PMATH 450 Notes

Fall 2024

Based on Professor Laurent Marcoux's Lectures

Contents

1 Riemann Integration in Banach Spaces

3

- Lecture 1, 2024/09/04 -

1 Riemann Integration in Banach Spaces

Notation. We use \mathbb{K} to denote \mathbb{R} or \mathbb{C} .

Definition. Let X be a vector space over \mathbb{K} . A **semi-norm** on X is a function $\nu: X \to \mathbb{R}$ satisfying:

- (1) $\nu(x) \ge 0$ for all $x \in X$.
- (2) $\nu(x+y) \le \nu(x) + \nu(y)$ for all $x, y \in X$.
- (3) $\nu(kx) = |k|\nu(x)$ for $k \in \mathbb{K}$ and $x \in X$.

Note that if $z=0\in X$, then $z=0\cdot z$, so $\nu(z)=0\nu(z)=0$. In addition, if the semi-norm ν also satisfies:

(4) $\nu(x) = 0$ implies x = 0.

Then we we say ν is a **norm** on X. We say (X, ν) is a **normed linear space (NLS)**. We tend to write ||x|| instead of $\nu(x)$ if ν is a norm.

Example 1.1. Let X be a compact Hausdorff space. Consider:

$$V = C(X, \mathbb{K}) = \{ f : X \to \mathbb{K} : f \text{ is continuous} \}$$

For each $y \in X$, the map:

$$\nu_y: C(X, \mathbb{K}) \to \mathbb{R} \text{ by } f \mapsto |f(y)|$$

defineds a semi-norm on $C(X, \mathbb{K})$. But unless X is a singleton set, ν_y is NOT a norm.

For $\Omega \subseteq X$, we may consider the map:

$$\nu_{\Omega}:C(X,\mathbb{K})\to\mathbb{R}$$
 by $f\mapsto \sup_{y\in\Omega}|f(y)|$

If Ω is dense in X, then $\nu_{\Omega} = \nu_{X}$ is a norm on $C(X, \mathbb{K})$ denoted by $\|\cdot\|_{\sup}$.

Remark. Every NLS is a metric space using the metric induced by the norm. If $(X, \| \cdot \|)$ is a NLS, define $d: X^2 \to \mathbb{R}$ by $(x, y) \mapsto \|x - y\|$.

Definition. A **Banach Space** is a NLS which is complete with respect to the metric induced by the norm.

Example 1.2 (Banach Spaces).

(1) Consider $X = \mathbb{K}$ with norm $|\cdot|$ given by the absolute value.

(2) Let $N \in \mathbb{N}$ and let $X = \mathbb{K}^N$. We can define a variety of nroms on X making X a Banach Space.

(a)
$$||(x_1, \dots, x_N)||_1 = \sum_{k=1}^N |x_k|$$
.

(b)
$$||(x_1, \dots, x_N)||_{\infty} = \max_{1 \le k \le N} |x_k|$$
.

(c)
$$||(x_1, \dots, x_N)||_p = \left(\sum_{k=1}^N |x_k|^p\right)^{1/p}$$
 for $1 \le p < \infty$.

Exercise: $\lim_{p\to\infty} \|(x_1,\dots,x_N)\|_p = \|(x_1,\dots,x_N)\|_{\infty}$.

(3) If X is a compact Hausdorff space, then $(C(X, \mathbb{K}), \|\cdot\|_{\sup})$ is a Banach Space. We can also define, for $f \in C([0, 1], \mathbb{K})$ that:

$$||f||_1 = \int_0^1 |f|$$

This defines a norm on $C([0,1],\mathbb{K})$, but $C([0,1],\|\cdot\|_1)$ is NOT complete.

(4) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be NLS over \mathbb{K} . We may define for a linear map $T: X \to Y$ that:

$$||T|| = \sup_{\|x\|_X = 1} ||Tx||_Y$$

We say T is bounded if $||T|| < \infty$. We set:

$$B(X,Y) = \{T : X \to Y \text{ linear } : ||T|| < \infty\}$$
$$= \{T : X \to Y \text{ linear } : T \text{ is continuous}\}$$

B(X,Y) is complete if and only if Y is complete. And $\|\cdot\|: B(X,Y) \to \mathbb{R}$ by $T \mapsto \|T\|$ is a norm on B(X,Y).

