Results are obtained with h_0^P estimated

CALIBRATED PARAMETERS ON WEDNESDAYS USING MSE, $h_0^Q = h_t^P$										
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018	
ω	1.4513e - 07	1.4176e - 05	4.7992e - 07	5.2798e - 07	4.0969e - 07	1.0490e - 07	2.4321e - 06	1.7537e - 06	1.5142e - 06	
ci median	$(\pm 1.5942e - 07)$ 1.0775e - 09	$(\pm 1.1836e - 05)$ 5.1740e - 09	$(\pm 4.8361e - 07)$ 9.6472e - 10	$(\pm 3.2041e - 07)$ 5.4959e - 10	$(\pm 5.3905e - 07)$ 1.7945e - 10	$(\pm 1.2422e - 07) \\ 2.3733e - 10$	$(\pm 3.1579e - 06)$ 6.8372e - 10	$(\pm 2.0493e - 06)$ 1.4123e - 10	$(\pm 2.8277e - 06)$ 2.9534e - 10	
	1 7025 - 05	1 2246 - 05	1.0102 - 05	0.7602 - 06	9.7046 - 06	1.0000 - 05	0.2000 - 06	4 9999 = 06	0 = 47= 00	
$egin{array}{c} lpha \\ egin{array}{c} egin{array}{c} lpha \end{array} \end{array}$ median	$ 1.7035e - 05 (\pm 3.4593e - 06) 1.3647e - 05 $	$ 1.2346e - 05 (\pm 3.3699e - 06) 9.6655e - 06 $	$ 1.0103e - 05 (\pm 2.7308e - 06) 5.5978e - 06 $	8.7693e - 06 $(\pm 2.3863e - 06)$ 4.8816e - 06	$8.7046e - 06$ $(\pm 1.5945e - 06)$ $7.3675e - 06$	$ 1.0089e - 05 (\pm 1.3893e - 06) 9.5364e - 06 $	8.2898e - 06 $(\pm 1.6482e - 06)$ 6.9899e - 06	$4.8282e - 06$ $(\pm 9.8057e - 07)$ $4.3066e - 06$	$8.5475e - 06$ $(\pm 1.9054e - 06)$ $7.5553e - 06$	
$egin{array}{c} eta \ \mathbf{ci} \ \mathbf{median} \end{array}$	0.4688 (± 0.0771) 0.5242	0.2756 (± 0.0839) 0.0830	0.4263 (± 0.0884) 0.4428	0.3469 (± 0.1016) 0.2967	0.2271 (± 0.0888) 0.0000	0.1023 (± 0.0429) 0.0000	$0.2500 \ (\pm 0.0810) \ 0.0041$	0.1683 (± 0.0790) 0.0001	0.2652 (± 0.0897) 0.0604	
γ^* ci median	$ 207.2276 (\pm 47.6351) 156.2936 $	363.1600 (± 94.9394) 223.1544	334.4814 (± 81.4605) 236.8887	375.3636 (± 79.9982) 285.1250	339.1462 (± 45.3168) 268.2518	315.5564 (± 36.0930) 283.8629	328.8686 (± 42.5642) 286.5057	$ 445.8713 (\pm 74.3487) 389.7132 $	$\begin{array}{c} 293.1308 \\ (\pm 97.5952) \\ 265.0480 \end{array}$	
median	100.2330	220.1044	250.0001	200.1200	200.2010	200.0023	200.5001	303.1132	200.0400	
$egin{aligned} h_0^Q &= h_t^P \ & \mathbf{ci} \ & \mathbf{median} \end{aligned}$	$1.2843e - 04 (\pm 2.4166e - 05) 1.1288e - 04$	$1.5885e - 04 (\pm 2.8191e - 05) 1.3446e - 04$	$\begin{array}{c} 8.8858e - 05 \\ (\pm 1.1827e - 05) \\ 8.4289e - 05 \end{array}$	$6.0313e - 05 (\pm 8.7213e - 06) 4.8973e - 05$	$6.5265e - 05 (\pm 1.0436e - 05) 5.5260e - 05$	$1.1085e - 04 (\pm 1.8145e - 05) 9.2823e - 05$	$9.9075e - 05 (\pm 2.0030e - 05) 7.8758e - 05$	$4.0828e - 05 (\pm 6.5382e - 06) 3.3053e - 05$	$\begin{array}{c} 1.1258e - 04 \\ (\pm 2.4678e - 05) \\ 9.1614e - 05 \end{array}$	
MSE	0.6118	2.9140	1.0134	1.2670	2.6656	2.5912	5.3826	10.0873	6.6190	
IVRMSE	0.0960	0.1261	0.1339	0.1204	0.1268	0.1256	0.1382	0.1753	0.1393	
