BIOS621 / 821 Session 5

Levi Waldron

loglinear regression part 2

Welcome and outline - session 5

- Review of log-linear Poisson glm
- Review of diagnostics and interpretation of coefficients
- Over-dispersed models:
 - negative binomial distribution
- Zero-inflated models
- ▶ Vittinghoff section 8.1-8.3

Components of GLM

- ▶ Random component specifies the conditional distribution for the response variable - it doesn't have to be normal but can be any distribution that belongs to the "exponential" family of distributions
- Systematic component specifies linear function of predictors (linear predictor)
- ▶ Link [denoted by g(.)] specifies the relationship between the expected value of the random component and the systematic component, can be linear or nonlinear

Motivating example: Choice of Distribution

- ► Count data are often modeled as Poisson distributed:
 - \blacktriangleright mean λ is greater than 0
 - ightharpoonup variance is also λ
 - Probability density $P(k,\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$

Poisson model: the GLM

The **systematic part** of the GLM is:

$$log(\lambda_i) = \beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i$$

Or alternatively:

$$\lambda_{i} = exp \left(\beta_{0} + \beta_{1} RACE_{i} + \beta_{2} TRT_{i} + \beta_{3} ALCH_{i} + \beta_{4} DRUG_{i}\right)$$

The **random part** is (Recall the λ_i is both the mean and variance of a Poisson distribution):

$$y_i \sim Poisson(\lambda_i)$$

Example: Risky Drug Use Behavior

- Download the "needle_sharing" dataset in csv format
- Outcome is # times the drug user shared a syringe in the past month (shared_syr)
- Predictors: sex, ethn, homeless

```
needledat = read.csv("needle_sharing.csv")
needledat2 <- needledat[needledat$sex %in% c("M", "F") &
    needledat$ethn %in% c("White", "AA", "Hispanic"), ]
summary(needledat2$shared_syr)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 3.068 0.000 60.000 4
```

```
var(needledat2$shared_syr, na.rm=TRUE)
```

```
## [1] 111.5815
```

Example: Risky Drug Use Behavior

- ▶ There are a *lot* of zeros and variance is much greater than mean
 - Poisson model is probably not a good fit

Risky Drug Use Behavior: fitting a Poisson model

Risky Drug Use Behavior: residuals plots

^{*} Poisson model is definitely not a good fit.

When the Poisson model doesn't fit

- inference from log-linear models is sensitive to assumptions on the distribution of residuals (e.g. Poisson)
- ▶ In the Poisson distribution, the variance is equal to the mean.
- ▶ i.e. if subjects with a particular pattern of covariates have a mean of 4 visits/yr, then variance is also 4 and the standard deviation is 2 visits / yr.
- ► The Poisson distribution often fails when the variance exceeds the mean
 - You can check this assumption
- Can use alternative random distributions:
 - Negative binomial distribution
- Can introduce zero-inflation

Negative binomial distribution

- ▶ The binomial distribution is the number of successes in n trials:
 - ▶ Roll a die ten times, how many times do you see a 6?
- ► The negative binomial distribution is the number of successes it takes to observe r failures:
 - ► How many times do you have to roll the die to see a 6 ten times?
 - Note that the number of rolls is no longer fixed.
 - ► In this example, p=5/6 and a 6 is a "failure"

Negative binomial GLM

One way to parametrize a NB model is with a **systematic part** equivalent to the Poisson model:

$$log(\lambda_i) = \beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i$$

Or:

$$\lambda_{i} = exp \left(\beta_{0} + \beta_{1} RACE_{i} + \beta_{2} TRT_{i} + \beta_{3} ALCH_{i} + \beta_{4} DRUG_{i}\right)$$

And a random part:

$$y_i \sim NB(\lambda_i, \theta)$$

- \triangleright θ is a **dispersion parameter** that is estimated
- ▶ When $\theta = 0$ it is equivalent to Poisson model
- ► MASS::glm.nb() uses this parametrization, dnbinom() does not
- The Poisson model can be considered nested within the Negative Binomial model

Negative Binomial Random Distribution

Compare Poisson vs. Negative Binomial

Negative Binomial Distribution has two parameters: # of trials n, and probability of success $\ensuremath{\mathsf{p}}$

