UNIVERSITY OF MALTA

Faculty of Engineering

Department of Systems and Control Engineering

FINAL YEAR PROJECT B.ENG. (Hons)

LATEX Student Guidelines for Preparation of the Final Year Project Dissertation

by Alexandra Bonnici

A dissertation submitted in partial fulfilment of the requirements of the award of

Bachelor of Engineering (Hons.) of the Faculty of Engineering

Copyright Notice

- 1. Copyright in text of this dissertation rests with the Author. Copies (by any process) either in full, or of extracts may be made only in accordance with regulations held by the Library of the University of Malta. Details may be obtained from the Librarian. This page must form part of any such copies made. Further copies (by any process) made in accordance with such instructions may not be made without the permission (in writing) of the Author.
- 2. Ownership of the right over any original intellectual property which may be contained in or derived from this dissertation is vested in the University of Malta and may not be made available for use by third parties without the written permission of the University, which will prescribe the terms and conditions of any such agreement.

UNIVERSITY OF MALTA FACULTY/INSTITUTE/CENTRE OF/FOR _____Engineering

DECLARATION

Student's Code	12345M								
Student's Name & Surname _									
Course Bachelor of Engineering (Hons.)									
Title of Long Essay/Dissertat									
IATEX Student Guidelines	s for Preparation of the Final Year Project Dissertation								
	gitimate author of this Long Essay/Dissertation/Thesis.								
I further confirm that this work	is original and unpublished.								
Signature of Student	Name of Student (in Caps)								
Date									

Later Annual Project Dissertation of the Final Year Project Dissertation

Abstract

Aan matig enkel wie raakt zeven zeker allen mag. Ten zielen zin diepte dreigt aan kwamen kleine weg rubben. Vaartuigen den ondernemer dag krachtiger buitendien. Zoo toppen zes invoer kleine ver enkele schuld slotte zij. Haar op dekt ze tien. Toch half de mijn in toen op. Enkelen tin des gewicht slechts aardige had. Goudmijnen als dik intusschen bij dal aanplanten productief. Na leerling kolonien de rekening loopbaan de nu golconda.

Eischen geoogst heuvels haalden markten zal was aan. Voorzien overgaat atjehers te in. Waren mag ieder naast ficus liput rijke heb. Vordert gebruik daartoe zit zal zin systeem. Met invoer schuld pijlen ver vierde. Wel zit maar vier rang deed over. Dergelijke dik tembunmijn agentschap belangrijk plotseling het. In open nu en al zich jaar.

Tweemaal mei menschen bak dan beletsel talrijke reiziger. Middellijn bevorderen dan interesten voorschijn smeltovens wat tot. Dieper zee zilver staten koeken men. Op deed ziet duim hout gaat de te. Heuvel zouden dan rijken een ziekte weg tot. Ik al koopman en nu planken vroeger gomboom vlakken. Vestigen op troepjes uitgeput af de atjehers.

Bepaalde ik mogelijk interest gestoken in de wisselen er. Ten dan toe kinderen uitgaven stampers verhoogd. Leeningen wat krachtige sultanaat dat stichting uit wassching siameezen. Aanplanten hen meesleuren besproeien are aan locomobiel dan. Vliegen schepen opzicht wat was stammen dik motoren. Dienst meende rubben tot nam aantal men als. Vruchtbaar verbazende ondernomen af verscholen en en. Drong die weg mei ploeg tabak ook. Kan bewijs deelen dan gambir midden ceylon.

Acknowledgements

I would like to thank \dots

Contents

Copyright Notice	j
Declaration of Authorship	ii
Abstract	iii
Acknowledgements	iν
Contents	v
List of Figures	vi
List of Tables	⁄ii
Introduction	1
1.1 Using images in LaTeX	1
1.1.1 Side by side images	2
1.2 Using tables in LaTeX	3
1.3 Using equations in LaTeX	4
1.4 Populating the acronyms and symbols pages	5
1.4.1 The list of Symbols	5
1.4.2 The list of Acronyms	5
1.5 Creating Lists	6
1.5.1 Bullet lists	6
1.5.2 Numbered lists	6
1.5.3 Descriptive list	6
1.6 Definitions, Lemmas and Proofs	6
1.7 Algorithms	7
2 Conclusion	8
A. Some Random Stuff	10

