

Architecture des ordinateurs

Département Informatique

Erwan LEBAILLY — Vilavane LY — Vincent TRÉLAT — Benjamin ZHU

28 mars 2022

Table des matières

1	Cha	oitre 1	3
	1.1	Exercice 1	3
	1.2	Exercice 2	3
	1.3	Exercice 3	3
	1.4	Exercice 4	4
	1.5	Exercice 5	5
	1.6	Exercice 6	5
	1.7	Exercice 7	5
	1.8	Exercice 8	5
	1.9	Exercice 9	5
	1.10	Exercice 10	6
	1.11	Exercice 11	6
	1.12	Exercice 12	8
	1.13	Exercice 13	8
2	Cha	pitre 2	0
	2.1	Exercice 1	0
	2.2	Exercice 2	0
	2.3	Exercice 3	0
	2.4	Exercice 4	0
	2.5	Exercice 5	1
	2.6	Exercice 6	1
	2.7	Exercice 7	2
	2.8	Exercice 8	2
3	Cha	pitre 3	5
	3.1	Exercice 1	5
	3.2	Exercice 2	5
	3.3	Exercice 3	5
	3.4	Exercice 4	6
	3.5	Exercice 5	7
	3.6	Exercice 6	7
	3.7	Exercice 7	8
	3.8	Exercice 8	9
4	Cha	pitre 4	2
	4.1	Exercice 1	
	4.2	Exercice 2	
	4.3	Exercice 3	
	4.4	Exercice 4	
	4.5	Exercice 5	
	4 C		

		Exercice Exercice																													
5		apitre 5		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
	5.1	Exercice	1																												28
	5.2	Evercice	2																												28

1 Chapitre 1

1.1 Exercice 1

Avec la convention $0 \leftrightarrow \mathtt{faux} \ \mathrm{et} \ 1 \leftrightarrow \mathtt{vrai}, \ 0 \land 1 = \mathtt{faux}.$

1.2 Exercice 2

On donne la table de c_0 :

	$a_0 \backslash b_0$	0	1
c_0 :	0	0	1
	1	1	0

On peut interpréter cette table comme la table de vérité du "ou exclusif", le xor. Ainsi, c_0 coincide avec $a_0 \oplus b_0 = (a_0 \vee b_0) \wedge (\neg(a_0 \wedge b_0))$.

1.3 Exercice 3

a. Montrons que l'opérateur xor \oplus est associatif et commutatif : Soient $a,b,c\in\{0,1\}.$

Associativité : on donne ci-dessous la table de vérité de $(a \oplus b) \oplus c$ et $a \oplus (b \oplus c)$:

a	b	c	$a \oplus b$	$(a \oplus b) \oplus c$	$a\oplus (b\oplus c)$
0	0	0	0	0	0
0	0	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

Commutativité : on donne ci-dessous la table de vérité de $a\oplus b$ et $b\oplus a$:

	a	b	$a \oplus b$	$b \oplus a$
	0	0	0	0
	0	1	1	1
	1	0	1	1
l	1	1	0	0

Enfin, $a \oplus a = 0$ et $a \oplus 0 = a$.

On peut maintenant montrer le résultat demandé :

$$d = a \oplus c = a \oplus (a \oplus b) = a \oplus a \oplus b = b$$

$$e = b \oplus c = b \oplus (a \oplus b) = b \oplus a \oplus b = a$$

b. On donne ci-dessous le circuit correspondant :

1.4 Exercice 4

a. On écrit le code suivant :

```
int main()
{
    printf("Sizeof int: %lu octets\n", sizeof(int));
    printf("Sizeof short: %lu octets\n", sizeof(short));
    printf("Sizeof char: %lu octets\n", sizeof(char));
    return 0;
}
```

La sortie est la suivante :

```
Sizeof int: 4 octets
Sizeof short: 2 octets
Sizeof char: 1 octets
```

b. On écrit le code suivant :

```
int main()
{
    int a = pow(2, 31);
    int b = pow(2, 31);
    int c = a + b;
    printf("%d\n", c);
    return 0;
}
```

La sortie affiche 0, ce qui correspond bien à $2^{32} \mod (2^{32})$

1.5 Exercice 5

On donne ci-dessous l'écriture binaire sur 4 et 8 bits de 0, 1, -1 et -2 :

x	4 bits	8 bits
0:	0000	0000 0000
1:	0001	0000 0001
-1:	1111	1111 1111
-2:	1110	1111 1110

1.6 Exercice 6

- a. $m_1 = 0001$ et $m_{-1} = 1001$.
- b. En abusant de la notation + pour des mots : $m_0 = m_1 + m_{-1} = 1010$.
- c. En suivant la règle de signes, 1010 est l'encodage de -2.

1.7 Exercice 7

Soit b un nombre de bits. Soit x un entier relatif qu'on souhaite représenter sur b bits.

Si $x \ge 0$, alors l'encodage de x correspond à une écriture dans $[0, 2^{b-1} - 1]$, alors cette écriture commence par un zéro (de 00...0 à 01...1). Si x < 0, alors $2^b - x \in [2^{b-1}, 2^b - 1]$ (soit de 10...0 à 11...1), son écriture commence par un 1.

1.8 Exercice 8

Dans le premier code, on dispose de 2 cases mémoires différentes. Le résultat affiché est -106 pour la valeur de d, ce qui est normal puisque d est signé.

