Functional Analysis

David Wiedemann

Table des matières

1	Int	roduction	4
	1.1	Topological Spaces	4
	1.2	Metric spaces	4
	1.3	Norms, Banach Spaces	7
	1.4	Basis of a normed space	8
	1.5	Scalar products and Hilbert spaces	9
	1.6	Uncountable Orthonormal Systems	12
	1.7	Projections in Banach spaces	13
2	Fur	action Spaces	14
3	L^p s	spaces	17
	3.1	Measure spaces	17
	3.2	Measurable functions and integrals	18
	3.3	The spaces L_p and L^p	20
	3.4	Convolutions	20
	3.5	Hausdorff Measures	21
4	Sob	polev Spaces	22
	4.1	Definition of $W^{k,p}, W_0^{k,p}$	23
${f L}$	ist	of Theorems	
	1	Definition (Topological space)	4
	2	Definition (Properties)	4
	3	Definition (Sequences)	4
	4	Definition (Continuity)	4
	5	Definition (Metric space)	4
	6	Definition	5
	1	Lemma	5
	7	Definition	5
	2	Proposition	5

	6
• • •	7
	7
	7
	7
	8
Definition (Schauder Basis)	8
Definition (Equivalence of Norms)	8
Lemma 8	8
Definition	9
Proposition	9
Proposition	9
Definition (Hilbert Space)	0
Lemma	0
Theorem	0
Lemma	1
Corollary	1
Definition (Orthonormal systemes)	1
Lemma	1
Lemma	2
Proposition	2
Definition	2
Theorem	3
Theorem	3
Definition	3
	4
Definition	4
Lemma	4
	5
	5
	5
,	
Definition 18	
	Definition Definition Definition (Banach Space) Proposition Definition (Schauder Basis) Definition (Equivalence of Norms) Lemma 3 Definition (Equivalence of Norms) 3 Lemma 4 Definition 9 Proposition 9 Proposition 9 Proposition 9 Definition (Hilbert Space) 16 Lemma 1 Theorem 16 Lemma 1 Corollary 1 Definition (Orthonormal systemes) 1 Lemma 1 Lemma 1 Lemma 1 Proposition 1 Definition 1 Theorem 1 Theorem 1 Definition 1 Theorem 1 Definition 1 Lemma 1 Lemma 1 Lemma 1 Lemma <t< td=""></t<>

26	Definition (Integral)	19
27	Definition	19
28	Definition	20
33	Theorem	20
34	Lemma	20
35	Theorem	20
36	Lemma	20
37	Lemma	21
38	Lemma	21
29	Definition	21
39	Lemma	21
40	Theorem	21
41	Theorem	22
30	Definition (Hausdorff Dimension)	22
43	Theorem	22
31	Definition	22
32	Definition (Sobolev space)	23
47	Theorem (Sobolev spaces are banach spaces)	24
33	Definition	24
49	Lemma	25

1 Introduction

Lecture 1: Introduction

Wed 12 Oct

Main reference is "Functional Analysis" by H.W. Alt.

1.1 Topological Spaces

Definition 1 (Topological space)

Let X be a set, a topology is a subset $\tau \subset P(X)$ is a topology if

- $-\emptyset, X \in \tau$
- any union of opens is open
- Finite intersections of opens are open.

Definition 2 (Properties)

For $A \subset X$, \overline{A} is the smallest closed set containing A and the interior A^o is the biggest open set contained in A.

Finally, the boundary is $\partial A = \overline{A} \setminus A^o$.

X is separable if \exists a dense countable subset

Definition 3 (Sequences)

Let $x : \mathbb{N} \to X, \overline{x} \in X$, $\lim x_k = \overline{x} \iff$ any neighbourhood $U \in T$ of x eventually contains x_k

Definition 4 (Continuity)

A function $f: X \to Y$ is continuous if $\forall U \in \tau_Y, f^{-1}(U)$. This is different from sequential continuity $x_n \to \overline{x} \implies f(x_n) \to f(\overline{x})$.

f is continuous at $x \in X$ if $\forall V \in S$ st $f(x) \in V \implies f^{-1}(V) \in \tau_X$

Lecture 2: More recaps

Fri 14 Oct

1.2 Metric spaces

Definition 5 (Metric space)

 $X \text{ a set, } d: X \times X \to [0, \infty) \text{ is a matrix}$

Definition 6

 $X \ a \ set, \ d_1, d_2 \ metrics$

- 1. d_1 is topologically stronger than d_2 if τ_{d_1} is finer.
- 2. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $d_2 \leq Cd_1$
- 3. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $\frac{1}{C}d_1 \leq d_2 \leq Cd_1$

Lemma 1

THe following are equivalent

- 1. d_1 is topologically stronger than d_2
- 2. Id: $(X, \tau_{d_1}) \to (X, \tau_{d_2})$ is continuous
- 3. If $x_n \to \overline{x}$ in d_1 then $x_n \to \overline{x}$ in d_2
- 4. $\forall x \in X \forall \epsilon > 0 \exists \delta_{\epsilon,x} > 0 \text{ such that}$

$$d(x,y) \le \delta \implies d_2(x,y) < \epsilon$$

Definition 7

Let (X, d) be a metric space

- 1. $A \subset X$ is bounded if $\exists \overline{x} \in X$ such that $\sup_{y \in A} d(x,y) < \infty$ or $A = \emptyset$
- 2. x_n is Cauchy if

$$\lim_{n \to \infty} \sup_{i,j \ge n} d(x_i, x_j) = 0$$

- 3. X complete if x Cauchy $\implies x$ convergent.
- 4. (Y, e) is a matric, $fX \to Y$ is uniformly continuous if $\forall \epsilon > 0 \exists \delta > 0$ such that $d(x, y) < \delta \implies e(f(x), f(y)) < \epsilon$.

Define $X = \{x : \mathbb{N} \to \mathbb{R} \text{ such that } \exists N \text{ such that } x_i = 0 \text{ eventually } \}.$

This space, with p-norm is not complete, so we construct the completion.

Proposition 2

Let (X,d) a metric space and (Y,e) a complete metric space, $A \subset X, \phi : A \to Y$ uniformly continuous.

Then \exists unique $\psi : \overline{A} \to Y$ such that ψ is uniformly continuous and $\phi = \psi|_A$.

