Linguaggi Formali e Traduttori

4.1 Parsing top-down e grammatiche LL(1)

- Sommario
- Strategia per il parsing top-down
- Stringhe annullabili (NULL)
- Esempi di stringhe annullabili
- Inizi di una stringa (FIRST)
- Come calcolare FIRST
- Esempi di calcolo di FIRST
- Seguiti di una variabile (FOLLOW)
- Come calcolare FOLLOW
- Esempi di calcolo di FOLLOW
- Insiemi guida
- Grammatiche LL(1)
- Esempio: espressioni aritmetiche
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Problema

ullet Data una grammatica G=(V,T,P,S) e una stringa $w\in T^*$, determinare se

$$S\Rightarrow lpha_1\Rightarrow lpha_2\Rightarrow \cdots\Rightarrow w$$

o, equivalentemente, se esiste un albero sintattico di G con radice S e prodotto w.

- ullet La costruzione dell'automa corrispondente a $oldsymbol{G}$ produce un PDA non deterministico.
- ullet Per alcune G sappiamo che non è possibile trovare un DPDA.

In questa lezione

- Identifichiamo una famiglia di grammatiche libere per le quali è possibile costruire riconoscitori (parser) deterministici, cioè che non fanno uso di <u>backtracking</u>.
- Questi parser sono detti **top-down** perché costruiscono l'albero sintattico di w dalla radice (top) verso le foglie (down) o, equivalentemente, cercano una <u>derivazione sinistra</u> per w.

Strategia per il parsing top-down

Data una grammatica G=(V,T,P,S) e una stringa $w\in T^*$, il parser cerca di ottenere una derivazione a sinistra $S\Rightarrow_{lm}^* w$ in cui, al passo i, il parser sa che

$$S \Rightarrow_{lm}^* uA\beta$$

e deve stabilire se

$$uA\beta \Rightarrow_{lm}^* w$$

Ci sono due casi da considerare:

- Se \boldsymbol{u} non $\grave{\mathbf{e}}$ prefisso di \boldsymbol{w} , allora il parser **rifiuta** \boldsymbol{w} .
- ullet Se w=uav, allora il parser deve **scegliere** una produzione per riscrivere A

$$A
ightarrow lpha_1 \mid \cdots \mid lpha_n$$

e per farlo può usare a come "guida", a patto che tale simbolo identifichi univocamente l' α_i tale che $\alpha_i \beta \Rightarrow_{lm}^* av$.

Per ogni produzione $A \to \alpha_i$ occorre saper calcolare gli insiemi di simboli terminali che possono iniziare le stringhe derivate da $\alpha_i\beta$ e richiedere che tali insiemi siano disgiunti.

Stringhe annullabili (NULL)

Definizione

Data una grammatica G = (V, T, P, S), diciamo che $\alpha \in (V \cup T)^*$ è annullabile, e scriviamo $\text{NULL}(\alpha)$, se e solo se $\alpha \Rightarrow_G^* \varepsilon$, ovvero se α può essere riscritta nella stringa vuota.

Come determinare se una stringa è annullabile

- (1) Se $\text{NULL}(X_1), \dots, \text{NULL}(X_n)$, allora $\text{NULL}(X_1 \cdots X_n)$.
- (2) Se esiste una produzione $A \to \alpha \in P$ e $\mathrm{NULL}(\alpha)$, allora $\mathrm{NULL}(A)$.

Note

- Come caso particolare di (1) quando n=0 abbiamo $\mathtt{NULL}(\varepsilon)$.
- Combinando (1) e (2) abbiamo che $A
 ightarrow arepsilon \in P$ implica $\mathtt{NULL}(A)$.
- Una stringa che contiene simboli terminali non è mai annullabile.

