

BLM325 VERI İLETİŞİMİ

Yrd. Doç. Dr. İlhami M. ORAK imorak@karabuk.edu.tr

KBUZEM

Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi

Tanımlar

- Sinyal Kodlama Teknikleri
 - Dijital verinin dijital sinyalle iletimi
 - NRZL, NRZI, Bipolar-AMI, Pseudoternary, Manchaster, Differential Manchester
 - Dijital verinin analog sinyalle iletimi
 - ASK, FSK, PSK
 - Analog verinin dijital sinyalle iletimi
 - PCM, Delta MOdülasyonları
 - Analog verinin analog sinyalle iletimi
 - AM, FM, PM Modülasyonları

Sinyal Kodlama Teknikleri

Kendi ana dili olanlar bile bu tuhaf dili iyi bir şekilde kullanmakta zorlanıyor.

—The Golden Bough, Sir James George Frazer

Sinyal Kodlama Teknikleri

(a) Encoding onto a digital signal

(b) Modulation onto an analog signal

Figure 5.1 Encoding and Modulation Techniques

Dijital Veri, Dijital Sinyal

- Dijital sinyal
 - Ayrık, sürekli olmayan voltaj "puls" lerinden oluşur
 - Her bir puls bir sinyal elemanını oluşturur.
 - Binary (ikili) veri sinyal elemanlarına kodlanır.

Terminoloji

- Tek kutuplu (Unipolar)
 - O Bütün sinyal elemanları aynı işarete sahip
- Kutuplu (Polar)
 - O Bir seviye pozitif diğer seviye negatif gerilimle ifade edilir.
- Veri Hızı (data rate)
 - O Bir saniyede iletilen veri miktarı (R)
- Bir bitin iletim süresi
 - O Vericinin bir biti gönderme süresi (1/R)
- Modülasyon Hızı
 - O Sinyal seviyelerinin değişme hızı (baud)
- İşaret (mark)
 - O Binary 1
- Boşluk (space)
 - O Binary 0

Sinyalleri Yorumlama

- Bilinmesi gerekenler
 - Bitlerin zamanı: Başlangıç ve bitiş zamanları
 - Sinyal seviyeleri: 0 ve 1 hangi gerilim seviyesi ile temsil edilmektedir.
- Sinyal yorumlamasını etkileyen faktörler
 - Sinyal/Gürültü oranı (SNR) azaldıkça hatalı bit oranı (BER) artar
 - Veri hızı arttıkça hatalı bit oranı da artar
 - Bant genişliği veri hızında artış olmasına imkan sağlar
 - Kodlama teknikleri: veri bitlerinin sinyallere eşleştirilmesidir.

Kodlama Teknikleri İle İlgili Kavramlar

- Sinyal Spektrumu
 - O Yüksek frekansların olmaması bant genişliğini düşürür.
 - O DC parçacığın olmaması halinde transformatör ile AC sinyali olşturulması sağlanır
 - O Bant benişliğinin ortalarındaki enerji seviyelerine odaklanılmalı
- Saatle denetim (clocking)
 - O Verici ve alıcının senkronize olmasını sağlar
 - O Harici bir saat veya sinyal mekanizması ile sağlanır
- Hata sezme (error detection)
 - O Sinyal kodlama ile yapılailir
- Sinyal karışımı ve gürültüden etkilenmeme
 - O Bazı kodlar diğerlerin göre daha iyi performans gösterebilir
- Maliyet ve karmaşıklık (cost and complexity)
 - O Yüksek sinyal hızı -> yüksek maliyet

Kodlama Teknikleri

Sıfır Seviyesine Dönmeme Nonreturn to Zero-Level (NRZ-L)

- 0 ve 1 bitleri için iki farklı gerilim seviyesi
- Bir bit iletilirken gerilim seviyesi sabit kalır
 - Sıfır volt seviyesine dönmez
 - Gerilimin olmaması "0", sabit bir pozitif gerilim de "1"
 i temsil edebilir.
 - Çoğunlukla negatif gerilim bir biti, pozitif gerilim de diğer biti temsil etmekte kullanılır.
- NRZ-L genellikle terminallerin dijital veriyi almasında göndermesinde kullanılır.

