Apuntes de clase

José Antonio de la Rosa Cubero

Definición 1 (Grupo resoluble). Un grupo G se dice resoluble si tiene una serie normal:

$$1 = H_0 \leq H_1 \leq \ldots \leq H_{n-1} \leq H_n = G$$

tal que H_i/H_{i-1} es abeliano para todo $i=1,\ldots,n$.

Observación 1. Es claro que si G es abeliano, entonces es resoluble, puesto que la serie

$$1 \triangleleft G$$

tiene sus factores abelianos (G/1 = G).

Teorema 1. Sea G un grupo finito. Son equivalentes los siguientes enunciados.

- 1. Los factores de composición de G son cíclicos de orden un número primo.
- 2. G es resoluble.

Demostración. Que la primera afirmación implica la segunda es obvia por la abelianidad de C_p .

Veamos el recíproco. Suponemos G resoluble, sea G_i una serie normal de G con G_i/G_{i-1} abeliano. Como G es finito, podemos aplicar el teorema de Jordan-Hölder. La serie puede refinarse a una serie de composición.

Sea H_i dicho refinamiento. Vamos a ver que los factores H_r/H_{r-1} de esta serie son todos abelianos para $r \geq 1$. Elegimos un r y existirá entonces un $i \in \{1, \ldots, n\}$ tal que $H_r \leq G_i$ por ser refinamiento.

Estudiamos los siguientes casos:

Caso 1. Que $H_{r-1} = G_{i-1}$, entonces

$$H_r/H_{r-1} = H_r/G_{r-1} \le G_i/G_{i-1}$$

que es abeliano, luego H_r/H_{r-1} también lo es.

Caso 2. $H_{r-1} \neq G_{i-1}$, entonces:

$$G_{i-1} \subseteq H_{r-1} \triangleleft H_r \subseteq G_i$$

Entonces $H_r/H_{r-1} \cong (H_r/G_{i-1})/(H_{r-1}/G_{i-1})$ y este cociente es abeliano porque H_r/G_{i-1} , H_{r-1}/G_{i-1} son subgrupos del grupo abeliano G_i/G_{i-1} .

Como H_r/H_{r-1} es simple y abeliano, entonces es cíclico de orden primo.

Corolario 1. S_n es resoluble si y solo si $n \leq 4$.

Demostración. Si n=2,3,4, tenemos que fact $(S_2)=(C_2)$, fact $(S_3)=(C_2,C_3)$ y fact $(S_4)=(C_2,C_2,C_2,C_3)$. son resolubles por el teorema anterior

Si $n \geq 5$, entonces fact $(S_n) = \{C_2, A_n\}$. Como A_n no es cíclico de orden primo, entonces no es resoluble.

Ejemplo: Hemos visto que fact $(D_3) = (C_2, C_3)$, fact $(D_4) = (C_2, C_2, C_2)$ y fact $(D_4) = (C_3, C_2, C_2)$, como son todos cíclicos, D_3, D_4, D_6 son resolubles.

Lema 1. Sean $N, N', H \leq G$ con $N \leq N'$ entonces $N \cap H \leq N' \cap H$.

Lema 2. Sean $H, H', N \leq G$ con $H \subseteq H'$ y $N \subseteq G$ entonces $NH \subseteq NH'$.

Proposición 1. Se cumple:

- 1. Sea G un grupo resoluble y $H \leq G$, entonces H también lo es.
- 2. Sea G resoluble y $N \subseteq G$, entonces G/N es resoluble.
- 3. Sea G un grupo y $N \leq G$ tal que N y G/N son resolubles. Entonces también lo es G.

Demostración. Sea G_i una serie normal de G con G_i/G_{i-1} abeliano. Sea $H \leq G$. Por el primer lema, obtenemos una serie normal

$$1 = G_o \cap H \triangleleft \ldots \triangleleft G_{n-1} \cap H \triangleleft H$$

Sea $i \in \{1, ... n\}$ aplicamos el tercer teorema de isomorfía a G_i y a los subgrupos $K = G_i \cap H \leq G_i$ y a los subgrupos $N = G_{i-1} \subseteq G_i$. Entonces $K/(N \cap K) \cong KN/N$.

Entonces $(G_i \cap H)/(G_{i-1} \cap G_i \cap H) \cong G_{i-1}(G_i \cap H)/G_{i-1}$ y por otro lado $(G_i \cap H)/(G_{i-1} \cap G_i \cap H) = (G_i \cap H)/(G_{i-1} \cap H)$.

Puesto que $G_{i-1}(G_i \cap H)/G_{i-1} \leq G_i/G_{i-1}$, y es entonces abeliano por ser subgrupo de un grupo abeliano.

Por tanto H tiene una serie normal con factores abelianos, y por tanto H es resoluble.

Veamos ahora el punto 2. Consideramos G_i una serie normal de G con factores abelianos. Aplicamos el segundo lema, obtenemos que $G_{i-1}N \subseteq G_iN$. Además, N es normal en todo G_iN pues N es normal en G. Podemos tomar cociente y obtenemos G_iN/N , serie normal de G/N. Sus factores son los siguientes $(G_iN/N)/(G_{i-1}N/N) \cong G_iN/(G_{i-1}N)$, por el segundo teorema de isomorfía.

