Ideal Operational Amplifier Circuits

Dr. Xiaoyang Chen

Dept. of Electrical & Electronic Engineering XJTLU

Part 1: Introduction of the Operational Amplifier

The Operational Amplifier

- An operational amplifier (op-amp) is an <u>integrated circuit</u> that amplifies the difference between two input voltages and produces a single output.
- Versatility Op-amps can be used to perform mathematical operations addition, subtraction, differential and integration – then put together to build analogue computers – which could solve differential equations, etc.
- An op-amp is specially designed to be used with feedback. Recall for an amplifier with feedback, the closed loop gain is

$$A_{CL} = \frac{A_{OL}}{1 + \beta A_{OL}}$$

If loop gain >>1 then $A_{CL} \approx 1/\beta$

So to build a precision amplifier (i.e. one with a precise gain) it is sufficient to just buy a **few precision resistors** and a **cheap but high gain** op-amp.

Circuit Representation

- An op-amp is normally made up from 20 to 30 transistors. However, as a typical IC op-amp has parameters that approach the ideal characteristics, we can treat it as a simple compact device.
- In most cases, an op-amp requires DC power, so that the internal transistors are biased in the active region. V^+

• From a signal point of view, the op-amp has two input terminals and one output terminal. Therefore, we often use a simplified symbol. But keep in mind that the opamp does require DC input.

Equivalent Circuit

Omitting power supplies, the equivalent circuit for an op-amp is

- The output voltage source is controlled by the <u>differential</u> input voltage v_{id} so if there is no load, $v_o = A_{od}v_{id} \implies$ looks like a reasonable **voltage amplifier**
- An operational amplifier generally has <u>large</u> input impedance, <u>low</u> output impedance and <u>very high</u> voltage gain

Ideal Op-Amp Equivalent Circuit

- 1 Inverting input: $V_{out} = -A_{od}V_1$
- ② Non-inverting input: $V_{out} = A_{od}V_2$
- 3 Output: $V_{out} = A_{od}(V_2 V_1)$

Ideal Parameters:

- the input resistance R_i between terminals 1 and 2 is infinite
- the output terminal of the op-amp acts as an ideal voltage source, i.e., R_o is zero
- the open loop gain A_{od} is very large and approaches <u>infinity</u>

Part 2: Basic Operational Amplifier Circuits

Analysis Method - Conventional

Consider the following <u>non-inverting</u> opamp circuit (this is not just an op-amp, it also has **feedback resistors**)

Replacing the op-amp by its equivalent circuit gives

EEE211

Assume the op-amp is ideal, i.e., $r_i \rightarrow \infty$ and $r_o \rightarrow 0$

Then there are no currents flowing through v_p and v_n terminals, we can write:

For node 2
$$v_p = v_2 = v_g$$

For node 4
$$\frac{v_o - v_n}{R_2} = \frac{v_n}{R_1}$$

At output
$$v_o = A_{OL}(v_p - v_n)$$

Solving gives:

$$\frac{v_o}{v_g} = \frac{A_{OL}}{1 + A_{OL} \left[\frac{R_1}{R_1 + R_2} \right]} = \frac{A_{OL}}{1 + \beta A_{OL}} \quad \text{where} \quad \beta = \frac{R_1}{R_1 + R_2}$$

For
$$A_{OL} \to \infty$$
 we have: $\frac{v_o}{v_g} = \frac{A_{OL}}{1 + A_{OL} \left[\frac{R_1}{R_1 + R_2}\right]} = \frac{A_{OL}}{1 + \beta A_{OL}} \approx \frac{1}{\beta} = \frac{R_1 + R_2}{R_1}$

<u>Analysis Method – Virtual Short Principle</u>

- An Op amp has a very high gain, so for any reasonable output voltage, the input differential voltage v_p-v_n will be **vanishingly small**
- So if the gain is very large then we can say that $v_p v_n \approx 0$ or $v_p \approx v_n$
- This is a very useful approximation a 'Golden Rule'!! (But remember it only applies if the gain is very large); We say that v_n tracks v_p

- This leads to the concept of a **virtual short** the circuit behaves as though there is a short across the inputs because the voltage difference between v_p and v_n is kept zero, <u>but it is not actually shorted</u>. Hence the name '**Virtual** Short'. It greatly simplifies the analysis of op-amp circuits
- To apply virtual short principle, the op-amp must be ideal.

