

CS8351

DIGITAL PRINCIPLES AND SYSTEM DESIGN

UNIT I-BOOLEAN ALGEBRA AND LOGIC GATES

1.6 Boolean Function

Version: 1.XX

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

BOOLEAN FUNCTIONS:

Minimization of Boolean Expressions:

The Boolean expressions can be simplified by applying properties, laws and theorems of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals:

1.
$$x(x'+y)$$

$$= xx' + xy$$

$$= 0 + xy$$

$$= xv$$

$$[x. x' = 0]$$

$$[x+0=x]$$

$$= xy.$$

2.
$$x + x'y$$

$$= x + xy + x'y$$

$$= x + y (x + x')$$

$$= x + y (1)$$

$$= x + y.$$

$$[x+xy=x]$$

$$[x+x'=1]$$

$$3. (x+y) (x+y')$$

$$= x.x+ xy'+ xy+ yy'$$

$$= x + xy' + xy + 0$$

$$= x (1+ y'+ y)$$

$$=x(1)$$

$$= x.$$

$$[x. x=0]; [y. y'=0]$$

$$[1+y=1]$$

4.
$$xy + x'z + yz$$
.

$$= xy + x'z + yz(x + x')$$

$$= xy + x'z + xyz +$$

$$= xy + xyz + x'z + x'yz$$

$$= xy (1+z) + x'z (1+y)$$

$$= xy + x'z.$$

$$[x+x'=1]$$

$$[1+y=1]$$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

$$[y+y'=1]$$

6.
$$(x+y)(x^2+z)(y+z)$$

= $(x+y)(x^2+z)$

[dual form of consensus theorem,

$$(A+B)(A'+C)(B+C) = (A+B)(A'+C)$$

7.
$$x'y+xy+x'y'$$

= $y(x'+x)+x'y'$
= $y(1)+x'y'$
= $y+x'y'$
= $y+x'$.

[
$$x (y+z) = xy + xz$$
]
[$x+x'=1$]
[$x+x'y'=x+y'$]

8.
$$x+xy'+x'y$$

= $x (1+y')+x'y$
= $x (1) + x'y$
= $x+x'y$
= $x+y$.

$$[1+x=1]$$

 $[x+x'y=x+y]$

$$[B.B' = 0]$$
 $[C.C = 1]$
 $[(AC)' = A' + C']$

$$= A' + B + C' + AB'$$

$$[C' + AB'C = C' + AB']$$

 $[A' + AB = A' + B]$

Re- arranging,

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

10. $(x'+y)(x+y)$	
= x'.x+ x'y+ yx+ y.y	
$= 0 + x^2y + xy + y$	[x.x'=0]; [x.x=x]
= y (x'+x+1)	
= y (1)	[1+x=1]
$= \mathbf{y}.$	

11.
$$xy+ xyz+ xy (w+ z)$$

= $xy (1+z+w+z)$
= $xy (1)$
= xy .

12.
$$xy + xyz + xyz' + x'yz$$

= $xy (1 + z + z') + x'yz$
= $xy (1) + x'yz$ [1+ x = 1]
= $xy + x'yz$
= $y (x + x'z)$ [x+ x'y = x+y]
= $y (x + z)$.

13.
$$xyz + xy'z + xyz'$$

= $xy (z + z') + xy'z$
= $xy + xy'z$ [$x + x' = 1$]
= $x(y + y'z)$ [$x + x'y = x + y$]
= $x(y + z)$

14.
$$x'y'z'+x'yz'+xy'z'+xyz'$$

= $x'z'$ ($y'+y$)+ xz' ($y'+y$)
= $x'z'+xz'$ [$x+x'=1$]
= z' ($x+x'=1$]

15.
$$w'xyz' + xyz' + xy'z' + xy'z$$

 $= xyz' (w'+1) + xy'z' + xy'z$
 $= xyz' + xy'z' + xy'z$ [1+x=1]
 $= xz' (y+y') + xy'z$
 $= xz' + xy'z$ [x+x'=1]
 $= x (z' + y'z)$
 $= x (z' + y'z)$.

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

17.
$$x'y'z' + x'y'z + x'yz' + x'yz + xy'z'$$

= $x'y'(z'+z) + x'y(z'+z) + xy'z'$
= $x'y'(1) + x'y(1) + xy'z'$ [$x+x'=1$]
= $x'y' + x'y + xy'z'$
= $x'(y'+y) + xy'z'$
= $x'(1) + xy'z'$ [$x+x'=1$]
= $x' + xy'z'$
= $x'+xy'z'$. [$x'+xy'=x'+y'$]

18.
$$w'y (w'xz)' + w'xy'z' + wx'y$$

 $= w'y (w''+x'+z') + w'xy'z' + wx'y$
 $= w'y (w+x'+z') + w'xy'z' + wx'y$ [x'' = x]
 $= w'yw + w'y x' + w'y z' + w'xy'z' + wx'y$
 $= 0 + w'x'y + w'y z' + w'xy'z' + wx'y$ [x. x'= 0]

Re-arranging,

$$= w'x'y + wx'y + w'y z' + w'xy'z'$$

$$= x'y (w'+w) + w'z' (y+xy')$$

$$= x'y (1) + w'z' (y+xy')$$

$$= x'y + w'z' (y+x)$$

$$[x+x'=1]$$

$$[x+x'y = x+y]$$

20.
$$[xy'(z+wy) + x'y']z$$

= $[xy'z+xy'wy+x'y']z$
= $[xy'z+0+x'y']z$
= $xy'z$. $z+x'y'z$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

1]

= xy'z + x'y'z	$[\mathbf{x}.\;\mathbf{x}=\mathbf{x}]$
= y'z (x+x')	
= y'z(1)	[x+x'=1]
= y'z.	

21.
$$x'yz + xy'z' + x'y'z' + xy'z + xyz$$

= $yz (x'+x) + xy'z' + x'y'z' + xy'z$
= $yz (1) + y'z' (x+x') + xy'z$ [$x+x'=1$]
= $yz + y'z' (1) + xy'z$ [$x+x'=1$]
= $yz + y'z' + xy'z$
= $yz + y' (z' + xz)$
= $yz + y' (z' + x)$ [$x' + xy = x' + y$]
= $yz + y'z' + xy'$

22.
$$[(xy)^2 + x^2 + xy]^2$$

= $[x^2 + y^2 + x^2 + xy]^2$
= $[x^2 + y^2 + xy]^2$
= $[x^2 + y^2 + x]^2$
= $[y^2 + 1]^2$
= $[x^2 + y^2 + x]^2$
= $[x^2 + x^2 + x^2 + y]^2$
= $[x^2 + x^2 + x^2 + y]^2$

24.
$$xy+xy'(x'z')'$$

= $xy+xy'(x''+z'')$
= $xy+xy'(x+z)$
= $xy+xy'x+xy'z$ [$x''=x$]

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

= xy + xy' + xy'z	$[\mathbf{x}.\ \mathbf{x}=\mathbf{x}]$
= xy + xy' [1 + z]	
= xy + xy' [1]	[1+x=1]
= xy + xy'	
= x(y+y')	
$= \mathbf{x} [1]$	[x+x'=1]
$=\mathbf{v}$	

25.
$$[(xy'+xyz)'+x(y+xy')]'$$

= $[x(y'+yz)'+x(y+xy')]'$
= $[x(y'+z)'+x(y+x)]'$
= $[x(y'+z)'+xy+xx]'$
= $[(xy'+xz)'+xy+x]'$
= $[(xy'+xz)'+x]'$
= $[(xy'+xz)'+x]'$
= $[(xy'+xz)'+x]'$
= $[(x'+y)', (x'+z')+x]'$
= $[(x'+y)', (x'+z')+x]'$
= $[(x'+yz')+x]'$
= $[(x'+yz')+x]'$
= $[x'+yz'+x]'$
= $[x'+yz'+x]'$
= $[x'+yz'+x]'$
= $[x'+xy-x]$
= $[x'+xy-x]$

26.
$$[(xy+z')((x+y)'+z)]'$$

= $[(xy+z')((x',y')+z)]'$
= $[xy,x'y'+xy,z+z',x'y'+z',z]'$
= $[0+xyz+x'y'z'+0]'$
= $[xyz+x'y'z']'$
= $(xyz)'.(x'y'z')'$
= $(x'+y'+z').(x''+y''+z'')$
= $(x'+y'+z').(x+y+z).$ $[x''=x]$

27.
$$(x+y) (x'z'+z) (y'+xz)'$$

= $(x+y) (x'z'+z) (y''. (xz)')$
= $(x+y) (x'+z) (y. (xz)')$
= $(x+y) (x'+z) (y. (x'+z'))$
= $(x+y) (x'+z) (y. (x'+z'))$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

28.
$$Y = \sum m (1, 3, 5, 7)$$

= $x'y'z + x'yz + xy'z + xyz$
= $x'z(y'+y) + xz(y'+y)$
= $x'z(1) + xz(1)$ [$x + x' = 1$]
= $x'z + xz$
= $z(x' + x)$
= $z(1)$ [$x + x' = 1$]
= z .

