第5章 中断技术

学习要点

- 1. 了解中断的基本概念
- 2. 掌握MSP430G2xxx中断系统
- 3. 掌握MSP430G2553端口P1和P2的外中断
- 4. 掌握MSP430可屏蔽中断程序设计方法

第五章 中断技术

第1节 中断的基本概念

第2节 MSP430的中断系统

第3节 MSP430可屏蔽中断程序设计

第1节 中断的基本概念

- 一、什么是中断
- 二、中断源和中断优先级
- 三、中断服务程序
- 四、断点和中断现场
- 五、硬件中断和软件中断

程序例: LED灯闪烁程序

```
//控制MSP430G2板(LaunchPad板)上LED1和LED2闪烁
#include "msp430.h"
void delay();
int main ( void )
{ WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗
 P1SEL=0x00; P1SEL2=0x00; //P1为基本输入输出功能
 P1DIR |= BIT0+BIT6; P1OUT &= ~ (BIT0+BIT6); //P1.0, P1.6为输
出方向,初始置0
                   //无限循环
 while (1)
 { P10UT|=BIT0+BIT6; //点亮LED1和LED2
           //调用延时子程序
   delay();
   P1OUT&=~(BITO+BIT6);//灭LED1和LED2
            //调用延时子程
   delay();
void delay( )
{ unsigned long i; //定义函数变量
 for ( i=0; i<100000; i++ ); //延时
```

如果希望用按键控制LED等的闪烁应该怎么编程? 例如:按S2键(P1.3)时,LED灯停止闪烁,变成全亮

不用按键控制时

注意:此示例因为因为只采用了一个按键,按键按下后就停止闪烁,没有设计恢复闪烁的功能。如果恢复闪烁,需要通过小板上的RESET(S1)键复位程序(与CCS断开状态时),或者通过CCS中的RESET复位程序(与CCS连接状态时)


```
#include "msp430.h"
                                          C5 0 a.c
void delay();
int main ( void )
{ unsigned int Flag; //定义闪烁标志位
 WDTCTL = WDTPW + WDTHOLD; //美闭看门狗
 P1SEL=0x00; P1SEL2=0x00; // P1为基本输入输出功能
 P1DIR |= BIT0+BIT6; P1OUT &= ~ (BIT0+BIT6); //P1.0, P1.6为输出方向
 P1DIR &= ~BIT3; P1REN |=BIT3; P1OUT |=BIT3; //设置P1.3(S2键) 为输
入,拉电阻使能,上拉方式
 Flaq=1;
           //无限循环
 while (1)
 { if ( (P1IN&BIT3) ==0) //如果按下S2,标志位变化
     {Flaq=0;}
   else
     if (Flag==0) {P1OUT|=BIT0+BIT6;} //闪烁标志位为0,停止闪烁,全亮
    else //闪烁标志位为1,闪烁
     { P1OUT | =BITO+BIT6; //点亮LED1和LED2
      delay(); //调用延时子程序
      P1OUT&=~(BITO+BIT6);//灭LED1和LED2
      delay(); //调用延时子程
              用按键控制LED等的闪烁的程序例
              这个程序能否实现所期望的功能?是否存在问题?
void delay( )
{ unsigned long i; //定义函数变量
 for ( i=0; i<100000; i++ ); //延时
} 6
```

采用简单查询方式 按键时间比较短时

采用简单查询方式

加长按键时间

有没有更好的方式?

中断方式

一、什么是中断

在CPU正常运行程序时,

由于内部或外部某个非预料事件的发生,

使CPU暂停正在运行的程序,

转去执行处理引起中断事件的程序,

完毕后返回被中断的程序继续运行,这个过程就是中断。

二、中断源和中断优先级

- 中断源: 发出中断申请的外设或内部因素(引起中断的因素很多)
- 中断优先级:给每个中断源指定一个优先权级别
 - 当多个中断源同时发出中断请求时, CPU按照中断优 先权的高低, 顺序依次响应。

三、中断服务程序和中断向量

- 中断服务程序:处理中断源,完成其所要求功能的程序, (中断例行程序、中断子程)。
- ▶ 中断向量: 中断程序的入口地址称为即中断程序第1条指令存放在存储器的位置。

用中断实现按键控制LED闪烁功能:流程图

用中断实现按键控制MSP430G2板(LaunchPad板)LED闪烁功能的程序例

```
#include "msp430.h"
                                           C5_0_b.c
void delay();
unsigned int Flag; //定义闪烁标志位
int main ( void )
{ WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗
 _DINT(); //禁止可屏蔽中断 GIE=0
 P1SEL=0x00; P1SEL2=0x00; / / P1为基本输入输出功能
 P1DIR |= BIT0+BIT6; //P1.0,P1.6为输出方向,初始置0
 P1DIR &= ~BIT3; P1REN |=BIT3; P1OUT |=BIT3; //设置P1.3 (S2键) 为输
入,拉电阻使能,上拉方式
 P1IES |=BIT3; //置P1.3下降沿作中断源
 P1IFG =0; //清P1IFG中断标志
 P1IE |=BIT3; //打开P1.3,
 EINT (); //允许可屏蔽中断 GIE=1
 Flag=1;
 while (1) // 无限循环
   if (Flag==0) {P10UT|=BIT0+BIT6;} //闪烁标志位为0,停止闪烁,全亮
   else //闪烁标志位为1,闪烁
   { P1OUT|=BIT0+BIT6; //点亮LED1和LED2
             //调用延时子程序
     delay();
     P10UT&=~(BIT0+BIT6);//灭LED1和LED2
            //调用延时子程
     delay();
```

```
void delay( )
{ unsigned long i;
                              //定义函数变量
 for ( i=0; i<100000; i++ ); //延时
#pragma vector=PORT1 VECTOR //置P1中断向量
 interrupt void port int(void)//中断子程
{ if ( (P1IFG&BIT3)!=0 ) //判断是否是P1IFG.3中断标志
           //停止闪烁标志位
    Flaq=0;
    P1IFG &=~BIT3; //清P1.3中断标志
```