Dans le deuxième code, on utilise une seule case mémoire à travers l'utilisation de deux pointeurs, un signé et un non signé. Le résultat affiché est identique au premier code.

Cela permet de montrer que la mémoire est "non typée", l'interprétation de la valeur mémoire dépend directement du type de l'objet qui lit cette valeur.

1.9 Exercice 9

a. 10 s'écrit 2×5 et toute puissance de 2 s'écrit 2^k où $k\in\mathbb{N}.$

Ainsi, si $x \in 2^{\mathbb{N}}$ (par abus de langage) est divisible par 10, alors x contient au moins 2 et 5 dans sa décomposition en facteurs premiers, ce qui donne une contradition avec la propriété précédemment énoncée.

b. Supposons que 0.1 soit représentable sur kl bits. Alors, d'après le résultat du cours, $2^l \times 0.1$ est un entier, autrement dit 2^l est divisible par 10. D'après la question précédente, c'est impossible.

1.10 Exercice 10

L'écriture binaire approchée de 0.1 est $0.0001\ 1001_2$, de valeur décimale 0.09765625.

1.11 Exercice 11

a. On écrit la fonction suivante en C:

```
int main() {
   for (int i = 0; i<10; i++){
      for (int j = 0; j < 10; j++){
           float a = i/10.0, b = j/10.0, c = (i+j)/10.0;
           printf("(%d, %d) : %s\n", i, j, (a+b == c)?"true":"
   false");
      }
}
return 0;
}</pre>
```

La sortie affichée contient, entre autres, les résultats suivants :

```
(1, 4): true
(1, 5): true
(1, 6): false
(1, 7): true
(1, 8): false
(3, 4): false
(3, 5): true
(3, 6): false
(3, 7): true
(3, 8): true
```

b. On modifie seulement la ligne d'affichage dans le code ¹:

```
printf("%.16f + %.16f = %.16f\n", a, b, c);
```

On donne seulement les résultats pour les 5 premiers couples ci-dessus :

c. On remarque que pour une addition, l'égalité a+b==c est vérifiée lorsque a et b sont représentables, ou quand l'un des deux seulement l'est. Dans le second cas, l'erreur de représentation n'a pas eu d'impact sur le résultat puisque c'est la seule erreur du calcul. Ainsi l'égalité reste vraie.

^{1.} Comme un int est codé sur 4 octets, on donne 16 caractères à chaque affichage.

En revanche, dès que les deux flottants ne sont pas représentables, les erreurs s'accumulent et alors la représentation de c peut différer de la valeur de a+b.

Dans un cas général si on prend $x, y \in \mathbb{R}$ tels que x = y, on aura x==y quand x et y sont représentables sur un nombre de bits donné ². Dans les autres cas, il est possible d'obtenir un résultat correct mais cela résulte plutôt du hasard.

d. On modifie la fonction précédente :

On obtient la sortie suivante :

```
// a+b > c is tested before and after adding 1e-6
(1, 6) : 1 1
(1, 8) : 1 1
(3, 4) : 1 1
(3, 6) : 1 1
(4, 3) : 1 1
(6, 1) : 1 1
(6, 1) : 1 1
(6, 8) : 1 1
(7, 9) : 0 0
(1, 8, 1) : 1 1
(2, 8, 6) : 1 1
(9, 7) : 0 0
```

On constate que l'ordre est conservé à chaque fois. Comme 10^{-6} n'est pas représentable sur 16 bits $(10^{-6} \approx 2^{-20})$, on simule l'effet de la propagation d'une erreur.

On en déduit que des erreurs successives d'arrondi ne bousculent pas l'ordre sur des valeurs arrondies. Toutefois ici on effectue le même calcul des deux côtés. On peut donc toujours les comparer³, même après plusieurs calculs, puisque l'ordre est conservé. On peut également penser que cela ne provoquera pas d'évolution chaotique ou aléatoire de ces valeurs dans les calculs.

^{2.} Il faut tout de même faire attention à la précision. Augmenter la précision ne rendra pas les calculs exacts pour autant.

^{3.} Pas l'égalité.

En revanche, pour une suite d'opérations inconnue, cela risque de devenir insignifiant de vouloir comparer deux flottants.

1.12 Exercice 12

On note
$$s_1 = \sum_{i=1}^k \frac{1}{i}$$
 et $s_2 = \sum_{i=k}^1 \frac{1}{i}$.

On écrit la fonction suivante :

```
int main() {
   float s1 = 0.0, s2 = 0.0;
   long k = 1000000000;
   for (double i = 1; i<k+1; i++){
       s1 += 1/i;
       s2 += 1/(k+1-i);
   }
   printf("k=%ld\n s1 = %.16f\n s2 = %.16f\n", k, s1, s2
   );
   return 0;
}</pre>
```

Les résultats sont les suivants :

```
k=1000

s1 = 7.4854784011840820

s2 = 7.4854717254638672

k=1000000

s1 = 14.3573579788208008

s2 = 14.3926515579223633

k=1000000000

s1 = 15.4036827087402344

s2 = 18.8079185485839844
```

On constate que les résultats diffèrent ⁴ d'autant plus que le nombre d'erreurs successives est grand, ce qui n'est pas étonnant. Là où le résultat interpelle, c'est que l'ordre de parcours de la somme a un impact conséquent sur le résultat.

