TEST 2

MA 222 Probability and Statistics

Problem 1. It is a fact that deaths by traffic accidents occur at a rate of 8 per hour. Assuming independence,

Given:

Rate 8 deaths per hour.

Proposition:
$$P_k(t) = e^{-at} * (at)^k / k!$$

a) compute the probability that one hour will pass without any death

$$a = 8$$
 (deaths per hour)
 $t = 1$ (hour)

 $\mathbf{k} = \mathbf{0}$

put in formula:

$$e^{-8(1)} \cdot \frac{(8(1))^0}{0!}$$
= 0.000335462627903

b) a 15-minute period would pass with no deaths

$$a = 8$$
 (deaths per hour)

$$t = 0.25 \text{ (hour)}$$

$$\mathbf{k} = \mathbf{0}$$

put in formula:

$$e^{-8(0.25)} \cdot \frac{(8(0.25))^0}{0!}$$
= 0.135335283237

c) four consecutive 15-minute periods would pass with no deaths.

$$a = 8$$
 (deaths per hour)

$$t = 0.25 * 4 (hour)$$

$$k = 0$$

put in formula:

$$e^{-8(1)} \cdot \frac{(8(1))^0}{0!}$$
= 0.000335462627903

Problem 2. The length (body tail) in inches (no decimals) of an adult squirrel in the forests of Somerset may be modeled with a Gaussian random variable with mean 16 inches and standard deviation of 1 inch. If you catch one of these squirrels what is the probability that it will be

Given:

Mean = 16 inches

Standard Deviation = 1 inch

a) at least 14 inches long?

<u>Proposition:</u> Let Z be a continuous rv with cdf $\Phi(z)$. Then for any a:

$$P(a < Z) = 1 - \Phi(a)$$

 $P(Z < a) = \Phi(a)$
 $P(X \le 14)$:

$$\frac{X-16}{1} \le \frac{14-16}{1} \rightarrow X-16 < -2$$

$$P(X \le 14) = 1 - 0.2868 = 0.7133$$

b) between 12 and 15 inches long?

<u>Proposition:</u> Let Z be a continuous rv with cdf $\Phi(z)$. Then for any a and b with a < b,

$$P(a < Z < b) = \Phi(b) - \Phi(a)$$

$$P(12 < X < 15):$$

$$\frac{12 - 16}{1} < \frac{X - 16}{1} < \frac{15 - 16}{1} \rightarrow \frac{-3}{1} < \frac{X - 16}{1} < \frac{-1}{1}$$

$$P(12 < X < 15) = \Phi(0.2721) - \Phi(0.6875) = -0.0428$$

c) suppose you catch one of those squirrels with a length of 26 inches. Comment on this fact in view of the modeling assumptions.

Very Unlikely, its 10 standard deviations away.

Problem 3. Suppose there are 2000 units of which 10% are known to be defective.

a) Find the exact probability that no more than 2 will be obtained in a sample (without replacement) of size 10.

Given:

$$N = 2000$$

$$n = 10$$

$$r = 200$$

$$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}}$$

$$P(X = 0) = p(0) = 0$$

$$P(X = 1) \Rightarrow p(1) = \frac{\binom{200}{1}\binom{2000 - 2000}{10 - 1}}{\binom{2000}{10}} = P(X < 2) = P(0) + P(1) = 0 + 0$$

b) Find a good approximation to that exact probability. Check that the conditions to the approximation are satisfied.

Problem 4: X is a continuous random variable having the Uniform probability distribution between 5 and 10. A sample of four independent observations of X is taken, and the following gambling game is played: If all the observations are larger than 8, player wins \$75. Otherwise, player loses \$2. What is the expected gain of the player on a single play of this game?