# **Dataset description**

The eICU (eicu), MIMIC-III (mimic), MIMIC-IV (miiv), and HiRID (hirid) databases are open-access collections of de-identified patient data from multiple hospitals in the US (eICU), a single hospital in Boston, US (MIMIC-III, MIMIC-IV), and a single hospital in Bern, Switzerland (HiRID). They include 4 static and 48 dynamic variables. The static variables, sex, age, weight, and height, are measured once at entry to the ICU. The dynamic variables are measured in 1h intervals and include vital signs (e.g., heart rate, respiratory rate, and blood pressure) laboratory results (e.g., blood gases, electrolytes, and hematology), medications administered (e.g., antibiotics), and procedures performed in the ICU (e.g., mechanical ventilation).

We predict the patients' average heart rate 48-72h after entry to the ICU from the static variables and the average value of the dynamic variables 0-24h after entry to the ICU. As preprocessing, we log-transform certain variables, mean-impute missing values, and add a missingness indicator. The categorical feature sex is one-hot encoded. We remove patient visits if there was no measurement of heart rate in the time windows 0-24h or 48-72h. Then, from eicu, we remove observations corresponding to hospitals with fewer than 10 observations.

Afterward, the eICU dataset contains 74587 patient visits from 188 different hospitals, the MIMIC-III dataset contains 30335 patient visits, the MIMIC-IV dataset contains 35673 patient visits, and the HiRID dataset contains 8577 patient visits.

## Task description

We fine-tune a model from the source distribution (eicu) to a target distribution (mimic, miiv, hirid). For this, we are given an 80% train split of the source dataset (eicu) and a small fine-tuning dataset with n\_test (25, 50, 100, 200, 400, 800, and 1600) observations from the target distribution (mimic, miiv, hirid).

### **Models**

Each model consists of a *prior*, that is fitted on the source distribution training dataset (eicu), and a *posterior*, that improves on the prior using the n\_test samples from the fine-tuning dataset. Both the prior and the posterior can have hyperparameters. These are optimized by 5-fold cross-validation on the n\_test samples from the fine-tuning dataset.

#### elastic net on target

This model has no (or a trivial) prior. The "posterior" model is an elastic net, which is fit to the fine-tuning dataset. In particular, this model does not the source distribution training dataset.

```
prior_params: {},
model_params: {
    "alpha": [0.001, 0.00316, 0.01, 0.0316, 0.1, 0.316, 1, 3.16, 10, 31.6, 100]
    "l1_ratio": [0, 0.2, 0.5, 0.8, 1]
}
```

## anchor + emp bayes (id)

The prior of this model is (elastic net regularized) anchor regression. The posterior is empirical Bayes, minimizing

$$\hat{\beta}(\alpha_{\text{posterior}}, \gamma, \alpha_{\text{prior}}, \lambda) = \arg\min_{\beta} \frac{1}{n} \|y_{\text{target}} - X_{\text{target}}\beta\|^2 + \alpha \|\beta - \hat{\beta}_{\text{prior}}(\gamma, \alpha_{\text{prior}}, \lambda)\|^2,$$

where

$$\begin{split} \hat{\beta}_{\text{prior}}(\gamma, \alpha_{\text{prior}}, \lambda) &= \arg\min_{\beta} \frac{1}{n} \|y_{\text{source}} - X_{\text{source}}\beta\|^2 + \\ & (\gamma - 1) \frac{1}{n} \|P_{A_{\text{source}}}(y_{\text{source}} - X_{\text{source}}\beta)\|^2 + \alpha_{\text{prior}}\lambda \|\beta\|_1 + \alpha_{\text{prior}}(1 - \lambda) \|\beta\|_2^2. \end{split}$$

Below, 11\_ratio =  $\lambda$ .

## anchor regression

The prior of this model is (regularized) anchor regression (as for anchor + emp. Bayes above). However, there is no (or, a trivial) posterior. The fine-tuning dataset is just used for model selection.

```
prior_params: {
   "alpha": [0.00001, 0.0001, 0.001, 0.01, 0.1],
   "l1_ratio": [0, 0.2, 0.5, 0.8, 1],
   "gamma": [1, 3.16, 10, 31.6, 100, 316, 1000, 3162, 10000]
}
model_params: {}
```

#### elastic net on source

The prior of this is elastic net (same as anchor regression, but with  $\gamma = 1$  fixed). There is no (or, a trivial) posterior. The fine-tuning dataset is just used for model selection.

```
prior_params: {
   "alpha": [0.00001, 0.0001, 0.001, 0.01, 0.1],
   "l1_ratio": [0, 0.2, 0.5, 0.8, 1],
}
model_params: {}
```

## Results

The following plot displays target distribution MSE (as measured on a large test set) by method and n\_test=25, 50, 100, 200, 400, 800, 1600, averaged over 10 samples (seeds) of the n\_test fine-tuning observations. The hyperparameters were chosen via 5-fold cross-validation on the fine-tuning dataset.



The following plots additionally show "oracle" performance, where the hyperparameters were chosen to minimize the test error, with a dashed line. For methods that use the fine-tuning dataset for hyperparameter optimization only (anchor regression, elastic net on source), this is independent of n\_test.



The following plots display the same as above, but using the 90%-quantile of squared errors as a metric, both for evaluation and cross-validation. First without "oracle":



Then with "oracle":



# $\textbf{Choice of } \gamma$

We are interested in which values for  $\gamma$  were chosen by the methods anchor regression and anchor + emp. Bayes.

