Nature Inspired Search and Optimisation Advanced Aspects of Nature Inspired Search and Optimisation

Lecture 8: Constraint Handling in Evolutionary
Algorithms (I)

Shan He

School for Computational Science University of Birmingham

February 6, 2020

Outline of Topics

- Motivating examples
 - Engineering Optimisation Problems
- 2 Constrained Optimisation
- 3 Constrained Handling Techniques in EAs
 - Penalty Function

Example 1: Cubic Vessel Design

Engineering Opt.

- **Aims**: to find an optimal values of length l, width w, high h, and thickness t, to minimize the material consumption (or equivalently, the surface area).
- Constraints: material consumption cannot be minimise infinitely since there are some requirements:
 - Quality requirements, e.g., the maximum deflection should be less than an allowable value.
 - Restrictions imposed by government and corporate regulations, e.g., shapes or the maximum capacity

Example 2: Spring design

- Aims to minimize the weight of a tension/compression spring. All design variables are continuous (See my paper).
- Four constraints:
 - Minimum deflection
 - Shear stress
 - Surge frequency
 - Diameters
- Let the wire diameter $d=x_1$, the mean coil diameter $D=x_2$ and the number of active coils $N=x_3$
- There are boundaries of design variables:

$$0.05 \le x_1 \le 2, \ 0.25 \le x_2 \le 1.3, \ 2 \le x_3 \le 15$$

Constrained Optimisation Example: Spring design

Minimize

$$f(X) = (x_3 + 2)x_2x_1^2 \tag{1}$$

subject to:

$$g_1(X) = 1 - \frac{x_2^3 x_3}{71785 x_1^4} \le 0 (2)$$

$$g_2(X) = \frac{4x_2^2 - x_1x_2}{12566(x_2x_1^3 - x_1^4)} + \frac{1}{5108x_1^2} - 1 \le 0$$
 (3)

$$g_3(X) = 1 - \frac{140.45x_1}{x_2^2 x_3} \le 0 \tag{4}$$

$$g_4(X) = \frac{x_2 + x_1}{1.5} - 1 \le 0 \tag{5}$$

Engineering Optimisation

- Engineering optimisation (Design Optimisation): to find the best combination of design variables that optimises designer's preference (design objective) and satisfies certain requirements (constraints).
- Design variables: A design variable is under the control of designer and could have an impact on the solution of the optimization problem
- Types of design variables can be:
 - Continuous
 - Integer (including binary)
 - Set of variables: designers are required to choose the design variables from a list of recommended values from design standards
- **Design objective**: represents the desires of the designers, e.g., to maximize profit or minimize cost.

Engineering Optimisation

- **Constraints:** Designers desires cannot be optimized infinitely because of
 - Limited resources: budget or materials that can be used in product development.
 - Other restrictions such as user requirements and regulations
 - A design constraint is "rigid" or "hard" since usually it needs to be satisfied strictly
- Engineering optimisation, as well many real-world optimisation problems are constrained optimisation problems

What Is Constrained Optimisation?

• The general constrained optimisation problem:

$$\min_{\mathbf{x}}\{f(\mathbf{x})\}$$

subject to

$$g_i(\mathbf{x}) \le 0, \ i = 1, \cdots, m$$

$$h_j(\mathbf{x}) = 0, \ j = 1, \cdots, p$$

where \mathbf{x} is the n dimensional vector, $x = (x_1, x_2, \dots, x_n)$; $f(\mathbf{x})$ is the objective function; $g_i(\mathbf{x})$ is the inequality constraint; and $h_i(\mathbf{x})$ is the equality constraint.

- Denote the whole search space as S and the feasible space as F. $F \in S$.
- Note: the global optimum in ${\mathcal F}$ might not be the same as that in ${\mathcal S}$.

Different Types of Constraints

- Linear constraints are relatively easy to deal with
- Non-linear constraints can be hard to deal with

Constraint Handling Techniques in Evolutionary Algorithms

- The purist approach: rejects all infeasible solutions in search
- The separatist approach: considers the objective function and constraints separately.
- The penalty function approach: converts a constrained problem into an unconstrained one by introducing a penalty function into the objective function.
- The repair approach: maps (repairs) an infeasible solution into a feasible one.
- The hybrid approach mixes two or more different constraint handling techniques.

Penalty Function Approach: Introduction

- New Objective Function = Original Objective Function +
 Penalty Coefficient * Degree Of Constraint Violation
- The general form of the penalty function approach:

$$f'(\mathbf{x}) = f(\mathbf{x}) + \left(\sum_{i=1}^{m} r_i G_i(\mathbf{x}) + \sum_{j=1}^{p} c_j H_j(\mathbf{x})\right)$$

where $f'(\mathbf{x})$ is the new objective function to be minimised, $f(\mathbf{x})$ is the original objective function, r_i and c_j are penalty factors (coefficients), and G_i and H_j are penalty functions for inequality and equality constraints, respectively:

$$G_i(\mathbf{x}) = \max(0, g_i(\mathbf{x}))^{\beta}, H_j(\mathbf{x}) = \max(0, |h_j(\mathbf{x})|)^{\gamma}, \begin{cases} 0 & \text{is } 0 \\ \text{this } \text{is } 0 \end{cases}$$

where β and γ are usually chosen as 2.

Penalty Function Approach: Techniques

- **Static Penalties**: The penalty function is pre-defined and **fixed** during evolution.
- Dynamic Penalties: The penalty function changes according to a pre-defined sequence, which often depends on the generation number.
- Adaptive and Self-Adaptive Penalties: The penalty function changes adaptively.

