Tutorial 2

- 1. Write an algorithm that returns the sum of first m elements of an array S.
- 2. Write an algorithm that outputs the smallest and largest values in the array S which has *m* unique elements.
- 3. Write an algorithm that reverses the array s[1], ..., s[n].
- 4. Given an array s[1], ..., s[n] such that n > 1 and $s[i] \le s[i+1]$ for all i. Write an algorithm that insert an input value x into the array so that $s[i] \le s[i+1]$ for all i.
- 5. Order the following functions according to their order of growth (from the lowest to the highest).

$$n!$$
, $5\lg(n+100)^{10}$, 2^{2n} , n^4+3n^3+1 , $n\lg n$ 3^n

6. Prove the following assertion:

If
$$f(n) = O(g(n))$$
, then $g(n) = \Omega(f(n))$.

- 7. Prove that $\lg(n^k + c) = \Theta(\lg n)$ for every fixed k > 0 and c > 0
- (i) If $f(n) = 2n^2 + 1$, prove that $f(n) = O(n^2)$ (ii) If $f(n) = 2^{n+2}$, prove that $f(n) = O(2^n)$ (i)

 - (iii) If $f(n) = 3 \lg n + 2$, prove that $f(n) = O(\lg n)$