

线性代数

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第二章 等价和秩

- 1 向量组
- 2 矩阵的秩
- 3 标准正交基
- 4 线性方程组

第一节 向量组

- 线性组合
- 线性相关和线性无关
- 线性相关和线性无关的性质
- 维数和秩
- ■极大线性无关组

向量组

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的):

向量组

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的): 例如:

向量组

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的): 例如:

• $\alpha_1 = (1, 1, -1)^T, \alpha_2 = (2, 1, 2)^T, \alpha_3 = (3, 2, 1)^T;$

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的): 例如:

- $\alpha_1 = (1, 1, -1)^T, \alpha_2 = (2, 1, 2)^T, \alpha_3 = (3, 2, 1)^T;$
- $\alpha_1^{\mathrm{T}} = (1, 1, -1), \alpha_2^{\mathrm{T}} = (2, 1, 2), \alpha_3^{\mathrm{T}} = (3, 2, 1);$

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的): 例如:

- $\alpha_1 = (1, 1, -1)^T$, $\alpha_2 = (2, 1, 2)^T$, $\alpha_3 = (3, 2, 1)^T$;
- $\alpha_1^{\mathrm{T}} = (1, 1, -1), \alpha_2^{\mathrm{T}} = (2, 1, 2), \alpha_3^{\mathrm{T}} = (3, 2, 1);$
- $m \times n$ 矩阵 A 的 m 行可以看成 m 个行向量, 它们构成一个向量组, 叫做 A 的行 向量组

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的):例如:

- $\alpha_1 = (1, 1, -1)^T, \alpha_2 = (2, 1, 2)^T, \alpha_3 = (3, 2, 1)^T;$
- $\alpha_1^{\mathrm{T}} = (1, 1, -1), \alpha_2^{\mathrm{T}} = (2, 1, 2), \alpha_3^{\mathrm{T}} = (3, 2, 1);$
- $m \times n$ 矩阵 A 的 m 行可以看成 m 个行向量,它们构成一个向量组,叫做 A 的行向量组;
- 类似地, A 的列向量构成它的列向量组.

我们将一些具有相同维数的向量放在一起称之为向量组(可以有重复的):例如:

- $\alpha_1 = (1, 1, -1)^T, \alpha_2 = (2, 1, 2)^T, \alpha_3 = (3, 2, 1)^T;$
- $\alpha_1^{\mathrm{T}} = (1, 1, -1), \alpha_2^{\mathrm{T}} = (2, 1, 2), \alpha_3^{\mathrm{T}} = (3, 2, 1);$
- $m \times n$ 矩阵 A 的 m 行可以看成 m 个行向量,它们构成一个向量组,叫做 A 的行向量组;
- 类似地, A 的列向量构成它的列向量组.
- $e_1 = (1, 0, \dots, 0)^T, e_2 = (0, 1, \dots, 0)^T, \dots, e_n = (0, 0, \dots, 1)^T.$

对于标准向量空间 $V = \mathbb{R}^n$, 我们可以将任一 $v \in V$ 唯一地表达为形式

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n,$$

其中

$$e_1 = (1, 0, \dots, 0)^{\mathrm{T}}, e_2 = (0, 1, \dots, 0)^{\mathrm{T}}, \dots, e_n = (0, 0, \dots, 1)^{\mathrm{T}}.$$

定义

设 V 是线性空间. 若 $\alpha_1, \ldots, \alpha_m \in V$ 满足: 对任意 $v \in V$, 存在唯一的一组数 $\lambda_1, \ldots, \lambda_m$ 使得

$$v = \lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m,$$

则称 $\alpha_1, \ldots, \alpha_m$ 是 V 的一组基.

对于标准向量空间 $V = \mathbb{R}^n$, 我们可以将任一 $v \in V$ 唯一地表达为形式

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n,$$

其中

$$e_1 = (1, 0, \dots, 0)^{\mathrm{T}}, e_2 = (0, 1, \dots, 0)^{\mathrm{T}}, \dots, e_n = (0, 0, \dots, 1)^{\mathrm{T}}.$$

定义

设 V 是线性空间. 若 $\alpha_1, \ldots, \alpha_m \in V$ 满足: 对任意 $v \in V$, 存在唯一的一组数 $\lambda_1, \ldots, \lambda_m$ 使得

$$v = \lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m,$$

则称 $\alpha_1, \ldots, \alpha_m$ 是 V 的一组基.

如何判断一组向量是不是基呢?

对于标准向量空间 $V = \mathbb{R}^n$, 我们可以将任一 $v \in V$ 唯一地表达为形式

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n,$$

其中

$$e_1 = (1, 0, \dots, 0)^{\mathrm{T}}, e_2 = (0, 1, \dots, 0)^{\mathrm{T}}, \dots, e_n = (0, 0, \dots, 1)^{\mathrm{T}}.$$

定义

设 V 是线性空间. 若 $\alpha_1, \ldots, \alpha_m \in V$ 满足: 对任意 $v \in V$, 存在唯一的一组数 $\lambda_1, \ldots, \lambda_m$ 使得

$$v = \lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m,$$

则称 $\alpha_1, \ldots, \alpha_m$ 是 V 的一组基.

如何判断一组向量是不是基呢?这需要线性组合和线性无关的概念.

定义

设 $\alpha_1,\ldots,\alpha_m,\beta$ 为 n维向量. 若存在一组数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\boldsymbol{\beta} = \lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m,$$

则称 β 可以被向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示, 或称 β 是向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 的线性组合.

定义

 $\overline{\mathcal{Q}(\alpha_1,\ldots,\alpha_m,\beta)}$ 为 n 维向量. 若存在一组数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\boldsymbol{\beta} = \lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m,$$

则称 β 可以被向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示, 或称 β 是向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 的线性组合.

定义

 $\overline{\mathcal{Q}(\alpha_1,\ldots,\alpha_m,\beta)}$ 为 n 维向量. 若存在一组数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\boldsymbol{\beta} = \lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m,$$

则称 β 可以被向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示, 或称 β 是向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 的线性组合.

例

定义

 $\overline{\mathcal{Q}(\alpha_1,\ldots,\alpha_m,\beta)}$ 为 n 维向量. 若存在一组数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\boldsymbol{\beta} = \lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m,$$

则称 β 可以被向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示, 或称 β 是向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 的线性组合.

- (1) n 维零向量是任一 n 维向量组的线性组合.
- (2) 任意 n 维向量是 e_1, \ldots, e_n 的线性组合.

定义

设 $\alpha_1,\ldots,\alpha_m,\beta$ 为 n 维向量. 若存在一组数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\boldsymbol{\beta} = \lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m,$$

则称 β 可以被向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示, 或称 β 是向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 的线性组合.

- (2) 任意 n 维向量是 e_1, \ldots, e_n 的线性组合.
- (3) $v \in V$ 是它的一组基的线性组合.

定义

设 $\alpha_1,\ldots,\alpha_m,\beta$ 为 n 维向量. 若存在一组数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\boldsymbol{\beta} = \lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m,$$

则称 β 可以被向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示, 或称 β 是向量组 $\{\alpha_1,\ldots,\alpha_m\}$ 的线性组合.

- (1) n 维零向量是任一 n 维向量组的线性组合.
- (2) 任意 n 维向量是 e_1, \ldots, e_n 的线性组合.
- (3) $v \in V$ 是它的一组基的线性组合.
- (4) 空间中两条不共线的向量的线性组合全体就是过二者的平面.

向量 β 能被向量组 $\alpha_1, \ldots, \alpha_m$ 线性表示, 当且仅当存在 $\lambda_1, \ldots, \lambda_m$ 使得

$$oldsymbol{eta} = \lambda_1 oldsymbol{lpha}_1 + \dots + \lambda_m oldsymbol{lpha}_m = (oldsymbol{lpha}_1, \dots, oldsymbol{lpha}_m) egin{pmatrix} \lambda_1 \ dots \ \lambda_m \end{pmatrix},$$

向量 β 能被向量组 $\alpha_1, \ldots, \alpha_m$ 线性表示, 当且仅当存在 $\lambda_1, \ldots, \lambda_m$ 使得

$$oldsymbol{eta} = \lambda_1 oldsymbol{lpha}_1 + \dots + \lambda_m oldsymbol{lpha}_m = (oldsymbol{lpha}_1, \dots, oldsymbol{lpha}_m) egin{pmatrix} \lambda_1 \ dots \ \lambda_m \end{pmatrix},$$

即 $Ax = \beta$ 有解, 其中 $A = (\alpha_1, \ldots, \alpha_m)$.

向量 β 能被向量组 $\alpha_1, \ldots, \alpha_m$ 线性表示, 当且仅当存在 $\lambda_1, \ldots, \lambda_m$ 使得

$$oldsymbol{eta} = \lambda_1 oldsymbol{lpha}_1 + \dots + \lambda_m oldsymbol{lpha}_m = (oldsymbol{lpha}_1, \dots, oldsymbol{lpha}_m) egin{pmatrix} \lambda_1 \ dots \ \lambda_m \end{pmatrix},$$

即 $Ax = \beta$ 有解, 其中 $A = (\alpha_1, \ldots, \alpha_m)$.

定理

向量 β 能被 A 的列向量组线性表示, 当且仅当 $Ax = \beta$ 有解.

设向量组 S 是 A 的列向量组.

设向量组 S 是 A 的列向量组. 记 V 为向量组 S 能线性表示的向量全体,

设向量组 S 是 A 的列向量组. 记 V 为向量组 S 能线性表示的向量全体, 则

$$V = \{ \boldsymbol{A}\boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^m \} \subseteq \mathbb{R}^n$$

是一个线性空间, 称为 S 生成的空间.

设向量组 S 是 A 的列向量组. 记 V 为向量组 S 能线性表示的向量全体, 则

$$V = \{ \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m \} \subseteq \mathbb{R}^n$$

是一个线性空间, 称为 S 生成的空间. 它是包含 S 中所有向量的最小的线性空间.

设向量组 S 是 A 的列向量组. 记 V 为向量组 S 能线性表示的向量全体, 则

$$V = \{ \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m \} \subseteq \mathbb{R}^n$$

是一个线性空间, 称为 S 生成的空间. 它是包含 S 中所有向量的最小的线性空间. 这样, β 能被 S 线性表示 $\iff \beta \in V$.

定义

(1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$. 若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示.

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$ 。若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示.
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$. 若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示.
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

设
$$\boldsymbol{A} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), \boldsymbol{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_k).$$

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$ 。若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示。
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

设
$$A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_k)$$
. T 能被 S 线性表示, 当且仅当存在 x_1, \dots, x_k 使得

$$m{A}m{x}_1 = m{eta}_1, \quad \dots, \quad m{A}m{x}_k = m{eta}_k,$$

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$ 。若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示。
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

设
$$A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_k)$$
. T 能被 S 线性表示, 当且仅当存在 x_1, \dots, x_k 使得

$$Ax_1 = \beta_1, \quad \dots, \quad Ax_k = \beta_k,$$

即存在矩阵 X 使得 AX = B.

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$. 若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示.
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

设
$$A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_k)$$
. T 能被 S 线性表示, 当且仅当存在 x_1, \dots, x_k 使得

$$\boldsymbol{A}\boldsymbol{x}_1 = \boldsymbol{eta}_1, \quad \dots, \quad \boldsymbol{A}\boldsymbol{x}_k = \boldsymbol{eta}_k,$$

即存在矩阵 X 使得 AX = B.

定理

设 S,T 分别为 A,B 的列向量组,且分别生成空间 V,W.

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$ 。若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示。
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

设 $A=(\alpha_1,\ldots,\alpha_m), B=(\beta_1,\ldots,\beta_k)$. T 能被 S 线性表示, 当且仅当存在 x_1,\ldots,x_k 使得

$$\boldsymbol{A}\boldsymbol{x}_1 = \boldsymbol{eta}_1, \quad \dots, \quad \boldsymbol{A}\boldsymbol{x}_k = \boldsymbol{eta}_k,$$

即存在矩阵 X 使得 AX = B.

定理

设 S,T 分别为 A,B 的列向量组, 且分别生成空间 V,W.

(1) T 可以被 S 线性表示 \iff $W \subseteq V \iff \exists X$ 使得 AX = B.

定义

- (1) 设有两个向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\beta_1, \ldots, \beta_k\}$. 若 β_1, \ldots, β_k 均可以被 S 线性表示,则称向量组 T 可以被向量组 S 线性表示.
- (2) 若向量组 S 和 T 能相互线性表示,则称 S,T 向量组等价.

设 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_k)$. T 能被 S 线性表示, 当且仅当存在 x_1, \dots, x_k 使得

$$\boldsymbol{A}\boldsymbol{x}_1 = \boldsymbol{eta}_1, \quad \dots, \quad \boldsymbol{A}\boldsymbol{x}_k = \boldsymbol{eta}_k,$$

即存在矩阵 X 使得 AX = B.

定理

设 S,T 分别为 A,B 的列向量组, 且分别生成空间 V,W.

- (1) T 可以被 S 线性表示 \iff $W \subseteq V \iff \exists X$ 使得 AX = B.
- (2) S,T 向量组等价 $\iff W = V \iff \exists X,Y$ 使得 B = AX,A = BY.

向量组的等价满足如下性质:

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

若矩阵 $A \stackrel{c}{\sim} B$ 列等价, 则存在可逆矩阵 Q 使得 B = AQ,

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

若矩阵 $A\stackrel{\circ}{\sim} B$ 列等价, 则存在可逆矩阵 Q 使得 B=AQ, 于是二者的列向量组作为向量组等价.

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

若矩阵 $A \stackrel{c}{\sim} B$ 列等价, 则存在可逆矩阵 Q 使得 B = AQ, 于是二者的列向量组作为向量组等价. 但是反过来不成立.

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

若矩阵 $A \stackrel{\circ}{\sim} B$ 列等价, 则存在可逆矩阵 Q 使得 B = AQ, 于是二者的列向量组作为向量组等价. 但是反过来不成立. 这是因为列等价的矩阵一定是同型矩阵, 但等价的向量组并不要求向量数量相同.

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

若矩阵 $A\stackrel{\circ}{\sim} B$ 列等价, 则存在可逆矩阵 Q 使得 B=AQ, 于是二者的列向量组作为向量组等价. 但是反过来不成立. 这是因为列等价的矩阵一定是同型矩阵, 但等价的向量组并不要求向量数量相同. 不过, 同型矩阵 A,B 列向量组等价 $\iff A\stackrel{\circ}{\sim} B$.

命题

向量组的等价满足如下性质:

(1) 自反性: $S \sim S$;

(2) 对称性: $S \sim T \implies T \sim S$;

(3) 传递性: $S \sim T, T \sim R \implies S \sim R$.

若矩阵 $A \stackrel{\circ}{\sim} B$ 列等价, 则存在可逆矩阵 Q 使得 B = AQ, 于是二者的列向量组作为向量组等价. 但是反过来不成立. 这是因为列等价的矩阵一定是同型矩阵, 但等价的向量组并不要求向量数量相同. 不过, 同型矩阵 A,B 列向量组等价 $\iff A \stackrel{\circ}{\sim} B$. 我们稍后证明.

线性相关与线性无关

定义

对于 n 维向量组 $\{\alpha_1,\ldots,\alpha_m\}$, 若存在一组不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0},$$

则称该向量组线性相关. 否则称该向量组线性无关.

线性相关与线性无关

定义

对于 n 维向量组 $\{\alpha_1,\ldots,\alpha_m\}$, 若存在一组不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0},$$

则称该向量组线性相关. 否则称该向量组线性无关.

线性相关与线性无关

定义

对于 n 维向量组 $\{\alpha_1,\ldots,\alpha_m\}$, 若存在一组不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0},$$

则称该向量组线性相关. 否则称该向量组线性无关.

例

(1) $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (2,3,4)^T$, $\alpha_3 = (0,0,0)^T$ 线性相关. 包含零向量的向量组总是线性相关的.

定义

对于 n 维向量组 $\{\alpha_1,\ldots,\alpha_m\}$, 若存在一组不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0},$$

则称该向量组线性相关. 否则称该向量组线性无关.

- (1) $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (2,3,4)^T$, $\alpha_3 = (0,0,0)^T$ 线性相关. 包含零向量的向量组总是线性相关的.
- (2) $e_1 = (1,0,0)^T$, $e_2 = (0,1,0)^T$, $e_3 = (0,0,1)^T$ 线性无关. 一般地, n 维标准向量组 e_1,\ldots,e_n 线性无关.

定义

对于 n 维向量组 $\{\alpha_1,\ldots,\alpha_m\}$, 若存在一组不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0},$$

则称该向量组线性相关. 否则称该向量组线性无关.

- (1) $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (2,3,4)^T$, $\alpha_3 = (0,0,0)^T$ 线性相关. 包含零向量的向量组总是线性相关的.
- (2) $e_1 = (1,0,0)^T$, $e_2 = (0,1,0)^T$, $e_3 = (0,0,1)^T$ 线性无关. 一般地, n 维标准向量组 e_1,\ldots,e_n 线性无关.
- (3) α 线性相关 $\iff \alpha = 0$.

定义

对于 n 维向量组 $\{\alpha_1,\ldots,\alpha_m\}$, 若存在一组不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0},$$

则称该向量组线性相关. 否则称该向量组线性无关.

- (1) $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (2,3,4)^T$, $\alpha_3 = (0,0,0)^T$ 线性相关. 包含零向量的向量组总是线性相关的.
- (2) $e_1 = (1,0,0)^T$, $e_2 = (0,1,0)^T$, $e_3 = (0,0,1)^T$ 线性无关. 一般地, n 维标准向量组 e_1,\ldots,e_n 线性无关.
- (3) α 线性相关 $\iff \alpha = 0$.
- (4) α_1, α_2 线性相关 $\iff \alpha_1, \alpha_2$ 对应分量成比例 (共线).

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m = \mathbf{0} \implies \lambda_1 = \cdots = \lambda_m = 0,$$

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即
$$Ax = 0$$
 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若
$$\beta = A\xi$$
, 则 $Ax = \beta \iff A(x - \xi) = 0$.

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

定理

(1) 设 V 是 A 列向量生成的空间,则以下结论等价:

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

- $\overline{(1)}$ 设 \overline{V} 是 A 列向量生成的空间, 则以下结论等价:
 - A 的列向量组线性无关;

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

- $\overline{(1)}$ 设 \overline{V} 是 \overline{A} 列向量生成的空间, 则以下结论等价:
 - A 的列向量组线性无关;
 - Ax = 0 只有零解;

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

- $\overline{(1)}$ 设 \overline{V} 是 \overline{A} 列向量生成的空间, 则以下结论等价:
 - A 的列向量组线性无关;
 - Ax = 0 只有零解;
 - $\exists v \in V$, Ax = v 只有唯一解;

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

- $\overline{(1)}$ 设 \overline{V} 是 \overline{A} 列向量生成的空间, 则以下结论等价:
 - A 的列向量组线性无关;
 - Ax = 0 只有零解;
 - $\exists oldsymbol{v} \in V$, $oldsymbol{A} oldsymbol{x} = oldsymbol{v}$ 只有唯一解;
 - $\forall oldsymbol{v} \in V$, $oldsymbol{A} oldsymbol{x} = oldsymbol{v}$ 只有唯一解.

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关当且仅当

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0} \implies \lambda_1 = \dots = \lambda_m = 0,$$

即 Ax = 0 只有零解, 其中 $A = (\alpha_1, \dots, \alpha_m)$.

若 $\beta = A\xi$, 则 $Ax = \beta \iff A(x - \xi) = 0$. 因此:

- $\overline{(1)}$ 设 \overline{V} 是 \overline{A} 列向量生成的空间, 则以下结论等价:
 - A 的列向量组线性无关;
 - Ax = 0 只有零解;
 - $\exists v \in V$, Ax = v 只有唯一解;
 - $\forall v \in V$, Ax = v 只有唯一解.
- (2) 向量组 S 是线性空间 V 的一组基 \iff S 线性无关且生成 V.

例:线性无关和线性相关

例: 线性无关和线性相关

练习

$$= \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}, \boldsymbol{\alpha} = \begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix}.$$
 若 $\boldsymbol{A}\boldsymbol{\alpha}$ 和 $\boldsymbol{\alpha}$ 线性相关, 则 $k = \underline{} \boldsymbol{-1}$.

例: 线性无关和线性相关

练习

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}, \boldsymbol{\alpha} = \begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix}$$
. 若 $\mathbf{A}\boldsymbol{\alpha}$ 和 $\boldsymbol{\alpha}$ 线性相关,则 $k = \underline{} -1$.

练习

已知向量组 $\{\alpha_1,\alpha_2\}$ 线性无关,请问向量组 $\{\alpha_1-\alpha_2,\alpha_1+\alpha_2,\alpha_1\}$ 是否线性无关?

例: 线性无关和线性相关

练习

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$$
, $\boldsymbol{\alpha} = \begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix}$. 若 $\mathbf{A}\boldsymbol{\alpha}$ 和 $\boldsymbol{\alpha}$ 线性相关, 则 $k = \underline{} - \underline{}$.

练习

已知向量组 $\{lpha_1,lpha_2\}$ 线性无关,请问向量组 $\{lpha_1-lpha_2,lpha_1+lpha_2,lpha_1\}$ 是否线性无关?

答案

线性相关, 因为 $(\alpha_1 - \alpha_2) + (\alpha_1 + \alpha_2) - 2\alpha_1 = 0$.

已知向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性无关,证明向量组 $\{\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1\}$ 线性无关.

例

已知向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性无关,证明向量组 $\{\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1\}$ 线性无关.

证明

我们可以用定义来直接证明.

例

已知向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性无关, 证明向量组 $\{\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1\}$ 线性无关.

证明

我们可以用定义来直接证明. 设

$$\lambda_1(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2)+\lambda_2(\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3)+\lambda_3(\boldsymbol{\alpha}_3+\boldsymbol{\alpha}_1)=\mathbf{0}.$$

例

已知向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性无关,证明向量组 $\{\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1\}$ 线性无关.

证明

我们可以用定义来直接证明. 设

$$\lambda_1(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2)+\lambda_2(\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3)+\lambda_3(\boldsymbol{\alpha}_3+\boldsymbol{\alpha}_1)=\mathbf{0}.$$

那么

$$(\lambda_1 + \lambda_3)\boldsymbol{\alpha}_1 + (\lambda_1 + \lambda_2)\boldsymbol{\alpha}_2 + (\lambda_2 + \lambda_3)\boldsymbol{\alpha}_3 = \mathbf{0}.$$

例

已知向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性无关, 证明向量组 $\{\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1\}$ 线性无关.

证明

我们可以用定义来直接证明. 设

$$\lambda_1(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2)+\lambda_2(\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3)+\lambda_3(\boldsymbol{\alpha}_3+\boldsymbol{\alpha}_1)=\mathbf{0}.$$

那么

$$(\lambda_1 + \lambda_3)\boldsymbol{\alpha}_1 + (\lambda_1 + \lambda_2)\boldsymbol{\alpha}_2 + (\lambda_2 + \lambda_3)\boldsymbol{\alpha}_3 = \mathbf{0}.$$

由于 $\{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关, 因此

$$\lambda_1 + \lambda_3 = \lambda_1 + \lambda_2 = \lambda_2 + \lambda_3 = 0$$

例

已知向量组 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性无关,证明向量组 $\{\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1\}$ 线性无关.

证明

我们可以用定义来直接证明. 设

$$\lambda_1(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2)+\lambda_2(\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3)+\lambda_3(\boldsymbol{\alpha}_3+\boldsymbol{\alpha}_1)=\mathbf{0}.$$

那么

$$(\lambda_1 + \lambda_3)\alpha_1 + (\lambda_1 + \lambda_2)\alpha_2 + (\lambda_2 + \lambda_3)\alpha_3 = \mathbf{0}.$$

由于 $\{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关, 因此

$$\lambda_1 + \lambda_3 = \lambda_1 + \lambda_2 = \lambda_2 + \lambda_3 = 0,$$

解得 $\lambda_1 = \lambda_2 = \lambda_3 = 0$. 证毕.

我们来看另一种证法.

我们来看另一种证法.

证明

我们有

$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \boldsymbol{A},$$

其中
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.

我们来看另一种证法.

证明

我们有

$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \boldsymbol{A},$$

其中
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
. 若 $(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1) \boldsymbol{x} = \boldsymbol{0}$,则

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}$$

我们来看另一种证法.

证明

我们有

$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \boldsymbol{A},$$

其中
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
. 若 $(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1) \boldsymbol{x} = \boldsymbol{0}$, 则

$$(\boldsymbol{lpha}_1, \boldsymbol{lpha}_2, \boldsymbol{lpha}_3) \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}$$

由于 |A|=2, A 可逆, 因此 x=0.

命题

(1) 设 α_1,\ldots,α_m 线性无关, $(\beta_1,\ldots,\beta_n)=(\alpha_1,\ldots,\alpha_m)C$. β_1,\ldots,β_n 线性无关 $\iff Cx=0$ 只有零解.

命题

- (1) 设 α_1,\ldots,α_m 线性无关, $(\beta_1,\ldots,\beta_n)=(\alpha_1,\ldots,\alpha_m)C$. β_1,\ldots,β_n 线性无关 $\iff Cx=0$ 只有零解.
- (2) 设 α_1,\ldots,α_m 线性无关, $(\beta_1,\ldots,\beta_m)=(\alpha_1,\ldots,\alpha_m)C$. β_1,\ldots,β_m 线性无关 $\iff |C|\neq 0$.

命题

- (1) 设 α_1,\ldots,α_m 线性无关, $(\beta_1,\ldots,\beta_n)=(\alpha_1,\ldots,\alpha_m)C$. β_1,\ldots,β_n 线性无关 $\iff Cx=0$ 只有零解.
- (2) 设 α_1,\ldots,α_m 线性无关, $(\beta_1,\ldots,\beta_m)=(\alpha_1,\ldots,\alpha_m)C$. β_1,\ldots,β_m 线性无关 $\iff |C|\neq 0$.
- (3) n 维向量组 $\alpha_1, \ldots, \alpha_n$ 线性无关 $\iff |\alpha_1, \cdots, \alpha_n| \neq 0$.

例

$$\alpha_1 = (1, 2, 3)^{\mathrm{T}}, \ \alpha_2 = (2, 3, 4)^{\mathrm{T}}, \ \alpha_3 = (3, 5, 7)^{\mathrm{T}} \$$
 线性相关.

例

 $\alpha_1 = (1,2,3)^{\mathrm{T}}$, $\alpha_2 = (2,3,4)^{\mathrm{T}}$, $\alpha_3 = (3,5,7)^{\mathrm{T}}$ 线性相关. 因为它们构成的 3 阶矩阵行列式为零.

例

 $\alpha_1=(1,2,3)^{\rm T}$, $\alpha_2=(2,3,4)^{\rm T}$, $\alpha_3=(3,5,7)^{\rm T}$ 线性相关. 因为它们构成的 3 阶矩阵行列式为零.

例

 $\alpha_1 = (1,2,3)^{\mathrm{T}}$, $\alpha_2 = (2,3,4)^{\mathrm{T}}$, $\alpha_3 = (3,5,7)^{\mathrm{T}}$ 线性相关. 因为它们构成的 3 阶矩阵行列式为零.

