Vérification formelle de systèmes par Model-Checking

Nathalie Sznajder Sorbonne Université, LIP6

Les méthodes formelles

- Preuve assistée par ordinateur
- Test
- Model-Checking

Model-Checking

Est-ce que le satisfait système spécification algorithme de modèle formule **Model Checking**

Références bibliographiques

- Model Checking, E. Clarke, O. Grumberg,
 D. Peled, MIT Press 99
- Vérification de logiciels : techniques et outils du model-checking, P. Schnoebelen, B. Bérard, M. Bidoit, F. Laroussinie, A. Petit, Vuibert 99
- Principles of Model-Checking, C. Baier, J.-P.
 Katoen, MIT Press 08

Plan

- I. Modélisation
- 2. Spécifications
 - I. Généralités
 - 2. LTL
 - 3. CTL
- 3. Algorithmes de Model Checking
 - I. LTL
 - 2. CTL
 - 3. Equité

I. Modélisation

- On veut vérifier comportement du système au cours du temps.
- Notion d'état à un instant donné
- Actions du système → changement d'état.
- → Système de transition
- Informations supplémentaires sur
 - communication (notion d'action)
 - propriétés vérifiées par les états (propositions atomiques)

Structure de Kripke

- Définition: M=(Q,T,A, q₀,AP, I)
 - Q : ensemble fini d'états
 - A : alphabet d'actions (facultatif)
 - T : relation de transitions entre états
 - q₀: état initial
 - AP : ensemble de propositions atomiques
 - $I: Q \rightarrow 2^{AP}$, étiquetage des états

Structure de Kripke

- Soit M=(Q,T,A, q₀,AP, I) une structure de Kripke.
- Soit q un état. L'ensemble {q'∈Q| il existe a ∈A, (q,a,q')∈T} est l'ensemble des successeurs de q.

Exemple: distributeur

[Principles of Model-Checking, C. Baier, J.-P. Katoen]

Exemple: circuit

[Principles of Model-Checking, C. Baier, J.-P. Katoen]

Exemple: exclusion mutuelle

Structure de Kripke

- Soit M= (Q,T,A, q₀,AP, I).
- On supposera que T est totale, i.e., chaque état a au moins un successeur.
- On peut compléter une structure de Kripke : on rajoute un état puits successeur des états dead-lock.

Descriptifs de haut niveau

- Programmes séquentiels
- Programmes concurrents
- Réseaux de Petri

• ...

Une structure de Kripke générée par un réseau de Petri

Exécutions et traces

- Soit M=(Q,T,A, q₀,AP, I). Une exécution de M est une séquence infinie r=q₀a₀q₁a₁q₂a₂... telle que (q_i,a_i,q_{i+1})∈T, pour tout i≥0.
- On peut omettre l'étiquetage des transitions : r=q₀q₁q₂...
- Une trace d'exécution de M est l'étiquetage d'une exécution: l(r)=l(q₀)l(q₁)l(q₂)...

Arbre d'exécutions d'une structure de Kripke

Arbre d'exécutions d'une structure de Kripke

- Correspond au «dépliage» de la structure de Kripke
- Sa racine est l'état initial de la structure de Kripke
- Au niveau i, les fils d'un noeud sont les états successeurs au niveau i+ l
- La relation de transition est totale : l'arbre est infini

Systèmes concurrents

- Compositionnalité des modèles, description modulaire
- Différents modes de synchronisation
 - entrelacement
 - variables partagées
 - communication par rendez-vous (synchrone)
 - communication par canaux de communication (asynchrone)
 - produit synchrone
 - ...
- explosion combinatoire

Exemple: exclusion mutuelle II

Exercice

- Décrire formellement la structure de Kripke ci-dessus.
- Donner une exécution, une trace d'exécution
- Dessiner l'arbre d'exécutions associé (3 premiers niveaux).

2. Spécifications

Propriétés sur les systèmes de transition (l)

- Invariance : tous les états du système vérifient une certaine propriété
- Sûreté: quelque chose de mauvais n'arrive jamais
- Accessibilité : un état donné est accessible depuis l'état initial

Propriétés sur les systèmes de transition (II)

- Vivacité : Quelque chose de «bon» finira par arriver
- Equité : Quelque chose se produira infiniment souvent

Logiques temporelles

- Permettent d'exprimer propriétés sur séquences d'observations
- Utilisation de connecteurs temporels et de quantificateurs sur les chemins

Logiques temporelles: pourquoi?

- On pourrait utiliser prendre ordre.
 Difficile à écrirelcomprendre efficace
 Difficile à écrirelcomprendre efficace
 Vérification Peu efficace un jour vérification prequête sera un jour premier

$$\forall t \cdot (\mathsf{requete} \to \exists t' \geq t \cdot (\mathsf{reponse}))$$

Logiques temporelles

- Pas de variable (instants implicites), mais modalités.
- Temporel ≠ temporisé : logiques temporelles ne quantifient pas écoulement du temps.

