Credit card fraud detection machine learning model

In [44]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.preprocessing import OneHotEncoder
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 import sklearn.metrics as metrics
 from sklearn.metrics import classification_report, roc_auc_score, precision
 from sklearn.metrics import confusion_matrix
 from sklearn.metrics import accuracy_score

In [3]: #loading data set using pandas

data = nd.read csv("creditcard.csv")

Out[3]:	Time	V1	V2	V3	V4	V5	V6	V 7
	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599
	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803
:	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461
:	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609
	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941
•								
28480	2 172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215
28480	3 172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330
28480	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827
28480	5 172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180
28480	i 172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006

284807 rows × 31 columns

In [4]: #returns rows and columns in data set

Out[4]: (284807, 31)

```
Out[5]: <bound method NDFrame.describe of
                                                    Time
                                                                ٧1
                                                                           V2
                         V5 \
        V3
              V4
                    0.0 -1.359807
                                  -0.072781 2.536347 1.378155 -0.338321
        0
        1
                    0.0
                         1.191857
                                   0.266151 0.166480 0.448154 0.060018
                        -1.358354 -1.340163 1.773209 0.379780 -0.503198
                    1.0
                        -0.966272 -0.185226 1.792993 -0.863291 -0.010309
        3
                    1.0
        4
                    2.0 -1.158233
                                    0.877737 1.548718 0.403034 -0.407193
                               . . .
                                         . . .
                                                  . . .
        284802 172786.0 -11.881118
                                   10.071785 -9.834783 -2.066656 -5.364473
        284803 172787.0 -0.732789 -0.055080 2.035030 -0.738589 0.868229
                        1.919565 -0.301254 -3.249640 -0.557828 2.630515
        284804 172788.0
                                   0.530483 0.702510 0.689799 -0.377961
        284805 172788.0 -0.240440
                        -0.533413 -0.189733 0.703337 -0.506271 -0.012546
        284806 172792.0
                     ۷6
                               ٧7
                                        ٧8
                                                  V9
                                                               V21
                                                                         V22
        0
               0.462388 0.239599 0.098698 0.363787
                                                     ... -0.018307
                                                                    0.277838
        1
              -0.082361 -0.078803 0.085102 -0.255425
                                                     ... -0.225775 -0.638672
        2
               1.800499 0.791461 0.247676 -1.514654
                                                     ... 0.247998 0.771679
                                                     ... -0.108300 0.005274
        3
               1.247203 0.237609 0.377436 -1.387024
                                                                    0.798278
               0.095921 0.592941 -0.270533 0.817739
                                                      ... -0.009431
                             . . .
                                       . . .
                                                     . . .
        284802 -2.606837 -4.918215
                                 7.305334 1.914428
                                                     ... 0.213454
                                                                    0.111864
        284803 1.058415 0.024330 0.294869 0.584800
                                                      ... 0.214205 0.924384
                                                      ... 0.232045
        284804 3.031260 -0.296827 0.708417 0.432454
                                                                   0.578229
        284805  0.623708  -0.686180  0.679145  0.392087
                                                     ... 0.265245 0.800049
        284806 -0.649617 1.577006 -0.414650 0.486180
                                                     ... 0.261057
                                                                    0.643078
                              V24
                                       V25
                                                 V26
                                                          V27
                                                                    V28 Amount
                    V23
        \
              -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62
        0
        1
               0.101288 -0.339846  0.167170  0.125895 -0.008983  0.014724
                                                                         2.69
               0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
        2
                                                                        378.66
        3
              -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
              -0.137458   0.141267   -0.206010   0.502292   0.219422   0.215153
                                                                         69.99
        4
                              . . .
                    . . .
                                       . . .
                                                 . . .
                                                           . . .
                                                                    . . .
                                                                          . . .
        284802 1.014480 -0.509348 1.436807 0.250034 0.943651 0.823731
                                                                           0.77
        24.79
        284804 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561
                                                                         67.88
        284805 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533
                                                                         10.00
        284806 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649
                                                                         217.00
               Class
        0
                   0
                   0
        1
        2
                   0
        3
                   0
        4
                   0
        284802
                   0
        284803
                   a
        284804
                   0
        284805
                   0
        284806
                   0
```

In [6]: #returns datatype of columns

Out[6]:	Time	float64
	V1	float64
	V2	float64
	V3	float64
	V4	float64
	V5	float64
	V6	float64
	V7	float64
	V8	float64
	V9	float64
	V10	float64
	V11	float64
	V12	float64
	V13	float64
	V14	float64
	V15	float64
	V16	float64
	V17	float64
	V18	float64
	V19	float64
	V20	float64
	V21	float64
	V22	float64
	V23	float64
	V24	float64
	V25	float64
	V26	float64
	V27	float64
	V28	float64
	Amount	float64
	Class	int64
	dtype:	object

n [7]: data head(10)