练习

(1) 若向量组 $\alpha_1 = (1,1,1)^{\mathrm{T}}$, $\alpha_2 = (1,2,3)^{\mathrm{T}}$, $\alpha_3 = (1,3,t)^{\mathrm{T}}$ 线性相关,则 $t = -\frac{1}{2}$

例

 $\alpha_1 = (1,2,3)^{\mathrm{T}}$, $\alpha_2 = (2,3,4)^{\mathrm{T}}$, $\alpha_3 = (3,5,7)^{\mathrm{T}}$ 线性相关. 因为它们构成的 3 阶矩阵行列式为零.

练习

(1) 若向量组 $\alpha_1 = (1,1,1)^{\mathrm{T}}$, $\alpha_2 = (1,2,3)^{\mathrm{T}}$, $\alpha_3 = (1,3,t)^{\mathrm{T}}$ 线性相关,则 t = 5 .

例

 $\alpha_1 = (1,2,3)^{\mathrm{T}}$, $\alpha_2 = (2,3,4)^{\mathrm{T}}$, $\alpha_3 = (3,5,7)^{\mathrm{T}}$ 线性相关. 因为它们构成的 3 阶矩阵行列式为零.

练习

- (1) 若向量组 $\alpha_1 = (1,1,1)^{\mathrm{T}}$, $\alpha_2 = (1,2,3)^{\mathrm{T}}$, $\alpha_3 = (1,3,t)^{\mathrm{T}}$ 线性相关,则 t = 5.
- (2) 若任一 3 维向量都可由向量组 $\alpha_1 = (a,3,2)^{\mathrm{T}}$, $\alpha_2 = (2,-1,3)^{\mathrm{T}}$, $\alpha_3 = (3,2,1)^{\mathrm{T}}$ 线性表示, 则 $a \neq$ _____.

例

 $\alpha_1 = (1,2,3)^{\mathrm{T}}$, $\alpha_2 = (2,3,4)^{\mathrm{T}}$, $\alpha_3 = (3,5,7)^{\mathrm{T}}$ 线性相关. 因为它们构成的 3 阶矩阵行列式为零.

练习

- (1) 若向量组 $\alpha_1 = (1,1,1)^{\mathrm{T}}$, $\alpha_2 = (1,2,3)^{\mathrm{T}}$, $\alpha_3 = (1,3,t)^{\mathrm{T}}$ 线性相关,则 t = 5.
- (2) 若任一 3 维向量都可由向量组 $\alpha_1=(a,3,2)^{\rm T}$, $\alpha_2=(2,-1,3)^{\rm T}$, $\alpha_3=(3,2,1)^{\rm T}$ 线性表示, 则 $a\neq_{5}$.

定理

向量组 α_1,\ldots,α_m 线性相关 \iff 其中至少有一个向量可以由其它向量线性表示.

定理

向量组 $lpha_1,\ldots,lpha_m$ 线性相关 \iff 其中至少有一个向量可以由其它向量线性表示.

证明

若该向量组线性相关,则存在不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0}.$$

定理

向量组 $lpha_1,\ldots,lpha_m$ 线性相关 \iff 其中至少有一个向量可以由其它向量线性表示.

证明

若该向量组线性相关,则存在不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0}.$$

设
$$\lambda_i \neq 0$$
, 则 $\alpha_i = -\frac{1}{\lambda_i} \sum_{\substack{j=1 \ j \neq i}}^m \lambda_j \alpha_j$ 可由其它向量线性表示.

定理

向量组 $lpha_1,\ldots,lpha_m$ 线性相关 \iff 其中至少有一个向量可以由其它向量线性表示.

证明

若该向量组线性相关,则存在不全为零的数 $\lambda_1,\ldots,\lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0}.$$

设
$$\lambda_i \neq 0$$
, 则 $\alpha_i = -\frac{1}{\lambda_i} \sum_{j=1}^m \lambda_j \alpha_j$ 可由其它向量线性表示.

反之, 若
$$\alpha_i = \sum_{j=1}^m \lambda_j \alpha_j$$
 可由其它向量线性表示.

定理

向量组 $lpha_1,\ldots,lpha_m$ 线性相关 \iff 其中至少有一个向量可以由其它向量线性表示.

证明

若该向量组线性相关, 则存在不全为零的数 $\lambda_1, \ldots, \lambda_m$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \cdots + \lambda_m \boldsymbol{\alpha}_m = \mathbf{0}.$$

设
$$\lambda_i \neq 0$$
, 则 $\alpha_i = -\frac{1}{\lambda_i} \sum_{j=1}^m \lambda_j \alpha_j$ 可由其它向量线性表示.

反之, 若
$$\alpha_i = \sum_{\substack{j=1 \ j \neq i}}^m \lambda_j \alpha_j$$
 可由其它向量线性表示. 则 $-\alpha_i + \sum_{\substack{j=1 \ j \neq i}}^m \lambda_j \alpha_j = \mathbf{0}$, 向量组

 α_1,\ldots,α_m 线性相关.

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示.

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

设 $\alpha_1, \ldots, \alpha_m$ 是 m 个 n 维向量,则下列结论正确的有_____个.

(1) 若 $\alpha_1, \ldots, \alpha_m$ 线性相关,则其中任一向量均可由其余向量线性表示

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

- (1) 若 $lpha_1, \ldots, lpha_m$ 线性相关,则其中任一向量均可由其余向量线性表示
- (2) 若 α_m 不能由 $\alpha_1, \ldots, \alpha_{m-1}$ 线性表示, 则向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

- (1) 若 $lpha_1, \ldots, lpha_m$ 线性相关,则其中任一向量均可由其余向量线性表示
- (2) 若 $lpha_m$ 不能由 $lpha_1,\ldots,lpha_{m-1}$ 线性表示, 则向量组 $lpha_1,\ldots,lpha_m$ 线性无关
- (3) 若 $\alpha_1, \ldots, \alpha_m$ 线性相关, 且存在不全为零的 $\lambda_1, \ldots, \lambda_{m-1}$ 使得 $\lambda_1 \alpha_1 + \cdots + \lambda_{m-1} \alpha_{m-1} = \mathbf{0}$, 则 α_m 不能由 $\alpha_1, \ldots, \alpha_{m-1}$ 线性表示

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

- (1) 若 $lpha_1, \ldots, lpha_m$ 线性相关,则其中任一向量均可由其余向量线性表示
- (2) 若 $lpha_m$ 不能由 $lpha_1,\ldots,lpha_{m-1}$ 线性表示, 则向量组 $lpha_1,\ldots,lpha_m$ 线性无关
- (3) 若 $\alpha_1, \ldots, \alpha_m$ 线性相关, 且存在不全为零的 $\lambda_1, \ldots, \lambda_{m-1}$ 使得 $\lambda_1 \alpha_1 + \cdots + \lambda_{m-1} \alpha_{m-1} = \mathbf{0}$, 则 α_m 不能由 $\alpha_1, \ldots, \alpha_{m-1}$ 线性表示
- (4) 若 $\alpha_1, \ldots, \alpha_m$ 线性相关,且 α_m 不能由 $\alpha_1, \ldots, \alpha_m$ 线性表示,则 $\alpha_1, \ldots, \alpha_{m-1}$ 线性相关

向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff 其中任一向量不可以由其它向量线性表示. 注意, 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 \implies 其中任一向量可以由其它向量线性表示.

练习

- (1) 若 $lpha_1, \ldots, lpha_m$ 线性相关,则其中任一向量均可由其余向量线性表示
- (2) 若 $lpha_m$ 不能由 $lpha_1,\ldots,lpha_{m-1}$ 线性表示, 则向量组 $lpha_1,\ldots,lpha_m$ 线性无关
- (3) 若 $\alpha_1, \ldots, \alpha_m$ 线性相关, 且存在不全为零的 $\lambda_1, \ldots, \lambda_{m-1}$ 使得 $\lambda_1 \alpha_1 + \cdots + \lambda_{m-1} \alpha_{m-1} = \mathbf{0}$, 则 α_m 不能由 $\alpha_1, \ldots, \alpha_{m-1}$ 线性表示
- (4) 若 $\alpha_1, \ldots, \alpha_m$ 线性相关,且 α_m 不能由 $\alpha_1, \ldots, \alpha_m$ 线性表示,则 $\alpha_1, \ldots, \alpha_{m-1}$ 线性相关

定理

若向量组 α_1,\ldots,α_m 线性无关,向量组 $\alpha_1,\ldots,\alpha_m,\beta$ 线性相关,则 β 可以由 α_1,\ldots,α_m 线性表示,且表达形式唯一.

定理

若向量组 α_1,\ldots,α_m 线性无关,向量组 $\alpha_1,\ldots,\alpha_m,\beta$ 线性相关,则 β 可以由 α_1,\ldots,α_m 线性表示,且表达形式唯一.

证明

由于向量组 $lpha_1,\ldots,lpha_m,eta$ 线性相关, 因此存在不全为零的数 $\lambda_1,\ldots,\lambda_m,k$ 使得

$$\lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m + k \beta = \mathbf{0}.$$

定理

若向量组 α_1,\ldots,α_m 线性无关,向量组 $\alpha_1,\ldots,\alpha_m,\beta$ 线性相关,则 β 可以由 α_1,\ldots,α_m 线性表示,且表达形式唯一.

证明

由于向量组 $lpha_1,\ldots,lpha_m,eta$ 线性相关, 因此存在不全为零的数 $\lambda_1,\ldots,\lambda_m,k$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m + k \boldsymbol{\beta} = \mathbf{0}.$$

若 k=0, 则由 α_1,\ldots,α_m 线性无关可知 $\lambda_1=\cdots=\lambda_k=0$.

定理

若向量组 α_1,\ldots,α_m 线性无关,向量组 $\alpha_1,\ldots,\alpha_m,\beta$ 线性相关,则 β 可以由 α_1,\ldots,α_m 线性表示,且表达形式唯一.

证明

由于向量组 $lpha_1,\ldots,lpha_m,eta$ 线性相关, 因此存在不全为零的数 $\lambda_1,\ldots,\lambda_m,k$ 使得

$$\lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m + k \beta = \mathbf{0}.$$

E=0, 则由 α_1,\ldots,α_m 线性无关可知 $\lambda_1=\cdots=\lambda_k=0$. 这与 $\lambda_1,\ldots,\lambda_m,k$ 不全为零矛盾.

定理

若向量组 α_1,\ldots,α_m 线性无关,向量组 $\alpha_1,\ldots,\alpha_m,\beta$ 线性相关,则 β 可以由 α_1,\ldots,α_m 线性表示,且表达形式唯一.

证明

由于向量组 $lpha_1,\ldots,lpha_m,eta$ 线性相关, 因此存在不全为零的数 $\lambda_1,\ldots,\lambda_m,k$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m + k \boldsymbol{\beta} = \mathbf{0}.$$

若 k=0, 则由 α_1,\ldots,α_m 线性无关可知 $\lambda_1=\cdots=\lambda_k=0$. 这与 $\lambda_1,\ldots,\lambda_m,k$ 不全为零矛盾. 因此 $k\neq 0$,

$$\beta = -\frac{1}{k}(\lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m).$$

定理

若向量组 α_1,\ldots,α_m 线性无关,向量组 $\alpha_1,\ldots,\alpha_m,\beta$ 线性相关,则 β 可以由 α_1,\ldots,α_m 线性表示,且表达形式唯一.

证明

由于向量组 $lpha_1,\ldots,lpha_m,eta$ 线性相关, 因此存在不全为零的数 $\lambda_1,\ldots,\lambda_m,k$ 使得

$$\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_m \boldsymbol{\alpha}_m + k \boldsymbol{\beta} = \mathbf{0}.$$

E=0, 则由 α_1,\ldots,α_m 线性无关可知 $\lambda_1=\cdots=\lambda_k=0$. 这与 $\lambda_1,\ldots,\lambda_m,k$ 不全为零矛盾. 因此 $k\neq 0$,

$$\beta = -\frac{1}{k}(\lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m).$$

由 $\alpha_1, \ldots, \alpha_m$ 线性无关可知线性组合表达方式唯一.

定理

设向量组 $S = \{ \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m \}, T = \{ \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m, \boldsymbol{\alpha}_{m+1}, \dots, \boldsymbol{\alpha}_s \}$.

定理

设向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\alpha_1, \ldots, \alpha_m, \alpha_{m+1}, \ldots, \alpha_s\}.$

(1) 若向量组 S 线性相关,则 T 也线性相关.

定理

设向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\alpha_1, \ldots, \alpha_m, \alpha_{m+1}, \ldots, \alpha_s\}.$

- (1) 若向量组 S 线性相关,则 T 也线性相关.
- (2) 若向量组 T 线性无关,则 S 也线性无关.

定理

设向量组 $S = \{\alpha_1, \ldots, \alpha_m\}, T = \{\alpha_1, \ldots, \alpha_m, \alpha_{m+1}, \ldots, \alpha_s\}.$

- (1) 若向量组 S 线性相关,则 T 也线性相关.
- (2) 若向量组 T 线性无关,则 S 也线性无关.

即部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关.

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_m\}, T = \{\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_s\}.$

- (1) 若向量组 S 线性相关,则 T 也线性相关.
- (2) 若向量组 T 线性无关,则 S 也线性无关.

即部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关.

例

n 维向量组 $\alpha_1, \ldots, \alpha_s (3 \leqslant s \leqslant n)$ 线性无关 \iff ()

- (A) $\alpha_1, \ldots, \alpha_s$ 中存在一个向量不能由其余向量线性表示
- (B) $\alpha_1, \ldots, \alpha_s$ 中任两个向量都线性无关
- (C) $\alpha_1, \ldots, \alpha_s$ 中不含零向量
- (D) $\alpha_1, \ldots, \alpha_s$ 中任一个向量都不能由其余向量线性表示

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_m\}, T = \{\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_s\}.$

- (1) 若向量组 S 线性相关,则 T 也线性相关.
- (2) 若向量组 T 线性无关,则 S 也线性无关.

即部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关.

例

n 维向量组 $\alpha_1, \ldots, \alpha_s (3 \leq s \leq n)$ 线性无关 \iff (D).

- (A) $\alpha_1, \ldots, \alpha_s$ 中存在一个向量不能由其余向量线性表示 必要
- (B) $\alpha_1, \ldots, \alpha_s$ 中任两个向量都线性无关 必要
- (C) $\alpha_1, \ldots, \alpha_s$ 中不含零向量 必要
- (D) $\alpha_1, \ldots, \alpha_s$ 中任一个向量都不能由其余向量线性表示

练习

若向量组 α, β, γ 线性无关, α, β, δ 线性相关, 则().

(A) α 一定能由 β, γ, δ 线性表示

(B) β 一定不能由 α, γ, δ 线性表示

(C) δ 一定能由 α, β, γ 线性表示

(D) δ 一定不能由 α, β, γ 线性表示

练习

若向量组 α, β, γ 线性无关, α, β, δ 线性相关, 则(C).

(A) α 一定能由 β, γ, δ 线性表示

(B) β 一定不能由 α, γ, δ 线性表示

(C) δ 一定能由 α, β, γ 线性表示

(D) δ 一定不能由 α, β, γ 线性表示

练习

若向量组 α, β, γ 线性无关, α, β, δ 线性相关, 则(C).

(A) α 一定能由 β, γ, δ 线性表示

(B) β 一定不能由 α, γ, δ 线性表示

(C) δ 一定能由 α, β, γ 线性表示

(D) δ 一定不能由 α, β, γ 线性表示

例

设向量 β 可由 α_1,\ldots,α_m 线性表示, 但不能由向量组 $S=\{\alpha_1,\ldots,\alpha_{m-1}\}$ 线性表示. 记 $T=\{\alpha_1,\ldots,\alpha_{m-1},\beta\}$, 则().

- (A) α_m 不能由 S 线性表示, 也不能由 T 线性表示
- (B) α_m 不能由 S 线性表示, 但能由 T 线性表示
- (C) α_m 能由 S 线性表示, 也能由 T 线性表示
- (D) α_m 能由 S 线性表示, 但不能由 T 线性表示

练习

若向量组 α, β, γ 线性无关, α, β, δ 线性相关, 则(C).

(A) α 一定能由 β, γ, δ 线性表示

(B) β 一定不能由 α, γ, δ 线性表示

(C) δ 一定能由 α, β, γ 线性表示

(D) δ 一定不能由 α, β, γ 线性表示

例

设向量 β 可由 α_1,\ldots,α_m 线性表示, 但不能由向量组 $S=\{\alpha_1,\ldots,\alpha_{m-1}\}$ 线性表示. 记 $T=\{\alpha_1,\ldots,\alpha_{m-1},\beta\}$, 则(B). $\beta=\lambda_1\alpha_1+\cdots+\lambda_m\alpha_m,\lambda_m\neq 0$

- (A) α_m 不能由 S 线性表示, 也不能由 T 线性表示
- (B) α_m 不能由 S 线性表示, 但能由 T 线性表示
- (C) α_m 能由 S 线性表示, 也能由 T 线性表示
- (D) α_m 能由 S 线性表示, 但不能由 T 线性表示

设向量组 $lpha_1,lpha_2,lpha_3$ 线性相关, $lpha_2,lpha_3,lpha_4$ 线性无关, 证明

例

设向量组 $lpha_1, lpha_2, lpha_3$ 线性相关, $lpha_2, lpha_3, lpha_4$ 线性无关, 证明

(1) α_1 能由 α_2, α_3 线性表示;

例

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 证明

- (1) α_1 能由 α_2, α_3 线性表示;
- (2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

例

设向量组 $lpha_1,lpha_2,lpha_3$ 线性相关, $lpha_2,lpha_3,lpha_4$ 线性无关, 证明

- (1) α_1 能由 α_2, α_3 线性表示;
- (2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

证明

例

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 证明

- (1) α_1 能由 α_2, α_3 线性表示;
- (2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

证明

(1) 由 $\alpha_2, \alpha_3, \alpha_4$ 线性无关可知 α_2, α_3 线性无关.

例

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 证明

- (1) α_1 能由 α_2, α_3 线性表示;
- (2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

证明

(1) 由 $\alpha_2, \alpha_3, \alpha_4$ 线性无关可知 α_2, α_3 线性无关.但是 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,所以 α_1 能由 α_2, α_3 线性表示.

例

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 证明

- (1) α_1 能由 α_2, α_3 线性表示;
- (2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

证明

- (1) 由 $\alpha_2, \alpha_3, \alpha_4$ 线性无关可知 α_2, α_3 线性无关.但是 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, 所以 α_1 能由 α_2, α_3 线性表示.
- (2) 若 α_4 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 由于 α_1 能由 α_2, α_3 线性表示, 于是 α_4 也能 由 α_2, α_3 线性表示.

例

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 证明

- (1) α_1 能由 α_2, α_3 线性表示;
- (2) α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

证明

- (1) 由 $\alpha_2, \alpha_3, \alpha_4$ 线性无关可知 α_2, α_3 线性无关.但是 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, 所以 α_1 能由 α_2, α_3 线性表示.
- (2) 若 α_4 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 由于 α_1 能由 α_2, α_3 线性表示, 于是 α_4 也能 由 α_2, α_3 线性表示. 这与 $\alpha_2, \alpha_3, \alpha_4$ 线性无关矛盾.

定理

设 $\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$

定理

设 $\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$

(1) 若向量组 α_1,\ldots,α_m 线性无关,则 β_1,\ldots,β_m 线性无关.

定理

设 $\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$

- (1) 若向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关,则 β_1, \ldots, β_m 线性无关.
- (2) 若向量组 β_1, \ldots, β_m 线性相关,则 $\alpha_1, \ldots, \alpha_m$ 线性相关.

定理

设 $\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$

- (1) 若向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关,则 β_1, \ldots, β_m 线性无关.
- (2) 若向量组 β_1, \ldots, β_m 线性相关,则 $\alpha_1, \ldots, \alpha_m$ 线性相关.

证明

设
$$\boldsymbol{A} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), \boldsymbol{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m)$$
, 则存在 m 维向量 $\boldsymbol{\gamma}$ 使得 $\boldsymbol{B} = \begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{\gamma}^T \end{pmatrix}$.

定理

设
$$\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$$

- (1) 若向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关,则 β_1, \ldots, β_m 线性无关.
- (2) 若向量组 β_1, \ldots, β_m 线性相关,则 $\alpha_1, \ldots, \alpha_m$ 线性相关.

证明

设
$$A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_m)$$
,则存在 m 维向量 γ 使得 $B = \begin{pmatrix} A \\ \gamma^T \end{pmatrix}$.若

向量组 α_1,\ldots,α_m 线性无关,则 Ax=0 只有零解.

定理

设
$$\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$$

- (1) 若向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关,则 β_1, \ldots, β_m 线性无关.
- (2) 若向量组 β_1, \ldots, β_m 线性相关,则 $\alpha_1, \ldots, \alpha_m$ 线性相关.

证明

设
$$\mathbf{A} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), \mathbf{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m),$$
 则存在 m 维向量 $\boldsymbol{\gamma}$ 使得 $\mathbf{B} = \begin{pmatrix} \mathbf{A} \\ \boldsymbol{\gamma}^T \end{pmatrix}$. 若向量组 $\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m$ 线性无关,则 $\mathbf{A} \mathbf{x} = \mathbf{0}$ 只有零解,而

$$Bx = 0 \iff Ax = 0, \gamma^{\mathrm{T}}x = 0,$$

因此
$$x = 0$$
, $Bx = 0$ 只有零解, β_1, \ldots, β_m 线性无关.

定理

设
$$\alpha_j = (a_{1j}, \dots, a_{nj})^{\mathrm{T}}, \beta_j = (a_{1j}, \dots, a_{nj}, a_{n+1,j})^{\mathrm{T}}.$$

- (1) 若向量组 $\alpha_1, \ldots, \alpha_m$ 线性无关,则 β_1, \ldots, β_m 线性无关.
- (2) 若向量组 β_1, \ldots, β_m 线性相关,则 $\alpha_1, \ldots, \alpha_m$ 线性相关.

证明

设
$$\mathbf{A} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), \mathbf{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m),$$
 则存在 m 维向量 $\boldsymbol{\gamma}$ 使得 $\mathbf{B} = \begin{pmatrix} \mathbf{A} \\ \boldsymbol{\gamma}^T \end{pmatrix}$. 若向量组 $\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m$ 线性无关,则 $\mathbf{A} \mathbf{x} = \mathbf{0}$ 只有零解. 而

$$\boldsymbol{B}\boldsymbol{x} = \boldsymbol{0} \iff \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}, \boldsymbol{\gamma}^{\mathrm{T}}\boldsymbol{x} = 0,$$

因此 x = 0, Bx = 0 只有零解, β_1, \ldots, β_m 线性无关.

即高维相关 ⇒ 低维相关, 低维无关 ⇒ 高维无关.

练习

练习

判断下列向量组的线性相关性:

(1) $(1,2,3,4)^{\mathrm{T}}, (2,3,4,5)^{\mathrm{T}}, (0,0,0,0)^{\mathrm{T}}.$

练习

判断下列向量组的线性相关性:

(1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关

练习

- (1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关
- (2) $(a, b, 1, 0, 0)^{\mathrm{T}}, (c, d, 0, 6, 0)^{\mathrm{T}}, (a, c, 0, 5, 6)^{\mathrm{T}}.$

练习

- (1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关
- (2) $(a, b, 1, 0, 0)^{\mathrm{T}}, (c, d, 0, 6, 0)^{\mathrm{T}}, (a, c, 0, 5, 6)^{\mathrm{T}}$. 无关

练习

- (1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关
- (2) $(a, b, 1, 0, 0)^{\mathrm{T}}, (c, d, 0, 6, 0)^{\mathrm{T}}, (a, c, 0, 5, 6)^{\mathrm{T}}$. 无关
- (3) $(a, 1, 0, b, 0)^{\mathrm{T}}, (c, 0, 6, d, 0)^{\mathrm{T}}, (a, 0, 5, c, 6)^{\mathrm{T}}.$

练习

- (1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关
- (2) $(a, b, 1, 0, 0)^{\mathrm{T}}, (c, d, 0, 6, 0)^{\mathrm{T}}, (a, c, 0, 5, 6)^{\mathrm{T}}$. 无关
- (3) $(a,1,0,b,0)^{\mathrm{T}},(c,0,6,d,0)^{\mathrm{T}},(a,0,5,c,6)^{\mathrm{T}}$. 无关

练习

判断下列向量组的线性相关性:

- (1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关
- (2) $(a, b, 1, 0, 0)^{\mathrm{T}}, (c, d, 0, 6, 0)^{\mathrm{T}}, (a, c, 0, 5, 6)^{\mathrm{T}}$. 无关
- (3) $(a,1,0,b,0)^{\mathrm{T}},(c,0,6,d,0)^{\mathrm{T}},(a,0,5,c,6)^{\mathrm{T}}$. 无关

练习

 $\vec{z} (1,0,0,2)^{\mathrm{T}}, (0,1,5,0)^{\mathrm{T}}, (2,1,t+2,4)^{\mathrm{T}}$ 线性相关, 则 t=______

练习

判断下列向量组的线性相关性:

- (1) $(1,2,3,4)^{\mathrm{T}},(2,3,4,5)^{\mathrm{T}},(0,0,0,0)^{\mathrm{T}}$. 相关
- (2) $(a, b, 1, 0, 0)^{\mathrm{T}}, (c, d, 0, 6, 0)^{\mathrm{T}}, (a, c, 0, 5, 6)^{\mathrm{T}}$. 无关
- (3) $(a,1,0,b,0)^{\mathrm{T}},(c,0,6,d,0)^{\mathrm{T}},(a,0,5,c,6)^{\mathrm{T}}$. 无关

练习

向量组大小与线性无关的关系

定理

设向量组 $S = \{ \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_s \}$ 可由 $T = \{ \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_t \}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

向量组大小与线性无关的关系

定理

设向量组 $S = \{ \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_s \}$ 可由 $T = \{ \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_t \}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

向量组大小与线性无关的关系

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 可由 $T = \{\beta_1, \dots, \beta_t\}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

证明

设 $A = (\alpha_1, \ldots, \alpha_s), B = (\beta_1, \ldots, \beta_t)$. 则存在矩阵 P 使得 A = BP.

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 可由 $T = \{\beta_1, \dots, \beta_t\}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

证明

设 $A = \overline{(\alpha_1, \dots, \alpha_s)}, B = (\beta_1, \dots, \beta_t)$. 则存在矩阵 P 使得 A = BP. 由于 P 行数 小于列数, 因此 Px = 0 有非零解 x.

定理

设向量组 $S = \{ \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_s \}$ 可由 $T = \{ \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_t \}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

证明

设 $A=(\alpha_1,\ldots,\alpha_s), B=(\beta_1,\ldots,\beta_t)$. 则存在矩阵 P 使得 A=BP. 由于 P 行数 小于列数, 因此 Px=0 有非零解 x. 从而 Ax=BPx=0, S 线性相关.

