10-707: Deep Learning, Fall 2017

Homework 3

Lecturer: Russ Salakhutdinov Name: Yuan Liu(yuanl4)

1 Problem 1, 4-gram language model

- Embedding layer:
 - **Input**: three word index: $w_{i-1}, w_{i-2}, w_{i-3}$.
 - Parameters: A 2-dimensional matrix C of size $V \times D$.
 - **Output:** Vector representations for these three words: $C_{w_{i-1},:}, C_{w_{i-2},:}, C_{w_{i-3},:}$, where $C_{j,:}$ means the j^{th} row of the matrix C.
- Embedding to Hidden:
 - Input: $C_{w_{i-1},:}, C_{w_{i-2},:}, C_{w_{i-3},:}$ from the output of the embedding layer. The size of each element of input $1 \times D$.
 - Parameters: Three embed_to_hidden_weights matrix $W^{(1)}, W^{(2)}, W^{(3)}$, each matrix's size is $D \times H$. A hidden_bias vector b^{hidden} of size $1 \times H$.
 - Output: $C_{w_{i-1},:}W^{(1)} + C_{w_{i-2},:}W^{(2)} + C_{w_{i-3},:}W^{(3)} + b^{hidden}$
- Tanh Layer:
 - Input: $A = C_{w_{i-1},:}W^{(1)} + C_{w_{i-2},:}W^{(2)} + C_{w_{i-3},:}W^{(3)} + b^{hidden}$ of size $1 \times H$
 - Parameters: None
 - Output: tanh(A)
- Hidden to Output:
 - Input: $\mathbf{H} = tanh(\mathbf{A})$ of size $1 \times H$.
 - Parameters: The hidden_to_output_weight W^{out} of size $H \times V$ and the output_bias b^{out} of size $1 \times V$.
 - Output: $HW^{out} + b^{out}$
- Softmax layer:
 - Input: $O = HW^{out} + b^{out}$ of size $1 \times V$.
 - **Parameters**: None
 - Output: $S_i = \frac{e^{O_i}}{\sum_{i=1}^{V} e^{O_j}}$, S is a matrix of size $1 \times V$.
- Loss: $loss = -\log S_{w_i}$

2 Homework 3

Now we can calculate the derivation:

we can calculate the derivation:
$$\frac{\partial loss}{\partial S_{w_i}} = -\frac{1}{S_{w_i}}$$

$$\frac{\partial S_{w_i}}{\partial O_j} = \frac{1(w_i = j)e^{\mathbf{O}_{w_i}}(\sum_{k=1}^V e^{O_k}) - e^{\mathbf{O}_{w_i}}e^{O_j}}{(\sum_{k=1}^V e^{O_k})^2}$$

$$\frac{\partial loss}{\partial O_j} = \frac{\partial loss}{\partial S_{w_i}} \frac{\partial S_{w_i}}{\partial O_j} = -(1(w_i = j) - S_j)$$

$$\frac{\partial O_j}{\partial H_i} = W_{i,j}^{out}, \quad \frac{\partial O_j}{\partial W_{i,j}^{out}} = H_i, \quad \frac{\partial O_j}{\partial b_j^{out}} = 1$$

$$\frac{\partial loss}{\partial H_i} = \sum_{j=1}^V \frac{\partial loss}{\partial O_j} \frac{\partial O_j}{\partial H_i}$$

$$\frac{\partial loss}{\partial W_{i,j}^{out}} = \frac{\partial loss}{\partial O_j} \frac{\partial O_j}{\partial W_{i,j}^{out}} = -(1(w_i = j) - S_j)H_i \qquad (1)$$

$$\frac{\partial loss}{\partial b_i^{out}} = \frac{\partial loss}{\partial O_i} \frac{\partial O_i}{\partial b_i^{out}} = -(1(w_i = i) - S_i) \qquad (2)$$

$$\frac{\partial H_j}{\partial A_i} = (1 - H_j^2) * 1(i = j)$$

$$\frac{\partial A_i}{\partial C_{w_{i-1},j}} = W_{j,i}^{(1)}, \quad \frac{\partial A_i}{\partial C_{w_{i-2},j}} = W_{j,i}^{(2)}, \quad \frac{\partial A_i}{\partial C_{w_{i-3},j}} = W_{j,i}^{(3)}$$

$$\frac{\partial loss}{\partial C_{w_{i-1},j}} = \sum_{i,k} \frac{\partial loss}{\partial H_i} \frac{\partial H_i}{\partial A_k} \frac{\partial A_k}{\partial C_{w_{i-1},j}} = \sum_{i} \frac{\partial loss}{\partial H_i} \frac{\partial H_i}{\partial A_i} \frac{\partial A_i}{\partial C_{w_{i-1},j}} = \sum_{i} \frac{\partial loss}{\partial H_i} (1 - H_i^2) W_{j,i}^{(1)}$$

