An NFR Pattern Approach to Dealing with Non-Functional Requirements

Presenter: Sam Supakkul

Outline

Motivation

The Approach NFR Patterns

Pattern Organization

Pattern Reuse

Tool Support

Case Study

Conclusion

Is it beautiful to you?

Authors:

Sam Supakkul Tom Hill Lawrence Chung

The Univ. of Texas at Dallas

Thein Than Tun
The Open University, UK

Julio CSP Leite PUC-Rio, Brazil

Dealing with NFRs involves many concepts and activities

Some aspects of NFRs are achieved by mitigating known problems

Security of credit card info

- / --

Break-in wireless network
Masquerade user login
Steal credit card info

Trustworthiness

-/-

++/+/-/--

Cost

Password encryption — Biometric authentication 2-factor authentication

Having insufficient knowledge of NFRs can lead to dire consequences

TJX unable to prevent the hacker

- 1. Break-in wireless network
- 2. Masquerade user login
- 3. Steal credit card info

(2nd) Biggest credit card theft

45.7M credit cards stolen \$20M in fraudulent transactions

TJX used security measures

ID/password authentication Data encryption

But TJX did not know enough

Potential security problems Applicable mitigations Proper tradeoff among NFRs

Having sufficient knowledge of NFRs is difficult because NFR knowledge is

Difficult to capture

Problems, solutions, domain

Complete, correct

Conceptual modeling and reasoning

Difficult to organize

Cataloging knowledge

Relating similar knowledge

General - Specific

Class - Instance

Combining knowledge

Difficult to reuse

Choosing appropriate knowledge (Re-)creating visual models

This talk presents a pattern-based approach to capturing, organizing, and reusing NFR knowledge

4 kinds of NFR patterns for capturing different kinds of NFR knowledge

An objective pattern captures a definition of an NFR as a softgoal (and sub-goals) to be achieved

An objective pattern

Name: FISMA Security Objectives

Credential

Sources: US FISMA Act of 2002

Authors: Sam Supakkul

Endorsements:

Known uses: US government agencies Application (How): Automated

Applicability (5W2H questions)

Domain (Who): Government Topic (What): Information, data

Type (Why): Security

Phase (When): Requirements

Artifact (Where): World [per the WRSPM ref. model]

Knowledge

Implication (How much): Regulation

Demo video: applying an objective pattern

In the catalog

During the requirements engineering of a project

Tools used

The NFR Pattern Assistant (utdallas.edu/~supakkul/tools/NFRPassist)
The RE-Tools (utdallas.edu/~supakkul/tools/RE-Tools)

A problem pattern captures soft-problems or obstacles to achieving an NFR softgoal

A problem pattern

An alternatives pattern captures alternative means or alternative solutions with side-effect information

An alternative-solutions pattern

A selection pattern captures an application independent selection scheme

Weight-based quantitative selection

Weight-based

Selection = Highest cumulative **weight**

weight(Fingerprint) =
$$w(!Trust.) \times w(+) + ...$$

= 0.25 + ...

Widely used, but subjective

alternatives

Rank-based qualitative selection

Rank-based

Selection = Best cumulative ranking

Less subjective, but need a ranking scale

Demo video:

applying a weight-based selection pattern

Before

After

Tools used

The NFR Pattern Assistant (utdallas.edu/~supakkul/tools/NFRPassist) The RE-Tools (utdallas.edu/~supakkul/tools/RE-Tools)

Patterns may be organized along the generalization, aggregation, and classification dim.

A specialized pattern captures more specific knowledge than that of the generalized pattern

[US FISMA Law]

[Payment Card Industry]

P1 specializes P2 $\,\,P_1\,$

The specialized pattern is more specific in breadth or in depth

More specific in breadth

Payment Card Industry (PCI): Security = Confidentiality

US Law:

Security = Confidentiality, Integrity, Avail.

More specific in depth

PCI concerned with Accountability beyond Privacy

A composite pattern assembles smaller patterns to capture a larger chunk of related knowledge

P1 combines P2,P3,P4 where P2 succeeds P3 and P3 succeeds P4

$$P_1 = P_2 \oplus P_3 \oplus P_4$$

where $P2 \nearrow P_3$ and $P3 \nearrow P_4$

A pattern can be used as a template to instantiate occurrence patterns

B1 is a binding specification O1 is a specialization of M1 or O1 is sub-goal of M1 w.r.t. reference model R1

$$P_1 \hookrightarrow P_2$$

where $P_1 = \{B_1, B_2\} \diamond R1$
and $B_1 = \langle M_1, O_1 \rangle$ and $(O_1 \triangleright M_1 \wr R1 \text{ or } O_1 \angle M_1 \wr R1)$
and $B_2 = ...$

Dealing with NFR knowledge is defined by 5 operations

An action-oriented perspective

Pattern operations

compose

We define 25 refinement rules for tool support 2 for Objective, 8 for Problem, 10 for Alternatives, 5 for Selection

Refinement rules are extracted by "patternize" and used for model transformation by "apply"

The NFR Pattern Assistant for pattern support The RE-Tools for knowledge modeling

The approach and the tools have been applied to the TJX case

Break-in wireless network Masquerading user login for Steal credit card info

Sample results

reuse knowledge from TJX in a different project

Build for reuse

1 composite, 5 primitive

reuse

Limitations (future work)

Tool/usability related

Model elements not captured with the original position Pattern search and selection are currently manual Some knowledge not captured (need 2 more rules) Need to support more FRs and NFRs integrated knowledge Limited concurrently pattern sharing across groups

Approach related

Costly and time-consuming to learn the notation and the tool Need more case studies

Need to support dealing with NFRs during architecture/design

Summary: The difficulty of capturing, organizing, reusing of NFR knowledge can be alleviated by the approach

Difficult to capture

Problems, solutions, domain

Complete, correct

Conceptual modeling and reasoning Captured softgoal graphs

Difficult to organize

Cataloging knowledge

Relating similar knowledge

General – Specific

Class - Instance

Combining knowledge

Difficult to reuse

Choosing appropriate knowledge - Applicability info

Re-creating visual models

Features in the approach

- Objective, problem, alternatives, selection patterns
- Credentials
- ♣ By name, type, applicability
- Specialization, composition, instantiation

- Refinement rules, tool support

Thank you... Questions & Comments?

Tool support