6.1 T Junction resistive divider

Module:6 Microwave Passive circuits

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:6 Microwave Passive circuits <u>7</u> hours

• T junction and resistive power divider, Wilkinson power divider, branch line coupler (equal & unequal), Rat Race Coupler, Filter design: Low pass filter (Butterworth and Chebyshev) - Richards transformation and stepped impedance methods.

Source of the contents: Pozar

- E plane T and H plane T
- Fringing fields and higher order modes with discontinuity at junctions

(a)

- E plane T and H plane T
- Fringing fields and higher order modes with discontinuity at junctions

This results in stored energy (modelled as jB <u>lumped</u> susceptance).

•
$$Y_{in} = jB + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$
 (For matched condition)

- E plane T and H plane T
- Fringing fields and higher order modes with discontinuity at junctions

This results in stored energy (modelled as jB lumped susceptance)

•
$$Y_{in} = jB + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$
 (For matched condition)__

- For lossless transmission lines Characteristic impedance is real Z_0
- Practical case: *B* is not negligible, Additional reactive tuning element or discontinuity compensation

- E plane T and H plane T
- Fringing fields and higher order modes with discontinuity at junctions

•
$$Y_{in} = jB + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$
 (For matched condition)

- For lossless transmission lines Characteristic impedance is real \mathbb{Z}_0
- Practical case: B is not negligible, Additional reactive tuning element or discontinuity compensation

• Ideal case:
$$jB = 0$$
 $\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$

- Ideal case: jB = 0 $\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$
- Output line impedances Z_1 and Z_2 selected to provide various power divisions.

• Ideal case: jB = 0 $\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$

- Z_0 Y_{in} Z_1 Z_2
- Output line impedances Z_1 and Z_2 selected to provide various power divisions.
- 3dB(equal split) power divider: For a $Z_0 = 50\Omega$ input line, the output lines can be made as two 100Ω lines.

• Ideal case: jB = 0 $\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$

- Z_0 V_0 J_B Z_2 to provide various
- Output line impedances Z_1 and Z_2 selected to provide various power divisions.
- 3dB (equal split) power divider: For a $Z_0 = 50\Omega$ input line, the output lines can be made as two 100Ω lines.

Quarter wave transformers can be used to bring output lines at 50Ω .

- Ideal case: jB = 0 $\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$
- Output line impedances Z_1 and Z_2 selected to provide various power divisions.
- 3dB (equal split) power divider: For a $Z_0=50\Omega$ input line, the output lines can be made as two 100Ω lines.

Quarter wave transformers can be used to bring output lines at 50Ω .

For matched output lines, input will also be matched.

Disadvantage: No isolation between two output ports

Mismatch looking into output ports

• A lossless T junction power divider – Source $Z_0 = 50\Omega$ For output powers in **two ports to be in 2:1 ratio**, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.

lacktriangle

- A lossless T junction power divider Source $Z_0 = 500 \Omega$ For output powers in two ports to be in 2: 1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
- Voltage at junction is V_0 ,
 Input power into matched divider: $P_{in} = \frac{1}{2} \frac{V_0^2}{Z_0}$ while
 output powers are $P_1 = \frac{1}{2} \frac{V_0^2}{Z_1} = \frac{1}{3} P_{in}$ and $P_2 = \frac{1}{2} \frac{V_0^2}{Z_2} = \frac{2}{3} P_{in}$

- A lossless T junction power divider Source $Z_0 = 500 \Omega$ For output powers in two ports to be in 2:1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
- Voltage at junction is V_0 , Input power into matched divider: $P_{in} = \frac{1}{2} \frac{V_0^2}{Z_0}$ while output powers are $P_1 = \frac{1}{2} \frac{V_0^2}{Z_1} = \frac{1}{3} P_{in}$ and $P_2 = \frac{1}{2} \frac{V_0^2}{Z_2} = \frac{2}{3} P_{in}$ $\frac{1}{2} \frac{V_0^2}{Z_1} = \frac{1}{3} \left(\frac{1}{2} \frac{V_0^2}{Z_0} \right) \qquad \qquad \frac{1}{2} \frac{V_0^2}{Z_2} = \frac{2}{3} \left(\frac{1}{2} \frac{V_0^2}{Z_0} \right)$

