Tema 0

Matrices y sistemas de ecuaciones

Ejercicios y Soluciones

0.1. Dadas las matrices

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 2 & 2 \\ 0 & -1 & -3 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix},$$

- (I) escribe el producto de A por B utilizando que $A=\left(\begin{array}{c|c}A^1&A^2&A^3\end{array}\right)$ y B está formado por tres bloques de dimensión $1\times 1.$
- (II) Escribe el producto de A por B utilizando que $A=\begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}$ y tomando B como un único bloque.

Solución.

(I)
$$AB = A^1 + 3A^3$$
.

$$(II) AB = \begin{pmatrix} A_1B \\ A_2B \\ A_3B \end{pmatrix}.$$

0.2. Dadas las matrices

$$A = \begin{pmatrix} -1 & 2 & 1 \end{pmatrix}, \text{ y } B = \begin{pmatrix} -1 & 2 & 2 \\ 0 & -1 & -3 \\ -2 & 0 & -1 \end{pmatrix}$$

- (I) Halla el producto de A por B escribiendo $B=\begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix}$. Observa que AB es una combinación lineal de las filas de B.
- (II) Halla el producto de A por B escribiendo $B=\left(\begin{array}{c|c}B^1&B^2&B^3\end{array}\right)$ y tomando A como un único bloque.

Solución.

(I)
$$AB = -B_1 + 2B_2 + B_3$$
.

(II)
$$AB = \left(AB^1 \mid AB^2 \mid AB^3 \right)$$
.

 $\boxed{\textbf{0.3.}}$ Para cualquier matriz cuadrada A de orden 3 calcula:

(I)
$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ y $A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

(II) (100)A, (010)A y (001)A.

Solución.

- (I) A^1 , A^2 , A^3 .
- (II) A_1, A_2, A_3 .

0.4. Denotando por

$$C = \begin{pmatrix} 0 & 3 \\ 4 & 1 \end{pmatrix}, \ D = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix}, \ E = \begin{pmatrix} 1 & 2 \end{pmatrix}, F = \begin{pmatrix} 1 & -1 \end{pmatrix},$$

$$G = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, H = \begin{pmatrix} 0 & 0 \\ 1 & 5 \end{pmatrix}, K = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ y } L = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix},$$

se tiene que

$$A = \begin{pmatrix} C & D \\ \hline E & F \end{pmatrix} \text{ y } B = \begin{pmatrix} G & H \\ \hline K & L \end{pmatrix}.$$

Halla el producto AB mediante la multiplicación por bloques. Es decir, comprueba que

$$AB = \left(\begin{array}{c|c} CG + DK & CH + DL \\ \hline EG + FK & EH + FL \end{array} \right).$$

Solución.

$$AB = \begin{pmatrix} 3 & 7 & 13 \\ -3 & 2 & 4 \\ \hline 1 & 1 & 11 \end{pmatrix}.$$

$$A^1B_1 + A^2B_2 = \begin{pmatrix} 0 & -1 \\ -7 & -3 \end{pmatrix}.$$

 $\boxed{\mathbf{0.6.}}$ Si A y B son dos matrices cualesquiera, ¿cuáles de las siguientes matrices son iguales a $(A+B)^2$?

(i)
$$A^2 + 2AB + B^2$$
 (ii) $A(A+B) + B(A+B)$ (iii) $(A+B)(B+A)$.

Solución.

Los apartados (ii) y (iii).

[0.7.] Halla matrices A y B, 2×2 , que verifiquen cada una de las siguientes afirmaciones:

- (i) $A^2 = -I_2$.
- (II) $A^2 = 0$, con $A \neq 0$.
- (III) $AB = 0 \operatorname{con} A \neq 0 \text{ y } B \neq 0.$

Solución.

Hay much soluciones posibles.

[0.8. Escribe las matrices $A = (a_{ij})_{2\times 2}$ y $B = (b_{ij})_{2\times 2}$, con $a_{ij} = i + j$ y $b_{ij} = (-1)^{i+j}$. Estudia si A y B conmutan.

Solución.

Dado que
$$AB=\left(\begin{array}{cc}-1&1\\-1&1\end{array}\right)$$
 y $BA=\left(\begin{array}{cc}-1&-1\\1&1\end{array}\right)$ las matrices A y B no conmutan entre sí.

0.9. ¿Cuáles de las siguientes matrices son matrices elementales?

