Prototype Assessment Plan

Leila Abdul Hadi, Jesse Brown-Bosch, Colin Jones, Asia Russell

Florida State University, Panama City Campus

EML4551C: Senior Design I

Dr. Damion Dunlap

March 24, 2021

Table of Contents

Prototype Assessment Plan	3
Introduction	3
Prototype Plan	3
Camera Mount	3
Rover Body	4
Rocker-Bogie	4
Assessment Plan	5
Camera Mount	5
Rover Body	5
Rocker-Bogie	6
Conclusion	6
References	8
Appendix A – Customer Needs	9
Appendix B – Targets & Metrics	10

Prototype Assessment Plan

Introduction

The concept selection process utilized several analytical hierarchy methodologies to aid in clarification of the best design proposal. The next stage of the design process involves creating a physical model of the selected concept. Prototypes are often fabricated prior to the construction of the final model. The team's current design schedule allocates sufficient time for prototype assessment.

Prototype assessment is a preliminary step in prototyping used to test a proposed model, advantageous to tight-budget and time constrained projects. The process can be used to examine integral design components to minimize the occurrence of future complications and monetary losses in the actual design prototyping phase. The Psyche 525C team selected the rover's rocker-bogie suspension system, camera mount, and body for prototype assessment.

Selected components were chosen based on their importance to the overall design, the possible variability they may present, or for the purpose of gaining a greater understanding of their mechanisms and geometry in relation to one another. The prototype plan details what is to be prototyped, necessary materials, and the proposed cost. An assessment plan describes prototype testing, related key targets and metrics, necessary tools for assessment, and the relevancy of assessment results to the final design.

Prototype Plan

Camera Mount

Several materials will be used in the construction of a prototype camera mount. Nominal costs associated with the product are provided.

- > PVC \$10.00
- ➤ 3-D Printing Owned

- > Stepper Motor Owned
- ➤ Glue Owned
- > Breadboard Owned
- Microcontroller Owned
- ➤ Peripheral components \$5.00

Members of the design team personally possess a majority of the required prototyping components, though miscellaneous PVC fittings and peripheral electrical/mechanical components may be absent. A budget of \$15.00 is anticipated to satisfy any necessary purchases.

The camera shaft will be fabricated by 3-D printing or by PVC construction and will be attached to the stepper motor to test revolving functionality. The stepper motor will provide the motion and will be controlled by the microcontroller.

Rover Body

The rover body will be constructed of similar materials:

- > PVC \$10.00
- > Peripheral mechanical components Owned
- > Cardboard \$20.00
- ➤ Glue Owned

As PVC is intended to be used in varying degrees for every prototyped component, an additional allowance of \$10.00 is granted. Cardboard is a unique prototype material to the rover body, with an estimated material cost of \$20.00.

The rover body will be constructed primarily of cardboard, with glue being used to adhere the base and sides. PVC will be used to mount the body to the suspension system using screws, bolts, or zip-ties, which are currently possessed by design team members.

Rocker-Bogie

The rocker-bogie suspension system will be primarily constructed with previously used prototyping materials, including:

> PVC - \$20.00

- > Cardboard \$10.00
- ➤ Glue Owned
- ➤ Peripheral mechanical equipment Owned

PVC is the most integral component of the rocker-bogie prototyping, as the suspension system will be primarily constructed of various lengths and fittings, with \$20.00 being estimated to cover construction cost. Wheels will be constructed of rolled cardboard and attached to the created PVC linkages. Various nuts, bolts, and washers will be required to connect the linkages, though these materials are currently possessed by design team members.

Assessment Plan

The design team will observe and evaluate the effectiveness of prototyped components after subjecting them to developed test methods.

Camera Mount

The camera mount's ability to rotate will be tested manually through design team influence and mechanically through the use of a stepper motor. A dummy camera will be secured to the mount to assess security and stability when subjected to testing. The use of external tools is not anticipated in the fabrication of this prototyped component.

Detect visually is the main function that the camera mount will support; however, the metrics of video quality and picture quantity are not relevant for this portion of the design process.

Rover Body

An appropriately scaled rover body will be constructed to house components selected for the final prototype. Footprints will be determined using vendor measurements and component weights will be considered when producing the enclosure. During the production of this prototype component, attachment of the suspension system to the main body will also be addressed, as sufficient mobility and security is critical to rover operation.

Enclosure volume and charging area are the two metrics addressed during this phase of prototyping, with targets of 0.5ft³ and 10in², respectively. Dimensions will be verified using a tape measure, with various handheld tools, including wrenches and screwdrivers, also being required for construction.

Rocker-Bogie

The focus of this prototype component is to gain understanding of linkage application and motion to ensure maximum mobility.

The rocker-bogie suspension system will be constructed and tested manually by the design team. Integrating motorization is too advanced for this phase, so navigating various obstacles and slopes will be completed through manual propulsion.

The metrics of turn radius, obstacle size, and terrain slope will be considered, with targets of 1ft, 8in diameter and 6in length/width/height, and 20°> incline and decline, respectively. The design team will find obstacles of appropriate dimensions to assess prototype capability in satisfying related targets and metrics.

Construction of this prototype component will require various handheld tools, such as wrenches and screwdrivers, to connect linkages and mount the suspension to the rover body. A circular saw is required to cut mounting slits, and bolt holes will be produced using a drill.

Conclusion

The rover body, camera mount, and rocker-bogie suspension system were selected for prototype assessment on the merit of their respective relevance to the final detailed design and to gain insight on their mechanisms and suitable design geometry. A prototype assessment plan was

constructed for chosen components detailing necessary construction materials, budget, type of testing and necessary testing materials, related key targets and metrics, and correlation of corresponding rover parts to the resulting impact on the detailed design. Assessing integral system components through an elementary prototype design will help clarify component interactions, system mechanisms, and geometric placement, contributing to an increasingly comprehensive final design utilizing educated monetary decisions with minimized risk. The design team estimates that a budget of \$75.00 will be sufficient to execute the desired prototypes.

References

Nfornavin. (2017, August 11). How to make a Mars Rover / Rocker bogie robot - stair climbing.

Retrieved March 25, 2021, from https://www.youtube.com/watch?v=3Zx7tGtwF5g

Appendix A – Customer Needs

Question	Customer Statement	Interpreted Need		
		The robotic explorer manuevers through various		
	Asteroids have been shown to be covered in craters.	changes in surface topography, depression, and		
		curvature.		
	Boulder rocks and big stones have been seen on asteroid			
	surfaces.	The robotic explorer detects obstacles.		
What types of terrains have	Different rock types with varying characteristics have been	The robotic explorer works on varying material		
been encountered on	detected.	compositions.		
previous missions?	Basaltic materials were expected, but surfaces similar to	The robotic explorer can travel on surfaces with		
•	hard snow were encountered.	variable hardness and roughness.		
	C	The robotic explorer detects and avoids sudden		
	Comet terrains were mostly flat with some steep cliffs.	changes in surface elevation.		
	The surfaces were non-magnetic, contrary to what was	The robotic explorer functions independent of a		
	expected.	planetary body's magnetic characteristics.		
What is the budget for this	The school has allowed for a \$2,000 budget for Senior	The prototype for the robotic explorer is designed		
project?	Design projects.	and implemented for \$2,000 or less.		
	Psyche is expected to have a low gravity, approximately	The robotic explorer remains on the planetary		
	0.144m/s^2 .	body after landing.		
What type of environment is	Psyche has no atmosphere.	The robotic explorer operates on an airless body.		
expected on Psyche?	· ·			
	The temperatures on Psyche are expected to be extremely	The robotic explorer withstands low		
	cold.	temperatures.		
What types of terrain are	Fractures and porous space, possibly hidden under			
expected to be encountered	regolith.	The robotic explorer traverses both metal and		
on Psyche?	Metal tektites and blocks, but possibly no persistent or	rock surfaces.		
on rayone.	deep metal regolith.			
How long will the robotic	Spirit and Opportunity robotic explorers were designed to	The robotic explorer functions for the duration		
explorer need to operate at a	operate for 90 days.	needed to gather data samples.		
time?	MASCOT was designed to last two asteroid rotations.	The robotic explorer withstands two asteroid		
TT '11 d 1 d'		orbits.		
How will the robotic	The robotic explorer will be deployed from the Psyche	The robotic explorer can be housed on the		
explorer be deployed?	spacecraft.	Psyche spacecraft.		
Should the robotic explorer be autonomous or remote	F1i	The robotic explorer has controlled and		
operated?	Explorers on previous missions have been hybrids.	autonomous functionality.		
Who is going to operate the	The robotic explorer will be operated by NASA	The robotic explorer is capable of being operated		
robotic explorer?	personnel.	by human personnel.		
	1	The robotic explorer is sized to fit its deployment		
Are there sizing	The Curiosity rover was as large an as SUV.	apparatus.		
requirements (i.e.	Previous robotic explorers were sized based on the	The robotic explorer capably carries mission-		
dimensions, weight)?	equipment needed for the mission.	essential equipment.		
	1	essentiai equipinent.		

