

Intro To Visualization In R - Exploratory Data Analysis - 1

One should look for what is and not what he thinks should be – Albert Einstein

Exploratory Data Analysis: topic introduction

In this part of the course, we will cover the following concepts:

- Exploratory data analysis use cases
- Perform EDA on data

Warm-up chat question

- Before we begin this module, let's start with a chat question
- Do you have experience making data visualizations? If so, what type?
- What tools do you use to make them?
- Share your responses in the chat

Module completion checklist

Objective	Complete
Define the exploratory data analysis (EDA) cycle	
Differentiate between static and interactive visualizations	

What is data visualization?

- Data visualizations are representations intended for communicating specific insights about datasets in actionable ways
- They may be created for a target audience, to communicate the relationship between variables or other essential statistics
- When created during data analysis, they serve an exploratory purpose for the analyst, helping them to draw conclusions and generate new hypotheses

Why visualize data?

- Visualizing data provides insights that are interpretable and relevant
- It visually represents data to see trends, outliers, and patterns
- It helps test hypotheses
- These actions are beneficial in exploratory data analysis (EDA)

Exploratory data analysis

- Exploratory Data Analysis refers to the analysis process used to discover patterns, spot anomalies, test hypotheses, and check assumptions
- Visualization is an iterative process and consists of the following steps:
 - Analyze
 - Manipulate
 - Graph
 - Repeat

Types of visualization in R

- We can create several types of visualizations, such as:
 - Basic plots & composite graphs
 - Maps
 - Dynamic visualizations
 - Interactive charts & dashboards
 - 3D graphics
- Visit the R graph gallery to see a list of help pages, vignettes, and code demos

Module completion checklist

Objective	Complete
Define the exploratory data analysis (EDA) cycle	
Differentiate between static and interactive visualizations	

Static visualizations in R

- Static visualizations are for the display of data only, without interactivity for users
- They are best suited to display patterns in data for print media
- Static visualizations can be created using base R and packages like ggplot2 and corrplot

Interactive visualizations in R

- Interactive visualizations let users click, drag, and zoom through data
- They are best displayed as components of a web-based media like websites or apps
- Creating them requires
 packages like highcharter,
 plotly, and htmlwidgets

Directory settings

 In order to maximize the efficiency of your workflow, you may want to use the box package and encode your directory structure into variables

```
install.packages(box)
```

Let the main_dir be the variable corresponding to your materials folder

```
# Set `main_dir` to the location of your materials folder.
path = box::file()
main_dir = dirname(dirname(path))
```

Directory settings (cont'd)

- We will store all datasets in the data directory inside the materials folder in your environment, so we'll save its path to a data_dir variable
- We will save all of the plots in the plots directory corresponding to plot_dir variable
- To append a string to another string, use paste0 command and pass the strings you would like to paste together

```
# Make `data_dir` from the `main_dir` and
# remainder of the path to data directory.
data_dir = paste0(main_dir, "/data")
# Make `plots_dir` from the `main_dir` and
# remainder of the path to plots directory.
plot_dir = paste0(main_dir, "/plots")
```

Case study: stroke survey

- According to the World Health Organization (WHO), stroke is the 2nd leading cause of death globally
- Click here for a dataset showing the results of a stroke drug survey clinical trial on a sample of adults in the U.S
- Each row in the data provides relevant information about the adult, including if they had a stroke

Load the dataset for EDA

Let's load the stroke dataset from the data directory into R's environment

Stroke Dataset: attribute information

- id: unique identifier
- gender: "Male", "Female" or "Other"
- age: age of the patient
- hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- ever_married: "No" or "Yes"
- work_type: "children", "Govt_job", "Never_worked", "Private" or "Self-employed"
- Residence_type: "Rural" or "Urban"
- avg_glucose_level: average glucose level in blood
- bmi: body mass index
- smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- stroke: 1 if the patient had a stroke or 0 if not

View data types

• Let's examine the data types of the columns in the dataset and handle the missing data, if there are any

```
str(health_data)
'data.frame':
               5110 obs. of 12 variables:
$ id
                   : int 9046 51676 31112 60182 1665 56669 53882 10434 27419 60491 ...
               : chr "Male" "Female" "Male" "Female" ...
 $ gender
                          67 61 80 49 79 81 74 69 59 78 ...
 $ age
                  : num
$ hypertension : int
                          0 0 0 0 1 0 1 0 0 0 ...
$ heart_disease : int 1 0 1 0 0 0 1 0 0 0 ...
                          "Yes" "Yes" "Yes" "Yes" ...
 $ ever married : chr
 $ work_type
                  : chr
                          "Private" "Self-employed" "Private" "Private" ...
 $ Residence_type
                          "Urban" "Rural" "Rural" "Urban" ...
                   : chr
$ avg_glucose_level: num 229 202 106 171 174 ...
                   : num 36.6 NA 32.5 34.4 24 29 27.4 22.8 NA 24.2 ...
 $ bmi
$ smoking_status : chr "formerly smoked" "never smoked" "never smoked" "smokes" ...
 $ stroke
                   : int 1 1 1 1 1 1 1 1 1 ...
```

Impute missing data

We will now impute missing values in the bmi column with the mean

```
# Convert BMI to numeric
health_data$bmi <- as.numeric(health_data$bmi)
# Replace N/A's in BMI column with mean
health_data$bmi[is.na(health_data$bmi)] <- mean(health_data$bmi,na.rm=TRUE)
# Display data
str(health_data)</pre>
```

Subsetting data

- For visualization, let's restructure our data by taking a **subset** of the data with all the observations of the following variables:
 - age
 - o avg_glucose_level
 - o bmi

```
health_subset <- health_data[, c("age", "avg_glucose_level", "bmi")]
str(health_subset)
```

```
'data.frame': 5110 obs. of 3 variables:
$ age : num 67 61 80 49 79 81 74 69 59 78 ...
$ avg_glucose_level: num 229 202 106 171 174 ...
$ bmi : num 36.6 28.9 32.5 34.4 24 ...
```

Correlation between variables

- Let's visualize the relationship between the variables with a correlation matrix
 - Each value in the matrix is a correlation coefficient, which is a value between $\left[-1,1\right]$
 - The matrix is **square**, as the number of rows is the same as the number of columns
 - The matrix is **symmetric**, as the values on opposite sides of the diagonal are mirrored $value_{row_i,col_i}=value_{row_i,col_i}$
 - Values on the diagonal are equal to 1

```
# Compute a correlation matrix of 3 variables using `cor` function.
health_cor = cor(health_subset)
health_cor
```

```
age avg_glucose_level bmi
age 1.0000000 0.2381711 0.3259425
avg_glucose_level 0.2381711 1.0000000 0.1687514
bmi 0.3259425 0.1687514 1.0000000
```

Knowledge check

Exercise

You are now ready to try tasks 1-2 in the exercise for this topic

Module completion checklist

Objective	Complete
Define the exploratory data analysis (EDA) cycle	
Differentiate between static and interactive visualizations	

Exploratory Data Analysis: Topic Summary

In this part of the course, we have covered the following concepts:

- Defining Exploratory Data Analysis
- Performing EDA on data

Congratulations on completing this module!

