MathDNN Homework 2

Department of Computer Science and Engineering 2021-16988 Jaewan Park

Problem 4

Let $\varphi(x) = -\log(x)$, then $\varphi''(x) = 1/x^2$ is nonnegative for all $x \in \mathbb{R}^+$. Therefore $-\log(x)$ is a convex function. Since $\varphi(x)$ is defined over \mathbb{R}^+ which is a convex set (it is obvious that $\forall x_1, x_2 \in \mathbb{R}^+$, $\eta x_1 + (1 - \eta)x_2$ (>0) $\in \mathbb{R}^+$), we can apply Jensen's inequality to $-\log(x)$. Therefore we obtain

$$D_{KL}(p||q) = \sum_{i=1}^{N} p_i \log\left(\frac{p_i}{q_i}\right) = \sum_{i=1}^{N} p_i \left(-\log\left(\frac{q_i}{p_i}\right)\right) = \sum_{i=1}^{N} p_i \varphi\left(\frac{q_i}{p_i}\right)$$

$$= \mathbb{E}\left[\varphi\left(\frac{q_i}{p_i}\right)\right]$$

$$\geq \varphi\left(\mathbb{E}\left[\frac{q_i}{p_i}\right]\right)$$

$$= -\log\left(\sum_{i=1}^{N} p_i \frac{q_i}{p_i}\right) = -\log\left(\sum_{i=1}^{N} q_i\right) = -\log 1$$

$$= 0$$

when we let q_i/p_i a random variable with probability mass p_i . In cases where $p_i = 0$ or $q_i = 0$, the value of $p_i \log (p_i/q_i)$ is considered either 0 or ∞ , so the sum maintains nonnegative.

Problem 5

Let $\varphi(x) = -\log(x)$, then $\varphi''(x) = 1/x^2$ is positive for all $x \in \mathbb{R}^+$. Therefore $-\log(x)$ is a strictly convex function. As described in **Problem 4**, \mathbb{R}^+ is a convex set, and if we let $X = q_i/p_i$ a random variable X is non constant. Therefore we can apply the strict Jensen's inequality to $-\log(x)$. Therefore we obtain

$$\begin{split} D_{KL}(p||q) &= \sum_{i=1}^{N} p_i \log \left(\frac{p_i}{q_i}\right) = \sum_{i=1}^{N} p_i \left(-\log \left(\frac{q_i}{p_i}\right)\right) = \sum_{i=1}^{N} p_i \varphi(\frac{q_i}{p_i}) \\ &= \mathbb{E}\left[\varphi\left(\frac{q_i}{p_i}\right)\right] \\ &> \varphi\left(\mathbb{E}\left[\frac{q_i}{p_i}\right]\right) \\ &= -\log \left(\sum_{i=1}^{N} p_i \frac{q_i}{p_i}\right) = -\log \left(\sum_{i=1}^{N} q_i\right) = -\log 1 \\ &= 0. \end{split}$$

For cases where $p_i = 0$ or $q_i = 0$ the inequality stil remains. If $p_i > 0$ and $q_i = 0$, $p_i \log\left(\frac{p_i}{0}\right) = \infty$, so the sum still maintains positive. If $p_i = 0$ and $q_i = 0$, $p_i \log\left(\frac{p_i}{0}\right) = 0$, but since $p \neq q$, $p_i = q_i = 0$ cannot be true for all i. Thus the sum maintains positive. If $p_i = 0$ and $q_i > 0$, $p_i \log\left(\frac{p_i}{0}\right) = 0$, but since $\sum q_i = 1 > 0$, $q_i = 0$ cannot be true for all i. Thus the sum maintains positive.

Compared to **Problem 4**, the difference is that $p \neq q$, and this results in $D_{KL}(p||q) = 0$ not being possible. Since $\forall i \ p_i \log \left(\frac{p_i}{q_i}\right) \geq 0$, for $D_{KL}(p||q)$ to be 0, $p_i \log \left(\frac{p_i}{q_i}\right) = 0$ should be satisfied at all i. In that $\sum p_i = \sum q_i = 1$, this can only be satisfied when p = q. Thus supposing $p \neq q$ eliminates the equality condition from **Problem 4**, resulting in a strict inequality to satisfy.

Problem 6

(a)

$$\frac{\partial f_{\theta}(x)}{\partial u_i} = \frac{\partial}{\partial u_i} \sum_{j=1}^p u_j \sigma(a_j x + b_j)$$

$$= \sum_{j=1}^p \frac{\partial}{\partial u_i} u_j \sigma(a_j x + b_j) = \frac{\partial}{\partial u_i} u_i \sigma(a_i x + b_i)$$

$$= \sigma(a_i x + b_i)$$

Therefore

$$\nabla_u f_{\theta}(x) = \left(\frac{\partial f_{\theta}(x)}{\partial u_1}, \cdots, \frac{\partial f_{\theta}(x)}{\partial u_n}\right) = (\sigma(a_1 x + b_1), \cdots, \sigma(a_p x + b_p)) = \sigma(a x + b).$$

(b)

$$\frac{\partial f_{\theta}(x)}{\partial b_{i}} = \frac{\partial}{\partial b_{i}} \sum_{j=1}^{p} u_{j} \sigma(a_{j}x + b_{j})$$

$$= \sum_{j=1}^{p} \frac{\partial}{\partial b_{i}} u_{j} \sigma(a_{j}x + b_{j}) = \frac{\partial}{\partial b_{i}} u_{i} \sigma(a_{i}x + b_{i})$$

$$= u_{i} \sigma'(a_{i}x + b_{i})$$

Therefore

$$\nabla_b f_{\theta}(x) = \left(\frac{\partial f_{\theta}(x)}{\partial b_1}, \cdots, \frac{\partial f_{\theta}(x)}{\partial b_p}\right) = (u_1 \sigma'(a_1 x + b_1), \cdots, u_p \sigma'(a_p x + b_p)) = \operatorname{diag}(\sigma'(a x + b))u.$$

(c)

$$\frac{\partial f_{\theta}(x)}{\partial a_i} = \frac{\partial}{\partial a_i} \sum_{j=1}^p u_j \sigma(a_j x + b_j)$$

$$= \sum_{j=1}^p \frac{\partial}{\partial a_i} u_j \sigma(a_j x + b_j) = \frac{\partial}{\partial a_i} u_i \sigma(a_i x + b_i)$$

$$= u_i x \sigma'(a_i x + b_i)$$

Therefore

$$\nabla_a f_{\theta}(x) = \left(\frac{\partial f_{\theta}(x)}{\partial a_1}, \cdots, \frac{\partial f_{\theta}(x)}{\partial a_p}\right) = (u_1 x \sigma'(a_1 x + b_1), \cdots, u_p x \sigma'(a_p x + b_p)) = \operatorname{diag}(\sigma'(a_1 x + b_1)) u x.$$