REPRESENTACIÓN DE NÚMEROS RACIONALES

DEPARTAMENTO DE COMPUTACIÓN UNRC 2016

ORGANIZACIÓN DEL PROCESADOR

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

REPRESENTACIÓN DE NÚMEROS RACIONALES

٤ 6,82 ?

ORGANIZACIÓN DEL PROCESADOR REPRESENTACIÓN DE NÚMEROS RACIONALES

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

٤ 6,82 ?

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

REPRESENTACIÓN DE NÚMEROS RACIONALES

0+4+2+0+0.5+0.25+0+0.625

٤ 6,82 ?

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

0+4+2+0+0.5+0.25+0+0.625

 $_{\mbox{\scriptsize `}6,82}$? \simeq 6,8125

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES

Necesitamos muchos bits para lograr tener una representación relativamente aceptable

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE

EXPONENTE

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

exponente = exponente real +7

El exponente representado se calcula sumando al exponente el valor que representa el bit más significativo del tamaño destinado al exponente -1 (IEEE estandar)

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

$$\boxed{1} \boxed{0} \boxed{0} \boxed{0} = 1 + 7$$

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

$$\boxed{0} \boxed{1} \boxed{1} \boxed{1} = 0 + 7$$

- decremento

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

$$\boxed{1} \boxed{0} \boxed{1} \boxed{0} = 3 + 7$$

+ Incremento -->

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - POLARIZACIÓN

$$\boxed{1} \boxed{0} \boxed{1} \boxed{1} = 4 + 7$$
EXPONENTE

+ Incremento -->

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - NORMALIZACIÓN

REPRESENTACIÓN DE NÚMEROS RACIONALES
PUNTO FLOTANTE - NORMALIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - NORMALIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - NORMALIZACIÓN

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - NORMALIZACIÓN

Forma Normalizada: se shiftea (decrementando el exponente) el número hasta lograr que el primer bit sea un 1.

Ventaja: Como asumimos que está en forma normal, el primer 1 es implícito (ganando un bit más de representación en la mantisa)

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - NORMALIZACIÓN

Forma Normalizada: se shiftea (decrementando el exponente) el número hasta lograr que el primer bit sea un 1.

Ventaja: Como asumimos que está en forma normal, el primer 1 es implícito (ganando un bit más de representación en la mantisa)

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - SUMA

$$3,50 + 0,75 = 4,25$$

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - SUMA

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - SUMA

$$3,50 + 0,75 = 4,25$$

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - SUMA/RESTA

Algoritmo de Suma/Resta:

- 1) Elegir el operando con **menor exponente**, *shiftear* la mantisa hacia la derecha incrementando el exponente hasta que éste **coincida** con el del otro operando.
- 2) Operar con las mantisas como la **suma/resta** de enteros.
- 3) Modificar el **signo** si fuese necesario.
- 4) Normalizar si fuese necesario.

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - MULTIPLICACIÓN

Algoritmo de Multiplicación:

- 1) **Sumar** los exponentes, restando una vez la polaridad para mantenerla. (Ejemplo IEEE Single -127)
- 2) Multiplicar las mantisas
- 3) Modificar el signo si fuese necesario
- 4) Normalizar si fuese necesario

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - DIVISIÓN

Algoritmo de División:

- 1) **Restar** los exponentes, sumando una vez la polaridad para mantenerla. (Ejemplo IEEE Single -127)
- 2) Dividir las mantisas
- 3) Modificar el signo si fuese necesario
- 4) Normalizar si fuese necesario

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE NÚMEROS RACIONALES PUNTO FLOTANTE - ESTÁNDARES

Estandares (IEEE 1985)

Single: 32bits

- 1 bit Signo
- 8 bits Exponente.
- 23 bits Mantisa

Double: 64bits

- 1 bit Signo
- 11 bits Exponente.
- 52 bits Mantisa

REPRESENTACIÓN DE CARACTERES

ABC

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE CARACTERES

ASCII (American Standard Code for Information Interchange) en 1967.

Fue sucesor de los códigos Baudot (telegrafía 5bits) y el código Murray (desarrollado para las máquinas de escribir "typewriter").

- 32 caracteres de control
- 10 dígitos
- 52 letras (mayúsculas y minúsculas)
- 32 caracteres especiales
- 1 espacio

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE CARACTERES

ASCII 7 bits

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	100	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE CARACTERES

ASCII 7 bits

Decimal	Llav	Char	Dooimal	Have	Char	Dooimal	Have	Char	Docimal	Have	Char
Decimal			Decimal			Decimal					Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	•
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	T.
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	, ∦ €	₽¦8bi	+8 ?	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	, 3¥ C	i ODI	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	IDEVICE CONTROL 31	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Χ	120	78	х
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	IFILE SEPARATOR1	60	3C	<	92	5C	Ñ	124	7C	ř.
29	1D	IGROUP SEPARATOR1	61	3D	=	93	5D	1	125	7D	3
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	IUNIT SEPARATOR1	63	3F	?	95	5F		127	7F	[DEL]
		20 02			-						1000

REPRESENTACIÓN DE CARACTERES ASCII

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE CARACTERES ASCII

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE CARACTERES ASCII

ORGANIZACIÓN DEL PROCESADOR

REPRESENTACIÓN DE CARACTERES ASCII EXTENDIDO

ASCII Extendido en 1980.

Debido a la masificación de las computadoras se comenzó a utilizar el último bit para poder representar una mayor cantidad de símbolos: \tilde{n} \tilde{N} C etc.

256 Símbolos (compatibles con ASCII)

REPRESENTACIÓN DE CARACTERES UNICODE

- Unicode fue presentado en 1991
- utiliza 16 bits
- permite codificar todos los símbolos de mundo
- provee un mecanismo de extensión que permite codificar millones de caracteres
- es compatible con ASCII