Projeto de prática Integrada de ciência de dados, inteligência artificial e machine learning

Relatório de avistamento de Objetos Voadores Não Identificados.

Sprint 3 → Análise temporal

Curso: Tecnologia em sistemas para internet

Estudantes:

Brenda Lopes Miranda Teixeira Mateus Gomes da Silva Fonteles Rickson Queiroz Marques de Souza Samuel Araújo Lopes

Professores

Fábio Henrique Diego Queiroz Ana Régia

Brasília, agosto de 2021

Sumário

1. Objetivos	3
2. Descrição do problema	4
3. Desenvolvimento	5
3. Código implementado	6
4 Considerações Finais	10

1. Objetivos

A análise é a etapa do trabalho em que extraímos valor dos dados, criando hipóteses com base nos *insights* gerados pelos dados. Vamos agora criar um modelo preditivo a fim de realizar uma estimativa futura baseada nas experiências prévias armazenadas no nosso dataset.

Para alcançar este resultado, aplicamos aos nossos dados um modelo de machine learning para estimar, a partir dos dados contidos em nosso dataset, a quantidade de avistamentos que haverá no futuro.

2. Descrição do problema

Para realizar o trabalho proposto, vamos levantar os dados sobre a cidade de Fênix, EUA, para logo visualizá-los em forma de série temporal, com gráficos de barras e de linha, vamos construir nossos conjuntos de treinamento e de teste e investigar os parâmetros para encontrar o melhor modelo. Por último, vamos realizar uma previsão de avistamentos futuros utilizando a função SARIMAX.

3. Desenvolvimento

Este trabalho está sendo desenvolvido usando um Script Python por ser uma linguagem orientada a objetos é bastante maleável, o grupo está utilizando a plataforma Google Colaboratory, assim todos podem modificar e acrescentar o código quando necessário.

3. Código implementado

- Importar a biblioteca Pandas
- Criar um dataframe com o arquivo .CSV

```
# Importação do panda
import pandas as pd
# Carrega seu arquivo csv
ovnis_preparado = pd.read_csv('df_OVNI_preparado.csv')
ovnis_preparado
```

E>		City	State	Shape	Sight_day	Sight_month	Sight_time	Sight_date	Sight_weekday
	0	Solomons Island	MD	Disk	22	9	20:00:00	1997-09-22	Segunda-feira
	1	Annapolis	MD	Triangle	15	8	23:00:00	1998-08-15	Sábado
	2	Chesapeak Bay	MD	Disk	26	10	20:00:00	1999-10-26	Terça-feira
	3	Frederick	MD	Sphere	7	7	01:45:00	2000-07-07	Sexta-feira
	4	Wheaton	MD	Triangle		10	20:00:00	2000-10-01	Domingo
									:***
	54938	Washington, D.C. (above I-295 bridge)	DC	Flash	13		05:40:00	2016-03-13	Domingo
	54939	Washington, D.C.	DC	Circle	12	4	01:30:00	2016-04-12	Terça-feira
	54940	Washington	DC	Triangle	8	8	22:00:00	2016-08-08	Segunda-feira
	54941	Washington, D.C.	DC	Other	2	10	11:00:00	2016-10-02	Domingo
	54942	Washington, DC	DC	Circle	12		14:30:00	2017-05-12	Sexta-feira

 Criar dataframe somente com os dados da cidade de Fênix e ordenar por data de avistamento:

```
#filtra a cidade dentro do csv
cidade_phoenix = ovnis_preparado[ovnis_preparado['City']=='Phoenix']
cidade_phoenix.sort_values(by='Sight_date')
```

D		City	State	Shape	Sight_day	Sight_month	Sight_time	Sight_date	Sight_weekday
	24043	Phoenix	AZ	Disk	12	6	02:30:00	1999-06-12	Sábado
	24061	Phoenix	AZ	Changing	12	11	23:33:00	2001-11-12	Segunda-feira
	24073	Phoenix	AZ	Cigar	31	5	13:00:00	2003-05-31	Sábado
	24090	Phoenix	AZ	Light	21	2	18:00:00	2005-02-21	Segunda-feira
	24091	Phoenix	AZ	Light	20	3	03:30:00	2005-03-20	Domingo
	26019	Phoenix	ΑZ	Other	15	6	15:35:00	2017-06-15	Quinta-feira
	26035	Phoenix	AZ	Oval	6	7	21:25:00	2017-07-06	Quinta-feira
	26031	Phoenix	AZ	Fireball	26	7	04:20:00	2017-07-26	Quarta-feira
	26050	Phoenix	ΑZ	Flash	4	8	21:15:00	2017-08-04	Sexta-feira
	26048	Phoenix	ΑZ	Light	14	8	00:20:00	2017-08-14	Segunda-feira
Ú.	305 rows × 8 columns								

- Importar a biblioteca PandaSQL
- Construir uma query para contar os avistamentos por dia, ordenando pela data:

```
import pandasql
# Roda o seu comando SQL e retorna um dataframe
query = '''
   SELECT Sight_date ,Count(*) as Views FROM cidade_phoenix group by
Sight_day, Sight_month order by Sight_date
'''
views_phoenix= pandasql.sqldf(query.lower(), locals())
views_phoenix
```

C>		Sight_date	views
	0	2001-11-12	1
	1	2003-05-31	1
	2	2005-06-08	1
	3	2005-10-15	2
	4	2006-04-30	1
)		
	198	2017-06-15	2
	199	2017-07-06	1
	200	2017-07-26	2
	201	2017-08-04	1

- Converter a coluna sight_date para o tipo data
- Consultar o tipo da coluna para confirmar o sucesso da operação
- Separar o ano da coluna data e criar uma nova coluna chamada sight_year

```
#filtra a data e o ano
views_phoenix['Sight_date'] =
pd.to_datetime(views_phoenix['Sight_date'])
views_phoenix.dtypes
```

```
□ Sight_date datetime64[ns]
views int64
dtype: object
```

```
views_phoenix['Sight_year'] = views_phoenix['Sight_date'].dt.year
views_phoenix
```

E,		Sight_date	views	Sight_year
	0	2001-11-12	1	2001
	1	2003-05-31	1	2003
	2	2005-06-08	1	2005
	3	2005-10-15	2	2005
	4	2006-04-30	1	2006
	198	2017-06-15	2	2017
	199	2017-07-06	1	2017
	200	2017-07-26	2	2017

• Criar uma nova consulta SQL para ver os avistamentos por ano (na cidade de Fênix) e guardar o resultado em um novo dataframe:

```
query = '''
   SELECT Count(*) as views, Sight_year FROM views_phoenix group by
Sight_year
'''
views_phoenix_per_year= pandasql.sqldf(query.lower(), locals())
views_phoenix_per_year
```

	views	Sight_year
0	1	2001
1	1	2003
2	2	2005
3	13	2006
4	5	2007
5	15	2008
6	14	2009
7	9	2010
8	6	2011
9	15	2012

• Gerar um gráfico para observar a quantidade de relatos por ano:

views_phoenix_per_year.plot.line(x='Sight_year',y='views')

4. Considerações Finais

Nesta etapa do trabalho visualizamos as ocorrências relatadas na cidade de Fênix, consultando por data, ano e número de ocorrências, a fim de conhecer o fluxo de ocorrências nesta localidade.

Além disso, expressamos este dado também em um gráfico de linhas.