Food Demand Prediction

Importing dependencies

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
```

Importing the dataset

In [2]:

```
train = pd.read_csv('Analytics Vidya/train/train.csv')
test = pd.read_csv('Analytics Vidya/food_Demand_test.csv')
meal = pd.read_csv('Analytics Vidya/train/meal_info.csv')
centerinfo = pd.read_csv('Analytics Vidya/train/fulfilment_center_info.csv')
submission= pd.read_csv('Analytics Vidya/sample_submission.csv')
```

Analysing the Train data

The first 5 values of the data

In [3]:

```
train.head()
```

Out[3]:

	id	week	center_id	meal_id	checkout_price	base_price	emailer_for_promotion	home
0	1379560	1	55	1885	136.83	152.29	0	
1	1466964	1	55	1993	136.83	135.83	0	
2	1346989	1	55	2539	134.86	135.86	0	
3	1338232	1	55	2139	339.50	437.53	0	
4	1448490	1	55	2631	243.50	242.50	0	
4								>

The dimension of the data

In [4]:

```
train.shape
```

Out[4]:

(456548, 9)

The information of the columns in the data

In [5]:

```
train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 456548 entries, 0 to 456547
Data columns (total 9 columns):
```

Column	Non-Null Count	Dtype
id	456548 non-null	int64
week	456548 non-null	int64
center_id	456548 non-null	int64
meal_id	456548 non-null	int64
checkout_price	456548 non-null	float64
base_price	456548 non-null	float64
emailer_for_promotion	456548 non-null	int64
homepage_featured	456548 non-null	int64
num_orders	456548 non-null	int64
	id week center_id meal_id checkout_price base_price emailer_for_promotion homepage_featured	id

dtypes: float64(2), int64(7)

memory usage: 31.3 MB

Null value count

In [6]:

```
train.isnull().sum()
```

Out[6]:

id	0
week	0
center_id	0
meal_id	0
checkout_price	0
base_price	0
emailer_for_promotion	0
homepage_featured	0
num_orders	0
dtype: int64	

Unique value count

```
In [7]:
train.nunique()
Out[7]:
id
                          456548
week
                             145
center_id
                              77
meal_id
                              51
checkout_price
                            1992
base_price
                            1907
emailer_for_promotion
                               2
homepage_featured
                               2
num_orders
                            1250
dtype: int64
In [8]:
len(train[train['homepage_featured']==1])
Out[8]:
49855
In [9]:
len(train['emailer_for_promotion']==1])
Out[9]:
37050
In [10]:
train['checkout_price'].max()
Out[10]:
866.27
In [11]:
train['checkout_price'].min()
Out[11]:
2.97
In [12]:
train['base_price'].max()
Out[12]:
```

866.27

```
In [13]:
train['base_price'].min()

Out[13]:
55.35

In [14]:
train['num_orders'].max()

Out[14]:
24299

In [15]:
train['num_orders'].min()

Out[15]:
```

Analysing the Test data

The first 5 values of the data

```
In [16]:
```

```
test.head()
```

Out[16]:

	id	week	center_id	meal_id	checkout_price	base_price	emailer_for_promotion	home
0	1028232	146	55	1885	158.11	159.11	0	
1	1127204	146	55	1993	160.11	159.11	0	
2	1212707	146	55	2539	157.14	159.14	0	
3	1082698	146	55	2631	162.02	162.02	0	
4	1400926	146	55	1248	163.93	163.93	0	
4								•

The dimension of the data

```
In [17]:
```

```
test.shape
```

Out[17]:

(32573, 8)

The information of the columns in the data

In [18]:

```
test.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32573 entries, 0 to 32572
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	id	32573 non-null	int64
1	week	32573 non-null	int64
2	center_id	32573 non-null	int64
3	meal_id	32573 non-null	int64
4	checkout_price	32573 non-null	float64
5	base_price	32573 non-null	float64
6	emailer_for_promotion	32573 non-null	int64
7	homepage_featured	32573 non-null	int64

dtypes: float64(2), int64(6)

memory usage: 2.0 MB

Null value count

In [19]:

```
test.isnull().sum()
```

Out[19]:

id 0 0 week center_id 0 meal_id 0 checkout_price 0 base_price 0 emailer_for_promotion homepage_featured 0 dtype: int64

Unique value count

In [20]:

```
test.nunique()
```

Out[20]:

id	32573
week	10
center_id	77
meal_id	51
checkout_price	1397
base_price	11 79
emailer_for_promotion	2
homepage_featured	2
dtype: int64	

```
In [21]:
len(test['homepage_featured']==1])
Out[21]:
2650
In [22]:
len(test[test['emailer_for_promotion']==1])
Out[22]:
2164
In [23]:
test['checkout_price'].max()
Out[23]:
1113.62
In [24]:
test['checkout_price'].min()
Out[24]:
67.9
In [25]:
test['base_price'].max()
Out[25]:
1112.62
In [26]:
test['base_price'].min()
Out[26]:
```

Analysing the meal_info data

The first 5 values of the data

89.24

```
In [27]:
```

```
meal.head()
```

Out[27]:

	meal_id	category	cuisine
0	1885	Beverages	Thai
1	1993	Beverages	Thai
2	2539	Beverages	Thai
3	1248	Beverages	Indian
4	2631	Beverages	Indian

The dimension of the dataset

In [28]:

```
meal.shape
```

Out[28]:

(51, 3)

The information of the columns in the data

In [29]:

```
meal.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 3 columns):
              Non-Null Count Dtype
 #
    Column
    -----
              -----
                             ----
    meal_id
              51 non-null
                              int64
 0
 1
    category 51 non-null
                              object
    cuisine
              51 non-null
                              object
dtypes: int64(1), object(2)
memory usage: 1.3+ KB
```

Null value count

In [30]:

```
meal.isnull().sum()
```

Out[30]:

```
meal_id 0
category 0
cuisine 0
dtype: int64
```

Unique value count

```
In [31]:
```

```
meal.nunique()
Out[31]:
meal_id
         51
         14
category
cuisine
dtype: int64
In [32]:
meal['category'].unique()
Out[32]:
'Pizza', 'Fish', 'Seafood'], dtype=object)
In [33]:
meal['cuisine'].unique()
Out[33]:
array(['Thai', 'Indian', 'Italian', 'Continental'], dtype=object)
```

Analysing the fulfilment_center_info data

The first 5 values of the data

```
In [34]:
```

```
centerinfo.head()
```

Out[34]:

	center_id	city_code	region_code	center_type	op_area
0	11	679	56	TYPE_A	3.7
1	13	590	56	TYPE_B	6.7
2	124	590	56	TYPE_C	4.0
3	66	648	34	TYPE_A	4.1
4	94	632	34	TYPE_C	3.6

The dimension of the data

```
In [35]:
```

```
centerinfo.shape
```

Out[35]:

(77, 5)

The information of the columns in the data

In [36]:

```
centerinfo.info()
```

```
RangeIndex: 77 entries, 0 to 76
Data columns (total 5 columns):
    Column
                  Non-Null Count
 #
                                 Dtype
                  -----
                  77 non-null
 0
    center id
                                  int64
    city_code
                  77 non-null
                                  int64
 1
 2
     region_code 77 non-null
                                  int64
 3
     center_type
                 77 non-null
                                  object
 4
     op_area
                  77 non-null
                                  float64
dtypes: float64(1), int64(3), object(1)
memory usage: 3.1+ KB
```

<class 'pandas.core.frame.DataFrame'>

Null value count

In [37]:

```
centerinfo.isnull().sum()
```

Out[37]:

Unique value count

In [38]:

```
centerinfo.nunique()
```

Out[38]:

```
center_id 77
city_code 51
region_code 8
center_type 3
op_area 30
dtype: int64
```

```
In [39]:
```

```
centerinfo['region_code'].unique()
```

Out[39]:

```
array([56, 34, 77, 85, 23, 71, 35, 93], dtype=int64)
```

In [40]:

```
centerinfo['center_type'].unique()
```

Out[40]:

```
array(['TYPE_A', 'TYPE_B', 'TYPE_C'], dtype=object)
```

Analysing the submission data

First 5 values in the data

In [41]:

```
submission.head()
```

Out[41]:

	id	num_orders
0	1028232	0
1	1127204	0
2	1212707	0
3	1082698	0
4	1400926	0

The dimension of the data

In [42]:

```
submission.shape
```

Out[42]:

(32573, 2)

The information of the columns in the data

```
In [43]:
```

```
submission.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32573 entries, 0 to 32572
Data columns (total 2 columns):
     Column
                 Non-Null Count Dtype
                 -----
     id
 0
                 32573 non-null int64
 1
     num_orders 32573 non-null int64
dtypes: int64(2)
memory usage: 509.1 KB
Null value count
In [44]:
submission.isnull().sum()
Out[44]:
id
num_orders
              0
dtype: int64
Unique value count
In [45]:
submission.nunique()
Out[45]:
```

id 32573 num_orders 1 dtype: int64

Combining to a single dataframe

Combining the training data

```
In [46]:
```

```
df = pd.merge(train, centerinfo, on='center_id')
df = pd.merge(df, meal, on='meal_id')
df.head()
```

Out[46]:

	id	week	center_id	meal_id	checkout_price	base_price	emailer_for_promotion	home
0	1379560	1	55	1885	136.83	152.29	0	
1	1018704	2	55	1885	135.83	152.29	0	
2	1196273	3	55	1885	132.92	133.92	0	
3	1116527	4	55	1885	135.86	134.86	0	
4	1343872	5	55	1885	146.50	147.50	0	

→

In [47]:

df.shape

Out[47]:

(456548, 15)

In [48]:

df.nunique()

Out[48]:

id	456548
week	145
center_id	77
meal_id	51
checkout_price	1992
base_price	1907
emailer_for_promotion	2
homepage_featured	2
num_orders	1250
city_code	51
region_code	8
center_type	3
op_area	30
category	14
cuisine	4
dtype: int64	

