ANDREW K. SAYDJARI

Graduate Student | Harvard Physics

andrew-saydjari.github.io | andrew.saydjari@cfa.harvard.edu | he/him/his

RESEARCH INTERESTS

I work at the interface of **data science** and **astrophysics**, developing new statistical tools to analyze large datasets. In terms of methods, I am intrigued by the low-SNR limit, uncertainty quantification, and blind signal separation problems. In terms of astrophysics, I strive to better understand the **chemistry** of **interstellar dust**.

EDUCATION	
Harvard University: PhD in Physics	2018-2024
Advisor: Douglas Finkbeiner	
Thesis: Statistical Models of the Spatial and Chemical Complexity of Dust	
Yale University: BSc/MSc in Chemistry, BSc in Mathematics Thesis: Optimizing the Nickel-Catalyzed Carboxylation of Aryl Halides	2014-2018
SELECTED AWARDS & HONORS	
Best Astrostatistics Student Paper Award (ASA/AIG)	2022
Bok Center Certificate of Distinction in Teaching (Harvard)	Fall 2021

The standard resolution remarks (corr)	
Hertz Fellowship Finalist	8, 2019
Howard Douglass Moore Prize (Yale), Chemistry's highest honor, awarded to a single graduating undergrad	2018

Barry Goldwater Scholar (USA) 2017

Phi Beta Kappa 2017

DAAD-RISE Fellowship (Yale/Germany), Research internship exchange 2016

PROFESSIONAL ACTIVITIES & SERVICE

Harvard Astronomy Department

NSF Graduate Research Fellowship (USA)

(1/2) Student Representatives to Faculty Search Committee (Elected) Jan - Mar 2023

Organizer for Student Faculty Forum (StuFF)

2022 - 2023

2018

Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

Computing Committee June 2022-present

American Astronomical Society

Chambliss Poster Judge (AAS 240, AAS 241) June 2022-present

Manuscript Referee

American Astronomical Society Journals (ApJ) 2023-present

PUBLICATIONS

I am an author on 19+ papers that have 441+ citations (h-index=11). This includes:

8+ papers as **(co-)lead author** with 194+ citations

5+ papers with significant contributions with 197+ citations

See my Publication List for details. My ORCID is 0000-0002-6561-9002.

Most of my papers can be found online on ADS, though citations outside astronomy are missing.

SUPERVISION & MENTORSHIP

I have (co-)supervised/mentored 4 students:

Graduate

1. Ana Sofía Uzsov (Astronomy, Harvard)

Component Separation of Lyman Alpha Emitters in DESI (w/ Doug Finkbeiner)

Fall 2022-Present

Undergraduate

3. Stephanie Yoshida (Astronomy, Harvard)

Fall 2023-Present

Kinetic Tomography of the Intermediate Velocity Arch (w/ Catherine Zucker & Doug Finkbeiner)

2. Devisree Tallapaneni (Physics & Statistics, Cornell)

Summer 2023-Present

Quantifying the Filamentary ISM: Statistical Reconstructions of Reality (w/ Eric Koch & Doug Finkbeiner)

1. Ken Michalek (Computer Science, Harvard Extension School → MIT Lincoln Lab)

2020-2021

Online Blind Deconvolution for Educational Astronomy (w/ Dominic Pesce & Allyson Bieryla)

TEACHING

I care passionately about teaching and love ideating new ways of explaining difficult concepts. I emphasize the development of hands-on teaching methods, incorporating active learning through experiment and data-based exploration. I view creating an inclusive atmosphere, in which all students can comfortably learn, as a top priority.

