Analysis II (Marciniak-Czochra)

Robin Heinemann

30. April 2017

Inhaltsverzeichnis

1	Metrische und normierte Käume		
	1.1	Metrische Räume	
	1.2	Normierte Räume	
	1.3	Hilberträume	
2	Stetigkeit und Differenzierbarkeit im \mathbb{R}^n		

1 Metrische und normierte Räume

1.1 Metrische Räume

Definition 1.1 Sei M eine Menge, $d:M\times M\to [0,\infty)$ heißt **Metrik** auf M genau dann wenn $\forall x,y,z\in M$

• (D1)
$$d(x, y) = 0 \iff x = y$$
 (Definitheit)

• (D2)
$$d(x,y) = d(y,x)$$
 (Symmetrie)

• (D3)
$$d(x, z) \le d(x, y) + d(z, y)$$
 (Dreiecksungleichung)

Beispiel 1.2 1. Charakterische (diskrete) Metrik

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & \text{sonst} \end{cases}$$

2. Sei $X = \mathbb{K}^n(\mathbb{K} = \mathbb{R} \text{ oder } \mathbb{C})$ mit Metrik

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{n}{2}}$$

(euklidische Metrik)

3. Sei $X=\mathbb{R}^n$. Für $1\leq \phi \leq \infty$. Sei

$$d_{\phi}(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^{\phi}\right)^{\frac{n}{\phi}}$$

Ist $\phi = \infty$, so definieren wir

$$d_{\infty}(x,y) = \max_{i=1,\dots,n} |x_i - y_i|$$

4. $X = \mathbb{R}$ mit Metrik

$$d(x,y) = \frac{|x - y|}{1 + |x - y|}$$

5. Der Raum der Folgen $a:\mathbb{N}\to\mathbb{R}$ (beziehungsweise $\mathbb{R}^\mathbb{N}$) kann mit der Metrik

$$d(x,y) = \sum_{k=0}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

Definition 1.3 Sei M eine Menge mit Metrik d. Wir definieren für $x\in M, \varepsilon>0$, die offene ε -Kugel um x durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) < \varepsilon \}$$

und eine abgeschlossene Kugel durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) \le \varepsilon \}$$

 $A \subset M$ heißt **Umgebung** von $x \in M \iff \exists \varepsilon : K_{\varepsilon}(x) \subset A$

Konvergenz und Stetigkeit in metrischen Räumen

Definition 1.4 Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) ist konvergent gegen einem $x\in X$ genau dann wenn $\forall \varepsilon>0 \exists n_0\in\mathbb{N}: \forall n\geq n_0d(x_n,x)<\varepsilon$

- **Satz 1.5** 1. Sei (X,d) ein metrischer Raum. Dann ist $A\subseteq X$ abgeschlossen genau dann wenn $(X_n)_{n\in\mathbb{N}}$ Folge in A mit $x_n\to x\implies x\in A$
 - 2. Seien $(X, d_1), (Y, d_2)$ zwei metrische Räume. Dann ist die Funktion stetig in $x \in X$ genau dann wenn $(x_n)_{n \in \mathbb{N}}$ Folge in X mit $x_n \to x \implies f(x_n) \to f(x)$.

Definition 1.6 ((Cauchy Folgen und Vollständigkeit)) Sei (X,d) ein metrischer Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge falls $d(x_n,x_m)\to 0$ für $n,m\to\infty$. Der metrische Raum heißt **vollständig**, falls jede Cauchy-Folge konvergent ist.

1.2 Normierte Räume

Definition 1.7 Ein normierter Raum $(X, \|\cdot\|)$ ist ein Paar bestehend aus einem \mathbb{K} -Vektorraum X und einer Abbildung $\|\cdot\|: X \to [0, \infty)$ mit

1.
$$||x|| = 0 \iff x = 0$$

2.
$$\|\lambda x\| = |\lambda| \|x\| \forall \lambda \in \mathbb{K}, x \in X$$

3.
$$||x + y|| \le ||x|| + ||y|| \forall x, y \in X$$

Bemerkung 1. Die Norm $\|\cdot\|$ induziert auf X eine Metrik $d(x,y) = \|x-y\|$

2. Eine Metrik d auf einem Vektorraum definiert die Norm ||d(x,0)|| nur dann, wenn

$$\forall \lambda \in \mathbb{K} \forall x, y, z \in X : d(\lambda x, \lambda y) = |\lambda| d(x, y)$$
 (Homogenität)
$$d(x + z, y + z) = d(x, y)$$
 (Translationsinvarianz)

