Assignment 1

Oguzhan Yetkin, Oleg Litvinov, Victor Retamal, group 4

15 March 2022

Exercise 2. Airpollution.

The data were obtained to determine predictors related to air pollution. We want to investigate which explanatory variables need to be included into a linear regression model with oxidant as the response variable.

```
pollution_df <- read.table("data/airpollution.txt", header=TRUE)
head(pollution_df)</pre>
```

```
##
     day wind temperature humidity insolation oxidant
## 1
                          77
                                                 78
        1
            50
                                    67
## 2
                          80
                                                 77
        2
            47
                                    66
                                                          20
## 3
        3
            57
                          75
                                    77
                                                 73
                                                          13
            38
                          72
                                    73
                                                 69
                                                          21
## 5
        5
            52
                          71
                                    75
                                                 78
                                                          12
                          74
                                    75
                                                 80
## 6
            57
                                                          12
```

a) Make some graphical summaries of the data. Investigate the problem of potential and influence points, and the problem of collinearity.

ellipses = TRUE # show correlation ellipses

b) Use the added variable plot to depict the relationship between response oxidant and predictor wind. What is the meaning of the slope of fitted regression for this scatter plot?

```
if (!require("car")) install.packages("car")

## Loading required package: car

## Loading required package: carData

##

## Attaching package: 'car'

## The following object is masked from 'package:psych':

##

## logit

library(car)

attach(pollution_df)

mod = lm(oxidant~insolation+humidity+wind)

par(mfrow=c(2, 1))
avPlots(mod)
```

Added-Variable Plots

summary (mod)

```
##
## Call:
## lm(formula = oxidant ~ insolation + humidity + wind)
##
## Residuals:
##
       Min
                1Q
                    Median
                                3Q
                                       Max
## -7.3630 -2.4212 0.5585 3.0466 5.4644
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.65768
                           7.67492
                                      4.385
                                            0.00017 ***
                                      2.370
                                            0.02550 *
## insolation
                0.12984
                           0.05479
## humidity
               -0.03266
                           0.07288
                                    -0.448
                                            0.65775
                                    -5.122 2.44e-05 ***
## wind
               -0.54037
                           0.10550
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 3.693 on 26 degrees of freedom
## Multiple R-squared: 0.6639, Adjusted R-squared: 0.6251
## F-statistic: 17.12 on 3 and 26 DF, p-value: 2.423e-06
```

The slopes on the plots reflect the regression coefficients from the original miltiple regression model mod.

```
attach(pollution_df)

## The following objects are masked from pollution_df (pos = 3):
##
```

```
## day, humidity, insolation, oxidant, temperature, wind
y = residuals(lm(oxidant~insolation+humidity))
x = residuals(lm(wind~insolation+humidity))
```

```
x = residuals(lm(wind~insolation+humidity))
plot(x, y, xlab='residual of wind', ylab='residual of oxidant')
```


c) Fit a linear regression model to the data. Use both the step-up and step-down methods to find the best model. If step-up and step-down yield two different models, choose one and motivate your choice.

```
for(i in names(pollution_df)){
  if(i == 'oxidant'){next}
  # summary(lm(oxidant~i))
  print(summary(lm(paste('pollution_df$oxidant', '~pollution_df$', i))))
}
```

