

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Funcional

Ejercicio 2 Sea E un espacio vectorial, $g, f_1, f_2, \ldots, f_k, (k+1)$ funcionales lineales sobre E tales que

$$\langle f_i, x \rangle = 0 \quad \forall i = 1, \dots, k \Longrightarrow \langle g, x \rangle = 0$$

Muestre que existen constantes $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tales que $g = \sum_{i=1}^k \lambda_i f_i$. Es decir, g es combinación lineal de los f_i .

Demostración. Consideremos la función

$$\begin{split} H:&E\to\mathbb{R}^{k+1}\\ x\mapsto (g(x),f_1(x),\ldots,f_k(x)). \end{split}$$

Si R(H) es el rango de la función H, sabemos que es un subespacio de \mathbb{R}^{k+1} , además como este es de dimensión finita y normado, R(H) es cerrado, es decir $\overline{R(H)} = R(H)$. Luego, observe que $x_0 = (1,0,\ldots,0) \in \mathbb{R}^{k+1} \setminus R(H)$, ya que en caso contrario $(1,0,\ldots,0) = (g(x),f_1(x),\ldots,f_k(x))$ para algún $x \in E$, pero esto implica que $f_i(x) = 0$ para cada $i = 1,\ldots,k$ y g(x) = 1, pero por la hipótesis g(x) = 0, una contradicción. Así, si consideramos los conjuntos R(H) y $\{x_0\}$, como ambos son no vacíos, convexos, disjuntos, el primero es cerrado y el segundo compacto, por la segunda forma geométrica de Hahn-Banach existe $f \in (\mathbb{R}^{k+1})^*$ tal que $f(x_0) \neq 0$ y f(y) = 0 para todo $y \in R(H)$.

Como los funcionales de \mathbb{R}^{k+1} se identifican con el producto interno usual por un vector, sabemos que existe $\beta=(\beta_0,\beta_1,\ldots,\beta_k)\in\mathbb{R}^{k+1}$ tal que $f(y)=\langle\beta,y\rangle$ donde $y\in\mathbb{R}^{k+1}$. Note que si $y=x_0$ tenemos que $\langle\beta,x_0\rangle\neq 0$, por ser el producto interno usual esto implica que $\beta_0\neq 0$. Ahora, si $y\in R(H)$, es de la forma $y=(g(x),f_1(x),\ldots,f_k(x))$, para algún $x\in E$. Luego $\langle\beta,y\rangle=0$, pero por definición de producto interno esto es

$$\beta_0 g(x) + \sum_{i=1}^k \beta_i f_i(x) = 0,$$

como $\beta_0 \neq 0$ podemos despejar g(x), tal que

$$g(x) = \sum_{i=1}^{\kappa} \left(-\frac{\beta_i}{\beta_0} \right) f_i(x).$$

Así como para cada $x \in E$, hay un y como el anterior, si tomamos $\lambda_i = -\frac{\beta_i}{\beta_0} \in \mathbb{R}$, obtenemos

que

$$g = \sum_{i=1}^k \lambda_i f_i.$$

 $\Omega^{\hat{}}\Omega$

Ejercicio 9 Sea E un espacio de Banach de dimensión infinita. Muestre que cada vecindad débil * del origen de E* no es acotada.

Demostración. Sea V una vecindad débil \star de 0 en E * . Por definición de la topología $\sigma(E^{\star}, E)$, podemos expresar V como

$$V = \{f \in E^* : |\langle f, x_i \rangle| < \varepsilon_i \text{ para } j = 1, \dots, n\},\$$

donde $x_1, \ldots, x_n \in E$ y $\varepsilon_1, \ldots, \varepsilon_n > 0$. Tomemos a $F = span\{x_1, \ldots, x_n\}$ el cual es un subespacio de E. Como F es de dimensión finita, es cerrado en E, es decir, $F = \overline{F}$. Dado que E es de dimensión infinita y F es de dimensión finita, existe $x_0 \in E \setminus F$. Aplicando el Teorema de Hahn-Banach en su forma geométrica, existe un funcional lineal no nulo $f \in E^*$ tal que

$$f(x_i) = 0$$
 para todo $j = 1, ..., n$,

pero $f(x_0) \neq 0$. Para cualquier $\lambda \in \mathbb{R}$, el funcional λf satisface que,

$$(\lambda f)(x_i) = \lambda f(x_i) = 0$$
 para todo $j = 1, ..., n$.

Como $|\langle \lambda f, x_j \rangle| = 0 < \varepsilon_j$ para todo j, se cumple que $\lambda f \in V$ para todo $\lambda \in \mathbb{R}$, por lo que $\{\lambda f : \lambda \in \mathbb{R}\} \subset V$. La norma de λf cumple que,

$$\|\lambda f\| = |\lambda| \cdot \|f\|$$
.

Como f es no nula, entonces ||f|| > 0 y cuando $|\lambda| \to \infty$, se tiene $||\lambda f|| \to \infty$. Por lo tanto, V contiene elementos de norma arbitrariamente grandes y, por lo cual, no es acotada.

Ejercicio 11 Sea K un espacio métrico compacto que no es finito. Demuestre que C(K) (con la norma del supremo $\|\cdot\|_{L^{\infty}}$) no es reflexivo.

Demostración. Dado que K es compacto e infinito, necesariamente contiene un punto de acumulación. Sea $\alpha \in K$ uno de ellos, y sea (α_n) una sucesión de puntos distintos en K tal que

$$a_n \to a,$$
 $a_n \neq a$ para todo $n.$

Tal sucesión puede construirse eligiendo, para cada n, un punto $a_n \in K$ distinto de a tal que

$$d(\alpha_n,\alpha)<\frac{1}{n},$$

lo cual es posible ya que todo entorno de a contiene infinitos puntos de K distintos de a. A partir de esta sucesión, para cada $n \in \mathbb{N}$, construiremos una función $g_n \in C(K)$ tal que $g_n(a_m) = 1$ si $1 \le m \le n$, $g_n(a_m) = 0$ si m > n, y $g_n(a) = 0$. Esto se puede lograr

utilizando el teorema de Tietze–Urysohn–Brouwer, como K es métrico, K es un espacio normal, y los conjuntos finitos $\{a_1,\ldots,a_n\}$ y $\{a_{n+1},a_{n+2},\ldots\}\cup\{a\}$ son disyuntos y cerrados. Así, existe una función continua $g_n:K\to[0,1]$ tal que,

$$g_n(\alpha_m) = 1$$
 si $1 \le m \le n$,
 $g_n(\alpha_m) = 0$ si $m > n$,
 $g_n(\alpha) = 0$.

Además, $\|g_n\|_{\infty} = 1$ para todo n.

Como C(K) es un espacio de Banach y la sucesión (g_n) está acotada, tiene una subsucesión débilmente convergente (g_{n_k}) , es decir, existe $g \in C(K)$ tal que $g_{n_k} \rightharpoonup g$ débilmente. Entonces, para todo funcional lineal continuo $\varphi \in C(K)^*$ se cumple que

$$\phi(g_{n_k}) \to \phi(g)$$
.

En particular, esto se aplica a los funcionales de evaluación $\pi_x(f) := f(x)$ para cada $x \in K$, los cuales pertenecen a $C(K)^*$. Por tanto, para cada $x \in K$,

$$g_{n_k}(x) \to g(x)$$
.

Para cada $m \in \mathbb{N}$ fijo, existe k_0 tal que $n_k \ge m$ para todo $k \ge k_0$. Entonces, por la definición de g_{n_k} ,

$$g_{n_k}(a_m) = 1$$
 para todo $k \ge k_0$,

lo que implica que

$$g(\alpha_{\mathfrak{m}})=\lim_{k\to\infty}g_{\mathfrak{n}_k}(\alpha_{\mathfrak{m}})=1.$$

Como $a_n \rightarrow a$ y g es continua, se sigue que

$$g(\alpha) = \lim_{m \to \infty} g(\alpha_m) = 1$$
.

Sin embargo, por construcción $g_{n_k}(a) = 0$ para todo k, y por tanto,

$$g(\alpha) = \lim_{k \to \infty} g_{n_k}(\alpha) = 0,$$

lo cual es una contradicción. Esto prueba que la sucesión (g_n) no tiene ninguna subsucesión débilmente convergente.

En consecuencia, como encontramos una sucesión acotada en C(K) que no posee ninguna subsucesión débilmente convergente, C(K) no es reflexivo.

Ejercicio 15 Sea E un espacio de Banach reflexivo. Sea $\alpha: E \times E \to \mathbb{R}$ una forma bilineal que es continua, es decir, existe M > 0 tal que $|\alpha(x,y)| \le M||x|| ||y||$, para todo $x,y \in E$. Asuma que a es coerciva, esto es, existe $\alpha > 0$ tal que para todo $x \in E$

$$a(x, x) \ge \alpha ||x||^2$$

(a) Dado $x \in E$, defina $A_x(y) = \alpha(x, y)$, para todo $y \in E$. Muestre que $A_x \in E^*$, para cada $x \in E$. Además, concluya que la función $x \mapsto A(x) = A_x$ satisface $A \in \mathcal{L}(E, E^*)$.

Demostración. Para ver que $A_x \in E^*$ tenemos que ver que sea lineal y acotada. Sean $y_1, y_2 \in E$ y $\lambda \in \mathbb{R}$, tenemos que

$$\begin{split} A_x(y_1 + \lambda y_2) &= \alpha(x, y_1 + \lambda y_2) \\ &= \alpha(x, y_1) + \lambda \alpha(x, y_2) \\ &= A_x(y_1) + \lambda A_x(y_2). \end{split}$$

Note que esto se sigue del hecho de que a es bilineal, por lo que es lineal en la segunda componente. Ahora note que por la continuidad de a tenemos que

$$|A_x(y)| = |a(x, y)|$$

 $\leq M||x|| ||y||$
 $= M_1 ||y||.$

Como para cada $x \in E$ se define el A_x , en cada operador ||x|| es un número, por lo que es correcto tomar $M_1 = M||x|| > 0$ para cada A_x , así tenemos que $A_x \in E^*$.

Ahora queremos ver que la función

$$A: E \to E^*$$
$$x \mapsto A(x) = A_x$$

pertenece a $\mathcal{L}(E,E^*)$. Claramente esta función está bien definida ya que $A_x \in E^*$. Luego nuevamente tenemos que ver que es lineal y acotada, para la linealidad, sean $x_1,x_2 \in E$ y $\lambda \in \mathbb{R}$, luego para $y \in E$

$$A_{x_1+\lambda x_2}(y) = a(x_1 + \lambda x_2, y)$$

= $a(x_1, y) + \lambda a(x_2, y)$
= $A_{x_1}(y) + \lambda A_{x_2}(y)$.

Nuevamente esto se tiene del hecho de que α es bilineal. Por lo que $A_{x_1+\lambda x_2}=A_{x_1}+\lambda A_{x_2}$ pero esto es $A(x_1+\lambda x_2)=A(x_1)+\lambda A(x_2)$, obteniendo así que A es lineal. Ahora veamos que A está acotada

$$\begin{split} \|A(x)\| &= \|A_x\| \\ &= \sup_{\substack{y \in E \\ \|y\| \le 1}} |A_x(y)| \\ &= \sup_{\substack{y \in E \\ \|y\| \le 1}} |a(x,y)| \\ &\leq \sup_{\substack{y \in E \\ \|y\| \le 1}} M\|x\|\|y\| \\ &= M\|x\| \sup_{\substack{y \in E \\ \|y\| \le 1}} \|y\| \\ &\leq M\|x\|. \end{split}$$

 $\Omega^{\hat{}}\Omega$

(b) Muestre que A como en (a) es una función sobreyectiva.

Demostración. Primero veamos que la desigualdad $||A_x|| \ge \alpha ||x||$ se tiene para todo $x \in E$, es claro que cuando x = 0 la desigualdad es cierta ya que ||x|| = 0. Ahora si $x \ne 0$ tenemos que

$$\begin{aligned} \|A_x\| &= \sup_{\substack{y \in E \\ y \neq 0}} \frac{|A_x(y)|}{\|y\|} \\ &\geq \frac{|A_x(x)|}{\|x\|} \\ &= \frac{|a(x,x)|}{\|x\|} \\ &\geq \frac{\alpha \|x\|^2}{\|x\|} \\ &= \alpha \|x\|. \end{aligned}$$

Ahora con ayuda de esta desigualdad probemos que R(A) es cerrado. Sea $f \in \overline{R(A)}$, luego existe una sucesión $\{A_{x_n}\}_{n\in\mathbb{N}}\subseteq R(A)$ tales que $A_{x_n}\to f$, note que tomamos la sucesión de esa forma ya que son elementos del rango de la aplicación A. Como esta aplicación es lineal y por la desigualdad anterior tenemos que

$$||A_{x_n} - A_{x_m}|| = ||A_{x_n - x_m}||$$

 $\ge \alpha ||x_n - x_m||.$

Así, $\|x_n - x_m\| \le \frac{1}{\alpha} \|A_{x_n} - A_{x_m}\|$, como $\{A_{x_n}\}$ es convergente y estamos en un espacio normado, esta secuencia es Cauchy. Dado $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que si $n, m \ge M$, $\|A_{x_n} - A_{x_m}\| < \varepsilon$, esto implica que $\|x_n - x_m\| < \frac{\varepsilon}{\alpha}$. Así la sucesión $\{x_n\}$ es Cauchy en E, pero este espacio es Banach, por lo que $x_n \to x \in E$. Luego podemos considerar la función $A(x) = A_x$. Note que

$$||A_{x} - f|| = ||A_{x} - A_{x_{n}} + A_{x_{n}} - f||$$

$$\leq ||A_{x} - A_{x_{n}}|| + ||A_{x_{n}} - f||$$

$$= ||A_{x-x_{n}}|| + ||A_{x_{n}} - f||$$

$$\leq ||A|| ||x - x_{n}|| + ||A_{x_{n}} - f||,$$

por lo que cuando $n \to \infty$ tenemos por la convergencia que $\|x - x_n\| \to 0$ y $\|A_{x_n} - f\| \to 0$. Concluyendo así que $A_x = f$, por lo que $f \in R(A)$, mostrando que el rango de la aplicación A es cerrado.

Ahora veamos por contradicción que la función es sobreyectiva. Como $R(A) = \overline{R(A)}$, si no es sobreyectiva, $\overline{R(A)} \neq E^*$, luego por Hahn-Banach existe $f \in E^{**}$ tal que $f \not\equiv 0$ y

 $f|_{R(A)} = 0$. Esto quiere decir que para cualquier $A_x \in R(A)$, con $x \in E$, tenemos que

$$\langle f, A_x \rangle = 0.$$

Pero como E es reflexivo sabemos que la aplicación canónica $J: E \to E^{**}$ es sobreyectiva, como $f \in E^{**}$, existe un $x_0 \in E$, tal que $f = J_{x_0}$. Luego

$$0 = \langle f, A_x \rangle$$

$$= \langle J_{x_0}, A_x \rangle$$

$$= \langle A_x, x_0 \rangle$$

$$= \alpha(x, x_0).$$

Por lo que si tomamos $x = x_0$, como a es coerciva tenemos que $0 = \alpha(x_0, x_0) \ge \alpha ||x_0||^2$. de eso concluimos que $x_0 = 0$, pero esto implicaría que $f = J_{x_0} = J_0 = 0$, una contradicción ya que f era no nulo. Así concluimos que f era no nulo. Así concluimos que f era no nulo. Así concluimos que f era no nulo. O $\overline{R(A)} = \overline{R(A)} = \overline{$

(c) Deduzca que para cada $f \in E^*$, existe un único $x \in E$ tal que $a(x,y) = \langle f,y \rangle$, $\forall y \in E$. Esto es, la forma bilineal coerciva a representa todo funcional lineal continuo.

Demostración. Tomemos $f \in E^*$, por (b), como A es sobreyectiva, existe $x_1 \in E$ tal que $A(x_1) = A_{x_1} = f$, es decir que para todo $y \in E$, $\alpha(x_1, y) = A_{x_1}(y) = f(y)$. Si no existe otro además de x_1 hemos acabado. En caso contrario, suponga que existe un $x_2 \in E$ tal que $\alpha(x_2, y) = f(y)$ para todo y, luego como α es bilineal

$$0 = f(y) - f(y)$$

= $a(x_1, y) - a(x_2, y)$
= $a(x_1 - x_2, y)$.

Como es para todo $y \in E$, si tomamos $y = x_1 - x_2$, tenemos que $a(x_1 - x_2, x_1 - x_2) = 0$, pero como a es coerciva, existe a > 0 tal que

$$0 = \alpha(x_1 - x_2, x_1 - x_2) \ge \alpha \|x_1 - x_2\|^2.$$

Así tenemos que $||x_1 - x_2||^2 = 0$. Por lo que $x_1 - x_2 = 0$, así $x_1 = x_2$, concluyendo así la unicidad.

Ejercicio 18 Sea E un espacio de Banach

(a) Demuestre que existe un espacio topológico compacto K y una isometría de E en $(C(K), \|\cdot\|_{\infty})$.

Demostración. Considere el conjunto $K = \mathcal{B}_{E^*} = \{f \in E^* : ||f||_{E^*} \le 1\}$. Luego K es un espacio topológico compacto en la topología débil*. Definamos la función

$$\mathsf{T} \colon (\mathsf{E}, \|\cdot\|_{\mathsf{E}}) \to (\mathsf{C}(\mathsf{K}), \|\cdot\|_{\infty})$$

donde $x \mapsto Tx : \mathcal{B}_{E^*} \to \mathbb{R}$ y $f \mapsto (Tx)(f) = f(x) = J_x(f)$, por definición de las funciones

 J_x sabemos que Tx es continua en la topología débil \star , ahora veamos que T es lineal, sean $x,y\in E$ y $\alpha,\beta\in \mathbb{R}$, entonces,

$$\mathsf{T}(\alpha x + \beta y)(\mathsf{f}) = \langle \mathsf{f}, \alpha x + \beta y \rangle = \alpha \langle \mathsf{f}, x \rangle + \beta \langle \mathsf{f}, y \rangle = \alpha(\mathsf{T}(x)(\mathsf{f})) + \beta(\mathsf{T}(y)(\mathsf{f})).$$

Por último, veamos que T es una isometría.

$$||T(x)||_{\infty} = \sup_{f \in K} |T(x)(f)| = \sup_{\substack{f \in E^* \\ ||f||_{F^*} \le 1}} |\langle f, x \rangle| \le ||x||,$$

como T es lineal, acotada tenemos que T es continua. Además, por un corolario de la forma analítica de Hahn-Banach, tenemos que para cada $x \in E$ existe $f \in E^*$ tal que

$$\langle f, x \rangle = ||x||, \quad \text{con } ||f|| = 1,$$

por lo que tenemos $\|T(x)\|_{\infty} = \|x\|$, así T es isometría.

(b) Asuma que E es separable. Entonces muestre que existe una isometría de E en l^{∞} (vea el Ejercicio 14 para la definición del espacio).

Demostración. Como E es separable, la bola unitaria es cerrada $K = B_{E^*}$ del dual E^* es compacta y metrizable en la topología débil \star por el Teorema de Banach-Alaoglu y la separabilidad de E. Además, sabemos que todo espacio métrico compacto es segundocontable y, por tanto, separable. Así, existe un subconjunto denso numerable $\{f_n\}_{n=1}^{\infty} \subseteq K$.

Definamos

$$T: E \to \ell^\infty, \quad x \mapsto T(x) := \{f_n(x)\}_{n=1}^\infty.$$

Veamos que T está bien definido, como $\|f_n\| \le 1$ para todo $n \in \mathbb{N}$, tomando un x fijo, tenemos que

$$\sup_{n\in\mathbb{N}}|f_n(x)|\leq \|x\|\sup_{n\in\mathbb{N}}\|f_n\|\leq M\|x\|\quad \text{donde }M\in\mathbb{R}, M\geq 1.$$

Ahora veamos que T es lineal. Sean $x, y \in E$, $y \alpha, \beta \in \mathbb{R}$

$$T(\alpha x + \beta y) = \{f_n(\alpha x + \beta y)\} = \alpha \{f_n(x)\} + \beta \{f_n(y)\},\$$

luego T es lineal. Por lo que T es continua ya que es lineal y acotada. Ahora, sólo nos falta ver que T es una isometría, por el corolario de Hahn-Banach en forma analítica, existe $f \in K \subseteq E^*$ tal que $|f(x)| = \|x\|$, al ser f_n denso en K, existe una subsucesión $\{f_{n_k}\}$ tal que $f_{n_k} \to f$ en $\sigma(E^*, E)$, y en particular $f_{n_k}(x) \to f(x)$, así,

$$|f(x)|=\limsup_{k\to\infty}|f_{\mathfrak{n}_k}(x)|\leq \sup_{\mathfrak{n}\in\mathbb{N}}|f_{\mathfrak{n}}(x)|=\|\mathsf{T}(x)\|_{\infty}\leq \|x\|.$$

Con lo que

$$\|\mathsf{T}(\mathsf{x})\|_{\infty} = \|\mathsf{x}\|,$$

concluyendo así que $T(x)$ es una isometría.	