Fields and forms on ρ -algebras

CĂTĂLIN CIUPALĂ

Department of Differential Equations, Faculty of Mathematics and Informatics, University Transilvania of Braşov, 2200 Braşov, Romania E-mail: cciupala@yahoo.com

MS received 13 May 2004; revised 21 October 2004

Abstract. In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: ρ -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on ρ -algebras.

Keywords. Non-commutative geometry; ρ -algebras; Frölicher–Nijenhuis bracket.

1. Introduction

There are some ways to define the Frölicher–Nijenhuis bracket in non-commutative differential geometry. The Frölicher–Nijenhuis bracket on the algebra of universal differential forms of a non-commutative algebra, is presented in [2], the Frölicher–Nijenhuis bracket in several kinds of differential graded algebras are defined in [6] and the Frölicher–Nijenhuis bracket on colour commutative algebras is defined in [7]. But this notion is not defined on ρ -algebras in the context of non-commutative geometry. In this paper we introduce the Frölicher–Nijenhuis bracket on a ρ -algebra A using the algebra of universal differential forms $\Omega^*(A)$.

A ρ -algebra A over the field k (\mathbb{C} or \mathbb{R}) is a G-graded algebra (G is a commutative group) together with a twisted cocycle ρ : $G \times G \to k$. These algebras were defined for the first time in the paper [1] and are generalizations of usual algebras (the case when G is trivial) and of \mathbb{Z} (\mathbb{Z}_2)-superalgebras (the case when G is \mathbb{Z} resp. \mathbb{Z}_2). Our construction of the Frölicher–Nijenhuis bracket for ρ -algebras, in this paper, is a generalization of this bracket from [2].

In $\S 2$ we present a class of non-commutative algebras which are ρ -algebras, derivations and bimodules. In $\S 3$ we define the algebra of (non-commutative) universal differential forms $\Omega^*(A)$ of a ρ -algebra A. In $\S 4$ we present the Frölicher–Nijenhuis calculus on A, the Nijenhuis algebra of A, and the Frölicher–Nijenhuis bracket on A. We also show the naturality of the Frölicher–Nijenhuis bracket.

2. ρ-Algebras

In this section we present a class of non-commutative algebras that are ρ -algebras. For more details see [1].

Let G be an abelian group, additively written, and let A be a G-graded algebra. This implies that the vector space A has a G-grading $A = \bigoplus_{a \in G} A_a$, and that $A_a A_b \subset A_{a+b}$

 $(a,b \in G)$. The G-degree of a (non-zero) homogeneous element f of A is denoted as |f|. Futhermore let $\rho: G \times G \to k$ be a map which satisfies

$$\rho(a,b) = \rho(b,a)^{-1}, \quad a,b \in G,$$
(1)

$$\rho(a+b,c) = \rho(a,c)\rho(b,c), \quad a,b,c \in G.$$
(2)

This implies $\rho(a,b) \neq 0$, $\rho(0,b) = 0$ and $\rho(c,c) = \pm 1$ for all $a,b,c \in G$, $c \neq 0$. We define for homogeneous elements f and g in A an expression, which is ρ -commutator of f and g as

$$[f,g]_{\rho} = fg - \rho(|f||g|)gf. \tag{3}$$

This expression as it stands make sense only for homogeneous elements f and g, but can be extended linearly to general elements. A G-graded algebra A with a given cocycle ρ will be called ρ -commutative if $fg = \rho(|f|,|g|)gf$ for all homogeneous elements f and g in A.

Examples.