Definition. Let $(X, \|\cdot\|)$ be a Banach Space. Let a < b be real numbers and $f : [a, b] \to X$ be a function. A **partition** of [a, b] is a finite set:

$$P = \{ a = p_0 < p_1 < \dots < p_N = b \}$$

for some $N \geq 1$. The set of partitions of [a, b] is denoted by $\mathcal{P}[a, b]$.

Definition. A **refinement** Q of a partition P of [a,b] is a partition $Q \in \mathcal{P}[a,b]$ such that $P \subseteq Q$.

Definition. Given P as above, a set $P^* = \{p_1^*, \dots, p_N^*\}$ satisfying $p_k^* \in [p_{k-1}, p_k]$ for $1 \le k \le N$ is the set of **test values** for P.

Definition. Given P and P^* above, we may define the corresponding **Riemann Sum** by:

$$S(f, P, P^*) = \sum_{k=1}^{N} f(p_k^*)(p_k - p_{k-1}) \in X$$

Remark. If $X = (\mathbb{K}, \|\cdot\|)$, these are the usual notions of Riemann sums from calculus.

Remark. In general, we have:

$$\frac{1}{b-a}S(f, P, P^*) = \sum_{k=1}^{N} \frac{p_k - p_{k-1}}{b-a} f(p_k^*) = \sum_{k=1}^{N} \alpha_k f(p_k^*)$$

where $\alpha_k = \frac{p_k - p_{k-1}}{b - a} > 0$ for $1 \le k \le N$ and $\sum_{k=1}^N \alpha_k = 1$. So $\frac{1}{b - a} S(f, P, P^*)$ is a convex combination of $f(p_k^*)$, that is, the "averaging" of the function.

Definition. Let a < b be real numbers and $(X, \| \cdot \|)$ a Banach Space. Let $f : [a, b] \to X$. We say f is **Riemann integrable over** [a, b] if there is $x_0 \in X$, such that for all $\epsilon > 0$, there is a partition $P \in \mathcal{P}[a, b]$ such that for all refinement Q of P and for all test values Q^* of Q, we have:

$$||S(f,Q,Q^*)-x_0||<\epsilon$$

Remark. If $f:[a,b]\to X$ is Riemann integrable, then $x_0\in X$ is unique.

Proof: Suppose not, so $x_0 \neq y_0$ both satisfy the above definition. Let $\epsilon = \frac{1}{3}||x_0 - y_0|| > 0$. Choose partition P corresponding to x_0 and partition Q corresponding to y_0 as in the definition. Let $R = P \cup Q$, so R is a refinement of both P and Q. Let R^* be any set of test values for R, then:

$$||S(f, R, R^*) - x_0|| < \epsilon$$

 $||S(f, R, R^*) - y_0|| < \epsilon$

Therefore:

$$||x_0 - y_0|| \le ||S(f, R, R^*) - x_0|| + ||S(f, R, R^*) - y_0|| < 2\epsilon < ||x_0 - y_0||$$

This is a contradiction. Thus x_0 is unquie and we denote:

$$x_0 = \int_a^b f = \int_a^b f(s) \ ds$$

Theorem 1.3 (Cauchy's Criterion). Let X be a Banach space and a < b be real numbers. Let $f: [a, b] \to X$ be a function. The followings are equivalent:

(a) f is Riemann integrable.

(b) For all $\epsilon > 0$, there is $R \in \mathcal{P}[a, b]$ such that if $P, Q \in \mathcal{P}[a, b]$ are refinements of R and P^*, Q^* are test values for P and Q. Then:

$$||S(f, P, P^*) - S(f, Q, Q^*)|| < \epsilon$$

- Lecture 2, 2024/09/06 -

Proof: (\Rightarrow) . Exercise.

