

Soluzione blockchain per la tracciabilità e validità della diffusione dei contenuti online

Arto Manuel

Relatore: Dott. Luca Sciullo

Correlatore: Dott. Federico Montori

Alma Mater Studiorum - Università di Bologna

Diffusione della disinformazione

- Velocità di propagazione
- Fake News
- Deepfakes
- Agenzie di fact-checking limitate

Obiettivi della tesi

- 1. Design e implementazione di un framework basato su blockchain per tracciare la diffusione e l'origine dei contenuti
 - Studio e realizzazione di un sistema di fact-checking decentralizzato
 - 1.2. Design di un meccanismo di ricompense e penalizzazioni
 - 1.3. Analisi della resistenza alle manipolazioni

- 2. Validazione in un'applicazione di messaggistica
 - 2.1. Analisi del funzionamento del sistema

SocialTrustr

Realizzata su blockchain

Ideata come framework

Integrabile in qualunque app social

Componenti del sistema

Sistema di storage e ottenimento dati

Sistema di voting

Modello predittivo probabilistico

Storage e ottenimento dati

1. Immutabilità dei dati

2. Tracciamento della diffusione dei contenuti

Flusso storage e ottenimento dati

6/13

Sistema di voting

1. Realizzare un meccanismo di consenso resistente alle manipolazioni

2. Creare un Token come incentivo economico

3. Separare quantità di token e affidabilità di un utente

Resistenza alle manipolazioni

Sybil attack

51% Attack

Creazione di identità multiple per manipolare il sistema

Prevenzioni:

- L'iscrizione ha un costo iniziale
- Le operazioni richiedono lo staking di TRS
- La creazione di più utenti risulta costoso

Ottenere 51% del potere decisionale

Prevenzioni:

- Risulta difficile aumentare la propria affidabilità in autonomia
- Ricompense inversamente proporzionali alla affidabilità
- Penalizzazioni più drastiche delle ricompense

Modello predittivo probabilistico

 Valutazioni tramite affidabilità e un confidence score

2. Redistribuzione dei token TRS in stake

3. Uso dell'entropia per regolare affidabilità degli utenti

$$Punishment = \sum_{i \in T_F} (Stake * Conf_i)$$

$$Reward_i = \frac{Conf_i}{Tot_{Conf}} * Punishment \ \forall T_T$$

Redistribuzione TRS

$$Punishment_i = AF_i * Conf_i * (1.0 - Entropy) \ \forall T_F$$

$$Reward_{i} = \frac{(100 - AF_{i}) * Conf_{i} * (1.0 - Entropy)}{M} \forall T_{T}$$

Regolazione affidabilità

Implementazione

Blockchain Application

Subgraph Application

Mobile App Integration

Validazione

Redistribuzione TRS su 10 utenti e 200 iterazioni

Entropia e delta incremento/riduzione affidabilità su 10 utenti e 10.000 ripetizioni

1/13

Conclusione

- Monitorare diffusione dei contenuti
- Immutabilità e trasparenza dei dati
- Potere in mano agli utenti
- Evitare la diffusione di fake news
- Tracciare affidabilità degli utenti

Sviluppi futuri

Verifica in scenari con utenti reali

Interoperabilità su diverse blockchain

Estendere l'applicazione su più piattaforme social

Flusso condivisione di un contenuto

Flusso validazione di un contenuto

Simulazione Montecarlo

Affidabilità su 10 utenti e 200 iterazioni

Simulazione Montecarlo

Redistribuzione TRS su 10 utenti e 200 iterazioni

Simulazione Montecarlo

Entropia e delta incremento/riduzione affidabilit`a su 10 utenti e

10.000 ripetizioni