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{ccccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Escribe las que lo sean en notación abreviada (como P_{ij} , etc.). Halla sus productos a izquierda y derecha por las restantes matrices de la lista.

 $M_3(-2)$; no es elemental; P_{14} ; $S_{24}(3)$.

$$M_{3}(-2)A = \begin{pmatrix} \frac{A_{1}}{A_{2}} \\ \frac{-2A_{3}}{A_{4}} \end{pmatrix}; P_{14}A = \begin{pmatrix} \frac{A_{4}}{A_{2}} \\ \frac{A_{3}}{A_{1}} \end{pmatrix}; S_{24}(3)A = \begin{pmatrix} \frac{A_{1}}{A_{2} + 3A_{4}} \\ \frac{A_{3}}{A_{4}} \end{pmatrix}.$$

$$\begin{pmatrix} A^{1} \mid A^{2} \mid A^{3} \mid A^{4} \end{pmatrix} M_{3}(-2) = \begin{pmatrix} A^{1} \mid A^{2} \mid (-2)A^{3} \mid A^{4} \end{pmatrix},$$

$$\begin{pmatrix} A^{1} \mid A^{2} \mid A^{3} \mid A^{4} \end{pmatrix} P_{14} = \begin{pmatrix} A^{4} \mid A^{2} \mid A^{3} \mid A^{1} \end{pmatrix},$$

$$\begin{pmatrix} A^{1} \mid A^{2} \mid A^{3} \mid A^{4} \end{pmatrix} S_{24}(3) = \begin{pmatrix} A^{1} \mid A^{2} \mid A^{3} \mid A^{4} + 3A^{2} \end{pmatrix}.$$

0.10. Halla las traspuestas de las matrices elementales. ¿Cúales de ellas son simétricas?

Solución.

 $(P_{ij})^t = P_{ij}$, $(S_{ij}(r))^t = S_{ji}(r)$, $(M_i(r))^t = M_i(r)$. Son simétricas las matrices elementales de la forma P_{ij} y las de la forma $M_i(r)$.

0.11. Escalona las siguientes matrices. Da el rango y la forma normal de Hermite de cada una de ellas.

$$\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ \frac{3}{4} \\ \frac{5}{6} \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}, \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 1 & -1 & 2 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 2 & 3 & -1 & 0 & 1 & 5 \\ 0 & 0 & 2 & -4 & 6 & 2 \\ 0 & 0 & -1 & 2 & -3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 5 & 7 & 6 & 3 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

4

Escribimos la forma normal de Hermite de cada una de las matrices:

[0.12.] Denotamos por A a cada una de las siguientes matrices. Estudia si A es o no una matriz de Hermite.

$$\left(\begin{array}{cccc} 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{cccc} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{cccc} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Para los casos en que A no sea de Hermite, halla su forma normal de Hermite, H, y una matriz regular Q con QA = H.

Solución.

Para la tercera matriz,
$$H=I_3$$
 y la matriz $Q=\begin{pmatrix}1&0&-2\\0&1&-1\\0&0&1\end{pmatrix}$ verifica que $QA=I_3$.

Para la cuarta matriz,
$$H = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 y la matriz $Q = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ verifica que $QA = H$.

 $\overline{\mathbf{0.13.}}$ Si A es cualquiera de las matrices siguientes

$$\left(\begin{array}{ccc} 1 & 1 \\ 1 & -1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & -1 \\ 2 & 4 & -2 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & -1 \\ 2 & 4 & -1 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right),$$

- (I) Encuentra matrices elementales, L_1, \ldots, L_t tales que la matriz $L_t \ldots L_1 A$ sea escalonada reducida (ó matriz de Hermite).
- (II) Para los casos en que sea posible, expresa la matriz A como producto de matrices elementales.
- (III) En esos mismos casos, observa que existe A^{-1} y exprésala también como producto de matrices elementales.

Solución.

Aunque la respuesta no es única, se da una posible solución.

(1)

$$S_{12}(-1)M_2(-1/2)S_{21}(-1)\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S_{21}(-2)\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$S_{12}(1)S_{21}(-2)\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$S_{13}(1)S_{23}(1)\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$$

- (II) La primera matriz $A = S_{21}(1)M_2(-2)S_{12}(1)$. La cuarta $A = S_{23}(-1)S_{13}(-1)$.
- (III) Para la primera matriz, $A^{-1} = S_{12}(-1)M_2(-1/2)S_{21}(-1)$. Para la cuarta, $A^{-1} = S_{13}(1)S_{23}(1)$.

