Algoritmos para árvore geradora mínima

 $\begin{array}{lll} \mathsf{MO417} - \mathsf{Complexidade} \ \mathsf{de} \\ \mathsf{Algoritmos} \ \mathsf{I} \end{array}$

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Minimum Spanning Trees ... or how to bring the world together on a budget."

Seth James Nielson

Algoritmo de Prim

Ideia

- Escolhemos um vértice r arbitrariamente no início.
- O conjunto A são as arestas de uma árvore com raiz r.
- O conjunto S são os vértices dessa árvore.
- ightharpoonup Em cada iteração, adicionamos uma **ARESTA LEVE** de $\delta(S)$.

Detalhe de implementação importante:

Como encontrar essa aresta leve EFICIENTEMENTE?

Exemplo

Estruturas de dados

Como representar os vértices a serem adicionados?

- Mantemos uma fila de prioridade (de mínimo) Q.
- ► Ela contém todos vértices que NÃO estão na árvore.
- ► Cada vértice v na fila tem prioridade key[v] de ser inserido.

Qual a prioridade de escolher um vértice v?

key[v] guarda o peso da menor aresta ligando v à árvore, ou vale ∞ se não houver uma tal aresta.

Como representar a árvore sendo construída?

- Mantemos um vetor π de pais de todos vértices.
- Os vértices da árvore são: S = V \ Q.
- As arestas da árvore são: $A = \{(u, \pi[u]) : u \in S \setminus \{r\}\}.$

O algoritmo

Algoritmo: AGM-PRIM(G, w, r)

1 para cada $u \in V[G]$

```
\begin{array}{c|c} \mathbf{2} & \ker[u] \leftarrow \infty \\ \mathbf{3} & \pi[u] \leftarrow \mathsf{NIL} \end{array}
4 key[r] \leftarrow 0
S Q \leftarrow V[G]
6 enquanto Q \neq \emptyset
            u \leftarrow \text{EXTRACT-MIN}(Q)
            para cada v \in Adj[u]
 8
                   se v \in Q e w(u, v) < \text{key}[v]
 9
                         \pi[v] \leftarrow u
10
                       \text{key}[v] \leftarrow w(u, v)
11
```


Correção do algoritmo

Teorema (Invariantes)

Considere a execução no início do laço **enquanto** e defina $S = V \setminus Q$ e $A = \{(u, \pi[u]) : u \in S \setminus \{r\}\}$, então:

- 1. A contém arestas de uma árvore T com vértices S e raiz r.
- 2. Para cada $\mathbf{v} \in \mathbf{Q}$:
 - Se $\pi[v] \neq \text{NIL}$, então key[v] é o peso de uma aresta com menor peso ligando v a algum vértice de T.
 - Se $\pi[v] = NIL$, então não existe aresta ligando v a algum vértice de T.
- As invariantes implicam que no início da iteração do laço, $(\mathbf{u}, \pi[\mathbf{u}])$ é uma **ARESTA SEGURA**.
- Portanto, o algoritmo está correto.

Complexidade

A complexidade depende da fila de prioridade Q:

- ▶ Cada teste $v \in Q$ (linha 9) leva tempo constante (por quê?).
- Vamos contar quantas vezes executamos cada operação:
 - ▶ INSERT é executada |V| vezes (linhas 1–5).
 - EXTRACT-MIN é executada |V| vezes (linha 6).
 - ▶ DECREASE-KEY é executada até |E| vezes (linha 11).

Portanto, o TEMPO TOTAL de execução é:

 $O(V) \cdot \text{Insert} + O(V) \cdot \text{Extract-Min} + O(E) \cdot \text{Decrease-Key}.$

Complexidade usando min-heap

Se implementarmos Q como um min-heap, então:

- ▶ INSERT consome tempo $O(\log V)$.
- \triangleright EXTRACT-MIN consome tempo $O(\log V)$.
- ▶ DECREASE-KEY consome tempo $O(\log V)$.

