Lecture 4 - k-layer Neural Networks

DD2424

March 25, 2018

A new class of scoring functions

Linear scoring function

$$s = Wx + b$$

2-layer Neural Network

$$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1$$
$$\mathbf{h} = \max(0, \mathbf{s}_1)$$
$$\mathbf{s} = W_2 \mathbf{h} + \mathbf{b}_2$$

Now

Not restricted to two layers

2-layer Neural Network

$$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1$$
$$\mathbf{h} = \max(0, \mathbf{s}_1)$$
$$\mathbf{s} = W_2 \mathbf{h} + \mathbf{b}_2$$

$\begin{array}{c|c} x_d \\ \vdots \\ x_3 \\ \vdots \\ x_2 \\ \hline \\ x_1 \\ \end{array}$

 $s_1 = W_1x + b_1$

 $h = max(0, s_1)$

Input: x

Output: $s = W_2h + b_2$

3-layer Neural Network

$$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1$$

$$\mathbf{h}_1 = \max(0, \mathbf{s}_1)$$

$$\mathbf{s}_2 = W_2 \mathbf{h}_1 + \mathbf{b}_2$$

$$\mathbf{h}_2 = \max(0, \mathbf{s}_2)$$

$$\mathbf{s} = W_3 \mathbf{h}_2 + \mathbf{b}_3$$

 $h_2 = max(0, s_2)$

 $h_1 = \max(0, s_1)$

3-layer Neural Network

$$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1$$
 W_1 is $m_1 imes d$

1st hidden layer activations o $\mathbf{h}_1 = \max(0, \mathbf{s}_1)$ \leftarrow apply non-linearity via activation fn

$$\mathbf{s}_2 = W_2 \mathbf{h}_1 + \mathbf{b}_2$$
 W_2 is $m_2 \times m_1$

2nd hidden layer activations o $\mathbf{h}_2 = \max(0, \mathbf{s}_2) \leftarrow$ apply non-linearity via activation fn

Output responses
$$ightarrow$$
 $\mathbf{s}=W_3\mathbf{h}_2+\mathbf{b}_3$ W_3 is $c imes m_2$

Sometimes referred to as a 2-hidden-layer neural network.

Computational Graph of our 2-layer neural network

2-layer neural network with probabilistic outputs

Options for activation functions

Activation function is applied independently to each element of hidden vector.

Options for activation Functions

Leaky ReLu

ELU

$$\max(0.1x, x)$$

$$\mathsf{ELU}(x) = \begin{cases} x & \text{if } x > 0\\ \alpha \left(\exp(x) - 1 \right)) & \text{otherwise} \end{cases}$$

Activation function is applied independently to each element of hidden vector.

Options for Activation Functions

In modern networks ReLU is the most common activation function.

Effect of the number of hidden nodes in a 2 layer network

- m is the number of nodes in the hidden layer.
- No regularization.

Result depends on parameter initialization

- m is the number of nodes in the hidden layer.
- No regularization.
- Different random parameter initialization to previous slide.

Effect of regularization

 $\lambda = .1$

$$(\mathbf{x},y)\in\mathcal{D}$$

 $\lambda = .01$

 $J(\mathcal{D}, \lambda, \Theta) = \sum_{l} l(\mathbf{x}, y, \Theta) + \lambda R(\Theta)$

• m = 100 nodes in the hidden layer.

 $\lambda = .001$

• L_2 regularization.

 $\lambda = 0$

Do not use size of neural network as a regularizer.

Use stronger regularization.

Big Model + Regularize vs Small Model

High-level overview of how to train network

Mini-batch SGD (or variant)

Loop

- 1. Sample a batch of the training data.
- 2. **Forward propagate** it through the graph and calculate loss/cost.
- 3. Backward propagate to calculate the gradients.
- 4. **Update** the parameters using the gradient.

Back propagation for 2-layer neural network

For a single labelled training example:

- 1. **Forward propagate** it through the graph and calculate loss.
- 2. **Backward propagate** to calculate the gradients.

Back propagation for 2-layer neural network

For a single labelled training example:

- 1. **Forward propagate** it through the graph and calculate loss.
 - ↑ this is straightforward.
- 2. **Backward propagate** to calculate the gradients.

 Focus on this.

Backward Pass: Gradient of current node

Starting point of our demonstration

In Lecture 3 explicitly computed **filled in** *local Jacobians* and *gradients*.

Compute local Jacobian of node ${\bf s}$ w.r.t. its parent ${\bf h}$

- The Jacobian we need to compute: $\frac{\partial s}{\partial h} = \begin{pmatrix} \frac{\partial s_1}{\partial h_1} & \cdots & \frac{\partial s_1}{\partial h_m} \\ \vdots & \vdots & \vdots \\ \frac{\partial s_c}{\partial h_1} & \cdots & \frac{\partial s_c}{\partial h_m} \end{pmatrix}$
- The individual derivatives: $rac{\partial s_i}{\partial h_i} = W_{2,ij}$
- In vector notation: $\frac{\partial \mathbf{s}}{\partial \mathbf{h}} = W_2$

Compute gradient of J w.r.t. node h

Compute local Jacobian of node ${\bf h}$ w.r.t. its parent ${\bf s}_1$

- The Jacobian we need to compute: $\frac{\partial \mathbf{h}}{\partial \mathbf{s}_1} = \begin{pmatrix} \frac{\partial h_1}{\partial s_{1,1}} & \cdots & \frac{\partial h_1}{\partial s_{1,m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial h_m}{\partial s_{1,1}} & \cdots & \frac{\partial h_m}{\partial s_{1,m}} \end{pmatrix}$
- $\bullet \ \ \text{The individual derivatives:} \ \ \frac{\partial h_i}{\partial s_{1,j}} = \begin{cases} \mathsf{Ind}(s_{1,j} > 0) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{h}}{\partial \mathbf{s}_1} = \text{diag}(\text{Ind}(\mathbf{s}_1 > 0))$

