Hough transform

Class announcement

- Quiz 1 already graded will be returned soon
- It's great some of you have discussed with your classmates and noted that.
- Discussion is encouraged. Share your questions on Discord. **Ask** questions and answer questions! No questions are stupid questions.
- But please remember, copying others' answers from others is prohibited.
- If you used LLMs, please also note in your submission, and briefly describe how you used LLMs and how you learn from or used the LLMs' answer. (e.g. "I cannot derive the Taylor series expansion of function g(x) correctly, and ChatGPT helped me found the terms I missed")
- There are 10pts extra credit opportunities (presentations about CV-related papers, software, news, etc). Feel free to talk to me.

Recap

Fourier transform

Fourier transform

inverse Fourier transform

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi kx} dx$$

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi kx} dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dk$$

$$F(k) = rac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N} \qquad f(x) = rac{1}{N} \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N} \ _{x = 0, 1, 2, \ldots, N-1}$$

Where is the connection to the "summation of sine waves" idea?

Fourier transform

Where is the connection to the "summation of sine waves" idea?

$$f(x) = \frac{1}{N} \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N} - \dots$$
 Euler's formula

 $e^{j\theta} = \cos(\theta) + j\sin(\theta)$

sum over frequencies

$$f(x) = \frac{1}{N} \sum_{k=0}^{N-1} F(k) \left\{ \cos \left(\frac{2\pi kx}{N} \right) + j \sin \left(\frac{2\pi kx}{N} \right) \right\}$$
 scaling parameter wave components

Recap: Computing the discrete Fourier transform (DFT)

 $F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N}$ is just a matrix multiplication:

$$F = Wf$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$W = e^{-j2\pi/N}$$

In practice this is implemented using the fast Fourier transform (FFT) algorithm.

Wikipedia: Fourier Transform

What's this in the matrix?

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

What's this in the matrix?

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

What's this in the

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

What's this in the diagram?

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

Multiplying it with this row, what do you get?

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

What's this item in the diagram?

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & \vdots & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

125 250 500

1K

2K

What happens when you tune the nob?

Bass Low-freq Treble High-freq

Bass Low-freq Treble High-freq What are "bass" and "treble" in images?

More filtering examples

original image

High-freq (y) frequency magnitude

More filtering examples original image low-pass filter

Code for 1D DFT

- https://colab.research.google.com/drive/174q_UO9IsIW
 Q YRw7A4oJhf5HQrNckCD#scrollTo=m8EU348tXVUC
- 2pts bonus points: extend the code to 2D

More resourses

- https://gru.stanford.edu/doku.php/tutorials/fouriertran sform
- https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_C OPIES/OWENS/LECT4/node2.html

Frequency-domain filtering

The convolution theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g*h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}{gh} = \mathcal{F}^{-1}{g} * \mathcal{F}^{-1}{h}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

Convolution for 1D continuous Signals Definition of linear shift-invariant filtering as convolution:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$
 filter signal input signal

Using the convolution theorem, we can interpret and implement all types of linear shift-invariant filtering as multiplication in frequency domain.

Why implement convolution in frequency domain?

Spatial domain filtering

Frequency domain filtering

Frequency-domain filtering in import numpy as np import numpy as np import matplotlib.pyplot as plt from scipy fft import fft?, ifft?, fftshift

```
from scipy.fft import fft2, ifft2, fftshift
# Create a sample image
image = np.zeros((100, 100))
image[40:60, 40:60] = 1
# Compute the Fourier Transform
fft image = fft2(image)
fft shifted = fftshift(fft image)
# Create a low-pass filter
rows, cols = image.shape
crow, ccol = rows // 2, cols // 2
mask = np.zeros((rows, cols), np.uint8)
mask[crow - 10: crow + 10, ccol - 10: ccol + 10] = 1
# Apply the filter
fft_filtered = fft_shifted * mask
# Inverse Fourier Transform
filtered image = np.real(ifft2(fftshift(fft filtered)))
# Display the results
plt.figure(figsize=(10, 5))
plt.subplot(1, 3, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.subplot(1, 3, 2)
plt.imshow(np.log(np.abs(fft shifted)), cmap='gray')
plt.title('Fourier Spectrum')
plt.subplot(1, 3, 3)
plt.imshow(filtered image, cmap='gray')
plt.title('Filtered Image')
plt.tight layout()
plt.show()
```

Revisiting blurring

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian blur

Box blur

More filtering examples

filters shown in frequency-domain

7

More filtering examples low-pass

filters shown in frequency-domain

More filtering examples

7

More filtering examples

high-pass

More filtering examples original image low-pass filter

frequency magnitude

More filtering examples original image low-pass filter

More filtering examples original image high-pass filter

frequency magnitude

More filtering examples original image high-pass filter

frequency magnitude

More filtering examples original image band-pass filter

frequency magnitude

More filtering examples original image band-pass filter

frequency magnitude

More filtering examples band-pass filter

frequency magnitude

More filtering examples band-pass filter

frequency magnitude

Revisiting sampling

The Nyquist-Shannon sampling theorem

A continuous signal can be perfectly reconstructed from its discrete version using linear interpolation, if sampling occurred with frequency:

$$f_{s} \geq 2 f_{\max}$$
 — This is called the Nyquist frequency

Equivalent reformulation: When downsampling, aliasing does not occur if samples are taken at the Nyquist frequency or higher.

"Hybrid image"

Aude Oliva and Philippe Schyns

Gala Contemplating the
Mediterranean Sea Which at Twenty
Meters Becomes the Portrait of
Abraham Lincoln
(Homage to Rothko)

Salvador Dali, 1976

Low-pass filtered version

High-pass filtered version

Variable frequency sensitivity

Experiment: Where do you see the stripes?

frequency

Variable frequency sensitivity

Campbell-Robson contrast sensitivity curve

frequency

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid frequencies dominate perception

Other Properties of FT

 https://dspillustrations.com/pages/posts/misc/properti es-of-the-fourier-transform.html

Properties of FT: Convolution

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g*h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}{gh} = \mathcal{F}^{-1}{g} * \mathcal{F}^{-1}{h}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

Properties of FT
$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi kx}dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dk$$

$$f(x) \stackrel{\mathsf{Fourier}}{\longleftrightarrow} F(k)$$

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi kx}dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dk$$

$$f(x) \stackrel{\mathsf{Fourier}}{\longleftrightarrow} F(k)$$

$$f(sx) \stackrel{\text{Fourier}}{\longleftrightarrow} ??$$

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi kx}dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dk$$

$$f(x) \stackrel{\mathsf{Fourier}}{\longleftrightarrow} F(k)$$

$$f(sx) \stackrel{\text{\tiny Fourier}}{\longleftrightarrow} F(k/s)$$

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi kx}dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dk$$

$$f(x) \stackrel{\scriptscriptstyle\mathsf{Fourier}}{\longleftrightarrow} F(k)$$

$$f(sx) \stackrel{\text{\tiny Fourier}}{\longleftrightarrow} F(k/s)$$

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi kx}dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dk$$

$$f(x) \stackrel{\scriptscriptstyle\mathsf{Fourier}}{\longleftrightarrow} F(k)$$

$$f(sx) \stackrel{\text{Fourier}}{\longleftrightarrow} F(k/s)$$

