1 Business Understanding

1.1 Project Overview

Analysis of Vaccination Patterns from the National 2009 H1N1 Flu Survey

1.2 Business problem

A vaccine for the H1N1 flu virus became publicly available in October 2009. In late 2009 and early 2010, the United States conducted the National 2009 H1N1 Flu Survey. This phone survey asked respondents whether they had received the H1N1 and seasonal flu vaccines, in conjunction with questions about themselves. These additional questions covered their social, economic, and demographic background, opinions on risks of illness and vaccine effectiveness, and behaviors towards mitigating transmission. A better understanding of how these characteristics are associated with personal vaccination patterns can provide guidance for future public health efforts.

1.3 Project objectives:

1.4 Main Objective

To analyze the demographic characteristics of respondents, including age, education, income, employment, and household composition.

1.5 Specific Objectives

- 1. **Age Distribution** Examine the age group distribution among respondents.
 - · Feature Used: age group
- 2. **Educational Attainment** Analyze the levels of education across different respondents.
 - · Feature Used: education
- 3. **Income and Employment Status** Assess variations in income levels and employment status.
 - **Features Used:** income_poverty, employment_status, employment_industry, employment occupation
- 4. **Household Composition** Investigate household structure based on marital status, homeownership, and number of adults/children.
 - Features Used: marital_status, rent_or_own, household_adults, household_children
- 5. **Geographic Demographics** Identify demographic variations across different regions.
 - Features Used: hhs_geo_region, census_msa

2 Data Understanding

2.1 Data collection

The data for this competition comes from the National 2009 H1N1 Flu Survey (NHFS).

In their own words:

The National 2009 H1N1 Flu Survey (NHFS) was sponsored by the National Center for Immunization and Respiratory Diseases (NCIRD) and conducted jointly by NCIRD and the National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). The NHFS was a list-assisted random-digit-dialing telephone survey of households, designed to monitor influenza immunization coverage in the 2009-10 season.

The target population for the NHFS was all persons 6 months or older living in the United States at the time of the interview. Data from the NHFS were used to produce timely estimates of vaccination coverage rates for both the monovalent pH1N1 and trivalent seasonal influenza vaccines.

The NHFS was conducted between October 2009 and June 2010. It was one-time survey designed specifically to monitor vaccination during the 2009-2010 flu season in response to the 2009 H1N1 pandemic. The CDC has other ongoing programs for annual phone surveys that continue to monitor seasonal flu vaccination.

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        from sklearn.preprocessing import LabelEncoder
        from sklearn.linear model import LogisticRegression
        from sklearn.metrics import accuracy_score
        from sklearn.model_selection import train_test_split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from sklearn.naive_bayes import MultinomialNB
        from sklearn.model selection import GridSearchCV
        warnings.filterwarnings("ignore")
        C:\anaconda\lib\site-packages\pandas\core\arrays\masked.py:60: UserWarnin
```

```
g: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.2' currently installed).

from pandas.core import (
```

Loading Dataset

Features for training

```
In [2]: # Features Training
train_features_df = pd.read_csv("data/training_set_features.csv")
```

Features for testing

```
In [3]: #Features Test
test_features_df = pd.read_csv("data/test_set_features.csv")
```

Training Labels

