学生须将答案写在此线以下

鲁东大学 2022—2023 学年第一学期

2022 级 数学与应用数学(师范类)、统计学专业 本科卷 课程名称 数学分析 1

课程号(212121301)

考试形式 (闭卷笔试)

时间(120分钟)

题目	_	=	=	四	五	统分人
得 分						

得分	评卷人		
•			

一、判断题: 本题共5小题, 每题2分, 满分10分.

- 1、 $f(x)=x\sin x$ 在 $x \to +\infty$ 时为无穷大量. (
- 2、对任意 $\varepsilon > 0$, $(a \varepsilon, a + \varepsilon)$ 之外有数列 $\{x_n\}$ 的有限项,则 $\lim_{n \to \infty} x_n = a$. (
- 3、若 $f''(x_0) > 0$,则 x_0 点为 f(x) 的极小值点. (
- 4、连续函数都是可微函数.(
- 5、|f(x)|在 x_0 点连续,则函数f(x)在 x_0 点连续. (

得分 评卷人

二、填空题: 本题共5小题, 每题3分, 满分15分.

- 2、函数 f(x) 在区间 I 上一致连续的定义为:
- 4、写出一个只在x = 0点可导的函数 .
- 5、函数 $f(x) = \frac{x^2 x}{|x|(x^2 1)}$ 的可去间断点为______.

得分 评卷人

三、选择题: 本题共5小题, 每题3分, 满分15分.

1、下列式子错误的是(

(A)
$$\lim_{x \to \infty} \frac{\sin \frac{1}{x}}{x} = 0$$
; (B) $\lim_{x \to \infty} x \sin \frac{1}{x} = 0$; (C) $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

- 2、f(x) 在 x_0 点存在左导数和右导数,下列结论正确的是()
- (A) f(x) 在 x_0 点可导;
- (B) f(x) 在 x_0 点连续;
- (C) f(x) 在 x_0 点不一定可导,也不一定连续.
- 3、f(x) 在 x_0 点满足 $f'(x_0)=0$, $f''(x_0)=0$, $f'''(x_0)\neq 0$,则下列结论 正确的是()
- (A) 点 $(x_0, f(x_0))$ 为 y = f(x)的拐点;
- (B) x_0 为 f(x)的极值点;
- (C) x_0 不是 f(x) 的极值点, $(x_0, f(x_0))$ 也不是 y = f(x) 的拐点.
- 4、f(x) = x(x-1)(x-2)(x-3),则f'''(x) = 0在 $(3,+\infty)$ 上根的个数为()
- (A) 1: (B) 4; (C) 0.
- 5、设函数 f(x) 可导,则下列命题错误的是()
- (A) 若 f(x) 为奇函数,则 f'(x) 为偶函数;
- (B) 若 f(x) 为周期函数,则 f'(x) 为周期函数;
- (C) 若 f(x) 为单调函数,则 f'(x) 为单调函数.

得分评卷人

四、计算与讨论题:本题共5小题,每小题8分,满分40分.

- 1、(8分)求极限(1) $\lim_{x\to 0} \left(\frac{\tan x}{\sin x}\right)^{\frac{1}{x^2}}$;
- (2) $\lim_{x\to 0} \frac{\cos x e^{-\frac{x^2}{2}}}{x^4}$.

- 2、(8分) 已知分段函数 $f(x) = \begin{cases} x + \sin x^2, x \le 0 \\ \ln(1+x), x > 0 \end{cases}$
 - (1) 求 f'(x) 并讨论 f'(x) 的连续性;
 - (2) 求f''(x).

4、 (8分) 求 $f(x) = (2x-5)\sqrt[3]{x^2}$ 在区间[-1,2]上的最小值和最大值.

5、(8分)某工厂要建一面积为512*m*²的矩形堆料场,一边可以用原有的墙壁,其它三面需新建.问堆料场的长和宽各为多少米时,能使砌墙所用的料最省?

得分	评卷人

五、证明题: 本题共 2 小题, 每小题 10 分, 满分 20 分.

1、(10 分) 证明: f(x)为[0,1]上的二阶可导函数, f(0)=f(1)=0,存在一点 $a \in (0,1)$, 使得f(a) < 0. 证明: 至少存在一点 $\xi \in (0,1)$, 使得 $f''(\xi) > 0$.

2、(10分)证明不等式: 当x > 0时, $x - \frac{x^2}{2} < \ln(1+x) < x$.