南京航空航天大学

二〇一八 ~ 二〇一九 学年 第1学期 《复变函数》考试试题

班号					学号			姓名			
题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											

一、填空题 (每题三分)

- $1.\frac{i}{1+i} + \frac{-1+i}{i}$ 的三角表达式_____
- $2.z^3 + 8 = 0$ 的全部根是_____
- $3.(i)^{1+i} = _{____,k} = 0, \pm 1, \pm 2 \cdot \cdot \cdot$
- $4.\oint_{|z|=1} \frac{\sin z}{z-2} dz =$ _____
- $5.Res[\frac{1}{2009-z}, 2009] =$ _____
- $6.\sum_{n=0}^{\infty} (1+i)^n z^n$ 的收敛半径为______
- $7.f(z) = z^2$ 在 z = i 处的转动角为______
- $8.z_0 = 1 + i$ 关于 |z| = 1 的对称点为_____
- 二、 $f(z) = x^3 + 2y^3i$ 在何处可导? 并求可导点处导数.

三、(1) 已知 f(z) = u(x,y) + iv(x,y) 为解析函数,证明: u_x, u_y 为调和函数.

(2) 已知 $u(x,y)=e^y\sin x+y$,求解析函数 f(z)=u(x,y)+iv(x,y),满足 f(0)=i.

四、 $(1)\oint_C \frac{z^3}{z^2+1}dz$,C 为正向圆周 $|z-i|=\frac{1}{2}$.

(2) $\oint_C z^2 \sin \frac{1}{z} dz$,C 为正向圆周 |z| = 2.

(3) $\oint_C \frac{\sin z}{z(z-\frac{\pi}{2})^2} dz$,C 为正向圆周 $|z|=\pi$.

 $(4) \oint_C \tan(\pi z) dz,$ C 为正向圆周 |z|=10.

五、将函数 $f(z) = \frac{1}{z^2(z-i)}$ 在以下区域内展开成洛朗级数: $(1)1 < |z| < +\infty$ (2)0 < |z-i| < 1.

六、找出 $f(z) = \frac{\cos z - 1}{z^2(z^2 + 1)^3} \sin \frac{1}{z - 1}$ 的奇点,并说明具体类型.

七、求函数 w=f(z) 将 Im(z)>0 映射为 |w|<1,满足 f(1+i)=0, f(1)=i.