Proof

If $x : \mathbb{N} \to A$ is Cauchy, then $\phi \circ x$ is also cauchy.

To prove this, let $\epsilon>0$ and $\partial_{\epsilon}^{\phi}>0$ be such that $d(x,y)<\delta\implies e(\phi(x),\phi(y))<\epsilon$.

Let $N=N_{\delta}^{x}$ be such that $i,j\geq N \implies d(x_{i},x_{j})<\delta$, then $e(\phi(x_{i}),\phi(x_{j}))<\epsilon$

Now, let $a \in \overline{A}$, then $\exists x_k$ converging to a.

x is d-Cauchy and $\phi \circ x$ is e-cauchy.

 $\exists \ a \ limit \ b^* = \lim \phi(x_k) \ So \ we \ define \ \psi(a) = b^*.$

We now prove continuity/uniform continuity.

Let $a, b \in \overline{A}, x, y : \mathbb{N} \to A \text{ and } x_i \to b, y_j \to b.$

Then

$$e(\psi(a), \psi(b)) = \lim e(\phi(x_i), \phi(y_i))$$

Now, let $\epsilon > 0$, then $\exists \delta > 0$ such that $d(x, y) < \delta$.

Thus $e(\phi(x), \phi(y)) < \epsilon$

If $d(a,b) < \delta \exists N \text{ such that } d(x_i,y_j) < \delta \forall i,j > N$

$$e(\phi(x_i), \phi(y_j)) < \epsilon \implies e(\psi(a), \psi(b) \le \epsilon)$$

Theorem 3

If (X,d) is a metric space, then there exists a complete metric space (Y,e) and an isometry $\phi:X\to Y$ such that $Y=\overline{\phi(X)}$.

Both are unique up to a bijective isometry.

Proof

Define $C_X := \{x : \mathbb{N} \to X, x \; Cauchy \} \; and \; x\tilde{y} \; if \lim_{j \to \infty} d(x_i, y_j) = 0.$

Write $Y = C_X / \sim$.

For $x, y \in Y$, define $e(x, y) = \lim_{i \to \infty} d(x_i, x_i)$.

Is this well defined?

If $j, k \ge N$

$$|d(x_i, y_i) - d(x_k, y_k)| \le d(x_i, x_k) + d(y_i, y_k)$$

And if $x\tilde{x}'$, then

$$\lim d(x_i, y_i) = \lim d(x'_i, y_i)$$

because

$$|d(x_i, y_j) - d(x'_j, y_j)| \le d(x_j, x'_j) \to 0$$

To show that e is a metric, most properties are obvious.

We show that if e(x,y) = 0 then $\lim d(x_j, y_j) = 0 \implies x\tilde{y} \implies x = y$ Triangular equality holds because

$$e(x, y = \lim d(x_i, y_i) \le \lim \sup d(x_i, z_i) + d(z_i, y_i) = e(x, z) + e(z, y)$$

The isometry $\phi: X \to Y$ simply sends $x \mapsto [x]$.

We now show $[x] \in Y$, $\phi(x_k)$ is a sequence in Y, we want to show that

$$\phi(x_k) \to [x].$$

$$\lim_{k\to\infty}e(\phi(x_k),[x])=\lim_{k\to+\infty}\lim_{j\to\infty}d(x_k,x_j)=0$$

Which shows $Y = \overline{\phi(X)}$ Let y^k Cauchy $\forall k \exists x_k \in X$ such that $e([y^k], \phi(x_k)) < 2^{-k}$.

We claim $[y^k] \to [x]$

$$d(x^k, x^h = e(\phi(x^k, \phi(x^h)))) \le 2^{-k} + 2^{-h + e([y^k], [y^h])}$$

Thus $x \in C_X [x] \in Y$

$$e([y^k], [x]) = \lim d(y_i^k, x_j) \le \lim d(U_i^k, x_k) + d(x_k, x_j) \le 2^{-k}$$

Finally, to show uniqueness, if (Y,e) and (Y',e') are two completions. Let $\psi = \phi \circ (\phi')^{-1} : \phi'(X) \to Y$.

 ψ is an isometry so there is a unique extension $\psi: Y' \to Y$ and this is an isometry.

1.3 Norms, Banach Spaces

Throughout, $K = \mathbb{R}$ or \mathbb{C}

Definition 8 (Normed space)

 $\|\cdot\|: X \to [0,\infty)$ is a norm if

$$- \|x\| = 0 \iff x = 0$$

$$- \|\lambda x\| = |\lambda| \|X\|$$

$$- \|x + y\| \le \|x\| + \|y\|$$

Definition 9

 c_0 is the $space c_0 = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \lim x_k = 0\}$ together with $\|x\|_{c_0} = \sup |x_k|$

For
$$p \in [1,\infty)$$
, $l_p = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \sum_{k \in \mathbb{N}} |x_k|^p < \infty \}$ with $||x||_{l_p} = (\sum |x_k|^p)^{\frac{1}{p}}$

Definition 10 (Banach Space)

A Banach space is a complete normed space.

Proposition 4

Any normed space has a completion which is Banach.

Proof

Let (Y, e) be the completion as above, define

$$[x] + [y] \coloneqq [x + y] \text{ and } \lambda[x] \coloneqq [\lambda x]$$

1.4 Basis of a normed space

Definition 11

Let $A \subset X$.

A is linearly independent if $\forall N \in \mathbb{N}, \forall a_i \in A \forall \lambda_i \in K, \sum_i \lambda_i a_i = 0 \implies \lambda_i = 0.$

We define

$$span(A) = \left\{ \sum_{i} (i) \lambda_i a_i, \lambda_i \text{ as above } \right\}$$

 $A \ is \ a \ Hamel \ basis \ if \ A \ is \ linearly \ independent \ and \ X = span A$

Definition 12 (Schauder Basis)

 $e: \mathbb{N} \to X$ is a Schauder basis if $\forall x \in X$ there is a unique $\lambda: \mathbb{N} \to K$ such that $x = \sum_{i=0}^{\infty} \lambda_i e_i \iff \lim_{i \to \infty} \left\| x - \sum_{i=0}^{N} \lambda_i e_i \right\| = 0$

Lecture 3: Projections onto Hilbert spaces

Wed 19 Oct

Definition 13 (Equivalence of Norms)

