Statistics for High Dimensional Data (S4HDD) and CompStat Lab a.a. 2023/2024 (2nd edition)

Prof. Francesco Finazzi francesco.finazzi@unibg.it
Prof. Alessandro Fassò alessandro.fasso@unibg.it

Course structure

· 9 CFUs

- 3 CFUs on time series modelling (ex SMS2) (Prof. Fassò)
- 6 CFUs on space and space-time data modelling (Prof. Finazzi)
- Space-time modelling will be addressed late in the course

Lectures

- Theory
- · Coding (MATLAB)
- · Analysis of data sets
- · Scientific article discussion

Statistica SMS2 Statistical learning Modelling

Why this course

- To provide advanced statistical models/methods/tools that enable the extraction of useful information from temporal, spatial and spatio-temporal data sets (possibly large)...
- · ...in order to make decisions...
- ...following a statistical inference approach...
- ...thus, knowing the risk to make the wrong decision.

Prerequisites

- Statistical inference
 - Distributions
 - Estimators
 - Confidence intervals
 - Hypothesis testing
- · Simple and multiple regression
- Validation and cross-validation techniques
- Monte Carlo and bootstrap techniques
- · Calcolo numeric (6 CFU) Prof. Maggioni

Textbooks

- Time series analysis and its applications: with R examples, Robert H. Shumway, David S. Stoffer
- Model-based Geostatistics, Peter J. Diggle, Paulo J. Ribeiro
- Statistics for spatio-temporal data, Noel A. Cressie, Christopher K. Wikle
- Spatio-temporal statistics with R, Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie

Student evaluation

- Teamwork Groups of 1 or 2 students(?)
- You choose the data set to analyze
- The analysis is based on the models/methods seen during the course
- You can use R, MATLAB or Python
- The evaluation will be based on a report
- Each group will present in front of the class (in English)
- More details during the course...

Software

- MATLAB, R (and Python) are the most common environments used by researchers in space-time data analysis.
- Software for space-time data analysis is often open source (and not fully tested - use at your own risk!)
- · In this course:
 - R is used for time series data analysis
 - · MATLAB is used for space and space-time data analysis
- R and MATLAB are not fully interchangeable when it comes to "complex" statistical models and methods
- D-STEM (v2) will be the MATLAB software for space-time data analysis (download from Journal of Statistical Software)

Examples of spatio-temporal data sets

- COVID19 pandemic data sets (hospitalizations and casualties by country over time)
- Climate change data sets (satellite measurements of temperature, humidity, etc.)
- Air quality data sets (PM₁₀, PM₂₅, NOx etc. observed at monitoring stations)
- Smartphone-based real time detection of earthquakes (www.sismo.app)
- Internet data analytics (app/web visits by country/region over time)
- People mobility data (www.facebook.com/covid19mobility)
- Digital image/video analysis (tracking, object recognition, etc.)
- Ecology (point processes)
- In general, addressing interesting societal problems requires the analysis of space-time data sets

Why modelling spatio-temporal data

- For understanding the underlying data generation process
- For temporal, spatial and spatio-temporal prediction
 - Methods differ for continuous/discrete space and/or time
- For emulating complex phenomena (what is a model?)
- · For making decisions

Modelling steps

- Model proposal (which equation, which covariates, which random variables, which relations between variables)
- Model estimation (maximum likelihood, expectationmaximization algorithm)
- Model validation (k-fold cross-validation, leave-one-out validation)
- Model adoption (offline or online)
- Model update/improvement (when/if new data become available)

UNIVERSITÀ DEGLI STUDI DI BERGAMO UNI DI BERGAMO UNI DI BERGAMO UNIVERSITÀ DI DI BERGAMO UNIVERSITÀ DI DI BERGAMO UNIVERSITÀ DI BE

A first spatial model

$$y(s) = x(s)'\beta + \varepsilon(s)$$
 (1)

- y(s) is the observation at generic spatial location $s \in \mathbb{R}^2$ or $s \in \mathbb{S}^2$
- x(s) are spatial covariates (no missing data)
- β is a vector of parameters
- $\varepsilon(s)$ is the random error at spatial location s (e.g., $\varepsilon(s) \sim NID(0, \sigma_{\varepsilon}^2)$)
- R^2 is the 2D space (plane) while S^2 is the sphere embedded in R^3

Model complexity

- When dealing with spatio-temporal data sets model complexity is often an issue
- · Elements of model complexity
 - · Univariate, bivariate, multivariate models
 - Number of covariates (p>n problem)
 - Number of spatial and/or temporal points (big n problem)
 - · Dependences among variables
 - Space-time (non)separability
 - Latent variables/processes
 - Non Gaussianity

How to estimate the spatial model?

