

Semiconductors

Book S5

1988

Small-signal field-effect transistors

SMALL-SIGNAL FIELD-EFFECT TRANSISTORS

	page
Selection guide	
N-channel junction field-effect transistors	
general purpose	5
differential amplifiers	7
switching	8
P-channel junction field-effect transistors	
switching	9
N-channel MOSFETs	
single gate (switching)	10
dual gate (VHF/UHF)	11
N-channel vertical D-MOSFETs	12
P-channel vertical D-MOSFETs	13
Type number survey (alphanumerical)	17
General	
Type designation	23
Rating systems	25
s-parameters	27
TO-92 variant transistors on tape	29
Tape and reel specification SOT-23, SOT-89 and SOT-143	33
Soldering recommendations SOT-23, SOT-143 and SOT-89	37
Soldering recommendations SOT-103	41
Thermal characteristics SOT-23 and SOT-143 envelopes	43
· ·	
Device data	
Junction FETs	49
MOSFETs single gate	195
MOSFETs dual gate	227
Vertical D-MOSFETs	305
	7.
Accessories	384
Semiconductor index relating to all Semiconductor Devices Handbooks	385

SELECTION GUIDE

•

low-level general purpose amplifiers

0,85

1,0-4,0

typ. 3,0

10-18

1,5-4,5

mixer stages

source follower

1 1

1,2

0,2-1,5

10

8

SOT-143

BFR101A BFR101B

2

25

SOT-23

BFR30

BF513

BFR31

r.f. stages f.m. portables .f. stages f.m. portables r.f. stages mains radios r.f. stages mains radios d.c., I.f. and h.f. amp. v.h.f. and u.h.f. amp. v.h.f. and u.h.f. appl. r.f. stages car radios r.f. stages car radios general purpose sw. hi-fi amplifiers and a.f. equipment mixer stages remarks C_{rs} typ. 3,5 1,2 1,1 7,0 0,3 0,3 님 f = 1 kHz lyfs min. Sm 3,0-6,5 2,5 3,0 4,0 4,0 4,0 6,0 7,0 2,5 4,0 6,0 4,5 ∞ CHARACTERISTICS -V(P)GS typ. 0,8 typ. 1,5 0,6-14,5 typ. 1,5 typ. 2,2 typ. 0,8 typ. 3,0 typ. 2,2 max. > 0,5 8,0 2,7 > 7,0-12,0 min.-max. 60-140 110-250 2,0-4,5 3,5-6,5 5,0-8,0 0,7-3,0 2,5-7,0 6-12 0,7-3,0 2,5-7,0 6-12 2,0-6,5 11-18 6-15 12-25 30-80 6-13 10-18 шĄ 3-7 N-channel junction field-effect transistors, general purpose Ψ 10 9 9 10 10 9 9 RATINGS ± VDS 20* 30 20 8 25 8 > TO-92 var. TO-92 var. TO-92 var. TO-92 var. TO-92 var. envelope SOT-23 BF247C **BF245A BF256A BF256B** BF410C BC264A BC264B BC264C BC264D **BF245B BF245C BF247A BF247B BF256C BF410A BF410B** BF410D number **BF510** BF511 BF512 type

page

* Asymmetrical.

SELECTION GUIDE

N-channel ju	unction field-e	N-channel junction field-effect transistors, general purpose	ıral purpo	Se						
		RATINGS		CHAF	CHARACTERISTICS	cs				
type number	envelope	Sd∨ ±	Ð	IDSS minmax.	-V(P)GS max.	yfs min. f = 1 kH7	C _{rs} typ.	remarks	page	
		>	mA	mA	>	Sm	рЕ			_
BFT46	SOT-23	25	5	0,2-1,5	1,2	1,0	0,85	general purpose ampl.	117	_
BFW10 BFW11	T0-72	30	10	8-20 4-10	8 9	3,5-6,5 3,0-6,5	9′0	broad band up to 300 MHz and differential ampl.	125	
BFW12 BFW13	T0-72	30	ß	1-5 0,2-1,5	2,5	2,0	9′0	low current-low voltage applications	137	
BFW61	T0-72	25	10	2-20	∞	2,0-6,5	< 2,0	general purpose ampl.	147	
2N3822	T0-72	20	10	2-10	9	3,0-6,5	<3,0	general purpose h.f. ampl.	173	
2N3823	TO-72	30	10	4-20	œ	3,5-6,5	<2,0	<2,0 industrial i.f./r.f. ampl.	175	

N-channe	el junction	field-effe	N-channel junction field-effect transistors for differential amplifiers	r differential an	nplifiers								
			RATINGS					CHARA	CHARACTERISTICS	လွ			
		individu	lual transistor	total device	individual transistor	ual tran	ısistor			total device	පු		
type	envelope ± V _{DS}	₹VDS			SSal	"	−V(P)GS	AVGS	davgs dT	1 \(\triangle \frac{1}{9fs} \)	\(\frac{90s}{9fs} \)	CMRR	page
		>	l _G mA	I _G mA	min. _m	max.	min. max. V	max. mV	max. μV/K	max.	max. μV/V	min. dB	
BFQ10						L		2	2	9	10	100	91
BFQ11								10	2	9	30	90	91
BFQ12								10	10	12	30	06	91
BFQ13	TO-71	9	ı	10	0,5	10	0,5 3,5	10	20	12	30	90	91
BFQ14								15	20	12	30	90	91
BFQ15								20	40	20	30	90	91
BFQ16								20	50	30	100	80	91
BFS21	COT E2	ç	ç	Li C				20	75	15	1000	09	111
BFS21A	BFS21A 301-34		2	c,'O	_	ı	0	10	40	2'2	200	99	111

		RATINGS	NGS				CHARAC	CHARACTERISTICS				
type number	envelope	VDS	<u>B</u>	IDSS min.	max.	−V(P)GS min.	GS max.	rds on max.	C _{rs} max.	ton max.	toff max.	page
		>	mA	mA		>		C	рЕ	ns	ns	
BSR56				20	i	4	10	25		6	25	153
BSR57	SOT-23	40	20	20	100	2	9	40	വ	10	20	153
BSR58				∞	80	8′0	4	09		20	100	153
BSV78				20	ı	3,75	-	25		10	10	161
BSV79	TO-18	40	20	20	1	2	0'2	40	വ	18	16	161
BSV80				10	ı	-	2,0	09		30	32	161
PMBF4391		40		20	150	4	10	30		15	20	169
PMBF4392	SOT-23	40	20	25	75	7	2	09	3,5	15	35	169
PMBF4393		40		2	30	9′0	က	100		15	20	169
2N3966	TO-72	30	10	2	1	4	9	220	1,5	120	100	177
2N4091				30	1	2	10	30		25	40	181
2N4092	TO-18	40	10	15	1	2	0'2	20	řĊ	35	09	181
2N4093				∞	ı	-	2,0	80		09	80	181
2N4391				20	150	4	10	30		15	20	185
2N4392	TO-18	20	20	25	75	2	5,0	09	3,5	15	35	185
2N4393				2	30	0,5	3,0	100		15	20	185
2N4856		40		20	1	4	10	25		6	25	189
2N4857		40		20	9	2	9	40		10	20	189
2N4858	40 10	40	2	ω	8	8,0	4	09	0	70	100	189
2N4859	2	30	200	20	ı	4	10	25	0	တ	25	189
2N4860		30		20	9	2	9	40		9	20	189
2N4861		30		œ	80	8,0	4	09		20	100	189

P-channel ju	P-channel junction field-effec	fect transistors for switching	for switchi	ing								
		RATINGS	SDN			ਠ	CHARACTERISTICS	RISTICS				
type number	envelope	SQV +	I.G M.A	loss min. mA	тах.	-V(P)GS min. max	GS max.	Rds on max. \O	C _{rs} max. pF	ton max. ns	toff max. ns	page
BSJ174 BSJ175 BSJ176 BSJ177	ТО-92	30	20	20 7 2 1,5	135 70 35 20	5 1 0,8	10 6 4 2,25	85 125 250 300	4	7 15 35 45	15 30 35 40	149 149 149
BSR174 BSR175 BSR176 BSR177	SOT-23	30	50	20 7 2 1,5	135 70 35 20	5 1 0,8	10 6 4 2,25	85 125 250 300	4.	7 15 35 45	15 30 35 45	157 157 157 157

SELECTION GUIDE

		RATINGS	NGS		3	CHARACTERISTICS	ISTICS			
type number	envelope	NDS	٥١	loss min.	-V(P)GS**	mode	rds on max.	Sr St	ton/toff	page
		>	mA	mA	>		S	pF	ns Su	
BFR29	T0-72	30*	20	10 - 40	0.5 - 3.5	ldəb	I	0,4	ı	195
BSD10 BSD12	10-72	10	20	1	- 2	ldəp	30	9′0	1/5	203
BSD20 BSD22	SOT-143	20 10	20	l I	- 2	ldəp	30	9′0	1/5	207
BSD212 BSD213 BSD214 BSD215	T0-72	10 20 20 20	20	l I	0,1 – 2	enh	70	9,0	1/5	211 211 211
BSS83	SOT-143	10	20	ı	0.1 - 2	enh	45	9'0	1/5	215
BSV81	TO-72	30*	25	ı	1	depl	100	0,5	1	219
* V _{DB} /	VDB/VSB									

VDB/VSB enh. types VGS(th)

October 1987

N-channel MOS-FETS, Dual gate

		RAT	RATINGS			CHARACTERISTICS	ERISTICS					
type number	envelope	NDS	٥	IDSS min.	max.	-V(P)G1-S max.	lyfsl f = 1 kHz	C _{is}	Cos typ.	F typ.	remarks	page
		>	шĄ	mA		>	mS mS			ф		
BF960*	SOT-103	20	20	2 2	50	3,5	9,5	1,8	6,0	2,8	UHF	227
BF964*	SOT-103	20	90	2	50	2,5	15	2,5	1,0	1,5	VHF	231
BF964S*	SOT-103	20	20	4	20	2,5	15	2,5	1,0	1,0	VHF	235
BF965*	SOT-103	20	30	2 2	50	2,5	15	2,5	1,0	1,0	VHF	241
BF966*	SOT-103	20	30	2 2	50	2,5	15	2,2	8,0	2,8	UHF	245
BF966S*	SOT-103	20	30	4	50	2,5	15	2,3	8,0	1,8	UHF	249
BF980*	SOT-103	18	30		-	1,3	17	2,6	1,1	2,8	UHF	255
BF981*	SOT-103	20	20	4	25	2,5	10	2,1	- 1,	0,	VHF	259
BF982*	SOT-103	20	40	1	1	1,3	20	4,0	2,0	1,2	VHF	267
BF989*	SOT-143	20	20	2 2	50	2,7	9,5	1,8	6,0	2,8	UHF	271
BF990*	SOT-143	18	30		1	1,3	17	2,6	1,2	2,8	UHF	273
BF991*	SOT-143	20	50	4	52	2,5	10	2,1	1,	1,0	VHF	277
BF992*	SOT-143	70	40		1	1,3	20	4,0	2,0	1,2	VHF	279
BF994*	SOT-143	20	တ္တ	2 2	50	2,5	15	2,5	1,0	٦,5	VHF	281
BF994S*	SOT-143	20	20	4	20	2,5	15	2,5	1,0	1,0	VHF	285
8F996*	SOT-143	20	30	2 2	50	2,5	15	2,2	8'0	2,8	UHF	287
BF996S*	SOT-143	20	30	4	20	2,5	15	2,3	8'0	1,8	UHF	291
BF997*	SOT-143	20	30	2 2	50	2,5	15	2,5	1,0	1,0	VHF	293
BFR84*	TO-72	20	20	20 5	55	3,8	12	5,5	3,5	2,3	General purpose	297

* Protected against excessive input voltage surges.

N-channel v	N-channel vertical D-MOSFET	ETs for switching	guir									
			RATINGS	NGS				CHARA	CHARACTERISTICS	S		
type	envelope	VDS	۵ı	Ptot at Tamb	Tamb	VGS(th)	RD	RDSon	@ 		ton/toff	page
		^	mA	mW	၁၀	^		ß	Am Am	\ \ \	ns	
BS107	TO-92 var.	200	120	200	25	1,8 (typ.)	15	28	20	2,6	10/10	305
BS170	TO-92 var.	09	200	830	25	0,8-3,0	2,5	2	200	10	10/10	309
BST70A	TO-92 var.	80	200	1000	52	1,5-3,5	2	4	200	10	10/15	317
BST72A	TO-92 var.	80	300	830	22	1,5-3,5	7	10	150	2	10/10	321
BST74A	TO-92 var.	200	300	1000	25	0,8-2,8	9	12	250	10	10/25	325
BST76A	TO-92 var.	180	300	1000	25	0,7-2,7	7	10	15	က	10/15	329
BST78	TO-126	450	750	15000	75*	2,0-4,0	10	14	100	10	10/100	333
BST80	SOT-89	80	200	1000	25	1,5-3,5	2	4	200	10	10/15	337
BST82	SOT-23	80	175	300	25	1,5-3,5	7	10	150	വ	10/10	341
BST84	SOT-89	200	250	1000	25	0,8-2,8	9	12	250	10	10/25	345
BST86	SOT-89	180	300	1000	25	0,7-2,7	7	10	15	က	10/15	349
BST95	TO-39	200	2000	10000	25*	1-3	1,8 8,	2	1500	10	10/25*	353
BST97	TO-18	180	300	1500	25*	0,7-2,7	7	10	15	ო	10/15	357
PH6659		35	750				1,5		300	2		377
PH6660	TO-92 var.	09	200	1000	25	0,8-2,0	1,8		300	വ	10/10	377
PH6661		06	200				2,4		300	2		377
2N6659	TO-39	35	1400	6250	25*	0,8-2,0	1,5	വ	300	വ	10/20	381
2N6660	TO-39	9	1100	6250	25*	0,8-2,0	1,8	2	300	2	10/20	381
2N6661	TO-39	06	006	6250	25*	0,8-2,0	2,4	5,3	300	വ	10/20	381

+

L-Cildiller V	r-citaliller vertical D-MOSFETS for Switching	TOL SWITCH	g									
			RATI	RATINGS				CHARACTERISTICS	FRISTIC	ş		
type	envelope	NDS	٥	Ptot at Tamb	Tamb	VGS(th)	RDSon	~	@ 		ton/toff	page
		>	mA	μM	٥٥		S.S.	Ω Ω	u A	ر دی ا	ryp. ns	
BS250	TO-92 var.	45	250	830	25	1-3,5	တ	14	200		4/10	313
BST100	TO-92 var.	09	300	1000	25	1,5-3,5	4,5	9	200	10	4/20	361
BST110	TO-92 var.	20	300	830	25	1,5-3,5	7,5	10	200	10	4/20	365
BST120	SOT-89	09	300	1000	25	1,5-3,5	4,5	9	200	10	4/20	369
BST122	SOT-89	20	250	1000	25	1,5-3,5	7,5	10	200	10	4/20	373
		_		_			_					

TYPE NUMBER SURVEY

TYPE NUMBER SURVEY

In this alphanumeric list we present all field-effect transistors mentioned in this handbook.

type number	envelope	^{± V} DS max.	DSS	application	page
		V	mA		
BC264A BC264B BC264C BC264D	TO-92 var.	30	2,0 - 4,5 3,5 - 6,5 5,0 - 8,0 7,0 - 12,0	hi-fi amplifiers and a.f. equipment	49 49 49 49
BF245A BF245B BF245C	TO-92 var.	30	2,0 - 6,5 6,0 - 15,0 12 - 25	d.c., l.f. and h.f. amplifiers	55 55 55
BF247A BF247B BF247C	TO-92 var.	25	30 - 80 60 - 140 110 - 250	v.h.f. and u.h.f. ampl. general purpose switch	67 67 67
BF256A BF256B BF256C	TO-92 var.	30	3 - 7 6 - 13 11 - 18	v.h.f. and u.h.f.	69 69 69
BF410A BF410B BF410C BF410D	TO-92 var.	20*	0,7 - 3,0 2,5 - 7,0 6 - 12 10 - 18	r.f. stages f.m. portables r.f. stages car radios r.f. stages mains radios mixer stages	81 81 81 81
BF510 BF511 BF512 BF513	SOT-23	20	0,7 - 3,0 2,5 - 7,0 6 - 12 10 - 18	r.f. stage f.m. portables r.f. stage car radios r.f. stage mains radios mixer stages	85 85 85 85
BF960 BF964 BF964S BF965 BF966 BF966S BF980 BF981 BF982	SOT-103 SOT-103 SOT-103 SOT-103 SOT-103 SOT-103 SOT-103 SOT-103	20 20 20 20 20 20 20 18 20 20	2 - 20 2 - 20 4 - 20 2 - 20 2 - 20 4 - 20 — 4 - 25 —	r.f. stage UHF TV tuner r.f./mixer stage VHF TV tuner v.h.f. applications in TV tuner v.h.f. TV tuner r.f. stage UHF TV tuner v.h.f. applications r.f. stage UHF TV tuner r.f./mixer stage VHF TV tuner r.f./mixer stage VHF TV tuner and FM radio tuner	227 231 235 241 245 249 255 259 267
BF989 BF990 BF991 BF992 BF994 BF994S BF996 BF996S BF997	SOT-143 SOT-143 SOT-143 SOT-143 SOT-143 SOT-143 SOT-143 SOT-143	20 18 20 20 20 20 20 20 20 20	2 - 20 4 - 25 2 - 20 4 - 20 2 - 20 4 - 20 2 - 20	u.h.f. TV tuners u.h.f. TV tuners v.h.f. TV and f.m. tuners v.h.f. TV and f.m. tuners u.h.f./v.h.f. TV tuners v.h.f. TV tuners u.h.f. TV tuners u.h.f. TV tuners u.h.f. TV tuners	271 273 277 279 281 285 287 291 293

^{*} Asymmetrical.

^{**} V_{DB}.

TYPE NUMBER SURVEY

type number	envelope	± VDS	IDSS	application	pag
BFQ10 BFQ11 BFQ12 BFQ13 BFQ14 BFQ15 BFQ16	TO-71	30	0,5 - 10	low level differential amplifiers	999999999999999999999999999999999999999
BFR29	TO-72	30**	10 - 40	v.h.f./low leakage/low noise	19
BFR30 BFR31	SOT-23	25	4 - 10 1 - 5	general purpose amplifiers	9
BFR84	TO-72	20	20 - 55	general industrial	29
BFR101A BFR101B	SOT-143	30	0,2 - 1,5 1,0 - 5,0	source follower	10 10
BFS21 BFS21A	SOT-52	30	> 1	low level differential amplifiers	11 11
BFT46	SOT-23	25	0,2 - 1,5	general purpose amplifiers	1
BFW10 BFW11	TO-72	30	8 - 20 4 - 10	wide-band up to 300 MHz and differential amplifiers	12 12
BFW12 BFW13	TO-72	30	1 - 5 0,2 - 1,5	low current-low voltage	1; 1;
BFW61	TO-72	25	2 - 20	general purpose	14
BS107 BS170 BS250	TO-92 var. TO-92 var. TO-92 var.	200 60 45	< 0,03 < 0,5 μA < 0,5 μA	relay and line-transformer drivers drivers	30
BSD10 BSD12	TO-72	10 20		switch/convertor/chopper	20
BSD20 BSD22	SOT-143	10 20		switch/convertor/chopper	20
BSD212 BSD213 BSD214 BSD215	TO-72	10 10 20 20	- - 	switch/convertor/chopper	2' 2' 2' 2'
3SJ174 3SJ175 3SJ176 3SJ17 7	TO-92	30	20 - 135 7 - 70 2 - 35 1,5 - 20	switch/chopper	14 14 14
3SR56 3SR57 3SR58	SOT-23	40	> 50 20 - 100 8 - 80	switch/chopper	1! 1! 1!
BSR174 BSR175 BSR176 BSR177	SOT-23	30	20 - 135 7 - 70 2 - 35 1,5 - 20	switch/chopper	1! 1: 1: 1
3SS83 * IDmov (SOT-143	10	_	switch/switch driver	2

^{*} I_{Dmax} (A). ** V_{DB}.

TYPE NUMBER SURVEY

type number	envelope	± V _{DS} max.	IDSS	application	page
		V	mA		
BST70A	TO-92 var.	80	0,5		317
BST72A	TO-93 var.	80	0,3	high-speed relay and	321
BST74A	TO-92 var.	200	0,3	line transformer driver	325
BST76A	TO-92 var.	180	0,3	in telephone circuits	329
BST78	TO-202	450	0,75		333
BST80	SOT-89	80	0,5*		337
BST82 BST84	SOT-23 SOT-89	80 200	0,175* 0,25	relay, high-speed and line-transformer drivers	341
BST86	SOT-89	180	0,25	ine-transformer drivers	345 349
BST95	TO-39	200	< 10,000	motor control	353
BST97	TO-18	180	0,3	motor control	357
BST100	TO-92 var.	60	0,3	relay, high-speed and	361
BST110	TO-92 var.	50	0,25	line-transformer drivers	365
BST120	SOT-89	60	0,3		369
BST122	SOT-89	50	0,25		373
BSV78			> 50		161
BSV79	TO-18	40	> 20	switch	161
B\$V80			> 10		161
BSV81	TO-72	30	_	switch-chopper	219
PH6659		35			377
PH6660	TO-92 var.	60	< 10,000	inverter/driver	377
PH6661		90			377
PMBF4391			> 40		169
PMBF4392	SOT-123	40	> 25	switch/chopper	169
PMBF4393			> 5	-	169
2N3822	TO-72	50	2-10	general purpose h.f. ampl.	173
2N3823	TO-72	30	4-20	industrial i.f./r.f. ampl.	175
2N3966	TO-72	30	> 2	low power switch	177
2N4091			> 30		181
2N4092	TO-18	40	> 15	low power switch	181
2N4093			> 8		181
2N4391			> 50		185
2N4392	TO-18	40	> 25	low power switch/chopper	185
2N4393			> 5		185
2N4856		40	> 50		189
2N4857		40	> 20		189
2N4858	TO-18	40	> 8	low power switch/chopper	189
2N4859	10-18	30	> 50	low power switch/chopper	189
2N4860		30	> 20		189
2N4861		30	> 8		189
2N6659		35	1,4*		38
2N6660	TO-39	60	1,1*	H.F. inverters and line drivers	381
2N6661		90	0,9*		38

^{*} I_{Dmax} (A).

		•	

GENERAL

Type designation
Rating systems
s-parameters
TO-92 variant transistors on tape
Tape and reel specification for
SOT-23, SOT-143 and SOT-89
Soldering recommendations for
SOT-23, SOT-143 and SOT-89
Soldering recommendations for
SOT-103
Thermal characteristics for
SOT-23 and SOT-143

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices — as opposed to integrated circuits —, multiples of such devices and semiconductor chips.

"Although not all type numbers accord with the Pro Electron system, the following explanation is given for the ones that do."

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1,0 to 1,3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency ($R_{th j-mb} > 15 \text{ K/W}$)
- **D.** TRANSISTOR; power, audio frequency $(R_{th i-mb} \le 15 \text{ K/W})$
- E. DIODE; tunnel
- F. TRANSISTOR; low power, high frequency (Rth j-mb > 15 K/W)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency (R_{th i-mb} ≤ 15 K/W)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (R_{th i-mb} > 15 K/W)
- **S.** TRANSISTOR; low power, switching ($R_{th i-mb} > 15 \text{ K/W}$)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (R_{th j-mb} ≤ 15 K/W)
- U. TRANSISTOR; power, switching ($R_{th j-mb} \le 15 \text{ K/W}$)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

TYPE DESIGNATION

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment.* One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for industrial/professional equipment.*

This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

 VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER

The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage

- A. 1% (according to IEC 63: series E96)
- B. 2% (according to IEC 63: series E48)
- C. 5% (according to IEC 63: series E24)
- D. 10% (according to IEC 63: series E12)
- E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_R . The letter 'V' is used as above.

 CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (V_{RRM}) or the rated repetitive peak off-state voltage (V_{DRM}), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-)
 The NUMBER indicates the depletion layer in μm. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).

The NUMBER indicates how many basic devices are assembled into the array.

^{*} When these serial numbers are exhausted the serial number for consumer types may be extended to four figures, and that for industrial types to three figures.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

RATING SYSTEMS

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

SCATTERING PARAMETERS

In distinction to the conventional h, y and z-parameters, s-parameters relate to travelling wave conditions. The figure below shows a two-port network with the incident and reflected waves a_1 , b_1 , a_2 and b_2 .

 $\mathbf{Z}_{_{\mathrm{O}}}$ = characteristic impedance of the transmission line in which the two-port is connected.

 V_i = incident voltage

 V_r = reflected (generated) voltage

The four-pole equations for s-parameters are:

$$b_1 = s_{11}a_1 + s_{12}a_2$$

 $b_2 = s_{21}a_1 + s_{22}a_2$

Using the subscripts i for 11, r for 12, f for 21 and o for 22, it follows that:

$$s_{i} = s_{11} = \frac{b_{1}}{a_{1}} \begin{vmatrix} a_{2} = 0 \\ a_{2} = 0 \end{vmatrix}$$

$$s_{r} = s_{12} = \frac{b_{1}}{a_{2}} \begin{vmatrix} a_{1} = 0 \\ a_{2} = 0 \end{vmatrix}$$

$$s_{f} = s_{21} = \frac{b_{2}}{a_{1}} \begin{vmatrix} a_{2} = 0 \\ a_{2} = 0 \end{vmatrix}$$

$$s_{o} = s_{22} = \frac{b_{2}}{a_{2}} \begin{vmatrix} a_{1} = 0 \\ a_{1} = 0 \end{vmatrix}$$

¹⁾ The squares of these quantities have the dimension of power.

S-PARAMETERS

The s-parameters can be named and expressed as follows:

- s_i = s_{11} = Input reflection coefficient. The complex ratio of the reflected wave and the incident wave at the input, under the conditions Z_1 = Z_0 = 50 Ω and V_{s2} = 0.
- s_r = s_{12} = Reverse transmission coefficient. The complex ratio of the generated wave at the input and the incident wave at the output, under the conditions Z_s = Z_o = 50 Ω and V_{s1} = 0.
- $s_f = s_{21}$ = Forward transmission coefficient. The complex ratio of the generated wave at the output and the incident wave at the input, under the conditions $Z_1 = Z_0 = 50 \Omega$ and $V_{s2} = 0$.
- s_0 = s_{22} = Output reflection coefficient. The complex ratio of the reflected wave and the incident wave at the output, under the conditions Z_S = Z_0 = 50 Ω and V_{s1} = 0.

TO-92 VARIANT TRANSISTORS ON TAPE

MECHANICAL DATA

Dimensions in mm

. ·	6		Specific	Parada.		
Item	Symbol	min.	nom.	max.	tol.	Remarks
Body width	A ₁	4,0		4,8		
Body height	A	4,8		5,2		
Body thickness	T.	3,9		4,2		
Pitch of component	P		12,7		± 1	4
Feed hole pitch	Po		12,7		± 0,3	Cumulative pitch error 1,0 mm/20 pitch
Feed hole centre to component centre	P ₂		6,35		± 0,4	To be measured at bottom of clinch
Distance between outer leads	F		5,08		+ 0,6 -0,2	
Component alignment	Δh		0	1	,	At top of body
Tape width	w		18		± 0,5	
Hold-down tape width	W _o		6		± 0,2	
Hole position	w ₁		9		+ 0,7 -0,5	
Hold-down tape position	W ₂		0,5		± 0,2	
Lead wire clinch height	H _o		16		± 0,5	
Component height	H ₁			32,25		
Length of snipped leads	L			11,0		
Feed hole diameter	Do		4		± 0,2	
Total tape thickness	t			1,2		t ₁ 0,3-0,6
Lead-to-lead distance	F ₁ , F ₂		2,54		+ 0,4 -0,1	
Clinch height	H ₂			3		
Pull-out force	(p)	6N				

PACKING

The transistors are supplied on tape in boxes (ammopack) or on reels. The number per reel is 1600 and per ammobox 2000*.

Fig. 2 Dimensions (in mm) of reel and box.

DROPOUTS

A maximum of 0,5% of the specified number of transistors in each packing may be missing. Up to 3 consecutive components may be missing provided the gap is followed by 6 consecutive components.

TAPE SPLICING

Slice the carrier tape on the back and/or front so that the feed hole pitch (Po) is maintained (see Fig. 3).

Fig. 3 Jointing tape with splicing patch.

* The ammobox has 80 layers of 25 transistors each.

Each layer contains 25 transistors plus one empty position in order to fold the layer correctly.

The ammobox is accessible from both sides enabling the user to choose between "normal" (see Fig. 2) and "reverse" tape.

		æ		

TAPE AND REEL SPECIFICATION

Semiconductors in SOT-23, SOT-143 and SOT-89 encapsulations can be delivered in reel packing for aotomatic placement on hybrid circuits and printed circuit boards. The devices are placed with the mounting side downwards in compartments.

A separate reel packing for SOT-89 encapsulation is given in Fig. 3.

Fig. 1 Configuration of bandolier. Dimensions in mm.

Compartment			tol.	Centre line dimensions			tol.
length width		oonent length oonent width		length direction width direction	P ₂ F	2,0 3,5	± 0,05 ± 0,05
depth width outside	K ₀ B ₁	0,95 3,3	+ 0,2 max.	Fixing tape			
pitch	P ·	4,0	± 0,1	width	W_1	5,5	± 0,25
deviation	Θ	15 ⁰	max.	thickness	_	0,1	max.
hole diameter	D ₁	1	min.	Carrier tape			
Sprocket hole				width	W	8,0	± 0,2
diameter	D_0	1,5	+0,1	bending	δ	0,3	max.
pitch	Po	4,0	± 0,1	thickness	t	0,4	max.
distance cumulative (10)	E	1,75	± 0,1	Overall thickness	K	1,5	max.
pitch error		± 0,1					

Fig. 2 Configuration of reel and flange (dimensions in mm).

Flange			tol.	Hub			tol.
diameter thickness	A t	180 1,5	+0 -2 +0,5 -0,1	diameter spindle hole key slit	B C	62 12,75	± 1,5 + 0,15 -0
space between flanges	W	9,5	± 0,5	width depth location	E U O	2 4 120	± 0,5 ± 0,5 degrees

Amount of devices per reel

The bandolier of a 180 mm reel contains at least 3000 devices with no more than 15 empty compartments (0,5%). Three consecutive empty places might be found provided this gap is followed by 6 consecutive devices.

The carrier tape (leader) starts with at least 75 empty positions (equivalent to 300 mm); the covering foil is at least 300 mm. In order to fix the carrier tape a self-adhesive tape of 20 to 50 mm is applied.

At the end of the bandolier (trailer) at least 75 empty positions (equivalent to a length of 300 mm) and 300 mm foil. For fixing onto the reel a self-adhesive tape of 20 to 50 mm is applied.

Semiconductors in SOT-89 encapsulations can also be delivered in reel packing for automatic placement on hybrid circuits and printed circuit boards. The devices are placed with the mounting side downwards in compartments. Total number of devices per reel is 1000.

Fig. 3 Configuration of bandolier. Dimensions in mm.

Compartment			tol.	Centre line dimensions			tol.
length width	B ₀ comp	onent length onent width		length direction width direction	P ₂ F	2,0 5,5	± 0,05 ± 0,1
depth width outside pitch deviation	K ₀ comp B ₁ P Θ	onent depth 5,7 8,0 ± 50	max. ± 0,1 max.	Fixing tape width thickness	W ₁ T ₁	9,5 0,1	max.
hole diam.	D ₁	1,5	min.	Carrier tape			
Sprocket hole				width	W	12	± 0,2 ′
diameter pitch	D ₀ P ₀	1,5 4,0	+ 0,1 ± 0,1	bending thickness	δ T	0,3 0,4	max. max.
distance cumulative (10)	E	1,75	± 0,1	Overall thickness	K	2,4	max.
pitch error		± 0,1		distance	G	1,8	min.

SOLDERING RECOMMENDATIONS SOT-23, SOT-143 AND SOT-89 ENVELOPES

SOT-23, SOT-143 and SOT-89 devices are ideally suited for placement onto thick and thin film substrates and printed circuit boards.

To assure reliable and consistent connections particular attention should be paid to:

1. Flux

A non-active flux is recommended. Where active fluxes are employed, great care in subsequent substrate cleaning must be exercised.

2. Metal-alloy solder or solder paste

Correct choice of solder alloy or solder paste to be employed e.g. 62% Sn, 36% Pb, 2% Ag or 60% Sn/40% Pb. Any paste used should contain at least 85% metal dry weight.

3. Soldering temperature

This will vary according to the actual method employed.

REFLOW SOLDERING

The preferred technique for mounting microminiature components on hybrid thick and thin-film is the method of reflow soldering.

The tags of SOT-23, SOT-143 and SOT-89 envelopes are pre-tinned and the best results are obtained if a similar solder is applied to the corresponding soldering areas on the substrate. This can be done by either dipping the substrate in a solder bath or by screen printing a solder paste.

The maximum temperature of the leads or tab during the soldering cycle should not exceed 285 °C. The most economic method of soldering is a process in which all different components are soldered simultaneously for example SOT-23, SOT-143 or SOT-89 devices, capacitors and resistors.

Having first been fluxed, all components are positioned on the substrate. The slight adhesive force of the flux is sufficient to keep the components in place. Solder paste contains a flux and has therefore good inherent adhesive properties which eases positioning of the components.

With the components in position the substrate is heated to a point where the solder begins to flow. This can be done on a heating plate or on a conveyor belt running through an infrared tunnel. The maximum allowed temperature of the plastic body of a device must be kept below 280 °C during the soldering cycle. For further temperature behaviour during the soldering process see Figs 2 and 3.

The surface tension of the liquid solder tends to draw the tags of the device towards the centre of the soldering area and has thus a correcting effect on slight mispositionings. However, if the layout leaves something to be desired the same effect can result in undesirable shifts; particularly if the soldering areas on the substrate and the components are not concentrally arranged. This problem can be solved using a standard contact pattern, which leaves sufficient scope for the self-positioning effect (see Figs 4 and 5).

After cooling the connections may be visually inspected and, where necessary, repaired with a light soldering iron. Finally any remaining flux must be removed carefully.

WAVE SOLDERING

The normal (dual) wave soldering process can also be aplied to SOT-23 and SOT-143 envelopes We do not recommend SOT-89 for wave soldering.

IMMERSION SOLDERING

Where a complete substrate or printed circuit board is immersed in solder:

- a. The temperature of the soldering bath should not exceed 280 °C.
- b. The duration of the soldering cycle should not exceed 10 seconds.
- c. Forced cooling may be applied (see Fig. 1).

HAND SOLDERING

It is possible to solder microminiature devices with a light hand-held soldering iron, but this method has obvious drawbacks and should therefore be restricted to laboratory use and/or incidental repairs on production circuits.

- 1. It is time-consuming and expensive.
- 2. The device cannot be positioned accurately and therefore the connecting tags may come into contact with the substrate and damage it.
- 3. There is a great risk of breaking either substrate or even internal connections inside the encapsulation.
- 4. The envelope may be damaged by the iron.

Fig. 1 Device temperature during immersion soldering.

Maximum time of immersion in soldering bath is 10 seconds at an ambient temperature of 25 °C.

= free convection cooling; b = forced cooling.

 $T_{b \text{ max}}$ = maximum bath temperature (280 °C).

T_m = melting temperature of solder (179 °C).

a = free convection cooling.

b = permissible forced cooling.

T_{I max} = Maximum lead or tab temperature =

285 °C.

T_m = Melting point of the solder is 179 °C.

 $T_{amb} = 25 \, {}^{\circ}C.$

Time of heat supply: without preheating max. 14 s with preheating max. 10 s Maximum time of preheating 45 s

Fig. 2 Reflow soldering without preheating.

Fig. 3 Reflow soldering with preheating.

39

SOLDERING RECOMMENDATIONS

Minimum required dimensions of metal connection pads on hybrid thick and thin-film substrates.

Fig. 4 SOT-23 pattern.

Fig. 6 SOT-143 pattern.

Dimensions in mm

Fig. 5 SOT-89 pattern.

SOLDERING RECOMMENDATIONS SOT-103

Transistors in SOT-103 envelopes may be mounted with leads flat (Fig. 1) or bent (Figs 2 and 3). Different soldering procedures apply for the different styles of mounting.

FLAT-LEAD MOUNTING

Soldering by hand

Avoid putting any force on the leads during or just after soldering.

Solder the four leads one at a time, *not* simultaneously.

Proceed from one lead to the adjacent lead, *not* to the opposite one.

BENT-LEAD MOUNTING

If leads are bent, all four may be soldered simultaneously if desired.

DIP OR WAVE SOLDERING

When dip or wave soldering, the maximum allowable temperature of the solder is 260 °C. This temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the lead projections, but the temperature of the body must not exceed the specified storage maximum.

Fig. 1
Solder temperature max. 300 °C
Soldering time max. 5 s
Solder-to-case distance min. 2 mm

Fig. 3
Solder temperature max. 260 °C
Soldering time max. 5 s

			•	
*		own .		

THERMAL CHARACTERISTICS OF SOT-23 AND SOT-143 ENVELOPES

The heat generated in a semiconductor chip normally flows by various paths to the surroundings (ambient).

- 1. Heat radiation from the envelope to ambient (1).

 This heat transfer can be neglected when the envelope is mounted on a substrate or printed circuit board.
- 2. Heat transmission via leads (2) soldering points (3) and substrate (4).

Fig. 2 Thermal behaviour of heat flow when the device is mounted on a substrate or printed circuit board.

 $R_{th j-t}$ = Thermal resistance from junction to tab.

R_{th t-s} = Thermal resistance from tab to soldering points.

R_{th s-a} = Thermal resistance from soldering points to ambient.

 $R_{th j-a}$ = Thermal resistance from junction to ambient.

THERMAL CHARACTERISTICS

Heat transfer directly from envelope to ambient

This depends on the difference between the temperatures of envelope and the surroundings. When the device is mounted on a substrate or printed circuit board direct heat flow can usually be neglected in relation to the heat flow via leads and substrate.

Thus the thermal model can be as in Fig. 3.

Fig. 3 Basic thermal model.

Heat transfer from junction to tab

This is an internal heat transfer and has been measured. In general it is:	
for high-frequency transistors, low-power diodes and (MOS) FETs	60 K/W
for low-frequency and switching transistors	50 K/W
for low-frequency medium-power transistors	30 K/W

Heat transfer from tab to soldering points

This value has also been measured for SOT-23 with Ptot < 350 mW	280 K/W
for types of semiconductors in this envelope with Ptot < 425 mW	260 K/W
for types of semiconductors in a SOT-143 envelope this value is	310 K/W

Heat transfer from soldering points to ambient

This depends on the shape and material of tracks and substrate. In figures 4 and 5 standard mounting conditions are given to set up the maximum power ratings for SOT-23 and SOT-143 encapsulations.

Fig. 4 Test circuits SOT-23 and SOT-143 mounting conditions on a ceramic substrate.

Fig. 5 Heat transfer from soldering points to ambient.

1. Ceramic substrate

Point A on the curve in Fig. 5 is for an area of the ceramic substrate of 8 mm \times 10 mm \times 0,7 mm for the maximum rating of all high-frequency, low-frequency and switching transistors and also for all diodes.

Point B on the curve in Fig. 5 is for an area of the ceramic substrate of 15 mm \times 15 mm \times 0,7 mm for the maximum rating of low-frequency medium-power semiconductors.

2. Printed circuit board

R_{th s-a} = 150 K/W for SOT-23 and SOT-143 envelopes mounted on a printed circuit board.

THERMAL CHARACTERISTICS

The values for the thermal resistance from junction to tab, and tab to soldering points, are mentioned on page 2 and Fig. 5.

The formula for devices in SOT-23 with one crystal can be generalized:

$$T_i = P(R_{th i-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$$

Fig. 6 Thermal model of SOT-23 envelopes with one crystal.

Fig. 7 Thermal model of SOT-23 envelopes with two crystals (double diode).

The formulae for devices with two crystals (double diodes) are:

$$T_{tab} = P_{tot} \cdot (R_{th \ t-s} + R_{th \ s-a}) + T_{amb} = P_{tot} (280 + 90) + T_{amb}$$
 $T_{j1} = (P_1 \times R_{th \ j-t}) + T_{tab} = P_1 \cdot 60 + T_{tab}$
 $T_{i2} = (P_2 \times R_{th \ j-t}) + T_{tab} = P_2 \cdot 60 + T_{tab}$

As mentioned on page 2:

Rth i-t for diodes is 60 K/W.

 $R_{th \ s-a}$ (area 8 mm x 10 mm x 0,7 mm) = 90 K/W.

 $R_{th\ t-s}$ for all semiconductors in SOT-23 = 280 K/W.

Thus

$$T_{j1} = 60 P_1 + 370 P_{tot} + T_{amb}.$$
 $T_{j2} = 60 P_2 + 370 P_{tot} + T_{amb}.$

DEVICE DATA

J-FETS

		æn.	

Symmetrical N-channel planar epitaxial junction field-effect transistors in a plastic TO-92 variant; intended for hi-fi amplifiers and other audio-frequency equipment.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	30	٧
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	300	mW
Junction temperature	Τį	max.	150	οС
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	DSS		2 to 12	mA
Transfer admittance (common source) VDS = 15 V; VGS = 0; f = 1 kHz	Yfs	typ.	3,5	mS
Noise figure at V_{DS} = 15 V; V_{GS} = 0 f = 1 kHz; R_G = 1 M Ω	F	<	2	dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

BC264A to D

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Drain-source voltage	$^{\pm\mathrm{V}}\mathrm{DS}$	max.	30	V
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30	V
Gate current	$^{\mathrm{I}}\mathrm{_{G}}$	max.	10	mA:
Total power dissipation up to $T_{amb} = 25$ ^{o}C	P _{tot}	max.	300	mW
Storage temperature	${ m T_{stg}}$	-65 to +150		°C
Junction temperature	T_{j}	max.	150	$^{\rm o}{ m C}$
THERMAL RESISTANCE				
► From junction to ambient in free air	R _{th j-a}	=	420	K/W

CHARACTERISTICS

T_j = 25 $^{\rm o}$ C unless otherwise specified							
Gate cut-off current		BC2	64A	В	С	D	
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	$-I_{GSS}$	<	10	10	10	10	nA
Drain current 1)							
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I_{DSS}	> <	2,0 4,5		5,0 8,0	7,0 12,0	mA mA
			4,3	0,3	0,0	12,0	IIIA
Gate-source breakdown voltage							
$-I_G = 1 \mu A; V_{DS} = 0$	-V(BR)GS	S >	30	30	30	30	V
Gate-source voltage							
I_D = 200 μA ; V_{DS} = 15 V	$-v_{GS}$	>	0,4	0,4	0,4	0,4	V
$I_D = 1.0 \text{ mA}; V_{DS} = 15 \text{ V}$	$-v_{GS}$	>	0,2	_	_	_	\mathbf{v}
,	OD	<	1,2	_	-	_	V
$I_D = 1.5 \text{ mA}; V_{DS} = 15 \text{ V}$	$-V_{GS}$	> <	_	$\begin{vmatrix} 0,4\\1,4 \end{vmatrix}$	_	_	V V
	**	>		i	0,5	_	V
$I_D = 2.5 \text{ mA}; V_{DS} = 15 \text{ V}$	-V _{GS}	<	_		1,5	_	V
$I_D = 3.5 \text{ mA}; V_{DS} = 15 \text{ V}$	$-v_{GS}$	>		-	-	0,6	V
	OD	<	_	-	_	1,6	V
Gate-source cut-off voltage						8	
$I_{D} = 10 \text{ nA} ; V_{DS} = 15 \text{ V}$	-V(P)GS	>	0,5	0,5	0,5	0,5	V
y-parameters at T _{amb} = 25 °C							
$V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz}$							
Transfer admittance	$ y_{fs} $	>	2,5	3,0	3,5	4,0	mS
$V_{DS} = 15 \text{ V}; -V_{GS} = 1 \text{ V}; f = 1 \text{ MHz}$			_		-	_	
Input capacitance		C_{is}	t	ур.	4	.0	pF
Feedback capacitance		C_{rs}		yp.		,2	рF
Output capacitance		Cos		yp.		,6	pF
		OB					•
Noise figure at $f = 1 \text{ kHz}$; $R_G = 1 \text{ M}\Omega$		E	t	ур.	0	,5	dB
$V_{DS} = 15 \text{ V}; V_{GS} = 0; T_{amb} = 25 ^{\circ}\text{C}$		F		<		2	dB
Equivalent noise voltage at Tamb = 25 °C	C						
$V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 10 \text{ Hz}$		v_n/\sqrt{B}	t	yp.		40	nV/√Hz
1) Measured under pulse conditions.							
, manual parce commence.							

Fig. 9

General purpose symmetrical N-channel planar epitaxial junction field-effect transistors in a plastic TO-92 variant; intended for applications in l.f. and d.c. amplifiers, and in h.f. amplifiers.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}			ma	ax.	30	V
Gate-source voltage (open drain)	$-V_{GSO}$			ma	ax.	30	V
Total power dissipation up to T _{amb} = 75 °C	P_{tot}			ma	ax.	300	mW
Durin comment		BF2	45A/0	Α	В	C	
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	DSS	> <	0,5 2,1	2,0 6,5	6 15	12 25	
Gate-source cut-off voltage $I_D = 10 \text{ nA}$; $V_{DS} = 15 \text{ V}$	-V _{(P)G}	S		0,:	25 to	8,0	٧
Feedback capacitance at f = 1 MHz $V_{DS} = 20 \text{ V}; -V_{GS} = 1 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}$	C _{rs}			tyį	p.	1,1	pF
Transfer admittance (common source) $V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz}; T_{amb} = 25 \text{ °C}$	Yfs			3	3,0 to	6,5	mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

diameter within 2,5 max is uncontrolled

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	± V _{DS}	max.	30	V
Drain-gate voltage (open source)	V_{DGO}	max.	30	V
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30	V
Drain current	I _D	max.	25	mA
Gate current	IG	max.	10	mA
Power dissipation				
up to T _{amb} = 75 °C	P _{tot}	max.	300	mW ·
up to T _{amb} = 90 °C	P_{tot}	max.	300	mW 1)
Storage temperature	T_{stg}	-65 to +	- 150	oC
Junction temperature	T_{j}	max.	150	oC

THERMAL RESISTANCE

From junction to ambient in free air	R _{th j-a}	=	0,25 K/mW
From junction to ambient	R _{th j-a}	=	0,20 K/mW 1)

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

Gate cut-off current		BF245A	В	С
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	−I _{GSS}	< 5	5	5 nA
$-V_{GS} = 20 \text{ V}; V_{DS} = 0; T_j = 125 ^{\circ}\text{C}$	−I _{GSS}	< 0,5	0,5	0,5 μA
Drain current 2)	1 _{DSS} 3)	> 2	6,0	12 mA
$V_{DS} = 15 \text{ V}; V_{GS} = 0$		< 6,5	15,0	25 mA
Gate-source breakdown voltage $-I_G = 1 \mu A$; $V_{DS} = 0$	−V _(BR) GSS	> 30	30	30 V
Gate-source voltage	-V _{GS} 3)	> 0,4	1,6	3,2 V
$I_D = 200 \mu\text{A}$; $V_{DS} = 15 \text{V}$		< 2,2	3,8	7,5 V

²⁾ Measured under pulse conditions: t_p = 300 μs ; $\delta \leqslant$ 0,02.