可以在CCS中观察反汇编指令和中断向量

程序存储区

程序存储区

PC

```
port_int():
c102:
        B2F2 0023
                       BIT.B
                               #8,&Port 1 2 P1IFG
c106:
        2404
                               ($C$L5)
                       JEQ
c108:
        4382 0200
                      CLR.W
                               &Flag
c10c:
        C2F2 0023
                       BIC.B
                               #8,&Port 1 2 P1IFG
      $C$L5:
c110:
        1300
                       RETI
```

FFFFh 中断向量表 **FFDFh** FLASH/ROM 程序存储器区 C000h 03FFh **RAM** 数据存储器区 0200h 01FFh 16位外围模块区 0100h 00FFh 8位外围模块区 0010h 000Fh 特殊功能寄存器区 0000h

msp430G2553

的存储器结构

可以在CCS中观察反汇编指令和中断向量

程序存储区

	main():			
c000:	40B2 5A80 0	120	MOV.W	#0x5a80,&Watchdog_Time
c006:	C232		DINT	
c008:	4303		NOP	
	43C2 0026		CLR.B	&Port_1_2_P1SEL
	43C2 0041		CLR.B	&Port_1_2_P1SEL2
c012:	D0F2 0041 0	022	BIS.B	#0x0041,&Port_1_2_P1DI
c018:	C2F2 0022		BIC.B	#8,&Port_1_2_P1DIR
c01c:	D2F2 0027		BIS.B	#8,&Port_1_2_P1REN
	D2F2 0021		BIS.B	#8,&Port_1_2_P10UT
c024:	D2F2 0024		BIS.B	#8,&Port_1_2_P1IES
c028:	43C2 0023		CLR.B	&Port_1_2_P1IFG
	•	•		•
	:	·		:
c0b4:	2C0C		JHS	(\$C\$L4)
	\$C\$L3:			
c0b6:	5391 0000		INC.W	0x0000(SP)
c0ba:	6381 0002		ADC.W	0x0002(SP)
c0be:	9391 0002		CMP.W	#1,0x0002(SP)
c0c2:	2BF9		JLO	(\$C\$L3)
c0c4:	2004		JNE	(\$C\$L4)
c0c6:	90B1 86A0	0000	CMP.W	#0x86a0,0x0000(SP)
c0cc:	2BF4		JLO	(\$C\$L3)
	\$C\$L4:			•
c0ce:	5221		ADD.W	#4,SP
c0d0:	4130		RET	

程序存储区

PC

```
port_int():
c102:
        B2F2 0023
                      BIT.B
                               #8,&Port 1 2 P1IFG
c106:
        2404
                               ($C$L5)
                      JEQ
c108:
        4382 0200
                      CLR.W
                               &Flag
        C2F2 0023
c10c:
                               #8,&Port 1 2 P1IFG
                      BIC.B
      $C$L5:
c110:
        1300
                      RETI
```

```
R4, R5
                   ADD
            C200h→ MOV.b R5, &P2OUT
            C400h → BIT.b #BIT0, &P1IFG
中断向量:
中断子程的入口地址
                                      中断子程
                   RETI
```

中断的确定性和非确定性

- ▶非预料事件是指事件发生的时间无法预知, 即中断源何时产生中断不确定,是随机的。
- ▶但事件的性质及处理方法则是已知的,确定的, 即中断服务程序是事先编写好的,只是何时执行未知。
- ▶中断源产生中断的随机性,使中断服务程序的执行也具有随机性,

即何时执行中断服务程序不是在程序中安排好的。

四、断点和中断现场

- ➤ 断点:是指CPU执行的现行程序被中断时的下一条指令的地址,又称断点地址。
- ▶中断现场:是指CPU转去执行中断服务程序前的运行状态,包括CPU内部各寄存器、断点地址等。

第2节 MSP430的中断系统

第3节 MSP430的可屏蔽中断程序设计

- ➤ 掌握MSP430的中断类型
- > 理解中断响应过程
- > 掌握P1和P2中断寄存器的操作方法
- ➤ 掌握C语言的中断程序设计方法

第2节 MSP430的中断系统

- 一、MSP430的中断源类型
- 二、MSP430G2553的中断源、中断优先级
- 三、MSP430G2553的中断类型号和中断向量表
- 四、MSP430G2553的中断标志
- 五、MSP430的可屏蔽中断响应过程
- 六、MSP430G2553端口P1和P2外部中断

一、MSP430的中断源类型

两种分类:

- 1. 按中断源的响应是否受控分类
- 2. 按中断源来自MCU外部引脚还是内部分类

1. 按中断源的响应是否受控分类

MSP430的中断源分为三大类型

- ●系统复位中断system reset (也称不可屏蔽中断,Nonmaskable interrupts)
- ——不能被总控位GIE和自己的分控位IE位屏蔽的中断
- ●非屏蔽中断(Non)maskable interrupts
- ——不能被总控位GIE屏蔽, 但能被自己的分控位IE位屏蔽的中断
- ●可屏蔽中断maskable interrupts
- ——能被总控位GIE和自己的分控位IE位屏蔽的中断