Aplicamos el tercer teorema de isomorfía: $G_i \leq G_i N$ y $G_{i-1} N \subseteq G_i N$. Tenemos que

$$G_i/((G_{i-1}N) \cap G_i) \cong (G_i(G_{i-1}N))/(G_{i-1}N) = (G_iN)/(G_{i-1}N)$$

 $G_i/((G_{i-1}N) \cap G_i) \cong G_i/((G_{i-1}N) \cap G_i)$

Consecuentemente G/N tiene una serie normal con factores abelianos. Veamos el punto 3.

Sea N_i $i \leq r$ una serie normal de N con factores abelianos y H_i/N $i \leq s$ una serie normal de G/N tal que $(H_j/N)/(H_{j-1}/N) \cong H_j/H_{j-1}$ es abeliano.

Entonces es inmediato que H_i es una serie normal cuyos factores son abelianos. Por tanto, G es resoluble.

Corolario 2. Para todo $n \geq 3$, el grupo diédrico D_n es resoluble.

Demostración.

$$D_n = \langle r, s | r^n = 1 = s^2, sr = r^{-1}s \rangle$$

Consideramos $N = \langle r \rangle \cong C_n$. Tenemos que es abeliano, normal en D_n y $[D_n:N]=2$.

N es abeliano y resoluble y $D_n/N \cong C_2$ abeliano y por tanto resoluble. Por la proposición anterior D_n es resoluble.

Definición 2 (Conmutador). Sea G un grupo y $x, y \in G$. Definimos el conmutador de x, y, denotado por [x, y], como el elemento:

$$[x,y] := xyx^{-1}y^{-1}$$

Definición 3 (Subgrupo conmutador o primer derivado). Definimos el subgrupo conmutador o primer subgrupo derivado de G, denotado por [G, G], como el subgrupo generado por los conmutadores. Esto es

$$[G,G] = \langle [x,y]|x,y \in G \rangle$$

Definición 4 (Abelianizado de un grupo). A G/[G,G] se le llama el abelianizado de G.

Proposición 2. Sea G un grupo. Entonces:

- 1. $[G,G] \leq G$.
- 2. $[G,G] = 1 \iff G \text{ es abeliano.}$
- 3. G/[G,G] es un grupo abeliano.
- 4. Si $N \subseteq G$ entonces G/N es abeliano si y solo si $[G, G] \subseteq N$.

Demostración. Puesto que $\{[x,y]|x,y\in G\}$ genera [G,G], para ver que $[G,G] \leq G$, basta ver que $a[x,y]a^{-1}\in [G,G]$ para todo $a\in G$. Esto último ocurre porque:

$$a[x, y]a^{-1} = [axa^{-1}, aya^{-1}] \in [G, G]$$

El segundo punto es trivial.

Para el tercero tenemos que H=[G,G], entonces si $xH,yH\in G/H$ tenemos que:

$$(xH)(yH) = xyH$$

$$(yH)(xH) = yxH$$

Como $(xy)^{-1}xy = [x^{-1}, y^{-1}] \in G$, tenemos que xyH = yxH y por tanto que G/H = G/[G, G] es abeliano.

De forma similar se prueba el último punto.

Proposición 3. Para todo $n \geq 3$, se tiene que $[S_n, S_n] = A_n$.

Demostración. Sea $A_n \leq S_n$ y S_n/A_n es abeliano y $[S_n, S_n] \leq A_n$.

Para la otra inclusión basta ver que todo 3-ciclo está en el commutador.

$$(i \quad j \quad k) = \begin{bmatrix} (i \quad j), (i \quad k) \end{bmatrix} \in [S_n, S_n]$$

Definición 5. Para cada n definimos el n-ésimo subgrupo derivado de G por recurrencia como sigue:

$$G^{(0)} := G$$

$$G^{(n+1)} := [G^{(n)}, G^{(n)}]$$

Observación 2. Tenemos la siguiente serie:

$$\dots \subseteq G^{(n+1)} \subseteq G^{(n)} \subseteq \dots \subseteq G^{(2)} \subseteq G^{(1)} \subseteq G^{(0)} = G$$

que en general no tiene por qué ser finita.

Sus factores $G^{(n)}/[G^{(n)},G^{(n)}]$ son abelianos. A esta serie se le llama la serie derivada de G.

Teorema 2. G es resoluble si y solo si existe un n tal que $G^{(n)} = 1$.

Demostración. Un ad las implicaciones es trivial. Veamos la otra. Sea G resoluble y H_i una serie normal de G con H_i/H_{i-1} abeliano.

Veamos que para todo $i \ge 1$, $G^{(i)} \le H_{n-i}$ por inducción en i.

Si i = 1, tenemos que $H_n/H_{n-1} = G/H_{n-1}$ es abeliano, entonces $[G, G] = G^{(1)} \le H_{n-1}$ y se tiene el resultado.

Supuesto cierto para i $(G^{(i)} \leq H_{n-i})$, veamos para i+1. Puesto que H_{n-i}/H_{n-i-1} es abeliano, tenemos que $[H_{n-i},H_{n-i}] \leq H_{n-(i+1)}$ Como $G^i \leq H_{n-i}$ tenemos que el conmutador $G^{i+1} \leq H_{n-(i+1)}$.

Tomando i = n, se tiene que $G^n \le 1$, luego $G^n = 1$.