Introduction to NumPy

NumPy stands for Numeric Python or Numerical Python

- · Fundamental package for scientific computing in Python
- · Provides efficient storage & mathematical operation for multi-dimensional data

Applicatoin of NumPy

Numpy is widely used in scientific works. Check out Ecosystem and Cast Studies at https://numpy.org/ (https://numpy.org/).

NumPy ndarray Structure

A fixed-size multidimensional array object efficient data storage.

Fixed Size

- Unlike Python lists which can grow dynamically
- · Changing the size of an ndarray will create a new array and delete the original.

Homogeneous Data Type

All elements must be of same data type

Why Not List?

- List is the most frequently used data type to work with collections in Python
 - Flexible to contain different data types
 - Easy to manipulate data stored in lists
- But...
 - Uses more memory to store data
 - Cumbersome in working with multi-dimensional data

Creating Array

Create array with 0 or 1 values.

Create array from existing list.

Out[4]: numpy.ndarray

Create a range of value, which is similiar to range() function.

Create an array with 5 points between 2 and 10 using linspace() function.

Basic Operations

Minus 1 from every element in array c. This is also known as **Broadcasting**.

Compare elements of same index in b and d. This is also known as **Vectorization**.

Maths Functions

Numpy provides a rich set of maths functions. Check out https://numpy.org/doc/stable/reference/routines.math.html). (https://numpy.org/doc/stable/reference/routines.math.html).

Random Numbers

The np.random.rand(n) function generates n number of random values uniformly distributed over [0,1).

- Generating of random numbers are much more efficient using Numpy.
- Use np.random.seed(0) to fix the seed value to 0 so that the randomly generated values are reproducible.

Numpy can also generate multidimensional random integers.

Reshape an Array

An idarray object can be reshape into other dimensions using either reshape() or resize().

- The reshape() method returns a ndarray of a modified shape
- The resize() method modifies the array itself

Indexing

A ndarray behaves like a list. You can access elements by their indexes. NdArray supports **negative index**.

For single array, indexing and slicing is similar to lists.

For multi-dimension array, individual element can be accessed by arr[row, col].

Slicing and View

Slicing can be done using arr[start:end, start:end].

	Second index					
		0	1	2	3	4
First index	0	88	19	46	74	94
	1	69	79	26	7	29
	2	21	45	12	80	72
	3	28	53	65	26	64
	4	71	96	34	61	52

View is a View

Slicing a Numpy array does NOT creates another array. It creates a view pointing to the original ndarray data.

Modification to the view affects original ndarray.