

姓名: 李拉 学号: 11711419 实验日期: 4.18.

触发器 (R-S、D、J-K)

1. 实验目的

- ▶ 熟悉并掌握 R-S、D、J-K 触发器的构成、工作原理和功能测试方法;
- ▶ 学会正确使用触发器集成芯片;
- 了解不同逻辑功能触发器相互转换的方法。

2. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	模电数电综合实验箱	TPE-ADII	1	
5	元器件	74LS74 双D触发器 1片, 74LS112 双J-K触发器 1片, 74LS00 二输入端四与非门 1片	3	

3. 实验内容

3.1 基本 R-S 触发器功能测试

两个 TTL 与非门首尾相接构成的基本 R-S 触发器的电路如图 1.1 所示,按 照表 1.1 的输入顺序在输入端加入信号,观察并记录触发器的输出状态,将结 果填入表 1.1 中,并说明在上述各种输入状态下,触发器执行的是什么功能?

图 1.1 R-S Flip-Flop

南方科技大学

表 1.1 R-S Flip-Flop 逻辑功能测试

\overline{S}_d	\overline{R}_d	Q	Q	逻辑功能
0	1	1	0	1
1	1	1	0	好-据
1	0	0	, .	Po
1	1	0	,	14 ts

将输入端按如下要求接入电平或者脉冲,画出输入输出的波形图。

a) $\overline{S}_d = 0$, \overline{R}_d 端加脉冲:

包 c) 连接 \overline{S}_a 、 \overline{R}_a 并加脉冲

当 \bar{S}_a 、 \bar{R}_a 都接低电平时,观察Q、 \bar{Q} 端的状态。当 \bar{S}_a 、 \bar{R}_a 同时由低电平跳 为高电平时,注意观察 Q、Q端的状态,重复 $3\sim5$ 次看 Q、Q端的状态是否相同, 以正确理解"不一定"状态的含义。

3.2边沿D触发器功能测试

双D型正边沿维持-阻塞型触发器74LS74引脚图如2.1所示。图中PR、CLR为异 步置位端、复位端,低电平有效,CLK为时钟输入端,D为数据输入端,Q及Q为 输出端。

图 2.1 74LS74 引脚图

按下表设置输入端,然后观察输出端的状态,将结果填入表2.1中。

表 2.1

AZ 2.								
PR	CLR	CLK	D	Q^{n}	Q^{n+1}			
0	1	V	V	0	1			
	1 X	X	1	1				
	0	X	X	0	0			
				1	0			
	1	1	0	0	0			
				1	0			
1	1	1	1	0	*			
				1	1			

表中X表示无关项, 个为上升沿, 由实验箱上的手动脉冲实现。

使得PR = CLR = 1,将D与 \overline{Q} 端相连,CLK加连续脉冲,用示波器观察并记录 Q相对于CLK的波形。

3.3 负边沿J-K触发器功能测试

双J-K负边沿触发器74LS112的引脚图如图3.1所示,

图 3.1 双 J-K 负边沿触发器 74LS112 引脚图

表 3.1 双 J-K 负边沿触发器 74LS112 的逻辑功能测试

	PR	CLR	CLK	J	K	Q^n	Q^{n+1}
Ī	0	1	X	X	X	X	1
	1	0	X	X	X	X	0
	1	1	+	0	X	0	0
	1	1	+	1	X	0	1
	1	1	+	X	0	1	
	1	1	+	X	1	1	0

若令 J = K = 1 时,CLK 加连续脉冲,用示波器观察 Q-CLK 波形,和边沿 D 触发器的 D 与 \bar{Q} 端相连时观察到的 Q 端波形相比较,有何异同点?