- As usual we need data
- For us a data set has this form:

$$\{(x_1(s_1), y_1(s_1)), \dots, (x_n(s_n), y_n(s_n))\}$$
$$x_i = (x_{i1}, \dots, x_{ip})', i = 1, \dots, n$$

Model residuals

$$e(s) = y(s) - x(s)'\widehat{\beta}$$

$$e(s) = y(s) - \widehat{y}(s)$$

- We check if residuals e(s) are IID which means:
 - Are residuls spatially uncorrelated?
 - Is the residul variance constant in space? (Homoscedasticity)

UNIVERSITÀ DEGLI STUDI DI BERGAMO del Informazione e della Produzione dell'informazione e della Produzione

Towards more complex models

- In general, residuals e(s) are spatially correlated
- Why? Because $x(s)'\beta$ cannot entirely capture the data variability
- This is similar to the case of serially/temporally correlated residuals in classic regression models $(x'\beta)$
- When this happens we might
 - Add covariates
 - Add transformations of covariates (polynomials)
 - Add interactions between covariates
- This may not be enough to have IID residuals

Towards more complex models

- What happens if we ignore the spatial correlation of residuals?
 - The model fitting capability is lower than it should be
 - Variance of estimators is wrong
 - Confidence intervals might have significance levels lower than their nominal levels
 - Spatial predictions are poor (especially in model validation)

Spatial model with latent variable

$$y(s) = x(s)'\beta + \alpha w(s) + \varepsilon(s)$$
 (2)

- y(s), $x(s)'\beta$ and $\varepsilon(s)$ are the usual terms of a regression model (see model 1 in previous slides)
- w(s) is a latent (non observed) random variable spatially correlated with unitary variance
- $corr(w(s), w(s')) = \rho(s, s'; \theta)$
- $\rho(s,s';\theta)$ is a bivariate function (on s and s') with unknown parameter vector θ
- α is a scale parameter to be estimated

Spatial model with latent variable

$$y(s) = x(s)'\beta + \alpha w(s) + \varepsilon(s) \quad (2)$$

- $w(s) \perp \varepsilon(s)$, or $cov(w(s), \varepsilon(s)) = 0$
- Conditionally on w(s), observed data $y_i(s_i)$ are realizations of mutually independent random variables Y_i with conditional mean $E(Y_i|w) = x_i(s_i)'\beta + \alpha w(s_i)$ and conditional variance σ_{ε}^2
- What is the difference between s_i and s?

Spatial model with latent variable

$$y(s) = x(s)'\beta + \alpha w(s) + \varepsilon(s)$$
 (2)

- w(s) is spatially varying (in general each location s has a different w(s) value)
- Is $\varepsilon(s) \equiv 0$ (and e(s) = 0) if w(s) can be chosen to explain y(s) at each spatial location?
- How overfitting is avoided?
- What is the role of spatial correlation?

Spatial correlation function

- Correlation function $\rho(s, s'; \theta)$ can be any postive-definite function
- This condition imposes that the linear combination $\sum_{i=1}^{m} a_i w(s_i)$ has positive variance
- θ is a vactor of unknown parameters (can be of any size)

Examples of spatial correlation functions

- $\rho(s, s'; \theta)$ depends on spatial coordinates s and s'
- Such a function describe the most «flexible» spatial correlation
- In 1D, the correlation between w(0) and w(1) would be different from the correlation between w(1) and w(2)
- In most cases, $\rho(s,s';\theta) = \rho(\|s-s'\|;\theta) = \rho(u;\theta)$ where $\| \ \|$ is the distance (Euclidean or geodetic) between s and s'.
- In this case the spatial correlation only depends on the distance u and not on the coordinates.