Step-up

```
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$",
## i))
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -11.3373 -3.8537 0.1298 5.5403
                                        9.1613
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   13.68966
                               2.28580
                                         5.989 1.89e-06 ***
## pollution_df$day 0.07164
                               0.12876
                                         0.556
                                                  0.582
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.104 on 28 degrees of freedom
## Multiple R-squared: 0.01093, Adjusted R-squared:
## F-statistic: 0.3095 on 1 and 28 DF, p-value: 0.5824
##
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$",
##
      i))
##
## Residuals:
      Min
               1Q Median
##
                               30
                                      Max
## -9.9266 -2.5923 0.2065 2.6636 6.9077
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     45.3171
                               4.8976 9.253 5.19e-10 ***
                                 0.1005 -6.300 8.20e-07 ***
## pollution_df$wind -0.6331
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.948 on 28 degrees of freedom
## Multiple R-squared: 0.5863, Adjusted R-squared: 0.5715
## F-statistic: 39.68 on 1 and 28 DF, p-value: 8.205e-07
##
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$",
##
      i))
##
## Residuals:
      Min
                               30
               1Q Median
## -6.9400 -2.2138 0.3775 2.5550 10.9099
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                           -46.4292
                                        9.9542 -4.664 6.94e-05 ***
## pollution_df$temperature
                           0.7850
                                        0.1273
                                                6.168 1.17e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 3.997 on 28 degrees of freedom
## Multiple R-squared: 0.576, Adjusted R-squared: 0.5609
## F-statistic: 38.04 on 1 and 28 DF, p-value: 1.167e-06
##
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$",
       i))
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                           Max
                      0.8782
## -10.3358 -4.0749
                               4.7800
                                         8.7957
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         27.4446
                                      6.4368
                                              4.264 0.000206 ***
## pollution_df$humidity -0.2088
                                     0.1049 -1.991 0.056317 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.745 on 28 degrees of freedom
## Multiple R-squared: 0.124, Adjusted R-squared: 0.09273
## F-statistic: 3.964 on 1 and 28 DF, p-value: 0.05632
##
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$",
##
       i))
##
## Residuals:
##
      Min
                1Q Median
                                3Q
## -8.9723 -4.4841 -0.3281 4.7631 8.2686
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          -1.43279
                                      5.32967 -0.269 0.79003
## pollution_df$insolation 0.22993
                                      0.07424
                                                3.097 0.00441 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.297 on 28 degrees of freedom
## Multiple R-squared: 0.2552, Adjusted R-squared: 0.2286
## F-statistic: 9.592 on 1 and 28 DF, p-value: 0.004411
```

