Informative Path Planning with a Human Path Constraint

Daqing Yi Michael A. Goodrich Kevin D. Seppi

Department of Computer Science Brigham Young University

Outline Structure

- Introduction
- 2 Problem definition
 - Informative path
 - Human constraint
 - The optimization model
- Solution
 - Hardness of problem
 - Backtracking heuristic
 - Anytime algorithm design
- Simulation
 - Robot wingman
 - Results
- Summary and futurework

Human-robot collaboration

Human-robot interaction

Human-robot collaboration

Cordon and search

Coverage model Informative path

- Information measurement entropy
- Maximum coverage problem

Submodularity Informative path

$$f(A) + f(B) \ge f(A + B)$$

Information

- search space S
- the observation of a robot O^X
- the observation of a human O^Y

$$f(\mathbf{S}, \mathbf{O}^X) + f(\mathbf{S}, \mathbf{O}^{Y^h}) \ge f(\mathbf{S}, \mathbf{O}^X, \mathbf{O}^{Y^h})$$

Submodular orienteering Informative path

Conditional mutual information

$$I(S; \mathbf{O}^X \mid \mathbf{O}^{Y^h}) = H(S \mid \mathbf{O}^{Y^h}) - H(S \mid \mathbf{O}^X, \mathbf{O}^{Y^h})$$

- Entropy reduction
- Submodularity
- Chain rule $I(\mathbf{S}; \mathbf{O}^X \mid \mathbf{O}^{Y^h}) = \sum_{t=1}^T I(O_t^X; \mathbf{S} \mid O_1^X, \cdots, O_{t-1}^X, \mathbf{O}^{Y^h})$

Team role Human constraint

- cooperative observation
- assistance and protection

POUNCE BYU 1875

Neighboring function Human constraint

- human path $\{y_1^h \cdots y_T^h\}$
- neighboring function N(y_t^h)

Problem abstraction The optimization model

DUNG OF THE PROPERTY OF THE PR

The multi-partite graph The optimization model

- time-space synchronization
- connection determined by discretized map

A pruning process The optimization model

Reachable

Forward pruning

$$\forall t \in \{2, \dots, T\}, \\ \forall v \in V(t), deg^{-}(v) > 0$$

Non-terminating

Backward pruning

$$\forall t \in \{1, \dots T - 1\}, \\ \forall v \in V(t), deg^+(v) > 0$$

Obstacles

The optimization model

Objective :
$$X^* = \underset{X}{\operatorname{arg max}} f(X)$$
;

Constraint : $|X| = T, x_t \in V(t), (x_t, x_{t+1}) \in E$.

Bellman-like equation Heuristic

Visited node

Unvisited node

Unconsidered node

Backtracking Heuristic

- point model → true max total reward
- coverage model → estimated max total reward guarantee

Expanding tree Anytime algorithm framework

- node in an expanding tree
- vertex in a multi-partite graph

Exhaustive enumeration

- depth-first recursive traverse
- \bullet node \iff subpath

Node freeze Anytime algorithm framework

Estimated reward \leq Current best reward \Longrightarrow Stop exploring subpath

Flow Anytime algorithm framework

Performance guarantee Anytime algorithm framework

Lemma

Backtracking in Algorithm 1 never underestimates the maximum total reward, which means

$$\forall t \geq t', \hat{u}(x_t \mid v_1, \cdots, v_{t'}) \geq u(x_t \mid v_1, \cdots, v_{t'}).$$

Theorem

The anytime algorithm framework in Algorithm 4 can always find an optimal solution given enough time.

A robot Wingman problem Robot Wingman

Labelling Robot wingman

= 990

Path planning Robot wingman

Metrics Results

- Problem size nodeNum(fully expanding tree)
- Percentage of nodes explored nodeNum(current expanding tree) / nodeNum(fully expanding tree)
- Percentage of optimal at first iteration
 score(first found solution) / score(optimal solution)
- Number of iterations to reach optimal (normalized) iterationCount(optimal found) / iterationCount(finish tree expanding)

Metrics Results

quality of heuristic Percentage of optimal at first iteration Max reward
Reward of
first iteration

Reach optimal iteration Final iteration

quality of algorithm

Number of iterations to reach optimal (normalized)

Performance Results

average on the results of 20 runs @ random pattern

80

PCT of optimal at first iteration (%) 20 10 12 Planning Length 14 16

-- Optimal at first iteration

- - Reaching the optimal

Problem size Percentage of nodes explored

Percentage of optimal at first iteration Number of iterations to reach

optimal (normalized)

HOUNG ON THE PARTY OF THE PARTY

Information pattern difference Robustness

Percentage of optimal at first iteration

Percentage of nodes explored

Human path difference

Human path difference Robustness

Problem size

Percentage of nodes explored

Percentage of optimal at first iteration

Summary and futurework

Summary

- Search space reduction by human constraint
- Effectiveness and efficiency of backtracking on a multi-partite graph

Futurework

- ullet Efficiency increase o Over-estimation reduction
- Offline planning → Online planning
- Single objective → Multiple objectives

Thank you!