Efficient Distributed DPF KeyGen with Active Security for QA-SD

ePrint 2024/429 & 2023/845 & 2024/426

March 26, 2024 Presented by Hongrui Cui

1

Motivations

Silent generation/PCG of Beaver triples over \mathbb{F}_2

- Application 1: Silent GMW Preprocessing
- Application 2: GC-PCG

Paradigm for COT/sVOLE PCG

- Generate sparse correlations
- Compress with linear map (LPN)

Alice: z^A , y

Bob: z^B , Δ

Correlation: $z^A + z^B = y \cdot \Delta$

Quadratic computation blow-up

$$lue{}$$
 Consider $10^6
ightarrow 10^{12}$

Alice: z^A , y^A , x^A

Bob: z^B , y^B , x^B

$$z^{A} + z^{B} = (x^{A} + x^{B}) \cdot (y^{A} + y^{B})$$

Consider $x^{A}[i] \cdot y^{B}[j] = \langle H[i], e^{A} \rangle \cdot \langle H[j], e^{B} \rangle$

Let
$$H \in \mathbb{F}_p^{N \times cN}$$
, $|e| = t$.

For regular LPN over \mathbb{F}_p , $H \leftarrow \mathbb{F}_p^{N \times cN}$, expected $O(c^2N^2)$ work

Previous Solutions

BCGIKS20

- **Ring-LPN**: Replace $\langle H, e \rangle$ with $\langle a(X), e(X) \rangle$ for $a(X), e(X) \in (\mathbb{F}_q[X]/(f(X)))^c$
- Now evaluating cross-term requires $O(c^2N \log N) = \tilde{O}(N)$ work (with FFT)
- The resulting polynomial $\langle a \otimes a, e^A \otimes e^B \rangle$ is isomorphic to \mathbb{F}_q^N
- **CRT** requires q > N

BCGIKS20 (FOCS'20)

VD-LPN

BCGIKRS22

- **EA-LPN** Replace $\langle H, e \rangle$ with $\langle E \cdot A, e \rangle$ for c-sparse E, upper-triangular A
- Now evaluating cross-term requires $O(c^2t^2N)$ work
- Requires further cryptanalysis

BCCD23

- QA-SD Replace univariate polynomial in Ring-LPN with multivariate polynomial
- Generate Beaver triples over \mathbb{F}_q for $q \geq 3$

BBCCDS24

- **QA-SD** over \mathbb{F}_4 implies Beaver triples over \mathbb{F}_2 .
- FFT optimizations and implementation

Distributed Setup of PCG

Ds17

Distributed setup of DPF keys with black-box 2PC

ZGYZYW24

■ Half-tree DPF KeyGen from BDOZ-authenticated inputs and SPDZ-authenticated-payload

Ultimate Goal

- End-to-end MPC with malicious security
- 1. Correct LPN variant
- \blacksquare 2. Matching $\Pi_{FSS.KeyGen}$ with malicious security

Quasi-Abelian Syndrome Decoding

$$\mathbb{F}_q[G] \stackrel{\text{def}}{=} \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_q \right\}$$

- \blacksquare $G = \{1_G\}: \mathbb{F}_q[G] = \mathbb{F}_q$
- $lacksquare G = \mathbb{Z}/n\mathbb{Z} : \mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^n-1)$

13.1: Finite Abelian Groups

In our investigation of cyclic groups we found that every group of prime order was isomorphic to \mathbb{Z}_p , where p was a prime number. We also determined that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ when $\gcd(m,n)=1$. In fact, much more is true. Every finite abelian group is isomorphic to a direct product of cyclic groups of prime power order; that is, every finite abelian group is isomorphic to a group of the type

$$\mathbb{Z}_{p_1^{lpha_1}} imes \cdots imes \mathbb{Z}_{p_n^{lpha_n}},$$

where each p_k is prime (not necessarily distinct).

Multiplication by convolution

$$\left(\sum_{g\in G} a_g g\right) \left(\sum_{g\in G} b_g g\right) \stackrel{\text{def}}{=} \sum_{g\in G} \left(\sum_{h\in G} a_h b_{h^{-1}g}\right) g$$

(Search) QA-SD problem. Given $\mathbf{H} = (\mathbf{1} \mid \mathbf{a})$ a paritycheck matrix of a random systematic quasiabelian code, a target weight $t \in \mathbb{N}$ and a syndrome $\mathbf{s} \in \mathbb{F}_q[G]$, the goal is to recover an error $\mathbf{e} = (\mathbf{e}_1 \mid \mathbf{e}_2)$ with $\mathbf{e}_i \leftarrow \mathcal{D}_t(\mathbb{F}_q[G])$ such that $\mathbf{H}\mathbf{e}^T = \mathbf{s}$, i.e. $\mathbf{e}_1 + \mathbf{a} \cdot \mathbf{e}_2 = \mathbf{s}$.

