FMI, Info, Anul I

Logică matematică și computațională

Seminar 13

(S13.1) Să se axiomatizeze următoarele clase de mulțimi:

- (i) mulțimile care au între 3 și 5 elemente;
- (ii) mulțimile nevide care au mai puțin de 7 elemente;
- (iii) multimile care au între 20 și 300 elemente;
- (iv) mulțimile care au cel puțin 10 elemente.

Demonstrație: Lucrăm în $\mathcal{L}_{=}$, deoarece $\mathcal{L}_{=}$ -structurile sunt mulțimile nevide.

(i) Considerăm enunțul

$$\varphi := \exists^{-3} \lor \exists^{-4} \lor \exists^{-5}.$$

Atunci $\mathcal{K} = Mod(\varphi)$.

- (ii) $\mathcal{K} = Mod(\exists^{\leq 6})$.
- (iii) Considerăm enunțul

$$\psi := \exists^{\geq 20} \land \exists^{\leq 300}.$$

Atunci $\mathcal{K} = Mod(\psi)$.

(iv) $\mathcal{K} = Mod(\exists^{\geq 10})$.

(S13.2) Să se axiomatizeze următoarele clase de grafuri:

- (i) grafurile complete;
- (ii) grafurile cu proprietatea că orice vârf are exact o muchie incidentă;
- (iii) grafurile infinite;

(iv) grafurile care au cel puțin un ciclu de lungime 3.

Demonstrație: Se ia $\mathcal{L}_{Graf} = (\dot{E})$. Fie $\Gamma := \{(IREFL), (SIM)\}$. Clasa grafurilor este axiomatizată de Γ .

(i) Fie \mathcal{K}_1 clasa grafurilor complete. Considerăm enunțul

$$\varphi_1 := \forall x \forall y (\neg (x = y) \to \dot{E}(x, y)).$$

Atunci $\mathcal{K}_1 = Mod(\Gamma \cup \{\varphi_1\}) = Mod((IREFL), (SIM), \varphi_1).$

(ii) Fie \mathcal{K}_2 clasa grafurilor care au proprietatea că orice vârf are exact o muchie incidentă. Considerăm enunțul

$$\varphi_2 := \forall x \exists y \dot{E}(x, y) \land \forall x \forall y \forall z (\dot{E}(x, y) \land \dot{E}(x, z) \to y = z).$$

Atunci $\mathcal{K}_2 = Mod(\Gamma \cup \{\varphi_2\}) = Mod((IREFL), (SIM), \varphi_2).$

(iii) Fie \mathcal{K}_3 clasa grafurilor infinite. Considerăm mulțimea de enunțuri

$$\Delta := \{ \exists^{\geq n} \mid n \geq 1 \}.$$

Avem $\mathcal{K}_3 = Mod(\Gamma \cup \Delta)$.

(iv) Fie \mathcal{K}_4 clasa grafurilor care au cel puțin un ciclu de lungime 3. Considerăm enunțul

$$\psi := \exists v_1 \exists v_2 \exists v_3 \left(\dot{E}(v_1, v_2) \wedge \dot{E}(v_2, v_3) \wedge \dot{E}(v_3, v_1) \right).$$

Atunci $\mathcal{K}_4 = Mod(\Gamma \cup \{\psi\}) = Mod((IREFL), (SIM), \psi).$

(S13.3) Să se axiomatizeze:

- (i) clasa mulţimilor strict ordonate care au un element minimal;
- (ii) clasa mulțimilor strict ordonate care au un element maximal;
- (iii) clasa mulțimilor strict ordonate cu proprietatea că orice element are un unic succesor.

Demonstrație: Folosim notațiile din curs. Se ia $\mathcal{L}_{\dot{<}} = (\dot{<})$.

