Параметрический синтез ПИД-регуляторов с ограничениями

Г. К. Аязян¹, Е. В. Таушева²

Уфимский государственный нефтяной технический университет ¹AyazyanGK@ rambler.ru, ²TaushevaEV@ mail.ru

Аннотация. В статье рассматривается проблема параметрического синтеза ПИД-регуляторов, обеспечивающая заданный максимум функции чувствительности (показатель колебательности). На базе критерия компенсации низкочастотных возмущений (КНВ) получены формулы для определения коэффициента усиления по производной ПИД-регулятора. В результате задача оптимизации сводится к определению параметров настройки регулятора.

Ключевые слова: ПИД регулятор; функция чувствительности; показатель колебательности; теория исключения

I. Введение

Для параметрического синтеза ПИД регуляторов, в качестве показателя запаса устойчивости и робастности используются максимум чувствительности $M_s = \max |S(j\omega)|$ или дополнительной чувствительности $M_p = \max_{\omega} |T(j\omega)|$ [3,8-10]. Процедура синтеза осложняется наличием трех настроечных параметров. Это коэффициент усиления K, время интегрирования T_i и время дифференцирования T_d , или эквивалентные им параметры $K_1=K$, $K_0=K_1/T_i$, $K_2 = K_1 \cdot T_d$. Часто коэффициент T_d определяется, например, по формуле $T_d = \alpha T_i$, что эквивалентно $K_2 = \alpha K_1^2 / K_0$. При этом параметр α выбирается часто эмпирически, например, $\alpha = 0.15...0.25$ [3,11]. В работах [10] и [3] однозначность решения обеспечивается с помощью дополнительные ограничений на частотные характеристики разомкнутого контура. Процедура синтеза, как правило, сводится к построению в плоскости двух параметров (K_1, K_0) кривой заданного значения M_s или M_{p} при различных значениях частоты. Оптимальные значения параметров настройки выбираются на кривой в точке $K_0 = K_{0\,{
m max}}$. Это эквивалентно минимуму линейного интегрального критерия качества ІЕ. В настоящей работе из условия компенсации (подавления) низкочастотных возмущений, предлагается способ позволяющий однозначно определять коэффициент дифференциальной части K_2 (или T_d) ПИД регуляторов и модификаций с идеальными реальными

дифференциаторами. Эта статья является обобщением результатов представленных на конференции [6]. Метод решения задачи использован в работе [5].

II. ФОРМУЛИРОВАНИЕ ПРОБЛЕМЫ

Рассматривается система регулирования с одним входом и одним выходом. Обозначены: G(s), $G_c(s)$ — передаточные функции модели объекта и регулятора, x, y, e = x - y — задание, регулируемая величина и ошибка регулирования, f_1 и f_2 — возмущения, приложенные ко входу и выходу объекта соответственно.

Будем рассматривать модели объектов с передаточными функциями вида

$$G(s) = \frac{1}{s^{r}} \tilde{G}(s) = \frac{1}{s^{r}} \frac{b_{0} + b_{1} s \dots + b_{m} s^{m}}{a_{0} + a_{1} s \dots + a_{n} s^{n}} e^{-s\tau},$$
(1)

где $\tilde{G}(0)=|b_0/a_0|<\infty$; $r=0,\ 1$; a_i,b_i - постоянные коэффициенты, $a_n>0,\ b_0>0$; $m\le n$; τ - транспортное запаздывание.

Запишем разложение G(s) в ряд

$$G(s) = \frac{1}{s'} (\mu_0 + \mu_1 s + \dots + \mu_k s^k + \dots), \qquad (2)$$

где $\mu_k = \frac{1}{k!} \frac{d^k}{ds^k} G(s) \Big|_{s=0}, k = 0,1,...$ - моменты

передаточной функции G(s).

