Теория вероятности

Михайлов Максим

18 февраля 2021 г.

Оглавление

Лекц	ия 1	13 февраля	2
1	Введ	цение	2
	1.1	Статистическое определение вероятности	2
	1.2	Пространство элементарных исходов. Случайные события.	2
	1.3	Операции над событиями	3
	1.4	Вероятность	4
	1.5	Классическое определение вероятности	4
	1.6	Геометрическое определение вероятности	5

Лекция 1

13 февраля

1 Введение

1.1 Статистическое определение вероятности

Определение. Пусть проводится n реальных экспериментов, событие A произошло в n_A экспериментах. Отношение $\frac{n_A}{n}$ называется частотой события A. Эксперименты показывают, что при увеличении числа n эта частота "стабилизируется" около некоторого числа, под которым понимаем статистическую вероятность.

$$P(A) \approx \frac{n_A}{n}$$

Очевидно это определение не формально, поэтому мы им пользоваться не будем.

1.2 Пространство элементарных исходов. Случайные события.

Определение.

- Пространством элементарных исходов Ω называется множество, содержащее все возможные результаты данного эксперимента, из которых при испытании происходит ровно один.
- Элементы данного множества называются элементарными исходами и обозначаются $w \in \Omega$.
- Случайными событиями называются подмножества $A\subset\Omega$.
- Событие A наступило, если в ходе эксперимента произошёл один из элементарных исходов, входящих в A.
- Такие исходы называются благоприятными к А.

Пример.

- 1. Бросают монетку. $\Omega = \{\Gamma, P\}$ (герб, решка).
- 2. Бросают кубик. $\Omega = \{1, 2, 3, 4, 5, 6\}$. A выпало четное число очков. Тогда $A = \{2, 4, 6\}$.
- 3. Монета бросается дважды:
 - (a) Учитываем порядок: $\Omega = \{\Gamma\Gamma, PP, \Gamma P, \Gamma P, \Gamma P\}$
 - (b) Не учитываем порядок: $\Omega = \{\Gamma\Gamma, PP, \Gamma P\}$
- 4. Бросается дважды кубик, порядок учитывается. A разность очков делится на 3, т.е. $A = \{(1,4),(4,1),(3,3),(5,2),(2,5),(3,6),(6,3),(1,1),(2,2),(4,4),(5,5),(6,6)\}$
- 5. Монета бросается до выпадения герба. $\Omega = \{\Gamma, \Pr, \Pr, \dots\}$ счётное число исходов.
- 6. Монета бросается на плоскость. $\Omega = \{(x,y) \mid x,y \in \mathbb{R}\}$ несчётное число исходов.

1.3 Операции над событиями

 Ω — универсальное (достоверное) событие, т.к. содержит все элементарные исходы.

 \emptyset — невозможное событие.

Определение. A+B это $A\cup B$

Определение. $A \cdot B$ это $A \cap B$

Определение. Противоположным к A называется событие $\overline{A},$ соответствующее тому, что A не произошло, т.е. $\Omega\setminus A$

Определение. Дополнение $A \setminus B$ это $A \cdot \overline{B}$

Определение. События A и B называются несовместными, если $A \cdot B = \varnothing$

Определение. Событие A влечет событие B, если $A \subset B$.

1.4 Вероятность

Определение. $0 \le P(A) \le 1$ — вероятность наступления события A.

1.5 Классическое определение вероятности

Пусть Ω содержит конечное число исходов, причем их можно считать равновозможными. Тогда применимо классическое определение вероятности.

 $P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$, где n — число всех возможных элементарных исходов, m — число элементарных исходов, благоприятных A.

В частности, если $|\Omega|=n$, а A — элементарный исход, то $P(A)=\frac{1}{n}$.

Свойства.

- 1. 0 < P(A) < 1
- 2. $P(\emptyset) = 0$
- 3. $P(\Omega) = 1$
- 4. ???

Если A и B несовместны, то P(A+B)=P(A)+P(B)

Доказательство. $|A| := m_1, |B| := m_2, |A \cup B| = m_1 + m_2$

$$P(A+B) = \frac{m_1 + m_2}{n} = \frac{m_1}{n} + \frac{m_2}{n} = P(A) + P(B)$$

Пример. Найти вероятность, что при бросании кости выпадет чётное число очков.

$$n = 6, m = 3, \frac{m}{n} = \frac{1}{2}$$

Пример. В ящике лежат 3 белых и 2 чёрных шара. Вынули 3 шара. Найти вероятность того, что из них две белых и один чёрный.

$$n = {5 \choose 3} = 10$$

$$m = {3 \choose 2} {2 \choose 1} = 12$$

$$P(A) = \frac{6}{10}$$

Однако, это определение редко применимо.

1.6 Геометрическое определение вероятности

Определение.

- $\Omega \subset \mathbb{R}^n$ замкнутая ограниченная область.
- μ конечная мера множества Ω , например мера Лебега

Пусть выбирают точку наугад, т.е. вероятность попадания точки в область A зависит от меры A, но не от её положения.

Тогда
$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Примечание. По этому определению мера точки равна 0 и вероятность попадания в конкретную точку тоже равна 0.

 Π ример. Монета диаметром 6 сантиметров бросается на пол, вымощенный квадратной плиткой со стороной 20 сантиметров. Найти вероятность того, что монета целиком окажется на одной плитке.

Без ущерба для общности можно рассматривать, что монета бросается на одну плитку и положение монеты определяется положением её центра.

Чтобы монета лежала полностью на одной плитке, необходимо, чтобы её центр лежал на расстоянии ≥ 3 сантиметра от каждой стороны:

$$S(\Omega) = 20^2 = 400$$

 $S(A) = 14^2 = 196$
 $P(A) = \frac{196}{400} = 0.49$

Пример. ???

$$\begin{split} A: X &\leq l \sin \varphi \\ S(\Omega) &= \pi l \\ S(A) &= \int_0^\pi l \sin \varphi d\varphi = -l \cos \varphi \Big|_0^\pi = -l (\cos \pi - \cos 0) = 2l \\ P(A) &= \frac{S(A)}{S(\Omega)} = \frac{2}{\pi} \end{split}$$

Это определение кажется хорошим — оно согласовано с классическим. Но и это определение редко применимо на практике, т.к. обычно вероятность зависит от положения в пространстве или множество исходов несчётно.