(i)
$$\mathcal{K} = Mod(Th((IREFL), (TRANZ), (MINIMAL)))$$
, unde
$$(MINIMAL) : \exists x \forall y \neg (y \dot{<} x)$$

(ii)
$$\mathcal{K} = Mod(Th((IREFL), (TRANZ), (MAXIMAL)))$$
, unde
$$(MAXIMAL) : \exists x \forall y \neg (x \dot{<} y)$$

(iii)
$$\mathcal{K} = Mod(Th((IREFL), (TRANZ), (SUCC)))$$
, unde
$$(SUCC): \forall x \exists y (x \dot{<} y \land \forall z (x \dot{<} z \rightarrow (z = y \lor y \dot{<} z)))$$

Definiția 1. O \mathcal{L} -teorie T se numește completă dacă pentru orice enunț φ , avem că $\varphi \in T$ sau $\neg \varphi \in T$.

(S13.4) Pentru orice \mathcal{L} -structură \mathcal{A} , definim

$$Th(\mathcal{A}) := \{ \varphi \mid \varphi \text{ este enunţ şi } \mathcal{A} \vDash \varphi \}.$$

Demonstrați că Th(A) este o teorie completă.

Demonstrație: Demonstrăm mai întâi că Th(A) este o teorie. Fie φ un enunț a.î. $Th(A) \models \varphi$. Deoarece, evident, A este un model al Th(A), rezultă că $A \models \varphi$. Prin urmare, $\varphi \in Th(A)$. Aşadar, Th(A) este o teorie.

Demonstrăm în continuare că Th(A) este completă. Fie φ un enunț arbitrar. Avem două cazuri:

- $\mathcal{A} \vDash \varphi$. Rezultă că $\varphi \in Th(\mathcal{A})$.
- $\mathcal{A} \not\models \varphi$. Atunci $\mathcal{A} \models \neg \varphi$, prin urmare $\neg \varphi \in Th(\mathcal{A})$.

(S13.5) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de relație de aritate 2, notat cu $\dot{<}$. Fie Γ o mulțime de enunțuri ce conține axiomele de ordine strictă, totală și ce admite măcar un model infinit. Să se arate că există un model \mathcal{A} pentru Γ în care, mai mult, $(\mathbb{Q}, <)$ se scufundă, i.e. există $f: \mathbb{Q} \to A$ (necesar injectivă) cu proprietatea că pentru orice $q, r \in \mathbb{Q}, q < r$ dacă și numai dacă $f(q) \dot{<}^{\mathcal{A}} f(r)$.

Demonstrație: Notăm cu \mathcal{L}' limbajul ce extinde \mathcal{L} prin adăugarea unei familii de con-

stante $\{c_q\}_{q\in\mathbb{Q}}$, câte una corespunzătoare fiecărui număr rațional. Mai departe, notăm cu Γ' mulțimea Γ la care adăugăm toate enunțurile de forma $c_q \dot{<} c_r$, cu q < r. Fie \mathcal{B} un model infinit pentru Γ .

Arătăm că orice submulţime finită a lui Γ' este satisfiabilă, deci Γ' este satisfiabilă (din Teorema de compacitate). Fie Δ o submulţime finită a lui Γ' . Există $n \in \mathbb{N}$ şi $q_1, \ldots, q_n \in \mathbb{Q}$ astfel încât doar constantele c_{q_1}, \ldots, c_{q_n} apar în Δ . Fără a restrânge generalitatea, considerăm $q_1 < \ldots < q_n$. Structura \mathcal{B} fiind infinită, admite o secvenţă $b_1 \dot{<}^{\mathcal{B}} \ldots \dot{<}^{\mathcal{B}} b_n$. Construim o \mathcal{L}' -extensie \mathcal{B}_{Δ} a lui \mathcal{B} în felul următor: pentru orice $i \in \{1, \ldots, n\}$, punem $c_{q_i}^{\mathcal{B}} := b_i$, iar pentru orice $q \notin \{q_1, \ldots, q_n\}$, punem $c_q^{\mathcal{B}} := b_1$ (o valoare arbitrară). Atunci \mathcal{B}_{Δ} va fi model pentru Δ .

Fie \mathcal{C} un model pentru Γ' . Notăm cu \mathcal{A} \mathcal{L} -redusa lui \mathcal{C} . Atunci \mathcal{A} este modelul căutat pentru Γ – scufundarea f va fi dată de formula:

$$f(q) := c_q^{\mathcal{C}},$$

pentru orice $q \in \mathbb{Q}$.