UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 41 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	41

(ii) mass = vol × density = $10 \times 7.3 = 73$ g

moles = mass/ A_r = 73/119 = **0.61** mol

(iii) Q = nFz = $0.61 \times 9.65 \times 10^4 \times 2 = 1.18$ (1.2) × 10^5 coulombs

[4]

[Total: 19]

ecf

ecf

ecf

[1]

[1]

	Page 3			Scheme: Tea				Syllabus	Pape	er
2	(a) Ca ²	²⁺ (g)	+ 2Cl ⁻ (g) ——	LEVEL – Octo → CaCl ₂ (s)	ober/N	<u>lovembei</u>	2009	9701	41	[1] [1]
	(b) Ca	F ₂ and	d CaS both hav	e larger lattic	e ener	gies (than	ı CaCl₂)			[1]
	(i)	F ⁻ is	smaller than Cl	_						[1]
	(ii)	S ²⁻ i	s more highly ch	narged than C						[1] [3]
	(c) LE		178 + 590 + 119 2260 (kJ mol ⁻¹)	50] – [244 – 2 ✓	2 × 349] – 796	signs√			[3] [3]
	(d) (i)	C H	= 28.2/40.1 = 25.2/12 = 1.4/1 = 45.1/16	= 0.703 = 2.10 = 1.4 = 2.82	$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	3 2	(1 mark	t for initial step	o of calc'n)	
			formula is Ca	ıC₃H₂O₄			(1)			[2]
	(ii)	malo	onic acid must b	e C ₂ H ₄ O ₄ , i.e	. CH₃(0	CO ₂ H) ₂	(must b	e structural)		[1] [3]
									[Tota	l: 10]
3	ligh ele col	nt is al ctron	s split into two / osorbed is promoted fror oserved is the co	n a lower to a	ı highe		orbed	any	/ 3 points	[3]
	(b) (i)	[Cu([Cu(H ₂ O) ₆] ²⁺ is pale NH ₃) ₄ (H ₂ O) ₂] ²⁺ i	blue s deep / dark	blue o	or purple				[1] [1]
	(ii)		ause it has a largause λ_{max} is in th	-	-		_		d)	[1] [1]
	(iii)		e will have λ_{max} maximum ϵ_{o} in				m			[1] [1] [6]
	(c) (i)	K _c =	[CuCl ₄ ²⁻]/([Cu ²⁺][Cl ⁻] ⁴)		units a	re mol ⁻⁴ d	lm ¹²	[1]] + [1]
	(ii)	[CuC	$Cl_4^{2-}]/[Cu^{2+}] = k$	$C_{c}[CI^{-}]^{4} = 672$	(no ur	nits)				[1] [3]
									[Tota	ıl: 12]

© UCLES 2009

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	41

(a) (cyclohexanol & phenol) hydrogen bonding to (solvent) water molecules [1] [1] due to OH group

[2]

(b) phenoxide anion is more stable (than cyclohexoxide) / OH bond is weaker due to delocalisation of charge / lone pair over the ring

[1] [1] [2]

(c)

/		
reagent	product with cyclohexanol	product with phenol
Na(s)	RONa or RO⁻Na⁺	ArONa <i>or</i> ArO⁻Na⁺
NaOH(aq)	no reaction	ArONa <i>or</i> ArO⁻Na⁺
Br ₂ (aq)	no reaction	tribromophenol
I₂(aq) + OH⁻(aq)	no reaction	no reaction
an excess of acidified Cr ₂ O ₇ ²⁻ (a	q) cyclohexanone	no reaction

five correct products 5 × [1] five correct "no reaction"s [2] (4 correct = [1]; 3 correct = [0])

[7]

(d) either Br₂(aq): no reaction with cyclohexanol; decolourises or white ppt with phenol

 $\text{Cr}_2\text{O}_7^{2-}$ + H^+ : turns from orange to green with cyclohexanol; no reaction with phenol

correct reagent chosen and the correct "no reaction" specified [1]

correct positive observation [1]

[2]

[Total: 13]

