Análise e Técnicas de Algoritmos Jorge Figueiredo Análise de Algoritmos Recursivos

Introdução A análise de um algoritmo recursivo requer a resolução de uma recorrência. Uma recorrência é um algoritmo recursivo que calcula o valor de uma função em um ponto dado. Uma recorrência define T(n) em termos de T(n-1), T(n-2), etc. Exemplo: T(1) = 1 T(n) = T(n - 1) + 3n + 2, para n≥2

Introdução

- É possível observar que o n-ésimo corte cria n novos pedaços.
- Logo, o número total de pedaços obtido com n cortes, denotado por P(n), é dado pela seguinte relação de recorrência:
 - -P(1)=2
 - P(n) = P(n 1) + n, para n≥2

Derivando Relações de Recorrências

Como proceder para derivar uma relação de recorrência para a análise do tempo de execução de um algoritmo:

- Determinar qual o tamanho n do problema.
- Verificar que valor de n é usado como base da recursão. Em geral é um valor único (n=1, por exemplo), mas pode ser valores múltiplos. Vamos considerar esse valor como n₀.
- Determinar T(n₀). Pode-se usar uma constante c, mas, em muitos, casos um número específico é necessário.

Derivando Relações de Recorrências

- T(n) é definido como uma soma de várias ocorrências de T(m) (chamadas recursivas), mais a soma de outras instruções efetuadas. Em geral, as chamadas recursivas estão relacionadas com a subproblemas do mesmo tamanho f(n), definindo um termo a.T(f(n)) na relação de recorrência.
- A relação de recorrência é definida por:
 - T(n) = c, se $n = n_0$
 - -T(n) = a.T(f(n)) + g(n), caso contrário

Derivando Relações de Recorrências

- Exemplo: Torre de Hanoi
 - Objetivo: transferir os n discos de A para C
 - Regras:
 - Mover um disco por vez.
 - Nunca colocar um disco maior em cima de um menor.
 - Solução Recursiva:
 - Transferir n-1 discos de A para B
 - Mover o maior disco de A para C
 - Transferir n-1 discos de B para C

Derivando Relações de Recorrências

Relação de Recorrência

T(1) = 1T(n) = 2.T(n-1) + 1

Derivando Relações de Recorrências

 $\begin{aligned} & \textbf{MergeSort(A, n)} \\ & \textbf{if } n \leq 1 \\ & \textbf{return A} \end{aligned}$

return merge(MergeSort(A1, n/2), MergeSort(A2, n/2))

Relação de Recorrência

T(1) = CT(n) = 2.T(n/2) + d.n

Resolvendo Relações de Recorrência

- Resolver uma relação de recorrência nem sempre é fácil.
- Resolvendo uma relação de recorrência, determina-se o tempo de execução do algoritmo recursivo correspondente.
- Relação de recorrência: $T(n) = T(n_1) + T(n_2) + ... + T(n_n) + f(n)$
- É mais fácil quando temos a subproblemas de mesmo tamanho que é uma fração de n (por exemplo, n/b):
 - T(n) = a.T(n/b) + f(n)
- · Como resolver:
 - Método do chute
 - Método da árvore de recursão
 - Método do desdobramento
 - Método master

Método do Chute e Prova por Indução

- Seja a seguinte relação de recorrência:
 - T(1) = 1
 - T(n) = T(n-1) + 3n + 2, para n≥2
- A relação de recorrência é resolvida em duas partes:
 - 1. Chute: $T(n) = 3n^2/2 + 7n/2 4$
 - Prova
 - 1. Caso base é para n=1
 - 2. H.I.: assumir que é válido para n-1
 - 3. Provar T(n)

Se a prova for confirmada, T(n) é O(n²)

Método do Chute e Prova por Indução

- · Seja a seguinte relação de recorrência:
 - T(1) = 1
 - T(n) = 2.T(n/2) + n , para n≥2
- A relação de recorrência é resolvida em duas partes:
 - 1. Chute: T(n) = n + n.logn
 - 2. Prova:
 - 1. Caso base: 1 + 1.log 1 = 1
 - H.I.: assumir que é válido para valores até n-1
 - 3. Provar T(n):
 - =2.(n/2 + n/2.log n/2) + n
 - =n + n.(logn -1) + n
 - =n + n.logn