MSP430G2553中断源MSP430G2553.pdf P11

10101	45002555 M/Milisi 45002555.pdi 111						
类型	中断源						
复位	Power up, External Reset、Watchdog, Flash memory, PC out of range	上电,外部复位,看门狗复 位,FLASH密码错、PC跑飞	15 (highest)				
事 屏蔽	NMI, Oscillator Fault, Flash memory access violation	NMI引脚、振荡器失效, FCTIx访问错	14				
	Timer1_A3	定时器TA1	13				
	Timer1_A3	定时器TA1	12				
	Comparator_A+	比较器A	11				
可	Watchdog timer+	看门狗定时器	10				
ΗĴ	Timer0_A3	定时器TA0	9				
	Timer0_A3	定时器TA0	8				
屏	USCI_A0/USCI_B0 receive USCI_B0 I2C status	串行通信接口A0/B0	7				
	USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	串行通信接口A0/B0	6				
蔽	ADC10	模/数转换器ADC10	5				
	无	无	4				
	I/O port 2	P2.0~P2.7的8个引脚	3				
20	I/O port 1	P1.0~P1.7的8个引脚	2				
28	无	无	1, 0				

非屏蔽中断的控制机制(分控位)

可屏蔽中断的控制机制(分控位、总控位)

汇编语言: 开/关总中断控制位指令

(disable/enable general interrupt bit)

指令格式	执行操作	V	Z	N	С
DINT	0→ GIE	•	-	1	-
EINT	1→ GIE	•	-	-	-

状态寄存器SR (Status Register)

15~9	8	7	6	5	4	3	2	1	0
保留	V	SCG1	SCG0	OSCoff	CPUoff	GIE	N	Z	С

GIE:可屏蔽中断屏蔽位(General Interrupt Enable Bit)

置位1: 允许所有可屏蔽中断 复位0: 禁止所有可屏蔽中断

2. 按中断源来自MCU外部引脚还是内部分类

由外部引脚(如RST/NMI)产生的中断,为外中断,

由MCU内部模块产生的中断,称内中断

二、MSP430G2553中断优先级 MSP430G2553.pdf P11 中断源 上电,外部复位,看门狗复位,FLASH密码错、PC跑飞 **15** Power up, External Reset Watchdog, 复位 (highest) Flash memory, PC out of range 非 NMI引脚、振荡器失效, FCTIx访问错 NMI, Oscillator Fault, 14 屏蔽 Flash memory access violation 定时器TA1 Timer1_A3 **13** 定时器TA1 Timer1_A3 **12** 比较器A Comparator_A+ 11 看门狗定时器 Watchdog timer+ 10 可 定时器TA0 Timer0_A3 定时器TA0 Timer0_A3 8 USCI_A0/USCI_B0 receive 串行通信接口A0/B0 屛 USCI BO I2C status 串行通信接口A0/B0 **USCI_A0/USCI_B0** transmit 6 **USCI_B0 I2C receive/transmit** 蔽 模/数转换器ADC10 ADC10 无 4 P2.0~P2.7的8个引脚 I/O port 2 3 P1.0~P1.7的8个引脚 I/O port 1 32

三、MSP430G2553的中断类型号和中断向量表

□中断类型号: 为方便编程,给MSP430的每个中断源一个类型号,类型号的值与优先级的大小相同

□用中断类型号区分各中断子程(中断源)

MSP430G2553共有15个中断类型号(15~0)

类型号15: 复位中断子程

类型号14: 非屏蔽中断子程

•••••

类型号3 : 端口P2中断

类型号2 : 端口P1中断

MSP430G2553的中断类型号

类型	中断源	优先级	类型号
复位	上电、外部复位、看门狗复位、 FLASH密码错、PC跑飞	15 (highest)	15 (highest)
非解蔽	NMI引脚、振荡器失效、 FCTIx访问错	14	14
	定时器TA1	13	13
	定时器TA1	12	12
	比较器A	11	11
可	看门狗定时器	10	10
	定时器TA0	9	9
	定时器TA0	8	8
屏	串行通信接口A0/B0	7	7
	串行通信接口A0/B0	6	6
	模/数转换器ADC10	5	5
蔽	无	4	4
	P2.0~P2.7的8个引脚	3	3
	P1.0~P1.7的8个引脚	2	2
	无	1	1
	无	0	0

发生中断时的指令执行情况 地址 指令内容 第一条指令地址 C000 SUB. W #4, SP C002 MOV. W #0x5a80 ··· C008 DINT COOA NOP COOC. CLR. B &Port 1 2 P1SEL 主 函 C058 CMP. W &0x0206, 0x0002 (SP) 数 (CL2)CO5E JLO 主循环 TMP (\$C\$L1)CO8E 中断事件发生 PC¹ while(1) C090 CLR. W 0x0000(SP)跳转到中断子 0x0002(SP)C094 CLR. W (C_1) C098 JMP 程序入口地址 中断程序入口地址PC **CO9A** BIT. B #2, &Port 1 2 P1IFG (中断向量) CO9E JEQ (\$C\$L9) CPU是怎么知道 COAO CMP. W &0x0202, &0x0206 中 COA6 JLO (\$C\$L7) 断 要跳转到这个入 子 CODO DEC. W &Tduty 程 口地址的? SBC. W COD4 &0x0206 序 COD8 BIC. B #4, &Port 1 2 P1IFG 35 CODC reti

中断向量

- ▶中断向量
 - 指中断子程的入口地址
 - 在MSP430G2553 中地址是一个16位二进制数
- ▶类型N的中断向量存放在存储器的固定单元中, 起始地址是FFE0+N×2
- ▶ 存放一个中断向量占用2个存储器单元, 地址分别是: FFE0+N×2, FFE0+N×2+1

中断子程N的入口地址(中断向量)在存储器中的位置

例: 计算中断类型号2的中断向量存放在存储器的位置

例:如右图用CCS的View>Memory Browser可查看中断向量表,问类型2的中断向量是?

思考: 如何在CCS的DEBUG下查看到中断函数?

