## Approval Talk [HIG-23-005]

# "Search for rare decays of the Higgs boson into a photon and a $\rho^0$ , $\phi$ or $K^{*0}$ meson"

R. Covarelli $^1$  M. Pelliccioni $^1$  G. Umoret $^1$  M. D'Alfonso $^2$  G. Gomez Ceballos $^2$  C. Paus $^2$  K. Yoon $^2$ 

<sup>1</sup>Politecnico di Torino, Turin, Italy

<sup>2</sup>Massachusetts Institute of Technology, Cambridge, U.S.

March 19, 2024

## About this analysis

add paper front page

HIG-23-005

#### Collaboration

Collaboration of MIT and Torino groups, targeting different Higgs production categories.

#### Conveners

- ARC: Anadi Canepa (chair), Stefan Spanier, Jian Wang, Angelo Giacomo Zecchinelli
- CCLE: Christoph Maria Ernst Paus

#### **Documentation**

- Relevant links: CADI, TWiki, text
- Latest ANs (two individual + one combined):
   AN-22-004 (MIT, v9), AN-22-067 (Torino, v10), and AN-23-004 (combined, v7)

2 / 47

# Introduction

#### Motivations

#### Higgs coupling with light quarks (u,d,s)

- Suppressed couplings and large QCD background hamper direct searches.
- Class of decays suggested H  $\rightarrow$  M $\gamma$ , where M is a light-quark meson.
- In this analysis,  $M=\phi, \rho^0, K^{*0}$  are considered.

| Channel               | Coupling              | $SM\;\mathcal{BR}(H\toM\gamma)$                                                                           |
|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|
| $H \to \phi \gamma$   | s                     | $(1.68 \pm 0.08) \times 10^{-5}$ [1]                                                                      |
| $H\to \rho^0 \gamma$  | u, d                  | $(2.31 \pm 0.11) \times 10^{-6}$ [1]                                                                      |
| $H \to K^{*0} \gamma$ | d&s (flavor-changing) | (Only available for H $\rightarrow$ d $\overline{s}$ + $\overline{d}$ s) $1.19\times10^{-11} \text{ [2]}$ |

Table 1:  $H \to M\gamma$  channels considered in this analysis with their respective couplings and predicted branching ratios.

4 / 47

#### Motivations

#### $H \rightarrow M\gamma$

- **Direct contribution**. The Higgs couples via Yukawa coupling to the quarks, one of which radiates a photon.
- Indirect contribution. The off-shell  $\gamma^*$  or  $Z^*$  produced in  $H \to \gamma \gamma^*$ ,  $\gamma Z^*$  fragments into a meson.

Direct and indirect contributions interfere destructively. Due to light quark masses, direct contribution is smaller than indirect. *Direct contribution is sensitive to deviation from SM*. Branching ratios are *typically*  $\mathcal{O}(10^{-5}-10^{-6})$ .



(a) Direct contributions via Yukawa coupling to the light quarks.



(b) Indirect contribution via a virtual photon or Z boson.

Figure 1: Leading order Feynman diagrams to the  $H \rightarrow M\gamma$  processes. Image taken from Fig. 2 of [1].

#### Motivations

#### Flavor-conserving probes

- φ: s quark coupling (diagrams above)
- $\rho^0$ : u and d quark coupling

## Flavor-changing probe

 K\*0: flavor-changing s and d quarks via weak interaction (diagrams below)



Figure 2: Feynman diagrams showing the different Higgs boson decay mechanisms into a photon and a light meson (top:  $\phi$  meson; bottom:  $K^{*0}$  meson).



# **Analysis Strategy**

## **Analysis Strategy**

#### Final states

- 1. High energy **photon**.
- 2. High energy di-track from meson.



Figure 3: Di-track systems for the different mesons considered in this analysis.

3. Signal events extracted from **photon & di-track invariant mass spectrum**.

8 / 47

## **Analysis Strategy**

#### • Higgs Production Categories



• No  $e/\mu$ .



