

## Chapter 5 -2

# เรียนรู้เทคนิคการจำแนกประเภทข้อมูล (Data Classification)



#### **Introduction to Datamining and Warehousing**

#### **Asst.Prof.Wilairat Yathongchai**



## Scope

- Decision Tree Induction
- เทคนิคการจำแนกประเภทข้อมูลด้วย Naïve Bays
- เทคนิคการจำแนกประเภทข้อมูลด้วย K-Nearest Neighbor
- ตัวอย่างงานและการวิเคราะห์ผลที่ได้จาก K-Nearest Neighbor, Naïve Bays



#### **Decision Tree Induction**

- Decision Tree Induction คือ กระบวนการสร้าง Decision Tree ซึ่งเป็น โมเดลที่ใช้สำหรับการจำแนกประเภท (Classification) หรือการทำนายค่า (Regression) โดยอาศัยโครงสร้างตันไม้ (Tree Structure) ในการตัดสินใจ
- ขั้นตอนการสร้าง Decision Tree จาก Training Datasets เพื่อใช้ จำแนกข้อมูล มีดังนี้
  - □ 1. เลือก Attribute ที่ทำหน้าที่เป็น Root Node
  - □ 2. จาก Root Node สร้างเส้นเชื่อมโยงไปยังโหนดลูก จำนวนเส้นเชื่อมโยง จะ เท่ากับจำนวนค่าที่เป็นไปได้ทั้งหมดของ Attribute ที่เป็น Root Node
  - 3. ถ้าโหนดลูกเป็นกลุ่มของข้อมูลที่อยู่ในคลาสเดียวกันทั้งหมด ให้หยุดสร้าง ต้นไม้ แต่ถ้าโหนดลูกมีข้อมูลของหลายคลาสปะปนกันอยู่ ต้องสร้าง Subtree เพื่อจำแนกข้อมูลต่อไป โดยเลือก Subtree มาทำหน้าที่เป็น Root node ของ Subtree มาทำซ้ำในขั้นตอนที่ 2,3

Chapter 5-2 © 2024 by Wilairat



## Decision Tree Induction (2)

- โครงสร้างของ Decision Tree
- Node (โหนด):
  - Root Node: โหนดเริ่มต้นของต้นไม้
  - Internal Node: โหนดที่ทำหน้าที่เป็นจุดตัดสินใจ (Decision Point) โดยใช้ คุณสมบัติ (Feature) และเงื่อนไข (Condition)
  - Leaf Node: โหนดปลายสุดที่แสดงผลลัพธ์ เช่น คลาสที่คาดการณ์ หรือค่าที่ ทำนาย
- Branch (กิ่ง): เส้นทางที่เชื่อมระหว่างโหนด ซึ่งแสดงถึงผลลัพธ์ของ เงื่อนไขในโหนดก่อนหน้า



#### Which Attribute to SELECT?

 ข้อมูลที่กำหนดในตารางเป็นข้อมูลสภาพอากาศที่ใช้ประกอบการตัดสินใจในการเล่นกีฬา ชนิดหนึ่งว่า

- มีสภาพอากาศอย่างไรจึงจะเล่น (play = yes)
- มีสภาพอากาศอย่างไรจึงไม่เล่น (play = no)
- ข้อมูลที่เป็นจุดมุ่งหมายในการจำแนก (Class) คือ play
- โดยแอหริบิวห์outlook temperature humidity windy หำหน้าที่เป็น Predicting Attributes
- ปัญหาที่ต้องพิจารณาคือ จะเลือกAttributes
   ใดทำหน้าที่เป็น Root Node ในแต่ขั้นตอน
   ของการสร้าง Tree และ Subtree

| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| overcast | hot         | high     | FALSE | yes  |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| overcast | cool        | normal   | TRUE  | yes  |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | cool        | normal   | FALSE | yes  |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | mild        | normal   | TRUE  | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |

Chapter 5-2 © 2024 by Wilairat



## Which Attribute to SELECT? (2)

- Attribute Selection
- Outlook?
- Temperature?
- Humidity?
- Windy?



| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| overcast | hot         | high     | FALSE | yes  |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| overcast | cool        | normal   | TRUE  | yes  |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | cool        | normal   | FALSE | yes  |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | mild        | normal   | TRUE  | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |

Chapter 5-2



## Which Attribute to SELECT? (3)

#### Attribute Selection

- การสร้างโมเดล Decision Tree จะทำการคัดเลือกแอทริบิวท์ที่มีความสัมพันธ์กับ คลาสมากที่สุดขึ้นมาเป็นโหนดบนสุดของTree (Root Node) หลังจากนั้นก็จะหา แอตหริบิวต์ถัดไปเรื่อยๆ ในการหาความสัมพันธ์ของแอทริบิวท์นี้จะใช้ตัววัดที่เรียกว่า Information Gain (IG) ซึ่งถูกนำมาใช้ในการเลือกแอทริบิวท์ในแต่ละ Node ของ Tree โดยแอทริบิวท์ตัวใดที่มีค่าInformation Gain สูงสุดจะถูกเลือก ค่านี้คำนวณ ได้จากสมการดังนี้
- IG (parent, child) = entropy(parent) [p(c1) × entropy(c1) + p(c2) × entropy(c2) + ...]
- โดยที่ entropy(c1) = -p(c1) log p(c1)
   และ p(c1) คือ ค่าความน่าจะเป็นของc1

Chapter 5-2 © 2024 by Wilairat



### Which Attribute to SELECT? (4)

จากรูปแต่ละจุดคือข้อมูลแต่ละตัว จะเห็นว่าถ้าข้อมูลมีคำตอบหรือคลาสเดียวกัน เช่น เป็น
คลาสสีฟ้า หรือ สีส้มหั้งหมดจะมีค่า Entropy ที่ต่ำที่สุด คือ Entropy เท่ากับ 0 แต่ถ้ามี
ความแตกต่างกันมาก เช่น เป็นคลาสสีฟ้าครึ่งหนึ่งและคลาสสีส้มอีกครึ่งหนึ่งจะมีค่า
Entropy สูงสุด คือ Entropy เท่ากับ 1







## Which Attribute to SELECT? (5)

- ทั้งหมดนี้คือขั้นตอนการสร้างโมเดล decision tree ซึ่งข้อดีของโมเดลนี้มีดังนี้
- เป็นโมเดลที่เข้าใจง่าย สามารถแปลความจากโมเดลได้เลย เช่น ถ้าวันใหนที่สภาพ อากาศเป็นแบบ outlook แล้วจะมีการจัดแข่งขันกีฬา
- โมเดลที่สร้างได้คัดเลือกแอตทริบิวต์ที่มีความสัมพันธ์กับคลาสคำตอบมาแล้ว ดังนั้น อาจจะไม่ได้ใช้ทุกแอตหริบิวต์ในข้อมูล training



Chapter 5-2 © 2024 by Wilairat



#### หลักการทำงานของ Decision Tree Induction

1. การเลือกคุณสมบัติ (Feature Selection):

เลือกคุณสมบัติที่เหมาะสมที่สุดในการแบ่งข้อมูลในแต่ละโหนด โดยใช้เกณฑ์ต่าง ๆ เช่น:

- 1. Information Gain (ใช้ในอัลกอริทึม ID3)
- 2. Gini Index (ใช้ใน CART)
- 3. **Gain Ratio** (ใช้ใน C4.5)
- 2. การแบ่งข้อมูล (Splitting):

แบ่งข้อมูลออกเป็นกลุ่มย่อยตามเงื่อนใขที่กำหนดในโหนด

3. การหยุดการแบ่ง (Stopping Criteria):

หยุดการแบ่งข้อมูลเมื่อ:

- 1. ข้อมูลในโหนดมีคลาสเดียวกันทั้งหมด
- 2. ไม่มีคุณสมบัติที่เหมาะสมสำหรับการแบ่ง
- 3. ถึงความลึกสูงสุดของตันไม้ (Maximum Depth)
- 4. การตัดแต่งต้นไม้ (Pruning):

ลดความซับซ้อนของต้นไม้เพื่อลดปัญหา Overfitting โดยการลบโหนดที่ไม่จำเป็นออก



## **Classification Techniques**

#### Naïve Bayes

- เป็นการเรียนรู้แบบ Supervised Learning
- ใช้ในการวิเคราะห์หาความน่าจะเป็นของสิ่งที่ยังไม่เคยเกิดขึ้นโดยการคาด เดาจากสิ่งที่เกิดขึ้นมาก่อน
- โดยอัลกอริทึมจะเรียนรู้จาก Training Set นำสิ่งที่เรียนรู้นั้นมาทำนาย ในสิ่งที่อยากจะรัคือ ทำนาย A
- เพื่อทำนายว่า Test Data Instance มีความน่าจะเป็นในการเป็นคลาส แต่ละคลาสเท่าไร
- การเรียนรู้แบบเบย์และต้นไม้ตัดสินใจเป็นเทคนิคที่นิยมใช้ในการวิเคราะห์ พยากรณ์ และจำแนกลักษณะข้อมูล

