Section 2.2 Operations on Sets

Comp 232 Robert Mearns

1. Define the operations on a set:

Final result is shaded area below

Term	Symbol	Set Builder expression	Venn Diagram
Compliment of A compare to S	S - A	{x (x∈S) ∧ (x∉A)}	U A
Compliment of A compare to U	U - A denoted as $ar{A}$	$ \{x \mid (x \in U) \land (x \notin A) \} $ $ \equiv \{x \mid x \in \overline{A}\} $ $ \equiv \{x \mid \neg (x \in A)\} $	A U
Intersection	A∩B	$\{x \mid (x \in A) \land (x \in B)\}$	A B U
Union	A∪B	$\{x \mid (x \in A) \lor (x \in B)\}$	A B U

$$Ex \ 1: \ let \ \ U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \ \}, \ A = \{\ 4, 5, 6, 7 \ \}, \ B = \{0, 5, 6\}, \ C = \{\ 8, 9 \ \}$$

$$A - B = \{4, 7\}$$

$$\bar{A} = \{0, 1, 2, 3, 8, 9\}$$

$$A \cap B = \{5, 6\}$$

$$B \cap C = \{\} = \emptyset$$

 $B \cup C = \{0, 5, 6, 8, 9\}$

Ex 2: The Cardinality of Two Sets

$$|A \cup B| \neq |A| + |B|$$
 Why?

We are counting elements in the Intersection twice.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

or $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

 $|A \cap B| = 0$

A, B are called Disjoint sets

Ex 3: Let A be the set of students in the class who have taken Calculus, B be the set of students in class who have taken Matrices. n(A) = 15, n(B) = 13, $n(A \cap B) = 5$

$$n(A \cup B) = 15 + 13 - 5 = 23$$

n(A U B) is the count of the number of student who have taken Calculus or Matrices or both.

-

2. Equivalence between the three systems: Logic symbols, Boolean Algebra symbols, Set symbols

a) Recall from the Table of Set operations that:

b) This leads to the following equivalences:

Word	Set notation	Logic notation	Boolean Algebra Notation
Not	Ā	¬A	\overline{A}
And	$A \cap B$	A∧B	A*B = AB
Or	A∪B	A∨B	A+B

c) This leads to the equivalence of the logic properties previously developed. The properties table is summarized on the next slide.

It needs to be completed (see p 27 & 130 of Rosen Text 7th ed.)

-

d) Summary of Equivalent Notations:

Logic symbols	Set symbols	Boolean Algebra	
$ \begin{array}{l} \neg (A \land B) \equiv \neg A V \neg B \\ \neg (A \lor B) \equiv \neg A \Lambda \neg B \end{array} $	$\overline{(A \cap B)} = \overline{(A \cup B)} =$	$\frac{\overline{p} \ \overline{q}}{p+q} =$	DeMorgan's Rules
$A \wedge B \equiv A \vee B \equiv$	A ∩ B = A ∪ B =	p q = q p $p + q = q + p$	Commutative
$C \wedge (A \wedge B) \equiv \\ C \vee (A \vee B) \equiv$	$C \cap (A \cap B) =$ $C \cup (A \cup B) =$	c (p q) = (c p) q c+(p+q) = (c+p)+q	Associative
$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$	$A \cap (B \cup C) =$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	p(q+r) = p+(qr) = (p+q)(p+r)	Distributive
$A \wedge A \equiv A \vee A \equiv$	$A \cap A =$ $A \cup A =$	p p = p $p + p = p$	Idempotent
$\mathbf{A} \wedge \mathbf{T} \equiv \mathbf{A} \vee \mathbf{F} \equiv$	$A \cap U =$ $A \cup \Phi =$	p * 1 = p $p + 0 = p$	Identites
$A \wedge \mathbf{F} \equiv A \vee \mathbf{T} \equiv \mathbf{T}$	$A \cap \Phi =$ $A \cup U = U$	p * 0 = p + 1 = 1	Domination
$A \wedge \neg A \equiv F$ $A \vee \neg A \equiv T$	$A \cap \overline{A} = \emptyset$ $A \cup \overline{A} = \bigcup$	$p \overline{p} = 0$ $p + \overline{p} = 1$	Negation

7

- 3. Verification of set expressions
 - a) Notation: Uppercase letters and { } brackets are read as "set":

 $[A \cap \overline{B} \subseteq A - B \text{ and } A - B \subseteq A \cap \overline{B}] \rightarrow A - B = A \cap \overline{B}$

Ex:{ $x \mid x \in (A \cap B)$ } is "set of x such that x is contained in the intersection of sets A, B"

b) Summary of equivalent statements:

c) Method 1 Use: LHS set = RHS set iff [LHS set \subseteq RHS set and RHS set \subseteq LHS]

Ex: Show that:
$$A - B = A \cap \overline{B}$$

Step 1 Consider $x \in A - B$
 $\rightarrow x \in A \land x \in \overline{B}$
 $\rightarrow x \in A \land x \in \overline{B}$
 $\rightarrow x \in A \cap \overline{B}$
 $\rightarrow A - B \subseteq A \cap \overline{B}$
Step 2 Consider $x \in A \cap \overline{B}$
In a similar way it can be shown $x \in A - B$
 $A \cap \overline{B} \subseteq A - B$

