

GAUSS Elimination

$$4x + y = 16$$
$$x + y = 7$$

In linear algebra, we write this as a matrix equation,

$$\begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 16 \\ 7 \end{pmatrix}$$
 or short: $Ax = b$ where $x = (x_1, x_2)$

Indices are useful: x_i gives you the i - th element of vector x

Let A be a $n \times n$ matrix with entries from \mathbb{R} . Definition: Given a real $n \times n$ matrix A, a vector $x \in \mathbb{R}^n$ (with $x \neq \vec{0}$) is an eigenvector of A with eigenvalue λ if $Ax = \lambda x$

- A is a $(n \times n)$ matrix and x is $(n \times 1)$ so Ax is $(n \times 1)$
- Note that in general Ax need not be a multiple of x at all!

Example:
$$A = \begin{pmatrix} 1 & 4 \\ 3 & 6 \end{pmatrix}$$
 and $X = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ Then $AX = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$

Easy to see that Ax is not x multiplied by any constant!

Example:
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ Then

$$Bx = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = (-1) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

So $\lambda = -1$ is one eigenvalue. Can you find the second one, and its eigenvector?

Consider the equation ax = b where x is a variable and a, b are rational numbers. How many solutions does this equation have?

- Exactly one solution
- No solutions
- Infinitely many solutions
- Don't know
- Question is not well-defined

Question is not well-defined

2 **GAUSS Elimination**

What if we have only 2 equations?

$$3x + 2y + z = 6$$

$$x + 3y + 2z = 4$$

What if we have 4 equations?

$$3x + 2y + z = 6$$

$$x + 3y + 2z = 4$$

$$2x + 3y + 3z = 9$$

$$x + y + z = 1$$

Each equation imposes a constraint Each variable gives a "degree of freedom"

A better method is the GAUSS elimination:

- **Base case** is one variable and one equation, i.e., ax = b
- ▶ Eliminate any variable to get (n-1) equations in (n-1) variables
 - We can choose which one to eliminate!
- Perform this recursively till you reach the base case.
 - Somewhere in the middle you might reach a special case
 - ► Special cases: No solution, infinitely many solutions, ...
 - ▶ Otherwise you will find the unique solution!

Aim is to get the matrix into row echelon form:

$$\left(\begin{array}{cccc|c} \bullet & * & * & 0 & * \\ 0 & \bullet & * & 0 & * \\ 0 & 0 & \bullet & 0 & * \\ 0 & 0 & 0 & 1 & * \end{array}\right)$$

$$\left(\begin{array}{ccc|ccc} \bullet & * & 0 & 0 & * \\ 0 & \bullet & 0 & 0 & * \\ 0 & 0 & 1 & 0 & * \\ 0 & 0 & 0 & 1 & * \end{array}\right)$$

$$\left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & * \\ 0 & 1 & 0 & 0 & * \\ 0 & 0 & 1 & 0 & * \\ 0 & 0 & 0 & 1 & * \end{array}\right)$$

Linear algebra Page 2

System of equations	Row operations	Augmented matrix
2x + y - z = 8 -3x - y + 2z = -11 -2x + y + 2z = -3		$\left[\begin{array}{ccc ccc} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{array}\right]$
$2x + y - z = 8$ $\frac{1}{2}y + \frac{1}{2}z = 1$ $2y + z = 5$	$R_2+rac{3}{2}R_1 ightarrow R_2 \ R_3+R_1 ightarrow R_3$	$\left[\begin{array}{ccc c}2&1&-1&8\\0&1/2&1/2&1\\0&2&1&5\end{array}\right]$
$2x + y - z = 8$ $\frac{1}{2}y + \frac{1}{2}z = 1$ $-z = 1$	$R_3 + -4R_2 ightarrow R_3$	$\left[\begin{array}{ccc c} 2 & 1 & -1 & 8 \\ 0 & 1/2 & 1/2 & 1 \\ 0 & 0 & -1 & 1 \end{array}\right]$

The matrix is now in row-echelon form. This is also called triangular form.

System of equations	Row operations	Augmented matrix
$egin{array}{lll} 2x + y & = & 7 \ rac{1}{2}y & = & 3/2 \ -z & = & 1 \end{array}$	$R_2+rac{1}{2}R_3 ightarrow R_2 \ R_1-R_3 ightarrow R_1$	$\left[\begin{array}{ccc ccc} 2 & 1 & 0 & 7 \\ 0 & 1/2 & 0 & 3/2 \\ 0 & 0 & -1 & 1 \end{array}\right]$
$ \begin{array}{rcl} 2x + y & = & 7 \\ y & = & 3 \\ z & = -1 \end{array} $	$egin{array}{l} 2R_2 ightarrow R_2 \ -R_3 ightarrow R_3 \end{array}$	$\left[\begin{array}{ccc c} 2 & 1 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array}\right]$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$R_1-R_2 o R_1 \ rac{1}{2}R_1 o R_1$	$ \left[\begin{array}{ccc ccc} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array}\right] $

The matrix is now in reduced row-echelon form. Reading this matrix tells us that the solutions for this system of equations occur when x = 2, y = 3, and z = -1.

Special cases:

Linear algebra Page 3

Special cases:

If an entire row on the left is 0 and t he right value is non-zero there are no solutions

GAUSS Elimination 5

If an ENTIRE row is 0 then there are infinite solutions

$$x_1 + 5x_2 - 2x_3 + 3x_4 = -11$$
$$3x_1 - 2x_2 + 7x_3 + x_4 = 5$$
$$-2x_1 - x_2 - x_3 - 2x_4 = 0$$
$$5x_1 + 3x_2 + 4x_3 - x_4 = 13$$