Экзаменационная программа по курсу «Введение в математический анализ», осенний семестр 2020–2021 учебного года

1

Действительные числа

Дедекиндовы сечения

Сечение множества рациональных чисел $\mathbb{Q}(A_*, A^*)$ – разбиение \mathbb{Q} на два таких непустых множества A_* и A^* , таких, что:

- $\bullet \ A_* \cup A^* = \mathbb{Q}$
- $A_* \cap A^* = \emptyset$
- $\forall x \in A_*, \forall y \in A^* \longmapsto y > x$

Иррациональные числа

В сечении вида A A_* не имеет наибольшего элемента, а A^* имеет наименьший. В сечении вида B A_* имеет наибольший элемент, а A^* не имеет наименьшего. В сечении вида C A_* не имеет наибольшего элемента, а A^* не имеет наименьшего.

Иррациональным числом называется сечение вида (С).

Действительные числа

Действительным числом называется любое сечение множества $\mathbb Q$ вида $\widehat{(A)}$ или $\widehat{(C)}$.

Упорядоченность, плотность и непрерывность действительных чисел

Пусть
$$\alpha, \beta \in \mathbb{R}, \alpha = (A_*, A^*), \beta = (B_*, B^*)$$

 $\alpha = \beta$ если $A_* = B_*$

Предложение:

Если $\alpha,\beta\in\mathbb{R}, \alpha\neq\beta,$ то имеет место одно из включений: $A_*\subset B_*$ либо $A_*\supset B_*$

Доказательство:

От противного:

Пусть $A_* \not\subset B_*$ и $A_* \not\supset B_*$

Тогда $\exists a \in \mathbb{Q}: a \in A_* \land a \notin B_* \implies a \in B^*$ и $\exists b \in \mathbb{Q}: b \notin A_* \land b \in B_* \implies b \in A^*$ так как $a \neq b$

$$a \in A_*, b \in A^* \implies b > a$$

 $b \in B_*, a \in B^* \implies a > b$

противоречие

Пусть
$$\alpha, \beta \in \mathbb{R}, \alpha = (A_*, A^*), \beta = (B_*, B^*)$$
 $\alpha < \beta$ если $A_* \neq B_* \wedge A_* \subset B_*$

Упорядоченность \mathbb{R} :

 $\forall \alpha, \beta \in \mathbb{R}$ имеет место либо $\alpha = \beta$, либо $\alpha < \beta$, либо $\alpha > \beta$. $\alpha = \beta, \beta = \gamma \implies \alpha = \gamma$

$$\alpha < \beta, \beta < \gamma \implies \alpha < \gamma$$

Плотность \mathbb{O} в \mathbb{R} :

Пусть $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, тогда $\exists c \in \mathbb{Q} : \alpha < c < \beta$

Доказательство:

$$\alpha < \beta \implies A_* \subset B_* \implies \exists c \in \mathbb{Q} : c \in B_* \land c \notin A_*.$$

Так как в нижнем классе нет наибольшего элемента, $\alpha \le c < \beta$.

Если $\alpha \in \mathbb{I}$, то $c \neq \alpha \implies \alpha < c < \beta$. Если $\alpha \in \mathbb{Q}$, то можно взять $c \in B_* : c > \alpha$.

Сечение множества действительных чисел \mathbb{R} (\mathcal{A}_* , \mathcal{A}^*) – разбиение \mathbb{Q} на два таких непустых множества \mathcal{A}_* и \mathcal{A}^* , таких, что:

•
$$\mathcal{A}_* \cup \mathcal{A}^* = \mathbb{R}$$

- $\mathcal{A}_* \cap \mathcal{A}^* = \emptyset$
- $\forall x \in \mathcal{A}_*, \forall y \in \mathcal{A}^* \longmapsto y > x$

Теорема Дедекинда:

Среди сечений множества \mathbb{R} сечений вида $\widehat{\mathbb{C}}$ нет \implies непрерывность \mathbb{R} .

