Deep Learning - Theory and Practice

IE 643 Lectures 11, 12

September 11 & 13, 2024.

- Popular examples of MLP
 - MLP with Single Hidden Layer
 - Encoder-Decoder Architecture

In the MLP with single hidden layer, consider:

- d neurons in input layer accepting inputs from $[0,1]^d$.
- N neurons in hidden layer.
- Single neuron in the output layer.

• All hidden layer neurons have sigmoidal activations.

- All hidden layer neurons have sigmoidal activations.
 - ▶ **Recall:** A sigmoidal activation $\sigma: \mathbb{R} \to (0,1)$ is a monotonically increasing continuous function with the property $\sigma(z) \to 0$ as $z \to -\infty$ and $\sigma(z) \to 1$ as $z \to +\infty$.

- All hidden layer neurons have sigmoidal activations.
 - ▶ **Recall:** A sigmoidal activation $\sigma : \mathbb{R} \to (0,1)$ is a monotonically increasing continuous function with the property $\sigma(z) \to 0$ as $z \to -\infty$ and $\sigma(z) \to 1$ as $z \to +\infty$.
- The output layer neuron has linear activation function.

- All hidden layer neurons have sigmoidal activations.
 - ▶ **Recall:** A sigmoidal activation $\sigma: \mathbb{R} \to (0,1)$ is a monotonically increasing continuous function with the property $\sigma(z) \to 0$ as $z \to -\infty$ and $\sigma(z) \to 1$ as $z \to +\infty$.
- The output layer neuron has linear activation function.
 - ▶ **Recall:** A linear activation function $\phi : \mathbb{R} \to \mathbb{R}$ is given by $\phi(z) = z$.

- Weights connecting the input layer neurons to the j-th neuron in the hidden layer are collected into the vector w_j and the associated bias be b_j .
- Weight connecting the j-th neuron in hidden layer to the output layer neuron is denoted by α_i .

• Then for an input $x \in [0,1]^d$ the prediction or last layer output can be represented as:

$$\hat{y} = G(x) = \sum_{j=1}^{N} \alpha_j \sigma(w_j^{\top} x + b_j).$$

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣りで

From a famous result of Cybenko (1989)[†] we have:

Let $\mathcal{C}([0,1]^d)$ denote the set of continuous functions over $[0,1]^d$ and let $\epsilon>0$. Then for any $f\in\mathcal{C}([0,1]^d)$, there is a sum of the form $G(x)=\sum_{j=1}^N\alpha_j\sigma(w_j^\top x+b_j)$ such that $|G(x)-f(x)|<\epsilon,\ \forall x\in[0,1]^d.$

[†] G. Cybenko, Approximations by Superpositions of a Sigmoidal Function, Math. Control Signals Systems, 1989.

The result of Cybenko (1989) implies:

• Single hidden layer networks where hidden layer neurons have sigmoidal activation functions and an output neuron with linear activation can approximate any continuous function over $[0,1]^d$ to any arbitrarily precision $\epsilon>0$.

The result of Cybenko (1989) implies:

- Single hidden layer networks where hidden layer neurons has sigmoidal activation functions and an output neuron with linear activation can approximate any continuous function over $[0,1]^d$ to any arbitrarily precision $\epsilon>0$.
- This result is about the approximation capability of single hidden layer networks.

• Caveat: How many neurons N do we require in the hidden layer to achieve the approximation?

13 / 84

We consider a simple MLP architecture with:

- An input layer with *n* neurons
- A hidden layer with p neurons, where $p \le n$
- An output layer with n neurons
- All neurons in hidden and output layers have linear activations.

This architecture is popularly called **Encoder-Decoder Architecture**.

15 / 84

Let B denote the $p \times n$ matrix connecting input layer and hidden layer.

Let A denote the $n \times p$ matrix connecting hidden layer and output layer.

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathbb{R}^n$, $y^i \in \mathbb{R}^n$, $\forall i \in \{1, ..., S\}$.
- MLP Parameters: Weight matrices B and A.