Let $\left\| \cdot \right\|_1$ and $\left\| \cdot \right\|_2$ be norms on a vector space X

- 1. $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$ if the induced metrics are topologically stronger
- 2. $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ if the induced metrics are equivalent

Lemma 5

- 1. If $\|\cdot\|_1$ is stronger than $\|\cdot\|_2 \implies \exists C > 0$ such that $\|x\|_2 \le C \|x\|_1$
- 2. If $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2 \implies \exists C>0$ such that $\frac{1}{C}\,\|x\|_1 \leq \|x\|_2 \leq C\,\|x\|_1$

Proof

- $$\begin{split} \text{1. If not, } \forall k \in \mathbb{N}, \exists v_k \in X \text{ such that } \|v_k\|_2 > k \, \|v_k\|_1. \\ \text{Let } w_k &= \frac{v_k}{\|v_k\|_2} \text{ then } 1 = \|w_k\|_2 > k \, \|w_k\|_1. \\ \text{Thus } w_k \to 0 \in \|\cdot\|_1, \text{ thus } w_k \to 0 \in \|\cdot\|_2 \text{ which is a contradiction.} \end{split}$$
- 2. Follows from 1.

1.5 Scalar products and Hilbert spaces

Definition 14

Let H be a K-vector space.

A map $b: H \times H \to K$ is a scalar product if it satisfies

$$b(x, \lambda y + \mu z) = \lambda b(x, y) + \mu b(x, z)$$

$$b(\lambda x + \mu y, x) = \overline{\lambda}b(x, z) + \overline{\mu}b(y, z)$$

 $b(x,y) = \overline{b(y,x)}$ and b(x,x) > 0.

(H, b) is a pre-Hilbert space

Example

- 1. K^d with the usual scalar product
- $2. \ell^2(\mathbb{R})$

Proposition 7

- 1. $||x||_H = (x,x)^{\frac{1}{2}}$ is a norm on H
- 2. Cauchy- $Schwarz: |(x,y)| \le ||x|| \, ||y||$
- 3. $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$

Proof

To show Cauchy-Schwarz, note that $(x + ty, x + ty) \ge 0 \forall t \in K$, thus

$$(x,x) + t((x,y) + (y,x)) + t^2(y,y) \ge 0$$

The middle term is $2t \operatorname{Re}(x,y)$, if the scalar product isn't real, we may rotate y to make it real

Proposition 8

Let $(X, \|\cdot\|)$ be a normed space.

If the parallelogram identity holds, then there is a scalar product b such that $||x|| = b(x,x)^{\frac{1}{2}}$

Proof
$$Define \ b(x,y) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right).$$
We want to check $b(x, \lambda y + \mu z) = \lambda b(x, y) + \mu b(x, z).$
First, check $b(x, y + y') + b(x, y - y') = 2b(x, y)$

$$\frac{1}{4} \left[\|x+y+y'\|^2 - \|x-y-y'\|^2 + \|x+y-y'\|^2 - \|x-y-y'\|^2 \right] = \frac{1}{2} (\|x+y\|^2 - \|x-y\|^2)$$

From the parallelogram identity, we get that the left hand side is

$$\frac{1}{4} \left[2 \|x + y\|^2 + 2 \|y'\|^2 - 2 \|x - y\|^2 - 2 \|y'\|^2 \right]$$

and thus the equality above holds.

If $y' = y \implies b(x, 2y) = 2b(x, y)$ and thus

$$y' = ny$$
 $b(x, (n+1)y) = 2b(x, y) - b(x, y - ny)$

and we conclude by induction that b(x, ny) = nb(x, y).

Thus $b(x,qy) = qb(x,y) \forall q \in \mathbb{Q}$ and by continuity, they agree on \mathbb{R} . Pick $v,w \in X$ and $y = \frac{v+w}{2}, y' = \frac{v-w}{2}$ in the above equality, then

$$b(x,v) + b(x,w) = 2b(x, \frac{v+w}{2})$$

and we conclude from linearity.

For complex numbers, consider s(x,y) = b(x,y) - ib(x,iy)

Definition 15 (Hilbert Space)

(H,b) is a Hilbert space if it is a complete pre-Hilbert space.

Lemma 9

Every pre-Hilbert space has a completion, unique up to bijective isometry.

If $M \subset X$, then $p: X \to M$ is a projection if $p^2 = p$ and p(X) = M. M is convex if $x, y \in M, t \in [0, 1]$, then $tx + (1 - t)y \in M$

Theorem 10

Let H be a Hilbert space, $M \subset H$ non-empty, closed, convex, then \exists a unique map $p: H \to M$ such that

$$||x - px|| = d(x, M)$$

Proof

If $x \in M, px = x$.

If $x \notin M$, let d = d(x, M) > 0.

If $y, z \in M$ are minimizers, then

$$\frac{1}{2} \|x - y\|^2 + \frac{1}{2} \|x - z\|^2 = \left\|x - \frac{y + z}{2}\right\| + \left\|\frac{y - z}{2}\right\|^2$$

If ||x-y|| = ||x-z|| = d, then $\frac{y+z}{2} \in M \implies ||y-z|| \le 0 \implies y = z \implies uniqueness$.

To show existence, let $d = \inf_{y \in M} ||x - y||$.

There is a sequence $y: \mathbb{N} \to M$ such that $||x - y_k|| \to d$.

Thus

$$\frac{1}{2} \|x - y_h\|^2 + \frac{1}{2} \|x - y_k\|^2 = \left\|x - \frac{y_h + y_k}{2}\right\| + \frac{1}{4} \|y_h - y_k\|^2$$

The LHS goes to d^2 and $||x - \frac{y_h + y_k}{2}|| \ge d^2$.

