 1000 FORMAT(1H1,10X,40HINITIAL ANTENNA MESH SHAPE Z-COORDINATES//)
 1001 FORMAT(1H1,10X,32HINITIAL RIB SHAPE(CURVE FITTING))
 1002 FORMAT(1H1,32HRIB SHAPE CURVE FITTING ITERATES//)
 1010 FORMAT(///1H0,5X,43HINITIAL MAXIMUM NORMAL DIFFERENCE FUNCTION=,F1
     14.61
 1011 FORMAT(1H1,47HMINIMUM NORMAL DIFFERENCE MINIMIZATION ITERATES//)
 1020 FORMAT(1H0,5X,28HINITIAL RMS ERROR FUNCTION =,E12.6//)
 1021 FORMAT(1H1,25HRIB OPTIMIZATION ITERATES//)
 1040 FORMAT(1H +17H
                                ERROR
                                                              OPTIMIZATION VA
     1RIABLES)
 1050 FORMAT(1H ,17HITER
                               FUNCTION, 47H
                                                        (1)
                                                                           (2)
     1
 1060 FORMAT(14,E15.6)
 1070 FORMAT(1H+,18X,3E17.8)
 10
      NP1=N+1
      NDELTC=10
      WANTEM=NCHECK
      NPT=NP1*20
      AER=10.**AE
      RER=10.**RE
      ALFA=1.
      BETA=0.5
      GAMA=2.
      ITRP=NMESH
      ITR=IABS(WANTEM)
      ITER=0
      IL=1
      DO 30 I=1.N
        DO 20 IPT=1,NPT,20
 20
          P(IPT)=X(I)
      P(IL)=P(IL)+SIGN(.05,P(IL))
 30
      IL=It+21
      JC=0
 40
      CC=0
      DO 150 PT=1,NP1
        DO 50 I=1.N ,
          IPT=CC+I
 50
          X(I) = P(IPT)
      IF (NCHEK . EQ . 0)GO TO 60
      IF (NCHEK . EQ . 2) GO TO 70
      F(PT)=DIFMAX(X)
      GO TO 80
      CALL RMS(EROR, WEROR, X, 0, 1)
 60
      F(PT)=EROR
      IF (NWEIGH. EQ. 0) F (PT) = WEROR
      GO TO 80
 70
      F(PT)=RIBEQ(X)
      IF(CC-N*20) 150,90,90
 80
 90
      IF (UC) 150,100,150
 100
      IF (NCHEK • EQ • 1) GO TO 130
      IF (NCHEK . EQ . 2)GO TO 140
```

```
WRITE(6,1000)
     CALL PRINT
     WRITE(6,1020)F(PT)
     IF (WANTEM.GT.O) WRITE (6,1021)
     GO TO 150
     WRITE(6,1010)F(PT)
130
     IF (WANTEM.GT.O) WRITE (6,1011)
     GO TO 150
140
     IF(WANTEM.EQ.O)GO TO 150
     WRITE(6,1001)
     CALL RPRINT
     WRITE(6,1020)F(PT)
     WRITE(6,1002)
150
     CC=CC+20
     IF (JC.NE.0) GO TO 160
     IF(WANTEM.FQ.0)GO TO 160
     WRITE(6,1040)
     IF(WANTEM.GT.0) WRITE(6,1050)
160
     ITER=ITER+1
       FH=F(NP1)
       FL=F(NP1)
       H=NP1
       L=NP1
        DO 190 I=1.N
          IF(F(I).GT.FH)GO TO 170
          IF(F(I).LT.FL)GO TO 180
     GO TO 190
170
         FH=F(I)
          H = I
     GO TO 190
180
          FL=F(I)
          1 = I
190
          PB(I)=0.
       IL=20*L-19
       DO 200 I=1.N
          X(I) = P(IL)
200
          IL = IL + 1
     IF (NCHEK.NE.O)GO TO 201
     IF(ITER.NE.NDELTC)GO TO 201
     NDELTC=NDELTC+10
     NDELTU=0
     CALL CALC(X)
201
        IF(ITER.NE.ITR)GO TO 210
        ITR=ITR+JABS(WANTEM)
       WRITE(6,1060) ITER, FL
       IF(WANTEM \cdot GT \cdot O) WRITE(6 \cdot 1070)(X(I) \cdot I = 1 \cdot N)
210
     IH=20*H-19
     IF (NCHEK.NE.1)GO TO 260
     IF(FL.LT.DIFMX)GO TO 280
260
       DO 270 I=1.N
          IF(ABS(X(I)-P(IH)).GT.ABS(X(I)*RER)+AER)GO TO 320
270
          IH = IH + 1
280
     IF(ITER.EQ.ITR)GO TO 290
     IF(WANTEM.EQ.O)GO TO 290
     WRITE(6,1060) ITER,FL
     IF (WANTEM.GT.O) WRITE(6,1070)(X(1),1=1,N)
290
     RETURN
       IF (ITER.LT. MAXITR) GO TO 330
320
       ITER=-MAXITR
       RETURN
```

```
330
        CC=0
        DO 350 PT=1.NP1
          IF (PT.EQ.H)GO TO 350
          DO 340 I=1,N
            IPT=CC+I
            PB(I)=PB(I)+P(IPT)
340
350
          CC = CC + 20
        IH=H*20-19
        DO 360 I=1,N
          PB(I)=PB(I)/FLOAT(N)
          PS(I) = (1 \cdot + ALFA) * PB(I) - ALFA * P(IH)
360
          IH = IH + 1
     IF (NCHEK . EQ . O) GO TO 370
     IF (NCHEK . EQ . 2) GO TO 380
     FS=DIFMAX(PS)
     GO TO 390
370
     CALL RMS(EROR, WEROP, PS, 0, 1)
     FS=FROR
     IF (NWEIGH. EQ. 0) FS=WEROR
     GO TO 390
380
     FS=RIBEQ(PS)
390
        IF(FS.GE.FL)GO TO 480
        DO 400 I=1,N
          PSS(I) = (1 \cdot + GAMA) \cdot PS(I) - GAMA \cdot PR(I)
400
     IF(NCHEK.EQ.0)GO TO 410
     IF(NCHEK.EQ.2)GO TO 420
     FSS=DIFMAX(PSS)
     GO TO 430
410
     CALL RMS(EROR, WEROR, PSS, 0, 1)
     FSS=EROR
     IF (NWEIGH. EQ. 0) FSS=WEROR
     GO TO 430
420
     FSS=RIBEQ(PSS)
430
        IF(FSS.GE.FL)GO TO 460
440
        IH=20*H-19
        DO 450 I=1,N
          P(IH) = PSS(I)
450
          IH=IH+1
        F(H) = FSS
     GO TO 160
460
        F(H)=FS
        IH=20*H-19
        DO 470 I=1,N
          P(IH) = PS(I)
470
          IH= IH+1
     GO TO 160
480
        DO 490 I=1,NP1
490
          IF (FS.LT.F(I).AND.I.NE.H)GO TO 460
        IF(FS.LT.FH)GO TO 510
        IH=20*H-19
        DO 500 I=1,N
          PS(I)=P(IH)
500
          IH= IH+1
510
        DO 520 I=1.N
520
          PSS(I) = BETA*PS(I) + (1 - PETA)*PR(I)
     IF(NCHEK.EQ.0)GO TO 530
     IF (NCHEK • EQ • 2) GO TO 540
     FSS=DIFMAX(PSS)
     GO TO 550
530
     CALL RMS(EROR, WEROR, PSS, 0, 1)
```

```
FSS=EROR
     IF(NWEIGH.EQ.O)FSS=WEROR
     GO TO 550
    FSS=RIBEQ(PSS)
550
       IF(FSS.LT.FH)GO TO 440
       1L=20*L-19
       DC 570 I=1.N
         FL=P(IL)
         DO 560 PT=I,NPT,20
           P(PT) = (P(PT) + FL)/2
560
570
       IL=IL+1
     JC=1
     GO TO 40
     END
```

```
-FOR, IS
          SCALC SCALC
      SUBROUTINE CALC(X)
      DIMENSION Y(321), LIM(321), U(321, 25), X(3), UP(321, 2)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1,DM,DIFMX,DIFM,RIBN,UP,SAG,NCHECK,NPUNCH,NGORE,RILTH,RIBLTH
      COMMON/NGG/NOPTIM, TYC, THETA, EROR, NB, DHUBR, ERRHUB, IT
      COMMON/NT/NDTLTU, NWEIGH, NMESH, NAREA, NTENS
 1000 FORMAT(//1H ,32HLAST SUM LESS THAN PRESENT SUM ,2F15.10,15//)
      CON=8.*FPD*RO
      IDM=0
      XPYRO=1 \cdot G/(8 \cdot O*FPD)
      XPYRI=RI/(8.0*FPD*RO)
      ROLTH=RO*(].0+2.0*XPYRO**2/3.0-2.0*XPYRO**4/5.0)
      RILTH=RI*(1.0+2.0*XPYRI**2/3.0-2.0*XPYRI**4/5.0)
      RIBLTH=ROLTH-RILTH
      IF (NDELTU.NE.O)GO TO 20
      NDELTU=1
      DO 10 I=1.ILIM
      YC1=Y(I)
      XC = XX(I \cdot LIM(I))
      RATIO=(YC1-DIS)/HVT
      IF (RATIO.LT.1.E-5)RATIO=0.
      DEFL=(XC*XC+YC1*YC1)/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X(
     13)*(16.*RATIO**5-20.*RATIC**3+5.*RATIO)
      NXQC = LIM(I)
      DO 10 J=1,NXQC
 10
      U(I,J)=DEFL
      GO TC 40
 20
      DO 30 I=1, ILIM
      XC = XX(I \rightarrow LIM(I))
      YC1=Y(I)
      RATIO=(YC1-DIS)/HVT
      IF (RATIO.LT.1.E-5)RATIO=0.
      DEFL=(XC*XC+YC1*YC1)/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X(
     13)*(16.*RATIO**5-20.*RATIO**3+5.*RATIO)
      NXQC = LIM(I)
      DO 30 J=1,NXQC
      U(I,J)=U(I,J)-U(I,NXQC)+DEFL
 30
      GO TO 150
 40
      WM1=0.0
      W = 1 \cdot 0
      DMM1=0.0
      ISTEP=0
      NT = 10
 50
      DSUM=0.0
      NILT=ILIM-1
      DO 70 I=2, NILT
      NXOC = LIM(I) - 1
      DO 70 J=2,NXQC
      II = I - 1
      UIMIJ=U(II,J)
      YIMIJ=Y(II)
      IF(J.NE.NXQC)GO TO 51
      IF(LIM(I).EQ.LIM(II))GO TO 51
      (L_{\bullet}I)XX=JX
      YC1=XC/TAN(TT)
      RATIO=(YC1-DIS)/HVT
      IF (RATIO.LT.1.E-5)RATIO=0.
      UIM1J=(XC*XC+YC1*YC1)/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X
     1(3)*(16.*RATIO**5-20.*RATIC**3+5.*RATIO)
```

```
YIM1J=YC1
51
     CALL CONT(I,J,C1,C2,C3,C4,UIM1J,YIM1J)
     UNEXT=W*(C1*U(I,J+1)+C3*U(I,J-1)+C2*U(I+1,J)+C4*UIM1J)+WM1*U(I,J)
     DSUM=DSUM+(UNEXT-U(I,J))*(UNEXT-U(I,J))
     U(I,J)=UNEXT
     IF(J-3) 70,60,70
     U(I,1)=U(I,3)
60
     CONTINUE
70
     DSUM=SQRT(DSUM)
     ISTEP=ISTEP+1
80
     IF(ISTEP.EQ.1)GO TO 130
     IF(DSUM-DM) 150,150,90
     IF(ISTEP.NE.(ISTEP/2)*2)GO TO 91
90
     IF (DMM1.GT.DSUM)GO TO 91
     WRITE(6,1000)DSUM,DMM1,ISTEP
     IDM=IDM+1
     IF(IDM.GT.4)GO TO 150
     GO TO 130
91
     IF(NT-ISTEP) 100,100,130
100
     NT = NT + 10
110
    W=2 \cdot /(1 \cdot + SQRT(1 \cdot - DSUM/DMM1))
    WM1=1 \cdot -W
120
    DMM1=DSUM
130
     GO TO 50
150 RETURN
     END
```

```
-FOR, IS
           SRMS, SRMS
      SUBROUTINE RMS(ERC, WERO, X, NPRT, NDIF)
      DIMENSION Y(321), LIM(321), U(321, 25), X(3), UP(321, 2)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1, DM, DIFMX, DIFM, RIBN, UP, SAG, NCHECK, NPUNCH, NGORE
      COMMON/NOQ/NOPTIM, TYC, THETA, EROR, NR, DHUBR, ERRHUR, TT
      COMMON/NT/NDFLTU: NWEIGH . NMESH . NARFA . NIFNS
      COMMON/XY/XA,YA,XC,YC1,Z
 1000 FORMAT(1H ,18H
                       HUB RMS ERROR = ,F6.4,13H
                                                       HUB AREA = , F10.5)
 1009 FORMAT(1H1,51HCALCULATION OF THE RMS ERROR OF THE ANTENNA SURFACE)
 1011 FORMAT(1H0,54H NODE ILLUMINATION ELEMENT
                                                           SURFACE
                                                                         ELEMEN
     1T )
 1010 FORMAT(1H ,51H I J
                                   WEIGHT
                                               ARFA
                                                            FRROR
                                                                           SUM)
 1020 FORMAT(1H ,213,3F11.4,F14.8)
 1030 FORMAT(1H ,3X,22HHUB WEIGHTING FUNCTION,F10.5)
      DIF=DIFMAX(X)
      IF(NDIF.EQ.0)GO TO 1
      IF(DIF.GT.DIFMX)GO TO 70
      CON=8.*FPD*RO
      BB = 0
      WCC=0.
      WBB=0.
      CC=0.
      FP=2.*FPD*RO
      CALL AHUR (BBP, CCP)
      IF (NPRT • FQ • 0) GO TO 10
      IF(NCHECK.NE.O)WRITE(6,1009)
      IF (NCHECK • NE • 0) WRITE (6 • 1011)
      IF (NCHECK • NE • 0) WRITE (6 • 1010)
 1.0
      DO 30 I=1.ILIM
      NXQC=LIM(I)
      DO 30 J=2 NXQC
      XA = XX(I \cdot J)
      YA=Y(I)
      XC = XA * * 2
      YC1=YA**2
      Z = (XC + YC1)/CON
      SLOPE=SQRT(XC+YC1)/(4.0*FPD*RO*COS(TT))
      THET = ATAN (SLOPE)
      DELTER=(U(I,J)-Z)*COS(THET)
      AREA=SAREA(I,J)
      IF (NWEIGH.NE.O) GO TO 20
      A=WEIGH(I,J)
      ABCD=DELTER**2*ARFA*A
      WBB=WBB+ABCD
      WCC=WCC+AREA*A
      IF(NPRT • EQ • 0) GO TO 20
      IF(NCHECK.NE.O)WRITE(6,1020)I,J,A,AREA,DELTER,ABCD
 20
      ABCD=DELTER**2*ARFA*A
      BB=BB+ABCD
      CC=CC+AREA*A
      IF(NPRT.EQ.O)GO TO 30
      IF(NCHECK.NE.O)WRITE(6,1020)I,J,A,AREA,DELTER,ABCD
 30
      CONTINUE
      CC=CC+CCP
      BB=BB+BBP*BBP*CCP
      I = 0
      J = 0
      IF (NWEIGH.NE.O) GO TO 40
```

A = WEIGH(I,J)GO TO 50 A = 1 • 40 WCC=WCC+CCP*A 50 WRR=WRR+RRP*BBP*CCP*A IF(NPRT.EQ.O)GO TO 60 IF (NCHECK • NE • 0) WRITE (6 • 1000) BBP • CCP IF(NCHECK.NE.O) WRITE(6,1030)A ERO=SGRT(BB/CC) 60 IF (NWEIGH.EQ.O) WERO=SQRT (WBB/NCC) GO TO 80 70 ERO=1.+DIF*100. WERO=1.+DIF*100. 80 RETURN END