- $p_T^{\gamma} > 75$  GeV.
- $\bullet \ \ \text{No} \ e/\mu$

## Low- $p_T^{\gamma}$ VBF

- $40 < p_T^{\gamma} < 75$  GeV.
- No e/μ



- At least one e/μ.
- Also included is t\$\overline{t}\$H\$, accounting for  $\sim 30\%$ .

March 19, 2024

9 / 47

• High Level Triggers (HLT)

Three types of triggers are employed.

#### Tau-like trigger

#### Photon + jets with $\tau$ -ID

- $\rightarrow$  ggH, low- $p_T^{\gamma}$  VBF
  - Photon  $p_T^{\gamma} > 35 \text{ GeV} +$ tau-like jet  $p_T^{\text{j}} > 35 \text{ GeV}.$
  - Tau-leg similar to isolated di-track system.
  - Active during 2018.

## VBF-dedicated trigger

# $\begin{array}{l} {\sf High-}p_T^{\gamma} \; {\sf photon} \; + \; {\sf VBF-like} \; {\sf jets} \\ \rightarrow \; {\sf high-}p_T^{\gamma} \; {\sf VBF} \end{array}$

- Photon  $p_T^{\gamma} > 35 \text{ GeV} + \text{di-jet}$  with large  $M_{\text{ii}}$  and  $\Delta \eta_{\text{ii}}$ .
- Active partly during 2016-17 and fully during 2018.

## Leptonic trigger

## Double or single lepton

- $\rightarrow$  VH
  - Single or double-muon (electron) lowest p<sub>T</sub> thresholds vary depending on year.
  - To complement selection, triggers requiring a lepton and a photon is also used.

## • High Level Triggers (HLT)

|                                | ggH          | $High-p_{T}^{\gamma}VBF$ | $Low\text{-}p_{T}^{\gamma}\;VBF$ | VH                 |
|--------------------------------|--------------|--------------------------|----------------------------------|--------------------|
|                                |              |                          |                                  | single/di-muon     |
| Triggers                       | tau-like     | VBF-like                 | tau-like                         | single/di-electron |
|                                |              |                          |                                  | muon+gamma         |
|                                |              | 28.2 (2016)              |                                  |                    |
| Luminosity (fb <sup>-1</sup> ) | 39.50 (2018) | 7.7 (2017)               | 39.50 (2018)                     | 138 (2016–2018)    |
|                                |              | 60 (2018)                |                                  |                    |

#### HLT Efficiencies and Scale Factors

Trigger efficiency scale factor defined as the ratio of data vs. MC efficiency.

$$\mathsf{SF} = \frac{\epsilon_{\mathsf{Data}}}{\epsilon_{\mathsf{MC}}}$$

#### HLT Efficiencies and Scale Factors

For the tau-like trigger, Data = Single Muon, MC = Drell-Yan. Photon-leg and tau-leg efficiencies measured separately, where

FIXI do I need these equations?

$$\varepsilon_{\gamma}^{HLT} = \frac{\text{HLT\_Mu17\_Photon30} \land \text{offline selection} \land \text{HLT\_IsoMu24}}{\text{offline selection} \land \text{HLT\_IsoMu24}}$$

$$\varepsilon_{TwoProngs}^{HLT} = \frac{\text{HLT\_IsoMu24\_TwoProngs35} \land \text{offline selection} \land \text{HLT\_IsoMu24}}{\text{offline selection} \land \text{HLT\_IsoMu24}}$$

#### HLT Efficiencies and Scale Factors

Tau-like trigger efficiencies MC (blue) vs. Data (black).





Figure 4: Photon-leg and tau-leg efficiencies of the tau-like trigger.

#### • HLT Efficiencies and Scale Factors

VBF-dedicated trigger efficiencies MC (red) vs. Data (blue).



Figure 5: VBF-dedicated trigger photon-leg efficiencies for MC and data, shown for the H ightarrow  $ho^0\gamma$  channel in 2016 (top-left), 2017 (top-right), and 2018 (bottom).

