

DESCRIPTION OF THE MODULE

TITLE OF THE MODULE	Code
Module name: Embedded OS	4.1.9
Course name: Embedded OS	

Teacher(s)	Department
Coordinating: Serdiuk Serhii (serdjuksn@gmail.com)	Software Tools
Others:	

Study cycle	Level of the module	Type of the module
BA		compulsory

Form of delivery	Duration	Language(s)
Lab session/hands on	12 weeks	english/ukrainian

Prerequisites					
Prerequisites:	Co-requisites (if necessary):				
- Linux OS	- Students need to be able to use a				
- Linux commands	computer				
- Makefiles					
- Linux use of libraries					
- Advanced C					
- Data interfaces in embedded systems					

Credits of the module	Total student workload	Contact hours	Individual work hours
3,5	105	35	70

Aim of the module (course unit): competences foreseen by the study programme

- Students are able to program the Linux shell
- Students are able to perform tasks to configure and administer Linux
- Students are able to send and receive data from a spi or i2c sensor, attached to an embedded system running Linux (/dev/mem implementation)
- Students are able to write a Linux device driver, conform the available Linux sysfs functions

Learning outcomes of module (course unit)	Teaching/learning methods	Assessment methods
To know the principles of the Linux	Classroom teaching	exam, applied task, labs reports
shell programming		
To know the principles of the	Classroom teaching	exam, applied task
/dev/mem file in Linux		
To know the Linux device driver sysfs	Classroom teaching	exam, case-study
and spi interface		
Cross-compile a Linux kernel (with	Classroom teaching	report on student integrated
some changes)		project
- File and file system structure control	Hands on lab session	report on student integrated
- Process control		project, labs reports
- Distribution of user rights		
- Read some I2C and SPI data		
- Write a SPI sysfs driver		

Generic competences			Learning outcomes of the programme
1.	Ability for abstract thinking, analysis and	1.1	Know/understand various approaches and methods of system analysis and synthesize
	synthesis		Be able to implement basic methods of scientific cognition in embedded systems sphere
2.	Ability to identify, pose and resolve	2.1	Know/understand various approaches and methods to solve professional tasks
2.	problems	2.2	Be able to implement various technologies to solve professional tasks
3.	3. Skills in the use of information and communications technologies		Know/understand appropriate application software and communications technologies for embedded systems design
	communications technologies	3.2	Be able to use technology as a tool to research, design, evaluate of embedded systems
4.	4. Ability to design and manage projects		Collaborates on corporate interiors projects, including programming client needs, conceptual design, schematic design, and design development of embedded systems
		4.2	Be able to apply component models and integration platforms in the embedded systems design
	Subject specific competences		Learning outcome of the programme
	To analyse, design, build and maintain applications in a robust, secure and efficient way, choosing the most adequate paradigm and programming languages.	5.1	To choose, combine and exploit different programming paradigms, at the moment of building software, taking into account criteria like ease of development, efficiency, portability and maintainability.
5.		5.2	To use the tools of a software development environment to create and develop applications.
		5.3	To demonstrate knowledge and capacity to apply the fundamental principles and basic techniques of parallel, concurrent, distributed and real-time programming.
6.	To develop and analyse hardware and	6.1	To analyse, evaluate and select the most adequate hardware and software platform to support embedded and real-time applications.
	software for embedded systems.	6.2	To develop specific processors and embedded systems; to develop and optimize the software of these systems.
	To demonstrate knowledge and	7.1	To demonstrate knowledge and capacity to manage and maintain computer systems, services and applications.
7.	comprehension about the internal operation of a computer and about the operation of communications between components of embedded systems.	7.2	To demonstrate knowledge about the characteristics, functionalities and structure of the Operating Systems allowing an adequate use, management and design, as well as the implementation of applications based on its services
	To analyse and evaluate computer	8.1	To develop and analyse software for systems based on microprocessors and its interfaces with users and other devices.
8.	architectures including parallel and distributed platforms, and develop and optimize software for these platforms.	8.2	To design and implement system and communications software.
	- *		To design and implement operating systems.

		C	ontac	t wor	k hou	rs			Time and tasks for individual work
Themes	Lectures	Consultation	Seminars	Practical work	Laboratory work	Placements	Total contact work	Individual work	Tasks
1. To know the principles of the Linux shell programming	2				4		6	4	Writing Scripts
2.To know the principles of the /dev/mem file in Linux	2						2	8	Access to RAM
3. To know the Linux device driver sysfs and spi interface	4						4	8	The Linux device driver programming
4. Cross-compile a Linux kernel (with some changes)	4				3		7	8	Application of gss
5. File and file system structure control					3		3	8	
6. Process control					2		2	8	Configure and administer Linux
7. Distribution of user rights					1		1	4	
8. Read some I2C and SPI data					4		4	8	Embedded data communication
9. Write a SPI sysfs driver					6		6	14	The Linux device driver programming

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Products and performance assessments	50		All labs should be passed
Written and Oral Exam	50		Grade A (excellent) - clarity of expression – excellent, confident delivery, practical tasks – full done. Grade B (good) – clarity of expression – good, thoughts and ideas clearly expressed, practical tasks - well done. Grade C (good) - clarity of expression – well-placed, delivery is fluctuate, practical tasks - well done. Grade D (passed) - clarity of expression – poor, delivery is fluctuate, practical tasks done with mistakes. Grade E (fail) - failure in theoretical or practical tasks.

Author Compulsory literature	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Ivan Cibrario Bertolotti,Gabriele Manduchi	2012	Real-Time Embedded Systems: Open-Source Operating Systems Perspective		CRC Press Taylor&Francis Group

Bruno Bouyssounouse, Joseph Sifacis	2005	Embedded Systems Design: The ARTIST Roadmap for Research and Development	Springer-Verlag Berlin Heidelberg
Muhammad Ali Mazidi, Rolin D. McKinlay, Danny Causey	2009	PIC Microcontroller and Embedded Systems: Using Assembly and C for PIC18	Moscow: MK-Press, Korona- Print [RU]
Tim Wilmshurst	2008	Designing Embedded Systems with PIC Microcontrollers: Principles and Applications	Moscow: MK-Press, Korona- Vek [RU]
Serdiuk S.M., Kachan O.I.	2015	Guidance for laboratory work in "Embedded systems" for students of specialty 7.05010301 "Software systems" and 7.05010302 "Software Engineering", full time study	Zaporozhye: ZNTU [UA]
Additional literature	T		
Bonnie Baker	2010	Real Analog Solutions for Digital Designers	Moscow: "Dodeka-XXI" [RU]
Peter Mertens	2007	Integrated data processing. Operating systems in industry	Moscow: Finansy i statistika [RU]
Christofer Negus	2004	Red Hat Linux. Bible	Moscow:Vilyams [RU]

This project has been funded with support from the European Commission.

This publication reflects the views only of the author,

and the Commission cannot be held responsible for any use which

may be made of the information contained therein.