Os dados de entrada necessários para implementação do Método das Coortes Componentes para projeção da população de 2010 para 2015 são:

- 1. População por sexo e idade em 2010;
- 2. Tábuas de mortalidade por sexo e grupos quinquenais de idade que expressem as razões de sobrevivência (mediante o uso da função _nL_x, ver definição no Capítulo 9) para o respectivo período quinquenal de projeção;
- 3. TEFs por grupos quinquenais de idade, que expressem o potencial reprodutivo da população no respectivo período quinquenal; e
- 4. Taxas líquidas de migração para o Estado do Rio Grande do Norte paro o respectivo período quinquenal.

Os resultados deste exemplo prático são mostrados na Tabela 21.6.

Primeiramente, são carregados os dados de entrada mediante uso da função "read.csv". Neste caso, todos as arquivos de dados devem estar no formato ".csv":

```
pop = read.csv('pop2010.RN.csv', sep=";", stringsAsFactors = FALSE)
nLx = read.csv('nLx.csv', sep=";", stringsAsFactors = FALSE)
TEF = read.csv('TEF.csv', sep=";", stringsAsFactors = FALSE)
TLM = read.csv('TLM.csv', sep=";", stringsAsFactors = FALSE)
```

As estruturas dos arquivos "pop" e "nLx" devem ser exatamente como segue:

pop2010.RN.csv:				nLx.csv	:	TLM.csv:			
sexo	idade	pop2010	sexo	idade	nLx	sexo	idade	TLM	
fem	0	126158	fem	0	492330	fem	0	0.00363	
fem	5	133256	fem	5	491516	fem	5	0.00455	
fem	10	145957	fem	10	490825	fem	10	0.01500	
fem	15	149374	fem	15	490061	fem	15	0.01039	
fem	20	156576	fem	20	488943	fem	20	0.00034	
fem	25	147147	fem	25	487345	fem	25	-0.03753	
fem	30	130679	fem	30	485348	fem	30	-0.00437	
fem	35	116755	fem	35	482723	fem	35	0.03438	
fem	40	112973	fem	40	478966	fem	40	0.04085	
fem	45	101144	fem	45	473249	fem	45	0.02134	
fem	50	78679	fem	50	464310	fem	50	0.03590	
fem	55	63016	fem	55	451427	fem	55	0.04756	
fem	60	57135	fem	60	434068	fem	60	0.06690	
fem	65	42481	fem	65	409861	fem	65	0.05402	
fem	70	35305	fem	70	375431	fem	70	0.06173	
fem	75	23538	fem	75	325068	fem	75	0.13123	
fem	80	18305	fem	80	253868	fem	80	0.30433	
fem	85	10685	fem	85	168806	fem	85	0.56211	
fem	90	6639	fem	90	130791	fem	90	1.35873	
masc	0	131289	masc	0	489204	masc	0	0.00358	
masc	5	137770	masc	5	487942	masc	5	0.00449	
masc	10	151688	masc	10	486870	masc	10	0.01361	
masc	15	151873	masc	15	484228	masc	15	0.01031	
masc	20	157120	masc	20	479179	masc	20	-0.01005	
masc	25	144821	masc	25	472920	masc	25	-0.05353	
masc	30	125795	masc	30	466420	masc	30	-0.02015	
masc	35	109931	masc	35	458685	masc	35	0.03550	
masc	40	105020	masc	40	448969	masc	40	0.04573	
masc	45	92420	masc	45	437068	masc	45	0.02782	
masc	50	69628	masc	50	421173	masc	50	0.04084	
masc	55	53407	masc	55	400093	masc	55	0.05049	
masc	60	47903	masc	60	372347	masc	60	0.07002	
masc	65	34641	masc	65	335425	masc	65	0.08590	
masc	70	27776	masc	70	289246	masc	70	0.10704	
masc	75	17425	masc	75	231485	masc	75	0.15727	
masc	80	13370	masc	80	162466	masc	80	0.32553	
masc	85	7924	masc	85	93321	masc	85	0.62132	
masc	90	4336	masc	90	55022	masc	90	1.28027	