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 可由 $T = \{\beta_1, \dots, \beta_t\}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

证明

设 $A = (\alpha_1, \dots, \alpha_s), B = (\beta_1, \dots, \beta_t)$. 则存在矩阵 P 使得 A = BP. 由于 P 行数 小于列数, 因此 Px = 0 有非零解 x. 从而 Ax = BPx = 0, S 线性相关.

推论

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 可由 $T = \{\beta_1, \dots, \beta_t\}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

证明

设 $A = (\alpha_1, \dots, \alpha_s), B = (\beta_1, \dots, \beta_t)$. 则存在矩阵 P 使得 A = BP. 由于 P 行数 小于列数, 因此 Px = 0 有非零解 x. 从而 Ax = BPx = 0, S 线性相关.

推论

(1) m > n 个 n 维向量一定线性相关.

定理

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 可由 $T = \{\beta_1, \dots, \beta_t\}$ 线性表示.

(1) 若 s > t, 则 S 线性相关.

(2) 若 S 线性无关,则 $s \leq t$.

即多的由少的表示,多的一定线性相关.

证明

设 $A = \overline{(\alpha_1, \dots, \alpha_s)}, B = (\beta_1, \dots, \beta_t)$. 则存在矩阵 P 使得 A = BP. 由于 P 行数 小于列数, 因此 Px = 0 有非零解 x. 从而 Ax = BPx = 0, S 线性相关.

推论

- (1) m > n 个 n 维向量一定线性相关.
- (2) 任意两个等价的线性无关向量组所含向量的个数相同.

(1) 向量组线性相关 👄 其中至少有一个向量可以由其它向量线性表示.

- (1) 向量组线性相关 ⇔ 其中至少有一个向量可以由其它向量线性表示.
- (2) 若 S 线性无关, $S \cup \{\beta\}$ 线性相关, 则 β 可以由 S 唯一线性表示.

- (1) 向量组线性相关 👄 其中至少有一个向量可以由其它向量线性表示.
- (2) 若 S 线性无关, $S \cup \{\beta\}$ 线性相关, 则 β 可以由 S 唯一线性表示.
- (3) 部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关.

- (1) 向量组线性相关 👄 其中至少有一个向量可以由其它向量线性表示.
- (2) 若 S 线性无关, $S \cup \{\beta\}$ 线性相关, 则 β 可以由 S 唯一线性表示.
- (3) 部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关.
- (4) 高维相关 ⇒ 低维相关, 低维无关 ⇒ 高维无关.

- (1) 向量组线性相关 👄 其中至少有一个向量可以由其它向量线性表示.
- (2) 若 S 线性无关, $S \cup \{\beta\}$ 线性相关, 则 β 可以由 S 唯一线性表示.
- (3) 部分相关 ⇒ 整体相关,整体无关 ⇒ 部分无关.
- (4) 高维相关 ⇒ 低维相关, 低维无关 ⇒ 高维无关.
- (5) 多的由少的表示, 多的一定线性相关.

(1) 若 $\alpha_1, \ldots, \alpha_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.

定义

- (1) 若 $\alpha_1, \ldots, \alpha_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

- (1) 若 $\alpha_1, \ldots, \alpha_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

- (1) 若 $\alpha_1, \ldots, \alpha_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设
$$S = \{\alpha_1, \ldots, \alpha_m\}$$
 生成 V ,

- (1) 若 $\alpha_1, \ldots, \alpha_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 $S = \{\alpha_1, \ldots, \alpha_m\}$ 生成 $V, T \in V$ 的一组基.

- $\overline{ig(1ig)}$ 若 $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 $S = \{\alpha_1, \dots, \alpha_m\}$ 生成 V, $T \in V$ 的一组基. 由于向量组等价 \iff 生成同一个空间, 因此 S, T 是等价向量组.

- $\overline{ig(1ig)}$ 若 $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 $S=\{\alpha_1,\ldots,\alpha_m\}$ 生成 V, T 是 V 的一组基. 由于向量组等价 \iff 生成同一个空间, 因此 S, T 是等价向量组. 由 T 线性无关可知 $R(S)\leqslant m$.

- $\overline{ig(1ig)}$ 若 $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 $S=\{lpha_1,\ldots,lpha_m\}$ 生成 V, T 是 V 的一组基. 由于向量组等价 \iff 生成同一个空间, 因此 S, T 是等价向量组. 由 T 线性无关可知 $R(S)\leqslant m$.

- $\overline{ig(1ig)}$ 若 $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 $S=\{lpha_1,\ldots,lpha_m\}$ 生成 V, T 是 V 的一组基. 由于向量组等价 \iff 生成同一个空间, 因此 S, T 是等价向量组. 由 T 线性无关可知 $R(S)\leqslant m$.

定理

 $\overline{(1)}$ 向量组 α_1,\ldots,α_m 线性无关 $\iff m=R(lpha_1,\ldots,lpha_m)$.

- $\overline{ig(1ig)}$ 若 $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m$ 是线性空间 V 的一组基, 则称 m 为 V 的维数, 记作 $\dim V$.
- (2) 设向量组 S 生成空间 V. 称 V 的维数为该向量组的秩(Rank), 记作 R(S).

由前面的结论可知, V 不同的基向量组的个数总是相同的, 即维数是唯一的.

设 $S=\{lpha_1,\ldots,lpha_m\}$ 生成 V, T 是 V 的一组基. 由于向量组等价 \iff 生成同一个空间, 因此 S, T 是等价向量组. 由 T 线性无关可知 $R(S)\leqslant m$.

- $\overline{(1)}$ 向量组 $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m$ 线性无关 $\iff m=R(oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m)$.
- (2) 向量组 $\alpha_1, \ldots, \alpha_m$ 线性相关 $\iff m > R(\alpha_1, \ldots, \alpha_m)$.

定理

(1) 设向量组 S 可由向量组 T 线性表示,则 $R(S) \leqslant R(T)$.

- (1) 设向量组 S 可由向量组 T 线性表示,则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$,则 $\dim V \leqslant \dim W$.

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$,则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

定理

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$,则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4).

定理

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4). 设 S,T 是 V,W 的一组基.

定理

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4). 设 S,T 是 V,W 的一组基. 那么 S,T 大小相同, 且 S 可由 T 线性表示.

定理

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4). 设 S,T 是 V,W 的一组基. 那么 S,T 大小相同, 且 S 可由 T 线性表示. 设 S,T 分别是 A,B 的列向量组,

定理

- (1) 设向量组 S 可由向量组 T 线性表示,则 $R(S) \leq R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4). 设 S,T 是 V,W 的一组基. 那么 S,T 大小相同, 且 S 可由 T 线性表示. 设 S,T 分别是 A,B 的列向量组, 那么存在方阵 P 使得 A=BP.

定理

- (1) 设向量组 S 可由向量组 T 线性表示, 则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4). 设 S,T 是 V,W 的一组基. 那么 S,T 大小相同, 且 S 可由 T 线性表示. 设 S,T 分别是 A,B 的列向量组, 那么存在方阵 P 使得 A=BP. 若 P 不可逆. 存在非零向量 x 使得 Px=0.

定理

- (1) 设向量组 S 可由向量组 T 线性表示,则 $R(S) \leqslant R(T)$.
- (2) 若线性空间 $V \subseteq W$, 则 $\dim V \leqslant \dim W$.
- (3) 设向量组 S 可由向量组 T 线性表示, 且 R(S) = R(T), 则 S,T 向量组等价.
- (4) 若线性空间 $V \subseteq W$ 且 $\dim V = \dim W$,则 V = W.

我们来证明(4). 设 S,T 是 V,W 的一组基. 那么 S,T 大小相同, 且 S 可由 T 线性表示. 设 S,T 分别是 A,B 的列向量组, 那么存在方阵 P 使得 A=BP. 若 P 不可逆, 存在非零向量 x 使得 Px=0. 于是 Ax=BPx=0, S 线性相关, 矛盾!

定理

设 $V \in \mathbb{R}$ 维空间, S 是由其中向量构成向量组. 那么 S 是一组基当且仅当如下任意两条满足 (剩下一条自动成立):

(1) S 大小是 n;

(2) S 生成 V;

(3) S 线性无关.

例: 向量组的秩

例

$$S_1 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\}, \quad S_2 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\}, \quad S_3 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5\}$$

满足
$$R(S_1)=R(S_2)=3, R(S_3)=4$$
. 证明向量组 $S=\{\alpha_1,\alpha_2,\alpha_3,\alpha_5-\alpha_4\}$ 线性无关.

例: 向量组的秩

例

$$S_1 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 \}, \quad S_2 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4 \}, \quad S_3 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5 \}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\pmb{\alpha}_5-\pmb{\alpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关.

例: 向量组的秩

例

$$S_1 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 \}, \quad S_2 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4 \}, \quad S_3 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5 \}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\pmb{\alpha}_5-\pmb{\alpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关. 由 $R(S_2)=3$ 可知 S_2 线性相关.

例

若

$$S_1 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\}, \quad S_2 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\}, \quad S_3 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5\}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\pmb{\alpha}_5-\pmb{\alpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关. 由 $R(S_2)=3$ 可知 S_2 线性相关. 从而 α_4 可由 S_1 线性表示.

例

若

$$S_1 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\}, \quad S_2 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\}, \quad S_3 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5\}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\pmb{\alpha}_5-\pmb{\alpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关. 由 $R(S_2)=3$ 可知 S_2 线性相关. 从而 α_4 可由 S_1 线性表示. 于是 S_3 可由 S 线性表示.

例

若

$$S_1 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 \}, \quad S_2 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4 \}, \quad S_3 = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5 \}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{m{lpha}_1, m{lpha}_2, m{lpha}_3, m{lpha}_5-m{lpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关. 由 $R(S_2)=3$ 可知 S_2 线性相关. 从而 α_4 可由 S_1 线性表示. 于是 S_3 可由 S 线性表示. 显然 S 可由 S_3 线性表示, 因此二者等价, $R(S)=R(S_3)=4$.

例

若

$$S_1 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\}, \quad S_2 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\}, \quad S_3 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5\}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\pmb{\alpha}_5-\pmb{\alpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关. 由 $R(S_2)=3$ 可知 S_2 线性相关. 从而 α_4 可由 S_1 线性表示. 于是 S_3 可由 S 线性表示. 显然 S 可由 S_3 线性表示, 因此二者等价, $R(S)=R(S_3)=4$.

练习

判断题: 设 S 和 T 为两个 n 维向量组, 且 R(S) = R(T), 则 S 和 T 等价.

例

若

$$S_1 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\}, \quad S_2 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\}, \quad S_3 = \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5\}$$

满足 $R(S_1)=R(S_2)=3, R(S_3)=4$. 证明向量组 $S=\{\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\pmb{\alpha}_5-\pmb{\alpha}_4\}$ 线性无关.

证明

由 $R(S_1)=3$ 可知 S_1 线性无关. 由 $R(S_2)=3$ 可知 S_2 线性相关. 从而 α_4 可由 S_1 线性表示. 于是 S_3 可由 S 线性表示. 显然 S 可由 S_3 线性表示, 因此二者等价, $R(S)=R(S_3)=4$.

练习

判断题: 设 S 和 T 为两个 n 维向量组, 且 R(S) = R(T), 则 S 和 T 等价. \times

如何从一组能生成空间 V 的向量找到 V 的一组基?

如何从一组能生成空间 V 的向量找到 V 的一组基? 我们只需要取极大线性无关组.

如何从一组能生成空间 V 的向量找到 V 的一组基? 我们只需要取极大线性无关组.

定义

设S为一个向量组. 若S 的部分组 $S_0 = \{ \alpha_1, \ldots, \alpha_m \}$ 满足

- (1) S_0 线性无关;
- (2) S_0 添加 S 中的若干向量得到的向量组均线性相关.

则称 S_0 是 S 的一个极大线性无关组.

如何从一组能生成空间 V 的向量找到 V 的一组基? 我们只需要取极大线性无关组.

定义

设S为一个向量组. 若S的部分组 $S_0 = \{\alpha_1, \ldots, \alpha_m\}$ 满足

- (1) S_0 线性无关;
- (2) S_0 添加 S 中的若干向量得到的向量组均线性相关.

则称 S_0 是 S 的一个极大线性无关组.

根据上一节相关结论可知, S 中所有向量均可由 S_0 线性表示.

如何从一组能生成空间 V 的向量找到 V 的一组基? 我们只需要取极大线性无关组.

定义

设S 为一个向量组. 若S 的部分组 $S_0 = \{ \alpha_1, \ldots, \alpha_m \}$ 满足

- (1) S_0 线性无关;
- (2) S_0 添加 S 中的若干向量得到的向量组均线性相关.

则称 S_0 是 S 的一个极大线性无关组.

根据上一节相关结论可知, S 中所有向量均可由 S_0 线性表示. 换言之, S_0 和 S 等价, 它们生成相同的子空间 V, m=R(S), S_0 是 V 的一组基.

定理

 S_0 是 S 的极大线性无关组当且仅当

定理

 S_0 是 S 的极大线性无关组当且仅当

(1) S₀ 线性无关;

定理

 S_0 是 S 的极大线性无关组当且仅当

- (1) S₀ 线性无关;
- (2) S 中任意 m+1 个向量线性相关.

定理

 S_0 是 S 的极大线性无关组当且仅当

- (1) S_0 线性无关;
- (2) S 中任意 m+1 个向量线性相关.

证明

若 S_0 是 S 的极大线性无关组, 则 S 中任意 m+1 个向量可由 S_0 线性表示.

定理

 S_0 是 S 的极大线性无关组当且仅当

- (1) S_0 线性无关;
- (2) S 中任意 m+1 个向量线性相关.

证明

 \overline{S} 是 S 的极大线性无关组, 则 S 中任意 m+1 个向量可由 S_0 线性表示. 从而线性相关.

定理

 S_0 是 S 的极大线性无关组当且仅当

- (1) S_0 线性无关;
- (2) S 中任意 m+1 个向量线性相关.

证明

 \overline{S} 是 S 的极大线性无关组, 则 S 中任意 m+1 个向量可由 S_0 线性表示. 从而线性相关.

反之, 若 S 中任意 m+1 个向量线性相关, 则 S 中任意 s>m 个向量线性相关.

定理

 S_0 是 S 的极大线性无关组当且仅当

- (1) S_0 线性无关;
- (2) S 中任意 m+1 个向量线性相关.

证明

 \overline{A} \overline{A}

反之, 若 S 中任意 m+1 个向量线性相关, 则 S 中任意 s>m 个向量线性相关. 于是 S_0 添加 S 中的若干向量得到的向量组均线性相关.

(1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.

- (1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.
- (2) 只含有零向量的向量组没有极大线性无关组 (空集), 它的秩为 0 (空集生成 0 维空间 $\{0\}$).

- (1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.
- (2) 只含有零向量的向量组没有极大线性无关组 (空集), 它的秩为 0 (空集生成 0 维空间 $\{0\}$).
- (3) 极大线性无关组一般不是唯一的.

- (1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.
- (2) 只含有零向量的向量组没有极大线性无关组 (空集), 它的秩为 0 (空集生成 0 维空间 $\{0\}$).
- (3) 极大线性无关组一般不是唯一的. 例如

$$\alpha_1 = (1,0)^{\mathrm{T}}, \quad \alpha_2 = (0,1)^{\mathrm{T}}, \quad \alpha_3 = (1,1)^{\mathrm{T}}.$$

- (1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.
- (2) 只含有零向量的向量组没有极大线性无关组 (空集), 它的秩为 0 (空集生成 0 维空间 $\{0\}$).
- (3) 极大线性无关组一般不是唯一的. 例如

$$\alpha_1 = (1,0)^{\mathrm{T}}, \quad \alpha_2 = (0,1)^{\mathrm{T}}, \quad \alpha_3 = (1,1)^{\mathrm{T}}.$$

 α_1, α_2 是一个极大线性无关组, α_1, α_3 也是一个极大线性无关组.

- (1) 若 R(S) = r, 则 S 中任意 r 个线性无关的向量构成 S 的一个极大线性无关组.
- (2) 只含有零向量的向量组没有极大线性无关组 (空集), 它的秩为 0 (空集生成 0 维空间 $\{0\}$).
- (3) 极大线性无关组一般不是唯一的. 例如

$$\alpha_1 = (1,0)^{\mathrm{T}}, \quad \alpha_2 = (0,1)^{\mathrm{T}}, \quad \alpha_3 = (1,1)^{\mathrm{T}}.$$

 α_1, α_2 是一个极大线性无关组, α_1, α_3 也是一个极大线性无关组.

(4) 向量组和它的一个极大线性无关组是等价的, 于是同一向量组的任意两个极大线性无关组等价.

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组.

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B = AP, 则 P 可逆.

设 $A=(\alpha_1,\ldots,\alpha_r), B=(\beta_1,\ldots,\beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B=AP,则 P 可逆.

一般地,若 $\pmb{A}=(\pmb{\alpha}_1,\dots,\pmb{\alpha}_m), \pmb{B}=(\pmb{\beta}_1,\dots,\pmb{\beta}_m)$ 的列向量组是等价的向量组,秩为 r.

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B = AP, 则 P 可逆.

一般地,若 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_m)$ 的列向量组是等价的向量组,秩为 r. 通过适当的列变换,可以让 A 的前 r 列是极大无关组,后面全是零向量.

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B = AP, 则 P 可逆.

一般地,若 $A=(\alpha_1,\ldots,\alpha_m), B=(\beta_1,\ldots,\beta_m)$ 的列向量组是等价的向量组,秩为 r. 通过适当的列变换,可以让 A 的前 r 列是极大无关组,后面全是零向量. 设 $A=(A'_r,O)$.

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B = AP, 则 P 可逆.

一般地,若 $A=(\alpha_1,\ldots,\alpha_m), B=(\beta_1,\ldots,\beta_m)$ 的列向量组是等价的向量组,秩为 r. 通过适当的列变换,可以让 A 的前 r 列是极大无关组,后面全是零向量. 设 $A=(A'_r,O)$. 对 B 作类似操作,则 $A'\stackrel{\sim}{\sim} B'$,即存在可逆矩阵 $P\in M_r$ 使得 B'=A'P.

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B = AP, 则 P 可逆.

一般地,若 $A=(\alpha_1,\ldots,\alpha_m),B=(\beta_1,\ldots,\beta_m)$ 的列向量组是等价的向量组,秩为 r. 通过适当的列变换,可以让 A 的前 r 列是极大无关组,后面全是零向量. 设 $A=(A'_r,O)$. 对 B 作类似操作,则 $A'\stackrel{\sim}{\sim} B'$,即存在可逆矩阵 $P\in M_r$ 使得 B'=A'P. 于是

$$oldsymbol{B} = oldsymbol{A} egin{pmatrix} oldsymbol{P} & & \ & oldsymbol{E} \end{pmatrix} \overset{c}{\sim} oldsymbol{A}.$$

设 $A = (\alpha_1, \dots, \alpha_r), B = (\beta_1, \dots, \beta_r)$ 的列向量组是等价的线性无关组. 我们之前证明过若 B = AP, 则 P 可逆.

一般地, 若 $A=(\alpha_1,\ldots,\alpha_m), B=(\beta_1,\ldots,\beta_m)$ 的列向量组是等价的向量组, 秩为 r. 通过适当的列变换, 可以让 A 的前 r 列是极大无关组, 后面全是零向量. 设 $A=(A'_r,O)$. 对 B 作类似操作, 则 $A'\stackrel{\sim}{\sim} B'$, 即存在可逆矩阵 $P\in M_r$ 使得 B'=A'P. 于是

$$oldsymbol{B} = oldsymbol{A} egin{pmatrix} oldsymbol{P} & & \ & oldsymbol{E} \end{pmatrix} \overset{c}{\sim} oldsymbol{A}.$$

因此同型矩阵列 (行) 向量组等价 👄 列 (行) 等价.

例

矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 的行向量组为

$$\boldsymbol{\alpha}_1^{\mathrm{T}} = (1,1,3,1), \ \boldsymbol{\alpha}_2^{\mathrm{T}} = (0,1,-1,4), \ \boldsymbol{\alpha}_3^{\mathrm{T}} = (0,0,0,5), \ \boldsymbol{\alpha}_4^{\mathrm{T}} = (0,0,0,0).$$

例

矩阵
$$m{A} = egin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 的行向量组为

$$\boldsymbol{\alpha}_1^{\mathrm{T}} = (1,1,3,1), \ \boldsymbol{\alpha}_2^{\mathrm{T}} = (0,1,-1,4), \ \boldsymbol{\alpha}_3^{\mathrm{T}} = (0,0,0,5), \ \boldsymbol{\alpha}_4^{\mathrm{T}} = (0,0,0,0).$$

由于
$$\alpha_1^{\rm T}$$
, $\alpha_2^{\rm T}$, $\alpha_3^{\rm T}$ 的第 $1, 2, 4$ 个分量形成可逆矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$, 因此它们线性无关.

例

矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 的行向量组为

$$\boldsymbol{\alpha}_1^{\mathrm{T}} = (1,1,3,1), \ \boldsymbol{\alpha}_2^{\mathrm{T}} = (0,1,-1,4), \ \boldsymbol{\alpha}_3^{\mathrm{T}} = (0,0,0,5), \ \boldsymbol{\alpha}_4^{\mathrm{T}} = (0,0,0,0).$$

由于
$$\alpha_1^{\rm T}$$
, $\alpha_2^{\rm T}$, $\alpha_3^{\rm T}$ 的第 1,2,4 个分量形成可逆矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$, 因此它们线性无关.

它们构成一个极大线性无关组, A 的行向量组的秩是 3.

例

矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 的行向量组为

$$\boldsymbol{\alpha}_1^{\mathrm{T}} = (1,1,3,1), \ \boldsymbol{\alpha}_2^{\mathrm{T}} = (0,1,-1,4), \ \boldsymbol{\alpha}_3^{\mathrm{T}} = (0,0,0,5), \ \boldsymbol{\alpha}_4^{\mathrm{T}} = (0,0,0,0).$$

由于
$$\alpha_1^{\rm T}$$
, $\alpha_2^{\rm T}$, $\alpha_3^{\rm T}$ 的第 $1,2,4$ 个分量形成可逆矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$, 因此它们线性无关.

它们构成一个极大线性无关组, A 的行向量组的秩是 3. 类似可知, A 的列向量组的 秩也是 3.

例

秩也是 3.

矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 的行向量组为

$$\boldsymbol{\alpha}_1^{\mathrm{T}} = (1, 1, 3, 1), \ \boldsymbol{\alpha}_2^{\mathrm{T}} = (0, 1, -1, 4), \ \boldsymbol{\alpha}_3^{\mathrm{T}} = (0, 0, 0, 5), \ \boldsymbol{\alpha}_4^{\mathrm{T}} = (0, 0, 0, 0).$$

由于
$$\alpha_1^{\rm T}$$
, $\alpha_2^{\rm T}$, $\alpha_3^{\rm T}$ 的第 $1,2,4$ 个分量形成可逆矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$, 因此它们线性无关. 它们构成一个极大线性无关组, \boldsymbol{A} 的行向量组的秩是 3 . 类似可知, \boldsymbol{A} 的列向量组的

实际上,任意矩阵的行向量组的秩等于列向量组的秩

例: 极大线性无关组

例

矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 的行向量组为

$$\boldsymbol{\alpha}_1^{\mathrm{T}} = (1, 1, 3, 1), \ \boldsymbol{\alpha}_2^{\mathrm{T}} = (0, 1, -1, 4), \ \boldsymbol{\alpha}_3^{\mathrm{T}} = (0, 0, 0, 5), \ \boldsymbol{\alpha}_4^{\mathrm{T}} = (0, 0, 0, 0).$$

由于
$$\alpha_1^{\rm T}$$
, $\alpha_2^{\rm T}$, $\alpha_3^{\rm T}$ 的第 $1,2,4$ 个分量形成可逆矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$, 因此它们线性无关.

它们构成一个极大线性无关组, A 的行向量组的秩是 3. 类似可知, A 的列向量组的 秩也是 3.

实际上,任意矩阵的行向量组的秩等于列向量组的秩.为了说明这一点,我们考虑矩阵的秩.

第二节 矩阵的秩

- 矩阵秩的定义
- 矩阵秩的性质
- ■极大线性无关组的计算方法

我们知道,每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

我们知道,每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩,记作

 $R(\mathbf{A}).$

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

我们知道,每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩,记作

 $R(\mathbf{A}).$

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵, 再实施初等变换使其变为行最简形矩阵或标准型矩阵, 并不会改变它的非零行的个数.

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵,再实施初等变换使其变为行最简形矩阵或标准型矩阵,并不会改变它的非零行的个数.换言之,行阶梯形矩阵的秩就是非零行的个数.

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵,再实施初等变换使其变为行最简形矩阵或标准型矩阵,并不会改变它的非零行的个数.换言之,行阶梯形矩阵的秩就是非零行的个数.

设 A 通过初等行变换变为行阶梯形矩阵 B,则二者秩相等,二者的行向量组等价,从而行秩也相等。

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵,再实施初等变换使其变为行最简形矩阵或标准型矩阵,并不会改变它的非零行的个数.换言之,行阶梯形矩阵的秩就是非零行的个数.

设 A 通过初等行变换变为行阶梯形矩阵 B,则二者秩相等,二者的行向量组等价,从而行秩也相等。对于 B,它的行秩就是非零行的个数,也就是 R(B).

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵,再实施初等变换使其变为行最简形矩阵或标准型矩阵,并不会改变它的非零行的个数.换言之,行阶梯形矩阵的秩就是非零行的个数.

设 A 通过初等行变换变为行阶梯形矩阵 B, 则二者秩相等, 二者的行向量组等价, 从而行秩也相等. 对于 B, 它的行秩就是非零行的个数, 也就是 R(B). 因此 A 的行秩等于秩.

我们知道, 每个矩阵 A 都等价于某个标准型 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$. 称 r 为 A 的秩, 记作 R(A).

称 A 的行向量组的秩为行秩, 列向量组的秩为列秩.

行秩等于列秩等于秩

A 的行秩和列秩均等于秩 R(A).

由此可知矩阵的秩是唯一确定的.

对于行阶梯形矩阵,再实施初等变换使其变为行最简形矩阵或标准型矩阵,并不会改变它的非零行的个数.换言之,行阶梯形矩阵的秩就是非零行的个数.

设 A 通过初等行变换变为行阶梯形矩阵 B, 则二者秩相等, 二者的行向量组等价, 从而行秩也相等. 对于 B, 它的行秩就是非零行的个数, 也就是 R(B). 因此 A 的行秩等于秩. 不难知道 $R(A) = R(A^{\mathrm{T}})$, 从而 A 的列秩 $= A^{\mathrm{T}}$ 的行秩 $= R(A^{\mathrm{T}}) = R(A)$.

例

阵
$$oldsymbol{A}=egin{pmatrix} 2&-1&0&3&-2\0&3&1&-2&5\0&0&0&4&-3\0&0&0&0&0 \end{pmatrix}, oldsymbol{B}=egin{pmatrix} 1&2&3\2&3&-5\4&7&1 \end{pmatrix}$$
 的移

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 3 & -2 \\ 0 & 3 & 1 & -2 & 5 \\ 0 & 0 & 0 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -5 \\ 4 & 7 & 1 \end{pmatrix}$$
的秩.