Wind variable gives maximum increase in the R^2. The variable is significant. Therefore, we can continue.

```
for(i in names(pollution_df)){
  if(i %in% c('oxidant', 'wind')){next}
 print(summary(lm(paste('pollution_df$oxidant', '~pollution_df$wind+pollution_df$', i))))
}
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$wind+pollution_df$",
##
       i))
##
## Residuals:
                1Q Median
##
      Min
                                3Q
                                       Max
## -9.4129 -2.5621 0.4498 2.3827
                                   7.9267
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     47.84224
                                 5.62785
                                          8.501 4.10e-09 ***
## pollution_df$wind -0.65984
                                 0.10489 -6.291 9.87e-07 ***
## pollution_df$day -0.07986
                                 0.08691 - 0.919
                                                    0.366
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.959 on 27 degrees of freedom
## Multiple R-squared: 0.5989, Adjusted R-squared: 0.5691
## F-statistic: 20.15 on 2 and 27 DF, p-value: 4.411e-06
##
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$wind+pollution_df$",
##
       i))
##
## Residuals:
      Min
                10 Median
                                30
                                       Max
## -6.3939 -1.8608 0.5826 1.9461 4.9661
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            -5.20334
                                      11.11810 -0.468
                                                           0.644
## pollution_df$wind
                                        0.08645 -4.940 3.58e-05 ***
                            -0.42706
## pollution_df$temperature 0.52035
                                        0.10813
                                                 4.812 5.05e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.95 on 27 degrees of freedom
## Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608
## F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09
##
```

```
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$wind+pollution_df$",
       i))
##
##
## Residuals:
      Min
                1Q Median
                                3Q
## -9.8120 -2.2808 0.3433 3.0476 5.8757
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                               8.251 7.38e-09 ***
                         46.91570
                                     5.68573
                                     0.10971 -5.556 6.86e-06 ***
## pollution_df$wind
                         -0.60955
## pollution_df$humidity -0.04516
                                     0.07866 - 0.574
                                                        0.571
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.996 on 27 degrees of freedom
## Multiple R-squared: 0.5913, Adjusted R-squared: 0.561
## F-statistic: 19.53 on 2 and 27 DF, p-value: 5.674e-06
##
##
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$wind+pollution_df$",
##
       i))
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -7.2119 -2.7198 0.4815 2.8733 6.2012
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           32.32615
                                       6.97098
                                                 4.637 8.07e-05 ***
## pollution_df$wind
                           -0.55639
                                       0.09778 -5.690 4.81e-06 ***
## pollution df$insolation 0.13161
                                       0.05383
                                                 2.445
                                                         0.0213 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.638 on 27 degrees of freedom
## Multiple R-squared: 0.6613, Adjusted R-squared: 0.6362
## F-statistic: 26.36 on 2 and 27 DF, p-value: 4.491e-07
Temperature variable works in the same way as the previous choice. Continue.
for(i in names(pollution_df)){
  if(i %in% c('oxidant', 'wind', 'temperature')){next}
 print(summary(lm(paste('pollution_df$oxidant',
                         '~pollution_df$wind',
```

```
'+pollution_df$temperature',
                         '+pollution_df$',
                         i))))
}
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$wind",
       "+pollution_df$temperature", "+pollution_df$", i))
##
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -6.9010 -1.3477 0.1596 1.7766
                                   3.9405
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            -2.98987
                                       10.94466 -0.273
## pollution df$wind
                            -0.45604
                                        0.08644 -5.276 1.63e-05 ***
                                        0.10568
## pollution_df$temperature 0.52918
                                                5.008 3.29e-05 ***
## pollution_df$day
                            -0.09711
                                        0.06328 - 1.535
                                                           0.137
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.878 on 26 degrees of freedom
## Multiple R-squared: 0.7958, Adjusted R-squared: 0.7722
## F-statistic: 33.78 on 3 and 26 DF, p-value: 4.042e-09
##
##
## Call:
## lm(formula = paste("pollution_df$oxidant", "~pollution_df$wind",
##
       "+pollution_df$temperature", "+pollution_df$", i))
##
## Residuals:
      Min
                1Q Median
                                3Q
                                       Max
## -6.5887 -1.1686 0.1978 1.9004 4.1544
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                        13.07154 -1.270
                                                            0.215
                            -16.60697
## pollution_df$wind
                             -0.44620
                                         0.08513 -5.241 1.78e-05 ***
## pollution_df$temperature
                              0.60190
                                         0.11764
                                                   5.117 2.47e-05 ***
## pollution_df$humidity
                              0.09850
                                         0.06316
                                                   1.559
                                                            0.131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.874 on 26 degrees of freedom
## Multiple R-squared: 0.7964, Adjusted R-squared: 0.7729
```

```
## F-statistic: 33.89 on 3 and 26 DF, p-value: 3.904e-09
##
##
## Call:
## lm(formula = paste("pollution df$oxidant", "~pollution df$wind",
       "+pollution_df$temperature", "+pollution_df$", i))
##
##
## Residuals:
      Min
              1Q Median
                            3Q
                                  Max
## -6.407 -2.056 1.012 1.760
                                4.792
##
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                            -4.45496
                                       11.26714 -0.395 0.695778
## pollution_df$wind
                            -0.42353
                                        0.08737 -4.848 5.02e-05 ***
## pollution_df$temperature 0.47558
                                        0.12564 3.785 0.000816 ***
## pollution_df$insolation
                             0.03646
                                        0.05071
                                                  0.719 0.478636
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.976 on 26 degrees of freedom
## Multiple R-squared: 0.7816, Adjusted R-squared: 0.7565
## F-statistic: 31.02 on 3 and 26 DF, p-value: 9.583e-09
Humidity has the highest R-squared increase but the variable is not significant. Therefore, we don't
add it to the model. Resulting model is:
print(summary(lm(pollution_df$oxidant~pollution_df$wind+pollution_df$temperature)))
##
## Call:
## lm(formula = pollution_df$oxidant ~ pollution_df$wind + pollution_df$temperature)
## Residuals:
       Min
                1Q Median
                                30
## -6.3939 -1.8608 0.5826 1.9461 4.9661
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                       11.11810 -0.468
                            -5.20334
                                                            0.644
## pollution_df$wind
                            -0.42706
                                        0.08645
                                                 -4.940 3.58e-05 ***
## pollution_df$temperature 0.52035
                                        0.10813
                                                  4.812 5.05e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.95 on 27 degrees of freedom
## Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608
## F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09
```

```
Step-down
##
## Call:
## lm(formula = pollution_df$oxidant ~ pollution_df$wind + pollution_df$temperature +
      pollution_df$day + pollution_df$humidity + pollution_df$insolation)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
## -6.6920 -1.1675 0.2582 1.8289 4.0773
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          -12.04010 21.20961 -0.568 0.57553
## pollution_df$wind
                           -0.44749
                                    0.09103 -4.916 5.14e-05 ***
## pollution_df$temperature
                          0.55714
                                      0.15347
                                               3.630 0.00133 **
## pollution_df$day
                           -0.02997
                                      0.13995 -0.214 0.83227
## pollution_df$humidity
                            0.06818
                                      0.13336
                                                0.511 0.61384
## pollution_df$insolation
                            0.01822
                                      0.05583
                                                0.326 0.74694
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.977 on 24 degrees of freedom
## Multiple R-squared: 0.7984, Adjusted R-squared: 0.7564
## F-statistic: 19.01 on 5 and 24 DF, p-value: 1.203e-07
Day has the largest p-value and the value is larger than 0.05. Removing it.
summary(lm(pollution_df$oxidant ~ pollution_df$wind + pollution_df$temperature + pollution_df$;
##
## Call:
## lm(formula = pollution_df$oxidant ~ pollution_df$wind + pollution_df$temperature +
      pollution_df$humidity + pollution_df$insolation)
##
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -6.5861 -1.0961 0.3512 1.7570 4.0712
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          -15.49370
                                      13.50647 -1.147 0.26219
## pollution_df$wind
                           -0.44291
                                      0.08678 -5.104 2.85e-05 ***
                                      0.13977
## pollution_df$temperature
                            0.56933
                                                4.073 0.00041 ***
```