Choice of G

- lacksquare The most interesting case is $\mathbb{F}_q=\mathbb{F}_2$
- However, when q=2, $G=\{1_G\}\otimes ...\otimes \{1_G\}$ has order 1
- FOLEAGE sets q = 4, $G = (\mathbb{Z}/3\mathbb{Z})^n$
- $\blacksquare \ \mathbb{F}_q[G] \cong \mathbb{F}_q[X_1,...,X_n]/(X_1^3-1,...,X_n^3-1) \cong \mathbb{F}_q^{3^n}$

Why \mathbb{F}_4 :

Let $([a]^4, [b]^4, [ab]^4)$ be a Beaver triple over \mathbb{F}_4 . Writing $x = x(0) + \theta \cdot x(1)$ for any $x \in \mathbb{F}_4$, with θ a root of the polynomial $X^2 + X + 1$ (hence $\theta^2 = \theta + 1$), we have

$$a \cdot b = a(0)b(0) + a(1)b(1) + \theta \cdot (a(0)b(1) + a(1)b(0) + a(1)b(1))$$

 $\rightarrow (ab)(0) = a(0)b(0) + a(1)b(1)$

2-Party Case

$$(a \cdot b)(0) = [ab]_A^4(0) + [ab]_B^4(0) = a(0)b(0) + a(1)b(1),$$

$$\underbrace{a(0)a(1) + \llbracket ab \rrbracket_A^4(0)}_{\text{known by } A} + \underbrace{b(0)b(1) + \llbracket ab \rrbracket_B^4(0)}_{\text{known by } B} = \underbrace{(a(0) + b(1))}_{\text{shared by } A, B} \cdot \underbrace{(a(1) + b(0))}_{\text{shared by } A, B}.$$

Optimized Distributed KeyGen

Protocol $\Pi_{\mathsf{rDPF-CW}}$

PARAMETERS:

- Party $\sigma \in \{0,1\}$ has input $[\alpha_i]_{\sigma} \in \mathbb{F}_3$, $r_i^{\sigma} \in \{0,1\}^{\lambda}$, $(s_{i,j}^{\sigma} || t_{i,j}^{\sigma})_{j \in \{0,1,2\}} \in \{0,1\}^{3(\lambda+1)}$.
- An instantiation of chosen $\binom{1}{3}$ -OT.

PROTOCOL:

For each party $\sigma \in \{0, 1\}$:

- 1: Sample $z^{\sigma} \leftarrow_{R} \{0,1\}^{3(\lambda+1)}$.
- 2: Define

$$\mathbf{C}_{0}^{\sigma} := (r_{i}^{\sigma} \oplus s_{i,0}^{\sigma} \| (t_{i,0}^{\sigma} \oplus \sigma), \ s_{i,1}^{\sigma} \| t_{i,1}^{\sigma}, \ s_{i,2}^{\sigma} \| t_{i,2}^{\sigma}) \oplus z^{\sigma} \quad \triangleright \llbracket \mathsf{CW}_{i} \rrbracket_{\sigma} \text{ when } \alpha_{i} = 0$$

$$\mathbf{C}_{1}^{\sigma} := (s_{i,0}^{\sigma} \| t_{i,0}^{\sigma}, \ r_{i}^{\sigma} \oplus s_{i,1}^{\sigma} \| (t_{i,1}^{\sigma} \oplus \sigma), \ s_{i,2}^{\sigma} \| t_{i,2}^{\sigma}) \oplus z^{\sigma} \quad \triangleright \llbracket \mathsf{CW}_{i} \rrbracket_{\sigma} \text{ when } \alpha_{i} = 1$$

$$\mathbf{C}_{2}^{\sigma} := (s_{i,0}^{\sigma} \| t_{i,0}^{\sigma}, \ s_{i,1}^{\sigma} \| t_{i,1}^{\sigma}, \ r_{i}^{\sigma} \oplus s_{i,2}^{\sigma} \| (t_{i,2}^{\sigma} \oplus \sigma)) \oplus z^{\sigma} \quad \triangleright \llbracket \mathsf{CW}_{i} \rrbracket_{\sigma} \text{ when } \alpha_{i} = 2$$

