

Correction to Gas to Particle Conversion-Gas Exchange Technique for Direct Analysis of Metal Carbonyl Gas by Inductively Coupled Plasma Mass Spectrometry

Kohei Nishiguchi, Keisuke Utani, Detlef Gunther, and Masaki Ohata*

Anal. Chem. 2014, 86 (20), 10025-10029. DOI: 10.1021/ac502168h

Because of a production error, Figures 2–5 in the original manuscript appeared in the incorrect order. The correct figures are shown in this Addition and Correction.

Figure 2. Schematic diagram of the experimental setup for optimizing the operating conditions of the GPD device. The total Ar gas flow rate of MFC 1, 2, and 3 was fixed at 300 mL min⁻¹ to keep the concentration of metal carbonyl gas constant for both the direct introduction to ICPMS and the introduction to ICPMS via GPD-GED.

Figure 3. Signal intensities and ratios of 98 Mo for both introduction systems as a function of the flow rate of Mo(CO)₆. The flow rates for both 1% O₃ and NH₃ gases for gas to particle conversion in GPD were 25 mL min⁻¹ each and the concentration of the NH₃ solution was 2%.

© 2014 American Chemical Society

Figure 4. Ratios of ⁹⁸Mo for observed under different reaction conditions within the GPD as a function of the gas flow rate of Mo(CO)₆. The ratios were obtained by the signal intensities generated by GPD-GED divided by the signal intensities measured using direct sample introduction.

Analytical Chemistry

Addition/Correction

Figure 5. Calibration curves observed for different isotopes of $Mo(CO)_6$ by GPD-GEDICPMS. The flow rates of the sample gas introduction as well as 1% O₃ and NH₃ gases for GPD were 100 and 50 mL min⁻¹, respectively, and the concentration of the NH₃ solution was 4%.