Robust parameter estimation on gravitational wave signals from binary neutron star inspirals within minutes

Thibeau Wouters, Peter T.H. Pang, Tim Dietrich, Chris van den Broeck

April 8, 2024

Parameter estimation

• Parameter estimation (PE): get posterior of GW parameters θ

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$

 Markov Chain Monte Carlo (MCMC) [1]: computationally expensive for binary neutron stars (BNS)

Thibeau Wouters Extreme matter April 8, 2024

Methods

We extend J_{IM} [2] to analyze BNS signals:

- JAX: automatic differentiation, GPU acceleration [3]
- Waveforms: TaylorF2 and IMRPhenomD_NRTidalv2 in RIPPLE [4]
- Relative binning: speed up likelihood evaluation
- ullet MCMC sampler: FLOWMC [5]
 - Gradient-based sampler (local sampler)
 - Normalizing flows (global sampler)

Methods

We extend JIM [2] to analyze BNS signals:

- JAX: automatic differentiation, GPU acceleration [3]
- Waveforms: TaylorF2 and IMRPhenomD_NRTidalv2 in RIPPLE [4]
- Relative binning: speed up likelihood evaluation
- MCMC sampler: FLOWMC [5]
 - Gradient-based sampler (local sampler)
 - Normalizing flows (global sampler)

Validation – waveforms

Waveforms implemented in RIPPLE: cross-checked against LALSUITE. Accuracy sufficient for PE. might also just skip this slide

Validation – p-p plot

We demonstrate the robustness of JIM:

- 100 GW events with HLV at design sensitivity,
- T = 128 s.
- Priors: Table 1.

Results – GW170817 & GW190425

Comparison against Parallel Bilby (PBilby) for GW170817 and GW190425. Jensen-Shannon (JS) divergences (in bits): I don't want to show all the plots (hard to read/takes long to discuss) and will put them in the appendix, but I also don't like flashing the JS divergences, nobody cares about this, so not sure what to do there

Parameter	TF2	NRTv2	TF2	NRTv2
$\overline{\mathcal{M}}$	0.001725	0.000516	0.003557	0.002461
q	0.005212	0.007894	0.004837	0.002960
χ_1	0.005633	0.004301	0.002794	0.004825
χ_2	0.003030	0.002671	0.002416	0.003041
Λ_1	0.001062	0.002208	0.008556	0.000783
Λ_2	0.000559	0.002186	0.005808	0.003576
d_L	0.001544	0.01847	0.001273	0.002878
$\phi_{m{c}}$	0.003500	0.010714	0.003338	0.006126
$\cos\iota$	0.001615	0.012851	0.006400	0.005279
ψ	0.004048	0.011036	0.001516	0.003730
Thibeau Wor	uters	Extreme matter		April 8, 2024 6

Results - Runtime

- Real events: including runtime to compute reference parameters for relative binning
- Injections: median runtime

Event	WF	Jim (1 GPU)	PBILBY (480 cores)
GW170817	TF2	(9.70 + 17.00) min	9.64 h
	NRTv2	$(5.69 + 28.02) \min$	10.99 h
GW190425	TF2	$(5.13 + 16.49) \ min$	4.08 h
	NRTv2	$(6.15 + 15.37) \; { m min}$	4.69 h
Injection	TF2	24.76 min	_
	NRTv2	18.02 min	_

Discussion – environmental impact

 Jim is 100× more environmentally friendly than PBILBY

Energy consumption for all 204 runs

Power of GPU: 400W, power of CPU: 240W

Average NL household: 2 810 kWh/year

	kWh	CO_2 [10 3 kg]	Trees [†]
Jim	33.78	0.01	0.55
PBILBY	3598.53	1.18	59.02

 $^{^\}dagger$ Number of trees needed to capture the CO_2 emitted in a year.

Conclusion

 Jim : a fast and environmentally friendly PE pipeline for GW signals

- Enhance MCMC with
 - JAX,
 - relative binning,
 - gradient-based samplers, and
 - normalizing flows
- 100 imes more environmentally friendly than PBILBY
- Science cases:
 - low-latency alerts,
 - large-scale population studies, and future generation GW detectors

References

- [1] Steve Brooks et al. Handbook of markov chain monte carlo. CRC press, 2011.
- [2] Kaze WK Wong, Maximiliano Isi, and Thomas DP Edwards. "Fast gravitational wave parameter estimation without compromises". In: arXiv preprint arXiv:2302.05333 (2023).
- [3] Roy Frostig, Matthew James Johnson, and Chris Leary. "Compiling machine learning programs via high-level tracing". In: Systems for Machine Learning 4.9 (2018).
- [4] Thomas DP Edwards et al. "RIPPLE: Differentiable and Hardware-Accelerated Waveforms for Gravitational Wave Data Analysis". In: arXiv preprint arXiv:2302.05329 (2023).
- [5] Kaze WK Wong, Marylou Gabrié, and Daniel Foreman-Mackey. "FLOWMC: Normalizing-flow enhanced sampling package for probabilistic inference in Jax". In: arXiv preprint arXiv:2211.06397 (2022).

Priors

All priors are uniform priors with the specified range.

Parameter	Injection	GW170817	GW190425
$\overline{\mathcal{M} [M_{\odot}]}$	[0.88, 2.61]	[1.18, 1.21]	[1.485, 1.490]
q	[0.5, 1]	[0.125, 1]	[0.125, 1]
χ_i	[-0.05, 0.05]	[-0.05, 0.05]	[-0.05, 0.05]
Λ_i	[0, 5000]	[0, 5000]	[0, 5000]
d_L [Mpc]	[30, 300]	[1, 75]	[1,500]
t_c [s]	[-0.1, 0.1]	[-0.1, 0.1]	[-0.1, 0.1]
ϕ_{c}	$[0,2\pi]$	$[0,2\pi]$	$[0, 2\pi]$
$\cos\iota$	[-1, 1]	[-1,1]	[-1,1]
ψ	$[0,\pi]$	$[0,\pi]$	$[0,\pi]$
α	$[0,2\pi]$	$[0,2\pi]$	$[0,2\pi]$
$\sin\delta$	[-1, 1]	[-1, 1]	[-1, 1]

GW170817 TaylorF2

GW170817 IMRPhenomD_NRTidalv2

3

GW190425 TaylorF2

GW190425 IMRPhenomD_NRTidalv2