```
In [4]: train_labels_df = pd.read_csv("data/training_set_labels.csv")
```

training_set_features.csv

In [5]: train_features_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26707 entries, 0 to 26706
Data columns (total 36 columns):

#	Columns (total 36 columns):	Non-Null Count	Dtype					
0	respondent_id	26707 non-null	int64					
1	h1n1_concern	26615 non-null	float64					
2	h1n1_knowledge	26591 non-null	float64					
3	behavioral_antiviral_meds	26636 non-null	float64					
4	behavioral_avoidance	26499 non-null	float64					
5	behavioral_face_mask	26688 non-null	float64					
6	behavioral_wash_hands	26665 non-null	float64					
7	behavioral_large_gatherings	26620 non-null	float64					
8	behavioral_outside_home	26625 non-null	float64					
9	behavioral_touch_face	26579 non-null	float64					
10	doctor_recc_h1n1	24547 non-null	float64					
11	doctor_recc_seasonal	24547 non-null	float64					
12	<pre>chronic_med_condition</pre>	25736 non-null	float64					
13	child_under_6_months	25887 non-null	float64					
14	health_worker	25903 non-null	float64					
15	health_insurance	14433 non-null	float64					
16	<pre>opinion_h1n1_vacc_effective</pre>	26316 non-null	float64					
17	opinion_h1n1_risk	26319 non-null	float64					
18	opinion_h1n1_sick_from_vacc	26312 non-null	float64					
19	opinion_seas_vacc_effective	26245 non-null	float64					
20	opinion_seas_risk	26193 non-null	float64					
21	opinion_seas_sick_from_vacc	26170 non-null	float64					
22	age_group	26707 non-null	object					
23	education	25300 non-null	object					
24	race	26707 non-null	object					
25	sex	26707 non-null	object					
26	income_poverty	22284 non-null	object					
27	marital_status	25299 non-null	object					
28	rent_or_own	24665 non-null	object					
29	employment_status	25244 non-null	object					
30	hhs_geo_region	26707 non-null	object					
31	census_msa	26707 non-null	object					
32	household_adults	26458 non-null	float64					
33	household_children	26458 non-null	float64					
34	employment_industry	13377 non-null	object					
35	employment_occupation	13237 non-null	object					
	<pre>dtypes: float64(23), int64(1), object(12)</pre>							
memoi	ry usage: 7.3+ MB							

2.2 Numerical Columns (26)

- · respondent_id
- h1n1_concern
- h1n1_knowledge
- behavioral_antiviral_meds
- behavioral_avoidance
- · behavioral_face_mask
- behavioral_wash_hands
- behavioral_large_gatherings
- behavioral_outside_home

- · behavioral touch face
- doctor recc h1n1
- doctor_recc_seasonal
- · chronic med condition
- · child under 6 months
- health worker
- health insurance
- opinion_h1n1_vacc_effective
- opinion h1n1 risk
- opinion h1n1 sick from vacc
- · opinion_seas_vacc_effective
- · opinion seas risk
- · opinion seas sick from vacc
- · household adults
- · household children

2.3 Categorical Columns (10)

- age_group
- education
- race
- sex
- · income_poverty
- · marital_status
- · rent or own
- · employment status
- · hhs geo region
- census msa
- employment_industry
- employment occupation

Select the feautures

Features selected are to explore how demographic factors effect

```
In [6]: train_df = pd.merge(train_features_df, train_labels_df, on="respondent_id")
    train_df.drop(columns="respondent_id", inplace=True)

In [7]: selected_features = ["age_group", "education", "income_poverty", "employment "race", "sex", "marital_status", "rent_or_own", "household_adults", "house
```

In [8]: train_df.describe()

Out[8]:

	household_adults	household_children	h1n1_vaccine	seasonal_vaccine
count	26458.000000	26458.000000	26707.000000	26707.000000
mean	0.886499	0.534583	0.212454	0.465608
std	0.753422	0.928173	0.409052	0.498825
min	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000
50%	1.000000	0.000000	0.000000	0.000000
75%	1.000000	1.000000	0.000000	1.000000
max	3.000000	3.000000	1.000000	1.000000

In [9]: train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26707 entries, 0 to 26706
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	age_group	26707 non-null	object		
1	education	25300 non-null	object		
2	income_poverty	22284 non-null	object		
3	employment_status	25244 non-null	object		
4	race	26707 non-null	object		
5	sex	26707 non-null	object		
6	marital_status	25299 non-null	object		
7	rent_or_own	24665 non-null	object		
8	household_adults	26458 non-null	float64		
9	household_children	26458 non-null	float64		
10	hhs_geo_region	26707 non-null	object		
11	census_msa	26707 non-null	object		
12	h1n1_vaccine	26707 non-null	int64		
13	seasonal_vaccine	26707 non-null	int64		
<pre>dtypes: float64(2), int64(2), object(10)</pre>					

memory usage: 2.9+ MB

In [10]: train_df.head()

Out[10]:

	age_group	education	income_poverty	employment_status	race	sex	marit
0	55 - 64 Years	< 12 Years	Below Poverty	Not in Labor Force	White	Female	
1	35 - 44 Years	12 Years	Below Poverty	Employed	White	Male	
2	18 - 34 Years	College Graduate	<= \$75,000, Above Poverty	Employed	White	Male	
3	65+ Years	12 Years	Below Poverty	Not in Labor Force	White	Female	
4	45 - 54 Years	Some College	<= \$75,000, Above Poverty	Employed	White	Female	

In [11]: train_df.tail()

Out[11]:

	age_group	education	income_poverty	employment_status	race	sex	ı
26702	65+ Years	Some College	<= \$75,000, Above Poverty	Not in Labor Force	White	Female	
26703	18 - 34 Years	College Graduate	<= \$75,000, Above Poverty	Employed	White	Male	
26704	55 - 64 Years	Some College	NaN	NaN	White	Female	
26705	18 - 34 Years	Some College	<= \$75,000, Above Poverty	Employed	Hispanic	Female	
26706	65+ Years	Some College	<= \$75,000, Above Poverty	Not in Labor Force	White	Male	

In [12]: train_df.sample(5)

Out[12]:

	age_group	education	income_poverty	employment_status	race	sex	ı
21187	65+ Years	College Graduate	> \$75,000	Employed	White	Male	
3964	35 - 44 Years	< 12 Years	Below Poverty	Employed	Hispanic	Female	
18362	45 - 54 Years	College Graduate	<= \$75,000, Above Poverty	Employed	Hispanic	Male	
3405	18 - 34 Years	12 Years	<= \$75,000, Above Poverty	Employed	Hispanic	Female	
1620	45 - 54 Years	College Graduate	> \$75,000	Employed	White	Female	

3 Data Cleaning

3.1 Correct formats

training_set_features.csv

