

T-1³/₄ (5 mm), T-1 (3 mm), Low Current, Double Heterojunction AlGaAs Red LED Lamps

Technical Data

Features

- Minimum Luminous Intensity Specified at 1 mA
- High Light Output at Low Currents
- Wide Viewing Angle
- Outstanding Material Efficiency
- Low Power/Low Forward Voltage
- CMOS/MOS Compatible
- TTL Compatible
- Deep Red Color

Applications

- Low Power Circuits
- Battery Powered Equipment
- Telecommunication Indicators

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency at very low drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps are

HLMP-D150/D155 HLMP-K150/K155

ideally suited for use in applications where high light output is required with minimum power output.

Package Dimensions

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MINISCUS MAY EXTEND ABOUT
1 mm (0.040") DOWN THE LEADS.

Axial Luminous Intensity and Viewing Angle @ 25° C

Part Number		I_v (mcd) @ 1 mA DC		2 θ1/2[1]	Package
HLMP-	Package Description	Min.	Тур.	Degrees	Outline
D150	T-1 ³ /4 Red Tinted Diffused	1.3	3	65	A
D155	T-1 ³ /4 Red Untinted, Non-diffused	5.4	10	24	В
K150	T-1 Red Tinted Diffused	1.3	2	60	C
K155	T-1 Red Untinted Non-diffused	2.1	3	45	С

Note:

 $1.\ \theta^{1\!/\!2}$ is the off axis angle from lamp centerline where the luminous intensity is $^{1\!/\!2}$ the on-axis value.

Absolute Maximum Ratings at $T_A = 25$ °C

Peak Forward Current ^[1]	300 mA
Average Forward Current	
DC Current ^[2]	
Power Dissipation	87 mW
Reverse Voltage ($I_R = 100 \mu\text{A}$)	
Transient Forward Current (10 µs Pulse)[3]	
LED Junction Temperature	
Operating Temperature Range	20 to +100°C
Storage Temperature Range	55 to +100°C
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260°C for 5 seconds

Notes:

- 1. Maximum $I_{\mbox{\scriptsize PEAK}}$ at f = 1 kHz, DF = 6.7%.
- 2. Derate linearly as shown in Figure 4.
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $T_A = 25\,^{\circ}\text{C}$

Symbol	Description	Min.	Тур.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.6	1.8	V	$I_F = 1 \text{ mA}$
$V_{ m R}$	Reverse Breakdown Voltage	5.0	15.0		V	$I_R = 100 \mu\text{A}$
$\lambda_{ m p}$	Peak Wavelength		645		nm	Measurement at Peak
$\lambda_{ m d}$	Dominant Wavelength		637		nm	Note 1
$\Delta\lambda^{1/2}$	Spectral Line Halfwidth		20		nm	
$ au_{ m S}$	Speed of Response		30		ns	Exponential Time Constant, $e^{\text{-t}}/T_{\mathrm{S}}$
C	Capacitance		30		pF	$V_F = 0$, $f = 1 \text{ MHz}$
$ m R heta_{J ext{-PIN}}$	Thermal Resistance		260 ^[3] 210 ^[4] 290 ^[5]		°C/W	Junction to Cathode Lead
$\eta_{ m V}$	Luminous Efficacy		80		Im/W	Note 2

- 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the color of the device. 2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = l_V/\eta_V$, where I_V is the luminous intensity in candelas and η_{V} is luminous efficacy in lumens/watt.
- 3. HLMP-D150.
- 4. HLMP-D155.
- 5. HLMP-K150/-K155.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on T_J Max. = 110 $^{\circ}$ C.

Figure 5. Relative Luminous Intensity vs. Angular Displacement. HLMP-D150.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. HLMP-K150.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-D155.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K155.