Análisis II – Análisis matemático II – Matemática 3.

Segundo Cuatrimestre de 2025

Práctica 1 - Curvas, integral de longitud de arco e integrales curvilíneas.

Curvas:

Ejercicio 1. a). Probar que

$$\begin{cases} x_1(t) = r \cos(2\pi t), & \\ y_1(t) = r \sin(2\pi t), & \\ y = x \sin(2\pi t), & \\ y = x \sin(2\pi t), & \\ y = x \sin(4\pi t), & \\$$

son dos parametrizaciones C^1 de la circunferencia de centro (0,0) y radio r.

- b). Probar que la circunferencia es una curva cerrada, simple, suave.
- c). Probar que $\sigma_2(t) = (x_2(t), y_2(t)), t \in [0, 1]$ no es una parametrización regular.

Ejercicio 2. Considerar la curva \mathcal{C} formada por los segmentos que unen el (0,1) con el (0,0) y el (0,0)con el (1,0).

Probar que

$$\sigma(t) := \begin{cases} (0, (1-t)^2), & \text{si } 0 \le t \le 1, \\ ((t-1)^2, 0), & \text{si } 1 \le t \le 2 \end{cases}$$

es una parametrización C^1 de la curva C.

Observar que \mathcal{C} no tiene recta tangente en el (0,0). ¿Por qué no hay contradicción?

Ejercicio 3. Sea
$$\sigma(t) = (t^3, t^3)$$
 con $-1 \le t \le 1$.

Ejercicio 3. Sea $\sigma(t)=(t^3,t^3)$ con $-1\leq t\leq 1$. Probar que σ es una parametrización C^1 del segmento $y=x,\,-1\leq x\leq 1$ que es una curva suave. Observar que $\sigma'(0) = (0,0)$.

Ejercicio 4. Sea \mathcal{C} el arco de parábola $y = x^2$ con $0 \le x \le 1$.

- a). Probar que \mathcal{C} es una curva abierta, simple, suave
- b). Probar que $\bar{\sigma}(s) := (\bar{x}(s), \bar{y}(s))$ dada por

$$\begin{cases} \bar{x}(s) = e^s - 1 \\ \\ \bar{y}(s) = (e^s - 1)^2 \end{cases}$$
 $0 \le s \le \ln 2$

es una parametrización regular de \mathcal{C} .

- c). Observar que $\sigma(t) := (t, t^2)$ con $t \in [0, 1]$ es otra parametrización regular.
- d). Hallar una función $g:[0,1] \to [0, \ln 2]$ tal que $\bar{\sigma}(g(t)) = \sigma(t)$ para todo $t \in [0,1]$. Observar que g es biyectiva y C^1 .

Repaso:

Definición 1. Una curva $\mathcal{C} \subset \mathbb{R}^n$ es un conjunto de puntos en el espacio que puede describirse mediante un parámetro que varía de forma continua en un intervalo de la recta real. Más precisamente, \mathcal{C} es una curva si existen funciones continuas $x_1(t), x_2(t), \ldots, x_n(t)$ definidas en algún intervalo [a, b], tales que un punto $\mathbf{y} = (y_1, \ldots, y_n) \in \mathcal{C}$ si y solo si existe $t \in [a, b]$ tal que:

$$(y_1,\ldots,y_n)=\big(x_1(t),\ldots,x_n(t)\big).$$

Llamemos $\sigma:[a,b]\to\mathbb{R}^n$ a la función

$$\sigma(t) = (x_1(t), x_2(t), \dots, x_n(t)).$$

Entonces, \mathcal{C} es la imagen de [a, b] bajo σ , y a σ se le llama una parametrización de \mathcal{C} .

Definición 2. Una curva \mathcal{C} se dice **abierta y simple** si admite una parametrización inyectiva. Una curva \mathcal{C} se dice **cerrada y simple** si existe una parametrización $\sigma:[a,b]\to\mathbb{R}^n$ tal que:

- σ es inyectiva en [a,b), es decir, $\sigma(t_1) \neq \sigma(t_2)$ para todo $t_1,t_2 \in [a,b)$ con $t_1 \neq t_2$.
- σ es continua en [a, b].
- $\sigma(a) = \sigma(b)$, es decir, el punto inicial coincide con el punto final.
- La imagen de σ , definida como $\{\sigma(t): t \in [a,b]\}$, es exactamente \mathcal{C} .

Geométricamente, esto significa que la curva no se cruza a sí misma (excepto en el punto inicial y final, que coinciden), y su trayectoria forma un lazo cerrado.

