```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df=pd.read_csv('db.csv')
df.head()

→		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	ΑĮ
	0	6	148.0	72.0	35.0	NaN	33.6	0.627	Ę
	1	1	85.0	66.0	29.0	NaN	26.6	0.351	3
	2	8	183.0	64.0	NaN	NaN	23.3	0.672	3
	3	1	89.0	66.0	23.0	94.0	28.1	0.167	2
	4	0	137.0	40.0	35.0	168.0	43.1	2.288	3

Next steps: (Generate code with df

View recommended plots

New interactive sheet

df.isnull().sum()

→		0
	Pregnant	0
	Glucose	0
	Diastolic_BP	35
	Skin_Fold	227
	Serum_Insulin	374
	ВМІ	11
	Diabetes_Pedigree	0
	Age	0
	Class	0

dtype: int64

```
df['Diastolic_BP']=df['Diastolic_BP'].fillna(df['Diastolic_BP'].mean())
df['Skin_Fold']=df['Skin_Fold'].fillna(df['Skin_Fold'].mean())
df['Serum_Insulin']=df['Serum_Insulin'].fillna(df['Serum_Insulin'].mean())
```

df['BMI']=df['BMI'].fillna(df['BMI'].mean())
df

→		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree
	0	6	148.0	72.0	35.00000	155.548223	33.6	0.627
	1	1	85.0	66.0	29.00000	155.548223	26.6	0.351
	2	8	183.0	64.0	29.15342	155.548223	23.3	0.672
	3	1	89.0	66.0	23.00000	94.000000	28.1	0.167
	4	0	137.0	40.0	35.00000	168.000000	43.1	2.288
	763	10	101.0	76.0	48.00000	180.000000	32.9	0.171
	764	2	122.0	70.0	27.00000	155.548223	36.8	0.340
	765	5	121.0	72.0	23.00000	112.000000	26.2	0.245
	766	1	126.0	60.0	29.15342	155.548223	30.1	0.349
	767	1	93.0	70.0	31.00000	155.548223	30.4	0.315

768 rows × 9 columns

Next steps:

Generate code with df

View recommended plots

New interactive sheet

Correlation Btw the Data

df.corr()

 $\overline{2}$

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI
Pregnant	1.000000	0.127911	0.208522	0.082989	0.056027	0.021565
Glucose	0.127911	1.000000	0.218367	0.192991	0.420157	0.230941
Diastolic_BP	0.208522	0.218367	1.000000	0.192816	0.072517	0.281268
Skin_Fo l d	0.082989	0.192991	0.192816	1.000000	0.158139	0.542398
Serum_Insulin	0.056027	0.420157	0.072517	0.158139	1.000000	0.166586
ВМІ	0.021565	0.230941	0.281268	0.542398	0.166586	1.000000
Diabetes_Pedigree	-0.033523	0.137060	-0.002763	0.100966	0.098634	0.153400
Age	0.544341	0.266534	0.324595	0.127872	0.136734	0.025519
Class	0.221898	0.492928	0.166074	0.215299	0.214411	0.311924

 $\overline{2}$

1. What is the distribution of age across individuals with Glucose in the dataset?

```
plt.bar(df['Age'],df['Glucose'])
plt.xlabel('Age')
plt.ylabel('Glucose')
plt.title('Distribution of Age Across Individuals with Glucose')
plt.show()
```


2. What is the correlation between body mass index (BMI) and Diabetes_Pedigree?

```
sns.scatterplot(x='BMI',y='Diabetes_Pedigree',data=df)
plt.xlabel('BMI')
plt.ylabel('Diabetes_Pedigree')
plt.title('Correlation Between BMI and Diabetes_Pedigree')
plt.show()
```


3. What correlation Btw Glucose and Diastolic BP

```
plt.plot(df['Glucose'],df['Diastolic_BP'],'*')
plt.xlabel('Glucose')
plt.ylabel('Diastolic_BP')
plt.title('Correlation Btw Glucose and Diastolic BP')
plt.show()
```


4. What was the Relation Diastolic BP and Age

```
plt.bar(df['Age'],df['Diastolic_BP'])
plt.xlabel('Age')
plt.ylabel('Diastolic_BP')
plt.title('Relation Diastolic BP and Age')
plt.show()
```


5. Relation Btw Pregnant and Glucose

```
plt.axes(projection='3d')
plt.scatter(df['Pregnant'],df['Glucose'],df['Age'])
plt.xlabel('Pregnant')
plt.ylabel('Glucose')
plt.title('Relation Btw Pregnant and Glucose')
plt.show()
```


Relation Btw Pregnant and Glucose

6. Relation Between Pregnant and Diastolic BP

$\overline{\Rightarrow}$

Relation Between Pregnant and Diastolic BP