Передаточная функция регулятора

$$G_c(s) = K\left(1 + \frac{1}{T_i s} + T_d s\right) = K_1 + \frac{K_0}{s} + K_2 s.$$
 (3)

Для замкнутой системы из необходимого условия устойчивости и $b_0>0$ следует, что $K_0>0$. Настройки регулятора будем определять из условия минимума

интегрального критерия при ограничении на заданный запас устойчивости

$$\begin{split} IE &= \int_0^\infty e(t) dt = \min_{K_0, K_1, \omega} IE, \\ M_s &= \max \left| S(j\omega) \right| = \max \left| \frac{1}{1 + L(j\omega, K_0, K_1)} \right| \text{ или} \qquad (4) \\ M_p &= \max \left| T(j\omega) \right| = \max \left| \frac{L(j\omega, K_0, K_1)}{1 + L(j\omega, K_0, K_1)} \right|, \end{split}$$

где $L(j\omega,K_0,K_1)=G_c(j\omega)G(j\omega)$ — частотная характеристика разомкнутого контура. Предполагается, что K_2 это функция $K_2=\varphi(K_0,K_1)$. В дальнейшем мы ограничимся рассмотрением критерия M_s .

Разложим $A_{E}(\omega)=\left|S(j\omega)\right|$ и $A_{f}(\omega)=\left|G(j\omega)S(j\omega)\right|$ в ряд Тейлора в точке $\omega=0$ и, устремив младшие коэффициенты к нулю, получим условия, обеспечивающие подавление низкочастотных возмущений действующих соответственно на входе и выходе объекта [4]

$$K_{0} = \max K_{0}$$

$$K_{2} = \alpha \cdot \frac{K_{1}^{2}}{K_{0}} + \alpha_{1} \cdot \frac{K_{1}}{K_{0}} + \frac{\alpha_{1}^{2}}{2 \cdot K_{0}} + \alpha_{2} \cdot K_{0} + \alpha_{3},$$
(5)

где
$$\alpha = \frac{1}{2}$$
, $\alpha_1 = \frac{1}{\mu_0}$, $\alpha_2 = \frac{\mu_1^2 - 2 \cdot \mu_0 \cdot \mu_2}{2 \cdot \mu_0^2}$, $\alpha_3 = \frac{\mu_1}{\mu_0^2}$.

Формулы для α_i , i \in 1,3 зависят от свойств объекта и точки приложения возмущения. Для возмущения, действующего на входе объекта α_2 = 0, для астатического

объекта
$$\alpha_1 = 0$$
 и $\alpha_3 = -\frac{1}{\mu_0}$.

Если $\alpha_1=\alpha_2=\alpha_3=0$ и α некоторая постоянная, получим известную формулу $K_2=\alpha K_1^2/K_0$.

Знак коэффициента α_2 характеризует колебательность переходного процесса объекта. При $\alpha_2 \leq 0$ переходный процесс имеет слабо колебательный характер. Так, для колебательного звена при коэффициенте демпфирования $\xi=0.707$, имеем $\alpha_2=0$. Можно показать, что при последовательном соединении звеньев коэффициенты α_2 суммируются. Таким образом α_2 может служить хорошим критерием колебательности/апериодичности процесса. Отметим, что запаздывание на α_2 не влияет. На рис. 1 приведены переходные характеристики h(t) моделей объектов с различными значениями α_2 .

Рис. 1. Переходные характеристики моделей с различными α_2

III. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

Уравнения для расчета граничной кривой $M_s = const$ или $M_p = const$ запишем следующим образом [2]

$$F_{1} = (u+a)^{2} + v^{2} - R^{2} = 0$$

$$F_{2} = \frac{dF_{1}}{d\omega} = 2(u+a)\frac{du}{d\omega} + 2v\frac{dv}{d\omega} = 0,$$
(6)