Esempi di stringhe annullabili

$$egin{array}{lll} A &
ightarrow & a \mid Bc \ B &
ightarrow & arepsilon \mid bB \ C &
ightarrow & d \mid Cc \mid BB \end{array}$$

Esempi di stringhe annullabili

$$egin{array}{lll} A &
ightarrow & a \mid Bc \ B &
ightarrow & arepsilon \mid bB \ C &
ightarrow & d \mid Cc \mid BB \end{array}$$

- Da $\mathtt{NULL}(arepsilon)$ e dalla produzione B o arepsilon deduciamo $\mathtt{NULL}(B)$.
- Da $\mathtt{NULL}(B)$ e dalla produzione C o BB deduciamo $\mathtt{NULL}(C)$.
- Da NULL(B) e NULL(C) deduciamo NULL(BC).
- Da $\neg \text{NULL}(a)$ e $\neg \text{NULL}(Bc)$ deduciamo $\neg \text{NULL}(A)$.

Inizi di una stringa (FIRST)

Definizione

Data una grammatica G = (V, T, P, S) e una stringa $\alpha \in (V \cup T)^*$, indichiamo con $FIRST(\alpha)$ gli **inizi** di α , ovvero l'insieme dei simboli terminali che possono trovarsi all'<u>inizio</u> delle stringhe derivate da α . Formalmente:

$$ext{FIRST}(lpha) \stackrel{\mathsf{def}}{=} \{a \in T \mid lpha \Rightarrow_G^* aeta\}$$

Attenzione

Il libro di testo usa un'unica funzione **FIRST**_{libro} che <u>combina</u> **NULL** e **FIRST** così:

$$ext{FIRST}_{libro}(lpha) = egin{cases} ext{FIRST}(lpha) \cup \{arepsilon\} & ext{se NULL}(lpha) \ ext{FIRST}(lpha) & ext{altrimenti} \end{cases}$$

In pratica, l'approccio seguito dal libro ammette il simbolo speciale ε tra gli inizi di α per indicare il fatto che α è annullabile. Noi abbiamo definito un predicato $\text{NULL}(\alpha)$ apposito mentre $\text{FIRST}(\alpha)$ contiene solo simboli terminali.

Come calcolare FIRST

È possibile calcolare $\mathtt{FIRST}(lpha)$ per induzione su lpha, usando le seguenti regole:

$$egin{array}{lll} ext{FIRST}(arepsilon) &=& \emptyset \ ext{FIRST}(a) &=& \{a\} \ ext{FIRST}(A) &=& \bigcup_{A
ightarrow lpha} ext{FIRST}(lpha) \ ext{FIRST}(X) \cup ext{FIRST}(lpha) & ext{se null}(X) \ ext{FIRST}(X) & ext{altrimenti} \end{array}$$

Attenzione

Applicando le regole qui sopra, può capitare di arrivare a equazioni della forma

$$ext{first}(A) = ext{first}(A) \cup \mathcal{S}$$

dove ${oldsymbol{\mathcal{S}}}$ è un insieme di terminali. Questa equazione si può semplificare a

$$ext{first}(A) = \mathcal{S}$$

in quanto siamo interessati a ottenere <u>il più piccolo insieme</u> di terminali con la proprietà descritta nella slide precedente.

Esempi di calcolo di FIRST

 $egin{array}{lll} S &
ightarrow & Ac \mid Ba \ A &
ightarrow & arepsilon \mid a \ B &
ightarrow & b \ C &
ightarrow & a \mid Cb \ D &
ightarrow & arepsilon \mid d \mid Db \end{array}$

Esempi di calcolo di FIRST

$$egin{array}{lll} S &
ightarrow & Ac \mid Ba \ A &
ightarrow & arepsilon \mid a \ B &
ightarrow & b \ C &
ightarrow & a \mid Cb \ D &
ightarrow & arepsilon \mid d \mid Db \end{array}$$

