```
library(factoextra)
df<-read.csv("DataCountries.txt", sep="\t")</pre>
head(df)
         Agriculture Livestock Mining Industry Country
                      7.0
                                                4.7
      1
                                      3.2
                                                               1.4 Albania
      2
                                      3.2
                                                 4.5
                      6.4
                                                               1.5 Andorra
       3
                      6.9
                                      3.1 4.9
                                                               1.5 Austria
      4
                      5.5
                                     2.3
                                                               1.3 Belarus
                                               4.0
       5
                      6.5
                                     2.8
                                               4.6
                                                               1.5 Belgium
      6
                       5.7
                                      2.8
                                                 4.5
                                                                1.3
                                                                        Bosnia
      > summary(df)
        Agriculture
Min. :4.900
1st Qu.:5.600
                        Livestock
                                    Mining
Min. :3.300
                                                     Industry
n. :1.000
                                                                   Country
                      Min. :2.000
1st Qu.:2.525
                                                   Min.
                                                                 Length:46
                                    1st Qu.:4.000
                                                   1st Qu.:1.200
                                                                 Class :character
                      Median :2.800
Mean :2.770
3rd Qu.:3.000
                                    Median :4.400
Mean :4.291
3rd Qu.:4.600
        Median :5.950
                                                   Median :1.300
                                                                 Mode :character
        Mean :5.959
3rd Qu.:6.300
                                                   Mean :1.333
3rd Qu.:1.500
             :7.000
                            :3.400
                                          :5.100
        Max.
                      Max.
                                    Max.
                                                  Max.
```

PCA Analysis

Now we will run a PCA analysis on our dataset. Note that we need to include only the numeric variables. We will also set as row names the column Country.

```
# set as rownames the column Country
rownames(df)<-df$Country

# remove the Countrly columns
df$Country<-NULL

# run a PCA Analysis
dfPCA <- prcomp(df, center = TRUE, scale. = TRUE)</pre>
```

Let's get Scree plot which shows the percentage of explained variance by Principal Component.

```
fviz eig (dfPCA)
```


Graph of Individual

Let's plot all the countries into two dimensions by taking into consideration the quality of the individuals on the factor map.

```
# cos2 = the quality of the individuals on the factor map
# Select and visualize some individuals (ind) with select.ind argument.
# - ind with cos2 >= 0.96: select.ind = list(cos2 = 0.96)
# - Top 20 ind according to the cos2: select.ind = list(cos2 = 20)
# - Top 20 contributing individuals: select.ind = list(contrib = 20)
# - Select ind by names: select.ind = list(name = c("23", "42", "119"))
```

fviz_pca_ind(dfPCA, col.ind = "cos2" , repel = TRUE)

Graph of Variables

Let's see how we can represent the variables into two dimensions by taking into account their

contribution.

```
# select.var = list(contrib = 15)
```

fviz_pca_var(dfPCA, col.var = "contrib", repel = TRUE)

Graph of the Biplot

Graph of the Biplot
fviz pca biplot(dfPCA, repel = TRUE)

Eigenvalues, Variables and Individuals

Let's see how we can get the Eigenvalues and statistics for Variables and Individuals such as the Coordinates, the Contributions to the PCs and the Quality of representation

Eigenvalues

```
# Eigenvalues
eigens_vals <- get_eigenvalue(dfPCA)
eigens_vals</pre>
```

```
> eigens_vals
    eigenvalue variance.percent cumulative.variance.percent
Dim.1 2.9178495 72.946236 72.94624
Dim.2 0.5461993 13.654982 86.60122
Dim.3 0.4070160 10.175400 96.77662
Dim.4 0.1289352 3.223381 100.00000
```

Variables

```
# By Variable
by_var <- get_pca var(dfPCA)</pre>
by var$coord
by var$contrib
by var$cos2
     > by_var <- get_pca_var(dfPCA)</pre>
     > by_var$coord
                                            Dim.3
                      Dim.1
                                 Dim.2
     Agriculture -0.8156361 -0.4812370 0.2920628 0.13359627
                 -0.7972667 0.4716469 0.3700919 -0.07033563
     Livestock
                 -0.9159486 -0.2010451 -0.2367584 -0.25409539
     Mining
                 -0.8820380 0.2274651 -0.3587378 0.20390122
     Industry
     > by_var$contrib
                    Dim.1
                              Dim.2
                                       Dim.3
     Agriculture 22.79975 42.400095 20.95758 13.842580
     Livestock 21.78434 40.727033 33.65174 3.836888
                 28.75275 7.400069 13.77207 50.075113
     Mining
                26.66317 9.472804 31.61861 32.245418
     Industry
     > by_var$cos2
                                Dim.2
                                           Dim.3
                                                       Dim.4
                     Dim.1
     Agriculture 0.6652623 0.23158902 0.08530070 0.017847963
     Livestock 0.6356342 0.22245077 0.13696798 0.004947101
                 0.8389619 0.04041912 0.05605453 0.064564465
     Mining
     Industry
                 0.7779911 0.05174039 0.12869281 0.041575706
```

Individuals

```
# By ndividual
by_ind <- get_pca_ind(dfPCA)
by_ind$coord
by_ind$contrib
by_ind$cos2 ...</pre>
```