Implicit and inverse function theorem

05 May 2022

Th. 1 (Implicit function theorem). X, Y, Z — normed, Y — full,

 $W \subset X \times Y$ — open, $(x_0, y_0) \in W$,

 $G: W \to Z$, G continuous at (x_0, y_0) , $G(x_0, y_0) = 0$,

 $\exists \partial_{y} G$ in W and it's continuous at (x_0, y_0) ,

 $\exists (\partial_{\nu} G(x_0, y_0))^{-1} \in L(Z, Y).$

Then $\exists U, V$: neighborhoods of x_0y_0 and $f: U \to V$ continuous at x_0 such that G(x, f(x)) = 0.

Proof. Let's use Newton's method to find *y*:

$$g_x : y \mapsto y - (\partial_y G(x_0, y_0))^{-1} G(x, y)$$

 $g_x : Y \to Y$

Consider it's differential:

$$dg_{x}(y) = I_{y} - (\partial_{y}G(x_{0}, y_{0}))^{-1}dG(x, y)$$
$$(G(x, y) \to G(x_{0}, y_{0})) \to (dg_{x} \to 0)$$

Then in some neighborhood of $(x_0, y_0) \|dg_x(y)\| < \frac{1}{2}$. Also in some neighborhood of x_0 : $\|g_x(y_0) - g_{x_0}(y_0)\| < \varepsilon$ by continuity of G. For the chosen $\varepsilon < \frac{\Delta}{2}$ and x in the chosen δ -neighborhood, with $L_{+\infty}$ norm:

$$g_x(B(y_0, 2\varepsilon)) \subset B(y_0, 2\varepsilon)$$

Let's prove it:

$$\begin{split} \left\| g_x(y) - y_0 \right\| &= \left\| g_x(y) g_{x_0}(y_0) \right\| \leqslant \\ \left\| g_x(y) - g_x(y_0) \right\| + \left\| g_x(y_0) - g_{x_0}(y_0) \right\| \leqslant \\ \sup \left\| dg_x \right\| \left\| y - y_0 \right\| + \varepsilon \leqslant \frac{1}{2} \varepsilon + \varepsilon \end{split}$$

So now we take x in $B(x_0, \min(\delta, \Delta))$, y start from y_0 and stay in $B(y_0, \Delta)$, therefore g_x is squeezing and we finally arrive at unique y where G(x, y) = 0.

And f is continuous at x_0 because we can make ε smaller by taking δ smaller.

Basic example

$$\begin{cases} g_1(x_1 \dots x_m, y_1 \dots y_n) = 0 \\ \dots \\ g_n(x_1 \dots x_m, y_1 \dots y_n) = 0 \\ & \longleftrightarrow \\ \begin{cases} y_1 = f_1(x_1 \dots x_m) \\ \dots \\ y_n = f_1(x_1 \dots x_m) \end{cases} \end{cases}$$

It's a surface with dimension m (because every point is determined by it's x coordinates) in \mathbb{R}^{n+m} .

Th. 2. Y — complete normed space, $U \in L(Y,Y)$, ||U|| < 1, I — identity $\exists (I-U)^{-1} \in L(Y,Y)$

Proof. First proof.

Existence.

Want to prove that $\forall u \in Y \exists y \in Y : (I - U)y = u$.

$$\begin{aligned} y_{n+1} &= u + Uy_n \\ y_{n+1} - y_n &= Uy_n - Uy_{n-1} \\ \left\| y_{n+1} - y_n \right\| &= \left\| U(y_n - y_{n-1}) \right\| \leq \left\| U \right\| \left\| y_n - y_{n-1} \right\| \end{aligned}$$

If we iterate this squeeze mapping, we will get the unique solution y_0 (here we used completeness of Y).

Continuity.

Now we consider $u_n \to u_0$, for each we find y_n and want to show $y_n \to y_0$.

$$\begin{split} (I-U)y_n &= u_n, (I-U)y_0 = u_0 \Rightarrow (y_n - y_0) = U(y_n - y_0) + (u_n - u_0) \\ & \left\| y_n - y_0 \right\| \leq \left\| u_n - u_0 \right\| + \left\| U \right\| \left\| y_n - y_0 \right\| \\ & 0 \leq (1 - \|U\|) \left\| y_n - y_0 \right\| \leq \left\| u_n - u_0 \right\| \to 0 \\ & 1 - \|U\| > 0 \Rightarrow \left\| y_n - y_0 \right\| \to 0 \end{split}$$

Proof. Second proof.

$$(I-U)^{-1} = I + U + U^2 + \dots$$

This series converges absolutely, i.e. $\sum \left\| U^k \right\| \leq \frac{1}{1 - \|U\|}$ converges.

L(Y,Y) is complete (link?), so every Cauchy sequence converges. And absolutely converging series are Cauchy sequences.

Now, consider *S*:

$$S_n = I + U + \dots + U^n \rightarrow S \in L(Y, Y)$$

$$S_n(I - U) = (I - U)S_n = I - U^{n+1} \rightarrow I$$

$$S(I - U) = (I - U)S = I \rightarrow S = (I - U)^{-1}$$

Interesting fact $A \in L(X,Y), B \in L(Y,X), AB = I_x$, then:

$$\frac{1}{\|B\|} = \inf_{\|x\|=1} \frac{1}{\|Bx\|} = \inf_{\|Bx\|=1} \frac{\|x\|}{\|Bx\|} = \inf_{\|y\|=1} \frac{\|Ay\|}{\|y\|} = \inf_{\|y\|=1} \|Ay\|$$

Th. 3.

$$Y \longrightarrow complete \ , U \in L(Y,Z), \exists U^{-1} \in L(Z,Y) \ \forall V \in L(Y,Z)$$

$$||V|| < \frac{1}{||U^{-1}||} \longrightarrow \exists (U \pm V)^{-1} \in L(Z,Y)$$

Proof.

$$U + V = U(I + U^{-1}V)$$
$$(U + V)^{-1} = (I + U^{-1}V)^{-1}U^{-1}$$

Now use completeness of *Y* and the previous theorem:

$$||U^{-1}V|| < 1 \Rightarrow \exists (I + UV^{-1})^{-1}$$

Th. 4. As Th. 1, but require continuity of G and dG not only in the point, but in a neighborhood. Then f will be continuous in a neighborhood of x_0 .

Proof. Consider Δ -neighborhood from Th. 1 where f exists. If we take (x_1, y_1) from there then $\exists (\partial_y G(x_1, y_1))^{-1} \in L(Z, Y)$ by previous lemma, so we can apply Th. 1 to that point and f will be the same, but now with continuity at that point too.

Note that neighborhood where it holds might be smaller than Δ because we didn't have any requirements on where $\exists (\partial_y G(x_1, y_1))^{-1} \in L(Z, Y)$.

Th. 5. *As Th.* 1, but $\exists dG$ then $\exists df$ and:

$$df(x_0) = -\left(\frac{\partial}{\partial y}G(x_0, y_0)\right)^{-1}\frac{\partial}{\partial x}G(x_0, y_0)$$

and all three parts are in L(X,Y),L(Z,Y),L(X,Z) correspondingly.

Proof.

$$G(x,y) = G(x_0,y_0) + \frac{\partial}{\partial x}G(x_0,y_0)(x-x_0) + \frac{\partial}{\partial y}G(x_0,y_0)(y-y_0) + o\Big(\Big\|x-x_0\Big\| + \Big\|y-y_0\Big\|\Big)$$

Consider y = f(x) (and G(x, y) = 0 now):

$$0 = \frac{\partial}{\partial x} G(x_0, y_0)(x - x_0) + \frac{\partial}{\partial y} G(x_0, y_0) (f(x) - f(x_0)) + o(||x - x_0|| + ||f(x) - f(x_0)||)$$

Divide by $\frac{\partial}{\partial y}G(x_0, y_0)$ and find $f(x) - f(x_0)$:

$$f(x) - f(x_0) = -\left(\frac{\partial}{\partial y}G(x_0, y_0)\right)^{-1} \left(\frac{\partial}{\partial x}G(x_0, y_0)(x - x_0) + o\left(\|x - x_0\| + \|f(x) - f(x_0)\|\right)\right)$$

Now we need to show that o(...) is small enough and f is continuous:

Let
$$C_1 = \left\| \left(\frac{\partial}{\partial y} G(x_0, y_0) \right)^{-1} \right\| \left\| \frac{\partial}{\partial x} G(x_0, y_0) \right\|, C_2 = \left\| \left(\frac{\partial}{\partial y} G(x_0, y_0) \right)^{-1} \right\|, \varepsilon \to 0 \text{ from } o(\dots)$$
:

$$||y - y_0|| \le C_1 ||x - x_0|| + C_2 \varepsilon (||x - x_0|| + ||y - y_0||)$$

Then for $\varepsilon < C_2^{-1}$:

$$\left\|y-y_0\right\| \leq \frac{C_1+C_2\varepsilon}{1-C_2\varepsilon}\left\|x-x_0\right\|$$

Th. 6 (Corollary). *If G is k times differentiable in a neighborhood, then f is too.*

Th. 7 (Inverse function theorem). Y — complete, $F: Y \to X$, $F(y_0) = x_0$, $\exists dF$ in a neighborhood, $\exists (dF(y_0))^{-1} \in L(X,Y)$

then exist neighborhoods $U, V: x_0 \in U, y_0 \in V$ such that $F: V \to U$ — bijection and

$$(dF^{-1})(x_0) = (dF(y_0))^{-1}$$

Proof.

$$G: X \times Y \rightarrow X: G(x, y) = x - F(y)$$

It's suitable for Th. 1:

$$\frac{\partial}{\partial y}G(x_0, y_0) = -dF, G(x_0, y_0) = 0$$

Then by using it we get f(x):

$$\exists U, V \, \forall x \in U, y \in V : x = F(y) \leftrightarrow G(x, y) = 0 \leftrightarrow y = f(x)$$

Now it's already a map and even an injection, but we want to make V = F(U) to make it a bijection. And we need y_0 to be internal in it.

$$df(x_0) = -(\frac{\partial}{\partial y}G(x_0, y_0))^{-1} \frac{\partial}{\partial x}G(x_0, y_0) = (dF(y_0))^{-1}$$
$$\exists (df(x_0))^{-1} = dF(y_0) \in L(Y, X)$$

So for any point close to y_0 its preimage is close to x_0 , and y_0 is internal in F(U). Now f and F are mutually inverse and V = F(U), U = f(V), so they are bijections.