

Machine Learning

Rudolf Mayer (mayer@ifs.tuwien.ac.at)

November 20th, 2019

Outline

- Short recap
- Decision Trees (continued)
- Evaluation (continued)

Outline

- Short recap
- Decision Trees (continued)
- Evaluation (continued)

Short Recap – Lecture October 30th

- Decision Tree Learning
 - Finding optimal split
 - Numerical attributes
 - Different criteria for optimality
 - Error Rate
 - Information Gain
 - (Gini Index)
 - Binary & multiple classes
 - Overfitting & (pre)pruning
 - Stability
 - Binary / n-ary trees
 - Categorical & numerical data

Short Recap

- K-nn continued
 - Weighting in neighbour search
 - Search optimisations
 - false true true True positive **False positive** (TP) (FP, Type I error) false False negative True negative (FN, Type II error) (TN)
- Evaluation
 - Confusion matrix
 - Micro vs. Macro averaging

$1 \sum_{i=1}^{ C }$	$TP_{i}^{+}TN_{i}$
$ C _{i=1}$	$\overline{TP_i + FP_i + TN_i + FN_i}$

 Holdout vs. cross validation

prute better

Outline

- Short recap
- Decision Trees (continued)
- Evaluation (continued)

Decision Trees: Algorithm

- Popular measures to compute best split
 - Error rate
 - Information gain
 - Gini impurity (Gini index)

Information Theory & Entropy

- Introduced by Claude Shannon (1948)
 - Original for compression & reliable communication
 - Applications in statistical inference, NLP, cryptography,...
- Entropy: # of bits needed for communication
 - Absolute limit for best lossless compression

- Measure of uncertainty
 - High probability low entropy
- Concerned with measuring actual information vs. redundancy

What is "Information Entropy"?

- Entropy measure of uncertainty
- ML: measure for the "impurity" of a set
 - High Entropy → bad for prediction
 - High Entropy → needs to be reduced

$$H(X) = E(I(X)) = \sum_{i=1}^{n} p(x_i)I(x_i) = -\sum_{i=1}^{n} p(x_i)\log_{2} p(x_i)$$

H ... Entropy

E ... Expected value

I(X) ...information content of X p(...) ... probability function

Calculating H(X): example

Two dimensional data, two classes

$$p(x_{\text{red}}) = \frac{4}{12} = 0.33$$

$$p(x_{\text{blue}}) = \frac{8}{12} = 0.67$$

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_{2} p(x_i)$$

$$H(X) = -p(x_{red}) \log_2 p(x_{red}) - p(x_{blue}) \log_2 p(x_{blue})$$

$$H(X) = -\frac{1}{3} \times \log_{2}(\frac{1}{3}) - \frac{2}{3} \times \log_{2}(\frac{2}{3})$$

$$= -\frac{1}{3} \times -1.58 - \frac{2}{3} \times -0.58$$

$$= 0.53 + 0.39$$

$$= 0.92$$

Remember:

$$\log_{2}(x) = \log(x) / \log(2)$$

H(X): Example values

	$p(x_{\rm red})$	$p(x_{\text{blue}})$	H(X)
I	0.5	0.5	?
II	0.3	0.7	?
III	0.7	0.3	?
IV	0	1	?

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_{2} p(x_i)$$

H(X): Example values

	$p(x_{\rm red})$	$p(x_{\text{blue}})$	H(X)
I	0.5	0.5	?
Π	0.3	0.7	?
III	0.7	0.3	?
IV	0	1	?

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_{2} p(x_i)$$

H(X): Relative vs. absolute frequencies

What are the entropies of I and II?

$$p(x_{\text{red, I}}) = \frac{4}{12} = 0.33 ; p(x_{\text{blue, I}}) = \frac{8}{12} = 0.67$$

_	9 _		_	18 _	
$p(x_{\text{red, II}})$	_ 0	.33; $p(x_{\text{blue}})$	п) —	=	0.67
ica, ii	27	bluc,	п	27	

$$=> H(X_{I}) = H(X_{II})$$

Dataset red blue

I 8 4

II 18 9

Only relative frequencies matter!

Information Gain

Given a set and a choice between possible subsets, which one is preferable?