# **Simulated Samples**

## Simulated Samples

#### MC Generation

Gen-level: POWHEG (NLO) or MADGRAPH5\_aMC@NLC (LO) PDFs: NNPDF3.1 (NNLO)

Hadronization: PYTHIA 8.212

• SM processes considered in background simulation are  $\gamma,\,W\to l\nu,\,Drell\mbox{-Yan}\,\,Z\to II$  with jets,  $t\bar t,\,W\gamma,\,and\,Z\gamma.$ 

Cross sections for Higgs production: FIXI double check

| Process     | $\sigma$ (fb) |
|-------------|---------------|
| ggH         | 48580         |
| VBF         | 3782          |
| $W_{l\nu}H$ | 471           |
| $Z_{II}H$   | 77            |

## Simulated Samples

#### Signal Simulation

#### Polarization reweighting of events.

Higgs is a scalar, and angular momentum conservation constrains the mesons to have transverse spin alignment in the H  $\to$  M $\gamma$  process. PYTHIA simulates unpolarized decay products. Therefore, signal events are reweighted by  $(3/2)\sin^2\theta$ , where  $\theta$  is the angle between positive track in meson rest frame and meson flight direction in lab frame.

FIX! Which plot to include?

19 / 47

#### Photon selection

|                      | ggH   | High- $\mathbf{p}_{\mathbf{T}}^{\gamma}$ VBF | $Low\text{-}p_{\mathrm{T}}^{\gamma}VBF$ | VH    |
|----------------------|-------|----------------------------------------------|-----------------------------------------|-------|
| $p_T^{\gamma}$ [GeV] | > 38  | > 75                                         | $38 < p_T^{\gamma} < 75$                | > 40  |
| $ \eta^{\gamma} $    | < 2.1 | < 1.4                                        | < 2.1                                   | < 2.5 |
| γ-ID signal eff.     | 80%   | 90%                                          | 80%                                     | 90%   |

Table 2: Photon selection criteria across different production categories.

- γ-ID signal eff. = MVA-based selection ID [3]
- $p_T^{\gamma}$  cut based on trigger
- FIXI ggH & VH—BUT PAPER IS NOT FIXED! .
- ggH/VBF: conversion veto, VH: pixel veto.
- Highest- $p_T^{\gamma}$  photon chosen as candidate.



Di-track system reconstruction

#### Track selection

- Originate from PV.
- Pass "high purity" criteria.

#### Meson definition

- Pair of oppositely charged tracks.
- $p_T > 5$  GeV,  $|\eta| < 2.5$ .
- At least one track  $p_T > 20$  GeV.

#### Invariant mass

- Di-track system invariant mass windows and sidebands (next slide).
- $K^{\pm}\pi^{\mp}$  system: if both combinations exist, then the one closest to  $m_{K^{*0}}$  is selected.
- Reject events where  $m_{\rm KK}$  consistent with  $m_\pi$  and have higher  $p_T$ , vice versa.

Applies to all production categories.

March 19, 2024

#### Di-track system reconstruction

Mass windows applied to invariant mass of di-track system.



 $\rho^0$  mass window:  $0.62 < m_{\pi\pi} < 0.92 \text{ GeV}$ 

Sidebands:  $0.50 < m_{\pi\pi} < 0.62 \text{ GeV}$  $0.92 < m_{\pi\pi} < 1.00 \text{ GeV}$ 



 $\phi$  mass window:  $1.008 < m_{KK} < 1.032 \text{ GeV}$ 

Sidebands: 
$$1.000 < m_{\rm KK} < 1.008 \, {\rm GeV}$$

$$1.032 < m_{\rm KK} < 1.050 \, {\rm GeV}$$



$${
m K}^{*0}$$
 mass window:  $0.84 < m_{{
m K}\pi} < 0.94~{
m GeV}$ 

Sidebands: 
$$0.80 < m_{\mathrm{K}\pi} < 0.84~\mathrm{GeV}$$

$$0.94 < m_{K\pi} < 1.00 \text{ GeV}$$

Figure 6: Di-track mass distribution in selected events in data, for the ggH category of the analysis,  $\rho^0 \gamma$  (left),  $\phi \gamma$  (middle) and  $K^{*0} \gamma$  (right) channels. Vertical dashed lines represent the signal mass region borders.

