Measure Theory HW6

Gandhar Kulkarni (mmat2304)

1

We wish to show that $h \in L^1(\mu \times \nu)$. See that since $f \in L^1(\mu)$ and $g \in L^1(\nu)$. Then see that $|h(x,y)| = |f(x)| \cdot |g(y)|$. Since these measure space are σ -finite and the functions |f| and |g| are positive measurable, we can apply the Fubini- Tolleni theorem. Integrating over $X \times Y$, we get

$$\begin{split} \int_{X\times Y} |h(x,y)| d(\mu \times \nu) &= \int_{X\times Y} |f(x)| \cdot |g(y)| d(\mu \times \nu) \\ &= \int_{Y} \left(\int_{X} |h^{y}(x)| d\mu(x) \right) d\nu(y) = \int_{Y} |g(y)| \cdot \left(\int_{X} |f(x)| d\mu(x) \right) d\nu(y) \\ &= \int_{Y} |g(y)| d\nu(y) \cdot \left(\int_{X} |f(x)| d\mu(x) \right) < \infty. \end{split}$$

Thus $h \in L^1(\mu \times \nu)$. To calculate the integral, see that

$$\begin{split} \int_{X\times Y} h(x,y) d(\mu\times\nu) &= \int_{X\times Y} f(x)\cdot g(y) d(\mu\times\nu) \\ &= \int_Y \left(\int_X h^y(x) d\mu(x)\right) d\nu(y) = \int_Y g(y)\cdot \left(\int_X f(x) d\mu(x)\right) d\nu(y) \\ &= \int_Y g(y) d\nu(y)\cdot \left(\int_X f(x) d\mu(x)\right), \end{split}$$

which is the desired result.

2

The Fubini-Tolleni theorem requires the two spaces X and Y to both be σ -finite with respect to both μ and ν respectively. In this case see that the counting measure over $\mathbb N$ is indeed σ -finite, as $\mathbb N = \bigcup_{n=1}^\infty \{n\}$, where $\mu(\{n\}) = 1 < \infty$. Thus for $X = Y = \mathbb N$, and $\Sigma_1 = \Sigma_2 = P(\mathbb N)$, and $\mu = \nu = m$, where m(A) denotes the cardinality of the set A if it is finite and $+\infty$ otherwise. Note that $\Sigma_1 \otimes \Sigma_2 = P(\mathbb N^2)$, since $\Sigma_1 \otimes \Sigma_2 \subseteq P(\mathbb N^2)$, and for any $A \times B \in P(\mathbb N^2)$, we have $A \times B = \bigcup_{x \times y \in A \times B} \{x\} \times \{y\} \in \Sigma_1 \otimes \Sigma_2$, which gives us the other inequality.

We wish to see what sorts of functions over $\mathbb N$ are measurable. All functions are clearly $\Sigma_1 \otimes \Sigma_2$ measurable, as the entire power set constitutes the σ -algebra. See that functions can be indexed by two natural numbers, hence they can be described as $a_{m,n}$ Note that $(a_{m_0})_n = a_{m_0,n}$ fixes the first variable at some $m_0 \in \mathbb N$, and $a_m^{n_0} = a_{m,n_0}$ fixes the second variable at some $n_0 \in \mathbb N$. We also need to understand what integration looks like. Integration in this case is just summation, as we can see that integrating over a point gives us the value of the function at that point. Thus $\int_{\mathbb N} \{a_n\} dm(n) = \sum_{n=1}^\infty a_n$ and $\int_{\mathbb N^2} \{a_{m,n}\} dm(m,n) = \sum_{(m,n)\in\mathbb N^2} a_{m,n}$. We take a positive measurable function $\{a_{m,n}\}$, and the Fubini-Tolleni theorem tells us that

1.

$$m \mapsto \sum_{n=1}^{\infty} (a_m)_n$$

is $P(\mathbb{N})$ is measurable,

and

$$n \mapsto \sum_{m=1}^{\infty} a_m^n$$

is $P(\mathbb{N})$ is measurable;

2.

$$\sum_{(m,n)\in\mathbb{N}^2}a_{m,n}dm(m,n)=\sum_{n=1}^\infty\left(\sum_{m=1}^\infty a_m^n\right)=\sum_{m=1}^\infty\left(\sum_{n=1}^\infty (a_m)_n\right).$$

The above statement means in the case of \mathbb{N}^2 is that we can switch the limits of double summations without issue.

Fubini's theorem can also be stated since our product measure consists of two σ -finite measures. We need to consider functions $\{a_{m,n}\}\in L^1(m^2)$, where we have $\sum_{(m,n)\in\mathbb{N}^2}|a_{m,n}|<\infty$. Then Fubini's theorem says that:

1. $(a_m)_n \in L^1(m)$, m-almost everywhere, and $a_n^m \in L^1(m)$, m-almost everywhere.

2.

$$m \mapsto \sum_{n=1}^{\infty} (a_m)_n$$

and

$$n \mapsto \sum_{m=1}^{\infty} a_m^n$$

are $L^1(m)$.

In the case of the counting measure it means that if the double summation is absolutely convergent, then so are the summations of all sections.

