Exercices opérateurs pseudo-différentiels

Martin AVERSENG

October 10, 2016

1 Introduction

Exercice 1.1 a) La fonction p_m est continue (c'est un polynôme) et non nulle (on la suppose elliptique) sur la sphère unité. Sa valeur absolue est donc également continue et atteint par conséquent un minimum $\nu > 0$ sur la sphère. En appliquant le fait que p_m est homogène de degré m, on en déduit que pour tout $\xi \in \mathbb{R}^n$

$$p_m(\xi) > \nu |\xi|^m$$

Comme le polynôme $p-p_m$ est de degré au plus m-1, il existe R>0 pour lequel

$$\forall |\xi| > R, \quad |(p - p_m)(\xi)| < \frac{|p_m(\xi)|}{2}$$

D'où l'on tire que

$$\forall |\xi| > R, \quad |p(\xi)| > ||p_m(\xi)| - |(p - p_m)(\xi)|| = |p_m(\xi)| - |(p - p_m)(\xi)| > \frac{|p_m(\xi)|}{2} > \frac{\nu}{2^m} |\xi|^m$$

On considère donc une fonction $\chi \in C_0^{\infty}(\mathbb{R}^n)$ qui est identiquement égale à 1 dans un voisinnage de B(0,R), et dans ce cas, la fonction

$$\hat{E}(\xi) = \frac{1 - \chi(\xi)}{p(\xi)},$$

est bien définie. Comme c'est une fonction de classe C^{∞} et bornée, c'est une distribution tempérée. On a alors

$$\widehat{p(D)E} = 1 - \chi(\xi),$$

ce qui implique que $p(D)E = \delta + w$ où w est la transformée de Fourier de $-\chi$. Comme χ est dans l'espace de Schwartz (puisqu'elle est C_0^{∞}), w l'est aussi.

b) Nous allons montrer le résultat suivant

Proposition 1.1. Pour tout α , il existe une constante $C_{\alpha} > 0$ telle que

$$|\partial_{\xi}^{\alpha} \hat{E}| \le C_{\alpha} (1 + |\xi|)^{-m - |\alpha|}$$

Proof. Etant donné que \hat{E} est nulle dans un voisinnage de 0, il suffit de montrer que pour de grands $|\xi|$,

$$|\partial_{\xi}^{\alpha} \hat{E}| \le C_{\alpha} |\xi|^{-m - |\alpha|} \tag{1}$$

D'après la formule de Leibniz, la fonction $\partial_{\xi}^{\alpha} \hat{E}$ s'exprime comme une combinaison linaire de termes de la forme

$$\partial^{\beta_1} \xi (1-\chi) \partial_{\xi}^{\beta_2} \left(\frac{1}{p}\right)$$

Où $\beta_1 + \beta_2 = \alpha$, ce que nous notons par la suite

$$\partial_{\xi}^{\alpha} \hat{E} = \operatorname{CL}\left(\left\{\partial^{\beta_1} \xi(1-\chi)\partial_{\xi}^{\beta_2} \left(\frac{1}{p}\right) \mid \beta_1 + \beta_2 = \alpha\right\}\right)$$

Lorsque $\beta_1 \neq 0$, le terme correspondant est dans $C_c^{\infty}(\mathbb{R}^n)$ et vérifie donc évidemment l'estimation (1). Le seul terme qui n'obéit pas à cette condition est de la forme

$$(1-\chi)\partial_{\xi}^{\alpha}\left(\frac{1}{p}\right)$$

Exprimons $\partial_\xi^\alpha\left(\frac{1}{p}\right)$ à l'aide de la formule de Fàa di Bruno :

$$\frac{1}{p} = \operatorname{CL}\left(\left\{\frac{1}{p^{K+1}} \prod_{i=1}^{K} \partial_{\xi}^{\alpha_i} p \mid \alpha_1 + \alpha_2 + \dots + \alpha_K = \alpha\right\}\right)$$

Or puisque p est un polynôme de degré m, pour tout β , il existe une constante C_{β} vérifiant

$$\partial^{\beta} p \leq C_{\beta} |\xi|^{m-|\beta|}$$

D'autre part, on a montré en a) que

$$\frac{1}{p} > \nu \frac{1}{|\xi|^m}$$

On en déduit que tous les termes dans la formule de Fàa di Bruno sont majorés par une quantité de la forme $\frac{C}{|\xi|^{m+|\alpha|}}$

Corollary 1.1. Pour tout α tel que $|\alpha| \ge n - m + 1$ et pour tout β , on a

$$D^{\beta}(x^{\alpha+\beta}E) \in L^{\infty}$$

Proof. La transformée de Fourier de $D^{\beta}(x^{\alpha+\beta}E)$ est proportionnelle à $\xi^{\beta}\partial_{\xi}^{\alpha+\beta}\hat{E}$ qui est intégrable sous les conditions de l'énoncé, grâce au résultat de la proposition précédente.

Corollary 1.2. E est C^{∞} sur $\mathbb{R}^n \setminus \{0\}$.

Proof. Soit $k \in \mathbb{N}^*$, montrons que E est de classe C^k en dehors de 0. Soit α_k tel que

$$|\beta| \le k \implies \beta \le \alpha_k \text{ et } |\alpha_k - \beta| \ge n + 1 - m$$

Nous allons montrer que $x^{\alpha_k}E$ est de classe C^{k-1} . Pour cela, il suffit de montrer que pour tout multiindice β de longueur inférieure à k, $\partial^{\beta}(x^{\alpha_k}E)$ est bornée. Soit β un tel multi-indice, on peut vérifier que le couple $(\alpha_k - \beta, \beta)$ vérifie les hypothèses du corollaire précédent ce qui fournit le résultat. \square

c) La transformée de Fourier de $D^{\beta}E$ s'écrit $\xi^{\beta}\hat{E}$. Les réponses aux questions précédentes nous ont permis de voir que $\hat{E} \in S^{-m}$ et $\xi^{\beta} \in S^{|\beta|}$ donc $\xi^{\beta}\hat{E} \in S^{|\beta|-m}$. Sous l'hypothèse $|\beta| \leq m-n-1$, $\xi^{\beta}\hat{E} \in S^{-n-1}$. C'est donc une fonction intégrable, ce qui prouve que $D^{\beta}E$ est bornée, donc en particulier intégrable en 0. D'autre part, on a

$$x^{\alpha}D^{\beta}E \propto \int e^{ix\xi}\partial_{\xi}^{\alpha}(\xi^{\beta}\hat{E})d\xi$$

Le second membre est toujours intégrable (la dérivation a même accéléré la décroissance à l'infini du spectre). On en déduit que $D^{\beta}E$ est intégrable. Soit α tel que $|\alpha| \leq m - n - 1$. On sait que, étant donné que p(D) et D^{α} commutent,

$$D^{\alpha}u = (D^{\alpha}E * p(D)u) + S^{-\infty}$$

Or la quantité du membre de droite est bornée à cause de l'inégalité de Young et du fait que $D^{\alpha}E \in L^1$ et $p(D)u \in L^{\infty}$