CENTRO UNIVERSITÁRIO FEI MESTRADO ENGENHARIA ELÉTRICA ALGORITMOS COMPUTACIONAIS – PEL201

RELATÓRIO 4 ALGORITMO DE MULTIPLICAÇÃO DE CADEIA DE MATRIZES

O código fonte está disponível em:

https://github.com/apparecidoo/master-computational-algorithms

1)

O algoritmo de Multiplicação de cadeia de matrizes é um algoritmo guloso, onde a cada iteração faz é um "pedaço" da resolução final. O algoritmo foca em achar a quantidade mínima de multiplicações escalares para o resultado final, consequentemente para que isso aconteça é necessário saber qual a sequência ideal para atingir esse objetivo de minimização. Importante ressaltar que, em multiplicações de matrizes pequenas (valores pequenos de linhas e colunas) ou de pequenas quantidades de matrizes, pode ser que é mais eficiente aplicar a multiplicação ao invés de aplicar essa análise prévia devido à complexidade do algoritmo ser N³.

O algoritmo necessita de duas matrizes para encontrar o resultado desejado, uma matriz com os valores mínimos dos custos, podemos chamar de matriz resultante e a outra matriz com os valores de K que equivalem a posição do "corte" da sequência inicial de matrizes.

A ideia do algoritmo é calcular recursivamente o custo mínimo de multiplicações escalares das subsequências geradas para somar todas e por fim achar o custo mínimo sequência por completa, ou seja, conforme o algoritmo vai dividindo a sequência inicial de matrizes em duas, o algoritmo calcula as subsequências geradas e armazena-as em na matriz resultante que será usado para calcular as subsequências superiores, e também armazena o valor de K mínimo, o "corte" ideal.

Assim, na matriz resultante conseguimos ver a quantidade mínima de matrizes na posição m[1, N] sendo N a quantidade de matrizes, e na matriz que armazena os valores mínimos de K, conseguimos identificar a posição que será feito os cortes afim de achar a sequência ideal de multiplicações.

2)

Onde existem funções para criar a aplicar o algoritmo de multiplicação de cadeia de matrizes:

https://github.com/apparecidoo/master-computational-algorithms/blob/master/ComputationalAlgorithms/chain matrix multiplication.cpp

3)

Foram feitos 5 experimentos com 10 matrizes, onde suas linhas e colunas foram geradas aleatoriamente entre 100 e 1000. Abaixo está a iteração, matrizes utilizadas com suas respectivas linhas e colunas, o valor mínimo de multiplicações e o resultado com a sequência ideal para a multiplicação.

Iteração 1:

Matrix A = 411x380

Matrix B = 380x892

Matrix C = 892x398

Matrix D = 398x525

Matrix E = 525x732

Matrix F = 732x781

Matrix G = 781x236

Matrix H = 236x549

Matrix I = 549x890

Matrix J = 890x638

Valor Mínimo de Multiplicações: 786764056 Resultado: ((A(B(C(D(E(FG))))))((HI)J))

Iteração 2:

Matrix A = 667x795

Matrix B = 795x782

Matrix C = 782x560

Matrix D = 560x560

Matrix E = 560x559

Matrix F = 559x290

Matrix G = 290x409

Matrix H = 409x395

Matrix I = 395x879

Matrix J = 879x224

Valor Mínimo de Multiplicações: 673342880 Resultado: (A(B(C(D(E(F(G(H(IJ))))))))

Iteração 3:

Matrix A = 555x959

Matrix B = 959x370

Matrix C = 370x288

Matrix D = 288x965

Matrix E = 965x162

Matrix F = 162x313

Matrix G = 313x795

Matrix H = 795x745

Matrix I = 745x759

Matrix J = 759x185

Valor Mínimo de Multiplicações: 473236020 Resultado: ((A(B(C(DE))))((((FG)H)I)J))

Iteração 4:

Matrix A = 980x967

Matrix B = 967x363

Matrix C = 363x132

Matrix D = 132x381

Matrix E = 381x730

Matrix F = 730x840

Matrix G = 840x112

Matrix H = 112x796

Matrix I = 796x425

Matrix J = 425x587

Valor Mínimo de Multiplicações: 386540448 Resultado: ((A(B(C(D(E(FG))))))((HI)J))

Iteração 5:

Matrix A = 826x250

Matrix B = 250x851

Matrix C = 851x615

Matrix D = 615x876

Matrix E = 876x709

Matrix F = 709x278

Matrix G = 278x997

Matrix H = 997x153Matrix I = 153x141

Matrix J = 141x902

Valor Mínimo de Multiplicações: 477691305 Resultado: ((A(B(C(D(E(F((GH)I)))))))J)

4)

Para os experimentos de desempenho foi executado o algoritmo de multiplicação de matrizes em cadeia 20 vezes, para cada iteração foi gerada matrizes que tinham a quantidade de linhas e colunas aleatórias em um range de 100 + (100 * i) a 1000 + (100 * i), $0 \le i \le 20$. A primeira iteração continha 10 matrizes e as demais aumentavam em 100 matrizes conforme a iteração. A seguir a tabela que mostra o tempo de execução em segundos para cada iteração com o número correspondente de matrizes.

Podemos concluir a partir do gráfico que o algoritmo segue a complexidade N³, pois apresentou uma linha de função tendendo a N³.

Iteração	Número de Matrizes	Tempo
1	10	0
2	110	0
3	210	0
4	310	1
5	410	1
6	510	3
7	610	4
8	710	8
9	810	9
10	910	15
11	1010	23
12	1110	30
13	1210	41
14	1310	52
15	1410	62
16	1510	84
17	1610	99
18	1710	120
19	1810	147
20	1910	215

