Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

А. Р. МИРОТИН, Ж. Н. КУЛЬБАКОВА, И. В. ПАРУКЕВИЧ

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ: МЕРА И ИНТЕГРАЛ ЛЕБЕГА

Сборник задач для студентов специальности 1-31 03 01 02 — «Математика (научно-педагогическая деятельность)»

> Гомель ГГУ им. Ф. Скорины 2012

УДК 517.518.112:517.98 ББК 22.162 я73 М 644

Рецензенты:

кандидат физико-математических наук Л. П. Авдашкова; доктор физико-математических наук А. П. Старовойтов

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Миротин, А. Р.

М 644 Функциональный анализ. Мера и интеграл Лебега : сборник задач для студентов специальности 1-31 03 01 02 — «Математика (научно-педагогическая деятельность)» / А. Р. Миротин, Ж. Н. Кульбакова, И. В. Парукевич; М-во образования РБ, Гомельский гос. ун-т им. Ф. Скорины. — Гомель : ГГУ им. Ф. Скорины, 2012. — 36 с. ISBN 978-985-439-616-3

Предлагаемый сборник предназначен для проведения лабораторных и практических занятий, а также его можно использовать для самоконтроля при подготовке к экзамену. В нем представлены задачи по разделу «Мера и интеграл Лебега». Содержит основные типы задач и примеры их решения.

Адресован студентам специальности 1-31 03 01 02 — «Математика (научно-педагогическая деятельность)».

УДК 517.518.112:517.98 ББК 22.162 я73

ISBN 978-985-439-616-3

- © Миротин А. Р., Кульбакова Ж. Н., Парукевич И. В., 2012
- © УО «Гомельский государственный университет им. Ф. Скорины», 2012

Содержание

Введение	
Тема 1 Элементы теории множеств	5
Тема 2 Мера. Меры на□	
Тема 3 Измеримые функции. Интеграл Лебега	
Тема 4 Интеграл Лебега-Стилтьеса	
Литература	

Введение

Функциональный анализ является одним из важнейших разделов современного математического анализа. Он находит применение в математической физике, теории функций, дифференциальных и интегральных уравнениях, численном анализе, теории вероятностей, квантовой механике, математической экономике и ряде других областей.

Данный сборник содержит задачи, подобранные в соответствии с программой курса «Функциональный анализ и интегральные уравнения» для студентов специальности 1-31 03 01-02 — «Математика (научно-педагогическая деятельность)». В нем представлены задачи по разделу «Мера и интеграл Лебега». При составлении сборника использовались материалы А. Б. Антоневича. Предлагаемый сборник направлен на закрепление теоретического материала путем самостоятельного решения задач, а также на овладение основными приемами и методами решения задач по функциональному анализу.

Сборник предназначен в первую очередь для проведения лабораторных и практических занятий по курсу «Функциональный анализ и интегральные уравнения». Подбор задач осуществлен в соответствии с расположением учебного материала в программе дисциплины. Материал разбит на темы, по каждой из которых учебным планом по дисциплине «Функциональный анализ и интегральные уравнения» для студентов специальности 1-31 03 01-02 — «Математика (научнопедагогическая деятельность)» предусмотрено выполнение лабораторной работы. Для каждого типового задания подобрано 12 вариантов задач примерно одинаковой сложности. Это позволит также использовать сборник для самоконтроля при подготовке к экзамену. Самостоятельное решение задач по функциональному анализу часто вызывает большие трудности у студентов, поэтому пособие содержит примеры решения типовых задач.

Элементы теории множеств

В «наивной», т. е. не аксиоматической теории множеств, понятия «множество» и «элемент множества» считаются основными и не определяются. Задать множество — это значит указать, из каких элементов оно состоит. Равенство множеств A и B означает, что они состоят из одних и тех же элементов. Для этого достаточно показать, что каждый элемент множества A принадлежит B и обратно, каждый элемент множества B принадлежит A.

Если некоторое отображение (функция) f определено на множестве X и принимает значения в множестве Y, то этот факт записывается следующим образом: $f: X \to Y$.

В этом случае X называется областью (множеством) определения отображения f, а Y – областью (множеством) прибытия этого отображения. При этом множество значений, которое принимает отображение f на множестве X, называется еще образом множества X при отображении f и обозначается f(X). Таким образом,

$$f(X) := \{ f(a) : a \in X \}.$$

Аналогично определяется образ f(A) любого подмножества A множества X (дайте это определение).

Если $C \subset Y$, то *прообразом множества* C *при отображении* f называется множество всех точек из X, которые отображение f переводит в C. Это множество обозначают $f^{-1}(C)$. Таким образом,

$$f^{-1}(C) = \{x \in X : f(x) \in C\}.$$

Отметим, что, вообще говоря, $f(X) \neq Y$. В случае, если равенство имеет место, то отображение f называется сюръективным (разумеется, при фиксированном X это свойство зависит от выбора множества Y). Если отображение f разные точки множества X переводит в разные, оно называется инъективным. Биективным называется отображение, которое инъективно и сюръективно.