$$\mathbf{M}_{0}^{\sigma} := (\mathbf{C}_{0}^{\sigma}, \mathbf{C}_{1}^{\sigma}, \mathbf{C}_{2}^{\sigma}), \ \mathbf{M}_{1}^{\sigma} := (\mathbf{C}_{1}^{\sigma}, \mathbf{C}_{2}^{\sigma}, \mathbf{C}_{0}^{\sigma}), \ \mathbf{M}_{2}^{\sigma} := (\mathbf{C}_{2}^{\sigma}, \mathbf{C}_{0}^{\sigma}, \mathbf{C}_{1}^{\sigma})$$

- 3: Invoke $\binom{1}{3}$ -OT with party $\bar{\sigma}$ as follows:
 - Party $\bar{\sigma}$ plays the role of the sender with inputs $\mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}}$.
 - Party σ plays the role of the receiver and inputs $[\![\alpha_i]\!]_{\sigma} \in \mathbb{F}_3$.
 - Party σ gets $\mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}}[\llbracket \alpha_i \rrbracket_{\sigma}] \in \{0,1\}^{3(\lambda+1)}$ while party $\bar{\sigma}$ gets nothing.
- 4: Define $\llbracket \mathsf{CW}_i \rrbracket_{\sigma} := \mathbf{M}_{\llbracket \alpha_i \rrbracket_{\bar{\sigma}}}^{\bar{\sigma}} \llbracket \llbracket \alpha_i \rrbracket_{\sigma} \rrbracket \oplus z^{\sigma}$ and broadcast $\llbracket \mathsf{CW}_i \rrbracket_{\sigma}$.
- 5: Construct $CW_i := \llbracket CW_i \rrbracket_{\sigma} \oplus \llbracket CW_i \rrbracket_{\bar{\sigma}} \in \{0, 1\}^{3(\lambda+1)}$.
- 6: Output $(CW_{i,0}, CW_{i,1}, CW_{i,2})$.

Distributed KeyGen for Half-Tree

Protocol Π_{DPF}

This protocol invokes $\Pi_{\mathsf{BatchCheck}}$ (Figure 2) as a sub-protocol.

Initialize: For each $b \in \mathbb{F}_2$, P_b samples $\Delta_b \leftarrow \mathbb{F}_{2^{\lambda}}$ such that $lsb(\Delta_b) = b$, and sends (init, b, Δ_b) to $\mathcal{F}_{\mathsf{aBit}}$.

Protocol inputs: Two parties P_0 and P_1 hold n BDOZ-style authenticated sharings $\langle \alpha^{(i)} \rangle = (\langle \alpha^{(i)} \rangle_0, \langle \alpha^{(i)} \rangle_1)$ for all $i \in [0, n)$ as well as a SPDZ-style authenticated sharing $[\![\beta]\!] = ([\![\beta]\!]_0, [\![\beta]\!]_1)$. Let $N = 2^n$ for some $n \in \mathbb{N}$. Let $\mathcal{H}_0 : \{0, 1\}^{\lambda} \to \{0, 1\}^{\lambda}$ be a CCR hash function and $\mathcal{H}_1 : \{0, 1\}^{\lambda} \to \{0, 1\}^{2\lambda}$ such that $\mathcal{H}_1(x) := \mathcal{H}_0(x) \parallel \mathcal{H}_0(x \oplus 1)$.

Generate SPDZ-style authenticated sharings of DPF outputs: Let $\langle \alpha^{(i)} \rangle_b = (\alpha_b^{(i)}, \mathsf{K}_b[\alpha_{1-b}^{(i)}], \mathsf{M}_b[\alpha_b^{(i)}])$ and $[\![\beta]\!]_b = (\beta_b, \mathsf{M}_b[\beta])$ for each $b \in \{0, 1\}$. The parties P_0 and P_1 do the following.