Definición 3. Si \mathcal{C} es una curva cerrada, simple y suave, una parametrización $\sigma:[a,b]\to\mathbb{R}^n$ se dice **regular** si cumple:

- σ es inyectiva en [a,b).
- La imagen de σ es \mathcal{C} .
- $\sigma \in C^1([a,b])$, es decir, σ es continuamente diferenciable en [a,b].
- $\sigma(a) = \sigma(b)$.
- $\sigma'(a) = \sigma'(b)$.
- $\sigma'(t) \neq \mathbf{0}$ para todo $t \in [a, b]$.

Integral de longitud de arco

Ejercicio 5. Considere la curva definida por $\sigma(t) = (t - \text{sen } t, 1 - \cos t)$. Calcular $\sigma'(t)$, la norma $\|\sigma'(t)\|$, y la longitud del arco entre los puntos $\sigma(0)$ y $\sigma(2\pi)$. Observe que σ describe la posición de un punto en el borde de un círculo de radio 1 que rueda sin deslizar. Esta curva es conocida como cicloide.

Ejercicio 6. En los siguientes casos, calcular la longitud de la curva, donde σ es una parametrización de la misma sobre el intervalo [a, b], siendo:

- a) $\sigma(t) = (t, t^2), a = 0, b = 1.$
- b) $\sigma(t) = (\sqrt{t}, t+1, t), a = 10, b = 20.$

Ejercicio 7. Sea C una curva simple, suave, y sea $\sigma:[a,b]\to\mathbb{R}^3$ una parametrización regular de C. Definimos la longitud del arco de curva entre los puntos $\sigma(a)$ y $\sigma(t)$ como

$$g(t) = \int_a^t \|\sigma'(\tau)\| d\tau, \quad t \in [a, b].$$

- (a) Demostrar que la función g(t) es C^1 y calcular su derivada. Deducir que g es inversible y que su inversa es de clase C^1 .
- (b) Considerando $\ell = g(b)$, definir la nueva parametrización

$$\tilde{\sigma}(s) = \sigma(g^{-1}(s)), \quad s \in [0, \ell],$$

v demostrar que $\tilde{\sigma}$ es una parametrización regular de C.

(c) Probar que la longitud del arco entre los puntos $\tilde{\sigma}(0)$ y $\tilde{\sigma}(s)$ es igual a s, para todo $s \in [0, \ell]$. Esto justifica el uso de la notación de para denotar el diferencial de la longitud de arco.

Ejercicio 8. Evaluar las integrales de longitud de arco $\int_{\mathcal{C}} f(x,y,z) ds$, donde σ es una parametrización de \mathcal{C} , en los casos siguientes:

- a). f(x, y, z) = x + y + z, $\sigma(t) = (\text{sent}, \cos t, t)$, $t \in [0, 2\pi]$.
- b). $f(x, y, z) = \cos z$, σ como en la parte 1.
- c). $f(x, y, z) = x \cos z$, $\sigma(t) = (t, t^2, 0)$, $t \in [0, 1]$.

a). Mostrar que la integral de longitud de arco de f(x,y) a lo largo de una curva Ejercicio 9. dada en coordenadas polares por $r = r(\theta), \, \theta_1 \leq \theta \leq \theta_2$ es

$$\int_{\theta_1}^{\theta_2} f(r\cos\theta, r\sin\theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

b). Calcular la longitud de la curva $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.

Ejercicio 10. Suponer que la semicircunferencia parametrizado por:

$$\sigma(\theta) = (0, a \sin \theta, a \cos \theta), \qquad \theta \in [0, \pi],$$

con a > 0, está hecha de alambre con densidad uniforme de 2 gramos por unidad de longitud.

- a). ¿Cuál es la masa total del alambre?
- b). Si la temperatura ambiente es igual a x + y z en el punto (x, y, z), calcular la temperatura promedio sobre el alambre.

Ejercicio 11. Si $f:[a,b]\to\mathbb{R}$ es continuamente diferenciable a trozos, el gráfico de f en [a,b] es una curva que se puede parametrizar como $\sigma(t) = (t, f(t))$ para $t \in [a, b]$.

a). Mostrar que la longitud del gráfico de f en [a,b] es

$$\int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

b). Hallar la longitud del gráfico de $y = \log x$ de x = 1 a x = 2.

