Statistics MCQ Question Bank

Second Paper

Abdullah Al Mahmud

www.statmania.info

Contents

1	Introduction to Probability	2
	1.1 Permutation-Combination	. 2
	1.2 Conceptual Questions	
	1.3 Coin-Die	
	1.4 Balls-Cards	
	1.5 Set-Problems	
2	Random Variables	7
	2.1 Concept of Random Variable	. 7
	2.2 Situation Set	. 9
3	Mathematical Expectation	13
4	Binomial Distribution	17
	Binomial Distribution 4.1 Multiple Completion	. 18
5	Poisson Distribution	19
	5.1 Multiple Completion	. 21
	5.2 Problems	. 22
6	Vital Statistics	22

1 Introduction to Probability

1.1 Permutation-Combination

1. Three objects can be placed in 2 positions in – ways.

	(a) 3	(b) 4	(c) 6	(d) 8
2.	In how many ways c	an a team of 2 be for	med from 4 people?	
	(a) 4	(b) 6	(c) 8	(d) 12
3.	$^{n}p_{r}=$			
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{(n+r)!}$	(c) $\frac{n!}{r!}$	(d) $\frac{n!}{(r-n)!}$
4.	$^{n}C_{r}=$			
	(a) $\frac{n!}{(n-1)!(n+r)!}$	(b) $\frac{r!}{n!(n-r)!}$	(c) $\frac{n!(n-1)!}{r!}$	(d) $\frac{n!}{(r-n)!}$
	1.2 Conceptual	${f Questions}$		
5.	What is the probabi	lity that at least one	item in a sample spac	e will occurr?
	(a) 0	(b) 0.5	(c) 1	(d) Undefined
6.	The probability of tv	wo disjoint sets happe	ening together is:	
	(a) 0.5	(b) 0	(c) 1	(d) $0 \le x < 1$
7.	How many additive	laws of probability ar	e there?	
	(a) 1	(b) 2	(c) 3	(d) 4
8.	$P(A \cup B) = P(A) + P(A$	B) implies A & B are) –	
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent
9.	Which is the formula			
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes ble outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable o}}$	
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	<u>)</u>
10.			e frequency approach	
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes ble outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	comes utcomes
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	
11.	What is the correct			
	(a) $P(A B) = \frac{P(A \cap B)}{P(B A)}$	(b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	(c) $P(A B) = \frac{P(A \cap B)}{P(B)}$	(d) $P(A B) = \frac{P(B A)}{P(B A)}$
12.	The third axiom of p	orobability is –		
	(a) $0 \le P(A) \le 1$		(b) $P(S) = 1$	
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$	

13.	3. Possible value of probability				
	i1 ii. 0.5 iii. 0				
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
14.	An act repeated und	ler some specific condi	itions is called –		
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space	
15.	P(0) implies –				
	(a) A certain event	(b) An uncertain event	(c) An impossible event	(d) A probable event	
16.	Events having some	common elements are	called –		
	(a) Complementary ever	nts	(b) Mutually exclusive e	events	
	(c) Exhaustive events		(d) Non-Mutually exclusion	sive events events	
17.	The minimum value	of probability is			
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1	
18.	Each element of sam	ple space is called–			
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point	
19.	Two events not ocur	ring together are calle	ed-		
	(a) dependent Events		(b) Independent Events		
	(c) Mutually Exclusive	Events	(d) Marginal Events		
20.	If A and B are indep	endent, which formul	a is correct?		
	(a) $P(A \cap B) = P(A) \cdot A$	P(B)	(b) $P(A \cap B) = P(\bar{A}) \cdot \bar{A}$	P(B)	
	(c) $P(A \cap B) = P(A) \cdot A$	$P(ar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot \bar{B}$	P(B)	
21.		does not walk to the		picked randomly, what is	
	(a) 0.95	(b) 0.10	(c) 0.90	(d) 0.01	
22.		f 100 students prefer of what is the probabili		person classes. If a student a-person classes?	
	(a) 0.15	(b) 0.85	(c) 0.75	(d) 0.25	
23.		at 8 out of every 100 that is the probability		are defective. If an item is ve?	
	(a) 0.08	(b) 0.92	(c) 0.80	(d) 0.12	
24.				appointments. If a patient evening appointments?	
	(a) 0.12	(b) 0.78	(c) 0.88	(d) 0.18	
25.		5 out of every 200 cu what is the probability		y with cash. If a customer another method?	
	(a) 0.050	(b) 0.500	(c) 0.975	(d) 0.025	

1.3 Coin-Die 26. Tossing a die r times generates how many outcomes? (b) r^6 (d) 2^r 27. Tossing a coin r times generates how many outcomes? (b) r^2 (a) $2 \times r$ (c) 2^r (d) 6^r 28. A coin is thrown thrice. How many outcomes are generated? (d) 9 (a) 3 (b) 4 (c) 8 29. A coin is thrown twice. What is the probability of getting 2 heads?

(b) $\frac{1}{3}$ (c) $\frac{1}{2}$ 30. A fair coin is tossed twice. What is the probability of getting at least one tail? (a) $\frac{1}{4}$ (b) $\frac{1}{2}$

(b) $\frac{1}{2}$

(a) $\frac{1}{4}$

31. Two fair coins are tossed simultaneously. What is the probability of getting exactly one head?

(c) $\frac{3}{4}$

32.	A coin is flipped	d twice. What is t	the probability of getting	ng heads first and ta	$ils\ second?$
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$	
33.	If two fair coins	are tossed togeth	er, what is the probabi	lity of getting at lea	st one head?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$	
34.	A fair coin is to	ssed twice. What	is the probability of ge	tting two tails?	
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{2}{4}$	

35. Two fair coins are tossed. What is the probability that at least one of them lands on tails?

(a) $\frac{3}{4}$ (d) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ 36. A die is thrown twice. This is called -

(a) An experiment (b) sample space (c) A random experi-(d) A trial

37. If a neutral die is thrown, the probability of having a digit greater than 6 is (a) $\frac{1}{6}$ (b) $\frac{6}{6}$ (c) $\frac{2}{3}$ (d) $\frac{3}{6}$