Понятие биективного отображения (биекции) позволяет сравнивать бесконечные множества «по величине». В частности, множества X и Y называют равномощными (эквивалентными), если существует биективное отображение $f: X \to Y$.

Простейшее из бесконечных множеств – это множество □ натуральных чисел. Эквивалентные ему множества называются *счетными*.

Другими словами, множество счетно, если его элементы можно занумеровать натуральными числами, т. е. расположить в последовательность. Легко видеть, что множество, эквивалентное счетному, само счетно (почему?).

Отметим следующие свойства счетных множеств.

Теорема 1. Всякое бесконечное множество А имеет счетное подмножество.

Теорема 2. Всякое подмножество счетного множества конечно или счетно.

Теорема 3. (основная теорема теории счетных множеств):

- 1) объединение конечного семейства счетных множеств счетно;
- 2) объединение счетного семейства счетных множеств счетно;
- 3) объединение счетного семейства непустых конечных множеств счетно.

Следствие 1. Прямое произведение конечного семейства счетных множеств счетно.

Следствие 2. Множество рациональных чисел \square счетно.

Важной является следующая теорема:

Теорема 4 (Кантор). *Множество действительных чисел несчетно*.

Множества, эквивалентные множеству действительных чисел, называются *множествами мощности континуум*.

Нам потребуются следующие системы множеств, которые часто служат областями определения мер.

Определение 1. Пусть X — непустое множество. Непустая система A подмножеств множества X называется алгеброй множеств, если она удовлетворяет следующим условиям (штрих обозначает дополнение):

- 1) $B_1, B_2 \in A \Rightarrow B_1 \cap B_2 \in A$;
- 2) $B \in A \Rightarrow B' \in A$.

Алгебра множеств обладает следующими свойствами:

- 1) \emptyset , $X \in A$;
- 2) $B_1, B_2 \in A \Rightarrow B_1 \setminus B_2 \in A$;

3)
$$B_1, \ldots, B_n \in A \Rightarrow \bigcap_{j=1}^n B_j, \bigcup_{j=1}^n B_j \in A$$
.

Таким образом, операции объединения, пересечения и разности, произведенные конечное число раз, не выводят из алгебры множеств.

Определение 2. Пусть X — непустое множество. Система В подмножеств множества X называется σ -алгеброй, если она удовлетворяет следующим условиям:

1) В – алгебра множеств;

2)
$$B_n \in B \Rightarrow \bigcup_{n=1}^{\infty} B_n \in B$$
.

Легко доказать, что $B_{\scriptscriptstyle n}\in B\Longrightarrow \bigcap\limits_{\scriptscriptstyle n-1}^{\circ} B_{\scriptscriptstyle n}\in B$.

Определение 3. Пусть X — непустое множество. Непустая система S подмножеств множества X называется *полуалгеброй*, если она удовлетворяет следующим условиям:

1)
$$B_1, B_2 \in S \Rightarrow B_1 \cap B_2 \in S$$
;

2)
$$B \in S \Rightarrow \exists B_1, \dots, B_n \in S : B' = \coprod_{j=1}^n B_j$$
;

- 3) $X \in S$.
- **1.1** Пусть A, B, C, D произвольные множества. Доказать данные равенства (таблица 1.1).

Таблица 1.1

Вариант	Равенство
1	$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
2	$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
3	$A \cap B = A \setminus (A \setminus B)$
4	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
5	$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$
6	$(A \setminus B) \setminus C = A \setminus (B \cup C)$
7	$A \setminus (B \cap C \cap D) = (A \setminus B) \cup (A \setminus C) \cup (A \setminus D)$
8	$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
9	$(A \cap B)^{'} = A^{'} \cup B^{'}$
10	$(A \cup B)^{'} = A^{'} \cap B^{'}$
11	$A \setminus B = A \cap (X \setminus B) (A, B \subset X)$
12	$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$

1.2 Пусть $f: \Box^2 \to \Box$, $A, B \subset \Box^2$, C = [0;1]. Найти и изобразить следующие множества: f(A), f(B), $f(A \cap B)$, $f^{-1}(C)$. Выяснить, является ли отображение f инъективным, сюръективным, биективным (таблица 1.2).