Exponential spatial correlation function

• Exponential spatial correlation function

$$\rho(u;\theta) = exp(-u/\theta)$$

- $\theta > 0$ is a scalar value
- Simple but not flexible
- · Not always suitable to model spatial correlation

UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO

Matérn spatial correlation function

Matérn correlation function:

$$\rho(u;\theta) = \{2^{\kappa-1}\Gamma(\kappa)\}^{-1}(u/\phi)K_{\kappa}(u/\phi)$$

- K_{κ} is the modified Bessel function of the second kind of order κ
- The parameter $\kappa > 0$ is called the order of the Matérn and determines the differentiability of w(s) (more details later)
- The parameter $\phi>0$ determines the rate at which the correlation decays to zero with increasing u

Gaussian process

- w(s) is not directly observed but can be inferred from the observed data set $\{(x_1(s_1), y_1(s_1)), ..., (x_n(s_n), y_n(s_n))\}$
- First, the distribution of w(s) must be specified
- Formally, w(s) is a zero mean Gaussian process (GP) with unitary variance and spatial correlation function $\rho(u; \theta)$
- w(s) is a gaussian process if the joint distribution of $w(s_1), ..., w(s_n)$ is multivariate normal (see SMS2) for any integer n and any set of locations $s_1, ..., s_n$

Simulations

- How to simulate a GP with a given spatial correlation function in MATLAB?
- Simulations are useful to understand if a given correlation function is suitable to model the observed data set
- A GP is continuous in space. This means that:
 - It can be simulated on a regular grid or
 - On a irregular grid
 - · For any given number of spatial locations
- When the GP is simulated on a regular grid, the simulated values referes to the centres of the pixels

Statistics for High Dimensional Data (and CompStat Lab) a.a. 2023/2024 (2nd edition)

Prof. Francesco Finazzi francesco.finazzi@unibg.it
Prof. Alessandro Fassò alessandro.fasso@unibg.it

Lesson 2

Spatial model with latent variable

$$y(s) = x(s)'\beta + \alpha w(s) + \varepsilon(s)$$
 (2)

- $w(s) \sim GP(0, \rho(||s-s'||; \theta))$
- $\rho(\|\mathbf{s} \mathbf{s}'\|; \boldsymbol{\theta}) = corr(w(\mathbf{s}), w(\mathbf{s}'))$
- $\varepsilon(\mathbf{s}) \sim N(0, \sigma_{\varepsilon}^2)$
- The unknown parameter set is $\Psi = \{\beta, \alpha, \sigma_{\varepsilon}^2, \theta\}$
- How to estimate Ψ from data?

Maximum likelihook estimate

- · We rely on MLE to estimate the model parameter vector
- · Because MLE has good properties and...
- Because we can use the EM algorithm (if needed)
- Likelihood function of (2) is:

$$L(\Psi; \mathbf{y}, \mathbf{w}, \mathbf{X}) = L(\Psi; \mathbf{y}|\mathbf{w}, \mathbf{X})L(\Psi; \mathbf{w})$$

- $y = (y_1, ..., y_n)'$ is the vector of observations at n spatial locations
- $\mathbf{w} = (w_1, ..., w_n)'$ is the vector of latent variables at n spatial locations
- X is the $n \times p$ design matrix

Likelihood decomposition

$$L(\Psi; \mathbf{y}, \mathbf{w}, \mathbf{X}) = L(\Psi; \mathbf{y} | \mathbf{w}, \mathbf{X}) L(\Psi; \mathbf{w})$$

= $L(\boldsymbol{\beta}, \alpha, \sigma_{\varepsilon}^2; \mathbf{y} | \mathbf{w}, \mathbf{X}) L(\boldsymbol{\theta}; \mathbf{w})$

- Each likelihood term depends on a subset of Ψ .
- $L(\Psi; y, w, X)$ is the complete-data likelihood (which assumes w to be known)
- $L(\beta, \alpha, \sigma_{\varepsilon}^2; y|w, X)$ and $L(\theta; w)$ are densities of n -variate normal distributions

UNIVERSITÀ Dipartimento di negerira Gestionale, dell'informazione e della Produzion

Log-likelihood function

- As usual we prefer to work with $\log(L_{\Psi})$
- $-2\log L_{\Psi}$ is given by:

$$log |\Sigma_{\varepsilon}| + e' \Sigma_{\varepsilon}^{-1} e + log |\Sigma_{w}| + w' \Sigma_{w}^{-1} w$$

where

- $e = y X\beta \alpha w$
- $\Sigma_{\varepsilon} = \sigma_{\varepsilon}^2 I_n$, with I_n the identity matrix of dimension n
- Σ_w is the $n \times n$ correlation matrix (e.g., $exp(-D/\theta)$, with D the distance matrix)

