CHAPTER 1: LINEAR SYSTEM & GUASSIAN ELIMINATION

A linear system has either no solution, only one solution, or infinitely many solutions.

Flementary Row Operations

Elementary Now Operations.	a l
Multiply i th row by constant k:	$A \stackrel{kR_i}{\longrightarrow} B \stackrel{\frac{1}{k}R_i}{\longrightarrow} A$
	$EA = B$ and $E^{-1}B = A$
Interchange the i th and the j th row:	$A \xrightarrow{R_i \leftrightarrow R_j} B \xrightarrow{R_i \leftrightarrow R_j} A$
	EA = B and $EB = A$
Add k times of the i th to the j th row:	$A \xrightarrow{R_j + kR_i} B \xrightarrow{R_j - kR_i} A$
	$EA = B$ and $E^{-1}B = A$

The linear system is - **inconsistent** if the last col of (R|b') is a pivot col, **only one solution** if the last col of (R|b') is not a pivot col and every col of R is a pivot col, has **infinitely many solutions** if last col of (R|b') is not a pivot col and R has atleast one pivot col.

- 1. A homogeneous system of linear equations has either only the trivial **solution** or **infinitely many solutions** in addition to the trivial solution.
- A homogenous system of linear equations with **more unknowns than** equations has infinitely many solutions.

CHAPTER 2: MATRICES

Let A, B, C be matrices of the same size and c, d are scalars.

A + B = B + A	A + (B + C) = (A + B) + C
c(A+B) = cA + cB	(cd)A = c(dA) = d(cA)
A+0=0+A=A	A - A = 0
0A = 0	A(BC) = (AB)C
$A(B_1 + B_2) = AB_1 + AB_2$	$(C_1 + C_2)A = C_1A + C_2A$
c(AB) = (cA)B = A(cB)	

 $\bullet \ 0_{(p\times m)}A = 0_{p\times n}$

Let A is an $m \times n$ matrix.

- $A0_{n\times a}=0_{m\times a}$
- $AI_n = I_m A = A$ • $A^n = I$ if n = 0, else $A^n = AA \dots A$.
- $A^mA^n = A^{m+n}$
- Generally, $AB \neq BA$. AB = 0, does not imply A = 0 or B = 0.
- and $(AB)^2 \neq A^2B^2$

Cancellation Laws (May not hold if A is not invertible)

Let *A* be an invertible $m \times m$ matrix.

- 1. If B_1 and B_2 are $m \times n$ matrices s.t. $AB_1 = AB_2 \rightarrow B_1 = B_2$
- 2. If C_1 and C_2 are $n \times m$ matrices s.t. $C_1A = C_2A \rightarrow C_1 = C_2$

Invertible matrices: Let A and B be square matrix of order n.

A is said to be **invertible** if there exists a square matrix B such that AB = I or BA = I. The matrix B is the inverse of A. A square matrix is called singular of it has no inverse.

Basic Invertible Matrix Properties

- cA is invertible and $(cA)^{-1} = \frac{1}{2}A^{-1}$
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$
- A^{-1} is invertible and $(A^{-1})^{-1} = A$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- If $A_1, A_2, ..., A_k$ are invertible matrices, then $A_1A_2 ... A_k$ is invertible and $(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}.$
- $A^{-n} = (A^{-1})^n = A^{-1}A^{-1} \dots A^{-1}$ (n times)
- A^n is invertible and $(A^n)^{-1} = (A^{-1})^n$

Let A and B be a square matrix of the same size. If AB = I:

- A is invertible B is invertible
- $A^{-1} = B$ $B^{-1} = A$ BA = I
- If A is singular, then both AB and BA are singular.

Method to find Inverses: Let A be an invertible matrix. Then $(A \mid I) \xrightarrow{GJE} (I \mid A^{-1})$

To check whether a square matrix is invertible. $A \xrightarrow{GE} R$. If R has no zero row, then A is invertible, otherwise A is singular.

