

#### **Problème Congés**



Anton et ses amis planifient des vacances ensemble. Ils ont déjà choisi le lieu, mais les dates sont plus difficiles à choisir.

Les N amis ont indiqué à l'avance leurs jours de congé prévus. L'ami i avait initialement prévu ses congés du jour  $L_i$  au jour  $R_i$  inclus. Afin de maximiser le temps passé ensemble, chaque ami peut ajuster ses congés en les avançant ou en les retardant. Plus précisément, le i-ème ami peut choisir un entier  $d_i$  et déplacer ses congés à l'intervalle  $[L_i+d_i,R_i+d_i]$ . Un  $d_i$  positif signifie qu'il prendra ses congés plus tard que prévu, un  $d_i$  négatif signifie qu'il prendra ses congés plus tôt, et un  $d_i=0$  signifie qu'il conservera le planning initial.

Les amis savent que leurs patrons n'apprécieront pas les perturbations causées par ces changements. Par conséquent, ils souhaitent déplacer leurs congés de manière à ce que la somme des déplacements ne dépasse pas un entier K. Plus formellement,  $|d_0| + |d_1| + \cdots + |d_{N-1}| \le K$ .

Aidez les amis à déterminer le nombre maximum de jours pendant lesquels ils peuvent **tous** être ensemble s'ils ajustent leurs plannings de manière optimale.

### **Détails d'implémentation**

Vous devez implémenter la fonction plan vacation :

int plan\_vacation(int N, std::vector<int> L, std::vector<int> R,
long long K)

- N: le nombre d'amis;
- L : un vector de N entiers strictement positifs, correspondant au premier jour de congé initialement prévu pour chaque ami ;
- R: un vector de N entiers strictement positifs, correspondant au dernier jour de congé initialement prévu pour chaque ami ;
- K: la valeur maximale autorisée pour  $|d_0| + |d_1| + \cdots + |d_{N-1}|$ .

Cette fonction sera appelée une fois pour chaque test. Elle doit renvoyer le nombre maximal de jours pendant lesquels tous les amis peuvent être ensemble, ou 0 si cela n'est pas possible.



#### **Ontraintes**

- $1 \le N \le 500~000$
- $1 \le L_i \le R_i \le 10^9$
- $0 \le K \le 10^{18}$

### **3** Sous-tâches

| Sous-tâche | Points | Sous-tâches requises | Contraintes supplémentaires                   |
|------------|--------|----------------------|-----------------------------------------------|
| 0          | 0      | _                    | Ľexemple.                                     |
| 1          | 7      | _                    | K = 0                                         |
| 2          | 11     | 1                    | $K \leq 1$                                    |
| 3          | 6      | _                    | $K = 10^{18}$                                 |
| 4          | 13     | 0                    | $N \leq 10^4$ , $L_i \leq 10$ , $R_i \leq 10$ |
| 5          | 18     | 0                    | $N \le 10^3$                                  |
| 6          | 29     | 0, 4, 5              | $N \le 10^5$                                  |
| 7          | 16     | 0 - 6                | _                                             |

# Example

Considérez l'appel suivant :

Les amis ont demandé les intervalles de jours de congé suivants : [1,3], [5,9], [2,5]. Par conséquent, nous pouvons retarder le congé de l'ami 0 de 2 jours et avancer le congé de l'ami 1 de 1 jour pour obtenir [3,5], [4,8], [2,5]. Ainsi, tous les amis seront disponibles les jours 4 et 5, ce qui donne 2 jours en commun. On peut démontrer qu'il est impossible de faire mieux avec K=3. La fonction doit donc renvoyer 2.

## **4** Évaluateur d'exemple

Le format d'entrée est le suivant :

- ligne 1 : deux entiers, N et K;
- lignes 2 à N+1: deux entiers,  $L_i$  et  $R_i$ .

Le format de sortie est le suivant :

• ligne 1 : un entier, la valeur de retour de la fonction.