3) BF245A/0: $I_{DSS} = 0.5$ to 2.1 mA; $-V_{GS} = 0.2$ to 1.0 V
BF245A/1: $I_{DSS} = 1.9$ to 3.0 mA; $V_{GS} = 0.4$ to 1.0 V
BF245A/2: $I_{DSS} = 3.0 \text{ to } 4.5 \text{ mA}; -V_{GS} = 0.7 \text{ to } 1.4 \text{ V}$
BF245A/3: $I_{DSS} = 4.5$ to 6.5 mA; $-V_{GS} = 1.1$ to 2.2 V.

¹⁾ Transistor mounted on printed circuit board, maximum lead length 3 mm, mounting pad for drain lead minimum 10 mm x 10 mm.

Gate-source cut-off volta	age				
$I_D = 10 \text{ nA}; V_{DS} = 19$	−V _{(P)GS}	0,25 t	o 8,0	V	
y-parameters at T _{amb} =	25 °C (common source)				
$V_{DS} = 15 \text{ V}; V_{GS} = 0$)				
f = 1 kHz	Transfer admittance	y _{fs}	3,0 t	o 6,5	mS
	Output admittance	y _{os}	typ.	25	μS
f = 200 MHz	Input conductance	g _{is}	typ.	250	μS
	Reverse transfer admittance	y _{rs}	typ.	1,4	mS
	Transfer admittance	y _{fs}	typ.	6	mS
	Output conductance	gos	typ.	40	μ S
$V_{DS} = 20 \text{ V}; -V_{GS} =$	= 1 V				
f = 1 MHz	Input capacitance	C _{is}	typ.	4,0	pF .
	Feedback capacitance	C _{rs}	typ.	1,1	pF
	Output capacitance	Cos	typ.	1,6	pF
Cut-off frequency *					
$V_{DS} = 15 \text{ V}; V_{GS} = 0$)	f _{gfs}	typ.	700	MHz
Noise figure at f = 100 N	MHz ; $R_G = 1 kΩ$ (common source)				
$V_{DS} = 15 \text{ V; } V_{GS} = 0$); T _{amb} = 25 °C				
input tuned to minim		F	typ.	1,5	dB

^{*} The frequency at which $g_{\mbox{\scriptsize fS}}$ is 0,7 of its value at 1 kHz.

Fig. 2

Fig. 4

Fig. 6

Fig. 8

Fig. 10

Fig. 11

Fig. 12

	•		
		en e	

Symmetrical n-channel planar epitaxial junction field-effect transistors in plastic TO-92 variants, intended for v.h.f. and u.h.f. amplifiers, mixers, and general purpose switching.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.			25	V
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max			250	mW
		BF2	47A	В	С	
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	I _{DSS}	> <	30 80	60 140	110 250	mA mA
Gate-source cut-off voltage $I_D = 10 \text{ nA}$; $V_{DS} = 15 \text{ V}$	-V _{(P)GS}		,	0,6 to	' 5 14,5	V
Feedback capacitance at f = 1 MHz $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$	C _{rs}	typ.			3,5	pF
Transfer admittance (common source) $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	yfs	>			8	mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Pinning:

1 = drain

2 = source

3 = gate

RATINGS						
Limiting values in accordance with the Absolute Max	cimum System (IE	C 134	4)			
Drain-source voltage	$^{\pm}$ V _{DS}	max	ζ.		25	V
Gate current	I _G	max	۲.		10	mΑ
Total power dissipation up to T _{amb} = 25 ^o C	P _{tot}	max	۲.		250	mW
Storage temperature	T_{stg}			-65 to	+ 150	оС
Junction temperature	Тj	max	ζ.		150	оС
THERMAL RESISTANCE						*
From junction to ambient in free air	R _{th j-a}	=			500	K/W
CHARACTERISTICS						
$T_{amb} = 25 {}^{\circ}C$				1	ı	
Gate cut-off current		BF2	247A	В	С	-
$-V_{GS} = 15 V; V_{DS} = 0$	$-I_{GSS}$	<	5	5	5	nΑ
Drain current*		>	30	60	110	mΑ
$V_{DS} = 15 V; V_{GS} = 0$	IDSS	<	80	140		mΑ
Gate-source breakdown voltage $-I_G = 1 \mu A$; $V_{DS} = 0$	−V _(BR) GSS	>	25	25	25	V
Gate-source voltage		>	1,5	3,0	5,5	V
$I_D = 200 \mu\text{A}; V_{DS} = 15 \text{V}$	$-V_{GS}$	<	4,0	7,0	12,0	
Gate-source cut-off voltage I _D = 10 nA; V _{DS} = 15 V	-V _{(P)GS}			0,6 to	14,5	V
Transfer admittance (common source)		>			8	mS
$I_D = 10 \text{ mA}; V_{DS} = 15 \text{ V}; f = 1 \text{ kHz}$	y _{fs}	typ.			_	mS
Capacitances at f = 1 MHz I _D = 10 mA; V _{DS} = 15 V						
feed-back capacitance	C _{rs}	typ.			3,5	•
input capacitance	C _{is}	typ.			11	pF
output capacitance	C _{cs}	typ.	•		5	pF

fgfs

typ.

450 MHz

Cut-off frequency** $V_{DS} = 15 \text{ V}; V_{GS} = 0$

^{*} Measured under pulse conditions; tp = 300 μ s; $\delta \le$ 0,02. ** The frequency at which gfs is 0,7 of its value at 1 kHz.

Symmetrical N-channel planar epitaxial junction field-effect transistors in a plastic TO-92 variant; intended for v.h.f. and u.h.f. applications.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}		max.	30	٧
Gate-source voltage (open drain)	$-V_{GSO}$		max.	30	٧
Total power dissipation up to T _{amb} = 75 °C	P _{tot}		max.	300	mW
B. 1		BF256A	В	С	_
Drain current $V_{DS} = 15 \text{ V}$; $V_{GS} = 0$	IDSS	> 3 < 7	6 13		mA mA
Feedback capacitance at f = 1 MHz V_{DS} = 20 V; $-V_{GS}$ = 1 V; T_{amb} = 25 °C	C _{rs}		typ.	0,7	pF
Transfer admittance (common source) VDS = 15 V; VGS = 0; f = 1 kHz; Tamb = 25 °C	Yfs		>	4,5	mS
Power gain at f = 800 MHz V_{DS} = 15 V; R_S = 47 Ω	Gp		typ.	11	dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Pinning;

1 = drain

2 = source

3 = gate

BF256A to C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute Maximum	System (IEC 13	/+ /		
Drain-source voltage	$^{\pm}$ V _{DS}	max.	30 V	
Drain-gate voltage (open source)	V_{DGO}	max.	30 V	
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30 V	
Gate current	IG	max.	10 mA	
Total power dissipation up to T _{amb} = 75 °C up to T _{amb} = 90 °C	P _{tot} P _{tot}	max. max.	300 mW 300 mW	
Storage temperature	T_{stg}	-65 to +	150 °C	
Junction temperature	Тj	max.	150 °C	
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	250 K/W	
From junction to ambient	R _{th j-a}	=	200 K/W	1)
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Gate cut-off current -V _{GS} = 20 V; V _{DS} = 0	-I _{GSS}	<	5 nA	
Drain current 2)	ВЕ	-256A B	C	
V _{DS} = 15 V; V _{GS} = 0	1 _{DSS} 3) <	3 6 7 13	11 mA 18 mA	
Gate-source breakdown voltage $-I_G = 1 \mu A; V_{DS} = 0$ Gate-source voltage	−V _(BR) GSS	>	30 V	
$I_D = 200 \mu\text{A}; V_{DS} = 15 \text{V}$	-V _{GS} 3)	0,5 to	7,5 V	

¹⁾ Transistor mounted on printed circuit board, maximum lead length 3 mm, mounting pad for drain lead minimum 10 mm \times 10 mm.

²⁾ Measured under pulse conditions: t_p = 300 $\mu s;$ $\delta \leqslant$ 0,02.

³⁾ BF256B/1: I_{DSS} = 6 to 8 mA; $-V_{GS}$ = 1,4 to 2,6 V.

y-parameters (common source) Transistor admittance at f = 1 kHz V _{DS} = 15 V; V _{GS} = 0	y _{fs}	> typ.	4,5 mS 1) 5 mS 1)
Output capacitance at f = 1 MHz V _{DS} = 20 V; V _{GS} = 0	C _{os}	typ.	1,2 pF
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 20 \text{ V}$; $-V_{GS} = 1 \text{ V}$	C _{rs}	typ.	0,7 pF
Cut-off frequency $V_{DS} = 15 \text{ V}; V_{GS} = 0$	f _{gfs}	typ.	1 GHz 2)
Noise figure at f = 800 MHz V_{DS} = 10 V; R_S = 47 Ω	F	typ.	7,5 dB
Power gain at f = 800 MHz V_{DS} = 15 V; R_S = 47 Ω	Gp	typ.	11 dB

¹⁾ Measured under pulse conditions: t_p = 300 μ s; δ \leq 0,02. 2) The frequency at which g_{fs} is 0,7 of its value at 1 kHz.

Fig. 4

Fig. 6

Fig. 8

Fig. 10

Fig. 12

Fig. 15

Fig. 18

		•	

N-CHANNEL SILICON FIELD-EFFECT TRANSISTORS

Asymmetrical N-channel planar epitaxial junction field-effect transistors in a plastic TO-92 variant; intended for applications up to the v.h.f. range.

These FETs can be supplied in four I_{DSS} groups. Special features are the low feedback capacitance and the low noise figure. Thanks to these special features the BF410 is very suitable for applications such as the r.f. stages in f.m. portables (type A), car radios (type B) and mains radios (type C) or the mixer stage (type D).

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20			V	
Drain current (d.c. or average)	۱ _D	max.		3	30		mA
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.		30	00		mW
		BF	410A	В	С	D	
Drain current $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	IDSS	>	0,7 3,0	2,5 7,0	6 12	10 18	mA mA
Transfer admittance (common source) $V_{DS} = 10 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz}$	Yfs	>	2,5	4	6	7	mS
Feedback capacitance $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	C _{rs}	typ.	0,3	0,3	_	_	pF
$V_{DS} = 10 \text{ V; } I_{D} = 5 \text{ mA}$	C_{rs}	typ.			0,3	0,3	pF
Noise figure at optimum source admittance G _S = 1 mS; -B _S = 3 mS; f = 100 MHz				i v			
V _{DS} = 10 V; V _{GS} = 0	F	typ.	1,5	1,5		_	dB
$V_{DS} = 10 \text{ V}; I_D = 5 \text{ mA}$	F	typ.	_	-	1,5	1,5	dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

Pinning:
1 = drain
2 = source
3 = gate

4,2

max

1,6

0,40

12,7min

0,49

12,7min

0,49

12,7min

diameter within 2,5 max is uncontrolled

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max. 20 V
Drain-gate voltage (open source)	v_{DGO}	max. 20 V
Drain current (d.c. or average)	I _D	max. 30 mA
Gate current	± IG	max. 10 mA
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max. 300 mW
Storage temperature	T_{stg}	-65 to + 150 °C
Junction temperature	Tj	max. 150 °C

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 250 \text{ K/W}$

STATIC CHARACTERISTICS

 $T_{amb} = 25 \, {}^{\circ}C$

Gate cut-off current			BF410A	В	С	D	
$-V_{GS} = 0.2 \text{ V}; V_{DS} = 0$	-I _{GSS}	<	10	10	10	10	nΑ
Gate-drain breakdown voltage $I_S = 0; -I_D = 10 \mu A$	-V _{(BR)GDO}	>	20	20	20	20	٧
Drain current $V_{DS} = 10 \text{ V}; V_{GS} = 0$	DSS	> <	0,7 3,0	2,5 7,0	6 12	10 18	mA mA
Gate-source cut-off voltage $I_D = 10 \mu A$; $V_{DS} = 10 V$	−V _{(P)GS}	typ.	. 0,8	1,5	2,2	3	V

DYNAMIC CHARACTERISTICS

Measuring conditions (common source): V_{DS} = 10 V; V_{GS} = 0; T_{amb} = 25 °C for BF410A and B V_{DS} = 10 V; I_{D} = 5 mA; T_{amb} = 25 °C for BF410C and D

y-parameters (common source)			BF410A	В	С	D
Input capacitance at f = 1 MHz	Cis	<	5	5	5	5 pF
Input conductance at f = 100 MHz	gis	typ.	100	90	60	50 μS
Feedback capacitance at f = 1 MHz	C_{rs}	typ.	0,3 0,4	0,3 0,4	0,3 0,4	0,3 pF 0,4 pF
Transfer admittance at f = 1 kHz	Yfs	>	2,5	4,0	4,0	3,5 mS
$V_{GS} = 0$ instead of $I_D = 5$ mA	yfs	>	_		6,0	7,0 mS
Transfer admittance at f = 100 MHz	y _{fs}	typ.	3,5	5,5	5,0	5,0 mS
Output capacitance at f = 1 MHz	Cos	<	3	3	3	3 pF
Output conductance at f = 1 MHz	gos	<	60	80	100	120 μS
Output conductance at f = 100 MHz	g_{os}	typ.	35	55	70	90 μS
Noise figure at optimum source admittance						
$G_S = 1 \text{ mS}; -B_S = 3 \text{ mS}; f = 100 \text{ MHz}$	F	typ.	1,5	1,5	1,5	1,5 dB

Fig. 2 V_{GS} = 0 for BF410A and BF410B; I_D = 5 mA for BF410C and BF410D; f = 1 MHz; T_{amb} = 25 °C.

Fig. 3 V_{DS} = 10 V; f = 1 kHz; T_{amb} = 25 °C; typical values.

N-CHANNEL SILICON FIELD-EFFECT TRANSISTORS

Asymmetrical N-channel planar epitaxial junction field-effect transistors in the miniature plastic envelope intended for applications up to the v.h.f. range in hybrid thick and thin-film circuits. Special features are the low feedback capacitance and the low noise figure. These features make the product very suitable for applications such as the r.f. stages in f.m. portables (BF510), car radios (BF511) and mains radios (BF512) or the mixer stage (BF513).

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.			20	V
Drain current (d.c. or average)	I_{D}	max.			30	mA
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	5540	1	250	mW
Drain current		— в	F510	511	512	513
V _{DS} = 10 V; V _{GS} = 0	IDSS	> <	0,7 3,0	2,5 7,0	6 12	10 mA 18 mA
Transfer admittance (common source) V _{DS} = 10 V; V _{GS} = 0; f = 1 kHz	y _{fs}	>	2,5	4	6	7 mS
Feedback capacitance V _{DS} = 10 V; V _{GS} = 0	C _{rs}	typ.	0,3	0,3	_	— pF
$V_{DS} = 10 \text{ V; } I_D = 5 \text{ mA}$	C_{rs}	typ.	_	_	0,3	0,3 pF
Noise figure at optimum source admittance $G_S = 1 \text{ mS}$; $-B_S = 3 \text{ mS}$; $f = 100 \text{ MHz}$				*		
$V_{DS} = 10 \text{ V; } V_{GS} = 0$	F	typ.	1,5	1,5	-	dB
$V_{DS} = 10 \text{ V}; I_D = 5 \text{ mA}$	F	typ.	_	_	1,5	1,5 dB

MECHANICAL DATA

SOT-23.

MECHANICAL DATA

Fig. 1 SOT-23

TOP VIEW

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage see Fig. 4	v_{DS}	max.	20 V
Drain-gate voltage (open source) see Fig. 4	v_{DGO}	max.	20 V
Drain current (d.c. or average)	۱D	max.	30 mA
Gate current	±۔ا	max.	10 mA
Total power dissipation up to T _{amb} = 60 °C**	P_{tot}	max.	250 mW
Storage temperature range	T_{stg}	-65 to	+ 175 °C
Junction temperature	Τį	max.	175 °C

THERMAL CHARACTERISTICS*

$$T_i = Px (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$$

Thermal resistance

From junction to tab	R _{th j-t}	=	60 K/W
From tab to soldering points	R _{th t-s}	=	280 K/W
From soldering points to ambient**	R _{th s-a}	=	90 K/W

- * See Thermal characteristics.
- ** Mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

STATIC CHARACTERISTICS

T _{amb} = 25 °C						
amb			BF510	511	512	513
Gate cut-off current $-V_{GS} = 0.2 \text{ V}; V_{DS} = 0$	-I _{GSS}	<	10	10	10	10 nA
Gate-drain breakdown voltage $I_S = 0; -I_D = 10 \mu A$	-V _(BR) GDO	>	20	20	20	20 V
Drain current $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	DSS	> <	0,7 3,0	2,5 7,0	6 12	10 mA 18 mA
Gate-source cut-off voltage $I_D = 10 \mu A$; $V_{DS} = 10 V$	-V _(P) GS	typ.	0,8	1,5	2,2	3 V

DYNAMIC CHARACTERISTICS

Measuring conditions (common source): $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$; $T_{amb} = 25 \text{ °C}$ for BF510 and BF511 $V_{DS} = 10 \text{ V}$; $I_D = 5 \text{ mA}$; $T_{amb} = 25 \text{ °C}$ for BF512 and BF513

	<i>D</i> 3	. D	uiiib	I	1	Ì
y-parameters (common source)			BF510	511	512	513
Input capacitance at f = 1 MHz	C _{is}	<	5	5	5	5 pF
Input conductance at f = 100 MHz	g _{is}	typ.	100	90	60	50 μS
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	0,3 0,4	0,3 0,4	0,3 0,4	0,3 pF 0,4 pF
Transfer admittance at f = 1 kHz	yfs	>	2,5	4,0	4,0	3,5 mS
$V_{GS} = 0$ instead of $I_D = 5$ mA	yfs	>	_	_	6,0	7,0 mS
Transfer admittance at f = 100 MHz	yfs	typ.	3,5	5,5	5,0	5,0 mS
Output capacitance at f = 1 MHz	Cos	<	3	3	3	3 pF
Output conductance at f = 1 MHz	g _{os}	<	60	80	100	120 μS
Output conductance at f = 100 MHz	g _{os}	typ.	35	55	70	90 μS
Noise figure at optimum source admitted GS = 1 mS; -BS = 3 mS;			4.5	4.5	4.5	4.5.10
f = 100 MHz	F	typ.	1,5	1,5	1,5	1,5 dB

Fig. 2 V_{GS} = 0 for BF510 and BF511; I_D = 5 mA for BF512 and BF513; f = 1 MHz; T_{amb} = 25 °C.

Fig. 3 V_{DS} = 10 V; f = 1 kHz; T_{amb} = 25 °C; typical values.

Fig. 4 Voltage derating curve.

Fig. 5 Power derating curve.

		æ.	

DUAL N-CHANNEL FETS

Dual symmetrical n-channel silicon planar epitaxial junction field-effect transistors in a TO-71 metal envelope, with electrically insulated gates and a common substrate connected to the envelope; intended for high performance low level differential amplifiers.

QUICK REFERENCE DATA

Characteristics measured at T_{amb} = 25 °C; I_D = 200 μ A; V_{DG} = 15 V										
		BF	Q10	11	12	13	14	15	16	
Difference in gate current	$ \Delta I_{G} $	<	10	10	10	10	10	10	10	рА
Gate-source voltage difference	$ \Delta V_{GS} $	<	5	10	10	10	15	20	50	mV
Thermal drift of gate-source voltage difference	$\frac{d\Delta V_{GS}}{dT}$	<	5	5	10	20	20	40	50	$\mu V/K$
Transfer con- ductance ratio	91fs 92fs),98 1,02	0,98 1,02	0,98 1,02	0,98 1,02	0,98 1,02	0,95 1,05	0,95 1,05	
Difference in transfer impedance	$\Delta \frac{1}{g_{fs}}$	<	6	6	12	12	12	20	30	Ω
Difference in penetration factor	$\Delta \frac{g_{os}}{g_{fs}}$	<	10	30	40	50	60	70	100	$\mu V/V$
Common mode rejection ratio	CMRR	>	100	90	90	90	90	90	80	dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-71.

All leads insulated from the case.

BFQ10 to 16

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

	Drain-source voltage	$\pm v_{DS}$	max.	30	V
	Drain-gate voltage (open source)	$v_{\rm DGO}$	max.	30	V
	Gate-source voltage (open drain)	$-V_{GSO}$	max.	30	V
	Voltage between gate 1 and gate 2	$\pm V_{1G} - 2G$	max.	40	V
	Drain current	I_D	max.	30	mA
	Gate current	$I_{\mathbf{G}}$	max.	10	m A
	Total power dissipation up to $T_{amb} = 75$ °C	P _{tot}	max.	250	mW
	Storage temperature	$T_{ ext{stg}}$	-65 to +	-200	°C
	Junction temperature	Τį	max.	200	$^{\mathrm{o}}\mathrm{C}$
	THERMAL DECICTANCE	J			
	THERMAL RESISTANCE				
-	From junction to ambient in free air	R _{th j-a}	=	500	K/W

CHARACTERISTICS (total device)

 $T_{amb} = 25$ OC unless otherwise specified

Measured at: I $_D$ = 200 $\mu A;~V_{\sc DG}$ = 15 V except for drain current ratio.

2	20		•							
Drain current ratio 1)		BF	Q10	11	12	13	14	15	16	
$V_{DG} = 15 \text{ V}; V_{GS} = 0$	$\frac{I_{1D-1SS}}{I_{2D-2SS}}$		0,97 1,03	0,95 1,05	0,95 1,05	0,95 1,05	0,92 1,08	0,90 1,10	0,80 1,20	
Difference in gate current	$ \Delta I_G $	<	10	10	10	10	10	10	10	pA
Gate-source voltage difference	$ \Delta V_{ m GS} $	<	5	10	10	10	15	20	50	mV
Thermal drift of gate-source voltage difference	$\left \frac{d \Delta V_{GS}}{dT} \right $	<	5	5	10	20	20	40	50	μV/K
Transfer con-	glfs	>	0,98	0,98	0,98	0,98	0,98	0,95	0,95	
ductance ratio	$\overline{\text{g2fs}}$	<	1,02	1,02	1,02	1,02	1,02	1,05	1,05	
Difference in transfer impedance 2)	$\left \Delta \frac{1}{g_{fs}}\right $	<	6	6	12	12	12	20	30	Ω
Difference in penetration factor ³)	$\Delta \frac{gos}{gfs}$	<	10	30	40	50	60	70	100	μV/V
Common mode rejection ratio 4)	CMRR	>	100	90	90	90	90	90	80	dB

- 1) Measured under pulse conditions.
- 2) The difference in transfer impedance is equal to the ratio of the change of the gatesource voltage difference to the change of drain current, at constant drain-gatevoltage. $(\Delta \frac{1}{gfs} = \frac{d \ \Delta V_{GS}}{d \ I_{D}} \text{ at } V_{DG} = \text{constant})$
- 3) The difference in penetration factor is equal to the ratio of the change of the gate-source voltage difference to the change of drain-gate voltage, at constant drain current. $(\Delta \frac{g_{OS}}{g_{fs}} = \frac{d \ \Delta V_{GS}}{d \ V_{DG}} \ \text{at I}_D = \text{constant})$
- 4) Common mode rejection ratio CMRR (in dB) = $-20 \log \left| \Delta \frac{g_{OS}}{g_{fs}} \right|$

CHARACTERISTICS (Individual transistor) $T_{amb} = 25$ °C unless otherwise specification					
Gate cut-off current					
$-V_{GS} = 20 \text{ V; } V_{DS} = 0$	$-I_{ m GSS}$	<	100	pA	
$-v_{GS}$ = 20 V; v_{DS} = 0; v_{amb} = 125 o C	$-I_{ m GSS}$	<	20	n A	
Gate current					
I_D = 200 μA ; V_{DG} = 15 V; T_{amb} = 125 ^{o}C	$I_{\mathbf{G}}$	<	10	пA	
Drain current				*	
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	$I_{ m DSS}$	0,5	to 10	mA ¹)	
Gate-source voltage					
$I_D = 200 \mu\text{A}; V_{DG} = 15 \text{V}$	$-v_{GS}$	<	2,7	V	
Gate-source cut-off voltage					
$I_D = 1 \text{ nA}; V_{DG} = 15 \text{ V}$	-V _{(P)GS}	0,5	to 3,5	V	
Transfer conductance at f = 1 kHz					
I_D = 200 μA ; V_{DG} = 15 V	${ m g}_{ m fs}$	>	1,0	mS	
Output conductance at f = 1 kHz					
$I_D = 200 \ \mu A; \ V_{DG} = 15 \ V$	gos	<	5	μS	
Input capacitance at f = 1 MHz	· · · · · · · · · · · · · · · · · · ·				
$I_D = 200 \ \mu A; \ V_{DG} = 15 \ V$	$\mathtt{c}_{\mathtt{is}}$	<	8	pF 2)	
Feedback capacitance at f = 1 MHz					
$I_D = 200 \ \mu A; \ V_{DG} = 15 \ V$	$\mathtt{c}_{\mathtt{rs}}$	<	1,0	pF 2)	
Equivalent noise voltage					
$I_D = 200 \mu A$; $V_{DS} = 15 V$ B = 0,6 to 100 Hz	V _n	<	0,5	μV	

Measured under pulse conditions.
 Measured with case grounded.

N-CHANNEL SILICON FIELD-EFFECT TRANSISTORS

Planar epitaxial symmetrical junction field effect transistor in a microminiature plastic envelope. It is intended for low level general purpose amplifiers in thick and thin-film circuits.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.		25	
Gate-source voltage (open drain)	-V _{GSO}	max.	25		V
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	250		mW
			BFR30	BFR31	
Drain current $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	^I DSS	> <	4 10	1 5	mA mA
Transfer admittance (common source) $I_D = 1 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $f = 1 \text{ kHz}$	Yfs	> <	1,0 4,0	1,5 4,5	mS mS

MECHANICAL DATA

0,150 0,090

Fig. 1 SOT-23.

10°

max

TOP VIEW

Note: Drain and source are interchangeable.

30°

max

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

3	,	•	•	
Drain-source voltage see Fig. 2	$^{\pm}$ V _{DS}	max.	25	V
Drain-gate voltage (open source) see Fig. 2	v_{DGO}	max.	25	V
Gate-source voltage (open drain) see Fig. 2	$-V_{GSO}$	max.	25	V
Drain current	ID	max.	10	mA
Gate current	I_{G}	max.	5	mA
Total power dissipation up to T _{amb} = 65 °C**	P_{tot}	max.	250	mW
Storage temperature range	T_{stg}	65	to + 175	oC_
Junction temperature	Τį	max.	175	oC

THERMAL CHARACTERISTICS*

 $T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Thermal resistance

From junction to tab	R _{th j-t}	=	60	K/W
From tab to soldering points	R _{th t-s}	=	280	K/W
From soldering points to ambient**	R _{th s-a}	==	90	K/W

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Gate cut-off current			BFR30	BFR31	
$-V_{GS} = 10 \text{ V}; V_{DS} = 0$	-I _{GSS}	<	0,2	0,2	nΑ
Drain current	1 .	>	4	1	mA
$V_{DS} = 10 \text{ V}; V_{GS} = 0$	DSS	<	10	5	mΑ
Gate-source voltage		>	0,7	o	V
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	$-V_{GS}$	<	3,0	1,3	٧
$I_D = 50 \mu\text{A}; V_{DS} = 10 V$	$-v_{GS}$	<	4,0	2,0	V
Gate-source cut-off voltage					
$I_D = 0.5 \text{ nA}; V_{DS} = 10 \text{ V}$	−V(P)GS	<	5	2,5	V
y parameters					
Transfer admittance at f = 1 kHz; T _{amb} = 25 °C		>	1,0	1,5	mS
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	y _{fs}	<	4,0	4,5	mS
$I_D = 200 \mu\text{A}; V_{DS} = 10 \text{V}$	Yfs	>	0,5	0,75	mS
Output admittance at f = 1 kHz					
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	y _{os}	<	40	25	μ S
$I_D = 200 \mu\text{A}; V_{DS} = 10 \text{V}$	yos	<	20	15	μS

^{*} See Thermal characteristics.

^{**} Mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

y parameters (continued)

Input capacitance at f = 1 MHz			BFR30	BFR31	
I _D = 1 mA; V _{DS} = 10 V	Cis	<	4	4	рF
$I_D = 200 \mu\text{A}; V_{DS} = 10 V$	c_{is}	<	4	4	pF
Feedback capacitance at f = 1 MHz; T_{amb} = 25 °C I_D = 1 mA; V_{DS} = 10 V	C _{rs}	<	1,5	1,5	рF
$I_D = 200 \mu A$; $V_{DS} = 10 \text{ V}$ Equivalent noise voltage	C _{rs}	<	1,5	1,5	pF
I _D = 200 μA; V _{DS} = 10 V B = 0,6 to 100 Hz	Vn	<	0,5	0,5	μV

Fig. 2 Voltage derating curve.

Fig. 3 Power derating curve.

Fig. 4.

Fig. 5.

Fig. 6.

T_D (mA) typical values V_{DS}=10V

4 --V_{GS}=0V

2 --0.4 --0.6 --0.6 --0.8 --1.1 --1.2 --

BFR31

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

		ee	

N-CHANNEL JUNCTION FIELD-EFFECT TRANSISTOR

Symmetrical n-channel silicon junction field-effect transistor, designed primarily for use as a source follower with the input protected against successive voltage surges by a forward and reverse integrated diode.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	30 V
Gate-source voltage (open drain)	$-v_GS$	max.	30 V
Total power dissipation up to T _{amb} = 60 °C	P_{tot}	max.	200 mW
Drain current			
$V_{DS} = 6 V; V_{GS} = 0: BFR101A$	IDSS	0,2 t	to 1,5 mA
V _{DS} = 6 V; V _{GS} = 0: BFR101B	IDSS	1,0 1	to 5,0 mA
Transfer admittance (common source)			
$V_{DS} = 6 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz: BFR101A}$	yfs	>	1,2 mS
V _{DS} = 6 V; V _{GS} = 0; f = 1 kHz: BFR101B	y _{fs}	>	2,5 mS

Note: Drain and source are interchangeable.

See also Soldering recommendations.

BFR101A BFR101B

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)					
Drain-source voltage	± V _{DS}	max.	30 V		
Drain-gate voltage (open source)	V_{DGO}	max.	30 V		
Gate-source voltage (open drain)	$-V_{GSO}$	max.	30 V		
Drain current (d.c.)	1 _D	max.	20 mA		
Gate current (d.c.)	IG	max.	10 mA		
Total power dissipation up to $T_{amb} = 60 {}^{\circ}C^{*}$	P_{tot}	max.	200 mW		
Storage temperature	T_{stg}	−65 t	o + 150 °C		
Junction temperature	Тj	max.	150 °C		

THERMAL RESISTANCE

From junction to ambient in free air*

R_{th j-a} =

460 K/W

CHARACTERISTICS with source connected to case for all measurements

T_{amb} = 25 °C unless otherwise specified

			1
Gate leakage current		BFR101A	BFR101B
$V_{DS} = 6 V; I_D = 10 \mu A$	−I _G	< 5	5 nA
Drain current*			
$V_{DS} = 6 V; V_{GS} = 0$	IDSS	0,2 to 1,5	1 to 5 mA
Gate-source cut-off voltage			
$V_{DS} = 6 \text{ V; } I_D = 1 \mu A$	−V _{(P)GS}	0,2 to 1	0,5 to 2,5 V
Small-signal common-source characteristics $V_{DS} = 6 \text{ V}$; $V_{GS} = 0$		ove-	
Transfer admittance*			
f = 1 kHz	y _{fs}	> 1,2	2,5 mS
Output admittance at f = 1 kHz**	y _{os}	typ. 10	50 mS
Input capacitance at f = 1 MHz			
diodes not connected	Cis	< 5	5 pF
Diode capacitance			
V_D = 0; source and drain not connected	C _d	typ. 0,7	0,7 pF
Diode forward voltage			
$\pm I_F = 10 \text{ mA}$	٧F	0,7 to 1,2	0,7 to 1,2 V

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

^{**} Measured under pulse conditions: t_p = 100 ms; $\delta \leqslant$ 0,1.

MATCHED N-CHANNEL FETS

Matched pair of symmetrical n-channel silicon planar epitaxial junction field-effect transistors in TO-72 metal envelopes, mounted together in a metal S-clip.

These devices are intended for low level differential amplifiers.

QUICK REFERENCE DATA

Characteristics measured at T_{amb} = 25 °C; I_D = 0,5 mA; V_{DG} = 15 V

		BFS21 BFS21A		BFS21A
Gate cut-off current	IG	<	0,5	0,5 nA
Gate -source voltage difference	$ \Delta V_{GS} $	<	20	10 mV
Thermal drift of gate-source voltage difference	$\frac{d\Delta V_{GS}}{dT}$	<	75	40 μV/K
Difference in transfer impedance	$\left \Delta \frac{1}{9 f s}\right $	<	15	7,5 Ω
Difference in penetration factor	$\left \Delta \frac{g_{OS}}{g_{fs}}\right $	<	1	0,5 mV/V
Common mode rejection ratio	CMRR	>	60	66 dB

MECHANICAL DATA

SOT-52 (see next page)

TOTAL DEVICE

Dimensions in mm

MECHANICAL DATA

SOT-52

(1) = shield lead (connected to case).

Maximum lead diameter is guaranteed only for 12,7 mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage between any 2 terminals	V	max.	30	٧
Drain current	۱ _D	max.	4	mΑ
Gate current	۱ _G	max.	0,5	mΑ
Total power dissipation up to T _{amb} = 100 °C	P_{tot}	max.	30	mW
Operating ambient temperature	T_{amb}	-20 to	+ 100	оС

CHARACTERISTICS (total device)

 T_{amb} = 25 o C unless otherwise specified

Drain current ratio			BFS21	BFS21A	
$V_{DG} = 15 \text{ V}; V_{GS} = 0; T_j = 28$	$\frac{I_{D1}-S1S}{I_{D2}-S2S}$		0,95 1,05	0,95 1,05	-
Gate-source voltage difference	e				
$I_{\rm D} = 500 \; \mu \rm A; \; V_{\rm DG} = 15 \; V$	$ \Delta V_{GS} $	<	20	10	mV
$I_D = 100 \ \mu A; \ V_{DG} = 15 \ V$	$ \Delta V_{ m GS} $	<	20	10	mV
Thermal drift of gate-source	voltage difference				
I_D = 500 μA ; V_{DG} = 15 V	$\left \frac{\mathrm{d} \ \Delta \mathrm{V}_{\mathrm{GS}}}{\mathrm{d}\mathrm{T}} \right $	<	75	40	$\mu V/K$
I_D = 100 μ A; V_{DG} = 15 V	$\left \frac{d \Delta V_{GS}}{dT} \right $	<	75	40	$\mu V/K$
Change of gate-source voltage	difference with ambient tem	ipe:	rature		
T_{amb} = 25 to 100 °C					
$I_{D} = 500 \ \mu A; \ V_{DG} = 15 \ V \ \Delta$	$V_{GS}(T_{amb2}) - \Delta V_{GS}(T_{amb1})$	1	< 6	3	mV
$I_D = 100 \ \mu A; \ V_{DG} = 15 \ V \ \Delta$	$V_{GS}(T_{amb2}) - \Delta V_{GS}(T_{amb1})$	1	< 6	3	mV
Difference of penetration factor	ors ¹)				
$I_D = 500 \ \mu A; \ V_{DG} = 15 \ V$	$\Delta \frac{ m gos}{ m gfs}$	<	. 1	0,5	
I_D = 100 μA ; V_{DG} = 15 V	$\Delta \frac{\mathrm{gos}}{\mathrm{gfs}}$	<	1	0,5	10-3
Difference of transfer impeda	nces 2)				
$I_D = 500 \ \mu A; \ V_{DG} = 15 \ V$	$\Delta \frac{1}{gfs}$	<	15	7,8	Ω
I_D = 100 μA ; V_{DG} = 15 V	$\left \Delta \frac{1}{\mathrm{gfs}}\right $	<	75	37,5	Ω_{-1}

1) The difference between the penetration factors is equal to the ratio of the change of the gate-source voltage difference to the change of drain-gate voltage, at constant drain current.

$$(\Delta \frac{gos}{gfs} = \frac{d \Delta VGS}{d VDG} \text{ at } I_D = constant)$$

2) The difference between the transfer impedances is equal to the ratio of the change of the gate-source voltage difference to the change of drain current, at constant drain-gate voltage.

$$(\Delta \frac{1}{gfs} = \frac{d \Delta V_{GS}}{d I_{D}})$$
 at $V_{DG} = constant$

CHARACTERISTICS (continued) (total device)

Common mode rejection ratio 1)		E	FS21	BFS	21A
$I_D = 500 \ \mu A; \ V_{DG} = 15 \ V$	CMRR	>	60	66	dB
$I_D = 100 \ \mu A; \ V_{DG} = 15 \ V$	CMRR	>	60	66	dB

INDIVIDUAL TRANSISTOR

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	$\pm v_{DS}$	max.	30	V
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30	V
Drain current	I_{D}	max.	20	mA
Gate current	I_{G}	max.	10	mA
Total power dissipation up to $T_{amb} = 25^{\circ}$	P_{tot}	max.	300	mW
Storage temperature	$T_{ extsf{stg}}$	-65 to +	200	°C
Junction temperature	T_{i}	max.	200	$^{\rm o}$ C

THERMAL RESISTANCE

From junction to ambient in free air $R_{th\ j-a}$ (for individual transistor without S-clip)

 $R_{th j-a} = 590 \text{ K/W}$

1) Common mode rejection ratio

$$(C M R R)^{-1} = \Delta \frac{g_{os}}{g_{fs}} + \frac{1}{2} g_{cs} \Delta \frac{1}{g_{fs}}$$

where $g_{\mbox{\footnotesize{CS}}}$ in this formula is the output conductance of the summing current source.

The guaranteed values of CMRR apply at $g_{\rm cs}$ = 0.1 $\mu\Omega^{-1}$

CHARACTERISTICS (individual transistor)

 $T_{amb} = 25$ °C unless otherwise specified

Gate cut-off current

$$I_D$$
 = 500 μA ; V_{DS} = 15 V I_G < 0,5 nA I_D = 500 μA ; V_{DS} = 15 V ; T_{amb} = 100 ^{o}C I_G < 25 nA

$$V_{DS} = 15 \text{ V}, V_{GS} = 0, T_j = 25 \text{ }^{0}\text{C}$$
 I_{DSS} > 1 mA

Gate-source cut-off voltage

$$I_D = 0.5 \text{ nA}, V_{DS} = 15 \text{ V}$$
 $-V_{(P)GS}$ < 6 V

Transfer conductance at f = 1 kHz

$$I_{\rm D}$$
 = 500 μA ; $V_{\rm DS}$ = 15 V $g_{\rm fs}$ > 1,0 mS

Output conductance at f = 1 kHz

$$I_D$$
 = 500 μ A; V_{DS} = 15 V g_{OS} < 15 μ S

Input capacitance at f = 1 MHz

ID =
$$500 \,\mu\text{A}$$
; V_{DS} = $15 \,\text{V}$ C_{1S} < $5 \,\text{pF}$

Feedback capacitance at f = 1 MHz

Equivalent noise voltage

$$f = 10 Hz$$

$$I_{D}$$
 = 500 μ A; V_{DS} = 15 V V_{n}/\sqrt{B} < 200 nV/\sqrt{Hz} V_{DS} = 15 V, V_{GS} = 0 V_{n}/\sqrt{B} < 75 nV/\sqrt{Hz}

	•		
		ulen G	

N-CHANNEL SILICON FET

Symmetrical n-channel silicon epitaxial planar junction field-effect transistor in a microminiature plastic envelope. The transistor is intended for low level general purpose amplifiers in thick and thin-film circuits.

QUICK REFERENCE DATA

Drain-source voltage	±V _{DS}	max.	25 V
Gate-source voltage (open drain)	-V _{GSO}	max.	25 V
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	250 mW
Drain current $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	IDSS	> <	0,2 mA 1,5 mA
Transfer admittance (common source) ID = 0,2 mA; VDS = 10 V; f = 1 kHz	y _{fs}	>	0,5 mS
Equivalent noise voltage V_{DS} = 10 V; I_D = 200 μ A; B = 0,6 to 100 Hz	V_n	<	0,5 μV

Note: Drain and source are interchangeable.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	${}^{\pm}{}^{V}{}_{DS}$	max.	25	٧
Drain-gate voltage (open source)	V_{DGO}	max.	25	٧
Gate-source voltage (open drain)	$-V_{GSO}$	max.	25	V
Drain current	^I D	max.	10	mΑ
Gate current	I_{G}	max.	5	mΑ
Total power dissipation up to T _{amb} = 65 °C **	P_{tot}	max.	250	mW
Storage temperature range	T_{stg}	-65 to	+175	оС
Junction temperature	Τį	max.	175	$^{\rm o}$ C

THERMAL CHARACTERISTICS*

$$R_{th j-t} + R_{th t-s} + R_{th s-a} = \frac{T_j - T_{amb}}{P}$$

Thermal resistance

From junction to tab	R _{th j-t}	=	60 K/W
From tab to soldering points	R _{th t-s}	=	280 K/W
From soldering points to ambient**	R _{th s-a}	=	90 K/W
CHARACTERISTICS			

T _j = 25 ^o C unless otherwise specified			
Gate cut-off current $-V_{GS} = 10 \text{ V}; V_{DS} = 0$	-I _{GSS}	<	0,2 nA
Drain current ** $V_{DS} = 10 \text{ V; } V_{GS} = 0$	I _{DSS}	> <	0,2 mA 1,5 mA
Gate-source voltage $I_D = 50 \mu A$; $V_{DS} = 10 \text{ V}$	-V _{GS}	> <	0,1 V 1,0 V
Gate-source cut-off voltage $I_D = 0.5 \text{ nA}; V_{DS} = 10 \text{ V}$	-V _{(P)GS}	<	1,2 V
y-parameters at f = 1 kHz; V_{DS} = 10 V; V_{GS} = 0; T_{amb} = 25 °C Transfer admittance Output admittance V_{DS} = 10 V; I_{D} = 200 μ A;	y _{fs} y _{os}	> <	1,0 mS 10 μS
Transfer admittance Output admittance	y _{fs} y _{os}	> <	0,5 mS 5 μS

^{*} See *Thermal characteristics.*** Mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Input capacitance at f = 1 MHz; $V_{DS} = 10 \text{ V; } V_{GS} = 0; T_{amb} = 25 \text{ °C} \qquad C_{is} \qquad < 5 \text{ pF}$ Feedback capacitance at f = 1 MHz; $V_{DS} = 10 \text{ V; } V_{GS} = 0; T_{amb} = 25 \text{ °C} \qquad C_{rs} \qquad < 1,5 \text{ pF}$ Equivalent noise voltage $V_{DS} = 10 \text{ V; } I_{D} = 200 \text{ } \mu\text{A; } T_{amb} = 25 \text{ °C}$ $B = 0,6 \text{ to } 100 \text{ Hz} \qquad V_{n} \qquad < 0,5 \text{ } \mu\text{V}$

Fig. 2 Voltage derating curve.

Fig. 3 Power derating curve.

Fig. 5 Typical values. $V_{DS} = 10 \text{ V}$.

Fig. 6 Correlation between $-V_{(P)GS}$ and I_{DSS} . V_{DS} = 10 V; T_j = 25 °C.

10³
|Y_{0S}|
(μΑ/V)
10²
10

10

Fig. 9.

0

20 V_{DS} (V)

Fig. 7 $|y_{fs}|$ versus I_D . $V_{DS} = 10 \text{ V}$; f = 1 kHz; $T_{amb} = 25 \text{ °C}$.

Fig. 8
$$|y_{os}|$$
 versus I_D .
 $V_{DS} = 10 \text{ V}$; $f = 1 \text{ kHz}$; $T_{amb} = 25 \text{ °C}$.

Fig. 9
$$|y_{OS}|$$
 versus V_{DS} .
 I_D = 0,4 mA; f = 1 kHz; T_{amb} = 25 °C.

Fig. 10.

1,5 C_{rs} (pF) 1 0,5 0 0 0 2 -V_{GS} (V) 4 Fig. 11.

Fig.10 Typical values. $V_{DS} = 10 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}.$

Fig.11 Typical values. V_{DS} = 10 V, T_{amb} = 25 °C.

Fig.12 I_{GSS} versus T_j . $-V_{GSS} = 10V$; $V_{DS} = 0$.

N-CHANNEL SILICON FETS

Symmetrical n-channel silicon planar epitaxial junction field-effect transistors in TO-72 metal envelopes with the shield lead connected to the case. The transistors are designed for broad band amplifiers (0 to 300 MHz). Their very low noise at low frequencies makes these devices very suitable for differential amplifiers, electro-medical and nuclear detector preamplifiers.

QUICK REFERENCE DATA

					V
Drain-source voltage	$^{\pm}$ V $_{ m DS}$	max.	;	30	
Gate-source voltage (open drain)	$-v_{GSO}$	max.	;	30	
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	3	300	
			BFW10	BFW11	
Drain current		>	8	4	mA
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	DSS	<	20	10	mA
Gate-source cut-off voltage I _D = 0,5 nA; V _{DS} = 15 V	−V _{(P)GS}	<	8	6	V
Feedback capacitance at f = 1 MHz V _{DS} = 15 V; V _{GS} = 0	C _{rs}	<	0,80	0,80	pF
Transfer admittance (common source) $V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 200 \text{ MHz}$	Yfs	>	3,2	3,2	mS
Noise figure at V_{DS} = 15 V; V_{GS} = 0 f = 100 MHz; R_G = 1 $k\Omega$	F	<	2,5	2,5	dB
Equivalent noise voltage f = 10 Hz	V_n/\sqrt{B}	<	75	75	nV/√Hz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

Note: Drain and source are interchangeable.

(1) = shield lead connected to case Accessories: 56246 (distance disc).

BFW10 BFW11

 $\pmb{RATINGS} \ \ Limiting \ \ values \ in \ accordance \ with \ the \ \ Absolute \ \ Maximum \ \ \ System \ \ (IEC 134)$

Drain-source voltage	$\pm v_{DS}$	max.	30	V
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30	V
Drain current	I_{D}	max.	20	mA
Gate current	$I_{\mathbf{G}}$	max.	10	mA
Total power dissipation up to T_{amb} = 25 ^{o}C	P _{tot}	max.	300	mW
Storage temperature Junction temperature	${ m T_{stg}}$ ${ m T_{j}}$	-65 to 4		°C °C
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	=	590	K/W

CHARACTERISTICS	T_j = 25 °C unless otherwise specified				
Gate cut-off currents	ı.		BFW10	BFW11	
$-V_{GS} = 20 \text{ V; } V_{DS} = 0$	$-I_{GSS}$	<	0.1	0.1	nA
$-V_{GS}$ = 20 V; V_{DS} = 0; T_j = 150 o C	$-I_{GSS}$	<	0.5	0.5	μ A
Drain current 1)					
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I_{DSS}	> <	8 20	4 10	mA mA
Gate-source voltage					
I_D = 400 μ A; V_{DS} = 15 V	-V _{GS}	> <	2.0 7.5		V V
$I_D = 50 \mu\text{A}; V_{DS} = 15 \text{V}$	-V _{GS}	> <		1.25 4.0	V V
Gate-source cut-off voltage					
I_D = 0.5 nA; V_{DS} = 15 V	-V(P)GS	<	8	6	V
y parameters					
V_{DS} = 15 V; V_{GS} = 0; T_{amb} = 25 o C f = 1 kHz Transfer admittance	Yfs	> <	3.5 6.5	3.0 6.5	mS mS
Output admittance	Yos	<	85	50	μS
f = 1 MHz Input capacitance	C_{is}	typ.	4 5_	4 5	pF pF
Feedback capacitance	-C _{rs}	typ.	0.6 0.80	0.6 0.80	pF pF
f = 200 MHz Transfer admittance	Yfs	>	3.2	3.2	mS
Input conductance	gis	<	800	800	μS
Output conductance	gos	<	200	100	μS
Noise figure at f = 100 MHz; R_G = 1 $k\Omega$					
V_{DS} = 15 V; V_{GS} = 0 ; T_{amb} = 25 $^{o}\mathrm{C}$ input tuned to minimum noise	F	<	2.5	2.5	dB
Equivalent noise voltage					
$V_{DS} = 15 \text{ V}; V_{GS} = 0; T_{amb} = 25 \text{ °C}$					
f = 10 Hz	v_n/\sqrt{B}	<	75	75	nV/\sqrt{Hz}

¹⁾ Measured under pulsed conditions.

