

TOD: Task-Oriented Dialogue

July 20, 2023

Language & Intelligence Lab

Artificial Intelligence Graduate School

Yumin Kim

2023 U-SURF Research Intern

CONTENTS

TOD	\sim
	114
TOD	

- 2. <SimpleTOD> Review 13
- 3. Recent Advancements 19

Conversational Al

Conversational Al

Open-domain dialogue system

- ex) Chit-chat
- Training: end-to-end
- Data: large-scale data from social media

Task-Oriented dialogue system (TOD)

- ex) hotel reservation, medical consultant chatbot
- Goal: To accomplish a goal described by a user

Category	User message (U)	Agent response (R)	External knowledge (K)
Task-oriented	I need to find a nice restaurant in Madrid that serves expensive Thai food	There is a restaurant called Bangkok City locating at 9 Red Ave.	Restaurant database
Open-domain	I love the grilled fish so much!	Yeah. it's a famous <i>Chinese</i> dish	Commonsense KG

Example of TOD

Hotel Rewards Bot conversation platforum **Hotel Rewards** Welcome guest user, I am here to help Messenger with anything you might ask. Click on below links to initiate further actions Options Search in bot communication Looking for a room? Need further information? Check Messages Looking for a room Provide feedback Latest news To help your further I want to know in which city you need a room and when? I need a room in Paris from 23.08-30.08 Great, I have found below options in Paris that is available from 23-08

Traditional 3 Pipelines

- 1. NLU module: extract belief state
- 2. DM module (Dialogue Manager): decides which actions to take based on those beliefs
 Dialogue State Tracking (DST), Dialogue Policy
- 3. NLG module: generate responses
- Traditionally, each component is trained independently with different supervision

Traditional 3 Pipelines: Example

I'm looking for a restaurant at UNIST.

NLU + DST

Dialogue state (=Belief state):

Domain(restaurant), Area(UNIST), Date(07-20-2023), Intent(Search_Restaurant)

Dialogue Manager

Database Query

SELECT *from RESTAURANT WHERE area=UNIST

Policy

Decide Action:

INFORM_CHOICE, REQUEST_FOOD, BYE, CONFIRM,

Query Result

value_count = 5

NLG

There are [value_count] restaurants that meet your criteria. What type of food do you want?

MultiWOZ Dialogue Dataset (Multi-Domain Wizard-of-Oz)

Domain	Categorical slots	Non-categorical slots	Intents
Restaurant	pricerange, area, bookday, bookpeople	food, name, booktime, address, phone, postcode, ref	find, book
Attraction	area, type	name, address, entrancefee, openhours, entrancefee, openhours, phone, postcode	find
Hotel	pricerange, parking, internet, stars, area, type, bookpeople, bookday, bookstay	name, address, phone, postcode, ref	find, book
Taxi	-	destination, departure, arriveby, leaveat, phone, type	book
Train	destination, departure, day, bookpeople	arriveby, leaveat, trainid, ref, price, duration	find, book
Bus	day	departure, destination, leaveat	find
Hospital	-	department , address, phone, postcode	find
Police	-	name, address, phone, postcode	find

- You are traveling to Cambridge and looking forward to try local restaurants.
- You are looking for a place to stay. The hotel should be in the type of hotel and should be in the centre.
- The hotel should include free wifi and should have a star of 4.

- CamRest and MultiWOZ
- 8 domains
- 14,000 multi-turn dialogues

Towards End-to-End Training

Prior work (1) domain-aware <u>multi-decoder</u> model (DAMD) + augmentation

- Single-sequence: Greedy Decoding
- Multiple actions: Beam Search + Diverse Beam Search/Top-K Sampling

R_t	R_{t-1} : What price range do you want for the hotel?											
	U _t : A cheap one works for me. By the way it should be in the west.											
	B_t : [ho A_t^U : info B_t : ma	orm			cheap vailable		S_t					
	name price area Stars booking											
	Avalon	cheap	west	4	available							
i												

name	price	area	Stars	booking	
Avalon	cheap	west	4	available	• • •
				•••	

- [hotel] [inform] name [offerbook]
- [hotel] [request] stars
- [hotel] [recommend] name wifi
- $R_r^{(1)}$ The <v.name> is a great choice meet your criteria! Do you want me to book it for you?
- $R_t^{(2)}$ Sure! What star rating do you want?
- $R_t^{(3)}$ I would recommend the <v.name>! It is ...

