MAT315 - HW3

$Quentin\ Vilchez-1002562586$

March 5, 2018

- 1. (a) $3x \equiv 1 \pmod{11}$, we know that (11,3) = 1This equation is soluble. $\exists x, y \in Z \text{ such that } 3x - 11y = 1.$

 - (4,1) are solutions. Therefore $3x \equiv 1 \pmod{11} \iff x \equiv 4 \pmod{11}$.
 - (b) $2x \equiv 1 \pmod{11}$, we know that (11, 2) = 1This equation is soluble. $\exists x, y \in Z \text{ such that } 2x - 11y = 1.$
 - (6,1) are solutions. Therefore $2x \equiv 1 \pmod{11} \iff x \equiv 6 \pmod{11}$.
 - (c) $37x \equiv 2 \pmod{145}$, we know that (145, 35) = 1This equation is soluble. $\exists x, y \in Z \text{ such that } 37x - 145y = 2.$ (-94, -24) are solutions. Therefore $37x \equiv 2 \pmod{145} \iff x \equiv 51 \pmod{145}$.
 - (d) $15x \equiv 5 \pmod{305}$, we know that (305, 15) = 5This equation is soluble. $\exists x, y \in Z \text{ such that } 15x - 305y = 5.$ (-20, -1) are solutions. Therefore $15x \equiv 5 \pmod{305} \iff x \equiv 285 \pmod{305}$.
 - (e) $18x \equiv 6 \pmod{45}$, we know that (45, 18) = 9This equation is not soluble.
- 2. (a)

$$x \equiv 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 \pmod{13}$$

Then,

$$x^2 \equiv 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1 \pmod{13}$$

So the residue classes of $x^2 \pmod{13}$ are 0, 1, 4, 9, 3, 12, 10.

(b) $2x^2 \equiv 1 \pmod{13}$, we have (13,2) = 1, so the equation seems soluble. (-6,-1) is a solution. $2x^2 \equiv 1 \pmod{13} \iff x^2 \equiv 7 \pmod{13}$. But in (a) we saw that $x^2 \not\equiv 7 \pmod{13}$. Therefore the equation is not soluble.

(c) Suppose there exists $x, y \in Z$ such that $13x^3 - 11y^2 = 1$. Then we must have,

$$-11y^2 \equiv 1 \pmod{13}$$

 $11y^2 \equiv 12 \pmod{13}$ (1)

Now (12,13)=1. Therefore, $\exists k,l\in Z$ such that 11k-13l=12. (72,60) is a solution. Hence, $11y^2\equiv 12\pmod{13}\iff y^2\equiv 7\pmod{13}$. But in (a) we saw that $y^2\not\equiv 7\pmod{13}$. Therefore this equation has no solutions in \mathbb{Z} .

(d) It is easy (but tedious) to check that the residue classes for $x^3 \pmod{11}$ are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

$$13x^3 - 11y^2 \equiv 1 \pmod{11} \iff 13x^3 \equiv 1 \pmod{11}$$

This equation is soluble since (13, 11) = 1 and the residue classes for $x^3 \pmod{13}$ are the same as $x \pmod{13}$.

3. (a)

$$x^2 \equiv 1 \pmod{p} \Leftrightarrow (x-1)(x+1) \equiv 0 \pmod{p}$$

 $\Leftrightarrow p \mid (x-1)(x+1) \Rightarrow p \mid (x-1) \text{ or } (x+1)$

$$x - 1 \equiv 0 \pmod{p}$$
 $x + 1 \equiv 0 \pmod{p}$ $x \equiv 1 \pmod{p}$ $x \equiv -1 \pmod{p}$

- (b) This is true.
 - i. Existence:

We have $a \equiv a \pmod{p}$ and (a, p) = 1.

Therefore there exists x and y such that $ax - py = 1 \Rightarrow ax \equiv 1 \pmod{p}$.

We may simply take $b = x \pmod{p}$.

ii. Uniqueness:

Suppose there exists $1 \le b_1, b_2 \le p-1$ such that $ab_i \equiv 1 \pmod{p}$ for i = 1, 2. Then, $a(b_1 - b_2) \equiv 0 \pmod{p}$. So $p \mid (b_1 - b_2)$ hence $b_1 \equiv b_2 \pmod{13} \Rightarrow b_1 = b_2$.

(c) We will first show that $(p-2)! \equiv 1 \pmod{p}$.

We first note that there is an even number of terms in the product (p-2)! (since we may neglect the term 1).

By (a), we know that $x^2 \equiv 1 \pmod{p} \Leftrightarrow x \equiv \pm 1 \pmod{p}$, therefore (by (b)) for each term in the product, we can find a unique term (not itself) such that $ab \equiv 1 \pmod{p}$, adding this to the fact that there are an even number of terms in the product (p-2)!, we get $(p-2)! \equiv 1 \pmod{p}$.

Now
$$(p-2)!(p-1) \equiv p-1 \pmod{p} \equiv -1 \pmod{p}$$
.

