

Unit 4 Unsupervised Learning (2

Course > weeks)

> Lecture 15. Generative Models >

3. Simple Multinomial Generative model

Audit Access Expires May 11, 2020

You lose all access to this course, including your progress, on May 11, 2020.

3. Simple Multinomial Generative model

Simple Multinomial Generative model

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Note: For those who have taken 18.6501x (Fundamentals of Statistics): The concept of generative model introduced in the above video that models the probabilistic nature of data generation is the same as what we learnt as a statistical model in 18.6501x. With parameter θ , the analagous notation that we saw for $p\left(w\mid\theta\right)$ in the statistics course is $\left(E,\left\{P_{\theta}\right\}_{\theta\in\Theta}\right)$, where E is the sample space of the data and $\left\{P_{\theta}\right\}_{\theta\in\Theta}$ is the family of distributions parameterized by θ .

Simple Multinomial Generative model

0/1 point (graded)

Consider a very simple multinomial model M to generate text in documents.

Let us assume that this model M has a fixed vocabulary W and that we generate a document by sampling one word at a time from this vocabulary. Furthermore, all the words that are generated by M are independent of each other.

We would like to capture the fact in our generative model M that some words in W are more likely to occur in any given document than the others. So, the first thing that M models is how likely it is to generate certain word $w \in W$. We denote this probability by $P\left(w|\theta\right) = \theta_w$, where θ_w is a parameter in our model M.

Which of the following option(s) is/are true about the model parameters θ_w ? Choose all that apply from the statements below:

$$lacksquare heta_w \geq 1$$

$$lefta \sum_{w \in W} heta_w = 1$$
 🗸

$$igsqcup \sum_{w \in W} heta_w > 1$$

Solution:

Note that θ_w denotes the probability of model M choosing the word w. Since it's a probability, its value must lie between 0 and 1. Therefore, $0 \le \theta_w \le 1$.

Further, all the above probability values must also sum up to 1. That is, $\sum_{w \in W} \theta_w = 1$.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4 Unsupervised Learning (2 weeks) :Lecture 15. Generative Models / 3. Simple Multinomial Generative model

3. Simple Multinomial Generative model | Lectur...

https://courses.edx.org/courses/course-v1:MITx+...

© All Rights Reserved