TCC - Previsão de Preços de Apartamentos em Curitiba-PR (Bairros Selecionados)

1. Importação das bibliotecas

```
In [432]:
```

```
import pandas as pd
import numpy as np
from tabula import read_pdf
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
import seaborn as sns
from sklearn.linear_model import LinearRegression
import statsmodels.formula.api as sm
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.linear model import LassoCV
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedKFold
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
```

2. Importação e preparação das bases de dados

2.1 Base de dados Apartamentos

```
In [433]:
```

```
#Dados = pd.read_csv('http://leg.ufpr.br/~walmes/data/ap_venda7bairros_cwb_210314.txt', sep
Apart = pd.read_csv('ap_venda7bairros_cwb_210314.txt', sep='\t')
Apart.shape
Out[433]:
(4470, 7)
```

In [434]:

Apart.head()

Out[434]:

	preco	area	quartos	banheiros	vagas	suites	bairro
0	286000	63.00	2.0	2.0	1.0	1.0	portao
1	328000	75.00	3.0	2.0	1.0	1.0	portao
2	370000	62.77	2.0	2.0	2.0	1.0	portao
3	295000	62.88	2.0	2.0	1.0	1.0	portao
4	260000	75.00	3.0	2.0	1.0	1.0	portao

In [435]:

Apart.dtypes

Out[435]:

preco int64 area float64 float64 quartos float64 banheiros float64 vagas suites float64 bairro object dtype: object

In [436]:

Apart.describe()

Out[436]:

	preco	area	quartos	banheiros	vagas	suites
count	4.470000e+03	4470.000000	4422.000000	3440.000000	3937.000000	3309.000000
mean	7.575370e+05	125.777078	2.727499	2.455233	1.873762	1.530976
std	7.433530e+05	90.875402	0.905216	1.435955	0.964863	0.906459
min	7.500000e+02	17.200000	1.000000	1.000000	1.000000	1.000000
25%	3.411300e+05	68.000000	2.000000	1.000000	1.000000	1.000000
50%	5.200000e+05	100.000000	3.000000	2.000000	2.000000	1.000000
75%	8.570000e+05	155.110000	3.000000	3.000000	2.000000	2.000000
max	9.000000e+06	960.000000	6.000000	10.000000	11.000000	5.000000

2.2 Base de dados Bairros

In [437]:

```
#!pip install tabula-py
from tabula import read_pdf
Bairros = read_pdf("Bairros_DIEESE.pdf", pages='64', stream=True, area='left')
Bairros = Bairros[0]
Bairros = Bairros.drop(['Unnamed: 1'],axis=1)
Bairros = Bairros.iloc[5:46].reset_index()
Bairros = Bairros['Unnamed: 0'].str.rsplit(n=5)
Bairros = pd.DataFrame(Bairros)
Bairros['Bairro'] = Bairros['Unnamed: 0'][5][0]
Bairros['População'] = Bairros['Unnamed: 0'][5][1]
Bairros['População(%)']= Bairros['Unnamed: 0'][5][2]
Bairros['Area(km2)'] = Bairros['Unnamed: 0'][5][3]
Bairros['Área(%)'] = Bairros['Unnamed: 0'][5][4]
Bairros['Habitantes/km2']= Bairros['Unnamed: 0'][5][5]
for i in range(0,len(Bairros)):
    Bairros['Bairro'][i] = Bairros['Unnamed: 0'][i][0]
    Bairros['População'][i] = Bairros['Unnamed: 0'][i][1]
    Bairros['População(%)'][i] = Bairros['Unnamed: 0'][i][2]
    Bairros['Área(km2)'][i] = Bairros['Unnamed: 0'][i][3]
    Bairros['Área(%)'][i] = Bairros['Unnamed: 0'][i][4]
    Bairros['Habitantes/km2'][i] = Bairros['Unnamed: 0'][i][5]
Bairros = Bairros.drop(['Unnamed: 0'], axis=1)
Bairros = Bairros.drop([40])
Bairros.head()
```

Out[437]:

	Bairro	População	População(%)	Área(km2)	Área(%)	Habitantes/km2
0	Centro	37.234	2,1	3.310	0,8	11,2
1	Água Verde	51.461	2,9	4.850	1,1	10,6
2	Sítio Cercado	115.584	6,6	11.252	2,6	10,3
3	Batel e Bigorrilho	39.234	2,2	4.633	1,1	8,5
4	Cajuru	96.170	5,5	11.781	2,7	8,2

In [438]:

```
Bairros.shape
```

Out[438]:

(40, 6)

In [439]:

Bairros.dtypes

Out[439]:

Bairro object
População object
População(%) object
Área(km2) object
Área(%) object
Habitantes/km2 object
dtype: object

In [440]:

```
def corrigir_nomes(nome):
    nome = nome.replace('.', '').replace(',', '.')
    return nome
Bairros['População'] = Bairros['População'].astype('string').apply(corrigir_nomes)
Bairros['População(%)'] = Bairros['População(%)'].astype('string').apply(corrigir_nomes)
Bairros['Área(km2)'] = Bairros['Área(km2)'].astype('string').apply(corrigir_nomes)
Bairros['Área(%)'] = Bairros['Área(%)'].astype('string').apply(corrigir_nomes)
Bairros['Habitantes/km2'] = Bairros['Habitantes/km2'].astype('string').apply(corrigir_nomes)
Bairros.head()
```

Out[440]:

	Bairro	População	População(%)	Área(km2)	Área(%)	Habitantes/km2
0	Centro	37234	2.1	3310	8.0	11.2
1	Água Verde	51461	2.9	4850	1.1	10.6
2	Sítio Cercado	115584	6.6	11252	2.6	10.3
3	Batel e Bigorrilho	39234	2.2	4633	1.1	8.5
4	Cajuru	96170	5.5	11781	2.7	8.2

In [441]:

```
Bairros['População'] = pd.to_numeric(Bairros['População'])
Bairros['População(%)'] = pd.to_numeric(Bairros['População(%)'])
Bairros['Área(km2)'] = pd.to_numeric(Bairros['Área(km2)'])
Bairros['Área(%)'] = pd.to_numeric(Bairros['Área(%)'])
Bairros['Habitantes/km2'] = pd.to_numeric(Bairros['Habitantes/km2'])
Bairros.dtypes
```

Out[441]:

Bairro object
População int64
População(%) float64
Área(km2) int64
Área(%) float64
Habitantes/km2 float64
dtype: object

```
In [442]:
Bairros.shape
Out[442]:
(40, 6)
```

2.3 Junção dos Dataframes

```
In [443]:
Bairros['Bairro'].unique()
Out[443]:
array(['Centro', 'Água Verde', 'Sítio Cercado', 'Batel e Bigorrilho', 'Cajuru', 'Fazendinha', 'Novo Mundo', 'Portão',
        'Vila Izabel e Santa Quitéria', 'Capão Razo',
        'Centro Cívico e Juveve', 'Bairro Alto', 'Cabral', 'Xaxim',
        'Boa vista', 'Guaíra e Fanny', 'Uberaba', 'Pinheirinho',
'Tatuquara', 'Boqueirão e Hauer', 'Alto Boqueirão',
        'Atuba e Tinguí', 'Alto da XV expandido', 'Rebouças expandido',
        'Guabirotuba e Jardim das Américas', 'Barreirinha e Cachoeira',
        'Cidade Industrial', 'Capão da Embuia e Tarumã', 'Pilarzinho',
        'São Braz e Santo Inácio', 'Campo Comprido',
        'São Francisco expandido', 'Bacacheri',
        'Campina do Siqueira expandido', 'Santa Cândida',
        'Abranches expandido', 'Santa Felicidade expandido',
        'Campo do Santana e Caximba', 'Ganchinho e Umbará', 'CIC norte'],
      dtype=object)
In [444]:
Apart['bairro'].unique()
Out[444]:
array(['portao', 'agua-verde', 'centro', 'ecoville', 'batel', 'cabral',
        'cristo-rei'], dtype=object)
```

In [445]:

Out[445]:

	Bairro	População	População(%)	Área(km2)	Área(%)	Habitantes/km2	bairro
0	Centro	37234	2.1	3310	0.8	11.2	centro
1	Água Verde	51461	2.9	4850	1.1	10.6	agua-verde
2	Sítio Cercado	115584	6.6	11252	2.6	10.3	sítio cercado
3	Batel e Bigorrilho	39234	2.2	4633	1.1	8.5	batel
4	Cajuru	96170	5.5	11781	2.7	8.2	cajuru

In [446]:

```
#Join dos datasets para análise
Dados = Apart.merge(Bairros, left_on='bairro', right_on='bairro')
Dados.rename(columns={'Habitantes/km2': 'Densidade_populacional'}, inplace = True)
Dados.rename(columns={'Área(km2)': 'Area_bairro'}, inplace = True)
Dados = Dados.drop(['Bairro'], axis=1)
Dados.head()
```

Out[446]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area_ba
0	286000	63.00	2.0	2.0	1.0	1.0	portao	42038	2.4	į
1	328000	75.00	3.0	2.0	1.0	1.0	portao	42038	2.4	į
2	370000	62.77	2.0	2.0	2.0	1.0	portao	42038	2.4	ţ
3	295000	62.88	2.0	2.0	1.0	1.0	portao	42038	2.4	ţ
4	260000	75.00	3.0	2.0	1.0	1.0	portao	42038	2.4	ţ
4										•

In [447]:

```
#Acrescentando a coluna de preço/metro²
Dados['preco_metro'] = Dados['preco']/Dados['area']
```

In [448]:

```
#convertendo bairro para categorical
Dados['bairro'] = Dados['bairro'].astype('category')
Dados.dtypes
```

Out[448]:

int64 preco float64 area quartos float64 float64 banheiros float64 vagas float64 suites bairro category População int64 População(%) float64 Area_bairro int64 Área(%) float64 Densidade_populacional float64 preco_metro float64 dtype: object

acype. Object

3. Tratamento e visualização dos dados

3.1 Missing Values

In [449]:

```
Dados.loc[(Dados['suites'].isna()==True) & (Dados['banheiros'].isna()==True)]
```

