Classification

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logi
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoos

Classification: Motivation

- ► Many predictive questions are about classification
 - ► Email should go to the spam folder or not
 - ► A household is bellow the poverty line
 - Accept someone to a graduate program or no
- ightharpoonup Aim is to classify *y* based on X's

Classification: Motivation

- ▶ Main difference is that y represents membership in a category: $y \in \{1, 2, ..., n\}$
 - Qualitative (e.g., spam, personal, social)
 - Not necessarily ordered

The prediction question is, given a new X, what is our best guess at the response category \hat{y}

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoost

- ▶ Two states of nature $Y \rightarrow i \in \{0, 1\}$
- ► Two actions $(\hat{Y}) \rightarrow j \in \{0, 1\}$

 $Source: \verb|https://dzone.com/articles/understanding-the-confusion-matrix| \\$

- ► Two actions $\hat{Y} \rightarrow j \in \{0,1\}$
- ▶ Two states of nature $Y \rightarrow i \in \{0, 1\}$
- Probabilities
 - p = Pr(Y = 1|X)
 - ▶ 1 p = Pr(Y = 0|X)

- ► Actions have costs associated to them
- ► Loss: L(i,j), penalizes being in bin i,j
 - We define L(i,j)

$$L(i,j) = \begin{cases} 1 & i \neq j \\ 0 & i = j \end{cases} \tag{1}$$

▶ Risk: expected loss of taking action *j*

$$E[L(i,j)] = \sum_{i} p_{j}L(i,j)$$

$$R(j) = (1-p)L(0,j) + pL(1,j)$$
(2)

► The objective is to minimize the risk

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoost

Bayes classifier

$$R(1) < R(0) \tag{3}$$

Bayes classifier

▶ Under a 0-1 penalty the problem boils down to finding

$$p = Pr(Y = 1|X) \tag{4}$$

- ▶ We then predict 1 if p > 0.5 and 0 otherwise (Bayes classifier)
- ► Many ways of finding this probability in binary cases

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoos

Setup

- ightharpoonup Y is a binary random variable $\{0,1\}$
- ► *X* is a vector of K predictors
- ightharpoonup p = Pr(Y = 1|X)

► Logit

$$p = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

$$= \frac{exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$
(5)

► Logit

$$p = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

$$= \frac{exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$
(5)

Odds ratio

$$ln\left(\frac{p}{1-p}\right) = X\beta$$

$$= \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$
(6)

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoos

- ▶ Developed by Ronald A. Fisher (1890-1962)
- ► "If Fisher had lived in the era of "apps," maximum likelihood estimation might have made him a billionaire" (Efron and Tibshiriani, 2016)
- ► Why? MLE gives "automatically"
 - Consistent
 - Asymptotically normal
 - ► Asymptotically efficient

$$Pr(Y = y|X) = f(y;\theta) \tag{7}$$

- **▶** *f*() known
- $\triangleright \theta$ unknown
- Example:

$$Y|X \sim Poisson(\lambda)$$

$$f(y;\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

(9)

 $Y_1, \ldots, Y_n \sim_{iid} f(Y; \theta)$

$$Pr(Y_i = y_i | X_i) = f(y_i; \theta)$$
(10)

Likelihood

$$L(\theta; y_i) = f(y_i; \theta) \tag{11}$$

- ► For a random sample $y_1, ..., y_n \sim_{iid} f(y_i; \theta)$
- ► The likelihood function is

$$L(\theta|y_1,\ldots,y_n) = \prod_{i=1}^n L(\theta;y_i)$$

= $\prod_{i=1}^n f(x_i;\theta)$ (12)

ightharpoonup A maximum likelihood estimator of the parameter θ :

$$\hat{\theta}^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta, x) \tag{13}$$

▶ Note that maximizing (12) is the same as maximizing

$$l(\theta; y_1, \dots, y_n) = \ln L(\theta; y_1, \dots, y_n) = \sum_{i=1}^n l(\theta; y_i)$$
(14)

- ► Advantages of (14)
 - ► Contribution of observation *i*: $l_i(x|\theta) = \ln f(y_i;\theta)$
 - ► Eq. (12) is prone to underflow.

