

Machine learning

Mini-project: NCA - Neighborhood Components Analysis

Cui Xiao

Catalog

- Introduction of NCA
- Performance of NCA
- Compare with other similar algorithms
- My Code

NCA - Neighborhood Components Analysis

Neighbourhood components analysis is a supervised learning method for classifying high dimension data into distinct dimension data according to **a distance metric** learning from data.

Some keyword:

- Dimension reduction und Feature selection
- Mapping to a new space
- Boosting the effect of KNN

Dataset: MNIST

Dimension reduction

A selection from the 64-dimensional digits dataset

0 1 2 3 4 5 0 1 1 3 4 5 0 1 2 3 4 5 0 5

5 5 0 4 1 3 5 1 0 0 2 2 2 0 1 2 3 3 3 3

4 4 1 5 0 5 2 2 0 0 1 3 2 1 4 3 1 3 1 4

1 1 4 0 5 7 1 5 4 4 0 0 1 2 3 4 5 0 5 5

0 4 1 3 5 1 0 0 2 2 1 0 1 2 3 4 5 0 5 5 5

0 4 1 3 5 1 0 0 2 2 1 0 1 3 1 3 1 4 3 1 4 4

0 5 7 1 5 4 4 1 1 1 2 5 5 4 4 0 0 1 2 3 4

0 5 7 1 5 4 4 1 1 1 2 5 5 4 4 0 0 1 2 3 4

3 5 1 0 0 2 2 2 0 1 2 3 3 3 3 4 4 1 5 0 5

3 1 5 4 4 2 2 2 5 5 5 5 0 4 1 3 1 4 5

0 1 1 3 4 5 0 1 2 3 4 5 0 5 5 5 0 4 1 3 5

1 2 0 0 1 3 2 1 4 3 1 3 1 4 3 1 4 0 5 3

1 5 4 5 0 1 2 3 4 5 0 5 5 5 0 4 1 3 5

0 0 1 2 2 1 5 5 4 6 0 0 1 2 3 4 5 0 1 2 3

4 2 2 1 5 5 4 6 0 0 1 2 3 4 5 0 1 2 3

Features: 28*28 = 784

Features: 2

- Reduce the dimension to make the visualization much easy.
- Less feature means saving calculation resource.

What is the NCA?

Data category interval becomes larger

NCA and KNN

Process of KNN

- Calculate the Euclidean distance between sample i and all the remaining samples $|d_{ij}| = ||x_i x_j||_2$
- Select the k samples with the smallest distance
- The predictions are obtained by voting using the labels of these k samples $Vote(y_{j_1}, y_{j_2}, \dots, y_{j_k})$

How to improve KNN?

How to make KNN faster?

How to make KNN much more accurate?

NCA and KNN

From lecture:

- Accuracy:
 - find a more suitable k using cross-validation
 - change the distance function
- Speed:
 - **?**???

NCA:

- to get a new distance function, that is designed especially for each datasets
- to reduce the dimension of datasets to speed up

In NCA, our aim is to obtain the distance matrix by machine learning

1. NCA

2.KNN

the probability $P(x_i)$ of points j being selected according to their distance.

$$P(x_j) \propto k(d_w(x,x_j))$$
 where k is an equation on distance. $k(z) = \exp\left(-\frac{z}{\sigma}\right)$

Set a new distance function

$$d_{w}(x_{i}, x_{j}) = \sum_{r=1}^{p} w_{r}^{2} |x_{ir} - x_{jr}|,$$

with w_r is the feature weight.

[1-3]

Thus for point i, the probability of selecting point j is

$$p_{ij} = rac{\exp\left(-d_w(x_i,x_j)
ight)}{\sum_{k
eq i} \exp(d_w(x_i,x_k))}, p_{ii} = 0$$

Set i = 1 if $y_i = y_j$ este i = 0, the probability of selecting the right point is

$$p_i = \sum i * p_{ij}$$

to make the accuracy rate improve, sum all possibilities together

$$f = \sum_{i=1}^n p_i$$

Optimization of f by gradient descent

$$rac{\partial f}{\partial A} = 2A\sum_{i}\left(p_{i}\sum_{k
eq i}p_{ik}\left(x_{i}-x_{k}
ight)\left(x_{i}-x_{k}
ight)^{T}-\sum_{j\in C_{i}}p_{ij}\left(x_{i}-x_{j}
ight)\left(x_{i}-x_{j}
ight)^{T}
ight)$$