Ιn	L/	']:	aa	τa.	nea	aa (10	_

Out[7]:		Time	V1	V2	V3	V4	V5	V6	V 7	V 8
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533
	5	2.0	-0.425966	0.960523	1.141109	-0.168252	0.420987	-0.029728	0.476201	0.260314
	6	4.0	1.229658	0.141004	0.045371	1.202613	0.191881	0.272708	-0.005159	0.081213
	7	7.0	-0.644269	1.417964	1.074380	-0.492199	0.948934	0.428118	1.120631	-3.807864
	8	7.0	-0.894286	0.286157	-0.113192	-0.271526	2.669599	3.721818	0.370145	0.851084
	9	9.0	-0.338262	1.119593	1.044367	-0.222187	0.499361	-0.246761	0.651583	0.069539

10 rows × 31 columns

In [8]: data.tail(10)

_		
\sim	 ıo	
VII.	 	
00	 	

	Time	V1	V2	V3	V4	V5	V6	V7
284797	172782.0	-0.241923	0.712247	0.399806	-0.463406	0.244531	-1.343668	0.929369
284798	172782.0	0.219529	0.881246	-0.635891	0.960928	-0.152971	-1.014307	0.427126
284799	172783.0	-1.775135	-0.004235	1.189786	0.331096	1.196063	5.519980	-1.518185
284800	172784.0	2.039560	-0.175233	-1.196825	0.234580	-0.008713	-0.726571	0.017050
284801	172785.0	0.120316	0.931005	-0.546012	-0.745097	1.130314	-0.235973	0.812722
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006

10 rows × 31 columns

In [9]: #drop rows having null values

/ Ni i +	1 ()	
1111	17	

	Time	V 1	V2	V3	V4	V5	V6	V7
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006

284807 rows × 31 columns

```
In [10]: data.isnull().sum()
Out[10]: Time
                    0
         ٧1
                    0
         V2
                    0
         V3
                    0
         ٧4
                    0
         ۷5
                    0
         ۷6
                    0
         ٧7
                    0
         ٧8
                    0
         ۷9
                    0
         V10
                    0
         V11
                    0
         V12
                    0
                    0
         V13
         V14
                    0
         V15
                    0
         V16
                    0
         V17
                    0
         V18
                    0
         V19
                    0
         V20
                    0
         V21
                    0
         V22
                    0
         V23
                    0
                    0
         V24
         V25
                    0
         V26
                    0
         V27
                    0
         V28
                    0
         Amount
                    0
         Class
         dtype: int64
In [11]: data["Class"].value counts()#here class 0 indicates Leait whereas 1 indicat
Out[11]: Class
         0
              284315
         1
                  492
         Name: count, dtype: int64
In [12]: #Classifying data into categories
         genuine = data[data.Class == 0]
```

