Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2016.
df

Out[2]:

	date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TO
0	2016- 11-01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	Nai
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.
2	2016- 11-01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.
3	2016- 11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	Nai
4	2016- 11-01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	Nai
209491	2016- 07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	Nal
209492	2016- 07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	Nal
209493	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	Nal
209494	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	Nal
209495	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	Nal
209496 rows × 14 columns													
	10W5 ^ 14	COIUI	11115										
4													•

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16932 entries, 1 to 209478
Data columns (total 14 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
---
                             ----
0
    date
             16932 non-null object
 1
    BEN
             16932 non-null float64
 2
    CO
             16932 non-null float64
 3
    EBE
             16932 non-null float64
 4
    NMHC
             16932 non-null float64
 5
             16932 non-null float64
    NO
 6
    NO_2
             16932 non-null float64
 7
    0 3
             16932 non-null float64
 8
    PM10
             16932 non-null float64
 9
    PM25
             16932 non-null float64
 10
    SO_2
             16932 non-null float64
 11
    TCH
             16932 non-null float64
 12
    TOL
             16932 non-null float64
    station 16932 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.9+ MB
```

In [6]:

```
data=df[['BEN', 'TOL', 'TCH']]
data
```

Out[6]:

	BEN	TOL	тсн
1	3.1	14.4	2.44
6	0.7	5.0	1.35
25	2.7	15.0	2.30
30	0.7	5.0	1.35
49	1.7	10.7	1.95
209430	0.1	0.2	1.15
209449	0.6	1.9	1.48
209454	0.1	0.3	1.15
209473	0.6	1.9	1.50
209478	0.1	0.2	1.15

16932 rows × 3 columns

Line chart

In [7]:

```
data.plot.line(subplots=True)
```

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [8]:

data.plot.line()

Out[8]:

<AxesSubplot:>

Bar chart

In [9]:

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<AxesSubplot:>

Histogram

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

Box chart

In [13]:

data.plot.box()

Out[13]:

<AxesSubplot:>

Pie chart

In [14]:

```
b.plot.pie(y='BEN' )
```

Out[14]:

<AxesSubplot:ylabel='BEN'>

Scatter chart

In [15]:

```
data.plot.scatter(x='BEN' ,y='TOL')
```

Out[15]:

<AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [16]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 16932 entries, 1 to 209478 Data columns (total 14 columns):

		•	,			
#	Column	Non-Null Count	Dtype			
0	date	16932 non-null	object			
1	BEN	16932 non-null	float64			
2	CO	16932 non-null	float64			
3	EBE	16932 non-null	float64			
4	NMHC	16932 non-null	float64			
5	NO	16932 non-null	float64			
6	NO_2	16932 non-null	float64			
7	0_3	16932 non-null	float64			
8	PM10	16932 non-null	float64			
9	PM25	16932 non-null	float64			
10	S0_2	16932 non-null	float64			
11	TCH	16932 non-null	float64			
12	TOL	16932 non-null	float64			
13	station	16932 non-null	int64			
dtypes: float64(12), int64(1), object(1						

memory usage: 1.9+ MB

```
In [17]:
```

```
df.describe()
```

Out[17]:

	BEN	СО	EBE	NMHC	NO	NO_2
count	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000
mean	0.537970	0.349941	0.298955	0.099913	20.815734	39.373376
std	0.599479	0.203807	0.450204	0.079850	40.986063	31.170307
min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000
25%	0.200000	0.200000	0.100000	0.050000	1.000000	14.000000
50%	0.400000	0.300000	0.200000	0.090000	7.000000	34.000000
75%	0.700000	0.400000	0.300000	0.120000	23.000000	58.000000
max	12.300000	4.500000	13.500000	2.210000	829.000000	319.000000
4						>

In [18]:

```
df1=df[['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

sns.pairplot(df1[0:50])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x1b232bba220>

In [20]:

```
sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<AxesSubplot:xlabel='BEN', ylabel='Density'>

In [21]:

sns.heatmap(df1.corr())

Out[21]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

LinearRegression()

In [25]:

```
lr.intercept_
```

Out[25]:

28079041.999899916

In [26]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

Co-efficient BEN -1.807121 CO 4.467319 **EBE** 0.581989 **NMHC** 1.262170 NO 0.067188 NO_2 -0.067192 O_3 -0.024761 **PM10** -0.012139 **PM25** 0.103008 SO_2 -0.803779 **TCH** -13.998236 TOL 0.205204

```
In [27]:
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x1b23ec55f70>

ACCURACY

```
In [28]:
```

```
lr.score(x_test,y_test)
```

Out[28]:

0.826130159659848

In [29]:

```
lr.score(x_train,y_train)
```

Out[29]:

0.8286608817866095

Ridge and Lasso

In [30]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [31]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[31]:

Ridge(alpha=10)

Accuracy(Ridge)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.8256727930423138
In [33]:
rr.score(x_train,y_train)
Out[33]:
0.828577461543129
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
Lasso(alpha=10)
In [35]:
la.score(x_test,y_test)
Out[35]:
0.6431475578851213
```

Accuracy(Lasso)

```
In [36]:
la.score(x_train,y_train)
Out[36]:
0.6467262929917432
```

Accuracy(Elastic Net)

```
In [37]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[37]:
```

ElasticNet()

```
In [38]:
en.coef_
Out[38]:
                               , -0.
                                                          , 0.048158
array([-0.
       -0.10696444, -0.02103236, 0.00315771, 0.04814422, -0.86268439,
       -0.03113773, 0.
                                ])
In [39]:
en.intercept_
Out[39]:
28079026.225688875
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.7049603330703134
```

Evaluation Metrics

```
In [42]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

3.352243386644606 18.8716480631203 4.344151017531538

Logistic Regression

```
In [43]:
```

```
from sklearn.linear_model import LogisticRegression
In [44]:
```

```
In [45]:
feature_matrix.shape
Out[45]:
(16932, 10)
In [46]:
target_vector.shape
Out[46]:
(16932,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit_transform(feature_matrix)
In [49]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[49]:
LogisticRegression(max_iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [52]:
logr.classes_
Out[52]:
array([28079008, 28079024], dtype=int64)
In [53]:
logr.score(fs,target_vector)
Out[53]:
0.9923812898653437
```

```
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
1.0
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[1.0000000e+00, 1.6336121e-46]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[57]:
RandomForestClassifier()
In [58]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [59]:
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [60]:
grid_search.best_score_
Out[60]:
0.9946000674991562
```

In [61]:

```
rfc_best=grid_search.best_estimator_
```

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
\nvalue = [95, 170]\nclass = b'),
Text(4378.153846153846, 181.1999999999982, 'gini = 0.081\nsamples = 23
78\nvalue = [3553, 156]\nclass = a')]
```

Conclusion

Accuracy

Linear Regression:0.8286608817866095

Ridge Regression: 0.828577461543129

Lasso Regression:0.6467262929917432

ElasticNet Regression:0.7049603330703134

Logistic Regression:0.9923812898653437

Random Forest: 0.9946000674991562

Random Forest is suitable for this dataset