NOTE:

some of the instructions differ from some of the knowledge I find online, for example the sub instruction. SUB ra, rb, refers to rb = rb - ra, however the question says its rb = ra-rb. I have went with the assignment descriptions.

Question 3 - Instruction Set 3 - x295++

B. Compiling and assembling a C program using our x295++ instruction set

Table 1

C program (The C code below cannot be modified – it must stay as it is stated below)	x295++ assembly program	x295++ machine code program
z = (x + y) * (x - y)	LOAD src1, r0	1010 000 XXX XXXXXX 0000
	LOAD src2, r1	<src1 12="" bits=""></src1>
	COPY r0, r2	1010 001 XXX XXXXXX 0000
	ADD r1, r2	<src2 12="" bits=""></src2>
	SUB r0, r1	1001 010 000 XXXXXX
	,	0001 010 001 XXXXXX
	MUL r1, r2	0010 001 000 XXXXXX
	STORE r2, Dest	0011 010 001 XXXXXX
		1011 XXX 010 XXXXXX 0000
		<dest 12="" bits=""></dest>
	Expand the table as needed!	

C. Evaluating our x295++ instruction set using Memory Traffic criteria

Table 2

x295++ program (1 assembly instruction/ machine code instruction per row)	Fetch (number of memory accesses of word size) + Explain how you obtain your count	Decode/Execute (number of memory accesses of word size) + Explain how you obtain your count
Assembly instruction: LOAD src1, r0 Machine code instruction: 1010 000 XXX XXXXXX 0000 <src1 12="" bits=""></src1>	Count: 2 Explanation: The instruction 32 bit long, which is twice the size of the word.	Count: 1 Explanation: Src1 is the only memory access
Assembly instruction: LOAD src2, r1 Machine code instruction: 1010 001 XXX XXXXXX 0000 <src2 12="" bits=""></src2>	Count: 2 Explanation: The instruction 32 bit long, which is twice the size of the word.	Count: 1 Explanation: Src2 is the only memory access
Assembly instruction: COPY r0, r2 Machine code instruction: 1001 010 000 XXXXXX	Count: 1 Explanation: The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	Count: 0 Explanation: No memory access needed
Assembly instruction: ADD r1, r2 Machine code instruction: 0001 010 001 XXXXXX	Count: 1 Explanation: The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	Count: 0 Explanation: No memory access needed

Assembly instruction: SUB r0, r1 Machine code instruction: 0010 001 000 XXXXXX	Count: 1 Explanation: The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	Count: 0 Explanation: No memory access needed
Assembly instruction: MUL r1, r2 Machine code instruction: 0011 010 001 XXXXXX	Count: 1 Explanation: The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	Count: Explanation: No memory access needed
Assembly instruction: STORE r2, Dest Machine code instruction: 1011 XXX 010 XXXXXX 0000 <dest 12="" bits=""></dest>	Count: 2 Explanation: The instruction 32 bit long, which is twice the size of the word.	Count: 1 Explanation: Dest is the only memory access
Add as many rows as you need in order to answer this question!		
Grand Total: 13	Total: 10	Total: 3

B. Compiling and assembling your modified C program using our x295++ instruction set

Table 1 - Challenge

C program Modify/simplify the C code below – must still produce the same result as the original C program listed below	x295++ assembly program	x295++ machine code program
<pre>z = (x + y) * (x - y) modified/simplified: z = x*x - y*y</pre>	LOAD src1, r0 LOAD src2, r1 MUL r0, r0 MUL r1, r1 SUB r0, r1 STORE r1, Dest	1010 000 XXX XXXXXX 0000 <src1 12="" bits=""> 1010 001 XXX XXXXXX 0000 <src2 12="" bits=""> 0011 000 000 XXXXXX 0011 001 001 XXXXXX 0010 001 000 XXXXXX 1011 XXX 001 XXXXXX 0000 <dest 12="" bits=""></dest></src2></src1>
	Expand the table as needed!	

C. Evaluating our x295++ instruction set using Memory Traffic criteria

Table 2 - Challenge

x295++ program (1 assembly instruction/ machine code instruction per row)	Fetch (number of memory accesses of word size) + Explain how you obtain your count	Decode/Execute (number of memory accesses of word size) + Explain how you obtain your count
Assembly instruction:	Count: 2	Count: 1
LOAD src1, r0	Explanation:	Explanation:
Machine code instruction: 1010 000 XXX XXXXXX 0000 <src1 12="" bits=""></src1>	The instruction 32 bit long, which is twice the size of the word.	Src1 is the only memory access
Assembly instruction:	Count: 2	Count: 1
LOAD src2, r1 Machine code instruction:	Explanation:	Explanation:
1010 001 XXX XXXXXX 0000 <src2 12="" bits=""></src2>	The instruction 32 bit long, which is twice the size of the word.	Src2 is the only memory access
Assembly instruction: MUL r0, r0 Machine code instruction: 0011 000 000 XXXXXX	Count: 1 Explanation: The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	Count: 0 Explanation: No memory access needed
Assembly instruction: MUL r1, r1	Count: 1	Count: 0

Machine code instruction:	Explanation:	Explanation:
0011 001 001 XXXXXX	The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	No memory access needed
Assembly instruction:	Count: 1	Count: 0
SUB r0, r1	Explanation:	Explanation:
Machine code instruction:		
0010 001 000 XXXXXX	The instruction is 16 bit long, which is 1 word size, thus only 1 memory access needed.	No memory access needed
Assembly instruction:	Count: 2	Count: 1
STORE r1, Dest	Explanation:	Explanation:
Machine code instruction:		
1011 XXX 001 XXXXXX 0000 <dest 12="" bits=""></dest>	The instruction 32 bit long, which is twice the size of the word.	Dest is the only memory access
Add as many rows as you need in order to answer this question!		
Grand Total: 12	Total: 9	Total: 3

Once completed, submit it on Crowdmark as your answer to Question 3.