An introduction to RL and deep RL (2)

BABAK BADNAVA MULTI-AGENT SYSTEMS LAB, IUST

This slide is mainly taken from silver's slides

Deep neural networks for supervised tasks

- Data: sample, label
- Using deep neural networks: $x \xrightarrow{w_1} h_1 \xrightarrow{w_2} ... \xrightarrow{w_n} h_n \xrightarrow{w_{n+1}} y$
- h_i could be any kind of function
- We have:
 - A sample (x)
 - Its label (y^*)
 - Network's prediction (y)

Deep neural networks for supervised tasks (2)

- Define a loss function: $x \xrightarrow{w_1} h_1 \xrightarrow{w_2} \dots \xrightarrow{w_n} h_n \xrightarrow{w_{n+1}} y \longrightarrow I(y)$
- Loss function could be:
 - Mean-squared error: $l(y) = ||y^* y||^2$
 - Log likelihood: $l(y) = \log P[y^*|x]$
 - •
- Minimize loss
- Using different optimization algorithms

Overview of approximation methods

- Value estimation
 - Use a neural network to approximate value function
 - Define a policy function on top of it
- Policy gradient
 - Use a neural network to approximate policy function directly

Let's apply it to SARSA

Action value function:

•
$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s, A_t = a]$$

- Represent it by Q-network with weights w
 - $Q_{\pi}(s,a) \approx Q(s,a,w)$
- Define loss function:

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma Q(s', a', w)}_{\mathsf{target}} - Q(s, a, w)\right)^{2}\right]$$

How about Q-learning?

Loss function:

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma \max_{a'} Q(s', a', w)}_{\mathsf{target}} - Q(s, a, w)\right)^2\right]$$

• Optimize this using SGD, using $\frac{\partial L(w)}{\partial w}$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

Summary

Use this network to estimate value function instead of a Q-table

- Nothing else have been changed
- Does it work well?

Compare

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
```

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

$$S \leftarrow S'; A \leftarrow A';$$

until S is terminal

Compare (2)

- Initialize weights
- Loop for each episode:
 - Initialize s
 - Choose a from s using policy derived from Q(s, a, w)
 - Loop for each step of episode:
 - Take action a, observe r, s'
 - Choose a' from s' using policy derived from Q(s', a', w)
 - Compute gradient of loss and update the network
 - s <- s'; a <- a'
 - Until s is terminal

Does it work well?

- Oscillates or diverges
- Why?
 - Data is sequential
 - Successive samples are correlated
 - Policy changes rapidly with slight change to Q-values
 - Distribution of data will change
 - Scale of rewards and Q-values is unknown

What to do?

- Use experience reply
 - Break correlation between data
- Freeze target Q-network
 - Avoid oscillations
- Clip rewards or normalize network adaptively

Stable Deep RL: experience replay

- To remove correlations, build data-set from agent's own experience
- Take action a_t according to epsilon-greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory
- Sample random mini-batch of transitions (s, a, r, s') from repay memory
- Optimise MSE

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right)^2 \right]$$

Stable Deep RL: fixed target Q-network

- Use target Q-network with fixed parameter
- Choose action based on the target Q-network
- Compute Q-learning target w.r.t old, fixed parameter
- Optimize MSE
- Periodically update fixed parameters $w^- \leftarrow w$

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}}\left[\left(r + \gamma \max_{a'} Q(s',a',w^-) - Q(s,a,w)\right)^2\right]$$

DQN architecture in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state **s** is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Policy gradient

- Represent policy by deep network $a = \pi(s, u)$ with weights u
- Define objective function as total discounted reward

$$J(u) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots\right]$$

- Optimise objective end-to-end by SGD
 - Adjust policy parameters u to achieve more reward

$$\frac{\partial J(u)}{\partial u} = \mathbb{E}_{s} \left[\frac{\partial Q^{\pi}(s, a)}{\partial u} \right]$$
$$= \mathbb{E}_{s} \left[\frac{\partial Q^{\pi}(s, a)}{\partial a} \frac{\partial \pi(s, u)}{\partial u} \right]$$

Actor-Critic method

- Actor is a policy $\pi(s, u)$ $s \xrightarrow{u_1} ... \xrightarrow{u_n} a$
- Critic is value function Q(s, a, w) with parameter w

$$s, a \xrightarrow{w_1} \dots \xrightarrow{w_n} Q$$

Critics provide loss function for actor

$$s \xrightarrow{u_1} \dots \xrightarrow{u_n} a \xrightarrow{w_1} \dots \xrightarrow{w_n} Q$$

Gradient back propagates from critic into actor

$$\frac{\partial a}{\partial u} \longleftarrow \dots \longleftarrow \frac{\partial Q}{\partial a} \longleftarrow \dots \longleftarrow$$

Actor-Critic: Learning rules

Critic estimates value of current policy by Q-learning

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma Q(s', \pi(s'), w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

Actor updates policy in direction that improves Q

$$\frac{\partial J(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial Q(s, a, w)}{\partial a} \frac{\partial \pi(s, u)}{\partial u} \right]$$

Architecture and tips

- Use experience reply
- Freeze target network

How to improve?

- Run multiple simulation simultaneously instead of reply memory
 - Try this one as a practice
 - And think about its advantageous
- Use Transfer Learning

•

A simple python code

References

- David Silver's slide
- An introduction to Reinforcement Learning by Sutton 2nd edition
- Berkeley's deep RL boot camp materials available at here

Questions?

