# Random Manhattan Indexing

Behrang Q. Zadeh and Siegfried Handschuh National University of Ireland, Galway, Ireland University of Passau, Lower Bavaria, Germany









### **Processing Natural Language Text**

• For Computers, natural language text is simply a sequence of bits and bytes.

### **Processing Natural Language Text**

• For Computers, natural language text is simply a sequence of bits and bytes.



### Vector Space Model (VSM)

- Vector spaces are one of the models employed for text processing.
  - A Mathematical Structure  $\langle V, \mathbb{R}, +, \cdot \rangle$  that satisfy certain axioms.
- Text elements are converted to real-valued vectors.
- Each dimension of the vector represents some information about text elements.

- In a text-based information retrieval task:
  - Each dimension of the VSM represents an index term *t*.
  - Documents are represented by vectors.



- In a text-based information retrieval task:
  - Each dimension of the VSM represents an index term t.
  - Documents are represented by vectors.
  - Queries are treated as pseudo-documents.



- In a text-based information retrieval task:
  - Each dimension of the VSM represents an index term t.
  - Documents are represented by vectors.
  - Queries are treated as pseudo-documents.
  - Using a norm structure, a notion of distance is defined and used to assess the similarity between vectors, i.e. documents and queries.

The L2 or Euclidean norm,  $||v||_2 = \sqrt{\sum_i v_i^2}$ 



$$\begin{aligned} dist_2(d_1,q) &= \|d_1 - q\|_2 = \sqrt{(4-3)^2 + (4-1)^2} = \sqrt{10} \\ dist_2(d_2,q) &= \|d_2 - q\|_2 = \sqrt{(1-3)^2 + (2-1)^2} = \sqrt{5} \end{aligned}$$

The L1 norm,  $||v||_1 = \sum_i |v_i|$ 



$$dist_1(d_1, q) = ||d_1 - q||_1 = |(4 - 3)| + |(4 - 1)| = 4$$
  
 $dist_1(d_2, q) = ||d_2 - q||_1 = |(1 - 3)| + |(2 - 1)| = 3$ 

### The dimensionality barrier

- Due to the Zipfian distribution of index terms, the number of index terms escalates when new documents are added.
- Adding new index terms requires adding additional dimensions to the vector space.



### The dimensionality barrier

- Due to the Zipfian distribution of index terms, the number of index terms escalates when new documents are added.
- Adding new index terms requires adding additional dimensions to the vector space.
- Therefore, VSMs are extremely high-dimensional and sparse:

"THE CURSE OF DIMENSIONALITY"

# The dimensionality barrier











### Limitations of Matrix Factorization

- Computation of Singular Value Decomposition (SVD) is process-intensive, i.e. O(mn<sup>2</sup>).
- Every time a VSM is updated, SVD must be recomputed:
  - \* Not suitable for big-text data analytics.
  - \* Not suitable for frequently updated text-data, e.g. blogs, tweeter analysis, etc.

### Limitations of Matrix Factorization

- Computation of Singular Value Decomposition (SVD) is process-intensive, i.e. O(mn<sup>2</sup>).
- Every time a VSM is updated, SVD must be recomputed:
  - \* Not suitable for big-text data analytics.
  - \* Not suitable for frequently updated text-data, e.g. blogs, tweeter analysis, etc.

Solution: Random projection methods skip the computation of transformations (eigenvectors).

### Random Projections: Random Indexing

• VSM Dimensionality is decided independent of the number of index terms, i.e. dimensionality of a VSM is fixed.

### • Algorithm:

- Assign each index term to a randomly generated "index vector".
  - Most elements of index vectors are 0 and only a few +1 and -1, e.g.
     r<sup>t1</sup> = (0, 0, 1, 0,-1), r<sup>t2</sup> = (1, 0, -1, 0, 0), etc.
- Assign each document to an empty "context vector".
- Construct the VSM incrementally by the accumulation of index vectors to context vectors.

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 



Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

D1 = (0, 0, 0, 0, 0)

Munich: (1,-1,0,0,0)

Capital: (0,0,1,0,-1)

Germany: (1,0,0,-1,0)

Bavaria: (0,0,0,1,-1)

Largest: (0,1,0,-1,0)

City: (1,0,-1,0,0)

State: (1,0,0,0,-1)

Munich is the capital and largest city of the German state of Bavaria.

#### **Document 1**

 $\sim$  D1 = (4, 0, 0, -1, -3)

Munich: (1,-1,0,0,0) Capital: (0,0,1,0,-1)

Germany: (1,0,0,-1,0)

Bavaria: (0,0,0,1,-1)

Largest: (0,1,0,-1,0)

City: (1,0,-1,0,0)

State: (1,0,0,0,-1)

#### **Index Terms**

| Munich  | ( | 1 | ,-1 | ,0  | ,0  | ,0  | ) <b>+</b> |
|---------|---|---|-----|-----|-----|-----|------------|
| Capital | ( | 0 | ,0  | ,1  | ,0  | ,-1 | ) +        |
| Germany | ( | 1 | ,0  | ,0  | ,-1 | ,0  | ) ∔        |
| Bavaria | ( | 0 | ,0  | ,0  | ,1  | ,-1 | ) ∔        |
| Largest | ( | 0 | ,1  | ,0  | ,-1 | ,0  | ) ∔        |
| City    | ( | 1 | ,0  | ,-1 | ,0  | ,0  | ) ∔        |
| State   | ( | 1 | ,0  | ,0  | ,0  | ,-1 | ) •        |

D1 =

4

,0

, 0

, -1

, -3

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

D1 = (4, 0, 0, -1, -3)

Munich is a beautiful, historical city.

**Document 2** 

Munich: (1,-1,0,0,0)

Capital: (0,0,1,0,-1)

Germany: (1,0,0,-1,0)

Bavaria: (0,0,0,1,-1)

Largest: (0,1,0,-1,0)

City: (1,0,-1,0,0)

State: (1,0,0,0,-1)

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

D1 = (4, 0, 0, -1, -3)

Munich is a beautiful, historical city.

**Document 2** 

D2 = (0, 0, 0, 0, 0)

Munich: (1,-1,0,0,0)
Capital: (0,0,1,0,-1)

Germany: (1,0,0,-1,0)

Bavaria: (0,0,0,1,-1)

Largest: (0,1,0,-1,0)

City: (1,0,-1,0,0)

State: (1,0,0,0,-1)

Beautiful: (0,0,1,-1,0) Historical: (0,1,0,0,-1)

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

D1 = (4, 0, 0, -1, -3)

Munich is a beautiful, historical city.

**Document 2** 

D2 = (2,0,0,-1,-1)

Munich: (1,-1,0,0,0) Capital: (0,0,1,0,-1)

Germany: (1,0,0,-1,0)

Bavaria: (0,0,0,1,-1)

Largest: (0,1,0,-1,0)

City: (1,0,-1,0,0)

State: (1,0,0,0,-1)

Beautiful: (0,0,1,-1,0) Historical: (0,1,0,0,-1)

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

D1 = (4, 0, 0, -1, -3)

Munich is a beautiful, historical city.

**Document 2** 

D2 = (2,0,0,-1,-1)



Munich: (1,-1,0,0,0) Capital: (0,0,1,0,-1) Germany: (1,0,0,-1,0) Bavaria: (0,0,0,1,-1) Largest: (0,1,0,-1,0) City: (1,0,-1,0,0) State: (1,0,0,0,-1) Beautiful: (0,0,1,-1,0) Historical: (0,1,0,0,-1) **Index Terms FIXED DIMENSION** 

### Limitation of Random Indexing

- Random Indexing employs a Gaussian Random Projection.
- A Gaussian Random Projection can only be used for the estimation of Euclidean distances.





### Random Manhattan Indexing

- In an applications we may want to estimate the L1 (Manhattan) distance between vectors.
- Random Manhattan Indexing (RMI) can be used to estimate the Manhattan distances.





### The RMI method

- RMI employs Cauchy Random Projections
- RMI is an incremental technique (similar to RI):
  - Each index term is assigned to an index vectors.
  - Index vectors are high-dimensional and randomly generated with the following distribution:

$$r_{ij} = \begin{cases} \frac{1}{U_1} & \text{With probability } \frac{s}{2} \\ 0 & \text{With probability } 1 - s \\ -\frac{1}{U_2} & \text{With probability } \frac{s}{2} \end{cases}$$

 $U_1$  and  $U_2$  are independent uniform random variables in (0, 1).

### The RMI method

- Assign documents to context vectors.
- Create context vectors incrementally.
- Estimate the Manhattan distance between vectors using the following (non-linear) equation:

$$\widehat{dist}_1(u,v) = \exp\left(\frac{1}{m}\sum_{i=1}^m \ln(|u_i - v_i|)\right)$$

m is the dimension of the RMI-constructed VSM

## RMI (Example)

Munich is the capital and largest city of the German state of Bavaria.

**Document 1** 

D1 = (1.3,5.89,-6.7,-3.5,-8)

Munich: (0,0,1.0,-2.1,0) Capital: (0,1.49,0,-1.2,0) German: (0,0,0,1.9,-1.8) Bavaria: (1.3,0,0,0,-3.9) Largest: (0,0,1.6,-2.1,0)

City: (0,2.5,0,0,-2.3) State: (0,1.9,-9.3,0,0

### RMI (Example)

Munich is the capital and largest city of the German state of Bavaria.

#### **Document 1**

D1 = (1.3,5.89,-6.7,-3.5,-8)

Munich: (0,0,1.0,-2.1,0)

Capital: (0,1.49,0,-1.2,0)

German: (0,0,0,1.9,-1.8)

Bavaria: (1.3,0,0,0,-3.9)

Largest: (0,0,1.6,-2.1,0)

City: (0,2.5,0,0,-2.3)

State: (0,1.9,-9.3,0,0

**Index Terms** 

Use the non-linear estimator to assess similarities:

$$\widehat{dist}_1(u, v) = \exp\left(\frac{1}{m} \sum_{i=1}^m \ln(|u_i - v_i|)\right)$$

## RMI's parameters

- The dimension of the RMI-constructed VSM.
- Number of non-zero elements in index vectors.

### RMI's parameters

- The dimension of the RMI-constructed VSM:
  - It is independent of the number of index terms.
  - It is decided by the probability and the maximum expected distortion in distances.
  - For fixed set of documents, larger dimension results in less distortion.
  - According to our experiment, m=400 is suitable for most applications.

### RMI's parameters

- The dimension of the RMI-constructed VSM.
- Number of non-zero elements in index vectors:
  - It is decided by the number of index terms and the sparsity of VSM at its original high-dimension.
  - We suggest  $s = \frac{1}{O(\sqrt{\beta n})}$ , where  $\beta$  is the sparseness of original high-dimensional VSM and n is the number index terms.
  - $\beta$  is often considered to be around 0.0001 to 0.01.

- We designed an experiment that shows the ability of RMI in preserving L1 distances:
  - A VSM is first constructed from the INEX-Wikipedia 2009 collection at its original high dimension (dimensionality of 2.53 million).
  - We choose a random list of 1000 random articles from the corpus.
  - The L1 distance of each document to the rest of documents in the list are calculated.
  - Documents are sorted by the calculated L1 distances.
  - The result is 1000 lists of 999 sorted documents.





The set of 1000 random documents



- Construct the VSM using RMI method and repeat the sorting process.
  - Use different dimensionalities.
  - User different number of non-zero elements.
- Compare the sorted lists obtained from the VSM constructed at the original high dimension and the RMI-constructed VSM at reduced dimensionality.
  - Spearman's rank correlation  $(\rho)$  for comparison
- EXPECTATION: similar sorted lists from both VSM, i.e.  $\rho = 1$ .

• Observed correlation:



For the baseline, we report  $\rho = 0.1375$  for lists of documents sorted randomly.

• Experiments support the earlier claim that RI do not preserve the L1 distance:



### Discussion

- We proposed an incremental, scalable method for the construction of the L1 normed VSMs.
- We show the ability of the method in preserving the distances between documents.
- Is this possible to avoid floating-point calculation?
- What is the performance of RMI within the context of Information Retrieval benchmarks?

### THANKS FOR YOUR ATTENTION!

### **Random Manhattan Indexing**

Behrang Q. Zadeh and Siegfried Handschuh

National University of Ireland, Galway, Ireland University of Passau, Lower Bavaria, Germany