Out[449]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Are
55	250000	66.95	3.0	NaN	1.0	NaN	portao	42038	2.4	
84	689691	104.00	3.0	NaN	2.0	NaN	portao	42038	2.4	
93	220000	58.00	3.0	NaN	NaN	NaN	portao	42038	2.4	
97	295000	109.00	3.0	NaN	1.0	NaN	portao	42038	2.4	
106	333195	75.00	3.0	NaN	1.0	NaN	portao	42038	2.4	
4414	222921	58.00	1.0	NaN	2.0	NaN	cristo- rei	37565	2.1	
4433	221433	62.00	1.0	NaN	2.0	NaN	cristo- rei	37565	2.1	
4440	203391	55.00	1.0	NaN	1.0	NaN	cristo- rei	37565	2.1	
4441	219945	61.00	1.0	NaN	2.0	NaN	cristo- rei	37565	2.1	
4447	706000	121.00	NaN	NaN	2.0	NaN	cristo- rei	37565	2.1	

486 rows × 13 columns

In [450]:

Dados.isna().sum()

Out[450]:

preco	0
area	0
quartos	48
banheiros	1030
vagas	533
suites	1161
bairro	0
População	0
População(%)	0
Area_bairro	0
Área(%)	0
Densidade_populacional	0
preco_metro	0
dtype: int64	

In [451]:

```
Dados = Dados.dropna()
Dados.shape
```

Out[451]:

(2652, 13)

```
In [452]:
Dados.isna().sum()
Out[452]:
                           0
preco
                            0
area
                            0
quartos
banheiros
                            0
                            0
vagas
                            0
suites
bairro
                            0
População
                            0
População(%)
                            0
Area_bairro
                            0
Área(%)
                            0
Densidade_populacional
                            0
preco_metro
dtype: int64
In [ ]:
In [ ]:
```

3.2 Dados Duplicados

In [453]:

Dados[Dados.duplicated(keep=False)]

Out[453]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area
0	286000	63.0	2.0	2.0	1.0	1.0	portao	42038	2.4	
1	328000	75.0	3.0	2.0	1.0	1.0	portao	42038	2.4	
5	328000	75.0	3.0	2.0	1.0	1.0	portao	42038	2.4	
6	328000	75.0	3.0	2.0	1.0	1.0	portao	42038	2.4	
7	790000	129.0	3.0	5.0	2.0	3.0	portao	42038	2.4	
4366	420000	83.0	3.0	2.0	1.0	1.0	cristo- rei	37565	2.1	
4371	831631	143.0	4.0	3.0	2.0	1.0	cristo- rei	37565	2.1	
4374	684900	123.0	3.0	3.0	2.0	1.0	cristo- rei	37565	2.1	
4383	300000	68.0	3.0	2.0	1.0	1.0	cristo- rei	37565	2.1	
4391	831631	143.0	4.0	3.0	2.0	1.0	cristo- rei	37565	2.1	
419 rows × 13 columns										

In []:

3.3 Tratamento de Outliers

```
In [454]:
#Geração de boxplot para visualização de outliers
plt.figure(figsize = (15, 10))
plt.subplot(341)
sns.boxplot(x='preco',data = Dados, orient='h')
plt.subplot(342)
sns.boxplot(x='area',data = Dados, orient='h')
plt.subplot(343)
sns.boxplot(x='quartos',data = Dados, orient='h')
plt.subplot(344)
sns.boxplot(x='banheiros',data = Dados, orient='h')
plt.subplot(345)
sns.boxplot(x='vagas',data = Dados, orient='h')
plt.subplot(346)
sns.boxplot(x='suites',data = Dados, orient='h')
plt.subplot(347)
sns.boxplot(x='População',data = Dados, orient='h')
plt.subplot(348)
sns.boxplot(x='População(%)',data = Dados, orient='h')
plt.subplot(349)
sns.boxplot(x='Area_bairro',data = Dados, orient='h')
plt.subplot(3,4,10)
sns.boxplot(x='Area(%)',data = Dados, orient='h')
plt.subplot(3,4,11)
sns.boxplot(x='Densidade_populacional',data = Dados, orient='h')
plt.subplot(3,4,12)
sns.boxplot(x='preco_metro',data = Dados, orient='h')
plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9, hspace=0.5)
plt.show()
         5.0
                         250
                              500
                                   750
               1e6
                                                                   banheiros
```


População(%)

In [455]:

```
# variáveis quartos
Dados.groupby(['quartos']).count()
```

Out[455]:

	preco	area	banheiros	vagas	suites	bairro	População	População(%)	Area_bairro
quartos									
1.0	54	54	54	54	54	54	54	54	54
2.0	517	517	517	517	517	517	517	517	517
3.0	1499	1499	1499	1499	1499	1499	1499	1499	1499
4.0	558	558	558	558	558	558	558	558	558
5.0	22	22	22	22	22	22	22	22	22
6.0	2	2	2	2	2	2	2	2	2
4									+

In [456]:

```
#registros com 6 quartos
Dados.loc[Dados['quartos'] >= 6]
```

Out[456]:

		preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Ar€
10	09	1080000	243.0	6.0	4.0	2.0	1.0	agua- verde	51461	2.9	
30	56	1500000	390.0	6.0	6.0	2.0	2.0	batel	39234	2.2	
4											•

In [457]:

```
#removendo os registros com mais de 5 quartos
Dados = Dados.loc[Dados['quartos'] < 6]</pre>
```

In [458]:

```
# variáveis quartos
Dados.groupby(['quartos']).count()
```

Out[458]:

	preco	area	banheiros	vagas	suites	bairro	População	População(%)	Area_bairro
quartos									
1.0	54	54	54	54	54	54	54	54	54
2.0	517	517	517	517	517	517	517	517	517
3.0	1499	1499	1499	1499	1499	1499	1499	1499	1499
4.0	558	558	558	558	558	558	558	558	558
5.0	22	22	22	22	22	22	22	22	22
4									•

In [459]:

```
# variáveis banheiros
Dados.groupby(['banheiros']).count()
```

Out[459]:

	preco	area	quartos	vagas	suites	bairro	População	População(%)	Area_bairro
banheiros									
1.0	409	409	409	409	409	409	409	409	409
2.0	972	972	972	972	972	972	972	972	972
3.0	548	548	548	548	548	548	548	548	548
4.0	333	333	333	333	333	333	333	333	333
5.0	275	275	275	275	275	275	275	275	275
6.0	78	78	78	78	78	78	78	78	78
7.0	27	27	27	27	27	27	27	27	27
8.0	5	5	5	5	5	5	5	5	5
9.0	2	2	2	2	2	2	2	2	2
10.0	1	1	1	1	1	1	1	1	1
4									+

In [460]:

```
#registros com 8 ou mais banheiros
Dados.loc[Dados['banheiros'] >= 8]
```

Out[460]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Aı
2349	9000000	800.0	4.0	8.0	8.0	4.0	ecoville	25493	1.5	
2482	6000000	802.0	4.0	9.0	6.0	4.0	ecoville	25493	1.5	
2915	2650000	449.0	5.0	8.0	5.0	5.0	batel	39234	2.2	
3304	830000	227.0	4.0	9.0	2.0	4.0	batel	39234	2.2	
3332	1950000	330.0	4.0	10.0	4.0	4.0	batel	39234	2.2	
3665	6017000	452.0	4.0	8.0	5.0	4.0	cabral	24556	1.4	
3667	6017000	452.0	4.0	8.0	5.0	4.0	cabral	24556	1.4	
4020	2200000	400.0	4.0	8.0	5.0	4.0	cabral	24556	1.4	

In [461]:

#removendo os registros com mais de 8 banheiros
Dados = Dados.loc[Dados['banheiros'] < 8]</pre>

In [462]:

variáveis banheiros
Dados.groupby(['banheiros']).count()

Out[462]:

		preco	area	quartos	vagas	suites	bairro	População	População(%)	Area_bairro
banhe	iros									
	1.0	409	409	409	409	409	409	409	409	409
	2.0	972	972	972	972	972	972	972	972	972
	3.0	548	548	548	548	548	548	548	548	548
	4.0	333	333	333	333	333	333	333	333	333
	5.0	275	275	275	275	275	275	275	275	275
	6.0	78	78	78	78	78	78	78	78	78
	7.0	27	27	27	27	27	27	27	27	27
4										>

In [463]:

```
# variáveis vagas
Dados.groupby(['vagas']).count()
```

Out[463]:

	preco	area	quartos	banheiros	suites	bairro	População	População(%)	Area_bairro
vagas									
1.0	900	900	900	900	900	900	900	900	900
2.0	1172	1172	1172	1172	1172	1172	1172	1172	1172
3.0	360	360	360	360	360	360	360	360	360
4.0	171	171	171	171	171	171	171	171	171
5.0	32	32	32	32	32	32	32	32	32
6.0	5	5	5	5	5	5	5	5	5
8.0	1	1	1	1	1	1	1	1	1
11.0	1	1	1	1	1	1	1	1	1
4									•

In [464]:

```
#registros com 6 ou mais vagas
Dados.loc[Dados['vagas'] >= 6]
```

Out[464]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Aı
795	2200000	240.0	2.0	4.0	6.0	2.0	agua- verde	51461	2.9	
1089	545000	109.0	3.0	2.0	11.0	1.0	agua- verde	51461	2.9	
1229	5800000	806.0	4.0	1.0	6.0	4.0	agua- verde	51461	2.9	
2207	9000000	800.0	4.0	2.0	8.0	4.0	ecoville	25493	1.5	
2276	6000000	801.0	4.0	5.0	6.0	4.0	ecoville	25493	1.5	
3062	1580000	350.0	4.0	4.0	6.0	4.0	batel	39234	2.2	
3646	3500000	600.0	4.0	7.0	6.0	4.0	cabral	24556	1.4	
4										•

