Метод межъязыковой адаптации диалоговых систем

Коробков Никита

Факультет Прикладной математики - Процессов управления Научный руководитель: ст. преподаватель Мишенин А.Н.

10 июня 2019г.

Диалоговая система

Диалоговая система — это набор программ и алгоритмов позволяющих человеку вести диалог с программой в манере свойственной человеческой.

Подзадачи диалоговой системы

- ▶ Распознование речи
- ▶ Выделение намерения
- Выделение атрибутов
- ▶ Выполнение запроса
- Формирование ответа
- **•** . . .

Подзадачи диалоговой системы

- ▶ Распознование речи
- Выделение намерения
- Выделение атрибутов
- ▶ Выполнение запроса
- Формирование ответа
- **.**..

Межъязыковая адаптация

Построение решения задачи для одного языка, с опорой на готовое решение для другого.

Межъязыковая адаптация

Построение решения задачи для одного языка, с опорой на готовое решение для другого.

Цель

Используя рабочую технологию извлечения намерения пользователя из команды на английском языке, построить технологию выделения намерения для шведского языка.

При этом:

- Не использовать машинный перевод;
- Затратить меньше ресурсов чем для построения модели для английского;
- ▶ Достичь сравнимой с английской моделью точности.

Вектора предложений

Есть необходимость представлять предложения на естественном языке в виде чисел так, чтобы это представление отражало какие-то характеристики предложения.

Модели векторов предложений

- ► fastText среднее
- ▶ ELMo среднее
- Universal Sentence Encoder (USE)

fastText

Простой метод получения векторов слов основанный на оригинальной архитектуре Continuous Bag Of Words (CBOW).

Использует информацию о подсловах.

Для получения вектора предложения усредняем вектора всех слов.

Существуют обученные модели для большинства языков.

CBOW

Архитектура основанная на двунаправленной рекуррентной сети с LSTM модулями обученная на задаче предсказания слова по контексту.

Вектор слова зависит от контекста в каждом конкретном случае.

Усредняем вектора слов для получения вектора предложения.

Universal Sentence Encoder

Архитектура предложена в апреле 2018 года исследовательской группой Google.

Основывается на глубокой нейронной сети для преобразования векторов слов к вектору предложений.

Обучается на различных задачах обработки языка.

Доступна предобученная модель только для английского.

Тестирование моделей векторов предложений

Для проверки полезности выделенной из предложения информации для классификации по намерениям, мы обучили линейный классификатор.

$$y = f(W * x)$$

Где x - вектор предложения, y - вероятности классов Точность измеряли как процент правильно предсказанных меток.

При обновлении весов максимизировали логарифмическую функцию правдоподобия.

$$E = -\frac{1}{n} \sum_{i \in 1...n} \sum_{j \in 1...k} [y * log(\hat{y})]$$

Результаты тестирования моделей векторов предложений

Таблица: Точность классификации для линейных моделей, основанных на векторах предложений для разных языков

Модель	Английский	Шведский	Финский
FastText-avg	91.9%	88.3%	84.4%
ELMo-avg	97.7%	96.0%	95.3%
USE	96.8%	_	_

Переформулировка задачи адаптации

Линейная модель

Попробуем найти связь fastText вектора с USE в виде линейного преобразования:

$$V_{USE} = V_{fastText} * A$$

Для решения переопределенных систем пользуемся методом наименьших квадратов.

$$A^{(i)} = (V_{\textit{fastText}}^{T} V_{\textit{fastText}})^{-1} V_{\textit{fastText}}^{T} V_{\textit{USE}}^{(i)}, i \in [1, \lambda_{\textit{USE}}]$$

Нейронная сеть

Аппроксимируем связь между предложением на шведском языке представленном fastText векторами слов и USE векторами для английского языка при помощи нейронной сети.

Архитектура нейронной сети

Предсказание метки

Для линейной модели, предсказанной меткой класса считалась метка ближайшего к предсказанному USE вектора. Точность такого подхода для USE векторов без преобразований – 94.3%

Для нейронной сети, мы также пробовали прогонять полученный моделью вектор через предобученный линейный классификатор для получения предсказанной метки. Точность этого подхода для USE векторов без преобразований — 96.8%

Результаты линейная модель

Таблица: Точность модели с линейным преобразованием векторов предложений со шведского языка

Шведский	Английский	Точность	Ошибка
FastText-avg	ELMo-avg	86.2	0.00745
FastText-avg	USE	89.6%	0.00083
ELMo-avg	ELMo-avg	89.1%	0.00682
ELMo-avg	USE	91.5%	0.00081

Таблица: Точность модели с линейным преобразованием с финского языка

Финский	Английский	Точность	Ошибка
FastText-avg	USE	88.6%	0.00089

Результаты нейронная сеть

Таблица: Точность модели с нейронной сетью для шведского языка

Модули	Метод предсказания	Точность	Ошибка
GRU	Ближайший сосед	94.2%	0.00068
GRU	USE классификатор	96.4%	0.00068
LSTM	Ближайший сосед	93.7%	0.00069
LSTM	USE классификатор	96.1%	0.00069

Таблица: Точность модели с нейронной сетью для финского языка

Модули	Метод предсказания	Точность	Ошибка
GRU	Ближайший сосед	94.0%	0.00069
GRU	USE классификатор	96.4%	0.00069

Выводы

- ► Точность модели переноса знаний с нейронной сетью достигает точности модели для английского языка. Метод показывает реальную эффективность в задаче переноса опыта.
- Точность для финского языка существенно не отличается от точности для шведского, следовательно метод является устойчивым по отношению к выбору языка.
- Нейронная сеть для аппроксимации USE векторов не использует знаний о предмете, следовательно технологию можно использовать для широкого круга задач.

Спасибо за внимание