Optimization-Based Data Analysis

Recitation 8

1. Under what conditions will training error increase if you add a feature to your regression problem? How does the answer change if you are using ridge regression?

Solution. It never increases for both.

- 2. Suppose you fit a linear regression model, but have scaled a feature by a factor of 10.
 - (a) Under what conditions will this change the forecast $X\hat{\beta}$?
 - (b) What impact will this have on ridge regression?

Solution.

- (a) Same forecast for standard regression.
- (b) It will have the effect of reducing the penalty on the corresponding coefficient.
- 3. The ridge regression estimator is given by

$$\vec{\beta}_{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T \vec{y}.$$

Under what conditions on X is this formula valid (i.e., does the inverse exist)?

Solution. It always exists since X^TX is positive semidefinite and λI is positive definite.

4. Let $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^p$, $y \in \mathbb{R}^n$, $\lambda > 0$, and $M \in \mathbb{R}^{m \times p}$ has full column rank. What is the solution to

$$\underset{\beta}{\arg\min} \|X\beta - y\|_{2}^{2} + \lambda \|M\beta\|_{2}^{2}?$$

Solution.

$$(X^TX + \lambda M^TM)^{-1}X^Ty.$$

5. Suppose you are given data $\vec{y} = X\vec{\beta} + \vec{z}$ (all variables deterministic; $\vec{\beta}$, \vec{z} unknown) and compute the least squares estimator $\hat{\vec{\beta}}$ for $\vec{\beta}$. Assuming $\|\vec{z}\|_2 = \eta$ is fixed, and X has full column rank, what direction for \vec{z} produces the largest error $\|\hat{\vec{\beta}} - \vec{\beta}\|_2$, and how much is that error?

Solution. If $X \in \mathbb{R}^{n \times p}$ has SVD USV^T then the error $\hat{\vec{\beta}} - \vec{\beta} = US^{-1}V^Tz$. This has maximum norm when the noise z points in the direction V[:,p] giving a norm of η/σ_p .

6. Suppose $\vec{\mathbf{y}} = \mathbf{X}\vec{\beta} + \vec{\mathbf{z}}$ where $\mathbf{X}, \vec{\mathbf{z}}$ all have iid standard Gaussian entries. As n, the number of data points, grows, how will the error $\|\hat{\vec{\beta}} - \vec{\beta}\|_2$ decay?

Solution. Like $1/\sqrt{n}$. For large n the error concentrates around $\sqrt{p/n}$, where p is the number of features.

7. Let $\vec{\beta}_{\text{ridge}}$ denote the ridge regression estimator which minimizes

$$\arg\min_{\beta} \|X\vec{\beta} - \vec{y}\|_{2}^{2} + \lambda \|\vec{\beta}\|_{2}^{2}.$$

Show that $\vec{\beta}_{\text{ridge}}$ is in the row space of X.

Solution. Write $\vec{\beta} = \vec{\beta}_r + \vec{\beta}_{r^{\perp}}$ where $\vec{\beta}_r$ is the orthogonal projection of $\vec{\beta}$ onto the row space of X, and $\vec{\beta}_{r^{\perp}}$ is the orthogonal projection of $\vec{\beta}$ onto the orthogonal complement of the row space of X. Then $X\vec{\beta} = X\vec{\beta}_r$ but $\|\vec{\beta}\|_2^2 = \|\vec{\beta}_r\|_2^2 + \|\vec{\beta}_{r^{\perp}}\|_2^2$.

8. Suppose we have the regression problem $\vec{\mathbf{y}} = X\vec{\beta} + \vec{\mathbf{z}}$ where $\vec{\mathbf{z}}$ is iid gaussian with mean 0 and variance σ_2^2 . Suppose we have a Gaussian prior on $\vec{\beta}$ with mean $\vec{\mu}$ and variance σ_1^2 (instead of mean 0). Can you guess the form of the minimization problem giving the resulting MAP estimator?

Solution. $\operatorname{arg\,min}_{\beta} ||X\beta - y||_2^2 + \lambda ||\beta - \vec{\mu}||_2^2$

- 9. Compute the gradients of the following functions.
 - (a) $f(\vec{x}) = \vec{w}^T \vec{x}$ where $\vec{w} = [1, 2, 3]^T$ where $f : \mathbb{R}^3 \to \mathbb{R}$.
 - (b) $f(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x} + \vec{w}^T \vec{x}$ where $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times n}$ and $\vec{w} \in \mathbb{R}^n$.
 - (c) $f(X) = \frac{1}{2} ||X||_F^2$ where $f: \mathbb{R}^{m \times n} \to \mathbb{R}$. When computing the gradient, treat X as a vector in \mathbb{R}^{mn}
 - (d) $f(X) = \det(X)$ where $f: \mathbb{R}^{m \times n} \to \mathbb{R}$. When computing the gradient, treat X as a vector in \mathbb{R}^{mn} .

Solution.

- (a) $\nabla f(\vec{x}) = \vec{w}$
- (b) $\nabla f(\vec{x}) = \frac{1}{2}(A + A^T)\vec{x} + \vec{w}$
- (c) $\nabla f(X) = X$
- (d) By doing an expansion along any of the rows, we see the ijth component of the gradient is the corresponding cofactor. This gives

$$\nabla f(X) = \det(X)(X^{-1})^T.$$