Def of equal sets

y

d) Method 2 Use Set-Builder notation without assuming set identities

Ex: Show that:
$$\overline{A} \cup B = A \cap \overline{B}$$

$$\overline{A} \cup B = \{x \mid x \notin (\overline{A} \cup B)\}$$

$$= \{x \mid \neg [x \in (\overline{A} \cup B)]\}$$

$$= \{x \mid \neg [x \in \overline{A}] \lor (x \in B)\}$$
Def. of \emptyset

$$= \{x \mid \neg [(x \notin A) \lor (x \in B)]\}$$
Def of Compliment
$$= \{x \mid \neg [\neg (x \in A) \lor (x \in B)]\}$$
Def of \emptyset

$$= \{x \mid [(x \in A) \land \neg (x \in B)]\}$$
Def of \emptyset

$$= \{x \mid [(x \in A) \land \neg (x \in B)]\}$$
Def. of \emptyset

$$= x \in A \land x \in \overline{B}$$
Def of Compliment
$$= A \cap \overline{B}$$
Def. of Intersection

QED

4. Applications: Representing sets with Boolean strings

Ex 1: Consider data kept by a provincial government concerning 5 cities and their total property evaluation in millions of dollars, number of properties and the tax rate per 100\$ evaluation. Universal set is $U = \{A,B,C,D,E\}$.

Sets are represented by bit strings: (i) Bit string 11111 rep. U (ii) Bit string 11001 rep.

	String	City A	City B	City C	City D	City E
$1m\$ < eval \le 5m\$$	B_1	1	0	0	0	0
5m\$ < eval ≤ 15m\$	B_2	0	0	1	0	0
eval > 15m\$	B_3	0	1	1	0	1
$0 < \# \text{ properties} \le 300$	B_4	0	0	1	1	0
$300 < \# \text{ prop} \le 1000$	B_5	1	1	0	0	1
1 \$ < tax rate ≤ 1.30 \$	B_6	0	1	1	0	0
1.30\$ < tax rate	B_7	1	0	0	1	1

a) Form set S_a : designates cities with (1m\$< eval \leq 5m\$) and (300 <# prop \leq 1000) and (tax rate >1.30\$) We need bit string B_a = bit-wise And with B₁, B₅, B₇ = 10000 \rightarrow S_a = {A}

13

	String	City A	City B	City C	City D	City E
$1m\$ < eval \le 5m\$$	B_1	1	0	0	0	0
5m\$ < eval ≤ 15m\$	B_2	0	0	1	0	0
eval > 15m\$	B_3	0	1	1	0	1
$0 < \#$ properties ≤ 300	B_4	0	0	1	1	0
300 < # prop ≤ 1000	B_5	1	1	0	0	1
1 \$ < tax rate ≤ 1.30 \$	B ₆	0	1	1	0	0
1.30\$ < tax rate	B_7	1	0	0	1	1

- b) Form the set S_b that designates cities with 5m\$ < eval \leq 15m\$ or tax rate >1.30\$ We need bit string $B_b = \text{bit-wise Or with B}_2 \text{ or B}_7 = 1011 \rightarrow S_b = \{A, C, D, E\}$
- c) Form the set S_c that designates cities with missing total evaluation data

We need bit string $B_c=\operatorname{Not} B_1$ and $\operatorname{Not} B_2$ and $\operatorname{Not} B_3=\operatorname{Not}(B_1 \text{ or } B_2 \text{ or } B_3)$ Not (bit-wise Or with B_1 , B_2 , B_3) = $\overline{11101}=00010 \rightarrow s_c=\{D\}$

Ex 2: Adapt the above procedure to find the set S_d that designates cities that have more than one total evaluation

$$B_d = (B_1 \wedge B_2) \vee (B_2 \wedge B_3) \vee (B_3 \wedge B_1) = 00100 \rightarrow s_d = \{C\}$$

15

Ex 3: Consider data collected concerning the population in various postal codes designated by the Boolean strings below:

First Letter of Postal code	A	В	G	Н	I	J	M	T
U designates the Universal set U =	1	1	1	1	1	1	1	1
$B_1 =$	0	1	0	1	1	0	0	0
B_1 designates postal codes where population ≤ 1 million								
$B_2 =$	1	0	0	0	0	1	0	0
B_2 designates postal codes where 1 million < pop. \leq 2 million								
$B_3 =$	0	0	1	0	1	0	1	1
B_3 designates postal codes where 2 million < pop. ≤ 3 million								
$B_4 =$	0	0	1	0	0	1	0	0
B ₄ designates postal codes where the majority of population speak French								

Form a Boolean string B_i for each condition below and using the results write the final set S_i :

- a) Universal set
- b) Set where (1 million < pop. \le 3 million)
- c) (Majority speak French) and (2 million < pop. \le 3 million)
- d) A set that designates if there is some postal code where pop. has been omitted (data error)
- e) A set that designates if a postal code exists in more than one pop. size (data error)

Answer:

```
a) B_a = U, S_a = \{A, B, G, H, I, J, M, T\}

b) B_b = B_2 \vee B_3 = 1010 \ 1111, S_b = \{A, G, I, J, M, T\}

c) B_c = B_3 \vee B_4 = 0010 \ 0000, S_c = \{G\}

d) B_d = \neg (B_1 \vee B_2 \vee B_3) = \overline{1111 \ 111} = 0000 \ 0000, S_d = \phi

e) B_e = (B_1 \wedge B_2) \vee (B_2 \wedge B_3) \vee (B_1 \wedge R_3) = 0000 \ 1000, S_e = \{I\}
```