

sytem design his made & miles is the system working as specified

How work as specified work as specified

- refuse = reject → rívii H.

- support = accept → risti Ha

สูตรเกี่ยวกับการทดสอบสมมติฐานสำหรับประชากรเดียว

Type I Error: Accept Ho was Ho Falce A nown p check now in Ho False Ju &n Ho True -> B=0

Note: subscript ของค่า Z คือ พื้นที่ด้านซ้าย subscript ของค่า t และ Chi-squared คือ พื้นที่ด้านขวา

Null Hypothesis	Test Statistic	Alternative Hypothesis	Criteria for Rejection	P-value	Beta (β)	Sample size (n)
$H_0: \mu = \mu_0$ σ^2 known	$Z_{ob} = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$	$H_a: \mu \neq \mu_0$	$ Z_{\rm ob} > Z_{1-\alpha/2}$	$2 \times P(Z > Z_{ob})$	$\beta = P(Z_{\alpha/2} + \frac{(\mu_0 - \mu')}{\sigma/\sqrt{n}} < Z < Z_{1 - \alpha/2} + \frac{(\mu_0 - \mu')}{\sigma/\sqrt{n}}$	$n = \frac{(Z_{\alpha/2} + Z_{\beta})^2 \sigma^2}{(\mu_0 - \mu')^2}$
		Upper tall $H_a: \mu > \mu_0$	$Z_{\rm ob} > Z_{1-\alpha}$	$P(Z > Z_{ob})$	$\beta = P(Z < Z_{1-\alpha} + \frac{(\mu_0 - \mu')}{\sigma / \sqrt{n}})$	$n = \frac{(Z_{\alpha} + Z_{\beta})^2 \sigma^2}{(\mu_0 - \mu')^2}$
		Lower tail $H_a: \mu < \mu_0$	$Z_{\rm ob} < Z_{\alpha}$	$P(Z < Z_{ob})$	$\beta = P(Z > Z_{\alpha} + \frac{(\mu_0 - \mu')}{\sigma / \sqrt{n}})$	$n = \frac{(Z_{\alpha} + Z_{\beta})^2 \sigma^2}{(\mu_0 - \mu')^2}$
$H_0: \mu = \mu_0$ σ^2 unknown τ -test	$t_{ob} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$	$H_a: \mu \neq \mu_0$	$ t_{\rm ob} > t_{lpha/2,n-1}$	$2 \times P(T > t_{ob})$	$\beta = P\left(-t_{a/2,n-1} + \frac{\mu_0 - \mu'}{s/\sqrt{n}} < t < t_{a/2,n-1} + \frac{\mu_0 - \mu'}{s/\sqrt{n}}\right)$	$n = \frac{(t_{\alpha/2, n-1} + t_{\beta, n-1})^2 s^2}{(\mu_0 - \mu')^2}$
		$H_a: \mu > \mu_0$	$t_{ m ob} > t_{ m lpha,n-1}$	$P(T > t_{ob})$	$\beta = P\left(t < t_{a,n-1} + \frac{\mu_0 - \mu'}{s / \sqrt{n}}\right)$	$n=rac{(t_{lpha,n-1}+t_{eta,n-1})^2 S^2}{(\mu_0-\mu')^2}$ in this entire is a superior of the supe
		$H_a: \mu < \mu_0$	$t_{ m ob}$ < $ t_{ m lpha,n-1}$	$P(T < t_{ob})$	$\beta = P\left(t > -t_{\alpha,n-1} + \frac{\mu_0 - \mu'}{s / \sqrt{n}}\right)$	$n = \frac{(t_{\alpha,n-1} + t_{\beta,n-1})^2 s^2}{(\mu_0 - \mu')^2}$
$H_0: \sigma^2 = \sigma_0^2$	$\chi^{2}_{\text{ob}} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}$	$H_a: \sigma^2 \neq \sigma_0^2$	$\chi_{\rm ob}^2 > \chi^2_{\alpha/2, n-1}$	If $P(\chi^2 > \chi^2_{ob}) < 0.5 \rightarrow lower$ $P - value = 2 \times P(\chi^2 > \chi^2_{ob})$	$\beta = P\left(\frac{\chi^2_{1-\alpha/2,n-1}}{(\sigma'/\sigma_n)^2} \le \chi^2 \le \frac{\chi^2_{\alpha/2,n-1}}{(\sigma'/\sigma_n)^2}\right)$	Case 1 $\left(\frac{\sigma'}{\sigma_0}\right)^2 = \left(\frac{\chi^2}{\chi^2} \frac{\alpha/2, n-1}{1-\beta, n-1}\right)$ which with
		or	or $\chi_{\rm ob}^2 < \chi^2_{1-\alpha/2,n-1}$	If $P(\chi^2 > \chi^2_{ob}) > 0.5 \rightarrow upper$ $P - value = 2 \times P(\chi^2 < \chi^2_{ob})$	$\beta = P\left(\frac{\chi^{2}_{1-\alpha/2, n-1}}{(\sigma'/\sigma_{0})^{2}} \le \chi^{2} \le \frac{\chi^{2}_{\alpha/2, n-1}}{(\sigma'/\sigma_{0})^{2}}\right)$	Case 2 $\left(\frac{\sigma_f}{\sigma_0}\right)^2 = \left(\frac{\chi^2}{\chi^2} \frac{1-\alpha/2, n-1}{\beta_0, n-1}\right)$
			$\chi_{\rm ob}^2 > \chi^2_{\alpha,n-1}$	$P(\chi^2 > \chi^2_{ob})$	$\beta = P\left(\chi^2 \le \frac{\chi^2_{\alpha, n-1}}{(\sigma'/\sigma_0)^2}\right)$	$(\sigma'/\sigma_0)^2 = \frac{\chi^2_{\alpha,n-1}}{\chi^2_{1-\beta,n-1}}$ where $\sigma' > \sigma_0$
			$\chi_{\rm ob}^{2} < \chi^{2}_{1-\alpha,n-1}$	$P(\chi^2 < \chi^2_{ob})$	$\beta = P\left(\chi^2 \ge \frac{\chi^2_{1-\alpha,n-1}}{(\sigma'/\sigma_0)^2}\right)$	$(\sigma'/\sigma_0)^2 = \frac{\chi^2_{1-\alpha,n-1}}{\chi^2_{\beta,n-1}}$ where $\sigma' < \sigma_0$
$\mathbf{H}_0: p = p_0$	$Z_{ob} = \frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$	$H_{a}:p\neq p_0$	$ Z_{\rm ob} > Z_{1-\alpha/2}$	$2 \times P(Z > Z_{ob})$	$\beta = P\left(\frac{(\rho_0 - p') + Z_{\alpha/2}\sqrt{p_0q_0/n}}{\sqrt{p'q'/n}} < Z < \frac{(\rho_0 - p') - Z_{\alpha/2}\sqrt{p_0q_0/n}}{\sqrt{p'q'/n}}\right)$	$n = \frac{(Z_{\alpha/2}\sqrt{p_0q_0} + Z_{\beta}\sqrt{p'q'})^2}{(p'-p_0)^2}$
		$H_a: p > p_0$	$Z_{\rm ob} > Z_{1-\alpha}$		$\beta = P\left(Z < \frac{(p_0 - p') + Z_{1-\alpha}\sqrt{p_0 q_0/n}}{\sqrt{p'q'/n}}\right)$	$n = \frac{(Z_{\alpha}\sqrt{p_0q_0} + Z_{\beta}\sqrt{p'q'})^2}{(p'-p_0)^2}$
		$H_a: p < p_0$	$Z_{\rm ob} < Z_{\alpha}$	$P(Z < Z_{ob})$	$\beta = P\left(Z > \frac{(p_0 - p') + Z_\alpha \sqrt{p_0 q_0 / n}}{\sqrt{p' q' / n}}\right)$	$n = \frac{(Z_{\alpha}\sqrt{p_0q_0} + Z_{B}\sqrt{p'q'})^2}{(p'-p_0)^2}$