Transpose - Let A be a m x n matrix $(\Delta^T)^T = \Delta$ $(\Delta + R)^T = \Delta^T + R^T$ $(c\Delta)^T = c\Delta^T$

	*B is m x n	(611) — 611	*B is n x p	
Determinant				-
$A \rightarrow B_1$	kR_i	$\det(B_1) = k \det(A)$		
$A \rightarrow B_2$	$R_i \leftrightarrow R_i$	$det(B_2) = -$	det(A)	

 $det(B_2) = det(A)$

- Determinant of a sq matrix with identical rows/columns is zero.
- det(AB) = det(A) det(B)
- $\det(cA) = c^n \det(A)$ //A is order n
- $\bullet \ \det(A^{-1}) = \frac{1}{\det(A)}$ //A is an invertible matrix

 $R_i \leftrightarrow kR_i$

• $det(A^T) = det(A)$

If A is an $n \times n$ triangular matrix, $det(A) = a_{11}a_{22} \dots a_{nn}$.

Let M_{ij} be an $(n-1)^2$ matrix obtained from A by deleting ith row and jth column. $A_{ij} = (-1)^{i+j} \det(M_{ij})$ is called the (i,j)-cofactor of A. $A^{-1} = \frac{1}{\det(A)} adj(A)$.

CHAPTER 3: VECTOR SPACES

Let $S = \{u_1, u_2, ..., u_k\}$ be a set of vectors in \mathbb{R}^n . $a_1u_1 + a_2u_2 + \cdots + a_ku_k$ is called a linear combination of $u_1, u_2, ..., u_k$. The set of all linear combinations of $\{a_1u_1 + a_2u_2 + \cdots + a_ku_k | a_1, a_2, \dots, a_k \in \mathbb{R}\}$ is called a **linear span** of S and denoted by span(S). If REF of $(u_1 u_2 ... u_k)$ has no zero row $\rightarrow span(...) = \mathbb{R}^n$.

Let V be a **subspace** of \mathbb{R}^n .

- $1. 0 \in V$
- 2. For any $v_1, v_2, ..., v_r \in V$, and $c_1, c_2, ..., c_r \in \mathbb{R}$, $c_1v_1 + c_2v_2 + ... + c_rv_r \in V$

A subset *V* of \mathbb{R}^n is a **subspace** of $\mathbb{R}^n \leftrightarrow (i)$ *V* is non-empty and (ii) for all $u, v \in V$ and $c, d \in \mathbb{R}$, $cu + dv \in V$

A set V is called a **vector space** if either $V = \mathbb{R}^n$ or V is a subspace of \mathbb{R}^n . A set W is called a subspace of a vector space V if W is a vector space and $W \subseteq V$.

Checking Subspaces: Let V be a subset of \mathbb{R}^n . To show that V is a subspace of \mathbb{R}^n , need to show that every vector $v \in V$ can be written in the form $a_1u_1 + a_2u_2 + a_3u_3 + a_4u_4 + a_5u_5 + a_5u_5$ $\cdots + a_{\nu}u_{\nu}$ where a_1, \dots, a_{ν} are arbitrary parameters and u_1, \dots, u_{ν} are constant vectors. To show that V is NOT a subspace, show that it violates some property of vector space.

Geometrical Interretation

- Let u and v be a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 . $span\{u\} = \{cu \mid c \in \mathbb{R}\}$ is a **line** through the origin. If u and v are not parallel, then $span\{u,v\} = \{su + tv \mid s,t \in a\}$ \mathbb{R} } is a **plane** containing the origin.
- The following are all subspaces of \mathbb{R}^2 : zero space $\{(0,0)\}$, lines through origin, \mathbb{R}^2 . The following are all subspaces of \mathbb{R}^2 : zero space $\{(0,0)\}$, lines through origin, planes containing the origin, \mathbb{R}^3 .

Linear Independence

Let $S = \{u_1, u_2, ..., u_k\} \subseteq \mathbb{R}^n$. Consider $c_1 u_1 + c_2 u_2 + ... + c_k u_k = \mathbf{0} \ (k \ge 2)$ 1. S is **Linearly Independent** if eqn only has **trivial soln** $(c_1 = 0, ..., c_k = 0)$ OR no vector in S can be written as a linear combination of other vectors in S 2. S is **Linearly Dependent** if eqn has **non-trivial solns** OR iff there is at least 1 vector $u_i \in S$ can be written as a linear combination of other vectors in S. **Bases & Dimensions**

Let V be a vector space and $S = \{u_1, u_2, ..., u_k\}$ a subset of V. Then S is called a basis for V if (i) S is linearly independent, and (ii) S spans V.