In [465]:

```
#removendo os registros com mais de 6 vagas
Dados = Dados.loc[Dados['vagas'] < 6]</pre>
```

In [466]:

```
# variáveis vagas
Dados.groupby(['vagas']).count()
```

Out[466]:

		preco	area	quartos	banheiros	suites	bairro	População	População(%)	Area_bairr
V	agas									
	1.0	900	900	900	900	900	900	900	900	90
	2.0	1172	1172	1172	1172	1172	1172	1172	1172	117
	3.0	360	360	360	360	360	360	360	360	3€
	4.0	171	171	171	171	171	171	171	171	17
	5.0	32	32	32	32	32	32	32	32	3
4										+

In [467]:

```
# variáveis suites
Dados.groupby(['suites']).count()
```

Out[467]:

		preco	area	quartos	banheiros	vagas	bairro	População	População(%)	Area_bairro
s	uites									
	1.0	1861	1861	1861	1861	1861	1861	1861	1861	1861
	2.0	344	344	344	344	344	344	344	344	344
	3.0	304	304	304	304	304	304	304	304	304
	4.0	124	124	124	124	124	124	124	124	124
	5.0	2	2	2	2	2	2	2	2	2
4										>

In [468]:

```
#registros com mais de 4 suites
Dados.loc[Dados['suites'] >= 5]
```

Out[468]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	F
2672	3800000	390.98	5.0	6.0	3.0	5.0	ecoville	25493	1.5	_
3298	1600000	296.00	5.0	6.0	3.0	5.0	batel	39234	2.2	
4										>

In [469]:

```
#removendo os registros com mais de 5 suites
Dados = Dados.loc[Dados['suites'] < 5]</pre>
```

In [470]:

```
# variáveis suites
Dados.groupby(['suites']).count()
```

Out[470]:

	preco	area	quartos	banheiros	vagas	bairro	População	População(%)	Area_bairro
suite	s								
1.	0 1861	1861	1861	1861	1861	1861	1861	1861	1861
2.	0 344	344	344	344	344	344	344	344	344
3.	0 304	304	304	304	304	304	304	304	304
4.	0 124	124	124	124	124	124	124	124	124
4									>

In [471]:

```
#Geração de boxplot para visualização de outliers
plt.figure(figsize = (15, 10))
plt.subplot(341)
sns.boxplot(x='preco',data = Dados, orient='h')
plt.subplot(342)
sns.boxplot(x='area',data = Dados, orient='h')
plt.subplot(343)
sns.boxplot(x='quartos',data = Dados, orient='h')
plt.subplot(344)
sns.boxplot(x='banheiros',data = Dados, orient='h')
plt.subplot(345)
sns.boxplot(x='vagas',data = Dados, orient='h')
plt.subplot(346)
sns.boxplot(x='suites',data = Dados, orient='h')
plt.subplot(347)
sns.boxplot(x='População',data = Dados, orient='h')
plt.subplot(348)
sns.boxplot(x='População(%)',data = Dados, orient='h')
plt.subplot(349)
sns.boxplot(x='Area_bairro',data = Dados, orient='h')
plt.subplot(3,4,10)
sns.boxplot(x='Area(%)',data = Dados, orient='h')
plt.subplot(3,4,11)
sns.boxplot(x='Densidade_populacional',data = Dados, orient='h')
plt.subplot(3,4,12)
sns.boxplot(x='preco_metro',data = Dados, orient='h')
plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9, hspace=0.5)
plt.show()
```


Densidade_populacional

preco_metro

Area_bairro

In [472]:

```
plt.figure(figsize = (15, 5))
sns.boxplot(x='preco',data = Dados, orient='h')
plt.title("Boxplot da variável preco")
plt.ticklabel_format(axis='x', style='plain')
```


In [473]:

```
# Distribuição da variável 'preco'
sns.distplot(Dados['preco'])
plt.title("Distribuição da variável preco")
plt.ticklabel_format(axis='x', style='plain')
sns.despine()
```


In []:

In [474]:

```
# Distribuição da variável 'preco_metro'
sns.distplot(Dados['preco_metro'])
plt.title("Distribuição da variável preco/metro²")
plt.ticklabel_format(axis='x', style='plain')
sns.despine()
```


In [475]:

```
Dados.loc[Dados['preco_metro'] < 2000]
```

Out[475]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area_
3266	750	145.0	3.0	5.0	2.0	3.0	batel	39234	2.2	
4										•

In [476]:

#Embora não se trate de outlier, verificamos o erro no anúncio do preço e vamor corrigí-lo #Substituição do valor do preço de registro em que o valor do preço/metro² era inferior a R Dados.loc[Dados['preco_metro'] < 2000, 'preco']=750000 Dados.loc[Dados['preco_metro'] < 2000, 'preco']

Out[476]:

3266 750000

Name: preco, dtype: int64

In [477]:

```
#Atualizando a coluna de preço/metro² com valores obtidos a partir da variável "preco_so" Dados['preco_metro'] = Dados['preco']/Dados['area']
```

In [478]:

```
# Distribuição da variável 'preco'
sns.distplot(Dados['preco_metro'])
plt.title("Distribuição da variável preco/metro²")
plt.ticklabel_format(axis='x', style='plain')
sns.despine()
```


In [479]:

```
# Cálculo de Q1, Q3 e IQR:
Q1 = np.percentile(Dados['preco'], 25)
Q3 = np.percentile(Dados['preco'], 75)
IQR = Q3 - Q1
print(f"IQR: {IQR}")

# Cálculo dos limites inferiores e superiores para detecção de outliers:
limite_inferior_outliers = Q1 - 1.5*IQR
limite_superior_outliers = Q3 + 1.5*IQR
print(f"Limite inferior para outlier: {limite_inferior_outliers}; Limite superior para outl
IQR: 560000.0
Limite inferior para outlier: -420000.0; Limite superior para outliers: 1820
000.0
```

In [480]:

```
Dados.columns
```

Out[480]:

In [481]:

Out[481]:

OLS Regression Results

Dep. Variable:	preco	R-squared:	0.932
Model:	OLS	Adj. R-squared:	0.932
Method:	Least Squares	F-statistic:	5168.
Date:	Wed, 28 Apr 2021	Prob (F-statistic):	0.00
Time:	14:14:40	Log-Likelihood:	-35678.
No. Observations:	2633	AIC:	7.137e+04
Df Residuals:	2625	BIC:	7.142e+04
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-7.622e+05	4.89e+04	-15.583	0.000	-8.58e+05	-6.66e+05
area	6450.4122	81.555	79.093	0.000	6290.493	6610.331
vagas	-4.761e+04	7335.016	-6.490	0.000	-6.2e+04	-3.32e+04
suites	3.853e+04	6616.176	5.824	0.000	2.56e+04	5.15e+04
População	10.8695	1.271	8.551	0.000	8.377	13.362
Area_bairro	-55.0762	6.974	-7.898	0.000	-68.751	-41.401
Densidade_populacional	-6.52e+04	6915.436	-9.429	0.000	-7.88e+04	-5.16e+04
preco_metro	193.3217	2.547	75.902	0.000	188.327	198.316

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 48832.377

 Skew:
 1.397
 Prob(JB):
 0.00

 Kurtosis:
 23.912
 Cond. No.
 5.34e+05

Omnibus: 1172.297

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.34e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Durbin-Watson:

In [482]:

```
#Criação da coluna com dados de preços previstos pelo modelo preliminar
Dados['preco_ajustado_mod_pre']=modelo_preliminar_treinado.fittedvalues
```

1.939

In [483]:

```
#Criação da coluna com dados de preços ajustados pelo modelo preliminar
Dados['preco_so']=Dados['preco']
```

In [484]:

```
#criação da coluna para controle de outliers
Dados['outlier']='não'
Dados.loc[Dados['preco_so']>limite_superior_outliers,'outlier']='sim'
Dados.loc[Dados['preco_so']<limite_inferior_outliers,'outlier']='sim'</pre>
```

In [485]:

#Substituição dos outliers na coluna preco_so (sem outlier) pelos valores ajustados do mode
Dados.loc[Dados['outlier']=='sim','preco_so']=Dados.loc[Dados['outlier']=='sim']['preco_aju
Dados.loc[Dados['outlier']=='sim'].head()

Out[485]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Are
313	1966881	308.00	4.0	3.0	3.0	2.0	portao	42038	2.4	
704	2983760	181.28	4.0	5.0	4.0	2.0	agua- verde	51461	2.9	
787	2050000	283.00	4.0	5.0	3.0	4.0	agua- verde	51461	2.9	
788	2845060	308.34	4.0	4.0	4.0	4.0	agua- verde	51461	2.9	
790	4250000	442.00	4.0	5.0	4.0	2.0	agua- verde	51461	2.9	
4										•

In [486]:

```
plt.figure()
ax1 = plt.subplot(321)
sns.scatterplot(y=Dados.preco, x=Dados.area, hue = Dados.outlier)
plt.title('Valores Originais')
ax2 = plt.subplot(322, sharey=ax1)
sns.scatterplot(y=Dados.preco_so, x=Dados.area, hue = Dados.outlier)
plt.title('Valores Após o Tratamento de Outliers')
ax3 = plt.subplot(323)
sns.scatterplot(y=Dados.preco, x=Dados.suites, hue = Dados.outlier)
ax4 = plt.subplot(324, sharey=ax3)
sns.scatterplot(y=Dados.preco_so, x=Dados.suites, hue = Dados.outlier)
ax5 = plt.subplot(325)
sns.scatterplot(y=Dados.preco, x=Dados.quartos, hue = Dados.outlier)
ax6 = plt.subplot(326, sharey=ax5)
sns.scatterplot(y=Dados.preco_so, x=Dados.quartos, hue = Dados.outlier)
plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9, hspace=0.5)
plt.show()
```


In [487]:

Out[487]:

OLS Regression Results

Dep. Variable:	preco_so	R-squared:	0.968
Model:	OLS	Adj. R-squared:	0.968
Method:	Least Squares	F-statistic:	1.140e+04
Date:	Wed, 28 Apr 2021	Prob (F-statistic):	0.00
Time:	14:14:44	Log-Likelihood:	-34412.
No. Observations:	2633	AIC:	6.884e+04
Df Residuals:	2625	BIC:	6.889e+04
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-6.856e+05	3.02e+04	-22.673	0.000	-7.45e+05	-6.26e+05
area	5838.6602	50.420	115.800	0.000	5739.792	5937.528
vagas	-1.217e+04	4534.780	-2.683	0.007	-2.11e+04	-3276.108
suites	4.531e+04	4090.366	11.077	0.000	3.73e+04	5.33e+04
População	6.9431	0.786	8.834	0.000	5.402	8.484
Area_bairro	-34.7359	4.311	-8.057	0.000	-43.190	-26.282
Densidade_populacional	-4.332e+04	4275.381	-10.133	0.000	-5.17e+04	-3.49e+04
preco_metro	156.6427	1.575	99.478	0.000	153.555	159.730

 Omnibus:
 1213.879
 Durbin-Watson:
 1.944

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 20142.180

 Skew:
 -1.756
 Prob(JB):
 0.00

 Kurtosis:
 16.087
 Cond. No.
 5.34e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.34e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [488]:

```
#Criação de cópia do dataframe para uso no dashboard
Dados_viz = Dados.copy()
Dados_viz.head()
```

Out[488]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area_ba
0	286000	63.00	2.0	2.0	1.0	1.0	portao	42038	2.4	ţ
1	328000	75.00	3.0	2.0	1.0	1.0	portao	42038	2.4	į
2	370000	62.77	2.0	2.0	2.0	1.0	portao	42038	2.4	į
3	295000	62.88	2.0	2.0	1.0	1.0	portao	42038	2.4	į
4	260000	75.00	3.0	2.0	1.0	1.0	portao	42038	2.4	ţ
4										•

4. Análise e Exploração dos Dados

In [489]:

Dados.iloc[:,:10].describe()

Out[489]:

	preco	area	quartos	banheiros	vagas	suites	Рорі
count	2.633000e+03	2633.000000	2633.000000	2633.000000	2633.000000	2633.000000	2633.0
mean	8.449052e+05	138.006251	2.984808	2.781618	1.960501	1.502848	37245.3
std	7.137591e+05	81.554500	0.717082	1.378767	0.919621	0.873936	9783.4
min	1.400000e+05	21.000000	1.000000	1.000000	1.000000	1.000000	24556.0
25%	4.200000e+05	80.880000	3.000000	2.000000	1.000000	1.000000	25493.0
50%	6.130000e+05	115.000000	3.000000	2.000000	2.000000	1.000000	39234.0
75%	9.800000e+05	168.830000	3.000000	4.000000	2.000000	2.000000	42038.0
max	5.990000e+06	625.000000	5.000000	7.000000	5.000000	4.000000	51461.C
4							+

In [490]:

Dados.iloc[:,10:].describe()

Out[490]:

	Área(%)	Densidade_populacional	preco_metro	preco_ajustado_mod_pre	preco_
count	2633.000000	2633.00000	2633.000000	2.633000e+03	2.633000e+
mean	1.310330	7.13646	5845.839158	8.449052e+05	8.293821e+
std	0.383185	2.79391	1789.538744	6.891926e+05	6.431295e+
min	0.800000	3.20000	2170.542636	-3.369280e+05	1.400000e+
25%	1.100000	4.20000	4669.117647	3.788078e+05	4.200000e+
50%	1.100000	7.20000	5569.620253	6.482572e+05	6.130000e+
75%	1.800000	10.60000	6619.047619	1.100656e+06	9.800000e+
max	2.000000	11.20000	16459.399823	4.277666e+06	4.277666e+

In [491]:

```
#Dispersão dos preços conforme aumenta o tamanho do apartamento.
plt.figure()
sns.scatterplot(Dados.area, Dados.preco, hue = Dados.suites)
plt.title('Dados Originais')
plt.xlabel('Área')
```

Out[491]:

Text(0.5, 0, 'Área')

In [492]:

```
#Maior concentração de preços em apartamentos até três quartos
plt.figure(figsize = (10, 5))
sns.boxplot(x='preco',y='quartos',data = Dados, orient='h')
plt.xlabel('Preço original')
plt.title('Preço x Quantidade de Quartos')
```

Out[492]:

Text(0.5, 1.0, 'Preço x Quantidade de Quartos')

In [493]:

```
#Maior existência de outliers na variável preço para apartamentos com 3 ou mais suítes.
#Verificar unidades com mais suítes que quartos
plt.figure()
sns.catplot(x = 'suites', y='preco',data = Dados, col = 'quartos', col_wrap=3, kind='bar',
plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9, hspace=0.5)
```


In [494]:

```
# Verificando quantidade de suítes maior que quartos (3 quartos => 4 suítes)
Dados.loc[(Dados['quartos']==3.0) & (Dados['suites']==4.0)]
#Dados[822:823]
```

Out[494]:

		preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area_
	823	575000	110.0	3.0	1.0	1.0	4.0	agua- verde	51461	2.9	
4											•

In [495]:

```
#Igualando a quantidade de suítes à quantidade de quartos

Dados.loc[(Dados['quartos']==3.0) & (Dados['suites']==4.0), 'suites']=Dados.loc[(Dados['quartos']==3.0) & (Dados['suites']==4.0)]
```

Out[495]:

```
preco area quartos banheiros vagas suites bairro População População(%) Area_bairro
```

In [496]:

```
#Conferindo novamente o gráfico
plt.figure()
sns.catplot(x = 'suites', y='preco',data = Dados, col = 'quartos', col_wrap=3, kind='bar'
plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9, hspace=0.5)
```


In [497]:

```
plt.figure()
sns.catplot(x='bairro', y = 'preco', kind = "box", data = Dados, height = 4, aspect = 1.5)
sns.stripplot(x = 'bairro', y = 'preco', data = Dados, alpha = 0.3, jitter = 0.2, color = '
plt.title('Preço por Bairro')
plt.show()
```

<Figure size 1080x432 with 0 Axes>

In [498]:

```
plt.figure()
sns.catplot(x='suites', y = 'preco', kind = "box", data = Dados, height = 4, aspect = 1.5)
sns.stripplot(x = 'suites', y = 'preco', data = Dados, alpha = 0.3, jitter = 0.2, color = '
plt.title('Preço por Quantidade de Suítes')
plt.show()
```


In [499]:

```
plt.figure()
sns.catplot(x='quartos', y = 'preco', kind = "box", data = Dados, height = 4, aspect = 1.5)
sns.stripplot(x = 'quartos', y = 'preco', data = Dados, alpha = 0.3, jitter = 0.2, color =
plt.title('Preço por Quantidade de Quartos')
plt.show()
```

<Figure size 1080x432 with 0 Axes>

In [500]:

```
# Comparando quantidade de suítes por quartos
Dados.pivot_table(values='preco', index=['suites'], columns=['quartos'], aggfunc=np.count_n
```

Out[500]:

quartos		1.0	2.0	3.0	4.0	5.0	
	suites						
	1.0	54.0	468.0	1193.0	146.0	NaN	
	2.0	NaN	48.0	52.0	240.0	4.0	
	3.0	NaN	NaN	253.0	48.0	4.0	
	4.0	NaN	NaN	NaN	112 N	11 0	

In [501]:

```
plt.figure()
sns.catplot(x='vagas', y = 'preco', kind = "box", data = Dados, height = 4, aspect = 1.5)
sns.stripplot(x = 'vagas', y = 'preco', data = Dados, alpha = 0.3, jitter = 0.2, color = 'k
plt.title('Preço por Quantidade de Vagas')
plt.show()
```


In [502]:

```
plt.figure()
sns.catplot(x='banheiros', y = 'preco', kind = "box", data = Dados, height = 4, aspect = 1.
sns.stripplot(x = 'banheiros', y = 'preco', data = Dados, alpha = 0.3, jitter = 0.2, color
plt.title('Preço por Quantidade de Banheiros')
plt.show()
```

<Figure size 1080x432 with 0 Axes>

In [503]:

Comparando, quantidade de suítes, quartos e banheiros
Dados.pivot_table(values='preco', index=['banheiros'], columns=['quartos','suites'], aggfun

Out[503]:

quartos	1.0	2.0		3.0			4.0				5.0		
suites	1.0	1.0	2.0	1.0	2.0	3.0	1.0	2.0	3.0	4.0	2.0	3.0	4.0
banheiros													
1.0	34.0	113.0	4.0	171.0	3.0	18.0	13.0	34.0	7.0	11.0	NaN	NaN	NaN
2.0	19.0	331.0	14.0	545.0	7.0	4.0	24.0	17.0	2.0	5.0	1.0	NaN	1.0
3.0	1.0	22.0	17.0	366.0	25.0	27.0	54.0	27.0	5.0	1.0	3.0	NaN	NaN
4.0	NaN	2.0	10.0	107.0	12.0	62.0	50.0	56.0	11.0	21.0	NaN	NaN	NaN
5.0	NaN	NaN	3.0	4.0	5.0	119.0	4.0	95.0	18.0	22.0	NaN	3.0	1.0
6.0	NaN	NaN	NaN	NaN	NaN	20.0	1.0	9.0	5.0	33.0	NaN	1.0	7.0
7.0	NaN	NaN	NaN	NaN	NaN	3.0	NaN	2.0	NaN	19.0	NaN	NaN	2.0

In [504]:

```
Dados.columns
```

Out[504]:

In [505]:

In [506]:

4.1 Análise da correlação entre atributos

In [507]:

```
#Gráfico das correlações entre as features/variáveis/colunas
#Source: https://seaborn.pydata.org/examples/many_pairwise_correlations.html
import seaborn as sns
from string import ascii_letters
import matplotlib.pyplot as plt
sns.set_theme(style = "white")
d = Dados[['preco', 'area', 'quartos', 'banheiros', 'vagas', 'suites', 'Densidade_populacio
# Compute the correlation matrix
corr = d.corr()
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, center=0.4,
            square=True, linewidths=.5, cbar_kws={"shrink": .5})
```

Out[507]:

<AxesSubplot:>

In [508]:

d.corr()

Out[508]:

	preco	area	quartos	banheiros	vagas	suites	Densi
preco	1.000000	0.846866	0.506918	0.564747	0.781479	0.755345	
area	0.846866	1.000000	0.630357	0.594166	0.777294	0.708096	
quartos	0.506918	0.630357	1.000000	0.487376	0.551618	0.445504	
banheiros	0.564747	0.594166	0.487376	1.000000	0.585902	0.628074	
vagas	0.781479	0.777294	0.551618	0.585902	1.000000	0.700004	
suites	0.755345	0.708096	0.445504	0.628074	0.700004	1.000000	
Densidade_populacional	-0.058115	-0.027909	-0.102585	-0.064892	-0.128179	-0.067247	
4							>

4.2 Tratamento da dupla contagem de quartos nas suítes

In [509]:

```
# Comparando, quantidade de suítes e quartos
Dados.pivot_table(values='preco', index=['quartos'], columns=['suites'], aggfunc=np.count_n
```

Out[509]:

suites	1.0	2.0	3.0	4.0	
quartos					
1.0	54.0	NaN	NaN	NaN	
2.0	468.0	48.0	NaN	NaN	
3.0	1193.0	52.0	253.0	NaN	
4.0	146.0	240.0	48.0	112.0	
5.0	NaN	4.0	4.0	11.0	

In [510]:

#ajustando o dataset para retirar o número de suítes do número de quartos em função da cont
Dados['quartos']=Dados['quartos']-Dados['suites']
Dados.head()

Out[510]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area_ba
0	286000	63.00	1.0	2.0	1.0	1.0	portao	42038	2.4	ţ
1	328000	75.00	2.0	2.0	1.0	1.0	portao	42038	2.4	ŧ
2	370000	62.77	1.0	2.0	2.0	1.0	portao	42038	2.4	ţ
3	295000	62.88	1.0	2.0	1.0	1.0	portao	42038	2.4	ŧ
4	260000	75.00	2.0	2.0	1.0	1.0	portao	42038	2.4	ŧ
4										>

In [511]:

```
# Comparando, quantidade de suítes e quartos
Dados.pivot_table(values='preco', index=['quartos'], columns=['suites'], aggfunc=np.count_n
```

Out[511]:

suites	1.0	2.0	3.0	4.0	
quartos					
0.0	54.0	48.0	253.0	112.0	
1.0	468.0	52.0	48.0	11.0	
2.0	1193.0	240.0	4.0	NaN	
3.0	146.0	4.0	NaN	NaN	

In [512]:

```
#Gráfico das correlações entre as features/variáveis/colunas
#Source: https://seaborn.pydata.org/examples/many_pairwise_correlations.html
import seaborn as sns
from string import ascii_letters
import matplotlib.pyplot as plt
sns.set_theme(style = "white")
d = Dados[['preco', 'area', 'quartos', 'banheiros', 'vagas', 'suites', 'Densidade_populacio
# Compute the correlation matrix
corr = d.corr()
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, center=0.4,
            square=True, linewidths=.5, cbar_kws={"shrink": .5})
```

Out[512]:

<AxesSubplot:>

In [513]:

#A correlação entre suítes/quartos é reduzida em função das alterações acima. #Agora quartos e suítes são inversamente proporcionais, ou seja, aumentando o número de suí d.corr()

Out[513]:

	preco	area	quartos	banheiros	vagas	suites	Densi
preco	1.000000	0.846866	-0.349132	0.564747	0.781479	0.755345	
area	0.846866	1.000000	-0.196053	0.594166	0.777294	0.708096	
quartos	-0.349132	-0.196053	1.000000	-0.234585	-0.254324	-0.653052	
banheiros	0.564747	0.594166	-0.234585	1.000000	0.585902	0.628074	
vagas	0.781479	0.777294	-0.254324	0.585902	1.000000	0.700004	
suites	0.755345	0.708096	-0.653052	0.628074	0.700004	1.000000	
Densidade_populacional	-0.058115	-0.027909	-0.017518	-0.064892	-0.128179	-0.067247	
4							•

5. Modelagem

5.1 Ordinary Least Squares (biblioteca Statsmodel)

```
In [514]:
```

In [515]:

```
#Criando uma cópia do dataset
Dados_copy = Dados
```

In [516]:

Dados_copy.dtypes

Out[516]:

preco int64 float64 area float64 quartos float64 banheiros float64 vagas float64 suites bairro category População int64 População(%) float64 Area bairro int64 Área(%) float64 Densidade_populacional float64 float64 preco_metro preco_ajustado_mod_pre float64 float64 preco_so outlier object dtype: object

In [517]:

```
#Convertendo a coluna bairro para inteiros
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
Dados_copy['bairro'] = labelencoder.fit_transform(Dados_copy['bairro'])
Dados_copy.dtypes
```

Out[517]:

preco int64 float64 area float64 quartos float64 banheiros float64 vagas float64 suites bairro int32 População int64 População(%) float64 Area_bairro int64 Área(%) float64 Densidade_populacional float64 preco_metro float64 preco_ajustado_mod_pre float64 float64 preco_so outlier object dtype: object

In [518]:

Out[518]:

OLS Regression Results

Dep. Variable:	preco_so	R-squared:	0.969
Model:	OLS	Adj. R-squared:	0.968
Method:	Least Squares	F-statistic:	8068.
Date:	Wed, 28 Apr 2021	Prob (F-statistic):	0.00
Time:	14:15:15	Log-Likelihood:	-34396.
No. Observations:	2633	AIC:	6.881e+04
Df Residuals:	2622	BIC:	6.888e+04
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-7.603e+05	3.43e+04	-22.169	0.000	-8.28e+05	-6.93e+05
area	5827.5614	53.483	108.960	0.000	5722.688	5932.435
quartos	1.285e+04	4211.111	3.052	0.002	4594.399	2.11e+04
banheiros	-6128.2527	2218.037	-2.763	0.006	-1.05e+04	-1778.972
vagas	-1.189e+04	4610.098	-2.580	0.010	-2.09e+04	-2853.173
suites	6.051e+04	6180.281	9.791	0.000	4.84e+04	7.26e+04
bairro	6265.7577	1504.917	4.164	0.000	3314.812	9216.703
População	6.6960	0.785	8.532	0.000	5.157	8.235
Area_bairro	-34.3585	4.312	-7.969	0.000	-42.813	-25.904
Densidade_populacional	-3.875e+04	4346.623	-8.915	0.000	-4.73e+04	-3.02e+04
preco_metro	157.9197	1.597	98.911	0.000	154.789	161.050

 Omnibus:
 1209.736
 Durbin-Watson:
 1.951

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 19800.777

 Skew:
 -1.752
 Prob(JB):
 0.00

 Kurtosis:
 15.969
 Cond. No.
 6.10e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.1e+05. This might indicate that there are strong multicollinearity or other numerical problems.

5.2 Ordinary Least Squares (biblioteca Sklearn)

```
In [519]:
```

	area	quartos	banheiros	vagas	suites	bairro	População	Area_bairro	Densidade_po
0	63.00	1.0	2.0	1.0	1.0	6	42038	5838	
1	75.00	2.0	2.0	1.0	1.0	6	42038	5838	
2	62.77	1.0	2.0	2.0	1.0	6	42038	5838	
3	62.88	1.0	2.0	1.0	1.0	6	42038	5838	
4	75.00	2.0	2.0	1.0	1.0	6	42038	5838	
4463	95.00	2.0	3.0	1.0	1.0	4	37565	8896	
4465	114.00	2.0	3.0	1.0	1.0	4	37565	8896	
4467	125.00	2.0	3.0	2.0	1.0	4	37565	8896	
4468	68.00	2.0	2.0	2.0	1.0	4	37565	8896	
4469	143.00	2.0	4.0	3.0	1.0	4	37565	8896	

2633 rows × 10 columns

In [522]:

Dataframe de treinamento: 2106 linhas Dataframe de teste.....: 527 linhas

In [523]:

```
#Importa a biblioteca e instancia o objeto
from sklearn.linear_model import LinearRegression
modelo_2 = LinearRegression()
```

In [524]:

```
# Treina o modelo usando as amostras/dataset de treinamento: X_treinamento e y_treinamento modelo_2.fit(X_treinamento, y_treinamento)
```

Out[524]:

LinearRegression()

In [525]:

```
# Valor do intercepto
modelo_2.intercept_
```

Out[525]:

-740639.1685913978

In [526]:

```
# Coeficientes do modelo de Regressão Linear
coeficientes_regressao_linear = pd.DataFrame([X_treinamento.columns, modelo_2.coef_]).T
coeficientes_regressao_linear = coeficientes_regressao_linear.rename(columns={0: 'Feature/v
coeficientes_regressao_linear
```

Out[526]:

	Feature/variável/coluna	Coeficientes
0	area	5845.5
1	quartos	10375.8
2	banheiros	-3720.08
3	vagas	-13704.8
4	suites	53349
5	bairro	5905.51
6	População	6.82118
7	Area_bairro	-36.5169
8	Densidade_populacional	-39976.9
9	preco_metro	159.237

In [527]:

Score com dados de treinamento: 0.969192. Score com dados de teste: 0.965579

5.3 Regularized Regression Methods - Ridge Regression (biblioteca Sklearn)

In [528]:

```
#Importação da biblioteca e criação do modelo e definição do valor de alpha from sklearn.linear_model import Ridge modelo_3 = Ridge(alpha = 0.1)
```

