

Accidente Challenger 28/01/1986

Accidente Challenger 28/01/1986

https://es.wikipedia.org/wiki/Accidente_del_transbordador_espacial_Challenger

Accidente Challenger 28/01/1986

https://history.nasa.gov/rogersrep/v1ch6.htm#6.3

Accidente Challenger 28/01/1986

Calculated Joint Temperature, °F

https://history.nasa.gov/rogersrep/v1ch6.htm#6.3

Interpretación del modelo de regresión lineal

$$\tilde{y}_i \sim N(\mu_i = \beta_o + \beta_1 x_i; \sigma^2)$$

Interpretación del modelo de regresión logística

$$\tilde{y}_i \sim \text{Bi}(n = 4; p_i = f(Temp))$$

Regresión Logística Datos Challenger

‡	F ^	grados_C [‡]	Falla [‡]
1	53	11.66667	1
2	53	11.66667	1
3	53	11.66667	0
4	53	11.66667	0
5	57	13.88889	1
6	57	13.88889	0
7	57	13.88889	0
8	57	13.88889	0
9	58	14.44444	1
10	58	14.44444	0
11	58	14.44444	0

Datos Challenger

‡	F ^	grados_C [‡]	Falla [‡]
1	53	11.66667	1
2	53	11.66667	1
3	53	11.66667	0
4	53	11.66667	0
5	57	13.88889	1
6	57	13.88889	0
7	57	13.88889	0
8	57	13.88889	0
9	58	14.44444	1
10	58	14.44444	0
11	58	14.44444	0

Modelo de Regresión Logística

$$\pi_i = \frac{e^{Z_i}}{1 + e^{Z_i}} = \frac{1}{1 + e^{-Z_i}}$$

$$Z_i = \beta_0 + \beta_1 X_i$$

Modelo de Regresión Probit

$$\pi_{i} = \Phi(\beta_{0} + \beta_{1} X_{i})$$

$$= \int_{-\infty}^{\beta_{0} + \beta_{1} X_{i}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dz$$

Interpretación de la ecuación de regresión

Estimación de parámetros

Estimación de parámetros

$$\mathcal{L} = P(Y_1 \cap Y_2 \cap Y_3 \dots Y_n) = \prod_{i=1}^n \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}$$
 n Bernoulli

Distribución Bernoulli

Υ	P(Y)
1	Р
0	1-р
	1

$$P_{Bern}(Y \mid \pi) = \pi^{Y}(1 - \pi)^{1 - Y}$$

Estimación de parámetros

$$\mathcal{L} = P(Y_1 \cap Y_2 \cap Y_3 \dots Y_n) = \prod_{i=1}^n \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}$$

$$Ln(\mathcal{L}) = \sum_{i=1}^{n} [Y_i \ Ln(\pi_i) + (1 - Y_i) \ Ln(1 - \pi_i)] \longrightarrow \mathsf{Máximo}$$

$$\begin{cases} \frac{\partial Ln(\mathcal{L})}{\partial \beta_0} = \sum_{i=1}^n (Y_i - \pi_i) = 0\\ \frac{\partial Ln(\mathcal{L})}{\partial \beta_1} = \sum_{i=1}^n x_{1i}.(Y_i - \pi_i) = 0\\ \dots\\ \frac{\partial Ln(\mathcal{L})}{\partial Ln(\mathcal{L})} = \sum_{i=1}^n x_{1i}.(Y_i - \pi_i) = 0 \end{cases}$$

$$\frac{\partial Ln(\mathcal{L})}{\partial \beta_p} = \sum_{i=1}^n x_{ki}.(Y_i - \pi_i) = 0$$

Estimación de parámetros

Verosimilitud Bernoulli

$$\mathcal{L} = P(Y_1 \cap Y_2 \cap Y_3 \dots Y_8) = \pi_1 \,\pi_2 (1 - \pi_3)(1 - \pi_4) \,\pi_5 (1 - \pi_6)(1 - \pi_7)(1 - \pi_8)$$

Verosimilitud Binomial

$$\mathcal{L} = P(Y_1 \cap Y_2) = {4 \choose 2} \pi_1^2 (1 - \pi_1)^2 {4 \choose 1} \pi_2^1 (1 - \pi_2)^3$$

Bondad de Ajuste

Verosimilitud

 $Ln(\mathcal{L}_{b_0})$

Logaritmo de la verosimilitud del modelo nulo

Mínima Verosimilitud Posible

 $Ln(\mathcal{L}_{b_0;b_1;\dots;b_k})$

Logaritmo de la verosimilitud del modelo estimado

 $Ln(\mathcal{L}_{Mod\ Sat})$

0

Logaritmo de la verosimilitud del modelo saturado

Máxima Verosimilitud Posible

Devianza y R² McFadden

$$D = -2\left[Ln\left(\mathcal{L}_{b_0;b_1;\dots;b_k}\right) - Ln\left(\mathcal{L}_{Mod\ Sat}\right)\right]$$

= -2 Ln\left(\mathcal{L}_{b_0;b_1;\dots;b_k}\right)

$$Ln(\mathcal{L}_{b_0})$$
 $Ln(\mathcal{L}_{b_0;b_1;\dots;b_k})$ $Ln(\mathcal{L}_{Mod\ Sat})$

$$R_{MF}^{2} = 1 - \frac{Ln(\mathcal{L}_{b_0;b_1;...;b_k})}{Ln(\mathcal{L}_{b_0})} = 1 - \frac{D}{D_0}$$

$$D_0 = -2Ln(\mathcal{L}_{b_0})$$

0

AIC y BIC

$$AIC = -2 Ln(\mathcal{L}_{b_0;b_1;...;b_k}) + 2k$$

$$BIC = -2 Ln(\mathcal{L}_{b_0;b_1;...;b_k}) + 2k \log(n)$$

Significancia de los coeficientes

$$\frac{\hat{\beta}_i}{\sqrt{Var(\hat{\beta}_i)}} \sim N(0; 1)$$

$$\frac{\hat{\beta}_i^2}{Var(\hat{\beta}_i)} \sim \chi_{v=1}^2$$

Interpretación Salida R

```
Call:
glm(formula = Falla ~ grados_C, family = binomial, data = challenger)
Deviance Residuals:
   Min
                                     Max
             10
                Median
-0.9813 -0.4578 -0.3837 -0.2678 2.5407
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.10334 1.67007 1.259
                                       0.2079
grados_C
           -0.22146 0.08924 -2.482
                                       0.0131 *
Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 (), 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 58.932 on 91 degrees of freedom
Residual deviance: 52.469 on 90 degrees of freedom
AIC: 56.469
Number of Fisher Scoring iterations: 5
```


INTERPRETACION DE LOS PARAMETROS

Interpretación de los parámetros

$$P(Falla|Temperatura) = \frac{1}{1 + e^{-(b_0 + b_1 Temperatura)}}$$

Interpretación de los parámetros

$$P(Y = 1 | X_1; X_2; ...; X_k) = \frac{1}{1 + e^{-(b_0 + b_1 X_1 + ... + b_k X_k)}} = \frac{1}{1 + e^{-Z}}$$

Función Logit

$$\pi = \frac{1}{1 + e^{-Z}} \longrightarrow ln\left(\frac{\pi}{1 - \pi}\right) = Z = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

$$ln\left(\frac{P(Y=1|Z)}{1-P(Y=1|Z)}\right) = ln\left(\frac{P(Y=1|Z)}{P(Y=0|Z)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$
ODD

ODD Ratio

$$ln(ODD_{X_1}) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

$$ln(ODD_{X_1+1}) = \beta_0 + \beta_1 (X_1+1) + \dots + \beta_k X_k$$

$$ODD_{X_1} = e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}$$

$$ODD_{X_1+1} = e^{\beta_0 + \beta_1 (X_1+1) + \dots + \beta_k X_k}$$

$$OR = \frac{ODD_{X_1+1}}{ODD_{X_1}} = e^{\beta_1}$$

Regresión Logística ODDs vs P

REGRESIÓN LOGÍSTICA VS CLASIFICACIÓN

MATRIZ DE CONFUSIÓN

Regresión Logística Matriz de confusión

		Valores Reales	
		Y =1	Y = 0
Valores Predichos	$\widehat{Y} = 1$	TP	FP
	$\widehat{Y} = 0$	FN	TN

- **TP**: Verdaderos Positivos (True Positives)
- FP: Falsos Positivos (False Positives)
- TN: Verdaderos Negativos (True Negatives)
- FN: Falsos Negativos (False Negatives)

Matriz de confusión

		Valores Reales	
		Y =1	Y = 0
Valores Predichos	$\widehat{Y} = 1$	TP	FP
	$\widehat{Y} = 0$	FN	TN

$$Exactitud (Accuracy) = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precisión (Precision) = \frac{TP}{TP + FP}$$

$$Sensibilidad (Sensitivity) = \frac{TP}{TP + FN}$$

Especifidad (Specificity) =
$$\frac{TN}{TN + FP}$$

Gráfico de Sensibilidad / Especificidad

Curva ROC

Selección de K

•
$$K = 0.50$$

•
$$K = \hat{p} = \frac{TP + FN}{TP + FP + FN + TN}$$

- K = Valor donde se cruzanSensitividad y Sensibilidad
- K = Valor con máximaSensitividad + Sensibilidad
- K = Valor con máximoBeneficio Económico

sum_sens_spec by cutpoint

in-sample results

Selección de K – Maximización de beneficio económico

		Comportamiento Pronosticado	
		Buen	Mal
		Comportamiento	Comportamiento
Comportamiento	Buen Comportamiento	B _{VB}	C _{FM}
Real	Mal Comportamiento	C _{FB}	B _{VM}

B_{vB}: Beneficio obtenido por un Verdadero cliente con Buen Comportamiento

B_{VM}: Beneficio obtenido por un Verdadero cliente con Mal Comportamiento

C_{FM}: Costo incurrido por un Falso cliente con Mal Comportamiento

CFB: Costo incurrido por un Falso cliente con Buen Comportamiento