ML estimate

· MLE is given by

$$\widehat{\Psi} = argmin_{\boldsymbol{\beta},\alpha,\sigma_{\varepsilon}^{2},\boldsymbol{\theta}} \ log|\Sigma_{\varepsilon}| + \boldsymbol{e}'\Sigma_{\varepsilon}^{-1}\boldsymbol{e} + log|\Sigma_{w}| + \boldsymbol{w}'\Sigma_{w}^{-1}\boldsymbol{w}$$

- Argmin because we are considering $-2\log(L_{\Psi})$
- Unfortunately minimizing $-2\log(L_{\Psi})$ is not feasible, plus w is latent and not observed
- We must rely on the EM algorithm

EM algorithm

- The EM is an iterative algorithm for MLE
- First iteration starts with initial values $\widehat{\Psi}^{(0)}$ (usually given by OLS and method of moments)
- E-step

$$Q(\Psi, \widehat{\Psi}^{\langle m \rangle}) = E_{\widehat{\Psi}^{\langle m \rangle}}(-2 \log L(\Psi; \boldsymbol{y}, \boldsymbol{w}, \boldsymbol{X}) | \boldsymbol{y})$$

M-step

$$\widehat{\Psi}^{(m+1)} = argmax_{\Psi} Q(\Psi, \widehat{\Psi}^{(m)})$$

EM algorithm, E-step

E-step

$$\begin{split} &E_{\widehat{\Psi}^{(m)}}(-2\text{logL}(\Psi;\boldsymbol{y},\boldsymbol{w},\boldsymbol{X})|\boldsymbol{y})\\ &=tr\big[\Sigma_{\varepsilon}^{-1}\big(E(\boldsymbol{e}|\boldsymbol{y})E(\boldsymbol{e}|\boldsymbol{y})'+Var(\boldsymbol{e}|\boldsymbol{y})\big)\big]\\ &+tr\big[\Sigma_{w}^{-1}\big(E(\boldsymbol{w}|\boldsymbol{y})E(\boldsymbol{w}|\boldsymbol{y})'+Var(\boldsymbol{w}|\boldsymbol{y})\big)\big] \end{split}$$

- $E(e|y) = y X\beta \alpha E(w|y)$
- $Var(e|y) = Var(y X\beta \alpha w|y) = \alpha^2 Var(w|y)$

UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO DI BERGAMO

EM algorithm, E-step

- $E(w|y) = Cov(w, y)Var(y)^{-1}[y X\beta]$ (see multivariate normal)
- $Var(\mathbf{w}|\mathbf{y}) = \Sigma_{\mathbf{w}} Cov(\mathbf{w}, \mathbf{y})Var(\mathbf{y})^{-1}Cov(\mathbf{w}, \mathbf{y})'$
- $Var(\mathbf{y}) = Var(\mathbf{X}\boldsymbol{\beta} + \alpha \mathbf{w} + \boldsymbol{\varepsilon}) = Var(\alpha \mathbf{w} + \boldsymbol{\varepsilon}) = \alpha^2 Var(\mathbf{w}) + Var(\boldsymbol{\varepsilon}) + 2Cov(\mathbf{w}, \boldsymbol{\varepsilon})$
- $Var(\mathbf{w}) = \Sigma_{\mathbf{w}}$
- $Var(\boldsymbol{\varepsilon}) = \Sigma_{\varepsilon} = \sigma_{\varepsilon}^2 \boldsymbol{I}_n$
- $2Cov(w, \varepsilon) = 0$ (from model assumptions)
- $Cov(w, y) = Cov(w, X\beta + \alpha w + \varepsilon) = Cov(w, \alpha w) = \alpha Cov(w, w) = \alpha Var(w) = \alpha \Sigma_w$

