# Deep Learning in Wilderness

Daesoo Lee

NTNU



# Overview

### Overview

- Extension of FeedForward Network (FFN)
- Why Convolutional Neural Network (CNN) for images only?
- Goodbye Recurrent Neural Network (RNN) for sequence modeling
- Active Study Fields in Deep Learning

#### FFN, are we confident with the prediction?



#### Let's admit that there's uncertainty in the model







#### **Distribution of Predictions through Multiple Forward Propagations**



### **Example Result of Bayesian Neural Net**



#### The answer is No



ECG heartbeat label

Normal No

2D image 1D image

#### **CNN for Time Series Processing**

2D convolutional layer



1D convolutional layer







#### Popularity of using CNN for time series processing

• So popular that CNN is dominantly used for this task in the literature.

#### **RNN**



#### **Limitations of RNN (1)**



• *E* : error

• s: hidden state

• W: trainable weights of RNN

Error 
$$E_3 = L_3(y, \hat{y})$$

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial W}$$

$$= \frac{\partial E_3}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_3} \frac{\partial s_3}{\partial W}$$

$$= \frac{\partial E_3}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W}$$

$$= \frac{\partial E_3}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial w} \frac{\partial s_3}{\partial s_2} \frac{\partial s_1}{\partial w}$$

$$= \frac{\partial E_3}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W}$$

#### **Limitations of RNN (1)**

$$\begin{split} & \frac{\partial E_{1000}}{\partial W} \\ & = \frac{\partial E_{1000}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_{1000}} \frac{\partial s_{1000}}{\partial W} \\ & + \frac{\partial E_{1000}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_{1000}} \frac{\partial s_{1000}}{\partial s_{999}} \frac{\partial s_{999}}{\partial W} \\ & + \frac{\partial E_{1000}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_{1000}} \frac{\partial s_{1000}}{\partial s_{999}} \frac{\partial s_{999}}{\partial S_{998}} \frac{\partial s_{998}}{\partial W} \\ & \cdots \\ & + \frac{\partial E_{1000}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s_{1000}} \frac{\partial s_{1000}}{\partial s_{100$$

1. Vanishing gradient 
$$\left\| \frac{\partial s_i}{\partial s_{i-1}} \right\|_2 < 1$$
2. Exploding gradient  $\left\| \frac{\partial s_i}{\partial s_{i-1}} \right\|_2 > 1$ 

$$\left\| \frac{\partial s_i}{\partial s_{i-1}} \right\|_2 < 1$$

$$\left\| \frac{\partial s_i}{\partial s_{i-1}} \right\|_2 > 1$$

#### **Limitations of RNN (2)**

Slow training due to the difficulty with *parallel computing*.





#### **Limitations of RNN (3)**

• Difficulty with processing long sequences (i.e., the model forgets memories long in the past.)



Early signals gets weak as the processing step goes on.

#### **Long Short Term Memory (LSTM)**

• To resolve the forgetting problem to some extent.



#### A new architecture that revolutionized sequence modeling in Deep Learning

#### **Attention Is All You Need**

- introduces *Transformer*
- GPT = Transformer layers
- Transformer over RNNs

Ashish Vaswani\* Google Brain avaswani@google.com Noam Shazeer\* Google Brain noam@google.com Niki Parmar\* Google Research nikip@google.com Jakob Uszkoreit\* Google Research usz@google.com

Llion Jones\* Google Research llion@google.com Aidan N. Gomez\* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* ‡
illia.polosukhin@gmail.com

#### **Essence of Transformer: "Attention Layer": 1) Self-Attention**

• The animal didn't cross the street because it was too tired.



(sort of) correlation matrix between the same sentences.

#### **Essence of Transformer: "Attention Layer": 1) Self-Attention**

• The animal didn't cross the street because it was too tired.



(sort of) correlation matrix between the same sentences.

#### **Essence of Transformer: "Attention Layer": 1) Self-Attention**

• The animal didn't cross the street because it was too tired.



(sort of) correlation matrix between the same sentences.



#### **Essence of Transformer: "Attention Layer": 2) Cross-Attention**

• My name is Daesoo ⇔ Jeg heter Daesoo



#### **RNNs vs Transformer**







Transformer (block)

|                    | RNN | Transformer |
|--------------------|-----|-------------|
| Parallel computing | Х   | 0           |
| Vanishing gradient | 0   | Х           |
| Forgetting problem | 0   | Х           |

#### Transformer in use in real life

- Google translator
- ChatGPT
- DALL-E

#### **Transformers for Time Series Forecasting**





Figure 1: Overview of ViT-VQGAN (left) and Vector-quantized Image Modeling (right) for both image generation and image understanding.

- Generative Models
- Self-supervised Learning
- Explainable Al

#### **Motivation for Self-supervised Learning**







#### **Motivation for Self-supervised Learning**







latent space Z

high-level semantics (e.g., cat, dog, person) are captured

#### **Self-supervised Learning**







latent space  $\mathcal{Z}$ 

high-level semantics (e.g., cat, dog, person) are captured in  $\mathcal{Z}$ .

#### **Self-supervised Learning**





Q. any similarity to the concept of the bootstrapping in statistics?

#### **Self-supervised Learning**





Eventually, a neural network model learns high-level visual concepts.

then, any task becomes easy.

# Explainable Al

# Explainable AI

### We have already learned some of it





#### **Grad-CAM:**

#### Visual Explanations from Deep Networks via Gradient-based Localization

Cited by 13,812

Ramprasaath R. Selvaraju<sup>1\*</sup> Michael Cogswell<sup>1</sup> Abhishek Das<sup>1</sup> Ramakrishna Vedantam<sup>1\*</sup>
Devi Parikh<sup>1,2</sup> Dhruv Batra<sup>1,2</sup>

<sup>1</sup>Georgia Institute of Technology <sup>2</sup>Facebook AI Research

{ramprs, cogswell, abhshkdz, vrama, parikh, dbatra}@gatech.edu

#### "OK, now my classification model works well. But it'd be nicer if the model also tells me why it classified the image as that."



# Explainable Al

#### **Reasoning behind Classification**



Brain tumor identification & detection



Figure 4. Heatmaps reflecting the proposed CRM for (a) abdomen CT, (b) brain MRI, (c) cardiac abdomen ultrasound, (d) chest X-ray, (e) fluorescence microscopy, (f) retinal fundoscopy, and

On the various medical images

# Explainable Al

#### **Counterfactual Sampling in Time Series Anomaly Detection**



# Thank you!



Norwegian University of Science and Technology