# **Cryptographic Protocols**

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2012

## **Outline**

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- 6 Commitment Scheme
- 7 Zero Knowledge Proofs
- 8 Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

#### **Protocols**

- Communications protocol is a formal description of digital message formats and the rules for exchanging those messages for a specific purpose.
- Protocols are to communications what algorithms are to computations.
- Everyone involved in the protocol must know the protocol and all of the steps to follow in advance.
- Everyone involved in the protocol must agree to follow it.
- The protocol must be unambiguous; each step must be well defined and there must be no chance of a misunderstanding.
- The protocol must be complete; there must be a specified action for every possible situation.
- It should not be possible to do more or learn more than what is specified in the protocol.

## **Protocol Types**

- **Arbitrated protocols**: An arbitrator is a disinterested third party trusted to complete a protocol.
- Adjudicated protocols: An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator, he is not directly involved in every protocol.
- **Self-enforcing protocols**: the best type of protocol. The protocol itself guarantees fairness.

## **Attacks against Protocols**

- Passive attacks: the attacker does not affect the protocol.
- **Active attacks**: the attacker alters the protocol to his own advantage.

**Cheater**: the attacker could be one of the parties involved in the protocol.

- Passive cheaters: follow the protocol, but try to obtain more information than the protocol intends them to.
- Active cheaters: disrupt the protocol in progress in an attempt to cheat.

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

### **Three-Pass Protocol**

**Purpose**: communication without shared keys.

**Requirement**:  $Dec_{k_1}(Enc_{k_2}(Enc_{k_1}(m))) = Enc_{k_2}(m)$ .

**Shamir Protocol**: p is a prime, find e, d with gcd(e, p - 1) = 1 and  $ed \equiv 1 \pmod{p - 1}$ .



$$c_2^{d_B} = c_1^{d_A \cdot d_B} = c_1^{e_B \cdot d_A \cdot d_B} = m^{e_A \cdot e_B \cdot d_A \cdot d_B} = m^{e_A \cdot d_A \cdot e_B \cdot d_B} = m.$$

Weakness: insecurity under the man-in-the-middle attack.

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

#### The Man-In-The-Middle Attack

Also called **bucket-brigade attack**: A form of active eavesdropping in which the attacker makes independent connections with the victims and relays messages between them, making them believe that they are talking directly to each other.



#### Interlock Protocol

**Purpose**: foil the man-in-the-middle attack.



- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- 8 Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

## **Blind Signature**

**Blind signature** is a form of digital signature in which the message is blinded before it is signed.

Alice asks for Signer to sign  $\,m\,$  blindly and then sends to Bob.



$$s \equiv s'r^{-1} \equiv m'^d r^{-1} \equiv (mr^e)^d r^{-1} \equiv m^d$$
.

## **Group Signature**

**Group Signature**: allowing a member of a group to anonymously sign a message on behalf of the group (with a group manager).

- Soundness: valid sigs by members verify correctly
- Unforaeable: only members can create valid sigs
- **Anonymity**: signer can be determined only by manager.
- Traceability: manager can trace which member signed.
- Unlinkability: cannot tell if two sigs were from same signer.
- **Exculpability**: cannot forge a sig for other/non members.

#### A trivial group signature with trusted manager GM:

- **KeyGen**: GM generates a secret key list for each member and publishes all of public keys.
- Sign: sign with an unused secret key.
- **Verify**: try all of public keys.

## Ring Signature

### Ring Signature: Group signature without group manager, and:

- cannot revoke the anonymity of an individual signature
- any group of users can be a group without additional setup

## A ring signature by Boneh et al. 2003:

q-order cyclic groups:  $G_1$  with + and generator P,  $G_2$  with  $\times$ , bilinear map  $e:G_1\times G_1\to G_2$  such that  $e(aP,bP)=e(P,P)^{ab}$ , hash function  $H:\{0,1\}^*\to G_1$ .

- **KeyGen**: for member  $U_i$ :  $sk = x_i \leftarrow Z_q, pk = Y_i = x_i P$ .
- **Sign**: message m with  $(\sigma_i), i = 1, \dots, n$  by  $U_k$ :

for 
$$i \neq k$$
,  $a_i \leftarrow Z_q$ ,  $\sigma_i = a_i P$ ;  $\sigma_k = \frac{1}{x_k} (H(m) - \sum_{j \neq k} a_j Y_j)$ 

Verify:

$$e(H(m), P) = \Pi_i e(Y_i, \sigma_i)$$

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- 6 Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

## **Secret Sharing**

**Purpose**: distribute a secret amongst a group of n participants, each of whom is allocated a share of the secret. The secret can be reconstructed only when a sufficient number of shares t are combined together. It is called (t,n)-threshold scheme.

**Blakley's scheme**: any n nonparallel n-dimensional hyperplanes intersect at a specific point.



**Chinese remainder theorem**: the shares of secret are generated by reduction modulo some relatively prime integers, and the secret is recovered by solving the system of congruences using the CRT.

## Threshold Cryptography

(t,n)-threshold scheme: at least t of parties can efficiently decrypt/sign the ciphertext, while less than t have no useful information.

#### Threshold Elgamal Cryptosystem:

- **Key sharing**:  $sk = s, pk = h = g^s$ . Party i obtains a share  $s_i$  with Shamir's scheme ((t, n)-threshold secret sharing) such that  $s = \Sigma_i s_i \cdot \lambda_i$  with public info  $\lambda_i$  and publishes  $h_i = g^{s_i}$ .
- Enc:  $y \leftarrow \mathbb{Z}_q$ ,  $\langle c_1, c_2 \rangle = \langle g^y, h^y \cdot m \rangle$ .
- **Dec**: Party i outputs  $d_i = c_1^{s_i}$  and ZKP of  $\log_g h_i = \log_{c_1} d_i$ .

$$m = c_2/\Pi_i d_i^{\lambda_i}.$$

$$c_2/\Pi_i d_i^{\lambda_i} = c_2/\Pi_i c_1^{s_i \cdot \lambda_i} = c_2/c_1^{\sum_i s_i \cdot \lambda_i} = c_2/c_1^s = m.$$

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- 6 Commitment Scheme
- 7 Zero Knowledge Proofs
- 8 Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

#### **Commitment Scheme**

**Commitment scheme** allows one to commit to a value while keeping it hidden, with the ability to reveal the committed value.

Coin flipping over Internet: Alice flips the coin, Bob guesses.



- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

## **Zero-Knowledge Proof**

- Interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: verifier and prover.
- Proof of knowledge: an interactive proof in which prover succeeds convincing verifier that it knows something.
- **Zero-knowledge proof (ZKP)**: an interactive proof without revealing anything other than the veracity of the statement.
  - **Completeness**: if the statement is true, the honest "verifier" will be convinced by an honest prover.
  - Soundness: if the statement is false, no cheating prover can convince the honest verifier.
  - **Existence**: If OWF exists, ZKP exists for any NP-set.

# A Toy Example of ZKP

Alice proves to Bob that she knows the secret word used to open a magic door in a cave.



## Schnorr Protocol

**Schnorr protocol**: Alice proves to Bob the knowledge of  $x = \log_g y$  in the discrete log problem.



If Alice can foresee c, Alice can cheat with  $t=g^s/y$  when c=1.

## ZKP of the Ability to Break RSA

**Purpose**: Alice convinces Bob that she knows Charlie's private key d for RSA problem  $\langle N, e, d \rangle$ , but she doesn't want to tell Bob d.



If Alice can manipulate c, Alice can cheat with  $c=m^e$ .

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

### **Oblivious Transfer**

**Oblivious transfer (OT)** protocol: a sender remains oblivious as to whether or which info has been transferred.

**Rabin's OT protocol**: RSA problem  $\langle N, e, d \rangle$ .



If  $y \neq \pm x$ , then Bob can factorize N with  $\gcd(y-x,N)$  and find d. Since every quadratic residue modulo N has four square roots, Bob can learn m with probability  $\frac{1}{2}$ .

### 1-out-of-2 Oblivious Transfer

**1-out-of-2 OT**: the sender has two messages  $m_0$  and  $m_1$ , and the receiver wishes to receive  $m_b$ , without the sender learning b, while the sender ensures that the receiver receive only one message.



- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

## **Secure Multi-Party Computation**

**Secure multi-party computation (MPC)**: enable parties to jointly compute a function over their inputs, while at the same time keeping these inputs private.

**Dining Cryptographers Problem**: how to perform a secure MPC of the boolean-OR function.



- $\blacksquare$  at most one  $\stackrel{\bullet}{\blacksquare}$  (1), other  $\stackrel{\bullet}{\blacksquare}$  (0).
- every two adjacent people establish a shared one-bit secret.
- everyone shouts the XOR of two shared secrets and its own bit.
- output the XOR of all of what everyone shouts. If 1, there is a ♣ otherwise there is none.

- 1 Protocols
- 2 Three-Pass Protocol
- 3 Interlock Protocol
- 4 Blind/Group/Ring Signature
- 5 Secret Sharing/Threshold Crytpography
- **6** Commitment Scheme
- 7 Zero Knowledge Proofs
- **8** Oblivious Transfer
- 9 Secure Multi-Party Computation
- 10 Quantum Cryptography

## Why Quantum Cryptography?

Quantum cryptography taps the natural uncertainty of the quantum world.

- **Superposition**: object doesn't have definite properties (location, speed) but has probabilities over them.
- Interference: probabilities can be negative.
- Entanglement: properties of many particles can be correlated.
- Measurement: object's properties collapse to definite value when measured, collapsing also properties of other entangled objects.

# State-of-the-Art of Quantum Cryptography

- (Unsurprisingly) there is no proof that quantum computers are more powerful than classical computers/Boolean circuits/Turing machines.
- There are polynomial algorithms for quantum computers solving problems unknown to be solvable classically in poly-time: factoring and discrete logs.
- There are hard problem with no quantum poly-time algorithm: NPC, inverting many candidate OWF, private key encryption and signature schemes.

## **Quantum Key Distribution**

**Purpose**: Using photon polarization states to transmit the information in a public channel against eavesdroppers.

### BB84 protocol: C. H. Bennett and G. Brassard (1984)

| Basis | 0 | 1 |
|-------|---|---|
| +     |   | - |
| х     | / | \ |
|       |   |   |

|   | ()                               |          |  |  |
|---|----------------------------------|----------|--|--|
|   | Alice's random bits              | 01101001 |  |  |
| 1 | Alice's random sending basis     | ++x+xxx+ |  |  |
| H | Photon polarization Alice sends  | -\ \//-  |  |  |
|   | Bob's random measuring basis     | +xxx+x++ |  |  |
| ١ | Photon polarization Bob measures | 1/\/-/   |  |  |
|   | Shared secret key                | 0 1 0 1  |  |  |

- Two bases are public.
- Eavesdropping would change the photon polarization states.
- Check for the presence of eavesdropping by comparing a subset of shared bit string.

# **Summary**

- Shamir three-pass protocol
- interlock protocol, man-in-the-middle attack
- blind/group/ring signature
- secret sharing, threshold cryptography
- commitment scheme
- zero knowledge proofs, Schnorr protocol
- Rabin's/1-out-of-2 oblivious transfer
- multi-party computation, dining cryptographers problem
- quantum cryptography, BB84