EM algorithm, M-step

$$\begin{split} \widehat{\Psi}^{\langle m+1 \rangle} &= argmax_{\Psi} \, Q \big(\Psi, \widehat{\Psi}^{\langle m \rangle} \big) \\ &\frac{dQ \big(\Psi, \widehat{\Psi}^{\langle m \rangle} \big)}{d\Psi} = 0 \\ &\alpha^{\langle m+1 \rangle} = \frac{tr \big[\big(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}^{\langle m \rangle} \big) E(\boldsymbol{w} | \boldsymbol{y})' \big]}{tr \big[E(\boldsymbol{w} | \boldsymbol{y}) E(\boldsymbol{w} | \boldsymbol{y})' + Var(\boldsymbol{w} | \boldsymbol{y}) \big]} \\ &\boldsymbol{\beta}^{\langle m+1 \rangle} = (\boldsymbol{X}' \boldsymbol{X})^{-1} \left[\boldsymbol{X}' \left(\boldsymbol{y} - \alpha^{\langle m+1 \rangle} E(\boldsymbol{w} | \boldsymbol{y}) \right) \right] \end{split}$$

EM algorithm, M-step

$$\begin{split} \sigma_{\varepsilon}^{2^{\langle m+1\rangle}} &= \frac{1}{n} tr[E(\boldsymbol{e}|\boldsymbol{y}) E(\boldsymbol{e}|\boldsymbol{y})' + Var(\boldsymbol{e}|\boldsymbol{y})] \\ \boldsymbol{\theta}^{\langle m+1\rangle} &= argmin_{\boldsymbol{\theta}} \ log \ |\Sigma_{w}^{-1}(\boldsymbol{\theta})| + tr[\Sigma_{w}^{-1}(\boldsymbol{\theta}) (\widehat{\boldsymbol{w}}\widehat{\boldsymbol{w}}')] \end{split}$$
 Where $\widehat{\boldsymbol{w}} = E_{\boldsymbol{\theta}^{\langle m \rangle}}(\boldsymbol{w}|\boldsymbol{y}) = E(\boldsymbol{w}|\boldsymbol{y})$

Statistics for High Dimensional Data (and CompStat Lab) a.a. 2023/2024 (2nd edition)

Prof. Francesco Finazzi francesco.finazzi@unibg.it
Prof. Alessandro Fassò alessandro.fasso@unibg.it

Lesson 3

Spatial model with latent variable

$$y(s) = x(s)'\beta + \alpha w(s) + \varepsilon(s)$$
 (2)

- $w(s) \sim GP(0, \rho(||s-s'||; \theta))$
- $\rho(\|\mathbf{s} \mathbf{s}'\|; \boldsymbol{\theta}) = corr(w(\mathbf{s}), w(\mathbf{s}'))$
- $\varepsilon(\mathbf{s}) \sim N(0, \sigma_{\varepsilon}^2)$
- The unknown parameter set is $\Psi = \{\beta, \alpha, \sigma_{\varepsilon}^2, \theta\}$
- Ψ is estimated using the EM algorithm

Prediction using model

• Once estimated, the model is used for prediction:

$$\hat{y}(\mathbf{s}_i) = \mathbf{x}(\mathbf{s}_i)'\widehat{\boldsymbol{\beta}} + \widehat{\alpha}\widehat{w}(\mathbf{s}_i)$$

- The above formula gives the prediction at spatial locations s_i , i = 1, ..., n
- $\widehat{w}(\mathbf{s}_i) = E(w(\mathbf{s}_i)|Y)$
- How to estimate y at a generic spatial location s?
- (First of all we need x(s))

Spatial prediction

- First of all we need x(s) (spatial covariates at s)
- Remember that $E(w|y) = Cov(w, y)Var(y)^{-1}[y X\beta]$
- Similarly $\widehat{w}(s) = E(w(s)|y) = Cov(w(s), y)Var(y)^{-1}[y X\beta]$
- In practice the prediction $\widehat{w}(s)$ depends on the vector y of all observations
- More in details: $Cov(w(s), y) = Cov(w(s), X\beta + \alpha w + \varepsilon) = Cov(w(s), \alpha w) = \alpha Cov(w(s), w)$
- Cov(w(s), w) is a $1 \times n$ vector with elements $Cov(w(s), w(s_i)) = exp\left(-\frac{\|s-s_i\|}{\theta}\right)$.
- $Var(y)^{-1}[y-X\pmb{\beta}]$ are the same seen for the EM algorithm and do not depend on w(s).