Information Gain: Sets that minimize Entropy by largest amount

$$IG(X_A, X_B) = H(X) - p(x_A)H(X_A) - p(x_B)H(X_B)$$

	A (green)	B (yellow)
Points	0	5
p(X.)	0.0	0.5
p(x _{red})	0.23	0.85
p(x _{blue})	0.6%	0.25
H(X.)	0.92	0.82
IG	0.209 (1(4-005000792-00500789))	

Information Gain (Properties)

- Information Gain is
 - the amount by which the original Entropy can be reduced by splitting into subsets
 - Min/max bounds of Information gain?
 - at most as large as the Entropy of the undivided set
 - at least zero (if Entropy is not reduced)
- $0 \le IG \le H(X)$

2-dimensional data (x, y), numerical values, two classes

16


```
H(left) =
-0.125log_20.125 - 0.875log_20.875 =
0.375 + 0.169 = 0.54356
```

```
H(right) =
-0.143log_20.143 - 0.857log_20.857 =
0.401+0.191 = 0.59167
```


H(split) = 0.54356*8/15 + 0.59167*7/15 = 0.566011333

original Entropy: H(x) = 0.99679

- 8/15 * log2(8/15) - 7/15 * log2(7/15)

IG = 0.43078

Tree training, level 1

Tree training, level 2

Tree training, level 3: completely built tree

- Information gain: considers sizes of subsets
 - Preferred over error rate

Decision Trees: Classification

How to classify unknown items?

Same as for a tree built error rate!

Decision Trees: Classification

- → Decend the tree until leaf-node
- → Use majority of class in that leaf node

Decision Trees: Classification

- → Decend the tree until leaf-node
- → Use majority of class in that leaf node

$$IG(X_{1},..., X_{m}) = H(X) - \sum_{j=1}^{m} p(x_{j})H(X_{j})$$

$$H(X) = -\sum_{i=1}^{n} p(x_{i}) \log_{2} p(x_{i})$$

Maximum value of Entropy?

$$IG(X_{1},..., X_{m}) = H(X) - \sum_{j=1}^{m} p(x_{j})H(X_{j})$$

$$H(X) = -\sum_{i=1}^{n} p(x_{i}) \log_{2} p(x_{i})$$

$$H(X) = -p(x_{red}) \log_2 p(x_{red}) - p(x_{blue}) \log_2 p(x_{blue}) - p(x_{gellow}) \log_2 p(x_{gellow})$$

Maximum Entropy?
$$H(X) = \frac{1}{3} \times \log_{2}(\frac{1}{3}) - \frac{1}{3} \times \log_{2}(\frac{1}{3}) - \frac{1}{3} \times \log_{2}(\frac{1}{3}) - \frac{1}{3} \times \log_{2}(\frac{1}{3}) = 1.5849$$

FACULTY OF !NFORMATICS

$$IG(X_{1},...,X_{m}) = H(X) - \sum_{j=1}^{m} p(x_{j})H(X_{j})$$

$$H(X) = -\sum_{i=1}^{n} p(x_{i}) \log_{2} p(x_{i})$$

Maximum Entropy?

Decision Trees: Algorithm

- Popular measures to compute best split
 - Error rate
 - Information gain
 - Gini impurity (Gini index)

Gini impurity (Gini index)

- Inequality among values of a distribution
 - Developed initial for income levels
 - How often a randomly chosen element from the set would be incorrectly labeled, if it was randomly labeled according to the distribution of labels in the subset

$$I_{G}(p) = \sum_{i=1}^{|C|} p_{i}(1 - p_{i}) = \sum_{i=1}^{|C|} (p_{i} - p_{i}^{2}) = \sum_{i=1}^{|C|} p_{i} - \sum_{i=1}^{|C|} p_{i}^{2} = 1 - \sum_{i=1}^{|C|} p_{i}^{2}$$

- Value range?
 - Between 0 (only one class)and 1 (total inequality)

Entropy vs. Gini Impurity

- Slightly different properties
 - Empirically studies have shown no clear evidence
 - Disagree only on 2% of potential cases [1]

[1] Laura Elena Raileanu & Kilian Stoffel. Theoretical comparison between the Gini Index and Information Gain criteria

Decision Trees: Overfitting

- Fully grown trees are usually too complicated
 - Why is that an issue?
 - Generalisation
 - Understanding
 - Especially useful when there is noisy/"useless" data

Fully arown

Decision Trees: Stopping Criteria

- How to achieve simplified trees?
 - Avoid fully growing trees! How?
 - → Alternative stopping criteria
 - Stop splitting a node when
 - Data in each node from only one class
 - Absolute number of samples is low (< threshold)
 - Entropy is already relatively low (< threshold)
 - Information Gain is low (< threshold)
 - Depth of tree has reached a max value (> threshold)
 - Threshold values depend on data set