Variabili annullabili

- NULL(A)
- $\mathrm{NULL}(D)$

Calcolo di FIRST di tutte le variabili

- $FIRST(B) = FIRST(b) = \{b\}$
- $\operatorname{FIRST}(A) = \operatorname{FIRST}(\varepsilon) \cup \operatorname{FIRST}(a) = \{a\}$
- $\bullet \ \ \operatorname{first}(S) = \operatorname{first}(Ac) \cup \operatorname{first}(Ba) = \operatorname{first}(A) \cup \operatorname{first}(c) \cup \operatorname{first}(B) = \{a,b,c\}$
- $\operatorname{FIRST}(C) = \operatorname{FIRST}(a) \cup \operatorname{FIRST}(Cb) = \{a\} \cup \operatorname{FIRST}(C) = \{a\}$
- $\bullet \ \ \operatorname{first}(D) = \operatorname{first}(\varepsilon) \cup \operatorname{first}(d) \cup \operatorname{first}(Db) = \{d\} \cup \operatorname{first}(D) \cup \operatorname{first}(b) = \{b,d\}$

Seguiti di una variabile (FOLLOW)

Definizione

Data una grammatica G = (V, T, P, S) e una variabile $A \in V$, indichiamo con FOLLOW(A) i seguiti di A, ovvero l'insieme dei simboli terminali che possono seguire A in una forma sentenziale. Formalmente:

$$ext{FOLLOW}(A) \stackrel{\mathsf{def}}{=} \{a \in T \mid S \Rightarrow_G^* lpha Aaeta \}$$

Attenzione

- ullet Per convenzione aggiungeremo una sentinella ullet ai seguiti del simbolo iniziale S.
- In questo modo il parser può capire quando è arrivato alla fine della stringa da riconoscere.

Come calcolare FOLLOW

Il calcolo di FOLLOW si effettua in due fasi.

Fase 1

In questa fase si annotano relazioni di appartenenza ed inclusione insiemistica secondo il seguente algoritmo:

- Annotare $\$ \in \text{FOLLow}(S)$.
- Ripetere i passi seguenti <u>per ogni produzione</u> e <u>per ogni variabile</u> nel corpo di queste:
 - 1. Se $A \to \alpha B\beta$, allora annotare $\operatorname{FIRST}(\beta) \subseteq \operatorname{FOLLOW}(B)$.
 - 2. Se $A \to \alpha B\beta$ e NULL (β) , allora annotare FOLLOW $(A) \subseteq$ FOLLOW(B).

Caso particolare di (2): se $A \to \alpha B$, allora annotare $FOLLOW(A) \subseteq FOLLOW(B)$.

Fase 2

Si determinano i seguiti propagando i simboli terminali (e \$) rispettando l'ordine delle inclusioni insiemistiche \subseteq che sono state annotate.

Per grammatiche complesse può essere utile fare una tabella con due colonne, l'elenco di tutte le variabili nella prima ed i seguiti corrispondenti alle variabili nella seconda.

Esempi di calcolo di FOLLOW

$$egin{array}{lll} S &
ightarrow & Ac \mid Ba \ A &
ightarrow & arepsilon \mid a \ B &
ightarrow & b \ C &
ightarrow & a \mid Cb \ D &
ightarrow & arepsilon \mid d \mid Db \end{array}$$

Esempi di calcolo di FOLLOW

$$egin{array}{lll} S &
ightarrow & Ac \mid Ba \ A &
ightarrow & arepsilon \mid a \ B &
ightarrow & b \ C &
ightarrow & a \mid Cb \ D &
ightarrow & arepsilon \mid d \mid Db \end{array}$$

Fase 1

- $\$ \in \text{Follow}(S)$
- $\operatorname{FIRST}(c) \subseteq \operatorname{FOLLOW}(A)$
- $FIRST(a) \subseteq FOLLOW(B)$
- $FIRST(b) \subseteq FOLLOW(C)$
- $\operatorname{first}(b) \subseteq \operatorname{follow}(D)$

Fase 2

X	$\mathrm{Follow}(X)$
\boldsymbol{S}	{\$ }
\boldsymbol{A}	$\{c\}$
B	$\{a\}$
C	$\{b\}$
D	$\{b\}$

Insiemi guida

Definizione

Data una grammatica G=(V,T,P,S) e una produzione $A\to \alpha$, indichiamo con GUIDA $(A\to \alpha)$ l'insieme guida di $A\to \alpha$, ovvero l'insieme

$$ext{GUIDA}(A
ightarrow lpha) \stackrel{\mathsf{def}}{=} egin{cases} ext{FIRST}(lpha) \cup ext{FOLLOW}(A) & ext{se NULL}(lpha) \ ext{FIRST}(lpha) & ext{altrimenti} \end{cases}$$

Intuizione

Un parser predittivo che sceglie di riscrivere la variabile A usando la produzione $A \to \alpha$ si aspetta di leggere nella stringa di input uno dei simboli nell'insieme guida di $A \to \alpha$.

