

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 8月11日

出 願 番 号 Application Number:

特願2000-244785

出 願 人
pplicant(s):

富士写真フイルム株式会社

CERTIFIED COPY OF CRICKING

2001年 5月30日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

P-35560

【提出日】

平成12年 8月11日

【あて先】

特許庁長官 殿

【国際特許分類】

G03C 1/12

【発明者】

【住所又は居所】 神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

滝沢 裕雄

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 100105647

【弁理士】

【氏名又は名称】 小栗 昌平

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100105474

【弁理士】

【氏名又は名称】 本多 弘徳

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100108589

【弁理士】

【氏名又は名称】 市川 利光

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】 100115107

【弁理士】

【氏名又は名称】 高松 猛

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100090343

【弁理士】

【氏名又は名称】 栗宇 百合子

【電話番号】 03-5561-3990

【手数料の表示】

【予納台帳番号】 092740

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 0003489

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 シアニン色素及びそれを含有するハロゲン化銀写真感光材料 【特許請求の範囲】

【請求項1】支持体上に少なくとも1層の感光性ハロゲン化銀乳剤層を有するハロゲン化銀写真感光材料において、該乳剤層に下記一般式(1)で表される化合物を少なくとも1つ含有することを特徴とするハロゲン化銀写真感光材料。

一般式(1)

【化1】

一般式(1)

(Dye2)
$$X_3 \times (M_4 = M_5)_{n2} M_6 \times (V_4)_{n6} \times (V_4)_$$

(式中、 $X_1 \sim X_4$ はそれぞれ独立に-O-、-S-、 $-NR_3-$ 、 $-CR_4R_5-$ を表し、 $R_3 \sim R_5$ はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を表す。 R_1 、 R_2 はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を表す。 $M_1 \sim M_6$ はそれぞれ独立にメチン基を表し、 n_1 、 n_2 はそれぞれ独立に $0 \sim 3$ の整数を表し、Lはアミド基、エステル基以外のヘテロ原子を少なくとも1個以上有する連結基を表す。 $V_1 \sim V_4$ は置換基を表し、 $n_3 \sim n_6$ は $0 \sim 4$ の整数を表す。 $n_3 \sim n_6$ が2以上の時、 $V_1 \sim V_4$ は同じでも異なってもよく、互いに連結して環を形成しても良い。CIは電荷を中和するイオンを表し、yは電荷を中和するのに必要な数を表す。)

【請求項2】一般式(1)で表わされる化合物において、Lが- L_1 -(A_1 - L_2 -) $_{t1}$ -で表されることを特徴とする請求項 $_1$ に記載のハロゲン化銀写真感光材料。ただし $_1$ は向きは問わずに- $_1$ COO-、- $_2$ CONR $_2$ -、- $_3$ CONR $_4$ -を表し、 $_4$ R $_5$ 0、 $_4$ 0、 $_5$ 0、 $_5$ 0、 $_5$ 0、 $_5$ 0 アルキル基、アルケニル基、アリ

ール基、ヘテロ環基を表し、 t_1 は0~10の整数を表す。 L_1 、 L_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリーレン基、 $-G_1$ - $(A_2$ - G_2 -) t_2 -を表し、 G_1 、 G_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリーレン基を表し、 A_2 は向きは問わずに-O-、-S-、 $-NR_3$ -、 $-SO_2$ -を表し、 t_2 は1~10の整数を表す。ただし t_1 が0の時、 L_1 は $-G_1$ - $(A_2$ - G_2 -) t_2 -であり、 t_1 が1以上の時、 L_1 、 L_2 のうちの少なくともどれかひとつ以上は $-G_1$ - $(A_2$ - G_2 -) t_2 -である。

【請求項3】一般式(1)で表わされる化合物において、 $X_1 \sim X_4$ が-O-または-S-であることを特徴とする請求項1または2に記載のハロゲン化銀写真感光材料。

【請求項4】一般式(1)で表わされる化合物において、ハロゲン化銀粒子への吸着力が、Dye1≥Dye2となっていることを特徴とする請求項1~3のいずれか1項に記載のハロゲン化銀写真感光材料。

(ここに、Dye1及びDye2は,一般式(1)において連結基Lを挟んで結合したシアニン構造の発色団であって、 X_1 及び X_2 を含む発色団がDye1で、 X_3 及び X_4 を含む発色団がDye2である。)

【請求項5】一般式(1)で表わされる化合物がDye1にてハロゲン化銀粒子に吸着し、かつハロゲン化銀粒子に吸着していないDye2が光励起された際に、その励起電子またはエネルギーがDye1へ電子移動またはエネルギー移動することを特徴とする請求項1~4のいずれか1項に記載のハロゲン化銀写真感光材料。

【請求項6】一般式(1)で表わされる化合物がDyelによってハロゲン化銀粒子に吸着してJ会合を形成し、かつハロゲン化銀粒子に吸着していないDye2も J会合を形成することを特徴とする請求項1~5のいずれか1項に記載のハロゲン化銀写真感光材料。

【請求項7】ハロゲン化銀写真乳剤が、アスペクト比2以上の平板状粒子が乳剤中の全ハロゲン化銀粒子の50%(面積)以上存在する乳剤であることを特徴とする請求項1~6のいずれか1項に記載のハロゲン化銀写真感光材料。

【請求項8】一般式(1)で表される化合物を含むハロゲン化銀写真乳剤が、セレン増感されていることを特徴とする請求項1~7のいずれか1項に記載の

ハロゲン化銀写真感光材料。

【請求項9】 下記一般式(2)で表される色素。 【化2】

一般式(2)

(Dye2)
$$X_3 \longrightarrow (M_4 = M_5)_{n_2} M_6 \longrightarrow (V_4)_{n_6} \longrightarrow (V_4)$$

(式中、 $X_1 \sim X_4$ はそれぞれ独立に-O-、-S-、 $-NR_3-$ 、 $-CR_4R_5-$ を表し、 $R_3 \sim R_5$ はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリ ール基、ヘテロ環基を表す。 R_1 、 R_2 はそれぞれ独立に水素原子、アルキル基、 アルケニル基、アリール基、ヘテロ環基を表す。 $M_1 \sim M_6$ はそれぞれ独立にメチ ン基を表し、 n_1 、 n_2 はそれぞれ独立に $0\sim3$ の整数を表す。 A_1 は-COO-、 $-\text{CONR}_6$ -、 $-\text{SO}_2$ NR $_7$ -を表し、R $_6$ 、R $_7$ はそれぞれお独立に水素原子 、アルキル基、アルケニル基、アリール基、ヘテロ環基を表し、 t_1 は0~10の 整数を表す。 L_1 、 L_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリー レン基、 $-G_1-(A_2-G_2-)$ t_2- を表し、 G_1 、 G_2 はそれぞれ独立にアルキ レン基、アルケニレン基、アリーレン基を表し、 A_2 は-O-、-S-、 $-NR_3$ -、-SO₂-を表し、 t_2 は $1\sim1$ 0の整数を表す。ただし t_1 が0の時、 L_1 は $-G_1-(A_2-G_2-)$ t_2 -であり、t1が1以上の時、 L_1 、 L_2 のうちの少な くともどれかひとつ以上は $-G_1-(A_2-G_2-)t_2-($ である。 $V_1\sim V_4$ は置 換基を表し、 $n_3 \sim n_6$ は0~4の整数を表す。 $n_3 \sim n_6$ が2以上の時、 $V_1 \sim V_4$ は同 じでも異なってもよく、互いに連結して環を形成しても良い。CIは電荷を中和す るイオンを表し、yは電荷を中和するのに必要な数を表す。)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は新規なシアニン色素化合物、特に2つの発色団が連結された連結型シアニン色素化合物及びそれを含有するハロゲン化銀写真感光材料に関する。

[0002]

【従来の技術】

メチン化合物は従来からハロゲン化銀写真感光材料の分光増感色素として利用されてきた。これまでハロゲン化銀粒子の光吸収率向上技術に関して公知になっている技術を以下に示す。1粒子あたりの光吸収率を向上させるには、増感色素のハロゲン化銀粒子への吸着密度を高めることが必要であるが、通常の分光増感色素はほぼ最密充填で単分子層で吸着し、吸着量は、飽和量に達しており、さらに吸着する余地はない。

[0003]

この吸着量の限界という問題を解決するために、これまでいくつかの提案がされてきた。ギルマン (P.B.Gilman, Jr.) らは、Photographic Sciece and Engine ering、第20巻、第3号、第97頁 (1976年) に、1層目にカチオン色素を吸着させ、さらに2層目にアニオン色素を静電力を用いて吸着させ得たことを報告している。また、バード (G.B.Bird) らは、米国特許第3,622,316号公報に、複数の色素をハロゲン化銀粒子に多層吸着させ、Forster型励起エネルギー移動の寄与による増感技術を開示している。

杉本らは、特開昭63-138,341号及び同64-84,244号公報に、発光性色素からのエネルギー移動による分光増感方法を開示している。

しかし、これらのハロゲン化銀粒子に飽和吸着量以上の色素を吸着させようと する試みは、いずれも高感度化の効果はあまりなく、逆に固有減感の増大などの 好ましくない影響を伴うという問題があった。

[0004]

一方、2つ以上の共役していない色素発色団を共有結合で連結した2成分連結 色素については、米国特許第2,393,351号、同2,425,772号、同2,518,732号、同2 ,521,944号、同2,592,196号または欧州特許565,083号などの公報に記載されている。しかしこれらは光吸収率の向上を目的としたものではなかった。積極的に光吸収率向上を目的として試みとして、バード(G.B.Bird)らによる米国特許3,622,317号及び同3,976,493号公報に開示された、複数のシアニン発色団を有する連結型増感色素分子をハロゲン化銀に吸着させて光吸収率を増やし、エネルギー移動による増感を図る技術が開示されているが、顕著な高感度化は得られていない

[0005]

鵜飼らは、特開昭64-91134号公報に、少なくとも2個のスルホ基またはカルボキシ基を含む実質的にハロゲン化銀に非吸着性色素の少なくとも1つを、ハロゲン化銀上に吸着されうる分光増感色素に結合させることを提案している。

また、ビシュワカルマらは、特開平6-27,578号公報に、ハロゲン化銀に吸着性のシアニン色素と非吸着性のオキソノール色素を連結した2成分連結色素を、パートンらは欧州特許887700A1号公報において吸着性のシアニン色素と非吸着性のメロシアニン色素等を特定の連結基を用いて連結した2成分連結色素を、それぞれ使用して分光増感を行っているが、エネルギー移動の寄与は少ないようで、高感度化は十分起こっているとはいえない。

このように、従来のいずれの特許や文献に開示された方法でも十分な高感度化 は達成できておらず、更なる技術開発を行う必要がある。

[0006]

【発明が解決しようとする課題】

従って、本発明の目的は、新規なシアニン連結色素及びそれを含有する高感度なハロゲン化銀感光材料を提供することである。

[0007]

【課題を解決するための手段】

本発明の上記目的は、下記の手段により達成された。

(1)支持体上に少なくとも1層の感光性ハロゲン化銀乳剤層を有するハロゲン 化銀写真感光材料において、該乳剤層に下記一般式(1)で表される化合物を含 有することを特徴とするハロゲン化銀写真写真感光材料。

一般式(1)

[0008]

【化3】

一般式(1)

(Dye2)
$$X_3 \times M_4 = M_5 \times M_6 \times M_6$$

[0009]

一般式(1)において、 $X_1 \sim X_4$ はそれぞれ独立に-O-、-S-、 $-NR_3-$ 、 $-CR_4R_5-$ を表し、 $R_3 \sim R_5$ はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を表す。 R_1 、 R_2 はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を表す。 $M_1 \sim M_6$ はそれぞれ独立にメチン基を表し、 n_1 、 n_2 はそれぞれ独立に $0 \sim 3$ の整数を表し、L はアミド基、エステル基以外のヘテロ原子を少なくとも 1 個以上有する連結基を表す。 $V_1 \sim V_4$ は置換基を表し、 $n_3 \sim n_6$ は $0 \sim 4$ の整数を表す。 $n_3 \sim n_6$ が2 以上の時、 $V_1 \sim V_4$ は同じでも異なってもよく、互いに連結して環を形成しても良い。 CI は電荷を中和するイオンを表し、 V_1 は電荷を中和するのに必要な数を表す。

[0010]

(2) 上記(1)記載の一般式(1)で表わされる化合物において、Lが一 L_1 ー (A_1 ー L_2 ー) $_{t1}$ ーで表されることを特徴とするハロゲン化銀写真感光材料。 ただし A_1 は向きは問わずに-COO-、 $-CONR_6$ ー、 $-SO_2$ N R_7 ーを表し、 R_6 、 R_7 はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を表し、 t_1 は $0\sim1$ 0の整数を表す。 L_1 、 L_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリーレン基、 $-G_1$ ー(A_2 - G_2 -) t_2 -を表し、 G_1 、 G_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリーレン基、アルケニレン基、アリーレン基、アルケニレン基、アリーレン基を

表し、 A_2 は向きは問わずに-O-、-S-、 $-NR_3-$ 、 $-SO_2-$ を表し、 t_2 は $1\sim1$ 0の整数を表す。ただし t_1 が0の時、 L_1 は $-G_1-$ (A_2-G_2-) t_2 -であり、 t_1 が1以上の時、 L_1 、 L_2 のうちの少なくともどれかひとつ以上は $-G_1-$ (A_2-G_2-) t_2 -である。

[0011]

(3) 上記 (1) または (2) 記載の一般式 (1) で表わされる化合物において $X_1 \sim X_4$ が-O-または-S-であることを特徴とするハロゲン化銀写真感 光材料。

[0012]

(4)上記(1)~(3)記載の一般式(1)で表わされる化合物において、 \mathbf{n}_1 、 \mathbf{n}_2 が共に0であるか、又は \mathbf{n}_1 、 \mathbf{n}_2 が共に1であることを特徴とするハロゲン化銀写真感光材料。

[0013]

[0014]

(6) 上記 (1) ~ (5) 記載の一般式 (1) で表わされる化合物において、A $_1$ が一 $_1$ であることを特徴とするハロゲン化銀写真感光材料。

[0015]

(7) 上記 (1) ~ (6) 記載の一般式 (1) で表わされる化合物において、A 2が-O-であることを特徴とするハロゲン化銀写真感光材料。

[0016]

(8)上記(1)~(7)記載の一般式(1)で表わされる化合物において、ハロゲン化銀粒子への吸着力が、Dye1≥Dye2となっていることを特徴とするハロゲン化銀写真感光材料。

(ここに、Dye1及びDye2は,一般式(1)において連結基Lを挟んで結合したシアニン構造の発色団であって、 X_1 及び X_2 を含む発色団がDye1で、 X_3 及び X_4 を含む発色団がDye2である。)

[0017]

(9)上記(1)~(8)記載の一般式(1)で表わされる化合物のDye2が光励起された際に、その励起電子又は励起エネルギーがDye1へ電子移動またはエネルギー移動することを特徴とするハロゲン化銀写真感光材料。

[0018]

