

Data Driven Engineering I: Machine Learning for Dynamical Systems

Analysis of Dynamical Datasets I: Time Series

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Dynamical Datasets I: Time Series

- * Time Series : Overview
- * Statistical Models for time series
- \star State space models ⇒ DDE I
- Machine Learning Part I
- * Machine Learning Part II

Analysis Forecasting

- D identify patterns
- 4
- □ Modelling_

Relatively new field:

- ☐ Forecasting ~old as humankind
- ☐ Autoregressive model ~ 1920s
- ☐ Box Jerkins Model ~ 1970

"All models are wrong, but some are useful." G. Box

* Components of time series

- i) Long term trends
- ii) ST Seasonal variations
- in Cyclic variations
- iv) Randon fluctuations

- * horizon of your model (short term vs. long term)
- * level of granularity you need (Dt;)

Before we begin:

* SIPPRAG Window

time	Load] "(
0	321	5 A.
1	316]
2	314	J
3	318	
	•	

Before we begin:

Before we begin:

- * Single multistep forecasting
- 1) Direct multi-step: $\frac{M-1}{2}$ $\frac{M-2}{4}$ $\frac{M-3}{4}$ $\frac{M-4}{4}$ $\frac{M-N}{4}$ $\frac{M-N}$
- 2 Recursive multi-step: 1 2 3 4 5 1... N 1 model

 1→2, :2→3, :3→4,...:N-1→N

 1→2, 2→3, 3→4,... N-1→N
- 3 Multiple output: [mistory] [future]

Work flow template:

- Understand the problem/business
- 2) Data exploration
- 3) Deta preprocessing // feature eng.
- 4) Short list the models / algorithms
- 5) Train your model 6) Evaluation phase

10

- * 8 years data of Temp & Load (Dt=hr)
- ? Power Demand foreeasting

Short Term Long Term

Case: Energy Demand Forecasting

* Short term load forecasting

: ~ 1 hr to 24 hr ~demand/supply

e near past is used

Feature is an important feature

Long term LF: ~ I week to months } Planning & ~ years } investment

Seasonal patterns

Climate Models

Case: Energy Demand Forecasting

Typial	STLF	LTLF
Horizon	1hr-2 days	> 1 months
Granularity	~hr	~hr—day
History Range	~2 years	~>,5 years
Accuracy	€5% ernor	< 25% esnor
Forecasting freq.	-hr to day	> month

Data Exploration: What we already know

Basic statistics (mean, median, STD...)

Plots => 1D: Temporal data

>> 20: Scatter plots

Histograms

Box plots, violin plots

Correlation matrix

time: 314 ms (started: 2020-12-29 18:29:17 +00:00)

Data Exploration: Temporal Nature of data

1) How to handle "time stamps,

	Date	Hour	load	T
0	01/01/2004	1	NaN	37.33
1	01/01/2004	2	NaN	37.67
2	01/01/2004	3	NaN	37.00
3	01/01/2004	4	NaN	36.33
4	01/01/2004	5	NaN	36.00

	load	T
2012-01-05 00:00:00	3167.0	19.00
2012-01-05 01:00:00	3014.0	22.33
2012-01-05 02:00:00	2921.0	22.33
2012-01-05 03:00:00	2874.0	22.00
2012-01-05 04:00:00	2876.0	21.67

colab

Data Exploration: Temporal Nature of data

2 Temporal data decomposition Trend
Stationarity
Stationarity
Noise
Now stable your system of Intuition

Tests

Institute of Thermal Turbomachinery (ITS)

the past reflects itself on future &

how much we should expect

colab

Data Exploration: Temporal Nature of data

3 Feature Eng. for Time Series

Date/time information

Karlsruhe Institute of Technology

Data Exploration: Temporal Nature of data

- 3 Feature Eng. for Time Series
 - □ Date/time information
 - Window functions

colab

Data Exploration: Temporal Nature of data

- (9) Self/Auto Correlations in temporal data
 - □ Autocorrelation function (acf)
 - D Partial ACF (pacf)

How data points are linearly related as a function of time difference.

22

Karlsruhe Institute of Technology

Data Exploration: Temporal Nature of data

* ACF = 1 @ lag =
$$\emptyset$$
 [self correlated]

Data Exploration: Temporal Nature of data

- * PACF -> which time lag is informative,

 ~ filters periodic behavior
- * pACF -> de termine the "order, of a model

Spurious Correlations

colab

Overview of Statistical Models

AR Model: Auto Regressive

$$y_t = a_0 + a_1 y_{t-1} + Err$$
 history:= 1 lag

Order
$$(p) := history info; p=2$$

$$yt = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + Err$$

$$\text{Order} \leftarrow \text{"pacf}_{n}$$

Overview of Statistical Models

AR-I-MA: AR - Integrated-MA

MA: Moving Average

* add differencing => Remove trends

"baseline correction,

*
$$y_t = a_0 + E_t + a_1 E_{t-1} + a_2 E_{t-2} + \dots + a_q E_{t-q}$$

Errors dissipate in the $q \leftarrow order$

ARIMA = $f(\rho, d, q)$ $\begin{cases} (0,0,0) \rightarrow \text{ white noise} \\ (0,1,0) \rightarrow \text{ random walk} \\ (0,1,1) \rightarrow \exp \text{ smoothing} \end{cases}$

$$\bullet$$
 $q \leftarrow ACF$

★ 9 ← ACF

u stop error propagation sharply n

* SARIMA:= Seusonal ARIMA

D Adjacent points in time can have influence on one another

Model Training

colab

how can we use ML algorithms?

how can we use ML algorithms?

$$y = \begin{pmatrix}
101 \\
14 \\
46 \\
84 \\
72 \\
13
\end{pmatrix}

-
9

NAN

101

NAN

NAN

101

NAN

101

VE any

regression product of the product of$$

Model Selection: SVM for Regression

- * Fit as many instance as possible
- * "Street " width is controlled by margin E.
- * Convex optimization problem;
 - \square C

 - 1 Kernel

colab

Additional Notes