Sono due i casi da considerare:

- 1. Il simbolo è uno degli inizi di lpha, oppure
- 2. α è annullabile ed il simbolo è uno dei seguiti di A.

Grammatiche LL(1)

Definizione

Diciamo che una grammatica G=(V,T,P,S) è LL(1) se, per ogni coppia di produzioni distinte $A \to \alpha$ e $A \to \beta$ in P, abbiamo che

$$ext{GUIDA}(A olpha)\cap ext{GUIDA}(A oeta)=\emptyset$$

Intuizione

Noto il simbolo da riscrivere A, note le produzioni $A \to \beta_1 \mid \cdots \mid \beta_n$ e noto il prossimo simbolo terminale a nella stringa da riconoscere, in una grammatica LL(1) esiste al massimo una produzione "giusta" tale che $a \in \text{GUIDA}(A \to \beta_i)$ dunque il parser predittivo <u>identifica univocamente</u> la produzione $A \to \beta_i$ a partire da a.

Cosa c'è nel nome LL(1)

- L \rightarrow la stringa in input viene analizzata da sinistra (left) a destra;
- L \rightarrow il parser cerca di costruire una derivazione canonica sinistra (leftmost);
- $1 \rightarrow \text{il parser usa } \underline{\text{un solo simbolo terminale}}$ della stringa per scegliere la produzione.

Esempio: espressioni aritmetiche

```
egin{array}{lcl} E & 
ightarrow & TE' \ E' & 
ightarrow & +TE' \mid arepsilon & 	ext{NULL}(E') \ T & 
ightarrow & FT' \ T' & 
ightarrow & *FT' \mid arepsilon & 	ext{NULL}(T') \ F & 
ightarrow & (E) \mid 	ext{id} \end{array}
```

- $\$ \in \text{FOLLOW}(E)$
- $\{+\} = FRST(E') \subseteq FOLLOW(T)$
- $follow(E) \subseteq follow(T)$
- $FOLLOW(E) \subseteq FOLLOW(E')$
- $\text{FOLLOW}(E') \subseteq \text{FOLLOW}(T)$
- $\{*\} = FRST(T') \subseteq FOLLOW(F)$
- $FOLLOW(T) \subseteq FOLLOW(F)$
- FOLLOW $(T) \subseteq \text{FOLLOW}(T')$
- $\text{FOLLOW}(T') \subseteq \text{FOLLOW}(F)$
- $\{)\} = FIRST()) \subseteq FOLLOW(E)$

Esempio: espressioni aritmetiche

$$egin{array}{lcl} E &
ightarrow & TE' \ E' &
ightarrow & +TE' \mid arepsilon & ext{NULL}(E') \ T &
ightarrow & FT' \ T' &
ightarrow & *FT' \mid arepsilon & ext{NULL}(T') \ F &
ightarrow & (E) \mid ext{id} \end{array}$$

$$egin{aligned} & ext{FIRST}(E) = ext{FIRST}(T) = \{ ext{(,id}\} \ & ext{FIRST}(T') = ext{FIRST}(F) = \{ ext{(,id}\} \ & ext{FIRST}(T') = \{ ext{*}\} \ & ext{FIRST}(F) = \{ ext{(,id}\} \end{aligned}$$

