Section 4.10: Antiderivatives

Given a function f, how do we find a function with derivative f and why would we be interested in such a function?

The Reverse of Differentiation

A function F is an **antiderivative** of the function f if

$$F'(x) = f(x)$$

for all x in the domain of f.

Knowing the rules of differentiation helps begin to find the antiderivatives of functions. For instance, consider the function f(x) = 2x. An antiderivative of f could be $F(x) = x^2$ since F'(x) = 2x. However, that is not the only function that has a derivative of 2x. Since the derivative of any constant is zero, other functions, such as $x^2 + 5$ or $x^2 - 2$ could also have a derivative of 2x.

General Form of an Antiderivative

Let F be an antiderivative of f over an interval I. Then,

- i. for each constant C, the function F(x) + C is also an antiderivative of f over I;
- ii. if G is an antiderivative of f over I, there is a constant C for which G(x) = F(x) + C over I.

In other words, the most general form of an antiderivative of f over I is F(x) + C.

Media: Watch this video to learn more about antiderivatives.

Media: Watch this video example on antiderivatives of monomials.

Media: Watch this video example on antiderivatives of rational functions.

Media: Watch this <u>video</u> example on antiderivatives of trigonometric functions.

Examples: For each of the following functions, find all antiderivatives.

1)
$$f(x) = 3x^2$$

Since $\frac{d}{dx}(x^3) = 3x^2$, then $F(x) = x^3$ is an antiderivative of $3x^2$. Every antiderivative of f(x) is of the form $x^3 + C$

2)
$$f(x) = \frac{1}{x}$$

Since $\frac{d}{dx}(\ln x) = \frac{1}{x}$ for x > 0 and $\frac{d}{dx}(\ln - x) = \frac{1}{x}$ for x < 0, then $\frac{d}{dx}(\ln |x|) = \frac{1}{x}$, so every antiderivative is of the form $\ln |x| + C$

3)
$$f(x) = \cos x$$

Since $\frac{d}{dx}(\sin x) = \cos x$ then every antiderivative is of the form $\sin x + C$

$$4) \quad f(x) = e^x$$

Since $\frac{d}{dx}(e^x) = e^x$ then every antiderivative is of the from $e^x + C$

Indefinite Integrals

We now look at the formal notation used to represent antiderivatives and examine some of their properties. Recall that when given a function f, we use the notation f'(x) or $\frac{df}{dx}$ to denote the derivative of f.

Given a function f, the **indefinite integral** of f, denoted $\int f(x) \ dx,$

Is the most general antiderivative of f. If F is an antiderivative of f, then $\int f(x) \ dx = F(x) + C.$

The expression f(x) is called the **integrand** and the variable x is the **variable of integration**. The act of finding the antiderivatives of a function f is usually referred to as **integrating** f.

For a function f and an antiderivative F, the functions F(x) + C, where C is any real number, are often referred to as the **family of antiderivatives** of f. For example, the collection of all functions of the form $x^2 + C$, where C is any real number, is known as the family of antiderivatives of 2x. The figure below shows a graph of this family.

The following table lists the indefinite integrals for several common functions.

Differentiation Formula	Indefinite Integral
d	C
$\frac{d}{dx}(k) = 0$	$\int k dx = \int kx^0 dx = kx + C$
$\frac{\frac{d}{dx}(k) = 0}{\frac{d}{dx}(x^n) = nx^{n-1}}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ for } n \neq -1$
$\frac{\frac{d}{dx}(\ln x) = \frac{1}{x}}{\frac{d}{dx}(e^x) = e^x}$	$\int \frac{1}{x} dx = \ln x + C$
$\frac{d}{dx}(e^x) = e^x$	$\int e^x dx = e^x + C$
$\frac{d}{dx}(\sin x) = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}(\cos x) = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$
$\frac{dx}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{\sqrt{1+x^2}}$ $\frac{d}{dx}(\cos^{-1} x)$	$\int \frac{1}{\sqrt{1+x^2}} dx = \tan^{-1} x + C$
$\frac{d}{dx}(\sec^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$

We can evaluate indefinite integrals for more complicated functions by using different properties of indefinite integrals.