```
-FOR, IS
          SAREA SAREA
      FUNCTION SAREA(I,J)
      DIMENSION Y(321), LIM(321), U(321,25)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1.DM.DIFMX
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
      COMMON/NGQ/NOPTIM, TYC, THETA, EROR, NB, DHURR, ERRHUP, TT
      COMMON/XY/XA,YA,XC,YC1,Z
      LIMI=LIM(I)
      LIMIMI=LIM(I-1)
      HEIGHT=0.0
      IF(NAREA.EQ.O)GO TO 50
      IF(I.GT.1)GO TO 10
      GO TO 30
 10
      IF(I.LT.ILIM)GO TO 20
      GO TO 40
 20
      HEIGHT = (U(I+1,2)-U(I-1,2))/2.
      GO TO 50
 30
      HEIGHT = (U(I+1,2)-U(I,2))
      GO TO 50
 40
      HEIGHT=(U(I_{2})-U(I-1_{2}))
 50
      YIMIJ=Y(I-1)
      IF(J.LT.LIMIM1)GO TO 51
      IF(LIMI • EQ • LIMIM1) GO TO 51
      (TT) MATY(L.I)XX=LIMIY
 51
      H1=HH/2.
      H3=HH/2.
      IF(J-LIMI+1) 80,70,60
 60
      H1=0.
      H3 = (XA - XX(I, J-1))/2.
      GO TO 82
 70
      H1=(XX(I,J+1)-XA)/2.
      GO TO 82
 80
      IF(J-2)81,81,82
 81
      H3=0.
 82
      IF(I-ILIM+1) 110,100,90
 90
      H2=0.
      H4=(YA-YIM1J)/2.
      GO TO 140
 100
      H2=(Y(I+1)-Y4)/2.
      H4=(YA-YIM1J)/2.
      GO TO 140
 110
      IF(I-2)120,130,130
 120
      H4 = 0
      H2=(Y(I+1)-YA)/2.
      GO TO 140
 130
      H2=(Y(I+1)-YA)/2
      H4=(YA-YIM1J)/2
      H2PH4=((H2+H4)**2+HEIGHT**2)**.5
      SAREA=H2PH4*(H1+H3)
      RETURN
      END
```

```
SCONT, SCONT
-FOR, IS
      SUBROUTINE CONT(I, J, C1, C2, C3, C4, UIM1J, YIM1J)
      DIMENSION Y(321), LIM(321), U(321, 25), UP(321, 2)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1,DM,DIFMX,DIFM,RIBN,UP,SAG,NCHECK,NPUNCH,NGORE,RILTH,RIBLTH
      COMMON/NQQ/NOPTIM, TYC, THETA, EROR, NE, DHUER, FRRHUP, TT
      H1 = HH
      H2=Y(I+1)-Y(I)
      H3=HH
      H4=Y(I)-YIM1J
      A = (1 \cdot + (\{U(I, J-1\} - U(I, J+1\})) / (XX(I, J-1) - XX(I, J+1))) **2) **(3 \cdot /2 \cdot)
      B=1.+((U(I,J)-UIMIJ)/(Y(I)-YIMIJ))**2
      RADUS=SQRT(Y(I)**2+XX(I,LIM(I))**2)
      XPY=RADUS/(8.0*FPD*RO)
      IF(J-LIM(I)+1) 120+130+110
 100
 110 H1=XX(I,LIM(I))-XX(I,LIM(I)-1)
     RLTH=RADUS*(1.+2.*XPY**2/3.-2.*XPY**4/5.)-RILTH
 120
      FLAM=TYC*A/((TXB+(TXT-TXB)*(RLTH/RIBLTH))*8)
 140
      H2H4=H2*H4
      H1H3=H1*H3
      H1PH3=H1+H3
      H2PH4≈H2+H4
      CC=H2H4+ELAM*H1H3
      C1=H2H4*H3/(H1PH3*CC)
      C2=(H1H3*H4/(H2PH4*CC))*ELAM
      C3=H2H4*H1/(H1PH3*CC)
      C4=(H1H3*H2/(H2PH4*CC))*ELAM
      RETURN
      END
           SAHUR, SAHUB
-FOR • 15
      SUPROUTINE AHUB (BBP.CCP)
      DIMENSION Y(321), LIM(321), U(321, 25)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1, DM, DIFMX, DIFM, RIBN
      COMMON/NOC/NOPTIM, TYC, THETA, EROR, NB, DHUBR, ERRHUB
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
      IF(NAREA.EQ.O)GO TO 10
      CON=8.*FPD*RO
      H=RI**2/CON
      DIA2=(2.*RI)**2
      P=DIA2/(8.*H)
      BBP=ERRHUB
      CCP=(6.2832*((DIA2/4.+P**2)**(3./2.)-P**3)/(3.*P))/(RIPN*2.)
      H=DHUBR**2/CON
      DIA2=(2.*DHUBR)**2
      P=DIA2/(8.*H)
      CCP=CCP-(6.2832*((DIA2/4.+P**2)**(3./2.)-P**3)/(3.*P))/(RIBN*2.)
      GO TO 20
 10
      BBP=ERRHUB
      CCP=(3.14159*RI**2-3.14159*DHUBR**2)/(RIBN*2.)
      RETURN
 20
      FND
```

```
-FOR, IS
          SDIFMX.SDIFMX
      FUNCTION DIFMAX(X)
      DIMENSION Y(321), LIM(321), U(321, 25), X(3)
      COMMON HHOYOLIMORIOILIMODISOCASOROOELAMOSANOTXBOTXTOFPDOUGHVTOUPL
     1.DM.DIFMX
      COMMON/NQQ/NOPTIM, TYC, THETA, EROR, NB, DHUBR, ERRHUB, TT
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
      CON=8.*FPD*RO
      CALL CALC(X)
      DIFMAX=0.0
      DO 10 I=1.ILIM
      NXQC=LIM(I)
      DO 10 J=1.NXQC
      XA = XX(I \cdot J)
      YA = Y(I)
      XC=XA**2
      YC1=YA**2
      PARA=(XC+YC1)/CON
      SLOPE=SQRT(XC+YC1)/(4.0*FPD*RO*COS(TT))
      THET=ATAN(SLOPE)
      DIF=ABS(PARA-U(I,J))*COS(THET)
      IF (DIF.GT.DIFMAX)DIFMAX=DIF
 10
      CONTINUE
      RETURN
      END
-FOR, IS
          SWEIGH SWEIGH
      FUNCTION WEIGH(I,J)
      DIMENSION Y(321), LIM(321), U(321, 25)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1, DM, DIFMX, DIFM, RIBN
      COMMON/NQQ/NOPTIM, TYC, THETA, EROR, NB, DHUBR, ERRHUB, TT
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
      COMMON/XY/XA, YA, XC, YC1, Z
      FP=2.*FPD*RO
      CON=8.*FPD*RO
      IF(I.EQ.0)GO TO 10
      C=(FP-U(I,J))/SQRT(XC+YC1+(FP-U(I,J))**2)
      GO TO 20
      RRR=38.197*(RI**3-DHUBR**3)*SIN(TT)/((RI**2-DHUBR**2)*THETA)
 10
      ZZZ=RRR**2/CON
      C=(FP-ZZZ)/SORT(RRR**2+(FP-ZZZ)**2)
 20
      THETS=ACOS(C)
      THETO=2.*ATAN(1./(4.*FPD))
      CONST=ACOS(.562*(2./(1.+COS(THETO)))**.5)/THETO
      WEIGH=((1.+C)/2.)*(COS(CONST*THETS))**2.
      RETURN
      END
```

```
-FOR, IS
           SXX • SXX
      FUNCTION XX(I,J)
      DIMENSION Y(321), LIM(321)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN
      COMMON/NOG/NOPTIM, TYC, THETA, EROR, NB, DHUBR, ERPHUB, TT
      FJ=J-2
      IF(J-LIM(I)) 10,20,20
      XX=EJ*HH
 10
      RETURN
      IF(I-ILIM) 40,30,30
 20
      XX=RO*SAN
      RETURN
      XX=Y(I)*TAN(TT)
 40
      RETURN
      END
-FOR,IS
          CABLE • CABLE
       SUBROUTINE CABLE(N)
      DIMENSION Y(321), LIM(321), U(321,25), UP(321,2)
      REAL LENGTH(10,25)
       COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1,DM,DIFMX,DIFM,RIBN,UP,SAG,NCHECK,NPUNCH,NGORE
      NXQC=LIM(ILIM)
      DO 40 J=2.NXQC
      NN = 1
    I=ILIM
      CDEFL=SAG-4.0*SAG*(XX(ILIM,J))**2/(2.0*XX(ILIM,NXQC))**2
       IF(J.LT.NXQC-1)GO TO 19
       IF(LIM(ILIM).GT.LIM(ILIM-1))JJ=J-1
       IF(J.EQ.NXQC)JJ=JJ-1
 19
       IF(N.NE.1)GO TO 20
       LENGTH(NN,J)=SQRT((Y(I)-Y(I-1))**2+('(I,JJ)-U(I-1,JJ))**2)
 20
       IF(CDEFL.LT.LENGTH(NN,J))GO TO 30
       CDEFL = CDFFL-LENGTH(NN,J)
      U(I,J)=100000000.
      NN = NN + 1
       I = I - 1
      GO TO 19
       IF(N \cdot EQ \cdot 1)U(I \cdot J) = U(I \cdot J) - (U(I \cdot JJ) - U(I - I \cdot JJ)) *CDEFL/LENGTH(NN \cdot J)
 30
       IF(N.EQ.4)U(I,J)=U(I,J)-(Y(I)-Y(I-1))*CDEFL/LENGTH(NN,J)
       CONTINUE
 40
       IF(N.NE.1)RETURN
       CALL PRINT
       RETURN
       FND
```

```
-FOR, IS
          SPRINT, SPRINT
      SUBROUTINE PRINT
      DIMENSION Y(321), LIM(321), U(321, 25)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTFNS
 1000 FORMAT(1H ,9H I J ,12,7(7X,12))
 1001 FORMAT(1H +12HNODE NUMBERS)
 1010 FORMAT(1H +13+3X+8(1X+F8-4))
      NNN=0
      J1=2
      J2=9
      WRITE(6,1001)
 10
      NN = 0
      WRITE(6,1000)(J,J=J1,J2)
      DO 90 II=1, ILIM
      I = I L I M - I I + 1
      LIMIT=LIM(I)-NNN*8-1
      IF(LIMIT) 100,100,20
      IF(LIMIT-8)30,30,40
 20
      LHIGH=LIM(I)
 30
      LOW=2+NNN*8
      GO TO 50
 40
      NN=1
      NQ = NNN + 1
      LHIGH=NQ*8+1
      LOW=LHIGH-7
 50
      WRITE(6,1010)I, (U(I,J), J=LCW, LHIGH)
 90
      CONTINUE
      J1=J1+8
      J2=J2+8
      NNN=NNN+1
 100 IF(NN-1)110,10,10
 110 RETURN
      END
```

