Question Number	Scheme	Marks			
1.	(a) $0^2 = u^2 - 2 \times 9.8 \times 40$	M1 A1			
	$\Rightarrow u = 28 \text{ ms}^{-1}$	A1 (3)			
	(b) $-28 = 28 - 9.8 \times t$	M1 A1 √			
	$\Rightarrow t = 5.7 \text{ or } 5.71 \text{ s}$	A1 (3) 6			
2.					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	(a) $28800 = 2000 (12 - v)$	M1 A1			
	$v = -2.4 \text{ms}^{-1}$ Speed = 2.4 ms^{-1}	A1 (3)			
	(b) due west / ← /reversed direction (o.e.)	A1 (1			
	(c) T: $28800 = m(6+3.6)$	M1 A1			
	$\Rightarrow m = \underline{3000 \text{ kg}}$	M1 A1 (4			
	OR $2000 \times 12 - 6 \times m = -2000 \times 2.4 + m \times 3.6$	M1 A1 √			
	$\Rightarrow m = 3000 \mathrm{kg}$	M1 A1			

Question Number		Scheme			Marks	S
4.	(a)					
		Sha	pe	В1		
		F	igs	В1		(2)
						(2)
		<i>v</i>				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	(b)	$\frac{1}{2}(T+120) \times 25 = 4000$]	M1	A1	
		or $\frac{1}{2}$. 20. 25, +120.25 + $\frac{1}{2}$ (T -140).25 = 4000				
		$\rightarrow T = \underline{200 \text{ s}}$		A1		(3)
	(c)	Car: $\frac{1}{2}$. 20. 25, +25 $(t-20)$ = 1500		M1	A1,	A1
		$\rightarrow t = 70 \mathrm{s}$ Hence motorcycle travels for 60s		M1 A1		
		·				(5)
	(d)	$1500 = \left(\frac{0+v}{2}\right).60$]	M1		
		$v = 50 \mathrm{ms^{-1}}$		A1		(2)
						12
5.	(a)	$a = \frac{1}{4} [(5\mathbf{i} + 11\mathbf{j}) - (3\mathbf{i} - 5\mathbf{j})] = -2\mathbf{i} + 4\mathbf{j}$]	M1	A1	(2)
	(b)	$\mathbf{F} = m\mathbf{a} = -6\mathbf{i} + 12\mathbf{j}$		M1	A1	
		$ \mathbf{F} = \sqrt{180} \simeq 13.4 \mathrm{N} (\mathrm{AWRT})$		M1	A1	(4)
		[OR $ \mathbf{a} = \sqrt{20} \simeq 4.47 \Rightarrow \mathbf{F} = 3 \times 4.47 \simeq 13.4 \text{ N}$]				

At B: $\mathbf{r} = (6\mathbf{i} - 29\mathbf{j}) + 3(-9\mathbf{i} + 19\mathbf{j}) = -21\mathbf{i} + 28\mathbf{j}$ OB = $\sqrt{(21^2 + 28^2)} = 35 \text{ m}$	M1	A1 $A1$ $A1$	(6) 12	
		•	12	

Question Number	Scheme	Marks
6.	(a) M(D): $160 \times 2.5 = W \times 4 + 200(4 - x)$ 400 = 4W + 800 - 200x	M1 A2, 1, 0
	$200x - 4W = 400 \implies 50x - W = 100 *$	M1 A1 (5)
	(b) M(D): $50 \times 2.5 + W \times 1 = 200 (4 - x)$	M1 A2, 1, 0
	200x + W = 675	(3)
	(c) Solving $\rightarrow x = 3.1 \text{ m}$	M1 A1
	$: W = \underline{55\mathrm{N}}$	M1 A1 (4)
		12
7.	(a) $\bigvee \bigcap_{B} T$	
	(a) $\bigvee_{0.2g} \bigvee_{0.4g} B$ $0.4g - T = 0.4 \times \frac{1}{5}g$	M1 A1 (2)
	(b) $T = \frac{8}{25}g$ or 3.14 or 3.1 N	M1 A1 (2)
	(c)	
	$T - mg \sin 30^\circ = m \times \frac{1}{5}g$	M1 A1
	$\rightarrow m = \frac{16}{35} *$	M1 A1 (4)
	$\begin{array}{c} T \\ A \\ \hline \end{array}$	
	(d) Same T for A & B	B1 (1)
	(e) $v^2 = 2 \times \frac{1}{5} g \times 1$ $v = \sqrt{\frac{2g}{5}} \simeq 1.98 \text{ or } 2 \text{ ms}^{-1}$	M1
	$v = \sqrt{\frac{2g}{5}} \simeq 1.98 \text{ or } 2 \text{ ms}^{-1}$	A1
	<u>V 5</u>	(2)

(f)	A: $-\frac{1}{2}mg = ma \Rightarrow a = -\frac{1}{2}g$	M1 A1
	$v^2 = \frac{2g}{5} - 2 \times \frac{1}{2}g \times 0.4$	M1 A1√ (5)
	$\Rightarrow v = 0$	A1 16