

Modern Portfolio Theory and beyond. Sesión II

Marcos Aza, PhD

Senior Investment Manager (QIS)

Santander AM

- **Hierarchical Risk Parity**
- **DeNoised Risk Parity**

Hierarchical Risk Parity

- Problemas con Risk Parity y SML
- Estimación de las rentabilidades
- Inversión de la matriz de covarianzas
- Comportamiento pobre OOS
- ¿Por qué?
- El problema está en el número de condición de la matriz de covarianzas
- El número de condición es la medida de sensibilidad de una función, en este caso, la función es la covarianza
- El número de condición de una matriz se define como $Cond(A) = \|A\| \cdot \|A^{-1}\|$
- es el ratio entre el mayo autovalor y el menor autovalo

Hierarchical Risk Parity

¿Por qué?

- El problema está en el número de condición de la matriz de covarianzas
- El número de condición es la medida de sensibilidad de una función, en este caso, la función es la covarianza
- El número de condición de una matriz se define como $Cond(A) = \|A\| \cdot \|A^{-1}\|$
- es el ratio entre el mayo autovalor y el menor autovalor, se dice que una matriz está bien condicionada si el número de condición es próximo a 1 (lo mejor es 1) y se dice que está mal condicionada cuando es mucho mayor que 1
- Si es mucho mayor que 1, indica que pequeñas variaciones de los datos implican variaciones gigantes de los resultados

Hierarchical Risk Parity ¿Por qué?

- El problema está en el número de condición de la matriz de covarianzas

Cuanto más correlacionados estén los activos, mayor será el número de condición es muy grande y más inestable es la matriz y peores son los resultados cuando más lo necesitamos.

Hierarchical Risk Parity

Las matrices de correlación no tienen respeto por la jerarquía... cualquier activo puede reemplazar a otro (o cambiar el peso) si cumple que minimiza la correlación.

Hierarchical Risk Parity ¿Cómo funciona? MLdeP (2018)

- Clustering de activos similares
- Cuasi-diagonalización de la matriz
- Bisección recursiva

Hierarchical Risk Parity

Clustering de activos similares

- Característica para agrupar los activos $d[X_i, X_j] = \sqrt{\frac{1}{2}(1 \rho_{i,j})}$
- Definimos distancia Euclídea \widetilde{d} : $\left(D_i, D_j\right) \subset B \to \mathbb{R} \in \left[0, \sqrt{N}\right] = \sqrt{\sum_{n=1}^N \left(d_{n,i} d_{n,j}\right)^2}$
- Agrupamos $(i^*, j^*) = \underset{i \neq j}{\operatorname{argmin}} \{\tilde{d}_{i,j}\}$ hasta que quede N -1

Hierarchical Risk Parity

Cuasidiagonalización de la matriz

- Agrupa activos con alta correlación y los de baja correlación de forma separada
- Reemplazos preservan el orden de la agrupación
- La matriz es casi diagonal
- Obtenemos los nuevos valores como

$$\widetilde{w}_i = \operatorname{diag}[V_i]^{-1} \frac{1}{\operatorname{tr}[\operatorname{diag}[V_i]^{-1}]}$$

Hierarchical Risk Parity

Bisección recursiva

- Asignamos los pesos en función de las varianzas de los diferentes clusters, respetando el orden y la posición en la jerarquía de los clusters

$$\alpha_i = 1 - \frac{\widetilde{V}_i^{(1)}}{\widetilde{V}_i^{(1)} + \widetilde{V}_i^{(2)}}$$

 Ponderaremos por alpha(i) o 1-alpha(i) los pesos dependiendo de si estamos en una u otra parta de la bisección

Hierarchical Risk Parity Discusión de resultados

Activos	Peso HRP	Peso RP	Peso IVP	EW
1	0,110	0,103	0,104	0,1
2	0,068	0,102	0,103	0,1
3	0,076	0,084	0,104	0,1
4	0,098	0,103	0,102	0,1
5	0,193	0,145	0,103	0,1
6	0,092	0,099	0,096	0,1
7	0,104	0,102	0,098	0,1
8	0,071	0,082	0,097	0,1
9	0,125	0,081	0,097	0,1
10	0,063	0,099	0,096	0,1

BME X

Plaza de la Lealtad, 1 · 28014 Madrid
Tel. +34 91 000 00 00 · Fax +34 91 000 00 00
info@dominio.es