Risky drug behavior: Negative Binomial Regression

```
library(MASS)
fit.negbin <- glm.nb(shared syr ~ sex + ethn + homeless.
                   data=needledat2)
summarv(fit.negbin)
##
## Call:
## glm.nb(formula = shared syr ~ sex + ethn + homeless, data = needledat2.
      init.theta = 0.07743871374, link = log)
##
## Deviance Residuals:
##
      Min
               10 Median
                                30
                                        Max
## -0.8801 -0.7787 -0.6895 -0.5748 1.5675
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.4641
                         0.8559 0.542 0.5876
              -1.0148 0.8294 -1.224 0.2211
## sexM
## ethnHispanic 1.3424 1.3201 1.017 0.3092
## ethnWhite 0.2429 0.7765 0.313 0.7544
## homelessves 1.6445 0.7073 2.325
                                           0.0201 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.0774) family taken to be 1)
##
      Null deviance: 62.365 on 114 degrees of freedom
## Residual deviance: 56.232 on 110 degrees of freedom
    (6 observations deleted due to missingness)
## ATC: 306.26
##
## Number of Fisher Scoring iterations: 1
##
##
```

Likelihood ratio test

Recall from class 2 the Deviance:

$$\Delta(D) = -2 * \Delta(\log likelihood)$$

'log Lik.' 1.675949e-255 (df=6)

And recall the difference in deviance under H_0 (no improvement in fit) is *chi-square distributed*, with df equal to the difference in df of the two models:

```
(ll.negbin <- logLik(fit.negbin))

## 'log Lik.' -147.1277 (df=6)

(ll.pois <- logLik(fit.pois))

## 'log Lik.' -730.0133 (df=5)

pchisq(2 * (ll.negbin - ll.pois), df=1, lower.tail=FALSE)</pre>
```

Risky Drug Use Behavior: NB regression residuals plots

Zero Inflation

- ► Two-step model:
 - 1. logistic model to determine whether count is zero or Poisson/NB
 - 2. Poisson or NB regression distribution for y_i not set to zero by 1.

Poisson Distribution with Zero Inflation

Risky drug behavior: Zero-inflated Poisson regression

Zero-inflated Poisson regression - the model

summarv(fit.ZIpois)

```
##
## Call:
## zeroinfl(formula = shared_syr ~ sex + ethn + homeless, data = needledat2,
      dist = "poisson")
##
## Pearson residuals:
      Min
             10 Median
                            30
                                  Max
## -1.0761 -0.5784 -0.4030 -0.3341 10.6835
##
## Count model coefficients (poisson with log link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.2169 0.1796 17.909 < 2e-16 ***
## sexM
             -1.4725 0.1442 -10.212 < 2e-16 ***
## ethnHispanic -0.1525 0.1576 -0.968 0.333223
## ethnWhite -0.5236 0.1464 -3.577 0.000347 ***
## homelessyes 1.2034 0.1455 8.268 < 2e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.06262 0.65227 3.162 0.00157 **
## sexM
              -0.05067 0.58252 -0.087 0.93068
## ethnWhite
             -0.50187 0.56919 -0.882 0.37792
## homelessves -0.53013 0.48108 -1.102 0.27048
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 18
## Log-likelihood: -299.8 on 10 Df
```

Risky drug behavior: Zero-inflated Negative Binomial regression

- NOTE: zero-inflation model can include any of your variables as predictors
- WARNING Default in zerinf1() function is to use all variables as predictors in logistic model

Zero-inflated Negative Binomial regression - model 1

summary(fit.ZInegbin)

```
##
## Call:
## zeroinfl(formula = shared_syr ~ sex + ethn + homeless, data = needledat2.
      dist = "negbin")
##
## Pearson residuals:
      Min
              10 Median
                                   Max
## -0.5401 -0.3255 -0.2715 -0.1926 5.1489
##
## Count model coefficients (negbin with log link):
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 2.8401
                         1 1845 2 398 0 01649 *
## sexM
              -2.2278 0.9350 -2.382 0.01720 *
## ethnHispanic -0.4116 0.9832 -0.419 0.67545
## ethnWhite -0.4294 0.8647 -0.497 0.61949
## homelessves 1.9461 0.7103 2.740 0.00615 **
## Log(theta) -1.1972 0.5159 -2.320 0.02032 *
##
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 1.6863
                       0.8466 1.992
                                          0.0464 *
## sexM
              -0.9919 0.8016 -1.237 0.2159
## ethnHispanic -11.3556 112.8675 -0.101 0.9199
## ethnWhite -0.7452 0.7304 -1.020 0.3076
## homelessves 0.3555 0.7397 0.481
                                          0.6308
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.302
## Number of iterations in BFGS optimization: 37
## Log-likelihood: -142.8 on 11 Df
```

