18.100B FINAL EXAM STUDY GUIDE

JOHN WANG

1. Problem 1

Theorem 1.1. Show that $\sup A = \sqrt{2}$ where $A = \{x \in \mathbb{Q} : x > 0, x^2 < 2\}$.

Proof. First, we define $\sup A = s$ and note that $s^2 \ge 2$. Suppose not, then s < 2 and there exists an $\epsilon > 0$ such that $s + \epsilon \in A$, which contradicts the fact that s is the least upper bound. Now suppose that $s^2 > 2$. Then we can always find some $\delta > 0$ such that $s^2 - \delta > 2$, so that $s^2 - \delta \notin A$ and $s^2 - \delta > x$ for all $x \in A$, which is a contradiction of s being a supremum. Thus, we must have $s^2 = 2$, or by the uniqueness of radicals, $s = \sqrt{2}$.

2. Problem 2

Theorem 2.1. Let $\mathbf{A} \subset \mathbb{R}$ be a nonempty set. Define $-\mathbf{A} = \{x : -x \in \mathbf{A}\}$. Show that $\sup(-\mathbf{A}) = -\inf \mathbf{A}$ and $\inf(-\mathbf{A}) = -\sup \mathbf{A}$.

Proof. Suppose that A is bounded from below and let $a = \inf \mathbf{A}$. Then we must have $a \le x$ for all $x \in \mathbf{A}$ and $-a \ge y$ for all $y \in -\mathbf{A}$. Therefore, we see that $y \le -a \le a \le x$. Now, suppose that there exists some $\epsilon > 0$ such that $-a - \epsilon > y$ for all $y \in -\mathbf{A}$. Then, we must have $a + \epsilon < x$ for all $x \in \mathbf{A}$. Therefore, we see that a is not the infimum of \mathbf{A} , which is a contradiction. Therefore, no such epsilon exists, so that -a is the supremum of $-\mathbf{A}$. If \mathbf{A} is not bounded from below, then $\inf \mathbf{A} = -\infty$, so that $\sup(-\mathbf{A}) = \infty$. Therefore, we have shown that $\sup(-\mathbf{A}) = -\inf \mathbf{A}$. The proof that $\inf(-\mathbf{A}) = -\sup \mathbf{A}$ is similar.

3. Problem 3

Theorem 3.1. Let $A, B \subset \mathbb{R}$ be nonempty. Define $A + B = \{z = x + y : x \in A, y \in B\}$ and $A - B = \{z = x - y : x \in A, y \in B\}$. Show that $\sup(A + B) = \sup A + \sup B$ and $\sup(A - B) = \sup A - \inf B$.

Proof. Let A and B be bounded from above, and define $a = \sup A$ and $b = \sup B$, and $s = \sup(A + B)$. By the definition of supremum, we see that $a \ge x - \epsilon/2$ for all $x \in A$ and $b \ge y - \epsilon/2$ for all $y \in B$. Therefore, we see that $a + b \ge x + y - \epsilon$. Since $z = x + y \in A + B$, we have shown that s = a + b.

For the next part, we choose the set $C = -B = \{y : -y \in B\}$. We have previously shown that $\sup C = -\inf B$. Moreover, we see that $\sup(A - B) = \sup(A + C)$ because $A - B = \{z = x - y : x \in A, y \in B\} = \{z = x + y : x \in A, -y \in B\} = A + C$. We have just shown that $\sup(A + C) = \sup A + \sup C$, and since $\sup C = -\inf(B)$, we have $\sup(A - B) = \sup(A + C) = \sup A - \inf B$.

4. Problem 4

Theorem 4.1. Let A, B be nonempty subsets of real numbers. Show that $\sup(A \cup B) = \max\{\sup A, \sup B\}$ and $\inf(A \cup B) = \min\{\inf A, \inf B\}$.

Proof. First, suppose that A and B are bounded above so that $\sup A = a$ and $\sup B = b$. Then we can assume without loss of generality that $a \geq b$. Thus, we see that $a \geq x - \epsilon$ for all $x \in A$ and some $\epsilon > 0$. Moreover, we see that $a \geq b$ implies that $a \geq y - \epsilon$ for all $y \in B$ and some $\epsilon > 0$. This implies that $a = \sup(A \cup B)$. If either A or B is unbounded, then $\sup A = \infty$ or $\sup B = \infty$ and $\sup(A \cup B) = \infty$. This proves the theorem for $\sup(A \cup B) = \max\{\sup A, \sup B\}$, and the proof for $\inf(A \cup B) = \min\{\inf A, \inf B\}$ is similar.

1

5. Problem 5

Theorem 5.1. Prove that if a sequence $\{a_n\}$ is monotonically increasing then $\lim_{n\to\infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$

Proof. If the sequence $\{a_n\}$ is unbounded, we see that $\lim_{n\to\infty}a_n=\infty$ and $\sup\{a_n:n\in\mathbb{N}\}=\infty$. If the sequence $\{a_n\}$ is bounded, we can assume that $\sup\{a_n:n\in\mathbb{N}\}=a$. Since $\{a_n\}$ is monotonically increasing, we see that $a_{n+1}\geq a_n$. Moreover, we see that by definition of upper bound that $a_n\leq a$ for all $n\in\mathbb{N}$. This means that for each $\epsilon>0$, we can find some a_{n_0} such that $a-\epsilon< a_{n_0}$ because $a-\epsilon$ is not an upper bound. Therefore, we see that $a>a_{n_0}>a-\epsilon$, which implies that $|a_{n_0}-a|<\epsilon$. Thus, we have shown that $\lim_{n\to\infty}a_n=a$.

6. Problem 6

Theorem 6.1. Let a_1, a_2, \ldots, a_p be fixed positive numbers and consider the sequence $s_n = \frac{a_1^n + a_2^n + \ldots + a_p^n}{p}$ and $x_n = \sqrt[n]{s_n}$. Prove that x_n is monotonically increasing.

Proof. First we will show that $\frac{s_n}{s_{n+1}}$ is monotonically increasing. If each $a_1, \ldots a_p \leq 1$, then we see that $a_i^n \geq a_i^{n+1}$, which means that $s_n \geq s_{n+1}$. This means that $\frac{s_n}{s_{n+1}} \leq \frac{s_{n+1}}{s_{n+2}}$ for $n \geq 2$. The same is true when some a_i is greater than 1. Therefore, $\frac{s_n}{s_{n+1}}$ is monotonically increasing, and so $s_n^2 \leq s_{n+1}s_{n-1}$.

We know that $x_1 \leq x_2$ because:

(6.2)
$$\left(\sum_{i=1}^{p} a_i\right)^2 \le \sum_{i=1}^{p} (a_i)^2$$

Now assume $x_{n-1} \leq x_n$, so that $s_{n-1} \leq s_n^{\frac{n-1}{n}}$. We will show that $x_n \leq x_{n+1}$:

$$(6.3) x_{n+1} = \sqrt[n+1]{s_{n+1}} \ge \sqrt[n+1]{\frac{s_n^2}{s_{n-1}}} \ge \sqrt[n+1]{\frac{s_n^2}{\frac{n-1}{s_n^{-1}}}} = \sqrt[n+1]{s_n^{1+\frac{1}{n}}} = s_n^{\frac{1+\frac{1}{n}}{n+1}} = s_n^{\frac{1}{n}} = x_n$$

Since $x_{n+1} \ge x_n$, we have proven that $\{x_n\}$ is monotonically increasing by induction.

7. Problem 7

Theorem 7.1. Let $\{a_n\}$ be a bounded sequence which satisfies the condition $a_{n+1} \geq a_n - \frac{1}{2^n}$ for $n \in \mathbb{N}$. Show that the sequence $\{a_n\}$ is convergent.

Proof. Since $\{a_n\}$ is bounded, we know that $|a_n| < M$ for some M > 0 for all $n \in \mathbb{N}$. Moreover, the assumption shows that $\frac{1}{2^n} \ge a_n - a_{n+1}$. This means that $|a_n - a_{n+1}| \le \frac{1}{2^n}$. Particularly, we know that $\frac{1}{2^n} \to 0$ as $n \to \infty$. This tells us that $|a_n - a_{n+1}| \to 0$ as $n \to \infty$. By the Cauchy criterion, we see that $\{a_n\}$ converges.

8. Problem 8

Theorem 8.1. Establish the convergence and find the limit of the sequence defined by $a_1 = 0$ and $a_{n+1} = \sqrt{6 + a_n}$ for $n \ge 1$.

Proof. First we note that $a_1=0$ and $a_2=\sqrt{6}$. We know that since $3^2=9$ that $a_2=\sqrt{6}\leq 3$, so that $0< a_2<3$. This implies $6< a_2+6<9$, and since square root preserves ordering, we have $\sqrt{6}<\sqrt{a_2+6}<3$. Therefore, we see that $a_2< a_3<3$. Continuing this process, we see that $\sqrt{6+\sqrt{6}}< a_4<3$, which implies $a_3< a_4<3$. We see that this process continues indefinitely, and that $a_n< a_{n+1}<3$. This means that $\{a_n\}$ is monotonically increasing and bounded from above by 3. First, this establishes the convergence of $\{a_n\}$. Next, this shows that $\{a_n\}\to 3$ as $n\to\infty$. This is because for any $\epsilon>0$, we can choose N large enough so that $|3-a_N|<\epsilon$ because $\{a_n\}$ is monotonically increasing.

9. Problem 9

Theorem 9.1. Show that the sequence defined by $a_1 = 0$, $a_2 = \frac{1}{2}$, and $a_{n+1} = \frac{1}{3}(1 + a_n + a_{n-1}^3)$ for n > 1 converges and determine its limit.

Proof. We see that $0 \le a_n \le 1$ because $1 + a_n + a_{n-1}^3$ is always less than 3 for our given starting values. First, we will show convergence by assuming $a_n \ge a_{n-1}$:

$$(9.2) a_{n+1} - a_n = \frac{1}{3}(1 + a_n + a_{n-1}^3) - a_n = \frac{1}{3}\left(1 - \frac{2}{3}a_n - a_{n-1}^3\right)$$

Since $a_n \leq 1$ and $a_{n-1} \leq a_n$, we see that $a_{n+1} - a_n \geq \frac{1}{3}(1 - a_n(\frac{2}{3} + a_n^2)) \geq \frac{1}{3}(1 - 1(\frac{2}{3} + 1)) \geq 0$. Therefore, we see that $a_{n+1} \geq a_n$ if we assume that $a_n \geq a_{n+1}$. This shows that $\{a_n\}$ is monotonically increasing and bounded, which implies convergence. Moreover, we see that $\{a_n\} \to 1$ as $n \to \infty$ because for every $\epsilon > 0$ we can always choose an N such that $|1 - a_N| < \epsilon$.

10. Problem 10

Theorem 10.1. Let $\{a_n\}$ be defined recursively by $a_{n+1} = \frac{1}{4-3a_n}$ for $n \ge 1$. Determine for which a_1 the sequence converges and in the case of convergence find its limit.

Proof. We will show by induction that the following is true:

(10.2)
$$a_n = \frac{(3^{n-1} - 1) - (3^{n-1} - 3)a_1}{(3^n - 1) - (3^n - 3)a_1}$$

First, it is clear that this follows for $a_2 = \frac{3-1-(3-3)a_1}{9-1-(9-3)a_1} = \frac{2}{8-6a_1} = \frac{1}{4-3a_1}$. Thus, we have established the base case. Now, we will show that this works for a_{n+1} :

$$(10.3) a_{n+1} = \frac{1}{4 - 3a_n} = \frac{(3^n - 1) - (3^n - 3)a_1}{4((3^n - 1) - (3^n - 3)a_1) - 3((3^{n-1} - 1) - (3^{n-1} - 3)a_1)}$$

$$(10.4) \qquad = \frac{(3^n - 1) - (3^n - 3)a_1}{(3^{n+1} - 1) - (3^{n+1} - 3)a_1}$$

Therefore, we see that the sequence does indeed converge as $n \to \infty$ for $a_1 \neq \frac{3^n-1}{3^n-3}$ for all $n \in \mathbb{N}$. If $a_1 = 1$, then $a_n = 1$. For all other allowable values of a_1 , we have $a_n \to \frac{1}{3}$ as $n \to \infty$.

11. Problem 11

Theorem 11.1. Prove the convergence of $\{a_n\}$ defined inductively by $a_1 = 2$ and $a_{n+1} = 2 + \frac{1}{3 + \frac{1}{a_n}}$ for $n \ge 1$ and find its limit.

Proof. First, note that the series is monotonically increasing. This is because of the following:

(11.2)
$$a_{n+1} - a_n = 2 + \frac{1}{3 + \frac{1}{n}} - a_n = 2 + \frac{a_n}{3a_n + 1} - a_n = 2 + \frac{-3a_n^2}{3a_n + 1}$$

And this is negative only for $a_n > \frac{1}{3}(3+\sqrt{15})$. Since we begin at $2 < \frac{1}{3}(3+\sqrt{15})$, it is clear that $a_{n+1} - a_n > 0$ for all $n \in \mathbb{N}$, so that $\{a_n\}$ is monotonically increasing. Moreover, we can show that the sequence is bounded, for instance by the value 3. We know that a_n cannot be greater than 3, because if it were, then $a_{n+1} - a_n < 0$ would imply a monotonically decreasing function, a contradiction of our previous assertion. Therefore, since the sequence is monotonic and bounded, it converges. To find its limit s, we set $s = 2 + \frac{1}{3+1}$ and find that $s = \frac{1}{3}(3+\sqrt{15})$.

12. Problem 12

Theorem 12.1. The recursive sequence $\{a_n\}$ is given by setting $a_1 = 1, a_2 = 2, a_{n+1} = \sqrt{a_{n-1}} + \sqrt{a_n}$ for $n \geq 2$. Show that the sequence is bounded and strictly increasing. Find its limit.

Proof. First, we note that $a_3 = \sqrt{2} + 1$ so that $a_1 < a_2 < a_3$. Now, we find that $a_{n+1} - a_n = \sqrt{a_{n-1}} + \sqrt{a_n} - \sqrt{a_{n-2}} - \sqrt{a_{n-1}}$. Assume that $a_n > a_{n-1} > a_{n-2} > \dots$ Then we know that $\sqrt{a_n} - \sqrt{a_{n-1}} > 0$ because $a_n > a_{n+1}$. Also, we see that $\sqrt{a_{n-1}} - \sqrt{a_{n-2}} > 0$ because $a_{n-1} > a_{n-2}$. This shows that $a_{n+1} - a_n > 0$, which implies that $a_{n+1} > a_n$. Thus, we have shown using induction that $\{a_n\}$ is strictly increasing.

Moreover, we can see that the sequence is bounded by 4. This is because the function $f(x) = 2\sqrt{x} - x$ is negative when x > 4. Since $a_n > a_{n-1}$, we see that $a_{n+1} < 2\sqrt{a_n}$, which implies $a_{n+1} - a_n < 2\sqrt{a_n} - a_n$. However, since f(x) < 0 when x > 4, we see that $2\sqrt{a_n} - a_n < 0$ which shows that $a_{n+1} - a_n < 0$, which is a contradiction of the fact that $\{a_n\}$ is strictly increasing. This shows that a_n cannot be greater than 4, and thus shows that $\{a_n\}$ is bounded. Since it is also strictly increasing, we know that the sequence converges so some number s. We can find this by setting $s = \sqrt{s} + \sqrt{s} = 2\sqrt{s}$. Solving this equation, we obtain s = 4. \square

13. Problem 13

Theorem 13.1. Suppose that a bounded sequence $\{a_n\}$ is such that $a_{n+2} \leq \frac{1}{3}a_{n+1} + \frac{2}{3}a_n$ for $n \geq 1$. Prove the convergence of the sequence.

Proof. By the assumption, we have $a_{n+2}+\frac{2}{3}a_{n+1}\leq a_{n+1}+\frac{2}{3}a_n$. We can set $b_n=a_{n+1}+\frac{2}{3}a_n$, and we see that this sequence is decreasing. This is because $b_{n+1}=a_{n+2}+\frac{2}{3}a_{n+1}\leq \frac{1}{3}a_{n+1}+\frac{2}{3}a_n+\frac{2}{3}a_{n+1}=a_{n+1}+\frac{2}{3}a_n=b_n$, which shows that $b_{n+1}\leq b_n$ for all $n\geq 1$. Moreover, since a_n is a bounded sequence, we know that b_n is also bounded. This shows that b_n converges to some limit b. Now set $a=\frac{3}{5}b$. Fix $\epsilon>0$, we see that there exists an N>0 such that for all n>N, we have $|b_n-b|<\epsilon$. This corresponds to $|a_{n+1}+\frac{2}{3}a_n-\frac{5}{3}a|<\epsilon$. By the triangle inequality, we have $|a_{n+1}-a|\leq |a_{n+1}+\frac{2}{3}a_n-\frac{5}{3}a|+|-\frac{2}{3}a_n+\frac{5}{3}a-a|=|a_{n+1}-\frac{2}{3}a_n-\frac{5}{3}a|+\frac{2}{3}|-a_n+a|$. Rearranging, we obtain: $|a_{n+1}-a|-\frac{2}{3}|a_n-a|\leq |a_{n+1}-\frac{2}{3}a_n-\frac{5}{3}a|<\epsilon$. Therefore, we get $|a_{n+1}-a|<\epsilon+\frac{2}{3}a_n-a|$. Using induction, we get:

$$|a_{n_0+k} - a| \leq \left(\frac{2}{3}\right)^k |a_{n_0} - a| + \left(\left(\frac{2}{3}\right)^{k-1} + \ldots + \frac{2}{3} + 1\right) \epsilon$$

$$\leq \left(\frac{2}{3}\right)^k |a_{n_0} - a| + \frac{1 - \left(\frac{2}{3}\right)^k}{1 - \frac{2}{3}} \epsilon$$

Thus, we see that $|a_n - a| < \epsilon$ for n > N. This shows that $\{a_n\} \to a$ as $n \to \infty$.

14. Problem 14

Theorem 14.1. Calculate $\lim_{n\to\infty} (\sqrt[n]{n}-1)^n$.

Proof. First, note that for $n \geq 3$, the sequence $\{a_n\}$ for $a_n = \sqrt[n]{n} - 1$ is monotonically decreasing. Indeed, we see that $a_{n+1} - a_n = \sqrt[n+1]{n+1} - \sqrt[n]{n}$, and we know that $f(x) = x^{1/x}$ has a derivative of $f'(x) = -x^{1/x-2}(\ln(x)-1)$. Since f'(x) < 0 when $\ln(x) - 1 > 0$, we see that f'(x) < 0 when x > e. Therefore, we know that $f(x_1) - f(x_2) < 0$ when $e < x_2 < x_1$. It follows that $\{a_n\}$ is monotonically decreasing for $n \geq 3$. Next, we know that $\sqrt[n]{n-1} < 1/2$ for $n \geq 3$ because $3^{1/3} - 1 < \frac{1}{2}$ and $\sqrt[n]{n-1}$ is monotonically decreasing. Therefore we see that $\lim_{n\to\infty} (\sqrt[n]{n} - 1)^n < \lim_{n\to\infty} (1/2)^n = 0$. Since $\sqrt[n]{n} \to 1$ as $n \to \infty$, we see that 0 is also a lower bound for this expression. By the squeeze law, we see that $\lim_{n\to\infty} (\sqrt[n]{n} - 1)^n = 0$.

15. Problem 15

Theorem 15.1. Study the convergence of $a_1 = a$, $a_n = 1 + ba_{n-1}$ for $n \ge 2$.

Proof. We see that $a_2 = 1 + ba$, $a_3 = 1 + b + b^2a$, and that by induction, $a_n = 1 + b + \ldots + b^{n-1}a$. Therefore, we see that $a_n = b^{n-1}a + \sum_{i=0}^{n-2} b^i$. This allows us to compute the following expression, using the formula for computing geometric sums:

(15.2)
$$a_{n+1} = \begin{cases} \frac{1}{1-b} + b^n \left(a - \frac{1}{1-b}\right) & b \neq 1\\ n+a & b = 1 \end{cases}$$

Therefore, we see that if b=1, $\{a_n\}$ does not converge. If $b\neq 1$ and $a=\frac{1}{1-b}$, the sequence converges to $\frac{1}{1-b}$. If |b|<1, then the sequence converges to $\frac{1}{1-b}$. Otherwise, the sequence diverges.

16. Problem 16

Theorem 16.1. If a_1, \ldots, a_n are positive real numbers such that $a_1 a_2 \ldots a_n = 1$, then $a_1 + a_2 + \ldots + a_n \geq n$.

Proof. First, if $a_1, \ldots, a_n = 1$, then the inequality is trivial. So we can suppose that some $a_j < 1$, which also means that another $a_k > 1$. We can then reorder the numbers so that $a_1 < a_2 < \ldots < a_n$, with $a_1 < 1 < a_n$. We will prove the proposition using induction, starting with the trivial base case of n = 1, so that $a_1 = 1$. The inequality holds in this case, so we can suppose that it holds up to n. This means that if $a_1 \ldots a_n = 1$, then $a_1 + \ldots + a_n \ge 1$ by assumption. Since $a_1 < 1$ and $a_{n+1} > 1$, we see that $a_1 < a_1 a_{n+1}$, so we can

18.100B

rearrange our assumption to get $a_2 + \dots a_n + a_1 a_{n+1} \ge n$. Adding a_1, a_{n+1} to both sides and moving $a_1 a_{n+1}$ to the right side of the inequality, we obtain $a_1 + \dots + a_{n+1} \ge n - a_1 a_{n+1} + a_1 + a_{n+1}$. This becomes:

$$(16.2) a_1 + \dots + a_{n+1} \ge n + a_1 - a_{n+1}(a_1 - 1)$$

$$(16.3) = n + a_1 - 1 - a_{n+1}(a_1 - 1) + 1$$

$$= n+1+(1-a_{n+1})(a_1-1)$$

$$(16.5) \geq n+1$$

Where the last inequality comes from the fact that $a_{n+1} > 1$ and $a_1 < 1$, so that $(1 - a_{n+1})(a_1 - 1) > 0$. This completes the proof by induction.

17. Problem 17

Theorem 17.1. Let $A_n = \frac{a_1 + \ldots + a_n}{n}$, $G_n = \sqrt[n]{a_1 \ldots a_n}$, $H_n = \frac{n}{\frac{1}{a_1} + \ldots + \frac{1}{a_n}}$ be the arithmetic, geometric, and harmonic means respectively for n real positive numbers a_1, \ldots, a_n . Prove that $A_n \geq G_n \geq H_n$.

Proof. First, we will use Jensen's inequality for concave functions, in this case logarithms. We have:

(17.2)
$$\ln\left(\frac{a_1 + \ldots + a_n}{n}\right) \geq \frac{\ln(a_1) + \ldots + \ln(a_n)}{n}$$

(17.3)
$$= \frac{\ln(a_1 \dots a_n)}{n}$$

$$= \ln \sqrt[n]{a_1 \dots a_n}$$

$$= \ln \sqrt[n]{a_1 \dots a_n}$$

Since ln(x) is an increasing function that preserves ordering, we see that $A_n \geq G_n$. We can then us what we have just derived and place $1/a_j$ into the inequality for $A_n \geq G_n$ to obtain:

$$\frac{\frac{1}{a_1} + \ldots + \frac{1}{a_n}}{n} \geq \sqrt[n]{\frac{1}{a_1 \ldots a_n}}$$

(17.6)
$$\sqrt[n]{a_1 \dots a_n} \ge \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$$

This gives $A_n \geq G_n \geq H_n$.

18. Problem 18

Theorem 18.1. Calculate $\lim_{n\to\infty}\sum_{k=1}^n \sqrt{1+\frac{k}{n^2}}-1$.

Proof. First, we will set $a_1 = 1 + x$ and $a_2 = 1$ and use the arithmetic-geometric-harmonic inequality derived above. Thus, we have $\frac{2}{\frac{1}{1+x}+1} \le \sqrt{1+x} \le \frac{2+x}{2}$. We can split these into the following:

(18.2)
$$\frac{2}{\frac{1}{1+x}+1} = \frac{2(1+x)}{2+x} = \frac{x}{2+x} + \frac{1+x}{1+x} = 1 + \frac{x}{2+x}$$

$$(18.3) \frac{2+x}{2} = 1 + \frac{x}{2}$$

Thus, by subtracting 1 from each part of the inequality, we can obtain the following bounds for $x \geq 0$:

$$(18.4) \frac{x}{2+x} \le \sqrt{1+x} - 1 \le \frac{x}{2}$$

We can set $x = \frac{k}{n^2}$ and substitute it into the expression because $1 \le k \le n$ and $n \in \mathbb{N}$ so that $\frac{k}{n^2} > 0$. Moreover, since sums and limits preserve ordering, we obtain:

(18.5)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2n^2 + k} \le \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + \frac{k}{n^2}} - 1 \le \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2n^2}$$

Therefore, we can evaluate the upper and lower bounds on our expression. First, we will get another lower bound, because $k \le n$:

(18.6)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2n^2 + k} \le \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2n^2 + n}$$

(18.7)
$$= \lim_{n \to \infty} \frac{1}{2n(n+1)} \sum_{k=1}^{n} k$$

(18.8)
$$= \lim_{n \to \infty} \frac{1}{2n(n+1)} \frac{n(n+1)}{2}$$

$$= \lim_{n \to \infty} \frac{1}{4} = \frac{1}{4}$$

Now, we can go ahead and find the upper bound as well:

(18.10)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2n^2} = \lim_{n \to \infty} \frac{1}{2n^2} \sum_{k=1}^{n} k$$

(18.11)
$$= \lim_{n \to \infty} \frac{1}{2n^2} \frac{n(n+1)}{2}$$

$$= \lim_{n \to \infty} \frac{n^2 + n}{4n^2} = \frac{1}{4}$$

Now, we see that by squeeze law that we must have $\lim_{n\to\infty}\sum_{k=1}^n\sqrt[n]{1+\frac{k}{n^2}}-1=\frac{1}{4}$.

19. Problem 19

Theorem 19.1. Given real $x \ge 1$ show that $\lim_{n\to\infty} (2\sqrt[n]{x} - 1)^n = x^2$.