0.09292

0.06535

1.422 0.16743

pollution_df\$humidity

```
## pollution_df$insolation
                             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.92 on 25 degrees of freedom
## Multiple R-squared: 0.798, Adjusted R-squared: 0.7657
## F-statistic: 24.69 on 4 and 25 DF, p-value: 2.279e-08
Insolation is the largers from the insignificant. Removing it.
summary(lm(pollution df$oxidant~ pollution df$wind + pollution df$temperature + pollution df$h
##
## Call:
## lm(formula = pollution_df$oxidant ~ pollution_df$wind + pollution_df$temperature +
      pollution_df$humidity)
##
## Residuals:
               1Q Median
                               30
## -6.5887 -1.1686 0.1978 1.9004 4.1544
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                                     13.07154 -1.270
## (Intercept)
                           -16.60697
## pollution_df$wind
                                     0.08513 -5.241 1.78e-05 ***
                            -0.44620
## pollution_df$temperature 0.60190
                                       0.11764
                                                 5.117 2.47e-05 ***
## pollution_df$humidity
                                       0.06316
                                                1.559
                             0.09850
                                                          0.131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.874 on 26 degrees of freedom
## Multiple R-squared: 0.7964, Adjusted R-squared: 0.7729
## F-statistic: 33.89 on 3 and 26 DF, p-value: 3.904e-09
Humidity is the only insignificant. Removing.
summary(lm(pollution_df$oxidant~ pollution_df$wind + pollution_df$temperature))
##
## Call:
## lm(formula = pollution_df$oxidant ~ pollution_df$wind + pollution_df$temperature)
## Residuals:
      Min
               1Q Median
                               3Q
## -6.3939 -1.8608 0.5826 1.9461 4.9661
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     11.11810 -0.468
                           -5.20334
                                                         0.644
## pollution_df$wind
                           -0.42706
                                      0.08645 -4.940 3.58e-05 ***
```

```
## pollution_df$temperature 0.52035   0.10813   4.812 5.05e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.95 on 27 degrees of freedom
## Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608
## F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09
```

All remaining variables are significant. Resulting model: oxidant = -5.2 - 0.4 wind + 0.5 temperature + error, with R-squared = 0.8. The model is the same as obtained with the step-up approach.

d) Determine 95% confidence and prediction intervals for oxidant using the model you preferred in c) for wind=33, temperature=54, humidity=77 and insolation=21.

```
x1 <- pollution_df$wind</pre>
x2 <- pollution_df$temperature</pre>
mod = lm(pollution_df$oxidant ~ x1 + x2)
newxdata = data.frame(x1=33, x2=54)
predict(mod, newxdata, interval='prediction', level=0.95)
##
         fit
                     lwr
                              upr
## 1 8.80281 -0.5617877 18.16741
predict(mod, newxdata, interval='confidence', level=0.95)
##
         fit
                   lwr
                            upr
## 1 8.80281 1.656548 15.94907
```