(10)上記(1)~(9)記載の一般式(1)で表わされる化合物が、Dye1によってハロゲン化銀粒子に吸着し、かつハロゲン化銀粒子に吸着していないDye2が光励起された際にその励起電子又は励起エネルギーがDye1へ電子移動またはエネルギー移動することを特徴とするハロゲン化銀写真感光材料。

[0019]

(11)上記(1)~(10)記載の一般式(1)で表わされる化合物が、Dyelによってハロゲン化銀粒子に吸着してJ会合を形成し、かつハロゲン化銀粒子に吸着していないDye2もJ会合を形成することを特徴とするハロゲン化銀写真感光材料。

[0020]

(12)上記(1)~(11)記載の一般式(1)で表される化合物を含むハロゲン化銀写真乳剤が、アスペクト比2以上の平板状粒子が乳剤中の全ハロゲン化銀粒子の50%(面積)以上存在する乳剤であることを特徴とするハロゲン化銀写真感光材料。

[0021]

(13)上記(1)~(12)記載の一般式(1)で表される化合物を含むハロゲン化銀写真乳剤が、セレン増感されていることを特徴とするハロゲン化銀写真感光材料。

[0022]

(14)下記一般式(2)で表される色素。

[0023]

【化4】

一般式(2)

(Dye2)
$$X_3 \longrightarrow (M_4 = M_5)_{n2} M_6 = X_4 \longrightarrow (V_4)_{n6}$$

 $X_3 \longrightarrow (M_4 = M_5)_{n2} M_6 = X_4 \longrightarrow (V_4)_{n6}$
 $X_1 \longrightarrow (N_4 = M_5)_{n2} M_6 = X_4 \longrightarrow (V_4)_{n6}$
 $X_1 \longrightarrow (M_1 = M_2)_{n1} M_3 \longrightarrow (V_2)_{n4}$
(Dye1) $X_1 \longrightarrow (M_1 = M_2)_{n1} M_3 \longrightarrow (V_2)_{n4}$

[0024]

一般式(2)において、 $X_1 \sim X_4$ はそれぞれ独立に-O-、-S-、 $-NR_3-$ 、 $-CR_4R_5$ -を表し、 R_3 ~ R_5 はそれぞれ独立に水素原子、アルキル基、アル ケニル基、アリール基、ヘテロ環基を表す。 R_1 、 R_2 はそれぞれ独立に水素原子 、アルキル基、アルケニル基、アリール基、ヘテロ環基を表す。 $M_1 \sim M_6$ はそれ ぞれ独立にメチン基を表し、 n_1 、 n_2 はそれぞれ独立に $0 \sim 3$ の整数を表す。 A_1 は向きを問わずに-COO-、-CONR₆-、-SO₂NR₇-を表し、R₆、R 7はそれぞれお独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテ ロ環基を表し、 t_1 は0~10の整数を表す。 L_1 、 L_2 はそれぞれ独立にアルキレ ン基、アルケニレン基、アリーレン基、 $-G_1-(A_2-G_2-)t_2-$ を表し、 G_1 、 G_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリーレン基を表し、 A_2 は向きを問わずに-O-、-S-、 $-NR_3-$ 、 $-SO_2-$ を表し、 t_2 は $1\sim$ 10の整数を表す。ただし \mathbf{t}_1 が0の時、 \mathbf{L}_1 は $-\mathbf{G}_1$ - (\mathbf{A}_2 - \mathbf{G}_2 -) \mathbf{t}_2 -であ り、 ${\tt t}$ 1 が 1 以上の時、 ${\tt L}_1$ 、 ${\tt L}_2$ のうちの少なくともどれかひとつ以上は $-{\tt G}_1$ $-(A_2-G_2-)t_2-(である。<math>V_1\sim V_4$ は置換基を表し、 $n_3\sim n_6$ は0~4の整 数を表す。 $n_2 \sim n_6$ が2以上の時、 $V_1 \sim V_\Delta$ は同じでも異なってもよく、互いに連 結して環を形成しても良い。CIは電荷を中和するイオンを表し、yは電荷を中和 するのに必要な数を表す。)

[0025]

(1 5)上記(1 4)記載の一般式(2)で表わされる化合物において、 $X_1 \sim X_4$ が- O- または- S- であることを特徴とする色素。

[0026]

(16)上記(14)または(15)記載の一般式(2)で表わされる化合物において、 \mathbf{n}_1 と \mathbf{n}_2 が共に0であるか、 \mathbf{n}_1 と \mathbf{n}_2 が共に1であることを特徴とする色素

[0027]

(17)上記(14)~(16)記載の一般式(2)で表わされる化合物において、 $\mathbf{L_1}$ 、 $\mathbf{L_2}$ がアルキレン基または $\mathbf{G_1}$ —($\mathbf{A_2}$ — $\mathbf{G_2}$ —) $\mathbf{t_2}$ —であることを特徴とする色素。

[0028]

(18)上記(14)~(17)記載の一般式(2)で表わされる化合物において、 A_1 が-CONR $_6$ -であることを特徴とする色素。

[0029]

(19)上記(14)~(18)記載の一般式(2)で表わされる化合物において、 A_2 が-O-であることを特徴とする色素。

[0030]

【発明の実施の形態】

以下に一般式(1)または(2)で表される本発明の化合物について詳細に述べる。

[0031]

なお、本発明の化合物がアルキル基、アルキレン基、アルケニル基、アルケニレン基を有するとき、特に断りの無い限りは、それらは直鎖状でも分岐鎖状でも良く、置換していても無置換でも良い。

また、本発明の化合物がシクロアルキル基、アリール基、ヘテロ環基、シクロアルケニレン基、アリーレン基、ヘテリレン基を有する時、特に断りの無い限りは、それらは単環でも縮環していても良く、置換していても無置換でも良い。

本発明において、特定の部分を「基」と称した場合には、当該部分はそれ自体が 置換されていなくても、1種以上の(可能な最多数までの)置換基で置換されて いても良いことを意味する。

例えば、「アルキル基」とは置換または無置換のアルキル基を意味する。また、本発明における化合物に使用できる置換基は、置換の有無に関らず、どのような置換基でも含まれる。好ましい置換基には、以下に述べる置換基群Wが挙げられる。

[0032]

Wで示される置換基としては、いかなるものでも良く、特に制限は無いが、例え ば、ハロゲン原子、アルキル基「(シクロアルキル基、ビシクロアルキル基及び トリシクロアルキル基を含む)、また、アルケニル基(シクロアルケニル基、ビ シクロアルケニル基を含む)、アルキニル基、も含むこととする。]、アリール 基、複素環基(ヘテロ環基と言っても良い)、シアノ基、ヒドロキシル基、ニト ロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘ テロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニ ルオキシ基、アリールオキシカルボニルオキシ、アミノ基(アニリノ基を含む) 、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカル ボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基 、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、 アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及び アリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリ ールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール 及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニル オキシ基、ホスフィニルアミノ基、ホスフォ基、シリル基、ヒドラジノ基、ウレ イド基、その他の公知の置換基、が例として挙げられる。

[0033]

更に詳しくは、Wは、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基〔直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。それらは、アルキル基(好ましくは炭素数 1 から 3 0 のアルキル基、例えばメチル、エチル、nープロピル、イソプロピル、tーブチル、nーオクチル、エイコシル、2 ークロロエチル、2 ーシアノエチル、2 ーエチルヘキシ

ルなどの各基)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシルなどの各基)、ビシクロアルキル基(好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基、例えば、ビシクロ[1,2,2]ヘプタン-2-イル基、ビシクロ[2,2,2]オクタン-3-イル基など)、更に環構造が多いトリシクロ構造を有するアルキル基なども包含する。以下に説明する置換基の中のアルキル基(例えばアルキルチオ基のアルキル基)はこのような概念のアルキル基を表すが、さらにアルケニル基、アルキニル基も含むこととする。〕、

[0034]

アルケニル基 [直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、アルケニル基(好ましくは炭素数 2 から 3 0 の置換または無置換のアルケニル基、例えば、ビニル、アリル、プレニル、ゲラニル、オレイルなどの各基)、シクロアルケニル基(好ましくは、炭素数 3 から 3 0 の置換もしくは無置換のシクロアルケニル基、つまり、炭素数 3 から 3 0 のシクロアルケンの水素原子を一個取り去った一価の基、例えば、2 ーシクロペンテンー1ーイル基、2 ーシクロペキセンー1ーイル基など)、ビシクロアルケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素数 5 から 3 0 の置換もしくは無置換のビシクロアルケニル基、のまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基、例えば、ビシクロ [2,2,1] ペプトー2ーエンー1ーイル基、ビシクロ [2,2,2] オクトー2ーエンー4ーイル基など)を包含するものである。]、

[0035]

アルキニル基(好ましくは、炭素数 2 から 3 0 の置換または無置換のアルキニル基、例えば、エチニル基、プロパルギル基、トリメチルシリルエチニル基など)]、アリール基(好ましくは炭素数 6 から 3 0 の置換もしくは無置換のアリール基、例えばフェニル、pートリル、ナフチル、mークロロフェニル、oーへキサデカノイルアミノフェニルなどの各基)、複素環基(好ましくは 5 または 6 員

の置換もしくは無置換の、芳香族もしくは非芳香族の複素環化合物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から30の5もしくは6員の芳香族の複素環基であって、例えば、2-フリル、2-チエニル、2-ピリミジニル、2-ベンゾチアゾリルなどの各基、さらに1-メチル-2-ピリジニオ基及び1-メチル-2-キノリニオ基のようなカチオン性の複素環基でも良い。)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、

[0036]

アルコキシ基(好ましくは、炭素数1から30の置換もしくは無置換のアルコ キシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オ クチルオキシ、2-メトキシエトキシなどの各基)、アリールオキシ基(好まし くは、炭素数6から30の置換もしくは無置換のアリールオキシ基、例えば、フ ェノキシ、2-メチルフェノキシ、4-t-ブチルフェノキシ、3-二トロフェ ノキシ、2-テトラデカノイルアミノフェノキシなどの各基)、シリルオキシ基 (好ましくは、炭素数3から20のシリルオキシ基、例えば、トリメチルシリル オキシ基、tーブチルジメチルシリルオキシ基など)、ヘテロ環オキシ基(好ま しくは、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、例えば1 ーフェニルテトラゾールー5ーオキシ基、2ーテトラヒドロピラニルオキシ基な ど)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2から30の置換 もしくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換もしく は無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオ キシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p-メトキ シフェニルカルボニルオキシなどの各基)、カルバモイルオキシ基(好ましくは 、炭素数1から30の置換もしくは無置換のカルバモイルオキシ基、例えば、N **, N-ジメチルカルバモイルオキシ、N, N-ジエチルカルバモイルオキシ、モ** ルホリノカルボニルオキシ、N, N-ジーn-オクチルアミノカルボニルオキシ 、N-n-オクチルカルバモイルオキシなどの各基)、アルコキシカルボニルオ キシ基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボ ニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、 tーブトキシカルボニルオキシ、nーオクチルカルボニルオキシなどの各基)、

アリールオキシカルボニルオキシ基(好ましくは、炭素数 7 から3 0 の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ基、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ基など)、

[0037]

アミノ基(好ましくは、アミノ基、炭素数1から30の置換もしくは無置換の アルキルアミノ基、炭素数6から30の置換もしくは無置換のアニリノ基、例え ば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチルーアニリノ、 ジフェニルアミノなどの各基)、アンモニオ基(好ましくはアンモニオ基、炭素 数1から30の置換もしくは無置換のアルキル、アリール、ヘテロ環が置換した アンモニオ基、例えば、トリメチルアンモニオ、トリエチルアンモニオ、ジフェ ニルメチルアンモニオなどの各基)、アシルアミノ基(好ましくは、ホルミルア ミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基 、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例え ば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、 ベンゾイルアミノ、3,4,5-トリーn-オクチルオキシフェニルカルボニル アミノなどの各基)、アミノカルボニルアミノ基(好ましくは、炭素数1から3 0の置換もしくは無置換のアミノカルボニルアミノ基、例えば、カルバモイルア ミノ、N,N-ジメチルアミノカルボニルアミノ、N,N-ジエチルアミノカル ボニルアミノ、モルホリノカルボニルアミノなどの各基)、アルコキシカルボニ ルアミノ基(好ましくは炭素数2から30の置換もしくは無置換アルコキシカル ボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミ **ノ、t-ブトキシカルボニルアミノ、n-オクタデシルオキシカルボニルアミノ** 、N-メチル-メトキシカルボニルアミノなどの各基)、アリールオキシカルボ ニルアミノ基(好ましくは、炭素数7から30の置換もしくは無置換のアリール オキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p-クロロフ ェノキシカルボニルアミノ、m-n-オクチルオキシフェノキシカルボニルアミノ などの各基)、スルファモイルアミノ基(好ましくは、炭素数0から30の置換 もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N

、Nージメチルアミノスルホニルアミノ、N-n-オクチルアミノスルホニルアミノなどの各基)、アルキル及びアリールスルホニルアミノ基(好ましくは炭素数1から30の置換もしくは無置換のアルキルスルホニルアミノ基および炭素数6から30の置換もしくは無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5-トリクロロフェニルスルホニルアミノ、p-メチルフェニルスルホニルアミノなどの各基)、

[0038]

メルカプト基、アルキルチオ基(好ましくは、炭素数1から30の置換もしく は無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、n-ヘキサデシル チオなどの各基)、アリールチオ基(好ましくは炭素数6から30の置換もしく は無置換のアリールチオ、例えば、フェニルチオ、pークロロフェニルチオ、m ーメトキシフェニルチオなどの各基)、ヘテロ環チオ基(好ましくは炭素数2か ら30の置換または無置換のヘテロ環チオ基、例えば、2-ベンゾチアゾリルチ オ基、1-フェニルテトラゾール-5-イルチオ基など)、スルファモイル基(好ましくは炭素数0から30の置換もしくは無置換のスルファモイル基、例えば 、N-エチルスルファモイル、N-(3-ドデシルオキシプロピル)スルファモ イル、N,N-ジメチルスルファモイル、N-アセチルスルファモイル、N-ベ ンゾイルスルファモイル、N-(N'ーフェニルカルバモイル)スルファモイル などの各基)、スルホ基、アルキル及びアリールスルフィニル基(好ましくは、 **炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の** 置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル、エ **チルスルフィニル、フェニルスルフィニル、p-メチルフェニルスルフィニルな** どの各基)、アルキル及びアリールスルホニル基(好ましくは、炭素数1から3 0の置換または無置換のアルキルスルホニル基、6から30の置換または無置換 のアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、フェ ニルスルホニル、pーメチルフェニルスルホニルなどの各基)、

[0039]

アシル基(好ましくはホルミル基、炭素数2から30の置換または無置換のア

ルキルカルボニル基、、炭素数 7 から3 0 の置換もしくは無置換のアリールカルボニル基、炭素数 4 から3 0 の置換もしくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基、例えば、アセチル、ピバロイル、2 ークロロアセチル、ステアロイル、ベンゾイル、p-n-オクチルオキシフェニルカルボニル、2 ーピリジルカルボニル、2 ーフリルカルボニルなどの各基)、アリールオキシカルボニル基(好ましくは、炭素数 7 から3 0 の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、ロークロロフェノキシカルボニル、mーニトロフェノキシカルボニル、p-t-ブチルフェノキシカルボニルなどの各基)、アルコキシカルボニル基(好ましくは、炭素数 2 から3 0 の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、n-オクタデシルオキシカルボニルなどの各基)、カルバモイル基(好ましくは、炭素数 1 から3 0 の置換もしくは無置換のカルバモイル基(好ましくは、炭素数 1 から3 0 の置換もしくは無置換のカルバモイル基、例えば、カルバモイル、Nーメチルカルバモイル、Nージメチルカルバモイル、Nージーn-オクチルカルバモイル、Nー(メチルスルホニル)カルバモイルなどの各基)、

