Worksheet 06

Name: Rishab Sudhir

UID: U64819615

Topics

- Kmeans ++
- Hierarchical Clustering

Kmeans ++

a) What is the difference between K means and K means ++?

In short Kmeans++ chooses clusters a bit better

K-means Fartherest First Traversal - make intial centroids as far as possible from each other, however this may make outliers their own clusters

K-means++ takes a part of FFT

K-means++ picks points randomly but with probability proportional to how far you are from other cluster centroids.

a = 2: K-means++

D(x)^a - a is just an exponent, when it is 2 its Kmeans++

pick 1 center, then the further a next possbile point is the higher the probability is to pick it.

b) What are some limitations of K means ++?

It is still susceptible to outliers, as the further they are the higher the probability of picking them is however, by making Kmeans++ probabilistically instead of deterministically like FFT we reduce the chance of picking outliers

c) Interpret the silhouette plot below. It's a histogram where each bar corresponds to the silhouette score for that data point. Comment on which number of clusters K (2,3,4 or 5) you would choose and why. (the red dotted line is the average silhouette score over the entire dataset).

Values closer to 1 are good (ai-bi)/max(ai,bi). ai is the mean avg dist to every point in the cluster, bi is the smallest mean distance to another cluster.

Probably the top right plot/ or top left (3 clusters/2 clusters), higher than avg sillhouette and splits points well. the thing with the 3 cluster solution is that there are steep drops.

Hierarchical Clustering

Using the following dataset:

Point	X	У
Α	0	C
В	1	1
С	3	C
D	0	1
Е	2	2

with

d = Euclidean

D = Single-Link

produce the distance matrix at every step of the hierarchical clustering algorithm.

Step 1

	Α	В	С	D	Е
Α	0	√2	3	1	2√2

	Α	В	С	D	Ε
В	√2	0	√5	1	√2
С	3	√5	0	√10	√ 5
ח	1	1	/1 ∩	Λ	15

Step

	A&B	С	D	Ε
A&B	0	√2	1	√2
С	√2	0	√ 10	√5
D	1	√10	0	√ 5
Е	√2	√5	√5	0

Step 3

	A&B&C	D	E
A&B&C	0	1	√2
D	1	0	√ 5
Е	√2	√5	0

Step 4

	A&B&C&D	E
A&B&C&D	0	√2
Е	√2	0

Repeat the above with

d = Euclidean

D = Complete-Link

Step 1

	Α	В	С	D	E
Α	0	√2	3	1	2√2
В	√2	0	√5	1	√2
С	3	√ 5	0	√10	√ 5
D	1	1	√10	0	√ 5
Ε	2√2	√2	√5	√5	0

Step 2

	A&D	В	С	Е
A&D	0	1	√10	2√2
В	1	0	√5	√2
С	√10	√5	0	√5

Step 3

Е	В	A&D&C	
2√2	√ 5	0	A&D&C
√2	0	√5	В
0	√2	2√2	Е

Step 4

	A&D&C&E	В
A&D&C&E	0	√5
В	√ 5	0

Challenge Problem

Input:

• Some DNA sequences, each sequence is on a new line. All sequences are of equal length and consist of characters from the set {A, C, G, T}.

Task:

• Implement a hierarchical clustering algorithm using Hamming distance as the metric clustering DNA sequences.

Definition of Hamming Distance:

The Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. Mathematically, if we have two strings, s and t, of equal length, then the Hamming distance H(s,t) is given by:

$$H(s,t) = \sum_{i=1}^{n} [s_i \neq t_i]$$

where n is the length of the strings, s_i and t_i are the characters at position i in s and t respectively, and $[s_i \neq t_i]$ is an indicator function, equal to 1 if $s_i \neq t_i$ and 0 otherwise.

Guidelines:

- 1. **Read the Dataset**: Choose appropriate data structure.
- 2. **Compute Hamming Distance**: Implement a function to calculate the Hamming distance between any two sequences.
- 3. **Hierarchical Clustering**: Apply the hierarchical clustering algorithm using the single-linkage method.

```
In [5]: | sequences = [
'ACGTGGTCTTAA',
'ACGTCGTCTTAC',
'ACGTGGTCTTAC',
'ACGTAGTCTTAA',
'ACGTGGTCTTCC'
'ACGTGGTCTTAG'
'CTGTTAAATAAG',
'GGTTAGAACACG',
'AGTGGTTGAAGT',
'GGCTTACACCCT',
'AGATTGTCCACT'
'CATGCGGTCAAC'
'ATATATCATAGC',
'TTTGCGGTTGGA',
'GAATGGTCAGAA'
'GTGATGCTGTCT']
```