

Figure 1: (a) Miller multiplier (b) Impedance inverter

To find out the input impedance, let us apply a known voltage source v_x and find out the current drawn from it i_x .

(i) Voltage across the capacitor = $v_{in} - v_{out} = (1 + A_v)v_x$

Current flowing through the capacitor $i_x = \frac{(1+A_v)v_x}{1/sC_{low}} = s(1+A_v)C_{low}v_x$

Input impedance = $\frac{v_x}{i_x} = \frac{1}{s(1+A_v)C_{low}}$

Model: A grounded capacitor (i.e., one terminal of the capacitor is connected to ground) with a capacitance of $(1 + A_v)C_{low}$

Observation: A small capacitance C_{low} is used to realize a large capacitance $(1 + A_v)C_{low}$

(ii) Current flowing into the load capacitance $C_l = g_m v_x$

Voltage across $C_l = \frac{g_m v_x}{sC_l}$

Output current of $-g_m = -i_x = -g_m(\frac{g_m v_x}{sC_l})$

Input impedance = $\frac{v_x}{i_x} = \frac{sC_l}{g_m^2}$

Model: A grounded inductor (i.e., one terminal of the inductor is connected to ground) with an inductance value of $\frac{C_l}{g_m^2}$

Observation: An inductor is realized using only capacitors and transconductors.

(a). V_{cn} , is the phase voltage.

So,
$$V_{cn} = \frac{400}{\sqrt{3}} \angle - 270^{\circ} = 230.94 \angle - 270^{\circ} \text{ V}$$

Fig.S3

S

(b).
$$Z_{AN} = (-j100)||(100)||(50 + j50)$$

$$= \frac{-j100 \times 100 \times (50 + j50)}{-j100 \times 100 + 100(50 + j50) - j100 \times (50 + j50)} = 50 \Omega$$

$$I_{aA} = \frac{230.94 \angle -30^{0}}{50} = 4.62 \angle -30^{0} \text{ A}$$

(c). Real power drawn by the load is = $3 \times V_{ph} \times I_{ph} = 3.2 \text{ kW}$

S-4:

(a)
$$Z_P = 12 + j5 \Omega$$

 $I_{bB} = 20 \angle 0^0$
 $P.F. angle = \cos^{-1}(0.935) = 20.770^\circ$

$$\tan^{-1}\left(\frac{5}{12+R_w}\right) = 20.77^0 \implies \frac{5}{12+R_w} = 0.38 \implies 13.18 = 12 + R_w \implies R_w = 1.18 \,\Omega$$

(b)
$$V_{bn} = I_{bB}(Z_P + R_W) = 20 \angle 0^0 (12 + j5 + 1.18) = 20 (13.18 + j5)$$

= 263.6 + j 100 = 282\angle 20.77° V

- (c) $V_{bc} = \sqrt{3} \times 282 \angle (20.77^0 + 30^0) = 488.44 \angle 50.77^0 \text{ V}$ and, $V_{ab} = 488.44 \angle 170.77^0 \text{ V}$
- (d) Total complex power supplied by the source = $3V_{bn}I_{bB}^* = 16.92\angle 20.77^0$ KVA