- A lossless T junction power divider Source $Z_0 = 50 \Omega$ For output powers in two ports to be in 2:1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
- Voltage at junction is V_0 , Input power into matched divider: $P_{in} = \frac{1}{2} \frac{V_0^2}{Z_0}$ while output powers are $P_1 = \frac{1}{2} \frac{V_0^2}{Z_1} = \frac{1}{3} P_{in}$ and $P_2 = \frac{1}{2} \frac{V_0^2}{Z_2} = \frac{2}{3} P_{in}$ $\frac{1}{2} \frac{V_0^2}{Z_1} = \frac{1}{3} \left(\frac{1}{2} \frac{V_0^2}{Z_0} \right) \qquad \qquad \frac{1}{2} \frac{V_0^2}{Z_2} = \frac{2}{3} \left(\frac{1}{2} \frac{V_0^2}{Z_0} \right)$ $Z_1 = 3Z_0 = 150\Omega \qquad \qquad Z_2 = \frac{3Z_0}{2} = 75\Omega$

- A lossless T junction power divider Source $Z_0 = 500^{\circ}$ For output powers in two ports to be in 2:1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
- $Z_1=3Z_0=150\Omega \qquad Z_2=\frac{3Z_0}{2}=75\Omega$ Input impedance at the transmission lines act as load to that line.

- A lossless T junction power divider Source $Z_0 = 500^{\circ}$ For output powers in two ports to be in 2:1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
- $Z_1=3Z_0=150\Omega$ $Z_2=\frac{3Z_0}{2}=75\Omega$ Input impedance at the transmission lines act as load to that line. When seen from Z_1 , input impedance of $50 \parallel 75=30\Omega$ When seen from Z_2 , input impedance of $50 \parallel 150=37.5\Omega$

- A lossless T junction power divider Source $Z_0 = 500^{\circ}$ For output powers in two ports to be in 2:1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
- $Z_1=3Z_0=150\Omega$ $Z_2=\frac{3Z_0}{2}=75\Omega$ Input impedance at the transmission lines act as load to that line. When seen from Z_1 , input impedance of $50 \parallel 75=30\Omega$ When seen from Z_2 , input impedance of $50 \parallel 150=37.5\Omega$
- The respective reflection coefficients seen looking into these ports are:

$$\Gamma_1 = \frac{Z_{in1} - Z_1}{Z_{in1} + Z_1} = \frac{30 - 150}{30 + 150} = -0.667$$
 and

- A lossless T junction power divider Source $Z_0 = 500^{\circ}$ For output powers in two ports to be in 2:1 ratio, Find output characteristic impedances. Compute reflection coefficients seen looking into output ports.
 - $Z_1=3Z_0=150\Omega$ $Z_2=\frac{3Z_0}{2}=75\Omega$ Input impedance at the transmission lines act as load to that line. When seen from Z_1 , input impedance of $50 \parallel 75=30\Omega$ When seen from Z_2 , input impedance of $50 \parallel 150=37.5\Omega$
- The respective reflection coefficients seen looking into these ports are:

$$\Gamma_1 = \frac{Z_{in1} - Z_1}{Z_{in1} + Z_1} = \frac{30 - 150}{30 + 150} = -0.667$$
 and $\Gamma_2 = \frac{Z_{in2} - Z_2}{Z_{in2} + Z_2} = \frac{37.5 - 150}{37.5 + 150} = -0.333$

Three port divider contains lossy components
 Can be made to be matched at all ports
 Though two output ports may not be isolated

Port 2

6.3 Resistive divider

 Three port divider contains lossy components Can be made to be matched at all ports Though two output ports may not be isolated

• Equal split (-3dB) divider is shown, but unequal divisions are

possible.

- Three port divider contains lossy components
 Can be made to be matched at all ports
 Though two output ports may not be isolated
- Equal split (-3dB) divider is shown, but unequal divisions are possible.
- Assume all ports are terminated in characteristic impedance Z_0 . With terminated output line, the impedance Z observed at junction

is
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

Port 3

- Three port divider contains lossy components
 Can be made to be matched at all ports
 Though two output ports may not be isolated
- Equal split (-3dB) divider is shown, but unequal divisions are possible.
- Assume all ports are terminated in characteristic impedance Z_0 . With terminated output line, the impedance Z observed at junction Z_0 in Z_0 in Z_0 in Z_0

is
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

• At input, Input impedance of the divider $Z_{in} = \frac{Z_0}{3} + (Z \parallel Z)$

Port 3

- Three port divider contains lossy components
 Can be made to be matched at all ports
 Though two output ports may not be isolated
- Equal split (-3dB) divider is shown, but unequal divisions are possible.
- Assume all ports are terminated in characteristic impedance Z_0 . With terminated output line, the impedance Z observed at junction is $Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$
- At input, Input impedance of the divider $Z_{in} = \frac{Z_0}{3} + (Z \parallel Z)$ $Z_{in} = \frac{Z_0}{3} + \frac{2Z_0}{3} = Z_0$ (Input is matched to feed line).
- Same can be verified from all ports: $S_{11} = S_{22} = S_{33} = 0$

