UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo vaje

Vaja 16 - Vrteneje in vztrajnostni moment telesa

Luka Orlić

Kazalo

Se	eznam uporabljenih simbolov	2
1	Teoretični uvod	3
2	Naloga	5
3	Potrebščine	5
4	Skica	5
5	Meritve	6
6	Obdelava meritev	6
	6.1 Preverjanje izreka o kinetični energiji	7
7	Analiza rezultatov	8

Seznam uporabljenih simbolov

Oznaka	Pomen
Δ	TEXT, enota: UNIT

1 Teoretični uvod

Togo telo, ki je vrtljivo okoli nepremične osi, se vrti enakomerno pospešeno, če deluje nanj konstnaten navor v smeri osi. Kotni pospešek α in navor M sta sorazmerna:

$$J\alpha = M$$
 (1)

Pri tem je J vztrajnostni moment telesa okoli dane osi, ki ga določa porazdelitev mase telesa Δm_i glede na oddaljenost od osi vrtenja r_i po formuli:

$$J = \sum_{i} r_i^2 \Delta m_i \implies \int_V r^2 dm = \int_V \rho(r) r^2 dV \tag{2}$$

kjer je $\rho(r)$ gostota na mestu r. Tako je vztrajnostni moment valjastega kolesa z radijem R glede na lastno os enak:

$$J = \frac{1}{2}mR^2\tag{3}$$

Kadar pa se vrti okoli osi, ki je vzporedna lastni, toda premaknjena za R_p , dobimo iz enačbe (2) vztra inostni moment kot:

$$J = \frac{1}{2}mR^2 + mR_p^2 \tag{4}$$

Okoli vodoravne osi vrtljivo kolo poganjamo z utežjo preko vrvice, ki je navita na jermenico z radijem r_j . Utež se giblje s pospeškom:

$$a = g - T/m_u (5)$$

kjer sila T napenja vrvico in povzroča na kolesu navor r_jT . Kotni pospešek kolesa dobimo iz zveze:

$$J\alpha = r_j m_u(g - a) = m_u(r_j g - r_j^2 \alpha) \tag{6}$$

ali

$$(J + r_j^2 m_u)\alpha = r_j m_u g \tag{7}$$

kjer je J skupni vztrajnostni moment kolesa, jermenice in morebitnih dodatkov pritrjenih na kolo. Poglejmo še, kako je z izrekom o kinetični energiji pri tem poskusu! Od začetka kolo in utež mirujeta. Ko se spusti utež za višino h, se vrti kolo s kotno hitrostjo ω . Kinetična energija sistema je enaka spremembi potencialne energije uteži:

$$m_u g h = J \frac{\omega^2}{2} + \frac{m_u v_u^2}{2} \tag{8}$$

kjer predstavlja zadnji člen kinetično energijo uteži. Odtod dobimo enačbo:

$$\frac{1}{2}[J+m_u r_j^2]\omega^2 = m_u gh \tag{9}$$

2 Naloga

- i.) Preveri, da je vrtenje, ki ga povzroča konstanten navor, enakomerno pospešeno in iz pospeška določi vztrajnostni moment praznega kolesa.
- ii.) Iz pospeška določi vztrajnostni moment priprave, potem ko si vpel manjši kolesi najprej togo in potem gibljivo v krogličast ležaj. Obe vrednosti primerjaj.
- iii.) Preveri veljavnost izreka o kinetični energiji.

3 Potrebščine

- Kolo z jermenico
- Dva para manjših koles
- Uteži
- vrvica
- Detektor časovnih intervalov (optična vrata)
- Zapisovalnik rezultatov (računalnik z ustreznim vmesnikom)

4 Skica

Slika 1: Shema poskusa

5 Meritve

	Rezultati								
Vpetost	masa $[kg]$	$a_1 \ [m/s^2]$	$a_2 \ [m/s^2]$	$a_3 \ [m/s^2]$	avg J $[kgm^2]$	Izr. J $[kgm^2]$			
Ni vpeto	0	-0.073	-0.068	-0.057	n/a	n/a			
Ni rmete	50	0.831	0.832	0.829	0,012	n/a			
Ni vpeto	100	1.700	1.683	1.684					
Togo	50	0.519	0.516	0.520	0,019	0,020			
	100	1.040	1.040	1.040					
C:1-1::	50	0.499	0.505	0.503	0,019	0,019			
Gibljivo	100	1.040	1.040	1.040					

6 Obdelava meritev

$$(J + r^{2}m)\alpha = rmg$$

$$J = rm\frac{g}{\alpha} - r^{2}m$$

$$J = rm(\frac{g}{\alpha} - r)$$
(10)

$$J_{sis} = n_{diskov} J_{disk} + J_{brez\ diska}$$
$$J_{disk} = 0,0035\ kgm^2$$

6.1 Preverjanje izreka o kinetični energiji

$$\frac{1}{2}[J + m_u r_j^2]\omega^2 = m_u g h
W_k = \frac{1}{2}[J + m r^2]\omega^2
W_p = mgh
T_1 (2 s, 3.244 s^{-1})
T_2 (5 s, 5.641 s^{-1})
\Delta t = 3s
\Delta \omega = 2,397 s^{-1}
\Delta h = 0,359 m
W_k = 0,0355 J
W_p = 0,0352 J
\Delta W = 0,003 J$$
(11)

Potrdili smo izreka o kinetični energiji, kajti napaka je največ 1%, kar je zanemarljivo.

7 Analiza rezultatov

Izračunali smo vztrajnostne momente sistemov, določili vzstrajnostne momente diskov, ter potrdili izrek o kinetični energiji.