1 Kužeľosečky - prehľad polohových vlastností (2.časť)

Ďaľšou zaujímavou vlastnosťou súvisiacou s kužeľosečkami sú združené smery (resp. priemery). Nech je daná kužeľosečka C (regulárna) rovnicou (1). Nech $\overline{u}=[u,v]$ generuje neasymptotický smer v rovine. Nech $R=[x^R,\ y^R]$ je ľubovoľný bod v E_2 a $p=R+t\overline{u}$ je priamka so smerovým vektorom \overline{u} idúca bodom R.Predpokladajme, že priamka p pretína kužeľosečku v dvoch rôznych bodoch P_1 a P_2 , ktoré odpovedajú parametrom t_1 a t_2 na priamke p. Je známe, že pre stred X tetivy P_1P_2 platí

$$X = R + \frac{t_1 + t_2}{2}\overline{u}.$$

Keďže parametre t_1 a t_2 , definujúce spoločné body p a C sú riešenia rovnice (2), pre parameter bodu X na p platí

$$\frac{t_1 + t_2}{2} = -\frac{u(ax^R + by^R + d) + v(bx^R + cy^R + e)}{au^2 + 2buv + cv^2}.$$

Nechávame na čitateľovi dôkaz skutočnosti, že pre súradnice x, y bodu X plaí :

$$x = -u\alpha + (-bu - cv)\beta$$

$$y = -v\alpha + (au + bv)\beta,$$

kde $\alpha=\frac{du+ev}{au^2+2buv+cv^2}$ a $\beta=\frac{-rv+su}{au^2+2buv+cv^2}$, teda skutočnosť, že bod X leží na priamke $q_{\overline{u}}$ danej parametricky

$$x = -u\alpha + (-bu - cv)t$$

$$y = -v\alpha + (au + bv)t,$$

resp. všeobecnou rovnicou

$$q_{\overline{u}}: (au + bv)x + (bu + cv)y + (du + ev) = 0$$

Vidíme, že uvedená skutočnosť platí pre ľubovoľný výber bodu R, teda platí pre stredy všetkých rovnobežných tetív. Priamku $q_{\overline{u}}$ nazývame **priemerom** kužeľosečky C združeným so smerom \overline{u} .Dokázali sme teda tvrdenie

(T6) Stredy všetkých tetív kužeľosečky rovnobežných s vektorom \overline{u} ležia na priemere kužeľosečky združenom so smerom \overline{u} .

K ľubovoľnému neasymptotickému smeru v rovine existuje teda priemer združený s týmto smerom. Označme smerový vektor tejto priamky ako \overline{w} . Je zrejmé, že

$$\overline{w} = [-bu - cv, au + bv].$$

Pokiaľ tento smer nie je asymptotický, vieme k nemu nájsť združený priemer. Kedy je teda smer generovaný vektorom \overline{w} asymptotický? Práve vtedy, keď

$$a(-bu - cv)^{2} + 2b(-bu - cv)(au + bv) + c(au + bv)^{2} = 0$$

teda práve vtedy, keď

$$(ac - b^2)(au^2 + 2buv + cv^2) = 0$$

teda práve vtedy, keď $ac-b^2=0$ (keďže smer generovaný vektorom $\overline{u}=[u,v]$ nie je asymptotický).

Nech teraz $ac-b^2\neq 0$, teda smer generovaný vektorom \overline{w} nie je asymptotický. Hľadajme priemer kužeľosečky C združený s týmto smerom. Z doteraz povedaného vyplýva, že

$$q_{\overline{w}}: (a(-bu - cv) + b(au + bv))x + (b(-bu - cv) + c(au + bv))y + d(-bu - cv) + e(au + bv) = 0,$$

teda

$$q_{\overline{w}}: v(b^2 - ac)x - u(b^2 - ac)y + \text{absolutiny člen} = 0,$$

teda

$$q_{\overline{w}}: vx - uy + \text{absolútny člen} = 0,$$

keďže $ac-b^2\neq 0$. Je teda vektor \overline{u} smerovým vektorom priemeru $q_{\overline{w}}$.