Cette erreur est due au fait que lorsque le parcours est décroissant, on finit pas les petits nombres. Ces derniers causent alors des erreurs d'arrondi car leur ordre de grandeur est faible par rapport aux premiers nombres.

1.13 Exercice 13

- a. La taille d'un float en C est de 4 bytes, soit 32 bits :
 - 1 bit de signe
 - 8 bits d'exposant

^{4.} Même plus que ça, on dirait que la série converge! On connait l'équivalent pour la série harmonique : $H_n \sim \atop n \to +\infty \gamma + \ln(n)$ où $\gamma \approx 0.5$ est la constante d'Euler. Pour $n=10^9$, on devrait donc plutôt être autour de $H_n \approx 21$.

- 23 bits de mantisse
- b. Convertissons d'abord 0x414BD000 en binaire :

$$414BD000_{16} = 010000010100101111010000000000000_2$$

On identifie ensuite les bits de signe, d'exposant et de mantisse :

$$\underbrace{0}_{S} \underbrace{\frac{10000010}{E=130}}_{E=130} \underbrace{\frac{100101111010000000000000}{T}}_{T}$$

Le biais b valant 127, notre exposant ici vaut E-b=3. Donc, en "écriture binaire à virgule", on obtient :

$$1.10010111101 \times 2^3 = \underbrace{1100}_{=12} \underbrace{10111101}_{=0.73828125}$$

Soit finalement:

$$0x414BD000_{16}$$
 encode 12.73828125

c. En suivant le raisonnement inverse, on peut trouver l'exposant et la mantisse de l'encodage de 0.1. On commence par l'écrire en "binaire à virgule" :

$$0.1 = 000110011001100110011001101_2$$

On décale la virgule pour trouver l'exposant :

$$0.1 = 1.10011001100110011001101_2 \times 2^{-4}$$

Cela donne donc un exposant de $E=b-4=123=01111011_2$ sur 8 bits. Enfin, 0.1>0 donc on met un premier bit à 0. On obtient donc l'encodage suivant – dont on donne également la valeur décimale réelle – pour le nombre 0.1:

$$\underbrace{0.01111011}_{\text{signe exposant}}\underbrace{10011001100110011001101}_{\text{mantisse}} = 0.100000001490116119384765625$$

2 Chapitre 2

2.1 Exercice 1

a. Lorsqu'on crée par exemple un tableau de taille un milliard, on obtient une erreur similaire à la suivante :

```
[1] 54133 segmentation fault ./a.out
```

b. En expérimentant à la main, on trouve qu'on peut créer un tableau de taille maximale 2 096 286.

2.2 Exercice 2

On vérifie par exemple qu'on peut créer un tableau de taille un milliard.

2.3 Exercice 3

La machine utilisée pour ce TD utilise la convention little endian.

2.4 Exercice 4

On écrit déjà le code suivant :

```
#include <stdio.h>
  #include <x86intrin.h>
  unsigned long int squareSum(int n){
      unsigned long int tic, toc;
      unsigned int ui;
      int a = 0;
      tic = __rdtscp(&ui);
      for (int i = 0; i < n; ++i){</pre>
          a = i * i;
11
      toc = __rdtscp(&ui);
12
      return toc - tic;
13
14 }
  int main(){
15
      printf("n=\%d: %lu tics\n", 1000, squareSum(1000));
16
      printf("n=%d: %lu tics \ ", 10000, squareSum(10000));
17
      printf("n=%d: %lu tics\n", 1000000, squareSum(1000000));
18
      printf("n=%d: %lu tics\n", 10000000, squareSum(10000000));
19
      printf("n=%d: %lu tics\n", 100000000, squareSum(100000000))
20
      return 0;
21
  }
```

On obtient les résultats suivants :

n	10^{3}	10^{4}	10^{6}	10^{7}	10^{8}
mesure	3310	42456	7134866	67719612	637584056

On note qu'on semble bien obtenir une relation qui a l'air linéaire, hormis la dernière mesure.

2.5 Exercice 5

On obtient les résultats suivants :

appel n	10^{3}	10^{5}	10^{7}	10^{8}	10^{9}
1er	9108	835910	52244848	532734614	5350923602
2ème	3238	685744	31633110	317468584	3161147144
3ème	3088	322012	32683670	341747932	3100426690
écart max. en %	117	83	53	53	58

2.6 Exercice 6

a. On teste la fonction avec la fonction test calculant la somme des premiers carrés. On obtient des résultats cohérents (croissance linéaire). La fonction print_timing comprend une amorce qui exécute 10 fois la fonction à tester et moyenne les mesures sur 100 appels.

b. Voici la fonction print_timing:

```
void print_timing(int arg, void (*func)(int), int nb_boot, int
      nb_call)
  {
      // boot up
      for (int i = 0; i < nb_boot; i++)</pre>
      {
           func(arg);
      // measure
      unsigned long int tic, toc;
      unsigned int ui;
11
      tic = __rdtscp(&ui);
12
      for (int i = 0; i < nb_call; i++)</pre>
13
14
           func(arg);
15
16
      toc = __rdtscp(&ui);
17
18
      printf("average time : %lu\n", (toc - tic) / n);
19
20 }
```