Então, o tempo total será:

$$O(V \log V + V \log V + E \log V) = O(E \log V).$$

Observações:

- Podemos inicializar o min-heap em tempo O(V).
- ▶ Usamos V = O(E) pois sabemos que G é conexo.

Análise amortizada

Refletindo sobre como analisamos uma operação:

- Supomos que todas as chamadas levam o mesmo tempo.
- Consideramos SEMPRE o tempo de pior caso.
- Na prática, o tempo de uma chamada pode ser bem menor.

Custo amortizado:

- Considere uma estrutura de dados abstrata S.
- Suponha que podemos realizar uma operação p(S).
- Pode haver operações distintas (inserir, remover, etc.).
- Se executamos essas operações diversas vezes:
- Quanto tempo leva cada chamada em MÉDIA?

Análise amortizada

Ideia da análise amortizada:

- Suponha que na execução fazemos m chamadas a p(S).
- ▶ Que o **TEMPO TOTAL** das operações $p \in T(n)$.
- Então, o custo amortizado de $p \in T(n)/m$.

Exemplo:

- se T(n) = 4n e m = 2n, então o custo amortizado é 2.
- Isso NÃO significa que a operação leva tempo constante.
- Apenas que em média o tempo gasto por p é constante.

Revisitando a complexidade de Prim

Um **HEAP DE FIBONACCI** é uma estrutura de dados que:

- ightharpoonup É utilizada para guardar um conjunto de |V| elementos.
- Implementa as operações de fila de prioridade:
 - \triangleright EXTRACT-MIN tempo $O(\log V)$
 - ▶ DECREASE-KEY tempo amortizado O(1)
 - ▶ INSERT tempo amortizado O(1)
- Além de outras operações como UNION, etc.

Se usarmos um heap de Fibonacci para implementar Q:

- O tempo total melhora para $O(V + E + V \log V) = O(E + V \log V)$.
- Na prática, a implementação com min-heap é melhor.

O ALGORITMO DE KRUSKAL

Ideia

- ▶ O subgrafo $G_A = (V, A)$ é uma floresta.
- Consideramos cada uma das arestas em ordem de peso.
- Em cada iteração, adicionamos uma aresta (u,v) se ela ligar duas componentes distintas C, C' da floresta.
- Note que (u,v) é uma ARESTA LEVE de $\delta(C)$

Detalhe de implementação importante:

Como saber se (u,v) liga componentes distintas eficientemente?

Exemplo

O algoritmo

Algoritmo: AGM-Kruskal(G, w)

- $1 A \leftarrow \emptyset$
- 2 ordene as arestas em ordem não decrescente de peso
- 3 para cada $(u, v) \in E[G]$ na ordem obtida
- 4 | **se** u e v estão em componentes distintas de (V, A)

6 devolva A

Esta é uma versão preliminar do algoritmo:

- Falta detalhar a implementação da linha 4.
- Como fazer isso EFICIENTEMENTE?

Estrutura de dados

Como guardar a floresta sendo construída?

- Basta guardar o conjunto A das arestas.
- Assim, a floresta é $G_A = (V, A)$.

Como representar as componentes de G_A ?

- ▶ Durante o algoritmo, as componentes de G_A mudam e precisamos:.
 - **DETERMINAR** qual componente contém vértice **u**.
 - ► FAZER A UNIÃO das componentes que contêm u e v.

Qual estrutura realiza essas operações eficientemente?

Conjuntos disjuntos

Queremos uma estrutura de dados que:

- Mantenha uma coleção S_1, S_2, \dots, S_k de **CONJUNTOS DISJUNTOS**.
- Permita remover ou adicionar conjuntos à tal coleção.
- Identifique cada conjunto por um REPRESENTANTE:
 - O representante é um elemento do próprio conjunto.
 - A escolha do representante é irrelevante.
 - O representante de um conjunto não pode mudar.