Ters Çevrilmiş Sıfıra Dönmeme Nonreturn to Zero Inverted (NRZI)

- NRZ'nin bir varyasyonu
- Bit iletim süresince gerilim seviyesi sabit
- Veri bit iletim zamanı başındaki sinyal değişikliğinin olup olmaması ile kodlama gerçekleşir
 - OBinary 1: Sinyal değişikliği olması (alçaktan yükseğe veya yüksekten alaçağa) ile kodlanır. Bir önceki sinyal ters çevrilir.
 - O Binary 0: Geçiş olmaması ile kodlanır. Bir önceki sinyal aynı kalır
- Diferansiyel kodlama tipidir.
 - O Veri sinyal seviyeleri ile değil sinyal elemanlarının geçişi ile belirlenmekte
 - O Gürültü durumlarında hatayı tespit etmek NRZ-L'ye göre daha güvenilir.more reliable detection of transition rather than level
 - O Sinyal kutuplarının algılanması kolaylıkla saklanabilir

NRZ Avantaj ve Dezavantajları

- Avantajları
 - O Kodlama tekniği kolay
 - O Etkin bant genişliği kullanımı
- Dezavantajları
 - ODC parçasının olması
 - O Senkronizayon özelliğine sahip olmaması
 - ➤ Uzun süreli 0 veya 1 biti gönderiminde verici ile alıcı arasındaki zaman denetimi farkında senkronizasyon kaybolacaktır.
- Dijital manyetik kayıtlarda kullanılır
 - O Düşük frekans özelliği
 - O Basit olması
- Kısıtlarından dolayı sinyal iletiminde kullanılmaz

12

Çok Seviyeli İki Kutuplu AMI (Multilevel Binary Bipolar-AMI)

- İkiden fazla sinyal seviyesi kullanılır
- Bipolar-AMI
 - O "0" sinyalin olmaması ile temsil edilir
 - O"1" pozitif veya negatif pulse ile temsil edilir.
 - O"1" puls leri her bir seferinde kutup değiştirir.
 - O Uzun süreli arka arkaya "1" verilerinde senkronizasyon kaybolmaz.
 - O Uzun süreli arka arkaya "0" olması durumunda senkronizasyon kaybı sözkonusu
 - O Pozitif-negatif geçişlerinen dolayı net bir DC parçası söz konusu değil
 - ONRZ'ye göre düşük bant genişliği
 - O Pulse değişimi basit bir hata sezme mekanizması sağlar.
 - ĭlave pulse veya pulse kaybı hatanın sezilmesini zorlaştırır.

13

Çok Seviyeli Pseudoternary Multilevel Binary Pseudoternary

- Bipolar-AMI'den farklı olarak sinyaller "0" ve "1" için yer değiştirilmiştir.
- "1" sinyalin olmaması ile temsil edilir.
- "0" sinyalin pozitif ve negatif dönüşümü ile temsil edilir.
- Bipolar-AMI'ye göre bir avantaj veya dezavanatajı yoktur.
- Her biri bazı uygulamalarda kullanılır

Çok Seviyeli Kodlama Teknikleri Değerlendirme

- Uzun süreli "0" veya "1" durumunda senkronizasyon
 - O İlave bitler eklenebilir, ISDN'de kullanılır
 - ¥ Yüksek veri hızında pahalı çözüm
 - O Veriyi değiştirme işlemi (scramble)
- NRZ kadar verimli değil
 - O Her bir sinyal elemanı sadece bir biti temsil eder.
 - ➤ Alıcı 3 farklı seviyeyi (+A, -A, 0) ayırt etmek zorunda.
 - ▼ NRZ'de iki farklı seviye algılanır
 - O3 Seviyeli sistem ile $log_23 = 1.58$ bit temsil edilebilir.
 - O3 Seviyeden dolayı iki seviyeli sistemle aynı hata oranı için3dB daha fazla sinyal gücü gerekir.

