DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/

Summary

Total Loss=

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

 $\sum_{i=1}^{N=3} \{(x_i, y_i)\} \frac{1}{N} \sum_{i=1}^{N} Loss_i(f(x_i, W), y_i) + \lambda R(W)$

def predict(image, W):

return(W*image)

Cat	2.2	13	OPEKAHUNAL E
Cat	3.2	a department of how	ieland security center
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Optimization

ITY CENTER OF EXCELLENCE

Analytic Gradient

$$W = [0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$$

Gradient

dW: [-2.5, 0.6, 4.3, 0.5 ... 0, 0.3]

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

CENTER FOR ACCELERATING OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

Backpropogation

$$f(x,y,z) = (x+y) * z$$

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

$$f(x,y,z) = (x+y)*z$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$+ Q \frac{\partial F}{\partial Q} = z \quad \partial F \quad \partial F \partial Q$$

$$- Q \frac{\partial F}{\partial Z} = Q \quad \text{output } \frac{\partial F}{\partial F} = 1 \quad \partial F \quad \partial F$$

Local Gradient

Local Gradient

CENTER FOR ACCELERATING
OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

W1_1 (Bird) -2

W1_2 (Bird) -1 f(X, W)

 $\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$

CENTER FOR ACCELERATING OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

W2_1 (Car)

W2_2 (Car) -5

W1_1 (Bird) -2

W1_2 (Bird) -1

Pixel_1

Pixel_2 2

W2_1 (Car)

W2_2 (Car) -5

 $\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$

CAOE | CENTER FOR ACCELERATING
OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOWELAND SECURITY CENTER OF EXCELLENCE

W1_1 (Bird)
-2

Pixel_1
3

W2_1 (Car)
1

W2_2 (Car) -5

> Pixel_2 2

W1_2 (Bird) -1

 $\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$

CAOE | CENTER FOR ACCELERATING
OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

Weights Gradient

W1_1 (Bird) -3

W2_1 (Car) 3

W2_2 (Car) 2

W1_2 (Bird) -2 For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

So in our for Acceleration classification, we Efficiency guess Car. That isn't what we want (i.e., it's Bad).

Weights Gradient

W1_1 (Bird) -3

W2_1 (Car) 3

W2_2 (Car) 2 -5

W1_2 (Bird) -2 For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

our loss was 2 er for Accelerating

IENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Weights Gradient

W1_1 (Bird) _-3

W2_1 (Car) 3

W2_2 (Car) 2 -5

W1_2 (Bird) -2 For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

our loss was 2 er for Accelerating

a department of homeland security center of excellence

Weights

Gradient

Weights + (-1 * Gradient)

W1_1 (Bird)

-3

-2 + (-1 * -3) = -2 + 3 =

1

W2_1 (Car) 1

3

W2_2 (Car) -5

W1_2 (Bird) -2

CENTER FOR ACCELERATING
OPERATIONAL EFFICIENCY

For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

Our loss was 2.

3 2 Icss.wm.eau

Gradient Weights Weights + (-1 * Gradient) W1_1 (Bird) W2_1 (Car) W2_2 CENTER FOR ACCELERATING (Car) -5 W1_2 (Bird)

For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

Our loss was 2.

Summary

- Computational Graphs
- Gradients & Partial Derivativester for Accelerating
- Backpropagation with a small example
- Next time: Matrix and vectorized backpropagation

