SPECTRAL RIGIDITY OF HURWITZ SURFACES

JUSTIN KATZ

For an element $\gamma \in \mathrm{PSL}(2,\mathbb{R})$, there is a unique lift $\tilde{\gamma} \in \mathrm{SL}(2,\mathbb{R})$ such that $\mathrm{Tr}(\tilde{\gamma}) \geq 0$. Define $\mathrm{Tr}(\gamma) := \mathrm{Tr}(\tilde{\gamma})$. We say that an element $\gamma \in \mathrm{PSL}(2,\mathbb{R})$ is hyperbolic if $\mathrm{Tr}(\gamma) > 2$. In this case, there is a unique real number $N(\gamma) > 1$ such that $\tilde{\gamma}$ is conjugate in $\mathrm{SL}(2,\mathbb{R})$ to $\binom{N(\gamma)}{0} \binom{0}{N(\gamma)^{-1}}$. We call $N(\gamma)$ the norm of γ . The norm and trace are related by the equation $\mathrm{Tr}(\gamma) = N(\gamma) + N(\gamma)^{-1}$. In particular, they uniquely determine one another.

Let $\Gamma \leq \mathrm{PSL}(2,\mathbb{R})$ be a cofinite Fuchsian group. We say that a hyperbolic element γ is primitive if it is not a proper power. Let $[\Gamma]_{\mathrm{prim}}$ denote the collection of conjugacy classes of primitive hyperbolic elements of Γ . Since trace and norm are both conjugation invariant, we may extend their definition to $[\Gamma]_{\mathrm{prim}}$.

$$Z_{\gamma}(s,\rho) := \prod_{[\gamma] \in [\Gamma]_p} \prod_{k=0}^{\infty} \det(1 - \rho(\gamma)N(\gamma)^{-(s+k)})$$

0.0.0.1 Multiplicative independence

Set $\Lambda_{\Gamma}(s,\rho) = \log Z_{\Gamma}(s,\rho)$. Compute for $\operatorname{Re}(s) \gg 0$,

$$\begin{split} \Lambda_{\Gamma}(s,\rho) &= \sum_{[\gamma] \in [\Gamma]_p} \sum_{k=0}^{\infty} \log \det(1 - \rho(\gamma) N(\gamma)^{-(s+k)}) \\ &= \sum_{[\gamma] \in [\Gamma]_p} \sum_{k=0}^{\infty} \operatorname{Tr} \log(1 - \rho(\gamma) N(\gamma)^{-(s+k)}) \\ &= -\sum_{[\gamma] \in [\Gamma]_p} \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \frac{\chi_{\rho}(\gamma^m)}{m} N(\gamma)^{-m(s+k)}, \end{split}$$

since $\log(1-A) = -\sum_{m=1}^{\infty} \frac{A^m}{m}$ for any matrix A with sufficiently small entries. In the last line, $\chi_{\rho}(\gamma) = \text{Tr}(\rho(\gamma))$ is the character of ρ .

The expression in the last line of the previous display is sensible for χ_{ρ} for any class function on Γ . For χ a class function on Γ , we take this as a definition of $\Lambda_{\Gamma}(s,\chi)$ and thereby $Z_{\Gamma}(s,\chi)$. For a class function χ , suppose there are finitely many nonzero rational numbers a_{ρ} , for $\rho \in \hat{\Gamma}$ such that $\chi = \sum_{\rho \in \hat{\Gamma}} a_{\rho} \chi_{\rho}$. We call such a χ a *virtual character*, and write $\chi \in Vchar(\Gamma)$. For such a χ ,

$$\Lambda_{\Gamma}(s,\chi) = \sum_{\rho \in \hat{\Gamma}} a_{\rho} \Lambda_{\Gamma}(s,\rho)$$

and

$$Z_{\Gamma}(s,\chi) = \prod_{\substack{\rho \in \hat{\Gamma} \\ 1}} Z_{\Gamma}(s,\rho)^{a_{\rho}}$$

2 JUSTIN KATZ

Suppose there is some multiplicative dependency among the functions $Z_{\Gamma}(s, \rho_1), ..., Z_{\Gamma}(s, \rho_n)$, i.e. there are rational numbers a_{ρ_i} so that $\prod_{i=1}^n Z_{\Gamma}(s, \rho_i)^{a_{\rho_i}} = 1$. Then this may be expressed concisely as $Z_{\Gamma}(s, \chi) = 1$, where $\chi = \sum_{i=1}^n a_{\rho_i} \chi_{\rho_i}$.