401401010000

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathbb{R}^n$, $y^i \in \mathbb{R}^n$, $\forall i \in \{1, \dots, S\}$.
- MLP Parameters: Weight matrices B and A.

Error: $E(B, A) = \sum_{i=1}^{S} ||ABx^{i} - y^{i}||_{2}^{2}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

18 / 84

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathbb{R}^n$, $y^i \in \mathbb{R}^n$, $\forall i \in \{1, \dots, S\}$.
- **MLP Parameters:** Weight matrices *B* and *A*.

Special case: When $y^i = x^i$, $\forall i$, the architecture is called **Autoencoder**.

- 《 ㅁ 》 《 🗗 》 《 필 》 《 필 》 🧵 🛛 🐒

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathbb{R}^n$, $y^i \in \mathbb{R}^n$, $\forall i \in \{1, \dots, S\}$.
- MLP Parameters: Weight matrices B and A.

Error for autoencoder: $E(B,A) = \sum_{i=1}^{S} ||ABx^i - x^i||_2^2$.

Example: Consider the case: n = p = 1.

Error:
$$E(b, a) = \sum_{i=1}^{S} (abx^{i} - y^{i})^{2}$$
.

Sample Training Data:

xi	y ⁱ
.708333	.708333
.583333	.583333
.166667	.166667
.458333	.458333
.875	.875

Loss surface for the sample training data:

23 / 84

Multi Layer Perceptron: Encoder-Decoder Architecture Loss surface for the sample training data:

Observation: Though there are two valleys in the loss surface, they look symmetric.

Loss surface for the sample training data:

Question: Does this extend to cases where $y^i \neq x^i$ and for $n \geq 2$, $n \geq p$?

However, when we fix a, we have:

However, when we fix a, we have:

However, when we fix a, we have:

Similarly, when we fix b, we have:

Similarly, when we fix b, we have:

30 / 84

Similarly, when we fix b, we have:

Error:
$$E(b, a) = \sum_{i=1}^{s} (abx^{i} - y^{i})^{2}$$
.

When we fix a or when we fix b, we observe that the graph does not contain multiple valleys.

32 / 84

$$x \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \hat{y} = abx$$
Input Hidden Output
Layer Layer Layer

Error:
$$E(b, a) = \sum_{i=1}^{S} (abx^{i} - y^{i})^{2}$$
.

When we fix a or when we fix b, we observe that the graph does not contain multiple valleys.

Thus when we fix a or when we fix b, we observe that the graph looks as if every local optimum is a global optimum.

Error:
$$E(b, a) = \sum_{i=1}^{S} (abx^{i} - y^{i})^{2}$$
.

When we fix a or when we fix b, we observe that the graph does not contain multiple valleys.

Thus when we fix a or when we fix b, we observe that the graph looks as if every local optimum is a global optimum.

Question: Does this behavior extend to higher dimensions?

Error:
$$E(b, a) = \sum_{i=1}^{s} (abx^{i} - y^{i})^{2}$$
.

When we fix a or when we fix b, we observe that the graph does not contain multiple valleys.

Thus when we fix a or when we fix b, we observe that the graph looks as if every local optimum is a global optimum.

Question: Does this behavior extend to higher dimensions?

We shall investigate this in higher dimensions!

Some notations:

Let
$$X = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ x^1 & x^2 & \dots & x^S \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix}$$
, $Y = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ y^1 & y^2 & \dots & y^S \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix}$.

Note: X and Y are $n \times S$ matrices.

Some notations:

For a
$$n \times q$$
 matrix $H = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1q} \\ \vdots & \vdots & \dots & \vdots \\ h_{n1} & h_{n2} & \dots & h_{nq} \end{bmatrix}$,

let
$$\operatorname{vec}(H) = \begin{bmatrix} h_{11} & \dots & h_{n1} & h_{12} & \dots & h_{n2} & \dots & h_{1q} & \dots & h_{nq} \end{bmatrix}^{\top}$$
 denote a $nq \times 1$ vector.

Note: vec(H) contains the columns of matrix H stacked upon one another.