Chapter 5-2 © 2024 by Wilairat 11



#### **Classification Techniques**

#### Naïve Bayes

อัลกอริทึมนาอีฟเบย์ หมายถึง เครื่องจักรเรียนรู้ที่อาศัยหลักการความน่าจะเป็น ตาม หฤษฎีของเบย์ (Bayes Theorem) ซึ่งมีอลักอริทึมหีไม่ซับซ้อน เป็นขั้นตอนวิธีใน การจำแนกข้อมูลโดยการเรียนรู้ปัญหาที่เกิดขึ้น เพื่อนำมาสร้างเงื่อนไขการจำแนกข้อมูลใหม่ หลักการของนาอีฟเบย์ใช้การคำนวณหาความน่าจะเป็นในการทำนาย ผลเป็นเทคนิคในการแก้ปัญหาแบบจำแนกประเภทที่สามารถคาดการณ์ผลลัพธ์ได้ จะทำการวิเคราะห์ความสัมพันธ์ระหว่างตัวแปรเพื่อใช้ในการสร้างเงื่อนไขความน่าจะ เป็นสำหรับแต่ละความสัมพันธ์เหมาะกับกรณีของเซตตัวอย่างที่มีจำนวนมาก และ คุณสมบัติ (Attribute) ของตัวอย่างไม่ขึ้นต่อกัน โดยกำหนดให้ความน่าจะเป็นของข้อมลเท่ากับ สมการ

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$



## **Classification Techniques (2)**

#### Naïve Bayes

- ความน่าจะเป็น (probability)
  - โอกาสที่เกิดเหตุการณ์จากเหตุการณ์ทั้งหมด ใช้สัญลักษณ์ P() หรือ Pr()
  - โยนเหรียญบาท (มีหัวและก้อย)
    - โอกาสได้หัว มีค่าความน่าจะเป็น 1/2 = 0.5
    - โอกาสได้ก้อย มีค่าความน่าจะเป็น 1/2 = 0.5
  - · ความน่าจะเป็นของการพบ spam email
    - มี email ทั้งหมด 100 ฉบับ
    - มี spam email ทั้งหมด 20 ฉบับ
    - มี normal email ทั้งหมด 80 ฉบับ
    - โอกาสที่ emai จะเป็น spam มีความน่าจะเป็น 20/100 = 0.2 หรือ P(spam) = 0.2
    - โอกาสที่ emai จะเป็น normal มีความน่าจะเป็น 80/100 = 0.8 หรือ P(normal) = 0.8



all email (100 ฉบับ)

Chapter 5-2

© 2024 by Wilairat

13



## **Classification Techniques (3)**

#### Naïve Bayes

■ เล่น / ไม่เล่น Tennis

| outlook  | temperature | humidity | windy | play      |  |
|----------|-------------|----------|-------|-----------|--|
| sunny    | hot         | high     | FALSE | no        |  |
| sunny    | hot         | high     | TRUE  | no        |  |
| overcast | hot         | high     | FALSE | yes       |  |
| rainy    | mild        | high     | FALSE | yes       |  |
| rainy    | cool        | normal   | FALSE | yes       |  |
| rainy    | cool        | normal   | TRUE  | no        |  |
| overcast | cool        | normal   | TRUE  | yes       |  |
| sunny    | mild        | high     | FALSE | no<br>yes |  |
| sunny    | mild        | normal   | FALSE |           |  |
| rainy    | mild        | normal   | FALSE | yes       |  |
| sunny    | mild        | normal   | TRUE  | yes       |  |
| overcast | mild        | high     | TRUE  | yes       |  |
| overcast | hot         | normal   | FALSE | yes       |  |
| rainy    | mild        | high     | TRUE  | no        |  |



#### **Classification Techniques (4)**

#### Naïve Bayes

| outlook          | temperature | humidity | windy | play      |
|------------------|-------------|----------|-------|-----------|
| outlook<br>sunny | hot         | high     | FALSE | play<br>? |

- คำถาม ต้องการรู้ว่าถ้า แอททริบิวต์ outlook = sunny
- แอททริบิวต์ temperature = hot
- แอททริบิวต์ humidity = high
- แอททริบิวต์ windy = FALSE
- มีความน่าจะเป็นที่จะเล่น / ไม่เล่น Tennis ?

Chapter 5-2 © 2024 by Wilairat 15



## **Classification Techniques (5)**

- Naïve Bayes : ขั้นตอนการคำนวณ
- 1. คำนวณหาความน่าจะเป็นในการเล่น / ไม่เล่น Tennis ตามทัศนวิสัยทั้ง 14 วัน
- 2. คำนวณหาความน่าจะเป็นในการเล่น / ไม่เล่น Tennis ของคำถาม
  - แอททริบิวต์ outlook = sunny
  - แอททริบิวต์ temperature = hot
  - แอททริบิวต์ humidity = high
  - แอทหริบิวต์ windy = FALSE