Zero-inflated Negative Binomial regression - simplified ZI model

- Model is much more interpretable if the exposure of interest is not included in the zero-inflation model.
- ► E.g. with HIV status as the only predictor in zero-inflation model:

Zero-inflated Negative Binomial regression - model 2

summary(fit.ZInb2)

```
##
## Call:
## zeroinfl(formula = shared syr ~ sex + ethn + homeless + hiv | hiv,
      data = needledat2, dist = "negbin")
##
## Pearson residuals:
      Min
              10 Median
                                    Max
## -0 4419 -0 3295 -0 3206 -0 3015 6 0894
##
## Count model coefficients (negbin with log link):
##
               Estimate Std. Error z value Pr(>|z|)
                          1.2267 3.059 0.00222 **
## (Intercept) 3.7521
## sexM
              -1.8727 0.7635 -2.453 0.01418 *
## ethnHispanic -1.2466 0.9693 -1.286 0.19841
## ethnWhite -1.2869 0.8436 -1.526 0.12712
## homelessyes 0.9184 0.6822 1.346 0.17827
## hivpositive 1.7342 0.8175 2.121 0.03388 *
## Log(theta) -0.4561 0.5337 -0.854 0.39287
##
## Zero-inflation model coefficients (binomial with logit link):
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.0418
                         0.3515
                                  2.964 0.00304 **
## hivpositive -0.7252 0.7342 -0.988 0.32327
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.6338
## Number of iterations in BFGS optimization: 65
## Log-likelihood: -127.9 on 9 Df
```

Intercept-only zero-inflation model

```
##
## Call:
## zeroinfl(formula = shared syr ~ sex + ethn + homeless | 1, data = needledat2,
##
      dist = "negbin")
##
## Pearson residuals:
      Min
              1Q Median
                                    Max
## -0.3159 -0.3123 -0.3040 -0.2953 5.2941
##
## Count model coefficients (negbin with log link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.08551 1.42665 1.462 0.1438
## sexM
              -1.43812 0.89188 -1.612 0.1069
## ethnHispanic 0.48126 1.16639 0.413 0.6799
## ethnWhite -0.07421 0.81066 -0.092 0.9271
## homelessyes 1.62076 0.67705 2.394 0.0167 *
## Log(theta) -1.12533 0.89365 -1.259 0.2079
##
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.5211
                          0.7599 0.686
                                          0.493
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.3245
## Number of iterations in BFGS optimization: 37
## Log-likelihood: -146.8 on 7 Df
```

Residuals vs. fitted values

I invisibly define functions plotpanel1 and plotpanel2 that will work for all types of models (see .R or .Rmd file for functions). These use Pearson residuals.

Quantile-quantile plots for residuals

still over-dispersed - ideas?

Inference from the different models

Table 1:

	Dependent variable:				
	shared_syr				
	Poisson	negative binomial		zero-inflated count data	
	(1)	(2)	(3)	(4)	(5)
sexM	-0.925*** (0.121)	-1.015 (0.829)	-1.473*** (0.144)	-2.228** (0.935)	-1.438 (0.892)
ethnHispanic	1.465*** (0.160)	1.342 (1.320)	-0.152 (0.158)	-0.412 (0.983)	0.481 (1.166)
ethnWhite	0.061 (0.133)	0.243 (0.776)	-0.524*** (0.146)	-0.429 (0.865)	-0.074 (0.811)
homelessyes	1.285*** (0.127)	1.644** (0.707)	1.203*** (0.146)	1.946*** (0.710)	1.621** (0.677)
Constant	0.723*** (0.145)	0.464 (0.856)	3.217*** (0.180)	2.840** (1.184)	2.086 (1.427)
Observations Log Likelihood θ	115 -730.013	115 -148.128 0.077*** (0.018)	115 -299.790	115 -142.750	115 -146.768
Akaike Inf. Crit.	1,470.027	306.255			

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Example of plotting observed and predicted counts

Lab exercises

- ► Perform chi-square nested deviance tests for zero-inflated models
- ► Try fitting the needle dataset using a zero-inflated gamma count distribution

Resources for R and SAS

- ► Short, practical tutrorials on regression in R and SAS from UCLA at http://www.ats.ucla.edu/stat/:
 - Poisson Regression: http://www.ats.ucla.edu/stat/r/dae/poissonreg.htm
 - Negative Binomial: http://www.ats.ucla.edu/stat/r/dae/nbreg.htm
 - Zero-inflated Poisson: http://www.ats.ucla.edu/stat/r/dae/zipoisson.htm
 - Zero-inflated Negative Binomial: http://www.ats.ucla.edu/stat/r/dae/zinbreg.htm