- 1) Any usual (commutative) algebra is a ρ -algebra with the trivial group G.
- 2) Let $G = \mathbb{Z}(\mathbb{Z}_2)$ be the group and the cocycle $\rho(a,b) = (-1)^{ab}$, for any $a,b \in G$. In this case any ρ -(commutative) algebra is a super(commutative) algebra.
- 3) The *N*-dimensional quantum hyperplane [1,3,4] S_N^q , is the algebra generated by the unit element and *N* linearly independent elements x_1, \ldots, x_N satisfying the relations:

$$x_i x_j = q x_j x_i, \quad i < j$$

for some fixed $q \in k$, $q \neq 0$. S_N^q is a \mathbb{Z}^N -graded algebra, i.e.,

$$S_N^q = \bigoplus_{n_1,\ldots,n_N}^{\infty} (S_N^q)_{n_1\ldots n_N},$$

with $(S_N^q)_{n_1...n_N}$ the one-dimensional subspace spanned by products $x^{n_1} \cdots x^{n_N}$. The \mathbb{Z}^N -degree of these elements is denoted by

$$|x^{n_1}\cdots x^{n_N}|=n=(n_1,\ldots,n_N).$$

Define the function $\rho: \mathbb{Z}^N \times \mathbb{Z}^N \to k$ as

$$\rho(n,n') = q^{\sum_{j,k=1}^{N} n_j n'_k \alpha_{jk}},$$

with $\alpha_{jk} = 1$ for j < k, 0 for j = k and -1 for j > k. It is obvious that S_N^q is a ρ -commutative algebra.

4) The algebra of matrix $M_n(\mathbb{C})$ [5] is ρ -commutative as follows: Let

$$p = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \dots & & & \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad \text{and} \quad q = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ \varepsilon & 0 & \dots & 0 & 0 \\ 0 & \varepsilon^2 & \dots & 0 & 0 \\ \dots & & & & \\ 0 & 0 & \dots & \varepsilon^{n-1} & 0 \end{pmatrix},$$

 $p,q \in M_n(\mathbb{C})$, where $\varepsilon^n = 1$, $\varepsilon \neq 1$. Then $pq = \varepsilon qp$ and $M_n(\mathbb{C})$ is generated by the set $B = \{p^a q^b | a, b = 0, 1, \dots, n-1\}$.

It is easy to see that $p^aq^b=\varepsilon^{ab}q^bp^a$ and $q^bp^a=\varepsilon^{-ab}p^aq^b$ for any $a,b=0,1,\ldots,n-1$. Let $G:=\mathbb{Z}_n\oplus\mathbb{Z}_n,\ \alpha=(\alpha_1,\alpha_2)\in G$ and $x_\alpha:=p^{\alpha_1}q^{\alpha_2}\in M_n(\mathbb{C})$. If we denote $\rho(\alpha,\beta)=\varepsilon^{\alpha_2\beta_1-\alpha_1\beta_2}$ then $x_\alpha x_\beta=\rho(\alpha,\beta)x_\beta x_\alpha$, for any $\alpha,\beta\in G, x_\alpha,x_\beta\in B$.

It is obvious that the map $\rho: G \times G \to \mathbb{C}$, $\rho(\alpha, \beta) = \varepsilon^{\alpha_2 \beta_i - \alpha_1 \beta_2}$ is a cocycle and that $M_n(\mathbb{C})$ is a ρ -commutative algebra.

Let α be an element of the group G. A ρ -derivation X of A, of degree α is a bilinear map $X:A\to A$ of G-degree |X| i.e. $X:A_*\to A_{*+|X|}$, such that one has for all elements $f\in A_{|f|}$ and $g\in A$,

$$X(fg) = (Xf)g + \rho(\alpha, |f|)f(Xg). \tag{4}$$

Without any difficulties it can be obtained that if algebra A is ρ -commutative, $f \in A_{|f|}$ and X is a ρ -derivation of degree α , then fX is a ρ -derivation of degree $|f| + \alpha$ and the G-degree |f| + |X| i.e.

$$(fX)(gh) = ((fX)g)h + \rho(|f| + \alpha, |g|)g(fX)h$$

and $fX: A_* \rightarrow A_{*+|f|+|X|}$.

We say that $X: A \to A$ is a ρ -derivation if it has degree equal to G-degree |X| i.e. $X: A_* \to A_{*+|X|}$ and $X(fg) = (Xf)g + \rho(|X|,|f|)f(Xg)$ for any $f \in A_{|f|}$ and $g \in A$.