If a vector space V has a basis S, then dimension of V is $\dim(V) = |S|$. $\dim(\mathbb{R}^n) =$ n. Except $\{0\}$ and \mathbb{R}^2 , subspaces of \mathbb{R}^2 are lines through the origin of dim 1. Except $\{0\}$ and \mathbb{R}^3 , subspaces of \mathbb{R}^3 are either lines through the origin of dim 1, or planes containing the origin of dim 2.

Let V be a vector space which has basis and dim(V) = k. Any subset of V with more than k vectors is always linearly dependent. Any subset of V with less than k vectors cannot span V.

Let V be a vector space of dim k, and S a subset of V. (1),(2),(3) are equivalent:

- 1. S is a basis for V, (i.e. S is linearly independent and S spans V)
- 2. S is linearly independent and |S| = k
- 3. S spans V and |S| = k

To check that S is a basis for V, we only need to check any **two of the three conditions:** (i): S is linearly independent; (ii): S spans V; (iii) |S| = k.

Let U be a subspace of a vector space V. Then $\dim(U) \leq \dim(V)$. If $U \neq$ $V, \dim(U) < \dim(V)$.

A basis for V is a set of the smallest size that can span V. The empty set \emptyset is defined to be the basis for the zero space. Except the zero space, any vector space has infinitely many different bases.

Finding Bases: Suppose $W = span\{u_1, u_2, ... u_k\}$.

Method 1: Place the vectors as row vectors. Perform gaussian elimination. The row space of R forms the basis of W. **Method 2**: Place the vectors as column vectors. Find the pivot cols, the cols of vectors in W form the basis of W.

Implicit/Explicit Form: { (x, y, z) | x + y + z = 0 }, { $(-s - t, s, t) | s, t ∈ \mathbb{R}$ }

CHAPTER 4: VECTOR SPACES ASSOCIATED W/ MATRICES

Let matrix A be m x n. Let R be the REF of A. **Row Space** of A = span $\{r_1, r_2, ..., r_m\} \subseteq \mathbb{R}^n$

- Row space of A = Row Space of R
- The nonzero rows of R form a basis for row space of R.
- The nonzero rows of R form a basis for the row space of A.

Column Space of A=span $\{c_1, c_2, ..., c_n\} \subseteq \mathbb{R}^m$

- Column space of A \neq Column space of R
- Pivot columns of R form a basis for the column space of R
- Corresponding columns of A form a basis for column space of A.

The solution set of the homogeneous linear system Ax = 0 is a subspace of \mathbb{R}^n and is called the **nullspace** of A. Solve Ax=0 by GE/GJE, write general soln $t_1u_1 + t_2u_1 + t_3u_2 + t_4u_1 + t_5u_1 + t_5u_2 + t_5u_2 + t_5u_1 + t_5u_2 + t_5u_2 + t_5u_2 + t_5u_3 + t_5u_$ $\cdots + t_k u_k$ where ti are arbitrary params and ui are fixed vectors. Then $\{u_1, \dots, u_k\}$ is a basis for the nullspace of A. The dimension of the nullspace of A is called the **nullity** of A. Since the nullspace is a subspace of \mathbb{R}^n , nullity(A) = $\dim(the\ nullspace\ of\ A) \leq \dim(\mathbb{R}^n) = n$

Rank & Nullities

rank(A) = dim(row space of A) = dim(col space of A)= # of nonzero rows of R = # of pivot cols of R $nullity(A) = dim(nullspace \ of \ A) = \# \ of \ non - pivot \ cols \ of \ R$

Dimension Theorem for Matrices: rank(A) + nullity(A) = # of cols in A= # of pivot-cols in R + # of non-pivot cols in R = # of cols of R = # of cols of A A linear system Ax = b is **consistent** iff b lies in the column space of A. Suppose x = v is a solution to Ax=b, then the solution set of the system Ax=b is given by $\{u + v \mid u \in null space \ of \ A\}$, i.e. the system has a general solution $x = (a \text{ general solution for } Ax=0) + (one particular solution to } Ax=b).$ The **rank** of a matrix is the **dimension of its row space** (and its column space).

