Mediating Conflict in the Lab.

Alessandra Casella Evan Friedman

Manuel Perez

Preliminary

Introduction

- An experimental study on the effectiveness of mediation.
- Increasing interest in mediation: families, labor relations, legal disputes, civil and international conflicts.
- Reported increase in mediation services.
- *Mediator*: a third party who wants to minimize conflict but has neither superior information nor enforcement power.
- Controlled lab experiment. Not focussed on psychological mechanisms.

Main question:

Theory predicts that a benevolent mediator who has neither superior information nor enforcement power can nevertheless strictly increase the probability of a peaceful resolution of conflict.

• A large literature, theoretical and empirical, debating when the result holds. Here:

• Is this true in the lab?

The Model

- Hörner, Morelli, Squintani, 2015. As implemented in the lab.
- Two risk-neutral players, 1 and 2, compete for a resource of size 1.
- If they do not agree, the resource shrinks to $1/2 < \theta < 1$, and is divided according to the two players' types, H or L:
 - $\theta/2$ to each if types are equal;
 - θ to H and 0 to L otherwise.
- Ex ante efficiency corresponds to maximizing the probability of peaceful resolution.

- Players' types are private information and assigned independently.
- Each is H with known probability q, L with probability 1-q.
- Players attempt to reach agreement via a two-stage game:
 - 1. A communication stage. Cheap talk
 - 2. A demand or allocation stage.
- Two procedures:
 - 1. Unmediated communication.
 - 2. Mediation.

Unmediated communication (UC)

- Knowing one's own type t, each player sends to the other player a message $m \in \{s, h, l\}$.
- After messages are sent and received, each player expresses a demand $d \in \{1 \theta, 1/2, \theta, w\}$.
- If neither player chooses w and $d_1 + d_2 \leq 1$, each receives d_i .
- If either player chooses w, or if $d_1 + d_2 > 1$, war follows: the resource shrinks to θ and is divided according to the players' types.

Mediation

- ullet The mediator M wants to maximize the probability of peace.
- ullet M knows q but not the types' realizations.
- ullet Each player sends M a confidential message $m \in \{s,h,l\}$.
- M recommends $r \in \{\{1-\theta,\theta\},\{1/2,1/2\},\{\theta,1-\theta\},w\}.$
- If r=w or if either player rejects r, war follows: the resource shrinks to θ and is divided according to the players' types.
- Otherwise, *r* is implemented.

The Myerson mediator

If M can commit to r=w with positive probability, then:

Proposition HMS. If $(2\theta - 1) < q < (2\theta - 1)/\theta$, mediation can achieve a <u>strictly</u> higher probability of peace than any equilibrium of the unmediated communication game.

Note:

- The mediator has no superior information.
- The mediator has no enforcement power.

• The confidentiality of the messages allows the mediator to "obfuscate" the opponent's type, induce H to accept r=1/2, and keep L sincere while holding w lower.

But is the result likely to hold?

⇒ An experiment

Note:

- HMS's UC analysis allows for a correlated equilibrium: posits a public correlation device that issues recommendations probabilistically in response to the messages. (Or 2-round direct communication).
- The optimal solution is identical to optimal mediation subject to noobfuscation.
- Correlated randomization is impossible in the lab.
- The UC performance in the lab should be worse, confirming Prop HMS.

• We also expect more lying:

Proposition 1. Consider any uncorrelated equilibrium of the UG game in which d=w is never played. If $\theta/2>1-\theta$, then at least one type of player must be lying with strictly positive probability.

ullet d=w is weakly dominated by $d=\theta$.

The Experiment

- $\theta = 0.7$.
- ullet Par1: q=1/2; Par0: q=1/3 (Kept fixed in each session) $q=1/2\Longrightarrow q>(2 heta-1)$: Prop HMS applies.

But if q = 1/3, then $q < (2\theta - 1)$.

- Three treatments: UC, HM, CM. (Plus NC practice rounds).
- CM: HMS's optimal mediation program, posted on a screen:

The Computer Mediator's plan:

Walks Out with prob 1/2.

