Class 9: Halloween Candy Mini Project

Alexis Galano (PID: A17628362)

```
candy_file <- read.csv("candy-data.txt")
candy = read.csv("candy-data.txt", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanu	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar p	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

- A1. There are 85 different candy types.
 - Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

```
[1] 38
```

• A2. There are 38 fruity candy types.

```
sum(candy$chocolate)
```

[1] 37

```
View(candy)
```

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Twix", ]$winpercent
```

[1] 81.64291

- A3. My favorite candy is Twix with a winpercent of 81.64%.
 - Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

- A4. The winpercent for Kit Kat is 76.77%
 - Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

- A5. The winpercent for Tootsie Roll Snack Bars is 49.65%
- Q. What is the least liked candy in the dataset? lowest winpercent

```
min(candy$winpercent)
```

[1] 22.44534

inds <- order(candy\$winpercent) head(candy[inds,])</pre>

	chocolate	fruity	cara	nel	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	t						
Nik L Nip	22.44534	1						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.1274	1						
Root Beer Barrels	29.70369	9						

 $\bullet\,$ A. The least liked can dy is Nik L Nip with a 22.44% win percent.

```
#install.packages("skimr")
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

- Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?
- A6. There is a histogram column and an n_missing column that look to be different than the other columns.
 - Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?
- A7. 0 in the n_missing column for candy\$chocolate means there are no missing numeric values for the chocolate data. The 1 in the complete_rate column means that all the values in the candy data frame are relevant and included in the statistics.
 - Q8. Plot a histogram of winpercent values

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, col="red") +
  geom_histogram()
```

[`]stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

hist(candy\$winpercent, breaks=8)

Histogram of candy\$winpercent

- Q9. Is the distribution of winpercent values symmetrical?
- A9. No the distribution of winpercent values in not symmetrical.
 - Q10. Is the center of the distribution above or below 50%?
- A10. The center of distribution is below 50%.
 - Q11. On average is chocolate candy higher or lower ranked than fruit candy? First find all chocolate candy and their \$winpercent values. Next summarize these values into one number. Then do the same for fruit candy and compare the numbers.

```
choc.inds <- as.logical(candy$chocolate)
choc.win <- candy[choc.inds,]$winpercent
mean(choc.win)</pre>
```

[1] 60.92153

```
fruit.inds <- as.logical(candy$fruity)
fruit.win <- candy[fruit.inds,]$winpercent
mean(fruit.win)</pre>
```

[1] 44.11974

60.92153 44.11974

- A11. Chocolate candy is higher ranked on average compared to fruit candy with a difference of about 16%.
 - Q12. Is this difference statistically significant?

```
t.test(choc.win, fruit.win)

Welch Two Sample t-test

data: choc.win and fruit.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
```

- A12. The difference in the means is not equal to 0 and so they are statistically significant. The p-value is 2.871e-08
 - Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	carar	nel j	peanutyalm	nondy :	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Bean	0 8	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Bean	3	0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	;						
Nik L Nip	22.44534	l						
Boston Baked Bean	s 23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.1274	<u>l</u>						

- A13. The bottom 5 are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, Jawbusters, Rootbeer barrels.
 - Q14. What are the top 5 all time favorite candy types out of this set?

```
inds <- order(candy$winpercent)
tail(candy[inds,], n=5)</pre>
```

	chocolate	fruity	caram	nel	${\tt peanutyalm}$	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugai	percent
Snickers		0	0	1	0		0.546

Kit Kat	1	0	1	0	0.313
Twix	1	0	1	0	0.546
Reese's Miniatures	0	0	0	0	0.034
Reese's Peanut Butter cup	0	0	0	0	0.720
pricepero	cent winp	ercent			
Snickers 0.	651 76	.67378			
Kit Kat 0.	511 76	.76860			
Twix 0.	906 81	.64291			
Reese's Miniatures 0.	279 81	.86626			
Reese's Peanut Butter cup 0.	651 84	.18029			

• The top 5 are Snickers, Kit Kat, Twix, Reese's Miniatures, Reese's Peanut Butter Cup.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(candy$winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

Add some color to our ggplot. We need to make a custom color vector.

Favorite Candy Types Ranked

ggsave('barplot.png',width=9,height=12)

> Q17. What is the worst ranked chocolate candy?