где $u = u(K_0, K_1, K_2, \omega), v = v(K_0, K_1, K_2, \omega)$ – вещественная и мнимая частотные характеристики разомкнутой системы; ω – частота;

$$a = \frac{M_p^2}{M_p^2 - 1}, R = \frac{M_p}{M_p^2 - 1}$$
 или $a = 1, R = \frac{1}{M_s}$. (7)

Совокупность уравнений (6) определяют огибающую семейства окружностей — граничную кривую M = const. Запишем $A\Phi X$ разомкнутой системы

$$L(j\omega) = (K_1 + j(K_2\omega - K_0/\omega))(u_0(\omega) + jv_0(\omega)) =$$

= $u(K_0, K_1, K_2, \omega) + jv(K_0, K_1, K_2, \omega).$

Из предыдущего уравнения находим

$$u = K_1 u_0 - (K_2 \omega - \frac{K_0}{\omega}) v_0, \ v = K_1 v_0 + (K_2 \omega - \frac{K_0}{\omega}) u_0, \quad (8)$$

где u_0 и v_0 - вещественные и мнимые частотные характеристики объекта $G(j\omega)=u_0+jv_0$.

Подставив теперь в (6) выражения (8) и принимая во внимание формулу (3), после преобразований и группировки по степеням K_1 , получим основные уравнения для решения поставленной задачи

$$\tilde{F}_{1} = a_{4}\tilde{K}_{1}^{4} + a_{3}\tilde{K}_{1}^{3} + a_{2}\tilde{K}_{1}^{2} + a_{1}\tilde{K}_{1} + a_{0}
\tilde{F}_{2} = b_{4}\tilde{K}_{1}^{4} + b_{3}\tilde{K}_{1}^{3} + b_{2}\tilde{K}_{1}^{2} + b_{1}\tilde{K}_{1} + b_{0}$$
(9)

где
$$a_4 = 4\alpha^2$$
, $a_3 = 8\alpha\alpha_1$, $a_2 = 4(1-2\alpha+2\alpha\alpha_2\omega^2)\tilde{K}_0^2 + 4\alpha(E+2\omega\alpha_3)\tilde{K}_0 + 4\alpha_1^2(1+\alpha)$, $a_1 = 4(C+2\alpha_1(\alpha_2\omega^2-1))\tilde{K}_0^2 + 4\alpha_1(E+2\omega\alpha_3)\tilde{K}_0 + 4\alpha_1^3$, $a_0 = 4(\alpha_2\omega^2-1)^2\tilde{K}_0^4 + 4(B+\alpha_2\omega^2E+2\omega\alpha_3(\alpha_2\omega^2-1))\tilde{K}_0^3 + 4\alpha_1^2(\alpha_2\omega^2-1) + \omega^2\alpha_3^2 + F + \omega\alpha_3E)\tilde{K}_0^2 + 2\alpha_1^2(E+2\omega\alpha_3)\tilde{K}_0 + \alpha_1^4$, $b_4 = -4\alpha^2$, $b_3 = -8\alpha\alpha_1$, $b_2 = -8\omega^2\alpha\alpha_2\tilde{K}_0^2 + 4\alpha(E_1-2\omega\alpha_3)\tilde{K}_0 - 4\alpha_1^2(1+\alpha)$, $b_1 = 4(C_1-2\alpha_1\alpha_2\omega^2)\tilde{K}_0^2 + 4\alpha_1(E_1-2\alpha_3\omega)\tilde{K}_0 - 4\alpha_1^3$, $b_0 = 4(1-\alpha_2^2\omega^4)\tilde{K}_0^4 + 4(B_1+\alpha_2\omega^2E_1-2\alpha_2\alpha_3\omega^3)\tilde{K}_0^3 + 4(\omega\alpha_3E_1+F_1-\omega^2\alpha_3^2-\alpha_1^2\alpha_2\omega^2)\tilde{K}_0^2 + 2\alpha_1^2(E_1-2\omega\alpha_3)\tilde{K}_0 - \alpha_1^4$, $b_1 = -2\alpha\overline{v}_0$, $b_1 = 2\alpha\overline{v}_0$, $b_1 = 2\alpha\overline{v}_0$, $b_1 = -2\alpha\overline{v}_0$, $b_1 = 2\alpha\overline{v}_0$, $b_1 = -2\alpha\overline{v}_0$, $b_1 = -$

Для упрощения расчетов вводятся нормированные коэффициенты $\tilde{K}_0=K_0/\omega,~\tilde{K}_1=K_1,~\tilde{K}_2=K_2\omega$.

