Projet 3 : Préparez des données pour un organisme de santé publique

11/06/2024

Soukaina GUAOUA ELJADDI

Parcours Data Scientist OpenClassrooms

Plan:

- Problématique
- Nettoyage et filtration des features et produits
- Identification et traitement des valeurs aberrantes
- Identification et traitement des valeurs manquantes
- Analyses uni-variée et bi-variée
- Analyse multi-variée
- Conclusion

Problématique

Contexte: Projet d'amélioration de la base de données Open Food Facts de l'agence santé publique france.

Objectif : Création d'un système de suggestion ou d'auto-complétion pour aider les usagers à remplir plus efficacement la base de données.

Mission : nettoyage et exploration des données, afin de déterminer la faisabilité de l'idée d'application de Santé publique France.

Analyse exploratoire du jeu de données:

fr.openfoodfacts.org.products.csv: 320772 observations, 162 variables

Fiche produit	Tags	Ingrédients et additifs	Informations nutritionnels		
codeurlcreatorcreated_tproduct_name	packaging_tagsbrand_tagscategories_tagsorigin_tags	ingredients_textallergensadditives	fat_100gsugars_100gfiber_100gsalt_100g		

Identification de la cible et des features pertinentes:

Données originales : 320772 lignes, 162 colonnes

Cible = 'nutrition_grade_fr'

Features pertinentes : Features avec plus de 50% de valeurs présentes ⇒ 43 colonnes

Suppression des produits en double ⇒ 221210 lignes

Filtrage et nettoyage des données :

Suppression des colonnes redondantes: 'additives_n', 'additives', 'additives_tags'

'additives_fr' plus informative ⇒ 221210 lignes × 40 colonnes

Exemple:

```
product_name Peanut Butter Power Chews

additives_n 3.0

additives [peanut-butter -> en:peanut-butter ] [but...

additives_tags en:e170,en:e322,en:e410

additives fr E170 - Carbonate de calcium,E322 - Lécithines,...
```

Filtrage et nettoyage des données :

Suppression des colonnes Temps sous format _t (UNIX timestamp format): 'created_t' et 'last_modified_t'

```
_datetime (format ISO 8601): 'created_datetime', 
'last_modified_datetime' ⇒ 221210 lignes × 38 colonnes
```

Exemple:

Filtrage et nettoyage des données :

```
Suppression des colonnes redondantes _tags : 'brands_tags', 'countries_tags', 'states_tags'
```

'brands', 'countries', 'states'⇒ 221210 lignes × 35 colonnes

```
Exemple:
```

Filtrage et nettoyage des données :

Suppression de la colonne redondante : 'nutrition-score-uk_100g'

'nutrition-score-fr_100g' ⇒ 221210 lignes × 34 colonnes

Exemple:

```
product_name Peanut Butter Power Chews nutrition-score-uk_100g 9.0 nutrition-score-fr_100g 9.0
```

Filtrage et nettoyage des données :

Suppression des colonnes redondantes : 'countries', 'states'

'countries_fr' et 'states_fr' ⇒ 221210 lignes × 32 colonnes

```
Exemple:
```

product_name Peanut Butter Power Chews US

countries US countries_fr États-Unis

states en:to-be-completed, en:nutrition-facts-complet... states fr A compléter, Informations nutritionnelles compl...

Filtrage et nettoyage des données :

Suppression des colonnes inutiles pour l'analyse : 'code', 'url', 'creator', 'created_datetime', 'last_modified_datetime', 'brands', 'origins', 'countries_fr', 'ingredients_text', 'serving_size', 'additives_fr', 'states_fr'

⇒ 221210 lignes × 21 colonnes

Filtrage et nettoyage des données :

Suppression d'une des 2 variables corrélées

- 'sodium_100g' == 'salt_100g'
- 'sugars_100g' == 'carbohydrates_100g
- 'fat_100g' == 'saturated-fat_100g'

⇒ 221210 rows × 18 columns

Filtrage et nettoyage des données :

Suppression des 2 colonnes mal renseignés : 'ingredients from palm oil n' : 0 et NaN

et 'ingredients_that_may_be_from_palm_oil_n'

⇒ 221210 lignes × 16 colonnes

Filtrage et nettoyage des données :

Suppression de la colonne : 'nutrition-score-fr_100g' correspondante

à 'nutrition_grade_fr'

⇒ 221210 lignes × 15 colonnes

nutrition_grade	nutrition-score
Α	-15 et -2
В	-1 à +3
С	+4 à +11
D	+12 à +16
E	+17 à +40

Source: Wikipedia

Filtrage et nettoyage des données :

- Suppression des lignes avec 'variables _100g' > 100, à l'exception du variable energy_100g (en kj)
- Remplacement des valeurs négatives par 0 ⇒ 221133 lignes × 15

colonnes

12 variables numériques	3 catégorielles			
energy_100g, saturated-fat_100g,	product_name,			
trans-fat_100g, cholesterol_100g,	pnns_groups_1,			
carbohydrates_100g, fiber_100g,	nutrition_grade_fr (cible)			
proteins_100g, salt_100g,				
vitamin-a_100g, vitamin-c_100g,				
calcium_100g, iron_100g.				

