線型ホモトピー型理論を動機付けする トポロジカル量子コンパイルの 形式検証に向けて

322301073 伊藤 賢世 アドバイザー:Jacques Garrigue

2025年1月30日

修論内容:サーベイ

Hisham Sati らの研究プロジェクト

Quantum Certification via Linear Homotopy Types

を理解するためのトポロジカル量子コンパイルについて

研究概要

主張 信頼性のある量子計算を実現するための検証言語「QS」とその基礎理論「線型ホモトピー型理論 (LHoTT)」の提唱.

研究者 Hisham Sati, Urs Schreiber, David J. Meyer, ... 拠点 ニューヨーク大学アブダビ校 Center for Quantum and Topological Systems (CQTS)

目次

1 イントロダクション

② 量子コンパイル

③ まとめ

重要課題:量子コンピュータの実現

- 量子コンピュータ = 量子力学の原理を活用した計算機.
- 普及している(古典)コンピュータの性能を凌駕する量子コンピュータ上のアルゴリズムがいくつか見つかっている.
- IBM や Google なども巨額の投資.
- → 量子コンピュータの実現に対する期待は計り知れない.

計算の信頼性における課題①:Decoherence

- 量子コンピュータのデータ = 量子系の状態 (量子ビット).
- 量子状態は環境の影響で壊れやすい (Decoherence 問題).
- → エラーが多く,アルゴリズム通りに計算することは難しい.

アプローチ①:エラーの訂正

- 古典コンピュータでも物理レベルではエラーが起きている.
 - データに冗長性をもたせて,データを復元(誤り訂正理論).
- 量子コンピュータにも応用(量子誤り訂正).
 - → 量子ビットを大規模に用意する問題に至る.

- トポロジカル量子計算
 - トポロジーで量子状態を構成.
 - 組み紐で計算を実行.
- Decoherence に影響されにくく、エラーが減る。

→ 訂正のための冗長な量子ビットは少なくて済む.

コンパイル

- あるプログラミング言語で書かれたコードを、数学的な意味を保ちつつ、別のコードに変換することをコンパイルという。
- そのプログラムをコンパイラという.
- 特に、コンピュータが実行可能なコードに変換したりする。
- また、コードの実行に関する最適化が施される.

例

C コンパイラ C 言語 \rightarrow アセンブリ言語 アセンブラ アセンブリ言語 \rightarrow 機械語 古典コンピュータは最終的に機械語を実行している.

量子回路

- 計算は量子ゲートによって実行される。
- その数学的な意味はユニタリ変換。
- 量子回路は量子ゲートで構成され、アルゴリズムを記述.

量子コンパイル:計算したい量子回路 → 実行可能な量子回路

- 任意の量子ゲートを準備し実行可能にするのは現実的でない.
- 有限個のみ準備(基本ゲート)し、その量子回路で実行する.

量子コンパイルの特徴

基本ゲートの組み合わせで,任意の量子アルゴリズムを<mark>正確に</mark>シミュレートすることはできない.

→ 任意の精度で近似的にシュミレートする。
(cf. Solovey・Kitaev アルゴリズム)

注意

後半では、Solovey・Kitaev アルゴリズムを説明する.

課題①の先:トポロジカル量子コンパイル

トポロジカル量子コンピュータの量子コンパイル・

● 量子ゲート = 組み紐ゲート

コンパイルの形式検証

古典コンピュータでは,コンパイルが正しいことの検証が研究されている.

- コンパイラの仕様を検証言語で記述し、コードの数学的な意味が保たれることを証明する.
- cf. C コンパイラの1つ CompCert の正しさは, Coq で検証.

計算の信頼性における課題②:コンパイルの正しさ

トポロジカル量子コンパイルの形式検証

- 量子回路の記述
- トポロジカル量子ゲートの記述

Sati らの提案:線型ホモトピー型理論(LHoTT)

- LHoTT = Linear + HoTT.
- 量子回路の記述 →QS ⊆ LHoTT
- トポロジカル量子ゲートの記述 → HoTT ⊆ LHoTT
 - → LHoTT は信頼性のある量子プログラミングに対する 最初の包括的なパラダイムになる.

目次

1 イントロダクション

② 量子コンパイル

③ まとめ

近似するには,距離の概念を要する.以下, $d=2^n$ とする.

定義 (ユニタリ変換の間の距離)

任意の $U,V \in U(d)$ に対し、その距離を次で定義する.

$$d(U,V) := ||U - V|| = \sup_{||\psi|| = 1} ||(U - V)|\psi\rangle||$$

定義 (Universal set)

ゲートの集合 $\mathcal G$ が U(d) に対して万能 (universal) であるとは,任 意の $U\in U(d)$ と $\varepsilon>0$ に対し,ある $l\in\mathbb N$ と $G_1,\dots,G_l\in\mathcal G$ が 存在して, $d(U,G_l\cdots G_1)<\varepsilon$ となることである.有限列 G_1,\dots,G_l を U の ε 近似列といい,l を長さという.

ユニタリ変換 U は,物理的な意味を持たない大域的な相を無視して,特殊ユニタリ行列の積に分解できる.よって,特殊ユニタリ行列が近似できればよい.

定義 (Instruction set)

ゲートの有限集合 \mathcal{G} が instruction set であるとは,次の 3 つの条件を満たすことである.

- $\mathfrak{G}\subseteq SU(d)$.
- ② G は逆行列で閉じている.
- ③ G は SU(d) に対して universal である.