Compute gradient of J w.r.t. node s_1

Compute local Jacobian of node \mathbf{s}_1 w.r.t. its parent \mathbf{b}_1

• The Jacobian we need to compute:
$$\frac{\partial \mathbf{s}_1}{\partial \mathbf{b}_1} = \begin{pmatrix} \frac{\partial s_{1,1}}{\partial b_{1,1}} & \cdots & \frac{\partial s_{1,1}}{\partial b_{1,m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial s_{1,m}}{\partial b_{1,1}} & \cdots & \frac{\partial s_{1,m}}{\partial b_{1,m}} \end{pmatrix}$$

- The individual derivatives: $\frac{\partial s_{1,i}}{\partial b_{1,j}} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{s}_1}{\partial \mathbf{b}_1} = I_m$

Compute gradient of J w.r.t. node b_1

Compute local Jacobian of node s_1 w.r.t. its parent W

• Let
$$\mathbf{v} = \mathsf{vec}(W_1)$$
. Jacobian to compute: $\frac{\partial s_1}{\partial \mathbf{v}} = \begin{pmatrix} \frac{\partial s_{1,1}}{\partial v_1} & \cdots & \frac{\partial s_{1,1}}{\partial v_{dm}} \\ \vdots & \vdots & \vdots \\ \frac{\partial s_{1,m}}{\partial v_1} & \cdots & \frac{\partial s_{1,m}}{\partial v_{dm}} \end{pmatrix}$

- $\bullet \ \ \text{The individual derivatives:} \ \frac{\partial s_{1,i}}{\partial v_j} = \begin{cases} x_{j-(i-1)d} & \text{if } (i-1)d+1 \leq j \leq id \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{s}_1}{\partial \mathbf{v}} = I_m \otimes \mathbf{x}^T$

Compute gradient of J w.r.t. node W_1

$$\begin{split} \frac{\partial J}{\partial \text{vec}(W_1)} &= \frac{\partial J}{\partial \mathbf{s}_1} \frac{\partial \mathbf{s}_1}{\partial \text{vec}(W_1)} + \frac{\partial J}{\partial r} \frac{\partial r}{\partial \text{vec}(W_1)} \\ &= \left(g_1 \mathbf{x}^T \quad g_2 \mathbf{x}^T \quad \cdots \quad g_m \mathbf{x}^T\right) + \lambda \operatorname{vec}(W_1)^T \quad \leftarrow \text{gradient needed for learning} \end{split}$$
 if we set $\mathbf{g} = \frac{\partial J}{\partial \mathbf{s}_1}$.

Compute gradient of J w.r.t. node W_1

Can convert

$$\frac{\partial J}{\partial \text{vec}(W_1)} = \begin{pmatrix} g_1 \mathbf{x}^T & g_2 \mathbf{x}^T & \cdots & g_m \mathbf{x}^T \end{pmatrix} + 2\lambda \operatorname{vec}(W_1)^T$$

(where $\mathbf{g} = \frac{\partial J}{\partial \mathbf{s_1}}$) from a vector $(1 \times md)$ back to a 2D matrix $(m \times d)$:

$$\frac{\partial J}{\partial W_1} = \begin{pmatrix} g_1 \mathbf{x}^T \\ g_2 \mathbf{x}^T \\ \vdots \\ g_C \mathbf{x}^T \end{pmatrix} + 2\lambda W_1 = \mathbf{g}^T \mathbf{x}^T + 2\lambda W_1$$

Aggregated backward pass for a 2-layer neural network

1. Let

$$\mathbf{g} = (\mathbf{y} - \mathbf{p})^T$$

2. Gradient of J w.r.t. second bias vector is the $1 \times c$ vector

$$\frac{\partial J}{\partial \mathbf{b}_2} = \mathbf{g}$$

3. Gradient of J w.r.t. second weight matrix W_2 is the $c \times m$ matrix

$$\frac{\partial J}{\partial W_2} = \mathbf{g}^T \mathbf{h}^T + 2\lambda W_2$$

4. Back-propagate the gradient vector **g** to the first layers

$$\mathbf{g} = \mathbf{g}W_2$$
 $\mathbf{g} = \mathbf{g}\operatorname{\mathsf{diag}}(\operatorname{\mathsf{Ind}}(\mathbf{s}_1>0))\leftarrow$ assuming ReLu activation

5. Gradient of J w.r.t. the first bias vector is the $1 \times d$ vector

$$\frac{\partial J}{\partial \mathbf{b}_1} = \mathbf{g}$$

6. Gradient of J w.r.t. the first weight matrix W_1 is the $m \times d$ matrix

$$\frac{\partial J}{\partial W_1} = \mathbf{g}^T \mathbf{x}^T + 2\lambda W_1$$

Gradient Computations for a mini-batch

2-layer scoring function + SoftMax + cross-entropy loss + Regularization

- Compute gradients of l w.r.t. $W_1, W_2, \mathbf{b}_1, \mathbf{b}_2$ for each $(\mathbf{x}, y) \in \mathcal{D}^{(t)}$:
 - Set all entries in $\frac{\partial L}{\partial \mathbf{b}_1}$, $\frac{\partial L}{\partial \mathbf{b}_2}$, $\frac{\partial L}{\partial W_1}$ and $\frac{\partial L}{\partial W_2}$ to zero.
 - for each $(\mathbf{x}, y) \in \mathcal{D}^{(t)}$
 - 1. Forward pass: Apply network, given current parameter values, to \mathbf{x} .
 - 2. Let $\mathbf{g} = (\mathbf{y} \mathbf{p})^T$
 - 3. Add gradient of l w.r.t. \mathbf{b}_2 & W_2 computed at (\mathbf{x}, y)

$$\frac{\partial L}{\partial \mathbf{b}_2} += \mathbf{g}, \quad \frac{\partial L}{\partial W_2} += \mathbf{g}^T \mathbf{h}^T$$

4. Back-propagate gradient through 2nd fully connected layer

$$\begin{split} \mathbf{g} &= \mathbf{g} W_2 \\ \mathbf{g} &= \mathbf{g} \; \mathrm{diag}(\mathrm{Ind}(\mathbf{s}_1 > 0)) \end{split}$$