- c. Oui.
- d. On obtient les résultats suivants :

appel n	10^{3}	10^{5}	10^{7}	10^{8}	10^{9}
mesure print_timing	4214	432308	31686176	308206789	3176004203

2.7 Exercice 7

On obtient les résultats suivants (arrondis):

pas	1	2	3	4	8	16	32
mesure ($\times 10^6$ tics)	59	61	63	66	83	102	197

On peut ainsi tracer les résultats obtenus pour les pas situés entre 1 et 1000 :

On remarque que les temps d'accès semblent converger 5 ! Pour mieux l'illustrer, on trace par dessus les mesures la fonction suivante (en vert sur le graphique) :

$$x \mapsto 6 \times 10^8 (1 - e^{-\frac{x}{130}})$$

2.8 Exercice 8

a. On écrit d'abord les deux fonctions suivantes 6 :

```
void access_seq(int *tab, int n)

int tmp;
for (int i = 0; i < n; i++)

tmp = tab[i];

}

</pre>
```

^{5.} Plus précisément – car on sait qu'il est impossible que cela converge – on semble observer une croissance logarithmique.

^{6.} Il faut inclure les bibliothèques stdlib et time au début du code, et initialiser le seed avec srand(unsigned int)time(NULL).

```
void access_rand(int *tab, int n)
{
    int tmp;
    for (int i = 0; i < n; i++)
    {
        tmp = tab[(unsigned long int)rand() % 1000000000];
    }
}</pre>
```

On obtient les temps suivants :

n	10^{3}	10^{6}	10^{7}	10^{8}	10^9		
access_seq	5111	5316032	44992606	450441905	4609590108		
access_rand	3855618	139739559	1386369206	14181946914	148526968620		

b. On constate que la fonction access_rand est (très largement, d'un facteur 30 environ) plus lente que la fonction access_seq! Est-ce réellement le cas? Pour l'instant, on ne peut pas répondre à cette question, toutefois on peut facilement se rendre compte qu'on mesure bien trop de choses. En effet, à chaque accès aléatoire, on appelle – donc on mesure – la fonction rand, qui prend visiblement un temps non négligeable.

c. On modifie légèrement les fonctions de mesure 7 et on écrit la fonction suivante :

```
void access_aux(int *tab, unsigned long int *aux, unsigned long
int n)

int tmp;
for (register unsigned long int i = 0; i < n; i++)

tmp = tab[aux[i]];
}

}</pre>
```

On obtient les temps suivants :

n	10^{3}	10^{6}	10^{7}	10^{8}	10^{9}
access_seq	4298	4263336	42850857	444757816	4356153500
access_rand	3463	8848371	377748557	5385496993	97091291039

On obtient les courbes suivantes :

^{7.} Tous les codes sont disponibles sur GitHub. Attention toutefois, l'exécution du code correspondant à cette mesure peut prendre plusieurs dizaines de minutes et nécessite au moins une dizaine de Go de RAM.

Passons rapidement sur l'étude de ces courbes. Accès séquentiel : on peut définir la fontion

$$t_{\text{seq}} \colon n \mapsto \tau_{\text{seq}} n$$

donnant une estimation temps mis pour réaliser des accès séquentiels en mémoire, où $\tau_{\rm seq} \approx 4.298$. Le temps d'un accès séquentiel en mémoire, *i.e.* sur des cases mémoires successives, est donc d'environ 4 $tics^8$. C'est très rapide!

Accès aléatoire : on peut de même définir la fontion

$$t_{\rm rand} : n \mapsto \tau_{\rm rand} n$$

où $\tau_{\rm rand} \approx 101.9$. Ainsi, un accès aléatoire dans la mémoire prendra environ 102 tics. C'est approximativement 20 fois plus long que pour un accès séquentiel, toutefois cela reste du temps constant! La différence peut déjà s'expliquer par le fait que pour "sauter" d'une position à une autre, le pointeur qui fait office de tête de lecture doit faire un calcul arithmétique pour déterminer l'adresse mémoire de la case sur laquelle il doit se rendre. Cela peut nécessiter une soustraction, par exemple, ou encore un modulo, qui est tout de même assez coûteux (quelques dizaines de tics).

Conclusion : Néanmoins, la vraie différence vient d'un autre phénomène qui est la mise en cache de données ⁹. Lorsqu'on fait des accès séquentiel, on charge des blocs en cache, et on fait une suite d'accès en cache, ce qui est rapide. Lorsqu'on fait une suite d'accès aléatoires, on fait des accès hors-cache presque à chaque nouvel accès, puisque la probabilité que deux accès consécutifs concernent des données présentes dans un même bloc est beaucoup plus faible.

^{8.} Le temps de la mesure augmente linéairement avec le nombre d'accès mémoire. En moyennant, on obtient bien un temps constant par mesure.

3 Chapitre 3

3.1 Exercice 1

0xAE01D500 et 0xAE01D501	Oui
OxAE01D500 et OxAE01D4FF	Non
0xAE01D500 et 0xAE01D580	Non
0xAE01D53D et 0xAE01D542	Oui
0xAD01F506 et 0xAE01D508	Non
0xAE01D55F et 0xAE01D560	Oui

3.2 Exercice 2

On vérifie déjà qu'une instance de type **noeud** occupe bien 24 octets avec la commande :

```
printf("sizeof noeud: %lu o", sizeof(struct noeud));
```

Le fait que la somme des tailles diffère de la taille de la somme (de la structure) provient de la compilation : le compilateur fait de l'alignment (padding) sur des multiples de 8 afin qu'un élément se trouve toujours en début de bloc. Ainsi, un noeud occupe une taille de 20 + 4 = 24 octets.