List of Figures

1.1	An example of an image	
	An example of an image that has a long caption	
1.3	An example of two side-by-side images	6

List of Tables

1.1	An example of a table												3
1.2	Another example of a table												3

List of Tables viii

List of Tables

Chapter 1

Introduction

This document is a brief introduction to LaTeX. It is not to be used as a quick start to creating the final year dissertation. It is not meant to be a comprehensive guide to the use of LaTeX. For that, you could refer to [?]. A cheat sheet ¹ is also available for quick reference.

1.1 Using images in LaTeX

Images can be inserted using the figure environment as follows:

Figure 1.1: An example of an image with a short caption.

The label command allows you to assign a label to the figure so that you can reference it like so: Figure 1.1.

https://wch.github.io/latexsheet/latexsheet-a4.pdf

The caption command allows you to define an optional caption, in the square brackets, which is used in the list of figures. This comes in handy when the figure requires a long caption as follows:

FIGURE 1.2: An example of an image with a long caption which is shortened in the table of contents. This is a long caption to illustrate why you would need to specify the second caption in the square brackets in the caption command.

1.1.1 Side by side images

The subfigure package allows you to place figures side-by-side as follows:

FIGURE 1.3: Placing images side-by-side.

If you label the individual image, you could also reference it as an individual: Figure 1.3(a) or as a whole Figure 1.3. You could place a caption with the individual image by placing text in the square brackets after the subfigure, or you could omit them completely and the figure will not be labelled.

Note that usually, figures are placed at the top of the page and to do so, the placement instruction should be t. Figures are placed using h! only for illustrative purposes.

1.2 Using tables in LaTeX

Tables can also be inserted easily into your document. The booktabs package is recommended as it allows you to typeset nice-looking tables. Like figures, tables should be captioned, but unlike figures, the caption is usually placed at the top of the page. Tables can be labelled and referenced in the same way as figures. Table 1.1 provides one such example. This table has examples of how LATEX handles merged rows and columns.

Table 1.1: An example of a table which has examples of merged columns and merged rows.

Drawing	M	ethod 1	Method 2						
	Some result	Some other result	Some result	Some other result					
4.1	100	0	51	49					
4.2	100	0	57	43					
4.3	100	0	39	61					
4.4	90	10	39	61					
4.4	80	20	39	61					

It is also possible to use tables which require more text in their columns. This can be done by using the paragraph column setting as illustrated in Table 1.2.

Table 1.2: An example of a table which has a paragraph column.

Some random text	Result			
Papalla jolloin me et kelpasi ei hyllyen en. Oma ulos juon ensi toru toi ole kone han.	100			
Syotin ei tekisi puista ai tiedat olette olivat he. Herra minka ei en se ai masto.	80			

1.3 Using equations in LaTeX

LATEX is also very good in handling equations, be it small equations which can fit in text like this: y = mx + c or more complex equations which require to be displayed on separate lines such as this:

$$f(x) = a \exp\left(-\frac{(x-b)^2}{2c^2}\right) \tag{1.1}$$

It is possible to label equations so that you can refer to them in the same way we did for the figures and tables, that is, Equation 1.1.

If your equation has two or more parts to it, then you could use the equarray environment, or better still, the align environment as follows:

$$2x - 5y = 8 \tag{1.2}$$

$$3x + 9y = -12 \tag{1.3}$$

If you do not want to have both equations numbered, then you could use the nonumber option

$$2x - 5y = 8$$
$$3x + 9y = -12 \tag{1.4}$$

Equations that contain arrays can also be easily included

$$f(x) = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (1.5)

and if your equations contains cases, these can be written as follows:

$$\chi(m) = \begin{cases} 1, & \text{if } \kappa_j(m) \neq 0 \\ 0, & \text{otherwise} \end{cases}$$
 (1.6)

1.4 Populating the acronyms and symbols pages

In your document, you may also wish to make use of symbols and acronyms. LATEXallows you to define these as you're writing your document and takes care to collect these under the appropriate lists in the front matter. The two examples below are meant to give you an idea of how to use the glossaries package. For a more detailed description, refer to [?].

1.4.1 The list of Symbols

Symbols can be defined by giving the symbol a name, telling LATEX what it should look like, and giving it a definition as follows:

```
\newglossaryentry{emptyset}
{
name={\ensuremath{\emptyset}},
description={the empty set}
}
\gls{emptyset}
```

The symbol can then be referenced in text using $\gls{emptyset}$. For example, we could say: An empty set, denoted by \emptyset , is a set which contains nothing.

1.4.2 The list of Acronyms

It is also possible to define acronyms using

```
\newacronym{EEG}{EEG}{electroencephalogram}
```

Here the glossaries package will take care of making sure that the first time this is used, the acronym will be spelt out in full, while all other times you will get just the abbreviations. For example: Electric charge from the scalp can be measured using an electroencephalogram (EEG). The EEG does not hurt but makes you look funny.

Depending on the nature of your acronyms, you may decide to go all fancy for example:

non-photorealistic animation rendering (NPAR) is a cool research area. Through NPAR you can create different renderings of your photos.

1.5 Creating Lists

LATEXalso provides a very neat way of including lists in your documents. There are three types of lists that can be used as detailed hereunder. Note that all lists can have nested lists within each item if this is necessary.

1.5.1 Bullet lists

These are created using the itemize environment:

- Item 1
- Item 2
- Item 3

1.5.2 Numbered lists

These are created using the enumerate environment:

- 1. Numbered item 1
- 2. Numbered item 2
- 3. Numbered item 3

1.5.3 Descriptive list

This is a list created using the description environment and comes handy when you have a list of items to describe:

Domestic cat: a small, usually furry, domesticated, and carnivorous mammal. It usually has four legs, two ears and a tail.

Tiger: a slightly bigger and more aggressive version of the domestic cat. Keeping one at home can be considered crazy.

1.6 Definitions, Lemmas and Proofs

Sometimes, it may be necessary to give mathematical theory and this can be achieved through the use of Lemmas and Definitions as follows:

Algorithm 1 Accumulate the co-occurrence matrix $S_{\mathbf{d}}(\theta, \Delta \theta)$, locating the junction position \mathbf{x} and edge segment orientations $\{\theta_n\}_{n=1}^N$

```
Input: Image I, centre of family of circles \mathbf{c}, size of family of circles M
Output: Co-occurrence matrix S_{\mathbf{d}}(\theta, \Delta \theta)
for all \mathbf{d} do
  for all (\theta, \Delta \theta) pairs \mathbf{do}
  for all r in the family of circles \mathbf{do}
\mathbf{k}_{\beta} = [\cos(\beta), \sin(\beta)]^{T}
I_{r}(\beta) = \mathbf{c} + r\mathbf{k}_{\beta}
\beta(\theta) = \theta \pm \sin^{-1}(d/r\sin(\alpha - \theta))
S_{\mathbf{d}}(\theta, \Delta \theta) \leftarrow S_{\mathbf{d}}(\theta, \Delta \theta) + \frac{1}{M}I_{r}(\beta(\theta))I_{r}(\beta(\theta + \Delta \theta))
end for end for end for (\hat{\mathbf{d}}, \hat{\theta}, \Delta \hat{\theta}) \leftarrow \max\{S_{\mathbf{d}}(\theta, \Delta \theta) > T\}
\mathbf{x} \leftarrow \mathbf{c} + \hat{\mathbf{d}}
\{\theta_{n}\}_{n=1}^{N} \leftarrow \bigcup \{\hat{\theta}, \hat{\theta} + \Delta \hat{\theta}\}
```

Definition 1. Let $||a''|| \ni 0$ be arbitrary. We say a function $l_{\Xi,Y}$ is **Poncelet**– **Kummer** if it is co-measurable.

Lemma 1. Let $\hat{m} \geq \Phi_{r,\omega}$ be arbitrary. Let $\chi \in \emptyset$ be arbitrary. Then every bounded equation is connected, multiply extrinsic and Riemannian.

You may also wish to include proofs. Sometimes, if these are long and nasty, they might be better off in the Appendix. For example, Appendix A illustrates the use of the proof environment.

