# Test Securitatea Informației (varianta 2)

# Criptografie

CRYPTO. 1. Ce model de criptare a fost folosit pentru a obține imaginea de mai jos? Argumentați.



### Drepturi de acces

- DR. 1. Care din următoarele caracterizări este validă? Justificați.
  - a) drwxrwxr-x 2 doc doc 20480 aug 23 11:08 All/
  - b) -rsw-rw-r- 1 ss ss 277472874 nov 11 14:00 ta.mp4
  - c) -rw-w-xr-x 1 root root 66920 feb 21 2019 ping\*

#### Modelul Matricei de control al accesului

MC1. 1. Fie sistemul de protecție dat prin  $C = \{disp; lamp; danv\}$ , unde:

$$\begin{array}{c} \text{command } disp\ (X,Y),\ X,Y\in\mathcal{V}_{sub} \\ \text{if } x\ \text{in } (X,Y) \\ \text{then} \\ \text{enter } t\ \text{into } (X,Y) \\ \text{end} \\ \\ \text{command } lamp\ (X,Y,Z),\ X\in\mathcal{V}_{sub},\ Y,Z\in\mathcal{V}_{sub}\cup\mathcal{V}_{ob} \\ \text{if } t\ \text{in } (X,Y)\ \text{and } r\ \text{in } (Y,Z) \\ \text{then} \\ \text{enter } r\ \text{into } (X,Z) \\ \text{end} \\ \\ \text{command } danv\ (X,\ Y,\ Z),\ X\in\mathcal{V}_{sub},\ Y,Z\in\mathcal{V}_{sub}\cup\mathcal{V}_{ob} \\ \text{if } t\ \text{in } (X,Y)\ \text{and} \\ s\ \text{in } (Y,Z) \\ \text{then} \\ \text{enter } t\ \text{into } (X,Z) \\ \end{array}$$

|   | A | $\mid a \mid$ | $\mid b \mid$ | c    | $o_1$            | $o_2$ |
|---|---|---------------|---------------|------|------------------|-------|
|   | a | p             | t             | w    | w                | Ø     |
| - | b | Ø             | p             | t, s | $\boldsymbol{x}$ | w     |
|   | c | 0             | Ø             | p    | r, w             | r, w  |

Arătaţi, prin desenarea matricei, cum se modifică aceasta în urma aplicării comenzilor  $disp(b, o_1)$ , danv(a, b, c),  $lamp(a, c, o_2)$ .

# Modelul Take Grant

**TG. 1.** Se dă graful TG din Figura 1. Aplicând reguli de tranziție de tip take, grant, create, decideți dacă nodul a poate ajunge să aibă dreptul r asupra lui z. Numerotați arcele noi corespunzător regulii pe care ați aplicat-o.



Figura 1: Graf TG Ex. 1

**TG. 2.** Considerând graful Take-Grant G din Figura 2, decideți dacă predicatul  $can\_share(t, o_4, o_{13}, G)$  are valoarea true sau false, verificând explicit condițiile din Teorema de validare a predicatului  $can\_share$  din curs (se va menționa ce valori vor lua nodurile s, s', p' în graful de mai jos, care sunt insulele  $I_1, \ldots, I_n$ , podurile dintre insule şi tipul lor).



Figura 2: Graful G -  $can\_share(t, o_4, o_{13}, G)$ .