In [130]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```

In [748]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\madrid_2018.csv")
a
```

Out[748]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.C
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN

69096 rows × 16 columns

4

In [749]:

a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69096 entries, 0 to 69095
Data columns (total 16 columns):
    Column
             Non-Null Count Dtype
---
    -----
             -----
             69096 non-null object
0
    date
    BEN
             16950 non-null float64
1
2
    CH4
             8440 non-null
                            float64
3
    CO
             28598 non-null float64
4
             16949 non-null float64
    EBE
5
    NMHC
             8440 non-null
                            float64
             68826 non-null float64
6
    NO
             68826 non-null float64
7
    NO_2
8
    NOx
             68826 non-null float64
             40049 non-null float64
9
    0 3
             36911 non-null float64
10 PM10
11
    PM25
             18912 non-null float64
12
    S0_2
             28586 non-null float64
13
    TCH
             8440 non-null
                            float64
14
             16950 non-null float64
   TOL
15 station 69096 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 8.4+ MB
```

In [750]:

```
b=a.fillna(value=104)
b
```

Out[750]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25
0	2018- 03-01 01:00:00	104.0	104.00	0.3	104.0	104.00	1.0	29.0	31.0	104.0	104.0	104.0
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0
2	2018- 03-01 01:00:00	0.4	104.00	104.0	0.2	104.00	4.0	41.0	47.0	104.0	104.0	104.0
3	2018- 03-01 01:00:00	104.0	104.00	0.3	104.0	104.00	1.0	35.0	37.0	54.0	104.0	104.0
4	2018- 03-01 01:00:00	104.0	104.00	104.0	104.0	104.00	1.0	27.0	29.0	49.0	104.0	104.0
69091	2018- 02-01 00:00:00	104.0	104.00	0.5	104.0	104.00	66.0	91.0	192.0	1.0	35.0	22.0
69092	2018- 02-01 00:00:00	104.0	104.00	0.7	104.0	104.00	87.0	107.0	241.0	104.0	29.0	104.0
69093	2018- 02-01 00:00:00	104.0	104.00	104.0	104.0	104.00	28.0	48.0	91.0	2.0	104.0	104.0
69094	2018- 02-01 00:00:00	104.0	104.00	104.0	104.0	104.00	141.0	103.0	320.0	2.0	104.0	104.0
69095	2018- 02-01 00:00:00	104.0	104.00	104.0	104.0	104.00	69.0	96.0	202.0	3.0	26.0	104.0

69096 rows × 16 columns

In [751]:

```
b.columns
```

Out[751]:

In [752]:

c=b.head(10)
c

Out[752]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2018- 03-01 01:00:00	104.0	104.00	0.3	104.0	104.00	1.0	29.0	31.0	104.0	104.0	104.0	2.0
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0
2	2018- 03-01 01:00:00	0.4	104.00	104.0	0.2	104.00	4.0	41.0	47.0	104.0	104.0	104.0	104.0
3	2018- 03-01 01:00:00	104.0	104.00	0.3	104.0	104.00	1.0	35.0	37.0	54.0	104.0	104.0	104.0
4	2018- 03-01 01:00:00	104.0	104.00	104.0	104.0	104.00	1.0	27.0	29.0	49.0	104.0	104.0	3.0
5	2018- 03-01 01:00:00	0.3	104.00	0.3	0.2	104.00	1.0	27.0	29.0	57.0	8.0	104.0	6.0
6	2018- 03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0
7	2018- 03-01 01:00:00	104.0	104.00	104.0	104.0	104.00	1.0	37.0	39.0	54.0	104.0	104.0	104.0
8	2018- 03-01 01:00:00	104.0	104.00	0.5	104.0	104.00	3.0	43.0	47.0	29.0	104.0	104.0	5.0
9	2018- 03-01 01:00:00	104.0	104.00	0.2	104.0	104.00	2.0	26.0	29.0	104.0	4.0	104.0	6.0
4 (•

In [753]:

```
d=c[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
    'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
d
```

Out[753]:

	BEN	СО	EBE	NMHC	NO_2	O_3	PM10	SO_2	тсн	TOL	station
0	104.0	0.3	104.0	104.00	29.0	104.0	104.0	2.0	104.00	104.0	28079004
1	0.5	0.3	0.2	0.02	40.0	52.0	5.0	3.0	1.41	0.8	28079008
2	0.4	104.0	0.2	104.00	41.0	104.0	104.0	104.0	104.00	1.1	28079011
3	104.0	0.3	104.0	104.00	35.0	54.0	104.0	104.0	104.00	104.0	28079016
4	104.0	104.0	104.0	104.00	27.0	49.0	104.0	3.0	104.00	104.0	28079017
5	0.3	0.3	0.2	104.00	27.0	57.0	8.0	6.0	104.00	1.0	28079018
6	0.4	0.2	0.1	0.06	25.0	55.0	5.0	4.0	1.16	1.4	28079024
7	104.0	104.0	104.0	104.00	37.0	54.0	104.0	104.0	104.00	104.0	28079027
8	104.0	0.5	104.0	104.00	43.0	29.0	104.0	5.0	104.00	104.0	28079035
9	104.0	0.2	104.0	104.00	26.0	104.0	4.0	6.0	104.00	104.0	28079036

