# Machine Learning

Lecture 8-9: Classification and Decision Trees

COURSE CODE: CSE451

2023

#### Course Teacher

#### **Dr. Mrinal Kanti Baowaly**

**Associate Professor** 

Department of Computer Science and Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh.

Email: mkbaowaly@gmail.com



#### Classification: Definition

- Classification is the task of learning a target function f that maps each input x to one of the predefined class labels y.
  - x: attribute, predictor, independent variable, input
  - y: class, category, response, dependent variable, target variable, output
- The target function f is also known informally as a classification model.



# Examples of Classification Task

- Email Spam filtering
- Language detection
- A search of similar documents
- Sentiment analysis
- Recognition of handwritten characters and numbers
- Fraud detection etc.



#### Types of Classification

- Binary Classification: Classifying instances into one of two class labels/categories
- Multiclass Classification: Classifying instances into one of three or more class labels/categories
- Multi-Label Classification: Multiple class labels or categories are to be predicted for each instance

# Classification Techniques / Algorithms

#### **Base Classifiers**

- Decision Tree based Methods
- Rule-based Methods
- Nearest-neighbor
- Neural Networks
- Deep Learning
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

#### **Ensemble Classifiers**

Boosting, Bagging, Random Forests

#### Decision Tree Classification

- Decision tree is a type of supervised learning algorithm that is mostly used in classification problems.
- It works for both categorical and continuous input and output variables.
- This technique splits the population or data set into two or more homogeneous sets (or sub-populations) based on most significant splitter / differentiator in input variables.

#### An Example of Decision Tree

categorical continuous

| ID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|----|---------------|-------------------|------------------|-----------------------|
| 1  | Yes           | Single            | 125K             | No                    |
| 2  | No            | Married           | 100K             | No                    |
| 3  | No            | Single            | 70K              | No                    |
| 4  | Yes           | Married           | 120K             | No                    |
| 5  | No            | Divorced          | 95K              | Yes                   |
| 6  | No            | Married           | 60K              | No                    |
| 7  | Yes           | Divorced          | 220K             | No                    |
| 8  | No            | Single            | 85K              | Yes                   |
| 9  | No            | Married           | 75K              | No                    |
| 10 | No            | Single            | 90K              | Yes                   |



There could be more than one tree that fits the same data!

Start from the root of tree.



#### **Test Data**

|    |         |     | Defaulted<br>Borrower |
|----|---------|-----|-----------------------|
| No | Married | 80K | ?                     |













#### What is a Decision Tree?

A decision tree is a tree where each internal node represents a feature/attribute and acts as decision making, each link/branch represents a decision/rule and each leaf/terminal node represents an outcome(categorical or continues value). The topmost decision node in a decision tree is known as the root node.



#### Types of Decision Trees

#### Types of decision tree is based on the type of target variable:

- 1. Categorical/Classification decision Tree: Target variable is categorical
- 2. Continuous/Regression decision Tree: Target variable is continuous

#### How to construct a Decision Tree?

- A recursive fashion by partitioning the training records into successively purer subsets.
- The basic idea behind any decision tree algorithm is as follows:
  - 1. Select the best attribute using Attribute Selection Measures (e.g. information gain or Gini impurity) to split the records.
  - Make that attribute a decision node and breaks the dataset into smaller subsets.
  - 3. Start tree building by repeating this process recursively for each subset until one of the condition will match:
    - All the records belong to the same class label (make it as a leaf node).
    - Maximum tree depth or minimum records per leaf is reached.
    - No more attributes to split on.
    - No more records.
  - 4. Assign class labels to each leaf node based on the majority class of the records in that node.
  - 5. Prune the tree to avoid overfitting.

#### Decision Tree Algorithms

#### Many Algorithms:

- ID3 (Iterative Dichotomiser 3) An early Decision Tree algorithm that uses information gain to determine the best split. It can only handle categorical variables and can lead to overfitting.
- C4.5 An improvement over ID3 that uses gain ratio to handle continuous variables and address overfitting issues.
- CART (Classification and Regression Trees) A Decision Tree algorithm for both classification and regression problems that uses Gini index for classification or mean squared error for regression to determine the best split.
- C5.0 A further improvement of C4.5 that uses boosting to improve accuracy and handle overfitting.
- CHAID (Chi-squared Automatic Interaction Detection) A Decision Tree algorithm that uses the chi-squared statistic to determine the best split for categorical variables.

# An Example of Attribute Selection. Tennis Weather: Can I play tennis today?

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| overcast | hot         | high     | FALSE | yes  |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| overcast | cool        | normal   | TRUE  | yes  |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | cool        | normal   | FALSE | yes  |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | mild        | normal   | TRUE  | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |

#### Which attribute to select?



#### Which attribute to select?



# Decision Tree for Play Tennis



#### How to determine the Best Split

#### **Attribute Selection Measures (ASM):**

- Select an attribute to split the training records that increases the homogeneity of the resultant sub-nodes with respect to the target variable.
- In other words, we will split so that purity of the node increases with respect to the target variable.

#### Two popular methods:

- Gini index: used by CART
- Information gain: used by ID3 and C4.5
- ➤ Study detail from <a href="here">here</a>.

#### Gini Index

If we select two items from a population at random then they must be of same class and probability for this is 1 if population is pure.

- It works with categorical target variable "Success" or "Failure".
- It performs only Binary splits.
- Higher the value of Gini, higher the homogeneity.
- CART (Classification and Regression Tree) uses Gini method to create binary splits.

# Steps to Calculate Gini for a Split

1. Calculate Gini for sub nodes, using the following formula:

$$p^2 + q^2$$

Here,

p = probability for success

q = probability for failure

2. Calculate Gini for split, using weighted Gini score of each node of that split.

#### Gini Index : Example

#### We have a sample of 30 students where:

- Variable-1: Gender (Boy/ Girl), Variable-2: Class (IX/ X)
- Create a model to predict who will play cricket
- Identify which variable splits best





Gender is able to identify best homogeneous sets

#### Gini Index: Split on Gender

- 1. Gini for sub-node Female:  $0.2^2 + 0.8^2 = 0.68$
- 2. Gini for sub-node Male:  $0.65^2 + 0.35^2 = 0.55$
- 3. Weighted Gini for Split Gender:  $\left(\frac{10}{30}\right) * 0.68 + \left(\frac{20}{30}\right) * 0.55 = 0.59$



#### **Split on Class**



#### Gini Index: Split on Class

- 1. Gini for sub-node Class IX:  $0.43^2 + 0.57^2 = 0.51$
- 2. Gini for sub-node Class X:  $0.56^2 + 0.44^2 = 0.51$
- 3. Weighted Gini for Split Class:  $\left(\frac{14}{30}\right) * 0.51 + \left(\frac{16}{30}\right) * 0.51 = 0.51$

Split on Class

The Transfer T



❖ Gini score for Split on Gender is higher than Split on Class, hence, the node split will take place on Gender.

#### Information Gain

Look at the image below and think which node can be described easily?



- It is node C because it requires less information as all values are similar
- In other words, we can say that C is a pure/homogeneous node
- Degree of disorganization in a system known as Entropy.
- Entropy is zero when the sample is completely homogeneous, and it is 1 when the sample is an equally divided (50% 50%)

# Steps to Calculate Entropy for a Split

- 1. Formula to calculate entropy =  $-p \log_2 p q \log_2 q$
- 2. Calculate entropy of parent node
- 3. Calculate entropy of each individual node of split
- 4. Calculate weighted average entropy of all sub nodes available in split.

#### \*\*\*The lesser the entropy, the better it is.

We can derive information gain from entropy as 1- Entropy.

# Information Gain: An Example

- 1. Entropy for Parent node:  $-(\frac{15}{30})\log_2(\frac{15}{30}) (\frac{15}{30})\log_2(\frac{15}{30}) = 1$
- 2. Entropy for split Gender:
  - Entropy for Female node:  $-\left(\frac{2}{10}\right)\log_2\left(\frac{2}{10}\right) \left(\frac{8}{10}\right)\log_2\left(\frac{8}{10}\right) = 0.72$
  - Entropy for Male node:  $-\left(\frac{13}{20}\right)\log_2\left(\frac{13}{20}\right) \left(\frac{7}{20}\right)\log_2\left(\frac{7}{20}\right) = 0.93$
  - Weighted entropy of Gender:  $\left(\frac{10}{30}\right) * 0.72 + \left(\frac{20}{30}\right) * 0.93 = 0.86$





Split on Class

# Information Gain: An Example

#### 3. Entropy for split Class:

- Entropy for Class IX node:  $-\left(\frac{6}{14}\right)\log_2\left(\frac{6}{14}\right) \left(\frac{8}{14}\right)\log_2\left(\frac{8}{14}\right) = 0.99$
- Entropy for Class X node:  $-\left(\frac{9}{16}\right)\log_2\left(\frac{9}{16}\right) \left(\frac{7}{16}\right)\log_2\left(\frac{7}{16}\right) = 0.99$
- Weighted entropy of Class:  $\left(\frac{14}{30}\right)*0.99 + \left(\frac{16}{30}\right)*0.99 = 0.99$

- Entropy for Split on Gender is the lowest, so the tree will split on Gender.
- We can derive information gain from entropy as 1- Entropy.





#### Adv. & Disadv. of Decision Trees

#### Advantage

- Easy to Understand
- Less data cleaning required
- Can handle both numerical and categorical variables
- Useful in Data exploration

#### Disadvantage

- May contain lots of layers, which makes it complex
- May have an overfitting issue

#### Some Learning Materials

<u>AnalyticsVidhya: A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)</u>

JavaTPoint: Decision Trees Algorithms

DataCamp: Decision Tree Classification in Python

# End of Lecture-8,9