2. คำสำคัญ (Key Words)

การเชื่อมต่อของสรรพสิ่ง (Internet of things), การพยากรณ์ฝนตกเฉพาะที่, Android, Weather, Rain

3. หลักการและเหตุผล

การพยากรณ์อากาศ สำหรับหลายคนจัดว่าเป็นสิ่งจำเป็นในการดำเนินชีวิต โดยในประเทศไทยนั้น สภาพ อากาศที่ส่งผลกระทบต่อการดำเนินชีวิตมากที่สุด คือ การเกิดฝนตก ซึ่งหากเราสามารถรู้ล่วงหน้า ว่าฝนจะตกเมื่อไหร่ จะช่วยให้เราสามารถวางแผนการใช้ชีวิตประจำวันได้มีประสิทธิภาพมากยิ่งขึ้น ไม่ว่าจะเป็นการวางแผนกิจกรรมที่จะทำ โดยเฉพาะกิจกรรมกลางแจ้ง, อุปกรณ์ที่ต้องเตรียมไป เช่น ร่ม หรือลักษณะเสื้อผ้าที่เหมาะสมกับสภาพอากาศ เป็นต้น ในปัจจุบัน มีหลายหน่วยงานในประเทศไทย ที่สามารถพยากรณ์อากาศได้อย่างแม่นยำ ไม่ว่าจะเป็น กรมอุตุนิยมวิทยา หรือเว็บไซต์พยากรณ์อากาศ weather.com ทว่าการพยากรณ์ดังกล่าว เป็นการพยากรณ์อากาศโดยภาพรวมทั้ง ประเทศ, ภาค, จังหวัด, เขตหรืออำเภอ แต่ไม่สามารถพยากรณ์ฝนตกเฉพาะที่

ทางผู้พัฒนาจึงได้ริเริ่มโครงการพัฒนา "ดูฝน: ระบบพยากรณ์อากาศเฉพาะที่" ซึ่งเป็นระบบที่ทำการเก็บค่า สภาวะอากาศปัจจุบัน ผ่านอุปกรณ์ IoT และทำการพยากรณ์อากาศปัจจุบัน (Now cast) ซึ่งเป็นการพยากรณ์อากาศ เชิงตัวเลข (numerical weather prediction-NWP)[1] โดยระบบประกอบไปด้วย อุปกรณ์ IoT สำหรับเก็บค่าข้อมูล สภาวะอากาศสำหรับใช้ในการพยากรณ์ [2] เช่น อุณหภูมิ ความชื้น เป็นต้น และแสดงข้อมูลสภาวะอากาศปัจจุบัน ผ่าน แอพพลิเคชั่นบนสมาร์ทโฟน รวมทั้งแจ้งเตือนเมื่อมีโอกาสที่ฝนจะตก ผู้พัฒนาหวังว่า เมื่อผู้ใช้สามารถคาดหมายสภาวะ อากาศได้ล่วงหน้าแล้ว จะช่วยให้ผู้ใช้สามารถวางแผนการใช้ชีวิตประจำวันของผู้ใช้ล่วงหน้าได้อย่างราบรื่น เช่น เมื่อตาก สิ่งของเอาไว้นอกบ้าน ถ้ามีระบบพยากรณ์ฝนตกเฉพาะที่ติดตั้งใว้ภายในบริเวณดังกล่าว และมีการแจ้งเตือนการ พยากรณ์ฝนตกล่วงหน้า จะช่วยให้ผู้ใช้สามารถเก็บสิ่งของที่ตากไว้ได้ทันก่อนที่ฝนตก