Static Penalty Functions

• Static penalty functions general form:

$$f'(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{m} r_i(G_i(\mathbf{x}))^2$$

where r_i are predefined and fixed.

• Equality constraints can be converted into inequality ones:

$$h_j(\mathbf{x}) \Longrightarrow h_j(\mathbf{x}) - \epsilon \le 0$$

where $\epsilon > 0$ is a small number.

- Simple and easy to implement.
- Requires rich domain knowledge to set r_i .
- r_i $(i=1,\cdots,m+p)$ can be divided into a number of different levels. When to use which is determined by a set of heuristic rules, e.g., the more important a constraint g_i , the larger the value of r_i .

Dynamic Penalty Functions

• Dynamic Penalties general form:

$$f'(\mathbf{x}) = f(\mathbf{x}) + r(t) \sum_{i=1}^{m} G_i^2(\mathbf{x}) + c(t) \sum_{j=1}^{p} H_j^2(\mathbf{x})$$

where r(t) and c(t) are two penalty coefficients.

- General principle: the large the generation number t, the larger the penalty coefficients r(t) and c(t).
- Question: why the large the generation number, the larger the penalty coefficients?

 Less in feasible solutions in the final generations

Dynamic Penalty Functions

- Common dynamic penalty coefficients:
 - Polynomials: $r(t) = \sum_{k=1}^{N} a_{k-1} t^{k-1}$, $c(t) = \sum_{k=1}^{N} b_{k-1} t^{k-1}$ where a_k and b_k are user-defined parameters.
 - Exponentials: $r(t) = e^{at}$, $c(t) = e^{bt}$ where a and b are user-defined parameters.
 - $\bullet \ \ \mbox{Hybrid}: \ r(t) = e^{\sum_{k=1}^{N} b_{k-1} t^{k-1}} \mbox{, } \ c(t) = e^{\sum_{k=1}^{N} b_{k-1} t^{k-1}}$

Penalty function, Fitness Function and Selection

- Let static penalty function $\Phi(\mathbf{x}) = f(\mathbf{x}) + rG(\mathbf{x})$, where $G(\mathbf{x}) = \sum_{i=1}^{m} G_i(\mathbf{x})$ and $G_i(\mathbf{x}) = \max\{0, g_i(\mathbf{x})\}$
- **Question**: How does r affect an Evolutionary Algorithm? \sqrt{trees} calc

Generic Evolutionary Algorithm

 $\mathbf{X}_0 :=$ generate initial population of solutions

termination flag := false

t := 0

Evaluate the fitness of each individual in X_0 .

while (terminationflag != true)

Selection: Select parents from \mathbf{X}_t based on their fitness.

Variation: Breed new individuals by applying variation operators to parents

Fitness calculation: Evaluate the fitness of new individuals.

Reproduction: Generate population \mathbf{X}_{t+1} by replacing least-fit individuals

 $t := t \, + \, 1$

If a termination criterion is met: terminationflag := true

Output x_{best}

Penalty function, Fitness Function and Selection

- Minimisation problem with a penalty function $\Phi(\mathbf{x}) = f(\mathbf{x}) + rG(\mathbf{x})$
- Given two individual x_1 and x_2 , their fitness values are now determined by $\Phi(x) \Longrightarrow$ changing fitness values
- Fitness proportional selection: Because fitness values are used primarily in selection: Changing fitness ⇒ changing selection probabilities
- Ranking selection: $\Phi(\mathbf{x_1}) < \Phi(\mathbf{x_2})$ means $f(\mathbf{x_1}) + rG(\mathbf{x_1}) < f(\mathbf{x_2}) + rG(\mathbf{x_2})$ if $f(\mathbf{x_1}) f(\mathbf{x_2}) + f(\mathbf{x_1}) = f(\mathbf{x_1}) f(\mathbf{x_2})$ and $f(\mathbf{x_1}) \leq G(\mathbf{x_2})$: $f(\mathbf{x_1}) \leq f(\mathbf{x_2})$ and $f(\mathbf{x_1}) \leq G(\mathbf{x_2})$: Increasing $f(\mathbf{x_1}) \leq f(\mathbf{x_2})$ and $f(\mathbf{x_1}) \leq G(\mathbf{x_2})$: Increasing $f(\mathbf{x_1}) \leq f(\mathbf{x_2})$ and $f(\mathbf{x_1}) \leq f(\mathbf{x_2})$ and $f(\mathbf{x_1}) \leq f(\mathbf{x_2})$.
 - $f(\mathbf{x_1}) < f(\mathbf{x_2})^{\dagger}$ and $G(\mathbf{x_1}) > G(\mathbf{x_2})$: Increasing r will eventually change the comparison
 - $f(\mathbf{x_1}) > f(\mathbf{x_2})$ and $G(\mathbf{x_1}) < G(\mathbf{x_2})$. Decreasing r will eventually change the comparison
- Ranking selection: Different r lead to different ranking of individual in the population

Penalties and Fitness Landscape Transformation

- Different penalty functions lead to different new objective functions.
- **Question**: For the following minimisation problem, which penalty function should we avoid? Why?

Penalty Functions Demystified

- Penalty function essentially:
 - Transforms fitness
 - Changes rank → changes selection
- Why not change the rank directly in an EA?
- We will introduce Stochastic Ranking in our next lecture