

Lista de Exercícios de Álgebra Linear I

04/09/2023

- 1. Se uma função em $\mathcal{C}^{\infty}(\mathbb{R})$ é combinação linear de outras então suas derivadas sucessivas são combinações lineares das derivadas dessas outras. Use esse fato para mostrar que $\{e^x, e^{2x}, x^3, x^2, x\}$ é L.I.
- 2. Seja $E = F_1 \oplus F_2$. Se \mathcal{B}_1 é uma base de F_1 e \mathcal{B}_2 é uma base de F_2 , prove que $\mathcal{B}_1 \cup \mathcal{B}_2$ é uma base de E.
- 3. Mostre que os polinômios 1, x-1 e x^2-3x+1 formam uma base de \mathcal{P}_2 . Exprima o polinômio $2x^2-5x+6$ como combinação linear dessa base.
- 4. No espaço \mathcal{P}_3 , verifique se os polinômios abaixo são L.D. ou L.I., $p(x) = x^3 3x^2 + 5x + 1$, $q(x) = x^3 x^2 + 6x + 2$ e $r(x) = x^3 7x^2 + 4x$.
- 5. Mostre que qualqur conjunto finito de vetores que contém o vetor nulo deve ser L.D.
- 6. Sejam v_1, \dots, v_n vetores L.I. em um espaço vetorial V. Mostre que os vetores v_2, \dots, v_n não podem gerar V.
- 7. Moster que os vetores u=(1,1,1), v=(1,2,3) e w=(1,4,9) formam uma base do \mathbb{R}^3 . Exprima cada um dos vetores e_1 , e_2 v e e_3 , da base canônica do \mathbb{R}^3 como combinação linear de u, v e w.
- 8. Seja $\{v_1, \dots, v_n\}$ uma base do espaço vetorial E. Se os números a_1, \dots, a_n não são todos iguais a zero, prove que o conjunto F dos vetores $v = x_1v_1 + \dots + a_nv_n$ tais que $a_1x_1 + \dots + a_nx_n = 0$ é um subespaço vetorial de E, com dimensão igual a n-1.