中断向量表:

指存放所有中断向量的存储器区域

- ➤ MSP430中断向量表在FFE0~FFFFh的 32B空间起始地址是FFE0h, 可存放16个中断向量
- ▶不同的MCU型号实际存放的中断向量 个数可能不同

MSP430G2553的中断向量表

FFFFh FFE0h	中断向量表		地址	类型号 (N)	对应的中断源的
FFDFh		\	OFFFEh	15	上电,外部复位,看门狗复
	FLASH/ROM		OFFFCh	14	位,FLASH密码错、PC跑飞 NMI引脚、振荡器失效,
	程序存储器		OFFFAh	13	FCTIx访问错 定时器TA1
<u>.</u>		\	0FFF8h	12	定时器TA1
÷			0FFF6h	11	比较器A
			0FFF4h	10	看门狗定时器
		\	0FFF2h	9	定时器TA0
	RAM		0FFF0h	8	定时器TA0
02001	数据存储器	\	OFFEEh	7	串行通信接口A0/B0
0200h 01FFh	16位外围模块		OFFECh	6	串行通信接口A0/B0
0100h 00FFh	8位外围模块	\	0FFEAh	5	模/数转换器ADC10
0010h 000Fh	A STATE OF THE STA	\	0FFE8h	4	无
0000h	特殊功能寄存器	la l	0FFE6h	3	P2.0~P2.7的8个引脚
类型N的中断向量存放地址,		0FFE4h	2	P1.0~P1.7的8个引脚	
39		(九品村下)	OFFE2h	1	
OxFFE	0+N×2		0FFE0h	0	

发生中断时的指令执行情况

地址 数据
FFE6
FFE4 C09A
FFE2
FFE0
PC
中断向量表:
(中断类型2)

FFE0+2*2=FFE4

- ➤ 头文件 msp430G2553.h
 用符号表示各中断源在中断向量表的偏移地址
- ➤ 中断向量表的首地址为0xFFE0

```
* Interrupt Vectors (offset from 0xFFE0)
********************
                              (0 * 1u) /* 0xFFE0 TRAPINT */
#define TRAPINT_VECTOR
#define PORT1 VECTOR
                              (2 * 2u) /* 0xFFE4 Port 1 */
                              (3 * 2u) /* 0xFFE6 Port 2 */
#define PORT2_VECTOR
                              (5 * 2u) /* 0xFFEA ADC10 */
#define ADC10_VECTOR
                              (6 * 2u) /* 0xFFEC USCI A0/B0 Transmit */
#define USCIABOTX VECTOR
                              (7 * 2u) /* 0xFFEE USCI A0/B0 Receive */
#define USCIABORX VECTOR
#define TIMERO_A1_VECTOR
                              (8 * 2u) /* 0xFFF0 Timer0)A CC1, TA0 */
#define TIMERO_AO_VECTOR
                              (9 * 2u) /* 0xFFF2 Timer0_A CC0 */
                              (10 * 2u) /* 0xFFF4 Watchdog Timer */
#define WDT VECTOR
#define COMPARATORA_VECTOR (11 * 2u) /* 0xFFF6 Comparator A */
#define TIMER1_A1_VECTOR
                              (12 * 2u) /* 0xFFF8 Timer1_A CC1-4, TA1 */
                              (13 * 2u) /* 0xFFFA Timer1_A CCO */
#define TIMER1 A0 VECTOR
#define NMI_VECTOR
                              (14 * 2u) /* 0xFFFC Non-maskable */
                              (15 * 2u) /* 0xFFFE Reset [Highest Priority] */
#define RESET VECTOR
```

类型2的中断向量存放在向量表的地址:

OFFEO + 2*2 = OFFE4h

OFFEOh + PORT1_VECTOR

类型15(复位中断)的中断向量存放在向量表的地址:

OFFEOh + RESET_VECTOR

OFFEO + 15*2 = OFFFEh

四、MSP430G2553的中断标志

■中断标志位

为了保存中断源发出的中断申请,MSP430内部对应有一个标 志被置位(存放在外围模块内部或特殊功能寄存器中)

■ 中断标志位功能

> 保存中断请求信号

当CPU不能够马上响应中断源发出的中断请求,需要一些寄存器标志保存中断请求信号,直到被CPU响应。

> 区分多个子中断源:

多个子中断源(例如P1和P2的8个管脚)共用一个中断类型号

■有的同一级中断源可包含多个子中断源

每个子中断源对应一位中断标志位, 这些子中断源共享同一个中断向量(即共享同一个中断子程) 可通过在中断函数中查询中断标志位,确定产生中断的是哪个子 中断源

类型	中断源	中断标志 (数目)		优先级	类型号
复位	上电,外部复位,看门狗复位,FLASH密码错、PC跑飞	PORIFG, RSTIFG,WDTIFG, KEYV	(4)	15	15
非屏蔽	NMI引脚、振荡器失效, FCTIx访问错	NMIFG, OFIFG, ACCVIFG	(3)	14	14
可	定时器TA1	TA1CCR2、TA1CCR1 CCIFG, TAIFG	(3)	12	12
H.)	定时器TA0	TAOCCR2 \ TAOCCR1 CCIFG, TAIFG	(3)	8	8
屏	串行通信接口A0, B0	UCAORXIFG, UCBORXIFG	(2)	7	7
	串行通信接口A1, B1	UCA0TXIFG, UCB0TXIFG	(2)	6	6
蔽	P2.0~P2.7的8个引脚	P2IFG.0 to P2IFG.7	(8)	3	3
,,,,,,	P1.0~P1.7的8个引脚	P1IFG.0 to P1IFG.7	(8)	2	2