It is known [1] that the ρ -commutator of two ρ -derivations is again a ρ -derivation and the linear space of all ρ -derivations is a ρ -Lie algebra, denoted by ρ -Der A.

One verifies immediately that for such an algebra A, ρ -Der A is not only a ρ -Lie algebra but also a left A-module with the action of A on ρ -Der A defined by

$$(fX)g = f(Xg) \quad f, g \in A, X \in \rho\text{-Der}A. \tag{5}$$

Let M be a G-graded left module over a ρ -commutative algebra A, with the usual properties, in particular $|f\psi|=|f|+|\psi|$ for $f\in A, \psi\in M$. Then M is also a right A-module with the right action on M defined by

$$\psi f = \rho(|\psi|, |f|) f \psi. \tag{6}$$

In fact M is a bimodule over A, i.e.

$$f(\psi g) = (f\psi)g \quad f, g \in A, \ \psi \in M. \tag{7}$$

Let M and N be two G-graded bimodules over the ρ -algebra A. Let $f: M \to N$ be an A-bimodule homomorphism of degree $\alpha \in G$ if $f: M_{\beta} \to N_{\alpha+\beta}$ such that $f(am) = \rho(\alpha, |a|)af(m)$ and f(ma) = f(m)a for any $a \in A_{|a|}$ and $m \in M$. We denote by $\operatorname{Hom}_{\alpha}(M,N)$ the space of A-bimodule homomorphisms of degree α and by $\operatorname{Hom}_{A}^{A}(M,N) = \bigoplus_{\alpha \in G} \operatorname{Hom}_{\alpha}(M,N)$ the space of all A-bimodule homomorphisms.

3. Differential forms on a ρ -algebra

A is a ρ -algebra as in the previous section. We denote by $\Omega^1_{\alpha}(A)$ the space generated by the elements: adb of G-degree $|a|+|b|=\alpha$ with the usual relations:

$$d(a+b) = d(a) + d(b), \quad d(ab) = d(a)b + ad(b) \quad \text{and} \quad d1 = 0,$$

where 1 is the unit of the algebra A.

If we denote by $\Omega^1(A) = \sum_{\alpha} \Omega^1_{\alpha}(A)$ then $\Omega^1(A)$ is an A-bimodule and satisfies the following theorem of universality.

Theorem 1. For any A-bimodule M and for any derivation $X: A \to M$ of degree |X| there is an A-bimodule homomorphism $f: \Omega^1(A) \to M$ of degree |X| $(f \in \operatorname{Hom}_{|X|}(\Omega^1(A), M))$ such that $X = f \circ d$. The homomorphism is uniquely determined and the corresponding $X \mapsto f$ establishes an isomorphism between ρ - $\operatorname{Der}_{|X|}(A, M)$ and $\operatorname{Hom}_{|X|}(\Omega^1(A), M)$.

Proof. We define the map $f: \Omega^1(A) \to M$ by $f(adb) = \rho(|X|, |a|)aX(b)$ which transform the usual Leibniz rule for the operator d into the ρ -Leibniz rule for the derivation X.

Starting from the A-bimodule $\Omega^1(A)$ and the ρ -algebra $\Omega^0(A) = A$ we build up the algebra of differential forms over A.

This algebra will be a new $\overline{\rho}$ -algebra

$$\Omega^*(A) = \sum_{n \in \mathbb{N}, \alpha \in G} \Omega^n_{\alpha}(A)$$

graded by the group $\overline{G}=\mathbb{Z}\times G$ and generated by elements $a\in A_{|a|}=\Omega^0_{|a|}(A)$ of degree (0,|a|) and their differentials $da\in\Omega^1_{|a|}(A)$ of degree (1,|a|).