Proof. First, we can find an upper found for the limit because $0 \le (\sqrt[n]{x} - 1)^2 = \sqrt[n]{x^2} - 2\sqrt[n]{x} + 1$. This implies that $2\sqrt[n]{x} - 1 \le \sqrt[n]{x^2}$. Moreover, since limit preserves ordering, we see that $\lim_{n\to\infty} (2\sqrt[n]{x} - 1)^n \le \lim_{n\to\infty} (\sqrt[n]{x^2})^n = \lim_{n\to\infty} x^2 = x^2$. Thus, we have found an upper bound for the limit and must proceed to find a lower bound. We note the following:

$$(2\sqrt[n]{x}-1)^n = \left(\sqrt[n]{x^2}\left(\frac{2}{\sqrt[n]{x}}-\frac{1}{\sqrt[n]{x^2}}\right)\right)^n$$

$$= x^2 \left(\frac{2}{\sqrt[n]{x}} - \frac{1}{\sqrt[n]{x^2}} + 1 - 1 \right)^n$$

$$= x^2 \left(1 + \frac{2\sqrt[n]{x} - 1 - \sqrt[n]{x^2}}{\sqrt[n]{x^2}} \right)^n$$

$$= x^2 \left(1 - \frac{(\sqrt[n]{x} - 1)^2}{\sqrt[n]{x^2}} \right)^n$$

We know $x = (\sqrt[n]{x} + 1 - 1)^n$. So we can use the Bernoulli inequality to obtain $x = (1 + (\sqrt[n]{x} - 1))^n \ge 1 + n(\sqrt[n]{x} - 1) \ge n(\sqrt[n]{x} - 1)$. Rearranging, we see that $\frac{x}{n} \ge \sqrt[n]{x} - 1$, so that $\frac{x^2}{n^2} \ge (\sqrt[n]{x} - 1)^2$. Combining this with equation 19.5, and using the Bernoulli inequality, we see the following:

(19.6)
$$\lim_{n \to \infty} (2\sqrt[n]{x} - 1)^n \ge \lim_{n \to \infty} x^2 \left(1 - n \frac{x^2}{n^2 \sqrt[n]{x^2}} \right)$$

(19.7)
$$= \lim_{n \to \infty} x^2 \left(1 - \frac{x^2}{n\sqrt[n]{x^2}} \right) = x^2$$

Thus, we see that our limit is bounded from above and below by x^2 , so that $\lim_{n\to\infty} (2\sqrt[n]{x}-1)^n = x^2$. \square

20. Problem 20

Proof. Rewriting this expression and noticing that it is a telescoping sum, we obtain:

(20.2)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{(n+1)^2}$$

$$= \lim_{n \to \infty} 1 - \frac{1}{(n+1)^2} = 1$$

21. Problem 21

Theorem 21.1. Find $\sum_{n=1}^{\infty} \frac{n}{(2n-1)^2(2n+1)^2}$.

Proof. Again, we will rewrite the expression and notice that it is a telescoping sum. This yields:

(21.2)
$$\sum_{n=1}^{\infty} \frac{n}{(2n-1)^2(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{8} \left(\frac{1}{(2n+1)^2} - \frac{1}{(2n-1)^2} \right)$$

(21.3)
$$= \lim_{n \to \infty} \frac{1}{8} \left(1 + \frac{1}{(2n+1)^2} \right) = \frac{1}{8}$$

22. Problem 22

Theorem 22.1. Show that a nonempty open subset of (-1,1) can be written as an at most countable union of open intervals (a_n,b_n) where $(a_n,b_n)\cap (a_k,b_k)=if\ k\neq n$.

Proof. Let O be the nonempty open subset of (-1,1). Note that the set of rationals is countable, so that $q \in \mathbb{Q} \cap O$ is at most countable. Next, we can let $O_q = \bigcup (a,b)$ for each rational q in O. Each O_q is open because it is the union of open sets and nonempty because it is the union of open intervals in \mathbb{R} . Now, we can take $a(q) = \inf O_q$ and $b(q) = \sup O_q$. We will show that $O_q = (a(q),b(q))$. For a fixed $\epsilon > 0$, we see that there exists an $a < a(q) + \epsilon$, so that $(a,q] \subset O_q$. Next, we see that there exists a $b > b(q) - \epsilon$ such that $[q,b) \subset O_q$. This shows that $O_q = (a(q),b(q))$. Next, if $q' \in O_q \cap \mathbb{Q}$, then we see that $O_{q'} = O_q$. This is because if O_q contains q' so that $O_q \subset O_{q'}$, but also that $O_{q'}$ contains $q' \in O_q$, which implies that $O_{q'} = O_q$. Therefore, we can take all $q \in \mathbb{Q} \cap O$ and enumerate them, dropping the repeated intervals. This assures that any $x \in O$ will be in some (a_n, b_n) .

23. Problem 23

Theorem 23.1. Let $\sum_n a_n$ be a convergent series of positive terms. What can be said about the convergence of $\sum_n \frac{a_1 + ... a_n}{n}$?

Proof. The sum is not convergence because a_1 is positive and $\frac{a_1}{n} < \frac{a_1 + \dots + a_n}{n}$. This shows the following:

(23.2)
$$\sum_{n=1}^{\infty} \frac{a_1 + \ldots + a_n}{n} > \sum_{n=1}^{\infty} \frac{a_1}{n}$$

Since the last last term diverges, we see that the sum diverges as well by comparison test.

24. Problem 24

Theorem 24.1. Let $K \in \mathbb{R}^2$ be a closed and bounded set and let $f : [0,1] \times K \to \mathbb{C}$ be a continuous function on this subset of \mathbb{R}^3 (all with respect to the Euclidean metric). Show that the set of functions $\{g_s\}_{s\in[0,1]}$ where $g_s(x) = f(s,x)$ is equicontinuous on K.

Proof. First, we note that [0,1] is compact because it is closed, bounded, and hence compact by Heine Borel. Next, we see that $K \subset \mathbb{R}^2$ is also compact because it is closed and bounded. Since the cartesian product of two compact sets is also compact by a theorem in Rudin, we see that $[0,1] \times K$ is compact. Since f is a continuous function on a compact set, we see that it is uniformly continuous. This means that for $\epsilon > 0$, there exists $\delta > 0$ such that for all $s_1, s_2 \in [0,1]$ and $s_1, s_2 \in [0,1]$ and all $s_2, s_3 \in [0,1]$ and all $s_3 \in [0,1]$ and $s_3 \in [0,1]$ a

25. Problem 25

Theorem 25.1. Show that in any metric space, the closure of a connected set is connected.

Proof. Let E be a connected set and \bar{E} be its closure. Suppose the contrary, so that \bar{E} is separated and that $\bar{E} = C \cup D$ such that $\bar{C} \cap D = C \cap \bar{D} = \emptyset$ and C, D are nonempty. Now, let E' be the set of limit points of E. We see that $E = A \cup B$, where $A = C \cap E'$ and $B = D \cap E'$. However, since $A \subset C$ and $B \subset D$, we see that $\bar{A} \cap B = A \cap \bar{B} = \emptyset$. Moreover, we see that A is nonempty, because if it were empty, then $A = C \cap E' = \emptyset$, which implies that $C \cap \bar{E} = \emptyset$, which would imply that $\bar{E} = D$ and $C = \emptyset$, which is a contradiction of our assumptions. By the same logic, B is nonempty, so that we have shown a contradiction because $\bar{A} \cap B = A \cap \bar{B} = \emptyset$ implies that E is separated.

26. Problem 26

Theorem 26.1. If $f:[0,2] \to \mathbb{R}$ is continuous, state a theorem which shows that $F(x) = \int_0^x f(s)ds$ is differentiable on [0,2] (or prove it directly) and show that there exists $c \in (0,2)$ such that $\int_0^2 f(x)dx = 2f(c)$.

Proof. First, we state the fundamental theorem of calculus, which says that for every function $f \in \mathcal{R}([,])$, the integral $F(x) = \int_a^b f(s)ds$ exists and has a derivative at every continuous point of f which is equal to F'(x) = f(x). Next, we can use the above statement and the mean value theorem to show:

(26.2)
$$F(2) - F(0) = F'(c)(2 - 0) \quad \Rightarrow \quad F(2) = \int_0^2 f(s)ds = 2f(c)$$

This shows that $\int_0^2 f(x)dx = 2f(c)$ for some $c \in (0,2)$.

27. Problem 27

Theorem 27.1. Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable and suppose that 0 is a local minimum of f, i.e. for some $\epsilon > 0$ $f(x) \ge f(0)$ for all $x \in (-\epsilon, \epsilon)$. Show that if f''(0) > 0 then 0 is a strict local minimum in the sense that there exists $\epsilon > 0$ such that $f(x) \ge f(0)$ for $0 \ne x \in (-\epsilon, \epsilon)$.

Proof. Since 0 is a local minimum we know that f'(0) = 0 by a theorem in Rudin. Fix $\epsilon > 0$ such that $f(x) \ge f(0)$ for all $x \in (-\epsilon, \epsilon)$. We know that by definition $f''(0) = \lim_{t \to 0} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0} \frac{f'(t)}{t}$. Since we have assumed that f''(0) > 0, we see that $\lim_{t \to 0} \frac{f'(t)}{t} > 0$, which means in particular that f'(t) > 0 for $\epsilon > t > 0$ and f'(t) < 0 for $-\epsilon < t < 0$. Using the Mean Value Theorem, we obtain the following:

$$(27.2) f(t) - f(0) = f'(c)t$$

For 0 < c < t. Thus, we see that for $0 < t < \epsilon$ that f'(c)t > 0 and that f(t) > f(0). Also, for $-\epsilon < t < 0$, we have f'(c)t > 0 and f(t) > f(0). Thus for al $t \in (-\epsilon, \epsilon)$, we see that $f(t) \ge f(0)$, with equality when t = 0.

28. Problem 28

Theorem 28.1. Let $g_n:[0,1]\to\mathbb{R}$ be a sequence of differentiable functions such that the sequence $g'_n:[0,1]\to\mathbb{R}$ is uniformly bounded. Show that there is a sequence of constants c_n such that the sequence of functions $h_n(x)=g_n(x)-c_n$ has a uniformly convergent subsequence on [0,1]. Also, show that if $\int_0^1 g_n dx$ is a bounded sequence in \mathbb{R} , then g_n has a uniformly convergent subsequence.

Proof. First, let $c_n = g_n(0)$. This shows that $h_n(0) = 0$ and that $h'_n(x) = g'_n(x)$. Also, note that [0,1] is closed and bounded, hence compact. We want to use Arzela-Ascoli, so we must show that h_n is pointwise bounded and equicontinuous. First, we will show that it is equicontinuous. Note that $\{g_n\}$ is uniformly continuous because it is continuous on a compact set. Moreover, c_n is uniformly continuous because it is a constant. Thus, each h_n is uniformly continuous. This implies, that for a fixed $\epsilon > 0$, that there exists as $\delta > 0$ for every $x, y \in [0, 1]$ and for every $n \in \mathbb{N}$ such that $|h_n(x) - h_n(y)| < \epsilon$ implies that $|x - y| < \delta$. Since $g'_n(x)$ is uniformly bounded, we know that there exists an N > 0 such that for all $n \in \mathbb{N}$ and $x \in [0, 1]$, we have $|g'_n(x)| < N$. By Mean Value Theorem, we thus have for x < c < y:

$$(28.2) h_n(x) - h_n(y) = h'_n(c)(x - y)$$

$$(28.3) |h_n(x) - h_n(y)| < N(x - y)$$

We can therefore choose $\delta < \epsilon/N$ so that for all $x, y \in [0, 1]$ and for all $n \in \mathbb{N}$, $|x - y| < \delta$ implies $|h_n(x) - h_n(y)| < N\delta < \epsilon$. This is the definition of equicontinuity, so $h_n(x)$ is therefore equicontinuous.

Next, it is easy to see that $h_n(x)$ is uniformly bounded because by Mean Value Theorem we have $h_n(x) - h_n(0) = h'_n(c)x$ for all $x \in [0,1]$ and c between 0 and x. Therefore, since $h_n(0) = 0$ and $|h'_n(c)| = |g'_n(x)| < N$, we have $|h_n(x)| < Nx < N$ because $x \in [0,1]$. Therefore, we see that $h_n(x)$ is uniformly bounded and that we can apply Arzela Ascoli, which says that h_n has a uniformly convergent subsequence.

New we must show that if $\int_0^1 g_n dx$ is a bounded sequence in \mathbb{R} , then g_n has a uniformly convergent subsequence. First, we let $h_n(x) = g_n(x) - c_n$ as before, where $c_n = g_n(0)$. Then, we see that $\int_0^1 h_n(x) dx$ is bounded because $\int_0^1 g_n dx$ is bounded and so is the integral of a constant. Moreover, we know that $h_n(x)$ has a uniformly convergent subsequence, so its integral also must have a uniformly convergent subsequence, call it $\{h_{n_i}\}$, by a theorem in Rudin. Next, we have shown that $\int_0^1 h_n dx$ is bounded so that $\int_0^1 c_n dx$ must also be bounded on a compact set, which implies that it has a convergent subsequence. Therefore, g_n also has a convergent subsequence g_{n_i} because it is just given by $h_{n_i} + c_{n_i}$.

29. Problem 29

Theorem 29.1. Show that the series of functions $\sum_{n=1}^{\infty} \frac{x^n \sin(nx)}{n^3+n^2+1}$ converges uniformly on [-1,1] and defines a continuously differentiable function on [-1,1].

Proof. First, we note that $|\sin(nx)| \le 1$ and that $|x^n| \le 1$ because $x \in [-1,1]$. Therefore, we have $\sum \left|\frac{x^n\sin(nx)}{n^3+n^2+1}\right| \le \sum \frac{1}{n^3+n^2+1} \le \sum \frac{1}{n^3}$. Since we know the final sum converges by geometric series with p=3, we see that our series is absolutely convergent and hence uniformly convergent by the Weierstrass M test. Next, we can differentiate each of the terms of the series and find the following:

(29.2)
$$\sum_{n=1}^{\infty} \left| \frac{nx^{n-1}\sin(nx) + nx^n\cos(nx)}{n^3 + n^2 + 1} \right| \le \sum_{n=1}^{\infty} \left| \frac{2n}{n^3} \right| \le \sum_{n=1}^{\infty} \left| \frac{2}{n^2} \right|$$

Because $|\sin(nx)| \le 1$ and $|\cos(nx)| \le 1$. Therefore, we see that the series of the derivatives are absolutely convergent, which implies uniform convergence by the Weierstrass M test. This means that our series is differentiable and has a derivative given by the term by term derivatives of the series, by a theorem in Rudin. Moreover, since each of these terms are continuous, we see that the derivative of our series is the limit of a uniformly convergent series of continuous functions, and hence it is continuous. This implies that the series is continuously differentiable.

30. Problem 30

Theorem 30.1. Explain why the Riemann-Stieltjes integral $\int_{-1}^{1} x^2 \exp(x^3) d\alpha$ exists for any increasing function $\alpha : [-1, 1] \to \mathbb{R}$. Evaluate the integral when $\alpha = x$ for x < 0 and $\alpha = x + 1$ for $x \ge 0$.

Proof. First, we see that x^2 and x^3 are polynomials, which are continuous, and that $f(x) = e^x$ is continuous. Therefore, the composition of these functions $x^2 f(x^3)$ is also continuous by a theorem in Rudin. Since $x^2 \exp(x^3)$ is continuous, it is Riemann-Stieltjes integrable for any increasing function $\alpha : [-1,1] \to \mathbb{R}$. Next, we know that $\int_{-1}^1 x^2 \exp(x^3) d\alpha = \int_{-1}^1 x^2 \alpha'(x) dx = \int_{-1}^1 x^2 \exp(x^3) dx = \int_{-1}^1 \frac{1}{3} e^u du = \frac{1}{3} (e - e^{-1})$.

31. Problem 31

Theorem 31.1. Let $f: X \to \mathbb{R}$ be a continuous function on a compact metric space, X. If $\{x_n\}$ is a sequence in X, show that $\{f(x_n)\}$ has a convergent subsequence with a limit in f(X).

Proof. First, since $\{x_n\}$ is a sequence, we know that $\{f(x_n)\}$ is also a sequence in f(X). Moreover, since f is continuous and X is compact, and we know that the image of a compact space by a continuous function is compact, we see that f(X) is compact. Therefore, the sequence $\{f(x_n)\}$ is a sequence in a compact metric space f(X), which shows that it has a convergent subsequence by a theorem in Rudin.

32. Problem 32

Theorem 32.1. If $a_n > 0, n \in \mathbb{N}$ is a sequence of real numbers such that $b_N = \sum_{n=1}^N a_n$ is bounded, show that $\sum_n a_n^{1/2} a_{n+1}^{1/2}$ converges.

Proof. We know that $(\sqrt{a_n} + \sqrt{a_{n+1}})^2 = a_n + 2\sqrt{a_n}\sqrt{a_{n+1}} + a_{n+1}$. Rearranging, we see that $\sqrt{a_n}a_{n+1} = \frac{1}{2}((\sqrt{a_n} + \sqrt{a_{n+1}})^2 - a_n - a_{n+1})$. We therefore have $\sum_n \sqrt{a_n}a_{n+1} = \sum_n \frac{1}{2}((\sqrt{a_n} + \sqrt{a_{n+1}})^2 - a_n - a_{n+1})$. Now take the largest value a_n or a_{n+1} for each index. Then we have $\sum_n \frac{1}{2}((\sqrt{a_n} + \sqrt{a_{n+1}})^2 - a_n - a_{n+1}) \le \sum_n \max\{\frac{1}{2}((2\sqrt{a_n})^2 - a_n - a_{n+1}), \frac{1}{2}((2\sqrt{a_{n+1}})^2 - a_n - a_{n+1})\} = \sum_n \max\{\frac{1}{2}(3a_n - a_{n+1}), \frac{1}{2}(3a_{n+1} - a_n)\}$. Since we know that b_N is bounded and monotonically increasing $(a_n > 0)$, we see that b_N converges. Therefore, we

see that $\sum_n a_n$ and $\sum_n a_{n+1}$ both converge, and therefore, we see that $\sum_n \max\{\frac{1}{2}(3a_n-a_{n+1}), \frac{1}{2}(3a_{n+1}-a_n)\}$ converges as well. Therefore, we see that our series converges by comparison test.

33. Problem 33

Theorem 33.1. Let $\{f_n\}$ be a sequence of continuous real-valued functions on a metric space X such that $\{f_n\}$ converges uniformly to some function f on every compact subset of X. Show that f is a continuous function.

Proof. Since $\{f_n\}$ is continuous and uniformly convergent on a compact subset $K \subset X$, we know by a theorem in Rudin that $\{f_n\}$ is equicontinuous. This implies that for a fixed $\epsilon > 0$, that there exists a $\delta > 0$ such that for all $x, y \in K$ and $n \in \mathbb{N}$, $|f_n(x) - f_n(y)| < \epsilon$ if $|x - y| < \delta$. Moreover, since $\{f_n\}$ converges uniformly, say to some function f, we know that there exists an $N_1 > 0$ such that for all $x \in K$, we have $|f_n(x) - f(x)| < \epsilon$. Also, we know that there exists an $N_2 > 0$ such that for all n, m > N and for all $x \in K$, $|f_n(x) - f_m(x)| < \epsilon$ by the Cauchy criterion. Therefore, we can select $N = \max\{N_1, N_2\}$ so that n > N has the following:

$$(33.2) |f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f_m(y)| + |f_m(y) - f(y)| < 4\epsilon$$

The first and last terms, $|f(x)-f_n(x)| < \epsilon$ and $|f_m(y)-f(y)| < \epsilon$, are true because of uniform convergence. The second term $|f_n(x)-f_n(y)| < \epsilon$ is true because of equicontinuity. Finally, $|f_n(y)-f_m(y)| < \epsilon$ is true because of the Cauchy criterion for uniform convergence. Therefore, we see that f is continuous.

34. Problem 34

Theorem 34.1. Let $\{f_n\}$ and $\{g_n\}$ be two uniformly bounded sequences of real-valued functions on a set X. If both $\{f_n\}$ and $\{g_n\}$ are uniformly convergent on X, show that $\{f_ng_n\}$ also converges uniformly on X.

Proof. Since $\{f_n\}$ and $\{g_n\}$ are uniformly bounded, then for fixed $\epsilon > 0$, there exists $N_1, N_2 > 0$ such that for all $x \in X$ and for all $n \in \mathbb{N}$, we have $|f_n(x)| < N_1$ and $|g_n(x)| < N_2$. Therefore, we can take $N = \max\{N_1, N_2\}$. Next, we know by uniform convergence that there exists $M_1, M_2 > 0$ such that for all $n, m > M_1$ and for all $x \in X$, we have $|f_n(x) - f_m(x)| < \epsilon$ and for all $n, m > M_2$ and $x \in X$ we have $|g_n(x) - g_m(x)| < \epsilon$. Therefore, we can set $M = \max\{M_1, M_2\}$, and for n, m > M, we have the following:

$$(34.2) \quad |f_n(x)g_n(x) - f_m(x)g_m(x)| \leq |f_n(x)g_n(x) - f_n(x)g_m(x)| + |f_n(x)g_m(x) - f_m(x)g_m(x)|$$

$$(34.3) = |f_n(x)||g_n(x) - g_m(x)| + |g_m(x)||f_n(x) - f_m(x)|$$

$$(34.4) < 2N\epsilon$$

Therefore, since $\epsilon > 0$ was arbitrary and N is a constant, we see that $\{f_n g_n\}$ converges uniformly by the Cauchy criterion.

35. Problem 35

Theorem 35.1. Let $E = \{0, 1, 1/2, 1/3, 1/4, \ldots\}$ be the set of real numbers consisting of zero and the inverse of the positive integers. Prove that E is compact directly from the definition (without using the Heine-Borel theorem).

Proof. Let $\{U_{\alpha}\}$ be an open cover of E. We must show that $\{G_{\alpha}\}$ has a finite subcover. One of these sets, call it α_0 must contain 0. Moreover, the set contains a neighborhood of some radius r about 0. Thus, choose n large enough so that $\frac{1}{n} \leq r$, then all of the points $\{1/(n+1), 1/(n+2), \ldots\}$ are inside of the set U_{α_0} . For each of the remaining n points, choose an open set U_{a_j} containing 1/j. Thus, we see that E is covered in by at most n+1 sets $U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_{n+1}}$.

36. Problem 36

Theorem 36.1. Let $X = \mathbb{R}$. Define a real-valued function on $\mathbb{R} \times \mathbb{R}$ by $d(x,y) = (x-y)^2$. Is d a metric on \mathbb{R} ?

Proof. We need to prove three things in order to show that d is a metric, namely that the transitive property holds, the triangle inequality holds, and that it is nonnegative. First, we see that it is clearly non-negative, and that the transitive property holds because |x-y|=|y-x| so that $(x-y)^2=(y-x)^2$. However, we see that $(x-y)^2=x^2-2xy+y^2$ and $(x-h)^2+(h-y)^2=x^2-2xh+h^2+h^2-2hy+y^2=x^2+y^2-2h(x+y)+2h^2$. In order for d to be a metric, we must have $-2xy \le -2h(x+y)+2h^2$ which implies $2xy \ge 2h(x+y)-2h^2$. If we set x=-1,y=2,h=1,2xy=-4 and $2h(x+y)-2h^2=0$, which means $2xy \le 2h(x+y)$ so that d is not a metric.

18.100B

37. Problem 37

Theorem 37.1. Recall that the length of a vector $v \in \mathbb{R}^n$ can be defined in terms of the inner product by $||v|| = (v \cdot v)^{1/2}$. The Cauchy-Schwartz inequality says that if x and y are vectors in \mathbb{R}^n , then $|x \cdot y| \leq ||x||||y||$. Using this fact, prove the triangle inequality $||u + v|| \leq ||u|| + ||v||$.

Proof. It is enough to prove $||u+v||^2 \le (||u||+||v||)^2$ because both sides of the inequality are non-negative. We have the following: $(||u||+||v||)^2 = ||u||^2 + 2||u||||v|| + ||v||^2$. Since we know that $|u \cdot v| \le ||u||||v||$ by the Cauchy-Schwartz inequality. Therefore, we know that $(||u||+||v||)^2 \ge ||u||^2 + 2|u \cdot v| + ||v||^2 = |u \cdot u| + 2|u \cdot v| + |v \cdot v| = |u + v| \cdot |u + v| = ||u + v||^2$. This shows that $||u + v||^2 \le (||u|| + ||v||)^2$, which shows that $||u + v|| \le ||u|| + ||v||$. □

38. Problem 38

Theorem 38.1. Give an example of a metric space X and an open subset of X having exactly three points.

Proof. Let X have the following metric:

(38.2)
$$d(x,y) = \begin{cases} 0 & x \land y \in \{1,2,3\} \\ 1 & x \lor y \notin \{1,2,3\} \end{cases}$$

We see that d has all the properties of a metric, and moreover, that the set $\{1,2,3\} \in X$ is an open set in X. Another example of this would be the space $K = \{1,2,3\} \subset \mathbb{R}$. We see that $\{1,2,3\}$ is open in K and consists of exactly three elements.

39. Problem 39

Theorem 39.1. Suppose X is a metric space and $f: X \to X$ is a function from X to X. We say that f is a weak contraction if $d(f(x_1), f(x_2)) \le d(x_1, x_2)$ for $x_1, x_2 \in X$. Prove that any weak contraction is continuous.

Proof. Fix $\epsilon > 0$. We need to show that there exists a $\delta > 0$ such that $d(f(x_1), f(x_2)) < \epsilon$ if $d(x_1, x_2) < \delta$ for $x_1, x_2 \in X$. Since f is a weak contraction, we see that $d(f(x_1), f(x_2)) \le d(x_1, x_2)$ for $x_1, x_2 \in X$. Thus, we can pick $\delta < \epsilon$ so that $d(x_1, x_2) < \delta < \epsilon$, which would imply by the above inequality that $d(f(x_1), f(x_2)) < \epsilon$, which proves continuity.

40. Problem 40

Theorem 40.1. Suppose that $f: X \to X$ is any continuous function, and that $x_0 \in X$. Define a sequence x_1, x_2, x_3, \ldots of points in X by $x_{n+1} = f(x_n)$ for $n \ge 0$. Prove that if the sequence $\{x_n\}$ converges to a limit point $x \in X$, then f(x) = x.

Proof. We know that if f is continuous in X, and $\{z_n\} \to z$, then $\{f(z_n)\} \to f(z)$. Using this fact, we see that $\{f(x_n)\} = \{x_{n+1}\} \to x$, since $\{x_{n+1}\}$ converges to x by assumption. Therefore, $\{f(x_n)\} \to f(x)$ converges to the same limit as $\{x_{n+1}\}$, which means that f(x) = x.

41. Problem 41

Theorem 41.1. We say that $f: X \to X$ is a strong contraction if there is a number r < 1 such that $d(f(x_1), f(x_2)) \le rd(x_1, x_2)$ for $x_1, x_2 \in X$. Suppose that f is a strong contraction and $x_0 \in X$. Define a sequence x_1, x_2, x_3, \ldots of points in X by $x_{n+1} = f(x_n)$ for $n \ge 0$. Finally define $A = d(x_0, f(x_0))$. Prove that $d(x_0, x_n) \le A(1 - r^n)/(1 - r) \le A/(1 - r)$.