ในประเทศไทยมีผู้ผลิตและจำหน่ายสถานีตรวจวัดอากาศอัตโนมัติ ได้แก่ บริษัท นครไทยเน็ตเวิร์ก จำกัด [4] และบริษัท ไรส์ซิงซอร์ซ แอนด์ ซัพพลาย [5] จำกัด ทั้งนี้ อุปกรณ์ดังกล่าวมีราคาที่สูงมาก สามารถส่งข้อมูลไปยัง เซิร์ฟเวอร์ได้ผ่านเครือข่ายมือถือ GPRS/GSM/3G แต่ผู้ใช้ทั่วไปไม่สามารถเข้าถึงข้อมูลผ่านสมาร์ทโฟนได้ และไม่มีการ พยากรณ์ล่วงหน้า สำหรับบริษัทที่ผลิตอุปกรณ์ที่ทำการเก็บข้อมูลและพยากรณ์อากาศได้ด้วยนั้น เท่าที่ผู้พัฒนาทราบ มีหนึ่งบริษัท คือ Oregon Scientific จำกัด [6] โดยอุปกรณ์ดังกล่าว ทำการเก็บข้อมูลสภาวะอากาศเฉพาะที่ และมีการ แจ้งเตือนไปยังอุปกรณ์ที่กำหนด เช่น สมาร์ทโฟน แต่ข้อจำกัดของอุปกรณ์นี้คือ จะทำการแจ้งเตือนผ่านบลูทูธเท่านั้น ในขณะที่ ดูฝน: ระบบพยากรณ์อากาศเฉพาะที่ จะทำการแจ้งเตือนโดยผ่านสัญญาณอินเตอร์เน็ต ซึ่งช่วยอำนวยความ สะดวกให้ผู้ใช้ได้มากกว่า

ดังนั้น ดูฝน: ระบบพยากรณ์อากาศเฉพาะที่ นอกจากจะรายงานข้อมูลสภาวะอากาศเฉพาะที่ของเวลาปัจจุบัน ได้แล้ว ยังสามารถพยากรณ์การเกิดฝนตกล่วงหน้าได้ด้วย ซึ่งจะช่วยอำนวยความสะดวกและป้องกันความเสียหายอัน เนื่องมาจากการเกิดฝนตก นอกจากนี้ ระบบยังสามารถนำไปพัฒนาต่อ เพื่อให้สามารถพยากรณ์สภาวะอากาศอื่น ๆ เช่น อุณหภูมิ หรือ ความชื้น ได้อีกด้วย

4. วัตถุประสงค์

- -เพื่อพัฒนาอุปกรณ์ที่ช่วยในตรวจวัดสภาวะอากาศเฉพาะที่
- -เพื่อพัฒนาโมเดลการพยากรณ์ฝนตกเฉพาะที่
- -เพื่อพัฒนาแอพพลิเคชั่นบนสมาร์ทโฟนที่ใช้เป็นเครื่องมือในการแสดงข้อมูลสภาวะอากาศเฉพาะที่และแจ้งเตือนผลการ พยากรณ์ฝนตกเฉพาะที่ล่วงหน้า

5. ปัญหาหรือประโยชน์ที่เป็นเหตุผลให้ควรพัฒนาโปรแกรม

ปัญหา การพยากรณ์อากาศในประเทศไทย โดยส่วนมากจะเป็นการพยากรณ์อากาศโดยภาพรวม ระบบพยากรณ์ ฝนตกเฉพาะที่ เป็นการพยากรณ์อากาศเฉพาะสถานที่ อีกทั้งอุปกรณ์ที่สามารถทำได้เช่น Weather+^[3] ของ Oregon Scientific มีราคาที่สูงและมีข้อจำกัดคือส่งข้อมูลได้เฉพาะบลูทูธ ทำให้ไม่สะดวกในการใช้งาน อีกทั้งยังมีราคาที่สูง เกินไป และอุปกรณ์สถานีวัดสภาพอากาศเฉพาะที่ นั้นมีราคาที่สูงมาก สามารถส่งข้อมูลได้ทางเครือข่ายมือถือ GPRS/GSM/3G แต่ไม่สามารถเชื่อมต่อข้อมูลต่างๆผ่านสมาร์ทโฟนได้ และไม่มีการพยากรณ์ล่วงหน้า ซึ่งต่างจาก ดูฝนะ ระบบพยากรณ์อากาศเฉพาะที่ ที่มีตัวอุปกรณ์ IoT สำหรับเก็บและส่งข้อมูลผ่าน WiFi และมีแอพพลิเคชั่นบทสมาร์ท โฟนในการดูค่าสภาพอากาศได้ทันที อีกทั่งยังสามารถพยากรณ์อากาศล่วงหน้าได้ และมีราคาที่ถูกกว่าอุปกรณ์สอง ประเภทที่กล่าวมา

6. เป้าหมายและขอบเขตของโครงการ

6.1. เป้าหมาย

เพื่อพัฒนาอุปกรณ์ (IoT) ที่ช่วยในตรวจวัดสภาวะอากาศเฉพาะที่ ใช้ในการวัดตรวจวัดสภาวะอากาศ สถานะ เกิดฝน และพัฒนาแอพพิลเคชั่นบนสมาร์ทโฟน โดย แอพพลิเคชั่นจะแสดงข้อมูลสภาวะอากาศกับโอกาสฝนตก และ แจ้งเตือนโอกาศฝนตก และมีการพยากรณ์ล่วงหน้า 2ชั่วโมง

6.2. ขอบเขตของโครงการ

- การพยากรณ์สามารถทำได้โดยอาศัยข้อมูลที่เก็บจากอุปกรณ์ IoT เท่านั้น
- แอพพลิเคชั่นบนสมาร์ทโฟนระบบปฏิบัติการแอนดรอย์เท่านั้น

7.รายละเอียดของการพัฒนา

7.1 แบบจำลอง และหน้าตาของอุปกรณ์

แบบจำลองอุปกรณ์ IoT

รูปที่ 1 แบบจำลองอุปกรณ์ IoT

รูปที่ 1 แสดง แบบจำลองของอุปกรณ์ IoT ประกอบด้วย 6 ส่วน(ตามหมาเลข)ดังนี้

- 1.แผ่นตรวจเช็คการเกิดฝนตก
- 2.เซนเซอร์ตรวจวัดอุณหภูมิ ความชื้น DHT22
- 3.ตัวแปลงค่าการรับน้ำฝน
- 4.เซนเซอร์ตรวจวัดความกดอากาศ BMP180
- 5.เซอเซอร์ตรวจวัดค่าแสง
- 6.หน่วยประมวลผลไมโครคอนโทลเลอร์ Node MCU V1.0

หน้าตาของอุปกรณ์

ตัวอย่างหน้า Application รูปที่ 2 หน้าการเพิ่มอุปกรณ์ IoT

รูปที่ 3 หน้าหลักของแอพพลิเคชั่น

รูปที่ 4 เมนูรายการ

รูปที่ 5 หน้าแสดงรายละเอียด

รูปที่ 6 หน้าตำแหน่งของอุปกรณ์

รูปที่ 7 หน้าตั้งค่าการแจ้งเตือน

7.2 เทคนิคหรือเทคโนโลยีที่ใช้ (แบ่งออกเป็นสองส่วนได้แก่ อุปกรณ์ IoT กับ แอพพลิเคชั่นบนสมาร์ทโฟน) อุปกรณ์ IoT

- Node MCU V1.0 เป็น Microcontroller ใช้ในการรับค่าจากเซนเซอร์และทำการส่งค่าที่ได้ผ่าน Wi-Fi ไปยัง Server
- DHT22 เป็นเซนเซอร์ใช้ในการตรวจวัดอุณหภูมิ, ความชื้นและอุณหภูมิจุดน้ำค้าง
- BMP180 เป็นเซนเซอร์ใช้ในการตรวจวัดความกดอากาศ
- I DR เป็นเซอร์เซอร์ใช้ในการตรวจวัดแสง
- Rain sensor เป็นเซอนเซอร์ใช้ในการตรวจวัดการเกิดฝนตก แอพพลิเคชั่นบนสมาร์ทโฟน
- Firebase Cloud Messaging (FCM) : เป็นบริการของ Google ใช้สำหรับการแจ้งเตือนไปยังแอพพลิเคชั่นบน สมาร์ทโฟน
- เทคนิคการทำเหมืองข้อมูล ใช้อัลกอลิทึมการจำแนกประเภท (Classification) โดยใช้อัลกอลิทึม Random forest ใช้การจำแนกประเภท เพื่อพยากรณ์ค่าฝนตก,ไม่ตก
- Highchart, Highstock : ใช้สำหรับการสร้างกราฟ

7.3เครื่องมือที่ใช้ในการพัฒนา

(ได้แก่ ภาษาที่ใช้เขียน Tools อื้นๆ ที่ใช้ช่วยในการพัฒนาโปรแกรม และอื้นๆ)

