МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт Лабораторная работа 1.2.5

Исследование прецессии уравновешенного гироскопа

Третьяков Александр Б02-206

1 Введение

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии

Оборудование: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

2 Теоретические сведения

В данной работе исследуется регулярная прецессия уравновешенного гироскопа.// В первой части работы исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Для этого к оси гироскопа (к рычагу С) подвешиваются грузы Γ . Скорость прецессии определяется по числу оборотов рычага вокруг вертикальной оси и времени, которое на это ушло, определяемому секундомером. В процессе измерений рычаг не только поворачивается в результате прецессии гироскопа, но и опускается. Поэтому его в начале опыта следует преподнять на $5-6^{\circ}$. Опыт нужно закончить, когда рычаг опустится на такой же угол.

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора. Расчет производится по формуле:

$$\Omega = \frac{mgl}{I_z \omega_0},$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа (рис. 3), I_z — момент инерции гироскопа по его главной оси вращения. ω_0 — частота его вращения относительно главной оси, Ω — частота прецессии.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на десткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}.$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого легко можно вычислить момент инерции $I_{\rm q}$. Для определения момента инерции ротора гироскопа имеем:

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2},$$

Здесь $T_{\rm u}$ – период крутильных колебаний цилиндра.

Рис. 3. Схема экспериментальной установки

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет две обмотки, необходимые для быстрой раскрутки гироскопа. В данной работе одну обмотку искользубт для раскрутки гироскопа, а вторую — для измерения числа оборотов ротора. Ротор электромотора всегда немного намагничен. Вращаясь, он наводит во второй обмотке переменную электродвижущую силу(ЭДС) индукции, частота которой равна частоте врещения ротора. Частоту этой ЭДС можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой — переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на эеране получаем эллипс.

3 Ход работы

Измеряем вместе с напарником период колебаний цилиндра ($m=1617.0~\mathrm{r},~2R=78.1~\mathrm{mm}$) с помощью ручного секундомера по три замера каждый для 5 колебаний, аналогично для ротора; плечо l=122:

N	T_{5 цил	$T_{5 ext{potop}}$	$T_{\text{цил}}$	$T_{\rm potop}$		
5	21.04	16.00				
5	20.63	15.88				
5	20.42	16.07	4.1	3,22		
5	20.70	16.56	4,1			
5	20.46	16.02				
5	20.35	16.10				

Высчитаем $I_{\rm r} = I_{\rm цил} \frac{T_{\rm potop}^2}{T_{\rm цил}^2} \approx 7.7 \cdot 10^{-4} \ {\rm kr} \cdot {\rm m}^2$. Рассмотрим погрешности, которые есть в $I_{\rm r}$:

$$\sigma^{\text{случ}}_{T_{\text{ротор}}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (T_{\text{ротор}\ i} - \overline{T_{\text{ротор}}})^2} \approx 0.1c$$

$$\sigma^{\text{сист}}_{T_{\text{ротор}}} = 0.2c$$

$$\sigma^{2\text{ полн}}_{T_{\text{цил}}} = \sqrt{\sigma^{2\text{ сист}}_{T_{\text{ротор}}} + \sigma^{2\text{ случ}}_{T_{\textцил}}} = \sqrt{0.2^2 + 0.1^2} \approx 0.22$$

$$\varepsilon_{T_{\rm potop}}\approx 1{,}12\%$$

$$\varepsilon_{T_{\rm potop}^2}\approx 2*1{,}12\%=2{,}24\%$$

$$\varepsilon_{m$$
ц} $\ll 0.1\%$

$$\varepsilon_{R^2} \approx 2 * 0.64\% = 1.28\%$$

Видно, что погрешность массы цилиндра можно не учитывать при расчетах, потому что она очень мала по сравнению с погрешностью измерения времени по секундомеру вручную и диаметра

$$\varepsilon_{I_{\rm r}} = \sqrt{(\varepsilon_{T_{\rm potop}}^2)^2 + (\varepsilon_{T_{\rm цилиндр}}^2)^2 + (\varepsilon_{R^2})^2} \approx 3{,}29\%$$

Отсюда можем сделать вывод, что важно как можно точнее измерять период у ротора и цилиндра, чтобы уменьшить погрешность.

