COMP 2121 discrete mathematics

Assignment 1

Fall 2024

Set: 2D
Set: -

Section	Total	Actual
Question 1	40	
Question 2	15	
Question 3	10	
Question 4	10	
Question 5	10	
Total	85	

$$\frac{a}{b}$$
 x^y $\binom{n}{k}$ \neg \land \lor \rightarrow \therefore

√	Instructions	
	Assignment must be done using Microsoft Word or an alternative word processor – type your work in this document.	
	Handwritten assignments will not be marked.	
	The header of every page has math templates and logic symbols that are needed. You can copy them into your text	
	The assignment must be done in a group of two students – no individual assignments will be accepted.	
	Just the answer will not give you credit for a problem.	
	When you solve a problem, you must provide necessary explanations – yes this means explanations in English. Normally one paragraph is sufficient, but it may take more depending on a question.	
	 Do not evaluate final answer unless the question asks you to do that. Leave it as a formula, following the format in lectures and labs. 	
	PRINT the completed assignment – you are handing in a paper copy.	
	 Due at the beginning of the Lecture on October 2, 2024. No late assignments will be accepted. Electronic copies will not be accepted. 	

$$\frac{a}{b}$$
 x^y $\binom{n}{k}$ \neg \land \lor \rightarrow \therefore

- Q1) The System Administrator has set the following rules for the password:
 - ✓ The password is a string made of 14 characters.
 - ✓ The available characters are Hexadecimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
 - ✓ Repetition is allowed unless otherwise stated.
 - *** Do not evaluate expressions ***
 - a) How many passwords have exactly seven A's and at least five B's?

Explanation:

If B = 5:
$$C(14, 7) \times C(7,5) \times 14^{2}$$
If B = 6:
$$C(14, 7) \times C(7, 6) \times 14$$
If B = 7:
$$C(14, 7) \times C(7, 7)$$

$$= C(14, 7)$$

$$= C(14, 7)$$
Total: $C(14, 7) \times C(7, 5) \times 14^{2} \times C(14, 7) \times C(7, 6) \times 14 \times C(14, 7)$

$$= C(14, 7) \times [C(7,5) \times 14^{2} + C(7, 6) \times 14 + 1]$$

Answer:

$$\binom{14}{7}$$
 [$\binom{7}{5}$ × 14² + $\binom{7}{6}$ × 14 + 1]

b) How many passwords have exactly two A's and exactly three B's, so that the three B's are sandwiched between the A's? 010A1 B8BB 3112A is an example of such a string.

Explanation:

Assume first A at i, second A at j (i > j)

: 3B inside need at least 4 bits,

$$i \in [1,10], j \in [i+4,14]$$

$$\therefore$$
 i has 10 – 1 + 1 = 10 possible bit, j has 14 – i – 4 +1 = 11 – i

.. The total possibility of A's position has

$$\begin{split} & \sum_{i=1}^{10} (11-i) \\ & S_n = \frac{n}{2} \times (a_1 + a_n), \ a_1 = 11-1 = 10, a_{10} = 11-10 = 1 \\ & S_{10} = \frac{10 \times (10+1)}{2} = \mathbf{55} \end{split}$$

∵ The bits between i and j is

... The total possibility of B's position has:

$$C(j-i-1,3)$$
∴ $j-i-1 \in [3, 12]$
∴ $C(j-i-1,3)$

$$\frac{a}{b}$$
 x^y $\binom{n}{k}$ \neg \land \lor \rightarrow \therefore

$$=\sum_{n=3}^{12} C(n,3)$$
= 1 + 4 + 10 + 20 + 35 + 56 + 84 + 120 + 165 + 220
= **715**

∵ The remaining position has

$$14 - 2 - 3 = 9$$

... The possibility of remaining position has:

14⁹

∴ The total possibility has:

$$55 \times 715 \times 14^9$$

Answer:

$$55 \times 715 \times 14^9$$

c) How many passwords have at least one A, at least one B, at least C, and have no other characters?

Explanation:

Total possibility:

 3^{14}

Only 2 of them:

 3×2^{14}

Only 1 of them:

 3×1

Total:

$$3^{14} - 3 \times 2^{14} - 3$$

Answer:

$$3^{14} - 3 \times 2^{14} - 3$$

d) How many passwords with exactly 3 B's, have the sum of all digits equal to 40 and have no adjacent B's? Examples of such passwords are 00230 B11B 000B0, B1101 0B00 00B04, etc.

