Suche gradienten formeln

Die Eigenschaften des Gradienten in 2D, die im Satz 2.25 beschrieben sind, umfassen folgende Formeln und Aussagen:

1. **Richtungsableitung**:

$$\nabla_{\hat{e}} f = \langle \hat{e}, \nabla f \rangle = |\hat{e}| \cdot |\nabla f| \cdot \cos(\alpha) = \cos(\alpha) \cdot |\nabla f|$$

wobei \hat{e} ein Einheitsvektor ist und α der Winkel zwischen ∇f und \hat{e} .

1. **Eigenschaften**:

- **(a)**
$$\nabla_{\hat{e}}f \in [-|\nabla f|, +|\nabla f|]$$
 - **(b)** $\alpha = 0 \Leftrightarrow \hat{e} \parallel +\nabla f \Leftrightarrow \nabla_{\hat{e}}f = +|\nabla f| \text{ (maximal) - **(c)**}$ $\alpha = \pi \Leftrightarrow \hat{e} \parallel -\nabla f \Leftrightarrow \nabla_{\hat{e}}f = -|\nabla f| \text{ (minimal) - **(d)**}$ $\alpha = \frac{\pi}{2} \Leftrightarrow \hat{e} \perp \nabla f \Leftrightarrow \nabla_{\hat{e}}f = 0$ - **(e)** $\nabla f = 0 \Leftrightarrow \text{Tangentialebene}$ and den Graphen von f verläuft horizontal

Diese Formeln und Eigenschaften beschreiben, wie die Richtungsableitung von f in Abhängigkeit von der Richtung des Einheitsvektors \hat{e} und der Orientierung des Gradienten ∇f variiert. Sie zeigen auch, dass der Gradient die Richtung der steilsten Steigung angibt und senkrecht zu den Niveaulinien von f steht.