- a. On peut stocker $\frac{32\times1024}{64}=512$ blocs. Le noeud 14 par exemple commence à l'adresse 0xAE01D53C et finit à l'adresse 0xAE01D54F. Or, le premier bloc se termine à l'adresse 0xAE01D540 10 , soit au "milieu" du noeud 14.
- b. On commence par lire le noeud 1, qui charge c'est donc un accès hors-cache le bloc contenant la fin du noeud 20, le 1, le 25 et le début du noeud 22. Ensuite, on lit le noeud 2 qui charge le bloc accès hors-cache qui contient les noeuds 2, 9 et le début du noeud 14. On fait de même pour le noeud 3, puis pour le 4, on doit charger deux blocs car le noeud 4 est à cheval sur ces deux blocs : on charge donc les noeuds 27 (fin), 10, 24, 4, 21 et 13. On continue jusqu'au noeud 8, qui est dans le bloc du noeud 7, donc pas d'accès hors-cache.

Pour résumer, sur les 27 accès, les accès hors-cache sont : 1, 2, 3, 4, 5, 6, 7 et 16.

3.3 Exercice 3

On obtient les résultats suivants ¹¹ :

^{10.} OxAE01D500 décalé de 64 octets

^{11.} Sous Mac, on peut accéder à ce genre d'informations par la commande sysctl. En particulier, ici on peut utiliser la commande sysctl -a | grep hw.

	L1 instruction	L1 données	L2	L3
Taille mémoire	32768	32768	262144	16777216
Ligne de cache	64	64	64	64
Associativité	8	8	4	16

3.4 Exercice 4

On cherche à mettre en évidence la taille du cache L1 et du cache L2. Pour cela, on va regarder les temps mis pour parcourir un tableau en colonnes et si on observe un pic pour une taille N de tableau, cela signifie que le cache est de taille $64 \times N$ ko. En l'occurrence, on s'attend à voir un pic autour de $N = \frac{32768}{64} = 512$ pour L1 et $N = \frac{262144}{64} = 4096$ pour L2.

FIGURE 1 – Mise en évidence du cache L1

FIGURE 2 – Mise en évidence du cache L2

On donne quelques valeurs numériques autour de N=4096 ci-dessous :

n	4094	4095	4096	4097	4098	4099
en ligne	59737	54042	52042	56912	61912	62952
en colonne	61302	63239	126933	97693	78726	67656

3.5 Exercice 5

Voir le tableau de l'Exercice 3¹².

3.6 Exercice 6

On redonne ci-dessous les blocs de l'exercice 2 :

p	addresse	p	addresse	p	addresse
2	0xAE01D500	3	0xAF01D900	11	0xBF01DD00
9	0xAE01D514	17	0xAF01D914	5	0xBF01DD14
19	0xAE01D528	12	0xAF01D928	18	0xBF01DD28
14	0xAE01D53C	20	0xAF01D93C	27	0xBF01DD3C
14	0xAE01D53C	20	0xAF01D93C	27	0xBF01DD3C
6	0xAE01D550	1	0xAF01D950	10	0xBF01DD50
15	0xAE01D564	25	0xAF01D964	24	0xBF01DD64
26	0xAE01D578	22	0xAF01D978	4	0xBF01DD78
26	0xAE01D578	22	0xAF01D978	4	0xBF01DD78
23	0xAE01D58C	8	0xAF01D98C	21	0xBF01DD8C
16	OxAEO1D5AO	7	0xAF01D9A0	13	0xBF01DDA0

Si on dispose d'un cache de 1 Ko et d'un niveau d'associativité 2, on a $\frac{1024}{64} = 16$ blocs, 128 octets par sous-cache, soit 2 blocs et $\frac{1024}{128} = 8$ sous-caches.

Les couleurs dans le tableau représentent les blocs qui sont dans le même sous-cache. Par exemple, pour 2, 3, 11, 9, 17, 5, etc:

- $(0xAE01D500 >> 6) \mod 8 = 4$
- $(0xAF01D900 >> 6) \mod 8 = 4$
- $(0xAE01D500 >> 6) \mod 8 = 4$
- . . .

Le premier appel qui est fait en cache est l'accès de 8, qui est dans le bloc chargé par 7. Le premier appel hors-cache non trivial est l'accès à 9, qui est bien dans le même bloc que 2, mais les accès à 3 et à 5 ont écrasé le premier bloc entre temps.

En résumé :

- cache-miss: 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 16, 18, 19, 20, 22, 25, 27
- cache-hit: 8, 10, 11, 14, 15, 17, 21, 23, 24, 26

^{12.} Note: sous Mac, on obtient seulement la valeur de l'associativité pour le cache L2: machdep.cpu.cache.L2_associativity: 4. Toutes les autres valeurs ont été obtenues sur la fiche technique du processeur fournie par Intel, en l'occurrence un Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz.