Proof. First notice the following:

$$(41.2) d(x_1, x_2) = d(f(x_0), f(x_1)) = d(f(x_0), f(f(x_0))) \le rd(x_0, f(x_0)) = rA$$

$$(41.3) d(x_2, x_3) = d(f(f(x_0)), f(f(f(x_0)))) \le rd(f(x_0), f(f(x_0))) \le r(rA) = r^2 A$$

$$(41.5) d(x_n, x_{n+1}) \le r^n A$$

Moreover, we know by triangle inequality that:

$$(41.6) d(x_0, x_n) \le d(x_0, x_1) + d(x_1, x_2) + \ldots + d(x_{n-1}, x_n)$$

$$(41.7) \leq A \sum_{i=1}^{n-1} r^i$$

$$(41.8) = A\left(\frac{1-r^n}{1-r}\right)$$

Moreover, we know that $(1-r^n) \le 1$, so that $d(x_0, x_n) \le A(1-r^n)/(1-r) \le A/(1-r)$.

Theorem 41.9. Prove that $d(x_m, x_{m+n}) \leq Ar^m/(1-r)$.

Proof. From the previous discussion and use of the triangle inequality, we see that:

$$(41.10) d(x_m, x_{m+n}) = d(x_m, x_{m+1}) + \ldots + d(x_{m+n-1}, x_{m+n})$$

$$(41.11) \leq d(f(x_{m-1}, f(x_m)) + \ldots + d(f(x_{m+n-2}), f(x_{m+n-1}))$$

$$(41.14) \leq r^m A + r^m d(f(x_1), f(x_2)) + \ldots + r^m d(f(x_{n-1}), f(x_n))$$

$$(41.16) \leq r^m A + r^{m+1} A + \ldots + r^{m+n-1} A$$

$$= r^m A \sum_{i=1}^{n-1} r^i$$

$$(41.18) = r^m A \left(\frac{1-r^n}{1-r}\right)$$

$$(41.19) \leq \frac{Ar^m}{1-r}$$

Theorem 41.20. Prove that $\{x_n\}$ is a Cauchy sequence.

Proof. Fix $\epsilon > 0$. In order to show that $\{x_n\}$ is a Cauchy sequence, we need to show that there exists an N such that for m, m+n > N, $d(x_m, x_{m+n}) < \epsilon$. Well, we know that $d(x_m, x_{m+n}) \le Ar^m/(1-r)$ by the last theorem. Therefore, we can pick m such that $Ar^m/(1-r) < \epsilon$, because r < 1, which means that $r^m \to 0$. This shows that $\{x_n\}$ is a Cauchy sequence.

Theorem 41.21. Suppose that X is a complete metric space. Prove that there is a point $x \in X$ such that f(x) = x. (Such an x is called a fixed point.)

Proof. Since X is a complete metric space, we know that every Cauchy sequence converges. In particular, $\{x_n\}$ converges to some point, call it x. Therefore, we know by the theorem proven in problem 40 that f(x) = x if f is continuous. However, since f is a strong contraction, we see that we can pick a $\delta > 0$ such that $\delta/r < \epsilon$. Since $d(x_1, x_2) < \delta$, we see that $d(f(x_1), f(x_2)) < rd(x_1, x_2) < r\epsilon/r < \epsilon$, which proves continuity of f. Therefore, we have shown that f(x) = x by problem 40.

42. Problem 42

Theorem 42.1. Prove that if x and y are any real numbers, then $|\sin x - \sin y| \le |x - y|$.

Proof. We know that $\frac{d}{dx}\sin x = \cos x$. Therefore, we see by Mean Value Theorem:

(42.2)
$$\sin(x) - \sin(y) = \cos(c)(x - y)$$

For some $c \in (x, y)$ for $x, y \in \mathbb{R}$. Since $|\cos(c)| \le 1$, we know that $|\sin(x) - \sin(y)| \le |x - y|$, which proves the theorem.

43. Problem 43

Theorem 43.1. If f is a Riemann-integrable function on $[0, 2\pi]$, recall that the mth Fourier coefficient of f is by definition $c_m(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-imx} dx$ for $m \in \mathbb{Z}$. Suppose that $f(x) = \exp(\exp(ix))$. Prove that there is a constant A so that $|c_m(f)| \leq A/m^2$ for $m \neq 0$.

Proof. Let us integrate by parts and set u = f(x) and $dv = e^{-imx}dx$ so that du = f'(x)dx and $v = \frac{e^{-imx}}{-im}$. This gives:

$$(43.2) \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-imx}dx = \frac{1}{2\pi} \left(f(x) \frac{e^{-imx}}{-im} \right)_0^{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} \frac{f'(x)e^{-imx}}{-im}dx$$

Since f is periodic, we see that $f(2\pi) = f(0)$, which means that the first term cancels. Repeating the same operation shows that one of terms in the integration by parts the second time also cancels. This gives:

(43.3)
$$c_m(f) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f''(x)e^{-imx}}{-m^2} dx$$

18.100B

$$|c_m(f)| \leq \frac{1}{2m^2\pi} \int_0^{2\pi} |f''(x)| dx$$

This shows that if we take A equal to the average value of |f''(x)|, we have the inequality we wanted to prove.

44. Problem 44

Theorem 44.1. Suppose that $\{f_n\}$ is a sequence of monotone real-valud functions defined on [a,b] and not necessarily all increasing or decreasing. Show that if $\{f_n\}$ converges pointwise to a continuous function f on [a,b], then $\{f_n\}$ converges uniformly to f on [a,b].

Proof. Fix $\epsilon > 0$. Since f is continuous on [a,b], which is closed, bounded, and hence compact set, we see that it is also uniformly continuous. Therefore, there exists $\delta > 0$ such for all $x,y \in [a,b]$ such that $|f(x)-f(y)| < \epsilon$ whenever $|x-y| < \delta$. Fix a finite set of points $a = x_0, x_1, \ldots, x_k = b$ such that $x_i - x_{i-1} < \delta$ for all $1 \le i \le k$. Next, pick some N such that $|f_n(x_i) - f(x_i)| < \epsilon$ for all n > N and $0 \le i \le k$ by the pointwise convergence assumption.

Now, in the case that f_n is monotonically decreasing, we have, for $x \in [a, b]$ and $x_{i-1} \le x \le x_i$ for some $1 \le i \le k$:

$$(44.2) |f_n(x) - f_n(x_i)| \le |f_n(x_{i-1}) - f_n(x_i)|$$

$$(44.3) \leq |f_n(x_{i-1}) - f(x_{i-1})| + |f(x_{i-1}) - f(x_i)| + |f(x_i) - f_n(x_i)|$$

$$(44.4) \leq 3\epsilon$$

Thus, f_n converges uniformly when f_n is monotonically decreasing. In the case when f_n is monotonically increasing, we have for $x \in [a, b]$ and $x_{i-1} \le x \le x_i$:

$$(44.5) |f_n(x) - f(x)| \le |f_n(x) - f_n(x_i)| + |f_n(x_i) - f(x_i)| + |f(x_i) - f(x)|$$

$$(44.6) \leq 3\epsilon + \epsilon + \epsilon = 5\epsilon$$

Therefore, $\{f_n\}$ converges uniformly to f.

45. Problem 45

Theorem 45.1. Consider each rational number written in the form $\frac{m}{n}$, where n > 0 and m and n are integers without any common factors other than ± 1 . Clearly, such a representation is unique. Now define $f: \mathbb{R} \to \mathbb{R}$ by f(x) = 0 if x is irrational and $f(x) = \frac{1}{n}$ if $x = \frac{m}{n}$ as above. Show that f is continuous at every irrational number and discontinuous at every rational number.

Proof. Let $\{r_n\}$ be a bounded sequence of rational numbers such that $r_n = \frac{m_n}{k_n}$. We will show that $\lim k_n = \infty$. We can choose an M>0 such that $|r_n| < M$, which implies that $|m_n| < M|k_n|$. Now suppose by contradiction that k_n is finite, so that $|k_n| < C$ for some C>0 and infinitely many n. Then we must have $|m_n| < MC$ and $|k_n| < C$ hold for an infinite number of n. But this is a contradiction, because there are only finitely many rational numbers r_n for which this is possible. Therefore, we must have $\lim k_n = \infty$, which will be important in the proof.

This implies that f is continuous at each irrational number. So let x be irrational and let $\{x_n\} \to x$ be a sequence of irrational numbers. Clearly, we have $0 = f(x_n) \to 0 = f(x)$. Suppose then that f(x) is not

continuous. The only way this can happen is if there exists a sequence $\{r_n\}$ of rational numbers such that $\{r_n\} \to x$. This implies $\lim f(r_n) \neq 0$. Since we can let $r_n = \frac{m_n}{k_n}$, we see that if $\{r_n\} \to x$, we must have $\lim \frac{1}{k_n} \neq 0$, which is a contradiction. Thus, f is continuous at every irrational number.

To see that f is discontinuous at every rational number, we choose a sequence $\{r_n\}$ of rational numbers converging to r, so that $\frac{m_n}{k_n} \to r$. Now, we note that $\lim f(r_n) = \lim \frac{1}{k_n} = 0 \neq f(r) = \frac{1}{r}$. This shows that f is discontinuous at every rational number.

46. Problem 46

Theorem 46.1. If A and B are two arbitrary subsets of a topological space, show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. First, we will show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. First, it is obvious that $A \subset \overline{A}$ and $B \subset \overline{B}$, which implies that $A \cup B \subset \overline{A} \cup \overline{B}$. Since the closure of a closed set is just itself, and since \overline{S} is closed, we see that $A \cup B \subset \overline{A} \cup \overline{B}$ implies $\overline{A \cup B} \subset \overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}$ by taking the closure of both sides.

Next, we must show that $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$. This is because $\bar{A} \subset \overline{A \cup B}$ and $\bar{B} \subset \overline{A \cup B}$, which shows $\bar{A} \cup \bar{B} \subset \overline{A \cup B} \cup \overline{A \cup B} = \overline{A \cup B}$. These two inequalities show that $\bar{A} \cup \bar{B} = \overline{A \cup B}$.

47. Problem 47

Theorem 47.1. If A and B are two arbitrary subsets of a topological space, show that $(A \cup B)' = A' \cup B'$.

Proof. First, we note that $A' \subset (A \cup B)'$ and $B' \subset (A \cup B)'$ implies that $A' \cup B' \subset (A \cup B)' \cup (A \cup B)' = (A \cup B)'$. Now, we can prove the theorem by showing $(A \cup B)' \subset A' \cup B'$. Let $x \in (A \cup B)'$. Now suppose by contradiction that $x \notin A' \cup B'$. Then there exist two neighborhoods V(x) and W(x) such that for all $p \in A$ and $q \in B$ where $p, q \neq x$, we have $p \notin V(x)$ and $q \notin W(x)$. This implies that for the neighborhood $G(x) = V(x) \cap W(x)$, we have $p \notin G(x)$ and $q \notin G(x)$ for all $p \in A$ and $q \in B$ such that $p, q \neq x$. Moreover, this neighborhood G(x) is nonempty because V(x) and V(x) are both centered at x and are nonempty, so V(x) must also be nonempty. But this is a contradiction, because that implies that $x \notin (A \cup B)'$. Therefore, we must have $(A \cup B)' \subset A' \cup B'$, which completes the proof.

48. Problem 48

Theorem 48.1. If A is a dense subset of a topological space, show that $O \subset \overline{A \cap O}$ holds for every open set

Proof. Let $x \in O$ and let V(x) be a neighborhood of x such that $V(x) \subset O$, which we can choose because O is open. Therefore, we see that $V(x) \cap O = V(x)$ is a neighborhood of x, and we have $V(x) \cap (O \cap A) = (V(x) \cap O) \cap A = V(x) \cap A \neq \emptyset$ because of the denseness of A. This implies that $x \in \overline{O \cap A}$ because $V(x) \cap (O \cap A) \neq \emptyset$.

49. Problem 49

Theorem 49.1. If A is open, then $A \cap \overline{B} \subset \overline{A \cap B}$.

Proof. Let $x \in A \cap B$. Let V(x) be a neighborhood of x. We know that $V(x) \cap A$ is also a neighborhood of x. Since $x \in \overline{B}$, we see that $V(x) \cap (A \cap B) = (V(x) \cap A) \cap B \neq \emptyset$. Therefore, we see that $x \in \overline{A \cap B}$ and hence that $A \cap \overline{B} \subset \overline{A \cap B}$.

50. Problem 50

Theorem 50.1. If $\{O\}_{i\in I}$ is an open cover of a topological space X, then show that a subset A of X is closed if and only if $A \cap O_i$ is closed in O_i for each $i \in I$.

Proof. The forward direction is easy because if A is closed, then $A \cap O_i$ is closed because O_i is open. Now we must show the converse. First, let $V_i = O_i \setminus (A \cap O_i)$. Since O_i is open for each $i \in I$ and $A \cap O_i$ is closed, we see that V_i is open. Therefore, we have:

$$(50.2) A^c = X \setminus A = \bigcup_{i \in I} V_i$$

Which is open because it is a finite union of open sets. Therefore, we see that A is closed because A^c is open.

51. Problem 51

Theorem 51.1. Let $f : [a, b] \to \mathbb{R}$ be increasing, i.e. x < y implies $f(x) \le f(y)$. Show that the set of points where f is discontinuous is at most countable.

Proof. Let D be the set of discontinuities of f and let $x \in D$. Then we can assign a rational number r_x such that $\lim_{t\to x^-} f(x) \le r_x \le \lim_{t\to x^+} f(x)$. Moreover, we see that if $x,y\in D$ and y>x, we must have $r_x < \lim_{t\to x^+} f(x) < \lim_{t\to y^-} f(x) < r_y$ for all $y\neq x$. Therefore, we have shown that $x\to r_x$ is a one to one mapping from D to \mathbb{Q} . This shows that D is at most countable.

52. Problem 52

Theorem 52.1. Give an example of a strictly increasing function $f:[0,1] \to \mathbb{R}$ which is continuous at all irrational points and discontinuous at all the rational points.

Proof. First, let $f_t(x)$ be a function $f_t: [0,1] \to [0,1]$ which is continuous at every point on the interval [0,1] except for at t and strictly increasing. For instance, we could set:

(52.2)
$$f_t(x) = \begin{cases} \frac{1}{2}x & 0 \le x \le t \\ x & t < x \le 1 \end{cases}$$

Thus, we can enumerate all the rational numbers in [0,1] with the set $\{r_1,r_2,\ldots\}$.

(52.3)
$$f(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} f_{r_i}(x)$$

It is clear that this sum is uniformly convergent, for all $x \neq r_i$. Therefore, since each term in the uniformly convergent series is continuous, the function is continuous. However, when $x = r_i$, we see that the function is discontinuous. Since f(x) is nevertheless strictly increasing, we see that the function we have made matches all the criteria.

53. Problem 53

Theorem 53.1. Recall that a function $f:(X,\tau)\to (Y,\tau_1)$ is called an open mapping if f(V) is open whenever V is open. Prove that if $f:\mathbb{R}\to\mathbb{R}$ is a continuous open mapping, then f is a strictly monotone function—and hence a homeomorphism.

Proof. Since $f: \mathbb{R} \to \mathbb{R}$ is an open mapping, we see that f(V) is open whenever V is open. Since it is continuous, we see that $f^{-1}(U)$ is open whenever U is open. Now, assume by contradiction that f is not monotonic. Then for some interval $(a,b) \subset \mathbb{R}$ there exists a $y \in (a,b)$ so that we must have $f(x) \leq f(y)$ for all a < x < y and $f(y) \geq f(z)$ for all y < z < b, or alternatively we must have $f(x) \geq f(y)$ for all a < x < y and $f(y) \leq f(z)$ for all y < z < b. We can assume without loss of generality that we are working in the first case (the proof is essentially the same in the other case).

Now, we let $N_{\delta}(x)$ be a neighborhood of x with radius $\delta > 0$. We see that since $f(y) \geq f(z)$ and $f(y) \geq f(x)$ for all $x \in (a, y)$ and $z \in (y, b)$, we must have $f(y) \geq f(p)$ for all $p \in (a, b)$. This is the definition of a local maximum. Therefore, we see that for all $\delta > 0$, there exists some $q \notin f(a, b)$ with $f(y) < q < f(y) + \delta$. This implies that for no $\delta > 0$ does there exist a neighborhood $N_{\delta}(x) \subset f(a, b)$. Thus, we see that f(a, b) is not open. However, since we have assumed an open mapping, we must have f(a, b) open because $(a, b) \subset \mathbb{R}^1$ is open. This is a contradiction, and implies that f must be a strictly monotone function.

Theorem 53.2. A direct proof to problem 53.

Proof. Let (a, b) be a finite open interval of \mathbb{R} . Since f attains a maximum value on the compact set [a, b] and we know that f((a, b)) is an open set by assumption of an open mapping, then we see that the extrema of f on [a, b] must take place at the endpoints. This implies that $f(a) \neq f(b)$, because if that were the case then f((a, b)) would have to be a one-point set contradicting the fact that f is open. Next, we claim that f is monotone on (a, b). First, we assume that f(a) < f(b) and a < x < y < b. Then note that f(a) < f(x) < f(b) must hold, because we must have f attain its maximum and minimum at the endpoints. By the same argument, we must have f(x) < f(y) < f(b). Thus, f is strictly increasing on (a, b). If f(a) > f(b), then we can show by the same argument that f is strictly decreasing on (a, b).

Now, we must extend this from the interval (a, b) to \mathbb{R} . So assume that f is strictly increasing on (0, 1) and let x < y without loss of generality. Now choose some n such that $(0, 1) \subset (-n, n)$ and $x \in (-n, n)$. We have shown from above that f must be monotone on (-n, n). However, we have also assumed that f is

strictly increasing on (0,1), so that f must be strictly increasing on (-n,n). Thus, f(x) < f(y) holds for $x < y \in \mathbb{R}$, which shows that f is strictly increasing on \mathbb{R} . A similar argument holds for a strictly decreasing function on (0,1). This completes the proof.

54. Problem 54

Theorem 54.1. Let X be a compact topological space and let $\mathscr{F} \subset C(X;\mathbb{R})$ be a collection of continuous functions from $X \to \mathbb{R}$ which is pointwise bounded and equicontinuous. Prove that \mathscr{F} is uniformly bounded.

Proof. This is a simple use of the Arzela-Ascoli theorem, which states that for $\{f_n\} \in \mathscr{F}$ which is pointwise bounded and equicontinuous, you must have $\{f_n\}$ be uniformly bounded as well.

Theorem 54.2. Arzela Ascoli Theorem: If K is compact, if $f_n \in \mathcal{C}(K)$ for $n = \mathbb{N}$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then $\{f_n\}$ is uniformly bounded on K.

Proof. Since we know the sequence is equicontinuous, we can fix $\epsilon > 0$ and pick $\delta > 0$ such that for all $x, y \in K$, we have $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$. Since K is compact, we know that there exists finitely many points p_i for which each $x \in K$ is associated with at least one p_i from the set $\{p_1, p_2, \ldots, p_k\}$ which has the property that $|x - p_i| < \delta$. Since the sequence is pointwise bounded, we can find an $M_i > 0$ such that for all $n > M_i$, we have $|f_n(p_i)| < M_i$ for each $1 \le i \le k$. Therefore, we can pick $M = \max\{M_1, M_2, \ldots, M_k\}$ because k is finite, and see that $|f_n(x)| < M$ for all $x \in K$ and $n \in \mathbb{N}$, which proves uniform boundedness.

55. Problem 55

Theorem 55.1. Let $f, f_1, f_2,...$ be real valued functions defined on a compact metric space (X, d) such that $x_n \to x$ in X implies that $f_n(x_n) \to f(x)$ in \mathbb{R} . If f is continuous, then show that the sequence of functions $\{f_n\}$ converges uniformly.

Proof. Assume the contrary and fix $\epsilon > 0$. Then for all $n, m \in \mathbb{N}$, we have $|f_n(x) - f_m(x)| \ge \epsilon$ for some $x \in X$. There also exists a subsequence $\{g_n\}$ of $\{f_n\}$ and a sequence $\{x_n\}$ of X such that $|g_n(x_n) - f(x_n)| \ge \epsilon$. Since X is compact, x_n has a convergent subsequence in X, say $\{x_{n_k}\} \to x$. By the continuity of f, we see that $f(x_{n_k}) \to f(x)$. Also, we see that $g_{n_k}(x_{n_k}) \to f(x)$, so that $|g_{n_k}(x_{n_k}) - f(x_{n_k})| \to |f(x) - f(x)| = 0$, which is a contradiction because we have previously shown that $|g_n(x_n) - f(x_n)| \ge \epsilon$. Therefore, we must have $\{f_n\}$ converge uniformly.

56. Problem 56

Theorem 56.1. For a sequence $\{f_n\}$ of real valued functions defined on a topological space X that converges uniformly to a real valued function f on X, show that if $x_n \to x$ and f is continuous, then $f_n(x_n) \to f(x)$.

Proof. Fix $\epsilon > 0$. Since f_n converges uniformly, there exists $N_1 > 0$ such that for all $x \in X$ and all $n > N_1$, we have $|f_n(x) - f(x)| < \epsilon$. If f is continuous, then we see that there exists an N_2 for which $|f(x_n) - f(x)| < \epsilon$ because we can choose $\delta = \epsilon$ so that $|x_n - x| < \epsilon = \delta$ implies $|f(x_n) - f(x)| < \epsilon$. Therefore, we have:

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < 2\epsilon$$

For $n > \max\{N_1, N_2\}$. This proves that $f_n(x_n) \to f(x)$.

57. Problem 57

Theorem 57.1. Let real valued functions $\{f_n\}$ converge uniformly to a real valued function f on a topological space X. If each $\{f_n\}$ is continuous at some point $x_0 \in X$, then f is also continuous at the point x_0 and $\lim_{x\to x_0} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to x_0} f_n(x) = f(x_0)$.

Proof. First, fix $\epsilon > 0$. Since we have uniform convergence, there exists an N_1 such that for all $n > N_1$ and all $x \in X$, we have $|f_n(x) - f(x)| < \epsilon$. By pointwise convergence, there exists a j > 0 and a corresponding neighborhood $N_j(x_0)$ about x_0 such that for all $x \in N_j(x_0)$ there exists a $\delta > 0$ such that we have $|f_n(x_0) - f_n(x)| < \epsilon$ whenever $|x_0 - x| < \delta$. Therefore, we have for $x \in N_j(x_0)$, $|x - x_0| < \delta$, and $n > N_1$:

$$|f(x_0) - f(x)| \le |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x)| + |f_n(x) - f(x)| \le 3\epsilon$$

18.100B

Because $|f(x_0) - f_n(x_0)| < \epsilon$ and $|f_n(x) - f(x)| < \epsilon$ hold by uniform convergence, while $|f_n(x_0) - f_n(x)| < \epsilon$ holds by pointwise continuity. Therefore, we have shown that f is also continuous at the point x_0 . Because of this pointwise continuity, we get the following:

(57.3)
$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{x \to x_0} f(x) = f(x_0)$$

(57.3)
$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{x \to x_0} f(x) = f(x_0)$$
(57.4)
$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{n \to \infty} f_n(x_0) = f(x_0)$$

This completes the proof.

58. Problem 58

Theorem 58.1. Let $f_n:[0,1]\to\mathbb{R}$ be defined by $f_n(x)=x^n$ for $x\in[0,1]$. Show that $\{f_n\}$ converges pointwise and find its limit function. Is it uniformly convergent?

Proof. First, for all $x \in [0,1)$, we see that $x^n \to 0$ as $n \to \infty$. If x = 1, then we see that $x^n \to 1$ as $n \to \infty$. Therefore, we have the following limit function:

(58.2)
$$f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$$

Moreover, since we see that f(x) is not continuous, we see that f_n is not uniformly convergent.

59. Problem 59

Theorem 59.1. Let $g:[0,1] \to \mathbb{R}$ be continuous with g(1) = 0. Show that $\{f_n\}$ defined by $f_n(x) = x^n g(x)$ for $x \in [0,1]$ converges uniformly to the constant zero function.

Proof. Since q(x) is continuous, we know that there exists an M such that |q(x)| < M for all $x \in [0,1]$. Therefore, we see that $|f_n(x) - 0| = |f_n(x)| = x^n |g(x)| \le x^n M$. If we let $\delta < x \le 1$, we see that there exists an N such that $M\delta^n < \epsilon$ whenever n > N, so that $|f_n(x)| < \epsilon$ for all $x \in [0,1]$, including x = 1 because g(1) = 0 so that $f_n(1) = 0$. This proves uniform convergence to the constant zero function.

60. Problem 60

Theorem 60.1. Let $\{f_n\}$ be a sequence of continuous real-valued functions on [a,b] and let $\{a_n\}$ and $\{b_n\}$ be two sequences on [a,b] converging to a and b respectively as $n \to \infty$. If $\{f_n\}$ converges uniformly to f on [a,b], show that $\lim_{n\to\infty} \int_{a_n}^{b_n} f_n(x) dx = \int_a^b f(x) dx$.

Proof. Fix $\epsilon > 0$. First, we see that there exsts an N_1 such that for all $n > N_1$: $a_n - a < \epsilon$. There also exists an N_2 such that for all $n > N_2$, we have $b - b_n < \epsilon$. Since $\{f_n\}$ is a uniformly convergent sequence of continuous functions, we see that f is also continuous. This implies that there exists an M such that |f(x)| < M for all $x \in [a, b]$. Uniform continuity implies also that there exists an N_3 such that for all $n > N_3$ and $x \in [a, b]$ we have $|f_n(x) - f(x)| < \epsilon$. Therefore, we can set $N = \max\{N_1, N_2, N_3\}$ and for n > N, we have the following:

$$\begin{vmatrix}
\int_{a_{n}}^{b_{n}} f_{n}(x) dx - \int_{a}^{b} f(x) dx \\
 &= \left| \int_{a_{n}}^{b_{n}} (f_{n}(x) - f(x)) dx - \int_{a}^{a_{n}} f(x) dx - \int_{b_{n}}^{b} f(x) dx \right| \\
 &\leq |f_{n}(x) - f(x)|(b_{n} - a_{n}) - |f(x)|(a_{n} - a) - |f(x)|(b - b_{n}) \\
 &< \epsilon(b + \epsilon - \epsilon - a) - 2M\epsilon \\
 &= \epsilon(b - a) - 2M\epsilon
\end{vmatrix}$$

Since $\epsilon > 0$ was arbitrary, we have proven the theorem.

61. Problem 61

Theorem 61.1. Let X be a topological space and let $\{f_n\}$ be a sequence of real-valued continuous functions defined on X. Suppose that there is a function $f: X \to \mathbb{R}$ such that $f(x) = \lim_{n \to \infty} f_n(x)$ holds for all $x \in X$. Show that f is continuous at a point a if and only if for each $\epsilon > 0$ and each m there exists a neighborhood V(a) and some k > m such that $|f(x) - f_k(x)| < \epsilon$ holds for all $x \in V(a)$.

