Discrete univariate distributions

Distribution	Probability mass function (p.m.f.) $p(x)$	Range	Parameters	$\mathbb{E}(X)$	Var(X)	$\label{eq:moment-generating} \mbox{function } M(t)$	Comments
$\frac{\text{Binomial}^{1,2}}{\text{Bi}(n,\theta)}$	$\binom{n}{x}\theta^x(1-\theta)^{n-x}$	$x \in \{0, 1, \dots, n\}$	$n \in \mathbb{N}$ $0 < \theta < 1$	$n\theta$	$n\theta(1-\theta)$	$(1 - \theta + \theta \exp(t))^n$	No. of successes in n trials θ – probability of success
Geometric $Geo(\theta)$	$\theta^{x-1}(1-\theta)$	$x \in \mathbb{N}$	$0 < \theta < 1$	$\frac{1}{1-\theta}$	$\frac{\theta}{(1-\theta)^2}$	$\frac{(1-\theta)\exp(t)}{1-\theta\exp(t)}$	No. of trials until (and including) first failure θ – probability of success
$\begin{array}{c} \text{Hypergeometric} \\ \text{HyGe}(n,N,M) \end{array}$	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$x \in {\max\{0, n - (N - M)\}, \dots, \min\{n, M\}}$	$N, n \in \mathbb{N}$ $M \in \{0, \dots, N\}$	$n\theta$	$n\theta(1- heta)\cdotrac{N-n}{N-1}$ (with $ heta=rac{M}{N}$)	3	No. of type I objects in a sample of size n , drawn without replacement from a population of size N , containing M type I objects.
Negative Binomial NeBi (k,θ)	$ \binom{x-1}{k-1} \theta^{x-k} (1-\theta)^k $	$x \in \{k, k+1, \ldots\}$	$k \in \mathbb{N} \\ 0 < \theta < 1$	$\frac{k}{1-\theta}$	$\frac{k\theta}{(1-\theta)^2}$	$\left(\frac{(1-\theta)\exp(t)}{1-\theta\exp(t)}\right)^k$	No. of trials until (and including) k^{th} failure θ – probability of success $\text{NeBi}(1,\theta) \equiv \text{Geo}(\theta)$
$\begin{array}{c} \textbf{Poisson} \\ \textbf{Poi}(\lambda) \end{array}$	$\exp(-\lambda)\frac{\lambda^x}{x!}$	$x \in \mathbb{N}_0$	$\lambda > 0$	λ	λ	$\exp(\lambda(\exp(t)-1))$	

 $^{^1}$ Bi(n, $\theta)$ can be approximated by Poi(n θ), if n large, θ small and $n\theta$ moderate.

Continuous univariate distributions

Distribution	Probability density function $\label{eq:probability} \mbox{(p.d.f.)} \ f(x)$	Range	Parameters	$\mathbb{E}(X)$	$\operatorname{Var}(X)$	$\label{eq:moment-generating} % \begin{center} \be$	Comments
Beta Be (α_1, α_2)	$\frac{x^{\alpha_1-1}(1-x)^{\alpha_2-1}}{\mathrm{B}(\alpha_1,\alpha_2)}$	$0 \le x \le 1$	$ \alpha_1 > 0 \\ \alpha_2 > 0 $	$\frac{\alpha_1}{\alpha_1 + \alpha_2}$	$\frac{\alpha_1 \alpha_2}{(\alpha_1 + \alpha_2)^2 (\alpha_1 + \alpha_2 + 1)}$	3	$X_1 \sim \operatorname{Ga}(\alpha_1, \theta)$ $X_2 \sim \operatorname{Ga}(\alpha_2, \theta)$ independent $\Rightarrow \frac{X_1}{X_1 + X_2} \sim \operatorname{Be}(\alpha_1, \alpha_2)$
Cauchy $\operatorname{Ca}(\eta,\gamma)$	$\frac{1}{\pi\gamma\left(1+\frac{(x-\eta)^2}{\gamma^2}\right)}$	$x \in \mathbb{R}$	$\eta \in \mathbb{R}$ $\gamma > 0$	4	4	4	$Ca(0,1) \equiv t(1)$
Chi-Squared $\chi^2(\nu)$	$\frac{x^{\frac{\nu}{2}-1}\exp\left(-\frac{x}{2}\right)}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)}$	x > 0	$\nu \in \mathbb{N}$	ν	2ν	$\frac{1}{(1-2t)^{\frac{\nu}{2}}}$	$X_i \sim N(0,1)$ independent $\Rightarrow \sum_{i=1}^{\nu} X_i^2 \sim \chi^2(\nu)$
Exponential $Expo(\theta)$	$\theta \exp(-\theta x)$	x > 0	$\theta > 0$	$\frac{1}{\theta}$	$\frac{1}{\theta^2}$	$\frac{1}{1 - \frac{t}{\theta}}$	
$F \\ F(\nu_1,\nu_2)$	$\frac{\nu_1^{\frac{\nu_1}{2}}\nu_2^{\frac{\nu_2}{2}}}{\mathrm{B}\left(\frac{\nu_1}{2},\frac{\nu_2}{2}\right)} \frac{x^{\frac{\nu_1}{2}-1}}{\left(\nu_1 x + \nu_2\right)^{\frac{\nu_1+\nu_2}{2}}}$	x > 0	$\nu_1, \nu_2 \in \mathbb{N}$	$\frac{\nu_2}{\nu_2 - 2}$ (for $\nu_2 > 2$)	$\frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$ (for $\nu_2 > 4$)	4	$\begin{array}{l} X_1 \sim \chi^2(\nu_1) \\ X_2 \sim \chi^2(\nu_2) \text{ independent} \\ \Rightarrow \frac{X_1/\nu_1}{X_2/\nu_2} \sim F(\nu_1, \nu_2) \end{array}$

² Bi (n, θ) can be approximated by N $(n\theta, n\theta(1-\theta))$, if n large and θ not too close to 0 or 1.