- C/C++ ภาษาที่ใช้ในการพัฒนาโปรแกรมบนอุปกรณ์ IoT
- Java : ภาษาที่ใช้ในการพัฒนาแอพพิลเคชั่นบนระบบปฏิบัติการแอนดรอยด์
- PHP : ภาษาที่ใช้ในการพัฒนาเว็บไซต์ในฝั่ง Server ที่ทำงานหลังบ้าน
- JSON : ใช้สำหรับแลกเปลี่ยนข้อมูลคอมพิวเตอร์
- Android Studio : ใช้ในการพัฒนาแอพพิลเคชั่นบนระบบปฏิบัติการแอนดรอยด์
- Arduino : ใช้ในการพัฒนาโปรแกรมลง Microcontroller (Node MCU V1.0)
- NetBeans: ใช้ในการพัฒนาเว็บไซต์
- MySQL ; ใช้ในจัดเก็บข้อมูลของระบบ

7.4 รายละเอียดโปรแกรมที่จะพัฒนา

1. Input / Output Specification

Input (ระบบ)

- 1.ค่าสภาวะอากาศ ณ ปัจจุบัน
- 2.ค่าการแจ้งเตือนของผู้ใช้
- 3.หมายเลขSerial Numberของอุปกรณ์ IoT
- 4.ค่าตำแหน่งของอุปกรณ์

Output (แอพพลิเคชั่นบนสมาร์ทโฟน)

- 1.แสดงค่าสภาวะอากาศ ณ ปัจจุบัน
- 2.แสดงค่าพยากรณ์อากาศการเกิดฝนตก
- 3.แจ้งเตือนการเกิดฝนตก
- 4.ดูตำแหน่งของอุปกรณ์ที่ผู้ใช้ตั้งค่าเอาไว้

2. Functional Specification

ผู้ใช้แอพพลิเคชั่น

- สามารถเชื่อมต่ออุปกรณ์และลบการเชื่อมต่ออุปกรณ์ได้
- สามารถดูข้อมูลสภาวะอากาศเฉพาะที่ อัพเดทข้อมูลไม่น้อยกว่าทุกๆ 5นาที
- สามารถดูรูป icon สภาวะอากาศได้
- สามารถตั้งค่าตำแหน่งสถานที่นำอุปกรณ์ไปติดตั้ง
- สามารถดูค่าพยากรณ์โอกาสที่ฝนจะตกโดยแสดงเป็นเปอร์เซ็นต์ได้ อัพเดทข้อมูลไม่น้อยกว่าทุกๆ 5นาที
- สามารถตั้งค่าการแจ้งเตือนพยากรณ์โอกาสที่ฝนจะตกเป็นเปอร์เซ็นต์จะแจ้งเตือนเมื่อค่าพยากรณ์โอกาสที่ ฝนจะตกเป็นเปอร์เซ็นต์ มีค่ามากกว่าหรือเท่ากับค่าที่ผู้ใช้ตั้งค่าไว้
- สามารถรับการแจ้งเตือนผ่านระบบ push notification เมื่อค่าพยากรณ์โอกาสที่ฝนจะตกมากกว่าหรือ เท่ากับค่าที่ผู้ใช้ตั้งค่าไว้

ส่วนอุปกรณ์loT

- สามารถตรวจวัดสภาวะอากาศเฉพาะที่ได้
- สามารถส่งข้อมูลสภาวะอากาศผ่านอินเทอร์เน็ตไปยังเครื่องให้บริการและจัดเก็บข้อมูลสภาวะอากาศ เฉพาะที่ลงฐานข้อมูลได้

3.โครงสร้างของซอฟแวร์

รูปที่ 8 แสดงโครงสร้างซอฟแวร์

ในส่วนของ IoT Device เป็นส่วนของการตรวจวัดสภาวะอากาศโดยส่งข้อมูลสภาวะอากาศไปเก็บจัดเก็บในDatabase ที่อยู่ใน Server และนำข้อมูลสภาวะเข้า Model พยากรณ์ฝนตก ผลลัพธ์ที่ได้ไปเก็บจัดเก็บในDatabase

ในส่วนของ Mobile application เป็นส่วนของการกำหนดตั้งค่าการแจ้งเตือนกับแสดงข้อมูลทั้งหมด และรับการแจ้ง เตือนเมื่อมีการแจ้งเตือนฝนตก

7.5ขอบเขตและข้อจำกัด

- แอพพลิเคชั่นบนสมาร์ทโฟนสำหรับระบบปฏิบัติการแอนดรอยด์เท่านั้น
- ข้อมูลสภาวะอากาศที่แสดงมีเพียง 6อย่างคือ

- อุณหภูมิ (องศาเซลเซียส)