Lemma 11

Let everything as above, then $p: H \to M$ is an orthogonal projection $\iff \forall y \in M \forall x \in H, \text{Re}(x - Px, y - px) \leq 0$

Proof

Let
$$f(t) = ||x - (ty + (1-t)px)||^2$$
, thus $f(0) = \min f([0,1])$, thus $f'(0) \ge 0$

$$f(t) = \|x - Px\|^{2} - t \left[(x - px, y - px) + (y - px, x - px) \right] + t^{2} \|y - px\|^{2}$$

Thus
$$f'(0) = -Re(x - px, y - px) \ge 0$$

Corollary 12

If $M \subset H$ is a closed linear subspace, then

$$M^{\perp} = \{x \in H : (x,m) = 0 \forall m \in M\}$$

is a closed linear subspace, $M\cap M^\perp=\{0\}$, $H=M\oplus M^\perp$ and $p:H\to M$ satisfies $x-px\in M^\perp$ and p is linear

Definition 16 (Orthonormal systemes)

Let (X,b) be a pre-Hilbert space, the family $(e_i)_{i\in I}$ of vectors in X are orthonormal if $b(e_i,e_j)=\delta_{ij}$

Lemma 13

If the e_1, \ldots, e_n are orthonormal, then $\forall x$

$$\sum_{i} |(e_i, x)|^2 \le ||x||^2$$

and if $e_1, \ldots, are orthonormal, then <math>\forall x$

$$\sum_{i} |(e_i, x)|^2 \le ||x||^2$$

Proof

Let $y = \sum_{i} \lambda_i e_i \in spane_i$

$$g(\lambda) \left\| x - \sum_{i} \lambda_{i} e_{i} \right\|^{2} = \left\| x \right\|^{2} - \sum_{i} (\overline{\lambda_{i}}(e_{i}, x) + \lambda_{i}(x, e_{i})) + \sum_{i} \lambda_{i}^{2}$$

Setting $\lambda_i = (e_i, x)$, we get

$$g(\lambda) = \|x\|^2 - \sum |\lambda_i|^2$$

Lecture 4: Hilbert Spaces

Fri 21 Oct

Lemma 14

Let H be a hilber space, $e : \mathbb{N} \to H$ an orthonormal basis and $\lambda : \mathbb{N} \to K$, then

- 1. $\sum_{i=0}^{\infty} \lambda_i e_i \iff \sum_i |\lambda_i|^2 < \infty$
- 2. If $\sum_{i=0}^{\infty} \lambda_i e_i$ converges, then it does not depend on the order
- 3. $\forall x, \sum_{i \in \mathbb{N}} (e_i, x)e_i$ converges. Let $M := \overline{span(\{e_i\})}$, then the projection map $p : H \to M$ may be written $Px = \sum (e_i, x)e_i$

Proof

1. for all j, k big enough,
$$|\sum_{i=j+1}^k \lambda_i e_i|^2 \leq \sum_{i=j+1}^k |\lambda_i|^2$$

1.6 Uncountable Orthonormal Systems

If A is a set, $v: A \to H, w \in H$.

What does $\sum_{\alpha \in A} v_{\alpha} = w$ mean?

 $\sum_{\alpha \in A} v_{\alpha} = w$ if $\exists \beta : \mathbb{N} \to A$ such that $\sum_{i} v_{\beta_{i}} = w$ and v = 0 on $A \setminus \beta(\mathbb{N})$ for any ordering of the sum is one possible definition.

 $\forall \epsilon>0 \ \exists T\subset A, \#T<\infty \ \text{such that} \ \forall S\subset A, \#S<\infty \ \text{such that} \ T\subset S \ \text{one has} \ |\sum_{\alpha\in S}v_\alpha-w|<\epsilon$

Proposition 15

Let H be a hilbert space, $e: A \to H$ an orthonormal system.

- 1. $\forall x \in H$, the set $A_x = \{\alpha : (e_\alpha, x) \neq 0\}$ is finite or countable
- 2. $\forall x \in H$, $\sum_{\alpha \in A} (e_{\alpha}, x) e_{\alpha}$ is well defined

Definition 17

Let H be a Hilbert space and $e: A \to H$ an orthonormal system. It is a Orthonormal basis if $H = \overline{span(\{e_{\alpha}\})}$

Theorem 16

If $e:A \to H$ is an orthonormal system, the following are equivalent

- 1. e_{α} is a basis
- 2. $\forall x, x = \sum_{\alpha \in A} (e_{\alpha}, x) e_{\alpha}$
- 3. $\forall x, y, (x, y) = \sum_{\alpha \in A} (x, e_{\alpha})(e_{\alpha}, y)$
- 4. $||x||^2 = \sum |(e_{\alpha}, x)|^2$
- 5. $(x, e_{\alpha}) \forall \alpha \implies x = 0$
- 6. A is maximal: There is no B with $A \subset B, A \neq B$ and $e: B \to H$ such that the restriction to A is e.

Theorem 17

If H is an infinite dimensional Hilbert space, the following are equivalent

- 1. H is separable
- 2. H has a countable orthonormal basis
- 3. $\exists \phi : \ell^2(\mathbb{N}, K) \to H \text{ which is a linear isomorphism}$

1.7 Projections in Banach spaces

Is there a Banach space X such that $\exists x,y,z\in X,y\neq z\;|x-y|=|x-z|$ and $x-\frac{y+z}{2}|\geq |x-y|$?

Strict inequality is impossible, but we can get equality

$$x(t) = 0, y(t) = \begin{cases} 1, t \le \frac{1}{2} \\ \frac{3}{2} - t, t \in (\frac{1}{2}, 1] \end{cases}$$
 and $z(t) = 1$

Definition 18

Let $(X, \|\cdot\|)$ be a normed vector space.

1. X is strictly convex if

$$||x|| = ||y|| = 1, x \neq y \implies \left\| \frac{x+y}{2} \right\| < 1$$

2. X is uniformly convex if $\forall \epsilon > 0, \exists \delta_{\epsilon} > 0$ such that

$$||x|| = ||y|| = 1, \left| \left| \frac{x+y}{2} > 1 - \delta \right| \right| \implies ||x-y|| < \epsilon$$

Theorem 18

Let X be a uniformly convex Banach space, $M \subset X$ a non-empty, convex,

Then \exists a unique map $p: X \to M$ such that ||x - Px|| = dist(x, M).

Proof

If $x \in M, px = x$.

If $x \notin M, d := dist(x, M) > 0$.

For uniqueness, let $y, z \in M, |x - y| = |x - z| = d$, then $\frac{y + z}{2} \in M$.