ゲート集合の universality は任意の $U \in SU(d)$ に対して,ある長さ l が存在したが,instruction set であることを仮定すると,その長さの上限が ε を用いて与えられる.

定理 (Solovay・Kitaev の定理)

instruction set に対し,ある定数 c があって,任意の $U \in SU(d)$ を ε の精度で近似するとき,近似列の長さは $O(\log^c(1/arepsilon))$ に抑えられる.

このままだと近似列の存在はわかっても,その見つけ方がわからない.Solovay・Kitaev の定理を用いて,近似列を見つけるアルゴリズムを与える.

定理 (Solovay・Kitaev アルゴリズム)

 $\mathcal{G}\subseteq SU(2)$ を instruction set とする. ある正数列 $(arepsilon_n)$ であって,

$$\varepsilon_n < \varepsilon_{n-1}, \quad \varepsilon_n \to 0$$

となるものが存在し,次を満たす.任意のゲート $U\in SU(2)$ と深さ n を入力して, ε_n 近似列 $G_1,\ldots,G_{l_n}\in\mathcal{G}$ 並びに量子回路 $G_{l_n}\cdots G_1$ を出力する SK アルゴリズム $\mathsf{SK}(U,n)$ が帰納的に定義できる.(続く)

定理 (Solovay・Kitaev アルゴリズム)

 \cdots このとき,任意の ε に対し n を適当に選ぶことで近似列が得られ,近似列の長さ l_n と SK アルゴリズムの実行時間 t_n が次のように評価できる.

$$n = \left\lceil \frac{\ln\left[\frac{\ln(1/\varepsilon c^2)}{\ln(1/\varepsilon_0 c^2)}\right]}{\ln(3/2)}\right\rceil,$$

$$l_n = O(\ln^{\ln 5/\ln(3/2)}(1/\varepsilon)),$$

$$t_n = O(\ln^{\ln 3/\ln(3/2)}(1/\varepsilon)).$$

(証明) 次の Step0~Step2 で SK アルゴリズムを帰納的に定義する、その前に Step2 で登場する定数 c に対し, $\varepsilon_0 < 1/c^2$ なる定数をとる.

Step0: 初期近似列の brute-force search

 $arepsilon_0$ に対して Solovay・Kitaev の定理を適用し,近似列を長さ l_0 で抑える、 $U\in SU(2)$ に対し, $arepsilon_0$ 近似列 $L_0\in\coprod_{0< l\le l_0}\mathcal{G}^l$ がとれる.その量子回路を U_0 とおく. $\mathsf{SK}(U,0):=(L_0;U_0)$ と定義する.

Step1: 群交換子による分割

 $n \ge 1$ に対し, $(L_{n-1}; U_{n-1}) := \mathsf{SK}(U, n-1)$ とおく.ある分割

$$UU_{n-1}^{\dagger} = \Delta = VWV^{\dagger}W^{\dagger}, \quad d(I, V), d(I, W) < c_0\sqrt{\varepsilon_{n-1}}$$

によって、 $V,W \in \mathcal{G}$ を得る. ただし、 $c_0 \approx \frac{1}{\sqrt{2}}$ で定数.

Step2: 交換因子に SK アルゴリズム

V, W に対して SK アルゴリズムを適用する.

$$(L_V;V_{n-1}):={\sf SK}(V,n-1),\quad (L_W;W_{n-1}):={\sf SK}(W,n-1).$$

このとき, $\Delta_{n-1}:=V_{n-1}W_{n-1}V_{n-1}^\dagger W_{n-1}^\dagger$ とおくと,

$$d(\Delta, \Delta_{n-1}) < \varepsilon_n := c\varepsilon_{n-1}^{\frac{3}{2}}, \tag{1}$$

$$\varepsilon_{n-1} < \frac{1}{c^2} \tag{2}$$

を満たす.ただし, $c \approx 8c_0 \approx 4\sqrt{2}$ で定数.

$$U_n := \Delta_{n-1} U_{n-1}, \quad \mathsf{SK}(U, n) := (L_{n-1} L_W^{\dagger} L_V^{\dagger} L_W L_V; U_n)$$

この手続きにより, $U_{n-1}U^\dagger=\Delta_{n-1}U_{n-1}U^\dagger=\Delta_{n-1}\Delta^\dagger$ となるから,

$$d(U, U_{n-1}) = d(I, U_{n-1}U^{\dagger}) = d(I, \Delta_{n-1}\Delta^{\dagger}) = d(\Delta, \Delta_{n-1}) < \varepsilon_n$$

と評価できる.また,不等式 2 により $\varepsilon_n < \varepsilon_{n-1}$ を満たす.また,定め方から

$$l_n = 5l_{n-1},$$

$$t_n < 3t_{n-1} + \text{const}$$

であり、後半が成り立つ.(証明終わり)

目次

1 イントロダクション

② 量子コンパイル

③ まとめ

まとめ

振り返り

トポロジカル量子コンパイルを主題として捉え,一連の流れの中で LHoTT(あるいは QS)を動機付けることがねらいであった.

展望

- LHoTT の詳細な構文論と意味論
- 安定ホモトピー論
- 状態空間の具体的な構成
- トポロジカル量子計算による decoherence 耐性の記述
- 共形場理論や Chern・Simons 理論を含む場の量子論
- 物質のトポロジカル秩序相
- トポロジカル量子計算の形式検証のための TED-K 理論
- LHoTT Φ companion articles