This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

⑩ 日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

昭61-46003

庁内整理番号 -7153-3L H-7219-3L

昭和61年(1986)12月24日 200公告

の考案の名称

自動車用空気調和装置のドアの取付構造

. PI 昭56-143913 昭58-48513

願 昭56(1981)9月30日

佐野市栄町8番地 日本ラヂエーター ①考 案 · 者

会社

弁理士 八田 幹雄

砂実用新案登録請求の範囲

・自動車用空気調和装置内に設けられたドアを、 このドアの一端を自動車用空気調和装置の隔壁に 近接して回動自在に軸支したドアの取付構造におい いて、前記ドアの少なくとも回動端外周を弾性を 5 有す材料からなる被覆部材で被覆し、前配隔壁の 被覆部材と対向する部分に被覆部材をへこませた 状態で接触する突出部を軸心方向に延在するよう に形成したことを特徴とする自動車用空気調和装 ...: 10 置のドアの取付構造。

この考案は、自動車用空気調和装置におけるド アの取付構造に係り、特に、ドアの回動端におけ るシール性能の改良に関する。

の通りであり、インテークユニット 1内には内気 導入口2と外気取入口3とを開閉するインテーク ドア4が取付けられ、更にモータ5により回転さ. れるファン6が内蔵されている。内気導入口2又 は外気取入口3或いはこれらの両方から流入した 20 のシールを維持しつつミックスドア 1.1 の開閉動 空気をファン6によってインテークユニット1か ら吐出し、クーラユニット7内に送つている。ク. ーラユニット7内には冷房回路の構成部品であり 冷媒が循環するエバポレータ.8が取付けられてお り、インテークユニツト 1 からクーラユニツト 7 25 の取付構造にあつては、シール部とミツクスドア 内に入った空気はここで冷却される。クーラユニ ット7を出た空気は、エンジン冷却水を通すヒー タコア 9 を有するヒータユニツト 1 0 に送られて

加熱されたりして、この中に取付けられたル ドアやベントドアによって車室内の任意の位置に 空気が吐出される。車室内への空気の温度はヒー ・・・クコア 9 を通る空気の量をミックストア 1.1 を開 閉することにより調整して行なう。

このような自動車用空気調和装置においては、 多くの空気制御用ドアが用いられているがミツク スドアにおいては第2図に示すような構造で回動 自在に取付けられている。すなわち、ミックスド ア11の一端には回動軸1.2が固着されており、 この回動軸12はヒータユニット1の両側側壁間 に装架され両側壁に両端部を回動自在に支持され ている。このミツクスドア11の回動端外間に は、ヒータユニット10内においてヒータコア.9 自動車用空気調和装置の一例を示すと、第1図 15 を迂回する風路13をヒークコア9から隔てるた めの隔壁14の一端が近接して配設されており、 この隔壁14の一端にはほぼ半円筒形状をなすシュ ール部15が形成されている。このシール部15 ..は、ミツクスドア11の回動端外周と隔壁14と 作力を小さく抑えて動作を円滑化するため、この シール部 1.5 の内周面とミツクスドアの外周面と、 の間に所定のクリアランスCを備えている。

> しかしながら、このような従来のミツクスドア 回動端外周面との間にクリアランスが設けられて いるため、ミツクスドアによつて迂回風路側に分 配された風がこのクリアランスを通つてヒータコ

ア側に逃げてしまい、ヒータコアを通る空気の量 の調整が不正確になるという問題があつた。

この他インテークドア4においては、内気導入. 口2を開いて内気を導入する状態にしても外気取 れない問題もあつた。その他のドアにおいてもシ ール性が不良で適切な空気調和が行われない問題 もあつた。 本考案は、このような従来の問題点・ を解決するためになされたもので、ドアの回動動 外周面とのシール性を向上することができるドア の取付構造を提供することを目的としている。

以下図面に即して本考案の実施例をミックスド アに用いた場合で説明する。

ず構成を説明すると、このミツクスドア11 は、、平板形状の芯材11aの一端辺を丸めて回・ 動軸12の外周上に固着し、この芯材11aの外 表面上をウレタン等比較的弱に弾性を有する材料 から形成された被覆部材 1 1 bで片面又は片面の 20 し、複数条設けてもよい。また、突出部の断面形 一部折り返し及び全体的に被覆されてなる。隔壁・ 14のシール部15におけるミツクスドア11の 回動端外周面に所定のクリアランスCをもつて対 向する内周面には、突出部16が回動軸12とほ ぼ平行に延在するように一体成形されており、こ 25 ール部材の内周面に突出部を設け、この突出部を の突出部 1、6 は前記被覆部材 1 1 b の回動端外周 部分に当該被覆部材の肉壁をへこませた状態で常 時接触するように回動軸 12の中心にほぼ指向し、 て突出されている。

次に作用効果を説明する。

ミックスドア11によって迂回風路側に分配さ れクリアランスCが呈する隙間内に侵入した風 は、突出部16が被覆部材116をへこませた状 態で接触して当該隙間を遮断しているため、ヒー タコア 9 傾へ通り抜けることはできず、したがつ 35 て、このクリアランスにおける行回風路とヒータ コアとのシール状態は完全に確保される。なお、 ヒータコア9個から迂回風路側への逃げも同様に 阻止される。

この完全なシール状態において、ミツクスドア 40 11の開閉動作は、ミックスドアの回動に伴って 被覆部材11bがその弾性により突出部16に相 対するへこみ変形箇所を連続的に変更することに

よつて確保される。この場合、被覆部材11bの 変位は連続的にしかも円滑に行なわれるから、ミ ・ツクスドアの開閉動作は極めて円滑に行なわれ る。かつ、ミツクスドアの開閉動作に要する操作 入口3個より外気が侵入し空気調和が良好に行わ 5 力は、クリアランスCを設けずにシール部15の 内周面をミックスドアの回動端外周面に招接させ て完全シール状態を確保した場合に比べ、はるか に小さく抑制することができる。

ところで、通常ヒータユニットは縦に二分割し 作に円滑性を維持しつつ、シール部とドア回動端 10 て成形された後、分割体を接合一体化されてなる が、突出部をヒータユニットとともに一体成形す る場合、接合箇所において隙間が発生する危険が ある。このような場合、第4図に示すように、突 出部16は接合箇所において型割線とずらし互に 第3図は本考案の一実施例を示す図であり、ま 15 噛み合う凹凸形状体 1 6 a, 1 6 bにそれぞれ形 成すると、隙間発生の危険が回避される。

> なお、前記実施例では、突出部をシール部内周 面のほぼ中央に設けた場合につき説明したが、突 出部はシール部内周面の緑辺付近に設けてもよい 状は半円形状に限らず、任意の形状でよい。被覆。 部材は少なくとも突出部との接触範囲部分に設け ればよい。・・

以上説明してきたように、本考案によれば、シ ドアの回動端外周に被覆した弾性体からなる被覆 部材に没入せしめ、、クリアライスの隙間を遮断 するようにしたため、ドアの回動動作の円滑性を 維持しつつ、シール部とドア回動端外周面とのシ 30 ール性を向上することができるという効果が得ら れる。特にミツクズドアのように完全なシール性 を要求される場所に用いると空気調和をより適切 に行うことができる。 図面の簡単な説明・・・・

第1図は一般的な自動車用空気調和装置を示す。 系統図、第2図は従来例を示す断面図、第3図は、 本考案の一実施例を示す断面図、第4図は突出部: の態様の一例を示す部分斜視図である。

19……ヒークコア、10……ヒータユニツト、 11 ······ミツクスドア、1·1 a ······芯材、1.1.b. ······被覆部材、12······回動軸、13······迂回風· 路、1.4 ……隔壁、1.5 ……ジール部、1.6 …… 突出部。

(3)

第4図