Manchester Kodlama

- Çift fazlı kodlama tekniği
- Her bir bitin ortasında seviye geçişi gerçekleşir.
- Geçiş işlemi hem veriyi temsil eder hem de saat denetimini gerçekleştirir.
- Alçaktan yükseğe geçiş "1" i temsil eder
- Yüksekten alçağa geçiş "0"1 temsil eder
- IEEE 802.3 (Ethernet) standardı olarak LAN'da coaxial ve bükümlü kablolar için kullanılır.

Manchester Encoding

Diferansiyel Manchester Kodlama

- Bit ortasındaki geçiş sadece saat denetimi için kullanılır.
- Bit periyodu başındaki seviye geçişi "0" 1 temsil eder
- Bit periyodu başında geçiş olmaması "1" i temsil eder
 - O Diferansiyel kodlama tekniğidir
- IEEE 802.5 standardı olarak STP kablolarla token ring tipi LAN'da kullanılır.

Differential Manchester Encoding

İki Fazlı Kodlamanın Avantaj ve Dezavantajları

Dezavantajlar

- O Bit süresince en az bir kez geçiş olmaktadır.
- O Maksimum modulasyon hızı NRZ'nin iki katı.
- OrDaha fazla bant genişliği gerkeir

Avantajlar

- OBit ortalarındaki geçişle senkronizasyon sağlanır (kendinden saat denetimi)
- ODC parçası bulunmamaktadır
- OHata sezme imkanı
 - ▼ Geçiş olmaması hata tespitine yardım eder
 - 🗷 Gürültünün sinyal geçişi olması hatanın anlaşılmasını imkansız kılar.

Modülasyon Hızı

- Bit süresi
 - OT_b
 - O 1 µsec
- Veri Hızı
 - O $1/T_b$
 - O 1 Mbps (örnek için)
- Modülasyon Hızı
 - O Sinyal elemanının oluşturulma hızı
 - O Manchester kodlamada bit süresinin yarısı (2/T_b)
 - O 2 Mbaud (örnek için)

Değiştirme (Scrambling)

- Değiştirme işlemi ile ardışıl olarak sabit gerilim oluşmaması sağlanır
- Değiştirme işlemi şu özellikler sahip olmalıdır
 - Senkronizasyon için yeterli sayıda geçiş
 - Orijinal sinyalin verici ve alıcıda doğru algılanması
 - Orijinal veri uzunluğunun korunması
- Tasarım Hedefleri
 - DC parçanın olmaması
 - Uzun süreli sıfır seviyeli işaret sinyalinin bulunmaması
 - Veri hızında düşme olmaması
 - Hata sezme özelliğinin sağlanması

20

B8ZS and HDB3

B = Valid bipolar signal

V = Bipolar violation

B8ZS and HDB3

- B8ZS (Çift kutuplu 8 sıfır değişimli)
 - O Arka arkaya 8 adet sıfır varsa ve önceki gerilim seviyesi pozitifse değiştirme:
 - × 000+-0-+
 - O Arka arkaya 8 adet sıfır varsa ve önceki gerilim seviyesi negatifse değiştirme:
 - × 000-+0+-
 - O Genel İfade: 000VB0BV (
 - ▼ V: Önceki gerilim seviyesinin aynı, B: Önceki gerilim seviyesinin tersi
- HDB3 (Yüksek yoğunluklu çift kutuplu 3 sıfırlı değişim)
 - O Son değişimden sonra "0" dan farklı pulse sayısı tek ise değiştirme:
 - × 000V
 - O Son değişimden sonra "0" dan farklı pulse sayısı tek ise değiştirme:
 - × B00V

B8ZS and HDB3

Avantajları

- Arka arkaya çok sayıda "0" oluşmasını engeller
- Değişimle oluşan sinyalin, gürültü ve diğer etkenlerle oluşturma ihtimali çok zayıf
- Senkronizasyon işlemi sağlar
- DC parçası bulunmamaktadır
- Enerji belirli bir frekans etrafında yoğunlaşır (veri hızının yarısı)
- Yüksek veri hızı iletimi
- Uzun mesafeli veri iletimi