38. Tossing a coin twice generates how many outcomes? (a) 4 (b) 16 (d) 2 (c) 8

39. A die is rolled twice. How many possible outcomes are there?

(a) 6 (b) 12 (c) 36 (d) 18

1.4 Balls-Cards

40.		olack, and 5 white ba ity that both are red?		balls are randomly taken,
	(a) $\frac{1}{66}$	(b) $\frac{1}{22}$	(c) $\frac{2}{22}$	(d) $\frac{3}{11}$
41.		olack, and 5 white ba ity that neither is red		balls are randomly taken,
	(a) $\frac{5}{11}$	(b) $\frac{6}{11}$	(c) $\frac{3}{11}$	(d) $\frac{5}{22}$
42.	A jar contains 6 blue the probability that	_	s. If two marbles are	drawn at random, what is
	(a) $\frac{5}{18}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{4}$
43.	A box has 7 black an that it is not black?	d 5 white balls. If one	ball is drawn at rand	om, what is the probability
	(a) $\frac{7}{12}$	(b) $\frac{5}{12}$	(c) $\frac{1}{2}$	(d) $\frac{1}{3}$
44.	_	${ m d}$ and 6 white balls. ${ m v}$ are of different color		vn at random, what is the
	(a) $\frac{24}{91}$	(b) $\frac{58}{91}$	(c) $\frac{48}{91}$	(d) $\frac{72}{91}$
45.	A box contains 9 bl probability that at le		If two balls are rand	domly picked, what is the
	(a) $\frac{3}{11}$	(b) $\frac{1}{3}$	(c) $\frac{18}{33}$	(d) $\frac{5}{11}$
	Answer the next thr	ee questions based on	the following inform	ation.
	A card is drawn from o	f pack of playing cards.		
46.	What is the probabi	lity that the card is a	King?	
	(a) 0.0192	(b) 0.25	(c) 0.5	(d) 0.0769
47.	P(The card is not from	om Diamonds)–		
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
48.	P(The card is red or	· Clubs)		
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$
	Answer the next TV	VO questions based or	the following inform	ation.
	An urn contains 5 red,	7 blue, and 8 green balls.		
49.	What is the probabi	lity that the ball drav	vn is red?	
	(a) 0.26	(b) 0.25	(c) 0.2	(d) 0.4
50.	P(The ball drawn is	not blue)-		
	(a) $\frac{13}{20}$	(b) 0.5	(c) $\frac{7}{20}$	(d) $\frac{8}{20}$

1.5 Set-Problems

51.	Given $P(A \cup B) = 0.7$, $P(A \cap B) = 0.2$, what	are $P(A)$ and $P(B)$?			
	(a) $P(A) = 0.5$ and $P(A) = 0.5$	(B) = 0.4	(b) $P(A) = 0.4$ and $P(A) = 0.4$	(B) = 0.6		
	(c) $P(A) = 0.4$ and $P(A) = 0.4$	(B) = 0.3	(d) $P(A) = 0.7$ and $P(A) = 0.7$	B) = 0.3		
52.	If $P(A) = 0.4$, $P(B) =$	0.5, and $P(A \cup B) = 0$.	7, what is $P(A \cap B)$?			
	(a) 0.2	(b) 0.1	(c) 0.3	(d) 0.4		
53.	Given $P(A) = 0.3, P(A) = 0.3$	$A \cup B$) = 0.6, and $P(A \cap B)$	$(A \cap B) = 0.1$, what is $P(B)$	3)?		
	(a) 0.6	(b) 0.4	(c) 0.3	(d) 0.2		
54.	If $P(A) = 0.5$, $P(B) =$	0.6, and $P(A \cap B) = 0$.	3, what is $P(A \cup B)$?			
	(a) 0.8	(b) 0.9	(c) 0.7	(d) 1		
55.	If $P(A) = 0.2$, $P(B) =$	0.3, and $P(A \cup B) = 0$.	4, what is $P(A \cap B)$?			
	(a) 0.9	(b) 0.2	(c) 0.3	(d) 0.1		
56.	Given $P(A) = 0.7, P(A) = 0$	$A \cup B$) = 0.9, and $P(A \cap B)$	$(A \cap B) = 0.5$, what is $P(B \cap B) = 0.5$	3)?		
	(a) 0.8	(b) 0.6	(c) 0.7	(d) 0.5		
	Answer the next two	o questions based on t	the following informat	ion		
	For	r two exhaustive evenst A	A & B, P(A) = 0.7 and P	f(B) = 0.4		
57.	$P(A \cap B) = ?$					
	(a) 0.1	(b) 0.3	(c) 0.6	(d) 1		
58.	The events A & B a	${f re}$ $-$				
	i. independent					
	ii. dependentiii. not mutually exclus	ive				
	Which one is correct					
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		
	Answer the next three questions using the following information					
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{2} \& B$	$P(A \cup B) = \frac{7}{12}$				
59.	$P(A \cap B) = ?$					
	(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{15}{16}$		
60.	$P(A \cap \bar{B}) = ?$					
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{1}{12}$		
61.	What is the probabi	lity that B occurs or	A does not occur?			
	(a) $\frac{3}{4}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{11}{12}$		
	Answer the next thr $D) = \frac{9}{10}$	ee questions using the	e following information	$P(C) = \frac{2}{5}, P(D) = \frac{3}{4} \& P(C \cup C)$		
62.	$P(C \cap D) = ?$					
	(a) $\frac{1}{10}$	(b) $\frac{1}{4}$	(c) $\frac{7}{20}$	(d) $\frac{4}{5}$		

63.	$P(C \cap \bar{D}) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{2}{5}$	(c) $\frac{2}{20}$	(d) $\frac{3}{10}$
64.	What is the probabi	ility that D occurs or	C does not occur?	
	(a) $\frac{17}{20}$	(b) $\frac{7}{10}$	(c) $\frac{3}{4}$	(d) $\frac{11}{20}$
	Answer the next the $\frac{3}{5}\&P(E\cup F) = \frac{11}{20}$	ree questions using th	e following information	on CHECK $P(E) = \frac{1}{4}, P(F) =$
65.	$P(E \cap F) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{3}{20}$	(c) $\frac{7}{20}$	(d) $\frac{1}{4}$
66.	$P(E \cap \bar{F}) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{1}{5}$	(c) $\frac{3}{10}$	(d) $\frac{1}{20}$
67.	What is the probabi	ility that F occurs or	E does not occur?	
	(a) $\frac{11}{20}$	(b) $\frac{4}{5}$	(c) $\frac{3}{4}$	(d) $\frac{9}{10}$
68.	An un contains 10 r getting two red balls		Two balls are drawn;	what is the probability of
	(a) $\frac{3}{7}$	(b) $\frac{4}{7}$	(c) $\frac{20}{21}$	(d) $\frac{2}{21}$
	2 Random Va 2.1 Concept of l	ariables Random Variable		
co	•			
69.	Which is a discrete : (a) Age of students	random variable;	(b) Amount of Product	ion in a factory
	(c) Height of workers		(d) Page size in word p	
70.	, ,	nts tabulated along wi		obabilities is an example of
• • • •	_	و	on onen respective pro	
	(a) Probability distribu	ition	(b) Probability function	
	(c) Frequency distribut	ion	(d) Marginal probabilit	y distribution
71.			density function have?	
	(a) 2	(b) 3	(c) 4	(d) 5
72.	A coin is tossed twivalues of X are there		appeared is denoted	by X. How many possible
	(a) 1	(b) 2	(c) 0	(d) 3
73.	Which one is a prop	erty of marginal prob	ability density function	on?
	(a) $\int_x f(x^2) dx = 1$	(b) $\int_x f(x^2) dx = 0.5$	(c) $\int_{x} f(x) dx = 1$	(d) $P(x \ge 1)$
74.	Which one is NOT a	an example of a conti	nuous random variable	e –
	(a) Weight	(b) Height	(c) Time	(d) Size of television
75.	Integrated value of			
	(a) $\frac{1}{20}x^5$	(b) $\frac{1}{20}x^5 + c$	(c) $\frac{1}{5}x^4$	(d) $\frac{5}{4}x^5$

