Introduction to the SIR Model

Eric T. Lofgren, MSPH

Dept. of Epidemiology

UNC Gillings School of Global Public Health

Basic Concepts

- Population modeled as being in one of a number of disease states
 - Susceptible: capable of being infected
 - Infected/Infectious: infected, capable of spreading infection
 - Recovered/Removed: recovered with immunity or dead

How the Model Works

- Population (usually) almost entirely susceptible
- Movement between compartments based on two rates:
 - $-\beta$: Exposure and infection from exposure
 - γ: Duration of illness and probability of recovery

Difference Equations

$$S_{t+1} = S_t - \beta I_t S_t$$

$$I_{t+1} = I_t + \beta I_t S_t - \gamma I_t$$

$$R_{t+1} = R_t + \gamma I_t$$

These equations are then run over many time points

What This Looks Like

Some Insights from SIR Models

- Clear epidemic curves
- Social distancing
- R_o: "Basic Reproductive Number"
 - Average number of cases a single infected individual will cause in an entirely susceptible population

$$R_0 = rac{eta}{\gamma}$$

- Must be greater than 1 for an epidemic to take off*
- If the fraction of the population susceptible to disease can be reduced to 1/R_o or lower the disease cannot invade*
- Altering γ or β can change R_{\circ}
- Real-world Examples:
 - Smallpox (3.5-6), Measles (16-18), Influenza (3-4), Rabies (2.44)

Zombie Parameters

Assuming duration of infection = 10 days

$$-\gamma = 1/10$$

- Fatality rate of 100%
- Assume an R_o of 5.00 (~twice rabies)
- β =0.10*5.00=0.50

Are SIR Models Accurate?

- Yes and No
- Assumptions of the model:
 - The SIR process "accurately" reflects reality
 - We'll get to complications and extensions of the process soon
 - Populations mix randomly
 - We'll cover other types of models that don't make this assumption later in the Learning Institute
 - Population is large

Latent/Incubation Period

- Some time between the transition from being susceptible to being actively capable of transmitting disease
- Very common expansion of the SIR model
 - "SEIR"

$$\begin{array}{c|c} & \beta & \\ \hline S & & E & \\ \hline \end{array} \begin{array}{c} \alpha & \\ \hline \end{array} \begin{array}{c} \gamma & \\ \hline \end{array} \begin{array}{c} R & \\ \hline \end{array}$$

SEIR Equations and Results

$$\begin{split} S_{t+1} &= S_t - \beta I_t S_t \\ E_{t+1} &= E_t + \beta I_t S_t - \alpha E_t \\ I_{t+1} &= I_t + \alpha E_t - \gamma I_t \\ R_{t+1} &= R_t + \gamma I_t \end{split} \quad \alpha = 1/2$$

Immunity

- Some portion of the population is immune to infection
- Still mix randomly with everyone else
- Often move straight to R, in this case we have a new compartment V (Immune individuals)

Immunity Results

25% Immune

50% Immune

80% Immune 1-(1/R_o)

What About Vaccination?

$$S_{t+1} = S_t - \beta I_t S_t - \sigma S_t$$

$$I_{t+1} = I_t + \beta I_t S_t - \gamma I_t$$

$$V_{t+1} = V_t + \sigma S_t$$

$$R_{t+1} = R_t + \gamma I_t$$

Vaccinate 1% of Susceptibles

Infinite Variety

- Periodicity and seasonality
- Higher-order interactions between S and I
- Other vaccination strategies
- Quarantine
- Pulsed eradication/control
- Trade-offs: More difficult to program, results become more susceptible to odd interactions between variables, harder to come up with defensible parameters for all values

One More Elaborate Model

- Survivors find safe havens (H) at an average rate of 14 days
- Much lower interaction rate between shelter survivors and zombies ($\beta_F = 2x\beta_H$)
- Some number of zombies are killed by those in safe havens

Equation for the "Safe Haven" Model

Results of "Safe Haven"

Where Do Parameters Come From?

- Can be obtained from data, leaving one or two parameters (usually β) unknown, and using the value that best fits the data
 - Problems with data quality
 - Right way is hard, easy way doesn't tell you what you think
- Estimates from the literature for some/all parameters
 - Good for established systems with good observational studies
 - Problem for novel diseases
- Guess
 - Expert opinion
 - Monte Carlo sensitivity analysis