Subvariedades y Métricas Inducidas

Ejercicios

October 31, 2017

Recuerden que si M es una variedad riemanniana entonces un subconjunto $S \subset M$ es una subvariedad encajada si para todo $p \in S$ existe una carta (U, φ_U) de M tal que

$$\varphi_U(U \cap S) \subset V \times \{0\} \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$$

Recuerden también que esto le daba una estructura de variedad a S usando las restricciones de φ_U a S (y proyectando a las primeras k-coordenadas) para conformar un atlas.

Ahora estudiaremos el caso cuando (M, g^M) es una variedad riemanniana. En todo lo que sigue, S es una subvariedad encajada de M y g^M es una métrica

Ejercicio 0.1. Demuestra que la función $i: S \to M$ dada por i(p) = p es diferenciable. Aquí nos referimos a diferenciable cuando a S se le da la estructura de variedad previamente descrita.

Ejercicio 0.2. Para cada $p \in S$ define la función $i_p : T_pS \to T_pM$ por

$$i_p([\alpha]) = [i \circ \alpha]$$

Demuestra que i_p está bien definida y es una transformación lineal inyectiva. Traduce i_p a la versión de derivaciones.

El ejercicio anterior muestra que podemos pensar a los vectores de T_pS como vectores en T_pM . Luego si tenemos un par de vectores en T_pS podemos calcular su producto punto usando la métrica g^{M} .

Definicion 0.1. La métrica inducida en S está dada por

$$g_p^S(v, w) = g_p^M(i(v), i(w))$$

para todo $p \in S$, $v, w \in T_pS$.

Ejercicio 0.3. Demuestra que g_p^S es una métrica riemanniana en S.

Ejercicio 0.4. Demuestra que para todo $p \in S$ existe una descomposición

$$T_pM = iT_pS \oplus N_p$$

de tal forma que $g_p^M(v,w)=0$ para todo $v\in iT_pS$ y $w\in N_p$. Luego todo vector $v\in T_pM$ se pude descomponer de manera única como $v=v^T+v^N$ donde $v^T\in iT_pS$, $v^N\in N_p$ y

$$g^M(v^T, v^N) = 0$$

(La notación v^T y v^N hacen referencia a que son las componentes tangentes y $normales \ a \ S \ de \ v$).

Ejercicio 0.5. Define una transformación lineal $P_p: T_pM \to T_pS$ tal que $i_p(P_p(v)) = v^T$. Demuestra que $Nuc(P_p) = N_p$ y que si $v, w \in iT_pS$ entonces

$$g^{M}(v, w) = g^{N}(P_{p}(v), P_{p}(w)) \tag{1}$$

De ahora en adelante evitaremos los subíndices P_p e i_p puesto que suele estar claro en el contexto el punto de referencia. Notemos que la P definida anteriormente se puede interpretar como la proyección ortogonal de los vectores en T_pM en los vectores de T_pS .

Ejercicio 0.6. Sean $X,Y\in\mathfrak{X}(S)$ y $\tilde{X},\tilde{Y}\in\mathfrak{X}(S)$ tales que $\tilde{X}\big|_S=iX$ y $\tilde{Y}\big|_S=iY$. Demuestra que es posible calcular los corchetes de Lie en S como

$$[X,Y] = P([\tilde{X},\tilde{Y}])$$

Sea ∇ cualquier conexión en M. Podemos definir la conexión inducida en S de la siguiente manera

Definicion 0.2. La conexión inducida en S está dada por

$$\nabla_X^S Y = P(\nabla_{\tilde{X}} \tilde{Y})$$

donde \tilde{X} y \tilde{Y} son cualesquiera campos en M tales que $\tilde{X}|_{S} = iX$ y $\tilde{Y}|_{S} = iY$.

Ejercicio 0.7. Demuestra que ∇^S es una conexión en S.

Ejercicio 0.8. Demuestra que si ∇ es una conexión libre de torsión en M entonces ∇^S es libre de torsión.

Ejercicio 0.9. Demuestra que si ∇ es una conexión en M compatible con la métrica entonces ∇^S es compatible con la métrica inducida g^s .

Ejercicio 0.10. Usando los últimos resultados calcula la conexión en $\mathbb{S}^n \subset \mathbb{R}^{n+1}$.