[0040]

アリール及びヘテロ環アゾ基(好ましくは炭素数 6 から 3 0 の置換もしくは無置換のアリールアゾ基、炭素数 3 から 3 0 の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ、pークロロフェニルアゾ、5ーエチルチオー1,3,4ーチアジアゾールー2ーイルアゾなどの各基)、イミド基(好ましくは、Nースクシンイミド基、Nーフタルイミド基など)、ホスフィノ基(好ましくは、炭素数 2 から 3 0 の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノなどの各基)、ホスフィニル基(好ましくは、炭素数 2 から 3 0 の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニルなどの各基)、ホスフィニルオキシ基(好ましくは、炭素数 2 から 3 0 の置換もしくは無置換のホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基など)、ホスフィニルアミノ基(好ましくは、炭素数 2 から 3 0 の置換もしくは無置換のホスフィニルアミノ基(好ましくは、炭素数 2 から 3 0 の置換もしくは無置換のホスフィニル

アミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基など)、ホスフォ基、シリル基(好ましくは、炭素数 3 から 3 0 の置換もしくは無置換のシリル基、例えば、トリメチルシリル、 t ーブチルジメチルシリル、フェニルジメチルシリルなどの各基)、ヒドラジノ基(好ましくは炭素数 0 から 3 0 の置換もしくは無置換のヒドラジノ基、例えば、トリメチルヒドラジノ基)、ウレイド基(好ましくは炭素数 0 から 3 0 の置換もしくは無置換のウレイド基、例えばN, N ージメチルウレイド基)、を表わす。

[0041]

また、環(芳香族、又は非芳香族の炭化水素環、又は複素環、並びにこれらの環がさらに組み合わされた多環縮合環、例えばベンゼン環、ナフタレン環、アントラセン環、キノリン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ピフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、キノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、フェナジン環、及びこれらの環が縮合した構造の環)の水素原子を一個取り去った炭化水素環基や複素環基も挙げられる。

[0042]

上記の置換基群Wの中で、水素原子を有するものは、これを取り去り更に上記の基で置換されていても良い。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル、pーメチルフェニルスルホニルアミノカルボニル、アセチルアミノスルホニル、ベンゾイルアミノスルホニル基が挙げられる。

以上で一般式(I)又は一般式(2)に含まれる置換基群Wの説明を終わり、一

般式(I)又は一般式(2)の説明を続ける。

[0043]

一般式 (1) 又は一般式 (2) 中、 X_1 、 X_2 はそれぞれ独立に-O-、-S-、- NR_3 -、- CR_4R_5 -を表し、 R_3 - R_5 は独立に水素原子、アルキル基(好ま しくは炭素原子数(以下C数という)1から18、より好ましくは1から7、特 に好ましくは1から4の無置換アルキル基(例えば、メチル、エチル、プロピル 、イソプロピル、ブチル、イソブチル、ヘキシル、オクチル、2-エチルヘキシル 、ドデシル、オクタデシルなどの各基)、C数1から18、好ましくは1から7 、特に好ましくは1から4の置換アルキル基{例えば置換基として前述のWが置 換したアルキル基が挙げられる。好ましくはアラルキル基(例えばベンジル基、 2-フェニルエチル基など)、ヒドロキシアルキル基(例えば、2-ヒドロキシ エチル、3-ヒドロキシプロピル、6-ヒドロキシヘキシルなどの各基)、カル ボキシアルキル基(例えば、2-カルボキシエチル、3-カルボキシプロピル、 4-カルボキシブチル、カルボキシメチル、5-カルボキシペンチルなどの各基) 、アルコキシアルキル基(例えば、2-メトキシエチル基、2-(2-メトキシ エトキシ)エチル基など)、アリールオキシアルキル基(例えば2-フェノキシ エチル基、2-(1-ナフトキシ)エチル基など)、アルコキシカルボニルアル キル基(例えばエトキシカルボニルメチル基、2-ベンジルオキシカルボニルエ チル基など)、アリールオキシカルボニルアルキル基(例えば3-フェノキシカ ルボニルプロピル基)、アシルオキシアルキル基(例えば2-アセチルオキシエ チル基)、アシルアルキル基(例えば2-アセチルエチル基)、カルバモイルア ルキル基(例えば2-モルホリノカルボニルエチル基)、スルファモイルアルキ ル基(例えばN、N-ジメチルスルファモイルメチル基)、スルホアルキル基(例えば、2-スルホベンジル、3-スルホ-3-フェニルプロピル、2-スルホエチル 、3-スルホプロピル、3-スルホブチル、4-スルホブチル、2-[3-スル ホプロポキシ] エチル、2-ヒドロキシ-3-スルホプロピル、3-スルホプロ ポキシエトキシエチルなどの各基)、スルファトアルキル基(例えば、2-スル ファトエチル基、3-スルファトプロピル基、4-スルファトブチル基など)、 ヘテロ環置換アルキル基(例えば2-(ピロリジン-2-オン-1-イル)エチ

ル基、テトラヒドロフルフリル基など)、アルキルスルホニルカルバモイルアルキル基(例えばメタンスルホニルカルバモイルメチル基)、アシルカルバモイルアルキル基(例えばアセチルカルバモイルメチル基)、アシルスルファモイルアルキル基(例えばアセチルスルファモイルメチル基)、アルキルスルフォニルスルファモイルアルキル基(例えばメタンスルフォニルスルファモイルメチル基)、ハロゲン置換アルキル基(例えば2-クロロエチル基、2,2,2-トリフルオロエチル基など))、

[0044]

アルケニル基(好ましくはC数2~20、例えば、ビニル、アリル、3-ブテニル、オレイルなどの各基、前述のWが置換したアルケニル基、例えばスルホアルケニル基(例えば3-スルホ-2-プロペニル)基等)、

[0045]

アリール基(C数6から20、好ましくはC数6から10、さらに好ましくはC数6から8の無置換アリール基(例えばフェニル基、1ーナフチル基、2-ナフチル、)、C数6から20、好ましくはC数6から10、さらに好ましくはC数6から8の置換アリール基(例えば置換基の例として挙げた前述のWが置換したアリール基、具体的にはpーメトキシフェニル基、pーメチルフェニル基、pークロロフェニル基などが挙げられる。)、

[0046]

へテロ環基(C数1から20、好ましくはC数3から10、さらに好ましくはC数4から8の無置換へテロ環基(例えば2ーフリル基、2ーチエニル基、2ーピリジル基、3ーピラゾリル、3ーイソオキサゾリル、3ーイソチアゾリル、2ーイミダゾリル、2ーオキサゾリル、2ーチアゾリル、2ーピリダジル、2ーピリミジル、3ーピラジル、2ー(1,3,5-トリアゾリル)、3ー(1,2,4-トリアゾリル)、5ーテトラゾリルなどの各基)、C数1から20、好ましくはC数3から10、さらに好ましくはC数4から8の置換へテロ環基(例えば置換基の例として挙げた前述のWが置換した複素環基が挙げられ、具体的には5ーメチルー2ーチエニル基、4ーメトキシー2ーピリジル基などが挙げられる。))が挙げられる。

[0047]

 R_3 は好ましくは水素原子、アルキル基、スルホアルキル基を表し、より好ましくはアルキル基またはスルホアルキル基を表す。 R_4 、 R_5 は好ましくはアルキル基を表す。 X1、 X2は好ましくは-O-、-S-、 $-NR_3-$ を表し、より好ましくは-O-、-S-を表す。

[0048]

 R_1 、 R_2 はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を表し(以上好ましい例は R_3 と同じ)、好ましくはアルキル基またはスルホアルキル基を表す。

M1~M6はそれぞれ独立にメチン基を表し、置換基を有していてもよい。 置換基としては前述の置換基群Wのいずれでも良いが、好ましくは例えばC数1 ~20のアルキル基(例えば、メチル、エチル、i-プロピルなどの各基)、ハ ロゲン原子(例えば、塩素、臭素、ヨウ素、フッ素などの各基)、ニトロ基、C 数1~20のアルコキシ基(例えば、メトキシ基、エトキシ基など)、C数6~ 26のアリール基(例えば、フェニル基、2-ナフチル基など)、C数0~20の ヘテロ環基(例えば、2-ピリジル基、3-ピリジル基など)、C数6~20のアリ ールオキシ基(例えば、フェノキシ、1-ナフトキシ、2-ナフトキシなどの各基) 、C数1~20のアシルアミノ基(例えばアセチルアミノ基、ベンゾイルアミノ 基など)、C数 $1\sim20$ のカルバモイル基(例えばN, N - ジメチルカルバモイル基)、スルホ基、C数0~20のスルホンアミド基(例えばメタンスルホンア ミド基)、C数0~20のスルファモイル基(例えばN-メチルスルファモイル 基)、ヒドロキシ基、カルボキシ基、C数1~20のアルキルチオ基(例えばメ チルチオ基)、シアノ基などが挙げられる。また、他のメチン基と環を形成して もよく、もしくは助色団と環を形成することもできる。好ましくは無置換、エチ ル基置換、メチル基置換のメチン基である。

[0049]

 $\mathbf{n_1}$ 、 $\mathbf{n_2}$ はそれぞれ独立に0~3の整数を表し、2以上の時は $\mathbf{M_1}$, $\mathbf{M_2}$ 、 $\mathbf{M_4}$ 、 $\mathbf{M_5}$ はそれぞれ同じでも異なってもよく、好ましくは0または1を表す。 $\mathbf{n_1}$ が0の時、 $\mathbf{X_1}$ 、 $\mathbf{X_2}$ は \mathbf{S} であることが好ましく、 $\mathbf{n_1}$ が1の時、 $\mathbf{X_1}$ 、 $\mathbf{X_2}$ は \mathbf{O} であることが好ま

しい。なお、 n_1 と n_2 は同じであることが好ましい。

[0050]

Lはアミド基、エステル基以外のヘテロ原子を少なくとも1 個以上有する連結基を表す。ヘテロ原子としては好ましくは酸素、窒素、硫黄、塩素、臭素、リン、ケイ素等が挙げられ、好ましくは酸素、窒素、硫黄、塩素が挙げられる。Lとして好ましくはアルキレン基、アルケニレン基、アリーレン基に前述の置換基群Wが置換した連結基であり、またLとして好ましくは-O-、-S-、 $-NR_3-$ 、 $-SO_2-$ 等を主鎖に1 個以上含む連結基である。

[0051]

Lは好ましくはー L_1 ー(A_1 ー L_2 ー) t_1 ーで表される。ただし A_1 は向きを問わずにーCOOー、ー $CONR_6$ ー、ー SO_2NR_7 ーを表し、 R_6 、 R_7 はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基(好ましい例は R_3 ~ R_5 に同じ)を表し、好ましくは水素原子またはアルキル基であり、より好ましくは水素原子である。 A_1 は好ましくは一 $CONR_6$ ーである。 t_1 は0~10の整数を表し、好ましくは1または2を表し、より好ましくは1を表す。 t_1 が2以上の時、複数の A_1 、 L_2 は同じでも異なってもよい。

 L_1 、 L_2 はそれぞれ独立にアルキレン基(好ましくはC数 $1 \sim 20$ 、例えばメチレン、エチレン、プロピレン、ブチレン、ヘキシレン、オクチレン、2-メチルブチレン、3-フェニルペンチレン)、アルケニレン基(好ましくはC数 $2 \sim 20$ 、例えばエテニレン、プロペニレン、2-ブテニレン)、アリーレン基(好ましくはC数 $6 \sim 26$ 、例えば 1, 4-フェニレン、1, 4-ナフチレン)、 $-G_1$ -(A_2 - G_2 -) $_{12}$ -を表す。 G_1 、 G_2 はそれぞれ独立にアルキレン基、アルケニレン基、アリーレン基(好ましい例は L_1 、 L_2 に同じ)を表し、好ましくはアルキレン基を表す。 A_2 は向きを問わずに-O-、-S-、 $-NR_3$ -、 $-SO_2$ -、好ましくは-O-、 $-NR_3$ -、 $-SO_2$ -、好ましくは-O-を表す。 t_2 は $1 \sim 10$ の整数を表し、好ましくは $1 \sim 4$ 0の整数を表し、より好ましくは $2 \sim 4$ 0を数を表す。 t_2 が2以上の時、複数0A2、 G_2 は同じでも異なってもよい。

 L_1 、 L_2 は好ましくはアルキレン基または $-G_1$ -(A_2 - G_2 -) t_2 -を表す。

[0052]

 $V_1 \sim V_4$ は置換基を表し、前述の置換基群Wのいずれでも良いが、好ましくはC数 $1\sim20$ のアルキル基(好ましい例は $R_3\sim R_5$ に同じ)、ハロゲン原子(例え ば、塩素、臭素、ヨウ素、フッ素)、ニトロ基、C数1~20のアルコキシ基(例えば、メトキシ、エトキシ)、C数6~20のアリール基(例えば、フェニル 、2-ナフチル基)、C数0~20のヘテロ環基(例えば、2-ピリジル、3-ピリジ ル、1-ピロリル、2-チエニルなどの各基)、C数6~20のアリールオキシ基(例えば、フェノキシ、1-ナフトキシ、2-ナフトキシなどの各基)、C数1~20 のアシルアミノ基(例えば、アセチルアミノ、ベンゾイルアミノなどの各基)、 C数1~20のカルバモイル基(例えばN,N-ジメチルカルバモイル基)、ス ルホ基、C数0~20のスルホンアミド基(例えばメタンスルホンアミド基)、 C数0~20のスルファモイル基(例えばN-メチルスルファモイル基)、ヒ ドロキシル基、カルボキシル基、C数1~20のアルキルチオ基(例えばメチル チオ基)、シアノ基などが挙げられる。 V_1 、 V_2 としては好ましくはアルキル基 、ハロゲン原子(特に塩素、臭素)、アリール基、アルコキシ基であり、好まし い置換位置としては5位、6位、50、60である。 V_3 04として好ましく はアルキル基(特にt-ブチル基のようにかさ高い基)、ハロゲン原子(特にフッ 素)、アリール基、アルコキシ基、ヒドロキシル基、スルホ基、カルボキシル基 であり、好ましい置換位置としては5位、6位、7位、5'位、6'位、7'位で ある。

[0053]

 $n_3 \sim n_6$ は $0 \sim 4$ の整数を表し、好ましくは $0 \sim 2$ を表す。 $n_3 \sim n_6$ が2 以上の時、 $V_1 \sim V_4$ は同じでも異なってもよく、互いに連結して環を形成しても良い。環を形成する場合、形成する環としては好ましくは、ベンゼン環、ピリジン環、ベンゾフラン環、チオフェン環、ピロール環、インドール環等が挙げられ、より好ま