```
-FOR, IS
          RIBDEF , RIBDEF
      SUBROUTINE RIBDEF(X)
      DIMENSION Y(321), LIM(321), U(321, 25), X(3), UP(321, 2)
      COMMON HH,Y,LIM,RI,ILIM,DIS,CAS,RO,ELAM,SAN,TXB,TXT,FPD,U,HVT,JPL
     1, DM, DIFMX, DIFM, RIBN, UP, SAG, NCHECK, NPUNCH, NGORE
      COMMON/NT/NDELTU, NWEIGH, NMESH, NAREA, NTENS
      COMMON/NOQ/NOPTIM, TYC, THETA
      COMMON/RBB/FMAX, SINTTH, SINTTV, SINTTD, NODES
      COMMON/RIB/NUM, NUMP1, NBLKS
 1000 FORMAT(1H0,50H***INPUT PARAMETERS FOR RIB DEFLECTION ANALYSIS***)
 1011 FORMAT(1HO, 22HANTENNA RADIUS
                                           = ,F10.4)
 1012 FORMAT(1H0,22HHUE RADIUS
                                           = ,F10.4)
 1013 FORMAT(1H0,22HA1
                                           = ,F10.6)
 1014 FORMAT(1H0,22HA2
                                           = F10.6
 1015 FORMAT(1H0,22HA3
                                           = ,F10.6)
 1016 FORMAT(1H0,22HMESH TENSION BASE
                                           = F10.41
 1017 FORMAT(1HO, 22HFOCAL LENGTH TO DIA
                                           = , F10.4)
                                           = , F10 . 4)
 1018 FORMAT(1HO, 22HHALF ANGLE
                                           = , F10 • 4)
 1019 FORMAT(1HO, 22HFIN WIDTH
 1020 FORMAT(1H0,22HFIN HEIGHT
                                           = , F 1 0 • 4 )
 1021 FORMAT(1H0,22HRIB BASE OUTER RADIUS=,F10.4)
 1022 FORMAT(1H0,22HRIB BASE INNER RADIUS=,F10.4)
 1023 FORMAT(1H0,22HRIB TIP OUTER RADIUS =,F10.4)
 1024 FORMAT(1H0,22HRIB TIP INNER RADIUS =,F10.4)
 1025 FORMAT(1H0,22HALLOWABLE DEFL ERROR =,F10.4)
 1026 FORMAT(1H0,22HRIB MODULUS E*10**-6 =,F10.4)
 1027 FORMAT(1H0,22HCABLE SAG
                                           = ,F10.4)
 1028 FORMAT(1H0,22HMESH TENSION TIP
                                           = ,F10.4)
 1080 FORMAT(1H , I3,2X,E10.5,5(2X,E11.6))
 1120 FORMAT(1H1,80HNODE LENGTH FROM RIB MOMENT
                                                       MOMENT
                                                                        RIB
     1
              RADIUS
                              Ζ
 1130 FORMAT(1H .80H
                             RIB TIP
                                        OF INERTIA
                                                       ON RIB
                                                                    DEFLECTI
     10N
           COORDINATE
                         COORDINATE/)
 1140 FORMAT(1H0,29HRIB CURVE FITTING RMS ERROR =, E12.6)
 1150 FORMAT(1H0,40H
                             B(1)
                                           B(2)
                                                          B(3) )
 1160 FORMAT(1H0,3E15.9)
 1170 FORMAT(1H1,10X,30HFINAL RIB SHAPE(CURVE FITTING))
      NBLKS=80
      ERR=.001
      NAMELIST/DATA2/WIDTH, HEIGHT, TROB, TRIB, TROT, TRIT, ERIB
      READ(5,DATA2)
      WRITE(6,1000)
      WRITE(6,1011)RO
      WRITE(6,1012)RI
      WRITE(6,1013)X(1)
      WRITE(6,1014)X(2)
      WRITE(6,1015)X(3)
      WRITE(6,1016)TXB
      WRITE(6,1028)TXT
      WRITE(6,1017)FPD
      WRITE(6,1018) THETA
      WRITE(6,1019)WIDTH
      WRITE(6,1020)HEIGHT
      WRITE(6,1021)TROB
      WRITE(6,1022)TRIB
      WRITE(6,1023) TROT
      WRITE(6,1024)TRIT
      WRITE(6,1025)ERR
      WRITE(6,1026) ERIB
      WRITE(6,1027)SAG
```

```
INDEX=0
     CON=8.*FPD*RO
     TT=THETA/57.29578
     IF (NBLKS.GT.160)GO TO 220
40
     NBLKS=NBLKS*2
     BLKS=NBLKS
     RIB=C.O
     NODES=NBLKS+1
     H=(RO-RI)/BLKS
     RATIO=1.0
     Z2=RO**2/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X(3)*(16.*RATI
    10**5-20.*RATIO**3+5.*RATIO)
60
     DO 90 I=1.NODES
     \Delta I = I
     Z1=Z2
     U(I + 1) = Z1
     U(I,2)=RIB
     U(I,8)=RO-(AI-1.0)*H
     IF (I.GT.NBLKS)GO TO 90
     RHO=RO-AI*H
     RATIO=(RHO-RI)/(RO-RI)
     Z2=RHO**2/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X(3)*(16.*RAT
    110**5-20.*RATIO**3+5.*RATIO)
80
     U(I \cdot 3) = SQRT(H * * 2 + (Z2 - Z1) * * 2)
     RIB=RIB+U(1,3)
90
     CONTINUE
     RHO=RO
101
     NUM=NBLKS/2
     NUMP1=NUM+1
     I=ILIM
     DO 130 N=1.NUMP1
     NNN=2*(N-1)+1
     DO 110 II=1,10
     IF(U(NNN,8)+.0001.GT.UP(I,2))GO TO 120
     I = I - 1
     IF(I.NE.0)GO TO 110
     T = 1
     GO TO 120
110
     CONTINUE
     IF (N.EQ.1)NNN=NNN+1
120
     IF (N • EQ • NUMP1) NNN=NNN-1
     SQ=SQRT((U(NNN+1,1)-U(NNN-1,1))**2+4.*H**2)
     U(N_{9}6) = 2.0 *H/SQ
     U(N,11) = (U(NNN-1,1) - U(NNN+1,1)) / SQ
     HTH=UP(I,1)*U(N,6)*U(N,11)
     HTV=UP(I,1)*U(N,6)**2
     TTM=ATAN(HTH)
     TTT=TT+TTM
     U(N,24) = SIN(TTT)
     VTTT=ATAN(HTV)
     U(N,25) = SIN(VTTT)
130
    CONTINUE
141
     NNN=5
     CONST=0.0
     DO 170 N=1, NUMP1
     SUM=0.0
     NN=N-1
     IF(N.EQ.1)GO TO 160
     NNN=2*N-1
     DY=U(NNN,1)
```

```
DX=U(NNN,8)
     F1=RMOM(1,DY,DX)
     DO 150 I=1,NN
     I! = 2 * I - 1
     F3=RMOM(II+2,DY,DX)
     DS=0.5*(U(II,3)+U(II+1,3))
     SUM=SUM+(DS/3.0)*(F1+4.0*RMOM(II+1.0Y.0X)+F3)
150 F1=F3
     CABMOM = 2.*FMAX*((SINTTH+SINTTD)*(U(1,1)-DY)-SINTTV*(U(1,8)-DX))
     SUM=SUM+CABMOM
     CONST=U(NNN,2)/RIB
160 - U(N_{\bullet}4) = SUM
     TRO=TROT+CONST*(TROB-TROT)
     TRI=TRIT+CONST*(TRIB-TRIT)
     AC=3.145193*(TRO**2-TRI**2)
     ASQ=WIDTH*HEIGHT
     YPSQ=TRO+HEIGHT/2.0
     YPT=ASO*YPSQ/(AC+ASQ)
     SIC=3.141593*(TRO**4-TRI**4)/4.0
     SISQ=WIDTH*HEIGHT**3/12.0
     U(N.5)=SIC+SISQ+AC*YPT**2+ASQ*(TRO+HEIGHT/2.0-YPT)**2
     U(N,7)=SUM/(ERIB*1000000*U(N,5))
170
     CONTINUE
    U(NUMP1,9)=0.0
181
     YP=0.0
     DO 190 I=NUM,1,-1
     11=2*1-1
     YP1=U(II,3)*(U(I,7)+U(I+1,7))
     U(I,9)=U(I+1,9)+U(II,3)*(2*YP+YP1)
     YP=YP+YP1
     CONTINUE
190
     00 200 I=1,NUMP1
     []=2*[-1
     U(I,12)=U(II,8)+U(I,9)*U(I,11)
     U(I,13)=U(II,1)-U(I,9)*U(I,6)
200
     CONTINUE
     WRITE(6,1120)
     WRITE(6,1130)
     DO 210 I=1.NUMP1
     III = 2 * I - 1
     WRITE(6,1080) III, U(III, 2), U(I, 5), U(I, 4), U(I, 9), U(I, 12), U(I, 13)
210 CONTINUE
     INDEX=INDEX+1
     U(INDEX,10)=U(1,9)
     IF(INDEX.EQ.1)GO TO 40
     DIF=ABS(U(INDEX,10)-U(INDEX-1,10))
     IF(ERR.LT.DIF)GO TO 40
220
     X(1) = 0.0
     X(2) = 0.0
     X(3) = 0.0
     CALL SIMPLX(X,-5,-4,ITER,150,3,RIBERO,2)
     CALL RCALC(X)
     WRITE(6,1170)
     CALL RPRINT
     WRITE(6,1140)RIBERO
     WRITE(6,1150)
     WRITE(6,1160)X(1),X(2),X(3)
     RETURN
     END
```

```
-FOR, IS RMOM, RMOM
      FUNCTION RMOM(N,DY,DX)
      DIMENSION Y(321), LIM(321), U(321, 25)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U
      COMMON/RBB/FMAX, SINTTH, SINTTV, SINTTD, NODES
      TMAX=TXT-(TXT-TXB)*(U(N,2)/U(NODES,2))
      NN = (N-1)/2 + 1
      RMOM=2.*TMAX*(U(NN,24)*(U(N,1)-DY)+U(NN,25)*(U(N,8)-DX))
      RETURN
 10
      END
-FOR, IS
          RIBEQ, RIBEQ
      FUNCTION RIBEQ(X)
      DIMENSION Y(321), LIM(321), U(321, 25), X(3)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1,DM,DIFMX,DIFM,RIBN
      COMMON/RIB/NUM, NUMP1, NBLKS
      CALL RCALC(X)
      88=0.0
      CC=0.0
      DO 30 I=1.NUM
      II = 2 * I - 1
      IF(I.EQ.1)GO TO 10
      RTH=U(II,3)+U(II-1,3)
      GO TO 20
 10
      RTH=U(II.3)
 20
      BB=BB+(U(I,13)-U(I,14))**2*RTH
 30
      CC=CC+U(NBLKS+3)
      RIBEQ=SQRT(BB/CC)
      RETURN
      END
```

