Exercício-Programa 3: Mais Fractais

Figure 1: Conjunto de Julia

Tarefa 3 - Experimentos

Todos os dados gerados pelos experimentos encontram-se no arquivo results.csv. O processo de parsing, assim como a geração das imagens, encontram-se também no jupyter notebook study.ipynb.

Experimentos com MPICH

Configuração dos experimentos:

- Valores testados de
n (entrada para tamanho da imagem): {500, 1000, 2500, 5000}
- Quantidade de execuções de cada experimento: 20.
- Quantidade de iterações para cada imagem (i): 6.
- Número de processos (n_procs): 2 * x, onde $x = \{1...i\}$.

Para mais detalhes dos experimentos, veja run_measurements.sh.

Análise de desempenho

Primeiramente, o tempo de execução usado para comparação das versões paralelizadas será definido como o **maior elapsed_time** dos processos de uma respectiva amostra.

Calculando a média e mediana da versão sequencial e paralelizada:

Figure 2: Mean Time Elapsed by N: sequential and parallel versions.

A versão paralelizada possui seu tempo de execução mais rápido quando comparado com a versão sequencial. Além disso, para o conjunto de tamanhos n, o número de processos que atinge a menor média de tempo de execução é 16.

Cálculo do speedup

Calculando o speedup:

```
>>> df_seq["elapsed_time"].mean()/df_mpi["elapsed_time"].mean() np.float64(2.239416065261299)
```

Temos que o speedup da versão paralelizada v
s versão sequencial é de aproximadamente ${\bf 2.24x}.$

Análise de eficiência

Selecionando todas execuções para n=5000:

```
>>> df.groupby("n_procs")["elapsed_time"].mean()
n_procs
2.0    7.157784
4.0    5.538825
```


Figure 3: Mean Time Elapsed by Number of Processes.

```
3.316751
8.0
16.0
        1.988573
32.0
        2.420791
        2.492902
64.0
Name: elapsed_time, dtype: float64
>>> df.groupby("n_procs")["elapsed_time"].median()
n_procs
2.0
        7.156738
4.0
        5.540824
8.0
        3.316941
16.0
        1.989621
32.0
        2.356065
64.0
        2.488144
Name: elapsed_time, dtype: float64
```

A maior eficiência ocorre para 16 processos, nota-se também uma ligeira degradação de desempenho para n_procs>16, que se estabiliza a partir desse valor.

Experimentos com SimGrid

Configuração dos experimentos:

• Valores testados de
n (entrada para tamanho da imagem): $\{500, 1000, 2500, 5000\}$

Figure 4: Mean Time Elapsed by Number of Processes: N = 5000.

- Quantidade de execuções de cada experimento: 20.
- Quantidade de iterações para cada imagem (i): 5.
- Número de processos (n_procs): 2 * x, onde $x = \{1...i\}$.

Experimentos com cluster heterogêneo:

- Configuração do cluster utilizada: simple_cluster.xml.
 - 64 nós.
 - Nível de latência entre nós: 10 μs.

Comparando com as mesmas especificações do cluster anterior, só que desta vez homogêneo:

```
>>> df_smpi_heterog["elapsed_time"].mean()/df_smpi_homog["elapsed_time"].mean()
np.float64(1.004685352735828)
```

Pela relação acima, a versão homogênea é ligeiramente mais performática para o problema do conjunto de julia. No entanto, pode-se observar que a heterogeneidade do cluster não foi suficiente para causar problemas de desbalanceamento de carga ou aumentar a latência de comunicação.

Experimentos com cluster homogêneo:

- Configuração do cluster utilizada: simple_cluster_homogeneous.xml.
 - 64 nós.
 - Níveis de latência entre nós testados: 10 μs, 100 μs e 500 μs.

Figure 5: Mean Time Elapsed by Number of Processes - SMPI Heterogeneous cluster.

Figure 6: Mean Time Elapsed by N - SMPI Heterogeneous x Homogeneous.

Figure 7: Mean Time Elapsed by Number of Processes - SMPI Heterogeneous $\mathbf x$ Homogeneous.

Figure 8: Mean Time Elapsed by N - $10us \times 100us$ latency.

Figure 9: Mean Time Elapsed by Number of Processes - $10us \times 100us$ latency.

Figure 10: Mean Time Elapsed by N - 10us x 500us latency.

Figure 11: Mean Time Elapsed by Number of Processes - $10us \times 500us$ latency.

```
>>> df_smpi_homog["elapsed_time"].mean()/df_smpi_homog_100_lat["elapsed_time"].mean() np.float64(0.9984293756357593)
```

```
>>> df_smpi_homog["elapsed_time"].mean()/df_smpi_homog_500_lat["elapsed_time"].mean()
np.float64(1.0051140758125052)
```

Com o aumento da latência, era esperado mais ocorrências de atraso de comunicação e/ou sincronização ineficiente, porém, o conjunto de julia paralelizado requer a sincronização dos processos somente na escrita do arquivo, ou seja, além de ser um problema altamente paralelizável, seu maior custo está concentrado nas operações de entrada/saída, o que justifica o porquê de não haver mudanças significativas de desempenho.

Conclusão

Os experimentos realizados demonstram a eficiência da paralelização na geração de imagens do conjunto de Julia, com a versão paralelizada apresentando um speedup significativo de **2,24x** em relação à versão sequencial. A análise de eficiência revelou que o desempenho ótimo foi alcançado com 16 processos, sendo observado um leve declínio para valores maiores, possivelmente devido à sobrecarga de comunicação.

Os experimentos com clusters heterogêneos e homogêneos mostram que, para este problema específico, a heterogeneidade do cluster não afetou significativamente o desempenho, indicando que o problema é bem equilibrado em termos de carga computacional. Além disso, o aumento da latência no cluster homogêneo também não teve impacto substancial, uma vez que o custo maior está concentrado nas operações de entrada/saída, com menor dependência da comunicação entre processos.

Esses resultados reforçam que o problema do conjunto de Julia é altamente paralelizável, com gargalos de desempenho associados principalmente à escrita de arquivos e não à comunicação entre nós. A configuração de 16 processos se mostrou como a mais eficiente, proporcionando um equilíbrio ideal entre desempenho e *overhead*.