In addition to part I (General handout for all courses appended to the timetable) this portion gives further details regarding the course.

Course No.: PHY F215

Course Title: Introduction to Astronomy & Astrophysics

Instructor In-Charge: KAUSHAR VAIDYA

## Scope and Objective of the course:

This course will introduce a student to the field of Stellar Astrophysics, mainly. The course will begin with an introduction of some observational astronomy concepts. It will then cover various tools of observational astronomy, such as telescopes, detectors, and touch upon the techniques used in multi-wavelength astronomy, ranging from X-ray to Radio wavelengths. Students will then be exposed to the necessary concepts in radiative transfer in Astrophysics, which will enable them to interpret the signals received at the telescopes in the form of electromagnetic waves, Stellar astrophysics comprises of stellar atmospheres (or outer layers of stars) and stellar interiors (or inner layers of stars). We will first learn about stellar atmospheres by making use of stellar spectra. We will then learn about stellar interiors, and build a theory of stellar structure. This theory, in addition to establishing stability of stars, will rely on the energy generation mechanism inside stars, as well as the energy transport mechanisms inside stars. After stellar structure, we will learn about stellar evolution, reaching the end states of stars, that is, white dwarfs, neutron stars, and black holes. If time permits, a brief introduction to Newtonian Cosmology will be covered.

**Textbook**: "An Introduction to Modern Astrophysics" by Bradley Carroll & Dale Ostlie, Second Edition, Pearson (Addison Wesley), 2007

**Reference Books:** "The Physical Universe" by Frank Shu, University Science Books, 1982 "Astrophysics For Physicists by Arnab Rai Choudhuri, Cambridge University Press, 2010

## Course Plan:

| Lecture No. | cture No. Learning Objectives Topics to be cove |                                                                                                           | red Reference Section                       |  |
|-------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| 1-2         | Introduction; Some<br>Astronomy Definitions     | Introduction, Celestial Sphere,<br>Coordinate Systems, Magnitude Scale,<br>Parallax, Color Index          | Ch.1 (S 1.3);<br>Ch. 3 (S 3.1, 3.2,<br>3.6) |  |
| 3-4         | Telescopes                                      | Basic Optics, Optical Telescopes, Radio Telescopes, Infrared, Ultraviolet, X-ray, and Gamma-Ray Astronomy | Ch. 6                                       |  |
| 5-8         | The Classification of Stellar Spectra           | Formation of Spectral Lines, H-R Diagram                                                                  | Ch.8                                        |  |
| 9-12        | Stellar Atmospheres                             | Description of Radiation Field, Stellar<br>Opacity, Radiative Transfer, Transfer<br>Equation              | Ch.9                                        |  |







|       |                                                |                                                                                                                       | L                           |  |
|-------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| 13-18 | Interiors of Stars                             | Hydrostatic Equilibrium, Pressure<br>Equation of State, Stellar Energy<br>Sources, Energy Transport, Main<br>Sequence | Ch. 10                      |  |
| 19-22 | Main-Sequence and Post-Main-Sequence Evolution | Evolution on the Main Sequence, Late Stages of Stellar Evolution, Stellar Clusters                                    | Ch. 13                      |  |
| 23-26 | Fate of Massive Stars                          | Post-Main-Sequence Evolution of<br>Massive Stars, Classification of<br>Supernovae, Gamma Ray Bursts,<br>Cosmic Rays   | Ch. 15                      |  |
| 27-29 | Degenerate Remnant<br>Stars                    | White Dwarfs, Chandrasekhar Limit,<br>Neutron Stars, Pulsars                                                          | Ch. 16                      |  |
| 30-33 | Black Holes                                    | GTR, Black holes                                                                                                      | Ch. 17                      |  |
| 34-40 | Cosmology and Early<br>Universe                | Newtonian Cosmology, CMBR,<br>Relativistic Cosmology, Observational<br>Cosmology, The Very Early Universe             | Some topics from Ch. 29, 30 |  |

## **Evaluation Scheme:**

| EC No. | Component          | Duration | Weightage | Date, Time & Venue    | Remarks             |
|--------|--------------------|----------|-----------|-----------------------|---------------------|
| 1.     | Mid-Sem Test       | 90 min   | 27        | 17/3 2:00 -3:30<br>PM | Closed/Open<br>Book |
| 2.     | Quiz               | TBA      | 13        | ТВА                   | Closed Book         |
| 3.     | Assignments        | TBA      | 10        | ТВА                   | Open Book           |
| 4.     | Tutorial Tests     | ТВА      | 10        | ТВА                   | Closed Book         |
| 5.     | Comprehensive Exam | ТВА      | 40        | 4/5 FN                | Closed/Open<br>Book |

Chamber Consultation Hour: To be announced in class.

**Notices:** Notices will be displayed only on **Physics** notice board and uploaded on Nalanda.

Make-up Policy: To genuine cases only, for either sickness leading to hospitalization or out of station with prior intimation & permission.

Instructor-in-Charge, PHY F215



