13.1, 13.2: Vector Functions

A **vector function** is a function that takes one or more variables and returns a vector.

ullet Given real valued functions f_1,f_2,f_3 ,

$$oldsymbol{\cdot} ec{f}(t) = f_1(t) \mathbf{i} + f_2(t) \mathbf{j} + f_3(t) \mathbf{k}$$

- f_1, f_2, f_3 are the components of $ec{f}$
- · Parametrization should be obvious

Limits of Vector Functions

Let $\vec{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$,

$$\lim_{t o t_0}ec{r}(t)=ec{L}$$

if for every $\epsilon>0$, there exists corresponding $\delta>0$ such that for all $t\in D$,

$$\|ec{r}(t) - ec{L}\| < \epsilon ext{ whenever } 0 < \|t - t_0\| < \delta$$

To evaluate a limit, find the limit of each component.

 $ec{f}$ is **continuous** at point $t=t_0$ if $\lim_{t o t_0}ec{f}(t)=ec{f}(t_0)$ ($ec{f}$ is continuous if all points are continuous)

Limit rules

Given $ec{f}(t)
ightarrow ec{L}, ec{g}(t)
ightarrow ec{M}, u(t)
ightarrow U$, then:

1.
$$ec{f}(t) + ec{g}(t)
ightarrow ec{L} + ec{M}$$

2.
$$\alpha \vec{f}(t) \rightarrow \alpha \vec{L}$$

3.
$$u(t) ec f(t) o U ec L$$

4.
$$ec{f}(t)\cdotec{g}(t)
ightarrowec{L}\cdotec{M}$$

5.
$$ec{f}(t) imesec{q}(t)
ightarrowec{L} imesec{M}$$

Derivatives of Vector Functions

$$ec{r}'(t) = \lim_{\Delta t o 0} rac{ec{r}(t + \Delta t) - ec{r}(t)}{\Delta t}$$

If limit exists, \vec{r} is **differentiable** at t. (\vec{r} is differentiable if all points are differentiable)

 \vec{r}' is the same as the sum of the derivatives of each component

Derivative rules

- 1. $(\vec{f} + \vec{g})'(t) = \vec{f}'(t) + \vec{g}'(t)$
- 2. $(\alpha \vec{f})'(t) = \alpha \vec{f}'(t)$
- 3. $(\vec{f} \cdot \vec{g})'(t) = \vec{f}'(t) \cdot \vec{g}(t) + \vec{f}(t) \cdot \vec{g}'(t)$ (product rule, applies for dot product, cross product, scalar multiplication)
- 4. $(\vec{f} \circ u)'(t) = \vec{f}'(u(t))u'(t)$ (chain rule)

Tangent Lines, Velocity, Acceleration

 $ec{r}(t)$ is **smooth** if $rac{dr}{dt}$ is continuous & never zero

The **tangent line** to smooth curve $\vec{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ at $t = t_0$ is the line that passes $\vec{r}(t_0)$ & is parallel to $\vec{r}'(t_0)$.

Let \vec{r} be position. Then:

Quantity	Identity
velocity ($ec{v}$)	$rac{dec{r}}{dt}$
acceleration ($ec{a}$)	$rac{dec{v}}{dt} = rac{d^2ec{r}}{dt^2}$
speed	$\ ec{v}\ $
direction of motion / direction of \vec{v} / unit tangent vector	$rac{ec{v}}{\ ec{v}\ }$

Integrals of Vector Functions

 $ec{R}(t)$ is an antiderivative of $ec{r}(t)$ on interval I if $rac{dec{R}}{dt}=ec{r}$ at each point in I.

$$\int ec{r}(t)\,dt = ec{R}(t) + ec{C}$$

To calculate integrals, componentize \vec{r} and solve for each component.

Integral rules

1.
$$\int_{a}^{b} (\vec{f} + \vec{g})(t) dt = \int_{a}^{b} \vec{f}(t) dt + \int_{a}^{b} \vec{g}(t) dt$$
2. $\int_{a}^{b} (\alpha \vec{f})(t) dt = \alpha \int_{a}^{b} \vec{f}(t) dt$
3. $\int_{a}^{b} (\vec{c} \vec{f})(t) dt = \vec{c} \int_{a}^{b} \vec{f}(t) dt$
4. $\left\| \int_{a}^{b} (\vec{f})(t) dt \right\| \leq \int_{a}^{b} \left\| \vec{f}(t) \right\| dt$

2.
$$\int_a^b (\alpha \vec{f})(t) dt = \alpha \int_a^b \vec{f}(t) dt$$

3.
$$\int_a^b (\vec{c}\vec{f})(t) dt = \vec{c} \int_a^b \vec{f}(t) dt$$

4.
$$\left\|\int_a^b (\vec{f})(t) dt\right\| \leq \int_a^b \left\|\vec{f}(t)\right\| dt$$

Projectile Motion

bro use kinematics

#module1 #week2