CS243: Introduction to Algorithmic Game Theory

Week 1.1, Introduction (Dengji ZHAO)

SIST, ShanghaiTech University, China

What is Game Theory

 Game theory is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers [von Neumann and Morgenstern 1944].

- Extensive form: Go, poker
- Normal form: rock-paper-scissors
- Cooperative game: coordination games

What is Game Theory

 Game theory is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers [von Neumann and Morgenstern 1944].

	Participants		Game	Outcome
Game Theory		\Rightarrow		\Rightarrow
Mechanism Design		\Rightarrow	?	$\Rightarrow \bigcirc$

Mechanism Design (Reverse Game Theory)

Mechanism Design is to answer...

Question

How to design a mechanism/game, toward desired objectives, in strategic settings?

- Roger B. Myerson (born March 29, 1951, University of Chicago, US)
 - Nobel Prize for economics (2007), for "having laid the foundations of mechanism design theory."
 - Eleven game-theorists have won the economics Nobel Prize.

When Game Theory Meets CS?

 Algorithmic Game Theory is an area in the intersection of game theory and algorithm design, whose objective is to design algorithms in strategic environments [Nisan et al. 2007].

- Computing in Games: algorithms for computing equilibria
- Algorithmic Mechanism Design: design games that have both good game-theoretical and algorithmic properties
- ...

When Game Theory Meets CS?

 Algorithmic Game Theory is an area in the intersection of game theory and algorithm design, whose objective is to design algorithms in strategic environments [Nisan et al. 2007].

It is multidisciplinary:

- \bullet Artificial Intelligence \to Multi-agent Systems \to Algorithmic Game Theory
- Economics
- Theoretical Computer Science

Algorithmic Game Theory in Artificial Intelligence

- Algorithmic Game Theory research in AI (multi-agent systems):
 - Game Playing: computation challenge, AlphaGo, poker
 - Social Choice: preferences aggregation, voting, prediction
 - Mechanism Design: the allocation of scarce resources (security games), Ad auctions, online auctions, false-name-proof mechanisms (Makoto Yokoo)
- IJCAI Computers and Thought Award: 5 out of the 12 winners (1999-2017) had worked on AGT, Nick Jennings (1999), Tuomas Sandholm (2003), Peter Stone (2007), Vice Conitzer (2011), Ariel Procaccia (2015).

Outline

- Game Play
- 2 Game Design
- Objective of CS243

Game Play

Let's playing games...

Rock Paper Scissors

Prisoners' Dilemma

- Two players: P1 and P2
- Strategies: Confess, Silent
- Outcomes: number of years in prison

Battle of the Sexes

- Two players: Girl, Boy
- Strategies: Baseball (B), Softball (S)
- Outcomes: payoffs/benefits/utilities

Chicken Game

- Two players: P1, P2
- Strategies: Swerve, Straight
- Outcomes: utilities

	Swerve		Straight		
Swerve	Tie, Tie		Lose, Win		
Straight	Win, Lose		Crash, Crash		
	Swerve		Straight		
Swerve	0, 0	-1, +1			
Straight	+1, -1	-1000, -1000			

Ultimatum Game

- Two players: P1, P2
- Strategies:
 - P1: propose to divide \$100 between P1 and P2
 - P2: accept or reject
- Outcomes: utilities

College/Master/PhD Entrance Exam

The setting:

- The are two colleges: C_1, C_2 and three students S_1, S_2, S_3 .
- The colleges' preferences are:
 - C_1 : $S_1 \succ S_2 \succ S_3$
 - C_2 : $S_1 \succ S_2 \succ S_3$
- The students' preferences are:
 - \mathcal{S}_1 : $\mathcal{C}_1 \succ \mathcal{C}_2$
 - \mathcal{S}_2 : $\mathcal{C}_1 \succ \mathcal{C}_2$
 - \mathcal{S}_3 : $\mathcal{C}_2 \succ \mathcal{C}_1$

The process (each college can only accept one student):

- Stage 1: each student chooses one college to apply and each college chooses her most preferred student to accept.
- Stage 2: unaccepted students from Stage 1 can choose their second college to apply and the colleges who have quota left choose their most preferred student to accept.

Outline

- Game Play
- 2 Game Design
- Objective of CS243

A Game Design Example

Let's design a game...

Design Goal

How can a house-seller sell her house with the "highest" profit?

A Game Design Example

Design Goal

How can a house-seller sell her house with the "highest" profit?

 Challenge: the seller doesn't know how much the buyers are willing to pay (their valuations).

A Game Design Example

Design Goal

How can a house-seller sell her house with the "highest" profit?

Solution: Second Price Auction (Vickrey Auction/VCG)

- Input: each buyer reports a price/bid to the seller
- Output: the seller decides
 - allocation: the agent with the highest report price wins.
 - payment: the winner pays the second highest price reported.

A Game Design Example

Design Goal

How can a house-seller sell her house with the "highest" profit?

Solution: Second Price Auction (Vickrey Auction/VCG)

Properties:

- Efficient: maximising social welfare
- Truthful: buyers will report their highest willing payments

Generalized Second Price (GSP) Auction

[申请] 申请美国硕士需要什么 [方法] 如何自己申请美国硕士

www.tiandaoedu.com 2019-02 ▼ V2 - 评价 广告

Generalized Second Price (GSP) Auction

Advertiser	Bid	Price	Order	CTR
<i>A</i> ₁	6	4	1st	1
A_2	4	2	2nd	0.9
<i>A</i> ₃	2	1	3rd	0.5
A_4	1			

Car Plates Allocation

Outline

- Game Play
- 2 Game Design
- 3 Objective of CS243

The Objectives of CS243

- Introduction of the basic concepts of AGT such as Nash equilibria, dominant strategies, and their computations
- Study of its key applications such as auctions, matching, voting, predictions
- Be ready for the advanced topics of AGT such as mechanism design, repeated games

Schedule

- 12 weeks lectures (Mon and Tue 3:00PM-4:40PM)
- One project (from Week 4)
- One exam (after Week 12)

Course Plan

- Introduction
 - Game Play: Nash equilibrium, dominant/mix strategies, etc.
 - Game Design: auctions, voting, crowdsourcing, etc.
- Auctions
 - Second Price Auction (English auction)
 - Internet Advertising (Google, Baidu)
 - Combinatorial Auction (spectrum auction)
- Social Choice
 - President Election (winner determination)
 - Ranking (preference aggregation)
- Matching Markets
- Human Computation
- Exchange Markets
- Advanced Topics (Blockchains)

Course Plan

- Introduction
- Auctions
- Social Choice
- Matching Markets
 - Student-School Matching (college entrance examination)
 - Kidney Exchange (kidney donations)
- Human Computation
 - Crowdsourcing (image labeling)
 - Peer Prediction (who is going to win the next world cup?)
- Exchange Markets
 - Double Auction (stock exchanges)
 - Online Auction
 - Sharing Economy Markets (car/house-sharing)
- Advanced Topics (Blockchains)

Project Plan

- Plan A Choose one top quality conference/journal paper related to game theory and apply the results in a new setting. Write a report.
- Plan B Implement a game theory related game and test it with enough players. Write a report.

Evaluation

- Classroom Quizzes (10%)
- Homework (25%)
- Project (25%)
- Exam (40%)

Questions and Interactions

 Teaching Assistants: Zhang Tianyi (PhD Y4), Yang Tianyi (RA), Zhang Yao (Ms. Y2), Lian Xinyuan (Ms. Y2), Ge Xu (Ms. Y1).

- Online Interactions:
 - Piazza (slides and QnA)

Reading Material

 Algorithmic Game Theory, edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2007.