- 1. Both parties call $\mathcal{F}_{\mathsf{coin}}$ to sample a public randomness $W \in \mathbb{F}_{2^{\lambda}}$. Each party P_b sets $(s_b^{(0,0)} \parallel t_b^{(0,0)}) := \Delta_b \oplus W \in \{0,1\}^{\lambda}$.
- 2. For each $b \in \{0, 1\}$, for each $i \in [0, n)$, P_b computes the following:

$$\mathsf{CW}_b^{(i)} := \left(\bigoplus_{j \in [0,2^i)} \mathcal{H}_0(s_b^{(i,j)} \parallel t_b^{(i,j)}) \right) \oplus \Delta_b \oplus \left(\alpha_b^{(i)} \cdot \Delta_b \oplus \mathsf{K}_b[\alpha_{1-b}^{(i)}] \oplus \mathsf{M}_b[\alpha_b^{(i)}] \right) \in \{0,1\}^\lambda,$$

and sends $CW_b^{(i)}$ to P_{1-b} . For each $i \in [0, n)$, both parties compute $CW_0^{(i)} := CW_0^{(i)} \oplus CW_1^{(i)}$, and each party P_b computes:

$$\left(s_b^{(i+1,2j)} \, \| \, t_b^{(i+1,2j)} \right) := \mathcal{H}_0 \left(s_b^{(i,j)} \, \| \, t_b^{(i,j)} \right) \oplus t_b^{(i,j)} \cdot \mathsf{CW}^{(i)} \text{ for each } j \in [0,2^i),$$

$$\left(s_b^{(i+1,2j+1)} \, \| \, t_b^{(i+1,2j+1)} \right) := \mathcal{H}_0 \left(s_b^{(i,j)} \, \| \, t_b^{(i,j)} \right) \oplus \left(s_b^{(i,j)} \, \| \, t_b^{(i,j)} \right) \oplus t_b^{(i,j)} \cdot \mathsf{CW}^{(i)} \text{ for each } j \in [0,2^i).$$

Distributed KeyGen for Half-Tree (Continued)

3. For each $b \in \{0, 1\}$, P_b computes

$$\mathsf{CW}_b^{(n)} := \left(\bigoplus_{j \in [0,N)} \mathcal{H}_1(s_b^{(n,j)} \, \| \, t_b^{(n,j)}) \right) \oplus (\beta_b \, \| \, \mathsf{M}_b[\beta]) \in \{0,1\}^{2\lambda},$$

and sends $CW_b^{(n)}$ to P_{1-b} . Then, both parties compute $CW_0^{(n)} := CW_0^{(n)} \oplus CW_1^{(n)}$. For each $b \in \{0,1\}$, P_b computes

$$\begin{aligned}
& [\![u^{(j)}]\!]_b := \left(u_b^{(j)} = t_b^{(n,j)}, \mathsf{M}_b[u^{(j)}] = (s_b^{(n,j)} \parallel t_b^{(n,j)})\right) \text{ for each } j \in [0,N), \\
& [\![v^{(j)}]\!]_b = \left(v_b^{(j)} \parallel \mathsf{M}_b[v^{(j)}]\right) := \mathcal{H}_1\left(s_b^{(n,j)} \parallel t_b^{(n,j)}\right) \oplus t_b^{(n,j)} \cdot \mathsf{CW}^{(n)} \text{ for each } j \in [0,N).
\end{aligned}$$

4. As in the **Rand** process of protocol Π_{2PC} (Figure 4), both parties call functionality \mathcal{F}_{aBit} to generate [r] with a random $r \in \mathbb{F}_{2^{\lambda}}$. Then, both parties call functionality \mathcal{F}_{coin} to sample a random challenge $\chi \in \mathbb{F}_{2^{\lambda}}$, and locally compute

$$[\![a]\!] := \sum_{j \in [0,N)} \chi^j \cdot [\![u^{(j)}]\!] + \sum_{j \in [0,N)} \chi^{N+j} \cdot [\![v^{(j)}]\!] + [\![r]\!].$$

- 5. As in the **Open** process of protocol Π_{2PC} , both parties open [a] to obtain $\tilde{a} = a_0 + a_1 \in \mathbb{F}_{2^{\lambda}}$ by letting P_0 send a_0 to P_1 and P_1 send a_1 to P_0 in parallel. Then, both parties run sub-protocol $\Pi_{\mathsf{BatchCheck}}$ (Figure 2) on input $([a], \tilde{a})$ to check $a = \tilde{a}$.
- 6. For each $j \in [0, N)$, both parties obtain $[\![u^{(j)}]\!] = ([\![u^{(j)}]\!]_0, [\![u^{(j)}]\!]_1)$ and $[\![v^{(j)}]\!] = ([\![v^{(j)}]\!]_0, [\![v^{(j)}]\!]_1)$.