CSE 202: Design and Analysis of Algorithms

Lecture 7

Instructor: Kamalika Chaudhuri

Announcements

- Pick up graded HWI after class
- HW2 due on Thu Feb 2

Last class: Three steps of Dynamic Programming

Main Steps:

- I. Divide the problem into subtasks
- 2. Define the subtasks **recursively** (express larger subtasks in terms of smaller ones)
- 3. Find the **right order** for solving the subtasks (but do not solve them recursively!)

Case I: Input: $x_1, x_2,...,x_n$ Subproblem: $x_1, ..., x_i$.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Case I: Input: $x_1, x_2,...,x_n$ Subproblem: $x_1, ..., x_i$.

Case 2: Input: $x_1, x_2,...,x_n$ and $y_1, y_2,...,y_m$ Subproblem: $x_1, ..., x_i$ and $y_1, y_2,...,y_j$

Case I: Input: $x_1, x_2,...,x_n$ Subproblem: $x_1, ..., x_i$.

Case 2: Input: $x_1, x_2,...,x_n$ and $y_1, y_2,...,y_m$ Subproblem: $x_1, ..., x_i$ and $y_1, y_2,...,y_j$

Case 3: Input: $x_1, x_2,...,x_n$. Subproblem: $x_i, ..., x_j$

Case I: Input: $x_1, x_2,...,x_n$ Subproblem: $x_1, ..., x_i$.

Case 2: Input: $x_1, x_2,...,x_n$ and $y_1, y_2,...,y_m$ Subproblem: $x_1, ..., x_i$ and $y_1, y_2,...,y_j$

Case 3: Input: $x_1, x_2,...,x_n$. Subproblem: $x_i, ..., x_j$

Case 4: Input: a rooted tree. Subproblem: a subtree

Dynamic Programming

- String Reconstruction
- Longest Common Subsequence
- Edit Distance
- Subset Sum

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example:
$$a = [12, 1, 3, 8, 20, 50]$$

$$t = 44 \qquad \qquad t = 14$$

$$t = 14$$

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50] t = 44 True t = 14 False

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

S

	0	2	3	4	5	6	7	8	9
0									
I									
2									
3									
4									
5									
6									

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)

Else: S(i, s) = S(i - I, s)

S

	0	2	3	4	5	6	7	8	9
0									
I									
2									
3									
4									
5									
6									

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

S

		0	2	3	4	5	6	7	8	9
	0									
	I									
	2									
i	3									
	4									
	5									
	6									

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</td

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т									
2	Т									
3	Т									
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т	F								
2	Т									
3	Т									
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т	F	F	F	F	F	H	Щ	H	F
2	Т									
3	Т									
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т	F	F	F	F	F	F	F	F	F
2	Т	H								
3	Т									
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0			2	3	4	5	6	7	8	9
0	٦		F	H	F	H	F	F	H	F	F
I	٦	Γ	F	F	F	F	F	F	ш	H	F
2	٦	Γ	H	F	F	F	F	F	F	F	F
3	٦	Γ									
4											
5											
6											

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т	F	F	F	F	F	F	F	F	F
2	Т	H	F	H	F	F	H	F	F	F
3	Т	H								
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

8 F F	9 F
	-
: F	
ı	F
F	Н

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0	I	2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т	F	F	F	F	F	F	F	F	F
2	Η	Т	F	F	F	F	F	F	F	F
3	Τ	Т	F	Η						
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	F	F	F	F	F	F	F	F	F
I	Т	F	F	F	F	F	F	H	H	H
2	Т	Η	F	F	F	F	F	F	F	F
3	Т	Τ	F	H	H					
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

Example: a = [12, 1, 3, 8, 20, 50]

t = 44 True t = 14 False

S

STEP I: Define subtasks

For i=1..n, s=1..t,

S(i,s) = True, if some subset of a[1..i] adds to s

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If $a[i] \leq s$,

S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

	0		2	3	4	5	6	7	8	9
0	Т	H	H	F	F	F	F	H	F	F
I	Т	F	F	F	F	F	H	ш	F	H
2	Т	H	F	F	F	F	F	F	F	F
3	T	Η	F	Η	H	F	F	F	F	F
4										
5										
6										

Running Time = O(nt)

Problem: Given a list of positive integers a[1..n] and an integer t, is there some subset of a that sums to exactly t?