fraud = data[data.Class == 1]

```
Time
                       ۷1
                                  V2
                                           ٧3
                                                     V4
                                                               ۷5
0
            0.0
                -1.359807 -0.072781 2.536347 1.378155 -0.338321
1
            0.0
                 1.191857
                           0.266151 0.166480 0.448154 0.060018
2
            1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198
            1.0
                 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
            2.0 -1.158233
                            0.877737 1.548718 0.403034 -0.407193
                     . . .
                                          . . .
                                                    . . .
284802 172786.0 -11.881118
                          10.071785 -9.834783 -2.066656 -5.364473
284803
       172787.0
                -0.732789
                           -0.055080 2.035030 -0.738589 0.868229
                1.919565 -0.301254 -3.249640 -0.557828 2.630515
284804 172788.0
                           0.530483 0.702510 0.689799 -0.377961
284805 172788.0 -0.240440
284806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546
                                          V9
             ۷6
                      ٧7
                                ٧8
                                                       V21
                                                                 V22 \
                                             ... -0.018307 0.277838
0
       0.462388 0.239599 0.098698 0.363787
      -0.082361 -0.078803 0.085102 -0.255425
1
                                             ... -0.225775 -0.638672
       1.800499 0.791461 0.247676 -1.514654
                                             ... 0.247998 0.771679
2
3
       1.247203 0.237609 0.377436 -1.387024 ... -0.108300 0.005274
                                             ... -0.009431
4
       0.095921 0.592941 -0.270533 0.817739
                                                           0.798278
            . . .
                      . . .
                               . . .
                                         . . .
                                             . . .
                                                       . . .
284802 -2.606837 -4.918215
                         7.305334 1.914428
                                             ... 0.213454 0.111864
284803 1.058415 0.024330 0.294869 0.584800
                                             ... 0.214205 0.924384
284804 3.031260 -0.296827
                          0.708417 0.432454
                                              ... 0.232045 0.578229
284805 0.623708 -0.686180 0.679145
                                   0.392087
                                              ... 0.265245
                                                           0.800049
284806 -0.649617 1.577006 -0.414650 0.486180
                                             ... 0.261057 0.643078
            V23
                     V24
                               V25
                                         V26
                                                  V27
                                                            V28 Amount
\
      -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053
                                                                149.62
       0.101288 -0.339846  0.167170  0.125895 -0.008983  0.014724
1
                                                                  2.69
2
       0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
                                                                378.66
      -0.190321 -1.175575  0.647376 -0.221929  0.062723  0.061458
                                                                123.50
3
      -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
                      . . .
                               . . .
                                         . . .
                                                  . . .
                                                                   . . .
284802 1.014480 -0.509348 1.436807 0.250034 0.943651 0.823731
                                                                  0.77
24.79
284804 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561
                                                                 67.88
284805 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533
                                                                 10.00
284806 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649 217.00
       Class
0
           0
           0
1
2
           0
3
           0
4
           0
284802
           0
284803
           0
284804
           0
284805
           0
284806
           0
[284315 rows x 31 columns]
(284315, 31)
```

```
In [14]: print(fraud.shape)
         (492, 31)
In [15]: genuine.Amount.describe()
Out[15]: count
                  284315.000000
                      88.291022
         mean
         std
                     250.105092
         min
                       0.000000
         25%
                       5.650000
         50%
                      22.000000
         75%
                      77.050000
                   25691.160000
         max
         Name: Amount, dtype: float64
In [16]: genuine.Time.describe()
Out[16]: count
                  284315.000000
         mean
                   94838.202258
         std
                   47484.015786
         min
                       0.000000
         25%
                   54230.000000
         50%
                   84711.000000
         75%
                  139333.000000
         max
                  172792.000000
         Name: Time, dtype: float64
In [26]: # Undersample the genuine class to match the number of fraud cases(Normalise
         genuine undersampled = genuine.sample(n=492)
In [27]: undersampled data = pd.concat([genuine undersampled, fraud], axis=0)
In [28]: #here is our normalisation of imbalanced dataset.
Out[28]: Class
              492
         0
         1
              492
         Name: count, dtype: int64
```

```
In [31]: mean=undersampled data.groupby("Class").mean()
                        Time
                                    ۷1
                                               V2
                                                         V3
                                                                   ٧4
                                                                             V5 \
         Class
                95063.993902 0.073402 0.013656 0.012983 -0.078723 0.037778
         0
                80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225
         1
                                                     V9
                                                                             V21 \
                      V6
                                ٧7
                                           V8
                                                                   V20
                                                         . . .
         Class
                0.040767 -0.075929 -0.013959 0.039811
                                                         ... -0.036242
                                                                        0.026831
         1
               -1.397737 -5.568731 0.570636 -2.581123
                                                              0.372319
                                                                        0.713588
                     V22
                               V23
                                          V24
                                                    V25
                                                              V26
                                                                        V27
                                                                                  V2
         8
           \
         Class
                0.001348 -0.007046 -0.006464 0.012918 -0.018738 0.003449
         0
         2
         1
                0.014049 -0.040308 -0.105130 0.041449 0.051648 0.170575 0.07566
         7
                    Amount
         Class
                 74.501118
         0
         1
                122.211321
         [2 rows x 30 columns]
In [19]: undersampled data = undersampled data.sample(frac=1, random state=42)
         #spliting data
In [32]:
         X undersampled = undersampled data.drop(columns=['Class'], axis=1)
         v undersampled = undersampled data['Class']
In [21]: X train, X test, y train, y test = train test split(X undersampled, y under
In [33]: log reg = LogisticRegression()
Out[33]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or
```

On GitHub, the HTML representation is unable to render, please try loading this page

trust the notebook.

with nbviewer.org.

In [40]: y_pred_log_reg = log_reg.predict(X_test)
print("Logistic Regression Evaluation")
print("Classification Report:\n", classification_report(y_test, y_pred_log_

Logistic Regression Evaluation Classification Report:

	precision	recall	f1-score	support
0	0.89	0.99	0.94	110
_		• • • •		_
1	0.99	0.84	0.91	87
accuracy			0.92	197
macro avg	0.94	0.91	0.92	197
weighted avg	0.93	0.92	0.92	197

In [52]: #accuracy score of training data

X_train_prediction= log_reg.predict(X_train)

training accuracy = accuracy score(X train prediction.v train)

Accuracy: 0.9250317662007624

In [53]: #accuracy score of test data

X_test_prediction= log_reg.predict(X_test)

testing accuracy = accuracy score(X test prediction.y test)

Accuracy: 0.9238578680203046

```
In [58]: y_pred_log_reg = log_reg.predict(X_test)
    cm = confusion_matrix(y_test, y_pred_log_reg)

# Plotting the heatmap for the confusion matrix
    plt.figure(figsize=(6,4))
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False)
    plt.title('Confusion Matrix')
    plt.ylabel('Actual Class')
    nlt.xlabel('Predicted Class')
```



```
In [ ]:
```