22 avril 2020

Question 1. Soit X une variable aléatoire réelle suivant une loi de Poisson de paramètre λ . Étant donné un échantillon aléatoire (X_1, X_2, \ldots, X_n) de X, et une de ses réalisations (x_1, x_2, \ldots, x_n) , cocher le(s) estimateur(s) non biaisé(s) de λ parmi les propositions ci-dessous :

- $\square L_1 = \frac{1}{n} \sum_{i=1}^n x_i.$
- $\square L_2 = \frac{1}{n} \sum_{i=1}^n X_i.$
- $\Box L_3 = \frac{1}{n} \sum_{i=1}^n \left(X_i^2 \left(\frac{1}{n} \sum_{j=1}^n X_j \right)^2 \right).$
- $\Box L_4 = \frac{1}{n} \sum_{i=1}^n \left(x_i^2 \left(\frac{1}{n} \sum_{j=1}^n x_j \right)^2 \right).$

Question 2. Un estimateur biaisé peut être plus précis qu'un estimateur non-biaisé.

- □ Vrai.
- ☐ Faux.

Indice pour la question 1. Quelles sont l'espérance et la variance d'une loi de Poisson de paramètre λ ?

Solution

Question 1. Il y a ici tout d'abord une question de vocabulaire : un estimateur est une variable aléatoire, tandis qu'une estimation est sa réalisation. Ainsi nous ne considérons que les formules avec X et non pas avec x.

Les deux sont des estimateurs sans biais de λ .

En effet, les X_i étant i.i.d. de même loi que X, et on rappelle que $\mathbb{E}(X) = \lambda$ et $\mathbb{V}(X) = \lambda$. Alors

$$B(L_2) = \mathbb{E}(L_1) - \lambda = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) - \lambda = 0.$$

De même,

$$B(L_3) = \frac{1}{n} \sum_{i=1}^{n} (\mathbb{E}(X_i)^2 - \lambda^2) - \lambda = 0.$$

On a utilisé ici que, par définition de la variance, $\mathbb{E}(X^2) = \mathbb{V}(X) + \mathbb{E}(X)^2$.

Question 2. Vrai. C'est le concept du compromis biais-variance (cf. section 3.4.3 du poly).