These are the equations as they will appear on the last page of the final exam:

Assorted thermodynamics equations:

$$\begin{array}{lll} \Delta L = L_i \alpha \Delta T & PV = nRT = NK_B T & Q = mc\Delta T \\ Q = L\Delta m & P = F/A & W = \int P dV \\ W = nRT \ln \left(\frac{V_i}{V_f}\right) & \Delta E_{int} = Q - W & \Delta E_{int} = nC_V \Delta T \\ Q = nC_V \Delta T & Q = nC_P \Delta T & \gamma = C_P/C_V \\ C_P - C_V = R & PV^{\gamma} = C & P = \frac{2}{3}(N/V)(\frac{1}{2}m_0\overline{v^2}) \end{array}$$

Constants:

$$R = 8.314 \text{ J/mol·K} \qquad K_B = 1.381 \times 10^{-23} \text{ J/K} \quad 1 \text{ cal} = 4.186 \text{ J}$$

$$T_{triplept} = 273.16 \text{ K}, \ 0.01^{\circ} \text{ C} \qquad N_A = 6.0221 \times 10^{23}$$

Previous Assorted Equations

$W = \vec{F} \cdot \Delta \vec{x}$	$F_s = -kx$
$W_{net} = \Delta K$	$U_g = mgy$
$W_{int} = -\Delta U$	$F_x = -\frac{dU}{dx}, F_y = -\frac{dU}{dy}$
$\Delta E_{sys} = \sum T$	$\Delta K + \Delta U + f_k d = W + Q + \sum T$
$P = \frac{dE}{dt}$	$P = \vec{F} \cdot \vec{v}$
$ec{F} = rac{ec{d}ec{p}}{dt}$	$\sum ec{p_i} = \sum ec{p_f}$
$\vec{r}_{com} = \frac{1}{M} \int \vec{r} dm$	$\vec{p}_{tot} = M_{tot} \vec{v}_{CM}$
$\omega = d\theta/dt$	$\alpha = d\omega/dt$
$a_t = r\alpha$	$a_c = r\omega^2$
$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$	$\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i)$
$K_{rot} = \frac{1}{2}I\omega^2$	$K_{tot} = K_{trans} + K_{rot}$
$I = \int r^2 dm$	$I = I_{CM} + MD^2$
$I_{disk} = \frac{1}{2}MR^2$	$I_{sphere} = \frac{2}{5}MR^2$
$ec{ au} = ec{r} imes ec{F}$	$\sum \vec{ au} = d\vec{L}/dt$
$ec{L} = I ec{\omega}$	$\frac{d\vec{L}}{dt} = 0$
	$W_{net} = \Delta K$ $W_{int} = -\Delta U$ $\Delta E_{sys} = \sum T$ $P = \frac{dE}{dt}$ $\vec{F} = \frac{d\vec{p}}{dt}$ $\vec{r}_{com} = \frac{1}{M} \int \vec{r} dm$ $\omega = d\theta/dt$ $a_t = r\alpha$ $\theta_f = \theta_i + \omega_i t + \frac{1}{2}\alpha t^2$ $K_{rot} = \frac{1}{2}I\omega^2$ $I = \int r^2 dm$ $I_{disk} = \frac{1}{2}MR^2$ $\vec{\tau} = \vec{r} \times \vec{F}$