0.14. Calcula, en función de los valores del parámetro a, el rango y la forma normal de Hermite de cada una de las matrices siguientes. Cuando sea posible, halla también su inversa.

$$A = \begin{pmatrix} 1 & 0 & a \\ -1 & 1 & 2 \\ 0 & 1 & a \end{pmatrix}, B = \begin{pmatrix} a & 0 & -1 \\ 0 & 1 & 1 \\ a & 1 & a \end{pmatrix},$$

$$C = \begin{pmatrix} 0 & 1 & 1 \\ a & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 1 & 1 \\ 1 & a & -1 \\ a & 0 & 1 \end{pmatrix}.$$

6

La forma normal de Hermite de A es I_3 para cualquier $a \in \mathbb{R}$. Por tanto, rang A = 3, A es regular

y
$$A^{-1} = \frac{1}{2} \begin{pmatrix} 2-a & -a & a \\ -a & -a & a+2 \\ 1 & 1 & -1 \end{pmatrix}$$
.

Para todo $a \neq 0$, la forma normal de Hermite de B es I_3 , rang B=3 y

$$B^{-1} = \frac{1}{a^2} \left(\begin{array}{ccc} a - 1 & -1 & 1 \\ a & a^2 + a & -a \\ -a & -a & a \end{array} \right).$$

Para a=0, rang B=2 y la forma normal de Hermite de B es $H=\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$. En ese caso, B no tiene inversa.

Para todo $a \neq 0$, la forma normal de Hermite de C es I_3 , rang C = 3 y

$$C^{-1} = \frac{1}{a} \begin{pmatrix} -1 & 1 & 0 \\ -1+a & 1 & -a \\ 1 & -1 & a \end{pmatrix}.$$

Para a=0, rang C=2 y la forma normal de Hermite de C es $H=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. En ese caso, C no tiene inversa.

Para todo $a \neq -1$, la forma normal de Hermite de D es I_3 , rang D = 3 y

$$D^{-1} = \frac{1}{(1+a)^2} \begin{pmatrix} -a & 1 & 1+a \\ 1+a & 1+a & 0 \\ a^2 & -a & 1+a \end{pmatrix}.$$

Para a=-1, rang D=2 y la forma normal de Hermite de D es $H=\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. En ese caso, D no tiene inversa.

0.15. Dadas las matrices

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 2 \end{pmatrix}, y B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

- (I) Demuestra que tienen el mismo rango r.
- (II) Estudia si tienen la misma forma normal de Hermite.

(III) Encuentra matrices invertibles P_1 y Q_1 tales que $Q_1AP_1 = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$. Del mismo modo, halla matrices invertibles P_2 y Q_2 tales que

$$Q_2BP_2 = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right).$$

(IV) Con todo ello, encuentra matrices invertibles P y Q tales que QAP = B.

Solución.

A y B tienen el mismo rango, pero no la misma forma normal de Hermite. Las matrices Q_1 , P_1 , Q_2 y P_2 que se piden no son únicas. Una vez halladas, las matrices $Q = Q_2^{-1}Q_1$ y $P = P_1P_2^{-1}$ verifican QAP = B.

 $\boxed{\textbf{0.16.}}$ Estudia si cada una de las siguientes afirmaciones es verdadera o falsa. Demuestra las verdaderas y da un contraejemplo de cada una de las falsas. Dadas A, B, matrices $n \times n$ sobre K:

- (I) Si A es regular, $A \cdot B = 0 \Longrightarrow B = 0$.
- (II) Si A es simétrica y regular, entonces A^{-1} es también simétrica.
- (III) $AB = I_n \Longrightarrow B = A^{-1} \text{ y } A = B^{-1}.$
- (IV) Si A y B tienen la misma forma de Hermite, entonces existe una matriz P, regular, con PA = B.
- (v) Si A y B tienen el mismo rango, entonces la forma normal de Hermite de A coincide con la de B.
- (VI) Si P es una matriz regular $n \times n$, entonces rang $(PA) = \operatorname{rang} A$.

Solución.

Sólo una de las afirmaciones es falsa.

