几何空间 V, $\vec{\alpha}\cdot\vec{\alpha}>0$, $\vec{\alpha}\cdot\vec{\alpha}=0 \Leftrightarrow \vec{\alpha}=\vec{0}$ 定义 I、 定数域上的线性空间 V上的对称 双线性函数 I , Z 满足: $V\alpha \in V$ 有 $f(\alpha,\alpha)>0$, $f(\alpha,\alpha)=0 \Leftrightarrow \alpha=0$ 新 $f(\alpha,\alpha)$

命题1. n继实线性空间V上的对称双线性函数f是正定的 一> f在V的一个基下的度量矩阵 A 满足: A为对称矩阵,且拟←IRⁿ,X≠0,有 X'AX>0 → A是正定矩阵

定义2. n级实对称矩阵满足: YX+IRⁿ,且X+0,有X'AX>0,则 称A为正定(对称)矩阵

定义3. 实线性空间V上一正定的对称双线性函数手称为V上一个内积 把于(x, p)简记为(x, p), 于简记为(,); 若实线性空间V指定了一个内积,则称V是一实内积空间; 有限维实内积空间称为欧几里得空间

例. 1. Rⁿ中任取 X=[**], Y=[**], 令. (X,Y):= X,Y,+…+ Xn,Yn= X'Y=X']Y 则(,)为-双线性函数,在 E,,…, En T 度 是 矩 阵为 I, 从 对 称 的 且 Y X+(Rⁿ, X+0, 有 (X, X)=X'X=X,²+…+ Xh²>0 ...(,)为正定的, 起 (,)为 | Rⁿ上- 内 x¹!?, 新 2 为 标 程 内 积

设V是实内积空间: 定义4. V中向量众的长度 [al:=](a,a)[(或记为||a||) |kx|= |(kx,kx)= |k²(x,x)=|k|·|x|, Y|2+|R, Y x+V| 若 |a|=1, 见了 称 x 为一单位向是

定理 1. ((auchy 不等式)

 $\forall \alpha, \beta \in \mathbb{R}^n$, $|(\alpha, \beta)| \leq |\alpha| \cdot |\beta|$, 仅当 α, β线性相关对等号 验证: $|\alpha| \cdot |\beta|$, 有 α=0 或 $\beta = k\alpha$.

 $(0, \beta) = (00, \beta) = 0(0, \beta) = 0 = |0||\beta|$ $|(\alpha, \beta)| = |(\alpha, k\alpha)| = |k(\alpha, \alpha)| = |k||\alpha|^2 = |\alpha||k\alpha|$

2°当α, β线性无关,即 YtfR, 有β+tα, tα-β+D

 $O<(t\alpha-\beta,t\alpha-\beta)=(t\alpha,t\alpha)-(t\alpha,\beta)-(\beta,t\alpha)+(\beta+\beta)$

 $= t^2/\alpha|^2 - 2t(\alpha,\beta) + |\beta|^2 \quad \forall \ t \in \mathbb{R}^2$

 $(-2(\alpha,\beta))^{2}-4|\alpha|^{2}|\beta|^{2}>0$ $|\beta|(\alpha,\beta)|\leq |\alpha||\beta|$

定义6. 差<α,β>=至,即(α,β)=0,则称α,β正交,记作αLβ

定义7. 双马马的全岛 $d(\alpha,\beta):=|\alpha-\beta|$

蜀矢2 d(α , β)=d(β , α), d(α - β) > 0, 仅当 α = β 耐等号 成立 $d(\alpha, \gamma) \leq d(\alpha, \beta) + d(\beta, \gamma)$

编题2、 | 以+ β] ≤ | α | + | β | 五角不等式

 $|\alpha + \beta|^2 = |\alpha|^2 + 2(\alpha, \beta) + |\beta|^2 \leq |\alpha|^2 + 2|\alpha||\beta| + |\beta|^2$

$\leq (\alpha + \beta)^2$
$\leq (\alpha + \beta)^2$ 指证1. $Z\alpha5\beta正矣见 \alpha+\beta = \alpha ^2+ \beta ^2$