Вопросы и задачи

Во всех заданиях подразумевается, что ответ должен быть обоснован. Так, например, в Q7.1 — Q7.3, Q8.5 и Q8.6 требуется не только указать множество S всех первообразных функции f(z), но и доказать, что

- (а) для любой принадлежащей S (если S непусто) функции F(z) справедливо F'(z)=f(z);
- (b) для любой функции, не принадлежащей S, это равенство уже не верно.

В таких задачах, как Q5.1, Q7.4 или Q8.4 обоснованием ответа должно быть либо подробное доказательство утверждения (если утверждение верно), либо подробно рассмотренный контрпример (если утверждение неверно).

Q3. Функции комплексной переменной

Q3.1. Какие равенства в следующей цепочке

$$e^{2\pi} = e^{2\pi i \cdot (-i)} = (e^{2\pi i})^{-i} = (1)^{-i} = (e^0)^{-i} = e^{0 \cdot (-i)} = e^0 = 1$$

являются неверными и почему именно?

 $oxed{ = 1; \emptyset }$

Q5. Дифференцируемость и аналитичность функций комплексной переменной

Q5.1. Как известно из курса (см. формулировку теоремы 1.3 в книге А. Г. Свешникова и А. Н. Тихонова или

теоремы 5.1 лекции), если в точке $z_0 = x_0 + i y_0$ существует производная функции f(z) = u(x,y) + i v(x,y), то в точке (x_0,y_0) существуют частные производные $u_x(x_0,y_0)$, $u_y(x_0,y_0)$, $v_y(x_0,y_0)$. Верно ли, что при этом в точке (x_0,y_0) также существуют и дифференциалы функций и и v?

[= 0.5]

Q7. Теорема Коши

Q7.1. Пусть $G = \{z: 1 < |z| < 2\}$ и $f(z) = \frac{1}{z^2}$. Указать множество всех функций F(z), для которых F'(z) = f(z) всюду в G.

Q7.2. Пусть $G=\{z:z\neq 0, -\pi<\arg z<\pi\}$ и f(z)=1 = $\frac{1}{z}$. Указать множество всех функций F(z), для которых F'(z)=f(z) всюду в G.

Q7.3. Пусть $G = \{z: 1 < |z| < 2\}$ и $f(z) = \frac{1}{z}$. Указать множество всех функций F(z), для которых F'(z) = f(z) всюду в G.

 $[{\color{red} {\color{blue} \blacksquare}} = 0.5]$

Q7.4. Как известно, если G — область в \mathbb{C} , $f(z) \in C(G)$ и

$$(7.1) \qquad \int f(z) \, dz = 0 \ \mbox{для} \ \forall \ \mbox{замкнутого контура} \ C \subset G,$$

 $_{\rm TO}$

(7.2)
$$\exists F(z): f(z) = F'(z) \ \forall \ z \in G.$$

Верно ли следующее утверждение:

«Пусть G- некоторая (не обязательно односвязная)

область в $\mathbb{C}, f(z) \in C(G)$ и справедливо (7.2). Тогда справедливо и $(7.1) \gg ?$

= 1;

Q7.5. Как известно, если G — **односвязная** область в \mathbb{C} , и f(z) — аналитическая в G функция, то справедливо (7.2), причем для любой кусочно-гладкой кривой $L_{z_1z_2}\subset G$, соединяющей точки z_1 и z_2 , имеет место равенство

(7.3)
$$\int_{L_{z_1 z_2}} f(z) dz = F(z_2) - F(z_1).$$

Верно ли следующее утверждение:

 $\ll \text{Пусть } G$ — некоторая (не обязательно односвязная) область в $\mathbb{C}, f(z) \in C(G)$ и справедливо (7.2). Тогда справедливо и $(7.3) \gg ?$

ledown = 1; ledown

и принцип максимума модуля аналитической функции Q8. Интеграл Коши

Q8.1. Верно ли следующее утверждение:

«Пусть \mathcal{M} — (произвольное) множество в \mathbb{C} . Тогда его

граница $\partial \mathcal{M}$ — замкнутое множество»?

leepsilon = 0.5; leepsilon leepsilon

Q8.2. Доказать, что в $\mathbb C$ любая кусочно-гладкая кривая является замкнутым множеством.