类型	中断源	中断标志 (数目)		优先级	类型号
复位	上电,外部复位,看门狗复位,FLASH密码错、PC跑飞	PORIFG, RSTIFG, WDTIFG, KEYV	(4)	15	15
非屏蔽	NMI引脚、振荡器失效, FCTIx访问错	NMIFG, OFIFG, ACCVIFG	(3)	14	14
	定时器TA1	TA1CCR0 CCIFG	(1)	13	13
	定时器TA1	TA1CCR2 TA1CCR1 CCIFG, TAIFG	(3)	12	12
	比较器A	CAIFG	(1)	11	11
	看门狗定时器	WDTIFG	(1)	10	10
一可	定时器TA0	TA0CCR0 CCIFG	(1)	9	9
	定时器TA0	TA0CCR2 TA0CCR1 CCIFG, TAIFG	(3)	8	8
屏	串行通信接口A0/B0	UCAORXIFG, UCBORXIFG	(2)	7	7
	串行通信接口A0/B0	UCA0TXIFG, UCB0TXIFG	(2)	6	6
蔽[模/数转换器ADC10	ADC10IFG	(1)	5	5
	无	无	无	4	4
	P2.0~P2.7的8个引脚	P2IFG.0 to P2IFG.7	(8)	3	3
	P1.0~P1.7的8个引脚	P1IFG.0 to P1IFG.7	(8)	2	2

45

五、MSP430非屏蔽和可屏蔽中断响应过程 指令内容 地址 第一条指令地址 **C**000 SUB. W #4, SP C002 MOV. W #0x5a80 ··· C008 DINT COOA NOP COOC. CLR. B &Port 1 2 P1SEL 主 函 C058 CMP. W &0x0206, 0x0002 (SP) 数

地址	
FFE6	••••
FFE4	C09A
FFE2	••••
FFEO	••••

444

(CL2)CO5E JLO 主循环 TMP CO8E (CL1)while(1) C090 CLR. W 0x0000(SP)C094 CLR. W 0x0002(SP)C098 (C_1) JMP C09A 中断程序入口地址 BIT. B #2, &Port 1 2 P1IFG (中断向量) CO9E JEQ (\$C\$L9) COAO CMP. W &0x0202, &0x0206 (\$C\$L7)COA6 JLO DEC. W CODO &Tduty SBC. W COD4 &0x0206 COD8 BIC. B #4, &Port 1 2 P1IFG

reti

CODC

量表中获取跳转地 址

进中断时:从中断向

出中断时,返回的 地址从哪里获得?

46

中

断

子

程

序

MSP430非屏蔽和可屏蔽中断响应过程 地址 数据 FFE6 指令内容 地址 第一条指令地址 C000 SUB. W #4, SP FFE4 **C09A** C002 MOV. W #0x5a80 ··· FFE2 C008 DINT **FFEO** COOA NOP COOC. CLR. B &Port 1 2 P1SEL 主 CPU自动完成 函 &0x0206, 0x0002 (SP) C058 CMP. W 1) 保存断点地址 数 CO5E JLO (CL2)2) 保存SR 主循环 3) 清零SR CO8E JMP (CL1)while(1) 4) 从中断向量表获 C090 CLR. W 0x0000(SP)取跳转地址 C094 CLR. W 0x0002(SP)5) 跳转到中断程序 (C_1) C098 JMP 入口地址 **C09A** 中断程序入口地址 BIT. B #2, &Port 1 2 P1IFG (中断向量) CO9E JEQ (\$C\$L9) COAO CMP. W &0x0202, &0x0206 中 (\$C\$L7)COA6 JLO 断 CPU自动完成 子 &Tduty CODO DEC. W 1) 恢复SR 程 SBC. W &0x0206 COD4 恢复断点地址 序 #4, &Port 1 2 P1IFG COD8 BIC. B 从断点继续执行 47 CODC reti

注意:

- 若有多个中断同时请求,CPU选择优先级最高的中断请求先进行响应
- 当中断源产生时, MSP430内部对应有一个标志被置位中断程序之后, 应确保该标志的值已清零, 否则被当成又一次的中断申请
- 对于单一中断标志的中断源请求,CPU会自动清零该中断标志
- 对于有多个中断标志的中断源请求,用户在中断子程用这些标志判断产生的具体子中断源,中断标志的清零由用户在使用完后编程清零

六、MSP430G2553端口P1和P2外中断

- 16个外部输入可屏蔽中断源
- ➤ 端口P1的P1.0~P1.7
- ▶ 端口P2的P2.0~P2.7
- 每个端口的8个引脚中断源共用一个向量地址
- ▶ P1中断有关的寄存器: P1SEL, P1SEL2, P1DIR, P1IES, P1IFG和P1IE
- ▶ P2中断有关的寄存器: P2SEL, P2SEL2, P2DIR, P2IES, P2IFG和P2IE

中断源	中断标志	向量地址	优先级,类型号
•••	•••	•••	•••
P2的8个引脚	P2IFG.0~P2IFG.7 (8)	0FFE6h	3
P1的8个引脚	P1IFG.0~P1IFG.7 (8)	0FFE4h	2
•••	•••	•••	•••

P1,P2外中断使用方法

1) 中断寄存器设置方法

P1,P2外中断使用方法

2) 中断子程序处理方法

根据中断类型号定义中断向量地 (1) #pragma vector=N*2 址(中断子程序入口地址) 2 判断中断标志位,确定引起中断 判断管脚对应位是否为1 的具体管脚 (PxIFG) 3 相应处理程序 将PxIFG中的对应位置为0 4 清除中断标志位: (PxIFG) 中断返回

● PxIES中断边沿选择寄存器 (Interrupt Edge Select)