Já o arquivo "TEF.csv" deve conter as taxas específicas de fecundidade projetadas para o ponto médio de cada período quinquenal e sua estrutura deve ser como segue:

Ano	Idade	TEF		
2012.5	15	0.0660		
2012.5	20	0.0888		
2012.5	25	0.0817		
2012.5	30	0.0635		
2012.5	35	0.0329		
2012.5	40	0.0089		
2012.5	45	0.0008		

As variáveis em cada arquivo de dados de entrada devem ser configuradas como segue:

```
pop$sexo = as.character(pop$sexo)
pop$idade = as.integer(pop$idade)
pop$pop2010 = as.numeric(pop$pop2010)

nLx$sexo = as.character(nLx$sexo)
nLx$idade = as.integer(nLx$idade)
nLx$nLx = as.numeric(nLx$nLx)

TLM$sexo = as.character(TLM$sexo)
TLM$idade = as.integer(TLM$idade)
TLM$TLM = as.numeric(TLM$TLM)

TEF$ano = as.mumeric(TEF$ano)
TEF$idade = as.integer(TEF$idade)
TEF$TEF = as.numeric(TEF$TEF)
```

Para projeção da população fechada sobrevivente (conforme equação 21.19) calcula-se, incialmente, as razões de sobrevivência por sexo, grupos etários quinquenais ($_nS_x$) e para o grupo etário aberto nas tábuas de vida projetadas. Em seguida, multiplica-se as populações por sexo, grupos etários quinquenais e grupo etário aberto, no ano base (2010), pelas respectivas razões de sobrevivência como segue:

```
Cálculo das razões de sobrevivência:

nLx[1:17,4] = nLx[2:18,3]/nLx[1:17,3]

nLx[18,4] = nLx[19,3]/(nLx[18,3]+nLx[19,3])

nLx[20:36,4] = nLx[21:37,3]/nLx[20:36,3]

nLx[37,4] = nLx[38,3]/(nLx[37,3]+nLx[38,3])

colnames(nLx) = c('sexo', 'idade', 'nLx', 'nSx')
```

A projeção da população fechada sem os nascimentos no quinquênio (tal como apresentada na coluna 5 da Tabela 21.6) é obtida como segue:

```
pop$nSx = nLx$nSx

pop[2:19,5] = round(pop[1:18,3]*pop[1:18,4],0)

pop[19,5] = round((pop[19,3]+pop[18,3])*pop[18,4],0)

pop[21:38,5] = round(pop[20:37,3]*pop[20:37,4],0)

pop[38,5] = round((pop[38,3]+pop[37,3])*pop[37,4],0)

colnames(pop) = c('sexo', 'idade', 'pop2010', 'nSx', 'pop2015fechada')
```

Uma vez projetada a população fechada, obtem-se a população aberta, já contabilizando os saldos migratórios por grupos etários e sexo, tal como apresentado na coluna 7 da Tabela 21.6:

```
pop$TLM = TLM$TLM
pop$pop2015aberta = round(pop$pop2015fechada+(pop$pop2015fechada*pop$TLM),0)
```

Uma vez projetada a população aberta, obtêm-se os nascimentos sobreviventes por sexo durante o quinquênio (2010-2015), ou seja, a população sobrevivente no grupo etário de 0-4 anos. Inicialmente, obtém-se a contribuição das mulheres migrantes e não migrantes, nos grupos etários do intervalo reprodutivo (15-49 anos), para os nascimentos totais durante o quinquênio, cujo resultado é apresentado na coluna 9 da Tabela 21.6.

```
pop[4:10,8] = TEF$TEF

pop[1,9] = round(2.5*sum((pop[4:10,3]+pop[4:10,7])*pop[4:10,8]),0)
```