Proof. First, we will assume that f is continuous at a and fix $\epsilon > 0$. This implies that there is a neighborhood V(a) such that for all $x \in V(a)$, we have $|f(x) - f(a)| < \epsilon$. Since $f_n(x) \to f(x)$ for all $x \in X$, we see that there exists some m such that for all n > m, $|f(x) - f_n(x)| < \epsilon$. This means that there exists a k > m such that:

$$|f(x) - f_k(x)| \le |f(x) - f(a)| + |f(a) - f_k(a)| + |f_k(a) - f_k(x)| < 3\epsilon$$

To prove the converse, we first assume that there exists an m and neighborhood V(a) such that for some k > m we have $|f(x) - f_k(x)| < \epsilon$ for all $x \in V(a)$. We know that we have $|f_k(x) - f_k(a)| < \epsilon$ if $x \in V(a)$. Moreover, we see that $|f_k(a) - f(a)| < \epsilon$ because of pointwise convergence. Therefore, for k > m, we have the following:

$$|f(x) - f(a)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(a)| + |f_k(a) - f(a)| < 3\epsilon$$

This proves that f is continuous at a and completes the theorem.

62. Problem 62

Theorem 62.1. Let $\{f_n\}$ be a uniformly bounded sequence of continuous real valued functions on a closed interval [a,b]. Show that the sequence of functions $\{\phi_n\}$ defined by $\phi_n(x) = \int_a^x f_n(t)dt$ for each $x \in [a,b]$ contains a uniformly convergent subsequence.

Proof. Since $\{f_n\}$ is uniformly bounded, we know that there exists an M such that for all $x \in [a,b]$ and all $n \in \mathbb{N}$, we have $|f_n(x)| < M$. Therefore, we see that $|\phi_n(x)| = \int_a^x |f_n(t)| dt \le |f_n(t)| (x-a) \le M(b-a)$. Thus, we see that the sequence $\{\phi_n\}$ is pointwise bounded on [a,b]. Moreover, we can show that the sequence is also equicontinuous. This is because for all $x, y \in [a,b]$, we have the following (assuming without loss of generality that x < y):

$$|\phi_n(x) - \phi_n(y)| = \left| \int_a^x f_n(t)dt - \int_a^y f_n(t)dt \right|$$

$$= \left| \int_{x}^{y} f_{n}(t)dt \right|$$

$$(62.4) \leq |f_n(t)|(y-x)$$

$$(62.5) (M(y-x))$$

Therefore, we can choose $\delta = \frac{\epsilon}{M}$ so that if $|y - x| < \delta$, then we have for all $x, y \in [a, b]$ and $n \in \mathbb{N}$, $|\phi_n(x) - \phi_n(y)| < M\delta = \epsilon$. Therefore, we have shown that the set $A = \{\phi_1, \phi_2, \ldots\}$ is equicontinuous. Moreover, we know that \bar{A} is closed by definition, bounded, and equicontinuous. Therefore, we see that \bar{A} is compact, and that $\{\phi_n\}$ contains a uniformly convergent subsequence on \bar{A} by the Arzela-Ascoli theorem. \Box

63. Problem 63

Theorem 63.1. Consider a continuous function $f:[0,\infty)\to\mathbb{R}$. For each n defined the continuous function $f_n:[0,\infty]\to\mathbb{R}$ by $f_n(x)=f(x^n)$. Show that the set of continuous functions $\{f_1,f_2,\ldots\}$ is equicontinuous at x=1 if and only if f is a constant function.

Proof. First, it is easy to show that if f is a constant function, then $A = \{f_1, f_2, ...\}$ is equicontinuous at x = 1. This is because $f(1) = f(x^n)$ for $x \in [0, \infty)$ and $n \in \mathbb{N}$, which implies that for all $\epsilon > 0$ we have $\epsilon > |f(1) - f(x^n)| = |f(1) - f_n(x)| = |f_n(y) - f_n(x)|$ for all $x, y \in [0, \infty)$.

Now, we shall prove that if A is equicontinuous at x=1, then f is a constant function. We see that the equicontinuity condition implies that for all $n \in \mathbb{N}$ we have $|f_n(1) - f_n(x)| < \epsilon$ whenever $|1 - x| < \delta$ for $x \in [0, \infty)$. From the fact that $\lim_{n \to \infty} \sqrt[n]{a} = 1$, we see that there exists some n_0 for which $n > n_0$ implies $|f_n(1) - f_n(\sqrt[n]{a})| = |f(1) - f(\sqrt[n]{a})| < \epsilon$. This shows that f(1) = f(a) for all $a \in [0, \infty)$, which completes the proof.

64. Problem 64

Theorem 64.1. Let (X,d) be a compact metric space and let A be an equicontinuous subset of C(X). Show that A is uniformly equicontinuous, i.e. show that $\forall \epsilon > 0$, $\exists \delta > 0$ such that $x, y \in X$ and $d(x, y) < \delta$ imply $|f(x) - f(y)| < \epsilon$ for all $f \in A$.

Proof. Fix $\epsilon > 0$. Equicontinuity implies that there exists a $\delta_x > 0$ such that $d(f(x), f(y)) < \epsilon$ implies $d(x,y) < \delta_x/2$ for all $x,y \in X$ and $f \in A$. Since X is compact, each open cover has a finite subcover, which implies that we can take a set $\{x_1, x_2, \ldots, x_p\}$ and neighborhoods about them with radii $\delta_1, \delta_2, \ldots, \delta_p$ respectively that cover X. Formally, we have $X \subset \bigcup_{1 \le i \le p} N_{\delta_i}(x_i)$ with $x_i \in X$ for all $1 \le i \le p$.

Now pick $x \in X$. There must exist some i for which $d(x, x_i) < \delta_i/2$. Now set $\delta = \frac{1}{2} \min\{\delta_1, \dots, \delta_p\}$ and pick $y \in X$. Now pick $y \in X$ such that x, y satisfy $d(x, y) < \delta$. Then we see that $d(f(x), f(y)) < \delta_i/2$ for all $f \in A$ and see that:

$$(64.2) d(y, x_i) \le d(y, x) + d(x, x_i) < 2\delta_i/2 = \delta_i$$

Therefore, if $d(y, x_i) < \delta_i$ implies that $d(f(y), f(x_i)) < \epsilon$. This means that if $d(x, y) < \delta$, then we have:

(64.3)
$$d(f(x), f(y)) \le d(f(x), f(x_i)) + d(f(x_i), y) < 2\epsilon$$

This completes the proof.

65. Problem 65

Theorem 65.1. Let $\{f_n\}$ be an equicontinuous sequence in C(X) where X is not necessarily compact. If for some function $f: X \to \mathbb{R}$ we have $\lim_{n \to \infty} f_n(x) = f(x)$ for each $x \in X$, then show that $f \in C(X)$.

Proof. By equicontinuity of f_n , we see that for a fixed $\epsilon > 0$, there exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$. Moreover, we see that there exists some N for which n > N implies $|f_n(x) - f(x)| < \epsilon$. Therefore, we see that:

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < 3\epsilon$$

This shows that f is continuous, and hence that $f \in C(X)$, which completes the proof.

66. Problem 66

Theorem 66.1. Let X be a compact topological space and let $\{f_n\}$ be an equicontinuous sequence of C(X). Assume that there exists some $f \in C(X)$ and some dense subset A of X such that $\lim_{n\to\infty} f_n(x) = f(x)$ holds for each $x \in A$. Then show that $\{f_n\}$ converges uniformly to f.

Proof. Since $\{f_n\}$ is equicontinuous, we can fix $\epsilon > 0$ and see that there exists $\delta_x > 0$ for all $n \in \mathbb{N}$ for which $|f_n(x) - f_n(y)| < \epsilon$ implies $|x - y| < \delta_x$ for all $x, y \in X$. Next, we see that $f_n(x)$ converges pointwise to f(x), which shows that there exists some N such that for all n > N, we have $|f_n(x) - f(x)| < \epsilon$ for all $x \in X$. So let $y \in X$, and we see that $|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < 3\epsilon$.

Now since X is compact, we know that we can choose finitely many points $x_i \in X$ such that $X \subset \bigcup_{1 \leq i \leq p} N_{\delta_i}(x_i)$ for p finite. Now pick some point $x \in X$. We see that there exists some x_i for which $|x - x_i| < \delta_i$, implying that $|f_n(x) - f_n(x_i)| < \epsilon$ for all $n \in \mathbb{N}$ by equicontinuity. Thus, we have:

$$|f_n(y) - f(y)| < |f_n(y) - f_n(x)| + |f_n(x) - f(x)| + |f(x) - f(y)| < 2\epsilon + \epsilon + 3\epsilon = 5\epsilon$$

This completes the proof that $\{f_n\}$ converges uniformly to f.

67. Problem 67

Theorem 67.1. Let (X,d) be a metric space and let A be a nonempty subset of X. The distance function of A is $d(x,A): X \to \mathbb{R}$ defined by $d(x,A) = \inf\{d(x,a): a \in A\}$. Show that d(x,A) = 0 if and only if $x \in \overline{A}$.

Proof. First, if $x \in \bar{A}$, we can have either $x \in A$ or $x \in A'$. For the first case, we see that x = a for some $a \in A$, which shows that d(x, a) = 0 for that same $a \in A$. This implies that d(x, A) = 0. In the second case, we see that $x \in A'$ implies that for all $\epsilon > 0$, there exists an $a \in A$ such that $d(x, a) < \epsilon$. This shows that $d(x, A) < \epsilon$ for all $\epsilon > 0$, and shows that d(x, A) = 0 if $x \in \bar{A}$.

Now assume that d(x,A) = 0 and we will show that $x \in A$. First, we note that d(x,A) = 0 implies that for all $\epsilon > 0$, we have $d(x,A) < \epsilon$, which shows that $d(x,a) < \epsilon$ for all $x \in A$. This is the definition of a limit point of A, so that $x \in \overline{A}$.

68. Problem 68

Theorem 68.1. Let A, B be two nonempty subsets of a metric space X such that $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. Show that there exist two open sets U, V such that $A \subset U$ and $B \subset V$.

Proof. First, take the function f(x) = d(x, A) - d(x, B) where d(x, A) is defined as in problem 67. We know, by problem 10.2 in Aliprantis, that f is continuous. Moreover, since $A \cap \bar{B} = \emptyset$, we see that f(x) = -d(x, B) < 0 whenever $x \in A$. By the same logic, we see that because $\bar{A} \cap B = \emptyset$ that f(x) = d(x, A) > 0 whenever $x \in B$. This shows that $A \subset U = f^{-1}((-\infty, 0))$ and $B \subset V = f^{-1}((0, \infty))$. Moreover, since $(-\infty, 0)$ and $(0, \infty)$ are both open sets and f is continuous, we see that U, V are open, disjoint sets. \square

69. Problem 69

Theorem 69.1. If f is continuous on [0,1] such that $\int_0^1 x^n f(x) dx = 0$ for all $n \in \mathbb{N}$, show that f(x) = 0 for all $x \in [0,1]$.

Proof. We note that since f is continuous, we can use the Stone-Weierstrass theorem to show that there exists a sequence of polynomials $\{p_n\}$ which converges to f. Because this is the case, we see that $\{p_n(x)f(x)\}$ converges to $f(x)^2$. Next, we see that $p_n(x)$ is made up of monomials of x, so that $p_n(x) = c_0x_0 + x_1x_1 + \ldots + x_px_p$ where c_i are constants. We see then that $\int_0^1 p_n(x)f(x) = \int_0^1 f(x)(c_0x_0 + c_1x_1 + \ldots + c_px_p)dx = 0$. Therefore, we see that $\lim_{n\to\infty} \int_0^1 p_n(x)f(x) = \int_0^1 f(x)^2 dx = 0$, which implies that f(x) = 0 for all $x \in [0,1]$.

70. Problem 70

Theorem 70.1. Let $f:(X,d) \to (Y,\rho)$ be a function. Show that f is continuous if and only if f restricted to the compact subsets of X is continuous.

Proof. If f is continuous, then it is clear that it is continuous when restricted to the compact subsets. Now, to prove the converse, assume $x_n \to x$. We see that the set $A = \{x_1, x_2, \ldots\} \cup \{x\}$ is compact because the sequence's convergence implies that every open cover has a finite subcover. Therefore, we see that $x_n \to x$ holds on A, which implies that $f(x_n) \to f(x)$ holds. This implies that f is continuous.

71. Problem 71

Theorem 71.1. Show that every compact space (X, d) is separable (contains a countable dense subset).

Proof. Let F_n be a finite subcover such that $X = \bigcup_{x \in F_n} N_{1/n}(x)$. Now let $F = \bigcup_{n=1}^{\infty} F_n$. It is clear that F is an open cover of X. So now we can pick $x \in X$ and some $\delta > 0$. We will always be able to find some $y \in F_n$ for some n such that $d(x,y) < \delta$. This is because we can set $1/n < \delta$ so that $d(x,y) < \delta$. This shows that F is a dense subset. Moreover, we know that F is at most countable because it is the union of a set of finite subcovers of X. This shows that F is a countable dense subset.

72. Problem 72

Theorem 72.1. A family of continuous functions \mathscr{F} is said to have the finite intersection property if every finite intersection of sets of \mathscr{F} is nonempty. Show that a metric space is compact if and only if every family of closed sets with the finite intersection property has a nonempty intersection.

Proof. Let $\{A_i : i \in I\}$ be a family of closed sets with the finite intersection property and assume that X is compact. Suppose by contradiction that $\bigcap_{i \in I} A_i = \emptyset$. This implies that $\bigcup_{i \in I} A_i^c = X$ is an open cover of X because A_i^c is open. Therefore, since X is compact, we see that this open cover has a finite subcover, namely $\bigcup_{i=1}^n A_i^c = X$. This implies that $\bigcap_{i=1}^n A_i = \emptyset$, which is a contradiction of the finite intersection property. Therefore, $\{A_i : i \in I\}$ must have a nonempty intersection.

To show the converse, we now assume that every family of closed sets with the finite intersection property has a nonempty intersection. Now let V_i be open sets such that $X = \bigcup_{i \in I} V_i$ is an open cover of X. Therefore, we see that $\bigcap_{i \in I} V_i^c = \emptyset$. Moreover, since V_i^c is closed, we see by assumption that $\bigcap_{i \in I} V_i^c \neq \emptyset$. This implies that our set $\{V_i : i \in I\}$ does not have the finite intersection property, which shows that there exist some finite n for which $\bigcap_{i=1}^n V_i^c = \emptyset$ holds. This shows that $\bigcup_{i=1}^n V_i = X$ is a finite subcover of $\bigcup_{i \in I} V_i$, which proves the compactness of X.

18.100B

73. Problem 73

Theorem 73.1. Let $f: X \to X$ function from a set X into itself. A point $a \in X$ is called a fixed point for f if f(a) = a. Assume that (X,d) is compact and $f: X \to X$ satisfies d(f(x), f(y)) < d(x,y) for $x \neq y$. Show that f has a unique fixed point.

Proof. First, it is clear that f cannot have more than one fixed point. If f(a) = a and f(b) = b, then:

$$(73.2) d(a,b) = d(f(a), f(b)) < d(a,b)$$

This only holds when a = b, so there can only be a single fixed point. Now we shall show that there is at least 1 fixed point. Define g(x) = d(x, f(x)) so that we have the following inequality for $x, y \in X$:

$$(73.3) |g(x) - g(y)| = d(x, f(x)) - d(y, f(y)) \le d(x, y) + d(y, f(x)) - d(y, f(y))$$

By the triangle inequality, we see that $d(y, f(x)) \le d(y, f(y)) + d(f(y), f(x))$ which implies that d(y, f(x)) - d(y, f(x)) + d(y, f(x)) + d(y, f(x)) $d(y, f(y)) \leq d(f(y), f(x))$. This shows the following:

$$|g(x) - g(y)| \le d(x, y) + d(f(y), f(x)) < 2d(x, y)$$

We can choose $\delta = \epsilon/2$ and show that for all $\epsilon > 0$, we can $|g(x) - g(y)| < 2\delta < \epsilon$ whenever $d(x, y) < \delta$. This proves the continuity of q on X. Now, since X is compact, we know that q attains a minimum at some point $a \in X$. Therefore, we have $g(a) \leq g(x)$ for all $x \neq a$. This implies that $d(a, f(a)) \leq d(x, f(x))$ for all $x \neq a$. Assume by contradiction that a is not a fixed point, so that $f(a) \neq a$. Then we see that $d(f(a), f(f(a))) < d(a, f(a)) \neq 0$, which is a contradiction of the fact that g(a) is a minimum. This shows that f has at least one fixed point, and since we know it cannot have more than one fixed point, this a must be unique.

74. Problem 74

Theorem 74.1. Find functions f and g such that $\lim_{x\to a} f(x) = A$ and $\lim_{y\to A} g(y) = B$, but for which $\lim_{x\to a} g(f(x)) \neq B$.

Proof. Let $f(x) = (-x)^x$ and let $g(y) = \sqrt{y}$. We see the following is true:

(74.2)
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (-x)^x = 4$$
(74.3)
$$\lim_{y \to 4} g(y) = \lim_{y \to 4} \sqrt{x} = 2$$

(74.3)
$$\lim_{y \to 4} g(y) = \lim_{y \to 4} \sqrt{x} = 2$$

So we see that A=4 and B=2. However, we see that the composition $g(f(x))=\sqrt{(-x)^x}=(-x)^{x/2}$. Thus, we have:

(74.4)
$$\lim_{x \to 2} g(f(x)) = \lim_{x \to 2} (-x)^{x/2} = -2$$

We see that $2 \neq -2$, so we are done.

75. Problem 75

Theorem 75.1. Show that $\lim_{x\to 0} \ln(1+x) = 0$. Using this equality, deduce that the logarithmic function is continuous on $(0,\infty)$.

Proof. We know that $0 < \ln(1+\frac{1}{n}) < \frac{1}{n}$ for all $n \in \mathbb{N}$. Thus, fix $\epsilon > 0$, and we can find n_0 such that $\frac{1}{n_0-1} < \epsilon$. Thus, for $|x| < \frac{1}{n_0}$ we have:

$$(75.2) -\epsilon < -\frac{1}{n_0} < \ln(1 - \frac{1}{n_0}) < \ln(1 + x) < \ln(1 - \frac{1}{n_0} < \frac{1}{n_0} < \epsilon$$

Since $\epsilon > 0$ was arbitrary, we see that $\ln(1+x) \to 0$ as $x \to 0$. To prove continuity, take $x_0 \in (0, \infty)$. Then we have:

$$(75.3) \lim_{x \to x_0} \ln(x) = \lim_{x \to x_0} \ln(x_0) + \ln\left(\frac{x}{x_0}\right) = \ln(x_0) + \lim_{y \to 1} \ln(y) = \ln(x_0) + \lim_{t \to 0} \ln(1+t) = \ln(x_0)$$

Since we have shown that $\ln(x) \to \ln(x_0)$ as $x \to x_0$ for all $x_0 \in (0, \infty)$, we have shown the continuity of ln(x) on $(0,\infty)$.

76. Problem 76

Theorem 76.1. Suppose that f is continuous on $[a, \infty)$ and $\lim_{x\to\infty} f(x)$ is finite. Show that f is bounded on $[a, \infty)$.

Proof. Let $c = \lim_{x \to \infty} f(x) < \infty$. Pick $\epsilon > 0$. We see that there exists an M > 0 such that for all x > M, we have $|f(x) - c| < \epsilon$. This means that $c - \epsilon < |f(x)| < c + \epsilon$, which shows that for $x \in (M, \infty)$, |f(x)| is bounded. Moreover, by continuity, we see that f(x) is bounded for [a, M] because for all N > 0, we can choose $\delta > 0$ such that $|x - y| < \delta$ implies |f(x) - f(y)| < N for all $x, y \in [a, M]$. Thus, we can just choose the smallest δ for which $|M - a| < \delta$, and see that |f(x) - f(y)| < N. Therefore, we see that f is bounded on $[a, \infty)$.

77. Problem 77

Theorem 77.1. Show that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous and periodic with $\lim_{x\to\infty} f(x) - g(x) = 0$, then f = g.

Proof. Suppose by contradiction that this is not the case. Then there exists some $x_0 \in \mathbb{R}$ such that $f(x_0) \neq g(x_0)$. Assume $f(x_0) > g(x_0)$ without loss of generality, this shows that $f(x_0) - g(x_0) = M > 0$. Let f and g have periods T_1 and T_2 respectively. Now pick ϵ such that $0 < \epsilon < \frac{M}{2}$. By our assumption, we see that there exists an k > 0 such that for all $x > x_0 + kT_2$, we have $|f(x) - g(x)| < \epsilon$. By the continuity assumption, we see that there exists a $\delta > 0$ such that $|f(x+h) - f(x)| < \epsilon$ when $|h| < \delta$. Therefore, if we take $k \in \mathbb{Z}$, we have:

$$|f(x_0) - g(x_0)| \le |f(x_0) - f(x_0 + kmT_2)| + |f(x_0 + kmT_2) - g(x_0 + kmT_2)|$$

$$(77.3) = |f(x_0) - f(x_0 + kmT_2 + nT_1)| + |f(x_0 + kmT_2) - g(x_0 + kmT_2)|$$

$$(77.4) < 2\epsilon$$

Where $n \in \mathbb{Z}$. This inequality holds whenever $|kmT_2 + nT_1| < \delta$. However, this implies that $M < 2\epsilon$, where $0 < \epsilon < \frac{M}{2}$, which is a contradiction. Thus, we must see that f = g.

78. Problem 78

Theorem 78.1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous and periodic with positive fundamental periods T_1 and T_2 respectively. Prove that if $\frac{T_1}{T_2} \notin \mathbb{Q}$, then h = f + g is not periodic.

Proof. Suppose by contradicion that h is periodic with fundamental period T. Then we see that $\frac{T}{T_1} \notin \mathbb{Q}$ or $\frac{T}{T_2} \notin \mathbb{Q}$. Assume the first case without loss of generality. Then we see that h(x) = h(x+T) implies that g(x) + f(x) = g(x+T) + f(x+T). Define a new function H(x) = g(x+T) - g(x) = f(x+T) - f(x). It is clear that this function is constant and therefore continuous. So let H(x) = c for some $c \in \mathbb{R}$.

It follows that f(x+T) = f(x) + c. Assume that $c \neq 0$. Then if we substitute x = 0 into the expression, we find f(T) = f(0) + c. Substitute x = T into the expression to find f(2T) = f(T) + c = f(0) + 2c. Continuing with this process, we see that f(nT) = f(0) + nc where $n \in \mathbb{N}$. However, this is a contradiction because g is no longer bounded even though it is a continuous, periodic function. Therefore, we see that c = 0

So we have deduced that f(x+T)=f(x). This shows that T must be a period of f so that $T=kT_1$ where $k\in\mathbb{Z}$. However, this implies that $\frac{T}{T_1}=k\in\mathbb{Z}$, which is a contradiction because we have assumed $\frac{T}{T_1}\notin\mathbb{Q}$. Therefore, we see that h is not periodic.

79. Problem 79

Theorem 79.1. Suppose $f:(0,\infty)\to\mathbb{R}$ is continuous such that $f(x)\leq f(nx)$ for all x>0 and $n\in\mathbb{N}$. Show that $\lim_{n\to\infty}f(x)$ exists.

Proof. Let $M = \lim_{r \to \infty} \sup_{x \ge r} f(x)$ and $m = \lim_{r \to \infty} \inf_{x \ge r} f(x)$. Assume by contradiction that M > m. Then there exists a real number k such that m < k < M. Since f is continuous, there must be some $a \in (0, \infty)$ such that f(a) > k. Moreover, continuity implies that there exists a b such that for all $t \in [a, b]$, we have f(t) > k. Now define $p = \frac{ab}{a-b}$. If $x \ge p$, then we have the following:

(79.2)
$$\frac{x(a-b)}{ab} \ge 1 \quad \Rightarrow \quad \frac{x}{a} \ge 1 + \frac{x}{b}$$

This implies that there exists some integer n_0 for which $\frac{x}{a} \ge n_0 \ge \frac{x}{b}$. Equivalently, we see that $a \le \frac{x}{n_0} \le b$. Therefore, we have the following:

(79.3)
$$f(x) = f\left(n_0 \frac{x}{n_0}\right) \ge f\left(\frac{x}{n_0}\right) > k$$

For all $x \ge p$. This contradicts the definition of m because there is actually a larger number k for which f(x) > k as $x \to \infty$. Therefore, we see that m = M, which shows that $\lim_{x \to \infty} f(x)$ exists.

80. Problem 80

Theorem 80.1. Let $f:[0,1] \to [0,1]$ be continuous. Show the f has a fixed point on [0,1].

Proof. Define the function g(x) = f(x) - x which is continuous because both f(x) and x are continuous. We see that $g(0) = f(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$. Thus, by intermediate value theorem, we see that there exists some $x_0 \in [0, 1]$ such that $g(x_0) = 0$, which implies that $f(x_0) = x_0$. This is the definition of a fixed point, so f has at least one fixed point.

81. Problem 81

Theorem 81.1. Assume that $f, g : [a, b] \to \mathbb{R}$ are continuous such that f(a) < g(a) and g(b) > g(b). Prove that there exists an $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.

Proof. Define the function h(x) = f(x) - g(x). We see that h(x) is continuous because it is the addition of two continuous functions. Moreover, we see that h(a) = f(a) - g(a) < 0 while h(b) = f(b) - g(b) > 0. Thus, by the intermediate value theorem, there exists some x_0 such that $h(x_0) = 0$. This implies that $f(x_0) = g(x_0)$ for some $x_0 \in [a, b]$.

82. Problem 82

Theorem 82.1. A function $f:(a,b) \to \mathbb{R}$ is continuous. Prove that given x_1, x_2, \ldots, x_n in (a,b), there exists $x_0 \in (a,b)$ such that $f(x_0) = \frac{1}{2}(f(x_1) + f(x_2) + \ldots + f(x_n))$.

Proof. Let $m = \min\{f(x_1), \dots, f(x_n)\}$ and let $M = \max\{f(x_1), \dots, f(x_n)\}$. We see that $m \leq \frac{1}{2}(f(x_1) + \dots + f(x_n)) \leq M$. Moreover, since f is continuous, we can use the intermediate value theorem. We see that there exists some x_0 such that $f(x_0) = \frac{1}{2}(f(x_1) + \dots + f(x_n))$.

83. Problem 83

Theorem 83.1. Prove that $(1-x)\cos x = \sin x$ has at least one solution in (0,1).

Proof. Let $g(x) = (1-x)\cos x - \sin x$. We see that g(0) = 1 while $g(1) = -\sin x < 0$. Moreover, we see that g(x) is continuous because it is composed entirely of continuous functions. Therefore, we can apply the intermediate value theorem and see that there exists some x_0 such that $g(x_0) = 0$. This shows that there is at least one solution x_0 to the equation.

84. Problem 84

Theorem 84.1. For a nonzero polynomial, show that $|P(x)| = e^x$ has at least one solution.

Proof. We know that $\lim_{x\to\infty} |P(x)|e^{-x} = 0$ while $\lim_{x\to-\infty} |P(x)|e^{-x} = \infty$. Since polynomials are continuous and e^{-x} is also continuous, we see that $|P(x)|e^{-x}$ is continuous and thus has the intermediate value property. Therefore, we see that there exists some $x_0 \in \mathbb{R}$ such that $|P(x_0)e^{-x_0}| = 1$. This would imply that $|P(x_0)| = e^{x_0}$, which is what we wanted.

