CYBERMED: Enhancing Cybersecurity in Wearable Medical Devices using Intra-Body Communication

Mohammad Alhussan, Francesca Boem, Sara Ghoreishizadeh, Anna Maria Mandalari

Department of Electronic and Electrical Engineering (EEE), Faculty of Engineering Sciences, University College London

Introduction & Motivation

- Wearable medical devices (e.g. ECGs, BPMs, Oximeters, CGMs, insulin pumps) are essential for real-time health monitoring.
- These devices typically communicate via Bluetooth Low Energy (BLE).
- Vulnerabilities in BLE may expose devices to Sniffing, DoS, and MITM attacks.

Medical Devices	Medical Devices					
Stationary	LINAC	Ultrasound Imaging (Sonography)	MRI	X-Ray		
Implantable	Cardiac implanted devices: Pacemakers Implantable Cardioverter Defibrillator (ICD)	Neurostimulators: Deep Brain Stimulator (DBS) Spinal Cord Stimulator	Drug Delivery system	Insulin		
Wearable	Continuous Glucose Monitors (CGM)	Electrocardiogram (ECG) Devices	Blood Pressure Monitors	Pumps		

- Focus: Identify and demonstrate practical exploitation paths under real-world conditions.
- ➤ **Goal:** Strengthen communication security, resilience, and reliability and promote safer system designs for future devices.

Threat Model

Victim:

- Blood pressure lability
- · Heart arrhythmia
- Hypoxemia

Intra-Body Communication (IBC)

Galvanic Coupling (GC) method is chosen for its performance in the areas of:

- Power consumption
- Tissue safety
- Security
- Transceiver complexity

Vulnerability Auditing Methodology

Key Results

Devices	Types of Attacks				
	Sniffing (nRF52840 Nordic Dongle)	Passive MITM (Mirage)	Active MITM (Mirage)	DoS (Mirage)	
ECG#1	√	√	√	√	
ECG#2	✓	X	×	✓	
OXI#1	√	√	√	√	
OXI#2	√	√	√	√	
BPM#1	√	√	√	√	
CGM#1	√	X	×	√	
CGM#2	$\overline{\hspace{1cm}}$	X	×	√	

Proposed System Design

GC IBC – BLE Block Diagram

Proposed Defence Mechanism

Publications & Recognition

- BioSensors 2024 Cambridge, UK Demo Presentation
- RITICS 2024 London, UK Presentation
- EWSN 2024 Abu Dhabi, UAE Demo Presentation → Best Demo Award
- EWSN 2024 Abu Dhani, UAE PhD School Poster Presentation
- KFAS 2024-2027 Kuwait → PhD Students Supplementary Fund Grant (£25,000)
- ISCAS 2025 London, UK Conference Paper Presentation

Conclusion & Future Direction

- Systematic auditing of wearable medical devices:
- → BLE communication vulnerabilities: sniffing, MITM, and DoS risks.
- Resilient cybernetic safeguarding:
- → Independent, Reliable and Redundant layer of protection.
- <u>Future works</u>: Integration of **IBC technology** with the **BLE communication** protocol for signal authentication.