

SZXT

 $TT_A((s^2)^n \setminus \Delta) \simeq \Lambda$

Zopfdiagramme: $IR^2 \times I$ (x,y,t) b $IR \times I$ (x,t) D(b)

nach kleiner Isotopia sind diese regular

max. Doppelpunble und diese sind transversal

Def: D,D' Zapfdiagramme. D~D' (=) = F Db × I → 12 x I sleting s.d. + se I

G Fs: D | R × I ist Ginbettung

Fs (D) ist ein geom. Zapfdiagramm auf n Strangen

My D. = D, D, = D' + Bed. an die Krewaungen

Satz: b_1, b_2 topfe $b_1 \sim b_2$ (=) $D(b_1) \sim D(b_2)$ (=) $D(b_1)$ und $D(b_2)$ unterscheiden sich nur durch Reide meister $\mathbb T$ und $\mathbb T$

Lemma: Bn = < 6, ..., 6n-1 Zopfrelation >

(Siehe Beneis

Artin Zopfgruppe

+ Umgebungshamotopien
2 //> 6 1

Bew: [b] & B, ~ D(b)

alle Segmente haben Form

 $\sim D(b_n^+)$ $\swarrow \sim D(b_n^-)$

=> b = bin biz ... bin

1. $b^{+}_{i}b^{-}_{i}=$ $= 1_{n} = b^{-}_{i}b^{+}_{i}$ $\sim b^{-}_{i} = b^{-}_{i}b^{-}_{i}b^{-}_{i}$ $= 1_{n} = b^{-}_{i}b^{+}_{i}$ $\approx 1_{n} = b^{-}_{i}b^{+}_{i}$ $\approx 1_{n} = b^{-}_{i}b^{+}_{i}$ $\approx 1_{n} = b^{-}_{i}b^{+}_{i}$

= 7 night benachbart

b; +> b;+

- Gruppen homo

- Surjehtiv

- injektiv

Zopfe -> Verschlingung in 123

 $D^2 \times I \rightarrow D^2 \times S^1 \longrightarrow IR^3$

Sate van Alexande :

Jede Veschlingung ist isotop a geschl. Zopf

Bew: >> polynomial

Sie unterscheiden Sate (Markov): 2 Zopfe haben isotope Abschlüsse im IR (=> Umgeb. hom.

Ma: Konjugation mit Zopf

+ Marhov rige Ma .. Mz