Projekt 1a: Abschlusspräsentation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Hochschule für angewandte Wissenschaften - Hamburg

14. Januar 2020

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Mutzaraha

3D gedruckte Komponenten

Spannungsversorg

azit

Einleitung

Wetterstation - Projekt 1a

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwar

Nutzerob erfläch

3D gedruckte Komponenten

Spannungsversorg

Fazi

Einleitung

lsabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Live-Demo

Einleitung

Firmware

ive-Demo

dutzerob erfläche

D gedruckte omponenten

pannun

zit

Nutzeroberfläche

3D gedruckte Komponenten

Spannungsversorgung

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

inleitung

Live-Demo

Firmware

Nutzerob erfläche

3D gedruckte

Spannungsversor

azit

Live-Demo

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

inleitung

Live-Demo

Firmware

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

azit

Anforderungen

Anforderungen 1/2 - Sensoren

Sensoren

- ► Temperatur (2x)
- ► Luftdruck
- ► Luftfeuchte
- ► Höhe über NN
- ► Windrichtung
- ► Windgeschwindigkeit

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmware

Nutzerob erf

3D gedruckte Komponenten

pannungsversorg

Anforderungen 2/2 - Sensoren

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Elorian Steffens

Sensoren

- Versorgung über Solarenergie
- Akkupufferung
- Erfassung des Akku-Zustands (Spannung und Strom)
- ► Nachgeführte Solarzelle
- ► Automatische Ausrichtung
- Positionsbestimmung
- Datenspeicherung auf einer microSD-Karte
- Drahtlose Kommunikation mit einem PC

Einleitung

Live-Demo

Firmware

Nutzerob erf

BD gedruckte Komponenten

Spannungsversorg

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

inleitung

Live-Demo

Firmw

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

azit

Firmware

Nachführung des Solarpanels

 Optimierung des Wirkungsgrades durch Nachführung des Panels Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Nachführung des Solarpanels

- Optimierung des Wirkungsgrades durch Nachführung des Panels
 - Sonnenstand über Aufstellungsort und aktuellen Zeitstempel

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nut zerob erfläche

3D gedruckte Komponenten

op ann ung sversorg

Nachführung des Solarpanels

- Optimierung des Wirkungsgrades durch Nachführung des Panels
 - Sonnenstand über Aufstellungsort und aktuellen Zeitstempel
- Lageregelung unabhängig von der Aufstellungsrichtung

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nut zerob erfläche

3D gedruckte Komponenten

Spannung sversorg

Nachführung des Solarpanels

- Optimierung des Wirkungsgrades durch Nachführung des Panels
 - Sonnenstand über Aufstellungsort und aktuellen Zeitstempel
- Lageregelung unabhängig von der Aufstellungsrichtung
- ► Magnetometer: lokale Störungen kompensiert

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Nut zerob erfläche

3D gedruckte Komponenten

pannungsversor

Nachführung des Solarpanels

 Optimierung des Wirkungsgrades durch Nachführung des Panels

- Sonnenstand über Aufstellungsort und aktuellen Zeitstempel
- Lageregelung unabhängig von der Aufstellungsrichtung
- Magnetometer: lokale Störungen kompensiert
- ► GPS-Ortung und -Zeitsynchronisation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nut zerob erfläche

3D gedruckte Komponenten

pannungsversor

Nachführung des Solarpanels

 Optimierung des Wirkungsgrades durch Nachführung des Panels

- Sonnenstand über Aufstellungsort und aktuellen Zeitstempel
- Lageregelung unabhängig von der Aufstellungsrichtung
- Magnetometer: lokale Störungen kompensiert
- ► GPS-Ortung und -Zeitsynchronisation
 - Auch über Bluetooth konfigurierbar

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nutzerob erfläche

3D gedruckte Komponenten

o annung svei

Kommunikation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

azit

Kommunikation nutzt AT-Protokoll

Kommunikation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Elorian Steffens

Einleitung

Live-Demo

Firmw

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversor

- Kommunikation nutzt AT-Protokoll
 - ► Für Terminaleingabe und Programmverarbeitung geeignet

Kommunikation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

- Kommunikation nutzt AT-Protokoll
 - ► Für Terminaleingabe und Programmverarbeitung geeignet
- Serial-over-Bluetooth: Virtueller COM-Port

Kommunikation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversor

Fazi

- Kommunikation nutzt AT-Protokoll
 - ► Für Terminaleingabe und Programmverarbeitung geeignet
- Serial-over-Bluetooth: Virtueller COM-Port
- ► Keine speziellen Treiber notwendig

Sensordaten

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmware

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Statusanzeige

Systemstatus:

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmware

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Statusanzeige

Bluetooth Status:

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmware

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Statusanzeige

Motorsteuerung Status:

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

inleitung

Live-Demo

Firmw

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

azit

Nutzeroberfläche

Funktionen

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

_ive-Demo

Firmware

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

azit

Clear

Funktionen

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Elorian Steffens

Einleitung

_ive-Demo

Firmware

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Geplante Funktionen

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

- ► Speichern und Laden von Messdaten auf dem Computer
- Auslagerung der Kommunikation mit der Wetterstation in einen eigenen Task
- ► Einstellen der Kommunikationsschnittstelle über die Benutzeroberfläche
- ▶ Benutzerdefinierte Änderung der Position und des Datums / der Zeit über ein Bedienelement

Einleitung

_ive-Demo

1 IIIIIware

20 1 1

3D gedruckte Komponenten

ppannungsversorgi Sazit

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Nut zerob erfläc

3D gedruckte Komponenten

Spannungsversorg

Fazit

3D gedruckte Komponenten

Nebengehäuse

- Sichere Unterbringung von GPS-Modul, Kompass-Modul, und Neigungssensor
- ▶ Befestigung an der Wetterstation mittels Schrauben
- Befestigung des Deckels mittels Steckverbindung und Kabelbindern

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nutzerob erfläd

BD gedruckte Komponenten

Spannungsversorg

Adapter

- ► Für die Verbindung des Masts (Anemometer und Windfahne) mit der Wetterstation
- Befestigung an de Wetterstation mittels Steckverbindung
- Verbindung mit dem Mast über Steckverbindung und optionale Schraubverbindung

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

I IIIIIVV d

Nut zerob erfläche

BD gedruckte Komponenten

Spannungsversorg

Hauptgehäuse

- ► Für die Unterbringung des Mikrocontrollers, der Spannungsversorgung und des Motortreibers
- Befestigung an der Wetterstation mittels Klebverbindung
- Befestigung des Deckels mittels Steckverbindung und optionalen Kabelbindern

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

_ive-Demo

Firmwa

Nut zerob erfläc

D gedruckte Componenten

Spannungsversorg

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Mutzerobei

3D gedruckte Komponenten

Spannungsversor

Fazit

Spannungsversorgung

Grundlegendes

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nutzerob erflä

3D gedruckte Komponenten

Spannungsversorg

- Erstellung von zwei Platinen (Power- und Sensorboard)
- Steckbarer Aufbau
- Entwurf mit Altium Circuit Maker

Power-Board

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Dem

Firmware

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Power-Board

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmwa

Nutzerob erf

3D gedruckte Komponenten

Spannungsver

- Erzeugung von 5V
- Messung von Strom und Spannung
- ► Energiesparmaßnahmen

Spannungsabschaltung 5V

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Dem

Firmware

Nutzerobernach

3D gedruckte Komponenten

Spannungsversorg

Sensor-Board

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Dem

Firmware

Nut zerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Einleitung

ive-Demo

Firmw

Mutzerobe

3D gedruckte Komponenten

Spannungsversorg

azit

Wetterstation

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmware

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

Fazit

- ▶ alle geforderten Messwerte/Sensoren
- geführte Solarpanel Steuerung
- sparsamer Betrieb
- ► Speicherung auf SD-Karte
- Kommunikation via Bluetooth
- Erweiterung um GUI

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einleitung

Live-Demo

Firmw

Nutzerober

3D gedruckte Komponenten

Spannungsversorg

azit

Ausblick

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Einieitung

Live-Demo

Firmwa

Nutzerober

3D gedruckte Komponenten

Spannungsversorg

- ▶ nicht Witterungsfest
- ► Verbesserung der Panelaufhängung
- ▶ neue Batterie
- ► Kabelmanagement

Einleitung

_ive-Demo

Firmw

Nutzerob erfläche

3D gedruckte Komponenten

Spannungsversorg

azit

Magnetometer-Kalibrierung

 $\mathsf{AT}\text{-}\mathsf{Befehlssatz}$

NMEA 0183 (GPS)

Benutzeroberfläch

Magnetometer-Kalibrierung

Magnetometer-Kalibrierung

▶ Bedingt durch Berechnung des Winkels über

$$\theta = 180^{\circ} + \operatorname{atan2}(x, y) \cdot \frac{180^{\circ}}{\pi}$$

Für korrekte Winkelbestimmung: Punkte aus X- und Y-Feldstärke kreisförmig um (0, 0)

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Kalibrierung

AT-Befehlssatz

GPS)

Magnetometer-Kalibrierung

- ▶ Drehung des Turms um 360°
- Aufzeichnung Minimal-, Maximal- und Mittelwerte der X- und Y-Komponenten des Magnetfeldes

Kursberechnung liefert hier falsche Werte

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Magnetometer-Kalibrierung

AT-Befehlssatz

(GPS)

