Euclid of Alexandria euclid@alexandria.edu October 23, 2018

Outline

1. Motivation

1.1. The Basic Problem That We Studied

1. Motivation

4.4 571 50 10

1.1 The Basic Problem That We

Studied

What Are Prime Numbers?

Definition: Prime number

A *prime number* is a number that has exactly two divisors.

Example:

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

Theorem: Prime numbers

There is no largest prime number.

Proof:

1. Suppose *p* were the largest prime number.

Proof:

- 1. Suppose p were the largest prime number.
- **2.** Let q be the product of the first p numbers.

Proof:

- **1.** Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- **3.** Then q + 1 is not divisible by any of them.

Proof:

- **1.** Suppose *p* were the largest prime number.
- **2.** Let q be the product of the first p numbers.
- **3.** Then q + 1 is not divisible by any of them.
- **4.** But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

What's Still To Do?

- Answered Questions
 - How many primes are there?
- Open Questions
 - Is every even number the sum of two primes?

An Algorithm For Finding Prime Numbers.

FindPrimeNumbers

```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
  std::cout << i << "_";
  for (int j = i; j < 100; is_prime [j] = false, j
     +=i);
  return 0;
```

An Algorithm For Finding Prime Numbers.

FindPrimeNumbers

```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
  std::cout << i << "_";
  for (int j = i; j < 100; is_prime [j] = false, j
     +=i):
  return 0;
```

Note the use of std::.

It's me, Euclid

Figure: It's me, Euclid [1]

References I

- [1] URL: https: //upload.wikimedia.org/wikipedia/commons/3/30/Euklid-von-Alexandria_1.jpg (visited on 10/22/2018).
- [2] Noam Chomsky. Syntactic Structures. The Hague: Mouton, 1957.
- [3] William Labov. Sociolinguistic Patterns. Philadelphia: University of Pennsylvania Press, 1972.