Termination of original F5

Vasily Galkin galkin-vv@yandex.ru

Moscow State University Faculty of Mechanics and Mathematics Department of Higher Algebra

Main goal

Prove that F5 algorithm terminates on any input data represented by a set of homogeneous polynomials.

- Definitions
 - Polynomial signature
 - Algorithm F5: original version
- Termination proof
 - F5 terminates: scheme of proof
 - S-pair chains
 - Representations of p with $S(p) \prec S(h)$

Definitions Polynomial signature

- Fix ideal generated by "input" polynomials $I = (f_1, \dots, f_n)$
- Fix order \prec on pairs (m, f_i) ; m is monomial without coefficient

Definitions

Signature: $\max_{\prec} (m_k, f_{i_k})$ for some input-representation

$$g = \sum_{k} c_k m_k f_{i_k}, c_k \neq 0$$
, all pairs (m_k, f_{i_k}) are distinct

Minimal signature: $S(g) \stackrel{\text{def}}{=} \min_{\prec} (\text{all signatures of } g)$ We say mh sig-safe reduce g if LM(mh) = LM(g), $S(mh) \prec S(g)$

- \bullet F5 tracks $\mathcal S$ and performs only signature-safe reductions
- F5 use Position-over-Term order \prec (compare *i*-s than *m*-s)
 - Order is compatible to multiplication by monomial
 - Allows to define sig-lead ratio with linear order:

$$\frac{\mathcal{S}\left(g\right)}{\mathrm{LM}\left(g\right)} \prec_{SL} \frac{\mathcal{S}\left(h\right)}{\mathrm{LM}\left(h\right)} \stackrel{\text{\tiny def}}{\Leftrightarrow} \mathcal{S}\left(g\right) \mathrm{LM}\left(h\right) \prec \mathcal{S}\left(h\right) \mathrm{LM}\left(g\right)$$

Definitions Algorithm F5: original version

Scheme: computing basis of $(G \cup \{f_i\})$ from basis G

- 1. $P = \{S-pair(p, f_i)|p \in G, \text{ and } S-pair \text{ parts pass 'F5' criterion}\}$
- 2. while $P \neq \emptyset$ do:
 - 2.1 F = S-polys(take P all max-degree S-pairs passing 'Rewritten')
 - 2.2 **while** $\exists h \in F$, S(h) is minimal for non-zero F polynomials **do**:
 - 2.2.1 **if** $\exists p \in G$ sig-safe h reductor, satisfying 'F5' and 'Rewritten': $F = (F \setminus \{h\}) \cup Reduce(h,p)$
 - 2.2.2 else: $F = F \setminus \{h\}; R = R \cup \{h\}$
 - 2.3 **for** $r \in R:P = P \cup \{S-pair(p,r)|p \in G, 'F5' passed\}; G = G \cup \{r\}$

Termination of original F5

- is topical: no algorithm was proved to be always faster than F5
- is not like Buchberger: G may be extended by polynomial h whose reductor $p \in G$ is not sig-safe or is not satisfying criteria
- proofed in original work only if f_1, \ldots, f_n is regular sequence
- proof by reformulation as generic algorithm (TRB-F5; F5GEN)
 - equivalence proof has gaps

F5 terminates: scheme of proof

- 1* If the algorithm doesn't stop it fills G with polynomials containing infinite sequence with \prec_{SL} -increasing sig-lead ratio
 - 2 This sequence contains p_1, p_2 with $LM(p_2)|LM(p_1)$
 - 3 Polynomial p_2 is sig-safe reductor for p_1
- 4* Any polynomial p with signature smaller than signature of h on step 2.2 has representation of the form $p = \sum_k c_k m_k g_k$, $c_k \neq 0$, $g_k \in G$ where
 - $\mathcal{S}(m_k g_k) \preccurlyeq \mathcal{S}(p), \operatorname{LM}(m_k g_k) \leqslant \operatorname{LM}(p)$ and all $m_k g_k$ satisfy F5 and Rewritten criteria
 - 5 Applying this to p_2 on step with $h=p_1$ and selecting element with LM $(m_k g_k) = \text{LM}(p_2)$ as mp_3 gives polynomial p_3 in G.
 - 6 p_3 is sig-safe reductor of p_1 and satisfies criteria
 - 7 This leads to contradiction because p_1 was added to G without reduction by p_3

*studied below in more detail

proof S-pair chains

Definitions

- Polynomial h_2 computed as reduced S-pair (h_1,p) satisfying $\mathcal{S}(\mathrm{LM}(p) h_1) \succ \mathcal{S}(\mathrm{LM}(h_1) p)$ is called S-descendant of h_1 .
- S-descendant property: $h_2 \succ_{SL} h_1$
- Sequence $\{h_i\}$ is *S-pair chain*, if $\forall i h_{i+1}$ is S-descendant of h_i .

Fact

If F5 doesn't stop it gives infinite S-pair chain

Proof.

- All $h \in R$ corresponds to S-pair chain $\{f, \ldots, h\}$
- ullet $\forall h$ has only finite number of direct S-pair descendants
- A chain is constructed from elements having infinite number of recursive S-pair descendants

Representations of p with $S(p) \prec S(h)$

 $\forall p$ has representation $p = \sum_k c_k m_k g_k, \ c_k \neq 0, g_k \in G$, satisfying:

- ullet LM $(p)\geqslant$ LM $(m_{k}g_{k})$ all algorithms, including Buchberger
- $\mathcal{S}\left(p\right)\geqslant\mathcal{S}\left(m_{k}g_{k}\right)$ (sig-safe) all signature-based algorithms
- For F5 we also need to analyze 'F5' and 'Rewritten' criteria
 - start with a sig-safe representation
 - iteratively replace terms that doesn't pass criteria or LM relation with sig-safe expressions
 - proof that this process terminates

Proof.

- Introduce well order \lessdot_1 on representation elements (like \prec)
- ullet Lexicographically extend it to representations well order \lessdot
- Show that replacements <-decrease representation