In [529]:

```
#Treinamento do modelo
modelo_3.fit(X_treinamento, y_treinamento)
```

Out[529]:

Ridge(alpha=0.1)

```
28/04/2021
                                               AP - Jupyter Notebook
  In [530]:
  # Lista das variáveis + coeficientes da Ridge:
  list(zip(X_treinamento.columns, (modelo_3.coef_)))
  Out[530]:
  [('area', 5845.5476464823205),
   ('quartos', 10365.005068931343),
   ('banheiros', -3717.577295054702),
   ('vagas', -13698.661091137763),
   ('suites', 53328.49200301114),
   ('bairro', 5905.906559658098),
   ('População', 6.820310185993782),
   ('Area_bairro', -36.512587358649256),
   ('Densidade_populacional', -39971.99137569031),
   ('preco_metro', 159.23713249102354)]
  In [531]:
  print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
        (modelo_3.score(X_treinamento,y_treinamento),modelo_3.score(X_teste,y_teste)))
  Score com dados de treinamento: 0.969192.
  Score com dados de teste: 0.965579
  In [532]:
  #Utilizando GridSearchCV para busca do melhor alpha
  from sklearn.model selection import GridSearchCV
  parameters = {'alpha':[.00001,.0001,.001,.01,.1,1,10,100,1000]}
 modelo_3_1 = Ridge()
 modelo_3_1 = GridSearchCV(modelo_3_1, parameters, scoring='r2', cv=10)
  modelo_3_1.fit(X_treinamento,y_treinamento)
  Out[532]:
  GridSearchCV(cv=10, estimator=Ridge(),
               param grid={'alpha': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 10, 1
  00,
                                      1000]},
               scoring='r2')
  In [533]:
 modelo_3_1.best_params_
  Out[533]:
  {'alpha': 10}
```

```
0.96772802546756
```

modelo_3_1.best_score_

In [534]:

Out[534]:

```
In [535]:
```

```
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo_3_1.score(X_treinamento,y_treinamento),modelo_3_1.score(X_teste,y_teste)))
Score com dados de treinamento: 0.969190.
Score com dados de teste: 0.965540
```

5.4 LASSO - Least Absolute Shrinkage And Selection Operator regularization (biblioteca Sklearn)

```
In [536]:
#Importação da biblioteca, criação do modelo e definição do valor de alpha
from sklearn.linear_model import Lasso
modelo_4 = Lasso(alpha = .1)
In [537]:
#Treinamento do modelo
modelo_4.fit(X_treinamento, y_treinamento)
Out[537]:
Lasso(alpha=0.1)
In [538]:
# Lista das variáveis + coeficientes do Lasso:
list(zip(X_treinamento.columns, (modelo_4.coef_)))
Out[538]:
[('area', 5845.496519602181),
 ('quartos', 10375.064912830696),
 ('banheiros', -3719.8808892022826),
 ('vagas', -13704.256937925184),
 ('suites', 53347.70457022557),
 ('bairro', 5905.492226675107),
 ('População', 6.821134879185218),
 ('Area_bairro', -36.51670670540579),
 ('Densidade_populacional', -39976.65271883965),
 ('preco metro', 159.23731757457307)]
In [539]:
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo 4.score(X treinamento,y treinamento),modelo 4.score(X teste,y teste)))
```

```
Score com dados de treinamento: 0.969192.
Score com dados de teste: 0.965579
```

```
In [540]:
```

```
#Utilizando GridSearch e Cross-Validation para busca do melhor alpha
parameters = {'alpha':[.00001,.0001,.001,.01,.1,1,10,100,1000]}
modelo_4_1 = Lasso()
modelo_4_1 = GridSearchCV(modelo_4_1, parameters, scoring='r2', cv=10)
modelo_4_1.fit(X_treinamento,y_treinamento)
Out[540]:
GridSearchCV(cv=10, estimator=Lasso(),
             param_grid={'alpha': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 10, 1
00,
                                    1000]},
             scoring='r2')
In [541]:
print('Melhores parâmetros:')
modelo_4_1.best_params_
Melhores parâmetros:
Out[541]:
{'alpha': 100}
In [542]:
print('Melhor score:')
modelo_4_1.best_score_
Melhor score:
Out[542]:
0.9677224672360367
In [543]:
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo_4_1.score(X_treinamento,y_treinamento),modelo_4_1.score(X_teste,y_teste)))
Score com dados de treinamento: 0.969191.
Score com dados de teste: 0.965556
```

5.5 Elastic Net (biblioteca Sklearn)

```
In [544]:
```

```
#Importa a biblioteca e instancia o objeto
from sklearn.linear_model import ElasticNet
modelo_5 = ElasticNet(alpha=.1, l1_ratio=1)
```

```
In [545]:
```

```
#Treinamento do modelo
modelo_5.fit(X_treinamento, y_treinamento)
Out[545]:
ElasticNet(alpha=0.1, l1_ratio=1)
In [546]:
list(zip(X_treinamento,modelo_5.coef_))
Out[546]:
[('area', 5845.496519602181),
 ('quartos', 10375.064912830696),
 ('banheiros', -3719.8808892022826),
 ('vagas', -13704.256937925184),
 ('suites', 53347.70457022557),
 ('bairro', 5905.492226675107),
 ('População', 6.821134879185218),
 ('Area_bairro', -36.51670670540579),
 ('Densidade_populacional', -39976.65271883965),
 ('preco_metro', 159.23731757457307)]
In [547]:
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo_5.score(X_treinamento,y_treinamento),modelo_5.score(X_teste,y_teste)))
Score com dados de treinamento: 0.969192.
Score com dados de teste: 0.965579
In [548]:
np.logspace(-10, 10, 15)
Out[548]:
array([1.00000000e-10, 2.68269580e-09, 7.19685673e-08, 1.93069773e-06,
       5.17947468e-05, 1.38949549e-03, 3.72759372e-02, 1.00000000e+00,
       2.68269580e+01, 7.19685673e+02, 1.93069773e+04, 5.17947468e+05,
       1.38949549e+07, 3.72759372e+08, 1.00000000e+10])
In [549]:
#Utilizando GridSearch e Cross-Validation para busca dos melhores parâmetros
en = ElasticNet()
# Otimização dos hiperparâmetros:
d_hiperparametros = {'alpha': [.00001,.001,.001,.01,.1,1,10,100,1000],
                      'l1 ratio': [.00001,.0001,.001,.01,.1,1,10,100,1000]}
modelo 5 1 = GridSearchCV(estimator = en, # Elastic Net
                      param_grid = d_hiperparametros, # Dicionário com os hiperparâmetros
                      scoring = 'r2',
                      n jobs = -1, # Usar todos os processadores/computação
                      refit = True,
                      cv = 10) # Número de Cross-Valitations
```

```
In [550]:
modelo_5_1.fit(X_treinamento,y_treinamento)
Out[550]:
GridSearchCV(cv=10, estimator=ElasticNet(), n_jobs=-1,
             param_grid={'alpha': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 10, 1
00,
                                   1000],
                         'l1_ratio': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 1
0,
                                      100, 1000]},
             scoring='r2')
In [551]:
modelo_5_1.best_params_
Out[551]:
{'alpha': 0.01, 'l1_ratio': 1e-05}
In [552]:
modelo_5_1.best_score_
Out[552]:
0.9677309593760455
In [553]:
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo_5_1.score(X_treinamento,y_treinamento),modelo_5_1.score(X_teste,y_teste)))
Score com dados de treinamento: 0.969185.
Score com dados de teste: 0.965497
5.6 Support Vector Regression (SVM-LinearSVR - biblioteca
Sklearn)
In [554]:
#Importa a biblioteca e instancia o objeto
from sklearn.svm import LinearSVR
modelo_6 = LinearSVR(random_state=0, C=1, tol=1e-2, epsilon=0.1)
In [555]:
#Treinamento do modelo
modelo_6.fit(X_treinamento, y_treinamento)
Out[555]:
LinearSVR(C=1, epsilon=0.1, random_state=0, tol=0.01)
```

```
In [556]:
```

```
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo_6.score(X_treinamento,y_treinamento),modelo_6.score(X_teste,y_teste)))
Score com dados de treinamento: 0.915462.
Score com dados de teste: 0.908700
In [557]:
#Utilizando GridSearch e Cross-Validation para busca dos melhores parâmetros
svr = LinearSVR()
# Otimização dos hiperparâmetros:
d hiperparametros = \{'C': [.00001,.001,.01,.1,1,10,100,1000],
                     'tol': [.00001,.0001,.001,.01,.1,1,10,100,1000],
                    'epsilon': [.00001,.0001,.001,.01,.1,1,10,100,1000]}
modelo_6_1 = GridSearchCV(estimator = svr, # Suppot Vector Regressor
                      param_grid = d_hiperparametros, # Dicionário com os hiperparâmetros
                      scoring = 'r2',
                      n_jobs = -1, # Usar todos os processadores/computação
                      refit = True,
                      cv = 10) # Número de Cross-Valitations
In [558]:
modelo_6_1.fit(X_treinamento,y_treinamento)
Out[558]:
GridSearchCV(cv=10, estimator=LinearSVR(), n_jobs=-1,
             param_grid={'C': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
                               1000],
                          'epsilon': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 10,
                                      100, 1000],
                         'tol': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1, 10, 10
0,
                                 1000]},
             scoring='r2')
In [559]:
modelo 6 1.best params
Out[559]:
{'C': 10, 'epsilon': 1, 'tol': 0.001}
In [560]:
modelo_6_1.best_score_
Out[560]:
0.9126983274761704
```

In [561]:

5.7 Stochastic Gradient Descent Regressor (SGDRegressor - biblioteca Sklearn)

```
In [562]:
#importando as bibliotecas
from sklearn.linear_model import SGDRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
# intanciando o objeto com a criação de pipeline, padronização das variáveis preditoras e t
modelo 7 = make pipeline(StandardScaler(),SGDRegressor(penalty='elasticnet', max iter=1000,
modelo_7.fit(X_treinamento, y_treinamento)
Out[562]:
Pipeline(steps=[('standardscaler', StandardScaler()),
                ('sgdregressor', SGDRegressor(penalty='elasticnet'))])
In [563]:
print('Score com dados de treinamento: %f.\nScore com dados de teste: %f'%
      (modelo_7.score(X_treinamento,y_treinamento),modelo_7.score(X_teste,y_teste)))
Score com dados de treinamento: 0.968800.
Score com dados de teste: 0.965496
In [564]:
#Utilizando GridSearch e Cross-Validation para busca dos melhores parâmetros
sgd = SGDRegressor()
# Otimização dos hiperparâmetros:
d_hiperparametros = {'penalty': ['12','11','elasticnet'],
                    'alpha': [.00001,.0001,.001,.01,.1,1,10,100,1000],
                    'l1_ratio':[.00001,.0001,.001,.01,.1,1]}
modelo_7_1 = GridSearchCV(estimator = sgd, # SGDRegressor
                      param_grid = d_hiperparametros, # Dicionário com os hiperparâmetros
                      scoring = r2',
                      n jobs = -1, # Usar todos os processadores/computação
```

cv = 10) # Número de Cross-Valitations

```
In [565]:
```

```
# intanciando o objeto com a criação de pipeline, padronização das variáveis preditoras e t
pipeline = make_pipeline(StandardScaler(),modelo_7_1)
pipeline.fit(X_treinamento, y_treinamento)
Out[565]:
Pipeline(steps=[('standardscaler', StandardScaler()),
                ('gridsearchcv',
                 GridSearchCV(cv=10, estimator=SGDRegressor(), n_jobs=-1,
                              param grid={'alpha': [1e-05, 0.0001, 0.001, 0.
01,
                                                     0.1, 1, 10, 100, 1000],
                                           'l1_ratio': [1e-05, 0.0001, 0.001,
                                                        0.01, 0.1, 1],
                                           'penalty': ['12', '11',
                                                       'elasticnet']},
                              scoring='r2'))])
In [566]:
modelo_7_1.best_params_
Out[566]:
{'alpha': 1e-05, 'l1_ratio': 1e-05, 'penalty': 'l1'}
In [567]:
modelo_7_1.best_score_
Out[567]:
0.9677033520912419
In [568]:
#Padronização das variáveis preditoras de treinamento e teste por necessidade do algoritmo
SS = StandardScaler()
SSTrein = SS.fit transform(X treinamento, y=y treinamento)
SSTest = SS.fit_transform(X_teste, y=y_teste)
In [569]:
#Instancia o objeto (criação do modelo com os melhores parâmetros)
modelo_7_2 = SGDRegressor(alpha= 0.1, l1_ratio= 0.0001, penalty= 'l1')
In [570]:
#Ajuste do modelo
modelo_7_2.fit(SSTrein, y_treinamento)
Out[570]:
SGDRegressor(alpha=0.1, l1 ratio=0.0001, penalty='l1')
```

In [571]:

Score com dados de treinamento: 0.969076.

Score com dados de teste: 0.962077

6.2 Apresentação dos Resultados - Comparativo dos modelos

In [572]:

#Comparativo dos Coeficientes

Coeficientes = pd.DataFrame(data=list(zip(X_treinamento,modelo_1_treinado.params[1:],modelo modelo_3.coef_,modelo_4.coef_,modelo_5.coef_,mode Coeficientes.columns=['Atributo','OLS - Statsmodel','OLS - Sklearn', 'Ridge','LASSO','Elast Coeficientes

Out[572]:

	Atributo	OLS - Statsmodel	OLS - Sklearn	Ridge	LASSO	Elasti
0	area	5827.561381	5845.495818	5845.547646	5845.496520	5845.496
1	quartos	12851.837396	10375.848203	10365.005069	10375.064913	10375.064
2	banheiros	-6128.252698	-3720.083338	-3717.577295	-3719.880889	-3719.880
3	vagas	-11892.973319	-13704.846513	-13698.661091	-13704.256938	-13704.256
4	suites	60513.987366	53348.950632	53328.492003	53347.704570	53347.704
5	bairro	6265.757746	5905.511657	5905.906560	5905.492227	5905.492
6	População	6.696014	6.821183	6.820310	6.821135	6.82
7	Area_bairro	-34.358526	-36.516945	-36.512587	-36.516707	-36.516
8	Densidade_populacional	-38751.127201	-39976.906364	-39971.991376	-39976.652719	-39976.652
9	preco_metro	157.919725	159.237398	159.237132	159.237318	159.237
4						>

In [573]:

Out[573]:

	Modelo	Dados de Treinamento	Dados de Teste
0	OLS - Statsmodel	0.968525	0.000000
1	OLS - Sklearn	0.969192	0.965579
2	Ridge	0.969192	0.965579
3	LASSO	0.969192	0.965579
4	ElasticNet	0.969192	0.965579
5	SVR	0.915462	0.908700
6	SGDRegressor	0.968800	0.965496

In [574]:

```
#Construção do gráfico com scores
plt.figure(figsize=(15.0,5.0), )
plt.subplot(1,2,1)
sns.barplot(x=Scores['Modelo'],y=Scores['Dados de Treinamento'],)
plt.xticks(rotation='vertical')
plt.ylim(bottom=.90, top=.975)
plt.title('Score com Dados de Treinamento')
plt.subplot(1,2,2)
sns.barplot(x=Scores['Modelo'],y=Scores['Dados de Teste'])
plt.xticks(rotation='vertical')
plt.ylim(bottom=.90, top=.975)
plt.title('Score com Dados de Teste')
```

Out[574]:

Text(0.5, 1.0, 'Score com Dados de Teste')

6.3 Apresentação dos Resultados - Dashboard

```
In [575]:
```

```
Dados_viz['bairro'].unique()
Out[575]:
['portao', 'agua-verde', 'centro', 'ecoville', 'batel', 'cabral', 'cristo-re
i']
Categories (7, object): ['portao', 'agua-verde', 'centro', 'ecoville', 'bate
l', 'cabral', 'cristo-rei']
```

In [576]:

In [577]:

```
#inclusão da coluna com valores preditos com dados do modelo 5
Dados_viz['preco previsto'] = modelo_5.predict(X_Dados)
Dados_viz['outlierstr'] = Dados_viz.outlier.astype('string')
Dados_viz['suitesstr'] = Dados_viz.suites.astype('string')
Dados_viz.head()
```

Out[577]:

	preco	area	quartos	banheiros	vagas	suites	bairro	População	População(%)	Area_b
0	286000	63.00	2.0	2.0	1.0	1.0	Portão	42038	2.4	;
1	328000	75.00	3.0	2.0	1.0	1.0	Portão	42038	2.4	;
2	370000	62.77	2.0	2.0	2.0	1.0	Portão	42038	2.4	!
3	295000	62.88	2.0	2.0	1.0	1.0	Portão	42038	2.4	!
4	260000	75.00	3.0	2.0	1.0	1.0	Portão	42038	2.4	;
4										•