- $\$ \in \text{FOLLOW}(E)$
- $\{+\} = FRST(E') \subseteq FOLLOW(T)$
- $follow(E) \subseteq follow(T)$
- $FOLLOW(E) \subseteq FOLLOW(E')$
- $\text{FOLLOW}(E') \subseteq \text{FOLLOW}(T)$
- $\{*\} = FIRST(T') \subseteq FOLLOW(F)$
- $FOLLOW(T) \subseteq FOLLOW(F)$
- FOLLOW(T) \subseteq FOLLOW(T')
- $\text{FOLLOW}(T') \subseteq \text{FOLLOW}(F)$
- $\{)\} = FIRST()) \subseteq FOLLOW(E)$

Esempio: espressioni aritmetiche

$$egin{array}{lcl} E &
ightarrow & TE' \ E' &
ightarrow & +TE' \mid arepsilon & ext{NULL}(E') \ T &
ightarrow & FT' \ T' &
ightarrow & *FT' \mid arepsilon & ext{NULL}(T') \ F &
ightarrow & (E) \mid ext{id} \end{array}$$

- $T \rightarrow FT'$ $FIRST(T) = FIRST(F) = \{(,id)\}$ $T'
 ightharpoonup *FT' \mid arepsilon
 ightharpoonup \mathrm{NULL}(T')$ $FIRST(T') = \{*\}$ $F o (E) \mid \mathtt{id}$ $FIRST(F) = \{(, id)\}$
- $\$ \in \text{FOLLOW}(E)$
- $\{+\} = \operatorname{FIRST}(E') \subseteq \operatorname{FOLLOW}(T)$
- $\text{FOLLOW}(E) \subseteq \text{FOLLOW}(T)$
- FOLLOW $(E) \subseteq \text{FOLLOW}(E')$
- FOLLOW $(E') \subseteq \text{FOLLOW}(T)$
- $\{*\} = FIRST(T') \subseteq FOLLOW(F)$
- $\text{FOLLOW}(T) \subseteq \text{FOLLOW}(F)$
- $\text{FOLLOW}(T) \subseteq \text{FOLLOW}(T')$
- $FOLLOW(T') \subseteq FOLLOW(F)$
- $\{)\} = FIRST()) \subseteq FOLLOW(E)$

$$egin{array}{c|c} X & {
m FOLLOW}(X) \\ \hline E & \$,) \\ \hline E' & \$,) \\ \hline T & \$,),+ \\ \hline T' & \$,),+ \\ \hline F & \$,),+,* \\ \hline \end{array}$$

 $FIRST(E) = FIRST(T) = \{(, id)\}$

 $FIRST(E') = \{+\}$

Esercizi

- 1. Calcolare gli insiemi guida della grammatica nella slide 14. La grammatica è LL(1)?
- 2. Calcolare gli insiemi guida della seguente grammatica e determinare se è LL(1).

$$egin{array}{lcl} A &
ightarrow & BC \mid D \ B &
ightarrow & arepsilon \mid a \ C &
ightarrow & b \mid cCc \ D &
ightarrow & arepsilon \mid CD \end{array}$$

3. Ripetere l'esercizio precedente per la grammatica

$$egin{array}{lll} S &
ightarrow & ext{if E then SS' fi $|$ skip} \ S' &
ightarrow & ext{else S} | arepsilon \ E &
ightarrow & ext{true} | ext{false} \end{array}$$

in cui S, S' ed E sono variabili e **if**, **then**, ... sono terminali.

4. Ripetere l'esercizio precedente dopo aver rimosso il terminale **fi** dalla grammatica.

Linguaggi Formali e Traduttori

4.2 Parsing ricorsivo discendente

- Sommario
- Struttura del parser ricorsivo
- Algoritmo di parsing ricorsivo
- Implementazione Java del parser (classe base)
- Esempio: parser per il linguaggio anbn
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Problema

• Realizzazione pratica di un parser top-down.

In questa lezione

• Studiamo una tecnica basata sulla **ricorsione** per la realizzazione pratica di un parser top-down.

Struttura del parser ricorsivo

Idea

Usare la pila del linguaggio di programmazione per "ricordare" il suffisso della forma sentenziale sinistra da riconoscere.

