Задачи о покрытии

Дано: Сеть дорог и конечное множество пунктов для размещения постов ГАИ. Каждый пункт может контролировать дорогу на заданном расстоянии от него. Известно множество опасных участков на дорогах.

Найти: минимальное число постов для контроля всех опасных участков.

Обозначения:

 $I = \{1, ..., m\}$ — множество всех возможных пунктов для размещения постов ГАИ;

 $J = \{1, ..., n\}$ — множество опасных участков;

 $a_{ij} = \begin{cases} 1, \text{ если из пункта } i \text{ можно контролировать участок } j \\ 0 \text{ в противном случае} \end{cases}$

Переменные задачи:

 $x_i = \begin{cases} 1, \text{ если в пункте } i \text{ устанавливается пост } \Gamma A M \\ 0 \text{ в противном случае} \end{cases}$

Математическая модель

$$\min \sum_{i \in I} x_i$$

при ограничениях:

$$\sum_{i \in I} a_{ij} x_i \ge 1, \quad j \in J;$$

$$x_i \in \{0,1\} \ i \in I.$$

Пусть $c_i \ge 0$ — стоимость создания поста в пункте i и число постов не превосходит p>0. Требуется минимизировать суммарную стоимость:

$$\min \sum_{i \in I} c_i x_i$$

при ограничениях:

$$\sum_{i \in I} a_{ij} x_i \ge 1, \quad j \in J;$$

$$\sum_{i \in I} x_i \le p;$$

$$x_i \in \{0,1\} \ i \in I.$$

Предположим, что имеется возможность открыть не более p постов и их не хватит для контроля всех опасных участков.

Требуется при данном ограничении найти размещение постов для контроля максимального числа опасных участков.

Переменные задачи:

 $y_j = \begin{cases} 1, \text{ если опасный участок } j \text{ под контролем} \\ 0 \text{ в противном случае} \end{cases}$

 $x_i = \begin{cases} 1, \text{ если в пункте } i \text{ устанавливается пост } \Gamma A M \\ 0 \text{ в противном случае} \end{cases}$

Математическая модель

$$\max \sum_{j \in J} y_j$$

при ограничениях:

$$\sum_{i \in I} a_{ij} x_i \ge y_j, \quad j \in J;$$

$$\sum_{i \in I} x_i \le p;$$

$$x_i, y_j \in \{0,1\}, i \in I, j \in J.$$

Упражнение. Показать, что эта модель не эквивалентна нижеследующей модели:

$$\max \sum_{j \in J} \sum_{i \in I} a_{ij} x_i$$

при ограничениях:

$$\sum_{i \in I} x_i \le p;$$

$$x_i \in \{0,1\}, i \in I.$$

Если опасные участки опасны в разной степени и величина b_j задает, например, число аварий на участке j за год, то задача предотвращения максимального числа аварий записывается следующим образом:

$$\max \sum_{j \in J} b_j y_j$$

при ограничениях:

$$\sum_{i \in I} a_{ij} x_i \ge y_j, \quad j \in J,$$

$$\sum_{i \in I} x_i \le p;$$

$$x_i, y_j \in \{0,1\}, i \in I, j \in J.$$

Жадный алгоритм

Рассмотрим взвешенную задачу о покрытии

$$\min \left\{ \sum_{i \in I} c_i x_i \middle| \sum_{i \in I} a_{ij} x_i \ge 1, j \in J, x_i \in \{0,1\} \right\}$$

Алгоритм

- 1. Положить $X^0 := \emptyset, k := 0, J_i^k := \{j \in J \mid a_{ij} = 1\}, i \in I, J^0 := \emptyset;$
- 2. Пока $J^0 \neq J$ выполнять:

2.1. Найти
$$i_0 \in I \setminus X^k$$
 такой, что $J_{i_0}^k \neq \emptyset$ и $\frac{c_{i_0}}{|J_{i_0}^k|} = \min_{i \in I \setminus X^k} \left\{ \frac{c_i}{|J_i^k|} \middle| |J_i^k| \neq \emptyset \right\};$

2.2. Положить
$$k := k+1$$
, $X^k := X^{k-1} \cup \{i_0\}$, $J^0 := J^0 \cup J_{i_0}^{k-1}$

и
$$J_i^k \coloneqq J_i^{k-1} \setminus J_{i_0}^{k-1}$$
 для всех $i \in I \setminus X^k$.

Пример

$$I = \{1, ..., n + 1\}, J = \{1, ..., n\}$$

вектор
$$(c_i)$$
 матрица (a_{ij}) $\begin{bmatrix} \frac{1}{n} \\ \frac{1}{n-1} \\ \frac{1}{n-2} \\ \vdots \\ \frac{1}{2} \\ 1 \\ 1+\varepsilon \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Оптимальное решение $X^* = \{n+1\}$ и его значение $(1+\varepsilon)$. Жадный алгоритм сначала возьмет i=1, затем $i=2,\ldots,i=n$, и получит значение $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\leq 1+\log n.$

Трудоемкость алгоритма $T \sim O(mn)$ при правильном хранении множеств J_i^k , $i{\in}I.$

Без ограничения общности будем считать, что $X^k = \{1, 2, ..., k\}$ для k = 1, ..., K и алгоритм получил покрытие после K итераций.

