Adala

Final year project

Student: Hamad Almarri

SID: 200294236

Major: Software Systems Engineering

University of Regina

What is Adala

Adala is a software project that facilitate law enforcement processes (Police and Investigation) to let them manage and monitor different police cases. It will have also a database of people, cars, addresses, and properties, and It will support work-flow such as open/foreword cases to be a special cases for investigation purposes, which will include work-flow actions such as approve and deny processes.

Police cases can be incident/accident reports, or arrest reports.

Features

- Everything as an entry can be associated with anything else under a relation name (i.e. relate a person with suspicious car)
- Logging any changes on data
- Monitoring and reporting for police cases
- For new crime, giving suspect criminals
- Suggest names of youth in risk
- More

Classify the Criminal/s

Artificial Neural Network will be implemented so the software will be able to classify criminal/s based on the cases' inputs and by utilizing previous data the software will provide suggested criminal/s' attributes that are based on the results coming from Artificial Neural Network (ANN) model.

Crime Prevention

The software also should be able to apply crime prevention for youth at risk by collected and analyzing history data of a young person and the software will be able to classify that person if he/she has high probability of being a criminal in the future.

Story Boards

Thanks for Julien Popa-Liesz

Home

Create New Incident Report

Incident Report

Case Title:

Man has been killed in downtown

Description:

A man found dead late Sunday at a downtown parking garage was apparently assaulted at another location several hours earlier.

The still-unidentified body of a man in his late 20s to early 30s was spotted shortly before 11 p.m. Sunday.

He was pronounced dead at the scene from what appeared to be blunt force trauma to the head.

HPD homicide detectives haven't identified any witnesses or suspects in the slaying. But surveillance video in the area is providing some clues.

The man is seen on video running near the garage about 4:50 a.m. Sunday. They believe he ran into the garage where he then collapsed and died.

The man was wearing a turquoise-colored polo shirt, gray plaid shorts and black tennis shoes.

Create

List of new incident reports

Id	Incident Report	Control
01	Old incidenet report	Assign Investigation
02	Old incidenet report	Assign Investigation
03	Man has been killed in downtown	Assign Investigation

Assign Investigators

Id	Investigators	Control
01	Robert	Send Request
02	Tom	Send Request
03	Nick	Send Request

Investigator Page

Id	Incident Report	Control	Control
01	Old incidenet report	Accept	Reject
02	Old incidenet report	Accept	Reject
03	Man has been killed in downtown	Accept	Reject

Case Status

The case "Man has been killed in downtown" has been accepted by Robert

Close

Investigator Page

Create new Group

Group members

Robert Tom

Create Tasks

Id	Tasks	Assigned to
01	Collect DNA Samples	Tom
02	Do som interviews	Robert
03	Check city parking tickets	Robert

Case Visualization

Story Boards

Thanks for Julien Popa-Liesz

Suspect Persons

Id	Name	Probability	View Profile
01	Rich North	91%	<u>View</u>
02	Sam Lime	77%	View
03	Jastain Walton	53%	View

Story Boards

ANN model

Sigmoid Function

using
$$\sigma(\beta,t)=rac{1}{1+e^{-\beta t}}$$

For feeding forward

The Derivative of Sigmoid Function

$$\frac{d\sigma(t)}{dt} = \sigma(t)[1 - \sigma(t)]$$

For Back propagation

Feed Forward implementation

```
void feedForward {
    net = threshold
    for (inputEdge : inputEdges) {
        net += inputEdge.LeftNeuron.output * inputEdge.Weight
    output = Neuron.sigmoid(net)
double sigmoid(double net) {
    return 1 / (1 + Math.exp(-net))
```

Back Probagate For Output Layer

```
void backPropagate(...) {
for (int i = 0; i < this.numberOfNeurons; i++) {
   n = neurons[i]
   // update error
   n.setError(derivativeOfSigmoid(expectedOutputs[i], n.Output))
   // update delta threshold
   n. updateThreshold(learningRate, momentum)
   // update input edges weights
   for (Edge e : n.InputEdges)
       e. update Weight (learning Rate, momentum)
```

Devivative of Sigmoid implementation

```
double derivativeOfSigmoid(double expectedOutput, double output) {
    return (expectedOutput - output) * output * (1 - output)
}
```

Updating the threshold implementation

```
void updateThreshold(double learningRate, double momentum) {
    // update delta threshold
    deltaThreshold = learningRate * Error + momentum * PrevDeltaThreshold
    // update threshold
    threshold += deltaThreshold
}
```

Updating Weights implementation

```
updateWeight(learningRate lr, momentum m) {
    // update delta weight
    DeltaWeight = lr * rightNeuron.Error * leftNeuron.Output + (m * PrevDeltaWeight)
    // update weight
    weight += DeltaWeight
}
```

Crime Scene Attributes

- foreignObjectPenetration
- faceNotDeliberatelyHidden
- victimWasBlindfolded
- woundsCausedByBluntInstrument
- Suffocation
- vaginalPenetration
- analPenetration
- faceUp
- victimPartiallyUndressed
- victimNaked
- deliberateClothingDamaged
- bound
- stabbingInjuries

- manuallnjuries
- gunshotWounds
- woundsToTheHead
- WoundsToTheFace
- woundsToTheNeck
- woundsToTheTorso
- woundsToTheLimbs
- multipleWoundsToOneBodyArea
- multipleWoundsDistributedAcross
 DifferentBodyParts
- weaponBroughtToScene
- weaponFromTheScene
- identifiablePropertyStolen
- nonidentifiablePropertyStolen
- valuablePropertyStolen
- bodyHidden // (outside)

- bodyTransported
- offenderForensicallyAware
- VictimFoundAtTheSameScene WhereTheyWereKilled
- sexualCrime
- arsonToCrimeSceneOrBody
- victimFoundInWater
- victimDruggedAndOrPoisoned
- victimCovered

36 total

Offender Profile Attributes

- youngOffenderBetween17And21Years
- criminalRecordOfTheft
- criminalRecordOfFraud
- criminalRecordOfBurglary
- relationshipWithVictim
- unemployedAtTheTimeOfOffense
- male
- familiarWithAreaOfOffenseOccurrence
- criminalRecordOfViolence
- criminalRecordOfCommittingDamage
- criminalRecordOfDisorderlyConduct
- recordOfImprisonment

- sexualRelatedCriminalRecord
- armedServices PastOrPresent
- knewVictim
- historyOfAbusivenessInPastRelationships
- attemptsOfSuicide
- psychiatricDisorders
- relatedToVictim
- bloodRelativeToVictim
- turnedSelfIntoPolice

21 total

- Based on the results in "Bayesian Network Modeling of Offender Behavior for Criminal Profiling" paper
- Abstract —A Bayesian network (BN) model of criminal behavior is obtained linking the action of an offender on the scene of the crime to his or her psychological profile. Structural and parameter learning algorithms are employed to discover inherent relationships that are embedded in a database containing crime scene and offender characteristics from homicide cases solved by the British police from the 1970s to the early 1990s

Fig. 3. A slice from the actual full BN structure that is learned from data by the K2' algorithm (CPTs are not shown for simplicity).

relations among the input variables. The modified K2' algorithm is faster, more effective, and requires fewer number of training cases for learning a BN from data for the purpose of predicting a criminal profile. This paper shows that additional conditional independence relationships can be effectively incorporated into the learning procedure to increase the final model performance. Inhibiting nodal connections systematically decreases the search space and is shown to improve the model performance considerably. Most importantly, the K2' requires a smaller sample of training cases than the K2 algorithm, which may otherwise lead to ZMP predications. This attribute is particularly useful in applications where

TABLE III DEFINITION OF THE CRIME SCENE VARIABLES.

Variable	Definition					
X_1^I :	Vaginal penetration					
X_2^I :	Anal penetration					
X_3^I :	Foreign object penetration					
X_4^I :	Victim found face up					
X_5^I :	Victim's face not deliberately hidden					
X_6^I :	Victim partially undressed					
X_7^I :	Victim naked					
X_8^I :	Clothing damage					
X_9^I :	Bound (at one point)					
X_{10}^{I} :	Blindfolded (at one point)					
X_{11}^{I} :	Stabbed					
X_{12}^{I} : Blunt instrument						
X ₁₃ : Manual method (e.g. strangulation						
X_{14}^{I} :	Shot					
X_{15}^{I} :	Wounds to head					
X_{16}^{I} :	Wounds to face					
X_{17}^{I} :	Wounds to neck					
X_{18}^{I} :	Wounds to torso					
X_{19}^{I} :	Wounds to limbs					
X_{∞}^{I} :	Multiple wounds to one area of body					

Variable	Definition	Arcs (children)
X_1^O :	Prior theft	$X_2^O, X_8^O, X_{21}^O, X_{10}^I, X_{24}^I, X_{25}^I$
X_2^O :	Prior burglary	$X_3^O, X_4^O, X_6^O, X_9^O, X_{12}^O, X_{26}^I$
X_3^O :	Prior violence	X_4^O, X_8^I, X_{12}^I
X_4^O :	Prior damage	X_5^O, X_{20}^O
X_5^O :	Prior disorder	_
X_6^O :	Prison	X_9^O, X_{12}^O, X_3^I
X_7^O :	Young offender be- tween 17-21 years	$X_{10}^O, X_{17}^O, X_2^I, X_3^I, X_9^I$
X_8^O :	Unemployed at the time of offense	$X_{11}^O, X_{14}^I, X_{32}^I$
X_9^O :	History of sex crime	X_{13}^{O}
X_{10}^O :	Armed service	_
X_{11}^O :	Familiar with area of offense occurrence	_
X_{12}^O :	Male	$X_{5}^{I}, X_{12}^{I}, X_{31}^{I}, X_{35}^{I}, X_{36}^{I}$
X_{13}^O :	Knew victim	X_{15}^O , X_{19}^O , X_{20}^O , X_{17}^I , X_{28}^I , X_{30}^I
X_{14}^{O} :	History of abuse	di sonnecte d
X_{15}^{O} :	Suicide (attempted after crime)	X_{16}^{O}, X_{21}^{I}
X_{16}^O :	Psychiatric or social problems	X_{28}^{I}, X_{34}^{I}
X_{17}^{O} :	Prior fraud	$X_{19}^{O}, X_{14}^{I}, X_{33}^{I}$
X_{18}^O :	Related to victim	$X_{6}^{I}, X_{11}^{I}, X_{19}^{I}, X_{21}^{I}, X_{24}^{I}$
X_{19}^O :	Relationship with victim	$X_{20}^{O}, X_{10}^{I}, X_{35}^{O}$
X_{20}^{O} :	Blood related to vic- tim	X_{32}^I
X_{21}^O :	Turned themselves in	$ \begin{array}{c} X_1^I, \ X_4^I, \ X_6^I, \ X_{24}^I, \\ X_{29}^I, \ X_{31}^I, \ X_{33}^I \end{array} $

- Violence, vol. 18, no. 5, pp. 490–512, 2003.
- [9] C. Salfati and L. Kucharski, The Psychology of Cr In J. Trevino and S. Fuarino (Eds.), The common submulti-disciplinary approach. Anderson Publishing, Ir
- [10] F. Jensen, Bayesian Networks and Decision Graphs. 2001.
- [11] D. Heckerman, "A bayesian approach to learning of Technical Report MSR-TR-95-04, pp. 1-23, May 199
- [12] G. Cooper and E. Herskovits, "A bayesian method for of probabilistic networks from data," *Machine Learn* 309–347, 1992.
- [13] S. Ferrari and A. Vaghi, "Sensor modeling and feature bayesian networks," *Journal of smart Structures and* no. 1, pp. 1–9, November 2004.
- [14] R. Cowell, "Advanced inference in bayesian network in Graphical Models, M. Jordan, Ed., 1998, pp. 27–5
- [15] C. Salfati, "Greek homocide, a behavioral examinat crime-scene actions," *Homicides Studies*, vol. 5, no. November 2001.
- [16] C. Salfati and F. Dupont, "Canadian homicide: An crime scene actions," *Homicide Studies*, In Press for
- [17] D. Heckerman, D. Geiger, and D. Chickering, "Learning works: The combination of knowledge and statistical *Learning*, vol. 20, pp. 197–243, 1995.
- [18] R. Robinson, Counting unlabeled acyclic digraphs. tle(Ed.) Lecture notes mathematics, 622: Combinator V. Springer-Verlag, 1977.
- [19] D. Heckerman, "A tutorial on learning with bayesia Learning in Graphical Models, M. Jordan, Ed., 1998
- [20] K. Murphy, How To Use Bayes Net Toolbox. [On http://www.ai.mit.edu/murphyk/Software/BNT/bnt.htm

- Picked random number from 1 to 21 to pick on offender profile attribute
- Based on the archs make all children to true (either offender profile or crime scene attributes)
- Save offender profile and crime scene entities in the database with relationship one to one

ANN model for Crime Scene and Offender Profile

n = 36

Learning rate = 0.52

momentum = 0.15

n = 24

of Passes = 50,000

n = 21

Youth in Risk Attributes

Individual factors

- pregnancyAndDeliveryComplications
- lowRestingHeartRate
- internalizing Disorders
- hyperactivityConcentrationProblems_Restlessn ess_RiskTaking
- aggressiveness
- earlyInitiationOfViolentBehavior
- involvementInOtherFormsOfAntisocialBehavior
- beliefs_AttitudesFavorableToDeviantOrAntisoci alBehavior

School factors

- academicFailure
- lowBondingToSchool
- truancyAndDroppingOutOfSchool
- frequentSchoolTransitions

Family factors

- parentalCriminality
- childMaltreatment
- poorFamilyManagementPractices
- lowLevelsOfParentalInvolvement
- poorFamilyBondingAndFamilyConflict
- parentalAttitudesFavorableToSubstanceUseAnd Violence
- parentchildSeparation

Peer-related factors

- delinguentSiblings
- delinquentPeers
- gangMembership

27 total

Peer-related factors

- poverty
- communityDisorganization
- availabilityOfDrugsAndFirearms
- neighborhoodAdultsInvolvedIn Crime
- exposureToViolenceAndRacial
 Prejudice

http://www.crim.cam.ac.uk/people/academic_research/david_farrington/predviol.pdf

Crime Types

- Murder
- Theft
- Fraud
- Burglary
- Violence
- Committing Damage
- Disorderly Conduct

ANN model for Youth in Risk

n = 27 Learning rate = 0.52 momentum = 0.15 n = 18

n = 7

of Passes = 50,000

ANN UML

Thanks for

- Anthony J. Papagelis & Dong Soo Kim
- http://www.cse.unsw.edu.au/~cs9417ml/MLP2/

Development Info

- Scrum (incremental agile software development, on targateprocess.com)
- Git repository (on bitbucket.org)
- J2EE (JSF + Primefaces)
- Bootstrap & jQuery for interactive UI
- Glassfish as webserver
- EclipseLink for JPA
- Mysql (database)
- AWS -> EC2 -> CentOS (Host)
- Eclipse IDE

Statistics

- User Stories
 - Must Have: 22 (20 are done)
 - Great: 13 (2 are done)
 - Good: 6 (0 done)
 - Average: 1 (0 done)
 - Nice To Have: 4 (**0** is done)
- The time effort done from 12Aug2014 till Now is 186 hours
- 20,951 lines of *.java files
- 8,497 lines of *.xhtml files
- 2,202 lines of *.xml files
- Total: 31,650 Lines of Code (not Auto Generated code)

Milestones

+ -	☐ ID 章	Name		Project	Start Da	ite	End Date	S	prints	Effort	Progre	ess Tags
-	433	Release #3		FIN	01-Jan	-2015	14-Mar-2015		6	240 h	0%	
		Name	Velocity		Start Date		End Date			Effort		Progress
		Sprint#3.1	0 h		03-Jan-201	5	16-Jan-201	15		240 h		0%
		Sprint#3.2	0 h		17-Jan-201	5	30-Jan-201	15		0 h		0%
		Sprint#3.3	0 h		31-Jan-201	5	13-Feb-201	15		0 h		0%
		Sprint#3.4	0 h		14-Feb-201	5	27-Feb-201	15		0 h		0%
		Sprint#3.5	0 h		28-Feb-201	5	13-Mar-201	15		0 h		0%
		Sprint#3.6	0 h		14-Mar-201	5	24-Mar-201	15		0 h		0%
-	_ 415	Release #2 (current)		FIN	01-Oct-	2014	31-Dec-2014		7	273 h	~16%	
		Name			Velocity	Start Date		End Date			Effort	Progress
		Sprint #2.1 (current)			0 h	04-Oct-2014		17-Oct-2014	1		80 h	~55%
		Sprint#2.2			0 h	18-Oct-2014		31-Oct-2014	1		0 h	0%
		Sprint#2.3			0 h	01-Nov-2014	1	14-Nov-201	4		5 h	0%
		Sprint#2.4			0 h	15-Nov-2014	1	28-Nov-201	4		60 h	0%
		Sprint#2.5			0 h	29-Nov-2014	1	12-Dec-201	4		24 h	0%
		Sprint#2.6			0 h	13-Dec-2014	1	26-Dec-201	4		89 h	0%
		Sprint#2.7			0 h	27-Dec-2014	1	31-Dec-201	4		15 h	0%
-	_ 403	Release #1		FIN	12-Aug	-2014	31-Aug-2014		2	41 h	100%	
		Name	Velocity		Start Date		End Date			Effort		Progress
		Sprint #1.1	0.8 h		12-Aug-20	14	21-Aug-2	2014		29 h		100%
		Sprint #1.2	0 h		22-Aug-20	14	31-Aug-2	2014		12 h		100%

Screen Shoots

Sprint#2.1 Burn Down

Core functionality UML

UML for permissions

Screen Shoots

Profile

Home > Supervisor page

Master Indeces

Persons

Organizations

Conveyances

Addresses

Locations

Property

Management

Permissions

Admin Login

View Youth in Risk

Permits and Reports

Arrest Reportss

Incident Reports

Department

Arrest Reportss

Incident Reports

Field Interviews

Activities

Monitoring

Monitoring

Show City Map

History Log

Uploaded Files

Relations

Investigation

Investigative Cases

Field Interviews

Activities

Crimes Records

Investigative Groups

Suspects List

Crime Scenes

Offender Profiles

Profile

Home > Persons

Persons List

Add Person

Name	Data of birth	Birth place	Gender	Citizenship	Race	Controls
Hamad Almarri	July 23 1984	Al Hasa	M	Saudi	Saudi Arabian	view / edit
Mohammad Almarri	July 19 1991	Al Khobar	M	Saudi	Saudi Arabian	view / edit
Yara Scott	February 2 1989	Beirut	F	Libanies	Arabian	view / edit

« Prev 1 2 3 ... 8 9 10 Next »

Wireframes for adding new person

What I have learned from this project in terms of Software Engineering

- Start with User-Driven development very early even if no real customer
- Don't depend and postpone the work for holiday and weekends

Questions

