Mental Health Treatment Predictor

PWSkills Mini-Hackathon: Healthcare Applications

Submitted by:

Prabal Roy

prabalroy242@gmail.com

Mobile: 9679097884

Date: October 15, 2025

Contents

1	Introduction 1.1 Objective	2 2				
2 Project Overview						
3	Model Performance and Comparison					
4	Setup Instructions4.1 Virtual Environment4.2 Install Dependencies4.3 Run the App	5 5 5				
5	Project Structure					
6	Batch Prediction					
7	Troubleshooting	8				

Introduction

The Mental Health Treatment Predictor is a machine learning—powered Streamlit application designed to predict whether an individual is likely to seek mental health treatment. This project aims to raise awareness and enable early intervention through data-driven insights.

1.1 Objective

The main objective of this project is to use predictive analytics to identify factors influencing mental health treatment decisions and assist organizations in developing targeted support strategies.

Project Overview

- Home: Project overview and quick stats.
- Model Information: Displays model type, top feature importance, and comparison charts.
- Make Prediction: Interactive form with probabilities, confidence scores, and recommendations.
- Batch Prediction: CSV upload for multiple predictions with visual summaries.

Model Performance and Comparison

The table below summarizes model evaluation metrics:

Model	Accuracy	Precision	Recall	F1 Score	ROC AUC
Naive Bayes	0.7421	0.7692	0.7031	0.7347	0.7983
SVM	0.7381	0.7627	0.7031	0.7317	0.7851
Logistic Regression	0.7302	0.7679	0.6719	0.7167	0.8218
Random Forest	0.7222	0.7500	0.6797	0.7131	0.7762
CatBoost	0.7222	0.7589	0.6641	0.7083	0.7888
XGBoost	0.7183	0.7395	0.6875	0.7126	0.7539
Gradient Boosting	0.7103	0.7350	0.6719	0.7020	0.8022
LightGBM	0.7103	0.7311	0.6797	0.7045	0.7864
Decision Tree	0.6548	0.6752	0.6172	0.6449	0.6515

Best Model: Naive Bayes (74.21% accuracy, 79.83% ROC AUC)

Best ROC AUC: Logistic Regression (82.20% ROC AUC)

Ensemble Model: Voting Classifier (72.62% accuracy, 80.89% ROC AUC)

Setup Instructions

4.1 Virtual Environment

python -m venv venv
./venv/Scripts/Activate.ps1

4.2 Install Dependencies

pip install -r requirements.txt

4.3 Run the App

streamlit run app.py

Project Structure

```
project_root/
Notebooks
   data_cleaning.ipynb
    exploratory_analysis.ipynb
   feature_engineering.ipynb
   model_training.ipynb
src/
  data/
  models/
   utils/
  app.py
data/
  raw/
mental_health_survey.csv
  processed/
     model_comparison_results.csv
                                                # Shown in Model Information
       cleaned_mental_health_data.csv
       complete_processed_data.csv
       selected_features.json
       test_data.csv
      train_data.csv
                                         # Trained artifacts used by predictor
models/
  best_model.pkl
  feature_scaler.pkl
  feature_selector.pkl
  label_encoders.pkl
  target_encoder.pkl
  selected_features.json
readme.md
prediction.csv
                                          # Example input for Batch Prediction
requirements.txt
```

Batch Prediction

Users can upload a CSV with the same input columns as the form and receive predictions for all records. The app also provides:

- Summary statistics
- Confidence distribution plots
- Downloadable prediction CSV file

Troubleshooting

- Missing metrics: Ensure data/processed/model_comparison_results.csv exists.
- Prediction error: Check that all model artifacts are present in the models/ folder.
- New environment setup: Use pip freeze > requirements.txt to lock dependencies.