5. Add gradient of l w.r.t. first layer parameters computed at (\mathbf{x},y)

$$\frac{\partial L}{\partial \mathbf{b}_1} += \mathbf{g}, \quad \frac{\partial L}{\partial W_1} += \mathbf{g}^T \mathbf{x}^T$$

- Divide by the number of entries in $\mathcal{D}^{(t)}$:

$$\frac{\partial L}{\partial W_i} /= |\mathcal{D}^{(t)}|, \quad \frac{\partial L}{\partial \mathbf{b}_i} /= |\mathcal{D}^{(t)}| \quad \text{for } i = 1, 2$$

• Add the gradient for the regularization term

$$\frac{\partial J}{\partial W_i} = \frac{\partial L}{\partial W_i} + 2\lambda W_i, \quad \frac{\partial J}{\partial \mathbf{b}_i} = \frac{\partial L}{\partial \mathbf{b}_i} \quad \text{for } i = 1, 2$$

Forward pass for a k-layer neural network

- Let $\mathbf{x}^{(0)} = \mathbf{x}$ represent the input.
- for i = 1, ..., k-1

$$\mathbf{s}^{(i)} = W_i \mathbf{x}^{(i-1)} + \mathbf{b}_i$$
$$\mathbf{x}^{(i)} = \max \left(0, \mathbf{s}^{(i)}\right)$$

• Apply the final linear transformation

$$\mathbf{s}^{(k)} = W_k \mathbf{x}^{(k-1)} + \mathbf{b}_k$$

Apply SoftMax operation to turn final scores into probabilities

$$\mathbf{p} = \frac{\exp(\mathbf{s}^{(k)})}{\mathbf{1}^T \exp(\mathbf{s}^{(k)})}$$

 Apply cross-entropy loss and regularization to measure performance w.r.t. ground truth label y

$$J = -\log(\mathbf{y}^T \mathbf{p}) + \lambda \sum_{i=1}^k \|W_i\|^2$$

Assumed ReLu is the activation function at each intermediary layer.

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (\mathbf{x}, y) :

Let

$$\mathbf{g} = (\mathbf{y} - \mathbf{p})^T$$

- for $i = k, k 1, \dots, 1$
 - 1. The gradient of J w.r.t. bias vector \mathbf{b}_i

$$\frac{\partial J}{\partial \mathbf{b}_i} = \mathbf{g}$$

2. Gradient of J w.r.t. weight matrix W_i

$$\frac{\partial J}{\partial W_i} = \mathbf{g}^T \mathbf{x}^{(i-1)T} + 2\lambda W_i$$

3. Back-propagate the gradient vector ${\bf g}$ to the previous layer (if i>1)

$$\mathbf{g} = \mathbf{g}W_i$$

 $\mathbf{g} = \mathbf{g} \operatorname{diag}(\operatorname{Ind}(\mathbf{s}^{(i-1)} > 0))$

- Perceptron algorithm invented by Frank Rosenblatt (1957).
- Mark 1 Perceptron machine
 First implementation of the perceptron algorithm.
- Machine was connected to camera producing 20×20 pixel image and recognized letters.
- Perceptron classification fn:

$$g(\mathbf{x}; \mathbf{w}, b) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

• For labelled training example (x, y) $(y \in \{-1, 1\})$ the Perceptron loss is

$$l_p(\mathbf{x}, y, \mathbf{w}, b) = \max(0, -y(\mathbf{w}^T \mathbf{x} + b))$$

 Update rule: Use SGD to learn w. If training example (x_i, y_i) is incorrectly classified then

$$\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$$

- ADALINE (Adaptive Linear Element) developed by Widrow and Hoff at Stanford in 1960.
- Adaline a single layer neural network with one output

$$\hat{y} = \mathbf{w}^T \mathbf{x} + b$$

• Loss function: for labelled training example (\mathbf{x}, y)

$$l(\mathbf{x}, y, \mathbf{w}, b) = (y - (\mathbf{w}^T \mathbf{x} + b))^2 = (y - \hat{y})^2$$

• **Update rule**: Use SGD with learning rate η to learn \mathbf{w} :

$$\mathbf{w} \leftarrow \mathbf{w} + \eta(y - \hat{y})\mathbf{x}$$

 Extension Madaline: a three-layer, fully connected, feed-forward artificial neural network architecture for classification.

 $\label{eq:learning Internal Representations by Error Propagation, D. Rumelhart, G, Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, G. Hinton and R. Williams, Parallel Propagation, D. Rumelhart, C. R$

Distributed Processing: Explorations in the Microstructure of Cognition, 1986.

$$E_{p} = \frac{1}{2} \sum_{i} (t_{pj} - o_{pj})^{2}$$
(2)

be our measure of the error on input/output pattern p and let $E = \sum E_p$ be our overall measure of the error. We wish to show that the delta rule implements a gradient descent in E when the units are linear. We will proceed by simply showing

$$-\frac{\partial E_p}{\partial w_{ij}} = \delta_{pj}i_{pj}$$

which is proportional to $\Delta_p w_0$ as prescribed by the delta rule. When there are no hidden units it is straighforward to compute the relevant derivative. For this purpose we use the chain rule to write the derivative set perodact of two parts: the derivative of the error with respect to the output of the unit times the derivative of the unit with respect to the weight.

$$\frac{\partial E_p}{\partial w_i} = \frac{\partial E_p}{\partial o_{ai}} \frac{\partial o_{gi}}{\partial w_a}.$$
(3)

The first part tells how the error changes with the output of the jth unit and the second part tells how much changing w_{ij} changes that output. Now, the derivatives are easy to compute. First, from Equation 2

$$\frac{\partial E_g}{\partial o_{gj}} = -(t_{gj} - o_{gj}) = -\delta_{gj}. \tag{4}$$

Not surprisingly, the contribution of unit u_j to the error is simply proportional to δ_{gj} . Moreover, since we have linear units.

$$\frac{\partial o_{pj}}{\partial w} = i_p$$

Thus, substituting back into Equation 3, we see that

$$-\frac{\partial E_p}{\partial w_p} - \delta_{pj} i_{pj} \qquad (6)$$

First time back-propagation became popular

New wave of research in Deep Learning.