Em seguida, mediante o total de nascimentos obtidos anteriormente, separa-se as parcelas de nascimentos por sexo e determina-se os nascimentos sobreviventes ao longo do quinquênio (resultados apresentados na coluna 10 da Tabela 21.6):

```
\begin{aligned} &\text{pop}[1,10] = \text{round}(\text{pop}[1,9]*(1/(1+1.04))*(\text{nLx}[1,3]/500000),0) \\ &\text{pop}[20,10] = \text{round}(\text{pop}[1,9]*(1.04/(1+1.04))*(\text{nLx}[20,3]/500000),0) \\ &\text{colnames}(\text{pop}) = c(\text{`sexo'}, \text{`idade'}, \text{`pop}2010', \text{`nSx'}, \text{`pop}2015\text{fechada'}, \text{`TLM'}, \text{`pop}2015\text{aberta'}, \text{`TEF'}, \text{`B.total'}, \text{`B.sexo.sobrev'}) \end{aligned}
```

Finalmente, obtém-se a população projetada para 2015:

```
pop$pop2015 = round(ifelse(is.na(pop$pop2015aberta), pop$B.sexo.sobrev, pop$pop2015aberta),0)
```

A planilha final com todas os cálculos e a população projetada para 2015 tem a estrutura mostrada na Tabela 21.6.

Tabela 21.6: Resultados do exercício de projeção do Estado do Rio Grande do Norte

	sexo	idade	pop2010	nSx	pop2015 fechada	TLM	pop2015 aberta	TEF	B.total	B.sexo.sobrev	pop2015
1	fem	0	126158	0.9983466	NA	0.00363	NA	NA	247728	119572	119572
2	fem	5	133256	0.9985941	125949	0.00455	126522	NA	NA	NA	126522
3	fem	10	145957	0.9984434	133069	0.01500	135065	NA	NA	NA	135065
4	fem	15	149374	0.9977187	145730	0.01039	147244	0.0660	NA	NA	147244
5	fem	20	156576	0.9967317	149033	0.00034	149084	0.0888	NA	NA	149084
6	fem	25	147147	0.9959023	156064	-0.03753	150207	0.0817	NA	NA	150207
7	fem	30	130679	0.9945915	146544	-0.00437	145904	0.0635	NA	NA	145904
8	fem	35	116755	0.9922171	129972	0.03438	134440	0.0329	NA	NA	134440
9	fem	40	112973	0.9880639	115846	0.04085	120578	0.0089	NA	NA	120578
10	fem	45	101144	0.9811114	111625	0.02134	114007	0.0008	NA	NA	114007
11	fem	50	78679	0.9722535	99234	0.03590	102797	NA	NA	NA	102797
12	fem	55	63016	0.9615464	76496	0.04756	80134	NA	NA	NA	80134
13	fem	60	57135	0.9442322	60593	0.06690	64647	NA	NA	NA	64647
14	fem	65	42481	0.9159959	53949	0.05402	56863	NA	NA	NA	56863
15	fem	70	35305	0.8658528	38912	0.06173	41314	NA	NA	NA	41314
16	fem	75	23538	0.7809689	30569	0.13123	34581	NA	NA	NA	34581
17	fem	80	18305	0.6649361	18382	0.30433	23976	NA	NA	NA	23976
18	fem	85	10685	0.4365564	12172	0.56211	19014	NA	NA	NA	19014
19	fem	90	6639	NA	7563	1.35873	17839	NA	NA	NA	17839
20	masc	0	131289	0.9974203	NA	0.00358	NA	NA	NA	125389	123566
21	masc	5	137770	0.9978030	130950	0.00449	131538	NA	NA	NA	131538
22	masc	10	151688	0.9945735	137467	0.01361	139338	NA	NA	NA	139338
23	masc	15	151873	0.9895731	150865	0.01031	152420	NA	NA	NA	152420
24	masc	20	157120	0.9869381	150289	-0.01005	148779	NA	NA	NA	148779
25	masc	25	144821	0.9862556	155068	-0.05353	146767	NA	NA	NA	146767
26	masc	30	125795	0.9834162	142831	-0.02015	139953	NA	NA	NA	139953
27	masc	35	109931	0.9788177	123709	0.03550	128101	NA	NA	NA	128101
28	masc	40	105020	0.9734926	107602	0.04573	112523	NA	NA	NA	112523
29	masc	45	92420	0.9636327	102236	0.02782	105080	NA	NA	NA	105080
30	masc	50	69628	0.9499493	89059	0.04084	92696	NA	NA	NA	92696
31	masc	55	53407	0.9306511	66143	0.05049	69483	NA	NA	NA	69483
32	masc	60	47903	0.9008398	49703	0.07002	53183	NA	NA	NA	53183
33	masc	65	34641	0.8623269	43153	0.08590	46860	NA	NA	NA	46860
34	masc	70	27776	0.8003049	29872	0.10704	33069	NA	NA	NA	33069
35	masc	75	17425	0.7018425	22229	0.15727	25725	NA	NA	NA	25725
36	masc	80	13370	0.5744033	12230	0.32553	16211	NA	NA	NA	16211
37	masc	85	7924	0.3709107	7680	0.62132	12452	NA	NA	NA	12452
38	masc	90	4336	NA	4547	1.28027	10368	NA	NA	NA	10368