```
In [13]: train_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26707 entries, 0 to 26706
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	age_group	26707 non-null	object		
1	education	25300 non-null	object		
2	income_poverty	22284 non-null	object		
3	employment_status	25244 non-null	object		
4	race	26707 non-null	object		
5	sex	26707 non-null	object		
6	marital_status	25299 non-null	object		
7	rent_or_own	24665 non-null	object		
8	household_adults	26458 non-null	float64		
9	household_children	26458 non-null	float64		
10	hhs_geo_region	26707 non-null	object		
11	census_msa	26707 non-null	object		
12	h1n1_vaccine	26707 non-null	int64		
13	seasonal_vaccine	26707 non-null	int64		
<pre>dtypes: float64(2), int64(2), object(10)</pre>					

Formats are as expected

memory usage: 2.9+ MB

3.1.1 Missing Values

The follow are missing values: education, income_poverty, employment_status marital status and rent_or_own. Checking values

```
In [14]: train_df.isna().sum()
Out[14]: age_group
                                   0
         education
                                1407
         income_poverty
                                4423
         employment_status
                                1463
         race
                                   0
         sex
                                   0
         marital_status
                                1408
         rent_or_own
                                2042
         household_adults
                                 249
         household_children
                                 249
                                   0
         hhs_geo_region
         census_msa
                                   0
                                   0
         h1n1_vaccine
         seasonal_vaccine
         dtype: int64
In [15]: missing = ["education", "income_poverty", "employment_status", "marital_status"]
                     ,"rent_or_own","household_adults","household_children"]
         for col in missing:
             train_df[col].fillna(train_df[col].mode()[0], inplace=True)
In [16]: train_df.isna().sum()
Out[16]: age group
                                0
                                0
         education
          income_poverty
                                0
         employment_status
                                0
         race
                                0
                                0
          sex
         marital_status
                                0
         rent or own
                                0
         household_adults
                                0
         household_children
                                0
         hhs_geo_region
                                0
         census msa
                                0
         h1n1 vaccine
                                0
          seasonal_vaccine
                                0
         dtype: int64
```

```
In [17]: test_features_df.isna().sum()
Out[17]: respondent_id
                                              0
         h1n1_concern
                                             85
         h1n1 knowledge
                                            122
         behavioral_antiviral_meds
                                             79
         behavioral_avoidance
                                            213
         behavioral_face_mask
                                             19
         behavioral_wash_hands
                                             40
         behavioral_large_gatherings
                                             72
         behavioral outside home
                                             82
         behavioral_touch_face
                                            128
         doctor_recc_h1n1
                                           2160
         doctor_recc_seasonal
                                           2160
         chronic_med_condition
                                            932
          child_under_6_months
                                            813
         health worker
                                            789
         health insurance
                                          12228
         opinion_h1n1_vacc_effective
                                            398
         opinion_h1n1_risk
                                            380
         opinion_h1n1_sick_from_vacc
                                            375
         opinion_seas_vacc_effective
                                            452
         opinion_seas_risk
                                            499
         opinion_seas_sick_from_vacc
                                            521
                                              0
          age_group
         education
                                           1407
         race
                                              0
                                              0
         sex
                                           4497
         income_poverty
                                           1442
         marital_status
         rent_or_own
                                           2036
         employment_status
                                           1471
         hhs_geo_region
                                              0
         census_msa
                                              0
         household adults
                                            225
         household children
                                            225
         employment industry
                                          13275
          employment_occupation
                                          13426
         dtype: int64
```