[0054]

CIは電荷を中和するイオンを表す。ある化合物が陽イオン、陰イオンであるか、あるいは正味のイオン電荷を持つかどうかは、その置換基に依存する。典型的な陽イオンはアンモニウムイオン及びアルカリ金属イオンであり、一方陰イオンは無機イオンあるいは有機イオンのいずれであってもよい。

陽イオンとしては、たとえば、ナトリウムイオン、カリウムイオン、トリエチルアンモニウムイオン、ジエチル(i-プロピル)アンモニウムイオン、ピリジニウムイオン、1-エチルピリジニウムイオンであり、陰イオンとしては、たとえば、ハロゲン陰イオン(例えば、塩素イオン、臭素イオン、フッ素イオン、ヨウ素イオン)、置換アリールスルホン酸イオン(例えば、パラトルエンスルホン酸イオン)、アルキル硫酸イオン(例えば、メチル硫酸イオン)、硫酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、酢酸イオンなどが挙げられる。yは電荷を中和するのに必要な数を表す。

[0055]

一般式(1)または(2)で表される本発明の化合物において、Dyelとして示される発色団の好ましい例は以下の通りである。ただし本発明はこれに限定されない。なお、以下に記載した本発明の化合物の構造式はいくつも取りうる共鳴構造のうちの1つの極限構造にすぎず、共鳴により取りうる他の構造を取っても構わない。

[0056]

【化5】

【化6】

DA-21
$$(CH_2)_3SO_3^ CI$$
 CH_2
 CH_2
 CH_3
 CH_3

[0058]

【化7】

[0059]

【化8】

DA-38

DA-42

DA-43

DA-44

[0060]

一般式(1)または(2)で表される本発明の化合物において、Dye2として示

される発色団の好ましい例は以下の通りである。ただし本発明はこれに限定されない。

[0061] 【化9]

	R ₁₄	R ₁₅	R ₁₆	R ₁₇	R ₁₈	R ₁₉	R ₂₀
DB- 1	Н	н	Н	н	-SO ₃ Na	Н	–(CH ₂)₃SO₃¯
DB- 2	-Ph	н	Н	н	-SO₃K	Н	-(CH₂)₃ SO₃ ⁻
DB- 3	-a	н	н	н	-SO ₃ Na	н	-(CH ₂)₄SO₃¯
DB- 4	-CH ₃	-CH ₃	Н	-SO ₃ • HNEt ₃	н	Н	-{CH2}2CH(OH)CH2SO3 ⁻
DB- 5	-SO₃Na	Н	н	н	-SO ₃ Na	Н	- (CH₂₎₃SO3
DB- 6	-SO ₃	н	н	н	-SO ₃ Na	Н	-C ₂ H ₅
DB- 7	-OH	-OH	н	н	-SO ₃ -	Н	-C ₂ H ₅
DB- 8	н	-OH	н	н	-OH	н	-(CH ₂₎₃ SO ₃
DB- 9	-OH	-OH	н	н	н	н	-(CH ₂)₃SO₃ ⁻
DB-10	н	-coo-	Н	н	-COOH	Н	-CH ₃
DB-11	н	-COONa	н	н	н	Н	-(CH₂)₃ SO₃ ⁻
DB-12	н	-F	н	н	æ	Н	- (CH ₂) ₂ CH(OH ₃)SO ₃
DB-13	н	-C4H ₉ -t	н	н	-SO ₃ Na	Н	
DB-14	н	н	-C4H _e	e ^{-t} H	н	-CH ₃	-(CH ₂)₂SO₃

[0062]

【化10】

[0063]

(CH₂)₃SO₃

[0064]

一般式(1)または(2)で表される本発明の化合物において、連結基-L-として好ましい例は以下の通りである。ただし本発明はこれに限定されない。

[0065]

【化12】

(CH2)2 (OCH2CH2)n13 NHCO (CH2)n14

	n ₁₃	n ₁₄	
L-1	2	5	
L-2	2	3	
L-3	2	1	
L-4	3	5	
L-5	3	1	
L-6	4	1	

(CH₂)₂ (OCH₂CH₂)_{n13} CONH (CH₂)_{n14}

	n ₁₃	n ₁₄	
L-7	2	1	
L-8	2	2	
L-9	2	3	
L-10	2	4	
L-11	2	8	

L-12 -(CH₂)₃ CONH -(CH₂)₂ (OCH₂CH₂)₂ CONH (CH₂)₃

L - 13 $\frac{\text{CH}_2)_4}{\text{NHCO}} \frac{\text{CH}_2\text{CH}_2\text{O}}{2} \frac{\text{CH}_2\text{D}_2}{2}$

L-14 — (CH₂)₅ CONH (CH₂CH₂O)₂ (CH₂)₂

L-15 (CH₂) O (CH₂) NHCO (CH₂) O (CH₂) 2

[0066]

【化13】

$$L-16 \qquad \qquad \bigcirc \\ -(CH_2)_2 (OCH_2CH_2)_2 OC (CH_2)_5$$

$$L-17 \qquad \qquad \bigcirc \\ -(CH_2)_2 (OCH_2CH_2)_2 CO (CH_2)_6$$

$$L-18 \qquad \bigcirc \\ -(CH_2)_2 OC (CH_2CH_2O)_2 (CH_2)_2$$

$$L-19$$
 ---(CH₂)₂(OCH₂CH₂)₂ NHSO₂(CH₂)₃

$$L-25$$
 — (CH₂) $\frac{1}{2}$ SO₂ (CH₂) $\frac{1}{2}$ NHCO (CH₂) $\frac{1}{5}$

[0067]

以下に本発明の一般式(1)または(2)で表される化合物の具体例を示すが 、本発明はこれに限定されるものではない。

[0068]

【化14】

	Dye1	<u> – L – </u>	D y e 2
D - 1	D A - 1	L - 1	DB-1
D - 2	"	<i>"</i>	DB-3
D-3	//	<i>"</i>	DB-5
D - 4	"	<i>"</i>	DB-6
D-5	"	<i>"</i>	DB-8
D-6	//	<i>"</i>	DB - 9
D – 7	11	//	DB-11
D – 8	//	<i>"</i>	DB-14
D-9	"	<i>"</i>	DB-15
D-10	"//	<i>"</i>	DB-18
D - 11	"	"	DB - 20
D - 12	"	$\Gamma - 3$	DB-1
D - 13	"	//	DB-5
D – 14	"	L - 5	DB-6
D – 15	"	L - 10	DB-2
D - 16	"	L-12	DB-16
D-17	"	L-13	DB-6
D - 18	"	L-14	"
D - 19	// ·	L - 16	D B — 1
D-20	11	L - 19	DB-5
D-21	//	L - 22	DB-6
D-22	//	L - 23	//
D-23	//	L - 25	//
D-24	D A - 2	L - 1	D B - 1
D-25	"	<i>"</i>	DB-5

[0069]

【化15】

	D y e 1	<u> </u>	D y e 2
D - 26	D A - 9	L - 1	D B - 1
D-27	//	<i>"</i>	D B - 2
D - 28	"	//	DB-5
D -29	"	//	D B - 6
D - 30	"	//	DB - 15
D-31	//	//	D B - 17
D - 32	"	//	D B - 18
D - 33	//	"	DB-22
D - 34	"	L - 16	D B - 5
D - 35	"	L - 19	D B - 5
D - 36	DA - 17	L-1	D B - 1
D - 37	"	"	D B - 26
D-38	"	"	D B - 33
D-39	DA-27	//	DB-5
D - 40	"	//	D B - 31
D-41	"	"	D B - 27
D-42	DA-29	<i>"</i>	D B - 18
D - 43	DA - 35	"	DB-6
D-44	//	//	D B - 27
D-45	DA-36	"	DB - 27
D - 46	DA - 37	"	DB - 28
D - 47	DA - 38	"	D B - 29
D - 48	DA - 39	"	DB - 27
D-49	"	"	D B - 30

[0070]

本発明の化合物は、たとえば下記の文献に記載の方法に準じて合成することができる。

F.M.Harmer著、Heterocyclic Compounds—Cyanine Dyes and Related Compounds、John&Wiley&Sons、New York、London、1964年刊、D.M.Sturmer著、Heterocyclic Compounds—Special Topics in Heterocyclic Chemistry、第18章、第14節、第482から515頁、John&Wiley&Sons、New York、London、1977年刊、欧州特許887700A1号。

[0071]

一般式(1)又は(2)で表わされる化合物において、ハロゲン化銀粒子への吸着力は、

Dye1≧Dye 2

となっていることが好ましい。その点ではDye2に少なくとも1 個以上の $-SO_3$ M、 $-OSO_3$ M、 $-OPO_3$ M₂、 $-PO_3$ M₂、-COOMが含まれることが好ましく、少なくとも1 個以上の $-SO_3$ Mが含まれることがより好ましい。なお、Mはプロトンまたは陽イオンを表す。

なお、Dyel及びDye 2 で示される発色団を構成するそれぞれの色素のハロゲン化 銀粒子への吸着性は、それぞれのモデル化合物を用いて吸着等温線を求める方法 ,又は飽和吸着量を求める方法によって測定することができ、それらは原理的に 同じ方法であり、吸着性の試験結果も同じである。その詳細は、ハーツ(A. H e r z) の報告を引用して後述し、また実施例にも例示する。

[0072]

また、一般式(1)又は(2)で表わされる化合物のDye2が光励起された際、Dye1へ電子移動またはエネルギー移動することが可能であることが好ましい。 さらに、ハロゲン化銀写真乳剤及びハロゲン化銀感光材料において、一般式(1)で表わされる化合物がDye1によってハロゲン化銀粒子に吸着し、かつハロゲン化銀粒子に吸着していないDye2が光励起された際に、その励起電子又はエネルギーがDye1へ電子移動またはエネルギー移動することが好ましい。

また、ハロゲン化銀写真乳剤及びハロゲン化銀感光材料において、一般式(1

)で表わされる化合物がDye1によってハロゲン化銀粒子に吸着してJ会合を形成し、さらにハロゲン化銀粒子に吸着していないDye2もJ会合を形成することが好ましい。J会合の形成は、分光吸収曲線に会合バンドの出現によって確認できる

[0073]

次に、本発明のハロゲン化銀写真感光材料について詳しく説明する。

本発明の化合物は主にハロゲン化銀写真乳剤及びハロゲン化銀写真感光材料における増感色素(分光増感色素とも呼ぶ)として用いられる。

本発明の化合物は単独、あるいは本発明の化合物同士で併用、または他の増感色素と組合せてハロゲン化銀写真乳剤またはハロゲン化銀感光材料に用いることが出来る。その際、用いられる色素として、好ましくはシアニン色素、メロシアニン色素、ロダシアニン色素、3核メロシアニン色素、4核メロシアニン色素、アロポーラー色素、ヘミシアニン色素、スチリル色素などが挙げられる。さらに好ましくはシアニン色素、メロシアニン色素、ロダシアニン色素であり、特に好ましくはシアニン色素である。これらの色素の詳細については、エフ・エム・ハーマー(F.M.Harmer)著「ヘテロサイクリック・コンパウンズーシアニンダイズ・アンド・リレィティド・コンパウンズ(Heterocyclic Compounds-Cyanine Dyes and Related Compounds)」、ジョン・ウィリー・アンド・サンズ(John Wiley & Damp; Sons)社ーニューヨーク、ロンドン、1964年刊、デー・エム・スターマー(D.M.Sturmer)著「ヘテロサイクリック・コンパウンズースペシャル・トピックス・イン・ヘテロサイクリック・ケミストリー(Heterocyclic Compounds-Special topics in heterocyclic chemistry)」、第18章、第14節、第482から515頁などに記載されている。

[0074]

好ましい色素としては、米国特許第5,994,051号第32~44頁記載、及び米国特許第5,747,236号第30~39頁記載の一般式、及び具体例で示された増感色素が挙げられる。

また、好ましいシアニン色素、メロシアニン色素、ロダシアニン色素の一般式は、米国特許第5、340、694号第21~22欄の(XI)、(XII)、(

XIII)に示されているもの(ただし、n12、n15、n17、n18の数は限定せず、 0以上の整数(好ましくは4以下)とする。)が挙げられる。

[0075]

これらの増感色素は1種用いても良いが、2種以上用いても良く、増感色素の組み合わせは、特に強色増感の目的でしばしば用いられる。その代表例は米国特許2,688,545号、同2,977,229号、同3,397,060号、同3,522,052号、同3,527,641号、同3,617,293号、同3,628,964号、同3,666,480号、同3,672,898号、同3,679,428号、同3,303,377号、同3,769,301号、同3,814,609号、同3,837,862号、同4,026,707号、英国特許1,344,281号、同1,507,803号、特公昭43-49336号、同53-12375号、特開昭52-110618号、同52-109925号などに記載されている。

[0076]

増感色素とともに、それ自身分光増感作用を持たない色素あるいは可視光を実 質的に吸収しない物質であって、強色増感性を示す物質を乳剤中に含んで良い。

[0077]

本発明における分光増感において有用な強色増感剤(例えば、ピリミジルアミノ化合物、トリアジニルアミノ化合物、アゾリウム化合物、アミノスチリル化合物、芳香族有機酸ホルムアルデヒド縮合物、アザインデン化合物、カドミウム塩)、及び強色増感剤と増感色素の組み合わせは、例えば米国特許3,511,664号、同3,615,632号、同3,615,632号、同3,615,641号、同4,596,767号、同4,945,038号、同4,965,182号、同4,965,182号、同2,933,390号、同3,635,721号、同3,743,510号、同3,617,295号、同3,635,721号等に記載されており、その使用法に関しても上記の特許に記載されている方法が好ましい。

[0078]

本発明の増感色素(また、その他の増感色素、強色増感剤についても同様)を

本発明のハロゲン化銀写真感光材料用の乳剤中に添加する時期は、これまで有用であることが認められている乳剤調製の如何なる工程中であってもよい。例えば、米国特許2,735,766号、同3,628,960号、同4,183,756号、同4,225,666号、特開昭58-184142号、同60-196749号等に開示されているように、ハロゲン化銀の粒子形成工程及び/又は脱塩前の時期、脱塩工程中及び/または脱塩後から化学熟成の開始前迄の時期、特開昭58-113920号等に開示されているように、化学熟成の直前または工程中の時期、化学熟成後塗布迄の時期の乳剤が塗布される前なら如何なる時期、工程に於いて添加されても良い。また、米国特許4,225,666号、特開昭58-7629号等に開示されているように、同一化合物を単独で、または異種構造の化合物と組み合わせて、例えば、粒子形成工程中と化学熟成工程中または化学熟成完了後とに分けたり、化学熟成の前または工程中と完了後とに分けるなどして分割して添加しても良く、分割して添加する化合物及び化合物の組み合わせの種類をも変えて添加されても良い。

[0079]

