Numbers & Sets

Lectured by Prof Imre Leader

Michaelmas 2013

Contents

1	Proofs		
	1.1	Examples	
2	Elei	mentary Number Thoery 2	
	2.1	The Natural Numbers	
		2.1.1 Operations on the Natural Numbers	
		2.1.2 Properties	
		2.1.3 Inequalities	
	2.2	Strong Induction	
	2.3	The Integers	
		2.3.1 Operations and Properties	
	2.4	The Rationals	
		2.4.1 Operations	
	2.5	Prime Numbers	
	2.6	Highest Common Factors	
		2.6.1 Euclid's Algorithm	
	2.7	Solving Integer Equations	
	2.8	Fundamental Theorem of Arithmetic	
3	Mo	dular Arithmetic 7	
	3.1	Operations	
	3.2	Earlier results	
	3.3	Inverses	
	3.4	Fermat's Little Theorem	
	3.5	Wilson's Theorem	

1 Proofs

Defintion. A *proof* is a sequence of (mathematical) statements that logically establishes a conclusion.

We need proofs for two reasons:

- 1. To be *sure* that statements are true.
- 2. To understand why they are true.

1.1 Examples

Theorem. For any positive integer n, $n^3 - n$ is a multiple of 3.

Proof. For an positive integer n, $n^3 - n = n(n-1)(n+1)$ which is the product of 3 consecutive integers, one of which must therefore be a multiple of 3. So $n(n-1)(n+1) = n^3 - n$ is a multiple of 3.

Note that proving $A \Rightarrow B$ is different to proving $B \Rightarrow A$.

2 Elementary Number Thoery

2.1 The Natural Numbers

Intuitively, the natural numbers consists of

$$1, (1+1), (1+1+1), (1+1+1+1), \dots$$

a list of distinct numbers, going on forever.

More formally, the natural numbers consists of a set \mathbb{N} with an element '1' and an operation '+1' satisfying:

- 1. $\forall n : n + 1 \neq 1$
- $2. \ \forall n, m : n \neq m \implies n+1 \neq m+1$
- 3. For any property P, if P(1) holds and $\forall n : P(n) \implies P(n+1)$, then P(n) holds for all n. (This is known as 'induction')

Intuitively, this last axiom captures the idea of 'that list is everyting, and nothing more', by taking the property P to be "is on the list".

Together, these three axioms are called the *peano axioms*.

2.1.1 Operations on the Natural Numbers

To save us having to write out '+1' many times, we can write:

```
2 \text{ for } 1+1, \\ 3 \text{ for } 1+1+1
```

etc

We can also define an operation '+2' by n+2=n+1+1. Having defined '+k', we define '+(k+1)' by n+(k+1)=(n+k)+1. This defines '+k' for all k, by induction.

Multiplication, powers, etc. can be defined in a similar way.

2.1.2 Properties

We can prove the usual algebraic rules:

1.
$$\forall a, b : a + b = b + a$$
 (addition is commutative)

2.
$$\forall a, b, c : a + (b + c) = (a + b) + c$$
 (addition is associative)

3.
$$\forall a, b : ab = ba$$
 (multiplication is commutative)

- 4. $\forall a, b, c : a(bc) = (ab)c$ (multiplication is associative)
- 5. $\forall a, b, c : a(b+c) = ab + ac$ (multiplication is distributative over addition)
- 6. $\forall a: 1.a = a$ (identity for multiplication)

2.1.3 Inequalities

Define a < b to mean: a + c = b for some natural number c. From this, we can prove:

- 1. $\forall a, b, c : a < b \implies a + c < b + c$
- $2. \ \forall a, b, c : a < b \implies ac < bc$
- 3. $\forall a, b, c : a < b \& b < c \implies a < c$
- $4. \ \forall a : \neg (a < a)$

2.2 Strong Induction

Induction says that if we know P(1) and that for all n, $P(n) \Longrightarrow P(n+1)$ then $P(n) \forall n$. A more useful form, strong induction is: if P(1) and for all n, $P(m) \forall m < n \Longrightarrow P(n)$, then $P(n) \forall n$.

