Práctica 5 Árboles de decisión

Mario Emilio Jiménez Vizcaíno A01173359@itesm.mx Tecnológico de Monterrey Ingeniería en Tecnologías Computacionales Monterrey, N.L., México

ABSTRACT

TODO

1 INTRODUCCIÓN TODO

2 CONCEPTOS PREVIOS

- Programación básica en los lenguajes R y Python
- Conocimiento de las librerías scikit-learn, pandas y numpy
- TODO

3 METODOLOGÍA

3.1 Dataset Iris

3.2 Dataset Wine TODO

3.3 Dataset Breast Cancer TODO

3.4 Modelo de árbol de decisión TODO

El código que ejecutamos para realizar el análisis del dataset se encuentra en el apéndice A.

4 RESULTADOS

TODO

4.1 Dataset Iris

TODO

Jesus Abraham Haros Madrid A01252642@itesm.mx Tecnológico de Monterrey Ingeniería en Tecnologías Computacionales Monterrey, N.L., México

Figure 1: Modelo de árbol de decisión generado para el dataset Iris

4.2 Dataset Wine TODO

4.3 Dataset Breast Cancer TODO

5 CONCLUSIONES Y REFLEXIONES TODO

5.1 Refrexión de Abraham TODO

5.2 Reflexión de Mario TODO

REFERENCES

A CÓDIGO PARA LA GENERACIÓN DEL ÁRBOL DE DECISIÓN

```
import os
3
  from graphviz import Source
  import numpy as np
5 import matplotlib as mpl
6 import matplotlib.pyplot as plt
7 from sklearn.datasets import load iris
8 from sklearn.model_selection import train_test_split
  from sklearn.tree import DecisionTreeClassifier, export_graphviz
10
  mpl.rc('axes', labelsize=14)
11
12 mpl.rc('xtick', labelsize=12)
13 mpl.rc('ytick', labelsize=12)
14
15 # Setup folders
16 PROJECT_ROOT_DIR = "."
17 CHAPTER_ID = "decision_trees"
18 IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
19 os.makedirs(IMAGES_PATH, exist_ok=True)
20
21
  def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
22
      path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
23
      print("Saving figure", fig_id)
24
25
      if tight_layout:
          plt.tight layout()
26
      plt.savefig(path, format=fig_extension, dpi=resolution)
27
28
29
30 # Load and split Iris dataset
31|iris = load_iris()
32 xTrain, xTest, yTrain, yTest = train_test_split(
      iris.data, iris.target, random_state=0)
33
34
35 # Create and train the decision tree model
36 tree_clf = DecisionTreeClassifier(random_state=0)
  tree_clf.fit(xTrain, yTrain)
37
38
39
  # Export an image of the tree
  dot_src = export_graphviz(tree_clf, feature_names=iris.feature_names,
40
                             class_names=iris.target_names, rounded=True,
41
                             filled=True)
42
43 image_filename = os.path.join(IMAGES_PATH, "iris_tree")
44|Source(dot_src).render(image_filename, format="png", cleanup=True)
46 # Test the decision tree
47 accuracy = tree_clf.score(xTest, yTest)
48 print("Accuracy:", accuracy)
```