EEE211

Applying Virtual Short Principle to Op-Amp Circuits

1. The Non-Inverting Amplifier

For an ideal op-amp, the input resistance is ∞ , then it seems to be an open circuit between v_p and v_n

Then we have: $v_p = v_g$ (virtual open)

According to virtual short principle:

$$v_n = v_p = v_g$$

And we have:

$$\frac{v_n}{R_1} = \frac{v_o - v_n}{R_2} \to v_n = v_o \frac{R_1}{R_1 + R_2}$$

Hence, we can find: $\frac{v_o}{v_g} = \frac{R_1 + R_2}{R_1}$ (non-inverted voltage gain)

An interesting property of the non-inverting op-amp occurs when $R_1 = \infty$, the closed loop gain becomes

$$A_v = \frac{v_O}{v_I} = \frac{R_1 + R_2}{R_1} = 1$$
 (This is a voltage follower!)

 $\begin{array}{c|c}
 & i_2 \\
\hline
R_1 & 1 & v_1 \\
\hline
& i_1 & 2 & v_2 \\
\hline
& + & v_I
\end{array}$

The closed-loop gain is independent of R_2 (except for $R_2 = \infty$), so we can set $R_2 = 0$ to create a short circuit.

For a ideal o-amp, the input impedance is essentially infinite, and the output impedance is essentially zero (a perfect buffer)

For example:

EEE211

EEE211

2. The Inverting Amplifier

From the virtual short principle, we have:

$$v_1 \approx v_2 = 0$$

Since the current flowing into the op-amp is assumed to be zero, we have:

$$i_1=i_2$$
 where $i_1=\frac{v_I-v_1}{R_1}$ and $i_2=\frac{v_I-v_O}{R_2}$

Then we have:

$$\frac{v_O}{v_I} = -\frac{R_2}{R_1}$$
 (inverted voltage gain)

We also can find the input resistance by:

$$R_i = \frac{v_I}{i_1} = R_1$$

3. The Inverting Amplifier with a T-Network

Assuming an inverting op-amp is to be designed having a closed-loop voltage gain of $A_v = -100$ and an input resistance of $R_i = R_1 = 50 \ k\Omega$, the feedback resistor R_2 would have to be $5 \ M\Omega$. However, this value is too large in practice. Instead, we can apply a **T-Network**.

At the input, we have
$$i_1 = \frac{v_I}{R_1} = i_2$$

We can also write that $v_X = 0 - i_2 R_2 = -v_I \left(\frac{R_2}{R_1}\right)$

Applying a KCL at node v_X , we have

$$i_2 + i_4 = i_3$$
 which can be written as
$$-\frac{v_X}{R_2} - \frac{v_X}{R_4} = \frac{v_X - v_O}{R_3}$$

Finally, we can find

$$A_{v} = \frac{v_{O}}{v_{I}} = -\frac{R_{2}}{R_{1}} \left(1 + \frac{R_{3}}{R_{4}} + \frac{R_{3}}{R_{2}} \right)$$

One possible solution to the above question would be $R_1=50~k\Omega$, $R_2=R_3=400~k\Omega$, and $R_4=38.1~k\Omega$

4. The Summing Amplifier

This example has 3 inputs, but could be as many as you want.

Since $v_1 = v_2 = 0$ (from virtual short principle) and KCL gives $i_1 + i_2 + i_3 = i_4$, we have

$$\frac{v_{I1}}{R_1} + \frac{v_{I2}}{R_2} + \frac{v_{I3}}{R_3} = -\frac{v_O}{R_F}$$

Therefore, we can find
$$v_O = -\left(\frac{R_F}{R_1}v_{I1} + \frac{R_F}{R_2}v_{I2} + \frac{R_F}{R_3}v_{I3}\right)$$

The output voltage is the sum of the three input voltages, with different weighting factors. A special case occurs when the three input resistances are equal, when $R_1 = R_2 = R_3 = R$, then

$$v_O = -\frac{R_F}{R_1}(v_{I1} + v_{I2} + v_{I3})$$

EEE211

5. The Difference Amplifier

Use superposition:

First v_{I2} is turned down to zero, leaving only its internal resistance in the circuit (0 Ω for a perfect voltage source)

Then the contribution to v_O due to v_{I_1} alone is

$$v_{O1} = -\frac{R_2}{R_1} v_{I1}$$

$$\frac{v_p}{v_{I2}} = \frac{R_4}{R_3 + R_4}$$

Then the contribution to v_0 due to v_{I2} alone is

$$v_{O2} = \frac{R_1 + R_2}{R_1} v_p = \frac{R_1 + R_2}{R_1} \frac{R_4}{R_3 + R_4} v_{I2}$$

So
$$v_0 = v_{01} + v_{02}$$
 gives $v_o = \frac{R_2}{R_1} \left[\left(\frac{1 + \frac{R_1}{R_2}}{1 + \frac{R_3}{R_4}} \right) v_{I2} - v_{I1} \right]$

To make a difference amplifier we require $\frac{R_1}{R_2} = \frac{R_3}{R_4}$, giving

$$v_O = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

6. The Instrumentation Amplifier

For a difference amplifier, it is difficult to obtain a high input impedance and a high gain with reasonable resistor values. Optimally, we would like to be able to change the gain by changing only a single resistance value. This is achieved by an **instrumentation amplifier**.

