Python – Pearson's Chi-Square Test

Difficulty Level: Easy • Last Updated: 23 Jun, 2020

The **Pearson's Chi-Square** statistical hypothesis is a test for independence between categorical variables. In this article, we will perform the test using a mathematical approach and then using Python's **SciPy** module.

First, let us see the mathematical approach:

The Contingency Table:

A Contingency table (also called crosstab) is used in statistics to summarise the relationship between several categorical variables. Here, we take a table that shows the number of men and women buying different types of pets.

	dog	cat	bird	total	
men	207	282	241	730	
women	234	242	232	708	
total	441	524	473	1438	
4					•

The **aim** of the test is to conclude whether the two variables (gender and choice of pet) are related to each other.

Null hypothesis:

We start by defining the **null** hypothesis (**H0**) which states that there is *no relation* between the variables. An **alternate** hypothesis would state that there is a *significant*

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy

Got It!

ralation batwaan tha two

• Using **p-value**:

We define a **significance factor** to determine whether the relation between the variables is of considerable significance. Generally a significance factor or **alpha value** of **0.05** is chosen. This *alpha value* denotes the probability of erroneously rejecting **H0** when it is true. A lower *alpha value* is chosen in cases where we expect more precision. If the **p-value** for the test comes out to be strictly greater than the alpha value, then H0 holds true.

Using chi-square value:

If our calculated value of chi-square is less or equal to the tabular (also called **critical**) value of chi-square, then **HO** holds true.

Expected Values Table:

Next, we prepare a similar table of calculated (or expected) values. To do this we need to calculate each item in the new table as :

$$\frac{row\ total\ *\ column\ total}{grand\ total}$$

The expected values table:

	dog	cat	bird	total
men	223.87343533	266.00834492	240.11821975	730
women	217.12656467	257.99165508	232.88178025	708

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Chi-Square Table:

We prepare this table by calculating for each item the following:

$$\frac{(Observed_value - Calculated_value)^2}{Calculated_value}$$

The chi-square table:

	observed (o)	calculated (c)	(o-c)^2 / c	
	207	223.87343533	1.2717579435607573	
	282	266.00834492	0.9613722161954465	
	241	240.11821975	0.003238139990850831	
	234	217.12656467	1.3112758457617977	
	242	257.99165508	0.991245364156322	
	232	232.88178025	0.0033387601600580606	
Total			4.542228269825232	
4				>

From this table, we obtain the total of the last column, which gives us the calculated value of chi-square. Hence the calculated value of chi-square is **4.542228269825232**

Now, we need to find the **critical** value of chi-square. We can obtain this from a table. To use this table, we need to know the **degrees of freedom** for the dataset. The degrees of freedom is defined as: **(no. of rows - 1) * (no. of columns - 1).**Hence, the degrees of freedom is **(2-1) * (3-1) = 2**

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Now, let us look at the table and find the value corresponding to **2** degrees of freedom and **0.05** significance factor :

	Critical values of the Chi-square distribution with \boldsymbol{d} degrees of freedom						
	Probability of exceeding the critical value						
d	0.05	0.01	0.001	d	0.05	0.01	0.001
1	3.841	6.635	10.828	11	19,675	24.725	31.264
2	5.991	9.210	13.816	12	21.026	26.217	32.910
3	7.815	11.345	16.266	13	22.362	27,688	34.528
4	9.488	13.277	18.467	14	23.685	29.141	36.123
5	11.070	15.086	20.515	15	24.996	30.578	37.697
6	12.592	16.812	22.458	16	26.296	32.000	39.252
7	14.067	18.475	24.322	17	27.587	33.409	40.790
8	15.507	20.090	26.125	18	28.869	34,805	42.312
9	16.919	21.666	27.877	19	30.144	36.191	43.820
10	18.307	23,209	29,588	20	31.410	37,566	45.315

The tabular or critical value of chi-square here is **5.991** Hence,

critical value of
$$\chi^2 >= calculated value of \chi^2$$

Therefore, **HO** is **accepted**, that is, the variables **do not** have a significant relation.

Related Articles

scientific and technical computing.

Installation:

pip install scipy

The chi2_contingency() function of scipy.stats module takes as input, the

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy

Hence, we need to compare the obtained **p-value** with **alpha** value of 0.05.

```
from scipy.stats import chi2_contingency
# defining the table
data = [[207, 282, 241], [234, 242, 232]]
stat, p, dof, expected = chi2_contingency(data)
# interpret p-value
alpha = 0.05
print("p value is " + str(p))
if p <= alpha:</pre>
    print('Dependent (reject H0)')
else:
    print('Independent (H0 holds true)')
Output:
 p value is 0.1031971404730939
 Independent (H0 holds true)
Since,
  p-value > alpha
```

Therefore, we **accept H0,** that is, the variables **do not** have a significant relation.

Attention reader! Don't stop learning now. Get hold of all the important Machine Learning Concepts with the <u>Machine Learning Foundation Course</u> at a student-friendly price and become industry ready.

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Like 1

Previous

RECOMMENDED ARTICLES

05 Analysis of test data using Knumpy.random.chisquare() in **Python** Means Clustering in Python 03, Jul 20 07, Jan 18 Kolmogorov-Smirnov Test (KS Test) Python - Test if String contains any 14, May 19 Uppercase character 05, Oct 20 Python - Test if List contains elements in Range Python | Test list element similarity 27, Feb 20 26, Jun 19 Python - Test if common values are greater than K Python | Test for False list

04, Jan 19

Article Contributed By:

27, Feb 20

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Got It!

Page: 1 2 3

Easy

Normal

Medium

Hard

Expert

Article Tags: data-science, Machine Learning, Python

Practice Tags: Machine Learning

Improve Article

Report Issue

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

5th Floor, A-118, Sector-136, Noida, Uttar Pradesh – 201305

feedback@geeksforgeeks.org

Company Learn

About Us Algorithms

Careers Data Structures

Privacy Policy Languages

Contact Us CS Subjects

Copyright Policy Video Tutorials

Practice Contribute

Courses Write an Article

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

@geeksforgeeks, Some rights reserved

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>