- i. Let $R = \{r_1, r_2, \dots, r_{\phi(p^c)}\}$ be a complete set of residues prime to p_c . Then for each r_i there exists a unique r_j such that $r_j r_i \equiv 1 \pmod{p^c}$ since $(r_i, p^c) = 1.$
 - ii. Now for $x \in R$, $x^2 \equiv 1 \pmod{p^c} \Leftrightarrow p^c \mid (x+1)(x-1) \Leftrightarrow x=1 \text{ or } p^c-1 \Leftrightarrow x = 1$ $x \equiv \pm 1 \pmod{p^c}$.
 - iii. So now we consider $K = r_1 r_2 \cdots r_{\phi(p^c)}$, where $r_1 = 1$ and $r_{\phi(p^c)} = p^c 1$. It is easy to see that $K' = r_2 \cdots r_{\phi(p^c)-1} \equiv 1 \pmod{p^c}$ since K' has an even number of terms $(\phi(p^c) = p^c - p^{c-1})$ which is even) and by (ii). Therefore $K \equiv r_{\phi(p^c)} \pmod{p^c} \equiv -1 \pmod{p^c}$.
- (e) A complete set of residues prime to 15 is {1, 2, 4, 7, 8, 11, 13, 14} $1 \times 2 \times 4 \times 7 \times 8 \times 11 \times 13 \times 14 = 896896$ and

$$192192 \equiv 1 \pmod{15}$$

4. (a) $\phi(n) = \frac{1}{3}n \Leftrightarrow n = 2^{c_1}3^{c_2}$ where $c_i \geq 1$. Indeed,

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}) = n \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}n$$

(b) $\phi(n) = \frac{1}{24}n$ is not possible. Write

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}) = n \times \frac{(p_1 - 1)(p_2 - 1) \cdots (p_k - 1)}{p_1 \cdots p_k}$$

where p_i are the prime divisors of n.

Let $A = \frac{(p_1-1)(p_2-1)\cdots(p_k-1)}{p_1\cdots p_k}$ Now we know that all prime numbers greater than 2 are odd.

So if n is odd our numerator in A cannot be 1 since $(p_i - 1, p_1 \cdots p_k) = 1$ for all $i = 1, \dots k$ (except in the case of (a)).

If n is even, then our numerator can be written as 2k where $k \geq 1$ and even, and the denominator can be written as 2l with $l \geq 1$ and odd. So we would get $A = \frac{2k}{2l} = \frac{k}{l} \neq \frac{1}{24}.$

(c) $\phi(2n) = \phi(n) \Leftrightarrow n \text{ is odd. Take } n \text{ odd,}$

$$\phi(2n) = 2n \prod_{i} \frac{1}{2} \times (1 - \frac{1}{p_i}) = n \prod_{p|n} (1 - \frac{1}{p}) = \phi(n)$$

where p_i are the prime divisors of n.

5. (a) Suppose f is multiplicative. Consider $n_1, n_2 \in \mathbb{Z}$ such that $(n_1, n_2) = 1$. If $d \mid n_1 n_2$, then d can be uniquely written as $d = k_1 k_2$ when $k_i \mid n_i$, since n_1 and n_2 are coprime.

$$g(n_1 n_2) = \sum_{d|n_1 n_2} f(d) = \sum_{k_1|n_1, k_2|n_2} f(k_1 k_2)$$

$$= \sum_{k_1|n_1, k_2|n_2} f(k_1) f(k_2) = \sum_{k_1|n_1} f(k_1) \sum_{k_2|n_2} f(k_2) = g(n_1) g(n_2)$$
(2)

- (b) We know that the identity function is multiplicative. Therefore, by (a) $\sigma(n) = \sum_{d|n} d$ is multiplicative.
- (c) The divisors of p^c are $\{1, 2, \dots, p^{c-1}, p^c\}$. So,

$$\sigma(p^c) = \sum_{d|p^c} d = \sum_{n=0}^c p^n$$

(d) Let $p_1^{c_1} \cdots p_k^{c_k}$ be the prime decomposition of n. We get,

$$\sigma(n) = \sigma(p_1^{c_1} \cdots p_k^{c_k}) = \sigma(p_1^{c_1}) \cdots \sigma(p_k^{c_k}) = \prod_{i=1}^k \left[\sum_{n=0}^{c_i} p_i^n \right]$$

6. (a) If x_0, x_1 both are solutions, then $x_0 \equiv x_1 \pmod{n_i}$ for all i. We know that $(n_i, n_j) = 1$ for $i \neq j$. Hence, by theorem 53 of Hardy-Wright,

$$x_0 \equiv x_1 \pmod{n_i n_j}$$

and since $(\prod_{i\neq j} n_i, n_j) = 1$, we have

$$x_0 \equiv x_1 \pmod{N}$$

- (b) i. $N_i x_i \equiv ci \pmod{n_i}$, $(N_i, n_i) = 1$, therefore this equation is soluble and has a unique solution $\pmod{n_i}$.
 - ii. $N_j x_j \equiv 0 \pmod{n_i}$ since $N_j = \prod_{i \neq j} n_i$, so $\forall i \neq j \ n_i \mid N_j$.
 - iii. $x = \sum N_i x_i$, by (i) there exists x_i such that $N_i x_i \equiv ci \pmod{n_i}$, and by (ii) we have

$$x \equiv N_i x_i \pmod{n_i} \equiv ci \pmod{n_i}$$

So x is a solution to the system of congruences.

(c)

$$\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 2 \pmod{3} \\ x \equiv 1 \pmod{5} \end{cases}$$

Define $N_1 = 4 \times 3$, $N_2 = 4 \times 5$, $N_3 = 3 \times 5$. We get

$$\begin{cases} N_1 x_1 \equiv 1 \pmod{5} \Leftrightarrow x_1 \equiv 3 \pmod{5} \\ N_2 x_2 \equiv 2 \pmod{3} \Leftrightarrow x_2 \equiv 1 \pmod{3} \\ N_3 x_3 \equiv 3 \pmod{4} \Leftrightarrow x_3 \equiv 1 \pmod{4} \end{cases}$$

So $x = 20 \times 1 + 15 \times 1 + 12 \times 3 = 71$ is a solution.