

Syntax and Semantics

DFA – Deterministic FA

NFA – Nondeterministic FA

Equivalence of DFA and NFA

Syntax and Semantics -1

a statement from **Terence Parr**

- A language is a set of valid sentences. What makes a sentence valid?
- You can break validity down into two things: syntax and semantics.
 - syntax refers to grammatical structure
 - semantics refers to the meaning of the vocabulary symbols arranged with that structure.

- Grammatical (syntactically valid) does not imply sensible (semantically valid)
- For example, the grammatical sentence "cows flow supremely" is grammatically ok (subject verb adverb) in English, but makes no sense.
- Similarly, in a programming language, your grammar (syntax rules) may allow but the language may only allow the meaningful sentence (a semantic rule).

- When you write a grammar, you are specifying the set of syntax rules obeyed by your language.
- When you use this to generate a recognizer for sentences in that language. To apply semantic rules, you must add actions or semantic predicates to the grammar.
- The actions test the "value" of the various tokens and their relationships to determine semantic validity.
 - For example, if you look up a type name in a symbol table to ensure it's a type not a variable, you are applying a semantic rule.

FA: a Representation of RL

- 4 representations of Regular Language (RL)
 - RE regular expression
 - FA finite Accepters/Automata
 - TG a graph-based way of specifying patterns that can be represented by FA
 - RG regular grammar

Automata: FA does not have storage

DFA and NFA

- DFA a deterministic FA is convertible in a simple way into a program that can serve as a recognizer for RL
- NFA a nondeterministic FA is more powerful in design stage of a recognizer
- Every NFA can be converted into a DFA (see sec. 2.3)

DFA

Definition 2.1

A **deterministic finite accepter** or **dfa** is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of internal states
- ullet Σ is a finite set of symbols called the **input alphabet**
- δ: Q×Σ → Q is a total function called the transition function
- $q_0 \in Q$ is the **initial state**
- F ⊆ Q is a set of final states

Transition Graph

- TG a graphic notation for FA
 - **Example 2.1** and Figure 2.1 (page 39)
 - $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$
 - \bullet δ is given by
 - $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1,$
 - $\delta(q_1, 0) = q_0, \delta(q_1, 1) = q_2,$
 - $\delta(q_2, 0) = q_2, \delta(q_2, 1) = q_1,$

Figure 2.1 TG for example 2.1

CSC 135

10

Languages and DFA's

- Definition 2.2 (page 40)
 - The language accepted by a dfa $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on alphabet accepted by M. In formal notation

• $L(M) = \{w \in \Sigma^* : \delta^*(q_0, w) \in F \}$

4

Figure 2.2 A dfa with trap state, multiple label edge

Figure 2.3 Table representation of dfa in Figure 2.2

	а	ь
q_0	q_0	q_1
q_1	q_2	q_2
q_2	q_2	q_2

Example 2.3 dfa design technique

Find a dfa that recognizes all strings starting with ab.

Example 2.4

 Find a dfa that accepts all the string s on {0, 1}, except those containing the substring 001.

CSC 135

15

Regular Languages

- The family of languages that is accepted by DFA is quite limited
- Definition 2.3
 - A language L is called regular if and only if there exists some dfa M such that
 - L = L(M)
- In class exercise to show a language is regular (see example 2.5)

Example 2.5 Show that the language L is regular

• Show that $L = \{awa: w \in \{a, b\}^*\}$ is regular

4

Example 2.6 If L is regular, show L² is regular too

Nondeterministic FA

- Nondeterminism is an effective mechanism for describing some complicated languages concisely
- Definition 2.4 NFA (page 49)
 - NFA is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Almost same like DFA with the only difference in transition function
 - $\delta: \mathbf{Q} \times (\Sigma \cup \{\lambda\}) \to 2^{\mathbf{Q}}$

NFA and its TG notation

- In class exercise show the definition difference of DFA and NFA
 - 2.2 #2 (page 55)
- TG Transition graph
- Fig 2.8 and Fig 2.9 (page 50 51)

Example 2.7, Fig. 2.8 nfa with 2 transitions labeled the same

Example 2.8, Fig. 2.9

nfa: unspecified transition (to empty set) and $\boldsymbol{\lambda}$ transition

An Application of NFA

- Example 1: NFA that is designed to accept only strings in the form of a signed or unsigned decimal number
 - Accept strings:
 - **-15.**
 - **75.**38
 - +.002
 - Reject strings:
 - **3..14**
 - **+17-56**

Examples 2.9 extended notation *

- Extended transition function notation * to allow you describe several applications of transition function in one compact expression
- Example 2.9 (page 51-52)
 - Write out the extended transition function for a new word, say aaa

CSC 135 24

Languages and NFA's

- Definition 2.6 (page 53)
 - The language accepted by an **nfa** M = (...) is defined as the set of all strings accepted by M. formally,
 - L(M) = { $w \in \Sigma^*$: $\delta^*(q_0, w) \cap F \neq \emptyset$ }
 - The language consists of all strings w for which there is a walk labeled w from the initial vertex of the transition graph to some final vertex.
 - What is complement of L(M)?

Equivalence of DFA and NFA

Definition 2.7 (page 56)

• Two finite accepters M₁ and M₂ are said to be equivalent if L (M₁) = L (M₂), that is, if they both accept the same language

Example 2.11

- L = { $(10)^n$: n≥0} (page 57)
- There are many dfa or nfa for a given language
- Fig 2.11 dfa for L
- Can you draw nfa for L?

Example 2.11, Fig 2.11

CSC 135 27

Review of Power Set

- For $A = \{0, 1\}, 2^A = ?$
- For B = $\{0, 1, 2\}, 2^B = ?$
- For $C = \{q_0, q_1, q_2\}, 2^c = ?$

Example 2.12, Fig. 2.12 Convert the nfa to an equivalent dfa

Example 2.12, Fig 2.13

The resulted dfa

Procedure: nfa-to-dfa

- Theorem 2.2 (page 59)
 - Let L be the language accepted by a nfa M_N.
 Then there exists a dfa M_D such that
 - $L = L(M_D)$
 - Proof of Theorem 2.2 is a constructive proof which shows the procedure of transforming nfa to dfa step by step
 - The key of the procedure is to use the power set of Q_N to be Q_D in construction of the new dfa M_D

31

Another example of nfa-to-dfa

- Example 2.13 (page 60 61)
 - If you are still not sure about how the procedure nfa-to-dfa works, check out this example
 - It is important to know that every language accepted by an nfa is regular
 - What is a regular language?

CSC 135 32

4

Example 2.13, Fig. 2.14

Example 2.13, Fig. 2.15 applying procedure nfa-to-dfa

Example 2.13, Fig. 2.16 complete solution

