Data Mining:

Concepts and Techniques

Pattern Discovery (3rd ed.)
Classification
Clustering

— Chapter 6 —

Slides Courtesy of Textbook

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods
- Summary

Motivation

Pattern: (Regularity)

Entity: a set of attributes

- Useful information
 - Association
 - The more items and interaction, the more information
- Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to a new drug?
 - Can we automatically classify web documents by their regular patterns?

Method: Frequent Pattern Analysis

Assiciation

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Problem definition beginning of data mining
 - First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering

Market-Basket data

Basic Concepts: Frequent Patterns

Input: data = {Transactions}

No Brand, price and quantity

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Let minsup = 50%

Freq. Pat.:

{Beer}:3, {Nuts}:3, {Diaper}:4,

{Eggs}:3, {Beer, Diaper}:3

Find all itemsets X with min support

- Transactions: each is an itemset.
- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$ {Beer, Nuts} • (absolute) support, or, support count of
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X S({Beer}) = 3
- (relative) support of X: Fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold (count or fraction)

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Let minsup = 50%, minconf = 50%

Association rules: (many more!)

- Beer \rightarrow Diaper (60%, 100%)
- *Diaper* → *Beer* (60%, 75%)

P(X,Y)

Find all rules X \rightarrow Y with minimum support and confidence $S(\{B,D\})>=3$

- support, s, probability that a transaction contains X ∪ Y
 - s=#T(X∪Y)/#T(Total)
- confidence, c, conditional probability that a transaction having X also contains Y
 - c=#T(X∪Y)/#T(X) S(B and D) / S(B)
- A rule X→Y is an association rule if s(X→Y) is no less than minsup and c(X→Y) is no less than minconf

P(YIX)

Closed Patterns and Max Patterns

- Too many patterns, information can be redundant
 - A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{1} + \binom{100}{2} + ... + \binom{1}{100} \binom{0}{0} = 0$ $2^{100} - 1 = 1.27*10^{30}$ sub-patterns!

any subset of any size 减的1是0 itemset

- Consider longer patterns
 - More items included, more information (few patterns)
 - Solution: Mine closed patterns and max patterns

Closed Patterns and Max Patterns

{B}: 3 Not closed {B,D}: 3 Closed, so this pattern is interesting {B,D,C}:1

• An itemset X is closed if X is *frequent* and there exists *no super*pattern X' > X that has the same support as X.

• An itemset X is a max pattern if X is frequent and there exists no super-pattern X' > X that is also frequent (i.e., >= minsup).

Max implies closed, but not versa vice

Closed Patterns and Max Patterns

- Closed patterns: support(super(X)) < support(X)
- Max patterns: support(super(X)) < minsup
- Example: Suppose a DB contains only two transactions
 - $<a_1, ..., a_{100}>, <a_1, ..., a_{50}>$ (Let minsup = 1)
- What is the set of closed itemset?
 - $\{a_1, ..., a_{100}\}$: 1, $\{a_1, ..., a_{50}\}$: 2
- What is the set of max pattern?
 - {a₁, ..., a₁₀₀}: 1
- What is the set of all patterns?
 - $\{a_1\}$: 2, ..., $\{a_1, a_2\}$: 2, ..., $\{a_1, a_{51}\}$: 1, ..., $\{a_1, a_2, ..., a_{100}\}$: 1
 - A big number: 2¹⁰⁰ 1? Why?

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods
- Summary

Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

• FPGrowth: A Frequent Pattern-Growth Approach

Mining Closed patterns and Max patterns

Frequent Pattern Mining Motivations

- Nature of frequent pattern mining
 - Count the number of occurrences (frequency)
 - Compare to a minimum support threshold
- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}

Apriori: A Candidate Generation & Test Approach

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Procedures:
 - 1. Initially, scan DB once to get frequent 1-itemset
 - 2. Generate length (k+1) candidate itemsets from length k frequent itemsets (all possible combinations under apriori)
 - 3. Test the candidates against DB
 - 4. Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_I 1st scan

Itemset	sup
{A}	2 /
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
)	{A}	2
	{B}	3
•	{C}	3
	{E}	3
	-	

 C_2 [Remset | Sup | {A, B} | 1 | {A, C} | 2 | {A, E} | 1 | {B, C} | 2 | {B, E} | 3 | {C, E} | 2

 C_2 $2^{\text{nd}} \operatorname{scan}$

 L_1

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 **Itemset** {B, C, E}

3rd scan

L_3	Itemset	sup
→	{B, C, E}	2

Finally, Generating AR From Frequent

$$S\{B,C,E\}>=min-sup$$

- For each frequent itemset L, generate all X, Y such that XUY = L (and X and Y non-overlappin).
- Check confidence $C(X \rightarrow Y) = Support(XUY = L)/Support(X) >= minsup$
- If so, output X → Y. B -> CE BC -> E C -> BE BE -> C E -> BC CE -> B

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
L_k: Frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k != \varnothing; k++) do begin
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
    increment the count of all candidates in C_{k+1} that are
    contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
  end
return \bigcup_k L_k;
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L_3 ={abc, abd, acd, ace, bcd, aef}
 - Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace

- Agree on k-1 items
- Only join with alphabetically later itemsets

- Pruning:
 - acde is removed because ade is not in L_3
- $C_4 = \{abcd\}$

Further Improvement of Apriori

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

• FPGrowth: A Frequent Pattern-Growth Approach

Mining Closed patterns and Max patterns

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Expensive candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - Build a tree data structure to represent the transaction database
 - Do counting on the tree representation

Construct FP-tree from a Transaction Database

TID	Items bought	(oi
100	$\{f, a, c, d, g, i, m\}$, <i>p</i> }
200	$\{a, b, c, f, l, m, o\}$	}
300	$\{b, f, h, j, o, w\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m\}$, n

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

FP-tree Construction Example

<u>TID</u>	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

- FP-tree is a compression of the original database
 - Omit lease frequent items
 - Share prefixes
- Why order by frequency?
 - More likely to share nodes (more compression)

Counting Frequent Patterns on FP-tree

<u>TID</u>	Items bought ((ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

Head	ler Table	
<u>Item</u>	frequency	head
f	4	
c	4	
$\mid a \mid$	3	
$\mid b \mid$	3	
$\mid m \mid$	3	
p	3	

F-list = f-c-a-b-m-p

Divide and Conquer

- Partition frequent patterns into subsets according to F-list
- Patterns containing p
- Patterns having m but not p
- •
- Patterns having c but not a,b,m,p
- Pattern f
 Completeness and no redundancy

Find Conditional Pattern-base

- Start at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern-base

Conditional pattern bases

<u>item</u>	cond. pattern base
c	<i>f</i> :3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-base to Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3) f:3

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two parts

Implementation of FP-Growth

- Step 1: FP-tree construction
 - Scan the database *D* once. Collect the set of frequent items, and sort it in support count descending order as *L*. Create the root of *FP_tree* and label its item-name as "null".
 - For each transaction T_i in D, select and sort T_i to the order of L. Let the sorted frequent item list in Trans be [p|P], where p is the first element and P is the remaining list. Call $insert_tree([p|P], FP_tree)$

```
Procedure insert_tree([p|P], T)

if T has a child N such that N.item-name = p.item-name then
    N.count++;

else
    create a new node N;
    N.count=1; T.child->N; p.node_link->N;

if P is nonempty then
    call insert_tree(P, N);
See to
```

See textbook 6.2.4 Figure 6.9

Implementation of FP-Growth

```
    Step 2: Mining FP-tree. Call FP_growth(FP_tree, null)

procedure FP\_growth(Tree, \alpha)
  if Tree contains a single path P then
   for each combination (denoted as \theta) of the nodes in the path P
     generate pattern \theta \cup \alpha with support_count = minimum support_count
 of nodes in β;
  else for each a_i in the header of Tree {
     generate pattern \theta = a_i \cup \alpha with support_count = a_i.support_count;
       construct \theta's conditional pattern base
     construct \theta's conditional FP tree Tree<sub>\theta</sub>;
     if Tree_{\beta} is nonempty then
       call FP_growth(Tree_{\beta}, \beta); }
```

FP-Growth Summery

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its subpaths, each of which is a frequent pattern

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count nodelinks and the count field)

FP-Growth vs. Apriori: Scalability With the Support Threshold

Further Improvement of FP-Growth

- What about if FP-tree cannot fit in memory?
 - DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques

Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

• FPGrowth: A Frequent Pattern-Growth Approach

Mining Closed patterns and Max patterns

Why Mining Closed and Max Patterns?