0.17. Escribe los siguientes sistemas en forma matricial. Escribe en cada caso su correspondiente matriz de coeficientes y la matriz ampliada. Resuélvelos cuando sea posible.

$$\left. \begin{array}{c} x-y+z=3 \\ 5x+2y-5z=5 \\ -3x-4y+3z=1 \end{array} \right\} \begin{array}{c} x+2y+2z+t=3 \\ x+3z=-1 \\ 3x+y+8z+t=7 \end{array} \right\} \begin{array}{c} 2x+y+z=0 \\ x+2y+z=1 \\ x+y+z=1 \end{array}$$

$$\left. \begin{array}{c} x+y+z+t=0 \\ x+y+z-t=4 \\ x+y-z+t=-4 \\ x-y+z+t=2 \end{array} \right\} \begin{array}{c} x+y+z+t=0 \\ x-3y+5z+9t=0 \end{array} \right\}$$

(I)
$$(x, y, z) = (11/7, -10/7, 0).$$

(II)
$$(x, y, z, t) = \{(47 - 3t, -6, -16 + t, t); t \in \mathbb{R}\}\$$

(III)
$$(x, y, z) = (-1/2, 1/2, 1/2).$$

(IV)
$$(x, y, z, t) = (1, -1, 2, -2).$$

(V)
$$(x, y, z, t) = \{(-t, t, -t, t); t \in \mathbb{R}\}.$$

 $\boxed{\textbf{0.18.}}$ Estudia y resuelve, cuando sea posible, los siguientes sistemas dependientes de un parámetro a.

$$\begin{aligned}
2x - ay + 4z &= 0 \\
x + y + 7z &= 0 \\
ax - y + 13z &= 0
\end{aligned} \qquad
\begin{cases}
ax + y + z &= 1 \\
x + ay + z &= a \\
x + y + az &= a^2
\end{cases}$$

$$\begin{aligned}
2x + y - 4z &= a + 1 \\
-x + 5y - 5z &= a - 12 \\
x + 6y - 5z &= a + 12 \\
2x - 4y + 5z &= a
\end{aligned} \qquad
\begin{cases}
x + ay &= 0 \\
ax + y + z &= 0 \\
2x + az &= 0
\end{cases}$$

$$\begin{aligned}
2x + (2 - a)y &= 0 \\
(2a + 2)x + ay + 2z &= 2a - 2 \\
(a + 1)x + (a + 1)z &= a - 1
\end{cases}$$

$$\begin{aligned}
ax + y + z + t &= a \\
x + ay + z + t &= a \\
x + y + az + t &= a \\
x + y + z + at &= a
\end{aligned}$$

Solución.

- (I) Si $a \neq -\frac{12}{7}$ y $a \neq 3$, el sistema es compatible determinado y tiene como única solución (x,y,z)=(0,0,0). Si $a=-\frac{12}{7}$, el sistema es compatible indeterminado y el conjunto de soluciones es $\{(x,y,z)=(28z,-35z,z), z\in\mathbb{R}\}$. Si a=3, el sistema es compatible indeterminado, con soluciones $(x,y,z)=(-5z,-2z,z), z\in\mathbb{R}$.
- (II) Si $a \neq -2$ y $a \neq 1$, el sistema es compatible determinado y tiene como única solución $(x, y, z) = \frac{1}{2+a}(-1-a, 1, 1+2a+a^2)$. Si a=-2, el sistema es incompatible. Y si a=1, el sistema es compatible indeterminado con soluciones de la forma $(x, y, z) = (1-y-z, y, z), y \in \mathbb{R}, z \in \mathbb{R}$.
- (III) Si $a \neq \frac{1171}{89}$, el sistema es incompatible. Si $a = \frac{1171}{89}$, la única solución del sistema es $(x, y, z) = \frac{1}{80}(862, 412, 219)$.
- (IV) El sistema siempre es compatible porque es homogéneo. Si $a \neq 0, \sqrt{3}, -\sqrt{3}$, el sistema es compatible determinado. La única solución es la trivial. En los demás casos, el sistema es compatible indeterminado. Así si a=0 el conjunto de soluciones es $\{(x,y,z)=(0,-z,z),\,z\in\mathbb{R}\}$; si $a=\sqrt{3}$ es $\{(x,y,z)=(-\sqrt{3}y,y,2y)\mid y\in\mathbb{R}\}$ y para $a=-\sqrt{3}$ es $\{(x,y,z)=(\sqrt{3}y,y,2y)\mid y\in\mathbb{R}\}$.