Recall:

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathbb{R}^n$, $y^i \in \mathbb{R}^n$, $\forall i \in \{1, \dots, S\}$.
- MLP Parameters: Weight matrices B and A.

Error: $E = \sum_{i=1}^{S} ||ABx^i - y^i||_2^2$. (We have used E since the context is clear!)

Recall:

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathbb{R}^n$, $y^i \in \mathbb{R}^n$, $\forall i \in \{1, \dots, S\}$.
- MLP Parameters: Weight matrices B and A.

Error: $E = \sum_{i=1}^{S} ||ABx^i - y^i||_2^2$. (We have used E since the context is clear!)

• Using the new notations, we write: $E = \|\text{vec}(ABX - Y)\|_2^2$. (Homework!)

Note: The norm is a simple vector norm.


```
We have: E = \|\operatorname{vec}(ABX - Y)\|_2^2.
```

Now note: vec(ABX - Y) = vec(ABX) - vec(Y). (Homework: Verify this claim!)


```
We have: E = \|\operatorname{vec}(ABX - Y)\|_2^2.
```

Now note: vec(ABX - Y) = vec(ABX) - vec(Y). (Homework: Verify this claim!)

Thus we have: $E = ||\operatorname{vec}(ABX) - \operatorname{vec}(Y)||_2^2$.

Some more new notations:

For a
$$m \times n$$
 matrix $G = \begin{bmatrix} g_{11} & \cdots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{m1} & \cdots & g_{mn} \end{bmatrix}$

and a
$$p \times q$$
 matrix $H = \begin{bmatrix} h_{11} & \dots & h_{1q} \\ \vdots & \dots & \vdots \\ h_{p1} & \dots & h_{pq} \end{bmatrix}$,

define:
$$G \otimes H = \begin{bmatrix} g_{11}H & \dots & g_{1n}H \\ \vdots & \dots & \vdots \\ g_{m1}H & \dots & g_{mn}H \end{bmatrix}$$
 as Kronecker product of G and H .

Note: $G \otimes H$ is of size $mp \times nq$.

Claim:

$$\operatorname{vec}(ABX) = (X^{\top} \otimes A)\operatorname{vec}(B).$$

Proof idea:

Using:

$$\operatorname{vec}(ABX) = (X^{\top} \otimes A)\operatorname{vec}(B).$$

we can write:

$$E = \|\text{vec}(ABX - Y)\|_{2}^{2} = \|\text{vec}(ABX) - \text{vec}(Y)\|_{2}^{2}$$
$$= \|(X^{\top} \otimes A)\text{vec}(B) - \text{vec}(Y)\|_{2}^{2}.$$

44 / 84

Using:

$$\operatorname{vec}(ABX) = (X^{\top} \otimes A)\operatorname{vec}(B).$$

we can write:

$$E = \|\text{vec}(ABX - Y)\|_{2}^{2} = \|\text{vec}(ABX) - \text{vec}(Y)\|_{2}^{2}$$
$$= \|(X^{\top} \otimes A)\text{vec}(B) - \text{vec}(Y)\|_{2}^{2}.$$

This is of the form: $F(z) = ||Mz - c||_2^2$, where $M = (X^\top \otimes A)$, z = vec(B) and c = vec(Y).

Using:

$$\operatorname{vec}(ABX) = (X^{\top} \otimes A)\operatorname{vec}(B).$$

we can write:

$$E = \|\text{vec}(ABX - Y)\|_{2}^{2} = \|\text{vec}(ABX) - \text{vec}(Y)\|_{2}^{2}$$
$$= \|(X^{\top} \otimes A)\text{vec}(B) - \text{vec}(Y)\|_{2}^{2}.$$

This is of the form: $F(z) = \|Mz - c\|_2^2$, where $M = (X^\top \otimes A)$, z = vec(B) and c = vec(Y).

Observe: M is of size $nS \times np$, z is a $np \times 1$ vector and c is a $nS \times 1$ vector.

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function F

The function F(z) is convex.

Question: What is a convex function?

Consider the problem $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Question: What is a convex function?

We discuss convex sets and convex functions in Part 2 of this lecture!

