Autonomous Drone Navigation - A Delivery System

A P Vaideeswaran Tejadhith Sankar

Course Presentation under Dr. Mathukumalli Vidyasagar

25 November 2024

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩♡

Problem Setup

- A drone has to deliver a parcel from the warehouse to the customer.
- There are fixed obstacles (buildings, dead-ends, and the layout boundary wall) at fixed locations.
- Find a policy that the drone can follow, given various simulation scenarios.

• Model the interaction between the agent (Drone) and its environment by a Markov Decision Process (MDP).

- Model the interaction between the agent (Drone) and its environment by a Markov Decision Process (MDP).
- The agent is characterized by its state.
- The states can either be discrete or continuous.

- Model the interaction between the agent (Drone) and its environment by a Markov Decision Process (MDP).
- The agent is characterized by its state.
- The states can either be discrete or continuous.
- We consider **both** the possibilities
 - Discrete:
 - View the entire city as a grid
 - Each grid point is a state
 - Possible actions: stay, left, right, up, or down

- Model the interaction between the agent (Drone) and its environment by a Markov Decision Process (MDP).
- The agent is characterized by its state.
- The states can either be discrete or continuous.
- We consider **both** the possibilities
 - Discrete:
 - View the entire city as a grid
 - Each grid point is a state
 - Possible actions: stay, left, right, up, or down

Continuous:

- The agent need not occupy any particular grid point.
- It can lie between grid points and have velocities in two directions.
- Here, the speed limit is 5 m/s in either direction with 0 initial velocity.
- Possible actions: Stay or accelerate (in 2D).
- The acceleration is limited to 2 m/ s^2 component-wise with a time-step of 0.5 s.

(IIT Hyderabad) 25 November 2024 3 / 14

Reward Mechanism Deterministic

• In general, the rewards can either be probabilistic or deterministic.

Reward Mechanism Deterministic

- In general, the rewards can either be probabilistic or deterministic.
- Here, too, we consider both the scenarios:
- Deterministic:
 - Moving closer to the target \Rightarrow small +ve reward
 - Moving away from target ⇒ small -ve reward
 - Sometimes back-tracking is essential ⇒ do not penalize heavily!

Reward Mechanism Deterministic

- In general, the rewards can either be probabilistic or deterministic.
- Here, too, we consider both the scenarios:
- Deterministic:
 - Moving closer to the target ⇒ small +ve reward
 - Moving away from target ⇒ small -ve reward
 - Sometimes back-tracking is essential ⇒ do not penalize heavily!
 - Hitting an obstacle (denoted by '#' in the simulation) ⇒ highly -ve reward
 - Reaching the target (denoted by 'T') ⇒ highly +ve reward
 - In this case, staying is not an action.

• Probabilistic:

- Most of the reward system is *similar* to the previous case.
- For Discrete MDP:
 - Each wind velocity component is a random number sampled from a Distribution (here U[-1, 1]).
 - This random number is added to the reward for motion towards/away from the target.
 - A particular direction might be relatively encouraged/ discouraged.

• Probabilistic:

- Most of the reward system is *similar* to the previous case.
- For Discrete MDP:
 - Each wind velocity component is a random number sampled from a Distribution (here U[-1, 1]).
 - This random number is added to the reward for motion towards/away from the target.
 - A particular direction might be relatively encouraged/ discouraged.
- For Continuous MDP:
 - Each wind acceleration component is a random number sampled from a Distribution (here $\mathcal{U}[-1, 1]$).

Probabilistic:

- Most of the reward system is *similar* to the previous case.
- For Discrete MDP:
 - Each wind velocity component is a random number sampled from a Distribution (here U[-1, 1]).
 - This random number is added to the reward for motion towards/away from the target.
 - A particular direction might be relatively encouraged/ discouraged.