## **Classification Techniques (6)**

■ Naïve Bayes : ขั้นตอนการคำนวณ

P(play = yes) = 9/14 = 0.64P(play = no) = 5/14 = 0.36

| attribute          | play = yes | play = no  |
|--------------------|------------|------------|
| outlook = sunny    | 2/9 = 0.22 | 3/5 = 0.60 |
| outlook = overcast | 4/9 = 0.45 | 0/5 = 0.00 |
| outlook = rainy    | 3/9 = 0.33 | 2/5 = 0.40 |
| temperature = hot  | 2/9 = 0.22 | 2/5 = 0.40 |
| temperature = mild | 4/9 = 0.45 | 2/5 = 0.40 |
| temperature = cool | 3/9 = 0.33 | 1/5 = 0.20 |
| humidity = high    | 3/9 = 0.33 | 4/5 = 0.80 |
| humidity = normal  | 6/9 = 0.67 | 1/5 = 0.20 |
| windy = TRUE       | 3/9 = 0.33 | 3/5 = 0.60 |
| windy = FALSE      | 6/9 = 0.67 | 2/5 = 0.40 |

Chapter 5-2 © 2024 by Wilairat 17



### **Classification Techniques (7)**

- Naïve Bayes : Prediction on unseen data
- ต้องคำนวณค่าความน่าจะเป็นที่มีแอตทริบิวต์เหล่านี้แล้วตอบคลาส play = yes

```
P(play = yes|A) = P(outlook = sunny|play = yes) x P(temperature = hot|play = yes) x P(humidity = high|play = yes) x P(windy = FALSE|play = yes) x P(play = yes) = 0.22 x 0.22 x 0.33 x 0.67 x 0.64 = 0.0068
```

■ ต้องคำนวณค่าความน่าจะเป็นที่มีแอตทริบิวต์เหล่านี้แล้วตอบคลาส play = No

```
P(\textbf{play} = \textbf{no}|A) = P(\textbf{outlook} = \text{sunny}|\text{play} = \textbf{no}) \times P(\textbf{temperature} = \text{hot}|\text{play} = \textbf{no}) \times P(\textbf{humidity} = \text{high}|\text{play} = \textbf{no}) \times P(\textbf{windy} = \text{FALSE}|\text{play} = \textbf{no}) \times P(\text{play} = \textbf{no}) \times P
```

เมื่อเปรียบเทียบค่าความน่าจะเป็นที่ได้จาก 2 คลาสแล้วพบว่าค่า P(play = no|A) (=0.0276) มีค่ามากกว่า P(play = yes|A) (=0.0068) ดังนั้นโมเดลของเราจึงทำนาย ว่าข้อมูล instance นี้มีค่าคลาส play = no



#### **Classification Techniques (8)**

- Naïve Bayes in Weka
- โหลดไฟล์ bank-data.arff (ใน AssignmentII)
- เลือก tab classify
- คลิก weka→classifiers →bayes → NaiveBayes
- เลือกวิธีการแบ่งข้อมูล ( 10-fold cross validation)
- คลิก start
- อธิบายผลที่ได้



Chapter 5-2



## H

### **Classification Techniques**

- K-Nearest Neighbor (KNN)
- ใช้หลักการเปรียบเทียบข้อมูลที่สนใจกับข้อมูลอื่นว่ามีความคล้ายคลึงมากน้อย เพียงใด หากข้อมูลที่กำลังสนใจ อยู่ใกล้ข้อมูลใดมากที่สุด ระบบจะให้คำตอบ เป็นเหมือนคำตอบของข้อมูลที่อยู่ใกล้ที่สุดนั้น เป็นวิธีการที่ไม่ซับซ้อนและ เข้าใจง่ายที่สุดที่ใช่ในการจำแนกประเภทข้อมูล





#### **Classification Techniques**

■ การหาเพื่อนบ้านใกล้ที่สุด (K-Nearest Neighbors) หมายถึง วิธีที่ใช้ ในการจัดแบ่งคลาส โดยเทคนิคนี้จะตัดสินใจว่าคลาสใดที่จะแทนเงื่อนไข หรือกรณีใหม่ ๆ ได้ โดยการตรวจสอบจำนวนบางจำนวน "K" ใน ขั้นตอนวิธีการหาเพื่อนบ้านใกล้สุด ของกรณีหรือเงื่อนไขที่เหมือนกัน หรือใกล้เคียงกันมากที่สุด โดยจะหาผลรวม (Count Up) ของจำนวน เงื่อนไข หรือกรณีต่าง ๆ สำหรับแต่ละคลาส และกำหนดเงื่อนไขใหม่ให้ คลาสที่เหมือนกันกับคลาสที่ใกล้เคียงกันมากที่สุด การนำเทคนิคของ ขั้นตอน KNNไปใช้นั้นเป็นการหาระยะห่างระหว่างแต่ละตัวแปร (Attribute) ซึ่งวิธีนี้เหมาะสำหรับข้อมูลแบบตัวเลขแต่ตัวแปรที่เป็นค่า แบบไม่ต่อเนื่องก็สามารถทำได้เพียง