Таблица 1.2

Вариант	f	A	В
1	f(x,y) = x	$\{(x;0) x \in [0;1] \}$	$\left\{ (x;1) \middle x \in [0;1] \right\}$
2	f(x,y)=y	$\{(1;y) y \in [0;1]\}$	$\{(2;y) \ y\in[0;1]\}$
3	$f(x,y) = x^2 + y^2$	$\left\{ (x;x) \middle \ x \in [0;1] \right\}$	$\left \left\{ (x; -x) \middle \ x \in [0; 1] \right\} \right $
4	$f(x,y) = \sin x$	$\left \left\{ (x;1) \right \ x \in [0;\pi] \right\}$	$\left\{ (x;2) \middle \ x \in [0;\pi] \right\}$
5	$f(x,y) = \sin y$	$\left \left\{ (1; y) \middle \ y \in [0; \pi] \right\} \right $	$\{(2; y) y \in [0; \pi] \}$
6	f(x,y) = x + y	$\{(x;y) x,y \in [0;1]\}$	$\left \{ (-1; y) y \in [1; 3] \right\}$
7	f(x,y) = x - y	$\{(x;y) x,y \in [0;1]\}$	$\{(-1;y) y \in [0;3]\}$
8	f(x,y) = 3x	$\{(x;y) x,y \in [0;1]\}$	$\{(-1;y) y\in[1;3]\}$
9	f(x,y) = -5y	$\{(1;y) \ y \in [0;1]\}$	$\{(2;y) \ y \in [0;1]\}$
10	$f(x,y) = x^2$	$\left\{ (x;x) \middle x \in [0;1] \right\}$	$\left\{ (x;-x) \mid x \in [0;1] \right\}$
11	$f(x,y) = -2x^2$	$\{(x;y) \ x,y\in[0;1]\}$	$\left\{ (x; -x) \mid x \in [0; 1] \right\}$
12	$f(x,y) = 1 - x^2$	$\{(x;y) x,y \in [0;1]\}$	$\{(-1; y) y \in [1; 3]\}$

1.3 Выяснить, являются ли следующие множества конечными, счетными или множествами мощности континуум.

Вариант 1. Множество всех упорядоченных пар натуральных чисел. Вариант 2. Множество всех конечных последовательностей рациональных чисел.

Вариант 3. Множество всех многочленов с целыми коэффициентами.

Вариант 4. Множество всех прямоугольников на плоскости, у которых координаты вершин рациональны.

Вариант 5. Множество треугольников на плоскости, у которых координаты вершин – целые числа.

Вариант 6. Множество всех открытых кругов на плоскости натурального радиуса, координаты центра которых рациональны.

Вариант 7. Множество всех параллелограммов на плоскости, у которых координаты вершин рациональны.

Вариант 8. Множество всех замкнутых кругов на плоскости, у которых координаты центра и площадь являются натуральными числами.

Вариант 9. Множество всех кубов в трехмерном пространстве, у которых координаты вершин – целые числа.

- *Вариант 10*. Множество всех шаров в трехмерном пространстве, у которых координаты центра и радиус натуральные числа.
- Вариант 11. Множество всех подмножеств множества \Box , состоящих из трех элементов.
- Вариант 12. Множество всех подмножеств множества \square , состоящих из двух или трех элементов.
- **1.4** Выяснить, образуют ли полуалгебру, алгебру, σ -алгебру следующие системы подмножеств множества X.
- Вариант 1. Всевозможные промежутки вида (a;b], содержащиеся в полуинтервале (0;1], X = (0;1].
- Вариант 2. Всевозможные дуги единичной окружности T (как содержащие, так и не содержащие свои концы), включая пустую дугу и всю T, X = T.
- Вариант 3. Всевозможные дуги единичной окружности T (как содержащие, так и не содержащие свои концы), длина которых меньше числа π , включая пустую дугу и T, X=T.
- Вариант 4. Всевозможные промежутки, содержащиеся в отрезке [0;1], X=[0;1].
 - *Вариант 5*. Всевозможные промежутки, содержащиеся в □ , X = □ .
- Вариант 6. Всевозможные прямоугольники вида $[a;b)\times[c;d)$, содержащиеся в квадрате $[0;1)\times[0;1)$, $X=[0;1)\times[0;1)$.
- Вариант 7. Все конечные и счетные подмножества множества \square , $X=\square$.
- Вариант 8. Множество всех прямоугольников на координатной плоскости \Box (как содержащих, так и не содержащих некоторые свои стороны), стороны которых параллельны осям координат, включая пустой прямоугольник и \Box 2 $X=\Box$ 2 .
- Вариант 9. Все ограниченные промежутки числовой прямой \square , $X=\square$.
- Вариант 10. Всевозможные промежутки вида [a;b), содержащиеся в полуинтервале [0;1), X=[0;1);
- *Вариант 11.* Множество всех конечных подмножеств счетного множества.
 - Вариант 12. Множество всех ограниченных фигур на плоскости.

