

PROF. DR. TILO WENDLER

SECOM Case Study

Dhruvi Jay Patel(s0592755)

Naman Mathpal (s0590500)

Bhoomika Jagadeesha (s0590573)

Jui Prasad Kulkarni (s0590496)

Ankit Satish Gupta (s0590516)

INDEX

- 1. Introduction
- 2. CRISP DM
- 3. Histogram of Missing values
- 4. Histogram of Volatility
- 5. Heatmap
- 6. Duplicate analysis
- 7. Data splitting and Frequency distribution of Target Variable
- 8. Threshold definition
- 9. Action points on Observations
- 10. Outlier analysis
- 11. Take Home Messages
- 12. Recapitulation

1. Introduction

2. CRoss Industry Standard Process for Data Mining

3. Histogram of missing values

- 1. Most percentage of missing values lies in 40 -90 %
- 2. In between 60 -70% (64.96%) shows highest missing values with 12 features frequency
- 3. Most of the percentage of missing values lies in the frequency 2.5 to 5.0 frequency of the features.

4. Histogram of Volatility

- 1. Maximum values in variance lies in between 0.0 to e-7.
- 2. Frequency of features of **116** shows that the variance is 0.0 and which will be removed for the further procedure.
- 3. Variance range 0.2 to 1.4 shows the frequency close to 0.

5. Heatmap

6. Duplicate analysis

 Found 31 duplicates in Time stamp

- duplicate_rows = label.duplicated()

 # Count the number of duplicate rows
 num_duplicates = duplicate_rows.sum()

 print("Number of duplicate rows:", num_duplicates)
- Number of duplicate rows: 30

```
total_duplicate_features = sum(secom.T.duplicated())

# Print the total number of duplicate features
print("Total number of duplicate features:", total_duplicate_features)
```

Total number of duplicate features: 104

- Found 104 features which are duplicates
- These are the same features which has 0 variance

Let's Split the Data

7. Data Splitting and Frequency Distribution of Target Variable

- Performance Estimation
- Avoid overfitting
- Reduction in Bias

- 75% and 25%.
- Train the Model: The model is trained on the training set.
- Test the Model: The final model is evaluated on the test set to assess its performance.
- Constraint: Ensuring same proportion of pass and fail cases (14:1) using stratified sampling.

Data (14:1)

Total entries- 1567

Pass cases:1463

Fail cases:104

Test

Total entries: 392

Pass Cases: 366

Fail cases: 26

٠

Training

Total entries- 1175
Pass cases: 1097
Fail cases: 78

BEFORE

AFTER

8. Threshold definition

Observations	Steps taken	Before	After
Features with many missing values do not contribute to the quality of model	 Threshold to 60% Remove the features For remaining NAs, imputation can be done 	Above 60% - 24 features found	Above 60% - 24 features found

9. Action Points on Observations

	Observations	Steps taken
Duplicates	 Label data 31 duplicates SECOM data Column wise-104 features Row wise- 0 	 Merge the two dataframes- unique rows For duplicate features – Remove it from dataset for better computation.
Variance	 Zero Variance- 115 features Does not contribute in the model (constant entries). 	 Remove 115 features - training data. (which includes duplicates as well) Feautres: Before- 590; After- 475
TimeStamp	Can not analyse date and time together.	 Split date and time Do not remove at this stage (Can be helpful in further analysis)

10. Outlier Analysis

Feature 36: 50 outliers
Feature 460: 49 outliers
Feature 456: 49 outliers
Feature 442: 48 outliers
Feature 458: 46 outliers
Feature 461: 44 outliers
Feature 457: 44 outliers
Feature 151: 43 outliers
Feature 250: 43 outliers
Feature 459: 41 outliers

,	Observations	Frequency	Method	Possible Action Points
Remove (can produce more blanks)	432 Features	· ·	Z-Score	 No Action: proportion of outlier is less Overwrite: S-boundaries (chances of better substitute) Remove (can produce more blanks)

13

11. Take Home Messages

Business understanding:

Comprehensive data understanding is essential for effective model development.

Data understanding:

- Proper data splitting ensures unbiased model evaluation and validation.
- Addressing duplicates and missing values is crucial for building reliable and accurate models.

Data preparation:

- Data Transformation like Log, Box Cox or Min-Max Scaling is important! Why?
- Normalize or standardize numerical features to ensure that they have a similar scale and normal distribution.
- Visualizing data distributions and missing values help identify data quality issues and further data preprocessing.

