

Mining Large Scale Datasets

Recommender Systems

(Adapted from CS246@Starford.edu; http://www.mmds.org)

Sérgio Matos - aleixomatos@ua.pt

Recommendations

Examples: amazon.com.

Scarcity vs Abundance

- Shelf space in traditional stores is scarce (and expensive)
 - Also: TV schedule, movie theaters, newspaper pages, ...
- Web enables near-zero-cost dissemination of information about products
 - → Abundance
- ⇒ More choice necessitates better filters
 - Recommendation engines
 - Association rules:
 How Into Thin Air made Touching the Void a bestseller

The long tail

The long tail

Physical vs Online

Amazon sales rank

Types of recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10
 - Most Popular
 - Recent Uploads
- ⇒ Tailored to individual users
 - Amazon, Netflix, ...

Formal model

- X = set of Customers
- **S** = set of Items
- Utility function $u: X \times S \rightarrow R$
 - \bullet R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility matrix

	Avatar	LotR	Matrix	PotC
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - Interested in knowing what users like, not what they don't like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

Gathering ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice most people won't be bothered; biased to those willing to rate
 - Crowdsourcing: Pay people to label items
- Implicit
 - Learn ratings from user actions
 E.g., purchase / watching implies high rating
 - What about low ratings?

Extrapolating ratings

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start

New items have no ratings New users have no history

- Three approaches to recommender systems
 - Content-based
 - Collaborative
 - Latent factor based

Content-based recommendation

Main idea

Recommend to customer x items similar to previous items rated highly by x

- Movie recommendations
 Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 Recommend other sites with "similar" content

Overview **Item profiles** likes build recommend Red match Circles **Triangles User profile**

Item profiles

- Create an **item profile** for each item
 - A set (vector) of features
 - Movies: author, title, actor, director, ...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Doc profile = set of words with highest TF-IDF scores

User profiles and prediction

- User profile possibilities
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item

Prediction heuristic: Cosine similarity of user and item profiles
 Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{\|\mathbf{x}\| \cdot \|\mathbf{i}\|}$$

• How do you quickly find items closest to x?

User profiles and prediction

- User profile possibilities
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item

Prediction heuristic: Cosine similarity of user and item profiles
 Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{\|\mathbf{x}\| \cdot \|\mathbf{i}\|}$$

- How do you quickly find items closest to x?
 - → I SHI

Content-based: Pros

- + No need for data on other users
- + Able to recommend to users with unique tastes
- + Able to recommend new and unpopular items
 - No first-rater problem
- + Able to provide explanations
 - Explain recommended items by listing content-features that caused items to be recommended

Content-based: Cons

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of the N users

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

• Intuitively we want sim(A, B) > sim(A, C)

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Jaccard similarity

$$sim(A, B) = 1/5 < 2/4 = sim(A, C)$$

• Problem: Ignores the values of ratings

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

• Cosine similarity
$$sim(\mathbf{x}, \mathbf{y}) = cos(\mathbf{r_x}, \mathbf{r_y}) = \frac{\mathbf{r_x} \cdot \mathbf{r_y}}{\|\mathbf{r_x}\| \cdot \|\mathbf{r_y}\|}$$

 $sim(A, B) = 0.380 > 0.322 = sim(A, C)$

• Problem: Treats missing ratings as "negative" (disliked) $r_A = 4, 0, 0, 5, 1, 0, 0, r_B = 5, 5, 4, 0, 0, 0, 0$

Finding "similar" users: Similarity metric

			HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		1/3		-5/3	1/3	4/3	
D	l	0		,	,	,	0

• Cosine similarity
$$sim(\mathbf{x}, \mathbf{y}) = cos(\mathbf{r_x}, \mathbf{r_y}) = \frac{\mathbf{r_x} \cdot \mathbf{r_y}}{\|\mathbf{r_x}\| \cdot \|\mathbf{r_y}\|}$$

 $sim(A, B) = 0.380 > 0.322 = sim(A, C)$

- Problem: Treats missing ratings as "negative" (disliked)
- Solution: subtract the (row) mean
 Pearson correlation coefficient

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(\mathbf{x}, \mathbf{y}) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_{\mathbf{x}}})(r_{ys} - \bar{r_{\mathbf{y}}})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_{\mathbf{x}}})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \bar{r_{\mathbf{y}}})^2}}$$

$$sim(A, B) = 0.092 > -0.559 = sim(A, C)$$

Predicting ratings

From similarity metric to recommendations

- Let $\mathbf{r}_{\mathbf{x}}$ be the vector of ratings for user x
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item *i* of user *x*:

$$r_{\times i} = \frac{1}{k} \sum_{y \in \mathcal{N}} r_{yi}$$

or even better,

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$
 , $s_{xy} = sim(x, y)$

Item-Item Collaborative Filtering

- Item-item vs User-user
- For item i, find other similar items
- Estimate rating for item *i* based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

 s_{ij} : similarity of items i and j r_{xj} : rating of user x on item jN(i;x): set items rated by x that are similar to i

