Definition 0.11. For any $T \in \mathcal{L}(V, W)$, set null $T = \{v \mid Tv = 0\}$ is called the **null space** of T.

This is also called the **kernal** of T in algebra.

Theorem 0.13. For any $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof.

- We have $0 \in \text{null } T$ since T0 = 0, which is the property of linear transformation.
- For any $a, b \in \text{null } T$, we have 0 = Ta + Tb = T(a + b), so $a + b \in \text{null } T$.
- For any $Ta \in \text{null } T$ and $\lambda \in F$, we have $\lambda Ta = T(\lambda a)$, so $\lambda a \in \text{null } T$.

Definition 0.15. For any $T \in \mathcal{L}(V, W)$, set range $T = T(V) = \{ Tv \mid v \in V \}$ is called the **range** of T.

This is also called the **image** of T in math.

Theorem 0.18. For any $T \in \mathcal{L}(V, W)$, range T is a subsapce of W.

Proof.

- We have $T(0) = 0 \in \text{range } T$.
- For any $Ta, Tb \in \operatorname{range} T$, $Ta + Tb = T(a + b) \in \operatorname{range} T$.
- For any $Ta \in \operatorname{range} T$ and $\lambda \in F$, $\lambda Ta = T(\lambda a) \in \operatorname{range} T$.

Theorem 0.21. Suppose V is finite and $T \in \mathcal{L}(V, W)$, then range T is finite, and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Proof. Consider the basis v_0, \dots, v_k of null T, and the basis v_0, \dots, v_n of V that expand from v_0, \dots, v_k . We will show that $T(v_{k+1}), \dots, T(v_n)$ is the basis of range T.

We first show that $T(v_{k+1}), \dots, T(v_n)$ is linear irrelavent. If it is linear irrelavent, then

$$\lambda_1 T(v_{k+1}) + \dots + \lambda_i T(v_{k+i})$$

$$= T(\lambda_1 v_{k+1} + \dots + \lambda_i T(v_{k+i}))$$

$$= 0$$

That means a linear combation of v_{k+i} is in null T, which is span (v_0, \dots, v_k) , therefore the basis v_0, \dots, v_n is linear relavent.

Then we show that $T(v_{k+1}), \dots, T(v_n)$ spans range T. For any $Tv \in \operatorname{range} T$, there must be $v \in V$ such that Tv = Tv, then v can be written in form of the linear combination of v_0, \dots, v_n , and then $Tv = T(\lambda_0 v_0 + \dots + \lambda_n v_n)$. We can drop all terms with v_i where $i \leq k$, since they are in null T, so Tv is now represent by a linear combination of $T(v_{k+i})$ for all $0 < i \leq n - k$, therefore, it is a basis of range T and dim range T is finite.

Finally, $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Exercise 0.1. Suppose V is a finite vector space, Show that the only two ideal of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$. A subspace \mathcal{E} of $\mathcal{L}(V)$ is called an ideal, if $TE \in \mathcal{E}$ and $ET \in \mathcal{E}$ for any $T \in \mathcal{L}(V)$ and $E \in \mathcal{E}$.

Proof. We will use the concept Matrix. Suppose $\lambda_0 v_0 + \cdots + \lambda_n v_v$ the basis of V. We want to construct T_i that $T(\lambda_0 v_0 + \cdots + \lambda_n v_n) = \lambda_i v_i$ for all $0 \le i < n$, which is a matrix with all zero but 1 at i, i.

For any matrix, we can always select a non-zero value at a, b and place it at i, b, this can be done by left multiply a matrix with 1 at i, a (this produce a vector at line i with values from line a), then right multiply a matrix with 1 at i, b (this produce a vector at column b with values from line i).

Also, we can always select a non-zero value at a, b and place it at a, i, this can be done by right multiply a matrix with 1 at b, i, then left multiply a matrix with 1 at a, i.

By combining these two operations, we calselect a non-zero value at a, b and place it at i, i. Now, consider any non-zero $E \in \mathcal{E}$, we can construct a matrix with non-zero value at i, i for every $0 \le i < \dim V$. These matrix are in \mathcal{E} since \mathcal{E} is an ideal, then we can multiply an appropriate scalar to them so that they are matrices with 1 at i, i. By adds up these matrices, we get I, we know $I \in \mathcal{E}$ since \mathcal{E} is a vector space, and now all $T \in \mathcal{L}(V)$ is also in \mathcal{E} since \mathcal{E} is an ideal, then $\mathcal{E} = \mathcal{L}(V)$.