Мера. Меры на 🗆

Определение 1. Пусть S есть полуалгебра подмножеств множества X. Отображение $\mu: S \to [0, +\infty]$, отличное от тождественной $+\infty$, называется *мерой* (или σ -аддитивной мерой), если оно удовлетворяет следующему условию:

если
$$A = \coprod_{n=1}^{\infty} A_n \ (A, A_n \in S)$$
, то $\mu(A) = \sum_{n=1}^{\infty} \mu(A_n) (\sigma$ -аддитивность меры).

Если же вместо условия σ -аддитивности выполняется следующее более слабое условие:

если
$$A = \coprod_{n=1}^{N} A_{n}$$
 $(A, A_{n} \in S, N \in \square)$, то $\mu(A) = \sum_{n=1}^{N} \mu(A_{n})$,

то μ называется конечно-аддитивной мерой.

Теорема 1 (свойства мер). *Мера* μ на алгебре $A \subset P(X)$ обладает следующими свойствами:

1)
$$\sigma$$
 -полуаддитивность : если B_n , $\bigcup_{n=1}^{\infty} B_n \in A$, то $\mu \left(\bigcup_{n=1}^{\infty} B_n\right) \leq \sum_{n=1}^{\infty} \mu(B_n)$;

2) непрерывность снизу:

$$B, B_n \in A, B_n \uparrow B \Rightarrow \mu(B) = \lim_{n \to \infty} \mu(B_n);$$

3) непрерывность сверху:

$$B, B_n \in A, B_n \downarrow B, \mu(B_1) < \infty \Longrightarrow \mu(B) = \lim_{n \to \infty} \mu(B_n).$$

Определение 2. Пусть $F: \Box \to \Box$ — неубывающая функция. *Мера Лебега-Стилтьеса* m_F определяется на полуалгебре стрелок равенством $m_F([a,b)) = F(b) - F(a), m_F((-\infty,b)) = F(b) - F(-\infty).$

При этом F называется функцией распределения меры m_F (или производящей функцией).

Определение 3. При F(x) = x мера m_F называется *мерой Лебега* на прямой и обозначается m.

Теорема 2. Мера Лебега-Стилтьеса $m_{_F}$ σ -аддитивна тогда и только тогда, когда ее функция распределения F непрерывна слева.

2.1 Пусть μ – конечная мера, определенная на алгебре **A** подмножеств множества X; $E, F, G \in \mathbf{A}$. Докажите следующие соотношения:

$$\mu(\emptyset) = 0$$
.

Вариант 2.

$$\mu(E \setminus F) = \mu(E) - \mu(E \cap F)$$
.

Вариант 3.

$$E \supset F \Rightarrow \mu(E \setminus F) = \mu(E) - \mu(F)$$
.

Вариант 4.

$$E \subset F \Rightarrow \mu(E) \leq \mu(F)$$
.

Вариант 5.

$$\mu(E \cup F) \le \mu(E) + \mu(F)$$
.

Вариант 6.

$$\mu(E) > \frac{1}{2}\mu(X), \, \mu(F) > \frac{1}{2}\mu(X) \Longrightarrow E \cap F \neq \emptyset.$$

Вариант 7.

$$\mu(E \cup F \cup G) = \mu(E) + \mu(F) + \mu(G) - \mu(E \cap F) - \mu(E \cap G) - \mu(G \cap F) + \mu(E \cap F \cap G).$$

Вариант 8.

$$\mu(E \cup (F \cap G)) = \mu(E) + \mu(G \cap F) - \mu(E \cap G \cap F).$$

Вариант 9.

$$E \supset F \Rightarrow \mu(E \square F) = \mu(E) - \mu(F)$$
.

Вариант 10.

$$\mu(E \square F) = \mu(E) + \mu(F) - 2\mu(E \cap F)$$
.

Вариант 11. Если
$$\mu(A_n) = 0$$
, то $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$ $(A_n, \bigcup_{n=1}^{\infty} A_n \in A)$.

Bариант 12. Если $E \subset F$, $\mu(F) = 0$ и множество E измеримо, то $\mu(E) = 0$.

2.2 Пусть $X = \square$, $S = \{[a;b) \subset X\}$ — полуалгебра стрелок. Рассмотрим функцию $m_F([a;b)) = F(b) - F(a)$. При каких значениях параметра α эта формула задает: а) конечно-аддитивную меру; б) σ -аддитивную меру? Если мера не является σ -аддитивной, то ука-

зать множество $A \in S$ и его разбиение $A = \coprod_{k=1}^{\infty} A_k$, $A_k \in S$, такое, что

