

Discretisation-free CBC

Mark Blyth

Week's goal

Finish off redrafting paper

Start working towards an in-silico CBC

Week's activities

- Finished off redrafting paper
- Started reading a paper for a single-cell model to test CBC on [1]
 - Krasi's cubic Lienard model, but with a parameter fixed, and coupled to a slow subsystem
 - Capable of modelling almost all known bursting behaviours
- Read some of Kuznetsov numerical bifurcation analysis
- Started thinking about CBC
 - This week's big idea: discretisation-free CBC

[1] Saggio, Maria Luisa, et al. "Fast–slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes." The Journal of Mathematical Neuroscience 7.1 (2017): 7.

Continuation background: points

- Continuation works in a predictor corrector scheme
 - Predict the next point on the manifold from the local tangent vector
 - Correct it using a Newton iteration
 - An additional parameter appears the arclength parameter so require predictor ⊥ corrector to ensure a well-posed problem
- For equilibrium and equilibrium-bifurcation continuation, we have a finite-dimensional state
 - Tangent vector is of the same dimensionality, and is therefore finite
 - ► Predictor-corrector scheme is of finite usually low dimensionality, and is therefore computationally tractable

For points (equilibria, equilibrium bifurcations) everything works nicely

Continuation background: orbits

- $\normalfont{\mbox{\ensuremath{\&}}}$ A periodic orbit is some function $f(t,\lambda),\ t\in[0,1]$
 - f exists in an infinite-dimensional Hilbert space
- $\hbox{$\swarrow$} \hbox{ Continuation of f in λ requires a discretisation, to produce a finite-dimensional approximation that we can apply standard continuation methods on$
- There's a range of methods for discretisation
 - Orthogonal collocation seeks a set of orthogonal polynomials that satisfy the model at a selection of meshpoints; high accuracy; requires a model
 - Fourier decomposition decomposes a periodic signal into its harmonic components; model-free (important for CBC); sensitive to noise; will be high-dimensional for spiking signals
 - Wavelets, frames, splines, ..., yet to be developed!

Issues with discretisation

- Can't use collocation methods without a model
- Spiking signals would need a lot of Fourier harmonics (quick-changing means lots of high-frequency energy); high dimensional continuation systems are hard
- Noise would greatly impair Fourier discretisation; can't filter it off without losing the high-frequency components of the signal required for fast spiking
- Wavelets, frames, splines haven't been developed yet (might also be noise-sensitive?)

Can we continue periodic orbits without discretisation?

Discretisation-free method: benefits and issues

- ₩ By avoiding discretisation, we can deal with fast-changing signals easily
- The learning step allows us to average out the noise, in a way that would be difficult using discretisation methods, meaning more numerical stability
- ✓ Uses some machine learning a buzzword that seems to bring in citations...
- Fourier is a more natural discretisation choice for periodically excited systems
 - If we can partition the control action into a controller and a periodic forcing term, it makes sense to do so
 - For neurons, where the stimulus and output are different, we can't do this partitioning, so we lose the benefits of Fourier

Graphic representation

Basic strategy

- Learn a local model of the periodic orbit surface
- We Use that model to predict the next periodic orbit
 - Learning and projecting forms the predictor step
- Take the learned, predicted PO model as the control target
- Iteratively update it, orthogonally to the forward-projection
 - This iterating forms the corrector step

No need to discretise the signal, as we fit a continuous model to the data and work from that instead.

- The zero problem is given by the noninvasive control requirement, rather than from a model
- This means that we don't actually need to find a discretisation of the periodic orbit, unlike in model-based zero-problems

A topology interlude

- $\mbox{\ensuremath{\not{k}}}$ A homotopy H is a continuous deformation $H:X\times[0,1]\to Y$ between two topological spaces X and Y
- $\ensuremath{\mathbb{K}}$ Consider a homotopy H between functions $f_1,\,f_2,$ parameterised in some variable t
 - \vdash $H(f_1,0) = f_1$
 - $\vdash H(f_1,1) = f_2$
 - Simple example: $H = f_1 + t(f_2 f_1)$
- Animation 1
- Animation 2

The overall goal is to learn a continuous homotopic transformation for the predictor/corrector, which can be applied to raw, undiscretised data

Mathematical representation

- We Use machine learning to find a homotopy between successive orbits $f(t, \lambda_{i-1}), f(t, \lambda_i)$
- We Use this homotopy as a predictor for the next orbit
- Apply an orthogonal correction step
 - Prediction will be a smooth function estimating $f(t, \lambda_1)$
 - Find a corrector family of f orthogonal to the homotopic step
 - Each f in this family is a control target, one of which is a periodic orbit of the open-loop system
 - 'Slide down' this family of periodic orbits, on to the corrected solution
 - 'Sliding down' is done by iteratively updating the control target, much like in Barton et al.
 - By selecting new targets from the corrector family, we're maintaining the orthogonality constraint

Learning a homotopy

- 1. Set $\lambda = \lambda_0$
- 2. Record data for a while
- 3. Use F₀ estimator to partition data into periods
- 4. Reconstruct the state space (?)
- 5. Let $t \in [0,1]$ measure how far through a period each reconstructed vector is
- 6. Learn a function $f_0:[0,1]\to\mathbb{R}^n$, giving the (reconstructed) state at time t
- 7. Repeat this for $\lambda=\lambda_1$, learning function f_1
- 8. Learn a homotopy $H_1: \mathcal{H} \times [0,1] \to \mathcal{H}$, where $f_i \in \mathcal{H}$

The machine learning step

- $m{\&}$ Gaussian processes are the ideal tool for learning f_i, H_i
 - Provide a nonparametric way of modelling arbitrary manifolds
 - Statistically rigorous
- F₀ estimation and state space reconstruction is much like that in my master's thesis
- Might even be able to get away without the state space reconstruction, but intuitively it seems like everything would work better doing it

Benefits and issues (again)

- By avoiding discretisation, we can deal with exteedingly fast-changing signals easily
- The learning step allows us to average out the noise, in a way that would be difficult using discretisation methods, meaning more numerical stability
- Fourier is a more natural discretisation choice for periodically excited systems
 - If we can partition the control action into a controller and a periodic forcing term, it makes sense to do so
 - For neurons, where the stimulus and output are different, we can't do this partitioning, so we lose the benefits of Fourier
- Prediction step should be fairly straightforward
- Correction step might be straightforward, but has the potential to be more challenging

bristol.ac.uk

Next steps

- Finish readings (Kuznetsov numerical bifurcation analysis, neuron model paper)
- Make any additional changes to the continuation paper
- Further programming marking
- Lab meeting Wednesday; make some slides for that
 - Current plan: present everything I've written in the paper
 - Nb. I have managed to get Zoom to work, but can't use Skype for business
- Adapt that for discretisation-free CBC