Definition 1.8 (Banachraum) Ein normierter Raum $(X,\|\cdot\|)$ heißt vollständig, falls X als metrischer Raum mit der Metrik $d(x,y)=\|x-y\|$ vollständig ist. Ein solcher vollständiger normierter Raum heißt **Banachraum**

Beispiel 1.9 1. $(\mathbb{R}^n, \|\cdot\|_2)$, wobei

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{n}{2}}$$

2. Sei K eine kompakte Menge:

$$C_{\mathbb{K}} := \{f: K \to \mathbb{K} \mid f \text{ stetig}\}$$

$$\|\cdot\|_{\infty} = \max_{\lambda \in K} |f(x)|$$

 $(C_{\mathbb{K}(K)}, \|\cdot\|_{\infty})$ ist ein Banachraum.

Bemerkung 1. Jede Cauchy-Folge in \mathbb{K}^n konvergiert, das heißt $(\mathbb{K}^n, \|\cdot\|)$ ist vollständig

2. Jede beschränkte Folge in \mathbb{K}^n besitzt eine konvergente Teilfolge. (Bolzano-Weierstraß Satz gilt in \mathbb{R}^n) (Beweis für \mathbb{R}^n zum Beispiel in RR Ana2 Satz 1.1)

Satz 1.10 (Äquivalenz von Normen) Auf dem endlich dimensionalen Vektorraum \mathbb{K}^n sind alle Normen äquivalent zur Maximumnorm, das heißt zu jeder Norm $\|\cdot\|$ gibt es positive Konstanten w, M mit denen gilt

$$m\|x\|_{\infty} \leq \|x\| \leq M\|x\|_{\infty}, x \in \mathbb{K}^n$$

Beweis Sei $\|\cdot\|$ irgendeine Norm $\forall x \in \mathbb{K}^n$ gilt

$$||x|| \le \sum_{k=1}^{n} |x_k| ||e^{(k)}|| \le M||x||_{\infty}$$

mit

$$M := \sum_{k=1}^{n} \left\| e^{(k)} \right\|$$

Wir setzen

$$S_1 := \{x \in \mathbb{K}^m \mid ||x||_{\infty} = 1\}, m := \inf\{||x||, x \in S_1\} \ge 0$$

Zu zeigen m>0 (dann ergibt sich für $x\neq 0$ wegen $\|x\|_{\infty}^{-1}x\in S_1$ auch $m\leq \|x\|_{\infty}^{-1}\|x\|\implies 0< m\|x\|_{\infty}\leq \|x\|\quad x\in\mathbb{K}^n$) Sei also angenommen, dass m=0

Dann gibt eine eine Folge $(x^{(k)})_{k\in\mathbb{N}}\in S_1$ mit $\|x^{(k)}\|\xrightarrow{k\to\infty} 0$. Da die Folge bezüglich $\|\cdot\|_{\infty}$ beschränkt ist, gibt es nach dem B.-W. Satz eine Teilfolge auch von $(x^{(k)})$, die bezüglich $\|\cdot\|_{\infty}$ gegen ein $x\in\mathbb{K}^n$ konvergiert.

$$|1 - ||x||_{\infty}| = \left| \left| \left| x^{(k)} \right| \right|_{\infty} - \left| \left| x \right| \right|_{\infty} \right| \le \left| \left| x^{(k)} - x \right| \right|_{\infty} \to 0 \implies ||x||_{\infty} = 1 \implies x \in S_1$$

Anderseits gilt

$$\forall k \in \mathbb{N} : \|x\| \le \left\|x - x^{(k)}\right\| + \left\|x^{(k)}\right\| \le M \left\|x - x^{(k)}\right\|_{\infty} + \left\|x^{(k)}\right\| \xrightarrow{k \to \infty} \Longrightarrow x = 0$$
 \(\frac{\frac{1}{2}}{2}\text{u} \ x \in S_1

Definition 1.11 Eine Menge $M \subset K^n$ heißt kompakt (folgenkompakt), wenn jede beliebige Folge in M eine konvergente Teilfolge besitzt, deren Grenzwert ebenfalls in M enthalten ist.

