Project 6 GLM/GAM/Cox-PHM을 이용한 기업 부도 예측

Contents

00 데이터 전처리

01 Logistic GLM/GAM 이용한 부도 예측

02 생존 분석 기법을 이용한 부도 예측 방법

03 Lift Chart 이용한 예측력 비교

04 Data Mining 기법

05 Shiny Application

01 Logistic GLM/GAM 이용한 부도 예측

00 데이터 전처리

1) 변수 변환

로그 변환 (12개)		제곱근/세제곱근 변환 (13개)	
고정부채비율	X13	총자본투자효율	X1
고정비율	X14	경영자본순이익율	X4
부채비율	X15	자기자본순이익율	X7
유동비율	X19	자본금순이익율	X8
고정자산/차입금비율	X23	총자본순이익율	X10
유동부채구성비율	X30	총자산사업이익율	X12

2) 변수 제거 및 결측치 처리

- 변수 간의 상관관계를 살펴보고 0.95 이상의 상관성을 가진 변수 중 하나를 선택
- 9999.99, -9999.99의 결측치를 갖는 값은 knn을 통해 대체

01 Logistic GLM/GAM 이용한 부도 예측

Logistic Regression을 이용한 방법: 각 기업의 향후 12개월 이내 부도확률 예측 모형

Model	Formula	AIC
Link = probit	$glm(formula = delta \sim x2 + x4 + x5 + x10 + x16 + x20 + x27 + x29 + x30 + x31 + x40 + x42 + x44 + x1 + x2:x29 + x5:x16 + x5:x27 + x5:x29 + x5:x31 + x10:x29 + x10:x42 + x16:x20 + x16:x40 + x20:x30 + x20:x42 + x27:x31 + x27:x40 + x29:x31 + x30:x40 + x40:x42 + x40:x44 + x42:x44 + x20:x1 + x40:x1 + x44:x1, family = binomial(link = probit), data = train)$	854.08

선택된 주요 정량변수와 부도확률의 연관성

Variable	변수 효과		Variable	변수 효과	
x2 매출채권증가율	-0.13765*	-	x27 총CF/차입금비율	-0.37524**	-
x4 경영자본순이익율	0.84674*	+	x29 순운전자본/총자본비율	0.35158***	+
x5 금융비용/총부채비율	0.44136***	+	x30 유동부채구성비율	-0.16545*	-
x10 총자본순이익률	-1.36900**	_	x31 현금비율	-0.63595**	-

- 경영자본순이익율, 금융비용/총부채비율, 순운전자본/총자본비율: 부도확률과 양의 상관관계
- 매출채권증가율, 총자본순이익율, 총CF/차입금비율, 유동부채구성비율, 현금비율: 부도확률과 음의 상관관계

01 Logistic GLM/GAM 이용한 부도 예측

GAM을 이용한 방법: 각 기업의 향후 12개월 이내 부도확률 예측 모형

Model	Formula	AIC	р
Link=probit	gam(delta $\sim x1 + s(x2) + s(x4) + s(x5) + s(x10) + x13 + x22 + s(x23) + s(x25) + s(x28) + s(x30) + x31 + x33 + s(x39) + s(x40) + s(x43), family = binomial(link=probit), data = train)$	825.82	44.61

선택된 주요 정량변수와 부도확률의 연관성

Variable	변수 효과(edf)		Variable	변수 효과	
x5 금융비용/총부채비율	2.549**	+	x22 차입금의존도	-0.21836*	-
x23 고정자산/차입금비율	2.446**	+	x31 현금비율	-0.17947*	-
x28 CF/차입금비율	7.759***	+	x33 고정자산회전율	-0.24386*	-

- 금융비용/총부채비율, 고장자산/차입금비율, CF/차입금 비율: 부도 확률과 양의 상관관계
- 차입금의존도, 현금비율, 고정자산회전율: 부도 확률과 음의 상관관계

01 Logistic GLM/GAM 이용한 부도 예측

주요 정량변수에 대한 최적 함수의 그래프와 의미

02 생존 분석 기법을 이용한 부도 예측 방법

02 생존 분석 기법을 이용한 부도 예측 방법

공변량 (covariates) 이 $(x_1, ..., x_p)$ 인 기업의 t시점의 순간 부도율에 대한 최적 Cox PHM (Proportional Hazard Model)

Model	Formula	AIC
Cox PHM	coxph(formula = Surv((exp(x40) + y)/365, delta) ~ x2 + x4 + x5 + x10 + x16 + x20 + x27 + x30 + x31 + x42 + x44 + x22 + x6 + x7 + x14 + x19 + x23 + x33 + x41 + x43 + x1 + x8 + x13 + x15 + x28 + x25 + x34 + x36 + x37 + x39 + x29 + x12 + x5:x16 + x5:x27 + x10:x30 + x10:x31 + x42:x44 + x23:x1 + x4:x23 + x14:x23 + x23:x15 + x8:x28 + x14:x28 + x15:x28 + x19:x28 + x28:x25 + x30:x28 + x33:x28 + x33:x13 + x13:x36 + x5:x14 + x5:x23 + x5:x36 + x5:x37 + x5:x39 + x5:x41 + x5:x43 + x2:x29 + x7:x29 + x27:x1 + x27:x6 + x10:x27 + x27:x12 + x27:x25 + x27:x30 + x27:x34 + x27:x43 + x27:x44, data = train)	1599.82

선택된 주요 정량변수와 부도확률의 연관성

Variable	변수 효과(edf)		Variable	변수 효과	
x2 매출채권증가율	-0.36334*	-	x27 총CF차입금비율	-1.08098**	-
x8 자본금순이익율	-0.70068**	-	x31 현금비율	-0.91961***	-
x23 고정자산/차입금비율	-1.34722**	-	x33 고정자산회전율	-0.99603**	-

• 매출채권증가율, 자본금순이익율, 고정자산/차입금비율, 총CF/차입금비율, 현금비율, 고정자산회전율이 낮을수록 부도 확률이 높음

03 Lift Chart를 이용한 예측력 비교

03 Lift Chart를 이용한 예측력 비교

모형별 AIC

GLM	GAM	Cox PHM
854.0817	852.82	1599.815

Lift Chart

Interval	GLM	GAM	Cox PHM
10%	0.1956	0.2114	0.164
20%	0.082	0.0568	0.0536
30%	0.044	0.0315	0.0379
40%	0.018	0.0284	0.041
50%	0.012	0.0158	0.0284
60%	0.01	0.0126	0.0158
70%	0.003	0.0063	0.0095
80%	0	0.0032	0.0189
90%	0	0	0
100%	0	0.0032	0

04 Data Mining 기법을 이용한 예측력 비교

04 Data Mining 기법을 이용한 예측력 비교

a) 위에서 사용한 방법 외에 아래의 다양한 Data Mining 기법을 이용한 분석을 추가하여 각 방법들의 장단점을 서로 비교 검토해 보시오.

모형별 정확도

KNN	LDA	RF	SVM	XGB
91.86%	89.52%	93.42%	93.29%	93.16%

Lift Chart

Interval	KNN	LDA	RF	SVM	XGB
10%	8.14	4.72	10.83	10.64	10.46
20%	2.68	1.67	0	0	0.28
30%	0	1.02	0	0.19	0.09
40%	0	1.20	0	0	0
50%	0	0.74	0	0	0
60%	0	0.37	0	0	0
70%	0	0.56	0	0	0
80%	0	0.28	0	0	0
90%	0	0.09	0	0	0
100%	0	0.19	0	0	0

05 Shiny Application