To see why strong induction is valid, just apply (ordinary) induction to Q(n), defined as $P(m) \forall m \leq n$.

To show P(n), we would normally take an arbitrary n and prove P(n). Induction says: if, during that proof, it would help you to assume that P(m) for some m < n, feel free to do so. This is the correct view of induction.

There are two equivalent forms of strong induction:

- 1. If P(n) false for some n then there exists n with P(n) false but P(m) true $\forall m < n$. ('If there's a counter-example, then there's a minimal counter-example')
- 2. If P(n) for some n, then there is a least n with P(n) holding. ('Well-ordering principle')

2.3 The Integers

The integers, written \mathbb{Z} , consist of all expressions n and -n (n a natural number) and 0.

2.3.1 Operations and Properties

We can define +, \cdot (from \mathbb{N}) and have the previous algebraic rules, together with:

7.
$$\forall a : a + 0 = a$$
 (identity for addition)

8.
$$\forall a \exists b : a + b = 0$$
 (inverses for addition)

Define a < b if a + c = b, for some *natural* number c. We then have the same rules as with natural numbers of < except:

$$\forall a, b, c : a < b \& 0 < c \implies ac < bc$$

2.4 The Rationals

The rationals, written \mathbb{Q} , consist of all expressions $\frac{a}{b}$ (a horizontal line b), where a and b are integers with $b \neq 0$, and $\frac{a}{b}$ and $\frac{c}{d}$ regarded as equal if ad = bc. We can view \mathbb{Z} as being inside \mathbb{Q} (viewing n as $\frac{n}{1}$).

2.4.1 Operations

We can define + on \mathbb{Q} by:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

and \cdot on \mathbb{Q} as:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

We then get all the previous algebraic rules, plus:

9. $\forall a \neq 0 : \exists b \text{ with } ab = 1.$

(inverses for \cdot)

Define $\frac{a}{b} < \frac{c}{d}$ (b, d > 0) if ad < bc. The inequality rules are then the same as for \mathbb{Z} .

2.5 Prime Numbers

Let k be a natural number. The *multiples* of k are all integers of the form km, for some integer m.

If n is a multiple of k, we can say that k divides n or k is a factor / divisor of n, and write $k \mid n$.

A natural number $n \geq 2$ is a *prime* if its only factors are 1 and n. Otherwise, n is *composite*.

Proposition 1. Every natural number $n \geq 2$ is expressible as a product of primes.

Proof. Induction on n:

Base case n=2 is prime so is a product of primes.

Now assume that every number less than n is expressible as a product of primes. If n is a prime, we are done. If not, write n = ab for some 1 < a, b < n. Suppose that $a = p_i p_2 \dots p_k$ and $b = q_1 q_2 \dots q_l$ for some primes p_i, q_i . Then $n = p_1 \dots p_k q_1 \dots q_n$, which is a product of primes.

Theorem 2. There are infinitely many primes.

Proof. Suppose not: let $p_1, p_2, \dots p_k$ be all the primes. Let $n = p_1 p_2 \dots p_k + 1$. Then no p_i divides n. So n has no prime factors, contradicting Proposition 1.

Remarks

- 1. If we consider 1 as the 'empty product', then Prop. 1 would say 'for all $n \geq 1$ '.
- 2. There is no 'pattern' to the primes there is no (algebraic) formula for the nth prime.

2.6 Highest Common Factors

Let a, b be natural numbers. A nautral number c is a highest common factor of a and b, written hcf(a, b) or (a, b), if:

- 1. $c \mid a$ and $c \mid b$ (c is a common factor of a and b)
- 2. For any natural number d: if $d \mid a$ and $d \mid b$ then $d \mid c$ (every common factor of a and b divides c)

N.B. If the hcf exists, then it is the greatest of all common factors.

If (a, b) = 1, we say that a and b are coprime.