Десятичные дроби

Пусть числу $\alpha \in \mathbb{R}$ соответствует сечение $(\mathcal{A}_*; \mathcal{A}^*)$. За a_0 обозначим наибольшее целое число из \mathcal{A}_* . Отрезок $[a_0; a_0+1]$ поделим на 10 отрезков одинаковой длины и выберем среди них тот, который содержит α : $\alpha \in [a_0+\frac{a_1}{10};a_0+\frac{a_1+1}{10}]$. На шаге n $\alpha \in [a_0+\frac{a_1}{10}+\ldots+\frac{a_n}{10};a_0+\frac{a_1}{10}+\ldots+\frac{a_n+1}{10}]$. Бесконечную десятичную дробь $a_0,a_1a_2...a_n...$ можно считать представлением действительного числа α . Заметим, что если α можно представить как $\frac{p}{10^n}, p \in \mathbb{Z}, n \in \mathbb{N}$, (то есть α – сократимая десятичная дробь) то α соответствуют две десятичные дроби: $a_0,a_1a_2...a_n000...$ и $a_0,a_1a_2...(a_n-1)999...$.

Теорема о существовании и единственности точной верхней (нижней) грани числового множества, ограниченного сверху (снизу)

Множество X ограничено сверху, если $\exists C \in \mathbb{R} : \forall x \in X \longmapsto x \leq C$

Число M называется верхней гранью множества X, если $\forall x \in X \longmapsto x \leq M$

Число $\alpha = \sup X$ называется точной верхней гранью множества X, если $\forall x \in X \longmapsto x \leq \alpha \wedge \forall \alpha' \exists x \in X : x > \alpha'$.

Лемма: если множество $X\subset\mathbb{R}$ имеет наибольший элемент $M=\max X,$ то $M=\sup X.$ Доказательство:

Так как M — наибольший элемент X, то все остальные элементы X меньше M и не являются верхней гранью X, так как $M \in X$ и M > x. Следовательно, M — точная верхняя грань X.

Теорема: для ограниченного сверху множества $X\subset\mathbb{R}$ существует единственная точная верхняя грань.

Доказательство:

Если в X есть наибольший элемент, то α равно ему. Есть в X наибольшего элемента нет, то построим сечение $(\mathcal{A}_*, \mathcal{A}^*)$, такое, что в \mathcal{A}^* содержатся все верхние грани X, а в \mathcal{A}_* – все остальные числа, при этом множество \mathcal{A}^* не пусто, так как X ограничено сверху, а $X \subset \mathcal{A}_*$, так как если элемент из $X \in \mathcal{A}^*$, то он является максимальным. По теореме Дедекинда, если либо больший элемент в \mathcal{A}_* , либо меньший в \mathcal{A}^* . Если в \mathcal{A}_* есть наибольший элемент, то он является верхней гранью X – противоречие. Следовательно есть наименьший элемент в \mathcal{A}^* , который по определению является точной верхней гранью X.

Теперь докажем единственность точной верхней грани. Пусть α, α' – точные верхние грани множества $X, \alpha' < \alpha$. Так как α – точная верхняя грань, $\forall \beta < \alpha \exists x \in X : x > \beta \implies \exists x' \in X : x' > \alpha' \implies \alpha' \neq \sup X$.

Счетность множества рациональных чисел

Докажем счетность множества полжительных рациональных чисел.

Пусть $H \geq 2 \in \mathbb{N}$. Рассмотрим все взаимно простые пары чисел $p,q \in N$, такие что p+q=H, и соответствующие им рациональные числа. Понятно, что таких пар конечное число, и таким образом представляется любое рациональное число.

Теперь расставим соответствующие каждому H рациональные числа по порядку и пронумеруем их:

$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \dots$$

Так как множество положительных рациональных чисел счетно, то и аналогичным образом счетно множество отрицательных рациональных чисел, а их объединение в объединении вместе с конечным множетсвом, состоящим из 0, так же счетно и является \mathbb{R} .

Несчетность множества действительных чисел

Если подмножество множества несчетно, то и само оно несчетно.

Рассмотрим числа на интервале (0; 1), представленные в виде десятичных дробей:

$$\begin{aligned} &\alpha_1 = 0, a_1^1 a_2^1 ... a_n^1 ... \\ &\alpha_2 = 0, a_1^2 a_2^2 ... a_n^2 ... \\ &\dots \\ &\alpha_k = 0, a_1^k a_2^k ... a_n^k ... \end{aligned}$$

Допустим, что подмножество (0;1) счетно.

Построим число γ такое, что $\gamma=0, c_1c_2...c_n...; c_i\neq a_i^i, c_i\neq 9.$ γ не равно ни одному из a_i , что противоречит тому, что (0;1) счетно. Следовательно, само множество действительных чисел также счетно.