Digital Verinin Analog Sinyalle İletimi

- Telefon hatlarından haberleşmelerde
 - O Frekans aralığı: 300Hz 3400Hz arası
 - O Modem (modulator-demodulator) ile dijital sinyallerin analog sinyale ve analog sinyalin dijital sinyale dönüştürülmesi sağlanır.
- Modülasyon
 - O Taşıyıcı (carrier) sinyalin üç özelliğinden bir ya da birkaçını kullanılmasıdır.
- Kodlama teknikleri
 - O Genlik Öteleme (Amplitude shift keying ASK)
 - O Frekans Öteleme (Frequency shift keying FSK)
 - OFaz Öteleme (Phase shift keying PK)

Modülasyon Teknikleri

Genlik Öteleme - ASK

- 0/1 bitlerini farklı genliklerle kodlanır
 - Çoğunlukla bu bitlerin bir tanesi sıfır genlikle kodlanır
- Ani genlik değişimlerinden çabuk etkilenmektedir
- Verimsiz bir modülasyon yöntemidir
- Kullanım alanları
 - 1200bps a kadar ses iletim hatlarında
 - Fiber hatlarda yüksek hızlarda iletim
 - Işık pulsleri bir sinyal elemanı, olmaması diğer sinyal elemanı

(a) A

Genlik Öteleme

ASK

$$-S(t) = \{A\cos(2\pi f_c t) ; binary 1$$
0 ; binary 0

- A: Genlik
- f_c:Taşıyıcı frekans

İkili Frekans Öteleme Binary Frequency Shift Keying (BFSK)

- En yaygın FSK tipi ikili frekans ötelemedir (BFSK)
- "0/1" bitleri taşıyıcı sinyal frekansına yakın farklı iki frekansla temsil edilir
- ASK ya göre hatalardan daha az etkilenmektdir
- Kullanım alanları
 - O 1200bps a kadar ses iletim hatlarında
 - O Yüksek radyo frekanslarında iletişimde (3-30 MHz)
 - O Coaxial kablo ile LAN'de daha yüksek frekansla iletişim

Binary Frequency Shift Keying

BFSK

$$-S(t) = \{A\cos(2\pi f_1 t) ; \text{ binary 1}$$

$$A\cos(2\pi f_2 t) ; \text{ binary 0}$$

• f₁, f₂ taşıyıcı frekansdan ofset

Çoklu FSK

- Her bir sinyal elemanı birden fazla biti temsil eder
- İkiden fazla frekans kullanılır
- Daha fazla bant genişliği
- Hatalara daha açık
- MFSK

-
$$S(t) = A \cos(2\pi f_i t)$$
 ; $1 \le i \le M$
 $f_i = f_c + (2i-1-M) f_d$

30

Faz Öteleme (PSK)

- Dijitler taşıyıcı sinyalin fazı ötelenerek elde edilir
- Binary PSK (BPSK)
 - İki faz iki dijiti temsil eder
- Diferansiyel PSK (DPSK)
 - Faz referans sinyale göre değil bir önceki iletime göre ötelenir

Çoklu FSK (Örnek)

• $f_c = 250 \text{ KHz}$, $f_d = 25 \text{ KHz}$ ve M=8 (L=3 bit)

$$f_1 = 75 \text{ Khz } (000) f_2 = 125 \text{ Khz } (001)$$

 $f_3 = 175 \text{ Khz } (010) f_4 = 225 \text{ Khz } (011)$
 $f_5 = 275 \text{ Khz } (100) f_6 = 325 \text{ Khz } (101)$
 $f_7 = 375 \text{ Khz } (110) f_8 = 425 \text{ Khz } (111)$

Bu yöntemin destekleyeceği veri hızı R=1/T =2Lfd = 150 kbps

Çoklu FSK (Örnek)

	01	11	00	11	11	01	10	00	00	11		
f _c +3f _d											†	
f_c+3f_d f_c+f_d												W_d
f_c - f_d												u
f _c -3f _d												

$$2f_d = 1/T_s$$
$$T_s = LT$$

Aralık için gereken minimum frekans:

$$2f_d = 1/T_s$$

Modülatörün ihtiyaç duyduğu bant genişliği

$$W_d = 2Mf_d = M/T_s$$

$$M=2^L$$

Faz Öteleme (PSK)