Beispiel 1.12 Mit Hilfe von dem Satz von B.W. folgt, dass alle abgeschlossene Kugeln im \mathbb{R}^n ($K_r(a), a \in K^n$) kompakt sind. Ferner ist für beschränkte Mengen M der Rand ∂M kompakt. Jede endliche Menge ist auch kompakt.

1.3 Hilberträume

Definition 1.13 Sei $H\mathbb{K}$ Vektorraum. Ein **Skalarprodukt** auf eine Abbildung

$$(\cdot,\cdot):H\times H\to\mathbb{K}$$

mit

1.
$$\forall x, y, z \in H, \lambda \in \mathbb{K} : (z, x + \lambda y) = (z, x) + \lambda(z, y)$$

2.
$$\forall x, y \in H : (x, y) = \overline{(y, x)}$$

3.
$$\forall x \in H : (x, x) > 0 \land (x, x) = 0 \iff x = 0$$

 $(H,(\cdot,\cdot))$ nennt man einen Prähilbertraum.

Bemerkung Für $\mathbb{K} = \mathbb{C}$ ist das Skalarprodukt linear in der zweiten Komponente aber antilinear in der ersten $((\lambda x, y) = \bar{\lambda}(x, y))$.

Lemma 1.14 (Cauchy-Schwarz Ungleichung) Sei $(H, (\cdot, \cdot))$ Prähilbertraum, dann gilt

$$\forall x, y \in H : |(x,y)|^2 \le (x,x)(y,y)$$

Beweis Da die Ungleichung für y=0 bereits erfüllt ist, können wir ohne Beschränkung der Allgemeinheit annehmen $y\neq 0$. Für ein beliebiges $\alpha\in\mathbb{K}$ gilt

$$0 \le (x + \alpha y, x + \alpha y) = (x, x) + \bar{\alpha}(y, x) + \alpha(x, y) + \alpha \bar{\alpha}(y, y)$$

Setze nun $\alpha := -(x, y)(y, y)^{-1}$

$$= (x,x) - \overline{(x,y)}(y,y)^{-1} - (x,y)(y,y)^{-1}(x,y) - \left| (x,y)^2 \right| (y,y)^{-1}$$

$$= (x,x) - \underbrace{((y,x)(y,x) + (x,y)(x,y))(y,y)^{-1}}_{>0} - |(x,y)|^2 (y,y)^{-1}$$

$$\leq (x,x) - |(x,y)|^2 (y,y)^{-1}$$

$$\iff |(x,y)|^2 \leq (x,x)(y,y)$$

Korollar 1.15 Sei $(H,(\cdot,\cdot))$ ein Prähilbertraum, dann ist $\|x\|:=\sqrt{(x,x)}$ eine Norm auf H.

Beweis Es ist nur die Dreiecksungleichung zu beweisen, weil der Rest klar ist. Für $x,y\in H$ gilt

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\Re(x, y) \le ||x||^2 + ||y||^2 + 2|(x, y)| \le ||x||^2 + ||y||^2 + 2||x|| ||y||$$
$$= (||x|| + ||y||)^2$$

Definition 1.16 Ein Prähilbertraum $(H,(\cdot,\cdot))$ heißt Hilbertraum, falls $(H,\|\cdot\|)$ mit $\|x\|:=\sqrt{(x,x)}$ ein Banachraum ist.

Beispiel 1.17 1. $H = \mathbb{R}^n$ versehen mit $(x,y) := \sum_{i=1}^n x_i y_i$ ist ein Hilbertraum euklidisches Skalarprodukt

2.
$$H=\mathbb{C}^n$$
 mit $(x,y):=\sum_{i=1}^n \bar{x}_iy_i$ ist ein Hilbertraum euklidisches Skalarprodukt

3. Sei $l^2\mathbb{K}:=\{(x_k)_{k\in\mathbb{N}}\mid x_k\in\mathbb{K}, \forall k\in\mathbb{N}\wedge\sum_{i=1}^\infty |x_k|^2<\infty\}$ versehen mit $(x,y):=\sum_{i=1}^\infty \bar{x}_iy_i$ ist ein Hilbertraum.

$$\sum_{i=1}^{n} |x_i| |y_i| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}} \le ||x||_{l^2} ||y||_{l^2} < \infty$$

