Image Graph Spectrum

Chaitanya Patel

CVIT, IIIT-Hyderabad

June, 2017

Outline

Introduction to Image Graph

Image Graph

Definition of Image Graph Function p

Laplacian

Incident Matrix Laplacian Matrix

Obtaining optimum p

Laplacian's relation to function p eigenvectors of L as p

Conclusion

Introduction to Image Graph

- ► For image segmentation, clustering, etc. Graph Spectral Analysis has been extensively used.
- Image is represented as a weighted complete graph. Each pixel represents a vertex.
- Edge weights are assigned as per affinity between pixels. Affinity can be defined on the basis of various properties :
 - Intensity difference between two vertices
 - Gradient difference between two vertices
 - Difference between some other feature calculated at each pixel e.g. sift

Image Graph

- ▶ Image Graph is represented as G(V, E, W)
- ▶ V contains all image pixels as vertices. If there are total n pixels in the image then |V| = n
- ▶ E contains all pairwise relationship between every pair of vertices(pixels) thus making G a complete graph. $|E| = \binom{n}{2}$ for undirected graph
- ▶ The weight $w_{ij} \ge 0$ associated with an edge $(v_i, v_j) \in E$ encodes the affinity between the pixels represented by vertices v_i and v_j . We can collect these weights into an $n \times n$ affinity matrix $W = (w_{ij})_{i,j=1,...,n}$

Function p

- ▶ We want to define a function $p:V\to\mathbb{R}$ such that it is a continuous function i.e. difference between $p(v_i)$ and $p(v_j)$ inversely follows w_{ij}
- It is equivalent to say that we want to minimize

$$\lambda = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (p(v_i) - p(v_j))^2$$

▶ Let Matrix P be defined as $\begin{bmatrix} p(v_1) \\ p(v_2) \\ \vdots \\ p(v_{|V|}) \end{bmatrix}$

Incident Matrix

▶ For any directed graph G(V, E), consider

$$V = \{v_1, v_2, \dots v_{|V|}\}$$

 $E = \{e_1, e_2, \dots, e_{|E|}\}$

- ▶ Incident Matrix ∇ is $|E| \times |V|$ matrix such that if k^{th} edge is from v_i to v_j with weight w_{ij} then
 - $\nabla_{ki} = +w_{ij}$
 - ▶ $\nabla_{kj} = -w_{ij}$
 - ▶ $\nabla_{km} = 0, \forall m \neq i, j$

Laplacian Matrix

- $L = \nabla^T \nabla$ is called laplacian of graph
- ▶ L is $|V| \times |V|$ matrix where

$$L_{ii} = \sum_{j=1}^{|V|} w_{ij}$$
$$L_{ij} = -w_{ij}$$
$$L_{i \neq i}$$

▶ L = D - W where D is degree matrix and W is adjacency matrix

Laplacian's relation to function p

• We can show that $P^T L P = \frac{\lambda}{2}$

$$P^{T}LP = P^{T}(D - W)P$$

= $P^{T}DP - P^{T}WP$

- ▶ Take $d_{ii} = (i^{th} \text{ diagonal entry in } D)$ and $p_i = p(v_i)$
- First term is

$$P^T DP = \sum_{i=1}^{|V|} d_{ii} p_i^2$$

second term is

$$P^{T}WP = \sum_{i=1}^{|V|} \sum_{i=1}^{|V|} p_{i}p_{j}w_{ij}$$

Laplacian's relation to function p (cont.)

$$P^{T}LP = \sum_{i=1}^{|V|} d_{ii}p_{i}^{2} - \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} p_{i}p_{j}w_{ij}$$

$$= \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} w_{ij}p_{i}^{2} - \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} p_{i}p_{j}w_{ij}$$

$$= \frac{1}{2} (\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} w_{ij}p_{i}^{2} + \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} w_{ij}p_{j}^{2} - 2 \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} p_{i}p_{j}w_{ij})$$

$$= \frac{1}{2} \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} w_{ij}(p_{i} - p_{j})^{2}$$

$$= \frac{\lambda}{2}$$

Courant-Fischer Formula

▶ Courant-Fischer Formula for any $n \times n$ symmetric matrix A

$$\lambda_{1} = \min_{||x||=1}(x^{T}Ax)$$

$$\lambda_{2} = \min_{\substack{||x||=1 \\ x \perp v_{1}}}(x^{T}Ax)$$

$$\vdots$$

$$\lambda_{max} = \max_{||x||=1}(x^{T}Ax)$$

Here v_1, v_2, v_3, \cdots are eigenvectors corresponding to eigenvalues $\lambda_1, \lambda_2, \lambda_3, \cdots$ where $\lambda_1 \leq \lambda_2 \leq \lambda_3 \cdots$

We know $P^T L P = \frac{\lambda}{2}$ and L is symmetric. Thus eigenvectors of L corresponding to smallest eigenvalues, represent such possible P's that minimizes λ

Conclusion

- ► For any image, a weighted graph is constructed considering each pixel a vertex.
- Edge weights are assigned according to affinity of vertices.
- Laplacian is obtained from adjacency matrix using formula L = D W
- Normalized laplacian can be obtained by formula $L = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- ▶ Eigen Decomposition of L gives v_1 as a trivial solution and v_2, v_3, \cdots as desired solutions