# Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data

Wei-Ning Hsu, Yu Zhang, and James Glass Talk by Stefan Wezel

Explainable Machine Learning

January 10, 2021

## Overview

- Introduction
- What are disentangled representations (intuition)
- Why disentangled representations
- o Formal description of disentangled representations
- o Disentanglement in the context of the paper
- Factorized Hierarchical VAE

## Overview

- o Propose Sequential Factorized Hierarchical VAE (FHVAE)
- Learn factorized latent space
- Focus on speech data
  - Sequence level (Speaker, ...) representation
  - Segment level (content, noise, ...) representation
- Exploit different temporal scales of speech sequence data

 Encode distinct generating factors in separate subsets of latent space dimensions



# Why learn disentangled representations?

Motivation

- o Explainability/Interpretability
- Fairness
- Scientific modeling
- Speaker verification
- Denoising

A field-trip to group theory: important concepts

## Group

- tuple of operation and set
- set is closed under operation, there is identity element, and inverse for every element, associativity
- Symmetry group
  - Set of transformations that leave object (i.e. another set) invariant
  - Operation is composition of transformations
- o Group action
  - Actions are results of symmetry transformations on object (i.e. set of changed order (permuation))
- Direct product
  - $G = G_1 \times ... \times G_n$

A field-trip to group theory: What is disentanglement in terms of group theory?

- Disentangled group actions
  - Result of certain subset  $G_i$  of transformations that only change certain subset  $W_i$  of object, but leave others invariant
- $\circ \to \mathsf{lf}$  we observe disentangled group actions in the world, we want to model those
- $\circ$  Then we can assume G can be decomposed into direct product symmetry subgroups  $G_i$
- $\circ$  To model those, we want to find mapping  $f:W\mapsto Z$
- $\circ$  Symmetry G on W should be preserved in Z
  - $q \cdot f(w) = f(q \cdot w) \rightarrow \text{equivariant map}$

A field-trip to group theory: What is disentanglement in terms of group theory?

- Representation is disentangled if:
- $\circ$  equivariant map  $f:W\mapsto Z$
- $\circ$  such a map would split Z into independent subspaces, thus satisfying:
  - Decomposition  $Z = Z_1 \times ... \times Z_n$
  - where  $Z_i$  is only affected by transformations  $G_i$  in W
  - and  $Z_i$  invariant to all  $G_{j\neq i}$  in W
  - Thus each subspace Z<sub>i</sub> can be transformed ONLY by the corresponding symmetry G<sub>i</sub> on W (or on Z)

## Back to the paper

#### Did they achieve disentanglement?

- Disentangled with respect to what decomposition?
- $\circ$  Assuming there is a decomposition  $G = G_{sequence} \times G_{segment}$
- This should be reflected in  $Z = (z_1, z_2)$
- $\circ z_1$  segment,  $z_2$  sequence
- $\circ$  Find an equivariant map  $f:W\mapsto Z$ , so that  $z_2$  is only affected by actions of  $G_{sequence}$  and vice versa



Image source: Hsu et al., 2017

- $\circ$  Sample  $z_2$  based on hidden state of LSTM
- $\circ z_1$  is conditioned on x and  $z_2$



- $\circ$  Based on  $z_1$  and  $z_2$ , form new hidden state
- $\circ$  sample  $\hat{x}$ , based on that



$$\begin{split} \mathcal{L}(\theta,\phi,X) &= \sum_{n=1}^{N} \mathcal{L}(\theta,\phi;x^{(n)}|\tilde{\mu_{2}}) + \alpha \cdot \log p_{\theta}(\tilde{\mu_{2}}) + const. \\ \text{with } \mathcal{L}(\theta,\phi;x^{(n)}|\tilde{\mu_{2}}) &= \mathbb{E}_{q_{\phi}(z_{1}^{(n)},z_{2}^{(n)}|x^{(n)})} \left[ \log p_{\theta}(x^{(n)}|z_{1}^{(n)},z_{2}^{(n)}) \right] \\ &- \mathbb{E}_{q_{\phi}(z_{2}^{(n)}|x^{(n)})} \left[ D_{KL}(q_{\phi}(z_{1}^{(n)}|x^{(n)},z_{2}^{(n)})||\underbrace{p_{\theta}(z_{1}^{(n)}))}_{\text{sequ. ind.}} \right] \\ &- D_{KL}(q_{\phi}(z_{2}^{(n)}|x^{(n)})||\underbrace{p_{\theta}(z_{2}^{(n)}|\tilde{\mu_{2}})}_{\text{seq. dep. prior}} \right] \\ &\text{and } \log p_{\theta}(\tilde{\mu_{2}}) = \log p(z_{2}^{(i,n)}|\tilde{\mu_{2}}^{(i)}) - \log(\sum_{i=1}^{M} p(z_{2}^{(i,n)}|\mu_{2}^{(j)})) \end{split}$$