Magnetometer-Kalibrierung

- ▶ Mittelwerte: (0, 0) in den Mittelpunkt der Ellipse
- Min- und Max-Werte: Ellipse kreisförmig stauchen

Sensor für den aktuellen Standpunkt kalibriert

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Magnetometer-Kalibrierung

AT-Befehlssatz

(GPS)

Magnetometer-Kalibrierung

AT-Befehlssatz
NMEA 0183

(GPS)

AT-Befehlssatz

Firwmare AT-Befehle

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Konfiguration der Wetterstation über "AT-Befehle":

- ► AT+CTEMP: Temperaturmesswerte
- ► AT+CWIND: Windrichtung und -geschwindigkeit
- ► AT+CTURN=C: Magnetometer-Kalibrierung starten
- ► AT+CTRACK=1: Nachführung aktivieren

Kalibrierung

NMEA 0183

(GPS)

AT-Befehle

Für das Debugging:

- ► AT+CDEBUG: Debug-Ausgabe auf Bluetooth umleiten
- ► AT+CGNSTST: NMEA 0183 auf Bluetooth umleiten

► Verlassen über '+++'

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Magnetometer-Kalibrierung

NMEA 0183

(GPS)

Kalibrierung

AI-Befenissatz

NMEA 0183 (GPS)

Benutzeroberfläch

NMEA 0183 (GPS)

GPRMC: Minimum recommended GPS/transit data

 $\$\mathsf{GPRMC}, 225446.00, \mathsf{A}, 5355.63, \mathsf{N}, 01002.26, \mathsf{W}, 082.5, 054.7, 031219, 020.3, \mathsf{E}^*4\mathsf{D}$

Feld	Beschreibung
\$	Startzeichen
GPRMC	Sentence-Typ
225446.00	UTC-Uhrzeit im Format hhmmss.zz
A	Gültigkeit der Daten: A = gültig, V = kein Fix
5355.63,N	Breitengrad im Format ddmm.mm, № = Nord, S = Süd
01002.26,E	Längengrad im Format dddmm.mm, E = Ost, W = West
082.5	Geschwindigkeit über Grund in Knoten
054.7	Rechtweisender Kurs
031219	UTC-Datum im Format DDMMYY
020.3,E	Variation, E = Ost, W = West
*4D	Prüfsumme

Magnetometer-Kalibrierung

Deremissue

Firmware NMEA 0183

GPGGA: Global Positioning System Fix Data

 $\$\mathsf{GPGGA}, 225446.00, 5355.63, \mathsf{N}, 01002.26, \mathsf{E}, 1, 09, 1.5, 419.3, \mathsf{M}, 39.5, \mathsf{M}, \!\!\!\!*66$

Feld	Beschreibung
\$	Startzeichen
GPGGA	Sentence-Typ
225446.00	UTC-Uhrzeit im Format hhmmss.zz
5355.63,N	Breitengrad im Format ddmm.mm, № = Nord, S = Süd
01002.26,E	Längengrad im Format dddmm.mm, E = Ost, W = West
1	Fix Typ: $0 = \text{kein Fix}$, $1 = \text{GPS}$, $2 = \text{differential GPS}$
09	Anzahl der empfangenen Satelliten
1.5	Relative genauigkeit der Position (HDOP)
419.3,M	Höhe über dem mittleren Meeresspiegel (MSL)
39.5,M	Höhe über dem WGS84-Geoid
(leer)	Zeit seit letztem DGPS-fix (bei GPS leer)
(leer)	DGPS-Stationskennung (0000-4096, bei GPS leer)
*66	Prüfsumme

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Magnetometer-Kalibrierung

Kalibrierung

AT-Befehlssatz

NMEA 0183 (GPS)

Benutzeroberfläch

Model-View-Controller

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Magnetometer-Kalibrierung

AT-Befehlssat

IMEA 0183 GPS)

Verwendete Python-Packages

Isabell Albrecht. Erik Engelhardt, Oliver Kochan. Florian Steffens

- PyQt5: Als Framework für die Oberfläche.
- pygtgraph: Für die graphische Darstellung der Messdaten.
- serial: Für die serielle Kommunikation, über Bluetooth, mit der Wetterstation.
- pandas: Für die Strukturierung der Messdaten.
- numpy: Für das Erstellen von Testdaten.

Informationen zum 3D-Druck

- Entwurf der Komponenten in Autocad Fusion 360
- ► Material der Komponenten: PLA
- ▶ Druck mit 2-3 Außenlagen und 10%-20% Infill

Isabell Albrecht, Erik Engelhardt, Oliver Kochan, Florian Steffens

Magnetometer-Kalibrierung

AT-Befehlssa

GPS)