

# ENSAYO N° 12 ENSAYO DE UN VENTILADOR RADIAL.

Profesor: Cristóbal Galleguillos Ketterer

> Alumno: Marcelo León Vargas



## Contenido

| Objetivo                     | 3 |
|------------------------------|---|
| Trabajo de laboratorio       | 4 |
| Desarrollo                   |   |
| Tabla de valores medidos.    |   |
| Fórmulas                     |   |
| Tabla de valores calculados. |   |
| Gráficos y preguntas         |   |



## Objetivo.

Determinar el comportamiento de un ventilador radial.



#### Trabajo de laboratorio.

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

| * P <sub>e4</sub> | presid           | on diferencial               | $[mm_{H2}]$ | o]   |
|-------------------|------------------|------------------------------|-------------|------|
| * nx              | veloc            | idad del ventilador          | [rpm]       |      |
|                   | * t <sub>a</sub> | temperatura ambiente         |             | [°C] |
|                   | * t <sub>d</sub> | temperatura de descarga      |             | [°C] |
|                   | * $W_{1}, W_{2}$ | Potencia eléctrica, método 2 | wat.        | [kW] |

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, [mm<sub>Hg</sub>], se mide al inicio del ensayo.



## Desarrollo

## Tabla de valores medidos.

| VALORES MEDIDOS |       |                 |      |      |       |       |                     |
|-----------------|-------|-----------------|------|------|-------|-------|---------------------|
|                 |       |                 |      |      |       |       |                     |
|                 | nx    | P <sub>e4</sub> | С    | td   | $W_1$ | $W_2$ | P <sub>atm</sub>    |
|                 | [rpm] | [mmca]          | [°C] | [°C] | [kW]  | [kW]  | [mm <sub>Hg</sub> ] |
|                 |       |                 |      |      |       |       |                     |
| 1               | 1831  | 5               | 21   | 23   | 0,44  | 0,82  | 758,8               |
| 2               | 1845  | 30              | 22   | 23   | 0,34  | 0,7   | 758,8               |
| 3               | 1867  | 45              | 22   | 23   | 0,19  | 0,56  | 758,8               |
| 4               | 1867  | 48,5            | 21   | 23   | 0,14  | 0,52  | 758,8               |
| 5               | 1871  | 57              | 21,5 | 23   | 0,11  | 0,49  | 758,8               |



#### Fórmulas

Caudal.

$$q_{vm} = \alpha * s_5 * (\frac{2*P_{e4}}{\rho_{05}})^{\frac{1}{2}} [\frac{m^3}{s}]$$

| DATOS |                                |        |  |  |
|-------|--------------------------------|--------|--|--|
| $D_5$ | D <sub>5</sub> /D <sub>4</sub> | α      |  |  |
| [mm]  | [-]                            | [-]    |  |  |
| 00    | 00                             | 0.600  |  |  |
| 90    | 0.15                           | 0.6025 |  |  |
| 120   | 0.2                            | 0.604  |  |  |
| 180   | 0.3                            | 0.611  |  |  |
| 300   | 0.5                            | 0.641  |  |  |

Pe4 en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[ \frac{m}{S} \right]$$

$$s_1 = 0.070686 \text{ [m2]}$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 [KW]$$

Potencia hidráulica.

$$N_h = q_{vm} * \Delta P[W]$$



Rendimiento global.

$$N_{gl} = \frac{N_h*100}{N_{elec}}$$
 [%]  
Corregir los valores respecto a la velocidad

## Tabla de valores calculados.

| pmedio     | q <sub>vm</sub> | V1         | ΔΡ         | N <sub>elec</sub> | Nh         | q <sub>vm</sub> | $\eta_{gl}$ |
|------------|-----------------|------------|------------|-------------------|------------|-----------------|-------------|
| [kg/m3]    | [m3/s]          | [m/s]      | [Pa]       | [kW]              | [kW]       | [m3/h]          | [%]         |
|            |                 |            |            |                   |            |                 |             |
| 1,19517336 | 0,4107626       | 5,81108844 | 54,3072754 | 1,26              | 0,0223074  | 1478,74535      | 1,770428373 |
| 1,19464056 | 0,34526472      | 4,88448513 | 297,748009 | 1,04              | 0,10280188 | 1242,95298      | 9,884796304 |
| 1,19564056 | 0,18578517      | 2,62831632 | 442,08613  | 0,75              | 0,08213305 | 668,826602      | 10,95107273 |
| 1,19767336 | 0,10822268      | 1,53103417 | 475,669176 | 0,66              | 0,05147819 | 389,601652      | 7,799726311 |
| 1,19715523 | 0               | 0          | 558,6      | 0,6               | 0          | 0               | 0           |



### Gráficos y preguntas

Trace los siguientes gráficos:

Curva  $\Delta P$  - $q_{vm}$ 



Grafico 1

• ¿Qué tipo de ventilador es? Descríbalo con detalle.

El ventilador ensayado corresponde a uno de tipo radial, el cual su función es aumentar la presión de cierto fluido para ser transportado, pero a caudales reducidos, esta maquina se puede considerar como una turbomáquina de desplazamiento negativo. En general se puede decir que es un sistema de cajón reducido.

• ¿Las curvas tiene la forma esperada para ese tipo de ventilador?



Según lo observado en el grafico  $\Delta P$  - $q_{vm}$  y comparándolo con el grafico 2 se puede concluir que la curva del ventilador ensayado corresponde a los que se pueden esperar de este tipo de ventiladores.



#### • Curva de potencia eléctrica vs caudal



• ¿Cuál es la potencia máxima consumida?

La potencia máxima consumida corresponde a 1,26 kW, lo cual corresponde a aproximadamente 1500m3/h de caudal.

• ¿Cuál es su posible potencia en el eje?

La potencia que el sistema puede tener en el eje es aproximadamente un 90% de la potencia máxima anteriormente mostrada, ya que se consideraran las perdidas de transmisión que pueda poseer el sistema y las perdidas del motor eléctrico que alimenta al anteriormente mencionado.



## • Curva de rendimiento vs caudal



• ¿Cuál es el punto de óptimo rendimiento?

El rendimiento optimo se puede observar según el grafico anterior es entre los 600 a 900 m3/h que es el intervalo donde se alcanza el mayor rendimiento del ventilador.