第2章 逻辑门电路

2.1 题图 2.1(a)画出了几种两输入端的门电路,试对应题图 2.1(b)中的 A、B 波形画出各门的输出 $F_1 \sim F_6$ 的波形。

题图 2.1

解:

2.2 求题图 2.2 所示电路的输出逻辑函数 F_1 、 F_2 。

题图 2.2

解:

2.3 题图 2.3 中的电路均为 TTL 门电路,试写出各电路输出 $Y_1 \sim Y_8$ 状态。

2.4 题图 2.4 中各门电路为 CMOS 电路,试求各电路输出端 Y_1 、 Y_2 和 Y 的值。

解: $Y_1=1$, $Y_2=0$, $Y_3=0$.

2.5 6 个门电路及 A、B 波形如题图 2.5 所示,试写出 $F_1 \sim F_6$ 的逻辑函数,并对应 A、B 波形画出 $F_1 \sim F_6$ 的波形。

题图 2.5

解:

2.6 电路及输入波形分别如题图 2.6(a)和 2.6(b)所示,试对应 A、B、C、 x_1 、 x_2 、 x_3 波形画出 F 端波形。

解

- 2.7 TTL与非门的扇出系数 N 是多少?它由拉电流负载个数决定还是由灌电流负载决定?解: $N \le 8$ N 由灌电流负载个数决定.
- 2.8 题图2.8 表示三态门用于总线传输的示意图,图中三个三态门的输出接到数据传输总线, D_1D_2 、 D_3D_4 、...、 D_mD_n 为三态门的输入端, EN_1 、 EN_2 、 EN_n 分别为各三态门的片选输入端。试问: EN 信号应如何控制,以便输入数据 D_1D_2 、 D_3D_4 、...、 D_mD_n 顺序地通过数据总线传输(画出 $EN_1 \sim EN_n$ 的对应波形)。

解:用下表表示数据传输情况

EN ₁	EN_2		$EN_{\mathbf{M}}$	传输数据
1	0		0	D_1D_2
0	1		0	D_3D_4
•				:
0	0	••••	1	$D_{\mathbf{M}}D_{\mathbf{N}}$

2.9 某工厂生产的双互补对称反相器(4007)引出端如题图 2.9 所示,试分别连接成:(1)反相器;(2)三输入与非门;(3)三输入或非门。

解: (1) 反向器

(2)与非门

(3)或非门

2.10 按下列函数画出 NMOS 电路图。

$$F_1 = AB + CD + E(H + \overline{G})$$

$$F_2 = (\overline{A} + B + CD)(AB + CD)$$

$$F_3 = A \oplus B$$

解: (1)

2.11 将两个 OC 门如题图 2.11 连接,试将各种组合下的输出电压 u_o 填入题表 2.11 中,并写出输出逻辑表达式。

$u_A(V)$	u _B (V)	u _C (V)	u ₀ (V)
0.3	0.3	0.3	
0.3	0.3	3.6	
0.3	3.6	0.3	
0.3	3.6	3.6	
3.6	0.3	0.3	
3.6	0.3	3.6	1
3.6	3.6	0.3	
3.6	3.6	3.6	

(3)

题表 2.11

解:

$u_A(V)$	$u_B(V)$	u _C (V)	u ₀ (∨)
0.3	0.3	0.3	3.6
0.3	0.3	3.6	0.3
0.3	3.6	0.3	3.6
0.3	3.6	3.6	0.3
3.6	0.3	0.3	3.6
3.6	0.3	3.6	0.3
3.6	3.6	0.3	0.3
3.6	3.6	3.6	0.3

2.12 写出题图 2.12 的电路表达式,并对表达式进行简化。

题图 2.12

$$ME: Y = \overline{AB + ABC + C} = \overline{AB + C}$$

2.13 按下列函数画出 CMOS 电路图。

$$F_1 = AB + CD$$
$$F_2 = A \oplus B$$

解: (1)
$$F_1 = AB + CD = \overline{\overline{AB} \cdot \overline{CD}}$$

(2) $F_2 = A \oplus B = \overline{AB} = \overline{AB + \overline{AB}} = A\overline{B} + \overline{AB}$

- 2.14 TTL 与非门输入端悬空相当于什么电平?输入端阈值电压 V_T 等于多少?输出端 F=0 时,能带动几个同类型 TTL 与非门?负载个数超出扇出系数越多,输出 F 变得越高还是越低?
- 解: TTL 与非门输入端悬空相当于高电平;

输入端阈值电压 $V_T=1.4V$;

输出端 F=0 时,能带动 8 个同类型 TTL 与非门;

负载个数超出扇出系数越多,输出F变得越高

- 2.15 题图 2.15 中, G_1 为 TTL 三态门, G_2 为 TTL 非门,K为开关,电压表内阻为 200 k Ω 。求下列情况下,电压表读数 F_1 和 G_2 输出电压 F_2 分别为多少?
 - (1) A = 0.3 V, B = 0.3 V, C = 0.3 V, K接通。
 - (2) A = 0.3 V, B = 3.6 V, C = 0.3 V, K 断开。
 - (3) A = 3.6 V, B = 0.3 V, C = 3.6 V, K接通。
 - (4) A = B = 0 V, C = 3.6 V, K 断开。
 - (5) A = B = 3.63 V, C = 0.3 V, K接通。

- 解: (1) F₁=3.6V, F₂=0V
 - (2) $F_1=3.6V$, $F_2=0V$
 - (3) F₁=3.6V, F₂=0V
 - (4) F₁ 无读数, F₂=0V
 - (5) F₁=0V, F₂=3.6V

2.16 电路如题图 2.16(a)所示,试对应 2.16(b)的输入波形画出 F_1 、 F_2 的对应波形。

解: EN=0 时, $F_1=A+\overline{B}$, $F_2=\overline{A\cdot\overline{B}}=\overline{A}+B$