Port 3

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

Voltage at junction when looked from port 1

$$V = V_1 \frac{Z \| Z}{Z \| Z + Z_0 / 3} =$$

Port 2

6.3 Resistive divider

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

Voltage at junction when looked from port 1

$$V = V_1 \frac{Z | Z|}{Z | Z + Z_0/3} = V_1 \frac{2Z_0/3}{2Z_0/3 + Z_0/3} = \frac{2}{3} V_1$$

Port 2

6.3 Resistive divider

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

Voltage at junction when looked from port 1

$$V = V_1 \frac{Z \| Z}{Z \| Z + Z_0 / 3} = V_1 \frac{2Z_0 / 3}{2Z_0 / 3 + Z_0 / 3} = \frac{2}{3} V_1$$

$$V_2 = V_3 = V \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4}V =$$

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

Voltage at junction when looked from port 1

$$V = V_1 \frac{Z \| Z}{Z \| Z + Z_0 / 3} = V_1 \frac{2Z_0 / 3}{2Z_0 / 3 + Z_0 / 3} = \frac{2}{3} V_1$$

$$V_2 = V_3 = V \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4}V = \frac{3}{4}(\frac{2}{3}V_1) = \frac{1}{2}V_1$$

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

Voltage at junction when looked from port 1

$$V = V_1 \frac{Z \| Z}{Z \| Z + Z_0 / 3} = V_1 \frac{2Z_0 / 3}{2Z_0 / 3 + Z_0 / 3} = \frac{2}{3} V_1$$

$$V_2 = V_3 = V \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4}V = \frac{3}{4}(\frac{2}{3}V_1) = \frac{1}{2}V_1$$

• S parameters
$$S_{21} = S_{31} = S_{23} = \frac{1}{2}$$

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

Voltage at junction when looked from port 1

$$V = V_1 \frac{Z||Z|}{Z||Z+Z_0/3} = V_1 \frac{2Z_0/3}{2Z_0/3+Z_0/3} = \frac{2}{3}V_1$$

$$V_2 = V_3 = V \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4}V = \frac{3}{4}(\frac{2}{3}V_1) = \frac{1}{2}V_1$$

- S parameters $S_{21} = S_{31} = S_{23} = \frac{1}{2}$
- Reciprocal network: $[S] = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

• Voltage at junction when looked from port 1
$$V=V_1\frac{Z\|Z}{Z\|Z+Z_0/3}=V_1\frac{2Z_0/3}{2Z_0/3+Z_0/3}=\frac{2}{3}V_1$$

• Output voltage at ports 2 and 3
$$V_2 = V_3 = V \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4}V = \frac{3}{4}(\frac{2}{3}V_1) = \frac{1}{2}V_1$$

- S parameters $S_{21} = S_{31} = S_{23} = \frac{1}{5}$
- Reciprocal network: $[S] = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
- With input at port 1, $P_1 = \frac{1}{2} \frac{V_1^2}{Z_0}$ input power level)

 $P_2 = P_3 = \frac{1}{2} \frac{V_2^2}{Z_2} = \frac{1}{4} P_1$ (6dB below

•
$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$
 $S_{11} = S_{22} = S_{33} = 0$

$$S_{11} = S_{22} = S_{33} = 0$$

• Voltage at junction when looked from port 1 $V = V_1 \frac{Z \| Z}{Z \| Z + Z_0 / 3} = V_1 \frac{2Z_0 / 3}{2Z_0 / 3 + Z_0 / 3} = \frac{2}{3} V_1$

$$V = V_1 \frac{Z \| Z}{Z \| Z + Z_0 / 3} = V_1 \frac{2Z_0 / 3}{2Z_0 / 3 + Z_0 / 3} = \frac{2}{3} V_1$$

• Output voltage at ports 2 and 3
$$V_2 = V_3 = V \frac{Z_0}{Z_0 + Z_0/3} = \frac{3}{4}V = \frac{3}{4}(\frac{2}{3}V_1) = \frac{1}{2}V_1$$

• Reciprocal network:
$$[S] = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

• With input at port 1, $P_1 = \frac{1}{2} \frac{V_1^2}{Z_0}$ input power level)

The remaining power $\frac{1}{2}P_1$ is **lost in the** resistors.

$$P_2 = P_3 = \frac{1}{2} \frac{V_2^2}{Z_0} = \frac{1}{4} P_1$$
 (6dB below