N-CHANNEL SILICON FETS

Symmetrical n-channel silicon planar epitaxial junction field-effect transistors in TO-72 metal envelopes with the shield lead connected to the case. The transistors are intended for battery powered equipment and other low current-low voltage applications.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	3	30	V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	3	30	V
Total power dissipation up to T _{amb} = 110 °C	P _{tot}			150	
			BFW12	BFW13	
Drain current V _{DS} = 15 V; V _{GS} = 0	DSS	> <	1 5	0,2 1,5	mA mA
Gate-source cut-off voltage I _D = 0,5 nA; V _{DS} = 15 V	-V _{(P)GS}	<	2,5	1,2	V
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V}; V_{GS} = 0$	C _{rs}	<	0,80	0,80	pF
Transfer admittance (common source) $V_{DS} = 15 \text{ V}; I_D = 200 \mu\text{A}; f = 1 \text{ kHz}$	Yfs	>	0,5	0,5	mS
Equivalent noise voltage V_{DS} = 15 V; I_D = 200 μ A B = 0,6 to 100 Hz	Vn	<	0,5	0,5	μV

MECHANICAL DATA

Fig. 1 TO-72.

Dimensions in mm

Note: Drain and source are interchangeable.

(1) = shield lead connected to case

Accessories: 56246 (distance disc).

BFW12 BFW13

 ${f RATINGS}$ Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	$^{\pm \mathrm{V}}\mathrm{DS}$	max.	30	V
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30	V
Drain current	$I_{\mathbf{D}}$	max.	10	mA.
Diam carrent	¹ D	max.	10	111/1
Gate current	$I_{\mathbf{G}}$	max.	5	mA
Total power dissipation up to T_{amb} = 110 ^{o}C	P _{tot}	max.	150	mW
Storage temperature	${ m T_{stg}}$	-65 to	+200	$^{\mathrm{o}}\mathrm{C}$
Junction temperature	$T_{\mathbf{j}}$	max.	200	^o C
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	=	590	K/W

CHARACTERISTICS	$T_j = 25$ °C unless otherwise specified				
Gate cut-off currents	·		BFW12	BFW13	_
$-V_{GS} = 10 \text{ V}; V_{DS} = 0$	$-I_{ m GSS}$	<	0.1	0.1	nA
$-\mathrm{V_{GS}}$ = 10 V; $\mathrm{V_{DS}}$ = 0; $\mathrm{T_{j}}$ = 150 $^{\mathrm{o}}\mathrm{C}$	$-I_{GSS}$	<	0.1	0.1	μ A.
Drain current ¹)					
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	$I_{ m DSS}$	> <	1 5	0.2 1.5	mA mA
Gate-source voltage					
$I_D = 50 \mu\text{A}; V_{DS} = 15 \text{V}$	$-v_{GS}$	> <	0.5 2.0	0.1 1.0	V V
Gate-source cut-off voltage				1	
$I_D = 0.5 \text{nA}; V_{DS} = 15 \text{V}$	$-V_{(P)GS}$	<	2.5	1.2	V
y parameters at f = 1 kHz; T_{amb} = 25 ^{o}C					
$ m V_{DS}$ = 15 V; $ m V_{GS}$ = 0 Transfer admittance	$ y_{\mathbf{f}_{\mathbf{S}}} $	>	2.0	1.0	mS
Output admittance	y_{os}	<	30	10	μS
V_{DS} = 15 V; I_{D} = 500 μA Transfer admittance	$ y_{fs} $	>	1.5	_	mS
Output admittance	$ y_{os} $	<	10	-	μS
V_{DS} = 15 V; I_{D} = 200 μA Transfer admittance	y _{fs}	>	0.5	0.5	mS
Output admittance	y _{os}	<	5	5	μS
$f = 1 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}$	1. 001				
$V_{DS} = 15 \text{ V}; V_{GS} = 0$					
Input capacitance	$c_{ m iss}$	<	5	5	pF
Feedback capacitance	$-c_{rs}$	<	0.80	0.80	pF
Equivalent noise voltage					
V_{DS} = 15 V; I_D = 200 μ A; T_{amb} = 25 o C B = 0.6 to 100 Hz	V_n	<	0.5	0,5	μV

 $^{^{}m l}$) Measured under pulsed conditions.

		. • ·	

N-CHANNEL SILICON FET

Symmetrical n-channel silicon planar epitaxial junction field-effect transistor in a TO-72 metal envelope with the shield lead connected to the case. The transistor is designed for general purpose amplifiers.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	25 V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	25 V
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	300 mW
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	IDSS	2	to 20 mA
Gate-source cut-off voltage $I_D = 1.0 \text{ nA}$; $V_{DS} = 15 \text{ V}$	-V _{(P)GS}	<	8 V
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V}; V_{GS} = 0$	C _{rs}	<	2,0 pF
Transfer admittance (common source) VDS = 15 V; VGS = 0; f = 10 MHz	Yfs	>	1,6 mS

MECHANICAL DATA

Fig. 1 TO-72.

Dimensions in mm

(1) = shield lead connected to case Accessories: 56246 (distance disc).

Limiting values in accordance with the Absolute Maximum Sys	tem (IEC 134)			
Drain-source voltage	$^{\pm}$ V _{DS}	max.	25	V
Drain-gate voltage (open source)	V_{DGO}	max.	25	V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	25	٧
Drain current	I _D	max.	20	mΑ
Gate current	I_{G}	max.	10	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300	mW
Storage temperature	T _{stg}	65 to +	200	oC ,
Junction temperature	Tj	max.	200	oC
THERMAL RESISTANCE				
From junction to ambient in free air	D., .	=	500	K/W
From junction to ambient in free air	R _{th j-a}	_	590	IX/VV
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Gate cut-off currents				
$-V_{GS} = 20 \text{ V; } V_{DS} = 0$	^{-l} GSS	<	1,0 1,0	
$-V_{GS} = 20 \text{ V; } V_{DS} = 0; T_j = 150 ^{\circ}\text{C}$ Drain current*	^{-I} GSS		1,0	μΑ
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	IDSS	2 t	o 20	mA
Gate-source voltage	D33			
$I_D = 200 \mu\text{A}; V_{DS} = 15 \text{V}$	$-v_GS$	0,5 to	7,5	٧
Gate-source cut-off voltage				
$I_D = 1,0 \text{ nA}; V_{DS} = 15 \text{ V}$	-V _{(P)GS}	<	8	V
y-parameters (common source)				
V _{DS} = 15 V; V _{GS} = 0 Transfer admittance at f = 1 kHz	leas I	20+		C
at f = 10 MHz	Yfs	2,0 to >		mS mS
Output admittance at f = 1 kHz	y _{os}	<	85	μS
Input capacitance at f = 1 MHz	C _{is}	<	6	pF
Feedback capacitance at f = 1 MHz	C _{rs}	<	2,0	рF

^{*} Measured under pulse conditions.

P-CHANNEL SILICON FIELD-EFFECT TRANSISTORS

Silicon symmetrical P-channel junction FETs in a plastic TO-92 envelope and intended for application with analog switches, choppers, commutators etc.

A special feature is the interchangeability of the drain and source connections.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	ma	×.	30)		V
Gate-source voltage	V_{GSO}	ma	×.	30)		V
Gate current	$-I_{G}$	ma	×.	50)		mΑ
Total power dissipation up to $T_{amb} = 50$ °C	P _{tot}	ma	×.	400	o		mW
Drain current $-V_{DS} = 15 \text{ V}; V_{GS} = 0$	-I _{DSS}	> <	20 135	BSJ175 7 70	BSJ176 2 35	1,5 20	mA mA
Drain-source ON-resistance -V _{DS} = 0,1 V; V _{GS} = 0	R _{DS on}	<	85	125	250	300	Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92.

Note: Drain and source are interchangeable.

RATINGS						
Limiting values in accordance with the	Absolute Maxim	num System (II	EC 134)			
Drain-source voltage	$^{\pm}$ V _{DS}	max.	30)		V
Gate-source voltage	v_{GSO}	max.	30	0		V
Gate-drain voltage	$V_{ extsf{GDO}}$	max.	30)		V
Gate current (d.c.)	$-I_{\mathbf{G}}$	max.	50)		mΑ
Total power dissipation up to T _{amb} = 50 °C	P _{tot}	max.	400)		mW
Storage temperature range	T_{stg}		65 to -	+ 150		oC
Junction temperature	Тj	max.	150)		οС
THERMAL RESISTANCE From junction to ambient in free air STATIC CHARACTERISTICS	R _{th j-a}	= :	250	0		K/W
$T_j = 25$ °C unless otherwise specified		BSJ17	BSJ175	BSJ176	BSJ177	
Gate cut-off current -V _{GS} = 20 V; V _{DS} = 0	I _{GSS}	< 1	1	1	1	nA
Drain cut-off current $-V_{DS} = 15 \text{ V}; -V_{GS} = 10 \text{ V}$	-I _{DSX}	< 1	1	1	1	nΑ
Drain current $-V_{DS} = 15 \text{ V}; V_{GS} = 0$	^{−l} DSS	> 20 < 135	7 70	2 35	1,5 20	mA mA
Gate-source breakdown voltage						

V_{(BR)GSS}

 $V_{GS\,off}$

R_{DSon}

30

5

10

85

<

_30

3

125

30

1

4

250

30

0,8

2,25

300

Ω

 $I_G = 1 \mu A$; $V_{DS} = 0$ Gate-source cut-off voltage

 $-I_D = 10 \text{ nA}; V_{DS} = 0$

Drain-source ON-resistance

 $-V_{DS} = 0.1 V; V_{GS} = 0$

DYNAMIC CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

Input capacitance, f = 1 MF	łz
$-V_{CC} = 10 \text{ V}: V_{DC} = 0$	V

$$-V_{GS} = 10 \text{ V; } V_{DS} = 0$$

Feedback capacitance, f = 1 MHz

 $-V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$

 c_{is}

 C_{is}

typ. typ.

typ.

8 30 pF pF

C_{rs}

4

рF

Switching times (see Fig. 2 + 3)

Delay time
Rise time
Turn-on time
Storage time
Fall time
Turn-off time

Test conditions:

		BSJ174	BSJ175	BSJ176	BSJ177	
t _d	typ.	2	5	15	20`	ns
t _r	typ.	. 5	10	20	25	ns
ton	typ	7	15	35	45	ns
t_S	typ.	. 5	10	15	20	ns
tf	typ.	10	20	20	25	ns
t _{off}	typ.	15	30	35	45	ns
$-V_{DD}$		10	6	6	6	٧
V_{GSoff}		12	8	6	3	٧
R_{L}		560	1200	2000	2900	Ω
V_{GSon}		0	0	О	0	٧

Fig. 2 Switching times test circuit

Fig. 3 Input and output waveforms $\begin{array}{rcl} t_d + t_r = t_{On} \\ t_s + t_f = t_{Off} \end{array}$

•		
		•
	ANT .	

N-CHANNEL FETS

Silicon n-channel depletion type junction field-effect transistors in a plastic microminiature envelope intended for application in thick and thin-film circuits. The transistors are intended for low-power, chopper or switching applications in industrial service.

QUICK REFERENCE DATA

		В	SR56	BSR57	BSR58	
Drain-source voltage	±V _{DS}	max.	40	40	40	٧
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	250	250	250	mW
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	IDSS	> <	50 	20 100		mA mA
Gate-source cut-off voltage $V_{DS} = 15 \text{ V; } I_D = 0.5 \text{ nA}$	-V _{(P)GS}	> <	4 10	2	0,8 4	V V
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $I_D = 0$; $V_{GS} = 0$	r _{ds on}	<	25	40	60	Ω
Feedback capacitance at f = 1 MHz V _{GS} = 10 V; V _{DS} = 0	C _{rs}	<	5	5	5	pF
Turn-off time						
$V_{DD} = 10 \text{ V; } V_{GS} = 0$ $I_{D} = 20 \text{ mA; } -V_{GSM} = 10 \text{ V}$ $I_{D} = 10 \text{ mA; } -V_{GSM} = 6 \text{ V}$ $I_{D} = 5 \text{ mA; } -V_{GSM} = 4 \text{ V}$	t _{off} t _{off} t _{off}	< < <	25 - -	50 –	_ _ 100	ns ns ns

Note: Drain and source are interchangeable.

Limiting values in accordance with the Absolute Maxi	imum System (IEC 134)		
Drain-source voltage (See Fig. 4)	$^{\pm}$ V _{DS}	max.	40 V
Drain-gate voltage (See Fig. 4)	v_{DGO}	max.	40 V
Gate-source voltage (See Fig. 4)	$-V_{GSO}$	max.	40 V
Forward gate current	IGF	max.	50 mA
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	250 mW

 T_{stg} T_{i}

-55 to + 175 °C

max.

175 °C

THERMAL CHARACTERISTICS*

Storage temperature range

Junction temperature

 $T_j = P (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Thermal resistance

From junction to tab	R _{th j-t}	=	60 K/W
From tab to soldering points	R _{th t-s}	=	280 K/W
From soldering points to ambient**	R _{th s-a}	=	90 K/W

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified Gate-source cut-off current

V _{DS} = 0 V; -V _{GS} = 20 V	-I _{GSS}	<	1	nA
Drain cut-off current $V_{DS} = 15 \text{ V}; -V_{GS} = 10 \text{ V}$	DSX	<	1	nA

			BSR56	BSR57	BSR58
Drain current \triangle V _{DS} = 15 V; V _{GS} = 0	I _{DSS}	> <	50 —	20 100	8 mA 80 mA
Gate-source breakdown voltage $-I_G = 1 \mu A$; $V_{DS} = 0$	-V _(BR) GSS	>	40	40	40 V
Gate-source cut-off voltage ID = 0,5 nA; VDS = 15 V	-V _{(P)GS}	> <	4 10	2 6	0,8 V 4 V
Drain-source voltage (on) $I_D = 20 \text{ mA; } V_{GS} = 0$ $I_D = 10 \text{ mA; } V_{GS} = 0$ $I_D = 5 \text{ mA; } V_{GS} = 0$	V _{DSon} V _{DSon} V _{DSon}	< < <	750 	- 500 -	- mV - mV 400 mV
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $I_D = 0$; $V_{GS} = 0$	^r ds on	<	25	40	60 Ω

^{*} See Thermal characteristics.

^{**} Mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

[▲] Measured under pulsed conditions; t_p = 100 ms; δ ≤ 0,1.

			BSR56	BSR57	BSR58
Switching times* V _{DD} = 10 V; V _{GS} = 0 Conditions I _D and -V _{GSM}	I _D -V _{GSM}	=======================================	20 10	10 6	5 mA 4 V
Delay time	^t d	<	6	6	10 ns
Rise time	t _r	<	3	4	10 ns
Turn-off time	toff	<	25	50	100 ns

Fig. 2 Switching times waveforms.

Fig. 3 Test circuit.

BSR56; R =
$$464 \Omega$$

BSR57; R = 953Ω
BSR58; R = 1910Ω

Pulse generator

$$t_r = t_f \le 1 \text{ ns}$$

$$\delta = 0.02$$

$$Z_O = 50 \Omega$$

Oscilloscope

$$t_r \le 0.75 \text{ ns}$$
 $R_i \ge 1 \text{ M}\Omega$
 $C_i \le 2.5 \text{ pF}$

^{*} Switching times measured on devices in SOT-18 envelope.

Fig. 4 Voltage derating curve.

Fig. 5 Power derating curve.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

P-CHANNEL SILICON FIELD-EFFECT TRANSISTORS

Silicon symmetrical p-channel junction FETs in plastic microminiature SOT-23 envelopes and containing a BSJ174, 175, 176 or 177 crystal.

They are intended for application with analogue switches, choppers, commutators etc. using SMD technology.

A special feature is the interchangeability of the drain and source connections.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max	۲.	30)		V
Gate-source voltage	V _{GSO}	max	ζ.	30)		٧
Gate current	$-I_{G}$	max	۲.	50)		mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max		300 BSR1 7 5		DCD177	mW
Drain current $-V_{DS} = 15 \text{ V}; V_{GS} = 0$	-I _{DSS}		20 135		2 35	1,5 20	mA mA
Drain-source ON-resistance $-V_{DS} = 0.1 \text{ V}; V_{GS} = 0$	R _{DS on}	<	85	125	250	300	Ω

MECHANICAL DATA

Fig. 1 SOT-23.

Pinning:

1 = Drain 2 = Source 0,150 3 = Gate 0,090 0,1 max 10° max ₹ 10° ∡ max _ 1,1 _max

BSR174 = LO BSR175 = LP3,0 2,8 BSR176 = LQВ BSR177 = LR 1,9 0,95 = 0,2 M A B Α 2 2,5 1,4 max 3 Ф 0,1М 7**Z**96885

TOP VIEW

Note: Drain and source are interchangeable.

30°

max

Dimensions in mm

Marking codes:

RATINGS	
---------	--

TIAT III GO							
Limiting values in accordance with the	Absolute Maximu	ım Sys	tem (IE)	C 134)			
Drain-source voltage	± V _{DS}	max	ζ.	30)		V
Gate-source voltage	V_{GSO}	max	ς.	30)		V
Gate-drain voltage	$V_{ extsf{GDO}}$	max	ζ.	30)		V
Gate current (d.c.)	−l _G	max	ζ.	50)		mΑ
Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max	ς,	300)		mW
Storage temperature range	T_{stg}			-65 to +	150		oC
Junction temperature	Тj	max	۲.	150)		oC
THERMAL RESISTANCE							
From junction to ambient in free air	R _{th j-a}	=		430)		K/W
STATIC CHARACTERISTICS							
T _j = 25 ^o C unless otherwise specified			BSR174	BSR175	BSR176	BSR17	7
Gate cut-off current $-V_{GS} = 20 \text{ V; } V_{DS} = 0$	I _{GSS}	<	1	1	1	1	nA
Drain cut-off current $-V_{DS} = 15 \text{ V}; -V_{GS} = 10 \text{ V}$	-I _{DSX}	<	1	1	1	1	nA
Drain current $-V_{DS} = 15 \text{ V}; V_{GS} = 0$	-I _{DSS}	> <	20 135	7 70	2 35	1,5 20	mA mA
Gate-source breakdown voltage $I_G = 1 \mu A$; $V_{DS} = 0$	V _{(BR)GSS}	>	30	30	30	30	٧
Gate-source cut-off voltage $-I_D = 10 \text{ nA}$; $V_{DS} = 0$	v_{GSoff}	> <	5 10	3 6	1 4	0,8 2,25	V V
Drain-source ON-resistance -V _{DS} = 0,1 V; V _{GS} = 0	R _{DS on}	<	85	125	250	300	Ω

^{*} Mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

DYNAMIC CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified Input capacitance, f = 1 MHz

$$-V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$$

 $-V_{GS} = V_{DS} = 0$

Feedback capacitance, f = 1 MHz

 $-V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}$

Switching times (see Fig. 2 + 3)

Delay time

Rise time

Turn-on time

Storage temperature

Fall time

Turn-off time

Test conditions:

Fig. 2 Switching times test circuit

Cis	typ.	8	рF
C _{is} C _{is}	typ.	30	pF

C_{rs} typ. 4 pF

	E	3SR174	BSR175	BSR176	BSR177	
t_{d}	typ.	2	5	15	20	ns
t _r	typ.	5	10	20	25	ns
ton	typ.	7	15	35	45	ns
t_S	typ.	5	10	15	20	ns
tf	typ.	10	20	20	25	ns
t _{off}	typ.	15	30	35	45	ns
$-v_{DD}$		10	6	6	6	٧
V_{GSoff}		12	8	6	3	٧
R_{L}		560	1200	2000	2900	Ω
V_{GSon}		0	0	0	о	٧

Rise time input voltage < 1 ns

Fig. 3 Input and output waveforms

$$t_d + t_r = t_{on}$$

$$t_s + t_f = t_{off}$$

N-CHANNEL FETS

Silicon symmetrical n-channel junction field-effect transistors in TO-18 metal envelopes with the gate connected to the case. The transistors are intended for switching applications. The devices have the feature: low 'on' resistance at zero gate voltage.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	ma	×.	40		V
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	ma	х.	350		mW
Drain current			BSV78	BSV79	BSV8	0
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	IDSS	>	50	20	10	mA
Gate-source cut-off voltage $I_D = 1 \text{ nA; } V_{GS} = 15 \text{ V}$	-V _{(P)GS}	> <	3,75 11	2,0 7,0	1,0 5,0	V
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $I_D = 0$; $V_{GS} = 0$	r _{ds} on	<	25	40	60	Ω
Feedback capacitance at f = 1 MHz $V_{DS} = 0$; $-V_{GS} = 10 V$	C _{rs}	<	5	5	5	рF
Turn-on time	ton	<	10	18	30	ns
Turn-off time	toff	<	10	16	32	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Gate connected to case

Note: Drain and source are interchangeable.

Accessories: 56246 (distance disc).

Products approved to CECC 50 012-011, available on request.

Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Drain-source voltage	$^{\pm}$ V _{DS}	max.	40	٧
Drain-gate voltage (open source)	V_{DGO}	max.	40	٧
Gate-source voltage (open drain)	$-V_{GSO}$	max.	40	٧
Forward gate current	IG	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	350	mW
Storage temperature	T_{stg}	-65 to +	200	oC
Operating junction temperature	т _ј	max.	175	οC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	430	K/W

CHARACTERISTICS

 T_1 = 25 °C unless otherwise specified

Gate cut-off currents

Switching times (see Fig. 2)

Turn-on time when switched from

$-V_{GSMoff} = 11 \text{ V to } I_{Don} = 20 \text{ mA}; V_{DD} = 10 \text{ V (BSV78)}$
$-V_{GSMoff} = 7 \text{ V to } I_{Don} = 10 \text{ mA}; V_{DD} = 10 \text{ V (BSV79)}$
$-V_{GSMoff} = 5 V \text{ to } I_{Don} = 5 \text{ mA}; V_{DD} = 10 V (BSV80)$
delay time
rise time
turn-on time
furn-off time when switched from

$I_{Don} = 20 \text{ mA to } -V_{GSMoff} =$	11 V; $V_{DD} = 10 V (BSV78)$
$I_{Don} = 10 \text{ mA to } -V_{GSMoff} =$	7 V; V _{DD} = 10 V (BSV79)
$I_{Don} = 5 \text{ mA to } -V_{GSMoff} =$	$5 \text{ V; V}_{DD} = 10 \text{ V (BSV80)}$
fall time	·
storage time	
turn-off time	

		BSV78	BSV79	BSV80
^t d t _r	< < <	5 5 10	10 8 18	10 ns 20 ns 30 ns
ton	_	10	10	30 ns
t _f t _s t _{off}	< < <	6 4 10	11 5 16	24 ns 8 ns 32 ns

Fig. 2 Switching times test circuit and input and output waveforms.

$$R = \frac{10 - V_{DSon} (V)}{I_{Don} (A)} - 51$$

$$R = \frac{BSV78 | BSV79 | BSV80}{424 | 909 | 1885 \Omega}$$

Pulse generator: Oscilloscope: $R_i = 50 \Omega$ $R_i = 50 \Omega$ $t_r < 0.5 \text{ ns}$ $t_r < 1 ns$ $t_f < 5 \, ns$ $t_{f} < 1 ns$

N-CHANNEL FETS

Symmetrical silicon n-channel depletion type junction field-effect transistors on a plastic microminiature envelope intended for application in thick and thin-film circuits. The transistors are intended for low-power chopper or switching applications in industry.

QUICK REFERENCE DATA

		PM	BF4391	PMBF4392	PMBF	4393
Drain-source voltage	± V _{DS}	max.	40	40	40	V
Drain current $V_{DS} = 20 \text{ V}; V_{GS} = 0$	DSS	>	50	25	5	mΑ
Gate-source cut-off voltage $V_{DS} = 20 \text{ V}; I_D = 1 \text{ nA}$	-V _{(P)GS}	> <	4 10	2 5	0,5	V
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $I_D = 1 \text{ mA}$; $V_{GS} = 0$	^r ds on	<	30	60	100	Ω
Feedback capacitance at f = 1 MHz -V _{GS} = 12 V; V _{DS} = 0	C _{rs}	<	3,5	3,5	3,5	pF
Turn-off time $V_{DD} = 10 \text{ V; } V_{GS} = 0$						
$I_D = 12 \text{ mA}; -V_{GSM} = 12 \text{ V}$	toff	<	20			ns
$I_D = 6 \text{ mA}; -V_{GSM} = 7 \text{ V}$	toff	<	1.90n	35	_	ns
$I_D = 3 \text{ mA}; -V_{GSM} = 5 \text{ V}$	t _{off}	<	-	_	50	ns

Note: Drain and source are interchangeable.

RATINGS						
Limiting values in accordance with the Absolute N	Maximum Syste	em (IEC 134)			
Drain-source voltage (See Fig. 4)			$^{\pm}$ V _{DS}	max.	40	V
Drain-gate voltage (See Fig. 4)			v_{DGO}	max.	40	V
Gate-source voltage (See Fig. 4)			$-V_{GSO}$	max.	40	V
Gate current (d.c.)			IG	max.	50	mΑ
Total power dissipation up to T _{amb} = 65 °C			P _{tot}	max.	250	mW
Storage temperature range			T _{stg}	65 to	+ 175	оС
Junction temperature			Τ _j	max.	175	oC.
THERMAL CHARACTERISTICS						
$T_j = P(R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$						
Thermal resistance						
From junction to tab			R _{th j-t}	=	60	K/W
From tab to soldering points			R _{th t-s}	=	260	K/W
From soldering points to ambient *			R _{th s-a}	=	120	K/W
CHARACTERISTICS						
T _{amb} = 25 °C unless otherwise specified						
Gate-source voltage						
$I_G = 1 \text{ mA}; V_{DS} = 0$,	V_{GSon}	<	1	V
Gate-source cut-off current				<	1	nA
$V_{DS} = 0 \text{ V}; -V_{GS} = 20 \text{ V}$			-IGSS		0,2	
$V_{DS} = 0 V; -V_{GS} = 20 V; T_{amb} = 150 °C$		•	−lGSS ~	_	. 0,2	μΑ
		PM	BF4391	PMBF4392	PMBF	4393
Drain current**		>	50	25	5	mΑ
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	DSS	<	150	75	30	mΑ
Gate-source breakdown voltage						
$-I_G = 1 \mu A; V_{DS} = 0$	−V(BR)GSS	>	40	40	40	V
Gate-source cut-off voltage I _D = 1 nA; V _{DS} = 20 V	V(5) 55	>	4	2	0,5	V
1D = 111A, VDS = 20 V	-V _{(P)GS}	<	10	5	3	V
Drain-source voltage (on)		_	0.4			
$I_D = 12 \text{ mA}; V_{GS} = 0$	V _{DSon}	<	0,4	-	_	-
$I_D = 6 \text{ mA}; V_{GS} = 0$	V_{DSon}	<		0,4	-	-
$I_D = 3 \text{ mA}; V_{GS} = 0$	V_{DSon}	<	_		0,4	٧
Drain-source resistance (on) ID = 0; VGS = 0; f = 1 kHz	^r ds on	<	30	60	100	Ω
2 00 0	40 0.1					

^{*} Mounted on a ceramic substrate of 7 mm x 5 mm x 0,7 mm. ** Measured under pulsed conditions; t_p = 100 μ s; δ = 0,01.

		PM	BF4391	PMBF4392	PMBF4393
Drain cut-off current					
$-V_{GS} = 12 V$	IDSX	<	1	_	– nA
$-V_{GS} = 7 V$ $-V_{GS} = 5 V$ $V_{DS} = 20 V$	^I DSX	<	_	1	- nA
$-V_{GS} = 5 V$	IDSX	<	_		1 nA
-V _{GS} = 12 V	I _{DSX}	<	0,2	_	- μΑ
$-V_{GS} = 7 V$ $-V_{GS} = 5 V$ $V_{DS} = 20 V; T_{amb} = 150 °C$	IDSX	<	_	0,2	– μΑ
$-V_{GS} = 5 V$	IDSX	<	_	_	0,2 μΑ
y-parameters (common source) V _{DS} = 20 V; V _{GS} = 0; f = 1 MHz					
Input capacitance	c_{is}	<	14	14	14 pF
Feedback capacitance	C_{rs}	<	3,5	3,5	3,5 pF
Switching times $V_{DD} = 10 \text{ V; } V_{GS} = 0$					
	1_	=	12	6	3 mA
Conditions I _D and –V _{GSM}	¹ _D −V _{GSM}	=	12	7	5 V
Rise time	t _r	<	5	5	5 ns
Turn on time	t _{on}	<	15	15	15 ns
Fall time	t _f	<	15	20	30 ns
Turn off time	toff	<	20	35	50 ns

Fig. 2 Switching times waveforms.

Fig. 3 Test circuit.

$$R = \frac{9.6}{I_D} - 51 \Omega$$

Pulse generator:

$$t_r$$
 < 0,5 ns
 t_f < 0,5 ns
 t_p = 100 μ s
 δ = 0,01

Oscilloscope:

$$R_i = 50 \Omega$$

Fig. 4 Voltage derating curve.

Fig. 5 Power derating curve.

N-CHANNEL JUNCTION FIELD-EFFECT TRANSISTOR

Symmetrical n-channel, depletion type, silicon junction field-effect transistor, designed primarily for small-signal general purpose high-frequency amplifier applications. The 2N3822 features low gate leakage current and low input capacitance.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	50 V
Gate-source voltage	$-v_GS$	max.	50 V
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	300 m\
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	IDSS	2	? to 10 m/
Transfer admittance (common source) $V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz}$ $V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 100 \text{ MHz}$	Yfs Yfs	3,0	to 6,5 ms

MECHANICAL DATA

Fig. 1 TO-72.

Dimensions in mm

Note: Drain and source are interchangeable.

(1) Shield lead connected to case.

Accessories: 56246 (distance disc).

RATINGS				
Limiting values in accordance with the Absolute Maximu	m System (IEC 134)			
Drain-source voltage	$\pm V_{DS}$	max.	50	V
Drain-gate voltage	v_{DG}	max.	50	V
Gate-source voltage	$-v_GS$	max.	50	V
Gate current (d.c.)	IG	max.	10	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300	mW
Storage temperature	T_{stg}	−65 to	+ 200	oC
Junction temperature	Тj	max.	200	oC.
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	==	590	K/W
CHARACTERISTICS with source connected to case for	all measurements			
T _{amb} = 25 °C unless otherwise specified				
Gate cut-off current				
$-V_{GS} = 30 \text{ V}; V_{DS} = 0$	-l _{GSS}	< <	0,1	
$-V_{GS} = 30 \text{ V; } V_{DS} = 0; T_{amb} = 150 ^{\circ}\text{C}$	−l _{GSS}	<	0,1	μΑ
Drain current * $V_{DS} = 15 V$; $V_{GS} = 0$	I _{DSS}	:	2 to 10	mA
Gate-source breakdown voltage $-I_G = 1 \mu A; V_{DS} = 0$	-V(BR)GSS	>	50	V
Gate-source voltage $V_{DS} = 15 \text{ V}; I_D = 200 \mu A$	$-v_GS$		1 to 4	V
Gate-source cut-off voltage $V_{DS} = 15 \text{ V}; I_D = 0,5 \text{ nA}$	−V(P)GS	<	6	V
Small-signal common source characteristics V _{DS} = 15 V; V _{GS} = 0				
Transfer admittance *				_
f = 1 kHz f = 100 MHz	Yfs	> 3,0	to 6,5	
Output admittance at f = 1 kHz *	Yfs	<		μS
Input capacitance at f = 1 MHz	Yos	<		μS pF
·	C _{is}	<		•
Feedback capacitance at f = 1 MHz	C _{rs}		3	pF
Noise figure V_{DS} = 15 V; V_{GS} = 0; R_G = 1 M Ω f = 10 Hz; B = 5 Hz	F	<	5	dB
Equivalent input noise voltage				
$V_{DS} = 15 \text{ V}; V_{GS} = 0$. ,—
f = 10 Hz; B = 5 Hz	v _n	<	200	nV/√Hz

^{*} Measured under pulse conditions: t_p = 100 ms; $\delta \le$ 0,1.

N-CHANNEL JUNCTION FIELD-EFFECT TRANSISTOR

Symmetrical n-channel, depletion type, silicon planar epitaxial junction field-effect transistor in a TO-72 metal envelope, intended for v.h.f. amplifier and mixer applications in industrial service.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	30 V
Gate-source voltage	-V _{GS}	max.	30 V
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300 mW
Drain current $V_{DS} = 15 \text{ V}; V_{GS} = 0$	I _{DSS}		4 to 20 mA
Feedback capacitance at f = 1 MHz $V_{DS} = 15 \text{ V}$; $V_{GS} = 0$	C _{rs}	<	2 pF
Transfer admittance (common source) VDS = 15 V; VGS = 0; f = 200 MHz	Y fs	>	3,2 mS
Noise figure at f = 100 MHz V_{DS} = 15 V; V_{GS} = 0; R_G = 1 $k\Omega$	F	<	2,5 dB

MECHANICAL DATA

Fig. 1 TO-72.

Dimensions in mm

Note: Drain and source are interchangeable.

(1) Shield lead connected to case. Accessories: 56246 (distance disc).

Limiting values in accordance with the	Absolute Maximum System	(IEC 134)
--	-------------------------	-----------

Drain-source voltage	$\pm V_{DS}$	max. 30 V
Drain-gate voltage	V_{DG}	max. 30 V
Gate-source voltage	$-V_{GS}$	max. 30 V
Gate current (d.c.)	I_{G}	max. 10 mA
Total power dissipation up to Tamb = 25 °C	P_{tot}	max. 300 mW
Storage temperature	T_{stg}	$-65 \text{ to} + 200 ^{\circ}\text{C}$
Junction temperature	Tj	max. 200 °C

THERMAL RESISTANCE

From junction to ambient in free air	R _{th j-a}	=	590 K/W
--------------------------------------	---------------------	---	---------

CHARACTERISTICS with source and shield connected to case for all measurements

T _{amb} =	25	oC	unless	otherwise	specified
--------------------	----	----	--------	-----------	-----------

airio		
Gate cut-off	current	

$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	$-l_{GSS}$	<	0,5 nA
$-V_{GS} = 20 \text{ V}; V_{DS} = 0; T_{amb} = 150 ^{\circ}\text{C}$	-I _{GSS}	<	0,5 μΑ

Drain current *

$V_{DS} = 15 V; V_{GS} = 0$	DSS		4 to 20 mA
Gate-source breakdown voltage $-1_G = 1 \mu A$; $V_{DS} = 0$	-V(BR)GSS	>	30 V
Gate-source voltage			

 $I_D = 400 \mu A$; $V_{DS} = 15 \text{ V}$ Gate-source cut-off voltage

Gate-source cut-off voltage
$$V_{DS} = 15 \text{ V}; I_D = 0,5 \text{ nA}$$
 $-V_{(P)GS} < 8 \text{ V}$

1,0 to 7,5 V

Small-signal common source characteristics

$$V_{DS} = 15 \text{ V}; V_{GS} = 0$$

Transfer admittance *

f = 1 kHz	Yfs		3,5 to 6,5 mS
f = 200 MHz	Yfs	>	3,2 mS
Output admittance at f = 1 kHz *	Yos	<	35 μS
Input capacitance at f = 1 MHz	c_{is}	<	6 pF
Feedback capacitance at f = 1 MHz	C _{rs}	<	2 pF
Real part of input conductance at f = 200 MHz	Re(yis)	<	0,8 mS
Real part of output conductance at f = 200 MHz	Re(yos)	<	0,2 mS
Noise figure at f = 100 MHz			
$V_{DS} = 15 \text{ V}; V_{GS} = 0; R_{G} = 1 \text{ k}\Omega$	F	<	2,5 dB

^{*} Measured under pulse conditions: t_p = 100 ms; $\delta \le$ 0,1.

N-CHANNEL SILICON FET

Symmetrical n-channel planar epitaxial junction field-effect transistor in a TO-72 metal envelope with the shield lead connected to the case. The transistor is suitable in a variety of low power switching applications, e.g. in multiplexing systems.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	30 V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	30 V
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	300 mW
Drain current $V_{DS} = 20 \text{ V}; V_{GS} = 0$	IDSS	>	2 mA
Gate-source cut-off voltage $I_D = 10 \text{ nA}$; $V_{DS} = 10 \text{ V}$	-V _{(P)GS}		4 to 6 V
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 0$; $V_{GS} = 7 \text{ V}$	C _{rs}	<	1,5 pF
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $V_{GS} = 0$; $I_D = 0$	RDS(on)	<	220 Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

(1) = shield lead connected to case Accessories: 56246 (distance disc).

Note: Drain and source are interchangeable

 $\textbf{RATINGS} \quad \text{Limiting values in accordance with the Absolute Maximum System (IEC 134)}$

Drain-source voltage	$^{\pm m V}_{ m DS}$	max.	30	V
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	$-v_{GSO}$	max.	30	V
Gate current	$^{\mathrm{I}}\mathrm{_{G}}$	max.	10	mA
Total power dissipation up to T_{amb} = 25 ^{o}C	P _{tot}	max.	300	mW
Storage temperature range	$T_{ m stg}$	-55 to +200		$^{\mathrm{o}}\mathrm{C}$
Junction temperature	Тj	max.	200	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	=	590	K/W

178

CHARACTERISTICS	T_j = 25 o C unless otherwise specified			
Gate cut-off currents				
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	$-I_{GSS}$	<	0.1	nA
Drain current				
$V_{DG} = 20 \text{ V; } I_S = 0$	$I_{ ext{DGO}}$	<	0.1	nA
V_{DG} = 20 V; I_S = 0; T_{amb} = 150 ^{o}C	$I_{ m DGO}$	<	0.2	μΑ
Drain current 1)				•
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	$^{\mathrm{I}}\mathrm{DSS}$	>	2	mA
Gate-source breakdown voltage				
$-I_G = 1.0 \mu\text{A}; V_{DS} = 0$	^{-V} (BR)GS	>	30	V
Gate-source voltage				
I_D = 10 nA; V_{DS} = 10 V	^{-V} (P)GS		4 to 6	V
Drain-source voltage				
$I_D = 1.0 \text{ mA}; V_{GS} = 0$	v_{DS}	<	0.25	V
Drain cut-off current				
V_{DS} = 10 V; $-V_{GS}$ = 7.0 V	I_{D}	<	1.0	nA
$V_{DS} = 10 \text{ V}; -V_{GS} = 7.0 \text{ V}; T_{amb} = 150 \text{ oc}$	$I_{\mathbf{D}}$	<	2.0	μΑ
Drain-source resistance (on) at $f = 1 \text{ kHz}$				
$V_{GS} = 0; I_D = 0$	R _{DS(on)}	<	220	Ω
Input capacitance at f = 1 MHz				
$V_{DS} = 20 \text{ V; } V_{GS} = 0$	$\mathtt{C_{is}}$	<	6	pF
Feedback capacitance at f = 1 MHz				
$V_{DS} = 0$; $V_{GS} = 7 V$	$-c_{rs}$	<	1.5	pF
Switching times				
V_{DD} = 1.5 V; $I_{D \text{ on}}$ = 1.0 mA			/	
$V_{GS \text{ on}} = 0$; $-V_{GS \text{ off}} = 6 \text{ V}$				
delay time	^t d	<	20	ns
rise time turn off time	${}^{ m t}_{ m r}$	<	100 100	ns ns
	OII			

CHARACTERISTICS (continued)

Switching times

$$V_{DD} = 1.5 \text{ V}; I_{D \text{ on}} = 1.0 \text{ mA}$$

 $V_{GS \text{ on}} = 0; -V_{GS \text{ off}} = 6 \text{ V}$

Fig. 2 Test circuit

Fig. 3 Waveforms

Pulse generator:

 $\begin{array}{l} {\rm t_r} &< 1.0 \; {\rm ns} \\ {\rm t_f} &< 1.0 \; {\rm ns} \\ {\rm t_p} &= 1.0 \; {\rm \mu s} \\ {\rm \delta} &< 0.5 \\ {\rm R_S} &= \; 50 \; {\rm \Omega} \\ \end{array}$

Oscilloscope:

 $\begin{array}{l} {\rm t_r} < 10 \ {\rm ns} \\ {\rm R_i} > \ 5 \ {\rm M}\Omega \\ {\rm C_i} < 10 \ {\rm pF} \end{array} \label{eq:transformation}$

N-CHANNEL FETS

Silicon symmetrical n-channel depletion type junction field-effect transistors in TO-18 metal envelopes with the gate connected to the case. The transistors are intended for low power switching applications in industrial service.

QUICK REFERENCE DATA

Drain-source voltage	±V _{DS}	max		40		٧
Total power dissipation up to T _{case} = 25 °C	P_{tot}	max		1,8		W
Drain current			2N4091	2N4092	2N409	3
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	¹ DSS	>	30	15	8	mΑ
Gate-source cut-off voltage $I_D = 1 \text{ nA}$; $V_{DS} = 20 \text{ V}$	-V _{(P)GS}	> <	5,0 10	2,0 7,0	',-	V V
Drain-source resistance (on) at f = 1 kHz ID = 0; VGS = 0	r _{ds on}	<	30	50	80	Ω
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 0$; $-V_{GS} = 20 \text{ V}$	C_{rs}	<		5,0		pF
$\begin{array}{l} \text{Turn-off time} \\ \text{V}_{DD} = 3.0 \text{ V; V}_{GS} = 0 \\ \text{I}_{D} = 6.6 \text{ mA; } -\text{V}_{GSM} = 12 \text{ V} \\ \text{I}_{D} = 4.0 \text{ mA; } -\text{V}_{GSM} = 8 \text{ V} \\ \text{I}_{D} = 2.5 \text{ mA; } -\text{V}_{GSM} = 6 \text{ V} \end{array} \qquad \begin{array}{l} \textbf{2N40} \\ \textbf{2N40} \\ \textbf{2N40} \end{array}$	92 t _{off}	< < <	-	40 60 80		ns ns ns

MECHANICAL DATA

Fig. 1 TO-18.

Gate connected to case

Note: Drain and source are interchangeable.

Accessories: 56246 (distance disc).

Dimensions in mm

 $\pmb{RATINGS} \ \ Limiting \ values \ in accordance \ with the \ Absolute \ Maximum \ \pmb{S}ystem \ \ (IEC\ 134)$

	Voltages				
	Drain-source voltage	$^{\pm \mathrm{V}}\mathrm{DS}$	max.	40	V
	Drain-gate voltage (open source)	$v_{ m DGO}$	max.	40	V
	Gate-source voltage (open drain)	$-v_{GSO}$	max.	40	V
	Current				
	Forward gate current (d.c.)	I_G	max.	10	mA
	•				
	Total power dissipation up to $T_{\mbox{case}}$ = 25 $^{\mbox{o}}\mbox{C}$	P_{tot}	max.	1.8	W
	Storage temperature	$T_{ m stg}$	-55 to	+200	$^{\mathrm{o}}\mathrm{C}$
	Junction temperature	T_{j}	max.	200	$^{\mathrm{o}}\mathrm{C}$
	THERMAL RESISTANCE				
-	From junction to case in free air	R _{th j-c}	=	100	K/W

CHARACTERISTICS

 T_{amb} = 25 o C unless otherwise specified

Drain currents

$V_{DG} = 20 \text{ V}; I_S = 0$	$I_{\rm DGO}$	<		0.2		nA
$V_{DG} = 20 \text{ V}; I_S = 0; T_{amb} = 150 ^{o}\text{C}$	${}^{\mathrm{I}}\!\mathrm{DGO}$	<		0.4		μΑ
Source current						
$V_{SG} = 20 \text{ V}; I_D = 0$	I_{SGO}	<		0.2		nA
Drain cut-off current		2	2N4091	2N4092	2N409	93
$V_{DS} = 20 \text{ V}; -V_{GS} = 12 \text{ V}$	I_{DSX}	<	0.2	-	_	nA
$V_{DS} = 20 \text{ V}; -V_{GS} = 8 \text{ V}$	I_{DSX}	<	-	0.2	-	nA
$V_{DS} = 20 \text{ V}; -V_{GS} = 6 \text{ V}$	I_{DSX}	<	-	-	0.2	nA
$V_{DS} = 20 \text{ V}; -V_{GS} = 12 \text{ V}; T_{amb} = 150 ^{o}\text{C}$	I_{DSX}	<	0.4	-	-	μΑ
V_{DS} = 20 V; $-V_{GS}$ = 8 V; T_{amb} = 150 o C	I_{DSX}	<	-	0.4	-	μA
$V_{DS} = 20 \text{ V}; -V_{GS} = 6 \text{ V}; T_{amb} = 150 ^{o}\text{C}$	I_{DSX}	<	-	,-	0.4	μA
Gate-source breakdown voltage						
$-I_G = 1.0 \mu\text{A}; V_{DS} = 0$	-V _{(BR)GS}	SS ^{>}	40	40	40	V
Drain current 1)						
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	$I_{ m DSS}$	>	30	15	8	mA
Gate-source cut-off voltage						
$I_D = 1 \text{ nA; } V_{DS} = 20 \text{ V}$	-V(P)GS	>	$\frac{5.0}{10}$	2.0 7.0	1.0 5.0	V V
Drain-source voltages (on)						
$I_D = 6.6 \text{ mA}; V_{GS} = 0$	V_{DSon}	<	0.2	-	-	V
$I_D = 4.0 \text{ mA}; V_{GS} = 0$	v_{DSon}	<	-	0.2	-	V
$I_D = 2.5 \text{ mA}; V_{GS} = 0$	v_{DSon}	<	-	~	0.2	V
Drain- source resistance (on)						
$I_D = 1.0 \text{ mA}; V_{GS} = 0$	r _{DSon}	<	30	50	80	Ω
Drain-source resistance (on) at $f = 1 \text{ kHz}$						
$I_{D} = 0; V_{GS} = 0$	rds on	<	30	50	80	Ω^{-}

 $[\]overline{\mbox{1}}$) Measured under pulsed conditions: $t_{p} \leq 300~\mu s\,;\, \delta \leq 0.03$

CHARACTERISTICS (continued)

 $T_{amb} = 25$ °C unless otherwise specified

y-parameters at f = 1 MHz (common source)

Input capacitance

$$V_{DS} = 20 \text{ V} ; V_{GS} = 0$$

$$C_{is}$$
 <

Feedback capacitance

$$V_{DS} = 0$$
 ; $-V_{GS} = 20 \text{ V}$

Switching times

$$V_{DD} = 3.0 \text{ V}; \quad V_{GS} = 0$$

DD -,- ,	G5 °
Delay time	
Rise time	
FF 00 - 1	
Turn-off time	

		2N4091	2N4092	2N4093	
$^{\mathrm{I}}\mathrm{D}$	=	6,6	4,0	2,5	mA
$-v_{GSM}$	=	12	8	6	V
t _d	< .	15	15	20	ns
$t_{\mathbf{r}}$	<	10	20	40	ns
$t_{ m off}$	<	40	60	80	ns

Test circuit:

$$R = \frac{2, 8}{I_D}$$

Pulse generator:

Oscilloscope:

C_i <

 t_{r} t_{f} <

ns ns t_r

0,4

 $M\Omega$

μs

 $R_i > 9,8$ 1, 7

рF

ns

 t_{p} δ

1,0

0,1

 R_S

50

1

1

Ω

184

July 1985

N-CHANNEL FETS

Silicon symmetrical n-channel depletion type junction field-effect transistors in TO-18 metal envelopes with the gate connected to the case. The transistors are intended for low power, chopper or switching, application in industrial service.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max	c.	40	,	V
Total power dissipation up to T _{case} = 25 °C	P _{tot}	max	с.	1,8	,	W
Drain current			2N4391	2N4392	2N4393	
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	DSS	>	50	25	5 (mΑ
Gate-source cut-off voltage $I_D = 1 \text{ nA}$; $V_{DS} = 20 \text{ V}$	V _{(P)GS}	> <	4,0 10	2,0 5,0	0,5 3,0	
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $I_D = 1 \text{ mA}$; $V_{GS} = 0$	^r ds on	<	30	60	100	Ω
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C _{rs}	<	3,5	3,5	3,5	pF
Turn-off time			~			
$V_{DD} = 10 \text{ V; } V_{GS} = 0$ $I_{D} = 12 \text{ mA; } -V_{GSM} = 12 \text{ V}$ $I_{D} = 6,0 \text{ mA; } -V_{GSM} = 7 \text{ V}$ $I_{D} = 3,0 \text{ mA; } -V_{GSM} = 5 \text{ V}$	^t off ^t off ^t off	< < <	20 - -	- 35 -	- 1	ns ns ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Gate connected to case

Note: Drain and source are interchangeable.

Accessories: 56246 (distance disc).

 $\pmb{RATINGS} \ Limiting \ values \ in \ accordance \ with \ the \ Absolute \ Maximum \ System \ (IEC\ 134)$

	Drain-source voltage	$\pm v_{DS}$	max.	40)	V	
	Drain-gate voltage (open source)	v_{DGO}	max.	40)	V	
	Gate-source voltage	$-v_{GSO}$	max.	40)	V	
	Cata aurment (d. a.)	T	may	50)	mA	
	Gate current (d.c.)	$^{\mathrm{I}}\mathrm{_{G}}$	max.	30	,	ша	
	Total power dissipation up to $T_{case} = 25 {}^{o}C$	P_{tot}	max.	1.8	3	W	
	Storage temperature	$T_{ ext{stg}}$	- 65	to 200)	$^{\mathrm{o}}\mathrm{C}$	
	Junction temperature	T _i	max.	200)	°C	
		J					
-	From junction to case in free air	R _{th j-c}	=	100)	K/W	
	CHARACTERISTICS T	amb = 25	OC unle	ss other	wise si	necified	
	Gate cut-off current	amb -	0 33220			pecifica	
	$-V_{GS} = 20 \text{ V; } V_{DS} = 0$	-I _{GSS} <		0.1	i	nA	
	$-V_{GS} = 20 \text{ V}; V_{DS} = 0; T_{amb} = 150 ^{\text{o}}\text{C}$			0.2			
	$-v_{GS} = 20 \text{ v}; v_{DS} = 0; r_{amb} = 150 \text{ C}$	-I _{GSS} <		0.2	2	μA	
	Drain cut-off current		<u>2N4391</u>	2N4392	2N439	3	
	V_{DS} = 20 V; $-V_{GS}$ =12 V	$I_{DSX} <$	0.1	-	_	nA	
	$V_{DS} = 20 \text{ V}; -V_{GS} = 7 \text{ V}$	$I_{DSX} <$	-	0.1	-	nA	
	$V_{DS} = 20 \text{ V}; -V_{GS} = 5 \text{ V}$	$I_{DSX} <$	-	-	0.1	nA	
	$V_{DS} = 20 \text{ V}; -V_{GS} = 12 \text{ V}; T_{amb} = 150 {}^{o}\text{C}$		0.2	_	-	μΑ	
	$V_{DS} = 20 \text{ V}; -V_{GS} = 7 \text{ V}; T_{amb} = 150 {}^{o}\text{C}$		-	0.2	-	μΑ	
	$V_{DS} = 20 \text{ V}; -V_{GS} = 5 \text{ V}; T_{amb} = 150 {}^{o}\text{C}$	$I_{DSX} <$	-	l – I	0.2	μΑ	

CHARACTERISTICS (continued)	$T_{amb} = 2$	5 °C	unless	otherwi	se spec	ified
Drain currents 1)		2	N4391	2N4392	2N4393	<u>3</u>
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	IDSS	> <	50 150	-	-	mA mA
$V_{DS} = 20 \text{ V; } V_{GS} = 0$	$I_{ m DSS}$	> <	-	25 75	-	mA mA
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	I_{DSS}	> <	-	- -	5 30	mA mA
Gate-source breakdown voltage						
$-I_G = 1 \mu A$; $V_{DS} = 0$	-V _(BR) GS	SS >	40	40	40	V
Gate-source voltage						
$I_G = 1 \text{ mA}$; $V_{DS} = 0$	v_{GSon}	<	1.0	1.0	1.0	V
Gate-source cut-off voltage						
I_D = 1 nA; V_{DS} = 20 V	-V(P)GS	<	4.0 10	2.0 5.0	0.5 3.0	V V
Drain-source voltage (on)					l	
$I_D = 12 \text{ mA}; V_{GS} = 0$	V _{DSon}	<	0.4	-	-	V
$I_D = 6.0 \text{ mA}; V_{GS} = 0$	v_{DSon}	<		0.4	-	V
$I_D = 3.0 \text{ mA}; V_{GS} = 0$	v_{DSon}	<	-		0.4	V
Drain-source resistance (on)				,		
$I_D = 1 \text{ mA}; V_{GS} = 0$	r_{DSon}	<	30	60	100	Ω
Drain-source resistance (on) at f = 1 kHz						
$I_D = 0; V_{GS} = 0$	$r_{ extsf{d}son}$	<	30	60	100	Ω
y parameters at f = 1 MHz (common source)						
Input capacitance						
$V_{DS} = 20 \text{ V; } V_{GS} = 0$	c_{is}	<	14	14	14	pF
Feedback capacitance						
$-V_{GS} = 12 \text{ V}; V_{DS} = 0$ $-V_{GS} = 7 \text{ V}; V_{DS} = 0$ $-V_{GS} = 5 \text{ V}; V_{DS} = 0$	-C _{rs} -C _{rs} -C _{rs}	< < <	3.5	- 3.5 -	- - 3.5	pF pF pF

 $[\]overline{}^{1}$) measured under pulsed conditions: t_{p} = 100 μ s; δ = 0.01

CHARACTERISTICS (continued)

 $T_{amb} = 25$ o C unless otherwise specified

Switching times

$$V_{DD} = 10 \, V; \, V_{GS} = 0 \\ I_D = 12 \\ -V_{GSM} = 12 \\ 7 \\ 5 \\ V \\ Rise time \\ Turn on time \\ t_{on} < 5 \\ 5 \\ 5 \\ ns \\ Turn off time \\ t_f < 15 \\ 20 \\ 30 \\ ns \\ Turn off time \\ t_{off} < 20 \\ 35 \\ 50 \\ ns \\$$

Test circuit:

$$R = \frac{9.6}{I_D} - 51\Omega$$

Pulse generator:

Oscilloscope:

$$R_i = 50 \Omega$$

N-CHANNEL FETS

Silicon symmetrical n-channel depletion type junction field-effect transistors in TO-18 metal envelopes with the gate connected to the case. The transistors are intended for low power, chopper or switching, applications in industrial service.

QUICK REFERENCE DATA

Drain-source voltage Total power dissipation up	2N4856 to 2N4858 2N4859 to 2N4861 o to T _{amb} = 25 °C	± V _{DS} ± V _{DS} P _{tot}	max max	2N4856	40 30 360 2N4857	2N485	_
Drain current				2N4859	2N4860	2N486	51 —
$V_{DS} = 15 \text{ V; } V_{GS} = 0$		DSS	>	50	20	8	mΑ
Gate-source cut-off voltage $I_D = 0.5 \text{ nA}$; $V_{DS} = 15 \text{ nA}$		-V _{(P)GS}	> <	4 10	2 6	0,8 4	V V
Drain-source resistance (or I _D = 0; V _{GS} = 0	n) at f = 1 kHz	^r ds on	<	25	40	60	Ω
Feedback capacitance at f $V_{DS} = 0$; $-V_{GS} = 10 \text{ V}$		C _{rs}	<		8		pF
Turn-off time $V_{DD} = 10 \text{ V}; V_{GS} = 0$				*			
$I_D = 20 \text{ mA; } -V_{GSM} =$		859	toff	: <	25		ns
I _D = 10 mA; -V _{GSM} =			toff	_	50		ns
I _D = 5 mA; -V _{GSM} =	4 ∨ 2N4858; 2N4	861	toff	: <	100		ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18

Gate connected to case

Accessories: 56246 (distance disc).

Note: Drain and source are interchangeable.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

	2N4856 2N4859 2N4857 2N4860 2N4858 2N4861
Drain-source voltage	±V _{DS} max. 40 30 V
Drain-gate voltage (open source)	V _{DGO} max. 40 30 V
Gate-source voltage (open drain)	-V _{GSO} max. 40 30 V
Gate current (d.c.) Total power dissipation up to T _{amb} = 25 °C	I_G max. 50 mA $P_{ m tot}$ max. 360 mW
Storage temperature	$T_{\rm stg}$ -65 to +200 $^{ m o}{ m C}$
Junction temperature	T_j max. 200 $^{\rm o}{ m C}$
THERMAL RESISTANCE	
→ From junction to ambient in free air	$R_{th j-a} = 490 K/W$

CHARACTERISTICS

T _{amb} = 25 °C unless otherwise specified				856 2N4 857 2N4	4859 4860	
Gate cut-off currents			2N4	858 2N	4861	
$-V_{GS} = 20 V$; $V_{DS} = 0$	$-I_{GSS}$	<	0.3	25	-	nA
$-V_{GS} = 15 V; V_{DS} = 0$	$-I_{GSS}$	<	-	- 0.	. 25	nA
$-v_{GS} = 20 \mathrm{V}; v_{DS} = 0; T_{amb} = 150 \mathrm{^oC}$	-I _{GSS}	<	0.	.5	-	μΑ
$-v_{GS} = 15 \mathrm{V}; v_{DS} = 0; T_{amb} = 150 \mathrm{^oC}$	$-I_{\rm GSS}$	<	-	- (0.5	μΑ
Drain cut-off current						
$V_{DS} = 15 V$; $-V_{GS} = 10 V$	I_{DSX}	<	0.2	25 0.	. 25	nA
$V_{DS} = 15 \text{ V}; -V_{GS} = 10 \text{ V}; T_{amb} = 150 {}^{o}\text{C}$	I_{DSX}	<	0.	.5 (.5	μΑ
Drain current ¹)			2N4856 2N4859		1 '	
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	$I_{ m DSS}$	>	50	20	8	mA
VDS = 13 V, VGS = 0	I_{DSS}	<	-	100	80	mA
				856 2N4		
Gate-source breakdown voltage			2N4	856 2N4 857 2N4 858 2N4	¹ 860	
Gate-source breakdown voltage $-I_G = 1 \mu A$; $V_{DS} = 0$	−V(BR)G	SS	2N4	857 2N4 858 2N4	¹ 860	v
$-I_G = 1 \mu A; V_{DS} = 0$	−V _(BR) G	SS	2N4 2N4	857 2N4 858 2N4 0 3	1860 1861 0 2N4858	
$-I_G = 1 \mu A$; $V_{DS} = 0$ Gate-source cut-off voltage		,	2N4 2N4 40 2N4856	857 2N4 858 2N4 0 3	1860 1861 0 2N4858 2N4861	· -
$-I_G = 1 \mu A; V_{DS} = 0$	-V _{(BR)G}	,	2N4 2N4 40 2N4856 2N4859	857 2N4 858 2N4 0 3 2N4857 2N4860	8860 4861 0 2N4858 2N4861 0.8	· -
$-I_G = 1 \mu A$; $V_{DS} = 0$ Gate-source cut-off voltage		,	2N4 2N4 40 2N4856 2N4859 4	857 2N4 858 2N4 0 3 2N4857 2N4860	8860 4861 0 2N4858 2N4861 0.8	- V
$-I_G$ = 1 μ A; V_{DS} = 0 Gate-source cut-off voltage I_D = 0.5 μ A; V_{DS} = 15 ν		> <	2N4 2N4 40 2N4856 2N4859 4 10	857 2N4 858 2N4 0 3 2N4857 2N4860	8860 4861 0 2N4858 2N4861 0.8 4	- V
-I _G = 1 μA; V_{DS} = 0 Gate-source cut-off voltage I _D = 0.5 nA; V_{DS} = 15 V Drain-source voltage (on)	-V(P)GS	> <	2N4 2N4 40 2N4856 2N4859 4 10	857 2N4 858 2N4 0 3 2N4857 2N4860	8860 4861 0 2N4858 2N4861 0.8 4	V V
-I _G = 1 μA; V_{DS} = 0 Gate-source cut-off voltage I _D = 0.5 nA; V_{DS} = 15 V Drain-source voltage (on) I _D = 20 mA; V_{GS} = 0	-V _{(P)GS}	> < < <	2N4 2N4 40 2N4856 2N4859 4 10	857 2N4 858 2N4 0 3 12N4857 2N4860 2 6	8860 4861 0 2N4858 2N4861 0.8 4	V V
-I _G = 1 μA; V_{DS} = 0 Gate-source cut-off voltage I _D = 0.5 nA; V_{DS} = 15 V Drain-source voltage (on) I _D = 20 mA; V_{GS} = 0 I _D = 10 mA; V_{GS} = 0	-V _{(P)GS} V _{DSon} V _{DSon}	> < < <	2N4 2N4 40 2N4856 2N4859 4 10	857 2N4 858 2N4 0 3 12N4857 2N4860 2 6	1860 1861 0 2N4858 2N4861 0.8 4	v v v

¹⁾ measured under pulsed conditions: t_p = 100 ms; $\delta \leq$ 0.1

y-parameters (common source)

 $V_{DS} = 0$; $-V_{GS} = 10 \text{ V}$; f = 1 MHzInput capacitance

Feedback capacitance

Switching times (see Figs 2 and 3)

 $V_{DD} = 10 \text{ V}; V_{GS} = 0$

Drain current

Gate-source voltage (peak value)

Delay time

Rise time

Turn-off time

C_{is}	<	18	pF
C_{rs}	<	8	pF

		2N4856 2N4859	2N4857 2N4860	2N4858 2N4861	
ID	=	20	10	5	mΑ
-V _{GSM}	=	10	6	4	V
t _d	<	6	6	10	ńs
t _r	<	3	4	10	ns
toff	<	25	50	100	ns

Fig. 2 Switching times test circuit.

	2N4856	2N4857	2N4858
	2N4859	2N4860	2N4861
R =	464	953	1910 Ω

Pulse generator:

$$t_r \leq 1 \text{ ns}$$

$$t_f \leqslant 1 \text{ ns}$$

$$\delta = 0.02$$

$$Z_0 = 50 \Omega$$

Fig. 3 Input and output waveforms.

Oscilloscope:

$$t_r \leq 0.75 \text{ ns}$$

$$R_i \ge 1 M\Omega$$

$$C_i \leq 2.5 pF$$

DEVICE DATA

MOS-FETS

single gate

		arc.	

N-CHANNEL INSULATED GATE MOS-FET

Depletion type field-effect transistor in a TO-72 metal envelope with the substrate connected to the case. It is intended for linear applications in the audio as well as the i.f. and v.h.f. frequency region, and in cases where high input impedance, low gate leakage currents and low noise figures are of importance.

QUICK REFERENCE DATA

v_{DB}	max.	30	٧
± V _{GB}	max.	10	V
IDSS		10 to 40	mA
^y fs	>	6	mS
			_
c_{rs}	<	0,7	pF
E		5	dВ
•		5	uБ
$V_n \sqrt{B}$	typ.	100	nV∕√Hz
	± V _{GB} I _{DSS} Yfs C _{rs} F	$^{\pm}$ V $_{GB}$ max. I DSS I V F C C C	$\pm V_{GB}$ max. 10 I_{DSS} 10 to 40 $ Y_{fs} $ > 6 C_{rs} < 0,7

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

(1) = substrate (b) connected to case

Accessories: 56246 (distance disc).

Note

To safeguard the gates against damage due to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

RATINGS

NATINGS				
Limiting values in accordance with the Absolute Maximum System (IEC	C 134)			
Drain-substrate voltage	V_{DB}	max.	30	V
Source-substrate voltage	V_{SB}	max.	30	V
Gate-substrate voltage (continuous)	$^{\pm}$ V _{GB}	max.	10	V
Repetitive peak gate to all other terminals voltage $V_{SB} = V_{DB} = 0$; f > 100 Hz	v_{G-N}	max. min.	15 –15	
Drain current (d.c.)	I_{D}	max.	20	mΑ
Drain current (peak value) $t_p = 20 \text{ ms}$; $\delta = 0,1$	IDM	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200	mW
Storage temperature	T _{stg}	-65 to +	125	oC
Junction temperature	Tj	max.	125	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	500	K/W

CHARACTERISTICS	$T_j = 25$ °C unles	s otherwise	specified
Gate currents; $V_{BS} = 0$			
$-V_{GS} = 10 \text{ V; } V_{DS} = 0$	$-I_{ m GSS}$	< 10	pA
$V_{GS} = 10 \text{ V}; V_{DS} = 0$	$I_{ ext{GSS}}$	< 10	pA
$-V_{GS} = 10 \text{ V}; V_{DS} = 0; T_j = 125 {}^{0}\text{C}$	$-I_{ m GSS}$	< 200	pA
V_{GS} = 10 V; V_{DS} = 0; T_j = 125 o C	I_{GSS}	< 200	pA
Bulk currents; V _{GB} = 0			•
$-V_{BD} = 30 \text{ V; Is} = 0$	-IBDO	< 10	μA
$-V_{BS} = 30 \text{ V}; I_D = 0$	$-I_{\mathrm{BSO}}$	< 10	μΑ
Drain current			
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I_{DSS}	10 to 40	mA
Gate-source voltage			
$I_D = 100 \text{ nA; } V_{DS} = 15 \text{ V}$	$-v_{GS}$	0.5 to 3.5	V
Gate-source cut-off voltage			
I_D = 100 nA ; V_{DS} = 15 V	$-v_{(P)GS}$	< 4	V
y parameters $T_{amb} = 25$ $^{\circ}C$			
$I_D = 5 \text{ mA}; V_{DS} = 15 \text{ V}$			
Transfer admittance at f = 1 kHz	[Yfs	> 6	mS
Output admittance at $f = 1$ kHz Input capacitance at $f = 1$ MHz	Уоs С _{іs}	< 0.4 < 5	mS pF
Feedback capacitance at f = 1 MHz	$C_{\mathbf{r}\mathbf{s}}$	< 0.7	pF
Output capacitance at $f = 1 \text{ MHz}$	C_{os}	< 3	pF
Noise figure at f = 200 MHz T_{amb} = 25 ^{o}C			
$I_D = 5 \text{ mA}; V_{DS} = 15 \text{ V}$			
$G_S = 1 \text{ mS}; B_S = B_{Sopt}$	F	< 5	dB
Equivalent noise voltage $T_{amb} = 25$ °C			
$I_D = 5 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 120 \text{ Hz}$	V_n/\sqrt{B}	typ. 300	
f = 1 kHz	V_n/\sqrt{B}	typ. 100	_
f = 10 kHz	V_n/\sqrt{B}	typ. 35	nV∕ √ Hz

	,r			
		·····		

MOSFET N-CHANNEL DEPLETION SWITCHING TRANSISTORS

 $Symmetrical\ insulated \hbox{-} gate\ silicon\ MOS\ field\hbox{-} effect\ transistor\ of\ the\ N-channel\ depletion\ mode\ type.$

The transistor is sealed in a TO-72 envelope and features a low ON-resistance and low capacitances.

The transistor is protected against excessive input voltages by integrated back-to-back diodes between gate and substrate.

Applications:

- analog and/or digital switch
- switch driver
- convertor
- chopper

QUICK REFERENCE DATA

			BSD10	BSD12	
Drain-source voltage	V_{DS}	max.	10	20	_ V
Gate-source voltage	V_{GS}	max.	+ 15 -30	+ 15 40	-
Drain current (d.c.)	ID	max.		50	mΑ
Total power dissipation up to T _{amb} = 25 °C (free air) Junction temperature	P _{tot} T _i	max. max.		?75 25	mW oC
Drain-source ON-resistance $V_{GS} = 10 \text{ V}; V_{SB} = 0; I_D = 1 \text{ mA}$	R _{DSon}	<		30	Ω
Feedback capacitance $V_{GS} = V_{BS} = -5 V;$ $V_{DS} = 10 V; f = 1 MHz$	C _{rss}	typ.		0,6	pF

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

(1) Substrate (b) connected to case.

Note: Drain and source are interchangeable.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Emmany values in accordance with the Absolute in	azamam System (II				
			BSD10	BSD12	_
Drain-source voltage	v_{DS}	max.	10	20	V
Source-drain voltage	v_{SD}	max.	10	20	V
Drain-substrate voltage	V_{DB}	max.	15	25	V
Source-substrate voltage	V_{SB}	max.	15	25	V
Gate-substrate voltage	V_{GB}	max.	+ 15 —15	+ 15 15	
Gate-source voltage	v_{GS}	max.	+ 15 30	+ 15 -40	
Drain current (d.c.)	I _D	max.		50	mA
Total power dissipation up to $T_{amb} = 25$ °C in free air	P _{tot}	max.	:	275	mW
Storage temperature	T _{stq}		−65 t	o + 150	оС
Junction temperature	Tj	max.		125	оС
THERMAL RESISTANCE					
From junction to ambient	R _{th j-a}	=	;	360	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified			DCD10	IDCD 10	
Drain-source breakdown voltage $V_{GS} = V_{BS} = -5 \text{ V}$; $I_S = 10 \text{ nA}$	V _{(BR)DSX}	>	10	BSD12 20	_ V
Source-drain breakdown voltage $V_{GD} = V_{BD} = -5 \text{ V}; I_D = 10 \text{ nA}$	V _{(BR)SDX}	>	10	20	٧
Drain-substrate breakdown voltage $V_{GB} = 0$; $I_D = 10 \text{ nA}$; open source	V(BR)DBO	>	15	25	V
Source-substrate breakdown voltage	. טפטואפט				
$V_{GB} = 0$; $I_S = 10 \text{ nA}$; open drain	V _(BR) SBO	>	15	25	٧
Drain-source leakage current $V_{GS} = V_{BS} = -5 \text{ V}; V_{DS} = 10 \text{ V}$	I _{DSoff}	typ.		1,0	nA
Source-drain leakage current $V_{GD} = V_{BD} = -5 \text{ V}; V_{SD} = 10 \text{ V}$	^I SDoff	typ.		1,0	nA
Gate-substrate leakage current VDB = VSB = 0; VGB = ± 15 V	I _{GBS}	<		10	nA
Forward transconductance at f = 1 kHz V _{DS} = 10 V; V _{SB} = 0; I _S = 20 mA	9fs	> typ.		10 15	mS mS

Gate-source cut-off voltage V _{DS} = 10 V; V _{SB} = 0; I _D = 10 μA Drain-source ON-resistance	−V(P)GS	; <	2,0 V
$I_D = 1 \text{ mA}; V_{SB} = 0$ $V_{GS} = 5 \text{ V}$	^r DSon	typ.	25 Ω 50 Ω
V _{GS} = 10 V	^r DSon	typ.	15 Ω 30 Ω
Capacitances at $f = 1$ MHz (see Fig. 2) $V_{GS} = V_{BS} = -5$ V; $V_{DS} = 10$ V			,
Feed-back capacitance	C _{rss}	typ.	0,6 pF
Input capacitance	C _{iss}	typ.	2,3 pF
Output capacitance	Coss	typ.	1,9 pF
Switching times (see Fig. 3)			
→ $V_{DD} = 10 \text{ V}; V_i = -5 \text{ to } + 5 \text{ V}$	^t on	typ.	1,0 ns
	toff	typ.	5,0 ns

Fig. 2 Capacitances model. $\begin{aligned} &C_{iss} = C_{gs} &+ C_{gd} + C_{gb} \\ &C_{oss} = C_{gd} &+ C_{bd} \\ &C_{rss} = C_{gd} \end{aligned}$

Fig. 3 Switching times and input and output waveforms; R $_{i}$ = 50 $\Omega;$ t $_{r}$ < 0,5 ns; t $_{f}$ < 1,0 ns; t $_{p}$ = 20 ns; δ < 0,01.

			•	
		nome.		

MOSFET N-CHANNEL DEPLETION SWITCHING TRANSISTORS

Symmetrical insulated-gate silicon MOS field-effect transistors of the N-channel depletion mode type. The transistor is sealed in a SOT-143 envelope and features a low ON-resistance and low capacitances.

The transistor is protected against excessive input voltages by integrated back-to-back diodes between gate and substrate.

Applications:

- analog and/or digital switch
- switch driver
- convertor
- chopper

QUICK REFERENCE DATA

	-		BSD20	BSD22		
Drain-source voltage	v_{DS}	max.	10	20	٧	
Gate-source voltage	v_{GS}	max.	+ 15 30	+ 15 40		
Drain current (d.c.)	ID	max.	5	50	mΑ	
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	23	30	mW	
Junction temperature	Τj	max.	12	25	οС	
Drain-source ON-resistance $V_{GS} = 10 \text{ V}; V_{SB} = 0; I_D = 1 \text{ mA}$	R _{DSon}	<	3	80	Ω	
Feed-back capacitance $V_{GS} = V_{BS} = -5 \text{ V}; V_{DS} = 10 \text{ V}; f = 1 \text{ MHz}$	C _{rss}	typ.	0,	,6	pF	

MECHANICAL DATA

Dimensions in mm

TOP VIEW

Note: Drain and source are interchangeable

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	3	•	•	I		
				BSD20	BSD22	
	Drain-source voltage	V_{DS}	max.	10	20	-
	Source-drain voltage	V_{SD}	max.	10	20	V
	Drain-substrate voltage	V_{DB}	max.	15	25	V
	Source-substrate voltage	V_{SB}	max.	15	25	V
	Gate-substrate voltage	V_{GB}	max.	± 15	± 25	V
	Gate-source voltage	V_{GS}	max.	+ 15 -30	+ 15 40	
	Drain current (d.c.)	ID	max.	50)	mΑ
	Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	230)	mW
	Storage temperature	T_{stg}	-6	65 to + 150)	oC
	Junction temperature	Tj	max.	125	5	оС
	THERMAL RESISTANCE					
	From junction to ambient in free air*	R _{th j-a}	=	430)	K/W
	CHARACTERISTICS					
	T _{amb} = 25 °C unless otherwise specified					
	Drain-source breakdown voltage			BSD20	BSD22	
	$V_{GS} = V_{BS} = -5 \text{ V; } I_S = 10 \text{ nA}$	V _{(BR)DSX}	>	10	20	V
	Source-drain breakdown voltage $V_{GD} = V_{BD} = -5 \text{ V}; I_D = 10 \text{ nA}$	V _{(BR)SDX}	> ~	10	20	V
	Drain-substrate breakdown voltage VGB = 0; ID = 10 nA; open source	V _{(BR)DBO}	>	15	25	V
	Source-substrate breakdown voltage	, (PU)DPO				•
	V _{GB} = 0; I _S = 10 nA; open drain	V _{(BR)SBO}	>	15	25	٧
	Drain-source leakage current		4	1.0	2	A
	$V_{GS} = V_{BS} = -5 \text{ V}; V_{DS} = 10 \text{ V}$	DSoff	typ.	1,0	J	nΑ
	Source-drain leakage current VGD = VRD = 5 V; VSD = 10V	lcD-tt	typ.	1,0	า	nA
	Gate-substrate leakage current	ISDoff	cyp.	1,0	•	101
-	$V_{DB} = V_{SB} = 0$; $V_{GB} = \pm 15 \text{ V}$	IGBS	<	10)	nA

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Forward transconductance at $f = 1 \text{ kHz}$ $V_{DS} = 10 \text{ V}$; $V_{SB} = 0$; $I_D = 20 \text{ mA}$	9fs	> typ.	10 mS 15 mS	
Gate-source cut-off voltage $V_{DS} = 10 \text{ V}; V_{SB} = 0; I$ $I_{D} = 10 \mu A$	−V _{(P)GS}	<	2,0 V	•
Drain-source ON-resistance				
$I_D = 1 \text{ mA}; V_{SB} = 0;$ $V_{GS} = 5 \text{ V}$	R _{DSon}	typ.	25 Ω 50 Ω	
V _{GS} = 10 V	R _{DSon}	typ.	15 . Ω 30 . Ω	
Capacitances at f = 1 MHz				
$V_{GS} = V_{BS} = -5V$; $V_{DS} = 10 V$				
Feed-back capacitance	C_{rss}	typ.	0,6 pF	
Input capacitance	Ciss	typ.	1,5 pF	
Output capacitance	Coss	typ.	1,0 pF	
Switching times (see Fig. 3)				
$V_{DD} = 10 \text{ V}; V_i = -5 \text{ V to } +5 \text{ V}$	ton	typ.	1,0 ns	←
	toff	typ.	5,0 ns	

Fig. 2 Capacitances model. $C_{iss} = C_{gs} + C_{gd} + C_{gb}$ $C_{oss} = C_{gd} + C_{bd}$ $C_{rss} = C_{gd}$

Fig. 3 Switching times and input and output waveforms; R $_{i}$ = 50 $\Omega;$ t $_{r}<$ 0,5 ns; t $_{f}<$ 1,0 ns; t $_{p}$ = 20 ns; $\delta<$ 0,01.

	J.		
	~		
		•	

MOSFET N-CHANNEL ENHANCEMENT SWITCHING TRANSISTORS

Symmetrical insulated gate silicon MOS field-effect transistor of the N-channel enhancement mode type.

These transistors are hermetically sealed in a TO-72 envelope and feature a low ON-resistance, high switching speed and low capacitances.

The types BSD213 and BSD215 are protected against excessive input voltages by integrated back-to-back diodes between gate and substrate.

Applications:

- analogue and/or digital switch
- switch driver
- converters
- choppers

QUICK REFERENCE DATA

			BSD212	BSD213	BSD214	BSD215	
Drain-source voltage	v_{DS}	max.	10	10	20	20	V
Gate-source voltage	v_{GS}	max.	± 40	+ 15 30	± 40	+ 15	V
Drain current (d.c.)	۱ _D	max.		5	50		mA
Total power dissipation up to $T_{amb} = 25$ °C (free air)	P _{tot}	max.		⁻ 27	5		mW
Drain-source resistance $I_D = 1 \text{ mA}$; $V_{SB} = 0$; $V_{GS} = 15 \text{ V}$	R _{DS(on}) typ.		2	!5		Ω
Feedback capacitance VGS = VBS = -15 V; VDS = 10 V; f = 1 MHz	C _{rss}	typ.		0,	.6		pF
Junction temperature	T_{j}	max.		12	! 5		oC

MECHANICAL DATA

See next page.

MECHANICAL DATA

Fig. 1 TO-72.

Dimensions in mm

- (1) Substrate (b) connected to case.
- (2) Diode protection on types BSD213 and BSD215 only.

BSD212 and BSD214 have no protection diode.

To safeguard the gates against damage due to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BSD212	BSD213	BSD214	BSD215	
Drain-source voltage	v_{DS}	max.	10	10	20	20	V
Source-drain voltage	v_{SD}	max.	10	10	20	20	V
Drain-substrate voltage	V_{DB}	max.	15	15	25	25	V
Source-substrate voltage	V_{SB}	max.	15	15	25	25	V
Gate-substrate voltage	V_{GB}	max.	± 40	± 15	± 40	± 15	V
Gate-source voltage	v_{GS}	max.	± 40	+ 15 -30	± 40	+ 15 40	٧
Gate-drain voltage	v_{GD}	max.	± 40	+ 15 -30	± 40	+ 15 -40	V
Drain current (d.c.)	I _D	max.		5	0		mA
Total power dissipation up to							
T _{amb} = 25 °C (free air)	P_{tot}	max.		27	5		mW
Storage temperature range	T_{stg}		_	-65 to + 175			oC
Junction temperature	т _ј	max.	125		oC		
THERMAL RESISTANCE							
From junction to ambient	R _{th j-a}	=		36	0		K/W

CHARACTERISTICS

T _{amb} = 25 °C unless otherwise specif	ied
--	-----

		BSD212	BSD213	BSD214	BSD215	
V _{(BR)DSX}	>	10	10	20	20	٧
V _{(BR)SDX}	>	10	10	20	20	٧
V _(BR) DBO	>	15	15	25	25	Á
V _(BR) SBO	>	15	15	25	25	V
lna-ss	tyn	1.0	1.0		_	n/
		-	- 1,0	1.0		n.A
ווספטי	typ.			1,0	1,0	,
^I SDoff	typ.	1,0	1,0	_	_	n/
I _{SDoff}	typ.	-	_	1,0	1,0	n/
	-	0,1	_	0,1	_	nΑ
IGBS	<	_	10	<u> </u>	10	n/
V _{GS(th)}			0,1 to 2,	,0		٧
		BSD212	BSD213	BSD214	BSD215	
	tvn	50	50	50	50	Ω
R _{DS(on)}	<	70	70	70	70	Ω
R _{DS(on)}	typ.	30 45	30 45	30 45	30 45	Ω
					i	Ω
	typ.	15		15		Ω
	V(BR)SDX V(BR)DBO V(BR)SBO IDSoff IDSoff ISDoff ISDoff IGBS IGBS VGS(th)	IDSoff typ. IDSoff typ. ISDoff typ. ISDoff typ. IGBS < IGBS < VGS(th)	V(BR)DSX > 10 V(BR)SDX > 15 V(BR)DBO > 15 V(BR)SBO > 15 IDSoff typ. 1,0 IDSoff typ. - ISDoff typ. - IGBS <	V(BR)DSX 10 10 V(BR)SDX 10 10 V(BR)DBO 15 15 V(BR)SBO 15 15 IDSoff typ. 1,0 1,0 IDSoff typ. - - ISDoff typ. 1,0 1,0 ISDoff typ. - - IGBS <	V(BR)DSX 10 10 20 V(BR)SDX 10 10 20 V(BR)DBO 15 15 25 V(BR)SBO 15 15 25 IDSoff typ. 1,0 1,0 — IDSoff typ. 1,0 1,0 — ISDoff typ. — — 1,0 IGBS 0,1 — 0,1 IGBS 0,1 — 0,1 VGS(th) 0,1 to 2,0 — BSD212 BSD213 BSD214 RDS(on) 70 70 70 RDS(on) 45 45 45	V(BR)DSX 10 10 20 20 V(BR)SDX 10 10 20 20 V(BR)DBO 15 15 25 25 V(BR)SBO 15 15 25 25 IDSoff typ. 1,0 1,0 — — IDSoff typ. 1,0 1,0 — — ISDoff typ. 1,0 1,0 — — ISDoff typ. 1,0 1,0 — — IGBS 0,1 — 0,1 — IGBS 0,1 — 0,1 — IGBS 0,1 0,1 0 10 VGS(th) 0,1 to 2,0 0 0 0 0 0 0 RDS(on) 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70

Forward transconductance at f = 1 kHz V_{DS} = 10 V; V_{SB} = 0; I_D = 20 mA	9fs	typ.	15 10	mS
Capacitance at f = 1 MHz (see Fig. 2) $V_{GS} = V_{BS} = -15 \text{ V}; V_{DS} = 10 \text{ V}$				
Feed-back capacitance	C_{rss}	typ.	0,6	pF
Input capacitance	C_{iss}	typ.	2,3	pF
Output capacitance	Coss	typ.	1,9	рF

DYNAMIC CHARACTERISTICS (continued)

Fig. 2 Capacitances model.

$$C_{iss} = C_{GS} + C_{GD} + C_{GB}$$

 $C_{oss} = C_{GD} + C_{BD}$

$$C_{rss} = C_{GD}$$

Switching times (see Fig. 3)

$V_{DD} = 10 \text{ V}; V_i = -5 \text{ V to } +5 \text{ V}$	ton	typ.	1,0	ns
	toff	tvp.	5.0	ns

Fig. 3 Switching times test circuit and input and output waveforms.

Pulse generator:

$$R_i = 50 \Omega$$

 t_r < 0,5 ns

 t_{f} < 1,0 ns

$$t_p = 20 \text{ ns}$$

 δ < 0,01

MOSFET N-CHANNEL ENHANCEMENT SWITCHING TRANSISTOR

Symmetrical insulated-gate silicon MOS field-effect transistor of the N-channel enhancement mode type.

The transistor is sealed in a SOT-143 envelope and features a low ON resistance and low capacitances.

The transistor is protected against excessive input voltages by integrated back-to-back diodes between gate and substrate.

Applications:

- analog and/or digital switch
- switch driver

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	10	V
Source-drain voltage	V_{SD}	max.	10	V
Drain-substrate voltage	V_{DB}	max.	15	V
Source-substrate voltage	V_{SB}	max.	15	V
Drain current (d.c.)	I_{D}	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	230	mW
Gate-source cut-off voltage $V_{DS} = V_{GS}; V_{SB} = 0;$ $I_{D} = 1 \mu A$	V _{(P)GS}	> <	0,1 2,0	
Drain-source ON-resistance $V_{GS} = 10 \text{ V}$; $V_{SB} = 0$; $I_D = 0.1 \text{ mA}$	R _{DS(on)}	<	45	Ω
Feed-back capacitance $V_{GS} = V_{BS} = -15 \text{ V};$ $V_{DS} = 10 \text{ V}; f = 1 \text{ MHz}$	C _{rss}	typ.	0,6	pF

MECHANICAL DATA

SOT-143 (see Fig. 1).

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	V_{DS}	max.	10	٧
Source-drain voltage	V_{SD}	max.	10	٧
Drain-substrate voltage	V_{DB}	max.	15	V
Source-substrate voltage	V_{SB}	max.	15	V
Drain current (d.c.)	I _D	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	230	mW*
Storage temperature range	T_{stg}	-65 to +	150	oC
Junction temperature	T_{j}	max.	125	оС

THERMAL RESISTANCE

From junction to ambient in free air*	R _{th j-a}	=	430 K/W*
---------------------------------------	---------------------	---	----------

CHARACTERISTICS

= 25 00 unless otherwise specified

	amb = 25 °C unless otherwise specified			
	Drain-source breakdown voltage			
	$V_{GS} = V_{BS} = -5 \text{ V; } I_D = 10 \text{ nA}$	V(BR)DSX	>	10 V
	Source-drain breakdown voltage			
	$V_{GD} = V_{BD} = -5 \text{ V; } I_D = 10 \text{ nA}$	V(BR)SDX	>	10 V
•	Drain-substrate breakdown voltage			
-	$V_{GB} = 0$; $I_D = 10$ nA; open source	V _(BR) DBO	>	15 V
	Source-substrate breakdown voltage			
-	$V_{GB} = 0$; $I_D = 10$ nA; open drain	V(BR)SBO	>	15 V
	Drain-source leakage current			
	$V_{GS} = V_{RS} = -2 \text{ V}; V_{DS} = 6.6 \text{ V}$	DSoff	<	10 nA

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Source-drain leakage current $V_{GD} = V_{BD} = -2 V$; $V_{SD} = 6.6 V$	I _{SDoff}	<	10 nA ◀—
Forward transconductance at $f = 1 \text{ kHz}$ $V_{DS} = 10 \text{ V}$; $V_{SB} = 0$; $I_D = 20 \text{ mA}$	9fs	> typ.	10 mS 15 mS
Gate-source cut-off voltage $V_{DS} = V_{GS}$; $V_{SB} = 0$; $I_D = 1 \mu A$	V _{(P)GS}	> <	0,1 V 2,0 V
Drain-source ON-resistance ID = 0,1 mA;			
$V_{GS} = 5 V; V_{SB} = 0$	R _{DS(on)}	<	70 Ω
$V_{GS} = 10 \text{ V}; V_{SB} = 0$	R _{DS(on)}	<	45 Ω
$V_{GS} = 3.2 \text{ V}; V_{SB} = 6.8 \text{ V (see Fig. 4)}^{\circ}$	R _{DS(on)}	typ.	80 Ω 120 Ω
Gate-substrate zener voltages			
$V_{DB} = V_{SB} = 0; -I_{C} = 10 \mu\text{A}$	V _{Z(1)}	>	12,5 V
$V_{DB} = V_{SB} = 0$; + $I_{G} = 10 \mu A$	V _{Z(2)}	>	12,5 V
Capacitances at f = 1 MHz $V_{GS} = V_{BS} = -15 \text{ V}; V_{DS} = 10 \text{ V}$			
Feed-back capacitance	C _{rss}	typ.	0,6 pF
Input capacitance	C _{iss}	typ.	1,5 pF
Output capacitance	Coss	typ.	1,0 pF
Switching times (see Fig. 2)			
$V_{DD} = 10 \text{ V}; V_i = 5 \text{ V}$	t _{on}	typ.	1,0 ns
	^t off	typ.	5,0 ns

Pulse generator:

 $R_i = 50 \Omega$ $t_r < 0.5 \text{ ns}$ $t_f < 1.0 \text{ ns}$

 $t_p = 20 \text{ ns} \\ \delta < 0.01$

Fig. 2 Switching times test circuit and input and output waveforms.

Fig. 3 $V_{SB} = 0$; typical values.

Fig. 5 $V_{DS} = 10 \text{ V}$; $V_{BS} = 0$; typical values.

Fig. 7 $V_{SB} = 0$; typical values.

Fig. 4 $V_{SB} = 6.8 V$; typical values.

Fig. 6 $V_{DS} = V_{GS} = V_{T}$.

Conditions for Figs 3, 4, 5, 6 and 7: $T_j = 25$ °C.

N-CHANNEL IG-MOS-FET

Symmetrical depletion type field-effect transistor in a TO-72 metal envelope with the substrate connected to the case. It is intended for chopper and other special switching applications, e.g. timing circuits, multiplex circuits, etc. The features are a very low drain-source 'on' resistance, a very high drain-source 'off' resistance and low feedback capacitances.

QUICK REFERENCE DATA

Drain-source resistance (on) at f = 1 kHz V _{DS} = 0; V _{GS} = 5 V; V _{BS} = 0	^r ds on	<	50 Ω
Drain-source resistance (off) $V_{DS} = 10 \text{ V}; -V_{GS} = 5 \text{ V}; V_{BS} = 0$	^r DSoff	>	10 GΩ
Feedback capacitance at $f = 1$ MHz $-V_{GS} = 5$ V; $V_{DS} = 0$; $I_B = 0$ $-V_{GD} = 5$ V; $V_{SD} = 0$; $I_B = 0$	C _{rs} C _{rd}	< <	0,5 pF 0,5 pF

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

(1) = substrate connected to case.

Accessories: 56246 (distance disc).

Note

To safeguard the gates against damage due to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

	Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
	Drain-substrate voltage	V_{DB}	max.	30	V
	Source-substrate voltage	V_{SB}	max.	30	V
	Gate-substrate voltage (continuous)	V_{GB}	max. min.	10 –10	
	Repetitive peak gate to all other terminals voltage $V_{SB} = V_{DB} = 0$; f > 100 Hz	v _{G-N}	max. min.	15 —15	
	Non-repetitive peak gate to all other terminals voltage $V_{SB} = V_{DB} = 0$; $t < 10$ ms	V_{G-N}	max. min.	50 –50	
-	Drain current (d.c.)	ID	max.	25	mA
	Drain current (peak value) $t_r = 20 \text{ ms}$; $\delta = 0.1$	IDM	max.	50	mA
	Source current (peak value) $t_r = 20 \text{ ms}$; $\delta = 0.1$	^I SM	max.	50	mA
	Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200	mW
	Storage temperature	T_{stg}	-65 to +	125	оС
	Junction temperature	T_{j}	max.	125	оС
	THERMAL RESISTANCE				
	From junction to ambient in free air	R _{th j-a}	=	0,5	oC/mW

CHARACTERISTICS

 T_j = 25 o C unless otherwise specified

Drain cut-off currents;
$$V_{BS} = 0$$

$$\begin{split} V_{DS} &= 10 \text{ V}; \ -V_{GS} = 5 \text{ V} & \text{I}_{DSX} & < \quad 1 \quad \text{nA} \\ V_{DS} &= 10 \text{ V}; \ -V_{GS} = 5 \text{ V}; \ T_{i} = 125 \text{ °C} & \text{I}_{DSX} & < \quad 1 \quad \mu\text{A} \end{split}$$

Source cut-off currents; $V_{RD} = 0$

$$\begin{split} &V_{SD} = 10 \text{ V}; \ -V_{GD} = 5 \text{ V} & \text{I}_{SDX} & < & 1 & \text{nA} \\ &V_{SD} = 10 \text{ V}; \ -V_{GD} = 5 \text{ V}; \ T_j = 125 \text{ °C} & \text{I}_{SDX} & < & 1 & \mu\text{A} \end{split}$$

Gate currents; $V_{BS} = 0$

Bulk currents;
$$V_{GB} = 0$$

$$-V_{BD} = 30 \text{ V}; I_{S} = 0$$
 $-I_{BDO} < 10 \text{ } \mu\text{A}$ $-V_{BS} = 30 \text{ V}; I_{D} = 0$ $-I_{BSO} < 10 \text{ } \mu\text{A}$

Drain-source resistance (on) at f = 1 kHz; $V_{RS} = 0$

Drain-source resistance (off)

$$-V_{\rm GS} = 5~{\rm V}; V_{\rm DS} = 10~{\rm V}; V_{\rm BS} = 0 \qquad \qquad r_{\rm DSoff} > 10 \quad {\rm G}\Omega$$

Feedback capacitances at f = 1 MHz

Gate to all other terminals capacitance at f = 1 MHz

$$-V_{GB} = 5 \text{ V}; V_{SB} = V_{DB} = 0$$
 $C_{g-n} < 6 \text{ pF}$

	J		
		•	
		•	

DEVICE DATA

MOS-FETS

dual gate

			x
	0.		
		•	

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for use in u.h.f. applications in television tuners and professional communication equipment.

This MOS-FFT tetrode is protected against excessive input voltage surges by integrated back-to-back.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	20 V	
Drain current (peak value)	I_{DM}	max.	30 mA	
Total power dissipation up to $T_{amb} = 75$ °C	P_{tot}	max.	225 mW	
Junction temperature	T_{j}	max.	150 °C	
Transfer admittance at f = 1 kHz $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	Yfs	typ.	12 mS	
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF	←
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $I_D = 7$ mA; $V_{DS} = 10$ V; $+ V_{G2-S} = 4$ V; $f = 800$ MHz	F	typ.	2,8 dB	
Power gain at f = 800 MHz $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$; $G_L = 1 \text{ mS}$; $B_L = B_L \text{ opt}$	~G _p	typ.	16,5 dB	

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	•				
Drain-source voltage		V_{DS}	max.	20 V	/
Drain current (d.c. or average)		I _D	max.	20 m	nΑ
Drain current (peak value)		IDM	max.	30 m	nΑ
Gate 1 - source current		±lG1-S	max.	10 m	nΑ
Gate 2 - source current		^{±l} G2-S	max.	10 m	nΑ
Total power dissipation up to T _{amb} = 75 °C		P _{tot}	max.	225 m	ηW
Storage temperature		T _{stg}	-65 to	+150 °	C
Junction temperature		Tj	max.	150 ^o	C

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board

 $R_{th j-a} = 335 \text{ K/W}$

Dimensions in mm

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

STATIC CHARACTERISTICS

$T_{amb} = 25$ °C			
Gate cut-off currents			
$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$	^{± I} G1-SS	<	50 nA
$\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$	± IG2-SS	<	50 nA
Gate-source breakdown voltages			
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	± V(BR)G1-SS	6,0	to 20 V
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	± V(BR)G2-SS	6,0	to 20 V
Drain current*			
$V_{DS} = 10 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}$	IDSS	2	to 20 mA
Gate-source cut-off voltages			
$I_D = 20 \mu A$; $V_{DS} = 10 V$; $+ V_{G2-S} = 4 V$	−V(P)G1-S	<	2,7 V
$I_D = 20 \mu A$; $V_{DS} = 10 V$; $V_{G1-S} = 0$	-V(P)G2-S	<	2,7 V
DYNAMIC CHARACTERISTICS			
Measuring conditions (common source): $I_D = 7 \text{ mA}$; V_D	os = 10 V; + V _{G2-S} = 4 V	√; T _{aml}	_o = 25 °C
T 6 1 20 1 6 41 11		>	9,5 mS

Transfer admittance at f = 1 kHz	Yfs	> typ.	9,5 mS 12 mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	1,8 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,0 pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF
Output capacitance at f = 1 MHz	Cos	typ.	0,9 pF
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $f = 200$ MHz	F	typ.	1,6 dB
f = 800 MHz	F	typ.	2,8 dB
Power gain at $G_S = 2$ mS; $B_S = B_S$ opt $G_L = 0.5$ mS; $B_L = B_L$ opt; $f = 200$ MHz $G_L = 1$ mS; $B_L = B_L$ opt; $f = 800$ MHz	G _р G _р	typ.	23 dB 16,5 dB

^{*} Measured under pulse conditions.

		-	

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for v.h.f. applications in television tuners, especially in r.f. stages and mixer stages in S-channel tuners. The device is also suitable for use in professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain-current	۱ _D	max.	30 mA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	225 mW
Junction temperature	Тj	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	17 mS
Feedback capacitance at f = 1 MHz $I_D = 10 \text{ mA}$, $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $I_D = 10$ mA; $V_{DS} = 15$ V; $+ V_{G2-S} = 4$ V; $f = 200$ MHz	F	typ.	1,5 dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-103.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max.	20 V
Drain-current (d.c. or average)	I _D	max.	30 mA
Gate 1 - source current	± IG1-S	max.	10 mA
Gate 2 - source current	± IG2-S	max.	10 mA
Total power dissipation up to $T_{amb} = 75$ °C	P_{tot}	max.	225 mW
Storage temperature	T_{stg}	-65 to	+150 °C
Junction temperature	Ti	max.	150 °C

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board (see Fig. 2)

 $R_{th j-a} = 335 \text{ K/W}$

Dimensions in mm

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

15 mS

17 mS

typ.

STATIC CHARACTERISTICS	
T _{amb} = 25 °C	

$T_{amb} = 25$ °C			
Gate cut-off currents			
$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$	^{± I} G1-SS	<	50 nA
$\pm V_{G2-S} = 5 \text{ V}; V_{G1-S} = V_{DS} = 0$	± IG2-SS	<	50 nA
Gate-source breakdown voltages			
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	$\pm V_{(BR)G1-SS}$		6,0 to 20 V
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	$\pm V_{(BR)G2\text{-SS}}$		6,0 to 20 V
Drain current*			
$V_{DS} = 15 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}$	DSS		2 to 20 mA
Gate-source cut-off voltages			
$I_D = 20 \mu A$; $V_{DS} = 15 V$; $+ V_{G2-S} = 4 V$	V(P)G1-S	<	2,5 V
$I_D = 20 \mu\text{A}$; $V_{DS} = 15 \text{V}$; $V_{G1-S} = 0$	-V _{(P)G2-S}	<	2,0 V

DYNAMIC CHARACTERISTICS

Transfer admittance at f = 1 kHz

Measuring conditions (common source); I_D = 10 mA; V_{DS} = 15 V; $+V_{G2-S}$ = 4 V; T_{amb} = 25 °C

y_{fs}

Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	2,5 pF 3,0 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,2 pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF 35 fF
Output capacitance at f = 1 MHz	Cos .	typ.	1,0 pF 1,3 pF
Noise figure at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ f = 200 MHz	F	typ.	1,5 dB 2,8 dB
Power gain at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ $G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$; $f = 200 \text{ MHz}$	G _p	typ.	25 dB ◀

^{*} Measured under pulse conditions.

			•	
		-907		

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for v.h.f. applications in television tuners. The device is also suitable for use in professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	20 V
Drain-current	ΙD	max.	50 mA
Total power dissipation up to $T_{amb} = 75 {}^{\circ}\text{C}$	P_{tot}	max.	225 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at f = 1 kHz $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	ly _{fs} l	typ.	18 mS
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at G_S = 2 mS; B_S = B_S opt I_D = 10 mA; V_{DS} = 15 V; + V_{G2-S} = 4 V; f = 200 MHz	F	typ.	1,0 dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-103.

Limiting values i	n accordance	with the	Absolute	Maximum	System ((IEC 134)

Drain-source voltage	v_{DS}	max.	20 V
Drain-current (d.c. or average)	1 _D	max.	50 mA
Gate 1 - source current	± I _{G1-S}	max.	10 mA
Gate 2 - source current	± I _{G2-S}	max.	10 mA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	225 mW
Storage temperature	T_{stg}	-65 to	+ 150 °C
Junction temperature	T _i	max.	150 °C

THERMAL RESISTANCE

From junction to ambient in free air			
mounted on the printed-circuit board (see Fig. 2)	R _{th j-a}	=	335

Dimensions in mm

K/W

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

Power gain at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ $G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$; f = 200 MHz

STATIC CHARACTERISTICS

T _{amb} = 25 °C				
Gate cut-off currents				
$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$	± IG1-SS	<	50 nA	
$\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$	± IG2-SS	<	50 nA	
Gate-source breakdown voltages				
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	^{± V} (BR)G1-SS	•	to 20 V	
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	± V(BR)G2-SS	6,0	to 20 V	
Drain current (measured under pulse conditions)				
$V_{DS} = 15 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}$	IDSS	4	to 20 mA	
Gate-source cut-off voltages				
$I_D = 20 \mu\text{A}; V_{DS} = 15 V; + V_{G2-S} = 4 V$	-V(P)G1-S	<	2,5 V	
$I_D = 20 \mu\text{A}$; $V_{DS} = 15 \text{V}$; $V_{G1-S} = 0$	−V(P)G2-S	<	2,0 V	
DYNAMIC CHARACTERISTICS				
Measuring conditions (common source); ID = 10 mA; V	- 15 \/. \/ /	/ -	- 2E 0C	
, , , , , , , , , , , , , , , , , , ,	DS = 15 V; + VG2-S = 4	⊦∨; r _{amb}	- 25 %	
		V; l _{amb} >	15 mS	
Transfer admittance at f = 1 kHz	y _{fs}		15 mS	
Transfer admittance at f = 1 kHz	y _{fs}	>	15 mS 18 mS	
		> typ.	15 mS 18 mS	
Transfer admittance at f = 1 kHz	y _{fs}	> typ. typ.	15 mS 18 mS 2,5 pF 3,0 pF	
Transfer admittance at f = 1 kHz Input capacitance at gate 1; f = 1 MHz	ly _{fs} l C _{ig1-s}	> typ. typ. <	15 mS 18 mS 2,5 pF 3,0 pF	
Transfer admittance at f = 1 kHz Input capacitance at gate 1; f = 1 MHz Input capacitance at gate 2; f = 1 MHz	ly _{fs} C_{ig1-s} C_{ig2-s}	> typ. typ. < typ.	15 mS 18 mS 2,5 pF 3,0 pF 1,2 pF	-
Transfer admittance at f = 1 kHz Input capacitance at gate 1; f = 1 MHz Input capacitance at gate 2; f = 1 MHz Feedback capacitance at f = 1 MHz	ly _{fs} C _{ig1-s} C _{ig2-s} C _{rs}	> typ. typ. < typ. typ. typ. typ.	15 mS 18 mS 2,5 pF 3,0 pF 1,2 pF 25 fF	-

 G_p

25 dB

typ.

Fig. 3 V_{G2-S} = 4 V; V_{DS} = 15 V; f = 1 MHz; T_{amb} = 25 °C; typical values.

Fig. 5 V_{G2-S} = 4 V; I_D = 10 mA; f = 1 MHz; T_{amb} = 25 °C; typical values.

Fig. 7 $V_{G2-S} = 4 \text{ V}$; $V_{GS} = 15 \text{ V}$; $I_D = 10 \text{ mA}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; typical values.

Fig. 4 $V_{G1-S} = 0 V$; $V_{DS} = 15 V$; f = 1 MHz; $T_{amb} = 25 °C$; typical values.

Fig. 6 V_{G2-S} = 4; V_{DS} = 15 V; f = 1 kHz; T_{amb} = 25 °C; typical values.

Fig. 8 $V_{G2-S} = 4 \text{ V}$; $V_{DS} = 15 \text{ V}$; $I_D = 10 \text{ mA}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; typical values.

Fig. 9 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; T_{amb} = 25 °C; typical values.

Fig. 10 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; T_{amb} = 25 °C; typical values.

Fig. 11 $V_{G2-S} = 4 \text{ V}$; $V_{DS} = 15 \text{ V}$; $I_D = 10 \text{ mA}$; f = 200 MHz; $T_{amb} = 25 \text{ }^{o}\text{C}$; typical values.

	,		

Depletion type field-effect transistor in plastic X-package with source and substrate interconnected, intended for v.h.f. applications, such as v.h.f. television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source and has an integrated drain resistance to suppress oscillation in the frequency range higher than 1 GHz.

This device is especially intended for use in pre-amplifiers in CATV tuners with large tuning ranges up to 500 MHz.

QUICK REFERENCE DATA

Drain-source voltage Drain-current Total power dissipation up to $T_{amb} = 75$ °C	V _{DS} I _D P _{tot}	max. max. max.	20 V 30 mA 225 mW
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $V_{G2-S} = 4 \text{ V}$ Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $V_{G2-S} = 4 \text{ V}$	y _{fs} C _{rs}	typ.	18 mS 25 fF
Noise figure at $G_S = 2$ mS; $B_S = B_{Sopt}$ $I_D = 10$ mA; $V_{DS} = 15$ V; $V_{G2-S} = 4$ V; $f = 200$ MHz	F	typ.	1,0 dB

MECHANICAL DATA

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max.	20 V
Drain-current (d.c. or average)	ΙD	max.	30 mA
Gate 1-source current	±IG1-S	max.	10 mA
Gate 2-source current	±IG2-S	max.	10 mA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	225 mW
Storage temperature	T_{stg}	-65 to	+150 °C
Junction temperature	Тj	max.	150 °C

THERMAL RESISTANCE

From junction to ambient in free air mounted on a printed-circuit board (see Fig. 2) Rth j-a =

Dimensions in mm

335 K/W

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

STATIC CHARACTERISTICS				
T _{amb} = 25 °C unless stated otherwise				
Gate cut-off currents $\pm V_{G1-S} = 5 \text{ V}; V_{G2-S} = V_{DS} = 0$ $\pm V_{G2-S} = 5 \text{ V}; V_{G1-S} = V_{DS} = 0$	^{±I} G1-SS ^{±I} G2-SS	< <		nA nA
Gate-source breakdown voltages $\pm I_{G1-SS} = 10 \text{ mA}$; $V_{G2-S} = V_{DS} = 0$ $\pm I_{G2-SS} = 10 \text{ mA}$; $V_{G1-S} = V_{DS} = 0$	±V(BR)G1-SS ±V(BR)G2-SS		6,0 to 20 6,0 to 20	
Drain current $V_{DS} = 15 \text{ V}; V_{G1-S} = 0;$ $V_{G2-S} = 4 \text{ V}; T_j = 25 ^{\circ}\text{C}$	^I DSS		2,0 to 20	mA
Gate-source cut-off voltages $I_D = 20 \mu A$; $V_{DS} = 15 V$; $+ V_{G2-S} = 4 V$ $I_D = 20 \mu A$; $V_{DS} = 15 V$; $+ V_{G1-S} = 0$	V(P)G1-S V(P)G2-S	< <	2,5 2,0	
DYNAMIC CHARACTERISTICS				
Measuring conditions (common source); $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $V_{G2-S} = 4 \text{ V}$; $T_{amb} = 25 ^{o}\text{C}$				
Transfer admittance at f = 1 kHz	yfs	> typ.		mS mS
Input capacitance at gate 1 at f = 1 MHz	C _{ig1-s}	typ.	2,5	рF
Input capacitance at gate 2 at f = 1 MHz	C _{ig2-s}	typ.	1,2	рF
Feedback capacitance at $f = 1 \text{ MHz}$	C _{rs}	typ.	25	fF
Output capacitance at f = 1 MHz	Cos	typ.	1,0	рF
Noise figure at $G_S = 2 \text{ mS}$; $B_S = B_{Sopt}$ and $f = 200 \text{ MHz}$	F -	typ.	1,0	dB
Power gain at $G_S = 2$ mS; $B_S = B_{Sopt}$ $G_L = 0.5$ mS; $B_L = B_{Lopt}$; $f = 200$ MHz	Gp	typ.	25	dB

	*		

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for u.h.f. applications in television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V	
Drain-current	ID	max.	30 mA	
Total power dissipation up to $T_{amb} = 75 {}^{\circ}\text{C}$	P _{tot}	max.	225 mW	
Junction temperature	Tj	max.	150 °C	
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	17 mS	
Feedback capacitance at f = 1 MHz $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF	
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $I_D = 10$ mA; $V_{DS} = 15$ V; $+V_{G2-S} = 4$ V; $f = 800$ MHz	F	typ.	2,8 dB	

MECHANICAL DATA

Fig. 1 SOT-103.

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain source voltage	V_{DS}	max.	20 V
Drain current (d.c. or average)	I_{D}	max.	30 mA
Gate 1 - source current	± IG1-S	max.	10 mA
Gate 2 - source current	± IG2-S	max.	10 mA
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.	225 mW
Storage temperature	T_{stg}	−65 to +	-150 °C
Junction temperature	T_{j}	max.	150 °C

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board (see Fig. 2)

 $R_{thj-a} = 335 \text{ K/W}$

Dimensions in mm

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

CT A	TIC	CHA	DΛ	CTE	DIC.	エレヘビ

T _{amb} = 25 °C			
Gate cut-off currents			
$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$	±1G1-SS	<	50 nA
$\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$	± G2-SS	<	50 nA
Gate-source breakdown voltages			
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	±V(BR)G1-SS	6,	,0 to 20 V
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	±V(BR)G2-SS	6	,0 to 20 V
Drain current*			•
$V_{DS} = 15 \text{ V}; V_{G1-S} = 0; +V_{G2-S} = 4 \text{ V}$	DSS		2 to 20 mA
Gate-source cut-off voltages			
$I_D = 20 \mu A$; $V_{DS} = 15 V$; $+ V_{G2-S} = 4 V$	-V(P)G1-S	<	2,5 V
$I_D = 20 \mu\text{A}; V_{DS} = 15 V; V_{G1-S} = 0$	V _{(P)G2-S}	<	2,0 V
DYNAMIC CHARACTERISTICS			

Measuring conditions (common source): I_D = 10 mA; V_{DS} = 15 V; $+V_{G2-S}$ = 4 V; T_{amb} = 25 °C

Transfer admittance at f = 1 kHz	y _{fs}	> typ.	15 mS 17 mS	
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	2,2 pF 2,6 pF	
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,1 pF	
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF 35 fF	
Output capacitance at f = 1 MHz	Cos -	typ.	0,8 pF 1,2 pF	
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $f = 200$ MHz	F	typ.	1,5 dB	•
f = 800 MHz	F	typ.	2,8 dB 3,9 dB	
Power gain at $G_S = 2$ mS; $B_S = B_S$ opt				←
$G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$; $f = 200 \text{ MHz}$	G _р	typ.	25 dB	
$G_L = 1 \text{ mS}$; $B_L = B_L \text{ opt}$; $f = 800 \text{ MHz}$	G_p	typ.	18 dB	

^{*} Measured under pulse conditions.

				*	
		,			
		,			
			-		
			-		
			~~		
			-		

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for u.h.f. applications in television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

v_{DS}	max.	20 V
۱ _D	max.	30 mA
P_{tot}	max.	225 mW
T_{j}	max.	150 °C
y _{fs}	typ.	18 mS
C _{rs}	typ.	25 fF
F	typ.	1,8 dB
	I _D Ptot T _j Yfs C _{rs}	$egin{array}{lll} I_D & & \mbox{max.} \\ P_{tot} & & \mbox{max.} \\ T_j & & \mbox{max.} \\ & \mbox{lyfs} & \mbox{typ.} \\ & \mbox{C}_{rs} & \mbox{typ.} \\ & \mbox{-} \\ & \mbox{-} \\ & \mbox{-} \end{array}$

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-103.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	V_{DS}	max.	20 V
Drain-current (d.c. or average)	ID	max.	30 mA
Gate 1 - source current	± IG1-S	max.	10 mA
Gate 2 - source current	± IG2-S	max.	10 mA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	225 mW
Storage temperature	T_{stg}	-65 to +	150 °C
Junction temperature	Ti	max.	150 °C

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board (see Fig. 2)

 $R_{th j-a} = 335 \text{ K/W}$

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

STATIC CHARACTERISTICS

 $T_{amb} = 25 \, {}^{\circ}C$

Gate cut-off currents

$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$	± IG1-SS	<	50 nA
$\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$	± G2-SS	<	50 nA

Gate-source breakdown voltages

$$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$$
 $\pm V_{(BR)G1-SS}$ 6,0 to 20 V $\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$ $\pm V_{(BR)G2-SS}$ 6,0 to 20 V

Drain current (measured under pulse conditions)

$$V_{DS} = 15 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}$$
 IDSS 4 to 20 mA

Gate-source cut-off voltages

$$I_D = 20 \,\mu\text{A}; \, V_{DS} = 15 \,\text{V}; + V_{G2-S} = 4 \,\text{V}$$
 $-V_{(P)G1-S}$ $< 2.5 \,\text{V}$ $I_D = 20 \,\mu\text{A}; \, V_{DS} = 15 \,\text{V}; \, V_{G1-S} = 0$ $-V_{(P)G2-S}$ $< 2.0 \,\text{V}$

DYNAMIC CHARACTERISTICS

Measuring conditions (common source): ID = 10 mA; VDS = 15 V; + VG2-S = 4 V; Tamb = 25 °C

Transfer admittance at f = 1 kHz	$ y_{f_S} $	> typ.	15 mS 18 mS	
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	2,3 pF 2,6 pF	
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,1 pF	
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF	
Output capacitance at f = 1 MHz	Cos	typ.	0,8 pF	
Noise figure				
$f = 200 \text{ MHz}$; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$	F -	typ.	1,0 dB	←
$f = 800 \text{ MHz}$; $G_S = 3.3 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ.	1,8 dB	•
Power gain				

$$f = 200 \text{ MHz}; G_S = 2 \text{ mS}; G_L = 0.5 \text{ mS}; B_S = \text{opt}; B_L = \text{opt} G_p$$
 typ. 25 dB
 $f = 800 \text{ MHz}; G_S = 3.3 \text{ mS}; G_L = 1 \text{ mS}; B_S = \text{opt}; B_L = \text{opt} G_p$ typ. 18 dB

Fig. 3 $V_{G2-S} = 4 V; V_{DS} = 15 V;$ f = 1 MHz; $T_{amb} = 25 \text{ °C}$; typical values.

Fig. 4 $V_{G1-S} = 0 V; V_{DS} = 15 V;$ f = 1 MHz; T_{amb} = 25 °C; typical values.

Fig. 5 $V_{G2-S} = 4 V$; $I_D = 10 \text{ mA}$; f = 1 MHz; $T_{amb} = 25 \, ^{\circ}\text{C}$; typical values.

Fig. 7 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; T_{amb} = 25 °C; typical values.

Fig. 9 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; T_{amb} = 25 °C; typical values.

Fig. 6 $V_{G2-S} = 4 V$; $V_{DS} = 15 V$; f = 1 kHz; $T_{amb} = 25 \,^{\circ}C$; typical values.

Fig. 8 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; T_{amb} = 25 °C; typical values.

Fig. 10 $V_{G2-S} = 4 V$; $V_{DS} = 15 V$; $I_D = 10$ mA; $T_{amb} = 25$ °C; typical values.

Fig. 11 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; f = 200 MHz; T_{amb} = 25 °C; typical values.

Fig. 12 V_{G2-S} = 4 V; V_{DS} = 15 V; I_D = 10 mA; f = 800 MHz; T_{amb} = 25 °C; typical values.

	,		
, 15 F			

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for u.h.f. applications, such as u.h.f. television tuners, with 12 V supply voltage.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	18	٧
Drain current	ΙD	max.	30	mA
Total power dissipation up to Tamb = 75 °C	P _{tot}	max.	225	mW
Junction temperature	Тj	max.	150	οС
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	19	mS
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25	fF
Noise figure at G_S = 5 mS; B_S = B_S opt I_D = 10 mA; V_{DS} = 10 V; $+V_{G2-S}$ = 4 V; f = 800 MHz	F	typ.	2,8	dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-103.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	VDS	max.	18	V
Drain current (d.c. or average)	ID	max.	30	mA
Gate 1 - source current	±IG1-S	max.	10	mΑ
Gate 2 - source current	±IG2-S	max.	10	mΑ
Total power dissipation up to $T_{amb} = 75$ °C	P_{tot}	max.	225	mW
Storage temperature	Tstg	65 to	+150	$^{\rm oC}$
Junction temperature	Τį	max.	150	οС

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board (see Fig. 2)

 $R_{th j-a} = 335 \text{ K/W}$

Dimensions in mm

(1) Connection made by a strip or Cu wire.

Fig. 2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

STATIC CHARACTERISTICS

$T_{amb} = 25$ °C			
Gate cut-off currents			
$\pm V_{G1-S} = 7 \text{ V}; V_{G2-S} = V_{DS} = 0$	± IG1-SS	<	25 nA
$\pm V_{G2-S} = 7 V; V_{G1-S} = V_{DS} = 0$	± IG2-SS	<	25 nA
Gate-source breakdown voltages			
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	± V(BR)G1-SS	>	8 V
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	± V(BR)G2-SS	>	8 V
Gate-source cut-off voltages			12 1/
$I_D = 20 \mu A$; $V_{DS} = 10 V$; $+ V_{G2-S} = 4 V$	-V(P)G1-S	< >	1,3 V
5 62 6	(.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>	0,2 V
1 - 20 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	V	<	1,1 V
$I_D = 20 \mu A; V_{DS} = 10 V; V_{G1-S} = 0$	V(P)G2-S	< >	0,2 V
DYNAMIC CHARACTERISTICS			
Measuring conditions (common source): I _D = 10 mA; V _I	DS = 10 V; + V _{G2-S} = 4	V;Tan	_{nb} = 25 °C
		>	17 mS

Measuring conditions (common source): $I_D = 10 \text{ mA}$; V_{DS}	$= 10 \text{ V;} + \text{V}_{G2-S} =$	4 V; T _{aml}	_b = 25 °C
Transfer admittance at f = 1 kHz	$ y_{fs} $	> typ.	17 mS 19 mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	< typ.	3,0 pF 2,6 pF
Feedback capacitance at f = 1 MHz	C _{rs}	< typ.	35 fF 25 fF
Output capacitance at f = 1 MHz	Cos	< typ.	1,3 pF 1,1 pF
Noise figure at f = 800 MHz; $G_S = 5 \text{ mS}$; $B_S = B_S \text{ opt}$	F	<	3,9 dB

2,8 dB

			,	
	æ			
		se.		

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for v.h.f. applications, such as v.h.f. television tuners, f.m. tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current	۱ _D	max.	20 mA
Total power dissipation up to $T_{amb} = 75$ °C	P _{tot}	max.	225 mW
Junction temperature	Τį	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	Yfs	typ.	14 mS
Feedback capacitance at f = 1 MHz $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	20 fF
Noise figure at optimum source admittance $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$; $f = 200 \text{ MHz}$	F	typ.	0,7 dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-103.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	V_{DS}	max.	20	٧
Drain current (d.c. or average)	I _D	max.	20	mΑ
Drain current (peak value)	IDM	max.	30	mΑ
Gate 1 - source current	± IG1-S	max.	10	mΑ
Gate 2 - source current	±IG2-S	max.	10	mΑ
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.	225	mW
Storage temperature	T_{stg}	-65 to +	150	oC
Junction temperature	Ti	max.	150	oC

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board (see Fig. 2)

 $R_{th j-a} = 335 \text{ K/W}$

Dimensions in mm

(1) Connection made by a strip or Cu wire.

Fig. 2 Single-sided 35 μm Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

STATIC CHARACTERISTICS

Tamb = 25 °C unless otherwise specified Gate cut-off currents $\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$ 50 nA ^{± I}G1-SS $\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$ 50 nA ± IG2-SS Gate-source breakdown voltages $\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$ 6 V ± V(BR)G1-SS 6 V $\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$ ± V(BR)G2-SS Drain current $V_{DS} = 10 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}; T_i = 25 \text{ }^{\circ}\text{C}$ 4 to 25 mA IDSS Gate-source cut-off voltages -V(P)G1-S $I_D = 20 \mu A$; $V_{DS} = 10 V$; $+ V_{G2-S} = 4 V$ < 2,5 V < 2,5 V

DYNAMIC CHARACTERISTICS

 $I_D = 20 \mu A$; $V_{DS} = 10 V$; $V_{G1-S} = 0$

Measuring conditions (common source): $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$

-V(P)G2-S

Transfer admittance at f = 1 kHz	Yfs	> 10 mS typ. 14 mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ. 2,1 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ. 1,0 pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ. 20 fF
Output capacitance at f = 1 MHz	Cos	typ. 1,1 pF
Noise figure at f = 100 MHz; $G_S = 1 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ. 0,7 dB < 1,7 dB
Noise figure at f = 200 MHz; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ. 1,0 dB < 2,0 dB

Transducer gain at f = 100 MHz; $G_S = 1 \text{ mS}$; $B_S = B_S \text{ opt}$;

 $G_L = 0.5$ mS; $B_L = B_L$ opt typ. 29 dB G_{tr} Transducer gain at f = 200 MHz; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$; $G_1 = 0.5 \text{ mS}; B_1 = B_1 \text{ opt}$ G_{tr} typ. 26 dB

Fig. 3 Left-hand graph: $V_{DS} = 10 \text{ V}$; $V_{G2-S} = +4 \text{ V}$; $T_{amb} = 25 \text{ °C}$. Right-hand graph: $V_{G2-S} = +4 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig. 4 V_{DS} = 10 V; V_{G2-S} = +4 V; V_{G1-S} (V)

Fig. 5 V_{DS} = 10 V; V_{G2-S} = +4 V; f = 1 kHz; T_{amb} = 25 °C.

Measuring conditions:

Fig. 6
$$V_{DS}$$
 = 10 V; $V_{G2\text{-}S}$ = +4 V; f = 1 MHz; T_{amb} = 25 °C.

Fig. 7
$$V_{DS}$$
 = 10 V; V_{G1-S} = 0; f = 1 MHz; T_{amb} = 25 °C.

Fig. 8
$$V_{G2-S} = +4 V$$
; $I_D = 10 \text{ mA}$; $f = 1 \text{ MHz}$; $T_{amb} = 25 \text{ °C}$.

Fig. 13 V_{DS} = 10 V; V_{G2-S} = +4 V; I_D = 10 mA; f = 100 MHz; T_{amb} = 25 °C; circles of typical constant noise figures.

Fig. 14 V_{DS} = 10 V; V_{G2-S} = +4 V; I_D = 10 mA; f = 200 MHz; T_{amb} = 25 °C; circles of typical constant noise figures.

Fig. 15 Automatic gain control test circuit at f = 200 MHz (see also Fig. 16). $V_{DD} = 16 \text{ V}$; $G_S = 2 \text{ mA/V}$; $G_L = 0.5 \text{ mA/V}$.

Fig. 16 V_{DD} = 16 V; f = 200 MHz; T_{amb} = 25 °C; typical values; see also Fig. 15.

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for v.h.f. applications, such as v.h.f. television tuners, f.m. tuners, with 12 V supply voltage. This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	20 V
Drain current	۱ _D	max.	40 mA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	225 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 15 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	25 mS
Feedback capacitance at f = 1 MHz $I_D = 15 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	30 fF
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $I_D = 15$ mA; $V_{DS} = 10$ V; $+V_{G2-S} = 4$ V; $f = 200$ MHz	F	typ.	1,2 dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-103.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max.	20 V	′
Drain current (d.c. or average)	۱ _D	max.	40 m	۱A
Gate 1 - source current	±lG1-S	max.	10 m	ıA
Gate 2 - source current	±IG2-S	max.	10 m	ıA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	225 m	ηW
Storage temperature	T_{stg}	-65 to ₹	⊦150 °	C
Junction temperature	Τį	max.	150 ^o	C .

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board (see Fig. 2)

 $R_{th j-a} = 335 \text{ K/W}$

Dimensions in mm

(1) Connection made by a strip or Cu wire.

Fig. 2 Single-sided 35 μm Cu-clad epoxy fibre-glass printed-circuit board, thickness 1,5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

STATIC CHARACTERISTICS

 $T_{amb} = 25 \, {}^{\circ}C$

Gate cut-off currents			
$\pm V_{G1-S} = 7 \text{ V}; V_{G2-S} = V_{DS} = 0$	±IG1-SS	<	25 nA
$\pm V_{G2-S} = 7 \text{ V}; V_{G1-S} = V_{DS} = 0$	±IG2-SS	<	25 nA
Gate-source breakdown voltages			
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	±V(BR)G1-SS	>	8 V
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	±V(BR)G2-SS	>	8 V
Gate-source cut-off voltages			

DYNAMIC CHARACTERISTICS

Measuring conditions (common source): I_D = 15 mA; V_{DS} = 10 V; + V_{G2-S} = 4 V; T_{amb} = 25 °C

Transfer admittance at f = 1 kHz	Yfs	_	20 mS
	17151	typ.	25 mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	4,0 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,7 pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	30 fF
Output capacitance at f = 1 MHz	Cos	typ.	2,0 pF
Noise figure at $f = 200 \text{ MHz}$; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ.	1,2 dB

Depletion type field-effect transistor in a plastic SOT-143 microminiature envelope with source and substrate interconnected. This MOS-FET tetrode is intended for use in u.h.f. applications in television tuners. The device is also suitable for use in professional communication equipment.

The device is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current (peak value)	I _{DM}	max.	30 mA
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	200 mW
Junction temperature	Тj	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	Yfs	typ.	12 mS
Feedback capacitance at f = 1 MHz $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $f = 800 \text{ MHz}$	F	typ.	2,8 dB

RATINGS				
Limiting values in accordance with the Absolute Maximum S	System (IEC 134)			
Drain-source voltage	V_{DS}	max.	20	V
Drain current (d.c. or average)	ID	max.	20	mΑ
Drain current (peak value)	IDM	max.	30	mA
Gate 1 - source current	± IG1-S	max.	10	mΑ
Gate 2 - source current	± 1G2-S	max.	10	mΑ
Total power dissipation up to T _{amb} = 60 °C*	P _{tot}	max.	200	mW
Storage temperature	T_{stg}	-65 t	o + 150	oC
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air*	R _{th j-a}	=	460	K/W
STATIC CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Gate cut-off currents				
± V _{G1-S} = 5 V; V _{G2-S} = V _{DS} = 0	± IG1-SS	< <		nA nA
$\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$	± IG2-SS		50	IIA
Drain current $V_{DS} = 10 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}; T_i = 25 ^{\circ}\text{C}$	IDSS		2 to 20	mΑ
Gate-source breakdown voltages	D33			
$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$	± V(BR)G1-SS		6 to 20	
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	± V(BR)G2-SS		6 to 20	V
Gate-source cut-off voltages	V/		27	V
$I_D = 20 \mu A; V_{DS} = 10 V; + V_{G2-S} = 4 V$ $I_D = 20 \mu A; V_{DS} = 10 V; V_{G1-S} = 0$	−V(P)G1-S −V(P)G2-S	< <	2,7 2,7	
	(1/02-3		,	
DYNAMIC CHARACTERISTICS	40.11		0.5	00
Measuring conditions (common source): $I_D = 7 \text{ mA}$; $V_{DS} =$	10 V ; + $\text{V}_{\text{G2-S}} = 4$			
Transfer admittance at f = 1 kHz	Yfs	> typ.	•	mS mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	1,8	pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,0	pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25	fF
Output capacitance at f = 1 MHz	Cos	typ.	0,9	pF
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt				
f = 200 MHz	F F	typ.	•	dB
f = 800 MHz	Г	typ.	2,8	aR

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Depletion type field-effect transistor in a plastic microminiature envelope with source and substrate interconnected, intended for u.h.f. applications, such as u.h.f. television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V_{DS}	max.	18 V
Drain current (average)	ID(AV)	max.	30 mA
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	200 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at f = 1 kHz D = 10 mA; V _{DS} = 10 V; + V _{G2-S} = 4 V	Vfs	typ.	19 mS
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C_{rs}	typ.	25 fF
Noise figure at optimum source admittance $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $f = 800 \text{ MHz}$	F	typ.	2,8 dB

TOP VIEW

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Dusin service veltare	V -	max. 18 \	. ,
Drain-source voltage	v_{DS}	max. 18 \	V
Drain current (average)	^I D(AV)	max. 30 r	mΑ
Gate 1-source current	± ^I G1-S	max. 10 r	mΑ
Gate 2-source current	± IG2-S	max. 10 r	mΑ
Total power dissipation up to T _{amb} = 60 °C*	P_{tot}	max. 200 r	mW
Storage temperature	T_{stg}	-65 to + 150 °C	эС
Junction temperature	Τį	max. 150 ^o	οC

460 K/W

THERMAL RESISTANCE

From junction to ambient in free air* R_{th j-a}

Fig. 2 Power derating curve.

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

1,1 V

<

STATIC CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

Gate cut-off currents

```
gate 1;
  \pm V_{G1-S} = 7 V; V_{G2-S} = V_{DS} = 0
                                                                                                    25 nA
                                                                     ± IG1-SS
  gate 2;
  \pm V_{G2-S} = 7 V; V_{G1-S} = V_{DS} = 0
                                                                                                    25 nA
                                                                     ± IG2-SS
Gate-source breakdown voltages
  gate 1;
                                                                                                     B V
  \pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0
                                                                     ± V(BR)G1-SS
  gate 2;
  \pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0
                                                                                                     8 V
                                                                     ± V(BR)G2-SS
Gate-source cut-off voltages
  I_D = 20 \mu A; V_{DS} = 10 V; + V_{G2-S} = 4 V
                                                                                                   1,3 V
                                                                     -V(P)G1-S
```

DYNAMIC CHARACTERISTICS

 $I_D = 20 \mu A$; $V_{DS} = 10 \text{ V}$; $V_{G1-S} = 0$

Measuring conditions (common source): $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$

-V(P)G2-S

Transfer admittance at f = 1 kHz	y _{fs}	> typ.	17 mS 19 mS
land and the same of the same		typ.	2,6 pF
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	<	3,0 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,4 pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF
Output capacitance at f = 1 MHz	Cos	typ.	1,2 pF
Noise figure at $f = 800 \text{ MHz}$; $G_S = 5 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ.	2,8 dB

			•	
	*			
		were.		

Depletion type field-effect transistor in a plastic SOT-143 microminiature envelope with source and substrate interconnected. This MOS-FET tetrode is intended for use in v.h.f. applications, such as v.h.f. television tuners and f.m. tuners. The device is also suitable for use in professional communication equipment.

The device is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current	۱ _D	max.	20 mA
Total power dissipation up to $T_{amb} = 60 {}^{\circ}\text{C}$	P_{tot}	max.	200 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	Yfs	typ.	⁻ 14 mS
Feedback capacitance at f = 1 MHz $I_D = 10$ mA; $V_{DS} = 10$ V; + $V_{G2-S} = 4$ V	C _{rs}	typ.	20 fF
Noise figure at optimum source admittance $!_D = 10 \text{ mA}; V_{DS} = 10 \text{ V}; + V_{G2-S} = 4 \text{ V}; f = 200 \text{ MHz}$	F	typ.	0,7 dB

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Drain-source voltage	V_{DS}	max.	20	٧
	Drain current (d.c. or average)	I _D	max.	20	mΑ
	Drain current (peak value)	I _{DM}	max.	30	mΑ
	Gate 1 - source current	^{± I} G1-S	max.	10	mΑ
	Gate 2 - source current	± I _{G2-S}	max.	10	mΑ
	Total power dissipation up to T _{amb} = 60 °C*	P _{tot}	max.	200	mW
	Storage temperature	T_{stg}	-65 to	o + 150	oC′
	Junction temperature	Tj	max.	150	οС
	THERMAL RESISTANCE				
	From junction to ambient in free air*	R _{th j-a}	=	460	K/W
	STATIC CHARACTERISTICS				
	T _{amb} = 25 °C unless otherwise specified				
	Gate cut-off currents				
	± V _{G1-S} = 5 V; V _{G2-S} = V _{DS} = 0	± IG1-SS	<		nA nA
	$\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$	± IG2-SS		50	пА
	Drain current $V_{DS} = 10 \text{ V}; V_{G1-S} = 0; + V_{G2-S} = 4 \text{ V}; T_j = 25 \text{ °C}$	IDSS		4 to 25	mA
	Gate-source breakdown voltages			_	
	$^{\pm}$ I _{G1-SS} = 10 mA; V _{G2-S} = V _{DS} = 0 $^{\pm}$ I _{G2-SS} = 10 mA; V _{G1-S} = V _{DS} = 0	[±] V(BR)G1-SS [±] V(BR)G2-SS	>		V V
	Gate-source cut-off voltages	~		0.5	.,
	$I_D = 20 \mu A$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$ $I_D = 20 \mu A$; $V_{DS} = 10 \text{ V}$; $V_{G1-S} = 0$	-V(P)G1-S -V(P)G2-S	<	2,5 2,5	
	DYNAMIC CHARACTERISTICS				
	Measuring conditions (common source): $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ mA}$	10 V; + V _{G2-S} =	4 V; T _a	_{mb} = 25	oC
	Transfer admittance at f = 1 kHz	Yfs	>		mS
			typ.		mS ·
	Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	2,1	-
	Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,0	•
	Feedback capacitance at f = 1 MHz	C _{rs}	typ.	20	
	Output capacitance at f = 1 MHz	Cos	typ.	1,1	pF
-	Noise figure $f = 100 \text{ MHz}$; $G_S = 1 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ.	0,7	
		_	< typ.	1,7 1,0	
•	$f = 200 \text{ MHz}$; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$	F	<	2,0	
_	Transducer gain ** f = 100 MHz; Gs = 1 mS; Bs = Bs opt;				
	$G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$	G _{tr}	typ.	29	dB
-	$f = 200 \text{ MHz}$; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$;		tvn	26	٩B
	G _L = 0,5 mS; B _L = B _L opt * Device mounted on a ceramic substrate of 8 mm x 10 mr ** Crystal mounted in a SOT-103 envelope.	G_{tr} n x 0,7 mm.	typ.	20	ub

** Crystal mounted in a SOT-103 envelope.

Depletion type field-effect transistor in a plastic SOT-143 microminiature envelope with source and substrate interconnected. This MOS-FET tetrode is intended for use in v.h.f. applications, such as v.h.f. television tuners, FM tuners with a 12 volt supply voltage. The device is also suitable for use in professional communication equipment.

The device is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	20 V
Drain current	۱ _D	max.	40 mA
Total power dissipation up to T _{amb} = 60 °C	P_{tot}	max.	200 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at f = 1 kHz $I_D = 15$ mA; $V_{DS} = 10$ V; $+ V_{G2-S} = 4$ V	Yfs	typ.	25 mS
Feedback capacitance at f = 1 MHz $I_D = 15 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	30 fF
Noise figure at $G_S = 2 \text{ mS}$ $I_D = 15 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $f = 200 \text{ MHz}$	F	typ.	1,2 dB

TOP VIEW

RATINGS				
Limiting values in accordance with the Absolute Maximum S	System (IEC 134)			
Drain-source voltage	v_{DS}	max.	20	٧
Drain current (d.c. or average)	I _D	max.	40	mΑ
Gate 1 - source current	^{± I} G1-S	max.	10	mΑ
Gate 2 - source current	± IG2-S	max.	10	mΑ
Total power dissipation up to $T_{amb} = 60 {}^{\circ}\text{C}^*$	P_{tot}	max.	200	mW
Storage temperature	T_{stg}	65 to +	150	οС
Junction temperature	$\tau_{\rm j}$	max.	150	oC,
THERMAL RESISTANCE				
From junction to ambient in free air*	R _{th j-a}	=	460	K/W
STATIC CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Gate cut-off currents				
± V _{G1-S} = 7 V; V _{G2-S} = V _{DS} = 0 ± V _{G2-S} = 7 V; V _{G1-S} = V _{DS} = 0	± G1-SS	< <		nA nA
Gate-source breakdown voltages	± IG2-SS		25	ПΑ
± I _{G1-SS} = 10 mA; V _{G2-S} = V _{DS} = 0	± V(BR)G1-SS	>	8	٧
$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	± V(BR)G2-SS	>	8	٧
Gate-source cut-off voltages				
$I_D = 20 \mu A; V_{DS} = 10 V; + V_{G2-S} = 4 V$ $I_D = 20 \mu A; V_{DS} = 10 V; V_{G1-S} = 0$	^{-V} (P)G1-S	0,2 to 0,2 to	•	
1D - 20 MA, VDS - 10 V, VG1-S - 0	-V(P)G2-S	0,2 ((, ,,,	٧
DYNAMIC CHARACTERISTICS				
Measuring conditions (common source): $I_D = 15 \text{ mA}$; $V_{DS} = 10 \text{ mA}$	= 10 V; + V _{G2-S} =	4 V; T _{amb}	, = 25	oC.
Transfer admittance at f = 1 kHz	Yfs	> typ.		mS mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.		pF
Input capacitance at gate 1; f = 1 MHz	C _{ig2-s}	typ.	1,7	
impat supusitanos at gato 2,1 1 11112	_	typ.		fF
Feedback capacitance at f = 1 MHz	C _{rs}	< <		fF
Output capacitance at f = 1 MHz	Cos	typ.	2	pF
Noise figure at $f = 200 \text{ MHz}$; $G_S = 2 \text{ mS}$	F	typ.	1,2	dB

^{→ *} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Depletion type field-effect transistor in a plastic microminiature envelope with source and substrate interconnected, intended for u.h.f. and v.h.f. applications, such as u.h.f./v.h.f. television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current (average)	I _{D(AV)}	max.	30 mA
Total power dissipation up to T _{amb} = 60 °C	P_{tot}	max.	200 mW
Junction temperature	T_{i}	max.	150 °C
Transfer admittance at f = 1 kHz $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	17 mS
Feedback capacitance at f = 1 MHz $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at optimum source admittance $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $f = 200 \text{ MHz}$	F	typ.	1,5 dB

TOP VIEW

Limiting values in accordance with the Absolute Maximum System (IEC 134)

3			
Drain-source voltage	v_{DS}	max.	20 V
Drain current (average)	I _{D(AV)}	max.	30 mA
Gate 1-source current	± I _{G1-S}	max.	10 mA
Gate 2-source current	± I _{G2-S}	max.	10 mA
Total power dissipation up to T _{amb} = 60 °C*	P _{tot}	max.	200 mW
Storage temperature	T_{stg}	-65 to	+ 150 °C
Junction temperature	Тј	max.	150 °C
THEDMAI DESISTANCE			

THERMAL RESISTANCE

From junction to ambient in free air* $R_{th j-a} = 460 \text{ K/W}$

Fig. 2 Power derating curve.

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,6 mm.

2 to 20 mA

STATIC CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

Gate cut-off currents

V_{DS} = 15 V; V_{G2-S} = 4 V DYNAMIC CHARACTERISTCS

Drain-source cut-off voltage

Measuring conditions (common source): $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$

IDSS

Transfer admittance at f = 1 kHz ·	y _{fs}	> typ.	15 mS 17 mS	
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	2,5 pF	
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,2 pF	
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF	
Output capacitance at f = 1 MHz	Cos	typ.	1,0 pF	
Noise figure at f = 200 MHz; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ.	1,5 dB 2,8 dB	•
Power gain at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ $G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$; $f = 200 \text{ MHz}$	Gp	typ.	25 dB	•

		**	

Depletion type field-effect transistor in a plastic microminiature envelope (SOT-143) with source and substrate interconnected and intended for v.h.f. applications in television tuners, using SMD* technology. The device is also suitable for use in professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

* Surface Mounted Devices.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	20 V
Drain current	۱D	max.	50 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	300 mW
Junction temperature	Тj	max.	150 °C
Transfer admittance at f = 1 kHz ID = 10 mA; VDS = 15 V; +VG2-S = 4 V	y _{fs}	typ.	18 mS
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt $I_D = 10$ mA; $V_{DS} = 15$ V; $+V_{G2-S} = 4$ V; f = 200 MHz	F	typ.	1.0 dB
	•	-/	.,=

RATINGS				
Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
Drain-source voltage	v_{DS}	max.	20	V
Drain current (d.c. or average)	ID	max.	50	mΑ
Gate 1 - source current	±IG1-S	max.	10	mA
Gate 2 - source current	±IG2-S	max.	10	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300	mW
Storage temperature	T _{stg}	65 to	150	,oC
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air mounted on a ceramic substrate of 8 mm \times 10 mm \times 0,7 mm	R _{th j-a}	=	430	K/W
STATIC CHARACTERISTICS				
$T_j = 25$ °C unless otherwise specified				
Gate cut-off currents $\pm V_{G1-S} = 5 \text{ V; } V_{G2-S} = V_{DS} = 0$ $\pm V_{G2-S} = 5 \text{ V; } V_{G1-S} = V_{DS} = 0$	^{±I} G1-S ^{±I} G2-S	< <		nA nA
Gate-source breakdown voltages $\pm I_{G1-S} = 10 \text{ mA}$; $V_{G2-S} = V_{DS} = 0$ $\pm I_{G2-S} = 10 \text{ mA}$; $V_{G1-S} = V_{DS} = 0$	±V(BR)G1-SS ±V(BR)G2-SS	6,0 t		
Drain current VDS = 15 V; VG1-S = 0; VG2-S = 4 V	IDSS ~	ŕ	o 20	
Gate-source cut-off voltages $I_D = 20 \mu A$; $V_{DS} = 15 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$ $I_D = 20 \mu A$; $V_{DS} = 15 \text{ V}$; $V_{G1-S} = 0$	−V(P)G1-S −V(P)G2-S	< <	2,5 2,0	
DYNAMIC CHARACTERISTICS				
Measuring conditions (common source): $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; +V _{G2-S} = 4 V	; T _{amb} = 2	25 °C	: .
Transfer admittance at f = 1 kHz	Yfs	> typ.		mS mS
Input capacitance at gate 1: f = 1 MHz	C _{ig1-s}	typ.	2,5 3,0	•
Input capacitance at gate 2: f = 1 MHz	C _{ig2-s}	typ.	1,2	pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25	fF

 C_{os}

F

 G_p

1,0 pF

1,0 dB

25 dB

typ.

typ.

typ.

Output capacitance at f = 1 MHz

Noise figure at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$; f = 200 MHz

Power gain at $G_S = 2$ mS; $B_S = B_S$ opt $G_L = 0.5$ mS; $B_L = B_L$ opt; f = 200 MHz

Depletion type field-effect transistor in a plastic microminiature envelope, with source and substrate interconnected, intended for u.h.f. applications, such as television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	20 V
Drain current (average)	ID(AV)	max.	30 mA
Total power dissipation up to T _{amb} = 60 °C	P_{tot}	max.	200 mW
Junction temperature	Τį	max.	150 °C
Transfer admittance at f = 1 kHz	•		
$I_D = 10 \text{ mA}; V_{DS} = 15 \text{ V}; + V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	17 mS
Feedback capacitance at f = 1 MHz			
$I_D = 10 \text{ mA}; V_{DS} = 15 \text{ V}; + V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at optimum source admittance			
$I_D = 10 \text{ mA}; V_{DS} = 10 \text{ V}; + V_{G2-S} = 4 \text{ V}; f = 800 \text{ MHz}$	F	typ.	2,8 dB
$I_D = 10 \text{ mA}; V_{DS} = 15 \text{ V}; + V_{G2-S} = 4 \text{ V}; f = 200 \text{ MHz}$	F	typ.	1,5 dB

TOP VIEW

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max.	20 V
Drain current (average)	ID(AV)	max.	30 mA
Gate 1-source current	± IG1-S	max.	10 mA
Gate 2-source current	± 1G2-S	max.	10 mA
Total power dissipation up to T _{amb} = 60 °C*	P _{tot}	max.	200 mW
Storage temperature	T _{stq}	-65 to	+ 150 °C
Junction temperature	Tj	max.	150 [°] °C
TUEDALA, DECIGEANCE			

THERMAL RESISTANCE

From junction to ambient in free air*

 $R_{th j-a} = 460 \text{ K/W}$

Fig. 2 Power derating curve.

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

50 nA

50 nA

6 to 20 V

6 to 20 V

2,5 V

2,0 V

STATIC CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

Gate cut-off currents

$$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$$

gate 2: $\pm V_{G2-S} = 5 V; V_{G1-S} = V_{DS} = 0$

Gate-source breakdown voltages

$$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$$

gate 2;

$$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$$

Gate-source cut-off voltages gate 1;

$$I_D = 20 \,\mu\text{A}$$
; $V_{DS} = 15 \,\text{V}$; + $V_{G2-S} = 4 \,\text{V}$

gate 2;
$$I_D = 20 \mu A$$
; $V_{DS} = 15 V$; $V_{G1-S} = 0$

$$V_{DS} = 15 \text{ V}; V_{G2-S} = 4 \text{ V}$$

IDSS

± IG1-SS

± IG2-SS

± V(BR)G1-SS

± V(BR)G2-SS

-V(P)G1-S

-V(P)G2-S

2 to 20 mA

<

<

<

<

DYNAMIC CHARACTERISTICS

Measuring conditions (common source):
$$I_D$$
 = 10 mA; V_{DS} = 15 V; + V_{G2-S} = 4 V; T_{amb} = 25 °C

Transfer admittance at f = 1 kHz
$$|y_{fs}|$$
 $> 15 mS$ typ. 17 mS Input capacitance at gate 1; f = 1 MHz C_{ig1-s} typ. 2,2 pF Input capacitance at gate 2; f = 1 MHz C_{ig2-s} typ. 1,1 pF Feedback capacitance at f = 1 MHz C_{rs} typ. 25 fF Output capacitance at f = 1 MHz C_{os} typ. 0,8 pF Noise figure

Noise figure

Power gain

$$G_S = 2 \text{ mS}$$
; $B_S = B_S \text{ opt}$; $G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$; $f = 200 \text{ MHz}$

$$G_S = 2 \text{ mS}$$
; $B_S = B_S \text{ opt}$; $G_L = 1.0 \text{ mS}$;

 G_p

typ.

typ.

25 dB

	,		
		·•	

SILICON N-CHANNEL DUAL GATE MOS-FET

Depletion type field-effect transistor in a plastic microminiature envelope (SOT-143) with source and substrate interconnected and intended for u.h.f. applications in television tuners, using SMD* technology. The device is also suitable for use in professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

* Surface Mounted Devices

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current	I _D	max.	30 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	18 mS
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at $G_S = 3.3$ mS; $B_S = B_S$ opt $I_D = 10$ mA; $V_{DS} = 15$ V; $+V_{G2-S} = 4$ V; $f = 800$ MHz	F -	typ.	1,8 dB

MECHANICAL DATA

Fig. 1 SOT-143.

Dimensions in mm

				_	
	RATINGS	-			
	Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
	Drain-source voltage	V_{DS}	max.	20	٧
	Drain current (d.c. or average)	ID	max.	30	mΑ
	Gate 1 - source current	^{±I} G1-S	max.	10	mΑ
	Gate 2 - source current	±IG2-S	max.	10	mΑ
	Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	300	mW
	Storage temperature	T _{stg}	-65 t	o 150	оC
	Junction temperature	Tj	max.	150	oC
	THERMAL RESISTANCE				
	From junction to ambient in free air mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm	R _{th j-a}	=	430	K/W
	STATIC CHARACTERISTICS				
	$T_i = 25$ °C unless otherwise specified				
	Gate cut-off currents				
	$\pm V_{G1-S} = 5 \text{ V}, V_{G2-S} = V_{DS} = 0$ $\pm V_{G2-S} = 5 \text{ V}; V_{G1-S} = V_{DS} = 0$	^{±1} G1-S ^{±1} G2-S	< <		nA nA
	Gate-source breakdown voltages ±IG1-S = 10 mA; VG2-S = VDS = 0	±V(BR)G1-SS	6,0	to 20	V
	$\pm I_{G2-S} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$	±V(BR)G2-SS	6,0	to 20	V
	Drain current				
	$V_{DS} = 15 \text{ V}; V_{G1-S} = 0; V_{G2-S} = 4 \text{ V}$	IDSS -	4	to 20	mΑ
	Gate-source cut-off voltages $I_D = 20 \mu A$; $V_{DS} = 15 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$	V(P)G1-S	<	2,5	V
	$I_D = 20 \mu\text{A}$; $V_{DS} = 15 \text{V}$; $V_{G1-S} = 0$	-V(P)G2-S	<	2,0	
	DYNAMIC CHARACTERISTICS				
	Measuring conditions (common source): ID = 10 mA; VDS = 15 V	; +VG2-S = 4 V	; T _{amb} =	25 °C) .
	Transfer admittance at f = 1 kHz	Yfs	> typ.		mS mS
	Input capacitance at gate 1: f = 1 MHz	C _{ig1-s}	typ.	2,3 2,6	pF
	Input capacitance at gate 2: f = 1 MHz	Cia2-s	typ.	1,2	
	Feedback capacitance at f = 1 MHz	C _{rs}	typ.		fF
	Output capacitance at f = 1 MHz	Cos	typ.	0,8	
-	Noise figure	50	• •	•	
	$f = 200 \text{ MHz}; G_S = 2 \text{ mS}; B_S = B_S \text{ opt}$ $f = 800 \text{ MHz}; G_S = 3.3 \text{ mS}; B_S = B_S \text{ opt}$	F	typ. typ.	1,0 1,8	dB dB

f = 200 MHz; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$; $G_L = 0.5 \text{ mS}$; $B_L = B_L \text{ opt}$ $G_P = 800 \text{ MHz}$; $G_S = 3.3 \text{ mS}$; $B_S = B_S \text{ opt}$; $G_L = 1.0 \text{ mS}$;

25 dB

18 dB

typ.

typ.

Power gain

 $B_L = B_L \text{ opt}$

This data sheet contains advance information and specifications are subject to change without notice.

SILICON N-CHANNEL DUAL GATE MOS-FET

Depletion type field-effect transistor in a plastic microminiature envelope with source and substrate interconnected, intended for u.h.f. and v.h.f. applications, such as u.h.f./v.h.f. television tuners and professional communication equipment.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source and has an integrated drain resistance to suppress oscillation in the frequency range higher than 1 GHz.

This device is especially intended for use in pre-amplifiers in CATV tuners with a great tuning range up to 500 MHz.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current (average)	^I D(AV)	max.	30 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	300 mW
Junction temperature	T_{j}	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	y _{fs}	typ.	18 mS
Feedback capacitance at f = 1 MHz $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	C _{rs}	typ.	25 fF
Noise figure at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ $I_D = 10 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $f = 200 \text{ MHz}$	F	typ.	1,0 dB

MECHANICAL DATA

Fig. 1 SOT-143.

Dimensions in mm

Marking code: M83

TOP VIEW

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max.	20	V
Drain current (average)	I _{D(AV)}	max.	30	mΑ
Gate 1 source current	± IG1-S	max.	10	mΑ
Gate 2 source current	± IG2-S	max.	10	mΑ
Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}^{*}$	P_{tot}	max.	300	mW
Storage temperature	T_{stg}	-65 to +	150	^o C
Junction temperature	T_{j}	max.	150	οС

THERMAL RESISTANCE

From junction to ambient in free air* $R_{th j-a} = 430 \text{ K/W}$

Fig. 2 Power derating curve.

^{*} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

STATIC CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

Gate cut-off currents

$$\pm V_{G1-S} = 5 V; V_{G2-S} = V_{DS} = 0$$
 $\pm I_{G1-SS}$ < 50 nA

gate 2;

$$\pm V_{G2-S} = 5 \text{ V}; V_{G1-S} = V_{DS} = 0$$
 $\pm I_{G2-SS}$ < 50 nA

Gate-source breakdown voltages

$$\pm I_{G1-SS} = 10 \text{ mA}; V_{G2-S} = V_{DS} = 0$$
 $\pm V_{(BR)G1-SS}$ 6 to 20 V

gate 2;

$$\pm I_{G2-SS} = 10 \text{ mA}; V_{G1-S} = V_{DS} = 0$$
 $\pm V_{(BR)G2-SS}$ 6 to 20 V

Gate-source cut-off voltages

$$I_D = 20 \mu A; V_{DS} = 15 V; + V_{G2-S} = 4 V$$
 $-V_{(P)G1-S}$ < 2,5 V

gate 2;

$$I_D = 20 \,\mu\text{A}; V_{DS} = 15 \,\text{V}; V_{G1-S} = 0$$
 $-V_{(P)G2-S}$ < 2,0 V

Drain-source cut-off voltage

$$V_{DS} = 15 \text{ V}; V_{G2-S} = 4 \text{ V}; V_{G1-S} = 0$$
 I_{DSS} 2 to 20 mA

DYNAMIC CHARACTERISTICS

Measuring conditions (common source):
$$I_D = 10 \text{ mA}$$
; $V_{DS} = 15 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$

Transfer admittance at f = 1 kHz	lve I	>	15 mS
Transfer admittance at 1 – 1 KHZ	ly _{fs} l	typ.	18 mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	2,5 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1,2 pF
Feedback capacitance at f = 1 MHz	C_{rs}	typ.	25 fF
Output capacitance at f = 1 MHz	Cos	typ.	1,0 pF
Noise figure at $f = 200 \text{ MHz}$; $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$	F	typ.	1,0 dB
Power gain at Go = 2 mS · Ro = Ro ont			

Power gain at
$$G_S = 2$$
 mS; $B_S = B_S$ opt $G_L = 0.5$ mS; $= B_L = B_{L \text{ opt}}$; $f = 200$ MHz G_p typ. 25 dB

SILICON N-CHANNEL DUAL IG-MOS-FET

Depletion type field-effect transistor in a TO-72 metal envelope with source and substrate connected to the case, intended for a wide range of v.h.f. applications, such as v.h.f. television tuners, f.m. tuners, as well as for applications in communication, instrumentation and control.

This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

The tetrode configuration, a series arrangement of two gate controlled channels, offers:

- a) very low feedback capacitance providing the possibility of more than 40 dB gain control in r.f. amplifiers requiring negligible a.g.c. power.
- b) excellent signal handling capability over the entire gain control range.
- c) low noise figure combined with high gain.

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	20 V
Drain current	ID	max.	50 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	300 mW
Junction temperature	Tj	max.	175 °C
Transfer admittance at f = 1 kHz $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; + $V_{G2-S} = 4 \text{ V}$	Yfs	typ.	15 mS
Feedback capacitance at $f = 1 \text{ MHz}$ $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$	Crs	typ.	30 fF
Noise figure at optimum source admittance $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ V_{G2-S} = 4 \text{ V}$ $G_S = 1,2 \text{ mS}$; $-B_S = 5,7 \text{ mS}$; $f = 200 \text{ MHz}$	F	typ.	2,3 dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

Source and substrate connected to the case.

Accessories: 56246 (distance disc).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	v_{DS}	max.	20	V
Drain current (d.c. or average)	I_{D}	max.	50	mA
Drain current (peak value)	I_{DM}	max.	100	mA
Gate 1-source current	$\pm I_{G1-S}$	max.	10	mA ·
Gate 2-source current	$\pm I_{\rm G2-S}$	max.	10	mA
Total power dissipation up to T_{amb} = 25 ^{o}C	P_{tot}	max.	300	mW
Storage temperature	$T_{ m stg}$	-65 to	-65 to +175	
Junction temperature	$T_{\mathbf{j}}$	max.	175	$^{\mathrm{o}\mathrm{C}}$
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th i-a}	=	500	K/W

STATIC CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified

Gate cut-off currents

Gate-source breakdown voltages

 $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$

$$\pm I_{G1-SS} = 0, 1 \text{ mA}; V_{G2-S} = V_{DS} = 0$$
 $\pm V_{(BR)G1-SS}$ 6, 0 to 20 V $\pm I_{G2-SS} = 0, 1 \text{ mA}; V_{G1-S} = V_{DS} = 0$ $\pm V_{(BR)G2-SS}$ 6, 0 to 20 V

Drain current

$$V_{DS} = 10 \text{ V}; V_{G1-S} = 0; +V_{G2-S} = 4 \text{ V}$$
 I_{DSS} 20 to 55 mA ¹)

 $-V_{G1-S}$

0,6 to 2,1

Gate 1-source voltage

 $I_{D} = 10 \ \mu A \ ; V_{DS} = 10 \ V; + V_{G2-S} = 4 \ V$ $-V_{(P)G1-S}$ 1,5 to 3,8 V $I_{D} = 10 \ \mu A \ ; V_{DS} = 10 \ V; V_{G1-S} = 0$ $-V_{(P)G2-S}$ 1,5 to 3,4 V

 $^{^{1}}$) Measured under pulse conditions.

DYNAMIC CHARACTERISTICS

Measuring conditions (common source): $I_D = 10 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+V_{G2-S} = 4 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$ mS Transfer admittance at f = 1 kHzy_{fs} typ. 15 mS Input capacitance at f = 1 MHz C_{is} typ. 5,5 рF Feedback capacitance at f = 1 MHz C_{rs} typ. 30 fFOutput capacitance at f = 1 MHz C_{os} 3,5 pF typ. Noise figure at optimum source admittance $G_S = 0.95 \text{ mS}; -B_S = 5.0 \text{ mS}; f = 100 \text{ MHz}$ F dΒ typ. 1,9 2,3 dΒ typ. $G_S = 1,20 \text{ mS}$; $-B_S = 5,7 \text{ mS}$; f = 200 MHzF 3,0 dB Cross modulation at f = 200 MHz Wanted signal at $f_0 = 197, 5 \text{ MHz}$ Unwanted signal at fint = 202, 5 MHz mV^{1}) Interference voltage at g_1 for K = 1%100 Vint typ.

¹⁾ Cross modulation is defined here as the voltage at g_1 of an unwanted signal with 80% modulation depth, giving 0, 8% modulation depth on the wanted signal (a.m. definition).

circles of constant noise figure

DEVICE DATA VERTICAL DMOS-FETS

		•	

N-CHANNEL VERTICAL D-MOS TRANSISTOR

N-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and intended for use as line current interuptor in telephone sets and for application in relay, high-speed and line-transformer drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching.
- No secondary breakdown.

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	200 V
Gate-source voltage	V_{GS}	max.	15 V
Drain current (d.c.)	ID	max.	120 mA
Total power dissipation up to $T_c = 25$ °C	P_{tot}	max.	500 mW
Junction temperature	T_{j}	max.	150 °C
Drain-source ON-resistance VGS = 2,6 V; I _D = 20 mA	R _{DSon}	max.	28 Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Note: Various pinnings are available on request.

_					
	RATINGS				
	Limiting values in accordance with the Absolute Maximun	n System (IEC 134	4)		
	Drain-source voltage	V_{DSS}	max.	200	V
	Drain-gate voltage	V_{DGS}	max.	200	V
	Gate-source voltage	V_{GS}	max.	15	V
	Drain current (d.c.)	ID	max.	120	mΑ
	Total power dissipation up to $T_C = 25$ °C	P _{tot}	max.	500	mW
	Storage temperature	T _{stg}	-55 to	+150	oC
	Junction temperature	Τj	max.	150	oC
	THERMAL RESISTANCE				
	From junction to ambient	R _{th j-a}	=	150	K/W
	CHARACTERISTICS				
	T _j = 25 °C unless otherwise specified				
	Drain-source breakdown voltage $V_{GS} = 0$; $I_D = 100 \mu A$	V(BR)DS	>	200	٧
	Gate-source leakage current VGS = 15 V; VDS = 0	IGSoff	<	10	nA
	Drain cut-off current VDS = 130 V; VGS = 0	I _{DSS} .	<	30	nA ·
	$V_{DS} = 70 \text{ V}; V_{GS} = 0.2 \text{ V}$	IDSX	<	1	μΑ
	Drain-source ON-resistance VGS = 2,6 V; I _D = 20 mA	RDSon	_typ.	15 28	
	V _{GS} = 10 V; I _D = 250 mA	RDSon	typ.	6	Ω

 $I_D = 250 \text{ mA}$; $V_{DS} = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$

Crs typ. typ. t_{on}

V_{GS(th)}

lyfsl

Cis

 C_{os}

toff

4 ns < 10 ns

0,8 V

1,8 V

2,8 V

250 mS

70 pF

20 pF

5 pF

typ. 15 ns < 25 ns

typ. <

typ.

typ.

typ.

>

Gate threshold voltage

 $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$

 $I_D = 250 \text{ mA}; V_{DS} = 15 \text{ V}$

Input capacitance at f = 1 MHz $V_{DS} = 10 \text{ V}; V_{GS} = 0$

Output capacitance at f = 1 MHz $V_{DS} = 10 \text{ V; } V_{GS} = 0$

Feedback capacitance at f = 1 MHz $V_{DS} = 10 \text{ V; } V_{GS} = 0$

Switching times (see Figs 2 and 3)

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

	,		
		ww.c	

N-CHANNEL VERTICAL D-MOS TRANSISTOR

N-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and intended for use in relay, high-speed and line-transformer drivers.

Features:

- Very low Rpson.
- Direct interface to C-MOS, TTL, etc.
- High-speed switching.
- No secondary breakdown.

QUICK REFERENCE DATA

Drain-source voltage	V_{DS}	max.	60 V
Gate-source voltage	V_{GS}	max.	15 V
Drain current (d.c.)	ID	max.	500 mA
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	830 mW
Junction temperature	Тj	max.	150 °C
Drain-source ON-resistance VGS = 10 V; I _D = 200 mA	RDSon	max.	5 Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

April 1987

RAT	INGS
-----	------

RATINGS				
Limiting values in accordance with the Absolute Maximu	m System (IEC 13	34)		
Drain-source voltage	v_{DS}	max.	60	V
Drain-gate voltage	V_{DG}	max.	60	V
Gate-source voltage	V_{GS}	max.	15	V
Drain current (d.c.) at T _C = 25 °C	I _D	max.	500	mΑ
Total power dissipation up to	_			
T _{amb} = 25 °C	P_{tot}	max.		mW
Storage temperature	T_{stg}	-55 to		
Junction temperature	Тj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	=	150	K/W
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Drain-source breakdown voltage				
$V_{GS} = 0$; $I_D = 100 \mu A$	V(BR)DS	> typ.	60 90	
Gate threshold voltage		>	0,8	
$V_{GS} = V_{DS}$; $I_D = 1 \text{ mA}$	VGS(th)	<	3,0	V
Gate-source leakage current				
$V_{GS} = 15 V; V_{DS} = 0$	^I GSoff	<	10	nΑ
Drain cut-off current $V_{DS} = 25 \text{ V}; V_{GS} = 0$	IDSS	<	0.5	μΑ
Drain-source ON-resistance *	פפטי	-	-	
V _{GS} = 10 V; I _D = 200 mA	R _{DSon}	typ.	2,5	
Forward transconductance *		<	5,0	22
$V_{DS} = 10 \text{ V; I}_{D} = 200 \text{ mA;}$	9fs	typ.	200	mS
f = 1 kHz	513	-,,,		
Capacitances at f = 1 MHz				_
$V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{iss}	typ.		pF pF
			-10	'n.
	Cos	typ.	22	рF
		<	30	рF
	C _{rs}	typ.	6	рF
	-1 5	<	10	pΕ
Switching times at ID = 200 mA	.,			
$I_D = 200 \text{ mA}; V_{DS} = 50 \text{ V};$	ton	typ.	4 10	ns ns
Voc = 0 to 10 V	toss	typ.		ns
V _{GS} = 0 to 10 V	^t off	<	10	ns

^{*} $t_p = 80 \ \mu s$; $\delta = 0.01$.

Fig. 2 Switching times test circuit

Fig. 3 Input and output waveforms

	,		
		ar'	

P-CHANNEL VERTICAL D-MOS TRANSISTOR

P-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and intended for use in relay, high-speed and line-transformer drivers.

Features

- Very low R_{DSon}
- Direct interface to C-MOS
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	-V _{DS}	max.	45 V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	20 V
Drain current (d.c.)	-I _D	max.	0,25 A
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,83 W
Drain-source ON-resistance $-I_D = 200 \text{ mA}; -V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	9 Ω 14 Ω
Transfer admittance at $f = 1 \text{ kHz}$ $-I_D = 200 \text{ mA}; -V_{DS} = 15 \text{ V}$	ly _{fs} l	typ.	125 mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

	RATINGS	(150.404)			
	Limiting values in accordance with the Absolute Maximum Sy			45	.,
	Drain-source voltage	-V _{DS}	max.	45	
	Gate-source voltage (open drain)	-V _{GSO}	max.	20	
	Drain current (d.c.)	-I _D		0,25	
	Drain current (peak value)	_lDW	max.	0,5	
	Total power dissipation up to $T_{amb} = 25 {}^{\circ}C^*$	P _{tot}	max.	0,83	
	Storage temperature	T _{stg}	-65 to +		•
	Junction temperature	Тj	max.	150	οС
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}	=	150	K/W
	CHARACTERISTICS				
	T _j = 25 °C unless otherwise specified				
	Drain-source breakdown voltage				
	$-I_D = 100 \mu\text{A}; V_{GS} = 0$	−V _{(BR)DS}	min.	45	V
	Drain-source leakage current			0.5	
	$-V_{DS} = 25 \text{ V}; V_{GS} = 0$	-IDSS	max.	0,5	μΑ
	Gate-source leakage current -V _{GS} = 15 V; V _{DS} = 0	−l _{GSS}	max.	20	nA
	Gate threshold voltage	'GSS	mux.	20	11/1
	$-I_D = 1 \text{ mA}; V_{DS} = V_{GS}$	-V _{GS(th)}	min.	1,0	
	D. C.	20(til)	max.	3,5	V
	Drain-source ON-resistance -ID = 200 mA; -VGS = 10 V	R _{DSon}	typ.	9	Ω
	1D 200 mA, VGS 10 V	''D20u	max.	14	Ω
	Transfer admittance at f = 1 kHz	1 1		405	•
	$-I_D = 200 \text{ mA}; -V_{DS} = 15 \text{ V}$	y _{fs}	typ.	125	m5
	Input capacitance at $f = 1 \text{ MHz}$ $-V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{is}	typ.		pF
-	-vDS 10 v, vGS 0	O _{IS}	<	45	pF
	Output capacitance at f = 1 MHz	0	typ.	20	pF
-	$-V_{DS} = 10 \text{ V}; V_{GS} = 0$	Cos	<	30	pF
	Feedback capacitance at f = 1 MHz		typ.	5	рF
-	$-V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{rs}	<		pF

ton

toff

4 ns

10 ns

typ.

typ.

Switching times (see Figs 2 and 3) $-I_D = 200 \text{ mA}; -V_D = 40 \text{ V}; -V_{GS} = 0 \text{ to } 10 \text{ V}$

^{*} Transistor mounted on printed-circuit board, max. lead length 4 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

·			
		æ.	

N-CHANNEL VERTICAL D-MOS TRANSISTOR

N-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and intended for use in relay, high-speed and line-transformer drivers.

Features:

- Very low R_{DSon}
- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	80	٧
Gate-source voltage (open drain)	V_{GSO}	max.	20	٧
Drain current (d.c.)	ID	max.	0,5	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	W
Drain-source ON-resistance I _D = 500 mA; V _{GS} = 10 V	R _{DSon}	typ. max.	_	Ω
Transfer admittance $I_D = 500 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	y _{fs}	typ.	300	mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Note: Various pinnings are available on request.

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System (EC 134)			
	Drain-source voltage	V _{DS}	max.	80	V
	Gate-source voltage (open drain)	V _{GSO}	max.	20	٧
	Drain current (d.c.)	ID	max.	0,5	Α
	Drain current (peak)	IDM	max.	1,0	Α
	Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	1	W
	Storage temperature	T _{stg}	-65 to +	150	οС
	Junction temperature	Tj	max.	150	o _C
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}		125	K/W
	CHARACTERISTICS				
	T _i = 25 °C unless otherwise specified				
	Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	80	V
	Drain-source leakage current V _{DS} = 60 V; V _{GS} = 0	I _{DSS}	<	10	μΑ
	Gate-source leakage current V _{GS} = 20 V; V _{DS} = 0	I _{GSS}	<	100	nA
	Gate threshold voltage $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	V _{GS(th)}	> <	1,5 3,5	
	Drain-source ON-resistance (see Fig. 4) $I_D = 500 \text{ mA}$; $V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	2,0 4,0	Ω
	Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 500 \text{ mA}$; $V_{DS} = 15 \text{ V}$	yfs	typ.	300	mS
-	Input capacitance at f = 1 MHz $V_{DS} = 10 \text{ V; } V_{GS} = 0$	C _{is}	typ.	45 60	
-	Output capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0	Cos	typ.	30 45	pF
-	Feedback capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0 Switching times (see Figs 2 and 3)	C _{rs}	typ.		pF
	OWITCHING LINES (SEC 1 143 & GIRL O)		_		

t_{on}

10 ns

15 ns

Switching times (see Figs 2 and 3) $I_D = 500 \text{ mA}; V_{DS} = 50 \text{ V}; V_{GS} = 0 \text{ to } 10 \text{ V}$

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for drain lead min. 10 mm x 10 mm.

Fig. 2 Switching times test circuit.

Fig. 4 $T_j = 25$ °C; typical values.

Fig. 6 $T_i = 25$ °C; typical values.

Fig. 3 Input and output waveforms.

Fig. 5 $T_j = 25$ °C; typical values at $V_{DS} = 10$ V.

Fig. 7 Power derating curve.

Fig. 8 $k = \frac{RDS \text{ on at } T_j}{RDS \text{ on at } 25 \text{ °C}}$; typ. values at 500 mA/10 V.

Fig. 9 $k = \frac{VGS(th) \text{ at T}_j}{VGS(th) \text{ at 25 °C}}$; $V_{GS(th)}$ at 1 mA; typical values.

Fig. 10 $T_j = 25$ °C; $V_{GS} = 0$; f = 1 MHz; typical values.

N-CHANNEL VERTICAL D-MOS TRANSISTOR

N-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and designed for use in telephone ringer circuits and for application with relay, high-speed and line-transformer drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	80	V
Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS} (SM)	max.	100	V
Gate-source voltage (open drain)	V_{GSO}	max.	20	V
Drain current (d.c.)	ID	max.	300	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,83	W
Drain-source ON-resistance I _D = 150 mA; V _{GS} = 5 V	R _{DSon}	typ.	7 10	Ω
Transfer admittance $I_D = 200 \text{ mA}; V_{DS} = 5 \text{ V}; f = 1 \text{ kHz}$	lyfs	typ.		mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Note: Various pinnings are available on request.

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
	Drain-source voltage	v_{DS}	max.	80	٧
	Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS(SM)}	max.	100	V
	Gate-source voltage (open drain)	V _{GSO}	max.	20	V
	Drain current (d.c.)	ID	max.	300	mΑ
	Drain current (peak)	I _{DM}	max.	600	mΑ
	Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	0,83	W
	Storage temperature	T _{stg}	-65 to +	150	οС
	Junction temperature	тј	max.	150	оС
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}		150	K/W
	CHARACTERISTICS				
	$T_j = 25$ °C unless otherwise specified				
	Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	80	V
	Drain-source leakage current	(611/03			
	$V_{DS} = 60 \text{ V}; V_{GS} = 0$	IDSS	<	1,0	μΑ
	Gate-source leakage current				
	$V_{GS} = 20 \text{ V}; V_{DS} = 0$	I _{GSS}	<	100	nΑ
	Gate threshold voltage	Vacuu	>	1,5	V
	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}$	V _{GS(th)}	<	3,5	V
	Drain-source ON-resistance (see Fig. 4)	5	typ.	7	Ω
	$I_D = 150 \text{ mA}; V_{GS} = 5 \text{ V}$	R _{DSon}	<	10	Ω
	Transfer admittance at f = 1 kHz				
	$I_D = 200 \text{ mA}; V_{DS} = 5 \text{ V}$	yfs	typ.	150	mS
	Input capacitance at f = 1 MHz	C.	typ.	15	рF
-	$V_{DS} = 10 \text{ V}; V_{GS} = 0$ Output capacitance at f = 1 MHz	C _{is}	<	30	рF
-	$V_{DS} = 10 \text{ V}; V_{GS} = 0$	Cos	typ.	13	pΕ
	Feedback capacitance at f = 1 MHz	03	<	20	pF
-		C _{rs}	typ.		pF
	Switching times (see Figs 2 and 3)		< typ.		pF ns
	$I_D = 200 \text{ mA}$; $V_{DS} = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on}	< γp.	10	

typ.

toff

4 ns

10 ns

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm.

Fig. 2 Switching times test circuit.

Fig. 4 $T_i = 25$ °C; typical values.

Fig. 6 $T_j = 25$ °C; typical values.

Fig. 3 Input and output waveforms.

Fig. 5 $T_i = 25$ °C; typical values.

Fig. 7 Power derating curve.

Fig. 8 $k = \frac{RDS \text{ on at } T_j}{RDS \text{ on at } 25 \text{ °C}}$; typ. values at 150 mA/5 V.

Fig. 9 $k = \frac{VGS(th) \text{ at } T_j}{VGS(th) \text{ at } 25 \text{ °C}}$; VGS(th) at 1 mA; typical values.

Fig. 10 $T_j = 25$ °C; $V_{GS} = 0$; f = 1 MHz; typical values.

N-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and designed for use as line current interrupter in telephone sets and for application in relay, high-speed and line-transformer drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	200 V
Gate-source voltage (open drain)	V _{GSO}	max.	20 V
Drain current (d.c.)	۱ _D	max.	250 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	1 W
Drain-source ON-resistance $I_D = 250 \text{ mA}$; $V_{GS} = 10 \text{ V}$	R _{DSon}	typ. max.	6 Ω 12 Ω
Transfer admittance $I_D = 250 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	y _{fs}	typ.	250 mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Note: Various pinnings are available on request.

RATINGS

RATINGS			
Limiting values in accordance with the Absolute Maxi	mum System (IEC 134)		
Drain-source voltage	v_{DS}	max.	200 V
Gate-source voltage (open drain)	V_{GSO}	max.	20 V
Drain current (d.c.)	۱ _D	max.	250 mA
Drain current (peak)	I _{DM}	max.	800 mA
Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	1 W
Storage temperature	T_{stg}	−65 to	+ 150 °C
Junction temperature	T_{j}	max.	150 °C
THERMAL RESISTANCE			
From junction to ambient*	R _{th j-a}		125 K/W
CHARACTERISTICS			
T _j = 25 °C unless otherwise specified			
Drain-source breakdown voltage			
$I_D = 100 \mu\text{A}$; $V_{GS} = 0$	V _{(BR)DS}	>	200 V
Drain-source leakage current V _{DS} = 160 V; V _{GS} = 0	IDSS	<	10 μΑ
Gate-source leakage current V _{GS} = 20 V; V _{DS} = 0	I _{GSS}	<	100 nA
Gate threshold voltage		>	0.8 V
$I_D = 1 \text{ mA}; V_{DS} = V_{GS}$	V _{GS(th)}	<	2,8 V
Drain-source ON-resistance (see Fig. 4)	*	typ.	6 Ω
$I_D = 250 \text{ mA}; V_{GS} = 10 \text{ V}$	R _{DSon}	< typ.	12 Ω
Transfer admittance at f = 1 kHz			
$I_D = 250 \text{ mA}; V_{DS} = 15 \text{ V}$	y _{fs}	typ.	250 mS
Input capacitance at f = 1 MHz	_	typ.	70 pF
$V_{DS} = 10 \text{ V}; V_{GS} = 0$	c_{is}	<	70 рг 90 рF
Output capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0	Cos	typ.	20 pF
Feedback capacitance at f = 1 MHz	os	<	30 pF
► V _{DS} = 10 V; V _{GS} = 0	C _{rs}	typ.	5 pF
Switching times (see Figs 2 and 3)	10	<	10 pF
$I_D = 250 \text{ mA}$; $V_{DS} = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on}	typ.	4 ns
		<	10 ns
	^t off	typ.	15 ns
		<	25 ns

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for collector lead min. 10 mm x 10 mm.

Fig. 2 Switching times test circuit.

Fig. 4 $T_i = 25$ °C; typical values.

Fig. 6 $T_j = 25$ °C; typical values.

Fig. 3 Input and output waveforms.

Fig. 5 $T_j = 25 \text{ }^{\circ}\text{C}; V_{DS} = 10 \text{ V}; \text{ typical values}.$

Fig. 7 Power derating curve.

Fig. 8 $k = \frac{RDS \text{ on at T}_j}{RDS \text{ on at 25 °C}}$; at 400 mA/10 V; typical values.

Fig. 9 $k = \frac{VGS(th) \text{ at T}_j}{VGS(th) \text{ at 25 °C}}$; VGS(th) at 1 mA; typical values.

Fig. 10 $T_j = 25$ °C; $V_{GS} = 0$; f = 1 MHz; typical values.

N-channel enhancement mode vertical D-MOS transistor in TO-92 variant envelope and designed for use as line current interrupter in telephone sets and for application in relay, high-speed and line-transformer drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	180 V
Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS} (SM)	max.	200 V
Gate-source voltage (open drain)	V _{GSO}	max.	20 V
Drain current (d.c.)	ID	max.	300 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1 W
Drain-source ON-resistance $I_D = 15 \text{ mA}$; $V_{GS} = 3 \text{ V}$	R _{DSon}	typ. max.	7 Ω 10 Ω
Transfer admittance $I_D = 300 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	yfs	typ.	250 mS

MECHANICAL DATA

Fig. 1 TO-92 variant.

1 = source

2 = gate 3 = drain

Note: Various pinnings are available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Drain-source voltage max. 180 V V_{DS} 200 V Drain-source voltage (non-repetitive peak; t_D ≤ 2 ms) V_{DS(SM)} max. 20 V Gate source voltage (open drain) V_{GSO} max. 300 mA Drain current (d.c.) In max. Drain current (peak) IDM max. 800 mA 1 W Total power dissipation up to $T_{amb} = 25 \, {}^{\circ}\text{C}^{*}$ Ptot max. Storage temperature -65 to + 150 °C T_{sta} 150 °C Junction temperature Τį max. THERMAL RESISTANCE From junction to ambient* 125 K/W R_{thj-a} **CHARACTERISTICS** T_i = 25 °C unless otherwise specified Drain-source breakdown voltage $I_D = 100 \, \mu A; V_{GS} = 0$ V_{(BR)DS} > 180 V Drain-source leakage current $V_{DS} = 120 \text{ V}; V_{GS} = 0$ < 10 μA IDSS Gate-source leakage current $V_{GS} = 20 \text{ V}; V_{DS} = 0$ < 100 nA IGSS Gate threshold voltage 0,7 V $I_D = 100 \,\mu A; V_{DS} = V_{GS}$ V_{GS(th)} < 2.4 V Drain-source ON-resistance (see Fig. 4) typ. 7 Ω $I_D = 15 \text{ mA}; V_{GS} = 3 \text{ V}$ R_{DSon} 10 Ω < $I_D = 300 \text{ mA}; V_{GS} = 10 \text{ V}$ 6 Ω RDSon typ. Transfer admittance at f = 1 kHz $I_D = 300 \text{ mA}; V_{DS} = 15 \text{ V}$ 250 mS y_{fs} typ. Input capacitance at f = 1 MHz 50 pF typ. $V_{DS} = 10 \text{ V}; V_{GS} = 0$ Cis < 65 pF Output capacitance at f = 1 MHz typ. 20 pF VDS = 10 V; VGS = 0 Cos < 30 pF Feedback capacitance at f = 1 MHz typ. 6 pF VDS = 10 V; VGS = 0 C_{rs} < 10 pF Switching times (see Figs 2 and 3) $I_D = 300 \text{ mA}$; $V_{DS} = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$ < 10 ns ton 15 ns toff

Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for drain lead min. 10 mm x 10 mm.

Fig. 2 Switching times test circuit.

Fig. 4 $T_i = 25$ °C; typical values.

Fig. 6 $T_j = 25$ °C; typical values.

Fig. 3 Input and output waveforms.

Fig. 5 $T_j = 25 \, {}^{\circ}\text{C}$; $V_{DS} = 10 \, V$; typ. values.

Fig. 7 Power derating curve.

Fig. 8 k = $\frac{RDS \text{ on at } T_j}{RDS \text{ on at 25 °C}}$; typical values.

Fig. 9 $k = \frac{VGS(th) \text{ at } T_j}{VGS(th) \text{ at } 25 \text{ °C}}$; $V_{GS(th)}$ at 0,1 mA; typical values.

Fig. 10 T_j = 25 °C; V_{GS} = 0; f = 1 MHz; typical values.

HIGH-VOLTAGE N-CHANNEL VERTICAL D-MOS TRANSISTOR

High-voltage N-channel vertical D-MOS transistor in plastic TO-126 envelope and intended for use in relay, high-speed and line-transformer drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching, low power switching losses
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	V_{DS}	max.	450 V
Drain-source voltage (non-repetitive peak; $t_p \le 50 \mu s$)	V _{DS(SM)}	max.	525 V
Gate-source voltage (open drain)	v_{GSO}	max.	20 V
Drain current (d.c.)	I _D	max.	0,75 A
Total power dissipation up to $T_{mb} = 75$ °C	P_{tot}	max.	15 W
Drain-source ON-resistance $I_D = 500 \text{ mA; } V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	15 Ω
Transfer admittance $I_D = 250 \text{ mA}$; $V_{DS} = 20 \text{ V}$; $f = 1 \text{ kHz}$	y _{fs}	typ.	400 mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-126.

Drain connected to mounting base.

Pinning;

1 = source

2 = drain

3 = gate

n (IEC 134)			
V_{DS}	max.	450	٧
V _{DS(SM)}	max.	525	٧
V_{GSO}	max.	20	٧
I _D	max.	0,75	Α
I _{DM}	max.	1,5	Α
P _{tot}	max.	15	Ŵ
T _{stg}	-65 to	+150	οС
Тј	max.	150	оС
R _{th j-a}		1.00	K/W
R _{th j-mb}		5	K/W
V _{(BR)DS}	>	450	V
IDSS	<	25	μΑ
I _{GSS}	<	100	nA
V _{(P)GS}	> <		
R _{DSon}	typ.	10	Ω
R _{DSon}	typ.		
y _{fs}	typ.	400	mS
C _{is}	typ.		pF pF
Cos	typ.		pF pF
C _{rs}	typ.	3	pF pF
		J	۳.
ton	<		ns
toff	<	100	ns
	Ptot Tstg Tj Rth j-a Rth j-mb V(BR)DS IDSS IGSS V(P)GS RDSon RDSon IVfs Cis Cos Crs	VDS(SM) max. VGSO max. ID max. IDM max. Ptot max. Tstg -65 to Tj max. Rth j-a Rth j-mb V(BR)DS > IDSS <	VDS(SM) max. 525 VGSO max. 20 ID max. 0,75 IDM max. 1,5 Ptot max. 15 Tstg -65 to +150 Tj max. 150 Rth j-a 100 Rth j-mb 5 V(BR)DS > 450 IDSS < 25

Fig. 2 Switching times test circuit.

Fig. 4 $T_j = 25$ °C; typical values.

Fig. 6 $T_j = 25$ °C; typical values.

Fig. 3 Input and output waveforms.

Fig. 5 $T_j = 25 \text{ oC}; V_{DS} = 20 \text{ V}; \text{ typical values.}$

Fig. 7 Power derating curve.

Fig. 8 $k = \frac{RDS \text{ on at } T_j}{RDS \text{ on at } 25 \text{ °C}}$; typical values.

Fig. 9 $k = \frac{VGS(th) \text{ at T}_j}{VGS(th) \text{ at 25 °C}}$; $V_{GS(th)}$ at 1 mA; typical values.

Fig. 10 $T_i = 25$ °C; $V_{GS} = 0$; f = 1 MHz; typical values.

N-channel enhancement mode vertical D-MOS transistor in SOT-89 envelope and designed for use as Surface Mounted Device (SMD) in thin and thick-film circuits for application with relay, high-speed and line-transformer drivers.

Features

- Very low R_DSon
- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	80 V
Gate-source voltage (open drain)	V_{GSO}	max.	20 V
Drain current (d.c.)	ID	max.	0,5 A
Total power dissipation up to $T_{amb} = 25$ °C	P _{tót}	max.	1 W
Drain-source ON-resistance $I_D = 500 \text{ mA}$; $V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	2,0 Ω 4,0 Ω
Transfer admittance $I_D = 500 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	Yfs	typ.	300 mS

MECHANICAL DATA

Fig. 1 SOT-89.

BOTTOM VIEW

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System (IEC 134)			
	Drain-source voltage	V_{DS}	max.	80	V
	Gate-source voltage (open drain)	V_{GSO}	max.	20	٧
	Drain current (d.c.)	ID	max.	0,5	Α
	Drain current (peak)	IDM	max.	1,0	Α
	Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	1	W
	Storage temperature	T_{stg}	-65 to +	150	oC
	Junction temperature	Tj	max.	150	оС
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}		125	K/W
	CHARACTERISTICS				
	$T_i = 25$ °C unless otherwise specified				
	Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	80	V
	Drain-source leakage current V _{DS} = 60 V; V _{GS} = 0	IDSS	<	10	μΑ
	Gate-source leakage current $V_{GS} = 20 \text{ V}; V_{DS} = 0$	IGSS	<	100	nA
	Gate threshold voltage $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	V _{GS(th)}	> <	1,5 3,5	
	Drain-source ON-resistance $I_D = 500 \text{ mA}; V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	2,0 4,0	
	Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 500 \text{ mA}$; $V_{DS} = 15 \text{ V}$	Yfs	typ.	300	mS
-	Input capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	C _{is}	typ.		pF pF
-	Output capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	Cos	typ.	30	pF pF
-	Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{rs}	typ.	8	pF
	Switching times (see Figs 2 and 3) $I_D = 500 \text{ mA}$; $V_{DS} = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on} t _{off}	< < <	10 15	

^{*} Transistors mounted on a substrate with surface area of 2,5 cm² and thickness of 0,7 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

			•	
	,			
		uMD		

N-channel enhancement mode vertical D-MOS transistor in SOT-23 envelope and designed for use as Surface Mounted Device (SMD) in thin and thick-film circuits for telephone ringer and for application with relay, high-speed and line transformer drivers.

Features

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	80 V
Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS(SM)}	max.	100 V
Gate-source voltage (open drain)	V_{GSO}	max.	20 V
Drain current (d.c.)	Ι _D	max.	175 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300 mW
Drain-source ON-resistance $I_D = 150 \text{ mA}; V_{GS} = 5 \text{ V}$	R _{DSon}	typ.	7 Ω 10 Ω
Transfer admittance $I_D = 175 \text{ mA}$; $V_{DS} = 5 \text{ V}$; $f = 1 \text{ kHz}$	y _{fs}	typ.	150 mS

MECHANICAL DATA

Fig. 1 SOT-23.

TOP VIEW

RATINGS				
Limiting values in accordance with the Absolute Maximum System (I	EC 134)			
Drain-source voltage	V_{DS}	max.	80	V
Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS} (SM)	max.	100	V
Gate-source voltage (open drain)	V_{GSO}	max.	20	V
Drain surrent (d.c.)	ID	max.	175	mΑ
Drain current (peak)	IDM	max.	600	mΑ
Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	300	mW
Storage temperature range	T_{stg}	-65 to +	150	οС
Junction temperature	Тj	max.	150	оС
THERMAL RESISTANCE				
From junction to ambient*	R _{th j-a}	= .	430	K/W
CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Drain-source breakdown voltage $I_D = 100 \mu A; V_{GS} = 0$	V _{(BR)DS}	>	80	٧
Drain-source leakage current $V_{DS} = 60 \text{ V}; V_{GS} = 0$	IDSS	<	1,0	μΑ
Gate-source leakage current V _{GS} = 20 V; V _{DS} = 0	I _{GSS}	<	100	nA
Gate-source cut-off voltage $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	V _{(P)GS}	> <	1,5 3,5	
Drain-source ON-resistance I _D = 150 mA; V _{GS} = 5 V	R _{DSon}	typ.	7	Ω
Transfer admittance at f = 1 kHz I _D = 175 mA; V _{DS} = 5 V Input capacitance at f = 1 MHz	y _{fs}	typ.	150	
V _{DS} = 10 V; V _{GS} = 0 Output capacitance at f = 1 MHz	C _{is}	typ.	15 30	•
·	Cos	typ.	13 20	
$V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{rs}	typ.	3	pF pF
Switching times (see Figs 2 and 3) $I_D = 175 \text{ mA}$; $V_{DS} = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on}	typ.	10	
	^t off	typ.	4 10	ns ns

^{*} Transistors mounted on a ceramic substrate of 7 mm \times 5 mm \times 0,7 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

			•	
	,			
		•		

N-channel vertical D-MOS transistor in SOT-89 envelope and designed for use as line current interrupter in telephone sets and for application in relay, high-speed and line-transformer drivers.

