Parzen window

Парзеновское окно - случай алгоритма kNN взвешенных соседей, где вес определяется формулой:

 $w(i, u) = K\left(\frac{1}{h}\rho(u, x_u^{(i)})\right)$

, где ρ - расстояние, K(z) - функция ядра, невозрастающая на $[0;\infty)$. Сам алгоритм имеет вид:

$$a(u; X^l; h) = argmax_{y \in Y} \sum_{i:y(i)=y} K\left(\frac{\rho(u, x_u^{(i)})}{h}\right)$$

Оптимальное значение h находим по методу leave-one-out:

$$h = argmax_h \sum_{i=1}^{l} \log p_h (x_i; X^m / x_i)$$

Таблица функций ядер, которые были использованы в данном примере для Ирисов Фишера:

No	Ядро $K(u)$	формула
1	Епанечникова	$K(u) = \frac{3}{4}(1 - u^2)[u \le 1]$
2	Квартическое	$K(u) = \frac{15}{16}(1 - u^2)^2[u \le 1]$
3	Треуольное	$K(u) = (1 - u)[u \le 1]$
4	Гауссовское	$K(u) = (2\pi)^{\left(\frac{1}{2}\right)} \exp^{\left(-\frac{1}{2}u^2\right)}[u \le 1]$
5	Прямоугольное	$K(u) = \frac{1}{2}[u \le 1]$

Классификация ведется по 3 и 4 признакам ириса в датафрейме, т.е. по Petal.Length и Petal.Width.

Запишем результаты в таблицу:

$N_{\overline{0}}$	Ядро	Минимальное кол-во ошибок при LOO	Оптимальный выбор h
1	Епанечникова	6	0.5 и $[1, 1.6]$ с шагом 0.1
2	Квартическое	6	[0.5, 0.6] и $[1.2, 2]$
3	Треуольное	6	[0.5, 0.6] и $[1.1, 2.7]$
4	Гауссовское	6	[0.9, 1.1] и 1.4, 1.6
5	Прямоугольное	6	0.6 и 1

Представим графики зависимости h от кол-ва ошибок(красные точки - минимальное значение ошибки):

Для более точного нахождения h нужно брать шаг меньше, чем 0.1, хотя даже на этих графиках видно, начиная с какого шага точность резко падает.

Итоговая точность для всех ядер с наилучшим h из интервала [0.5, 5], шагом в 0.1 - 96%. Повысить точность можно, использовав все 4 признака Ирисов.

Парзеновское окно с переменной шириной теперь алгоритм будет иметь вид:

$$a(u; X^l; h) = argmax_{y \in Y} \sum_{i: y(i) = y} K\left(\frac{\rho(u, x_u^{(i)})}{\frac{u}{x_u^{(k+1)}}}\right)$$

Подбор k осуществляется так же LOO. Функции ядер будем использовать те же и использвать те же признаки из датасета. Полчуенный результат:

Nº	Ядро	Минимальное кол-во ошибок при LOO	Оптимальный выбор k
1	Епанечникова	2	k=4,5
2	Квартическое	2	k=4,5
3	Треуольное	2	k = 4, 5, 71
4	Гауссовское	2	k = 4, 5, 147
5	Прямоугольное	2	k = 147

Как видно, этот вариант окна дает результат лучше, чем предыдущий. Максимальная точно достикается при всех ядрах. Результаты одинаковы, т.к. в данном случае ядро не имеет особого значения, лучший выбор k указан в таблице. Лучшая точность - 99%