$$VB = r_{02}BW_2 = 15(Z)$$

= 30 mms⁻¹

1ii)
$$V_{c} = r_{04}c^{W4}$$
 $22 = 15w_{44}$
 $W_{4} = 1.46 \text{ rads}^{-1} (cW)$

From the diagram, $V_{0} = 53 \text{mms}^{-1}$, $V_{E} = 146 \text{mms}^{-1}$,

 $V_{E} = 9.5 \text{mms}^{-1}$,

 $V_{E} = r_{E} = 0.5 \text{ms}$
 $V_{S} = 25 \text{ms}$
 $V_{S} = 0.38 \text{ rads}^{-1} (cW)$
 $V_{E} = r_{06} = W_{6}$
 $V_{C} = 15W_{6}$
 $V_{C} = 3.06 \text{ rads}^{-1} (cW)$

liv) Refer to the answer sheet below for the diagram.

From the diagram,
$$A_c^t = 40.5 \text{ mm s}^{-2}$$
, $A_{cg}^t = 81 \text{ mm s}^{-2}$,

$$A_{cg}^t = CB \times 3 \qquad \text{Negative of}$$

$$81 = 40 \times 3 \qquad \text{N} \times 3$$

$$\times 3 = 2.025 \text{ rads}^{-2} \text{ (cw)}$$

$$A_{c}^t = r_{ofc} \times r_{ofc} \times$$

Answer Sheet MA2002

$$V_A = r_{o_2} H w_2$$
 $V_C = r_{o_2} (w_Z)$
= 15(2) = 30(2)
= 30 mms⁻¹

ii) Refer to the answer sheet below for the diagram.

From the diagram, VE= azmms-1, VB= 32mms-1,

From the diagram, Vo=54 mms-1, VOIC = 57mms-2

2:ii)
$$A_0 = A_c + A_{0/c}$$

 $A_0^n + A_0^t = A_c^n + A_c^t + A_{0/c}^n + A_{0/c}^t$
(zero)

$$A_{B} = A_{A} + A_{B/A}$$

$$A_{B} + A_{B}^{\dagger} = A_{A} + A_{A}^{\dagger} + A_{B/A}^{\dagger} + A_{B/A}^{\dagger}$$
(zero)
$$(2ero)$$

$$A_{01c}^{n} = W_{5}^{2} r_{01c}$$
 $A_{11}^{n} = W_{3}^{2} (r_{31A})$
 $= 1.425^{2} (40)$
 $= 0.64^{2} (25)$
 $= 81.225 \text{ mms}^{-2}$
 $= 10.24 \text{ mms}^{-2}$

$$A_c^n = w_2^2(r_{0zc})$$

$$= 2^2(30)$$

$$= 120 \text{ mms}^{-2}$$

$$= 60 \text{ mms}^{-2}$$

$$A_0^{r} = w_6^2 (r_{060})$$

$$= 1.08^2 (50)$$

$$= 58.32 \, \text{mms}^{-2}$$

2iv) Refer to the answer sheet below for the diagram.

From the diagram, At = 138 mms - 2, At = 96 mms - 2

$$A_{9c}^{\flat} = r_{9c} \times 5$$

$$Q_{6} = 40 (\times 5)$$

$$138 = 50 \times 6$$

 $\times 6 = 2.76 \text{ rads}^{-2} (\text{ccw})$

Answer Sheet MA2002

 $O_2A = 15 \text{ mm}$

 $O_2C = 30 \text{ mm}$

AB = 25 mmCD = 40 mm

DE = 70 mm

 $O_6D = 50 \text{ mm}$

Velocity polygon

Acceleration polygon

Scale:

3i) Relative velocity equations: Vr = VB + VCIB Vc = Vp + Vc10 (上CD) ... VB + VCIB = NO + VCID ii) Refer to the answer sheet below for the diagram. From the diagram, VCIB = 45 mms-1, VCID = 107 mms-1, Vc = 58 mms-1 VCIB = rCBW3 45 = 30 Wz wg=1.5rads-1 (cw) VCID = CCDW4 107 = 25WL W4 = 4.28 rads-1

Ac =
$$A_B + A_{clB}$$

Ac = $A_B + A_b + A_{clB} + A_{clB}$

Ac = $A_D + A_{clD}$

Ac = $A_D + A_D$

A

Answer Sheet MA2002

 $\alpha_2 = 1 \text{ rad/s}^2 \text{ (ccw)}$

 $V_D = 50 \text{ mm/s}$ (to the right) $A_D = 50 \text{ mm/s}^2$ (to the left)

$O_2B = 50 \text{ mm}$

BC = 30 mm

CD = 25 mm

Velocity polygon

Scale:

Acceleration polygon

Scale:

