1 Dérivée d'une fonction

1.1 Définition

Dérivée en un point

Soit *I* un intervalle ouvert de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction. Soit $x_0\in I$. f est *dérivable en* x_0 si la limite suivante existe :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Proposition. Si f est dérivable en x_0 alors f est continue en x_0 .

La réciproque est fausse : par exemple, la fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

Tangente Une équation de la *tangente* au point $(x_0, f(x_0))$ est :

$$y = (x - x_0)f'(x_0) + f(x_0)$$

1.2 Calculs des dérivées

$$(u+v)' = u'+v' \qquad (\lambda u)' = \lambda u' \qquad (u\times v)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2} \qquad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Dérivée de fonctions usuelles

Fonction	Dérivée	
x^n	nx^{n-1}	$(n \in \mathbb{Z})$
$\frac{1}{x}$	$-\frac{1}{x^2}$	
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$	
x^{α}	$\alpha x^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e ^x	e ^x	
$\ln x$	$\frac{1}{x}$	
cos x	$-\sin x$	
sin x	cos x	
tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	

Fonction	Dérivée	
u ⁿ	$nu'u^{n-1} (n \in \mathbb{Z})$	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$	
u^{α}	$\alpha u' u^{\alpha-1} (\alpha \in \mathbb{R})$	
e^u	u'e ^u	
$\ln u$	$\frac{u'}{u}$	
cosu	$-u'\sin u$	
sin u	$u'\cos u$	
tan u	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$	

Composition

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Corollaire. Soit I un intervalle ouvert. Soit $f:I\to J$ dérivable et bijective dont on note $f^{-1}:J\to I$ la bijection réciproque. Si f' ne s'annule pas sur I alors f^{-1} est dérivable et on a pour tout $x\in J$:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Il peut être plus simple de retrouver la formule à chaque fois en dérivant l'égalité f(g(x)) = x où $g = f^{-1}$ est la bijection réciproque de f.

Théorème (Formule de Leibniz).

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-k)} \cdot g^{(k)}.$$

Pour n=1 on retrouve $(f \cdot g)' = f'g + fg'$. Pour n=2, on a $(f \cdot g)'' = f''g + 2f'g' + fg''$.

1.3 Extremum local, théorème de Rolle

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- On dit que x_0 est un *point critique* de f si $f'(x_0) = 0$.
- On dit que f admet un maximum local en x_0 (resp. un minimum local en x_0) s'il existe un intervalle ouvert J contenant x_0 tel que

pour tout
$$x \in I \cap J$$
 $f(x) \leq f(x_0)$

(resp. $f(x) \ge f(x_0)$).

— On dit que f admet un extremum local en x_0 si f admet un maximum local ou un minimum local en ce point.

Théorème. Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0) = 0$.

En d'autres termes, un maximum local (ou un minimum local) x_0 est toujours un point critique. Géométriquement, au point $(x_0,f(x_0))$ la tangente au graphe est horizontale.

La réciproque du théorème est fausse. Par exemple la fonction $f: \mathbb{R} \to \mathbb{R}$, définie par $f(x) = x^3$ vérifie f'(0) = 0 mais $x_0 = 0$ n'est ni maximum local ni un minimum local.

Théorème (Théorème de Rolle). Soit $f:[a,b] \to \mathbb{R}$ telle que

- f est continue sur [a, b],
- f est dérivable sur]a, b[,
- -- f(a) = f(b).

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

1.4 Théorème des accroissements finis

Théorème (Théorème des accroissements finis). *Soit* $f : [a, b] \to \mathbb{R}$ *une fonction continue sur* [a, b] *et dérivable sur* [a, b[*. Il existe* $c \in [a, b[$ *tel que*

$$f(b)-f(a) = f'(c)(b-a)$$

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la droite (AB) où A=(a,f(a)) et B=(b,f(b)).

Corollaire. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b[.

- 1. $\forall x \in]a, b[f'(x) \ge 0 \iff f \text{ est croissante};$
- 2. $\forall x \in]a, b[f'(x) \leq 0 \iff f \text{ est décroissante};$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ est constante};$
- 4. $\forall x \in]a, b[f'(x) > 0 \implies f \text{ est strictement croissante};$
- 5. $\forall x \in]a, b[f'(x) < 0 \implies f \text{ est strictement décroissante.}$

La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction $x\mapsto x^3$ est strictement croissante et pourtant sa dérivée s'annule en 0.

Corollaire (Inégalité des accroissements finis). Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x \in I$, $|f'(x)| \leq M$ alors

$$\forall x, y \in I \qquad |f(x) - f(y)| \le M|x - y|$$

Exemple : $|\sin x| \le |x|$ pour tout $x \in \mathbb{R}$. Preuve : Soit $f(x) = \sin(x)$. Comme $f'(x) = \cos x$ alors $|f'(x)| \le 1$ pour tout $x \in \mathbb{R}$. L'inégalité des accroissements finis s'écrit alors $|\sin x - \sin y| \le |x - y|$. On conclut en fixant y = 0

Corollaire (Règle de l'Hospital). Soient $f,g:I\to\mathbb{R}$ deux fonctions dérivables et soit $x_0\in I.$ On suppose que

- $f(x_0) = g(x_0) = 0,$
- $\forall x \in I \setminus \{x_0\} \quad g'(x) \neq 0.$

Si
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 $(\in \mathbb{R})$ alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.