Obtida a projeção da população do Estado do Rio Grando do Norte (Brasil) por sexo e grupos etários quinquenais para o ano de 2015, projeta-se a população total das microrregiões do Estado (área menores) pela aplicação do método Distribuição Constante do Crescimento, conforme descrito na seção 21.7.1.

Carregando os dados de entrada no software:

```
pop.menor = read.csv('pop.area.menor.csv', sep=";", stringsAsFactors = FALSE)
pop.maior = read.csv('pop.area.maior.csv', sep=";", stringsAsFactors = FALSE)
anos = pop.maior$ano
proj = pop.maior$popRN
```

Os arquivos "pop.area.menor.csv" e "pop.area.maior.csv" devem conter as seguintes estruturas:

pop.area.menor.csv:

nome.micro	pop2000	pop2010		
Mossoró	274976	332679		
Chap.Apodi	70290	72447		
Médio Oeste	37064	39041		
Vale do Açu	124753	140534		
Serra S.Miguel	58579	62755		
Pau dos Ferros	112349	114267		
Umarizal	64043	64984		
Macau	44836	52508		
Angicos	50932	51304		
Serra Santana	60682	61526		
Seridó Ocid.	89562	97680		
Seridó Oriental	114535	118828		
Baixa Verde	56667	62935		
Borborema RN	125767	134027		
Agreste RN	205710	229795		
Litoral NE	75188	84040		
Macaíba	240694	288836		
Natal	856579	1030764		
Litoral Sul RN	113576	129077		

pop.area.maior.csv:

Ano	popRN
2011	3271415
2012	3302720
2013	3332952
2014	3363084
2015	3393814

Os objetos anos e proj devem ser vetores contendo, respectivamente, os anos calendários e as projeções da população total do Estado, tal como segue:

- > anos
- [1] 2011 2012 2013 2014 2015
- > proj
- [1] 3271415 3302720 3332952 3363084 3393814

Usando a variante (21.30) do método, a seguinte função produz os resultados desejados para cada microrregião nos anos calendários definidos no vetor "anos":

```
DCC=function(mat,proj,anos){
    proj_armenor=matrix(0,dim(mat)[1],length(proj))
    for (i in 1:length(proj)){
        proj_armenor[,i]=mat[,3]+(proj[i]-sum(mat[,3]))*(mat[,3]-mat[,2])/
        (sum(mat[,3])-sum(mat[,2]))
    }
    colnames(proj_armenor)=t(anos[1:length(anos)])
    proj_armenor
}
```

Alternativamente, a seguinte função faz os cálculos necessários para resolver a variante (21.31), com o mesmo resultado, com os parâmetros adicionais a_i e b_i :

```
ai=(mat[,3]-mat[,2])/(sum(mat[,3])-sum(mat[,2]))
bi=mat[,2]-(ai*sum(mat[,2]))
proj_armenor=matrix(0,dim(mat)[1],length(proj))
for (i in 1:length(proj)){
    proj_armenor[,i]=ai*proj[i]+bi
}
resultado=cbind(ai,bi,proj_armenor)
colnames(resultado)=cbind("ai","bi",t(anos[1:length(anos)]))
resultado
}

Os argumentos das funções acima são:
mat = matriz ou dataframe de entrada (que deve ser o arquivo "pop.area.menor.csv")
proj = vetor com a população total projetada tal como definido anteriormente.
anos = vetor com os anos calendários de projeção tal como definido anteriormente.
```

