1 Stochastic Optimization

We are interested in constrained minimization of $f: \mathbb{R}^n \to \mathbb{R}$

$$minimize_{x \in \mathcal{X}} [f(x) = \mathbb{E}[F(x,\xi)]]$$

where $\mathcal{X} \subset \mathbb{R}^n$ is closed, bounded convex set. ξ is a random variable, and $F(\cdot, \xi)$ is convex for all $\xi \in \Xi$, and therefore $f(\cdot)$ is convex. For uniform p_{ξ} over finite alphabets of size n, the problem reduces to finite sum problem

minimize_{$$x \in \mathcal{X}$$} $\left[f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right]$

Assume we can

- 1. Sample $\xi_1, \xi_2, \cdots \stackrel{i.i.d.}{\sim} p_{\xi}$
- 2. Given $(x,\xi) \in \mathcal{X} \times \Xi$, a first order oracle that returns a subgradient vector $G(x,\xi) \in \partial_x F(x,\xi)$. We also assume that G is unbiased, i.e. $g(x) := \mathbb{E}[G(x,\xi)] \in \partial f(x)$

1.1 Stochastic Gradient Method

We can show that if $f \in \mathscr{S}_{L,\mu}^1$, the choice of $\alpha_k = \mathcal{O}(1/k)$ yields sublinear convergence of $\mathcal{O}(\frac{1}{\epsilon})$ for last iterates. If $f \in \mathscr{F}_L^1$, the choice of $\alpha_k = \mathcal{O}(\frac{1}{\sqrt{k}})$ yields a sublinear convergence of $\mathcal{O}(\frac{1}{\epsilon^2})$ for average iterates. Stochastic gradient method (or Stochastic Approximation (SA) algorithms) solves the problem by

$$x^{k+1} = \mathcal{P}_{\mathcal{X}} \left(x^k - \alpha_k G(x^k, \xi_k) \right)$$

where $\alpha_k > 0$ are stepsizes, $\mathcal{P}_{\mathcal{X}}(y) = \arg\min_{x \in \mathcal{X}} \frac{1}{2} \|x - y\|_2^2$ is the euclidean projection onto a convex set. It is important to note that the current iterate x^k are functions of random variables $x^k := x^k(\xi_{[k-1]})$ where $\xi_{[k-1]} = (\xi_1, \dots, \xi_{k-1})$, and therefore are random variables themselves. In addition, $x^k \perp \!\!\! \perp \xi_k$.

1.2 Convergence

Derivations copied from [7], [8] and slides. We assume

- 1. bounded variance for stochastic subgradient, which translates to $\mathbb{E}_{\xi}[G(x,\xi)] \leq M^2$ given $x \in \mathcal{X}$.
- 2. bounded \mathcal{X} where radius given by $D_{\mathcal{X}} = \max_{x \in \mathcal{X}} \|x x^*\|_2$.

We outline implications of some assumptions

1. If f is convex, then

$$f(x') \ge f(x) + \langle g(x), x' - x \rangle$$
 $\forall x, x' \in \mathcal{X}$ (1)

2. If f has L lipschitz continuous gradients, then

$$\|\nabla f(x') - \nabla f(x)\| \le L \|x' - x\| \qquad \forall x, x' \in \mathcal{X}$$

$$f(x) - f(x^*) \le \frac{1}{2}L \|x - x^*\| \qquad \forall x \in \mathcal{X}$$
(descent lemma)

3. If f is μ -strongly convex, then

$$\left\langle \nabla f(x') - \nabla f(x), x' - x \right\rangle \ge \mu \left\| x' - x \right\|_2^2 \qquad \forall x \in \mathcal{X}$$

$$\mu \left\| x - x^* \right\|^2 \le \mu \left\langle g(x) - g(x^*), x - x^* \right\rangle = \left\langle g(x), x - x^* \right\rangle \qquad \forall x \in \mathcal{X}, \ g(x) \in \partial f(x)$$

$$(4)$$

We first derive some preliminary results. Using iterated expecatation, we have

$$\mathbb{E}\left[\left\langle G(x^{k},\xi_{k}), x^{k} - x^{*}\right\rangle\right] = \mathbb{E}_{\boldsymbol{\xi}_{[k-1]}}\left[\mathbb{E}_{\boldsymbol{\xi}_{k}}\left[\left\langle G(x^{k}(\boldsymbol{\xi}_{[k-1]}), \boldsymbol{\xi}_{k}), x^{k}(\boldsymbol{\xi}_{[k-1]}) - x^{*}\right\rangle\right] \mid \boldsymbol{\xi}_{[k-1]}\right] \\
= \mathbb{E}_{\boldsymbol{\xi}_{[k-1]}}\left[\left\langle \mathbb{E}_{\boldsymbol{\xi}_{k}}\left[G(x^{k}(\boldsymbol{\xi}_{[k-1]}), \boldsymbol{\xi}_{k}) \mid \boldsymbol{\xi}_{[k-1]}\right], x^{k}(\boldsymbol{\xi}_{[k-1]}) - x^{*}\right\rangle\right] \\
= \mathbb{E}\left[\left\langle g(x^{k}), x^{k} - x^{*}\right\rangle\right] \tag{5}$$

where the expectation is taken w.r.t $\xi_{[k-1]}$. We first derive a bound on $R_k = ||x^k - x^*||_2^2$ and $r_k = \mathbb{E}[R_k]$,