Explanation:

- : 3 B, total 14 bits
- \therefore has 14 3 = 11 bits to put non-B chars
- ∵ No adjacent B
- ∴ has 11 + 1 = 12 bits to put B

C(12, 3)

: The sum of all digits equal to 40

Also :: $3 \times B = 33$

- ∴ Remaining value 40 33 = 7
- \therefore available number $\in [0, 7]$
- ∴ Possible situations:

$$\frac{a}{b} \quad x^y \quad \binom{n}{k} \quad \neg \quad \land \quad \lor \quad \rightarrow \quad \dot{} .$$

```
C(11, 7) = 330
7 \times 1 and 4 \times 0:
1 \times 7 and 10 \times 0:
                                            C(11, 1) = 11
1 \times 6, 1 \times 1 and 9 \times 0:
                                            C(11, 1) \times C(10, 1) = 11 \times 10 = 110
                                            C(11, 1) \times C(10, 2) = 11 \times 45 = 495
1 \times 5, 2 \times 1 and 8 \times 0:
1 \times 5, 1 \times 2 and 9 \times 0:
                                            C(11, 1) \times C(10, 1) = 11 \times 10 = 110
                                            C(11, 1) \times C(10, 1) = 11 \times 10 = 110
1 \times 4, 1 \times 3 and 9 \times 0:
1 \times 4, 1 \times 2, 1 \times 1 and 8 \times 0: C(11, 1) \times C(10, 1) \times C(9, 1) = 11 \times 10 \times 9 = 990
1 \times 4, 3 \times 1 and 7 \times 0:
                                            C(11, 1) \times C(10, 3) = 11 \times 120 = 1320
2 \times 3, 1 \times 1 and 8 \times 0:
                                            C(11, 2) \times C(9, 1) = 55 \times 9 = 495
1 \times 3, 2 \times 2 and 8 \times 0:
                                            C(11, 1) \times C(10, 2) = 11 \times 45 = 495
1 \times 3, 1 \times 2, 2 \times 1 and 7 \times 0: C(11, 1) * C(10, 1) × C(9, 2) = 11 × 10 × 36 = 3960
1 \times 3, 4 \times 1 and 6 \times 0:
                                            C(11, 1) \times C(10, 4) = 11 \times 210 = 2310
3 \times 2, 1 \times 1 and 7 \times 0:
                                            C(11, 3) \times C(8, 1) = 165 \times 8 = 1320
2 \times 2, 3 \times 1 and 6 \times 0:
                                            C(11, 2) \times C(9, 3) = 55 \times 84 = 4620
1 \times 2, 5 \times 1 and 5 \times 0:
                                            C(11, 1) \times C(10, 5) = 11 \times 252 = 2772
∴ Total possibility
```

 $C(12,3)\times$ (sum of these numbers)

Answer:

 $C(12,3)\times$ (sum of these numbers)

COMP 2121 October 2024 Page 5 of 11

$$\frac{a}{b} \quad x^y \quad \binom{n}{k} \quad \neg \quad \land \quad \lor \quad \rightarrow \quad \therefore$$

Q2) Consider the following programming segment. Your answer must rely on a combination structure. Answers that use sigma notation will not be accepted.

```
counter = 100

for i = 4 to (n+3) do {
    counter = counter + 11

    for j = i+1 to (3n+15) do {
        counter = counter + 22

        for k = j+1 to (n+8) do {
            counter = counter + 33
        }
    }
}
// assume n ≥ 10
```

a) Determine the value of the variable counter after the segment is executed. Provide your answer as a function of n (i.e., a formula which depends on n). Make sure to explain how/why the parts of the formula relate to counting.

Explanation:

```
1. (n+3)-4+1=n

+=11n

2. C(3n+15-4,2)-C(3n+15-n-3,2)\times 22

+=22[C(3n+12,2)-C(2n+12,2)]

3. +=33[C(n+5,3)-C(5,3)]

counter = 100+11n+22[C(3n+12,2)-C(2n+12,2)]+33[C(n+5,3)-C(5,3)]
```

Answer:

counter =
$$100 + 11n + 22[C(3n + 12, 2) - C(2n + 12, 2)] + 33[C(n + 5, 3) - C(5, 3)]$$

b) Evaluate your answer in part a) for n = 50. Show the work

counter =
$$100 + 11 \times 50 + 22[C(3 \times 50 + 12, 2) - C(2 \times 50 + 12, 2)] + 33[C(50 + 5, 3) - C(5, 3)]$$