- Ability to train networks with many layers.
- Mixture of unsupervised and supervised training.
- Unsupervised: Encoding layers first learnt in stagewise manner using RBMs (restricted Boltzman machines).
- Decode layers using an auto-encoder.
- Supervised: Back-prop used to do final update of weights.

Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov, Science, 2006.

First Very Convincing Results

 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, G. Dahl, D. Yu, L. Deng, A. Acero, 2010.

- Beat the widely established approach of GMM-HMM with a DNN-HMM.
- Improved results on popular datasets by 5.8% and 9.2%.

First Very Convincing Results

ImageNet classification with deep convolutional neural networks A.
 Krizhevsky, I. Sutskever, G. Hinton, 2012.

- Beat the stagnating established approaches of Handcrafted features + kernel SVM.
- Improved results on ImageNet by ${\sim}11\%$.

Better understanding of gradient flows during BackProp helped

Understanding Effect of Activation Functions

with these breakthroughs

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Squashes numbers to range [0,1].
- Has nice interpretation as a saturating *firing rate* of a neuron.

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
 - Have a sigmoid activation

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$

$$\mathbf{h} = \sigma(\mathbf{s})$$

- Derivative of the sigmoid function is:

$$\frac{\partial h_i}{\partial s_i} = \frac{\exp(-s_i)}{(1 + \exp(-s_i))^2} \ (= \sigma'(s_i) = \sigma(s_i)(1 - \sigma(s_i))$$

- As

$$\frac{\partial J}{\partial s_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} = \frac{\partial J}{\partial h_i} \sigma'(s_i)$$

What happens to $\partial J/\partial s_i$ when $|s_i| > 5$? Max value of $\sigma'(s_i)$?

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
 - Have a sigmoid activation

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$

 $\mathbf{h} = \sigma(\mathbf{s})$

- Then

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \, \sigma'(s_i) \, \mathbf{x}^T$$

What happens to $\frac{\partial J}{\partial \mathbf{w}_i}$ when all entries in \mathbf{x} are positive?

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
 - Have a sigmoid activation

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}, \quad \mathbf{h} = \sigma(\mathbf{s})$$

- Then

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \quad \begin{array}{c} \sigma'(s_i) & \mathbf{x}^T \\ \uparrow & \uparrow \\ \text{positive or negative} \end{array}$$

What happens to $\frac{\partial J}{\partial \mathbf{w}_i}$ when all entries in \mathbf{x} are positive? \implies entries of $\frac{\partial J}{\partial \mathbf{w}_i}$ are either all positive or all negative.

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
 - Have a sigmoid activation

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}, \quad \mathbf{h} = \sigma(\mathbf{s})$$

- Then

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial \mathbf{w}_i} \qquad = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \ \sigma'(s_i) \ \mathbf{x}^T$$

What is $\frac{\partial J}{\partial \mathbf{w}_i}$ when all entries in \mathbf{x} are +tive? (occurs after applying sigmoid)

 \implies entries of $\frac{\partial J}{\partial \mathbf{w}_i}$ are either all positive or all negative.

 \implies inefficient zig-zag update paths to find optimal \mathbf{w}_i

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
- 3. $\exp()$ is expensive to compute

$$\tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

Properties

- 1. Squashes numbers to range [-1,1].
- 2. Tanh outputs are zero-centered.
- 3. Saturated activations kill the gradients.

Rectified Linear Unit (ReLu)

$$\mathsf{ReLu}(x) = \max(0,x)$$

Pros

- 1. Does not saturate for large positive x.
- 2. Very computationally efficient.
- 3. In practice training of a ReLu network converges much faster than one with sigmoid/tanh activation functions.

Rectified Linear Unit (ReLu)

$$ReLu(x) = max(0, x)$$

Problems

- 1. Output is not zero-centered
- 2. Negative inputs result in zero gradients.
 - Have a Rel II activation

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$
$$\mathbf{h} = \max(0, \mathbf{s})$$

- Derivative of the ReLu function is:

$$\frac{\partial h_i}{\partial s_j} = \begin{cases} 1 & \text{if } i = j \& s_j > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Then

$$\frac{\partial J}{\partial s_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} = \begin{cases} \frac{\partial J}{\partial h_i} & \text{if } s_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

Rectified Linear Unit (ReLu)

$$\mathsf{ReLu}(x) = \max(0,x)$$

Problems

- 1. Output is not zero-centered
- 2. Negative activations have zero gradients and freeze some parameter weights.

As

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}, \quad \mathbf{h} = \max(0, \mathbf{s})$$

then

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \begin{cases} \frac{\partial J}{\partial h_i} \mathbf{x}^T & \text{if } s_i > 0\\ \mathbf{0} & \text{otherwise} \end{cases}$$

 \implies if example \mathbf{x} gives $s_i < 0$ then \mathbf{x} will not contribute an update to \mathbf{w}_i .

Leaky ReLu

$$\mathsf{Leaky}\ \mathsf{ReLu}(x) = \max(.01x, x)$$

Pros

- 1. Does not saturate.
- 2. Computationally efficient.
- 3. In practice training of a Leaky ReLu network converges much faster than one with sigmoid/tanh activation functions.
- 4. Activations do not die.

[Mass et al., 2013] [He et al., 2015]

Exponential Linear Units (ELU)

$$\mathsf{ELU}(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha(\exp(x) - 1) & \text{otherwise} \end{cases}$$

Pros & Cons

- 1. All the benefits of ReLu.
- 2. Activations do not die.
- 3. Closer to zero mean outputs.
- 4. Computation requires $\exp()$

[Clevert et al., 2015]

Which Activation Function?