用于选择端口引脚作为中断申请的有效信号类型

PxIES.y = 0,端口x的引脚y上升沿作为中断申请 PxIES.y = 1,端口x的引脚y下降沿作为中断申请

例 如果P1的8个引脚均作为外部中断源,P1IES的内容为0Fh, 表示端口P1的引脚P1.7~P1.4有上升沿信号时,发出中断申请端口P1的引脚P1.3~P1.0有下降沿信号时,发出中断申请

● PxIE中断允许寄存器(Interrupt Enable)

是端口P1和P2的分中断允许控制寄存器

一一当PxSEL.y为0, PxSEL2.y为0, PxDIR.y为0, 若Px.y引脚上有中断申请信号,则PxIFG.y自动置1,如果PxIE.y=1,表示允许引脚Px.y上的中断申请发向CPU,若CPU内的GIE=1,则 CPU将响应该中断;如果PxIE.y=0,表示禁止引脚Px.y上的中断申请发向CPU,则 CPU将不响应该中断

● PxIFG中断标志寄存器(Interrupt Flag)

当作为中断功能的端口P1和P2的某引脚上有中断申请信号时, 硬件自动置PxIFG相应位为1, 相当于锁存该中断申请信号

PxIFG.y=0,端口x的引脚y无中断申请 PxIFG.y=1,端口x的引脚y有中断申请

例 如果P1的8个引脚均作为外部中断源,P1IFG的内容为F0h, 表示端口P1的引脚P1.7~P1.4上有中断申请 端口P1的引脚P1.3~P1.0上无中断申请

第3节 MSP430的可屏蔽中断程序设计

- 一、编程步骤
 - 1. 主程序流程
 - 2. 中断程序流程
 - 3. 设置中断向量
- 二、C语言中端程序举例

一、编程步骤

编程前应了解可屏蔽硬中断的响应过程, 了解有关的寄存器和引脚与中断响应过程的关系

1. 主程序

做好相关设置,

使中断源发出中断申请时CPU能够响应的准备工作

2. 中断程序

处理与中断源有关的关键任务

3. 设置中断向量

根据中断源在中断向量表相应位置,设置中断向量

1. 主程序

做好相关设置,使中断源发出中断申请时CPU能够响应的准备工作

据情况关闭分中断允许 或关闭总中断允许 有关任务初始化 主 程 中断有关初始化 序 边沿选择等) 流 清分中断标志 程 J开分中断允许 开总中断允许GIE=1 主程其它工作处理 用无限循环延时代替

2. 中断程序

处理与中断源有关的关键任务

中断程序流程

C语言中断程序结构

```
__interrupt void intName(void) {
    .....
}
```

- 1. 定义了一个函数名为intName的中断程序
- 2. 结构上与普通函数的区别是? 使用了关键字__interrupt 使得反汇编中断程序时, 返回的语句是RETI,而不是RET

3. 设置中断向量

确定根据中断源确定中断类型号N, 将中断程序的入口地址放在中断向量表0FFE0h+N*2处

中断源	中断标志	向量地址	优先级 中断类型号
上电,外部复位,看门 狗复位,FLASH密码错、 PC跑飞	PORIFG, RSTIFG,WDTIFG, KEYV	OFFFEh	15
•••	•••	•••	•••
引脚P2.0~P2.7	P2IFG.0~P2IFG.7	0FFE6h	3
引脚P1.0~P1.7	P1IFG.0~P1IFG.7	0FFE4h	2
•••	•••	•••	•••

>msp430G2553.h

用符号表示各中断源在中断向量表的偏移地址

➤ 中断向量表的首地址为0xFFE0

```
* Interrupt Vectors (offset from 0xFFE0)
*******************
                              (0 * 1u) /* 0xFFE0 TRAPINT */
#define TRAPINT_VECTOR
                              (2 * 2u) /* 0xFFE4 Port 1 */
#define PORT1_VECTOR
                              (3 * 2u) /* 0xFFE6 Port 2 */
#define PORT2_VECTOR
#define ADC10_VECTOR
                              (5 * 2u) /* 0xFFEA ADC10 */
#define USCIABOTX_VECTOR
                              (6 * 2u) /* 0xFFEC USCI A0/B0 Transmit */
                              (7 * 2u) /* 0xFFEE USCI A0/B0 Receive */
#define USCIABORX VECTOR
#define TIMERO_A1_VECTOR
                              (8 * 2u) /* 0xFFF0 Timer0)A CC1, TA0 */
#define TIMERO_AO_VECTOR
                              (9 * 2u) /* 0xFFF2 Timer0_A CC0 */
                              (10 * 2u) /* 0xFFF4 Watchdog Timer */
#define WDT VECTOR
#define COMPARATORA_VECTOR (11 * 2u) /* 0xFFF6 Comparator A */
#define TIMER1_A1_VECTOR
                              (12 * 2u) /* 0xFFF8 Timer1_A CC1-4, TA1 */
                              (13 * 2u) /* 0xFFFA Timer1_A CCO */
#define TIMER1_A0_VECTOR
                              (14 * 2u) /* 0xFFFC Non-maskable */
#define NMI_VECTOR
                              (15 * 2u) /* 0xFFFE Reset [Highest Priority] */
#define RESET_VECTOR
```

C语言程序设置中断向量方法

在中断程序前使用预编译命令#pragma vector=偏址语句,将中断程序的入口地址放入到FFEO+偏址的中断向量表中

```
#pragma vector=N*2 //使用中断类型号计算偏址
__interrupt void intName(void)
{
    ......
}
```

```
#pragma vector=PORT1_VECTOR //使用符号表示的中断偏址
__interrupt void intName(void)
{
    ......
}
```

C语言: 开/关总中断控制位函数

(disable/enable general interrupt bit)

函数名称	功能	包含在
disable_interrupt()	0→ GIE	intrinsics.h
ensable_interrupt()	1→ GIE	intrinsics.h

intrinsics.h 文件中:

声明了一些包含在CCS 编译器的内部函数,方便用户使用如:

```
__intrinsic void __enable_interrupt(void);
```

_intrinsic void __disable_interrupt(void);

在CCS下点击Help>Help Contents,了解这些内联函数实现的功能

在CCS下点击Help>Help Contents, 了解这些内部函数实现的功能

内联函数由编译器插入完成该函数功能的相应指令或指令段, 比通过调用函数方式节省时间开支。

例如,在intrinsics.h中声明了一个__enable_interrupt(void):

void __enable_interrupt(void);

编译器编译用户源程序时,在程序用到了__enable_interrupt() 这个内联函数的地方,就用一条 eint 指令 代替。

可以看出这个内联函数很简单,就一条指令。

in430.h

对intrinsics.h中的一些函数用#define 做了简化定义

```
#define EINT()
                             enable interrupt()
#define _DINT()
                              __disable_interrupt()
#define _BIC_SR(x)
                             __bic_SR_register(x)
#define _BIC_SR_IRQ(x)
                             __bic_SR_register_on_exit(x)
#define _BIS_SR(x)
                             __bis_SR_register(x)
#define _BIS_SR_IRQ(x)
                               _bis_SR_register_on_exit(x)
#define _SWAP_BYTES(x)
                             __swap_bytes(x)
#define _NOP()
                             __no_operation()
```

在msp430g2553.h中包含有in430.h 和 intrinsics.h

所以,程序中只用包含msp430.h, 就可以使用in430.h 和 intrinsics.h中的定义

msp430.h

```
#if defined (__MSP430C111__)
#include "msp430c111.h"
.....
#elif defined (__MSP430G2553__)
#"include "m430g2553.h"
.....
```

msp430g2553.h

```
#include "in430.h"
#include <intrinsics.h>
.....
```

用C语言编写中断程序方法1

1. 使用__disable_interrupt() 和__enable_interrupt()

```
#include "msp430.h"
int main( void )
 //Stop watchdog timer to prevent time out reset
  WDTCTL = WDTPW + WDTHOLD;
     __disable_interrupt();  //关总中断控制(非必要)
                           //主程序初始化准备工作
                           //开总中断控制
     __enable_interrupt();
                           //主程序循环
  while(1){ };
#pragma vector=数字或符号表示的偏址 //中断向量设置
 interrupt void port_int(void)  //中断函数,函数名可自取
```

用C语言编写中断程序方法2

使用_DINT()和_EINT()

```
"msp430.h"
#include
int main(void)
  //Stop watchdog timer to prevent time out reset
  WDTCTL = WDTPW + WDTHOLD;
                     //关总中断控制(非必要)
     DINT();
                           //主程序初始化准备工作
                     //开总中断控制
     _EINT();
                           //主程序循环
  while(1){ };
#pragma vector=数字或符号表示的偏址 //中断向量设置
 _interrupt void port_int(void)   //中断函数,函数名可自取{
```


2. 中断子程

3. 设置中断向量

根据中断源在 中断向量表相应位置 设置中断向量

例: 中断编程举例 (以P1.3上的中断为例)

请用C语言编写程序, 以中断方式响应P1.3上的按键, 每按下一次键,改变一次发光二极管状态

MSP430G2553

P1.3中断C语言程序清单 C5_1_1.c

外部按键有上拉电阻

```
#include "msp430.h"
int main(void)
{ WDTCTL = WDTPW + WDTHOLD; //关闭看门狗
                   //禁止可屏蔽中断 GIE=0
 DINT();
 P1IE &=~BIT3;
                   // 关闭P1.3中断允许
                   //设置P1.6为基本I/O功能
  P1SEL &=~BIT6;
  P1SEL2 &=~BIT6;
                   //置P1.6输出初值
  P1OUT &=~BIT6;
                   //设置P1.6为输出
  P1DIR =BIT6:
                   //置P1.3作为基本I/O端口
  P1SEL &=~BIT3;
  P1SEL2 &=~BIT3;
                   //置P1.3为输入
  P1DIR &=~BIT3;
                   //置P1.3下降沿作中断源
  P1IES |=BIT3;
                   //清P1IFG中断标志
  P1IFG =0;
                   //打开P1.3中断允许
  P1IE |=BIT3;
                   //允许可屏蔽中断 GIE=1
  EINT();
                   //主循环
 while(1) { };
                          //置P1中断向量
#pragma vector=PORT1_VECTOR
                          //中断函数
 _interrupt void port_int(void)
                          //判断是否是P1IFG.3中断标志
  if ((P1IFG&BIT3)!=0)
                          //对P1.6取反
      P1OUT ^=BIT6;
                          //清P1.3中断标志
      P1IFG &=~BIT3;
```

