Trabajo Práctico de Laboratorio Universidad Tecnológica Nacional Medidas Electrónicas I

R4052 Año:2023

TPL5: Contadores/Frecuencímetro

Profesores:

- Ing. Marinsek Emiliano
- Ing. Perdomo Juan Manuel

Integrantes:

- Borello Federico
- Dimaio Agustin
- Manoukian Francisco Tomas
- Mella Camila
- Ronchetti Juan Manuel

Objetivo

En esta practica, se buscó calibrar un contador universal en sus diferentes métodos de medición. Para esto, se propusieron diferentes mediciones para distinto tipo de señales.

- En primer lugar se propuso la medición de señales cuadradas en los modos de frecuencia y de periodo promediado.
- En segundo lugar se buscó medir el ciclo de actividad y el periodo de una serie de señales utilizando el modo de medición de intervalos.
- En tercer lugar, se obtuvo la relación de frecuencia entre dos señales utilizando el modo de medición de relación de frecuencias.

En la seccion correspondiente a cada ensayo se detallaran con mas presicion los metodos empleados.

Configuracion experimental

Para los tres ensayos se hizo empleo de un generador de señales y de un frecuencimetro. A continuacion se detalla a modo ilustrativo la configuracion empleada para el ensayo 2:

Inicializacion de bibliotecas

```
In [2]: # Biblioteca pandas para visualizar los datos
import pandas as pd
pd.set_option('display.max_rows', None)
```

Desarrollo

Ensayo numero 1

En el primer ensayo, se propuso la medición de tres señales cuadradas de 10Hz, 1kHz y 1MHz utilizando el modo frecuencia en las posiciones de gate time de 0.1s, 1s y 10s y el modo período promediado de 1, 10 y 100 ciclos.

A continuacion se encuentran los datos obtenidos:

Out[9]:		Frecuencia	Gate Time	Medicion Frecuencia	Cant Promedios	Medicion Periodo	1/Periodo
	0	10Hz	0.1s	9.999681	1	100,00341225 ms	9.999659
	1	10Hz	1s	9.999671	10	100,0034113 ms	9.999659
	2	10Hz	10s	9.999669	100	100,00341758 ms	9.999658
	3	1kHz	0.1s	999.966702	1	1,00003417 ms	999.965831
	4	1kHz	1s	999.966009	10	1,00003419 ms	999.965811
	5	1kHz	10s	999,9668104	100	1,0000342 ms	999.965801
	6	1MHz	0.1s	999.966693	1	1,00003259 us	999967.411100
	7	1MHz	1s	999.966312	10	1,000033995 us	999966.006200
	8	1MHz	10s	999.966449	100	1,000034144 us	999965.857200

Ensayo numero 2

En el segundo ensayo, se buscó medir el ciclo de actividad y el periodo de una serie de señales rectangulares de 1kHz con un 20%, 50% y 80% de dicho ciclo utilizando el modo de medición de intervalos (TI A→B).

Como se observa en la imagen, al medir de flanco positivo a positivo se deberia obtener el periodo de la señal, y al medir de flanco positivo a negativo el ciclo de actividad de la misma.

A continuacion se encuentran los datos obtenidos:

1.000018

1.000018

500.0063

499.9959

Out[7]:		Ciclo actividad [%]	Mediciones	Período [ms]	Período [us]			
	0			Flanco ++	Flanco +-			
	1	20	Medición 1	1.000019	199.2165			
	2	20	Medición 2	1.000017	199.2151			
	3	20	Medición 3	1.000018	199.2157			

50

50

6	60	Medición 3	1.000017	500.0058
7	80	Medición 1	1.000017	799.8071
8	80	Medición 2	1.000018	799.8178
9	80	Medición 3	1.000017	799.8182

Medición 1

Medición 2

Ensayo numero 3

4

5

En el tercer ensayo, se obtuvo la relación de frecuencia entre una señal senoidal de 10MHz con una de 1MHz utilizando el modo de medición de relación de frecuencias (Ratio A/B) con la mayor resolución posible.

A continuacion se encuentran los datos obtenidos:

Out[18]:	Ratio A/B		Medicion	Frecuencia A [Mhz]	Frecuencia B [kHz]	A/B
	0	10,000346010	Medicion 1	9,999999996	999,965324010	10,0003467715
	1	10,000346080	Medicion 2	9,999999991	999,965305663	10,0003469545

9.999999995

Resultados

Por relacion de frecuencias:

2 10,000346102 Medicion 3

$$\frac{A}{B} = (10,000.346.060 \pm 0,000.000.056)k_{95} = 2$$

999,965309292 10,0003469186

Calculando A/B:

$$\frac{A}{B}$$
 = (10,000.346.880 ± 0,000.000.110) k_{95} = 2

Conclusiones

En el ensayo 1 se observa que se obtuvieron valores muy similares para ambos tipos de medicion (frecuencia y periodo), por lo que se comprueba que ambos metodos son practicos para el rango de frecuencias en el que se midio.

• Para el peor valor obtenido, el error relativo de calibracion corresponde al 0.0034%, por ende se puede afirmar que el frecuencimetro se encuentra correctamente calibrado.

En el ensayo 2, se verifica a traves de los resultados obtenidos la correcta medicion del ciclo de actividad de 3 señales cuadradas. Se midio adecuadamente el periodo de 1ms de flanco positivo a positivo, y el ciclo de actividad correspondiente al 20%, 50% y 80% en 0.2ms, 0.5ms y 0.8ms respectivamente mediante la medicion de flanco positivo a negativo.

En el ensayo 3 se observan valores muy similares para el ratio A/B obtenido mediante la medicion de relaciones de frecuencias, y el ratio A/B calculado a partir de las mediciones individuales de frecuencia.

- La diferencia entre los valores obtenidos en ambas mediciones se encuentra en el orden de los 10^{-7} , lo cual comprueba que ambos metodos son validos, y la efectividad de la medicion de ratios del frecuencimetro.
- Al observar las incertidumbres de cada uno, se verifica que la obtenida mediante el modo de medicion de relaciones de frecuencias es menor, por ende es un metodo mas eficaz para este tipo de medicion.