Physics through Computational Thinking

Euler's Method

Auditya Sharma and Ambar Jain

Dept. of Physics, IISER Bhopal

Outline

In this video you will

learn about Euler's Method of solving an ordinary differential method and learn to implement it on the computer.

Euler's Method

- It's not possible to solve all problems involving differential equations analytically. So we will learn to solve the initial value problems numerically through *Euler's method*, one of the first and simplest methods of this variety.
- Let's say your differential equation is given by

$$\dot{x}(t) = f(x, t) \tag{1}$$

• Differentially, you can write this equation as (which is the inspiration of the Euler's method)

$$dx = f(x, t) dt (2)$$

- We are interested in finding the solution of this equation between times t_i and t_f .
- In order to solve it numerically we will discretize the time into a grid N intervals and N+1 time instants. $t_i = t_0$ being initial time and $t_f = t_N$ being the final time.

$$t_0, t_1, t_2, ..., t_N$$
 (3)

• Step size *h* is defined as,

$$h \equiv \Delta t = t_n - t_{n-1} = \left(t_f - t_i\right) / N \tag{4}$$

• According to Euler's method

$$x_0 = x_i x_{n+1} = x_n + h f(x_n, t_n)$$
 (5)

• This successively determines all the x_n .

For Loop

• We will use the For loop to implement Euler's method in Mathematica. For loop has the following structure

For[intialization, condition, increment, body]

(6)

- This means execute the body of the For loop starting from *initialization* until the *condition* holds to be true, executing the *increment* after executing the body.
- Here is an example of **For** loop to produce a list of squares.

```
array1 = {};
For [n = 1, n \le 10, n++, AppendTo[array1, n^2]]
array1
\{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}
```

• As you are familiar, same can also be accomplished with **Table**

```
array2 = Table[n^2, \{n, 1, 10\}]
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
```

• Typically Table is faster and more efficient than For. We should use For only as a last resort. In implementation of Euler method, Table won't quite work as we need to depend upon previous iteration for the current one.