CSE419 – Artificial Intelligence and Machine Learning 2018

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/CSE419 2018

Lecture 8 Multiclass

Based on Asst. Prof. Dr. David Kauchak (Pomona College) Lecture Slides

Multiclass classification

examples

label

apple

Same setup where we have a set

of features for each example

orange

Rather than just two labels, now

have 3 or more

apple

banana

real-world examples?

banana

pineapple

Real world multiclass classification

document classification

protein classification

handwriting recognition

face recognition

most real-world applications tend to be multiclass

sentiment analysis

autonomous vehicles

emotion recognition

Multiclass: current classifiers

k-Nearest Neighbor (k-NN)

To classify an example **d**:

- \blacksquare Find k nearest neighbors of d
- Choose as the label the majority label within the k nearest neighbors

No algorithmic changes!

Decision Tree learning

Base cases:

- If all data belong to the same class, pick that label
- 2. If all the data have the same feature values, pick majority label
- 3. If we're out of features to examine, pick majority label
- 4. If the we don't have any data left, pick majority label of parent
- 5. If some other stopping criteria exists to avoid overfitting, pick majority label

Otherwise:

- calculate the "score" for each feature if we used it to split the data
- pick the feature with the highest score, partition the data based on that data value and call recursively

No algorithmic changes!

Perceptron learning

Hard to separate three classes with just one line 😊

Black box approach to multiclass

Abstraction: we have a generic binary classifier, how can we use it to solve our new problem

Can we solve our multiclass problem with this?

Multiclass classification

examples

label

apple

арріе

orange

apple

banana

banana

pineapple

Same setup where we have a set of features for each example

Rather than just two labels, now have 3 or more

Black box approach to multiclass

Abstraction: we have a generic binary classifier, how can we use it to solve our new problem

Can we solve our multiclass problem with this?

Approach 1: One vs. all (OVA)

Training: for each label L, pose as a binary problem

- all examples with label L are positive
- all other examples are negative

OVA: classify

Classify:

- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick one of the ones in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

OVA: classify, perceptron

Classify:

- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

How do we calculate this for the perceptron?

OVA: classify, perceptron

Classify:

- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

$$prediction = b + \mathring{a}_{i=1}^{n} w_i f_i$$

Distance from the hyperplane

Approach 2: All vs. all (AVA)

Training:

For each pair of labels, train a classifier to distinguish between them

```
for i = 1 to number of labels:
for k = i+1 to number of labels:
train a classifier to distinguish between label_i and label_k:
```

- create a dataset with all examples with label, labeled positive and all examples with label, labeled negative
- train classifier on this subset of the data

AVA training visualized

apple

orange

apple

banana

banana

apple vs orange

+1

orange vs banana

apple vs banana

+1

apple vs orange

+1

apple vs banana

+1

+1

orange vs banana

What class?

apple vs orange

apple vs banana

orange vs banana

orange

In general?

To classify example e, classify with each classifier fik

We have a few options to choose the final class:

- Take a majority vote
- Take a weighted vote based on confidence
 - $y = f_{ik}(e)$
 - score; += y
 How does this work?
 - $score_k = y$

Here we're assuming that y encompasses both the prediction (+1,-1) and the confidence, i.e. y = prediction * confidence.

Take a weighted vote based on confidence

- $y = f_{ik}(e)$
- $score_i += y$
- $score_k -= y$

If y is positive, classifier thought it was of type j:

- raise the score for j
- lower the score for k

if y is negative, classifier thought it was of type k:

- lower the score for j
- raise the score for k

OVA vs. AVA

Train/classify runtime?

Error? Assume each binary classifier makes an error with probability $\boldsymbol{\epsilon}$

OVA vs. AVA

Train time:

AVA learns more classifiers, however, they're trained on much smaller data this tends to make it faster if the labels are equally balanced

Test time:

AVA has more classifiers

Error (see the book for more justification):

- AVA trains on more balanced data sets
- AVA tests with more classifiers and therefore has more chances for errors
- Theoretically:
- -- OVA: ε (number of labels -1)
- -- AVA: 2ϵ (number of labels -1)

Approach 3: Divide and conquer

Pros/cons vs. AVA?

Multiclass summary

If using a binary classifier, the most common thing to do is OVA

Otherwise, use a classifier that allows for multiple labels:

- DT and k-NN work reasonably well
- We'll see a few more in the coming weeks that will often work better

Multiclass evaluation

apple orange

orange orange

apple apple

How should we evaluate?

banana pineapple

banana banana

pineapple pineapple

Multiclass evaluation

label

prediction

apple

orange

*

orange

orange

apple

apple

banana

pineapple

banana

banana

pineapple

pineapple

Accuracy: 4/6

Multiclass evaluation imbalanced data

label prediction

apple orange

• • •

apple apple

Any problems?

banana pineapple

Data imbalance!

banana banana

pineapple pineapple

microaveraging: average over examples (this is the "normal" way of calculating)

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

What effect does this have? Why include it?

microaveraging: average over examples (this is the "normal" way of calculating)

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

- Puts more weight/emphasis on rarer labels
- Allows another dimension of analysis

microaveraging: average over examples

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

apple orange

orange orange

apple apple

banana pineapple

banana banana

pineapple pineapple

microaveraging: 4/6

macroaveraging:

apple = 1/2orange = 1/1banana = 1/2pineapple = 1/1total = (1/2 + 1 + 1/2 + 1)/4= 3/4

Confusion matrix

entry (i, j) represents the number of examples with label i that were predicted to have label j

another way to understand both the data and the classifier

	Classic	Country	Disco	Hiphop	Jazz	Rock
Classic	86	2	0	4	18	1
Country	1	57	5	1	12	13
Disco	0	6	55	4	0	5
Hiphop	0	15	28	90	4	18
Jazz	7	1	0	0	37	12
Rock	6	19	11	0	27	48

Confusion matrix

BLAST classification of proteins in 850 superfamilies