Proposition 3 (Division algorithm). Let k, n be natural numbers. Then n = qk + r, for some integers q, r with $0 \le r \le k - 1$.

Proof. Induction of n:

Base case n = 1: if k = 1, use q = 1, r = 0. If k > 1, use q = 0, r = 1.

Now assume that given n > 1 we can write n - 1 = qk + r, for some integers q, r with 0 < r < k - 1.

If
$$r < k - 1$$
, we have $n = qk + (r + 1)$.
If $r = k - 1$, we have $n = (q + 1)k + 0$.

2.6.1 Euclid's Algorithm

Take two positive integers a and b (say $a \ge b$). Euclid's algorithm is used to find the highest common factor of a and b.

Write $a = q_1 b + r_1 \ (q_1, r_1 \in \mathbb{Z}, 0 \le r < b)$.

Then write $b = q_2 r_1 + r_2 \ (q_2, r_2 \in \mathbb{Z}, 0 \le r_2 < 1)$.

And write $r_1 = q_3 r_2 + r_3 \ (q_r, r_3 \in \mathbb{Z}, 0 \le r_3 < r_2)$.

Continue until $r_{n-1} = q_{n+1}r_n + r_{n+1}$ with $r_{n+1} = 0$. Output r_n .

N.B. Since $b < r_1 < r_2 < \dots$ this process does terminate (in fewer than b steps).

Proposition 4. The output of Euclid's algorithm on a, b is a hef of a, b.

Proof. Let c be the output.

1. Have $c \mid r_{n-1}$ (from last line of Euclid) So $c \mid r_{i} \forall i$ (from 2nd-last line) (inductively)

2. Given $d \mid a, d \mid b$. Have $d \mid r_{1}$ (from top line) So $d \mid r_{2}$ (from second line) So $d \mid r_{i} \forall i$ (inductively)

In particular, $d \mid c$.

N.B. Euclid's algorithm shows both that the hcf exists and gives a way to calculate it.

Proposition 5. $\forall a, b \in \mathbb{N} \ \exists x, y \in \mathbb{Z} \ \text{with} \ ax + by = (a, b).$

Proof. Having run Euclid's algorithm on a and b with output $c = r_n \dots$

We have c as a linear combination of r_{n-1} and r_{n-2} (from 2nd-last line). And so we have c as a linear combination of r_{n-2} and r_{n-3} (substituting for r_{n-1} using the 3rd-last line).

Therefore, inductively, we have c as a linear combination of r_i and r_{i-1} . In particular, we have c as a linear comination of a and b.

Proof. Alternatively ...

Let h be the least positive integer of the form xa + yb, for some x, y in \mathbb{Z} . We claim that h is the hef of a and b. To prove this:

- 1. If $d \mid a$ and $d \mid b$, then d divides every linear combination of a and b, so certainly $d \mid h$.
- 2. To show $h \mid a$: suppose $h \not\mid a$. Then write a = qh + r for some $q, r \in \mathbb{Z}$ with $1 \leq r < h$. Then r = a qh = a q(xa + yb), so r is a linear combination of a and b, contradicting the minimality of h. So $h \mid a$ and by similar reasoning, $h \mid b$.

2.7 Solving Integer Equations

Let $a, b \in \mathbb{N}$. When is there an *integer* solution to the equation ax = b? Clearly, only when $a \mid b$.

What about ax + by = c for $a, b, c \in \mathbb{N}$.

e.g. 102x + 52y = 37 - not in this case, as the LHS is even, and the RHS is odd! What about 57x + 82y = 5?

In this case there is a solution: we have 82.16 - 57.23 = 1 by Euclid's algorithm. So, multiplying through by 5, we get 82(5.16) - 57(5.23) = 5.

Corollary 6 (Bezout's Theorem). Let $a, b, c \in \mathbb{N}$. Then $\exists x, y \in \mathbb{Z}$ with ax + by = c if and only if $\text{hcf}(a, b) \mid c$.

