

混淆矩陣(Confusion Matrix)

混淆矩陣為在統計學、機器學習領域被廣泛運用,評估模型或方法的優劣,觀察模型針對測試集所分類的結果,此方法可以針對模型準確率進一步的分析,將預測結果拆分成四種類別,可以針對想要解決的議題,驗證模型是否達到期望

混淆矩陣(Confusion Matrix)

	真實為陽性	真實為陰性
預測為陽性	真實陽性(TP)	虚偽陽性(FP) 型 Ⅰ 錯誤(type I error)
預測為陰性	虚偽陰性(FN) 型Ⅱ錯誤(type II error)	真實陰性(TN)

混淆矩陣(Confusion Matrix)

- 真實陽性(TP) 表示真實為<mark>陽性</mark>,且預測為<mark>陽性</mark>的樣本
- 虚偽陽性(FP) 表示真實為<mark>陰性</mark>,但預測為<mark>陽性</mark>的樣本
- 真實陰性(TN) 表示真實為<mark>陰性</mark>,且預測為<mark>陰性</mark>的樣本
- 虛偽陰性(FN) 表示真實為<mark>陽性</mark>,但預測為<mark>陰性</mark>的樣本

混淆矩陣衍生指標

- 準確率 = 真實陽性(TP) + 真實陰性(TN) 總資料數

混淆矩陣衍生指標別稱

項目	別稱	
真陽性率 (true positive rate, TPR)	回召率(recall)、靈敏性(sensitivity)	
真陰性率 (true negative rate, TPR)	特異性(specificity)	
陽性預測值 (positive predictive value , PPV)	精確率(precision)	
陰性預測值 (negative predictive value, NPV)	_	

混淆矩陣衍生指標

	真實為陽性	真實為陰性	預測率
預測為陽性	真實陽性(TP)	虚偽陽性(FP)	陽性預測率
預測為陰性	虚偽陰性(FN)	真實陰性(TN)	陰性預測率
辨識率	真陽性率	真陰性率	

KAPPA值

- Jacob Coheny在1960年時,提出Kappa係數,用來衡量分類問題的吻合性的一種統計方法,可以用於多種類別的分類結果衡量,產出對多類別模型的一個衡量指標
- Kappa為介於 -1到 +1之間的數值,結果愈接近+1,表示模型整體辨別度越好

KAPPA值

- Kappa = $\frac{(p_0 p_c)}{(1 p_c)}$
- p_0 = 預測正確的總比率值,即真實陽性(TP)、真實陰性(TN)之加總
- $p_c = \sum_{1}^{n} \left(\frac{\underline{\underline{\mathbf{p}}} \underline{\underline{\mathbf{p}}} \underline{\underline{\mathbf{p}}} \underline{\underline{\mathbf{p}}} \underline{\underline{\mathbf{p}}} \times \underline{\underline{\mathbf{m}}} \underline{\underline{\mathbf{p}}} \underline{\underline{\mathbf{p}}} \underline{\underline{\mathbf{p}}} \right)$ · n為資料種類

KAPPA值

	真實為陽性	真實為陰性	預測值總和
預測為陽性	19	13	32
預測為陰性	4	41	45
真實值總和	23	54	77

$$p_0 = (19 + 41) \div 77 = 0.7792$$

 $p_c = \frac{23}{77} \times \frac{32}{77} + \frac{45}{77} \times \frac{54}{77} = 0.5339$
 $\text{Kappa} = \frac{(p_0 - p_c)}{(1 - p_c)} = 0.5264$

T檢定

• t檢定為是威廉·戈塞在1908年為了觀測釀酒品質所提出的方法,本研究使用獨立雙樣本t檢驗,來驗證模型之間差異的顯著程度

T檢定

• t =
$$\frac{\overline{x_1} - \overline{x_2} - \mu_0}{\sqrt{\frac{2S_p^2}{n}}}$$

- $\overline{x_1}$ · $\overline{x_2}$:分別為兩個母體之平均數
- μ_0 :表示兩個母體平均數的差
- S_p^2 : 為兩個母體的共變異數 = $\frac{\sum_{i=1}^n (x_{1i} \overline{x_1})^2 + \sum_{i=1}^n (x_{2i} \overline{x_2})^2}{2n-2}$, 其中 i = 1, 2 ... n
- n:代表母體大小

T檢定

- $\bullet \ H_0: \overline{x_1} \overline{x_2} = \mu_0$
- $H_1: \overline{x_1} \overline{x_2} \neq \mu_0$
- 是否拒絕虛無假設(H_0),即兩個母體差異是否顯著,則透過t檢定求出兩母體相等的機率p-value,依據95%信心水準之n-1之自由度之臨界值作為是否拒絕虛無假設,若p-value小於0.05,則拒絕虛無假設,表示兩母體有顯著差異。