- 1-In analytical Chemistry, Sample PreParation refers to the ways during which a Sample is treated before Its analyses.
- Prefaration may be a vital Stef in most analytical techniques, because the techniques are often not aware of the analyte in its in-situ form or the results are distroted by interfering species.
- 2-Cali bration Curves are wont to understand the instrumental response to an analyte, and to Predict the Concentration of analyte cluring a sample.

 A Cali bration Curve is made by first Prefaring a group of ordinary Solutions with Known Concentration of the analyte.
- 3-SamPle the object of the analytical Procedure
 (for examPle: a blood SamPle)
 Analyte the Substance that is of interest in the analysis
 (for examPle: amount of hemoglobin in blood)
 matrix the constituents a Part from the analyte
 of the given SamPle (for examPle: all the constituents
 of blood except hemoglobin)

4-Buffer capacity is defined as the number of moles of a strong acid or astrong base that causes 1 L of the buffer solution to undergo a 2 unit change in P.H.

5-A 501/ PH = PKa + 109 NHU Na [NH4]

Total number of mmoles of NH4 = 0.2 x 250 = 50 mmor

XSS NH4 = 50 - 0.1 * V [NH4] = 50 - 0.1V V+250 $Ka = 5.6 \times 10^{-10}$ $9Ka = -109(5.6 \times 10^{-10})$ 9Ka = 9.25

[NHUNO] = 0.1V V+850

PH-PKa+109 - 50-0.1V V-+250

PH = 9.25 + 109 0.1V 50-0.1V

7.7-9.25 + 109 0.1V 50-0.1V

7.7-9.25 - 109 0.1V 50-0.1V

-1.55 = 109 c.1V 109 o.1V = -1.55 (50-0.1V) 109 o.1V = -77.5 + 0.155 V 109 (0.1V = 0.155 V) = -77.5

109 (-0.055) = -77.5 -0.055 V = - 109 [77.5]

 $-0.055V = -1.88 \rightarrow V = \frac{-1.88}{-0.055} = 34 m$

5B-PH of water at 0.25 is PH = 7 $KW (1000^{\circ}) = 55 \times KW (25 0^{\circ})$ $= 55 \times (2 \times 10^{-14}) M$ $\therefore PH(1000^{\circ}) = -\frac{1}{2} \log KW (1000^{\circ})$ $= -\frac{1}{2} \log 55 \times (2 \times 10^{-14})$ $= -\frac{1}{2} [\log 55 \times 10^{-14}]$ $= -\frac{1}{2} [2.740 - 14]$ $= -\frac{1}{2} [-12.26]$ = 6.13