Visualization and Data Mining

Outline

- Representing data in 1,2, and 3-D
- Time series data
- Spatial data
- Network and graph

Asia at night

South and North Korea at night

North Korea Notice how dark it is

Seoul,——South Korea

Visualization Role

- Support interactive exploration
- Help in result presentation
- Disadvantage: requires human eyes
- Can be misleading

Bad Visualization: Spreadsheet

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

What is wrong with this graph?

Bad Visualization: Spreadsheet with misleading Y –axis

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

Y-Axis scale gives **WRONG** impression of big change

Better Visualization

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

Axis from 0 to 2000 scale gives correct impression of small change

Principles of Graphical Excellence

- Give the viewer
 - the greatest number of ideas
 - in the shortest time
 - with the least ink in the smallest space.

Tell the truth about the data!

Visualization Methods

- Visualizing in 1-D, 2-D and 3-D
- Different methods are available for visualization of data based on type of data, where data can be
 - Univariate
 - Bivariate
 - Multivariate

Univariate data

- Measurement of single quantitative variable
- Characterize distribution
- Represented using following methods
 - Histogram
 - Pie Chart

1-D (Univariate) Data

Representations

Pie Chart

Bivariate Data

- Constitutes of paired samples of two quantitative variables
- Variables are related
- Represented using following methods
 - Scatter plots
 - Line graphs

Scatter plots

Scatter Plot, SAT vs. Beta Test

Line graphs

Multivariate Data

- Multi dimensional representation of multivariate data
- Represented using following methods
 - 3-D projection

3-D Data (projection)

3-D image (requires 3-D blue and red glasses)

Taken by Mars Rover Spirit, Jan 2004

Time Series

If your data has a temporal component, be sure to exploit it

Spatial Data

- If your data has a geographic component, be sure to exploit it
- Data from cities/states/ zip cods – easy to get lat/long
- Can plot as scatterplot

Earthquakes in the Pacific Ocean (since 1964)

Spatial data: choropleth Maps

- Maps using color shadings to represent numerical values are called chloropleth maps
- http://elections.nytimes.com/12008/results/president/map.html

Networks and Graphs

Visualizing networks is helpful, even if is not obvious that

a network exists

Network Visualization

 Graphviz (open source software) is a nice layout tool for big and small graphs

New Zealand Meat Consumption

What's missing?

- pie charts
 - very popular
 - good for showing simple relations of proportions
 - Human perception not good at comparing arcs
 - barplots, histograms usually better (but less pretty)
- 3D
 - nice to be able to show three dimensions
 - hard to do well
 - often done poorly
 - 3d best shown through "spinning" in 2D
 - uses various types of projecting into 2D
 - http://www.stat.tamu.edu/~west/bradley/

Figure 1. Three-dimensional bar chart.

Chernoff Faces

Encode different variables' values in characteristics of human face

Cute applets: http://www.cs.uchicago.edu/~wiseman/chernoff/
http://hesketh.com/schampeo/projects/Faces/chernoff.html

Interactive Face

Chernoff's Faces

 described by ten facial characteristic parameters: head eccentricity, eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, eye spacing, eye size, mouth length and degree of mouth opening

Much derided in statistical circles

Visualization software

Free and Open-source

- Ggobi
- Xmdv

Many more - See www.KDnuggets.com/software/ visualization.html

Visualization Summary

- Many methods
- Visualization is possible in more than 3-D
- Aim for graphical excellence
- Method should be chosen depending on the data and your need