Загрязнение воздуха в городе Сеул, Южная Корея

Проект подготовили: Ахтырский Василий, Бычин Ярослав, Старшова Дарья

Основные цели проекта

- 1. Выявление общей тенденции изменения качества воздуха в Сеуле с течением времени. Сравнение качества воздуха с нормативными показателями.
- 2. Анализ изменений в составе воздуха за определенные промежутки времени:
 - і) анализ суточных колебаний изменений концентраций загрязняющих веществ.
 - іі) анализ сезонных колебаний.
- 3. Исследование качества воздуха в районах Сеула. В частности, выявление самого "грязного" района и
- самого "чистого" района. Построение карты качества воздуха в Сеуле.
- 4. Анализ корреляций между загрязняющими веществами.
- 5. Прогнозирование уровня загрязнения.

Первичная обработка файлов

Measurement summary

Основные измерения (SO2, NO2, O3, CO, PM10, PM2.5).

Measurement_info

Информация о измерениях (дата, станция, статус прибора).

• Measurement item info.csv

Нормативные показатели загрязняющих веществ.

Measurement_station_info

Информация о станциях мониторинга.

Особенности при обработке:

0 - в норме

1 - требуется калибровка

2 - нештатная ситуация

4 - отключение питания

8 - ремонтируется

9 - нештатные данные

Вывод после анализа файлов: 97% - в норме, 3% - некорректные измерения — удаляем их!

Географический анализ загрязнения воздуха в Сеуле

Средний уровень РМ10 по районам

Процент превышений нормативов по районам

Распределение загрязнения воздуха (РМ2.5) по районам Сеула

у Уровень РМ2.5 (µg/m³)

- 28

- 24

Сезонный анализ загрязнения воздуха в Сеуле

Корреляций между загрязняющими веществами

Задача регрессии

Постановка задачи: предсказание уровня концентрации мелкодисперсных частиц Р.М.2.5

Используемые метрики:

$$MSE = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

MAE:

MSE: Преимущества:

- Чувствительна к большим ошибкам
- Дифференцируема

Недостатки:

Чрезмерно штрафует выбросы

Преимущества:

- Устойчива к выбросам
- Результат в исходных единицах измерения

Недостатки:

- Не дифференцируема в нуле
- Менее чувствительна к большим ошибкам, чем MSE

$$MSE = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad MAE = rac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| \qquad R^2 = 1 - rac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - ar{y})^2}$$

R2:

Преимущества:

Интерпретируема как процент объясненной вариации

Недостатки:

- Может быть отрицательной для плохих моделей
- Чувствительна к выбросам

Линейная регрессия

Линейная регрессия

Работает быстро, но уступает по точности для сложных данных

Хорошо интерпретируемые коэффициенты

MSE: 1749.66

MAE: 12.10

R2: 0.07

kNN: Реальные vs Предсказанные значения РМ2.5

Показывает улучшение качества предсказаний, но демонстрирует характерные "ступеньки" в прогнозах из-за природы метода.

Оптимальное к: 20

MSE: 1611.41

MAE: 8.55

R2: 0.14

Random Forest

Обеспечивает наиболее точные предсказания во всем диапазоне значений, минимальное систематическое смещение и устойчивость к выбросам

Random Forest:

MSE: 1944.89

MAE: 9.28

 $R^2: -0.04$

Результаты сравнения

Сравнение предсказаний моделей Random Forest kNN Linear Regression Предсказанные значения РМ2.5

Истинные значения РМ2.5

Сравнение предсказаний моделей

ЗАДАЧА КЛАССИФИКАЦИИ

Автоматически определять уровень опасности загрязнения воздуха частицами РМ2.5, относя каждое наблюдение к одному из заранее определённых классов качества воздуха.

Логистическа я регрессия

60000

- 50000

40000

30000

- 20000

- 10000

=== Логистическая регрессия ===

Accuracy: 0.6873371976896229

Precision (macro): 0.545445128703609

Recall (macro): 0.4747177865187723

F1-Score (macro): 0.47844374500992226

ROC-AUC (ovr): 0.8806502193156305

Предсказанный класс

Матрица ошибок (KNN)

60000

- 50000

- 40000

=== KNN (k=5) === Accuracy: 0.7337146210631441 Precision (macro): 0.7202510236417956

Recall (macro): 0.6930626641225701 F1-Score (macro): 0.7053730398463454 ROC-AUC (ovr): 0.8860601153780329

Random Forest

- 60000

- 50000

- 40000

- 30000

- 20000

- 10000

Предсказанный класс

=== Random Forest ===

Accuracy: 0.7355730126535361

Precision (macro): 0.7259837835829319 Recall (macro): 0.7015169119534753

F1-Score (macro): 0.7127750663351549 ROC-AUC (ovr): 0.9121539789863153

Сравнение моделей по метрикам классификации

Спасибо за внимание!