Lemma 1.18 (Hölder-Ungleichung) Für das euklidische Skalarprodukt $(\cdot,\cdot)_2$ gilt für beliebige p,q mit $1< p,q<\infty$ und $\frac{1}{p}+\frac{1}{q}=1$ die Ungleichung

$$\forall x, y \in \mathbb{K}^n : |(x, y)_2| \le ||x||_p ||y||_q, ||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Darüber hinaus gilt die Ungleichung auch für $p=1, q=\infty$

Lemma 1.19 (Young'sche Ungleichung) Tür $p,q \in \mathbb{R}, 1 < p,q < \infty, \frac{1}{p} + \frac{1}{q} = 1$ gilt

$$\forall x, y \in \mathbb{K} : |(x, y)| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}$$

Lemma 1.20 (Minkowski-Ungleichung) Für ein beliebiges $p \in [1, \infty]$ gilt

$$\forall x, y \in \mathbb{K}^n : ||x + y||_p \le ||x||_p + ||y||_p$$

Satz 1.21 (Banachscher Fixpunktsatz) Sei (M,d) ein vollständiger, metrischer Raum und $f:M\to M$ ist eine strenge Kontraktion, das heißt

$$\exists 0 < \alpha < 1 \forall x, y \in M : d(f(x), f(y)) < \alpha d(x, y)$$

Dann existiert ein eindeutiger Fixpunkt von f, das heißt es existiert ein eindeutiges $x^* \in M$: $f(x^*) = x^*$

Beweis Existenz:

Wähle ein $x_0 \in M$ beliebig, aber fest und definiere dann $x_1 := f(x_0), x_2 := f(x_1), \ldots$ Dann gilt für $n \leq m$

$$d(x_n, x_m) = d(f(x_{n-1}), f(x_{m-1})) < \alpha d(x_{n-1}, x_{m-1})$$

= $\alpha d(f(x_{n-2}), f(x_{m-2})) < \dots < \alpha^n d(x_0, x_{m-n})$

Nun gilt aber

$$d(x_0, x_{m-n}) \leq d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{m-n-1}, x_{m-n})$$

$$\leq d(x_0, x_1) + \alpha d(x_0, x_1) + \dots + a^{m-n-1} d(x_0, x_1)$$

$$= d(x_0, x_1) \sum_{i=0}^{m-n-1} \alpha^i \leq d(x_0, x_1) \sum_{i=0}^{\infty} \alpha^i$$

$$= \frac{d(x_0, x_1)}{1 - \alpha} < \infty$$

$$\implies d(x_n, x_m) \leq \frac{\alpha^n}{1 - \alpha} d(x_0, x_1)$$

Also ist $(x_k)_{k\in\mathbb{N}}$ Cauchy-Folge. Da (M,d) vollständig ist existiert $x^*\in M$, sodass $x_k\xrightarrow{k\to\infty} x^*$. Zeige, dass x^* Fixpunkt von f ist:

$$0 \le d(x^*, f(x^*)) \le d(x^*, x_k) + d(x_k, f(x^*))$$

$$\le d(x^*, x_k) + \alpha d(x_{k-1}, x^*) \xrightarrow{k \to \infty} 0$$

$$\implies f(x^*) = x^*$$

Eindeutigkeit: Angenommen $\exists x' \in M, x' \neq x^* : f(x') = x'$:

$$0 < d(x^*, x') = d(f(x^*), f(x')) < \alpha d(x^*, x') \implies \alpha > 1$$

2 Stetigkeit und Differenzierbarkeit im \mathbb{R}^n

Definition 2.1 Eine Funktion $f:D\subset\mathbb{K}^n\to\mathbb{K}^m, m,n\in\mathbb{N}\setminus\{0\}, D\neq\emptyset$, ist stetig in einem $a\in D$, wenn

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in D : ||x - a|| < \delta \implies ||f(x) - f(a)|| < \varepsilon$$

Bemerkung Es gelten auch im Mehrdimensionalen die Permanenzeigenschaften, das heißt f, g stetig $\implies f + g, f \circ g$ sind stetig.