³ No simple closed form expression exists.

Distribution	Probability density function $\label{eq:probability} \mbox{(p.d.f.)} \ f(x)$	Range	Parameters	$\mathbb{E}(X)$	Var(X)	$\label{eq:moment-generating} \mbox{function } M(t)$	Comments
Gamma $\operatorname{Ga}(\alpha, \theta)$	$\frac{\theta^{\alpha} x^{\alpha - 1} \exp(-\theta x)}{\Gamma(\alpha)}$	x > 0	$\theta > 0$ $\alpha > 0$	$\frac{\alpha}{\theta}$	$\frac{\alpha}{\theta^2}$	$\frac{1}{\left(1-\frac{t}{\theta}\right)^{\alpha}}$	$\operatorname{Ga}(1, \theta) \equiv \operatorname{Expo}(\theta)$ $\operatorname{Ga}\left(rac{ u}{2}, rac{1}{2} ight) \equiv \chi^2(u)$
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$x \in \mathbb{R}$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	μ	σ^2	$\exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$	$N(0,1)$ – standard normal $\frac{X-\mu}{\sigma} \sim N(0,1)$
Pareto $\operatorname{Pa}(k,\theta)$	$rac{ heta k^{ heta}}{x^{ heta+1}}$	x > k	$k > 0$ $\theta > 0$	$\frac{\theta k}{\theta - 1}$ (for $\theta > 1$)	$\frac{\theta k^2}{(\theta - 1)^2(\theta - 2)}$ (for $\theta > 2$)	3	
Student's t $t(\nu)$	$\frac{1}{\sqrt{\nu} B\left(\frac{\nu}{2}, \frac{1}{2}\right) \left(1 + \frac{x^2}{\nu}\right)^{\frac{\nu+1}{2}}}$	$x \in \mathbb{R}$	$\nu \in \mathbb{N}$	$0 $ (for $\nu > 1$)	$\frac{\nu}{\nu - 2}$ (for $\nu > 2$)	4	$X_1 \sim N(0, 1)$ $X_2 \sim \chi^2(\nu) \text{ independent}$ $\Rightarrow \frac{X_1}{\sqrt{\frac{X_2}{\nu}}} \sim t(\nu)$
Uniform	$\frac{1}{b-a}$	$a \le x \le b$	$a, b \in \mathbb{R}$ $a < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{\exp(bt) - \exp(at)}{t(b-a)}$	$\mathrm{U}(0,1)\equiv\mathrm{Be}(1,1)$
Weibull $\operatorname{We}(\alpha,\theta)$	$\alpha \theta x^{\alpha - 1} \exp(-\theta x^{\alpha})$	x > 0	$\begin{array}{c} \alpha > 0 \\ \theta > 0 \end{array}$	$\frac{\Gamma\left(1+\frac{1}{\alpha}\right)}{\theta^{\frac{1}{\alpha}}}$	$\frac{\Gamma\left(1+\frac{2}{\alpha}\right)}{\theta^{\frac{2}{\alpha}}}-\left(\mathbb{E}(X)\right)^{2}$	3	$We(1,\theta) \equiv Expo(\theta)$

No simple closed form expression exists.
 Does not exist.

Multivariate distributions

Distribution	Probability mass / density function $p(\mathbf{x}) = p(x_1, \dots, x_k)$ or $f(\mathbf{x}) = f(x_1, \dots, x_k)$	Range	Parameters	$\mathbb{E}(X_j)$	$Var(X_j)$	$Cov(X_i, X_j)$	Moment-generating function $M(\mathbf{t}) = M(t_1, \dots, t_k)$	
Multinomial $Mu(n,\theta_1,\dots\theta_k)$	$\frac{n!}{x_1!\cdots x_k!}\theta_1^{x_1}\cdots\theta_k^{x_k}$	$x \in \mathbb{N}_0$ $\sum_{j=1}^k x_j = n$	$n \in \mathbb{N}$ $0 < \theta_j < 1$ $\sum_{j=1}^k \theta_j = 1$	$n heta_j$	$n\theta_j(1-\theta_j)$	$-n\theta_i\theta_j$	$\left(\sum_{j=1}^{k} \theta_j \exp(t_j)\right)^n$	
	$\frac{1}{(2\pi)^{\frac{k}{2}} \mathbf{\Sigma} ^{1/2}}\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$	$x \in \mathbb{R}^k$	$oldsymbol{\mu} \in \mathbb{R}^k$ $oldsymbol{\Sigma}$ symm., pos. def.	μ_j	Σ_{jj}	Σ_{ij}	$= \exp\left(\boldsymbol{\mu}^{\top}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right)$	
Special case: bivariate normal distribution with $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$, $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$:								
$\frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2(1-\rho)}}$	$\frac{1}{2} \exp\left(-\frac{\sigma_2^2(x_1-\mu_1)^2 - 2\rho\sigma_1\sigma_2(x_1-\mu_1)(x_2-\mu_2)}{2\sigma_1^2\sigma_2^2(1-\rho^2)}\right)$	$(u_2) + \sigma_1^2(x_2 - \mu_2)^2$	$\mu_1, \mu_2 \in \mathbb{R}$ $\sigma_1^2, \sigma_2^2 > 0$ $-1 < \rho < 1$	μ_j	σ_j^2	$ ho\sigma_1\sigma_2$		