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{argmin}} \|Mz - c\|_2^2$$

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{argmin}} \|Mz - c\|_{2}^{2} = \underset{z}{\operatorname{argmin}} (Mz - c)^{\top} (Mz - c)$$

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{argmin}} \|Mz - c\|_{2}^{2} = \underset{z}{\operatorname{argmin}} (Mz - c)^{\top} (Mz - c)$$
$$= \underset{z}{\operatorname{argmin}} z^{\top} M^{\top} Mz - 2z^{\top} M^{\top} c + c^{\top} c$$

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\min} \|Mz - c\|_{2}^{2} = \underset{z}{\operatorname{argmin}} (Mz - c)^{\top} (Mz - c)$$
$$= \underset{z}{\operatorname{argmin}} z^{\top} M^{\top} Mz - 2z^{\top} M^{\top} c + c^{\top} c$$
$$= \underset{z}{\operatorname{argmin}} z^{\top} M^{\top} Mz - 2z^{\top} M^{\top} c$$

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

Note:

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{min}} \|Mz - c\|_2^2 = \underset{z}{\operatorname{argmin}} z^\top M^\top M z - 2z^\top M^\top c$$

• By first-order optimality characterization, we have z^* is a solution of $\min_z F(z)$ if and only if $\nabla F(z^*) = 0$.

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**. **Note:**

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{min}} \|Mz - c\|_{2}^{2} = \underset{z}{\operatorname{argmin}} z^{\top} M^{\top} Mz - 2z^{\top} M^{\top} c$$

- By first-order optimality characterization, we have z^* is a solution of $\min_z F(z)$ if and only if $\nabla F(z^*) = 0$.
- $\bullet \implies 2M^{\top}Mz^* 2M^{\top}c = 0.$

- 4 □ ト 4 圖 ト 4 園 ト 4 園 ト 3 ■ 9 9 Q @

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function *F*

The function F(z) is convex.

Hence $\min_z F(z)$ is a **convex optimization problem**. **Note:**

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{min}} \|Mz - c\|_2^2 = \underset{z}{\operatorname{argmin}} z^\top M^\top M z - 2z^\top M^\top c$$

- By first-order optimality characterization, we have z^* is a solution of $\min_z F(z)$ if and only if $\nabla F(z^*) = 0$.
- $\bullet \implies 2M^{\top}Mz^* 2M^{\top}c = 0.$
- $\bullet \implies M^{\top}Mz^* = M^{\top}c.$

Consider the function $F(z) = ||Mz - c||_2^2$. We have the following result:

Convexity of function F

The function F(z) is convex.

Hence $\min_{z} F(z)$ is a **convex optimization problem**.

Note:

$$\underset{z}{\operatorname{argmin}} F(z) = \underset{z}{\operatorname{min}} \|Mz - c\|_2^2 = \underset{z}{\operatorname{argmin}} z^\top M^\top M z - 2z^\top M^\top c$$

- By first-order optimality characterization, we have z^* is a solution of $\min_z F(z)$ if and only if $\nabla F(z^*) = 0$.
- $\bullet \implies 2M^{\top}Mz^* 2M^{\top}c = 0.$
- $\bullet \implies M^{\top}Mz^* = M^{\top}c.$

Further if $M^{\top}M$ is positive definite, z^* is the unique optimal solution and is given by $z^* = (M^{\top}M)^{-1}M^{\top}c$.

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\text{vec}(B)} \|(X^\top \otimes A)\text{vec}(B) - \text{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A) z^* = (X^{\top} \otimes A)^{\top} c.$$

Some properties of Kronecker Product:

(P1)
$$\operatorname{vec}(ABC) = (C^{\top} \otimes A)\operatorname{vec}(B)$$
.

(P2)
$$(G \otimes H)^{\top} = (G^{\top} \otimes H^{\top}).$$

(P3)
$$(G \otimes H)^{-1} = (G^{-1} \otimes H^{-1}).$$

$$(P4) (G \otimes H)(U \otimes V) = (GU \otimes HV)$$

(P5) If G and H are symmetric and positive (semi-)definite, then $(G \otimes H)$ is also symmetric and positive (semi-)definite.

