MГУ BTEK №1

Обработка результатов измерений на примере измерения линейных размеров тел, имеющих правильную геометрическую форму.

Сергей Слепышев 109 группа

Октябрь 2022 (последний день до дедлайна)

0.1 Вступление

Цель работы:

Освоить обработку прямых и косвенных измерений физических величин (погрешностей полученных результатов), научиться оформлять лабораторные работы. Познакомиться с методами измерения, позволяющими увеличить точность результатов.

0.2 Эксперимент и обработка результатов

0.2.1 Упражнение 1. Определение плотности тел правильной геометрической формы.

Померил массу, записал данные в таблицу 1.1:

Таблица 1.1

m	Погрешность весов	Погрешность считывания	Погрешность суммарная	Delta m	Delta m
гр	гр	гр	гр	гр	гр
				a = 0,7	a = 0,9
52,92	0,02	0,00	0,02	0,03	0,05

Погрешность весов, считывания, суммарную посчитал по формулам:

$$\sigma_{\text{becob}} = \frac{\Delta_{\text{пред}}}{3} = \frac{0.05\text{гр}}{3} \qquad \sigma_{\text{счит}} = \frac{\omega}{\sqrt{12}} = \frac{0.01\text{гр}}{\sqrt{12}} \qquad \sigma_{\text{сум}} = \sqrt{\sigma_{\text{счит}}^2 + \sigma_{\text{becob}}^2}$$

Значения Δm определил используя данную формулу:

$$\Delta m = \sigma_{\text{сум}} * \gamma_{\alpha}$$

Снял экспериментальные данные, обработал и записал в таблицу 1.2:

Таблица 1.2

х	1	2	3	4	5	Среднее	Погрешность случайная	Погрешность приборная	Погрешность суммарная	Delta X
	ММ	ММ	ММ	мм	ММ	ММ	ММ	ММ	MM	ММ
										a = 0,7
I_1	42,4	42,5	42,6	42,6	42,4	42,50	0,04	0,04	0,06	0,11
I_2	50,9	50,9	50,9	50,9	50,8	50,88	0,02		0,05	0,09
Н	23,5	23,6	23,6	23,6	23,5	23,56	0,02		0,05	0,09
h	14,2	14,3	14,4	14,4	14,4	14,34	0,04		0,06	0,11
D	20,3	20,5	20,5	20,5	20,5	20,46	0,04		0,06	0,11
d	13,3	13,5	13,6	13,5	13,5	13,48	0,05		0,07	0,12

Посчитал среднее:

$$\overline{X} = \frac{\sum_{i=1}^{5} X_i}{5}$$

Случайную погрешность:

$$\sigma_{\overline{X}} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - x)^2}{N(N-1)}}$$

Приборную погрешность:

$$\sigma_{\rm при6} = \sqrt{\sigma_{\rm mth}^2 + \sigma_{\rm curt}^2} = \sqrt{\left(\frac{\Delta_{\rm пред}}{3}\right)^2 + \left(\frac{\omega}{\sqrt{12}}\right)^2}$$

где $\omega = \Delta_{\text{пред}} = 0.1$ мм.

Суммарную погрешность:

$$\sigma_{ ext{cym}} = \sqrt{\sigma_{ ext{приб}}^2 + \sigma_{\overline{X}}}$$

Домножил суммарную погрешность на коэффициент Чебышева и получил:

$$\Delta X = \sigma_{\text{cym}} * \gamma_{0.7} = \sigma_{\text{cym}} * 1.83$$

1

Далее рассчитал объём, плотность и погрешности:

Таблица 1.3

Объём V	Погрешность V	Плотность р	Погрешность р
см^3	см^3	г/см^3	г/см^3
44,92	0,28	1,178	0,007

Объем и его погрешность:

$$V = l_1 l_2 H - \frac{\pi D^2}{4} h - \frac{\pi d^2}{4} (H - h)$$

$$\sigma_V = \sqrt{(l_2 H)^2 \sigma_{l_1}^2 + (l_1 H)^2 \sigma_{l_2}^2 + \left(l_1 l_2 + \frac{\pi d^2}{4}\right)^2 \sigma_H^2 + \left(\frac{\pi D H}{2}\right)^2 \sigma_D^2 + \left(\frac{\pi d (H-h)}{2}\right)^2 \sigma_d^2 + \left(\frac{\pi (D^2 - d^2)}{4}\right)^2 \sigma_h^2}$$

