A LEVEL (P6) PERMUTATIONS AND COMBINATION MARK SCHEME

1 (a) (i) $3 \times 5 \times 3 \times 2$ or ${}_{3}C_{1} \times {}_{5}C_{1} \times {}_{3}C_{1} \times 2$ = 90	M1 A1	For multiplying $3 \times 5 \times 3$ For correct answer
(ii) $(3 \times 5 \times 2) + (3 \times 3) + (5 \times 2 \times 3)$ = 69	M1 M1 A1	For summing options that show S&M,S&D,M&D $3 \times 5 \times a + 3 \times 3 \times b + 5 \times 3 \times c$ seen for integers a,b,c For correct answer
(b) $_{14}C_5 \times {}_{9}C_5 \times {}_{4}C_4$ or equivalent = 252252	M1 M1 A1	For using combinations not all ₁₄ C For multiplying choices for two or three groups For correct answer NB 14!/5!5!4! scores M2 and A1if correct answer

2	(i)	$\frac{9!}{2!2!} = 90720$	B1		For dividing by 2! or 2 once or twice, or ${}_9P_7$ or ${}_9C_7$ seen, can be implied
			B1	2	For correct answer
DE 180 180 180 1	(ii)	$\frac{5!4!}{2!2!} = 720$ OR could do by probs and multiply by their (i)	B1		For 5! or 4! or $_4P_4$ or $_5P_5$ seen in num
		by their (i)	B1		For $5! \times 4! \times k$ in num of a term, k = 1 or 2 only
			B1	3	For correct final answer

3 (a)(i)	$_{3}C_{1} \times {}_{5}C_{1}$ $= 15$	M1 B1	[2	For multiplying two combinations together For correct answer
(ii)	$_{5}C_{1} \times {}_{6}C_{2}$	M1		For seeing ${}_6\mathrm{C}_2$, or separating it into three alternatives either added or multiplied
	= 75	A 1	[2	For correct answer
(b)(i) 9	!/2!2! = 90720	M1 A1	[2]	For dividing by 2! twice For correct answer
(ii)	5! Or ₅ P ₅	B1		5! seen in a numerator
	= 120	B1	[2	For correct final answer

4 (i) $_{13}P_9 = 259,459,200 \text{ or } 259,000,000$	M1 A1	2	For using a permutation involving 13 For correct answer
(ii) 10! or $_{10}P_9 = 3628800$	M1 M1 A1	3	For using a 10 For using a 9! For correct answer
(iii) 1 – (ii) / (i) = 0.986	M1 A1ft	2	For a subtraction of a suitable prob < 1, from 1 For correct answer, ft on their (i) and (ii)

5 (i) P(no orange) = $(2/3)^5$ or 0.132 or 32/243	B1	1	For correct final answer either as a decimal or a fraction
(ii) P(2 end in 6) = $(1/10)^2 \times (9/10)^3 \times {}_5C_2$	B1 M1		For using $(1/10)^k$ $k>1$ For using a binomial expression with their $1/10$ or seeing some $p^2 * (1-p)^3$
= 0.0729	A1	3	For correct answer
(iii) P(2 orange end in 6) = $(1/30)^2 \times (29/30)^3 \times {}_{5}C_2$	M1		For their (1/10)/3 seen
= 0.0100 accept 0.01	A1	2	For correct answer
(iv) $n = 5, p = 1/3,$ mean = 5/3, variance = 10/9	B1 B1 ft	2	For recognising $n=5$, $p=1/3$ For correct mean and variance, ft their n and p , $p<1$

6 (0) 17P11 =4.94 × 10 ¹¹	Bi Bi	2	Or equivalent Or equivalent
(ii) ₁₂ P ₆ × 5! = 79800000 (79833600)	Bi Bi Bi	3	For 5! Multiplied by something For 12Ps or 17Cs multiplied by something Correct answer o.e.
(iii) ₁ C ₁ × ₁ C ₁ =21	BI MI AI	3	3 or ₁ C ₂ seen ₂ C something seen correct answer

7 (i) 9! = 362880 (363000)	B1 B1	2	9! Or ₉ P ₉ only correct answer
(ii) $6! \times {}_{7}P_{3}$	B1		6! seen
=151200	M1 A1 A1	4	₇ P or ₇ C _{something} or 7 multiplied by something mult by ₇ P ₃ correct answer
(iii) 1 woman: ${}_{3}C_{1} \times {}_{6}C_{2} = 45$ 2 women: ${}_{3}C_{2} \times {}_{6}C_{1} = 18$ 3 women: ${}_{3}C_{3} = 1$	M1 B1		summing cases for 1, 2, 3 women one correct case
total = 64	A1		correct answer
OR no restrictions 9C3 (84) Men only	B1 M1		₉ C ₃ or 84 or 3 times ₈ C ₂ seen attempt at subt of their 'no women' case
84 - 20 = 64	A1	3	correct answer

8	(i)	(a)	$\frac{12!}{4!2!} = 9979200 (9980000)$	B1		Dividing by 4! and 2! only
				B1	2	Correct answer
		(b)	$\frac{9!}{2!} = 181440 (181000)$	B1		9! or 9 × 8! seen not in denom
				B1	2	correct answer
	(ii)		${}_{6}C_{2}$ or ${}_{4}C_{0} \times {}_{2}C_{2} \times {}_{6}C_{2}$ or ${}_{6}C_{4}$ or ${}_{6}P_{2}/2!$	M1		for seeing 6 C something or 6P something in a product (could be with 1)
				M1		for seeing something C ₂ or 6C ₄
			= 15	A1	3	correct answer
						15 with no working scores full marks

9 (i) $\frac{6!}{3!} = 120$	M1 A1	2	For dividing by 3! Correct answer
(ii) $5 cdots 7 = \frac{4!}{2!} = 12$ $7 cdots 5 = \frac{4!}{2!} = 12$ 7 cdots 7 = 4! = 24 total = 48	M1 B1 B1	4	For identifying different cases For 4!/2! seen For 4! alone seen or in a sum or product Correct final answer

10 (i) $\frac{12!}{2!2!3!4!} = 831600$	M1 A1	[2]	Dividing by 3! 4! and 2! once or twice o.e Correct final answer
(ii) $\frac{6!}{4!2!} \times \frac{6!}{2!3!}$	B1		$\frac{6!}{4!2!}$ and $\frac{6!}{2!3!}$ seen o.e
	M1		multiplying their numbers for group 1 with their numbers for group 2
= 900	A1	[3]	correct final answer
(iii) $2 \times 3 \times_7 C_2$ or $2 \times 3 \times 21$	M1		₇ C ₂ seen multiplied or 5 options added
= 126	A1	[2]	correct final answer