Таблица 2.1

Вариант	F	Вариант	F
1	$F(t) = \begin{cases} 0, t < 0, \\ \alpha, t = 0, \\ e', t > 0 \end{cases}$	7	$F(t) = \begin{cases} -5, t < 2, \\ \alpha + 7, t = 2, \\ 5, t > 2 \end{cases}$
2	$F(t) = \begin{cases} e^{t}, t < 1, \\ \alpha, t = 1, \\ t + 2, t > 1 \end{cases}$	8	$F(t) = \begin{cases} t, t < 3, \\ \alpha, t = 3, \\ 5, t > 3 \end{cases}$
3	$F(t) = \begin{cases} 0, t < 0, \\ \alpha + 2, t = 0, \\ 1, t > 0 \end{cases}$	9	$F(t) = \begin{cases} t, t < 0, \\ \alpha, t = 0, \\ 2, t > 0 \end{cases}$
4	$F(t) = \begin{cases} 0, t < 10, \\ \alpha + 2, t = 10, \\ 1, t > 10 \end{cases}$	10	$F(t) = \begin{cases} t, t < 5, \\ \alpha, t = 5, \\ 7, t > 5 \end{cases}$
5	$F(t) = \begin{cases} e^{t}, t < -1, \\ \alpha, t = -1, \\ t + 3, t > -1 \end{cases}$	11	$F(t) = \begin{cases} -7, t < 4, \\ \alpha + 7, t = 4, \\ 5, t > 4 \end{cases}$
6	$F(t) = \begin{cases} t - 1, t < 1, \\ \alpha, t = 1, \\ t + 3, t > 1 \end{cases}$	12	$F(t) = \begin{cases} -1, t < 0, \\ \alpha, t = 0, \\ t^2, t > 0 \end{cases}$

2.3 Выяснить, является ли множество $A \subset [0;1]$ измеримым и найти его лебегову меру, если $A = \big\{ x \in \Box \mid f(x) \in \Box \big\}$ (таблица 2.2).

Таблица 2.2

Вариант	F	Вариант	F
1	$\sin 2x$	7	tg x
2	ctg x	8	$\sec x$
3	cosec x	9	tg3x
4	$\sin x$	10	tg ² x
5	$\operatorname{ctg}^2 x$	11	$\sec^2 x$
6	$ \sin x $	12	$\cos^3 x$

Измеримые функции. Интеграл Лебега

Пусть (X, B, μ) – пространство с мерой.

Определение 1. Функция $f: X \to \square$ называется μ -измеримой (измеримой, если ясно, о какой мере идет речь), если $\forall c \in \square$ множество $X(f < c) := \{x \in X : f(x) < c\} \in \mathbf{B}$,

то есть является измеримым.

Семейство всех измеримых на X функций образует алгебру относительно поточечных операций сложения и умножения функций, а также умножения функции на число.

Определение 2. Функция $\phi: X \to \square$ называется *простой*, если она измерима и множество ее значений конечно.

Простые функции образуют алгебру относительно поточечных операций сложения и умножения функций, а также умножения функции на число.

Важным примером простой функции является *индикатор множества* $A \in B$ (*характеристическая функция* множества A), определяемый равенством

$$\chi_{A}(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

Каждая простая функция единственным образом может быть представлена в виде

$$\varphi(x) = \sum_{i=1}^n a_i \chi_{A_i}(x),$$

где числа a_i попарно различны, $A_i \in B, X = \coprod_{i=1}^n A_i$. Это представление называется *каноническим*.

Мы определим интеграл Лебега в три этапа.

Определение 3. Пусть φ — неотрицательная простая функция на X с каноническим представлением

$$\varphi = \sum_{i=1}^n a_i \chi_{\dot{\mathbf{R}}_i}.$$

Интеграл от функции φ определяется равенством

$$\int_{X} \varphi(x) d\mu(x) = \sum_{i=1}^{n} a_i \mu(A_i).$$

Определение 4. Пусть f — неотрицательная измеримая функция на X . *Интеграл от функции f* определяется равенством

$$\int_X f d\mu = \lim_{n \to \infty} \int_X \varphi_n d\mu,$$

где φ_n — последовательность неотрицательных простых функций, которая не убывая сходится к f.

Возможны и другие (равносильные) определения (например, [2]).

Определение 5. Пусть f — измеримая функция на X, f^+ и f^- — ее положительная и отрицательная части соответственно. Интеграл от функции f определяется равенством

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu,$$

при условии, что интегралы в правой части существуют и конечны. При этом функция f называется интегрируемой.

Интеграл Лебега функции f по множеству $E \in \mathbf{B}$ определяется равенством

$$\int_E f d\mu = \int_X f \chi_E d\mu.$$

Теорема 1 (о сравнении интеграла Лебега с собственным интегралом Римана). *Если функция* $f:[a;b] \to \square$ *интегрируема по Риману, то* $f \in L_1[a;b]$ *и*

$$\int_{a}^{b} f(x)dx = \int_{[a;b]} f(x)dm(x).$$

Теорема 2 (критерий Лебега интегрируемости по Риману). Функция $f:[a;b] \to \square$ интегрируема по Риману тогда и только тогда, когда она ограничена, и мера множества ее точек разрыва равна нулю.