```
-FOR • IS RCALC • RCALC
      SUBROUTINE RCALC(X)
      DIMENSION Y(321), LIM(321), U(321, 25), X(3)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U, HVT, JPL
     1, DM, DIFMX, DIFM, RIBN
      COMMON/NT/NDELTU, NWEIGH, NMESH, NARFA, NTENS
      COMMON/RIB/NUM, NUMP1
      RLENTH=U(1,12)-U(NUMP1,12)
      CON=8.*FPD*RO
      00 20 I=1.NUMP1
      RATIO=(U(I,12)-U(NUMP1,12))/RLENTH
      U(1,14)=U(1,12)**2/CON+X(1)*RATIO+X(2)*(4.*RATIO**3-3.*RATIO)+X(3)
     1*(16.*RATIO**5-20.*RATIO**3+5.*RATIO)
 20
      CONTINUE
      RETURN
      END
-FOR IS
          RPRINT, RPRINT
      SUBROUTINE RPRINT
      DIMENSION Y(321), LIM(321), U(321,25)
      COMMON HH, Y, LIM, RI, ILIM, DIS, CAS, RO, ELAM, SAN, TXB, TXT, FPD, U. HVT, JPL
     1,DM,DIFMX,DIFM,RIBN
      COMMON/RIB/NUM, NUMP1
 1000 FORMAT(1H , I3, 3F15.5)
 1001 FORMAT(1H0,51H
                                               CURVE FIT
                                                               CURVE FITTING)
 1010 FORMAT(1H ,50HNODE
                                 RADIUS
                                               Z-COORDINATE
                                                                   ERROR )
      WRITE(6,1001)
      WRITE(6,1010)
      DO 10 I=1.NUMP1
     . II = 2 * I - 1
      U(I, 15) = U(I, 13) - U(I, 14)
      WRITE(6,1000) II, U(I,12), U(I,14), U(I,15)
      CONTINUE
 10
      RETURN
      END
```

IX. APPENDIX B TYPICAL COMPUTER PRINTOUT

OUTPUT UNITS EQUIVALENT TO INPUT UNITS

RMS ERROR IS WEIGHTED BY ILLUMINATION FUNCTION

RMS ERROR IS WEIGHTED BY SURFACE AREA OF ANTENNA

INPUT PARAMATERS FOR RADIAL RIE ANTENNA

ANTENNA RADIUS = 84.000

HUB RADIUS = 27.000

HALF ANGLE SETWEEN RIBS = 3.750

FOCAL LENGTH TO DIAMETER: .420

FOCAL LENGTH = 70.560

TENSION RADIAL DIRECTION= .030

TENSION CIRCUM. DIR. TCP = .120

TENSION CIRCUM. DIR.BASE= .120

MAX NORMAL SURFACE ERROR= .080

SUBDISH BLOCKAGE RADIUS = 18.000

RIGID DISH RMS ERROR = .008

CABLE SAG = 1.000

GRID SIZE PARAMETER = 1

RIB OPTIMIZATION VARIABLES A(1) TO A(3) = .000000 .000000 .000000

INITIAL MAXIMUM NORMAL DIFFERENCE FUNCTION= .100178+00

MINIMUM NORMAL DIFFERENCE MINIMIZATION ITERATES

	ERROR	OPTI	MIZATION VARIABLES	s
ITER	FUNCTION	(1)	(2)	(3)
1	.100178+00	•00000000	•00000000	.5666666
2	•100178+0C	•00000000	.00000000	.00000000
3	.100178+00	•30000660	•00000000	•0000000
4	.583116-01	55555555-01	.37037035-02	•92592589-02
4	-583116-01	55555555-01	.37037035-02	.92592589-02

This section lists the minimization iterates of the maximum surface error at any point on the antenna and reduces this error to the maximum allowable.

NODE	NUMBERS							
1	J 2	3	4	5	6	7	8	9
36	24.9574	24.9574	24.9574	24.9574	24.9574			
35	24.3050	24.3040	24.3009	24.2950	24.2945			
34	23.4151	23.4134	23.4081	23.3588				
33	22.5349	22.5328	22.5266	22.5168				
32	21.6669	21.6647	21.6582	21.6485				
31	20.8123	20.8100	20.8034	20.7943				
30	19.9715	19.9692	19.9625	19.9541				
29	19.1449	19.1426	19.1358	19.1281				
28	18.3326	18.3304	18.3235	18.3165				
27	17.5349	17.5326	17.5259	17.5194				
26	16.7519	16.7496	16.7427	16.7370				
25	15.9838	15.9315	15.9746	15.9695				
24	15.2307	15.2284	15.2215	15.2170				
23	14.4929	14.4906	14.4836	14.4799				
22	13.7706	13.7583	13.7613	13.7561				
21	13.0640	13.0616	13.0546	13.0521				
20	12.3732	12.3709	12.3638	12.3619				
19	11.6986	11.6962	11.6891	11.6878				
18	11.0403	11.0379	11.0307	11.0300				
17	10.3986	10.3962	10.3888					
16	9.7736	9.7712	9.7644					
15	9.1657	9.1633	9.1571					
14	8.5752	8.5727	8.567C					
13	8.6021	7.9996	7.9944					
12	7.4468	7.4443	7.4396					
11	6.9096	5.9071	S.9C29					
10	6.3907	€.3882	6.3844					
9	5.8903	5.8878	5.8845					
8	5.4088	5.4CE2	5.4034					
7	4.9463	4.9437	4.9414					
6	4.5031	4.5005	4.4986					
5	4.0795	4.0769	4.0754					
4	3.6757	3.6731	3.6720					
3	3.2920	3.2893	3 • 2886					
2	2.9283	2.9259	2.9255					
1	2.5829	2.5829						

INITIAL RMS ERROR FUNCTION = .226400-01

This section lists the array of z-coordinates of the initial shape and also lists the initial RMS error before optimization. The z-coordinate is the distance from a plane normal to the paraboloid through the vertex of the antenna to the node.

RIB OPTIMIZATION ITERATES

	ERROR	OPTI	MIZATION VARIABLES	
ITER	FUNCTION	(1)	(2)	(3)
1	.226400-01	55555555-01	-37037035-02	•92592589-02
2	.226400-01	55555555-01	.37037035-02	•92592589-02
3	.226400-01	55555555-01	•37037035-02	•92592 589- 02
4	.226400-01	5555555-01	•37037035-G2	•92592589-02
5	.226400-01	55555555-01	-37037035-02	•925 92589 <i>-</i> 02
6	.226400-01	5555555-01	.37037035-02	•92592589-02
7	.216335-01	76 861495-81	-11313657-01	.70312495-02
8	.215813-01	71847670-01	-13275427-01	•45765812-02
9	.208130-01	67715833-01	2925&730-03	-23951899-02
10	.208130-01	67715833-01	29256730-03	-23951899-02
11	.208130-01	67715833-01	29256730-03	-23951899-02
12	.208093-01	63906702-01	•90404213-02	•4821C940-D2
13	.206475-01	76121591-01	.5000500-02	•17394993-02
14	.204734-01	70163317-01	.89422485-03	•13235788-03
15	.204574-01	69889851-01	-24761657-02	-23130868-02
16	.204099-01	74209804-01	29267943-62	- •20311314-02
17	.203717-01	73771290-01	•29739577-02	•93880186-03
18	.202963-01	75083978-01	. 78799449-C3	•68148033-03
19	.202963-01	75083578-01	.78799449-03	-68148033-03
20	.202963-01	75083978-01	.78799449-03	•68148033 <i>-</i> 03
21	.202963-01	75083978-01	•78799449-C3	•68148033-C3
22	.202906-01	74453220-01	53987316-03	•40644121-04
23	.232682-01	76368552-01	43216869-03	-31776907-03
24	.202682-01	76368552-01	43216869-63	•31776907-03
25	.202682-01	76368552-61	43216869-03	-31776907-03
26	.202682-01	76368552-01	43216869-03	-31776907-03
27	.202632-01	76368552-01	43216869-03	-31776907-03
28	.202692-01	76368552-01	43216869-03	-31776907-03
29	.202682-01	76368552-01	43216869-03	•31776907-03
29	.202682-01	76368552-C1	43216869-03	•31776907-03

CALCULATION OF THE RMS ERRCR OF THE ANTENNA SURFACE

		T : 4 11MT 11A TT 011	COLUMN CONT	SURFACE	ELENCHT
NO		ILLUMINATION	ELEMENT		ELEMENT
I	J	WEIGHT (3)	AREA	ERROR	SUM
1	2	.8793	1.6472	.0109	.00017065
	. 2	1.0000	1.6472	.0109	.CC019397
1	3	.8793	.8236	• 0000	•00000000
1	3	1.0000	•8235	.0000	.00000000
2	2	.8651	1.5509	.0128	.00021970
2	2	1.0000	1.5609	.0128	.00025397
2	3	.8847	1.5514	0004	•00000026
2	3	1.0000	1.8614	6004	.00000030
2	4	. 3646	.0531	C022	.00000022
2	4	1.0000	.0531	0022	.00000026
3	2	.3498	1.5508	.0127	.00021254
3	2	1.0000	1.5608	.0127	.00025009
3	3	.8494	1.7615	0007	.00000076
3	3	1.0000	1.7615	0007	.00000090
3	4	.3493	-2007	0044	.00000326
3	4	1.0000	.2507	0044	.00000384
4	2	.3341	1.5608	.C124	.00020159
4	2	1.0000	1.5608	.D124	.00024168
4	3	.8337	1.3615	0009	.00000127
4	3		1.8615	0009	.00000152
		1.6000			
4	4	.8335	.3007	0065	•00001073
4	4	1.6000	.3007	0065	.00001287
5	2	.8179	1.5669	.0123	.00019328
5	2	1.0000	1.5509	.0123	.00023632
5	3	.8175	1.9614	2010	.00000159
5	3	1.0000	1.9514	0010	.00000195
5	4	.8173	•4004	0087	.00002475
5	4	1.0000	.4004	0087	.00003028
ε	2	.8013	1.5610	.0123	.00018798
6	2	1.0000	1.5610	.0123	•00023460
6	3	.8009	2.0609	0010	.00000162
6	3	1.0000	2.0509	0010	•00000202
E	4	3008	.4959	0108	.00004698
6	4	1.0000	•4399	0103	.00005868
7	2	.7843	1.5611	.0123	.00018546
7	2	1.0000	1.5611	.0123	.00023646
7	3	.7840	2.1602	0009	.00000133
7	3	1.0000	2.1502	0009	-00000170
7	4	.7836	.5991	0130	.00007884
7	4	1.0000	.5991	0130	.00010061
8	2	.7670	1.5611	.0124	.00018549
8	2	1.0000	1.5511	.0124	.00024182
8	3	.7667	2.2592	0007	.00000083
8	3	1.0003	2.2592	0007	.00000109
8	4	.7663	.6981	0151	.00012149
3	4	1.0003	.5381	0151	.00015353
9	2	.7495	1.5612	.0127	·CC01879C
9	2	1.0000	1.5612	•D127	.00025069
9	3	.7492	2.3579	0004	•30000030
9	3	1.0000	2.3579	0004	•00000040
9	3 4	.7488	.7987	C172	.00017583
			•7367		
9	4	1.0000		0172	•00023481
10	2	.7318	1.5813	.0130	.00019254

Since both the illumination weighted RMS error and the constant illumination RMS error are calculated, each node has two entries, weighted and nonweighted.

10	2	1.0000	1.5513	.0130	.00826310
10	3	.7315	2.4563		
				0000	.000000000
10	3	1.0000	2.4563	0000	.00000000
10	4	.7311	.895D	0193	.00024251
10	4	1.0000	.8950	0193	.00033173
11	2				
		.7139	1.5613	.0134	.60019933
11	2	1.3003	1.5613	.0134	.00027919
11	3	•7137	2.5544	• 0004	.000000030
11	3	1.0000	2.5544	.8004	.00000043
11	4	.7132	•9930		.00032198
				0213	
11	4	1.0000	•9930	0213	.00045149
12	2	∙6960	1.5614	•B138	.00020818
12	2	1.0000	1.5514	.0138	.00029912
12	3	.6957	2.6521	•0009	.50000162
12	3	1,0000	2.6521	•0009	•00000233
12	4	.6952	1.0907	0234	.00041445
12	4	1.0000	1.0907	0234	•00059620
13	Z	.8779	1.5615	·C144	.00021904
13	2	1.0000	1.5615	.0144	.00032310
13	3	.6777	2.7495	0015	.00800445
13	3	1.0000	2.7495	·0015	•00000656
13	4	.6771	1.1881	0254	.00051992
13	4	1.0000	1.1881	0254	.00076785
14	2	•6599	1.5615	.G15G	.00023187
14	2	1.0000	1.5515	•0150	.00035138
14	3				
		•6596	2.8466	.0022	.00000929
14	3	1.0000	2.8466	•0022	.00001409
14	4	. 6590	1.2851	0275	.00063820
14	4	1.0000	1.2351	0275	.00096838
15	Z	.6418	1.5616	·C157	.00024665
15	2	1.0000	1.5516	.0157	
					.00038429
15	3	.5416	2.9433	.0030	.00001672
15	3 -	1.0000	2.9433	•0030	•00002507
15	4	.6410	1.3818	0295	.00076890
15	4	1.0000	1.3818	~.0295	•00119956
16	2	.6238	1.5516	.0164	.00026334
16	ž	1.0000	1.5516		
				.0164	*80042212
16	3	.6236	3.0397	.0038	.00002731
16	3	1.0000	3.0397	.0038	.000C4379
16	4	.6230	1.4781	0315	.00091149
16	4	1.0000	1.4781	0315	.00146309
17	2	.6060	1.5817	.0173	.00028194
17	2				
		1.0000	1.5617	•0173	.00046529
17	3	.6057	3.1357	.0047	·CCCC4163
17	3	1.0000	3.1357	.0047	.00006872
17	4	.6051	1.5740	0334	.00106526
17	4	1.0000	1.5748	0334	.00176049
18	2	-5882	1.5617	.0181	.00030238
18	2	1.0000	1-5517	.0181	.00051408
18	3	.58ec	3 -1234	.0056	.00005825
18	3	1.0000	3.1234	• 0056	•00009906
18	4	.5874	1.7634	0319	.00105360
18	4	1.0000	1.7634	0319	.00179372
18	5	.5873	•0639	0354	.80004703
18	5	1.0000			
			•0639	0354	.00008008
19	2	.5706	1.5617	.0191	.00032468
19	2	1.0000	1.5617	•0191	.00056905

19	3	.5704	3.1235	.0066	.00007866
	3				
19		1.0000	3.1235	•0066	•00013790
19	4	.5698	1.7648	0307	.00094634
19	4	1.0000	1.7548	0307	.00156078
19	5	•5697		0374	.00016138
			.2030		
19	5	1.0000	·2030	0374	.00028327
20	2	.5531	1.5618	.0201	.00034879
20	2	1.0000	1.5618	.0201	.00063055
20	3	.5530	3.1236	.0077	.00010289
20	3	1.0000	3.1236	.0077	•00018606
20	4	• 5524	1.8596	0294	.00088780
20	4	1.0000	1.8596	0294	.00150707
2 G	5	•5523	.2978	C393	.00025376
20	5	1.0000	.2978	0393	.00045947
21	2	•5359	1.5618	.0212	.00037466
21	2	1.0000	1.5618	.0212	•00069910
21	3	.5358	3.1236	.0089	.00013110
	3				
21		1.0000	3.1236	• 0089	.00024469
21	4	.5353	1.9540	0281	.00082334
21	4	1.0000	1.9540	0281	·00153822
21	5	•5351		0412	.00035596
			•3922		
21	5	1.0000	•3922	0412	.00066525
22	2	.5189	1.5619	·0223	.00040227
22	2	1.0000	1.5619	.0223	.00077518
	-				
22	3	.5188	3.1237	.0100	.00016340
22	3	1.8000	3.1237	.0100	•00031498
22	4	.5183	2.0480	0257	.00075435
22	4		2.0480	0267	•00145542
		1.0000			
22	5	•5181	•4862	0431	.00046725
22	5	1.0000	•4862	0431	.00090186
23	2	.5022	1.5619	•C235	.00043153
23	2	1.000C	1.5519	•0235	•00085929
23	3	.5C21	3.1238	.0113	.00019986
23	3	1.0000	3.1238	•0113	.00039809
23	4	•5016		0252	.00068224
			2.1417		
23	4	1.0000	2.1417	0252	•00136011
23	5	.5014	•5798	0449	.00058681
23	5	1.0000	.5798	0449	-00117041
					.00046242
24	2	.4857	1.5619	•G247	
24	2	1.0000	1.5619	•0247	.00095200
24	3	•485€	3.1238	•012€	•30024C55
24	3	1.0000	3.1238	.0126	•00049536
24	4	•4852	2.2349	0237	.00060833
24	4	1.0000	2.2349	0237	.00125383
24	5	.4849	.6730	C468	.50071370
				- ·	
. 24	5	1.0000	•6730	0458	*30147179
25	2	.4696	1.5620	.02€0	.00049491
25	2	1.0000	1.5620	.0260	.00105399
25	3			.0140	.00028544
		.4694	3.1239		
25	3	1.0006	3.1239	.0140	.00060806
25	4	.4690	2.3277	C221	•00053400
25	4	1.0000	2.3277	0221	·C0113849
25	5	.4688	.7658	0486	.00084693
25	5	1.0000	.7658	0486	.00180674
26	2	.4537	1.5620	.0273	·0C052891
26	2	1.0000	1.5620	•C273	.00116580
	4				
26	3	.4536	3.1240	.0154	•00033453

26	3	1.0000	3.1240	.0154	.00073756
26	4	.4532	2.4202	0205	.00046044
26	4	1.6000	2.4262	0205	.00101597
26	5	.4529	•8582	0504	
26	5	1.0000	•8582		•00098541
27	2			0504	•00217575
		.4381	1.5628	•G287	•00056435
27	2	1.5000	1.562C	.0287	.0128808
27	3	.4380	3.1240	•0168	•00038775
27	3	1.0000	3.1240	.0168	·SO088524
27	4	•4377	2.5122	0188	•00038894
27	4	1.6000	2.5122	0188	•00088864
27	5	.4374	•9502	0521	.00112801
27	5	1.5000	•9502	0521	·C0257910
28	2	.4229	1.5620	•0302	.00060108
28	2	1.0000	1.5620	•0302	.00142132
28	3	.4223	3.1241	.0184	.00044494
28	3	1.0000	3.1241	.0184	.001C5238
28	4	.4225	2.6038	C171	.00032063
28	4	1.0000	2.6038	0171	.00075892
28	5	.4222	1.0418	0538	•00127360
28	5	1.0000	1.0418	0538	•00301687
29	2	.4080	1.5621	•0317	•00063888
29	2	1.0000	1.5621	•6317	•00156584
29	3				
		.4079	3.1241	.0199	•00050582
29	3	1.0000	3.1241	•C199	.00124801
29	4	.4076	2.6950	+.0153	-30025666
29	4	1.0000	2.6950	0153	.00062964
29	5	.4073	1.1329	0555	•00142096
29	5	1.0000	1.1329	0555	.00348863
30	2	•3935	1.5621	•0332	.00067711
30	2	1.0000	1.5621	•G332	•0017209 1
30	3	.3934	3.1241	·C215	•00056962
30	3	1.0000	3.1241	•0215	•00144864
30	4	.3931	2.7857	0135	•C0019818
30	4	1.0000	2.7857	0135	.00050414
30	5	•3928	1.2237	0571	-80156889
30	5	1.0000	1.2237	0571	.00399449
31	2	.3793	1.5620	0347	.00071387
31	2	1.0000	1.5620	·G347	.00188225
31	3	•3792	3.1241	· C231	•00063406
31	3	1.0000	3.1241	.0231	.00167217
31	4	.3789	2.3760	0116	•00014652
31	4	1.0000	2.8760	0116	·00038667
31	5	.3786	1.3140	0587	.00171614
31	5	1.0000	1.3140	0587	.00453297
32	2	.3654	1.5619	•0361	•00074452
32	2	1.0000	1.5619	.0361	.00203742
32	3	• 3653	3.1238	•0246	•00069334
32	3	1.0000	3.1238	.0246	•DC189776
32	4	.3651	2.9557	0098	•00010330
32	4	1.0000	2.9657	0098	•00028294
32		.3648	1.4038	0603	
	5			0603	•00186146
32	5	1.0000	1.4038		•00510310
33	2	.3519	1.5615	•0371	•00075669
33	2	1.0000	1.5615	•0371	.00215003
33	3	.3519	3.1230	•0258	•00073185
33	3	1.0000	3.1230	•C258	.00207988

```
33
    4
            .3517
                       3.0543
                                   -.0081
                                               .00007092
33
           1.0000
                                   -.0081
    4
                       3.0543
                                               .00020168
33
            .3513
                      1.4928
                                   -.0618
    5
                                               .00200342
33
                                   -.0618
    5
           1.0000
                      1.4928
                                               .00570274
34
    2
           .3388
                      1.5684
                                   .0369
                                               .30072016
34
    2
                                    .0369
           1.0000
                       1.5604
                                               .00212541
           .3388
34
                                    •0259
    3
                       3.1237
                                               .00071057
34
    3
           1.0000
                                   .0259
                                               .00209754
                       3.1207
34
    4
           .3386
                       3.1411
                                   -.0071
                                               .00005359
                                   -.6071
34
    4
           1.0000
                       3.1411
                                               .00015829
           .3382
34
    5
                      1.5907
                                   -.0633
                                               .00214023
34
    5
           1.0000
                                   -.C633
                      1.5807
                                               ·CC632815
35
    2
                                    .0336
            .3251
                      1.3481
                                               .00049504
35
                       1.3481
    2
           1.0000
                                    .0336
                                               .00151801
35
    3
           .3260
                      2.6962
                                    .0232
                                               .00047460
35
    3
           1.0000
                       2.6962
                                   .0232
                                               ·00145564
35
           .3258
                                   -.0079
    4
                      2.6362
                                               .00005429
35
                                   -.0079
           1.0000
                      2.6962
                                               .00016662
35
           .3255
                      1.5383
                                   -.0602
                                               .00187336
35
    5
                                   -.0602
           1.0000
                       1.5383
                                               .00575543
35
           .3255
                       .0584
                                   -.0647
    6
                                               .00007948
35
           1.0000
                                   -.0647
    В
                        .0584
                                               .00024419
36
    2
           .3171
                        .7548
                                    .0262
                                               .00016374
36
    2
           1.0000
                       .7543
                                    .0262
                                               .00051641
3€
           .3170
                                   .0167
    3
                      1.5079
                                               .00013294
36
    3
          1.0000
                      1.5079
                                   .0167
                                               .00841934
36
                                               .00006654
    4
           .3168
                      1.5079
                                   -.0118
3€
    4
           1.0000
                                   -.C118
                      1.5079
                                               .00021004
36
    5
            .3164
                        .8377
                                   -.0592
                                               .00093043
36
    5
                        .8377
                                   -.0592
           1.0000
                                               .00294033
   6
6
          .3164
                                               .00811435
36
36
                        .0838
                                   -.0657
                       .D338
                                  -.0657
                                              .00036144
                           HUB RMS ERROR = .0080
  HUB WEIGHTING FUNCTION
                              .91222
```

Listed here is the area of the rigid dish in the RMS error computation. It is the area that lies between the hub radius (RI) and the primary blockage radius (DHUBR).

```
ANTENNA RMS ERROR = .227336-01
```

WEIGHTED RMS ERROR= .202682-C1

FINAL RECALCULATED ANTENNA RMS ERROR = .227768-01

FINAL RECALCULATED WEIGHTED RMS ERROR: .202629-01

RIB CPTIMIZATION VARIABLES A(1) TO A(3) = -.763686-01 -.432169-03 .317769-03

OPTIMIZED ANTENNA MESH SHAPE Z-COORDINATES

NOCE	NUMBERS							
I	J 2	3	4	5	6	7	8	9
36	24.4202	24.4718	24.6269	24.8878	24.9235			
35	24.2756	24.2747	24.2718	24.2563	24.2657			
34	23.3914	23.3858	23.3848	23.3760				
33	22.5161	22.5141	22.5083	22.4989				
32	21.6521	21.6500	21.6438	21.6346	-			
31	20.8006	20.7935	20.7921	20.7834				
30	19.9623	19.9601	19.9536	19.9455				
29	19.1374	19.1352	19.1286	19.1211				
28	18.3262	18.3240	18.3174	18.3105				
27	17.5291	17.5269	17.5202	17.5139				
26	16.7463	16.7441	16.7373	16.7317				
25	15.9781	15.9758	15.9690	15.9640				
24	15.2246	15.2223	15.2155	15.2111				
23	14.4863	14.4840	14.4770	14.4733				
22	13.7632	13.7609	13.7539	13.7508			•	
21	13.0558	13.0535	13.0464	13.0439				
20	12.3642	12.3619	12.3548	12.3529				
19	11.6888	11.6864	11.6793	11.6780				
18	11.6298	11.0274	11.0201	11.0195				
17	10.3874	10.3349	10.3776					
16	9.7619	9.7595	9.7527					
15	9.1537	9.1512	9.1449					
14	8.5628	8.5604	8.5546					
13	7.9898	7.9873	7.5820					
12	7.4346	7.4321	7.4274					
11	6.8978	6.8952	6.8910					
10	6.3794	6.3768	6.3731					
9	5.8797	5.8772	5.8739					
8	5.3991	5.3965	5.3936					
7	4.9376	4.9350	4.9326					
6	4.4957	4.4930	4.4911					
5	4.0734	4.0708	4.0692					
4	3.6710	3.6684	3.6673					
3	3.2988	3.2861	3.2854					
2	2.9266	2.9242	2.9239					
1	2.5829	2.5329						

The final recalculated RMS error is determined using the final rib shape and making a final mesh shape calculation which is then used for the RMS error calculation.

GORE PATTERN

.000 3. 1.767 3. 3.535 3. 5.303 4. 7.071 4. 8.838 4. 10.606 4. 12.374 5. 14.142 5. 15.910 5. 17.679 5. 17.679 5. 19.447 5. 22.984 6. 24.752 6. 22.984 752 6. 22.984 752 6. 23.595 7. 33.595 7. 33.595 7. 33.595 7. 35.363 7. 37.132 8. 30.058 7. 31.826 7. 33.595 7. 35.363 7. 37.132 8. 40.670 8. 42.438 8. 44.207 9. 45.976 9. 47.745 9. 47.745 9. 47.745 9. 47.745 9. 49.514 9. 51.283 9. 53.052 10. 56.590 10.	DTH 57596 2438 687 1336 687 1336 687 1336 687 1337 657 795 879 1375 1
58.359 10. 60.128 10.	641 .842 .988
UPPER BOUNE COOR CU .000 1. 1.766 3.532 5.298	

X-COORDINATES

NODE	NUMBERS							
I	J 2	3	4	5	6	7	8	9
36	.0000	1.7659	3.5313	5.2977	5 • 4 9 3 9	•	Ü	,
35	.6000	1.7659	3.5318	5.2977	5.4209			
34	.0000	1.7659	3.5318	5.3207	3 4 4 2 0 3			
33	.0000	1.7659	3.5318	5.2200				
32	.0000	1.7659	3.5318	5.1189				
31	.0000	1.7659	3.5318	5.0172				
30	.0000	1.7659	3.5318	4.9151				
29	.0000	1.7659	3.5318	4.8125				
28	.0000	1.7659	3.5318	4.7095				
27	.0000	1.7659	3.5318	4.6060				
26	•0000	1.7659	3.5318	4.5020				
25	.0000	1.7659	3.5318	4.3975				
24	.0000	1.7659	3.5318	4.2926				
23	.0000	1.7659	3.5318	4.1873				
22	.000	1.7659	3.5318	4.0814				
21	.0000	1.7559	3.5318	3.9752				
20	.0000	1.7659	3.5318	3.8685				
19	.0000	1.7659	3.5318	3.7613				
18	.0000	1.7659	3.5318	3.6537				
17	.0000	1.7659	3.5457					
16	.0000	1.7659	3.4373					
15	.0000	1.7659	3.3284					
14	.0000	1.7659	3.2192					
13	.0000	1.7659	3.1095					
12	.6000	1.7659	2.9995					
11	.0000	1.7659	2.8890					
10	.0000	1.7659	2.7782					
9	.0000	1.7659	2.6670					
8	•0000	1.7659	2.5555					
7	.0000	1.7659	2.4436					
6	.0000	1.7659	2.3314					
5	.0000	1.7659	2.2189	•				
4	.0000	1.7659	2.1061	•				
3	.0000	1.7659	1.9930					
2	.0000	1.7659	1.8796					
1	.0000	1.7659						

Y-COORDINATES

NODE	NUMBERS							
I	J 2	3	4	5	6	7	8	9
36	82.9560	83.0456	83.3139	83.7597	83.8201			
35	82.7077	82.7077	82.7677	82.7077	82.7077			
34	81.1786	81.1786	81.1786	81.1785				
33	79.6423	79.6423	79.6423	79.6423				
32	78.0988	78.0988	78.C988	78.0988				
31	76.5481	76.5481	76.5481	76.5481				
3 C	74.9902	74.9502	74.9902	74.9902				
29	73.4251	73.4251	73.4251	73.4251				
28	71.8529	71.8529	71.8529	71.8529				
27	70.2735	70.2735	70.2735	70.2735				
26	68.6870	68.667C	68.6870	68.687C			-	
25	67.0934	67.8934	67.0934	67.0934				
24	65.4929	65.4929	€5.4929	65.4929				
23	63.8853	63.8953	63.8853	63.8853				
22	62 . 2 7 09	62.2709	62.2709	62.2709				
21	60.6495	60.6436	SO.6496	60.6496				
20	59.0215	59.0215	59.0215	59.C215				
19	57.3867	57.3867	57.3867	57.3867				
18	55.7452	55.7452	55.7452	55.7452				
17	54.0973	54.0973	54.0973					
16	52.4428	52.4428	52.4428					
15	50.7821	50.7821	5C.7821					
14	49.1151	49.1151	49.1151					
13	47.4420	47.4420	47.4420					
12	45.7629	45.7629	45.7629					
11	44.0780	44.0780	44.0780					
10	42.3874	42.3874	42.3874			·		
9	40.6912	40.6912	40.6912					
8	38.989€	38.9896	38.9396					
7	37.2827	37.2827	37.2827					
€	35.5709	35.5709	35.5709					
5	33.8541	33.8541	33.3541					
4	32.1326	32.1326	32.1326					
3	30.4067	30.4067	30.4067					
2	28.6765	28.6765	28.6765					
1	26.9422	26.9422						

CATENARY CABLE TENSION CATENARY CABLE LENGTH .48180 11.22560

INPUT PARAMETERS FOR RIS DEFLECTION ANALYSIS (7) ANTENNA RADIUS 84.0000 HUB RADIUS 27.0000 = -.076369 A1 = -.000432 A2 -ΑЗ .000318 MESH TENSION BASE = .1200 MESH TENSION TIP -120C FOCAL LENGTH TO DIA = ·4200 HALF ANGLE Ξ 3.7500 FIN WIDTH -1875 FIN HEIGHT .0450 RIB BASE OUTER RADIUS= • 5625 RIB BASE INNER RADIUS= .5425 RIB TIP GUTER RADIUS = .5625 RIB TIP INNER RADIUS = -5425 ALLOWABLE DEFL ERROR = .0010 RIB MCDULUS E + 10 + + -6 = 10.0000

Ξ

1.0000

CABLE SAG

 $[\]bigcirc$ All the following sections are listed only when NTEN = 1 and SAG \neq 0.0

There are two iterations of the rib deflection analysis, one with 160 elements along the rib and the second with 320 elements. The deflections obtained from both should be within 5%.

NODE	LENGTH FROM	RIB MCMENT	MOMENT	RIB	RACIUS	2
	RIB TIP	OF INERTIA	ON RIB	DEFLECTION	COCRDINATE	COORDINATE
1	•00000	.131767-01	.000000	•862676-C1	.840439+02	•248493+02
3	.82779+00	.131757-01	-297551-01	•846311-C1	•833304+02	-244292+02
5	.16537+01	•131767-C1	.640117-01	-829984-01	.826168+02	.240126+02
7	.24779+01	.131767-01	•103035+00	•813696-01	·819033+02	•235997+02
9	.33002+01	.131767-01	.146817+00	.797449-01	.811897+02	.231904+C2
11	.41208+01	.131767-01	·195323+00	·781246-01	•804761+02	-227847+02
13	. 49395+01	.131767-01	.248482+00	.765088-01	•797626+02	.223825+02
15	.57565+01	.131767-01	•306210+00	•748977 - 01	•79043D+O2	.219840+02
17	.65718+61	.131767-01	·368411+0G	.732916-01	•783355+02	.215891+02
19	.73853+01	.131767-01	.434978+00	•716909-01	•776220+02	•211978+02
21	.81970+C1	.131767-01	.505809+00	.700957-01	.769085+02	.208101+02
23	.90071+01	.131767-01	•580799+DC	-685065-01	•761950+02	.204260+02
25	.98154+01	.131767-01	.659840+00	.6E9235-C1	•754815+C2	.200455+02
27	.10622+02	.131767-01	•742825+DD	-653471-01	•747630+02	·196686+02
29	.11427+02	.131767-01	.829642+00	.637777-01	.740546+02	.192953+62
31	.12230+02	.131767-01	•920184+00	•522155-01	·733411+02	·189256+02
33	•13032+02	.131767-01	·101434+C1	.606611-01	•726277+02	.185595+02
35	.13832+02	.131767-01	·11120C+01	•591149-01	-719143+ 02	•181970+02
37	.14630+02	.131767-01	.12130€+01	.575772-01	.712009+02	.178381+02
39	.15427+02	.131767-01	·131740+01	•560485-C1	·704875+02	-174828+02
41	.16222+02	.131767-01	•142493+01	•545292-01	•697741+02	•171311+02
43	.17016+02	.131767-C1	.153554+01	.530197-01	.690607+02	.167830+02
45	.17808+02	.131767-01	.164911+01	·515206-01	•683474+D2	·164385+02
47	.18598+02	.131767-01	.176555+01	•500323-01	.676341+02	·160975+02
49	.19387+02	.131767-81	.188474+01	-485553-01	•669207+02	•157602+02
51	.20174+02	·131767-G1	.200657+01	.47090C-01	.662074+02	·154265+G2
53	.20960+02	.131767-01	-213095+01	-456371-01	•654942+02	-150963+02
55	.21744+C2	-131767-01	.225775+01	.441968-01	.647809+02	·147698+02
57	.22527+02	.131767-01	.238689+01	.427699-01	-640676+02	•144468+02
59	·233G8+G2	.131767-01	.251825+01	.413567-01	•633544+02	.141274+02
61	.24088+02	.131767-G1	.265173+01	-399579-01	•626412+02	•138116+02
63	-24867+02	.131767-01	.278724+01	-385739-01	.€19280+02	.134994+02
65	.25644+02	.131767-01	-292465+01	-372052-01	•512148+02	•131908+02
67	-26419+02	.131767-01	.306387+01	.358525-01	.605016+02	.128858+02
69	.27193+02	.131767-81	•320479+01	-345161-01	•597884+D2	·125843+02
71	.27966+02	•131767-C1	.334731+01	.331968-01	•590753+02	.122865+02
73	.28737+02	.131767-01	•349132+01	-318949-01	•583622+02	·119922+02
75	.29507+02	·131767-01	.363672+01	.306111-01	•576490+02	.117015+02
77	• 30276+02	.131767-01	.378342+01	-293460-01	•569359+02	•114144+02
79	•31043+02	•131767-01	393131+01	.280999-01	•562229+02	·111309+02
81	.31809+02	.131767-01	•408029+01	·268735-01	•555098+02	•108510+02
83	.32574+02	.131767-31	•423025+01	-256674-01	•547968+02	.105746+02
85	.33337+02	.131767-01	•438109+01	-244821-01	•54C337+D2	•103018+02
87	•34099+G2	.131767-01	.453272+01	-233181-01	•533707+02	.100326+C2
89	.34860+32	.131767-01	•468502+01	-221760-01	•526577+02	•976701+01
91	.35619+32	.131767-01	.483791+01	-210563-01	•519447+02	.95C497+C1
93	.36377+02	.131767-01	•499128+C1	•199596-C1	•512318+02	•924650+01
95	.37134+82	.131767-01	.514503+01	.188865-01	.505188+02	.899162+C1
97	.37890+02	.131767-01	•529906+01	•178373-01	•498059+02	-874030+01
99	.38645+02	.131767-01	.545328+01	.168128-01	•490930+02	.84 9257+61
101	.39398+02	.131767-C1	.560757+01	-158134-01	.483801 +C2	.824840+01
103	.40151+02	.131767-01	.576184+01	-148397-01	•476672+02	·8G0782+D1
105	.40902+02	.131767-01	•591599+01	•138922-C1	•469544+C2	.777086+61
107	.41652+02	.131767-01	•606994+01	-129714-01	•462415+02	•753736+01

