1 Алгоритм решения

Обозначим через V множество значений количества слитков у людей, где v_i — количество слитков у человека i, где $v_i \in [1, \bar{V}]$.

1. Инициализируем границы бинарного поиска:

$$left_ptr = 0$$
, $right_ptr = max\{v_i : v_i \in V\} + 1$

- 2. Повторяем, пока right_ptr left_ptr > 1:
 - Вычисляем $mid = \left| \frac{left_ptr_+right_ptr}{2} \right|$;
 - Проверяем возможность перераспределения, которое определим как $I(maxFlow = \sum v_i)$ (где I ф. индикатор), с ограничением не более чем mid слитков у одного человека;
 - Если возможно обновляем right_ptr, иначе left_ptr.
- 3. Ответ минимальное допустимое значение right_ptr.

1.1 Проверка перераспределения через поток

Построим сеть:

- Исток s соединяется со всеми вершинами (людьми) пропускная способность v_i ;
- \bullet Из каждой вершины кроме s и t выходят два типа ребер:
 - 1. В другие вершины по графу доверия с пропускной способностью $\sum v_i$ (из-за невозможности передать больше, чем в системе);
 - 2. В сток t-c пропускной способностью, равной mid.

Алгоритм поиска потока — Эдмондса-Карпа.

2 Корректность

Лемма 1. Функция проверки возможности перераспределения монотонна по тід.

Доказательство. На лекции было показано, что максимальный поток равен количеству, вытекающему из истока, и совпадает с количеством, втекающим в сток. При увеличении **mid** возрастает пропускная способность рёбер в сток, что увеличивает или сохраняет величину максимального потока. Следовательно, если перераспределение невозможно при k, то оно также невозможно при всех k' < k.

Теорема 1. В ориентированной сети, где

- $s \rightarrow i$ имеет ёмкость v_i ,
- $i \to t$ umeem $\ddot{e}m\kappa ocm b$ mid,
- ullet каждое доверительное ребро (u o w) ёмкость $\sum_{j=1}^N v_j,$

существует поток величины $\sum_{i=1}^N v_i$ тогда и только тогда, когда можно передать все слитки между участниками так, чтобы ни у кого в любой момент не было более mid.

Доказательство. (\rightarrow) Пусть есть поток f суммарно $\sum_i v_i$. Разложим его на $\sum_i v_i$ единичных путей

$$P_k: s \to i_k^{(0)} \to \cdots \to i_k^{(r_k)} \to t, \quad k = 1, \dots, \sum_i v_i.$$

Поскольку $f(i \to t) \leqslant \text{mid}$, в каждый i входит не более mid путей. Обрабатывая пути один за другим, переносим «слиток» вдоль P_k от $i_k^{(0)}$ к $i_k^{(r_k)}$. В любой момент у i не более числа путей, завершающихся в i, то есть $\leqslant \text{mid}$, значит, никто не несёт свыше mid слитков.

(\leftarrow) Пусть задана последовательность переносов, в результате у каждого i осталось d_i слитков, $d_i \leqslant \text{mid}$, $\sum_i d_i = \sum_i v_i$. Определим поток:

$$f(s \to i) = v_i$$
, $f(i \to t) = d_i$, $f(u \to w) = \#\{\text{переносов } u \to w\}$.

По доверию в сумме переносится $\leqslant \sum_j v_j,$ а $d_i \leqslant$ mid. В каждом i

$$v_i + \sum_{u} f(u \to i) = \sum_{w} f(i \to w) + d_i,$$

поскольку все v_i либо уходят дальше, либо остаются. Наконец, $\sum_i f(i \to t) = \sum_i d_i = \sum_i v_i$, значит, это поток нужной величины.

Теорема 2. Алгоритм бинарного поиска по ответу с использованием поиска потока корректен.

Доказательство. Следует из монотонности функции проверки и корректности алгоритма Эдмондса-Карпа для нахождения максимального потока. □

3 Временная сложность

- Бинарный поиск: $O(\log \max v_i)$;
- Поиск потока Эдмондса-Карпа: $O(VE^2)$;

Общая сложность: $O(\log \max v_i \cdot VE^2)$.

4 Затраты по памяти

Хранение графа требует O(V+E) памяти. Остальные расходы пренебрежимо малы.