

Statistics Ex 7.2 Q1

Answer:

Let the assume mean be A = 3.

no.of calls x_i :	no. of intervals f_i :	$d_i = x_i - A$	$f_i d_i$
		$= x_i - 3$	
0	15	-3	-45
1	24	-2	-48
2	29	-1	-29
3	46	0	0
4	54	1	54
5	43	2	86
6	39	3	117
	$\sum f_i = 250$		$\sum f_i d_i = 135$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Here, we have $N=\sum f_i=250,\,\sum f_id_i=135\,\mathrm{and}\,A=3$.

Putting the values in the formula, we get

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 3 + \frac{1}{250} \times 135$$

$$= 3 + 0.54$$

$$= 3.54$$

Hence, the mean number of calls per interval is 3.54.

Statistics Ex 7.2 Q2

Answer:

Let the assume mean be A = 2.

no. of heads per toss x_i :	no. of toss f_i :	$d_i = x_i - A$	$f_i d_i$
		$= x_i - 2$	
0	38	-2	-76
1	144	-1	-144
2	342	0	0
3	287	1	287
4	164	2	328
5	25	3	75
	$\sum_{i} f_{i} = 1000$		$\sum f_i d_i = 470$

We know that mean
$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

Now, we have
$$N=\sum f_i=1000,\;\sum f_id_i=470\,\mathrm{and}\;A=2$$

Putting the values above in formula, we have

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 2 + \frac{1}{1000} \times 470$$

$$= 2 + 0.47$$

$$= 2.47$$

Hence, the mean number of heads per toss is 2.47.

****** END ******