Harvard University, Teaching Fellow

Fall 2021

Solid State Physics, Lecture, Undergrad/Grad, 27 students, w/Prof. Julia Mundy

Feedback: Student Evaluations

Yale University, Peer Tutor

2015-2018

Physical Chemistry, Lab, Undergrad, 30 students, w/Prof. Patrick Vaccaro

Physical Chemistry II, Lecture, Undergrad, 30 students, w/Prof. Patrick Vaccaro

Freshman Organic Chemistry II, Lecture, Undergrad, 100 students, w/Prof. Alanna Schepartz

Sophomore Organic Chemistry I, Lecture, Undergrad, 120 students, w/Prof. Jonathan Ellman

SPLASH/SPROUT @ Yale, Middle School

2015-2018

Peeling Back the Layers of Solar Cells (30 students), Metal Mania: Simple Models of the Material World (4 students), Destressing Tensors (7 students), Abstract Algebra: Questions Teachers Didn't Answer (60, 75 students), Origins of Life: A Chemist's Perspective (16, 35 students)

SELECTED PRESENTATIONS

I have given 25+ public science talks. See my <u>Talk List</u> for more details. Highlights include:

Invited Conference Talks

JSM 2022: Astrostatistics Interest Group: Student Paper Award

August 2022

Photometry on Structured Backgrounds: Local Pixelwise Infilling by Regression

Contributed Conference Talks

Sloan Digital Sky Survey V (SDSS-V) Collaboration Meeting

August 2023

A New MWM Pipeline: Separating APOGEE Spectra into Components

Statistical Challenges in Machine Learning and Astrophysics (SCMA) VIII

June 2023

Measuring the 8621 Å Diffuse Interstellar Band in Gaia DR3 RVS Spectra:

Obtaining a Clean Catalog by Marginalizing over Stellar Types

RAS Specialist Discussion: 1D ML

March 2023

Measuring the 8621 Å Diffuse Interstellar Band in Gaia DR3 RVS Spectra

DECam at 10 Years Workshop

September 2022

The Dark Energy Camera Plane Survey 2 (DECaPS2): More Sky, Less Bias,

and Better Uncertainties

AAS 240: Computation, Data Handling, Image Analysis

June 2022

The DECam Plane Survey (DECaPS2): Optical photometry of 3.3 billion stars in the southern Galactic plane

Seminars, Lunch Talks, & Journal Clubs

UWSeattle: Astro Lunch April 2023

Probabilistic Component Separation: Deconstructing Photometric and Spectroscopic Pipelines

University of Toronto: Statistics and MachIne LEarning (SMILE) Journal Club

February 2022

Photometry on Structured Backgrounds

IAS: Pan-Experiment Galactic Science Group

July 2021

Learning from ISM Texture using the Wavelet Scattering Transform

LPENS: AstroLunch

December 2020

Scattering Transform Methods: Applications to Galactic Dust

OUTREACH & ENGAGEMENT

Public Science Writing

MathStatsBites: TheSequencer, CycleStarNet, SCMA8, NestedSampling

Summer 2023

LightSound Workshop, Soldering Solar Eclipse Sonification Instruments Cambridge Science Festival, MIT Museum Presentation Volunteer

Fall 2022

2022-2023

Latino Initiative Program, Instructor

Summer 2021- Summer 2023

Harvard Observation Project, Software Mentor

2020-2021

PRESS

DECaPS2 Release: WSI, Wired, AP, CNN, Register, Salon, Forbes, Space.com

Jan 2023

Grad Student Highlight: <u>Labroots</u>

November 2022

Machine Learning & Interstellar Dust Clouds: Abstract: The Future of Science

December 2020

SELECTED RESEARCH SKILLS

Computational

I am a strong advocate of both open-source code and data, and I insist on public reproducibility of all plots in my work (see my Zenodo deposits accompanying my papers).

Developer: Julia (3 years, primary), Python (7 years), MATLAB (3 years) [Github]

Developed pipelines and managed >100k core-h runs in both Julia and Python

Managed daily simultaneous multi-instrument measurements in MATLAB

Public Packages: LowRankOps.jl, KryburyCompress.jl, CloudCovErr.jl, EqWS.jl, crowdsource

Laboratory

Fabrication: EBL, RIE, ALD, Photolithography, Thermal/E-beam/Sputtering Deposition

Characterization: (S)TEM/EDX, FIB, SEM, AFM

Spectroscopy: Terahertz-Time Domain, SPR, XPS, NMR (1H, 13C, 31P, NOSEY), EPR