ISHIKA [7069338]	
Problem 1	
Gren	
f=(fijj) => noisy image	
g=(gi,j)=) Original image	
n = (ni; j) =) additive noise with mean O.	
fini = geni ini	
a) voe nave to Find the Case where PSNR (F, g)	= D
PSNRC Fig) := 10 log10 ((255)2- mse Cfig)	
5. here 255 ² in maximal MSE	
se (on white it as MAX2	
20	
$0 = \log \log \frac{CMAx^2}{MSE(f,g)}$	
mst (f,g)	
O= los compos 2 1	
Divide both side by 10 0 = log10 (mAx²) mst (F,g)	
To get rêd up log we Can raise et to Power	
$10^{\circ} = (\text{mAx})^2$	
mst (Fig)	

we know by A-log Bz log (A/B) 10 log (MAX2
ms6(419) = 30
msecf19) 10 log mst (fig) = 30 mst (4,9) J = 30 6970 [mst (7,9)] ≥ 3 mst (4,9) Raising it to Paser of loon both side [mst(Fig)] = 1000 mst(4,9) 9t means ms& decreased by Factor of 1000. C) Assume n-0 PSNR (Fig) = ? Giren Fini = gist nois of mi, i = 0 71,j = 91,j means ms E(f,g)=0

Now Putting en Formyla PSNR (Fig) = 10 log to (mAx2) PSNR(Fig) = 10/09/10 (MAX2) = 00 This means noisy image is some as original. Problem 3 a) Given Continuous signal $f(n) = \begin{cases} \frac{1}{2} & (-1 \leq n \leq 1) \\ 0 & \text{else} \end{cases}$ use know this is box function with area = 1 first convolution hyz f + f (f * f) (n) = f (n') · f (n-n') dx' Case 1 7(n1) n 4-2 for this two boxes will not collide. Convolution = 0 = h, Cry

Case 4
here again they don't overlap
here again they don't overlap Convolution = 0
ii) ha = FXFXF
$\frac{ii}{h_2}$ $\frac{f}{h_2}$ $\frac{f}{h_1}$ $\frac{f}{h_1}$ $\frac{f}{h_2}$
$R_2(n) = \int_{-\infty}^{\infty} h_1(n-x') f(x') dx'$
Now we know
F(N) = S = -1 = x = 1
0 else
$\frac{h_1(n)}{2} \frac{2}{y} \frac{1}{y} \frac{(2- n)}{-2} \frac{2n}{2n} \frac{2n}{2}$ else
else
(asc 1 n L - 3
h2 (-3) 20
they will not overlap

(ase d

$$-3 \le n \le -2$$

$$h_{1}(n) = \frac{1}{4}(24n)$$

$$h_{2}(n) = \frac{1}{2} (24n) dn$$

$$\frac{1}{8} \int_{-2}^{n+1} (24n) dn = \frac{1}{2} (2n + \frac{1}{2} n^{2})^{\frac{1}{2}}$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} (n+1)^{\frac{1}{2}} - (-4+2)$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} (n+1)^{\frac{1}{2}} + 2$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} (n+1)^{\frac{1}{2}} + 2$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn + \frac{1}{2} \int_{-2}^{2} (n+1)^{\frac{1}{2}} dn$$

$$\frac{1}{8} \left[\frac{1}{2} - \frac{2}{3} + \frac{1}{2} + \frac{1}{2} - \frac{2}{2} \right]$$

$$\frac{1}{8} \left[\frac{4-2n}{2} + \frac{1}{2} - n \right]$$

Case 5

some as 4 but reflected

20 for h2 (n)

$$h_{2}(n)$$
 $\frac{1}{2}$ $\frac{1}{16}(3+n)^{2}$ $-3 \leq n \leq -2$ $\frac{1}{8}(3-n)^{2}$ $-2 \leq n \leq 2$ $\frac{1}{16}(3-n)^{2}$ $\frac{1}{2} \leq n \leq 3$

for h1 (2n) at points -2,-1,0,1,2 h, (-2) = 0 h, (-1) = 1/2 h, C 0) = 1 h1 (1) = 1/2 h, (2) ? O for h2 (n) at points -3,-2,-1,0,1,2,3 ha (-3)20 h2 (-2)20 h3 (-1)= /A hz (6)21 h3 (1)= Ya h2(2) = 0 n2 (3) 2 0 Both sequence of Convolution Smooths the Signal but en Continuous Convolution Smooth Curues are due to integration and for discrete convolution there are

Stepwise curries due to Summation