Priemery $q_{\overline{u}}$ a $q_{\overline{w}}$ nazývame **združenými priemermi kužaľosečky** C. Z doteraz povedaného vyplýva nasledovný záver.

Ak $ac - b^2 = 0$ a vektor $\overline{u} = [u, v]$ nie je asymptotický. Potom priemer $q_{\overline{u}}$ združený so smerom \overline{u} má asymtotický smer a všetky priemery sú teda rovnobežné s týmto smerom.

Ak $ac - b^2 \neq 0$ a vektor $\overline{u} = [u, v]$ nie je asymptotický. Potom priemer združený so smerom \overline{u} má smer generovaný vektorom \overline{w} (ktorý nie je asymptotický) a priemer združený so smerom \overline{w} je rovnobežný s vektorom \overline{u} .

Jedno zaujímavé využitie združených priemerov súvisí s dotykovými úlohami. Majme teda kužeľosečku C danú rovnicou (1) a neasymptotický smer \overline{u} . Hľadajme dotyčnicu danej kužeľosečky rovnobežnú s vektorom \overline{u} . Zozstrojme priemer $q_{\overline{u}}$ združený s týmto smerom a prienik tejto priamky s kužeľosečkou C. Takýto bod je stredom tetivy rovnobežnej s vektorom \overline{u} . Keďže táto tetiva je jediný bod, je priamka idúca týmto bodom a rovnobežná s vektorom \overline{u} dotyčnicou danej kužeľosečky.

Prklad 1 Nájdite dotyčnice kužeľosečky $C: x^2 + xy + y^2 + 2x + 3y - 3 = 0$ rovnobežné s sou x (teda vektorom $\overline{u} = [1,0]$).

Riešenie: Matica danej kuželosečky je

$$\left(\begin{array}{ccc}
1 & \frac{1}{2} & 1 \\
\frac{1}{2} & 1 & \frac{3}{2} \\
1 & \frac{3}{2} & -3
\end{array}\right)$$

teda kužeľosečka je regulárna. Nájdime asymptotické smery, teda riešme rovnicu

$$u^2 + uv + v^2 = 0,$$

resp.

$$(\frac{u}{v})^2 + \frac{u}{v} + 1 = 0.$$

Vidíme, že také reálne u, v neexistujú, kužeľosečka teda nemá asymptotické smery. Hľadajme dotyčnice so smerovým vektorom $\overline{u}=[1,0]$. $q_{\overline{u}}:x+\frac{1}{2}y+1=0$ je priemer združený so smerom \overline{u} . Pri hľadaní spoločných bodov $q_{\overline{u}}$ a C riešim nasledovnú kvadratickú rovnicu:

$$3x^2 + 2x - 5 = 0.$$

 $Vidíme, že prvými súradnicami spoločných bodov sú - \frac{5}{3} a 1.$ Spoločnými bodmi $q_{\overline{u}}$ a C sú teda body

$$R_1 = [1, -4] \ a \ R_2 = [-\frac{5}{3}, \frac{4}{3}]$$

a dotyčnice v nich sú priamky dané všeobecnými rovnicami

$$y + 4 = 0$$
 a $3y - 4 = 0$.

To sú teda dotyčnice kužeľosečky C so smerovým vektorom $\overline{u} = [1, 0]$.

Z doteraz povedaného môžeme urobiť záver, týkajúci sa klasifikácie regulárnych kužeľosečiek.

Nech $ac-b^2=0$. Táto kužeľosečka má jediný asymptotický smer a nemá stred. Takúto regulárnu kužeľosečku nazýveme **parabola.**

Nech $ac - b^2 > 0$. Táto kužeľosečka nemá asymptotický smer a má jediný stred. Takúto regulárnu kužeľosečku nazýveme elipsa.

Nech $\mathbf{ac} - \mathbf{b}^2 < \mathbf{0}$. Táto kužeľosečka má dva rôzne asymptotické smery a má jediný stred. Takúto regulárnu kužeľosečku nazýveme **hyperbola.**