(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2018 EXAMINATION

Subject Name: Applied Mathematics Model Answer

Subject Code:

17216

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.		Attempt any <u>TEN</u> of the following:	20
	a)	Find x and y if $x(1-i) + y(2+i) + 6 = 0$	02
	Ans	x(1-i) + y(2+i) + 6 = 0	
		x - ix + 2y + iy = -6 + i = 0	
		(x + 2y) + i(-x + y) = -6 + i0	1/2
		x + 2y = -6 and $-x + y = 0$	1/2
		$\therefore x = -2, y = -2$	1/2+1/2
		OR	
		(x + 2y + 6) + i(-x + y) = 0	1/2
		x + 2y + 6 = 0 and $-x + y = 0$	1/2
		$\therefore x = -2, y = -2$	1/2+1/2
	b)	Define composite function.	02
	Ans	If y is function of u and u is function of x then y is composite function of x or it is	
		called function of function $y = u(x)$	2
		OR	
		If $f(x)$ and $g(x)$ are two functions then composite function is defined $f(g(x))$.	2
		OR	
		If $f: x \to y, g: y \to z$ then $gof: x \to z$ called composite function	2
			_
	c)	If $f(x) = x^4 - 2x + 7$ find $f(0) + f(2)$	02
	Ans	$f(x) = x^4 - 2x + 7$	

SUMMER – 2018 EXAMINATION

Subject Code: 17216 **Subject Name: Engineering Mathematics Model Answer**

	1		
No.	Sub Q. N.	Answer	Marking Scheme
1.	c)	$f(0) = (0)^4 - 2(0) + 7 = 7$	1/2
		$f(2) = (2)^4 - 2(2) + 7 = 19$	1/2
		f(0) + f(2) = 7 + 19	1/2
		= 26	1/2
	d)	Express in the form of $a + ib$ if $z = \frac{1+i}{3-i}$	02
	Ans	$z = \frac{1+i}{3-i}$	
		$z = \frac{1+i}{3-i} \times \frac{3+i}{3+i}$	1/2
		$3+i+3i+i^2$	
		$=\frac{3+i+3i+i^2}{9-i^2}$	1/2
		$=\frac{3+4i-1}{9+1}$	
		$=\frac{2+4i}{10}$	1/2
			/2
		$=\frac{1}{5}+\frac{2}{5}i$	1/2
		5 5	/2
	e)	Evaluate $\lim_{x\to 4} \frac{2-\sqrt{x}}{4-x}$	02
	Ans	$\lim_{x \to \infty} \frac{2 - \sqrt{x}}{4}$	
	76	$x \rightarrow 4$ 4 - x	
		$=\lim_{x\to 4} \frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}}$	1/2
			1/
		$= \lim_{x \to 4} \frac{4 - x}{(4 - x)(2 + \sqrt{x})}$	1/2
		$=\lim_{x\to 4}\frac{1}{2+\sqrt{x}}$	
		$=\frac{1}{2+\sqrt{4}}$	1/2
		$=\frac{1}{4}=0.25$	1/2
		OR	
		$\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}$	
	1		1

Subject Name: Engineering Mathematics	Model Answer	Subject Code:	17216

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	e)	$=\lim_{x\to 4} \frac{2-\sqrt{x}}{2^2 - \left(\sqrt{x}\right)^2}$	
		$= \lim_{x \to 4} \frac{2 - \sqrt{x}}{\left(2 - \sqrt{x}\right)\left(2 + \sqrt{x}\right)}$	1/2
		$=\lim_{x\to 4}\frac{1}{2+\sqrt{x}}$	1/2
		$=\frac{1}{2+\sqrt{4}}$	1/2
		$=\frac{1}{4}=0.25$	1/2
	f)	Evaluate $\lim_{x\to 0} \frac{5\sin x + 7x}{8x - 3\tan x}$	02
	Ans	$\lim_{x \to 0} \frac{5\sin x + 7x}{8x - 3\tan x}$	
		$= \lim_{x \to 0} \frac{\frac{5\sin x}{x} + \frac{7x}{x}}{\frac{8x}{x} - \frac{3\tan x}{x}}$	1/2
		$= \frac{5\lim_{x \to 0} \frac{\sin x}{x} + 7}{8 - 3\lim_{x \to 0} \frac{\tan x}{x}}$	
			1
		$= \frac{5+7}{8-3}$ $= \frac{12}{5} = 2.4$	1/2
	g)	Evaluate $\lim_{x\to 0} \left(1-\frac{7}{2^x}\right)^x$	02
	Ans	$\lim_{x\to 0} \left(1 - \frac{7}{2x}\right)^x$	
		$=\lim_{x\to 0} \left(\left(1 - \frac{7}{2x} \right)^{\frac{-2x}{7}} \right)^{\frac{-7}{2}}$	1
		$=e^{rac{-7}{2}}$	1

SUMMER – 2018 EXAMINATION

17216 Subject Code: **Subject Name: Engineering Mathematics Model Answer**

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	g)	Note: If the student has considered 2 ^x and tried to solve give appropriate marks	
		and if the student has considered 2x and attempted to solve give appropriate marks.	
	h)	If $y = \log(1+x^2)$ Find $\frac{dy}{dx}$ $y = \log(1+x^2)$	02
	Ans		
		$\frac{dy}{dx} = \frac{1}{1+x^2} \times 2x$	2
		$=\frac{2x}{1+x^2}$	
		$1+x^2$	
	.,	Find dy if $y = \sin x$	
	i)	Find $\frac{dy}{dx}$ if $y = \frac{\sin x}{1 + \cos x}$	02
	Ans	$y = \frac{\sin x}{1 + \cos x}$	
		$\frac{dy}{dx} = \frac{(1+\cos x)\cos x - \sin x(-\sin x)}{(1+\cos x)^2}$	1
		$\cos x + \cos^2 x + \sin^2 x$.,
		$=\frac{1}{(1+\cos x)^2}$	1/2
		$=\frac{\cos x + 1}{\left(1 + \cos x\right)^2}$	
		$=\frac{1}{(1+\cos x)}$	1/2
		$OR \qquad (1+\cos x)$	/2
		$y = \frac{\sin x}{1 - \cos x}$	
		$1 + \cos x$ $2\sin^{x}\cos^{x}$	
		$y = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2x^{2}}$	1/2
		$2\cos^2\frac{x}{2}$	
		$y = \tan \frac{x}{2}$	1/2
		$\therefore \frac{dy}{dx} = \frac{1}{2}\sec^2\left(\frac{x}{2}\right)$	1
		ux 2 (2)	
	j)	Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3axy$	00
	,,	dx	02

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Sı	ubject N	Jame: Engineering Mathematics Model Answer Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	j)	$x^3 + y^3 = 3axy$	
	Ans	$3x^{2} + 3y^{2} \frac{dy}{dx} = 3a \left(x \frac{dy}{dx} + y \right)$	1
		$3x^{2} + 3y^{2} \frac{dy}{dx} = 3ax \frac{dy}{dx} + 3ay$ $3y^{2} \frac{dy}{dx} - 3ax \frac{dy}{dx} = 3ay - 3x^{2}$	
		$\left(3y^2 - 3ax\right)\frac{dy}{dx} = 3ay - 3x^2$	1/2
		$\frac{dy}{dx} = \frac{3ay - 3x^2}{3y^2 - 3ax} = \frac{ay - x^2}{y^2 - ax}$	1/2
	k)	Using Gauss seidal method find first iteration for system of equations: 8x+2y+3z=30 , $x-9y+2z=1$, $2x+3y+6z=31$	02
	Ans	$x = \frac{30 - 2y - 3z}{9}$	
	AllS	0	
		$y = \frac{1 - x - 2z}{-9}$	
		$z = \frac{31 - 2x - 3y}{6}$	1
		Initial approximations : $x_0 = y_0 = z_0 = 0$	
		x = 3.75	
		y = 0.306	1
		z = 3.764	1
	l)	Show that the root of the equation $xe^x - 3 = 0$ lies in the interval(1,2)	02
	Ans	$\operatorname{Let} f(x) = xe^x - 3$	02
		f(1) = -0.282 < 0	
		f(2) = 11.778 > 0	1
		∴ root lies between 1 and 2	1
2.		Attempt any <u>FOUR</u> of the following:	16
	a)	Find modulus and argument of $-3+3i$	
	Ans	z = -3 + 3i	04
		$\therefore r = z = \sqrt{(-3)^2 + (3)^2} = \sqrt{18} = 3\sqrt{2}$	2

Subject Name: Engineering Mathematics	Model Answer	Subject Code:	17216	
--	---------------------	---------------	-------	--

Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	a)	$\theta = \pi - \tan^{-1} \left \frac{3}{-3} \right $ $= \pi - \tan^{-1} (1)$	1
		$= \pi - \frac{\pi}{4}$ $= \frac{3\pi}{4}$ OR	1
		$\theta = \tan^{-1}\left(\frac{3}{-3}\right)$ $= \tan^{-1}\left(-1\right)$	1
		$=-\frac{\pi}{4}$	1
	b)	Using De-Movier's Theorem, simplify, $\frac{(\cos \theta - i \sin \theta)^{5} (\cos 3\theta + i \sin 3\theta)^{-4}}{(\cos 3\theta + i \sin 3\theta)^{-2} (\cos 5\theta - i \sin 5\theta)^{3}}$	04
	Ans	$\frac{\left(\cos\theta - i\sin\theta\right)^{5}\left(\cos 3\theta + i\sin 3\theta\right)^{-4}}{\left(\cos 3\theta + i\sin 3\theta\right)^{-2}\left(\cos 5\theta - i\sin 5\theta\right)^{3}}$	
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{-5} \left(\cos\theta + i\sin\theta\right)^{-12}}{\left(\cos\theta + i\sin\theta\right)^{-6} \left(\cos\theta + i\sin\theta\right)^{-15}}$ $= \left(\cos\theta + i\sin\theta\right)^{-5-12+6+15}$	2
		$=(\cos\theta + i\sin\theta)^4$ $=(\cos\theta + i\sin\theta)^4$	1/2
		$= \cos 4\theta + i \sin 4\theta$	1/2
		Note:If the student has considered <i>l</i> or <i>i</i> and attempted to solve give appropriate marks.	
	c)	Find all required roots of $(-1)^{\frac{1}{5}}$ using De-Movier's Theorem	04
	Ans	Let $x = (-1)^{\frac{1}{5}}$ $\therefore x^5 = -1$	
		Let $z = -1 = -1 + 0i$	
		$\therefore r = \sqrt{(-1)^2 + 0^2} = 1$	1/2
		$\therefore \theta = \pi - \tan^{-1} \left \frac{0}{-1} \right = \pi$	1/2
		In general polar form	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

S	ubject N	Jame: Engineering Mathematics Model Answer Subject Code:	17216		
Q. No.	Sub Q. N.	Answer	Marking Scheme		
2.	c)	$z = \cos(2\pi k + \theta) + i\sin(2\pi k + \theta)$ $\therefore -1 = \cos(2\pi k + \pi) + i\sin(2\pi k + \pi)$ $\therefore (-1)^{\frac{1}{5}} = \left[\cos(2\pi k + \pi) + i\sin(2\pi k + \pi)\right]^{\frac{1}{5}}$			
		$= \cos\left(\frac{2\pi k + \pi}{5}\right) + i\sin\left(\frac{2\pi k + \pi}{5}\right)$	1/2		
		For $k = 0$, $z_1 = \cos\left(\frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{5}\right)$	1/2		
		For $k = 1$, $z_2 = \cos\left(\frac{3\pi}{5}\right) + i\sin\left(\frac{3\pi}{5}\right)$	1/2		
		For $k = 2$, $z_3 = \cos(\pi) + i\sin(\pi)$	1/2		
		For $k = 3$, $z_4 = \cos\left(\frac{7\pi}{5}\right) + i\sin\left(\frac{7\pi}{5}\right)$	1/2		
		For $k = 4$, $z_5 = \cos\left(\frac{9\pi}{5}\right) + i\sin\left(\frac{9\pi}{5}\right)$			
	d)	If $\cos(A+lB) = x + ly$ show that $\frac{x^2}{\cos^2 A} - \frac{y^2}{\sin^2 A} = 1$ and $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$	04		
	Ans	$\cos(A+iB) = x+iy$			
	75	$\cos(A + iB) = x + iy$ $\cos A \cos(iB) - \sin A \sin(iB) = x + iy$	1/2		
		$\cos A \cosh B - i \sin A \sinh B = x + iy$			
		$\therefore x = \cos A \cosh B \text{ and } y = -\sin A \sinh B$	½ ½+½		
		$i)\frac{x^{2}}{\cos^{2} A} - \frac{y^{2}}{\sin^{2} A} = \frac{\cos^{2} A \cosh^{2} B}{\cos^{2} A} - \frac{\sin^{2} A \sinh^{2} B}{\sin^{2} A}$			
		$=\cosh^2 B - \sinh^2 B$	1/2		
		=1	1/2		
		ii) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = \frac{\cos^2 A \cosh^2 B}{\cosh^2 B} + \frac{\sin^2 A \sinh^2 B}{\sinh^2 B}$ $= \cos^2 A + \sin^2 A$ $= 1$ Note: If the student has considered l or i and attempted to solve give appropriate	½ ½ ½		
		marks.			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

S	Subject N	Tame: Engineering Mathematics Model Answer Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	e)	If $f(x) = y = \frac{ax+1}{5x-a}$ show that $f(y) = x$	04
	Ans	$f(x) = \frac{ax+1}{5x-a}$	
		$f(x) = \frac{ax+1}{5x-a}$ $\therefore f(y) = \frac{ay+1}{5y-a}$	1/2
		$= \frac{a\left(\frac{ax+1}{5x-a}\right)+1}{5\left(\frac{ax+1}{5x-a}\right)-a}$	1/2
		$-5\left(\frac{ax+1}{5x-a}\right)-a$,,,
		$\left(a^2x+a+5x-a\right)$	
		$=\frac{\left(\frac{5x-a}{5x-a}\right)}{\left(\frac{5ax+5-5ax+a^2}{5x-a}\right)}$	1
		$=\frac{a^2x+5x}{5+a^2}$	
		$=\frac{x(a^2+5)}{5+a^2}$	1
		$= x$ $\therefore f(y) = x$	1
	f)	If $f(x) = \log\left(\frac{x-1}{x}\right)$ show that $f(y^2) = f(y) + f(-y)$	04
	Ans	$LHS = f\left(y^2\right)$	
		$=\log\left(\frac{y^2-1}{y^2}\right)$	1/2
		$= \log\left(y^2 - 1\right) - \log\left(y^2\right)$	1/2
		$= \log(y^2 - 1) - 2\log y \qquad \cdots (1)$	1/2
		$RHS = f(y) + f(-y)$ $= \log\left(\frac{y-1}{y}\right) + \log\left(\frac{-y-1}{-y}\right)$	1/
			1/2
		$= \log\left(\frac{y-1}{y}\right) + \log\left(\frac{y+1}{y}\right)$	1/2
		$= \log(y-1) - \log y + \log(y+1) - \log y$ = \log(y-1) + \log(y+1) - 2\log y	1/2
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

CIVILLIA	, T

Su	bject Name: Engineering Mathematics	Model Answer	Subject Code:	17216
	1			

2.	f)	$=\log(y^2-1)-2\log y$ (2) From (1) and (2)	1/2
		$f(y^2) = f(y) + f(-y)$ OR	1/2
		$f\left(y^2\right) = \log\left(\frac{y^2 - 1}{y^2}\right)$	1/2
		$=\log\left(y^2-1\right)-\log\left(y^2\right)$	1/2
		$= \log((y-1)(y+1)) - 2\log y$	1/2
		$= \log(y-1) + \log(y+1) - 2\log y$	1/2
		$= \left[\log(y-1) - \log y\right] + \left[\log(y+1) - \log y\right]$	1/2
		$= \log\left(\frac{y-1}{y}\right) + \log\left(\frac{y+1}{y}\right)$	1/2
		$= \log\left(\frac{y-1}{y}\right) + \log\left(\frac{-1-y}{-y}\right)$	1/2
		= f(y) + f(-y)	1/2
		$\therefore f(y^2) = f(y) + f(-y)$	
		OR	
		$f(y) + f(-y) = \log\left(\frac{y-1}{y}\right) + \log\left(\frac{-y-1}{-y}\right)$	1
		$= \log\left(\frac{y-1}{y}\right) + \log\left(\frac{y+1}{y}\right)$	1/2
		$= \log \left[\left(\frac{y-1}{y} \right) \times \left(\frac{y+1}{y} \right) \right]$	1
		$=\log\left(\frac{y^2-1}{y^2}\right)$	1
		$=f(y^2)$	1/2
3.		Attempt any <u>FOUR</u> of the following :	16
	a)	If $f(x) = \frac{x-1}{x+1}$, $x \ne 1$, show that $f\left(\frac{x-1}{x+1}\right) = -\frac{1}{x}$	04
	Ans	$f(x) = \frac{x-1}{x+1}$	

S	Subject N	Tame: Engineering Mathematics <u>Model Answer</u> Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	a)	$f\left(\frac{x-1}{x+1}\right) = \frac{\left(\frac{x-1}{x+1}\right) - 1}{\left(\frac{x-1}{x+1}\right) + 1}$	1
		$= \frac{\frac{x-1-x-1}{x+1}}{\frac{x-1+x+1}{x+1}}$	1
		$=\frac{-2}{2x}$	1
		$=\frac{-1}{x}$	1
	b)	For what values of x , $f(x) = f(2x+1)$ if $f(x) = x^2 - 3x + 4$	04
	Ans	f(x) = f(2x+1) $x^2 - 3x + 4 = (2x+1)^2 - 3(2x+1) + 4$	1
		$\begin{vmatrix} x - 3x + 4 = (2x + 1) - 3(2x + 1) + 4 \\ x^2 - 3x + 4 = 4x^2 + 4x + 1 - 6x - 3 + 4 \end{vmatrix}$	1
		$3x^2 + x - 2 = 0$	1
		$x = -1 \text{or} x = \frac{2}{3}$	1
	c)	Evaluate $\lim_{x \to 3} \left(\frac{1}{x-3} - \frac{1}{x^2 - 5x + 6} \right)$	04
	Ans	$\lim_{x \to 3} \left(\frac{1}{x - 3} - \frac{1}{x^2 - 5x + 6} \right)$	
		$= \lim_{x \to 3} \left(\frac{1}{x - 3} - \frac{1}{(x - 2)(x - 3)} \right)$	1
		$= \lim_{x \to 3} \frac{1}{x - 3} \left(1 - \frac{1}{(x - 2)} \right)$	
		$= \lim_{x \to 3} \frac{1}{x - 3} \left(\frac{x - 2 - 1}{(x - 2)} \right)$	1
		$= \lim_{x \to 3} \frac{x - 3}{(x - 3)(x - 2)}$	
		$=\lim_{x\to 3}\frac{1}{(x-2)}$	1
		=1	1

Subject Name: Engineering Mathematics	Model Answer	Subject Code:	17216
--	---------------------	---------------	-------

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
3.	d)	Evaluate $\lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right]$	04
	Ans	$\lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right]$	
		$= \lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right] \times \frac{\left[\sqrt{x^2 + 1} + \sqrt{x^2 - 1} \right]}{\left[\sqrt{x^2 + 1} + \sqrt{x^2 - 1} \right]}$	1/2
		$= \lim_{x \to \infty} \frac{x \left[\left(\sqrt{x^2 + 1} \right)^2 - \left(\sqrt{x^2 - 1} \right)^2 \right]}{\left[\sqrt{x^2 + 1} + \sqrt{x^2 - 1} \right]}$	
		$= \lim_{x \to \infty} \frac{x(x^2 + 1 - x^2 + 1)}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$	1
		$=\lim_{x\to\infty}\frac{2x}{\left[\sqrt{x^2+1}+\sqrt{x^2-1}\right]}$	1/2
		$= \lim_{x \to \infty} \frac{2x}{x \left[\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x^2}} \right]}$	1
		$= \lim_{x \to \infty} \frac{2}{\left[\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x^2}}\right]}$ $= \frac{2}{\sqrt{1 + 0} + \sqrt{1 - 0}}$	
		$=\frac{2}{\sqrt{1+0}+\sqrt{1-0}}$	1/2
		$=\frac{2}{2}=1$	1/2
		OR	
		$\lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right]$	
		Put $x = \frac{1}{t}$ as $x \to \infty$, $t \to 0$	1/2
		$\lim_{t \to 0} \frac{1}{t} \left[\sqrt{\left(\frac{1}{t}\right)^2 + 1} - \sqrt{\left(\frac{1}{t}\right)^2 - 1} \right]$	1/2
		$= \lim_{t \to 0} \frac{1}{t} \frac{1}{t} \left[\sqrt{1 + t^2} - \sqrt{1 - t^2} \right]$	1/2
		$= \lim_{t \to 0} \frac{1}{t^2} \left[\sqrt{1 + t^2} - \sqrt{1 - t^2} \right] \times \frac{\left[\sqrt{1 + t^2} + \sqrt{1 - t^2} \right]}{\left[\sqrt{1 + t^2} + \sqrt{1 - t^2} \right]}$	1/2

S	Subject N	Name: Engineering Mathematics <u>Model Answer</u> Subject Code:	L7216
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	d)	$= \lim_{t \to 0} \frac{1}{t^2} \frac{\left[1 + t^2 - 1 + t^2\right]}{\left[\sqrt{1 + t^2} + \sqrt{1 - t^2}\right]}$ $= \lim_{t \to 0} \frac{1}{t^2} \frac{2t^2}{\left[\sqrt{1 + t^2} + \sqrt{1 - t^2}\right]}$	1/2
		$= \lim_{t \to 0} \frac{2}{\left[\sqrt{1+t^2} + \sqrt{1-t^2}\right]}$	1/2
		$= \frac{2}{\left[\sqrt{1+0} + \sqrt{1-0}\right]}$ $= \frac{2}{2} = 1$	1/2
		$=\frac{2}{2}=1$	1/2
	f)	Evaluate $\lim_{x\to 0} \frac{\cos 3x - \cos 5x}{x^2}$	04
	Ans	$\lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}$	
		$= \lim_{x \to 0} \frac{-2\sin\left(\frac{3x + 5x}{2}\right)\sin\left(\frac{3x - 5x}{2}\right)}{x^2}$	1
		$=\lim_{x\to 0} \frac{2\sin 4x}{x} \frac{\sin x}{x}$	1/2
		$=2\left(\lim_{x\to 0}\frac{\sin 4x}{4x}\right)4\left(\lim_{x\to 0}\frac{\sin x}{x}\right)$	1
		=2(1)4(1) = 8	1 1/2
		OR	
		$\lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}$	
		$= \lim_{x \to 0} \frac{-2\sin\left(\frac{3x + 5x}{2}\right)\sin\left(\frac{3x - 5x}{2}\right)}{x^2}$	1
		$=\lim_{x\to 0} \frac{-2\sin 4x}{x} \frac{\sin(-x)}{x}$	1/2
		$=-2\left(\lim_{x\to 0}\frac{\sin 4x}{4x}\right)\times 4\times \left(\lim_{x\to 0}\frac{\sin \left(-x\right)}{\left(-x\right)}\right)(-1)$	1
		= -2(1)4(1)(-1) = 8	1 1/2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

S	ubject N	ame: Engineering Mathematics Model Answer Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	f)	Evaluate $\lim_{x\to 0} \frac{10^x - 2^x - 5^x + 1}{x \tan x}$	04
	Ans	$\lim_{x \to 0} \frac{10^{x} - 2^{x} - 5^{x} + 1}{x \tan x}$ $= \lim_{x \to 0} \frac{5^{x} 2^{x} - 5^{x} - 2^{x} + 1}{x \tan x}$ $= \lim_{x \to 0} \frac{5^{x} (2^{x} - 1) - (2^{x} - 1)}{x \tan x}$	<i>y</i> ₂
		$= \lim_{x \to 0} \frac{(5^{x} - 1)(2^{x} - 1)}{x \tan x}$ $(5^{x} - 1)(2^{x} - 1)$	1/2
		$= \lim_{x \to 0} \frac{x^2}{x \tan x}$	1
		$= \frac{\lim_{x \to 0} \left(\frac{5^x - 1}{x}\right) \lim_{x \to 0} \left(\frac{2^x - 1}{x}\right)}{\lim_{x \to 0} \frac{\tan x}{x}}$	1
		$= (\log 5)(\log 2)$	1
4.		Attempt any <u>FOUR</u> of the following:	16
	a)	By using first principle find the derivative of $y = \log x$	04
	Ans	$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{\log(x+h) - \log x}{h}$	1
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{1}{h} \log \left(\frac{x+h}{x} \right)$	1/2
		$\frac{dy}{dx} = \lim_{h \to 0} \log \left(1 + \frac{h}{x} \right)^{\frac{1}{h}}$	1/2
		$\frac{dy}{dx} = \left[\lim_{h \to 0} \log\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}$	1/2
		$\frac{dy}{dx} = \log e^{\frac{1}{x}}$	1
		$\frac{dy}{dx} = \frac{1}{x}\log e = \frac{1}{x}$	1/2

Subject Name: Engineering Mathematics	Model Answer	Subject Code:	17216

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	b)	If u and v are differentiable functions of x and $y = \frac{u}{v}$, where $v \ne 0$ then prove that $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$	04
	Ans	Let $\delta u, \delta v, \delta y$ are small increments in u, v, y respectively corresponding to increment δx in x .	
		$\therefore y + \delta y = \frac{u + \delta u}{v + \delta v}$	1/2
		$\delta y = \frac{uv + v\delta u - u(v + \delta v)}{v(v + \delta v)}$	1
		$\delta y = \frac{v\delta u - u\delta v}{v^2 + v\delta v}$	
		$\frac{\delta y}{\delta x} = \frac{\frac{v\delta u - u\delta v}{\delta x}}{\frac{\delta x}{v^2 + v\delta v}}$	1/2
		$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{v \lim_{\delta x \to 0} \frac{\delta u}{\delta x} - u \lim_{\delta x \to 0} \frac{\delta v}{\delta x}}{v^2}$	1
		$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \qquad (\because \text{ as } \delta x \to 0, \delta v \to 0)$	1
	c)	If $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ then show that $\frac{dy}{dx} = 1 - y^2$	04
	Ans	$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	
		$LHS = \frac{dy}{dx}$	
		$= \frac{\left(e^{x} + e^{-x}\right) \frac{d\left(e^{x} - e^{-x}\right)}{dx} - \left(e^{x} - e^{-x}\right) \frac{d\left(e^{x} + e^{-x}\right)}{dx}}{\left(e^{x} + e^{-x}\right)^{2}}$	
		$= \frac{\left(e^{x} + e^{-x}\right)\left(e^{x} + e^{-x}\right) - \left(e^{x} - e^{-x}\right)\left(e^{x} - e^{-x}\right)}{\left(e^{x} + e^{-x}\right)^{2}}$	1
		$=\frac{e^{2x}+2+e^{-2x}-e^{2x}+2-e^{-2x}}{\left(e^x+e^{-x}\right)^2}$	
		$=\frac{4}{\left(e^x+e^{-x}\right)^2} \qquad \cdots \cdots (1)$	1

S	ubject N	Name: Engineering Mathematics Model Answer Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	c)	RHS = $1 - y^2$ = $1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2$ = $1 - \frac{e^{2x} - 2 + e^{-2x}}{e^{2x} + 2 + e^{-2x}}$	1/2
		$=\frac{e^{2x}+2+e^{-2x}-e^{2x}+2-e^{-2x}}{e^{2x}+2+e^{-2x}}$	1/2
		$=\frac{4}{\left(e^x+e^{-x}\right)^2} \qquad \cdots (2)$	1/2
		From (1) and (2) $\therefore \frac{dy}{dx} = 1 - y^2$ OR	1/2
		$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	
		$\log y = \log \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right)$	1/2
		$\log y = \log(e^x - e^{-x}) - \log(e^x + e^{-x})$	1/2
		$\frac{1}{y}\frac{dy}{dx} = \frac{1}{e^x - e^{-x}} \left(e^x + e^{-x} \right) - \frac{1}{e^x + e^{-x}} \left(e^x - e^{-x} \right)$	1
		$\frac{dy}{dx} = y \left[\frac{e^x + e^{-x}}{e^x - e^{-x}} - \frac{e^x - e^{-x}}{e^x + e^{-x}} \right]$	1/2
		$\frac{dy}{dx} = y \left[\frac{1}{y} - y \right]$	1
		$\frac{dy}{dx} = 1 - y^2$	1/2
	d)	If $y = \tan^{-1} \left[\frac{\sin 2x}{1 - \cos 2x} \right]$ Find $\frac{dy}{dx}$	04
	Ans	$y = \tan^{-1} \left[\frac{\sin 2x}{1 - \cos 2x} \right]$	
		$y = \tan^{-1} \left[\frac{2\sin x \cos x}{2\sin^2 x} \right]$	1
		$y = \tan^{-1} \left[\frac{\cos x}{\sin x} \right]$	1/2

SUMMER – 2018 EXAMINATION

17216 **Subject Name: Engineering Mathematics** Subject Code: **Model Answer**

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	d)	$y = \tan^{-1} \left[\cot x\right] = \tan^{-1} \left[\tan \left(\frac{\pi}{2} - x\right)\right]$	1/2
		$y = tan \left[\cot x \right] = tan \left[\frac{tan}{2} \left(\frac{1}{2} \right) \right]$	1
		$y = \frac{\pi}{2} - x$ $\frac{dy}{dx} = -1$	1
	- \	Find derivative of $\left(\sin^{-1} x\right)^{\cos x}$	0.4
	e)	$y = \left(\sin^{-1} x\right)^{\cos x}$	04
	Ans		
		$\log y = \log \left(\sin^{-1} x \right)^{\cos x}$	1/2
		$\log y = \cos x \log \left(\sin^{-1} x \right)$	1/2
		$\frac{1}{y}\frac{dy}{dx} = \cos x \frac{1}{\sin^{-1} x} \frac{1}{\sqrt{1-x^2}} + \log(\sin^{-1} x)(-\sin x)$	2½
		$\frac{dy}{dx} = y \left[\frac{\cos x}{\sin^{-1} x} \frac{1}{\sqrt{1 - x^2}} - \sin x \log \left(\sin^{-1} x \right) \right]$	1/2
	f)	Differentiate $5^{\sqrt{x}}$ w.r.t. $(\sqrt{x})^x$	04
		Let $u = 5^{\sqrt{x}}$	
	Ans	$\log u = \log 5^{\sqrt{x}}$	1/2
		$\log u = \sqrt{x} \log 5$	1/2
		$\frac{1}{u}\frac{du}{dx} = \frac{1}{2\sqrt{x}}\log 5$	1/2
		·	
		$\frac{du}{dx} = \frac{u}{2\sqrt{x}}\log 5$	
		$\frac{du}{dx} = \frac{5^{\sqrt{x}}}{2\sqrt{x}}\log 5$	
		and $v = \left(\sqrt{x}\right)^x$	
		$\log v = \log \left(\sqrt{x}\right)^x$	1/2
		$\log v = x \log \left(\sqrt{x} \right)$	1/2
		$\log v = x \log x^{\frac{1}{2}}$, ,
		$\log v = \frac{1}{2} x \log x$	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2018 EXAMINATION

Subject Name: Engineering Mathematics Model Answer Subject Code: 17216

3	ubject iv	ame: Engineering Mathematics Model Answer Subject Code:	./210
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	f)	$\frac{1}{v}\frac{dv}{dx} = \frac{1}{2}\left[x\frac{1}{x} + \log x\right]$	1/2
		$\frac{dv}{dx} = \frac{v}{2} \left[1 + \log x \right]$	
		$\frac{dv}{dx} = \frac{\left(\sqrt{x}\right)^x}{2} \left[1 + \log x\right]$	1/2
		$\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}}$	
		$\frac{du}{dv} = \frac{\frac{5^{\sqrt{x}}}{2\sqrt{x}}\log 5}{\frac{\left(\sqrt{x}\right)^x}{2}\left[1 + \log x\right]}$	1/2
		$\frac{du}{dv} = \frac{5^{\sqrt{x}} \log 5}{\sqrt{x} \left(\sqrt{x}\right)^x \left[1 + \log x\right]}$	
		OR Let $u = 5^{\sqrt{x}}$	
		$\frac{du}{dx} = 5^{\sqrt{x}} \log 5 \frac{1}{2\sqrt{x}}$	1½
		$\frac{du}{dx} = 5^{\sqrt{x}} \log 5 \frac{1}{2\sqrt{x}}$ $\frac{du}{dx} = \frac{5^{\sqrt{x}}}{2\sqrt{x}} \log 5$	
		and $v = \left(\sqrt{x}\right)^x$	
		$\log v = \log \left(\sqrt{x}\right)^x$	1/2
		$\log v = x \log \left(\sqrt{x} \right)$	1/2
		$\frac{1}{v}\frac{dv}{dx} = x\frac{1}{\sqrt{x}}\frac{1}{2\sqrt{x}} + \log\left(\sqrt{x}\right)$	1/2
		$\frac{dv}{dx} = v \left(\frac{1}{2} + \log \left(\sqrt{x} \right) \right)$	
		$\frac{dv}{dx} = \left(\sqrt{x}\right)^x \left(\frac{1}{2} + \frac{1}{2}\log x\right)$	
		$\frac{dv}{dx} = \frac{\left(\sqrt{x}\right)^x}{2} \left[1 + \log x\right]$	1/2

S	ubject N	Name: Engineering Mathematics Model Answer Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	f)	$ \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} $ $ \frac{du}{dv} = \frac{\frac{5^{\sqrt{x}}}{2\sqrt{x}}\log 5}{\frac{(\sqrt{x})^{x}}{2}[1 + \log x]} $ $ \frac{du}{dv} = \frac{5^{\sqrt{x}}\log 5}{\sqrt{x}(\sqrt{x})^{x}[1 + \log x]} $	1/2
5.		Attempt any <u>FOUR</u> of the following:	16
	a)	Evaluate $\lim_{x\to 0} \frac{\log(e+x)-1}{x}$	04
	Ans	$\lim_{x \to 0} \frac{\log(e+x) - 1}{x} = \lim_{x \to 0} \frac{\log(e+x) - \log e}{x}$	1/2
		$= \lim_{x \to 0} \frac{\log\left(\frac{e+x}{e}\right)}{x}$	1/2
		$= \lim_{x \to 0} \log \left(1 + \frac{x}{e} \right)^{\frac{1}{x}}$	1
		$= \lim_{x \to 0} \left[\log \left(1 + \frac{x}{e} \right)^{\frac{e}{x}} \right]^{\frac{1}{e}}$	1
		$=\log e^{\frac{1}{e}} = \frac{1}{e}$	1
	b)	Evaluate $\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}$	04
	Ans	$\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}$ $= \lim_{x \to 0} \frac{\frac{\sin 3x + 7x}{4x + \sin 2x}}{\frac{x}{x}}$	1

Sı	ubject N	ame: Engineering Mathematics	Model Answer	Subject Code:	1	7216

Nie	Sub	Answer	Marking
No.	Q. N.		Scheme
5.	b)	$= \lim_{x \to 0} \frac{\left(\frac{\sin 3x}{3} \times 3\right) + 7}{4 + \left(\frac{\sin 2x}{2} \times 2\right)}$	1
		$=\frac{(1\times3)+7}{4+(1\times2)}$	1
		$= \frac{10}{6} = \frac{5}{3} \text{ or } 1.667$	1
	c)	Using Bisection method find the approximate root of the equation $x^3 - 6x + 3 = 0$ (Perform three iterations)	04
	Ans	$x^3 - 6x + 3 = 0$	
		$f(x) = x^3 - 6x + 3$	
		f(0) = 3 > 0	
		f(1) = -2 < 0	
		root is in $(0,1)$	1
		$\therefore x_1 = \frac{0+1}{2} = 0.5$	1
		$\therefore f(0.5) = 0.125 > 0$	
		\therefore root is in $(0.5,1)$	
		$\therefore x_2 = \frac{0.5 + 1}{2} = 0.75$	1
		$\therefore f(0.75) = -1.078 < 0$	
		$\therefore \text{ root is in } (0.5, 0.75)$	
		$\therefore x_3 = \frac{0.75 + 0.5}{2} = 0.625$	1
		OR	
		$x^3 - 6x + 3 = 0$	
		$f(x) = x^3 - 6x + 3$	
		f(0) = 3 > 0	
		f(1) = -2 < 0	
		root is in $(0,1)$	1

S	Subject N	lame	: Engineerin	g Mathemati	cs <u>Model</u>	<u>Answer</u>	Subject Code:	172	16
No.	Sub Q. N.				Answ	er			rking ieme
5.	c)		a	b	$x = \frac{a+b}{2}$	f(x)			
			0	1	0.5	0.125			
			0.5	1	0.75	-1.078		1+	1+1
			0.5	0.75	0.625				
		OR		<u> </u>	1		I		
			$-6x + 3 = 0$ $x) = x^3 - 6x + 3$	2					
			$(x) = x^{2} - 0x^{2}$ (x) = -1 < 0	- 3					
			(3) = 12 > 0						
			ot is in $(2,3)$						1
		∴ <i>x</i>	$r_1 = \frac{2+3}{2} = 2.$	5					1
			f(2.5) = 3.6						
			oot is in $(2.5 + 2.5 + 2)$	•					1
			$c_2 = \frac{2.5 + 2}{2} =$						1
			(2.25) = 0.8 not is in (2.2)						
			$r_3 = \frac{2.25 + 2}{2} =$						1
		OR	_	2.120					
		x^3	-6x + 3 = 0						
			$x) = x^3 - 6x + $	-3					
			2) = -1 < 0 $3) = 12 > 0$						
		,	ot is in $(2,3)$						1
			a	b	a+b	f(x)			
					$x = \frac{a+b}{2}$	J (N)			
			2	3	2.5	3.625			
			2	2.5	2.25	0.891		1+	1+1
			2	2.25	2.125				
	Ì	1	İ	1	1		İ		

\mathbf{S}	ubject N	Tame: Engineering Mathematics Model Answer Subject Code:	17216
Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	c)	OR	
		$x^3 - 6x + 3 = 0$	
		$f(x) = x^3 - 6x + 3$	
		$f\left(-2\right) = 7 > 0$	
		$f\left(-3\right) = -6 < 0$	
		root is in $\left(-3,-2\right)$	1
		$\therefore x_1 = \frac{-2 - 3}{2} = -2.5$	1
		$\therefore f\left(-2.5\right) = 2.375 > 0$	
		\therefore root is in $(-3, -2.5)$	
		$\therefore x_2 = \frac{-2.5 - 3}{2} = -2.75$	1
		$\therefore f(-2.75) = -1.297 < 0$	
		$\therefore \text{ root is in } \left(-2.75, -2.5\right)$	
		$\therefore x_3 = \frac{-2.75 - 2.5}{2} = -2.625$	1
		OR	
		$x^3 - 6x + 3 = 0$	
		$f(x) = x^3 - 6x + 3$	
		$f\left(-2\right) = 7 > 0$	
		$f\left(-3\right) = -6 < 0$	
		root is in $(-3,-2)$	1
		$\begin{array}{ c c c c c c }\hline a & b & x = \frac{a+b}{2} & f(x) \\ \hline \end{array}$	
		-3 -2 -2.5 2.375	
		-3 -2.5 -2.75 -1.297	1+1+1
		-2.75 -2.625	
	d)	Use Regula-Falsi method, to find approximate root of the equation $x^3 - x - 4 = 0$ (Three iterations)	04
	Ans	$x^3 - x - 4 = 0$	

S	Subject N	lame: Engineer	ring Math	nematics <u>N</u>	Iodel Answ	ver Subjec	t Code:	1	7216
Q. No.	Sub Q. N.				Answer				Marking Scheme
5.	d)	Let $f(x) = x^3$ f(1) = -4 < 0 f(2) = 2 > 0 \therefore the root is in $x_1 = \frac{af(b) - b}{f(b) - f}$ $f(x_1) = -1.03$ \therefore the root is in $x_2 = \frac{1.667(2)}{2 - (-1.03)}$ \therefore the root is in $x_3 = \frac{1.781(2) - 1.03}{2 - (-1.03)}$ OR Let $f(x) = x^3$	$ \frac{f(a)}{f(a)} = \frac{10}{100} $ $ \frac{f(a)}{f(a)} = \frac{10}{100} $ $ \frac{100}{100} $ $\frac{100}{100} $ 10	$\frac{5}{5} = 1.781$ $\frac{5}{2} = 1.795$.667				1 1 1
		$f(1) = -4 < 0$ $f(2) = 2 > 0$ $\therefore \text{ the root is in}$							1
		1 1.667 1.781	2 2 2	-1.035 -0.132	f(b) 2 2 2	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ 1.667 1.781 1.795	-1.035 -0.132		1+1+1
	e) Ans	Use the Newt Let $x = \sqrt[3]{20}$ $\therefore x^3 = 20$ Let $f(x) = x^3$ f(2) = -12 < 0 f(3) = 7 > 0	-20	on method to	evaluate ∛2	(three iterations)			04

SUMMER – 2018 EXAMINATION

17216 Subject Code: **Subject Name: Engineering Mathematics Model Answer**

No.	Sub Q. N.	Answer Answer	Marking Scheme
5.			
5.	e)	$f'(x) = 3x^2$ This is a part of $x = 2$	1
		Initial root $x_0=3$	1
		$\therefore f'(3) = 27$	
		$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 3 - \frac{f(3)}{f(3)} = 2.741$	1
		$x_2 = 2.74 - \frac{f(2.741)}{f'(2.741)} = 2.715$	1
		$x_3 = 2.71 - \frac{f(2.715)}{f'(2.715)} = 2.714$	1
		OR	
		Let $(x) = x^3 - 20$	
		f(2) = -12 < 0	
		f(3) = 7 > 0	
		$f'(x) = 3x^2$	
		Initial root $x_0=3$	1
		$\therefore f'(3) = 27$	
		$x_{i} = \frac{xf'(x) - f(x)}{f'(x)}$	
		$=\frac{3x^3-x^3+20}{3x^2}$	1/2
		$2x^3 + 20$	
		$=\frac{2x^3 + 20}{3x^2}$	1
		$x_1 = 2.741$	1/2
		$x_2 = 2.715$	1/2
		$x_3 = 2.714$	1/2
	f)	Using Bisection method find the root of the equation $x^3 - 4x - 9$ in the interval	04
		(2,3) (Perform three iterations)	
	Ans	$x^3 - 4x - 9 = 0$	
		$f(x) = x^3 - 4x - 9$	
		f(2) = -9 < 0 $f(3) = 6 > 0$	
		f(3) = 6 > 0	
	1	Dago No 2	I

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

S	ubject N	ame: Engineerir			Answer	Subject Code:	17216
No.	Sub Q. N.			Answ	er		Marking Scheme
5.	f)	root is in $(2,3)$					1
		$\therefore x_1 = \frac{2+3}{2} = 2.$	5				1
		f(2.5) = -3.3					
		$\therefore \text{ root is in } (2.5)$					
		$\therefore x_2 = \frac{2.5 + 3}{2} =$	•				1
		-					_
		$\therefore f(2.75) = 0.7$ \therefore root is in (2.7)					
		`	,				
		$\therefore x_3 = \frac{2.75 + 2.5}{2}$	-=2.625				1
		OR					
		$x^3 - 4x - 9 = 0$	0				
		$f(x) = x^3 - 4x - 4x - 6$ $f(2) = -9 < 0$	- 9				
		f(2) = -9 < 0 $f(3) = 6 > 0$					
		root is in $(2,3)$					1
		, ,	1 1		. ()		
		a	ь	$x = \frac{a+b}{2}$	f(x)		
		2	3	2.5	-3.375		
		2.5	3	2.75	0.797		1+1+1
		2.5	2.75	2.625			
6.		Attempt any <u>FO</u>	UR of the fol	lowing:			 16
	a)	If $y = 2\sin 2x - 3$	$5\cos 2x$ show	that $\frac{d^2y}{dx^2+4y}$	y = 0		04
	Ans	$y = 2\sin 2x - 5\cos 2x$		dx^2	•		04
		$\therefore \frac{dy}{dx} = 4\cos 2x$					1
		$\therefore \frac{d^2y}{dx^2} = -8\sin 2x$	$x + 20\cos 2x$				1
		$\therefore \frac{d^2y}{dx^2} = -4(2s)$	$\sin 2x - 5\cos 2$	(2x)			1/2
						Dage N	

S	ubject N	ame: Engineering Mathematics	Model Answer	Subject Code:	1	7216

No.	Sub Q. N.	Answer	Marking Scheme
6.	a)	$\frac{d^2y}{d^2y} = -4y$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -4y$ $\therefore \frac{d^2 y}{dx^2} + 4y = 0$	
		$\therefore \frac{d^2y}{dx^2} + 4y = 0$	1
		OR OR	
		$y = 2\sin 2x - 5\cos 2x$	
		$\therefore \frac{dy}{dx} = 4\cos 2x + 10\sin 2x$	1
		$\therefore \frac{d^2y}{dx^2} = -8\sin 2x + 20\cos 2x$	1
		$L.H.S. = \frac{d^2y}{dx^2} + 4y$	
		$= -8\sin 2x + 20\cos 2x + 4(2\sin 2x - 5\cos 2x)$	
		$= -8\sin 2x + 20\cos 2x + 8\sin 2x - 20\cos 2x$	1
		= 0	1
	b)	If $y = \log(\log x)$ show that $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + x \left(\frac{dy}{dx}\right)^2 = 0$	04
	Ans	$y = \log(\log x)$	
		$\frac{dy}{dx} = \frac{1}{\log x} \frac{1}{x} = \frac{1}{x \log x}$	1
		$\frac{d^2y}{dx^2} = \frac{\left(x\log x\right)0 - 1\left(x\frac{1}{x} + \log x \cdot 1\right)}{x^2\left(\log x\right)^2}$	
		$dx^2 x^2 (\log x)^2$	
		$\frac{d^2y}{dx^2} = \frac{-\left(1 + \log x\right)}{x^2\left(\log x\right)^2}$	1
		$L.H.S. = x\frac{d^2y}{dx^2} + \frac{dy}{dx} + x\left(\frac{dy}{dx}\right)^2$	
		$= x \left[\frac{-\left(1 + \log x\right)}{x^2 \left(\log x\right)^2} \right] + \frac{1}{x \log x} + x \left(\frac{1}{x \log x}\right)^2$	
		$= \frac{-1}{x(\log x)^2} + \frac{-1}{x(\log x)} + \frac{1}{x(\log x)} + \frac{1}{x(\log x)^2}$	1
			1
		OR = 0	_
		$y = \log(\log x)$	
	•	Page No 2	- /00

SUMMER – 2018 EXAMINATION

17216 Subject Code: **Subject Name: Engineering Mathematics Model Answer**

		dame. Engineering Wathematics <u>Proder Answer</u> Subject Code.	.,
No.	Sub Q. N.	Answer	Marking Scheme
6.	b)	$\therefore \frac{dy}{dx} = \frac{1}{\log x} \frac{1}{x}$	1
		$\therefore x \log x \frac{dy}{dx} = 1 \qquad$	1
		$\therefore x \log x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + \log x \frac{dy}{dx} = 0$	_
		$\therefore x \frac{d^2 y}{dx^2} + \frac{1}{\log x} \frac{dy}{dx} + \frac{dy}{dx} = 0$	1
		$\therefore x \frac{d^2 y}{dx^2} + \left(x \frac{dy}{dx}\right) \frac{dy}{dx} + \frac{dy}{dx} = 0$	
		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + x \left(\frac{dy}{dx}\right)^2 = 0$	1
	c)	Using Gauss-elimination method, Solve the equations $2x+3y+2z=2$, $10x+3y+4z=16$, $3x+6y+z=-6$	04
	Ans	2x + 3y + 2z = 2	
		10x + 3y + 4z = 16	
		3x + 6y + z = -6	
		10x + 15y + 10z = 10 $30x + 9y + 12z = 48$	1
		10x + 3y + 4z = 16 and $30x + 60y + 10z = -60$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\therefore 2y + z = -1$	
		4y + 2z = -2	
		51y + 2z = 108	
		55y = 110	
		$\therefore x = 1$	1
		y = -2	1
		z=3	1

Subject N	Name: Engineering Mathematics	Model Answer	Subject Code:	17216
				N 4 =l.: =

No	Sub	Answer	Marking
No.	Q. N.		Scheme
6.	d)	Using Jacobi's method solve the system of equations: (Perform three iterations)	04
		10x + 2y + z = 9, $2x + 20y - 2z = -44$, $-2x + 3y + 10z = 22$	
	Ans	$x = \frac{1}{10}(9 - 2y - z)$	
		$x = \frac{1}{10}(9 - 2y - z)$ $y = \frac{1}{20}(-44 - 2x + 2z)$	
		$z = \frac{1}{10} (22 + 2x - 3y)$	1
		Starting with $x_0 = y_0 = z_0 = 0$	
		$x_1 = 0.9$	
		$y_1 = -2.2$	
		$z_1 = 2.2$	1
		$x_2 = 1.12$	
		$y_2 = -2.07$	
		$z_2 = 3.04$	1
		$x_3 = 1.01$	
		$y_3 = -2.008$	
		$z_3 = 3.045$	1
	e)	Ling Cours solds method solve the system of asset and	
	()	Using Gauss-seidal method solve the system of equations: $5x = 9 - x - 5y + z = 4 - y - 5z = 15 \text{ (Perform three iterations)}$	04
		5x - y = 9, $x - 5y + z = -4$, $y - 5z = 15$ (Perform three iterations)	
	Ans	$x = \frac{1}{2}(9 + y)$	
		5 ()	
		$y = \frac{1}{5}(4+x+z)$	
		$x = \frac{1}{5}(9+y)$ $y = \frac{1}{5}(4+x+z)$ $z = \frac{1}{-5}(15-y)$	1
		-5	
		Starting with $x_0 = y_0 = z_0 = 0$	
		$x_1 = 1.8$	
		$y_1 = 1.16$	
		$z_1 = -2.768$	1

SUMMER – 2018 EXAMINATION

17216 Subject Code: **Subject Name: Engineering Mathematics Model Answer**

	9	ame. Engineering Wathematics Model Answer Subject Code.	
No.	Sub Q. N.	Answer	Marking Scheme
6.	e)	$x_2 = 2.032$ $y_2 = 0.653$ $z_2 = -2.869$	1
		$x_3 = 1.931$ $y_3 = 0.612$ $z_3 = -2.878$	1
	f)	Using Jacobi's method solve the system of equations: 2x+3y-4z=1, $5x+9y+3z=17$, $8x-2y-z=5$ (Perform three iterations)	04
	Ans	$x = \frac{1}{8}(5+2y+z)$ $y = \frac{1}{9}(17-5x-3z)$ $z = -\frac{1}{4}(1-2x-3y)$	1
		Starting with $x_0 = y_0 = z_0 = 0$ $x_1 = 0.625$ $y_1 = 1.889$ $z_1 = -0.25$	1
		$x_2 = 1.066$ $y_2 = 1.625$ $z_2 = 1.479$	1
		$x_3 = 1.216$ $y_3 = 0.804$ $z_3 = 1.502$	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Important Note

In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.