Spatial prediction

• When prediction is done for multiple spatial locations $S = \{s_1, ..., s_M\}$:

$$\widehat{w}(S) = E(w(S)|y) = Cov(w(S), y)Var(y)^{-1}[y - X\beta]$$

- $Cov(w(S), \alpha w) = \alpha Cov(w(S), w)$
- Cov(w(S), w) is a $M \times n$ matrix
- $Var(y)^{-1}[y X\beta]$ is computed only one time!
- Var(w(S)|y) is the prediction uncertainty
- How to make spatial prediction with D-STEM?

Multivariate models

- It is not uncommon to jointly model multiple variables (e.g., multiple pollutants, multiple met. variables, etc.)
- The spatial model becomes multivariate

$$y(s) = X(s)'\beta + \alpha w(s) + \varepsilon(s)$$
 (2)

- y(s) is a $p \times 1$ vector
- $w(s) \sim GP_p(\mathbf{0}, V\rho(\|s-s'\|; \boldsymbol{\theta}))$ is a p-variate Gaussian random process
- V is a $p \times p$ correlation matrix
- $\varepsilon(s) \sim N_n(0, \Sigma_{\varepsilon}^2)$ is a p-variate Normal random variable with Σ_{ε}^2 diagonal
- The unknown parameter set is $\Psi = \{\beta, \alpha, \Sigma_{\varepsilon}^2, \theta, V\}$

Why a multivariate model?

- · Why not fitting a model for each variable?
- If two or more variables are correlated, spatial prediction can benefit from this correlation
- Especially if one variables is observed at few spatial locations w.r.t. the other variables
- But computing time is higher (matrices are $pn \times pn$ if all variables are observed at n locations)

Bivariate model

• A bivariate model is a (simple) special case of the multivariate model

$$\begin{bmatrix} y_1(s) \\ y_2(s) \end{bmatrix} = \begin{bmatrix} x_1(s)' & \mathbf{0} \\ \mathbf{0} & x_2(s)' \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_1(s) \\ \boldsymbol{\beta}_2(s) \end{bmatrix} + \begin{bmatrix} \alpha_1 w_1(s) \\ \alpha_2 w_2(s) \end{bmatrix} + \begin{bmatrix} \varepsilon_1(s) \\ \varepsilon_2(s) \end{bmatrix}$$

- $x_1(s)'$ and $x_2(s)'$ can have different lengths
- $V = \begin{bmatrix} 1 & corr(w_1(s), w_2(s)) \\ corr(w_2(s), w_1(s)) & 1 \end{bmatrix}$
- $\Sigma_{\varepsilon}^2 = \begin{bmatrix} \sigma_{1,\varepsilon}^2 & 0 \\ 0 & \sigma_{2,\varepsilon}^2 \end{bmatrix}$

UNIVERSITÀ DISATIMENTO di Ingegneria Gestionale.

Linear model of coregionalization

- $V\rho(\|s-s'\|;\theta)$ is called linear coregionalization model
- θ is common to the p variables!
- This could be a limit because all the variables are forced to share the same spatial correlation (same function and strenght)
- \emph{V} is a symmetric correlation matrix, only p(p-1)/2 elements of \emph{V} are estimated

Data structure

- A multivatiate data set can be classified depending on spatial locations:
 - **Isotopic:** all p variables are observed at the same n spatial locations.
 - Fully heterotipic: the p variables do not share a single spatial location.
 - Partially heterotopic: some of the p variables are observed at a subset of the n spatial locations. This is the most common case and it is the case handled by D-STEM.

Statistics for High Dimensional Data (and CompStat Lab) a.a. 2023/2024 (2st edition)

bitvector.bitvector

Prof. Francesco Finazzi francesco.finazzi@unibg.it
Prof. Alessandro Fassò alessandro.fasso@unibg.it

Lesson

Spatio-temporal model: the dynamic coregionalization model (DCM)

$$y(s,t) = x_{\beta}(s,t)'\beta + x_{z}(s)'z(t) + \alpha w(s,t) + \varepsilon(s,t)$$

$$z(t) = Gz(t-1) + \eta(t)$$

- $x_{\beta}(s,t)$ and $x_{z}(s)$ are vectors of covariates. Note that $x_{z}(s)$ is time invariant.
- $w(s,t) \sim GP(0,\rho(\|s-s'\|;\theta))$ is correlated over space but IID over time
- $\mathbf{z}(t)$ is $q \times 1$ dimensional with Markovian dynamics
- G is a stable $q \times q$ transition matrix
- $\eta(t) \sim N(\mathbf{0}, \Sigma_n)$ is the innovation with Σ_n the variance-covariance matrix
- $\varepsilon(\mathbf{s},t){\sim}N(0,\sigma_{\varepsilon}^2)$ is the measurement error

Why the Markovian dynamics?

