Theoretische Informatik

Julian Schubert

25. April 2021

Inhaltsverzeichnis

1	Wichtige Vermutungen	2
2	Elementare Begriffe 2.1 Komplexitätsklassen	3 3
3	2.4 Listencodierung	4
4	Ram-Programme	4

1 Wichtige Vermutungen

Definition 1: Goldbachsche Vermutung

Jede natürliche gerade Zahl größer 2 ist Summe zweier Primzahlen

Definition 2: Collaz-Problem (3n +1)-Vermutung

- Beginne mit irgendeiner natürlichen Zahl n > 0
- Ist n gerade, so nimm als nächstes n//2 (abrundende Division)
- ist n ungerade, so nimm als nächstes 3n + 1
- Wiederhole das Vorgehen mit der erhaltenen Zahl

Vermutung: Jede so konstruierte Zahlenfolge mündet in den Zyklus 4, 2, 1, egal mit welcher natürlichen zahl n > 0 beginnt

Definition 3: Ackermann-Funktion

Frage: Gilt LOOP = $\{f \in \text{WHILE} \mid f \text{ ist total}\}$?

Die folgende Funktion (auch **Ackermann-Funktion** genannt) $a: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ ist total und While-berechenbar, aber nicht Loop-berechenbar:

$$a(n,m) = \begin{cases} m+1 & \text{falls } n=0 \\ a(n-1,1) & \text{falls } n>0 \text{ und } m=0 \\ a(n-1,a(n,m-1)) & \text{falls } n>0 \text{ und } m>0 \end{cases}$$

 \Rightarrow Die Ackermann-Funktion ist eine totale Funktion in WHILE-LOOP

2 Elementare Begriffe

2.1 Komplexitätsklassen

$$ALL \subset P \subset NP$$

- ALL: Alle Probleme
- NP: Probleme, deren Lösungen schnell übrprüft weden können (effizient überprüfbare Probleme)
- **P:** Probleme, die isch in polynomieller Zeit lösen lassen (effizient lösbare Probleme)

2.2 Funktionen

Definition 4: Funktionen

Seien $f: A \to B$ und $g: B \to C$ Funktionen

• Definitionsbereich von f:

 $D_f = \{a \in A | \text{ es existiert ein } b \in B \text{ mit } f(a) = b\}$ \Rightarrow Alles was etwas im Wertebereich trifft

• Wertebereich von f:

 $D_f = \{a \in A \mid \text{ es existiert ein } a \in A \text{ mit } f(a) = b\}$ \Rightarrow alles was von etwas im Definitionsbereich getroffen wird

• Total: $D_f = A$

• Surjektiv: $W_f = B$

• Injektiv: aus $a_1, a_2 \in D$ und $a_1 \neq a_2$ folgt $f(a_1) \neq f(a_2)$

 \bullet **Bijektiv:** f ist total, surjektiv und injektiv

• ist f injektiv, so existiert die **Umkehrfunktion** $f^{-1}: B \to A$ mit $f^{-1}(b) = \text{dasjenige } a \in A$ mit f(a) = b

2.3 Binärdarstellung

Definition 5

Jede natürliche Zahl $n \ge 1$ ist in genau einer Weise darstellbar als

$$n = \sum_{i=0}^{m} a_i \cdot 2^i$$

mit $m \in \mathbb{N}$, $a_m = 1$ und $a_0, \dots, a_{m-1} \in \{0, 1\}$.

Eigenschaft 1: Binärdarstellung

bin(2n+a) = bin(n)a für $n \ge 1$ und $a \in \{0,1\}$

2.4 Listencodierung

Liste von Binärzahlen: $\langle x_1, \ldots, x_n \rangle$

Anwendung: Bits verdoppeln, 10 alss Anfangs-, Trenn- und Enmarkierung **Beispiele:**

$$\langle \rangle = bin^{-1}(10) = 2$$

 $\langle 2 \rangle = bin^{-1}(10110010) = 178$
 $\langle 5, 3, 2 \rangle = bin^{-1}(10110011101111110110010) = 2944946$

3 While-Programme

Definition 6: While-Berechenbarkeit

Eine Funktion ist dann **While-Berechenbar**, falls es ein While-Programm gibt, sodass der Definitionsbereich von beiden identisch ist und der Wert für alle Eingaben übereinstimmt.

Definition 7: Loop-Programm

ein **Loop-Programm** ist ein While-Programm mit folgenden Eigenschaften:

- Das Programm enthält keine While-Schleifen
- Aus einer Funktion können nur weiter oben deklarierte Funktionen aufgerufen werden. Insbesondere sind keine Selbstaufrufe erlaubt
- Das Programm enhält nur Funktionsdeklarationen mit Initialiserung
- Das Programm ist für alle Eingaben definiert
- ⇒ Alle Loop-berechenbaren Funktionen sind total.

3.1 Berechnende Funktion bestimmen

- 1. Schauen für welche Eingabe(n) die Schleife(n) wie oft ausgeführt werden
- 2. Schauen was sich mit jedem Schleifendurchlauf verändert

4 Ram-Programme

Definition 8: modifizierte Differenz

$$x - y = md(x, y)$$

$$\begin{cases} x - y & \text{falls } x > y \\ 0 & \text{sonst} \end{cases}$$