Lesson 3: Graphing Lines

CC attribute: Beginning and Intermediate Algebra by T. Wallace.

Objective: Graph a linear equation by creating a table of values for x. Identify the slope of a linear equation both graphically and algebraically.

Students will be able to:

- Create and populate a table of points for a given equation or graph.
- Calculate the slope of a line when given two points.

Prerequisite Knowledge:

- Plotting points on a coordinate plane.
- Identifying x- and y-coordinates.
- Conceptually understanding of slope.

Lesson:

Given a linear equation, such as y = 2x - 3, one may be interested in what solution(s) are possible for a given x or y. We can visualize the set of solutions by making a graph of all possible x and y combinations, or *coordinate pairs*, that satisfy this equation. Our corresponding graph will be a line, and any point on this line will make the equation y = 2x - 3 true. We will do this using a table of values.

Additionally, the slope of a line will be extremely useful for drawing conclusions about a linear equation and/or its graph.

Given two points (x_1, y_1) and (x_2, y_2) , the slope of the line through these points is defined as follows.

$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Whenever we calculate a slope, as we subtract the corresponding y and x coordinates from one another, it is important that we subtract them in the correct order.

I - Motivating Example(s):

Example:

Graph y = 2x - 3. Make a table of values. Any test values may be used.

x	y
-1	-5
0	-3
1	-1

Evaluate each test value by replacing x with the given value.

$$x = -1$$
 $y = 2(-1) - 3 = -2 - 3 = -5$
 $x = 0$ $y = 2(0) - 3 = 0 - 3 = -3$
 $x = 1$ $y = 2(1) - 3 = 2 - 3 = -1$

$$(-1,-5),(0,-3),(1,-1)$$
 These become our points to graph for our equation.

$$(-1, -5), (0, -3),$$
and $(1, -1)$

These become the points from our equation which we will plot on our graph.

Once the point are on the graph, connect the dots to make a line.

The graph is our solution.

Notice the graph also goes through the point (2,1). This means that the pair (x,y)=(2,1) will also satisfy the equation y=2x-3, which one can easily check.

Notice also that the slope of the line above is m = 2 or $\frac{2}{1}$. We can check this by using any two points from our table. We will use (-1, -5) and (0, -3).

$$m = \frac{-5 - (-3)}{-1 - 0} = \frac{-5 + 3}{-1} = \frac{-2}{-1} = 2 \checkmark$$

Example: Find the slope of the line through the given points.

$$(-4,3) \text{ and } (2,-9). \qquad \text{Identify } x_1,y_1,x_2, \text{ and } y_2.$$

$$(x_1,y_1) \text{ and } (x_2,y_2) \qquad \text{Use the slope formula, } m = \frac{y_2-y_1}{x_2-x_1}.$$

$$m = \frac{-9-3}{2-(-4)} \qquad \text{Simplify.}$$

$$m = \frac{-12}{6} \qquad \text{Reduce.}$$

$$m = -2 \qquad \text{Our solution.}$$

II - Demo/Discussion Problems:

- 1. Make a table of points and use it to graph the linear equation 2x 3y = 6.
- 2. Find the slope of the line through the points (-4, -1) and (-4, -5).
- 3. Find the slope of the line through the points (3,1) and (-2,1).

III - Practice Problems:

For each linear equation below, make a table of points and use it to graph the equation.

1.
$$y = -\frac{1}{4}x - 3$$

6.
$$y = \frac{5}{2}x + 4$$

1.
$$y = -\frac{1}{4}x - 3$$
 6. $y = \frac{5}{3}x + 4$ 11. $x + 5y = -15$ 16. $7x + 3y = -12$

16.
$$7x + 3y = -12$$

2.
$$y = x - 1$$

2.
$$y = x - 1$$
 7. $y = \frac{3}{2}x - 5$ 12. $8x - y = 5$ 17. $x + y = -1$

12.
$$8x - y = 5$$

17.
$$x + y = -1$$

3.
$$y = -\frac{5}{4}x - 4$$

8.
$$y = -x - 2$$

13.
$$4x + y = 5$$

18.
$$3x + 4y = 8$$

4.
$$y = -\frac{3}{5}x + \frac{3}{5}$$

3.
$$y = -\frac{5}{4}x - 4$$
 8. $y = -x - 2$ 13. $4x + y = 5$ 18. $3x + 4y = 8$ 4. $y = -\frac{3}{5}x + 1$ 9. $y = -\frac{4}{5}x - 3$ 14. $3x + 4y = 16$ 19. $x - y = -3$ 5. $y = -4x + 2$ 10. $y = \frac{1}{2}x$ 15. $2x - y = 2$ 20. $9x - y = -4$

14.
$$3x + 4y = 1$$

19.
$$x - y = -3$$

5.
$$y = -4x + 2$$

10.
$$y = \frac{1}{2}x$$

15.
$$2x - y = 2$$

20.
$$9x - y = -4$$

Find the slope of each of the following lines.

21.

22.

23.

24.

25.

26.

