CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 8

Samson Zhou

Dimensionality Reduction

Many images from:

Cameron Musco's

COMPSCI 514: Algorithms for Data Science

Last Time: Low Distortion Embedding

• Given $x_1, ..., x_n \in \mathbb{R}^d$, a distance function D, and an accuracy parameter $\varepsilon \in [0,1)$, a low-distortion embedding of $x_1, ..., x_n$ is a set of points $y_1, ..., y_n$, and a distance function D' such that for all $i, j \in [n]$

$$(1 - \varepsilon)D(x_i, x_j) \le D'(y_i, y_j) \le (1 + \varepsilon)D(x_i, x_j)$$

Last Time: Euclidean Space

• For $z \in \mathbb{R}^d$, the ℓ_2 norm of z is denoted by $||z||_2$ and defined as:

$$||z||_2 = \sqrt{z_1^2 + z_2^2 + \dots + z_d^2}$$

• For $x, y \in \mathbb{R}^d$, the distance function D is denoted by $\|\cdot\|_2$ and defined as $\|x - y\|_2$

Last Time: Low Distortion Embedding for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ and an accuracy parameter $\varepsilon \in [0,1)$, a low-distortion embedding of $x_1, ..., x_n$ is a set of points $y_1, ..., y_n$ such that for all $i, j \in [n]$

$$(1-\varepsilon)\|x_i-x_j\|_2 \le \|y_i-y_j\|_2 \le (1+\varepsilon)\|x_i-x_j\|_2$$

Examples: Embeddings for Euclidean Space

• Suppose $x_1, ..., x_n \in \mathbb{R}^d$ all lie on the 1^{st} - axis

• Take m=1 and y_i to be the first coordinate of x_i

• Then $||y_i - y_j||_2 = ||x_i - x_j||_2$ for all $i, j \in [n]$

Embedding has no distortion

Examples: Embeddings for Euclidean Space

• Suppose $x_1, ..., x_n \in \mathbb{R}^d$ all lie on some line in \mathbb{R}^d

• Rotate to line to be the 1st - axis and proceed as before

• Require m = 1 for embedding with no distortion

Examples: Embeddings for Euclidean Space

• Suppose $x_1, ..., x_n \in \mathbb{R}^d$ lie in some k-dimensional subspace V of \mathbb{R}^d

• Rotate V to coincide with the k - axes of \mathbb{R}^d and set m=k

Embeddings for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with no distortion?

Embeddings for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with no distortion? NO!

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with ε distortion?

Embeddings for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with no distortion? NO!

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with ε distortion? YES!

Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in R^d$ and an accuracy parameter $\varepsilon \in [0,1)$, there exists a linear map $\Pi: R^d \to R^m$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ so that if $y_i = \Pi x_i$, then for all $i, j \in [n]$:

$$(1-\varepsilon)\|x_i-x_j\|_2 \le \|y_i-y_j\|_2 \le (1+\varepsilon)\|x_i-x_j\|_2$$

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in R^d$ and an accuracy parameter $\varepsilon \in [0,1)$, there exists a linear map $\Pi: R^d \to R^m$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ so that if $y_i = \Pi x_i$, then for all $i,j \in [n]$:

$$(1-\varepsilon)\|x_i-x_j\|_2 \le \|y_i-y_j\|_2 \le (1+\varepsilon)\|x_i-x_j\|_2$$

• For $d=10^{12}$, $n=10^5$, and $\varepsilon=0.5$, only requires $m\approx 6600$

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in R^d$ and an accuracy parameter $\varepsilon \in [0,1)$, there exists a linear map $\Pi: R^d \to R^m$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ so that if $y_i = \Pi x_i$, then for all $i,j \in [n]$:

$$(1-\varepsilon)\|x_i-x_j\|_2 \le \|y_i-y_j\|_2 \le (1+\varepsilon)\|x_i-x_j\|_2$$

• Moreover, if each entry of Π is drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then Π satisfies the guarantee with high probability

• Given $x_1, \dots, x_n \in R^d$ and $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$ and setting $y_i = \Pi x_i$, then with high probability, $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ for all $i, j \in [n]$: $(1 - \varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1 + \varepsilon) \|x_i - x_j\|_2$

$$R^{m \times d} \qquad R^{d} \qquad R^{m}$$

$$01 - 1.2 .34 .67 .10 - .49 ...$$

$$-.45 .7 .14 .18 - .65 .76 ...$$

$$\Pi \qquad = O\left(\frac{\log n}{\varepsilon^{2}}\right) \qquad x_{i}$$

$$(1-\varepsilon)\|x_i-x_j\|_2 \le \|y_i-y_j\|_2 \le (1+\varepsilon)\|x_i-x_j\|_2$$

• Π is called a random projection

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in R^d$ and $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$ and setting $y_i = \Pi x_i$, then with high probability, for all $i, j \in [n]$: $(1 - \varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1 + \varepsilon) \|x_i - x_j\|_2$