Conjuntos disjuntos

A estrutura de dados deve permitir as seguintes operações:

- 1. Make-Set(x): cria um novo conjunto {x}.
- 2. UNION(x, y): une os conjuntos que contêm x e y.
 - Se esses conjuntos forem S_x e S_y ,
 - lacktriangle então adicionamos o conjunto $S_x \cup S_y$
 - ightharpoonup e descartamos S_x e S_y da coleção.
- 3. FIND-SET(x): devolve o representante do conjunto que contém x.

Exemplo de aplicação

Vamos determinar as componentes conexas de um grafo G

- Primeiro, vamos utilizar a estrutura de dados para conjuntos disjuntos para representar as componentes.
- Depois, vamos utilizar essa estrutura para determinar eficientemente se dois vértices estão na mesma componente.

Componentes conexas

Algoritmo: Connected-Components(G)

```
1 para cada u \in V[G]

2 \bigcup MAKE-SET(u)

3 para cada (u, v) \in E[G]

4 | se FIND-SET(u) \neqFIND-SET(v)

5 \bigcup UNION(u, v)
```

Algoritmo: Same-Component(u, v)

```
1 se FIND-SET(u)=FIND-SET(v)
2 \mid devolva TRUE
```

3 senão

4 devolva FALSE

Componentes conexas

A complexidade depende da implementação:

- $\triangleright |V|$ chamadas a MAKE-SET.
- \triangleright 2|E| chamadas a FIND-SET.
- Até |V| 1 chamadas a UNION.

O algoritmo de Kruskal

Agora escrevemos a versão completa do algoritmo de Kruskal:

Algoritmo: AGM-Kruskal(G, w)

```
1 A \leftarrow \emptyset
```

2 para cada $u \in V[G]$

```
3 | Make-Set(u)
```

4 ordene as arestas em ordem não decrescente de peso

5 para cada $(u, v) \in E[G]$ na ordem obtida

```
6 se FIND-SET(u)\neqFIND-SET(v)
```

7
$$A \leftarrow A \cup \{(u, v)\}$$

8 UNION (u, v)

9 devolva A

Complexidade do algoritmo

De novo, a complexidade depende da estrutura de dados:

- A ordenação toma tempo $O(E \log E)$.
- ightharpoonup |V| chamadas a MAKE-SET.
- \triangleright 2|*E*| chamadas a FIND-SET.
- |V|-1 chamadas a UNION.

Complexidade da operações realizadas

Sequência de chamadas MAKE-SET, UNION e FIND-SET:

- ▶ n chamadas a MAKE-SET.
- m chamadas no total.

Queremos medir a complexidade em termos de n e m.

Representação por listas ligadas

- Cada conjunto tem um representante (início da lista).
- Cada nó tem um campo que aponta para o representante.
- Guarda-se um apontador para o fim de cada lista.

Complexidade usando listas ligadas

- ► Make-Set(x) O(1).
- FIND-SET(x) O(1).
- ▶ UNION(x, y) O(n): Temos que concatenar a lista de y no final da lista de x e atualizar os apontadores para o representante.

Um exemplo de pior caso

Chamada a operação	Número de atualizações
Make-Set (x_1)	1
Make-Set (x_2)	1
: 1	
Make-Set (x_n)	1
Union (x_2, x_1)	1
Union (x_3, x_2)	2
Union (x_4, x_3)	3
·	:
	•
Union (x_n, x_{n-1})	n-1

- O número de chamadas a operações é 2n-1.
- O tempo total é $n + \sum_{i=1}^{n-1} i = \Theta(n^2)$.
- O custo amortizado por operação é $\frac{\Theta(n^2)}{2n-1} = \Theta(n)$.

Uma heurística simples

Entendendo o pior caso

- \triangleright Cada chamada a UNION gasta em média tempo $\Theta(n)$.
- Isso porque concatenamos a maior lista no final da menor.
- Para evitar isso, podemos concatenar a MENOR lista no final.
- Essa ideia é chamada de WEIGHTED-UNION HEURISTIC.