Обозначим $q_i^k = |J_i^k|, i \in I, k = 1,...,K$ и заметим, что

$$c_k/q_k^k \leq c_i/q_i^k\;,\;\;i\in I,$$
 $J_i^{k+1}\subseteq J_i^k\;$ и $J_i^0\cap J_k^k=J_i^k\setminus J_i^{k+1},$ $J=igcup_{k=1}^K J_k^k\;,\;\;J_{k_1}^{k_1}\cap J_{k_2}^{k_2}=igotimes$, при $k_1\neq k_2.$

Рассмотрим функцию $H(p) = \sum_{i=1}^{p} \frac{1}{i}, \quad p = 1, 2, ...$

Теорема Чватала. Пусть X^* — оптимальное решение взвешенной задачи о покрытии, а X^K — решение жадного алгоритма. Тогда

$$\sum_{i \in X^K} c_i \le H \left(\max_{i \in I} \sum_{j \in J} a_{ij} \right) \sum_{i \in X^*} c_i.$$

Доказательство: Наряду с исходной задачей рассмотрим задачу с новой целевой функцией и непрерывными переменными:

$$\min \left\{ \sum_{i \in I} c_i H \left(\sum_{j \in J} a_{ij} \right) x_i \middle| \sum_{i \in I} a_{ij} x_i \ge 1, j \in J, x_i \ge 0 \right\}.$$

Двойственная к ней имеет вид

$$\max \left\{ \sum_{j \in J} u_j \left| \sum_{j \in J} a_{ij} u_j \le c_i H \left(\sum_{j \in J} a_{ij} \right), i \in I, u_j \ge 0 \right\} \right\}.$$

Так как множества J_k^k образуют разбиение множества J, то положим

$$u_j = c_k / q_k^k, \quad j \in J_k^k, \quad k = 1, ..., K.$$

Покажем, что u_j —допустимое решение двойственной задачи. Для любого $i \in I$

$$\sum_{j \in J} a_{ij} u_j = \sum_{k=1}^K \sum_{j \in J_k^k} a_{ij} u_j = \sum_{k=1}^K \sum_{j \in J_i^0 \cap J_k^k} u_j = \sum_{k=1}^K \sum_{j \in J_i^k \setminus J_i^{k+1}} c_k / q_k^k = \sum_{k=1}^K (q_i^k - q_i^{k+1}) c_k / q_k^k.$$

Пусть для рассматриваемого $i \in I$ номер k_0 — наибольший номер k, $1 \le k \le K$ такой, что $J_i^k \ne \emptyset$. Тогда, продолжая приведенные выше неравенства, получаем

$$\begin{split} \sum_{j \in J} a_{ij} u_j &= \sum_{k=1}^{k_0} (q_i^k - q_i^{k+1}) c_k \Big/ q_k^k \leq \sum_{k=1}^{k_0} (q_i^k - q_i^{k+1}) c_i \Big/ q_i^k = \\ c_i \sum_{k=1}^{k_0} (q_i^k - q_i^{k+1}) \Big/ q_i^k \leq c_i \sum_{k=1}^{k_0} \Big(H(q_i^k) - H(q_i^{k+1}) \Big) \leq c_i H(q_i^1) = c_i H \left(\sum_{j \in J} a_{ij} \right). \end{split}$$

Итак, построенное решение является допустимым в двойственной задаче. Кроме того,

$$\sum_{j \in J} u_j = \sum_{k=1}^K \sum_{j \in J_k^k} c_k / q_k^k = \sum_{k=1}^K q_k^k c_k / q_k^k = \sum_{k=1}^K c_k = \sum_{k \in X^K} c_k.$$

Но по теореме двойственности

$$\sum_{j \in J} u_j \leq H(\max_{i \in I} \sum_{j \in J} a_{ij}) \sum_{i \in X^*} c_i \text{ откуда и вытекает требуемая оценка.} \quad \blacksquare$$

Плохая новость.

Существует константа $0 < \gamma < 1$ такая, что наличие полиномиального приближенного алгоритма с оценкой относительной погрешности $\gamma H(\max_{i \in I} \sum_{j \in J} a_{ij})$

влечет P=NP.

Алгоритм муравьиной колонии

Предложен в начале 90-х годов прошлого века M. Dorigo и V. Maniezzo

Муравьи ориентируются по запаху.

Каждый муравей оставляет после себя сильно пахнущее вещество — *феромен*.

При выборе направления домой с большей вероятностью выбирается направление с более сильным запахом.

Вероятностный жадный алгоритм

Пусть
$$X \subset I$$
, $J(X) = \{ j \in J \mid \sum_{i \in X} a_{ij} \ge 1 \}$ — множество "покрытых" столбцов,

 $q_i(X)$ — мощность множества $J_i(X) = \{j \in J \mid a_{ij} = 1\} \setminus J(X), i \in I \setminus X,$

 $\rho_i = c_i/q_i(X), i \in I \setminus X$ — удельные приращения целевой функции,

L(p) — случайное подмножество множества $I \setminus X$; элемент $i \in I \setminus X$ включается в множество L(p) с вероятностью p независимо от других элементов.