3.7 Exercice 7

On trace les temps successifs obtenus pour les trois expériences (N valant $1000000,\ 1048576$ puis 1300000):

On constate que pour $N=2^{20}$, les temps sont globalement toujours supérieurs aux deux autres cas. En effet, on peut calculer les temps moyens

(i.e. le temps total cumulé divisé par le nombre d'accès R) T(N) dans chaque cas :

```
T(1000000) = 227.726

T(1048576) = 252.717

T(1300000) = 239.417
```

Pourquoi une recherche dichotomique dans un tableau de taille 2^{20} met un temps environ 10% plus long qu'un tableau de taille 1~300~000? Ce phénomène est lié au principe d'associativité dans le système de cache de l'architecture de la machine. En effet, pour un tableau dont la taille est une puissance de 2, la taille de chaque sous-tableau est encore une puissance de 2. Or, le nombre de sous-caches ici est aussi une puissance de 2 – mais beaucoup plus petite 13, d'où le 2^{20} – donc à chaque accès au milieu du tableau tombe sur une puissance de 2. Or, on sait que les blocs mis en cache sont mis dans le sous-cache dont le numéro est calculé "modulo le nombre de sous-cache". Ainsi, on écrase à chaque étape la valeur précédemment mise en cache. On ne fait donc (presque) que des accès hors-cache, d'où le temps plus long.

3.8 Exercice 8

b. On écrit la fonction transpose_naive suivante :

```
void transpose_naive(int n, int *mat)

for (int i = 0; i < n; i++)

for (int j = 0; j < i; j++)

int tmp = mat[i * n + j];

mat[i * n + j] = mat[j * n + i];

mat[j * n + i] = tmp;

}

}

}
</pre>
```

On obtient les résultats suivants :

n	1024	4096	8192	16384	65536
temps	7244426	373965628	1895640055	9090680074	171798691840

c. On écrit ensuite une fonction transpose_blocs qui transpose une matrice en 4 blocs égaux :

^{13.} En l'occurrence pour le cache L1 cette puissance est 3 et pour L2 elle vaut 2!

```
void transpose_blocs(int n, int *mat)
       for (int I = 0; I < n; I += n / 2)</pre>
3
            for (int J = 0; J < n; J += n / 2)
5
6
                 int i_upper = min(I + n / 2, n);
                 int j_upper = min(J + n / 2, n);
                 for (int i = I; i < i_upper; i++)</pre>
9
10
                      for (int j = J; j < j_upper; j++)</pre>
11
12
                           int tmp = mat[i * n + j];
13
                          mat[i * n + j] = mat[j * n + i];
mat[j * n + i] = tmp;
14
15
                      }
16
                 }
17
            }
18
       }
19
20 }
```

On obtient les résultats suivants :

n	1024	4096	8192	16384	65536
temps	14578497	643229848	3429862750	17595195907	457658083617

d. Enfin, on définit la fonction _transpose_rec comme suit :

```
void _transpose_rec(int *A, int mAb, int mAe, int nAb, int nAe,
       int m, int n, int S)
  {
2
      int nblines = mAe - mAb;
      int nbcols = nAe - nAb;
      if ((nblines <= S) && (nbcols <= S))</pre>
           int iA, jA;
           for (iA = mAb; iA < mAe; ++iA)</pre>
               for (jA = nAb; jA < nAe; ++jA)
12
                   A[jA * m + iA] = A[iA * n + jA];
13
14
           }
15
16
      }
17
      else if (nblines > nbcols)
18
19
           int mid = nblines / 2;
20
           _transpose_rec(A, mAb + mid, mAe, nAb, nAe, m, n, S);
21
           _transpose_rec(A, mAb, mAb + mid, nAb, nAe, m, n, S);
22
23
```

```
else

int mid = nbcols / 2;

transpose_rec(A, mAb, mAe, nAb + mid, nAe, m, n, S);

transpose_rec(A, mAb, mAb, nAb, nAb + mid, m, n, S);

}

30
}
```

Et on l'appellera sur _transpose_rec(mat, 0, n, 0, n, n, n, 4) ¹⁴. On obtient les résultats suivants :

n	1024	4096	8192	16384	65536
temps	72610	627212	1604796	3357688	17023348

On regroupe toutes ces valeurs dans une seule figure :

^{14.} Le dernier argument S, qui vaut 4 ici, est une valeur de seuil sous laquelle on ne procède plus récursivement mais itérativement comme dans la fonction transpose_naive.