Satz 2.2 Eine stetige Funktion $f:D\subset\mathbb{K}^n\to\mathbb{K}^m$ ist auf einer kompakten Menge $K\subset D$ beschränkt, das heißt für jede kompakte Menge K existiert eine Konstante M_k , sodass

$$\forall x \in K || f(x) || < M_k$$

Beweis Angenommen f wäre auf K unbeschränkt, dann gäbe es zu jedem $k \in \mathbb{N}$ ein $x_k \in K$ mit $\|f(x_k)\| > K$. Da K kompakt hat die Folge $(x_k)_{k \in \mathbb{N}}$ eine konvergente Teilfolge $(x_{k_j})_{j \in \mathbb{N}}$ für die gilt $x_{k_j} \xrightarrow{j \to \infty} x \in K$. Da f stetig $f(x_{k_j}) \to f(x)$ und $\|f(x)\| < \infty$, was im Widerspruch steht zu $\|f(x_k)\| \xrightarrow{k \to \infty} \infty$.

Satz 2.3 Eine stetige Funktion $f:D\subset\mathbb{K}^n\to\mathbb{R}$ nimmt auf jeder (nicht leeren) kompakten Menge $K\subset D$ ihr Minimum und Maximum an.

Beweis Nach Satz 2.2 besitzt f eine obere Schranke auf K

$$\mathcal{K} := \sup_{x \in K} f(x)$$

Dazu $(x_k)_{k\in\mathbb{N}}\subseteq K$, sodass $f(x_k)\xrightarrow{k\to\infty} \mathcal{K}$. Da K kompakt existiert eine konvergente Teilfolge $\left(x_{k_j}\right)_{j\in\mathbb{N}}$ und ein x_{max} , sodass $x_{k_j}\xrightarrow{j\to\infty} x_{max}$. Da f stetig, gilt $f\left(x_{k_j}\right)\to f(x_{max})$.

Bemerkung Auf diese Weise lassen sich die Ergebnisse der Stetigkeit aus dem Eindimensionalen ins Mehrdimensionale verallgemeinern.

Im folgenden Teil sei $D \subseteq \mathbb{R}^n$ offen, $\mathbb{K} = \mathbb{R}$

Definition 2.4 Eine Funktion $f:D\to\mathbb{R}$ heißt in einem Punkt $x\in D$ partiell differenzierbar bezüglich der i-ten Koordinatenrichtung, falls der Limes

$$\lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h} =: \frac{\partial f}{\partial x_i}(x) =: \partial_i f(x)$$

existiert. Existieren in allen Punkten $x \in D$ **alle** partiellen Ableitungen, so heißt f partiell differenzierbar. Sind alle partiellen Ableitungen stetig auf D, so heißt f stetig partiell differenzierbar. Eine Funktion $f: D \to \mathbb{R}^m$ heißt (stetig) partiell differenzierbar, wenn $f_i, i = 1, \ldots, m$ (stetig) partiell differenzierbar.

Bemerkung Die Ableitungsregeln aus dem Eindimensionalen übertragen sich auf partielle Ableitungen.

Beispiel 1. Polynome sind stetig partiell differenzierbar. Sei $p:D\subset\mathbb{R}^2\to\mathbb{R}, (x_1,x_2)\mapsto a_{01}x_2+a_{11}x_1x_2+a_{02}x_2^2+a_{21}x_1^2x_2$. Dann ist

$$\frac{\partial p}{\partial x_1}(x_1, x_2) = a_{11}x_2 + 2a_{21}x_1x_2 \quad \frac{\partial p}{\partial x_2} = a_{01} + a_{11}x_1 + 2a_{02}x_2 + a_{21}x_1^2$$

2. $\|\cdot\|_2: \mathbb{R}^k \setminus \{0\} \to \mathbb{R}$ ist stetig partiell differenzierbar, da

$$\frac{\partial \|\cdot\|}{x_i} = \frac{1}{2} \frac{2x_i}{(x_1^2 + \dots + x_k^2)^{\frac{1}{2}}} = \frac{x_i}{\|x\|_2}$$

3.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto \frac{x_1 x_2}{(x_1^2 + x_2^2)^2}$$
 für $x \neq 0, f(0) = 0$

$$\frac{\partial f}{\partial x_1}(x) = \frac{x_2}{\left(x_1^2 + x_2^2\right)^2} - 4\frac{x_1^2 x_2}{\left(x_1^2 + x_2^2\right)^3}, x \neq 0$$

