

Elliptic Curve

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) uses integer arithmetic
 with very large numbers
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- Offers same security with smaller bit sizes

General form of a EC

 An elliptic curve is a plane curve defined by an equation of the form

$$y^2 = x^3 + ax + b$$

Examples

$$y^2 = x^3 - 1$$
 $y^2 = x^3 + 1$ $y^2 = x^3 - 3x + 3$ $y^2 = x^3 - 4x$ $y^2 = x^3 - x$

Elliptic Curve

Elliptic Curve

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- commonly used Method:
 - prime curves Ep(a,b) defined over Zp
 - use integers modulo a prime

Generic Procedures of ECC

- Both parties agree to some publicly-known data items
 - The elliptic curve equation
 - values of a and b
 - prime, p
 - A base point, B, taken from the elliptic curve
 - Similar to the generator used in current cryptosystems
- Each user generates their public/private key pair
 - Private Key = an integer, x, selected from the interval [1, p-1]
 - Public Key = product, Q, of private key and base point
 - (Q = x*B)

Generic Procedures of ECC to ElGamal

Generating Public and Private Keys

$$E(a,b)$$
 $e_1(x_1,y_1)$

$$d e_2(x_2, y_2) = d \times e_1(x_1, y_1)$$

$$C_1 = r \times e_1$$

$$C_2 = P + r \times e_2$$

Decryption

$$\mathbf{P} = \mathbf{C}_2 - (d \times \mathbf{C}_1)$$

The minus sign here means adding with the inverse.

How it Works

Example – Elliptic Curve Cryptosystem

example of encipherment using an elliptic

- 1. Bob selects $E_{67}(2,3)$ as the elliptic curve over GF(p).
- 2. Bob selects $e_1 = (2, 22)$ and d = 4.

curve over GF(p).

- 3. Bob calculates $e_2 = (13, 45)$, where $e_2 = d \times e_1$.
- 4. Bob publicly announces the tuple (E, e1, e2).
- Alice wants to send the plaintext P = (24, 26) to Bob. She selects r = 2.

Finding an Inverse

The reflection of point (x , y) is (x, -y)
 (-y is the additive inverse of y)

Example:

If p = 13, the inverse of (4,2) is

