5.1.5 Automatas Finitos Deterministas: DFAs. Simulación de un DFA.

> <u>Definición</u>: Sea A= (Q, \(\tau\), \(\sigma\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\ es determinista si $|S(q,a)| \le 1$, $\forall q \in \mathcal{B}, a \in \Sigma$.

Teorema: Sea $\mathcal{A} = (Q, Z, S, q_o, F)$ un NFA, en houses existe $\mathcal{A}' = (Q', Z', S', q_o', F') / T(\mathcal{A}') = T(\mathcal{A})$.

Basta consideror $\begin{cases} Q' := P(Q) \\ Z' := \Sigma \end{cases}$ $F' := \{ S \subseteq Q / S \cap F \neq \emptyset \}$ $q_o' = \{ q_o \}$ $\forall S \subseteq \emptyset, S'(S,a) := S' donde.$ 5' = { p e 0 / 3 q e 8, p e S(q, a) }

cutonies para demotra que T(A') = T(A), Sastara pro San que Vi, (s, w) + (s, w) ← s'= {p ∈ 0/ ∃ q ∈ S, (q, w) + (p, w)}

Lo haremus por inducción en el valor de ":"

1=1

(S,un) 1/4, (S',w): # 5'(S,u) = (S'w): # S'= { p \in Q / 3 q \in S, (q,uw) 1/4 (P,w)} i=n-1 Supresto cierto.

$$(S,uw) \xrightarrow{n} (S',w) : AD (S,uw) \xrightarrow{n-1} (S',v) \xrightarrow{h} (S',w) \xrightarrow{h} (S',w) \xrightarrow{h} (S',w) \xrightarrow{h} (S',v) \xrightarrow{h} (P,v) \xrightarrow{h} (P,w) (Por induction)$$

$$S' = \left\{ P \in Q \middle/ \exists + \in S'', (+,v) \xrightarrow{h} (P,w) (Por definition) \right\}$$

Por tanto, tendremos que en partiular
$$x \in T(A')$$
 $\exists f \in F'$ $(q_0, x) \neq (p_0, x) \neq (p_$

Ejemplo: Sea A = ({q0, q1, q2, q3, q3}, {1,2,3}, 5, q0, {q3}) donde 5 viene dada por:

	and I age	2	3
9, 1	£90,9,}	{q., q.}	{90,93}
9,	{91,93}	<i>{</i> 9 <i>,}</i>	{91}
q_z	{q2}	{92,90}	§ 92}
93	1937	{93}	{93,9p}
9,	Ø	Ø	Ø

Construirems A'= (0, {1,2,3}, S', {9,3, F) DFA/T(A')=T(A).

(2m) \$ (s/m): 40 2(2m) = 5, 190 2/3 60 (3 de 2 (dim)) \$ (0m)

i=n-1 Supple work.

En principio bata tomon d'a la borma indicada en el th. anterior, con lo que 0':= P(Q) y por tanto 18'1 = 25 = 32. Sin embasso, vereno que el mimero de estados puede reducirse considera llemente eliminando aquellos que no sun accesibles.

Definición: Sea $A = (0, \Sigma, \delta, q_0, F)$ un FA, decimos que $p \in 0$ es un estado accenide $\pi i = \exists w / (q_0, w) \vdash^* (p, e)$.

E evidente que en un FA, soilo es necesario considerar los estados que son accesibles.

En metro caso, y aplicando la definición de accentle, estenemos que las taslas de transinon de A' pueden reducirse a:

	1	2	3.		
A = 490}	В	C	D		
B= {q0, q,}	E	F	G		
C= 190,92}	F	H .	I		
D= {q0, q3}	G	I	J		
E={90,91,9p}	E	F	G		
F= {90,91,92}	K	K	L	,	
G={9,9,9,93}	M	L	M		
H={90,92,9p}	F.	Н	I		
I = {90, 92, 93}	L	\sim	~		
J= {90,93,99}	G	I	J		
K= {90,90,92,93}	K	K	L		
L= {q, 9, 92, 93}	P .	P	Р		
M = {9.,9,,93,93}	Μ	L	M		
N = {90,92,93,9}	L	<i>N</i>	N		
P= {90,91,92,93,90}	Р	Р	P		

Por tanto, el estado inicial de d'es A. los estados finales de d'oon E, H, J, K, M, N, P.

Teorema: Sea $A = (Q, Z, S, q_o, F)$ un DFA y sea $X \in Z^*$, antonce el tet $X \in T(A)$ prede realizarse en un tiempo $O(1\times1)$.

demo.

Considerens el algoritmo signiente, simulando un DFA.

S:= 90; C:= leer_signiente_caracter; WHILE C ≠ EOF DO BEGIN S:= 5(5, c); C:= leer_signiente_caracter;

END,

IF SEF THEN

RETURN "YES"

ELSE RETURN "no"

Es suidente que ello pennte establever el test x eT(A), además la complejidad del Jude WHILE es trivalmente O(IXI).

demostrado