Lecture 13: Distance-vector Routing

CSE 123: Computer Networks
Alex C. Snoeren

Lecture 13 Overview

- Distance vector
 - Assume each router knows its own address and cost to reach each of its directly connected neighbors
- Bellman-Ford algorithm
 - Distributed route computation using only neighbor's info
- Mitigating loops
 - Split horizon and posion reverse

Bellman-Ford Algorithm

- Define distances at each node X
 - d_x(y) = cost of least-cost path from X to Y
- Update distances based on neighbors
 - d_x(y) = min {c(x,v) + d_v(y)} over all neighbors V

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:

- Local link cost change
- Distance vector update message from neighbor

Distributed:

- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if distance to any destination has changed, *notify* neighbors

P

Step-by-Step

- c(x,v) = cost for direct link from x to v
 - Node x maintains costs of direct links c(x,v)
- $D_x(y)$ = estimate of least cost from x to y
 - Node x maintains distance vector $\mathbf{D}_x = [D_x(y): y \in N]$
- Node x maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$
- Each node v periodically sends D_v to its neighbors
 - And neighbors update their own distance vectors
 - $D_x(y)$ ← $min_y\{c(x,v) + D_y(y)\}$ for each node $y \in N$

Example: Initial State

Info at	Distance to Node					
node	Α	В	C	D	Е	
Α	0	7	∞	∞	1	
В	7	0	1	∞	8	
С	∞	1	0	2	∞	
D	∞	∞	2	0	2	
E	1	8	∞	2	0	

D sends vector to E

I'm 2 from C, 0 from D and 2 from

Info at	Distance to Node					
node	Α	В	C	D	E	
Α	0	7	∞	∞	1	
В	7	0	1	∞	8	
С	∞	1	0	2	∞	
D	∞	∞	2	0	2	
E	1	8	4	2	0	

D is 2 away, 2+2< ∞,

B sends vector to A

Info at	Distance to Node					
node	Α	В	C	D	Ε	
Α	0	7	8	∞	1	
В	7	0	1	∞	8	
С	∞	1	0	2	∞	
D	∞	∞	2	0	2	
E	1	8	4	2	0	

CSE 123 – Lecture 13: Distance-vector Routing

E sends vector to A

E is 1 away, 4+1<8 so C is 5 away, 1+2< ∞ so D is 3 away

Info at	Distance to Node					
node	Α	В	C	D	E	
Α	0	7	5	3	1	
В	7	0	1	∞	8	
С	∞	1	0	2	∞	
D	∞	∞	2	0	2	
E	1	8	4	2	0	

I'm 1 from A, 8 from B, 4 from C, 2 from D & 0 from E

CSE 123 - Lecture 13: Distance-vector Routing

...until Convergence

Info at	Distance to Node					
node	Α	В	C	D	Е	
Α	0	6	5	3	1	
В	6	0	1	3	5	
С	5	1	0	2	4	
D	3	3	2	0	2	
E	1	5	4	2	0	

Node B's distance vectors

Handling Link Failure

- A marks distance to E as ∞ , and tells B
- \bullet E marks distance to A as ∞ , and tells B and D
- B and D recompute routes and tell C, E and E
- etc... until converge

Info	Distance to Node				
at node	Α	В	С	D	E
Α	0	7	8	10	12
В	7	0	1	3	5
С	8	1	0	2	4
D	10	3	2	0	2
E	12	5	4	2	0

Counting to Infinity

Why so High?

- Updates don't contain enough information
- Can't totally order bad news above good news
- B accepts A's path to C that is implicitly through B!
- Aside: this also causes delays in convergence even when it doesn't count to infinity

9

Mitigation Strategies

Hold downs

- As metric increases, delay propagating information
- Limitation: Delays convergence

Loop avoidance

- Full path information in route advertisement
- Explicit queries for loops (e.g. DUAL)

Split horizon

- Never advertise a destination through its next hop
 - » A doesn't advertise C to B
- Poison reverse: Send negative information when advertising a destination through its next hop
 - » A advertises C to B with a metric of ∞
 - » Limitation: Only works for "loop"s of size 2

Poison Reverse Example

If *Z* routes through *Y* to get to *X*:

 Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)

Split Horizon Limitations

- A tells B & C that D is unreachable
 - B computes new route through C
 - Tells C that D is unreachable (poison reverse)
 - Tells A it has path of cost 3 (split horizon doesn't apply)
- A computes new route through B
 - A tells C that D is now reachable
- Etc...

Routing Information Protocol

- DV protocol with hop count as metric
 - Infinity value is 16 hops; limits network size
 - Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
 - With triggered updates for link failures
 - Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
 - www.ietf.org/rfc/rfc1058.txt
- RIPv2 (adds authentication etc.) in RFC1388
 - www.ietf.org/rfc/rfc1388.txt

Message complexity

- <u>LS</u>: with *n* nodes, *E* links,
 O(nE) messages sent
- DV: exchange between neighbors only

Speed of Convergence

- <u>LS</u>: relatively fast
- <u>DV</u>: convergence time varies
 - May be routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- Node can advertise incorrect link cost
- Each node computes only its own table

DV:

- Node can advertise incorrect path cost
- Each node's table used by others (error propagates)

P

Routing so far...

- Shortest-path routing
 - Metric-based, using link weights
 - Routers share a common view of path "goodness"
- As such, commonly used inside an organization
 - RIP and OSPF are mostly used as intradomain protocols
- But the Internet is a "network of networks"
 - How to stitch the many networks together?
 - When networks may not have common goals
 - ... and may not want to share information

For next time...

- Read Ch. 4.3.3-4 in P&D
- Keep moving on Project 2