Вероятностный жадный алгоритм

- 1. Положить $X := \emptyset$, $J^0 := \emptyset$.
- 2. Пока $J^0 \neq J$ выполнять:
 - 2.1. Сформировать подмножество $L(p) \subseteq I \setminus X$;
 - 2.2. Найти $i_0 \in L(p)$ с ненулевым значением $q_{i_0}(X)$ и минимальным удельным приращением ρ_i .
 - 2.3. Положить $X \coloneqq X \cup \{i_0\}; \ J^0 \coloneqq J^0 \cup J_{i_0}(X).$

Влияние рандомизации на погрешность, случай $c_i = 1, i \in I$.

При фиксированном значении p>0 проводилось 1000 испытаний алгоритма. Число решений с одинаковым значением представлено на графике столбиком.

Алгоритм муравьиной колонии

Пусть вектор τ_i , $i \in I$ задает статистическую информацию о частоте появления элемента , $i \in I$ в решении $X \subseteq I$. Положим $\rho_i = c_i / q_i(X) + \alpha / \tau_i$, $i \in I \setminus X$, где параметр α определяет важность статистической информации.

Алгоритм МК

- 1. Положить $\tau_i := 1, \ i \in I, \ X^{MK} := I, \ t := 0.$
- 2. Пока $t \leq T_{\text{max}}$ выполнять:
 - 2.1. Построить решения X_{τ} , $\tau = 1, ..., T$ вероятностным жадным алгоритмом
 - 2.2. Выбрать часть наилучших решений $X_{\tau}, \ \tau = 1, ..., T', T' \le T$
 - 2.3. По решениям X_{τ} , $\tau = 1,..., T'$, обновить статистическую информацию τ_i , $i \in I$ и положить t := t+1
 - 2.4. Сменить рекорд X^{MK} , если найдено лучшее решение.

Влияние статистической информации, случай $c_i = 1, i \in I$.

Большое число оптимальных решений получено при $0.3 \le p \le 0.7$.

Задача о р-центрах

Предположим, что p постов ГАИ уже выбрано, и каждый опасный участок прикреплен к ближайшему посту. Обозначим через d_{ij} расстояние между участком j и постом i. Для выбранного набора постов $S \subset I$, |S| = p обозначим через D максимальное расстояние между постом и участками

$$D = \max_{j \in J} \min_{i \in S} d_{ij}.$$

Величина D связана с задержкой при выезде из поста i на участок j. Задача минимизации этой задержки называется задачей о p-центрах:

$$\max_{j \in J} \min_{i \in S} d_{ij} \to \min_{S \subset I, |S| = p}.$$

Задача о p-центрах сводится к решению не более $m \cdot n$ задач о минимальном покрытии (как?).

Задача о многократных покрытиях

Пусть величина D задает радиус ответственности поста, т. е. все участки на расстоянии D от поста находятся в зоне его ответственности. Зоны могут пересекаться. Пусть $r_j \ge 1$ — минимальное число постов, которые должны контролировать участок $j, b_j > 0$ — среднее число аварий на участке j.

Требуется выбрать p постов так, чтобы каждый участок контролировался не менее r_i постами, и число предотвращенных аварий было бы максимальным:

при условиях

$$\max \sum_{j \in J} b_j \sum_{i \in I} a_{ij} x_i$$

$$\sum_{i \in I} x_i \le p,$$

$$\sum_{i \in I} a_{ij} x_i \ge r_j, j \in J,$$

$$x_i \in \{0,1\}, i \in I.$$

Вероятностная постановка задачи

Вызовы с участков происходят случайным образом и независимо друг от друга, q > 0 — вероятность того, что пост не может откликнуться на вызов; $p_k = 1 - q^k$ — вероятность того, что хотя бы один из k постов откликнется; $p_k - p_{k-1} = (1 - q^k) - (1 - q^{k-1}) = (1 - q) \ q^{k-1}$ — прирост вероятности при добавлении одного пункта.

Переменные:

 $y_{jk} = \begin{cases} 1, \text{ если участок } j \text{ контролируется как минимум } k \text{ постами,} \\ 0 \text{ в противном случае.} \end{cases}$

Математическая модель:

$$\max \sum_{j \in J} \sum_{k=1}^{n_j} b_j (1-q) q^{k-1} y_{jk}$$

при ограничениях

$$\sum_{k=1}^{n_j} y_{jk} \le \sum_{i \in I} a_{ij} x_i, \quad j \in J,$$

$$\sum_{i\in I} x_i \le p,$$

$$x_i, y_{jk} \in \{0,1\},$$

где
$$n_j = \sum_{i \in I} a_{ij}, \quad j \in J, \quad i \in I.$$

Замечание. В оптимальном решении

$$y_{jk} \le y_{jk-1}$$
 для всех $j \in J$, $1 \le k \le n_j$.