- rank(0) = 0 and $rank(I_n) = n$
- $rank(A) \leq \min\{m, n\}$ for an $m \times n$ matrix A
- If $rank(A) = min\{m, n\}$, then A is said to have **full rank**
- A square matrix A is of full rank iff $det(A) \neq 0$
- $rank(A) = rank(A^T)$

Let A and B be $m \times n$ and $m \times p$ matrices respectively.

Then $rank(AB) \leq \min\{rank(A), rank(B)\}$

Extending bases

Step 1: Form a matrix A using the vectors in S as rows. Step 2: Reduce A to REF R. **Step 3**: Identify the non-pivot columns in R. **Step 4**: For each non-pivot column. get a vector such that the leading entry of the vector is at that column. **Step 5**: $S \cup (\text{the set of vectors chosen in Step 4}).$

Let A be a $m \times n$ matrix. Column space of $A = \{Au \mid u \in \mathbb{R}^n\}$. A system of linear equations Ax = b is consistent iff **b** lies in the column space of **A**. The system is also only consistent iff there exists $u \in \mathbb{R}^n$ s.t. Au = b, i.e. $b \in \{Au \mid u \in \mathbb{R}^n\}$.

CHAPTER 5: ORTHOGONALITY

Distance between u and v: $d(u, v) = ||u - v|| = \sqrt{(u - v) \cdot (u - v)}$

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u||||v||\cos(\theta)$$

Angle between u and v: $\theta = \cos^{-1} \left(\frac{||u||^2 + ||v||^2 - ||u-v||^2}{2||u||||v||} \right)$ **Norm** (or length) of u: $||u|| = \sqrt{u \cdot u} = \sqrt{u_1^2 + \dots + u_n^2}$

 $u \cdot v = uv^T = u_1v_1 + \cdots + u_nv_n$ //u. v = v.uDot Product:

- $(u+v) \cdot w = u \cdot w + v \cdot w$ and $w \cdot (u+v) = w \cdot u + w \cdot v$
- $(cu) \cdot v = u \cdot (cv) = c(u \cdot v)$
- ||cu|| = |c| ||u||
- $u \cdot u \ge 0$; and $u \cdot u = 0$ iff u = 0

Orthogonality

Two vectors u and v in \mathbb{R}^n are called **orthogonal** if u, v = 0. A set S of vectors in \mathbb{R}^n is called a **orthogonal set** if every pair of distinct vectors in S are orthogonal. Furthermore, S is an **orthonormal set** if every vector in S is a unit vector aswell. Given any two nonzero vectors in \mathbb{R}^n , angle between u and $v = \cos^{-1}(0) = \frac{\pi}{2}$.

A basis S for a vector space is called an **orthogonal basis** if S is orthogonal. Likewise for orthonormal. If we want to show that S is orthogonal or orthonormal basis for V, we only need to check:

- 1. S is orthogonal (or orthonormal)
- $|S| = \dim(V)$ (if know the dim), or span(S) = V (if dk the dim)

 $V^{\perp} = \{u \mid u \text{ is orthogonal to } V\} = \{u \mid v_i \cdot u = 0 \text{ for } i = 1,2,...k\} \subseteq \mathbb{R}^n.$

Gram-Schmidt Process

Let $\{u_1, u_2, ..., u_k\}$ be a basis for a vector space V.

Let
$$(u_1, u_2, \dots, u_k)$$
 be a basis for a vector space v.
$$v_1 = u_1,$$

$$v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$$

$$v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2$$

$$v_k = u_k - \frac{u_k \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_k \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{u_k \cdot v_{k-1}}{v_{k-1} \cdot v_{k-1}} v_{k-1}$$
 Then $\{v_1, v_2, \dots, v_k\}$ is an **orthogonal basis** for V. Furtherr

Then $\{v_1, v_2, ..., v_k\}$ is an **orthogonal basi**s for \tilde{V} . Furthermore,

$$\left\{\frac{1}{||v_1||}v_1,\frac{1}{||v_2||}v_2,\dots,\frac{1}{||v_k||}v_k\right\} \text{ is an } \textbf{orthonormal basis} \text{ for } V$$

Let V be a subspace of \mathbb{R}^n . Every $u \in \mathbb{R}^n$ can be written **uniquely** as u = n + pwhere p is a vector in V, and n is a vector orthogonal to V.

p is the **projection** of u onto V. Let $\{u_1,u_2,...,u_k\}$ an <u>orthogonal</u> basis for V. Then for any $w \in \mathbb{R}^n$, $\frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k$ is the projection of w onto V. Let $\{v_1, v_2, ..., v_k\}$ be an <u>orthonormal</u> basis for V. Then for any $w \in \mathbb{R}^n$, $(w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \cdots + (w \cdot v_k)v_k$ is the projection of w onto V.

Best Approximations

Take any $u \in \mathbb{R}^n$ and let p be the projection of u onto V. Then $d(u,p) \leq$ $d(u, v) \forall v \in V$. i.e. p is the best approximation of u in V. u is called a **least square solution** to the linear system Ax = b if $||b - Au|| \le ||b - Av|| \ \forall v \in \mathbb{R}^n$. u is a least square solution to $Ax = b \leftrightarrow p = Au$ is the projection of b onto the column space of $A \leftrightarrow u$ is a solution to $A^T A x = A^T b$.

Coordinate Systems

Let $S = \{u_1, \dots, u_k\}$ be the basis for vector space $V. v \in V, v = c_1u_1 + \dots + c_ku_k$. The vector $(v)_s = (c_1, c_2, ..., c_k)$ (as row vector) is called the **coordinate vector** of v relative to S. $E = \{e_1, e_2, ..., e_n\}$ is a **standard basis** for \mathbb{R}^n . For any $v \in \mathbb{R}^n$, $(v)_E = v$. Let A be a $m \times n$ matrix. Then $Ae_i^T = i^{th} col. of A$. $(w)_s$ is essentially the projection of w onto S. (See *PROJECTIONS*)

Transition Matrices

Let $S = \{u_1, \dots u_k\}$ and $T = \{v_1, \dots, v_k\}$ be two bases for vector space V.

Transition Matrix from S to T:
$$P = [[u_1]_T [u_2]_T ... [u_k]_T] = \begin{bmatrix} a_{11} & ... & a_{1k} \\ \vdots & ... & \vdots \\ a_{k1} & ... & a_{kk} \end{bmatrix}$$

where $u_1 = a_{11}v_1 + a_{21} + v_2 + a_{k1}v_k$, ..., $u_k = a_{1k}v_1 + a_{2k} + v_2 + a_{kk}v_k$

- For any vector $w \in V$, $[w]_T = P[w]_S$
- P is **invertible** and P-1 is the transition matrix from T to S
- If S and T are orthonormal bases, then P is an orthogonal matrix
- An Invertible matrix A is **orthogonal** if A⁻¹=A^T.
- A is orthogonal matrix of order $n \leftrightarrow \text{Rows}$ of A form orthogonal basis for $\mathbb{R}^n \leftrightarrow$ Cols of A form orthonormal basis for \mathbb{R}^n .

CHAPTER 6: DIAGONALIZATION

Let A be a square matrix of order n.

- A nonzero column vector $u \in \mathbb{R}^n$ is called an eigenvector of A if $Au = \lambda u$ for some scalar λ
- $det(\lambda I A) = 0$ is the characteristic equation of A
- $\det (\lambda I A)$ is the characteristic polynomial of A

λ is an eigenvalue of A

- $\leftrightarrow Au = \lambda u$ for some nonzero column vector $u \in \mathbb{R}^n$
- $\leftrightarrow \lambda u Au = 0$ for some nonzero column vector $u \in \mathbb{R}^n$
- $\leftrightarrow (\lambda I A)u = 0$ for some nonzero column vector $u \in \mathbb{R}^n$
- \leftrightarrow the linear system $(\lambda I A)x = 0$ (*eigenspace*) has non-trivial solutions
- $\leftrightarrow \det(\lambda I A) = 0.$

If expanded, $det(\lambda I - A)$ is a polynomial in λ degree n.