We will also require the universal derivation $d: A \to \Omega^1(A)$ which can be extended to a $\overline{\rho}$ -derivation of the algebra $\Omega^*(A)$ of degree (1,0) in such a way that $d^2=0$ and $\overline{\rho}|_{G\times G}=\rho$. Denote by $\omega\wedge\theta\in\Omega^{n+m}_{\alpha+\beta}(A)$ the product of forms $\omega\in\Omega^n_{\alpha}(A)$, $\theta\in\Omega^m_{\beta}(A)$ in the algebra $\Omega^*(A)$. Then

$$d(\omega \wedge \theta) = d\omega \wedge \theta + \overline{\rho}((1,0),(n,\alpha))\omega \wedge d\theta,$$

and

$$d^{2}(\omega \wedge \theta) = \overline{\rho}((1,0),(n+1,\alpha))d\omega \wedge d\theta + \overline{\rho}((1,0),(n,\alpha))d\omega \wedge d\theta = 0. (8)$$

Hence

$$\overline{\rho}((1,0),(n+1,\alpha)) + \overline{\rho}((1,0),(n,\alpha)) = 0. \tag{9}$$

From these relations it follows that

$$\overline{\rho}((1,0),(n,\alpha)) = (-1)^n \varphi(\alpha),$$

where $\varphi: G \to U(k)$ is the group homomorphism $\varphi(\alpha) = \overline{\rho}((1,0),(0,\alpha))$. From the properties of the cocycle ρ ,

$$\overline{\rho}((n,\alpha),(m,\beta)) = (-1)^{nm} \varphi^{-m}(\alpha) \varphi^{n}(\beta) \rho(\alpha,\beta) \tag{10}$$

for any $n, m \in \mathbb{Z}$ and $\alpha, \beta \in G$.

PROPOSITION 1.

Let A be a ρ -algebra with the cocycle ρ . Then any cocycle $\overline{\rho}$ on the group \overline{G} with the conditions $\overline{\rho}|_{G\times G} = \rho$ and (9) are given by (10) for some homomorphism $\varphi: G \to U(k)$.

We will denote below $\Omega^*(A, \varphi)$ or simply $\Omega^*(A)$ the \overline{G} -graded algebra of forms with the cocycle $\overline{\rho}$ and the derivation $d = d_{\varphi}$ of degree (1, 0).

Therefore for any ρ -algebra A, a group homomorphism $\varphi: G \to U(k)$ and an element $\alpha \in G$, we have the complex:

$$0 \to A_{\alpha} \xrightarrow{d_{\varphi}} \Omega^{1}_{\alpha}(A, \varphi) \xrightarrow{d_{\varphi}} \Omega^{2}_{\alpha}(A, \varphi) \xrightarrow{d_{\varphi}} \cdots \xrightarrow{d_{\varphi}} \Omega^{i}_{\alpha}(A, \varphi) \xrightarrow{d_{\varphi}} \Omega^{i+1}_{\alpha}(A, \varphi) \xrightarrow{d_{\varphi}} \cdots$$

The cohomology of this complex term $\Omega^i_{\alpha}(A, \varphi)$ is denoted by $H^i_{\alpha}(A, \varphi)$ and will be called as the *de Rham cohomology of the* ρ -algebraA.

PROPOSITION 2.

Let $f: A \to B$ be a homomorphism of degree $\alpha \in G$ between the G-graded ρ -algebras. There is a natural homomorphism $\Omega(f): \Omega^*(A) \to \Omega^*(B)$ which in degree n is $\Omega(f): \Omega^n_{\beta}(A) \to \Omega^n_{\beta+(n+1)\alpha}(A)$ and has the G'-degree $(0, (n+1)\alpha)$ given by

$$\Omega^{n}(f)(a_{0}da_{1}\wedge\cdots\wedge da_{n}) = f(a_{0})df(a_{1})\wedge\cdots\wedge df(a_{n}).$$
(11)

4. Frölicher–Nijenhuis bracket of ρ -algebras

4.1 Derivations

Here we present the Frölicher–Nijenhuis calculus over the algebra of forms defined in the previous section.