Chapter 5-2 © 2024 by Wilairat 21



#### Classification Techniques (2)

- K-Nearest Neighbor (KNN) การนำเทคนิคของ K-NN ไปใช้ เป็นการหาวิธีการวัดระยะห่างระหว่างแต่ละAttributeในข้อมูลให้ได้ และจากนั้น คำนวณค่าออกมา
- เป็นการเรียนรู้โดยพิจารณาจากตัวอย่าง (Instance-based Learning)
- ข้อมูลฝึกถูกนำมาใช้ในการจำแนกข้อมูลใหม่โดยเปรียบเทียบจากลักษณะ
   ความคล้ายคลึงกันของข้อมูล จากค่าน้ำหนักโดยการพิจาณาระยะห่างระหว่าง
   ข้อมูลที่สนใจกับข้อมูลที่อยู่ใกล้สุด k ตัว ร่วมด้วย
- ถูกเรียกว่า "Lazy learning"
- เป็นวิธีที่ง่ายและมีประสิทธิภาพ แต่การประมวลผลช้า

 Chapter 5-2
 © 2024 by Wilairat

22



## Classification Techniques (3)

#### K-Nearest Neighbor (KNN)



## Classification Techniques (4)

#### K-Nearest Neighbor (KNN)





#### Classification Techniques (5)

#### K-Nearest Neighbor (KNN) : Example

จากการสุ่มเลือกข้อมูล Iris Dataset ซึ่งมีข้อมูลทั้งสิ้น 150 รายการ แบ่งออกเป็น 3 คลาส คลาสละ 50 รายการ เพื่อมาใช้ เป็นTraining Dataset จำนวน 9 รายการ โดยทำการสุ่มเลือก มาจากแต่ละคลาส ๆ ละ 3 รายการ ข้อมูลหลังจากการสุ่ม เลือกแล้ว ดังตารางต่อไปนี้

| Sepal  | Sepal | Petal  | Petal | Class                  |  |
|--------|-------|--------|-------|------------------------|--|
| Length | Width | Length | Width |                        |  |
| 48     | 30    | 14     | 1     | Iris-setosa            |  |
| 51     | 35    | 14     | 3     | Iris-setosa            |  |
| 50     | 34    | 16     | 4     | Iris-setosa            |  |
| 66     | 30    | 44     | 14    | lris-versicolor        |  |
| 67     | 31    | 47     | 15    | lris-versicolor        |  |
| 58     | 26    | 40     | 12    | lris-versicolor        |  |
| 77     | 26    | 69     | 23    | Iris- <u>virginica</u> |  |
| 77     | 30    | 61     | 23    | Iris- <u>virginica</u> |  |
| 67     | 30    | 52     | 23    | Iris- <u>virginica</u> |  |

Chapter 5-2 © 2024 by Wilairat 25



#### Classification Techniques (6)

#### K-Nearest Neighbor (KNN) : Example

จงแสดงวิธีการคำนวณหา Class ของข้อมูลในตารางข้างล่าง โดยใช้ รูปแบบ K-Nearest Neighbors(KNN) (กำหนดให้ K=3)

| Sepal  | Sepal | Petal  | Petal | Class |
|--------|-------|--------|-------|-------|
| Length | Width | Length | Width | (KNN) |
| 56     | 37    | 13     | 4     | ?     |

#### Solution

นำข้อมูลที่ต้องการทำนายผลมาเปรียบเทียบกับข้อมูลใน Training Dataset โดยคำนวณหาค่า Euclidean Distance ตามสูตร

distance = 
$$\sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$



#### Classification Techniques (7)

K-Nearest Neighbor (KNN) : Example

ผลลัพธ์ที่ได้

```
\begin{array}{ll} \operatorname{distance}(x,R_1) = \sqrt{(56-48)^2 + (37-30)^2 + (13-14)^2 + (4-1)^2} &= 11.09 \\ \operatorname{distance}(x,R_2) = \sqrt{(56-51)^2 + (37-35)^2 + (13-14)^2 + (4-3)^2} &= 5.57 \\ \operatorname{distance}(x,R_3) = \sqrt{(56-50)^2 + (37-34)^2 + (13-16)^2 + (4-4)^2} &= 7.35 \\ \operatorname{distance}(x,R_4) = \sqrt{(56-66)^2 + (37-30)^2 + (13-44)^2 + (4-14)^2} &= 34.79 \\ \operatorname{distance}(x,R_5) = \sqrt{(56-67)^2 + (37-31)^2 + (13-47)^2 + (4-15)^2} &= 37.87 \\ \operatorname{distance}(x,R_6) = \sqrt{(56-58)^2 + (37-26)^2 + (13-40)^2 + (4-12)^2} &= 30.30 \\ \operatorname{distance}(x,R_6) = \sqrt{(56-77)^2 + (37-26)^2 + (13-69)^2 + (4-23)^2} &= 63.71 \\ \operatorname{distance}(x,R_8) = \sqrt{(56-77)^2 + (37-30)^2 + (13-61)^2 + (4-23)^2} &= 56.17 \\ \operatorname{distance}(x,R_9) = \sqrt{(56-67)^2 + (37-30)^2 + (13-52)^2 + (4-23)^2} &= 45.30 \end{array}
```