$$B_t = \operatorname{seq2seq}(R_{t-1}, U_t, B_{t-1})$$

$$A_t = \text{seq2seq}(U_t, B_t, DB_t)$$

$$R_t = \operatorname{seq2seq}(A_t, U_t, B_t, DB_t)$$

Towards End-to-End Training

Prior work (1) domain-aware multi-decoder model (DAMD) + augmentation [Evaluation] SoTA combined score for Dialogue Management and Response Generation

<Automatic Evaluation Metrics>

1. Inform rate: provides an correct entity

2. Success rate: answers all the requested information

3. BLEU: fluency

4. Combined score: (inform + Success) x 0.5 + BLEU

= overall quality measure

Model	Belief State	System	Action	Inform	Success	BLEU	Combined
Model	Type	Type	Form	(%)	(%)	BLEU	Score
1. Seq2Seq + Attention (Budzianowski et al. 2018)	oracle	-	-	71.3	61.0	18.9	85.1
2. Seq2Seq + Copy	oracle	-	-	86.2	72.0	15.7	94.8
3. MD-Sequicity	oracle	-	-	86.6	71.6	16.8	95.9
4. SFN + RL (Mehri et al. 2019)	oracle	generated	one-hot	82.7	72.1	16.3	93.7
5. HDSA (Chen et al. 2019)	oracle	generated	graph	82.9	68.9	23.6	99.5
6. DAMD	oracle	generated	span	89.5	75.8	18.3	100.9
7. DAMD + multi-action data augmentation	oracle	generated	span	89.2	77.9	18.6	102.2
8. SFN + RL (Mehri et al. 2019)	oracle	oracle	one-hot	-	-	29.0	106.0
9. HDSA (Chen et al. 2019)	oracle	oracle	graph	87.9	78.0	30.4	113.4
 DAMD + multi-action data augmentation 	oracle	oracle	span	95.4	87.2	27.3	118.5
11. SFN + RL (Mehri et al. 2019)	generated	generated	one-hot	73.8	58.6	16.9	83.0
DAMD + multi-action data augmentation	generated	generated	span	76.3	60.4	16.6	85.0

Towards End-to-End Training

Prior work (2) SOLOIST: GPT2-based end-to-end training model

Towards End-to-End Training

$$p(m{x}) = p(m{r}, m{c}, m{b}, m{s})$$
 = $p(m{r}|m{c}, m{b}, m{s})$ $p(m{b}|m{s})$ $p(m{s})$. Grounded Response Generation Belief Prediction

Prior work (2) SOLOIST: GPT2-based end-to-end training model

$$\mathcal{L}_{ extbf{B}} = \log p(oldsymbol{b}|oldsymbol{s})$$

$$= \sum_{T_b}^{T_b} \log p_{oldsymbol{ heta}}($$

$$=\sum_{t=1}^{T_b} \log p_{oldsymbol{ heta}}(b_t|b_{< t},oldsymbol{s}) \qquad \qquad =\sum_{t=1}^{T_r} \log p_{oldsymbol{ heta}}(r_t|r_{< t},oldsymbol{c},oldsymbol{s})$$

 $\mathcal{L}_{\mathbf{C}} = y \log(p_{\boldsymbol{\theta}}(\boldsymbol{x})) + (1 - y) \log(1 - p_{\boldsymbol{\theta}}(\boldsymbol{x}'))$

Towards End-to-End Training

Prior work (2) SOLOIST: GPT2-based end-to-end training model [Evaluation] New SoTA,

But didn't show end-to-end performance w/o pretraining on other dialogue datasets

Model	$\texttt{Inform} \uparrow$	Success ↑	BLEU ↑	Combined \uparrow
Full objective	85.50	72.90	16.54	95.74
- belief	81.50	69.30	16.82	92.22
- belief & response	82.50	67.30	16.28	91.18

$$\mathcal{L}_{m{ heta}}(\mathcal{D}) = \sum_{n=1}^{|\mathcal{D}|} (\mathcal{L}_{ ext{B}}(m{x}_n) + \mathcal{L}_{ ext{R}}(m{x}_n) + \mathcal{L}_{ ext{C}}(m{x}_n))$$