In practice

- Use ReLU.
 - Be careful with your learning rates.
 - Initialize bias vectors to be slightly positive.
- Try out Leaky ReLU / ELU.
- Try out tanh but don't expect much.
- Don't use sigmoid.

Effect of weight initialization & activation function on gradient low	

Pathological weight initialization

2-layer Neural Network

What happens when you initialize each weight matrix entry to zero? (each $W_{i,lm}=0$)

Initialize with small random numbers

$$W_{i,lm} \sim N(w; 0, .01^2)$$

What happens in this case?

Initialize with small random numbers

$$W_{i,lm} \sim N(w; 0, .01^2)$$

What happens in this case?

Works okay for small networks, but can lead to non-homogeneous distributions of activations across the layers of a deep network.

Consider this simple example

Input data

- Generate random input data, $N(0, 1^2)$, with d = 500.

Histogram of values in the input vectors.

Network architecture

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a \tanh activation function at each layer.

Weight initialization with small values

- Initialize weights according to:

$$W_{i,lm} \sim N(w; 0, \sigma^2)$$
 where $\sigma = .01$

Effect of initialization with small values on activations

- Initialize a 10-layer network with 500 nodes at each layer.
- Use tanh activation function at each layer.
- Initialize weight parameters with small values: $W_{i,lm} \sim N(w; 0, .01^2)$.

Histograms of activations at each layer.

Note: values of x-axis rapidly decrease with each layer.

- Set-up: $W_{i,lm} \sim N(w; 0, .01^2)$, tanh activation.
- Activations at each layer are increasingly small.
- What are the gradient values computed by back-prop algorithm?

- Set-up: $W_{i,lm} \sim N(w; 0, .01^2)$, tanh activation.
- Activations at each layer are increasingly small.
- What are the gradient values computed by back-prop algorithm?

Histograms of gradients at each layer. (y-axis shown on logarithmic scale)

- **Set-up**: $W_{i,lm} \sim N(w; 0, .01^2)$, tanh activation functions.
- Activations at each layer are increasingly small.
- What are the gradient values computed by back-prop algorithm?

Gradient values

- at each layer the value of all gradients are tiny.

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (\mathbf{x}, y) :

Let

$$\mathbf{g} = (\mathbf{y} - \mathbf{p})^T$$

- for $i = k, k 1, \dots, 1$
 - 1. The gradient of l w.r.t. bias vector \mathbf{b}_i

$$\frac{\partial l}{\partial \mathbf{b}_i} = \mathbf{g}$$

2. Gradient of l w.r.t. weight matrix W_i

$$\frac{\partial l}{\partial W_i} = \mathbf{g}^T \mathbf{x}^{(i-1)T}$$

3. Propagate the gradient vector \mathbf{g} to the previous layer (if i > 1)

$$\mathbf{g} = \mathbf{g}W_i$$

 $\mathbf{g} = \mathbf{g} \operatorname{diag}(\tanh'(\mathbf{s}^{(i)}))$

Change the initialization to bigger random numbers

Input data

- Generate random input data, $N(0, 1^2)$, with d = 500.

Histogram of values in the input vectors.

Network architecture

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a \tanh activation function at each layer.

Weight initialization with large values

- Initialize weights according to:

$$W_{i,lm} \sim N(w; 0, \sigma^2)$$
 where $\sigma = 1$

Effect of initialization with large values on activations

- Initialize a 10-layer network with 500 nodes at each layer.
- Use tanh activation function at each layer.
- Initialize weight parameters with large values: $W_{i,lm} \sim N(w; 0, 1^2)$.

Histograms of activations at each layer.

- Set-up: $W_{i,lm} \sim N(w;0,1^2)$, tanh activation.
- Almost all neurons completely saturated, either -1 or +1.
- What are the gradient values computed by back-prop algorithm?

- **Set-up**: $W_{i,lm} \sim N(w; 0, 1^2)$, tanh activation.
- Almost all neurons completely saturated, either -1 or +1.
- What are the gradient values computed by back-prop algorithm?

Histograms of gradients at each layer. (y-axis shown on logarithmic scale)

Note: the increase in the magnitude of the x-values as the layers decrease

- **Set-up**: $W_{i,lm} \sim N(w; 0, 1^2)$, tanh activation functions.
- Almost all neurons completely saturated, either -1 or +1.
- What are the gradient values computed by back-prop algorithm?

Gradient values:

 at each layer the range of gradient values is huge. Gradients have exploded.

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (\mathbf{x}, y) :

Let

$$\mathbf{g} = (\mathbf{y} - \mathbf{p})^T$$

- for $i = k, k 1, \dots, 1$
 - 1. The gradient of l w.r.t. bias vector \mathbf{b}_i

$$\frac{\partial l}{\partial \mathbf{b}_i} = \mathbf{g}$$

2. Gradient of l w.r.t. weight matrix W_i

$$\frac{\partial l}{\partial W_i} = \mathbf{g}^T \mathbf{x}^{(i-1)T}$$

3. Propagate the gradient vector ${\bf g}$ to the previous layer (if i>1)

```
\mathbf{g} = \mathbf{g}W_i \leftarrow \mathsf{multiply} \text{ by } W_i \text{ which has many values} > 1
\mathbf{g} = \mathbf{g} \operatorname{diag}(\mathsf{tanh}'(\mathbf{s}^{(i)})) \leftarrow \mathsf{multiply} \text{ each element of } \mathbf{g} \text{ by } 0 < \mathsf{tanh}'(\mathbf{s}^{(i)}) \le 1
```

Increase by multiplication by W_i dominates dampening by $\operatorname{diag}(\tanh'(\mathbf{s}^{(i)}))$

Do I get similar problems if I use ReLu activation functions instead of \tanh ?

Yes. But some qualitative differences.

Effect of parameter init. on network with ReLu activations

Effect on activations at each layer

- Regardless of value of σ at each layer many activations are exactly zero.
- Too small $\sigma \Longrightarrow$ non-zero activations become increasingly close to zero as layer number increases.
- Too large $\sigma \implies$ non-zero activations explode as layer number increases.