- Dijitler taşıyıcı sinyalin fazı ötelenerek elde edilir
- Binary PSK (BPSK)
 - İki faz iki dijiti temsil eder
- BPSK

$$S(t) = \{A\cos(2\pi f_c t) ; binary 1 \}$$

$$A\cos(2\pi f_c t + \pi) = -A\cos(2\pi f_c t) ; binary 0$$

Dördül PSK Quadrature PSK

- Her bir sinyal elemanın birden fazla biti tanımlaması ile bant genişliği daha verimli kullanılmış olur
 - Her sinyal $\pi/2$ (90°) faz öteleme ile elde edilir
 - Her sinyal elemanı 2 biti temsil eder
 - İşlem Şekli
 - Veriler ikiye ayrılır
 - Taşıyıcı üzerine modülasyonu yapılır
 - Taşıyıcı fazı 90° ötelenir
- 8 faz açısı ve birden fazla genlikle kullanılabilir
 - 9600bps modem 12 açı (4 tanesi 2 genlik değerine sahip)

QPSK ve OQPSK Modülatörleri

OQPSK: Ofsetli (ortogonal) QSPK

Digital den Analoga Modülasyon Tekniklerinin Performansı

- Bant genişliği
 - ASK/PSK bant genişliği bit hızına ilişkilidir
 - Çok seviyeli PSK ile önemli bir iyileşme sağlanır
- Gürültü halinde
 - Bit hatası oranı ASK ve FSK'ya göre PSK ve QPSK de 3dB üstün
 - MFSK ve MPSK da bant genişliği ve hata performansı arasında arasında bir orta nokta söz konusudur.

Dördül Genlik Modülasyonu (Quadrature Amplitude Modulation – QAM)

- QAM (asymmetric digital subscriber line ADSL) ve bazı kablosuz iletişimde kullanılır
- Bu teknik ASK ve PSK nın bileşiminden oluşur.
- QPSK'nın mantıksal olarak genişletilmiş hali olarak kabul edilebilir.
- İki sinyalin aynı taşıyıcı frekans üzerinde aynı anda iletilmesi özelliğini kullanır
 - O Aynı taşıyıcı sinyal ve 90° ötelenmiş halini kullanır
 - OHer bir taşıyıcı ASK modülasyonuna sahiptir
 - O Aynı iletim ortamında iki farklı sinyal taşınır
 - O Alıcı, sinyali demodülasyon sonrası birleşytirerek orijinal binary veriyi oluşturur.

QAM Modülatör

Analog Verinin Dijital Sinyalle İletimi

- Dijitalleştirme ile analog veri dijital veriye dönüştürülür. Sonrasında:
 - O Dijital veri NRZ-L ile gönderilebilir.
 - ONRZ-L'den farklı bir teknikle kodlanarak dijital sinyal olarak gönderilebilir
 - O Dijital veri analog sinyale dönüştürülerek iletilebir.
- Analog verinin dijital hale dönüştürülmesini ve iletim sonrası tekrardan dijital halden analog veriye dönüştürülmesi codec (coder-decoder) ile gerçekleştirilir.
- Codec çeşitleri
 - Opulse code modulation
 - Odelta modulation

Analog Verilerin Dijitalleştirilmesi

Pulse Code Modulation (PCM)

- Örnekleme Teoremi
 - "Eğer sinyal düzenli aralıklarla sinyal frekansının iki katında öreneklenirse, örnekler orijinal sinyale ait tüm bilgileri içerir"
 - Örnek: 4000Hz ses verisi, saniyede 8000 örnekle örneklenmelidir.
- Alınan örnekler analog örneklerdir
 - Pulse Amplitude Modulation (PAM)
- Anlaog örneklere binary kod ataması ile dijital hale çevrilir.