For both methods, we display the median value of  $\gamma$  and mean test MSE over 10 samples of the fine-tuning dataset, of the method with hyperparameters (except for  $\gamma$ ) chosen via 5-fold cross-validation, by the target and n\_test.

anchor regression

Hyperparameters chosen via 5-fold cross-validation:

| target | n_test | median_gamma | mean_test_mse |
|--------|--------|--------------|---------------|
| hirid  | 25     | 10           | 160.959       |
| hirid  | 50     | 10           | 157.888       |
| hirid  | 100    | 3.16228      | 158.125       |
| hirid  | 200    | 3.16228      | 156.567       |
| hirid  | 400    | 3.16228      | 154.945       |
| hirid  | 800    | 6.58114      | 155.194       |
| hirid  | 1600   | 10           | 154.404       |
| miiv   | 25     | 51.5811      | 147.099       |
| miiv   | 50     | 3.16228      | 147.822       |
| miiv   | 100    | 2.08114      | 141.1         |
| miiv   | 200    | 1            | 140.747       |
| miiv   | 400    | 1            | 140.222       |
| miiv   | 800    | 1            | 140.051       |
| miiv   | 1600   | 1            | 139.844       |
| mimic  | 25     | 100          | 206.687       |
| mimic  | 50     | 31.6228      | 180.158       |
| mimic  | 100    | 31.6228      | 170.394       |
| mimic  | 200    | 31.6228      | 168.988       |
| mimic  | 400    | 31.6228      | 168.495       |
| mimic  | 800    | 31.6228      | 168.292       |
| mimic  | 1600   | 31.6228      | 168.294       |
|        |        |              |               |

Hyperparameters chosen by looking at the test set (oracle):

| target         | median_gamma | mean_test_mse |
|----------------|--------------|---------------|
| hirid          | 1            | 154.068       |
| miiv           | 1            | 139.711       |
| $_{\rm mimic}$ | 31.6228      | 168.091       |

# anchor + emp. Bayes

Hyperparameters chosen via 5-fold cross-validation:

| target | n_test | median_gamma | mean_test_mse |
|--------|--------|--------------|---------------|
| hirid  | 25     | 10           | 174.283       |

| target | $n\_{test}$ | median_gamma | mean_test_mse |
|--------|-------------|--------------|---------------|
| hirid  | 50          | 65.8114      | 167.662       |
| hirid  | 100         | 6.58114      | 159.316       |
| hirid  | 200         | 6.58114      | 156.77        |
| hirid  | 400         | 20.8114      | 155.658       |
| hirid  | 800         | 17.3925      | 154.371       |
| hirid  | 1600        | 2.08114      | 153.258       |
| miiv   | 25          | 51.5811      | 157.941       |
| miiv   | 50          | 10           | 152.988       |
| miiv   | 100         | 3.16228      | 143.461       |
| miiv   | 200         | 2.08114      | 144.056       |
| miiv   | 400         | 1            | 140.213       |
| miiv   | 800         | 1            | 140.247       |
| miiv   | 1600        | 1            | 139.898       |
| mimic  | 25          | 658.114      | 199.786       |
| mimic  | 50          | 31.6228      | 170.821       |
| mimic  | 100         | 31.6228      | 146.903       |
| mimic  | 200         | 31.6228      | 135.856       |
| mimic  | 400         | 20.8114      | 132.34        |
| mimic  | 800         | 20.8114      | 130.214       |
| mimic  | 1600        | 31.6228      | 128.905       |

Hyperparameters chosen by looking at the test set (oracle):

| target | n_test | median_gamma | mean_test_mse |
|--------|--------|--------------|---------------|
| hirid  | 25     | 1            | 153.924       |
| hirid  | 50     | 1            | 153.726       |
| hirid  | 100    | 1            | 153.745       |
| hirid  | 200    | 3.16228      | 153.437       |
| hirid  | 400    | 2.08114      | 153.429       |
| hirid  | 800    | 3.16228      | 153.012       |
| hirid  | 1600   | 1            | 152.446       |
| miiv   | 25     | 1            | 139.708       |
| miiv   | 50     | 1            | 139.706       |
| miiv   | 100    | 1            | 139.705       |
| miiv   | 200    | 1            | 139.686       |
| miiv   | 400    | 1            | 139.7         |
| miiv   | 800    | 1            | 139.676       |
| miiv   | 1600   | 1            | 139.661       |
| mimic  | 25     | 10           | 151.764       |
| mimic  | 50     | 10           | 146.437       |
| mimic  | 100    | 31.6228      | 138.249       |

| target         | n_test | median_gamma | mean_test_mse |
|----------------|--------|--------------|---------------|
| mimic          | 200    | 20.8114      | 134.141       |
| mimic          | 400    | 31.6228      | 131.504       |
| $_{\rm mimic}$ | 800    | 10           | 129.692       |
| mimic          | 1600   | 10           | 128.754       |
|                |        |              |               |

## Performance by n\_test and $\gamma$

In the following, we plot the performance of the "best" hyperparameter configuration, by  $n_{test}$  and  $\gamma$ . That is, for both methods, for each target, each value of  $n_{test}$ , each value of  $\gamma$ , and each sample (seed) of the fine-tuning dataset, we choose the best hyperparameter combination (excluding  $\gamma$ ) by 5-fold cross-validation on the fine-tuning dataset and average the test MSE over the samples (seeds).



The following chooses the hyperparameters by looking at the test set (oracle):



The following is the same as above, but using the 90% quantiles of squared errors as a metric. First using hyperparameters chosen via cross-validation on the fine-tuning dataset:

quantile\_09



Next by looking at the test set (oracle):

quantile\_09