MAPE	0.1216	0.1311	0.1823	0.1730	0.2130	0.2172	0.2706	0.3992	0.2366	
OptLL	194.7567	192.9417	226.8644	309.0478	320.7876	395.9864	470.7001	501.6474	615.4205	

Results are obtained with h_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS CALIBRATED WITH RESPECT TO MSE										
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018		
$\omega \ ext{ci} \ ext{median}$	$1.0488e - 07$ $(\pm 1.1918e - 07)$ $2.2987e - 09$	$5.8246e - 07$ $(\pm 2.7459e - 07)$ $3.5700e - 09$	$2.5115e - 07$ $(\pm 1.6081e - 07)$ $2.2122e - 09$	$1.6648e - 07$ $(\pm 1.2717e - 07)$ $1.4531e - 09$	$2.3430e - 07 (\pm 1.2450e - 07) 1.0411e - 09$	$7.7768e - 08$ $(\pm 7.2313e - 08)$ $7.7909e - 10$	$1.1626e - 07$ $(\pm 7.6717e - 08)$ $1.1251e - 09$	$8.2065e - 08$ $(\pm 9.0031e - 08)$ $4.5039e - 10$	$7.6453e - 08$ $(\pm 9.2380e - 08)$ $1.0650e - 09$		
lpha ci median	$8.4165e - 06$ $(\pm 1.8472e - 06)$ $6.5997e - 06$	$4.4508e - 06$ $(\pm 6.8046e - 07)$ $3.6480e - 06$	$2.8014e - 06$ $(\pm 4.0029e - 07)$ $2.6366e - 06$	$2.5121e - 06$ $(\pm 4.0132e - 07)$ $1.9850e - 06$	$2.5227e - 06$ $(\pm 6.1411e - 07)$ $1.9079e - 06$	$2.9788e - 06$ $(\pm 3.8023e - 07)$ $2.6174e - 06$	$2.2257e - 06$ $(\pm 2.5925e - 07)$ $2.0616e - 06$	$1.3120e - 06$ $(\pm 2.1788e - 07)$ $1.0858e - 06$	$1.4577e - 06$ $(\pm 2.0309e - 07)$ $1.2525e - 06$		
$egin{array}{c} eta \ \mathbf{ci} \ \mathbf{median} \end{array}$	0.6871 (± 0.0385) 0.7084	0.5490 (± 0.0619) 0.5939	$0.7000 \ (\pm 0.0383) \ 0.7252$	0.7605 (± 0.0353) 0.7904	0.6585 (± 0.0512) 0.7367	0.5583 (± 0.0338) 0.5896	0.5809 (± 0.0380) 0.5806	$0.6908 \ (\pm 0.0413) \ 0.7114$	$0.6496 \ (\pm 0.0369) \ 0.6620$		
γ^* ci median	$197.5895 (\pm 21.8025) 176.5536$	347.0532 (± 58.0979) 255.3032	349.9407 (± 50.7796) 302.3136	$ 311.1355 (\pm 43.7591) 257.6042 $	$419.7989 (\pm 63.6310) 339.5965$	397.9111 (± 35.5315) 384.7057	$439.0339 (\pm 31.7446) 405.3039$	$454.7184 (\pm 57.8372) 469.6117$	502.6705 (± 36.8364) 475.7176		
h_0^Q ci median	$1.2420e - 04 (\pm 2.1495e - 05) 1.0022e - 04$	$1.7303e - 04 (\pm 3.8214e - 05) 1.1400e - 04$	$7.7115e - 05$ $(\pm 8.4403e - 06)$ $6.7420e - 05$	$4.6121e - 05$ $(\pm 7.2599e - 06)$ $3.8509e - 05$	$4.3171e - 05 (\pm 1.0616e - 05) 3.0170e - 05$	$0.0001 \\ (\pm 1.3409e - 05) \\ 5.8680e - 05$	$6.1981e - 05 (\pm 1.3419e - 05) 4.0850e - 05$	$1.7690e - 05$ $(\pm 3.0904e - 06)$ $1.5496e - 05$	$6.7046e - 05$ $(\pm 1.6605e - 05)$ $4.5133e - 05$		
MSE	0.3344	0.4992	0.3164	0.1865	0.2756	0.4952	0.5942	0.8425	1.4562		
IVRMSE	0.0821	0.0916	0.1231	0.1047	0.1211	0.1351	0.1270	0.1390	0.1318		
MAPE	0.1024	0.1053	0.1555	0.1366	0.1616	0.1886	0.1722	0.2196	0.1849		
OptLL	207.0992	216.2553	244.4436	345.9152	369.4851	433.9732	544.1547	617.0931	679.5187		