The current in R_1 can be found by

$$i_1 = \frac{v_{I1} - v_{I2}}{R_1}$$

The current in R_1 is also i_1 , and the output voltages of op-amps A_1 and A_2 are

$$v_{O1} = v_{I1} + i_1 R_2 = \left(1 + \frac{R_2}{R_1}\right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

and

$$v_{O2} = v_{I2} - i_1 R_2 = \left(1 + \frac{R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

Since the output of the difference amplifier is given as

$$v_O = \frac{R_4}{R_3} (v_{O2} - v_{O1})$$

The output voltage can be found as

$$v_O = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) (v_{I2} - v_{I1})$$

By changing R_1 , we can adjust the voltage gain easily.

EEE211

7. The Integrator

For an ideal op-amp, we assume no current flowing into it, in the circuit, we have

$$i_{R1} = i_{C2}$$
 and $v_C = -v_O$

where
$$i_{R1} = \frac{v_I(t) - 0}{R_1}$$
 and $i_{C2} = C_2 \frac{-dv_O}{d_t}$

Hence
$$\frac{dv_0}{d_t} = -\frac{1}{R_1 C_2} v_I(t)$$

$$\Longrightarrow v_O = -\frac{1}{R_1 C_2} \int v_I(t) dt$$

Output voltage is proportional to the time integral of the input

EEE211

8. The Differentiator

We have
$$i_{C1} = i_{R2}$$

where
$$i_{C1} = C_1 \frac{d(v_I - 0)}{d_t}$$
 and $i_{R2} = \frac{0 - v_O(t)}{R_2}$

Hence

$$v_o(t) = -R_2 C_1 \frac{dv_I}{dt}$$

Output voltage is proportional to the time derivative of the input

EEE211

9. The Log Amplifier

The diode current is $i_D \cong I_s\left(e^{\frac{v_D}{VT}}\right)$

The input current can be written as

$$i_1 = \frac{v_I}{R_1}$$

and the output voltage, since v_1 is virtual ground, is given by

$$v_O = -v_D$$

Noting that $i_1 = i_D$, we can write

$$i_1 = \frac{v_I}{R_1} = i_D = I_s e^{-\frac{v_O}{V_T}}$$

If we take the natural log of both sides of this equation, we obtain

$$\ln\left(\frac{v_I}{I_S R_1}\right) = -\frac{v_O}{V_T}$$
 or $v_O = -V_T \ln\left(\frac{v_I}{I_S R_1}\right)$

10. The Exponential Amplifier

The complement, or inverse function of the log amplifier is the exponential amplifier. Since v_1 is at virtual ground, we can write

$$i_D \cong I_S \left(e^{\frac{v_I}{VT}} \right)$$

and

$$v_O = -i_2 R = -i_D R$$

or

$$v_O = -I_S R \cdot e^{\frac{v_I}{V_T}}$$

EEE211

or

A Practical Application – the Analogue Computer

Widely used in the 1960's before the digital revolution – still found in some special applications

Suppose we want to solve the differential equation $\frac{dx}{dt} + 10x = -2\sin(\omega t)$

Then

$$\frac{dx}{dt} = -10x - 2\sin(\omega t) = -\left[10x + 2\sin\omega t\right]$$
$$x = -\int \left[10x + 2\sin\omega t\right]dt$$

So we need an integrator and a summing amplifier

EEE211

Circuit Design

$$i_1 + i_2 = i_3$$

$$\therefore \frac{2\sin(\omega t)}{1M} + \frac{v_0}{0.1M} = -(1\mu F)\frac{dv_0}{dt}$$

$$\frac{dv_0}{dt} = \frac{-v_0}{10^5 \times 10^{-6}} - \frac{2\sin(\omega t)}{10^6 \times 10^{-6}}$$

$$\frac{dv_O}{dt} = -\frac{v_0}{0.1} - \frac{2\sin(\omega t)}{1}$$

$$\therefore \frac{dv_0}{dt} + 10v_0 = -2\sin(\omega t)$$
 as required

Part 3: Op-Amp Representation of of Feedback Amplifiers

EEE211

1. Voltage Amplifier

The non-inverting op-amp is an example of the voltage amplifier:

- The input signal is the input voltage V_i
- The error signal is the terminal voltage difference
- In this case, the feedback voltage is taken at R_1

EEE211

For an ideal non-inverting op-amp (A_v very large), we have

$$A_{vf} = \frac{V_o}{V_i} = \frac{R_1 + R_2}{R_1}$$
 Therefore
$$\beta_v = \frac{R_1}{R_1 + R_2}$$