STEP I: Define subtasks

For
$$i=1..n$$
, $s=1..t$,

= False, ow

Output = S(n, t)

STEP 2: Express recursively

If
$$a[i] \leq s$$
,

$$S(i,s) = S(i - I, s - a[i]) OR S(i - I, s)$$

Else: S(i, s) = S(i - I, s)

STEP 3: Order of subtasks

Row by row, increasing column

Reconstructing the subset:

Define an array D(i, s).

If
$$S(i, s) = True$$
, and $S(i-1, s-a[i]) = True$

$$D(i, s) = (i - I, s - a[i])$$

= $(i - I, s)$ ow.

Reconstruct the subset by following the pointers from D(n,t)

Running Time = O(nt)

Dynamic Programming

- String Reconstruction
- Longest Common Subsequence
- Edit Distance
- Subset Sum
- Independent Set in a Tree

Independent Set

Independent Set: Given a graph G = (V, E), a subset of vertices S is an independent set if there are no edges between them

Max Independent Set Problem: Given a graph G = (V, E), find the largest independent set in G

Max Independent Set is a notoriously hard problem! We will look at a restricted case, when G is a **tree**

Max. Independent Set in a Tree

A set of nodes is an **independent set** if there are no edges between the nodes

Two Cases at node u:

- I. Don't include u
- 2. Include u, and don't include its children

Max. Independent Set in a Tree

A set of nodes is an **independent set** if there are no edges between the nodes

STEP I: Define subtask

I(u) = size of largest independent set in subtree rooted at uWe want I(r), where r = root

STEP 2: Express recursively

$$I(u) = \max \begin{cases} \sum_{\substack{\text{children} \\ w \text{ of } u}} I(w) \\ 1 + \sum_{\substack{\text{grandchildren} \\ w \text{ of } u}} I(w) \end{cases}$$

Base case: for leaf nodes, I(u) = I

STEP 3: Order of subtasks

Reverse order of distance from root; use BFS!

Two Cases at node u:

- I. Don't include u
- 2. Include u, and don't include its children

Max. Independent Set in a Tree

A set of nodes is an **independent set** if there are no edges between the nodes

STEP I: Define subtask

I(u) = size of largest independent set in subtree rooted at uWe want I(r), where r = root

STEP 2: Express recursively

$$I(u) = \max \begin{cases} \sum_{\substack{\text{children} \\ w \text{ of } u}} I(w) \\ 1 + \sum_{\substack{\text{grandchildren} \\ w \text{ of } u}} I(w) \end{cases}$$

Base case: for leaf nodes, I(u) = I

STEP 3: Order of subtasks

Reverse order of distance from root; use BFS!

Running Time: O(n)

Edge (u, v) is examined in Step 2 at most twice:

- (I) v is a child of u
- (2) v is a grandchild of u's parent There are n-I edges in a tree on n nodes

Dynamic Programming

- String Reconstruction
- Longest Common Subsequence
- Edit Distance
- Subset Sum
- Independent Set in a Tree
- All Pairs Shortest Paths

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra's algorithm work?

All Pairs Shortest Paths

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Does Dijkstra's algorithm work?

Ans: No! Example: s-v Shortest Paths

All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:

For all x, y: either $SP(x, y) = d_{xy}$ Or there exists some z s.t SP(x, y) = SP(x, z) + SP(y, z)

All Pairs Shortest Paths (APSP)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

Structure:

For all x, y:
either SP(x, y) = d_{xy}
Or there exists some z s.t
SP(x, y) = SP(x, z) + SP(y, z)

Property: If there is no negative weight cycle, then for all x, y, SP(x, y) is simple (that is, includes no cycles)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

D(i,j,k) = length of shortest path from i to j with intermediate nodes in $\{1,2,...k\}$

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

D(i,j,k) = length of shortest path from i to j with intermediate nodes in {1,2,...k} Shortest Path lengths = D(i,j,n)

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

D(i,j,k) = length of shortest path from i to j with intermediate nodes in {1,2,...k} Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively

 $D(i,j,k) = min\{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)\}$

Base case: $D(i,j,0) = d_{ij}$

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

D(i,j,k) = length of shortest path from i to j with intermediate nodes in {1,2,...k} Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively

 $D(i,j,k) = min\{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)\}$ Base case: $D(i,j,0) = d_{ij}$

STEP 3: Order of Subtasks

By increasing order of k

Problem: Given n nodes and distances d_{ij} (which could be negative, or 0, or positive) on all edges, find shortest path distances between all pairs of nodes.