76.	The conditions of a principle i. $\sum P(X) = 1$ ii. $\sum P(X) = 0$	orobability distributio	on are-	
	iii. $0 \le P(X) \le 1$	2		
	Which one is correct (a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
77		•	on function (CDF) ar	
• • •	i. $F(x)$ is non-decreasing		on function (CDI) ar	C
	ii. $0 \le F(x) \le 1$	0		
	iii. $\lim_{x \to \infty} F(x) = 1$			
	$x \to \infty$ Which one is correct	?		
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
78.	The properties of a contract is $\sum P(X) = 1$ ii. $P(X) \ge 0$ for all X iii. Each probability contract Which one is correct	responds to a discrete va		
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
79.	What is $F(\infty)$ for a d	listribution function I	F(x)?	
	(a) $-\infty$	(b) -1	(c) 0	(d) 1
80.	What is $F(-\infty)$ for a	distribution function	F(x)?	
	(a) $-\infty$	(b) -1	(c) 0	(d) 1
81.	How many types of r	andom variables are	there?	
	(a) 2	(b) 3	(c) 4	(d) 5
82.	Which of the following	ng is not a discrete ra	ndom variable?	
	(a) umber of students		(b) Weight	
	(c) Number of heads in	coin toss	(d) Population	
83.	Which one is a prope	erty of a probability of	listribution?	
	(a) $P(x_i) = 0$	(b) $P(x_i \neq 1)$	(c) $\Sigma P(x_i) = 1$	(d) $\int_x P(X)dx \le 1$
84.	Which one is not a d	iscrete random varial	ole?	
	(a) Summation two die	throw outcome	(b) Weight	
	(c) Number of heads in	five coin tosses	(d) Released version nu	mber of a software
85.	Which one is not a d	iscrete random varial	ole?	
	(a) Number of students	in a class	(b) Weight of a package	2
	(c) Shoe size		(d) Total goals scored in	n a match
86.	Which variable type	_	le numbers?	
	(a) Number of chapters		(b) Weight of a person	
	(c) Number of floors in	a building	(d) Number of people b	oarding a train

7. Which one is an example of a discrete random variable?				
(a) The amount of liqu	id in a glass	(b) Temperature re	eadings at noon	
(c) Number of defective	e items in a l	oatch (d) Exact age in ye	ears	
Identify which one is	s not a disc	crete variable.		
		(b) Height of stude	ents	
(c) Total cars in a park	ing lot	(d) Number of sibl	ings	
Which one is a prop	erty of join	at probability distribution?		
			(d) $0 \le P(X_i, Y_j) \le 1$	
2.2 Situation Se	t			
Answer the next two	o questions	based on the following infor	rmation	
$\begin{array}{c cccc} X & 0 & 1 & 2 \\ \hline P(x) & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{array}$				
What is F(1)				
(a) 0.65	(b) 0.75	(c) 0.5	(d) 1	
$P(X \le 1 \le 3) = -$				
(a) 0.75	(b) 0.70	(c) 0.95	(d) 1	
Answer the next thr	ree question	ns based on the following inf	formation	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
What is the value of	f m?			
(a) $\frac{1}{3}$	(b) $\frac{5}{12}$	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$	
Find $F(2)$.				
(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{2}{3}$	
What is $P(X > 1)$?				
(a) $\frac{1}{2}$	(b) $\frac{5}{12}$	(c) $\frac{1}{3}$	(d) $\frac{7}{12}$	
Answer the next thr	ree question	ns based on the following inf	Cormation	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	(a) The amount of liquidical Number of defective Identify which one is (a) Number of cookies (c) Total cars in a park Which one is a property of the property	(a) The amount of liquid in a glass (c) Number of defective items in a land in the liquid in a glass (c) Number of defective items in a land in the liquid in a glass (c) Number of defective items in a land in the liquid items in a land in the liquid items (a) Number of cookies eaten (b) Total cars in a parking lot which one is a property of join (a) $P(X_i, Y_j) < 1$ (b) $P(X_i, Y_j) < 1$ (c) $P(X_i, Y_j) < 1$ (d) $P(X_i, Y_j) < 1$ (e) $P(X_i, Y_j) < 1$ (f) $P(X_i, Y_j) < 1$ (f) $P(X_i, Y_j) < 1$ (g) $P(X_i, Y_j) < 1$ (h) $P(X_i, Y_j) < 1$ (l) $P(X_i, Y_i) < 1$ (l)	(a) The amount of liquid in a glass (b) Temperature r (c) Number of defective items in a batch (d) Exact age in your Identify which one is not a discrete variable. (a) Number of cookies eaten (b) Height of study (c) Total cars in a parking lot (d) Number of sible (d) Number of sible (e) Total cars in a parking lot (d) Number of sible (e) Total cars in a parking lot (d) Number of sible (e) P(X_i, Y_j) < 1 (b) $P(X_i, Y_j) = 0$ (c) $P(X_i, Y_j) < 0$ 2.2 Situation Set Answer the next two questions based on the following inform $\frac{X 0 1 2}{P(X) \frac{1}{2} \frac{1}{4} \frac{1}{4}}$ What is F(1) (a) 0.65 (b) 0.75 (c) 0.5 $P(X \le 1 \le 3) = -$ (a) 0.75 (b) 0.70 (c) 0.95 Answer the next three questions based on the following information $\frac{X}{P(X)} \frac{1}{4} \frac{1}{3} \frac{1}{6}$ What is the value of m? (a) $\frac{1}{3}$ (b) $\frac{5}{12}$ (c) $\frac{1}{4}$ Find $F(2)$. (a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{5}{6}$ What is $P(X > 1)$?	

95. What is the value of c?

96. Find $P(2 < X \le 4)$.

(a) $\frac{5}{12}$

(a) $\frac{1}{3}$

(b) $\frac{1}{4}$

(b) $\frac{1}{2}$

(c) $\frac{1}{20}$

(c) $\frac{5}{6}$

(d) $\frac{1}{6}$

(d) $\frac{2}{3}$

97.	What is $P(X \leq 3)$?			
	(a) $\frac{9}{20}$	(b) $\frac{7}{10}$	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$
	Answer the next thr	ee questions based on	the following informa	ation
		$\frac{\mathbf{x}}{\mathbf{P}(\mathbf{x})}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
98.	What is the value of	a?		
	(a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
99.	Find $P(2 < X \le 3)$			
	(a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
100	. What is $P(X<3)$?			
	(a) $\frac{5}{6}$	(b) $\frac{2}{5}$	(c) $\frac{1}{9}$	(d) $\frac{1}{7}$
	Answer the next two	questions based on t	the following informat	ion
		$\frac{x}{P(x)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
101	. What is $F(2)$?			
	(a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
102	$P(1 < X \le 2)$			
	(a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
	Answer the next two	questions based on t	the following informat	ion
		f(x) =	kx; 0 < x < 5	
103	. What is the value o	f $P(2 < x < 3)$		
	(a) $\frac{4}{5}$	(b) $\frac{3}{5}$	(c) $\frac{2}{5}$	(d) $\frac{1}{5}$
104	P(X > 0)			
	(a) 0.99	(b) 0.5	(c) 1	(d) 0
	Answer the next two	questions using the	following information	
		$\begin{array}{c ccc} x & 1 & 2 \\ \hline P(x) & k & 2k \end{array}$	3 4 5 6 3k 4k 5k 6k	
105	. What is the value o	f k?		
	(a) $\frac{7}{21}$	(b) $\frac{5}{21}$	(c) $\frac{1}{21}$	(d) 1
106	. What is the type of	variable X?		
	(a) Discrete	(b) Discrete random	(c) Continuous	(d) Continuous random
	Answer the next TH	REE questions using	the following informa	tion
		$P(x) = \frac{x}{}$	$\frac{1}{k}$; $x = 1, 2, 3, 4$	

107. What is the value	e of k?		
(a) 10	(b) 11	(c) 14	(d) 15
108. $F(2) = -$			
(a) $\frac{2}{14}$	(b) $\frac{3}{11}$	(c) $\frac{5}{14}$	(d) $\frac{5}{11}$
109. $P(x)$ is a -			
(a) Joint probability	distribution	(b) Cumulative prob	pability distribution
(c) Probability mass	function	(d) Probability Dens	sity function
110. The example of a	discrete random var	iable is–	
i. Binomial variate			
ii. Poisson variate			
iii. Normal variate			
Which one is corre		()	(1)
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
111. $f(x) = 2x; 0 < X <$			
(a) 3	(b) 0	(c) 1	(d) 0
112. $f(x) = 3x; 0 < X <$	2; What is $F(2)$?		
(a) 6	(b) 3	(c) 1	(d) 0
113. $f(x) = x^2; 0 < X <$	4; What is $F(4)$?		
(a) 16	(b) 0	(c) 4	(d) 1
114. $f(x) = 4 - x$; $1 < X$	7 < 5; What is $F(5)$?		
(a) 3	(b) 0	(c) 1	(d) 4
Answer the next t	wo questions based o	n the following inform	nation:
$P(x,y) = \frac{1}{21}(x+y);$	x = 1, 2, 3 and y = 1, 2		
115. P (x)=?			
(a) $P(x) = \frac{2x+3}{21}$	(b) $P(x) = \frac{x+3}{27}$	(c) $P(x) = \frac{4x+3}{21}$	(d) $P(x) = \frac{2x+5}{21}$
116. P (y)=?			
(a) $\frac{y+2}{7}$	(b) $\frac{y+3}{7}$	(c) $\frac{3y+2}{7}$	(d) $\frac{y+2}{9}$
117. If $f(x) = kx^3; -1 \le$	$x \le 1$, then k is		
i) positive			
ii) negative iii) lies from -1 to 1			
(a) i	(b) ii	(c) iii	(d) i and ii
Answer the next t	wo questions based o	n the following inform	nation.
	x 4	5 6 3 2 1	
	$P(X) \mid \frac{1}{6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

(c) $\frac{1}{3}$

(d) 0

118. The value of P(3 < X < 5) is:

(b) $\frac{1}{6}$

(a) $\frac{1}{2}$

119. $P(x \neq 2)is$:

- (a) $\frac{5}{6}$
- (c) 1

- (b) 0
- (d) Can't be found from this information

3 Mathematical Expectation

120. $E(X) + E(Y) = ?$ (a) $E(X) - E(Y)$	(b) $E(X) + E(Y)$	(c) 2E(X) - E(Y)	(d) $E(X) \times E(Y)$
Answer the next TI	HREE questions bas	sed on the following in	nformation
	$\frac{X}{P(x)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
121. What is the value	of $E(X)$		
(a) $\frac{15}{12}$	(b) $\frac{13}{12}$	(c) $\frac{1}{12}$	(d) $\frac{11}{13}$
122. What is the value	of $E(X^2)$		
(a) $\frac{25}{12}$	(b) $\frac{13}{12}$	(c) $\frac{23}{12}$	(d) $\frac{25}{13}$
123. What is $V(2X)$?			
(a) 2.93	(b) 2.91	(c) 1.97	(d) 2.97
124. What is the expect from their mean?	ed value of of the sq	uared deviation of the	value of the random variable
(a) Arithmetic Mean	(b) Expectation	(c) Variance	(d) Co-variance
125. What is the minim	um value of varianc	e a random variable?	
(a) $-\infty$	(b) 1	(c) 0	(d) -1
126. If $y = ax + b$, what	is the value of $V(y)$?		
(a) $aV(X)$	(b) $a^2V(X)$	(c) $V(X)$	(d) a^2
127. If $y = ax + b$, what	is the value of $E(y)$?		
(a) $aE(X) + b$	(b) $a^2 E(X)$	(c) $E(X)$	(d) b
128. What is the value	of $V(5)$?		
(a) 0	(b) 25	(c) 5	(d) 1
129. If $P(x) = \frac{1}{n}$; $x = 1, 2$,	$3, \cdots, n$, what is the	e value of $E(X)$?	
(a) $\frac{n}{2}$	(b) $\frac{n-1}{2}$	(c) $\frac{n+1}{2}$	(d) $n+1$
130. If $P(x) = \frac{4 - 5 - x }{k}$	$; x = 2, 3, 4, \dots 8, $ what	t is the value of k?	
(a) 5	(b) 8	(c) 16	(d) 24
131. Expected value of	a constant a is –		
(a) 1	(b) Variance	(c) a	(d) a+1
132. The variance of a	constant m is –		
(a) 0	(b) 1	(c) m	(d) m^2
133. What is $V(X-Y)$	equal to?		
(a) $V(X) + V(Y)$		(b) $V(X) + V(Y) -$	2Cov(X,Y)
(c) $V(X) - V(Y)$		(d) $V(X) + V(Y) +$	2Cov(X,Y)

134. What is the value o	f V(2X+5)?				
(a) $4V(X) - 5$	(b) 20	(c) $4V(X)$	(d) 0		
135. If $P(x) = \frac{1}{20}$; $x = 1, 2, 3, \dots, 20$, what is the standard deviation?					
(a) 1	(b) 5.77	(c) 7.75	(d) 12.57		
136. Expectation measur	es –				
(a) Dispersion	(b) Skewness	(c) Kurtosis	(d) Central tendency		
137. If $E(X) = -0.5$, then	E(1-2X) = ?				
(a) 0	(b) -1	(c) 2	(d) 1		
138. If $P(X) = \frac{1}{10}$; $x = 1, 2, \dots$	\cdots 10, then $E(X) = ?$				
(a) 10	(b) 5.5	(c) 0	(d) 11		
139. Which formula of va					
		(b) $V(X + Y) = V(X)$			
(c) $V(X + Y) = V(X)$	+V(Y) - 2Cov(X,Y)	(d) $V(X+Y) = V(X)$	-V(Y) + 2Cov(X,Y)		
140. X is a constant; wha	at is the value of $V(\frac{X}{2})$)?			
i) 0 ii) $\frac{1}{2}$ iii) $\frac{1}{4}$					
(a) ii	(b) i	(c) iii	(d) i and iii		
141. If $E(X) = 2, E(X^2) =$	8, V(X) =				
(a) 0	(b) 2	(c) 4	(d) 8		
142. If $E(X) = 3$, $E(X^2) =$	11, V(X) =				
(a) 2	(b) 5	(c) 6	(d) 4		
143. If $E(X) = 4$, what is	E(3X-2)?				
(a) 10	(b) 8	(c) 7	(d) 6		
144. If $E(X) = 5$, $E(X^2) =$	30, V(X) =				
(a) 3	(b) 5	(c) 4	(d) 6		
145. If $E(X) = 6$, what is	$E(\frac{X}{2}+1)$?				
(a) 4	(b) 3	(c) 2	(d) 5		
146. If $E(X) = 2$, $E(X^2) =$	10, V(X) =				
(a) 5	(b) 6	(c) 7	(d) 4		
147. If $E(X) = 7$, what is	E(4X+3)?				
(a) 28	(b) 30	(c) 31	(d) 29		
148. If $E(X) = 3$, what is	E(5-X)?				
(a) 2	(b) 3	(c) 4	(d) 5		
149. If $E(X) = 4$ and $V(X)$	$E(x) = 5$, what is $E(X^2)$?				
(a) 9	(b) 16	(c) 21	(d) 25		