 $oxed{0.5} = 0.5; oxed{ olimits}$

Q8.3. Hyctb $\mathcal{M}_1, \, \mathcal{M}_2 \in \mathbb{C}$, причем

 \mathcal{M}_1 — замкнутое,

 \mathcal{M}_2 — замкнутое и ограниченное,

$$\mathcal{M}_1 \cap \mathcal{M}_2 = \varnothing.$$

Доказать, что тогда $\operatorname{dist}(\mathcal{M}_1, \mathcal{M}_2) > 0$.

[leepsilon=0.5;leepsilon]

Q8.4. Верно ли следующее утверждение:

$$L := \big\{z: \, z = \xi(t) + i \, \eta(t), \, t \in [0, \infty);$$

$$\xi(t), \eta(t) \in C^{\infty}([0, \infty)) \big\},$$

 $\mathcal{M}\subset\mathbb{C}$ — замкнутое и ограниченное множество, и $L\cap\mathcal{M}=$ $= \varnothing$. Тогда dist $(L, \mathcal{M}) > 0 \gg$?

 $[\overline{} = 0.5; \overline{\otimes}]$

В связи с $\mathbf{Q8.1} - \mathbf{Q8.4}$ см. лемму 8.3 и ее следствие, сформулированные на лекции. **Q8.5**. Пусть G — (произвольная) область в $\mathbb C$ и f(z) = $=|z|^2$. Указать множество всех функций F(z), для которых F'(z) = f(z) всюду в G. **Q8.6**. Пусть G — (произвольная) область в $\mathbb C$. Указать все функции F(z), для которых F'(z) = Re z всюду в G. **Q8.7.** Пусть f(z) — целая функция, причем известно, что

$$\begin{cases} \sup_{z \in \mathbb{C}} |f(z)| \leqslant 2, \\ f(i) = i. \end{cases}$$

Найти f(1).

Q8.8. Указать множество всех целых функций f(z), для которых

$$\begin{cases} f(0) = 0, \\ \lim_{z \to \infty} f(z) = 1. \end{cases}$$

Q8.9. Примени́м ли принцип **минимума** модуля к функции $\sin z$ в круге |z| < 1?

Q8.10. Верно ли следующее утверждение:

«Если f(z) — функция, аналитическая в области D, при-

$$f(z) \in C(\overline{D}),$$

$$f(z) \neq 0 \ \forall z \in D,$$

$$|f(z)| \equiv \text{const Ha } \partial D,$$

To $f(z) \equiv \text{const B } D \gg ?$ [$\overline{} = \mathbf{0.5}$]

Q8.11. Является ли функция

$$f(z) = \int\limits_{C^+} \frac{|\zeta|}{\zeta - z} \, d\zeta \quad (C \, - \, \text{окружность} \, |z| = 1),$$

аналитической в круге |z|<1 ?

Q9. Комплексные числовые и функциональные ряды

лекции), если $a_n:=\sup_{z\in\mathcal{M}}|u_n(z)|<\infty$ $\forall n\geqslant 1,$ и числовой во (подробнее см., например, формулировку теоремы 9.2 **Q9.1**. Пусть \mathcal{M} — некоторое множество в \mathbb{C} . Как извест-

ряд $\sum_{n=1} a_n$ сходится, то функциональные ряды $\sum_{n=1} |u_n(z)|$ и

 $\sum_{n=1} u_n(z)$ сходятся на \mathcal{M} равномерно.

(а) «Если ряд $\sum_{n=1}^{\infty} u_n(z)$ сходится на \mathcal{M} равномерно, то Верны ли следующие утверждения:

$$\sup_{z \in \mathcal{M}} |u_n(z)| < \infty \quad \forall n \geqslant 1 \gg;$$

9

(b) «Если ряд $\sum_{n=1}^{\infty} u_n(z)$ сходится на \mathcal{M} равномерно, то cyllectbyet takee n_0 , 4To $\sup_{z\in\mathcal{M}}|u_n(z)|<\infty$ $\forall\,n\geqslant$ $\geqslant n_0 \gg$;

 $|z|_{n_0} \approx$, (c) «Если ряд $\sum_{j=1}^{\infty} u_n(z)$ сходится на \mathcal{M} равномерно, то существует такое n_0 , что $\sup_{z\in\mathcal{M}}|u_n(z)|<\infty$ $\forall n\geqslant$ $\geqslant n_0$, и числовой ряд $\sum_{n=n_0}^{\infty} a_n$ сходится»?