จากการคำนวณพบว่า ข้อมูลมีความใกล้เคียงกับ Training dataset ในเรคอร์ด ที่ 1,2 และ 3 ซึ่งมี class = Iris Setosa ดังนั้นจึงทำนายได้ว่าข้อมูลที่ใช้ในการ ทดสอบจากโจทย์ จะมี class = Iris Setosa

Chapter 5-2

© 2024 by Wilairat

27



#### Classification Techniques (8)

- K-Nearest Neighbor (KNN) : Example
- การจำแนกข้อมูลที่เลือกเฉพาะข้อมูลที่มีระยะห่าง 1 กลุ่ม (ใกล้ที่สุด) จะเรียกว่า "1NN (One Nearest Neighbor) ดังนั้น "k-NN" ค่า k จึงเป็นจำนวนของกลุ่มที่ต้องการเลือก เป็นกลุ่มเพื่อนบ้าน โดยควรกำหนดเป็นเลขคี่ สำหรับการหาค่าระยะทางจะใช้สมการ จากทฤษฎีการวัดระยะทางของ Euclidean ดังนี้

$$d = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

เมื่อ p คือค่าของชุดข้อมูลที่ต้องการจำแนก
 q คือค่าของชุดข้อมูลเพื่อนบ้านที่นำมาพิจารณา





## Classification Techniques (9)

- K-Nearest Neighbor (KNN) : ขั้นตอนวิธี
- ข้อมูลใหม่ (Unknown) ซึ่งไม่ทราบ Class เรียกว่า U
- ข้อมูลชุดสอน (Training set) มีขนาดเท่ากับ Nrow \* Marrtibue
- วนรอบ จำนวน N รอบ
  - 🗆 คำนวณหาระยะห่างของ U กับ Training[i]
- จบการทำงาน
- คำนวณหาระยะทางที่ใกล้ที่สุด จำนวน k ค่า
- 🔳 เลือกคำตอบจากชุดข้อมูลสอนที่ใกล้ที่สุด หรือมีคำตอบซ้ำกันมากที่สุด

Chapter 5-2 © 2024 by Wilairat 29



## Classification Techniques (10)

■ K-Nearest Neighbor (KNN) : ตัวอย่าง

| Attributes x       |                                                                                     |                |            |            |            |            |            |                 |  |  |
|--------------------|-------------------------------------------------------------------------------------|----------------|------------|------------|------------|------------|------------|-----------------|--|--|
| ชื่อ               | ชื่อ อุณหภูมิ ผิวหนัง การเกิด อาศัย บิน มีขา จำศีล<br>ร่างกาย เป็นตัว ในน้ำ หรือไม่ |                |            |            |            |            |            |                 |  |  |
| มนุษย์             | เลือดอุ่น                                                                           | มีขน           | ใช่        | ไม่        | lai        | ใช่        | ไม่        | Mammal          |  |  |
| งูเหลือม<br>แซลมอน | เลือดเย็น<br>เลือดเย็น                                                              | เกล็ด<br>เกล็ด | ไม่<br>ไม่ | ไม่<br>ใช่ | Tai<br>Tai | ไม่<br>ไม่ | ใช่<br>ไม่ | Reptile<br>Fish |  |  |

|          | Attributes x transformation   |                   |                    |                         |              |                          |                |         |  |
|----------|-------------------------------|-------------------|--------------------|-------------------------|--------------|--------------------------|----------------|---------|--|
| ชื่อ     | อุณหภูมิ<br>ร่างกาย<br>(อุ่น) | ผิวหนัง<br>(มีขน) | การเกิด<br>เป็นตัว | อาศัย<br>ในน้ำ<br>(ใช่) | บิน<br>(ใช่) | มีขา<br>หรือไม่<br>(ใช่) | จำศีล<br>(ใช่) | คลาส    |  |
| มนุษย์   | 1                             | 1                 | 1                  |                         |              | 1                        |                | Mammal  |  |
| งูเหลือม |                               |                   |                    |                         |              |                          | 1              | Reptile |  |
| แซลมอน   |                               |                   |                    | 1                       |              |                          |                | Fish    |  |

