# MAT 228A Notes

Sam Fleischer

September 27, 2016

## 1 Solving the Poisson Equation using Fourier Series

In 1-D, suppose  $u_{xx} = f$  on (0,1) with u(0) = u(1) = 0. Note that if  $f = -(n\pi)^2 \sin(n\pi x)$  then the solution is  $u = \sin(n\pi x)$  by observation. Reframe the problem as Lu = f with  $L = \frac{\partial^2}{\partial x^2}$ . Then with  $u_n := \sin(n\pi x)$ , we have

$$Lu_n = -(n\pi)^2 u_n \tag{1}$$

and thus  $u_n$  is an eigenfunction of L with eigenvalue  $-(n\pi)^2$ . We can show they are orthogonal in  $L^2(0,1)$  by

$$\langle \sin(n\pi x), \sin(m\pi x) \rangle_{L^2(0,1)} = \int_0^1 \sin(n\pi x) \sin(m\pi x) dx = \begin{cases} \frac{1}{2} & \text{if } n \neq m \\ 0 & \text{else} \end{cases}$$
 (2)

It also turns out these eigenfunctions form a complete set in  $L^2$ , that is  $\{u_n\}_{n=1}^{\infty}$  is a basis. Thus, for a given  $f \in L^2(0,1)$ , there are coefficients  $a_n$  such that

$$f(x) = \sum_{n=1}^{\infty} a_n u_n(x) \tag{3}$$

where the convergence is in  $\|\cdot\|_{L^2(0,1)}$ . The solution u of Lu = f can also be written as a linear combination of  $u_n$ ,

$$u(x) = \sum_{n=1}^{\infty} \beta_n u_n(x) \tag{4}$$

We can use orthogonality of  $u_n$  to explicitly compute  $a_n$ , and we obtain

$$a_n = 2\langle f(x), u_n(x) \rangle_{L^2(0,1)} \tag{5}$$

Finally, we have

$$L\left[\sum \beta_n u_n(x)\right] = \sum a_n u_n(x),\tag{6}$$

and we exploit orthogonality again, taking an inner product of both sides with  $u_m$ , and we obtain

$$\beta_n = -\frac{a_n}{(n\pi)^2} \qquad \text{for } n = 1, 2, \dots$$
 (7)

In 2-D, it is the same basic idea. We have  $\nabla^2 u = u_{xx} + u_{yy} = f$  on  $(0,1) \times (0,1)$  with u(x,y) = 0 on the boundary. The eigenfunctions are given by

$$u_{n,m}(x) = \sin(n\pi x)\sin(m\pi y)$$
 for  $n, m = 1, 2, ...$  (8)

with eigenvalues  $\lambda_{n,m} = -(n^2 + m^2)\pi^2$ . The remaining calculations of the general solution to  $\nabla^2 u = f$  for any  $f \in L^2((0,1)^2)$  are similar to the solution in 1-D.

## 2 Methods of Solving PDEs Numerically

#### 2.1 Finite Differences

Given a PDE, a domain  $\Omega$ , and boundary conditions, we take the following steps:

- 1) Discretize the Domain  $\Omega$ , that is, represent  $\Omega$  by a set of points. For example, draw a grid and the points are at the intersections and at the boundary.
- 2) Represent functions by values at those points.
- 3) Use discrete values to approximate derivatives using algebraic formulas

The result, assuming the PDE is linear, is an algebraic equation of the form

$$A(u) = \underline{b}. (9)$$

#### 2.2 Finite Elements

Reformulate the problem as a variational problem. Rather than solving  $\nabla^2 u = f$ , define the functional F by

$$F(u) := \int_{\Omega} \frac{1}{2} \nabla u \cdot \nabla u + u f dx. \tag{10}$$

The minimizer of F also solves  $\nabla^2 u = f$  (using the Euler-Lagrange equation). So we want to find  $u \in S$  to minimize F where S is the space of "admissible" functions.

Now let's discretize the function space, i.e. choose a subset of the basis elements of S to represent S. Define this subset  $S_h$ , where dim  $S_h = N < \infty$ . Then for any  $u_h \in S_h$ ,

$$u_h(x) = \sum_{k=1}^{N} a_k \phi_k(x) \tag{11}$$

A good basis  $\{\phi_k\}_{k=1}^N$  for  $S_h$  are tent functions with small overlap, for example,



It turns out  $S_h$  is the space of "connect-the-dot" functions (piecewise linear functions). Then we can approximate a function  $u \in L^2$  by its closest representation using the basis  $\{\phi_k\}_{k=1}^N$ , i.e.

$$u(x) \approx u_h(x) := \sum_{k=1}^{N} a_k \phi_k(x). \tag{12}$$

The projection theorem tells us there are unique  $\{a_k\}$  such that  $\|u-u_h\|_{L^2}$  is minimized.

Anyway, this looks a lot like finite differences, but is philosophically different: the function space is discretized, but not the domain.

Finally, we can solve a minimization problem on  $S_h$ . What does  $F(u_h)$  look like?

$$F(u_h) = \frac{1}{2} \sum_{i,j=1}^{N} A_{i,j} a_i a_j + \sum_{i=1}^{N} b_i a_i$$
(13)

where

$$A_{i,j} = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j dx$$
 and  $b_i = \int_{\Omega} f(x)\phi_i(x)dx$  (14)

and  $a_i$  are unknown. To minimize this expression with respect to  $\{a_1, \ldots, a_N\}$ , we take partial derivatives with respect to each  $a_i$ , i.e.  $\nabla[a_1, \ldots, a_N]$ , and set it equal to zero. However,

$$\nabla F = 0 \implies Aa = b,\tag{15}$$

which is a linear system. It turns out that for very simple problems, this is identical to the linear system we acheive using finite differences.

Note that we chose a locally-supported since this gives rise to a sparse matrix A, which is easier to solve than arbitrary systems.

### 2.3 Spectral Methods

We can use a representation of u, i.e.

$$u_h(x) = \sum_{k=1}^{N} a_k \phi_k(x)$$
 (16)

where  $\phi_k$  are known functions (not limiting ourselves to locally-supported  $\phi_k$ ), for example, take  $\phi_k = \sin k\pi x$ . From here,

- 1) Solve the variational problem (but A is not sparse computationally expensive)
- 2) For a set of points  $\{x_1, \ldots, x_N\}$  in the domain  $\Omega$ , solve  $\nabla^2 u x_i = f(x_i)$ . That is, actually solve the PDE on the grid points (spectral collocation, which is a generalization of the finite differences method).

Thus, again, we have

$$\sum_{i,j=1}^{N} a_j \phi_j(x_i) \quad \text{for i,j} = 1, 2, \dots N.$$
 (17)

And once again we get a linear system:

$$A_{ij} = \phi_j''(x_i), \tag{18}$$

The main problems of this method are

• In general, the matrix A is dense, not sparse