3.1 Докажите, что функция $\varphi = \sum_{n=1}^4 n \chi_{\dot{R}_n}$ является простой, а затем, пользуясь определением интеграла от простой функции, вычислите $\int_{[0:2]} \varphi(t) dm(t)$ (таблица 3.1).

Таблица 3.1

Вариант	A_n	Вариант	A_n
1	$\left[1;1+\frac{1}{n}\right]$	7	$\left[2-\frac{1}{n};2\right]$
2	$\left[1-\frac{1}{n};1\right]$	8	$\left[1-\frac{1}{n};2\right]$
3	$\left[0;\frac{1}{n}\right]$	9	$\left[\frac{2}{n};2\right]$
4	$\left[0;1+\frac{1}{n}\right]$	10	$\left[0;2-\frac{1}{n}\right]$
5	$\left[\frac{1}{n};2\right]$	11	$\left[\frac{1}{n};1\right]$
6	$\left[0;2-\frac{1}{n}\right]$	12	$\left[\frac{1}{n};2\right]$

- **3.2** Для функции $f:[a;b] \to \square$ (таблица 3.2):
- а) выяснить, является ли f ограниченной;
- б) найти меру множества точек разрыва;
- в) определить, существует ли от нее собственный или несобственный интеграл Римана;
 - Γ) выяснить, измерима ли f;
 - д) найти интеграл Лебега $\int\limits_{[a;b]} f(t)dt$, если он существует.

Таблица 3.2

Вариант	а	b	f(t)
1	2	3	4
1	-3	2	$\begin{cases} \frac{1}{\sqrt[3]{3+t}}, t \in [-3;1] \setminus \square, \\ t^2+1, t \in [1;2] \cup ([-3;1] \cap \square) \end{cases}$
2	0	1	$\begin{cases} \frac{1}{2t - \sqrt{2}}, t \in [0;1] \cap \square, \\ e^t, t \in (0;1) \setminus \square \end{cases}$

Окончание таблицы 3.2

1	2	3	4
3	- 1/e	e	$\begin{cases} \frac{1}{t+2}, t \in [-1/e; e] \setminus \Box, \\ arctg2t, t \in [-1/e; e] \cap \Box \end{cases}$
4	-1	1	$\begin{cases} \frac{1}{t+2}, t \in [-1;1] \setminus \square, \\ tg2t, t \in [-1;1] \cap \square \end{cases}$
5	1	π	$\begin{cases} \sin t^{3}, t \in [1; \pi] \setminus \square, \\ \frac{1}{t+2}, t \in [1; \pi] \cap \square \end{cases}$
6	0	2	$\begin{cases} \sin t, t \in [0;2] \setminus \Box, \\ \cos t^2, t \in [0;2] \cap \Box \end{cases}$
7	1	2	$\begin{cases} \frac{1}{t-5}, t \in [1;2] \setminus \Box, \\ tgt, t \in [1;2] \cap \Box \end{cases}$
8	0	1	$\begin{cases} \frac{1}{2t-1}, t \in [0;1] \cap \square, \\ e^{4t}, t \in (0;1) \setminus \square \end{cases}$
9	1	π	$\begin{cases} \sin t - 1, t \in [1; \pi] \setminus \Box, \\ \frac{1}{t+2}, t \in [1; \pi] \cap \Box \end{cases}$
10	-1	1	$\begin{cases} \frac{1}{t-3}, t \in [-1;1] \setminus \square, \\ ctg2t, t \in [-1;1] \cap \square \end{cases}$
11	0	2	$\begin{cases} \sin\left(\frac{t}{2}\right), t \in [0;2] \setminus \square, \\ \cos t^2, t \in [0,2] \cap \square \end{cases}$
12	-1	1	$\begin{cases} \frac{1}{t-3}, t \in [-1;1] \cap \Box, \\ \ln t , t \in [-1;1] \setminus \Box \end{cases}$

3.3 Доказать существование и вычислить $\int_A f \, dm_2$, где $A = [0;1] \times [0;1], \ m_2 - \text{плоская мера Лебега (таблица 3.3)}.$