12. Recapitulation

Vielen Dank für Ihre Aufmerksamkeit!

PROF. DR. TILO WENDLER

SECOM Case Study

Dhruvi Jay Patel (s0592755)

Naman Mathpal (s0590500)

Bhoomika Jagadeesha (s0590573)

Jui Prasad Kulkarni (s0590496)

Ankit Satish Gupta (s0590516)

INDEX

- 1. Recap until now
- 2. CRISP DM
- 3. Data Cleaning Rough feature reduction
- 4. Outlier handling
- 5. Imputation
- 6. Feature Selection and Reduction
- 7. Imbalanced Data handling
- 8. Decision Hierarchy
- 9. Model building
- 10. Take Home Messages
- 11. Summary and Next steps

Quick Recap

3

CRoss Industry Standard Process for Data Mining

Data cleaning – Rough Dimensionality Reduction

	Observations	Impact and decision
Duplicates	 Label data - 31 duplicates Column wise-104, Row wise- 0 	 Merge the two dataframes- unique rows For duplicate features – Remove it from dataset for better computation (same which has 0 variance)
Variance	 Zero Variance- 115 features, Does not contribute in the model (constant entries). 	 Remove 115 features - training data. (which includes duplicates as well) Feautres: Before- 590; After- 475
TimeStamp	 Can not analyse date and time together. Further algoritms can only take numeric(continous) predictors like Boruta 	 More features can lead to overfitting as per model complexity Dropped
Missing Values	Found Missing Values	 Select a threshold and remove missing values above it Imputation for remaining

Outlier Handling

Feature 36

Approach	Pros Cons II		Impact	Decision
Original data (No action)			Many features are positively/negatively skewed -Misleading interpretations as outliers dominate the dataset	Not the best approach
Replace with 3s boundaries	-Addresses extreme outliers -Chances of better substitute	-Can impact whole distribution if many outlier presence -Not work well with datasets where outliers are not well-separated	If majority of outliers are on one tail, removing them flip the data's shape, altering skewness drastically.	Medium priority
Remove and Impute	-Maintains distribution to a certain level -KNN attempts to fill missing values with realistic estimates based on similar data points	-Produce more blanks -KNN imputation can be computationally expensive for large datasets -Sensitive to Noise	Fills missing values based on similarities with neighboring data points.	First priority

Missing value Imputation

- Complete dataset utilization
- Affect the quality of the model

Reasons

- Missing at Random (MAR)- Example: Scale running out of power while collecting
- Missing Completely at Random (MCAR): Example: production line fault
- Missing Data Not at Random (MNAR): Example Scale is not reliable or is too old

When??

- Outlier handling might also lead to missing values
- Hence, after outlier handling

Different approaches to impute missing values

Name	Approach	Advantages	Disadvantages	Effect and Decision
Mean Imputation	Impute mean value of feature	Easy to implementCheap	 Underestimate volatility (reduce) Disort distribution of data Does not consider correlation with other variables May introduce bias 	 Suitable for small datasets Greater difference in volatility Low Priority
Median Imputation	Impute median value of feature	Robust to Outliers	Can still distort the distribution of the data, although less than mean imputation.	 better than mean for skewed distributions and when outliers are present. Low priority (volatility dfifference)
Regression Imputation	Select predictors - highly correlated with the feature having missing value	Deterministic Uses relationship between variables	 Might overfit only when relationship between variables exist Predict linearity MAR – Assumption Volatility not considered 	 Not the best approach as volatility is not considered and assume linear relationship Low Priority
KNN Imputation	 Type of Hot Deck; Multivariate; Considers Nearest values First normalize then de-normalize Scaling is temporary (distance-based approach) 	 Utilizes multivariate information Preserves relationships Both numerical and Categorical data. More accurate 	 Computationally intensive Choice of K can affect the result 	 Change in Volatility is less High priority.
MICE	 Multi-variate imputation by chained equations. Considers more than 1 candidate to find substitutes; Iterative steps. 	Multiple imputation with multiple candidates	Assumption: MAR, MACRComplexComputationally Intensive	 Less difference than mean or median Medium priority

Volatility
Comparison
Imputation
Techniques
(40-65%)

Feature selection and reduction

	Feature	Selection	
HOW?? Select subset of important features	WHY?? 1. Reduce overfitting 2. Need to understand importance of features 3. Enhanced interpretability 4. Faster Computation	WHICH?? Wrapper(Boruta), Embeded and filter	Boruta Finds the importance of the features by constructing shadow features (random shuffling each characteristics).
	Feature I	Reduction	
HOW?? Reduce dimentionality and creates new components on the basis of features	WHY?? 1. Reduce overfitting and noise 2. Dimensionality Reduction and removes multicollinearity 3. Where overall structure matters and not the features 4. Faster Computation	WHICH?? Linear (PCA) and Non-Linear	PCA 1. Analyses and explains most common variances in variables. 2. Identifies the common factor and converts them to components

Data exploration - Cattell's Scree plot, KMO and PCA

Why not PCA??

