STOR 320 Data Transformation II

Lecture 5

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Data Transformation II Info

- Finish Reading Chapter 5 and Practice the Code in R4DS
- Covers
 - The Pipe
 - Statistical Summaries
 - Grouped Summaries
 - Helpful Functions
- Builds Off Last Tutorial

The Pipe

- Useful for Combining Multiple Steps of Operations
- Represented by %>%
- Reads as "Then"
- Works Like a Composite Function From Algebra

$$f(x) = 3x + 4$$

 $g(x) = 2x$
 $h = 1$
 $f(g(h)) = 3(2(1)) + 4 = 10$
OUT = h %>%
 $g()$ %>%
 $f()$

OUT = 10

The Pipe

Chaining with the Pipe

```
`{r,eval=F}
f2e.pipedream =
 # Acknowledge the Original Data
 flights %>%
 # Input Original Data and Perform Mutations
 transmute(dep_hr=dep_time%/%100+(dep_time%%100)/60,
            sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60,
            arr_hr=arr_time%/%100+(arr_time%%100)/60,
            sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60) %>%
 mutate(dep_delay_hr=dep_hr-sched_dep_hr,
       arr_delay_hr=arr_hr-sched_arr_hr) %>%
 mutate(percent_dep_delay_hr=percent_rank(dep_delay_hr)) %>%
 # Input Modified Data and Filter the observations
 filter(percent_dep_delay_hr<0.1|percent_dep_delay_hr>0.9) %>%
 # Input Modified Data and Sort according to percent_dep_delay_hr
 arrange(desc(percent_dep_delay_hr))
```

dep_hr <dbl></dbl>	sched_dep_hr <dbl></dbl>	arr_hr <dbl></dbl>	sched_arr_hr <dbl></dbl>	dep_delay_hr <dbl></dbl>	arr_delay_hr <dbl></dbl>
23.35000	8.166667	1.583333	10.33333	15.18333	-8.750000
22.95000	7.983333	1.350000	10.43333	14.96667	-9.083333
22.71667	8.500000	1.000000	11.10000	14.21667	-10.100000
23.40000	10.266667	1.233333	12.45000	13.13333	-11.216667
19.35000	6.250000	21.583333	8.70000	13.10000	12.883333

The Pipe

Why use

- Avoid nested functions
- Minimize number of local variables
- Easier to add steps in the sequence

Why not to use

- Debug
- Can't handle multiple inputs
- Can't handle complex code structure

summarize()

Summarizing All Data

Both the histogram and the boxplot are made from summary statistics.

(Statistical Transformations in Ch. 3)

summarize()

min

-2.316667

n

326848

Q1

-0.0833333

Summarizing All Data

- Summarizing Data by Groups
 - Using Graphics

- Summarizing
 Data by Groups
 - Using Tables

```
`{r}
group.summary1 = f3e.pipedream %>%
                group_by(origin) %>%
                summarize(n=n())
group.summary2 =
 f3e.pipedream %>%
 group_by(origin) %>%
 summarize(n=n(),
            min=min(dep_delay_hr),
            Q1=quantile(dep_delay_hr, 0.25),
            Q2=quantile(dep_delay_hr, 0.5),
            Q3=quantile(dep_delay_hr, 0.75),
            max=max(dep_delay_hr),
            IQR=Q3-Q1,
            nLow=sum(dep_delay_hr<Q1-1.5*IQR),
            propHigh=mean(dep_delay_hr>Q3+1.5*IQR)
```

origin	n
EWR	117209
JFK	108486
LGA	101153

origin <chr></chr>	n <int></int>	min <dbl></dbl>	Q1 <dbl></dbl>	Q2 <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	IQR <dbl></dbl>	nL <int></int>	propHigh <dbl></dbl>
EWR	117209	-0.4166667	-0.06666667	-0.01666667	0.25	4.983333	0.3166667	0	0.1259204
JFK	108486	-2.3166667	-0.08333333	-0.01666667	0.15	4.983333	0.2333333	2	0.1372988
LGA	101153	-0.5500000	-0.10000000	-0.05000000	0.10	4.983333	0.2000000	7	0.1466491