Für x = 0 ist f(0) = 0

$$\implies \lim_{h \to 0} \frac{f(xe_i) - f(0)}{h} = 0$$

Sei $x_{\varepsilon}(\varepsilon,\varepsilon)$ und damit gilt $\|x_{\varepsilon}\|_{2} \xrightarrow{\varepsilon \to 0} 0$

$$f(x_{\varepsilon}) = \frac{\varepsilon^2}{4\varepsilon^4} = \frac{1}{4\varepsilon_2} \xrightarrow{\varepsilon \to 0} \infty$$

Satz 2.5 Die Funktion $f:D\to\mathbb{R}$ habe in einer Kugelumgebung $K_r(x)\subset D$ eines Punktes $x\in D$ beschränkte partielle Ableitungen, das heißt

$$\sup_{y \in K_r(x)} \left| \frac{\partial f}{\partial x_i} \right| \le M, i = 1, \dots, n$$

dann ist f stetig in x.

Beweis Es genügt n = 2. Für $(y_1, y_2) \in K_r(x)$

$$f(y_1, y_2) - f(x_1, x_2) = f(y_1, y_2) - f(x_1, y_2) + f(x_1, y_2) - f(x_1, x_2)$$

Nach dem 1-D Mittelwertsatz existieren $\xi, \eta \in K_r(x)$, sodass

$$|f(y_1, y_2) - f(x_1, x_2)| = \frac{\partial f}{\partial x_1}(\xi, y_2)(y_1 - x_1) + \frac{\partial f}{\partial x_2}(x_1, \eta)(y_2 - x_2)$$

$$\leq M(|y_1 - x_1| + |y_2 - x_2|)$$

Höhere partielle Ableitungen definieren sich durch sukzessives Ableiten, das heißt

$$\frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_k} f(x) = \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}$$

Beispiel

$$\frac{x_1}{x_2} := \frac{x_1^3 x_2 - x_1 x_2^3}{x_1^2 + x_2^2}$$

für $(x_1, x_2) \neq (0, 0), f(0, 0) = 0.$ f zweimal partiell diff'bar, aber

$$\frac{\partial^2}{\partial x_1 \partial x_2} f(0,0) \neq \frac{\partial^2}{\partial x_2 \partial x_1} f(0,0)$$

Satz 2.6 Eine Funktion $f:D\to\mathbb{R}$ sei in einer Umgebung $K_r(x)\subset D$ eines Punktes $x\in D$ zweimal stetig partiell differenzierbar, dann gilt

$$\frac{\partial^2}{\partial x_i \partial x_j} f(x) = \frac{\partial^2}{\partial x_j \partial x_i} f(x), i, j = 1, \dots, n$$

Beweis n = 2. Sei $A := f(x_1 - h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - f(x_1, x_2 + h_2) + f(x_1, x_2)$.

$$\varphi(x_1) := f(x_1, x_2 + h_2) - f(x_1, x_2) \implies A = \varphi(x_1 + h_1) - \varphi(x_1)$$

Mit dem Mittelwertsatz erhalten wir $A = h_1 \varphi'(x_1 + \theta_1 h_1), \theta_1 \in (0, 1).$

$$\varphi'(x_1) = \frac{\partial}{\partial x_1} f(x_1, x_2 + h_2) - \frac{\partial}{\partial x_1} f(x_1, x_2) = h_2 \frac{\partial^2}{\partial x_2 x_1} f(x_1, x_2 + \theta_1' h_2), \theta_1' \in (0, 2)$$

Analog verfahre man mit x_2 und erhalte für $\psi(x_2) := f(x_1 + h_1, x_2) - f(x_1, x_2)$

$$A = \psi(x_2 - h_2) - \psi(x_2) = h_2 \psi'(x_2 + \theta_2 h_2) = h_1 h_2 \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1 + \theta_2 h_1, x_2 \theta'_2 h_2)$$

$$\implies \frac{\partial^2}{\partial x_2 \partial x_1} f(x_1 + \theta_1 h_1, x_2 + \theta'_1 h_2) = \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1 + \theta_2 h_1, x_2 + \theta'_2 h_2)$$

$$\stackrel{h_1, h_2 \to 0}{\Longrightarrow} \frac{\partial^2}{\partial x_2 \partial x_1} f(x_1, x_2) = \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1, x_2)$$

Definition 2.7 $f: D \to \mathbb{R}$ partiell differenzierbar.

$$\operatorname{grad} f(x) := \left(\frac{\partial}{\partial x_1} f, \dots, \frac{\partial}{\partial x_n} f\right)^T \in \mathbb{R}^n$$

heißt **Gradient** von f in $x \in D$. Man schreibt $\nabla f(x) := \operatorname{grad} f \cdot f : D \to \mathbb{R}^n$ partiell differenzierbar.

$$\operatorname{div} f(x) := \frac{\partial}{\partial x_1} f_1(x) + \dots + \frac{\partial}{\partial x_n} f_n$$

Es gilt:

$$\div \operatorname{grad} f(x) := \sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} f_{i} =: \Delta f(x)$$

Definition 2.8 $f:D\to\mathbb{R}^m$ partiell differenzierbar. Die Matrix der ersten partiellen Ableitungen

$$J_f := \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{i=1,\dots,w\\j=1,\dots,n}} \in \mathbb{R}^{n \times w}$$

heißt die **Jacobi-Matrix** (manchmal auch F*undametalmatrix*) von f in x. Im Fall n=m bezeichnet man $\det(J_f)$ als **Jacobideterminante**.

Definition 2.9 $f:D \to \mathbb{R}$ zweimal partiell differenzierbar. Die Matrix der zweiten Ableitungen

$$H_f(x) := \left(\frac{\partial^2}{\partial x_i \partial x_j} f\right)_{\substack{i=1,\dots,n\\j=1,\dots,w}} \in \mathbb{R}^{n \times m}$$

heißt Hesse-Matrix.

Definition 2.10 Sei $f: D \to \mathbb{R}^m$, dann nennen wir f in einem Punkt $x \in D$ (total differenzierbar), wenn die Funktion f in x sich linear approximieren lässt, das heißt es gibt eine lineare Abbildung $Df(x): \mathbb{R}^n \to \mathbb{R}^m$ (Differential) sodass in einer kleinen Umgebung von x gilt:

$$f(x+h) = f(x) + Df(x)h + w(h), h \in \mathbb{R}^n, x+h \in D$$

mit einer Funktion $w:D\to\mathbb{R}^m$, die die Eigenschaft hat

$$\lim_{\substack{x+h \in D \\ \|h\|_2 \to 0}} \frac{\|wh\|_2}{\|h\|_2} = 0$$

alternativ: $w(h) = \langle (\|h\|_2)$

Satz 2.11 Für Funktionen $f: D \to \mathbb{R}^m$ gilt:

1. Ist f in $x \in D$ differenzierbar, so ist f auch in x partiell differenzierbar und das Differential von f ist gegeben durch die Jacobi-Matrix.

2. Ist f partiell differenzierbar in einer Umgebung von x und sind zusätzlich die partiellen Ableitungen stetig in x, so ist f in x differenzierbar.

Beweis 1. Für differenzierbares f gilt für i = 1, 2:

$$\lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h} = \lim_{h \to 0} \left(Df(x)e_i + \frac{w(h)}{h} \right) = Df(x)e_i$$

2. Für ein stetig partiell differenzierbares f gilt mit $h = (h_1, h_2)$:

$$f(x+h) - f(x) = f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) + f(x_1 + h_1, x_2) - f(x_1, x_2)$$

Mittelwertsatz

$$= h_2 \frac{\partial f}{\partial x_2} (x_1 + h_1, x_2 + \theta_2 h_2) + h_1 \frac{\partial f}{\partial x_1} (x_1 + \theta_1 h_1, x_2)$$

$$\theta_1, \theta_2 \in (0, 1)$$

$$= h_2 \left(\frac{\partial f}{\partial x_2} (x_1, x_2) + \omega_2 (h_1, h_2) \right) + h_1 \left(\frac{\partial f}{\partial x_1} (x_1, x_2) + \omega_1 (h_1, h_2) \right)$$

$$\omega_1(h_1, h_2) := \frac{\partial f}{\partial x_1} (x_1 + \theta_1 h_1, x_2) - \frac{\partial f}{\partial x_1} (x_1, x_2) \xrightarrow{h_1, h_2 \to 0} 0$$

$$\omega_2(h_1, h_2) := \frac{\partial f}{\partial x_2} (x_1 + h_1, x_2 + \theta_2 h_2) - \frac{\partial f}{\partial x_2} (x_1, x_2) \xrightarrow{h_1, h_2 \to 0} 0$$

Also ist f differenzierbar mit Ableitungen $Df(x) = \nabla f(x)$.