(\Leftarrow). For each $n \ge 1$, we can choose a partition R_n of [a,b] as in (b) corresponding to $\epsilon_n = 1/n$. Set for $m \ge 1$ that:

$$W_m = \bigcup_{n=1}^m R_n$$

So that W_m is a common refinement of R_1, \dots, R_m . Observe that $m \ge n \ge N \ge 1$, then W_m and W_n are both refinements of R_N . Fix a set W_k^* of test values for W_k where $k \ge 1$. By (b) we have:

$$||S(f, W_m, W_m^*) - S(f, W_n, W_n^*)|| < \frac{1}{N}$$

Set $x_k = S(f, W_k, W_k^*)$ for $k \ge 1$. Then for $m \ge n \ge N \ge 1$ we have $||x_m - x_n|| < 1/N$, so (x_n) is a Cauchy sequence in X. Since X is complete, $x_0 = \lim x_n$ exists. We claim that:

$$x_0 = \int_a^b f$$

and hence f is Riemann integrable. Let $\epsilon > 0$, choose $N \geq 1$ such that:

- (i) $1/N < \epsilon/2$.
- (ii) For $m \ge N$ we have $||x_0 x_m|| < \epsilon/2$.

Consider $R = W_N$. If P is any refinement of W_N and P^* is any set of test values for P, then P is a refinement of R_N and W_N is a refinement of R_N . So:

$$||x_0 - S(f, P, P^*)|| \le ||x_0 - x_N|| + ||X_N - S(f, P, P^*)||$$

$$\le \frac{\epsilon}{2} + ||S(f, W_N, W_N^*) - S(f, P, P^*)||$$

$$\le \frac{\epsilon}{2} + \frac{1}{N} < \epsilon$$

As desried.

Theorem 1.4. If $(X, \|\cdot\|)$ is a Banach space. Let $a < b \in \mathbb{R}$ and $f : [a, b] \to X$. If f is continuous, then f is Riemann integrable.

Proof: Since $(X, \|\cdot\|)$ be a Banach space. Since [a, b] is compact, we know f is continuous implies it is uniformly continuous. Let $\epsilon > 0$, choose $\delta > 0$ such that for $r, s \in [a, b]$:

$$|r-s| < \delta \implies ||f(r) - t(s)|| < \frac{\epsilon}{2(b-a)}$$

Let $R = \{a = r_0 < r_1 < \dots < r_N = b\} \in \mathcal{P}[a, b]$ with $\max_{1 \le k \le N} |r_k - r_{k-1}| < \delta$. Let P be a refinement of R and choose:

$$0 = k_0 < k_1 < \dots < k_N = r_n = b$$

such that $P_{k_j} = r_j$ for $0 \le j \le N$. Let $R^* = \{r_1^*, \dots, r_N^*\}$ be a set of test values for R and $P^* = \{P_1^*, \dots, P_{k_N}^*\}$ be a set of test values for P. Now:

$$S(f, R, R^*) = \sum_{j=1}^{N} f(r_j^*)(r_j - r_{j-1}) = \sum_{j=1}^{N} f(r_j^*)(P_{k_j} - P_{k_{j-1}})$$

$$= \sum_{j=1}^{N} f(r_j^*) \sum_{i=k_{j-1}+1}^{k_j} (P_i - P_{i-1})$$

$$= \sum_{j=1}^{N} \sum_{i=k_j+1}^{k_j} f(r_j^*)(P_i - P_{i-1})$$

while that:

$$S(f, R, R^*) = \sum_{i=1}^{N} \sum_{i=k_i+1}^{k_j} f(P_i^*)(P_i - P_{i-1})$$

Hence we have:

$$||S(f, R, R^*) - S(f, P, P^*)|| \le \sum_{j=1}^{N} \sum_{i=k_j+1}^{k_j} ||f(r_j^*) - f(P_i^*)||(P_i - P_j)$$

