Composition $n^2 - Physique-Chimie - 1^{ere} 1-5 - Mars 2022 - (2heures)$

Exercice 1: « Comparer la force de gravitation » (4 pts)

Données:

Terre

M_T = 5,97 x 10²⁴ kg

Distance moyenne Soleil-Jupiter : $d_{SJ} = 7,79 \times 10^8 \text{ km}$; Distance moyenne Soleil-Terre : $d_{ST} = 1,50 \times 10^8 \text{ km}$ Constante de gravitation universelle : $G = 6,67 \times 10^{-11} \text{ N.m}^2 \cdot \text{kg}^{-2}$.

Jupiter est la plus grosse et la plus massive des planètes du système solaire.

- 1. Donner l'expression vectorielle de la force exercée par le Soleil sur Jupiter.
- 2. Calculer l'intensité de cette force, qu'on notera F₁.
- Notre planète bleue du système solaire est la seule planète habitable.
 Calculer l'intensité de la force de gravitation exercée par le Soleil sur la Terre, qu'on notera F₂.
- **4.** Comparer **F**₁ et **F**₂ puis conclure.

Exercice 2: « Le sel de table » (5 pts)

Le sel de table ou chlorure de sodium est un arrangement ordonné (cristal) d'ions chlorure et d'ions sodium.

Données:

 $\mathbf{k} = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}.$ $\mathbf{e} = 1.6 \times 10^{-19} \text{ C}.$ $\mathbf{d1} = 282 \text{ pm}$ $\mathbf{d2} = 399 \text{ pm}$

1 \mathbf{p} = 1 x 10⁻¹².

- 1. Calculer la valeur des forces électrostatiques s'exerçant entre :
- **a.** Un ion sodium et un ion chlorure voisins ;
- **b.** Deux ions sodium les plus proches ;
- **c.** Deux ions chlorure les plus proches.
- 2. Proposer une explication sur la cohésion du cristal du sel de table.

Exercice 3: « Synthèse de la vanilline et Titrage» (6 pts)

Données:

. Isoeugénol: nocif en cas d'ingestion, irritant pour les yeux, les voies respiratoires et la peau:

 $M_1 = 164,2 \text{ g.mol}^{-1}$; $d_1 = 1,08$;

- . Anhydride éthanoïque : corrosif, inflammable, provoque des brûlures. Réagit avec l'eau en formant de l'acide éthanoïque : $M_2 = 102,1 \text{ g.mol}^{-1}$; $d_2 = 1,08$; $\rho_{eau} = 1,0 \text{ g.mL}^{-1}$.
- . Acétate d'isoeugénol :

 $M_3 = 206,2 \text{ g.mol}^{-1}$; $T_{\text{fusion}} = 80^{\circ}\text{C}$.

$$C_{10}H_{12}O_2$$
 + $C_4H_6O_3$ \longrightarrow $C_{12}H_{14}O_3$ + $C_2H_4O_2$

Isoeugénol + Anhydride éthanoïque Acétate d'isoeugénol + Acide éthanoïque

Voici le mode opératoire de la synthèse de l'acétate d'isoeugénol qui constitue la première étape de la synthèse de la vanilline :

- . introduire $m_1 = 10,0$ g d'isoeugénol, $V_2 = 20,0$ mL d'anhydride éthanoïque et quelques gouttes d'acide orthophosphorique dans un ballon ;
- . chauffer à reflux pendant 30 minutes ;
- . filtrer sous vide et laver les cristaux formés avec de l'eau glacée.
- 1.Un groupe de TP a obtenu m₃ = 11,3 g de cristaux d'acétate d'isoeugénol. Calculer le rendement de leur synthèse.
- **2.** On réalise le titrage d'une eau oxygénée par les ions permanganate. L'eau oxygénée est une solution de peroxyde d'hydrogène dont la formule est H_2O_2 . Le peroxyde d'hydrogène participe à un couple oxydant réducteur $O_2(g)/H_2O_2(aq)$. Les ions permanganate MnO_4^- participent au couple oxydant réducteur $MnO_4^-(aq)/Mn^{2+}(aq)$.
- a. Légender le montage du titrage suivant : (sans refaire le dessin)

- **b.** Écrire l'équation de la réaction de titrage.
- **3.** On note C_1 la concentration de l'eau oxygénée, C_2 la concentration en ions permanganates, V_1 et V_2 les volumes des deux solutions à l'équivalence. Déterminer la relation à l'équivalence.
- **4.** La solution d'ions permanganate est dans la burette avec [MnO_4 -] = 0,02 $mol\cdot L^{-1}$. Dans l'erlenmeyer, on a placé $V_1 = 10 \ mL$ d'eau oxygénée. L'équivalence est repérée par l'arrêt de la décoloration de la solution de permanganate de potassium. La solution dans l'erlenmeyer passe de l'incolore au violet. Le volume à l'équivalence est $V_2 = 60 \ mL$.

Déterminer la concentration en quantité de matière (concentration molaire) du peroxyde d'hydrogène dans l'eau oxygénée.

On donnera la réponse avec 2 chiffres significatifs et suivie de l'unité qui convient.

Exercice 4: « Composition du carburant E 15 » (5 pts)

Données	Liaison	Énergie de liaison E ℓ en (kJ . mol⁻¹)
Formule développée de l'éthanol	C-H	413
H H H - C - C - O - H H H	C-C	348
	C-O	360
	0=0	496
	О-Н	463
	C=O	804
M (éthanol) = 46 g.mol ⁻¹	C=O dans CO ₂	796

Le carburant **E 15**, mélange d'essence et d'agroéthanol, limite la consommation d'énergie fossile.