Bemerkung Es gelten folgende Implikationen: stetig partiell differenzierbar ⇒ (total) differenzierbar ⇒ partiell differenzierbar.

Satz 2.12 Seien $D_f \subset \mathbb{R}^n, Dg \subseteq \mathbb{R}^m$ offen und $g:D_g \to \mathbb{R}^n, f:D_f \to \mathbb{R}^r$. Ist g im Punkt $x \in D_g$ differenzierbar und f in $y = g(x) \in D_f$ differenzierbar, so ist die Komposition $h = f \circ g$ im Punkt x differenzierbar. Es gilt $D_x h(x) = D_y f(g(x)) \cdot D_x g(x)$. Hierbei ist · die Matrixmultiplikation.

Beweis Nach Voraussetzung $x \in D_g$ sodass $g(x) = y \in D_f$. Da sowohl f als auch g differenzierbar

$$g(x+h_1) = g(x) + D_x g(x) h_1 + \omega_g(h_1)$$

$$f(y+h_2) = f(y) + D_y f(y) h_2 + \omega_f(h_2)$$

$$\lim_{\substack{x+h_1 \in D_y \\ \|h_1\| \to 0}} \frac{\|\omega_g(h_1)\|}{\|h_1\|} = 0$$

$$\lim_{\substack{y+h_2 \in D_y \\ \|h_2\| \to 0}} \frac{\|\omega_f(h_2)\|}{\|h_2\|} = 0$$

$$(f \circ g)(x + h_1) = f(g(x + h_1)) = f(y + \eta), \quad \eta := D_x g(x) h_1 + \omega_g(h_1)$$

$$= f(y) + D_y f(y) \eta + \omega_f(\eta)$$

$$= f(y) + D_y f(y) D_x g(x) h_1 + D_y f(y) \omega_g(h_1) + \omega_f(D_x g(x) h_1 + \omega_g(h_1))$$

$$= (f \circ g)(x) + D_y f(y) D_x g(x) h_1 + \omega_{f \circ g}(h_1)$$

$$\omega_{f \circ g}(h_1) := D_y f(y) \omega_g(h_1) + \omega_f(D_x g(x) h_1 + \omega_g(h_1))$$

Es bleibt zu zeigen $\omega_{f \circ g} = \wr (h_1)$. Nach Voraussetzung gilt $\omega_{f \circ g} \xrightarrow{h_1 \to 0} 0$

Lemma 2.13 Sei $A:[a,b] \to \mathbb{R}^{n \times m}$ stetig, dann gilt

$$\left\| \int 0^1 A(s) ds \right\|_{M} \le \int_0^1 \|A(s)_M ds\|, \|A\|_{M} := \max\{|\lambda| \mid \lambda \in \sigma(A)\}$$

 $\int A = \left(\int a_{ij}
ight)_{ij}, \sigma(A) :=$ Menge der Eigenwerte von A

Satz 2.14 Sei $f: D \to \mathbb{R}^m$ stetig differenzierbar mit J_f als Jacobi-Matrix, so gilt

$$f(x+h) - f(x) = \left(\int_0^1 J_f(x+sh) ds\right) h$$

Beweis Definiere $g_j(s) := f_j(x + sh)$, dann ist $g_{j_1} : [0, 1] \to \mathbb{R}$, also gilt

$$f_j(x+sh) - f_j(x) = g_j(1) - g_j(0) = \int_0^1 g_j'(s) ds = \int_0^1 \sum_{i=1}^n \frac{\partial f_j}{\partial x_i} (x+sh) h_i ds$$

Bemerkung Im Fall m=1 kann man aus dem Mittelwertsatz für Integrale schließen, dass

$$f(x+h) - f(x) = \int_0^1 J_f(x+sh)h ds = J_f(x+\tau h)h$$

 $x_1 + h = x_2 \implies h = x_2 - x_1$

Korollar 2.15 Sei $f:D\to\mathbb{R}^m$ stetig differenzierbar. Ferner sei $x\in D$ mit $K_r(x)\subset D, r>0$, dann gilt

$$||f(x) - f(y)||_2 \le M||x - y||_2, y \in K_r(x), M := \sup_{z \in K_r(x)} ||J_f(z)||_M$$