Untitled

John Clements

11/14/2020

Part 1: Data Loading, Cleaning, and Splitting

```
#Breast Cancer Detection Project
library(tidyverse)
## -- Attaching packages --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr
          1.3.1
                    v forcats 0.5.0
## -- Conflicts ------ tidyv
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
##### DATA CLEANING #####
# Read in data set.
setwd("C:/Users/17739/Documents/GitHub/BreastCancerDetection/Breast Cancer Git Hub/")
bc.df <- read.table('Data/breast-cancer-wisconsin.data', sep=',')</pre>
# Add informative column names.
colnames(bc.df) = c('Id', 'Clump Thickness', 'Cell Size Uniformity', 'Cell Shape Uniformity',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin
                   'Normal Nucleoli', 'Mitosis', 'Class')
#head(bc.df) # View first 6 rows of data.
#dim(bc.df) # Check the dimensions of the data.
#str(bc.df) # Bare Nuclei is only feature stored as chr instead of int.
#table(bc.df$Class) # Report the frequency for each class.
# Write dataframe to a csv file.
#write.csv(bc.df, "breast-cancer-wisconsin.csv", row.names = FALSE)
# Identify missing data.
#bc.df %>% filter(!'Bare Nuclei' %in% c("1","2","3","4","5","6","7","8","9","10"))
# Calculate mean Bare Nuclei by Class.
```

```
mean.BareNuclei.2 <- bc.df %>%
  group_by(Class) %>%
  summarize(Mean = mean(as.numeric('Bare Nuclei'),
                        na.rm=TRUE))%>%filter(Class == 2)
## Warning in mean(as.numeric('Bare Nuclei'), na.rm = TRUE): NAs introduced by
## Warning in mean(as.numeric('Bare Nuclei'), na.rm = TRUE): NAs introduced by
## coercion
## 'summarise()' ungrouping output (override with '.groups' argument)
mean.BareNuclei.4 <- bc.df %>%
 group_by(Class) %>%
  summarize(Mean = mean(as.numeric('Bare Nuclei'),
                        na.rm=TRUE))%>%filter(Class == 4)
## Warning in mean(as.numeric('Bare Nuclei'), na.rm = TRUE): NAs introduced by
## coercion
## Warning in mean(as.numeric('Bare Nuclei'), na.rm = TRUE): NAs introduced by
## coercion
## 'summarise()' ungrouping output (override with '.groups' argument)
# Impute missing Bare Nuclei data with the mean for each Class mean.
#Bare Nuclei (class 2) with mean Bare Nuclei for class 2
#Bare Nuclei (class 4) with mean Bare Nuclei for class 4
bc.df <- bc.df %>%
  mutate('Bare Nuclei Revised' = ifelse('Bare Nuclei' == "?" & Class == 2,
                                        round(mean.BareNuclei.2$Mean,2),
                                        ifelse('Bare Nuclei' == "?" & Class == 4,
                                               round(mean.BareNuclei.4$Mean,2), 'Bare Nuclei'))) #%>%
  #filter('Bare Nuclei' == "?")
# Convert Bare Nuclei Revised data to the int data type.
bc.df$'Bare Nuclei Revised' <- as.integer(bc.df$'Bare Nuclei Revised')</pre>
#str(bc.df)
#write revised dataframe to csv
#write.csv(bc.df, "breast-cancer-wisconsin_revised.csv", row.names = FALSE)
# Convert Class to a factor variable.
bc.df$Class = as.factor(bc.df$Class)
##### SUMMARY STATISTICS #####
bc.df.mean <- dplyr::select(bc.df, -c("Id", "Bare Nuclei")) %>% group_by(Class) %>% summarise_all("mean"
#transpose from wide to long
bc.df.mean<-as.data.frame(t(dplyr::select(bc.df.mean,-"Class")))</pre>
```

```
colnames(bc.df.mean) <- c('Benign', 'Malignant')

bc.df.sd <- dplyr::select(bc.df, -c("Id", "Bare Nuclei")) %>% group_by(Class) %>% summarise_all("sd")

#transpose from wide to long
bc.df.sd<-as.data.frame(t(dplyr::select(bc.df.sd,-"Class")))
colnames(bc.df.sd) <- c('Benign', 'Malignant')

#Formatting Tables
knitr::kable(bc.df.mean,align = 'c', caption = 'Mean Summary Statistics', digits = 2)</pre>
```

Table 1: Mean Summary Statistics

	Benign	Malignant
Clump Thickness	2.96	7.20
Cell Size Uniformity	1.33	6.57
Cell Shape Uniformity	1.44	6.56
Marginal Adhesion	1.36	5.55
Single Epithelial Cell Size	2.12	5.30
Bland Chromatin	2.10	5.98
Normal Nucleoli	1.29	5.86
Mitosis	1.06	2.59
Bare Nuclei Revised	1.34	7.62

knitr::kable(bc.df.sd,align = 'c', caption = 'Standard Deviation Summary Statistics', digits = 3)

