Trigonalisation

Coralie RENAULT

30 novembre 2014

Exercice

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle que det A = 1 et qu'il existe $p \in \mathbb{N}^*$ pour lequel

$$A^p = I_n$$

a) Montrer que A est diagonalisable dans \mathbb{C} .

On note α et β les deux valeurs propres de A.

b) Montrer que $|\alpha| = |\beta| = 1$, que $\alpha = \bar{\beta}$ et

$$|\text{Re}(\alpha)| \in \{0, 1/2, 1\}$$

- c) Montrer que $A^{12} = I_2$
- d) Montrer que l'ensemble $G=\{A^n/n\in\mathbb{N}\}$ est un groupe monogène fini pour le produit matriciel.

Exercice

Soit E un K-ev et $f \in \mathcal{L}(E)$ admettant un polynôme minimal. Si f est inversible, montrer que f^-1 est un polynôme en f.

Exercice

Soit

$$M = \left(\begin{array}{cc} A & A \\ 0 & A \end{array}\right)$$

avec $A \in \mathcal{M}_n(\mathbb{R})$.

Enoncer une condition nécessaire et suffisante pour que M soit diagonalisable.

Exercice

Existe-il dans $M_n(\mathbb{R}$ une matrice de polynome minimal $X^2 + 1$?

Exercice

On considère la matrice :

$$\left(\begin{array}{ccc}
8 & -1 & -5 \\
-2 & 3 & 1 \\
4 & -1 & -1
\end{array}\right)$$

- Déterminer les valeurs propres de A.
- A est-elle diagionalisable? Trigonalisable? Si oui le faire.

Exercice

Question de cours : Si $deg(\Pi_u) = d$ quel est la dimension de $\mathbb{K}[u]$? Le démontrer. On considère la matrice :

$$\left(\begin{array}{cc} 1 & 1 \\ -2 & 4 \end{array}\right)$$

Calculer les puissances de A.

Exercice

Soit A une matrice carrée réelle d'ordre n.

Montrer que A est nilpotente si, et seulement si,

$$\forall p \in [1, n], \operatorname{tr} A^p = 0$$

Exercice

On veut démontrer le théorème de décomposition de dunford :

Soit un endomorphisme $f \in \mathcal{L}(E)$ tel que son polynome caractéristique P_f soit scindé sur \mathbb{K} . Il existe un unique couple (d, n) d'endomorphismes tel que :

- d est diagonalisable, n est nilpotente
- $-f = d + n \text{ et } d \circ n = n \circ d$

Pour cela:

- Montrer que si $f \in \mathcal{L}(E)$ et $F \in \mathbb{K}[X]$ un polynome annulateur de f. Soit $F = \beta M_1^{\alpha_1}...M_s^{\alpha_s}$ la décomposition en facteurs irréductibles de $\mathbb{K}[X]$ du polynome F. Pour tout i on note $N_i = ker(M_i^{\alpha_i}(f))$. On a alors $E = N_1 \oplus N_2... \oplus N_s$ et pour tout i, la projection sur N_i parallèlement à $\bigoplus_{j \neq i} N_j$ est un polynome en f.
- Montrer l'existence de d et n en appliquant ce qui précéde, poser l'endomorphisme d adéquate et montrer que n=d-f est nilpotent. Justifier la commutation.
- Montrer l'unicité.

Exercice

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E et $P \in \mathbb{K}[X]$ annulateur de u. On suppose qu'on peut écrire P = QR avec Q et R premiers entre eux. Etablir

$$Im Q(u) = \ker R(u)$$