P1.3中断C语言程序反汇编代码:

```
main():
        40B2 5A80 0120
                           MOV.W #0x5a80, &Watchdog Timer WDTCTL
 c000:
                           DINT();
 c006:
        C232
                           DINT
 c008:
       4303
                           NOP
  5
           P1IE &=~BIT3;
                          // 类闭P1.3申斯允许
 c00a:
        C2F2 0025
                           BIC.B #8,&Port 1 2 P1IE
  6
               P1SEL &=~BIT6;
                             //设置P1.6为基本I/O功能
                           AND.B #0x00bf,&Port 1 2 P1SEL
 c00e:
        F0F2 00BF 0026
  7
           P1SEL2 &=~BIT6;
        F0F2 00BF 0041
 c014:
                           AND.B #0x00bf,&Port 1 2 P1SEL2
           P10UT &=~BIT6; //置P1.6输出初值
        F0F2 00BF 0021
 c01a:
                         AND.B #0x00bf,&Port 1 2 P10UT
               P1DIR |=BIT6;
                                   //设置P1.6为输出
        D0F2 0040 0022
                           BIS.B #0x0040,&Port 1 2 P1DIR
 c020:
           P1SEL &=~BIT3;
                                //置P1.0作为基本I/0場口
 11
 c026:
        C2F2 0026
                           BIC.B
                                  #8,&Port 1 2 P1SEL
 12
           P1SEL2 &=~BIT3;
 c02a:
        C2F2 0041
                           BIC.B
                                  #8,&Port 1 2 P1SEL2
 13
           P1DIR &=~BIT3;
                                //置P1.0为输入
 c02e:
        C2F2 0022
                           BIC.B
                                  #8,&Port 1 2 P1DIR
           P1IES |=BIT3;
                                    //置P1.0下降沿作中断源
 14
 c032:
        D2F2 0024
                                  #8,&Port 1 2 P1IES
                           BIS.B
        P1IFG =0;
                          //满P1IFG申斯标志
 15
 c036: 43C2 0023
                           CLR.B
                                  &Port 1 2_P1IFG
               P1IE =BIT3;
                                //打开P1.0中断允许
 16
 c03a:
        D2F2 0025
                           BIS.B
                                  #8,&Port 1 2 P1IE
 17
        _EINT();
                                    //允许可屏蔽申斯 GIE=1
 c03e:
        D232
                           EINT
 18
          while(1) { };
                                        //主循环
       $C$L1:
         3FFF
▶ c040:
                           JMP
                                  ($C$L1)
73
```

 $_{DINT()}$; \rightarrow DINT

P1IFG &=~BIT3;

→ BIC.B #0x8,&P1IFG

P1IE &=~BIT3;

→ BIC.B #0x8, &P1IE

 $_EINT(); \rightarrow EINT$

在CCS下C中断函数反汇编代码:

```
port int():
c054: B2F2 0023
                      BIT.B
                            #8,&Port 1 2 P1IFG
c058: 2405
                      JEQ
                            ($C$L2)
23 { P10UT ^=BIT6; //对P1.6取反
c05a: E0F2 0040 0021 XOR.B #0x0040,&Port 1 2 P10UT
24 P1IFG &=~BIT3; //滿P1.3申斯标志
c060: C2F2 0023
                   BIC.B #8,&Port 1 2 P1IFG
26
     $C$L2:
c064: 1300
                      RETI
```

中断函数结尾是一条 RETI 指令

思考:

- ✓ 中断程序何时被执行?执行过程是怎样?
- ✓ 如何将程序改写为查询方式, 即查询到P1.3从1变到0, 就对P1.6求反?
- ✓ 比较中断方式和查询方式有何不同?
- ✓ 若中断源来自引脚P2.0, 如何修改程序?
- ✓ 若中断源来自引脚P1.4, 如何修改程序?

思考:

- ✓ if ((P1IFG&BIT3)!=0)可否写成 if ((P1IFG&BIT3)==1)
- ✓如果P1.3用内部上拉电阻,如何编程?
- ✓如果P1.3上的脉冲以1Hz的频率出现,可实现什么功能?

如果用单片机内部的上拉电阻


```
P1.3中断C语言程序清单 C5_1_2.c
 #include "msp430.h"
                                                  外部按键无上拉电阻
 int main(void)
                                 //关闭看门狗
   WDTCTL = WDTPW + WDTHOLD;
                      //禁止可屏蔽中断 GIE=0
   DINT();
                      // 关闭P1.3中断允许
   P1IE &=~BIT3;
   P1SEL &=~BIT6;
                      //设置P1.6为基本I/O功能
    P1SEL2 &=~BIT6;
                      //置P1.6输出初值
    P1OUT &=~BIT6;
   P1DIR |=BIT6;
                      //设置P1.6为输出
                      //置P1.3作为基本I/O端口
    P1SEL &=~BIT3;
   P1SEL2 &=~BIT3;
                      //置P1.3为输入
    P1DIR &=~BIT3;
    P1REN |=BIT3;
                      //置P1.3 内部电阻允许
                      //置P1.3 为上拉电阻
    P1OUT |=BIT3;
                      //置P1.3下降沿作中断源
   P1IES |=BIT3;
                      //清P1IFG中断标志
   P1IFG = 0;
                      //打开P1.3中断允许
   P1IE |=BIT3;
                      //允许可屏蔽中断 GIE=1
   EINT();
                      //主循环
   while(1) { };
                                    //置P1中断向量
 #pragma vector=PORT1_VECTOR
                                    //中断子程
   _interrupt void port_int(void)
    if ((P1IFG&BIT3)!=0)
                             //判断是否是P1IFG.3中断标志
        P1OUT ^=BIT6;
                             //对P1.6取反
        P1IFG &=~BIT3;
                                    //清P1.3中断标志
<sup>78</sup> }
```

注意:

- 若有多个中断同时请求,CPU选择优先级最高的中断请求先进 行响应
- 当中断源产生时, MSP430内部对应有一个标志被置位中断程序之后, 应确保该标志的 值已清零, 否则被当成又一次的中断申请
- 对于单一中断标志的中断源请求, CPU会自动清零该中断标志
- 对于有多个中断标志的中断源请求, 用户在中断子程用这些标志判断产生的具体子中断源, 中断标志的清零由用户在使用完后编程清零

中断源	中断标志	
•••	•••	
定时器A1	TACCR1 to TACCR2 CCIFGs,	TAIFG (3)
P2的8个引脚	P2IFG.0~P2IFG.7	(8)
P1的8个引脚	P1IFG.0~P1IFG.7	(8)

思考:

在例子中的中断子程内不清P1IFG.P3中断标志的后果?