 $\begin{array}{l} \operatorname{Let}\,v = \frac{y-x}{\|y-x\|}, w = \frac{z-x}{\|z-x\|}. \\ \operatorname{If}\,y \neq z, \; \operatorname{then}\,v \neq w \implies \left\|\frac{v+w}{2}\right\| < 1. \end{array}$

$$\frac{v+w}{2} = \frac{y-x+z-x}{2d} = \frac{\frac{y+z}{2}-x}{d} \implies \left\| \frac{y+z}{2} - x \right\| < d$$

 $a\ contradiction.$

To show existence, let $y_i \in M$ be a sequence such that $d_i = ||x - y_i|| \to d$.

$$\frac{y_i + y_k}{2} \in M \implies \left\| x - \frac{y_i + y_i}{2} \right\| \ge d\forall i, k$$

by convexity.

Now let $v = \frac{y_i - x}{d}, w = \frac{y_k - x}{d_2}$, then

$$\frac{v+w}{2} = \frac{y_i - x}{2d} + \frac{y_k - x}{2d_k} = \frac{y_i - x}{2d} + \frac{y_k - x}{2d} + (y_i - x)\left(\frac{1}{2d_i} - \frac{1}{2d} + (y_k - x)(\frac{1}{2d_k} - \frac{1}{2d})\right)$$

Thus $\lim_{i,k\to\infty} \left\| \frac{v_i + w_k}{2} \right\| \ge 1$.

We conclude by uniform convexity.

Lecture 5: Examples of function spaces

Wed 26 Oct

$\mathbf{2}$ Function Spaces

Definition 19

Let (X,p) be a normed space and $T \neq \emptyset$ a set, then the set

$$B(T,X) = \left\{ f: T \to X: \sup_{t \in T} \|f(t)\|_X < \infty \right\}$$

is the set of bounded functions on T.

Lemma 19

B(T,X) is a normed space, it is complete if X is complete.

Lemma 20

If (T, τ) is a topological space, then $C_b(T, X) = C^0(T, X) \cap B(T, X)$ is a closed linear subspace of B.

Remark

 $C^0(T,X)$ is a metric space but not a normed space. We can still metrize uniform convergence by letting

$$d(f,g) = \min(\|f - g\|_{\infty}, 1)$$

Lemma 22

The continuous image of a compact set is compact.

If $f \in C^0(T,X)$, $K \subset T$ compact and X is normed, then f(K) is bounded.

If $X = \mathbb{R}, K \neq \emptyset, f(K)$ has a maximum and minimum.

Now, let $K \subset T$ be compact and $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Consider $C^0(K, \mathbb{K})$

Definition 20

A set $\mathbb{A} \subset C^0(K, \mathbb{K})$ is a subalgebra of C^0 if it is a linear subspace and closed under multiplication.

It separates points if $\forall a, b \in K \exists f \in \mathbb{A} \text{ such that } f(a) \neq f(b)$.

Theorem 23 (Stone-Weierstrass)

If $\mathbb{A} \subset C^0(K,\mathbb{R})$ is a subalgebra that separates points, then either $\overline{\mathbb{A}} = C^0$ or $\exists x_0 \in K$ such that

$$\overline{\mathbb{A}} = \left\{ f \in C^0 : f(x_0) = 0 \right\}$$

Lemma 24

 $\begin{array}{l} \textit{If} \ \overline{\mathbb{A}} \ \textit{is a subalgebra}, \ then \ f \in \overline{\mathbb{A}} \implies |f| \in \overline{\mathbb{A}}, \ then \ \min(f,g), \max(f,g) \in \overline{\mathbb{A}}. \end{array}$

The proof of this is an exercise.

Lemma 25

Assum $\forall x \in K \exists g \in \mathbb{A} \text{ such that } g(x) \neq 0.$

 $\forall a, b \in K, \forall \lambda, \mu \in \mathbb{K}, \exists g \in \mathbb{A} \text{ such that } g(a) = \lambda, g(b) = \mu.$

Proof

Let $h \in \mathbb{A}$ be such that h(a) = h(b).

Let $g(x) = \alpha h(x) + \beta h^2(x)$, solving for $g(\alpha) = \lambda$ and $g(\beta) = \mu$, we get a linear system with determinant $h(a)h^2(b) - h^2(b)h(a) = h(a)h(b)(h(b) - h(a))$ Suppose h(a) = 0, consider $g_a \in \mathbb{A}$ such that $g_a(a) \neq 0$ and let $G(x) = \alpha g_{\alpha}(x) + \beta h(a)$, again solving $G(a) = \lambda$, $G(b) = \mu$, we get a linear system with non-zero determinant.

We can now prove the Stone-Weierstrass theorem.

Proof

Fix $f \in C^0$.

Pick $a \in K$ such that $\exists g \in \mathbb{A}, g(a) \neq 0$, then $g(x) \frac{f(a)}{g(a)} \in \mathbb{A}$ and is equal to f at a.

Assume $\forall a \in \mathbb{K} \exists g_a \in \mathbb{A} \text{ such that } g_a(a) \neq 0.$

Fix $F \in C^0(K)$ and $\epsilon > 0$.

We need to show that $\exists f \in \overline{\mathbb{A}} \text{ such that } ||F - f||_{\infty} < \epsilon$.

- 1. $\forall a \in K \exists f_a \in \overline{\mathbb{A}} \text{ such that } F(a) = f_a(a) \text{ and } F(y) < f_a(y) + \epsilon.$ We prove this later on.
- 2. Given 1, notice that $\forall a \in K$, let $V_a = \{y \in K, f_a(y) < F(y) + \epsilon\}$. Then for everry $\alpha \in V_a$, V_a is open and $K = \bigcup V_a$ and we can refine this to a finite cover.

Let
$$g = \min \{f_{a_1}, \dots, f_{a_n}\}.$$

Then $g \ge F - \epsilon; g \le f_a \le F + \epsilon$ on $V_{a_i} \implies |F - g| \le \epsilon$

Now, we prove step 1.

Fix $a \in K$.

 $\forall b \neq a \exists f_{ab} \in \overline{\mathbb{A}} \text{ such that } f_{ab}(a) = F(a), f_{ab}(b) = F(b).$

Let $V_{ab} = \{ y \in K : F(y) < f_{ab}(y) + \epsilon \}.$

Let $b_1, \ldots b_M$ be such that $K = \bigcup_{i=1}^M V_{ab_i}$.

Let $f_a = \max\{f_{ab_1}, \dots, f_{ab_M}\} \in \overline{\mathbb{A}}$.

Then $f_a > F - \epsilon$ on K.