EN=1 时, F_1 =1, F_2 = \overline{A} 据此刻在图 2.16(b)上画出 F_1 . F_2 波形如下:

2.17 写出题图 2.17 中 NMOS 电路的逻辑表达式。

解: (a)
$$Y_1 = \overline{\overline{A} + \overline{B} + \overline{C}} = ABC$$

(b) $Y_2 = \overline{\overline{A} + \overline{B}} = \overline{A + B}$
(c) $Y_3 = \overline{A} \oplus \overline{B} = A \oplus B$

2.18 写出题图 2.18(a)~(c)中各 TTL 电路的输出逻辑表达式 F_1 、 F_2 和 F_3 ,并对应题图 2.18(d)所示的输入 A、B、C 波形画出 F_1 、 F_2 、 F_3 波形。

题图 2.18

解: (a)
$$C = 1, \overline{C} = 0, F_1 = A \oplus C = \overline{A}$$
 $F_1 = \overline{AC} = \overline{A} + \overline{C}$ (b) $C = 1, \overline{C} = 0, F_2 = \overline{AB}$ $F_2 = \overline{A} + \overline{BC}$ $C = 0, \overline{C} = 1, F_2 = \overline{A}$ $F_2 = \overline{A} + \overline{BC}$ (c) $C = 1, \overline{C} = 0, F_3 = 1$ $C = 0, \overline{C} = 1, F_3 = 1$ $F_3 = 1$

2.19 题图 2.19 中, G_1 、 G_2 为"线与"的两个 TTL OC 门, G_3 、 G_4 、 G_5 为三个 TTL 与非门,若 G_1 、 G_2 皆输出低电平时,允许灌入的电流 I_{OL} 为 15 mA; G_1 、 G_2 门皆输出高电平时允许的 I_{OH} 小于 200 μ A。 G_3 、 G_4 和 G_5 它们的低电平输入电流为 I_{IL} =1.1 mA,高电平输入电流 I_{IH} =5 μ A。 E_c (V_{CC}) = 5 V,要求 OC 门输出的高电平 $V_{OH} \ge 3.2$ V,低电平 $V_{OL} \le 0.4$ V,求负载电阻 R_L 应选多大。

解:

$$R_{L\text{max}} = (V_{CC} - V_{OH\,\text{min}}) / (nI_{OH} + mI_{IH})$$

$$= \frac{5.0 - 3.2}{(2 \times 0.2 + 3 \times 0.05) \times 10^{-3}} = 3.27 \text{ k}\Omega$$

$$R_{L\min} = (V_{CC} - V_{OL\max}) / (I_{OL} - mI_{IL})$$
$$= \frac{5.0 - 0.4}{(15 - 3 \times 1.1) \times 10^{-3}} = 0.39 \text{ k}\Omega$$

所以,选定的 R_L 值应在 3.27 kΩ与 0.39 kΩ之间,可以取 R_L = 1~2 kΩ。

2.20 写出题图 2.20(a)~(c)各 TTL 门电路的输出逻辑表达式 F_1 、 F_2 和 F_3 。

题图 2.20

解: (a) $F_1 = \overline{A + A}$

(b)
$$F_1 = \overline{A_1 A_2 A_3 + A_1 A_2 A_3}$$

(c)
$$F_3 = \overline{AB} \cdot \overline{\overline{AB}} = (\overline{A} + \overline{B})(A + B) = A\overline{B} + \overline{AB} = A \oplus B$$

2.21 写出题图 2.21 中 CMOS 电路的输出逻辑表达式 F_1 和 F_2 。

题图 2.21

解:

2.22 画出实现下列逻辑函数的 CMOS 电路。

$$F_1(A \setminus B \setminus C) = AB + C$$

 $F_2(A \setminus B \setminus C) = AB + CD$

解: 1.

2.

2.23 简述 CMOS 电路驱动 TTL 电路和 TTL 电路驱动 CMOS 电路的技术要求。

解: 1.通过第 2 章中表 2-17 可以看出,CMOSCC4000 系列电路可以直接驱动 TTLCT4000 系列电路,这是因为 CMOS V_{OH} =4.95V,大于 CT4000 V_{IH} (2V), V_{OL} =0.05V 小于 V_{IL} (0.8V);CMOS I_{OH} =0.5mA 大于 I_{IH} (20uA),符合匹配原则,故可以直接驱动。

因为 $I_{OL} < I_{IL}$,故 CMOS 电路不能直接驱动 YYL1000 系列。为了完成 CMOS 和 CT1000 系列之间的连接,可通过电平变换电路实现或在 CMOS 输出端加接电流放大器,常用的 CMOS-TTL 电平变换电路有 CC4049,CC4050 等。

2.TTL 电路驱动 CMOS 电路

因为 TTL 电路的 V_{OH} 小于 CMOS 电路的 V_{IH} ,所以 TTL 电路不能直接驱动 CMOS 电路,可采用加上接电阻 R_{UF} 的办法提高 TTL 电路的输出高电平,如图所示, R_{UF} 的电阻值对于 CT1000系列可在 $209\,\Omega$ ~4.7K Ω 之间选择,如果 CMOS 电路的 $E_D>5V$,则须加电平变换电路

2.24 把题图 2.24 所示的或非门电路变成与或门电路。

解:与或门电路如右图。

2.302.25 把题图 2.25 所示的门电路变换成与非门电路。

解:与非门电路如右图。

带格式的: 项目符号和编号