本発明の増感色素(また、その他の増感色素、強色増感剤についても同様)の 添加量としては、ハロゲン化銀粒子の形状、サイズにより異なり、いかなる添加量でも良いが、好ましくは、ハロゲン化銀1モル当たり、 $1\times10^{-8}\sim8\times10^{-1}$ モルで用いることができる。例えば、ハロゲン化銀粒子サイズが $0.2\sim1.3\mu$ mの場合には、ハロゲン化銀1モル当たり、 $2\times10^{-6}\sim3.5\times10^{-3}$ モルの添加量が好ましく、 $7.5\times10^{-6}\sim1.5\times10^{-3}$ モルの添加量がより好ましい。

[0080]

本発明の増感色素(また、その他の増感色素、強色増感剤についても同様)は、直接乳剤中へ分散することができる。また、これらはまず適当な溶媒、例えばメチルアルコール、エチルアルコール、メチルセロソルブ、アセトン、水、ピリジンあるいはこれらの混合溶媒などの中に溶解され、溶液の形で乳剤中へ添加することもできる。この際、塩基や酸、界面活性剤などの添加物を共存させることもできる。また、溶解に超音波を使用することもできる。また、この化合物の添

加方法としては米国特許第3,469,987号などに記載のごとき、該化合物を揮発性の有機溶媒に溶解し、該溶液を親水性コロイド中に分散し、この分散物を乳剤中へ添加する方法、特公昭46-24185号などに記載のごとき、水溶性溶剤中に分散させ、この分散物を乳剤中へ添加する方法、米国特許第3,822,135号に記載のごとき、界面活性剤に化合物を溶解し、該溶液を乳剤中へ添加する方法、特開昭51-74624号に記載のごとき、レッドシフトさせる化合物を用いて溶解し、該溶液を乳剤中へ添加する方法、特開昭50-80826号に記載のごとき、化合物を実質的に水を含まない酸に溶解し、該溶液を乳剤中へ添加する方法などが用いられる。その他、乳剤中への添加には米国特許第2,912,343号、同3,342,605号、同2,996,287号、同3,429,835号などに記載の方法も用いられる。

[0081]

本発明において感光機構をつかさどる写真乳剤にはハロゲン化銀として臭化銀、ヨウ臭化銀、塩臭化銀、ヨウ化銀、ヨウ塩化銀、ヨウ臭塩化銀、塩化銀のいずれを用いてもよいが、乳剤最外表面のハロゲン組成が0.1mol%以上、さらに好ましくは1mol%以上、特に好ましくは5mol%以上のヨードを含むことによりより強固な多層吸着構造が構築できる。

粒子サイズ分布は、広くても狭くてもいずれでもよいが、狭い方がよりこのまし い。

写真乳剤のハロゲン化銀粒子は、立方体、八面体、十四面体、斜方十二面体のような規則的 (regular) な結晶体を有するもの、また球状、板状などのような変則的 (irregular) な結晶形をもつもの、高次の面 ((hkl)面)をもつもの、あるいはこれらの結晶形の粒子の混合からなってもよいが、好ましくは平板状粒子であり、平板状粒子については下記に詳細に記述する。高次の面を持つ粒子についてはJournal of Imaging Science誌、第30巻 (1986年)の247頁から254頁を参照することができる。

また、本発明に用いられるハロゲン化銀写真乳剤は、上記のハロゲン化銀粒子 を単独または複数混合して含有していても良い。ハロゲン化銀粒子は、内部と表 層が異なる相をもっていても、接合構造を有するような多相構造であっても、粒 子表面に局在相を有するものであっても、あるいは粒子全体が均一な相から成っていても良い。またそれらが混在していてもよい。

これら各種の乳剤は潜像を主として表面に形成する表面潜像型でも、粒子内部に形成する内部潜像型のいずれでもよい。

[0082]

本発明では、ハロゲン組成が塩化銀、臭化銀、塩臭化銀、ヨウ臭化銀、塩ヨウ臭化銀、ヨウ塩化銀の平板ハロゲン化銀粒子が好ましく使用される。平板粒子は、(100)又は(111)かの主表面を持つものが好ましい。(111)主表面を有する平板粒子、以下これを(111)平板と呼ぶ、は普通三角形か六角形の面をもつ。一般的には分布がより均一になれば、より六角形の面を持つ平板粒子の比率が高くなる。六角形の単分散平板に関しては特公平5-61205に記載されている。

[0083]

(100)面を主表面に持つ平板状粒子(以下(100)平板と呼ぶ)は、長方形または正方形の形も持つ。この乳剤においては針状粒子より、隣接辺比が5:1未満の粒子が平板粒子と呼ばれる。塩化銀或いは塩化銀を多く含む平板粒子ににおいては、(100)平板粒子は本来(111)平板に比べて主表面の安定性が高い。(111)平板の場合は、(111)主表面を安定化させる事が必要であるが、それに関しては特開平9-80660号、特開平9-80656号、米国特許第5298388号に記載されている。

[0084]

本発明において用いられる塩化銀或いは塩化銀の含有率の高い(111)平板 に関しては下記の特許に開示されている。

米国特許第4414306号、米国特許第4400463号、米国特許第47 13323号、米国特許第4783398号、米国特許第4962491号、米 国特許第4983508号、米国特許第4804621号、米国特許第5389 509号、米国特許第5217858号、米国特許第5460934号。

[0085]

本発明に用いられる高臭化銀(111)平板粒子に関しては下記の特許に記載

されている。

米国特許第4425425号、米国特許第4425426号、米国特許第443426号、米国特許第4439520号、米国特許第4414310号、米国特許第4433048号、米国特許第4647528号、米国特許第4665012号、米国特許第4672027号、米国特許第4678745号、米国特許第4684607号、米国特許第4593964号、米国特許第4722886号、米国特許第4722886号、米国特許第4722886号、米国特許第4722886号、米国特許第4755617号、米国特許第4755456号、米国特許第4806461号、米国特許第4801522、米国特許第4835322号、米国特許第4839268号、米国特許第4914014号、米国特許第4962015号、米国特許第4977074号、米国特許第4985350号、米国特許第50616166号、米国特許第5068173号、米国特許第5132203号、米国特許第5272048号、米国特許第5334469号、米国特許第5334495号、米国特許第5358840号、米国特許第5372927号。

[0086]

本発明に用いられる(100)平板に関しては、下記の特許に記載されている

米国特許第4386156号、米国特許第5275930号、米国特許第5292632号、米国特許第5314798号、米国特許第5320938号、米国特許第5319635号、米国特許第5356764号、欧州特許第569971号、欧州特許第737887号、特開平6-308648号、特開平9-5911号。

[0087]

本発明に使用するハロゲン化銀乳剤は、本発明に開示する増感色素を吸着せしめた、より表面積/体積比の高い平板状ハロゲン化銀粒子が好ましく、アスペクト比は2以上100以下、好ましくは5以上80以下、より好ましくは8以上80以下であり、平板状粒子の厚さは、0.2μm未満が好ましく、より好ましくは0.1μm未満、更に好ましくは0.07μm未満である。

[0088]

ここでのアスペクト比が2以上100以下であるとは、アスペクト比(ハロゲン化銀粒子の円相当直径/粒子厚み)が2以上100以下のハロゲン化銀粒子が乳剤中の全ハロゲン化銀粒子の投影面積の50%以上存在することを意味する。 好ましくは、70%以上、特に好ましくは85%以上存在する乳剤である。

[0089]

このような高アスペクト比で且つ薄い平板粒子を調製するためには、以下に記述 する粒子形成、生長及び増感を含む一連の乳剤製造技術が適用される。

本発明の平板粒子は粒子間の転位線量分布が均一であることが望ましい。本発明の乳剤は1粒子当たり10本以上の転位線を含むハロゲン化銀粒子が全粒子の100ないし50%(個数)を占めることが好ましく、より好ましくは100ないし70%を、特に好ましくは100ないし90%を占める。50%を下回ると粒子間の均質性の点で好ましくない。

[0090]

本発明において転位線を含む粒子の割合及び転位線の本数を求める場合は、少なくとも100粒子について転位線を直接観察して求めることが好ましく、より好ましくは200粒子以上、特に好ましくは300粒子以上について観察して求める。

[0091]

本発明の乳剤の調製時に用いられる保護コロイドとして、及びその他の親水性 コロイド層のバインターとしては、ゼラチンを用いるのが有利であるが、それ以 外の親水性コロイドも用いることができる。

例えば、ゼラチン誘導体、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼインのような蛋白質;ヒドロキシエチルセルロース、カルボキシメチルセルロース、セルロース硫酸エステル類のようなセルロース誘導体、アルギン酸ソーダ、澱粉誘導体のような糖誘導体;ポリビニルアルコール、ポリビニルアルコール部分アセタール、ポリーNービニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリビニルイミダゾール、ポリビニルピラゾールのような単一あるいは共重合体の如き多種の合成親水性高分子物質を用いることができる。

ゼラチンとしては石灰処理ゼラチンのほか、酸処理ゼラチンやBull.Soc.Sci.Photo.Japan.No.16.P30(1966)に記載されたような酵素処理ゼラチンを用いてもよく、また、ゼラチンの加水分解物や酵素分解物も用いることができる。

本発明の乳剤は脱塩のために水洗し、新しく用意した保護コロイド分散にすることが好ましい。水洗の温度は目的に応じて選べるが、5°C~50℃の範囲で選ぶことが好ましい。水洗時のpHも目的に応じて選べるが2~10の間で選ぶことが好ましい。さらに好ましくは3~8の範囲である。水洗時のpAg も目的に応じて選べるが5~10の間で選ぶことが好ましい。水洗の方法としてヌードル水洗法、半透膜を用いた透析法、遠心分離法、凝析沈降法、イオン交換法のなかから選んで用いることができる。凝析沈降法の場合には硫酸塩を用いる方法、有機溶剤を用いる方法、水溶性ポリマーを用いる方法、ゼラチン誘導体を用いる方法などから選ぶことができる。

[0092]

本発明の乳剤調製時、例えば粒子形成時、脱塩工程、化学増感時、塗布前に金属イオンの塩を存在させることは目的に応じて好ましい。粒子にドープする場合には粒子形成時、粒子表面の修飾あるいは化学増感剤として用いる時は粒子形成後、化学増感終了前に添加することが好ましい。粒子全体にドープする場合と粒子のコアー部のみ、あるいはシェル部のみにドープする方法も選べる。例えば、Mg、Ca、Sr、Ba、Al、Sc、Y、La、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ru、Rh、Pd、Re、Os、Ir、Pt、Au、Cd、Hg、Tl、In、Sn、Pb、Biを用いることができる。これらの金属はアンモニウム塩、酢酸塩、硝酸塩、硫酸塩、燐酸塩、水酸塩あるいは6配位錯塩、4配位錯塩など粒子形成時に溶解させることができる塩の形であれば添加できる。例えば、CdBr2、CdCl2、Cd(NO3)2、Pb(NO3)2、Pb(CH3COO)2、K3[Fe(CN)6]、(NH4)4[Fe(CN)6]、K3IrCl6、(NH4)3RhCl6、K4Ru(CN)6があげられる。配位化合物のリガンドとしてハロ、アコ、シアノ、シアネート、チオシアネート、ニトロシル、チオニトロシル、オキソ、カルボニルのなかから選ぶこと

ができる。これらは金属化合物を1種類のみ用いてもよいが2種あるいは3種以上を組み合せて用いてよい。

[0093]

金属化合物は水またはメタノール、アセトンのような適当な有機溶媒に溶かして添加するのが好ましい。溶液を安定化するためにハロゲン化水素水溶液(例えば、HC1、HBrなど)あるいはハロゲン化アルカリ(例えば、KC1、NaC1、KBr、NaBrなど)を添加する方法を用いることができる。また必要に応じ酸・アルカリなどを加えてもよい。金属化合物は粒子形成前の反応容器に添加しても粒子形成の途中で加えることもできる。また水溶性銀塩(例えば、AgNO3)あるいはハロゲン化アルカリ水溶液(例えば、NaC1、KBr、KIなど)に添加しハロゲン化銀粒子形成中連続して添加することもできる。さらに水溶性銀塩、ハロゲン化アルカリとは独立の溶液を用意し粒子形成中の適切な時期に連続して添加してもよい。さらに種々の添加方法を組み合せるのも好ましい。

[0094]

米国特許第3,772,031号に記載されているようなカルコゲン化合物を 乳剤調製中に添加する方法も有用な場合がある。S、Se、Te以外にもシアン 塩、チオシアン塩、セレノシアン酸、炭酸塩、リン酸塩、酢酸塩を存在させても よい。

[0095]

本発明のハロゲン化銀粒子は硫黄増感、セレン増感、金増感、パラジウム増感 又は貴金属増感、還元増感の少なくとも1つをハロゲン化銀乳剤の製造工程の任 意の工程で施こすことができる。2種以上の増感法を組み合せることは好ましい 。どの工程で化学増感するかによって種々のタイプの乳剤を調製することができ る。粒子の内部に化学増感核をうめ込むタイプ、粒子表面から浅い位置にうめ込 むタイプ、あるいは表面に化学増感核を作るタイプがある。本発明の乳剤は目的 に応じて化学増感核の場所を選ぶことができるが、一般に好ましいのは表面近傍 に少なくとも一種の化学増感核を作った場合である。

[0096]

本発明で好ましく実施しうる化学増感の一つはカルコゲン増感と貴金属増感の 単独又は組合せであり、ジェームス (T. H. James) 著、ザ・フォトグラ フィック・プロセス、第4版、マクミラン社刊、1977年、(T. H. Jam es. The Theory of the Photographic Pr ocess, 4th ed, Macmillan, 1977) 67-76頁に記 載されるように活性ゼラチンを用いて行うことができるし、またリサーチ・ディ スクロージャー、120巻、1974年4月、12008;リサーチ・ディスク ロージャー、34巻、1975年6月、13452、米国特許第2,642,3 61号、同第3, 297, 446号、同第3, 772, 031号、同第3, 85 7,711、同第3,901,714号、同第4,266,018号、および同 第3,904,415号、並びに英国特許第1,315,755号に記載される ようにpAg 5~10、pH5~8および温度30~80℃において硫黄、セレン、 テルル、金、白金、パラジウム、イリジウムまたはこれら増感剤の複数の組合せ とすることができる。貴金属増感においては、金、白金、パラジウム、イリジウ ム等の貴金属塩を用いることができ、中でも特に金増感、パラジウム増感および 両者の併用が好ましい。金増感の場合には、塩化金酸、カリウムクロロオーレー ト、カリウムオーリチオシアネート、硫化金、金セレナイドのような公知の化合 物を用いることができる。パラジウム化合物はパラジウム2価塩または4価の塩 を意味する。好ましいパラジウム化合物は、RoPdXc またはRoPdXaで表 わされる。ここでRは水素原子、アルカリ金属原子またはアンモニウム基を表わ す。Xはハロゲン原子を表わし塩素、臭素または沃素原子を表わす。

[0097]

具体的には、 K_2 PdCl $_4$ 、 $(NH_4)_2$ PdCl $_6$ 、 Na_2 PdCl $_4$ 、 $(NH_4)_2$ PdCl $_4$ 、 Na_2 PdCl $_4$ 、 Na_2 PdCl $_6$ または K_2 PdBr $_4$ が好ましい。金化合物およびパラジウム化合物はチオシアン酸塩あるいはセレノシアン酸塩と併用することが好ましい。