• "Applying a simple random linear transformation to a set of points approximately preserves all pairwise distances"

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon)\|x\|_2 \le \|y\|_2 \le (1 + \varepsilon)\|x\|_2$

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in \mathbb{R}^d$ and $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$ and setting $y_i = \prod x_i$, then with high probability, for all $i, j \in [n]$:

$$(1-\varepsilon)\|x_i-x_j\|_2 \le \|y_i-y_j\|_2 \le (1+\varepsilon)\|x_i-x_j\|_2$$

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in \mathbb{R}^{m \times d}$ with $m=O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x\in R^d$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$(1 - \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$$

• JL says that the random projection Π preserves all pairwise distances of n points $x_1, \dots, x_n \in \mathbb{R}^d$

• Distributional JL shows that the random projection Π preserves the norm of any $x \in \mathbb{R}^d$

• Take $x_1, ..., x_n \in \mathbb{R}^d$ and define $z_{i,j} = x_i - x_j \in \mathbb{R}^d$ for all $i, j \in [n]$

• $\binom{n}{2}$ total vectors

• Take $x_1, \dots, x_n \in \mathbb{R}^d$ and define $z_{i,j} = x_i - x_j \in \mathbb{R}^d$ for all $i, j \in [n]$

• $\binom{n}{2}$ total vectors

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon)\|x\|_2 \le \|y\|_2 \le (1 + \varepsilon)\|x\|_2$

• What happens when we set $\delta = \frac{1}{n^3}$?

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon)\|x\|_2 \le \|y\|_2 \le (1 + \varepsilon)\|x\|_2$

- What happens when we set $\delta = \frac{1}{n^3}$?
- Union bound

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon)\|x\|_2 \le \|y\|_2 \le (1 + \varepsilon)\|x\|_2$

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon)\|x\|_2 \le \|y\|_2 \le (1 + \varepsilon)\|x\|_2$

 $\begin{array}{cccc}
\Pi & & & & \\
x_1 & & & \\
\vdots & & & \\
x_d & & & \\
\end{array}$ nate of x)

(Here x_1 is the first coordinate of x)

Trivia Question #5 (Gaussian Behavior)

• Let $x \sim N(\mu, \sigma^2)$. What is E[x] and what is $E[|x - \mu|^2]$?

- (0, 1)
- $(0,\sigma)$
- (μ, σ)
- (μ, σ^2)

PDF of Gaussian
$$N(\mu, \sigma^2)$$
 is $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Trivia Question #6 (Gaussian Stability)

• For independent $a \sim N(\mu_1, \sigma_1^2)$ and $b \sim N(\mu_2, \sigma_2^2)$. What is the distribution of a + b?

•
$$N\left(\frac{\mu_1+\mu_2}{2},\frac{\sigma_1+\sigma_2}{2}\right)$$

•
$$N(\mu_1 + \mu_2, \sigma_1 + \sigma_2)$$

•
$$N\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$$

•
$$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

•
$$y_i = \langle \Pi_i, x \rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^d g_j \cdot x_j \text{ for } g_j \sim N(0, 1)$$

• $g_j \cdot x_j \sim N(0, x_j^2)$, normal random variable with variance x_j^2

What is the distribution of y_i ?

• For independent $a \sim N(\mu_1, \sigma_1^2)$ and $b \sim N(\mu_2, \sigma_2^2)$, we have

$$a + b \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

• For independent $a\sim N(\mu_1,\sigma_1^2)$ and $b\sim N(\mu_2,\sigma_2^2)$, we have $a+b\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$

$$y_i = \langle \Pi_i, x \rangle = \frac{1}{\sqrt{m}} (g_1 \cdot x_1 + g_2 \cdot x_2 + \dots + g_d \cdot x_d)$$

$$y_i \sim N\left(0, \frac{1}{m} ||x||_2^2\right)$$

• For $y_i \sim N\left(0, \frac{1}{m} ||x||_2^2\right)$, we have $\mathbb{E}[y_i^2] = \frac{1}{m} ||x||_2^2$

• We have
$$E[||y||_2^2] = E[y_1^2 + \dots + y_m^2] = E[y_1^2] + \dots + E[y_m^2] = ||x||_2^2$$

Correct expectation!

How is it distributed?

• $||y||_2^2$ is distributed as Chi-Squared random variable with m degrees of freedom (sum of m squared independent Gaussians)

• $||y||_2^2$ is distributed as Chi-Squared random variable with m degrees of freedom (sum of m squared independent Gaussians)

• Chi-Squared Concentration: Let ${\it Z}$ be a Chi-Squared random variable with ${\it m}$ degrees of freedom. Then

$$\Pr[|Z - E[Z]| \ge \varepsilon \cdot E[Z]] \le 2e^{-m\varepsilon^2/8}$$

• Claim follows from setting $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$