Model	Attraction			Train			Hotel			Restaurant		
	Inform ↑	Success ↑	BLEU ↑	Inform ↑	Success ↑	BLEU ↑	Inform ↑	Success ↑	BLEU ↑	Inform ↑	Success ↑	BLEU ↑
DAMD (Zhang et al., 2019a)	70.00	15.00	6.90	75.00	39.50	6.20	62.50	20.50	7.60	68.00	19.50	10.50
SOLOIST w/o pre-training	65.66	46.97	5.85	59.00	44.00	7.07	62.50	40.00	7.70	75.50	44.50	11.00
SOLOIST	86.00	65.00	12.90	80.81	64.65	9.96	74.50	43.50	8.12	81.00	55.50	12.80
Soloist _L	86.00	68.00	14.60	81.31	74.24	11.90	75.00	51.50	10.09	84.00	62.50	13.17

Table 7: End-to-end evaluation on MultiWOZ in a few-shot learning setting.

Overview

SimpleTOD: End-to-End Baseline Model

- uses a single, casual (unidirectional) LM
- trained on all sub-tasks
- in an end-to-end single sequence prediction
- first model to achieve SoTA performance for DST, action decisions, and response generation

A Simple Language Model for **Task-Oriented Dialogue**

Ehsan Hosseini-Asl

ehosseiniasl@salesforce.com Salesforce Research

Chien-Sheng Wu

Salesforce Research

Semih Yavuz

wu.jason@salesforce.com syavuz@salesforce.com Salesforce Research

Bryan McCann

bmccann@salesforce.com Salesforce Research

Richard Socher

rsocher@salesforce.com Salesforce Research

Training

output state for each token predicts the next token

input is a single sequence

 $x^t = [C_t; B_t; D_t; A_t; S_t]$

- **t**: turn
- U_t : user input
- $C_t = [U_0, S_0, ..., U_t] : context$
- $B_t = SimpleTOD(C_t)$: belief state
- D_t : the aggregated database results as input
- $A_t = SimpleTOD([C_t, B_t, D_t]) : action$
- $S_t = SimpleTOD([C_t, B_t, D_t, A_t])$: delexicalized response

Causal Language Modeling

16

Evaluation

Model	Decoder	Context Encoder	Extra Supervision	Joint Accuracy
TRADE*	Generative + Classifier	Bidirectional	-	45.6
DSTQA**	Classifier	Bidirectional	knowledge graph	51.17
DST-Picklist*	Classifier	Bidirectional	-	53.3
SST^*	Generative	Bidirectional	schema graph	55.23
TripPy [†]	Classifier	Bidirectional	action decision	55.3
$SimpleTOD^{o}$	Generative	Unidirectional	-	55.72
SimpleTOD*	Generative	Unidirectional	-	55.76
SimpleTOD ⁺	Generative	Unidirectional	-	57.47

Table 1: Evaluation of Dialogue State Tracking (DST) on MultiWOZ 2.1 using joint accuracy metric. * uses test label cleaning proposed by Wu et al. [53] and recommended by MultiWOZ authors. † uses label normalization and equivalent matching proposed in Heck et al. [19]. ** uses the cleaning of * models plus additional accounting for label variants. † performs cleaning of Type 2 and partial cleaning of Type 4 noisy annotations as outlined in Section 5, which is currently non-standard and so left unbolded. * o no label-cleaning.

Model	Belief State	DB Search	Action	Inform	Success	BLEU	Combined
DAMD+augmentation	generated	oracle	generated	76.3	60.4	16.6	85
SimpleTOD (ours)	generated	oracle	generated	78.1	63.4	16.91	87.66
SimpleTOD (ours)	generated	dynamic	generated	81.4	69.7	16.11	91.66
SimpleTOD (ours)	generated	-	generated	84.4	70.1	15.01	92.26

Wrap-up

Previous Models

- All previous models propose a <u>bidirectional</u> encoder
 - > to learn better representation of context
- beam search, diverse beam search, top-k sampling
 - = **costly** decoding strategy
- test label <u>cleaning</u>

