CE394M: Advanced Analysis in Geotechnical Engineering

Krishna Kumar

University of Texas at Austin

January 7, 2019

Overview

- Geotechnical modeling
 - Complexity in Geotechnical modeling

- Numerical methods for differential equations
 - Direct method

Geotechnical modeling of the complex world

Fig. London Bridge Station, London, UK

Geotechnical modeling of the complex world

Fig. London Victoria station upgrade, London, UK

Geotechnical modeling

Soil behavior

- nonhomogeneous,
- anisotropic,
- non-linear,
- initial stress conditions,
- stress history
- Geometry very complex

Soil Mechanics in practice - largely empirical

Geotechnical modeling: What should be modeled?

Analysis of engineering problems

Matrix analysis of structures

- What are the known variables?
- What are the unknowns?
- What do we know?

Matrix analysis of structures: Equilibrium

- $P_1 =$
- What are the unknowns?
- What do we know?

Matrix analysis of structures: Compatibility

Matrix analysis of structures: Compatibility

 $v = \text{internal spring distortion } \delta = \text{nodal displacement}$

- $v_1 =$
- $v_2 =$
- $v_3 =$
- $v_4 =$

Matrix analysis of structures: Physical condition

Force-distance relationship: spring constant

spring #	1	2	3	4
stiffness $(F.L^{-1})$	3	2	1	2

Matrix analysis of structures: Direct Method

Combine all the equations: ${f P}=$ where ${f K}=$