Для решения задачи, умножив каждое из уравнений (9) на \tilde{K}_1 , \tilde{K}_1^2 и \tilde{K}_1^3 , получим систему из восьми уравнений. Запишем ее в матричном виде

$$\begin{bmatrix} a_4 & a_3 & a_2 & a_1 & a_0 & 0 & 0 & 0 \\ 0 & a_4 & a_3 & a_2 & a_1 & a_0 & 0 & 0 \\ 0 & 0 & a_4 & a_3 & a_2 & a_1 & a_0 & 0 \\ 0 & 0 & 0 & a_4 & a_3 & a_2 & a_1 & a_0 \\ 0 & 0 & 0 & b_4 & b_3 & b_2 & b_1 & b_0 \\ 0 & 0 & b_4 & b_3 & b_2 & b_1 & b_0 & 0 \\ 0 & b_4 & b_3 & b_2 & b_1 & b_0 & 0 \\ 0 & b_4 & b_3 & b_2 & b_1 & b_0 & 0 & 0 \\ b_4 & b_3 & b_2 & b_1 & b_0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{K}_1^7 \\ \tilde{K}_1^6 \\ \tilde{K}_1^5 \\ \tilde{K}_1^7 \\ \tilde{K}_1^7 \\ \tilde{K}_1^7 \\ \tilde{K}_1^7 \\ \tilde{K}_1 \\$$

Система (10) совместна, если ее Результант Rez является (результант) равен нулю. K_0 полиномом 8-й степени относительно коэффициентами, зависящими от частоты. Задаваясь частотой ω , находим $ilde{K}_0$ как один из вещественных положительных корней результанта. При известном $ilde{K}_0$ коэффициент \tilde{K}_1 находится решением следующей системы уравнений, которая получается отбрасыванием первой и последней строки

$$\begin{bmatrix} a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ 0 & 0 & a_{4} & a_{3} & a_{2} & a_{1} \\ 0 & 0 & b_{4} & b_{3} & b_{2} & b_{1} \\ 0 & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \end{bmatrix} \begin{bmatrix} \tilde{K}_{1}^{6} \\ \tilde{K}_{1}^{5} \\ \tilde{K}_{1}^{3} \\ \tilde{K}_{1}^{2} \\ \tilde{K}_{1}^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -a_{0} \\ -b_{0} \\ 0 \\ 0 \end{bmatrix}.$$
(11)

Решая ее относительно \tilde{K}_1 методом Крамера, получим

$$\tilde{K}_{1} = \frac{\Delta_{1}}{\Delta} = \frac{\gamma_{4}\tilde{K}_{0}^{4} + \gamma_{3}\tilde{K}_{0}^{3} + \gamma_{2}\tilde{K}_{0}^{2} + \gamma_{1}\tilde{K}_{0} + \gamma_{0}}{\lambda_{2}\tilde{K}_{0}^{2} + \lambda_{1}\tilde{K}_{0} + \lambda_{0}} \quad \text{M}$$

$$\text{Rez} = \beta_{8}\tilde{K}_{0}^{8} + \beta_{7}\tilde{K}_{0}^{7} + \dots + \beta_{1}\tilde{K}_{0}^{1} + \beta_{0} \quad .$$
(12)

Выражения для коэффициентов β_i , γ_i , λ_i зависят от частоты, слишком громоздкие и здесь не приводятся. Таким образом, задача оптимизации сводится к вычислению двух коэффициентов K_1 и K_0 . Определитель Δ , субрезультант, системы (10) в общем случае отличен от нуля. Отметим, что $\beta_8 = 4096(\alpha_2\omega^2-1)^4$ и, что в случае слабо колебательных объектов ($\alpha_2 \leq 0$) имеем $\beta_8 \neq 0$.

IV. Анализ результатов. Расчет оптимальных настроек

Вернемся к уравнению запретной окружности \tilde{F}_1 из (6). Определим функцию $\delta(\omega)$ как

$$\delta(\omega) = K_2 \omega - K_0 / \omega =$$

$$= \left(\frac{\alpha}{K_0} \left(K_1 + \frac{\alpha_1}{2\alpha}\right)^2 + \frac{\alpha_1^2}{2} \left(1 - \frac{1}{2\alpha}\right) + \alpha_2 K_0 + \alpha_3\right) \omega - \frac{K_0}{\omega}.$$
(13)

С учетом (13), принимая во внимание уравнения (8) и первое уравнение из (6) после несложных преобразований получим квадратное уравнение относительно K_0

$$(\alpha_2 \omega^2 - 1)K_0^2 + X \cdot K_0 + Y = 0, \tag{14}$$

где
$$X=lpha_3\omega^2-\omega\Big(\pm\sqrt{R_{\rm l}^2-(K_{\rm l}+a\overline{u}_0)^2}-a\overline{v}_0\Big),$$

$$Y=\omega^2\Bigg(\frac{\alpha_{\rm l}^2}{2}\bigg(1-\frac{1}{2\alpha}\bigg)+\alpha\bigg(K_{\rm l}+\frac{\alpha_{\rm l}}{2\alpha}\bigg)^2\Bigg),\ \ R_{\rm l}=R\sqrt{\overline{u}_0^2+\overline{v}_0^2}\ .$$

Уравнение (14) определяет при каждом значении ω две замкнутые кривые в верхней и нижней полуплоскости. Каждая состоит из двух половин, знак \pm в выражении для X. Для слабо колебательных объектов $\alpha_2 \leq 0$ и положительное решение ($K_0 > 0$) уравнения (14) имеет вид

$$K_0 = \frac{-X - \sqrt{X^2 - 4(\alpha_2 \omega^2 - 1)Y}}{2(\alpha_2 \omega^2 - 1)},$$
 (15)

где K_1 изменяется в пределах $-a\bar{u}_0 - R_1 \le K_1 \le -a\bar{u}_0 + R_1$.

На рис. 2 показано семейство кривых (15) для объекта с передаточной функцией $G(s)=1/(s+1)^3$, $M_p=1.5$ и внутренней огибающей соответствующей устойчивой системе. На рис. 3 показан случай, когда огибающая имеет самопересечение.

Так как задача оптимизации сведена к двум параметрам, оптимальные значения K_1 и K_0 находятся методом, предложенным для ПИ-регулятора в [2].

Рис. 2. Семейство кривых (15) и внутренняя огибающая соответствующая устойчивой системе

Рис. 3. Случай, когда огибающая имеет самопересечение

Для кривой M=const без самопересечения к уравнениям (9) добавляется уравнение $\tilde{F}_3=d\tilde{F}_1/d\tilde{K}_1$ [10]:

$$\begin{split} \tilde{F}_1 &= a_4 \tilde{K}_1^4 + a_3 \tilde{K}_1^3 + a_2 \tilde{K}_1^2 + a_1 \tilde{K}_1 + a_0 \\ \tilde{F}_2 &= b_4 \tilde{K}_1^4 + b_3 \tilde{K}_1^3 + b_2 \tilde{K}_1^2 + b_1 \tilde{K}_1 + b_0 \\ \tilde{F}_3 &= d \tilde{F}_1 / d \tilde{K}_1 = 4 a_4 \tilde{K}_1^3 + 3 a_3 \tilde{K}_1^2 + 2 a_2 \tilde{K}_1 + a_1 \; . \end{split} \tag{16}$$

