Tutorial: Drift Scan with HartRAO

By Job Vorster

Main Purpose - Calibration

We want to look at a source with a **known** flux density (measured in Jy) to calculate how our telescope responds to sources with an **unknown** flux density.

This is called **flux calibration**.

How do we do this? Source Beam pattern Antenna Temperature (K) Radio Telescope 60 10 Time (s)

We have to make a few corrections.

1. Conversion to Antenna Temperature

2. Correction of time dependant gain effects.

Due to **instrumental**, and **atmospheric** effects. The antenna sensitivity is not constant over time.

Time

3. Pointing Correction.

4. Point Source Sensitivity Calculation

Table 5. New spectral fits for calibrator sources

$\log S \text{ [Jy]} = a + b * \log \nu \text{ [MHz]} + c * \log^2 \nu \text{ [MHz]}$					
T. T.	from	to	a	b	С
3C48	1408	23780	2.465	-0.004	-0.1251
3C123	1408	23780	2.525	+0.246	-0.1638
3C147	1408	23780	2.806	-0.140	-0.1031
3C161	1408	10550	1.250	+0.726	-0.2286
3C218	1408	10550	4.729	-1.025	+0.0130
3C227	1408	4750	6.757	-2.801	+0.2969
3C249.1	1408	4750	2.537	-0.565	-0.0404
VirA	1408	10550	4.484	-0.603	-0.0280
3C286	1408	43200	0.956	+0.584	-0.1644
3C295	1408	32000	1.490	+0.756	-0.2545
3C309.1	1408	32000	2.617	-0.437	-0.0373
3C348	1408	10550	3.852	-0.361	-0.1053
3C353	1408	10550	3.148	-0.157	-0.0911
CygA	4750	10550	8.360	-1.565	_
NGC7027	10550	43200	1.322	-0.134	_

We can calculate the "real" flux density of the source.

Divide by the corrected peak antenna temperature we get.

And we have the **point source sensitivity**.

Calibration completed!

Ott. et al., 1994.

NGC7027 flux densities reduced to epoch JD = 2448171. Fit to points at 2.8, 1.3 and 0.7 cm. Complexity of spectrum allows no overall fit. DR21

In summary.

Any questions?

Now we are ready for the practical.