Q9.2. Верно ли следующее утверждение:

«Пусть ряд $\sum_{n=1}^{\infty} u_n(z)$ сходится на множестве $\mathcal M$ равномер-

но, sup $|g(z)|<\infty$, и $v_n(z):=g(z)u_n(z)$. Тогда ряд $\sum_{n=1}^\infty v_n(z)$ также равномерно сходится на $\mathcal{M} \gg$?

Q10. Степенные ряды

Q10.1. Пусть

(10.1)
$$S(z) := \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

— степенной ряд с радиусом сходимости $R \in (0,\infty)$

$$S^{(m)}(z) := \sum_{n=m}^{\infty} \frac{n!}{(n-m)!} c_n (z-z_0)^{n-m}$$

$$S^{(-m)}(z) := \sum_{n=0}^{\infty} \frac{n!}{(n+m)!} c_n(z-z_0)^{n+m}$$

ряды, полученные почленным дифференцированием и димости. Известно, что $R^{(m)}\geqslant R$ и $R^{(-m)}\geqslant R$ для любого интегрированием S(z), а $R^{(m)}$ и $R^{(-m)}$ — их радиусы схо-

- (а) Существует ли такой ряд (10.1), что $R^{(m)} > R$ для некоторого $m \in \mathbb{N}$?
 - (b) Существует ли такой ряд (10.1), что $R^{(-m)} > R$ для некоторого $m \in \mathbb{N}$?

нов (10.1) при дифференцировании (например, $S^{(m)}(z)\equiv 0$ в $_m$ частном случае, когда $S(z) = \sum c_n (z-z_0)^n$ — полином), то возможность (а) может показаться не столь уж неправдоподобной. Аналогично, в качестве довода в пользу возможности (b) ференцироуемостью, и во-вторых, из вещественного анализа из-Замечание 1. Если принять во внимание «исчезновение» члеможно было бы рассматривать то, что, во-первых, существование разложения функции в степенной ряд обусловлено ее дифвестна общая закономерность повышения гладкости при переходе от функции к ее первообразной.

стоит в использовании рассуждения, схема которого намечена, ствие 4 Теоремы 2.5). Если вы используете это или подобное Замечание 2. Один из способов решения данной задачи сонапример, в книге А. Г. Свешникова и А. Н. Тихонова (см. Следрассуждение, то, пожалуйста, изложите его подробно, не ограничиваясь лишь схемой.

Q10.2. Верно ли следующее утверждение:

- (а) радиус сходимости R ряда (10.1) конечен;
- (b) на окружности |z| = R существует такая точка z_1 , что ряд $S(z_1)$ сходится.

Гогда во всем **замкнутом** круге $\omega_R(z_0) = \{z: |z| \leqslant R \}$ ояд (10.1) также сходится»?

 ∞

210.3. Верно ли следующее утверждение:

- (а) радиус сходимости R ряда (10.1) конечен;
- (b) на окружности |z| = R существует такая точка z_1 , что ряд $S(z_1)$ сходится **абсолютно**.

Гогда во всем **замкнутом** круге $\overline{\omega_R(z_0)} = \{z: |z|\leqslant R\}$ ряд 10.1) также сходится, и при этом $S(z) \in C(\overline{\omega_R(z_0)}) \gg ?$

= 0.5

Q10.4. Верно ли следующее утверждение:

тричем существует такая последовательность $\{\xi_k\}_{k=1}^{\infty}$, что иозначная функция действительной переменной $x \in (-1,1)$, к Π усть f(x) — бесконечно дифференцируемая действитель-

- (a) $\xi_k \neq 0$; (b) $\xi_k \to 0 \text{ npn } k \to \infty$; (c) $f(\xi_k) = 0 \forall k$.

Тогда $f(x)\equiv 0$ на (-1,1)»? [$\stackrel{\blacksquare}{=}=\mathbf{0.5}$]

Q10.5. Существует ли функция f(z), одновременно удовтетворяющая следующим условиям:

- $\text{(a) } f(z) \text{ является аналитической в точке } z_0 = 0;$ $\text{(b) } \left\{ f\left(\frac{1}{n}\right) \right\}_{n=1}^{\infty} = \left\{1,0,\frac{1}{3},0,\frac{1}{5},\cdots\right\}.$

= 0.5

Q10.6. Верно ли следующее утверждение:

к Π усть f(x) — бесконечно дифференцируемая действительнозначная функция действительной переменной $x \in (-1,1)$.

Тогда f(x) можно продолжить аналитически на некоторую область G комплексной плоскости, содержащую интервал действительной прямой (-1,1)»? [$\overline{}=0.5$]