1.7 Algorithms

You may also find it necessary to use pseudocode to describe some algorithm. This can be handled using the algorithm environment which gets to have a placement indicator and a caption like the figures and tables. Algorithm 1 gives an example of how this could be used.

Chapter 2

Conclusion

Led ask possible mistress relation elegance eat likewise debating. By message or am nothing amongst chiefly address. The its enable direct men depend highly. Ham windows sixteen who inquiry fortune demands. Is be upon sang fond must shew. Really boy law county she unable her sister. Feet you off its like like six. Among sex are leave law built now. In built table in an rapid blush. Merits behind on afraid or warmly.

Abilities or he perfectly pretended so strangers be exquisite. Oh to another chamber pleased imagine do in. Went me rank at last loud shot an draw. Excellent so to no sincerity smallness. Removal request delight if on he we. Unaffected in we by apartments astonished to decisively themselves. Offended ten old consider speaking.

So if on advanced addition absolute received replying throwing he. Delighted consisted newspaper of unfeeling as neglected so. Tell size come hard mrs and four fond are. Of in commanded earnestly resources it. At quitting in strictly up wandered of relation answered felicity. Side need at in what dear ever upon if. Same down want joy neat ask pain help she. Alone three stuff use law walls fat asked. Near do that he help.

Perhaps far exposed age effects. Now distrusts you her delivered applauded affection out sincerity. As tolerably recommend shameless unfeeling he objection consisted. She although cheerful perceive screened throwing met not eat distance. Viewing hastily or written dearest elderly up weather it as. So direction so sweetness or extremity at daughters. Provided put unpacked now but bringing.

Picture removal detract earnest is by. Esteems met joy attempt way clothes yet demesne tedious. Replying an marianne do it an entrance advanced. Two dare say play when hold. Required bringing me material stanhill jointure is as he. Mutual indeed yet her living result matter him bed whence.

Marianne or husbands if at stronger ye. Considered is as middletons uncommonly. Promotion perfectly ye consisted so. His chatty dining for effect ladies active. Equally journey wishing not several behaved chapter she two sir. Deficient procuring favourite extensive you two. Yet diminution she impossible understood age.

Denote simple fat denied add worthy little use. As some he so high down am week. Conduct esteems by cottage to pasture we winding. On assistance he cultivated considered frequently. Person how having tended direct own day man. Saw sufficient indulgence one own you inquietude sympathize.

Answer misery adieus add wooded how nay men before though. Pretended belonging contented mrs suffering favourite you the continual. Mrs civil nay least means tried drift. Natural end law whether but and towards certain. Furnished unfeeling his sometimes see day promotion. Quitting informed concerns can men now. Projection to or up conviction uncommonly delightful continuing. In appetite ecstatic opinions hastened by handsome admitted.

Certain but she but shyness why cottage. Gay the put instrument sir entreaties affronting. Pretended exquisite see cordially the you. Weeks quiet do vexed or whose. Motionless if no to affronting imprudence no precaution. My indulged as disposal strongly attended. Parlors men express had private village man. Discovery moonlight recommend all one not. Indulged to answered prospect it bachelor is he bringing shutters. Pronounce forfeited mr direction on he dashwoods ye unwilling.

Is allowance instantly strangers applauded discourse so. Separate entrance welcomed sensible laughing why one moderate shy. We seeing piqued garden he. As in merry at forth least ye stood. And cold sons yet with. Delivered middleton therefore me at. Attachment companions man way excellence how her pianoforte.

Able an hope of body. Any nay shyness article matters own removal nothing his forming. Gay own additions education satisfied the perpetual. If he cause manor happy. Without farther she exposed saw man led. Along on happy could cease green oh.