4 Chapitre 4

4.1 Exercice 1

On obtient le code assembleur suivant (avec gcc):

```
_sum: ## @sum
   ## %bb.0:
       push rbp
       mov rbp, rsp
       mov dword ptr [rbp - 4], edi
       mov dword ptr [rbp - 8], 0
6
       mov dword ptr [rbp - 12], 0
   LBBO_1: ## =>This Inner Loop Header: Depth=1
8
       mov eax, dword ptr [rbp - 12]
9
       cmp eax, dword ptr [rbp - 4]
       jge LBBO_4
   ## %bb.2: ## in Loop: Header=BBO_1 Depth=1
12
       mov eax, dword ptr [rbp - 12]
13
       add eax, dword ptr [rbp - 8]
14
       mov dword ptr [rbp - 8], eax
15
   ## %bb.3: ## in Loop: Header=BBO_1 Depth=1
16
       mov eax, dword ptr [rbp - 12]
17
       add eax, 1
18
       mov dword ptr [rbp - 12], eax
19
       jmp LBBO_1
20
   LBB0_4:
21
       mov eax, dword ptr [rbp - 8]
22
23
       pop rbp
24
       ret
                                         ## -- End function
25
       .globl _main ## -- Begin function main
27
       .p2align 4, 0x90
   _main: ## @main
28
   ## %bb.0:
29
       push rbp
30
       mov rbp, rsp
31
       sub rsp, 16
32
       mov dword ptr [rbp - 4], 100000000
33
34
       mov edi, dword ptr [rbp - 4]
       call _sum
       xor eax, eax
37
       add rsp, 16
38
       pop rbp
39
       ret
                                         ## -- End function
40
```

4.2 Exercice 2

Dans la fonction sum, on commence par sauvegarder la dernière valeur du pointeur rbp et empile cette valeur. Puis, tout est stocké dans la RAM : edi représente l'argument de la fonction (de manière informelle, c'est count),

puis on stocke les valeurs de **s** et **i**, qui valent 0, au adresses qui suivent. Pour le reste, on travaille sur des registres.

4.3 Exercice 3

a. Les trois instructions mov, cmp et jge correspondent aux instructions for(int i=0; i<count; i++) (la plupart du temps, eax représente la valeur de i, sauf à la toute fin où eax prend la valeur de s).

L'initialisation (int i = 0) est l'instruction mov eax, dword ptr [rbp - 12]. En particulier, le saut conditionnel ne se produit que si l'instruction cmp eax, dword ptr [rbp - 4] est vérifiée, i.e. lorsque eax ≥ dword ptr [rbp - 4]. Autrement dit, on sort de la boucle dès que i ≥ count.

b. L'appel à la fonction sum se fait avec l'instruction call _sum .

Enfin, l'incrémentation se produit avec l'instruction add eax, 1.

- c. L'instruction call va chercher l'argument de la fonction dans le registre edi.
 - d. L'instruction ret va chercher la valeur de retour dans le registre eax.

4.4 Exercice 4

Premier code: rax vaut 47 à la fin et est équivalent au code C suivant:

```
int i = 12;
i = i + i;
i = i + i;
i = -;
```

Deuxième code : rax vaut 123 à la fin et est équivalent au code suivant :

```
int a = 12;
for(int i = 0; i<10; i++){
    int a += 10;
}</pre>
```

Troisième code : rax vaut 143 à la fin et est équivalent au code suivant :

```
int a = 12;
int b;
for(b=13; b>0; b--){
    a += 10;
}
```

4.5 Exercice 5

Premier code : rax vaut 15 au niveau de nop. Deuxième code : rax vaut 12. Troisième code : rax vaut rbx.

4.6 Exercice 6

0000000000000000 <_main>:

a. On obtient le code assembleur suivante (avec objdump):

```
0: 55
                                                rbp
                                       push
1: 48 89 e5
                                       mov
                                                rbp, rsp
4: c7 45 fc 00 00 00 00
                                       mov
                                                dword ptr [rbp - 4], 0
b: c7 45 f4 00 00 00 00
                                                dword ptr [rbp - 12], 0
                                       mov
                                                dword ptr [rbp - 16], 0
12: c7 45 f0 00 00 00 00
                                       mov
19: 83 7d f0 64
                                                dword ptr [rbp - 16], 100
                                       cmp
1d: 0f 8d 17 00 00 00
                                                0x3a < main + 0x3a >
                                       jge
23: 8b 45 f0
                                                eax, dword ptr [rbp - 16]
                                       mov
26: 03 45 f4
                                       add
                                                eax, dword ptr [rbp - 12]
29: 89 45 f4
                                                dword ptr [rbp - 12], eax
                                       mov
2c: 8b 45 f0
                                                eax, dword ptr [rbp - 16]
                                       mov
2f: 83 c0 01
                                       add
                                                eax. 1
32: 89 45 f0
```

mov

jmp

mov

pop

dword ptr [rbp - 16], eax

eax, dword ptr [rbp - 4]

0x19 < main + 0x19 >

- b. Il y a donc 17 instructions et le programme occupe 0x3e+1 soit 63 octets en mémoire.
 - c. Il suffit de lire:

35: e9 df ff ff

3a: 8b 45 fc

3d: 5d

3e: c3

```
1: 48 89 e5 mov rbp, rsp
```

d. Les instructions qui occupent le plus de mémoire sont les instructions mov correspondant aux initialisations des variables i (2 fois) et j à 0. Comme ce sont des int, on réserve immédiatement 4 octets (32 bits) : c'est de l'adressage immédiat.