(a) 1	(b) -1	(c) -2	(d) 4
169. If $E(X) = 6$, what	at is $E(5-X)$?		
(a) 1	(b) 0	(c) -1	(d) 2
170. If $E(X) = 10$, wh	nat is $E(4X - 8)$?		
(a) 12	(b) 40	(c) 28	(d) 32
171. If $P(x) = \frac{1}{15}$; $x =$	$1,2,3,\cdots 15$, what i	s the value of the exp	ectation?
(a) 8.5	(b) 7.5	(c) 7	(d) 8
Answer the next	two questions base	ed on the following in	formation
		ction of random variable $P(x) = \frac{x}{k}; x = 1, 2, 3, 4$	x is given below:
172. What is the val	ue of k ?		
(a) 6	(b) 10	(c) 15	(d) 20
173. What is $E(X)$?			
(a) 2.25	(b) 3.5	(c) 2.5	(d) 3.0
Answer the next	three questions ba	ased on the following	information
		ction of random variable $(x) = \frac{2x+1}{k}; x = 1, 2, 3, 4$	x is given below:
174. What is the val	ue of k ?		
(a) 18	(b) 25	(c) 12	(d) 24
175. What is $E(X)$?			
(a) 1.75	(b) 2.92	(c) 3.25	(d) 2.25
176. What is $V(X)$?			
(a) 1.05	(b) 3.0	(c) 1.5	(d) 1.25
Answer the next	two questions base	ed on the following in	formation
		ection of random variable $P(x) = \frac{x-1}{k}; x = 2, 3, 4, 5$	e x is given below
177. What is the val	ue of k?		
(a) 2	(b) 5	(c) 10	(d) 25
178. What is $E(X)$?			
(a) 0.425	(b) 0.525	(c) 0.725	(d) 0.625

168. If E(X) = -2, what is E(3X + 7)?

4 Binomial Distribution

179. How many pa	rameters are there in a b	oinomial distribution?	
(a) 1	(b) 2	(c) 3	(d) 4
180. What is the M	Iean of Binomial Distrib	ution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
181. What is the V	ariance of Binomial Dist	ribution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
182. What is the S	tandard Deviation of Bir	nomial Distribution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
183. What is the C	Coefficient of Variation of	Binomial Distributio	on?
(a) np	(b) npq	(c) $\frac{q}{np}$	(d) \sqrt{npq}
184. Which is true	of mean (np) of Binomia	al Distribution?	
(a) $np = 0$	(b) $np < 0$	(c) $np > 0$	(d) $np \neq 0$
185. In a Binomial	distribution, how are me	ean and variance rela	ted?
(a) $Mean > Var$	iance	(b) $Mean < Varian$	ce
(c) $Mean = Vari$	iance	(d) $Mean = 2 \times Var$	riance
186. When does Bi	nomial distribution tend	to Poisson distributi	on?
	$0 \to \infty$ (b) $n \to 0$ and $p \to 0$		
	xt two questions based or	_	_
	ariate with expectation 4 and		
	values of the parameters		
(a) $16, \frac{1}{4}$	(b) $16, \frac{3}{4}$	(c) $15, \frac{1}{4}$	(d) $10, \frac{1}{4}$
188. What is $P(X = 7)$		()	(2)
(a) 0	(b) 0.01	(c) 0.99	(d) 1
	istics of binomial distribu	ution–	
i. $E(X) > V(X)$ ii. $E(X) = V(X)$ iii. $E(X) = np$			
Which one is c	orrect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
190. What is true of	of binomial distribution?		
(a) There is one p	parameter	(b) Number of trial i	is fixed
(c) Mean is great	er than variance	(d) Skewness is nega	tive
_	kewness of binomial distr		(, ,)9
(a) $\frac{(q-p)^2}{np}$	(b) $\frac{(q-p)^2}{np}$	(c) $\frac{(p+1)^2}{npq}$	(d) $\frac{(q+p)^2}{npq}$

192. When is a binor	nial distribution pos	itively skewed?	
(a) $p > q$	(b) $p = q$	(c) $p < q$	(d) $p+q < 1$
Answer the next	two questions based	on the following info	rmation
	In a binomial distrib	oution, $P(x=4) = \frac{1}{2}P(x)$	= 5); n = 10
193. What is the mea	an?		
(a) 6.25	(b) 5.15	(c) 8.52	(d) 5.22
194. $P(x=2) =$			
(a) 0.0053	(b) 0.0069	(c) 0.0085	(d) 0.94
195. In a binomial di	stribution with $p = 0$	0.3 and $n = 10$, what is	P(2)?
(a) 0.2335	(b) 0.2668	(c) 0.3828	(d) 0.1211
196. In a binomial di	stribution with $p = 0$	0.4 and $n = 12$, what is	P(3)?
(a) 0.0896	(b) 0.2131	(c) 0.2253	(d) 0.2942
197. In a binomial di	stribution with $p = 0$	0.5 and $n=8$, what is	P(4)?
(a) 0.6367	(b) 0.3125	(c) 0.2070	(d) 0.0898
198. In a binomial di	stribution with $p = 0$	0.2 and $n=15$, what is	P(5)?
(a) 0.1789	(b) 0.1887	(c) 0.9389	(d) 0.2413
199. In a binomial di	stribution with $p = 0$	0.6 and $n=9$, what is	P(6)?
(a) 0.2007	(b) 0.2508	(c) 0.2311	(d) 0.7682
200. In a binomial di	stribution with $p = 0$	0.3 and $P(x) = 0.3828$, n	i = ?
(a) 18	(b) 10	(c) 13	(d) 6
201. In a binomial di	stribution with $p = 0$	0.4 and $P(x) = 0.2253$, n	a = ?
(a) 5	(b) 6	(c) 12	(d) 15
202. In a binomial di	stribution with $p = 0$	0.5 and $P(x) = 0.6367$, n	a = ?
(a) 15	(b) 1	(c) 8	(d) 0.0898
203. In a binomial di	stribution with $p = 0$	0.2 and $P(x) = 0.9389$, r	a = ?
(a) 7	(b) 12	(c) 11	(d) 15
204. In a binomial di	stribution with $p = 0$	0.6 and $P(x) = 0.7682$, r	i = ?
(a) 3	(b) 9	(c) 10	(d) 14
4.1 Multiple	Completion		
205. In a binomial di	stribution with para	meters n and p :	
ii. The variance is g	ue is given by $E(X) = 0$ given by $V(X) = np(1 - 1)$ eviation is given by \sqrt{np}	-p).	
Which one is cor	rect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

