RANDOM VARIABLES 1-D PS-4

1) If the probability distribution of X is given as: Find P [1/2 < X < 7/2 / X > 1]

X:	1	2	3	4
P (x):	0.4	0.3	0.2	0.1.

2) Verify whether f(x) = |x| in $-1 \le x \le 1$

0 else

can be the pdf a RV.

- 3) If $f(x) = kx^2$, 0 < x < 3 is to be the density function, find the value of k.
- 4) Find the value of k, if $f(x) = kxe^{-x}$ x>0

0 else is the pdf of a RV X.

- 5) If the pdf of a RV X is f(x) = k(x/2) in 0 < X < 2, find p(X > 1.5 / X > 1).
- 6) A discrete RV X has the following probability distribution.

X	0	1	2	3	4	5	6	7	8
p(x)	a	3a	5a	7a	9a	1a	13a	15a	17a

Find p(x < 3), p(X < 7 / X > 3)

7) The probability function of a RV X is defined as,

-									
	X	0	1	2	3	4	5	6	7
	p(x)	0	a	2a	2a	3a	a^2	$2a^2$	$7a^2 + a$

Find $p(X \le 2)$ $p(X > 2 / X \le 5)$ $p(X < \frac{7}{2} / X > 0)$

- 8) If the probability mass function of a RV X is given by $p(X=R) = Kr^3$; r= 1, 2, 3, 4, find P(1/2 < X < 5/2 / X > 1). Also find mean and variance of X
- 9) The diameter of an electric cable X is a RV with pdf f(x) = kx(1-x), $0 \le x \le 1$. Find (i) the value of such that $P(X \le a) = 2P(X \ge a)$ and

(ii)
$$P(X \le \frac{1}{2} / \frac{1}{3} < X < \frac{2}{3})$$
.

10) A RV that can assume values between x=2 and x=5 has a density function given by f(x) = 2(1+x)/27. Find P (3 < X < 4).

- 11) An experiment consists of four tosses of a coin. Denoting the outcomes HHTH, THTT... and assuming that all 16 outcomes are equally likely, find the probability distribution for the total number of heads.
- 12) Check whether the following can define probability distribution, and explain your answers.
- a) f(x) = x/15 for x=0,1,2,3,4,5; b) $f(x)=(5-x^2)/6$ for x=0,1,2,3; c) $f(x)=\frac{1}{4}$ for x=3,4,5,6
- d) f(x)=(x+1)/25 for x = 1,2,3,4,5
- 13) Given that $f(x) = K/2^x$ is a probability distribution for a RV that can take on the values x=0, 1, 2, 3, 4 find K.
- 14) A manufacturer of digital phones has the following probability distribution for the number of defects per phone

X	:	0	1	2	3
f(x)	:	0.89	0.07	0.03	0.01

- a) Determine the probability of 2 or more defects. b) Is a randomly selected phone more likely to have 0 defects or 1 or more defects?
- 15) If the probability density of a random variable is given by $f(x) = \begin{cases} Kx & 0 < x < 1 \\ 0 & else \end{cases}$. Find the probability that the RV takes on a value a) b/w 1/4 & 3/4. b) Greater than 2/3.
- 16) If the probability density of a RV is given by $f(x) = x \ 0 < x < 1,2-x \ 1 \le x < 2$, 0 elsewhere. Find the probability that a RV having this probability density will take on a value a) b/W 0.2 & 0.8; b) b/w 0.6 & 1.2.
- 17) Given that probability density $f(x) = K/(1+x^2)$ for $-\infty < x < \infty$, find K.
- 18) Let the phrase error in a tracking device have probability density $f(x) = \cos x < 0 < x < \pi / 2$, = 0 elsewhere. Find the probability that the phrase error is a) b/w 0 and $\pi / 4$. b) Greater than $\pi / 3$.
- 19) The mileage (in thousands of miles) that car owners get with a certain kind of tire is a random variable having the probability density, $f(x) = \{(1/20) e^{-x/20} \text{ for } x > 0, 0 \text{ } x \le 0. \text{ find the probability that one of these tires will that a) at most 10,000 miles; b) Anywhere from 16,000 to 24,000 miles; c) at least 30,000 miles.$