В результате их решения определяются оптимальные значения ω , $K_1=\tilde{K}_1$, $K_0=\omega \tilde{K}_0$, при этом $K_0=K_{0\max}$, а K_2 рассчитывается по формуле (5). В случае самопересечения кривой решается система из четырех уравнений [3, 10]

$$\tilde{F}_{1} = a_{4}(\omega_{1})\tilde{K}_{1}^{4} + a_{3}(\omega_{1})\tilde{K}_{1}^{3} + \dots + a_{0}(\omega_{1})
\tilde{F}_{2} = b_{4}(\omega_{1})\tilde{K}_{1}^{4} + b_{3}(\omega_{1})\tilde{K}_{1}^{3} + \dots + b_{0}(\omega_{1})
\tilde{F}_{3} = a_{4}(\omega_{2})\tilde{K}_{1}^{4} + a_{3}(\omega_{2})\tilde{K}_{1}^{3} + \dots + a_{0}(\omega_{2})
\tilde{F}_{4} = b_{4}(\omega_{2})\tilde{K}_{1}^{4} + b_{3}(\omega_{2})\tilde{K}_{1}^{3} + \dots + b_{0}(\omega_{2})$$
(17)

и оптимальные значения $K_{_1}$, $K_{_0}$, и $\omega_{_1}$, $\omega_{_2}$, определяются как точка самопересечения огибающей.

Начальные значения для оптимальных настроек находятся по результатам расчета огибающих по уравнениям (12). Для этого, как правило, достаточно 10-15 точек. Геометрически решения являются точками пересечения кривых (9). В общем случае есть два положительных решения. Устойчивое решение находится по правилу: окружность $M_s = const$ лежит слева от годографа Найквиста разомкнутого контура. Угол между вектором с началом в центре окружности, проходящим через точку касания с годографом Найквиста, и касательной (u_ω', v_ω') к годографу в этой точке в этом случае равен $+\pi/2$. Синус этого угла положителен, условие устойчивости преобразуется к виду

$$(u+a)v'_{\omega} - vu'_{\omega} > 0$$
, $v'_{\omega} = dv/d\omega$, $u'_{\omega} = du/d\omega$.

V. ПРИМЕРЫ РАСЧЕТОВ ПАРАМЕТРОВ

Эффективность предложенного алгоритма проектирования была протестирована на следующих моделях объектов

$$G_1(s) = \frac{1}{s(s+1)^3}, G_2(s) = \frac{e^{-5s}}{(s+1)^3}, G_3(s) = \frac{1}{(s+1)^4},$$

$$G_4(s) = \frac{1}{(s+1)(0.2s+1)(0.04s+1)(0.008s+1)},$$

$$G_5(s) = \frac{1-2s}{(s+1)^3}, G_6(s) = \frac{1}{(4s-1)(s+1)^2}.$$

Первые 5 моделей взяты из [10] и [3], последняя модель неустойчива. Оптимальные настройки были рассчитаны из уравнений (16) и (17) для $M_s=1.4$ и $M_s=2.0$. Для моделей 2 и 5 и $M_s=1.4$ огибающая самопересекается. На

рис. 3 показан такой график для модели 5. Результаты расчета приведены в таблице. На рис. 4 приведены переходные кривые замкнутой системы по возмущающему воздействию. Сплошная линия — предложенный алгоритм, пунктирная — для алгоритма из [10], согласно данным, приведенным в этой статье (табл. 2).