85. Problem 85

Theorem 85.1. Suppose f, g have the intermediate value property on [a, b]. Must f + g posses the intermediate value property on [a, b]?

Proof. No, consider the following functions:

(85.2)
$$f(x) = \begin{cases} \sin\left(\frac{1}{x-a}\right) & a < x \le b \\ 0 & a = x \end{cases}$$

(85.3)
$$g(x) = \begin{cases} -\sin\left(\frac{1}{x-a}\right) & a < x \le b \\ -1 & a = x \end{cases}$$

86. Problem 86

Theorem 86.1. Assume that $f : \mathbb{R} \to \mathbb{R}$ satisfies the condition $f(f(x)) = f^2(x) = -x, x \in \mathbb{R}$. Show that f cannot be continuous.

Proof. Assume the contrary. Then if $f(x_1) = f(x_2)$, we see that we must have $-x_1 = f(f(x_1)) = f(f(x_2)) = -x_2$. Therefore, we must have $x_1 = x_2$ whenever $f(x_1) = f(x_2)$. It follows that f is either strictly increasing or strictly decreasing. It follows that taking f(f(x)), we must have f^2 be strictly increasing. However, this is a contradiction of the fact that $f^2(x) = -x$, which is strictly decreasing. Therefore, f cannot be continuous.

87. Problem 87

Theorem 87.1. Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ which attains each of its values exactly three times.

Proof. Let us define two functions as follows:

(87.2)
$$g(x) = \begin{cases} x+2 & -3 \le x < -1 \\ -x & -1 \le x < 1 \\ x-2 & 1 \le x \le 3 \end{cases}$$

Now define f(x) = g(x+6n) + 2n for all $6n+3 \le x \le 6n-3$ and $n \in \mathbb{N}$. We see that f(x) has the desired properties.

88. Problem 88

Theorem 88.1. Does there exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ which attains each of its values exactly two times?

Proof. No there does not. Assume by contradiction that there does. Let us take two points x_1, x_2 such that $f(x_1) = f(x_2) = c$ and $f(x) \neq c$ for all $x \neq x_1, x_2 \in \mathbb{R}$. Therefore, we can assume that either f(x) > c or f(x) < c for all other x. Let us assume without loss of generality that f(x) > c for some x. Then we see that there exists some x_0 for which $f(x_0) = \max\{f(x) : x \in [x_1, x_2]\}$ by the fact that $[x_1, x_2]$ is a closed, bounded, and hence compact space. Moreover, f can attain its maximum in $[x_1, x_2]$ only once, otherwise the maximum would be attained more than twice. Therefore, there is exactly one point x' outside the interval $[x_1, x_2]$ such that $f(x') = f(x_0) = b > c$. The intermediate value theorem says that every value in the interval [c, b] is attained at least three times, which is a contradiction. Therefore, there does not exist a continuous function which attains each of its values exactly three times.

89. Problem 89

Theorem 89.1. A function $f:[0,1] \to \mathbb{R}$ satisfies f(0) < 0 and f(1) > 0, and there exists a function g continuous on [0,1] such that f+g is decreasing. Prove that the equation f(x)=0 has a solution in the open interval (0,1).

Proof. Let $A = \{x \in [0,1] : f(x) \ge 0\}$ and let $s = \inf A$. Define the function h(x) = f(x) + g(x). Since h is decreasing by assumption, we see that $h(s) \ge h(x) \ge g(x)$ for all $x \in A$. Since g is continuous, it follows that $h(s) \ge g(s)$. Therefore, we must have $f(s) \ge 0$. By our assumptions, we must have $g(0) > h(0) \ge h(s) \ge g(s)$. Applying the intermediate value theorem, we see that there exists some $t \in (0, s)$ such that g(t) = h(s). Then we know that $h(t) \ge h(s) = g(t)$, so that $h(t) \ge g(t)$, which implies that $f(t) \ge 0$. By the definition of s, we see that t = s. This implies that h(t) = g(t), so that f(t) = 0.

90. Problem 90

Theorem 90.1. Prove that if f is uniformly continuous on (a,b] and on [b,c), then it is uniformly continuous on (a,c).

Proof. Fix $\epsilon > 0$. Now, we see that there exists a $\delta_1 > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta_1$ for $x, y \in (a, b]$, and there also exists a $\delta_2 > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta_2$ for $x, y \in [b, c)$. Therefore, we can take $\delta = \min\{\delta_1, \delta_2\}$ so that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$ for all $x, y \in (a, c)$. This completes the proof.

18.100B

91. Problem 91

Theorem 91.1. Prove that any function continuous and periodic on \mathbb{R} must be uniformly continuous on \mathbb{R} .

Proof. Let f have a period of T. Then we see that f is continuous on [0,T], which in turn implies it is uniformly convergent because [0,T] is closed, bounded, and hence compact. Moreover, we see that f is uniformly continuous on all intervals $[T,2T],[2T,3T],\ldots,[nT,(n+1)T]$ for all $n\in\mathbb{Z}$. We see that $\mathbb{R}=\bigcup_{n\in\mathbb{Z}}[nT,(n+1)T]$, so that these intervals cover \mathbb{R} entirely. Thus, by the previous theorem in problem 90, we see that f must be uniformly convergent on the entire \mathbb{R} .

92. Problem 92

Theorem 92.1. Let $f:[1,\infty)\to\mathbb{R}$ be uniformly continuous. Prove that there is a positive M such that $\frac{|f(x)|}{x}\leq M$ for $x\geq 1$.

Proof. By uniform continuity, we can fix $\epsilon = 1$ and find a $\delta > 0$ such that |f(x) - f(x')| < 1 whenever $|x - x'| < \delta$ for all $x, x' \in [1, \infty)$. Moreover, we can write all $x \in [1, \infty)$ as the following: $x = 1 + \delta n + r$ where $n \in \mathbb{Z}_+$ and $r \in [0, \delta)$. Therefore, we have:

$$|f(x)| \le |f(1)| + |f(1) - f(x)| \le |f(1)| + (n+1)$$

Dividing by x, this gives:

(92.3)
$$\frac{|f(x)|}{x} \le \frac{|f(1)| + (n+1)}{1 + \delta n + r} \le \frac{|f(1)|}{\delta} + \frac{n+1}{\delta n} \le \frac{|f(1)| + 2}{\delta} = M$$

93. Problem 93

Theorem 93.1. A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at zero and satisfies the following conditions: f(0) = 0 and $f(x_1 + x_2) \le f(x_1) + f(x_2)$ for any $x_1, x_2 \in \mathbb{R}$. Prove that f is uniformly continuous on \mathbb{R} .

Proof. Fix $\epsilon > 0$. Then we see that there exists some $\delta > 0$ such that $|f(x) - f(0)| < \epsilon$ whenever $|x| < \delta$ by the continuity of f at 0. This means that $|f(x)| < \epsilon$ for all $|x| < \delta$. Moreover, we see that if we pick some $|t| < \delta$, then we have:

$$(93.2) |f(t+x) - f(x)| \le |f(t) + f(x) - f(x)| = |f(t)| < \epsilon$$

This shows that $|f(t+x)-f(x)|<\epsilon$ whenever $|t|<\delta$, which shows that f is uniformly continuous. \square

94. Problem 94

Theorem 94.1. Prove that any function which is bounded, monotonic and continuous on an interval $I \subset \mathbb{R}$ is uniformly continuous on I.

Proof. Assume that I=(a,b) is a bounded interval and f is monotonically increasing without loss of generality. Then, we can see that $\lim_{x\to a^+} f(x) = \inf_{x\in(a,b)} f(x)$ and $\lim_{x\to b^-} f(x) = \sup_{x\in(a,b)} f(x)$. Therefore, we can extend f(x) to the interval I=[a,b] and see that it is uniformly continuous because this is a compact set. If I=(a,b) is unbounded, then the limits $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ exist and are finite. Therefore, f is uniformly convergent by a previous problem.

95. Problem 95

Theorem 95.1. Assume that f is a continuous mapping of a connected metric space X into a metric space Y. Show that f(X) is connected in Y.

Proof. Suppose the contrary. Then $f(X) = A \cup B$ such that $\bar{A} \cap B = A \cap \bar{B} = \emptyset$ and A, B are nonempty, open, disjoint sets. Then we see that $X = f^{-1}(A \cup B)$. Now let U, V be sets such that f(U) = A and f(V) = B. Since A, B are open, we see that $U = f^{-1}(A)$ and $V = f^{-1}(B)$ are also open and nonempty. Moreover, they are disjoint and $X = U \cup V$, which is a contradiction of the fact that f is connected. Hence, f(X) must also be connected in Y.

96. Problem 96

Theorem 96.1. Let (X,d) be a metric space and let A be a nonempty subset of X. Prove that the function $f: X \to [0, \infty)$ defined by $f(x) = dist(x, A) = \inf\{d(x, y) : y \in A\}$ is uniformly continuous on X.

Proof. For $x_0, x \in X$ and $y \in A$, we have the following:

(96.2)
$$dist(x, A) \le d(x, y) \le d(x, x_0) + d(x_0, y)$$

Therefore, we see that the following is true:

$$(96.3) dist(x, A) - d(x_0, y) \le d(x, x_0)$$

$$(96.4) dist(x,A) - dist(x_0,A) \le d(x,x_0)$$

Therefore, we find that:

$$(96.5) |dist(x,A) - dist(x_0,A)| \le d(x,x_0)$$

Therefore, we see that $|f(x) - f(x_0)| < \delta$ where $d(x, x_0) < \delta$, which implies uniform continuity.

97. Problem 97

Theorem 97.1. Prove that if $|a_1 \sin x + a_2 \sin 2x + \ldots + a_n \sin nx| \le |\sin x|$ for $x \in \mathbb{R}$, then $|a_1 + 2a_2 + \ldots + a_n \sin nx| \le |\sin x|$ $\ldots + na_n | \leq 1.$

Proof. Let $f(x) = a_1 \sin x + a_2 \sin 2x + \ldots + a_n \sin nx$. Then we see that $f'(0) = a_1 + 2a_2 + \ldots + na_n$. Well, we also the know the following about the definition of f'(0):

$$(97.2) |f'(0)| = \lim_{x \to 0} \left| \frac{f(x) - f(0)}{x} \right| = \lim_{x \to 0} \left| \frac{f(x)}{\sin x} \right| \left| \frac{\sin x}{x} \right|$$

We also know that $\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\cos x}{1} = 1$ by L'Hospital's Theorem. Thus:

(97.3)
$$|f'(0)| = \lim_{x \to 0} \left| \frac{f(x)}{\sin x} \right| \le 1$$

Because we have assumed $|f(x)| \le |\sin x|$. Therefore, we see that $|a_1 + 2a_2 + \ldots + na_n| \le 1$.

98. Problem 98

Theorem 98.1. Assume that f is differentiable at a, then find $\lim_{x\to a} \frac{xf(a)-af(x)}{x-a}$.

Proof. We can make the following algebraic manipulations:

(98.2)
$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = \lim_{x \to a} \frac{xf(a) - af(a) + af(a) - af(x)}{x - a}$$

(98.2)
$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = \lim_{x \to a} \frac{xf(a) - af(a) + af(a) - af(x)}{x - a}$$

$$= \lim_{x \to a} \frac{f(a)(x - a) + a(f(a) - f(x))}{x - a} = \lim_{x \to a} f(a) + a\frac{f(a) - f(x)}{x - a}$$

Now, we note the definition of a derivative is $f'(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x - a}$, we have:

(98.4)
$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = f(a) - af'(a)$$

99. Problem 99

Theorem 99.1. Prove that if f is continuous on a closed interval [a, b], differentiable on the open interval (a,b), and if f(a)=f(b)=0, then for a real α there is an $x\in(a,b)$ such that $\alpha f(x)+f'(x)=0$.

Proof. A straightforward application of the mean value theorem shows that for the function $h(x) = e^{\alpha x} f(x)$, we have h(b) - h(a) = h'(x)(b-a) for some $x \in (a,b)$. This shows that $0 = (f'(x)e^{\alpha x} + \alpha e^{\alpha x}f(x))(b-a)$. Since $b-a\neq 0$ by assumption and $e^{\alpha x}\neq 0$, we have $f'(x)+\alpha f(x)=0$, which is what we wanted.

100. Problem 100

Theorem 100.1. Let f and g be continuous functions on [a,b], differentiable on the open interval (a,b), and let f(a) = f(b) = 0. Show that there is a point $x \in (a,b)$ such that g'(x)f(x) + f'(x) = 0.

Proof. Take the function $h(x) = e^{g(x)} f(x)$ and observe that it is continuous on [a, b] and differentiable on (a, b) by being the composition of functions that have these properties. Therefore, we see that we can apply the mean value theorem and obtain h(b) - h(a) = h'(x)(b-a) for some $x \in (a, b)$. Since we know that h(b) = h(a) = 0 by assumption, and we know that $b - a \neq 0$, we see that h'(x) = 0. Therefore, taking the derivative, we have $0 = h'(x) = f'(x)e^{g(x)} + f(x)g'(x)e^{g(x)}$. Since we also know that $e^{g(x)} \neq 0$, we can divide by it and see that there exists some $x \in (a, b)$ for which g'(x)f(x) + f'(x) = 0.

101. Problem 101

Theorem 101.1. Let (X, d_1) be a metric space and for $x \in X$ define $\rho(x) = dist(x, X \setminus \{x_n\})$. Prove the following two conditions are equivalent: a) each continuous function $f: X \to \mathbb{R}$ is uniformly continuous b) every sequence $\{x_n\}$ of elements in X such that $\lim_{n\to\infty} \rho(x_n) = 0$ contains a convergent subsequence.

Proof. Assume that the first condition is met and let $\{x_n\}$ be a sequence with elements in X such that $\lim_{n\to\infty}\rho(x_n)=0$. Suppose by contradiction that $\{x_n\}$ does not cotnain a convergent subsequence. First, we know there must be a sequence $\{y_n\}$ such that $\lim_{n\to\infty}d(x_n,y_n)=0$. Moreover, $\{y_n\}$ cannot have a uniformly convergent subsequence in $\{y_{n_k}\}$. If it did, then $\lim_{n\to\infty}d(x_{n_k},y_{n_k})=0$ for some subsequence $\{x_{n_k}\}$ which would imply that $\{x_n\}$ has a convergent subsequence. This is a contradiction, so $\{y_n\}$ cannot have a uniformly convergent subsequence. Therefore, no term of $\{x_n\}$ and $\{y_n\}$ are repeated infinitely many times. We can therefore define $F_1=\{x_{n_k}:k\in\mathbb{N}\}$ and $F_2=\{y_{n_k}:k\in\mathbb{N}\}$, which are closed and disjoint. By the Urysohn lemma, there exists a continuous function $f:X\to\mathbb{R}$ that takes on the values of one on F_1 and zero on F_2 . Therefore, we see that $|f(x_{n_k})-f(y_{n_k})|=1$ while $\lim_{k\to\infty}d(x_{n_k},y_{n_k})=0$, which shows that f is not uniformly continuous. Since f is continuous, this is a contradiction of our assumptions.

To prove the converse, we assume that every sequence $\{x_n\}$ in X such that $\lim_{n\to\infty}\rho(x_n)=0$ contains a convergent subsequence. Let A be the set of all limit points of X. We see that every sequence on A has a convergent subsequence, which shows that A is compact. Fix $\delta_1>0$ and put $\delta_2=\inf\{\rho(x):x\in X, dist(x,A)>\delta_1\}$. We must have $\delta_2>0$, or else if $\delta_2=0$, then we see that ther exists some sequence $\{x_n\}$ such that $\lim_{n\to\infty}(x_n)=0$ and $dist(x,A)>\delta_1$. This is a contradiction of the fact that $\delta_2=0$, which shows that $\delta_2>0$.

Now let $f: X \to \mathbb{R}$ be continuous. Fix $\epsilon > 0$, and we see that there exists a $\delta_x > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $d_1(x, y) < \delta_x$ for all $x, y \in X$. Since A is compact, there exist a finite number of x_1, x_2, \ldots, x_k such that X is covered by neighborhoods of each x_i :

(101.2)
$$X \subset \bigcup_{i=1}^{k} N_{\delta_i/2}(x_i)$$

Therefore, we can take $\delta_1 = \frac{1}{3} \min\{\delta_1, \dots, \delta_k\}$ and δ_2 as before. Let $\delta = \min\{\delta_1, \delta_2\}$. Now pick $x, y \in X$ such that $d_1(x, y) < \delta$. If $d(x, A) > \delta_1$, then $\rho(x) > \delta_2$ so $d_1(x, y) < \delta < \delta_2$ so x = y. In this case $|f(x) - f(y)| = 0 < \epsilon$. Now, if $d(x, A) \le \delta_1$, then we see there must be some $a \in A$ for which $d_1(x, a) < \delta_1$. Moreover, there must be some $i \in \{1, \dots, k\}$ for which $d_1(a, x_i) < \frac{1}{3}\delta_i$. Therefore, we have:

(101.3)
$$d_1(y,x_i) \le d_1(y,x) + d_1(x,a) + d_1(a,x_i) < \delta + \delta_1 + \frac{1}{3}\delta_i < \delta_i$$

Moreover, we see that:

$$|f(x) - f(y)| \le |f(x) - f(x_i)| + |f(x_i) + f(y)| < 2\epsilon$$

This proves the uniform continuity of f.

102. Problem 102

Theorem 102.1. Assume that f is twice differentiable on (a,b) and that there is some M > 0 such that $|f''(x)| \leq M$ for all $x \in (a,b)$. Prove that f is uniformly continuous on (a,b).

Proof. It is sufficient to show that f' is bounded on (a,b). Fix $y \in (a,b)$. We can use the mean value theorem on f' to see that for all $x \in (a,b)$, we have |f'(x)-f'(y)|=|f''(c)|(x-y) for some $c \in (x,y)$. Thus, we see that $|f'(x)-f'(y)| \leq M(x-y)$ which implies $|f'(x)| \leq M(x-y)+|f'(y)| \leq M(b-a)+|f'(y)|$. Since f'(y) is a constant, we see that $|f'(x)| \leq J$ where J>0 is a constant. Therefore, we see that f' is bounded for all $x \in (a,b)$, which implies that f is uniformly continuous.

103. Problem 103

Theorem 103.1. Let f be continuous on [0,1] and differentiable on (0,1). Suppose that f(0)=f(1)=0and there exists some $x_0 \in (0,1)$ such that $f(x_0) = 1$. Prove that |f'(c)| > 2 for some $c \in (0,1)$.

Proof. Pick x_0 such that $f(x_0) = 1$. Then we use the mean value theorem to see that $|f(x_0) - f(0)| = |f'(c)|x_0$ which implies $|f(x_0)| = |f'(c)|x_0$. Using the mean value theorem again, we see that $|f(1) - f(x_0)| =$ $|f'(d)||1-x_0|$, which implies $|f(x_0)|=|f'(d)||1-x_0|$. Therefore, we have:

(103.2)
$$|f'(c)| = \frac{|f(x_0)|}{|x_0|} = \frac{1}{|x_0|}$$

(103.2)
$$|f'(c)| = \frac{|f(x_0)|}{|x_0|} = \frac{1}{|x_0|}$$
(103.3)
$$|f'(d)| = \frac{|f(x_0)|}{1 - x_0|} = \frac{1}{|1 - x_0|}$$

Suppose that $x_0 > \frac{1}{2}$, then we see that |f'(d)| > 2. If $x_0 < \frac{1}{2}$, then f'(c) > 2. If $x_0 = \frac{1}{2}$, then both |f'(c)| = |f'(d)| = 2. Therefore, for whatever value of $x_0 \in (0,1)$, we see that there exists some c for which |f'(c)| > 2.

104. Problem 104

Theorem 104.1. Assume that f is differentiable on an open interval I and that $[a,b] \subset I$. We say that f is uniformly differentiable on [a,b] if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|\frac{f(x+h)-f(x)}{h} - f'(x)| < \epsilon$ for all $x \in [a,b]$ and $|h| < \delta$, with $x+h \in I$. Prove that f is uniformly differentiable on [a,b] if and only if f' is continuous on [a,b].

Proof. First, assume that f is uniformly differentiable. Then there exists a sequence $\left\{\frac{f(x+h)-f(x)}{h}\right\}$ which is uniformly convergent to $\{f'(x)\}$. Since each term in the sequence is continuous, we see that f'(x) is also continuous because of uniform convergence.

To prove the converse, we assume that f' is continuous on [a,b]. This implies that f' is uniformly continuous. By mean value theorem, we see that $|f(x+h)-f(x)|=|f'(x+\theta h)|h$ for some $\theta\in(0,1)$. Therefore, we have:

(104.2)
$$\left| \frac{f(x+h) - f(x)}{h} - f'(x) \right| = |f'(x+\theta h) - f'(x)| < \epsilon$$

This follows from uniform continuity, since we see that for a fixed $\epsilon > 0$, there exists a $\delta > 0$ such that $|f'(x+\theta h)-f'(x)|<\epsilon$ if $|h|<\delta$ for all $x\in[a,b]$. Therefore, f is uniformly differentiable.

105. Problem 105

Theorem 105.1. Prove that a metric space is compact if and only if every continuous function $f: X \to \mathbb{R}$ is bounded.

Proof. Suppose first that X is compact. Then every continuous function is uniformly continuous. Since X is compact, there exist a finite number of points x_1, \ldots, x_n such that $X \subset N_{\delta_1}(x_1) \cup \ldots \cup N_{\delta_n}(x_n)$. Now select $\delta = \max\{\delta_1, \dots, \delta_n\}$. Moreover, we can pick $M = \max\{f(x_1), \dots, f(x_n)\}$. Fix $\epsilon > 0$ and choose $x \in X$. It is clear that there exists some $i=1,\ldots,n$ for which $d(x,x_i)<\delta_i$. Thereofre, by uniform continuity, we see that $|f(x) - f(x_i)| < \epsilon$ so that $|f(x)| < \epsilon + |f(x_i)| < \epsilon + M$. Therefore, we see that f(x) is bounded for all $x \in X$.

To prove the converse, assume f is continuous and there exists an M such that |f(x)| < M for all $x \in X$. Now suppose by contradiction that X is not compact. Thus, there exists some sequence $\{x_n\}$ for which no subsequence converges. Let $F = \{x_n : n \in \mathbb{N}\}$, which is a closed set. Moreover, we know that $f(x_n) = n$ is continuous on F. According to the Tietze extension theorem, there exists a continuous extension of fdefined on all of X. But this is a contradiction, because f is not bounded, and we assumed every continuous function on X is bounded. Therefore, X must be compact.

106. Problem 106

Theorem 106.1. Let \mathscr{F} denote a family of real functions continuous on a complete metric space X such that for all $x \in X$, there exists some M_x such that $|f(x)| < M_x$ for all $f \in \mathscr{F}$. Prove that there exists some M>0 and a nonempty open set $G\subset X$ such that |f(x)|< M for all $f\in \mathscr{F}$ and $x\in G$.

Proof. Define $F_n = \{x \in X : |f(x)| < n, \forall f \in \mathscr{F}\}$. Since f are all continuous, we see that F_n is closed. By assumption, for all $x \in X$, there exists some n_x such that $|f(x)| < n_x$. Thus, $x \in F_{n_x}$. Therefore, we see that $\mathscr{F} = \bigcup_{n=1}^{\infty} F_n$. Thus, there exists some F_{n_0} with a nonempty interior. Take $G = F_{n_0}^{\circ}$ and we see that all $|f(x)| < n_0$ for all $f \in \mathscr{F}$ and $x \in G$.

107. Problem 107

Theorem 107.1. Prove that if f is differentiable on [0,1] and if f(0)=0, and there exists some K>0 such that $|f'(x) \le K|f(x)|$ for all $x \in [0,1]$, then $f(x) \equiv 0$.

Proof. Pick $x_0 \in [0,1]$, and we can use mean value theorem to obtain the following: $|f(x_0)| = |f'(x_1)|x_0 \le Kx_0|f(x_1)|$ for some $x_1 \in (0,x_0)$. Next, we can apply mean value theorem again to obtain: $|f(x_1)| = |f'(x_2)|x_1 \le Kx_1|f(x_2)|$. Therefore, $|f(x_0)| \le K^2x_0x_1|f(x_2)|$. We can repeat this process, and find that by induction we have $|f(x_0)| \le K^nx_0x_1 \dots x_{n-1}|f(x_n)|$ for some $n \in \mathbb{N}$. Note that we stop applying the mean value theorem once $x_{n-1} < K$. Also note that $0 < x_n < x_{n-1} < \dots < x_1 < x_0$. Therefore, for each $x \in [0,1]$, we have $|f(x)| \le K^nx^n|f(x_n)|$ for some $n \in \mathbb{N}$. This shows that f is bounded and that $f(x) \equiv 0$ on the interval $[1,1/n] \cap [0,1]$. To show that $f(x) \equiv 0$ on the rest of the interval, repeat the process and take f(x) as a new ending point. We see that [0,1] can be decomposed into finitely many of these intervals, which shows that $f(x) \equiv 0$ on all of [0,1].

108. Problem 108

Theorem 108.1. Let f be continuous on [a,b], g be differentiable on [a,b] and g(a)=0. Prove that if there exists $\lambda \neq 0$ such that $|g(x)f(x) - \lambda g'(x)| \leq |g(x)|$ for all $x \in [a,b]$, then $g(x) \equiv 0$ on [a,b].

Proof. First, note that f continuous on a compact set [a,b] implies that f is uniformly continuous, hence bounded on [a,b]. Therefore, there exists an A such that |f(x)| < A for all $x \in [a,b]$. Rewriting our assumptions, we have the following and letting $B = \frac{\lambda}{4+1}$:

(108.2)
$$|g'(x)| \le |g(x)| \frac{|f(x)| + 1}{\lambda} \le \frac{|g(x)|}{B}$$

Now let $[c,d] \subset [a,b]$ be a subinterval whose length is not greater than $\frac{1}{2}\frac{|\lambda|}{1+A} = \frac{B}{2}$. and such that g(c) = 0. Then we see that by applying the mean value theorem to some point $x_0 \in [c,d]$, we obtain $|g(x_0)| = |g'(x_1)| |x_0 - c|$ for some $x_1 \in (c,x_0)$. Therefore, we find that:

$$|g(x_0)| \le |g(x_1)| \frac{|x_0 - c|}{B} \le |g(x_1)| \frac{B}{2B} = \frac{1}{2} |g(x_1)|$$

Repeating this process, we see that:

$$|g(x_0)| \le \frac{1}{2}|g(x_1)| \le \ldots \le \frac{1}{2^n}|g(x_n)| \le \ldots$$

This is true for a decreasing sequence of $\{x_n\}$ such that $c < x_n < x_{n-1} < \ldots < x_1 < x_0$. Since g(c) = 0, we see that $g(x_0) = 0$. It is enough to decompose [a, b] into a finite number of subintervals with length less than B/2, and show that $g(x) \equiv 0$ for all of these subintervals. This shows that $g(x) \equiv 0$ on [a, b].