解

A 是行阶梯形矩阵, 因此 R(A) = 3.

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 3 & -2 \\ 0 & 3 & 1 & -2 & 5 \\ 0 & 0 & 0 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -5 \\ 4 & 7 & 1 \end{pmatrix}$$
的秩.

解

A 是行阶梯形矩阵, 因此 R(A) = 3.

$$\boldsymbol{B} \stackrel{r_2-2r_1}{\overbrace{r_4-4r_1}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -11 \\ 0 & -1 & -11 \end{pmatrix} \stackrel{r_3-r_2}{\overbrace{-r_2}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 11 \\ 0 & 0 & 0 \end{pmatrix}$$

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 3 & -2 \\ 0 & 3 & 1 & -2 & 5 \\ 0 & 0 & 0 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -5 \\ 4 & 7 & 1 \end{pmatrix}$$
的秩.

解

A 是行阶梯形矩阵, 因此 R(A) = 3.

$$\mathbf{B} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -11 \\ 0 & -1 & -11 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 11 \\ 0 & 0 & 0 \end{pmatrix} \implies R(\mathbf{B}) = 2.$$

阵
$$m{A} = egin{pmatrix} 1 & 1 & a \ -1 & a-1 & 1-a \ 1 & 1 & a^2 \ 1 & 1 & 2a+1 \end{pmatrix}$$
 的秩.

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix}$$
 的秩.

$$A \underbrace{r_{3} - r_{1}}_{r_{4} - r_{1}} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a^{2} - a \\ 0 & 0 & a + 1 \end{pmatrix}$$

例

求矩阵
$$m{A} = egin{pmatrix} 1 & 1 & a \ -1 & a-1 & 1-a \ 1 & 1 & a^2 \ 1 & 1 & 2a+1 \end{pmatrix}$$
 的秩.

$$A \overbrace{r_4 - r_1}^{r_2 + r_1} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a^2 - a \\ 0 & 0 & a + 1 \end{pmatrix} \underbrace{r_3 - ar_4}_{-\frac{1}{2}r_3} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a \\ 0 & 0 & a + 1 \end{pmatrix}$$

例

求矩阵
$$m{A} = egin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix}$$
 的秩.

$$A \xrightarrow[r_4-r_1]{r_3-r_1 \choose r_4-r_1} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a^2-a \\ 0 & 0 & a+1 \end{pmatrix} \xrightarrow[-\frac{1}{2}r_3]{r_3-ar_4 \choose 0} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a \\ 0 & 0 & a+1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix}$$
 的秩.

解

$$A \xrightarrow[r_4-r_1]{1} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a^2-a \\ 0 & 0 & a+1 \end{pmatrix} \xrightarrow[-\frac{1}{2}r_3]{1} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a \\ 0 & 0 & a+1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

因此 $a \neq 0$ 时, $R(\mathbf{A}) = 3$; a = 0 时, $R(\mathbf{A}) = 2$.

练习

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -2 & 3 \\ 2 & 1 & -6 & 4 \\ 3 & 2 & m & 7 \end{pmatrix}$$
 的秩.

练习

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -2 & 3 \\ 2 & 1 & -6 & 4 \\ 3 & 2 & m & 7 \end{pmatrix}$$
 的秩

答案

$$m \neq -8$$
 时, $R(\mathbf{A}) = 3$; $m = -8$ 时, $R(\mathbf{A}) = 2$.

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

例

求矩阵
$$m{A} = egin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

$$A \underbrace{r_1 \leftrightarrow r_4}_{r_3 - r_1} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a & 1 - a^2 \end{pmatrix}$$

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

$$A \xrightarrow[r_4 - ar_1]{r_1 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a & 1 - a^2 \end{pmatrix} \xrightarrow[r_4 + r_3]{r_4 + r_2} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 0 & 0 & -(a+3)(a-1) \end{pmatrix}$$

例

求矩阵
$$m{A} = egin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

解

$$A \xrightarrow[r_4 - ar_1]{r_1 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a & 1 - a^2 \end{pmatrix} \xrightarrow[r_4 + r_3]{r_4 + r_2} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 0 & 0 & -(a+3)(a-1) \end{pmatrix}$$

因此 $a \neq 1, -3$ 时, $R(\mathbf{A}) = 4$;

例

求矩阵
$$m{A} = egin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

$$A \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a & 1 - a^2 \end{pmatrix} \xrightarrow{r_4 + r_2} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a - 1 & 0 & 1 - a \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 0 & 0 & -(a+3)(a-1) \end{pmatrix}$$
因此 $a \neq 1, -3$ 时, $R(A) = 4$: $a = -3$ 时, $R(A) = 3$:

例

求矩阵
$$m{A} = egin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

$$A \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a-1 & 0 & 1-a \\ 0 & 0 & a-1 & 1-a \\ 0 & 1-a & 1-a & 1-a^2 \end{pmatrix}$$
 $\underbrace{r_4 + r_2}_{r_4 - ar_1} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a-1 & 0 & 1-a \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & 0 & -(a+3)(a-1) \end{pmatrix}$ 因此 $a \neq 1, -3$ 时, $R(A) = 4$; $a = -3$ 时, $R(A) = 3$; $a = 1$ 时, $R(A) = 1$.

矩阵秩有另一种刻画方式.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式,

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 A 的 k 阶子式均为零, 则 k+1 阶子式也都是零.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 A 的 k 阶子式均为零, 则 k+1 阶子式也都是零. 因此 A 的任意 s>r 阶子式都是零.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 A 的 k 阶子式均为零, 则 k+1 阶子式也都是零. 因此 A 的任意 s>r 阶子式都是零.

推论

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 A 的 k 阶子式均为零, 则 k+1 阶子式也都是零. 因此 A 的任意 s>r 阶子式都是零.

推论

(1) $R(A) \geqslant r \iff A$ 存在非零 r 阶子式.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 A 的 k 阶子式均为零, 则 k+1 阶子式也都是零. 因此 A 的任意 s>r 阶子式都是零.

推论

- (1) $R(A) \geqslant r \iff A$ 存在非零 r 阶子式.
- (2) $R(A) \leqslant r \iff A$ 所有 r+1 阶子式均为零.

矩阵秩有另一种刻画方式. 矩阵 A 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 A 的 k 阶子式. 例如 n 阶方阵的余子式是 n-1 阶子式.

定理

设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 若 \boldsymbol{A} 的 k 阶子式均为零, 则 k+1 阶子式也都是零. 因此 \boldsymbol{A} 的任意 s>r 阶子式都是零.

推论

- (1) $R(A) \geqslant r \iff A$ 存在非零 r 阶子式.
- (2) $R(A) \leqslant r \iff A$ 所有 r+1 阶子式均为零.
- (3) $R(A) = r \implies A$ 存在 1, 2, ..., r 阶非零子式.

证明

设 B = PA, 其中 P 是初等矩阵.

证明

设 B = PA, 其中 P 是初等矩阵.

(1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

由于 P^{-1} 也是初等矩阵, 因此反过来也成立.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

由于 P^{-1} 也是初等矩阵, 因此反过来也成立. 对于 B = AP 情形同理.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

由于 $m{P}^{-1}$ 也是初等矩阵, 因此反过来也成立. 对于 $m{B} = m{A}m{P}$ 情形同理. 因此, 若

 $A \sim B$, 则 A 的 k 阶子式都是零 \iff B 的 k 阶子式都是零.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

由于 P^{-1} 也是初等矩阵. 因此反过来也成立. 对于 B = AP 情形同理. 因此. 若

 $A \sim B$, 则 A 的 k 阶子式都是零 \iff B 的 k 阶子式都是零.

对于标准型矩阵, 该定理显然成立.

证明

设 B = PA, 其中 P 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 P = E(i, j(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式.

因此若 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

由于 P^{-1} 也是初等矩阵, 因此反过来也成立. 对于 B = AP 情形同理. 因此, 若

 $A \sim B$, 则 A 的 k 阶子式都是零 $\iff B$ 的 k 阶子式都是零.

对于标准型矩阵, 该定理显然成立. 因此该定理对任意矩阵都成立.

线性代数 ▶ 第二章 等价和秩 ▶ 2 矩阵的秩 ▶ A 矩阵秩的定义

命题

设 $\boldsymbol{A} \in M_{m \times n}$, 则 $0 \leqslant R(\boldsymbol{A}) \leqslant \min(m, n)$.

设 $\boldsymbol{A} \in M_{m \times n}$, 则 $0 \leqslant R(\boldsymbol{A}) \leqslant \min(m, n)$.

定义

设 $A \in M_{m \times n}$,则 $0 \leqslant R(A) \leqslant \min(m, n)$.

定义

(1) 若 R(A) = m, 称 A 行满秩;

设 $\boldsymbol{A} \in M_{m \times n}$, 则 $0 \leqslant R(\boldsymbol{A}) \leqslant \min(m, n)$.

定义

- (1) 若 R(A) = m, 称 A 行满秩;
- (2) 若 R(A) = n, 称 A 列满秩;

设 $A \in M_{m \times n}$,则 $0 \leqslant R(A) \leqslant \min(m, n)$.

定义

- (1) 若 R(A) = m, 称 A 行满秩;
- (2) 若 R(A) = n, 称 A 列满秩;
- (3) 若 R(A) = m = n, 称 A 满秩.

 $(1) R(A) = 0 \iff A = 0;$

- $(1) R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;

- $(1) R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;
- (3) $R(kA) = R(A) = R(A^{T}), k \neq 0$;

- (1) $R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;
- (3) $R(kA) = R(A) = R(A^{T}), k \neq 0$;
- (4) $\boldsymbol{A} \sim \boldsymbol{B} \iff R(\boldsymbol{A}) = R(\boldsymbol{B});$

- $\overline{(1)} R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;
- (3) $R(kA) = R(A) = R(A^{T}), k \neq 0$;
- (4) $\boldsymbol{A} \sim \boldsymbol{B} \iff R(\boldsymbol{A}) = R(\boldsymbol{B});$
- (5) $R(AB) \leqslant \min(R(A), R(B))$;

- $(1) R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;
- (3) $R(kA) = R(A) = R(A^{T}), k \neq 0$;
- (4) $\boldsymbol{A} \sim \boldsymbol{B} \iff R(\boldsymbol{A}) = R(\boldsymbol{B});$
- (5) $R(AB) \leq \min(R(A), R(B));$
- (6) 若 $A_{m \times n} B_{n \times \ell} = O$, 则 $R(A) + R(B) \leqslant n$;

- $(1) R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;
- (3) $R(kA) = R(A) = R(A^{T}), k \neq 0$;
- (4) $A \sim B \iff R(A) = R(B)$;
- (5) $R(\mathbf{AB}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B}));$
- (6) 若 $A_{m \times n} B_{n \times \ell} = O$, 则 $R(A) + R(B) \leqslant n$;
- (7) $R(A + B) \leq R(A) + R(B)$;

- (1) $R(A) = 0 \iff A = 0;$
- (2) n 阶方阵 A 可逆 $\iff R(A) = n$;
- (3) $R(kA) = R(A) = R(A^{T}), k \neq 0$;
- (4) $A \sim B \iff R(A) = R(B)$;
- (5) $R(AB) \leq \min(R(A), R(B));$
- (6) 若 $A_{m \times n} B_{n \times \ell} = O$, 则 $R(A) + R(B) \leqslant n$;
- (7) $R(A + B) \leq R(A) + R(B)$;
- (8) $\max(R(\mathbf{A}), R(\mathbf{B})) \leqslant R(\mathbf{A}, \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

命题

(5) $R(\mathbf{A}\mathbf{B}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B}))$.

命题

(5) $R(\mathbf{A}\mathbf{B}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B})).$

证明

 \overline{AB} 的列向量为 A 列向量组的线性组合, 从而 AB 的列秩 $\leqslant A$ 的列秩, 即 $R(AB) \leqslant R(A)$.

命题

(5) $R(\mathbf{A}\mathbf{B}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B})).$

证明

 \overline{AB} 的列向量为 A 列向量组的线性组合, 从而 AB 的列秩 $\leqslant A$ 的列秩, 即 $R(AB) \leqslant R(A)$. 于是

$$R(\mathbf{A}\mathbf{B}) = R(\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}) \leqslant R(\mathbf{B}^{\mathrm{T}}) = R(\mathbf{B}).$$

(5) $R(\mathbf{A}\mathbf{B}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B}))$.

证明

 $m{AB}$ 的列向量为 $m{A}$ 列向量组的线性组合,从而 $m{AB}$ 的列秩 $\leqslant m{A}$ 的列秩,即 $R(m{AB}) \leqslant R(m{A})$. 于是

$$R(\boldsymbol{A}\boldsymbol{B}) = R(\boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}) \leqslant R(\boldsymbol{B}^{\mathrm{T}}) = R(\boldsymbol{B}).$$

若 B 行满秩,则 B 有 R(B) 阶子式非零,它对应的方阵右乘 A 得到的列向量组和 A 列向量组等价,从而 R(AB) = R(A);

(5) $R(\mathbf{A}\mathbf{B}) \leq \min(R(\mathbf{A}), R(\mathbf{B}))$.

证明

 \overline{AB} 的列向量为 A 列向量组的线性组合, 从而 AB 的列秩 $\leqslant A$ 的列秩, 即 $R(AB) \leqslant R(A)$. 于是

$$R(\boldsymbol{A}\boldsymbol{B}) = R(\boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}) \leqslant R(\boldsymbol{B}^{\mathrm{T}}) = R(\boldsymbol{B}).$$

若 B 行满秩,则 B 有 R(B) 阶子式非零,它对应的方阵右乘 A 得到的列向量组和 A 列向量组等价,从而 R(AB) = R(A);若 B 列满秩,则 R(BA) = R(A);

(6) 若 $\boldsymbol{A}_{m \times n} \boldsymbol{B}_{n \times \ell} = \boldsymbol{O}$,则 $R(\boldsymbol{A}) + R(\boldsymbol{B}) \leqslant n$.

命题

(6) 若 $\mathbf{A}_{m \times n} \mathbf{B}_{n \times \ell} = \mathbf{O}$, 则 $R(\mathbf{A}) + R(\mathbf{B}) \leqslant n$.

设
$$oxed{A} = oldsymbol{P}'egin{pmatrix} oldsymbol{E}_r & oldsymbol{O} \\ oldsymbol{O} & oldsymbol{O} \end{pmatrix}oldsymbol{Q}, oldsymbol{B} = oldsymbol{P}egin{pmatrix} oldsymbol{E}_s & oldsymbol{O} \\ oldsymbol{O} & oldsymbol{O} \end{pmatrix}oldsymbol{Q}'$$
,其中 $oldsymbol{P}, oldsymbol{P}', oldsymbol{Q}, oldsymbol{Q}'$ 均可逆。

命题

(6) 若 $A_{m \times n} B_{n \times \ell} = O$, 则 $R(A) + R(B) \leqslant n$.

设
$$oxed{A} = oldsymbol{P}'egin{pmatrix} E_r & O \ O & O \end{pmatrix}oldsymbol{Q}, oldsymbol{B} = oldsymbol{P}egin{pmatrix} E_s & O \ O & O \end{pmatrix}oldsymbol{Q}'$$
,其中 $oldsymbol{P}, oldsymbol{P}', oldsymbol{Q}$ 均可逆. 则

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

命题

(6) 若 $A_{m \times n} B_{n \times \ell} = O$,则 $R(A) + R(B) \leqslant n$.

设
$$oxed{A} = oldsymbol{P}'egin{pmatrix} E_r & O \ O & O \end{pmatrix}oldsymbol{Q}, oldsymbol{B} = oldsymbol{P}egin{pmatrix} E_s & O \ O & O \end{pmatrix}oldsymbol{Q}'$$
,其中 $oldsymbol{P}, oldsymbol{P}', oldsymbol{Q}$,均可逆.则

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

设
$$\mathbf{QP} = \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{pmatrix}$$
 其中 \mathbf{C}_1 为 $(n-s) \times s$.

命题

(6) 若 $\boldsymbol{A}_{m \times n} \boldsymbol{B}_{n \times \ell} = \boldsymbol{O}$,则 $R(\boldsymbol{A}) + R(\boldsymbol{B}) \leqslant n$.

设
$$oldsymbol{A} = oldsymbol{P}'egin{pmatrix} E_r & O \ O & O \end{pmatrix}oldsymbol{Q}, oldsymbol{B} = oldsymbol{P}egin{pmatrix} E_s & O \ O & O \end{pmatrix}oldsymbol{Q}'$$
,其中 $oldsymbol{P}, oldsymbol{P}', oldsymbol{Q}$,均可逆.则

$$egin{aligned} AB = O \implies egin{pmatrix} E_r & O \ O & O \end{pmatrix} QP egin{pmatrix} E_s & O \ O & O \end{pmatrix} = O. \end{aligned}$$

设
$$\mathbf{QP} = \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{pmatrix}$$
 其中 \mathbf{C}_1 为 $(n-s) \times s$. 由于 \mathbf{QP} 的前 r 行 s 列均为零,

命题

(6) 若 $\boldsymbol{A}_{m \times n} \boldsymbol{B}_{n \times \ell} = \boldsymbol{O}$,则 $R(\boldsymbol{A}) + R(\boldsymbol{B}) \leqslant n$.

证明

设
$$oxed{A} = oldsymbol{P}'egin{pmatrix} E_r & O \ O & O \end{pmatrix}oldsymbol{Q}, oldsymbol{B} = oldsymbol{P}egin{pmatrix} E_s & O \ O & O \end{pmatrix}oldsymbol{Q}'$$
,其中 $oldsymbol{P}, oldsymbol{P}', oldsymbol{Q}$ 均可逆. 则

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

设
$$\mathbf{QP} = \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{pmatrix}$$
 其中 \mathbf{C}_1 为 $(n-s) \times s$. 由于 \mathbf{QP} 的前 r 行 s 列均为零, 因此

若 r+s>n, 则 $C_1=O$ 且 C_3 的第一行为零, $|QP|=\pm |C_2|\cdot |C_3|=0$, 矛盾!

- 命题

 $(7) R(\mathbf{A} + \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

 $(7) R(\mathbf{A} + \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

证明

由于添加零行或零列不改变秩,因此不妨设 A, B 都是方阵.

命题

 $(7) R(\mathbf{A} + \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

证明

由于添加零行或零列不改变秩,因此不妨设 A,B 都是方阵.由于

$$m{A} + m{B} = (m{E}, m{E}) egin{pmatrix} m{A} & \ & m{B} \end{pmatrix} egin{pmatrix} m{E} \ m{E} \end{pmatrix},$$

命题

 $(7) R(A + B) \leqslant R(A) + R(B).$

证明

由于添加零行或零列不改变秩,因此不妨设 A,B 都是方阵.由于

$$A + B = (E, E) \begin{pmatrix} A & \\ & B \end{pmatrix} \begin{pmatrix} E \\ E \end{pmatrix},$$

因此
$$R(\mathbf{A} + \mathbf{B}) \leqslant R\begin{pmatrix} \mathbf{A} & \\ & \mathbf{B} \end{pmatrix} = R(\mathbf{A}) + R(\mathbf{B}).$$

命题

(8) $\max(R(\boldsymbol{A}), R(\boldsymbol{B})) \leqslant R(\boldsymbol{A}, \boldsymbol{B}) \leqslant R(\boldsymbol{A}) + R(\boldsymbol{B}).$

命题

(8) $\max(R(\mathbf{A}), R(\mathbf{B})) \leqslant R(\mathbf{A}, \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

证明

不妨设 A, B 是方阵,

命题

(8) $\max(R(\boldsymbol{A}), R(\boldsymbol{B})) \leqslant R(\boldsymbol{A}, \boldsymbol{B}) \leqslant R(\boldsymbol{A}) + R(\boldsymbol{B}).$

证明

不妨设 A, B 是方阵, 则

$$m{A} = (m{A}, m{B}) egin{pmatrix} m{E} \ m{O} \end{pmatrix}, \quad (m{A}, m{B}) = (m{E}, m{E}) egin{pmatrix} m{A} & \ & m{B} \end{pmatrix}.$$

命题

(8) $\max(R(\mathbf{A}), R(\mathbf{B})) \leqslant R(\mathbf{A}, \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

证明

不妨设 A, B 是方阵, 则

$$m{A} = (m{A}, m{B}) egin{pmatrix} m{E} \ m{O} \end{pmatrix}, \quad (m{A}, m{B}) = (m{E}, m{E}) egin{pmatrix} m{A} & \ & m{B} \end{pmatrix}.$$

因此
$$R(\mathbf{A}) \leqslant R(\mathbf{A}, \mathbf{B}) \leqslant R\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} = R(\mathbf{A}) + R(\mathbf{B}).$$

练习

(1) 读
$$R(\mathbf{A}) = 2$$
, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, 则 $R(\mathbf{AB}) =$ _____.

练习

(1)
$$\aleph R(\mathbf{A}) = 2, \mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \ \mathbb{M} \ R(\mathbf{A}\mathbf{B}) = \underline{\qquad 2 \qquad }.$$

练习

(1)
$$\Re R(\mathbf{A}) = 2, \mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \ \mathbb{M} \ R(\mathbf{A}\mathbf{B}) = \underline{\qquad 2 \qquad }.$$

(2) 若 \boldsymbol{A} 是 n 阶方阵且 $R(\boldsymbol{A}\boldsymbol{B}) < R(\boldsymbol{B})$, 则 $|\boldsymbol{A}| =$ _____

练习

(1) 读
$$R(\mathbf{A}) = 2$$
, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, 则 $R(\mathbf{A}\mathbf{B}) = \underline{}$.

练习

(1) 读
$$R(\mathbf{A}) = 2, \mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
, 则 $R(\mathbf{AB}) = \underline{}$.

(3)
$$\nexists A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 & 1 \\ 1 & 2 & 1 \\ 4 & 6 & t \end{pmatrix}, AX = B \mathbb{R} R(X) = 2, \mathbb{N} t = \underline{\qquad}.$$

练习

(1) 读
$$R(\mathbf{A}) = 2, \mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \text{ } \mathcal{R}(\mathbf{A}\mathbf{B}) = \underline{\quad 2 \quad }.$$

(3)
$$\not\equiv \mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3 & 4 & 1 \\ 1 & 2 & 1 \\ 4 & 6 & t \end{pmatrix}, \mathbf{A}\mathbf{X} = \mathbf{B} \perp \mathbf{R}(\mathbf{X}) = 2, \ \mathbb{M} \ t = \underline{}.$$

练习

(1)
$$\aleph R(\mathbf{A}) = 2, \mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \ \mathbb{N} \ R(\mathbf{A}\mathbf{B}) = \underline{\qquad 2 \qquad }.$$

(3)
$$\nexists A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 & 1 \\ 1 & 2 & 1 \\ 4 & 6 & t \end{pmatrix}, AX = B \mathbb{R} R(X) = 2, \mathbb{N} t = 2.$$

(4) 若
$$\mathbf{A} = \begin{pmatrix} t & 2 & 3 \\ 2 & 1 & -1 \\ 0 & 0 & 5 \end{pmatrix}$$
 且存在非零矩阵 \mathbf{B} 使得 $\mathbf{AB} = \mathbf{O}$, 则 $t = \underline{}$.

练习

(1) 读
$$R(\mathbf{A}) = 2$$
, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, 则 $R(\mathbf{AB}) = \underline{}$.

(3)
$$\nexists A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 & 1 \\ 1 & 2 & 1 \\ 4 & 6 & t \end{pmatrix}, AX = B \mathbb{H} R(X) = 2, \mathbb{M} t = 2.$$

(4) 若
$$\mathbf{A} = \begin{pmatrix} t & 2 & 3 \\ 2 & 1 & -1 \\ 0 & 0 & 5 \end{pmatrix}$$
 且存在非零矩阵 \mathbf{B} 使得 $\mathbf{AB} = \mathbf{O}$, 则 $t = \underline{\mathbf{4}}$.

证明: 若 n 阶方阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = \boldsymbol{A}$, 则 $R(\boldsymbol{A}) + R(\boldsymbol{A} - \boldsymbol{E}) = n$.

例

证明: 若 n 阶方阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = \boldsymbol{A}$, 则 $R(\boldsymbol{A}) + R(\boldsymbol{A} - \boldsymbol{E}) = n$.

证明

由于 $A(A-E) = A^2 - A = O$, 因此

$$R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) \leqslant n.$$

例

证明: 若 n 阶方阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = \boldsymbol{A}$, 则 $R(\boldsymbol{A}) + R(\boldsymbol{A} - \boldsymbol{E}) = n$.

证明

由于 $A(A-E)=A^2-A=O$, 因此

$$R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) \leqslant n.$$

由于 A + (E - A) = E, 因此

$$n = R(\mathbf{E}) \leqslant R(\mathbf{A}) + R(\mathbf{E} - \mathbf{A}).$$

例

证明: 若 n 阶方阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = \boldsymbol{A}$, 则 $R(\boldsymbol{A}) + R(\boldsymbol{A} - \boldsymbol{E}) = n$.

证明

由于 $A(A-E)=A^2-A=O$, 因此

$$R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) \leqslant n.$$

由于 A + (E - A) = E, 因此

$$n = R(\mathbf{E}) \leqslant R(\mathbf{A}) + R(\mathbf{E} - \mathbf{A}).$$

故 $R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) = n.$

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

证明

(1) 若 R(A) = n, A 可逆, 从而 A^* 可逆, $R(A^*) = n$.

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

- $\overline{(1)}$ 若 $\overline{R}(\mathbf{A}) = n$, \mathbf{A} 可逆, 从而 \mathbf{A}^* 可逆, $R(\mathbf{A}^*) = n$.
- (2) 若 R(A) = n 1, 由 $AA^* = |A|E = 0$ 可知 $R(A^*) \leq 1$.

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

- $\overline{(1)}$ 若 $\overline{R}(\mathbf{A}) = n$, \mathbf{A} 可逆, 从而 \mathbf{A}^* 可逆, $R(\mathbf{A}^*) = n$.
- (2) 若 R(A) = n 1, 由 $AA^* = |A|E = 0$ 可知 $R(A^*) \le 1$. 由于 R(A) = n 1, A 存在非零的 n 1 子式, 从而 $A^* \ne 0$.

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

- (1) 若 R(A) = n, A 可逆, 从而 A^* 可逆, $R(A^*) = n$.
- (2) 若 R(A) = n 1, 由 $AA^* = |A|E = 0$ 可知 $R(A^*) \le 1$. 由于 R(A) = n 1, A 存在非零的 n 1 子式, 从而 $A^* \ne 0$. 故 $R(A^*) = 1$.

伴随矩阵的秩

设 A 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

- $\overline{(1)}$ 若 $\overline{R}(\mathbf{A}) = n$, \mathbf{A} 可逆, 从而 \mathbf{A}^* 可逆, $R(\mathbf{A}^*) = n$.
- (2) 若 R(A) = n 1, 由 $AA^* = |A|E = O$ 可知 $R(A^*) \le 1$. 由于 R(A) = n 1, A 存在非零的 n 1 子式, 从而 $A^* \ne O$. 故 $R(A^*) = 1$.
- (3) 若 $R(A) \leq n-2$, 则 A 的 n-1 子式均为零, 从而 $A^* = O$.

(1) 读
$$\boldsymbol{\alpha} = (1,0,-1,2)^{\mathrm{T}}, \boldsymbol{\beta} = (0,1,0,2)^{\mathrm{T}}$$
,则 $R(\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}) =$ _____

(1) 读
$$\alpha = (1, 0, -1, 2)^{\mathrm{T}}, \beta = (0, 1, 0, 2)^{\mathrm{T}}, 则 R(\alpha \beta^{\mathrm{T}}) = ____.$$

(1) if
$$\alpha = (1, 0, -1, 2)^{\mathrm{T}}, \beta = (0, 1, 0, 2)^{\mathrm{T}}, \text{ M} \ R(\alpha \beta^{\mathrm{T}}) = \underline{1}$$
.

(2) 若
$$\mathbf{A} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
 且 $R(\mathbf{A}^*) = 1$, 则().

(A)
$$a \neq b, a + 2b \neq 0$$

(B)
$$a \neq b, a + 2b = 0$$

(C)
$$a = b, a \neq 0$$

(D)
$$a = b = 0$$

(1)
$$\mbox{if } \alpha = (1, 0, -1, 2)^{\mathrm{T}}, \beta = (0, 1, 0, 2)^{\mathrm{T}}, \mbox{ } \mathcal{M} \ R(\alpha \beta^{\mathrm{T}}) = \underline{\qquad 1} \ .$$

(2) 若
$$\mathbf{A} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
 且 $R(\mathbf{A}^*) = 1$,则(B).

(A)
$$a \neq b, a + 2b \neq 0$$

(B)
$$a \neq b, a + 2b = 0$$

(C)
$$a = b, a \neq 0$$

(D)
$$a = b = 0$$

练习

(1) $\aleph \alpha = (1, 0, -1, 2)^{\mathrm{T}}, \beta = (0, 1, 0, 2)^{\mathrm{T}}, \ \mathbb{M} \ R(\alpha \beta^{\mathrm{T}}) = \underline{1}.$

(2) 若
$$\mathbf{A} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
 且 $R(\mathbf{A}^*) = 1$,则(B).

(A)
$$a \neq b, a + 2b \neq 0$$

(B)
$$a \neq b, a + 2b = 0$$

(C)
$$a = b, a \neq 0$$

(D)
$$a = b = 0$$

(3) 设
$$A, B$$
 均为 n 阶非零矩阵, 且 $AB = O$, 则 $R(A)$ 与 $R(B)$ ().

(D) 一个小于
$$n$$
, 一个等于 n

(1)
$$\mbox{if } \alpha = (1, 0, -1, 2)^{\mathrm{T}}, \beta = (0, 1, 0, 2)^{\mathrm{T}}, \mbox{if } R(\alpha \beta^{\mathrm{T}}) = \underline{\qquad 1}$$

(2) 若
$$\mathbf{A} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
 且 $R(\mathbf{A}^*) = 1$,则(B).

(A)
$$a \neq b, a + 2b \neq 0$$
 (B) $a \neq b, a + 2b = 0$

(C)
$$a = b, a \neq 0$$
 (D) $a = b = 0$

(3) 设
$$A, B$$
 均为 n 阶非零矩阵, 且 $AB = O$, 则 $R(A)$ 与 $R(B)$ (B).

(A) 必有一个等于
$$0$$
 (B) 都小于 n

(C) 都等于
$$n$$
 (D) 一个小于 n , 一个等于 n

(4) 设
$$P$$
 为 3 阶非零矩阵, $Q = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 且 $PQ = O$, 则().

(A)
$$t \neq 6$$
 时, $R(P) = 1$

(B)
$$t \neq 6$$
 时, $R(P) = 2$

(C)
$$t = 6$$
 时, $R(P) = 1$

(D)
$$t = 6$$
 时, $R(P) = 2$

(4) 设
$$P$$
 为 3 阶非零矩阵, $Q = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 且 $PQ = O$, 则(A).

(A)
$$t \neq 6$$
 时, $R(P) = 1$

(B)
$$t \neq 6$$
 时, $R(P) = 2$

(C)
$$t = 6$$
 时, $R(P) = 1$

(D)
$$t = 6$$
 时, $R(P) = 2$

(4) 设
$$P$$
 为 3 阶非零矩阵, $Q = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 且 $PQ = O$, 则(A).

(A)
$$t \neq 6$$
 时, $R(P) = 1$

(B)
$$t \neq 6$$
 时, $R(P) = 2$

(C)
$$t = 6$$
 时, $R(P) = 1$

(D)
$$t = 6$$
 时, $R(P) = 2$

(A)
$$R(\boldsymbol{A}, \boldsymbol{A}\boldsymbol{B}) = R(\boldsymbol{A})$$

(B)
$$R(\boldsymbol{A}, \boldsymbol{B}\boldsymbol{A}) = R(\boldsymbol{A})$$

(C)
$$R(\boldsymbol{A}, \boldsymbol{A}\boldsymbol{B}) = \max(R(\boldsymbol{A}), R(\boldsymbol{B}))$$

(D)
$$R(\mathbf{A}\mathbf{B}) = R(\mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}})$$

(4) 设
$$P$$
 为 3 阶非零矩阵, $Q = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 且 $PQ = O$, 则(A).

(A)
$$t \neq 6$$
 时, $R(P) = 1$

(B)
$$t \neq 6$$
 时, $R(P) = 2$

(C)
$$t = 6$$
 时, $R(P) = 1$

(D)
$$t = 6$$
 时, $R(P) = 2$

(A)
$$R(\boldsymbol{A}, \boldsymbol{A}\boldsymbol{B}) = R(\boldsymbol{A})$$

(B)
$$R(\boldsymbol{A}, \boldsymbol{B}\boldsymbol{A}) = R(\boldsymbol{A})$$

(C)
$$R(\boldsymbol{A}, \boldsymbol{A}\boldsymbol{B}) = \max(R(\boldsymbol{A}), R(\boldsymbol{B}))$$

(D)
$$R(\mathbf{A}\mathbf{B}) = R(\mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}})$$

练习

(4) 设
$$P$$
 为 3 阶非零矩阵, $Q = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 且 $PQ = O$, 则(A).

- (A) $t \neq 6$ 时, R(P) = 1 (B) $t \neq 6$ 时, R(P) = 2
- (C) t = 6 pt, R(P) = 1 (D) t = 6 pt, R(P) = 2
- (5) 设 **A**, **B** 为 n 阶方阵, 则(**A**).
 - (A) $R(\mathbf{A}, \mathbf{A}\mathbf{B}) = R(\mathbf{A})$ (B) $R(\mathbf{A}, \mathbf{B}\mathbf{A}) = R(\mathbf{A})$
 - (C) $R(\boldsymbol{A}, \boldsymbol{A}\boldsymbol{B}) = \max(R(\boldsymbol{A}), R(\boldsymbol{B}))$ (D) $R(\boldsymbol{A}\boldsymbol{B}) = R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}^{\mathrm{T}})$

答案

存在 $AB = O, BA \neq O, D$ 错误. 令 A = E, C 错误. (E,B) 行满秩, 选 A.

练习

(6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \text{则(}).$

- (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
- (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \text{则(} \mathbf{A}).$
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \mathbb{M}(\mathbf{A}).$
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \text{则(} \mathbf{A}).$
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$
- (7) 设 $\mathbf{A} \in M_{n \times m}, \mathbf{B} \in M_{m \times n}, n < m.$ 若 $\mathbf{AB} = \mathbf{E}$, 则 $R(\mathbf{B}) = \underline{\mathbf{n}}$.

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \mathbb{N}(\mathbf{A}).$
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$
- (7) 设 $\mathbf{A} \in M_{n \times m}, \mathbf{B} \in M_{m \times n}, n < m.$ 若 $\mathbf{AB} = \mathbf{E}$, 则 $R(\mathbf{B}) = \underline{\mathbf{n}}$.
- (8) 若 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a+2 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ a+3 & a+6 & a+4 \end{pmatrix}$ 等价,则().
 - (A) a = -1 (B) $a \neq -1$ (C) $a \neq 1$ (D) a = 1

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}$, 则(A).
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$
- (7) 设 $\mathbf{A} \in M_{n \times m}, \mathbf{B} \in M_{m \times n}, n < m.$ 若 $\mathbf{AB} = \mathbf{E}$, 则 $R(\mathbf{B}) = \underline{\mathbf{n}}$.
- (8) 若 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a+2 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ a+3 & a+6 & a+4 \end{pmatrix}$ 等价,则(B).
 - (A) a = -1 (B) $a \neq -1$ (C) $a \neq 1$ (D) a = 1

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}$, 则(A).
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$
- (7) 设 $\mathbf{A} \in M_{n \times m}, \mathbf{B} \in M_{m \times n}, n < m.$ 若 $\mathbf{AB} = \mathbf{E}$, 则 $R(\mathbf{B}) = \underline{\mathbf{n}}$.
- (8) 若 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a+2 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ a+3 & a+6 & a+4 \end{pmatrix}$ 等价,则(B).
 - (A) a = -1 (B) $a \neq -1$ (C) $a \neq 1$
- (9) 设四阶方阵 $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 满足 $\alpha_1+\alpha_2-2\alpha_3=0,\alpha_2+5\alpha_4=0$, 则 $R(A^*)=$

- (6) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \mathbb{M}(\mathbf{A}).$
 - (A) 当 m > n 时, 必有 |AB| = 0 (B) 当 m > n 时, 必有 $|AB| \neq 0$
 - (C) 当 m < n 时, 必有 |AB| = 0 (D) 当 m < n 时, 必有 $|AB| \neq 0$
- (7) 设 $\mathbf{A} \in M_{n \times m}, \mathbf{B} \in M_{m \times n}, n < m.$ 若 $\mathbf{AB} = \mathbf{E}$, 则 $R(\mathbf{B}) = \underline{\mathbf{n}}$.
- (8) 若 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a+2 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ a+3 & a+6 & a+4 \end{pmatrix}$ 等价,则(B).
 - (A) a = -1 (B) $a \neq -1$ (C) $a \neq 1$
- (9) 设四阶方阵 $\mathbf{A}=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4)$ 满足 $\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2-2\boldsymbol{\alpha}_3=\mathbf{0},\boldsymbol{\alpha}_2+5\boldsymbol{\alpha}_4=\mathbf{0}$, 则 $R(\mathbf{A}^*)=\mathbf{0}$.

设 $A = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m) \in M_{n \times m}$.

(1) $\alpha_1, \ldots, \alpha_m$ 线性相关 $\iff Ax = 0$ 有非零解 $\iff R(A) < m$;

命题

设 $A = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m) \in M_{n \times m}$.

- (1) $\alpha_1, \ldots, \alpha_m$ 线性相关 $\iff Ax = 0$ 有非零解 $\iff R(A) < m$;
- (2) $\alpha_1, \ldots, \alpha_m$ 线性无关 $\iff Ax = 0$ 只有零解 $\iff R(A) = m$.

命题

设 $A = (\alpha_1, \ldots, \alpha_m) \in M_{n \times m}$.

- (1) $\alpha_1, \ldots, \alpha_m$ 线性相关 $\iff Ax = 0$ 有非零解 $\iff R(A) < m$;
- (2) $\alpha_1, \ldots, \alpha_m$ 线性无关 $\iff Ax = 0$ 只有零解 $\iff R(A) = m$.

推论

设 $A=(\alpha_1,\ldots,\alpha_n)\in M_n$.

命题

设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m) \in M_{n \times m}$.

- (1) $\alpha_1, \ldots, \alpha_m$ 线性相关 $\iff Ax = 0$ 有非零解 $\iff R(A) < m$;
- (2) $\alpha_1, \ldots, \alpha_m$ 线性无关 $\iff Ax = 0$ 只有零解 $\iff R(A) = m$.

推论

设 $A=(\alpha_1,\ldots,\alpha_n)\in M_n$.

(1) $\alpha_1, \ldots, \alpha_m$ 线性相关 \iff Ax = 0 有非零解 \iff $R(A) < m \iff |A| = 0$;

- 命题

设 $A = (\alpha_1, \ldots, \alpha_m) \in M_{n \times m}$.

- (1) $\alpha_1, \ldots, \alpha_m$ 线性相关 $\iff Ax = 0$ 有非零解 $\iff R(A) < m$;
- (2) $\alpha_1, \ldots, \alpha_m$ 线性无关 $\iff Ax = 0$ 只有零解 $\iff R(A) = m$.

推论

设 $A=(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n)\in M_n$.

- (1) $\alpha_1, \ldots, \alpha_m$ 线性相关 \iff Ax = 0 有非零解 \iff $R(A) < m \iff |A| = 0$;
- (2) $\alpha_1, \ldots, \alpha_m$ 线性无关 \iff Ax = 0 只有零解 \iff $R(A) = m \iff |A| \neq 0$.

例: 判断线性无关

练习

设 $A \in \mathbb{R}$ 阶方阵, 且其行列式 |A| = 0. 下列说法正确的是().

- (A) A 必有一列元素全为零
- (B) A 必有两列元素对应成比例
- (C) A 必有一个列向量可由其余列向量线性表示
- (D) A 中任意列向量均可由其余列向量线性表示

例: 判断线性无关

练习

设 $A \in \mathbb{R}$ 阶方阵, 且其行列式 |A| = 0. 下列说法正确的是(\mathbb{C}).

- (A) A 必有一列元素全为零
- (B) A 必有两列元素对应成比例
- (C) A 必有一个列向量可由其余列向量线性表示
- (D) A 中任意列向量均可由其余列向量线性表示

定理

若 A 经过初等行变换变为 B, 则

定理

若 A 经过初等行变换变为 B, 则

(1) A 的行向量组与 B 的行向量组等价;

定理

若 A 经过初等行变换变为 B, 则

- (1) A 的行向量组与 B 的行向量组等价;
- (2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

定理

若 A 经过初等行变换变为 B, 则

- (1) A 的行向量组与 B 的行向量组等价;
- (2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

即初等行变换保持行向量组的等价性, 列向量组的线性组合关系.

定理

若 A 经过初等行变换变为 B, 则

- (1) A 的行向量组与 B 的行向量组等价;
- (2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

即初等行变换保持行向量组的等价性, 列向量组的线性组合关系.

证明

(<mark>1)</mark>我们已经证明过.

定理

若 A 经过初等行变换变为 B, 则

- (1) A 的行向量组与 B 的行向量组等价;
- (2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

即初等行变换保持行向量组的等价性, 列向量组的线性组合关系.

证明

 $(\overline{1})$ 我们已经证明过.设 B=PA, 其中 P 是可逆矩阵.

定理

若 A 经过初等行变换变为 B, 则

- (1) A 的行向量组与 B 的行向量组等价;
- (2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

即初等行变换保持行向量组的等价性, 列向量组的线性组合关系.

证明

(1)我们已经证明过. 设 B=PA, 其中 P 是可逆矩阵. 若 Bx=0, 则 PAx=

0, Ax = 0. 反之亦然, 即 $Ax = 0 \iff Bx = 0$.

线性相关的不变性

定理

若 A 经过初等行变换变为 B, 则

- (1) A 的行向量组与 B 的行向量组等价;
- (2) A 任意 k 列和 B 对应的 k 列具有相同的线性相关性.

即初等行变换保持行向量组的等价性, 列向量组的线性组合关系.

证明

(1)我们已经证明过. 设 B=PA, 其中 P 是可逆矩阵. 若 Bx=0, 则 PAx=0, Ax=0. 反之亦然, 即 $Ax=0\iff Bx=0$. 所以 x 非零分量对应的那些 A, B 的列向量与 x 对应分量数乘之和同时为零或同时非零.

极大线性无关组和秩的计算方法

(1) 将向量组以列向量形式组成矩阵 $m{A}=(m{lpha}_1,\ldots,m{lpha}_m)$.

- $\overline{(1)}$ 将向量组以列向量形式组成矩阵 $oldsymbol{A}=(oldsymbol{lpha}_1,\dots,oldsymbol{lpha}_m)$.
- (2) 通过初等行变换将 A 变为行阶梯形矩阵.

- $\overline{(1)}$ 将向量组以列向量形式组成矩阵 $oldsymbol{A}=(oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m).$
- (2) 通过初等行变换将 A 变为行阶梯形矩阵.
 - 行阶梯形矩阵非零行的行数就是秩 R(A);

- $\overline{(1)}$ 将向量组以列向量形式组成矩阵 $oldsymbol{A}=(oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m)$.
- (2) 通过初等行变换将 A 变为行阶梯形矩阵.
 - 行阶梯形矩阵非零行的行数就是秩 R(A);
 - 行阶梯形矩阵每个非零行的首个非零元对应的 A 的列向量, 就是极大线性 无关组.

- $\overline{(1)}$ 将向量组以列向量形式组成矩阵 $A=(oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_m)$.
- (2) 通过初等行变换将 A 变为行阶梯形矩阵.
 - 行阶梯形矩阵非零行的行数就是秩 R(A);
 - 行阶梯形矩阵每个非零行的首个非零元对应的 *A* 的列向量, 就是极大线性 无关组.
- (3) 继续化简为行最简形矩阵,则可将其余向量表示为极大线性无关组的线性组合.

例

求下述向量组的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示:

$$\alpha_1 = \begin{pmatrix} -7 \\ -2 \\ 1 \\ -11 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \\ 8 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 4 \end{pmatrix}, \ \alpha_4 = \begin{pmatrix} 5 \\ 3 \\ -7 \\ 0 \end{pmatrix}, \ \alpha_5 = \begin{pmatrix} -4 \\ -2 \\ 1 \\ -11 \end{pmatrix}.$$

例

求下述向量组的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示:

$$\alpha_1 = \begin{pmatrix} -7 \\ -2 \\ 1 \\ -11 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \\ 8 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 4 \end{pmatrix}, \ \alpha_4 = \begin{pmatrix} 5 \\ 3 \\ -7 \\ 0 \end{pmatrix}, \ \alpha_5 = \begin{pmatrix} -4 \\ -2 \\ 1 \\ -11 \end{pmatrix}.$$

$$m{A} = (m{lpha}_1, m{lpha}_2, m{lpha}_3, m{lpha}_4, m{lpha}_5) = egin{pmatrix} -7 & 1 & 3 & 5 & -4 \ -2 & -1 & 1 & 3 & -2 \ 1 & 5 & -1 & -7 & 1 \ -11 & 8 & 4 & 0 & -11 \end{pmatrix}$$

$$r_1 \leftrightarrow r_3 \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ -2 & -1 & 1 & 3 & -2 \\ -7 & 1 & 3 & 5 & -4 \\ -11 & 8 & 4 & 0 & -11 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ 0 & 9 & -1 & -11 & 0 \\ 0 & 36 & -4 & -44 & 3 \\ 0 & 63 & -7 & -77 & 0 \end{pmatrix}$$

$$r_{1} \leftrightarrow r_{3} \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ -2 & -1 & 1 & 3 & -2 \\ -7 & 1 & 3 & 5 & -4 \\ -11 & 8 & 4 & 0 & -11 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ 0 & 9 & -1 & -11 & 0 \\ 0 & 36 & -4 & -44 & 3 \\ 0 & 63 & -7 & -77 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ 0 & 9 & -1 & -11 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -4/9 & -8/9 & 0 \\ 0 & 1 & -1/9 & -11/9 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

解

$$r_{1} \leftrightarrow r_{3} \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ -2 & -1 & 1 & 3 & -2 \\ -7 & 1 & 3 & 5 & -4 \\ -11 & 8 & 4 & 0 & -11 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ 0 & 9 & -1 & -11 & 0 \\ 0 & 36 & -4 & -44 & 3 \\ 0 & 63 & -7 & -77 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 5 & -1 & -7 & 1 \\ 0 & 9 & -1 & -11 & 0 \\ 0 & 9 & -1 & -11 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -4/9 & -8/9 & 0 \\ 0 & 1 & -1/9 & -11/9 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

因此 $R(\mathbf{A}) = 3, \alpha_1, \alpha_2, \alpha_5$ 是一个极大线性无关组, 且

$$\alpha_3 = -\frac{4}{9}\alpha_1 - \frac{1}{9}\alpha_2, \quad \alpha_4 = -\frac{8}{9}\alpha_1 - \frac{11}{9}\alpha_2.$$

练习

求下述矩阵列向量的一个极大无关组, 并把其余向量用这个极大无关组线性表示:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}$$

练习

求下述矩阵列向量的一个极大无关组, 并把其余向量用这个极大无关组线性表示:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

练习

求下述矩阵列向量的一个极大无关组, 并把其余向量用这个极大无关组线性表示:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

答案

设 α_j 是A的第j列,则 $\alpha_1,\alpha_2,\alpha_4$ 是一个极大线性无关组,且

$$\alpha_3 = -\alpha_1 - \alpha_2$$
, $\alpha_5 = 4\alpha_1 + 3\alpha_2 - 3\alpha_4$.

例

假设下述向量组线性相关

$$\alpha_1 = (1, 1, 1, 1, 2), \ \alpha_2 = (2, 1, 3, 2, 3), \ \alpha_3 = (2, 3, 3, 2, 3), \ \alpha_4 = (1, 3, -1, 1, a).$$

求 a, 并求它的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示.

例

假设下述向量组线性相关

$$\alpha_1 = (1, 1, 1, 1, 2), \ \alpha_2 = (2, 1, 3, 2, 3), \ \alpha_3 = (2, 3, 3, 2, 3), \ \alpha_4 = (1, 3, -1, 1, a).$$

求 a, 并求它的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示.

$$m{A} = (m{lpha}_1^{
m T}, m{lpha}_2^{
m T}, m{lpha}_3^{
m T}, m{lpha}_4^{
m T}) \stackrel{r}{\sim} egin{pmatrix} 1 & 0 & 0 & 5 \ 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & a-4 \ 0 & 0 & 0 & 0 \end{pmatrix}.$$

例

假设下述向量组线性相关

$$\alpha_1 = (1, 1, 1, 1, 2), \ \alpha_2 = (2, 1, 3, 2, 3), \ \alpha_3 = (2, 3, 3, 2, 3), \ \alpha_4 = (1, 3, -1, 1, a).$$

求 a, 并求它的秩和一个极大无关组, 并把其余向量用这个极大无关组线性表示.

解

$$m{A} = (m{lpha}_1^{
m T}, m{lpha}_2^{
m T}, m{lpha}_3^{
m T}, m{lpha}_4^{
m T}) \overset{r}{\sim} egin{pmatrix} 1 & 0 & 0 & 5 \ 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & a-4 \ 0 & 0 & 0 & 0 \end{pmatrix}.$$

因此 a=4, 秩为 3, $\alpha_1,\alpha_2,\alpha_3$ 是一个极大线性无关组, 且 $\alpha_4=5\alpha_1-2\alpha_2$.

练习

- (1) 设矩阵 A 经初等行变换化为 B, 则二者的()
 - (A) 行向量组等价, 列向量组同相关性
 - (B) 行向量组同相关性, 列向量组等价
 - (C) 行向量组未必等价, 列向量组同相关性
 - (D) 行向量组等价, 列向量组未必同相关性

练习

- (1) 设矩阵 A 经初等行变换化为 B, 则二者的(A).
 - (A) 行向量组等价, 列向量组同相关性
 - (B) 行向量组同相关性, 列向量组等价
 - (C) 行向量组未必等价, 列向量组同相关性
 - (D) 行向量组等价, 列向量组未必同相关性

练习

- (1) 设矩阵 A 经初等行变换化为 B, 则二者的(A).
 - (A) 行向量组等价, 列向量组同相关性
 - (B) 行向量组同相关性, 列向量组等价
 - (C) 行向量组未必等价, 列向量组同相关性
 - (D) 行向量组等价, 列向量组未必同相关性
- (2) 设 $A \in M_{m \times n}$, $B \in M_{n \times k}$, AB = O, $B \neq O$, 则().
 - (A) A 的列向量组线性相关

(B) A 的行向量组线性相关

(C) A 的列向量组线性无关

(D) A 的行向量组线性无关

练习

- (1) 设矩阵 A 经初等行变换化为 B,则二者的(A).
 - (A) 行向量组等价, 列向量组同相关性
 - (B) 行向量组同相关性, 列向量组等价
 - (C) 行向量组未必等价, 列向量组同相关性
 - (D) 行向量组等价, 列向量组未必同相关性
- (2) 设 $A \in M_{m \times n}, B \in M_{n \times k}, AB = O, B \neq O$, 则(A).
 - (A) A 的列向量组线性相关

(B) A 的行向量组线性相关

(C) A 的列向量组线性无关

(D) A 的行向量组线性无关

练习

多选题: 设 A^* 是 n>1 阶方阵, 以下说法正确的是(

- (A) 若 A 的列向量组线性相关,则 A^* 的列向量组线性相关
- (B) 若 A 的列向量组线性无关,则 A^* 的列向量组线性无关
- (C) 若 A 的某两列向量线性相关,则 A^* 的列向量组线性相关
- (D) 若 A 的某两列向量线性无关,则 A^* 的列向量组线性无关

练习

多选题: 设 A^* 是 n>1 阶方阵, 以下说法正确的是(ABCD).

- (A) 若 A 的列向量组线性相关,则 A^* 的列向量组线性相关
- (B) 若 A 的列向量组线性无关,则 A^* 的列向量组线性无关
- (C) 若 A 的某两列向量线性相关,则 A^* 的列向量组线性相关
- (D) 若 A 的某两列向量线性无关,则 A^* 的列向量组线性无关

第三节 标准正交基

- ■向量的内积
- 正交向量组与格拉姆-施密特正交化

本节考虑的向量都是实向量.

本节考虑的向量都是实向量.

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 的秩为 r, 则它们生成的线性空间 V 的维数就是 r.

本节考虑的向量都是实向量.

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 的秩为 r, 则它们生成的线性空间 V 的维数就是 r. S 的极大无关组 S_0 的大小就是 r, 且 S_0 是 V 的一组基.

本节考虑的向量都是实向量.

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 的秩为 r, 则它们生成的线性空间 V 的维数就是 r. S 的极大无关组 S_0 的大小就是 r, 且 S_0 是 V 的一组基.

有时候我们想更进一步, 就像 \mathbb{R}^n 的标准正交基 e_1,\dots,e_n 一样, 我们希望找到 V 的一组基 α_1,\dots,α_r 使得

本节考虑的向量都是实向量.

设向量组 $S=\{\alpha_1,\ldots,\alpha_s\}$ 的秩为 r, 则它们生成的线性空间 V 的维数就是 r. S 的极大无关组 S_0 的大小就是 r, 且 S_0 是 V 的一组基.

有时候我们想更进一步, 就像 \mathbb{R}^n 的标准正交基 e_1,\dots,e_n 一样, 我们希望找到 V 的一组基 α_1,\dots,α_r 使得

(1) α_i 长度都是 1;

本节考虑的向量都是实向量.

