Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan 7hu*

Taesung Park* Phillip Isola

Alexei A. Efros

Berkeley AI Research (BAIR) laboratory, UC Berkeley

In CVPR 2017

Yufeng Jiang 2018.09.10

Motivation

- Paired datasets are rare.
- Images from two different fields are hard to match.

Approach

Formula variable definition:

Domain: X, Y

Image sets of domain: {x}, {y}

Map: G: X -> Y

Map: F: Y -> X

D_x: discriminate {x} and {F(y)}

D_y: discriminate {y} and {G(x)}

Loss function

Adversarial loss

$$\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x)))]$$

$$\min_{G} \max_{D_Y} \mathcal{L}_{GAN}(G, D_Y, X, Y)$$

F: Y -> X Discriminator: D_x

$$\min_F \max_{D_X} \mathcal{L}_{GAN}(F, D_X, Y, X)$$

Loss function

Cycle consistency loss

Forward cycle consistency: $x \rightarrow G(x) \rightarrow F(G(x)) \approx x$

Backward cycle consistency: $y \rightarrow F(y) \rightarrow G(F(y)) \approx y$

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

Use cycle consistency loss

Photo <-> Cezanne

Horses <-> Zebras

Winter <-> Summer Yosemite

Photos <-> Google maps

Full objective

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F),$$

$$G^*, F^* = \arg\min_{G, F} \max_{D_x, D_Y} \mathcal{L}(G, F, D_X, D_Y).$$

Implementation

Network Architecture

Generator: two stride-2 convolutions

several residual blocks

two stride-1/2 convolutions

instance normalization

Discriminator: 70 × 70 PatchGAN

Evaluation

Evaluation Metrics

AMT perceptual studies FCN score

Semantic segmentation metrics

Baselines

CoGAN

SimGAN

Feature loss + GAN

BiGAN/ALI

pix2pix

	$\mathbf{Map} \to \mathbf{Photo}$	$\mathbf{Photo} \to \mathbf{Map}$
Loss	% Turkers labeled real	% Turkers labeled real
CoGAN [32]	$0.6\%\pm0.5\%$	$0.9\% \pm 0.5\%$
BiGAN/ALI [9, 7]	$2.1\% \pm 1.0\%$	$1.9\% \pm 0.9\%$
SimGAN [46]	$0.7\%\pm0.5\%$	$2.6\% \pm 1.1\%$
Feature loss + GAN	$1.2\%\pm0.6\%$	$0.3\% \pm 0.2\%$
CycleGAN (ours)	$\textbf{26.8\%}\pm\textbf{2.8\%}$	$23.2\% \pm 3.4\%$

Table 1: AMT "real vs fake" test on maps ← aerial photos at 256 × 256 resolution.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [22]	0.71	0.25	0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes labels → photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.45	0.11	0.08
BiGAN/ALI [9, 7]	0.41	0.13	0.07
SimGAN [46]	0.47	0.11	0.07
Feature loss + GAN	0.50	0.10	0.06
CycleGAN (ours)	0.58	0.22	0.16
pix2pix [22]	0.85	0.40	0.32

Table 3: Classification performance of photo→labels for different methods on Cityscapes.

Figure 5:

Different methods for mapping labels <-> photos trained on Cityscapes images.

Figure 6: Different methods for mapping aerial photos <-> maps on Google Maps.

Analysis of the loss function

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.22	0.07	0.02
GAN alone	0.51	0.11	0.08
GAN + forward cycle	0.55	0.18	0.12
GAN + backward cycle	0.39	0.14	0.06
CycleGAN (ours)	0.52	0.17	0.11

Table 4: Ablation study: FCN-scores for different variants of our method, evaluated on Cityscapes labels → photo.

Analysis of the loss function

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.10	0.05	0.02
GAN alone	0.53	0.11	0.07
GAN + forward cycle	0.49	0.11	0.07
GAN + backward cycle	0.01	0.06	0.01
CycleGAN (ours)	0.58	0.22	0.16

Table 5: Ablation study: classification performance of photo→labels for different losses, evaluated on Cityscapes.

Analysis of the loss function

Figure 7:

Different variants of our method for mapping labels ↔ photos trained on cityscapes.

Results

Thanks