1. Neural Network model's accuracy:

Learning curve for NN model:

This means: It's **not overfitting** (yet) but if the curve were drop at high data sizes, it might mean the model is overfitting.

2. LOGISTIC REGRESSION MODEL

EDA Steps:

- Data Loading and Initial Inspection:
 - Both load the dataset and show basic structure (.head(), .shape)
 - Both identify numerical features (excluding target 'Class')
- 2. Univariate Analysis:
 - Both create distribution plots for numerical features (histograms with KDE)
 - Both examine the class distribution (fraud vs non-fraud)
- 3. Correlation Analysis:
 - o Both calculate Pearson and Spearman correlations
 - Both visualize correlation matrices with heatmaps
- 4. Comprehensive Data Cleaning:
 - Explicit handling of missing values (dropna())
 - Duplicate removal with verification (duplicated().sum())
 - Added data profiling report (ydata_profiling)
- Outlier detection using both Z-score and IQR methods

• Better Feature-Target Relationships:

Logistic Regression

- · Used as a baseline model.
- · Evaluated using:
 - o accuracy score
 - o classification report
 - o confusion matrix

The accuracy of the Logistic model

```
[ ] def evaluate_classification_model(y_true, y_pred, model_name):
    accuracy = accuracy_score(y_true, y_pred)
    precision = precision_score(y_true, y_pred, average='weighted')
    recall = recall_score(y_true, y_pred, average='weighted')
    f1 = f1_score(y_true, y_pred, average='weighted')
    print("{model_name} - Accuracy: {accuracy:.2f}, Precision: {precision:.2f},
    print("Logistic Regression:")
    evaluate_classification_model(y_test, y_pred_logistic, "Logistic Regression")

1. Cogistic Regression:
    Logistic Regression - Accuracy: 1.00, Precision: 1.00, Recall: 1.00, F1-score: 1.00
```

Model Implementation & Evaluation for Random Forest, XGBoost and

LightGBM + (SMOTEENN)

3.1 Model Selection & Optimization

Three models were implemented with **hyperparameter tuning** and **class imbalance handling**:

Model	Handling Imbalance	Key Parameters n_estimators=200, max_depth=10	
Random Forest	<pre>class_weight='balanced_subsam ple'</pre>		
KGBoost	scale_pos_weight (based on ratio)	<pre>learning_rate=0.01, max_depth=6</pre>	
ightGBM SMOTEEN N)	SMOTEENN resampling	n_estimators=500, num_leaves=31	

3.2 Performance Metrics

All models were evaluated using:

- Precision, Recall, F1-Score
- ROC-AUC & PR-AUC (better for imbalanced data)

Results Summary

Model	Precision	Recall	F1-Scor e	ROC-AU C	PR-AU C
Random Forest	0.92	0.81	0.86	0.97	0.85
XGBoost	0.89	0.83	0.86	0.98	0.87
LightGBM (SMOTEENN)	0.91	0.85	0.88	0.98	0.89

3.3 Key Findings

- **LightGBM + SMOTEENN performed best** (highest F1-score & PR-AUC).
- XGBoost had the highest ROC-AUC, indicating strong overall ranking.
- Random Forest was robust but slightly less precise than boosted models.

4. Learning & Validation Curves

4.1 Learning Curves

- Random Forest & XGBoost showed good convergence (training & validation scores stabilized).
- LightGBM (SMOTEENN) benefited from resampling, reducing overfitting.

4.2 Validation Curves

- **Optimal** n_estimators **for RF: 200** (beyond this, diminishing returns).
- **Best** max_depth **for XGBoost: 6** (deeper trees led to overfitting).
- LightGBM worked best with num_leaves=31 (balanced complexity).
- ❖ Improved fraud detection (F1-score up to 0.88).
- **❖ Reduced false negatives** (Recall > **0.85**).