Podstawy fizyki kwantowej

Lista zadań 2 – Bariery, studnie i tunelowanie

Andrzej Więckowski

- 1. Pokazać, że $\frac{\mathrm{d}}{\mathrm{d}t}\langle A\rangle=i\langle[\hat{H},A]\rangle+\langle\dot{A}\rangle.$
- 2. Twierdzenie Ehrenfesta—pokazać, że (dla cząstki o masie m w polu $\vec{F} = -\nabla V$):
 - (a) $\frac{d}{dt}\langle \vec{r}\rangle = \frac{1}{m}\langle \vec{p}\rangle;$
 - (b) $\frac{\mathrm{d}}{\mathrm{d}t} \langle \vec{p} \rangle = -\langle \nabla V \rangle$.
- 3. (a) Rozseparować równanie: $i\frac{\partial}{\partial t}\psi(\vec{r},t)=\frac{p^2}{2m}\psi(\vec{r},t)+V(\vec{r})\psi(\vec{r},t)$, na część czasową i część przestrzenną $[\psi(\vec{r},t)=u(\vec{r})f(t)]$.
 - (b) Rozwiązanie części czasowej: $f(t) = Ce^{-iEt}$.
 - (c) Pokazać, że $\psi(\vec{r},t)$ to rozwiązanie stacjonarne i $|\psi(\vec{r},t)|^2$ nie zależy jawnie od czasu.
- 4. Nieskończona bariera potencjału—znaleźć rozwiązania równania $\psi(\vec{r},t)$ dla cząstki o masie m w potencjale $V(\vec{r}) = \begin{cases} 0, & x < 0 \\ V_0, & x > 0 \end{cases}$, dla $V_0 \to \infty$.
- 5. Nieskończona studnia potencjału—znaleźć rozwiązania równania $\psi(\vec{r},t)$ dla cząstki o masie m w potencjale $V(\vec{r}) = \begin{cases} 0, & |x| < x_0 \\ V_0, & |x| > x_0 \end{cases}$, dla $V_0 \to \infty$. Znaleźć poziomy energetyczne cząstki E(n), średnie położenie $\langle x \rangle$, średni pęd $\langle p \rangle$.
- 6. Tunelowanie, przejście przez "krawężnik"—znaleźć rozwiązania równania $\psi(\vec{r},t)$ dla cząstki o masie m w potencjale $V(\vec{r}) = \begin{cases} 0, & L < x < 0 \\ V_0, & 0 < x < L \end{cases}$, dla $V_0 > 0$. Rozważyć dwa przypadki $E < V_0$ oraz $E > V_0$. Jak wyraża się transmisja $T = \frac{|\psi_{\rm tran}|^2}{|\psi_{\rm in}|^2}$ dla tych przypadków ($\psi_{\rm tran}$ część po przejściu, a $\psi_{\rm in}$ część padająca)?