$$R_{k+1} = \|x^{k} - x^{*}\|^{2}$$

$$= \|\mathcal{P}_{\mathcal{X}}\left(x^{k} - \alpha_{k}G(x^{k}, \xi_{k})\right) - \mathcal{P}_{\mathcal{X}}(x^{*})\| \qquad (x^{*} \text{ is fixed point of } \mathcal{P}, \mathcal{P}_{\mathcal{X}}(x^{*}) = x^{*})$$

$$\leq \|x^{k} - \alpha_{k}G(x^{k}, \xi_{k}) - x^{*}\|^{2} \qquad (\text{Nonexpansive of } \mathcal{P}, \|\mathcal{P}_{\mathcal{X}}(x') - \mathcal{P}_{\mathcal{X}}(x)\| \leq \|x' - x\|)$$

$$\leq R^{k} - 2\alpha_{k} \left\langle G(x^{k}, \xi_{k}), x^{k} - x^{*} \right\rangle + \alpha_{k}^{2} \left\| G(x^{k}, \xi_{k}) \right\|^{2}$$

$$r_{k+1} \leq r_{k} - 2\alpha_{k} \mathbb{E}\left[\left\langle G(x^{k}, \xi_{k}), x^{k} - x^{*} \right\rangle \right] + \alpha_{k}^{2} \mathbb{E}\left[\left\| G(x^{k}, \xi_{k}) \right\|^{2} \right] \qquad (\text{Take expectation w.r.t. } \xi_{[k]})$$

$$= r_{k} - 2\alpha_{k} \mathbb{E}\left[\left\langle g(x^{k}), x^{k} - x^{*} \right\rangle \right] + \alpha_{k}^{2} M^{2} \qquad (\text{By (5) and bounded variance)}$$

1.2.1 Strongly Convex Case

If $f \in \mathscr{S}^1_{L,\mu}$, using (4), we have

$$r_{k+1} \le r_k - 2\alpha_k \mathbb{E}\left[\left\|x^k - x^*\right\|^2\right] + \alpha_k^2 M^2 = (1 - 2\mu\alpha_k)r_k + \alpha_k^2 M^2$$

If we choose $\alpha_k = \theta/(k+1)$, where $\theta > 1/(2\mu)$. It could be shown by induction that [7]

$$r_k \le \frac{c_{\theta}}{k+1}$$
 where $c_{\theta} = \max\left\{\frac{2\theta^2 M^2}{2\mu\theta - 1}, r_0\right\}$

By (descent lemma), we derive bound on the objective value

$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le \frac{1}{2}L\mathbb{E}\left[\left\|x^k - x^*\right\|^2\right] \le \frac{Lc_\theta}{2(k+1)}$$

Therefore, the choice of $\alpha_k = \mathcal{O}(\frac{1}{\epsilon})$ yields last iterate convergence rate of $\mathcal{O}(\frac{1}{\epsilon})$

1.2.2 Convex Case

[7] indicates that we need to increase the stepsize $(\mathcal{O}(\frac{1}{k})$ to $\mathcal{O}(\frac{1}{\sqrt{k}}))$ to ensure faster convergence rate for general convex problems, at the cost of *more noisy* trajectory. To suppress the noise, we use average iterates $\{x^k\}$ rather than last iterates as solution to the problem.

$$r_{k+1} \leq r_k - 2\alpha_k \mathbb{E}\left[\left\langle g(x^k), x^k - x^* \right\rangle\right] + \alpha_k^2 M^2$$

$$2\alpha_k \mathbb{E}\left[f(x^k) - f(x^*)\right] \leq 2\alpha_k \mathbb{E}\left[\left\langle g(x^k), x^k - x^* \right\rangle\right] \leq r_k - r_{k+1} + \alpha_k^2 M^2 \qquad \text{(Rearrange, and by 1)}$$

$$\sum_{i=1}^k \left(2\alpha_i \mathbb{E}\left[f(x^i) - f(x^*)\right]\right) \leq \sum_{i=1}^k \left(r_i - r_{i+1} + \alpha_i M^2\right) = r_1 + \sum_{i=1}^k \alpha_i^2 \qquad \text{(Telescope)}$$

$$\sum_{i=1}^k \gamma_i \mathbb{E}\left[\left(f(x^i) - f(x^*)\right)\right] = \mathbb{E}\left[\sum_{i=1}^k \gamma_i (f(x^i) - f(x^*))\right] \leq \frac{r_1 + M^2 \sum_{i=1}^k \alpha_i^2}{2\sum_{i=1}^k \alpha_i} \qquad \text{(Let } \gamma_i = \alpha_i / \sum_i \alpha_i. \text{ Divide by } 2\sum_i \alpha_i. \text{ Use linearity of expectation)}$$

$$\mathbb{E}\left[f(\tilde{x}^k) - f(x^*)\right] \leq \frac{r_1 + M^2 \sum_{i=1}^k \alpha_i^2}{2\sum_{i=1}^k \alpha_i} \qquad \text{(Let } \tilde{x}^k = \sum_{i=1}^k \gamma_i x^i. \ f(\tilde{x}^k) \leq \sum_i \gamma_i f(x^i) \text{ by convexity of } f. \sum_i \gamma_i = 1)$$

We derive tighest bound by finding minimal value of $\alpha_k = \alpha$ of the bound.

$$\mathbb{E}\left[f(\tilde{x}^k) - f(x^*)\right] \le \frac{D_{\mathcal{X}}M}{\sqrt{k}} \qquad \alpha_k = D_{\mathcal{X}}/(M\sqrt{k})$$

Therefore, the choice of $\alpha_k = \mathcal{O}(\frac{1}{\sqrt{k}})$ yields average iterate convergence rate of $\mathcal{O}(\frac{1}{\epsilon^2})$