- ความชื้น (เปอร์เซ็นต์ โดยมีค่าสูงสุดคือ 100)

- อุณหภูมิจุดน้ำค้าง (องศาเซลเซียส)

- ความกดอากาศ (เฮกโตปาสคาล,hPa)

- ความสว่าง

- ฝนตก (ฝนตก,ฝนไม่ตก)

- ต้องตั้งอุปกรณ์ IoT ไว้ในพื้นที่โล่งแจ้ง

7.6 ระยะเวลาการทำงาน

ระยะเวลาที่ใช้ในการดำเนินงาน 15 สัปดาห์ เริ่มตั้งแต่วันที่ 16 สิงหาคม 2559 ถึง 26 ธันวาคม 2559

ระยะเวลา	1	สิงหาคม			กันยายน				ตุลาคม				พฤศจิกายน				ธันวาคม			
กระบวนการ	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1. เสนอหัวข้อโครงงาน			*																	
1. วิเคราะห์ปัญหาและ																				
ความต้องการของผู้ใช้				•	-															
2. ออกแบบระบบ				•		•														
3. เก็บรวบรวมข้อมูล					•										-					
4. พัฒนาระบบ					•											→				
5. ทดสอบระบบและแก้ไข			Ì				•									•				
6. ติดตั้งและใช้งานระบบ																•			-	
7. ปรับปรุงระบบ																		•	-	

8. บรรณานุกรม (Bibliography)

1.ความรู้อุตุนิยมวิทยา การพยากรณ์อากาศเชิงตัวเลข (numerical weather prediction-NWP)

เข้าถึงได้จาก: http://www.tmd.go.th/info/info.php?FileID=2 [18 สิงหาคม 2559]

2.ภูมิอากาศ [Wikipedia]

เข้าถึงได้จาก: https://th.wikipedia.org/wiki/ภูมิอากาศ [18 สิงหาคม 2559]

3.Weather+ Bluetooth Sensor

เข้าถึงได้จาก : http://store.oregonscientific.com/asia/weather-plus-bluetooth-

sensor.html[18 สิงหาคม 2559]

4.สถานีวัดสภาพอากาศ NEWS I

เข้าถึงได้จาก: http://www.rss.co.th/ผลิตภัณฑ์/สถานีวัดสภาพอากาศ[18 สิงหาคม 2559]

5. บริษัท นครไทยเน็ตเวิร์ก จำกัด

เข้าถึงได้จาก: http://www.nakhonthai.net/ [18 สิงหาคม 2559]

6. Oregon Scientific Official Store

เข้าถึงได้จาก: http://store.oregonscientific.com/ [18 สิงหาคม 2559]

ประวัติส่วนตัว

ชื่อ นาย วิศิษฐ์ เลิศศักดิ์วิมาน

ที่อยู่ 38 ซอยพระยามนธาตุราชศรีพิจิตร์ แยก 35-9 แขวง บางบอน เขต บางบอน กทม. 10150

การศึกษา

พ.ศ. 2550 - พ.ศ. 2553
มัธยมศึกษาตอนต้น โรงเรียนวัดราชโอรส
พ.ศ. 2553 - พ.ศ 2556
มัธยมศึกษาต้นปลาย โรงเรียนวัดราชโอรส
พ.ศ. 2556 - ปัจจุบัน
ปริญญาตรี คณะวิทยาศาสตร์และเทคโนโลยี สาขาเทคโนโลยีสารสนเทศและการ

สื่อสาร มหาวิทยาลัยหอการค้าไทย

ประวัติส่วนตัว

ชื่อ นาย อานนท์ กันทา

ที่อยู่ 11 ซอยพุทธบูชา 15 แขวงบางมด เขตจอมทอง กทม. 10150

การศึกษา

พ.ศ. 2549 - พ.ศ. 2552	มัธยมศึกษาตอนต้น โรงเรียนสารสาสน์สุขสวัสดิ
พ.ศ. 2552 - พ.ศ 2555	มัธยมศึกษาต้นปลาย โรงเรียนวัดพุทธบูชา

พ.ศ. 2556 - ปัจจุบัน ปริญญาตรี คณะวิทยาศาสตร์และเทคโนโลยี สาขาเทคโนโลยีสารสนเทศและการ

สื่อสาร มหาวิทยาลัยหอการค้าไทย