Features

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	200 V
Gate-source voltage (open drain)	v_{GSO}	max.	20 V
Drain current (d.c.)	ID	max.	250 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	1 W
Drain-source ON-resistance $I_D = 250 \text{ mA}$; $V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	6 Ω 12 Ω
Transfer admittance $I_D = 250 \text{ mA}$; $V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	y _{fs}	typ.	250 mS

MECHANICAL DATA

Dimensions in mm

BOTTOM VIEW

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IEC 134)			
Drain-source voltage	V_{DS}	max.	200	V
Gate-source voltage (open drain)	v_{GSO}	max.	20	V
Drain current (d.c.)	ID	max.	250	mΑ
Drain current (peak)	IDM	max.	800	mΑ
Total power dissipation up to $T_{amb} = 25 {}^{o}C^*$	P _{tot}	max.	1	W
Storage temperature	T_{stg}	-65 to +	150	oC
Junction temperature	T_{j}	max.	150	_o C
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	=	125	K/W
CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	200	V
Drain-source leakage current V _{DS} = 160 V; V _{GS} = 0	IDSS	<	10	μΑ
Gate-source leakage current $V_{GS} = 20 \text{ V}; V_{DS} = 0$	IGSS	<	100	nA
Gate threshold voltage $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	V _{GS(th)}	> <	0,8 2,8	
Drain-source ON-resistance $I_D = 250 \text{ mA}$; $V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	6 12	Ω
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 250 \text{ mA}$; $V_{DS} = 15 \text{ V}$	y _{fs}	typ.	250	mS
Input capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0	C _{is}	typ.		pF pF
Output capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0	Cos	typ.	20	pF pF
Feedback capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0 Suitabling times (see Fire 2 and 2)	C _{rs}	typ.		pF pF
Switching times (see Figs 2 and 3) I _D = 250 mA; V _D = 50 V; V _{GS} = 0 to 10 V	t _{on}	typ.	4 10	ns ns
	t _{off}	typ.	15 25	ns ns

^{*} Transistor mounted on a ceramic substrate with area of 2,5 cm² and thickness of 0,7 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

			•	
	J			
		•		

N-channel enhancement mode vertical D-MOS transistor in SOT-89 envelope and designed for use as Surface Mounted Device (SMD) in thin and thick-film circuits for application with relay, high-speed and line-transformer drivers.

Features

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	V _{DS}	max.	180 V
Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS(SM)}	max.	200 V
Gate-source voltage (open drain)	$v_{\sf GSO}$	max.	20 V
Drain current (d.c.)	I _D ,	max.	300 mA
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	1 W
Drain-source ON-resistance I _D = 15 mA; V _{GS} = 3 V	R _{DSon}	typ.	7 Ω 10 Ω
Transfer admittance $I_D = 300 \text{ mA}; V_{DS} = 15 \text{ V}; f = 1 \text{ kHz}$	y _{fs}	typ.	250 mS

MECHANICAL DATA

Fig. 1 SOT-89.

Marking: K0

BOTTOM VIEW

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System (IEC 134)			
	Drain-source voltage	V_{DS}	max.	180	V
	Drain-source voltage (non-repetitive peak; $t_p \le 2$ ms)	V _{DS(SM)}	max.	200	V
	Gate-source voltage (open drain)	V_{GSO}	max.	20	V
	Drain current (d.c.)	I_{D}	max.	300	mΑ
	Drain current (peak)	I _{DM}	max.	800	mΑ
	Total power dissipation up to $T_{amb} = 25 {}^{\circ}C^*$	P _{tot}	max.	1	Ŵ
	Storage temperature	T_{stg}	-65 to +	150	oC
	Junction temperature	T_{j}	max.	150	оС
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}	=	125	K/W
	CHARACTERISTICS				
	T _j = 25 °C unless otherwise specified				
	Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	180	V
	Drain-source leakage current V _{DS} = 120 V; V _{GS} = 0	IDSS	<	10	μΑ
	Gate-source leakage current $V_{GS} = 20 \text{ V}; V_{DS} = 0$	I _{GSS}	<	100	nA
	Gate threshold voltage		>	0.7	V
	$I_D = 100 \mu\text{A}; V_{DS} = V_{GS}$	V _{GS(th)}	<	2,7	
	Drain-source ON-resistance $I_D = 15 \text{ mA}$; $V_{GS} = 3 \text{ V}$	R _{DSon}	typ.	7 10	Ω
	$I_D = 300 \text{ mA}; V_{GS} = 10 \text{ V}$	R _{DSon}	typ.		Ω
	Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 300 \text{ mA}$; $V_{DS} = 15 \text{ V}$	y _{fs}	typ.	250	mS
_	Input capacitance at f = 1 MHz	_			_
_	$V_{DS} = 10 \text{ V}; V_{GS} = 0$	Cis	typ.	50 65	
_	Output capacitance at f = 1 MHz V _{DS} = 10 V; V _{GS} = 0	C		20	
	Feedback capacitance at f = 1 MHz	Cos	typ.	30	
-	$V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{rs}	typ.		p F
	Switching times (see Figs 2 and 3)	13	<	10	•
	$I_D = 300 \text{ mA}$; $V_D = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on} t _{off}	< <	10 15	

 $^{^{*}}$ Transistors mounted on a ceramic substrate with area of 2,5 cm 2 and thickness of 0,7 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

	J		

This data sheet contains advance information and specifications are subject to change without notice.

N-CHANNEL VERTICAL D-MOS TRANSISTOR

N-channel enhancement mode vertical D-MOS transistor in TO-39 envelope designed for application in motor controls, power supplies etc.

Features

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

R _{DS} (ON)	<	2,0 Ω
	typ.	1.8 Ω
P _{tot}	max.	10 W
ID	max.	2,0 A
v_{GSO}	max.	±20 V
v_{DS}	max.	200 V
	VGSO ID P _{tot}	VGSO max. ID max. Ptot max.

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Accessories: 56245 (distance disc)

RATINGS				
Limiting values in accordance with the Absolute Maximum Sys	tem (IEC 134)			
Drain-source voltage	v_{DS}	max.	200	٧
Gate-source voltage (open desin)	V_{GSO}	max.	±20	V
Drain current (d.c.)	۱D	max.	2,0	Α
Drain current (peak)	IDM	max.	5,0	Α
Total power dissipation up to $T_C = 25$ °C	P_{tot}	max.	10	W
Storage temperature range	T_{stg}	−65 t	o +150	oC
Junction temperature	Тј	max.	150	oC
THERMAL RESISTANCE				
From junction to case	R _{th j-c}		12,5	K/W
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	200	V
Drain-source leakage current V _{DS} = 160 V; V _{GS} = 0	DSS	<	10	μΑ
Gate-source leakage current V _{GS} = 20 V; V _{DS} = 0	I _{GSS}	<	100	nA
Gate threshold voltage $I_D = 1.0 \text{ mA}$; $V_{DS} = V_{GS}$	V _{GS(th)}	> <	1,0 3,0	
Drain-source on-state resistance ID = 1,5 A; VGS = 10 V	R _{DS} (ON)	typ.	1,8 2,0	
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 1,5 \text{ A}; V_{DS} = 25 \text{ V}$	yfs	typ.	0,8	S
Input capacitance at f = 1 MHz V _{DS} = 25 V; V _{GS} = 0	C _{iss}	typ.	120	рF
Output capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 25 \text{ V}$; $V_{GS} = 0$	Coss	typ.	40	pF
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 25 \text{ V}$; $V_{GS} = 0$	C _{rss}	typ.	9	pF
Switching times $I_D = 1.5 \text{ A}$; $V_D = 75 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on} t _{off}	< <	35 50	ns ns

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

10			•	
į				

N-channel enhancement mode vertical D-MOS transistor in TO-18 and designed for use as line current interrupter in telephone sets and for application in relay, high speed and line transformer drivers.

Features

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	v_{DS}	max.	180 V
Drain-source voltage (non-repetitive peak; $t_{ m p}$ $<$ 2 ms)	V _{DS} (SM)	max.	200 V
Gate-source voltage (open drain)	V_{GSO}	max.	20 V
Drain current (d.c.)	ΙD	max.	300 mA
Total power dissipation up to T _C = 25 °C	P_{tot}	max.	1,5 W
Drain-source ON-resistance ID = 300 mA; VGS = 10 V	R _{DSon}	typ.	6 Ω
Transfer admittance I _D = 300 mA; V _{DS} = 15 V; f = 1 kHz	y _{fs}	typ.	250 mS

MECHANICAL DATA

Fig. 1 TO-18

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
	Drain-source voltage	V_{DS}	max.	180	V
	Drain-source voltage (non-repetitive peak; $t_p < 2 \text{ ms}$)	V _{DS} (SM)	max.	200	V
	Gate-source voltage (open drain)	VGSO	max.	20	V
	Drain current (d.c.)	ID	max.	300	mΑ
	Drain current (peak)	IDM	max.	800	mΑ
	Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,4	W
	Total power dissipation up to $T_C = 25$ °C	P_{tot}	max.	1,5	W
	Storage temperature	T_{stg}	65 to -	⊦150	oC
	Junction temperature	Тј	max.	150	oC
	THERMAL RESISTANCE				
	From junction to ambient	R _{th j-a}		310	K/W
	From junction to case	R _{th j-c}		83	K/W
	CHARACTERISTICS				
	T _j = 25 °C unless otherwise specified				
	Drain-source breakdown voltage $I_D = 100 \mu A$; $V_{GS} = 0$	V _{(BR)DS}	>	180	V
	Drain-source leakage current $V_{DS} = 120 \text{ V}$; $V_{GS} = 0$	I _{DSS}	<	10	μΑ
	Gate-source leakage current VGS = 20 V; VDS = 0	IGSS	<	100	nA
	Gate threshold voltage $I_D = 100 \mu A; V_{DS} = V_{GS}$	VGS(th)	>	0,7 2,7	
	Drain-source ON-resistance (see Fig. 4)			2,1	V
	ID = 15 mA; VGS = 3 V	R _{DSon}	typ.	7 10	Ω
	$I_D = 300 \text{ mA}$; $V_{GS} = 10 \text{ V}$ Transfer admittance at $f = 1 \text{ kHz}$	R _{DSon}	typ.	6	Ω
	$I_D = 300 \text{ mA}; V_{DS} = 15 \text{ V}$	yfs	typ.	250	mS
-	Input capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	C _{is}	typ.	50 60	· _
-	Output capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 10 \text{ V}; V_{GS} = 0$	Cos	typ.	20 30	
•	Feedback capacitance at f = 1 MHz $V_{DS} = 10 \text{ V}$; $V_{GS} = 0$	C _{rs}	typ.	6 10	pF pF
	Switching times (see Figs 2 and 3) $I_D = 300 \text{ mA}$; $V_D = 50 \text{ V}$; $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on} t _{off}	< <	10 15	

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

Fig. 4 $T_j = 25$ °C; typ. values.

P-CHANNEL ENHANCEMENT MODE VERTICAL D-MOS TRANSISTOR

P-channel vertical D-MOS transistor in TO-92 variant envelope and intended for use in relay, high-speed and line-transformer drivers.

Features:

- Very low Rpson
- Direct interface to C-MOS
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	$-V_{DS}$	max.	60 V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	20 V
Drain current (d.c.)	-1 _D	max.	0,3 A
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	1 W
Drain-source ON-resistance $-I_D = 200 \text{ mA}; -V_{GS} = 10 \text{ V}$	R _{DSon}	typ. max.	4,5 Ω 6 Ω
Transfer admittance $-I_D = 200 \text{ mA}; -V_{DS} = 15 \text{ V}; f = 1 \text{ kHz}$	yfs	typ.	200 mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Note: Various pinnings are available on request.

_					
	RATINGS				
	Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
	Drain-source voltage	$-V_{DS}$	max.	60	٧
	Gate-source voltage (open drain)	-VGSO	max.	20	٧
	Drain current (d.c.)	-ID	max.	0,3	Α
	Drain current (peak)	-I _{DM}	max.	0,8	Α
	Total power dissipation up to T _{amb} = 25 °C*	P_{tot}	max.	1	W
	Storage temperature	T_{stg}	–65 to −	+150	oC
	Junction temperature	Tj	max.	150	οÇ
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}		125	K/W
	CHARACTERISTICS				
	T _j = 25 °C unless otherwise specified				
	Drain-source breakdown voltage $-I_D = 100 \mu A; -V_{GS} = 0$	-V(BR)DS	>	60	V
	Drain-source leakage current -VDS = 45 V; VGS = 0	-I _{DSS}	<	10	μΑ
	Gate-source leakage current -VGS = 20 V; VDS = 0	-I _{GSS}	<	100	nA
	Gate threshold voltage -ID = 1 mA; VDS = VGS	-VGS(th)	> <	1,5 3,5	
	Drain-source ON-resistance -ID = 200 mA; -VGS = 10 V	R _{DSon}	typ.	4,5 6	Ω
	Transfer admittance at $f = 1 \text{ kHz}$ $-I_D = 200 \text{ mA}; -V_{DS} = 15 \text{ V}$	yfs	typ.	200	mS
	Input capacitance at f = 1 MHz -V _{DS} = 10 V; V _{GS} = 0	Cis	typ.		pF pF
	Output capacitance at f = 1 MHz -V _{DS} = 10 V; V _{GS} = 0	Cos	typ.		pF pF
•	Feedback capacitance at $f = 1 \text{ MHz}$ $-V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{rs}	typ.		pF pF

4 ns

20 ns

typ.

typ.

ton

toff

Switching times (see Figs 2 and 3) $-I_D = 200 \text{ mA; } -V_D = 50 \text{ V; } -V_{GS} = 0 \text{ to } 10 \text{ V}$

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for drain lead min. 10 mm x 10 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

	·			
		J		
			with .	

P-CHANNEL VERTICAL D-MOS TRANSISTOR

P-channel enhancement mode D-MOS transistor in TO-92 variant envelope and intended for use in relay, high-speed and line-transformer drivers.

Features

- Very low R_{DSon}
- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	$-v_{DS}$	max.	50 V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	20 V
Drain current (d.c.)	$-I_D$	max.	0,25 A
Total power dissipation up to $T_{amb} = 25$ °C Drain-source ON-resistance $-I_D = 200$ mA; $-V_{GS} = 10$ V	P _{tot}		0,83 W 7,5 Ω 10 Ω
Transfer admittance at f = 1 kHz $-I_D$ = 200 mA; $-V_{DS}$ = 15 V	y _{fs}	typ.	125 mS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Note: Various pinnings are available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Drain-source voltage	$-v_{DS}$	max.	50	V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	20	V
Drain current (d.c.)	$-I_{D}$	max.	0,25	Α
Drain current (peak)	$-I_{DM}$	max.	0,5	Α
Total power dissipation up to $T_{amb} = 25 {}^{o}C^{*}$	P_{tot}	max.	0,83	W
Storage temperature	T_{stg}	-65 to +	150	oC
Junction temperature	Tj	max.	150	o,C
THERMAL RESISTANCE				
From junction to ambient*	R _{th j-a}	=	150	K/W
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Drain-source breakdown voltage		_		
$-I_D = 100 \mu\text{A}; V_{GS} = 0$	-V _{(BR)DS}	>	50	V
Drain-source leakage current -V _{DS} = 40 V; V _{GS} = 0	-I _{DSS}	<	10	μΑ
Gate-source leakage current -V _{GS} = 20 V; V _{DS} = 0	-I _{GSS}	<	100	nA
Gate threshold voltage $-I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	-V _{GS(th)}	>	1,5 3,5	
Drain-source ON-resistance				
-I _D = 200 mA; -V _{GS} = 10 V	R _{DSon}	typ.	7,5 10	
Transfer admittance at $f = 1 \text{ kHz}$ $-I_D = 200 \text{ mA}; -V_{DS} = 15 \text{ V}$	yfs	typ.	125	mS
Input capacitance at $f = 1 \text{ MHz}$ $-V_{DS} = 10 \text{ V}; V_{GS} = 0$	C _{is}	typ.	30	pF
Output capacitance at f = 1 MHz -V _{DS} = 10 V; V _{GS} = 0	C _{os}	typ.	20	pF
Feedback capacitance at f = 1 MHz -V _{DS} = 10 V; V _{GS} = 0	C _{rs}	typ.	5	рF
Switching times (see Figs 2 and 3) $-I_D = 200 \text{ mA}; -V_{DS} = 40 \text{ V}; -V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on}	typ.	4 10	ns ns

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

		·**	

P-CHANNEL VERTICAL D-MOS TRANSISTOR

P-channel vertical D-MOS transistor in SOT-89 envelope and intended for use in relay, high-speed and line-transformer drivers, using SMD technology.

Features

- Very low R_{DSon}
- Direct interface to C-MOS
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	-V _{DS}	max.	60 V
Gate-source voltage (open drain)	-V _{GSO}	max.	20 V
Drain current (d.c.)	-1 _D	max.	0,3 A
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	1 W
Drain-source ON-resistance $-I_D = 200 \text{ mA}; -V_{GS} = 10 \text{ V}$	RDSon	typ. max.	4,5 Ω 6 Ω
Transfer admittance $-I_D = 200 \text{ mA}$; $-V_{DS} = 15 \text{ V}$; $f = 1 \text{ kHz}$	y _{fs}	typ.	200 mS

MECHANICAL DATA

Fig. 1 SOT-89.

Pinning:

1 = source

2 = gate

3 = drain

marking: LM

BOTTOM VIEW

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
	Drain-source voltage	$-V_{DS}$	max.	60	V
	Gate-source voltage (open drain)	$-V_{GSO}$	max.	20	V
	Drain current (d.c.)	$-I_{D}$	max.	0,3	Α
	Drain current (peak)	-IDM	max.	0,8	Α
	Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	1	W
	Storage temperature	T_{stg}	-65 to +	150	$^{\rm o}$ C
	Junction temperature	Тј	max.	150	оC
	THERMAL RESISTANCE				
	From junction to ambient*	R _{th j-a}	=	125	K/W
	CHARACTERISTICS				
	T _j = 25 °C unless otherwise specified				
	Drain-source breakdown voltage $-I_D = 100 \mu A; -V_{GS} = 0$	-V _{(BR)DS}	>	60	V
	Drain-source leakage current V _{DS} = 45 V; V _{GS} = 0	-I _{DSS}	<	10	μΑ
	Gate-source leakage current -V _{GS} = 20 V; V _{DS} = 0	-I _{GSS}	<	100	nA
	Gate threshold voltage $-I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	-V _{GS(th)}	> <	1,5 3,5	
	Drain-source ON-resistance $-I_D = 200 \text{ mA}; -V_{GS} = 10 \text{ V}$	R _{DSon}	typ.	4,5 6	Ω
	Transfer admittance at f = 1 kHz $-I_D$ = 200 mA; $-V_{DS}$ = 15 V	yfs	typ.	200	mS
-	Input capacitance at $f = 1 \text{ MHz}$ $-V_{DS} = 10 \text{ V}; V_{GS} = 0$	Cis	typ.		pF pF
-	Output capacitance at $f = 1 \text{ MHz}$ $-V_{DS} = 10 \text{ V}; V_{GS} = 0$	Cos	typ.	30	pF pF
-	Feedback capacitance at f = 1 MHz $-V_{DS} = 10 \text{ V; } V_{GS} = 0$	C _{rs}	typ.		рF
	Switching times (see Figs 2 and 3)		<	12	pF
-	$-I_D = 200 \text{ mA}; -V_D = 50 \text{ V}; -V_{GS} = 0 \text{ to } 10 \text{ V}$	^t on ^t off	typ. typ.	4 20	ns ns

^{*} Transistor mounted on a ceramic substrate: area = 2,5 cm² and thickness = 0,7 mm.

Fig. 2 Switching time test circuit.

Fig. 3 Input and output waveforms.

	,		
-			

This data sheet contains advance information and specifications are subject to change without notice.

P-CHANNEL VERTICAL D-MOS TRANSISTOR

P-channel vertical D-MOS transistor in SOT-89 envelope and intended for use in relay, high-speed and line-transformer drivers, using SMD-technology.

Features

- Very low R_{DSon}
- Direct interface to C-MOS, TTL
- High-speed switching
- No second breakdown

QUICK REFERENCE DATA

Drain-source voltage	-V _{DS}	max.	50	V
Gate-source voltage (open drain)	$-V_{GSO}$	max.	20	V
Drain current (d.c.)	$-I_D$	max.	0,25	Α
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	1	W
Drain-source ON-resistance $-I_D = 200 \text{ mA}; -V_{GS} = 10 \text{ V}$	R _{DSon}	typ. max.	7,5 10	
Transfer admittance $-I_D = 200 \text{ mA}$; $-V_{DS} = 15 \text{ V}$; f = 1 kHz	yfs	typ.	125	mS

MECHANICAL DATA

Fig. 1 SOT-89.

Marking: LN

BOTTOM VIEW

Dimensions in mm

RATINGS		
	 tale alea	A I I

Limiting values in accordance with the Absolute Maximum System (IEC 134) Drain-source voltage $-V_{DS}$ max. Gate-source voltage (open drain) $-V_{GSO}$ max. Drain current (d.c.) $-I_{D}$ max. Drain current (peak) $-I_{DM}$ max.		V A A W
Gate-source voltage (open drain) -V _{GSO} max. Drain current (d.c.) -I _D max.	20 0,25 0,5 1 150	V A A W
Drain current (d.c.) —ID max.	0,25 0,5 1 150	A A W
Drain current (d.c.) —ID max.	0,5 1 150	A W
Drain current (peak) —IDM max.	1 150	W
DIVI	150	
Total power dissipation up to $T_{amb} = 25$ °C P_{tot} max.		00
Storage temperature T _{stg} -65 to +	150	0
Junction temperature T _j max.		оС
THERMAL RESISTANCE		
From junction to ambient* $R_{th j-a} =$	125	K/W
CHARACTERISTICS		
T _j = 25 °C unless otherwise specified		
Drain-source breakdown voltage $-I_D = 100 \mu A; -V_{GS} = 0$ $-V_{(BR)DS} >$	50	V
Drain-source leakage current -V _{DS} = 1 V; V _{GS} = 0 -I _{DSS} <	10	μΑ
Gate-source leakage current $-V_{GS} = 20 \text{ V; } V_{DS} = 0$ $-I_{GSS}$	100	nA
Gate threshold voltage $-I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$ $-V_{GS(th)}$ $<$	1,5 3,5	
Drain-source ON-resistance $-I_D = 200 \text{ mA}; -V_{GS} = 10 \text{ V}$ RDSon $<$	7,5 10	
Transfer admittance at f = 1 kHz $-I_D = 200 \text{ mA}$; $-V_{DS} = 15 \text{ V}$ $ y_{fs} $ typ.	125	mS
Input capacitance at f = 1 MHz -V _{DS} = 10 V; V _{GS} = 0 C _{is} typ.	30 45	
Output capacitance at f = 1 MHz -V _{DS} = 10 V; V _{GS} = 0 Cos typ.	20 30	pF
Feedback capacitance at $f = 1 \text{ MHz}$ $-V_{DS} = 10 \text{ V; } V_{GS} = 0$ $C_{rs} \qquad typ.$	5	pF
Switching times (see Figs 2 and 3) \leftarrow $-I_D = 200 \text{ mA}; -V_D = 50 \text{ V}; -V_{GS} = 0 \text{ to } 10 \text{ V}$ \leftarrow	10 4 10	ns

^{*} Transistor mounted on a ceramic substrate: area = 2,5 cm²; thickness = 0,7 mm.

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

		,	

This data sheet contains advance information and specifications are subject to change without notice,

N-CHANNEL VERTICAL D-MOS TRANSISTORS

N-channel enhancement mode vertical D-MOS transistors, in TO-92 variant envelopes and designed for application as low power, high-frequency inverters and line drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown
- Low RDS(on)

QUICK REFERENCE DATA

			PH6659	PH6660	PH6661
Drain-source voltage	v_{DS}	max.	35	60	90 V
Gate-source voltage (open drain)	v_{GSO}	max.	20	20	20 V
Drain current (d.c.)	ID	max.	0,75	0,5	0,5 A
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	1	1 W
Drain-source on-state resistance ID = 1,0 A; VGS = 10 V	R _{DS(on)}	typ.	0,9 1,8	1,4 3,0	1,9 Ω 4,0 Ω
Transfer admittance at f = 1 kHz ID = 0,5 A; VDS = 25 V	yfs	>	170	170	170 mS

Note: Various pinnings are available on request.

PH6659 PH6660 PH6661

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the	e Absolute Maxi	mum Syst	em (IEC 134	.)	
			PH6659	PH6660	PH6661
Drain-source voltage	v_{DS}	max.	35	60	90 V
Gate-source voltage (open drain)	v_{GSO}	max.	20	20	20 V
Drain current (d.c.)	ID	max.	0,75	0,5	0,5 A
Drain current (peak)	I _{DM}	max.		1,0	A
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.		1	W
Storage temperature	T_{stg}			-65 to +15	0C
Junction temperature	T_{j}	max.		150	oC
THERMAL RESISTANCE					
From junction to ambient*	R _{th j-a}			125	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
, ·			PH6659	PH6660	PH6661
Drain-source breakdown voltage ID = 10 µA; VGS = 0	V(BR)DSS	>	35	60	90 V
Drain-source leakage current at $V_{DS} = V_{DS}$ max; $V_{GS} = 0$	I _{DSS}	<	10	10	10 μΑ
Gate-source leakage current at VGS = 15 V; VDS = 0	IGSS	<	100 -	100	100 nA
Gate threshold voltage $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	VGS(th)	> <	0,8 2,0	0,8 2,0	0,8 V 2,0 V
On-state drain current V _{DS} = 25 V; V _{GS} = 10 V	ID(ON)	> typ.	1,0 2,0	1,0 2,0	1,0 A 2,0 A
Drain-source on-state resistance ID = 0,3 A; VGS = 5 V	R _{DS(on)}	typ.	1,5 5,0	1,8 5,0	2,4 Ω 5,3 Ω
I _D = 1,0 A; V _{GS} = 10 V	R _{DS(ON)}	typ.	0,9 1,8	1,4 3,0	1,9 Ω 4,0 Ω
Transfer admittance at f = 1 kHz ID = 0,5 A; VDS = 25 V	yfs	>	170	170	170 mS
Input capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 25 \text{ V}; V_{GS} = 0$	C _{iss}	<	50	50	50 pF
Output capacitance at f = 1 MHz V _{DS} = 25 V; V _{GS} = 0	C _{oss}	<	50	40	40 pF

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for drain lead min. 10 mm x 10 mm.

			PH6659	PH6660	PH6661
Feedback capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 25 \text{ V; } V_{GS} = 0$	C _{rss}	<	15	15	15 pF
Switching times $I_D = 1.0 \text{ A}; V_D = 25 \text{ V};$ $V_{GS} = 0 \text{ to } 10 \text{ V}$	t _{on}	typ <	5 10	5 10	5 ns 10 ns
d3	toff	typ <	5 10	5 10	5 ns

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

			•	
	J			
		-		
		4		

N-CHANNEL VERTICAL D-MOS TRANSISTOR

N-channel enhancement mode vertical D-MOS transistor in a TO-39 envelope and designed for application as low-power, high-frequency inverters and line drivers.

Features:

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No second breakdown
- Low R_{DSon}

QUICK REFERENCE DATA

		2N6659	2N6660	2N6661	
Drain-source voltage	v_{DS}	max. 35	60	90 V	
Gate-source voltage (open drain)	v_{GSO}	max. 30	30	30 V	
Drain current (d.c.)	ID	max. 1,4	1,1	0,9 A	
Total power dissipation up to $T_c = 25$ °C	P _{tot}	max. 6,25	6,25	6,25 W	
Drain-source ON-resistance I _D = 1,0 A; V _{GS} = 10 V	R _{DSon}	typ. 0,9 < 1,8	1,4 3,0	1,9 Ω 4,0 Ω	
Transfer admittance at f = 1 kHz I _D = 0,5 A; V _{DS} = 25 V	y _{fs}	> 170	170	170 m	S

MECHANICAL DATA

Fig. 1 TO-39.

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm Accessories: 56245 (distance disc).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			2N6659	2N6660	2N6661	
Drain-source voltage	V_{DS}	max	. 35	60	90	V
 Gate-source voltage (open drain)	V_{GSO}	max	. 30	30	30	V
Drain current (d.c.)	ID	max	. 1,4	1,1	0,9	Α
Drain current (peak)*	I_{DM}	max	•	3,0		Α
Total power dissipation up to $T_c = 25$ °C	P _{tot}	max		6,25		W
Storage temperature	T_{stg}		_	65 to + 15	0	oC
Junction temperature	Tj	max		150		oC
THERMAL RESISTANCE						
From junction to case	R _{th j-c}			20		K/W
CHARACTERISTICS						
$T_j = 25$ °C unless otherwise specified			0110050		0110004	
			2N6659	2N6660	2N6661	
Drain-source breakdown voltage $I_D = 10 \mu A$; $V_{GS} = 0$	V _{(BR)DSS}	>	35	60	90	V
Drain-source leakage current at $V_{DS} = V_{DSmax}$; $V_{GS} = 0$	I _{DSS}	<	10	10	10	μΑ
Gate-source leakage current at $V_{GS} = 15 \text{ V}$; $V_{DS} = 0$	I _{GSS}	<	100	100	100	nΑ
Gate threshold voltage $I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$	V _{GS(th)}	> <	0,8 2,0	0,8 2,0	0,8 2,0	V V
ON-state drain current $V_{DS} = 25 \text{ V}; V_{GS} = 10 \text{ V}$	I _{D(on)}	> typ.	1,0 2,0	1,0 2,0	1,0 2,0	A A
Drain-source ON-resistance $I_D = 0.3 \text{ A}$; $V_{GS} = 5 \text{ V}$	R _{DSon}	typ.	1,5 5,0	1,8 5,0	2,4 5,3	Ω
I _D = 1,0 A; V _{GS} = 10 V	R _{DSon}	typ.	0,9 1,8	1,4 3,0	1,9 4,0	$\Omega \ \Omega$
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 0.5 \text{ A}; V_{DS} = 25 \text{ V}$	y _{fs}	>	170	170	170	mS
Input capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 25 \text{ V}; V_{GS} = 0$	C _{iss}	<	50	50	50	рF
Output capacitance at $f = 1 \text{ MHz}$ $V_{DS} = 25 \text{ V}$; $V_{GS} = 0$	C _{oss}	<	50	40	40	pF

^{*} Pulse conditions: $t_{\rm D} \le 300~\mu{\rm s}$; δ = 0,01.

Feedback capacitance at f = 1 MHz V _{DS} = 25 V; V _{GS} = 0
Switching times
I _D = 1,0 A; V _D = 25 V;
$V_{GS} = 0$ to 10 V

		2N6659	2N6660	2N6661	
C _{rss}	<	15	15	15	рF
t _{on}	typ.	5 10	5 10	5 10	ns ns
t _{off}	typ.	5 10	5 10	5 10	ns ns

Fig. 2 Switching times test circuit.

Fig. 3 Input and output waveforms.

MECHANICAL DATA

Dimensions in mm

Distance disc 56245 for TO-5 or TO-39; insulating material.

Distance disc 56246 for TO-18 or TO-72; insulating material.

Maximum permissible temperature: 100 °C.

ROUND HEAD SCREW 6-32 UNC-2A

Available, upon request, under type number 56396 or 12 NC code number 9390 298 10xx0.

INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	book	section	type no.	book	section	type no.	book	section
BA220	S1	SD	BAS29	S7/S1	Mm/SD	BAV99	S7/S1	Mm/SD
BA221	S1	SD	BAS31	S7/S1	Mm/SD	BAV 100	s7/s1	Mm/SD
BA223	S1	T	BAS32	S7/S1	Mm/SD	BAV101	S7/S1	Mm/SD
BA281	S1	SD	BAS35	S7/S1	Mm/SD	BAV 102	s7/s1	Mm/SD
BA314	S1	Vrg	BAS45	S1	SD	BAV103	S7/S1	Mm/SD
BA315	S1	Vrg	BAS56	S1/S7	SD/Mm	BAW56	S7/S1	Mm/SD
BA316	S1	SD	BAT17	S7/S1	Mm/T	BAW62	S1	SD
BA317	S1	SD	BAT18	S7/S1	Mm/T	BAX12	S1	SD
BA318	S1	SD	BAT54	S1/S7	SD/Mm	BAX14	S1	SD
BA423	S1	T	BAT74	S1/S7	SD/Mm	BAX18	S1	SD
BA480	S1	T	BAT81	S1	Т	BAY80	S1	SD
BA481	S1	T	BAT82	S1	T	BB112	S1	T
BA482	S1	T	BAT83	S1	T	BB119	S1	T
BA483	S1	T	BAT85	S1	T	BB130	S1	T
BA484	S1	T	BAT86	S1	T	BB204B	S1	T
BA682	S1/S7	T/Mm	BAV10	S1	SD	BB204G	S1	Т
BA683	S1/S7	T/Mm	BAV18	S1	SD	BB212	S1	T
BAS11	s1	SD	BAV19	S1	SD	BB215	S7/S1	Mm/SD
BAS15	S1	SD	BAV20	S1	SD	BB219	S7/S1	Mm/SD
BAS16	S7/S1	Mm/SD	BAV21	S1	SD	BB405B	S1	T
BAS17	S7/S1	Mm/Vrq	BAV23	S7/S1	Mm/SD	BB417	S1	T
BAS19	S7/S1	Mm/SD	BAV45	S1	Sp	BB809	S1	T
BAS20	S7/S1	Mm/SD	BAV45A	S1	Sp	BB909A	S1	T
BAS21	S7/S1	Mm/SD	BAV70	S7/S1	Mm/SD	BB909B	S1	T
BAS28	S7/S1	Mm/SD	BAV74	S1	SD SD	BBY31	S7/S1	Mm/T

Mm = Microminiature semiconductors for hybrid circuits

SD = Small-signal diodes

Sp = Special diodes

T = Tuner diodes

Vrg = Voltage regulator diodes

type no.	book	section	type no.	book	section	type no.	book	section
BBY39	S1	T	BC639	s3	Sm	BCW69;R	s7	Mm
BBY40	S7/S1	MR./T	BC640	S 3	Sm	BCW70;R	s 7	Mm
BC 107	s3	S	BC807	s7	Mm	BCW71;R	s7	Mm
BC108	S3	Sm	BC808	s7	Mm	BCW72;R	s7	Mm
BC 109	S 3	Sm	BC817	s7	Mm	BCW81;R	s7	Mm
BC140	S 3	Sm	BC818	s 7	Mm	BCW89;R	s7	Mm
BC141	s3	Sm	BC846	s7	Mm	BCX17;R	s 7	Mm
BC160	S3	Sm	BC847	s7	Mm	BCX18;R	s7	Mm
BC161	s3	Sm	BC848	s7	Mm	BCX19;R	s7	Mm
BC177	S 3	Sm	BC849	s7	Mm	BCX20;R	s7	Mm
BC178	s3	Sm	BC850	s7	Mm	BCX51	s7	Mm
BC179	S 3	Sm	BC856	S7	Mm	BCX52	s7	Mm
BC264A	S5	FET	BC857	s7	Mm	BCX53	S 7	Mm
BC264B	S5	FET	BC858	s7	Mm	BCX54	s7	Mm
BC264C	S 5	FET	BC859	s7	Mm	BCX55	s7	Mm
BC264D	S 5	FET	BC860	s7	Mm	BCX56	s7	Mm
BC327;A	S 3	Sm	BC868	S 7	Mm	BCX58	53	Sm
BC328	53	Sm	BC869	S7	Mm	BCX59	53	Sm
BC337;A	53	Sm	BCF29;R	S 7	Mm	BCX70*	s7	Mm
BC338	53	Sm	BCF30;R	S7	Mm	BCX71*	s7	Mm
BC368	s3	Sm	BCF32;R	s7	Mm	BCX78	s 3	Sm
BC369	53	Sm	BCF33;R	S 7	Mm	BCX79	53	Sm
BC375	S3	Sm	BCF70;R	s7	Mm	BCY56	S 3	Sm
BC376	\$3	Sm	BCF81;R	S 7	Mm	BCY57	53	Sm
BC516	S3	Sm	BCV26	s7	Mm	BCY58	S3	Sm
BC517	s3	Sm	BCV27	s7	Mm	BCY59	s3	Sm
BC546	\$3	Sm	BCV61	s7	Mm	BCY65	S 3	Sm
BC547	S 3	Sm	BCV62	S7	Mm	BCY70	53	Sm
BC548	53	Sm	BCV63	s7	Mm	BCY71	S 3	Sm
BC549	s3	Sm	BCV64	s7	Mm	BCY72	s3	Sm
BC550	s3	Sm	BCV65	s 7	Mm	BCY78	s 3	Sm
BC556	S3	Sm	BCV71;R	S7	Mm	BCY79	53	Sm
BC557	S3	Sm	BCV72;R	s7	Mm	BCY87	S3	Sm
BC558	S3	Sm	BCW29;R	s7	Mm	BCY88	S3	Sm
BC559	S 3	Sm	BCW30;R	s7	Mm	BCY89	S 3	Sm
BC560	S 3	Sm	BCW31;R	s7	Mm	BD131	S4a	P
BC635	S3	Sm	BCW32;R	s7	Mm	BD132	S4a	P
BC636	53 53	Sm	BCW32;R	57 57	Mm	BD135	S4a	P
BC637	\$3	Sm	BCW60*	s7	Mm	BD136	S4a	P
ונטטע	53 53	Sm	BCW61*	S7	Mm	BD137	S4a	P

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors

Sm = Small-signal transistors

T = Tuner diodes

type no.	book	section	type no.	book	section	type no.	book	sectio
BD138	S4a	P	BD244A	S4a	P	BD816	S4a	P
BD139	S4a	P	BD244B	S4a	P	BD817	S4a	P
BD140	S4a	P	BD244C	S4a	P	BD818	S4a	P
BD201	S4a	P	BD329	S4a	P	BD825	S4a	P
BD202	S4a	P	BD330	S4a	P	BD826	S4a	P
BD203	S4a	P	BD331	S4a	P	BD827	S4a	P
BD204	S4a	P	BD332	S4a	P	BD828	S4a	P
BD226	S4a	P	BD333	S4a	P	BD829	S4a	P
BD227	S4a	P	BD334	S4a	P	BD830	S4a	Þ
BD228	54a	P	BD335	S4a	P	BD839	S4a	P
BD229	S4a	P	BD336	S4a	P	BD840	S4a	P
BD230	S4a	P	BD337	S4a	P	BD841	S4a	P
BD231	S4a	P	BD338	S4a	P	BD842	S4a	P
BD233	S4a	P	BD433	S4a	P	BD843	S4a	P
BD234	S4a	P	BD434	S4a	P	BD844	S4a	P
BD235	S4a	P	BD435	S4a	P	BD845	S4a	P
BD236	S4a	P	BD436	S4a	P	BD846	S4a	P
BD237	S4a	P	BD437	S4a	P	BD847	S4a	P
BD238	S4a	P	BD438	S4a	P	BD848	S4a	P
BD239	S4a	P	BD645	S4a	P	BD849	S4a	P
BD239A	S4a	P	BD646	S4a	P	BD850	S4a	P
BD239B	S4a	P	BD647	S4a	P	BD933	S4a	P
BD239C	S4a	P	BD648	S4a	P	BD934	S4a	P
BD240	S4a	P	BD649	S4a	P	BD935	S4a	P
BD24OA	S4a	P	BD650	S4a	P	_BD936	S4a	P
BD24OB	S4a	P	BD651	S4a	P	BD937	S4a	P
BD240C	S4a	P	BD652	S4a	₽	BD938	S4a	P
BD241	S4a	P	BD675	S4a	P	BD939	S4a	P
BD241A	S4a	P	BD676	S4a	P	BD940	S4a	P
BD241B	S4a	P	BD677	S4a	P	BD941	S4a	P
BD241C	S4a	P	BD678	S4a	P	BD942	S4a	P
BD242	S4a	P	BD679	S4a	P	BD943	S4a	P
BD242A	S4a	P	BD680	S4a	P	BD944	S4a	P
BD242B	S4a	P	BD681	S4a	P	BD945	S4a	P
BD242C	S4a	P	BD682	S4a	P	BD946	S4a	P
BD243	S4a	p	BD683	S4a	P	BD947	S4a	P
BD243A	S4a	P	BD684	S4a	P	BD948	S4a	P
BD243B	S4a	P	BD813	54a	P	BD949	S4a	P
BD243C	S4a	P	BD814	S4a	P	BD950	S4a	P
BD244	S4a	P	BD815	S4a	P	BD951	S4a	P

	type no.	book	section	type no.	book	section	type no.	book	section
	BD952	S4a	P	BDT60A	S4a	P	BDV64C	S4a	P
	BD953	S4a	P	BDT60B	S4a	P	BDV65	S4a	P
- [BD954	S4a	P	BDT60C	S4a	P	BDV65A	S4a	P
	BD955	S4a	P	BDT61	S4a	P	BDV65B	S4a	P
	BD956	S4a	P	BDT61A	S4a	P	BDV65C	S4a	P
1	DD730	Jaa		DDIOIR	Jau		DDV03C	Jaa	
	BDT20	S4a	P	BDT61B	S4a	P	BDV66A	S4a	P
-	BDT21	S4a	P	BDT61C	S4a	P	BDV66B	S4a	P
	BDT29	S4a	P	BDT62	S4a	P	BDV66C	S4a	P .
	BDT29A	S4a	P	BDT62A	S4a	.P	BDV66D	S4a	P
	BDT29B	S4a	P	BDT62B	S4a	p	BDV67A	S4a	P
				,					
-	BDT29C	S4a	P	BDT62C	S4a	P	BDV67B	S4a	P
- [BDT30	S4a	P	BDT63	S4a	P	BDV67C	S4a	P
1	BDT30A	S4a	P	BDT63A	S4a	P	BDV67D	S4a	P
-	BDT30B	S4a	P	BDT63B	S4a	P	BDV91	S4a	P
	BDT30C	S4a	P	BDT63C	S4a	P	BDV92	S4a	P
ĺ									
	BDT31	S4a	P	BDT64	S4a	P	BDV93	S4a	P
1	BDT31A	S4a	P	BDT64A	S4a	P	BDV94	S4a	P
	BDT31B	S4a	P	BDT64B	S4a	P	BDV95	S4a	P
	BDT31C	S4a	P	BDT64C	S4a	P	BDV96	S4a	P
	BDT32	S4a	P	BDT65	S4a	P	BDW55	S4a	P
	DD#1223	04-			- 4	_	DDMEC	C.4	
1	BDT32A	S4a	P	BDT65A	S4a	P.	BDW56	S4a	Þ
	BDT32B	S4a	P	BDT65B	54a	P	BDW57	S4a S4a	P
1	BDT32C	S4a	P	BDT65C	S4a	P	BDW58 BDW59	54a 54a	P P
	BDT41	S4a S4a	P	BDT81	S4a	P	BDW59	S4a S4a	P
1	BDT41A	54a	P	BDT82	S4a	P	OOWUG	54a	P
	BDT41B	S4a	P	BDT83	S4a	P	BDX35	S4a	P
-	BDT41C	S4a	P	BDT84	S4a	P	BDX36	54a	P
	BDT42	S4a	P	BDT85	S4a	P	BDX37	S4a	P
	BDT42A	S4a	P	BDT86	S4a	P	BDX42	S4a	P
	BDT42B	S4a	P	BDT87	54a	P	BDX43	S4a	P
1	221.22	2.4	-	2010.		-	22		_
	BDT42C	S4a	P	BDT88	S4a	P	BDX44	S4a	P
	BDT51	S4a	P	BDT91	S4a	P	BDX45	S4a	P
	BDT52	S4a	P	BDT92	S4a	P	BDX46	S4a	P
	BDT53	S4a	P	BDT93	S4a	P	BDX47	S4a	P
	BDT54	S4a	P	BDT94	S4a	P	BDX62	S4a	P
							1		İ
	BDT55	S4a	P	BDT95	S4a	P	BDX62A	S4a	P
	BDT56	S4a	P	BDT96	S4 a	P	BDX62B	S4a	P
	BDT57	S4a	P	BDV64	S 4 a	P	BDX62C	S4a	P
	BDT58	S4a	P	BDV64A	S4a	P	BDX63	S4a	P
	BDT60	S4a	P	BDV64B	S4a	P	BDX63A	S4a	P

type no.	book	section	type no.	book	section	type no.	book	section
BDX63B	S4a	p	BF240	s3	Sm	BF513	S7/S5	Mm/FE
BDX63C	S4a	P	BF241	S 3	Sm	BF536	S7.	Mm
BDX64	S4a	P	BF245A	S5	FET	BF550:R	S 7	Mm
BDX64A	S4a	P	BF245B	S5	FET	BF569	S7	Mm
BDX64B	S4a	P	BF245C	S5	FET	BF570	S 7	Mm
BDX64C	S4a	P	BF247A	S 5	FET	BF579	S 7	Mm
BDX65	S4a	P	BF247B	S5	FET	BF583	S4b	HVP
BDX65A	S4a	P	BF247C	S 5	FET	BF585	S4b	HVP
BDX65B	S4a	P	BF256A	S5	FET	BF587	S4b	HVP
BDX65C	S4a	P	BF256B	S 5	FET	BF591	S4b	HVP
BDX66	S4a	P	ĎF256C	S5	FET	BF593	S4b	HVP
BDX66A	S4a	P	BF324	S 3	Sm	BF620	s7	Mm
BDX66B	S4a	P	BF370	S3	Sm	BF621	S7	Mm
BDX66C	S4a	P	BF410A	S5	FET	BF622	S7	Mm
BDX67	S4a	P	BF410B	S5	FET	BF623	S 7	Mm
BDX67A	S4a	P	BF410C	S5	FET	BF660;R	S 7	Mm
BDX67B	S4a	P	BF410D	S5	FET	BF689K	S10	WBT
BDX67C	S4a	P	BF419	S4b	HVP	BF763	S10	WBT
BDX68	S4a	P	BF420	S3	Sm	BF767	S7	Mm
BDX68A	S4a	P	BF421	53	Sm	BF819	S4b	HVP
BDX68B	S4a	P	BF422	s 3	Sm	BF820	s7	Mm
BDX68C	S4a	P	BF423	S3	Sm	BF821	S7	Mm
BDX69	S4a	P	BF450	S3	Sm	BF822	s7	Mm
BDX69A	S4a	P	BF451	S3	Sm	BF823	s7	Mm
BDX69B	S4a	P	BF457	S4b	HVP	BF824	s7	Mm
BDX69C	S4a	P	BF458	S4b	HVP	BF840	S 7	Mm
BDX77	S4a	P	BF459	S4b	HVP	BF841	s7	Mm
BDX78	S4a	P	BF469	S4b	HVP	BF857	S4b	HVP
BDX91	S4a	P	BF470	S4b	HVP	BF858	S4b	HVP
BDX92	S4a	P	BF471	S4b	HVP	BF859	S4b	HVP
BDX93	S4a	P	BF472	S4b	HVP	BF869	S4b	HVP
BDX94	S4a	P	BF483	S3	Sm	BF870	S4b	HVP
BDX95	S4a	P	BF485	s3	Sm	BF871	S4b	HVP
BDX96	S4a	P	BF487	S 3	Sm	BF872	S4b	HVP
BDY90	S4a	P	BF494	S 3	Sm	BF926	S3	Sm
BDY90A	S4a	P	BF495	s3	Sm	BF936	s3	Sm
BDY91	S4a	P	BF496	S 3	Sm	BF939	S3	Sm
BDY92	S4a	P	BF510	S7/S5	Mm/FET	BF960	S5	FET
BF 198	53	Sm	BF511	S7/S5	Mm/FET	BF964	S5	FET
BF199	S3	Sm	BF512	S7/S5	Mm/FET	BF966	S5	FET

FET = Field-effect transistors

HVP = High-voltage power transistors

Mm = Microniature semiconductors for hybrid circuits

= Low-frequency power transistors

Sm = Small-signal transistors

WBT = Wideband transistors

type no.	book	section	type no.	book	section	type no.	book	section
BF967	S 3	Sm	BFQ19	s7/s10	Mm/WBT	BFR92A	S7/S10	Mm
BF970	S 3	Sm	BFQ22S	S10	WBT	BFR93	S7/S10	Mm/WB7
BF970A	s3	Sm	BFQ23	S10	WBT	BFR93A	S7/S10	Mm/WB7
BF979	S3	Sm	BFQ23C	S10	WBT	BFR94	S10	WBT
BF980	S5	FET	BFQ24	S10	WBT	BFR95	S10	WBT
BF981	S5	FET	BF032	S10	WBT	BFR96	S10	WBT
BF982	S5	FET	BF032C	S10	WBT	BFR96S	S10	WBT
BF989	S7/S5	Mm/FET	BFQ32M	S10	WBT	BFR101A;		Mm/FET
BF990	S7/S5	Mm/FET	BFQ32M BFQ32S	S10		BFS17	S7/S10	Mm/WB1
BF991	S7/S5	Mm/FET	BFQ325	S10	WBT WBT	BFS17A	S10	WBT
	•		-					
BF992	S7/S5	Mm/FET	BFQ33C	S10	WBT	BFS18;R	s7	Mm
BF994	S7/S 5	Mm/FET	BFQ34	S10	WBT	BFS19;R	S7	Mm
BF994S	s7	Mm/FET	BFQ34T	S10	WBT	BFS20;R	s7	Mm
BF996	S7/S5	Mm/FET	BFQ42	S6	RFP	BFS21	S5	FET
BF996S	s7	Mm/FET	BFQ43	S6	RFP	BFS21A	S5	FET
BF997	s7	Mm/FET	BFQ43S	s6	RFP	BFS22A	s6	RFP
BFG23	S10	WBT	BFQ51	S10	WBT	BFS23A	S6	RFP
BFG32	510	WBT	BF051C	S10	WBT	BFT24	S10	WBT
BFG34	S10	WBT	BFQ52	S10	WBT	BFT25	S7/S10	Mm/WB'
BFG51	S10	WBT	BFQ53	S10	WBT	BFT25R	S7	Mm
BFG65	S10	WBT	BFQ63	S10	WBT	BFT44	s3	Sm
BFG67	57/S10	Mm	BFQ65	S10	WBT	BFT45	S3	Sm
BFG90A	S10	WBT	BFQ66	S10	WBT	BFT46	S7/S5	Mm/FE
BFG91A	S10	WBT	BFQ67	S7/S10	Mm/WBT	BFT92	S7/S10	Mm/WB
BFG92A	S10	WBT	BFQ68	S10	WBT	BFT93	s7/s10	Mm/WB
BFG93A	S10	WBT	BFQ136	S10	WBT	BFW10	S 5	FET
BFG96	S10	WBT	BFR29	S5	FET	BFW11	S5	FET
	S10					BFW12	S5	FET
BFG195	S10	WBT WBT	BFR30	S7/S5	Mm/FET	BFW12	S5	FET
BFP9OA BFP91A	S10	WBT	BFR31 BFR49	S7/S5 S10	Mm/FET WBT	BFW16A	S10	WBT
						D 701453	210	w.m.m
BFP96	S10	WBT	BFR53	S7/S10	Mm/WBT	BFW17A	S10	WBT
BFQ10	S5	FET	BFR54	S3	Sm	BFW30	S10	WBT
BFQ11	S5	FET	BFR64	S10	WBT	BFW61	S5	FET
BFQ12	S5	FET	BFR65	S10	WBT	BFW92	S10	WBT
BFQ13	S5	FET	BFR84	S5	FET	BFW92A	S10	WBT
BFQ14	S5	FET	BFR90	S10	WBT	BFW93	510	WBT
BFQ15	S5	FET	BFR90A	S10	WBT	BFX34	s3	Sm
BFQ16	S 5	FET	BFR91	S10	WBT	BFX89	S10	WBT
BFQ17	S7/S10	Mm/WBT	BFR91A	S10	WBT	BFY50	s3	Sm
BFQ18A	S7/S10	Mm/WBT	BFR92	S7/S10	Mm/WBT	BFY51	S3	Sm

^{* =} series

Sm = Small-signal transistors

ThM = Thyristor modules

WBM = Wideband hybrid IC modules

WBT = Wideband transistors

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits

RFP = R.F. power transistors and modules

RT = Tripler

type no.	book	section	type no.	book	section	type no.	book	section
BFY52	s3	Sm	BGY58A	S10	WBM	BLU45/12	S6	RFP
BFY55	s3	Sm	BGY59	S10	WBM	BLU50	S6	RFP
BFY90	S10	WBT	BGY60	S10	WBM	BLU51	S6	RFP
BG2000	S1	RT	BGY61	S10	WBM	BLU52	S6	RFP
BG2097	S1	RT	BGY65	S 10	WBM	BLU53	S6	RFP
BGD102	S10	WBM	BGY67	S10	WBM	BLU60/12	S 6	RFP
BGD102E	S10	WBM	BGY67A	S10	WBM	BLU97	S6	RFP
BGD104	S10	WBM	BGY70	S10	WBM	BLU98	S6	RFP
BGD104E	S10	WBM	BGY71	S10	WBM	BLU99	S6	RFP
BGD502	S10	WBM	BGY74	S10	WBM	BLV10	S6	RFP
BGD504	S 10	WBM	BGY75	S10	WBM	BLV11	s6	RFP
BGX885	S10	WBM	BGY78	S10	WBM	BLV20	S6	RFP
BGY22	S6	RFP	BGY84	S10	WBM	BLV21	S6	RFP
BGY22A	S6	RFP	BGY84A	S10	WBM	BLV25	S6	RFP
BGY23	s6	RFP	BGY85	S10	WBM	BLV30	S6	RFP
BGY23A	S 6	RFP	BGY85A	S10	WBM	BLV30/12	S6	RFP
BGY32	S6	RFP	BGY86	S10	WBM	BLV31	S6	RFP
BGY33	S6	RFP	BGY87	S10	WBM	BLV32F	S6	RFP
BGY35	S6	RFP	BGY88	S10	WBM	BLV33	S6	RFP
BGY36	56	RFP	BGY90A	S6	RFP	BLV33F	S6	RFP
BGY40A	s6	RFP	BGY90B	S 6	RFP	BLV36	S6	RFP
BGY40B	S6	RFP	BGY93 *	S6	RFP	BLV45/12		RFP
BGY41A	S6	RFP	BGY94 *	S6	RFP	BLV57	S6	RFP
BGY41B	S6	RFP	BGY95A	S6	RFP	BLV59	S6	RFP
BGY43	s6	RFP	BGY95B	S6	RFP	BLV75/12		RFP
BGY45A	s6	RFP	BGY96A	s6	RFP	BLV80/28	s6	RFP
BGY45B	S6	RFP	BGY96B	S6	RFP	BLV90	S6	RFP
BGY46A	S6	RFP	BGY584A	S10	WBM	BLV90/SL		RFP
BGY46B	S6	RFP	BGY585A	S10	WBM	BLV91	S6	RFP
BGY47 *	S6	RFP	BGY586	S10	WBM	BLV91/SL		RFP
BGY48 *	S6	RFP	BGY587	S10	WBM	BLV92	s6	RFP
BGY50	S10	WBM	BLF146	S6	RFP/FET	BLV93	S6	RFP
BGY51	S10	WBM	BLF242	S6	RFP/FET	BLV94	S6	RFP
BGY52	S10	WBM	BLF244	56	RFP/FET	BLV95	S6	RFP
BGY53	S10	WBM	BLF245	S 6	RFP/FET	BLV97	S6	RFP
BGY54	S10	WBM	BLT90/SL	56	RFP	BLV98	s6	RFP
BGY55	S10	WBM	BLT91/SL		RFP	BLV99	S6	RFP
BGY56	S10	WBM	BLT92/SL		RFP	BLW29	S6	RFP
BGY57	S10	WBM	BLU20/12		RFP	BLW31	S6	RFP
BGY58	S10	WBM	BLU30/12		RFP	BLW32	S6	RFP
BG130	310	#DPI	PP030/12	30	VLE.	DHWJL	50	ILL E

^{* =} series

FET = Field-effect transistors

RFP = R.F. power transistors and modules

ThM = Thyristor modules

WBM = Wideband hybrid IC modules

type no.	book	section	type no.	book	section	type no.	book	section
BLW33	S6	RFP	BLX94C	S6	RFP	BRY62	S7	Mm
BLW34	56	RFP	BLX95	56	RFP	BS107	S 5	FET
BLW50F	S6	RFP	BLX96	\$6	RFP	BS170	S5	FET
BLW60	S6	RFP	BLX97	56	RFP	BSD10	S5	FET
BLW60C	S6	RFP	BLX98	S6	RFP	BSD12	S5	FET
BLW76	S6	RFP	BLY87A	S6	RFP	BSD20	S5/7	FET
BLW77	S6	RFP	BLY87C	S6	RFP	BSD22	\$5/7	FET
BLW78	S6	RFP	BLY88A	S6	RFP	BSD212	S5	FET
BLW79	S6	RFP	BLY88C	S6	RFP	BSD213	S5	FET
BLW80	S6	RFP	BLY89A	S6	RFP	BSD214	S5	FET
BLW81	56	RFP	BLÝ89C	S6	RFP	BSD215	S5	FET
BLW83	S6	RFP	BLY90	S6	RFP	BSR12;R	S7	Mm
BLW84	S6	RFP	BLY91A	S6	RFP	BSR13;R	S7	Mm
BLW85	56	RFP	BLY91C	S6	RFP	BSR14:R	S7	Mm
BLW86	S6	RFP	BLY92A	S6	RFP	BSR15;R	s7	Mm
BLW87	S6	RFP	BLY92C	S6	RFP	BSR16;R	S 7	Mm
BLW89	S6	RFP	BLY93A	S6	RFP	BSR17;R	S7	Mm
BLW90	56	RFP	BLY93C	S6	RFP	BSR17A;R	S7	Mm
BLW91	S6	RFP	BLY94	S6	RFP	BSR18:R	S7	Mm
BLW95	S6	RFP	BPF24	S8b	PDT	BSR18A;R		Mm
BLW96	S6	RFP	BPW22A	S8a/b	PDT	BSR19; A	S 7	Mm
BLW97	S6	RFP	BPW50	S8a/b	PDT	BSR20; A	S7	Mm
BLW98	S6	RFP	BPW71	S8b	PDT	BSR30	S7	Mm
BLW99	S6	RFP	BPX25	S8b	PDT	BSR31	S7	Mm
BLX13	S6	RFP	BPX29	S8b	PDT	BSR32	s7	Mm
BLX13C	S6	RFP	BPX40	S8b	PDT	BSR33	S7	Mm
BLX14	S6	RFP	BPX41	S8b	PDT	BSR40	S 7	Mm
BLX15	S6	RFP	BPX42	S8b	PDT	BSR41	S7	Mm
BLX39	S6	RFP	BPX61	S8b	PDT	BSR42	S7	Mm
BLX65	S6	RFP	BPX61P	58b	PDT	BSR43	S7	Mm
BLX65E	S6	RFP	BPX71	S8b	PDT	BSR50	S 3	Sm
BLX65ES	S6	RFP	BPX72	S8b	PDT	BSR51	S3	Sm
BLX67	S6	RFP	BR100/03	S2b	Th	BSR52	s3	Sm
BLX68	S6	RFP	BR101	S3	Sm	BSR56	S7/S5	Mm/FE
BLX69A	S6	RFP	BR210*	S2a	Th	BSR57	S7/S 5	Mm/FE
BLX91A	S6	RFP	BR216*	S2a	Th	BSR58	S7/S 5	Mm/FE
BLX91CB	S6	RFP	BR220*	S2a	Th	BSR60	S3	Sm
BLX92A	S6	RFP	BRY39	S3	Sm	BSR61	S3	Sm
BLX93A	S6	RFP	BRY56	53	Sm	BSR62	S3	Sm
BLX94A	S6	RFP	BRY61	S7	Mm	BSS38	S3	Sm

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits
PDT = Photodiodes or transistors

RFP = R.F. power transistors and modules

Sm = Small-signal transistors

Th = Thyristors

type no.	book	section	type no.	book	section	type no.	book	sectio
BSS50	S 3	Sm	BSV78	S5	FET	BTV60D*	S2b	Th
BSS51	S3	Sm	BSV79	S5	FET	BTV70*	S2b	Th
BSS52	S 3	Sm	BSV80	S5	FET	BTV70D*	S2b	Th
B5560	S3	Sm	BSV81	S5	FET	BTW23*	S2b	Th
BSS61	S 3	Sm	BSW66A	S3	Sm	BTW38*	S2b	Th
BSS62	S3	Sm	BSW67A	S3	Sm	BTW40*	S2b	Th
BSS63;R	S7	Mm	BSW68A	53	Sm	BTW42*	S2b	Th
BSS64:R	s7	Mm	BSX19	53	Sm	BTW43*	S2b	Tri
BSS68	S3	Sm	BSX20	S3	Sm	BTW45*	S2b	Th
BSS83	S5/7	FET/Mm	BSX32	S3	Sm	BTW58*	S2b	Th
BST15	s7	Mm	BSX45	53	Sm	BTW62*	S2b	Th
	S7		BSX46	53	Sm	BTW62D*	S2b	Th
BST16 BST39	S7	Mm	BSX47	S3	Sm	BTW63*	52b 52b	Th
		Mm		S3	Sm	BTY79*	S2b	Th
BST40	S7	Mm	BSX59 BSX60	\$3 \$3	Sm	BTY91*		Th
BST50	S7	Mm	BSX60	53	SM	BIX91	S2b	Tn
BST51	S7	Mm	BSX61	S3	Sm	BU426	S4b	SP
BST52	s7	Mm	BT136*	S2b	Tri	BU426A	S4b	SP
BST60	S 7	Mm	BT136F*	S2b	Tri	BU433	S4b	SP
BST61	57	Mm	BT137*	S2b	Tri	BU505	S4b	SP
BST62	s7	Mm	BT137F*	S2b	Tri	BU506	S4b	SP
BST70A	S 5	FET	BT138*	S2b	Tri	BU506D	S4b	SP
BST72A	S5	FET	BT138F*	S2b	Tri	BU508A	S4b	SP
BST74A	S5	FET	BT139*	S2b	Tri	BU508D	S4b	SP
BST76A	S5	FET	BT139F*	S2b	Tri	BU705	S4b	SP
BST78	S5	FET	BT145*	S2b	Tri	BU706	S4b	SP
BST80	S5/S7	FET/Mm	BT149*	S2b	Th	BU706D	S4b	SP
BST82	S5/S7	FET/Mm	BT150	S2b	Th	BU806	S4b	SP
BST84	S5/S7	FET/Mm	BT151*	S2b	Th	BU807	S4b	SP
BST86	S5/S7	FET/Mm	BT151F*	S2b	Th	B0808	S4b	SP
BST90	S5	FET	BT152*	S2b	Th	BU824	S4b	SP
BST97	S5	FET	BT153	S2b	Th	BU826	S4b	SP
	S5	FET	BT153	S2b	Th	BUP22*	S4b	SP
BST100	-		BT169*	S2b	Th	BUP23*	S4b	SP
BST110	S5	FET		S2b	Tri	BUS11; A	S4b	SP
BST120	S5/S7	FET/Mm	BTA140*			1	S4b	SP
BST122	S5/S7	FET/Mm	BTR59*	S2b	Tri	BUS12;A	ಎಳಗಿ	SE
BSV15	S3	Sm	BTS59*	S2b	Tri	BUS13;A	S4b	SP
BSV16	S3	Sm	BTV58*	S2b	Th	BUS14;A	S4b	SP
BSV17	S 3	Sm	BTV59*	S2b	Th	BUS21*	S4b	SP
BSV52;R	s7	Mm	BTV59D*	S2b	Th	BUS22*	S4b	SP
BSV64	S 3	Sm	BTV60*	S2b	Th	BUS23*	S4b	SP

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

Sm = Small-signal transistors

SP = Low-frequency switching power transistors

Th = Thyristors

Tri = Triacs

type no.	book	section	type no.	book	section	type no.	book	section
BUT11;A	S4b	SP	BUZ25	S9	PM	BUZ211	S9	PM
BUT11A	S4b	SP	BUZ31	S9	PM	BUZ307	59	PM
BUT 1 1AF	S4b	SP	BUZ32	S9	PM	BUZ308	S9	PM
BUV82	S4b	SP	BUZ34	S9	PM	BUZ310	S 9	PM
BUV83	S4b	SP	BUZ35	S9	P M	BUZ311	S9	PM
BUV89	S4b	SP	BUZ36	S9	P M	BUZ326	S9	PM
BUV90;A	S4b	SP	BUZ41A	S9	PM	BUZ330	S9	PM
BUW11;A	S4b	SP	BUZ42	S9	P M	BUZ331	S9	PM _.
BUW12;A	S4b	SP	BUZ45	S9	PM	BUZ347	S9	PM
BUW13;A	S4b	SP	BUZ45A	S9	PM	BUZ348	S9	PM
BUW84	S4b	SP	BUZ45B	S9	PM	BUZ349	59	PM
BUW85	S4b	SP	BUZ50A	S9	PM	BUZ350	S9	PM
BUX46;A	S4b	SP	BUZ50B	S9	PM	BUZ351	S9	PM
BUX47;A	S4b	SP	BUZ50C	S9	PM	BUZ355	S9	PM
BUX48;A	S4b	SP	BUZ53A	S9	PM	BUZ356	S9	PM
BUX80	S4b	SP	BUZ54	59	PM	BUZ357	S9	PM
BUX81	S4b	SP	BUZ54A	S9	PM	BUZ358	S9	PM
BUX82	S4b	SP	BUZ60	S9	PM	BUZ384	S9	PM
BUX83	S4b	SP	BUZ63	S9	PM	BUZ385	S9	PM
BUX84	S4b	SP	BUZ64	S9	P M	BY224*	S2a	R
BUX84F	S4b	SP	BUZ71	S9	PM	BY225*	S2a	R
BUX85	S4b	SP	BUZ71A	S9	PM	BY228	S1	R
BUX85F	S4b	SP	BUZ72	S9	PM	BY229*	S2a	R
BUX86	S4b	SP	BUZ72A	S9	PM	BY229F*	S2a	R
BUX87	S4b	SP	BUZ73	S 9	PM	BY249*	S2a	R
BUX88	S4b	SP	BUZ73A	S9	PM	BY260*	S2a	R
BUX90	S4b	SP	BUZ74	S 9	PM	BY261*	S2a	R
BUX98	S4b	SP	BUZ74A	S 9	PM	BY329*	S2a	R
BUX98A	S4b	SP	BUZ76	59	PM	BY359*	S2a	R
BUX99	S4b	SP	BUZ76A	S9	PM	BY438	S1	R
BUY89	S4b	SP	BUZ78	S9	PM	BY448	S1	R
BUZ 10	59	PM	BUZ80	S 9	PM	BY458	S1	R
BUZ 11	59	PM	BUZ8OA	S 9	PM	BY505	S1	R
BUZ 11A	S9	PM	BUZ83	S9	PM	BY509	S1	R
BUZ14	S9	PM	BUZ83A	S 9	PM	BY527	S1	R
BUZ 15	S9	P M	BUZ84	S 9	PM	BY584	S1	R
BUZ 20	59	PM	BUZ84A	S 9	PM	BY588	S1	R
BUZ21	S 9	PM	BUZ90	S 9	PM	BY609	S1	R
BUZ23	S 9	PM	BUZ9OA	S 9	PM	BY610	S1	R
BUZ24	S 9	PM	BUZ94	S9	PM	BY614	S1	R

^{* =} series

PM = Power MOS transistors

R = Rectifier diodes

SP = Low-frequency switching power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BY619	S1	R	BYV28*	S1/S2a	R	BYW96D	S1	R
BY620	S1	R	BYV29*	S2a	R	BYW96E	S1	R
BY627	S1	R	BYV29F*	S2a	R	BYX 10G	S1	R
BY707	S1	R	BYV30*	S2a	R	BYX25*	S2a	R
BY708	s1	R	BYV31*	S2a	R	BYX30*	S2a	R
BY709	S1	R	BYV32*	S2a	R	BYX32*	S2a	R
BY710	S1	R	BYV32F*	S2a	R	BYX38*	S2a	R
BY711	S1	R	BYV33*	S2a	R	BYX39*	S2a	R
BY712	S1	R	BYV33F*	S2a	R	BYX42*	S2a	R.
BY713	S1	R	BYV34*	S2a	R	BYX46*	S2a	R
BY714	S1	R	BYV36 *	S1	R	BYX50*	S2a	R
BYD13 *	S1	R	BYV39*	S2a	R	BYX52*	S2a	R
BYD14 *	S1	R	BYV42*	S2a	R	BYX56*	S2a	R
BYD17 *	S1/7	R	BYV43*	S2a	R	BYX90G	S1	R
BYD33 *	S1	R	BYV43F*	S2a	R	BYX96*	S2a	R
BYD37 *	S1/7	R	BYV44*	S2a	R	BYX97*	S2a	R
BYD73 *	S1	R	BYV60*	S2a	R	BYX98*	S2a	R
BYD74 *	S1	R	BYV72*	S2a	R	BYX99*	S2a	R
BYD77 *	S1	R	BYV73*	S2a	R	BZD23	S1	Vrg
BYM26 *	S1	R	BYV74*	S2a	R	BZD27	S1/7	Vrg
BYM36 *	S1	R	BYV79*	S2a	R	BZTO3	S1	Vrg
BYM56 *	S1	R	BYV92*	S2a	R	BZV10	S1	Vrf
BYP21*	S2a	R	BYV95A	S1	R	BZV11	S1	Vrf
BYP22*	S2a	R	BYV95B	S1	R	BZV12	S1	Vrf
BYP59*	S2a	R	BYV95C	S1	R	BZV13	S1	Vrf
BYQ28*	S2a	R	BYV96D	S1	R	BZV14	S1	Vrf
BYR29*	S2a	R	BYV96E	S1	R	BZV37	S1	Vrf
BYR29F*	S2a	R	BYW25*	S2a	R	BZV46	S 1	Vrg
BYT28*	S2a	R	BYW29*	S2a	R	BZV49*	S1/S7	Vrg/Mm
BYT79*	S2a	R	BYW29F*	S2a	R	BZV55*	s7	Mm
BYV10	S1	R	BYW30*	S2a	R	BZV8O	S1	Vrf
BYV18*	S2a	R	BYW31*	S2a	R	BZV81	S1	Vrf
BYV19*	S2a	R	BYW54	S1	R	BZV85 *	S1	Vrg
BYV20*	S2a	R	BYW55	51	R	BZWO3 *	S1	Vrg
BYV21*	S2a	R	BYW56	S1	R	BZW14	S1	Vrg
BYV22*	S2a	R	BYW92*	S2a	R	BZW86*	S2a	TS
BYV23*	S2a	R	BYW93*	S2a	R	BZX55 *	S1	Vrg
BYV24*	S2a	R	BYW95A	S1	R	BZX70*	S2a	Vrg
BYV26 *	S1/S2a	R	BYW95B	S1	R	BZX75 *	S1	Vrg
BYV27*	S1/S2a	R	BYW95C	S1	R	BZX79*	S1	Vrg

^{* =} series

LED = Light-emitting diodes

M = Microwave transistors

Mm = Microminiature semiconductors

for hybrid circuits

Ph = Photoconductive devices

PhC = Photocouplers

= Rectifier diodes

TS = Transient suppressor diodes Vrf = Voltage reference diodes

Vrg = Voltage regulator diodes

L	type no.	book	section	type no.	book	section	type no.	book	section
	BZX84*	S7/S1	Mm/Vrg	CNY62	S8b	PhC	CQW12B(L)) S8a	LED
ļ	BZY91*	S2a	Vrq	CNY63	S8b	PhC	CQW2OA	S8a	LED
	BZY93*	S2a	Vrg	CQF24	S8b	Ph	CQW21	S8a	LED
	CFX13	S11	M	CQL10A	S8b	Ph	CQW22	S8a	LED
	CFX21	511	M	CQL13A	S8b	Ph	CQW24(L)		LED
l	CFX30	S11	M	CQL16	S8b	Ph	CQW54	S8a	LED
-	CFX31	S11	M	CQS51L	S8a	LED	CQW60(L)	S8a	LED
	CFX32	S11	M	CQS54	S8a	LED	CQW6OA(L)	S8a	LED
l	CFX33	S11	M	CQS82L	S8a	LED	CQW6OU(L)	S8a	LED
	CNG35	S8b	PhC	CQS82AL	S8a	LED	CQW61(L)	S8a	LED
	CNG36	S8b	PhC	CQS84L	S8a	LED	CQW62(L)	S8a	LED
	CNR36	S8b	PhC	CQS86L	S8a	LED	CQW89A	S8a/b	I
	CNX21	S8b	PhC	cos93	S8a	LED	CQW93	S8a	LED
	CNX35	S8b	PhC	CQS93E	S8a	LED	CQW95	S8a	LED
	CNX35U	S8b	PhC	CQS93L	S8a	LED	CQW97	S8a	LED
	CNX36	S8b	PhC	CQS95	S8a	LED	CQX24(L)		LED
	CNX36U	S8b	PhC	CQS95E	S8a	LED	CQX51(L)	S8a	LED
	CNX38	S8b	PhC	CQS95L	S8a	LED	CQX54(L)	S8a	LED
	CNX38U	S8b	PhC	CQS97	S8a	LED	CQX54D	S8a	LED
	CNX39	S8b	PhC	CQS97E	S8a	LED	CQX64(L)	S8a	LED
	CNX39U	S8b	PhC	CQS97L	S8a	LED	CQX64D	S8a	LED
	CNX44	S8b	PhC	CQT10B	S8a	LED	CQX74(L)	S8a	LED
	CNX44A	S8b	PhC	CQT24	S8a	LED	CQX74D	S8a	LED
	CNX46	S8b	PhC	CQT60	S8a	LED	CQY11B	S8b	LED
	CNX48	S8b	PhC	CQT70	S8a	LED	CQY11C	S8b	LED
	CNX48U	S8b	PhC	CQT8OL	S8a	LED	CQY24B(L)	S8a	LED
	CNX62	S8b	PhC	CQV70(L)	S8a	LED	CQY49B	S8b	LED
İ	CNX72	S8b	PhC	CQV70A(L) S8a	LED	CQY49C	S8b	LED
	CNX82	S8b	PhC	CQV7OU(L)S8a	LED	CQY50	S8b	LED
	CNX83	S8b	PhC	CQV71A(L)58a	LED	CQY52	S8b	LED
	CNX91	S8b	PhC	CQV72(L)	S8a	LED	CQY53S	S8b	LED
	CNX92	S8b	PhC	CQV80L	S8a	LED	CQY54A	S8a	LED
	CNY17-1	S8b	PhC	CQV8OAL	S8a	LED	CQY58A	S8a/b	I
	CNY17-2	S8b	PhC	CQV8OUL	S8a	LED	CQY89A	S8a/b	I
	CNY17-3	S8b	PhC	CQV81L	S8a	LED	CQY94B(L)	S8a	LED
	CNY50	S8b	PhC	CQV82L	S8a	LED	CQY95B	S8a	LED
	CNY57	S8b	PhC	CQW1OA(L)S8a	LED	CQY96(L)	S8a	LED
	CNY57A	S8b	PhC	CQW10B(L) S8a	LED	CQY97A	S8a	LED
	CNY57AU	S8b	PhC	CQW1OU(L) S8a	LED	Fresnel-	S8b	A
	CNY57U	S8b	PhC	CQW11B(L) S8a	LED	lens		

⁼ series

A = Accessories

I = Infrared devices

LED = Light-emitting diodes

M = Microwave transistors

PhC = Photocouplers

SEN = Sensors

type no.	book	section	type no.	book	section	type no.	book	sectio
H11A1	S8b	PhC	LKE21004R	S11	M	MPSA13	S 3	Sm
H11A2	S8b	PhC	LKE21015T	S11	M	MPSA14	S3	Sm
H11A3	S8b	PhC	LKE21050T	S11	M	MPSA42	S 3	Sm
H11A4	S8b	PhC	LKE27010R	S11	M	MPSA43	S3	Sm
H11A5	S8b	PhC	LKE27025R	S11	M	MPSA55	S 3	Sm
H11B1	S8b	PhC	LKE32002T	S11	M	MPSA56	S 3	Sm
H11B2	S8b	PhC	LKE32004T	S11	M	MPSA63	S 3	Sm
H11B3	S8b	PhC	LTE42005S	S11	M	MPSA64	S 3	Sm
H11B255	S8b	PhC	LTE42008R	S11	M	MPSA92	53	Sm
KMZ 10A	S13	SEN	LTE42012R	S11	M	MPSA93	S 3	Sm
KMZ 10B	S13	SEN	LV1721E50R	S11	М	MRB12175YR	S11	M
KMZ 10C	S13	SEN	LV2024E45R		M	MRB12350YR	S11	M
KP 100A	S13	SEN	LV2327E40R		М	MS1011B700		M
KP101A	S13	SEN	LV3742E16R		M	MS6075B800		M
KPZ20G	S13	SEN	LV3742E10R		M	MSB12900Y	S11	M
KPZ21G	S13	SEN	LWE2015R	S11	M	MZO912B75Y	S11	M
KTY81*	S13	SEN	LWE2025R	S11	М	MZO912B150		M
KTY83*	S13	SEN	LZ1418E1001		M	OM286; M	S13	SEN
KTY84*	S13	SEN	MCA230	S8b	PhC	OM287; M	S13	SEN
LAE2001R	S11	M	MCA231	S8b	PhC	OM320	S10	WBM
LAE40000	S11	м	MCA255	S8b	PhC	OM321	S10	WBM
LAE4001R	S11	M	MCT2	S8b	PhC	OM322	S10	WBM
LAE4002S	511	M	MCT26	S8b	PhC	OM323	S10	WBM
LAE60000	S11	M	MKB12040WS		M	OM323A	S10	WBM
LBE 1004R	S11	M	MKB12100WS		M	OM335	510	WBM
LBE1010R	S11	М	MKB12140W	S11	м	OM336	S10	WBM
LBE2003S	S11	M	M06075B2002		M	OM337	S10	WBM
LBE2005Q	S11	M	M06075B4002		M	OM337A	S10	WBM
LBE2003Q	S11	M	MPS6513	S3	Sm	OM339	S 10	WBM
LBE2009S	S11	M	MPS6514	S 3	Sm	OM345	S10	WBM
LCE1010R	S11	м	MPS6515	s3	Sm	OM350	S10	WBM
LCE2003S	S11	M	MPS6517	53	Sm	OM360	S10	WBM
LCE20050	S11	M.	MPS6518	s3	Sm	OM361	S10	WBM
LCE2003Q	S11	M	MPS6519	S3	Sm	OM370	S10	WBM
LCE2009S	S11	M	MPS6520	S3	Sm	OM386B	S13	SEN
LJE42002T	S11	M	MPS6521	s3	Sm	OM386M	S13	SEN
LKE 1004R	S11	M	MPS6522	S3	Sm	OM387B	S13	SEN
	S11	M M	MPS6523	S3	Sm	OM387M	S13	SEN
LKE2002T			MPSAO5	53 53	Sm Sm	OM388B	\$13 \$13	SEN
LKE2004T	S11	M M	MPSA06	53 53	Sm Sm	OM389B	S13	SEN
LKE2015T	S11	14	PSAUG	22	ວແ	ם כסכותט ן	513	JEN

FET = Field-effect transistors

I = Infrared devices

M = Microwave transistors

Mm = Microminiature semiconductors

for hybrid circuits

P = Low-frequency power transistors

PhC = Photocouplers

R = Rectifier diodes

SD = Small-signal diodes

SEN = Sensors

Sm = Small-signal transistors

SP = Low-frequency switching power transistors

St = Rectifier stacks

WBM = Wideband hybrid IC modules

type no.	book	section	type no.	book	section	type no.	book	section
RZ1214B65	Y S11	M	TIP125	S4a	p	1N4003G	S 1	R
RZ1214B12	5WS11	M	TIP126	S4a	P	1N4004G	S 1	R
RZ1214B12		М	TIP127	S4a	P	1N4005G	S1	R
RZ 12 14B 150	0YS11	M	TIP130	S4a	P	1N4006G	S1	R
RZ2833B45	W S11	M	TIP131	S4a	P	1N4007G	S1	R
RZ3135B15	U S11	M	TIP132	S4a	P	1N4148	S1	SD
RZ3135B15	W 511	M	TIP135	S4a	P	1N4150	S1	SD
RZ3135B25	U S11	M	TIP136	S4a	P	1N4151	S1	SD
RZ3135B30	W S11	M	TIP137	S4a	P	1N4153	S1	SD
RZB12100Y	S11	M	TIP140	S4a	P	1N4446	S1	SD
RZB12250Y	S11	M	TIP141	S4a	P	1N4448	S1	SD
RZZ1214B3	00YS11	M	TIP145	S4a	P	1N4531	S1	SD
SL5500	S8b	PhC	TIP146	S4a	P	1N4532	S1	SD
SL5501	S8b	PhC	TIP147	S4a	P	1N5059	S1	R
SL5502R	S8b	PhC	TIP2955	S4a	P	1 N 5060	S1	R
SL5504	S8b	PhC	TIP3055	S4a	P	1N5061	S1	R
SL5504S	S8b	PhC	1N821;A	S 1	Vrf	1N5062	S 1	R
SL5505S	S8b	PhC	1N823; A	S1	Vrf	2N918	S10	WBT
SL5511	S8b	PhC	1N825;A	S1	Vrf	2N930	s3	Sm
TIP29*	S4a	P	1N827;A	S1	Vrf	2N1613	S3	Sm
TIP30*	S4a	P	1N829;A	S 1	Vrf	2N1711	s3	Sm
TIP31*	S4a	P	1N914	S1	SD	2N1893	S3	Sm
TIP32*	S4a	P	1N916	S 1	SD	2N2219	S3	Sm
TIP33*	S4a	P	1N3879	S2a	R	2N2219A	S 3	Sm
TIP34*	S4a	P	1N3880	S2a	R	2Ñ2555	S 3	Sm
TIP41*	S4a	P	1N3881	S2a	R	2N2222A	S 3	Sm
TIP42*	S4a	P	1N3882	S2a	R	2N2297	S 3	Sm
TIP47	S4a	P	1N3883	S2a	R	2N2368	S3	Sm
TIP48	S4a	P	1N3889	S2a	R	2N2369	s3	Sm
TIP49	S4a	P	1N3890	S2a	R	2N2369A	S3	Sm
TIP50	S4a	P	1N3891	S2a	R	2N2483	S3	Sm
TIP110	S4a	P	1N3892	S2a	R	2N2484	S 3	Sm
TIP111	S4a	P	1N3893	S2a	R	2N29O4	S 3	Sm
TIP112	S4a	P	1N3909	S2a	R	2N2904A	s3	Sm
TIP115	S4a	P	1N3910	S2a	R	2N2905	S 3	Sm
TIP116	S4a	P	1N3911	S2a	R	2N2905A	s 3	Sm
TIP117	S4a	P	1N3912	S2a	R	2N29O6	S3	Sm
TIP120	S4a	P	1N3913	S2a	R	2N2906A	s3	Sm
TIP121	S4a	P	1N4001G	S1	R	2N2907	S3	Sm
TIP122	S4a	P	1N4002G	S1	R	2N2907A	S3	Sm

^{* =} series

I = Infrared devices

M = Microwave transistors

P = Low-frequency power transistors

PhC = Photocouplers

R = Rectifier diodes

SD = Small-signal diodes

Vrf = Voltage reference diodes

type no.	book	section	type no.	book	section	type no.	book	section
OM931	S4a	P	PKB3005U	S11	M	PN3440	S 3	Sm
OM961	S4a	P	PKB12005U	S11	M	PN5415	S3	Sm
OSB9115	S2a	St	PKB20010U	S11	M	PN5416	S 3	Sm
OSB9215	S2a	St	PKB23001U	S11	M	PO44	S8b	PhC
OSB9415	S2a	St	PKB23003U	S11	M	PO44A	S8b	PhC
OSM9115	S2a	St	PKB23005U	S11	M	PPC5001T	S11	M
OSM9215	S2a	St	PKB25006T	S11	M	PQC5001T	S11	M
OSM9415	S2a	St	PKB32001U	S11	M	PTB23001X	S11	M
OSM9510	S2a	St	PKB32003U	S11	M	PTB23003X	S11	M
OSM9511	S2a	St	PKB32005U	s11	M	PTB23005X	S11	M
OSM9512	S2a	St	PMBF4391	s7	Mm	PTB32001X	S11	M
OSS9115	S2a	St	PMBF4392	S 7	Mm	PTB32003X	S11	M
OSS9215	S2a	St	PMBF4393	s7	Mm	PTB32005X	S11	M
OSS9415	S2a	St	PMBT2222/A		Mm	PTB42001X	S11	M
P2105	S8b	I	PMBT2907/A		Mm	PTB42002X	S11	M
PBMF4391	S 5	FET	PMBT3903/4	G 7	Mm	PTB42003X	S11	М
PBMF4392	S5	FET	PMBT3906	s7	Mm	PV3742B4X	S11	M
		FET	PMBT6428/9		Mm	PVB42004X	S11	M
PBMF4393	S5				Mm	PXT3904	S7	Mm
PDE 1001U PDE 1003U	S11 S11	M M	PMBTA05/06 PMBTA13/14		Mm	PXT3906	s7	Mm
PDE 1005U	S11	м	PMBTA42/43	c 7	Mm	PZ1418B15U	S11	М
	S11	M ·	PMBTA55/56		Mm	PZ 14 18B30U		M
PDE1010U					Mm	PZ1721B12U		M
PEE 100 1U	S11	M	PMBTA63/64		Mm.	PZ 172 1B25U		M
PEE 1003U PEE 1005U	S11 S11	M M	PMBTA92/93 PMLL4148	S1	SD	PZ2024B10U		M
DEE 4040H	S11		PMLL4150	S 1	SD	PZ 2024B20U	S11	M
PEE1010U		M	PMLL4151	S1	SD	PZB16035U	S11	M
PH2222	S3	Sm		51 S1	SD	PZB27020U	S11	M
PH2222A	S3	Sm	PMLL4153		SD SD	RPY97	S8b	I
PH2369 PH2907	S3 S3	Sm Sm	PMLL4446 PMLL4448	S1 S1	SD	RPY100	S8b	I
DU20073	53	Cm	PMLL5225B			RPY101	S8b	I
PH2907A		Sm	to	S1/S7	SD	RPY 102	S8b	Ī
PH2955T	S4a	P	PMLL5267B	31/31	SD	RPY103	S8b	Ī
PH3055T	S4a	P		co	Sm	RPY107	S8b	Ī
PH5415	S3	Sm	PN2222	S3		RPY109	S8b	Ī
PH5416	S 3	Sm	PN2222A	S 3	Sm	WEI 103	200	•
PH13002	S4b	SP	PN2369	S3	Sm	RV3135B5X	S11	M
PH13003	S4b	SP	PN2369A	S3	Sm	RX1214B300		M
PHSD51	S2a	R	PN2907	s3	Sm	RXB12350Y	S11	M
PKB3001U	S11	M	PN2907A	S3	Sm	RZ1214B35Y	S11	M
PKB3003U	S11	M	PN3439	S 3	Sm	RZ1214B60W	C 1 1	M

A = Accessories

FET = Field-effect transistors

Ph = Photoconductive devices

PhC = Photocouplers R = Rectifier diodes

RFP = R.F. power transistors and modules

SD = Small-signal diodes

Sm = Small-signal transistors

WBT = Wideband transistors

type no.	book	section	type no.	book	section	type no.	book	section
2N3O19	s 3	Sm	2N4860	s 5	FET	56354	S4b	A
2N3020	S3	Sm	2N4861	S 5	FET	56359b	S2,4b	A
2N3O53	s3	Sm	2N5086	S3	Sm	56359c	S2,4b	A
2N3375	S6	RFP	2N5087	S3	Sm	56359d	S2,4b	A
2N3553	S6	RFP	2N5088	S 3	Sm	56360a	S2,4b	A
2N3632	S 6	RFP	2N5089	S 3	Sm	56363	S2,4b	A
2N3822	S5	FET	2N5400	S3	Sm	56364	S2,4b	A
2N3823	\$5	FET	2N5401	S3	Sm	56367	S2a/b	
2N3866	S6	RFP	2N5415	S3	Sm	56368b	S2,4b	A
2N39O3	s3	Sm	2N5416	S 3	Sm	56368c	S2,4b	A
2N3904	s 3	Sm	2 N 5550	S 3	Sm	56369	S2,4b	
2N3905	S3	Sm	2N5551	S3	Sm	56378	S2,4b	A
2N3906	S 3	Sm	2N6659	S5	FET	56379	S2,4b	A
2N3924	S6	RFP	2N6660	S5	FET	56387a,b	S4b	A
2N3926	s6	RFP	2N6661	S5	FET	56397	S8b	A
2N3927	s 6	RFP	4N25	S8b	PhC			
2N3966	S5	FET	4N25A	S8b	PhC			
2N4030	s3	Sm	4N26	S8b	PhC			
2N4O31	S3	Sm	4N27	S8b	PhC			
2N4032	S 3	Sm	4N28	S8b	PhC			
2N4O33	S 3	Sm	4N35	S8b	PhC			
2N4091	S5	FET	4N36	S8b	PhC			
2N4092	S5	FET	4N37	S8b	PhC			
2N4093	S5	FET	4N38	S8b	PhC			
2N4123	S3	Sm	4N38A	S8b	PhC	*		
2N4124	s3	Sm	502CQF	S8b	Ph			
2N4125	S3	Sm	503CQF	S8b	Ph			
2N4126	s3	Sm	504CQL	S8b	Ph			
2N4391	S 5	FET	516CQF-B	S8b	Ph			
2N4392	S 5	FET	56201d	S4b	A		į	
2N4393	S5	FET	56201j	S4b	A			
2N4400	S 3	Sm	56245	53,10				
2N4401	S 3	Sm	56246	53,10				
2N4402	53	Sm	56261a	S4b	A			
2N44O3	S 3	Sm	56264	S2a/b				
2N4427	s 6	RFP	56295	S2a/b	A			
2N4856	S5	FET	56326	S4b	A			
2N4857	S5	FET	56339	S4b	A			
2N4858	S5	FET	56352	S4b	A			
2N4859	S5	FET	56353	54b	A			

A = Accessories

FET = Field-effect transistors

Ph = Photoconductive devices PhC = Photocouplers

Sm = Small-signal diodes

NOTES

DATA HANDBOOK SYSTEM

	,		
	,		
		on .	

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to vii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
T4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Т6	Geiger-Müller tubes
T8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches
T16	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1	$\begin{tabular}{ll} \textbf{Diodes} \\ Small-signal silicon diodes, voltage regulator diodes ($<$1,5$ W), voltage reference diodes, tuner diodes, rectifier diodes ($<$$1,5$ W), voltage reference diodes, tuner diodes, rectifier diodes ($<$$$1,5$ W), voltage reference diodes, tuner diodes, rectifier diodes ($<$$$$$$$1,5$ W), voltage reference diodes, tuner diodes, rectifier diodes ($<$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	PowerMos transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S12	Surface acoustic wave devices
S13	Semiconductor sensors
S14	Liquid Crystal Displays

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of handbooks comprises:

IC01 Radio, audio and associated systems

Bipolar, MOS

IC02a/b Video and associated systems

Bipolar, MOS

IC03 Integrated circuits for telephony

Bipolar, MOS

IC04 HE4000B logic family

CMOS

IC05N HE4000B logic family — uncased ICs

CMOS

IC06N High-speed CMOS; PC74HC/HCT/HCU

Logic family

IC08 ECL 10K and 100K logic families

ICO9N TTL logic series

IC10 Memories

MOS, TTL, ECL

IC11 Linear LSI

IC12 I²C-bus compatible ICs

IC13 Semi-custom

Programmable Logic Devices (PLD)

IC14 Microcontrollers and peripherals

Bipolar, MOS

IC15 FAST TTL logic series

IC16 CMOS integrated circuits for clocks and watches

IC17 Integrated Services Digital Networks (ISDN) not yet issued

IC18 Microprocessors and peripherals

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C2	Television tuners, coaxial aerial input assemblies
C3	Loudspeakers
C4	Ferroxcube potcores, square cores and cross cores
C5	Ferroxcube for power, audio/video and accelerators
C 6	Synchronous motors and gearboxes
C7	Variable capacitors
C8	Variable mains transformers
C9	Piezoelectric quartz devices
C11	Varistors, thermistors and sensors
C12	Potentiometers, encoders and switches
C13	Fixed resistors
C14	Electrolytic and solid capacitors
C15	Ceramic capacitors
C16	Permanent magnet materials
C17	Stepping motors and associated electronics
C18	Direct current motors
C19	Piezoelectric ceramics
C20	Wire-wound components for TVs and monitors
C22	Film capacitors

				7
			•	
				8
		some.		

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 - 7141 to 7747.

Australia: PHILIPS INDUSTRIES LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322.

Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, A-1101 WIEN, Tel. (0222) 62 91 11-0.

Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 525-61-11.

Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600, (Passive Devices & Materials): Av. Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, Tel. (011) 459-8211.

Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 77 38 16.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. (01) 2497624.

Denmark: MINIWATT A/S, Strandlodsvei 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. (90) 17271.

France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. (01) 43388000.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.

Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 48 94 339/48 94 911.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-2451 21.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building,

254-D Dr. Annie Besant Rd., BOMBAY - 400 025, Tel. (022) 4930311/4930590.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 51 79 95.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Elcoma Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.

Italy: PHILIPS S.p.A., Div. Componenti Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611.

(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.

Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.

Malaysia: PHILIPS MALAYSIA SDN BHD, Elcoma Div., 345 Jalan Gelugor, 11700 PULAU PINANG, Tel. (04) 870044.

Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.

Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749.

New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.

Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. (02) 68 02 00.

Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 72 57 72.

Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. (014) 326070.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 68 31 21.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 35 02 000.

South Africa: S.A. PHILIPS (Pty) LTD., EDAC Div., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001. Tel. (011) 402-4600/07.

Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. (03) 301 63 12.

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. (08) 7821000.

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 488 22 11.

Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 7120500.

Thailand: PHILIPS ELECTRICAL CO. OFTHAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad., No. 78-80, 80090 Ayazpasa ISTANBUL, Tel. (01) 14359 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 580 6633.

United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive & Electromech, Dev.) MEPCO/CENTRALAB, INC., 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404.

Tel. (305) 881-3200.

(IC Products) SIGNETICS CORPORATION, 811 East Argues Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 98 53 95.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

© Philips Export B.V. 1987

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any parent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in a result of the support of the publisher.