PCM Example

Pulse Code Modulation (PCM)

- Band genişliği B olan sinyal için
- 2B örnekleme yapılır
- Örnekleme periyodu, $T_s = 1/2B$ sn
- Her bir PAM örneği 16 farklı seviyeden biri ile gösterilir.
- Her bir örnek 4bitlik kod ile temsil edilir.
- Seviye sayısı arttırılması sinyalin orijinaline yaklaşmasını sağlar
 - Örneğin 8 bit örnekleme ile 256 seviye elde edilir.
 - Veri hızı= 8000 örnek X 8 bit = 64 kbps

PCM Blok Diyagramı

Lineer Olmayan Kodlama

Lineer Olmayan Kodlama

- Her bir seviyenin eşit aralıkta olmadığı bir tekniktir
- Eşit aralık alınması sinyal seviyesini dikkate almaz.
- Düşük genlikli değerler daha fazla bozulmaya maruz kalır
- Yöntem
 - Düşük genlikler için daha fazla sayısal seviye
 - Yüksek genlikler için daha az sayısal seviye
- Daha iyi PCM SNR oranı
- Ses sinyalleri için 24-30 dB iyileştirme

Sıkıştırma – Genişletme Companding

- Girişte sinyalin yoğun olduğu kısımlarını zayıf sinyale daha fazla kazanç ayırarak sıkıştırma yapar.
- Çıkışta da tam tersi işlem gerçekleştirilir.
- Eşit seviye genişliği
- Alçak sinyal seviyelerinde daha çok seviye kullanılır.

Delta Modulation

- Analog giriş merdiven fonksiyonu ile yaklaşık olarak gösterilir
 - Her bir örnekleme zamanında (δ) seviye yükselir ya da alçalır
- Binary özelliktedir
 - Fonksiyon her bir örneklemede ya yükselir ya da düşer
 - Bu şekilde he bir örnekleme bir bit olarak kodlanabilir
 - Yükselme:1, Düşme: 0
- Analog sinyalin genliği merdiven şeklinde benzetilen sinyal değerinin üzerinde ise merdiven sinyali yükseltilir değilse düşürülür.

Örnek Delta Modulation

Delta Modulation Operasyonu

(a) Transmission

(b) Reception

PCM - Delta Modülasyon Karşılaştırması

- DM, PCM'e göre daha basit
- DM, daha kötü SNR özelliğindedir.
- Bant genişliği
 - O PCM ile iyi bir ses kalitesi için
 - × 128 seviye (7 bit) ve ses band genişliği: 4khz
 - ➤ Veri hızı: 8000 x 7 = 56kbps
 - ➤ Nyquist kriterine göre dijital sinyalin ihtiyaç duyduğu bant genişliği = veri hızı/2 = 28 kHz olmalı
- Veri sıkıştırma ile bu fark azaltılabilir
- Bu band genişliğindeki farka rağmen dijital sinyal iletimine yönelim artmakta. Sebepleri:
 - O Repeater kullanımı ile amplifier larda oluşan gürültü artışı engellenir
 - O TDM (time division multiplexing) gürültü açısından FDM (frequency division multiplexing) 'e göre daha avantajlı
 - O Dijital sinyallerin anahtarlanması daha etkili
- PCM tekniği DM'e tercih edilmekedir.

Analog Verinin Analog Sinyalle İletimi

- Analog veri taşıyıcı sinyalle modülasyona tabi tutulur
- Analog sinyaller niçin modüle edilir?
 - Yüksek frekanslar daha etkii veri iletimi sağlayabilir
 - Frekans bölerek çoklama (frequency division multiplexing -FDM) imkanı sağlar
- Modülasyon tipleri
 - Amplitude (AM)
 - Frequency (FM)
 - Phase (PM)

Analog Modülasyon Teknikleri

- Amplitude Modulation
 (Genlik Modülasyonu)
 O Giriş sinyali, taşıyıcı sinyal f_c ile çarpılır.
- Frequency Modulation (Frekans Modülasyonu)
- Phase Modulation (Faz Modülasyonu)

Teşekkür Ederim

Sağlıklı ve mutlu bir hafta geçirmeniz temennisiyle, iyi çalışmalar dilerim...