	Page 5		5	Mark Sch	eme: T	eachers' version	Syllabus	Paper
				GCE A/AS LEV	EL – 00	ctober/November 2009	9701	41
5	(a)	(i)		KMnO ₄ heat with H ⁺ or OH SOCl ₂ or PCl ₅ or Pc		(NOT aq)		[1] [1] [1]
		(ii)	-[-C	O-C ₆ H₄-CO-NH-C ₆ F	I ₄ -NH-]-	(Peptide bond must b	oe displayed for minm)	[1] [4]
	(b)	(i)	CH ₃	NHCO-C ₆ H ₄ -CONF	CH ₃	(1 mark for each end)		[1] + [1]
		(ii)		$\mathrm{CH_2CH_2O\text{-}CO\text{-}C_6H_4}$ the polymer -[- OCl				for [1] for [2] [4 max 3]
	(c)	(i)	CI ⁻ †	[†] NH ₃ -C ₆ H ₄ -NH ₃ [†] Cl⁻	(1 n	nark for each end)		[1] + [1]
		(ii)	H ₂ N	I-C ₆ H ₂ Br ₂ -NH ₂ or H ₂	N-C ₆ H ₂ E	Br ₃ -NH ₂ <i>or</i> H ₂ N-C ₆ Br ₄ -N	H ₂	[1] [3]
	(d)	I:		O ₂ (<i>or</i> NaNO ₂ + HCl < 10°C	/H ₂ SO ₄)			[1] [1]
		II:		rop-2-yl phenol, (Cl aOH(aq)	I₃)₂CH-(C ₆ H₄OH		[1] [1] [4]
	(e)	(i)	A sp	pecies having positi	e and r	negative ionic centres /	charges, with no overa	all charge [1]
		(ii)	-O ₂ O	C-C ₆ H ₄ -NH ₃ ⁺				[1] [2]

[Total: 16]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Pa	per
				GCE A/AS LEVEL – October/November 2009	9701	4	41
6				amino acids correctly paired no acids correctly paired		(2) (1)	
	(One	e labe	elled H-bond between strands		(1)	[3]
	(b)	(i)	- ca	A – each amino acid has its own specific / appropriate arry amino acids to ribosomes / mRNA ontains a triplet code / anticodon	tRNA	(1) (1) (1)	
	(ii)		some – attaches / moves along / binds to mRNA semble amino acids in correct sequence for / synthesis	ses protein	(1) (1)	[5]
	(c)	(i)	Base	e miscopied / deleted		(1)	
	(ii)	This	uence of bases is changed may result in different amino acid sequence – differen affect shape / tertiary structure of protein	t protein	(1) (1) (1)	[Max 3]

[Total: 12 max 11]

				GCE A/AS LEVEL – October/November 2009	9701		41
7	(a)	(i)	Posi	tions of atomic nuclei / atoms		(1)	
		(ii)	Insu	fficient electrons / electron density / electron cloud (arc	ound H atom)	(1)	[2]
	(b)			stallography can show the geometry of the arrangement between atoms / shape of atoms	ent of atoms /	(1)	
		Thi	s can	help explain how e.g. enzymes work (any reasonable	example)	(1)	[2]
	(c)	(i)	Nuc	lear spin		(1)	
		(ii)	(If M	l : M+1 gives a ratio 15 : 2)			
			The	$n x = \frac{100 \times 2}{1.1 \times 25} = 7$		(1)	
			Sing	le peak at 3.7 δ due to –O-CH $_3$		(1)	
			Sing	le peak at 5.6 δ due to phenol / OH		(1)	
			1,2,	1 peak at 6.8 δ due to hydrogens on benzene ring		(1)	
			Patt	ern suggests 1,4 subsitution		(1)	
			(x =	7,) $y = 8$, $z = 2$		(1)	

Compound is 4-methoxylphenol

Mark Scheme: Teachers' version

Page 7

[Total: 10]

[6]

(1) Max 5

Syllabus

Paper

	Pa	ge 8	3	Mark Scheme: Teachers' version	Syllabus		Paper
				GCE A/AS LEVEL – October/November 2009	9701		41
8	(a)	Gra	aphite	/ graphene		(1)	
	(b)	The	ey do	not exist as sheets / layers of carbon atoms		(1)	
	(c)	The	(1)				
	(d)	Any	/ molt	en ionic salt (or plausible organic ionic compounds)		(1)	[Total: 4]
)	(a)	(i)	Cov	alent / co-ordinate		(1)	
		(ii)	Mec	hlorethamine – binds the two chains together – prevents unravelling		(1) (1)	
			Cis-	platin – binds to two Gs / bases in one chain – so they are not available for base pairing		(1) (1)	
							[Total: 5]