Exploiting Symmetries in Quantum Machine Learning

C-NOTpolitecnico

Chiara Ballotta, Davide Cugini, Francesco Ghisoni, Francesco Scala

Tic tac toe

Generic Onth

2 Partially synthetric

Symmetric

GENERIC QNN

SYMMETRIZATION

SYMMETRIC QNN

1 QB GATES

CORNERS EDGES

EDGES MIDDLE MIDDLE CORNERS

Loss - 3 layers

ACC

HIGHLIGHT

"Not simulated are circuits for the values (4,4), (4,5), (5,3), (5,4) and (5,5) due to their growing computational demand."

Exploiting Symmetry in Variational Quantum Machine Learning, J.J. Meyer et al.

02 Schwinger model

- -Inherently symmetric problem
- -Toy model of the Standard Model (1+1 dimensions)
- -Spacetime discretized: Lattice formulation

PERIODIC BOUNDARY CONDITIONS

THE HAMILTONIAN

$$\mathrm{H}\,\propto\,\Sigma_i\,E_i^2$$

THE PROBLEM

TRUNCATION: Electric field allowed to vary in an interval ΔE

LATTICE REDUCTION

SYMMETRY GROUP

 $\Delta E < 2$ N sites = 8

ENCODING CIRCUIT

REFLECTION

ENCODING CIRCUIT

ROTATION

PARAMETRIZED CIRCUIT

1 QB GATES

2 QB GATES

RESULTS

Test accuracy ~58%

Test accuracy ~30%

Thank you for your attention!

C-NOTpolitecnico

Chiara Ballotta, Davide Cugini, Francesco Ghisoni, Francesco Scala

FIH zürich

Variational Quantum Algorithms

QUANTUM NEURAL NETWORK

INPUTS

 ho_i

CLASSICAL **MACHINE LEARNING (CML)**

Classical **Computing**

BIT

QUANTUM MACHINE LEARNING (QML)

Quantum **Computing**

QUBIT

|1>

ML

Algorithm

TASK

QPU processing

02 Schwinger model

- -Toy model of the Standard Model (1+1 dimensions)
- -Spacetime discretized: Lattice formulation*

WHY ON A LATTICE? QCD can't be treated perturbatively at low energies

WHY ON A QUANTUM DEVICE? Real time evolution + avoid sign problem

BARREN PLATEU