NCA on iris datasets

Improvment of KNN performence

the score of the KNN on iris datasets is 93.333% the score of the KNN + NCA on iris datasets without Dimensionality Reduction is 96.19% the score of the KNN + NCA on iris datasets with Dimensionality Reduction to 3 is 95.238% the score of the KNN + NCA on iris datasets with Dimensionality Reduction to 2 is 98.095%

a new distance function for each datasets

Drawback of NCA

Other dimension reduction algorithms

Dataset: MNIST

NCA Neighborhood Components AnalysisPCA Principal Component AnalysisLDA Linear Discriminant Analysis

nalysis Cui Xiao

Other dimension reduction algorithms

LDA: the most variance between classes in projection direction

PCA: the largest variance in projection direction

Other dimension reduction algorithms

Table 1 : compare of the different algorithms

_	<u>'</u>			
	characteristics	PCA	LDA	NCA
	Un-/supervised learning	Unsupervised learning	Supervised learning	Supervised learning
	Function	Dimensionality reduction	Dimensionality reduction/classification	Dimensionality reduction/classification /regression
	Downscaling Limits	no limit	max to k-1	no limit
	Data Distribution	Gaussian distribution	Gaussian distribution	no limit

My code

$$rac{\partial f}{\partial A} = 2A\sum_{i}\left(p_{i}\sum_{k
eq i}p_{ik}\left(x_{i}-x_{k}
ight)\left(x_{i}-x_{k}
ight)^{T}-\sum_{j\in C_{i}}p_{ij}\left(x_{i}-x_{j}
ight)\left(x_{i}-x_{j}
ight)^{T}
ight)$$

```
# gradients for-loop
gradients = np.zeros((self.high dims,
self.high dims))
# for i
for i in range(self.n samples):
    k sum = np.zeros((self.high dims,
self.high dims))
    k same sum = np.zeros((self.high dims,
self.high dims))
   # for k
   for k in range(self.n samples):
        out prod = np.outer(X[i] - X[k],
X[i] - X[k]
        k sum += pij mat[i][k] * out prod
       if Y[k] == Y[i]:
            k same sum += pij mat[i][k] *
out prod
   gradients += pi row[i] * k sum -
k same sum
gradients = 2 * np.dot(gradients, self.A)
```

```
# gradient #1 matrix
part gradients = np.zeros((self.high dims,
self.high dims))
for i in range(self.n samples):
    xik = X[i] - X
    prod xik = xik[:, :, None] * xik[:,
None, :]
    pij prod xik = pij mat[i][:, None, None]
* prod xik
    first part = pi row[i] *
np.sum(pij prod xik, axis=0)
    second part = np.sum(pij prod xik[Y ==
Y[i], :, :], axis=0)
    part gradients += first part -
second part
gradients = 2 * np.dot(part gradients,
self.A)c
                                            [0]
```

		[9]
	Loop-style	Vector-style
Runtime	98.824s	9.84363s
Accuracy	0.9619	0.9619

[8]

My code

$$rac{\partial f}{\partial A} = 2A\sum_{i}\left(p_{i}\sum_{k
eq i}p_{ik}\left(x_{i}-x_{k}
ight)\left(x_{i}-x_{k}
ight)^{T}-\sum_{j \in C_{i}}p_{ij}\left(x_{i}-x_{j}
ight)\left(x_{i}-x_{j}
ight)^{T}
ight)$$
 set $pmask_{ij}=p_{ij}, if j \in C_{i}, else \ 0 \quad W_{ij}=p_{i}p_{ij}-pmask_{ij}$

$$rac{\partial f}{\partial A} = 2(XA^T)^T \left(diag\left(sum(W,axis=0)
ight) - W - W^T
ight)X$$

Benefit:

- Reducing the number of matrix multiplications
- Reducing the size of the matrix

My code

$$rac{\partial f}{\partial A} = 2(XA^T)^T \left(diag\left(sum(W,axis=0)
ight) - W - W^T
ight)X$$

```
# gradients #2
part_gradients = np.zeros((self.high_dims,
self.high_dims))
for i in range(self.n_samples):
    xik = X[i] - X
    prod_xik = xik[:, :, None] * xik[:, None,
:]
    pij_prod_xik = pij_mat[i][:, None, None] *
prod_xik
    first_part = pi_row[i] *
np.sum(pij_prod_xik, axis=0)
    second_part = np.sum(pij_prod_xik[Y ==
Y[i], :, :], axis=0)
    part_gradients += first_part - second_part
gradients = 2 * (part_gradients @ self.A)
```

	Loop-style	Vector-style	W-style	Sk-learn
Runtime	98.824s	9.84363s	6.8411	0.075s
Accuracy	0.9619	0.9619	0.9619	0.9809

References

- [1] J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov. (2005) Neighbourhood Components Analysis. Advances in Neural Information Processing Systems. 17, 513-520, 2005.
- [2] Matlab tutorial Neighborhood Component Analysis (NCA) Feature Selection
- [3] Data dimension reduction LDA PCA NCA
- [4] https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html#sphx-glr-auto-examples-neighbors-plot-nca-classification-py
- [5] https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html#sphx-glr-auto-examples-neighbors-plot-nca-illustration-py
- [6] https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html#sphx-glr-auto-examples-neighbors-plot-nca-dim-reduction-py
- [7] Wold, Svante, Kim Esbensen, and Paul Geladi. <u>"Principal component analysis."</u> Chemometrics and intelligent laboratory systems 2.1-3 (1987): 37-52.
- [8] Neighbourhood Component Analysis
- [9] RoIT / NCA-python