	01 0110 10110	ing statements about	a sinoimai distributi	on are true.	
	i. The probability of success remains constant for each trial.ii. The trials are dependent on each other.iii. The number of trials is fixed in advance.				
	Which one is correct	t?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
207	. Consider a binomia	l experiment. Which	of the following state:	ments is/are true?	
	i. Each trial results in exactly one of two possible outcomes.ii. The expected value is always greater than the variance.iii. The probability mass function of a binomial distribution can be computed using the binomial formula				
	Which one is correct	t?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
208	. Which of the follow	ring is/are correct abo	out the binomial distr	ibution?	
		tion becomes degenerate tion is given by $\sqrt{np(1-1)}$			
		(b) i and iii	(c) ii and iii	(d); ii and iii	
	(a) i and ii	(b) I and in	(c) ii and iii	(d) i, ii and iii	
	5 Poisson Dis				
209	. The no. of paramet	ers in a Poisson distri	ibution is —		
	(a) 1	(b) 2	(c) 3	(d) 4	
210	. What is the mean o	of Poisson distribution	ı		
210	. What is the mean of (a) $\frac{1}{\sqrt{m}}$	of Poisson distribution (b) m	(c) $\frac{1}{m}$	(d) $1 + \frac{1}{m}$	
	(a) $\frac{1}{\sqrt{m}}$		(c) $\frac{1}{m}$	<i>n</i> •	
	(a) $\frac{1}{\sqrt{m}}$. Which relationship	(b) <i>m</i>	(c) $\frac{1}{m}$	tribution is correct?	
211	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$	(b) m between mean and va	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$	tribution is correct? (d) $Mean \neq Variance$	
211	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$	(b) m between mean and va (b) $Mean < Variance$	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$	tribution is correct? (d) $Mean \neq Variance$	
211 212	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$	(b) m between mean and va (b) Mean < Variance ce of Poisson Distribu	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$	
211 212	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$	
211212213	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$ and Deviation of Poisson	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m on Distribution(with m)	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$	
211212213	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$ and Deviation of Poisson (b) $\frac{1}{m}$	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m on Distribution(with m)	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$	
211212213214	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$. Which one is true of	(b) m between mean and value (b) $Mean < Variance$ ce of Poisson Distribution (b) $\frac{1}{m}$ and Deviation of Poisson (b) $\frac{1}{m}$ of the parameter (m) of the parameter ((c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m on Distribution(with parameter) (c) \sqrt{m} of Poisson Distribution (c) $m > 0$	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$ n? (d) $m = 1$	
211212213214	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$. Which one is true of	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$ and Deviation of Poisson (b) $\frac{1}{m}$ of the parameter (m) of	(c) $\frac{1}{m}$ riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m on Distribution(with parameter) (c) \sqrt{m} of Poisson Distribution (c) $m > 0$	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$ n? (d) $m = 1$	
2111212213214215	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$. Which one is true of (a) $m=0$. The parameter of a (a) 2	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$ and Deviation of Poisson (b) $\frac{1}{m}$ of the parameter (m) of (b) $m < 0$	riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m on Distribution(with parameter) (c) \sqrt{m} of Poisson Distribution (c) $m > 0$ is 5. What is its mean (c) 2.24	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$ n? (d) $m = 1$ n? (d) 25	
2111212213214215	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$. Which one is true of (a) $m=0$. The parameter of a (a) 2	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$ and Deviation of Poisson (b) $\frac{1}{m}$ of the parameter (m) of (b) $m < 0$ Poisson Distribution (b) 5 al Distribution tend to	riance of Poisson Dis (c) $Mean = Variance$ (d) $Mean = Variance$ (e) m (f) Distribution (with parameter poisson Distribution (c) \sqrt{m} (c) m (d) m (e) m (f) Poisson Distribution (c) $m > 0$ (g) m (g) 2.24 (g) Poisson Distribution (c) 2.24 (g) Poisson Distribution (c) m	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$ n? (d) $m = 1$ n? (d) 25	
2111212213214215	(a) $\frac{1}{\sqrt{m}}$. Which relationship (a) $Mean > Variance$. What is the Varian (a) $\frac{1}{\sqrt{m}}$. What is the Standa (a) $\frac{1}{\sqrt{m}}$. Which one is true of (a) $m=0$. The parameter of a (a) 2	(b) m between mean and va (b) $Mean < Variance$ ce of Poisson Distribut (b) $\frac{1}{m}$ and Deviation of Poisson (b) $\frac{1}{m}$ of the parameter (m) of (b) $m < 0$ Poisson Distribution (b) 5 al Distribution tend to a significant content of the parameter m	riance of Poisson Dis (c) $Mean = Variance$ tion(with parameter (c) m on Distribution(with parameter) (c) \sqrt{m} of Poisson Distribution (c) $m > 0$ is 5. What is its mean (c) 2.24	tribution is correct? (d) $Mean \neq Variance$ m)? (d) $\frac{1}{m+1}$ parameter m)? (d) $\frac{1}{m+1}$ n? (d) $m = 1$ n? (d) 25 n? is infinite	

217. The parameter	r of a Poisson variat	e is 2. What is its vari	ance?	
(a) 0	(b) 4	(c) $\sqrt{2}$	(d) 2	
218. The parameter	r of a Poisson variat	e is 5. What is its vari	ance?	
(a) 10	(b) 5	(c) $\sqrt{5}$	(d) 25	
219. A Poisson dist	ribution has a mean	of 3. What is the var	iance?	
(a) 9	(b) 3	(c) $\sqrt{3}$	(d) 0	
220. X is a Poisson	variate. $P(2) = P(4)$). What is the value of	of the parameter?	
(a) 12	(b) 3.46	(c) 3.6	(d) 4	
221. X is a Poisson	variate. $P(3) = P(5)$	6). What is the value of	of the parameter?	
(a) 4.5	(b) 5	(c) 2.3	(d) 4.1	
222. For a Poisson	variate X , if $P(1) =$	P(3), what is the vari	ance?	
(a) 2.5	(b) 3.2	(c) 2.45	(d) 4.5	
Answer the nex	t two questions base	ed on the following inf	ormation	
For a Poisson var	iate X, if $P(2) = P(5)$.			
223. What is stand	ard deviation?			
(a) 1.978	(b) 1.998	(c) 1.989	(d) 1.889	
224. What is the va	alue of $P(2)$?			
(a) 0.25	(b) 0.14	(c) 0.15	(d) 0.02	
225. The standard	deviation of a poisso	on distribution is 2. W	hat is the parameter?	
(a) 2	(b) 3	(c) 4	(d) 5	
226. Mean of a Poi	sson variate is a. W	hat is its standard dev	iation?	
(a) 0	(b) a	(c) $a^{\frac{1}{2}}$	(d) a^2	
227. The standard	deviation of a Poisso	on distribution is 3. W	That is the parameter?	
(a) 6	(b) 9	(c) 3	(d) 4	
228. For a Poisson	distribution with a ı	nean of 5, what is the	variance?	
(a) 5	(b) 10	(c) 25	(d) 15	
229. If the variance	of a Poisson distrib	oution is 4, what is $P(2)$)?	
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2184	
230. If the variance	of a Poisson distrib	ution is 3.5 , what is P	(1)?	
(a) 0.1465	(b) 0.1358	(c) 0.1839	(d) 0.2184	
231. A Poisson dist	ribution has a mean	of 7. What is the star	ndard deviation?	
(a) 3.2	(b) 4.1	(c) 2.65	(d) 1.78	
232. If P(2) in a Po	oisson distribution w	ith parameter λ equal	s 0.2240 , what is the par	rameter
(a) 2.4551	(b) 1.2515	(c) 1.2115	(d) 2.5112	
. ,	ribution has a mean	. ,		
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2381	

