

Personal Security

ACM NetSec, Fall 2017

Confidentiality

Update: Next Week

Facebook Tech Panel:

Monday, October 23rd

Boelter 3400

6:30 PM

https://www.facebook.com/events/1405795962851010/

We will resume Personal Security the next Monday

Agenda

- Myths vs. Realities
- Messaging
- Passwords
- Case Studies
- TFA
- ISP's, Browsers, and Personal Info
- Government and Confidentiality

Common Myths

- Nobody cares about my computer
- Who would go through the effort of targeting me?
- It would be obvious if my computer was compromised

Nobody cares about my computer

- "I have nothing worth stealing"
- Personal data, credit card info, accounts
 - What would be the repercussions of just getting a username and password for your Amazon account?
- Some attacks don't steal any of your information, they exploit your need for your own information
 - Ransomware

Who would go through the effort of targeting me?

- Everyone is a valuable target
 - Personal data, contact lists, account info, credit cards
- Sometimes the target is not the individual, but the organization
 - Social engineering attacks rely on human entry points for corporate exploitation
- Attacks are easily automated
 - Spam, embedded links

It would be obvious if my computer was compromised

 When someone takes advantage of your data, they do not want you discovering them

Agenda

- Myths vs. Realities
- Messaging
- Passwords
- Case Studies
- TFA
- ISP's, Browsers, and Personal Info

GPG Recap

- Who are you trusting?
 - GPG Software
 - Key Server
 - Communication Channel
 - Receiver of the encrypted message

- Pretty minimal trust.
- What else can we do this way?

Encrypted Messaging

- Signal/Whatsapp
- How do they work?
 - Similar, except keys are "ephemeral" - temporary
 - In GPG, email + keyID served as an identifier
 - Here, it is your Whatsapp account or (for Signal) your phone number
- Much harder to do incorrectly than GPG!

Signal Identity

- Security Code
 - Kind of like a GPG key ID derived using the long term keys

Signal Confidentiality

- Signal also has forward and future secrecy
 - Compromise of a key does not decrypt past messages

Still vulnerable to metadata collection.

Agenda

- Myths vs. Realities
- Messaging
- Passwords
- Case Studies
- TFA
- ISP's, Browsers, and Personal Info

Wireshark Demo

Password Hash Algorithms

- One way
- Each input produces a single, unique output
- The same input string will ALWAYS produce the same output string

Hash Function sha256

e4ba5cbd251c98e6cd1c23f126a3b8 1d8d8328abc95387229850952b3ef 9f904

Hash Function sha256

e4ba5cbd251c98e6cd1c23f126a3b8 1d8d8328abc95387229850952b3ef 9f904

Workflow for account registration and authentication

- 1. Create account
- Password is hashed
- 3. Upon login, hash is compared to the one stored on database
- 4. If the hashes match, the user is granted access
- 5. Repeat 3 and 4

How Hashes are Cracked

Approach 1: Guess the password

- 1. Guess the password
- 2. Hash each guess
- 3. Guess hash = hash?
 - a. Yes, you got it!
 - b. No, try again

Two Methods:

- 1. Brute Force
- 2. Dictionary

Brute Force Attacks

- Try every possible combination
- Always eventually find the password
- Very computationally expensive
- Inefficient

```
Brute Force Attack
Trying aaaa : failed
Trying aaab : failed
Trying aaac : failed
Trying acdb : failed
Trying acdc : success!
```


Brute Force Attacks

"123456789" (9 characters, all numbers) 14.17 minutes

"vacation" (8 characters, all lowercase letters) 2 days

"blUeFisH" (8 characters, mixed uppercase & lowercase) 1.44 years

"r3Dcr0W5" (numbers included) 5.88 years

"%ZBGbv]8" (ASCII included, 8 characters) 45.2 years

"%ZBGbv]8g?" (ASCII, 10 characters) 289,217 years

Dictionary Attacks

- Pulls from "Dictionary" file
- Hash each guess and compare
- Further processing is often applied to the files, such as I33t speak

```
Dictionary Attack

Trying apple : failed Trying blueberry : failed Trying justinbeiber : failed

Trying letmein : failed Trying s3cr3t : success!
```


Approach 2: Look it up

- Searchable table
- Search the table to see if the hash is there
 - Yes, you got it!
 - No, you're out of luck
- This process can also be reversed with Reverse Lookup Tables

Lookup Tables

```
Searching: 5f4dcc3b5aa765d61d8327deb882cf99: FOUND: password5
Searching: 6cbe615c106f422d23669b610b564800: not in database
Searching: 630bf032efe4507f2c57b280995925a9: FOUND: letMEin12
Searching: 386f43fab5d096a7a66d67c8f213e5ec: FOUND: mcd0nalds
Searching: d5ec75d5fe70d428685510fae36492d9: FOUND: p@ssw0rd!
```

- Pre-compute the hashes of a certain dictionary
- Look up the hash you're trying to crack

Reverse Lookup Tables

```
Searching for hash(apple) in users' hash list... : Matches [alice3, 0bob0, charles8]
Searching for hash(blueberry) in users' hash list... : Matches [usr10101, timmy, john91]
Searching for hash(letmein) in users' hash list... : Matches [wilson10, dragonslayerX,
joe1984]
Searching for hash(s3cr3t) in users' hash list... : Matches [bruce19, knuth1337, john87]
Searching for hash(z@29hjja) in users' hash list... : No users used this password
```

- Associate users to hashes
- Use dictionary or brute force to get
- Especially effective because people often use similar passwords

What These Mean For Us

- Brute Force
 - Password length
- Dictionary
 - o Common words/expressions are susceptible
 - Substitutions are accounted for
- Lookup Tables
 - Common passwords are at risk

Typical Password Guide

Old Password:	••••••	Passwords must contain:	-6
Password: Confirm Password:	•••••••••••••••••••••••••••••••••••••••	- 8 to 20 characters	0
	Passwords must be 8 to 20 characters lor	- one upper case letter	
	letter, one lower case letter and one number	- one lower case letter	
	characters are ! @ # \$ % = + _	- one number or special character	0
		- any character with the exception of ' " \ / & + = ; : . ,	
		{ } [] <> 0 * #	×

DIFFICULTY TO GUESS:

HARD

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Password Managers

To name a few...

- 1Password
- LastPass
- Dashlane
- Others

Agenda

- Myths vs. Realities
- Passwords
- Case Studies
- TFA
- ISP's, Browsers, and Personal Info

[case] LastPass

- Detected breach quickly
- Notified customers
- Only authentication hashes were compromised, no vault data
- Hash algorithms are strong

[case] LinkedIn

- 4 year time gap. Breach discovered in 2012, data released in 2016
- Not all users were notified
- Poor hash algorithm (SHA-1)
- Stored without salt

[case] Equifax

- Slow to detect and notify consumers
- Difficult-to-find link for checking if affected
- URL Spoof
- Name and SSN are not things you can change, passwords can be changed

Have I Been Pwned?

https://haveibeenpwned.com

Agenda

- Myths vs. Realities
- Messaging
- Passwords
- Case Studies
- TFA
- ISP's, Browsers, and Personal Info

Two Factor Authentication for MyUCLA

http://tinyurl.com/uclatwofactor

Agenda

- Myths vs. Realities
- Messaging
- Passwords
- Case Studies
- TFA
- ISP's, Browsers, and Personal Info

Why care?

- Everyone is trying to track your behavior
 - Who you talk to
 - What you look at
 - Where you are
- Used for targeted advertising.
- Maybe you want to keep this private.
- ...Or just avoid creepy targeted advertising

Most importantly, you should have a choice

How is this done?

- Physical Behavior
 - Wifi MAC address
 - Phone GPS data
- Online Behavior
 - Browser fingerprinting
 - Cookies
 - History
 - IP Address
 - Web page behavior
 - Especially inside of a site
- Optional at-home lab: Wireshark de-anonymization

"Spying billboards" under fire for using phone data to track shoppers

How to Prevent it?

- Ad Blocker
 - Ads can have access to a lot of browser information, and be tied to other accounts.
 - o Traditional AdBlock, uBlock Origin
 - Smart EFF's Privacy Badger
 - Nuclear noscript (just disable everything)
- VPN
 - Disguises IP address from website, but not from VPN
- TOR Browser
 - Nobody knows both the source and destination IP
 - Very slow!
- Be very picky about services you use.
 - DuckDuckGo
 - ProtonMail

Feedback Form and Attendance Code

http://tinyurl.com/PersonalSecurity2