30



## **Classification Techniques (11)**

■ K-Nearest Neighbor (KNN) : ตัวอย่าง (1NN)

|     |          |                                                   | _       | -       | -     |       |         | -     | -       |  |  |
|-----|----------|---------------------------------------------------|---------|---------|-------|-------|---------|-------|---------|--|--|
|     |          | Attributes x                                      |         |         |       |       |         |       |         |  |  |
|     | ชื่อ     | ชื่อ อณหภูมิ ผิวหนัง การเกิด อาศัย บิน มีขา จำศีล |         |         |       |       |         |       |         |  |  |
|     | 700      | อุณหภูมิ                                          |         |         |       |       |         |       | คลาส    |  |  |
|     |          | ร่างกาย                                           | (มีขน)  | เป็นตัว | ในน้ำ | (ીજં) | หรือไม่ | (ીજં) |         |  |  |
|     |          | (อุ่น)                                            |         |         | (ใช่) |       | (ใช่)   |       |         |  |  |
| 1   | มนุษย์   | 1                                                 | 1       | 1       |       |       | 1       |       | Mammal  |  |  |
| //  | งูเหลือม |                                                   |         |         |       |       |         | 1     | Reptile |  |  |
| //> | แซลมอน   |                                                   |         |         | 1     |       |         |       | Fish    |  |  |
| //  |          |                                                   |         |         |       |       |         |       |         |  |  |
| (   | ชื่อ     | อุณหภูมิ                                          | ผิวหนัง | การเกิด | อาศัย | บิน   | มีขา    | จำศีล | คลาส    |  |  |
|     |          | ร่างกาย                                           | (มีขน)  | เป็นตัว | ในน้ำ | (ીઇ)  | หรือไม่ | (ીઇ)  |         |  |  |

| ชื่อ    | อุณหภูมิ | ผิวหนัง | การเกิด | อาศัย      | บิน    | มีขา    | จำศีล | คลาส |
|---------|----------|---------|---------|------------|--------|---------|-------|------|
|         | ร่างกาย  | (มีขน)  | เป็นตัว | ในน้ำ      | (રિજં) | หรือไม่ | (ીઇ)  |      |
|         | (อุ่น)   |         |         | (ીઇ)       |        | (ીઇ)    |       |      |
| สัตว์   | 1        |         | 1       |            |        |         |       | ???  |
| ประหลาด |          |         |         | 1 1477 : 4 |        |         |       |      |

Chapter 5-2 © 2024 by Wilairat



## Classification Techniques (12)

■ K-Nearest Neighbor (KNN) : ตัวอย่าง (1NN)

$$d = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

ระยะทางของชุดข้อมูลมนุษย์

$$d_1 = \sqrt{(1-1)^2 + (0-1)^2 + (1-1)^2 + (0-0)^2 + (0-0)^2 + (0-1)^2 + (0-0)^2} = 1.414214$$

ระยะทางของชุดข้อมูลงูเหลือม

$$d_2 = \sqrt{(1-0)^2 + (0-0)^2 + (1-0)^2 + (0-0)^2 + (0-0)^2 + (0-0)^2 + (0-0)^2 + (0-1)^2} = 1.732051$$

ระยะทางของชุดข้อมูลแซลมอน

$$d_3 = \sqrt{(1-0)^2 + (0-0)^2 + (1-0)^2 + (0-1)^2 + (0-0)^2 + (0-0)^2 + (0-0)^2} = 1.732051$$



## **Classification Techniques (13)**

#### ■ K-Nearest Neighbor (KNN) : ตัวอย่าง (3NN)

| Attributes × |         |        |         |       |       |         |       |         |  |  |
|--------------|---------|--------|---------|-------|-------|---------|-------|---------|--|--|
|              |         |        |         |       |       |         |       |         |  |  |
|              | ร่างกาย | (มีขน) | เป็นตัว | ในน้ำ | (કિં) | หรือไม่ | (lvi) |         |  |  |
|              | (อุ่น)  |        |         | (િયં) |       | (ીઇ)    |       |         |  |  |
| มนุษย์       | 1       | 1      | 1       |       |       | 1       |       | Mammal  |  |  |
| งูเหลือม     |         |        |         |       |       |         | 1     | Reptile |  |  |
| แชลมอน       |         |        |         | 1     |       |         |       | Fish    |  |  |
| วาฬ          | 1       | 1      | 1       | 1     |       |         |       | Mammal  |  |  |
| ค้างคาว      | 1       | 1      | 1       |       | 1     |         |       | Mammal  |  |  |
| ปลาไหล       |         |        |         | 1     |       |         |       | Fish    |  |  |
| สัตว์        | 1       |        | 1       |       |       |         |       | ???     |  |  |
| ประหลาด      |         |        |         |       |       |         |       |         |  |  |

| 1 |          |               |         |
|---|----------|---------------|---------|
| J | ชื่อ     | คลาส          |         |
| ı |          | ประหลาดกับชุด |         |
| ı |          | ข้อมูล        |         |
|   | ทห์ษฤ    | 1.414214      | Mammal  |
|   | งูเหลือม | 1.732051      | Reptile |
|   | แซลมอน   | 1.732051      | Fish    |
|   | วาฬ      | 1.414214      | Mammal  |
|   | ค้างคาว  | 1.414214      | Mammal  |
|   | ปลาไหล   | 1.732051      | Fish    |