Integrales curvilíneas

Ejercicio 12. Sea $\mathbf{F}(x,y,z)=(x,y,z)$. Evaluar la integral curvilínea de \mathbf{F} a lo largo de las curvas orientadas \mathcal{C} dadas por las siguientes parametrizaciones:

- a). $\sigma(t) = (t, t, t), \quad 0 \le t \le 1.$
- b). $\sigma(t) = (\sin t, 0, \cos t), \quad 0 \le t \le 2\pi.$

Ejercicio 13. Para las curvas orientadas C parametrizadas por las correspondientes funciones σ , evaluar las integrales siguientes:

- a). $\int_{\mathcal{C}} x \, dy y \, dx$, $\sigma(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$. b). $\int_{\mathcal{C}} x \, dx + y \, dy$, $\sigma(t) = (\cos(\pi t), \sin(\pi t))$, $0 \le t \le 2$.

Ejercicio 14. Considerar la fuerza $\mathbf{F}(x,y,z)=(x,y,z)$. Calcular el trabajo realizado al mover una partícula a lo largo de la parábola $y = x^2$, z = 0, de x = -1 a x = 2.

Ejercicio 15. Sea \mathcal{C} una curva orientada suave parametrizada por σ .

a). Suponer que **F** es perpendicular a $\sigma'(t)$ en $\sigma(t)$ para todo t. Mostrar que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = 0.$$

b). Si **F** es paralelo a $\sigma'(t)$ en $\sigma(t)$ para todo t, mostrar que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}} ||\mathbf{F}|| \, ds.$$

(Aquí, por paralelo a $\sigma'(t)$ se entiende que $\mathbf{F}(\sigma(t)) = \lambda(t)\sigma'(t)$, donde $\lambda(t) > 0$.)

Ejercicio 16. ¿Cuál es el valor de la integral curvilínea de un campo gradiente sobre una curva cerrada C?

Ejercicio 17. Suponer que $\nabla f(x,y,z) = (2xyze^{x^2}, ze^{x^2}, ye^{x^2})$. Si f(0,0,0) = 5, hallar f(1,1,2).

Ejercicio 18. Considerar el campo de fuerza gravitacional (con G=m=M=1) definido (para $(x,y,z) \neq (0,0,0)$) por:

$$\mathbf{F}(x,y,z) = \frac{-1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(x,y,z).$$

Mostrar que el trabajo realizado por la fuerza gravitacional conforme una partícula se mueve de (x_1, y_1, z_1) a (x_2, y_2, z_2) , a lo largo de cualquier trayectoria, depende solamente de los radios $R_1 = \sqrt{x_1^2 + y_1^2 + z_1^2}$ y $R_2 = \sqrt{x_2^2 + y_2^2 + z_2^2}$.

Ejercicio 19. Considere la curva $C = \{(x, y, z) \in \mathbb{R}^3 : y = 1 - x^2, x + y + z = 1, x \ge 0, y \ge 0\}.$

- a) Obtenga una parametrización regular de C que comience en (0,1,0) y termine en (1,0,0).
- b) Calcule la integral $\int_C \mathbf{F} \cdot d\mathbf{s}$ con C orientada como en a), donde $\mathbf{F}(x,y,z) = (2x,y,-z)$.

Ejercicio 20. Sean $f: \mathbb{R}^3 \to \mathbb{R}$ una función C^1 , $G: \mathbb{R}^3 \to \mathbb{R}^3$ un campo C^1 y $\mathbf{F} = \nabla f + \mathbf{G}$. Sea \mathcal{C} una curva cerrada, simple, suave, orientada. Verificar que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}} \mathbf{G} \cdot d\mathbf{s}.$$

Ejercicio 21. Sea \mathcal{C} una curva suave, $\sigma:[a,b]\to\mathbb{R}^3$ una parametrización regular de \mathcal{C} . Sea $g:[\bar{a},\bar{b}]\to [a,b]$ una biyección C^1 con $g'(\tau)\neq 0$ para todo $\tau\in[a,b]$. Sea $\bar{\sigma}:[\bar{a},\bar{b}]\to\mathbb{R}^3$ dada por $\bar{\sigma}(s)=\sigma\big(g(s)\big)$. Llamamos a $\bar{\sigma}$ una **reparametrización** de σ .

- a). Probar que $\bar{\sigma}$ es una parametrización regular de \mathcal{C} .
- b). Sea $f: \mathbb{R}^3 \to \mathbb{R}$ continua. Ver que el cálculo de $\int_{\mathcal{C}} f \, ds$ da el mismo resultado cuando la integral se evalúa utilizando la parametrización σ o la parametrización $\bar{\sigma}$.
- c). Sea $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ continua. Suponer que orientamos a \mathcal{C} con la orientación dada por σ . Ver que el cálculo de $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ utilizando la parametrización $\bar{\sigma}$ da el mismo resultado que cuando se utiliza σ , si $\bar{\sigma}$ preserva la orientación de \mathcal{C} . Ver que si no es así, los resultados difieren sólo en el signo.