Calculatrice : ✓ Durée : 20 minutes

Exercice 1 | 5 points

Soit (u_n) une suite géométrique de raison $q \neq 1$ et de premier terme u_0 .

1. Donner la formule permettant de calculer S_n où :

$$S_n = \sum_{k=0}^n u_k$$

2. Si $u_0 = 2$ et $q = \sqrt{2}$, donner S_{10} .

3. Calculer $S = 3 + \frac{3}{2} + \frac{3}{4} + \dots + \frac{3}{2048}$ en justifiant.

4. Calculer $S = 0.0005 + 0.005 + 0.005 + \cdots + 500000$ en justifiant.

Correction

1.

$$S_n = \sum_{k=0}^n u_k = u_0 \frac{1 - q^{n+1}}{1 - q}$$

2.

$$S_{10} = 2 \times \frac{1 - \sqrt{2}^{11}}{1 - \sqrt{2}} \simeq 213.7$$

3. On reconnaît la somme d'une suite géométrique (u_n) de premier terme 3 et de raison $\frac{1}{2}$.

Ainsi, comme 2 048 = 2^{11} , alors $\frac{3}{2048} = u^{11}$.

$$S = 3 + \frac{3}{2} + \frac{3}{4} + \dots + \frac{3}{2048} = \sum_{k=0}^{11} u_k = 3 \times \frac{1 - 0.5^{12}}{1 - 0.5} \approx 5.9986$$

4. De même, on reconnait la somme d'une suite géométrique de premier terme 0,0005 et de raison 10.