 Chapter 5-2
 © 2024 by Wilairat
 33



## **Classification Techniques (14)**

- K-Nearest Neighbor (KNN) : ตัวอย่าง (3NN)
- ถ้าคำตอบที่ได้ไม่เหมือนกัน สามารถพิจารณาได้โดย
- เลือกคำตอบจากเสียงข้างมาก เช่น สัตว์เลี้ยงลูกด้วยนม สัตว์เลื้อยคลาน สัตว์เลี้ยงลูก
   ด้วยนม จะสรุปว่าเป็นสัตว์เลี้ยงลูกด้วยนมจากเสียงข้างมาก
- เลือกคำตอบจากคำตอบที่มีระยะทางน้อยที่สุด (ในกรณีที่คำตอบไม่เหมือนกันเลย)



### **Classification Techniques (15)**

#### ■ K-Nearest Neighbor (KNN) : เปรียบเทียบการทำงาน

| เกณฑ์                    | D-tree             | KNN                      |
|--------------------------|--------------------|--------------------------|
| ระยะเวลาในการสร้างโมเดล  | ใช้เวลานาน         | ไม่มีการสร้างโมเดล       |
| ระยะเวลาในการจำแนกข้อมูล | ใช้เวลารวดเร็ว     | ใช้เวลานานเพราะต้องทำการ |
| ใหม่                     |                    | เปรียบเทียบกับชุดข้อมูล  |
| ความยากง่าย              | ยากในการสร้างโมเดล | ง่ายในการคำนวณ           |

Chapter 5-2 © 2024 by Wilairat 35



## **Classification Techniques (16)**

- K-Nearest Neighbor (KNN) in Weka
- โหลดไฟล์ bank.arff
- เลือก Tab classify
- คลิก Weka→classifiers→lazy →lbk
- คลิก Panel lbk
- ระบุค่า K ที่ต้องการ กดปุ่ม Ok
- เลือกวิธีการแบ่งข้อมูล
- คลิก start
- อธิบายผลลัพธ์
- เปรียบเทียบผลที่ได้จากทั้ง 3 อัลกอริทึม
   คือ ID3, Naïve bayes และKNN

| Criteria                             | C4.5 | Naïve Bayes |
|--------------------------------------|------|-------------|
| Time to build<br>the model (seconds) |      |             |
| Correctly classify                   |      |             |
| Incorrectly classify                 |      |             |
| Accuracy                             |      |             |
| Precision                            |      |             |
| Recall                               |      |             |



### **Classification Techniques** (17)



## Classification Techniques (18)

#### **EXERCISE**

1. จงใช้ ข้อมูลตารางต่อไปนี้สำหรับสร้าง Naïve Bayes Classifier Predict new instances,

$$1.1 \times_1 = (A = 1, B = 1, C = 1)$$

$$1.2 X_2 = (A = 1, B = 0, C = 0)$$

1.3 
$$X_3 = (A = 0, B = 1, C = 1)$$

| Record | A | B | C | Class |
|--------|---|---|---|-------|
| 1      | 0 | 0 | 0 | +     |
| 2      | 1 | 0 | 1 | _     |
| 3      | 0 | 1 | 1 | +     |
| 4      | 1 | 1 | 1 | _     |
| 5      | 0 | 0 | 1 | +     |
| 6      | 1 | 0 | 1 | +     |
| 7      | 1 | 0 | 1 | _     |
| 8      | 1 | 1 | 1 | _     |
| 9      | 1 | 1 | 1 | +     |
| 10     | 1 | 0 | 1 | +     |

38



## **Classification Techniques (19)**

K-Nearest Neighbor (KNN) in Weka

| Height(cm) | Weight(kg) | Waistline(inch) | Chest(inch) | Gender |
|------------|------------|-----------------|-------------|--------|
| 165        | 60         | 32              | 37          | F      |
| 175        | 75         | 33              | 43          | M      |
| 166        | 50         | 30              | 34          | M      |
| 155        | 50         | 28              | 32          | F      |
| 170        | 60         | 30              | 34          | ?      |

■ เปรียบเทียบความแตกต่างของ 3 อัลกอริทึม คือ J48 , Naïve Bayes และ KNN (ข้อมูลในรูปไฟล์ Man.arff)