In [578]:

```
#Importação das bibliotecas
from bokeh.io import curdoc
from bokeh.layouts import column, row, WidgetBox
from bokeh.models import ColumnDataSource, Slider, TextInput, CheckboxGroup, Div
from bokeh.plotting import figure, output_file, show
from bokeh.models import CustomJS, ColumnDataSource, CheckboxGroup, Column, Line, Circle, R
from bokeh.plotting import figure, show
from bokeh.transform import jitter
from bokeh.transform import factor_cmap
from bokeh.palettes import Category10 10, Spectral6, Spectral5, Spectral8, Spectral4
from bokeh.models.ranges import Range1d
######################################
#Construção de título e kpis
heading = Div(text="""<h1><b> <font color="#2b83ba">
                                                      Dashboard >>>>
                                                                       Preços de Apartamen
             (Bairros Selecionados)</font></h1>""",align='center', css_classes=['myclass'],
             background='white', width_policy='max', min_width=1870, max_width=1870, width
largura_kpi = 366
alfa = (Dados_viz['preco'].sum()/Dados_viz['area'].sum()).round(2)
kpi = Div(text="""<h2 align="center"><b><font color="#2b83ba"> Preço Médio por Metro²:</fi>
         R$ %s/m²</font></h2>"""%alfa, align='center', width_policy='max', min_width=largu
         width=largura_kpi, sizing_mode="scale_height", css_classes=['myclass'],background
beta = Dados_viz['area'].mean()
kpi1 = Div(text="""<h2><b><font color="##2b83ba"> Área Média por Unidade:</font></b><br/>
          %.2f m²/unidade </font></h2>"""%round(beta,2), align='center', width_policy='max
          max_width=largura_kpi, width=largura_kpi, sizing_mode="scale_height", css_classe
charlie= Dados_viz['quartos'].mean()
kpi2 = Div(text="""<h2><b><font color="##2b83ba"> Número Médio de Quartos:</font></b><br/><br/>font>
          %.2f quartos/unidade </font></h2>"""%round(charlie,2), align='center', width_pol
          min_width=largura_kpi, max_width=largura_kpi, width=largura_kpi, sizing_mode="sc
          css classes=['myclass'],background='white')
delta= Dados_viz['suites'].mean()
kpi3 = Div(text="""<h2><b><font color="##2b83ba"> Número Médio de Suítes:</font></b><br/>
           %.2f suites/unidade </font></h2>"""%round(delta,2), align='center', width polic
          min_width=largura_kpi, max_width=largura_kpi, width=largura_kpi, sizing_mode="sc
          css classes=['myclass'],background='white')
echo= Dados_viz['vagas'].mean()
kpi4 = Div(text="""<h2><b><font color="##2b83ba"> Número Médio de Vagas:</font></b><br/>
          %.2f vagas/unidade </font></h2>"""%round(echo,2), align='center', width_policy='
          min_width=largura_kpi, max_width=largura_kpi, width=largura_kpi, sizing_mode="sc
          css_classes=['myclass'],background='white')
#Gráfico Principal
data2 = dict(quartos = Dados_viz.quartos.astype('int').astype('string'),
x = Dados_viz.area,
y = Dados_viz.preco.astype('float'),
z = Dados viz.quartos.astype('int').astype('string')
```

```
data2 = pd.DataFrame(data2)
data source2 = ColumnDataSource(data2)
source2 = ColumnDataSource(dict(x = Dados_viz.area.tolist(),
                               y = Dados viz.preco.tolist(),
                                z = Dados_viz.quartos.astype('int').astype('string').tolist
label2=sorted(['1','2','3','4','5','6'],key=int)
plot2 = figure(plot width=1150, plot height=400,tools="hover",
               tooltips=[("Área", "@{x}{0.2f} m^2"),("Preço ","R$ @{y}{,0.2f}")],
               toolbar_location=None, title="Preço x Tamanho do Apartamento")
plot2.circle('x', 'y', line_width = 2, source = source2, color=factor_cmap("z", Spectral5,
plot2.yaxis[0].formatter = NumeralTickFormatter(format="0,0.00")
plot2.xaxis.axis_label = "Área (m²)"
plot2.yaxis.axis label = "Preço (R$)"
callback = CustomJS(args = {'source': source2, 'data_source': data_source2},
code = """
var data = data_source.data;
var s_data = source.data;
var quartos = data['quartos'];
var select_vals = cb_obj.active;
console.log(select_vals);
var x_data = data['x'];
var y_data = data['y'];
var z_data = data['z'];
var x = s data['x'];
x.length = 0;
var y = s_data['y'];
y.length = 0;
var z = s_data['z'];
z.length = 0;
for (var i = 0; i < x_data.length; i++) {</pre>
    if (select_vals.indexOf(quartos[i]-1) >= 0) {
        x.push(x_data[i]);
        y.push(y_data[i]);
        z.push(z_data[i]);
source.change.emit();
console.log("callback completed");
""")
chkbxgrp2 = CheckboxGroup(inline=True, labels = ['1 Quarto', '2 Quartos', '3 Quartos','4 Qu
                         active=[0,1,2,3,4,5], background='white', default size=1145, align
chkbxgrp2.js_on_change('active', callback)
#Gráfico Barra Horizontal 1 - Preço/m²
Bairros = Dados viz.bairro.unique().tolist()
source3 = ColumnDataSource(Dados viz)
plot3 = figure(plot_width=570, plot_height=330, y_range=Bairros,
           title="Preço por metro quadrado", toolbar_location=None, tools="hover",
               tooltips=[("Preço por m²", "R$ @{preco_metro}{,0.2f}/m²")])
plot3.circle(x='preco_metro', y=jitter('bairro', width=0.6, range=plot3.y_range),
             source=source3, alpha=0.3, color=factor_cmap("bairro", Spectral6, Bairros))
plot3.x_range.range_padding = 0
```

```
plot3.xaxis.axis_label = "R$/m2"
plot3.ygrid.grid_line_color = None
#Gráfico Barra Horizontal 2 - Densidade Populacional
Bairros = Dados_viz.bairro.unique().tolist()
group = Dados_viz.groupby('bairro')
source4 = ColumnDataSource(group)
plot4 = figure(y_range=Bairros, x_range=(0,12), plot_width=570, plot_height=330, toolbar_lo
          title="Densidade Populacional", tools="hover",
              tooltips=[("Densidade populacional", "@{Densidade_populacional_max}{0.2f} ha
plot4.hbar(y="bairro", left=0, right='Densidade_populacional_max', height=0.6,
          source=source4, fill_alpha=1., fill_color=factor_cmap("bairro", Spectral6, Bairr
plot4.ygrid.grid_line_color = None
plot4.xaxis.axis_label = "mil habitantes/km2"
plot4.outline_line_color = None
#Gráfico Barra Vertical Empilhada 1 - Quartos
bairros = sorted(Dados_viz['bairro'].unique().to_list())
quartos = sorted(list(Dados_viz['quartos'].astype('int').astype('string').unique()), key=in
quartos_count = Dados_viz[['quartos','bairro','preco']]
quartos_count['quartos'] = quartos_count['quartos'].astype('int')
quartos_count = pd.pivot_table(quartos_count, values="preco", index=['bairro'],
                              columns=["quartos"], aggfunc=np.count_nonzero)
quartos_count = quartos_count.fillna(value=0)
k0='bairros'
k1='1'
k2='2'
k3 = '3'
k4='4'
k5='5'
v0=quartos count.index.to list()
v1=quartos count[1].to list()
v2=quartos_count[2].to_list()
v3=quartos_count[3].to_list()
v4=quartos_count[4].to_list()
v5=quartos count[5].to list()
dado=\{k0:v0,
   k1:v1,
    k2:v2,
    k3:v3,
    k4:v4,
    k5:v5
   }
dado
```

```
source5 = ColumnDataSource(data=dado)
plot5 = figure(x_range=bairros, plot_width=700, plot_height=250, title="Contagem de apartam
           toolbar_location=None, tools="hover", tooltips="$name quartos: @$name unidades")
plot5.vbar_stack(quartos, x='bairros', width=0.9, color=Spectral5, source=source5,#pode ser
             legend_label=quartos)
plot5.y_range.start = 0
plot5.y_range.end = 800
plot5.x_range.range_padding = 0.1
plot5.xgrid.grid_line_color = None
plot5.axis.minor_tick_line_color = None
plot5.outline_line_color = None
plot5.legend.location = "top left"
plot5.legend.orientation = "horizontal"
######################################
#Gráfico Barra Vertical Empilhada 2 - Suítes
bairros = sorted(Dados_viz['bairro'].unique().to_list())
suites = sorted(list(Dados_viz['suites'].astype('int').astype('string').unique()), key=int)
suites_count = Dados_viz[['suites','bairro','preco']]
suites count['suites'] = suites count['suites'].astype('int')
suites_count = pd.pivot_table(suites_count, values="preco", index=['bairro'],
                              columns=["suites"], aggfunc=np.count_nonzero)
suites_count = suites_count.fillna(value=0)
k0='bairros'
k1='1'
k2='2'
k3='3'
k4='4'
v0=suites count.index.to list()
v1=suites_count[1].to_list()
v2=suites_count[2].to_list()
v3=suites_count[3].to_list()
v4=suites count[4].to list()
dado=\{k0:v0,
    k1:v1,
     k2:v2,
     k3:v3,
     k4:v4
dado
source6 = ColumnDataSource(data=dado)
plot6 = figure(x_range=bairros, plot_width=700, plot_height=250, title="Contagem de apartam")
           toolbar_location=None, tools="hover", tooltips="$name suites: @$name unidades")
```

```
plot6.vbar_stack(suites, x='bairros', width=0.9, color=Spectral4, source=source6,#pode ser
             legend_label=suites)
plot6.y_range.start = 0
plot6.y range.end = 800
plot6.x_range.range_padding = 0.1
plot6.xgrid.grid_line_color = None
plot6.axis.minor_tick_line_color = None
plot6.outline line color = None
plot6.legend.location = "top_left"
plot6.legend.orientation = "horizontal"
#Gráfico Barra Vertical Empilhada 3 - Vagas
bairros = sorted(Dados_viz['bairro'].unique().to_list())
vagas = sorted(list(Dados_viz['vagas'].astype('int').astype('string').unique()), key=int)
vagas_count = Dados_viz[['vagas','bairro','preco']]
vagas_count['vagas'] = vagas_count['vagas'].astype('int')
vagas_count = pd.pivot_table(vagas_count, values="preco", index=['bairro'],
                             columns=["vagas"], aggfunc=np.count_nonzero)
vagas_count = vagas_count.fillna(value=0)
k0='bairros'
k1='1'
k2='2'
k3='3'
k4='4'
k5='5'
v0=vagas_count.index.to_list()
v1=vagas_count[1].to_list()
v2=vagas_count[2].to_list()
v3=vagas_count[3].to_list()
v4=vagas_count[4].to_list()
v5=vagas_count[5].to_list()
dado=\{k0:v0,
   k1:v1,
    k2:v2,
    k3:v3,
    k4:v4,
    k5:v5
     }
dado
source7 = ColumnDataSource(data=dado)
plot7 = figure(x_range=bairros, plot_width=700, plot_height=250, title="Contagem de apartam
           toolbar_location=None, tools="hover", tooltips="$name vagas: @$name unidades")
plot7.vbar_stack(vagas, x='bairros', width=0.9, color=Spectral5, source=source7,#pode ser c
             legend label=vagas)
plot7.y_range.start = 0
plot7.y_range.end = 800
plot7.x_range.range_padding = 0.1
```

```
plot7.xgrid.grid_line_color = None
plot7.axis.minor_tick_line_color = None
plot7.outline line color = None
plot7.legend.location = "top_left"
plot7.legend.orientation = "horizontal"
####################################
#configuração do Layout e geração do arquivo .html
layout = Column(Row(heading, margin=(5,5,5,5)),
                Row(kpi,kpi1,kpi2, kpi3, kpi4, margin=(5,5,5,5)),
                Row(
                    Column(
                         Row(Column(
                             chkbxgrp2,
                             plot2, margin=(0,5,5,5))),
                         Row(Column(plot3,margin=(5,5,5,0)),
                             Column(plot4, margin=(5,5,5,5)),
                             margin=(5,5,5,5)
                            ), margin=(0,5,5,5)),
                    Column(
                         Row(plot5, margin=(5,5,5,5)),
                         Row(plot6, margin=(5,5,5,5)),
                         Row(plot7, margin=(5,5,5,5)),
                           )
                ),
                css_classes=['myclass'], background='#e2eef4', width=1920
output_file("Dashboard.html", title="Dashboard")
show(layout)
```

```
In [ ]:
```