设向量组 $S = \{\alpha_1, \dots, \alpha_s\}$ 的秩为 r, 则它们生成的线性空间 V 的维数就是 r. S 的极大无关组 S_0 的大小就是 r, 且 S_0 是 V 的一组基.

有时候我们想更进一步, 就像 \mathbb{R}^n 的标准正交基 e_1,\ldots,e_n 一样, 我们希望找到 V 的一组基 α_1,\ldots,α_r 使得

- (1) α_i 长度都是 1;
- (2) $\alpha_1, \ldots, \alpha_r$ 两两垂直.

定义

设 $\boldsymbol{\alpha}=(a_1,\ldots,a_n)^{\mathrm{T}}, \boldsymbol{\beta}=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$,定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

定义

设 $\alpha=(a_1,\ldots,a_n)^{\mathrm{T}}, \beta=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$,定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

内积是数量积的推广, 它满足

定义

设 $\alpha=(a_1,\ldots,a_n)^{\mathrm{T}}, \beta=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$,定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

内积是数量积的推广, 它满足

(1)
$$[\alpha, \beta] = [\beta, \alpha];$$

定义

设 $\alpha = (a_1, \ldots, a_n)^{\mathrm{T}}, \beta = (b_1, \ldots, b_n)^{\mathrm{T}} \in \mathbb{R}^n$,定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

内积是数量积的推广, 它满足

- (1) $[\alpha, \beta] = [\beta, \alpha];$
- (2) $[\lambda \alpha, \beta] = [\alpha, \lambda \beta] = \lambda [\alpha, \beta];$

内积

定义

设
$$\alpha = (a_1, \ldots, a_n)^{\mathrm{T}}, \beta = (b_1, \ldots, b_n)^{\mathrm{T}} \in \mathbb{R}^n$$
,定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

内积是数量积的推广, 它满足

- (1) $[\alpha, \beta] = [\beta, \alpha];$
- (2) $[\lambda \alpha, \beta] = [\alpha, \lambda \beta] = \lambda [\alpha, \beta];$
- (3) $[\alpha + \beta, \gamma] = [\alpha, \gamma] + [\beta, \gamma];$

内积

定义

设 $\alpha = (a_1, \ldots, a_n)^{\mathrm{T}}, \beta = (b_1, \ldots, b_n)^{\mathrm{T}} \in \mathbb{R}^n$, 定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

内积是数量积的推广, 它满足

- (1) $[\alpha, \beta] = [\beta, \alpha];$
- (2) $[\lambda \alpha, \beta] = [\alpha, \lambda \beta] = \lambda [\alpha, \beta];$
- (3) $[\alpha + \beta, \gamma] = [\alpha, \gamma] + [\beta, \gamma];$
- (4) $[\alpha, \alpha] \geqslant 0$. 当且仅当 $\alpha = 0$ 时, $[\alpha, \alpha] = 0$.

内积

定义

设 $\alpha = (a_1, \ldots, a_n)^{\mathrm{T}}, \beta = (b_1, \ldots, b_n)^{\mathrm{T}} \in \mathbb{R}^n$,定义内积

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = a_1 b_1 + \dots + a_n b_n \in \mathbb{R}.$$

内积是数量积的推广, 它满足

- (1) $[\alpha, \beta] = [\beta, \alpha];$
- (2) $[\lambda \alpha, \beta] = [\alpha, \lambda \beta] = \lambda [\alpha, \beta];$
- (3) $[\alpha + \beta, \gamma] = [\alpha, \gamma] + [\beta, \gamma];$
- (4) $[\alpha, \alpha] \geqslant 0$. 当且仅当 $\alpha = 0$ 时, $[\alpha, \alpha] = 0$.

这说明内积是一个对称正定双线性型.

长度

定义

设 $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, 定义 x 的长度或模为

$$\|\boldsymbol{x}\| = \sqrt{x_1^2 + \dots + x_n^2}.$$

当 $\|x\|=1$ 时,称 x 为单位向量.对于非零向量 x, $\frac{x}{\|x\|}$ 为 x 的单位化向量.

长度

定义

设 $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$,定义x的长度或模为

$$\|\boldsymbol{x}\| = \sqrt{x_1^2 + \dots + x_n^2}.$$

当 $\|x\|=1$ 时,称 x 为单位向量.对于非零向量 x, $\frac{x}{\|x\|}$ 为 x 的单位化向量.

我们有 $x = 0 \iff ||x|| = 0 \iff [x, x] = 0.$

长度

定义

设 $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$,定义x的长度或模为

$$\|\boldsymbol{x}\| = \sqrt{x_1^2 + \dots + x_n^2}.$$

当 $\|x\|=1$ 时, 称 x 为单位向量. 对于非零向量 x, $\frac{x}{\|x\|}$ 为 x 的单位化向量.

我们有 $x = 0 \iff ||x|| = 0 \iff [x, x] = 0.$

定义

若 $[\alpha, \beta] = 0$, 称 α, β 正交(垂直).

设 $\alpha \neq 0$.

$$||X\alpha + \beta||^2 = [X\alpha + \beta, X\alpha + \beta] = [\alpha, \alpha]X^2 + 2[\alpha, \beta]X + [\beta, \beta] \geqslant 0$$

恒成立.

$$||X\alpha + \beta||^2 = [X\alpha + \beta, X\alpha + \beta] = [\alpha, \alpha]X^2 + 2[\alpha, \beta]X + [\beta, \beta] \geqslant 0$$

恒成立. 因此其判别式

$$\Delta = 4([\boldsymbol{\alpha}, \boldsymbol{\beta}]^2 - \|\boldsymbol{\alpha}\|^2 \cdot \|\boldsymbol{\beta}\|^2) \leqslant 0,$$

$$||X\alpha + \beta||^2 = [X\alpha + \beta, X\alpha + \beta] = [\alpha, \alpha]X^2 + 2[\alpha, \beta]X + [\beta, \beta] \geqslant 0$$

恒成立. 因此其判别式

$$\Delta = 4([\boldsymbol{\alpha}, \boldsymbol{\beta}]^2 - \|\boldsymbol{\alpha}\|^2 \cdot \|\boldsymbol{\beta}\|^2) \leqslant 0,$$

于是我们得到柯西-施瓦兹不等式

$$\pm [\alpha, \beta] \leqslant \|\alpha\| \cdot \|\beta\|.$$

$$||X\alpha + \beta||^2 = [X\alpha + \beta, X\alpha + \beta] = [\alpha, \alpha]X^2 + 2[\alpha, \beta]X + [\beta, \beta] \geqslant 0$$

恒成立. 因此其判别式

$$\Delta = 4([\boldsymbol{\alpha}, \boldsymbol{\beta}]^2 - \|\boldsymbol{\alpha}\|^2 \cdot \|\boldsymbol{\beta}\|^2) \leqslant 0,$$

于是我们得到柯西-施瓦兹不等式

$$\pm [\alpha, \beta] \leqslant \|\alpha\| \cdot \|\beta\|.$$

显然 $\alpha = 0$ 时它也成立.

设非零向量 $\alpha=(a_1,\ldots,a_n)^{\mathrm{T}}, \beta=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$, 定义 α,β 的夹角为

$$\theta = \arccos \frac{[\boldsymbol{\alpha}, \boldsymbol{\beta}]}{\|\boldsymbol{\alpha}\| \cdot \|\boldsymbol{\beta}\|} \in [0, \pi].$$

设非零向量 $\alpha=(a_1,\ldots,a_n)^{\mathrm{T}}, \beta=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$, 定义 α,β 的夹角为

$$\theta = \arccos \frac{[\boldsymbol{\alpha}, \boldsymbol{\beta}]}{\|\boldsymbol{\alpha}\| \cdot \|\boldsymbol{\beta}\|} \in [0, \pi].$$

注意正交比夹角为 $\frac{\pi}{2}$ 略微广泛点, 因为零向量与任意向量正交.

设非零向量 $\alpha=(a_1,\ldots,a_n)^{\mathrm{T}}, \beta=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$, 定义 α,β 的夹角为

$$\theta = \arccos \frac{[\boldsymbol{\alpha}, \boldsymbol{\beta}]}{\|\boldsymbol{\alpha}\| \cdot \|\boldsymbol{\beta}\|} \in [0, \pi].$$

注意正交比夹角为 $\frac{\pi}{2}$ 略微广泛点,因为零向量与任意向量正交.

若 α 与 β 正交, 则

$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2 + 2[\alpha, \beta] = \|\alpha\|^2 + \|\beta\|^2,$$

设非零向量 $\alpha=(a_1,\ldots,a_n)^{\mathrm{T}}, \beta=(b_1,\ldots,b_n)^{\mathrm{T}}\in\mathbb{R}^n$, 定义 α,β 的夹角为

$$\theta = \arccos \frac{[\boldsymbol{\alpha}, \boldsymbol{\beta}]}{\|\boldsymbol{\alpha}\| \cdot \|\boldsymbol{\beta}\|} \in [0, \pi].$$

注意正交比夹角为 $\frac{\pi}{2}$ 略微广泛点, 因为零向量与任意向量正交.

若 α 与 β 正交, 则

$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2 + 2[\alpha, \beta] = \|\alpha\|^2 + \|\beta\|^2,$$

此即勾股定理.

定义

(1) 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.

定义

- $\overline{(1)}$ 若向 \equiv 组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
- (2) 若向量组 S 中的向量两两正交且均为单位向量,则称 S 为标准正交向量组.

定义

- $\overline{(1)}$ 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
- (2) 若向量组 S 中的向量两两正交且均为单位向量,则称 S 为标准正交向量组.

例

设 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,-2,1)^T \in \mathbb{R}^3$. 求向量 α_3 使得 $\alpha_1, \alpha_2, \alpha_3$ 是正交向量组.

定义

- $\overline{(1)}$ 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
- (2) 若向量组 S 中的向量两两正交且均为单位向量,则称 S 为标准正交向量组.

例

设 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,-2,1)^T \in \mathbb{R}^3$. 求向量 α_3 使得 $\alpha_1,\alpha_2,\alpha_3$ 是正交向量组.

解

显然 α_1, α_2 正交.

定义

- $\overline{(1)}$ 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
- (2) 若向量组 S 中的向量两两正交且均为单位向量,则称 S 为标准正交向量组.

例

设 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,-2,1)^T \in \mathbb{R}^3$. 求向量 α_3 使得 $\alpha_1,\alpha_2,\alpha_3$ 是正交向量组.

解

显然 α_1, α_2 正交. 设 $\alpha_3 = (x_1, x_2, x_3)^{\mathrm{T}}$, 则

$$[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3] = x_1 + x_2 + x_3 = 0,$$

 $[\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] = x_1 - 2x_2 + x_3 = 0.$

定义

- $\overline{(1)}$ 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
- (2) 若向量组 S 中的向量两两正交且均为单位向量,则称 S 为标准正交向量组.

例

设 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,-2,1)^T \in \mathbb{R}^3$. 求向量 α_3 使得 $\alpha_1,\alpha_2,\alpha_3$ 是正交向量组.

解

显然 α_1, α_2 正交. 设 $\alpha_3 = (x_1, x_2, x_3)^{\mathrm{T}}$, 则

$$[\alpha_1, \alpha_3] = x_1 + x_2 + x_3 = 0,$$

 $[\alpha_2, \alpha_3] = x_1 - 2x_2 + x_3 = 0.$

解得 $(x_1, x_2, x_3) = (k, 0, -k)$.

定义

- $\overline{(1)}$ 若向量组 S 中的向量两两正交且非零, 则称 S 为正交向量组.
- (2) 若向量组 S 中的向量两两正交且均为单位向量, 则称 S 为标准正交向量组.

例

设 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,-2,1)^T \in \mathbb{R}^3$. 求向量 α_3 使得 $\alpha_1,\alpha_2,\alpha_3$ 是正交向量组.

解

显然 α_1, α_2 正交. 设 $\alpha_3 = (x_1, x_2, x_3)^{\mathrm{T}}$, 则

$$[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3] = x_1 + x_2 + x_3 = 0,$$

 $[\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] = x_1 - 2x_2 + x_3 = 0.$

解得 $(x_1, x_2, x_3) = (k, 0, -k)$. 故可取 $\alpha_3 = (1, 0, -1)^{\mathrm{T}}$.

定理

正交向量组必线性无关.

定理

正交向量组必线性无关.

证明

设 $\alpha_1, \ldots, \alpha_r$ 是正交向量组, $\lambda_1 \alpha_1 + \cdots + \lambda_r \alpha_r = 0$.

定理

正交向量组必线性无关.

证明

设 $\alpha_1, \ldots, \alpha_r$ 是正交向量组, $\lambda_1\alpha_1 + \cdots + \lambda_r\alpha_r = 0$. 对任意 $1 \leq i \leq r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

定理

正交向量组必线性无关.

证明

设 $\alpha_1, \ldots, \alpha_r$ 是正交向量组, $\lambda_1\alpha_1 + \cdots + \lambda_r\alpha_r = \mathbf{0}$. 对任意 $1 \leq i \leq r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

由于 α_i 非零, $[\alpha_i, \alpha_i] \neq 0, \lambda_i = 0$.

定理

正交向量组必线性无关.

证明

设 α_1,\ldots,α_r 是正交向量组, $\lambda_1\alpha_1+\cdots+\lambda_r\alpha_r=0$. 对任意 $1\leqslant i\leqslant r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

由于 α_i 非零, $[\alpha_i, \alpha_i] \neq 0, \lambda_i = 0$. 故 $\alpha_1, \ldots, \alpha_r$ 线性无关.

定理

正交向量组必线性无关.

证明

设 α_1,\ldots,α_r 是正交向量组, $\lambda_1\alpha_1+\cdots+\lambda_r\alpha_r=0$. 对任意 $1\leqslant i\leqslant r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

由于 α_i 非零, $[\alpha_i, \alpha_i] \neq 0, \lambda_i = 0$. 故 $\alpha_1, \ldots, \alpha_r$ 线性无关.

现在我们来看如何从空间 V 的一组基 $\alpha_1, \ldots, \alpha_r$ 得到一组标准正交基.

定理

正交向量组必线性无关.

证明

设 α_1,\ldots,α_r 是正交向量组, $\lambda_1\alpha_1+\cdots+\lambda_r\alpha_r=0$. 对任意 $1\leqslant i\leqslant r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

由于 α_i 非零, $[\alpha_i, \alpha_i] \neq 0, \lambda_i = 0$. 故 $\alpha_1, \ldots, \alpha_r$ 线性无关.

现在我们来看如何从空间 V 的一组基 α_1,\ldots,α_r 得到一组标准正交基. 令 $\beta_1=\alpha_1.$

定理

正交向量组必线性无关.

证明

设 α_1,\ldots,α_r 是正交向量组, $\lambda_1\alpha_1+\cdots+\lambda_r\alpha_r=0$. 对任意 $1\leqslant i\leqslant r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

由于 α_i 非零, $[\alpha_i, \alpha_i] \neq 0, \lambda_i = 0$. 故 $\alpha_1, \ldots, \alpha_r$ 线性无关.

现在我们来看如何从空间 V 的一组基 α_1,\ldots,α_r 得到一组标准正交基. 令 $\beta_1=\alpha_1$. 若 β_1,\ldots,β_k 已经是两两正交的单位向量, 设 $\beta_{k+1}=\alpha_{k+1}+\lambda_1\beta_1+\cdots+\lambda_k\beta_k$ 与它们均正交,

定理

正交向量组必线性无关.

证明

设 α_1,\ldots,α_r 是正交向量组, $\lambda_1\alpha_1+\cdots+\lambda_r\alpha_r=0$. 对任意 $1\leqslant i\leqslant r$,

$$0 = [\mathbf{0}, \boldsymbol{\alpha}_i] = [\lambda_1 \boldsymbol{\alpha}_1 + \dots + \lambda_r \boldsymbol{\alpha}_r, \boldsymbol{\alpha}_i] = \lambda_i [\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i].$$

由于 α_i 非零, $[\alpha_i, \alpha_i] \neq 0, \lambda_i = 0$. 故 $\alpha_1, \ldots, \alpha_r$ 线性无关.

现在我们来看如何从空间 V 的一组基 α_1,\ldots,α_r 得到一组标准正交基. 令 $\beta_1=\alpha_1$. 若 β_1,\ldots,β_k 已经是两两正交的单位向量, 设 $\beta_{k+1}=\alpha_{k+1}+\lambda_1\beta_1+\cdots+\lambda_k\beta_k$ 与它们均正交, 则对于 $i=1,\ldots,k$,

$$[\boldsymbol{\beta}_i, \boldsymbol{\beta}_{k+1}] = [\boldsymbol{\beta}_i, \boldsymbol{\alpha}_{k+1}] + \lambda_i [\boldsymbol{\beta}_i, \boldsymbol{\beta}_i] = 0 \implies \lambda_i = -\frac{[\boldsymbol{\alpha}_{k+1}, \boldsymbol{\beta}_i]}{[\boldsymbol{\beta}_i, \boldsymbol{\beta}_i]}.$$

格拉姆-施密特正交化

格拉姆-施密特正交单位化方法

$$eta_1 = oldsymbol{lpha}_1 \ eta_2 = oldsymbol{lpha}_2 - rac{[oldsymbol{lpha}_2,eta_1]}{[eta_1,eta_1]}eta_1 \ eta_3 = oldsymbol{lpha}_3 - rac{[oldsymbol{lpha}_3,eta_1]}{[eta_1,eta_1]}eta_1 - rac{[oldsymbol{lpha}_3,eta_2]}{[eta_2,eta_2]}eta_2 \ dots \ eta_r = oldsymbol{lpha}_r - rac{[oldsymbol{lpha}_r,eta_1]}{[eta_1,eta_1]}eta_1 - \cdots - rac{[oldsymbol{lpha}_r,eta_{r-1}]}{[oldsymbol{eta}_r,eta_{r-1}]}eta_{r-1} \ eta_{r-1} \ eta_{r-1}$$

格拉姆-施密特正交化

格拉姆-施密特正交单位化方法

$$\begin{split} \boldsymbol{\beta}_1 &= \boldsymbol{\alpha}_1 \\ \boldsymbol{\beta}_2 &= \boldsymbol{\alpha}_2 - \frac{[\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1]}{[\boldsymbol{\beta}_1, \boldsymbol{\beta}_1]} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_3 &= \boldsymbol{\alpha}_3 - \frac{[\boldsymbol{\alpha}_3, \boldsymbol{\beta}_1]}{[\boldsymbol{\beta}_1, \boldsymbol{\beta}_1]} \boldsymbol{\beta}_1 - \frac{[\boldsymbol{\alpha}_3, \boldsymbol{\beta}_2]}{[\boldsymbol{\beta}_2, \boldsymbol{\beta}_2]} \boldsymbol{\beta}_2 \\ &\vdots \\ \boldsymbol{\beta}_r &= \boldsymbol{\alpha}_r - \frac{[\boldsymbol{\alpha}_r, \boldsymbol{\beta}_1]}{[\boldsymbol{\beta}_1, \boldsymbol{\beta}_1]} \boldsymbol{\beta}_1 - \dots - \frac{[\boldsymbol{\alpha}_r, \boldsymbol{\beta}_{r-1}]}{[\boldsymbol{\beta}_{r-1}, \boldsymbol{\beta}_{r-1}]} \boldsymbol{\beta}_{r-1} \end{split}$$

则 $e_1 = \frac{\beta_1}{\|\beta_1\|}, \dots, e_r = \frac{\beta_r}{\|\beta_r\|}$ 就是 V 的一组标准正交基.

典型例题:格拉姆-施密特正交化

- 例

将
$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (1,1,2)^T$ 正交单位化.

典型例题:格拉姆-施密特正交化

将
$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (1,1,2)^T$ 正交单位化.

解

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 = (1, 1, 0)^{\mathrm{T}}$$

例

将
$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (1,1,2)^T$ 正交单位化.

 $oldsymbol{eta}_1 = oldsymbol{lpha}_1 = (1,1,0)^{\mathrm{T}}$

$$eta_2 = oldsymbol{lpha}_2 - rac{[oldsymbol{lpha}_2, oldsymbol{eta}_1]}{[oldsymbol{eta}_1, oldsymbol{eta}_1]} oldsymbol{eta}_1 = (1, 0, 1)^{\mathrm{T}} - rac{1}{2}(1, 1, 0)^{\mathrm{T}} = (rac{1}{2}, -rac{1}{2}, 1)^{\mathrm{T}}$$

例

将
$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (1,1,2)^T$ 正交单位化.

用午

$$\beta_{1} = \alpha_{1} = (1, 1, 0)^{T}$$

$$\beta_{2} = \alpha_{2} - \frac{[\alpha_{2}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} = (1, 0, 1)^{T} - \frac{1}{2} (1, 1, 0)^{T} = (\frac{1}{2}, -\frac{1}{2}, 1)^{T}$$

$$\beta_{3} = \alpha_{3} - \frac{[\alpha_{3}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{3}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2}$$

例

将
$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (1,1,2)^T$ 正交单位化.

 $oldsymbol{eta}_1 = oldsymbol{lpha}_1 = (1,1,0)^{\mathrm{T}}$

$$\beta_{2} = \alpha_{2} - \frac{[\alpha_{2}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} = (1, 0, 1)^{T} - \frac{1}{2} (1, 1, 0)^{T} = (\frac{1}{2}, -\frac{1}{2}, 1)^{T}$$

$$\beta_{3} = \alpha_{3} - \frac{[\alpha_{3}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{3}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2} = (1, 1, 2)^{T} - (1, 1, 0)^{T} - \frac{2}{3/2} (\frac{1}{2}, -\frac{1}{2}, 1)^{T} = (\frac{2}{3}, -\frac{2}{3}, \frac{2}{3})^{T}$$

线性代数 ▶ 第二章 等价和秩 ▶ 3 标准正交基 ▶ B 正交向量组与格拉姆-施密特正交化

例

将
$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (1,0,1)^T$, $\alpha_3 = (1,1,2)^T$ 正交单位化.

胖

$$\beta_{1} = \alpha_{1} = (1, 1, 0)^{T}$$

$$\beta_{2} = \alpha_{2} - \frac{[\alpha_{2}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} = (1, 0, 1)^{T} - \frac{1}{2} (1, 1, 0)^{T} = (\frac{1}{2}, -\frac{1}{2}, 1)^{T}$$

$$\beta_{3} = \alpha_{3} - \frac{[\alpha_{3}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{3}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2} = (1, 1, 2)^{T} - (1, 1, 0)^{T} - \frac{2}{3/2} (\frac{1}{2}, -\frac{1}{2}, 1)^{T} = (\frac{2}{3}, -\frac{2}{3}, \frac{2}{3})^{T}$$

 $e_1 = \frac{b_1}{\|b_1\|} = \frac{1}{\sqrt{2}}(1,1,0)^{\mathrm{T}}, \quad e_2 = \frac{b_2}{\|b_2\|} = \frac{1}{\sqrt{6}}(1,-1,2)^{\mathrm{T}}, \quad e_3 = \frac{b_3}{\|b_2\|} = \frac{1}{\sqrt{3}}(-1,1,1)^{\mathrm{T}}.$

第四节 线性方程组

- 齐次线性方程组解的存在性
- 齐次线性方程组解的结构
- 非齐次线性方程组
- 向量组的线性表示

$$\begin{cases} a_{11} \ x_1 + a_{12} \ x_2 + \dots + a_{1n} \ x_n = b_1 \\ a_{21} \ x_1 + a_{22} \ x_2 + \dots + a_{2n} \ x_n = b_2 \\ & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

$$\begin{cases} a_{11} \ x_1 + a_{12} \ x_2 + \dots + a_{1n} \ x_n = b_1 \\ a_{21} \ x_1 + a_{22} \ x_2 + \dots + a_{2n} \ x_n = b_2 \\ & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

它的系数形成了一个 $m \times n$ 矩阵 A, 称为系数矩阵.

$$\begin{cases} a_{11} \ x_1 + a_{12} \ x_2 + \dots + a_{1n} \ x_n = b_1 \\ a_{21} \ x_1 + a_{22} \ x_2 + \dots + a_{2n} \ x_n = b_2 \\ & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

它的系数形成了一个 $m \times n$ 矩阵 A, 称为系数矩阵. 系数和常数项一起形成了一个 $m \times (n+1)$ 矩阵 (A, b), 称为增广矩阵.

$$\begin{cases} a_{11} \ x_1 + a_{12} \ x_2 + \dots + a_{1n} \ x_n = b_1 \\ a_{21} \ x_1 + a_{22} \ x_2 + \dots + a_{2n} \ x_n = b_2 \\ & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

它的系数形成了一个 $m \times n$ 矩阵 A, 称为系数矩阵. 系数和常数项一起形成了一个 $m \times (n+1)$ 矩阵 (A, b), 称为增广矩阵.

线性方程组等价于

$$Ax = b$$

其中

$$\boldsymbol{x} = (x_1, \dots, x_n)^{\mathrm{T}}.$$

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的.

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的. 齐次线性方程组总有解 x=0.

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的. 齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的. 齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的. 齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

当 b=0 为零向量时,称该线性方程组为齐次的;否则称为非齐次的.齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

(1) $A_{m \times n} x = 0$ 有 (无穷多) 非零解 $\iff R(A) < n$;

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的. 齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

- $\overline{(1)} \; \boldsymbol{A}_{m \times n} \boldsymbol{x} = \boldsymbol{0} \;$ 有 (无穷多) 非零解 $\iff R(\boldsymbol{A}) < n$;
- (2) $A_{m \times n} x = 0$ 只有零解 $\iff R(A) = n$.

当 b=0 为零向量时,称该线性方程组为齐次的;否则称为非齐次的.齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

- (1) $A_{m \times n} x = 0$ 有 (无穷多) 非零解 $\iff R(A) < n$;
- (2) $A_{m \times n} x = \mathbf{0}$ 只有零解 $\iff R(A) = n$.

推论

设 $A \in n$ 阶方阵.

当 b=0 为零向量时, 称该线性方程组为齐次的; 否则称为非齐次的. 齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

- $\overline{(1)} \; \; oldsymbol{A}_{m imes n} oldsymbol{x} = oldsymbol{0} \;$ 有 (无穷多) 非零解 $\iff R(oldsymbol{A}) < n$;
- (2) $A_{m \times n} x = \mathbf{0}$ 只有零解 $\iff R(A) = n$.

推论

设 A 是 n 阶方阵.

(1) Ax = 0 有 (无穷多) 非零解 $\iff |A| = 0$;

当 b=0 为零向量时,称该线性方程组为齐次的;否则称为非齐次的.齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

- (1) $A_{m \times n} x = 0$ 有 (无穷多) 非零解 $\iff R(A) < n$;
- (2) $A_{m \times n} x = \mathbf{0}$ 只有零解 $\iff R(A) = n$.

推论

设 A 是 n 阶方阵.

- (1) Ax = 0 有 (无穷多) 非零解 $\iff |A| = 0$;
- (2) Ax = 0 只有零解 $\iff |A| \neq 0$.

当 b=0 为零向量时,称该线性方程组为齐次的;否则称为非齐次的.齐次线性方程组总有解 x=0. Ax=0 有非零解 \iff A 的列向量线性相关 \iff R(A) < n.

