

Picture courtesy Inquirer.net

Agenda

- Introduction
- System Pipeline
- Data Preprocessing & Analysis
- Feature Engineering
- Approaches
- Model Tuning & Evaluation
- Kaggle Results
- Conclusion
- Key Takeaways

Introduction

- Aim: Classify Malware into predefined families (0...9) or Outlier (10).
- Problem Type: Multi-class Classification
- Samples
 - Training Set: 2042 (257 Empty Training Data)
 - ► Test Set: 706 (30 Missing Test Data)
- Number of Features: Behavioral Data(Function Call Stacks)
- Classification
 - ▶ There are 11 decision classes: 0 to 10.

System Pipeline

- Data Visualization
 - Tabulate & analyse the structure of the data.
- Feature Selection
 - Encoding selected parts of the data as features.
- Evaluation of Models
 - Classification accuracy using K Fold Stratified Cross Validation.

Data Analysis

- Function Call Stacks
 - ✓ Variable number of function calls per sample.
 - 0 to 9353
 - ✓ Analysis of functions
 - 5729 different functions

Data Preprocessing

- Handling of Empty Training Samples
 - No function call stacks for 257 samples of the training set
 - Encoded as null feature vector.
- Handling of Missing Test Samples
 - Checked Malwr & VirusTotal for missing samples' data.
 - Checked Challenge-3 test & training sets.
 - Test set contained 24/30 samples.
 - Took the best classification output for the 24 samples from Challenge 3(Accuracy of 96.778%).

Feature Engineering

- Bag of Words
 - ✓ Sparse vector of occurrence of functions.
 - Loses order of occurrence of functions.
 - ✓ Dimensions: 5729
 - ✓ Example: A->C: [1, 0, 1]
- Term Frequency-Inverse Document Frequency
 - ✓ Frequency of functions normalised by their occurrence in different documents.
 - Loses order of occurrence of functions.
 - ✓ Dimensions: 5729
 - ✓ Example: A->C: [1/Occ(A), 0, 1/Occ(C)] where Occ(x) denotes the occurences of x across documents.

Feature Engineering(2)

- State Transitions
 - ✓ Each function is encoded a state from 1.
 - Each sample is represented by a vector of the largest vector size in the sample space.
 - Empty transitions are represented by 0.
 - ✓ Dimension: 9353.
 - \checkmark Example: A->C in a vector of size 4=[1, 3, 0, 0]
- Stacking
 - ✓ TF-IDF + State Transitions
 - ✓ Bag of Words + State Transitions

Feature Engineering(3)

N Gram

- A contiguous sequence of n items from a given sequence of text – here, function calls
- ✓ ngram_range=(1, 3) Mono, Bi, Tri Grams
- ✓ Total words in the vocabulary 78310
- ✓ It didn't improve the results, and gave a memory error when the n-grams were increased.

Approaches

Sequential Data Models [dietterich2002machine]

- State Hidden Markov Models (HMM)
 - ✓ Observation Function Calls
 - Finding the model parameters
 - ✓ Hidden state, optimal sequence?
 - ✓ Training Labels Observation or State?
- Conditional Random Fields (CRF)
- Sliding window
- Recurrent Networks

Model

- We tried different types of Multi Class Classification Models to fit our data
 - Random Forests
 - Multi Class SVM with Linear Kernel
 - K Nearest Neighbors with 5 Neighbors
 - Ada Boost
 - Neural Networks
 - NLTK Naive Bayes, Max Entropy, Decision Trees

Tuning Model Parameters

K Nearest Neighbors (kNN)

Tuning Model Parameters(2)

Multi Class Support Vector Machines (SVM)

Tuning Model Parameters(3)

Random Forests (RF)

Evaluation of the Models

Random Forest Classifier
Multiclass Linear SVM Classifier
KNN Classifier

The Outliers - Vishal Bhalla & Nithish Raghunandanan

Kaggle Results

Conclusion

- ► The best results were observed for K Nearest Neighbors (with K=5) on Text Frequency-Inverse Document Frequency. This could be due to the fact that similar call stacks are observed for similar Malware classes.
- The stacking of the state transitions with bag of words or TF-IDF gives almost the same results.
- Random Forests & Multi Class SVM worked better on bag of words.

Key Takeaways

- ► TF-IDF & Bag of words for feature engineering of categorical features. The order of words are lost though
- NGrams are memory intensive
- Inherent structure of our data consisted of mainly categorical features. Many of the patterns repeated in many samples. These patterns were recognized by KNN
- Adding more features could result in not improving the classification accuracy
- Sequential data models could have helped

References

[dietterich2002machine]

Dietterich, Thomas G. "Machine learning for sequential data: A review." Structural, syntactic, and statistical pattern recognition. Springer Berlin Heidelberg, 2002. 15-30.

Learnings from this Course!

- Good knowhow about the entire ML Pipeline
 - Especially the importance of Feature Engineering
- Applied & in the process learnt about different models
 - Used state of the art 3rd party toolkits & libraries
 - Overfitting! → Slipped in 3 Challenges
- Smooth & steady transition:
 - Novices in IPython → Competing in Kaggle challenges
- Suggestion → More domain knowledge would have helped in Challenge 3 & 5
- Overall Worth Recommending!

Questions?

Thank You!