Name:

COL202: Quiz-2

Maximum marks: 40 Kerberos id:

Instructions.

1. For each problem, you will receive 10% marks for leaving it blank. However, there will be penalty for submitting bogus proofs.

- 2. Please write your proofs clearly (marks will be deducted for skipping steps, not mentioning which PMI you are using, etc).
- At the end of this paper, you will find the list of relevant theorems and properties proven in class/tutorials. In case you need to assume anything else, please explicitly state what you are assuming.

Question 1: Some More Properties of \mathbb{Z}_p (20 marks). We say that a prime p is a *nice* prime if p = 2q + 1, where q is also prime. In this problem, we will study some properties of \mathbb{Z}_p when p is a *nice* prime.

For any element a in $\mathbb{Z}_p \setminus \{0\}$, let $\operatorname{ord}(a)$ (called the *order* of a) denote the smallest natural number such that $\exp_p(a, \operatorname{ord}(a)) = 1$. In this problem, we will show that many elements of \mathbb{Z}_p have order q. Elements with prime order are very useful in cryptography.

For instance, p = 11 is a nice prime, the orders of the elements of $\mathbb{Z}_p \setminus \{0\}$ are given in Table 1. Note that four elements (2, 6, 7 and 8) have order 10, and four elements (3, 4, 5 and 9) have order 5.

- Part 1. Prove that at least one element has order q. (6 marks)
- Part 2. Using Part 1 or otherwise, prove that at least q-1 elements in $\mathbb{Z}_p \setminus \{0\}$ have order q. (9 marks)
- Part 3. Finally, prove that exactly q-1 elements in $\mathbb{Z}_p \setminus \{0\}$ have order q. (5 marks)

a	Powers of a modulo $p = 11$												ord(a)	
1	ì	1	1	1	1	1	ĺ	1	1	1	1		1	
2	1	2	4	8	5	10	9	7	3	6	1		10	
3	1	3	9	5	4	1	3	9	5	4	1		5	
4	1	4	5	9	3	1	4	5	9	3	1		5	
5	1	5	3	4	9	1	5	3	4	9	1		5	
6	1	6	3	7	9	10	5	8	4	2	1		10	
7	1	7	5	2	3	10	4	6	9	8	1		10	
8	1	8	9	6	4	10	3	2	5	7	1		10	
9	1	9	4	3	5	1	9	4	3	5	1		5	
10	1 1	0	1	10	1	10	1	1 () (1	10	1	2	

Table 1: In this table, the powers of a are listed modulo p. The i^{th} element in the list is $\exp_p(a, i - 1)$.

Question 2 (20 marks). The Fibonacci sequence is defined as follows:

$$F_n = \begin{cases} 1 \text{ if } n = 1\\ 1 \text{ if } n = 2\\ F_{n-1} + F_{n-2} \text{ if } n > 2 \end{cases}$$

The first few elements of the Fibonacci sequence are as follows:

F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
1	1	2	3	5	8	13	21	34	55	89	144	233	377	610

Prove that for all n, m, if n divides m, then F_n divides F_m .

[**Hint**: Look at the sequences (F_1, F_2, \ldots, F_n) and $(F_{n+1}, F_{n+2}, \ldots, F_{2n})$. There is some similarity in these two sequences. Similarly, there is some similarity between (F_1, F_2, \ldots, F_n) and $(F_{kn+1}, F_{kn+2}, \ldots, F_{(k+1)n})$ for all k. First show that for all n, F_n divides \mathcal{F}_{2n} . Then, using induction, show that if F_n divides F_{kn} , then F_n also divides $F_{(k+1)n}$.

[[Additional Hints: You can ask the instructor or TA Anish Banerjee for additional hints. There is a -5 penalty associated with the extra hint (penalty applicable only if you are able to solve the question).]]