Méthode des plages interquartiles

Avant suppression des valeurs aberrantes

Après suppression des valeurs aberrantes

Avant suppression des valeurs aberrantes Après suppression des valeurs aberrantes

⇒ Suppression de la variable nulle 'trans-fat_100g', et la variable 'vitamin-c_100g' presque nulle avec que des valeurs aberrantes ⇒ 10 variables restantes

Identification des valeurs manquantes

Traitement des valeurs manquantes

Méthode 1 Méthode 2 Méthode 3 Méthode 4 Après suppression Suppression des Imputation des Remplissage des des valeurs lignes avec que des valeurs manquantes valeurs manquantes aberrantes: 101444 $0 \Rightarrow 101080$ lignes qui ont une restantes par 0 ⇒ lignes, 12 colonnes × 12 colonnes catégorie 101080 lignes × 12 colonnes pnns groups 1 Suppression des avec la méthode lignes avec que des KNNI: 101080 lignes NaN ⇒ 101281 × 12 colonnes lignes × 12 colonnes

Visualisation des variables avant et après traitement des valeurs manquantes

Analyse uni-variée : statistiques descriptives

	energy_100g	saturated- fat_100g	cholesterol_100g	carbohydrates_100g	fiber_100g	proteins_100g	salt_100g	vitamin- a_100g	calcium_100g	iron_100g
count	101080.000000	101080.000000	101080.000000	101080.000000	101080.000000	101080.000000	101080.000000	101080.000000	101080.000000	101080.000000
mean	1088.438248	3.385542	0.005141	32.909335	1.931544	6.028504	0.707040	0.000025	0.057136	0.001196
std	710.960931	4.455492	0.009197	29.384576	2.131785	5.327604	0.725666	0.000041	0.057313	0.001279
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	423.000000	0.000000	0.000000	5.830000	0.000000	1.670000	0.091440	0.000000	0.000000	0.000000
50%	1046.000000	1.400000	0.000000	23.000000	1.340000	5.000000	0.508000	0.000000	0.048000	0.000840
75%	1653.000000	5.200000	0.007000	60.470000	3.100000	8.850000	1.115060	0.000040	0.102445	0.002030
max	3590.000000	17.840000	0.047000	100.000000	9.000000	23.640000	3.251200	0.000259	0.261000	0.006260

Visualisation uni-variée : graphiques de densité

Graphiques de densité des variables

Visualisation bi-variée : diagrammes de violon

nutrition grade fr

Visualisation avancée: carte de chaleur

Visualisation avancée: graphique en 3D

Nuage de points en 3D

Analyse statistique : analyse en composante principale (ACP)

Carte de chaleur des variables en fonction des 10 composantes

1.00

- 0.25

- 0.00

- -0.25

- energy_100g et iron_100g : les plus corrélées positivement à F1
- vitamin-a_100g, cholesterol_100g et
 calcium_100g : les plus corrélées
 positivement à F2
- energy_100g et fiber_100g : très corrélées entre eux
- energy_100g et cholesterol_100g : indépendantes

- saturated-fat_100g : la plus corrélée positivement à F3
- salt_100g : la plus corrélée négativement à F4
- calcium_100g est à 0.5 sur F4 et à 0 sur F3 : bien corrélée avec F4 et elle n'a pas d'impact sur F3
- vitamin-a_100g, energy_100g : indépendantes

Conclusion

Conclusion:

Le nettoyage et l'exploration des données montre que ces 10 variables peuvent contribuer pour prédire un Nutri-Score automatique:

- saturated-fat_100g
- energy_100g
- cholesterol_100g
- proteins_100g
- salt_100g
- vitamin-a_100g
- carbohydrates_100g
- calcium_100g
- iron_100g
- fiber_100g

Conclusion:

Le Règlement Général sur la Protection des Données (**RGPD**) est basé sur **cinq grands principes** qui encadrent la protection des données personnelles au sein de l'Union Européenne. Voici ces principes :

- 1. Licéité, loyauté et transparence
- 2. Limitation des finalités
- 3. Minimisation des données
- 4. Exactitude
- 5. Limitation de la conservation