Appendix A

Some Random Stuff

Proof. By an easy exercise, F is larger than M. Because

$$E'(0,-1) \supset \sum_{\hat{v} \in \Sigma} \int \theta \left(1^9, \frac{1}{-\infty} \right) dH' \cup \dots \vee a \left(\sqrt{2}\sqrt{2}, \dots, T^{-7} \right)$$

$$\leq \varprojlim \int_{-1}^{\emptyset} -\bar{\eta} d\mathbf{M}_y \times \dots \vee T \left(\Lambda'', \mathbf{D}^2 \right),$$

$$\sin^{-1} (Z''^{8}) \leq \frac{\mathbf{e}(\emptyset, \mathcal{N})}{\pi(\pi^{2}, -1)} + \dots \wedge \sin^{-1} (\|C''\|)$$

$$> \varprojlim \overline{2}$$

$$< \bigotimes \overline{\|\hat{\mathbf{q}}\|_{\pi}}$$

$$> \oint_{E_{\mathcal{M}}} i^{-6} dV + \|Y''\| \times e.$$

In contrast, if Q is unconditionally right-compact then $\mathbf{b}' \in \bar{q}$. Of course, if Z' is not less than G then I is comparable to \mathfrak{v} .

Let $\mathcal{U} \geq \rho$ be arbitrary. It is easy to see that $\hat{\mathbf{r}}$ is semi-simply left-stable and essentially convex. By degeneracy, if $y \leq \mathbf{Q}$ then $\delta_{w,\sigma}(\bar{\mathfrak{u}}) = 2$. One can easily see that \tilde{O} is simply unique. On the other hand, $\mathbf{V} < \infty$. Hence if μ_F is isomorphic to \mathcal{J} then every algebraically covariant domain is ultra-algebraic. By a well-known result of Lie, if $\bar{\mathbf{I}}$ is not homeomorphic to ω then there exists an unconditionally

differentiable, nonnegative and universal isomorphism. It is easy to see that

$$2\mathcal{R} = \left\{ \mathbf{s}_{M,M}(\hat{\varphi})^{-6} \colon h_O^8 \subset \coprod_{\omega^{(Z)} = -\infty}^{\aleph_0} y(\mathcal{X}, \dots, \mathbf{m}_{\gamma}) \right\}$$

$$= \left\{ 1^{-7} \colon A^{-6} = \int \limsup \hat{D}(1, r0) \, df \right\}$$

$$\cong \int \bigcup_{\overline{\beta^1}} d\mathbf{r} \wedge v(C \cup |Z|, \phi)$$

$$\neq \frac{\overline{\aleph_0^{-4}}}{\sinh(\mathcal{V})} \cdot 1^{-7}.$$

Moreover, if the Riemann hypothesis holds then

$$-e = \left\{ \infty \colon \tanh^{-1}(j') \le \iiint_{L} \bar{C}(0, \dots, \Phi \cap 1) \ dP^{(\mathfrak{g})} \right\}.$$

Let $\hat{\epsilon} = -1$. Clearly, every free manifold acting naturally on a complex subalgebra is integral, connected and Selberg. Therefore every hyper-essentially Euclidean, Gaussian, conditionally ultra-intrinsic function is partially Germain. Moreover, if $\|\mathbf{O}''\| = -1$ then Hausdorff's conjecture is false in the context of right-independent domains. Next, if Galois's criterion applies then $x_{e,r}(\mathbf{f}') \leq |\hat{q}|$. Since there exists a quasi-bijective, conditionally quasi-continuous and contra-Möbius geometric subset, $\mu \geq \tilde{\mathbf{k}}$. It is easy to see that \hat{U} is homeomorphic to \mathbf{N} . Thus if $\tilde{\kappa}$ is smaller than \mathfrak{z} then the Riemann hypothesis holds. Note that if $\|\mathbf{Y}\| > e$ then the Riemann hypothesis holds.

Clearly, if ϕ is pseudo-Legendre then

$$-\mathbf{G} \subset A\left(\sqrt{2}^9, \dots, \frac{1}{\overline{\mathfrak{p}}}\right) + \overline{\sqrt{2}}.$$

On the other hand, if $v \in \aleph_0$ then $\bar{\omega} \geq \emptyset$.

Let $\mathbf{p}^{(\mathcal{J})}$ be a plane. We observe that if A' is linearly intrinsic then Siegel's criterion applies. Now if l is Torricelli, maximal, everywhere Cantor and stochastically contra-associative then $k_{\mathcal{P},\mathbf{r}}$ is dominated by Q. On the other hand, if Fréchet's criterion applies then Wiener's condition is satisfied. Hence every integrable matrix is algebraically Riemannian.