MLE Logit

- ▶ Imagine that we have a sample of iid observations (y_i, x_i) ; i = 1, ..., n, where $y_i \in \{0, 1\}$
- ► Under logit we have

$$p_i = \frac{e^{x_i \beta}}{1 + e^{x_i \beta}} \tag{15}$$

▶ Then the likelihood

$$L(\theta; y_1, \dots, y_n) = \prod_{y_i = 1} p_i \prod_{y_i \neq 1} (1 - p_i)$$
(16)

$$= \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i} \tag{17}$$

$$= \prod_{i=1}^{n} \left(\frac{p_i}{1 - p_i} \right)^{y_i} (1 - p_i) \tag{18}$$

MLE Logit

► The log likelihood is then

$$l(\theta; y_1, \dots, y_n) = \sum_{i=1}^n \log\left(\frac{p_i}{1 - p_i}\right)^{y_i} + \sum_{i=1}^n \log(1 - p_i)$$
 (19)

► FOC

$$\frac{\partial l}{\partial \beta_j} = \sum_{i=1}^n \frac{y_i}{p_i(1-p_i)} \frac{\partial p_i}{\partial \beta_j} - \sum_{i=1}^n \frac{1}{(1-p_i)} \frac{\partial p_i}{\partial \beta_j}$$
(20)

$$=\sum_{i=1}^{n} \frac{y_i - p_i}{p_i (1 - p_i)} \frac{\partial p_i}{\partial \beta_j}$$
 (21)

- ► Note:
 - ▶ This is a system of *K* non linear equations with *K* unknown parameters.
 - We cannot explicitly solve for $\hat{\beta}$
 - It's important to check SOC

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
- Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoost

Newton's Method

- ▶ Suppose that we wish to minimize a function $Q(\beta)$, where β is a k-vector
- \triangleright $Q(\beta)$ is assumed to be twice continuously differentiable.
- ▶ Given any initial value of β , say $\beta_{(0)}$, we can perform a second-order Taylor expansion of $Q(\beta)$ around $\beta_{(0)}$ in order to obtain an approximation $(Q^*(\beta))$ to $Q(\beta)$:

$$Q^*(\beta) = Q(\beta_{(0)}) + g'_{(0)}(\beta - \beta_{(0)}) + \frac{1}{2}(\beta - \beta_{(0)})'H_{(0)}(\beta - \beta_{(0)})$$
(22)

Newton's Method

► FOC

$$g_{(0)} + H_{(0)}(\beta - \beta_{(0)}) = 0 (23)$$

▶ Solving these yields a new value of β , which we will call $\beta_{(1)}$:

$$\beta_{(1)} = \beta_{(0)} - H_{(0)}^{-1} g_{(0)} \tag{24}$$

Newton's Method

► FOC

$$g_{(0)} + H_{(0)}(\beta - \beta_{(0)}) = 0 (23)$$

▶ Solving these yields a new value of β , which we will call $\beta_{(1)}$:

$$\beta_{(1)} = \beta_{(0)} - H_{(0)}^{-1} g_{(0)} \tag{24}$$

▶ If the quadratic approximation $Q^*(\beta)$) is a strictly convex function, which it will be if and only if the Hessian $H_{(0)}$ is positive definite, $\beta_{(1)}$ will be the global minimum of $Q^*(\beta)$).

quais-Newton's Method

- Because the loglikelihood function is to be maximized, the Hessian should be negative definite
- ▶ Newton's Method will usually not work well, and will often not work at all, when the Hessian is not negative definite.
- ► In such cases, one popular way to obtain the MLE is to use some sort of quasi-Newton method:

$$\beta_{(j+1)} = \beta_{(j)} + \alpha_j D_{(j)}^{-1} g_{(j)}$$
(25)

- where $\alpha_{(j)}$ is a scalar which is determined at each step
- ▶ $D_{(j)}$ is a matrix which approximates $-H_{(j)}$ near the maximum but is constructed so that it is always positive definite.

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoos

Summary

- ▶ We observe (y_i, X_i) i = 1, ..., n
- ► Logit

$$p_i = \frac{e^{X_i \beta}}{1 + e^{X_i \beta}}$$

Prediction

$$\hat{p}_i = \frac{e^{X_i \hat{\beta}}}{1 + e^{X_i \hat{\beta}}}$$

Classification

Sarmiento-Barbieri (Uniandes)

$$\hat{Y}_i = 1[\hat{p}_i > 0.5]$$

(26)

(28)

33 / 60

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- 1 Motivation
- Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoost

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoos

Árboles: Problema

▶ Jugamos al tenis?

Cielo	Humedad	Tenis?
Sol	Alta	No
Sol	Alta	No
Nublado	Alta	Sí
Sol	Alta	No
Sol	Normal	Sí
Nublado	Alta	Sí
Nublado	Normal	Sí

Árboles: Problema

Cielo	Humedad	Tenis?
Sol	Alta	No
Sol	Alta	No
Nublado	Alta	Sí
Sol	Alta	No
Sol	Normal	Sí
Nublado	Alta	Sí
Nublado	Normal	Sí

Árboles: Problema

Cielo	Humedad	Tenis?
Sol	Alta	No
Sol	Alta	No
Nublado	Alta	Sí
Sol	Alta	No
Sol	Normal	Sí
Nublado	Alta	Sí
Nublado	Normal	Sí

- ► Regiones lo más "puras" posibles
 - ▶ **Regresión**: minima varianza
 - ► Clasificación: ?