Table 2: Standard Deviation Summary Statistics

	Benign	Malignant
Clump Thickness	1.674	2.429
Cell Size Uniformity	0.908	2.720
Cell Shape Uniformity	0.998	2.562
Marginal Adhesion	0.997	3.210
Single Epithelial Cell Size	0.917	2.452
Bland Chromatin	1.080	2.274
Normal Nucleoli	1.059	3.351
Mitosis	0.502	2.558
Bare Nuclei Revised	1.161	3.104

```
##### DATA SPLITTING #####

# Set a random seed for reproducibility.
set.seed(17)
# Count the number of observations in the data set.
num.obs <- dim(bc.df)[1]
# Set the proportion of observations to be in the training data set.
prop.train <- 0.7
# Set the number of observations to be in the training data set.
num.train <- round(num.obs*prop.train)</pre>
```

```
# set the indicies of the dataset to be in the training data set.
train.indices <- sample(1:num.obs, num.train, replace=FALSE)

# Subset the data into training and testing data sets.
train.bc.df <- bc.df[train.indices,]
test.bc.df <- bc.df[-train.indices,]</pre>
```

Part 2: Principal Components Analysis

```
##### PCA (Principle Components Analysis #####
#Scientific Question 2
#Can we use PCA to reduce the dimensionality of the data and to identify/summarize crucial variables?
library(knitr)
library(GGally)
## Registered S3 method overwritten by 'GGally':
     method from
##
     +.gg
           ggplot2
# Split the training and testing data sets into independent variables and dependent variables.
train.bc.df.class <- train.bc.df$Class</pre>
train.bc.df.X <- select(train.bc.df, -c("Id", "Bare Nuclei", "Class"))</pre>
test.bc.df.class <- test.bc.df$Class</pre>
test.bc.df.X <- select(test.bc.df, -c("Id", "Bare Nuclei", "Class"))</pre>
# Plot a correlation matrix.
ggcorr(train.bc.df.X, label=TRUE, label_size=3, label_round=2)
```


Shows that Cell Shape Uniformity and Cell Size Uniformity are highly correlated (0.90). cor(train.bc.df.X)

##			Clump	Т	hick	ness	Cel	1 S:	ize U	Jnifor	mity
##	Clump Thickness			1	.000	0000				0.642	9847
##	Cell Size Uniformity			0	.642	9847				1.000	0000
##	Cell Shape Uniformity			0	.663	1989				0.904	9778
##	Marginal Adhesion			0	.491	2901				0.698	6296
##	Single Epithelial Cell Siz	ze		0	.542	1161				0.739	1602
##	Bland Chromatin			0	.557	7657				0.743	1113
##	Normal Nucleoli			0	.523	5813				0.710	6115
##	Mitosis			0	.354	4657				0.457	0546
##	Bare Nuclei Revised			0	.592	9538				0.674	4643
##			Cell	Sh	ape	Unif	ormi	ty 1	Margi	nal A	dhesion
##	Clump Thickness					0.66	6319	89		0.	4912901
##	Cell Size Uniformity					0.90	0497	78		0.	6986296
##	Cell Shape Uniformity					1.00	0000	00		0.	6841941
##	Marginal Adhesion					0.68	3419	41		1.	0000000
##	Single Epithelial Cell Siz	ze				0.70	0611	65		0.	5979035
##	Bland Chromatin					0.72	2886	92		0.	6722778
##	Normal Nucleoli					0.69	9920	53		0.	5905170
##	Mitosis					0.44	4669	57		0.	4325498
##	Bare Nuclei Revised					0.68	3774	16		0.	6625310
##			Singl	е	Epit	helia	al C	ell	Size	Blan	d Chromatin
##	Clump Thickness						0	.542	21161		0.5577657
##	Cell Size Uniformity						0	.739	91602	2	0.7431113

```
## Cell Shape Uniformity
                                                  0.7061165
                                                                   0.7288692
## Marginal Adhesion
                                                  0.5979035
                                                                   0.6722778
## Single Epithelial Cell Size
                                                  1.0000000
                                                                   0.6104333
## Bland Chromatin
                                                  0.6104333
                                                                   1.000000
## Normal Nucleoli
                                                  0.6169662
                                                                   0.6729169
## Mitosis
                                                  0.5081960
                                                                   0.3678463
## Bare Nuclei Revised
                                                  0.5642289
                                                                   0.6657948
##
                                Normal Nucleoli
                                                  Mitosis Bare Nuclei Revised
## Clump Thickness
                                      0.5235813 0.3544657
                                                                     0.5929538
## Cell Size Uniformity
                                      0.7106115 0.4570546
                                                                     0.6744643
## Cell Shape Uniformity
                                     0.6992053 0.4466957
                                                                     0.6877416
## Marginal Adhesion
                                      0.5905170 0.4325498
                                                                     0.6625310
## Single Epithelial Cell Size
                                      0.6169662 0.5081960
                                                                     0.5642289
## Bland Chromatin
                                      0.6729169 0.3678463
                                                                     0.6657948
## Normal Nucleoli
                                      1.0000000 0.4185491
                                                                     0.5554505
                                      0.4185491 1.0000000
## Mitosis
                                                                     0.3340189
## Bare Nuclei Revised
                                      0.5554505 0.3340189
                                                                     1.0000000
# Check the sd for each variable.
round(apply(train.bc.df.X, 2, sd),3) # need to standardize variables
##
               Clump Thickness
                                       Cell Size Uniformity
##
                         2.861
                                                      3.030
##
         Cell Shape Uniformity
                                          Marginal Adhesion
                                                      2.920
##
                         2.903
## Single Epithelial Cell Size
                                            Bland Chromatin
##
                                                      2.447
                         2.158
##
               Normal Nucleoli
                                                    Mitosis
##
                         3.086
                                                      1.615
##
           Bare Nuclei Revised
##
                         3.650
# Standardize the variables.
train.bc.df.X.std <- scale(train.bc.df.X, center=TRUE, scale=TRUE)</pre>
# Check if the data is Scaled Correctly.
apply(train.bc.df.X.std, 2,sd)
##
               Clump Thickness
                                     Cell Size Uniformity
##
                                                           1
##
         Cell Shape Uniformity
                                        Marginal Adhesion
##
                                            Bland Chromatin
## Single Epithelial Cell Size
##
               Normal Nucleoli
##
                                                    Mitosis
##
##
           Bare Nuclei Revised
##
# Perform PCA.
data.pca <- prcomp(train.bc.df.X.std)</pre>
# Extract the importance of each component.
#summary(data.pca)
```

```
#standard deviation
st.dev<-data.pca$sdev
#variance
var<-st.dev^2
#total variance
TV<-sum(var)
#proportion of variance explained
prop<-var/TV
#cumulative proportion of variance explained
pve<-cumsum(var)/TV
#combine in a table
tab<-rbind(st.dev,prop,pve)
rownames(tab)<-c("Standard deviation", "Proportion of variance", "Cumulative proportion")
colnames(tab)<-paste0("PC",1:9)
knitr::kable(tab,align = 'c', caption = 'PCA Importance of Components', digits = 3)</pre>
```