Let $\Gamma' \leq \Gamma$ be a finite index normal subgroup, and set $G = \Gamma' \setminus \Gamma$. For each class function χ of G, let $\tilde{\chi}$ be its inflation to Γ . Now suppose χ is a virtual character of G such that $Z_{\Gamma}(s, \tilde{\chi}) = 1$. This is equivalent to

$$\Lambda_{\Gamma}(s,\tilde{\chi}) = -\sum_{[\gamma] \in [\Gamma]_p} \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \frac{\tilde{\chi}(\gamma^m)}{m} N(\gamma)^{-m(s+k)} = 0$$

Recall (find ref) the uniqueness principle for generalized Dirichlet series: let $\nu_1, \nu_2, ...$ be a sequence of distinct positive real numbers and $a(\nu_1), a(\nu_2), ...$ a sequence of complex numbers such that the series

$$\sum_{i=1}^{\infty} a(\nu_i) \nu_i^{-s}$$

converges absolutely to an analytic function f(s) for Re $s \gg 0$. Then f(s) = 0 identically if and only if $a(\nu_i) = 0$ for all ν_i .

In order to apply the uniqueness principle for (generalized) Dirichlet series, we must collect summands according to their base. To this end, let \mathcal{N}_{Γ} denote the *primitive norm spectrum of* Γ . That is, \mathcal{N}_{Γ} is the (multi-)set of values taken by the norm map N at primitive hyperbolic conjugacy classes in Γ . For every real number ν , let $\mathcal{N}_{\Gamma}(\nu)$ denote the collection of classes $[\gamma] \in [\Gamma]_p$ with $N(\gamma) = \nu$. By definition, $\mathcal{N}_{\Gamma}(\nu)$ is empty unless $\nu \in \mathcal{N}_{\Gamma}$. Now we have

$$\Lambda_{\Gamma}(s,\tilde{\chi}) = -\sum_{\nu \in \mathcal{N}_{\Gamma}} \sum_{[\gamma] \in \mathcal{N}_{\Gamma}(\nu)} \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \frac{\tilde{\chi}(\gamma^m)}{m} \nu^{-m(s+k)} = 0.$$

The sum over k is a geometric series with base ν^{-m} , so

$$\Lambda_{\Gamma}(s,\tilde{\chi}) = -\sum_{\nu \in \mathcal{N}_{\Gamma}} \sum_{[\gamma] \in \mathcal{N}_{\Gamma}(\nu)} \sum_{m=1}^{\infty} \frac{\tilde{\chi}(\gamma^m)}{m(1-\nu^{-m})} \nu^{-ms} = 0$$

The set consisting of all powers of a fixed primitive norm and the set consisting of a fixed power of all primitive norms may intersect nontrivially. Indeed, by McReynolds-Lafont, arithmetic non-compact hyperbolic surfaces admit arbitrarily long arithmetic progressions in their length spectrum.

For each primitive norm ν , and each integer m>0, let $A_m(\nu)$ denote the set of primitive hyperbolic conjugacy classes $[\gamma]$ in Γ , such that $N(\gamma^m)=\nu$. For a fixed $\nu\in\mathcal{N}_{\Gamma}$, only finitely many $A_m(\nu)$ are nonempty. Let $m(\nu)$ be the largest m such that $A_m(\nu)$ is nonempty. Then we have a partition $\mathcal{N}_{\Gamma}(\nu)=A_1(\nu)\sqcup\ldots\sqcup A_{m(\nu)}(\nu)$. Thus, for each $\nu\in\mathcal{N}_{\Gamma}$, the coefficient $b(\nu,\chi)$ of ν^{-s} in $\Lambda_{\Gamma}(s,\chi)$ is

$$b(\nu, \chi) := -\sum_{m=1}^{m(\nu)} \frac{1}{m(1 - \nu^{-m})} \sum_{[\gamma] \in A_m(\nu)} \tilde{\chi}(\gamma^m).$$

which we conclude is zero for every primitive length ν . This does not immediately imply that the class function $\tilde{\chi}$ is zero.