定理

- (1) $A_{m \times n} x = 0$ 有 (无穷多) 非零解 $\iff R(A) < n$;
- (2) $A_{m \times n} x = \mathbf{0}$ 只有零解 $\iff R(A) = n$.

推论

设 $A \in n$ 阶方阵.

- (1) Ax = 0 有 (无穷多) 非零解 $\iff |A| = 0$;
- (2) Ax = 0 只有零解 $\iff |A| \neq 0$.

推论

若方程个数小于未知元个数,则齐次线性方程组有非零解.

例

段设

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 4x_1 + ax_2 + 3x_3 = 0 \\ 3x_1 - x_2 + x_3 = 0 \end{cases}$$

有非零解, 求 a.

例

段设

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 4x_1 + ax_2 + 3x_3 = 0 \\ 3x_1 - x_2 + x_3 = 0 \end{cases}$$

有非零解, 求 a.

解

此时系数矩阵行列式为零:

$$0 = \begin{vmatrix} 1 & 2 & -2 \\ 4 & a & 3 \\ 3 & -1 & 1 \end{vmatrix} = 7a + 21,$$

例

段设

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 4x_1 + ax_2 + 3x_3 = 0 \\ 3x_1 - x_2 + x_3 = 0 \end{cases}$$

有非零解, 求 a.

解

此时系数矩阵行列式为零:

$$0 = \begin{vmatrix} 1 & 2 & -2 \\ 4 & a & 3 \\ 3 & -1 & 1 \end{vmatrix} = 7a + 21, \quad a = -3.$$

例

若下述方程有非零解, 求 a.

$$\begin{cases} x_1 + & x_2 + ax_3 = 0 \\ -x_1 + (a-1)x_2 + (1-a)x_3 = 0 \\ x_1 + & x_2 + a^2x_3 = 0 \\ x_1 + & x_2 + (2a+1)x_3 = 0 \end{cases}$$

例

若下述方程有非零解, 求 a.

$$\begin{cases} x_1 + & x_2 + ax_3 = 0 \\ -x_1 + (a-1)x_2 + (1-a)x_3 = 0 \\ x_1 + & x_2 + a^2x_3 = 0 \\ x_1 + & x_2 + (2a+1)x_3 = 0 \end{cases}$$

解

$$\left(egin{array}{cccccc} 1 & 1 & a & 1 & a \ -1 & a-1 & 1-a & 1 & a^2 \ 1 & 1 & 2a+1 \end{array}
ight)$$

例

若下述方程有非零解, 求 a.

$$\begin{cases} x_1 + & x_2 + ax_3 = 0 \\ -x_1 + (a-1)x_2 + (1-a)x_3 = 0 \\ x_1 + & x_2 + a^2x_3 = 0 \\ x_1 + & x_2 + (2a+1)x_3 = 0 \end{cases}$$

解

$$\begin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

例

若下述方程有非零解, 求 a.

$$\begin{cases} x_1 + & x_2 + ax_3 = 0 \\ -x_1 + (a-1)x_2 + (1-a)x_3 = 0 \\ x_1 + & x_2 + a^2x_3 = 0 \\ x_1 + & x_2 + (2a+1)x_3 = 0 \end{cases}$$

解

$$\begin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

的秩小于 3, 因此 a=0.

基础解系

定义

称空间 $\{x \mid Ax = 0\}$ 的一组基为该齐次线性方程组的基础解系.

基础解系

定义

称空间 $\{x \mid Ax = 0\}$ 的一组基为该齐次线性方程组的基础解系.

齐次线性方程组的解

设 $A \in M_{m \times n}, R(A) = r$. 线性方程组 Ax = 0 的基础解系包含 n - r 个向量.

定义

称空间 $\{x \mid Ax = 0\}$ 的一组基为该齐次线性方程组的基础解系.

齐次线性方程组的解

设 $A \in M_{m \times n}, R(A) = r$. 线性方程组 Ax = 0 的基础解系包含 n - r 个向量.

解

通过交换未知元的位置 (相当于交换 A 列的位置), 不妨设 A 可化为行最简形

$$\begin{pmatrix} 1 & \cdots & 0 & b_{11} & \cdots & b_{1,n-r} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & b_{r,1} & \cdots & b_{r,n-r} \\ \hline 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} \boldsymbol{E}_r & \boldsymbol{B} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix}.$$

基础解系

证明

方程化为 $(E_r, B)x = 0$, 即

$$egin{pmatrix} x_1 \ dots \ x_r \end{pmatrix} = -oldsymbol{B} egin{pmatrix} x_{r+1} \ dots \ x_n \end{pmatrix}, \quad oldsymbol{x} = egin{pmatrix} -oldsymbol{B} \ E_{n-r} \end{pmatrix} egin{pmatrix} x_{r+1} \ dots \ x_n \end{pmatrix}.$$

证明

方程化为 $(E_r, B)x = 0$, 即

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = -oldsymbol{B} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}, \quad oldsymbol{x} = \begin{pmatrix} -oldsymbol{B} \\ oldsymbol{E}_{n-r} \end{pmatrix} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}.$$

于是
$$C := \begin{pmatrix} -B \\ E_{n-r} \end{pmatrix}$$
 的 $n-r$ 个列向量生成了整个解空间.

方程化为 $(E_r, B)x = 0$, 即

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = -\boldsymbol{B} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} -\boldsymbol{B} \\ \boldsymbol{E}_{n-r} \end{pmatrix} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}.$$

于是
$$C := \begin{pmatrix} -B \\ E_{n-r} \end{pmatrix}$$
 的 $n-r$ 个列向量生成了整个解空间. 由于 $R(C) \geqslant R(E_{n-r}) = n-r$. C 列满秩. 因此它的列向量就是一组基础解系.

n-r. C 列满秩, 因此它的列向量就是一组基础解系,

证明

方程化为 $(E_r, B)x = 0$, 即

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = -\boldsymbol{B} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} -\boldsymbol{B} \\ \boldsymbol{E}_{n-r} \end{pmatrix} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}.$$

于是
$$C := \begin{pmatrix} -B \\ E_{n-r} \end{pmatrix}$$
 的 $n-r$ 个列向量生成了整个解空间. 由于 $R(C) \geqslant R(E_{n-r}) = n-r$, C 列满秩, 因此它的列向量就是一组基础解系.

推论

Ax = 0 任意 n - r 个线性无关的解都是一组基础解系.

求基础解系的步骤

求基础解系的步骤

齐次线性方程组的解法

(1) 将系数矩阵通过初等行变换化为行最简形.

求基础解系的步骤

齐次线性方程组的解法

- (1) 将系数矩阵通过初等行变换化为行最简形.
- (2) 去掉零行, 并取负矩阵, 得到 $r \times n$ 矩阵.

齐次线性方程组的解法

- (1) 将系数矩阵通过初等行变换化为行最简形.
- (2) 去掉零行, 并取负矩阵, 得到 $r \times n$ 矩阵.
- (3) 添加 n-r 行 $e_j^{\rm T}$, 使得对角元全都变成 ± 1 , 其中 1 对应的是原来的非零行的第一个 1, 得到 $n\times n$ 矩阵.

齐次线性方程组的解法

- (1) 将系数矩阵通过初等行变换化为行最简形.
- (2) 去掉零行, 并取负矩阵, 得到 $r \times n$ 矩阵.
- (3) 添加 n-r 行 $e_j^{\rm T}$, 使得对角元全都变成 ± 1 , 其中 1 对应的是原来的非零行的第一个 1, 得到 $n\times n$ 矩阵.
- (4) 对角元是 1 对应的列就是一组基础解系, 它们形成 $n \times (n-r)$ 矩阵.

例

解方程 $\begin{cases} x_1 + 2x_2 + 4x_3 + x_4 = 0 \\ 2x_1 + 4x_2 - 2x_3 - x_4 = 0. \\ 3x_1 + 6x_2 + 2x_3 = 0 \end{cases}$

例

解方程 $\begin{cases} x_1 + 2x_2 + 4x_3 + x_4 = 0 \\ 2x_1 + 4x_2 - 2x_3 - x_4 = 0. \\ 3x_1 + 6x_2 + 2x_3 = 0 \end{cases}$

解

$$\begin{pmatrix} 1 & 2 & 4 & 1 \\ 2 & 4 & -2 & -1 \\ 3 & 6 & 2 & 0 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 4 & 1 \\ 0 & 0 & -10 & 3 \\ 0 & 0 & -10 & 3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & -1/5 \\ 0 & 0 & 1 & 3/10 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解

$$\begin{pmatrix} -1 & -2 & 0 & 1/5 \\ 0 & 0 & -1 & -3/10 \\ & & & & \end{pmatrix}$$

解

$$\begin{pmatrix} -1 & -2 & 0 & 1/5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -3/10 \\ 0 & 0 & 1 \end{pmatrix} \implies \begin{pmatrix} -2 & 1/5 \\ 1 & 0 \\ 0 & -3/10 \\ 0 & 1 \end{pmatrix}$$

通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = k_1 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1/5 \\ 0 \\ -3/10 \\ 1 \end{pmatrix}, \quad k_1, k_2 为任意常数.$$

解方程
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 2 & 4 & 3 & 1 & 1 \\ -1 & -2 & 1 & 3 & -3 \\ 0 & 0 & 2 & 5 & -2 \end{pmatrix}$.

解方程
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 2 & 4 & 3 & 1 & 1 \\ -1 & -2 & 1 & 3 & -3 \\ 0 & 0 & 2 & 5 & -2 \end{pmatrix}$.

$$\mathbf{A} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \implies \begin{pmatrix} -1 & -2 & 0 & 0 & -2 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \implies \begin{pmatrix} -2 & -2 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

例

设 $\mathbf{A} \in M_{m \times n}$, $R(\mathbf{A}) = n - 3$, $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3$ 为 $\mathbf{A} \boldsymbol{x} = \mathbf{0}$ 的三个线性无关的解. 则()是该方程的一组基础解系.

(A)
$$\xi_1, -\xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$$

(B)
$$\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$$

(C)
$$\xi_1, \xi_2$$

(D)
$$\xi_1, \xi_1 - \xi_2 - \xi_3, \xi_1 + \xi_2 + \xi_3$$

例

设 $\overline{A} \in M_{m \times n}$, R(A) = n - 3, ξ_1, ξ_2, ξ_3 为Ax = 0的三个线性无关的解.则(B)是该方程的一组基础解系.

(A)
$$\xi_1, -\xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$$

(B)
$$\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$$

(C)
$$\xi_1, \xi_2$$

(D)
$$\xi_1, \xi_1 - \xi_2 - \xi_3, \xi_1 + \xi_2 + \xi_3$$

例

设 $A \in M_{m \times n}$, R(A) = n - 3, ξ_1, ξ_2, ξ_3 为 Ax = 0 的三个线性无关的解. 则(B)是该方程的一组基础解系.

(A) $\xi_1, -\xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$

(B) $\boldsymbol{\xi}_1, \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2, \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 + \boldsymbol{\xi}_3$

(C) ξ_1, ξ_2

(D) $\xi_1, \xi_1 - \xi_2 - \xi_3, \xi_1 + \xi_2 + \xi_3$

练习

设 ξ_1, ξ_2, ξ_3 是 Ax = 0 的一组基础解系,则()也是该方程的一组基础解系.

(A) 与 ξ_1, ξ_2, ξ_3 等价的一组向量

(B) 与 ξ_1, ξ_2, ξ_3 同秩的一组向量

(C) $\xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$

(D) $\boldsymbol{\xi}_1 + \boldsymbol{\xi}_2, \boldsymbol{\xi}_2 + \boldsymbol{\xi}_3, \boldsymbol{\xi}_3 + \boldsymbol{\xi}_1$

例

设 $A \in M_{m \times n}$, R(A) = n - 3, ξ_1, ξ_2, ξ_3 为 Ax = 0 的三个线性无关的解. 则(B)是该方程的一组基础解系.

(A) $\xi_1, -\xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$

(B) $\boldsymbol{\xi}_1, \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2, \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 + \boldsymbol{\xi}_3$

(C) ξ_1, ξ_2

(D) $\xi_1, \xi_1 - \xi_2 - \xi_3, \xi_1 + \xi_2 + \xi_3$

练习

设 ξ_1, ξ_2, ξ_3 是 Ax = 0 的一组基础解系,则(D)也是该方程的一组基础解系.

(A) 与 ξ_1, ξ_2, ξ_3 等价的一组向量

(B) 与 ξ_1, ξ_2, ξ_3 同秩的一组向量

(C) $\xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$

(D) $\boldsymbol{\xi}_1 + \boldsymbol{\xi}_2, \boldsymbol{\xi}_2 + \boldsymbol{\xi}_3, \boldsymbol{\xi}_3 + \boldsymbol{\xi}_1$

例: 基础解系的应用

例

设 A 是 n 阶方阵, R(A) = n - 1 且每行元素之和为 0. 则齐次线性方程组 Ax = 0 的解为

例: 基础解系的应用

例

设 A 是 n 阶方阵, R(A) = n - 1 且每行元素之和为 0. 则齐次线性方程组 Ax = 0 的解为 $k(1,1,...,1)^T$, k 为任意常数 .

例: 基础解系的应用

例

设 A 是 n 阶方阵, R(A) = n - 1 且每行元素之和为 0. 则齐次线性方程组 Ax = 0 的解为 $k(1,1,\ldots,1)^T$, k 为任意常数 .

例

设 $A_{m \times n} B_{n \times s} = O$, 证明 $R(A) + R(B) \leqslant n$.

例:基础解系的应用

例

例

设 $A_{m\times n}B_{n\times s}=O$,证明 $R(A)+R(B)\leqslant n$.

证明

由于 B 的列向量都是 Ax = 0 的解, 因此 R(B) 不超过该方程解空间的维数, 即 n - R(A).

例

设 \boldsymbol{A} 是实矩阵, 证明 $R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$.

例

设 \boldsymbol{A} 是实矩阵, 证明 $R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$.

证明

若 $A^{\mathrm{T}}Ax=0$, 则

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设 \mathbf{A} 是实矩阵, 证明 $R(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = R(\mathbf{A})$.

证明

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设 $Ax = (y_1, \ldots, y_n)^T$, 则右侧为 $y_1^2 + \cdots + y_n^2 = 0$, 这迫使 $y_1 = \cdots = y_n = 0$. 于是

 $\mathbf{A}\mathbf{x} = 0$.

例

设 \boldsymbol{A} 是实矩阵, 证明 $R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$.

证明

若 $A^{\mathrm{T}}Ax=0$, 则

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设 $\mathbf{A}\mathbf{x} = (y_1, \dots, y_n)^{\mathrm{T}}$, 则右侧为 $y_1^2 + \dots + y_n^2 = 0$, 这迫使 $y_1 = \dots = y_n = 0$, 于是

$$Ax = 0$$
. 所以 $A^{T}Ax = 0 \iff Ax = 0$.

例

设 \boldsymbol{A} 是实矩阵, 证明 $R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$.

证明

若 $A^{\mathrm{T}}Ax=0$, 则

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设
$$\mathbf{A}\mathbf{x} = (y_1, \dots, y_n)^{\mathrm{T}}$$
, 则右侧为 $y_1^2 + \dots + y_n^2 = 0$, 这迫使 $y_1 = \dots = y_n = 0$, 于是

$$Ax = 0$$
. 所以 $A^{T}Ax = 0 \iff Ax = 0$. 二者列数相同, 因此二者秩相同.

例

设 \boldsymbol{A} 是实矩阵, 证明 $R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$.

证明

若 $A^{\mathrm{T}}Ax = 0$, 则

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设 $Ax = (y_1, \dots, y_n)^{\mathrm{T}}$, 则右侧为 $y_1^2 + \dots + y_n^2 = 0$, 这迫使 $y_1 = \dots = y_n = 0$, 于是

Ax = 0. 所以 $A^{T}Ax = 0 \iff Ax = 0$. 二者列数相同, 因此二者秩相同.

注意, 对于复矩阵这并不成立, 例如

$$\boldsymbol{A} = \begin{pmatrix} 1 \\ i \end{pmatrix}, \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} = 0.$$

例

设 \boldsymbol{A} 是实矩阵, 证明 $R(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$.

证明

若 $A^{\mathrm{T}}Ax = 0$,则

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设 $Ax = (y_1, \dots, y_n)^T$, 则右侧为 $y_1^2 + \dots + y_n^2 = 0$, 这迫使 $y_1 = \dots = y_n = 0$, 于是

Ax = 0. 所以 $A^{T}Ax = 0 \iff Ax = 0$. 二者列数相同, 因此二者秩相同.

注意, 对于复矩阵这并不成立, 例如

$$\boldsymbol{A} = \begin{pmatrix} 1 \\ i \end{pmatrix}, \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} = 0.$$

此时有 $R(\overline{A}^{T}A) = R(A)$, 其中 \overline{A} 表示所有元素取共轭.

例

设 n 阶方阵 $m{A}$ 列向量的一个极大线性无关组为 $m{lpha}_1,\ldots,m{lpha}_{n-1}$. 则 $m{A}^*m{x}=m{0}$ 的解为_______.

例

设 n 阶方阵 A 列向量的一个极大线性无关组为 $\alpha_1,\ldots,\alpha_{n-1}$. 则 $A^*x=0$ 的解为 $k_1\alpha_1+\cdots+k_{n-1}\alpha_{n-1},k_1,\ldots,k_{n-1}$ 为任意常数 .

例

设 n 所方阵 A 列向量的一个极大线性无关组为 $\alpha_1,\ldots,\alpha_{n-1}$. 则 $A^*x=0$ 的解为 $k_1\alpha_1+\cdots+k_{n-1}\alpha_{n-1},k_1,\ldots,k_{n-1}$ 为任意常数 .

练习

例

设 n 阶方阵 A 列向量的一个极大线性无关组为 $\alpha_1,\ldots,\alpha_{n-1}$. 则 $A^*x=0$ 的解为 $k_1\alpha_1+\cdots+k_{n-1}\alpha_{n-1},k_1,\ldots,k_{n-1}$ 为任意常数 .

练习

设 n 阶方阵 A 列向量的一个极大线性无关组为 $\alpha_1, \ldots, \alpha_{n-1}$. 则 $A^*x = 0$ 的解 为 $k_1\alpha_1 + \cdots + k_{n-1}\alpha_{n-1}, k_1, \ldots, k_{n-1}$ 为任意常数

练习

设 n 阶方阵 A 满足 R(A) = n - 1, 代数余子式 $A_{11} \neq 0$. 则 Ax = 0 的解 $k(A_{11},...,A_{1n})^{\mathrm{T}},k_{1},...,k_{n-1}$ 为任意常数

若 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5)$ 且 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的解为 $k_1(1, 0, -1, 0, 1)^{\mathrm{T}} + k_2(1, 0, 0, 1, -1)^{\mathrm{T}}$. 则 A 列向量组的一个极大无关组是(

- (A) $\alpha_1, \alpha_3, \alpha_5$ (B) $\alpha_1, \alpha_3, \alpha_4$

- (C) $\alpha_3, \alpha_4, \alpha_5$ (D) $\alpha_2, \alpha_3, \alpha_5$

设 n 阶方阵 A 列向量的一个极大线性无关组为 $\alpha_1, \ldots, \alpha_{n-1}$. 则 $A^*x = 0$ 的解 为 $k_1\alpha_1 + \cdots + k_{n-1}\alpha_{n-1}, k_1, \ldots, k_{n-1}$ 为任意常数

练习

设 n 阶方阵 A 满足 R(A) = n - 1, 代数余子式 $A_{11} \neq 0$. 则 Ax = 0 的解 $k(A_{11},...,A_{1n})^{\mathrm{T}},k_{1},...,k_{n-1}$ 为任意常数

例

 $\overline{A} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ 且 Ax = 0 的解为 $k_1(1, 0, -1, 0, 1)^{\mathrm{T}} + k_2(1, 0, 0, 1, -1)^{\mathrm{T}}$. 则 A 列向量组的一个极大无关组是(D).

- (A) $\alpha_1, \alpha_3, \alpha_5$ (B) $\alpha_1, \alpha_3, \alpha_4$ (C) $\alpha_3, \alpha_4, \alpha_5$ (D) $\alpha_2, \alpha_3, \alpha_5$

练习

若
$$oldsymbol{A} = egin{pmatrix} a & 1 & a^2 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
 且存在 3 阶非零矩阵 $oldsymbol{B}$ 使得 $oldsymbol{AB} = oldsymbol{O}$,则()

(A)
$$a = 1, |B| = 0$$

(B)
$$a = -2, |B| = 0$$

(C)
$$a = 1, |B| \neq 0$$

(D)
$$a = -2, |B| \neq 0$$

练习

若
$$\mathbf{A} = \begin{pmatrix} a & 1 & a^2 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
 且存在 3 阶非零矩阵 \mathbf{B} 使得 $\mathbf{A}\mathbf{B} = \mathbf{O}$, 则(\mathbf{A}).

(A)
$$a = 1, |B| = 0$$

(B)
$$a = -2, |B| = 0$$

(C)
$$a = 1, |B| \neq 0$$

(D)
$$a = -2, |B| \neq 0$$

设 $\mathbf{A} \in M_{m \times n}$.

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b,

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价.

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价. 因此 R(A) = R(A,b).

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价. 因此 R(A) = R(A,b).

注意到 A 列向量生成的空间 V 是 (A,b) 列向量生成的空间 W 的子空间.

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价. 因此 R(A) = R(A,b).

注意到 A 列向量生成的空间 V 是 (A,b) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b),则 V = W,A 列向量组的一个极大无关组 S 也是 (A,b) 的极大无关组.

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价. 因此 R(A) = R(A,b).

注意到 A 列向量生成的空间 V 是 (A,b) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 V = W, A 列向量组的一个极大无关组 S 也是 (A,b) 的极大无关组. 从而 b 是 S 的线性组合, 也是 A 列向量的线性组合.

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价. 因此 R(A) = R(A,b).

注意到 A 列向量生成的空间 V 是 (A,b) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b),则 V = W,A 列向量组的一个极大无关组 S 也是 (A,b) 的极大无关组. 从而 b 是 S 的线性组合,也是 A 列向量的线性组合.

定理

设 $A \in M_{m \times n}$. 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A,b) 的列向量组等价. 因此 R(A) = R(A,b).

注意到 A 列向量生成的空间 V 是 (A,b) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 V = W, A 列向量组的一个极大无关组 S 也是 (A,b) 的极大无关组. 从而 b 是 S 的线性组合, 也是 A 列向量的线性组合.

定理

Ax = b 有解 $\iff R(A) = R(A, b)$.

推论

若 $R(\overline{A_m} \times n) = m$ (即 A 行满秩),则 Ax = b 总有解.

若非齐次线性方程组 Ax = b 有解 $x = x_0$, 则 $A(x - x_0) = 0$.

若非齐次线性方程组 Ax = b 有解 $x = x_0$, 则 $A(x - x_0) = 0$. 从而 $x - x_0$ 是 Ax = 0 的解.

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1,\ldots,k_{n-r} 为任意常数.

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1,\ldots,k_{n-r} 为任意常数.

线性方程组解的判定准则

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1, \ldots, k_{n-r} 为任意常数.

线性方程组解的判定准则

(1) 若 R(A) < R(A, b), 则 Ax = b 无解;

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1, \ldots, k_{n-r} 为任意常数.

线性方程组解的判定准则

- (1) 若 R(A) < R(A, b), 则 Ax = b 无解;
- (2) 若 R(A) = R(A, b) = n, 则 Ax = b 有唯一解;

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1, \ldots, k_{n-r} 为任意常数.

线性方程组解的判定准则

- (1) 若 R(A) < R(A, b), 则 Ax = b 无解;
- (2) 若 $R(\mathbf{A}) = R(\mathbf{A}, \mathbf{b}) = n$, 则 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有唯一解;
- (3) 若 R(A) = R(A, b) < n, 则 Ax = b 有无穷多解.

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1, \ldots, k_{n-r} 为任意常数.

线性方程组解的判定准则

- (1) 若 R(A) < R(A, b), 则 Ax = b 无解;
- (2) 若 R(A) = R(A, b) = n, 则 Ax = b 有唯一解;
- (3) 若 R(A) = R(A, b) < n, 则 Ax = b 有无穷多解.

推论

若 A 是 n 阶方阵,则 Ax = b 有唯一解 $\iff |A| \neq 0$.

若非齐次线性方程组 Ax=b 有解 $x=x_0$, 则 $A(x-x_0)=0$. 从而 $x-x_0$ 是 Ax=0 的解. 设 ξ_1,\ldots,ξ_{n-r} 为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 k_1,\ldots,k_{n-r} 为任意常数.

线性方程组解的判定准则

- (1) 若 R(A) < R(A, b), 则 Ax = b 无解;
- (2) 若 R(A) = R(A, b) = n, 则 Ax = b 有唯一解;
- (3) 若 R(A) = R(A, b) < n, 则 Ax = b 有无穷多解.

推论

若 A 是 n 阶方阵,则 Ax = b 有唯一解 $\iff |A| \neq 0$.

若 |A| = 0, 则 Ax = b 无解或有无穷多解.

非齐次线性方程组的解法

(1) 写: 写出方程组对应的增广矩阵 (A,b);

- (1) 写: 写出方程组对应的增广矩阵 (A,b);
- (2) 变: 通过初等行变换将其化为行最简形;

- (1) 写:写出方程组对应的增广矩阵 (A,b);
- (2) 变: 通过初等行变换将其化为行最简形;
- (3) 判: 通过行最简形判定方程是否有解;

- (1) 写: 写出方程组对应的增广矩阵 (A,b);
- (2) 变: 通过初等行变换将其化为行最简形;
- (3) 判: 通过行最简形判定方程是否有解;
- (4) 解: 若系数矩阵部分零行对应的常数项均为零,则方程有解. 其中特解为每个非零行对应未知元取对应常数项值,其余取零.

- (1) 写:写出方程组对应的增广矩阵 (A,b);
- (2) 变: 通过初等行变换将其化为行最简形;
- (3) 判: 通过行最简形判定方程是否有解;
- (4) 解: 若系数矩阵部分零行对应的常数项均为零,则方程有解. 其中特解为每个非零行对应未知元取对应常数项值,其余取零.
- (5) 通解 = 特解 + 对应的齐次方程的基础解系的线性组合.

例

解方程
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 1\\ 2x_1 - x_2 + 2x_3 - 2x_4 = 3\\ 3x_1 + x_2 + 5x_3 + 2x_4 = 2 \end{cases}$$

例

解方程
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 1\\ 2x_1 - x_2 + 2x_3 - 2x_4 = 3\\ 3x_1 + x_2 + 5x_3 + 2x_4 = 2 \end{cases}$$

解

$$\begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 \\ 2 & -1 & 2 & -2 & | & 3 \\ 3 & 1 & 5 & 2 & | & 2 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 \\ 0 & -5 & -4 & -10 & | & 1 \\ 0 & -5 & -4 & -10 & | & -1 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 \\ 0 & -5 & -4 & -10 & | & 1 \\ 0 & 0 & 0 & 0 & | & 1 \end{pmatrix}.$$

例

解方程
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 1\\ 2x_1 - x_2 + 2x_3 - 2x_4 = 3\\ 3x_1 + x_2 + 5x_3 + 2x_4 = 2 \end{cases}$$

解

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & -1 & 2 & -2 & 3 \\ 3 & 1 & 5 & 2 & 2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & -5 & -4 & -10 & 1 \\ 0 & -5 & -4 & -10 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & -5 & -4 & -10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

于是 R(A) = 2 < R(A, b) = 3, 无解.