Assume now $\exists x_0 \text{ such that } f \in \mathbb{A} \implies f(x_0) = 0.$

Let $\tilde{\mathbb{A}} = \mathbb{A} + \mathbb{R}$, then $\tilde{\mathbb{A}} = C^0$.

Let $F \in C^0$, $F(x_0) = 0$, then $\exists f_{\epsilon} \in \mathbb{A}, \lambda_{\epsilon} \in \mathbb{R}$ such that $|f_{\epsilon} + \lambda_{\epsilon} - F|_{\infty} < \epsilon$.

But
$$F(x_0) = f_{\epsilon}(x_0) = 0 \implies |\lambda_{\epsilon}| < \epsilon \implies |f_{\epsilon} - F|_{\infty} < 2\epsilon$$

Theorem 26

If $\mathbb{A} \subset C^0(K,\mathbb{C})$ is a subalgebra, separates points and $f \in \mathbb{A} \implies \overline{f} \in \mathbb{A}$.

Then either
$$\overline{\mathbb{A}} = C^0$$
 or $\overline{\mathbb{A}} = C^0 \cap \{f(x_0) = 0\}$.

Proof

$$\mathbb{A}_{\mathbb{R}} = \mathbb{A} \cap C^0(K, \mathbb{R}), f \in \mathbb{A} \implies \operatorname{Re} f, \operatorname{Im} f \in \mathbb{A}_{\mathbb{R}}.$$

Definition 21

If
$$\Omega \subset \mathbb{R}^d$$
 is open, then $C^k(\Omega, \mathbb{K}) = \{f : \Omega \to \mathbb{C} | f \text{ k-times continuously differentiable.} \}.$
We define $C^k(\overline{\Omega}, \mathbb{K}) = \{f \in C^k(\Omega, \mathbb{K}) | f \text{ continuously extends to the boundary.} \}$

Lemma 27

$$C_b^k = \{ f \in C^k : D^{\alpha} f \in B \forall |\alpha| \le k \} \text{ is a Banach space.}$$

Definition 22 (Hoelder Continuity)

Let $f: \Omega \to \mathbb{K}$, $\alpha \in (0,1]$, then

$$[f]_{\alpha} = \sup_{x,y \in \Omega, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

$$C^{k,\alpha} = \left\{ f \in C^k : D^{\beta} f \in C^{\alpha} \forall |\beta| \le k \right\}$$

Lecture 6: Lp spaces

Fri 28 Oct

3 L^p spaces

3.1 Measure spaces

Definition 23

 $Let \ X \ be \ a \ non\text{-}empty \ set$

- A subset $\tau \subset P(X)$ is called a σ -algebra on X if
- $-\emptyset \in \tau$
- $\ A \in \tau \implies X \setminus A \in \tau$
- $\forall A_i \in \tau \implies \bigcup A_i \in \tau$

If (X, τ) is a topological space, the borel σ -algebra is the smallest σ -algebra containing τ .

Definition 24 (Meausre space)

A map $\mu: \tau \to [0,\infty]$ is called a measure μ if

- $-\mu(\emptyset) = 0$
- μ is σ additive, namely, if A_k are such that $A_k \cap A_l = \emptyset \forall k \neq l$, then

$$\mu(\bigcup A_k) = \sum_k \mu(A_k)$$

 $-(X, \tau, \mu)$ is complete if for any null set A if

$$B \subset A \implies B \in \tau$$

(in particular, B is also a null-set)

- μ is σ-finite if there is $A_k \in \tau$ such that $\mu(A_k) < \infty \forall k$ and $X = \bigcup A_k$
- A property holds almost everywhere if $\exists N$ a null set such that P holds on $X \setminus N$.
- For $E \subset A$ one defines the restricted measure

$$(\mu|_E)(A) = \mu(E \cap A)$$

— \mathcal{L}^d denotes the Lebesgue measure on \mathbb{R}^d and μ^d denotes the lebesgue measurable sets.

Remark

- $(\mathbb{R}^d, \mathcal{L}^d)$ is a complete measure space, \mathcal{L}^d is σ -finite.
- $-B(\mathbb{R}^d) \subsetneq \mu^d \subsetneq P(\mathbb{R}^d)$

In the following, (X, τ, μ) is complete and σ -finite.

3.2 Measurable functions and integrals

Definition 25

Let (X, τ, μ) be a measure space and (Y, τ') a topological space.

A function $f: X \to Y$ is called measurable if $f^{-1}(U) \in \tau \forall U \in \tau'$

Remark

- -f is measurable $\iff f^{-1}(A) \in \tau \forall A \in B(Y)$
- $-f: X \to [-\infty, \infty] \text{ is measurable } \iff f^{-1}((a, \infty]) \forall t \in \mathbb{R} \iff f^{-1}([a, \infty]) \forall t \in \mathbb{R})$
- $-\ f:X\to \mathbb{C}\ \textit{is measurable iff}\ \mathrm{Re}\ f,\mathrm{Im}\ f\ \textit{are measurable}.$
- $f: X \to \mathbb{R}^d$ is measurable iff every projection is measurable.

Definition 26 (Integral)

Let (X, τ, μ) be a measure space.

- A function $f: X \to [0, \infty]$ is simple if $\exists \lambda : \mathbb{N} \to [0, \infty]$ and $E: \mathbb{N} \to \tau$ such that $f = \sum_{n \in \mathbb{N}} \lambda_n \xi_{E_n}$
- If f is simple, define

$$\int_X f d\mu = \sum_{n \in \mathbb{N}} \lambda_n \mu(E_n) \in [0, \infty]$$

— For a measurable function $f: X \to [0, \infty]$, define

$$\int_X f d\mu = \sup_{\phi \le f, \phi \text{ simple }} \int_X \phi d\mu \in [0, \infty]$$

Remark

- The integral of a simple function is well-defined (ie. independent of the λ_i and E_i) and is monotone.
- One can show $\int_X f d\mu = \int_{(0,\infty)} \mu(f^{-1}((t,\infty])) d\mathcal{L}^1(t)$

Remark

We'll write dx or dx^d for \mathcal{L}^1 or \mathcal{L}^d respectively

Definition 27

Let (X, τ, μ) be a measure space, (Y, τ') a topological space, $f: X \to Y$ a measurable function

- If $Y = [0, \infty]$, the function is integrable if $\int_X f d\mu < \infty$
- Consider $Y = [-\infty, \infty]$, the function f is integrable if it's positive and negative parts are integrable.