Answer ARC MAR 05 guestion 2.

#### Di-track system selection

Define the relative **charged isolation** of the leading meson candidate,

$$I^{\text{trk}}(M) = \frac{p_T^{\text{M}}}{p_T^{\text{M}} + \sum_{\text{trk}} |p_T^{\text{trk}}|},$$

and the neutral isolation as

$$I^{\text{neu}}(M) = \frac{p_T^{\text{M}}}{p_T^{\text{M}} + \sum_{\text{neu}} |p_T^{\text{neu}}|}.$$

 $\sum_{trk/neu} |p_T^{trk/neu}|$  : sum of charged/neutral track  $p_T$  within  $\Delta R = 0.3$  of meson candidate.

|               | ggH   | High- $p_{\mathrm{T}}^{\gamma}$ VBF | $Low\text{-}p_{T}^{\gamma}\;VBF$ | VH    |
|---------------|-------|-------------------------------------|----------------------------------|-------|
| $p_T^M$ [GeV] | > 38  | > 40                                | > 40                             | > 40  |
| $I_M^{trk}$   | > 0.9 | > 0.9                               | > 0.9                            | > 0.8 |
| $I_M^{neu}$   | > 0.8 | -                                   | -                                | -     |

Table 3: Di-track system criteria across different production categories.

24 / 47

## Event tagging

|               | ggH                                                                                              | High- $p_T^\gamma$ VBF                                                              | $Low\text{-}p_{\mathrm{T}}^{\gamma}VBF$                              | VH                                                                          |
|---------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Event tagging | Meson candidate within a jet with $p_{_T}^j>40~{\rm GeV}, \\ {\rm tracks~with} \\ \Delta R<0.07$ | 2 jets with $p_T^j > 40 \text{ GeV,} \\ m_{jj} > 400 \text{ GeV,} \\ \eta_{jj} > 3$ | 2 jets with $p_T^j > 30,20$ GeV, $m_{jj} > 300$ GeV, $\eta_{jj} > 3$ | 1 selected and isolated $e/\mu$ or 2 selected $e/\mu$ compatible with $m_Z$ |

Table 4: Event tagging selection criteria across different production categories.

March 19, 2024

25 / 47

#### **Summary of Event Selection**

| Common selections        |                                       |                                                      |                                            |                                                                 |  |
|--------------------------|---------------------------------------|------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|--|
|                          | 2 "high-purity" tracks, opposite sign |                                                      |                                            |                                                                 |  |
| M selection              | 17                                    | $p^{\text{trk}}$   < 2.5, $p_T^{\text{trk1}}$ > 20 G | GeV, $p_T^{\text{trk2}} > 5$ GeV, $ \eta $ | M   < 2.1                                                       |  |
|                          | $0.62 < m_{\pi\pi} < 0.92 \text{ Ge}$ | $eV(\rho^0) / 1.008 < m_{KK}$                        | < 1.032 GeV (φ) / 0                        | $.84 < m_{\mathrm{K}\pi} < 0.94 \mathrm{GeV} (\mathrm{K}^{*0})$ |  |
| Category                 | ggH                                   | VBF high- $p_T^\gamma$                               | VBF low- $p_T^{\gamma}$                    | VH                                                              |  |
| Trigger                  | Photon +                              | high- $p_T$ photon +                                 | Photon +                                   | Double or single                                                |  |
|                          | jet with $\tau$ -ID                   | VBF-like jets                                        | jet with $\tau$ -ID                        | lepton                                                          |  |
| $p_T^{\gamma}$ [GeV]     | > 38                                  | > 75                                                 | > 40 and < 75                              | > 40                                                            |  |
| $ \eta^{\gamma} $        | < 2.5                                 | < 1.4                                                | < 2.1                                      | < 2.5                                                           |  |
| $\gamma$ -ID signal eff. | 80%                                   | 90%                                                  | 80/90%                                     | 90%                                                             |  |
| $p_T^{\mathrm{M}}$ [GeV] | > 38                                  | > 30                                                 | > 38                                       | > 38                                                            |  |
| $I^{\text{trk}}(M)$      | > 0.9                                 | > 0.9                                                | > 0.9                                      | > 0.8                                                           |  |
| $I^{\text{neu}}(M)$      | > 0.8                                 | -                                                    | -                                          | -                                                               |  |
| Event                    | Meson candidate                       | 2 jets with                                          | 2 jets with                                | 1 selected and                                                  |  |
| tagging                  | within a jet with                     | $p_T^{\rm j} > 40~{ m GeV}$                          | $p_T^{\rm j} > 30/20~{ m GeV}$             | isolated e/μ                                                    |  |
|                          | $p_T^{\rm j} > 40$ GeV, tracks        | $m_{\rm ii} > 400~{ m GeV}$                          | $m_{\rm ii} > 300  {\rm GeV}$              | or 2 selected e / μ                                             |  |
|                          | with $\Delta R < 0.07$                | $ \Delta \eta_{ m jj}  > 3$                          | $ \Delta \eta_{ m jj}  > 3$                | compatible with Z mass                                          |  |
|                          |                                       | BDT                                                  | categories                                 |                                                                 |  |
| cat0                     | BDT> 0.55                             | BDT> 0.7                                             | BDT> 0.7                                   | -                                                               |  |
| cat1                     | -0.4 < BDT < 0.55                     | -0.6 < BDT < 0.7                                     | -0.6 < BDT < 0.7                           | -                                                               |  |
| PAPER (Tal               | ole 1)                                |                                                      |                                            |                                                                 |  |

Figure 7: Summary of the event selections, including both common and category-specific selections.

## MC/Data Background Comparison

content...

Multivariate Analysis (MVA) Overview

#### Motivation

Improvement of signal-to-background ratio in categories with backgrounds dominated by  $\gamma$  + jet and multijet events.  $\rightarrow$  **ggH**, **low-** $p_T^{\gamma}$  **VBF**, and **high-** $p_T^{\gamma}$  **VBF** categories.

#### Methodology

- BDT classifiers based on ROOT TMVA [4], optimized with the Gradient boosting method.
- Training and validation samples defined by meson mass SR & sidebands.
- Signal & Background events weighted by  $1/(\sigma_M/M)$ , where

$$\frac{\sigma_{M}}{M} = \sqrt{\left(\frac{\sigma_{m}}{m}\right)_{\text{meson}}^{2} + \left(\frac{\sigma_{E}}{E}\right)_{\gamma}^{2}}$$

29 / 47

#### FIXI match formula in paper

- BDT classification is further split into two sub-categories ("cat0" and "cat1") based on optimized discriminator threshold values to improve upper limit results.
- FIXI write more stuff (e.g. cross-validation)

K. Yoon Approval Talk HIG-23-005 March 19, 2024

#### MVA Overview

Input variables:

|                 | ggH                                | High- $p_{\mathrm{T}}^{\gamma}$ VBF | $Low\text{-}p^\gamma_TVBF$         |
|-----------------|------------------------------------|-------------------------------------|------------------------------------|
|                 |                                    | $p_T^{M\gamma}$                     | $p_T^{M\gamma}$                    |
| Kinematics      | $p_T^{\gamma}$                     | $p_T^{\gamma}$                      | $p_T^{\gamma}$                     |
|                 | $p_T^M$                            | $p_T^M/m_{M\gamma}$                 | $p_T^M/m_{M\gamma}$                |
|                 | $\eta_M$                           |                                     |                                    |
| Meson Isolation | $I^{\mathrm{trk}}(\mathrm{trk}_1)$ | $I^{\mathrm{trk}}(\mathrm{trk}_1)$  | $I^{\mathrm{trk}}(\mathrm{trk}_1)$ |
|                 |                                    | $M_{ m jj}$                         | $M_{ m jj}$                        |
| Jet-related     |                                    | $\Delta\phi_{ m jj}$                | $\Delta\phi_{ m jj}$               |
|                 |                                    | $z^*$                               | $z^*$                              |

Table 5: Input variables used for ggH and VBF categories.

