线性代数 特征值与特征向量 矩阵的对角化

张晓平

数学与统计学院

 $Email: \ xpzhang.math@whu.edu.cn$

 $Homepage: \quad http://staff.whu.edu.cn/show.jsp?n=Zhang\%20Xiaoping$

线性代数

目录

1 实对称矩阵的对角化

1 实对称矩阵的对角化

定义

元素为复数的矩阵和向量,称为复矩阵和复向量。

定义

设 a_{ij} 为复数, $\mathbf{A}=(a_{ij})_{m\times n}$, $\bar{\mathbf{A}}=(\bar{a}_{ij})_{m\times n}$, \bar{a}_{ij} 是 a_{ij} 的共轭复数,则称 $\bar{\mathbf{A}}$ 是 \mathbf{A} 的共轭矩阵。

- \bullet $\bar{\bar{\mathbf{A}}} = \mathbf{A}$
- \bullet $\bar{\mathbf{A}}^T = \overline{\mathbf{A}^T}$
- 当 \mathbf{A} 为实对称矩阵时, $\bar{\mathbf{A}}^T = \overline{\mathbf{A}^T}$

- \bullet $\overline{k}\overline{A} = \overline{k}\overline{A}$
- $\bullet \ \overline{\textbf{A} + \textbf{B}} = \overline{\textbf{A}} + \overline{\textbf{B}}$
- $\bullet \ \overline{AB} = \bar{A}\bar{B}$
- $\bullet \ \overline{(\mathbf{A}\mathbf{B})}^T = \mathbf{\bar{B}}^T \mathbf{\bar{A}}^T$