```
109
                                  .622357+01
                                                .120778-01
      .42401+02
                    .131767-01
                                                              .455287+02
                                                                             .736749+61
      .43149+02
111
                    .131767-01
                                  •637679+01
                                                ·112120-01
                                                              .448159+02
                                                                             .708119+01
                                                                             .685847+01
113
      .43895+02
                    .131767-01
                                  ·652950+01
                                                -103745-01
                                                              .441 C31 +02
      .44641+82
115
                    .131767-01
                                  .668159+01
                                                -356584-02
                                                              .433903+02
                                                                            .663931+01
117
      .45386+C2
                    .131767-01
                                  .683298+01
                                                .878644-02
                                                              .426775+02
                                                                            .642373+01
      .46129+02
119
                                  •698357+01
                    .131767-01
                                                -803683-02
                                                              .419648+02
                                                                             •621171+01
      .46872+C2
121
                                  .713325+61
                                                .731752-02
                                                               .412520+02
                                                                             .600326+01
                    .131767-01
123
       .47513+02
                    .131767-81
                                  .723194+01
                                                ·662899-02
                                                              .405393+02
                                                                             .579838+01
125
      .48354+02
                    .131767-61
                                  .742954+01
                                                .597174-02
                                                               .398266+02
                                                                             .559707+01
127
       .49094+02
                    .131767-01
                                  .757594+01
                                                              .391139+02
                                                ·534623-02
                                                                             .539932+01
129
      .49832+02
                    .131767-01
                                  .772106+01
                                                .475293-02
                                                              .384012+02
                                                                             ·52C514+01
131
      .50570+02
                    .131767-01
                                  .786480+61
                                                ·419233-02
                                                              .376886+02
                                                                            .501453+01
133
       .51307+02
                                  .800707+01
                    ·131767-C1
                                                -366487-C2
                                                              .369759+02
                                                                             .402748+01
135
      .52042+02
                    .131767-01
                                  .814776+01
                                                .317100-02
                                                              .362633+02
                                                                             .464400+01
137
      .52777+02
                                  .828677+D1
                                                              .355507+02
                    .131767-01
                                                .271117-02
                                                                            .446408+01
139
       .53512+02
                    .131767-01
                                  .842402+01
                                                -228583-02
                                                              .348380+02
                                                                             •428772+01
                    .131767-01
                                  .85594C+C1
141
      .54245+C2
                                                .189539-02
                                                              .341254+82
                                                                             .411493+C1
143
      .54977+02
                    .131767-01
                                  .869233+01
                                                -154028-02
                                                              .334129+02
                                                                            .394570+01
145
      .55709+C2
                    .131767-01
                                  .882421+01
                                                .122093-02
                                                              .327003+02
                                                                            .378004+01
147
      .56440+02
                                  .895345+01
                    .131767-01
                                                •937723-03
                                                              -319877+02
                                                                            • 361793+01
149
      .5717C+02
                                  .908044+01
                                                .691072-03
                                                                            .345939+01
                    ·131767-01
                                                              .312751+02
151
      .57899+02
                    .131767-01
                                  .920508+01
                                                .481364-03
                                                              -305626+02
                                                                            .330441+C1
153
       .58627+02
                    ·131767-61
                                  .932730+01
                                                ·30898C-03
                                                               -298 501 +02
                                                                             .315299+01
155
                                  .944697+01
                                                -174293-03
      .59355+02
                    .131767-01
                                                              -291375+02
                                                                            .300513+01
                                                                            .286C83+C1
157
      .60082+02
                    ·131767-01
                                  .956399+01
                                                .776666-04
                                                              .284250+02
      .60808+02
159
                    .131767-01
                                  .957804+81
                                                .194544-04
                                                              .277125+02
                                                                            ·272009+01
161
      -61534+02
                    .131767-01
                                  .973830+01
                                                .0000000
                                                              -270000+02
                                                                            .258291+01
```

NODE	LENGTH FROM	RIB MOMENT	MOMENT	RIS	RACIUS	Z
	RIB TIP	OF INERTIA	ON RIB	DEFLECTION	COORDINATE	COORDINATE
1	.00000	.131767-81	.000000	.863528-01	.840440+02	-248492+02
3	.41412+00	.131767-01	•143513-01	•8553 33 -01	.836973+02	•246387+02
5	.82779+00	.131767-01	.298415-01	.847147-01	·833305+D2	.244291+02
7	.12410+01	.131767-D1	•464997-01	.338970-C1	.829737+02	·242204+02
9	.16537+01	.131767-01	.643127-01	-830864-01	.826169+02	.24C126+C2
11	.20650+01	.131767-81	·833173~01	·922647-01	.322601+02	-238057+02
13	.24775+01	.131767-01	.103525+00	.8145CC-C1	.819033+02	.235996+02
15	.28893+01	.131767-01	•124923+00	•306363-01	+315465+02	-233945+02
17	.33002+01	.131767-C1	·147496+0C	.798237-01	.811897+02	.231903+02
19	.37107+01	.131767-01	•171251+00	.790121-01	-908329+02	-229870+02
21	.41208+01	.131767-01	.196182+00	.782017-01	.804762+02	.227846+02
23	.45304+01	.131767-01	•222277+00	•773924-01	-801194+02	-225331+02
25	.49395+01	.131767-01	·249521+00	.765342-01	•797626+02	·223825+D2
27	.53483+01	.131767-01	·277908+CC	.757773-01	.794058+02	.221828+02
29	.57565+01	.131767-01	.307426+00	•749715-D1	•790491+02	•219840+02
31	.61644+01	.131767-61	.338062+00	.741671-01	.786923+02	.217860+02
33	.65718+01	.131767-01	•369803+00	.733639-01	•783355+02	·215890+02
35	.69787+01	.131767-01	•40263E+00	.725620-01	.779788+02	.213929+02
37	.73853+01	.131767-01	•436548+00	•717615-01	•776220+02	-211977+02
39	.77514+01	.131767-01	•471527+00	.709624-01	.772553+02	.210034+02
41	.81970+01	.131767-01	- 567558+00	.701648-01	•769085+02	.208100+02
43	.86023+01	.131767-01	•544630+00	. 693686-01	.765 E18+02	.206175+02
45	.90071+01	.131767-01	.582727+00	•695739-D1	•761950+02	.204259+02
47	.94114+01	.131767-01	.621836+00	.677808-01	.758383+02	.202352+02
49	.98154+01	.131767-01	•661945+00	•669893-01	•754815+02	.200454+02
51	•10219+02	.131767-01	.703039+00	.661995-01	.751248+02	.198565+02
53	.10622+02	.131767-01	•745105+00	•654113-01	•747681+C2	•196685+02
55	.11025+02	.131767-01	•788128+DO	•646249-01	•744113+02	·194815+02
57	·11427+02	.131767-01	·832095+0C	.638403-01	.740546+02	.192953+62
59	.11829+32	.131767-01	•876993+OC	•630575-01	•736979+02	-191100+02
€1	•12230+02	•131767-01	•92281C+CC	.622766-01	.733412+02	.189256+02
63	.12631+02	.131767-01	•96953C+00	•614977-01	•729844+G2	-187421+02
6 5	•13032+02	•131767-91	.101714+01	.607207-01	.726277+02	·185595+C2
67	.13432+02	.131767-01	•106562+01	•599457-C1	•722710+02	•183778+02
69	•13832+U2	•131767-01	.111497+61	.591729-01	.719143+02	.181970+02
71	.14231+02	.131767-01	•116517+01	•584022-01	•715576+02	-130171+02
73	•14630+02	.131767-01	.121621+01	.576336-01	.712009+02	.178381+02
75	•15029+02	.131767-01	-126806+01	-568674-01	•708442+02	•176600+02
77	•15427+02	.131767-01	•132672+01	.561034-01	.704875+02	.174828+02
79	.15825+02	.131767-01	•137419+01	•553418-01	•7013G8+02	•173065+02
81	•16222+92	•131767-01	•142843+01	.545826-01	.697741+02	.171310+C2
83	.16619+02	.131767-01	.148344+01	.538258-01	.694174+02	.169565+02
85	.17016+02	.131767-01	•153920+01	•530716-01	•690608+02	-167829+02
87	•17412+02	·131767-01	.159571+01	•523200-G1	.687641+02	.166102+02
89	.17808+02	.131767-01	.165294+01	-515710-01	•683474+02	-164384+02
91	•18203+C2	.131767-01	.171685+01	.508247-01	.679908+02	.162675+C2
93	.18598+D2	.131767-01	•176954+01	•500912-01	.576341+02	•160975+02
95	•18993+02	.131767-01	.182888+01	.493406-C1	.672774+02	.159284+02
97	.19387+02	.131767-01	•18389G+C1	·486028-01	•669208+02	•157602+02
99	.19781+02	.131767-61	.194957+01	.478675-01	.665641+02	.155928+02
101	.20174+02	.131767-01	•20109C+01	•471361-01	•662075+02	.154264+02
103	.20567+02	.131767-01	.207285+01	.464073-01	•658508+02	.152609+02
105	.20960+02	.131767-01	•213544+01	•456816-C1	•654942+02	•150963+02
107	.21352+02	·131767-01	.219862+01	.449592-01	.651375+02	.149326+62

