

# AMERICAN INTERNATIONAL UNIVERSITY – BANGLADESH (AIUB)

# **Faculty of Engineering**

## **Department of Electrical and Electronic Engineering**

**Course Name**: EEE4103 Microprocessor and Embedded Systems

Semester: Fall 2023-24 Term: Final Quiz: 04F Total Marks: 10 Time: 20 Minutes

**Question Mapping with Course Outcomes:** 

| Item | COs | POIs      | K  | P | A      | Marks | <b>Obtained Marks</b> |
|------|-----|-----------|----|---|--------|-------|-----------------------|
| Q1-2 | CO1 | P.a.4.C.3 | K4 |   |        | 5+5   |                       |
|      |     |           |    |   | Total: | 10    |                       |

#### **Student Information:**

| Student Name:   | Solve Sheet |   |   |   |   |   |   |   |   | Section: | О     |            |             |  |
|-----------------|-------------|---|---|---|---|---|---|---|---|----------|-------|------------|-------------|--|
| C4m donet ID #. | 2           | 3 | - | 4 | 6 | 7 | 0 | 9 | - | 1        | Date: | 13.12.2023 | Department: |  |
| Student ID #:   | р           | q | - | a | b | с | d | e | - | r        |       |            |             |  |

1. Determine the control words of the following micro-operations both in decimal and hexadecimal forms. [5] Replace a-e and p-r with the digits of your student ID number. If the digit is more than 7 then replace that digit by 7.

| Micro- Operation                                                                                          | Control Word in Binary  | <b>Control Word in Hexadecimal</b> |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|--|--|
| $Ra \leftarrow Rp + Rq + C_{in}$ $R4 \leftarrow R2 + R3 + C_{in}$                                         | 0b010 011 100 001 1 000 | 0x4E18                             |  |  |
| Rr + Rb<br>R1 + R6                                                                                        | 0b001 110 000 001 0 000 | 0x3810                             |  |  |
| $\begin{array}{c} Rc \leftarrow \operatorname{crc} Rd \\ R7 \leftarrow \operatorname{crc} R0 \end{array}$ | 0b001 001 111 100 0 101 | 0x27C5                             |  |  |
| $\begin{array}{c} Re \leftarrow \text{shl } Rr \\ R7 \leftarrow \text{shl } RI \end{array}$               | 0b001 001 111 100 0 010 | 0x27C2                             |  |  |

2. Determine the remaining output bits of the ROM and the next address of the ROM location based on the [5] following input and output data.



### **Answer:**

At the initial state, x = 1; since  $q_a = 1$ , there is an arithmetic operation, so,  $s_2 = 0$ . Besides, this is an addition operation, as such,  $s_1 = 0$ ,  $s_0 = 1$ , and  $C_{in} = 1$ . After the addition operation, the output and  $C_{out}$  must be loaded in the registers (A and E), so L = 1, y = 0, z = 0, and w = 0. The input to the multiplexer's selector  $(s_1s_0)$  is 01, so 1 (the  $2^{nd}$  input of the 4:1 multiplexer) is transferred to its output, as such the address (010) at the CAR's input will be loaded to its output. The next address generator circuit generates an address of 010 to be loaded into the CAR. This is shown in the next figure.

