

Deep Learning 4th Year, 1st Semester

Lab sheet 03

IT21184208

In partial fulfillment of the requirements for the Bachelor of Science Special Honors Degree in Information Technology

Two Images

Add image 1 for Embedding

```
database = {}
database["danielle"] = img_to_encoding("images/danielle.png", FRmodel)
database["younes"] = img_to_encoding("images/younes.jpg", FRmodel)
database["andrew"] = img_to_encoding("images/tian.jpg", FRmodel)
database["kian"] = img_to_encoding("images/kian.jpg", FRmodel)
database["dan"] = img_to_encoding("images/kian.jpg", FRmodel)
database["sebastiano"] = img_to_encoding("images/dan.jpg", FRmodel)
database["bertrand"] = img_to_encoding("images/bertrand.jpg", FRmodel)
database["kevin"] = img_to_encoding("images/kevin.jpg", FRmodel)
database["felix"] = img_to_encoding("images/felix.jpg", FRmodel)
database["benoit"] = img_to_encoding("images/benoit.jpg", FRmodel)
database["arnaud"] = img_to_encoding("images/arnaud.jpg", FRmodel)

# Newly added image for encoding
database["test_image1"] = img_to_encoding("images/test_image1.png", FRmodel)
```

Verification - 01

Verification – 02

```
[46] verify("images/test_camera_image2.jpg", "test_image1", database, FRmodel)

Tt's not test_image1, please go away
(0.8726659, False)
```

Output

```
[48] output = who_is_it("images/test_camera_image4.png", database, FRmodel)

1 it's test_image1, the distance is 0.6298663

Expected Output:

**it's younes, the distance is 0.65939283, younes)

[49] #dictionary contains the L2 distance between target image encoding and database embeddings of other images output[2]

1 {'younes': 1.1908709, 'tian': 0.63584946, 'andrew': 0.88384235, 'kian': 1.10951394, 'dan': 1.1266046, 'sebastiano': 1.012903, 'bertrand': 1.1604086, 'kevin': 1.1713977, 'felix': 1.0434703, 'benoit': 0.7088141, 'annaud': 1.1188676, 'test_image1': 0.6298663}
```