## Practical 6

Aim: Implementation of ANOVA for the given dataset, also calculate the difference of variance between groups

```
CODE :
data <- data.frame(</pre>
  group = factor(rep(c("group1", "group2", "group3"), each =
10)),
  value = c(85, 86, 88, 75, 78, 94, 98, 79, 71, 80,
             91, 92, 93, 85, 87, 84, 82, 88, 95, 96,
             79, 78, 88, 94, 92, 85, 83, 85, 82, 81)
View(data)
boxplot(value~ group ,data)
anova result <- aov(value ~ group, data = data)</pre>
summary(anova result)
oneway.test(value ~ group ,
            data = data
             )
data2 <- data.frame(</pre>
  group2 = factor(rep(c("x1", "x2", "x3", "x4"), each = 5)),
  value2 = c(8, 10, 12, 8, 7,
            12,11,9,14,4,
            18,12,16,6,8,
             13, 9, 12, 16, 15)
)
View(data2)
boxplot(value2~ group2 ,data2)
anova result2 <- aov(value2 ~ group2, data = data2)</pre>
summary(anova result2)
oneway.test(value2 ~ group2 ,
            data = data2
)
```

## DATA :

| *  | group  | value <sup>‡</sup> |
|----|--------|--------------------|
| 1  | group1 | 85                 |
| 2  | group1 | 86                 |
| 3  | group1 | 88                 |
| 4  | group1 | 75                 |
| 5  | group1 | 78                 |
| 6  | group1 | 94                 |
| 7  | group1 | 98                 |
| 8  | group1 | 79                 |
| 9  | group1 | 71                 |
| 10 | group1 | 80                 |

| 11 | group2 | 91 |
|----|--------|----|
| 12 | group2 | 92 |
| 13 | group2 | 93 |
| 14 | group2 | 85 |
| 15 | group2 | 87 |
| 16 | group2 | 84 |
| 17 | group2 | 82 |
| 18 | group2 | 88 |
| 19 | group2 | 95 |
| 20 | group2 | 96 |
|    |        |    |

| 21 | group3 | 79 |
|----|--------|----|
| 22 | group3 | 78 |
| 23 | group3 | 88 |
| 24 | group3 | 94 |
| 25 | group3 | 92 |
| 26 | group3 | 85 |
| 27 | group3 | 83 |
| 28 | group3 | 85 |
| 29 | group3 | 82 |
| 30 | group3 | 81 |

## OUTPUT:



```
> anova_result <- aov(value ~ group, data = dat
a)
> summary(anova_result)
           Df Sum Sq Mean Sq F value Pr(>F)
                     96.10 2.358 0.114
            2 192.2
group
Residuals
           27 1100.6
                      40.76
> oneway.test(value ~ group ,
             data = data
             )
       One-way analysis of means (not assuming
equal variances)
data: value and group
F = 2.8305, num df = 2.000, denom df = 17.311,
p-value = 0.08639
>
```

DATA: OUTPUT:

| ^ | students <sup>‡</sup> | scores <sup>‡</sup> |
|---|-----------------------|---------------------|
| 1 | x1                    | 8                   |
| 2 | x1                    | 10                  |
| 3 | x1                    | 12                  |
| 4 | x1                    | 8                   |
| 5 | x1                    | 7                   |

| 6  | x2 | 12 |
|----|----|----|
| 7  | x2 | 11 |
| 8  | x2 | 9  |
| 9  | x2 | 14 |
| 10 | x2 | 4  |

| 11 | x3         | 18 |
|----|------------|----|
| 12 | x3         | 12 |
| 13 | <b>x</b> 3 | 16 |
| 14 | x3         | 6  |
| 15 | x3         | 8  |

| 16 | x4 | 13 |
|----|----|----|
| 17 | x4 | 9  |
| 18 | x4 | 12 |
| 19 | x4 | 16 |
| 20 | x4 | 15 |



```
> anova_result2 <- aov(scores ~ students, data = data
> summary(anova_result2)
           Df Sum Sq Mean Sq F value Pr(>F)
           3 50 16.67
                            1.282 0.314
students
Residuals
           16
                208
                      13.00
> oneway.test(scores ~ students ,
+
             data = data2
+ )
       One-way analysis of means (not assuming equal
variances)
data: scores and students
F = 2.1587, num df = 3.0000, denom df = 8.4774, p-valu
e =
0.1668
```