109. Problem 109

Theorem 109.1. Show that the limit function of a uniformly convergent sequence of bounded functions is bounded.

Proof. Let $\{f_n\}$ converge uniformly to f, and let there exist some $M_n>0$ for each $n\in\mathbb{N}$ such that $|f_n(x)|< M_n$ for all $x\in X$. Fix $\epsilon>0$. Since $\{f_n\}$ converges uniformly, there exists some N such that for all n>N and for all $x\in X$, we have $|f_n(x)-f(x)|<\epsilon$. Therefore, we see that $|f(x)|<\epsilon+|f_n(x)|$. However, we can take $M=\max\{M_1,M_2,\ldots,M_N\}$ and see that we must have $|f(x)|<\epsilon+M$, which shows that |f(x)| is bounded.

110. Problem 110

Theorem 110.1. Let $\{a_n\}$ be a convergent sequence of real numbers and let $\{f_n\}$ be a sequence of functions satisfying $\sup\{|f_n(x)-f_m(x):x\in A\}\leq |a_n-a_m| \text{ for all } n,m\in\mathbb{N}.$ Prove that $\{f_n\}$ converges uniformly.

Proof. First, we know by Cauchy criterion of convergence, that for a fixed $\epsilon > 0$, that there exists some N such that n, m > N implies that $|a_n - a_m| < \epsilon$. Moreover, we see that by our assumptions, we must have for all $x \in A$ $|f_n(x) - f_m(x)| < |a_n - a_m|$ because of the supremum condition. Therefore, we can choose N as before so and see that for all $x \in A$ that n, m > N implies $|f_n(x) - f_m(x)| < |a_n - a_m| < \epsilon$. This shows uniform convergence.

111. Problem 111

Theorem 111.1. Assume that $\{f_n\}$ is a sequence of increasing or decreasing functions on [a,b] converging pointwise to a function continuous on [a,b]. Prove that $\{f_n\}$ converges uniformly on [a,b].

Proof. Assume without loss of generality that each f_n is increasing and that $\{f_n\} \to f$. By assumption, we see that f is continuous on a compact set [a,b] so that f is uniformly continuous. This means that for a fixed $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x, x_i \in [a,b]$ we have $|f(x) - f(x_i)| < \epsilon$ whenever $|x - x_i| < \delta$. Take a partition of [a,b] such that $a = x_0 < x_1 < x_2 < \ldots < x_p = b$, where $|x_i - x_{i-1}| < \delta$ for all $i \in \{1,\ldots,p\}$. Now pick $x \in [a,b]$. It is clear that there exists some i for which $x_{i-1} \le x \le x_i$. Therefore, $|f(x) - f(x_i)| < \epsilon$ for all $x \in [a,b]$ for some $i \in \{1,\ldots,p\}$.

By pointwise convergence, there exists an N such that for all n > N we have $|f_n(x_i) - f(x_i)| < \epsilon$ for all $x \in [a, b]$. Thus, we see that for all $x \in [a, b]$, there exists an N such that for all n > N, we have:

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(x_i)| + |f_n(x_i) - f(x_i)| + |f(x_i) - f(x)| < 3\epsilon$$

This proves uniform convergence on $\{f_n\}$ to f.

112. Problem 112

Theorem 112.1. Let $f: X \to \mathbb{R}$ be uniformly continuous. Show that if $\{a_n\}$ is Cauchy in X, then $\{f(a_n)\}$ is convergent in \mathbb{R} .

Proof. Fix $\epsilon > 0$. Since f is uniformly continuous, we see that there exists some $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$ for all x, y inX. By the definition of Cauchy sequence, we see that there exists some N such that for all n, m > N, we have $|a_m - a_n| < \delta$. Therefore, we have $|f(a_n) - f(a_m)| < \epsilon$ whenever n, m > N, which implies that $|a_m - a_n| < \delta$. Therefore, we have proven that $\{f(a_n)\}$ is convergent in \mathbb{R} .

113. Problem 113

Theorem 113.1. Suppose $f: X \to \mathbb{R}$ maps Cauchy sequences to convergent sequences. Is f necessarily uniformly continuous?

Proof. No. Let $\{a_n\}$ be a Cauchy sequence in X, and define $f(x) = x^2$. We see that $\{f(a_n)\} = \{a_n^2\}$ is convergent. However, we know that f is not uniformly continuous because we cannot find a single $\delta > 0$ for every ϵ for which $|x^2 - y^2| < \epsilon$ whenever $|x - y| < \delta$.

114. Problem 114

Theorem 114.1. Let $\{p_n\}$ be a sequence in a metric space (X,d) and let $a_n = d(p_n, p_{n+1})$. Assume that $\sum_{n=1}^{\infty} a_n$ converges. Show that $\{p_n\}$ is a Cauchy sequence.

Proof. Fix $\epsilon > 0$. We know by the Cauchy criterion for convergence of series that there exists some N such that for all $n, m \geq N$ (let us assume without loss of generality that m > n), that $|a_m + a_{m+1} + \ldots + a_n| < \epsilon$. Substituting in the definition of a_n , we have: $|d(p_n, p_{n+1}) + d(p_{n+1}, p_{n+2}) + \ldots + d(p_{m-1}, p_m)| < \epsilon$ which shows by triangle inequality that $d(p_n, d_p m) \leq d(p_n, p_{n+1}) + \ldots + d(p_{m-1}, p_m) < \epsilon$. therefore, we see that $\{p_n\}$ is a Cauchy sequence.

115. Problem 115

Theorem 115.1. Prove that if $\{f_n\}$ is pointwise convergent and equicontinuous on a compact set K, then $\{f_n\}$ is uniformly convergent on K.

Proof. Fix $\epsilon > 0$. Equicontinuity implies that there exists some $\delta > 0$ such that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$ for all $x, y \in K$. Taking the limit as $n \to \infty$, we see that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$. Moreover, since K is compact, there exist a finite number of x_1, x_2, \ldots, x_p such that $X \subset N_{\delta_1}(x_1) \cup \ldots \cup N_{\delta_p}(x_p)$. Therefore, for any $x \in K$, we see that there exists some i for which $d(x, x_i) < \delta_i$. Now take $\delta = \min\{\delta_1, \ldots, \delta_p\}$ for our definition in the equicontinuity condition. Pointwise

18.100B

convergence implies that there exists an N such that for all n > N, we have $|f_n(x) - f(x)| < \epsilon$ for all $x \in K$. Therefore, we have:

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(x_i)| + |f_n(x_i) - f(x_i)| + |f(x_i) - f(x)| < 3\epsilon$$

Thus, we have shown uniform convergence of $\{f_n\}$ on K.

116. Problem 116

Theorem 116.1. Let $\{f_n\}$ be a sequence of continuous functions on a closed interval [a,b] and differentiable on the open interval (a,b). Assume that $\{f'_n\}$ is uniformly bounded on (a,b). Prove that if $\{f_n\}$ is pointwise convergent on [a,b], then $\{f_n\} \Rightarrow f$ on [a,b].

Proof. It is sufficient to prove that $\{f_n\}$ is equicontinuous, because then we can use the theorem proven in problem 115 to show hat $\{f_n\}$ is uniformly convergent on a compact set [a,b]. First, we note that $\{f'_n\}$ being uniformly bounded means that there exists some M for which $|f'_n(x)| < M$ for all $x \in [a,b]$ and for all $n \in \mathbb{N}$. Fix $\epsilon > 0$. Using the mean value theorem, we see that:

$$|f_n(x) - f_n(y)| = |f'_n(c)||x - y| \quad \Rightarrow \quad |f_n(x) - f_n(y)| \le M|x - y| < M\delta$$

We can choose a $\delta = \epsilon/M$ so that $|f_n(x) - f_n(y)| < \epsilon$ for all $x \in [a, b]$ and for all $n \in \mathbb{N}$. Therefore, we have shown that $\{f_n\}$ is equicontinuous, and by the previous theorem, we have shown that $\{f_n\}$ is also uniformly convergent on [a, b].

117. Problem 117

Theorem 117.1. Suppose $\sum_{n=1}^{\infty} f_n(x)$, for all $x \in A$ converges uniformly on A and $f: A \to \mathbb{R}$ is bounded. Prove that $\sum_{n=1}^{\infty} f(x) f_n(x)$ converges uniformly on A.

Proof. First, by the Cauchy criterion for convergence of series, we see that for a fixed $\epsilon > 0$, there exists some N such that for all n-1, m>N, we have $|f_m(x)+f_{m-1}(x)+\ldots+f_n(x)|<\epsilon$ for all $x\in A$. Moreover, by boundedness, there exists some M such that |f(x)|< M for all $x\in A$. Define $s_N=\sum_{n=1}^N f(x)f_n(x)$. We see that for m, n>N, we have $|s_n-s_m|=|f(x)(f_m(x)+f_{m-1}(x)+\ldots+f_n(x))|\leq |f(x)|\epsilon < M\epsilon$ for all $x\in A$. Therefore, since M is a constant, we see that $\{s_n\}$ converges uniformly by the Cauchy criterion, which shows that $\sum_{n=1}^{\infty} f(x)f_n(x)$ does as well.

118. Problem 118

Theorem 118.1. Suppose $\sum_{n=0}^{\infty} f_n(x)$ converges absolutely and uniformly on A. Must the series $S(x) = \sum_{n=0}^{\infty} |f_n(x)|$ converge uniformly on A?

Proof. No. We can take A = [0,1] and set $f_n(x) = (-1)^n (1-x) x^n$ for $x \in [0,1]$. We clearly see that $\sum f_n(x)$ converges absolutely on [0,1) because x^n converges for |x| < 1. Clearly, if x = 1, the $f_n(1) = 0$, which shows absolute convergence. Moreover, it is uniformly convergent by the Weierstrass M test. However, we see $S(x) = \sum_{n=0}^{\infty} |f_n(x)| = \sum_{n=0}^{\infty} (1-x) x^n$ has the following solution:

(118.2)
$$S(x) = \begin{cases} 1 & x \in [0,1) \\ 0 & x = 1 \end{cases}$$

Therefore, since f(x) is not continuous, we see that $\{f_n\}$ cannot possibly converge uniformly to f.

119. Problem 119

Theorem 119.1. Suppose $\sum_{n=1}^{\infty} \frac{1}{|a_n|}$ converges. Prove that $\sum_{n=1}^{\infty} \frac{1}{x-a_n}$ converges absolutely and uniformly on each bounded set A that does not contain a_n for $n \in \mathbb{N}$.

Proof. First, we know that $\sum \frac{1}{a_n}$ converges absolutely, which shows that $\lim_{n\to\infty} a_n = \infty$. Moreover, we see that the following is true:

(119.2)
$$\frac{1}{|x - a_n|} \le \frac{1}{|a_n|} \frac{1}{\left|\frac{x}{a_n}\right| - 1} \le \frac{1}{|a_n|} \frac{1}{\frac{M}{|a_n|} - 1}$$

Where we have defined $M = \sup_{x \in A} |f(x)|$. Therefore, it is clear that if $\sum \frac{1}{|a_n|}$ converges, then so too must $\sum \frac{1}{|a_n|} \frac{1}{\frac{1}{|a_n|}-1}$. This completes the proof.

120. Problem 120

Theorem 120.1. Suppose α increases on [a,b], $a \le c \le b$, α is continuous at c, and f(c) = 1 while f(x) = 0 for all $x \ne c$. Show that $f \in \mathcal{R}(\alpha)$ and that $\int_a^b f d\alpha = 0$.

Proof. A theorem in Rudin says that if α is continuous at all points of discontinuity of f, where f has finitely many points of discontinuity, then f is integrable. Now, let us take some partition $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$ for [a,b]. Then we see that there exists some i for which $x_{i-1} < c \le x_i$. Therefore, we have $U(P,f,\alpha) = f(c)(\alpha(x_i) - \alpha(x_{i-1}))$, while we also have $L(P,f,\alpha) = 0$. Since α is continuous at c, we can fix some $\epsilon > 0$ and find some $\delta > 0$ such that $|\alpha(x_i) - \alpha(x_{i-1})| < \epsilon$ whenever $|x_i - x_{i-1}| < \delta$. Therefore, we can take a partition such that $|x_i - x_{i-1}| < \delta$ and find that $U(P,f,\alpha) < f(c)\epsilon = \epsilon$ because f(c) = 1. Therefore, we see that $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon$, which implies integrability, while we also see that $\int_a^b f d\alpha = 0$.

121. Problem 121

Theorem 121.1. Suppose f is continuous on [a,b], a < c < b, $\alpha(x) = 0$ if $x \in [a,c)$ and $\alpha(x) = 1$ if $x \in (c,b]$. Show that $\int_a^b f d\alpha = f(c)$.

Proof. Take some partition $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$ of [a,b]. Then it is clear that there exists some i for which $x_{i-1} < c \le x_i$. We see that $U(P,f,\alpha) = M(\alpha(x_i) - \alpha(x_{i-1}))$ while $L(P,f,\alpha) = m(\alpha(x_i) - \alpha(x_{i-1}))$ where $M = \sup\{f(x) : x \in [x_{i-1},x_i]\}$ and $m = \inf\{f(x) : x \in [x_{i-1},x_i]\}$. We note that by a theorem in Rudin, $f \in \mathcal{R}(\alpha)$ because f is continuous. This implies that $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon$. Moreover, since we know that $(\alpha(x_i) - \alpha(x_{i-1}) = 1$, we see that $M - m < \epsilon$. This implies that $\inf U(P,f,\alpha) = \sup L(P,f,\alpha) = f(c)$, and that $\int_a^b f(x) d\alpha = f(c)$.

122. Problem 122

Theorem 122.1. Let 0 < a < b. Find the upper and lower Riemann integrals of f over [a, b] for:

(122.2)
$$f(x) = \begin{cases} x & x \in [a, b] \cap \mathbb{Q} \\ 0 & x \in [a, b] \setminus \mathbb{Q} \end{cases}$$

Proof. First, since \mathbb{Q} is dense in \mathbb{R} , we see that L(P,f)=0 for any partition. Therefore $\int_{\underline{a}}^{b}fdx=0$. Next, pick a partition $P=\{a=x_0< x_1< \ldots < x_n=b\}$ of [a,b]. We see that $U(P,f)=\sum_{i=0}^{n}x_i(x_i-x_{i-1})=\sum_{i=0}^{n}x_i^2-x_ix_{i-1}\geq \frac{1}{2}(b^2-a^2)$ because we have $2x_ix_{i-1}< x_i^2+x_{i-1}^2$. Therefore, we see that $\int_{a}^{\overline{b}}fdx=\frac{1}{2}(b^2-a^2)$.

123. Problem 123

Theorem 123.1. Let a > 0 and find the upper and lower Riemann integrals of f over [-a, a] for:

(123.2)
$$f(x) = \begin{cases} x & x \in [-a, a] \cap \mathbb{Q} \\ 0 & x \in [-a, a] \setminus \mathbb{Q} \end{cases}$$

Proof. Pick a partition $P = \{a = x_0 < x_1 < \dots < x_{j-1} = 0 < x_j < \dots < x_n = b\}$. Now, we see using the same logic from problem 123, that $L(P,f) = \sum_{i=0}^{j-2} x_i (x_i - x_{i-1}) \le -\frac{1}{2}a^2$, while $U(P,f) = \sum_{i=j+1}^{n-1} x_{i+1} (x_{i+1} - x_i) \ge \frac{1}{2}a^2$. Therefore, we have $\int_{\underline{a}}^{\underline{b}} f dx = -\frac{1}{2}a^2$ and $\int_{a}^{\overline{b}} f dx = \frac{1}{2}a^2$.

124. Problem 124

Theorem 124.1. Show that the Riemann function f is Riemann integrable on every interval [a, b], where:

(124.2)
$$f(x) = \begin{cases} 0 & x \text{ irrational or } 0\\ 1/q & x = p/q, p \in \mathbb{Z}, q \in \mathbb{N}, \text{ and coprime} \end{cases}$$

Proof. Fix [a,b] and take some $N \in \mathbb{N}$. There are only finitely many rationals p/q such that q < N in [a,b]. Let k_N denote the number of these rationals and make a partition P such that there are at most $2k_N$ subintervals $[x_{i-1},x_i]$ containing at least one of the rationals mentioned above and such that $d(x_i,x_{i-1}) < \delta$. On the other subintervals, we have $M_i - m_i < 1/N$. Therefore, we have:

(124.3)
$$U(P,f) - L(P,f) < 2k_N \delta + \frac{b-a}{N}$$

Now pick $\epsilon > 0$ and we can choose $N > \frac{2(b-a)}{\epsilon}$ so that $U(P,f) - L(P,f) < \epsilon$, which shows that $f \in \mathcal{R}([a,b])$.

125. Problem 125

Theorem 125.1. Let $f:[0,1]\to\mathbb{R}$ and show that $\int_0^1 f(x)dx=0$ when

(125.2)
$$f(x) = \begin{cases} 1 & x = \frac{1}{n}, n \in \mathbb{N} \\ 0 & \text{else} \end{cases}$$

18.100B

Proof. Let $\epsilon > 0$ be given. There exists an N such that $1/n < \epsilon/2$. whenever n > N. Then we can choose P such that

(125.3)
$$0 = x_0 < x_1 = \frac{1}{N+1} < x_2 < \dots < x_k = 1$$

Where $|x_i - x_{i-1}| < \frac{\epsilon}{4N}$ for $i = \{1, \dots, k\}$. Then $U(P, f) - L(P, f) < \frac{\epsilon}{2} + \frac{\epsilon}{4N} 2N = \epsilon$.

126. Problem 126

Theorem 126.1. Show that $f:[0,1] \to \mathbb{R}$ is Riemann integrable on [0,1] for:

(126.2)
$$f(x) = \begin{cases} 0 & x = 0\\ \frac{1}{x} - \left[\frac{1}{x}\right] & \text{else} \end{cases}$$

Proof. First, fix $\epsilon > 0$. We can pick an N > 0 such that $1/n < \epsilon/2$ for all n > N. Therefore, we can choose a partition P such that

$$(126.3) 0 = x_0 < x_1 = \frac{1}{N+1} < \dots < x_{n'_0} = \frac{1}{N} < \dots < x_{n'_1} = \frac{1}{N-1} < \dots < x_{n'_{n_0-1}} = 1$$

Where $x_i - x_{i-1} < \frac{\epsilon}{4N}$ for all $i \geq 2$. Then we see that

$$(126.4)U(P,f) - L(P,f) = \frac{1}{N+1} + \sum_{i=2}^{n'_0} (M_i - m_i)(x_i - x_{i-1}) + \sum_{k=0}^{n_0 - 2} \sum_{i=n'_{k+1}}^{n'_{k+1}} (M_i - m_i)(x_i - x_{i-1})$$

$$(126.5) < \frac{\epsilon}{2} + 2N \frac{\epsilon}{4N} = \epsilon$$

127. Problem 127

Theorem 127.1. Show that $f \in \mathcal{R}(\alpha)$ for the following:

(127.2)
$$f(x) = \begin{cases} 0 & x \in [-1, 0] \\ 1 & x \in (0, 1] \end{cases} \qquad \alpha(x) = \begin{cases} 0 & x \in [-1, 0) \\ 1 & x \in [0, 1] \end{cases}$$

Proof. Pick some partition $P = \{-1 = x_0 < x_1 < \dots < x_{k-1} = 0 < x_k < \dots < x_n = 1\}$. Then we see that:

(127.3)
$$U(P, f, \alpha) = 1(\alpha(x_k) - \alpha(x_{k-1})) = 0$$

(127.4)
$$L(P, f, \alpha) = 0(\alpha(x_{k-1}) - \alpha(x_{k-2})) = 0$$

Therefore, we see that not only $f \in \mathcal{R}(\alpha)$, but $\int_{-1}^{1} f d\alpha = 0$.

128. Problem 128

Theorem 128.1. Suppose f is continuous on [a,b] and α is a step function constant on subintervals $(a,c_1),(c_1,c_2),\ldots,(c_m,b)$ where $a< c_1<\ldots< c_m< b$. Show that $\int_a^b f(x)d\alpha(x)=f(a)(\alpha(a^+)-\alpha(a))+\sum_{k=1}^m f(c_k)(\alpha(c_k^+)-\alpha(c_k^-))+f(b)(\alpha(b)-\alpha(b^-))$.

Proof. First, take the following partition: $P = \{a = x_0 < x_1 < \ldots < x_m = b\}$ where $x_i = c_i$ for all 0 < i < m. Therefore, we can break up our integral into:

(128.2)
$$\int_{a}^{b} f(x)d\alpha(x) = \sum_{i=0}^{m} \int_{c_{i}}^{c_{i+1}} f(x)d\alpha(x)$$

Moreover, it is clear that the following is true since f is continuous:

(128.3)
$$\int_{c_k}^{c_{k+1}} f(x)d\alpha(x) = f(c_k)(\alpha(c_k^+) - \alpha(c_k^-)) + f(c_{k+1})(\alpha(c_{k+1}^+) - \alpha(c_k^-))$$

Summing over all $i \in \{0, 1, \dots, m\}$, we see that the statement in the theorem is true.

129. Problem 129

Theorem 129.1. Show that if $f \in \mathcal{R}([a,b])$ then f can be changed at a finite number of points without affecting either integrability of f or the value of the integral

Proof. It is sufficient to show that this works for a single point. So let $x' \in [a, b]$ be the point where f changes, and let \hat{f} be the changed function. Fix $\epsilon > 0$. Let us break apart the interval [a,b] into $[a, x' - \epsilon] \cup [x' - \epsilon, x' + \epsilon] \cup [x' + \epsilon, b]$. We see that $f = \hat{f}$ on $P_1 = [a, x' - \epsilon]$ and on $P_2[x' + \epsilon, b]$. Therefore, we have $U(P_i, \hat{f}) - L(P_i, \hat{f}) < \epsilon$ for i = 1, 2 since f is integrable. Thus, we have:

(129.2)
$$U(P,f) - L(P,f) < 2\epsilon + (M-m)(x' + \epsilon - x' + \epsilon)$$

$$(129.3) = 2\epsilon + 2(M-m)\epsilon$$

Where $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a,b]\}$. Therefore, we see that $\int_a^b \hat{f} dx$ exists and that $\hat{f} \in \mathcal{R}([a,b])$. To show that the integrals are equal, we have:

(129.4)
$$\left| \int_a^b f(x)dx - \int_a^b \hat{f}(x)dx \right| = \left| \int_a^b (f(x) - \hat{f}(x))dx \right|$$

(129.5)
$$\leq |f(x) - \hat{f}(x)|(x + \epsilon - (x - \epsilon))$$

(129.6) $\leq 2M^* \epsilon$

$$(129.6) \leq 2M^*\epsilon$$

Where $M^* = \sup\{f(x) - \hat{f}(x) : x \in [a, b]\}$. Since $\epsilon > 0$ was arbitrary, we see that the integrals are the same.

130. Problem 130

Theorem 130.1. Show that if f is monotonic and α is continuous on [a,b] then $f \in \mathcal{R}(\alpha)$.

Proof. Fix $\epsilon > 0$ and suppose f(x) is monotonically increasing without loss of generality. Since α is continuous, we know that there exists a $\delta > 0$ such that $|\alpha(x_i) - \alpha(x_{i-1})| < \epsilon$ whenever $|x_i - x_{i-1}| < \delta$. Therefore, let $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$ be a partition of [a, b], such that $|x_i - x_{i-1}| < \delta$. We see that we have the following:

(130.2)
$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i(\alpha(x_i) - \alpha(x_{i-1})) < \sum_{i=1}^{n} f(x_i)\epsilon$$

(130.3)
$$L(P, f, \alpha) = \sum_{i=1}^{n} m_i(\alpha(x_i) - \alpha(x_{i-1})) < \sum_{i=1}^{n} f(x_{i-1})\epsilon$$

Where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\} = f(x_i)$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\} = f(x_{i-1})$. Therefore, we see that $|U(P, f, \alpha) - L(P, f, \alpha)| < \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))\epsilon$. Since $\epsilon > 0$ was arbitrary, we see that $f \in \mathcal{R}(\alpha)$.

131. Problem 131

Theorem 131.1. Calculate $\int_{-2}^{2} x^2 d\alpha(x)$ where

(131.2)
$$f(x) = \begin{cases} x+2 & -2 \le x \le -1 \\ 2 & -1 < x < 0 \\ x^2 + 3 & 0 \le x \le 2 \end{cases}$$

Proof. Using a theorem in Rudin, we know that $\int_a^b f d\alpha(x) = \int_a^b f(x)\alpha'(x)dx$. Therefore, we have the following:

(131.3)
$$\int_{-2}^{2} x^{2} d\alpha(x) = \int_{-2}^{-1} x^{2} dx + \int_{0}^{2} x^{2} (2x) dx + (-1)^{2} (2 - (-1 + 2)) + 0^{2} (3 - 2)$$

$$= \frac{x^3}{3}\Big|_{-2}^{-1} + \frac{x^4}{2}\Big|_{0}^{2} + 1 = -\frac{1}{3} + \frac{8}{3} + 8 + 1$$

$$(131.5) = \frac{34}{3}$$

132. Problem 132

Theorem 132.1. Prove that if $f \in \mathcal{R}(\alpha)$ and α is neither continuous from left or right at a point $c \in [a, b]$, then f is continuous at this point.

Proof. Fix $\epsilon > 0$. Since $f \in \mathcal{R}(\alpha)$, we know that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$. Take a partition $P = \{a = 1\}$ $x_0 < x_1 < \ldots < x_j = c - \epsilon < x_{j+1} = c + \epsilon < \ldots < x_n = b$. We know particularly that $\int_{c-\epsilon}^{c+\epsilon} f d\alpha$ exists. Thus, for this interval $Q = [x_i, x_{i+1}]$, we have:

$$(132.2) U(Q, f, \alpha) - L(Q, f, \alpha) = (M - m)(\alpha(c + \epsilon) - \alpha(c - \epsilon)) < \epsilon$$

Where $M = \sup\{f(x) : x \in [x_j, x_{j+1}]\}$ and $m = \inf\{f(x) : x \in [x_j, x_{j+1}]\}$. We know that $|\alpha(c+\epsilon) - \alpha(c-\epsilon)| > \epsilon$ because α is discontinuous at c. Therefore, we see that $M - m < \frac{1}{\alpha(c+\epsilon) - \alpha(c-\epsilon)} < \frac{1}{\epsilon}$, which shows that $|f(x)-f(y)|<\frac{1}{\epsilon}$ whenever $|x-y|<2\epsilon$. Since $\epsilon>0$ can be arbitrarily large, we see that this implies that f must be continuous.

133. Problem 133

Theorem 133.1. Prove the first mean value theorem: if f is continuous and α is monotonically increasing on [a,b], then $\exists c \in [a,b]$ such that $\int_a^b f(x)d\alpha(x) = f(c)(\alpha(b) - \alpha(a))$.