3.1.2 Changing Columns

Columns are in the desired format

3.1.3 Checking Duplicates

```
3.1.4 Checking Outliers
In [21]:
          numeric_df =train_df.select_dtypes(include = ['number'])
In [22]:
           #calculate the number of fig to fit height
           grid=(numeric_df.shape[1]+1)//2
           #allocating each plot a height of 5
           plt.figure(figsize=(12, grid * 5))
           count=0
           for col in numeric_df:
                 count += 1
                 plt.subplot(grid,2,count)
                 sns.boxplot(y=train_df[col])
               3.0
                                                              3.0
               2.5
                                                              2.5
            ponsehold adults
                                                             household_children
                                                              2.0
                                                              1.5
                                                              1.0
               0.5
                                                              0.5
              0.0
                                                              0.0
              1.0
                                                              1.0
              0.8
                                                              0.8
                                                             seasonal vaccine
            hInl_vaccine
0.0
4.0
                                                              0.6
                                                              0.4
              0.2
                                                              0.2
               0.0
                                                              0.0
```

3.1.5 Saving Dataset

```
In [23]: train_df.to_csv("train_clean.csv")
```

4 Explanatory Analysis

4.1 Univariate Analysis

```
In [24]: age_count = train_df['age_group'].value_counts()
    age_count.plot(kind="bar")
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('Age Group')
    plt.title("Number of Respondents to Age Group")
    plt.show()
```


65+ years are the most respondents while 35-44 Years are the least

```
In [25]: education_count = train_df['education'].value_counts()
    sns.countplot(x=train_df['education'],order=education_count.index,palette='l
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('Education level')
    plt.title("Number of Respondents to Education Level")
    plt.show()
```


The survey had many College Graduate than other level. With the least be <12 Years

```
In [26]: income_poverty_count = train_df['income_poverty'].value_counts()
    sns.countplot(x=train_df['income_poverty'],order=income_poverty_count.index
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('Income Poverty level')
    plt.title("Number of Respondents to Income Poverty Level")
    plt.show()
```


The survey had many **Above Poverty** respondents than other level. With the least be **Below Poverty**

```
In [27]: employment_status_count = train_df['employment_status'].value_counts()
    sns.countplot(x=train_df['employment_status'],order=employment_status_count
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('Employment Status level')
    plt.title("Number of Respondents to Employment Status Level")
    plt.show()
```


The survey had many **Employed** respondents than other level. With the least be **Unemployed**

The survey had many **White** respondents than other level. With the least be **Other or Multiple**

The survey had many Female respondents. With the least be Male

```
In [30]: marital_status_count = train_df['marital_status'].value_counts()
    sns.countplot(x=train_df['marital_status'],order=marital_status_count.index
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('marital_status')
    plt.title("Number of Respondents to marital_status")
    plt.show()
```


The survey had many Married respondents than other level. With the least be Not Married

```
In [31]: rent_or_own_count = train_df['rent_or_own'].value_counts()
    sns.countplot(x=train_df['rent_or_own'],order=rent_or_own_count.index,paletr
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('rent_or_own')
    plt.title("Number of Respondents to rent_or_own")
    plt.show()
```


The survey had many **Own** respondents than other level. With the least be **Rent**

```
In [32]: seasonal_vaccine_count = train_df['seasonal_vaccine'].value_counts()
    sns.countplot(x=train_df['seasonal_vaccine'],order=seasonal_vaccine_count.in
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('seasonal_vaccine')
    plt.title("Number of Respondents to seasonal_vaccine")
    plt.show()
```


