

法律声明

- ■课程详情请咨询
 - ◆微信公众号, 北风教育
 - ◆官方网址: http://www.ibeifeng.com/

人工智能之深度学习

卷积神经网络(CNN)

主讲人: Vincent

上海育创网络科技有限公司

课程要求

- ■课上课下"九字"真言
 - ◆认真听,善摘录,勤思考
 - ◆多温故, 乐实践, 再发散
- ■四不原则
 - ◆不懒散惰性,不迟到早退
 - ◆不请假旷课,不拖延作业
- ■一点注意事项
 - ◆违反"四不原则",不包就业和推荐就业

严格是大爱

寄语

做别人不愿做的事,

做别人不敢做的事,

做别人做不到的事。

课程内容

- ■一、卷积神经网络
 - ◆ 层次结构
 - ◆ 数据处理
 - ◆ 训练算法
 - ◆ 优缺点
- 二、正则化与Dropout
- 三、CNN典型的结构与训练方式
- 四、数据增强
- 五、CNN经典网络结构
- 六、CNN迁移学习

卷积神经网络典型CNN-ResNet

- 问题:由于梯度消失,深层网络很难训练。因为梯度反向传播到前面的层,重复相乘可能使梯度无穷小。结果就是,随着网络的层数更深,其性能趋于饱和,甚至迅速下降。
- ■如下图:在cifar-10上的测试,深层CNN('plain' network)性能均比浅层的错误率要高。

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

卷积神经网络典型CNN-ResNet

- ResNet 的核心思想是引入一个「恒等快捷连接」(identity shortcut connection),直接跳过一个或多个层.
- 这种思想,类似于LSTM中门开关,ResNet 可以认为是门开关的一种特殊情况。

两种 identity Shortcut Connection方式

■ 实线的的Connection部分("第一个粉色矩形和第三个粉色矩形")都是3x3x64的特征图,他们的 channel个数一致,所以采用计算方式:

$$y=F(x)+x$$

■ 虚线的的Connection部分("第一个绿色矩形和第三个绿色矩形")分别是3x3x64和3x3x128的特征图, 他们的channel个数不同(64和128), 所以采用计算方式:

$$y=F(x)+xW$$

■ 其中W是卷积操作,用来调整x的channel维度的。

ResNet--identity shortcut connection

- 左图: 若X和F(x)输出通道数(且高宽)一致,则直接相加;
- 右图:若不一致(仅仅是通道数量不一致),方法一:使用1*1 conv来调整X的shortcut输出通道;方法二:使用填充0补齐。

残差容易学习的数学解释

残差容易学习的数学解释

ResNet和vgg的对比

- 一、 VGG19结构
- 二、 34-layer plain(vgg加深)
- 三、上述34-layer plain+残差结构 (identity shortcut connection)

EDUCATION TO CREATE A BRIGHT FUTURE

ResNet和vgg的对比结果

- 左图: plain结构错误率。 右图: 残差结构错误率
- 结果: 残差结构错误率显著优于plain结构。

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

ResNet-bottleneck优化

- ResNet中提出了一种bottleneck的结构块来代替常规的残差块,它借鉴了 Inception网络中1x1 conv来缩减或扩张feature map维度
- 目的:不降低模型精度的前提下,降低参数量和计算量。

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

EDUCATION TO CREATE A BRIGHT FUTURE

ResNet模型结构图

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
-		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9 /blog.	csdn. 11:3×10 941196		

resnet层数的计算--有权重的才算1层

101、152层的ResNet,而且不仅没有出现退化问题,错误率也大大降低,同时计算复杂度也保持在

很低的程度。

ResNet在不同层数时的网络配置的堆叠。

其中基础结构很类似,都是前面提到的两层和三层的残差学习单元

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
4		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	[1×1, 256]	1 21, 64 3×3, 64 1×1, 256	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1 & 128 \\ 3 \times 3 & 12 \\ 1 \times 1, 512 \end{bmatrix} $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3 & 257 \\ 1 \times 1, 1024 \end{bmatrix} 623$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1, 1, 1024 \end{bmatrix} 36$		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1 & 512 \\ 3 \times 3 & 512 \\ 1 \times 1 & 2048 \end{bmatrix} $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
Sic.	1×1	average pool, 1000-d fc, softmax —						
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10 ⁹ /blog	7.6×10 ⁹ /blog. csdn. 11.3×10 ⁹ 41196		

ResNet在ImageNet上的结果:

上海育创网络科技有限公司