OLIMPIADA DE FÍSICA DE MADRID- 2011 (tómese, donde se necesite, g= 9,81 m s⁻²)

1. Un coche recorre :	50 km a 40 km/l	n. La velocidad const	ante a la que recorre los si	iguientes 50 km para que la
velocidad media en los a) 50	b) 57,5	sea 50 km/h es, expres c) 60	sada en km/h: d) 66,7	
2. Dos partículas se er vertical de diámetro 21 otra desliza sin rozami circunferencia en el pupartícula 1 se encontra	R. Una de las par ento por una ram into B; cuando la	tículas, la 1, se deja ca pa de inclinación α q	aer libremente y la ue corta a la	. P
a) E	b) D	e) SD/2	d) C	
3. Una catapulta lanza horizontal). El ángulo ca) 17°				nto de lanzamiento (en suelo
	stante y horizont	al a con la que debe d		ansa un cuerpo de masa 2,0 echa a izquierda para que el
5. Un péndulo de longies de 30°. La velocidad a) 0,71 b) 1,09	tangencial de la			ángulo del cono en el vértice
	la escalera es 5,0			iso superior está a 8,0 m de debe realizar para llegar en
7. Un satélite está orbi 5,25x10 ⁶ m. La energía gravitatorio, es (en 10 ⁸ a) 1,10	ı mínima por uni J/kg):	de un planeta con un dad de masa que deb	na velocidad de 1,70x10 ⁴ e comunicársele para que d) 1,45	m/s, en una órbita de radio el satélite escape del campo
8. Dos masas de 10 ²⁰ k que un cohete de 10 ⁴	g están situadas kg se desplace o	en reposo en los pun desde el punto (0,0)	tos (0,10) y (0,-10). El tra	bajo mínimo necesario para (todas las distancias están
9. Un cilindro de altura no se hundiese, siendo i volumen total debería si Densidades: agua: 1000 a) 5,0	fabricado de acer er (en %):	o y corcho con las mi	ismas dimensiones, la prop	de corcho flotaría. Para que orción del acero respecto al
La temperatura de equil	ibrio será (en ° C	2);	g de agua a 10 °C y 150 g : 1 cal/g; vaporización del d) 40	de vapor de agua a 100°C. agua: 540 cal/g.

	mpo de 5,0 s. Si se ir	itrodujese una carga 4	el punto A una carga q positiva; està carg q, y de la misma masa que la anterior, en e	
a) i.0	5 6) 2.0	d) 2.5		
	\odot	€ ° €)	
	teradamente a repeti e adquirirá la bola 2 s	rse el proceso de carg	contacto con otra bola 2 descargada, cargá ar la primera con 10 μC y contactarla con la d) 10	
punto (-100;0)m y se 1,5)m y se mueve con	mueve con una ven la velocidad -3,00. B perpendicular a su (en T) es:	locidad de 3,00x10 ⁵ i x10 ⁵ i m/s. Cuando ar us velocidades; si am	amente 4x10 ⁻²⁶ kg y carga +1,60x10 ⁻¹⁹ C i m/s; una partícula idéntica está en el pu mbas partículas tienen la misma coordenac bas partículas colisionan frontalmente la	into (100; la x, actúa
a) 0,10	b) 0,15	c) 0,20	d) 0,40	
y concéntrica con la ai 0,50 s se gira la espira la corriente media que	nterior, y tiene una i pequeña alrededor d circula por la espira i	resistencia de 2,0 Ω. le su diámetro hasta q pequeña se <u>r</u> á (en nA):	riente de 6,0 A; otra espira de r= 2,0 cm es e Manteniendo constante la intensidad I= 6, ue los planos de ambas espiras sean perper el de la primera. $\mu_0 = 4\pi x 10^{-7} \text{ TmA}^{-1}$ d) 15, 6	0 A, si en
15. Una masa de 600 g masa de 300 g sin varia a) 0,20			cal con f= 1,0 Hz y A= 5,0 cm; cuando se or de (en s ⁻¹); d) 1,5	iñade otra
alumno cuando habla l	o hace con el mism	o nivel medio de inte	rel de intensidad sonora no supere los 64 di nsidad sonora, y todos lo hacen a la vez, e cada alumno para no superar el nivel total	i máximo
a) 38	b) 42	c) 46	d) 50	
ángulo de 45° con la no	rmal. Por encima de	la superficie del bence	,50) y dirige un haz hacia la superficie supeno existe inicialmente aire, pero se introduc sale del benceno; en ese momento, el índice	ce un gas y se
a) 1,06	b) 1,16	c) 1,21	d) 1,32	
	se coloca a 30 cm d		cia de 1,20 m, nos colocan un espejo peq nuca a una distancia de (en m):	ueño para

PROBLEMAS ABIERTOS

- **EXP1.** Una barra de cobre de longitud L= 1,20 m y sección recta A = (4,8±0,1) cm² está aislada térmicamente, y sus extremos se mantienen con una diferencia de temperaturas de ΔT = (100,0±0,5) °C mediante dos baños térmicos adecuados. La conductividad térmica del cobre es $K = (401\pm1)$ W m⁻¹ °C⁻¹ y la *ley de Fourier* establece que para una barra metálica homogénea la transferencia calorífica viene dada por la expresión $Q' = KA\frac{\Delta T}{L}$. Calcular:
 - a) el valor de la transferencia calorífica Q'.
 - b) la incertidumbre de Q', para lo cual deberán interpretarse adecuadamente los datos del enunciado.
 - c) establecer cual debería ser la precisión de la medida de la longitud de la barra para que la transferencia calorífica Q' se determinase con una incertidumbre no mayor del 4%.
- EXP2. Cuando un objeto cae libremente en un fluido se ve sometido a una fuerza de resistencia proporcional a la velocidad de caída, $F = K v^{\gamma}$, de tal forma que a partir de cierto momento el objeto cae con una velocidad constante, la velocidad crítica o límite, que resultaría de la condición expresada por $mg = K v_c^{\gamma}$.

Se desea medir, para cuerpos esféricos, la constante K característica del fluido y el exponente γ, para lo cual se deja caer una esfera hueca que se va rellenando con diferentes masas, y se mide su *velocidad crítica* de caída. Se obtiene la siguiente tabla de valores para diferentes masas de la esfera.

V(m/s)	2,20	1.99	1,90	1,71	1.29
m(kg)	100,5	74,8	70.0	51,2	25.0

Mediante la ecuación que expresa el valor de la velocidad crítica en función de la masa de la bola, calcular los valores de los coeficientes K y γ .

En la resolución se utilizará papel milimetrado, realizando los cálculos a partir de la representación gráfica. Podrá utilizarse también la calculadora científica para confirmar la solución obtenida a partir de la gráfica. Explíquese brevemente el procedimiento y las fórmulas que se utilicen.