Proof. Let h = hcf(a, b).

 (\Longrightarrow) : Have $h \mid a$ and $h \mid b$, so $h \mid ax + by$, i.e. $h \mid c$.

 (\Leftarrow) : Have $h \mid c$, and have h = ax + by for some $x, y \in \mathbb{Z}$. So $c = \frac{c}{h}(ax + by)$.

2.8 Fundamental Theorem of Arithmetic

Proposition 7. Let $a, b \in \mathbb{N}$ and p be a prime. Then $p \mid ab \implies p \mid a$ or $p \mid b$.

Proof. Suppose without loss of generality that $p \nmid a$ (then we want to show that $p \mid b$). So (p, a) = 1 (as p is prime). Thus px + ay = 1 for some $x, y \in \mathbb{Z}$. So, bpx + bay = b. Clearly, $p \mid bpx$ and $p \mid bay$ (since $p \mid ab$), so b is a multiple of p. i.e. $p \mid b$.

Remarks

- 1. We do need that p is prime for the above to hold.
- 2. Similarly, $p \mid a_1 \dots a_n \implies p \mid a_i$ for some i (provable inductively).

Theorem 8 (Fundamental Theorem of Arithmetic). Let $n \geq 2$ be a natural number. Then n can be written as a product of primes, uniquely (up to reordering).

Proof. • Existence: See Proposition 1.

• Uniqueness: Induction on n:

Base case n = 2 obviously holds.

Given n > 2 and that $n = p_1 \dots p_k = q_1 \dots q_l$ for some $k, l \in \mathbb{N}$ and primes p_i, q_j , we must show that k = l and (after reordering) $p_i = q_i \, \forall i$.

We have $p_i \mid q_1q_2 \dots q_l$ (as $q_1 \dots q_l = p_1 \dots p_k$), so $p_1 \mid q_i$ for some i (by the above Proposition). Reordering, we have assume that $p_1 = q_1$. So $p_2 \dots p_k = q_2 \dots q_l$. By induction, we have k = l and (after reordering) that $p_2 = q_2, p_3 = q_3, \dots p_k = q_k$.

Applications of F.T.A.

• HCFs

The common factors of $2^3.3^5.7.11$ and $2^6.3^2.7.13$ are all numbers of the form $2^a.3^b.7^c$ $(0 \le a \le 3, 0 \le b \le 2, 0 \le c \le 1)$, so HCF is $2^3.3^2.7$.

In general, suppose $m=p_1^{a_1}\dots p_k^{a_k}$ and $n=p_1^{b_1}\dots p_k^{b_k}$ where $p_1\dots p_k$ are distinct primes, and $a_1,b_i\geq 0 \ \forall i$. Then $\mathrm{hcf}(m,n)=p_1^{\min(a_1,b_1)}p_2^{\min(a_2,b_2)}\dots p_k^{\min(a_k,b_k)}$.

• LCMs

In the preceding example, the common multiples of our two numbers are all numbers that are multiples of $2^6.3^5.7.11.13$ - so the *least* common multiple (LCM) is $2^6.3^5.7.11.11$.

In general, for m, n as above, $lcm(m, n) = p_1^{\max(a_1, b_1)} \dots p_k^{\max(a_k, b_k)}$.

• Interestingly, hcf(m, n).lcm(m, n) = mn because $p^{\max(a,b)}.p^{\min(a,b)} = p^a.p^b = p^{a+b}$.

3 Modular Arithmetic

Let $n \geq 2$ be a natural number. The integers mod n, written \mathbb{Z}_n , consists of the integers, where two numbers are regarded as the same if they differ by a multiple of n. For example, in \mathbb{Z}_7 , 2 and 16 are the same.

If a and b are the same in \mathbb{Z}_n , we can write $a \equiv b \pmod{n}$, read 'a is congruent to b mod a'. Or $a \equiv b \pmod{n}$ or a = b in \mathbb{Z}_n .