The survey had many **not vaccinated** respondents for seasonal vaccine. With the least be **vaccinated**

```
In [33]: h1n1_vaccine_count = train_df['h1n1_vaccine'].value_counts()
    sns.countplot(x=train_df['h1n1_vaccine'],order=h1n1_vaccine_count.index,pale
    plt.ylabel('No of Respondents')
    plt.xticks(rotation=45)
    plt.xlabel('h1n1_vaccine')
    plt.title("Number of Respondents to h1n1_vaccine")
    plt.show()
```


The survey had many not vaccinated respondents for h1n1 vaccine. With the least be

4.2 Bivariate Analysis

```
In [34]: selected_features = ["age_group", "education", "income_poverty", "employmen"
                                              "race", "sex", "marital_status", "rent_or_own", "household_adults", "household_ad
                                fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
                                axes = axes.flatten()
                                # Loop through each column in the list
                                for i, feature in enumerate(selected features):
                                              # creating pivot table to aggregate the feature by seasonal_vaccine
                                              feature_seasonal_vaccine = train_df.pivot_table(index=feature, values='
                                              sns.barplot(x=feature_seasonal_vaccine.index,
                                                                                       y=feature_seasonal_vaccine['seasonal_vaccine'], color='#2a5
                                                                                       ci=None, ax=axes[i])
                                              axes[i].set_xlabel(feature)
                                              axes[i].set_ylabel('Number of Seasonal Vaccine')
                                              axes[i].set_title(f'Comparison of Seasonal Vaccine to {feature}')
                                              axes[i].tick_params(axis='x', rotation=45)
                                plt.tight_layout()
                                plt.show()
```


- 1. Took most seasonal vaccines compared to other age groups.
- 65+ Years
- College Graduate
- Female
- White
- Own House
- Married
- <=75000 Above Property</p>
- 2. Took least seasonal vaccines compared to other age groups.
- 35 44 Years

- <12 Years of education
- Male
- Black, Hispanic and Other
- Rent House
- Not Married
- Below Property

```
In [35]:
          # Create subplots, setting the number of rows and columns
         fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
         # Flatten axes array for easy iteration
         axes = axes.flatten()
         # Loop through each column in the list
         for i, feature in enumerate(selected_features):
             # Filter the train_df to only include rows where seasonal_vaccine == 0
             feature_seasonal_vaccine_0 = train_df[train_df['seasonal_vaccine'] == 0
             # Creating pivot table to aggregate the feature by seasonal vaccine == 6
             feature_seasonal_vaccine = feature_seasonal_vaccine_0.pivot_table(index
             # Plotting data
             sns.barplot(x=feature_seasonal_vaccine.index,
                         y=feature_seasonal_vaccine['seasonal_vaccine'], color='#2a5
                         ci=None, ax=axes[i])
             # Set labels and titles for each plot
             axes[i].set_xlabel(feature)
             axes[i].set_ylabel('Number of Non-Vaccinated Respondents')
             axes[i].set title(f'Comparison of Non-Vaccinated Respondents to {feature
             axes[i].tick_params(axis='x', rotation=45) # Rotate x-axis labels if n
         # Adjust layout for better spacing
         plt.tight_layout()
         plt.show()
```


- 1. Most Non-vaccinated seasonal vaccines compared to other age groups.
- 18 24 Years
- College Graduate
- Female
- White
- Employed
- Own House
- Married
- >=75000 Above Property

4.3 Multivariate Analysis

```
In [36]: fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
    axes = axes.flatten()

# Loop through each column in the list
for i, feature in enumerate(selected_features):
    # creating pivot table to aggregate the feature by seasonal_vaccine

    sns.countplot(x=train_df[feature],hue=train_df['seasonal_vaccine'],pale ax=axes[i])

    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('Number of Seasonal Vaccine')
    axes[i].set_title(f'Comparison of Seasonal Vaccine to {feature}')
    axes[i].tick_params(axis='x', rotation=45)

plt.tight_layout()
plt.show()
```


