I. For 3 variables x, y, z, they satisfy the equality x + y + z = 0. Calculate the angle between vector $\mathbf{v} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$ and vector $\mathbf{w} = (\mathbf{z}, \mathbf{x}, \mathbf{y})$.

- II. Suppose $Q^T = Q^{-1}$.
- (1) Show that the columns $q_1, \dots q_n$ are unit vectors: $\|\boldsymbol{q}_i\|^2 = 1$.
- (2) Show that every two columns of Q are perpendicular: $\mathbf{q}_i^T \mathbf{q}_j = 0$.
- (3) Find a 2 by 2 example (that $Q^T = Q^{-1}$) with first entry $q_{11} = \cos\theta$.

III. These flags have rank 2. Find the singular value decomposition of A_{Sweden} , $A_{Finland}$, B_{Benin} .

$$A_{\text{Sweden}} = A_{\text{Finland}} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 1 & 1 \end{bmatrix}$$
 $B_{\text{Benin}} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 3 \end{bmatrix}$

IV. Suppose A_0 is a 5 by 10 matrix with average grades for 5 courses over 10 years.
(1) How would you create the centered matrix A and the sample covariance matrix S ?
(2) When you find the leading eigenvector of S, what does it tell you?