 $z^*$  is the Zeppenfeld variable, defined as  $z^* = |\eta_{\rm M\gamma} - 0.5(\eta_{\rm j1} + \eta_{\rm j2})/|\Delta\eta_{\rm jj}|$ .

## MVA: ggH category

Training samples

Signal: MC-generated

**Background**: Data from meson mass sidebands.

4 input variables

```
 \begin{array}{c|c} p_T^{\gamma} & \text{photon } p_T \\ p_T^{\text{M}} & \text{meson } p_T \\ \eta_{\text{M}} & \text{meson } \eta \\ I^{\text{trk}}(\text{trk}_1) & \text{leading-track charged isolation} \end{array}
```

BDT sub-categories

cat0: BDT-score > 0.55, optimized for max value of  $S/\sqrt{B}$ . cat1: -0.4 < BDT-score < 0.55

#### MVA: ggH category

Training results:

FIXI possible to add cat0 and cat1 lines?



Figure 8: BDT-score shown for the three decay channels of ggH.

32 / 47

## • MVA: High & Low- $p_T^{\gamma}$ VBF categories

Training samples

Signal: MC-generated

**Background**:  $\gamma$ +jets simulation and  $\gamma$  di-track events where the two tracks have the same charge.

7 input variables
 Variable that is correlated with Higgs candidate mass is divided by the mass.

 $\begin{array}{ll} p_T^{\rm Mr} & {\rm Higgs\ candidate}\ p_T \\ p_T^{\rm Y} & {\rm photon}\ p_T \\ p_T^{\rm M}/m_{\rm M\gamma} & {\rm meson}\ p_T\ {\rm divided\ by\ Higgs\ candidate\ mass} \\ I^{\rm trk}({\rm trk}_1) & {\rm leading\mbox{-}track\ charged\ isolation} \\ M_{\rm jj} & {\rm di\mbox{-}jet\ invariant\ mass} \\ \Delta\phi_{\rm jj} & \Delta\phi\ {\rm of\ the\ two\ jets} \\ z* & {\rm Zeppenfeld\ variable} \end{array}$ 

FIX! does not match with paper!

BDT sub-categories

cat0: BDT-score > 0.7, optimized for max value of  $S/\sqrt{B}$ .

cat1: -0.6 < BDT-score < 0.7

March 19, 2024

- MVA: High- $p_T^{\gamma}$  category
  - Training results:

## I NEED THE PLOT **FILES** (preferably pdf)



Figure 9: BDT-score shown for the three decay channels of High- $p_T^{\gamma}$ .

- MVA: Low- $p_T^{\gamma}$  category
  - Training results:

## FIX! I NEED THE PLOT **FILES** (preferably pdf)



Figure 10: BDT-score shown for the three decay channels of Low- $p_T^{\gamma}$ .



# **Signal Modeling & Systematic Uncertainties**

## Signal modeling

- Signal events extracted from the distribution of the reconstructed Higgs boson mass.
- Analytic function: two-tailed Crystal Ball(TTCB).

$$TTCB(t) = \begin{cases} e^{-t^2/2}, & \text{for } -\alpha_L < t < \alpha_R \\ (\frac{n_L}{|\alpha_L|})^{n_L} e^{-\alpha_L^2/2} (\frac{n_L}{|\alpha_L|} - |\alpha_L| - t)^{-n_L}, & \text{for } t \le -\alpha_L \\ (\frac{n_R}{|\alpha_R|})^{n_R} e^{-\alpha_R^2/2} (\frac{n_R}{|\alpha_R|} - |\alpha_R| + t)^{-n_R}, & \text{for } t \ge \alpha_L \end{cases}$$

Fitted via unbinned likelihood to simulated signal events.



Figure 11: Example fitting of the TTCB function to the H  $\rightarrow \rho^0 \gamma$  selected signal samples in the ggH category.

