Types and λ -calculus

Problem Sheet 1

- * 1. Which of the following are terms? For those that are terms, write out a proof tree justification.
 - (a) $(\lambda x.((xx)x))$
 - (b) $(\lambda(\lambda x.x))$
 - (c) ((xy)z)

Solution -

(a)
$$(\operatorname{\mathsf{Var}}) \frac{\overline{x \in \Lambda}}{x \in \Lambda} \quad (\operatorname{\mathsf{Var}}) \frac{\overline{x \in \Lambda}}{x \in \Lambda} \quad (\operatorname{\mathsf{Var}}) \frac{\overline{x \in \Lambda}}{x \in \Lambda}$$

$$(\operatorname{\mathsf{App}}) \frac{(xx) \in \Lambda}{(\operatorname{\mathsf{Abs}}) \frac{((xx)x) \in \Lambda}{(\lambda x. ((xx)x)) \in \Lambda} }$$

- (b) Not a term.
- (c)

- * 2. Write these terms using the minimum number of parentheses and λ , according to our conventions.
 - (a) $(\lambda y.((yy)(zz)))$
 - (b) $(\lambda y.(((yy)y)y))$
 - (c) $((xy)(\lambda y.(\lambda z.(z(xy)))))$

Solution -

- (a) $\lambda y. yy(zz)$
- (b) $\lambda y. yyyy$
- (c) One answer is: $xy\lambda yz.z(xy)$. However, in practice it is common to write this term as $xy(\lambda yz.z(xy))$ because most find this easier to read. I will always write it the second way.
- * 3. Write the term $(\lambda xyz.xy(xz))(\lambda xy.x)$ with all the parentheses and λ that we will usually omit tediously put back in.

Solution -

$$((\lambda x.(\lambda y.(\lambda z.((xy)(xz)))))(\lambda x.(\lambda y.x)))$$

** 4. Note that, by the conventions of logic, $A \Rightarrow B \Rightarrow C$ is a shorthand for $A \Rightarrow (B \Rightarrow C)$ and conjunction binds tighter than implication, so $A \land B \Rightarrow C$ means $(A \land B) \Rightarrow C$.

Give proofs of the following.

- (a) $\neg A \Rightarrow A \Rightarrow B$
- (b) $(A \land B \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- (c) $\neg (A \land \neg A)$
- (d) $(A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow A \Rightarrow C$
- (e) $\neg A \land \neg B \Rightarrow \neg (A \lor B)$

Solution -

- (a) Assume $\neg A$ then assume A. This yields a contradiction and so, in particular, B follows.
- (b) Assume $A \land B \Rightarrow C$ (*). Assume A and then assume B. From A and B we have $A \land B$ and so from (*) we obtain C.
- (c) We assume $A \land \neg A$ and then try to obtain a contradiction. We already have A and $\neg A$ which gives the desired contradiction.
- (d) Assume $A \Rightarrow B$ (1). Assume $B \Rightarrow C$ (2). Assume A. From (1) and A obtain B. From B and (2) obtain C.

- (e) Assume $\neg A$ (1) and $\neg B$ (2). For contradiction suppose that $A \lor B$. We proceed by cases on $A \lor B$:
 - If *A* is true, then this contradicts (1).
 - If *B* is true, then this contradicts (2).

In all cases we obtained a contradiction.