Universität

Institut für Medizinische Genetik

Vorlesung Medizinische Genetik TB Grundlagen HS 2024

Prof. Dr. med. Anita Rauch

2/7: Fehlbildungen /-Syndrome, Imprinting

Oktober 2024 Seite 1

Lernziele 2/7

 Sie können Konzepte der Dysmorphologie und Syndromologie erläutern und auf häufigere Krankheitsbilder anwenden

 Sie können das Konzept des Imprintings und dessen Bedeutung bei genetischen Syndromen erläutern

Syndromologie und Dysmorphologie

Fehlbildungen bzw.
Malformationen (z.B.
Herzfehler oder
Polydaktylie)

Kleine Anomalien bzw.
Dysmorphiezeichen

FIGURE 4-1 Frequency of major malformations in relation to the number of minor anomalies detected in a given newborn baby. (From Marden PM, Smith DW, McDonald MJ: J Pediatr 64:357, 1964, with

Buch: Smith's Recognizable Patterns of Human Malformation

Antropometrische Parameter und Dysmorphien

Kleine Anomalien ("Dysmorphien" = keine Funktionseinschränkung)
weisen oft den Weg zur Diagnose

Häufige angeborene Fehlbildung: Herzfehler

1:150 (0,7%) der Neugeborenen mehr oder minder ausgeprägten Herzfehler

The Baltimore-Washington Infant Study 1981-1989

Isolierte versus syndromale Herzfehler

Isolierte Herzfehler:

- Häufig vererbte Gendefekte
- Verminderte Penetranz
- Variable Expressivität

HEART

Syndromale Herzfehler:

Blue G.M. et al. J Am Coll Cardiol. 2017; Sifrim et al. Nature Genetics 2016

«Mikrodeletionen»

Man kann es im mikroskopischen Karyotypen nicht erkennen

Zytogenetische Auflösung für segmentale Aneusomien

Figure 2-13 Human Molecular Genetics, 3/e. (© Garland Science 2004)

Chromosomen im Mikroarray

Chromosomale Mikroarray-Analyse

04.10.2024 Dr. med. Konstantinos Kolokotronis Seite 10

Wichtig

Krankheit

Ca. 2.5-3 Mb Mikrodeletion 22q11 Ryan et al. J Med Genet 1997

Prematurer Tod (Herz!)	8%
Herzfehler	75%
Hypocalzämie	60%
Urogenitale Anomalien	36%
Velopharyngeale Insuffizienz	32%
Gaumenspalte	14%
Tracheo/laryngomalazie	3%
Choanalstenose/atresie	1%
Immunprobleme	77%
Psychosen	18%
Schwere Lernbehinderung / MR	38%
Kleinwuchs/Skoliose	36%

Williams-Beuren Syndrom

Krankheit

1.4 Mb Mikrodeletion in 7q11.23
Kleinwuchs und leichte Intelligenzminderung

www.williams-syndrome.ch

Antriebslosigkeit Gewichtszunahme

Schilddrüsen-Unterfunktion Kalziumüberschuss

Irritabilität, Erbrechen, Verstopfung, Muskelkrämpfe

Gefässtenosen

Herz-Kreislaufprobleme Bluthochdruck

Bauchschmerzen

Übersäuerung Leistenbruch Gallensteine Darmausstülpungen Blutunterversorgung Verstopfung Angst

Schwaches räumliches Vorstellungsvermögen

Noonan Syndrom

Krankheit

- In 50% PTPN11 Mutationen
- Herzfehler bei 75%
- v. a. Pulmonalstenosen mit dysplastischer Klappen, hypertrophe Kardiomyopathie,

Septumdefekte und PDA

- meist milde Brustkorbanomalien bei 25%
- Hodenhochstand bei 44% der männlichen Patienten
- Innenohrschwerhörigkeit bei 21%
- Juvenile myelomonocytäre Leukämie bei 8%
- meist leichte Hämophilie bei 17%
- meist leichter Kleinwuchs bei 74%
- globale Entwicklungsverzögerung, ID bei 29%

www.aafp.org/

Bausteine der klinisch-genetischen Syndromdiagnostik

Wachtums-Parameter

Funktionsstörungen

Verlauf

Dysmorphien

Familiengeschichte

Verhalten

Krankheit

Häufigste Syndrome bei Herzfehlern

Trisomie 21

~1:800 v.a. Septum-Defekte mit AV-Kanal

Noonan-Syndrom

~1:2'000 v.a. valvuläre Pulmonalstenose

http://teamnoonanblog.blogspot.com

Deletion 22q11.2

~1:4′000

v.a. Ausflusstraktdefekte

Williams-Beuren Syndrom

~1:5'000

v.a. Supravalvuläre Aortenstenose Periphere Pulmonalstenosen

http://williams syndrome layla.blog spot.com

Universität Krankheit Zürich Krankheit

Angelman Syndrom (AS)

Schwere geistige Behinderung Epilepsie Fröhlichkeit

Krankheit

Prader-Willi-Syndrom (PWS)

Neonatale Hypotonie Fresssucht Leichte Entwicklungsverzögerung Krankheit

q11.2

q13.1

q13.3

q22.2

q24.3 q25.1 q25.2

Chromosomale Region 15q11.2-13: Imprinting

«Lebenszyklus» des Imprinting

Monk et al. Nat Rev Genet 2019;

IC: Imprinting center; gDMRs: germline differentially methylated regions; GVs: germinal vesicles; SCMC: subcortical maternal complex (paternal ICs, dashed blue line; whole genome, blue line) and female (maternal ICs, dashed red line; whole genome, red line)

Ursachen des Angelman-Syndroms

Farbe = aktiv Schwarz = methyliert = inaktiv

Imprinting Chromosom 15

Farbe = aktiv Schwarz = methyliert = inaktiv

Beim Mann wird auf dem mütterlichen Chromosom das PWS aktiviert und das AS inaktiviert

Imprintingdefekt

PWS-Genkluster

UBE3A-Gen (AS)

Farbe = aktiv Schwarz = methyliert = inaktiv

Imprintingdefekt

PWS-Genkluster

UBE3A-Gen (AS)

Farbe = aktiv Schwarz = methyliert = inaktiv

Uniparentale Disomie

Uniparentale Disomie

Welche Krankheit haben die Betroffenen?

 Sehr kleine Deletion in 15q11.2

 \rightarrow ?

Angelman Syndrom

Genomisches Imprinting

- "Prägung" definierter Gene in der Keimbahn
- Nur ein elterliches Allel wird exprimiert
- Epigenetischer Prozess
 (elternspezifische DNA Methylierung)
- Fehlt aktives Allel -> Nullisomie