- 1. All age groups except 65 Years and 55 64 Years which have more are vaccinated than non vaccinated.
- 2. All education level except College Graduate which have more are vaccinated than non vaccinated.
- 3. All income levels which have more are non-vaccinated than vaccinated.
- 4. All employment status except not in labor force which have more are vaccinated than non vaccinated.
- 5. All sex, marital status and rent status which have more are non-vaccinated than vaccinated.

```
In [37]:
           # filter dataset where seasonal_vaccine was given
          df_vaccinated = train_df[train_df['seasonal_vaccine'] == 1]
          fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
          axes = axes.flatten()
          # loop through each column in the list
          for i, feature in enumerate(selected_features):
              sns.countplot(x=df_vaccinated[feature], hue=df_vaccinated['age_group'],
                              palette='Blues_r', ax=axes[i])
              axes[i].set_xlabel(feature)
              axes[i].set_ylabel('Number of Seasonal Vaccine Recipients')
              axes[i].set_title(f'Comparison of Seasonal Vaccine Recipients by {feature
              axes[i].tick_params(axis='x', rotation=45)
          # remove any empty subplots
          for j in range(len(col), len(axes)):
              fig.delaxes(axes[j])
          plt.tight_layout()
          plt.show()
                              35 - 44 Years
65+ Years
45 - 54 Years
55 - 64 Years
18 - 34 Years
                                                    750
            2000
            1000
```



```
# filter dataset where seasonal_vaccine was given
In [38]:
         df_vaccinated = train_df[train_df['seasonal_vaccine'] == 1]
         fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
         axes = axes.flatten()
         # Loop through each column in the list
         for i, feature in enumerate(selected_features):
             sns.countplot(x=df_vaccinated[feature], hue=df_vaccinated["income_pover"]
                           palette='Blues_r', ax=axes[i])
             axes[i].set_xlabel(feature)
             axes[i].set_ylabel('Number of Seasonal Vaccine Recipients')
             axes[i].set_title(f'Comparison of Seasonal Vaccine Recipients by {feature
             axes[i].tick_params(axis='x', rotation=45)
         # remove any empty subplots
         for j in range(len(col), len(axes)):
             fig.delaxes(axes[j])
         plt.tight_layout()
         plt.show()
```



```
# filter dataset where seasonal_vaccine was given
In [39]:
         df_vaccinated = train_df[train_df['seasonal_vaccine'] == 1]
         fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
         axes = axes.flatten()
         # loop through each column in the list
         for i, feature in enumerate(selected_features):
             sns.countplot(x=df_vaccinated[feature], hue=df_vaccinated["education"],
                           palette='Blues_r', ax=axes[i])
             axes[i].set_xlabel(feature)
             axes[i].set_ylabel('Number of Seasonal Vaccine Recipients')
             axes[i].set_title(f'Comparison of Seasonal Vaccine Recipients by {feature
             axes[i].tick_params(axis='x', rotation=45)
         # remove any empty subplots
         for j in range(len(col), len(axes)):
             fig.delaxes(axes[j])
         plt.tight_layout()
         plt.show()
```



```
# filter dataset where seasonal_vaccine was given
In [40]:
         df_vaccinated = train_df[train_df['seasonal_vaccine'] == 1]
         fig, axes = plt.subplots(nrows=6, ncols=2, figsize=(15, 20))
         axes = axes.flatten()
         # loop through each column in the list
         for i, feature in enumerate(selected_features):
             sns.countplot(x=df_vaccinated[feature], hue=df_vaccinated["race"],
                           palette='Blues_r', ax=axes[i])
             axes[i].set_xlabel(feature)
             axes[i].set_ylabel('Number of Seasonal Vaccine Recipients')
             axes[i].set_title(f'Comparison of Seasonal Vaccine Recipients by {feature
             axes[i].tick_params(axis='x', rotation=45)
         # remove any empty subplots
         for j in range(len(col), len(axes)):
             fig.delaxes(axes[j])
         plt.tight_layout()
         plt.show()
```


5 Preprocessing

Out[41]:

age_gro	oup educ	ation incom	e_poverty employn	nent_status ra	ce se	ex marita
0	3	1	2	1	3	0
1	1	0	2	0	3	1
2	0	2	0	0	3	1
3	4	0	2	1	3	0
4	2	3	0	0	3	0

```
In [42]: X = train_df.drop(columns=["seasonal_vaccine","h1n1_vaccine"])
y = train_df.seasonal_vaccine
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.2, random_
```

6 Modeling

```
In [44]: | model = LogisticRegression()
         # Define the parameter grid
         param_grid = {
              'C': [0.1, 1, 10],
              'solver': ['liblinear', 'saga']
         }
         # Set up GridSearchCV
         grid search = GridSearchCV(estimator=model, param grid=param grid, cv=5, n
         # Fit the model
         grid_search.fit(X_train, y_train)
         # Print the best parameters and score
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best cross-validation score: {grid_search.best_score_}")
         # Use the best model to predict
         logreg = grid_search.best_estimator_
         Fitting 5 folds for each of 6 candidates, totalling 30 fits
         Best parameters: {'C': 0.1, 'solver': 'liblinear'}
         Best cross-validation score: 0.6198695136417557
In [45]: # train dt model
         dtc_model = DecisionTreeClassifier(random_state=42)
         dtc_model.fit(X_train, y_train)
Out[45]:
                 DecisionTreeClassifier
                                                 (https://scikit-
                                                   rn.org/1.6/modules/generated/sklearn.tree.
          DecisionTreeClassifier(random state=42)
In [46]: |# train rf model
         rfc model = RandomForestClassifier(n estimators=200, max depth=10, random s
         rfc_model.fit(X_train, y_train)
Out[46]:
                                  RandomForestClassifier
                                                                                  https:
          RandomForestClassifier(max depth=10, n estimators=200, random state=42)
In [47]: | # train svc model
         svm model = SVC(random state=42)
         svm_model.fit(X_train, y_train)
Out[47]:
                 SVC
                             (https://scikit-
                                 n.org/1.6/modules/generated/sklearn.svm.SVC.html)
          SVC(random state=42)
```

```
In [48]: model = SVC()
         # Define the parameter grid
         param_grid = {
              'C': [0.1, 1, 10],
             'kernel': ['linear', 'rbf', 'poly'],
              'gamma': ['scale', 'auto']
         }
         # Set up GridSearchCV
         grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, n_
         # Fit the model
         grid_search.fit(X_train, y_train)
         # Print the best parameters and score
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best cross-validation score: {grid_search.best_score_}")
         # Use the best model to predict
         svm_mode = grid_search.best_estimator_
         Fitting 5 folds for each of 18 candidates, totalling 90 fits
         Best parameters: {'C': 0.1, 'gamma': 'scale', 'kernel': 'rbf'}
         Best cross-validation score: 0.6201067615658363
         # naive bayes classifier
In [49]:
         nbc model= MultinomialNB()
         # Train the model
         nbc_model.fit(X_train, y_train)
Out[49]:
          ▼ MultinomialNB
                               (https://scikit-
                              learn.org/1.6/modules/generated/sklearn.naive bayes.MultinomialNB.
          MultinomialNB()
```

7 Evaluation

```
In [53]: # Logreg model
         y_predict = logreg.predict(X_test)
         # evaluate the logreg model
         logreg_accuracy = accuracy_score(y_test,y_predict)
         # dt model
         y_pred = dtc_model.predict(X_test)
         # Evaluate the dt model
         dtc_model_accuracy = accuracy_score(y_test, y_pred)
         #rf model
         y_pred = rfc_model.predict(X test)
         # evaluate the rf model
         rfc_model_accuracy = accuracy_score(y_test, y_pred)
         # svm model
         y_pred = svm_model.predict(X_test)
         # evaluate the svm model
         svm_model_accuracy = accuracy_score(y_test, y_pred)
         # naive bayes classifier
         y_pred = nbc_model.predict(X_test)
         # evaluate the svm model
         nbc_model_accuracy = accuracy_score(y_test, y_pred)
         print("Logistic Regression Accuracy = ", logreg_accuracy )
         print("Decision Tree Classifier Accuracy = ", dtc_model_accuracy)
         print("Random Forest Accuracy = ", rfc_model_accuracy)
         print("SVM Accuracy = ", svm_model_accuracy)
         print("Naive Bayes Classifier = ", nbc_model_accuracy)
```

Logistic Regression Accuracy = 0.6125741399762752

Decision Tree Classifier Accuracy = 0.4623962040332147

Random Forest Accuracy = 0.6166073546856465

SVM Accuracy = 0.6166073546856465

Naive Bayes Classifier = 0.6099644128113879

8 Conclusion

- Logistic Regression: 0.62 Accuracy
- Decision Tree Classifier: 0.59 Accuracy
- Random Forest: 0.60 Accuracy
- Support Vector Machine (SVM): 0.62 Accuracy
- Naive Bayes: 0.62 Accuracy

Logistic Regression, Naive Bayes and SVM achieved the highest accuracy at **0.62**, making it the best-performing model. Decision Tree Classifier had the lowest accuracy at **0.59**. Random Forest, performed similarly with accuracy of **0.60**.