STEP I: Define Subtasks

D(i,j,k) = length of shortest path from i to j with intermediate nodes in {1,2,...k} Shortest Path lengths = D(i,j,n)

STEP 2: Express Recursively

 $D(i,j,k) = min\{D(i,j,k-1), D(i,k,k-1) + D(k,j,k-1)\}$ Base case: $D(i,j,0) = d_{ij}$

STEP 3: Order of Subtasks

By increasing order of k

Running Time = O(n³) **Exercise:**

Reconstruct the shortest paths

Summary: Dynamic Programming

Main Steps:

- I. Divide the problem into subtasks
- 2. Define the subtasks **recursively** (express larger subtasks in terms of smaller ones)
- 3. Find the **right order** for solving the subtasks (but do not solve them recursively!)

Summary: Dynamic Programming vs Divide and Conquer

Divide-and-conquer

A problem of size n is decomposed into a few subproblems which are significantly smaller (e.g. n/2, 3n/4,...)

Therefore, size of subproblems decreases geometrically.

eg. n, n/2, n/4, n/8, etc

Use a recursive algorithm.

Dynamic programming

A problem of size n is expressed in terms of subproblems that are not much smaller (e.g. n-1, n-2,...)

A recursive algorithm would take exp. time.

Saving grace: in total, there are only polynomially many subproblems.

Avoid recursion and instead solve the subproblems one-by-one, saving the answers in a table, in a clever explicit order.

Summary: Common Subtasks in DP

Case I: Input: $x_1, x_2,...,x_n$ Subproblem: $x_1, ..., x_i$.

Case 2: Input: $x_1, x_2,...,x_n$ and $y_1, y_2,...,y_m$ Subproblem: $x_1, ..., x_i$ and $y_1, y_2,...,y_j$

Case 3: Input: $x_1, x_2,...,x_n$. Subproblem: $x_i, ..., x_j$

Case 4: Input: a rooted tree. Subproblem: a subtree

Next: Network Flow

Oil Through Pipelines

Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), how much oil can we ship from s to t?

Oil Through Pipelines

Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), how much oil can we ship from s to t?

An s-t flow is a function: $E \rightarrow R$ such that:

- $-0 \le f(e) \le c(e)$, for all edges e
- flow into node v = flow out of node v, for all nodes v except s and t,

$$\sum_{e \ into \ v} f(e) = \sum_{e \ out \ of \ v} f(e)$$

Size of flow f = Total flow out of s = total flow into t

Oil Through Pipelines

Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), how much oil can we ship from s to t?

An s-t flow is a function: $E \rightarrow R$ such that:

- $-0 \le f(e) \le c(e)$, for all edges e
- flow into node v = flow out of node v, for all nodes v except s and t,

$$\sum_{e \ into \ v} f(e) = \sum_{e \ out \ of \ v} f(e)$$

Size of flow f = Total flow out of s = total flow into t

The Max Flow Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), find an s-t flow of maximum size

Flows and Cuts

The Max Flow Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), find an s-t flow of maximum size

An **s-t Cut** partitions nodes into groups = (L, R) s.t. s in L, t in R

Flows and Cuts

The Max Flow Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), find an s-t flow of maximum size

An **s-t Cut** partitions nodes into groups = (L, R) s.t. s in L, t in R

R Capacity of a cut (L, R) =
$$\sum_{(u,v)\in E, u\in L, v\in R} c(u,v)$$

Flow across (L,R) =
$$\sum_{(u,v)\in E, u\in L, v\in R} f(u,v) - \sum_{(v,u)\in E, u\in L, v\in R} f(v,u)$$

Flows and Cuts

The Max Flow Problem: Given directed graph G=(V,E), source s, sink t, edge capacities c(e), find an s-t flow of maximum size

Property: For any flow f, any s-t cut (L, R), size(f) <= capacity(L, R)