Домашняя работа 3 (дедлайн $-17:00\ 23.10.20$)

October 25, 2020

Задача 1 (5 баллов) Пусть $\xi, \eta \sim \text{Exp}(1)$ – независимые случайные величины. Найдите распределение случайной величины $\frac{\xi}{\xi+\eta}$ (подсказка: рассмотрите преобразование обратное к преобразованию $(\xi,\eta) \longrightarrow (\zeta,\theta), \zeta = \frac{\xi}{\xi+\eta}, \theta = \xi + \eta$ и выразите $f_{\zeta,\theta}(z,u)$, используя $f_{\zeta,\theta}(x,y)$).

Решение Делаем замену: $\zeta = \frac{\xi}{\xi + \eta}, \theta = \xi + \eta$ и выражаем ξ и η . $\xi = \zeta \theta; \eta = \theta - \theta \zeta$. Находим якобиан этого обратного преобразования: $J = |\theta|$. Получаем $f_{\xi,\eta}(\zeta \theta, \theta - \theta \zeta) * |\theta| = |\theta| * f_{\xi\eta}(\zeta \theta) * f_{\xi\eta}(\theta - \theta \zeta)$.

$$f_{\xi\eta}(\zeta\theta) = \begin{cases} \lambda e^{-\lambda(\zeta\theta)} & \zeta\theta >= 0\\ 0 & \zeta\theta < 0 \end{cases}$$

$$f_{\xi\eta}(\theta - \zeta\theta) = \begin{cases} \lambda e^{-\lambda(\theta - \zeta\theta)} & \theta - \zeta\theta >= 0\\ 0 & \theta - \zeta\theta < 0 \end{cases}$$

 $F_{\zeta,\theta}(\zeta\theta,\theta-\theta\zeta)=sign(\theta)\int\limits_{-\infty}^{\zeta\theta}\int\limits_{-\infty}^{\theta-\zeta\theta}f_{\xi\eta}(u_1,u_2)(u_1+u_2)du_1du_2 \text{ В областях, где } \zeta\theta>=0 \text{ ап} d\theta-\theta\zeta>=0 \text{ функция}$ $f=\lambda^2e^{-\lambda\theta}. \text{ Тогда } f_{\zeta(\frac{\xi}{\xi+\eta})}=\int\limits_{-\infty}^{+\infty}f_{\zeta,\theta}(\frac{\xi}{\xi+\eta},u_2)du_2=$

$$= \begin{cases} \zeta \lambda^2 e^{-\lambda \theta} & \zeta \theta >= 0 \cap \theta - \theta \zeta >= 0 \\ 0 & \text{на остальной плоскости} \end{cases}$$

Задача 2 (3 балла)

Пусть $\xi \sim \text{Poly}(k, p_1, p_2, \dots, p_m)$. Покажите, что $\xi_i \sim \text{Bi}(k, p_i)$

Решение $P(\xi_1=k_1,\xi_2=k_2,\ldots,\xi_m=k_m)=\frac{k!}{k_1!k_2!\ldots k_m!}p_1^{k_1}\ldots p_m^{k_m}$ $P(\xi=k)=C_n^kp^k(1-p)^{n-k}$ ξ - вектор, ξ_i - его компонента. Вообще, исходя из определения полиномиального распределения: $\xi_i=k_i$ в серии из k экспериментов, $k=k_1+k_2+\cdots+k_m$, где ξ_i - число "успехов" в серии из k экспериментов. Успех у каждой ξ_i свой. Так, количество i-х успехов $(=\xi_i)$, это когда $\omega=A_i$. Если перейдем к одномерному случаю, то есть будем рассматривать только определенное событие $A=A_i$, называемое единственным успехом в любом из k экспериментов. Тогда случайная величина ξ_i , показывающая число успехов в серии, имеет биномиальное распределение Bi(k,p), где k - число экспериментов в серии, $p=p_i$ - вероятность $A=A_i$. И это верно для каждой компоненты в "многомерном" случае для ξ . Тем самым получаем требуемое.

Задача 3 (5 баллов) Случайный вектор $\xi = (\xi_1, \xi_2)$ имеет равномерное распределение в треугольнике с вершинами в точках (-1,0), (0,1), (1,0). Найти распределение случайной величины $\eta = \frac{\xi_1 + \xi_2}{2}$

Решение Площадь треугольника равна 1, значит

$$f_{\xi_1,\xi_2}(x,y) = egin{cases} 1 & (x,y) \in \text{"треугольник"} \\ 0 & \text{иначе} \end{cases}$$

$$f_{\xi_1}(x) = \int_0^{-|x|+1} f_{\xi_1,\xi_2}(x,y)dy$$

$$f_{\xi_1}(x) = \int\limits_0^{-|x|+1} f_{\xi_1,\xi_2}(x,y) dy = \begin{cases} -|\mathbf{x}|+1 & x \in [-1;1] \\ 0 & x < -1 \cup x > 1 \end{cases}$$

Задача 4 (3 балла) В каждую i-ую единицу времени живая клетка получает случайную дозу облучения X_i , причем $\{X_i\}_{i=1}^t$ имеют одинаковую функцию распределения $F_X(x)$ и независимы в совокупности для любого t. Получив интегральную дозу облучения, равную ν , клетка погибает. Оценить среднее время жизни клетки ET.

Задача 5 (4 балла) Пусть N — случайная величина, принимающая натуральные значения, $\{\xi_i\}_{i=1}^{\infty}$ — некоррелированные одинаково распределенные случайные величины с конечными математическими ожиданиями и дисперсиями, не зависящие от N. Рассмотрим $S_N = \sum_{i=1}^N \xi_i$. Посчитайте $\mathrm{D}S_N$.

Задача 6 (5 баллов) Пусть $\xi_1, \xi_2, \dots, \xi_n$ — независимые одинаково распределённые с.в. с конечным мат.ожиданием, $\eta_n = \xi_1 + \xi_2 + \dots + \xi_n$. Доказать, что

$$\mathbb{E}(\xi_1|\eta_n,\eta_{n+1},\dots) = \frac{\eta_n}{n}$$