Elementi chiave

- Il parser ha <u>una procedura per ogni variabile</u> della grammatica.
- ullet La procedura $oldsymbol{A}$ nel parser <u>riconosce</u> le stringhe <u>generate</u> da $oldsymbol{A}$ nella grammatica.
- La procedura A usa il <u>simbolo corrente</u> e gli <u>insiemi guida</u>, per scegliere la produzione $A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$ da usare per riscrivere A.
- ullet Per ogni simbolo $oldsymbol{X}$ trovato nel corpo della produzione scelta:
 - \circ Se X è un <u>simbolo terminale</u>, il metodo controlla che il simbolo corrente sia proprio X. In tal caso, fa <u>avanzare</u> il lexer al simbolo successivo. In caso contrario, il metodo segnala un errore di sintassi.
 - \circ Se X è una <u>variabile</u>, il metodo <u>invoca</u> la procedura X.

Algoritmo di parsing ricorsivo

```
|| \boldsymbol{w} è la stringa da riconoscere con \boldsymbol{\$} in fondo
var w : string
                                                          \parallel i è l'indice del prossimo simbolo di w da leggere
var i:int
procedure match(a : symbol)
   if w[i] = a then i \leftarrow i + 1 else error
procedure parse(v : string)
                                                                                   ||v\rangle è la stringa da riconoscere
   w \leftarrow v$
  i \leftarrow 0
   S()
                                                                     \parallel S è il simbolo iniziale della grammatica
                                                                        // controlla di aver letto tutta la stringa
   match($)
                                                             ||A 
ightarrow lpha_1| \cdots |lpha_n| sono le produzioni per A
procedure A()
   if w[i] \in 	ext{GUIDA}(A 	o lpha_1) then
   else if w[i] \in 	ext{GUIDA}(A 	o lpha_k) then
     for X \in \alpha_k do
        if X è un terminale then match(X) else X()
   else error
                                             || oldsymbol{w}[oldsymbol{i}] non è nell'insieme guida di nessuna produzione per oldsymbol{A}
```

Implementazione Java del parser (classe base)

```
public abstract class Parser {
                                // stringa da riconoscere
 private String w;
 private int i;
                                 // indice del prossimo simbolo
 protected char peek()
                                // legge il simbolo corrente
  { return w.charAt(i); }
 protected void match(char a) // controlla il simbolo corrente
  { if (peek() == a) i++; else throw error(); }
 public void parse(String v) { // avvia il parsing di v
   w = v + "$";
   i = 0;
   S();
   match('$');
 protected abstract void S(); // simbolo iniziale della grammatica
 protected SyntaxError error() { ... } // emette errore e interrompe
```

• Per semplicità assumiamo che i simboli siano caratteri.

Esempio: parser per il linguaggio anbn

Grammatica

$$S o aSb \mid arepsilon$$

Insiemi guida

- $\operatorname{GUIDA}(A o aSb) = \{a\}$
- GUIDA $(A \to \varepsilon) = \{b, \$\}$

Codice del parser

```
public class AnBn extends Parser {
  protected void S() {
    switch (peek()) {
    case 'a': // S → aSb
      match('a');
       S();
      match('b');
       break;
    case 'b': // S \rightarrow \varepsilon
    case '$':
      break;
    default:
       throw error();
```

Esercizi

Implementazione di parser

Implementare il parser ricorsivo discendente per le seguenti grammatiche:

- 1. La grammatica delle stringhe della forma wcw^R dove $w \in \{0,1\}^*$:
 - \circ $S \rightarrow c \mid 0S0 \mid 1S1$
- 2. La grammatica delle stringhe di parentesi quadre bilanciate:
 - \circ $S
 ightarrow arepsilon \mid S
 ightarrow S$
- 3. La grammatica delle stringhe della forma $a^n b^n c^m$:
 - $\circ S \to XC$
 - $\circ X \rightarrow \varepsilon \mid aXb$
 - \circ $C
 ightarrow arepsilon \mid cC$
- 4. La grammatica delle espressioni aritmetiche in forma prefissa:
 - \circ $E
 ightarrow 0 \mid 1 \mid \cdots \mid 9 \mid +EE \mid *EE$
- 5. La grammatica delle espressioni aritmetiche in forma infissa.