Denote by $\operatorname{Der}_{(k,\alpha)}(\Omega^*(A))$ the space of derivations of degree (k,α) i.e. an element $D \in \operatorname{Der}_{(k,\alpha)}(\Omega^*(A))$ satisfies the relations:

- 1) D is linear,
- 2) the G'-degree of D is $|D| = (k, \alpha)$, and
- 3) $D(\omega \wedge \theta) = D\omega \wedge \theta + \overline{\rho}((k,\alpha),(n,\beta))\omega \wedge D\theta$ for any $\theta \in \Omega^n_{\beta}(A)$.

Theorem 2. The space $\overline{\rho}$ -Der $\Omega^*(A) = \bigoplus_{(k,\alpha) \in \overline{G}} \mathrm{Der}_{(k,\alpha)} \ \Omega^*(A)$ is a $\overline{\rho}$ -Lie algebra with the bracket $[D_1,D_2] = D_1 \circ D_2 - \overline{\rho}(|D_1|,|D_2|)D_2 \circ D_1$.

4.2 Fields

Let us denote by \mathscr{L} : $\operatorname{Hom}_A^A(\Omega^1(A),A) \to \rho\operatorname{-Der}(A)$ the isomorphism from Theorem 1. We also denote by $\mathfrak{X}(A) := \operatorname{Hom}_A^A(\Omega^1(A),A)$ the space of fields of the algebra A. Then \mathscr{L} : $\mathfrak{X}(A) \to \rho\operatorname{-Der}(A;A)$ is an isomorphism of vector G-graded spaces. The space of ρ -derivations $\rho\operatorname{-Der}(A)$ is a Lie ρ -algebra with the $\rho\operatorname{-bracket}[\cdot,\cdot]$, and so we have an induced $\rho\operatorname{-Lie}$ bracket on $\mathfrak{X}(A)$ which is given by

$$\mathcal{L}([X,Y]) = [\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_X \mathcal{L}_Y - \rho(|X|, |Y|) \mathcal{L}_Y \mathcal{L}_X \tag{12}$$

and will be referred to as the ρ -Lie bracket of fields.

Lemma 1. Each field $X \in \mathfrak{X}(A)$ is by definition an A-bimodule homomorphism $\Omega_1(A) \to A$ and it prolongs uniquely to a graded $\overline{\rho}$ -derivation $j(X) = j_X \colon \Omega(A) \to \Omega(A)$ of degree (-1,|X|) by

$$j_X(a) = 0$$
 for $a \in A = \Omega^0(A)$,
 $j_X(\omega) = X(\omega)$ for $\omega \in \Omega^1(A)$

and

$$\begin{aligned} j_X(\omega_1 \wedge \omega_2 \wedge \dots \wedge \omega_k) \\ &= \sum_{i=1}^{k-1} \overline{\rho} \left((-1, |X|), \left(i - 1, \sum_{j=1}^{i-1} |\omega_i| \right) \right) \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge X(\omega_i) \\ &\times \omega_{i+1} \wedge \dots \wedge \omega_k + \overline{\rho} \left((-1, |X|), \left(k - 1, \sum_{j=1}^{k-1} |\omega_i| \right) \right) \\ &\times \omega_1 \wedge \dots \wedge \omega_{k-1} X(\omega_k) \end{aligned}$$

for any $\omega_i \in \Omega^1_{|\omega_i|}(A)$. The $\overline{\rho}$ -derivation j_X is called the contraction operator of the field X.

Proof. This is an easy computation.

With some abuse of notation we also write $\omega(X) = X(\omega) = j_X(\omega)$ for $\omega \in \Omega^1(A)$ and $X \in \mathfrak{X}(A) = \operatorname{Hom}_A^A(\Omega^1(A), A)$.