- A is called **diagonalizable** if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix
- A is diagonalizable ↔ A has n linearly independent eigenvectors
- A has n distinct eigenvalues \rightarrow A is diagonalizable
- A is called **orthogonally diagonalizable** if there exists an orthogonal matrix $P(P^{-1} = P^T)$ s.t. P^TAP is a diagonal matrix
- A is orthogonally diagonalizable \leftrightarrow A is symmetric ($A^T = A$)

Diagonalize Matrix: Let A be a square matrix of order n. **Step 1**: Find all distinct eigenvalues $\lambda_1 \dots \lambda_k$ (by solving characteristic eqn). **Step 2:** For each eigenvalue, find a basis S_{λ_i} for the eigenspace E_{λ_i} . **Step 3:** Let $S = S_{\lambda_1, \dots} \cup S_{\lambda_k}$. If |S| < n, then A is not diagonalizable. If |S| = n, $P = [u_1 \ u_2 \dots u_n]$ is an invertible matrix that diagonalizes A.

Orthogonally Diagonalize: Let A be a symmetric matrix of order n. Find eigenvalue and eigenspace as (1),(2). **Step 2b**: Use Gram-Schmidt Process to transform S_{ij} to an orthonormal basis T_{ij} . Step 3: Let $T = T_{ij} \cup ... \cup T_{ik}$. Then P = $[v_1, v_2, ..., v_k]$ is an orthogonal matrix that orthogonally diagonalizes A.

Power of matrices

For any integer m (if A is singular, then m must be non-negative).

$$A^m = P \begin{bmatrix} \lambda_1^m & 0 & \cdots & 0 \\ 0 & \lambda_2^m & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^m \end{bmatrix} P^{-1}, \quad P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Theorem 6.1.8: Invertible Matrices: Let A be an $n \times n$ matrix. The following statements are equivalent.

- 1. A is invertible.
- 2. The linear system Ax = 0 has only the trivial solution.
- The RREF of A is an identity matrix.
- A can be expressed as a product of elementary matrices.
- 5. $det(A) \neq 0$
- The rows of A form a basis for \mathbb{R}^n .
- The columns of A form a basis for \mathbb{R}^n .
- 8. rank(A) = n
- 0 is not an eigenvalue of A.

CHAPTER 7: LINEAR TRANSFORMATIONS

A **linear transformation** is a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}\right) = \begin{bmatrix} a_1x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} \text{ for } (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n.$$
 If $n = m$, then T is a **linear operator** on \mathbb{R}^n . Let $A = \left(a_{ij}\right)_{n \times n}$. $T(u) = Au$ for all

 $u \in \mathbb{R}^n$. The matrix A is called the standard matrix for T. If $\{e_1, e_2, \dots, e_n\}$ is the standard basis for \mathbb{R}^n , then $A = [T(e_1) T(e_2) ... T(e_n)]$.

Compositions of mappings: Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be mappings. The composition of T with S denoted by $T \circ S$, is a mapping from \mathbb{R}^n to \mathbb{R}^k defined by: $(T \circ S)(u) = T(S(u))$ for $u \in \mathbb{R}^n$. Suppose S and T are linear transformations. Then $T \circ S$ is also a linear transformation. Furthermore, if A and B are standard matrices for S and T respectively, then BA is the standard matrix for $T \circ S$.

Range/Kernel: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

The **range** of T denoted by R(T) is the set of images of T, i.e., $R(T) = \{ T(u) \mid u \in \mathbb{R}^n \} \subseteq \mathbb{R}^m.$

The **kernel** of T denoted by Ker(T) is the set of images of vectors in \mathbb{R}^n whose

image is the zero vector in \mathbb{R}^m , i.e. $Ker(T) = \{ u \mid T(u) = 0 \} \subseteq \mathbb{R}^n$.

If A is the standard matrix for T, then R(T) = the column space of A, and Ker(T) = the nullspace of A.The **rank** of T, denoted rank(T), is the dimension of R(T). The **nullity** of T, denoted

nullity(T), is the dimension of Ker(T). If A is the standard matrix for T, then rank(T) = rank(A) and nullity(T) = nullity(A).

Dimension Theorem for Linear Transformations: rank(T) + nullitv(T) = n