

FIRST SEMESTER 2019-2020

Course Handout Part II

Date: 01-08-2019

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : ME F313

Course Title : PRODUCTION TECHNIQUES II
Instructor-in-Charge : AMRITA PRIYADARSHINI
Instructors (Lab/Tut) : Amrita Priyadarshini, N S K Reddy

Scope and Objective of the Course:

- ➤ Identify the necessity of "machining" in production
- State the main purposes of "machining"
- ➤ Define with examples the concept of "machining"
- State with example the principles of "machining"
- > State with examples the main requirements for "machining"
- > State with examples the main functions of "Machine tools"
- Define the concept of "machine tools"

Textbooks:

- 1. B. L. Juneja, G.S.Sekhon, Nitin Seth, "Fundamentals of Metal Cutting and Machine Tools, New Age International, 2005, New Delhi.
- 2. Amitabha Ghosh and Asok Kumar Mallik, "Manufacturing Science", Affiliated East-West Press, New Delhi, 1985.

Reference books

- 1. Geoffrey Boothroyd, Fundamentals of metal machining and machine tools, TMH, New Delhi, 2007...
- 2. Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology," Pearson Education (Low Cost Indian Edition), 4/e, 2001, New Delhi.
- 3. Roy A. Lindberg, "Processes and Materials of Manufacture," PHI, New Delhi, 2004.
- 4. P. N. Rao, "Manufacturing Technology: Metal Cutting & Machine Tools," TMH, New Delhi, 2000.

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-3	 To identify the need of machining in manufacturing industries To determine machining time for various machining processes 	Metal cutting theory: A brief overview of different metal cutting processes, Machining time calculations	T1 & T2
4-10	To understand the basic principles of chip formation process	Analysis: Analysis of mechanics of metal cutting in turning, milling and drilling, cutting force calculation, power estimation, cutting temperature calculation, Lee-Shafer theory, Ernest-Merchant theory, chip separation, tool life, Machining with controlled contact tools	T1 & T2
11-14	To understand the economics of machining processes	Economics: Costs of single pass turning operation, optimum cutting speed for maximum profit rate in turning, restrictions on optimum cutting speed	T1 & T2
15-17	To understand the importance of machining outputs	Laboratory exercises in metal cutting: Tool wear, surface finish, key way production	T1& T2
17-24	To study and gain hands on experience on various machining processes	Laboratory exercises in metal cutting: Milling, drilling, Shaping, Abrasive machining processes	T1 & T2
25-30	To understand the concept of Non Traditional Machining processes	Non-traditional machining processes: Introduction, Ultrasonic Machining, Abrasive Jet Machining, EDM, ECM, LBM, EBM, ECG and Chemical Machining	T2
31-32	To understand the basic principles of micro manufacturing processes	Micro-manufacturing technologies: Introduction, Chemistry-based, Electron-beam lithography	T2
33-34	To understand the need of CAM	Introduction to computer aided manufacturing (CAM): Introduction, developments in conventional machine tools, CIM, FMS, Modern developments in machine tools	T2
35-37	To be able to differentiate between conventional	CNC machines: NC and CNC Machines, Operation of NC/CNC, Definition of terms often used in numerical control, Positional control	R3

	•	machines and CNC machines Need of CNCs				
38-42	•	To learn CNC part programming	CNC part programming: Introduction, Programming for NC/CNC Machining, Some commonly used G codes	R4		
Total number of lectures = 42						

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid Semester	90 min	20	30/9, 3.30 5.00 PM	Closed Book
Tutorials		15		Open/Closed Book
Surprise Quiz		5		Closed
Lab Practical + Fabrication Project		20		Open Book
Comprehensive Examination	3 hours	40	5/12 AN	Closed Book

Chamber Consultation Hour: Will be announced in the class.

Notices: Will be displayed on CMS only

Make-up Policy: Only genuine cases will be granted make up.

NOTE: The border cases in final grading will be decided based on mainly class room attendance and attentiveness in the classroom.

Academic Honesty and Integrity Policy: *Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.*

INSTRUCTOR-IN-CHARGE ME F313