4.2.1 Algebraic derivations: A $\overline{\rho}$ -derivation $D \in \operatorname{Der}_{(k,\alpha)}\Omega(A)$ is called algebraic if $D|_{\Omega^0(A)}=0$. Then $D(a\omega)=\overline{\rho}((k,\alpha),(0,|a|))aD(\omega)$ and $D(\omega a)=D(\omega)a$ for any $a\in A_{|a|}$ and $\omega\in\Omega(A)$. It results that D is an A-bimodule homomorphism. We denote by $\operatorname{Hom}_{\alpha}(\Omega_l(A),\Omega_{k+l}(A))$ the space of A-bimodule homomorphisms from $\Omega_{(l,\alpha)}(A)$ to $\Omega_{(l+k,\alpha)}(A)$ of degree (k,α) . Then an algebraic derivation D of degree (k,α) is from $\operatorname{Hom}_{\alpha}(\Omega_l(A),\Omega_{k+l}(A))$. We denote by $\overline{\rho}$ - $\operatorname{Der}_{(k,\alpha)}^{\operatorname{alg}}\Omega^*(A)$ the space of all $\overline{\rho}$ -algebraic derivations of degree (k,α) from $\Omega^*(A)$. Since D is a $\overline{\rho}$ -derivation, D has the following expression on the product of 1-forms $\omega_l\in\Omega^1_{[\alpha]}(A)$:

$$D(\omega_1 \wedge \omega_2 \wedge \dots \wedge \omega_k) = \sum_{i=1}^k \overline{\rho} \left(|D|, \left(i - 1, \sum_{j=1}^{i-1} |\omega_i| \right) \right) \times \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge D(\omega_i) \wedge \dots \wedge \omega_k$$

and the derivation D is uniquely determined by its restriction on $\Omega^1(A)$,

$$K := D|_{\Omega_1(A)} \in \operatorname{Hom}_{\alpha}(\Omega_1(A), \Omega_{k+1}(A)). \tag{13}$$

We write $D = j(K) = j_K$ to express this dependence. Note that $j_K(\omega) = K(\omega)$ for $\omega \in \Omega_1(A)$. Next we will use the following notations:

$$\Omega^1_{(k,\alpha)} = \Omega^1_{(k,\alpha)}(A) := \operatorname{Hom}_{\alpha}(\Omega_1(A), \Omega_k(A)),$$

$$\Omega^1_* = \Omega^1_*(A) = \bigoplus_{k \geq 0, \alpha \in G} \Omega^1_{(k,\alpha)}(A).$$

Elements of the space $\Omega^1_{(k\alpha)}$ will be called *field-valued* (k,α) -*forms*.

4.2.2 Nijenhuis bracket:

Theorem 3. The map $j: \Omega^1_{(k+1,\alpha)}(A) \to \overline{\rho}$ -Der $^{\mathrm{alg}}_{(k,\alpha)}\Omega^*(A)$, $K \mapsto j_K$ defined by

$$j_{K}(\omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k})$$

$$= \sum_{i=1}^{k} \overline{\rho} \left((k+1, \alpha), \left(i-1, \sum_{j=1}^{i-1} |\omega_{i}| \right) \right)$$

$$\times \omega_{1} \wedge \cdots \wedge \omega_{i-1} \wedge j_{K}(\omega_{i}) \wedge \cdots \wedge \omega_{k}$$

is an isomorphism and satisfies the following properties:

- 1) $j_K: \Omega_{(n,\beta)}(A) \to \Omega_{(n+k,\alpha+\beta)}(A)$. 2) $j_K(\omega \wedge \theta) = j_K \omega \wedge \theta + \overline{\rho}((k,\alpha),(n,\beta))\omega \wedge j_K \theta \text{ for any } \theta \in \Omega^n_{\beta}(A)$.
- 3) $j_K(a) = 0$ and $j_K(\omega) = K(\omega)$ for any $\omega \in \Omega^1(A)$.

The module of $\overline{\rho}$ -algebraic derivations is obviously closed with respect to the $\overline{\rho}$ commutator of derivations.