Uma vez carregada a função DCC descrita acima, para aplicá-la aos argumentos definidos acima, basta fazer:

```
proj.micros.RN = DCC(pop.menor,proj,anos)
```

DCC=function(mat,proj,anos){

onde "proj.micros.RN" é o nome do objetivo que receberá os resultados das projeções das populações totais das microrregiões. Para organizar a matriz final com os dados iniciais por microrregiões e seus respectivos cálculos, se faz:

proj.micros.RN = cbind(pop.menor, proj.micros.RN)

O objeto "proj.micros.RN" pode ser uma matriz ou dataframe que apresenta a seguinte estrutura com os resultados:

Tabela 21.7: Resultados do exercício de desagregação municipal da projeção do Estado do Rio Grande do Norte, usando o método de Distribuição Constante do Crescimento

	nome.micro	pop2000	pop2010	ai	bi	2011	2012	2013	2014	2015
1	Mossoró	274976	332679	0.14749	-134572	347929	352546	357005	361449	365982
2	Chap.Apodi	70290	72447	0.00551	54990	73015	73188	73355	73521	73690
3	Médio Oeste	37064	39041	0.00505	23041	39562	39720	39872	40025	40180
4	Vale do Açu	124753	140534	0.04034	12738	144707	145970	147189	148405	149644
5	Serra S.Miguel	58579	62755	0.01067	28951	63857	64191	64514	64835	65163
6	Pau dos Ferros	112349	114267	0.00490	98743	114773	114926	115074	115222	115373
7	Umarizal	64043	64984	0.00241	57351	65235	65311	65383	65456	65530
8	Macau	44836	52508	0.01961	-9617	54535	55149	55742	56333	56936
9	Angicos	50932	51304	0.00095	48294	51402	51432	51460	51489	51518
10	Serra Santana	60682	61526	0.00216	54684	61750	61818	61883	61948	62015
11	Seridó Ocid.	89562	97680	0.02075	31944	99826	100475	101103	101728	102366
12	Seridó Oriental	114535	118828	0.01097	84074	119961	120305	120636	120967	121304
13	Baixa Verde	56667	62935	0.01602	12183	64591	65093	65577	66060	66552
14	Borborema RN	125767	134027	0.02111	67149	136209	136869	137508	138144	138792
15	Agreste RN	205710	229795	0.06156	34771	236159	238086	239948	241802	243694
16	Litoral NE	75188	84040	0.02263	12349	86381	87090	87774	88456	89151
17	Macaíba	240694	288836	0.12305	-100989	301559	305411	309131	312838	316620
18	Natal	856579	1030764	0.44521	-379672	1076795	1090732	1104192	1117607	1131288
19	Litoral Sul RN	113576	129077	0.03962	3560	133173	134414	135612	136805	138023

Convém ainda assinalar que também existem vários programas de projeção demográfica em "R", de domínio público e autoria de Eddie Hunsinger, na página web do Depto. de Demografia da Universidade de Berkeley (https://applieddemogtoolbox.github.io/Toolbox/).

21.9 ERROS, INCERTEZA E PROJEÇÕES PROBABILÍSTICAS

Segundo um aforismo famoso atribuído a Niels Bohr (mas também a Oscar Wilde, Mark Twain, Yogi Berra e à tradição oral dinamarquesa), "é muito difícil prever, especialmente o futuro". Como qualquer tentativa de prever o futuro, uma projeção pode levar a uma previsão errônea. Erros de projeções não significam que a metodologia subjacente à projeção em si seja errada. Significam apenas que os supostos que orientaram a implementação do método não foram satisfeitos. Por exemplo, a projeção feita pela Divisão de População da ONU em 2015 para a Alemanha claramente não previu corretamente qual seria a população do país em 2020. O resultado publicado foi de 80,39 milhões de habitantes, mas isso não considerou o grande número de refugiados que o governo admitiu desde o segundo semestre de 2015. Na Revisão de 2017, foi necessário aumentar