Combining the testing data

In [49]:

```
data= pd.merge(test, centerinfo, on='center_id')
data = pd.merge(data, meal, on='meal_id')
data.head()
```

Out[49]:

	id	week	center_id	meal_id	checkout_price	base_price	emailer_for_promotion	home
0	1028232	146	55	1885	158.11	159.11	0	
1	1262649	147	55	1885	159.11	159.11	0	
2	1453211	149	55	1885	157.14	158.14	0	
3	1262599	150	55	1885	159.14	157.14	0	
4	1495848	151	55	1885	160.11	159.11	0	
4								•

In [50]:

```
data.shape
```

Out[50]:

(32573, 14)

Visualization

In [51]:

```
sns.relplot(data=df,x='week',y='num_orders')
```

Out[51]:

<seaborn.axisgrid.FacetGrid at 0x1f112cfa400>

In [52]:

sns.relplot(data=df,x='week',y='num_orders',hue='cuisine',col='emailer_for_promotion',row='

Out[52]:

<seaborn.axisgrid.FacetGrid at 0x1f113cd7e80>

In [53]:

Out[53]:

<seaborn.axisgrid.FacetGrid at 0x1f113ff2640>

In [54]:

```
plt.subplots(figsize=(9, 6))
ax = sns.heatmap(df.corr(), annot=True,fmt='.2f',annot_kws={'size':'12'})
```


Seperating the data

Seperating the data for training

In [55]:

```
X=df.drop(['id','week','center_id','meal_id','checkout_price','base_price','center_type','n
X.head()
```

Out[55]:

	emailer_for_promotion	homepage_featured	city_code	region_code	op_area	category	cuis
0	0	0	647	56	2.0	Beverages	
1	0	0	647	56	2.0	Beverages	-
2	0	0	647	56	2.0	Beverages	-
3	0	0	647	56	2.0	Beverages	-
4	0	0	647	56	2.0	Beverages	=
4							•

```
In [56]:
```

```
y=df['num_orders']
y.head()
```

Out[56]:

- 0 177
- 1 323
- 2 96
- 3 163
- 4 215

Name: num_orders, dtype: int64

Seperating the data for testing

In [57]:

```
X_test=data.drop(['id','week','center_id','meal_id','checkout_price','base_price','center_t
X_test.head()
```

Out[57]:

	emailer_for_promotion	homepage_featured	city_code	region_code	op_area	category	cuis
0	0	0	647	56	2.0	Beverages	
1	0	0	647	56	2.0	Beverages	-
2	0	0	647	56	2.0	Beverages	-
3	0	0	647	56	2.0	Beverages	-
4	0	0	647	56	2.0	Beverages	-
4							•

Encoding the catergorical values

Encoding the training values

```
In [58]:
```

```
le = LabelEncoder()
```

```
In [59]:
```

```
X.category = le.fit_transform(X.category)
X.cuisine=le.fit_transform(X.cuisine)
```

```
In [60]:
```

X.head()

Out[60]:

	emailer_for_promotion	homepage_featured	city_code	region_code	op_area	category	cuisi
0	0	0	647	56	2.0	0	
1	0	0	647	56	2.0	0	
2	0	0	647	56	2.0	0	
3	0	0	647	56	2.0	0	
4	0	0	647	56	2.0	0	

Encoding the testing values

```
In [61]:
```

```
X_test.category = le.fit_transform(X_test.category)
X_test.cuisine=le.fit_transform(X_test.cuisine)
```

```
In [62]:
```

```
X_test.head()
```

Out[62]:

	emailer_for_promotion	homepage_featured	city_code	region_code	op_area	category	cuisi
0	0	0	647	56	2.0	0	
1	0	0	647	56	2.0	0	
2	0	0	647	56	2.0	0	
3	0	0	647	56	2.0	0	
4	0	0	647	56	2.0	0	
4							•

Training the model

Linear regression

```
In [63]:
```

```
lin_model=LinearRegression()
```

```
In [64]:
lin_model.fit(X,y)
Out[64]:
LinearRegression()
```

Accuracy of the training data

```
In [65]:
```

```
training_data_prediction=lin_model.predict(X)
```

```
In [66]:
```

```
rmse = mean_squared_error(y, training_data_prediction, squared=False)
rmse
```

Out[66]:

359.7591796243089

Testing the model

```
In [67]:
```

```
test_data_prediction=lin_model.predict(X_test)
```

```
In [68]:
```

```
test_data_prediction.shape
```

Out[68]:

(32573,)

In [69]:

submission.num_orders=test_data_prediction

```
In [70]:
```

```
submission.head()
```

Out[70]:

	id	num_orders
0	1028232	178.481579
1	1127204	178.481579
2	1212707	178.481579
3	1082698	178.481579
4	1400926	178.481579

In [71]:

```
submission['num_orders'].nunique()
```

Out[71]:

2113

In []: