Aula 20 - Segurança: WLANs, Firewalls, Gateways, IDS

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- IPSec: provê segurança na camada de rede.
 - Confidencialidade, integridade, autenticação da origem.
- IPSec: dois protocolos.
 - AH: integridade e autenticação.
 - ESP: integridade, autenticação e confidencialidade.
- IPSec: dois modos.
 - Transporte: carga útil do datagrama IP é cifrada/autenticada.
 - Túnel: datagrama IP completo é encapsulado em novo datagrama.
 - Esconde completamente protocolo de transporte, portas, ...
- Associações seguras: SA.
 - Canal de comunicação virtual entre duas entidades IPSec.
 - Simplex, mantém estado.
 - Algoritmos de criptografia, integridade, chaves, ...
- IPSec: Gerenciamento de Chaves.
 - Protocolo próprio: IKE.

Segurança em LANs Sem Fio

Objetivos de Projeto do WEP

- Criptografia de chave simétrica.
 - Confidencialidade.
 - Autorização de hosts.
 - Integridade dos dados.

Auto-sincronização: cada pacote é cifrado

separadamente.

- Dado pacote cifrado e chave, é possível decifrá-lo, mesmo que pacotes anteriores tenham sido perdidos (diferentemente de algoritmos como o Cipher Block Chaining (CBC) em cifras de bloco).
- Eficiência.
 - Implementável em hardware ou software.

Cifras de Fluxo Simétricas

- Combina cada byte do fluxo de chave com byte de texto plano para obter texto criptografado:
 - m(i) = *i*-*é*s*i*ma unidade da mensagem.
 - ks(i) = i-ésima unidade do fluxo de chave.
 - c(i) = i-ésima unidade de texto criptografado.
 - $ullet c(i) = ks(i) \oplus m(i)$
 - ullet $m(i) = ks(i) \oplus c(i)$
- WEP usa o RC4.

Cifras de Fluxo e Independência de Pacotes

- Lembre-se de um objetivo de projeto: cada pacote é criptografado separadamente.
- Se para o quadro n+1, usamos o fluxo de chaves do ponto em que paramos no quadro n, então quadros não são criptografados separadamente.
 - É preciso saber onde paramos no último pacote.
- Abordagem do WEP: inicializa o fluxo de chave com a chave + um IV novo para cada pacote.
 - IV usado para cifrar um pacote é anexado em texto plano no próprio pacote.

Criptografia no WEP (I)

- Transmissor calcula o Integrity Check Value (ICV) sobre os dados.
 - Hash/CRC de quatro bytes para verificação de integridade.
- Cada lado possui uma chave compartilhada de 104 bits.
- Transmissor cria um vetor de inicialização (IV) de 24 bits, adicionado à chave: resulta em nova chave de 128 bits.
- Transmissor também adiciona um keyID (em um campo de 8 bits).
- Chave de 128 bits é passada como entrada de um gerador de números pseudo-aleatórios para gerar o fluxo de chave.
- Dados no quadro + ICV são cifrados com o RC4:
 - Bytes do fluxo de chave são combinados através de um XOR com bytes dos dados e ICV.
 - IV e keyID são adicionados ao início dos dados criptografados para criar o payload.
 - Payload é encapsulado em um quadro 802.11.

Criptografia no WEP (II)

Figure 7.8-new1: 802.11 WEP protocol

Um novo IV para cada quadro.

WEP: Visão Geral do Processo de Deciframento

- Receptor extrai o IV.
- Passa IV e chave compartilhada como entrada do gerador de números pseudo-aleatórios, obtém fluxo de chave.
- Faz XOR entre fluxo de chave e dados criptografados para decifrar dados + ICV.
- Verifica integridade dos dados com o ICV.
 - Nota: abordagem de verificação de integridade usada aqui é diferente do MAC (Message Authentication Code) e assinaturas (usando PKI).

Autenticação do Host Usando Nonce

- Nonce: número (R) usado "uma única vez".
- Como Alice prova estar "ao-vivo": Bob envia um nonce, R. Alice deve retornar R cifrado com a chave compartilhada.

Autenticação WEP

Notas:

- Nem todos os APs realizam esta autenticação, mesmo quando WEP está em uso.
- AP indica se autenticação é necessária no quadro de beacon.
- Feito antes da associação.

Quebrando a Criptografia WEP do 802.11

Problema de segurança:

- IV de 24 bits, um IV por quadro ⇒ IVs eventualmente reutilizados.
- IV é transmitido em texto plano ⇒ reuso do IV é facilmente detectado.

• Exemplo de ataque:

- Trudy força Alice a cifrar texto plano d₁d₂d₃d₄...
- ullet Trudy vê: $c_i=d_i\oplus k_i^{IV}$.
- Trudy conhece sequência de chaves k_1^{IV} k_2^{IV} k_3^{IV} k_4^{IV} ... correspondente ao IV atual.
- Na próxima utilização do IV (para um quadro legítimo), Trudy pode decifrar!

802.11i: Melhorias de Segurança

- Várias formas (mais fortes) de criptografia são possíveis.
 - AES, ao invés de RC4.
- Provê sistema de distribuição de chaves.
 - "WPA Enterprise", "WPA Personal".
- No WPA Enterprise, usa servidor de autenticação separado do AP.
 - Dissociação credenciais de autenticação das chaves de criptografia.
 - Permite que cada usuário tenha suas próprias credenciais.

802.11i: Quatro Fases de Operação

EPA: Extensible Authentication Protocol

- EAP: protocolo de comunicação entre cliente (móvel) e servidor de autenticação.
- EPA enviado sobre enlaces "separados".
 - Cliente móvel para AP (EAP sobre LAN).
 - AP para servidor de autenticação (Radius sobre UDP).

Segurança operacional: Firewalls e IDS

Firewalls

Isolam rede interna de uma organização da Internet pública, permitindo que alguns pacotes passem e bloqueando outros.

Firewalls: Por Que?

- Prevenir ataques de negação de serviço:
 - Inundação de SYNs: atacante estabelece várias conexões TCP falsas, não deixando recursos para conexões legítimas.
- Prevenir modificações/acesso ilegais a dados internos:
 - e.g., atacante substitui página do governo por outro conteúdo.
- Permitir apenas acesso autorizado à rede interna:
 - Conjunto de usuários/hosts autenticados.
- Três tipos de firewall:
 - Filtro de pacotes stateless.
 - Filtro de pacotes stateful.
 - Gateways de aplicação.

Filtro de Pacotes Stateless

- Rede interna conectada à Internet através de um roteador firewall.
- Roteador filtra pacote por pacote, decidindo encaminhar ou descartar com base em:
 - Endereços IP de origem ou destino.
 - Números de porta de origem ou destino.
 - Tipo de protocolo de transporte (tipicamente, TCP ou UDP).
 - Tipo de mensagem ICMP.
 - Bits SYN e ACK em segmentos TCP.

Filtro de Pacote Stateless: Exemplo

- Exemplo 1: bloqueie entrada e saída de pacotes com campo *protocol* do cabeçalho IP = 17. Bloqueie também pacotes com porta de origem ou destino = 23.
 - Resultado: todos os fluxos UDP entrando ou saindo e todas as conexões telnet são bloqueadas.
- Exemplo 2: bloqueie a entrada de segmentos TCP com bit ACK = 0.
 - **Resultado:** não permite que clientes externos abram conexões TCP com hosts internos, mas permite que hosts internos abram conexões para fora da rede.

Filtro de Pacote Stateless: Mais Exemplos

Política	Configuração de Firewall			
Bloquear acesso Web.	Descartar todos os pacotes para qualquer endereço IP, porta 80.			
Bloquear abertura de conexões TCP de fora para dentro, exceto aquelas direcionadas ao servidor Web da instituição.	Descartar todos os pacotes TCP com bit SYN ativo para qualquer IP, exceto 103.207.244.203, porta 80.			
Evitar que rádios on-line consumam toda a banda disponível.	Bloquear a entrada de todos os pacotes UDP, exceto por pacotes de DNS e informações de roteamento.			
Evitar que sua rede seja usada para um ataque de DoS do tipo "smurf".	Descartar todos os pacotes ICMP com destino sendo um endereço de "broadcast" (e.g., 103.207.255.255).			
Evitar que computadores externos façam um traceroute da sua rede.	Descartar todos as mensagens ICMP de TTL expirado saindo da sua rede.			

Listas de Controle de Acesso

• Access Control List (ACL): tabela de regras, aplicadas de cima para baixo aos pacotes que chegam: pares do tipo (ação, condição).

Ação	Endereço de Origem	Endereço de Destino	Protocolo	Porta de Origem	Porta de Destino	Bit de Flag
Permitir	222.22/16	Fora de 222.22/16	ТСР	> 1023	80	Qualquer
Permitir	Fora de 222.22/16	222.22/16	ТСР	80	> 1023	ACK
Permitir	222.22/16	Fora de 222.22/16	UDP	> 1023	53	
Permitir	Fora de 222.22/16	222.22/16	UDP	53	> 1023	
Bloquear	*	*	*	*	*	*

Filtro de Pacotes Stateful (I)

- Filtro de Pacotes Stateless: ferramenta agressiva.
 - Admite pacotes que "não fazem sentido", *e.g.*, porta de destino 80, bit ACK ativo, embora não haja conexão TCP estabelecida:

Ação	Endereço de Origem	Endereço de Destino	Protocolo	Porta de Origem	Porta de Destino	Bit de Flag
Permitir	Fora de 222.22/16	222.22/16	ТСР	80	> 1023	ACK

- Filtro de Pacotes Stateful: monitora o estado de cada conexão TCP.
 - Monitora abertura (SYN) e fechamento (FIN): determina se pacotes que entram ou saem "fazem sentido".
 - Conexões inativas sofrem timeout no firewall: pacotes não são mais admitidos.

Filtro de Pacotes Stateful (II)

 ACL é aumentada para indicar necessidade de verificar tabela do estado das conexões antes de admitir um pacote.

Ação	Endereço de Origem	Endereço de Destino	Protocolo	Porta de Origem	Porta de Destino	Bit de Flag	Checar Conexão
Permitir	222.22/16	Fora de 222.22/16	ТСР	> 1023	80	Qualquer	
Permitir	Fora de 222.22/16	222.22/16	ТСР	80	> 1023	ACK	X
Permitir	222.22/16	Fora de 222.22/16	UDP	> 1023	53		
Permitir	Fora de 222.22/16	222.22/16	UDP	53	> 1023		X
Bloquear	*	*	*	*	*	*	

Gateways de Aplicação (I)

- Filtram pacotes baseados em dados da aplicação, além dos campos do IP/TCP/UDP.
- Exemplo: permite apenas que um subconjunto de usuários da rede realizem telnet para redes externas.

- 1. Requer que todos os usuários realizem telnet através do gateway.
- 2. Para usuários autorizados, *gateway* estabelece conexão com o host de destino. *Gateway* age como *relay* dos dados entre as duas conexões.
- 3. Filtro do roteador bloqueia todas as conexões telnet não originadas no gateway.

Gateways de Aplicação (II)

- Filtram pacotes baseados em dados da aplicação, além dos campos do IP/TCP/UDP.
- Exemplo: permite apenas que um subconjunto de usuários da rede realizem telnet para redes externas.

- 1. Requer que todos os usuários realizem telnet através do gateway.
- 2. Para usuários autorizados, *gateway* estabelece conexão com o host de destino. *Gateway* age como *relay* dos dados entre as duas conexões.
- 3. Filtro do roteador bloqueia todas as conexões telnet não originadas no gateway.

Limitações de Firewalls, Gateways

- IP spoofing: roteador não sabe se dados "realmente" vêm da origem identificada no cabeçalho IP.
- Se múltiplas aplicações precisam de tratamento especial, cada uma necessita do seu próprio gateway.
- Software do cliente deve saber como contactar o gateway.
 - e.g., através da configuração de um proxy no browser.

- Filtros tipicamente usam uma política do tipo "tudo ou nada" para UDP.
- Compromisso: grau de comunicação com o mundo externo, nível de segurança.
- Vários sites altamente protegidos ainda sofrem ataques.

Sistemas de Detecção de Intrusão (I)

- Filtros de pacote:
 - Operam apenas sobre cabeçalhos TCP/IP.
 - Não verificam correlações entre sessões.
- IDS: Intrusion Detection System.
 - **Inspeção profunda nos pacotes:** olha o conteúdo do pacote (*e.g.*, procura por padrões de bytes no pacote cadastrados em uma base de dados de vírus e ataques conhecidos).
 - Verificação de correlação entre vários pacotes.
 - Port Scanning.
 - Mapeamento da rede.
 - Ataque de DoS.

Sistemas de Detecção de Intrusão (II)

• Vários IDSs: tipos diferentes de verificação em diferentes partes da rede.

Resumo da Aula (I)...

- Segurança em WLANs: WEP.
 - Padrão original de segurança no IEEE 802.11.
 - Criptografia de chave simétrica.
 - Mesma chave era compartilhada por todos os usuários.
 - Chave usada tanto para confidencialidade, quanto para autenticação.
 - IVs para evitar reuso frequente de chaves.
 - IVs informadas em texto plano nos quadros.
 - 24 bits é pouco: **IVs se repetem rapidamente**.
 - Resultado: WEP é extremamente vulnerável.
- Segurança em WLANs: 802.11i.
 - Algoritmos mais fortes, chaves maiores, corrige vulnerabilidades conhecidas.
 - Versão "enterprise": dissocia autenticação/confidencialidade, abole chaves compartilhadas.

Resumo da Aula (II)...

- Firewalls: filtros de pacotes.
 - Isolam rede interna da Internet pública.
 - Aplicam **regras** para permitir/bloquear pacotes.
 - Previnem:
 - Negação de serviço, acesso a dados internos, uso não autorizado, ...
 - Podem ser.
 - Stateless: decisão baseada apenas em campos do pacote analisado.
 - Stateful: decisão leva em conta também estado de conexões.
 - Gateways de Aplicação: decisão baseada dados de aplicação.
- IDS: Intrusion Dectection System.
 - Analisam tráfego, procuram por **padrões, assinaturas**.
 - Tentam detectar **comportamentos anômalos**.

Leitura e Exercícios Sugeridos

- Segurança em WLANs:
 - Páginas 531 a 535 do Kurose (Seção 8.7).
 - Exercícios de fixação 27 e 28 do capítulo 8 do Kurose.
 - Problema 24 do capítulo 8 do Kurose.
- Segurança Operacional (firewalls, gateways de aplicação e IDS):
 - Páginas 535 a 544 do Kurose (Seção 8.8).
 - Exercícios de fixação 29, 30, 31 e 32 do capítulo 8 do Kurose.
 - Problema 25 do capítulo 8 do Kurose.
- Leitura adicional (opcional): anonimado e privacidade.
 - Página 541 do Kurose.
 - Problema 26 do capítulo 8 do Kurose.

Segurança em Redes (Sumário)

- Técnicas Básicas...
 - Criptografia (simétrica e pública).
 - Integridade de mensagens.
 - Autenticação das partes.
- ...usadas em vários cenários de segurança:
 - E-mail seguro.
 - Transporte seguro (SSL).
 - IPsec.
 - 802.11.
- Segurança operacional: firewalls e IDS.

Próxima Aula...

- Começaremos um novo tópico: redes multimídia.
 - Aplicações típicas.
 - Requisitos.
 - Estudos de caso.
 - Protocolos.
 - Qualidade de serviço.