Problemas de clasificación

Temperatura °C	Llovió
23	NO
24	NO
29	SI
31	SI
33	SI

Problemas de clasificación

► ¿Cuál de los dos cortes es mejor?

Problemas de clasificación. Medidas de Impureza

- Medidas de impureza dentro de cada hoja:
 - ▶ Índice de Gini : $G = \sum_{k=1}^{K} \hat{p}_{mk} (1 \hat{p}_{mk})$
 - ► Entropía : $-\sum_{k=1}^{K} \hat{p}_{mk} log(\hat{p}_{mk})$
- Se define la impureza de un árbol por el promedio ponderado de las impurezas de cada hoja. El ponderador es la fracción de observaciones en cada hoja.

Sarmiento-Barbieri (Uniandes)

Problemas de clasificación. Impureza

► ¿Cuál de los dos cortes es mejor?

Temperatura °C	Llovió
31	SI
24	NO
29	SI
33	SI
23	NO

Problemas de clasificación. Impureza

► ¿Cuál de los dos cortes es mejor?

Temperatura °C	Llovió
31	SI
24	NO
29	SI
33	SI
23	NO

Problemas de clasificación. Predicción

Sobreajuste

Sobreajuste. Algunas soluciones

- Fijar la profundidad del árbol.
- Fijar la mínima cantidad de datos que están contenidos dentro de cada hoja.
- ▶ Pruning (poda).

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoost

Bagging

- ► Problema con CART: pocos robustos.
- Podemos mejorar mucho el rendimiento mediante la agregación: Bagging y Random Forests

Bagging

- ► Bagging:
 - ▶ Obtenga repetidamente muestras aleatorias $(X_i^b, Y_i^b)_{i=1}^N$ de la muestra observada (bootstrap).
 - Para cada muestra, ajuste un árbol de regresión $\hat{f}^b(x)$
 - Promedie las muestras de bootstrap

$$\hat{f}_{bag} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x)$$
 (29)

- ► Bosques (forests):
 - ▶ Si hay *p* predictores, en cada partición utiliza un subconjunto de predictores elegidos al azar.
 - ► Reduce la correlación entre los árboles en el boostrap.

Sarmiento-Barbieri (Uniandes)

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
 - Bayes Classifier
- 3 Logit
 - MLE
 - Newton's Method
 - Summary
- 4 Árboles, Bosques y Boosting
 - Árboles
 - Sobreajuste
 - Bagging y Random Forests
 - Boosting
 - AdaBoost

Boosting: Motivation

- ▶ Problema con CART: varianza alta.
- ▶ Podemos mejorar mucho el rendimiento mediante la agregación
- lacktriangle El boosting toma esta idea pero lo "encara" de una manera diferente ightarrow viene de la computación

AdaBoost: Boosting Adaptativo

- ► Vocabulario:
 - ▶ $y \in -1, 1, X$ vector de predictores.
 - $ightharpoonup \hat{y} = G(X)$ (clasificador)
 - $err = \frac{1}{N} \sum_{i}^{N} I(y_i \neq G(x_i))$

AdaBoost

AdaBoost

AdaBoost

Gfinal = sign
$$\left(\alpha_1 + \alpha_2 + \alpha_3\right)$$

AdaBoost.M1

- 1 Comenzamos con ponderadores $w_i = 1/N$
- 2 Para m = 1 hasta M:
 - 1 Estimar $G_m(x)$ usando ponderadores w_i .
 - 2 Computar el error de predicción

$$err_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}$$
(30)

- 3 Obtener $\alpha_m = ln \left[\frac{(1 err_m)}{err_m} \right]$
- 4 Actualizar los ponderadores : $w_i \leftarrow w_i c_i$

$$c_i = exp\left[\alpha_m I(yi \neq G_m(x_i))\right] \tag{31}$$

3 Resultado: $G(x) = sign[\sum_{m=1}^{M} \alpha_m G_m(x)]$

Sarmiento-Barbieri (Uniandes)

AdaBoost.M1

- ▶ Si fue correctamente predicho, $c_i = 1$.
- En caso contrario, $c_i = exp(\alpha_m) = \frac{(1 err_m)}{err_m} > 1$
- ▶ En cada paso el algoritmo da mas importancia relativa a las predicciones incorrectas.
- Paso final: promedio ponderado de estos pasos

$$G(x) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$
(32)

Sarmiento-Barbieri (Uniandes)

Example: Default

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/