11 (i) ${}^{13}C_{10} \times {}^{12}C_9 \times {}^6C_4 \times {}^7C_4$	M1		Expression involving the product of 4 combinations
= 33033000 (33000000)	A1	[2]	Correct final answer allow 33×10 ⁶ or 3.3×10 ⁷
(ii) 5! × 6!	B1		6! or 5! or 4! oe seen no denom
= 86400	M1		a single product involving 6! and either 4! or 5! no denom
	A1	[3]	Correct final answer
(iii) 4! × 3! × 2	B1 M1		4! or 3! or 4!/4 seen a single product involving 3! (or 4!/4) and 4!
= 288	A1	[3]	Correct final answer

12	(a)	(i)	$1 \times 5 \times 4 \times 3$ or ${}^{5}C_{3} \times 3!$ or ${}^{5}P_{3}$	M1		One of these oe
			= 60	A1	[2]	Correct final answer
		(ii)	$1 \times 6^3 = 216$	M1		Seeing 6 ³
		(11)	1 0 210	A1	[2]	Correct answer
					(-)	
	(b)	(i)	$5G \ 0B = {}^{8}C_{5} = 56 \ (\times {}^{6}C_{0})$	M1		Σ 2 or three 2-factor products, C or P
			$4G 1B = {}^{8}C_{4} \times {}^{6}C_{1} = 420$	B1		Any correct option unsimplified
			$3G\ 2B = {}^{8}C_{3} \times {}^{6}C_{2} = 840$			
				A1		A second correct option unsimplified
			total = 1316	A1	[4]	Correct answer
		(::)	lle - lle	 M1		
		(11)	$^{11}C_2 + ^{11}C_5$	M1		Adding two single perm or comb options ${}^{11}C_x + {}^{11}C_v$
			= 55 + 462	B1		One correct unsimplified option
			= 517	A1		Correct answer
	∩R	COUS	ins in $P(3B, 2G) + P(4B, 1G)$	M1		S 5 or more 2 feater norm or comb terms
			(a, 0G) + cousins out P(3B, 2G)	1411		Σ 5 or more 2-factor perm or comb terms
		,	(3G) + P(1B, 4G) + P(0B, 5G)	B1		3 or more correct unsimplified options
			4+3+28+168+210+56			of more contest undimprined options
	= 51	17		A1	[3]	Correct answer

13 (a) (i) 24	B1	[1]	Correct final answer
(ii) 3 digit odd $500+=4$ ways	M1		Attempt for 3 digit odd numbers
3 digit odd $600+=3 \times 2=6$ ways	M1		Attampt for A digit add much an
4 digit odd 1000+ = 4 ways 4 digit odd 3000+ = 4 ways	M1		Attempt for 4 digit odd numbers
4 digit odd 5000+ = 4 ways			
4 digit odd 6000+= 6 ways OR 4 digit odd, last digit in 3 ways,			For summing their number of ways with 3-digits
			and their number of ways with 4-digits
2 nd to last in 3 ways, 2 nd in 2 ways			
first in 1 way = 18 Total = 28 ways	A1	[4]	Correct total
·	711	[ד]	Correct total
(b) no of ways 4 and 5 not next to each other			
$= 6! - 5! \times 2! = 720 - 240$	M1		Finding ways digits not next to each other
= 480	B1		240 or 480 seen
Prob not next = $480/720 = 2/3$	A1	[3]	Correct answer

14 (i) ${}^{10}C_1 + {}^{10}C_3 + {}^{10}C_5 + {}^{10}C_7 + {}^{10}C_9$ = 512	M1 A1 A1 [3]	Summing some ¹⁰ C combinations with odd numbers, all different At least 3 correct unsimplified expressions Correct answer
(ii) $6! \times 7 \times 6 \times 5$ = 151200	B1 M1 A1 [3]	6! seen multiplying by ⁷ P ₃ o.e. correct answer
(iii) 12! / (4! × 7!) = 3960	B1 M1 A1 [3]	12! Seen dividing by 4!7! correct answer

15	(i)	362880 (363000)	B1 [1]	
	(ii)	PG or GP in $8! \times 2 = 80640$ or $7/9$ of (i)	M1	Considering together and also subtracting from their (i) or using probabilities
		362880 - 80640 = 282240	B1 A1ft [3]	8! × 2 or 80640 seen oe correct answer ft 40320 only
	(iii)	${}^{9}P_{3} \text{ or } {}^{9}C_{3} \times 3! \text{ or } 9!/6!$ = 504	M1 A1 [2]	⁹ P ₃ or ⁹ C ₃ oe seen allow extra multiplication correct final answer
	(iv)	${}^{8}C_{2} \times 3! \text{ or } 504 - {}^{8}C_{3} \times 3! \text{ or } {}^{8}P_{2} \times 3$ $= 168$	M1 A1 [2]	$^{8}C_{x}$ or $^{8}P_{x}$ seen allow extra mult, or (iii)/9 or (iii)/3 correct final answer
	(v)	PG and x in $7 \times 2 \times 2$ ways = 28	M1	$x \times 2 \times 2$ seen or their (iii) – 7 or $^{7}C_{1}$ or $^{7}C_{2}$
		Answer $504 - 28 = 476$	A1 [2]	correct answer

16	(i)	ends cola, 5!/2!2! = 30 ends green tea, 5!/3!2! = 10 ends orange juice, 5!/3!2! = 10 total = 50 ways	M1 A1 A1	Considering all three options Any one option correct Correct answer
		OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$	M1	OR Considering all three options
		$=\frac{5}{21}$	A1	Correct fraction
		$\frac{5}{21} \times \frac{7!}{3!2!2!} = 50 \text{ ways}$	A1	Correct answer
			[3]	
	(ii)	colas together, no restrictions, 5!/2!2! = 30 ways colas together and green tea together, 4!/2! = 12 ways 30 - 12 = 18 ways.	M1 A1 M1 A1 A1	Considering all colas together, or 5! seen Correct answer Considering all colas tog and all green tea tog, or 4! seen Correct answer Correct final answer
		OR ₁ Attempt to list	M1A1 M1A1 A1	OR ₁ 10 or more, 12 or more correct 14 or more, 16 or more correct 18 correct
		$\mathbf{OR_2} \ 3 \times \frac{4 \times 3}{2} = 18$	M1	OR ₂ Considering all colas together, or 3! seen
			A1 M1 A1 A1 [5]	3 ways for colas and orange juice Considering green teas not together 4 × 3 or (4 × 3)/2 Correct final answer