- Loss of Interpretability
- Linearity assumption
- Data Centering -Mean Centering
 Requirement: PCA requires data to be mean-centered.
- Choose when Target variable is not a primary focus
- For Unsupervised learning . Goal: feature reduction without considering the target variable.
- Scree plot no elbow or break point where the eigenvalues start to level off
- KMO
- Multicollinearity: If the original data had multicollinearity (high correlation among features), this can lead to issues in the KMO test. Multicollinearity can cause computational problems, resulting in NaN values in the KMO statistic.
- KMO statistic: 0.65 (after removal of highly collinear features Important features can be discarded!!!!)
- PCA mediocrely suitable for factor analysis not ideal one.

Why BORUTA??

```
# Print sorted feature rankings
print("Sorted Boruta feature rankings:")
for feat, rank in features with ranking sorted:
    print(f"{feat}: {rank}")
Sorted Boruta feature rankings:
feature60: 1
feature65: 1
feature66: 1
feature342: 1
feature351: 1
feature478: 1
feature540: 1
feature563: 1
feature157: 2
feature268: 2
feature292: 2
feature427: 2
feature430: 2
feature154: 3
feature206: 4
feature153: 5
feature426: 6
feature171: 7
```

Why Boruta??

- Improve model performance by using Random forest approach on original and shadow features, making it capable of capturing complex relationships.
- Prevent the loss of important information as evaluated by GINI importance
- Used for supervised data
- Boruta identifies and ranks the features which are important for predicting the target variable.
- Boruta can handle multicollinearity and non-linear relationships effectively.

This makes Boruta a powerful tool for feature selection, especially in datasets with complex interactions and relationships among features.

Why balancing??

Only on Train data!!!!

Fail cases (6.6%) Pass cases

(93.3%)

Prevention of Overfitting

Improved model performance

Appropriate Model Training

Cost sensitive application

Avoidance of biased predictions

13

Balancing and Resampling

Name	Approach	Pros	Cons	Effect	Decision
Over-Sampling	Duplicates minority class instances to balance the dataset	Simple to implement, effective	High risk of overfitting	Accuracy may be good but does not replicate real world data	Creates duplicates
Under-Sampling	Removes instances from the majority class to balance the dataset	Reduces dataset size, computationally efficient	Can lose important information, can lead to underfitting	Accuracy may be good but does not replicate real world data.	Loss of important information.

Approaches to deal with imbalanced data

Name	Approach	Pros	Cons	Effect	Decision
SMOTE	Generates synthetic sar bet ori	Fail case	No adaptive alanced data es - 6.6%	Best results	Loss cost is low High Priority
	nea (un	Pass case	es – 93.4%		

			ROSE		
2700	Majority Minority	(Pass): 109 (Fail): 1097		×,	•
2600					: :
2500					
2400					
2300	_				
	2800	2900	3000 feature1	3100	3200

Name	Approach	Pros	Cons	Effect	Decision
ROSE	 Generates new synthetic data points by adding random noise to existing data points within the minority class Smoothed bootstrapped approach. 	Reduce the risk of overfitting compared to duplication attempts to maintain the underlying distribution of the data.	can introduce noise, Require parameter tuning	Reduce bias	Medium Priority

15

Decision Hierarchy

Model building

	Decision					EVALUATION												
Name	Decision in CRISP DM	Threshold	Outliers	Impute method	Feature Selection/ Feature Reduction	Balancing method	Train error	Test Error	Accuracy	Confus	ion_r	natrix		Loss_cost FP- 1000 FN- 5000	Precision	Recall	f1_score	AUC
										TP	FP	FN	TN					
Model 1	Data preparation- Rough feature reduction, Outlier Analysis, Missing value Imputation, Feature selection Data Modeling - Balancing and Resampling, Model building	65	Remove & Impute	KNN	Boruta	SMOTE	0	0.09	0.90	351	15	22	4	125000	0.210526	0.153846	0.177778	0.556431
Customized Model	Feed No. 1 features to build the model by Boruta ranking	65	Remove & Impute	KNN	Boruta - feature60, feature65, feature66, feature342, feature351, feature478, feature540, feature563	SMOTE	0	0.11	0.90	348	18	20	6	124000	0.2	0.230769	0.2142857 1	0.562683

