Навколо гіпотези Ердеша-Дьярфаша

Мартін Лешко

17 січня 2022 р.

- 💶 Анотація
- ② Формулювання гіпотези та огляд результатів
 - Формулювання гіпотези
 - Поточні результати
- 💿 Огляд гіпотези
 - Оцінки для кількості ребер
 - Особливі графи
- Гіпотеза Ердьоша-Дьярфаша для деяких видів графів
- Висновки

• Тема роботи: «Навколо гіпотези Ердеша-Дьярфаша»

- Тема роботи: «Навколо гіпотези Ердеша-Дьярфаша»
- Мета роботи: надати додаткові обмеження на потенційні контрприклади до гіпотези, знайти графи, що обґрунтовують складність гіпотези

- Тема роботи: «Навколо гіпотези Ердеша-Дьярфаша»
- Мета роботи: надати додаткові обмеження на потенційні контрприклади до гіпотези, знайти графи, що обґрунтовують складність гіпотези
- Завдання роботи: дослідити гіпотезу, довести її для часткових випадків графів.

- Тема роботи: «Навколо гіпотези Ердеша-Дьярфаша»
- Мета роботи: надати додаткові обмеження на потенційні контрприклади до гіпотези, знайти графи, що обґрунтовують складність гіпотези
- Завдання роботи: дослідити гіпотезу, довести її для часткових випадків графів.
- <u>Актуальність:</u> гіпотеза Ердеша-Дьярфаша є однією з нерозв'язаних математичних проблем.

Формулювання гіпотези

 Гіпотеза була сформульована двома угорськими математиками Палом Ердешом та Андрашом Дьярфашем в 1995 році.

Формулювання гіпотези

 Гіпотеза була сформульована двома угорськими математиками Палом Ердешом та Андрашом Дьярфашем в 1995 році.

Гіпотеза. Будь-який простий граф, степінь ко-

• жної вершини якого принаймні три, має простий цикл, довжина якого є степінь двійки.

- Royle & Markström комп'ютерні пошуки.
 - ullet кількість вершин в кубічному контрприкладі ≥ 30 ,
 - ullet кількість вершин в будь-якому контрприкладі $\geq 17.$

- Royle & Markström комп'ютерні пошуки.
 - ullet кількість вершин в кубічному контрприкладі ≥ 30 ,
 - ullet кількість вершин в будь-якому контрприкладі ≥ 17 .
- Результати в планарних графах:

- Royle & Markström комп'ютерні пошуки.
 - ullet кількість вершин в кубічному контрприкладі ≥ 30 ,
 - ullet кількість вершин в будь-якому контрприкладі ≥ 17 .
- Результати в планарних графах:
 - Daniel & Shauger без породжених підграфів $K_{1,3}$;

- Royle & Markström комп'ютерні пошуки.
 - ullet кількість вершин в кубічному контрприкладі \geq 30,
 - ullet кількість вершин в будь-якому контрприкладі $\geq 17.$
- Результати в планарних графах:
 - Daniel & Shauger без породжених підграфів $K_{1,3}$;
 - Несктап & Krakovski поліедральні (кубічні 3-связні планарні) графи.

Формулювання

Теорема

Нехай m — кількість ребер в графі на n вершинах, що не містить в собі циклів C_4 , C_8 , . . . , C_{2^k} . Тоді

$$m = O\left(n\sqrt{n}\right)$$

або більш точно,

$$m\leq \frac{n(1+\sqrt{4n+3}}{4}.$$

Доведення I

- Комбінаторний крок:
 - A кількість вилок;
 - 2

$$A = \sum_{v} \delta(v) \left(\delta(v) - 1\right)$$

- **③** A ≤ n(n-1).
- Алгебраїчний крок:
 - 1

$$\sum_{v} \delta(v) \left(\delta(v) - 1 \right) \leq n(n-1)$$

2

$$\sum_{v} \delta^{2}(v) - \sum_{v} \delta(v) - n(n-1) \leq 0$$

Доведення II

КБШ:

$$\sum_{v} \delta_2(v) \geq \frac{4m^2}{n}$$

4

$$\frac{4}{n}m^2-2m-n(n-1)\leq 0$$

Побудуємо граф:

ullet $V=(\mathbb{Z}/p\mathbb{Z})^2\setminus(0,0)$, де p – просте число.

- ullet $V=(\mathbb{Z}/p\mathbb{Z})^2\setminus(0,0)$, де p просте число.
- $|V| = p^2 1.$

- $V = (\mathbb{Z}/p\mathbb{Z})^2 \setminus (0,0)$, де p просте число.
- $|V| = p^2 1.$

- ullet $V=(\mathbb{Z}/p\mathbb{Z})^2\setminus(0,0)$, де p просте число.
- $|V| = p^2 1.$
- **©** Система має щонайбільше один розв'язок, отже, немає $K_{2,2} \cong C_4$.

- $V = (\mathbb{Z}/p\mathbb{Z})^2 \setminus (0,0)$, де p просте число.
- $|V| = p^2 1.$
- Система має щонайбільше один розв'язок, отже, немає $K_{2,2}\cong C_4$.

- ullet $V=(\mathbb{Z}/p\mathbb{Z})^2\setminus(0,0)$, де p просте число.
- $|V| = p^2 1.$
- Система має щонайбільше один розв'язок, отже, немає $K_{2,2}\cong C_4$.
- $2m = \sum_{v} \delta(v) \le n(p-1) = (p^2-1)(p-1) = O(n\sqrt{n}).$

Побудований граф

Основні твердження

Твердження 1

Для будь-якого s існєу граф (степінь будь-якої вершини якого принаймні 3) з достатньо великою кількістю вершин, що не має циклів, довжини яких є степенями двійки $2^k < 2^s$.

Твердження 2

Для будь-якого $k \geq 3$ існує таке n(k), що існує граф G на n(k) вершинах, такий, що в ньому немає циклів довжиною $\leq k$ й $\chi(G) > 2$.

Розглянемо граф G(n, p(n)) за моделлю Ердеша-Рені.

Розглянемо граф G(n,p(n)) за моделлю Ердеша-Рені. Поставимо $p(n)=\ln^2 n/n$.

Розглянемо граф G(n, p(n)) за моделлю Ердеша-Рені. Поставимо $p(n) = \ln^2 n/n$.

Нехай ξ – кількість циклів довжиною $\leq k$.

Розглянемо граф G(n, p(n)) за моделлю Ердеша-Рені.

Поставимо $p(n) = \ln^2 n/n$.

Нехай ξ – кількість циклів довжиною $\leq k$.

$$M\xi = M\xi_{C_1} + \dots + M\xi_{C_w} \le \sum_{\ell=3}^k n^{\ell} p^{\ell} = \ln^6 n + \dots + \ln^{2k} n$$

Розглянемо граф G(n,p(n)) за моделлю Ердеша-Рені.

Поставимо $p(n) = \ln^2 n/n$.

Нехай ξ – кількість циклів довжиною $\leq k$.

$$M\xi = M\xi_{C_1} + \dots + M\xi_{C_w} \le \sum_{\ell=3}^{\kappa} n^{\ell} p^{\ell} = \ln^6 n + \dots + \ln^{2k} n$$

За нерівністю Маркова:

$$P(\xi \ge n/2) \le \frac{2M\xi}{n} = 2\left(\frac{\ln^6}{n} + \dots + \frac{\ln^{2k} n}{n}\right) \longrightarrow 0$$

Нехай α – число незалежності G.

Нехай α – число незалежності G.

Нехай α – число незалежності G.

$$P(\alpha \geq x) \leq \binom{n}{x} (1-p)^{(x-2)}.$$

Нехай α – число незалежності G.

$$P(\alpha \geq x) \leq \binom{n}{x} (1-p)^{(x-2)}.$$

$$\binom{n}{x} \le n^x \qquad 1-x \le e^{-x}.$$

Нехай α – число незалежності G.

$$P(\alpha \geq x) \leq \binom{n}{x} (1-p)^{(x-2)}.$$

$$\binom{n}{x} \leq n^x \qquad 1-x \leq e^{-x}.$$

$$P(\alpha \ge x) \le n^{x} e^{-px(x-1)/2} = n^{x} e^{-p\frac{3}{p}\ln x \cdot \frac{x-1}{2}} = n^{x-\frac{3}{2}(x-1)} = n^{\frac{3-x}{2}} = n^{\frac{3}{2}\left(1 - \frac{n}{\ln n}\right)} \to 0$$

Для достатньо великих n:

$$P(\xi \ge n/2) < \frac{1}{2}$$
 $P(\alpha \ge x) < \frac{1}{2}$

Отже, існує ненульова ймовірність того, що жодна з подій не відбудеться, тобто існує такий граф G, для якого обидві події не виконуються.