234.	If the variance of a	Poisson distribution	is 3, what is the mean	1?
(:	a) 3	(b) $\sqrt{3}$	(c) 2	(d) 6
235.	For a Poisson distri	bution with mean 6,	what is the probabilit	y of $P(0)$?
(:	a) 0.0895	(b) 0.012	(c) 0.0454	(d) 0.0024
236.	The mean of a Pois	son distribution is 10	. What is its standard	l deviation?
(;	a) 5	(b) $\sqrt{10}$	(c) 10	(d) $\sqrt{20}$
237.	Given that the para	ameter of a Poisson d	istribution is 8, what	is the variance?
(:	a) 4	(b) 8	(c) $\sqrt{8}$	(d) 16
5	5.1 Multiple Co	mpletion		
238.	For a Poisson-distri	buted variable with n	nean $\lambda = 4$, which of the	he following is true?
ii	E(X) = 4 i. $V(X) = 2$ ii. $E(X^2) = 18$			
V	Which one is correct	t?		
(:	a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
239.	If $X \sim \mathbf{Poisson}(m =$	3), which of the follow	ving holds?	
ii	E(X) = 3 i. $V(X) = 3$ ii. $E(X^2) = 12$			
V	Which one is correct	t?		
(;	a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
240.	For a Poisson distri	bution, which of the	following statements a	are true?
ii	The mean and variant. The distribution is a ii. The probability of z		by e^{-m} .	
V	Which one is correct	t?		
(:	a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
is	s true?	ited random variable l	has mean $\lambda = 6$, which	of the following statements
ii	E(X) = 6 i. $V(X) = 6$ ii. $P(X = 0) = e^{-6}$			
V	Which one is correct	t?		
(;	a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
242.	For a Poisson proce	ess with $\lambda = 5$, which of	of the following is true	e?
ii	The standard deviation in $P(X \ge 1) = 1 - e^{-5}$ in $E(X^2) = 30$			
V	Which one is correct	t?		
(:	a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

5.2 Problems

243. On average, 1 is what is the prob					If there are 2000 houses, ill be burnt?
(a) 0.036	(b) 0	.040	(c) 0.027		(d) 0.091
6 Vital Sta	atistics				
244. What is the cal (a) Dependency rate		ex ration			e earning population? (d) Growth rate
245. Which of the fo	llowing b	est describes th	ne dependency	y ratio?	
(a) The ratio of the	e elderly po	opulation to the w	vorking-age pop	ulation	
(b) The ratio of the ulation	e combined	l non-working (0-1	14 and 65+) po	pulation to	the working-age (15-64) pop-
(c) The proportion	of young o	lependents (0-14)	in the populati	ion	
(d) The total popu	lation divid	ded by the number	er of children (0	-14)	
246. City A has 12,0 is the dependence		duals aged 0-14	4, 35,000 aged	l 15-64, an	d 5,000 aged 65+. What
(a) 0.31	(b) 0	.48	(c) 0.60		(d) 0.25
what is the total	number	of dependents ((0-14 and 65+	-)?	ulation (15-64) is 50,000
(a) 15,600	` /	0,000	(c) 26,000		(d) 30,000
Answer the follo	wing 2 qu	lestions based o	on the informa	ation given	i below.
	City	Population (in		Area (in	km^2
	Gamma Delta	120 800		400 320	
	Derta	000	,	020	
248. What is the pop	pulation o	lensity of City	Delta?		
(a) 2 people/km ²	(b) 4	$\rm people/km^2$	(c) 2.5 people	e/km^2	(d) 2.2 people/km^2
249. Which city is le	ss densely	y populated?			
(a) Gamma			(b) Delta		
(c) Both are equal			(d) Cannot b	e determine	d
Answer the follo	wing two	questions based	d on the infor	mation giv	ven below.
In a city, the total the population was		live births in a ye	ar was 2,400. T	The number of	of women aged 15-49 years in
250. Calculate the G	eneral Fe	ertility Rate (G	FR) for the c	ity.	
(a) 40 per 1,000 wo	omen (b) 5	0 per 1,000 wome	n (c) 60 per 1,0	000 women	(d) 30 per 1,000 women
251. If live births inc what is the new		3,000 while the	number of w	omen aged	15-49 remains the same
		5 per 1,000 wome	n (c) 50 per 1,0	000 women	(d) 62.5 per 1,000 women

252. The population of a 8,000. What is the C			births recorded in a year is
(a) 12 per 1,000	(b) 16 per 1,000	(c) $20 \text{ per } 1,000$	(d) $22 per 1,000$
253. What is the formula	a of population der	nsity?	
(a) $\frac{M}{F} \times 100$	(b) $\frac{F}{M} \times 100$	(c) $\frac{B}{P} \times 100$	(d) $\frac{P}{A}$
254. In the following dat	a, what is the depo	endency ratio?	
Age Populatation	0-14 15-24 n 31,500 40,000	25-34 35-44 45-54 48,000 41,000 32,000	55-64 65+ 25,000 16,000
(a) 35.54%	(b) 25.54%	(c) 23.24%	(d) 31.25%
255. Crude Birth Rate (CBR) is:		
(a) $\frac{B}{P} \times 100$	(b) $\frac{B}{P} \times 1000$	(c) $\frac{P}{B} \times 100$	(d) $\frac{F}{P} \times 100$
256. Which one is a mea	sure of reproduction	on?	
i) CBR ii) CDR iii) NRR			
(a) i	(b) ii	(c) iii	(d) i and ii
257. The number of peop	ple living per unit	area is called–	
(a) Population Index		(b) Population Densit	у
(c) Human Developmen	t Index	(d) Dependency Ratio	
258. Which formula of G	FR is accurate?	_	
(a) $GFR = \frac{B}{P} \times 1000$		(b) $GFR = \frac{B}{F_{15-49}} \times 1$	
(c) $GFR = \frac{B_i}{F_i} \times 1000$		(d) $GFR = \frac{G_i}{F15-49} \times$	1000
Answer the next two	questions based o	n the following informa	ation
	Year Population	1 2 3 4 100 110 120 130	
259. Which type of grow	th is seen here?		
(a) Arithmetic growth	(b) Geometric growt	th (c) Exponential growt	h (d) None
260. What is the rate of	increase?		
(a) 1	(b) 0.1	(c) 10	(d) 1%
261. In exponential grow	th, when is a popu	ılation doubled?	
(a) $\frac{\log_{10} 2}{r}$	(b) $\frac{\log_e 2}{r}$	(c) $\frac{\log_e 2}{r^2}$	(d) $\frac{\log_e 3}{r}$
262. If a population expo	onentially declines	decay, when is it reduce	ed to half?
(a) $\frac{\log_{10} 2}{r}$	(b) $\frac{\log_e 2}{r}$	(c) $\frac{\log_e 2}{r^2}$	(d) $\frac{\log_e 3}{r}$
263. How long does it ta	ke for a population	n to triple in exponenti	al growth?
(a) $\frac{\log_{10} 3}{r}$	(b) $\frac{\log_e 3}{r}$	(c) $\frac{\log_e 3}{r^2}$	(d) $\frac{\log_e 2}{r}$

Answer Key:

3. (a)
$$\frac{n!}{(n-r)!}$$

$$(n-r)!$$

26. (c)
$$6^r$$

4. (a)
$$\frac{n!}{(n-1)!(n+r)!}$$

27. (c)
$$2^r$$

29. (a)
$$\frac{1}{4}$$

30. (c)
$$\frac{3}{4}$$

31. (b)
$$\frac{1}{2}$$

9. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 32.$$
 (a) $\frac{1}{4}$

10. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcome}} 3.$$
 (c) $\frac{3}{4}$

11. (a)
$$P(A|B) = \frac{P(A \cap B)}{P(B|A)}$$

34. (c)
$$\frac{1}{4}$$

12. (c)
$$P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P_i^{35} A_i^{(a)} \frac{3}{4}$$