Таблица 3.3

Вариант	f	Вариант	f
1	$\begin{cases} e^{xy}, x + y \in \Box, \\ x + y, x + y \notin \Box \end{cases}$	7	$\begin{cases} \frac{y}{x}, \frac{1}{y} \in \Box, \\ x^2 - y, \frac{1}{y} \notin \Box \end{cases}$
2	$\begin{cases} 1, x - y \in \square , \\ xy^3, x - y \notin \square \end{cases}$	8	$\begin{cases} \frac{x}{\sin y}, x \in \Box, \\ e^{x-y}, x \notin \Box \end{cases}$
3	$\begin{cases} x^{y}, y \in \square, \\ x - y, y \notin \square \end{cases}$	9	$\begin{cases} e^{x^2}, \frac{x}{y} \in \square, \\ \frac{1}{x^2 + 1}, \frac{x}{y} \notin \square \end{cases}$
4	$\begin{cases} e^{xy}, x - y \in \Box, \\ x + y, x - y \notin \Box \end{cases}$	10	$\begin{cases} \frac{2y}{x}, \frac{1}{y} \in \Box, \\ x^2 + y, \frac{1}{y} \notin \Box \end{cases}$
5	$\begin{cases} 2, x - y \in \Box, \\ xy^4, x - y \notin \Box \end{cases}$	11	$\begin{cases} e^{x^3}, \frac{x}{y} \in \square, \\ \frac{1}{x^2 + 4}, \frac{x}{y} \notin \square \end{cases}$
6	$\begin{cases} \sin yx, y \in \square, \\ 2x - y, y \notin \square \end{cases}$	12	$\begin{cases} x - y, x + y \in \square, \\ xy^4, x + y \notin \square \end{cases}$

Интеграл Лебега-Стилтьеса

Определение 1. Пусть функция $F:[a;b] \to \square$ не убывает и непрерывна слева, m_F — мера Лебега-Стилтьеса с функцией распределения F. Тогда интеграл $\int_A f dm_F$, $(A \subset [a;b]$ — борелевское множество) называется *интегралом Лебега-Стилтьеса* функции f и обозначается

$$\int_{A} f dF$$
.

При этом F называют *интегрирующей функцией*, а f – подынтегральной.

Понятие интеграла Лебега-Стилтьеса обобщается на более широкий класс интегрирующих функций.

Определение 2. Пусть F — функция на [a;b]. Для разбиения $P = \{a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\}$ отрезка [a;b] положим $S(P) = \sum_{k=1}^n |F(x_k) - F(x_{k-1})|$.

Функцию F будем называть функцией ограниченной вариации (или функцией c ограниченным полным изменением) на [a;b], если числа S(P) ограничены в совокупности. В этом случае число

$$V_a^b(F) = \sup_P S(P)$$

называется полной вариацией (или полным изменением) функции F на отрезке [a;b].

Класс всех функций с ограниченным полным изменением на [a;b] обозначается BV[a;b]. Это векторное пространство относительно обычных (поточечных) операций над функциями.

Известно, что BV[a;b] совпадает с классом функций, представимых в виде $F = F_1 - F_2$, где функции F_i определены на отрезке [a;b] и не убывают. Это представление называется разложением Жордана функции F.

Определение 3. Пусть F –функция на [a;b] ограниченной вариации с разложением Жордана $F = F_1 - F_2$. Интеграл Лебега-Стилтьеса функции f с интегрирующей функцией F определяется следующим образом:

$$\int_{[a;b)} f dF = \int_{[a;b)} f dF_1 - \int_{[a;b)} f dF_2.$$

4.1 Пусть $X = \square$, и

$$F(t) = \begin{cases} 0, t \le 0, \\ 1, 0 < t \le 2, \\ 5, 2 < t \le 3, \\ 7, t > 3. \end{cases}$$

Вычислить $\int_{\mathbb{R}} f(x) dF(x)$ (таблица 4.1).

Таблица 4.1

Вариант	f(t)	Вариант	f(t)
1	e^x	7	$\frac{\cos x}{\left x\right ^5 + 1}$
2	$\frac{e^x}{x^2+1}$	8	$\sin \sqrt{ x }$
3	$\frac{\sin x}{ x +1}$	9	x^4
4	$x^2 + e^x$	10	x^3
5	$x^2 + 3x + 4$	11	$\frac{\cos x}{ x +1}$
6	$\cos\left(\frac{\pi}{2}x\right)$	12	$\sin \pi x$

- **4.2** Проверить, что заданная на отрезке [a;b] функция g не убывает и непрерывна слева в каждой точке. Рассмотреть меру Лебега-Стилтьеса m_g , порожденную функцией g. Найти:
 - а) меру каждого одноточечного множества;
 - б) меру канторова множества K ;
 - в) меру множества рациональных чисел, лежащих на отрезке [a;b];
 - г) интеграл $\int\limits_{[a;b)} f \, dm_g$, если он существует (таблица 4.2).

Таблица 4.2

Вариант	а	b	g(t)	f(t)
1	1	2	$\begin{cases} t^2, t \in [1; 3\backslash 2], \\ t+2, t \in (3\backslash 2; 2] \end{cases}$	$\begin{cases} 2^t, t \in [1;2) \setminus \Box ,\\ \sin t, t \in [1;2) \cap \Box \end{cases}$
2	-3π	π	$\begin{cases} 2t+1, t \in [-3\pi; 1], \\ t+4, t \in (1; \pi] \end{cases}$	$\begin{cases} (\cos t)2^{\sin t}, t \in [-3\pi;\pi) \setminus \Box, \\ t^2, t \in [-3\pi;\pi) \cap \Box \end{cases}$
3	0	1	$\begin{cases} t^2, t \in [0; 1 \setminus 2], \\ t+1, t \in (1 \setminus 2; 1] \end{cases}$	$\begin{cases} 2^{t}, t \in [0;1) \cap \Box, \\ \arccos t, t \in [0;1) \setminus \Box \end{cases}$
4	0	e	$\begin{cases} 2 + 3t^3, t \in [0;1], \\ t + 6, t \in (1;e] \end{cases}$	$\begin{cases} arctgt, t \in [0; e) \cap \Box , \\ \left \ln t \right , t \in [0; e) \setminus \Box \end{cases}$
5	-1	1	$\begin{cases} t^2, t \in [1; 3 \mid 2], \\ t + 2, t \in (3 \mid 2; 2] \end{cases}$	$\begin{cases} e^{t^2}, t \in [-1;1) \cap \square, \\ \frac{1}{t+2}, t \in [-1;1) \setminus \square \end{cases}$
6	0	e	$\begin{cases} t+2, t \in [0; 3 \setminus 2], \\ 5+lnt, t \in (3 \setminus 2; e] \end{cases}$	$\begin{cases} (\sin t)^3, t \in [0; e) \cap \Box, \\ t \ln t, t \in [0; e) \setminus \Box \end{cases}$
7	0	2	$\begin{cases} t^3, t \in [0; 3 \setminus 2], \\ t - 2, t \in (3 \setminus 2; 2] \end{cases}$	$\begin{cases} 3^t, t \in [0;2) \setminus \Box , \\ \sin t, t \in [0;2) \cap \Box \end{cases}$
8	$-\pi$	π	$\begin{cases} t-1, t \in [-\pi; 1], \\ t+7, t \in (1; \pi] \end{cases}$	$\begin{cases} (\cos t)4^{\sin t}, t \in [-\pi;\pi) \setminus \Box, \\ -7t^2, t \in [-\pi;\pi) \cap \Box \end{cases}$
9	0	2	$\begin{cases} t^3, t \in [0; 1 \setminus 2], \\ t+1, t \in (1 \setminus 2; 2] \end{cases}$	$\begin{cases} 5^t, t \in [0;2) \cap \Box, \\ \arcsin t, t \in [0;2) \setminus \Box \end{cases}$
10	0	e^2	$\begin{cases} 1 + 3t^3, t \in [0;1], \\ t + 9, t \in (1; e^2] \end{cases}$	$\begin{cases} arcctgt, t \in [0; e^2) \cap \Box, \\ \left \ln t \right + 2, t \in [0; e^2) \setminus \Box \end{cases}$
11	0	3	$\begin{cases} e^{t}, t \in [0; 2], \\ t + 10, t \in (2; 3] \end{cases}$	$\begin{cases} \frac{t+2}{t^2+1}, t \in [0;3) \cap \Box, \\ t, t \in [0;3) \setminus \Box \end{cases}$
12	-1	1	$\begin{cases} \sin\left(\frac{\pi t}{2}\right), t \in [-1; 0], \\ t + 2, t \in (0; 1] \end{cases}$	$\begin{cases} (arctgt)^2, t \in [-1;1) \cap \Box, \\ t, t \in [-1;1) \setminus \Box \end{cases}$

Литература

- 1 Антоневич, А. Б. Функциональный анализ и интегральные уравнения / А. Б. Антоневич, Я. В. Радыно. Мн. : БГУ, 2003. 430 с.
- 2 Колмогоров, А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин. М.: Наука, 1972. 496 с.
- 3 Функциональный анализ и интегральные уравнения: лабораторный практикум / А. Б. Антоневич [и др.]. Мн. : БГУ, 2003. 179 с.
- 4 Кириллов, А. А. Теоремы и задачи функционального анализа / А. А. Кириллов, А. Д. Гвишиани. М.: Наука, 1979. 381 с.

Учебное издание

МИРОТИН Адольф Рувимович **КУЛЬБАКОВА** Жанна Николаевна **ПАРУКЕВИЧ** Ирина Викторовна

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ: МЕРА И ИНТЕГРАЛ ЛЕБЕГА

Сборник задач для студентов специальности 1-31 03 01 02 — «Математика (научно-педагогическая деятельность)»

> Редактор В. И. Шкредова Корректор В. В. Калугина

Подписано в печать 22.02.2012. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,1. Уч.-изд. л. 2,3. Тираж 100 экз. Заказ № 137.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». ЛИ № 02330/0549481 от 14.05.2009. Ул. Советская, 104, 246019, г. Гомель.