SimpleTOD

- Causal Language Modeling (unidirectional)
 - = NOT bidirectional
- Simple Greedy Decoding
 - = NOT costly
- w/o any cleaning or normalization
 - = simply on the raw, original annotations

3. Recent Advancements

SPACE: Unified Pre-trained Conversation Model for TOD

Unified Dialog Model Pre-training for Task-Oriented Dialog Understanding and Generation

Wanwei He* †
Shenzhen Institute of Advanced
Technology, Chinese Academy of
Sciences
Shenzhen, China
ww.he@siat.ac.cn

Yinpei Dai* Alibaba Group Beijing, China yinpei.dyp@alibaba-inc.com Min Yang[‡]
Shenzhen Institute of Advanced
Technology, Chinese Academy of
Sciences
Shenzhen, China
min.yang@siat.ac.cn

Baselines for Specific Tasks. For intent prediction, we compare SPACE with four state-of-the-art baselines: ConvBERT [63], Example+Observer [62], USE+ConveRT [8], and ConvFit [91]. For the dialog state tracking task, we compare with DS-DST [112], Seq2Seq-DU [24], PLATO-XL [4] and AG-DST [89]. For the end-to-end dialog modeling task, we have different baselines on different datasets for comparison. For MultiWOZ2.0 and MultiWOZ2.1, we compare with SimpleTOD [37], DoTS [39], UBAR [104], and MT-TOD [49]. For CamRest676 and In-Car, we compare with SEDST [40], TSCP [50], FSDM [86] and LABES [115].

3. Recent Advancements

SPACE: Unified Dialog Model Pre-training for TOD

Generative PCM

Generative PLM

plain dialog corpora

(a) PCM for dialog understanding tasks

(b) PCM for dialog generation tasks

(c) Unified PCM for both dialog understanding and generation tasks

I want an indian restaurant in park, could you offer me the name?

restaurant-inform(food=indian, area=park); restaurant-request(name=?)

3. Recent Advancements

SPACE: Unified Pre-trained Conversation Model for TOD

3. Recent Advancements

SPACE: Unified Dialog Model Pre-training for TOD

Table 4: Comparison results on dialog understanding tasks.

Model	MultiWOZ2.2
DS-DST	51.7
Seq2Seq-DU	54.40
PLATO-XL	57.16
AG-DST	57.26
SPACE	57.50

Table 5: Comparison results on four E2E dialog task

		3.6.10337/	270.0		14 10 11 10 77 0 4			
Model		MultiW(MultiWOZ2.1				
Model	Inform	Success	BLEU	Comb	Inform	Success	BLEU	Comb
SimpleTOD	84.40	70.10	15.01	92.26	85.00	70.50	15.23	92.98
DoTS	86.59	74.14	15.06	95.43	86.65	74.18	15.90	96.31
UBAR	95.40	80.70	17.00	105.05	95.70	81.80	16.50	105.25
MTTOD	90.99	82.58	20.25	107.04	90.99	82.08	19.68	106.22
SPACE	95.30	88.00	19.30	110.95	95.60	86.10	19.91	110.76

References

1. TOD

- 1. Zhang, Zheng, et al. "Recent advances and challenges in task-oriented dialog systems." Science China Technological Sciences 63.10 (2020): 2011-2027.
- 2. Zhang, Yichi, Zhijian Ou, and Zhou Yu. "Task-oriented dialog systems that consider multiple appropriate responses under the same context." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 05. 2020.
- 3. Peng, Baolin, et al. "Soloist: Few-shot task-oriented dialog with a single pretrained auto-regressive model." arXiv preprint arXiv:2005. 05298 3 (2020).

2. SimpleTOD Review

- 1. <u>Hosseini-Asl, Ehsan, et al. "A simple language model for task-oriented dialogue." Advances in Neural Information Processing Systems</u> 33 (2020): 20179-20191.
- 2. <u>Budzianowski, Paweł, et al. "Multiwoz--a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling." arXiv preprint arXiv:1810.00278 (2018).</u>

3. Recent Advancements

1. He, Wanwei, et al. "Unified dialog model pre-training for task-oriented dialog understanding and generation." Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022.

THANK YOU