```
.131767-81
       .21744+C2
                                   .226241+01
                                                               .647309+02
                                                                              .147597+02
109
                                                 ·442400-01
111
       .22136+02
                    .131767-01
                                  .232677+01
                                                 .435241-01
                                                               .644243+02
                                                                              .146078+02
       .22527+G2
                    .131767-81
                                   .239171+01
                                                                •640676+02
                                                                              .144468+02
113
                                                 ·428116-01
                                                                              .142866+02
       .22918+C2
                    .131767-01
115
                                   .245720+01
                                                 .421026-01
                                                                .637110+02
       .23308+02
                    .131757-01
                                                                .633544+02
                                                                              .141274+02
117
                                   .232323+01
                                                 •413971-01
119
       .23699+02
                    .131767-01
                                   .258980+01
                                                 .406952-01
                                                                .629978+02
                                                                              .139690+02
                                                                              .138116+02
121
       .24088+02
                    .131767-01
                                   .265688+01
                                                 .399969-01
                                                                .626412+02
123
       .24478+C2
                    .131767-G1
                                  -.272446+01
                                                 .393023-01
                                                                •622846+02
                                                                              .136550+02
                    .131767-01
                                                                              .134994+02
       .24867+02
125
                                   .279254+01
                                                 .386115-01
                                                                •619280+02
127
       .25255+02
                    .131767-01
                                   .286109+61
                                                 .379246-01
                                                                .615714+02
                                                                              .133446+62
129
                    .131767-01
                                                                              .131908+02
       .25644+02
                                   .293010+01
                                                 .372415-01
                                                                -612148+02
                                                                              .130378+02
131
       .26031+02
                    .131767-51
                                   .299957+01
                                                 .365625-01
                                                                .608582+02
133
       .26419+02
                    .131767-01
                                   .306948+01
                                                                .605016+02
                                                                              .128858+02
                                                  .358874-01
                                                                              .127346+C2
135
       .26806+02
                    .131767-01
                                   .313981+01
                                                 -352165-01
                                                                .601450+02
137
       .27193+02
                    .131767-01
                                                                .597884+02
                                                                              .125843+02
                                   321055+01
                                                 .345498-01
                                                                              .124349+C2
                    .131767-01
139
       .27580+02
                                   .328169+01
                                                 .338873-01
                                                                .594319+02
141
       .2796€+02
                    .131767-01
                                                                .590753+02
                                                                              .122865+02
                                   .335323+01
                                                 .332292-01
143
       .28352+02
                    .131767-01
                                   .342513+81
                                                 .325754-01
                                                                .587187+C2
                                                                              .121389+02
                                                                              .119922+02
       .28737+02
                    .131767-01
145
                                   .349733+01
                                                  .319261-01
                                                                .583622+02
       -29122+02
                    .131767-01
                                                 .312812-01
                                                                .580956+02
                                                                              .118464+02
147
                                   .357001+01
                                                                .576491+02
                                                                              .117015+02
149
       .29507+02
                    .131767-01
                                   .354295+01
                                                 .306410-01
151
       .29892+C2
                    .131767-01
                                   .371622+01
                                                 .300054-01
                                                                .572925+02
                                                                              .115575+02
153
                    .131767-01
                                                                              .114144+02
       .30278+02
                                   .378980+01
                                                  -293746-D1
                                                                .569360+02
155
       .30660+02
                    .131767-C1
                                   .396368+01
                                                 .287485-01
                                                                .565794+02
                                                                              .112722+02
157
       .31043+02
                    .131767-01
                                   .393784+01
                                                  .281273-01
                                                                •562229+02
                                                                              •111309+02
                                                                              .109905+02
159
       .31426+02
                    .131767-01
                                   .401227+01
                                                  .275111-01
                                                                .558663+C2
                    .131767-01
       .31809+02
.161
                                   .403696+01
                                                  ·268998-01
                                                                .555038+02
                                                                              .108509+02
                    .131767-01
163
       .32191+02
                                   .416190+01
                                                  .262936-01
                                                                .551533+02
                                                                              .107123+02
       .32574+02
                    .131767-01
165
                                   .423707+01
                                                  .256925-01
                                                                ·547968+02
                                                                              -105746+02
       .32955+02
                    .131767-01
                                   .431246+01
                                                                .544403+02
                                                                              .104378+02
167
                                                  .250966-01
169
       .33337+02
                    .131767-01
                                   .438805+01
                                                  .245060-01
                                                                .540837+02
                                                                              .103018+02
171
       .33718+62
                    .131767-01
                                   .446385+01
                                                                .537272+02
                                                                              .101668+02
                                                  .239208-01
                     .131767-01
173
       .34099+02
                                                                              .100326+02
                                   .453982+01
                                                  ·233409-01
                                                                •533707+02
                                                                .530142+02
       .34479+02
                     .131767-01
                                                                              .989935+01
175
                                   .461597+01
                                                  .227666-01
177
       .34860+02
                     .131767-01
                                                                .526577+02
                                                                              .976699+01
                                   .469227+01
                                                  .221977-01
                     .131767-01
                                                                              .963552+G1
179
       .35240+02
                                   .476872+01
                                                  .216345-01
                                                                .523012+02
                     .131767-01
181
       .35619+02
                                   -48453C+O1
                                                  ·210770-01
                                                                .519448+D2
                                                                              950495+01
                                                  -205252-01
183
       .35998+02
                    .131767-01
                                   .492200+01
                                                                .515883+02
                                                                              .937527+01
                     .131767-01
185
       .36377+02
                                   .49988G+C1
                                                  .199792-01
                                                                ·512318+02
                                                                              .924649+01
187
       .36756+02
                     ·131767-01
                                   .507571+61
                                                                              -911859+G1
                                                  .194391-01
                                                                •508753+02
189
       .37134+02
                     .131767-01
                                   .515269+01
                                                  .189050-01
                                                                .505189+02
                                                                              .899160+01
                     .131767-01
191
       ·37513+62
                                   .522974+01
                                                  .183769-01
                                                                .501624+02
                                                                              .886550+01
       .37890+02
                     .131767-01
193
                                   .530685+01
                                                  ·178549-01
                                                                ·498059+02
                                                                              .874029+01
       .38268+02
195
                     .131767-81
                                   .538400+B1
                                                  .173390-01
                                                                .494495+02
                                                                              .861597+01
197
       .38645+02
                     .131767-01
                                   .546119+01
                                                  .168294-01
                                                                •490930+02
                                                                              .849255+01
199
                     .131767-01
       .39022+02
                                   .55384C+01
                                                  .163260-01
                                                                ·4873E6+02
                                                                              .837002+01
201
       .39398+02
                     .131767-01
                                   .561551+01
                                                  -158230-01
                                                                              .824339+01
                                                                ·4838U1+U2
203
       •39775+C2
                     .131767-01
                                   .569282+01
                                                  .153384-01
                                                                .480237+02
                                                                              .812765+01
                     .131767-01
205
       .40151+02
                                   .577001+01
                                                  -148544-01
                                                                •476672+02
                                                                              .800780+01
                     .131767-01
207
       .40526+02
                                   .584718+01
                                                  .143768-01
                                                                .473108+02
                                                                              .788985+C1
209
                    .131767-01
       .40902+02
                                   .592430+01
                                                  ·139050-01
                                                                              .777079+01
                                                                .469544+02
211
       •41277+02
                     .131767-01
                                   .600136+01
                                                                              .765362+81
                                                  .134417-01
                                                                .465979+02
213
       .41652+02
                     .131767-01
                                   .607836+01
                                                  .129842-01
                                                                .462415+02
                                                                              .753735+01
       .42027+02
215
                     .131767-01
                                   .615529+01
                                                  .125336-01
                                                                .458851+02
                                                                              .742197+61
                     .131767-01
217
       .42401+02
                                   .623212+01
                                                  ·120898-01
                                                                •455287+02
                                                                              .730748+01
       .42775+02
                     .131767-01
219
                                   .630885+01
                                                  •116530-01
                                                                •451723+02
                                                                              .719389+01
221
       .43149+02
                     .131767-01
                                   .638546+01
                                                  ·112232-01
                                                                .448159+02
                                                                              .708118+01
```

223	.43522+C2	.131767-01	.646195+01	.108005-C1	.444 595 +02	.696937+C1
2 2 5	.43895+02	.131767-01	•653829+01	·103949-01	•441031+02	•685846+01
227	•44258+02	.131767-01	.661449+C1	.997654-82	.437467+02	.674843+C1
229	.44641+32	.131767-01	•669051+01	•957543-02	•4339C3+02	•663930+01
231	·45C14+02	.131767-01	.676636+01	·918165-C2	.430339+02	.653106+01
233	.45386+02	.131767-01	•684202+01	.879527-02	.426775+02	.642372+C1
235	.45758+02	.131767-01	.691749+01	.841635-02	.423212+02	.631726+C1
237	.45129+02	.131767-91	•699273+01	-804494-02	•419648+02	•621170+01
239	·46501+G2	.131767-01	.706775+01	.768111-02	.416084+02	.610703+01
241	.45872+02	.131767-01	•714254+01	•732493-02	•412520+02	•600325+01
243	·47243+G2	.131767-01	.721707+01	.697645-C2	.408957+02	.59CC37+C1
245	.47613+02	.131767-04	•729135+01	•863574-D2	•405393+02	•579837+01
247	•47984+C2	.131767-01	.736535+01	.630284-02	.401830+C2	.569727+01
249	.48354+02	.131767-01	•743906+01	•597784-02	•398266+02	•559706+01
251	•48724+02	.131767-01	.751247+01	.566077-02	•394703+D2	•549774+C1
253	49094+02	.131767-01	•758558+01	•535172-02	•391139+02	.539932+01
255	•49463+02	.131767-01	•765836+01	•505072-02	•391139+U2 •387576+02	•53C178+C1
257						
	.49832+02	.131767-01	•773081+01	•475784-C2	-384012+02	•520514+01
259	•50201+02	.131767-01	•780292+01	.447315-02	.380449+02	.510939+01
261	.50570+02	.131767-01	•787466+D1	419668-02	•376886+02	•501453+01
263	•50938+02	.131767-01	.794604+01	.392852-02	.373323+02	.492056+01
265	.51307+02	.131767-01	•801704+01	-365870-02	•369759+02	-482748+01
267	•51675+02	•131767-C1	•808763+01	.341729-02	.366196+02	.473529+01
269	.52042+02	.131767-01	•815783+01	.317434-02	.362633+02	•464399+01
271	.52410+02	.131767-01	.822760+01	-293392-02	.359070+02	.455359+01
273	.52777+02	.131767-01	•829694+D1	•271406-02	•355507+02	•446408+01
275	.53145+62	.131767-01	·836585+D1	.249683-02	.351944+02	•437545+01
277	.53512+02	.131767-01	•843429+D1	-223329-02	•348380+02	•428772+01
279	•53878+02	.131767-01	.850227+01	.203848-02	.344817+02	.420088+C1
281	.54245+02	.131767-01	·855978+D1	·189746-D2	•341254+02	•411493+01
283	•54611+G2	•131767-01	.863630+01	.171528-C2	.337691+02	.402987+C1
285	.54977+02	.131767-81	•870331+01	-154199-02	-334129+02	•394570+01
287	•55343+02	.131767-01	.876931+81	.137765-02	•330 566 + 02	.386242+01
289	.55709+02	.131767-01	.883478+C1	•122230-02	•327093+02	.378004+01
291	.56074+02	.131767-01	.889972+01	.107601-02	.323440+02	.369854+C1
293	.56440+02	.131767-01	.896411+01	·938805-03	·319877+02	-361793+01
295	•56805+02	.131767-01	.902794+01	·810752-C3	.316314+C2	.353822+01
297	.57170+02	.131767-01	•909119+01	-691894-03	.312751+02	.345939+01
299	•57534+C2	.131767-C1	.915386+01	.58228C-C3	.309189+02	.338146+C1
301	.57899+02	.131767-01	•921594+01	·481959-03	•305626+02	.330441+01
303	•58263+02	.131767-01	.927740+01	.390978-03	.302063+02	.322825+01
305	.58627+02	.131767-01	•933824+01	.309384-03	-298501+02	•315299+C1
3C 7	•58991+02	·131767-01	.939844+C1	-237224-03	-294938+02	.3C7861+C1
309	.59355+02	.131767-01	•945798+01	•174542-03	-291375+02	.300513+01
311	•59718+02	.131767-01	.951687+01	.121384-03	.287813+02	.293253+C1
313	.60082+82	.131767-01	•957508+B1	•777957-04	•284250+02	-286083+01
315	•60445+02	.131767-01	.963254+01	438199-04	.280688+02	.279001+01
317	.60808+02	.131767-01	•368922+01	.195004-04	•277125+02	-272009+01
319	•61171+02	•131767-S1	.974510+01	.487973-05	.273563+02	.265105+01
321	.61534+02	.131767-01	.980018+01	•000000	•270000+02	•258291+01
		3			5 C . U C . U L	

INITIAL RIB SHAFE(CURVE FITTING) (

}	(2
•	`	1.1
	•	_

		CURVE FIT	CURVE FITTING	3
NODE	RADIUS	Z-CCORDINATE	ERR CR	
1	94.04403	25.02821	17698	
3	83.68729	24.81421	17547	
5	83.33049	24 • 60 307	17395	
7	82.97369	24.39283	17244	
9	82.51699	24 • 18350	17092	
11	82.26009	23.97507	16941	
13	81.90330	23.76754	16790	
15	81.54651	23.56092	16640	
17	81.18972	23 • 35 520	16489	
19	80.83294	23.15038	16339	
21	80.47616	22.94647	16189	
23	8C.11938	22.74346	16039	
25	79.76260	22.54136	15889	
27	79.40583	22.34016	15740	
29	79.04906	22.13986	15740 15591	
31		21.94047	15442	
33	78.69229			
	78.33553 77.97877	21 • 74 197	15293	
35 77		21.54439	15145	
37	77.62201	21 • 34 770	14996	
39	77.26525	21.15193	14848	
41	76.30850	20 • 95 705	14701	
43	76.55175	20.76308	14554	
45	76.19501	20.57001	14407	
47	75.83826	20.37784	14260	•
49	75.48152	20.18658	14113	
51	75.12479	13.99622	13967	
53	74.76805	19.90677	13822	
55 57	74.41132	19.61821	13676	
57 50	74.05459	19.43057	13531	
5 9 C 1	73.69787	19.24382	13387	
61 63	73.34115	19.05798	13242	
	72.98443	18.87304	13098	
65	72.52772	18.68901	12955	
67	72.27101	18.50588	12811	
69	71.91430	18.32365	12669	
71	71.55760	18.14232	12526	
73	71.20090	17.96190	12384	
75 77	70.84420	17.78239	12243	
77 70	70.48751	17.60377	12101	
79	70.13082	17.42606	11961	
81	59.77413	17.24925	11820	
83	69.41745	17.07335	11680	
85	69.06077	16.89835	11541	
87	68.70409	16.72425	11402	This section is the curve
89	68.34742	16.55106	11264	fitting section where a curve
91	£7.99075	16.37876	11126	is fit through the node loca-
93	67.63409	16.20738	10988	tions calculated in the last
95	67.27743	16.03689	10851	section. This allows the rib
97	66.92077	15.86731	10715	to be presented in both equation
99	66.56412	15.69863	10578	form and as a discrete set of
101	66.20747	15.53086	10443	points.
103	65.85082	15.36398	- ·10308	•
105	65.49418	15.19301	10173	

107	65.13754	15.03295	10040
109	64.78091	14.85279	09906
111	64.42428		
		14.70553	09773
113	64.06765	14.54317	C9641
115	63.71193	14.38171	09509
117	63.35441	14.22116	09378
119	62.93779	14.06151	09247
121	62.64118	13.90277	
			09117
123	62.28457	13.74493	08988
125	61.92797	13.58799	08859
127	61.57137	13.43195	08731
129	61.21478	13.27682	08603
131	60.85819	13.12259	08476
133	60.50150		
		12.96526	08350
135	60.14502	12.81683	08224
1 37	59.78844	12.68531	08099
139	59.43186	12.51469	07975
141	59.07529	12.36497	07851
143	58.71873	12.21616	07728
145			
	58.36216	12.06825	07605
147	58.00561	11.92124	C7483
149	57.34905	11.77513	07362
151	57.29250	11.62993	07242
153	56.93596	11.43563	07122
155	58.57942	11.34223	07003
157	56.22293	11.19973	06885
159	55.86634	11.05814	06767
161	55.50932	10.91745	06650
163	55.15329	15.77766	06534
165	54.79677	10.63877	06418
167	54.44025	10.50078	C6303
169	54.03374	10.36370	05189
171	53.72723	10.22752	06076
173	53.37073	10 • C 9 2 2 4	05963
175	53.61423	9.95787	05851
177	52.65773	9.82439	05740
179	52.30124	9.69182	05630
181	51.94476	9.58615	05520
183	51.88827	9.42939	05412
185	51.23179	9.29952	05304
187	50.87532	9.17056	05196
189	50.51835	9 • 04 250	05090
191	50.16238	8.91534	04984
193	49.80592	8.78908	04379
195	49.44946	8.663 7 2	C4775
197	49.09301	9.53927	04672
199	48.73656	8.41572	04569
201	48.38012	8.29307	04468
203	48.02367	8.17132	04367
205	47.66724		
		8 • C5C47	04267
207	47.31080	7.93053	04168
209	45.95437	7.81148	04069
211	46.59795	7.69334	63972
213	46.24153	7.57610	03875
215	45.88511	7.45976	03779
217	45.52870	7.34433	03684
219	45.17229	7.22979	03590
	. 3 - 1 : 2 2 3	1022313	• • • • • • •

221	44.81538	7.11615	03497
223	44.45948	7.06342	03405
225	44.10309	6.89159	03313
227	43.74669	6.78966	03222
229	43.39030	6.67863	03133
231	43.03392	8.58150	03044
2 3 3	42.67754	6.45327	02956
235	42.32116	6.34595	02869
237	41.96478	6 • 23952	02782
239	41.60841	6.13400	02697
241	41.25205	6.02938	02612
243	40.89568	5.92566	02529
245	40.53932	5.32383	02446
247	40.18297	5.72091	02364
249	39.82662	5.61990	02283
251	39.47027	5.51978	02203
253	39.11392	5.42056	02124
255	38.75758	5.32224	
257	38.40124	5.32224	02046
257	38.04491	5.12831	01969
261			01893
	37.68858	5.03270	01317
263	37.33225	4.93799	01743
265	36.97593	4.84417	01669
267	36.61960	4.75126	01597
269	36.26329	4.65925	01525
271	35.90697	4.56814	01455
273	35.55066	4.47792	01385
275	35.19435	4.38861	01316
277	34.83805	4.30020	01248
279	34.48174	4.21263	01181
281	34.12544	4.12508	01115
283	33.76915	4.04037	01050
285	33.41285	3.95557	00336
287	33.05656	3.87166	00923
289	32.70027	3.78865	00861
291	32.34399	3.76654	00800
293	31.98771	3 • 62 533	00740
295	31.63143	3.54502	00681
297	31.27515	3.46561	00622
299	30.91887	3.36711	00565
301	30.56260	3 • 36 950	00509
303	30.20633	3.23279	00453
305	29.85006	3.15698	00399
30 7	29.49380	3.08207	00346
309	29.13754	3.00806	00293
311	28.78128	2.93496	00242
313	28.42502	2 • 86 275	00192
315	28.06876	2.79144	60142
317	27.71250	2.72103	00094
319	27.35625	2.65152	00046
321	27.00000	2.58291	•00000

INITIAL RMS ERROR FUNCTION = .134870+00

	ERROR	OPTT	MIZATION VARIABLES	5
ITER	FUNCTION	(1)	(2)	(3)
1	.124753+00	•3030806	•50000000-01	•00000000
2	.796426-01	150000000+30	• 55666665-01	•56656666-01
3	.796426-01	15000000+00	•55665666-D1	•66666666-01
4	.796426-01	150000000+00	•66666665-01	•6655666-01
5	.796426-01	150000000+00	• 56666665-01	•66656666-01
ě	.702292-01	70601850-01	•49356995-81	•53936625-01
7	.684256-01	77739195-31	•59537893-G1	•49198387-01
8	.551981-01	97788058-01	• 74874237-03	68644235-02
9	.551981-01	97789058-01	•74874237-03	68644285-02
10	.537890-01	17692614+00	·11203896-02	39665579-C1
11	.490719-01	18275128+00	23886624-01	47293883-01
12	.315658-01	13425500+00	• 22134137-01	•90550669-02
13	.315658-01	13425500+00	• 22134137-81	•90560669-02
14	.315658-01	134255CO+80	• 22134137-01	•90560669-02
15	.315658-G1	13425500+00	• 22134137-01	•90530669-02
16	.310096-01	15579091+00	•14477022-01	.33182137-01
17	.217281-01	14662359+00	•14696878-32	45897011-02
18	.217281-01	14662359+03	•14695878-02	+.45897011-02
19	.104095-01	15650369+00	79750626-B2	15265265-01
20	.104095-01	15650309+00	79750626-02	•15265265-01
21	.104095-01	15650309+00	79750626-02	•15265265-01
22	.104095-01	15650309+00	79750626-02	.15265265-01
23	.301882-02	16795328+CD .	15808036-01	•24513989-02
24	.301882-02	16795328+00	15808036-01	•24513989-02
25	.301862-02	16795328+30	15803036-01	•24513989-02
26	.301882-02	16795328+00	15803036-01	•24513989-02
27	.301882-02	16795328+00	15808036-01	•24513989-02
28	.301882-02	16795328+00	15803036-01	.24513989-02
29	.301882-02	16795328+00	15808036-01	•24513989-02
30	.301882-02	16795328+00	15808036-01	•24513989-02
31	.301882-02	16795328+00	15808035-01	.24513989-02
32	.232917-02	16171688+00	12840887-01	•49113665-02
33	.232917-02	16171688+03	12840887-01	•49113665-02
34	.232917-02	16171688+00	12840887-01	•49118655-02
35	.184601-02	16603670+00	14949116-C1	•36719329-02
36	.169314-02	16556641+00	15149104-01	•43243081-02
37	.169314-02	16556641+00	15149104-01	•43248081-02
38	.141970-02	16374848+00	14109119-01	-42287169-02
39	.141970-02	15374848+00	14109119-01	•42237169-02
4 C	.141970-02	16374648+00	14109119-01	•42287169-02
41	·141970-C2	16374848+00	14109115-01	•42237169-02
42	.138015-02	16479428+30	15005910-01	•37847374-02
43	.136910-02	16414353+00	14752126-01	•41596779-02
44	.135246-02	16458656+00	14790704-01	-40979792-02
45	.134614-02	16412830+80	14479349-01	•41214242-02
46	.134508-02	16454021+00	14839985-01	•39555489-G2
47	.134314-02	15455577+00	14678955-01	•40076372-02
48	.134314-02	16455577+CO	14678955-01	46076372-02
49	.133685-02	16428508+00	14583079-01	•40476477-02
50	.133685-02	16428508+60	14583079-01	•40476477-02
51	.133685-02	16428508+00	14583079-01	.40476477-02
52	.133685-02	18428508+69	14583079-01	.40476477-02