- The Markovian dynamic helps to describe the temporal persistence which usually characterizes temporal phenomena.
- For instance: even if we stop air pollution emissions, pollutant concentration will not drop instantly to zero.
 - Emission would be a model covariate

Data matrix

- $Y = (y_1, ..., y_T)$ is the data matrix
- Each y_t is the vector of spatial observation at time t = 1, ..., T
- In each y_t , missing data are possible
- Covariates are in a data array $X = \{X_1, \dots, X_T\}$, each X_t is a $n \times b$ matrix where b is the number of covariates. X cannot have missing data.

Likelihood function

- The parameter vector is $\Psi = \{\beta, \alpha, \sigma_{\varepsilon}^2, \theta, G, \Sigma_n\}$
- Likelihood function is:

$$L(\Psi; Y, W, Z, X) = L(\Psi; Y|W, Z, X)L(\Psi; Z)L(\Psi; W)$$

- $W = (w_1, \dots, w_T)$
- $\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_T)$

UNIVERSITÀ DEGLI STUDI DI BERGAMO dell'informazione e della Produzione

Log-likelihood function

• $-2\log L_{\Psi}$ is given by:

$$\frac{Tlog|\boldsymbol{\Sigma}_{\varepsilon}| + \sum_{t=1}^{T} \boldsymbol{e}_{t}' \boldsymbol{\Sigma}_{\varepsilon}^{-1} \boldsymbol{e}_{t} + Tlog|\boldsymbol{\Sigma}_{\eta}| + }{\sum_{t=1}^{T} (\boldsymbol{z}_{t} - \boldsymbol{G}\boldsymbol{z}_{t-1})' \boldsymbol{\Sigma}_{\eta}^{-1} (\boldsymbol{z}_{t} - \boldsymbol{G}\boldsymbol{z}_{t-1}) + Tlog|\boldsymbol{\Sigma}_{w}| + \sum_{t=1}^{T} \boldsymbol{w}_{t}' \boldsymbol{\Sigma}_{w}^{-1} \boldsymbol{w}_{t}}$$

where

- $e_t = y_t X_{\beta,t}\beta X_{z,t}z_t \alpha w_t$
- $\Sigma_{\varepsilon} = \sigma_{\varepsilon}^2 I_n$, with I_n the identity matrix of dimension n
- Σ_w is the $n \times n$ correlation matrix (e.g., $exp(-D/\theta)$, with D the distance matrix)

Model estimation - EM algorithm

- Model estimation is (again) based on the EM algorithm
- E(w(s,t)|Y) and Var(w(s,t)|Y) are given by the same formulas of E(w(s)|Y) and Var(w(s)|Y) (because w(s,t) are IID over time)
- $E(\mathbf{z}(t)|\mathbf{Y})$ and $Var(\mathbf{z}(t)|\mathbf{Y})$ are given by the Kalman smoother
- However, $Cov(\mathbf{z}(t), w(s, t)|Y) \neq \mathbf{0}$. E-step and M-step are more complicated than the spatial case.

Statistics for High Dimensional Data (and CompStat Lab) a.a. 2023/2024 (2nd edition)

Prof. Francesco Finazzi francesco.finazzi@unibg.it
Prof. Alessandro Fassò alessandro.fasso@unibg.it

Lesson 5

UNIVERSITÀ DEGLI STUDI di Ingegneria Gestionale. DI BERGAMO di Informazione e della Produzioni

Spatio-temporal model: the (univariate) hidden dynamic geostatistical model (HDGM)

$$y(s,t) = x_{\beta}(s,t)'\beta + az(s,t) + \varepsilon(s,t)$$

$$z(s,t) = gz(s,t-1) + \eta(s,t)$$

- $\eta(s,t) \sim GP(0,\rho(||s-s'||;\theta))$ is correlated over space but IID over time
- z(s,t) is scalar and has Markovian dynamic
- a is a scale coefficient (v in D-STEM)
- g is the transition coefficient
- $\varepsilon(s,t) \sim N(0,\sigma_{\varepsilon}^2)$ is the measurement error
- The model parameter set is $\Psi = \{ \beta, \alpha, \sigma_{\varepsilon}^2, \theta, g \}$
- · Which are the main differences with the DCM?
- · Which model is better?

UNIVERSITÀ DIDUTTIONE DI BERDANO DI BERDANO

Spatio-temporal model: the (multivariate) hidden dynamic geostatistical model (HDGM)

$$y(s,t) = X_{\beta}(s,t)'\beta + z(s,t) + \varepsilon(s,t)$$

$$z(s,t) = Gz(s,t-1) + \eta(s,t)$$

- y(s,t) and z(s,t) are $p \times 1$ vectors
- $\eta(s,t) \sim GP_n(0, V\rho(||s-s'||;\theta))$ is a p-variate Gaussian random process
- V is a variance-covariance matrix (in Calculli et al. V is a correlation matrix and there is the scaling matrix A)
- z(s,t) has Markovian dynamic
- G is a diagonal $p \times p$ transition matrix
- $\varepsilon(s,t) \sim N_n(0,\Sigma_{\varepsilon})$ is a p-variate Normal random variable with Σ_{ε} diagonal
- The model parameter set is $\Psi = \{\beta, \Sigma_{\varepsilon}, \theta, V, G\}$

Model estimation

- The HDGM is estimated similarly to the DCM
- But we only have the z(s,t) latent variable which is estimated in the E-step by the Kalman smoother.
- Spatial prediction is also done by the Kalman smoother assuming that y is not observed at the spatial prediction locations (it is added as NaN in the y vector).

Statistics for High Dimensional Data (and CompStat Lab) a.a. 2023/2024 (2nd edition)

Prof. Francesco Finazzi francesco.finazzi@unibg.it
Prof. Alessandro Fassò alessandro.fasso@unibg.it

Lesson 6

Towards spatio-temporal functional models

- Which are the problems with high frequency/resolution data?
 - Usually the original data set is very large and so the computational burden (of classic spatio-temporal models)
 - Data may be collected asynchronously over time (e.g., different monitoring stations may have different clocks)
 - Data may have large gaps over time (how does the Kalman Smoother perform in this case?)
 - Temporal correlation is usually very high (the Markovian model may explain the data but it is not very useful for prediction)

Towards spatio-temporal functional models

- In many cases, data are observed at high frequency/resolution in at least one dimension (spatial or temporal)
- It usually happens with the temporal dimension
 - For instance, pollutant concentrations observed hourly or every 15 minutes
 - In general, high frequency observations (100, 1000, 10.000 per day)
- In space it is less common because a high resolution sampling is usually very expensive but...
 - In 3D space, one dimension may be sampled at higher resolution than the others

Functional data analysis (FDA)

- In FDA, the object of the statistical inference is a continuous function rather than scalar/vector values
- For instance, the temperature measured by a sensor over the 24h of the day can be described by a (smooth?) function
 - Independently of how many observations we take
 - Independently of where in time these observations are taken
- Which function or class of functions should we use?
 - The function should describe the «global» data pattern
 - In a way, the function filters out the data noisy
 - The researcher should be able to control the function smoothness

Splines

- Spline is a class of functions which allows to easily control the function smoothness
 - By selecting the proper basis functions
 - By selecting the proper knots
- B-spline basis are useful to describe non-periodic functions
 - Knots can be placed ad-hoc along the function domain (more knots where the function should change more rapidly)
- Fourier basis can describe periodic functions
 - Smoothness is controlled by the number of basis

The functional HDG model in D-STEM

 D-STEM implements the (univariate) functional version of the HDG model:

$$y(s,t,h) = x(s,t,h)'\beta(h) + \phi(h)'z(s,t) + \varepsilon(s,t,h)$$

$$z(s,t) = Gz(s,t-1) + \eta(s,t)$$

- $\phi(h)$ are the basis functions, z(s,t) are the spline coefficients
- All details are in Wang et al. (2021) Journal statistical software

How to describe functional data in a space-time model?

- We now want to model the generic observation y(s, t, h)
 - s and t are the usual spatial and temporal indexes
 - $h \in \mathbb{R}$ is the «functional» dimension (spatial or temporal)
- Examples
 - h could describe the continuous time within the day while t is the index of days
 - h could describe altitude in a 3D space while s describes the generic location across the globe