Proof. Let $m = \inf\{f(x) : x \in [a,b]\}$ and $M = \sup\{f(x) : x \in [a,b]\}$. Then we see that the following is true:

(133.2)
$$m(\alpha(b) - \alpha(a)) \leq \int_a^b f(x) d\alpha(x) \leq M(\alpha(b) - \alpha(a))$$

$$(133.3) \qquad m \leq \frac{\int_a^b f(x) d\alpha(x)}{\alpha(b) - \alpha(a)} \leq M$$

(133.3)
$$m \le \frac{\int_a^b f(x)d\alpha(x)}{\alpha(b) - \alpha(a)} \le M$$

Since f is continuous on [a, b] and we know that f takes on the values M and m somewhere on the interval [a,b], we see that we can use the intermediate value theorem to find the following:

(133.4)
$$\frac{\int_a^b f(x)d\alpha(x)}{\alpha(b) - \alpha(a)} = f(c)$$

18.100B

For some $c \in [a, b]$, which proves the theorem

134. Problem 134

Theorem 134.1. Suppose that f is continuous and α is strictly increasing on [a,b]. Define F(x)= $\int_a^x f(t)d\alpha(t) \text{ and show that for } x \in [a,b] \text{ we have } \lim_{h \to 0} \frac{F(x+h) - F(x)}{\alpha(x+h) - \alpha(x)} = f(x).$

Proof. This is a straightforward application of the first mean value theorem. We have the following:

(134.2)
$$\int_{x}^{x+h} f(t)d\alpha(t) = f(c)(\alpha(x+h) - \alpha(x))$$

For some $c \in [x, x + h]$. As $h \to 0$, we see that $c \to x$, so that we have:

(134.3)
$$\lim_{h \to 0} \int_{x}^{x+h} f(t)d\alpha(t) = f(x)(\alpha(x+h) - \alpha(x))$$

Which is what we wanted.

135. Problem 135

Theorem 135.1. Let f be continuous on [0,1]. For positive a,b find $\lim_{\epsilon \to 0^+} \int_{a\epsilon}^{b\epsilon} \frac{f(x)}{x} dx$.

Proof. We can use a change of variables to find:

(135.2)
$$\int_{a\epsilon}^{b\epsilon} \frac{f(x)}{x} dx = \int_{a\epsilon}^{b\epsilon} f(x) d(\ln(x))$$

Using the first mean value theorem, we obtain:

(135.3)
$$\int_{a\epsilon}^{b\epsilon} f(x)d(\ln(x)) = f(c)(\ln(b\epsilon) - \ln(a\epsilon))$$

$$(135.4) = f(c) \ln \left(\frac{b}{a}\right)$$

For some $c \in [a\epsilon, b\epsilon]$. Taking the limit as $\epsilon \to 0^+$, we see that $c \to 0$, which shows that the integral converges to $\lim_{\epsilon \to 0^+} \int_{a\epsilon}^{b\epsilon} \frac{f(x)}{x} dx = f(0) \ln(\frac{a}{b})$.

Past Exam Questions

136. Problem 136

Theorem 136.1. Show that the set $\{z \in \mathbb{C}; z = \exp(it^{24} + 23t^7), t \in \mathbb{R}\}$ is connected.

Proof. First, we note that the function $f(t) = \exp(it^{24} + 23t^7)$ is continuous. This is because it is the composition of a polynomial and a continuous function e^t , which makes it continuous. Moreover, we see that the function maps the set \mathbb{R} to the set $A = \{z \in \mathbb{C}; z = \exp(it^{24} + 23t^7), t \in \mathbb{R}\}$. We know that \mathbb{R} is connected by a theorem in Rudin, and that a continuous function preserves connectedness. Therefore, the set A must also be connected.

137. Problem 137

Theorem 137.1. Explain why there is no continuous map from the disk $\{(x,y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ onto the interval $(0,1) \in \mathbb{R}$.

Proof. First note that the interval $(0,1) \in \mathbb{R}$ is open, and that the disk $D = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ is closed. Suppose that there was a continuous map from D to (0,1). Then then every open set in (0,1) would have a preimage of an open set. This is a contradiction because $f^{-1}((0,1)) = D$ which is closed, while (0,1) is open. Thus, we have a contradiction, and no continuous mapping exists.

138. Problem 138

Theorem 138.1. Suppose that a number s is the upper limit (limit supremum) of a subsequence of a sequence $\{x_n\}$ in the reals. Show that s is the limit of some subsequence of $\{x_n\}$.

Proof. We see that there exists a subsequence $\{y_k\}$ such that $\lim_{n\to\infty} \sup\{y_k\} = s$. So let $t_n = \sup_{n\geq k} \{y_k\}$. Rewriting, we have $\lim_{n\to\infty} t_n = s$. By the definition of supremum, there is a subsequence y_{p_k} such that $y_{p_k} \geq t_n - \frac{1}{n}$. Therefore, we have $t_n \geq y_{p_k} \geq t_n - \frac{1}{n}$. As $n\to\infty$, we see that $y_{p_k}\to t_n$ and since we know $t_n\to s$, we see that $y_{p_k}\to s$. Since y_{p_k} is a subsequence of a subsequence of $\{x_n\}$, we see that is still is a subsequence of $\{x_n\}$, which proves the theorem.

139. Problem 139

Theorem 139.1. Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable and suppose that 0 is a local maximum of f, i.e. for some $\epsilon > 0$, $f(x) \le f(0)$ for all $x \in (-\epsilon, \epsilon)$. Show that $f''(0) \le 0$.

Proof. First, we know by a theorem in Rudin that every local maximum has derivative of zero. Therefore, f'(0) = 0. Now take ϵ so that $f(x) \leq f(0)$ for all $x \in (-\epsilon, \epsilon)$. Now, since f is twice differentiable, we can apply the mean value theorem for all positive x. This gives us $f(x) - f(0) = f'(x_1)x$ for all $x \in (0, \epsilon)$ and for some $x_1 \in (0, \epsilon)$. Since we know that $f(x) \leq f(0)$, we see that $f'(x_1) \leq 0$. Applying the mean value theorem again, we obtain $f'(x_1) - f'(0) = f''(x_2)x_1$ for some $x_2 \in (0, x_1)$. Since $f'(x_1) \leq 0$ and f'(0) = 0, we see that $f''(x_2) \leq 0$. Now, we have shown that $f''(x_2) \leq 0$ for $0 < x_2 < x_1 < x$. Taking the limit as $x \to 0^+$, we see that $\lim_{x \to 0^+} f''(x) \leq 0$.

Now we can perform the same operation on the negative side. We apply the mean value theorem and obtain $f(x) - f(0) = f'(x_1)x$ for all $x \in (-\epsilon, 0)$ and for some $x_1 \in (x, 0)$. Since $f(x) \le f(0)$ for all $x \in (-\epsilon, \epsilon)$ and x < 0, we see that $f'(x_1) \ge 0$. Applying the mean value theorem again, we obtain $f'(x_1) - f'(0) = f''(x_2)x_1$ for $x_2 \in (x_1, 0)$. We know that f'(0) = 0 while $f'(x_1) \ge 0$. Since $x_1 < 0$, we see that $f''(x_2) \le 0$. This is for $x < x_1 < x_2 < 0$. Therefore, taking the limit as $x \to 0^-$, we see that $\lim_{x\to 0^-} f''(x) \le 0$. Thus, we see that $\lim_{x\to 0} f''(x) = f''(0) \le 0$.

140. Problem 140

Theorem 140.1. Let $\{\phi_n\}$ be a uniformly bounded sequence of continuous functions on [0,1] such that $\lim_{n\to\infty} \int_0^1 x^k \phi_n(x) dx = 0$ for every $k = 0, 1, \ldots$ and show that for any continuous function $f: [0,1] \to \mathbb{R}$, the limit $\lim_{n\to\infty} \int_0^1 f(x) \phi_n(x) dx$ exists.

Proof. First, note that by the Stone-Weierstrass theorem, every continuous function $f:[0,1] \to \mathbb{R}$ can be approximated by a sequence of polynomials $\{P_n\}$ such that $\lim_{n\to\infty} P_n(x) = f(x)$. Moreover, it is clear that every polynomial consists of a series of monomials and their coefficients. Therefore, we have the following:

(140.2)
$$P_n(x) = \sum_{k=1}^{r(n)} c_k x^k$$

Where r(n) the degree of the nth polynomial. Therefore, we see that we can decompose our limit into:

(140.3)
$$\lim_{n \to \infty} \int_0^1 f(x)\phi_n(x)dx = \lim_{n \to \infty} \int_0^1 P_n(x)\phi_n(x)dx$$

(140.4)
$$= \lim_{n \to \infty} \int_0^1 \sum_{k=1}^{r(n)} c_k x^k \phi_n(x) dx$$

(140.5)

However, we see that each one of these terms is identically zero by our assumption. Therefore, $\lim_{n\to\infty} \int_0^1 f(x)\phi_n(x)dx$ not only exists, but is also equal to 0.

141. Problem 141

Theorem 141.1. Using standard properties of the cosine function show that the series $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^{5/2}} \cos(nx)$ defines a continuously differentiable function on the real line.

Proof. First note that the function itself is a composition of continuous functions, so that f(x) is continuous (moreover we don't have to worry about dividing by 0 because $n \neq 0$ in the series). Next, let us differentiate the series term by term. We obtain:

(141.2)
$$\hat{f}(x) = \sum_{n=1}^{\infty} \frac{d}{dx} \left(\frac{1}{n^{5/2}} \cos(nx) \right) = \sum_{n=1}^{\infty} -\frac{1}{n^{3/2}} \sin(nx)$$

Since we know that $|\sin(nx)| \leq 1$ for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, we see that $\hat{f}(x) \leq \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$, which converges by geometric series with p = 3/2. Thus, we see that $\hat{f}(x)$ is absolutely convergent, which shows by Weierstrass M Test that it is also uniformly convergent to f'. Therefore, we see that $f' = \hat{f}$. Moreover, we see that \hat{f} is composed entirely of continuous functions. Since \hat{f} is a uniformly convergent series of continuous functions, we see that f' is continuous and exists for all $x \in \mathbb{R}$. Therefore, we have shown that f(x) is continuously differentiable on \mathbb{R} .

142. Problem 142

Theorem 142.1. Explain why the Riemann-Stieltjes integral $\int_{-1}^{1} \exp(x^2/3) d\alpha$ exists for any increasing $\alpha : [-1, 1,] \to \mathbb{R}$ and evaluate it when

(142.2)
$$\alpha(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

Proof. First, the integral exists because $f(x) = \exp(x^2/3)$ is the composition of continuous functions, which makes f(x) continuous as well. Therefore, by a theorem in Rudin $f \in \mathcal{R}(\alpha)$ for any increasing $\alpha : [-1,1] \to \mathbb{R}$. To compute the integral, take a partition $P = \{-1 = x_0 < x_1 < \ldots < x_i < 0 < x_{i+1} < \ldots < x_n = 1\}$. We see that because all $\alpha(x_{j+1}) - \alpha(x_j)$ are identically zero unless j = 1, that the integral can be computed as $\int_{-1}^{1} \exp(x^2/3) dx = f(0)(\alpha(x_{i+1}) - \alpha(x_i)) = 1(1) = 1$.

143. Problem 143

Theorem 143.1. Show that the set $A = \{x \in \mathbb{C}; z = \exp(it^3); t \in \mathbb{R}\}$ is connected.

Proof. It is clear that $\exp(it^3)$ is a continuous map from $\mathbb{R} \to A$. Therefore, since \mathbb{R} is connected, and continuous maps preserve connectedness, we see that A is also connected.

144. Problem 144

Theorem 144.1. Let $\{x_n\}$ be a seugnce in a metric space X and suppose that tere is a point $p \in X$ with the property that every subsequence of $\{x_n\}$ has a subsequence which converges to p. Show that $\{x_n\}$ converges to p.

Proof. Suppose by contradiction that $\{x_n\}$ does not converge to p. Now let $\{y_k\}$ be a subsequence of $\{x_n\}$. We know by assumption that $\{y_k\}$ has a subsequence $\{y_{n_k}\}$ which converges to p. Fix $\epsilon > 0$. We see that there exists an N such that for all $n_k > N$, we have $|y_{n_k} - p| < \epsilon$. Since we have assumed $\{x_n\}$ does not converge to p, we cannot find an M such that for all n > 0, we have $|x_n - p| < \epsilon$. Therefore, the set $\{n \in \mathbb{N} : d(x_n, p) \ge \epsilon\}$ is infinite. Moreover, every subsequence of $\{y_k\}$, which is itself a subsequence of $\{x_n\}$ must take values from this set. This means, however, that there are an infinite number of points in $\{y_{n_k}\}$ for which $|y_{n_k} - p| > \epsilon$, which is a contradiction. Thus, $\{x_n\}$ must converge to p.

145. Problem 145

Theorem 145.1. Prove that the function $f(x) = \exp(\frac{x^3 - 15}{x^2 + x + 1})$ is continuously differentiable on [0, 1] and prove that it takes on a minimum value on the interval.

Proof. First, the set [0,1] is compact, so that every continuous function takes on a minimum value. Obviously f(x) is a composition of continuous polynomials and functions (e^x) so that f(x) itself is also continuous. Hence, it takes on a minimum value. We also know that f(x) is continuously differentiable because each of its component functions is continuously differentiable on [0,1]. We see that $x^3 - 15$ and $x^2 + x + 1$ are both polynomials and hence continuously differentiable. Moreover e^x is continuously differentiable by a theorem in Rudin. Therefore, the composite function f(x) is continuously differentiable.

146. Problem 146

Theorem 146.1. If $g: \mathbb{R} \to \mathbb{R}$ is differentiable and g' is bounded on \mathbb{R} , show that g is uniformly continuous.

Proof. Fix $\epsilon > 0$. Since g' is bounded on \mathbb{R} , there exists some M such that |g'(x)| < M for all $x \in \mathbb{R}$. Moreover, since g is differentiable, we can apply the mean value theorem and obtain g(x) - g(y) = g'(c)(x - y) for all $x, y \in \mathbb{R}$ and $c \in (x, y)$ if we assume without loss of generality that x < y. Therefore, if we pick $\delta < \frac{\epsilon}{M}$, and we observe that |g'(c)| < M, we have:

$$|g(x) - g(y)| < M(x - y) < M\delta < M\frac{\epsilon}{M} = \epsilon$$

Since $\epsilon > 0$ was originally arbitrary, we have shown that there exists a $\delta > 0$ for which $|g(x) - g(y)| < \epsilon$ whenever $|x - y| < \delta$ for all $x, y \in \mathbb{R}$. Thus, we have shown uniform continuity.

147. Problem 147

Theorem 147.1. Let $A:[0,1]^2 \to \mathbb{R}$ be a continuous function satisfying $\sup_{[0,1]^2} |A(x,y)| \leq \frac{1}{2}$. Show that if $f \in \mathcal{C}([0,1])$, then $g(x) = \int_0^1 A(x,y) f(y) dy \in \mathcal{C}([0,1])$.

Proof. First, we note that f(x) and A(x,y) are both continuous, so that A(x,y)f(y) is continuous. Thus, we see that $g(x) = \int_0^1 A(x,y)f(y)dy$ exists. To see that g(x) is continuous, we note that A(x,y)f(y) is continuous on the compact set [0,1], which shows that it is uniformly continuous. Fix $\epsilon > 0$, we see that there exists a $\delta > 0$ for which $|A(x,y) - A(x',y)| < \epsilon$ whenever $|x - x'| < \delta$. Therefore, we have:

$$|g(x) - g(x')| = \left| \int_0^1 (A(x, y) - A(x', y)) f(y) dy \right| < \epsilon \sup_{[0, 1]} |f|$$

Therefore, we see that $|g(x) - g(x')| < \epsilon \sup |f|$ whenever $|x - x'| < \delta$, which shows continuity because ϵ was arbitrary.

Theorem 147.3. Estimate $||g|| = \sup_{[0,1]} |g(x)|$ in terms of ||f||.

Proof. We know that the following is true:

$$|g(x)| = \left| \int_0^1 A(x,y)f(y)dy \right| \le \left| \int_0^1 \frac{1}{2} ||f||dy \right| = \frac{1}{2} ||f||$$

Therefore, we see that $||g|| \approx \frac{1}{2}||f||$.

Theorem 147.5. If $h \in \mathcal{C}([0,1])$ is a fixed function show that $(Gf)(x) = h(x) + \int_0^1 A(x,y)f(y)dy$ defines a contraction G on $\mathcal{C}([0,1])$ sending f to Gf.

Proof. If $f_1, f_2 \in \mathscr{C}([0,1])$ then:

$$|(Gf_1)(x) - (Gf_2)(x)| = \int_0^1 A(x,y)(f_1(y) - f_2(y))dy$$

Therefore, we see that $d(G(f_1), G(f_2)) < \frac{1}{2}||f_1 - f_2|| = \frac{1}{2}d(f_1, f_2)$ by the above estimate, which shows that (Gf)(x) is a contraction.

Theorem 147.7. Show that there exists a unique $f \in \mathcal{C}([0,1])$ such that $f(x) = h(x) + \int_0^1 A(x,y)f(y)dy$ for all $1 \in [0,1]$.

Proof. We begin by noting that $\mathscr{C}([0,1])$ is complete. Therefore, the Contraction Mapping Principle implies that there is a unique solution of G(f) = f, which is the desired result.

148. Problem 148

Theorem 148.1. Show that the set $A = \{z \in \mathbb{C}; 1 < |z| < 2\}$ is connected as a subset of \mathbb{C} with the usual metric.

Proof. Again, we know that \mathbb{C} is connected, and that the function $f:\mathbb{C}\to A$ of f(z)=|z| is continuous. Therefore, since continuous mappings preserve connectedness, we see that A must be connected as well. \square

149. Problem 149

Theorem 149.1. Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable and satisfy $|g'(x)| \leq \frac{1}{2}$. Show that the function f(x) = x - g(x) is one to one.

Proof. Using the mean value theorem, we see that |f(x) - f(y)| = f'(c)|x - y| for all $x, y \in \mathbb{R}$. Moreover, since $|f'(c)| = |1 - g'(c)| \le 1 - \frac{1}{2}$, so that $|f'(c)| \ge \frac{1}{2}$. Therefore, we have $|f(x) - f(y)| \ge \frac{1}{2}|x - y|$ which shows that if $x \ne y$, then $f(x) \ne f(y)$. This proves a one to one correspondence.

150. Problem 150

Theorem 150.1. Let $f:[0,1] \to \mathbb{R}$ be continuous. Show that there exists $c \in (0,1)$ such that $\int_0^1 f(x)dx = f(c)$.

Proof. Let us define $F(x) = \int_0^x f(x) dx$. Now fix $\epsilon > 0$ and we will show that this function is continuous. We have, assuming x < y, $|F(y) - F(x)| = |\int_x^y f(t) dt| = f(t)(x-y) < \epsilon$ if we choose $\delta = \frac{\epsilon}{f(t)}$ for some $t \in (x,y)$. Thus, we see that F is continuous, which means we can apply the mean value theorem. We obtain F(1) - F(0) = f(c)(1) for some $c \in (0,1)$. Moreover, we know that $F(0) = \int_0^0 f(t) dt = 0$. Therefore, $F(1) = \int_0^1 f(x) dx = f(c)$ for some $c \in (0,1)$, which is what we wanted.

151. Problem 151

Theorem 151.1. For what values of $x \in \mathbb{R}$ does the series $\sum_{n=0}^{\infty} n \exp(-nx)$ converge? For what intervals [a,b] does it converge uniformly, and on what intervals is the sum of the series differentiable?

Proof. It is obvious that any x < 0 would cause the sequence $n \exp(-nx)$ to diverge. Thus, convergence, if it does occur, must occur for the region x > 0. We know that the sequence $\lim_{n\to\infty} x^n \exp(-n)$ converges by a theorem in Rudin. Moreover, it is clear that if x > 0 the series converges by ratio test. We have:

(151.2)
$$\lim_{n \to \infty} \left| \frac{(n+1)e^{-(n+1)x}}{ne^{-nx}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)e^{-x}}{n} \right| = \frac{1}{e^x} < 1$$

Thus, we the series converges whenever x > 0. The series therefore converges uniformly on [a, b] whenever $b \ge a$ and when $a \ne 0$. The series is differentiable on the same interval, for $a \ne 0$, because the series of derivatives converges uniformly for the same reason.

152. Problem 152

Theorem 152.1. Consider the power series $\sum_{n=1}^{\infty} \frac{1}{n} x^n$ and show that this series converges uniformly on $(-\frac{1}{2}, \frac{1}{2})$. Let f(x) denote the sum and show that the series obtained by term-by-term differentiation converges uniformly in the same set and explain why the limit is f'(x). Is f'(x) a rational function?

Proof. We see using the ratio test that the radius of convergence is 1 because:

(152.2)
$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

And we know that |x| < 1 whenever $x \in (-1,1)$. Therefore, the series converges uniformly on the interval (-1,1), which shows that it also converges uniformly on $(-\frac{1}{2},\frac{1}{2})$. Now, differentiation term by term gives the series $\sum_{n=1}^{\infty} x^{n-1}$, which converges whenever $x \in (-1,1)$ by a theorem in Rudin. Therefore, we see that it is uniformly convergent on this set, meaning it is also uniformly convergent on $(-\frac{1}{2},\frac{1}{2})$. Moreover, since these terms are uniformly convergent, we know that f'(x) is given by these terms according to a theorem in Rudin. We see that the series converges to $f'(x) = \frac{1}{1-x}$, which is indeed rational.

153. Problem 153

Theorem 153.1. Explain why $\int_0^2 \exp(3(|x|^{3/2}-1))d\alpha$ exists for any increasing function $\alpha:[0,2]\to\mathbb{R}$. Evaluate the integral when

(153.2)
$$\alpha(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 3 & 1 < x \le 2 \end{cases}$$

Proof. First, we know that $|x|^{3/2} - 1$ is continuous on the interval [0,2] so that the composition $f(x) = \exp(3(|x|^{3/2} - 1))$ of continuous functions is also continuous on the interval [0,2]. Therefore, it is integrable for any increasing α . Next, we will evaluate the integral, which is:

(153.3)
$$\int_0^2 f(x)d\alpha(x) = (3-1)f(1) = 2\exp(3(1-1)) = 2$$

154. Problem 154

Theorem 154.1. Suppose that $f_n:[0,1]\to\mathbb{R}$ is a sequence of continuous functions which is uniformly bounded and satisfies:

(154.2)
$$f_n(x) = \frac{1}{n} + \int_0^x f_n^2(t)dt, x \in [0, 1]$$

Show that $\{f_n\}$ is uniformly convergent on [0,1] and prove that the limit is identically zero.

Proof. The continuity of f_n implies that f_n^2 is also continuous. Moreover, we see that $f_n'(x) = f_n^2(x)$ by the fundamental theorem of calculus. The uniform boundedness of f_n implies the uniform boundedness of $f_n'(x)$ as well, so that there exists an M such that $|f_n'(x)| < M$ for all $n \in \mathbb{N}$ and $x \in [0,1]$. We can apply the fundamental theorem of calculus to see that $|f_n(x) - f_n(y)| \le M(x-y)$ for all $x \in [0,1]$ and $n \in \mathbb{N}$. Fix $\epsilon > 0$. We can choose $\delta = \frac{\epsilon}{M}$ such that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$. Therefore, we see that $\{f_n\}$ is equicontinuous.

We see that [0,1] is a compact metric space by Heine-Borel. Moreover, since $\{f_n\}$ is uniformly bounded, it is also pointwise bounded. Therefore, $\{f_n\}$ satisfies the assumptions of Arzela-Ascoli, which shows that $\{f_n\}$ contains a uniformly convergent subsequence, let us say $\{f_{n_k}\} \rightrightarrows f$. We see that the limit must satisfy $f(x) = \int_0^x f^2(t)dt$ for all $x \in [0,1]$. Let $T = \sup_{[0,r]} |f(x)|$. We see that $T \leq TMr$ on [0,r], which implies T=0 if Mr < 1. Therefore, we can choose r such that $r < \frac{1}{M}$ and see that T=0 on [0,r]. We can proceed and break the interval [0,1] into finitely many intervals of the form [nr,(n+1)r], where $n \in \mathbb{N}$. This shows that T=0 on all of [0,1]. Moreover, we see that every uniformly convergent subsequence of $\{f_n\}$ has a uniformly convergent subsequence converging to f(x)=0, which means that f(x)=0 identically, and that $\{f_n\}$ is uniformly convergent.

155. Problem 155

Theorem 155.1. Show that if $E \subset \mathcal{C}(X,\mathbb{R})$ and \mathcal{M} is compact, then E it is equicontinuous (you may not use Arzela-Ascoli).

Proof. Fix $\epsilon > 0$. Then we see that \mathscr{M} can be covered by a finite number of functions f_1, f_2, \ldots, f_p with radii ϵ such that $X \subset \bigcup_{i=1}^p N_{\epsilon}(x_i)$. We know that each f_i is uniformly continuous so that there exists some δ_i for which $|f_i(x) - f_i(y)| < \epsilon$ whenever $|x - y| < \delta_i$ for all $x, y \in \mathscr{M}$. Now pick $\delta = \min\{\delta_1, \ldots, \delta_p\}$ and $x, y \in \mathscr{M}$ such that $d(x, y) < \delta$. Let $f \in E$, so that we must have $f \in N_{\delta_i}(f_i)$ for some i.

$$|f(x) - f(y)| \le |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)| < 3\epsilon$$

This proves equicontinuity.

156. Problem 156

Theorem 156.1. If $S \subset \mathbb{R}^n$, show that the collection of isolated points of S is countable.

Proof. Let S denote the set of isolated points and let $s \in S$. Then pick a neighborhood N(s) such that $N(s) \cap S = \{s\}$ and $N(s) \cap N(t) = \emptyset$ if $s \neq t$. Since \mathbb{Q}^n is dense in \mathbb{R}^n , we can choose a point in each N(s) with rational coordinates. Therefore, we see that there is a one to one map from $S \to \mathbb{Q}^n$, which shows that S is countable.

157. Problem 157

Theorem 157.1. Prove that if \mathcal{M} , \mathcal{N} are metric spaces and $g: \mathcal{M} \to \mathcal{N}$ is uniformly continuous, then whenever $\{x_n\} \subset \mathcal{M}$ is Cauchy, the sequence $\{g(x_n)\}$ is Cauchy.

Proof. Fix $\epsilon > 0$. Since g is uniformly continuous, we see that there exists a $\delta > 0$ for all $x, y \in \mathcal{M}$ such that $|g(x) - g(y)| < \epsilon$ whenever $|x - y| < \delta$. Moreover, since $\{x_n\}$ is Cauchy, then there exists an N such that for all n > N, we have $|x_n - x_m| < \delta$. Therefore, we see that $|g(x_n) - g(x_m)| < \epsilon$, which shows that $\{g(x_n)\}$ is Cauchy.

158. Problem 158

Theorem 158.1. Let \mathscr{M} and \mathscr{N} be metric spaces, let $A \subset \mathscr{M}$ and $\bar{A} \subset \mathscr{M}$ denote the closure of A. If \mathscr{N} is complete and $h: A \to N$ is uniformly continuous, prove that there is a unique continuous function $\hat{h}: \bar{A} \to \mathscr{N}$ such that $\hat{h}(a) = h(a)$ for every $a \in A$.