If the computer receives a Silent message from a player, it interprets it as either h or l with equal probability.

$$q = 1/2$$

The Computer Mediator's plan:

If the computer receives a Silent message from a player, it interprets it as either h with probability 1/3 or l with probability 2/3.

$$q = 1/3$$

- Two orders: (NC), UC, HM, CM; or (NC), CM, HM, UC.
- ((10)), (20), (30), (20) rounds per treatment; random matching.
- 3 sessions per parametrization per order: 12 sessions.
- 12 subjects per session; 144 subjects in total.
- Hypotheses:
 - 1. CM leads to more truthful reporting than UC.
 - 2. CM leads to more peace than UC.
 - **3.** HM?

L's are more sincere in CM

Standard errors are clustered at the individual level.

But peace is not higher

Standard errors are clustered at the session level.

What does the theory say?

The frequency of peace under CM falls short of the predictions. Why?

1. Multiple equilibria

- HMS characterize the "best" equilibrium.
- But keeping fixed the mediator's program, CM has many equilibria.
- We concentrate on equilibria in undominanted strategies where, regardless of message:
 - (i) all players accept 70;
 - (ii) L players always accept 50;
 - (iii) H players always reject 30.

- The equilibrium strategies to be determined are:
 - (i) The acceptance strategies of Hh and Hl players offered 50, and of Ll players offered 30;
 - (ii) The first stage message strategies for both types.

Selecting equilibria not grossly contradicted by the data: Ll accepts 30; $\tau_H \geq \tau_L$.

q = 1/3: The cube is the HMS equilibrium.

q=1/2: The cube is the HMS equilibrium.

- Given the mediation program, equilibrium can support a large range of truthfulness and any peace between 0 and the HMS max.
- ullet With q=1/2, the locus of equilibria is discontinuous around the HMS equilibrium.

Call α_h the prob that an Hh player accepts 50.

Proposition 2. *Suppose* $(2\theta - 1)/\theta > q > (2\theta - 1) > 0$. *Then*:

(i)
$$\alpha_h = 1 \Longrightarrow \{\tau_H = 1, \tau_L = 1\}.$$

(ii) If either $\tau_H < 1$ or $\tau_L < 1$, then $\alpha_h = 0$.

(iii)
$$\{\tau_H = 1, \tau_L = 1\} \Rightarrow \alpha_h = 1$$
.

$$\Delta_{Hh}(1/2)=(1/2- heta/2)[\Pr(j ext{ is } H ext{ and } h_j ext{ } | 1/2,h_i)lpha_h+$$
 $+\Pr(j ext{ is } H ext{ and } l_j ext{ } | 1/2,h_i)lpha_l]+(1/2- heta)\Pr(j ext{ is } L ext{ } | 1/2,h_i)$

 \implies Full sincerity is necessary but not sufficient for Hh accepting 50.

- The discontinuity does not exist in the absence of obfuscation (the IR constraints are slack or bind trivially).
- Obfuscation is at the heart of mediation's superior effectiveness.
- ullet But the equilibrium with obfuscation is fragile: it can only hold if both H and L types are fully sincere.
- With q=1/3, optimal mediation has no obfuscation, and the locus of equilibria has no discontinuity at $\{\tau_L=1,\,\tau_H=1\}$.
- But it is steep and peace falls rapidly as sincerity decreases.

2. Deviations from equilibrium

Animation

• Under q=1/3, deviations are due mostly to the imperfect sincerity (especially for H's who then reject the offer).

Animation

ullet Under q=1/2, deviations are due mostly to *higher* sincerity and compliance by H's.

Animation

• How costly are these deviations?

3. Deviations are not very costly

- q = 1/2. 93% of H's and 74% of L's lose less than 5%.
- ullet Note: For H, the incentive constraints are not satisfied.

- q=1/3. 92% of H's and 64% of L's lose less than 5%; 85% of L's lose less than 7.5%.
- Note: The incentive constraints are satisfied for both types.

Conclusions

- In our experiment, mediation falls short of its promise.
- We see in the theory and in the lab the fragility of the obfuscation equilibrium:
 - (i) Discontinuity around the HMS equilibrium if the mediation program includes obfuscation. Not otherwise.
 - (ii) In the data, compliance and sincerity are best responses for H if the mediation program does *not* include obfuscation. Not otherwise.
- Both mediation programs, with and without obfuscation, fall short of their best theoretical promise. Incentives not steep enough?