```
.133621-02
                                                           .39984809-02
53
                     -.16440257+00
                                        - .14667158-01
       .133621-02
54
                      - - 16440257+50
                                        -.14667158-01
                                                           .39964809-02
55
       .133621-02
                      - •16440257+00
                                        -.14667158-01
                                                           .39984809-02
       .133579-02
56
                      -.16433023+00
                                                            .404C5603-02
                                        -.14618345-C1
       .133575-02
57
                      - .16433586+00
                                                            .40420479-02
                                        -.14637660-61
58
       .133575-02
                      -.16433986+00
                                        -.14637660-01
                                                            .40420479-02
59
       .133571-02
                      -.16437877+00
                                        --14652191-01
                                                            .4C18229C-02
       .133560-32
60
                      -.16435069+00
                                                            .40365469-02
                                        -.14633425-01
       .133560-02
61
                      - .16435069+00
                                        -.14633425-01
                                                            .40355469-02
61
       .133560-02
                      -.16435069+00
                                        -.14633425-01
                                                            .403E5469-02
```

S. 240

FINAL RIB SHAPE (CURVE FITTING)

•				
			CURVE FIT	CURVE FITTING
NODE		RADIUS	Z-COURDINATE	ERROR
1		84.04403	24.85127	~ .00203
3	•	83.68729	24 • 64 049	~.00175
5		83.33049	24.43060	C0148
7		82.97369		
9			24 • 22162	~•C0123
		82.51689	24.01357	~.00099
11		92.25009	23.80643	~.00078
13		81.90330	23.60021	00057
15		91.54651	23.39491	00039
17		81.18972	23.19053	OOC22
19		80.83294	22.98706	00006
21		80.47616	22.78450	• 00008
23		80.11938	22.58286	•30021
2 5		79.76260	22.38214	•00C33
27		79.40583	22.18233	•00043
29		79.04906	21.98343	.00053
31		78.69229	21.78544	-00061
33		78.33553	21.56836	*CC068
35		77.97877	21.39220	. 00074
37		77.62201	21.19694	.00880
39		77.26525	21.80260	• 000 84
41		76.90850	20.86916	.00088
43		76.55175	20.61664	• 0 0 0 9 0
45		76.19501	26.42502	.00092
47		75.83826	20.23431	• 000 93
49		75.48152	20.04451	•00694
51		75.12479	19.85561	• 060 94
53		74.76805	19.66762	•00093
55		74.41132	19.46054	•00091
57		.74.05459	19.29436	•00090
59		73.59787	19.18908	.00087
61		73.34115	18.92471	•C0085
63.		72.98443	18.74125	•CC081
6.5		72.62772	18.55868	.00078
67		72.27101	18.37702	.00074
69		71.91430	18.19627	•00069
71		71.55760	18.01641	•00065
73	•	71.20090	17.83746	.00060
75		70.84420	17.65941	•00055
77		70.48751	17.48226	•00C50
79		70.13082	17.30601	•80044
ε ₁		69.77413	17.13066	•00039
83	•	69.41745	16.95621	•00033
85		69.66077	16.73267	•00033 / •00027
87		68.70409	16.73267	_
				•00021
89 91		68.34742	16.43827	•00015
93			16 - 26741	.00009
95		67.63499	16.09746	•CCCC3
	•	67.27743	15.92841	00003
97		66.92077	15.76025	00009
99		66.56412	15.59299	00614
101		66.20747	15.42663	00020
103		55.35082	15.26116	00026
105		65.49418	15.09659	00032

			•
107	65.13754	14.93292	00037
109	64.78091	14.77015	COC42
111	64.42428	14.50827	00048
113	64.06765	14.44728	00053
115	63.71103	14.28720	00057
117	63.35441	14.12800	00062
119	62.99779	13.96971	00067
121	62.64118	13.81230	00071
123	52.28457	13.65580	00075
125	61.92797	13.50018	00079
127	61.57137	13.34546	00082
129	61.21478	13.19164	- •00086
131	60.85819	13.03871	00089
133	60.50160		00092
135	60.14502	12.73553	00094
137	59.78844	12.58528	00096
139	59.43186	12.43593	00098
141	59.07529	12.28747	00100
143	58.71873	12.13990	00102
145	58.36216	11.99322	00103
147	58.00561	11.84744	00104
149	57.64905	11.70255	C0104
151	57.29250	11.55855	00104
153	56.93596		00104
155	56.57942	11.27324	00104
157	56.22298	11.13192	00104
159	55.86634	10.99149	60103
161	55.50982	10.85196	00101
163	55.15329	10.71332	00100
165	54.79677	10.57557	00098
167	54.44025	10.43871	00096
169	54.08374	10.30275	00394
171	53.72723	10.16768	00091
173	53.37073	10.03350	00088
175	53.01423	9.90021	00085
177	52.65773	9.76781	00082
179	52.30124	9.63631	C0078
181	51.94476	9.50569	00074
183	51.58827	9.37597	00070
185	51.23179	9.24715	00066
187	50.87532	9.11921	00062
189	50.51885	8.99217	00057
191	50.16238	8.86601	00052
193	49.80592	8.74075	00047
195	49.44946	8.61639	00041
197	49.09301	9.49291	00036
199	48.73656	8.37033	00030
201	48.38012	8 - 24 863	00024
203	•	8.12783	00018
205	47.66724	8 • CC 793	00012
207	47.31080	7.88891	00006
209	46.95437	7.77079	•00000
211	46.59795	7.65356	.00C07
, 213	46.24153	2-2 -7 • 53 722	" M. A.L. #00013"
215	45.88511	7.42177	.00020
217	45.52870	7.30722	.00026
219	45.17229	7.19356	.00033
: **	** 2 ft	(4) (4) (4) (4) (4) (4) (4)	

```
1.1.1.1
                                               -00040
           44.81588
                             7 - 08079
221
223
           44.45948
                             6.96891
                                               .00046
                             6 • 85793 ....
225
           44.10309
                                               ·00053 ·
227
           43.74669
                             6.74784
                                               .00059
229
           43.39030
                             6 - 63864
                                               · 00066 -
231
           43.03392
                             6.53034
                                               .00C73
                             6 • 42 293
233
           42.67754
                                               -00079
235
           42.32116
                             6.31641
                                               .00085
237
                                               •00092 ·
           41.96478
                             6 - 21 079
239
           41.60841
                             6.10605
                                               .00098
           41.25205
241
                             6 . CO 222
                                               .00104
                                               .00109
243
           40.89568
                             5.89927
                             5 • 79,722 d Be > 4
                                               د راه در 5 1100 •
245
           40.53932 ...
           40.18297
247
                             5.65607
                                               -00121
                                               -00126
249
           39.82662
                             5.59580
251
           39.47027
                             5.49644
                                               ·CO131
253
           39.11392
                             5.39796
                                               -C0135
255
           38.75758
                             5.30038
                                               .C0140
257
           38.40124
                             5.20370
                                               .00144
259
           38.04491
                             5.10791
                                               .00148
261
           37.68858
                             5.01301
                                               .00151
                                               ·CO155
263
           37.33225
                             4.91901
265
           36.97593
                             4.82590
                                               -00157
267
           36.6196G
                             4.73369
                                               .00160
269
           36.26329
                             4.64238
                                               .00162
271
           35.90697
                             4.55196
                                               ·GD163
273
           35.55066
                             4 - 46 243
                                               .00165
           35.19435
275
                             4.37380
                                               .C0165
           34.83805
277
                             4.28ED7
                                               .00165
279
           34.48174
                             4.19923
                                               .00165
281
           34.12544
                             4.11329
                                               .00154
283
           33,76915
                             4.02824
                                               .00163
285
           33.41285
                             3.94410
                                               .00161
287
           33.05656
                             3.86084
                                               .00158
           32.70027
                             3.77849
289
                                               .00155
291
           32.34399
                             3.69703
                                               .00151
293
           31.98771
                             3.61647
                                               -00146
295
           31.63143
                             3.53681
                                               -00141
                                               .00135
297
           31.27515
                             3.45804
299
           30.91887
                             3.38017
                                               .00128
           3C.56260
301
                             3.30320
                                               .80121
303
           30.20633
                             3.22713
                                               .00113
305
           29.85006
                             3.15195
                                               · CO104
           29.49380
307
                             3.07768
                                               .00094
309
           29.13754
                             3.C0430
                                               .00083
311
           28.78128
                             2.93182
                                               .00C71
313
           28.42502
                             2.86024
                                               .00059
           28.C6876
                             2.78956
315
                                               .00046
317
           27.71250
                             2.71978
                                               ·00031
319
           27.35625
                             2.65889
                                               .00016
321
           27.00000
                             2.58291
                                               .00000
```

(9)These parameters refer to the rib shape and define the as-

 $\tilde{i}_{i} \leq i$

machined rib shape that will produce the optimum rib when the mesh and cable are applied.

P(2) -.164350692+00 -.146334250-01 .403654686-D2

RIB CURVE FITTING RMS ERROR = .. 133560-02

B(1)