3

We need to find a function g(x) that dominates $f_n = f(nx)$ for all $n \in \mathbb{N}$. Then see that

$$\mid \frac{\sin(n^2 x^2)}{nx} \mid \le \frac{1}{nx} \le \frac{1}{x}.$$

Also see that $\frac{cnx}{1+nx} \le c$. See that this holds for all $x \in [0, \infty)$

4

5

6

1. We know that $\mu(E)=0$. Also $f=(\Re(f)^+-\Re(f)^-)+i(\Im(f)^+-\Im(f)^-)$, which are all positive measurable functions. Then $\nu(E)=\int_E\Re(f)^+d\mu\leq +\infty\cdot \mu(E)\leq 0$. Since measure cannot be negative, we have $\nu(E)=0$. Use this same strategy for the other three functions $\Re(f)^-,\Im(f)^+$, and $\Im(f)^-$.

2. Let $\{E_n\}_{n\in\mathbb{N}}$ be a countable disjoint collection of measurable subsets. Then define g as $g=\sum_{n=1}^{\infty}f\chi_{E_n}$. Then f-g is zero on $\coprod_{n=1}^{\infty}E_n$. Then we must have

$$\int_{\coprod_{n=1}^{\infty} E_n} (f - g) d\mu = 0 \implies$$

$$\nu(\prod_{n=1}^{\infty} E_n) = \int_{\coprod_{n=1}^{\infty} E_n} f d\mu = \int_{\coprod_{n=1}^{\infty} E_n} \sum_{n=1}^{\infty} f \chi_{E_n}$$

$$= \sum_{n=1}^{\infty} \int_{\coprod_{n=1}^{\infty} E_n} f \chi_{E_n} = \sum_{n=1}^{\infty} \int_{E_n} f d\mu$$

$$= \sum_{n=1}^{\infty} \nu(E_n),$$

which means that $\nu(\coprod_{n=1}^{\infty} E_n) = \int_{\coprod_{n=1}^{\infty} E_n} f d\mu$.

3. Let $\varepsilon > 0$. We wish to find a $\delta > 0$ such that $\mu(E) < \delta \implies |\nu(E)| < \varepsilon$.

7

From the solution of problem 1, the answer to the problem follows directly.

8

Note that |f(m,n)| = 1 for m = n and m = n + 1. Then

$$\int_{\mathbb{N}^2} |f(m,n)| dm(m,n) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |f(m,n)| = \sum_{p=1}^{\infty} |f(p,p)| + \sum_{q=1}^{\infty} |f(q+1,q)| = \infty.$$

Now we fix each variable and successively integrate. $\sum_{m=1}^{\infty} f(m, n_0) = f(n_0, n_0) + f(n_0 + 1, n_0) = 1 + (-1) = 0$. Thus $\sum_{n=1}^{\infty} 0 = 0$. If we fix m, and m > 1, then we have $\sum_{n=1}^{\infty} f(m, n) = f(m, m) + f(m, m-1) = 1 + (-1) = 0$. If m = 1, there is no n such that m = n + 1, so $\sum_{n=1}^{\infty} f(n, n) = f(1, 1) = 1$. Thus $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m, n) = 1 \neq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(m, n) = 0$.

9

10

Since $f(x) \cdot g(x) = 0$, we cannot have f(x) and g(x) nonzero for the same value of x almost everywhere. We divide our domain X into four disjoint parts $X = X_1 \sqcup X_2 \sqcup X_3 \sqcup X_4$, where X_1 is the set of all $x \in X$ where f is nonzero but g is zero; X_2 is the set of all $x \in X$ such that g is nonzero but f is zero; f is the set of all f and f are nonzero. We know that f and f are both zero, and f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero. We know that f is the set of all f and f are nonzero.

$$\mu'(E_B) = \mu'(E_B | \cap (X_1 \sqcup X_2 \sqcup X_3 \sqcup X_4)) = \int_{X_1 \cap E_B} f d\mu + \int_{X_2 \cap E_B} f d\mu + \int_{X_3 \cap E_B} f d\mu + \int_{X_4 \cap E_B} f d\mu.$$

We know that $E_B \cap X_1 = E_B \cap X_3 = E_B \cap X_4 = \phi$. Thus we have $\mu'(E_B) = \int_{E_B \cap X_2} f d\mu$. However, we know that f is zero on X_2 , hence $\mu'(E_B) = 0$.

Similarly, see that $\nu(E_A)$ should also be zero for E_A a measurable set on A. So see that

$$\nu(E_A) = \nu(E_A | \cap (X_1 \sqcup X_2 \sqcup X_3 \sqcup X_4)) = \int_{X_1 \cap E_A} g d\mu + \int_{X_2 \cap E_A} g d\mu + \int_{X_3 \cap E_A} g d\mu + \int_{X_4 \cap E_A} g d\mu.$$

We have $E_A \cap X_2 = \phi$, and we have that g is zero on X_1 and X_3 . Thus $\int_{E_A \cap X_1} g d\mu = \int_{E_A \cap X_3} g d\mu = 0$. Note that on X_4 the function may be non-zero, but $X_4 \cap E$ is a null set as it is a subset of X_4 , a μ -null set. Thus $\int_{E_A \cap X_4} g d\mu = 0$. (This exact question has been solved in 6). Thus we have $\nu(E_A) = 0$. Therefore $\mu' \perp \nu$.

##