Table 3: PCA Importance of Components

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
Standard deviation	2.420	0.881	0.733	0.693	0.618	0.554	0.538	0.527	0.303
Proportion of variance	0.651	0.086	0.060	0.053	0.043	0.034	0.032	0.031	0.010
Cumulative proportion	0.651	0.737	0.797	0.850	0.893	0.927	0.959	0.990	1.000

```
# Make a Scree Plot to help determine how many PCs to retain.
screeplot(data.pca, type = "line", main = "Variance Explained by each PC")
```

Variance Explained by each PC


```
# The elbow in the graph is at PC2.
#PC 1 and 2 explain 74% of the variability

# Display the loadings for PC1 and PC2 for review.
#round(data.pca$rotation[, 1:2], 3)
knitr::kable(data.pca$rotation[, 1:2],align = 'c', caption = 'Loadings of the First Two PCs', digits =
```

Table 4: Loadings of the First Two PCs

	PC1	PC2
Clump Thickness	0.306	0.164
Cell Size Uniformity	0.380	0.058
Cell Shape Uniformity	0.377	0.087
Marginal Adhesion	0.334	0.039
Single Epithelial Cell Size	0.337	-0.217
Bland Chromatin	0.347	0.201
Normal Nucleoli	0.332	-0.003
Mitosis	0.235	-0.889
Bare Nuclei Revised	0.330	0.288

```
# PC1 is roughly equally weighted.
# PC2 is essentially the effect of Mitosis.
PC1 <- data.pca$rotation[, 1]
PC2 <- data.pca$rotation[, 2]</pre>
```

```
PC.scores.1 <- train.bc.df.X.std %*% PC1
PC.scores.2 <- train.bc.df.X.std %*% PC2

# Plot PC score 1 vs PC score 2 colored by class.
plot(PC.scores.1,PC.scores.2, pch=19, col=train.bc.df.class)
```


Part 4: Classification

```
# Set the number of principal components to keep.
num.keep <- 2

# Re-fit prcomp() so it knows to center and scale input data.
pca.fit <- prcomp(train.bc.df.X, center=TRUE, scale=TRUE)

# Create a new dataframe to hold the prcomp() transformed training data.
train.pca <- as.data.frame(pca.fit$x[, 1:num.keep])

# Create a new dataframe to hold the prcomp() transformed testing data.
test.pca <- as.data.frame(predict(pca.fit, test.bc.df.X)[, 1:num.keep])

# Re-attach the Class to the PCA-trainsformed training and testing dataframes.
train.pca$Class <- train.bc.df.class
test.pca$Class <- test.bc.df.class</pre>
```

```
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
library(kernlab)
## Warning: package 'kernlab' was built under R version 4.0.3
## Attaching package: 'kernlab'
## The following object is masked from 'package:purrr':
##
##
       cross
## The following object is masked from 'package:ggplot2':
##
##
       alpha
# We will be using 5-fold cross-validation, repeating the process 20 times.
TrControl <- trainControl(method = "repeatedcv",</pre>
                          number = 5,
                          repeats = 20)
# Fit a KNN classifier by selecting the model with the best number of neighbors
# by performing 5-fold cross-validation tuning the k parameter using the odd numbers
# from 1 up to 9.
knn.model <- train(Class ~ ., data = train.pca,</pre>
                   method = "knn",
                   trControl = TrControl,
                   tuneGrid = expand.grid(k = seq(1, 9, by=2)))
# Perform 5-fold cross-validation using a LDA classifier.
lda.model <- train(Class ~ ., data = , train.pca,</pre>
                   method = "lda",
                   trControl = TrControl)
# Perform 5-fold cross-validation using a QDA classifier.
qda.model <- train(Class ~ ., data = , train.pca,
                   method = "qda",
                   trControl = TrControl)
# Fit a tree classifier by selecting the model with the best complexity parameter (cp)
```

```
# by performing 5-fold cross-validation tuning the cp parameter using 0.001, 0.01,
# and 0.1
tree.model <- train(Class ~ ., data = train.pca,</pre>
                    method = "rpart",
                    trControl = TrControl,
                    tuneGrid = expand.grid(cp = seq(0.05, 0.5, by=0.05)))
# Fit a SVM classifier with a radial kernel by selecting the model tuning the C and
# sigma parameters by performing 5-fold cross-validation tuning
# the C parameter from 0.25 to 4, doubling each time, and the sigma parameter from
# 0.125 to 8, doubling each time
svm.model <- train(Class ~ ., data = train.pca,</pre>
                   method = "svmRadial",
                   trControl = TrControl,
                   tuneGrid = expand.grid(C = 2^c(-2:2),
                                          sigma = 2^{(-3:3)}
# Summarize the Accuracy and Cohen's Kappa for each model in the 5-fold CV.
resamp <- resamples(list(KNN = knn.model, LDA = lda.model, QDA = qda.model,
                         TREE = tree.model, SVM = svm.model))
# Display the summary of the model performances.
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
## Models: KNN, LDA, QDA, TREE, SVM
## Number of resamples: 100
##
## Accuracy
                               Median
##
                    1st Qu.
                                           Mean
                                                  3rd Qu. Max. NA's
             Min.
## KNN 0.9387755 0.9591837 0.9793814 0.9751546 0.9897959
## LDA 0.9183673 0.9489796 0.9591837 0.9609436 0.9693878
                                                                   0
## QDA 0.8979592 0.9563171 0.9693878 0.9666653 0.9795918
## TREE 0.9387755 0.9693878 0.9795918 0.9780255 0.9897959
                                                                   0
## SVM 0.9183673 0.9690722 0.9793814 0.9738186 0.9896907
##
## Kappa
##
                    1st Qu.
                               Median
                                                  3rd Qu. Max. NA's
             Min.
                                           Mean
## KNN 0.8699690 0.9133127 0.9551417 0.9464722 0.9776738
## LDA 0.8199357 0.8881789 0.9111111 0.9146458 0.9331190
## QDA 0.7805643 0.9062384 0.9337539 0.9282077 0.9561129
                                                                   0
## TREE 0.8699690 0.9345794 0.9561129 0.9529358 0.9779180
                                                              1
                                                                   0
## SVM 0.8244514 0.9337539 0.9552995 0.9437805 0.9775413
                                                                   0
# Make a boxplot of the model Accuracies and Cohen's Kappas.
bwplot(resamp)
```


library(klaR)

```
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
# Get predictions for the test set from the tree model.
tree.preds <- predict(tree.model, test.pca)</pre>
# Make a confusion matrix for the tree model.
tree.emat <- errormatrix(test.pca$Class, tree.preds,</pre>
                          relative = TRUE)
# Display the confusion matrix for the tree model.
round(tree.emat, 3)
##
          predicted
                      4 -SUM-
## true
               2
##
     2
           0.944 0.056 0.056
##
           0.015 0.985 0.015
     -SUM- 0.111 0.889 0.043
##
```

```
## true 2 4 -SUM-
## 2 0.938 0.062 0.062
## 4 0.015 0.985 0.015
## -SUM- 0.100 0.900 0.048
```