Вычислил плотность и её погрешность:

$$\rho = \frac{m}{V}$$

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_{m}}{m}\right)^{2} + \left(\frac{\sigma_{V}}{V}\right)^{2}}$$

И вставлю таблицу коэффициентов γ_{α} , чтобы ко мне не было претензий:

Таблица 1.4

alpha	0,5	0,6	0,7	0,8	0,9	0,95
Gamma_alpha	1,41	1,58	1,83	2,24	3,16	4,47

Вывод: это оргстекло с плотностью около $1.2 \mathrm{гр/cm^3}$. Ну и я красава, что так померил, даже в погрешность табличная величина влезла, балдеж конкретный.

0.2.2 Упражнение 2. Определение толщины шайбы.

Померил толщину шайб штангенциркулем:

Таблица 2.1

dш	mean	SE of mean	sigma прибор	sigma сумм	delta сумм
ММ	ММ	ММ	ММ	ММ	ММ
					a = 0,7
0,9	0,92	0,02	0,04	0,05	0,09
1					
0,9					
0,9					
0,9					

Померил микрометром:

Таблица 2.2

1	mean I	SE of mean I	sigma прибор	sigma sum	delta sum
ММ	мм	ММ	ММ	мм	мм
					a = 0,7
1,02	1,012	0,004	0,004	0,006	0,011
1,01					
1,01					
1,02					
1					

У штангенциркуля и микрометра рассчитал среднее:

$$\overline{X} = \frac{\sum_{i=1}^{5} X_i}{5}$$

Случайную погрешность:

$$\sigma_{\overline{X}} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - x)^2}{N(N-1)}}$$

Приборную погрешность:

$$\sigma_{\rm при6} = \sqrt{\sigma_{\rm штц}^2 + \sigma_{\rm счит}^2} = \sqrt{\left(\frac{\Delta_{\rm пред}}{3}\right)^2 + \left(\frac{\omega}{\sqrt{12}}\right)^2}$$

где $\omega = \Delta_{\rm пред} = 0.1$ мм для штангенциркуля и $\omega = \Delta_{\rm пред} = 0.01$ мм для микрометра.

Суммарную погрешность:

$$\sigma_{\text{сум}} = \sqrt{\sigma_{\text{приб}}^2 + \sigma_{\overline{X}}^2}$$

Полную погрешность:

$$\Delta X = \sigma_{\text{сум}} * \gamma_{0.7} = \sigma_{\text{сум}} * 1.83$$

Померил пацанской линеечкой:

Таблица 2.3

N = 15	N = 20	N = 25	N = 30	
ММ	ММ	ММ	ММ	
15,5	21	25	30	
15	20,5	25	29,5	
15	20	25	30	
15	20	25	30	
15,5	20	24,5	29,5	

По-пацански обработал линеечку:

Таблица 2.4

Data	mean I	SE of mean I	sigma lineyka	sigma sum	mean d	sigma d	d I	S d	Delta d I
	ММ	ММ	ММ	ММ	MM	ММ	MM	MM	ММ
									a = 0,7
N = 15	15,2	0,1	0,4	0,5	1,01	0,03	1,00	0,01	0,02
N = 20	20,3	0,2		0,5	1,02	0,02			
N = 25	24,9	0,1		0,5	1,00	0,02			
N = 30	29,8	0,1		0,5	0,99	0,02			

Аналогично рассчитано среднее, случайная, приборная и суммарная погрешность для каждого значения N ($\omega = \Delta_{\rm npeq} = 0.5 {\rm mm}$).

Значение толщины одной шайбы:

$$\overline{d} = \frac{l}{N}$$

Погрешность \overline{d} :

$$\sigma_{\overline{d}} = \frac{\sigma_{\overline{l}}}{N}$$

Получил полную погрешность домножив на коэффициент: После обработки методом МНК получил:

$$d^{l} = \frac{\sum_{i=1}^{4} \frac{d_{i}}{(\Delta \overline{d_{i}})^{2}}}{\sum_{i=1}^{4} \frac{1}{(\Delta d_{i})^{2}}}$$

Графически можно представить все результаты так:

Вывод: пацанская линеечка реально зарешала, она попала почти в значение прибора точнее ее на два порядка!

Все расчетные таблицы (файл формата originlab), как и остальное, что мне понадобилось при выполнении, находятся на моем гитхабе:

https://github.com/serega-drakon/msu-labs