

Classification: Logistic Regression

Computational Linguistics: Jordan Boyd-Graber University of Maryland

Slides adapted from Hinrich Schütze and Lauren Hannah

What are we talking about?

- Statistical classification: p(y|x)
- Classification uses: ad placement, spam detection
- Building block of other machine learning methods

Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- "Bias" β_0 (like intercept in linear regression)

$$P(Y = 0|X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
 (1)

$$P(Y=1|X) = \frac{\exp\left[\beta_0 + \sum_i \beta_i X_i\right]}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(2)

For shorthand, we'll say that

$$P(Y=0|X) = \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(3)

$$P(Y = 1|X) = 1 - \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
 (4)

• Where $\sigma(z) = \frac{1}{1 + exp[-z]}$

What's this "exp" doing?

Exponential

Logistic

- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.

What's this "exp" doing?

Exponential

Logistic

- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from **linear** regression

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

■ What does Y = 1 mean?

Example 1: Empty Document?

X = {}

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

What does Y = 1 mean?

Example 1: Empty Document?

$$X = \{\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} =$$

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1]} =$$

• $P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} =$

featu	re	coefficie	nt '	weight
bias	;	eta_0		0.1
"viagr	a"	$oldsymbol{eta}_1$		2.0
"moth	er"	eta_2		-1.0
"work	ς"	eta_3		-0.5
"niger	ia"	eta_4		3.0

■ What does Y = 1 mean?

Example 1: Empty Document?

$$X = \{\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = 0.52$$

 Bias β₀ encodes the prior probability of a class

feature	coefficient	weight
bias	$oldsymbol{eta}_0$	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 2 $X = \{Mother, Nigeria\}$

■ What does Y = 1 mean?

	feature	coefficient	weight
	bias	eta_0	0.1
	"viagra"	$oldsymbol{eta}_1$	2.0
	"mother"	eta_2	-1.0
	"work"	eta_3	-0.5
_	"nigeria"	eta_4	3.0

■ What does *Y* = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} =$$

■
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$

Include bias, and sum the other weights

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

■ What does *Y* = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 + 3.0]} = 0.11$$

$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = 0.88$$

Include bias, and sum the other weights

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3 $X = \{Mother, Work, Viagra, Mother\}$

■ What does Y = 1 mean?

coefficient	weight
eta_0	0.1
$oldsymbol{eta}_1$	2.0
eta_2	-1.0
eta_3	-0.5
eta_4	3.0
	$eta_0 \ eta_1 \ eta_2 \ eta_3$

■ What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} =$$

$$\begin{array}{c} \bullet \ \ P(Y=1) = \\ \frac{\exp\left[0.1 - 1.0 - 0.5 + 2.0 - 1.0\right]}{1 + \exp\left[0.1 - 1.0 - 0.5 + 2.0 - 1.0\right]} = \end{array}$$

 Multiply feature presence by weight

feature	coefficient	weight
bias	β_0	0.1
"viagra"	β_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

■ What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$$

$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.30$$

 Multiply feature presence by weight

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta,x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta,x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$rg \max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j) \right]$$

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta,x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$\arg\max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \le i \le n_d} \ln \hat{P}(w_i | c_j) \right]$$

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta,x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

$$arg \max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \le i \le n_d} \ln \hat{P}(w_i | c_j) \right]$$

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)

Contrasting Naïve Bayes and Logistic Regression

- Naïve Baves easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)
- Don't need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression

Next time . . .

- How to learn the best setting of weights
- Regularizing logistic regression to encourage sparse vectors
- Extracting features