Research & Development (R&D) Document

Azure Virtual Network - CIDR, Subnetting & VNet Peering Submitted To: Celebal Technologies,

Summer Internship Program – Cloud Infra and Security

Submitted By: Sanskar Vishnoi

Summer Intern – Batch 2 (June–August 2025)

Date of Submission: 30th June 2025

R&D Document: Azure Virtual Network - CIDR, Subnetting & VNet Peering

1. Overview of Azure Virtual Network (VNet)

A **Virtual Network (VNet)** in Azure is the fundamental building block for your private network. It enables many types of Azure resources, like VMs, to securely communicate with each other, the internet, and on-premises networks.

- VNets are isolated, region-specific, and support address spaces using CIDR blocks.
- VNets can have multiple subnets, and each subnet can host one or more virtual machines (VMs).

2. CIDR Notation in Azure

CIDR (Classless Inter-Domain Routing) notation is used to allocate IP ranges to VNets and subnets.

• Format: X.X.X.X/Y

Example: 10.0.0.0/16

/16 = 65,536 IP addresses

/24 = 256 IP addresses

✓ CIDR Rules in Azure

- VNet Address Space must not overlap with other VNets if peering is required.
- Each subnet must have a non-overlapping CIDR range within the VNet.
- Reserved IPs: Azure reserves 5 IPs per subnet.

3. Subnetting in VNet

A **subnet** is a range of IP addresses in your VNet. It allows dividing the network into segments to organize and secure resources.

Example:

If VNet CIDR = 10.1.0.0/16

Subnet1 (Windows VM): 10.1.1.0/24

• Subnet2 (Linux VM): 10.1.2.0/24

4. VNet Peering

VNet Peering enables direct, private IP connectivity between two VNets in the same or different Azure regions.

☐ Types of VNet Peering:

Type Description

Intra-region Peering Between VNets in the same region

Global Peering Between VNets in different Azure regions

VNet-to-VNet Classic method using VPN gateways, generally deprecated for peering

Net Peering Prerequisites:

- No overlapping CIDR ranges.
- Both VNets must be in the same Azure subscription (or use cross-subscription peering).

5. Practical Use Case Implementation

☐ Use Case Objective:

- Create 2 VNets: VNet-A and VNet-B
- Each VNet contains 1 subnet:
 - VNet-A → Subnet-A (Windows VM)
 - VNet-B → Subnet-B (Linux VM)

• Enable mutual ping using VNet Peering

% Step-by-Step Implementation on Azure Portal

✓ Step 1: Create Resource Group

• Name: RG-NetworkLab

Step 2: Create VNet-A

Name: VNet-A

Address space: 10.10.0.0/16

• Subnet-A: 10.10.1.0/24

✓ Step 3: Create VNet-B

Name: VNet-B

Address space: 10.20.0.0/16

• Subnet-B: 10.20.1.0/24

✓ Step 4: Deploy VMs in Subnets

VNet Subnet VM OS VM Name

VNet-A Subnet- Windo Win-VM-A

VNet-B Subnet-B Linux Linux-VM-B

- Choose Standard B1s VM for testing
- Allow ICMP (ping) by configuring NSG inbound rule:

o Protocol: ICMP

o Priority: 1000

Source: Any

Destination: Any

Allow

✓ Step 5: Create VNet Peering

Add peering

vnet1

for peering to work, two peering links must be created. By selecting remote virtual network, Azure will create both peering This virtual network Peering link name ' vnet1-vnet2 Traffic to remote virtual network (i) Allow (default) Block all traffic to the remote virtual network B Traffic forwarded from remote virtual network ① Allow (default) Block traffic that originates from outside this virtual network Virtual network gateway ① Use this virtual network's gateway Use the remote virtual network's gateway None (default) Remote virtual network

From VNet-A to VNet-B

• Go to VNet-A → Peerings → Add

Name: PeeringToVNetB

Select: VNet-B

Enable traffic forwarding

From VNet-B to VNet-A

- Similarly, add peering in VNet-B
- Name: PeeringToVNetA

✓ Step 6: Test Connectivity

- Login to Windows VM
 - o Ping Linux VM Private IP
- Login to Linux VM
 - o Ping Windows VM Private IP

Q Expected Output:

Successful ping reply = Peering works + NSG is correctly configured

Key Learnings & Summary

Concept	Insight
CIDR	Allows flexible IP range allocation using /X notation
Subnetting	Logical segmentation within a VNet
VNet Peering	Fast, low-latency, secure connection between VNets
Prerequisites	No overlapping IPs, enable peering from both ends
Use Case	Tested real-time with mutual ping between Linux and Windows

Recommended CIDR Planning for Enterprise Projects

Component Recommended CIDR Purpose

Hub VNet	10.0.0.0/16	Central shared services
Spoke VNet	1 10.1.0.0/16	Workload 1 (e.g., app tier)
Spoke VNet	2 10.2.0.0/16	Workload 2 (e.g., DB tier)