Assignment 1

September 6, 2022

- 1. Let x and $y \ge 0$ be two real numbers. Prove that $|x| \le y$ iff $-y \le x \le y$.
- 2. If r is rational $(r \neq 0)$ and x is irrational. Prove that r + x and rx are irrational.
- 3. Let S and T be nonempty bounded subsets of \mathbb{R} . Prove if $S \subseteq T$, then $infT \le infS \le supS \le supT$.
- 4. Let U and V be nonempty bounded subsets of \mathbb{R} . Prove $\sup(U \cup V) =$ $max\{supU, supV\}$. (What about $inf(U \cup V)$?)
- 5. Let S be a nonempty bounded set in \mathbb{R} .
 - (a) Let a > 0 be a real number and let $aS = \{as; s \in S\}$. Prove that

$$inf(aS) = a.\inf(S) \quad sup(aS) = a.sup(S).$$

(b) Let b < 0 be a real number and let $bS = \{bs; s \in S\}$. Prove that

$$inf(bS) = b.sup(S)$$
 $sup(bS) = b.inf(S)$.

In particular, b = -1, imply

$$inf(-S) = -sup(S)$$
 $sup(-S) = -inf(S)$.

(Now try to prove that the two statements in Completeness axioms are equivalent).

- 6. $x \in \mathbb{R}$. Then $|x| < \varepsilon$ for every $\varepsilon > 0$ iff x = 0.
- 7. Prove whether the following sets are bounded from below or above (or both) and then find Supremum or Infimum (or both).

 - a) $\{y = 1 \frac{1}{n}, n \in \mathbb{N}\}.$ b) $\{y = x + x^{-1}; x > 0\}.$
 - c) $\{y = 2^x + 2^{\frac{1}{x}}; x > 0\}.$
- 8. Let S be nonempty subset of \mathbb{R} . Prove that if a number u in \mathbb{R} has the properties: (i) for every $n \in \mathbb{N}$ the number $u - \frac{1}{n}$ is not an upper bound of S, and (ii) for every number $n \in \mathbb{N}$ the number $u + \frac{1}{n}$ is an upper bound of S, then u = SupS.

1