K. Yoon Approval Talk HIG-23-005 March 19, 2024 37 / 47

## Systematic Uncertainties

| Integrated Luminosity                        | 2.5% (2016), 2.3% (2017), and 2.5% (2018)                          |  |
|----------------------------------------------|--------------------------------------------------------------------|--|
| Total inelastic cross section                | 4.6%                                                               |  |
| Trigger efficiencies                         | VBF-dedicated trigger, 2.2-3.4% (photon-leg) and 5.3-5.6% (di-jet) |  |
| Photon ID efficiencies                       | Up to 1.5%, $p_T$ and $\eta$ dependent                             |  |
| Tracking efficiency                          | 4.6-4.8% (2.3-2.6% FIXI ?? per track)                              |  |
| Muon/Electron ID                             | Less than 1.0% (muons) / 1.5% (electrons)                          |  |
| Meson Charged/Neutral Isolation Efficiencies | s 1.7-2.8 %, depending on search channel and isolation type        |  |
| JEC & JES                                    | Up to 3.5% in VBF, negligible in ggH                               |  |
| QCD renormalization and factorization        | 0.4% (VBF), 0.7% (WH), 3.8% (ZH), and 2.6% (ttH)                   |  |
| PDF & ff <sub>S</sub>                        | 1.6-3.2%, depending on Higgs production                            |  |
| Parton shower modeling                       | FIXI what is the number?                                           |  |

## Background modeling

- Analytic functions: Chebychev polynomials (main), Bernstein polynomials and exponential series (determination of shape uncertainties).
- Fitting region defined as  $m_{My}$  sidebands.
  - ggH category:  $110 < m_{M\gamma} < 120$  GeV &  $130 < m_{M\gamma} < 160$  GeV.
  - VBF categories (high & low  $p_T^{\gamma}$ ):  $100 < m_{M\gamma} < 120$  GeV &  $130 < m_{M\gamma} < 170$  GeV.
  - VH category:  $100 < m_{My} < 120 \text{ GeV} \& 130 < m_{My} < 150 \text{ GeV}.$
- Degree of polynomial determined with F-test.
- Bias test.

## Signal & Background Post-fit Distributions







## Signal & Background Post-fit Distributions







- Upper limits on  $\mathcal{B}(H \to \rho^0 \gamma)$ ,  $\mathcal{B}(H \to \phi \gamma)$ , and  $\mathcal{B}(H \to K_0^* \gamma)$  set at 95% CL.
- CLs profile-likelihood ratio used as test-statistics, with the asymptotic approximation.
- Systematic uncertainties treated as nuisance parameters.



43 / 47



Figure 14: Expected and observed upper limits on  $\mathcal{B}(H \to \rho^0 \gamma)$  (top left),  $\mathcal{B}(H \to \phi \gamma)$  (top right), and  $\mathcal{B}(H \to K_0^* \gamma)$  (bottom) split by analysis categories and combined. Green and yellow bands correspond to 1 and  $2\sigma$  confidence intervals in the expected upper limits.