Linguaggi Formali e Traduttori

4.3 Grammatiche fattorizzabili e ricorsive a sinistra

- Sommario
- Fattorizzazione
- Esempio di fattorizzazione
- Ricorsione immediata a sinistra
- Esempio di eliminazione della ricorsione
- Ricorsione a sinistra: caso generale
- Ricorsione indiretta a sinistra
- Eliminazione della ricorsione indiretta
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Problema

- Molte grammatiche utili per descrivere linguaggi di programmazione non sono LL(1).
 - 1. Presenza di **produzioni fattorizzabili**

$$A
ightarrow lpha eta_1 \mid lpha eta_2$$

2. Presenza di produzioni ricorsive a sinistra

$$A o Alpha \mid eta$$

3. Presenza di ambiguità

In questa lezione

• Studiamo alcune tecniche per modificare produzioni fattorizzabili e ricorsive a sinistra senza cambiare il linguaggio generato dalla grammatica in modo da renderla – spesso, ma <u>non sempre</u> – LL(1).

Fattorizzazione

Problema

Data una grammatica con le produzioni

$$A
ightarrow lpha eta_1 \mid lpha eta_2$$

abbiamo

$$ext{GUIDA}(A olphaeta_1)\supseteq ext{FIRST}(lpha)\qquad ext{GUIDA}(A olphaeta_2)\supseteq ext{FIRST}(lpha)$$

dunque

$$ext{GUIDA}(A olphaeta_1)\cap ext{GUIDA}(A olphaeta_2)
eq\emptyset$$

tranne nel caso degenere in cui α genera solo ε .

Soluzione

Fattorizzare il prefisso comune lpha introducendo una nuova variabile A':

$$A
ightarrow lpha A' \qquad A'
ightarrow eta_1 \mid eta_2$$

Esempio di fattorizzazione

La grammatica

- $S o ext{if } E ext{ then } S ext{ else } S ext{ fi}$
- ullet $S
 ightarrow \mathtt{if} \ E \ \mathtt{then} \ S \ \mathtt{fi}$
- ullet S o a
- $E \rightarrow b$

non è LL(1) infatti, dovendo espandere la variabile S quando il prossimo token nella stringa da riconoscere è ${\bf if}$, il parser non saprebbe quale delle produzioni per S usare.

La grammatica è fattorizzabile nel modo seguente:

- $S o ext{if } E ext{ then } S \, S'$
- $S'
 ightarrow \mathtt{else}\, S\, \mathtt{fi} \mid \mathtt{fi}$
- ullet S o a
- $E \rightarrow b$

In particolare, gli <u>insiemi guida</u> delle produzioni della grammatica modificata sono ora <u>disgiunti</u> due a due.

Ricorsione immediata a sinistra

Problema

Una grammatica con le produzioni

$$A o Alpha\mideta$$

è detta **immediatamente ricorsiva a sinistra** in quanto la produzione $A \to A\alpha$ ha A sia in testa che come primo simbolo del suo corpo. La grammatica non è LL(1):

$$ext{GUIDA}(A o Alpha)\supseteq ext{FIRST}(A)\supseteq ext{FIRST}(eta) \qquad ext{GUIDA}(A o eta)\supseteq ext{FIRST}(eta)$$

Osservazione

La grammatica genera stringhe $eta lpha lpha \cdots lpha$ composte da <u>una</u> eta seguita da <u>zero o più</u> lpha.