Decision Trees: Pruning

- How to achieve simplified trees?
 - "Cut back" complicated trees

- "Pruning" means removing nodes from a tree after training has finished
 - Especially useful when there is noisy data
 - Stopping criteria sometimes referred to as "pre-pruning"
- Least contributing nodes are removed
 - sometimes tree is remodelled
- A set of candidate trees is generated
 - Best tree is selected
- Reduces complexity of tree

Decision Trees: Pruning

- Simple bottom-up approach: reduced error pruning
 - 1. Starting from leaves, remove a sub-tree from the tree
 - a. Replace it with the majority class
 - b. Evaluate the performance without the pruned node
 - c. Keep tree if effectiveness is not decrease
 - 2. Repeat step 1
 - Until no improvement is obtained from pruning
 - (As long as effectiveness is still acceptable)

Decision Trees: Pruning

- Other approaches
- Cost complexity pruning (bottom up)
 - Generate a list of candidate trees T₀, T₁, ... T_m
 - T_m = root node only
 - Selecting subtrees to be replaced as the tree that minimises

```
\frac{\operatorname{err}(\operatorname{prune}(T,t),S) - \operatorname{err}(T,S)}{|\operatorname{leaves}(T)| - |\operatorname{leaves}(\operatorname{prune}(T,t))|}
```

Take the best performing tree as the final decision tree

Pessimistic Error Pruning (top-down)

Decision Trees: Overfitting

- What's the difference between pruning & prepruning?
 - Effectiveness of final tree
 - Might be better for pruned trees
 - Or simply more fitted to training data?
 - Effort for pruning algorithm (runtime)

Small changes in data

→ potentially very different tree!

Decision Trees – properties

- Rather old model, well known
- Simple algorithm → easy to understand
 - White box, rather than black-box
 - Used in many non-IT domains

Can be used to illustrate expert knowledge

- Various split criteria
- Problems with overfitting (pre)pruning helps
- Problems with stability

 can be exploited!

Decision Trees: algorithm properties

- Previous example: 2D data, x & y axis; BUT:
 - There can be more than two classes

- Input data can be of any dimensionality
 - E.g. in 3D space of numerical data:
 planes dividing the space along x, y or z axis
- Input data does not have to be numerical
 - → decision trees also work on categorical data
- Splits not limited to binary (i.e. > two branches)

Decision Trees: categorical data

- How do we split categorical data?
 - Imagine an attribute "Type" (of food):
 - French, Italian, Thai
 - One approach:
 each value becomes
 a sub-branch

Type?

French
Thai

Italian

- Another approach
 - "One vs. all" or other arbitrary combinations
 - Too minimise number of branches

Decision Trees: categorical data

Example with n-ary splits:

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
6	medium	medium	medium	medium	70-74	America	bad
4	medium	medium	medium	low	75-78	Europe	bad
8	high	high	high	low	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
4	low	low	low	low	79-83	America	good
6	medium	medium	medium	high	75-78	America	bad
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
8	high	high	high	low	70-71	America	bad
4	low	medium	low	medium	75-78	Europe	good
5	medium	medium	medium	medium	75-78	Europe	bad

18/40 Records subsample

similar in UCI Machine learning repository: https://archive.ics.uci.edu/ml/datasets/auto+mpg

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
6	medium	medium	medium	medium	70-74	America	bad
4	medium	medium	medium	low	75-78	Europe	bad
8	high	high	high	low	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
4	low	low	low	low	79-83	America	good
6	medium	medium	medium	high	75-78	America	bad
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
8	high	high	high	low	70-71	America	bad
4	low	medium	low	medium	75-78	Europe	good
5	medium	medium	medium	medium	75-78	Europe	bad

Entropy of data set $H(X) = -\sum_{i=1}^{n} p(x_i) \log_{2} p(x_i)$

12 samples class bad (2/3), 6 samples good (1/3)

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
6	medium	medium	medium	medium	70-74	America	bad
4	medium	medium	medium	low	75-78	Europe	bad
8	high	high	high	low	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
4	low	low	low	low	79-83	America	good
6	medium	medium	medium	high	75-78	America	bad
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
8	high	high	high	low	70-71	America	bad
4	low	medium	low	medium	75-78	Europe	good
5	medium	medium	medium	medium	75-78	Europe	bad

