Operating Systems

INTRODUCTION

Giorgio Grisetti

grisetti@diag.uniroma1.it

Department of Computer Control and Management Engineering Sapienza University of Rome

Contacts

Teacher:

Giorgio Grisetti

Tutors:

Irvin Aloise

Email:

- {lastname}@diag.uniroma1.it
- •all emails you send us and concerning the course should have **[so]** as first string in the subject.

Teaching Material

 The primary source of information for the course is this web page

https://sites.google.com/diag.uniroma1.it/sistemi-operativi-2019-20

- The material
 - Slides
 - Source code for practicals

Is also available at the following repository

https://gitlab.com/grisetti/sistemi_operativi_2019_20

Tools

- Linux (Ubuntu. Native install, please) (free)
- C/C++ (gcc)
- Arduino MEGA 2560 (or clones) ~11 eur
- 2 wires

Exam

- Written Test(24 pts)
- An Individual Project (max 8 pts)
 - Rules for project evaluation
 - No rebase, we track the individual commits
 - Each one uses its own account
 - Code quality will be considered
 - Valgrind proof (when applicable)
 - project_mark =
 project_max_points
 (#default partecipants-#effective partecipants)

Final mark is the sum

- •Why are there operating systems?
- Tools: git, arduino
- Basics:
 - Hardware Overview (on Arduino)
 - Bare metal programming
 - Object Oriented Programming in C
 - Context Switch (bare metal and with ucontext)
- Dual Mode, System Calls
 - User Mode/Privileged Mode
 - Context switch in system call

- •Processes:
 - State of a process
 - Basic Operations
 - Kernel Structures
 - Inter Process Communication (IPC)
 - Using Processes
- CPU Scheduling
 - Metrics
 - Batch: FIFO, SJF, Priorities
 - •Time Sharing: Round Robin, Multiqueue
- Signals
 - Why signals
 - Internals of a Signal Handler
 - Handling Signals

- Memory
 - Hierarchy, hardware support, metrics
 - Segmentation
 - Paging
 - Simple memory manager
- Virtual Memory
 - Hardware support
 - Metrics
 - Page replacement
 - Allocation
 - Copy-on-write

- File System Interface
 - Operations on Files and Directories
 - Permissions/Ownership
 - File System Abstraction
 - Dealing with POSIX file API
 - Memory mapped files
- File System Implementation
 - Disk
 - Basic Operations
 - Organizing disk space
 - Representing files and directories
 - Examples: FAT and UFS