The Kinematic Bicycle Model

Course 1, Module 3, Lesson 2

In this video....

- Learn about slip angle
- Develop the kinematic bicycle model

Bicycle Kinematic Model

- 2D bicycle model (simplified car model)
- Front wheel steering

Two-Wheeled Robot Kinematic Model

- Rear Wheel Reference Point
 - Apply Instantaneous Center of Rotation (ICR)

$$\dot{\theta} = \omega = \frac{v}{R}$$

Similar triangles

$$\tan \delta = \frac{L}{R}$$

Rotation rate equation

$$\dot{\theta} = \omega = \frac{v}{R} = \frac{v \tan \delta}{L}$$

Rear Axle Bicycle Model

If the desired point is at the center of the rear axle

$$\dot{x}_r = v \cos \theta$$

$$\dot{y}_r = v \sin \theta$$

$$\dot{\theta} = \frac{v \tan \delta}{L}$$

$$(x_r, y_r)$$

Bicycle Kinematic Model

If the desired point is at the center of the front axle

$$\dot{x}_f = v \cos(\theta + \delta)$$

$$\dot{y}_f = v \sin(\theta + \delta)$$

$$\dot{\theta} = \frac{v \sin \delta}{L}$$

Bicycle Kinematic Model

• If the desired point is at the center of the gravity (cg)

$$\dot{x}_c = v \cos(\theta + \beta)$$

$$\dot{y}_c = v \sin(\theta + \beta)$$

$$\dot{\theta} = \frac{v \cos \beta \tan \delta}{L}$$

$$(x_c, y_c)$$

$$v \beta$$

State-space Representation

 Modify CG kinematic bicycle model to use steering rate input

o State:
$$[x, y, \theta, \delta]^T$$
 Inputs: $[v, \varphi]^T$ $\dot{x}_c = v \cos(\theta + \beta)$ $\dot{y}_c = v \sin(\theta + \beta)$ $\dot{\theta} = \frac{v \cos \beta \tan \delta}{L}$

Modified Input: rate of change of steering angle

Summary

- What we have learned from this lesson:
 - Formulation of a kinematic bicycle model
 - State-space representation.
- What is next?
 - We will explore the Dynamics in 2D and how to define a vehicle model as a 2D dynamic system.