Entropy of data set:

- $-1/3 \times \log_2 1/3 2/3 \times \log_2 2/3 = -1/3 \times \log(1/3)/\log(2) 2/3 \times \log(2/3)/\log(2)$
- $= -1/3 \times -1,59946 2/3 \times -0,58496$
- = 0,918295834

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Split on first attribute – cylinders

• Sort data set by cylinders & MpG (output variable)

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Split on first attribute – cylinders

- Sort data set by cylinders & MpG (output variable)
- Identify subsets: 4 distinct values → 4 sets

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Split on first attribute – cylinders

- 4 distinct values split in 4 sets
- Compute IG compute entropy for each subset

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad

5 samples class good (5/8), 3 samples class bad (3/8) $H(X_{cylinders=4}) = -5/8 \times log_2(5/8) - 3/8 \times log_2(3/8)$ $= (-5/8 \log(5/8) \log(2)) + (-3/8 \log(3/8) \log(2))$ = 0,954434003

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
5	medium	medium	medium	medium	75-78	Europe	bad

1 sample class bad

$$H(X_{cylinders=5}) = 0$$

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad

3 sample class bad $H(X_{cylinders=6}) = 0$

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

1 sample class good (1/6), 5 samples class bad (5/6), $H(X_{\text{cylinders}=8}) = -1/6 \times \log_2(1/6) - 5/6 \times \log_2(5/6)$ $= (-1/6 \log(1/6) \log(2)) + (-5/6 \log(5/6) \log(2))$ = 0,650022422

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Entropy of split:

$$H\left(X_{cyl}^{-}\right) = p\left(x_{cyl}^{-}\right) + p\left(x_{cyl}^$$

$$= \frac{8}{19} \times 0,95443 + \frac{1}{19} \times 0 + \frac{3}{19} \times 0 + \frac{6}{19} \times 0,6500$$

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Information Gain: $IG(X_A, X_B) = H(X) - p(X_A)H(X_A) - p(X_B)H(X_B)$

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	medium	low	low	low	79-83	America	good
4	low	low	medium	high	79-83	America	good
4	medium	medium	medium	low	75-78	Europe	bad
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Information Gain: $_{IG(X_A, X_B)} = _{H(X)} - _{p(x_A)H(X_A)} - _{p(x_B)H(X_B)}$ 0,918295834 - 8/18 x 0,954434003 - 6/18 x 0,650022422

= 0,277428803

cylinders	displacement	horse power	weight	accelleration	Model year	maker	MpG
4	low	low	low	high	75-78	Asia	good
4	low	low	low	low	79-83	America	good
4	low	medium	low	medium	75-78	Europe	good
4	low	low	medium	high	79-83	America	good
4	low	medium	low	medium	70-74	Asia	bad
4	low	medium	low	low	70-74	Asia	bad
4	medium	low	low	low	79-83	America	good
5	medium	medium	medium	medium	75-78	Europe	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	medium	70-74	America	bad
6	medium	medium	medium	high	75-78	America	bad
4	medium	medium	medium	low	75-78	Europe	bad
8	high	medium	high	high	79-83	America	good
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	75-78	America	bad
8	high	high	high	low	70-74	America	bad
8	high	high	high	low	70-71	America	bad

Split on second attribute – displacement

- 3 distinct values split in 3 sets
- Compute IG compute entropy for each subset
- Finish it at home as exercise! FACULTY OF !NFORMATICS

Training the tree

Build a decision tree

- 1. Identify splits
- 2. Compute IGs
- 3. Select attribute with highest IG
 - → Model Year

First level of Decision Tree

Recursion Step

Recursion Step

Second level of tree

Only one node from first level needs expansion

- Identify splits

 (on all attributes
 except modelyear)
- 2. Compute IGs
- 3. Select attribute with highest IG
 - displacement OR weight

Attribute	Attr.Value	good	bad	Distribution	Entropy	Info Gain
cylinders	4	2	1		0.9183	3
	5	0	1)
	6	0	1)
	8	0	2)
				Sp	lit 0.393 6	0.5247
displacement	low	2	0		()
	medium	0	3)
	high	0	2)
				Sp	lit " (0.9183
horse power	low	1	0		()
	medium	1	3		0.8113	3
	high	0	2		<u> </u>)
				Sp	lit 0.4636	0.4547
weight	low	2	0		- ()
	medium	0	3)
	high	0	2)
				Sp	lit C	0.9183
accelleration	low	0	3)
	medium	1	1		1.	
	high	1	1		1.	
				Sp	lit 0.5714	0.3469
maker	Asia	1	0		- ()
	America	0	3		-)
	Europe	<u>1</u>	2		0.9183	3
				 Sp	lit 0.3936	0.5247