例

解方程
$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 1 \\ x_1 - x_2 - 2x_3 + 3x_4 = -1/2 \end{cases}$$

解方程
$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 1 \\ x_1 - x_2 - 2x_3 + 3x_4 = -1/2 \end{cases}$$

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -3 & 1 \\ 1 & -1 & -2 & 3 & -1/2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -1 & 0 & -1 & 1/2 \\ 0 & 0 & 1 & -2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

例

解方程 $\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 1 \\ x_1 - x_2 - 2x_3 + 3x_4 = -1/2 \end{cases}$

解

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -3 & 1 \\ 1 & -1 & -2 & 3 & -1/2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -1 & 0 & -1 & 1/2 \\ 0 & 0 & 1 & -2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

于是 $R(\mathbf{A}) = 2 = R(\mathbf{A}, \mathbf{b}) = 2$, 有解.

例

解方程 $\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 1 \\ x_1 - x_2 - 2x_3 + 3x_4 = -1/2 \end{cases}$

解

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -3 & 1 \\ 1 & -1 & -2 & 3 & -1/2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -1 & 0 & -1 & 1/2 \\ 0 & 0 & 1 & -2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

于是 $R(\mathbf{A}) = 2 = R(\mathbf{A}, \mathbf{b}) = 2$, 有解. 特解为 $(1/2, 0, 1/2, 0)^{\mathrm{T}}$.

解
$$\begin{pmatrix}
-1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix} \implies \begin{pmatrix}
1 & 1 \\
1 & 0 \\
0 & 2 \\
0 & 1
\end{pmatrix} \implies 基础解系 \xi_1 = \begin{pmatrix}
1 \\
1 \\
0 \\
0
\end{pmatrix}, \xi_2 = \begin{pmatrix}
1 \\
0 \\
2 \\
1
\end{pmatrix},$$

解

$$\begin{pmatrix}
-1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix} \implies \begin{pmatrix}
1 & 1 \\
1 & 0 \\
0 & 2 \\
0 & 1
\end{pmatrix} \implies \text{ \underline{k} aligned \underline{k} \underline{k} $\underline{1}$ $$$

通解为

$$m{x} = egin{pmatrix} 1/2 \ 0 \ 1/2 \ 0 \end{pmatrix} + k_1 egin{pmatrix} 1 \ 1 \ 0 \ 0 \end{pmatrix} + k_2 egin{pmatrix} 1 \ 0 \ 2 \ 1 \end{pmatrix},$$

 k_1, k_2 为任意常数.

例

已知

$$\alpha_1 = (1, 4, 0, 2)^{\mathrm{T}}, \alpha_2 = (2, 7, 1, 3)^{\mathrm{T}}, \alpha_3 = (0, 1, -1, a)^{\mathrm{T}}, \beta = (3, 10, b, 4)^{\mathrm{T}}.$$

问
$$a,b$$
 为何值时,

例

已知

$$\boldsymbol{\alpha}_1 = (1, 4, 0, 2)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (2, 7, 1, 3)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (0, 1, -1, a)^{\mathrm{T}}, \boldsymbol{\beta} = (3, 10, b, 4)^{\mathrm{T}}.$$

问 a,b 为何值时,

(1) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;

例

已知

$$\alpha_1 = (1, 4, 0, 2)^{\mathrm{T}}, \alpha_2 = (2, 7, 1, 3)^{\mathrm{T}}, \alpha_3 = (0, 1, -1, a)^{\mathrm{T}}, \beta = (3, 10, b, 4)^{\mathrm{T}}.$$

问 a,b 为何值时,

- (1) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;
- (2) β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示;

例

已知

$$\alpha_1 = (1, 4, 0, 2)^{\mathrm{T}}, \alpha_2 = (2, 7, 1, 3)^{\mathrm{T}}, \alpha_3 = (0, 1, -1, a)^{\mathrm{T}}, \beta = (3, 10, b, 4)^{\mathrm{T}}.$$

问 a,b 为何值时,

- (1) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;
- (2) β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示;
- (3) β 能由 $\alpha_1, \alpha_2, \alpha_3$ 不唯一线性表示.

解

即问 $\mathbf{A}x = \mathbf{b}$ 的解的情况, 其中 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$.

解

即问 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解的情况, 其中 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$.

$$(\boldsymbol{A},\boldsymbol{b}) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & b \\ 0 & -1 & a & -2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & b - 2 \end{pmatrix}$$

解

即问 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解的情况, 其中 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$.

$$(\boldsymbol{A},\boldsymbol{b}) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & b \\ 0 & -1 & a & -2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & b - 2 \end{pmatrix}$$

于是可知 $R(\mathbf{A})$ 和 $R(\mathbf{A}, \mathbf{b})$, 故

解

即问 Ax = b 的解的情况, 其中 $A = (\alpha_1, \alpha_2, \alpha_3)$.

$$(\boldsymbol{A},\boldsymbol{b}) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & b \\ 0 & -1 & a & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & b - 2 \end{pmatrix}$$

于是可知 $R(\mathbf{A})$ 和 $R(\mathbf{A}, \mathbf{b})$, 故

(1) $b \neq 2$ 时, β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;

解

即问 Ax = b 的解的情况, 其中 $A = (\alpha_1, \alpha_2, \alpha_3)$.

$$(\boldsymbol{A},\boldsymbol{b}) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & b \\ 0 & -1 & a & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & b - 2 \end{pmatrix}$$

于是可知 $R(\mathbf{A})$ 和 $R(\mathbf{A}, \mathbf{b})$, 故

- (1) $b \neq 2$ 时, β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;
- (2) $a \neq 1, b = 2$ 时, β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示;

解

即问 Ax = b 的解的情况, 其中 $A = (\alpha_1, \alpha_2, \alpha_3)$.

$$(\boldsymbol{A},\boldsymbol{b}) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & b \\ 0 & -1 & a & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & b - 2 \end{pmatrix}$$

于是可知 $R(\mathbf{A})$ 和 $R(\mathbf{A}, \mathbf{b})$, 故

- (1) $b \neq 2$ 时, β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;
- (2) $a \neq 1, b = 2$ 时, β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示;
- (3) a=1,b=2 时, β 能由 $\alpha_1,\alpha_2,\alpha_3$ 不唯一线性表示.

例

设 $\mathbf{A} \in M_{m \times n}$, 则().

- (A) 若 Ax = 0 仅有零解, 则 Ax = b 有唯一解
- (B) 若 Ax = 0 有非零解,则 Ax = b 有无穷多解
- (C) 若 Ax = b 有无穷多解,则 Ax = 0 只有零解
- (D) 若 Ax = b 有无穷多解,则 Ax = 0 有非零解

例

设 $\mathbf{A} \in M_{m \times n}$, 则(D).

- (A) 若 Ax = 0 仅有零解, 则 Ax = b 有唯一解
- (B) 若 Ax = 0 有非零解,则 Ax = b 有无穷多解
- (C) 若 Ax = b 有无穷多解,则 Ax = 0 只有零解
- (D) 若 Ax = b 有无穷多解,则 Ax = 0 有非零解

例

设 $\mathbf{A} \in M_{m \times n}$, 则(D).

- (A) 若 Ax = 0 仅有零解, 则 Ax = b 有唯一解
- (B) 若 Ax = 0 有非零解,则 Ax = b 有无穷多解
- (C) 若 Ax = b 有无穷多解,则 Ax = 0 只有零解
- (D) 若 Ax = b 有无穷多解,则 Ax = 0 有非零解

练习

读 $\mathbf{A} \in M_{m \times n}, R(\mathbf{A}) = m < n,$ 则().

- (A) \boldsymbol{A} 的任意 m 个列向量线性无关 (B) \boldsymbol{A} 的任意一个 m 阶子式不等于 0
- (C) Ax = b 一定有无穷多个解 (D) $A \stackrel{r}{\sim} (E, O)$

例

设 $\mathbf{A} \in M_{m \times n}$, 则(D).

- (A) 若 Ax = 0 仅有零解, 则 Ax = b 有唯一解
- (B) 若 Ax = 0 有非零解,则 Ax = b 有无穷多解
- (C) 若 Ax = b 有无穷多解,则 Ax = 0 只有零解
- (D) 若 Ax = b 有无穷多解,则 Ax = 0 有非零解

练习

读 $\mathbf{A} \in M_{m \times n}, R(\mathbf{A}) = m < n,$ 则(\mathbf{C}).

- (A) A 的任意 m 个列向量线性无关
- (B) A 的任意一个 m 阶子式不等于 0

(C) Ax = b 一定有无穷多个解

(D) $\boldsymbol{A} \stackrel{r}{\sim} (\boldsymbol{E}, \boldsymbol{O})$

例

a 为何值时, 以下方程

注意处理带未知数的矩阵时,不宜实施 $\frac{1}{a+1}r_2,(a-2)r_3$ 等类似操作,因为其分母或系数可能为零.

解

$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 1+a & 1 & 1 & 0 \\ 1 & 1+a & 1 & 3 \\ 1 & 1 & 1+a & a \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & -a & a & a-3 \\ 0 & a & a^2+2a & a^2+a \end{pmatrix}$$

例

a 为何值时, 以下方程

注意处理带未知数的矩阵时,不宜实施 $\frac{1}{a+1}r_2,(a-2)r_3$ 等类似操作,因为其分母或系数可能为零.

解

$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 1+a & 1 & 1 & 0 \\ 1 & 1+a & 1 & 3 \\ 1 & 1 & 1+a & a \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & -a & a & a-3 \\ 0 & a & a^2+2a & a^2+a \end{pmatrix}$$

例

a 为何值时,以下方程 (1)有唯一解; (2) 无解; (3)有无穷多解?并在有无穷多解时求其通解.

$$\begin{cases} (1+a)x_1 + x_2 + x_3 = 0\\ x_1 + (1+a)x_2 + x_3 = 3\\ x_1 + x_2 + (1+a)x_3 = a \end{cases}$$

注意处理带未知数的矩阵时,不宜实施 $\frac{1}{a+1}r_2,(a-2)r_3$ 等类似操作,因为其分母或系数可能为零。

例

a 为何值时,以下方程 (1)有唯一解; (2) 无解; (3)有无穷多解?并在有无穷多解时求其通解.

$$\begin{cases} (1+a)x_1 + & x_2 + & x_3 = 0\\ x_1 + (1+a)x_2 + & x_3 = 3\\ x_1 + & x_2 + (1+a)x_3 = a \end{cases}$$

注意处理带未知数的矩阵时,不宜实施 $\frac{1}{a+1}r_2,(a-2)r_3$ 等类似操作,因为其分母或系数可能为零.

解

$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 1+a & 1 & 1 & 0 \\ 1 & 1+a & 1 & 3 \\ 1 & 1 & 1+a & a \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & -a & a & a-3 \\ 0 & a & a^2+2a & a^2+a \end{pmatrix}$$

艄

$$\overset{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & a & -a & 3-a \\ 0 & 0 & a^2+3a & a^2+2a-3 \end{pmatrix}.$$

(1) $\ddot{x} \ a \neq 0, -3, \ M \ R(A) = R(A, b) = 3, \ \ddot{x}$ \ddot{x} \ddot{x}

觯

$$\stackrel{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & a & -a & 3-a \\ 0 & 0 & a^2+3a & a^2+2a-3 \end{pmatrix}.$$

- (2) $\exists a = 0, \ \mathbb{M} \ (\mathbf{A}, \mathbf{b}) \overset{r}{\sim} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}, R(\mathbf{A}) = 1 < R(\mathbf{A}, \mathbf{b}) = 2, \ \mathbf{\hat{\pi}} \mathbf{\mathcal{H}} \mathbf{\mathcal{E}} \mathbf{\mathcal{H}}.$

解

(3) 若
$$a = -3$$
, 则 $(\mathbf{A}, \mathbf{b}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $R(\mathbf{A}) = R(\mathbf{A}, \mathbf{b}) = 2$, 方程有无穷多

解

解

(3) 若
$$a = -3$$
, 则 $(\mathbf{A}, \mathbf{b}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $R(\mathbf{A}) = R(\mathbf{A}, \mathbf{b}) = 2$, 方程有无穷多

解. 特解为
$$\begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$$
, 基础解系为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 通解为

$$x = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

k 为任意常数.

解

(3) 若
$$a = -3$$
, 则 $(\mathbf{A}, \mathbf{b}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $R(\mathbf{A}) = R(\mathbf{A}, \mathbf{b}) = 2$, 方程有无穷多

解. 特解为
$$\begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$$
, 基础解系为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 通解为

$$x = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

k 为任意常数.

由于系数矩阵为 3 阶方阵, 也可以先通过 $|A| \neq 0$ 得到唯一解情形.

a,b 为何值时, 以下方程

a,b 为何值时, 以下方程

练习

a,b 为何值时,以下方程 (1) 有唯一解; (2) 无解; (3) 有无穷多解?并在有无穷多解时求其通解.

$$\begin{cases} x_1 + x_2 + & x_3 + & x_4 = 1 \\ x_2 - & x_3 + 2 & x_4 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 + 4 & x_4 = b+3 \\ 3x_1 + 5x_2 + & x_3 + (a+8)x_4 = 5 \end{cases}$$

答案

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix}.$$

答案

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix}.$$

(1) $a \neq -1$ 时有唯一解;

答案

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix}.$$

- (1) $a \neq -1$ 时有唯一解;
- (2) $a = -1, b \neq 0$ 时无解;

答案

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix}.$$

- (1) $a \neq -1$ 时有唯一解;
- (2) $a = -1, b \neq 0$ 时无解;
- (3) a = -1, b = 0 时有无穷多解, 通解为

$$x = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + k_1 \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}.$$

例

设四元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3. 已知 η_1, η_2, η_3 是它的 三个解向量, 且

$$\eta_1 = (2, 3, 4, 5)^{\mathrm{T}}, \quad \eta_2 + \eta_3 = (1, 2, 3, 4)^{\mathrm{T}}.$$

求 Ax = b 的通解.

例

设四元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3. 已知 η_1, η_2, η_3 是它的 三个解向量, 且

$$\eta_1 = (2, 3, 4, 5)^T, \quad \eta_2 + \eta_3 = (1, 2, 3, 4)^T.$$

求 Ax = b 的通解.

解

由于 R(A) = 3, 因此 Ax = 0 的基础解系只包含一个向量.

例

设四元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3. 已知 η_1, η_2, η_3 是它的 三个解向量, 且

$$\eta_1 = (2, 3, 4, 5)^T, \quad \eta_2 + \eta_3 = (1, 2, 3, 4)^T.$$

求 Ax = b 的通解.

解

由于 R(A)=3, 因此 Ax=0 的基础解系只包含一个向量. 根据解的性质,

$$2\eta_1 - (\eta_2 + \eta_3) = (3, 4, 5, 6)^{\mathrm{T}}$$

是 Ax = 0 的一个解, 因此这是它的一个基础解系.

例

设四元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3. 已知 η_1, η_2, η_3 是它的 三个解向量, 且

$$\eta_1 = (2, 3, 4, 5)^{\mathrm{T}}, \quad \eta_2 + \eta_3 = (1, 2, 3, 4)^{\mathrm{T}}.$$

求 Ax = b 的通解.

解

由于 R(A)=3, 因此 Ax=0 的基础解系只包含一个向量. 根据解的性质,

$$2\eta_1 - (\eta_2 + \eta_3) = (3, 4, 5, 6)^{\mathrm{T}}$$

是 Ax=0 的一个解, 因此这是它的一个基础解系. 故 Ax=b 的通解为

$$\mathbf{x} = \mathbf{\eta}_1 + k(3, 4, 5, 6)^{\mathrm{T}} = (2, 3, 4, 5)^{\mathrm{T}} + k(3, 4, 5, 6)^{\mathrm{T}}.$$

例

已知 4 阶方阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, 且 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_1 = 2\alpha_2 - \alpha_3$. 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, 求 $Ax = \beta$ 的通解.

例

已知 4 阶方阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, 且 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_1 = 2\alpha_2 - \alpha_3$. 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, 求 $Ax = \beta$ 的通解.

解

由题设可知 R(A) = 3, 因此 Ax = 0 的基础解系只包含一个向量.

例

已知 4 阶方阵 $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$, 且 $\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\alpha_1=2\alpha_2-\alpha_3$. 若 $\beta=\alpha_1+\alpha_2+\alpha_3+\alpha_4$, 求 $Ax=\beta$ 的通解.

解

由题设可知 R(A)=3, 因此 Ax=0 的基础解系只包含一个向量. 由 $\alpha_1=2\alpha_2-\alpha_3$ 可知 $(1,-2,1,0)^{\rm T}$ 是 Ax=0 的一个解, 因此这是它的一个基础解系.

例

已知 4 阶方阵 $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$, 且 $\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\alpha_1=2\alpha_2-\alpha_3$. 若 $\beta=\alpha_1+\alpha_2+\alpha_3+\alpha_4$, 求 $Ax=\beta$ 的通解.

解

由题设可知 R(A)=3, 因此 Ax=0 的基础解系只包含一个向量. 由 $\alpha_1=2\alpha_2-\alpha_3$ 可知 $(1,-2,1,0)^{\rm T}$ 是 Ax=0 的一个解, 因此这是它的一个基础解系. 注意到 $(1,1,1,1)^{\rm T}$ 是 Ax=b 的一个特解, 故通解为

$$\mathbf{x} = (1, 1, 1, 1)^{\mathrm{T}} + k(1, -2, 1, 0)^{\mathrm{T}}.$$

例

已知 β_1,β_2 是 Ax=b 的两个不同的解, α_1,α_2 是 Ax=0 的基础解系, 则 Ax=b 的通解为(), k_1,k_2 为任意常数.

(A)
$$\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$$
 (B) $2\beta_1 - \beta_2 + k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2)$

(C)
$$\frac{\beta_1 + \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$$
 (D) $\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$

例

已知 β_1,β_2 是 Ax=b 的两个不同的解, α_1,α_2 是 Ax=0 的基础解系, 则 Ax=b 的通解为(B), k_1,k_2 为任意常数.

(A)
$$\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$$
 (B) $2\beta_1 - \beta_2 + k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2)$

(C)
$$\frac{\beta_1 + \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$$
 (D) $\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$

例

已知 β_1,β_2 是 Ax=b 的两个不同的解, α_1,α_2 是 Ax=0 的基础解系, 则 Ax=b 的通解为(B), k_1,k_2 为任意常数.

(A)
$$\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$$
 (B) $2\beta_1 - \beta_2 + k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2)$

(C)
$$\frac{\beta_1 + \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$$
 (D) $\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$

练习

已知 $\eta_1 = (0,1,0)^{\mathrm{T}}, \eta_2 = (-3,2,2)^{\mathrm{T}}$ 是线性方程组 $\begin{cases} x_1 - x_2 + 2x_3 = -1\\ 3x_1 + x_2 + 4x_3 = 1 \end{cases}$ 的两个 $ax_1 + bx_2 + cx_3 = d$

解向量,则该方程组的通解为

例

已知 β_1,β_2 是 Ax=b 的两个不同的解, α_1,α_2 是 Ax=0 的基础解系, 则 Ax=b 的通解为(B), k_1,k_2 为任意常数.

(A)
$$\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$$
 (B) $2\beta_1 - \beta_2 + k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2)$

(C)
$$\frac{\beta_1 + \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$$
 (D) $\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$

练习

已知
$$\eta_1 = (0,1,0)^{\mathrm{T}}, \eta_2 = (-3,2,2)^{\mathrm{T}}$$
 是线性方程组
$$\begin{cases} x_1 - x_2 + 2x_3 = -1 \\ 3x_1 + x_2 + 4x_3 = 1 \end{cases}$$
 的两个
$$ax_1 + bx_2 + cx_3 = d$$

解向量,则该方程组的通解为 $(0,1,0)^{T} + k(-3,1,2)^{T}$

若 B 的列向量可由 A 的列向量组线性表示, 则 (A,B) 的列向量组和 A 的列向量组等价.

若 B 的列向量可由 A 的列向量组线性表示, 则 (A,B) 的列向量组和 A 的列向量组等价, 因此 R(A)=R(A,B).

若 B 的列向量可由 A 的列向量组线性表示, 则 (A,B) 的列向量组和 A 的列向量组等价, 因此 R(A) = R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间.

若 B 的列向量可由 A 的列向量组线性表示,则 (A,B) 的列向量组和 A 的列向量组等价,因此 R(A) = R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 A 列向量组的一个极大无关组 S 也是 (A,B) 的极大无关组.

若 B 的列向量可由 A 的列向量组线性表示,则 (A,B) 的列向量组和 A 的列向量组等价,因此 R(A) = R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 A 列向量组的一个极大无关组 S 也是 (A,B) 的极大无关组. 从 而 B 的列向量都是 S 的线性组合. 也是 A 列向量的线性组合.

若 B 的列向量可由 A 的列向量组线性表示,则 (A,B) 的列向量组和 A 的列向量组等价,因此 R(A)=R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 A 列向量组的一个极大无关组 S 也是 (A,B) 的极大无关组. 从 而 B 的列向量都是 S 的线性组合, 也是 A 列向量的线性组合.

定理

若 B 的列向量可由 A 的列向量组线性表示,则 (A,B) 的列向量组和 A 的列向量组等价,因此 R(A)=R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 A 列向量组的一个极大无关组 S 也是 (A,B) 的极大无关组. 从 而 B 的列向量都是 S 的线性组合, 也是 A 列向量的线性组合.

定理

(1) B 的列向量组可由 A 的列向量组线性表示 $\iff AX = B$ 有解 $\iff R(A) = R(A, B)$.

若 B 的列向量可由 A 的列向量组线性表示,则 (A,B) 的列向量组和 A 的列向量组等价,因此 R(A)=R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 A 列向量组的一个极大无关组 S 也是 (A,B) 的极大无关组. 从 而 B 的列向量都是 S 的线性组合, 也是 A 列向量的线性组合.

定理

- (1) B 的列向量组可由 A 的列向量组线性表示 $\iff AX = B$ 有解 $\iff R(A) = R(A, B)$.
- (2) B 的列向量组和 A 的列向量组等价 \iff R(A) = R(A, B) = R(B).

例: 向量组等价

例

证明向量组 α_1, α_2 与 $\beta_1, \beta_2, \beta_3$ 等价, 其中

$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \ \beta_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \ \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \ \beta_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}.$$

例: 向量组等价

例

证明向量组 α_1, α_2 与 $\beta_1, \beta_2, \beta_3$ 等价, 其中

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ \boldsymbol{\alpha}_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \ \boldsymbol{\beta}_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{\beta}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \ \boldsymbol{\beta}_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}.$$

证明

$$(\boldsymbol{lpha}_1, \boldsymbol{lpha}_2, \boldsymbol{eta}_1, \boldsymbol{eta}_2, \boldsymbol{eta}_3) = egin{pmatrix} 1 & 3 & 2 & 1 & 3 \ -1 & 1 & - & 1 & -1 \ 1 & 1 & 1 & 0 & 2 \ -1 & 3 & 1 & 2 & 0 \end{pmatrix} \overset{r}{\sim} egin{pmatrix} 1 & 3 & 2 & 1 & 3 \ 0 & 2 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}.$$

例: 向量组等价

例

证明向量组 α_1, α_2 与 $\beta_1, \beta_2, \beta_3$ 等价, 其中

$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \ \beta_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \ \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \ \beta_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}.$$

证明

$$(\boldsymbol{lpha}_1, \boldsymbol{lpha}_2, \boldsymbol{eta}_1, \boldsymbol{eta}_2, \boldsymbol{eta}_3) = egin{pmatrix} 1 & 3 & 2 & 1 & 3 \ -1 & 1 & - & 1 & -1 \ 1 & 1 & 1 & 0 & 2 \ -1 & 3 & 1 & 2 & 0 \end{pmatrix} \overset{r}{\sim} egin{pmatrix} 1 & 3 & 2 & 1 & 3 \ 0 & 2 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}.$$

因此 $R(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = R(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = R(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = 2.$

在物理实验中, 经常会出现实验数据与预期不符的情况.

在物理实验中, 经常会出现实验数据与预期不符的情况. 例如变量 y 应当为变量 $x = (x_1, \ldots, x_n)^T$ 的线性组合, 即存在 n 维向量 β 使得 $y = x^T \beta$.

比较常见的是最小二乘法: 即寻找参数 β 使得

$$\sum_{i=1}^{k} |y_i - \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}|^2 = \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\beta}\|^2$$

尽可能小, 其中 (x_i, y_i) 是实验数据, $y = (y_1, \dots, y_k)^T$, A 是由行向量 x_i^T 构成的 $k \times n$ 矩阵.

比较常见的是最小二乘法: 即寻找参数 β 使得

$$\sum_{i=1}^k |y_i - \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}|^2 = \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\beta}\|^2$$

尽可能小, 其中 (x_i, y_i) 是实验数据, $y = (y_1, \dots, y_k)^T$, A 是由行向量 x_i^T 构成的 $k \times n$ 矩阵. 注意所有向量 $A\beta$ 形成一个向量空间 V, 也就是 A 的列向量生成的空间.

比较常见的是最小二乘法: 即寻找参数 β 使得

$$\sum_{i=1}^k |y_i - \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}|^2 = \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\beta}\|^2$$

尽可能小,其中 (x_i,y_i) 是实验数据, $y=(y_1,\ldots,y_k)^{\mathrm{T}}$,A 是由行向量 x_i^{T} 构成的 $k\times n$ 矩阵. 注意所有向量 $A\beta$ 形成一个向量空间 V,也就是 A 的列向量生成的空间. y 距离这个空间的距离 $\|y-A\beta\|$ 达到最小时, $y-A\beta$ 应当和这个空间正交.

比较常见的是最小二乘法: 即寻找参数 β 使得

$$\sum_{i=1}^k |y_i - \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}|^2 = \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\beta}\|^2$$

尽可能小,其中 (x_i,y_i) 是实验数据, $\mathbf{y}=(y_1,\ldots,y_k)^{\mathrm{T}}$, \mathbf{A} 是由行向量 $\mathbf{x}_i^{\mathrm{T}}$ 构成的 $k\times n$ 矩阵. 注意所有向量 $\mathbf{A}\beta$ 形成一个向量空间 V,也就是 \mathbf{A} 的列向量生成的空间. \mathbf{y} 距离这个空间的距离 $\|\mathbf{y}-\mathbf{A}\beta\|$ 达到最小时, $\mathbf{y}-\mathbf{A}\beta$ 应当和这个空间正交. 于是 $\mathbf{A}^{\mathrm{T}}(\mathbf{y}-\mathbf{A}\beta)=\mathbf{0}$,即 β 是方程

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{eta} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{y}$$

的解.