$$\frac{\partial loss}{\partial C_{w_{i-1},j}} = \sum_{i} \frac{\partial loss}{\partial H_i} \frac{\partial I_i}{\partial A_i} \frac{\partial I_i}{\partial I_i} \frac{\partial$$

$$\frac{\partial loss}{\partial \boldsymbol{C}_{w_{i-2},j}} = \sum_{i} \frac{\partial loss}{\partial \boldsymbol{H}_{i}} (1 - \boldsymbol{H}_{i}^{2}) \boldsymbol{W}_{j,i}^{(2)} \tag{4}$$

$$\frac{\partial loss}{\partial \boldsymbol{C}_{w_{i-3},j}} = \sum_{i} \frac{\partial loss}{\partial \boldsymbol{H}_{i}} (1 - \boldsymbol{H}_{i}^{2}) \boldsymbol{W}_{j,i}^{(3)} \tag{5}$$

$$\frac{\partial A_j}{\partial W_{i,j}^{(1)}} = C_{w_{i-1},i}, \ \frac{\partial A_j}{\partial W_{i,j}^{(2)}} = C_{w_{i-2},i}, \ \frac{\partial A_j}{\partial W_{i,j}^{(3)}} = C_{w_{i-3},i}$$

$$\frac{\partial loss}{\partial \mathbf{W}_{i,j}^{(1)}} = \frac{\partial loss}{\partial \mathbf{H}_j} (1 - \mathbf{H}_j)^2 \mathbf{C}_{w_{i-1},i}$$
(6)

$$\frac{\partial loss}{\partial \mathbf{W}_{i,j}^{(2)}} = \frac{\partial loss}{\partial \mathbf{H}_{j}} (1 - \mathbf{H}_{j})^{2} \mathbf{C}_{w_{i-2},i}$$
(7)

$$\frac{\partial loss}{\partial \boldsymbol{W}_{i,j}^{(3)}} = \frac{\partial loss}{\partial \boldsymbol{H}_{j}} (1 - \boldsymbol{H}_{j})^{2} \boldsymbol{C}_{w_{i-3},i}$$
(8)

$$\frac{\partial \boldsymbol{A}_i}{\partial \boldsymbol{b}_j^{hidden}} = 1(i=j)$$

$$\frac{\partial loss}{\partial \boldsymbol{b}_{i}^{hidden}} = \frac{\partial loss}{\partial \boldsymbol{H}_{j}} (1 - \boldsymbol{H}_{j})^{2}$$
(9)

Homework 3

The derivation of weights is listed in (1) (9)

2 Problem 2, LSTM & GRU

(a) LSTM contains 3 gates: input gates i_t , forget gates f_t and output gates o_t . GRU contains 2 gates: update gate z_t and reset gate r_t .

(b) LSTM:

- forget gate: to decide what information should be throw away form the cell state. 1 means 'completely remember' and 0 means 'completely forget'.
- input gate: to decide which value in the cell state should be updated. 1 means 'add' and 0 means 'ignore'.
- output gate: to decide what to output. 1 means 'output' and 0 means 'don't output'.

GRU:

- update gate: to decide which value from \tilde{h}_t should be added to h_t and what value from h_{t-1} should be forget. 1 means the corresponding value from \tilde{h}_t should be remembered and the corresponding value from h_{t-1} should be forgot.
- reset gate: to decide what part of h_{t-1} should be computed to get \tilde{h}_t .
- (c) The output of LSTM is the memory unit C and hidden content h. The output of GRU only contains the hidden content h. The LSTM controls the flow of information according to both C and h, while the GRU only expose the full hidden content without any control.
- (d) LSTM: $W_f: n \times m, \ U_f: n \times n, \ b_f: n, \ W_i: n \times m, \ U_i: n \times n, \ b_i: n, W_o: n \times m, \ U_o: n \times n, \ b_o: n, \ W_c: n \times m, \ U_c: n \times n, \ b_c: n.$ Totally, the LSTM contains $4(n^2+mn+n)$ parameters. GRU: $W_z: n \times m, \ U_z: n \times n, \ b_z: n, \ W_r: n \times m, \ U_r: n \times n, \ b_r: n, W: n \times m, \ U: n \times n, \ b: n.$ Totally, the GRU contains $3(n^2+mn+n)$ parameters.
- (e) The GRU might take less time to train. Because GRU contains fewer parameters than the LSTM. Moreover, GRU only contains 2 gates and its structure is simpler, so it will be more computationally efficient.