Second level of tree

Decision Trees

- Differences between numerical and categorical variables for decision tree learning?
 - Categorical variables define (one possible) split rather explicitly
 - Either splitting binary, or n-ary
 - In numerical data, we can have way more potential splits
 - What if we split n-ary on all potential attribute values?
 - Do not need to consider that attribute in future steps
 - Because it does not separate data in any new way

Information Gain Ratio

Let's assume name is also an attribute (not an ID)

name	sex	age	Play games
John	M	old	N
Mark	M	young	Υ
Anne	F	old	Υ
Adam	M	young	Υ
John	M	young	Υ
Alex	F	young	N
Alex	M	old	N
Xena	F	old	N
Tina	F	young	Υ
Lucy	F	young	Υ

How will that tree look like?

Information Gain Ratio

- Information gain favours features with many possible outcomes
- Information Gain Ratio accounts for that
 - Computes "Value" of an attribute, based on number of different values :

$$V(X) = -\sum\limits_{i=1}^{N}rac{|T_i|}{|T|}\cdot \log(rac{|T_i|}{|T|})$$

- "Normalises" Information gain V

$$R(X) = \frac{G(X)}{V(X)}$$

Play-golf decision tree

'Play golf/tennis' data set

Outlook	Temperature	Humidity	Windy	Play?
sunny	85	85	false	Don't Play
sunny	80	90	true	Don't Play
overcast	83	78	false	Play
rain	70	96	false	Play
rain	68	80	false	Play
rain	65	70	true	Don't Play
overcast	64	65	true	Play
sunny	72	95	false	Don't Play
sunny	69	70	false	Play
rain	75	80	false	Play
sunny	75	70	true	Play
overcast	72	90	true	Play
overcast	81	75	false	Play
rain	71	80	true	Don't Play

 Solve it at home as an exercise!

 Discussion next lecture

Decision Trees: Algorithm in detail

- For each leaf node
 - If not all data from the same class (or other stopping criterion)
 - For each attribute
 - Identify possible splits of samples into (two or more) subspaces
 - Compute best split (over all attributes!)
 - Based on a split goodness measure/criterion
 - Until data in all leaf nodes is pure (same class)
 - Or cannot be distinguished (When can this happen?)
 - Or other stopping criterion fullfilled (e.g. maximum depth)

Decision Trees: Algorithm in detail

- For each attribute
 - Identify possible splits of samples into (two or more) subspaces
 - categorical variables? (e.g. size with values "small" / "medium" / "large")
 - By each variable value, i.e. split into 3 sub-branches
 - Or one value vs. other values: small vs. rest, medium vs rest, large vs. rest (split into 2 sub-branches)
 - Difference?
 - numerical variables? (e.g. size in centimeters)
 - sort values & split between each pair of values
 - → How many candidate splits?

Decision Trees – Regression

 Can decision trees also work for regression tasks?

- How to compute output?
 - Average of all values in the leaf node

- Any changes in learning?
 - Split goodness computation
 - Means squared error (MSE), mean absolute error (MAE), ...

Outline

- Short recap
- Decision Trees (continued)
- Evaluation (continued)

Confusion Matrix

- Matrix of classification results per class
 - Size (# classes) x (# classes)

- For each actual class plot the predicted classes
- Shows accuracy for single classes
- Indicates which classes are confused

Confusion Matrix: Example

	Grey	Black	Red	Accuracy
Grey	5	3	0	0.625
Black	2	3	1	0.500
Red	0	1	12	0.920
				0.740

- How does the ideal matrix look like?
 - Numbers only in the diagonal
 - In other cells: indicates misclassification

Confusion Matrix

- Important to analyse mistake patterns
 - Which classes get mixed up?