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\text{vec}(B)} \|(X^\top \otimes A)\text{vec}(B) - \text{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A) z^{*} = (X^{\top} \otimes A)^{\top} c$$

$$\implies (X \otimes A^{\top}) (X^{\top} \otimes A) z^{*} = (X \otimes A^{\top}) c \text{ (from (P2))}$$

$$\implies (XX^{\top} \otimes A^{\top} A) z^{*} = (X \otimes A^{\top}) c \text{ (from (P4))}$$

Recall:
$$X = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ x^1 & x^2 & \cdots & x^S \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix}, Y = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ y^1 & y^2 & \cdots & y^S \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix}.$$

Also note:

$$XX^{\top} = \sum_{i=1}^{S} x^{i} (x^{i})^{\top},$$

$$YY^{\top} = \sum_{i=1}^{S} y^{i} (y^{i})^{\top},$$

$$XY^{\top} = \sum_{i=1}^{S} x^{i} (y^{i})^{\top}$$
and
$$YX^{\top} = \sum_{i=1}^{S} y^{i} (x^{i})^{\top}.$$

(Homework: try to see if these equalities are true!)

Denote XX^{\top} by Σ_{XX} , YY^{\top} by Σ_{YY} , XY^{\top} by Σ_{XY} and YX^{\top} by Σ_{YX} .

Recall:
$$X = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ x^1 & x^2 & \cdots & x^S \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix}$$
, $Y = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ y^1 & y^2 & \cdots & y^S \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix}$.

Also note:

$$XX^{\top} = \sum_{i=1}^{S} x^{i} (x^{i})^{\top},$$

$$YY^{\top} = \sum_{i=1}^{S} y^{i} (y^{i})^{\top},$$

$$XY^{\top} = \sum_{i=1}^{S} x^{i} (y^{i})^{\top}$$
and
$$YX^{\top} = \sum_{i=1}^{S} y^{i} (x^{i})^{\top}.$$

(Homework: try to see if these equalities are true!)

Denote XX^{\top} by Σ_{XX} , YY^{\top} by Σ_{YY} , XY^{\top} by Σ_{XY} and YX^{\top} by Σ_{YX} .

Also note Σ_{XX}, Σ_{YY} are symmetric and $(\Sigma_{XY})^{\top} = (XY^{\top})^{\top} = YX^{\top} = \Sigma_{YX}$

P. Balamurugan

Deep Learning - Theory and Practice

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\text{vec}(B)} \|(X^\top \otimes A) \text{vec}(B) - \text{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A)z^* = (X^{\top} \otimes A)^{\top} c$$

$$\implies (X \otimes A^{\top})(X^{\top} \otimes A)z^* = (X \otimes A^{\top})c \text{ (from (P2))}$$

$$\implies (XX^{\top} \otimes A^{\top}A)z^* = (X \otimes A^{\top})c \text{ (from (P4))}$$

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\text{vec}(B)} \|(X^\top \otimes A) \text{vec}(B) - \text{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A)z^{*} = (X^{\top} \otimes A)^{\top} c$$

$$\implies (X \otimes A^{\top})(X^{\top} \otimes A)z^{*} = (X \otimes A^{\top})c \text{ (from (P2))}$$

$$\implies (XX^{\top} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c \text{ (from (P4))}$$

$$\implies (\Sigma_{XX} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c$$

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\text{vec}(B)} \|(X^\top \otimes A) \text{vec}(B) - \text{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A)z^{*} = (X^{\top} \otimes A)^{\top} c$$

$$\implies (X \otimes A^{\top})(X^{\top} \otimes A)z^{*} = (X \otimes A^{\top})c \text{ (from (P2))}$$

$$\implies (XX^{\top} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c \text{ (from (P4))}$$

$$\implies (\Sigma_{XX} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c$$

$$\implies (\Sigma_{XX} \otimes A^{\top}A)(\text{vec}(B^{*})) = (X \otimes A^{\top})(\text{vec}(Y))$$