Appendix B – Targets & Metrics

Psyche Rover - Targets & Metrics Catalog						
Function	Metric	Target	Critical	Notes		
		Power				
Convert Energy	Percentage Converted to Useful Work	80+%	Yes	Thermal to Mechanical Electrical to Mechanical		
	Operational Longevity	60-90 days	Yes			
Store Energy	Driving Duty Cycle	20%	Yes	Expected driving capacity		
		Communicate				
Send Signals	Wi-fi Connection	802.11 2.4 GHz or 5 GHz	Yes			
Receive Signals	Wi-fi Connection	802.11 2.4 GHz or 5 GHz	Yes			
		Remote Control				
Send Signals	Output Lag	0.5 seconds	Yes			
Receive Signals	Input Lag	0.5 seconds	Yes			
		Display				
Display Time	Seconds	Accurate within 2.5%	No			
Display Status	Text	Successfully display text	No			
		Sense				
		Detect				
	Terrain Slope	20° + incline 20° + decline	Yes			
Detect Obstacles	Obstacle Size	Diameter: 8 in Length/Width/Height: 6 in	Yes			
	Pixel Quantity	8 megapixels	No			
Detect Visually	Video Quality	2,500 to 4,000 kbps	No	HD Quality		
Detect Physically	Detection Radius	12 in	No			
Detect Error	Sudden Acceleration or Deceleration	20% increase/s 20% decrease/s	No			
Detect Life	Sudden Descent	1 in/s	No			
	Reporting Time	1 s >	No			
		Mobility				
Maneuver Terrain	Velocity	0.10 ft/s	Yes	Curiosity Rover achieved 0.127		
Mancaver Terrain	Turn Radius	1 ft	No			
	Terrain Slope	20° > incline 20° > decline	Yes			
Navigate Obstacles	Obstacle Size	Diameter: 8 in > Length/Width/Height: 6 in >	Yes			
		Support				
House Equipment	Enclosure Volume	0.5ft ³ (8"x10"x12")	Yes	Size estimated through similar rover designs		
	Charging Surface Area	10in ²	No	Amazon AMX3d		
Maintain Stability	Center of Gravity	Low (CG < H/2)	Yes			
,		onal Non-Function Needs				
Durable	Withstands Environmental Conditions	Yes	Yes	Gravity = 0.144 m/s^2		
Economic	Budget Adherence	≤ \$2,000.00	No			
Original	Locomotion Style	Distinct from Standard Rovers	No	Wheels commonly used		