Soluzione

Introdurre una <u>nuova variabile</u> per spostare la ricorsione da sinistra a destra:

$$A
ightarrow eta A' \qquad A'
ightarrow arepsilon \mid lpha A'$$

Esempio di eliminazione della ricorsione

La grammatica

- $E \rightarrow E + T \mid T$
- $T \rightarrow T * F \mid F$
- $F o n \mid (E)$

è immediatamente ricorsiva a sinistra nelle produzioni per $m{E}$ e per $m{T}$. Ad esempio:

Guida
$$(E o E$$
 + $T)$ = first (E) = $\{n,$ ($\}$

Esempio di eliminazione della ricorsione

La grammatica

- $E
 ightarrow E + T \mid T$
- $T \rightarrow T * F \mid F$
- $F o n \mid (E)$

è immediatamente ricorsiva a sinistra nelle produzioni per $m{E}$ e per $m{T}$. Ad esempio:

Guida
$$(E o E$$
 + $T)$ = first (E) = $\{n,$ ($\}$

Eliminando la ricorsione immediata a sinistra otteniamo la grammatica:

- $E \rightarrow TE'$
- $E'
 ightarrow + TE' \mid arepsilon$
- T o FT'
- $T' o *FT' \mid arepsilon$
- $F o n \mid (E)$

Ricorsione a sinistra: caso generale

Una grammatica con le produzioni

$$A
ightarrow Alpha_1 \mid Alpha_2 \mid \cdots \mid Alpha_m \mid eta_1 \mid eta_2 \mid \cdots \mid eta_n$$

in cui nessun $oldsymbol{eta_i}$ inizia con $oldsymbol{A}$, genera stringhe della forma

$$eta_ilpha_{k_1}lpha_{k_2}\cdotslpha_{k_l}$$

L'eliminazione della ricorsione immediata a sinistra porta alla grammatica

$$A
ightarrow eta_1 A' \mid eta_2 A' \mid \cdots \mid eta_n A' \ A'
ightarrow arepsilon \mid lpha_1 A' \mid lpha_2 A' \mid \cdots \mid lpha_m A'$$

Osservazioni

- In generale, l'eliminazione della ricorsione a sinistra <u>non garantisce</u> che la grammatica risultante sia LL(1).
- Ad esempio, nella grammatica qui sopra basta che uno degli α_i sia annullabile per avere insiemi guida delle produzioni per A' non disgiunti.

Ricorsione indiretta a sinistra

In alcune grammatiche alcune ricorsioni a sinistra sono "indirette":

$$egin{array}{lll} S &
ightarrow & Aa \mid b \ A &
ightarrow & Ac \mid Sd \mid arepsilon \end{array}$$

Tentando di eliminare la ricorsione a sinistra per le produzioni di $m{A}$ otteniamo

$$egin{array}{lcl} S &
ightarrow & Aa \mid b \ A &
ightarrow & SdA' \mid A' \ A' &
ightarrow & arepsilon \mid cA' \end{array}$$

ma la grammatica non è LL(1), infatti:

- ullet GUIDA $(A o SdA')\supseteq ext{FIRST}(S)\supseteq ext{FIRST}(A)\supseteq ext{FIRST}(A')
 otag$
- GUIDA $(A o A') \supseteq \operatorname{FIRST}(A') \ni c$

C'è una **ricorsione indiretta** a sinistra che riguarda la variabile $oldsymbol{A}$

$$A \Rightarrow Sd \Rightarrow Aad$$

Eliminazione della ricorsione indiretta

Idea

Si può <u>esporre la ricorsione indiretta</u> facendo opportune <u>riscritture</u> di variabili.

Algoritmo

- 1. Si impone un <u>ordine</u> (arbitrario) alle variabili della grammatica.
- 2. Considerando ogni variabile secondo l'ordine imposto, si <u>elimina la ricorsione immediata</u> per quella variabile e si <u>riscrivono</u> le occorrenze di quella variabile che compaiono nei corpi delle produzioni delle variabili seguenti.

Esempio

Esercizi

- 1. Applicare le trasformazioni studiate in questa lezione alla grammatica non ambigua delle formule booleane per farla diventare LL(1).
- 2. Implementare il parser top-down per la grammatica ottenuta nell'esercizio precedente così ottenuta. Scegliere caratteri ASCII "normali" per rappresentare i connettivi logici, ad esempio & per Λ , | per V e \sim per \neg .