Take Home Messages

- Outliers 3s boundaries may sometimes change the entire characteristics of the distribution, and hence, we performed KNN.
- For KNN, **Scaling the data is important**, as it's is a distance-based approach, otherwise, the results will be misleading.
- Highly imbalanced dataset To make sure that our model in not biased towards majority class, we
 need to balance the dataset. Models trained on imbalanced data might have a high accuracy but
 give misleading evaluation of results.
- For highly imbalanced data, **Random Forrest** may be a good option. It combines multiple decision trees to prevent the model from overfitting.
- Model Evaluation Accuracy cannot be an ultimate criteria to judge the quality of a model, we need to do Loss cost Analysis.

Phase II - Process Flow Diagram

Vielen Dank für Ihre Aufmerksamkeit!

PROF. DR. TILO WENDLER

SECOM Case Study

Dhruvi Jay Patel (s0592755)

Naman Mathpal (s0590500)

Bhoomika Jagadeesha (s0590573)

Jui Prasad Kulkarni (s0590496)

Ankit Satish Gupta (s0590516)

INDEX

- 1. Where we are ? CRISP DM
- 2. Our Best Model
- 3. Steps of Model Building
- 4. Scaling before model building... But Why?
- 5. Optimal Parameters for Imbalance and Imputation
- 6. Grid search
- 7. Evaluation of our Model
- 8. Model Quality with confusion matrix
- 9. Learning Curve
- 10. Feature Engineering
- 11. Loss cost and wrongly classified wafers
- 12. K Fold Cross Validation
- 13. Best Practices and key takeaways
- 14. Summary

CRoss Industry Standard Process for Data Mining

Best Model

Model	F1 Score	Loss Cost	FP Type I	FN-Type II	Accuracy
Final	0.893	114000	29	17	89.08%

Steps of Model Building Process

Steps of Model Building Process

STEP 8

K Fold Cross
Validation

STEP 1 Business/Data Understanding

Pareto chart Missing Values

STEP 2 Analysis

Percentage of Outliers

STEP 3

Data Splitting

STEP 4 Data Preparation

STEP 4

Data Preparation

STEP 5 Data Modelling and Evaluation

STEP 5 Data Modelling and Evaluation

Name	Decisions in CRISP DM	Model approach	Model assessment											
			Accuracy	Train error	Test error	TP	FP	FN	TN	Loss cost	Precisi on	Recall	F1_scor e	AUC
Model 1	Data preparation-Rough feature reduction, Outlier Analysis, Missing value Imputation, Feature selection Data Modeling - Balancing and Resampling, Model building	65% threshold, replace outliers with 3s, KNN Imputation, Boruta, SMOTE balancing, Random forest	0.91	0	0.09	351	15	2 2	4	125000	0.21	0.1538 46	0.177778	0.556431
Model 2	Data preparation-Rough feature reduction, Outlier Analysis, Missing value Imputation, Feature selection Data Modeling - Balancing and Resampling, Model building	45% threshold, remove outliers, KNN Imputation, Boruta, ROSE balancing, Random forest	0.93			365	1	2 5	1	126000	0.5	0.0384 62	0.071429	0.517865
Model 3	Data preparation-Rough feature reduction, Outlier Analysis, Missing value Imputation, Feature reduction Data Modeling - Balancing and Resampling, Model building	50% threshold, replace outliers with 3s , MICE Imputation, PCA, SMOTE balancing, Random forest	0.93			363	3	25	1	128000	0.25	0.03846 2	0.066667	0.515132
Customiz ed Model	Feed No.1 features to build the model by Boruta ranking	65% threshold, replace outliers with 3s boundaries, KNN, No.1 features by BORUTA, SMOTE, Random forest	0.90	0	0.11	348	18	2	6	124000	0.2	0.23076 92	0.214285 71	0.5626 83

- 1. Scaling ensures uniformity, improves performance of algorithms, and reduces biases.
- 2. Features with higher ranges are more likely to be chosen by the model.
- 3. Since we use SVM and KNN which is sensitive to the scale of features, we choose the min-max scaling method.

Optimal Parameters

SECOM CASE STUDY

Boruta+smote highest F1 scores, precisions and lowest Loss

Majorly scores are highest for **RF**, **NB** and **SVM**

Hyperparameter tuning

Min max scalling

FP cost – 1000 FN cost - 5000

Models		cision Parison	Recall comparison			F1 score comparison		Accuracy comparison		Cost arison
	Before	After	Before	After	Before	After	Before	After	Before	After
SVC	0.11	0.08	0.31	0.15	0.16	0.10	0.79	0.82	153000	158000
Gaussia nNB	0.17	0.17	0.58	0.58	0.26	0.26	0.78	0.78	130000	130000
Random forest	0.25	0.25	0.23	0.23	0.24	0.24	0.90	0.90	118000	118000

Larger gap between scores for Random Forest.

Though for SVC and NB models the gap is less the **training and** validation score is less

Feature Engineering

- Intervals between each wafer production
- Can monitor production flow

Feature 592 (Timestamp)

19/07/2008 11:55:00 19/07/2008 12:32:00 19/07/2008 13:17:00 19/07/2008 14:43:00 19/07/2008 15:22:00

New feature

elapsed_time

Occured after 37 minutes
Occured after 82 minutes
Occured after 168 minutes
Occured after 207 minutes
.

IMPACT

Selected Features: ['feature1', 'feature34', 'feature60', 'feature66', 'feature104', 'feature130', 'feature131', 'feature511', 'elapsed_time']

Evaluation

FP cost – 1000 FN cost - 5000

Model 1 - Before Tuning	Model 2 - Before Tuning	Model 3 - Before Tuning
Model 1 - After Tuning	Model 2 - After Tuning	Model 3 - After Tuning

Model		core prison		cost arison	T comp	N arison	comp		F comp	N arison	T comp	P arison
	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After
Model1	0.849	0.893	119,000	114,000	302	337	64	29	11	17	15	9
Model2	0.255	0.918	115,000	108,000	274	358	19	8	19	20	2	6
Model3	0.686	0.686	228,000	228,000	218	218	148	148	16	16	10	10

Confusion Matrix

Model 2: Prioritizes economic loss minimization but may compromise on balance

Model 1: Offers balanced performance

Model 3: Maximizes true positives, suitable where the high cost of false positives is acceptable

Model 1 - Before Tuning

Model 2 - Before Tuning

Model 3 - Before Tuning

K Fold cross validation

	Loss cost model 2 After tuning
114000	108,000

K fold Stratified Validation

• Eva

Learning Curve

Before Tuning

Training Score (0.95):

Indicates that the model fits the training data very well but not perfectly-low bias without overfitting.

Reduced Gap Between Scores:

A good bias-variance tradeoffreduced overfitting or underfitting significantly.

Cross-Validation Score (0.85):

Indicates that the model generalizes well to unseen data, suggesting reduced variance.

Consistency:

The reduced variance around the cross-validation score line indicates more consistent performance.

SECOM CASE STUDY

After Kfold Reduced Bias Reduced Variance **Trade Off-2**

Key Takeaways

- > Scaling is Required: Ensures equal range of features in distance-based algorithms.
- > Iterative Nature: CRISP-DM methodology facilitated continuous model improvement.
- > **Grid Search**: Systematically optimized hyperparameters for best performance.
- ➤ **Different Models Tested**: SVM didn't performed well; Random Forest had best loss cost hence economically reliable; Naïve Bayes excelled in true positives.
- > Feature Engineering: Crucial for enhancing model performance after business understanding.
- ➤ K-Fold Cross Validation: Provided reliable performance estimation and maximized data usage.
- > Learning Curve Analysis: Showed the impact of hyperparameters on model performance.
- > Loss Cost: Ideal for minimizing economic loss in priority scenarios. Its the trade of point.

Conclusion

- ➤ **High Business Risk**: The cost of labeling a faulty chip as good is significantly higher than labeling a good chip as faulty.
- Data Treatment: Handling zero variance, outliers, and skewed data is crucial in model building.
- ➤ **Beyond Accuracy**: Accuracy alone is insufficient; loss cost analysis and volatility are critical for evaluating model performance in high-risk scenarios.

Vielen Dank für Ihre Aufmerksamkeit!