- estimate rating of movie 1 by user 5

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity: 1) Subtract mean rating m_i from each movie i

m₁ = (1+3+5+5+4)/5 = **3.6** row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		0.59

Compute similarity weights:

	03013											
	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		2.6	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Item-item vs User-user

	Avatar	LotR	Matrix	PotC
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

- In theory, these are dual approaches with similar performance
- In practice, it has been observed that item-item often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

- + Works for any kind of item
 - No feature selection needed
 - Cold Start
 - Need enough users in the system to find a match
 - Sparsity
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
 - First rater
 - Cannot recommend an item that has not been previously rated
 - New items, esoteric items
 - Popularity bias
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Hybrid methods

Combine predictions from two or more different recommenders

- e.g. Global baseline + CF
- Perhaps using a linear model

Add content-based methods to collaborative filtering

- Item profiles for new item problem
- Demographics to deal with new user problem

CF: Common practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i;x)
 - ullet Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

$$b_{xi} = \mu + b_x + b_i$$
 baseline estimate for r_{xi}
 $\mu =$ overall mean movie rating
 $b_x =$ rating deviation of user $x =$ (avg rating of user x) - μ
 $b_i =$ rating deviation of movie $i =$ (avg rating of movie i) - μ

Evaluation

movies

users

Evaluation movies users **Test Data Set**

Evaluating predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)

$$\sqrt{\frac{\sum_{xi}(r_{xi}-r_{xi}^*)^2}{\sum_{xi}1}}$$
 where r_{xi} is predicted; r_{xi}^* is the true rating

- Precision at top 10
- Rank correlation
 Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model (dislike/like)
 - Coverage
 - # items/users for which the system can make predictions
 - Precision
 - Receiver operating characteristic (ROC)

Tradeoff curve between false positives and false negatives

Problems with error measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction diversity
 - Prediction context
 - Order of predictions
- In practice, we care only about predicting high ratings
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
 - Naïve pre-computation takes time $O(k \cdot |X|)$
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction (PCA, SVD)

Assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$

Latent factor models: SVD

- A: Input matrix
- U: Left singular matrix
- V: Right singular matrix
- Σ: Singular values

Latent factors model: $R \approx Q \cdot P^T$ As SVD: A = R, Q = U, $P^T = \Sigma V^T$

Latent factor models: SVD

- A: Input matrix
- U: Left singular matrix
- V: Right singular matrix
- ullet Σ : Singular values

Latent factors model: $R \approx Q \cdot P^T$ As SVD: A = R, Q = U, $P^T = \Sigma V^T$

→ SVD minimizes SSE, and thus RMSE!

Latent factor models: SVD

- X SVD is not defined when entries are missing!
- Need a special method to find P, Q

users											
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	[ag
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	Ω̈́
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	ြတ
PT											

- X SVD is not defined when entries are missing!
- Need a special method to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$$

- We don't require cols of P, Q to be orthogonal/unit length
- P, Q map users/movies to a latent space

Goal is to find P, Q such that $\min_{P,Q} \sum_{(i,x) \in R} (r_{xi} - q_i \cdot p_x)^2$

Want to minimize SSE for unseen test data

- Approach: Minimize SSE on training data
- Want large k (number of factors) to capture all the signals
- But SSE on test data begins to rise for k > 2
 - → Overfitting

Solution: Regularization

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

Combining with baseline predictor

$$r_{\times i} = \mu + b_{\times} + b_i + q_i \cdot p_{\times}$$

- μ : overall mean rating
- b_x : bias of user x
- b_i: bias of movie i

$$\begin{aligned} & \min_{P,Q} \sum_{(i,x) \in R} (r_{xi} - (\mu + b_x + b_i + q_i \cdot p_x))^2 + \\ & \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 + \lambda_3 \sum_{x} \|b_x\|^2 + \lambda_4 \sum_{i} \|b_i\|^2 \right] \end{aligned}$$

Combining with baseline predictor

$$r_{\times i} = \mu + b_{\times} + b_i + q_i \cdot p_{\times}$$

- μ : overall mean rating
- b_x : bias of user x
- b_i: bias of movie i

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - (\mu + b_x + b_i + q_i \cdot p_x))^2 + \\
\left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 + \lambda_3 \sum_{x} \|b_x\|^2 + \lambda_4 \sum_{i} \|b_i\|^2 \right]$$

→ Stochastic Gradient Descent

Final tip: Add data

- Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More Richer data beats better algorithms