44 / 47

March 19, 2024

|                        | U.L. <i>B</i> (H                         | $I 	o  ho^0 \gamma)$    | U.L. $\mathcal{B}(H)$                    | $H 	o \phi \gamma)$   | U.L. $\mathcal{B}(H)$                              | $\rightarrow K^{*0}\gamma)$  |
|------------------------|------------------------------------------|-------------------------|------------------------------------------|-----------------------|----------------------------------------------------|------------------------------|
| category<br>VH         | Exp. $(10^{-4})$ 62.3 $^{+25.6}_{-17.9}$ | Obs.(10 <sup>-4</sup> ) | Exp. $(10^{-4})$ 37.3 $^{+16.9}_{-11.3}$ | Obs. $(10^{-4})$ 45.0 | $\frac{\text{Exp.}(10^{-4})}{25.3_{-7.3}^{+11.4}}$ | Obs.(10 <sup>-4</sup> ) 48.5 |
| $low-p_T^{\gamma} VBF$ | $49.6^{+22.5}_{-15.0}$                   | 35.6                    | $33.1^{+18.7}_{-11.5}$                   | 27.9                  | $18.8^{+8.90}_{-5.7}$                              | 12.3                         |
| high- $p_T^\gamma$ VBF | $22.9_{-6.9}^{+10.5}$                    | 16.0                    | $16.0^{+9.0}_{-5.5}$                     | 10.7                  | $9.13_{-2.75}^{+4.25}$                             | 6.66                         |
| ggH                    | $6.01_{-1.72}^{+2.53}$                   | 4.37                    | $3.08^{+1.33}_{-0.98}$                   | 3.46                  | $2.20_{-0.62}^{+0.94}$                             | 1.93                         |
| combined               | $5.71^{+2.37}_{-1.63}$                   | 3.74                    | $2.88^{+1.33}_{-0.83}$                   | 2.97                  | $2.10^{+0.90}_{-0.58}$                             | 1.71                         |

## PAPER (Table 2)

Figure 15: Exclusion limits at 95% CL on the branching fractions of the H boson decays. Observed and median expected limits with the upper and lower bounds in the expected 68% CL intervals are reported.

## Results Comparison

| Channel                                 | Coupling              | $SM\;\mathcal{BR}(H\toM\gamma)$                             | ATLAS Limits ( $10^{-4}$ )               | Our Limits ( $10^{-4}$ )                    |
|-----------------------------------------|-----------------------|-------------------------------------------------------------|------------------------------------------|---------------------------------------------|
| $H 	o \phi \gamma$                      | s                     | $(1.68 \pm 0.08) \times 10^{-5}$ [1]                        | Exp. 4.2 <sup>+1.8</sup> <sub>-1.2</sub> | Exp. 2.88 <sup>+1.33</sup> <sub>-0.83</sub> |
| $\downarrow 11 \rightarrow \psi \gamma$ | 3                     | (1.00 ± 0.00) × 10 [1]                                      | Obs. 5.0 [5]                             | Obs. 2.97                                   |
| $H\to \rho^0\gamma$                     | u, d                  | $(2.31 \pm 0.11) \times 10^{-6}$ [1]                        | Exp. $10.0^{+4.9}_{-2.8}$                | Exp. 5.71 <sup>+2.37</sup> <sub>-1.63</sub> |
|                                         |                       |                                                             | Obs. 10.4 [5]                            | Obs. 3.74                                   |
| $H 	o K^{*0} \gamma$                    | d&s (flavor-changing) | (Only available for $H \to d\overline{s} + \overline{d}s$ ) | Exp. $3.7^{+1.5}_{-1.0}$                 | Exp. 2.10 <sup>+0.90</sup> <sub>-0.58</sub> |
|                                         |                       | $1.19 \times 10^{-11}$ [2]                                  | Obs. 2.2 [6]                             | Obs. 1.71                                   |

Table 6: Comparison of branching ratios obtained from theory, ATLAS, and this analysis.

## Bibliography

- [1] M. König and M. Neubert, "Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings", Journal of High Energy Physics 2015 (2015).
- [2] J.I. Aranda, G. González-Estrada, J. Montaño et al., "Revisiting the rare H → q<sub>i</sub>q<sub>j</sub> decays in the standard model", Journal of Physics G: Nuclear and Particle Physics 47 (2020) 125001.
- [3] CMS collaboration, "Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC", Journal of Instrumentation 16 (2021) P05014.
- [4] A. Hoecker, P. Speckmayer, J. Stelzer et al., "TMVA Toolkit for Multivariate Data Analysis", 2009.
- [5] ATLAS collaboration, "Erratum to: Search for exclusive Higgs and Z boson decays to φγ and ργ with the ATLAS detector", Journal of High Energy Physics 2023 (2023).
- [6] ATLAS collaboration, "Search for exclusive Higgs and Z boson decays to ωγ and Higgs boson decays to K<sub>0</sub>\*γ with the ATLAS detector", Physics Letters B 847 (2023) 138292.