Logiques temporelles linéaires ou arborescentes

- 2 approches:
 - temps linéaire : propriétés des séquences d'exécutions (futur déterminé)
 - temps arborescent : propriétés de l' arbre d'exécutions (tous les futurs possibles)

2.2 La logique LTL

[Pnueli 77]

- Modèle des formules : une trace d'exécution infinie.
- t, i ⊧ φ ssi la formule φ est vérifiée à la position i de la trace.
- Défini inductivement sur la formule

- Rappel : une trace d'exécution ≡
 exécution dans laquelle seul l'étiquetage
 des états est visible
- \rightarrow c'est un mot (infini) sur l'alphabet 2^{AP} .
- Soit t une trace, on note t(i) la «lettre» à la position i≥0, i.e. l'ensemble des propositions atomiques vraies.

 $t,i \models p ssi p \in t(i)$

$$X\phi: \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$
 ...

 $t,i \models X\phi ssi t,i+I \models \phi$

t,i ⊧ Fφ ssi il existe j≥i tel que t,j⊧φ

t,i ⊧ Gφ ssi pour tout j≥i, t,j⊧φ

t,i $\not\models \phi_1 U \phi_2$ ssi il existe $j \ge i$, t, $j \not\models \phi_2$ et, pour tout $i \le k < j$, t, $k \not\models \phi_1$

 $φ:= p \in AP \mid \neg φ \mid φ \lor φ$ |Xφ| Fφ| Gφ| φUφ

$$φ:= p \in AP \mid \neg φ \mid φ_1 \lor φ_2$$

$$|X φ| F φ| Gφ| φUφ$$

$$\top \equiv p \lor \neg p$$
, pour $p \in AP$ quelconque
$$\bot \equiv \neg \top$$

$$\phi_1 \land \phi_2 \equiv \neg (\neg \phi_1 \lor \neg \phi_2)$$

$$\phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2$$

En fait, Fφ et Gφ macros aussi :

- Fφ≡⊤Uφ
- $G\phi \equiv \neg F(\neg \phi)$

Exercice: vérifier.

$$φ:= p \in AP \mid \neg φ \mid φ_1 \lor φ_2$$

$$|X φ| φUφ$$

- Autres macros utiles :
 - (Weak until) $\phi_1 W \phi_2 \equiv G \phi_1 \vee \phi_1 U \phi_2$
 - (Release) $\phi_1 R \phi_2 \equiv \phi_2 W (\phi_1 \wedge \phi_2) \equiv$ $G \phi_2 \vee \phi_2 U (\phi_1 \wedge \phi_2)$

LTL: Exemples

- Accessibilité : F (x=0)
- Invariance : $G \neg (x=0)$
- Vivacité : G(request → F response)
- Equité forte : GF enabled → GF scheduled
- Equité faible : FG enabled → GF scheduled
- Relâchement de contrainte : reset R alarm

LTL: Exercice I

- Toute requête sera un jour satisfaite (AP = {requete, reponse})
- A chaque fois que de l'argent a été retiré, le code pin a été fourni (AP={cash-withdraw, pin-ok})
- Deux processus ne sont jamais en section critique en même temps (AP= {critique₁, critique₂})
- Si un processus demande l'accès en section critique, il l'obtiendra un jour (AP = {demande_crit, acc_crit})
- Une fois que le feu est vert, il ne peut pas devenir rouge immédiatement (AP= {vert, rouge})
- Lorsque le feu est rouge, il deviendra vert un jour
- Lorsque le feu est vert, il deviendra rouge un jour, après avoir été orange (AP= {vert, rouge, orange})

LTL: Exercice II

- Vérifier que $\neg X\phi \equiv X\neg \phi$, $\neg (\phi_1 U\phi_2) \equiv \neg \phi_1 R\neg \phi_2$
- Dites si, à chaque position de la trace ci-dessous, les propositions suivantes sont vérifiées : p∧q, F(p∧q), pUq.

LTL: Exercice III

- Les équivalences suivantes sont-elles vraies?
 - $G(Fp \land Fq) \leftrightarrow GFp \land GFq$
 - F(Gp∧Gq) ↔FGp∧FGq
 - G(Fp∨Fq)↔GFp∨GFq
 - F(Gp∨Gq)↔FGp∨FGq
 - $GF(p \land q) \leftrightarrow GFp \land GFq$
 - GF(p∨q)↔GFp∨GFq
 - FG(p∧q)↔FGp∧FGq
 - $FG(p \lor q) \leftrightarrow FGp \lor FGq$