Indeed, for each fixed ν , as we vary χ among the virtual characters, the function $\lambda_{\nu}: \chi \mapsto b(\nu, \chi)$ is actually a linear functional on the vectorspace Vchar($\Gamma' \setminus \Gamma$). In order to conclude that $\chi = 0$, we

must demonstrate that the (infinite!) set of functionals $\{\lambda_{\nu} : \nu \in \mathcal{N}_{\Gamma}\}$ spans the (finite dimensional!) dual space to Vchar($\Gamma' \setminus \Gamma$).

0.0.0.2 Conjugacy classes in GL(2,q) and PGL(2,q)

Let q be an odd prime power and set G = GL(2,q) and $\bar{G} = PGL(2,q) = G/Z$ where Z is the center of G. For an element $g \in G$, define the *characteristic polynomial* $p_g := x^2 - \operatorname{tr}(g)x + \det(g) \in F_q[x]$. Among non central conjugacy classes, the characteristic polynomial of an element completely determines its class:

Lemma 1. Suppose g and h are non central. Then g and h are conjugate in G if and only if $p_g = p_h$

Proof. This follows from the theory of Jordan normal forms.

Conjugation in \bar{G} can be described in terms of conjugation in G:

Lemma 2. Elements gZ and hZ in \bar{G} are conjugate if and only if g is conjugate to λh in G for some $\lambda \in Z$.

For an element gZ of \bar{G} , let \bar{p}_{gZ} denote the collection of characteristic polynomials of lifts of gZ to G. That is, $\bar{p}_{gZ} = \{p_{\lambda g} : \lambda \in Z\}$. Combining the preceding lemmas, we obtain a characterization of nonidentity conjugacy classes in \bar{G} :

Lemma 3. Nonidentity elements gZ and hZ are conjugate in \bar{G} if and only if $\bar{p}_{qZ} = \bar{p}_{hZ}$.

0.0.0.3 Multiplicative independence for principal congruence covers of semi-arithmetic surfaces

Now suppose Γ is a subgroup of $\operatorname{PGL}(2, \mathcal{O}_K)$ where K is a totally real number field, and \mathcal{O}_K is its ring of integers. We further suppose that under some embedding $K \to \mathbb{R}$, the image of Γ is a lattice in $\operatorname{PGL}(2,\mathbb{R})$. For any prime ideal \mathfrak{p} of \mathcal{O}_K , the reduction mod \mathfrak{p} map $\mathcal{O}_K \to \mathbb{F}_{\mathfrak{p}} := \mathcal{O}_K/\mathfrak{p} \mathcal{O}_K$ induces a map $\operatorname{PGL}(2,\mathcal{O}_K) \to G(\mathfrak{p}) := \operatorname{PGL}(2,\mathbb{F}_{\mathfrak{p}})$. Let $\pi_{\mathfrak{p}}$ be its restriction to Γ . For each \mathfrak{p} , define the principal congruence subgroup $\Gamma(\mathfrak{p}) := \ker \pi_{\mathfrak{p}}$ of level \mathfrak{p} . Let S be the set of primes \mathfrak{p} such that the map $\pi_{\mathfrak{p}}$ is surjective. Thus, when $\mathfrak{p} \in S$, $\pi_{\mathfrak{p}}$ induces an isomorphism of $\Gamma(\mathfrak{p}) \setminus \Gamma$ with $G(\mathfrak{p}) = \operatorname{PGL}(2, \mathcal{O}_K/\mathfrak{p}\mathcal{O}_K)$. If H is one of the groups $\Gamma, \Gamma(\mathfrak{p})$ or $G(\mathfrak{p})$, let H denote its lift to $\operatorname{GL}(2, \mathbb{F}_{\mathfrak{p}})$.

Theorem 1. Suppose $\gamma \in \Gamma - \Gamma(\mathfrak{p})$ is hyperbolic and that the characteristic polynomial p_{γ} is irreducible over K. If $\lambda \in \Gamma$ is such that $N(\gamma) = N(\lambda)$, then $\pi_{\mathfrak{p}}(\gamma)$ and $\pi_{\mathfrak{p}}(\lambda)$ are conjugate in $G(\mathfrak{p})$.

Proof. It suffices to show that $N(\gamma)$ completely determines the characteristic polynomial p_{γ} . To this end, observe that the characteristic polynomial p_{γ} of γ is also the minimal polynomial for the unit N_{γ} in the quadratic extension $K_{\gamma} := K(N(\gamma))$ of K. Let σ denote the nontrivial Galois automorphism of K_{γ}/K . Then $p_{\gamma} = (t - N(\gamma))(t - N(\gamma)^{\sigma})$, as claimed. Specifically, the constant term $\det(\gamma)$ of p_{γ} is the Galois norm $N(\gamma)N(\gamma)^{\sigma}$ of the quadratic unit $N(\gamma)$.

JUSTIN KATZ

4

Corollary 1. Suppose χ is the inflation of a class function from $G(\mathfrak{p})$ to Γ . Then χ is constant along each set $\mathcal{N}_{\Gamma}(\nu)$ such that $\nu \neq 1 \mod \mathfrak{p}$. If $\nu = 1 \mod \mathfrak{p}$, and $\mathcal{N}_{\Gamma}(\nu) \cap \Gamma(\mathfrak{p}) = \emptyset$, then χ is constant on $\mathcal{N}_{\Gamma}(\nu)$.

Theorem 2. Suppose Γ is as above, and $\mathfrak{p} \in S$. Let χ be a class function on Γ inflated from one on $G(\mathfrak{p})$. Then $\Lambda_{\Gamma}(s,\chi)=0$ if and only if $\chi=0$.

Proof. If $\Lambda_{\Gamma}(s,\chi) = 0$, then for all $\nu \in \mathcal{N}_{\Gamma}$, we have $b(\nu,\chi) = 0$.

First, suppose $\nu \neq 1 \mod \mathfrak{p}$. Then along the set $\mathcal{N}_{\Gamma}(\nu)$ of primitive hyperbolic $\gamma \in \Gamma$ with norm ν , the function χ takes a common value which we denote $\chi(\nu)$. Let $a_m(\nu)$ denote the cardinality of $A_m(\nu)$, the set of primitive hyperbolic $\gamma \in \Gamma$ such that $N(\gamma^m) = \nu$. Then

$$b(\nu, \chi) = -\sum_{m=1}^{m(\nu)} \frac{a_m(\nu)}{m(1 - \nu^{-m})} \chi(\nu) = 0$$

To conclude that $\chi(\nu) = 0$, it suffices to demonstrate the existence of a primitive hyperbolic $\gamma \in \Gamma$ such that $N(\gamma) = \nu \mod \mathfrak{p}$. This follows from the Cheboratev density theorem of (cite Sarnak):

Theorem 3. Let C be a conjugacy class in $G(\mathfrak{p})$ and F(T,C) denote the collection of primitive hyperbolic γ in Γ with $N(\gamma) < T$ such that $\pi_{\mathfrak{p}}(\gamma) \in C$. Then as $T \to \infty$,

$$F(T,C) = \frac{|C|}{|G(\mathfrak{p})|} \frac{T}{\log T} + o(1).$$

Thus, for any primitive hyperbolic $\gamma \in \Gamma$ with $N(\gamma) \neq 1 \mod \mathfrak{p}$, we have $\chi(\gamma) = 0$.

Now suppose $\nu = 1 \mod \mathfrak{p}$. Then if $\gamma \in \mathcal{N}_{\Gamma}(\nu)$, either $\pi_{\mathfrak{p}}(\gamma) \in I$ the identity conjugacy class, or $\pi_{\mathfrak{p}}(\gamma) \in P$ the unique parabolic conjugacy class in $G(\mathfrak{p})$. Note that |I| = 1, and $|P| = q^2 - 1$, where $q = |O_K/\mathfrak{p}O_K|$. By Sarnak's version of Chebotarev's density theorem, there are infinitely $\nu \in \mathcal{N}_{\Gamma}$ with $\nu = 1 \mod \mathfrak{p}$ such that $\mathcal{N}_{\Gamma}(\nu) \cap \Gamma(\mathfrak{p}) = \emptyset$. For any such ν , χ is constant along $\mathcal{N}_{\Gamma}(\nu)$. As above, for such ν , $b(\nu, \chi) = 0$ implies $\chi(\nu) = 0$.