ТАБЛИЦА I ОПТИМАЛЬНЫЕ ЗНАЧЕНИЯ НАСТРОЕК РЕГУЛЯТОРОВ для различных $M_{
m s}$

Объект	$M_{\scriptscriptstyle S}$	K	T_{I}	T_{D}	M_{P}
G_1	1.4	0.322	10.094	1.937	1.35
	2.0	0.670	6.455	1.735	1.54
G_2	1.4	0.358	3.459	2.114	1.00
	2.0	0.623	4.248	1.578	1.03
G_3	1.4	1.310	2.687	1.125	1.01
	2.0	2.5895	2.677	1.029	1.38
G_4	1.4	15.636	0.366	0.127	1.3
	2.0	41.565	0.248	0.0998	1.73
G_5	1.4	0.295	1.884	1.212	1.00
	2.0	0.581	2.533	0.769	1.08
G_{6}	1.4	2.655	13.862	1.939	1.84
	2.0	8.505	4.548	1.535	1.78

VI. Выводы

В статье приводятся примеры расчета параметров с $M_s = const$. Но алгоритм проектирования не меняется, если мы заменим M_s его M_p или используем комбинированные ограничения M_s и M_p как в [7].

Основным достоинством данного метода является автоматический выбор коэффициента K_2 , значение которого зависит от характеристик объекта. Показатели качества регулирования не уступают и даже превосходят полученные при расчетах по известным методикам [3, 10]. Этот факт подтверждается переходными характеристиками систем, разработанных обоими методами, рис. 4.

Работоспособность метода была также проверена на других примерах. В частности при разработке системы управления наклонно-направленным бурением скважин [1].

Список литературы

- [1] Z.V. Agzamov, "Head-target tracking control of well drilling", Journal of Physics: Conference Series (JPCS), in press.
- [2] K. Åström, H. Panagopoulos and T. Hägglund, "Design of PI Controllers based on Non-Convex Optimization", *Automatica*, vol. 34, no. 5, pp. 585-601, 1998.
- [3] K. Åström and T. Hägglund, Advanced PID control. Research Triangle Park, NC: ISA-The Instrumentation, Systems, and Automation Society, 2006.
- [4] Г.К. Аязян, Расчет автоматических систем с типовыми алгоритмами регулирования: Учеб. пособ. Изд-во УНИ, Уфа, 1989.
- [5] Г.К. Аязян, А.Ю. Новоженин и Е.В. Таушева, "Параметрический синтез ПИД-регуляторов на заданную степень колебательности" в XII всероссийское совещание по проблемам управления ВСПУ-2014, с. 147-159, 2014.
- [6] Г.К. Аязян, Е.В. Таушева и М.Р. Шаймухаметова, "Применение системы символьных вычислений Марle для параметрического синтеза регуляторов" в Математика, ее приложения и математическое образование (МПМО17), Россия, Улан-Уде, 2017, с. 59-64.
- [7] H. Panagopoulos and K. J. Åström, "PID control design and H_π loop shaping," Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328), Kohala Coast, HI, 1999, pp. 103-108 vol. 1.
- [8] H. Panagopoulos, K. J. Åström and T. Hagglund, "Design of PID controllers based on constrained optimization," *Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)*, San Diego, CA, 1999, pp. 3858-3862 vol.6.
- [9] H. Panagopoulos and K. J. Åström, "PID control design and H_∞ loop shaping", *International Journal of Robust and Nonlinear Control*, vol. 10, no. 15, pp. 1249–1261, Dec 2000.
- [10] H. Panagopoulos, K. J. Astrom and T. Hagglund, "Design of PID controllers based on constrained optimisation," in *IEE Proceedings - Control Theory and Applications*, vol. 149, no. 1, pp. 32-40, Jan 2002.
- [11] Н.И. Смирнов, В.Р. Сабанин, А.И. Репин, "Чувствительность и робастная настройка ПИД-регуляторов с реальным дифференцированием", *Теплоэнергетика*, № 10, с. 15-23, 2007.

Рис. 4. Переходные характеристики замкнутой системы с моделью объекта: а $-G_1$, б $-G_2$, в $-G_3$, г $-G_4$, д $-G_5$, е $-G_6$