Automated Detector Calibration Routines

- LaBr₃:
 - simulation of ¹³⁸La decay
 - convolution with average detector resolution
 - 1 adjustment of gamma peaks (0.789 MeV and 1.436 MeV)
 - 2 fit of experimental data to simulation for calibration
 - exponential for low energy part
- S3 DSSSSDs:
 - calculation of alpha and proton scattering kinematics
 - 1 adjustment of highest energy peaks (S3F: $\alpha_{0/1}$, S3B: $p_{0/1}$, α_0)
 - projection of remaining transitions into spectrum
 - gating (one sigma) with average detector resolution
 - analysis of isolated/overlapping peaks
 - 2 fit of all single peaks for calibration

R010: Gamma Detector Calibration

R010: Particle Detector Calibration (S3F)

R010: Particle Detector Calibration (S3B)

Automated Analysis Routine

- data:
 - separately/coincident for gammas and particles
 - ROOT files with raw/calibrated data
 - ROOT scripts for display of data
 - ▶ R010: E_b = 5.07 MeV, E_{eff} = 5.02 MeV
 - \Rightarrow compare partial cross sections, angular distribution (α_0) to Becker *et al.*, Z. Phys. A **303**, 305-312 (1981)
- current status of automated analysis script:
 - routine based on several steps
 - identification of transitions with kinematics and average detector resolution
 - grouping according to (one sigma) overlaps
 - identification of flat contributions
 - fit of single/double/triple peaks
 - definition of error matrix for alphas and protons
 0:flat, ±1: good/bad single, ±1: good/bad double, ...
 - hit rate ≥ 90% expected
 - can develop further together towards framework

5/9

R010: Average Detector Resolution (S3F)

R010: Single Detector Analysis (S3F)

R010: Error Matrix Alphas (S3F)

det.	$lpha_{ t 0}$	$lpha_1$	$lpha_{2}$	$lpha_{3}$	α_4	α_5	α_{6}	α_7
0	1	1	1	0	0	1	-2	-1
1	1	1	1	0	0	1	-2	1
2	1	1	1	-2	-2	1	-2	-1
3	1	1	0	-2	-2	1	-2	0
4	1	1	1	-2	-2	-1	-2	0
5	1	1	1	-2	-1	-1	-2	-1
6	1	1	1	-2	-1	-1	-2	0
7	1	1	0	-2	-1	-1	-2	-1
8	1	1	1	-2	-1	-1	-2	0
9	1	1	1	-2	-1	-1	0	1
10	1	1	-1	-2	-1	-1	1	0
11	1	1	1	-2	1	-1	-1	-1
12	1	1	1	-3	-1	-1	0	0
13	0	1	1	-3	-1	-2	-1	-1
14	1	1	1	-3	-1	-2	1	1
15	1	1	1	-3	-1	-2	-1	0
16	1	1	0	-3	-1	-2	0	0
17	1	1	1	-3	-1	-2	0	-1
:	:	:	:	:	:	:	:	:

R010: Error Matrix Protons (S3F)

det.	p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}
0	-1	0	-1	1	-2	-2	-2	-1	-2	-2	-2
1	0	0	-1	-2	-2	-2	-2	-1	-2	-2	-2
2	0	-1	-1	-2	-2	-2	-2	-1	-2	-2	-2
3	0	0	-1	-2	-2	-2	-2	-1	-2	-2	0
4	0	0	-1	-2	-2	-2	-2	0	-2	-2	-2
5	0	0	0	-2	-2	-2	-1	1	-2	-2	-2
6	0	0	1	-2	-2	-2	-1	1	-2	-2	-2
7	-1	-1	1	-2	-2	-2	-1	0	-2	-2	0
8	-1	-1	0	-2	-2	-2	-1	0	-2	-2	-2
9	0	-1	1	-2	-2	-2	-1	-1	-2	-2	1
10	0	-1	1	-2	-2	-2	-1	-1	-2	-2	1
11	0	1	1	-2	-2	-2	0	-1	-2	-2	1
12	0	-1	0	-1	-3	-3	0	-1	-2	-2	0
13	0	1	1	-1	-3	-3	-1	-2	-2	-2	1
14	0	1	0	1	-3	-3	1	-2	-2	-2	1
15	0	1	1	1	-3	-3	1	-2	-2	-2	0
16	0	1	-1	1	-3	-3	1	-2	-2	-2	1
17	0	1	-1	1	-3	-3	1	-2	-2	-2	1
:	:	:	:	:	:	:	:	:	:	:	: