Inhalt Vektoren, reelle Vektorräume, Länge eines Vektors in der Ebene, Skalarprodukt, Orthogonalität, Geraden in der Ebene

1 Vektoren

Viele physikalische Größen (z. B. Kraft, Geschwindigkeit, Beschleunigung, ...) haben nicht nur einen Betrag, sondern auch eine Richtung. In der Physik ist ein *Vektor* eine gerichtete Strecke (im zwei- oder dreidimensionalen Raum), repräsentiert durch Pfeile:

Zwei Vektoren heißen gleich, wenn sie die gleiche Richtung und die gleiche Länge haben:

Die Fußpunkte müssen nicht übereinstimmen; ein Vektor kann beliebig parallel verschoben werden, ohne daß er sich ändert.

Beschreibung von Vektoren der Ebene durch Koordinaten

Wir führen in der Ebene ein rechtwinkliges Koordinatensystem ein; ein Vektor (in der Ebene) kann dann ohne Änderung in den Nullpunkt verschoben werden:

Die Vektoren entsprechen dann eindeutig den Punkten P der Ebene.

Jeder Punkt P der Ebene ist eindeutig durch seine Koordinaten a_1, a_2 bestimmt.

Vektoren (in der Ebene) entsprechen also Paaren (a_1, a_2) reeller Zahlen.

Dem Zahlenpaar (0,0) entspricht der $Nullvektor\ o$ (mit der Länge 0, er hat keine Richtung.)

Im dreidimensionalen Raum werden Vektoren (nach Wahl eines Koordinatensystems) durch Tripel (a_1, a_2, a_3) von reellen Zahlen beschrieben.

Addition von Vektoren

a+b erhält man als Diagonale im von a,b aufgespannten Parallelogramm.

In Koordinaten:

Ist $a = (a_1, a_2), b = (b_1, b_2)$ in der Ebene, so ist

$$a + b = (a_1 + b_1, a_2 + b_2).$$

Die Vektoraddition erfolgt also komponentenweise.

Entsprechendes gilt für Vektoren im dreidimensionalen Raum.

Multiplikation eines Vektors mit einer reellen Zahl

Sei a ein Vektor, r eine reelle Zahl (ein Skalar).

Für $r \ge 0$ hat ra die gleiche Richtung wie a, die Länge von ra ist das r-fache der Länge von a.

Für r < 0 kehrt man die Richtung von a um und multipliziert den dann entstehenden Vektor -a mit -r:

$$ra := (-r)(-a)$$
 für $r < 0$.

In Koordinaten: Für $a=(a_1,a_2)$ erhält man (mit einem Strahlensatz)

$$ra = (ra_1, ra_2).$$

Die Multiplikation mit einer reellen Zahl erfolgt also komponentenweise.

Entsprechendes gilt im dreidimensionalen Raum.

Rechenregeln für die Vektoraddition und die Multiplikation mit reellen Zahlen Für beliebige Vektoren a, b, c und beliebige reelle Zahlen r, s gilt (wobei o den Nullvektor bezeichnet):

$$(a+b)+c=a+(b+c), \quad a+b=b+a, \quad a+o=a, \quad a+(-a)=o,$$

 $(r+s)a=ra+sa, \quad r(a+b)=ra+rb, \quad (rs)a=r(sa), \quad 1a=a.$

Diese Rechenregeln kann man sich geometrisch klarmachen, oder man erhält sie aus der Beschreibung von Vektoren durch Koordinaten.

Diese Rechenregeln führen zu folgendem allgemeinen Begriff:

2 Reelle Vektorräume

Definition Eine Menge V zusammen mit zwei Rechenoperationen

$$+: V \times V \to V, (a,b) \mapsto a+b, \qquad \mathbb{R} \times V \to V, (r,a) \mapsto ra$$

heißt reeller Vektorraum, falls folgende Bedingungen erfüllt sind:

Für alle $a, b, c \in V$ gilt (a + b) + c = a + (b + c) und a + b = b + a,

es gibt ein Element $o \in V$ mit a + o = a für alle $a \in V$, und zu jedem $a \in V$ gibt es ein $-a \in V$ mit a + (-a) = o,

für alle $a, b \in V$, $r, s \in \mathbb{R}$ gilt (r+s)a = ra + sa, r(a+b) = ra + rb, (rs)a = r(sa), 1a = a.

Beispiele reeller Vektorräume

a) Für $n \in \mathbb{N}$ ist $\mathbb{R}^n := \{(a_1, \dots, a_n) \mid a_i \in \mathbb{R} \text{ für alle } 1 \leq i \leq n\}$ ein reeller Vektorraum mit den komponentenweisen Operationen

2

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) := (a_1 + b_1, \dots, a_n + b_n), \quad r(a_1, \dots, a_n) := (ra_1, \dots, ra_n)$$

(für $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n, \ r \in \mathbb{R}$) mit $0 = (0, \dots, 0)$ als Nullvektor.

Es gibt noch viele andere Beispiele reeller Vektorräume, etwa die folgenden:

b) Die reellen Zahlenfolgen $(a_n)_{n\in\mathbb{N}}=(a_1,a_2,a_3,\ldots)$ bilden einen reellen Vektorraum mit den Operationen

$$(a_n) + (b_n) := (a_n + b_n), \quad r(a_n) := (ra_n).$$

(Die konvergenten reellen Folgen bilden mit diesen Operationen ebenfalls einen reellen Vektorraum.)

c) Sei X eine nichtleere Menge. Dann ist $\mathrm{Abb}(X,\mathbb{R}):=\{f:X\to\mathbb{R}\ \mathrm{Abbildung}\}$ ein reeller Vektorraum mit den Operationen

$$(f,g)\mapsto f+g, \text{ wobei } (f+g)(x):=f(x)+g(x) \text{ für alle } f,g\in \mathrm{Abb}(X,\mathbb{R}),\ x\in X,$$
 $(r,f)\mapsto rf, \text{ wobei } (rf)(x):=rf(x) \text{ für alle } f\in \mathrm{Abb}(X,\mathbb{R}),\ r\in \mathbb{R},\ x\in X.$

In der Mathematik ist ein Vektor ein Element eines beliebigen Vektorraums.

3 Länge eines Vektors in der Ebene

Sei a ein Vektor in der Ebene mit den Koordinaten a_1, a_2 (bezüglich eines rechtwinkligen Koordinatensystems). Für die Länge |a| von a gilt (nach Pythagoras) $|a|^2 = a_1^2 + a_2^2$, also $|a| = \sqrt{a_1^2 + a_2^2}$.

Satz 1 (Cosinus-Satz) Für Vektoren a,b in der Ebene gilt

$$|a - b|^2 = |a|^2 + |b|^2 - 2|a| \cdot |b| \cos \varphi,$$

wobei φ mit $0 \leq \varphi \leq \pi$ der von a,b eingeschlossene Winkel sei.

Sei c der Vektor zum Fußpunkt des Lotes von a auf b und h := a - c. Mit dem Satz von Pythagoras folgt

$$|a - b|^2 = |h|^2 + |b - c|^2 = |h|^2 + (|b| - |c|)^2$$

$$= |h|^2 + |b|^2 + |c|^2 - 2|b| \cdot |c|$$

$$= |a|^2 + |b|^2 - 2|b| \cdot |c| \quad (da |a|^2 = |h|^2 + |c|^2).$$

Es ist $\cos \varphi = \frac{|c|}{|a|}$, also $|c| = |a| \cos \varphi$ und damit $|a - b|^2 = |a|^2 + |b|^2 - 2|a| \cdot |b| \cos \varphi$. (Bei anderer geometrischer Konstellation wird der Beweis analog geführt.)

Wir nehmen den "Korrekturterm" $2|a| \cdot |b| \cos \varphi$ zum Anlass für die folgende Definition:

4 Das Skalarprodukt zweier Vektoren

Definition Für zwei Vektoren a, b heißt $a \cdot b := |a| \cdot |b| \cos \varphi$ (wobei φ der Winkel zwischen a, b ist) Skalarprodukt von a, b. Das Skalarprodukt von a, b ist eine reelle Zahl (ein Skalar).

3

Insbesondere ist $a \cdot a = |a|^2$ (wegen $\cos 0 = 1$), also $a \cdot a \ge 0$ und $|a| = \sqrt{a \cdot a}$.

Satz 2 Für Vektoren $a = (a_1, a_2), b = (b_1, b_2)$ der Ebene ist $a \cdot b = a_1b_1 + a_2b_2$.

Beweis: Nach dem Cosinus-Satz (Satz 1) gilt $|a-b|^2 = |a|^2 + |b|^2 - 2a \cdot b$, also $a \cdot b = \frac{1}{2}(|a|^2 + |b|^2 - |a-b|^2) = \frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2 - (a_1 - b_1)^2 - (a_2 - b_2)^2) = a_1b_1 + a_2b_2$.

Das Skalarprodukt kann man auch für Vektoren des \mathbb{R}^n definieren:

Definition des Skalarproduktes für Vektoren des \mathbb{R}^n

Für $a = (a_1, \dots, a_n), b = (b_1, \dots, b_n) \in \mathbb{R}^n$ heißt

$$a \cdot b := a_1b_1 + \ldots + a_nb_n$$
 Skalarprodukt von a, b und

$$|a| := \sqrt{a \cdot a} = \sqrt{a_1^2 + \ldots + a_n^2} \operatorname{der} Betrag \operatorname{von} a.$$

Rechenregeln für das Skalarprodukt im \mathbb{R}^n

Für alle $a, b, c \in \mathbb{R}^n$, $r \in \mathbb{R}$ gilt

$$a \cdot b = b \cdot a$$
, $a \cdot (b+c) = a \cdot b + a \cdot c$, $a \cdot (rb) = ra \cdot b$, $a \cdot a \ge 0$ und $(a \cdot a = 0 \iff a = 0)$.

Satz 3 (Ungleichung von Cauchy-Schwarz) Für alle $a, b \in \mathbb{R}^n$ gilt $|a \cdot b| \le |a| |b|$.

Beweis für n=2: Für $a,b\in\mathbb{R}^2$ ist $|a\cdot b|=|a|\,|b|\,|\cos\varphi|\leq |a|\,|b|$ (wegen $|\cos\varphi|\leq 1$). Allgemeiner Beweis: Für b=0 ist die Aussage klar. Sei jetzt $b\neq 0$, also $b\cdot b\neq 0$, und $r:=\frac{a\cdot b}{b\cdot b}$. Wegen $(rb-a)\cdot (rb-a)\geq 0$ folgt dann (mit den Rechenregeln für das Skalarprodukt)

$$0 \le (rb - a) \cdot (rb - a) = r^2 b \cdot b - 2r a \cdot b + a \cdot a$$

$$= \frac{(a \cdot b)^2}{(b \cdot b)^2} b \cdot b - 2 \frac{(a \cdot b)^2}{b \cdot b} + a \cdot a$$

$$= -\frac{(a \cdot b)^2}{b \cdot b} + a \cdot a$$

$$= \frac{1}{b \cdot b} \left(-(a \cdot b)^2 + |a|^2 |b|^2 \right)$$
(durch Einsetzen von r)

Wegen $b \cdot b > 0$ folgt $|a|^2 |b|^2 \ge (a \cdot b)^2$ und damit (durch Wurzelziehen) $|a \cdot b| \le |a| |b|$.

Rechenregeln für den Betrag Für alle $a, b \in \mathbb{R}^n$, $r \in \mathbb{R}$ gilt

- (i) $|a| \ge 0 \text{ und } (|a| = 0 \Leftrightarrow a = 0),$
- (ii) |ra| = |r| |a|,
- (iii) (Dreiecksungleichung) $|a + b| \le |a| + |b|$.

Die Bezeichnung "Dreiecksungleichung" ist durch folgendes Bild motiviert:

Beweis der Dreiecksungleichung: Mit der Ungleichung von Cauchy-Schwarz (Satz 3) folgt

$$|a+b|^2 = (a+b) \cdot (a+b) = |a|^2 + |b|^2 + 2a \cdot b \le |a|^2 + |b|^2 + 2|a| |b| = (|a| + |b|)^2.$$

Durch Wurzelziehen folgt daraus die Behauptung.

5 Orthogonalität

In der Ebene stehen a, b aufeinander senkrecht (sind orthogonal zueinander), wenn a = 0 oder b = 0 oder der eingeschlossene Winkel φ gleich 90° ist, wenn also a = 0 oder b = 0 oder $\cos \varphi = 0$ gilt, d. h. es gilt $a \cdot b = 0$. Dies motiviert folgende allgemeine Definition.

Definition $a, b \in \mathbb{R}^n$ stehen *senkrecht* aufeinander (sind *orthogonal* zueinander, in Zeichen: $a \perp b$), wenn $a \cdot b = 0$ ist.

Beispiele

1. Der Satz von Pythagoras kann jetzt folgendermaßen formuliert werden:

Für
$$a \perp b$$
 gilt $|a + b|^2 = |a|^2 + |b|^2$.

Beweis:
$$|a+b|^2 = (a+b) \cdot (a+b) = a \cdot a + b \cdot b + 2a \cdot b = a \cdot a + b \cdot b + 0 = |a|^2 + |b|^2$$
.

2. In einem *Rhombus* (einem gleichseitigen Viereck) stehen die Diagonalen aufeinander senkrecht:

Für
$$|a| = |b|$$
 gilt $(a+b) \perp (a-b)$.

Beweis:

$$(a+b) \cdot (a-b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b = |a|^2 - |b|^2 = 0.$$

Senkrechte in der Ebene

Sei $a=(a_1,a_2)\in\mathbb{R}^2$. Durch Drehung von a um 90° erhält man einen zu a senkrechten Vektor a^\perp gleicher Länge:

$$a^{\perp} = (-a_2, a_1).$$

Es gilt $a^{\perp} \perp a$, $|a^{\perp}| = |a|$, $(a^{\perp})^{\perp} = -a$.

Satz 4 Für alle $a, x \in \mathbb{R}^2$ gilt: $(a \cdot a)x = (x \cdot a)a + (x \cdot a^{\perp})a^{\perp}$.

Beweis durch Nachrechnen:

$$(x \cdot a)a + (x \cdot a^{\perp})a^{\perp} = (x_1a_1 + x_2a_2)(a_1, a_2) + (-x_1a_2 + x_2a_1)(-a_2, a_1)$$
$$= (x_1a_1^2 + x_1a_2^2, x_2a_2^2 + x_2a_1^2)$$
$$= (a_1^2 + a_2^2)(x_1, x_2) = (a \cdot a)x.$$

Folgerung Für alle $a, x \in \mathbb{R}^2$, $a \neq 0$ gilt: $x \perp a \iff x \in \mathbb{R}a^{\perp} := \{ra^{\perp} \mid r \in \mathbb{R}\}$.

Beweis: "
$$\Leftarrow$$
": Aus $x = ra^{\perp}$ folgt $x \cdot a = (ra^{\perp}) \cdot a = r(a^{\perp} \cdot a) = 0$.
" \Rightarrow ": Für $x \perp a$ gilt $(a \cdot a)x = (x \cdot a)a + (x \cdot a^{\perp})a^{\perp} = (x \cdot a^{\perp})a^{\perp}$, also $x = \frac{x \cdot a^{\perp}}{a \cdot a}a^{\perp} \in \mathbb{R}a^{\perp}$.

6 Geraden in der Ebene

1. Parameterdarstellung

Man wählt einen Punkt u auf der Geraden und einen Richtungsvektor $a \neq 0$. Dann ist

$$G_{u,a} = u + \mathbb{R}a := \{u + ta \mid t \in \mathbb{R}\}\$$

die Gerade durch u in Richtung a.

2. Beschreibung durch Gleichungen

Man kann Geraden auch durch Gleichungen der Form $x_2 = c_1 x_1 + r$ oder $x_1 = r$ beschreiben. Es gilt:

$$x_2 = c_1 x_1 + r \iff -c_1 x_1 + x_2 = r,$$

 $x_1 = r \iff x_1 + 0 x_2 = r.$

Die allgemeine Geradengleichung erhält man in der Form $c_1x_1 + c_2x_2 = r$ mit Konstanten c_1, c_2, r mit $(c_1, c_2) \neq (0, 0)$.

Definition Für $c = (c_1, c_2) \in \mathbb{R}^2$, $c \neq 0$, $r \in \mathbb{R}$ sei

$$H_{c,r} := \{(x_1, x_2) \in \mathbb{R}^2 \mid c_1 x_1 + c_2 x_2 = r\} = \{x \in \mathbb{R}^2 \mid c \cdot x = r\}.$$

Frage: Wie kommt man von der Parameterdarstellung zur Geradengleichung?

Satz 5 Seien $u, a \in \mathbb{R}^2$, $a \neq 0$. Für $c := a^{\perp}$ und $r := c \cdot u$ gilt dann $G_{u,a} = H_{c,r}$.

Beweis: " \subseteq ": Sei $u + ta \in G_{u,a}$. Dann gilt $c \cdot (u + ta) = c \cdot u = r$, also $u + ta \in H_{c,r}$. " \supseteq ": Sei $x \in H_{c,r}$, also $a^{\perp} \cdot x = r = a^{\perp} \cdot u$ und damit $x - u \perp a^{\perp}$. Nach obiger Folgerung ist dann $x - u \in \mathbb{R}(a^{\perp})^{\perp} = \mathbb{R}(-a) = \mathbb{R}a$, also gilt x - u = ta für ein $t \in \mathbb{R}$, somit ist $x = u + ta \in G_{u,a}$.

3. Hessesche Normalform einer Geraden

Gegeben sei die Geradengleichung $c \cdot x = r$ mit $c \in \mathbb{R}^2$, $c \neq 0$, $r \in \mathbb{R}$. Wir können $r \geq 0$ annehmen (sonst multiplizieren wir die Gleichung mit -1). Division der Gleichung durch $|c| \neq 0$ liefert die Gleichung

$$\frac{c}{|c|} \cdot x = \frac{r}{|c|}.$$

Setzen wir $n:=\frac{c}{|c|},\ d:=\frac{r}{|c|}$, so erhalten wir die Geradengleichung in der Form $n\cdot x=d$ mit $n\in\mathbb{R}^2,\ |n|=1,\ d\geq 0$. Diese Form heißt $Hessesche\ Normalform\ der$ Geradengleichung (nach L. O. Hesse, 1811–1874).

Satz 6 Eine Gerade G sei in Hessescher Normalform gegeben, also

$$G = \{x \in \mathbb{R}^2 \mid n \cdot x = d\} \quad mit \ n \in \mathbb{R}^2, \ |n| = 1 \ und \ d \in \mathbb{R}, \ d > 0.$$

Dann qilt:

- a) $n \perp G$, d.h. $n \perp (x y)$ für alle $x, y \in G$.
- b) d ist der Abstand von 0 zu G, d.h. $d = \min\{|x| \mid x \in G\}$.
- c) Für alle $p \in \mathbb{R}^2$ ist $|p \cdot n d|$ der Abstand von p zu G, d. h. $|p \cdot n d| = \min\{|p x| \mid x \in G\}$.

Beweis: a) Sind $x, y \in G$, also $n \cdot x = d = n \cdot y$, so gilt $n \cdot (x - y) = 0$, also $n \perp G$.

Sei $p \in \mathbb{R}^2$. Es sei x_p der "Fußpunkt von p auf der Geraden", also $x_p \in G$ mit $p-x_p \perp G$.

Für ein beliebiges $x \in G$ gilt (nach Pythagoras)

$$|p-x|^2 = |p-x_p|^2 + |x-x_p|^2 \ge |p-x_p|^2,$$

also $|p-x| \ge |p-x_p|$. Damit ist $|p-x_p| = \min\{|p-x| \mid x \in G\}$.

Wegen $p-x_p\perp G$, also $p-x_p\perp n^{\perp}$, ist $p-x_p=tn$ mit einem $t\in\mathbb{R}$. Bilden des Skalarprodukts mit n liefert

$$t = t(n \cdot n) = (tn) \cdot n = p \cdot n - x_p \cdot n = p \cdot n - d$$

6

(wegen $x_p \in G$). Also ist $|p - x_p| = |t| = |p \cdot n - d|$.

b) Speziell für p=0 ist der Abstand von 0 zu G gleich $|0 \cdot n - d| = |d| = d$.