4.7 Exercice 7

a. Le stockage en RAM des valeurs de i et s initialisées à 0 est enlevé. À la place, on trouve la commande test edi, edi qui agit comme un bitwise and ("et" bit à bit). La valeur de véracité de edi \(\) edi est toujours vrai (donc le test vaut 1), sauf quand edi = 0, auguel cas la valeur est faux(et le test vaut 0). Cela permet de mettre à jour tous les flags concernés (par exemple ZF vaudra 0 si edi est non nul), mais également de stocker les valeurs de i et s dans des registres.

b. Dans le main, on enlève des opérations inutiles telles que sub rsp, 16 et add rsp, 16 et l'assignation int count = 100000000 est transcrite en une seule commande. Suivant les architectures, l'appel de la fonction sum est oublié aussi, puisque le résultat est inutilisé, de même que l'instanciation de count.

c. On modifie le main :

```
int main()
{
   int a = 0;
   int count = 100000000;
   a += sum(count);
}
```

d. Un changement est l'utilisation de la commande lea qui fait presque la même opération que mov : lea dest source met l'adresse de source dans dest. Ainsi, lea dest [source] est équivalent à mov dest source, et c'est ce qui est utilisé dans le code optimisé. lea est pratique car elle permet de faire directement les calculs à la volée dans l'argument, comme par exemple lea ecx, [edx + eax*4].

On note aussi l'utilisation du registre destination index rdi dans le code optimisé, qui n'apparait pas dans le code non optimisé.

Concernant la boucle, elle est donnée par le code suivant :

```
lea eax, [rdi - 1]
lea ecx, [rdi - 2]
imul rcx, rax
shr rcx
lea eax, [rcx + rdi]
add eax, -1
pop rbp
ret
```

Le compilateur effectue directement l'opération ¹⁵:

$$\mathtt{rcx} = \frac{(\mathtt{rdi} - 1)(\mathtt{rdi} - 2)}{2} + (\mathtt{rdi} - 1) = \sum_{i=1}^{\mathtt{rdi} - 1} i$$

Enfin, grâce au test sur edi, on saute directement à la fin de la fonction si edi = 0, ce qui n'est pas fait dans le code non optimisé, puisqu'on utilise un cmp peu importe la valeur de edi.

- e. La seule différence obtenue ¹⁶ est la suppression de l'appel à la fonction sum et l'instanciation de count par edi.
- f. Comme count n'est plus instancié dans le code assembleur avec un niveau 2 d'optimisation, on n'observe aucun changement (essai avec count=5).

^{15.} La division par 2 se fait avec l'opération $shift\ right,\ shr,\ parfois$ notée >> dans d'autres langages.

^{16.} Tous les codes sont sur GitHub.

g. L'assembleur semble utiliser des méthodes complexes similaires au cas de la somme des entiers. On sait par exemple que la somme des carrés peut s'écrire de la manière suivante :

$$\sum_{i=1}^{n-1} i^2 = \frac{n(n-1)(2n-1)}{6}$$

De même, la somme des cubes s'écrit :

$$\sum_{i=1}^{n-1} i^2 = \left(\frac{(n-1)(n-2)}{2}\right)^2$$

On reconnait des opérations similaires au cas de la somme des entiers, néanmoins les expressions ci-dessus ne ressortent pas explicitement.

4.8 Exercice 8

a. On souhaite faire l'opération $rax \leftarrow min(4 rax + 5, 8 rbx + 7)$:

```
; rax <- 4*rax+5
   mul rax, 4
   add rax, 5
   ; rbx <- 8*rbx+7
   mul rbx, 8
6
   add rbx, 7
   mov dword ptr [rbp - 4], rax
9
   mov dword ptr [rbp - 8], rbx
10
   mov rax, dword ptr [rbp - 4]
   cmp rax, dword ptr [rbp - 8]; performs 4*rax+5 - 8*rbx+7
   jge LBBO_1 ; jump \ if >= 0
14
   jmp LBB0_2
16
17
   LBBO_1 ; case 4*rax+5 >= 8*rbx+7
18
   mov rax, dword ptr [rbp - 8]; rax <- 8*rbx+7
19
   LBBO_2; case 4*rax+5 < 8*rbx+7 but rax already holds 4*rax+5
21
   skip ahead
```

b. On souhaite faire l'opération suivante :

```
while(rax < rcx){rax += rbx;}
```

On écrit le code assembleur suivant :

```
LBBO_1
cmp rax, rcx
jge LBBO_2; rax >= rcx

add rax, rbx; rax <- rax + rbx
jmp LBBO_1

LBBO_2
skip ahead
```

c. On veut effectuer l'opération suivante :

```
if(rax % 4 == 0) {rcx = 1;}
```

On écrit le code assembleur suivant :

```
mov edi, 4
div edi
cmp rdx, 0
jne LBBO_1
mov rcx, 1

LBBO_1
skip ahead
```

Il est nécessaire de préciser comment fonctionne div. Lorsqu'on effectue l'opération div a où a est un registre, on divise l'entier représenté par le mot écrit sur le segment rdx:rax par la valeur dans a. Le quotient est stocké dans rax et le reste dans rdx, d'où la comparaison directe sur rdx.

5 Chapitre 5

5.1 Exercice 1

a. Le premier saut conditionnel (l.4-5 en assembleur) correspond au if (l.5 en C).

Le deuxième saut conditionnel (l.8-9 en assembleur) correspond à la comparaison i < n dans la boucle for (l.4 en C).

b.

- (a) Les erreurs de prédiction se font aux indices 3, 4, 8, 9, 11, 13, 15, 16, 17, 18, 19
- (b) Les erreurs de prédiction se font aux indices 0, 1, 3, 4, 8, 9, 11, 13, 15, 16, 17, 18, 19

5.2 Exercice 2

a. On obtient les résultats suivants :