So, $0, 1, \ldots n-1$ are all distinct mod n, and every a is congruent to one of these (mod n), by the division algorithm.

The correct mental picture of \mathbb{Z}_n is as a loop:

3.1 Operations

Do + and · make sense in \mathbb{Z}_n ? (Note that 'even' does not make sense in \mathbb{Z}_n since e.g. $2 \equiv 9 \pmod{7}$.)

We'd need that if $a \equiv a'$ (n) and $b \equiv b'$ (n) then $a+b \equiv a'+b'$ (n) and $ab \equiv a'b'$ (n). We have that a'=a+ni and b'=b+nj for some $i,j \in \mathbb{Z}$. So a'+b'=a=b+n(i+j), so $a'+b' \equiv a+b$ (n). Also, a'b'=(a+ni)(b+nj)=ab+n(ib+ja+nij), so $a'b' \equiv ab$ (n). The usual algebraic rules (such as $a+b \equiv b+a$ (n) are inherited from \mathbb{Z} .

3.2 Earlier results

Some things we've already seen can be expressed nicely in this language.

e.g. For p prime, $p \mid ab \implies p \mid a$ or $p \mid b$. In this new language, we can write: If $ab \equiv 0$ (p) then $a \equiv 0$ (p) or $b \equiv 0$ (p). Or, in \mathbb{Z}_p , $ab = 0 \implies a = 0$ or b = 0.

3.3 Inverses

We say that an integer a is *invertible* (or a *unit*) mod n if there exists an integer b with $ab \equiv 1$ (n). We can say that b is an *inverse* of a and write it as a^{-1} .

For example, mod 10, the inverse of 3 is 7 (since 3.7 = 21 = 1 (10)), and the inverse of 4 does not exist (since cannot have 4b = 1 + 10k as LHS even, RHS odd).

Proposition 9. Let p be prime. Then every integer $a \neq 0$ (p) is invertible mod p. (i.e. in $\mathbb{Z}_p : a \neq 0 \implies a$ invertible.

Proof 1. Have (a, p) = 1 (since a not a multiple of p), so ax + py = 1 for some $x, y \in \mathbb{Z}$. Thus $ax \equiv 1$ (p).

Proof 2. Consider, in \mathbb{Z}_p , the numbers $a.0, a.1, a.2, \dots a.(p-1)$. They are distinct as:

$$a_i \equiv a_j \ (p) \implies a(i-j) \equiv 0 \ (p)$$

 $\implies a \equiv 0 \ (p) \text{ or } (i-j) \equiv 0 \ (p)$
 $\implies i \equiv j \ (p)$ (as $a \not\equiv 0$)
 $\implies i = j$ (as $0 \le i, j \le p-1$)

Thus $a.0, a.1, \ldots a(p-1)$ are $0, 1, 2, \ldots (p-1)$ in some order. In particular, ax=1 for some x.

What about in \mathbb{Z}_n ?

Proposition 10. Let a be an integer. Then a is invertible in \mathbb{Z}_n if and only if (a, n) = 1 (i.e. a is coprime to n).

Proof.

$$a ext{ is invertible} \iff ax \equiv 1 \ (n)$$
 some x

$$\iff ax + ny = 1$$
 some x, y

$$\iff (a, n) \mid 1$$
 (Bezout)
$$\iff (a, n) = 1$$

Remarks

1. Inverses are unique (if they exist).

Indeed, suppose $ab \equiv 1$ (n) and $ac \equiv 1$ (n). Multiply by b: $bac \equiv b$ (n), so $c \equiv b$ (n) (since $ab \equiv ba \equiv 0$ (n)).

2. In \mathbb{Z}_n , we can 'cancel an invertible': if a is invertible, and $ab \equiv ac$ (n), then $b \equiv c$ (n) (multiplying by a^{-1}).

But, for example, $4.5 \equiv 6.5$ (10) but $4 \not\equiv 6$ (10) since 5 is not invertible.