17 (i) ${}^{6}P_{4} = 6!/2!$ = 360	B1 [1]	Correct answer
(ii) 4!/2! = 12	B1 [1]	Correct answer
(iii) $4! \times {}^{6}C_{4} = 360 \text{ or } {}^{6}P_{4}$	B1 [1]	Correct final answer
(iv) e.g. 2R 1B 1G, 1R 2B 1G, 1R 1B 2G $= \frac{4!}{2!} + \frac{4!}{2!} + \frac{4!}{2!} = 36, \text{ mult by } {}^{6}\text{C}_{3}$ $\text{total} = 720$	M1 M1 A1 [3]	$4!/2!$ seen Mult by ${}^{6}C_{3}$ Correct answer
(v) $2R 2B = 4!/2!2! = 6$ Mult by ${}^{6}C_{2}$, total = 90 Answer = $360 + 720 + 90 = 1170$	M1 A1 A1ft [3]	Considering 2 colours e.g. RRBB or RBBR or mult by 6C_2 Ft their (iii) + (iv) + (v)

10	(2	4M 2W 5M 1W	N/1	A4141 - 610G × 9G 110G × 9G
18	(i	4M 2W or 5M 1W	M1	At least 1 of ${}^{10}\text{C}_4 \times {}^{9}\text{C}_2$ and ${}^{10}\text{C}_5 \times {}^{9}\text{C}_1$ seen
		chosen in ${}^{10}C_4 \times {}^{9}C_2 + {}^{10}C_5 \times {}^{9}C_1$	A1	Correct unsimplified expression
		= 9828	A1	Correct answer
			[3]	
	(ii)	${}^{9}C_{3} \times {}^{8}C_{1} + {}^{9}C_{4} = 798$	M1	One of ${}^9C_3 \times {}^8C_1$ and ${}^9C_4 \times ({}^8C_0)$ seen
		Prob = 798/9828 = 0.0812		Correct answer
	(iii)	Albert + not T ${}^{9}C_{3} \times {}^{8}C_{2} + {}^{9}C_{4} \times {}^{8}C_{1}$ = 3360	M1	One of ${}^9C_3 \times {}^8C_2$ or ${}^9C_4 \times {}^8C_1$ or ${}^9C_5 \times ({}^8C_0)$ seen
		Tracey + not A ${}^{9}C_{4} \times {}^{8}C_{1} + {}^{9}C_{5}$ = 1134	A1	Unsimplified 3360 or 1134 seen
		Number of ways = 4494	A1 [3]	Correct final answer
	(iv)	$6! - 4! \times 5 \times 2$ or $6! - 5! \times 2$ (= 480)		
	(11)	OR $4! \times 5 \times 4$ or $4! \times {}^{5}P_{2} (= 480)$	B1	$6! - 4! \times 5 \times 2 \text{ or } 6! - 5! \times 2$
		,		or $4! \times 5 \times 4$ or $4! \times {}^{5}P_{2}$
		$prob = 480/6! = 2/3 \ (0.667)$	M1	dividing by 6!
			A1	correct answer
		OR using probabilitiesas above	[3]	
		OR Women together 5!/4! (= 5)		
		Women not together = $15 - 5 = 10$	B1	5 or 10 seen
		total ways MMMMWW = $6!/4!2! = 15$	M1	Dividing by 15
		prob = 2/3	A1	Correct answer

19 (i)	${}^{14}P_{12} = 4.36 \times 10^{10}$	M1 A1 [2]	¹⁴ P ₁₂ seen oe Correct answer
(ii)	business people $3! = 6$ students $5! = 120$ married couples ${}^{3}P_{2} \times 2 \times 2 = 24$ total ways = 17280	B1 B1 B1 B1 [4]	3! oe seen, not in denominator 5! oe seen, not in denominator 24 oe seen, not in denominator correct final answer
(iii)	Mrs Brown 3 Mrs Lin 10 Student 5	B1	any 2 of 3, 10, 5 oe seen, not in denominator
	Prob = $3 \times 10 \times 5 \times {}^{11}P_9 / (i)$	B1 M1	¹¹ P ₉ seen multiplied dividing by their (i)
	= 0.0687	A1 [4]	correct answer
	$OR_1 \ 3/14 \times 10/13 \times 5/12 = 150/2184 \ (0.0687)$	B1 B1 M1 A1	any 2 of numerators 3, 10, 5 oe seen denominators 14, 13, 12 of 3 fractions multiplying 3 separate fractions correct answer

$OR_2 1 - 3/14 = 11/14$	B1	1 - 3/14 seen
$1 - 11/14 \times 5/13 = 127/182$	B1	$1 - 11/14 \times 5/13$ seen
$8/14(4/13 \times 12/12 + 9/13 \times 7/12) +$	M1	attempt to find P(Mrs Lin not behind a
$3/14(3/13 \times 12/12 + 10/13 \times 7/12)$		student and Mrs Brown not in front row),
= 1206/2184		involving $8/14 \times \text{prob} + 3/14 \times \text{prob}$
1 - (1524 + 1716 - 1206)/2184 = 150/2184	A1	correct answer

20 (i) Options 5 bat 5 bl 1 Wk in ${}^{10}C_5 \times {}^{9}C_5 \times {}^{2}C_1 = 63504$ ways	M1	Multiplying three combinations together
or 5 bat 4 bl 2 Wk in ${}^{10}C_5 \times {}^{9}C_4 \times {}^{2}C_2 = 31752 \text{ ways}$	M1	Summing more than one sensible option
or 6 bat 4 bl 1 Wk in ${}^{10}C_6 \times {}^9C_4 \times {}^2C_1 = 52920$ ways Total = 148176 (148000)	A1 A1 [4]	Two options correct unsimplified Correct final answer
(ii) $\frac{11!}{5!4!2!} = 6930$	B1 [1]	Correct answer evaluated
(iii) Omit a pen $\frac{10!}{4!4!2!} = 3150$	M1	Summing three options
Omit a diary $\frac{10!}{5!3!2!} = 2520$	B1	One option correct
Omit a notebook $\frac{10!}{5!4!} = 1260$		
Total = 6930	A1 [3]	Correct final answer

21 (i) 90720	B1 [1]	Not 9!/2!2!
(ii) 3 vowels together	B1	3! oe seen multiplied by integer oe
$= 3! \times 7!/2!2! = 7560$	B1	7 or 6! seen multiplied as a num
Prob(not together) = $\frac{90720 - 7560}{90720} = \frac{83160}{90720}$	M1	Subt from their (i) or dividing by their (i) or 1 – prob
= 0.917 (=11/12)	A1 [4]	Correct answer from correct working
(iii) One S in 5C_3 ways = 10	M1	⁵ C ₃ seen added
SS in 5C_2 ways = 10	M1	⁵ C ₂ seen added
Total = 20	A1 [3]	Correct answer
OR 6 C $_3$	M1	$^{6}C_{3} \times 2 \text{ or } \div 2 \text{ or } \times 1 \text{ seen}$
= 20	M1 A1	⁶ C ₃ only Correct answer

22 (i) $4 \times 3 \times 7$ = 84	B1 [1]	Correct answer
(ii) 10! – 9! × 2 = 2903040 (2900000)	B1 B1 [2]	$10! - k \times 9!$ seen oe Correct answer
<i>OR</i> 8! × 9 × 8 = 2903040 (2900000)	B1 B1	$8! \times 9 \times l$ seen oe Correct answer
(iii) ${}^{9}C_{1} + {}^{9}C_{2} + + {}^{9}C_{9}$	M1 M1	Using combinations Adding 9 combinations
= 511	A1 [3]	Correct answer
$OR 2^9 - 1$	M1 M1	2 ⁹ seen Subtracting 1
= 511	A1	Correct answer

23			$\frac{12!}{2!3!2!} = 19958400 \ (20,000,000)$	M1 A1	[2]	Dividing by 2! 3! 2! Correct answer
		(ii)	$\frac{4!}{2!} \times \frac{9!}{2!3!} = 362880$	B1 B1 B1	[3]	4! seen multiplied 9! or 9 × 8! seen multiplied Correct final answer
	(b)	(i)	3876 × 4!	M1		Multiplying by 4!
			= 93024	A1	[2]	Correct answer
		(ii)	$(3!)^4 \times 4!$	M1		3! or 6 or 4! seen
			= 31104	A1	[2]	Correct final answer

24	(i)	each in 2 ways = 2^{12} = 4096	M1 A1	[2]	2 ¹² seen Correct answer
	(ii)	$ \frac{12!}{7!5!} \\ = 792 $	B1	[1]	
25	(a)	G R L 11 7 7 = 15C11 × 10C7 × 8C7 = 1310400 13 6 6 = 15C13 × 10C6 × 8C6 = 617400 15 5 5 = 15C15 × 10C5 × 8C5 = 14112	M1 A1 M1		Multiplying 3 combinations One of 15600, 617400, 14112 seen Adding 3 options
	(b)	Total = 1941912 (1940000) e.g. * E * R * E (GG) N * A * E * gives 6	A1	[4]	Correct answer
	(6)	ways for G	B1		7! / 3! Or 7!/3!3! seen oe
		$\frac{7!}{3!} \times 6 \text{ or } 8!/3! - 2 \times 7!/3!$	B1		Multiplying by 6 (gaps) oe
		= 5040 ways.	B1	[3]	Correct final answer

26 (i) 3! × 4! × 8! × 3!	M1 M1	Multiplying 3 factorials together Multiplying by 3!
= 34 836 480 (34 800 000)	A1 [3]	Correct answer
(ii) ${}^{3}C_{2}\times {}^{4}C_{2}\times {}^{8}C_{2}$	M1	Multiplying (only) 3 combinations together
= 504	A1 [2]	Correct answer
(iii) Fr Fa H		
$3 1 2 = {}^{8}C_{3} \times {}^{3}C_{1} \times {}^{4}C_{2} = 1008$	M1	Multiplying 3 combinations, only
3 2 $1 = {}^{8}C_{3} \times {}^{3}C_{2} \times {}^{4}C_{1} = 672$	M1	Summing 3 options
$4 1 1 = {}^{8}C_{4} \times {}^{3}C_{1} \times {}^{4}C_{1} = 840$	A1	3 correct combination answers
total ways = 2520	A1 [4]	Correct answer

27 (a)) (i)	7 couples in 7! ways each couple in 2 ways so $7! \times 2^7$ = 645120	B1 M1 A1	[3]	7! seen multiplied mult by 2 ⁷ correct final answer	
		OR $14 \times 12 \times 10 \times 8 \times 6 \times 4 \times 2 = 645120$	B2 A1		correct unsimplified answer correct answer	
	(ii)	$7! \times 7! \times 2$	B1		7! × 7! seen	
	()	= 50,803,200 (50,800,000)	B1	7		
			-		14. 71	
		OR $14 \times 6! \times 7!$	B1		14×7! seen	
			B1		Correct answer	
(b)	(i)	7C2 = 21	B1	[1]		
	(ii)	all in: 1 all not in: 5C4 = 5	M1		Considering both cases	
		total 6	A1	[2]	Correct answer	
	(iii)	2 girls in: 6C2 × 3C2 = 45 3 girls in: 6C1= 6	M1		Attempt at summing 2 and 3 girls in the team need not see 3C2	
		Total 51	A1	[2]	Correct answer	

28 (i)
$$_{11}C_6 = 462$$
OR A3 B3 or A4 B2 or A5 B1 or A6
$$= {}_8C_3 + {}_8C_4 \times {}_3C_2 + {}_8C_5 \times {}_3C_1 + {}_8C_6$$

$$= 56 + 210 + 168 + 28$$

$$= 462$$
(ii) ${}_8C_4 \times {}_3C_2 + {}_8C_5 \times {}_3C_1 + {}_8C_6$

$$= 210 + 168 + 28$$
B1
$$\sum 2 \text{ or more two-factor terms, } P \text{ or } C \text{ any numbers}$$

$$= 210 + 168 + 28$$
B1
Any correct option unsimplified

[3]	Correct answer Summing ${}_{9}C_{x} + {}_{9}C_{y}$ can be mult by 2 no other terms 126 or 84 seen or unsimplified ${}_{9}C_{4}$, ${}_{9}C_{6}$ Correct answer
	no other terms 126 or 84 seen or unsimplified ₉ C ₄ , ₉ C ₆
	Correct answer
	\sum 5 or more 2-factor ${}_{6}P_{x}$ or ${}_{6}C_{x}$ with ${}_{3}C_{x}$ or ${}_{3}P_{x}$ only (can be mult by 2)
	3 or more correct unsimplified options
	Correct answer
	subt two ${}_{9}C_{x}$ options from their (i) ${}_{9}C_{5}$ seen oe if using this method
[3]	Correct answer
_	[3]

29 (i) $\frac{7!}{3!} \times 2$	B1	$\frac{7!}{3!}$ or 840 seen or implied
= 1680	B1 [2]	correct answer
(ii) ${}^{6}C_{4} = 15$	B1 [1]	correct answer
(iii) 1E in ⁶ C ₃ ways	M1	$k \times {}^{6}C_{a}$ or $k \times {}^{b}C_{3}$ (k a constant) or ${}^{6}P_{d}$ or ${}^{e}P_{3}$
= 20	A1 [2]	correct final answer
(iv) need 2Es in ${}^{6}C_{2}$ ways = 15 ways need 3Es in ${}^{6}C_{1}$ = 6 ways total = 15 + 20 + 15 + 6 = 56 ways	M1 A1 M1 A1ft [4]	attempt to find ways with 2Es or 3Es 6C_2 oe and 6C_1 oe seen summing ways for no Es, 1E, 2Es and 3Es correct final answer, ft on their four answers

30 (a) $\frac{10!}{5!4!} = 1260$	M1 [2]	10! or 10P10 seen in num or alone or dividing by 5! 4! only Correct final answer
(b) (i) $_{8}P_{4}$ or $_{8}C_{4} \times 4!$	M1	₈ P ₄ or ₈ C ₄ oe seen allow extra multiplication
= 1680	A1 [2]	Correct answer
(ii) 6C2 × 4!	M1	6C2 or 6P2 seen multiplied Mult by 4!
= 360	M1	Correct answer
OR 6P4 or $4 \times 3 \times 6 \times 5 = 360$	A1 [3]	Award full marks

(c) A B C			
1 1 7 = $9C1 \times 8C1 \times 7C7$ (oe) $\times {}_{3}C_{1} = 216$	M1		Summing at least two options of 1, 1, 7
			or 1, 3, 5 or 3, 3, 3
1 3 5 = $9C1 \times 8C3 \times 5C5(oe) \times 3! = 3024$	M1		Mult an option by 3C1 or 3! or 3C3
	M1		Any one of the 2 nd term being xCy seen
$3 3 3 = 9C3 \times 6C3 \times 3C3 \text{ (oe)} = 1680$			mult, fitting with the first (x could be 2,
			4, 5, 6 or 8) and corresponding y
	A1		Any of unsimplified 72, 504 or 1680
			seen
Total = 4920 ways	A1	[5]	Correct answer

31(a)	Boys in:10C1 × 9C3 = 840 ways Boys out: 10C3 × 9C3 = 10080 ways Total = 10920 ways (10900)	M1 B1 A1	[3]	summing two 2-factor products, C or P Any correct option unsimplified Correct final answer
(b)(i)	$_{12}P_8 = 19,958,400$	B1	[1]	or 20,000,000
(ii)	together: $_{11}P_7 = 1663200 \times 2 = 3326400$ Not tog: $19958400 - 3326400$ =16,632,000 (16,600,000) OR M at end then not F in $10 \times 10P6 \times 2=3024000$ ways not at end in $10 \times 9 \times 10P6 = 13608000$ ways Total = $16,632,000$ ways	B1 M1 A1 M1 B1	[3]	11P ₇ seen 19958400 or their (i) – their together (must be >0) correct final answer summing options for M at end and M not at end one correct option correct final answer
(iii)	8! × 5 = 201600 ways	B1 M1 A1	[3]	8! seen mult by equivalent of integer ≥ 1 Mult by 5 Correct answer SR 8! × 5!=4838400 B2

32 (a) twins in: ${}_{6}C_{2}$ twins out: ${}_{5}C_{2} \times {}_{6}C_{2}$	B1	₆ C ₂ alone or ₅ C ₂ multiplied seen or implied
Total = 15 + 150	M1	Summing two cases
= 165	A1 3	Correct final answer
OR all: ${}_{7}C_{2} \times {}_{6}C_{2}$ one twin: $2 \times {}_{5}C_{1} \times {}_{5}$	B1	${}_{7}C_{2} \times {}_{6}C_{2}$ alone or ${}_{5}C_{1}$ multiplied seen or implied
$_{6}C_{2}$	M1	$2 \times_5 C_1 \times_6 C_2$ seen, subtracted
Total = 315 - 150	A1	Correct final answer
= 165		[]

(b) (i) ends in 2, 6 or 8: 6!/2! (= 360) way ends in 4: 6! (= 720) ways Total = 3 × 360 + 720 = 1800 ways	B1 M1	4	Correct option for ending with 2 or 6 or 8.6!/2! seen anywhere, not multiplied Correct option for ending in 4 Summing 3 or 4 even options Correct final answer
OR ₁ all: $7!/2!$ (= 2520) ways ends in 1 or 7: $6!/2!$ (= 360) ways Total = $2520 - 2 \times 360$ = 1800	B1 B1 M1 A1		7!/2! seen anywhere, not multiplied 6!/2! seen, subtracted Subtract 2 odd options from total options Correct final answer
OR_2 (4 _A , 4 _B) final digit: 5 ways other digits: 6! ways and ÷ by 2! $Total = 5 \times 360$ = 1800	B1 B1 M1 A1		5 seen, multiplied 6! seen and divide by 2! at some stage Multiplying their two numbers Correct final answer
(ii) $5 \times 4 \times 3 \times 2$ or ${}_{5}P_{4}$ or ${}_{5}C_{4} \times 4!$ or $5!$ or ${}_{6}P_{5} \div 6$ = 120 ways	₅ P ₅ M1	2	One of these oe Correct final answer
(c) $\left(\frac{2}{3}\right)^7$ $= \frac{128}{2187} (0.0585)$	M1 M1 A1	3	2/3 seen multiplied 7 probabilities multiplied together Correct final answer

33	(i)	$4! \times 3! \times 5! \times 2! \times 4! = 829440$	B1 B1 B1	[3]	4!, 3!, 5!, 2 seen multiplied 1, not in denominator Mult by 4! Correct answer
	(ii)	$8! \times 9 \times 8 \times 7 \times 6 \times 5 \times 4$ $= 2438553600 (2.44 \times 10^{9})$	B1 B1 B1	[3]	8! seen multiplied 1 Mult by ₉ P ₆ Correct answer
	(iii)	8C3 × 5C3 × 2C2 = 560	B1 B1 B1	[3]	8C3 seen mult 5C3 seen mult Correct answer

34 (i)	H J O 1. 28 2 = 4C2×9C8×2C2 = 54 3 7 2 = 4C3×9C7×2C2 = 144 4 6 2 = 4C4×9C6×2C2 = 84	M1 M1 A1		Mult 3 combs, 2C2 may be implied $4Cx \times 9Cy \times 2Cz$ Summing 2 or 3 three-factor options 2 options correct unsimplified
	Total = 282 ways	A1	[4]	Correct answer
(ii)	$4! \times 6! \times 2! \times 3!$	M1		$4! \times 6! \times 2!$ oe seen multiplied by int
		M1		≥ 1 3! seen mult by int ≥ 1

	= 207360 (207000)	A1	[3]	Correct answer
(iii)	8 J and O trees in 8! = 40320 ways 9 gaps × 8 × 7 × 6	B1 M1		8! seen mult by int ≥ 1 no division 9P4 oe or 7P4 or 8P4 seen mult by int ≥ 1 no division
	= 121,927,680 (122,000,000)	A1	[3]	Correct answer
(i)	SR 4C2×9C2×2C2×9C6	M1		
(ii)	SR $\frac{4!\times6!\times2!}{4!\times6!\times2!}$ or 3! or both M1	M1		

	1		
35 (i) S(10) R(14) P(6) 1 2 4 = 10C1×14C2×6C4= 13650 1 3 3 = 10C1×14C3×6C3= 72800 2 2 3 = 10C2×14C2×6C3= 81900 Total = 168350 or 168000	M1 M1 B1 A1	[4]	Summing 2 or more 3-factor options perms or combs Mult 3 combs or 4 combs with $\Sigma r=7$ 2 options correct, unsimplified Correct answer
(ii) 2! × 2! × 5!	M1 M1		2! × 2! oe, seen mult by an integer ≥1, no division Mult by 5!, or 5! alone, seen mult by an integer ≥ 1 no division
= 480	A1	[3]	Correct answer
If M0 earned $\frac{2! \times 2!}{2! \times 2!}$ or $\frac{5!}{3!}$ or both,	SCM1		
seen mult by an integer ≥ 1 Or $2!\times 2!\times 5!$ divided by a value			
(iii) spaniels and retrievers in 4! ways gaps in 5P3 or $5 \times 4 \times 3$ ways = 1440	M1 M1 A1	[3]	4! seen multiplied by an integer >1 Mult by 5P3 oe Correct answer
If M0 earned $\frac{4!}{2! \times 2!} \text{ or } \frac{_5P_3}{3!} \text{ or both, seen multiplied}$ by an integer > 1	SCM1		₅ C ₃ oe
$7! - 5! \times 3!$ $- \{(4! \times 2 \times 4 \times 3!) + (4! \times 3 \times 4 \times 3!)\}$ $= 1440$	M1 M1 A1		oe oe, e.g. $6 \times 5 \times 4 \times 4!$
If M0 earned 3! × 2! × 2! used as a denominator in			
all 4 terms	SCM1		Marks cannot be earned from both methods.

36	(i)			O $2 = 7C3 \times 5C1 \times 8C2 = 4900$	M1		Summing more than one 3term option involving combs (can be added)
		3	2	$1 = 7C3 \times 5C2 \times 8C1 = 2800$	M1		Mult 3 combs only (indep)
		2	2	$2 = 7C2 \times 5C2 \times 8C2 = 5880$	A1		1 option correct unsimplified
		Tot	al = [13580	A1	4	Correct answer
	(ii)	_	•	s in 4! ways	M1		4! seen mult by something
		3 mountain in 3! ways 2 ordinary in 2! ways		M1		Mult by 3! for racing or 2! for ordinary	
		4! >	< 3! ×	< 2 = 288	A1	3	Correct answer
	(iii)	_		x x x x O s s s	M1		2! or 4! seen mult
		Ordinary in 2! Rest of bikes in 4! Bikes and gross 5 groups in 5 years		M1		Mult by 5 (ssssb)	
				and spaces 5 groups in 5 ways $5 = 240$	A1	3	Correct answer

37	(i)	1663200	B1	[1]	
	(ii)	M xxxxxxxx M	M1		9! or 9P9 seen
		Number of ways = $\frac{9!}{3!2!}$ = 30240	A1	[2]	Correct answer
	(iii)	4 vowels together = $8! \times 4/2!2!$ = 40320			8!/2!2! seen mult by something 4 oe 4!/3! or 4C1 etc. seen mult by something
		1663200 - 40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1
	(iv)	Exactly 2 Es $4C2 = 6$ Exactly 3 Es $4C1 = 4$ Total = 10 ways	M1 B1 A1	[3]	Summing 2 options One option correct Correct answer
		OR 5C2 = 10	M2 A1		M1 for k5C2 Correct ans

38 (i)	$\frac{8!}{3!2!2!} = 1680$	M1 A1		8! Divided by at least one of 3!2!2! oe Correct answer
(ii)	5! = 120	M1 A1	2	5! Seen (not added, may be divided/multipled) Correct answer

(iii) $\frac{5!4!}{3!2!2!}$	B1		5! Or 4! Seen in sum or product in numerator (denominator may by 1)
	M1		$\frac{k5!4!}{3!2!2!}$ in a numerical expression
= 120	A1	3	Correct final answer
(iv) GG with AA, AE, EE, RA, RE, RT, TA, TE, = 8 ways	M1		Summing 2 options (could be lists)
GGG with A, E, R, $T = 4$ ways	A1		1 correct option
Total = 12 ways	A1	3	Correct answer

39 (i)	$\frac{6!}{2!} = 360$	B1 B1	2	6! Seen alone Dividing by 2! only
(ii)	$\frac{4!}{2!} \times \frac{4!}{3!} = 48$	B1 B1	3	4! seen mult Dividing by 2! or 3! (Mult by 4 implied B1B1) Correct answer
(iii)	1N and 1A: N A xx in ${}^{3}C_{2}$ = 3 ways	M1 A1	2	³ C _x or ^x C ₂ seen alone Correct answer
(iv)	0 A : Nxxx = 1 way 2 As: NAAx in ${}^{3}C_{1}$ = 3 ways 3 As: NAAA in 1 way	M1 M1		Finding ways with 0 or 2 or 3 As Summing 3 or 4 options
	Total = 8 ways	A1	3	Correct answer

40	(i)	5! × 3! or 6!	B1		5! or 3! or 6! oe seen mult or alone
		= 720	B1	2	Correct final answer
	(ii)	3**4, 3**8, 4**8			considering at least 2 types of 4-figure options ending with 4 or 8 and starting with 3 or 4
		$= 5 \times 4 + 5 \times 4 + 5 \times 4 = 60$	B1 A1	3	One option correct unsimplified can be implied Correct final answer
	(iii)	5, *5, **5,	M1		Appreciating that the number must end in 5 (can be implied)
		$= 1 + 7 + 7^2$	M1		summing numbers ending in 5 with at least 2 different numbers of digits
		= 57	A1	3	Correct final answer

41	(i)	(a)	6! (×) 4! OR (×) 4 × 3 ÷ 2!2!3! OR ÷ 2!3! Total 720 ways	M1 M1 M1	4	Seen in a single term expression as numerator Seen in a single term expression as numerator (denominator may be 1) Seen in a single term expression as denominator Correct ans
	(i)	(b)	$1^{*******3} = \frac{7!}{3!2!} = 420$ $3^{******1} = 420$ $3^{******3} = 420$	B1 M1		$\frac{7!}{3!2!}$ seen oe Attempting to evaluate and sum at least 2 of 1***3, 3***1, 3***3
			Total = 1260 ways	A1	3	Correct ans
	(ii)	(a)	$5 \times 4 \times 3 = 60 \text{ ways } (^5P_3)$	M1 A1	2	⁵ P ₃ or ⁵ C ₃ ×3! (can be implied) Correct ans
	(ii)	(b)	2** in 212, 213, 214, 216, 221, 223, 224, 226, 231, 232, 233, 234, 236, 241, 242, 243, 246 261, 262, 263, 264, 266	M1		Listing attempt starting with 2, at least 10 correct entries
			Total = 22 ways	A1	2	Correct ans
			Alternative Methods: $3 \times {}^{4}C_{1} + 2 \times {}^{5}C_{1}$ OR	M1 OR		$p \times {}^{4}C_{1} + q \times {}^{5}C_{1}$, oe $p + q > 2$
			${}^{5}P_{2} + {}^{2}C_{1}$	M1		⁵ P ₂ seen
			OR ${}^{4}P_{2} + 2 \times {}^{4}P_{1} + {}^{2}C_{1}$	OR M1		Any 2 terms added

42	(i)	W(8) M(5) 4 $2 = {}^{8}C_{4} \times {}^{5}C_{2} = 700$ 5 $1 = {}^{8}C_{5} \times {}^{5}C_{1} = 280$ 6 $0 = {}^{8}C_{6} \times {}^{5}C_{0} = 28$ Total = 1008	M1 M1 A1 A1	4	Mult 2 combs, ${}^{8}C_{x} \times {}^{5}C_{y}$ Summing 2 or 3 options 2 correct options unsimplified Correct answer
	(ii)	M1 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$ M2 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$	M1		Summing 3 options
		Neither and MMMWWW = ${}^{3}C_{1} \times {}^{8}C_{3} =$	B1		One correct option
		56 Total = 392	A1	3	Correct answer
		OR total, no restrictions = ${}^5C_3 \times {}^8C_3 =$	M1		Subt 2 men together from no restrictions
		560 M1M2 and MWWW = ${}^{3}C_{1} \times {}^{8}C_{3} = 168$ 560 - 168 = 392	B1 A1		One correct of 560 or 168 Correct answer

$43 ^{48}C_{43}$ $= 1712304 (1710000)$	B1 48 seen in a single term combination oe B1 43 or 5 seen in a single term combination oe Both can be mult by integer $k \ge 1$ B1 3 Correct final answer
44 (i) 6! ×5! = 86400	B1 6! oe seen multiplied by integer $k \ge 1$ 5! oe seen multiplied by integer $k \ge 1$ Correct final answer
(ii) $6! \times 7 \times 6 \times 5 \times 4$ = 604800	B1 6! seen mult by integer $k \ge 1$ B1 Mult by ${}^{7}P_{4}$ oe B1 3 Correct final answer

45	(a) 1^{*****3} or 3^{*****1} or 2^{*****2} = $6^5 \times 3$	M1 M1	Mult by 6 ⁵ (for middle 5 dice outcomes) Mult by 3 or summing 3 different combinations (for end dice outcomes)
	= 23328	A1 3	
	(b) W J H 1 1 7 = ${}^{9}C_{1} \times {}^{8}C_{1} \times 1 = 72$ 1 7 1 = ${}^{9}C_{1} \times {}^{8}C_{7} \times 1 = 72$ 7 1 1 = ${}^{9}C_{7} \times {}^{2}C_{1} \times 1 = 72$ 1 3 5 = ${}^{9}C_{1} \times {}^{8}C_{3} \times 1 = 504$ mult by 3! 3 3 = ${}^{9}C_{3} \times {}^{6}C_{3} \times 1 = 1680$	M1 A1 A1 M1	Multiplying 3 combinations (may be implied) 1 unsimplified correct answer (72, 504, 1680, 216 or 3024) A 2 nd unsimplified different correct answer Summing options for 1,1.7 or 1,3,5 oe (mult by 3 or 3!) Summing at least 2 different options of the 3
	Total 4920	A1 6	Correct ans
	If no marks gained Listing all 10 different outcomes	SCM1	If games replaced M1M1M1 max available If factorials used M0M1M1 max available

46 (a) (i)	$\frac{9!}{2!2!3!} = 15120 \text{ ways}$	B1 B1 [2]	Dividing by 2!2!3! Correct answer
(ii)	******* in $\frac{8!}{2!2!3!}$ = 1680 ways	B1	Correct ways end in 3
	*******7 in $\frac{8!}{2!3!}$ = 3360 ways	B1	Correct ways end in 7
	Total even = 15120 - 1680 - 3360	M1	Finding odd and subt from 15120 or their (i)
	= 10080 ways OR	A1 [4]	Correct answer
	********2 in 8!/2!3! = 3360 ways *******6 in 8!/2!2!3! = 1680 ways *******8 in 8!/2!2!2! = 5040ways Total = 10080 ways	B1 B1 M1 A1	One correct way end in even correct way end in another even Summing 2 or 3 ways Correct answer
	OR "15120" ×6/9 = 10080	M2 A2	Mult their (i) by 2/3 oe Correct answer

ı N	MARKING SCHEMES 20 TOPIC 5: PERMUTATIONS AND COMBINATION					
	(b)	T(3) S(6) G(14) 1	M1 M1 M1 B1	M as Li Su op A	fult 3 (combinations) together assume $6 = {}^{6}C_{1}$ etc isting at least 4 different options amming at least 4 different options t least 3 correct numerical options	
47	(a) (i)	N^{*****B} Number of ways = $\frac{5!}{3!}$ = 20	B1 B1 B1	3	5! Seen in num oe or alone mult by $k \ge$ 3! Seen in denom can be mult by $k \ge 1$ Correct final answer	: 1
	(ii)	B(AAA)NNS Number of ways = $\frac{5!}{2!}$ or 5P_3 = 60	M1 M1 A1	3	5! seen as a num can be mult by $k \ge 1$ Dividing by 2! Correct final answer	
	(b)	$^{14}\text{C}_9$ total options = 2002 T and M both in $^{12}\text{C}_7$ = 792 Ans 2002 – 792 = 1210 OR Neither in $^{12}\text{C}_9$ = 220 One in $^{12}\text{C}_8$ = 495 Other in $^{12}\text{C}_8$ = 495	M1 B1 A1 M1 B1	3	$^{14}\text{C}_9$ or $^{14}\text{P}_9$ in subtraction attempt $^{12}\text{C}_7$ (792) seen Correct final answer Summing 2 or 3 options at least 1 correct condone $^{12}\text{P}_9 + ^{12}\text{P}_8 + ^{12}\text{P}_8$ here only Second correct option seen accept anoth 495 or if M1 not awarded, any correct option	
48	(i)	W S D 1 1 3 = $6 \times 4 \times^{3} C_{3} = 24$ 1 3 1 = $6 \times^{4} C_{3} \times 3 = 72$ 3 1 1 = ${}^{6}C_{3} \times 4 \times 3 = 240$ 1 2 2 = $6 \times^{4}C_{2} \times^{3}C_{2} = 108$ 2 1 2 = ${}^{6}C_{2} \times 4 \times^{3}C_{2} = 180$ 2 2 1 = ${}^{6}C_{2} \times^{4}C_{2} \times 3 = 270$ Total = 894	M1 M1 M1 B1 A1 [5	5]	Listing at least 4 different options Mult 3 (combs) together assume $6 = {}^6C_1$, $\Sigma r = 5$ Summing at least 4 different evaluated/unsimplified options >1 At least 3 correct unsimplified options Correct answer	
	(ii)	$^{3}P_{2} \times ^{10}P_{8}$ $= 10886400$	B1 B1 B1 [3	3]	$^{3}P_{2}$ oe seen multiplied either here or in (iii) $k^{10}P_{x}$ seen or $k^{y}P_{8}$ with no addition, $k \ge 1$, $y \ge 8$, $x < 10$ Correct answer, nfww	
	(iii)	DSWSWSWSWD or DWSWSWSWSD D in ${}^{3}P_{2}$ ways = 6 S in ${}^{4}P_{4}$ ways = 24 W in ${}^{6}P_{4}$ = 360 Swap SW in 2 ways	B1		If ³ P ₂ has not gained credit in (ii) may be awarded ⁴ P ₄ or ⁶ P ₄ oe seen multiplied or common in all terms (no division) Mult by 2 (condone 2!)	
		Total = 103680 ways	B1 [3	3]	Correct answer, 3sf or better, nfww	

49 (i)	5 (i) eg **(EEEE)*** Number of ways = $\frac{6!}{2!2!}$ = 180	M1 M1 A1 [3]	Mult by 6! oe Dividing by 2!2! oe Correct answer
(ii)	S******** or T*******S Number of ways = $\frac{7!}{4!2!} \times 2$ = 210	M1 M1 A1 [3]	Mult by 7! Or dividing by one of 2! or 4! Mult by 2 Correct answer
(iii)	exactly one E in ⁶ C ₃ ways = 20	M1 M1 A1 [3]	⁶ C _x as a single answer ^x C ₃ as a single answer correct answer

_				
50	P(no men) $\frac{{}^{9}C_{6}}{{}^{16}C_{6}} = \frac{84}{8008} = \frac{21}{2002} = \frac{3}{286}$ = 0.0105 OR $\frac{9}{16} \times \frac{8}{15} \times \frac{7}{14} \times \frac{6}{13} \times \frac{5}{12} \times \frac{4}{11} = 0.0105$	B1 B1 B1 B1 B1 B1	3	9 C $_6$ seen anywhere 16 C $_6$ seen as denom of fraction oe Correct final answer $(9 \times 8 \times 7 \times 6 \times 5 \times 4)$ seen anywhere Correct unsimplified denom Correct final answer
51 (i)	$\frac{1}{4}$	B1	1	
(ii)	$\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = \frac{81}{1024} = 0.0791$	M1 A1	2	Expression of form $p^4(1-p)$ only, p = 1/4 or $3/4Correct answer$
(iii)	P(all diff) = $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4!$ = $\frac{3}{32}$ (0.0938) OR $1 \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{3}{32}$	M1 M1 A1	3	4! on numerator seen mult by $k \ge 1$ or $3 \times 2 \times 1$ on num oe, must be in a fraction. 4^4 on denom or 4^3 on denom with the $3 \times 2 \times 1$ Correct answer
52 (i)	Two in same taxi: ${}^{6}C_{2} \times {}^{4}C_{4} \times 2 \text{ or } {}^{6}C_{2} + {}^{6}C_{4}$ = 30	M1 M1	3	⁶ C ₄ or ⁶ C ₂ oe seen anywhere 'something' ×2 only or adding 2 equal terms Correct final answer
(ii)	MJS in taxi $({}^{5}C_{1} \times 2 \times 2) \times {}^{4}P_{4}$ $= 480$	M1 M1 M1	4	⁵ P ₁ , ⁵ C ₁ or 5 seen anywhere Mult by 2 or 4 oe Mult by ⁴ P ₄ oe eg 4! or 4× ³ P ₃ or can be part of 5! Correct final answer

53 (a)	$\frac{8!}{2!2!} \times \frac{6!}{2!3!} = 604800$	B1 M1 A1 3	8! (8 × 7!) or 6! seen anywhere, either alone or in numerator) Dividing by at least 3 of 2!2!2!3! (may be fractions added) Correct answer
(b)	C(7) E(6) A(4) 1 1 2 = $7 \times 6 \times {}^{4}C_{2} = 252$ 1 2 1 = $7 \times {}^{6}C_{2} \times 4 = 420$ 1 3 0 = $7 \times {}^{6}C_{3} \times 1 = 140$ 2 1 1 = ${}^{7}C_{2} \times 6 \times 4 = 504$ 2 2 0 = ${}^{7}C_{2} \times {}^{6}C_{2} \times 1 = 315$ 3 1 0 = ${}^{7}C_{3} \times 6 \times 1 = 210$ Total = 1841	M1 A1 M1* DM1 A1 5	Mult 3 appropriate combinations together assume $6={}^6C_1$, $1={}^4C_0$ etc., $\sum r=4$, C&E both present At least 3 correct unsimplified products Listing at least 4 different correct options Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$ Correct answer SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for ${}^7C_1 \times {}^6C_1 \times (\text{sum of at least 4 outcomes})$