

EE290C - Fall 2018

Advanced Topics in Circuit Design VLSI Signal Processing

Lecture 19: Neural Networks and Systolic Arrays

Announcements

Chisel Community Conference

- Impressions?
- Tape-in today
 - We will review (briefly) on Tuesday
 - 5-min presentations by each group
 - 15-min meetings starting at 3:30
- Final design due on Nov 30
 - Final presentations on Nov 6

Outline

Neural networks

- Design of neural network accelerators
- Systolic arrays

Reading:

- > V. Sze, et al, Proc. IEEE, 12/17
- M. Blott, HotChips 2018.
- > X. Yang, et al, arxiv 1809.04070

Convolutional Neural Networks

- CNNs are typically feed-forward graphs
 - One or more layers up to thousands

- Each layer has neurons n_i, interconnected with synapses, each with a weight w_{ii}
- Each neuron computes

$$n_0 = Act(w_{00}^*i_0 + w_{10}^*i_1)$$

- Linear transform (dot-product)
- Followed by a non-linear activation function

NN Evolution

'Learn' low-level to high-level features

Convolutional Neural Networks

- NNs are an "universal approximation function"
- If one make it big/deep enough and train it enough
 - Can outperform humans on certain tasks
 - Outperforms traditional image classification/object detection algorithms
- Requires little or no domain expertise
 - Just train it and it works
- 'Swiss Army knife' of algorithms

ImageNet Performance

- Image classification among 1000 object categories
 - Training set: 1.2M images
- Step improvement after a series of incremental improvements

Example: ResNet50

Inference on ResNet50

For ResNet50:

70 layers

7.7 billion operations

25.5Mbytes of weight storage*

10.1 Mbytes for activations*

*Assuming int8

Training -> Inference

Training dataset labels Weights Weights Weights W0 **W1** W2 Layer Layer Layer "cat" Outputs Inputs L0 L1 L2 "dog"

Training: Machine 'learns' by optimizing weights from labeled data In the **cloud**

Inference: Estimates outcomes from new data

In the **cloud** or at the **edge**

Neural Networks in More Detail

Basic components

- Activations
- Fully connected layer (FC) (are increasingly replaced due to their memory intensive nature)
- Convolutional layer (CNV)
- Pooling (subsampling) layers (POOL)
- Recurrent layers (RL)
- Batch normalization

Popular meta layers

- Residual layers
- Inception layers

Activation Functions

- Fires when input is greater than a threshold
 - Non-linear so we can approximate more complex functions
- Most popular for CNN: rectified linear unit (ReLU)
 - Popular as it propagates gradients better than bounded
 - However, recent work says as long as there is the proper initialization, it'll be fine even with bounded act. function*
- Other common ones include: tanh, leaky ReLU, sigmoid
- For quantized neural networks threshold functions are used
 - Straight-through estimators for backpropagation

From Gabor Melli

Fully-Connected Layers

- Each input activation is connected to every output activation
 - Receptive field encompasses the full input
- Can be written as a matrix-vector product with an element-wise non-linearity applied afterwards

Inner product/Dense layers

- Implementation Challenges
 - High weight memory requirement: #IN * #OUT * BITS
 - Low arithmetic intensity: 2* #IN* #OUT / #IN * #OUT * BITS/8

IN: number of input channels

OUT: number of output channels

BITS: bit precision in data types

$$(i_0 \quad i_1 \quad i_2) \times \begin{pmatrix} W_{00} & W_{01} & W_{02} & W_{03} \\ W_{10} & W_{11} & W_{12} & W_{13} \\ W_{20} & W_{21} & W_{22} & W_{23} \end{pmatrix} = (n_0' \quad n_1' \quad n_2' \quad n_3')$$

$$(n_0 \quad n_1 \quad n_2 \quad n_3) = Act(n_0' \quad n_1' \quad n_2' \quad n_3')$$

Convolutional Neural Networks

- Each of the CNV layers in CNNs is primarily composed of highdimensional convolutions.
- Input activations of a layer are structured as a set of 2-D *input feature* maps (ifmaps), each of which is called a *channel*.
- Each channel is convolved with a distinct 2-D filter from the stack of filters, one for each channel;
- Stack of 2-D filters is often referred to as a single 3-D filter.
- The results of the convolution at each point are summed across all the channels.

Convolutional Layers

Example:2D convolution


```
 n00 = Act(w00 * i00 + w01 * i01 + w10 * i10 + w11 * i11 + w00 * i00 + w01 * i01 + w10 * i10 + w11 * i11 + w00 * i00 + w01 * i01 + w10 * i10 + w11 * i11)
```

- Convolutions capture some kind of locality, spatial or temporal, in each domain
- Receptive field of each neuron reduced
 - Applying convolution to all images in the previous layer
- Weights represent the filters used for convolutions

2D Convolutional Layers

- Slide the window till one feature map is complete
 - With a given stride size

2D Convolutional Layers

Compute next channel

2D Convolutional Layers

1 input and 1 output channel

Lowered to a matrix-matrix multiply by using a Toeplitz matrix

SDF vs. SA

 Synchronous dataflow (SDF) vs. Systolic arrays (Matrices of processing elements, MPEs)

Spectrum of options available

>> End points are pure layer-by-layer compute and feed-forward dataflow architecture, many intermediate options

SDF vs. SA

Tradeoffs between SDF and systolic arrays (MPEs)

Degree of parallelization across layers

SDF uses task-level parallelism across layers

- Higher compute and memory efficiency due to custom-tailored hardware design
- Requires less activation buffering as compute can commence as soon as there is enough data for computing the next convolutional window
- · Less latency (reduced buffering)
- No control flow (static schedule)

MPE (pure layer by layer compute)

- Compute efficiency is a scheduling problem
- Efficiency of memory for weights and activations depends on how well balanced the topology is
- Requires less on-chip weight memory, but more activation buffers
- Flexible hardware, which can scale to arbitrary large networks
- At the expense of generating sophisticated scheduling algorithms

Computation and Memory

Memory accesses are a bottleneck

Computation and Memory

Memory accesses are bottleneck

Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NIPS 2012] has 724M MACs

→ 2896M DRAM accesses required

Computation and Memory

- Add additional levels of memory
 - Ping-pong buffers

Systolic Array Architecture

aka 'Matrix of PEs'

Google TPU

A systolic array (matrix) is the heart of it

> H.T. Kung, C. Leiserson, 1978

- 1-D, 2-D, hypercube arrays of processing elements
- Various algorithms can be mapped onto systolic arrays

The original idea was to have PEs optimized for algorithms/applications
Current view is to have ALUs/MACs as Pes (integer or FP16 or BFLOAT16)

Aside on Floating Point

> TPU 1 used INT8 or INT16; TPU2 use BFLOAT16

A Brief Guide to Floating Point Formats

TPUs in the Cloud

> TPU2 pod vs. TPU3 pod

TPU2 pod

TPU3 pod

Systolic Arrays and Convolution

- 1-D array
- Convolution of input x_i with vector w_i

Given the sequence of weights $\{w_1, w_2, \ldots, w_k\}$ and the input sequence $\{x_1, x_2, \ldots, x_n\}$, compute the result sequence $\{y_1, y_2, \ldots, y_{n+1-k}\}$ defined by

$$y_i = w_1 x_i + w_2 x_{i+1} + \dots + w_k x_{i+k-1}$$

Figure 3. Design B1: systolic convolution array (a) and cell (b) where x_i 's are broadcast, w_i 's stay, and y_i 's move systolically.

Figure 4. Design B2: systolic convolution array (a) and cell (b) where x_i 's are broadcast, y_i 's stay, and w_i 's move systolically.

Systolic Arrays and Convolution

- F: Weights stationary
- R1: Results stationary, inputs and weights move in opposite directions (every two cycles; can be interleaved)

Figure 5. Design F: systolic convolution array (a) and cell (b) where w_i 's stay, x_i 's move systolically, and y_i 's are formed through the fan-in of results from all the cells.

Figure 6. Design R1: systolic convolution array (a) and cell (b) where y_i 's stay and x_i 's and y_i 's move in opposite directions systolically.

Systolic Arrays and Convolution

- R2: x's move 2x as fast as w's (w stays for two cycles)
- > W1, W2: Weights stay

Figure 7. Design R2: systolic convolution array (a) and cell (b) where y_i 's stay and x_i 's and w_i 's both move in the same direction but at different speeds.

Figure 8. Design W1: systolic convolution array (a) and cell (b) where w_i 's stay and x_i 's and y_i 's move systolically in opposite directions.

Figure 9. Design W2: systolic convolution array (a) and cell (b) where w_i 's stay and x_i 's and y_i 's both move systolically in the same direction but at different speeds.

Matrix-vector multiplication on 1-D array

Band matrix-vector multiplication

> 2-D arrays

Communication Geometry	Examples
1-dim linear arrays	Matrix-vector multiplication FIR filter Convolution DFT Carry pipelining Pipeline arithmetic units Real-time recurrence evaluation Solution of triangular linear systems Constant-time priority queue, on-line sort Cartesian product Odd-even transposition sort
2-dim square arrays	Dynamic programming for optimal parenthesization Numerical relaxation for PDE Merge sort FFT Graph algorithms using adjacency matrices
2-dim hexagonal arrays	Matrix multiplication Transitive closure LU-decomposition by Gaussian elimination without pivoting
Trees	Searching algorithms Queries on nearest neighbor, rank, etc. NP-complete problems systolic search tree Parallel function evaluation Recurrence evaluation
Shuffle-exchange networks	FFT Bitonic sort

Data Reuse in CNNs

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Image pixels

Filter weights

Image Reuse

CONV and FC layers

Reuse: Image pixels

Filter Reuse

CONV and FC layers (batch size > 1)

Reuse: Filter weights

Next Lecture

- Tape-in presentations
- Systolic arrays for ML
 - And other accelerators