In this case, we define $\int_X f d\mu = \int_X f_+ d\mu - \int_X f_- d\mu$.

- A complex valued function is integrable if it's real and imaginary parts are.
- A function valued in \mathbb{R}^d is integrable if it's components are.

Remark

f is integrable \iff f is measurable and |f| is integrable.

3.3 The spaces L_p and L^p

Definition 28

Let (X, τ, μ) be a measure space.

— Let $f: X \to \mathbb{K}$ be a measurable function, we define

$$\left\|f\right\|_{p} = \left\|f\right\|_{L^{p}} = \begin{cases} \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \ \text{if } p < \infty \\ \operatorname{esssup}_{x} |f| = \inf\left\{M \in [0, \infty] : f < M \ \text{a.e.} \right. \end{cases}$$

— For $p \in [1, \infty]$

$$L_p(X, \mathbb{K}) = L_p(X, \mu, \mathbb{K}) = \left\{ f : X \to \mathbb{K} : ||f||_p < \infty \right\}$$

— We denote L^p the space L_p modded out by functions which are equal a.e.

Theorem 33

Let $p \in [1, \infty]$

- $\|\cdot\|_p$ is a semi-norm on L_p and a norm on L^p
- $-L^p(X,\mathbb{K})$ is a Banach space (Fischer-Riesz)
- $L^2(X, \mathbb{K})$ is a Hilbert space with scala product

$$(f,g) = \int_X \overline{f} g d\mu$$

Lemma 34

The space $L^p(X, \mathbb{K})$ is uniformly convex.

Lecture 7: convolutions and Hausdorff measures

Wed 02 Nov

Theorem 35

Let $p \in [1, \infty)$, $\Omega \subset \mathbb{R}^n$ open, then $C_c^{\infty}(\Omega, \mathbb{K})$ is dense in $L^p(\Omega, \mathbb{K})$.

3.4 Convolutions

Let
$$f, g \in L^1(\mathbb{R}^n)$$
, $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$

Lemma 36

Let $\eta \in L^1(\mathbb{R}^n)$, for r > 0, let $\eta_r(x) = \frac{1}{r^n} \eta(\frac{x}{r})$. Then

$$- \eta_r \in L^1, \|\eta_r\|_1 = \|\eta\|_1.$$

- If
$$f \in L^p(\mathbb{R}^n)$$
, then $\|\eta_r * f\|_p \le \|\eta_r\|_1 \|f\|_p$

- If
$$p < \infty, \eta \ge 0$$
, $\|\eta\|_1 = 1$, then $f * \eta_r \to f$ in $L^p(\mathbb{R}^n)$

- If
$$\eta \in C^{\infty}$$
, then $\eta_r * f \in C^{\infty}$, $\partial^{\alpha}(\eta_r * f) = (\partial^{\alpha}\eta_r) * f$

— If
$$\eta \in C_c(\mathbb{R}^n)$$
, $f \in L^1_{loc}(\mathbb{R}^m)$, then $\eta_r * f \in C^0$.

Lemma 37

If
$$\int_{\omega} \phi f d\mathcal{L}^n = 0 \forall \phi \in C_c^{\infty}$$
, then $f = 0$.

Lemma 38

Let $p \in [1, \infty]$ Ω open and $f_j \to f$ in $L^p(\Omega)$, then $\forall \phi \in C^{\infty}c(\Omega)$

$$\int_{\Omega} f_j \phi dx \to \int_{\omega} f \phi dx$$

3.5 Hausdorff Measures

Definition 29

Let (X, d) be a metric space, $\delta > 0$ and $s \in [0, \infty)$.

$$\mathcal{H}^s_{\delta}: P(X) \to [0, \infty], \mathcal{H}^s_{\delta}(E) = \frac{\omega_s}{2^2} \inf \left\{ \sum_{h \in \mathbb{N}} (diam F_h)^s : E \subset \bigcup_{h \in \mathbb{N}} F_h, diam F_h \le \delta \right\}$$

Where
$$\omega_s = \frac{\pi^{\frac{s}{2}}}{\Gamma(1+\frac{s}{2})}$$
.

Then
$$\Gamma(1+\frac{s}{2})$$

All Borel sets are \mathcal{H}^s -measurable and $(X, B, \mathcal{H}^s|_B)$ is a measure space.

 $\mathcal{H}^s(E) = \lim_{\delta \to 0} H^s_{\delta}(E)$

Theorem 40

$$\mathcal{H}^n|_{m^n} = \mathcal{L}^n$$

Theorem 41

For any $E \subset X$, there is a number $s_E \in [0, \infty]$ such that

$$\mathcal{H}^s(E) = \infty \forall s \in [0, s_E)$$

and

$$\mathcal{H}^s(E) = 0 \forall s \in (s_E, \infty]$$

Definition 30 (Hausdorff Dimension)

$$dim_H(E) =:= s_E$$

Example

$$\dim_H(B(0,1)) = n - 1$$

Theorem 43

If $U \subset \mathbb{R}^k$ and $\psi \in C^1(U, \mathbb{R}^n)$ an injective immersion, then $\psi(U)$ is \mathcal{H}^k measurable, $\mathcal{H}^k|_{\psi(U)}$ is σ -finite and

$$\mathcal{H}^{k}(\psi(U)) = \int_{U} (\det D\psi^{T} D\psi)^{\frac{1}{2}} d\mathcal{L}^{k}$$

4 Sobolev Spaces

Let $\Omega \subset \mathbb{R}^n$ open, $f \in L^p(\Omega)$.

DOes it have a "derivative" in L^p ?

Notice that

$$\int_{\Omega} f \partial_i \phi d\mathcal{L}^n = -\int_{\Omega} (\partial_i f) \phi d\mathcal{L}^n + \int_{\partial \Omega} f \phi \nu_i d\mathcal{H}^{n-1}$$

if $f, \phi \in C^1(\mathbb{R}^n)$, Ω bounded, $\mathcal{H}^{n-1}(\partial \Omega \setminus \partial_r \Omega) = 0$

Morally, the last term is 0, because $\partial\Omega$ is a null-set.

