Metodi matematici per l'Informatica - Eserciziario 1

(Nota: ciascun quiz può ammettere più di una risposta giusta)

- 1. Quale delle seguenti proposizioni è vera? Per ogni coppia A e B di insiemi:
 - a) $(A \times B) = (B \times A)$ se e solo se A = B
 - b) se $A \cap B = B$ allora A = B
 - c) se $A \cup B = B$ allora A = B
 - d) se $A \cup B = B$ e $A \cap B = B$ allora A = B
- 2. Quale delle seguenti proposizioni è vera? Per ogni coppia A e B di insiemi:
 - a) $(A \times B) \neq (B \times A)$ se e solo se $A \neq B$
 - b) se A B = \emptyset allora A = B
 - c) se B A = \emptyset allora A = B
 - d) se A B = \emptyset e B A = \emptyset allora A = B
- **3.** Indichiamo con \emptyset l'insieme vuoto e con \emptyset (A) l'insieme dei sottoinsiemi di A. Quale delle seguenti proposizioni è vera per ogni coppia A e B di insiemi?
 - a) $(A \times B) \cup (B \times A) = (A \cup B) \times (B \cup A)$
 - b) se A = \wp (A) allora A = \varnothing
 - c) se $A \subseteq \wp(A)$ allora $A = \emptyset$
 - d) se $A \in \mathcal{D}(A)$ allora $A = \emptyset$
- **4.** Indichiamo con \emptyset l'insieme vuoto e con \emptyset (A) l'insieme dei sottoinsiemi di A. Quale delle seguenti proposizioni è vera per ogni coppia A e B di insiemi?
 - a) $(A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A)$
 - b) se A = \wp (A) allora \wp (A) = \varnothing
 - c) se $A \subseteq \mathcal{D}(A)$ allora $\mathcal{D}(A) = \emptyset$
 - d) se $A \in \mathcal{D}(A)$ allora $\mathcal{D}(A) = \emptyset$
- **5.** Quale delle seguenti proposizioni è vera? Per ogni tripla di insiemi A, B e C:
 - a) $A \cap (B \cup A) = A$
 - b) $A \cup (B \cap A) = A$
 - c) $A (B \cup C) = (A B) \cup (A C)$
 - d) $A (B \cup C) = (A B) \cap (A C)$

- **6.** Quale delle seguenti proposizioni è vera? Per ogni coppia A e B di insiemi:
 - a) se $A \cup B = B$ e $A \cap B = B$ allora A = B
 - b) se A B = \emptyset allora A = B
 - c) se B A = \emptyset allora A = B
 - d) se A B = \emptyset e B A = \emptyset allora A = B
- 7. Indicando con A e B generici sottoinsiemi di un universo U non vuoto, con \overline{A} il complemento di A rispetto ad U, e rispettivamente con S, I e T le seguenti opzioni: S = esistono A e B per i quali la proposizione è vera, <math>T = la proposizione è vera per ogni A e B, indicare le opzioni corrette (possono essere più d'una) per ciascuna delle seguenti proposizioni:
 - a) se $A \subseteq B$ allora $A \cap B \subseteq B$
 - b) se $A \subseteq B$ allora $A \cup B \subseteq A$
 - c) $B \subseteq A \cup (B \cap \overline{A})$
 - d) $A \subseteq \overline{A}$
 - e) $A \cup (A \cap B) = \overline{A} \cup (\overline{A} \cap B)$
- **8.** Quale delle seguenti proposizioni è vera? Per ogni tripla di insiemi A, B e C:
 - a) $A \cap (B \cup C) = (A \cap B) \cup C$ se e solo se $C \subseteq A$
 - b) $A \cap (B \cup C) = (A \cap B) \cup C$ solo se $C \subseteq A$
 - c) $A \cap (B \cup C) = (A \cap B) \cup C$ se e solo se C = A
 - d) $A \cap (B \cup C) = (A \cap B) \cup C$ solo se C = A
- **9.** Quale delle seguenti proposizioni è vera? Per ogni tripla di insiemi A, B e C:
 - $A \cup (B \cap C) = (A \cup C) \cap B$ se e solo se $A \subseteq B$
 - $A \cup (B \cap C) = (A \cup C) \cap B$ se e solo se A = B
 - $A \cup (B \cap C) = (A \cup C) \cap B$ solo se $A \subseteq B$
 - $A \cup (B \cap C) = (A \cup C) \cap B$ solo se A = B
- 10. Siano A, B e C tre insiemi tali che $A \cap C = A$ e $B \cup C = C$; quale delle seguenti proposizioni è vera?
 - a) C (C A) = A
 - b) C (C B) = B
 - c) $C (A \cup B) = (C A) \cap (C B)$
 - d) $C (A \cap B) = (C A) \cup (C B)$

- 11. Quale delle seguenti proposizioni è vera? Per ogni coppia di insiemi A e B:
 - a) $\mathcal{P}(A \times B) \subseteq \mathcal{P}(A) \times \mathcal{P}(B)$
 - b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
 - c) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
 - d) $\mathcal{P}(A B) \subseteq \mathcal{P}(A) \mathcal{P}(B)$
- 12. Quale delle seguenti proposizioni è vera? Per ogni coppia di insiemi A e B:
 - a) $\mathcal{P}(A) \times \mathcal{P}(B) \subseteq \mathcal{P}(A \times B)$
 - b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
 - c) $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$
 - d) $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A B)$
- 13. Dati due insiemi A e B, indichiamo con $\langle A, B \rangle$ l'insieme $\{A, \{A, B\}\}$ e con \emptyset l'insieme vuoto. Quale delle seguenti proposizioni è vera per ogni coppia A e B di insiemi?
 - a) $B \in \langle A, B \rangle$
 - b) $A \subseteq \langle A, B \rangle$
 - c) $\langle A, B \rangle = \langle B, A \rangle$
 - d) $\langle A, \varnothing \rangle = \langle \varnothing, A \rangle$
 - e) $\langle A, B \rangle = \langle B, A \rangle$ solo se A = B
- **14.** Indicando con $\mathcal{P}(A)$ l'insieme delle parti di un insieme A, quale delle seguenti proposizioni è vera per ogni coppia di insiemi A e B?
 - a) se $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ allora $A \subseteq B$
 - b) se $\mathcal{P}(A) \in \mathcal{P}(B)$ allora $A \in B$
 - c) se $A \in \mathcal{P} (A \cap B)$ allora $A \in \mathcal{P} (B)$
 - d) se $A \cup B \in \mathcal{P}(B)$ allora $A \in \mathcal{P}(B)$
- 15. Sia A l'insieme $\mathcal{P}(\mathcal{P}(\emptyset))$; quale delle seguenti proposizioni è vera?:
 - $\{\emptyset, \{\emptyset\}\}\subseteq A$
 - $\{\emptyset, \{\emptyset\}\} \in A$
 - $\{\emptyset, \{\emptyset\}\}\subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(A))))$
 - $\{\emptyset, \{\emptyset\}\}\in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(A))))$

Risposte

- 1. d)
- 2. d)
- 3. b)
- 4. a) b) 5. a) b) d)
- 6. a) d)
- 7. a) ST, b) S, c) ST, d) S, e) I
- 8. a) b)
- 9. a) c)
- 10. a) b) c) d)
- 11. c)
- 12. b) c)
- 13. e)
- 14. a) b) c) d)
- 15. a) c) d)