- Multiple Groups
 - Using Graphics

- Multiple Groups
 - Using Tables

origin	carrier	n	min	Q1	Q2	Q3	max
EWR	9E	1199	-0.2666667	-0.1166667	-0.0833333	-0.0166667	4.416667
EWR	AA	3376	-0.2500000	-0.1000000	-0.0500000	0.0500000	4.750000
EWR	AS	712	-0.3500000	-0.1166667	-0.0500000	0.0500000	3.750000
EWR	B6	6446	-0.3833333	-0.1166667	-0.0500000	0.1500000	4.850000
EWR	DL	4281	-0.2666667	-0.0833333	-0.0333333	0.0666667	4.966667
EWR	EV	41592	-0.4166667	-0.0833333	-0.0166667	0.4333333	4.966667
EWR	MQ	2095	-0.3000000	-0.1000000	-0.0333333	0.3000000	4.950000
EWR	00	6	-0.1500000	-0.1250000	-0.0166667	0.1791667	2.183333
EWR	UA	45561	-0.3000000	-0.0500000	0.0000000	0.2000000	4.966667
EWR	US	4326	-0.3166667	-0.1000000	-0.0666667	0.0000000	4.166667
₩R	VX	1554	-0.3333333	-0.0833333	-0.0250000	0.0833333	4.916667
EWR	WN	6061	-0.2000000	-0.0333333	0.0166667	0.3000000	4.983333
JFK	9E	13801	-0.4000000	-0.0833333	-0.0166667	0.3333333	4.950000
JFK	AA	13617	-0.2500000	-0.0666667	-0.0333333	0.0833333	4.900000
JFK	В6	41005	-0.7166667	-0.0666667	-0.0166667	0.2000000	4.966667
JFK	DL	20551	-0.3000000	-0.0666667	-0.0333333	0.0833333	4.983333
JFK	EV	1315	-0.3166667	-0.1000000	-0.0500000	0.2500000	4.916667

Useful Summary Functions

- Measures of Center
 - mean()
 - median()
 - mode()
- Measures of Spread
 - var()
 - sd()
 - IQR()
 - mad()

- Measures of Rank
 - min()
 - max()
 - quantile()

Useful Summary Functions

- Measures of Position
 - Order Matters
 - first() = x[1]
 - last() = x[length(x)]
 - nth(k) = x[k]
- Counts
 - n()
 - n_distinct()

- Counts/Proportions for Logical
 - sum()
 - mean()
 - Example
 - sum(x>10)
 - mean(x>10)

- Flight Accuracy
 - Accurate Flight Means
 - Departure Delay = 0
 - Arrival Delay = 0
 - Bad Metric

$$\begin{aligned} Accuracy &= delay_{dep} + delay_{arr} \\ Accuracy &= (delay_{dep} + delay_{arr})/2 \end{aligned}$$

Good Metrics

$$Accuracy = |delay_{dep}| + |delay_{arr}|$$

$$Accuracy = \sqrt{delay_{dep}^2 + delay_{arr}^2}$$

- Summary Table
 - Step 1: Accuracy Variable
 - Step 2: Grouping
 - Step 3: Summarize Info
 - Mean
 - Standard Error
 - Lower Bound (95% CI)
 - Upper Bound (95% CI)

```
accuracy<-
  f.pipedream3 %>%
  transmute(carrier,origin,
    accuracy=abs(dep_delay_hr)+abs(arr_delay_hr)) %>%
  group_by(carrier,origin) %>%
  summarize(n=n(),
    avg=mean(accuracy,na.rm=T),
    se=sd(accuracy,na.rm=T)/sqrt(n),
  low=avg-2*se,
  high=avg+2*se
)
```

- Sorted by Average Accuracy
 - Best Carriers/Origin

```
head(arrange(accuracy,avg),5)
A tibble: 5 x 7
Groups:
          carrier
carrier origin
                                           high
                        avg
                                 se
                              <db1> <db1> <db1>
        <chr>
                <int> <db1>
<chr>
US
        EWR
                 4322 0.505 0.0123 0.481 0.530
                 2960 0.509 0.0152 0.479 0.539
US
        JFK
US
        LGA
                12517 0.544 0.0121 0.520 0.569
                  342 0.556 0.036<u>2</u> 0.483 0.628
HA
        JFK
        JFK
                 4367 0.591 0.0173 0.556 0.625
UA
```

Worst Carriers/Origin

```
> head(arrange(accuracy,desc(avg)),5)
 A tibble: 5 x 7
 Groups:
          carrier [4]
  carrier origin
                                        low
                                             high
                          avg
                                  se
  <chr>
          <chr>
                 <int> <db1>
                               <db7>
                                      <db1> <db1>
                              0.737
                                     -0.334 2.61
          EWR
  00
                  <u>8</u>086 0.986 0.026<u>5</u>
  EV
          LGA
                                      0.933 1.04
                   542 0.954 0.0597
          LGA
                                      0.835 1.07
                  3136 0.952 0.0545 0.843 1.06
          LGA
                 40571 0.952 0.0125
                                      0.927 0.977
  EV
          EWR
```

95% Confidence Intervals


```
ggplot(filter(accuracy,carrier!="00")) +
geom_point(aes(x=carrier,y=avg)) +
geom_errorbar(aes(x=carrier,ymin=low,ymax=high)) +
facet_grid(origin~.)
```

95% Confidence Intervals