3. For $n \geq 1$, the Euler totient function $\phi(n)$ is the number of $1, 2, \ldots n$ that are coprime to n. So, $\phi(n)$ is the number of invertibles, or 'units' in \mathbb{Z}_n .

For example, for p prime, $\phi(p) = p - 1$, and $\phi(p^2) = p^2 - p$.

3.4 Fermat's Little Theorem

Theorem 11 (Fermat's Little Theorem). Let p be prime. Then, in \mathbb{Z}_p , $a^{p-1} = 1 \ \forall a \neq 0$. [i.e. $a \neq 0$ $(p) \implies a^{p-1} \equiv 1$ (p)]

Proof. In \mathbb{Z}_p : consider $a.1, a.2, \dots a(p-1)$. They are distinct (as a is invertible) and non-zero (as $ab = 0 \implies 1a = 0$ or b = 0). So they are $1, 2, \dots p-1$ in some order.

Multiplying them together: $a^{p-1}(p-1)! = (p-1)!$, so $a^{p-1} = 1$ as (p-1)! invertible (as a product of invertibles is invertible).

Theorem 12 (Fermat-Euler Theorem). For a invertible in \mathbb{Z}_n , $a^{\phi(n)} = 1$. [i.e. if (a, n) = 1 then $a^{\phi(n)} \equiv 1$ (n)]

Proof. Let $x_1, x_2, \ldots x_{\phi(n)}$ be the invertibles in \mathbb{Z}_p . Then, in \mathbb{Z}_n : $ax_1, ax_2, \ldots ax_{\phi(n)}$ are distinct (as a invertible) and invertible (as they are products of invertibles). So they are $x_1, x_2, \ldots x_{\phi(n)}$ in some order. Thus $a^{\phi(n)}x_1x_2 \ldots x_{\phi(n)} = x_1, x_2, \ldots x_{\phi(n)}$, so $a^{\phi(n)} = 1$ (cancelling each x_i in turn).

3.5 Wilson's Theorem

In the proof of Fermat's Little Theorem, we cancel through by (p-1)! since we know that it is invertible in \mathbb{Z}_p . But what is (p-1)! mod p? Trying a couple of examples, we find that 4! = 24 = -1 (5) and 6! = 720 = -1 (7). This suggests that $(p-1)! \equiv -1$ (p).

Lemma 1. Let p be prime. Then in \mathbb{Z}_p , $x^2 = 1 \implies x = 1$ or -1.

Proof. Have
$$x^2 = 1$$
 i.e. $x^2 - 1 = 0$, which is $(x+1)(x-1) = 0$.
Since p is prime, it follows that $x + 1 = 0$ or $x - 1 = 0$, so $x \pm 1$.

Note: In fact, one can show that in \mathbb{Z}_p (p prime), a polynomial of degree d has $\leq d$ roots.

Theorem 13. Let p be prime. Then (p-1)! = -1 in \mathbb{Z}_p (i.e. $(p-1)! \equiv 1$ (p)).

Proof. We may assume that p > 2 (since p = 2 is easily verified).

We can pair each $1 \le a \le p-1$ with a^{-1} (in \mathbb{Z}_p). The lemma above implies that the only values of a for which $a^{-1} \ne a$ (i.e. $1 = a^2$) are a = 1, -1. Thus the numbers $1, 2, 3, \ldots (p-1)$, excluding ± 1 , can be arranged in distinct pairs such that the product of each pair $\equiv 1$ (p). Then we have $(p-1)! = 1 \times 1 \times \ldots 1 \times -1 = -1$ (p).

Theorem 14. Let p > 2 be prime. Then -1 is a square mod p if and only if $p \equiv 1$ (4).

Proof. For p = 4k + 3: Suppose $x^2 = -1$ in \mathbb{Z}_p . By Fermat's Little Theorem, $x^{4k+2} = 1$. But $x^{4k+2} = (x^2)^{2k+1} = (-1)^{2k+1} = -1$, which is a contradiction.

For
$$p = 4k + 1$$
: