Problem 1.

(a) Show, algebraically, that the derivative of the function

$$\ln(1+x) - \frac{2x}{x+2}$$

is never negative.

(b) Hence show that $\ln(1+x) \ge \frac{2x}{x+2}$ when $x \ge 0$.

Solution

Let
$$f(x) = \ln(1+x) - \frac{2x}{x+2} = \ln(1+x) - 2 + \frac{4}{x+2}$$
.

Part (a)

$$f'(x) = \frac{1}{1+x} - \frac{4}{(x+2)^2}$$
$$= \frac{(x+2)^2 - 4(1+x)}{(1+x)(x+2)^2}$$
$$= \frac{x^2}{(1+x)(x+2)^2}$$

Given that $\ln(1+x)$ is defined, it must be that 1+x>0. We also know that $x^2 \ge 0$ and $(x+2)^2 \ge 0$. Hence, $f'(x) \ge 0$ for all x in the domain of f and is thus never negative.

Part (b)

Note that $f(0) = \ln(1+0) - 2 + \frac{4}{0+2} = 0$. Since f'(x) is never negative, f(x) is increasing. Hence, for all $x \ge 0$,

$$f(x) \ge f(0)$$

$$\implies \ln(1+x) - \frac{2x}{x+2} \ge 0$$

$$\implies \ln(1+x) \ge \frac{2x}{x+2}$$

Problem 2.

The equation of a curve is $y = ax^2 - 2bx + c$, where a, b and c are constants, with a > 0.

- (a) Using differentiation, find the coordinates of the turning point on the curve, in terms of a, b and c. State whether it is a maximum point or a minimum point.
- (b) Given that the turning point of the curve lies on the line y = x, find an expression for c in terms of a and b. Show that in this case, whatever the value of b, $c \ge -\frac{1}{4a}$.
- (c) Find the numerical values of a, b and c when the curve passes through the point (0,6) and has a turning point at (2,2).

Solution

Part (a)

For stationary points, $\frac{dy}{dx} = 0$.

$$\frac{dy}{dx} = 0$$

$$\implies 2ax - 2b = 0$$

$$\implies ax - b = 0$$

$$\implies x = \frac{b}{a}$$

$$\implies y = a \cdot \frac{b^2}{a} - 2b \cdot \frac{b}{a} + c$$

$$= \frac{b^2}{a} - 2 \cdot \frac{b^2}{a} + c$$

$$= -\frac{b^2}{a} + c$$

Since a > 0, the graph of y is concave upwards. Thus, there is a maximum point at $\left(\frac{b}{a}, -\frac{b^2}{a} + c\right)$.

There is maximum point at
$$\left(\frac{b}{a}, -\frac{b^2}{a} + c\right)$$
.

Part (b)

Since the turning point $\left(\frac{b}{a}, -\frac{b^2}{a} + c\right)$ lies on the line y = x,

$$\frac{b}{a} = -\frac{b^2}{a} + c$$

$$\implies c = \frac{b}{a} + \frac{b^2}{a}$$

$$= \frac{1}{a}(b + b^2)$$

Consider the stationary points of c with respect to b. For stationary points, $\frac{dc}{db} = 0$.

$$\frac{dc}{db} = 0$$

$$\implies \frac{1}{a}(1+2b) = 0$$

$$\implies 1+2b = 0$$

$$\implies b = -\frac{1}{2}$$

b	$\left(-\frac{1}{2}\right)^{-}$	$-\frac{1}{2}$	$\left(-\frac{1}{2}\right)^+$
$\frac{dc}{db}$	-ve	0	+ve

By the First Derivative Test, c achieves a minimum when $b=-\frac{1}{2}$. Observe that when $b=-\frac{1}{2}$, we have $c=\frac{1}{a}\left(-\frac{1}{2}+\left(-\frac{1}{2}\right)^2\right)=-\frac{1}{4a}$. Thus, $c\geq -\frac{1}{4a}$ whatever the value of b.

Part (c)

Since the curve passes through (0,6), it is obvious to see that c=6. Furthermore, since the curve has a turning point at (2,2), we know that $\frac{b}{a}=2$ and $-\frac{b^2}{a}+c=2$.

$$-\frac{b^2}{a} + c = 2$$

$$\implies -\frac{b^2}{a} + 6 = 2$$

$$\implies -\frac{b^2}{a} = -4$$

$$\implies \frac{b^2}{a} = 4$$

$$\implies \frac{b}{a} \cdot b = 4$$

$$\implies 2 \cdot b = 4$$

$$\implies b = 2$$

$$\implies a = 1$$

$$a = 1, b = 2, c = 6$$

Problem 3.

The diagram below shows the graph of y = f(x). Sketch the graph of y = f'(x).

Solution

Problem 4.

The curve C has equation

$$x - y = (x + y)^2$$

It is given that C has only one turning point.

- (a) Show that $1 + \frac{dy}{dx} = \frac{2}{2x + 2y + 1}$.
- (b) Hence, or otherwise, show that $\frac{d^2y}{dx^2} = -\left(1 + \frac{dy}{dx}\right)^2$.
- (c) Hence, state, with a reason, whether the turning point is a maximum or a minimum.

Solution

Part (a)

Implicitly differentiating the given equation,

$$1 - \frac{dy}{dx} = 2(x+y)\left(1 + \frac{dy}{dx}\right)$$

$$\Rightarrow 1 - \frac{dy}{dx} = (2x+2y) + (2x+2y)\frac{dy}{dx}$$

$$\Rightarrow (2x+2y+1)\frac{dy}{dx} = 1 - (2x+2y)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1 - (2x+2y)}{2x+2y+1}$$

$$= \frac{1 - (2x+2y+1) + 1}{2x+2y+1}$$

$$= \frac{2}{2x+2y+1} - 1$$

$$\Rightarrow 1 + \frac{dy}{dx} = \frac{2}{2x+2y+1}$$
(4.1)

Part (b)

Implicitly differentiating Equation 4.1,

$$\begin{split} \frac{d^2y}{dx^2} &= -\frac{2}{(2x+2y+1)^2} \left(2 + 2\frac{dy}{dx}\right) \\ &= -\frac{2^2}{(2x+2y+1)^2} \left(1 + \frac{dy}{dx}\right) \\ &= -(\frac{2}{2x+2y+1})^2 \left(1 + \frac{dy}{dx}\right) \\ &= -\left(1 + \frac{dy}{dx}\right)^2 \left(1 + \frac{dy}{dx}\right) \\ &= -\left(1 + \frac{dy}{dx}\right)^3 \end{split}$$

Part (c)

For turning points, $\frac{dy}{dx} = 0$. Hence $\frac{d^2y}{dx^2} = -1(1+0)^2 = -1 < 0$. Thus, the turning point is a maximum.

The turning point is a maximum.