The only exception is $\mathcal{E} = \{0\}$, in this case we can't pick any non-zero element.

Exercise 0.7. Suppose vector space V and W are finite $(2 \le \dim V \le \dim W)$, show that $\{T \in \mathcal{L}(V, W) \mid T \text{ is not injective }\}$ is not a subspace.

Proof. Consider the basis $v_0 + \cdots + v_{(\dim V - 1)} \in V$, and $T(v_0 + \cdots + v_{(\dim V - 1)}) = (0 + 1_0 + \cdots + 1_{(\dim V - 1)})$ and $T'(v_0 + \cdots + v_{(\dim V - 1)}) = (v_0 + 0 + \cdots + v_{(\dim V - 1)})$. Then $(T + T')(\lambda_0 v_0 + \lambda_1 v_1 + \cdots + \lambda_{(\dim V - 1)} v_{(\dim V - 1)}) = \lambda_0 v_0 + \lambda_1 v_1 + \cdots + 2\lambda_{(\dim V - 1)} v_{(\dim V - 1)}$, which is obviously injective.

Exercise 0.11. Suppose V is finite and $T \in \mathcal{L}(V, W)$, show that there is a subspace $U \subset V$ such that:

$$U \cap \text{null } T = \{0\} \quad and \quad \text{range } T = \{ Tu \mid u \in U \}$$

Proof. This is similar to the *isomorphism theorems* about groups! This can be done by the similar way we used in proving dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

The next two exercises remind me the categorical injective and surjective, let try them first!

Exercise. For any $F \in \mathcal{L}(V, W)$, F is injective \iff for any $S, T \in \mathcal{L}(U, V)$, FS = FT implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(V, W)$ that FS = FT, then for any $u \in U$, we have F(Su) = F(Tu), since F is injective, we know Su = Tu, so S = T.
- (\Leftarrow) For any $v, w \in V$ such that Fv = Fw. Consider

$$S(\lambda) = \lambda v$$

$$T(\lambda) = \lambda w$$

in $\mathcal{L}(\mathbb{R}, V)$. Then for any $\lambda \in \mathbb{R}$, we have $FS\lambda = \lambda FS1 = \lambda Fv = \lambda Fw = \lambda FT1 = FT\lambda$. so FS = FT then S = T, which means v = S1 = T1 = w.

Exercise. Suppose W is finite, then for any $F \in \mathcal{L}(V, W)$, F is surjective \iff for any $S, T \in \mathcal{L}(W, U)$, SF = TF implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(W, U)$ such that SF = TF. For any $w \in W$, there is $v \in V$ such that Fv = w since F is surjective. Then we have SFv = TFv so Sw = S(Fv) = T(Fv) = Tw then S = T.
- (\Leftarrow) Consider

$$S = I$$
 and $T(\lambda_0 w_0 + \cdots + \lambda_n w_n) = \lambda_0 w_0 + \cdots + \lambda_k w_k$

where w_0, \dots, w_k is the basis of range F and w_0, \dots, w_n is the basis of W that expand from w_0, \dots, w_k .

It is easy to show that T is a linear transformation. Then for any $v \in V$, we have TFv = Fv (since T acts like identity transformation on range F) and SFv = Fv, so S = T by the property of F. Since range S = W, so is range T, that means w_0, \dots, w_k spans W, so k = n, which means range F = W, therefore F is surjective.

Exercise 0.19. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is injective \iff there is $S \in \mathcal{L}(W, V)$ such that ST = I

Proof.

• (\Rightarrow) Consider the basis v_0, \dots, v_n of V, then Tv_0, \dots, Tv_n is a basis of range T since T is injective. We denote Tv_i as w_i and w_0, \dots, w_m as the basis of W which expand from w_0, \dots, w_n . Define $S(\lambda_0 w_0 + \dots + \lambda_m w_m) = \lambda_0 w_0 + \dots + \lambda_n w_n$, and then for any $v \in V$, $ST(\lambda_0 v_0 + \dots + \lambda_n v_n) = S(\lambda)$