Properties of Indefinite Integrals

Let F and G be antiderivatives of f and g, respectively, and let k be any real number.

Sums and Differences

$$\int (f(x) \pm g(x)) dx = F(x) \pm G(x) + C$$

Constant Multiplies

$$\int kf(x) \, dx = kF(x) + C$$

Examples: Evaluate each of the following indefinite integrals.

1)
$$\int (5x^3 - 7x^2 + 3x + 4) dx$$

This is the same as
$$\int 5x^3 dx - \int 7x^2 dx + \int 3x dx + \int 4dx$$

= $5 \int x^3 dx - 7 \int x^2 dx + 3 \int x dx + 4 \int dx$
= $5 \left(\frac{x^4}{4}\right) - 7 \left(\frac{x^3}{3}\right) + 3 \left(\frac{x^2}{2}\right) + 4x + x$

$$2) \int \frac{x^2 + 4\sqrt[3]{x}}{x} dx$$

This is the same as
$$\int x dx + \int \frac{4}{2^{\frac{2}{3}}} dx = \int x dx + 4 \int x^{-\frac{2}{3}} dx = \frac{1}{2}x^2 + 4\left(\frac{1}{-\frac{2}{3}+1}\right)x^{-\frac{2}{3}+1}$$
$$= \frac{1}{2}x^2 + 12x^{\frac{1}{3}} + C$$

$$3) \int \frac{4}{1+x^2} dx$$

This is
$$4\int \frac{1}{1+x^2} dx = 4(\tan^{-1} x) = 4 \tan^{-1} x + C$$

4) $\int \tan x \cos x \, dx$

Note that
$$\tan x \cos x = \frac{\sin x}{\cos x} \cos x = \sin x$$

So this is $\int \sin x dx = -\cos x + C$

Initial Value Problems

One common use for antiderivatives that arises often in many applications is solving differential equations. A **differential equation** is an equation that relates an unknown function and one or more of its derivatives.

Sometimes we are interested in determining whether a particular solution curve passes through a certain point (x_0, y_0) – that is, $y(x_0) = y_0$ (the initial condition). The problem of finding a function y that satisfies a differential equation

$$\frac{dy}{dx} = f(x)$$

With the additional condition

$$y(x_0) = y_0$$

Is an example of an initial-value problem.

Media: Watch this <u>video</u> example on solving initial value problems.

Examples

1) Solve the initial-value problem $\frac{dy}{dx} = \sin x$, y(0) = 5.

$$y = \int \sin x \, dx = -\cos x + C$$
 Since $y(0) = 5$, then $-\cos(0) + C = 5 \rightarrow -1 + c = 5 \rightarrow C = 6$ So $y = -\cos x + 6$

- 2) A car is traveling at the rate of $88 \frac{\text{ft}}{\text{sec}}$ (60 mph) when the brakes are applied. The car begins decelerating at a constant rate of $15 \frac{\text{ft}}{\text{sec}^2}$.
 - a. How many seconds elapse before the car stops?

Note that
$$v(0)=88\frac{ft}{sec}$$
, $a(t)=-15\frac{ft}{sec^2}$, $v'(t)=15$
So then $v(t)=\int -15dt=-15t+C$
$$-15(0)+C=88\rightarrow C=88$$

Then $v(t)=-15t+88\rightarrow -15t+88=0\rightarrow -15t=-88\rightarrow t\approx 5.87\sec t$

b. How far does the car travel during that time?

$$v(t) = s'(t) = -15t + 88 \text{ and } s(0) = 0$$

$$s(t) = \int -15t + 88dt = -\frac{15}{2}t^2 + 88t$$

$$s(5.87) \approx 258.133 ft$$