- A17. Sixlets
 - Q18. What is the best ranked fruity candy?
- A18. Starburst

```
candy$pricepercent
```

```
[1] 0.860 0.511 0.116 0.511 0.511 0.767 0.767 0.511 0.325 0.325 0.511 0.511 [13] 0.325 0.511 0.034 0.034 0.325 0.453 0.465 0.465 0.465 0.465 0.465 0.093 0.918 [25] 0.918 0.918 0.511 0.511 0.511 0.116 0.104 0.279 0.651 0.651 0.325 0.511 [37] 0.651 0.441 0.860 0.860 0.918 0.325 0.767 0.767 0.976 0.325 0.767 0.651 [49] 0.023 0.837 0.116 0.279 0.651 0.651 0.651 0.965 0.860 0.069 0.279 0.081 [61] 0.220 0.220 0.976 0.116 0.651 0.651 0.116 0.116 0.220 0.058 0.767 0.325 [73] 0.116 0.755 0.325 0.511 0.011 0.325 0.255 0.906 0.116 0.116 0.313 0.267 [85] 0.848
```

If we want to see what is good candy to buy in ters of winpercent and pricepercent we can plot these two variables and then see the best candy for the least amount of money.

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text()
```


To avoid the overplotting of these labels we can use an add on package called ggrepl

```
#install.packages("ggrepel")

library(ggrepel)
library(ggplot2)

Play with the 'max.overlaps' parameter to 'geom_text_repl()'

ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(max.overlaps=5, size=3.3, col=my_cols)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

- Q19. Which candy type is the highest ranked in terms of winpercent for the least money i.e. offers the most bang for your buck?
- A19. I would say Reese's Miniatures is the highest ranked for the lowest price.
 - Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?
- A20. Nik L Nip, Ring pop, Nestle Smarties, Mr. Goodbar, and Hersheys are the most expensive. Of those Nik L Nip is the least popular.

Exploring the correlation structure

```
#install.packages("corrplot")
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

- A22. Chocolate and Fruity are two variables that are anti-correlated because they are highly UNLIKELY to be combined together in a candy. Also it's unlikely that a fruity candy is in a bar form.
 - Q23. Similarly, what two variables are most positively correlated?
- A23. Chocolate and bar are two variables that are positively correlated meaning chocolate can typically be found in bar form.

Principal Component Analysis

This function for this is called 'prcom()' and here we know we need to scale our data with the 'scale=TRUE' argument

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

• A24. PC1 represents the correlation structure in the candy data. In the positive direction we have the variables fruity, hard, and pluribus because they are variables that can be categorized together due to their correlation. Example: Skittles is fruity, has a slightly hard outer shell, and there are multiple pieces in a single pack.

```
pca <- prcomp(candy, SCALE=FALSE)</pre>
```

```
Warning: In prcomp.default(candy, SCALE = FALSE) :
 extra argument 'SCALE' will be disregarded
  summary(pca)
Importance of components:
                           PC1
                                    PC2
                                            PC3
                                                    PC4
                                                            PC5
                                                                    PC6
                                                                             PC7
Standard deviation
                       14.7231 0.70241 0.47762 0.37292 0.34641 0.33614 0.30748
Proportion of Variance 0.9935 0.00226 0.00105 0.00064 0.00055 0.00052 0.00043
                        0.9935 0.99574 0.99678 0.99742 0.99797 0.99849 0.99892
Cumulative Proportion
                                    PC9
                                          PC10
                                                   PC11
                           PC8
                                                           PC12
Standard deviation
                       0.27417 0.23826 0.21435 0.18434 0.15331
Proportion of Variance 0.00034 0.00026 0.00021 0.00016 0.00011
Cumulative Proportion 0.99927 0.99953 0.99974 0.99989 1.00000
  my_data <- cbind(candy, pca$x[,1:3])</pre>
  p <- ggplot(my_data) +</pre>
          aes(x=PC1, y=PC2,
              size=winpercent/100,
              text=rownames(my_data),
              label=rownames(my_data)) +
          geom_point(col=my_cols)
  library(ggrepel)
  p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
         subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown
         caption="Data from 538")
```

Warning: ggrepel: 64 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

LOADINGS PLOT

```
loadings <- as.data.frame(pca$rotation)

ggplot(loadings) +
  aes(PC1, reorder(rownames(loadings), PC1)) +
  geom_col()</pre>
```

