Prof. Dr. W. Stocker, Dr. S. Heinemeyer

Klausur 1 zu TL III (Elektrodynamik und Optik)

www.theorie.physik.uni-muenchen.de/~heinemeyer/uni/uebungen/2002edyn

1. Stokes'scher Satz

Gegeben sei in cartesischen Koordinaten das Dreieck Δ mit den Eckpunkten a = (0,0,0), b = (2,0,0), c = (0,1,0), sowie das Vektorfeld $\vec{Y} = (3xy,xy,2)$. Verifizieren sie den Stokes'schen Satz, indem sie beide Seiten der Gleichung

$$\int_{C_{\Lambda}} \vec{Y} \cdot d\vec{l} = \int \int_{A_{\Lambda}} \left(\nabla \times \vec{Y} \right) \cdot d\vec{a}$$

berechnen. [10]

2. Potential

Eine Punktladung q befinde sich bei (-a,0,0) mit a>0. Eine weitere Punktladung -2q befinde sich bei (a,0,0). Wo verschwindet das Gesamtpotential? (Es gelte für das Potential: $\Phi(\infty)=0$.)

3. Kugelsymmetrische Ladung und \vec{E} -Feld

Berechnen sie für die Ladungsdichte

$$\rho = \rho_0 \left(1 - r^2/a^2\right) \quad (r \le a)$$
$$= 0 \quad (r > a)$$

(mit ρ_0 und a konstant) die Gesamtladung Q und das \vec{E} -Feld. [10]

4. Dipolmoment

Berechnen sie das Dipolmoment \vec{P} für eine Kugel mit Radius a und der Flächenladungsdichte $\sigma = \sigma_0 \cos \theta$ (θ ist der Polarwinkel). Geben sie zuerst an, welche Komponente(n) von \vec{P} aus Symmetriegründen null sein müssen und berechnen sie anschließend die verbleibende(n) Komponente(n). [10]

5. Dielektrizitätskonstante

Ein Plattenkondensator mit Plattenabstand s (entlang der z-Achse) sei mit einem Dielektrikum gefüllt. Dessen relative Dielektrizitätskonstante (rDEK) ε ändere sich linear mit dem Abstand von der einen Platte zur anderen. Der Wert der rDEK auf der ersten Platte sei ε_1 , der auf der zweiten sei ε_2 . Auf den Platten befinden sich Ladungen mit Ladungsdichten $+\sigma$ bzw. $-\sigma$. Bestimmen sie zunächst die Funktion $\varepsilon(z)$ (Hinweis: Wie lautet das \vec{D} -Feld?). Daraus ergibt sich sofort das \vec{E} -Feld im Kondensator. Bestimmen sie daraus nun die Kapazität pro Flächeneinheit.

6. Skalares und Vektorpotential

- a) Gegeben sei $\vec{E} = (yz, xz, xy)$. Gibt es dazu ein (mehrere) Potential(e)? Falls ja, bestimmen sie eines davon. [5]
- b) Gegeben sei $\vec{B} = B_0 \vec{e}_{\phi}$ (in Zylinderkoordinaten). Wie lautet ein dazugehöriges Vektorpotential? [5]

7. \vec{B} - und \vec{A} -Feld eines Leiters

Gegeben sei ein sehr langer Hohlzylinder mit dem inneren Radius a und dem äußeren Radius b. Durch diesen Zylinder fließe ein gleichmäßig über den Querschnitt verteilter Strom I. Berechnen sie das Magnetfeld \vec{B} sowie dazu ein Vektorpotential \vec{A} . [15]

8. Induzierte Spannung

Eine feste, ebene Leiterschleife mit Flächennormale \vec{e}_z und der Fläche S werde von einem zeitlich veränderlichen \vec{B} -Feld durchsetzt. Das \vec{B} -Feld ist gegeben durch $\vec{B}(t) = \vec{B}_0 \sin(\omega t)$ (mit \vec{B}_0 und ω konstant). Berechnen sie die in der Schleife induzierte Spannung. Was ändert sich, wenn die Schleife durch eine Spule mit Windungszahl n ersetzt wird?

9. Eichtransformation

Gegeben sei das Vektorpotential $\vec{A} = (xy, yz, zx)$. Erfüllt es die Coulomb-Eichung $\nabla \cdot \vec{A} = 0$? Führen sie eine Eichtransformation, $\vec{A} \to \vec{A}'$, durch, so dass \vec{A}' die Coulomb-Eichung erfüllt. [10]

Hinweis: in Zylinderkoordinaten (ρ, ϕ, z) gilt:

$$abla imes ec{F} = ec{e}_{
ho} \left(rac{1}{
ho} \partial_{\phi} F_z - \partial_z F_{\phi}
ight) + ec{e}_{\phi} \left(\partial_z F_{
ho} - \partial_{
ho} F_z
ight) + ec{e}_z rac{1}{
ho} \left(\partial_{
ho} (
ho F_{\phi}) - \partial_{\phi} F_{
ho}
ight).$$