Therefore we get a $\overline{\rho}$ -Lie algebra structure on

$$\mathscr{N}_{ij}(A) = \underset{(k,\alpha) \in \overline{G}}{\oplus} \overline{\rho} \text{-Der}_{(k,\alpha)}^{\mathrm{alg}} \Omega^*(A)$$

which is called the *Nijenhuis algebra* of the ρ -algebra A and its bracket is the $\overline{\rho}$ -*Nijenhuis*

By definition, the Nijenhuis bracket of the elements $K \in \text{Hom }_{\alpha}(\Omega^{1}(A), \Omega^{1+k}(A))$ and $L \in \operatorname{Hom}_{\beta}(\Omega^{1}(A), \Omega^{1+l}(A))$ is given by the formula

$$[K,L]^{\Delta} = i_K \circ L - \overline{\rho}((k,\alpha),(l,\beta)) i_L \circ K$$

or

$$[K,L]^{\Delta}(\omega) = j_K(L(\omega)) - (-1)^{kl} \varphi^{-l}(\alpha) \varphi^k(\alpha) \rho(\alpha,\beta) j_L K(\omega)$$
(14)

for all $\omega \in \Omega^1(A)$.

4.2.3 The Frölicher-Nijenhuis bracket: The exterior derivative d is an element of $\overline{\rho}$ -Der_(1,0) $\Omega^*(A)$. In the view of the formula $\mathscr{L}_X = [j_X, d]$ for fields X we define $K \in \Omega^1_{(k,\alpha)}(A)$ the Lie derivation $\mathscr{L}_K = \mathscr{L}(K) \in \overline{\rho}$ -Der $_{(k,\alpha)}\Omega^*(A)$ by $\mathscr{L}_K := [j_K,d]$. Then the mapping $\mathscr{L} \colon \Omega^1_* \to \overline{\rho}$ -Der $\Omega(A)$ is injective by the universal property of $\Omega^1(A)$, since $\mathcal{L}_K(a) = j_K(da) = K(da)$ for $a \in A$.

Theorem 4. For any $\overline{\rho}$ -derivation $D \in \overline{\rho}$ - $Der_{(k,\alpha)}\Omega^*(A)$, there are unique homomorphisms $\Omega^1_{(k,\alpha)}(A)$ and $L \in \Omega^1_{(k+1,\alpha)}(A)$ such that

$$D = \mathcal{L}_K + j_L. \tag{15}$$

We have L = 0 if and only if [D,d] = 0. D is algebraic if and only if K = 0.

Proof. The map $D|_A$: $a \mapsto D(a)$ is a ρ -derivation of degree α so $D|_A$: $A \to \Omega_{(k,\alpha)}(A)$ has the form $K \circ d$ for an unique $K \in \Omega^1_{(k,\alpha)}(A)$. The defining equation for K is $D(a) - j_K da =$ $\mathscr{L}_K(a)$ for $a \in A$. Thus $D - \mathscr{L}_K$ is an algebraic derivation, so $D - \mathscr{L}_K = j_L$ for an unique $L \in \Omega^1_{(k+1,\alpha)}(A)$.

By the Jacobi identity, we have

$$0 = [j_K, [d, d]] = [[j_K, d], d] + \overline{\rho}((k, \alpha), (1, 0))[d, [j_K, d]]$$

so $2[\mathcal{L}_K, d] = 0$. It follows that $[D, d] = [j_L, d] = \mathcal{L}_L$ and using the injectivity of \mathcal{L} results that L = 0.

Let $K \in \Omega^1_{(l,\alpha)}(A)$ and $L \in \Omega^1_{(l,\beta)}(A)$. Definition of the $\overline{\rho}$ -Lie derivation results in $[[\mathcal{L}_K, \mathcal{L}_L], d] = 0$ and using the previous theorem results that is a unique element which is denoted by $[K,L] \in \Omega^1_{(k+l,\alpha+\beta)}(A)$ such that

$$[\mathcal{L}_K, \mathcal{L}_L] = \mathcal{L}_{[K,L]} \tag{16}$$

and this element will be the denoted by the abstract Frölicher–Nijenhuis of *K* and *L*.

Theorem 5. The space $\Omega^1_*(A)=\oplus_{(k,\alpha)\in\overline{G}}\Omega^1_{(k,\alpha)}(A)$ with the usual grading and the Frölicher-Nijenhuis is a \overline{G} -graded Lie algebra. $\mathscr{L}: (\Omega^1_*, [\cdot, \cdot]) \to \overline{\rho}$ -Der $\Omega(A)$ is an injective homomorphism of \overline{G} -graded Lie algebras. For fields in $\operatorname{Hom}_A^A(\Omega^1(A),A)$ the Frölicher–Nijenhuis coincides with the bracket defined in (12).

4.3 Naturality of the Frölicher-Nijenhuis bracket

Let $f: A \to B$ be an homomorphism of degree 0 between the *G*-graded ρ -algebras *A* and *B*. Two forms $K \in \Omega^1_{(k,\alpha)}(A) = \operatorname{Hom}_{\alpha}(\Omega_1(A), \Omega_k(A))$ and $K' \in \Omega^1_{(k,\alpha)}(B) = \operatorname{Hom}_{\alpha}(\Omega_1(B), \Omega_k(A))$ $\Omega_k(B)$) are *f-related* or *f-dependent* if we have

$$K' \circ \Omega^1(f) = \Omega_k(f) \circ K : \Omega^1_{\alpha}(A) \to \Omega^k_{\alpha}(B)$$

where $\Omega_*(f)$: $\Omega(A) \to \Omega(B)$ is the homomorphism from (11) induced by f.

Theorem 6.

- (1) If K and K' are f-related as above then $j_{K'} \circ \Omega(f) = \Omega(f) \circ j_K : \Omega(A) \to \Omega(B)$.
- (2) If $j_K \circ \Omega(f)|_{d(A)} = \Omega(f) \circ j_K|_{d(A)}$, then K and K' are f-related, where $d(A) \subset \Omega^1(A)$ is the space of exact 1-forms.
- (3) If K_j and K'_j are f-related for j = 1, 2 then $j_{K_1} \circ K_2$ and $j_{K'_1} \circ K'_2$ are f-related and also $[K_1, K_2]^{\Delta}$, $[K'_1, K'_2]^{\Delta}$ are f-related.
- (4) If K and K' are f-related then $\mathcal{L}_{K'} \circ \Omega(f) = \Omega(f) \circ \mathcal{L}_{K} : \Omega(A) \to \Omega(B)$.
- (5) If $\mathcal{L}_{K'} \circ \Omega(f)|_{\Omega_0(A)} = \Omega(f) \circ \mathcal{L}_K|_{\Omega_0(A)}$ then K and K' are f-related. (6) If K_j and K'_j are f-related for j=1,2 then their Frölicher–Nijenhuis brackets $[K_1,K_2]$ and $[K'_1, K''_2]$ are also f-related.

Acknowledgement

The author wishes to express his thanks to Prof. Gh. Pitiş for many valuable remarks and for a very fruitful and exciting collaboration.

References

- [1] Bongaarts P J M and Pijls H G J, Almost commutative algebra and differential calculus on the quantum hyperplane, *J. Math. Phys.* **35(2)** (1994) 959–970
- [2] Cap A, Kriegl A, Michor P W and Vanzura J, The Frölicher–Nijenhuis bracket in non-commutative differential geometry, *Acta Math. Univ. Comenianae* **62(1)** (1993) 17–49
- [3] Ciupală C, Linear connections on almost commutative algebras, *Acta Math. Univ. Comenianae* **72(2)** (2003) 197–207
- [4] Ciupală C, Connections and distributions on quantum hyperplane, *Czech. J. Phys.* **54(8)** (2004) 821–832
- [5] Ciupală C, ρ-Differential calculi and linear connections on matrix algebra, to appear in *Int. J. Geom. Methods Mod. Phys.* **1(6)** (2004) 847–861
- [6] Dubois-Violette M and Michor P, More on the Frölicher–Nijenhuis bracket in noncommutative differential geometry. J. Pure Appl. Algebra. 121 (1997) 107–135
- [7] Lychagin V, Colour calculus and colour quantizations, *Acta Appl. Math.* **41** (1995) 193–226