

Quels sont les types de régulateurs?

- Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs Switching
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

DC-DC - Régulateurs Linéaires vs Switching

Ħ	Critère	Régulateur Linéaire	Régulateur Switching
\$	Coût	Faible ✓	Moyen à Élevé 🗶
it.	Complexité	Faible ✓	Moyen à Élevé 🗴
小	Bruit	Faible ✓	Moyen à Élevé 🗴
%	Efficacité	Faible 🗶	Très Efficace ✓
> \$	V_{out}	$V_{out} < V_{in}$ X	$V_{out} \subseteq \mathbb{R}$ 🗸
8	Isolation	Non 🗶	Possible ✓
	Température	Élevée 🗶	Faible à Moyenne 🗸
7	Courant	Faible à Moyen 🗶	Moyen à Élevé ✓

Quels sont les types de régulateurs?

- Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs Switching
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

- Régulateur très simple
 - IC
 - Pièces autours

i≡	Régulateur Linéaire
\$	Faible ✓
ii.	Faible √

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR

≡	Régulateur Linéaire
\$	Faible 🗸
ii.	Faible √
ሇ	Faible 🗸

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR
- $V_{in} 0.3 \, \text{V} > V_{out}$
- Isolation impossible

Ħ	Régulateur Linéaire
\$	Faible ✓
÷.	Faible ✓
小	Faible ✓
*	$V_{out} < V_{in}$ X
8	Non X

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR
- $V_{in} 0.3 \, \text{V} > V_{out}$
- Isolation impossible
- Très peu efficace

•
$$I_{in} = I_{out}$$

$$\bullet \ \eta = \frac{P_{out}}{P_{in}} = \frac{V_{out}}{V_{in}}$$

ŧ≡	Régulateur Linéaire
\$	Faible √
ii.	Faible √
小	Faible √
*	$V_{out} < V_{in}$ X
8	Non X
%	Faible 🗶

- Régulateur très simple
 - IC.
 - Pièces autours
- Output très stable
 - PSRR
- $V_{in} 0.3 \, \text{V} > V_{out}$
- Isolation impossible
- Très peu efficace

$$\bullet \ \eta = \frac{P_{out}}{P_{in}} = \frac{V_{out}}{V_{in}}$$

- Power dissipée en chaleur!
- Limite le courant

ŧ≡	Régulateur Linéaire
\$	Faible 🗸
ii.	Faible 🗸
小	Faible 🗸
> \$	$V_{out} < V_{in}$ X
8	Non 🗶
%	Faible 🗶
	Élevée 🗶
7	Faible à Moyen 🗴

Power Supply Ripple Reduction

$$PSRR = \frac{\Delta V_{in}}{\Delta V_{out}}$$

$$PSRR(dB) = -20 \log \left(\frac{\Delta V_{in}}{\Delta V_{out}} \right)$$

- Réduction du bruit
- À une fréquence

$$PSRR = \frac{\Delta V_{in}}{\Delta V_{out}}$$

$$PSRR(dB) = -20 \log \left(\frac{\Delta V_{in}}{\Delta V_{out}} \right)$$

- Réduction du bruit
- À une fréquence
- Graphique PSRR
- Dépend du courant

Quand choisir un régulateur linéaire?

- **\$** Low-Cost
- Peu de courant
- Peu d'espace
- Bruit très important
- **%** Efficacité peu importante
- Utiliser avec des régulateurs switching!

Quels sont les types de régulateurs?

- 1 Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs Switching
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

- Régulateur plus complexe
 - 10
 - Condensateurs & bobines
 - Transistors et diodes
- Topologies

- Régulateur plus complexe
 - 10
 - Condensateurs & bobines
 - Transistors et diodes
- Topologies
- Rajoute du bruit au circuit
 - Fréquence de switching

≣	Régulateur Linéaire
\$	Moyen à Élevé 🗴
÷.	Moyen à Élevé 🗴
ሇ	Moyen à Élevé 🗶

- Régulateur plus complexe
 - IC
 - Condensateurs & bobines
 - Transistors et diodes
- Topologies
- Rajoute du bruit au circuit
 - Fréquence de switching
- Output très grande selon topologie
 - $V_{out} > V_{in}$
 - $V_{out} < 0 \text{ V}$
 - Sortie isolée possible

≣	Régulateur Linéaire
\$	Moyen à Élevé 🗶
ň.	Moyen à Élevé 🗴
ሇ	Moyen à Élevé 🗴
*	$V_{out} \subseteq \mathbb{R}$ 🗸
X	Possible 🗸

- Régulateur plus complexe
 - IC
 - Condensateurs & bobines
 - Transistors et diodes
- Topologies
- Rajoute du bruit au circuit
 - Fréquence de switching
- Output très grande selon topologie
 - $V_{out} > V_{in}$
 - $V_{out} < 0 \text{ V}$
- Extrèmement efficace
 - 80% 90%
 - Courant & Tension scale selon demande

Régulateur Linéaire
Moyen à Élevé 🗴
Moyen à Élevé 🗶
Moyen à Élevé 🗶
$V_{out} \subseteq \mathbb{R}$ 🗸
Possible ✓
Très Efficace ✓

- Régulateur plus complexe
 - IC
 - Condensateurs & bobines
 - Transistors et diodes
- Topologies
- Rajoute du bruit au circuit
 - Fréquence de switching
- Output très grande selon topologie
 - $V_{out} > V_{in}$
 - $V_{out} < 0 \text{ V}$
- Extrèmement efficace
 - 80% 90%
- Bonne gestion thermique
 - Selon topologie
- Gros courants

I≡	Régulateur Linéaire
\$	Moyen à Élevé 🗴
ii.	Moyen à Élevé 🗴
ሇ	Moyen à Élevé 🗴
>4	$V_{out} \subseteq \mathbb{R}$ 🗸
8	Possible 🗸
%	Très Efficace ✓
B	Faible à Moyenne 🗸
7	Moyen à Élevé ✓

	Topologie	V_{out}	Isolation
4	Buck	$V_{out} < V_{in}$	X
1	Boost	$V_{out} > V_{in}$	X
1	Buck-Boost	$V_{out} \subseteq \mathbb{R}$	X
17	SEPIC	$V_{out} \geq 0 \mathrm{V}$	X
	Flyback	$V_{out} \subseteq \mathbb{R}$	1

• Une bobine s'oppose aux changements de courant

Régulateur Switching - Buck - Fonctionnement

Régulateur Switching - Buck - Fonctionnement

Régulateur Switching - Buck - Fonctionnement

Régulateur Switching - Buck - Waveform

- C Le courant augmente tranquilement

Régulateur Switching - Buck - Waveform

- 1) Quels som es types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Conment conçevoir un arbre d'alimentation?

- 1) Que la sont es types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

- 1) Que la sont les types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

- 1 Que la sont es types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

Comment conçevoir un arbre d'alimentation?

- 1 Quels sont les types de régulateurs?
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