Effect on gradients at each layer

- Regardless of value of σ at each layer many gradients are exactly zero.
- Too small $\sigma \Longrightarrow$ non-zero gradients are close to zero if network has many layers.
- Too large $\sigma \implies$ non-zero gradients are very large if network has many layers.
- Range of non-zero gradient values remains pprox constant across layers.

Effect of initialization with small values on activations

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a ReLu activation function at each layer.
- Initialize weight parameters with small values: $W_{i,lm} \sim N(w; 0, .01^2)$.

Histograms of non-zero activations at each layer.

 $(\sim 50\%$ of activations are zero at each layer)

Note: values of x-axis rapidly decrease with each layer.

- **Set-up**: $W_{i,lm} \sim N(w; 0, .01^2)$, ReLu activation.
- Activations at each layer are increasingly small.
- What are the gradient values computed by back-prop algorithm?

Histograms of non-zero gradients at each layer.

(\sim 90-95% of activations are zero at each layer)

Effect of initialization with small values on gradients

- **Set-up**: $W_{i,lm} \sim N(w; 0, .01^2)$, ReLu activation.
- Activations at each layer are increasingly small.
- What are the gradient values computed by back-prop algorithm?

(only non-zero gradients included in calculations)

Gradient values

- at each layer the value of all non-zero gradients are tiny.

Effect of initialization with large values on activations

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a ReLu activation function at each layer.
- Initialize weight parameters with large values: $W_{i,lm} \sim N(w; 0, 1^2)$.

Histograms of non-zero activations at each layer.

 $\left({\sim}50\%$ of activations are zero at each layer $\right)$

Note: values of *x*-axis rapidly increase with each layer.

Effect of initialization with large values on gradients

- Set-up: $W_{i,lm} \sim N(w;0,1^2)$, ReLu activation.
- Activations at each layer are increasingly large.
- What are the gradient values computed by back-prop algorithm?

Histograms of non-zero gradients at each layer.

(\sim 90-98% of activations are zero at each layer)

Effect of initialization with large values on gradients

- **Set-up**: $W_{i,lm} \sim N(w; 0, 1^2)$, ReLu activation.
- Activations at each layer are increasingly large.
- What are the gradient values computed by back-prop algorithm?

Gradient values:

- absolute gradient values are very large at each layer. Gradients have exploded.

Is it just a case of trial and error until we find a good value for σ ?

No. For tanh activations, Xavier initialization and simple statistical reasoning to the rescue.

Xavier initialization

Input data

- Generate random input data, $N(0, 1^2)$, with d = 500.

Network architecture

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each layer.

Weight initialization with Xavier initialization

- Initialize weights according to:

$$W_{i,lm} \sim N(w;0,\sigma^2)$$
 where $\sigma = \frac{1}{\sqrt{n_{
m in}}}$ and W_i has size $n_{
m out} imes n_{
m in}$

- For our simple example $n_{in} = 500$.
- Where does Xavier initialization come from?
 - Want mean and spread of activations in $\mathbf{x}^{(i)}$ to be = to those in $\mathbf{x}^{(i-1)}$
 - Know $\mathbf{x}^{(i)} = \tanh(W_i \mathbf{x}^{(i-1)})$
 - If lots of independence assumptions are made
 - Then $\sigma = \frac{1}{\sqrt{n_{\mathsf{in}}}}$ pops out

Xavier initialization

Input data

- Generate random input data, $N(0, 1^2)$, with d = 500.

Network architecture

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each layer.

Weight initialization with Xavier initialization

- Initialize weights according to:

$$W_{i,lm} \sim N(w;0,\sigma^2) \quad \text{where } \sigma = \frac{1}{\sqrt{n_{\rm in}}} \text{ and } W_i \text{ has size } n_{\rm out} \times n_{\rm in}$$

- For our simple example $n_{in} = 500$.
- Where does Xavier initialization come from?
 - Want mean and spread of activations in $\mathbf{x}^{(i)}$ to be = to those in $\mathbf{x}^{(i-1)}$.
 - Know $\mathbf{x}^{(i)} = \tanh(W_i \mathbf{x}^{(i-1)})$
 - If lots of independence assumptions are made.
 - Then $\sigma = \frac{1}{\sqrt{n_{in}}}$ pops out.

Effect of Xavier initialization on distribution of activations

- Generate random input data, $N(0, 1^2)$, with d = 500.
- Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each layer.
- Xavier initialization of weights: $W_{i,lm} \sim N(w; 0, \sigma^2)$ where $\sigma = 1/\sqrt{500}$.

Histograms of activations at each layer

Effect on Xavier initialization on gradients

- **Set-up**: $W_{i,lm} \sim N(w; 0, 1/n_{in})$, tanh activation
- Mean and spread of activations at each layer remains \sim constant.
- What are the gradient values computed by back-prop algorithm?

Histograms of gradients at each layer. (y-axis shown on logarithmic scale)

Note: in each graph similar range of x-values.

Effect on Xavier initialization on gradients

- Set-up: $W_{i,lm} \sim N(w; 0, 1/n_{in})$, tanh activation
- Mean and spread of activations at each layer remains \sim constant.
- What are the gradient values computed by back-prop algorithm?

Gradient values

have a nice range of values at each layer.
 (Why the increase in range for layer 1?)

How about Xavier initialization when we have ReLu activation

functions?

Xavier initialization and ReLu activation

- Generate random input data, $N(0, 1^2)$, with d = 500.
- Initialize a 10-layer network with 500 nodes at each layer.
- Use a ReLu activation function at each layer.
- Xavier initialization of weights: $W_{i,lm} \sim N(w;0,\sigma^2)$ where $\sigma = 1/\sqrt{500}$.

Histograms of **non-zero** activations at each layer

Note: Range of activation values get smaller with increasing layer.

Effect on Xavier initialization on gradients

- **Set-up**: $W_{i,lm} \sim N(w; 0, 1/n_{in})$, ReLu activations.
- Spread of activations at each layer slowly diminishing.
- What are the gradient values computed by back-prop algorithm?