- $\circ$  What is the sequence dependent prior  $\mu_2$  (s-vector)?
  - imagine a word vector
  - s-vector for every sequence
  - Ideally, similarities in sequences should be reflected in s-vectors close in euclidian space
  - $g(sequence\ id) = \mu_2$  can be viewed as a differentiable lookup table (embedding in tf, pytorch)
  - For test (where there is no seq.id., it can be found in closed form solution)

## Objective - Sequence variational lower bound

$$\begin{split} \mathcal{L}(\theta,\phi,X) &= \underbrace{log \; p(x|z_1,z_2)}_{\text{reconstruction}} \\ &- \underbrace{D_{KL}(\mathcal{N}(\mu_{z_1},\sigma_{z_1})||\mathcal{N}(0,1))}_{\text{regularize } z_1 \text{ through global prior}} \\ &- \underbrace{D_{KL}(\mathcal{N}(\mu_{z_2},\sigma_{z_2})||\mathcal{N}(\tilde{\mu_2},0.5))}_{\text{regularize } z_2 \text{ through seq. dep. prior}} \\ &+ \underbrace{log \; p(\tilde{\mu_2}) \cdot \frac{1}{seq. \; length}}_{\text{prob. of } \tilde{\mu_2} \text{ under standard Gaussian prior}} \end{split}$$

## **FHVAE**

#### Objective - Discriminative objective

$$log \; p(sequence \; id|z_2) = CrossEntropy(\underbrace{ \frac{-(\mu_{z_2} - \mu_2)^2}{2 \cdot e^{log \; 0.25}}}_{\text{depends on } \mu_{z_2} \; \text{and } \mu_2}, \; sequence \; id)$$
 Try to predict sequence id, with  $\mu_{z_2}$ 

#### Objective - Discriminative segment variational lower bound

$$\mathcal{L}^{dis}(\theta, \phi; x) = \mathcal{L}(\theta, \phi, X) + \alpha \cdot log \ p(sequence \ id|z_2)$$

- Combined objective
  - encourage factorization
- $\circ$  discriminative objective can be adjusted through  $\alpha$  hyperparameter
  - ullet encourage  $\mu_{z_2}$  to become more meaningful

## **FHVAF**

#### Results - TIMIT Speaker Verification

- o Task: Speaker verification
  - Allows quantitative analysis of performance and of quality of disentanglement
  - ullet use FHVAE's s-vector  $\mu_2$  to predict speaker
- o Compare i-vector baseline
  - i-vector is used in SOTA speaker verification approaches
  - low dim subspace of GMM universal background model
  - subspace of speaker (content-independent) information

#### Results - TIMIT Speaker Verification

- o Unsupervised speaker verification (Raw column)
- Equal error rates (lower is better)
- $\circ$  use  $\mu_1$  as sanity check

| Features | Dimension       | $\alpha$                   | Raw                        | LDA (12 dim)               | LDA (24 dim)     |
|----------|-----------------|----------------------------|----------------------------|----------------------------|------------------|
| i-vector | 48<br>100       | -                          | 10.12%<br>9.52%            | 6.25%<br>6.10%             | 5.95%<br>5.50%   |
| $\mu_2$  | 200<br>16<br>16 | 0<br>10 <sup>-1</sup>      | 9.82%<br>5.06%<br>4.91%    | 6.54%<br>4.02%<br>4.61%    | 6.10%            |
|          | 16<br>16<br>32  | $10^{0}$ $10^{1}$ $10^{1}$ | 3.87%<br>2.38%<br>2.38%    | 3.86%<br>2.08%<br>2.08%    | 1.34%            |
| $\mu_1$  | 16<br>16<br>32  | $10^{0}$ $10^{1}$ $10^{1}$ | 22.77%<br>27.68%<br>22.47% | 15.62%<br>22.17%<br>16.82% | -<br>-<br>17.26% |

