179 школа, 7Б. Листок №14

Целые числа: наибольший общий делитель

10.02 - 21.02/2018 32/27/22 з. на 5/4/3

Определение 1. Отрезки a и b couзмеримы, если они имеют obuyo mepy — отрезок d, укладывающийся и в a, и в b целое число раз (т.е. прямоугольник $a \times b$ можно разбить сеткой на равные квадраты).

Задача 1. От прямоугольника $a \times b$ отрезают квадраты со стороной, равной меньшей стороне прямо-

- а) Сколько и каких квадратов получится, если a = 324, b = 141?
- **б)** Докажите, что если a и b соизмеримы, то прямоугольник разрежут на конечное число квадратов.
- в) Докажите, что если в итоге прямоугольник разрежут на конечное число квадратов, то стороны прямоугольника соизмеримы, и сторона d самого маленького квадрата является их общей мерой.
- \mathbf{r}) Докажите, что любая общая мера сторон прямоугольника укладывается в d целое число раз.

угольника, пока это возможно. С оставшимся прямоугольником делают тоже самое, и т. д.

д) Докажите, что d- наибольшая общая мера сторон прямоугольника.

Задача 2. Найдите наибольшую общую меру отрезков с длинами 15/28 и 6/35.

Задача 3. От прямоугольника отрезали квадрат и получили прямоугольник, подобный исходному.

а) Соизмеримы ли его стороны? б) Найдите отношение сторон исходного прямоугольника.

Задача 4°. Докажите, что отрезки a и b соизмеримы если и только если **a)** есть отрезок c, в котором и a и b укладываются целое число раз; **б)** a и a + 2b соизмеримы; **в)** $\frac{a}{b}$ рационально.

Задача 5. Какие расстояния можно отложить на прямой от данной точки, имея шаблоны 6 см и 15 см?

Задача 6[©]. Синим на числовой оси отметили числа, дающие при делении на 24 остаток 17, белым — дающие при делении на 40 остаток 7. Найдите наименьшее расстояние между белой и синей точками.

Определение 2. Наибольший общий делитель (a,b) целых чисел a и b — это наибольшее целое число, делящее и a и b. Обозначение: (a,b). Если (a,b)=1, то a и b называют взаимно простыми.

Задача 7. Докажите, что число (a, b) существует и единственно, если a и b не равны одновременно 0.

Задача 8 $^{\varnothing}$. Докажите, что (a,b)=(a-b,b)=(r,b), где r — остаток от деления a на b.

Задача 9. Найдите возможные значения **a)** (n,12); **б)** (n,n+1); **в)** (2n+3,7n+6); **г)** $(n^2,n+1)$.

Задача 10 $^{\varnothing}$. Пусть a и b положительные целые, I — множество всех чисел, представимых в виде ax+by, где x и y целые. Пусть d — наименьшее положительное число в I. Докажите, что каждое число из I

- а) делится на каждый общий делитель a и b; б) делится на d. в) Докажите, что d = (a, b).
- Γ) Докажите, что I множество всех целых чисел, делящихся на (a,b).
- д) Докажите, что (a,b) наименьшее натуральное число, кратное каждому общему делителю a и b.

Задача 11 $^{\varnothing}$. Пусть (a,b)=1. **а)** Докажите, что найдутся такие целые x и y, что ax+by=1.

б) С помощью равенства из пункта а докажите, что если c целое и ac делится на b, то c делится на b.

Основная теорема арифметики. Для каждого целого числа n>1 существует и единственно (с точностью до порядка сомножителей) его представление в виде $n=p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}$, где p_1,\ldots,p_k — различные простые. Такое представление называется каноническим разложением n на простые множители.

Задача 12. Пусть a и b — целые числа, p — простое и ab
otin p. Докажите, что если a
otin p, то b
otin p.

Задача 13^{\varnothing}. Докажите основную теорему арифметики.

Задача 14. На плоскости дана фигура, которая при повороте вокруг точки O на угол 48° переходит в себя. Обязательно ли эта фигура переходит в себя при повороте вокруг O на угол **a)** 72° ; **б)** 90° ?

Задача 15. Пусть a и b натуральные, (a,b)=d. **a)** Какие из чисел b, 2b, ..., ab делятся на a? **б)** По окружности длины a катится колесо длины b, в него вбит гвоздь. Сколько отметок оставит гвоздь?

Задача 16. На клетчатой бумаге нарисован прямоугольник размерами $a \times b$ клеток (стороны лежат на линиях сетки). На сколько частей делят его диагональ **а)** узлы сетки; **б)** линии сетки?

Задача 17*. Даны m целых чисел. За ход разрешается прибавить по 1 к любым n из них. При каких m и n всегда можно за несколько ходов сделать числа одинаковыми, если **a)** $(m,n) \neq 1$; **б)** (m,n) = 1?

1 a	1 6	1 B	1 Г	1 д	2	3 a	36	4 a	4 6	4 B	5	6	7	8	9 a	9 6	9 B	9 Г	$\begin{vmatrix} 10 \\ a \end{vmatrix}$	10 б	10 B	10 Г	10 Д	11 a	11 б	12	13	14 a	14 б	15 a	15 б	16 a	16 б	17 a	17 б