• HM?

All data. q=1/2

All data. q=1/3

Table 1: Sincerity

	Dependent variable: IsHonest Linear ModelProbit Model	
	(1)	(2)
TreatmentHM	-0.039 (0.028)	$-0.139** \\ (0.058)$
TreatmentCM	0.005	0.019
Order2	$(0.034) \\ 0.009$	$(0.058) \\ 0.038$
Parameter1	(0.040) 0.142^{***}	(0.047) 0.466^{***}
TypeLow	(0.042)	(0.047)
Period	-0.354^{***} (0.082) 0.002^{***}	-0.877^{***} (0.091) 0.006^{***}
${\bf Treatment HM: Type Low}$	(0.001)	(0.001)
TreatmentCM:TypeLow	0.181*** (0.042)	0.519^{***} (0.073)
Order2:TypeLow	(0.042) 0.298*** (0.055)	0.772^{***} (0.074)
Parameter1:TypeLow	-0.025 (0.062)	-0.072 (0.060)
TypeLow:Period Constant	-0.198^{***} (0.063)	-0.616^{***} (0.060)
	-0.0002 (0.001) $0.611***$	-0.002 (0.001) $0.227****$
	(0.057)	(0.071)
Observations R ²	8,640 0.158	8,640
Adjusted \mathbb{R}^2	0.157	
Log Likelihood Akaike Inf. Crit.		-5,150.925 $10,325.850$
Residual Std. Error	0.453 (df = 8628)	Note:

Note: *p<0.1; **p<0.05; ***p<0.01

Table 3: Peace

	$Dependent\ variable:$		
	IsPeace		
	(1)	(2)	
TreatmentHM	-0.082***	-0.085***	
	(0.020)	(0.018)	
TreatmentCM	-0.025	-0.019	
	(0.020)	(0.018)	
Order2	0.005	$0.012^{'}$	
	(0.018)	(0.016)	
Parameter1	0.087***	0.186***	
	(0.018)	(0.016)	
PairTypeHigh-Low	, ,	0.293***	
		(0.018)	
PairTypeLow-Low		0.606***	
• •		(0.018)	
Round	0.001***	0.001***	
	(0.0004)	(0.0003)	
Constant	0.435***	0.042	
	(0.026)	(0.026)	
Observations	4,320	4,320	
\mathbb{R}^2	0.015	0.191	
Adjusted \mathbb{R}^2	0.013	0.190	
Residual Std. Error	0.497 (df = 4314)	0.450 (df = 4312)	

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: Silence

	Dependent variable:		
	IsSilent		
	$Linear\ model$	probit	
	(1)	(2)	
TreatmentHM	-0.042**	-0.197**	
	(0.020)	(0.078)	
TreatmentCM	-0.049**	-0.216***	
	(0.021)	(0.079)	
Order2	-0.069***	-0.455***	
	(0.025)	(0.066)	
Parameter1	-0.015	-0.125**	
	(0.026)	(0.063)	
TypeLow	-0.029	-0.181*	
	(0.039)	(0.106)	
Period	-0.001***	-0.008***	
	(0.0004)	(0.002)	
TreatmentHM:TypeLow	-0.012	-0.116	
	(0.021)	(0.099)	
TreatmentCM:TypeLow	0.038	0.187*	
	(0.028)	(0.098)	
Order2:TypeLow	0.018	0.162**	
	(0.021)	(0.082)	
Parameter1:TypeLow	-0.005	0.007	
	(0.022)	(0.080)	
TypeLow:Period	0.001	0.005***	
	(0.001)	(0.002)	
Constant	0.212***	-0.681***	
	(0.041)	(0.083)	
		Observations	
Observations R^2	8,640	8,640	
R^2 Adjusted R^2	$0.024 \\ 0.022$		
Log Likelihood	0.022	-2,577.875	
Akaike Inf. Crit.		5,179.750	
Residual Std. Error	0.288 (df = 8628)	Note:	

Note:

*p<0.1; **p<0.05; ***p<0.01