- **1.** Écrire l'équation de la réaction de combustion complète de l'éthanol $C_2H_6O(\ell)$.
- **2.** Estimer l'énergie molaire de combustion de l'éthanol.
- **3.** Calculer le pouvoir calorifique de l'éthanol.

* Correction de la Composition n = 2-1 en 2021/2022*
Exercice 1 (4Pts)
1 1. L'expression vectorielle de la force exercée par le soleil sur Jupiter:
$F_{S/J} = G \times \frac{M_S \times M_J}{12} \cdot \vec{u}_{SJ}$
1 2. L'intensité de $f_{5/5} = f_1 = G \times \frac{H_S \times H_J}{d_{5/5}} = 6,67 \times 10^{-11} \frac{1,99 \times 10^{30}}{(7,79 \times 10^8 \times 10^3)^2}$ On trouve: $f_4 = 4,16 \times 10 \text{ N}$
T ₄ = 4, 16 × 10 N
1) 3. L'intensité de la force de gravitation exercé par le Solut sur la Terre est:
$F_{S/T} = F_2 = G_{\times} \underbrace{M_{S} \times \Pi_{T}}_{\text{ds}_{T}^{*}} = 6, b7 \times 10^{21} \underbrace{1,99 \times 10^{30} \times 5,97 \times 10^{24}}_{\text{(1,50 \times 10^{3})}^{2}}$ On hence: $F_2 = 3,52 \times 10^{22} \text{N}$
1 4. Camparaisan entre Fi et Fz:
1.11
$\frac{1}{F_2} = \frac{4,16\times10}{3,52\times10^{22}} = 11,8 \approx 12 \text{donc} F_3 = 12\times F_2 \text{malgre gue}$ $\frac{ds_5}{ds_7} = \frac{7,49\times10^8}{1,50\times10^8} = 5,2 = 5$ $\frac{ds_5}{ds_7} = \frac{7,49\times10^8}{1,50\times10^8} = 5,2 = 5$ $\frac{ds_7}{ds_7} = \frac{7,49\times10^8}{1,50\times10^8} = 5,2 = 5$
Exercise 2 (5 pts)
15/10 L'intensité de la Lorce flectronte prance entre (Not) et (C)
F _{2/4} = F ₂ = K × [9 ₁ x 9 ₂] = K × ex e = (K × (e) ²)
$F_{2/4} = F_{2/2} = K \times \frac{ 9_{1} \times 9_{2} }{d_{1}^{2}} = K \times \frac{e_{1} e }{d_{1}^{2}} = K \times \frac{e_{2} e }{d_{1}^{2}} = K \times \frac{e_{3} e }{d_{1}^{2}} = K \times \frac{e_{3} e }{d_{1}^{2}} = K \times \frac{e_{3} e }{d_{1}^{2}} = F_{3} \times 10^{-9} \text{N} = F_{3}$
15 b. L'intensité de la force électrostatique entre (Nat) et (Nat)
15 b. L'intensik de la force Electrostatique entre Nat et Nat $\frac{d1}{d3}$ $F_{N_A} = K \frac{ q_1 \times q_1 }{d3^2} = K \times \frac{e^2}{2 d_1^2} = \frac{1}{2} K \left(\frac{e}{d_1}\right)^2 = \frac{F_{N_2}}{2}$
1 c. L'intensité de la force électrostatique entre (di) et (d) Frito de
$F_{2/2} = K \frac{ q_2 \times q_2 }{d_2^2} = K \frac{ e^- \times e^- }{d_2^2} = K \times \left(\frac{e}{d_2}\right)^2$
$= 9.0 \times 10^{9} \times \left(\frac{1.6 \times 10^{-19}}{399 \times 10^{-12}} \right)^{2} = 1.5 \times 10^{-9} = \frac{1}{3}$

Exercice 4: (5pts) 1. L'équation de réaction de combustion complète de l'éthand (C2H6O)(1) $C_2H_6O_{(4)} + 30_{2(4)} \rightarrow 2C0_{2(4)} + 3H_2O_{(4)}$ 2 2. - Énegie molaire de combustion Ecomb de l'éthanol, au cours de la Combrustin d'une mole d'éthanol, * Les liaisons vompues: 1 x 5 moles de liaisons C-H E E rampues = 5 x & (C-H)+ 1 x E (C-O)+1 & (O-H) 1 × 1 mole de liaisons C-O +1xE,(C-C)+3xE,(0=0) 1 x 1 mole de liaisons H-0 El romprus = 5x 413+1x360+1x463+1x348+3x496 1 x 1 mole de liaisons C-C 3 x 1 mole de liaisons 0=0 = 4,72×103 KJ. mol-1 * Les liaisons formées: 2 x 2 moles de liaisons C=0 { Elfernées = 4x Ez (c=0) + 6x Ez (H-0) 3 x 2 moles de liaisens H-0 =4 x 796+6 x 463 = 5,96x 103 K.T. mol-1 (C240) = 5 mpues - Elforniees = 4,72×103 5,96×103 = -1,24×10 k J.mol 3 = Le Fouvoir Calorifique PC de l'éthanol: Ecomb = - Mx PC Soit (PC = - Ecomb) ou (PC = 1 Ecomb); PC = - 1,24×103 46.103 PC = 26,9×103 kJ. kg-1 = 26,9 M J. kg-1