Introduction to computational thinking and programming for CFD (13251)

Dr. rer. nat. Marten Klein

Chair of Numerical Fluid and Gas Dynamics, BTU Cottbus-Senftenberg

Sheet 2

Goals

- Taylor series
- Functions, recursion
- Loops, branches
- Increment operator
- Algorithm for the sum

Tasks

- 1. Algorithm for the sum.
 - (a) Develop and implement an algorithm that computes the following sum:

$$\sum_{n=0}^{N} n \cdot d \quad \text{for} \quad N = 100, \quad d = 2.0 \cdot 10^{-4}.$$

- (b) Compare the result with Gauss' product $0.5 \cdot d \cdot N \cdot (N+1)$.
- (c) Print out repr(x) for the result of case (a) and (b), respectively. Are there differences? Why or why not?
- 2. What is the definition of the Taylor series of a function f(x) around a point x_0 ?
- 3. We consider the function $f(x) = \exp(-2x 1)$ over the interval $x \in [-1, 4]$.
 - (a) Expand the Taylor series $T_N(x; x_0)$ of f(x) around $x_0 = -0.5$ up to of 4th order, that is, give $T_4(x; -0.5)$ explicitly.
 - (b) Implement $T_4(x; -0.5)$ in a Python function.
 - (c) Plot the numpy-based reference function f(x) together with your approximation $T_4(x; -0.5)$. Where does the largest and where the smallest error occur?

Please turn the page!

- 4. Now consider the general case for arbitrary order N.
 - (a) Determine analytically the Taylor series of $T_N(x; -0.5)$.
 - (b) Implement a recursive function for the factorial $n! = n \cdot (n-1) \cdot \ldots \cdot 1$.
 - (c) Implement $T_N(x; -0.5)$ in a Python function, passing N as the second parameter of the function.
 - (d) Plot the reference function f(x), the approximation $T_4(x; -0.5)$, and $T_N(x; -0.5)$ for various integer values of N. What do you observe for increasing N?
- 5. (*) Determine numerically the order N for which the error between f(x) and $T_N(x; -0.5)$ at x = 4 is less than 10^{-8} .

Hints and remarks

• Standard libraries

```
import numpy as np
import matplotlib.pyplot as pl
```

• Define a function

```
def myfunc(x):
    val = 3*(x-1.)**(1./3.)
return val
```

• Call a function

```
x = myfunc(1.0)
print( x )
```

• Save / show a plot

```
# generate data
x = np.linspace(1., 2., 4)
y = myfunc(x)

# plot
pl.plot(x, y)
pl.savefig('myfig.png') # save figure
pl.show() # display figure
```