Let's say you are considering buying a house in a certain neighbourhood. When you are deciding to buy in the neighbourhood your realtor (sensing your snobbiness) mentions to you that the average income in this neighbourhood is \$100,000. You decide to buy the house.

A year later, the same realtor knocks on your door. Now he is acting as a representative of the neighbourhood taxpayers' association. He wants you to sign a petition to decrease property taxes. After all, he says, the residents can't afford an increase in property taxes since the average family income in the neighbourhood is only \$25,000.

The two common descriptions over data:

- Location (central tendency or moment)
 - Where is the weight of the data?

Spread

 How far apart is the smallest and the largest data points?

(2 other less common descriptors: Skew, Kurtosis)

Mean salary of everyone present in a greasy spoon:

waiter	\$35000
Cook	\$30000
Dishwasher	\$25000
Customer 1	\$80000
Customer 2	\$50000
Customer 3	\$30000
Customer 4	\$45000

Mean:

waiter	\$35000
Cook	\$30000
Dishwasher	\$25000
Customer 1	\$80000
Customer 2	\$50000
Customer 3	\$30000
Customer 4	\$45000
Customer who is a Software Engineer	\$100000000

Median:

Midpoint of ordered data

\$35000 \$30000 \$25000 \$80000	Order data	\$25000 \$30000 \$30000 \$35000
\$50000		\$45000
\$30000		\$50000
\$45000		\$80000

Describing Data

If the software engineers annual wage was included:

Summary of location descriptors:

- Mean, Mode and Median usually give you slightly different information and have different benefits
- If data are skewed (or have outlier), median is a more fair reflection of the data
- Median (and its measure of spread, interquantile range) give quick information about the data without having to calculate anything
- Mean can be an artificial abstract whereas median is 'real'
- Why use the mean at all?
 - It allows you to answer questions about populations as a whole and do hypothesis testing
- Proportions are used on categorical data and 'behaves' similarly to a mean

Spread:

- Range
- Interquartile Range
- Variance

Standard Deviation

Coefficient of Variation

Interquartile Range:

 Divide data into four equal parts and see how far apart the extreme groups are

- Interquartile range = 3rd quartile 1st quartile
- Ex. Box and whiskers plots
 - Displays median and interquartile range
 - $-Q_1$ and Q_3

Box Plots: http://onlinestatbook.com/2/graphing_distributions/boxplot_demo.html

Coefficient of Variation (CV):

$$CV = 100\% \frac{s}{\overline{Y}}$$

Coefficient of Variation is the standard deviation expressed as a percentage of the mean

Graphing Data

Quantiles of a Frequency Distribution:

<u>Percentile:</u> The percentile of a measurement specifies the percentage of observations less than or equal to it; the remaining observations exceed it.

Ex: 50th percentile is the measurement that splits the frequency distribution into equal halves

Ex: 10th percentile is the measurement where 10% of the data are less than or equal to it (the other 90% are greater than it)

Quantile: X/100

Ex: 0.5 quantile = 50th percentile

Ex: 0.10 quantile = 10th percentile

Graphing Data

Multiple Cumulative Frequency Distribution:

Proportions

- The most important descriptor for categorical variables
- Similar to arithmetic mean

$$\hat{p} = \frac{NumberCategory}{n}$$

Manipulating Means:

- 1. E[X+Y] = E[X]+E[Y]
- 2. E[X+c] = E[X]+c
- 3. E[cX] = cE[X]
- 4. E[XY] = E[X]E[Y], iff X and Y are independent

Manipulating Variance:

- 1. Var[X+Y] = Var[X]+Var[Y], iff X and Y are independent
- 2. Var[X+c] = Var[X]
- 3. $Var[cX] = c^2Var[X]$