This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Serial No. 09/763,704

COPY OF ALL CLAIMS

1. A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^3$$
 \mathbb{R}^2 \mathbb{R}^2

where:

is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C₁-C₆-alkyl) aminosulfonyl,

N-(C₁-C₆--alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)amino,$

 $N-(C_1-C_6--alkyl)-N-(C_1-C_6-haloalkylsulfonyl)amino,$

phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio,

where the four last-mentioned radicals may be partially or

fully halogenated and/or may carry one to three of the

following substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

Serial No. 09/763,704

 R^2 , R^3 are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or halogen; R^4 is a compound IIa or IIb

(R⁶)₁

IIa

IIb

where

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R⁶ is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, di- $(C_1$ - C_6 -alkoxy)methyl, di- $(C_1$ - C_6 -alkylthio)methyl, $(C_1$ - C_6 -alkoxy) $(C_1$ - C_6 -alkylthio)methyl, hydroxyl,

 C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy,

 C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

 C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

Serial No. 09/763,704

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which may be substituted by one to three radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

t 3 4

or

two radicals , which are linked to the same carbon, together form a -(CH_2)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a methylidene group which may be substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group;

or

two radicals , which are linked to different carbons, together form a -(CH_2)_n chain which may be substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or C_1 - C_6 -alkoxycarbonyl;

 R^7 is C₁-C₆,-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cyloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₃-C₆-cyloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl) aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkyl) aminocarbonyl, N-(C₁-C₆-alkoxy)-N-(C₁-C₆-alkyl) aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkoxy) aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy) aminocarbonyl, di-(C₁-C₆-alkyl)aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-alkylamino) imino-C₁-C₆-alkyl or N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, where the above-mentioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C_1 - C_2 -alkoxy, C_1 - C_2 -alkylthio, di- $(C_1$ - C_2 - alkyl)amino, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄alkoxycarbonyl, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl,

di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-

WITSCHEL et al. Serial No. 09/763,704

alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆alkyl, phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, heterocyclyloxy-C₁-C₆-alkylcarbonyl, phenylaminocarbonyl, N-(C₁-C₆-alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C₁-C₆-alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl-C₂-C₆alkenylcarbonylor heterocyclyl-C2-C6-alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-halogenalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁸,R⁹ are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, amino, C₁-C₆-alkylamino, C₁-C₆-haloalkylamino, di-(C₁-C₆-alkyl) amino or di-(C₁-C₆-haloalkyl) amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄-alkyl) amino,

cyano, C_1 - C_4 -aikoxy, C_1 - C_4 -aikyitnio, di- $(C_1$ - C_4 -aikyi)amino, C_1 - C_4 -aikyicarbonyl, C_1 - C_4 -aikoxycarbonyl, C_1 - C_4 -aikoxycarbonyl, di- $(C_1$ - C_4 -aikyi)amino- C_1 - C_4 -aikoxycarbonyl,

hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy

Serial No. 09/763,704

.

WITSCHEL et al.

or C_3 - C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, amino, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

radicals:

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl; is 0 to 6;

Serial No. 09/763,704

m is 2 to 4;

n is 1 to 5;

p is 2 to 5;

and their agriculturally useful salts.

haloalkoxy;

- 2. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 where
 - is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-
 - is halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ $OPSR^8R^9$, $NR^{10}R^{11}$ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy .
- A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim I, where
 - is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:
 - nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.
- A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
 - R^7 is C_1 - C_6 -alkyl, C_1 - C_{20} -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, $(C_1$ - C_{20} -alkylthio)carbonyl, N,N-di- $(C_1$ - C_6 -alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, where the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated and/or may carry

Serial No. 09/763,704

one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

. . . .

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

 R^{11} is C_1 - C_6 -alkyl.

5. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where

is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, di-(C_1 - C_6 -alkoxy)methyl, di-(C_1 - C_6 -alkylthio)methyl, (C_1 - C_6 -alkoxy)(C_1 - C_6 -alkylthio)-methyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- or -S- (CH₂)_n chain which may be substituted by one to three radicals from the following group :

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a - $(CH_2)_p$ chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group :

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl ; or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group.

Serial No. 09/763,704

WITSCHEL et al.

6. A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^2
 R^3
 R^2

where the variables R¹ to R³, and I are each as defined in claim 1, with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^2
 R^3
 R^2

where the variables R^1 to R^3 , and I are each as defined in claim 1, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $Iv\delta$ or $IV\varepsilon$,

$$L^{1}-R^{7}$$
 $L^{1}-SO_{2}$ R^{8} $L^{1}-PR^{8}R^{9}$ $L^{1}-POR^{8}R^{9}$ $L^{1}-PSR^{8}R^{9}$ (IV α) (IV β) (IV δ) (IV δ)

where the variables R⁷ to R⁹ are each as defined in claim 1 and L¹ is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in claim 1 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where $R^5 = \text{halogen}$, OSO_2R^8),

Serial No. 09/763,704

$$(R^6)_1 \xrightarrow{R^3} R^2$$
and/or
$$(R^6)_1 \xrightarrow{R^5} R^3$$

I where R5= halogen or OSO₂R8

where the variables R^1 to R^3 , R^6 and I are each as defined in claim 1, with a compound of the formula $V\alpha,V\beta,V\gamma,V\delta,V\varepsilon,V\eta,V\vartheta$,

where the variables R^7 to R^{12} are each as defined in claim 1, if appropriate in the presence of a base.

9. A process for preparing compounds of the formula I as claimed in claim 1, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (=I where $R^5 = SR^8$),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^3$$

I where R5= SR8

where the variables R¹ to R⁸ and I are each as defined in claim 1, with an oxidizing agent.

WITSCHEL et al. Serial No. 09/763,704

- 10. A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 and auxiliaries which are customarily used for formulating crop protection agents.
- 11. A process for preparing compositions as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are customarily used for formulating crop protection agents.
- 12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 to act on plants, their habitat and/or on seeds.
- 13. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in claim 1 as herbicides.
- 14. A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^2

where:

R¹ is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -

1

Serial No. 09/763,704

haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, aminosulfonyl, N-(C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C₁-C₆-alkyl) aminosulfonyl,

N-(C₁-C₆--alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)amino,$

 $N-(C_1-C_6--alkyl)-N-(C_1-C_6-haloalkylsulfonyl)amino,$

phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

 C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

R⁴ is a compound IIa

where

TTa

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹,

OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked

heterocyclyl or O-(N-linked heterocyclyl), where the

heterocyclyl radical of the two last-mentioned substituents

may be partially or fully halogenated and/or may carry one to

Serial No. 09/763,704

three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^7 is C_1 - C_6 ,-alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl,

C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cyloalkyl,

C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl,

C₂-C₆-alkynylcarbonyl, C₃-C₆-cyloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl,

C₃-C₆-alkynyloxycarbonyl,

(C₁-C₂₀-alkylthio)carbonyl,

C₁-C₆-alkylaminocarbonyl,

C₃-C₆-alkenylaminocarbonyl,

C₃-C₆-alkynylaminocarbonyl,

N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl) aminocarbonyl ,

N-(C_3 - C_6 -alkynyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl,

N-(C₁-C₆-alkoxy)-

N-(C₁-C₆-alkyl) aminocarbonyl, N-(C₃-C₆-alkenyl)-

 $N-(C_1-C_6-alkoxy)$ aminocarbonyl , $N-(C_3-C_6-alkynyl)$ -

 $N-(C_1-C_6-alkoxy)$ aminocarbonyl, di- $(C_1-C_6-alkyl)$ -

aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl,

C₁-C₆-alkoxyimino-C₁-C₆-alkyl,

N-(C_1 - C_6 -alkylamino) imino- C_1 - C_6 -alkyl or

N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, where

the above-mentioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 - alkyl)amino, C_1 - C_4 -

Serial No. 09/763,704

WITSCHEL et al.

alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, C₁-C₄alkylaminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, heterocyclyloxy-C₁-C₆-alkylcarbonyl, phenylaminocarbonyl, N-(C₁-C₆alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C₁-C₆alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl-C2-C6-alkenylcarbonylor heterocyclyl-C₂-C₆-alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₂-alkyl, C₁-C₂-halogenalkyl, C₁-C₂-alkoxy or C₁-C₂haloalkoxy;

R⁸,R⁹ are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, amino, C₁-C₆-alkylamino, C₁-C₆-haloalkylamino, di-(C₁-C₆-alkyl) amino or di-(C₁-C₆-haloalkyl) amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄- alkyl) amino, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl) amino-C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy-alkyl) aminocarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy-alkyl)

Serial No. 09/763,704

or C_3 - C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R¹⁰ is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, amino, C_1 - C_6 -alkylamino, di-(C_1 - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 -

C₆-alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl; is 0;

and their agriculturally useful salts.

WITSCHEL et al. Serial No. 09/763,704

15. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where

. . . ,

- is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
- Is halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ $OPSR^8R^9$, $NR^{10}R^{11}$ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy .
- A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14,
 where
 - is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
- 17. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where
 - is C_1 - C_6 -alkyl, C_1 - C_{20} -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, $(C_1$ - C_{20} -alkylthio)carbonyl, N_1 -di- $(C_1$ - C_6 -alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, where the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
 - R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;
 - R^{11} is C_1 - C_6 -alkyl.

Serial No. 09/763,704

18. A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^1

where the variables R¹ to R³, and I are each as defined in claim 14, with a halogenating agent.

19. A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^3
 R^2

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $IV\delta$ or $IV\varepsilon$,

where the variables R⁷ to R⁹ are each as defined in claim 14 and L¹ is a nucleophilically replaceable leaving group.

Serial No. 09/763,704

20. A process for preparing compounds of the formula I as claimed in claim 14 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R^5 = halogen, OSO_2R^8),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^1$$

I where R5= halogen or OSO₂R8

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a compound of the formula $V\alpha,V\beta,V\gamma,V\delta,V\varepsilon,V\eta,V\vartheta$,

where the variables R^7 to R^{12} are each as defined in claim 14, if appropriate in the presence of a base.

21. A process for preparing compounds of the formula I as claimed in claim 14 where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^3$$

I where R5= SR8

Serial No. 09/763,704

where the variables R¹ to R⁵, R⁷, R⁸ and I are each as defined in claim 14, with an oxidizing agent.

- 22. A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 and auxiliaries which are customarily used for formulating crop protection agents.
- 23. A process for preparing compositions as claimed in claim 22, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are customarily used for formulating crop protection agents.
- 24. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 to act on plants, their habitat and/or on seeds.
- 25. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in claim 14 as herbicides.