Definition 31

Let $\Omega \subset \mathbb{R}^n$ open, $f \in L^1_{loc}(\Omega)$.

f is weakly differentiable if $\exists g \in L^1_{loc}(\Omega, \mathbb{R}^n)$

$$\int_{\Omega} f \partial_i \phi d\mathcal{L}^n = -\int_{\Omega} g_i \phi d\mathcal{L}^n \forall \phi \in C_c^1(\Omega)$$

f is k-times weakly differentiable if $\forall \alpha \in \mathbb{N}^n, |\alpha| \leq k, \exists g_\alpha \in L^1_{loc}$ such

that

$$\int_{\Omega} f D^{\alpha} \phi d\mathcal{L}^{n} = (-1)^{|\alpha|} \int_{\Omega} g_{\alpha} \phi d\mathcal{L}^{n}$$

We write $g_{\alpha} = D^{\alpha} f$

Remark

If $f \in C^k(\Omega)$, then it is k-times weakly differentiable and the derivatives are the classical ones.

Example

If $\Omega = \mathbb{R}$, then f(x) = |x| has a weak derivative.

Let g(x) be the step function, we want to show that for $\phi \in C_c^1(\mathbb{R})$, we want to show that

$$\int_{\mathbb{R}} |x| \phi'(x) dx = -\int_{0}^{\infty} \phi(x) dx + \int_{-\infty}^{0} \phi(x) dx$$

Notice that

$$\int_0^\infty \phi(x)dx = x\phi(x)|_0^\infty - \int_0^\infty x\phi'(x)dx$$

The first term is 0 and so the equality holds.

Lecture 8: weak derivatives

Remark

The definition of weak derivative is equivalent to

$$\int_{\Omega} f \partial_i \phi dx = -\int_{\Omega} g_i \phi dx \forall C_c^1(\Omega)$$

similarly, replace $C_c^{\infty}(\Omega)$ by $C_c^k(\Omega)$.

Indeed, let $\phi \in C_c^1(\Omega)$, then for $\epsilon < dist(\partial \Omega, \operatorname{Supp} \phi)$ we have that $\eta_{\epsilon} * \phi \in C_c^{\infty}(\Omega)$ and it converges to ϕ in C^1 .

4.1 Definition of $W^{k,p}, W_0^{k,p}$

Definition 32 (Sobolev space)

Let $\Omega \subset \mathbb{R}^d$ open, $1 \leq p \leq \infty, k \in \mathbb{N} \setminus \{0\}$.

The Sobolev space $W^{k,p}(\Omega) = \{ f \in L^p(\Omega) | f \text{ k-times weakly differentiable and } \partial^{\alpha} f \in L^p(\Omega) \forall |\alpha| \leq k \}.$ The norm is defined as

Fri 04 Nov

$$\|\cdot\|_{W^{k,p}(\Omega)} = \|\cdot\|_{k,p} = \left(\sum_{0 \le |\alpha| \le k} \|\partial^{\alpha} f\|_{L^{p}}^{p}\right)^{\frac{1}{p}}$$

Theorem 47 (Sobolev spaces are banach spaces)

Let $\Omega \subset \mathbb{R}^d$ open, $1 \leq p \leq \infty$, $k \in \mathbb{N} \setminus 0$.

$$-\left(W^{k,p}(\Omega),\left\|\cdot\right\|_{W^{k,p}(\Omega)}\right)$$
 is Banach

 $\begin{array}{l} - \left(W^{k,p}(\Omega), \left\|\cdot\right\|_{W^{k,p}(\Omega)}\right) \ is \ Banach \\ - \ H^k(\Omega) = W^{k,2}(\Omega) \ is \ a \ Hilbert \ space \ with \ inner \ product \end{array}$

$$(f,g)_{H^k(\Omega)} = \sum_{k \le |\alpha|} (\partial^{\alpha} f, \partial^{\alpha} g)_{L^2(\Omega)}$$

Proof

It is clear tht $\|\cdot\|_{k,p}$ is a norm and that $(\cdot,\cdot)_{H^2}$ is a scalar product and that for p = 2, they are compatible.

 $We\ prove\ completeness.$

LLet $(f_i)_i \subset W^{k,p}(\Omega)$ be Cauchy, then for any multi-index α with $|\alpha| \leq k$, $the\ sequence$

$$(\partial^{\alpha} f_i)_i$$

is also Cauchy in L^p , so there is $g^{(\alpha)} \in L^p$ such that

$$\lim_{j} \partial^{\alpha} f_{j} = g^{\alpha}$$

In particular, $f_j \xrightarrow{L^p} g^{(0)}$

We want to show that $g^{(0)}$ is weakly differentiable (k times) and $\partial^{\alpha} g^{(0)} =$

Let $\phi \in C_c^{\infty}(\Omega)$, then

$$\int_{\Omega} g^{(0)} \partial^{\alpha} \phi dx = \lim_{j} \int_{\Omega} f_{j} \partial^{\alpha} \phi dx = (-1)^{|\alpha|} \int_{\Omega} \partial^{\alpha} f_{j} \phi dx = (-1)^{|\alpha|} \int_{\Omega} g^{(\alpha)} \phi dx$$

Definition 33

For $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^d$ open, define

$$W_0^{k,p}(\Omega) = \left\{ f \in W^{k,p}(\Omega) : (f_j) \subset C_c^{\infty}(\Omega) \text{ s.t. } f_j \to f \text{ in } W^{k,p} \right\}$$

We define $H_0^k - W_0^{k,2}(\Omega)$.

For $p = \infty$, the definition is different.

Remark

 $W_0^{k,p} = soboolev functions with zero boundary values$

If
$$\Omega = \mathbb{R}^d : W^{k,p}(\mathbb{R}^d) = W^{k,p}_0(\mathbb{R}^d)$$

Lemma 49

 $W_0^{k,p}$ is a closed linear subspace of $W^{k,p}$ and hence is a Banach space.

Proof

 $Take\ a\ diagonal\ sequence.$

Let $(f_j)_j \subset W_0^{k,p}$ be Cauchy, then it converges to some f^* in $W^{k,p}$. Let $(f_{j,l})_l \in C_c^{\infty}(\Omega)$ such that $f_{j,l} \to f_j$ in $W^{k,p}$. Let $l = l(j) \in \mathbb{N}$ such that $\|f_{j,l(j)} - f_j\|_{k,p} \leq \frac{1}{j}$. Consider $g_j = f_{j,l(j)}$