Fiche méthode: Vecteur

I. Translation

Translation:

Soient A et B deux points distincts du plan.

D est l'image de C par la translation qui envoie A en B signifie que : ABDC est un parallélogramme (éventuellement aplati).

Cette translation est caractérisée par les 3 propriétés suivantes :

- Les droites (AB) et (CD) ont la même direction (sont parallèles);
- Les **segments** [AB] et [CD] ont la même **longueur**, appelée **norme** du vecteur ;
- Le sens de A (dit origine) vers B (extrémité) est le sens de C vers D (sens indiqué par la flèche).

On associe alors à cette translation le **vecteur noté** \overrightarrow{AB}

L'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} : Ces vecteurs **n'ont pas le même sens.**

Application 1:

- 1. a. La translation qui transforme A en B, tranforme D en C
 - b. La translation qui transforme C en B, transforme D en A c. La translation qui transforme A en B, transforme E en D
 - c. La translation qui transforme A en B, transforme E en B
 - d. La translation qui transforme \mathbf{D} en B, tranforme F en D
 - e. La translation qui transforme E en G, tranforme A en C
- 2. a. La translation de vecteur \overrightarrow{DA} , transforme C en B
 - b. La translation de vecteur $\overrightarrow{\textbf{\textit{D}}B}$, transforme E en A
 - c. La translation de vecteur \overrightarrow{CD} , transforme \mathbf{D} en E
 - d. La translation de vecteur \overrightarrow{GB} , transforme F en A (ou G en B).

Application 2 : Construire le point M', image de M par la translation qui transforme A en B.

Application 3: Vecteurs égaux, vecteurs opposés

ABCDEFGH est un octogone régulier de centre O.

Compléter le tableau suivant en répondant par oui ou non.

Les vecteurs	\overrightarrow{GH} et \overrightarrow{BC}	\overrightarrow{AE} et \overrightarrow{BD}	\overrightarrow{FD} et \overrightarrow{HB}	\overrightarrow{AH} et \overrightarrow{ED}	
ont la même direction	Non	Oui	Oui	Oui	
ont le même sens	Non	Oui	Oui	Non	
ont la même longueur	Oui	Non	Oui	Oui	
sont égaux	Non	Non	Oui	Non	
sont opposés	ont opposés Non Non		Non	Oui	

II. Vecteurs et nature d'une figure

Formules:

Soient A de coordonnées $(x_A; y_A)$ et B de coordonnées $(x_B; y_B)$, deux points du plan dans un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$.

- Le vecteur \overrightarrow{AB} a pour coordonnées : $\begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix}$
- Le milieu du segment [AB] a pour coordonnées : $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur tel que $\vec{u} = \overrightarrow{AB}$.

• $\|\vec{u}\| = \|\overrightarrow{AB}\| = AB = \sqrt{x^2 + y^2}$

Application 4 : Nature d'un quadrilatère

Dans un repère orthonormé (0, I, J), on considère les points A(0; 1), B(2; 1), C(2; -1) et D(0; -1). Monter que ABCD est un carré.

1ère étape : On montre que ABCD est un parallélogramme

<u>**1**^{ère} méthode</u>: Pour montrer que \overrightarrow{ABCD} est un parallélogramme : on calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{DC} et on remarque que $\overrightarrow{AB} = \overrightarrow{DC}$

$$\frac{\overrightarrow{AB}\begin{pmatrix} 2-0\\1-1\end{pmatrix}}{\overrightarrow{AB}\begin{pmatrix} 2\\0\end{pmatrix}} \qquad \qquad \frac{\overrightarrow{DC}\begin{pmatrix} 2-0\\-1+1\end{pmatrix}}{\overrightarrow{DC}\begin{pmatrix} 2\\0\end{pmatrix}}$$

 $\overrightarrow{AB} = \overrightarrow{DC}$ ainsi \overrightarrow{ABCD} est un parallélogramme.

 $\underline{\mathbf{2^{\text{ème}}}}$ méthode : Pour montrer que ABCD est un parallélogramme : on calcule les milieux des diagonales et on remarque les diagonales du quadrilatère ABCD se coupent en leur milieu.

Soit
$$M$$
 le milieu de $[AC]$, $M\left(\frac{0+2}{2};\frac{1-1}{2}\right)$ $N\left(\frac{2+0}{2};\frac{1-1}{2}\right)$ $N(1;0)$ Soit N le milieu de $[BD]$, $N\left(\frac{2+0}{2};\frac{1-1}{2}\right)$

Les points M et N sont confondus donc les diagonales du quadrilatère ABCD se coupent en leur milieu ainsi ABCD est un parallélogramme.

 $\underline{2^{\text{ème}}}$ étape : On calcule les longueurs AB et AD (côtés consécutifs) et BD (diagonale) Conseil : On peut calculer d'abord les coordonnées des vecteurs avant de calculer les distances.