For Continuous MDP:

- Each wind acceleration component is a random number sampled from a Distribution (here $\mathcal{U}[-1, 1]$).
- In this case, "stay" is an action.
- Depending on the wind, move in a particular direction later if need be.
- A small negative reward is set.
- In general, "staying" is inefficient. However, it *might* be required.

(IIT Hyderabad) 25 November 2024 5 / 14

Probabilistic:

- Most of the reward system is *similar* to the previous case.
- For Discrete MDP:
 - Each wind velocity component is a random number sampled from a Distribution (here U[-1, 1]).
 - This random number is added to the reward for motion towards/away from the target.
 - A particular direction might be relatively encouraged/ discouraged.

For Continuous MDP:

- Each wind acceleration component is a random number sampled from a Distribution (here $\mathcal{U}[-1, 1]$).
- In this case, "stay" is an action.
- Depending on the wind, move in a particular direction later if need be.
- A small negative reward is set.
- In general, "staying" is inefficient. However, it might be required.
- Presence of wind \Leftrightarrow moving obstacles (minor collision/ push).

(IIT Hyderabad) 25 November 2024 5 / 14

- Generate layouts randomly given the drone and target locations and an obstacle density parameter.
 - Drone and target location must not coincide
 - Neither location must correspond to and beyond the boundary walls.

- Generate layouts randomly given the drone and target locations and an obstacle density parameter.
 - Drone and target location must not coincide
- Neither location must correspond to and beyond the boundary walls.
- Employ Depth First Search (DFS) to check layout solvability.
 - Meaningless to compare the performance of learning algorithms when the agent can never reach the target.

- Generate layouts randomly given the drone and target locations and an obstacle density parameter.
 - Drone and target location must not coincide
 - Neither location must correspond to and beyond the boundary walls.
- Employ Depth First Search (DFS) to check layout solvability.
 - Meaningless to compare the performance of learning algorithms when the agent can never reach the target.
- Overall, we perform four simulation types:
 - Discrete MDP with Deterministic Reward
 - Discrete MDP with Probabilistic Reward
 - Continuous MDP with Deterministic Reward
 - Continuous MDP with Probabilistic Reward

- Generate layouts randomly given the drone and target locations and an obstacle density parameter.
 - Drone and target location must not coincide
 - Neither location must correspond to and beyond the boundary walls.
- Employ Depth First Search (DFS) to check layout solvability.
 - Meaningless to compare the performance of learning algorithms when the agent can never reach the target.
- Overall, we perform four simulation types:
 - Discrete MDP with Deterministic Reward
 - Discrete MDP with Probabilistic Reward
 - Continuous MDP with Deterministic Reward
 - Continuous MDP with Probabilistic Reward
- In the Discrete MDP with Deterministic Reward case, we study the effect of "greedy" decision-making

Reward System Specifics

Action	Reward
completion	100000
hit obstacle	-100000
reduce distance	10
increase distance	-5
stay	-1

Table: Rewards for Different Actions

How are we assessing Learning Algorithms?

- The layout size is varied from 5×5 to 8×8 in steps of 1 (4 sizes).
- The obstacle density is varied from 0 to 0.4 in steps of 0.1 (5 cases).

How are we assessing Learning Algorithms?

- The layout size is varied from 5×5 to 8×8 in steps of 1 (4 sizes).
- The obstacle density is varied from 0 to 0.4 in steps of 0.1 (5 cases).
- 20 simulation scenarios common to each **simulation type** and **learning algorithm**.
- To assess the performance corresponding to each scenario:
 - The first case with the greatest obstacle density given a particular size is used for learning.
 - The remaining $50 + (51 \times 3)$ cases are for policy assessment.
 - The average number of steps required is reported across the corresponding 50 cases.
 - Averaging reduces the effects of one-off poor/ excellent performances.

How are we assessing Learning Algorithms?

- The layout size is varied from 5×5 to 8×8 in steps of 1 (4 sizes).
- The obstacle density is varied from 0 to 0.4 in steps of 0.1 (5 cases).
- 20 simulation scenarios common to each **simulation type** and **learning algorithm**.
- To assess the performance corresponding to each scenario:
 - The first case with the greatest obstacle density given a particular size is used for learning.
 - The remaining $50 + (51 \times 3)$ cases are for policy assessment.
 - The average number of steps required is reported across the corresponding 50 cases.
 - Averaging reduces the effects of one-off poor/ excellent performances.
- 4 learning algorithms are considered:
 - Proximal Policy Optimization (PPO) [both MDP types]
 - Deep-Q Network (DQN) [discrete MDP]
 - Advantage Actor-Critic (A2C) [both MDP types]

(IIT Hyderabad) 25 November 2024 8 / 14

Coding Framework

- The gymnasium framework was used for all the simulations.
- All the learning algorithms are provided by the Stable-Baselines3 framework.
- Simulation Link

Effect of Greedy Decision Making

• Studied only for the first simulation type.

Effect of Greedy Decision Making

- Studied only for the first simulation type.
- The discount factor (γ) is set to 0.
- When present in state X_i , decide X_{i+1} by the prospective reward.
- If the prospective reward is the same for multiple states, choose one randomly.

Effect of Greedy Decision Making

- Studied only for the first simulation type.
- The discount factor (γ) is set to 0.
- When present in state X_i , decide X_{i+1} by the prospective reward.
- If the prospective reward is the same for multiple states, choose one randomly.
- Advantage: A simple model which solves the grid "quickly."
- Disadvantage: Sometimes, the location of the agent keeps oscillating
 - Not able to leave an "obstacle zone"
 - Requires significant backtracking!
 - Foresight helps to prevent such cases
 - In the presence of randomness like wind, foresight is indispensable.

(IIT Hyderabad) 25 November 2024 10 / 14

Remarks

• The detailed simulation results can be viewed: link

Remarks

- The detailed simulation results can be viewed: link
- Similar parameters are chosen for all the environments.
- Algorithms might perform better, given algorithm-specific tuning.

Remarks

- The detailed simulation results can be viewed: link
- Similar parameters are chosen for all the environments.
- Algorithms might perform better, given algorithm-specific tuning.
- Goal of the simulation: Given a level-playing field, which algorithm does the best?
- Only the observations and insights are presented for the sake of brevity.

Observations and Insights

Discrete MDP with Deterministic Reward:

- As the size and/or density increase, the number of required iterations increases.
- **Performance Order:** Greedy > PPO > DQN > A2C.
- The poor performance of A2C might be due to:
 - Poor exploration
 - Potential training instabilities
- PPO might be performing very well due to:
 - Sound Exploration
 - comparable stability to trust-region methods
- DQN has an intermediate performance.

Observations and Insights

- Discrete MDP with Probabilistic Reward:
 - Similar set of observations
 - Higher environmental complexity, higher required iterations.
 - Performance Order: PPO > DQN > A2C
 - DQN performance falls dramatically.

Observations and Insights

• Discrete MDP with Probabilistic Reward:

- Similar set of observations
- Higher environmental complexity, higher required iterations.
- Performance Order: PPO > DQN > A2C
- DQN performance falls dramatically.

Continuous MDP - Both Reward Mechanisms

- The required iterations are comparable across both reward mechanisms.
- Performance Order PPO > A2C \geq SAC.
- Thoughts behind the poor performances of PPO and A2C:
 - Deterministic rewards result in poorer exploration and sub-optimal policies.
 - The reward stochasticity seriously impedes convergence (probabilistic case).
 - The time steps for training were less (4000 19000).
 - More complex algorithms might require more time to learn.

(IIT Hyderabad) 25 November 2024 13 / 14

Acknowledgments

We would like to thank Dr. Vidyasagar for providing us with this valuable opportunity to experiment with various RL algorithms, get practical insights, and learn an RL Framework.