

also
$T(0) = \frac{m}{\sum_{i=1}^{m} (h_0(x^i) - y^{(i)})^2}$
ni: the Input variable ith training Example
m: no of training samples
m: no of training samples gi: expected result of its instance.
cost punction in vector form-
ho(xo) yo]
ho(x') - y'
ho (xm ym)
V = (X - G X) X + (X - G X) = 0
$= \theta^{\dagger}(\chi^{0})$
0 (x1) - y
(9 ⁷ (xm))
Live know
$\theta^{T}(x^{i0}) = \theta_{0}(x_{0}^{i}) + \theta_{1}(x_{i}^{i}) + \cdots + \theta_{n}(x_{n}^{i})$
= [00(x00)+01(x10)+ an(x00)
00(x0')+01(x1')+0n(xn')
$\Theta_0(x_0^m) + \Theta_1(x_1^m) + \cdots + \Theta_n(x_n^m)$
43
ny of the feature in ith training sample
My NoteBook

	we can write computed matrix as
	$(\chi \rho - \gamma)$
	2 10 1 1 1 1
	Hence cost = $(xo-y)^T (xo-y) = J$
	animal paint to an in
1	motive is to minimize cost
	$\partial J = \frac{\partial}{\partial x} \left[(xo - y)^T (xo - y) \right]$
	90 90
	= 0 18 the variable
	Applying product voriable with
	we got
	m_{τ}
	$\frac{\partial J}{\partial x} = \chi^{T} (\chi \theta - y) + \chi (\chi \theta - y)^{T}$
	00
4	$\overline{\partial J} = \chi^{\dagger} \chi \varphi - \chi^{\dagger} \gamma + \chi \chi^{\dagger} \varphi - \chi \gamma^{\dagger}$
	9 0
=	$\partial J = 2x^{T}x \partial - 2x^{T}y (xx^{T} = x^{T}x)$
	00 as Xis square
	matrix)
	$for \partial J = 0 \Rightarrow 2x^{T}x\theta - 2x^{T}y = 0$
2	80 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$(x^{T}x)\theta = (x^{T}y)$
	Pre pultiply (x x x) -1 on both side
	we get
	$(X^TX)^{-1}(X^TX)o = (X^TX)^{-1}(X^TY)$
ITA I	Hence, $\theta = (X^TX) \cdot (X^TY)$