

RUHR-UNIVERSITÄT BOCHUM

ON THE CHALLENGES OF GEOGRAPHICAL AVOIDANCE FOR TOR

Katharina KohlsKai Jansen, David Rupprecht, Thorsten Holz *Ruhr University Bochum*

Tor Anonymity System

Traffic Analysis Attacks

Direct Traffic Obfuscation

- Direct defenses are expensive:
 - Delay transmissions
 - Consume resources

Alternatives

- Direct defenses are expensive:
 - Delay transmissions
 - Consume resources

Are there alternative defenses?

Geographical Avoidance

The general concept.

General Concept

Standard Circuit

Detect Untrusted Area

Use Better Circuit

How can we do this?

Timing Decisions

- Detect connection through untrusted area
 - Relays: GeoIP location data
 - Routing: Not transparent
 - → Measure end-to-end timing

^{2.} Z. Li, S. Herwig, and D. Levin, "**DeTor: Provably Avoiding Geographic Regions in Tor**," in *USENIX Security Symposium*, USENIX'17

Estimate Worst Case

- 1. Find closest point in untrusted area
- 2. Measure distance between client and point
- 3. Assume speed, e.g., $\frac{2}{3}$ speed of light
- 4. Estimate RTT

Untrusted Area

Timing Decision

1. Find closest point in untrusted area

2. Measure distance between client and point

3. Assume speed, e.g., $\frac{2}{3}$ speed of light

- 4. Estimate RTT
- Use threshold for decisions
 - $R_{e2e} < R_{est}$

Timing Decision

- 1. Find closest point in untrusted area
- 2. Measure distance between client and point
- 3. Assume speed, e.g., $\frac{2}{3}$ speed of light
- 4. Estimate RTT
- Use threshold for decisions
 - $R_{e2e} < R_{est}$
 - $R_{e2e} \ge R_{est} \times$

Challenges of Geo Avoidance

Considerations for the system design.

1. Network Diversity

- 1. Distribution of Relays
- 2. Varying Connections Lengths
- 3. Connection Failures

2. **Ground Truth**

- 1. GeoIP Location Errors
- 2. Assymetric Routes
- 3. Intransparent Transmission Characteristics

- 1. Maintaining Tor's Performance and Security
- 2. Using Reliable Information Sources

1. Network Diversity

- 1. Distribution of Relays
- 2. Varying Connections Lengths
- Connection Failures

2. Ground Truth

- GeoIP Location Errors
- 2. Assymetric Routes
- 3. Intransparent Transmission Characteristics

- 1. Maintaining Tor's Performance and Security
- 2. Using Reliable Information Sources

1. Network Diversity

- 1. Distribution of Relays
- 2. Varying Connections Lengths
- 3. Connection Failures

2. **Ground Truth**

- GeoIP Location Errors
- 2. Assymetric Routes
- 3. Intransparent Transmission Characteristics

- 1. Maintaining Tor's Performance and Security
- 2. Using Reliable Information Sources

1. Network Diversity

- 1. Distribution of Relays
- 2. Varying Connections Lengths
- Connection Failures

2. Ground Truth

- 1. GeoIP Location Errors
- 2. Assymetric Routes
- 3. Intransparent Transmission Characteristics

- 1. Maintaining Tor's Performance and Security
- 2. Using Reliable Information Sources

Designing the Avoidance System

Prototype: TrilateraTor

Considering the challenges.

Considering the Challenges

Network Diversity: Timing Decisions

Upper Bound Decision

Empirical Timing Decisions

Upper Bound Decision

TrilateraTor

Hop Relations Table

Upper Bound Decision

TrilateraTor

Considering the Challenges

2

- Measuring relay positions
 - Send ICMP probes to relays
 - Use multiple reference points
 - Estimate position using trilateration

Considering the Challenges

Deployment: Timing Measurements

- Prior work: Probe the entire circuit
- Circuit is not checked at this point
- Two major issues:
 - Security: Reveals endpoint to adversary
 - Performance: Requires additional measurements

^{1.} D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring, and B. Bhattacharjee, "Alibi Routing," in Conference of the ACM Special Interest Group on Data Communication, SIGCOMM'15

^{2.} Z. Li, S. Herwig, and D. Levin, "DeTor: Provably Avoiding Geographic Regions in Tor," in USENIX Security Symposium, USENIX'17

Alternative: Handshake Timings

Secure Information Sources

3

- No additional measurements
- Delivers end-to-end timing of circuit
- Does not reveal connection endpoint

Technical Concept

Network Side

Client Side

Two Types of Measurements

Network Side

Distributed Measurements

Client Side

Circuit Evaluation

Circuit Measurement

Decision Data

Network Side

Distributed Measurements

Relay Verification (ICMP) Empirical Estimates (TCP)

Client Side

Circuit Evaluation

Circuit Measurement

Decision

End-to-End Timing of Circuit

$$R_{est} \longrightarrow R_{e2e} < R_{est}? \longrightarrow R_{e2e}$$

Experiments

Gathering empirical data, comparing approaches.

Metrics: How to measure what we achieved

- Restrictive avoidance decisions harm the network.
- 2. Static thresholds are not realistic.

- We measure:
 - What if...? Loss of bandwidth and circuits in different scenarios.
 - Time Ratio: Difference between the measured and the estimated time.

What if...?

What if Germany was forbidden area?

What if Germany was forbidden area?

Limit Performance Impairments

Conclusion

Lessons learned.

Challenges of Geographical Avoidance

3 Classes of Challenges

- 1. Network Diversity
- 2. Ground Truth
- 3. Deployment

Designing an Avoidance System

3 Classes of Challenges

- 1. Network Diversity
- 2. Ground Truth
- 3. Deployment

Main Features

- 1. Empirical Decisions
- 2. Verification of Locations
- 3. Secure Information

Prototype with Tradeoff

3 Classes of Challenges

- 1. Network Diversity
- 2. Ground Truth
- 3. Deployment

Main Features

- 1. Empirical Decisions
- 2. Verification of Locations
- 3. Secure Information

Evaluation

- Time Ratio for Decision Tradeoff
- 2. What-if Analysis

Thank You! Questions?

3 Classes of Challenges

- 1. Network Diversity
- 2. Ground Truth
- 3. Deployment

Main Features

- 1. Empirical Decisions
- 2. Verification of Locations
- 3. Secure Information

Evaluation

- Time Ratio for Decision Tradeoff
- 2. What-if Analysis

Appendix More information

1. Network Diversity: Connection Lengths

1. Network Diversity: Connection Lengths

1. Network Diversity: Connection Failures

2

- Measuring relay positions
 - Send ICMP probes to relays
 - Use multiple reference points
 - Estimate position using trilateration

Problem:

Which position is more precise?

Physical Proof

- Measuring relay positions
 - Send ICMP probes to relays
 - Use multiple reference points
 - Estimate position using trilateration

Speed of light proof

- 1. Measure RTT from server to relay
- 2. Compute upper bound threshold with c
 - Measured Speed ≤ Speed of light?
 - 2. Measured Speed > Speed of light?
- 3. Violation: Update GeoIP location with estimate

Comparison of Approaches

Prototype Simulation

Time Ratio

Decision Threshold

Handshake Overhead

Measurement Statistics

Stability of Results

Type	Iteration	Mean	Median	SD	Duration	#Results
TCP	1	287	288	158	5 days	223,070
	2	359	335	180	7 days	134,370
	3	327	295	185	8 days	275,509
ICMP	1	99	67	98	1 day	27,274
	2	56	18	77	1 day	62,643
	3	136	128	102	2 days	1,837,761

Measurement Overhead

- Approx. 2.8 Mio. daily Tor users, 121.5 Gbit/s average consumed bandwidth
- TrilateraTor consumes $6.24 * 10^{-7}\%$ of daily bandwidth and $4 * 10^{-4}\%$ of circuits

Experimental Setup

- 8 Server instances
- Hop Estimates R_{e2e} : 16,500 relay combinations
 - 1,945 Entries, 3,724 Middles, 893 Exits
- Circuit RTT R_{est} : 70,081 circuits, 275,509 measurements
 - 1,670 Entries, 2,712 Middles, 735 Exits (artificial circuits)
 - 135,924 reference circuits