			cl	assi	fied	as					
a	b	c	d	e	f	g	h	i	j	k	genre
34	3	0	0	2	8	0	0	2	10	1	a = Country
9	39	0	1	1	4	0	0	0	5	1	b = Folk
0	2	47	0	1	4	1	0	1	4	0	c = Grunge
0	2	0	39	0	3	1	6	8	0	1	d = Hip-Hop
2	3	3	0	34	4	10	0	0	4	0	e = Metal
10	3	9	4	4	11	3	2	1	11	2	f = Pop
5	2	5	0	10	2	36	0	0	0	0	g = Punk Rock
2	0	0	10	0	3	0	40	2	1	2	h = R&B
0	1	0	7	0	1	0	2	45	0	4	i = Reggae
8	1	8	1	3	5	1	1	1	27	4	j = Slow Rock
1	0	0	0	0	1	0	1	3	2	52	k = Children's

Confusion Matrix

- Important to analyse mistake patterns
 - Which classes get mixed up

classified as											
a	b	c	d	e	f	g	h	i	j	k	genre
34	3	0	0	2	8	0	0	2	10	1	a = Country
9	39	0	1	1	4	0	0	0	5	1	b = Folk
0	2	47	0	1	4	1	0	1	4	0	c = Grunge
0	2	0	39	0	3	1	6	8	0	1	d = Hip-Hop
2	3	3	0	34	4	10	0	0	4	0	e = Metal
10	3	9	4	4	11	3	2	1	11	2	f = Pop
5	2	5	0	10	2	36	0	0	0	0	g = Punk Rock
2	0	0	10	0	3	0	40	2	1	2	h = R&B
0	1	0	7	0	1	0	2	45	0	4	i = Reggae
8	1	8	1	3	5	1	1	1	27	4	j = Slow Rock
1	0	0	0	0	1	0	1	3	2	52	k = Children's
47	69	65	63	62	23	69	76	71	42	77	Precision
57	65	78	65	57	18	6	67	75	45	87	Recall

Confusion Matrix: Example

	BigClass	SmallClass	Accuracy
BigClass	490	0	100
SmallClass	10	0	0
			0.98

Evaluation measures – averages

- Previous measures are micro-averaged
- Do not indicate issues with imbalanced classes

- Alternative: macro-averaged measures
 - Compute precision, recall, ... per class
 - Average class-results

Evaluation – micro average

	BigClass	SmallClass	Accuracy
BigClass	490	0	100
SmallClass	10	0	0
			0.98

Accuracy:

$$\frac{TP + TN}{TP + FP + TN + FN} = \frac{TP + TN}{\# samples}$$

Evaluation – macro average

	BigClass	SmallClass	Accuracy
BigClass	490	0	100
SmallClass	10	0	0
			0.5

Accuracy:

$$\frac{1}{\mid C \mid} \sum_{i=1}^{\mid C \mid} \frac{TP_{i} + TN_{i}}{TP_{i} + FP_{i} + TN_{i} + FN_{i}}$$

Performance per class

- Important to consider when
 - imbalanced classes
 - Performance of a particular class is more important

Examples ?

- Health prediction
- Classify sensitive documents, ...
- Spam filter
- Identify malicious software

Costs of misclassification

- Cost / loss functions
 - Measures per class with weighted averages
 - Higher weight to classes where errors are more severe
 - → Requires expert knowledge to identify weights

Effectiveness & Efficiency

- Effectiveness: quality of classification
 - Accuracy, precision, recall, F1, ...

- Efficiency: computational efficiency (speed, runtime) of a classification
- Performance: often used as synonym for either effectiveness OR efficiency!

Effectiveness & Efficiency

- What is more important?
- Trade-off between effectiveness & efficiency
- Differentiate between efficiency on
 - Training (learning) a model
 - Classification

 Efficiency is more relevant if model needs to be (re-)trained frequently

Leave-p-out Cross validation

- A type of exhaustive cross-validation
 - Use p observations in test (validation) set
 - Remaining samples are in training set
 - Repeated for all combinations to cut p samples
 - Quickly becomes computationally infeasible
 - 100 samples, p=30
 - 3 x 10²⁵ combinations!

- Special case: p=1, leave-one-out cross validation
 - Test/validation set contains one sample
 - Number of combinations?
 - n

Bootstrapping

 A bootstrap sample is a random subset of the data sample

- Data points may be selected repeatedly
 - i.e. selection with replacement
- An arbitrary number of bootstrap samples may be used

- Bootstrapping is an alternative to cross validation and holdout method (training-test split)
- Testing often on "out-of-bag samples"

Example: Bootstrapping

Example: Bootstrapping

Overfitting & Generalisation

- Overfitting: model is trained too specific to learning examples
 - Examples of classifiers?

- Generalisation: ability of model to perform well on the general problem
 - i.e. the real distribution that generated the training data

Questions?