2011-2012 学年第二学期高等数学期中测试及数学竞赛试卷(2011级)

(参加竞赛的同学全做,其他同学只做一、二大题)

一、填空题(8×6分)

- 1. $\forall \vec{a} = (2,1,-2), \vec{b} = (1,-1,-1), \forall (\vec{a} 2\vec{b}) \cdot (\vec{a} + 2\vec{b}) = \underline{\qquad}, (\vec{a} 2\vec{b}) \times (\vec{a} + 2\vec{b}) = \underline{\qquad}$
- 2. 过直线 $L_1: x = 2t 1, y = 3t + 2, z = 2t 3$ 和 $L_2: x = 2t + 3, y = 3t 1, z = 2t + 1$ 的平面方程为_____。
- 3. 直线 $L: \begin{cases} 2x-y+z-1=0 \\ x+y-z+1=0 \end{cases}$ 在平面 $\pi: x+2y-z=0$ 上的投影直线 L_0 的方程为_____。
- 4. 在点(4,2,1)处, $U = z\sqrt{x^2 y^2}$ 沿方向 $\vec{l} = (2,1,-1)$ 的方向导数 $\frac{\partial U}{\partial l}\Big|_{(4,2,1)} = \underline{\hspace{1cm}}$ 。
- 5. 曲线 $x = 1, z = \sqrt{1 + x^2 + y^2}$ 在点 $(1,1,\sqrt{3})$ 处的切线方程为_____。
- 6. 设 z = z(x,y) 由方程 $F\left(\frac{y}{x},\frac{z}{x}\right) = 0$ 确定(F 为任意可微函数),则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 。

二、计算题(4×13分)

1. 设
$$g$$
 具二阶导数, f 具二阶偏导, $z = g(x+y) + f\left(xy, \frac{x}{y}\right)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$ 。

2. 将长为a的线段分为三段,分别围成圆、正方形和等边三角形,问怎样分使它们的面积之和最小,并求出最小值。

3. 计算二重积分 $\iint_D (x+y)^3 dx dy$,其中 D 由曲线 $x = \sqrt{1+y^2}$ 与直线 $x + \sqrt{2}y = 0$ 及 $x - \sqrt{2}y = 0$ 围成。

4. 计算二重积分 $\int_0^{\frac{1}{\sqrt{2}}} dy \int_0^y e^{-(x^2+y^2)} dx + \int_{\frac{1}{\sqrt{2}}}^1 dy \int_0^{\sqrt{1-y^2}} e^{-(x^2+y^2)} dx$ 。

三、数学竞赛加题(5×20分)

1. 1) 求极限:
$$\lim_{x\to 1} \frac{x^x - x}{\ln x - x + 1}$$
;

2) 求导:
$$y = y(x)$$
由方程组 $\begin{cases} x + t(1-t) = 0 \\ te^{y} + y + 1 = 0 \end{cases}$ 确定,求

$$\left. \frac{d^2 y}{dx^2} \right|_{t=0} \, \circ$$

2. 设
$$F(x) = \begin{cases} \int_0^x tf(t)dt \\ x^2 \end{cases}$$
, $x \neq 0$, 其中 $f(x)$ 具有连续导数且 $f(0) = 0$, $f'(0) = a$, 1) 试确定 c 使

F(x)连续; 2) 在 1) 的结果下问F'(x)是否连续(要求过程)。

3. 积分 1)
$$\int \sqrt{x} \cos \sqrt{x} \, dx$$
;

2)
$$\int_0^{\pi} \frac{\pi + \cos x}{x^2 - \pi x + 2012} \, dx \, .$$

4. 设
$$f'(x)$$
在 $[a,b]$ 上连续, $f(x)$ 在 (a,b) 内二阶可导, $f(a)=f(b)=0$, $\int_a^b f(x)dx=0$, 求证: 1) 在 (a,b) 内至少有一点 ξ , 使得 $f'(\xi)=f(\xi)$; 2) 在 (a,b) 内至少有一点 η , $\eta \neq \xi$, 使得 $f''(\eta)=f(\eta)$ 。

5. 己知
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$$
, 求证: $\frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)}$, $n \ge 2$ 。

参考答案

—,

2.
$$x-z-2=0$$

3.
$$\begin{cases} 3x - y + z - 1 = 0 \\ x + 2y - z = 0 \end{cases}$$

$$4. \quad -\frac{\sqrt{2}}{2}$$

$$5. \quad \begin{cases} x = 1 \\ y - \sqrt{3}z + 2 = 0 \end{cases}$$

7.
$$\int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx + \int_1^2 dy \int_0^1 f(x,y) dx + \int_2^3 dy \int_0^{3-y} f(x,y) dx$$

8.
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r^2) \cdot r \, dr$$

1.
$$\frac{\partial z}{\partial x} = g' + yf'_1 + \frac{1}{y}f'_2$$
, $\frac{\partial^2 z}{\partial x \partial y} = g'' + f'_1 - \frac{1}{y^2}f'_2 + xyf''_{11} - \frac{x}{y}f''_{12} + \frac{x}{y}f''_{21} - \frac{x}{y^3}f''_{22}$

2. 圆、正方形、等边三角形的周长依次为:
$$\frac{\pi a}{\pi + 4 + 3\sqrt{3}}$$
, $\frac{4a}{\pi + 4 + 3\sqrt{3}}$, $\frac{3\sqrt{3}a}{\pi + 4 + 3\sqrt{3}}$;

面积之和最小值为
$$\frac{a^2}{4(\pi+4+3\sqrt{3})}$$

3.
$$\frac{14}{15}$$

$$4. \quad \frac{\pi}{8} \left(1 - \frac{1}{e} \right)$$

三、

1. 1) -2 2)
$$\frac{2}{e^2}(1-e)$$

2. 1)
$$c = 0$$

2)
$$F'(x) = \begin{cases} \frac{x^2 f(x) - 2 \int_0^x t f(t) dt}{x^3}, & x \neq 0 \\ \frac{a}{3}, & x = 0 \end{cases}$$
 连续(求 $F'(x)$ 的表达式并讨论其在点 $x = 0$ 处的连续

性)

3. 1)
$$2x\sin\sqrt{x} + 4\sqrt{x}\cos\sqrt{x} - 4\sin\sqrt{x} + C$$

2)
$$\frac{2\pi}{\sqrt{2012 - \frac{\pi^2}{4}}} \arctan \frac{\pi}{2\sqrt{2012 - \frac{\pi^2}{4}}}$$

1) 考虑
$$F(x) = \int_{a}^{x} f(t) dt$$
, $G(x) = e^{-x} f(x)$

2) 考虑
$$\varphi(x) = e^x [f'(x) - f(x)]$$