Logo, T(n) é O(n.logn)

Método da Árvore de Recursão

- Talvez o método mais intuitivo.
- Consiste em desenhar uma árvore cujos nós representam os tamanhos dos correspondentes problemas.
- Cada nível i contém todos os subproblemas de profundidade i.
- Dois aspectos importantes:
 - A altura da árvore.
 - O número de passos executados de cada nível.
- A solução da recorrência (tempo de execução do algoritmo) é a soma de todos os passos de todos os níveis.

Método da Árvore de Recursão

• Resolver T(n) = 2.T(n/2) + n

T(n)

Método da Árvore de Recursão

T(n/2) T(n/2)

Método do Desdobramento

- Esse método é o da árvore de recursão, representado de forma algébrica.
- Consiste em:
 - Usar (algumas poucas) substituições repetidamente até encontrar um padrão.
 - Escrever uma fórmula em termos de $\it n$ e o número de substituições $\it i$
 - Escolher i de tal forma que todas as referências a T() sejam referências ao caso base.
 - Resolver a fórmula.

Método do Desdobramento - Exemplo 1

- Solução para o problema da pizza:
 - T(1) = 2
 - T(n) = T(n 1) + n , para n≥2
- Desdobrando a relação de recorrência:
 - T(n) = T(n-1) + n
 - T(n) = T(n-2) + (n-1) + n
 - T(n) = T(n-3) + (n-2) + (n-1) + n
- T(n) = T(n-i) + (n-i+1) + ... + (n-1) + n

 Caso base alcançado quando i=n-1
- T(n) = 2 + 2 + 3 + ... + (n 1) + n
- T(n) = 1 + n.(n-1)/2
- Logo, T(n) = O(n²)

Método do Desdobramento - Exemplo 2

- Solução para o problema da Torre de Hanoi:
 - T(1) = 1
 - T(n) = 2.T(n 1) + 1 , para n≥2
- Desdobrando a relação de recorrência:

T(n) = 2.T(n-1) + 1

T(n) = 2.(2.T(n-2) + 1) + 1 = 4.T(n-2) + 2 + 1

T(n) = 4.(2.T(n-3) + 1) + 2 + 1 = 8.T(n-3) + 4 + 2 + 1

 $T(n) = 2^{i}.T(n-i) + 2^{i-1} + 2^{i-2} ... + 2^{1} + 1$

- Caso base alcançado quando i=n-1
- T(n) = 2ⁿ⁻¹ + 2ⁿ⁻² + 2ⁿ⁻³ + ... + 2¹ + 1
- Isso é uma soma geométrica
- Logo, T(n) = 2ⁿ 1 = O(2ⁿ)

Método Master

- Teorema que resolve quase todas as recorrências.
- T(n) da forma a.T(n/b) + f(n), a,b > 1
- Casos:
 - 1. Se $f(n) \in O(n^{log^ab^{-}\epsilon})$, para algum $\epsilon > 0$, temos que:
 - $T(n) \in \Theta(n^{\log^a b}).$
 - 2. Se $f(n) \in O(n^{log}a_b)$, temos que:
 - $\bullet \quad T(n) \in \Theta(n^{log^{a}b}.log \ n).$
 - 3. Se $f(n) \in O(n^{\log^3 b + \epsilon})$, para algum $\epsilon > 0$ e se $a.f(n/b) \le c.f(n)$ para algum $\epsilon > 0$ e n suficientemente grande, temos que:
 - $T(n) \in \Theta(f(n))$.

Método Master – Exemplo 1

- MergeSort:
 - T(n) = 2.T(n/2) + n a = b = 2 f(n) = n
- loga_b = 1. Cai no caso 2.
 Logo, T(n) = Θ(n.log n)

Método Master – Exemplo 1

- T(n) = 9.T(n/3) + n
 - a = 9, b = 3 f(n) = n
- $\log_b^a = 2$. Se $\varepsilon = 1$, Cai no caso 1.
- Logo, $T(n) = \Theta(n^2)$