NAIL062 V&P LOGIKA: 7. SADA PŘÍKLADŮ – VLASTNOSTI STRUKTUR A TEORIÍ

Výukové cíle: Po absolvování cvičení student

- rozumí pojmu podstruktura, generovaná podstruktura, expanze, redukt umí je najít
- rozumí pojmu expanze a redukt struktury, umí je formálně definovat, uvést příklady
- rozumí pojmům [jednoduchá, konzervativní] extenze, umí zformulovat definice, i příslušné sémantické kritérium (jak pro expanze, tak i pro redukty), aplikovat na příkladě
- rozumí pojmu extenze o definice, umí ho formálně definovat, uvést příklady
- umí rozhodnout, zda je daná teorie extenzí o definice, sestrojit extenzi o danou definici
- rozumí pojmu definovatelnosti ve struktuře, umí najít definovatelné podmnožiny/relace

Příklady na cvičení

Příklad 1. Uvažme $\underline{\mathbb{Z}}_4 = \langle \{0,1,2,3\},+,-,0 \rangle$ kde + je binární sčítání modulo 4 a – je unární funkce, která vrací *inverzní* prvek + vzhledem k neutrálnímu prvku 0.

- (a) Je $\underline{\mathbb{Z}}_4$ model teorie grup (tj. je to grupa)?
- (b) Určete všechny podstruktury $\underline{\mathbb{Z}}_4\langle a\rangle$ generované nějakým $a\in\mathbb{Z}_4.$
- (c) Obsahuje $\underline{\mathbb{Z}}_4$ ještě nějaké další podstruktury?
- (d) Je každá podstruktura $\underline{\mathbb{Z}}_4$ modelem teorie grup?
- (e) Je každá podstruktura $\underline{\mathbb{Z}}_4$ elementárně ekvivalentní $\underline{\mathbb{Z}}_4$?

Příklad 2. Buď $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ těleso racionálních čísel se standardními operacemi.

- (a) Existuje redukt Q, který je modelem teorie grup?
- (b) Lze redukt $\langle \mathbb{Q}, \cdot, \overline{1} \rangle$ rozšířit na model teorie grup?
- (c) Obsahuje Q podstrukturu, která není elementárně ekvivalentní Q?
- (d) Označme $Th(\mathbb{Q})$ množinu všech sentencí pravdivých v \mathbb{Q} . Je $Th(\mathbb{Q})$ kompletní teorie?

Příklad 3. Mějme teorii $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ v jazyce $L = \langle c_1, c_2, c_3 \rangle$ s rovností.

- (a) Je T kompletní?
- (b) Najděte všechny jednoduché extenze T, až na ekvivalenci. Které z nich jsou kompletní?
- (c) Je teorie $T' = T \cup \{x = c_1 \lor x = c_4\}$ v jazyce $L = \langle c_1, c_2, c_3, c_4 \rangle$ extenzí T? Je T' jednoduchá extenze T? Je T' konzervativní extenze T?

Příklad 4. Buď T' extenze teorie $T = \{(\exists y)(x+y=0), (x+y=0) \land (x+z=0) \rightarrow y=z\}$ v jazyce $L = \langle +, 0, \leq \rangle$ s rovností o definice < a unárního - s axiomy

$$\begin{aligned} -x &= y &\leftrightarrow & x+y &= 0 \\ x &< y &\leftrightarrow & x \leq y \, \land \, \, \neg (x=y) \end{aligned}$$

Najděte formule v jazyce L, které jsou ekvivalentní v T^{\prime} s následujícími formulemi.

(a)
$$x + (-x) = 0$$

(b)
$$x + (-y) < x$$

$$(c) -(x+y) < -x$$

Příklad 5. Mějme jazyk $L = \langle F \rangle$ s rovností, kde F je binární funkční symbol. Najděte formule definující následující množiny (bez parametrů):

- (a) interval $(0, \infty)$ v $\mathcal{A} = \langle \mathbb{R}, \cdot \rangle$ kde · je násobení reálných čísel
- (b) množina $\{(x,1/x) \mid x \neq 0\}$ ve stejné struktuře \mathcal{A}
- (c) množina všech nejvýše jednoprvkových podmnožin \mathbb{N} v $\mathcal{B} = \langle \mathcal{P}(\mathbb{N}), \cup \rangle$
- (d) množina všech prvočísel v $\mathcal{C} = \langle \mathbb{N} \cup \{0\}, \cdot \rangle$

Další příklady k procvičení

Příklad 6. Buď $T = \{\neg E(x,x), E(x,y) \rightarrow E(y,x), (\exists x)(\exists y)(\exists z)(E(x,y) \land E(y,z) \land E(x,z) \land \neg (x=y \lor y=z \lor x=z)), \varphi\}$ teorie v jazyce $L = \langle E \rangle$ s rovností, kde E je binární relační symbol a φ vyjadřuje, že "existují právě čtyři prvky".

- (a) Uvažme rozšíření $L' = \langle E, c \rangle$ jazyka o nový konstantní symbol c. Určete počet (až na ekvivalenci) teorií T' v jazyce L', které jsou extenzemi teorie T.
- (b) Má T nějakou konzervativní extenzi v jazyce L'? Zdůvodněte.

Příklad 7. Necht $T = \{x = f(f(x)), \varphi, \neg c_1 = c_2\}$ je teorie jazyka $L = \langle f, c_1, c_2 \rangle$ s rovností, kde f je unární funkční, c_1, c_2 jsou konstantní symboly a axiom φ vyjadřuje, že "existují právě 3 prvky".

- (a) Určete, kolik má teorie T navzájem neekvivalentních jednoduchých kompletních extenzí. Napište dvě z nich. (3b)
- (b) Nechť $T' = \{x = f(f(x)), \varphi, \neg f(c_1) = f(c_2)\}$ je teorie stejného jazyka, axiom φ je stejný jako výše. Je T' extenze T? Je T extenze T'? Pokud ano, jde o konzervativní extenzi? Uveďte zdůvodnění. (2b)

Příklad 8. Mějme jazyk $L = \langle P, R, f, c, d \rangle$ s rovností a následující dvě formule:

$$\varphi: \quad P(x,y) \leftrightarrow R(x,y) \land \neg x = y$$

$$\psi: \quad P(x,y) \rightarrow P(x,f(x,y)) \land P(f(x,y),y)$$

Uvažme následující *L*-teorii:

$$T = \{ \varphi, \ \psi, \ \neg c = d,$$

$$R(x, x),$$

$$R(x, y) \land R(y, x) \rightarrow x = y,$$

$$R(x, y) \land R(y, z) \rightarrow R(x, z),$$

$$R(x, y) \lor R(y, x) \}$$

- (a) Nalezněte expanzi struktury $\langle \mathbb{Q}, \leq \rangle$ do jazyka L na model teorie T.
- (b) Je sentence $(\forall x)R(c,x)$ pravdivá/lživá/nezávislá v T? Zdůvodněte všechny tři odpovědi.
- (c) Nalezněte dvě neekvivalentní kompletní jednoduché extenze T nebo zdůvodněte, proč neexistují.
- (d) Nechť $T' = T \setminus \{\varphi, \psi\}$ je teorie v jazyce $L' = \langle R, f, c, d \rangle$. Je teorie T konzervativní extenzí teorie T'? Uveďte zdůvodnění.

K zamyšlení

Příklad 9. Nechť $T_n = \{ \neg c_i = c_j | 1 \le i < j \le n \}$ označuje teorii jazyka $L_n = \langle c_1, \dots, c_n \rangle$ s rovností, kde c_1, \dots, c_n jsou konstantní symboly.

- (a) Pro dané konečné $k \ge 1$ určete počet k-prvkových modelů teorie T_n až na izomorfismus.
- (b) Určete počet spočetných modelů teorie T_n až na izomorfismus.
- (c) Pro jaké dvojice hodnot n a m je T_n extenzí T_m ? Pro jaké je konzervativní extenzí? Zdůvodněte.