PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Instituto de Ciências Exatas e Informática

Curso de Ciência da Computação - Coração Eucarístico

Profa.: Camila Laranjeira - mila.laranjeira@gmail.com

Disciplina: Inteligência Artificial / 10 Semestre de 2022

A		
i viiinaioi.		
$\Gamma \cap (0)$.		
, ,		

Lista 04 - Inferência Bayesiana

1. Suponha que um paciente pode apresentar um sintoma S, causado por duas doenças diferentes, A e B. É sabido que a variação de gene G aumenta as chances de um indivíduo apresentar a doença A. Uma modelagem em rede bayesiana, e suas probabilidades condicionais são apresentadas na imagem a seguir. Compute a probabilidade dos seguintes eventos.

P(G)
+g	0.1
-g	0.9

I	P(A G)	()
+g	+a	1.0
+g	-a	0.0
-g	+a	0.1
-g	-a	0.9

P((B)
+b	0.4
-b	0.6

P(S A,B)				
+a	+b	+s	1.0	
+a	+b	-s	0.0	
+a	-b	+s	0.9	
+a	-b	-s	0.1	
-a	+b	+s	0.8	
-a	+b	-s	0.2	
-a	-b	+s	0.1	
-a	-b	-s	0.9	

a)	P(+g, +a, +b, +s)

b)	P(+a)

c)	P(+a +b)

d)	P(+g +a)			

- 2. Você está montando saquinhos de festa de aniversário, e quer colocar uma pequena parcela de doces azedinhos na festa (poucos paladares gostam deles). Para isso, você joga uma moeda enviesada Y, que tem chance $P(Y=cara) = \lambda$. Se der cara, você monta a sacola da classe Docinhos (Manga e Côco), senão você cria a sacola da classe Azedinhos (Limão e Kiwi).
 - No saco Docinhos, temos
 - Doce de **M**anga com chance p1, ou não coloque com chance 1-p1
 - Doce de **C**ôco com chance p1, ou não coloque com chance 1-p1
 - Doce de Limão com chance 1-p1, ou não coloque com chance p1
 - Doce de **K**iwi com chance 1-p1, ou não coloque com chance p1
 - No saco Azedinhos, temos:
 - Doce de **M**anga com chance p2, ou não coloque com chance 1-p2
 - Doce de **C**ôco com chance p2, ou não coloque com chance 1-p2
 - Doce de **L**imão com chance 1-p2, ou não coloque com chance p2
 - Doce de **K**iwi com chance 1-p2, ou não coloque com chance p2

Por exemplo, se p1=1 e p2=0 então você adicionaria de forma determinística doces de Manga e Côco no saco Docinho e doces de Limão e Kiwi no saco Azedinho. Para quaisquer valores intermediários de p1 e p2, as sacolas podem ter entre 0 e 4 doces. Considere os eventos: **Y**={cara, coroa}, além de **M**={0, 1}, **C**={0, 1}, **L**={0, 1}, **K**={0, 1} de um determinado saguinho conter os possíveis doces da festa.

- a) Desenhe a rede bayesiana que corresponde ao processo de criar um saquinho de doces (represente apenas os vértices/eventos e arestas/condicionais).
- b) Defina as tabelas de probabilidade condicional de cada vértice.
- c) Escreva a equação que define a probabilidade de um saco Azedinho ter doces de Manga, Limão e Kiwi, ou seja, P(**Y**=coroa, **M**, ¬**C**, **L**, **K**).
- d) Escreva a equação que define a probabilidade de produzir um saquinho contendo doces de Manga, Côco e Limão (ou seja, sem Kiwi).
- e) Escreva a equação que define a probabilidade de uma sacola ter sido montada como Azedinha dado que ela contém Manga, Côco e Limão (ou seja, sem Kiwi).

" D		
# Respostas da questão 2		
# Se preferir, adicione a esse pdf uma foto da resposta em papel :)		