ngerman

TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 14.-18.01.2019

11. Übung Analysis III für Mathematiker(innen)

(integrierbare Funktionen, Cantor-Diskontinuum, messbare Funktionen)

Themen der großen Übung am 07.01.

Wir beweisen Bemerkung 3.2.2. (a) und die Monotonie des Integrals (siehe Lemma 3.2.4 (i)):

- Das Integral einer einfachen Funktion f hängt nicht von der Wahl der Darstellung $f=\sum_{n=1}^N \alpha_n \mathbbm{1}_{A_n}$ ab.
- Sind u, v einfache Funktionen mit $u \leq v$, dann gilt $\int u \, d\mu \leq \int v \, d\mu$

Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $f \colon \Omega \to \overline{\mathbb{R}}$ eine messbare numerische Funktion. Dann gilt

f ist integrierbar \iff |f| ist integrierbar.

Im Allgemeinen gilt jedoch f messbar $\not\Leftrightarrow |f|$ ist messbar.

Tutoriumsvorschläge

33. Aufgabe

Sei (Ω, \mathcal{F}) ein messbarer Raum und $x \in \Omega$. Wir betrachten das Dirac-Maß (siehe Beispiel 2.2.10) auf \mathcal{F} , d.h. $\delta_x(A) = 1$, falls $x \in A$ und $x \in A$ und

- (i) Sei $f: \Omega \to \overline{\mathbb{R}}$ eine numerische Funktion, und sei $x \in \Omega$. Zeigen Sie, dass gilt: $\int f \, d\delta_x = f(x)$.
- (ii) Sei nun $(x_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Zeigen Sie, dass $\mu = \sum_{n\in\mathbb{N}} \delta_{x_n}$ ein Maß auf der Borel- σ -Algebra $(\mathbb{R}, \mathcal{B})$ definiert und $f, g: \mathbb{R} \to \mathbb{R}$ genau dann μ -fast überall gleich sind, wenn $f(x_n) = g(x_n)$ für jedes $n \in \mathbb{N}$ gilt.

*

34. Aufgabe

Sei $K \subseteq \mathbb{R}^n$ kompakt mit Lebesgue-Maß $\lambda(K) > 0$. Zeigen Sie, dass

- (i) es eine offene Teilmenge $U \subseteq \mathbb{R}^n$ mit $K \subseteq U$ und $\lambda(U) < 2\lambda(K)$ gibt.
- (ii) für U aus (i) ein $\delta > 0$ existiert, so dass für alle $x \in B_{\delta}(0)$ die Menge $K + x := \{k + x \mid k \in K\}$ in U enthalten ist.
- (iii) ein $\delta > 0$ existiert, so dass $B_{\delta}(0)$ enthalten ist in

$$K - K := \{x - y \mid x, y \in K\}.$$

Hinweis: Betrachten Sie die Mengen der Form $K + x \cap K$, wobei $x \in B_{\delta}(0)$ ist.

35. Aufgabe

Betrachten Sie $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$, wobei ν das Zählmaß bezeichne. Zeigen Sie, dass eine Funktion $f \colon \mathbb{N} \to \mathbb{R}$ genau dann ν -integrierbar ist, wenn die Reihe $\sum_{n \in \mathbb{N}} |f(n)|$ konvergiert, und dass dann $\int f \, d\nu = \sum_{n \in \mathbb{N}} f(n)$ gilt.

36. Aufgabe

Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $f: \Omega \to \overline{\mathbb{R}}$ eine μ -integrierbare numerische Funktion. Zeigen Sie, dass dann für jedes $\varepsilon > 0$ gilt: $\mu(\{f \ge \varepsilon\} < \infty$.

37. Aufgabe

Seien $X, Y \subseteq \mathbb{R}^d$ und $f: X \to Y$ ein Homöomorphismus (d.h. eine bijektive Abbildung, welche stetig ist und deren Umkehrabbildung ebenfalls stetig ist, natürlich jeweils bzgl. der Unterraumtopologie von X und Y). Zeigen Sie, dass dann gilt

$$f^{-1}(\mathcal{B}(Y)) = \mathcal{B}(X)$$
 und $f(\mathcal{B}(X)) = \mathcal{B}(Y)$,

wobei wir definieren: $f(\mathcal{B}(X)) = \{f(A) \mid A \in \mathcal{B}(X)\}.$

Hausaufgaben

40. Aufgabe (4 Punkte)

Sei $M \subseteq \mathbb{R}^d$ Lebesgue-messbar mit $\lambda(M) > 0$.

- (i) Zeigen Sie, dass ein $\delta > 0$ existiert mit $B_{\delta}(0) \subseteq M M := \{x y \mid x, y \in M\}$.
- (ii) Sei nun d=1 und bezeichne mit A die Vitali-Menge aus Beispiel 2.2.14. Zeigen Sie, dass ein $q\in\mathbb{Q}$ existiert, so dass $M\cap A+q$ nicht Lebesgue-messbar ist.

41. Aufgabe (11 Punkte)

Bezeichne mit λ das Lebesgue-Maß auf $(\mathbb{R}, \mathcal{L})$, und für $n \in \mathbb{N}$ seien

$$C_n := \bigcup_{c_1,\dots,c_n \in \{0,2\}} \left[\sum_{k=1}^n \frac{c_k}{3^k}, \frac{1}{3^n} + \sum_{k=1}^n \frac{c_k}{3^k} \right]$$
 und

$$f_n \colon \mathbb{R} \to \mathbb{R}, \quad f_n(x) := \left(\frac{3}{2}\right)^n \int_0^x \mathbb{1}_{C_n}(t) \, \lambda(\mathrm{d}t).$$

Weiterhin sei $C = \bigcap_{n \in \mathbb{N}} C_n$. Zeigen Sie:

- (i) C ist eine kompakte, überabzählbare Nullmenge.
- (ii) Die Folge $\{f_n\}_{n\in\mathbb{N}}$ konvergiert gleichmäßig gegen eine stetige, monotone Funktion $F\colon\mathbb{R}\to[0,1]$ mit F(0)=0 und F(1)=1 und F'(x)=0 für alle $x\in\mathbb{R}\setminus C$.
- (iii) Die Funktion $g: [0,1] \to [0,2], x \mapsto F(x) + x$, ist ein Homöomorphismus, d.h. g ist bijektiv, stetig und die Umkehrabbildung g^{-1} ist ebenfalls stetig.
- (iv) Es gilt $\lambda(g(C)) = 1$.
- (v) Es gibt eine Lebesgue-messbare Menge, die keine Borel-Menge ist.

Bemerkungen:

- (i) C nennt man Cantor'sches Diskontinuum. Es entsteht aus [0,1] durch sukzessives Wegnehmen der jeweiligen mittleren Drittel der Teilintervalle.
- (ii) Für die Funktion F (die man auch Cantor-Funktion nennt) gilt **nicht** für alle $a, x \in \mathbb{R}$ die Formel

$$F(x) - F(a) = \int_{a}^{x} F'(t) \lambda(dt).$$

42. Aufgabe (2 Punkte)

Prüfen Sie die Dirichlet'sche Sprungfunktion $\mathbb{1}_{\mathbb{Q}} \colon \mathbb{R} \to [0,1]$ auf Lebesgue-Integrierbarkeit, und berechnen Sie gegebenenfalls $\int_{\mathbb{R}} \mathbb{1}_{\mathbb{Q}}(x) \, \lambda(\mathrm{d}x)$.

43. Aufgabe (3 Punkte)

Es sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $f \colon \Omega \to \overline{\mathbb{R}}$ eine integrierbare numerische Funktion. Zeigen Sie, dass $|f| < \infty$ fast überall gilt und dass eine reellwertige integrierbare Funktion g existiert mit f = g fast überall.

Gesamtpunktzahl: 20