But for $k_{j-1} + 1 \le i \le k_j$ we have $|P_i^* - r_j^*| \le r_j - r_{j-1} < \delta$, so:

$$||f(r_j^*) - f(P_i^*)|| < \frac{\epsilon}{2(b-a)}$$

Hence:

$$||S(f, R, R^*) - S(f, P, P^*)|| < \sum_{j=1}^{N} \sum_{i=k_j+1}^{k_j} \frac{\epsilon}{2(b-a)} (P_i - P_j) = \frac{\epsilon}{2(b-a)} \sum_{j=1}^{N} (r_j - r_{j-1}) = \frac{\epsilon}{2}$$

Similarly, if Q is any refinement of R with test values Q^* of Q, then $||S(f, R, R^*) - S(f, Q, Q^*)|| < \epsilon/2$.

Therefore we have:

$$||S(f, P, P^*) - S(f, Q, Q^*)|| \le ||S(f, P, P^*) - S(f, R, R^*)|| + ||S(f, R, R^*) - S(f, Q, Q^*)||$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence f is Riemann integrable by Cauchy's Criterion.

Definition. Let $E \subseteq \mathbb{R}$, the characteristic/indicator function of E is $\chi_E : \mathbb{R} \to \mathbb{R}$ by:

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Example 1.5. Let $E = \mathbb{Q} \cap [0,1]$. Let $f = \chi_E|_{[0,1]}$, that is, $f:[0,1] \to \mathbb{R}$ with:

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Recall that this is called the **Dirichlet function**. We claim that f is NOT Riemann integrable.

Proof: Suppose f is integrable. Let R be an arbitrary partition of [0,1]. Let P=Q=R so P and Q are refinements of $R=\{0=r_0< r_1< \cdots < r_N=1\}$. For $1\leq k\leq N$, we pick sets of test values of P and Q such that:

$$p_k^* \in [r_{k-1}, r_k] \cap \mathbb{Q}$$
 and $q_k^* \in [r_{k-1}, r_k] \setminus \mathbb{Q}$

So that $f(p_k^*) = 1$ and $f(q_k^*) = 0$ for $1 \le k \le N$. Then:

$$S(f, P, P^*) = \sum_{j=1}^{N} f(p_j^*)(r_j - r_{j-1}) = \sum_{j=1}^{N} (r_j - r_{j-1}) = 1$$
$$S(f, Q, Q^*) = \sum_{j=1}^{N} f(q_j^*)(r_j - r_{j-1}) = \sum_{j=1}^{N} 0 = 0$$

Hence $S(f, P, P^*) - S(f, Q, Q^*) = 1$. By the Cauchy's Criterion, f cannot be Riemann integrable. \square

Note. Clearly $\mathbb{Q} \cap [0,1]$ is denumerable, write $\mathbb{Q} \cap [0,1] = \{q_1,q_2,\cdots\}$. Let $E_n = \{q_1,\cdots,q_n\}$ be the first n rational numbers in this sequence. Let $f_n = \chi_{E_n}|_{[0,1]}$, that is:

$$f_n: [0,1] \to \mathbb{R}$$
 by $f_n(x) = \begin{cases} 1 & \text{if } x \in E_n = \{q_1, \dots, q_n\} \\ 0 & \text{otherwise} \end{cases}$

Ech f_n is 0 for all but finitely many points, hence Riemann integrable with an $\int f_n = 0$. Moreover, we have $f_1 \leq f_2 \leq \cdots$ and for each $x \in [0, 1]$:

$$\lim_{n \to \infty} f_n(x) = \chi_E|_{[0,1]}$$

That is, f_n converges pointwise to $\chi_E|_{[0,1]}$. However:

$$\underbrace{\int_{0}^{1} \chi_{E}|_{[0,1]}}_{DNE} = \int_{0}^{1} \lim_{n \to \infty} f_{n} \neq \lim_{n \to \infty} \int_{0}^{1} f_{n} = 0$$

The first integral DNE by Example 1.5. This is a deficiency of the Riemann integral! We cannot change the order of limit and integral when we have a sequence of Riemann integrable function that converges pointwise. (If converges uniformly, we can).

— Lecture 3, 2024/09/09 —