硫黄増感剤として、ハイポ、チオ尿素系化合物、ロダニン系化合物および米国特許第3,857,711号、同第4,266,018号および同第4,054,457号に記載されている硫黄含有化合物を用いることができる。いわゆる化

学増感助剤の存在下に化学増感することもできる。有用な化学増感助剤には、アザインデン、アザピリダジン、アザピリミジンのごとき、化学増感の過程でカブリを抑制し、且つ感度を増大するものとして知られた化合物が用いられる。化学増感助剤改質剤の例は、米国特許第2,131,038号、同第3,411,914号、同第3,554,757号、特開昭58-126526号および前述ダフィン著「写真乳剤化学」、138~143頁に記載されている。

本発明の乳剤は金増感を併用することが好ましい。金増感剤の好ましい量としてハロゲン化銀1 モル当り $1 \times 10^{-4} \sim 1 \times 10^{-7}$ モルであり、さらに好ましいのは $1 \times 10^{-5} \sim 5 \times 10^{-7}$ モルである。パラジウム化合物の好ましい範囲は 1×10^{-3} から 5×10^{-7} である。チオシアン化合物あるいはセレノシアン化合物の好ましい範囲は 5×10^{-2} から 1×10^{-6} である。

本発明のハロゲン化銀粒子に対して使用する好ましい硫黄増感剤量はハロゲン 化銀1モル当り $1 \times 10^{-4} \sim 1 \times 10^{-7}$ モルであり、さらに好ましいのは $1 \times 10^{-5} \sim 5 \times 10^{-7}$ モルである。

本発明の乳剤に対して好ましい増感法としてセレン増感がある。セレン増感においては、公知の不安定セレン化合物を用い、具体的には、コロイド状金属セレニウム、セレノ尿素類(例えば、N,Nージメチルセレノ尿素、N,Nージエチルセレノ尿素)、セレノケトン類、セレノアミド類のようなセレン化合物を用いることができる。セレン増感は硫黄増感あるいは貴金属増感あるいはその両方と組み合せて用いた方が好ましい場合がある。

[0098]

本発明のハロゲン化銀乳剤を粒子形成中、粒子形成後でかつ化学増感前あるいは化学増感中、あるいは化学増感後に還元増感することは好ましい。

ここで、還元増感とは、ハロゲン化銀乳剤に還元増感剤を添加する方法、銀熟成と呼ばれるpAg 1~7の低pAg の雰囲気で成長あるいは熟成させる方法、高pH 熟成と呼ばれるpH 8~1 1の高pHの雰囲気で成長あるいは熟成させる方法のいずれを選ぶこともできる。また2つ以上の方法を併用することもできる。

還元増感剤を添加する方法は還元増感のレベルを微妙に調節できる点で好ましい方法である。還元増感剤としては、例えば、第一錫塩、アスコルビン酸および

その誘導体、アミンおよびポリアミン類、ヒドラジン誘導体、ホルムアミジンスルフィン酸、シラン化合物、ボラン化合物が公知である。本発明の還元増感にはこれら公知の還元増感剤を選んで用いることができ、また2種以上の化合物を併用することもできる。還元増感剤としては塩化第一錫、二酸化チオ尿素、ジメチルアミンボラン、アスコルビン酸およびその誘導体が好ましい化合物である。還元増感剤の添加量は乳剤製造条件に依存するので添加量を選ぶ必要があるが、ハロゲン化銀1モル当り10⁻⁷~10⁻³モルの範囲が適当である。

還元増感剤は、例えば、水あるいはアルコール類、グリコール類、ケトン類、 エステル類、アミド類のような有機溶媒に溶かし粒子成長中に添加される。あら かじめ反応容器に添加するのもよいが、粒子成長の適当な時期に添加する方法が 好ましい。また水溶性銀塩あるいは水溶性アルカリハライドの水溶性にあらかじ め還元増感剤を添加しておき、これらの水溶液を用いてハロゲン化銀粒子を沈澱 せしめてもよい。また粒子成長に伴って還元増感剤の溶液を何回かに分けて添加 しても連続して長時間添加するのも好ましい方法である。

[0099]

本発明の乳剤の製造工程中に銀に対する酸化剤を用いることが好ましい。銀に対する酸化剤とは、金属銀に作用して銀イオンに変換せしめる作用を有する化合物をいう。特にハロゲン化銀粒子の形成過程および化学増感過程において副生するきわめて微小な銀粒子を、銀イオンに変換せしめる化合物が有効である。ここで生成する銀イオンは、例えば、ハロゲン化銀、硫化銀、セレン化銀のような水に難溶の銀塩を形成してもよく、又、硝酸銀のような水に易溶の銀塩を形成してもよい。銀に対する酸化剤は、無機物であっても、有機物であってもよい。無機の酸化剤としては、例えば、オゾン、過酸化水素およびその付加物(例えば、NaBO2・ H_2O_2 ・ $3H_2O$ 、 $2NaCO_3$ ・ $3H_2O_2$ 、 $Na_4P_2O_7$ ・ $2H_2O_2$ ・ $2Na_2SO_4$ ・ H_2O_2 ・ $2H_2O$ など)、ペルオキシ酸塩(例えば、 $K_2S_2O_8$ 、 $K_2C_2O_6$ 、 $K_2P_2O_8$)、ペルオキシ錯体化合物(例えば、 K_2 [Ti(O_2) C O_4]・ $3H_2O$ 、 $4K_2SO_4$ ・Ti(O_2) OH・ SO_4 ・ $2H_2O$ 、 Na_3 [$VO(O_2)$ (C_2H_4) 2]・ $6H_2O$ など)、過マンガン酸塩(例えば、 $KMnO_4$)、クロム酸塩(例えば、 $K_2Cr_2O_7$)のような酸素酸塩、沃素や臭素のよう

なハロゲン元素、過ハロゲン酸塩(例えば、過沃素酸カリウム)、高原子価の金属の塩(例えば、ヘキサシアノ第二鉄酸カリウム)およびチオスルフォン酸塩がある。

[0100]

また、有機の酸化剤としては、p-キノンのようなキノン類、過酢酸や過安息香酸のような有機過酸化物、活性ハロゲンを放出する化合物(例えば、N-ブロムサクシンイミド、クロラミンT、クロラミンB)が例として挙げられる。

[0101]

本発明の好ましい酸化剤は、オゾン、過酸化水素およびその付加物、ハロゲン 元素、チオスルフォン酸塩の無機酸化剤及びキノン類の有機酸化剤である。前述 の還元増感と銀に対する酸化剤を併用するのは好ましい態様である。酸化剤を用 いたのち還元増感を施こす方法、その逆方法あるいは両者を同時に共存させる方 法のなかから選んで用いることができる。これらの方法は粒子形成工程でも化学 増感工程でも選んで用いることができる。

[0102]

本発明に用いられる写真乳剤には、感光材料の製造工程、保存中あるいは写真 処理中のかぶりを防止し、あるいは写真性能を安定化させる目的で、種々の化合物を含有させることができる。すなわちチアゾール類、例えば、ベンゾチアゾリウム塩、ニトロイミダゾール類、ニトロベンズイミダゾール類、クロロベンズイミダゾール類、プロモベンズイミダゾール類、メルカプトチアゾール類、メルカプトチアゾール類、メルカプト・アゾール類、メルカプト・アジアゾール類、アミノトリアゾール類、ベンゾトリアゾール類、ニトロベンゾトリアゾール類、メルカプトテトラゾール類(特に1ーフェニルー5ーメルカプトテトラゾール);メルカプトピリミジン類;メルカプトトリアジン類;例えば、オキサドリンチオンのようなチオケト化合物;アザインデン類、例えば、トリアザインデン類、テトラアザインデン類(特に4ーヒドロキシ置換(1,3,3a,7)チトラアザインデン類)、ペンタアザインデン類のようなかぶり防止剤または安定剤として知られた、多くの化合物を加えることができる。例えば、米国特許第3,954,474号、同第3,982,947号、特公昭52-2866

0号に記載されたものを用いることができる。好ましい化合物の一つに特開昭63-212932号に記載された化合物がある。かぶり防止剤および安定剤は粒子形成前、粒子形成中、粒子形成後、水洗工程、水洗後の分散時、化学増感前、化学増感中、化学増感後、塗布前のいろいろな時期に目的に応じて添加することができる。乳剤調製中に添加して本来のかぶり防止および安定化効果を発現する以外に、粒子の晶壁を制御する、粒子サイズを小さくする、粒子の溶解性を減少させる、化学増感を制御する、色素の配列を制御するなど多目的に用いることができる。

[0103]

本発明により調製されたハロゲン化銀乳剤はカラー写真感光材料および黒白写真感光材料のいずれにも用いることができる。カラー写真感光材料としては特にカラー印画紙、カラー撮影用フィルム、カラーリバーサルフィルム、カラー拡散転写フィルム、黒白写真感光材料としては一般撮影用フィルム、Xーレイ用フィルム、医療診断用フィルム、印刷感材用フィルム、拡散転写フィルム等を挙げることができる。

[0104]

医療診断用フィルム、印刷感材用フィルム分野において、レーザー・イメージ セッターまたはレーザー・イメージャーにより効率的に露光させることができる

これらの分野の技術については、特開平7-287,337号、特開平4-335,342号、特開平5-313,289号、特開平8-122、954号、特開平8-292、512号などに記載されている。

また、熱現像感光材料を用いることもできる。例えば、触媒活性量の光触媒(例えば、ハロゲン化銀)、還元剤、還元可能な銀塩(例えば、有機銀塩)、必要により銀の色調を制御する色調剤を、バインダーのマトリックス中に分散した感光性層を有している材料などが知られている。これらについては、例えば、米国特許3152904号、米国特許3457075号、米国特許2910377号、米国特許第4,500,626号、特公昭43-4924号、特開平11-24200号、同11-24201号、同11-30832号、同11-84574号、同11-65021号、同11-109547号、同11-12588

0号、同11-129629号、同11-133536号~同11-133539号、同11-133542号、同11-133543号、同11-223898号、同11-352627号、同6-130607号、同6-332134号、同6-332136号、同6-347970号、同7-261354号、特願2000-89436号、等を挙げることができる。

[0105]

本発明の化合物は拡散転写感材にも好ましく用いることが出来る。これらのうち、熱現像拡散転写方式については特願平10-265273号(プレフォームド色素使用)、特願平2000-89436号(カップリング形成色素使用)に、インスタント写真方式については特願平11-89801号に記載されている方法を参考にできる。

[0106]

本発明に用いられる写真乳剤の調製法等については特開平10-239789 号明細書の第63欄36行~第65欄2行等が適用できる。

また、カラーカプラー等の添加剤、写真感光材料添加剤等、本発明が適用される感光材料の種類、感光材料の処理等については、特開平10-239789号明細書の第65欄3行~第73欄13行等が適用できる。

[0107]

本発明のハロゲン化銀写真感光材料には、前記の種々の添加剤が用いられるが 、それ以外にも目的に応じて種々の添加剤を用いることができる。

これらの添加剤は、より詳しくはResearch Disclosure誌のItem17643 (1978年12月)、同Item18716 (1979年11月) および同Item308119 (1989年12月) に記載されており、その該当の個所を後掲の表にまとめて示した。

[0108]

ì	添加剤種類	RD17643	RD18716	RD308119
1	化学增感剤	23頁	648頁右欄	996頁
2	感度上昇剤		同 上	
3	分光增感剤、	23~24頁	648頁右欄~	996右~998右
	強色增感剤		649頁右欄	
4	増白剤	24頁		998右

5	カブリ防止剤	24~25頁	649頁右欄	998右~1000右
	および安定剤			
6	光吸収剤、フィル	25~26頁	649頁右欄~	1003左~1003右
	ター、紫外線吸収剤		650頁左欄	
7	ステイン防止剤	25頁右欄	650左~右欄	1002右
8	色素画像安定剤	25頁		1002右
9	硬膜剤	26頁	651頁左欄	1004右~1005左
10	パインダー	26頁	同上	1003右~1004右
11	可塑剤、潤滑剤	27頁	650頁右欄	1006左~1006右
12	塗布助剤、	26~27頁	同上	1005左~1006左
	表面活性剤			
13	スタチック防止剤	27頁	同上	1006右~1007左
14	マット剤			1008左~1009左

[0109]

本発明の乳剤ならびにその乳剤を用いた写真感光材料に使用することができる 層配列等の技術、ハロゲン化銀乳剤、色素形成カプラー、DIRカプラー等の機 能性カプラー、各種の添加剤等、および現像処理については、欧州特許第056 5096A1号(1993年10月13日公開)およびこれに引用された特許に 記載されている。以下に各項目とこれに対応する記載箇所を列記する。

[0110]

1. 層構成:

14行	
2. 中間層:	61頁36~40行
3. 重層効果付与層:	62頁15~18行
4. ハロゲン化銀ハロゲン組成:	62頁21~25行
5. ハロゲン化銀粒子晶癖:	62頁26~30行
6. ハロゲン化銀粒子サイズ:	62頁31~34行
7. 乳剤製造法:	62頁35~40行
8. ハロゲン化銀粒子サイズ分布:	62頁41~42行

61頁23~35行、41行~62頁

9.	平板粒子:	62頁43~46行
10.	粒子の内部構造:	62頁47~53行
11.	乳剤の潜像形成タイプ:	62頁54行~63頁5行
12.	乳剤の物理熟成・化学増感:	63頁6~9行
13.	乳剤の混合使用:	63頁10~13行
14.	かぶらせ乳剤:	63頁14~31行
15.	非感光性乳剤:	63頁32~43行
16.	塗布銀量:	63頁49~50行
	[0111]	
17.	ホルムアルデヒドスカベンジャー:	64頁54~57行
18.	メルカプト系カブリ防止剤:	65頁1~2行
19.	かぶらせ剤等放出剤:	65頁3~7行
20.	色素:	65頁7~10行
21.	カラーカプラー全般:	65頁11~13行
22.	イエロー、マゼンタおよびシアンカプラ	一:65頁14~25行
23.	ポリマーカプラー:	65頁26~28行
24.	拡散性色素形成カプラー:	65頁29~31行
25.	カラードカプラー:	65頁32~38行
26.	機能性カプラー全般:	65頁39~44行
27.	漂白促進剤放出カプラー:	65頁45~48行
28.	現像促進剤放出カプラー:	65頁49~53行
29.	その他のDIRカプラー:	65頁54行~66頁4行
30.	カプラー分散方法:	66頁5~28行
	[0112]	
31.	防腐剤・防かび剤:	66頁29~33行
32.	感材の種類:	66頁34~36行

33. 感光層膜厚と膨潤速度:

34. バック層:

35. 現像処理全般:

67頁9~11行

67頁3~8行

66頁40行~67頁1行

36. 現像液と現像薬:

37. 現像液添加剤:

38. 反転処理:

39. 処理液開口率:

40. 現像時間:

41. 漂白定着・漂白・定着:

42. 自動現像機:

43. 水洗・リンス・安定化:

44. 処理液補充・再使用:

45. 現像薬感材内蔵:

46. 現像処理温度:

47. レンズ付きフィルムへの使用:

67頁12~30行

67頁31~44行

67頁45~56行

67頁57行~68頁12行

68頁13~15行

68頁16行~69頁31行

69頁32~40行

69頁41行~70頁18行

70頁19~23行

70頁24~33行

70頁34~38行

70頁39~41行

[0113]

本発明のハロゲン化銀写真感光材料の露光方法について説明する。

写真像を得るための露光は通常の方法を用いて行なえばよい。すなわち自然光(日光)、タングステン電灯、蛍光灯、水銀灯、キセノンアーク灯、炭素アーク灯、キセノンフラッシュ灯、レーザー、LED、CRTなど公知の多種の光源をいずれでも用いることができる。また、電子線、X線、γ(ガンマ)線、α(アルファ)線などによって励起された蛍光体から放出する光によって露光されてもよい。

[0114]

本発明においては、レーザー光源が好ましく用いられることもある。レーザー光には、レーザー発振媒体としてヘリウムーネオンガス、アルゴンガス、クリプトンガス、二酸化炭素ガスなどを利用したもの、またルビー、カドミウムなどの固体を発振媒体としたレーザー、その他液体レーザー、半導体レーザーなどがある。これらのレーザー光は、通常の照明などに用いられている光と異なり、単一周波数で位相のそろった鋭い方向性を有するコヒーレントな光であることから、それらを光源として露光するためのハロゲン化銀写真感光材料は、使用するレーザーの発光波長に合致した分光特性を有することを必要とする。

上記のレーザーのうち、好ましくは半導体レーザーを使用する場合である。

[0115]

また、本発明の化合物は、増感色素以外にも、鮮鋭度、色分解能向上などの目的のために種々のフィルター染料、イラジエーション防止染料またはアンチハレーション用染料などとして用いることが出来る。

この化合物は慣用の方法でハロゲン化銀写真感光材料層、フィルター層および/ またはハレーション防止層などの塗布液に含有さあせることができる。染料の使 用料は写真層を着色させるに十分な量でよく、当業者は容易にこの量を使用目的 に応じて適宜選定できる、一般的には光学濃度が 0.05 ないし3.0 の範囲に なるように使用するのが好ましい。添加時期は塗布される前のいかなる工程でも よい。

[0116]

また、染料イオンと反対の荷電をもつポリマーを媒染剤として層に共存させ、 これを染料分子との相互作用によって、染料を特定層中に局在化させることもで きる。

ポリマー媒染剤としては例えば米国特許2,548,564号、同4,124,386号、同3,625,694号、同3,958,995号、同4,168,976号、同3,445,231号に記載されているものなどを挙げることが出来る。

本発明の化合物は感光性乳剤層以外に、中間層、保護層、バック層など所望の層に添加できる。

[0117]

さらに本発明の化合物は光増感剤(光電荷分離剤)として、種々の非銀塩式光画 像形成法等に用いることもできるし、光触媒、光水素発生剤等に用いることもで きる。

[0118]

本発明において光吸収強度とは、単位粒子表面積あたりの増感色素による光吸収面積強度であり、粒子の単位表面積に入射する光量を I_0 、該表面で増感色素に吸収された光量をIとしたときの光学濃度 $L\circ g$ (I_0 / (I_0 - I))

を波数 (cm^{-1}) に対して積分した値と定義する。積分範囲は $5000cm^{-1}$ から $35000cm^{-1}$ までである。

[0119]

本発明にかかわるハロゲン化銀写真乳剤は、分光吸収極大波長が500nm以上の粒子の場合には光吸収強度が100以上、分光吸収極大波長が500nm未満の粒子の場合には光吸収強度が60以上のハロゲン化銀粒子を全ハロゲン化銀粒子投影面積の1/2以上含むことが好ましい。また、分光吸収極大波長が500nm以上の粒子の場合には、光吸収強度は好ましくは150以上、さらに好ましくは170以上、特に好ましくは200以上、であり、分光吸収極大波長が500nm未満の粒子の場合には、光吸収強度は好ましくは90以上、さらに好ましくは100以上、特に好ましくは120以上である。上限は特にないが、好ましくは2000以下、さらに好ましくは1000以下、特に好ましくは500以下である。

また分光吸収極大波長が500nm未満の粒子に関しては、分光吸収極大波長は350nm以上であることが好ましい。

[0120]

光吸収強度を測定する方法の一例としては、顕微分光光度計を用いる方法を挙げることができる。顕微分光光度計は微小面積の吸収スペクトルが測定できる装置であり、一粒子の透過スペクトルの測定が可能である。顕微分光法による一粒子の吸収スペクトルの測定については、山下らの報告(日本写真学会、1996年度年次大会講演要旨集、15ページ)を参照することができる。この吸収スペクトルから一粒子あたりの吸収強度が求められるが、粒子を透過する光は上部面と下部面の二面で吸収されるため、粒子表面の単位面積あたりの吸収強度は前述の方法で得られた一粒子あたりの吸収強度の1/2として求めることができる。このとき、吸収スペクトルを積分する区間は光吸収強度の定義上は5000cm⁻¹から35000cm⁻¹であるが、実験上は増感色素による吸収のある区間の前後500cm⁻¹程度を含む区間の積分で構わない。

また、光吸収強度は増感色素の振動子強度と単位面積当たりの吸着分子数で一 義的に決定される値であり、増感色素の振動子強度、色素吸着量および粒子表面 積を求めれば光吸収強度に換算することが出来る。

増感色素の振動子強度は、増感色素溶液の吸収面積強度(光学濃度× c m⁻¹)に比例する値として実験的に求めることが出来るので、1 Mあたりの色素の吸収面積強度をA(光学濃度× c m⁻¹)、増感色素の吸着量をB(mol/mol Ag)、粒子表面積をC(m²/mol Ag)とすれば、次の式により光吸収強度を誤差10%程度の範囲で求めることが出来る。

$0.156 \times A \times B/C$

この式から光吸収強度を算出しても、前述の定義に基づいて測定された光吸収強度($Log(I_0/(I_0-I))$)を波数(cm^{-1})に対して積分した値)と実質的に同じ値が得られる。

[0121]

光吸収強度を増加させる方法には、色素発色団を粒子表面上に一層より多く吸着させる方法や、色素の分子吸光係数を増大させる方法、あるいは、色素占有面積を小さくする方法があり、いずれの方法を用いてもよいが、好ましくは色素発色団を粒子表面上に一層より多く吸着させる方法である。

ここで、色素発色団が粒子表面上に一層より多く吸着した状態とは、ハロゲン 化銀粒子近傍に束縛された色素が一層より多く存在することを意味し、分散媒中 に存在する色素を含まない。なおここでいう「一層より多い」とは、本発明のよ うに色素発色団が粒子表面上に吸着した色素などの化合物と共有結合で連結され ている場合も含む。それらの際、粒子表面に直接吸着していない色素によって分 光増感が生じることが必要であり、そのためにはハロゲン化銀に直接吸着してい ない色素から粒子に直接吸着した色素への励起エネルギーの伝達が必要となる。 したがって、励起エネルギーの伝達が10段階を超えて起きる必要のある場合に は、最終的な励起エネルギーの伝達効率が低くなるため好ましくない。この1例 は特開平2-113239などのポリマー色素のように色素発色団の大部分が分 散媒中に存在し、励起エネルギーの伝達が10段階以上必要な場合が挙げられる

ハロゲン化銀粒子への色素発色団の吸着は、好ましくは1.5層以上、さらに好ましくは1.7層以上、特に好ましくは2層である。

[0122]

本発明において、ハロゲン化銀粒子表面に発色団が一層より多く吸着した状態とは、該乳剤に添加される増感色素のうち、ハロゲン化銀粒子表面の色素占有面積が最も小さい色素によって到達する単位表面積あたりの飽和吸着量を一層飽和被覆量とし、この一層飽和被覆量に対して色素発色団の単位面積当たりの吸着量が多い状態をいう。また、吸着層数は一層飽和被覆量を基準とした時の吸着量を意味する。ここで、共有結合で色素発色団が連結された色素の場合には、連結しない状態の個々の色素の色素占有面積を基準とすることが出来る。

[0123]

色素占有面積は、遊離色素濃度と吸着色素量の関係を示す吸着等温線、および粒子表面積から求めることが出来る。吸着等温線は、例えばエー・ハーツ(A. Herz)らのアドソープション フロム アクエアス ソリューション(Adsorption from Aqueous Solution)アドバンシーズ イン ケミストリー シリーズ (Advances in Chemistry Series) No. 17、173ページ (1968年) などを参考にして求めることが出来る。

[0124]

増感色素の乳剤粒子への吸着量は、色素を吸着させた乳剤を遠心分離器にかけて乳剤粒子と上澄みのゼラチン水溶液に分離し、上澄み液の分光吸収測定から未吸着色素濃度を求めて添加色素量から差し引くことで吸着色素量を求める方法と、沈殿した乳剤粒子を乾燥し、一定重量の沈殿をチオ硫酸ナトリウム水溶液とメタノールの1:1混合液に溶解し、分光吸収測定することで吸着色素量を求める方法の2つの方法を用いることが出来る。いずれの方法も同じ結果を与える。複数種の増感色素を用いている場合には高速液体クロマトグラフィーなどの手法で個々の色素について吸着量を求めることも出来る。

色素占有面積は実験的に求めることができるが、通常用いられる増感色素の分子占有面積はほぼ $80A^2$ 付近であるので、簡易的にすべての色素について色素占有面積を $80A^2$ としておおよその吸着層数を見積もることも出来る。

[0125]

本発明の化合物を増感色素として含有するハロゲン化銀写真乳剤において、増感色素による分光吸収率の最大値Amax、および分光感度の最大値Smaxのそれぞれ50%を示す最も短波長と最も長波長の間隔は、好ましくは120nm以下であり、さらに好ましくは100nm以下である。

またAmaxおよびSmaxの80%を示す最も短波長と最も長波長の間隔は好ましくは200nm以上で、好ましくは100nm以下、さらに好ましくは80nm以下、特に好ましくは50nm以下である。

またAmaxおよびSmaxの20%を示す最も短波長と最も長波長の間隔は、好ましくは180nm以下、さらに好ましくは150nm以下、特に好ましくは120nm以下、最も好ましくは100nm以下である。

AmaxまたはSmaxの50%の分光吸収率を示す最も長波長は好ましくは460nmから510nm、または560nmから610nm、または640nmから730nmである。

[0126]

本発明において、ハロゲン化銀粒子に色素発色団が多層に吸着している場合、ハロゲン化銀粒子に直接吸着している、いわゆる1層目の色素発色団と2層目以上の色素発色団の還元電位、及び酸化電位はいかなるものでも良いが、1層目の色素発色団の還元電位が2層目以上の色素発色団の還元電位の値から0.2 v を引いた値よりも、貴であることが2層目以上色素から1層目色素への電子移動促進及び逆電子移動防止の点から好ましく、1層目の色素発色団の還元電位が2層目以上の色素発色団の還元電位が2層目以上の色素発色団の還元電位が2層目以上の色素発色団の還元電位が2層目以

[0127]

還元電位、及び酸化電位の測定は、種々の方法が可能であるが、好ましくは、位相弁別式第二高調波交流ポーラログラフィーで行う場合であり、正確な値を求めることができる。なお、以上の位相弁別式第二高調波交流ポーラログラフィーによる電位の測定法はジャーナル・オブ・イメージング・サイエンス(Journal of Imaging Science)、第30巻、第27頁(1986年)に記載されている。

[0128]

さらに、1層目の色素発色団のハロゲン化銀写真感光材料中における吸収極大波 長が2層目以上の色素発色団の吸収極大波長よりも長波長であること、さらに、2 層目以上の色素発色団の発光が1層目の色素発色団の吸収と重なることが2層目 以上色素から1層目色素へのエネルギー移動効率の点で好ましい。また、1層目 の色素発色団はJ-会合体を形成した方が好ましい。さらに、所望の波長範囲に吸 収および分光感度を有するためには、2層目以上の色素発色団もJ会合体を形成 していることが好ましい。

2層目色素の励起エネルギーの1層目色素へのエネルギー移動効率は、好ましくは30%以上、さらに好ましくは60%、特に好ましくは90%以上である。ここで2層目色素の励起エネルギーとは、2層目色素が光エネルギーを吸収して生成した励起状態の色素が有するエネルギーを指す。ある分子の持つ励起エネルギーが他の分子に移動する場合には励起電子移動機構、フェルスター型エネルギー移動機構(Forster Model)、デクスターエネルギー移動機構(Dextor Model)等を経て励起エネルギーが移動すると考えられている。一般式(I)又は(2)に示す本発明の発色団の連結した増感色素による多層吸着系においても、これらの機構から考えられる効率よい励起エネルギー移動を起こすための条件を満たしていることが特に好ましい。

二層目色素から一層目色素へのエネルギー移動の効率は、二層目色素励起時の 分光増感効率/一層目色素励起時の分光増感効率として求めることが出来る。

[0129]

本発明において用いる用語の意味を以下に記述する。

色素占有面積:色素一分子あたりの占有面積。吸着等温線から実験的に求めることが出来る。共有結合で色素発色団が連結された色素の場合には、連結しない 状態の個々の色素の色素占有面積を基準とする。簡易的には80A²。

一層飽和被覆量:一層飽和被覆時の単位粒子表面積あたりの色素吸着量。添加された色素のうち最小の色素占有面積の逆数。

多層吸着:単位粒子表面積あたりの色素発色団の吸着量が一層飽和被覆量より も多い状態。なお本発明において、多層吸着とは、単位粒子表面積あたりの色素 発色団の吸着量が一層飽和被覆量よりも多い状態を意味するので、2つの色素発色団が共有結合で連結された色素として1層分吸着している場合は、2層吸着していることを意味する。

吸着層数:一層飽和被覆量を基準とした時の単位粒子表面積あたりの色素発色 団の吸着量。なお2個の色素発色団が共有結合で連結された化合物の場合は上記 吸着量×2を吸着層数と定義する。例えば、2つの色素発色団が共有結合で連結 された色素が、ある非連結モデル色素と仮に同じ色素占有面積、同じ吸着量であ る場合は、吸着層数は2となる。

[0130]

【実施例】

次に、本発明を実施例に基づいて説明するが、本発明はこれに限定されるものではない。

実施例1

本発明の化合物D-1の合成例

[0131]

【化16】

D-1

[0132]

上記の反応スキームに従って本発明の化合物D-1を合成した。すなわち、文献記載の方法を参考にして合成した化合物 1、0.62g (1mmol) 及び化合物 2、0.68g (1mmol) と1-ヒドロキシベンゾトリアゾール0.15g (1.1mmol) をジメチルスルホキシド30mlに溶解し、60Cにて10分攪拌した。これにウロニウム塩 3、0.39

SO₃Na

g (1.2mmol) 、ジイソプロピルエチルアミン0.47g (3.6mmol) を加え、60℃にて 3 時間攪拌した。

冷却後アセトン300mlを加え、析出した結晶を濾別した。メタノール20mlに溶解した後、酢酸ナトリウム0.1gを加え、さらにイソプロピロアルコールを加えて結晶を析出させて濾別し、イソプロピロアルコールにて洗浄した。析出物を真空乾燥し、目的のD-1の黄色結晶0.75g(収率60%)を得た。