- (v) Si a=-1, el sistema es incompatible. Si a=0, es compatible indeterminado con solución $\{(x,y,z)=(-1-z,1+z,z)\mid z\in\mathbb{R}\}$. Si a=1, es compatible indeterminado con solución $\{(x,y,z)=(-z,2z,z)\mid z\in\mathbb{R}\}$. En los demás casos, el sistema es compatible determinado con solución $(x,y,z)=\frac{1}{1+a}(-2+a,2,1)$.
- (VI) Si a=1, el sistema es compatible indeterminado el conjunto de soluciones es $\{(x,y,z,t)=(1-y-z-t,y,z,t)\mid y\in\mathbb{R},\,z\in\mathbb{R},\,t\in\mathbb{R}\}$. Si a=-3, el sistema es incompatible. En los demás casos, es compatible determinado con solución $(x,y,z,t)=\frac{a}{3+a}(1,1,1,1)$.

 $\boxed{\textbf{0.19.}}$ Estudia y resuelve, cuando sea posible, los siguientes sistemas, dependientes de los parámetros a y b:

Solución.

(I) Si $a \neq 0$ y $b \neq 1$, -1, el sistema es compatible determinado con solución $(x, y, z) = (\frac{1}{a}, 0, 0)$. Si a = 0 y $b \neq 1$, -1, el sistema es incompatible. En los demás casos, es compatible indeterminado:

Si $a \neq 0$ y b = 1, el conjunto de soluciones es $\{(x, y, z) = \frac{1}{a}(1 - y, ay, 0) \mid y \in \mathbb{R}\}.$

Si $a \neq 0$ y b = -1, las soluciones son de la forma $(x, y, z) = (\frac{2-3z}{2a}, \frac{z}{2}, z) \mid z \in \mathbb{R}$.

Si a = 0 y b = 1, las soluciones son $\{(x, y, z) = (x, 1, 0) \mid x \in \mathbb{R}\}.$

Finalmente, si a = 0 y b = -1, las soluciones son $(x, y, z) = (x, \frac{7}{3}, \frac{2}{3}) \mid x \in \mathbb{R}$.

(II) El sistema es siempre compatible indeterminado:

Si b=0, el conjunto de soluciones es $\{(x,\,y,\,z)=2y,y,\frac{1}{2})\mid y\in\mathbb{R}\}.$

Si $b \neq 0$, las soluciones son $\{(x,y,z) = \left(\frac{b+2}{b} - \frac{(4+2b)z}{b}, \frac{1-2z}{b}, z\right) \mid z \in \mathbb{R}\}.$

(III) Si $b = 2a - a^2$, el sistema es compatible indeterminado con soluciones de la forma (x, y, z) = (az - z, -az, z) donde $z \in \mathbb{R}$. En los demás casos, es compatible determinado con solución trivial.

 $\boxed{\mathbf{0.20.}}$ Estudia para qué valores de a, b, c y d es regular una matriz

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

¿Tiene esto algo que ver con el valor de su determinante?

Si a=0, la matriz es regular siempre que $b\neq 0$ y $c\neq 0$. Si $a\neq 0$, la matriz es regular siempre que $d\neq \frac{bc}{a}$. Estas condiciones equivalen a decir que $ad-bc\neq 0$.

0.21. Sabemos que

$$\left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right| = 1,$$

pero vamos a calcularlo utilizando propiedades de los determinantes. Sustituimos la primera fila por ella más la segunda y la segunda fila por ella más la primera. Se tiene entonces

$$\left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right| = \left|\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right| = 0.$$

¿Puedes explicar qué ocurre? ¿Qué consecuencia práctica se deduce?

Solución.

Se deduce que no se pueden realizar simultáneamente varias transformaciones elementales sobre una matriz para calcular su determinante.

0.22. Halla los determinantes de las siguientes matrices:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 2 & 1 & 2 \\ 2 & 3 & -2 & 4 \\ 2 & 2 & 1 & 3 \\ 0 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 & -2 & 4 \\ 3 & -2 & 1 & 2 \\ 3 & 2 & 0 & -1 \\ 2 & 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{pmatrix}.$$

Solución.

- (1) 2,
- (II) (b-a)(c-a)(c-b),
- (III) (b-a)(c-a)(c-b)(a+b+c),
- (IV) -28,
- (v) -21,
- (VI) (b-a)(c-a)(c-b)(d-a)(d-b)(d-c).