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\operatorname{vec}(B)} \|(X^\top \otimes A)\operatorname{vec}(B) - \operatorname{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A)z^{*} = (X^{\top} \otimes A)^{\top} c$$

$$\Rightarrow (X \otimes A^{\top})(X^{\top} \otimes A)z^{*} = (X \otimes A^{\top})c \text{ (from (P2))}$$

$$\Rightarrow (XX^{\top} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c \text{ (from (P4))}$$

$$\Rightarrow (\Sigma_{XX} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c$$

$$\Rightarrow (\Sigma_{XX} \otimes A^{\top}A)(\text{vec}(B^{*})) = (X \otimes A^{\top})(\text{vec}(Y))$$

$$\Rightarrow A^{\top}AB^{*}\Sigma_{XX} = A^{\top}YX^{\top} \text{ (from (P1))}$$

Recall:

$$\min_{z} F(z) = \|Mz - c\|_2^2 \text{ is same as } \min_{\operatorname{vec}(B)} \|(X^\top \otimes A)\operatorname{vec}(B) - \operatorname{vec}(Y)\|_2^2.$$

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A)z^{*} = (X^{\top} \otimes A)^{\top} c$$

$$\Rightarrow (X \otimes A^{\top})(X^{\top} \otimes A)z^{*} = (X \otimes A^{\top})c \text{ (from (P2))}$$

$$\Rightarrow (XX^{\top} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c \text{ (from (P4))}$$

$$\Rightarrow (\Sigma_{XX} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c$$

$$\Rightarrow (\Sigma_{XX} \otimes A^{\top}A)(\text{vec}(B^{*})) = (X \otimes A^{\top})(\text{vec}(Y))$$

$$\Rightarrow A^{\top}AB^{*}\Sigma_{XX} = A^{\top}YX^{\top} \text{ (from (P1))}$$

$$\Rightarrow A^{\top}AB^{*}\Sigma_{XX} = A^{\top}\Sigma_{YX}$$

We have the following result:

The minimizer
$$z^*$$
 of $\min_z \|(X^\top \otimes A)z - \operatorname{vec}(Y)\|_2^2$ satisfies

$$A^{\mathsf{T}}AB^{*}\Sigma_{XX} = A^{\mathsf{T}}\Sigma_{YX}$$

where $vec(B^*) = z^*$.

Assume:

• Σ_{XX} is invertible.

70 / 84

Assume:

- Σ_{XX} is invertible.
 - Recall: $\Sigma_{XX} = XX^{\top} = \sum_{j=1}^{S} x^{j} (x^{j})^{\top}$.

Assume:

- Σ_{XX} is invertible.
 - Recall: $\Sigma_{XX} = XX^{\top} = \sum_{i=1}^{S} x^i (x^i)^{\top}$.
 - ▶ Hence Σ_{XX} is symmetric and positive semi-definite.

- Σ_{XX} is invertible.
 - Recall: $\Sigma_{XX} = XX^{\top} = \sum_{i=1}^{S} x^i (x^i)^{\top}$.
 - ▶ Hence Σ_{XX} is symmetric and positive semi-definite.
 - Now invertibility of Σ_{XX} implies that Σ_{XX} is symmetric and positive definite.

- Σ_{XX} is invertible.
- A is full rank.

- Σ_{XX} is invertible.
- A is full rank.
 - Recall: Rank of matrix A is the number of linearly independent columns or rows in A

- Σ_{XX} is invertible.
- A is full rank.
 - Recall: Rank of matrix A is the number of linearly independent columns or rows in A.
 - ▶ Also recall: A is of size $n \times p$ and p < n.

- Σ_{XX} is invertible.
- A is full rank.
 - Recall: Rank of matrix A is the number of linearly independent columns or rows in A.
 - ▶ Also recall: *A* is of size $n \times p$ and $p \le n$.
 - ▶ A is full rank \implies rank $(A) = \min\{n, p\} = p$.

Assume:

- Σ_{XX} is invertible.
- A is full rank.
 - Recall: Rank of matrix A is the number of linearly independent columns or rows in A.
 - ▶ Also recall: *A* is of size $n \times p$ and $p \le n$.
 - ▶ A is full rank \implies rank $(A) = \min\{n, p\} = p$.

The full rank assumption on $A \implies A^{\top}A$ is symmetric and positive definite and hence invertible.

Recall:

$$\min_{z} F(z) = \|Mz - c\|_{2}^{2} \text{ is same as } \min_{\text{vec}(B)} \|(X^{\top} \otimes A)\text{vec}(B) - \text{vec}(Y)\|_{2}^{2}.$$

Hence from $M^{\top}Mz^* = M^{\top}c$, we have:

$$(X^{\top} \otimes A)^{\top} (X^{\top} \otimes A)z^{*} = (X^{\top} \otimes A)^{\top}c$$

$$\implies (X \otimes A^{\top})(X^{\top} \otimes A)z^{*} = (X \otimes A^{\top})c \text{ (from (P2))}$$

$$\implies (XX^{\top} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c \text{ (from (P4))}$$

$$\implies (\Sigma_{XX} \otimes A^{\top}A)z^{*} = (X \otimes A^{\top})c$$

If the assumptions that Σ_{XX} is invertible and A is full rank hold, then we have Σ_{XX} and $A^{\top}A$ are symmetric and positive definite, hence

 $M^{\top}M = (\Sigma_{XX} \otimes A^{\top}A)$ is also symmetric and positive definite(by (P5)).

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Recall:

$$\min_{z} F(z) = \|\mathit{Mz} - c\|_{2}^{2} \text{ is same as } \min_{\mathsf{vec}(B)} \|(X^{\top} \otimes A)\mathsf{vec}(B) - \mathsf{vec}(Y)\|_{2}^{2}.$$

Since $M^{\top}M$ is positive definite, the function $\|Mz - c\|_2^2$ is strictly convex and admits a unique minimizer.

Consider the result:

For a fixed A, the minimizer z^* of $\min_z \|(X^\top \otimes A)z - \operatorname{vec}(Y)\|_2^2$ satisfies

$$A^{\top}AB^{*}\Sigma_{XX}=A^{\top}\Sigma_{YX}$$

where $vec(B^*) = z^*$.

If the assumptions that Σ_{XX} is invertible and A is full rank hold, then we have

$$B^* = (A^\top A)^{-1} A^\top \Sigma_{YX} \Sigma_{XX}^{-1}$$

as the unique minimizer.

Recall:
$$E = ||\operatorname{vec}(ABX) - \operatorname{vec}(Y)||_2^2$$
.

Homework: Fix B and vary weights of A matrix and check for convexity of the loss function and solution characteristics of the associated minimization problem.

82 / 84

We have the corresponding result:

For a fixed B, the loss function is convex with respect to vec(A) and the minimizer A satisfies the following relation:

$$AB\Sigma_{XX}B^{\top} = \Sigma_{YX}B^{\top}$$

If the assumptions that Σ_{XX} is invertible and B is full rank hold, then we have

$$A^* = \Sigma_{YX} B^\top (B \Sigma_{XX} B^\top)^{-1}$$

as the unique minimizer.

Further, we have the corresponding result:

Assume Σ_{XX} is invertible and A is of full rank. Then A and B denote the critical points of the loss (or error) function E, that is,

$$\frac{\partial \mathcal{E}}{\partial A_{ij}} = 0, \ \forall i \in \{1, \dots, n\}, j \in \{1, \dots, p\}$$
 and

 $\frac{\partial \vec{E}}{\partial B_{ii}} = 0, \ \forall i \in \{1, \dots, p\}, j \in \{1, \dots, n\}, \text{ if and only if } A \text{ satisfies:}$

$$P_A \Sigma = \Sigma P_A = P_A \Sigma P_A$$
, where $P_A = A(A^{\top}A)^{-1}A^{\top}, \Sigma = \Sigma_{YX}\Sigma_{XX}^{-1}\Sigma_{XY}$.

and W = AB is of the form:

$$W = P_A \Sigma_{YX} \Sigma_{XX}^{-1}.$$