We can also take a finite amplifier gain into account:

For $R_o \approx 0$, we have $V_o = A_v V_{\varepsilon}$

and
$$V_{\varepsilon} = V_i - V_{fb}$$

Therefore
$$V_o = A_v(V_i - V_{fb})$$

Assuming the input resistance is very large, the feedback voltage is given by

$$V_{fb} \cong \left(\frac{R_1}{R_1 + R_2}\right) V_o$$

Thus we obtain

$$A_{vf} = \frac{V_o}{V_i} = \frac{A_v}{1 + \frac{A_v}{\frac{R_1 + R_2}{R_1}}} = \frac{A_v}{1 + \beta_v A_v}$$

2. Current Amplifier

The inverting op-amp with load resistor is an example of the current amplifier:

- The input signal is the current I_i' from the Norton equivalent source of I_i and R_S
- The feedback signal is I_{fb}
- The output current is taken at R_L
- The error signal is the current I_{ε}

EEE211

 R_F

For an ideal op-amp, we have

$$I_{\varepsilon} = 0$$

Then
$$I_i \cong I'_i = I_{fb}$$

 $(R_S \text{ is normally very large for a current source})$

Since V_1 is at virtual ground:

$$V_o = -I_{fb}R_F = -I_iR_F$$

And current I_1 is $I_1 = -V_0/R_1$

Hence $\beta_i = \frac{1}{1 + \frac{R_F}{D}}$

Then the output current can be expressed by

$$I_o = I_{fb} + I_1 = I_i + \left(-\frac{1}{R_1}\right)(-I_iR_F) = I_i\left(1 + \frac{R_F}{R_1}\right)$$

Therefore, the ideal current gain is $\frac{I_o}{I_i} = 1 + \frac{R_F}{R_1}$

EEE211

Again we can take a finite amplifier gain into account:

We have $I_o = A_i I_{\varepsilon}$

and
$$I_{\varepsilon} = I'_i - I_{fb} \cong I_i - I_{fb}$$

therefore, $I_o = A_i(I_i - I_{fb})$

$$V_o = -I_{fb}R_F$$

We can then write
$$I_1=-\frac{V_o}{R_1}=-\left(\frac{1}{R_1}\right)\left(-I_{fb}R_F\right)=I_{fb}\left(\frac{R_F}{R_1}\right)$$

The output current is expressed as $I_o = I_{fb} + I_1 = I_{fb} + I_{fb} \left(\frac{R_F}{R_1}\right)$

Solving for
$$I_{fb}$$
 yields the closed-loop current gain $A_{if} = \frac{I_o}{I_i} = \frac{A_i}{1 + \frac{A_i}{1 + \frac{R_F}{R_1}}}$

EEE211

3) Transconductance Amplifier

- The input signal is the input voltage V_i
- The output signal is I_o
- The feedback voltage is taken at R_E

Assuming an ideal op-amp and neglecting the transistor base current, we have

$$V_i = V_{fb} = I_o R_E$$
 and $A_{gf} = \frac{I_o}{V_i} = \frac{1}{R_E}$

Therefore $\beta_z = R_E$

Still, we can take a finite amplifier gain into account:

Assuming the collector and emitter currents are nearly equal and R_i is very large, we have

$$I_o = \frac{V_{fb}}{R_F} = h_{FE}I_b = h_{FE}A_gV_{\varepsilon}$$

where h_{FE} is the current gain of the transistor

Also
$$V_{\varepsilon} = V_i - V_{fb} = V_i - I_o R_E$$

Therefore

$$I_o = h_{FE} A_g (V_i - I_o R_E)$$

and
$$A_{gf} = \frac{I_o}{V_i} = \frac{h_{FE}A_g}{1 + h_{FE}A_gR_E}$$

EEE211

3) Transresistance Amplifier

An inverting op-amp circuit can also perform like a transresistance amplifier:

- The input signal is I_i
- The feedback current I_{fb}
- The output signal is V_o

For an ideal op-amp,

we have $V_o = -I_{fb}R_2$ and $I_{fb} = I_i$

Then
$$A_{zf} = \frac{V_o}{I_i} = \frac{1}{\beta_g} = -R_2$$

So without the need of detailed derivation, if we take a finite amplifier gain into account, we will see:

$$A_{zf} = \frac{V_o}{I_i} = \frac{A_z}{1 + A_z \beta_g}$$

Exercise

Consider the circuit shown below. (a) Determine the ideal output voltage v_0 if $v_1 = -0.40$ V. (b) Assume the op-amp is ideal except it has a finite open-loop gain. Determine the actual output voltage if the open-loop gain of the op-amp is $A_{od} = 5 \times 10^3$.

See you in the next lecture...

