Inhaltsverzeichnis

١.	Mes	saufbau (Z-Diode)	. 2
		Schaltungsaufbau	
	,	Berechnung der Schaltung	
	•	Messaufbau	
	•	saufbau (Serientransistor)	
		Schaltungsaufbau	
	-	Berechnung der Schaltung	
		Messaufhau	3

I. Messaufbau (Z-Diode)

1.) Schaltungsaufbau

Um die Zener-Diode Ordnungsgemäß zu betreiben ist die Bestimmung eines geeigneten Vorwiderstandes R_V in Abhängigkeit zum Lastwiderstand R_L notwendig. Die Gefahr dabei besteht, dass durch einen zu großen R_V durch die Diode ein zu geringer Strom I_Z fließt, dadurch ist eine Begrenzung der Spannung nicht mehr möglich. Bei Belastung mit einem Strom I_Z über die Leistung P_{TOT} der Diode, durch einen zu kleinen R_V , wird diese thermisch zerstört.

Abb.: 1:Schaltungsaufbau mit Z-Diode

Wichtiger Hinweis:

Die Spannung U_E - U_{RV} muss immer größer sein als U_Z , damit die Diode ordnungsgemäß funktioniert. Des Weiteren besteht bei Falscher Bestimmung des Vorwiderstandes R_V die Möglichkeit, dass die gewünschte Spannung nicht mehr stabilisiert werden kann (R_V zu groß, I_Z zu klein) oder die Diode durch Belastung über P_{TOT} thermisch zerstört wird (R_V zu klein, I_Z zu groß).

2.) Berechnung der Schaltung

 $U_E=15-20V; U_D=10V; P_{TOT}=1/4W=0,25W; I_L=10mA$

$$\begin{split} R_L &= \frac{U_Z}{I_L} = \frac{10V}{10mA} = 1000\Omega = 1k\Omega \\ I_{Zmax} &= \frac{P_{TOT}}{U_Z} = \frac{0,25W}{10V} = 25mA \\ R_{Vmax} &= \frac{U_{Emin} - U_D}{I_{Zmin} + I_L} = \frac{15V - 10V}{2,5mA + 10mA} = 400\Omega \\ \end{split} \qquad R_{Vmin} &= \frac{U_{Emax} + 0,1 = 25mA * 0,1 = 2,5mA}{I_{Zmax}} = \frac{20V - 10V}{25mA} = 400\Omega \end{split}$$

 R_V gewählt 440 Ω

$$I_L = \frac{U_{Emin} - U_Z}{R_{Vmax}} = \frac{15V - 10V}{440\Omega} = 8,86$$
mA

3.) Messaufbau

VORSICHT: Vor Beginn der Messung ist auf dem HPC Board zu prüfen, ob die aufgedruckte Zener-Diode tatsächlich auch im Gehäuse aufgelötet ist. Da bei einer Diode mit kleinerem P_{TOT} unter Umständen eine Fehlberechnung von I_{Zmax} erfolgt, was zur thermischen Zerstörung der Diode führen kann!

Der Messaufbau erfolgt wie im Abschnitt Schaltungsaufbau dargestellt. Dabei werden Die Funktionen $U_A=f(U_E)$; $U_A=f(I_L)$; aufgezeichnet und Tabellarisch dargestellt. Die Messergebnisse und Diagramme werden dabei auf der Rückseite dargestellt.

II. Messaufbau (Serientransistor)

1.) Schaltungsaufbau

Die Spannungsstabilisierung an U_Z überträgt sich auf die Ausgangsspannung, jedoch entsteht durch den Spannungsabfall U_{BE} (Basis-Emitter-Spannung) an den Transistoren, am Ausgang eine um -($U_{BE1}+U_{BE2}$) geringere Spannung. Voraussetzung dazu ist das die Spannung U_E größer als U_A ist. Die Diode muss sich für die Spannungsstabilisierung in ihrem Arbeitsbereich $I_{Zmin} << I_Z << I_{Zmax}$ befinden. Sinkt die Ausgangsspannung steigt U_{BE} , was zu einer erhöhung des Basisstorms führt und somit die Ausgangsspannung ausgleicht. Die Schaltung wird auch als aufgebohrt Zener-Diode bezeichnet und ist heute noch in vielen Anwendungen gebräuchlich.

Abb.: 2:Schaltungsaufbau Serientransistor

Wichtiger Hinweis:

Der Widerstand und die Zener-Dioden übernehmen den Basisspannungsteiler des Transistors. Der Strom durch die Zener-Diode I_Z sollte 5 mal größer sein als der Basisstorm I_B Für die Übertragung größerer Leistungen ist der Transistor 2 als Leistungstransistor auszuführen.

2.) Berechnung der Schaltung

 $U_E=20V;$ $U_Z=10V$

 $I_z=9,5mA;$ $P_{ZTOT}=1/4W=0,25W;$

 I_{RV} =10mA; R_{V} =1k Ω ; T_{1} =BC547; T_{2} =2N3055 B_{1} = β_{1} =100 B_{2} = β_{2} =5

 $R_L=470/330/220/100/55/33\Omega$;

$$U_{RV} = I_{RV} * R_Z = 10mA * 1k\Omega = 10V$$

 $I_{B1max} = I_{RV} - I_Z = 10mA - 9,5mA = 0,5mA$
 $I_{B2max} = \frac{I_{Lmax}}{\beta} = \frac{260mA}{5} = 52mA$

$$U_A \approx U_Z - (2 * U_{BE}) = 10V - (2 * 0.7V) = 8.6V$$

 $I_{E1max} = I_{B1} * \beta = 0.5mA * 100 = 50mA$
 $I_{E2max} = I_{Lmax} = \frac{U_A}{R_{Lmin}} = \frac{8.6V}{33\Omega} = 260mA$

$$I_{L470} = \frac{U_A}{R_L} = \frac{8,6V}{470\Omega} = 18mA$$

$$I_{L220} = \frac{U_A}{R_L} = \frac{8,6V}{220\Omega} = 39mA$$

$$I_{L100} = \frac{U_A}{R_L} = \frac{8,6V}{470\Omega} = 86mA$$

$$I_{L55} = \frac{U_A}{R_L} = \frac{8,6V}{55\Omega} = 156mA$$

3.) Messaufbau

VORSICHT: Vor Beginn der Messung ist auf dem HPC Board zu prüfen, ob der Strom der über den Widerstand R_L geführt wird, nicht die Leistung (2W) des Widerstandes übersteigt. Eine Sichtkontrolle ist ratsam.

Die Schaltung sollte vor Aufbau berechnet werden, dies war Aufgrund von Zeitmangel nicht möglich. Die Messung wird daher nach Möglichkeit nachträglich wiederholt.

Die Aufzeichnung der Messwerte wird in folgendem Diagramm dargestellt: $U_A=f(I_L)$; Dabei ist zu erkennen das die Stabilisierung trotz hoher Belastung nahezu konstant bleibt. Die Messergebnisse und Diagramme werden auf der Rückseite dargestellt.