## **FHVAE**

#### Looking Back

- Some evidence towards disentangling with respect to sequence-segment decomposition
  - other decompositions may prove more challenging
  - speaker gender, speaker age, language as more fine grained decompositions
- I had trouble disentangling simple examples
- Good performance on speaker verification and denoising task

## References

- Hsu, W.N., Zhang, Y. and Glass, J., 2017. Unsupervised learning of disentangled and interpretable representations from sequential data. In Advances in neural information processing systems (pp. 1878-1889).
- Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L.,
   Rezende, D. and Lerchner, A., 2018. Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230.
- o Scott, W.R., 2012. Group theory. Courier Corporation.
- Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

A field-trip to group theory: Disentangle our example formally

- o Signal can get shifted or warped
- o the set of these transformations make up a symmetry group
- This can be decomposed into shifts and warps/subsets of original set (all shifted × all warped)
- o Either content is preserved, or speaker is preserved
- the resulting set of transformed signals are the actions of the symmetry group on the world state

A field-trip to group theory

- This symmetry group can be decomposed into symmetry subgroups
- One affects location
- o the other affects frequence

# What are disentangled representations formally?

Disentangled Group Action

- $\circ$  Group action  $G \times X \mapsto X$
- o Group decomposes into direct product  $G = G_{shifts} \times G_{warps}$
- $\circ$  Is disentangled with respect to decomposition of G
  - if there is decomposition  $X = X_{shifted} \times X_{warped}$
  - and actions  $G_{shifts} \times X_{shifted} \mapsto X_{shifted}$
  - and actions  $G_{warps} \times X_{warped} \mapsto X_{warped}$

# What are disentangled representations formally?

#### Disentangled Representation

- $\circ$  Let W be the set of world states (all shifts and warps of signal)
- $\circ$  Generative process  $b:W\mapsto O$  (voice to audio processing unit)
- $\circ$  Inference process  $h: O \mapsto Z$  (observation to latent space)
- $\circ \ f: W \mapsto Z, f = h \circ b$
- $\circ\:$  Now, we know, there is a symmetry group acting on W  $(G\times W\mapsto W)$
- $\circ$  We want to find corresponding  $G\times Z\mapsto Z$  to reflect symmetry structure of W in Z
- $\circ$  More formal:  $g \cdot f(w) = f(g \cdot w)$
- This is whats called an equivariant map (famous example: convnet)

# What are disentangled representations formally?

## Disentangled Representation

- o Assume symmetry transformations G of W decompose into direct product  $G = G_1 \times ... \times G_n$
- o Representation is disentangled if
  - equivariant map  $f: W \mapsto Z, g \cdot f(w) = f(g \cdot w) \forall g \in G, w \in W$
  - ullet such a map would split Z into independent subspaces, thus satisfying:
    - Decomposition  $Z = Z_{shifted} \times Z_{warped}$
    - ullet where  $Z_{shifted}$  is only affected by shifts in  $W\left(G_{shifts}
      ight)$
    - and  $Z_{warped}$  is only affected by warps in  $W\left(G_{warps}\right)$
    - Thus each subspace can be transformed by the corresponding symmetry (like shift or warp independently)
- There may be more criteria (preserving group structure, isomorphisms, ...) but for the intuition this is sufficient

# Did they achieve disentanglement

- o With respect to a decomposition into two
- o Setting: 10 sentences, 630 speakers
- How can we formulate this in group theory terms?

## How did they do it?

Intuition

- With respect to a decomposition into two
- regularize z2 by sequence dependant prior (lookup table of s-vectors)
- o and z1 by sequence independant prior

# How did they do it?

Methods

- o Sample batch at segment level (instead of sequence level)
- o Maximize segment variational lower bound
- o (Force z2 to be close to mu2)
- approximation of mu2 is closed form equation (concave function, set derivative to 0)

## Challenges

- If we really think about it, it is hard for us to define what a disentangled representation should actually be
- Precise biases of what the latent space should be decomposited into can be helpful as well as biases towards the 'form' of these latent subspaces