Histograms of non-zero gradients at each layer.

Note: in each graph similar range of *x*-values.

Effect on Xavier initialization on gradients

- **Set-up**: $W_{i,lm} \sim N(w; 0, 1/n_{in})$, ReLu activation
- Spread of activations at each layer slowly diminishing.
- What are the gradient values computed by back-prop algorithm?

(only non-zero gradients included in calculations)

Gradient values:

- they are small but not ridiculously small. Range remains constant across layers.

Xavier initialization diminishes effect of vanishing activations and stops exploding activations.
But can do better! He initialization .

He Vs Xavier initialization

- Both He and Xavier initialization want for each layer imean and std of values in $\mathbf{x}^{(i)} = \text{mean}$ and std of values in $\mathbf{x}^{(i-1)}$
- But the two methods make different simplifying assumptions when deriving the optimal σ in $W_{i,lm} \sim N(w; 0, \sigma^2)$.
- Xavier initialization assumes activations in each $\mathbf{x}^{(i)}$ follow a symmetric distribution.
- This assumption not true for networks with ReLu fns.
- He initialization assumes more accurate description of the shape of activation distribution (histogram).
- In this case then $\sigma=\sqrt{\frac{2}{n_{\mathrm{in}}}}$ pops out.

Effect of He initialization on activations

- Generate random input data, $N(0, 1^2)$, with d = 500.
- Initialize a 10-layer network with 500 nodes at each layer.
- Use ReLu activation function at each layer.
- He initialization of weights: $W_{i,lm} \sim N(w; 0, \sigma^2)$ where $\sigma = \sqrt{2/500}$.

Histograms of non-zero activations at each layer

Effect on He initialization on gradients

- **Set-up**: $W_{i,lm} \sim N(w; 0, 2/n_{in})$, ReLu activation
- ullet Mean and spread of activations at each layer remains \sim constant.
- What are the gradient values computed by back-prop algorithm?

(only non-zero gradients included in calculations)

Gradient values

- have a nice range of values at each layer

Proper Initialization an active area of research

- Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010
- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
- Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
- Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
- Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015
- All you need is a good init, Mishkin and Matas, 2015

Batch Normalization

- Want unit Gaussian activations at each layer?
 Just make them unit Guassian!
- Idea introduced in:
 Batch Normalization: Accelerating Deep Network Training by Reducing Internal
 Covariate Shift, S. Ioffe, C. Szegedy, arXiv 2015.
- Consider activations at some layer for a batch: $\mathbf{s}_1^{(j)}, \mathbf{s}_2^{(j)}, \dots, \mathbf{s}_n^{(j)}$
- To make each dimension unit gaussian, apply:

$$\hat{\mathbf{s}}_i^{(j)} = \mathsf{diag}(\sigma_1, \dots, \sigma_m)^{-1} \left(\mathbf{s}_i^{(j)} - oldsymbol{\mu}
ight)$$

where

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{s}_{i}^{(j)}, \quad \sigma_{p}^{2} = \frac{1}{n} \sum_{i=1}^{n} (s_{i,p}^{(j)} - \mu_{p})^{2}$$

Batch Normalization

- Usually apply normalization after the fully connected layer before non-linearity.
- Therefore for a k-layer network have
 - for $i=1,\dots,k-1$ for each $(\mathbf{x}^{(i-1)},y)\in\mathcal{D}$ \leftarrow Apply ith linear transformation to batch

$$\mathbf{s}^{(i)} = W_i \mathbf{x}^{(i-1)} + \mathbf{b}_i$$

end

Compute batch mean and variances of ith layer:

$$\mu = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{s}^{(i)} \in \mathcal{D}} \mathbf{s}^{(i)}, \quad \sigma_j^2 = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{s}^{(i)} \in \mathcal{D}} \left(s_j^{(i)} - \mu_j \right)^2 \text{ for } j = 1, \dots, m_i$$

for each $(\mathbf{s}^{(i)}, y) \in \mathcal{D} \leftarrow$ Apply BN and activation function

$$\begin{split} \hat{\mathbf{s}}^{(i)} &= \mathsf{BatchNormalise}(\mathbf{s}^{(i)}, \pmb{\mu}, \sigma_1, \dots, \sigma_{m_i}) \\ \mathbf{x}^{(i)} &= \max\left(0, \hat{\mathbf{s}}^{(i)}\right) \end{split}$$

end

end

- Apply final linear transformation: $\mathbf{s}^{(k)} = W_k \mathbf{x}^{(k-1)} + \mathbf{b}_k$

Batch Normalization: Scale & shift range

Can also allow the network to squash and shift the range

$$\hat{\mathbf{s}}^{(i)} = \gamma^{(i)}\hat{\mathbf{s}}^{(i)} + \beta^{(i)}$$

of the $\hat{\mathbf{s}}^{(i)}$'s at each layer.

- Can learn the $\gamma^{(i)}$'s and $\beta^{(i)}$'s and add them as parameters of the network.
- To keep things simple this added complexity is often omitted.

Benefits of Batch Normalization

- Improves gradient flow through the network.
- Reduces the strong dependence on initialization.
- \implies learn deeper networks more reliably.
- Allows higher learning rates.
- Acts as a form of regularization.

If training a deep network, you should use **Batch Normalization**.

Batch Normalization at Test Time

- At test time do not have a batch.
- Instead fixed empirical mean and variances of activations at each level are used.
- These quantities estimated during training (with running averages).

Back-Prop for a Batch Normalization layer.