Видалимо з графа G по вершині з кожного циклу й отримуємо G'

Отже, користуючись нерівністю $\chi(G') \geq n/\alpha(G')$ маємо, що

$$\chi(G') \geq \frac{n/2}{\alpha(G')} \geq \frac{n}{2\frac{3}{p}\ln n} = \frac{\ln n}{6} \to \infty.$$

Гіпотеза конструктивно доведена для узагальнених графів Петерсена.

Означення

Узагальнений граф Петерсена GP(n,s) визначається набором вершин

$$V = \{u_0, u_1, \dots, u_{n-1}, v_0, \dots, v_{n-1}\}$$

та набором ребер:

$$E = \{u_0u_1, \dots, u_{n-1}u_0, u_0v_0, \dots, u_{n-1}v_{n-1}, v_0v_s, v_1v_{s+1}, \dots, v_{n-1}v_{n-1+s}\}$$

Причому індекси беруться по модулю n.

Гіпотеза вірна

Доведення.

Випадок 1. При s=1. В такому випадку існує цикл C_4 , довжиною 4, що виражається наступною послідовністю вершин:

$$u_0 \rightarrow v_0 \rightarrow v_1 \rightarrow u_1 \rightarrow u_0$$

Випадок 2. При $s \geq 3$ існує цикл на восьми вершинах який виражається наступною послідовністю вершин:

$$u_0 \rightarrow u_1 \rightarrow v_1 \rightarrow v_{1+s} \rightarrow u_{1+s} \rightarrow u_s \rightarrow v_s \rightarrow v_0 \rightarrow u_0$$

Узагальнення графів Маркстрема I

Узагальнений граф Маркстрема GM(n) (від англійського Generalized Markström Graph) визначається за допомогою наступного процесу:

- **1** Спочатку будується граф цикл на n вершинах C_n , які ми називаємо A_1, \ldots, A_n .
- ② Для кожної вершини A_j будуємо ребро $A_j B_1^{(j)}$. Потім будуємо цикли довжини n з $B^{(j)}$:

$$B_1^{(j)} \rightarrow B_2^{(j)} \rightarrow \cdots \rightarrow B_n^{(j)} \rightarrow B_1^{(j)}$$
.

Узагальнення графів Маркстрема II

- 3 усіх вершин таких додаткових циклів будуємо «хвости» наступним чином: $B_i^{(j)} \to C_i^{(j)}$ для всіх $i=\overline{2,n-1}$ й $B_n^{(j)} \to D_{2n-1}^{(j)}$. Для всіх $C_i^{(j)}$ проводимо ще $C_i^{(j)} \to D_{2i-3}^{(j)}$ та $C_i^{(j)} \to D_{2i-2}^{(j)}$.
- Замикаємо всі D:

$$D_1^{(1)} \to D_2^{(1)} \to \cdots \to D_{2n-1}^{(1)} \to D_1^{(2)} \to \cdots \to D_{2n-1}^{(n)} \to D_1^{(1)}$$

Доведення для GM(n)

$$B_5^{(j)} o D_9^{(j)} o D_8^{(j)} o D_7^{(j)} o D_6^{(j)} o C_3^{(j)} o B_5^{(j)}$$

Висновки

Автором було доведено гіпотеза для часткових випадків графів, а зокрема узагальнених графів Петерсена та введених автором узагальнених графів Маркстрема.

Автор запропонував конструкцію циклічних графів, що не містять малих циклів, довжини яких є степінню двійки.

Застосовано ймовірнісний метод для пошуку циклічних графів, що не містять жодних циклів довжиною s, де $s=\overline{3,k}$. Наведена верхня оцінка на кількість ребер в можливих контрприкладах: $m=O(n\sqrt{n})$ й показано, що оцінка досяжна.