なお構造はNMRスペクトル、MSスペクトル、元素分析にて確認した。

その他の本発明の化合物についても上記と同様法にて合成できる。

[0133]

実施例2

(種乳剤 a の調製)

KBr0.017g、平均分子量20000の酸化処理ゼラチン0.4gを含む水溶液1164mlを35℃に保ち撹拌した。AgNO3 (1.6g)水溶液とKBr水溶液と平均分子量20000の酸化処理ゼラチン(2.1g)水溶液をトリプルジェット法で48秒間に渡り添加した。この時、銀電位を飽和カロメル電極に対して13mVに保った。KBr水溶液を加え、銀電位を-66mVとした後、60℃に昇温した。平均分子量100000のコハク化ゼラチン21gを添加した後、NaCl(5.1g)水溶液を添加した。AgNO3 (206.3g)水溶液とKBr水溶液をダブルジェット法で流量加速しながら61分間に渡って添加した。この時、銀電位を飽和カロメル電極に対して-44mVに保った。脱塩した後、平均分子量10000のコハク化ゼラチンを加え、40℃でpH5.8、pAg8.8に調整し、種乳剤を調製した。この種乳剤は乳剤1kg当たり、Agを1モル、ゼラチンを80g含有し、平均円相当直径1.46μm、円相当直径の変動係数28%、平均厚み0.046μm、平均アスペクト比32の平板粒子であった。この種乳剤を乳剤aとする。

[0134]

(コアの形成)

上記種乳剤 a を 1 3 4 g, K B r 1. 9 g, 平均分子量 1 0 0 0 0 0 0 つコハク 化ゼラチン 2 2 g を含む水溶液 1 2 0 0 m l を 7 5 ℃に保ち撹拌した。 A g N O 3 (43.9g) 水溶液とKBr水溶液と分子量20000のゼラチン水溶液を特開平10-43570号に記載の磁気カップリング誘導型攪拌機を有する別のチャンバー内で添加前直前混合して25分間に渡り添加した。この時、銀電位を飽和カロメル電極に対して-40mVに保った。

[0135]

(第1シェルの形成)

上記コア粒子の形成後、AgNO3 (43.9g)水溶液とKBr水溶液と分子量20000のゼラチン水溶液を同上の別のチャンバー内で添加前直前混合して20分間に渡って添加した。この時、銀電位を飽和カロメル電極に対して-40mVに保った。

[0136]

(第2シェルの形成)

上記第1シェルの形成後、 $AgNO_3$ (42.6g)水溶液とKBr水溶液と分子量20000のゼラチン水溶液を同上の別のチャンバー内で添加前直前混合して17分間に渡って添加した。この時、銀電位を飽和カロメル電極に対して20mVに保った。その後、55℃に降温した。

[0137]

(第3シェルの形成)

上記第2シェルの形成後、銀電位を-55mVに調整し、 $AgNO_3$ (7.1g)水溶液とKI(6.9g)水溶液と分子量20000のゼラチン水溶液を同上の別のチャンバー内で添加前直前混合して5分間に渡って添加した。

[0138]

(第4シェルの形成)

上記第3シェルの形成後、 $AgNO_3$ (66.4g)水溶液とKBr水溶液をダブルジェット法で30分間に渡って一定流量で添加した。途中で6塩化イリジウムカリウムと黄血塩を添加した。この時、銀電位を飽和カロメル電極に対して30mVに保った。通常の水洗を行い、ゼラチンを添加し、40 $\mathbb C$ でpH5.8、pAg8.8に調整した。この乳剤を乳剤 bとした。乳剤 bは平均円相当径3.3 μ m、円相当径の変動係数21%、平均厚み0.090 μ m、平均アスペク

ト比 370 平板粒子であった。また、全投影面積の70%以上が円相当径 3.3 μ 以上で厚み0.090 μ 以下の平板粒子により占められていた。色素占有面積 $80nm^2$ としたときの一層飽和被覆量は 1.45×10^{-3} mol/molAgであった。

[0139]

乳剤 b を 5 6 \mathbb{C} に昇温し、下記比較用色素 S-1 を 1. 2×10^{-3} m o 1 / m o 1 A g 添加した後、化合物 C -5、チオシアン酸カリウム,塩化金酸,チオ硫酸ナトリウムおよび N,N-ジメチルセレノ 尿素を添加し最適に化学増感を施した。 さらに <math>S-1 を 2. 5×10^{-4} m o 1 / m o 1 A g 添加して 60 分間攪拌して比較例 1 用の乳剤を作成した。

[0140]

(2) 光吸収強度及び吸着量の測定

単位面積当たりの光吸収強度の測定は、得られた乳剤をスライドガラス上に薄 く塗布し、カールツアイス株式会社製の顕微分光光度計MSP65を用いて以下 の方法でそれぞれの粒子の透過スペクトルおよび反射スペクトルを測定して、吸 収スペクトルを求めた。透過スペクトルのリファレンスは粒子の存在しない部分 を、反射スペクトルは反射率の分かっているシリコンカーバイドを測定してリフ ァレンスとした。測定部は直径1μmの円形アパチャー部であり、粒子の輪郭に アパーチャー部が重ならないように位置を調整して14000cm⁻¹(714n m) から28000cm⁻¹ (357nm) までの波数領域で透過スペクトル及び 反射スペクトルを測定し、1-T(透過率)-R(反射率)を吸収率Aとして吸 収スペクトルを求めた。ハロゲン化銀の吸収を差し引いて吸収率A'とし、-L og(1-A') を波数 (cm^{-1}) に対して積分した値を1/2にして単位表 面積あたりの光吸収強度とした。積分範囲は14000cm⁻¹から28000c m^{-1} までである。この際、光源はタングステンランプを用い、光源電圧は8Vと した。光照射による色素の損傷を最小限にするため、一次側のモノクロメータを 使用し、波長間隔は2nm、スリット幅を2.5nmに設定した。200粒子に ついて吸収スペクトルおよび光吸収強度を求めた。

[0141]

色素吸着量は、得られた液体乳剤を10,000rpmで10分間遠心沈降させ、沈殿を凍結乾燥した後、沈殿0.05gを25%チオ硫酸ナトリウム水溶液25mlとメタノールを加えて50mlにした。この溶液を高速液体クロマトグラフィーで分析し、色素濃度を定量して求めた。このようにして求めた、色素吸着量と1層飽和被覆量から色素の吸着層数を求めた。

[0142]

(3) 塗布試料の作成

下塗り層を設けてあるトリアセチルセルロースフィルム支持体に、表1に示すような乳剤層及び保護層を塗布した。乳剤層には、乳剤 b、及び比較化合物 S - 1を本発明の化合物等の等モル量に変更した以外は乳剤 b と同じ処方の乳剤を調製してこれらを用い、試料 1 0 1 ~ 1 1 8 を作成した。

[0143]

【表1】

表 1 乳剤塗布条件

(1) 乳剤層

・乳剤・・・・乳剤b(使用色素は表2参照)

・カプラー $(1.6 \times 10^{-3}$ モル/ m^2)

・トリクレジルフォスフェート $(1.10\, extbf{g/m}^2)$

・ゼラチン (2.30g/m²)

(2)保護層

・2、4ージクロロー6ーヒドロキシーS

トリアジンナトリウム塩

 $(0.08 \, \text{g/m}^2)$

・ゼラチン

 $(1.80 g/m^2)$

[0144]

これらの試料にセンシトメトリー用露光 (1/100秒)を与え、下記のカラー現像処理を行った。

処理方法

工程 処理時間 処理温度 補充量 タンク容量

発色現像	2分45秒	38℃	3 3 m 1	20リットル
漂白	6分30秒	38℃	2 5 m 1	40リットル
水洗	2分10秒	24℃	1 2 0 0 m l	20リットル
定着	4分20秒	38℃	2 5 m l	30リットル
水洗1	1分05秒	24℃	(2) から(1)	10リットル
			への向流配管方式	
水洗2	1分00秒	24℃	1 2 0 0 m 1	10リットル
安定	1分05秒	38℃	2 5 m l	10リットル
乾燥	4分20秒	55℃		

補充量は、35mm幅1m長さあたりの補充量である。

[0145]

次に処理液の組成を記す。

(発色現像液)	母液(g) 補	f充液(g)
ジエチレントリアミン5酢酸	1. 0	1. 1
1-ヒドロキシエチリデン-1, 1-ジホス	ホン酸 3.0	3. 2
亜硫酸ナトリウム	4.0	4.4
炭酸カリウム	30.0	37.0
臭化カリウム	1.4	0.7
沃化カリウム	1.5 mg	_
ヒドロキシルアミン硫酸塩	2.4	2. 8
4 - [N -エチル-N-β-ヒドロキシエチル	/アミノ]	
- 2 - メチルアニリン硫酸塩	4. 5	5. 5
水を加えて	1.0 ሀットル	1.0ሀットル
рĦ	10.05	10.05
[0146]		
(漂白液)	母液(g)	補充液(g)
エチレンジアミン4酢酸第2鉄ナトリウム3	水塩 100.0	120.0
エチレンジアミン4酢酸2ナトリウム塩	10.0	11.0
臭化アンモニウム	140.0	160.0

硝酸アンモニウム	30.0	35.0
アンモニア水 (27%)	6.5m 1	4.0 m l
水を加えて	1.0 リットル	1.0リットル
p H	6.0	5.7
[0147]		
(定着液)	母液(g)	補充液(g)
エチレンジアミン4酢酸ナトリウム塩	0.5	0.7
亜硫酸ナトリウム	7.0	8.0
重亜硫酸ナトリウム	5.0	5.5
チオ硫酸アンモニア水 (70%)	170.0m 1	200.0m l
水を加えて	1.0 ሀットル	1.01%
рĦ	6.7	6.65
[0148]		
(安定液)	母液(g) 有	f充液(g)
ホルマリン	2.0m 1	3.0m 1
ポリオキシエチレン-p-モノノニルフェニ	ル	
エーテル (平均重合度10)	0.3	0.45
エチレンジアミン4酢酸2ナトリウム塩	0.05	0.08
水を加えて	1.0 Jyhn	1.0Uyhn
рĦ	5.8-8.0	5.8-8.0
W		

[0149]

処理済みの試料を青色フィルターを通してISO5の測定条件に準拠して濃度 測定し、感度、かぶりを評価した。

感度はかぶり濃度より0.2高い濃度を与える露光量の逆数で定義し、各資料の 感度は試料101の値を100とした相対値で表した。各試料に使用した乳剤及 び比較例、本発明の化合物の光吸収強度、各試料の感度の結果を表2に示す。な お光吸収強度は、前記の顕微分光法により求めた200粒子の平均の値である。光 吸収強度、感度共、比較例101の値を基準とした。なお比較例101の光吸収 強度は58であった。

[0150]

【表2】

試料	化合物	光吸収強度	感 度	
1 0 1	S - 1	1(基準)	100 (基準)	比較例
102	D – 1	1.83	166	本発明
103	D - 3	1.79	169	本発明
104	D-4	1.81	168	本発明
105	D - 9	1.82	165	本発明
106	D - 13	1.79	169	本発明
107	D - 19	1.79	161	本発明
108	D - 20	1.73	159	本発明
109	D - 21	1.75	162	本発明
1 1 0	D - 22	1.71	157	本発明
1 1 1	D - 23	1.77	165	本発明
1 1 2	D - 25	1.81	162	本発明
1 1 3	D - 27	1.77	164	本発明
1 1 4	D - 28	1.76	167	本発明
1 1 5	D - 29	1.79	166	本発明
1 1 6	D - 30	1.76	163	本発明
1 1 7	D - 32	1.75	162	本発明
1 1 8	S-2	1.53	1 3 8	比較例

[0151]

【化17】

S-1

S-2

$$C_{4}H_{9}$$

$$O=CHCH=N$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}SO_{3}$$

$$CH \rightarrow N$$

C-5

[0152]

表2より、本発明の化合物は比較化合物S-1に比べ、多層構造をとるためか 光吸収率が向上し、その結果感度が高くなることが明らかである。またその効果 は欧州特許887700A号記載のシアニンーメロシアニン連結色素S-2よりも大き いことも明らかである。

さらに、本発明の化合物D-3を用いた試料103は、吸着層数は1.93でありほぼ2層構造を取っている。またAmaxの50%の間隔は55nmと比較的狭くて好ましく

、1層目色素、2層目色素ともJ会合体を形成している。

なお、以上の結果から、本発明の増感色素を用いた感光材料が高感度を示すのは 、2層目色素が光励起された際、1層目色素へのエネルギー移動または電子移動 を介して高感度化へ寄与していることが明らかである。

[0153]

実施例3

実施例2と同様な比較を、特開平8-29904号の実施例5に記載のカラーネガ感材の系にて行なったところ、比較例S-1を用いた感材の青感層の感度を100(基準)とすると、本発明のD-3を用いた感材の感度は166と高感度であった。また、特願平11-89801号の実施例1に記載のインスタント感材の系においても同様な比較を行なったところ、比較例S-1を用いた感材の青感層の感度を100(基準)とすると、本発明のD-8を用いた感材の感度は164と高感度であった。さらに、特開平7-92601号及び同11-160828号公報の実施例1のカラー反転感材の系、特開平6-347944号の実施例1のカラーペーパーの系、特開平8-122954号実施例1のX線感材の系、特願2000-89436号の実施例1の熱現像感材の系、特開平8-292512号の実施例1の印刷感材の系でも本発明の化合物を用いた感材は、比較化合物に対して高感度であることが判った。さらにこれらのいずれの系でも本発明の化合物を用いた感材は、比較化合物に対して高感度であることが判った。さらにこれらのいずれの系でも本発明の化合物を用いた感材は、大きい光吸収強度、大きい発色団の吸着層数を有し、同様に有用であることがわかった。

[0154]

【発明の効果】

本発明のシアニン色素連結化合物を用いることにより、多層構造が形成され、光吸収率が向上し、高感度なハロゲン化銀写真感光材料を得ることができる。

【書類名】

要約書

【要約】

【課題】新規なシアニン色素化合物、及びそれを含有する高感度なハロゲン化銀 写真感光材料を提供する。

【解決手段】下記一般式(1)で表される化合物を含有するハロゲン化銀写真感 光材料。

一般式(1)

【化1】

一般式(1)

(Dye2)
$$X_3 \times M_4 = M_5 \times M_6 \times M_4 = M_5 \times M_6 \times M_6$$

式中、 $X_1 \sim X_4$ は-O-、-S-、 $-NR_3-$ 、 $-CR_4R_5-$ を、 $R_3\sim R_5$ は 水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を、 R_1 、 R_2 は 水素原子、アルキル基、アルケニル基、アリール基、ヘテロ環基を、 $M_1\sim M_6$ は メチン基を、 n_1 、 n_2 は $0\sim 3$ の整数を、Lはヘテロ原子を少なくとも 1 個以上有 する連結基を、 $V_1\sim V_4$ は置換基を、 $n_3\sim n_6$ は $0\sim 4$ の整数をそれぞれ表す。 な お、 $n_3\sim n_6$ が 2 以上の時、 $V_1\sim V_4$ は、互いに連結して環を形成しても良い。 CI は電荷を中和するイオンを表し、y は電荷を中和するのに必要な数を表す。

【選択図】 選択図なし

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社