Computational Graph for a BN layer

• Compute the mean and variance for the scores in the batch:

$$\mu_b = \frac{1}{n} \sum_{i=1}^n \mathbf{s}_i, \quad v_{b,j} = \frac{1}{n} \sum_{i=1}^n (s_{i,j} - \mu_{b,j})^2$$

where $\mathbf{v}_b=(v_{b,1},v_{b,2},\ldots,v_{b,m})^T.$ (n=2 in the figure.) Define $V_b=\operatorname{diag}\left(\mathbf{v}_b+\epsilon
ight)$

• Apply batch normalization function to each score vector:

$$\hat{\mathbf{s}}_i = V_{\scriptscriptstyle L}^{-\frac{1}{2}} \left(\mathbf{s}_i - \boldsymbol{\mu}_{\scriptscriptstyle L} \right)$$

- Want to compute $\frac{\partial J}{\partial \mathbf{s}_i}$ for each \mathbf{s}_i in the batch.
- ullet The children of node \mathbf{s}_i are $\{\hat{\mathbf{s}}_i, \mathbf{v}_b, oldsymbol{\mu}_b\}$ thus

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

• Let's look at the individual gradients and Jacobians.

$$\frac{\partial J}{\partial \mathbf{s}_i} = \qquad \quad \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \qquad \quad \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

assume already computed

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

• The equation relating $\hat{\mathbf{s}}_i$ to \mathbf{s}_i (remember $V_b = \mathsf{diag}(\mathbf{v}_b + \epsilon)$)

$$\hat{\mathbf{s}}_i = V_b^{-\frac{1}{2}} \left(\mathbf{s}_i - \boldsymbol{\mu}_b \right)$$

Therefore

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} = V_b^{-\frac{1}{2}}$$

$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{b}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \boldsymbol{\mu}_{b}} \frac{\partial \boldsymbol{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

- The children of node \mathbf{v}_b are $\{\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_n\}$
- Therefore

$$\frac{\partial J}{\partial \mathbf{v}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b}$$

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

- The children of node \mathbf{v}_b are $\{\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_n\}$
- Therefore

$$\frac{\partial J}{\partial \mathbf{v}_b} = \sum_{i=1}^n \quad \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \quad \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b}$$

assume knowi

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

- The children of node \mathbf{v}_b are $\{\hat{\mathbf{s}}_1,\ldots,\hat{\mathbf{s}}_n\}$
- Therefore

$$\frac{\partial J}{\partial \mathbf{v}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \quad \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b}$$

• The equation relating $\hat{\mathbf{s}}_i$ to \mathbf{v}_b (remember $V_b = \mathsf{diag}(\mathbf{v}_b + \epsilon)$)

$$\hat{\mathbf{s}}_i = V_b^{-\frac{1}{2}} \left(\mathbf{s}_i - \boldsymbol{\mu}_b \right)$$

• The local Jacobian we want to compute

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b} = \begin{pmatrix} \frac{\partial \hat{s}_{i,1}}{\partial v_{b,1}} & \cdots & \frac{\partial \hat{s}_{i,1}}{\partial v_{b,m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial \hat{s}_{i,m}}{\partial v_{b,1}} & \cdots & \frac{\partial \hat{s}_{i,m}}{\partial v_{b,m}} \end{pmatrix}$$

• Computing the derivative for each individual element:

$$\frac{\partial \hat{s}_{i,j}}{\partial v_{b,k}} = \begin{cases} -\frac{1}{2} (v_{b,k} + \epsilon)^{-\frac{3}{2}} (s_{i,k} - \mu_{b,k}) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

In matrix form

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b} = -\frac{1}{2} V_b^{-\frac{3}{2}} \mathsf{diag} \left(\mathbf{s}_i - \boldsymbol{\mu}_b \right)$$

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

- Next $\frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} = \frac{2}{n} \operatorname{diag}(\mathbf{s}_i \boldsymbol{\mu}_b)$.
- As

$$v_{b,j} = \frac{1}{n} \sum_{l=1}^{n} (s_{l,j} - \mu_{b,j})^2$$

and

$$\frac{\partial v_{b,j}}{\partial s_{i,k}} = \begin{cases} \frac{2}{n} \left(s_{i,j} - \mu_{b,j} \right) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{b}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \boldsymbol{\mu}_{b}} \frac{\partial \boldsymbol{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

- The children of node μ_b are $\{\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_n, \mathbf{v}_b\}$.
- Therefore

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

• The equation relating $\hat{\mathbf{s}}_i$ to $\boldsymbol{\mu}_b$ (remember $V_b = \mathsf{diag}(\mathbf{v}_b + \epsilon)$)

$$\hat{\mathbf{s}}_i = V_b^{-\frac{1}{2}} \left(\mathbf{s}_i - \boldsymbol{\mu}_b \right)$$

• The local Jacobian we want to compute

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} = -V_b^{-\frac{1}{2}}$$

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \underbrace{\frac{\partial J}{\partial \mathbf{v}_b}}_{\text{already calculated}} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

- Next $\frac{\partial \mathbf{v}_b}{\partial u_b} = \mathbf{0}$.
- As

$$v_{b,j} = \frac{1}{n} \sum_{i=1}^{n} (s_{i,j} - \mu_{b,j})^2$$

and

$$\frac{\partial v_{b,j}}{\partial \mu_{b,k}} = \begin{cases} -\frac{2}{n} \sum_{i=1}^{n} \left(s_{i,j} - \mu_{b,j} \right) = 0 & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

ullet The equation relating $oldsymbol{\mu}_b$ to \mathbf{s}_l 's is

$$\boldsymbol{\mu}_b = \frac{1}{n} \sum_{l=1}^n \mathbf{s}_l$$

Therefore

$$\frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i} = \frac{1}{n} I_m$$

Putting everything together

$$\frac{\partial J}{\partial \mathbf{v}_b} = -\frac{1}{2} \sum_{i=1}^{n} \frac{\partial J}{\partial \hat{\mathbf{s}}_i} V_b^{-\frac{3}{2}} \mathsf{diag}(\mathbf{s}_i - \boldsymbol{\mu}_b)$$

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = -\sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} V_b^{-\frac{1}{2}}$$

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} V_b^{-\frac{1}{2}} + \frac{2}{n} \frac{\partial J}{\partial \mathbf{v}_b} \mathrm{diag} \left(\mathbf{s}_i - \boldsymbol{\mu}_b \right) + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{1}{n}$$