- AB = AD ainsi le parallélogramme ABCD a deux côtés consécutifs de même longueur donc ABCD est un losange.
- $BD^2 = 8$ $AB^2 + AD^2 = 4 + 4$

Donc $BD^2 = AB^2 + AD^2$, d'après **la réciproque** du théorème de Pythagore, le parallélogramme ABCD a un angle droit en A ainsi ABCD est un rectangle.

ABCD est un losange et un rectangle c'est donc un carré.

Application 5: Nature d'un triangle

Dans un repère orthonormé (0, I, I), on considère les points A(2; 3), B(-3; -1) et C(7; -1)Donner la nature du triangle ABC.

Nature d'un triangle : Un triangle peut être :

- Quelconque
- Isocèle (deux côtés de même longueur)
- Equilatéral (trois côtés de même longueur)
- Rectangle (il faudra utiliser la réciproque/contraposée du théorème de Pythagore)
- Isocèle rectangle

- AB = AC ainsi le triangle ABC est isocèle en A.
- $BC^2 = 100$

$$AB^2 + AC^2 = 41 + 41 = 82$$

Donc $BC^2 \neq AB^2 + AC^2$, d'après la contraposée du théorème de Pythagore, le triangle ABC n'est pas rectangle en A

Conclusion : Le triangle *ABC* est isocèle en *A*.

Lecture graphique de coordonnées de vecteurs et construction de vecteurs

<u>Méthode</u>: Pour lire les coordonnées d'un vecteur $\overrightarrow{AB} \begin{pmatrix} x \\ y \end{pmatrix}$ ou placer un point B tel que $\overrightarrow{AB} \begin{pmatrix} x \\ y \end{pmatrix}$:

- On part du point A, on compte le nombre x d'unité horizontalement (« + » vers la droite et « » vers la gauche) pour être au niveau du point B, ce nombre est l'abscisse du vecteur \overrightarrow{AB} ($^{\chi}$)
- On compte ensuite le nombre y d'unité verticalement (« + » vers la haut et « » vers la bas) pour arriver au point B, ce nombre est l'ordonnée du vecteur \overrightarrow{AB}

Application 6 : Lecture graphique de coordonnées de vecteurs et construction de vecteurs

On se place dans un repère $(0: \vec{i}, \vec{i})$

1. Trouver, par lecture graphique, les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{CB} , \overrightarrow{AF} , \overrightarrow{DG} , \overrightarrow{OF} , \overrightarrow{FC} , \overrightarrow{GB} , \overrightarrow{EC} , \overrightarrow{BC} , \overrightarrow{OE} et \overrightarrow{DA} .

$\overrightarrow{AB} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$	$\overrightarrow{AC} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$	$\overrightarrow{CB} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$	$\overrightarrow{AF} {2 \choose 2}$
$\overrightarrow{DG} {1 \choose 2}$	$\overrightarrow{OF} \begin{pmatrix} 0 \\ 5 \end{pmatrix}$	$\overrightarrow{FC} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$	$\overrightarrow{GB} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$
$\overrightarrow{EC} { -1 \choose 1}$	$\overrightarrow{BC} \begin{pmatrix} 0 \\ -3 \end{pmatrix}$	$\overrightarrow{OE} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	$\overrightarrow{DA} \begin{pmatrix} 0 \\ 5 \end{pmatrix}$

2. Lire les coordonnés des vecteurs $\overrightarrow{u_1}$ à $\overrightarrow{u_6}$.

$\overrightarrow{u_1} \binom{4}{0}$	$\overrightarrow{u_2} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$	$\overrightarrow{u_3} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$	$\overrightarrow{u_4} {3 \choose 2}$	$\overrightarrow{u_5} {\binom{-5}{0}}$	$\overrightarrow{u_6} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	

- 3. Placer les points H, K, L et M tels que :
- a. $\overrightarrow{AH}\begin{pmatrix} 1\\ 2 \end{pmatrix}$ b. $\overrightarrow{CK}\begin{pmatrix} 2\\ 0 \end{pmatrix}$ c. $\overrightarrow{DL}\begin{pmatrix} -3\\ 1 \end{pmatrix}$ d. $\overrightarrow{GM}\begin{pmatrix} 0\\ 2 \end{pmatrix}$

Somme de vecteurs

Application 7 : Etant donné le parallélogramme ABCD, on pose $\vec{u} = \overrightarrow{AD}$ et $\vec{v} = \overrightarrow{AB}$.

$$\overrightarrow{BA} = -\vec{v}$$

$$\overrightarrow{AC} = \vec{u} + \vec{v}$$

$$\overrightarrow{BC} = \overrightarrow{u}$$

$$\overrightarrow{CD} = -\overrightarrow{v}$$

$$=-\vec{v}$$

$$\overrightarrow{DB} = -\overrightarrow{u} + \overrightarrow{v}$$
 $\overrightarrow{BD} = \overrightarrow{u} - \overrightarrow{v}$

$$\frac{\overrightarrow{CA}}{\overrightarrow{CA}} = -\overrightarrow{u} - \overrightarrow{v}$$

$$\frac{\overrightarrow{CB}}{\overrightarrow{CB}} = -\overrightarrow{v}$$

Application 8: Relation de Chasles:

- a) $\overrightarrow{IB} + \overrightarrow{BI} = \overrightarrow{II}$
- b) $\overrightarrow{FE} = \overrightarrow{FG} + \overrightarrow{GE}$
- c) $\overrightarrow{XK} = \overrightarrow{XL} + \overrightarrow{LK}$ d) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{AE}$

Somme de vecteurs :

Soit \vec{u} et \vec{v} deux vecteurs.

La somme de deux vecteurs \vec{u} et \vec{v} est le vecteur associé à la translation résultant de l'enchainement des translations de vecteur \vec{u} et de vecteur \vec{v} .

Relation de Chasles:

Quels que soient les points A, B, C du plan, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Application 9 : Coordonnées de somme et différence de vecteurs

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{j})$. Soit les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ Calculer les coordonnées des vecteurs suivants :

1.
$$\vec{u} + \vec{v} \begin{pmatrix} 2+5 \\ -3+7 \end{pmatrix}$$
 soit $\vec{u} + \vec{v} \begin{pmatrix} 7 \\ 4 \end{pmatrix}$
2. $\vec{u} - \vec{v} \begin{pmatrix} 2-5 \\ -3-7 \end{pmatrix}$ soit $\vec{u} - \vec{v} \begin{pmatrix} -3 \\ -10 \end{pmatrix}$

3.
$$-\vec{u} + \vec{w} \begin{pmatrix} -3 - 7 \end{pmatrix}$$
 soit $-\vec{u} + \vec{w} \begin{pmatrix} -8 \\ 3 + 4 \end{pmatrix}$ soit $-\vec{u} + \vec{w} \begin{pmatrix} -8 \\ 7 \end{pmatrix}$

4.
$$\vec{u} + \vec{v} + \vec{w} \begin{pmatrix} 3+47 \\ 2+5-6 \\ -3+7+4 \end{pmatrix}$$
 soit $\vec{u} + \vec{v} + \vec{w} \begin{pmatrix} 17 \\ 87 \end{pmatrix}$

4.
$$\vec{u} + \vec{v} + \vec{w} \begin{pmatrix} 2+5-6 \\ -3+7+4 \end{pmatrix}$$
 soit $\vec{u} + \vec{v} + \vec{w} \begin{pmatrix} 1 \\ 8 \end{pmatrix}$
 $\vec{u} + \vec{v} - \vec{w} \begin{pmatrix} 2+5+6 \\ -3+7-4 \end{pmatrix}$ soit $\vec{u} + \vec{v} - \vec{w} \begin{pmatrix} 13 \\ 0 \end{pmatrix}$

Coordonnées de somme et différence :

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

• La **somme** des vecteurs \vec{u} et \vec{v} est le vecteur $\vec{w} = \vec{u} + \vec{v}$ de coordonnées :

$$\begin{pmatrix} x+x' \\ y+y' \end{pmatrix}$$

• L'**opposé** du vecteur \vec{u} est le vecteur $-\vec{u}$ de coordonnées :

$$\begin{pmatrix} -x \\ -y \end{pmatrix}$$

• La **différence** des vecteurs \vec{u} et \vec{v} est le vecteur $\vec{w} = \vec{u} - \vec{v}$ de coordonnées :

$$\begin{pmatrix} x-x'\\y-y' \end{pmatrix}$$

Application 10: Construction de vecteurs

- 1. Construire le vecteur d'origine A égal à $\vec{u} + \vec{v}$.
- 2. Construire le vecteur d'origine \vec{A} égal à $\vec{u} \vec{v}$.

Application 11: Somme de vecteurs et figure

ABCD est un parallélogramme.

I.I.K et L sont les milieux respectifs des côtés [AB], [BC], [CD] et [DA].

Compléter les égalités suivantes :

a.
$$\overrightarrow{AL} + \overrightarrow{KJ} = \overrightarrow{AL} + \overrightarrow{LI} = \overrightarrow{AI}$$

b.
$$\overrightarrow{LJ} - \overrightarrow{AC} = \overrightarrow{LJ} + \overrightarrow{CA} = \overrightarrow{DC} + \overrightarrow{CA} = \overrightarrow{DA}$$

c.
$$\overrightarrow{BD} + \overrightarrow{CJ} = \overrightarrow{BD} + \overrightarrow{DL} = \overrightarrow{BL} = \overrightarrow{JD}$$

d.
$$\overrightarrow{AK} - \overrightarrow{LD} + \overrightarrow{BI} = \overrightarrow{AK} + \overrightarrow{DL} + \overrightarrow{BI} = \overrightarrow{IC}$$