Proof. For any $a \in \bar{A}$, choose $\{a_n\} \subset A$ such that $a_n \to a$ and define $\hat{h}(a) = \lim_{n \to \infty} h(a_n)$. The limit exists because $\{a_n\}$ is a Cauchy sequence, which implies that $\{h(a_n)\}$ is also a Cauchy sequence. Since \mathscr{N} is complete, we see that $\{h(a_n)\}$ converges to some limit as $n \to \infty$. It is clear that $\hat{h}(a)$ is unique because if there exists another sequence $\{b_n\} \to a$, then we see that the limits must coincide. Now, we need to show that this definition of $\hat{h}(a)$ is continuous. First, fix $\epsilon > 0$. We know that h is uniformly continuous so that there exists a $\delta > 0$ such that for all $a, b \in A$, we have $d(h(a), h(b)) < \epsilon$ whenever $d(a, b) < \delta$. If $x \in \bar{A}$, and $a_n \to x$, then we see that there exists an N such that for all n > N, we have $d(h(a), h(x_n)) < \epsilon$, and we pick some point $b \in N_{\delta/2}(x) \cap A$, then there is an $a_m \in N_{\delta/2}(x)$ with m > N. Therefore:

$$|\hat{h}(x) - \hat{h}(b)| \le |\hat{h}(x) - \hat{h}(a_m)| + |\hat{h}(a_m) - \hat{h}(b)| < 2\epsilon$$

If $c \in N_{\delta/2}(x) \cap \bar{A}$, then we see by similar logic that $|\hat{h}(x) - \hat{h}(c)| < 3\epsilon$, which shows that \hat{h} is continuous on \bar{A} .

159. Problem 159

Theorem 159.1. Assume $f:(a,b) \to \mathbb{R}$ has derivative at every point in (a,b). Let $c \in (a,b)$ and assume that $\lim_{x\to c} f'(x)$ exists and is finite. Prove that the value of this limit must be f'(c).

Proof. Recall the definition of derivative says that $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$, which we know by assumption exists. Moreover, we see that $\lim_{x \to c} f'(x) = \lim_{x \to c} \lim_{t \to x} \frac{f(t) - f(c)}{t - x} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$. This proves the theorem.

160. Problem 160

Theorem 160.1. Assume f, g, h are real valued functions defined on [0,1] and $g \ge 0$ is in $\mathcal{R}(x)$. Prove that if f is continuous, then there exists $w \in [0,1]$ such that $\int_0^1 f(t)g(t)dt = f(w)\int_0^1 g(t)dt$.

Proof. Define $m = \inf_{x \in [0,1]} |f(x)|$ and $M = \sup_{x \in [0,1]} |f(x)|$. Then we can derive the following inequality:

(160.2)
$$m \int_0^1 g(t)dt \le \int_0^1 f(t)g(t)dt \le M \int_0^1 g(t)dt$$

Therefore, since f(x) is continuous for $x \in [0,1]$, we can use the intermediate value theorem and we see that $\int_0^1 f(t)g(t)dt = f(w) \int_0^1 g(t)dt$ for some $w \in [0,1]$.

Theorem 160.3. Prove that if h is monotonically increasing (not necessarily continuous), then there exists $z \in [0,1]$ such that $\int_0^1 h(t)g(t)dt = h(0)\int_0^z g(t) + h(1)\int_z^1 g(t)dt$.

Proof. We know that $\inf_{x\in[0,1]}h(x)=h(0)$ and $\sup_{x\in[0,1]}h(x)=h(1)$ because h is monotonically increasing. Moreover, we know that since $\int_0^1g(x)dx$ exists, that $\phi(x)=h(0)\int_0^xg(t)dt+h(1)\int_x^1g(t)dt$ is continuous on [0,1]. Since $\int_0^1g(t)dt$ is a constant, we know that $\phi(x)$ takes a minimum when x=1 with $\phi(1)=h(0)\int_0^1g(t)dt$. We know that $\phi(x)$ takes a maximum at x=0 with $\phi(0)=h(1)\int_0^1g(t)dt$. Since it is continuous, we can use intermediate value theorem and see that the function attins the value $\int_0^1h(t)g(t)dt$ for some value $z\in[0,1]$ at $\phi(z)$. The theorem follows.

161. Problem 161

Theorem 161.1. Let $S = \{n_1, n_2, n_3, \ldots\}$ denote the collection of positive integers that do not involve the digit 3 in their decimal representation. (For example, $7 \in S$ but $131 \notin S$.) Show that $\sum \frac{1}{n_k}$ converges and has sum less than 90.

Proof. If m has l digits, then $\frac{1}{m} \leq \frac{1}{10^{l-1}}$. If $s \in S$ has exactly l digits, then the first digit can be anything but a 0 or a 3 (8 possibilities) and each of the l-1 other digits can be anything but a 3 (9^{l-1} possibilities). Therefore, there are $8(9)^{l-1}$ numbers in S such that there are l digits. We can then obtain an upper bound for the sum:

(161.2)
$$\sum_{k=1}^{\infty} \frac{1}{n_k} \le \sum_{l=1}^{\infty} \frac{8(9)^{l-1}}{10^{l-1}} = 8 \sum_{l=1}^{\infty} \left(\frac{9}{10}\right)^{l-1} = 80$$

Therefore, it is apparent not only that the sum converges by comparison test, but also that the sum must be lest than 90, which is what we wanted to prove.

162. Problem 162

Theorem 162.1. Assume that $\{g_n\}$ is a sequence of real-valued functions defined on $T \subset \mathbb{R}$ satisfying $g_{n+1}(x) \leq g_n(x)$ for each $x \in T$ and $n \in \mathbb{N}$ and suppose that $g_n \rightrightarrows 0$ on T. Show that $\sum_{n=1}^{\infty} (-1)^{n+1} g_n(x)$ converges uniformly on T.

Proof. Let the partial sum be defined as $G_k(x) = \sum_{n=1}^k (-1)^{n+1} g_n(x)$. Fix $\epsilon > 0$. By the uniform convergence of $\{g_n\}$, we know that there exists an N such that for all n > N, we have $|g_n(x)| < \epsilon$. Now take j, k > N and assume k > j. We have

$$(162.2) |G_k(x) - G_j(x)| = |(-1)^{k+1} g_k(x) + (-1)^k g_{k-1}(x) + \ldots + (-1)^{j+1} g_j(x)|$$

$$(162.3) \leq |g_k(x)| |(-1)^{k+1} + (-1)^k + \ldots + (-1)^{j+1}|$$

$$(162.4) < \epsilon$$

This is clear because we can group each $(-1)^{k+1} + (-1)^k$ into pairs which will cancel each other out. Therefore, the sum of alternating terms is either -1 or 1, both which have absolute value of 1. Therefore, we see that $|G_k(x) - G_j(x)| < \epsilon$ whenever k, j > N for all $x \in T$. This shows uniform convergence.

163. Problem 163

Theorem 163.1. Consider a continuous function $f:[0,\infty)\to\mathbb{R}$. For each n define the continuous function $f_n:[0,\infty)\to\mathbb{R}$ by $f_n(x)=f(x^n)$. Show that the set of continuous functions $\{f_1,f_2,\ldots\}$ is equicontinuous on some interval containing x=1 if and only if f is a constant function.

Proof. First, suppose that the set of continuous functions $\{f_1, f_2, \ldots\}$ is equicontinuous on some interval $1 \in [a, b]$. Fix $\epsilon > 0$. Then there exists some $\delta > 0$ for which $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$ for all $x, y \in [a, b]$. Therefore, we see that $|f(x^n) - f(y^n)| < \epsilon$ whenever $|x - y| < \delta$. Moreover, when $|1 - x| < \delta$, we see that $|f(1) - f(x^n)| < \epsilon$. Choose x < 0 so that there exits an N for which $|f(1) - f(0)| < \epsilon$ for some n > N. Therefore, we see that f(1) = f(0). Moreover, for any $z \in (0, \infty)$, choose M large enough so that $|z^{\frac{1}{M}} - 1| < \delta$ so that $|f(z) - f(1)| < \epsilon$. Since ϵ was arbitrary, we see that f(z) = f(1).

Next, suppose that f(x) = c is a constant function. Thus, $f(1) = f(x^n)$ for all $x \in [a, b]$ and $n \in \mathbb{N}$. By our assumption, we see that $f_n(1) = f_n(x)$. Fix $\epsilon > 0$. We see that $|f_n(1) - f_n(x)| < \epsilon$ for all $x \in [a, b]$, which implies that we can pick any $\delta > 0$ such that the inequality is satisfied whenever $|1 - x| < \delta$. We can extend this to show that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$ because $0 = |f(x^n) - f(y^n)| = |f_n(x) - f_n(y)| < \epsilon$. This proves that $\{f_n\}$ is equicontinuous.

164. Problem 164

Theorem 164.1. Define for any $z \in \mathbb{R}$ the exponential function by $\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$. Prove that $\exp: \mathbb{R} \to \mathbb{R}$ is a continuous function.

Proof. Using the ratio test, we see the following is true:

(164.2)
$$\lim_{k \to \infty} \left| \frac{\frac{z^{k+1}}{(k+1)!}}{\frac{z^k}{k!}} \right| = \lim_{k \to \infty} \left| \frac{z^k z k!}{k! (k+1) z^k} \right| = \lim_{k \to \infty} \frac{z}{k+1} = 0 < 1$$

Thus, the ratio test shows that the series converges for every $z \in \mathbb{R}$. This shows that the exponential function is continuous for all $z \in \mathbb{R}$.

Theorem 164.3. Use the binomial theorem $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}$ to show that $\exp(z+w) = \exp(z) \exp(w)$.

Proof. We will use the binomial theorem and observe:

(164.4)
$$\exp(z+w) = \sum_{k=0}^{\infty} \frac{(z+w)^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} z^j w^{k-j}$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{1}{k!} \frac{k!}{j!(k-j)!} z^{j} w^{k-j}$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{z^{j}}{j!} \frac{w^{k-j}}{(k-j)!}$$

$$= \left(\sum_{k=0}^{\infty} \frac{z^j}{j!}\right) \left(\sum_{i=0}^{\infty} \frac{w^i}{i!}\right)$$

This proves the inequality, by replacing the right and left sums with $\exp(z)$ and $\exp(w)$ respectively. \square

Theorem 164.8. Prove that $\exp'(z) = \exp(z)$.

Proof. Let us differentiate the series of $\exp(z)$ term by term. We obtain:

(164.9)
$$\sum_{k=0}^{\infty} \frac{d}{dz} \frac{z^k}{k!} = \sum_{k=0}^{\infty} \frac{kz^{k-1}}{k!} = \sum_{k=0}^{\infty} \frac{z^{k-1}}{(k-1)!} = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Next, since we know that this sum converges absolutely by the ratio test (as we have previously shown), we know that the series converges uniformly to $\exp(z)$. Therefore, we see that $\exp'(z)$ is the same as the sum of the term by term derivatives of the series of $\exp(z)$ by a theorem in Rudin. Thus, we see that $\exp'(z) = \exp(z)$, as we wanted.

165. Problem 165

Theorem 165.1. Let V be the space of sequences $a = \{a_n | n \ge 1\}$ of real numbers such that $\sum_{n=1}^{\infty} |a_n| < \infty$. For which real numbers p is the series $\sum_{n=1}^{\infty} |a_n|^p$ convergent for all $a \in V$?

Proof. It is clear that $\sum_{n=1}^{\infty} |a_n|^p$ is convergent when p > 1. This is because in order for $\sum |a_n|$ to converge, it is a necessary condition for $|a_n| \to 0$ as $n \to \infty$. Therefore, $|a_n|^p$ when p < 0 will diverge. When $0 , we could have convergence for some <math>a_n$, but not for all. Therefore, we must have p > 1 to gaurantee convergence, which is easily seen by comparison test.

Theorem 165.2. Define the function $d_p(a,b) = (\sum_{n=1}^{\infty} |a_n - b_n|^p)^{1/p}$ on $V \times V$. Show that d_p is a metric on V for p = 1, 2.

Proof. First, it is clear that the first two conditions of a metric are satisfied for both p=1,2. This is because $d_p(a,b) \geq 0$ unless a=b, in which case $|a_n-b_n|=0 \forall n\in\mathbb{N}$, which implies $d_p(a,b)=0$. Next, we see that $d_p(a,b)=d_p(b,a)$ because $|a_n-b_n|=|b_n-a_n|$. Therefore, the only thing left to prove is the triangle inequality. In the case of p=1, this is just the regular triangle inequality, since we have $|a_n-b_n|\leq |a_n-c_n|+|c_n-b_n|$, and summing both sides term by term, we get that $\sum_{n=1}^{\infty}|a_n-b_n|\leq \sum_{n=1}^{\infty}|a_n-c_n|+\sum_{n=1}^{\infty}|c_n-b_n|$, which is what we wanted. This shows that p=1 is a metric.

To show that the triangle inequality holds for p = 2, we will let ||.|| be the function $(\sum_{n=1}^{\infty} |.|^2)^{1/2}$. Then we have to show that ||a+b|| < ||a|| + ||b||. First, we note that $||a+b||^2 = ||a||^2 + 2|ab| + ||b||^2$. By Cauchy Schwartz, we see that $2|ab| \le 2||a|| \cdot ||b||$, so we have $||a+b||^2 \le ||a||^2 + 2||u|| \cdot ||b|| + ||b||^2 = (||a|| + ||b||)^2$. Taking square roots, we have $||a+b|| \le ||a|| + ||b||$, which is what we wanted.

Theorem 165.3. Is V complete with respect to the metric d_1 and d_2 ?

Proof. We see that V is complete with respect to d_1 because each sequence in V is such that $\sum_{n=1}^{\infty} |a_n|$ converges, which means every Cauchy sequence in d_1 converges by definition. Recall that $\sum_{n=1}^{\infty} |a_n|^2 \geq (\sum_{n=1}^{\infty} |a_n|)^2$ by Cauchy-Schwartz inequality. Taking the square root of both sides does not affect ordering, so we see that $(\sum_{n=1}^{\infty} |a_n|^2)^{1/p} \geq \sum_{n=1}^{\infty} |a_n|$. Therefore, each Cauchy sequence with metric d_2 does not necessarily converge.

166. Problem 166

Theorem 166.1. Let $s_n = 1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}}$. Show that there exists a limit $z = \lim_{n \to \infty} (4\sqrt{n} - 2s_n)$ and find the integer part of z.

Proof. First, we note that $\int_1^n \frac{dx}{\sqrt{x}}$ can be approximated with a lower integral sum with a partition $P = \{x_1 = 1 < x_2 = 2 < \ldots < x_n = n$. Thus, we have $L(P,f) \leq \int_1^n \frac{dx}{\sqrt{x}} \leq U(P,f)$. Now, using the above partition, we have $L(P,f) = \sum_{i=1}^{n-1} \frac{1}{\sqrt{i+1}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} = s_n - 1$. The upper integral sum with the partition is $U(P,f) = \sum_{i=1}^n \frac{1}{\sqrt{i}} = 1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} = s_n$. Thus we have:

$$(166.2) s_n - 1 \le \int_1^n \frac{dx}{\sqrt{x}} \le s_n$$

Taking smaller and smaller partitions is the same as taking $n \to \infty$. Therefore, we can compute the integral and obtain $\int_0^1 \frac{dx}{\sqrt{x}} = 2\sqrt{n} - 2$. Thus, rearranging our inequality we obtain:

$$(166.3) 2 \le 4\sqrt{n} - 2s_n \le 4$$

Since the sequence is monotonically increasing and bounded, we see that the limit z exists, whose integer part is 2.

167. Problem 167

Theorem 167.1. Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that $\int_0^1 f(x)dx = 0$. Show that there exists $c \in [0,1]$ such that f(c) = 0.

Proof. Let $F(x) = \int_0^x f(x)dx$. We see that F exists and is continuous and differentiable for all $x \in [0, 1]$ because f is continuous on this interval, and by the fundamental theorem of calculus. Therefore, we can apply the mean value theorem and see that F(1) - F(0) = F'(c) for some $c \in [0, 1]$. Since F'(c) = f(c) and $F(1) = \int_0^1 f(x)dx = 0$ while $F(0) = \int_0^0 f(x)dx = 0$, we have f(c) = 0 for some $c \in [0, 1]$.

Theorem 167.2. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function with period 1. Show that for each integer $n \geq 1$ there exists a point c such that $f(c) + f(c + \frac{1}{n}) + \ldots + f(c + \frac{n-1}{n}) = n \int_0^1 f(x) dx$.

168. Problem 168

Theorem 168.1. Find $\lim_{x\to 0} (1+x-\frac{x^2}{2}-\log(1+x))^{1/x^3}$.

Proof. Take the limit of the log and put e to that power. Eventually, after a lot of math, you get $e^{-1/3}$. \square

Theorem 169.1. Show that if a real function f(x) has positive second derivative on [a,b] then f is convex on [a,b].

Proof. If f''(x) > 0 for $x \in [a, b]$, then we see that $f'(x_1) < f(x_2)$ for all $x_1 < x_2$ in that interval. So let $x_1 < x < x_2$ and use the mean value theorem for some $c \in [x_1, x]$ and $d \in [x, x_2]$. we obtain:

(169.2)
$$\frac{f(x) - f(x_1)}{x - x_1} = f'(c) < f'(d) = \frac{f(x_2) - f(x)}{x_2 - x}$$

This shows us that the following is true:

$$(169.3) (x_2 - x)(f(x) - f(x_1)) < (x - x_1)(f(x_2) - f(x))$$

$$(169.4) f(x_1)(x-x_2) < (x-x_1)f(x_2) + (x_1-x_2)f(x)$$

(169.5)
$$f(x) < f(x_1) \frac{x_2 - x}{x_2 - x_1} + f(x_2) \frac{x - x_1}{x_2 - x_1}$$

Now, letting $x = \lambda x_1 + (1 - \lambda)x_2$ be an interpolation of the two points x_1, x_2 where $\lambda \in [0, 1]$, we see that:

(169.6)
$$f(\lambda x_1 + (1-\lambda)x_2) < \frac{f(x_1)(-\lambda x_1 + \lambda x_2) + f(x_2)((\lambda - 1)x_1 + (1-\lambda)x_2)}{x_2 - x_1}$$

(169.7)
$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Thus, we see that f must be convex.

170. Problem 170

Theorem 170.1. Suppose that $x \in \mathbb{R}$ satisfies $0 \le x \le \epsilon$ for all $\epsilon > 0$. Show that x = 0, using only axioms of \mathbb{R} as an ordered field. State the axioms you are using.

Proof. Suppose by contradiction that x > 0. Then $\frac{1}{2}x > 0$ because the product of two positive quantities is positive. Moreover, $\frac{x}{2} + 0 < \frac{x}{2} + \frac{x}{2}$ because y < z implies y + x < z + x for all x. Therefore, we see that $\frac{x}{2} < x$ by addition. Also, we can set $\epsilon = \frac{x}{2}$ so that by assumption $0 \le x \le \frac{x}{2}$. But only one of the following: $\frac{x}{2} < x$ and $x \le \frac{x}{2}$ can be true. Therefore, we arrive at a contradiction, so that x = 0.

171. Problem 171

Theorem 171.1. Let $\{a_n\}$ be a sequence of positive real numbers. Suppose that the series $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ also converges.

Proof. We know that $0 < (x-y)^2$ so that $2xy < x^2 + y^2$. Setting $x = \sqrt{a_n}$ and $y = \sqrt{a_{n+1}}$, we see that $\sqrt{a_n a_{n+1}} < \frac{1}{2} a_n + \frac{1}{2} a_{n+1}$. Next, we see that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} a_{n+1}$ converges. Therefore, we see that $\sum_{n=1}^{\infty} \frac{1}{2} a_n + \frac{1}{2} a_{n+1}$ also converges by grouping the series together. We see that $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ converges by comparison test.

Theorem 171.2. Prove the converse is true if $\{a_n\}$ is monotonically decreasing.

Proof. Since $\{a_n\}$ is monotonically decreasing, we see that $a_n > a_{n+1}$ for all $n \in \mathbb{N}$. Therefore, $\sqrt{a_n a_{n+1}} > \sqrt{a_{n+1} a_{n+1}} = a_n$. Thus, we see that if $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$, then we see by comparison test that $\sum_{n=1}^{\infty} a_{n+1}$ as converges. Since $\sum_{n=1}^{\infty} a_{n+1}$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges, we see that the latter also converges.

172. Problem 172

Theorem 172.1. For each of the following examples, either give an example of a continuous function f on S such that f(S) = T, or explain why there can be no such continuous function. (a) S = (0,1), T = (0,1].

Proof. Let
$$f(x) = 1 - |2x - 1|$$
.

Theorem 172.2. $S = (0,1), T = (0,1) \cup (1,2).$

Proof. There does not exist such a continuous function because (0,1) is connected, while $(0,1) \cup (1,2)$ is separated, and continuous functions preserve connectedness.

Theorem 172.3. $S = [0, 1] \cup [2, 3], T = \{0, 1\}.$

Proof. Let f(x) be defined as follows:

(172.4)
$$f(x) = \begin{cases} 0 & x \in [0,1] \\ 1 & x \in [2,3] \end{cases}$$

We see that the function is continuous on T.

Theorem 172.5. $S = \mathbb{R}, T = \mathbb{Q}$.

Proof. No function exists because \mathbb{R} is connected, while \mathbb{Q} is not connected. Continuous mappings preserve connectedness, so that no possible function can exist.

Theorem 172.6. $S = [0,1] \times [0,1], T = (0,1) \times (0,1).$

Proof. No function exists. The pre-image of an open set under a continuous map is an open set. We see that T is open, but that S is closed. Therefore, it is impossible to have an open map such that $S = f^{-1}(T)$. \square

173. Problem 173

Theorem 173.1. Assume $f_n: E \to \mathbb{R}$, $E \subset \mathbb{R}$ are uniformly continuous functions. Assume f_n converges uniformly to f. Prove that f is also uniformly continuous.

Proof. Fix $\epsilon > 0$. By uniform convergence, we see that there exists an N > 0 such that for all n > N, we have $|f_n(x) - f(x)| < \epsilon$ for all $x \in E$. Moreover, by uniform continuity, there exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$ for all $n \in \mathbb{N}$ and all $x, y \in E$. Therefore, we have:

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < 3\epsilon$$

Whenever n > N and $|x - y| < \delta$, and for all $x, y \in E$. This proves uniform continuity of f.

174. Problem 174

Theorem 174.1. Let $f: X \to Y$ be a continuous map between metric spaces and let $K \subset X$ be compact. Prove that $f(K) \subset Y$ is compact using the definition of compactness through open covers.

Proof. Let $\{G_{\alpha}\}$ be an open cover of Y. Since f is continuous, we see that for any open set $V \in Y$, the inverse image $f^{-1}(V)$ must also be open. Therefore, take the inverse images of all the sets $\{G_{\alpha}\}$ that make up the open cover. We see that $\{f^{-1}(G_{\alpha})\}$ for all α in $\{G_{\alpha}\}$ forms an open cover of X, since if $x \in K$, then $f(x) \subset f(K)$ and $x \in G_{\alpha}$ for some αinA , hence $x \in f^{-1}(G_{\alpha})$. Since every open cover permits a finite subcover, we see that there exist $i \in \{1, 2, \ldots, n\}$ such that $K \subset \bigcup_{i=1}^n f^{-1}(U_{\alpha_i})$. Moreover, we see that $f(K) \subset \bigcup_{i=1}^n U_{\alpha_i}$, since if $y \in f(K)$ then y = f(x) for some $x \in K$, and hence $x \in f^{-1}(U_{\alpha_i})$ for some $i \in \{1, 2, \ldots, n\}$. Hence, $\{G_{\alpha}\}$ permits a finite subcover, which shows that $f(K) \subset Y$ is compact.

175. Problem 175

Theorem 175.1. Let $\alpha : [0,1] \to \mathbb{R}$ be given by:

(175.2)
$$\alpha(x) = \begin{cases} x - 1 & 0 \le x < \frac{1}{2} \\ x + 1 & \frac{1}{2} \le x \le 1 \end{cases}$$

Let f(x) = 2x. Show that the integral $\int_0^1 f d\alpha$ exists and compute its value.

Proof. We know that α is monotonically increasing, and that f(x) is continuous. Therefore, by a theorem in Rudin, we see that the integral $\int_0^1 f d\alpha$ exists. Moreover, computing its integral, we see that $\int_0^1 f d\alpha = \int_0^{\frac{1}{2}} 2x dx + 1(\frac{3}{2} - (-\frac{1}{2})) + \int_{\frac{1}{2}}^1 2x dx = \int_0^1 2x dx + 2 = 1 + 2 = 3.$

176. Problem 176

Theorem 176.1. Let $\mathscr{F} = \{f_1, \ldots, f_n\}$ be a finite collection of uniformly continuous functions. Prove that \mathscr{F} is equicontinuous.

Proof. Fix $\epsilon > 0$. There exists a δ_i for each $i \in \{1, \ldots, n\}$ such that $|f_i(x) - f_i(y)| < \epsilon$ whenever $|x - y| < \delta_i$. Thus, we can pick $\delta = \min\{\delta_1, \ldots, \delta_n\}$. Now choose two points x, y such that $|x - y| < \delta$. We see that for all $i \in \{1, \ldots, n\}$, we have $|f_i(x) - f_i(y)| < \epsilon$. Therefore, we have shown that \mathscr{F} is equicontinuous.

177. Problem 177

Theorem 177.1. Consider the infinite sequence of functions $f_n(x) = \frac{x}{x + \frac{1}{n}}$ for $x \in [0, 1]$ and $n \in \mathbb{N}$. Show that each function f_n is uniformly continuous.

Proof. Fix $\epsilon > 0$. With a bit of algebra, we obtain:

$$|f_n(x) - f_n(y)| = \frac{\frac{|x-y|}{n}}{|x - \frac{1}{n}||y - \frac{1}{n}|} \le \frac{\frac{|x-y|}{n}}{\frac{1}{n^2}} = n|x+y|$$

Now choose $\delta < \epsilon/n$ so that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$. This shows uniform continuity. \square

Theorem 177.3. Show that the sequence of functions f_n from above has no uniformly convergent subsequence. Conclude that it is not equicontinuous.

Proof. We see that $f_n(x) = \frac{nx}{nx+1}$. If we take $n \to \infty$, we see that $f_n(x) \to 1$ if $x \neq 0$, and $f_n(0) \to 0$ as $n \to \infty$. Therefore, we see that the sequence of functions converges pointwise to the following:

(177.4)
$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \in (0, 1] \end{cases}$$

However, this function is not continuous, so it has no hope of being uniformly convergent. If the function were equicontinuous, then we would know by Arzela-Ascoli that the function contains a uniformly convergent subsequence (since it is clearly also pointwise bounded). Since it does not, we know that the function is not equicontinuous.