To soit $f,g: U \rightarrow \mathbb{R}^f$, $a \in U \subset \mathbb{R}^m$.

No f et g st différentiables en aalors f+g est différentiable en a. $\mathcal{P}(D(f+g))(a) = (Df)(a) + (Dg)(a)$

Duc \mathbb{R}^{m} (ouved), $a \in U$, $f: U \to \mathbb{R}^{p}$.

feat differentiable en a si \exists mat $A \in M$ (pon, \mathbb{R}) to $\lim_{x \to a} \frac{\|f(x) - f(a) - A(n-a)\|}{\|x-a\|} = 0$

· lim || f(a+h) - f(a) - A. h || = 0 h→0 || 1 x ||

• in f est différentiable en a, on dit que mot A est la différentielle de 8 en A, on note A = (Df)(a)

· lim | | f(a+h) - g(a) - (Df(a) . h | = 0

En souhaite montrer que $\lim_{h\to 0} \frac{|(f+g)(a+h) - (f+g)(a) - (f+g)(a)}{\|f\|\|} = 0$

• $\lim_{h\to 0} \frac{\|(f+g)(a+h) - (f+g)(a) - (D(f+g))(a), h\|}{\|h\|} = L$ L= || f(a+h) + g(a+h) - f(a) - g(a) - (Df)(a), h - (Dg)(a), h ||
h>0

|| h|| $L = \lim_{h \to 0} \frac{\|f(a+h) - f(a) - (Df)(a) \cdot h + g(a+h) - g(a) - (Dg)(a) \cdot h \|}{\|h\|}$ Donc par le théorème des gondaimes, lim 1/f(a+h)-f(a)-(Df)(a).h+g(a+h)-g(a)-(Dg)(a).h|

N→0

1/4.11 clinsi on a bien montré que j+ g est différentiable en a.