Implementação:

- Basta guardar o tamanho de cada lista.
- Pode ser que uma chamada a UNION leve tempo $\Theta(n)$.
- Mas isso não pode acontecer sempre.

Uma heurística simples

Teorema

Suponha que executamos uma sequência de m chamadas a Make-Set, Union e Find-Set. Se utilizarmos a representação por listas ligadas com a weighted-union heuristic, então o **TEMPO TOTAL** gasto será $O(m + n \log n)$.

Demonstração:

- ▶ O tempo total das chamadas MAKE-SET e FIND-SET é O(m).
- Ao atualizamos um nó, a lista que o continha pelo menos dobra.
- ► Mas uma lista só pode dobrar no máximo O(log n) vezes.
- Assim, cada nó só e atualizado $O(\log n)$ vezes.
- Portanto, o tempo total com chamadas a UNION é $O(n \log n)$.

Um exemplo de pior caso

O custo total de UNION nesse exemplo é $\Theta(n \log n)$:

- Há Θ(log n) níveis, cada um representando a coleção de conjuntos disjuntos em determinado instante.
- ► Entre um nível e o próximo, as listas em laranja são concatenadas às listas em azul da esquerda.
- Assim, em cada nível, n/2 apontadores são atualizados.

Complexidade do algoritmo de Kruskal

Relembrando, a complexidade de AGM-KRUSKAL é dada por:

- ▶ Ordenação, que toma tempo $O(E \log E)$.
- $\triangleright |V|$ chamadas a MAKE-SET.
- \triangleright 2|E| chamadas a FIND-SET.
- |V| 1 chamadas a UNION.

O tempo total utilizando a representação por listas ligadas é:

$$O(E \log E) + O(V + E + V \log V) = O(E \log E) = O(E \log V).$$

- O tempo é dominado pela ordenação das arestas.
- ▶ Se já estiverem ordenadas, então gastamos $O(E + V \log V)$.

Conjuntos disjuntos com florestas de conjuntos

Conjuntos disjuntos com florestas de conjuntos

Outra representação

Representar uma coleção por uma floresta:

- Cada conjunto corresponde a uma árvore enraizada.
- O representante de um conjunto é a raiz.
- ► Tal floresta é a chamada DISJOINT-SET FOREST.

Veremos duas implementações:

- 1. Uma simples:
 - Só altera a floresta durante UNION.
 - O tempo não melhor que listas (assintoticamente).
- 2. Uma mais elaborada:
 - Utiliza as heurísticas UNION BY RANK e PATH COMPRESSION
 - ► Também altera a floresta durante FIND-SET.
 - É a melhor implementação de conhecida.

Conjuntos disjuntos com florestas de conjuntos

Exemplo de grafo

Veja o grafo:

- Considere um conjunto para cada componente.
- Como representar os conjuntos com disjoint-set forest?

Exemplo de representação

Convenções:

- Cada conjunto é uma árvore enraizada.
- Cada elemento aponta para seu pai.
- A RAIZ aponta para si mesma.
- A RAIZ é o representante do conjunto.

Implementação simples

Algoritmo: Make-Set(x)

1 pai[x] $\leftarrow x$

Implementação simples

Algoritmo: FIND-SET(x)

- 1 se x = pai[x]
- 2 devolva x
- 3 senão
- 4 **devolva** FIND-SET(pai[x])

Implementação simples

Algoritmo: UNION(x, y)

- 1 $x' \leftarrow \text{FIND-Set}(x)$
- 2 $y' \leftarrow \text{FIND-SET}(y)$
- 3 $pai[y'] \leftarrow x'$

Complexidade da implementação simples

Tempo das operações:

- ► Make-Set(x) O(1).
- FIND-SET(x) O(n).
- ightharpoonup Union(x, y) O(n).

Não é melhor do que a representação por listas ligadas:

- Considere uma sequência de n-1 chamadas a UNION, que resulta em uma cadeia linear com n nós.
- Então, *n* chamadas a FIND-SET podem levar tempo total $\Theta(n^2)$.

Podemos melhorar isso usando duas heurísticas:

- union by rank.
- path compression.

Union by rank

Ideia emprestada da WEIGHTED-UNION HEURISTIC:

- ► Cada nó x está associado a um número rank[x]:
 - Pode ser a altura de x na árvore,
 - ou pode ser um número MENOR.
- A raiz com menor rank aponta para a raiz com maior rank.

Union by rank

Algoritmo: Make-Set(x)

```
1 pai[x] \leftarrow x
2 rank[x] \leftarrow 0
```

Algoritmo: Union(x, y)

1 LINK(FIND-SET(x), FIND-SET(y))

Algoritmo: LINK(x, y)

```
1 se rank[x] > rank[y]
    pai[y] \leftarrow x
3 senão
        pai[x] \leftarrow y
```

```
se rank[x] = rank[y]
5
                 \mathsf{rank}[y] \leftarrow \mathsf{rank}[y] + 1
6
```


Path compression

A ideia é muito simples: ao tentar determinar o representante (RAIZ da árvore) de um nó fazemos com que todos os nós no caminho apontem para a raiz.

Path compression

Algoritmo: FIND-SET(x)

- 1 se $x \neq pai[x]$
- pai[x] \leftarrow FIND-SET(pai[x])
- 3 **devolva** pai[x]

Análise das heurísticas

Analisando separadamente:

- Se utilizarmos somente UNION BY RANK:
 - Suponha que realizamos m chamadas no total.
 - ▶ O tempo total será $O(m \log n)$. Por quê?
- 2. Se utilizarmos apenas PATH COMPRESSION:
 - ightharpoonup Suponha que realizamos f chamadas a FIND-SET.
 - Mostra-se que o tempo total é $O(n + f \cdot (1 + \log_{2+f/n} n))$.

Combinando as duas duas heurísticas:

- ▶ Mostra-se que o tempo total é $O(m\alpha(n))$.
- Onde, $\alpha(n)$ é uma função que cresce **MUITO** MUITO lentamente.

Complexidade com as duas heurísticas

Teorema (Tarjan)

Uma sequência de m operações Make-Set, Union e Find-Set pode ser executada com **DISJOINT-SET FOREST** com union by rank e path compression em tempo $O(m\alpha(n))$ no pior caso.

Não vamos demonstrar este teorema:

- Ele implica que o custo amortizado por chamada é $\alpha(n)$.
- ▶ O valor de $\alpha(n)$ cresce arbitrariamente com n.
- Contudo, o crescimento é num ritmo realmente devagar.
- Uma demonstração está em CLRS.

Estimando o tempo amortizado

Quão pequeno é o custo de cada operação?

$$lpha(n) = \left\{ egin{array}{ll} 0 & \mathsf{para} \ 0 \leq n \leq 2, \\ 1 & \mathsf{para} \ n = 3, \\ 2 & \mathsf{para} \ 4 \leq n \leq 7, \\ 3 & \mathsf{para} \ 8 \leq n \leq 2047, \\ 4 & \mathsf{para} \ 2048 \leq n \leq 16^{512} \end{array}
ight.$$

- ▶ Observe que 16⁵¹² é muito muito maior que 10⁸⁰, o número estimado de átomos do universo!
- Isso significa que na prática o custo amortizado de cada chamada é limitado pela CONSTANTE, digamos 4.
- Vamos utilizar essa estrutura no algoritmo de Kruskal.

O algoritmo de Kruskal (de novo)

Complexidade:

- ▶ Ordenação das arestas: tempo O(E log E).
- ► O(E) chamadas a MAKE-SET, FIND-SET e UNION: **tempo** $O(E\alpha(V))$.
- O tempo total é dominado pelo tempo de ordenação.
- Contudo, as demais operações têm tempo praticamente linear!

Algoritmos para árvore geradora mínima

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

