Моделиране на малария

Въведение в епидемологията и кооперативните динамични системи

изготвил: Калоян Стоилов ръководител: Петър Рашков

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ΦΑΚΥΠΤΕΤ ΠΟ ΜΑΤΕΜΑΤИΚΑ И ИНФОРМАТИКА

1 април 2025 г.

Съдържание

Комари

[?] садвяе

Термини от епидемологията

- Патоген е причинител на зараза (напр. вирус, бактерия, прион).
- Вектор е носител на патоген, който може да зарази други индивиди.
- S (Susceptible) податливи са тези, които не носят патогена и могат да бъдат заразени с него
- E (Exposed) латентни са носители на патогена, които не могат да го предадат
- I (Infectious) заразни са носители на патогена, които могат да го предадат
- R (Removed/Recovered/Resistant) резистентни са тези, които имат (или са получили след заразяване с патогена) имунитет (може да е временен) към патогена и не могат нито да го разпространят, нито да бъдат заразени

Развитие на заразата

В зависимост от природата на заразата, могат да се наблюдават различни преходи на индивид от един в друг клас с течение на времето:

- $S \rightarrow E \rightarrow I \rightarrow R \rightarrow S$ (SEIRS)
- $S \rightarrow I \rightarrow R$ (SIR) напр. рубеола
- $S \rightarrow I \rightarrow R \rightarrow S$ (SIRS)
- $S \rightarrow E \rightarrow I$ (SEI) Hamp. HIV
- $S \rightarrow I \rightarrow S$ (SIS) напр. малария, инфлуенца

Понякога по-сложни заболявания могат да се моделират с по-прости модели (напр. да допуснем, че няма латентна фаза), но тогава няма да получим същата точност при прогноза на развитието на заболяването.

Разпространение на заразата

Разглеждат се модели, които разглеждат разпространението на патогена в популация/-и.

Отчита се факта, че категориите влияят една на друга, например заразните могат да заразят човек от податливите и така той да се причисли към тяхната група.

Възможно е да имаме повече от една съвкупност от групи SEIRS хора (напр. разделение по възраст, местообитание), за които да имаме различни податливости на патогена.

Възможно е да имаме повече от една съвкупност от групи SEIRS, отговаряща за различни видове.

Възможно е да се разглежда популационната динамика при развитие за прогнози далеч във времето.

Малария

Патогенът е маларийният плазмодий (едноклетъчни еукариоти, т.е. едноклетъчни с ядро).

Симптоми са разрастнал се черен дроб, смърт.

През XIX са открили връзката с болестта и присъствието на комари, но първоначално се е предполагало, че патогена се пренася по вода.

Патогенът произхожда от Южна Африка. В днешно време маларията се среща в Южна Африка, Югоизточна Азия.

Ronald Ross

Роден през 1857 в Индия син на английски офицер.

Получава медицинско образование в Англия, а преди това се образова по многобройни теми, включително математика.

След поредица експерименти през 90-те години на XIX век, Ronald Ross открива плазмодият в слюнчестите жлези на комари от род Anopheles.

За приноса си получава става носител на Нобеловата награда за медицина през 1902г.

Лансира идеята за изтребване на комарите като начин за справяне с маларията. За да убеди в това твърдения създава математически модел на маларията и го изследва, като така получава рицарско звание.

Почива през 1932 г.

Допускания на модела:

- Заразен човек/комар не може да бъде заразен повторно.
- 2 Хората могат да оздравеят от заразата, а комарите не.
- Комарите извършват константен брой ухапвания за единица време.
- Популационната динамика на хората се пренебрегва.
- Популациите на хората и комарите са константни.

Означения:

- **1** X(t) е броя заразени с малария хора в момент t.
- **2** Y(t) е броя заразени с малария комари в момент t.
- N е човешката популация.
- $oldsymbol{M}$ е популацията от комари.
- **5** γ е скоростта на оздравяване на хората.
- **6** μ е скоростта на смъртност на комарите.
- b е честотата на ухапване на комарите за единица време.
- β_{vh} е константна вероятност за заразяване на здрав човек с патогена, когато бъде ухапан от заразен комар, а β_{hv} е константна вероятност за заразяване на здрав комар с патогена, когато ухапе заразен човек.

За интервал δt , заразените хора ще се получат, като се вземат всички ухапвания на заразени комари за периода и се умножат по вероятността да са по незаразен човек, както и да се предаде патогена, т.е. $\beta_{vh}bY(t)\frac{N-X(t)}{N}\delta t$, а оздравелите заразени ще са $\gamma X(t)\delta t$, откъдето $\delta X(t)=\beta_{vh}bY(t)\frac{N-X(t)}{N}\delta t-\gamma X(t)\delta t$. За този интервал пък заразените комари ще се получат, като

се вземат всички ухапвания от незаразени комари и се умножат по вероятнстта да са по заразен човек, както и да се предаде патогена, т.е. $\beta hvb(M-Y(t))\frac{X(t)}{N}\delta t$, а от тях ще измрат $\mu Y(t)\delta t$, откъдето

 $\delta Y(t) = \beta h v b (M - Y(t)) \frac{X(t)}{N} \delta t - m u Y(t) \delta t$. След деление на δt и граничен преход се достига до следния модел:

$$\dot{X}(t) = \beta_{vh} b \frac{N - X(t)}{N} Y(t) - \gamma X(t)$$

$$\dot{Y}(t) = \beta_{hv} b X(t) (M - Y(t)) - \mu Y(t)$$
(1)

Вижда се, че (0,0) е равновесна точка за 1. Ако има ендемично състояние $E^* = (X^*, Y^*)$, то също е равновесно. Може да се изведе, че:

$$E^* = (X^*, Y^*) = \left(N \frac{1 - \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu} M}}{1 + \frac{\gamma N}{b \beta_{\nu h} M}}, M \frac{1 - \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu} M}}{1 + \frac{\mu}{b \beta_{h \nu}}}\right)$$

.

Заключения на Ross: За да съществува E^* е необходимо $M > M^* = \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu}}$.

Така ако се намали броя на комари под M^* , заразата ще изчезне след време.

Ross забелязал, че за малки отклонения над M^* , I^* достига някаква стойност, от която малко се мени в последствие. Това обяснява защо хората не са намирали връзка между броя на комарите в местообитанията и броя на заразените

броя на комарите в местообитанията и броя на заразените хора.

С това изследване Ross доказва разсъжденията си за изкореняването на маларията.

Ендемично състояние

Зараза има ендемичен характер, когато за дълъг период от време, заразените с нея са положително число.

Възможно е този брой да е приблизително равен във времето, или да се изменя периодично.

В моделите, които ще изследваме, ендемията съответства на равновесна точка, която е асимптотично устойчива. Това ще рече, че към нея се приближава решението на системата с времето, освен ако не сме започнали в състоянието на липса на зараза.

Репродукционно число \mathcal{R}_0

 \mathcal{R}_0 носи смисъла на брой вторични случаи на заразата, причинени от един първичен. За да може болестта да има ендемично състояние, то е необходимо $\mathcal{R}_0 > 1$. Наистина, иначе броят заразени веднага щеше да намалее и съответно нямаше да има равновесна точка, различна от 0. За модела на Ross e:

$$\mathcal{R}_0 = \frac{1}{\gamma} \times \beta_{hv} b \frac{M}{N} \times \frac{1}{\mu} \times \beta_{vh} b = \frac{b^2 \beta_{vh} \beta_{hv} M}{\gamma \mu N}$$
 (2)

С други думи Ross е открил сходна по същност до него оценка:

$$\mathcal{R}_0 > 1 \iff M > M^* = \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu}} \tag{3}$$

\mathscr{R}_0 в многомерни модели

Нека имаме няколко категории хора, податливи на заразата, които сме разграничили и това са $z = (z_1, \dots, z_n)^T$. Нека системата се представя във вида $\dot{z} = \mathsf{G}z = \mathscr{F}(z) - \mathscr{V}(z)$. \mathscr{F} определя новите заразени, а $\mathscr{V}(z) = \mathscr{V}^-(z) - \mathscr{V}^+(z)$ е мобилността, която сме разделили на прииждащи и заминащи за съответните групи. Може да се покаже, че е в сила следната теорема

\mathscr{R}_0 в многомерни модели

Теорема

При изпълнени следните условия:

$$2_i = 0 \implies \mathcal{V}_i^- = 0$$

3
$$\mathcal{F}(0) = 0, \mathcal{V}(0) = 0$$

• $\mathcal{F}(z) = 0 \implies$ всички собствени стойности на DG0 са с отрицателна реална част

в сила за репродукционното число е $\mathcal{R}_0 = \rho(FV^{-1})$, където ρ е спектралния радиус, а $F = D\mathcal{F}(0)$, $V = D\mathcal{V}(0)$, където $F \geq 0$, а V е несингулярна M-матрица.