- 20) In a certain city, the daily consumption of electric power (in million kilowatt) is random variables having the probability density, $f(x) = (1/9) xe^{-x/3}$ for x>0, and 0 for $x \le 0$. If the city's power plant has a daily capacity of 12 million kilowatt-hours, what is the probability that this power supply will be inadequate on any given day?
- 21) If the probability density of a RV I given by $f(x) = \{K (1-x^2) \text{ for } 0 \le x \le 1, 0 \text{ elsewhere.} \}$ Find the values of K and the probabilities that a RV having the probability density will take on a value a) b/w 0.1 & 0.2; b) greater than 0.5.
- 22) In certain experiments, the error made in determining the density of a silicon compound is a RV having the probability density $f(x) = \{25 \text{ for } -0.02 \le x \le 0.02, 0 \text{ elsewhere.} \}$ Find the probability that such an error will be a) b/w -0.03 & 0.04; b) b/w -0.005 & 0.005.
- 23). A random variable X has the following probability distribution.

X:	-2	-1	0	1	2	3	
P (x):	0.1	k	0.2	2k	0.3	3k.	

Evaluate P (X < 2) and (-2 < X < 2), also evaluate the mean and variance of X.

- 24). The Probability function of an infinite discrete distribution is given by $P(X = j) = (1/2)^{j}$ (j = 1, 2,). Find the mean and variance of the distribution. Find also $P(X \ge 5)$ and P(X is divisible by 3).
- 25). A Random variable X has the following probability distribution.

$$X: 0 1 2 3 4 5 6 7$$

 $P(x): 0 k 2k 2k 3k k^2 2k^2 7k^2 + k$

Find mean and variance of X.Also find $E(2x-9) E(x^2 + x-10) V(2x+5)$

26) If
$$p(x) = \begin{cases} x e^{-x^2/2} & x \ge 0 \\ 0 & x < 0 \end{cases}$$
 Show that $p(x)$ is a pdf of a RV X) and find mean and variance of X.

- 27). A RV X has a pdf $f(x) = Kx^2 e^{-x}$; $x \ge 0$. Find mean and Variance.
- 28). The RVX has the following probability distribution:

X:	-2	-1	0	1	Ein d 4le
P (x):	0.4	k	0.2	0.3	Find the

Find the mean value of X.

- 29). In a distribution, the probability density is given by f(x) = kx (2-x), $0 \le x \le 2$. Find mean, variance
- 30). X is a RV with pdf given by f(x) = kx, in $0 \le x \le 2$; = 2k, in $2 \le x \le 4$, and = 6k - kx, in $4 \le x \le 6$. Find the value mean and variance of X
- 31). Suppose that the probabilities are 0.4.0.3, 0.2, and 0.1 that there will be 0.1.2, or 3 power failures in a certain city during the month of July. Find μ and σ^2 .
- 32). The following table gives the probabilities that a certain computer will malfunction 0,1,2,3,4,5 or 6 times on any one-day: Find μ and σ^2

Number of malfunctions:	0	1	2	3	4	5	6
X							
Probability: f(x)	0.17	0.29	0.27	0.16	0.07	0.03	0.01

33). Find the mean and the variance of the uniform probability distribution given by

$$f(x) = \frac{1}{n}$$
 for x = 1,2,3,...,n

 $f(x) = \frac{1}{n} \qquad \text{for } x = 1,2,3,...,n$ 34). Find μ and σ^2 for the probability density of $f(x) = \begin{cases} kx^3 & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$

35). Find
$$\mu$$
 and σ^2 for the probability density of $f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 2 - x & \text{for } 1 \le x < 2 \\ 0 & \text{elsewhere} \end{cases}$

36). Given the following table:

X	-3	-2	-1	0	1	2	3
P(x)	0.05	0.10	0.30	0	0.30	0.15	0.10

Compute (i) E(X), (ii) $E(2X \pm 3)$, (iii) E(4X + 5), (iv) $E(X^2)$ (v) V(X), and (vi) $V(2X \pm 3)$.

37).Let X be a random variable with p.d.f. as given below:

Find expected value of $Y = (X-1)^2$

X	0	1	2	3
P(x)	1/3	1/2	1/24	1/8