Теперь посчитаем коэффициент установки k:

$$k = \frac{gl}{2\pi I_{\scriptscriptstyle \Gamma}} \approx 252$$

Рассмотрим погрешности, которые есть в k:

$$\varepsilon_l = \frac{0.5_{\rm MM}}{122_{\rm MM}} * 100\% \approx 0.41\%$$

$$\varepsilon_{I_{\rm r}} \approx 3.29\%$$

Видим, что значительно больший вклад вносит погрешность момента инерции

$$\varepsilon_k = \sqrt{(\varepsilon_l)^2 + (\varepsilon_{I_{\rm r}})^2} \approx 3.32\%$$

\overline{m}	T_{cp}	ω_{fixed}	ν_{fixed}	ν_{osc}	δ	δ_{fake}	ω	$\nu 4$	k	$\varepsilon_{ u}$	$\sigma_{ u}$
141,2	69,7	2480,093	394,7191	391	3,719105	0,951178	2561,1	407,6	252	3,34	13,2
112	89,51	2526,33	402,0779	391	11,07795	2,833234	2612,6	415,8	252	3,4	13,7
267	37,93	2552,082	406,1765	392	14,17648	3,61645	2639,4	421,1	252	3,43	13,9
93	107,58	2521,245	401,2686	391	10,26859	2,626237	2607,3	415	252	3,34	13,4
215	46,1	2497,698	397,521	390	7,520983	1,928457	2583,7	411,21	252	3,38	17,4

Поэтому нужно уменьшать погрешность периода.

Теперь, зная коэффициент установки, будем вешать грузы массы m и измерять период с помощью секундомера

Столбец ω_{fixed} - после исправления ошибки в измерениях коэффициента установки k (столбец ω - до исправления) Теперь посчитаем погрешность омеги $\omega_{fixed} = kmT$ в эксперименте. Погрешность массы грузов не будем учитывать, потому что она очень мала по сравнению с погрешностью коэффициента установки.

$$\sigma_{T_{\rm cp}}^{\rm chct} = 0.2c$$

$$\sigma_{T}^{\rm chyq} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (T_i - \overline{T})^2} \approx 0.2c$$

$$\sigma_{T}^{\rm hohh} = \sqrt{\sigma_{T}^{2\,{\rm chct}} + \sigma_{T}^{2\,{\rm chyq}}} = \sqrt{0.2^2 + 0.2^2} \approx 0.28c$$

$$\varepsilon_{T_{\rm cp}} = 0.4\%$$

$$\varepsilon_{\omega_{\rm fixed 1}} = \sqrt{(\varepsilon_{T_{cp}})^2 + (\varepsilon_k)^2} \approx 3.34\% = \varepsilon_{\nu_{\rm fixed 1}}$$

Относительные погрешности совпадают, потому что $\omega=2\pi\nu$

$$\sigma_{\nu \text{fixed 1}} = \varepsilon_{\nu \text{fixed 1}} * \nu_{\text{fixed 1}} = 394.7 \cdot 3.3/100 = 13 \ \Gamma_{\text{II}}$$

Можем заметить, что здесь измерения периода вносят в погрешность меньше, чем k, потому что измеряемые промежутки времени больше, чем при измерении цилиндра. Посчитаем погрешности и внесем их в таблицу.

В целом все погрешности примерно равны 3,4%, поэтому можем сказать, что мы в итоге получили $\nu=400,35\pm13,62$ Γ ц $(\varepsilon_{\nu}=3,4\%)$, это попадает в значение $\nu_{\rm осц}=391$ Γ ц, полученное с помощью осциллографа

4 Оценка момента силы трения

Оценим момент силы трения, действующей на ось гироскопа

$$T = \frac{360^{\circ}}{\Delta \alpha} t = \frac{360}{15} 240c \approx 5760c$$

По полученным данным мы можем оценить момент силы трения, действующей на ось гироскопа по следующей формуле:

Оценить момент силы трения мы можем по формуле: $M = \frac{2\pi}{T} I_r \omega$, а $\sigma_M = M \cdot \sqrt{\varepsilon_M^2 + \varepsilon_k^2}$. Для каждой массы момент силы трения будет свой, но мы оценили только для одной массы:

•
$$m = 215 \text{ r}, \ \omega = 2498 \text{ c}^{-1}, \ M = (2.10 \pm 0.02) \cdot 10^{-3} \text{ H} \cdot \text{m}$$

Видим, что он оказывается достаточно мал по сравнению с моментом силы тяжести груза, подвешенного на ось гироскопа, но его хватает для поворота гироскопа

5 Обсуждение результатов и выводы

В ходе работы мы определили частоту вращения ротора гироскопа:

• $\nu = (400,35 \pm 13,62) \ \Gamma \Pi, (\varepsilon = 3,4\%)$

Если учесть погрешность, то частота совпадет со значением частоты, которую получили с помощью осциллографа ($\nu_{\rm ocq}=391~\Gamma_{\rm II}$)

Уменьшить погрешность частоты можно, если точнее измерить период колебаний цилиндра и ротора, потому что они дают самую большую погрешность в коэффициент установки, который потом влияет на все дальнейшие расчеты.

Еще мы оценили момент силы трения, действующий на ось гироскопа $M=(2,10\pm0,02)\cdot10^{-3}H.$ Он получился мал, если сравнивать с моментом силы тяжести груза, но его все равно хватает для поворота гироскопа в сторону направления силы тяжести груза. Чтобы оценить его точнее, нужна хорошая шкала определения отклонения угла, но у нас такой не было, пришлось определять отклонение на глаз и линейку.