36. (a) An experiment

13. (c) ii and iii

37. (b)
$$\frac{0}{6}$$

14. (b) Experiment

15. (c) An impossible event

16. (a) Complementary events

40. (b)
$$\frac{1}{22}$$

17. (c) 0

41. (b)
$$\frac{6}{11}$$

18. (d) Sample Point

41. (b)
$$\frac{6}{11}$$

19. (c) Mutually Exclusive Events

42. (b)
$$\frac{1}{3}$$

20. (a)
$$P(A \cap B) = P(A) \cdot P(B)$$

43. (b)
$$\frac{5}{12}$$

44. (c)
$$\frac{48}{91}$$

45. (d)
$$\frac{5}{11}$$

47. (c)
$$\frac{3}{4}$$

48. (d)
$$\frac{3}{4}$$

50. (a)
$$\frac{13}{20}$$

51. (a)
$$P(A) = 0.5$$
 and $P(B) = 0.4$

59. (c)
$$\frac{1}{4}$$

60. (a)
$$\frac{1}{4}$$

61. (d)
$$\frac{11}{12}$$

62. (b)
$$\frac{1}{4}$$

63. (c)
$$\frac{2}{20}$$

64. (a)
$$\frac{17}{20}$$

65. (b)
$$\frac{3}{20}$$

66. (a)
$$\frac{1}{10}$$

67. (d)
$$\frac{9}{10}$$

68. (a)
$$\frac{3}{7}$$

71. (b) 3

96. (a) $\frac{5}{12}$

120. (b) E(X) + E(Y)

72. (d) 3

97. (c) $\frac{1}{2}$

121. (b) $\frac{13}{12}$

- 73. (c) $\int_{x} f(x) dx = 1$
- 98. (c) $\frac{1}{2}$

122. (b) $\frac{13}{12}$

- 74. (d) Size of television
- 99. (d) $\frac{1}{6}$

123. (d) 2.97

75. (b) $\frac{1}{20}x^5 + c$

100. (a) $\frac{5}{6}$

124. (c) Variance

76. (b) i and iii

101. (b) $\frac{5}{6}$

125. (c) 0

- 77. (d) i, ii, and iii
- 102. (c) $\frac{1}{2}$

126. (b) $a^2V(X)$

- 78. (d) i, ii, and iii
- 103. (d) $\frac{1}{5}$

127. (a) aE(X) + b

79. (d) 1

128. (a) 0

80. (c) 0

104. (c) 1

129. (c) $\frac{n+1}{2}$

81. (a) 2

105. (c) $\frac{1}{21}$

130. (c) 16

82. (b) Weight

- 106. (b) Discrete random
- 131. (c) a

- 83. (c) $\Sigma P(x_i) = 1$
- 107. (c) 14

132. (a) 0

- 108. (c) $\frac{5}{14}$ 84. (d) Released version number of a software

133. (c) V(X) - V(Y)

- - 109. (c) Probability mass function

134. (c) 4V(X)

- 85. (b) Weight of a package
 - 110. (a) i and ii

135. (a) 1

86. (c) Number of floors in a building

136. (d) Central tendency

- 87. (c) Number of defective items in a batch 111 .
 - 112. (c) 1
- 137. (c) 2

- 88. (b) Height of students
- 113. (d) 1

138. (b) 5.5

- 89. (d) $0 \le P(X_i, Y_j) \le 1$

139. (b) V(X+Y) = V(X) + V(Y) + 2Cov(X,Y)

90. (b) 0.75

114. (c) 1

140. (b) i

91. (a) 0.75

- 115. (a) $P(x) = \frac{2x+3}{21}$
- 141. (c) 4

92. (c) $\frac{1}{4}$

116. (c) $\frac{3y+2}{7}$

142. (a) 2

93. (c) $\frac{5}{6}$

117. (a) i

143. (a) 10

94. (a) $\frac{1}{2}$

118. (b) $\frac{1}{6}$

144. (b) 5

95. (c) $\frac{1}{20}$

119. (a) $\frac{5}{6}$

145. (a) 4

146. (b) 6	171. (d) 8	196. (c) 0.2253
147. (c) 31	172. (b) 10	197. (a) 0.6367
148. (a) 2	173. (d) 3.0	198. (c) 0.9389
149. (c) 21	174. (d) 24	199. (d) 0.7682
150. (c) 16	175. (b) 2.92	200. (b) 10
151. (b) 9	176. (a) 1.05	201. (c) 12
152. (a) 10	177. (c) 10	202. (c) 8
153. (c) 48	178. (c) 0.725	203. (d) 15
154. (d) 5	179. (b) 2	204. (b) 9
155. (d) 36	180. (a) np	205. (a) i and ii
. ,	181. (b) npq	206. (b) i and iii
156. (b) 9	182. (d) \sqrt{npq}	207. (d) i, ii and iii
157. (d) 0	183. (c) $\frac{q}{np}$	208. (d) i, ii and iii
158. (b) 5	•	209. (a) 1
159. (a) 20	184. (c) $np > 0$	210. (b) m
160. (c) 4	185. (a) $Mean > Variance$	211. (c) $Mean = Variance$
161. (a) 3	186. (c) $n \to \infty$ and $p \to 0$	212. (c) m
162. (b) 6	187. (a) $16, \frac{1}{4}$	213. (c) \sqrt{m}
163. (c) 4	188. (c) 0.99	214. (c) $m > 0$
164. (b) $5\sqrt{2}$	189. (b) i and iii	215. (b) 5
165. (c) 4	190. (c) Mean is greater than varian	a216. (a) $n \to \infty, p \to 0 \ \& \ np$ is finite
166. (a) 1	191. (a) $\frac{(q-p)^2}{np}$	217. (d) 2
	np	218. (b) 5
167. (b) 5	192. (c) $p < q$	219. (b) 3
168. (a) 1	193. (a) 6.25	220. (b) 3.46
169. (c) -1	194. (b) 0.0069	221. (a) 4.5
170. (d) 32	195. (c) 0.3828	222. (c) 2.45

223. (a) 1.978	237. (b) 8	251. (d) 62.5 per 1,000 women
224. (c) 0.15	238. (b) i and iii	252. (b) 16 per 1,000
225. (c) 4	239. (d) i, ii and iii	253. (d) $\frac{P}{A}$
226. (c) $a^{\frac{1}{2}}$	240. (b) i and iii	254. (b) 25.54%
227. (b) 9	241. (d) i, ii and iii	255. (b) $\frac{B}{P} \times 1000$
228. (a) 5	242. (d) i, ii and iii	256. (c) iii
229. (a) 0.1465	243. (a) 0.036	257. (b) Population Density
230. (b) 0.1358	244. (a) Dependency ratio	
231. (c) 2.65	245. (b) The ratio of the combin population	258. (b) $GFR = \frac{B}{14^{\circ}} \times 1000$ ned non-working (0-14 and 65+) population to the
232. (b) 1.2515	246. (b) 0.48	259. (a) Arithmetic growth
233. (b) 0.1954	247. (c) 26,000	260. (b) 0.1
234. (a) 3	248. (b) 4 people/km 2	261. (b) $\frac{\log_e 2}{r}$
235. (d) 0.0024	249. (b) Delta	262. (b) $\frac{\log_e 2}{r}$
236. (b) $\sqrt{10}$	250. (b) 50 per 1,000 women	263. (b) $\frac{\log_e 3}{r}$