Дніпровський Національний університет імені Олеся Гончара Факультет прикладної математики

Кафедра обчислювальної математики та математичної кібернетики

Методи оптимізації

Завдання до лабораторної роботи

Чисельні методи розв'язання задач безумовної оптимізації

Тема: Чисельні методи безумовної оптимізації.

Mema: Познайомитись практично з ітераційними методами розв'язання задач безумовної оптимізації.

Постановка завдання

Розв'язати задачу безумовної оптимізації:

$$f(x) \to min$$
, (1)

$$x \in E^n \tag{2}$$

Цільові функції мають вигляд:

1)
$$f(x) = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2$$
,

2) функція Розенброка:
$$g(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
.

Коефіцієнти цільової функції f(x) визначаються номером індивідуального завдання і наведені в таблиці 1.

- 1. Знайти точку мінімуму функції f(x) класичним методом.
- 2. Зробити кілька кроків (не менше двох) методом найшвидшого спуску для функції f(x).
- 3. Розробити програму знаходження оптимального розв'язку задачі безумовної оптимізації градієнтним методом з дробленням кроку. Застосувати її для знаходження оптимального розв'язку для функцій f(x) та g(x) із заданою точністю \mathcal{E} .
- 4. Розробити програму знаходження оптимального розв'язку задачі безумовної оптимізації методом Ньютона. Застосувати її для знаходження оптимального розв'язку для функцій f(x) та g(x) із заданою точністю ε .
- 5. Виконати геометричну інтерпретацію отриманих результатів за трьома методами для цільової функції f(x). Для цього побудувати на площині лінії рівня, траекторію наближення до точки мінімуму, зобразивши напрямки спуску різними кольорами.
- 6. Скласти звіт.

№	а	b	С	d	e	No	а	b	С	d	e
1.	1	2	2	-2	-3	2.	7	1	1	-16	-3
3.	2	2	1	-2	-6	4.	1	2	3	-2	-3
5.	9	0	6	-90	-128	6.	1	-1	8	2	-1
7.	4	2	5	-2	-3	8.	6	2	1	6	6
9.	1	-1	1	-2	1	10.	3	2	1	-2	-3
11.	5	4	1	-16	-12	12.	8	2	1	-3	-6
13.	3	2	3	-2	-3	14.	9	5	1	6	2
15.	2	1	6	-5	-13	16.	7	-1	1	7	-4
17.	3	1	1	1	5	18.	7	5	1	6	3
19.	4	2	3	-2	-3	20.	9	1	1	2	-1
21.	5	4	1	6	4	22.	1	2	4	-2	-3
23.	3	3	1	6	5	24.	6	-1	1	-3	5
25.	4	2	1	-2	-3	26.	3	2	1	12	-6
27.	3	4	2	-2	4	28.	8	-2	1	-1	1
29.	2	2	3	-2	-3	30.	5	-2	1	-2	3
31.	1	2	5	-2	-3	32.	5	-2	2	2	3
33.	1	– 4	1	2	2	34.	4	2	4	-2	-3
35.	5	2	1	-2	-10	36.	5	2	2	-4	-2
37.	6	2	1	-2	-3	38.	2	2	1	-2	-3
39.	5	4	6	-2	-6	40.	6	2	3	-2	-6
41.	7	-2	1	6	6	42.	2	2	5	-2	-3
43.	4	- 5	3	-1	-4	44.	3	2	2	-2	-3
45.	1	2	3	1	1	46.	3	2	5	-2	-3 -3
47.	2	1	1	-2	- 5	48.	3	2	4	-2	-3
49.	1	1	4	2	1	50.	2	2	2	-2	-3
51.	1	–4	1	2	2	52.	4	2	4	-2	-3
53.	5	2	1	-2	-10	54.	5	2	2	-4	-2
55.	6	2	1	-2	-3	56.	2	2	1	-2	-3
57.	5	4	6	-2	-6	58.	6	2	3	-2	-6
59.	5	-6	4	-2	-3	60.	6	2	4	-2	15

<u>Література</u>

- 1. Кісельова О. М., Шевельова А. Є. Чисельні методи оптимізації. Навч. посібник Д.: Видво ДНУ, 2008. 212 с.
- 2. Шевельова А.Є. Методичні вказівки до виконання лабораторних робіт з дисципліни «Методи оптимізації та дослідження операцій». Дніпро: Ліра, 2018 32 с.
- 3. Васильев Ф.П. Численные методы решения экстремальных задач. М.,1980.–518 с.
- 4. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М.,1986. 328с.