COMP 2121 October 2024 Page 6 of 11

```
\frac{a}{b} \quad x^{y} \quad {n \choose k} \quad \neg \quad \land \quad \lor \quad \rightarrow \quad \therefore
= 100 + 550 + 22 \times (13041 - 6216) + 33 \times (26235 - 10)
= 100 + 550 + 150150 + 865425
= 1016225
```

c) Check your answer in part b) by implementing the code in a programming language of your choice. Use the value n = 50 and print the variable counter after the code execution. You must provide two screenshots: implementation and output.

```
1
       #include <stdio.h>
 2
 3 >
       int main(void) {
           int counter = 100;
 4
 5
           int n = 50;
           for(int i = 4; i \le n + 3; i++) {
 6
               counter += 11;
 7
               for(int j = i + 1; j \le 3 * n + 15; j++) {
 8
9
                    counter += 22;
                   for(int k = j + 1; k \le n + 8; k++) {
10
11
                       counter += 33;
12
13
14
           printf( format: "%d\n", counter);
15
16
           return 0;
17
       }
18
```

COMP 2121 October 2024 Page 7 of 11

$$\frac{a}{b}$$
 x^y $\binom{n}{k}$ \neg \land \lor \rightarrow \therefore

e) What do you conclude?
 Nested loops are complicated; computers and programming languages are truly great inventions.

COMP 2121 October 2024 Page 8 of 11

$$\frac{a}{b} \quad x^y \quad \binom{n}{k} \quad \neg \quad \land \quad \lor \quad \rightarrow \quad \div$$

Q3) Use the truth table to show that the following argument is NOT valid.

Clearly, 1) indicate in red/bold in the table what makes you come to that conclusion, and then 2) explain your answer below the table

$$(a \lor b) \to (a \to c)$$

 $\therefore a \lor c$

а	b	С	a∨b	$(aVb)\rightarrow (a\rightarrow c)$	aVc
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Explanation:

In some cases, when $(aVb)\rightarrow (a\rightarrow c)$ is 1, aVc is 0.

COMP 2121 October 2024 Page 9 of 11

$$\frac{a}{b}$$
 x^y $\binom{n}{k}$ \neg \land \lor \rightarrow \therefore

Q4) Use rules of inference and <u>direct proof</u> to prove the argument is valid.

$$q \lor \neg t$$

$$(w \lor \neg a) \to (\neg q \land k)$$

$$t$$

$$(\neg w \land t) \to x$$

 $\therefore x$

	STEPS	REASON
1	$q \vee \neg t$	Premise
2	t	Premise
3	q	Rule of Disjunctive Syllogism(step1,3)
4	$(w \vee \neg a) \to (\neg q \wedge k)$	Premise
5	$\neg(\neg q \land k)$	Step 3
6	$\neg(w \lor \neg a)$	Modus Ponens
7	¬w∧a	DeMorgan's Law(step 6)
8	¬w,a	Conjunction
9	¬w ∧ t	Conjunction(step1,6)
10	$(\neg w \land t) \to x$	Premise
11	X	Modus Ponens

COMP 2121 October 2024 Page 10 of 11

$$\frac{a}{b}$$
 x^y $\binom{n}{k}$ \neg \land \lor \rightarrow \therefore

Q5) Use rules of inference and <u>proof by contradiction</u> to prove the argument is valid.

Note: contradiction pointing to x and $\neg x$ will not be accepted. In other words, if you start with $\neg x$, then independently prove x (which is Q4), and say lines x and $\neg x$ are in contradiction – proof will not be accepted. Instead, follow instructions from the lecture/lab.

$$q \lor \neg t$$

$$(w \lor \neg a) \to (\neg q \land k)$$

$$t$$

$$(\neg w \land t) \to x$$

 $\therefore x$

STEPS		REASON
1	$\neg x$	Assume
2	t	Premise
3	$(\neg w \land t) \to x$	Premise
4	$\neg(\neg w \land t)$	Modus tollens(step1,3)
5	w∨¬t	DeMorgan's Law
6	W	Rule of disjunctive syllogism
7	$(w \lor \neg a) \to (\neg q \land k)$	Premise
8	(<i>w</i> ∨ ¬ <i>a</i>)	Step 6
9	$(\neg q \wedge k)$	Modus Ponens
10	$\neg q$	Rule of conjunction
11	$q \lor \neg t$	Premise
12	¬t	Rule of disjunctive syllogism
13	X	Contradiction ¬t and t

COMP 2121 October 2024 Page 11 of 11