裁

江

西安电子科技大学

考试时间 120 分钟

试 题													
	题号	_	=	=	四	五	六	七	八	九	十	总分	
	分数												
1. 考试形式: 闭卷; 2. 考试日期: 2020 年 月 日													
3. 本试卷共 四 大题,满分 100 分。													
一、单项选择题(每题 2 分, 共 26 分) 1.临界区是指 ()。 A.一个数据缓冲区 B.一段共享数据区 C.一段互斥执行程序 D.一个互斥使用资源													
2.银行家算法在解决死锁问题中是用于()的。													
A.预防死锁 B.避免死锁 C.检测死锁 D.解除死锁													
3.某系统中有 4 个并发进程,都需要同类资源 3 个,试问使该系统不会发生死锁的最少资源数是 ()。													
A.8	В	3.9	(C.10		D.11							
4.既考虑作业等待时间,又考虑作业执行时间的调度算法是 ()。 A.先来先服务 B.短作业优先 C.优先级调度 D.响应比高者优先													
5.在以下存储管理方案中,不适用于多道程序设计系统的是()。													
	用户连续					ミ式分		1					
C.可多	变式分区	分配			D.页ī	代存储 [·]	管理						
6.若 CPU 输出数据的速度远远高于打印机的打印速度,为了解决这一矛盾可采用 ()。													

A.并行技术

B.交换技术

C.缓冲技术

D.虚存技术

7.以下()不属于设备管理中使用的数据结构。

A.CHCT

B.DCT

C.COCT

D.PCB

8.输入/输出软件一般分为四个层次,为磁盘读操作计算磁道、扇区和磁头的功能是在()

A.用户层	B.与i	设备 无关的软件	牛层		
C.设备驱动程序	D.中国	断处理程序			
9.下列文件结构中,	适合随机访问且易	易于文件扩展的	为 是()。		
A.连续结构	B.索引结构	C.链式组	告构	D.Hash 结构	
				妾(软链接)文件 F2,再3 和文件 F3 的引用计数值名	
A.0, 1	B.1, 1	C.1, 2	D.2, 1		
11.实时操作系统对	可靠性和安全性要	求极高,它()。		
A.不强求系统资源的		B.不强调响	向应速度		
C.十分注重系统的交	で 互性	D.不必向月	用户反馈信息	1	
12.进程之间交换数	据,不能通过()途径进行	0		
A.共享文件		B.消息传送	弟		
C.访问进程地址空间		D.访问共享	享存储区		
13.当()时,	进程可从运行状态	转变为就绪状	态。		
A.进程被调度程序设	先 中	B.时间片到	到		
C.等待某一事件		D.等待的事	事件发生		
二、判断(请在题》	后括号中填 T 或 F	,每题 2 分,	共 10 分)		
1. 在单核 CPU 系统	中,进程的并发性	生指的是两个或	多个进程在	同一时刻被执行。()	
2. 不管系统是否支持	寺线程,进程都是	资源分配的基本	本单位。()	
3. 设有 3 个作业同时	付到达,每个作业!	的执行时间均匀	为 1.5 小时,	忽略作业调度的开销,它们]]
在一台处理器上打	安单道式运行,则·	平均周转时间	为 3.5 小时。	()	
4. 当输出设备忙时,	SPOOLing 系统中	中的用户程序将	好暂停执行,	待 I/O 设备空闲时再被唤醒	猩
执行输出操作。()				
5. 数组选择通道不同	能支持多个通道程	序并发执行,	而字节多路	通道可以支持多个通道程序	字
并发执行。()				

层完成的?

三、	简答题	(每题5分,	共20分)
<u> </u>	1~1 1 1 1 1	· / - / / /	/ N = V /4 /

1.在内存管理中,什么是内碎片?什么是外碎片?请指出下列存储管理方案中产生的碎片 类型(直接填写在表格中)。

存储管理方案	碎片类型
固定分区管理方案	
页式存储管理方案	
段式存储管理方案	

2.中断 I/O 控制方式(中断驱动 I/O)和程序 I/O 控制方式(程序控制 I/O)的主要区别是什么?除了这两种控制方式,还有哪几种 I/O 系统控制方式?

3.什么是系统调用?简述系统调用和一般用户函数调用的区别?

4.请解释什么是"文件目录"和"目录文件"? UNIX系统的文件目录结构是如何组织的?

四、综合题(4小题,共44分)

1.进程A和B共享某个资源R, A和B并发执行程序如下:

信号量: Semaphore S=1;

```
Process A {
    while(1) {
        P(S);
        使用资源 R;
        V(S);
    }
}
```

```
Process B
{
    while(1)
    {
        P(S);
        使用资源 R;
        V(S);
    }
}
```

请问:

- (1) A、B 并发执行时,能否保证互斥地使用资源 R? 为什么?
- (2) 若要使 $A \times B$ 交替使用资源 R,依然使用 $P \times V$ 操作来进行管理,应如何设置信号量。请给出可使进程 $A \times B$ 进程能交替使用资源 R 的程序、信号量的作用及初值。

- 2.请求分页存储管理系统中,逻辑地址长度为 32 位(bit),页面大小为 4096 字节。某作业 K 的逻辑地址空间划分为 8 页(页号从 0 开始),已装入前 3 页,分别放入内存的第 5、17、9 号物理块中(从 0 开始编号)。
- (1) 请画出此时作业 K 的页面变换表。
- (2)给出逻辑地址 7458 所对应的物理地址,并用地址变换图表示其地址变换过程。

3.假设当前磁头位置为 110 号磁道上方,磁头正在向磁盘内侧(磁道号增大)移动。现有一个磁盘读写请求序列为: 21,342,217,125,16,78,182,368,37。假设跨越一个磁道的平均时间为 5ms,请问: (1)采用先来先服务算法时的访问顺序及平均寻道时间?请给出计算过程。 (2)采用最短寻道时间优先算法时的访问顺序及平均寻道时间?请给出计算过程。 (3)采用扫描算法时的访问顺序及平均寻道时间?请给出计算过程。

(3) 若要求逻辑地址 15859 所对应的物理地址,会发生什么现象并解释原因。

4.系统有 5 个进程 P0, P1, P2, P3, P4, 4 种资源 A, B, C, D。当前对资源的分配情况如下表所示:

进程	已分配资源					系统剩余资源						
	A	В	С	D	A	В	С	D	A	В	С	D
P0	0	0	3	2	0	0	1	2				
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6	1	6	2	2
Р3	0	3	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

试问:

- (1) 当前状态系统是否安全?为什么?
- (2) 如果进程 P2 提出资源请求(1, 2, 2, 2),系统能否满足 P2 的请求?给出计算过程并说明理由。