CIK 11111 上海路高山上中湖沿城的左圆桥市、与边边为南坡丛相。 (2) 11111 上海路高山下洋海边沿海坡。 丁埔坡路面为下洋海边沿海坡。 同:杨岩山东南北部等(下江湖中市等3-1省。

3.4触发器功能转换

分别将 D 触发器和 J-K 触发器转换为 \mathbf{T}' 触发器 (特性方程: $Q^{n+1} = (Q^n)'$),列出表达式,画出实验电路图。

接入连续脉冲,观察各触发器 CLK 及 Q端波形,比较两者关系。

超过地的改装后,而有都安建了四十角蛇器的路 一种机能的的看 口触器放放下,为上升沿边沿艇发 个了一个角蛇器。从成下,为一种路边沿艇发 一者同村完成输出将 clantable kan 作用

数字电路实验报告。前方教及大学和社

京海 学号: 11410245 实验日期: 2016、4.20

触发器 (R-S、D、J-K)

1. 实验目的

- ▶ 熟悉并掌握 R-S、D、J-K 触发器的构成、工作原理和功能测试方法;
- ▶ 学会正确使用触发器集成芯片;
- > 了解不同逻辑功能触发器相互转换的方法。

2. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4.	模电数电综合实验箱	TPE-ADII	1	
5.	元器件	74LS74 双D触发器 1片, 74LS112 双J-K触发器 1片, 74LS00 二输入端四与非门 1片	3	

3. 实验内容

3.1 基本 R-S 触发器功能测试

两个 TTL 与非门首尾相接构成的基本 R-S 触发器的电路如图 1.1 所示, 按 照表 1.1 的输入顺序在输入端加入信号,观察并记录触发器的输出状态,将结 果填入表 1.1 中, 并说明在上述各种输入状态下, 触发器执行的是什么功能?

数字电路实验报告。约于好及大学和过

a) $\bar{S}_a = 0$, \bar{R}_a 端加脉冲:

c) 连接 \bar{S}_a 、 \bar{R}_a 并加脉冲

当 \bar{S}_a 、 \bar{R}_a 都接低电平时,观察Q、 \bar{Q} 端的状态。当 \bar{S}_a 、 \bar{R}_a 同时由低电平跳

为高电平时,注意观察 Q、Q端的状态,重复 $3\sim5$ 次看 Q、Q端的状态是否相同, 以正确理解"不一定"状态的含义。

3.2边沿 D 触发器功能测试

双D型正边沿维持-阻塞型触发器74LS74引脚图如2.1所示。图中PR、CLR为异 步置位端、复位端,低电平有效,CLK为时钟输入端,D为数据输入端,Q及Q为 输出端。

数字电路实验报告。第一方科技大学和社

图 2.1 74LS74 引脚图

按下表设置输入端,然后观察输出端的状态,将结果填入表2.1中。

	表 2.1							
PR	CLR	CLK	D.	- Q" -	Q^{n+1}			
0	1	X	X	0	I			
	1			1	1			
	0	X	X	0	D			
1				1	0			
		^	0**	0	0			
1	1			1	0/			
1	1	^	1	0	1			
		T		1 1 1	7			

表中X表示无关项, 个为上升沿, 由实验箱上的手动脉冲实现。

使得PR = CLR = 1,将D与Q端相连,CLK加连续脉冲,用示波器观察并记录

3.3 负边沿J-K触发器功能测试

双J-K负边沿触发器74LS112的引脚图如图3.1所示,

图 3.1 双 J-K 负边沿触发器 74LS112 引脚图

表 3.1 双 J-K 负边沿触发器 74LS112 的逻辑功能测试

PR	CLR	CLK	J	K	Q"	Q^{n+1}			
0	1	X	X	X	X	1			
1	0	X	X	X	X	0			
1	1	+	0	X	0	0			
1	1	+	1	X	0	I			
1	1	+	X	0	1	1			
1	1	1	X	1,	1	0			

若令J=K=1时, CLK加连续脉冲,用示波器观察Q-CLK波形,和边沿D触发

3.4触发器功能转换

分别将 D 触发器和 J-K 触发器转换为 T' 触发器, 列出表达式, 画出实验电路

图。

接入连续脉冲,观察各触发器 CLK 及 Q 端波形,比较两者关系。

相同点:都是边沿触发Q的翻转、Q的脚路CLk的之

洞点: D放下触发器。当CLK上针沿触发及翻转

JK效了的被发器当CLK下降治触发Q翻卷。