In [754]:

```
d.plot.line()
```

Out[754]:

<AxesSubplot:>

In [755]:

sns.pairplot(d)

Out[755]:

<seaborn.axisgrid.PairGrid at 0x118af61a5b0>

In [756]:

```
x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

In [757]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [758]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[758]:

LinearRegression()

In [759]:

```
print(lr.intercept_)
```

1.1006349496499297

In [760]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[760]:

Co-efficient

BEN 1.005093e-13

CO -8.217196e-17

EBE -1.003976e-13

NMHC 9.894170e-01

NO_2 -1.647502e-15

In [761]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[761]:

<matplotlib.collections.PathCollection at 0x118b8a698e0>


```
In [762]:
print(lr.score(x_test,y_test))
0.9999880488867369
In [763]:
from sklearn.linear_model import Ridge,Lasso
In [764]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[764]:
Ridge(alpha=10)
In [765]:
rr.score(x_test,y_test)
Out[765]:
0.9999974127809635
In [766]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[766]:
Lasso(alpha=10)
In [767]:
la.score(x_test,y_test)
Out[767]:
```

0.9999753721840651

In [768]:

```
a1=b.head(7000)
a1
```

Out[768]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	so
0	2018- 03-01 01:00:00	104.0	104.00	0.3	104.0	104.00	1.0	29.0	31.0	104.0	104.0	104.0	2
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3
2	2018- 03-01 01:00:00	0.4	104.00	104.0	0.2	104.00	4.0	41.0	47.0	104.0	104.0	104.0	104
3	2018- 03-01 01:00:00	104.0	104.00	0.3	104.0	104.00	1.0	35.0	37.0	54.0	104.0	104.0	104
4	2018- 03-01 01:00:00	104.0	104.00	104.0	104.0	104.00	1.0	27.0	29.0	49.0	104.0	104.0	3
6995	2018- 03-13 04:00:00	104.0	104.00	0.2	104.0	104.00	1.0	9.0	11.0	60.0	104.0	104.0	104
6996	2018- 03-13 04:00:00	104.0	104.00	104.0	104.0	104.00	1.0	38.0	39.0	104.0	15.0	104.0	3
6997	2018- 03-13 04:00:00	104.0	104.00	104.0	104.0	104.00	1.0	17.0	18.0	104.0	8.0	3.0	104
6998	2018- 03-13 04:00:00	104.0	104.00	104.0	104.0	104.00	1.0	14.0	16.0	104.0	7.0	5.0	104
6999	2018- 03-13 04:00:00	104.0	104.00	104.0	104.0	104.00	1.0	10.0	11.0	49.0	104.0	104.0	104

7000 rows × 16 columns

In [769]:

```
e=a1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3', 'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [770]:

```
f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [771]:
h=StandardScaler().fit_transform(f)
In [772]:
logr=LogisticRegression(max_iter=10000)
logr.fit(h,g)
Out[772]:
LogisticRegression(max_iter=10000)
In [773]:
from sklearn.model_selection import train_test_split
h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [774]:
i=[[10,20,30,40,50,60,11,22,33,44,55]]
In [775]:
prediction=logr.predict(i)
print(prediction)
[28079050]
In [776]:
logr.classes_
Out[776]:
array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
       28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
       28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
       28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
      dtype=int64)
In [777]:
logr.predict proba(i)[0][0]
Out[777]:
0.0
In [778]:
logr.predict proba(i)[0][1]
Out[778]:
0.0
```

```
In [779]:
logr.score(h_test,g_test)
Out[779]:
0.95
In [780]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[780]:
ElasticNet()
In [781]:
print(en.coef_)
[7.90496910e-05 0.00000000e+00 8.33668684e-07 9.88612279e-01
0.0000000e+00]
In [782]:
print(en.intercept_)
1.167614612208311
In [783]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.9999929195096
In [784]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(h_train,g_train)
Out[784]:
RandomForestClassifier()
In [785]:
parameters={'max_depth':[1,2,3,4,5],
 'min_samples_leaf':[5,10,15,20,25],
 'n_estimators':[10,20,30,40,50]
 }
```

```
In [786]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(h_train,g_train)
```

Out[786]:

In [787]:

```
grid_search.best_score_
```

Out[787]:

0.9955102040816326

In [788]:

```
rfc_best=grid_search.best_estimator_
```

In [789]:

In []: