CLAIMS

What is claimed is:

1	1.	A method for passively monitoring the servicing of a vehicle during
2		distribution of fluid products thereto, comprising the steps of:
3		(a) obtaining a first set of data associated with a particular vehicle
4		port to be serviced;
5		(b) determining whether or not said first set of data identifies a
6		particular port intended to be serviced and generating a signal
7		commensurate therewith;
8		(c) obtaining a second set of data associated with distribution of a
9		product to the selected port; and
10		(d) logging the signal, the first set of data and the second set of data.
1	2.	A method for passively monitoring the servicing of a vehicle during
2		distribution of fluid products thereto as recited in claim 1, wherein steps (a)
3		through (d) are repeated until service of each port on a vehicle is complete.
1	3.	A method for passively monitoring the servicing of a vehicle during
2		distribution of fluid products thereto as recited in claim 1, wherein a horn is
3		actuated by the signal to validate selection of the port as the intended port.
1	4.	A method for passively monitoring the servicing of a vehicle during
2		distribution of fluid products thereto as recited in claim 1, wherein the signal
3		causes the sounding of an alarm, the alarm warning of improper distribution
4		of the product.
1	5.	A computer program embodied on a computer readable medium for
2		passively monitoring the servicing of a vehicle during distribution of fluid
3		products thereto comprising:

(a) a code segment that causes a first set of data, associated with a 4 particular vehicle port to be serviced, to be obtained; 5 (b) a code segment that causes a determination of whether or not said 6 first set of data identifies a particular port intended to be serviced 7 and that causes a signal to be generated commensurate therewith; 8 a code segment that causes a second set of data, associated with 9 (c) distribution of a product to the selected port, to be obtained; and 10 (d) a code segment that causes the signal, the first set of data and the 11 second set of data to be logged. 12 6. A computer program for passively monitoring the servicing of a vehicle 1 2 during distribution of fluid products thereto as recited in claim 5, wherein a code segment causes the code segments performing steps (a) through (d) to 3 repeat until service of the vehicle is complete. 4 7. A computer program for passively monitoring the servicing of a vehicle 1 during distribution of fluid products thereto as recited in claim 5, wherein 2 said signal activates a horn to validate selection of the port as the intended 3 4 port. 8. A computer program for passively monitoring the servicing of a vehicle 1 2 during distribution of fluid products thereto as recited in claim 5, wherein the signal causes the sounding of an alarm, the alarm warning of improper 3 distribution of the product. 4 9. A system for passively monitoring the servicing of a vehicle during 1 distribution of fluid products thereto comprising: 2 indicia providing a first set of data associated with a particular (a) 3 vehicle port to be serviced; 4

5		(b)	logic that determines whether or not said first set of data identifies
6			a particular port intended to be serviced and that generates a
7			signal commensurate therewith;
8		(c)	apparatus for generating a second set of data associated with
9			distribution of a product to the selected port; and
10		(d)	logic that logs the signal, the first set of data and the second set of
11			data.
1	10.	•	for passively monitoring the servicing of a vehicle during
2			on of fluid products thereto as recited in claim 9, wherein logic
3		causes the	e logic performing steps (a) through (d) to repeat until service of the
4		vehicle is	complete.
1	11.	•	for passively monitoring the servicing of a vehicle during
2		distribution	on of fluid products thereto as recited in claim 9, wherein a horn is
3		actuated b	by the signal, to validate selection of the port as the intended port.
1	12.	A system	for passively monitoring the servicing of a vehicle during
2		distributio	on of fluid products thereto as recited in claim 9, wherein the signal
3		causes the	e sounding of an alarm, the alarm warning of improper distribution
4		of the pro	
1	13.	An appara	atus for passively monitoring the servicing of a vehicle during
2		distribution	on of fluid products to fill ports on the vehicle, comprising:
3		a port ide	entifying means associated with each port on a vehicle to be
4		serviced,	said identifying means containing port data relating to the identity
5		of the vel	nicle and the identity of the port;
6			
7		reader me	eans for reading said port data and transmitting same to a remote
8		receiver;	

10		flow monitoring means associated with said remote receiver and the source
11		of each fluid to be distributed and operative to generate flow data indicating
12		the fluid source, the type of fluid to be dispensed from said fluid source, and
13		the volume of fluid actually dispensed from said fluid source;
14		
15		means for comparing said port data to said flow data and operative to
16		generate an alarm in the event that any aspect of said port data is
17		incompatible with any aspect of said flow data; and
18		
19		means for producing a record of said port data, said flow data and the fact
20		that an alarm was generated.
1	14.	An apparatus as recited in claim 13, wherein said identifying means further
2		contains port data relating to the type of material to be distributed to the por
1	15.	An apparatus as recited in claim 13, wherein the flow monitoring means
2		includes a lookup table identifying the type of material to be put into a
3		particular port.
1	16.	An apparatus as recited in claim 13, and further comprising means for
2		determining the location of said vehicle to be serviced and the time of
3		servicing, and for reporting same to said means for producing a record
4		whereby such location is included in said record.
1	17.	An apparatus as recited in claim 13, wherein said port identifying means
2		includes an array of indicators organized so that when inspected, a set of
3		code terms can be developed uniquely identifying said vehicle, said port and
4		said type of material to be distributed to said port.
1	18.	An apparatus as recited in claim 13, wherein said reader means is further
2		operative to generate operator data identifying the operator responsible for

3		servicing said vehicle, and to transmit said operator data to said remote
4		receiver.
1	19.	An apparatus as recited in claim 14, wherein said port identifying means
2		includes an array of indicators organized so that when inspected, a set of
3		code terms can be developed uniquely identifying said vehicle, said port and
4		said type of material to be distributed to said port.
1	20.	An apparatus as recited in claim 14, wherein said reader means is further
2		operative to generate operator data identifying the operator responsible for
3		servicing said vehicle and for transmitting said operator data to said remote
4		receiver.
1	21.	An apparatus as recited in claim 15, wherein said reader means is further
2		operative to generate operator data identifying the operator responsible for
3		servicing said vehicle and for transmitting said operator data to said remote
4		receiver.
1	22.	A method of passively monitoring the servicing of a vehicle during
2		distribution of fluid products to fill ports on the vehicle, comprising the steps
3		of:
4		identifying each port on a vehicle to be serviced, by providing identifying
5		means proximate each said port containing port data relating to the identity
6		of the vehicle and the identity of the port;
7		
8		reading said port data and transmitting same to a remote receiver;
9 10		monitoring the source of each fluid to be distributed and generating flow data
11		indicating the fluid source, the type of fluid to be dispensed from said fluid
		source, and the volume of fluid actually dispensed from said fluid source;
12		source, and the volume of fluid actually dispensed from said fluid source,

14		comparing said port data to said flow data and generating an alarm in the
15		event that any aspect of said port data is incompatible with any aspect of said
16		flow data; and
17		
18		producing a record of said port data, said flow data and the fact that an alarm
19		was generated.
1	23.	A method as recited in claim 22, wherein the identifying means proximate
2		each said port further contains port data relating to the type of material to be
3		distributed to the port.
1	24.	A method as recited in claim 22, wherein monitoring the source of each fluid
2		further comprises accessing a lookup table identifying the type of material to
3		be put into a particular port.
1	25.	A method as recited in claim 22, and further comprising the steps of
2		determining the location of said vehicle to be serviced and the time of
3		servicing, and reporting same for producing a record whereby such location
4		is included in said record.
1	26.	A method as recited in claim 22, and further comprising the step of
2	20.	generating operator data identifying the operator responsible for servicing
3		said vehicle and transmitting said operator data to said remote receiver.
<i>)</i>		said veniere and transmitting said operator data to said remote receiver.