- Mining frequent itemsets often generates a large number of frequent itemsets
- Mining frequent closed and max itemsets has the same power as mining the complete set of frequent itemsets, but it substantially reduces redundant rules to be generated
 - Increase both efficiency and effectiveness

min_sup=1 min_conf=50%

2¹⁰⁰-1 frequent itemsets

$$a_1$$
, ..., a_{100} , a_1a_2 , ..., $a_{99}a_{100}$, ..., a_1a_2 ... a_{100}

2 frequent closed itemsets
a₁a₂...a₁₀₀, a₁a₂...a₅₀
1 frequent max itemsets
a₁a₂...a₁₀₀

CLOSET: Mining Frequent Closed Patterns

Transaction ID	Items
10	a, c, d, e, f
20	a, b, e
30	c, e, f
40	a, c, d, f
50	c, e, f

Step 1. Generate frequent item list(f_list)

min_sup =2 List of frequent items in support descending order f_list=<c:4, e:4, f:4, a:3, d:2>

CLOSET: Mining Frequent Closed Patterns

- All possible frequent closed patterns can be divided into 5 non-overlapping search spaces based on f_list, i.e. x-conditional database(TDB|x)
 - TDB|_d: The ones containing d
 - TDB|_a: The ones containing a but no d
 - TDB|_f: The ones containing f but no a nor d
 - TDB|_e: The ones containing e but no f, a nor d
 - TDB|_c: The ones containing only c

Conditional DB	Itemsets	
TDB _d	cefa, cfa	
TDB _a	cef, e, cf	
TDB _f	ce:3, c	
TDB _e	c:3	
TDB _c	{}	

Step 2. Divide Search Space

f_list=<c:4, e:4, f:4, a:3, d:2>

Find Frequent Closed Patterns Containing d

Find Frequent Closed Patterns Containing a but No d

Frequent closed patterns **TDB** containing a but no d can be cefad further partitioned into subsets ea f_list: < c:4, e:4, f:4, a:3, d:2> Ones having af but no d cef cfad Ones having ae but no d nor f cef Ones having ac but no d, e nor f $TDB|_{d}$ (d:2) $TDB|_a$ (a:3) $TDB|_{f}$ (f:4) $TDB|_{e}$ (e:4) cefa cef ce:3 c:3 cfa F.C.P.: e:4 F.C.P.: cf:4, cef:3 F.C.I.: cfad:2 F.C.P.: a:3 sup(fa)=sup(ca)=sup(cfad) $TDB|_{ea}$ (ea:2) No FCP having fa or ca but no d

F.C.P.: ea:2

Find Frequent Closed Patterns Containing f but No a Nor d

Find Frequent Closed Patterns Containing e but No f, a Nor d

Find Frequent Closed Patterns Containing Only c

- sup(c)=sup(cf), c is not a closed itemset
- In summary, the set of frequent closed itemsets is {acdf:2, a:3, ae:2,

```
cf:4, cef:3, e:4}
```

MaxMiner: Mining Max patterns

• Intuition: generate the complete set-enumeration tree one level at a time, while prune if applicable.

MaxMiner: Mining Max patterns

- Initially, generate one node N= $\Phi(ABCD)$, where head of N is $h(N)=\Phi$ and tail of N is $t(N)=\{A,B,C,D\}$.
- Consider expanding N,
 - If h(N)∪t(N) is frequent, do not expand N and prune the whole sub-tree.
 - Else: do local pruning. If for some i∈t(N), h(N)∪{i} is NOT frequent, remove i from t(N) before expanding N:
- Apply global pruning: When a max pattern is identified, prune all nodes across sub-tree where $h(N) \cup t(N)$ is a sub-set of it

MaxMiner: Mining Max patterns

- ■Initially, generate one node $N=\Phi(ABCD)$, where head of N is $h(N)=\Phi$ and tail of N is $t(N)=\{A,B,C,D\}$.
- Check the frequency of ABCD and AB, AC, AD.
 - ■If ABCD is frequent, prune the whole sub-tree.
 - ■If AC is NOT frequent, remove C from the parenthesis before expanding.
- When a max pattern is identified (e.g. ABCD), prune all nodes (e.g. A, B, C and D) where $h(N) \cup t(N)$ is a sub-set of it.

Example

Tid	Items	
10	A,B,C,D,E	
20	B,C,D,E,	
30	A,C,D,F	

Min_sup=2

Max patterns:

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: ~10-40
 - What is the chance this particular set of 10 products to be frequent 10^3 times in 10^9 transactions?

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods

Summary

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

Are *lift* and χ^2 Good Measures of Correlation?

- "Buy walnuts ⇒ buy milk
 [1%, 80%]" is misleading if
 85% of customers buy milk
- Support and confidence are not good to indicate correlations
- Over 20 interestingness measures have been proposed (see Tan, Kumar, Sritastava @KDD'02)

symbol	measure	range	formula
		-11	P(A,B)-P(A)P(B)
ϕ	ϕ -coefficient	-11	$\sqrt{P(A)P(B)(1-P(A))(1-P(B))}$
Q	Yule's Q	-11	$P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)$
	1 410 5 %	1	$P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)$
Y	Yule's Y	-11	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
,			$ \begin{array}{c} \sqrt{P(A,B)P(A,B)} + \sqrt{P(A,B)P(A,B)} \\ P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B}) \end{array} $
k	Cohen's	-11	$1-P(A)P(B)-P(\overline{A})P(\overline{B})$
PS	Piatetsky-Shapiro's	$-0.25 \dots 0.25$	P(A,B) - P(A)P(B)
F	Certainty factor	-11	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
AV	added value	$-0.5 \dots 1$	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	$0 \dots 1$	$\frac{\sum_{j \max_{k}} P(A_{j}, B_{k}) + \sum_{k \max_{j}} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
9		0	
M	Mutual Information	$0 \dots 1$	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i) P(B_J)}}{\min(-\sum_{i} P(A_i) \log P(A_i) \log P(A_i), -\sum_{i} P(B_i) \log P(B_i) \log P(B_i))}$
J	J-Measure	$0 \dots 1$	$\min(-\mathcal{L}_i P(A_i) \log P(A_i) \log P(A_i), -\mathcal{L}_i P(B_i) \log P(B_i) \log P(B_i))$ $\max(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
	o measure	01	1 (<u>B)</u>
			$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$
G	Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
			$P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B}[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2] - P(A)^2 - P(\overline{A})^2)$
s	$\operatorname{support}$	$0 \dots 1$	P(A,B)
c	confidence	$0 \dots 1$	max(P(B A), P(A B))
L	Laplace	$0 \dots 1$	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
IS	Cosine	$0 \dots 1$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	1(T1)	0 1	$\sqrt{\frac{P(A)P(B)}{P(A,B)}}$
γ	coherence(Jaccard)		$\frac{P(A,B)}{P(A,B)}$ $\frac{P(A,B)}{P(A,B)}$
α	all_confidence	$0 \dots 1$	$\frac{1}{\max(P(A),P(B))}$
0	odds ratio	$0\ldots\infty$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \ldots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	$0\dots\infty$	$\frac{P(A,B)}{P(A)P(B)} \qquad \qquad - \qquad -$
S	Collective strength	$0 \dots \infty$	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$ $\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E}$
χ^2	χ^2	$0\ldots\infty$	$\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods
- Summary

Summary

- Basic concepts: association rules, support-confident framework, closed and max patterns
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
- Which patterns are interesting?
 - Pattern evaluation methods