Допълнително, 0 е локално асимптотично устойчива, ако $\mathcal{R}_0 < 1$ и неустойчива, ако $\mathcal{R}_0 > 1$.

\mathscr{R}_0 в многомерни модели

 F_{ij} е скоростта, с която индивид от група j заразява индивиди от група i, а V_{jk}^{-1} е средната продължителност на пребиваване на индивид от група k сред индивидите от група j, съответно $(FV^-1)_{ik}$ са средния брой новозаразени от i заради индивид от k.

Многомерен модел на Bichara

Допускания на модела:

- Има *т* области, които се обитават от комари и *п* популации хора, които ги посещават.
- Комарите не се движат между областите.
- Всяка от групите хора и комари е от константен брой.
- Мобилността на хората в различните местообитания е константна.
- Честотата на ухапвания на комари за всяка област е константна.
- Хората могат да оздравеят, а комарите не.

Многомерен модел на Bichara. Означения

- $X_i(t)$ е броя заразени с малария хора в момент t, i = 1, n.
- **2** $Y_j(t)$ е броя заразени с малария комари в момент t, $j = \overline{1, m}$.
- **3** N_i е броя хора, а M_j е броя комари за съответните групи.
- $\mathbf{9}$ γ_i са скорости на оздравяване на хората.
- \bullet μ_i са скорости на смъртност на комарите.

- **8** p_{ij} средна вероятност човек от i да е в j.

Многомерен модел на Bichara. Уравнение за контактите

Средния брой ухапвания на комари в съответните области по техния брой трябва да е същия като средния брой ухапвания на хора от популации по броя им в съответната област, сумирайки по всяка попилация.

$$a_j M_j = b_j \sum_{i=1}^n p_{ij} N_i \iff b_j = \frac{a_j M_j}{\sum_{i=1}^n p_{ij} N_i}$$
 (4)

При направените допускания, в момент t, в местообитание j съотношението на заразени към всички хора е:

$$\frac{\sum_{i=1}^{n} p_{ij} X_i(t)}{\sum_{i=1}^{n} p_{ii} N_i}$$
 (5)

Аналогично на модела на Ross може да получим:

Многомерен модел на Bichara. Извеждане

В момент t заразените хора X_i се увеличават от ухапване на незаразен човек от i заразени комари в различните местообитания j, а намаляват пропорционално на броя си с коефициента на оздравяване. Заразяването моделираме по закона за масите, като коефициентът за съответните местообитания ще бъде b_j . Тогава може да се изрази $\dot{X}_i(t) = \sum_{j=1}^m \beta_{vh} b_j p_{ij} (N_i - X_i(t)) \frac{l_j}{M_i} - \gamma_i X_i(t)$.

Многомерен модел на Bichara. Извеждане

В момент t заразените комари Y_j се увеличават от ухапване на заразен човек от някое от различните местообитания i от незаразен комар в местообитание j, а намаляват пропорционално на броя си с коефициента на смъртност. Заразяването моделираме по закона за масите, като коефициентът ще бъде a_j . Достига се до $\dot{Y}_j(t) = \beta_{hv} a_j (M_j - Y(t)) \frac{\sum_{i=1}^n p_{ij} X_i(t)}{\sum_{i=1}^n p_{ij} N_i} - \mu_j Y_j(t)$.

Многомерен модел на Bichara. Краен вид

$$\dot{X}_{i}(t) = \beta_{vh}(N_{i} - X_{i}(t)) \sum_{j=1}^{m} \frac{p_{ij}a_{j}I_{j}}{\sum_{k=1}^{n} p_{kj}N_{k}} - \gamma_{i}X_{i}(t), \quad i = \overline{1, n}$$

$$\dot{Y}_{j}(t) = \beta_{hv}a_{j}(M_{j} - Y(t)) \frac{\sum_{i=1}^{n} p_{ij}X_{i}(t)}{\sum_{i=1}^{n} p_{ij}N_{i}} - \mu_{j}Y_{j}(t), \quad j = \overline{1, m}^{(6)}$$

Как да разберем дали има ендемични точки и колко са на брой?

