The group G is isomorphic to the group labelled by [44, 3] in the Small Groups library. Ordinary character table of $G \cong D44$:

	1 <i>a</i>	2a	2b	11a	2c	22a	11b	22b	11 <i>c</i>	22c	11d	22d	11 <i>e</i>	22e
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1	-1	1	1	-1	1	1	1	1	1	1	1	1	1
χ_4	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1
χ_5	2	0	2	$E(11)^4 + E(11)^7$	0	$E(11)^4 + E(11)^7$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$
χ_6	2	0	2	$E(11)^5 + E(11)^6$	0	$E(11)^5 + E(11)^6$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$
χ_7	2	0	2	$E(11)^2 + E(11)^9$	0	$E(11)^2 + E(11)^9$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$
χ_8	2	0	2	$E(11)^3 + E(11)^8$	0	$E(11)^3 + E(11)^8$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$
χ_9	2	0	2	$E(11) + E(11)^{10}$	0	$E(11) + E(11)^{10}$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$
χ_{10}	2	0	-2	$E(11)^4 + E(11)^7$	0	$-E(11)^4 - E(11)^7$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$
χ_{11}	2	0	-2	$E(11)^5 + E(11)^6$	0	$-E(11)^5 - E(11)^6$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$
χ_{12}	2	0	-2	$E(11)^2 + E(11)^9$	0	$-E(11)^2 - E(11)^9$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$
χ_{13}	2	0	-2	$E(11)^3 + E(11)^8$	0	$-E(11)^3 - E(11)^8$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$
χ_{14}	2	0	-2	$E(11) + E(11)^{10}$	0	$-E(11) - E(11)^{10}$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$

Trivial source character table of $G \cong D44$ at $p = 2$:													
Normalisers N_i			N_1						N_2			$N_3 \mid N$	$V_4 \mid N_5 \mid$
p-subgroups of G up to conjugacy in G	P_1					P_2							P_4 P_5
Representatives $n_j \in N_i$	1a $11a$	11b	11c	11d	11e	1 <i>a</i>	11d	11c	11a	11e	11b	1a 1	$a \mid 1a$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		4	4	4	4	0	0	0	0	0	0	0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		$)^6 2 * E(11) + 2 * E(11)^{10}$					0	0	0	0	0	0) 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$		$(2*E(11)^5 + 2*E(11)^6)$					0	0	0	0	0	0) 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		$(1)^7 2 * E(11)^3 + 2 * E(11)^8$					0	0	0	0	0	0) 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		$)^9 2 * E(11)^4 + 2 * E(11)^7$				0	0	0	0	0	0	0) 0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} $	4 2*E(11) + 2*E(11)	$2 * E(11)^2 + 2 * E(11)^9$	$2 * E(11)^3 + 2 * E(11)^8$	$2 * E(11)^4 + 2 * E(11)^7$	$2*E(11)^5 + 2*E(11)^6$	0	0	0	0	0	0	0) 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		2	2	2	2	2	2	2	2	2	2	0	$\overline{0}$
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} $	$E(11)^3 + E(11)^8$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$	$E(11) + E(11)^{10}$	$E(11)^4 + E(11)^7$				$E(11)^3 + E(11)^8$			0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		$E(11)^4 + E(11)^7$	$E(11)^5 + E(11)^6$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$				$E(11)^2 + E(11)^9$			0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	$E(11)^5 + E(11)^6$	$E(11) + E(11)^{10}$	$E(11)^4 + E(11)^7$	$E(11)^2 + E(11)^9$	$E(11)^3 + E(11)^8$				$E(11)^5 + E(11)^6$			0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	$E(11)^4 + E(11)^7$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$				$E(11)^4 + E(11)^7$			0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	$E(11) + E(11)^{10}$	$E(11)^2 + E(11)^9$	$E(11)^3 + E(11)^8$	$E(11)^4 + E(11)^7$	$E(11)^5 + E(11)^6$	2 E	$(11)^4 + E(11)^7$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$	0) 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	2 2	2	2	2	2	0	0	0	0	0	0	2	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	2 2	2	2	2	2	0	0	0	0	0	0	0	2 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1 1	1	1	1	1	1	1	1	1	1	1	1	1 1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,31)(30,33)(32,35)(34,37)(36,39)(38,41)(40,43)(42,44)]) \cong \mathbf{C2}$

 $P_3 = Group([(1,2)(3,5)(4,42)(6,40)(7,44)(8,38)(9,43)(10,36)(11,41)(12,34)(13,39)(14,32)(15,37)(16,30)(17,35)(18,28)(19,33)(20,26)(21,31)(22,24)(23,29)(25,27)]) \cong \mathbf{C2}$

 $P_4 = Group([(1,5)(2,3)(4,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)]) \cong C2$

 $P_5 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,31)(30,33)(32,35)(34,37)(36,39)(38,41)(40,43)(42,44), (1,2)(3,5)(4,42)(6,40)(7,44)(8,38)(9,43)(10,36)(11,41)(12,34)(13,39)(14,32)(15,37)(16,30)(17,35)(18,28)(19,33)(20,26)(21,31)(22,24)(23,29)(25,27)]) \cong C2 \times C2$

 $N_1 = Group([(1,2)(3,5)(4,42)(6,40)(7,44)(8,38)(9,43)(10,36)(11,41)(12,34)(13,39)(14,32)(15,37)(16,30)(17,35)(18,28)(19,33)(20,26)(21,31)(22,24)(23,29)(25,27), (1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,31)(30,33)(32,35)(34,37)(36,39)(38,41)(40,43)(42,44), (1,4,8,12,16,20,24,28,32,36,40)(2,6,10,14,18,22,26,30,34,38,42)(3,7,11,15,19,23,27,31,35,39,43)(5,9,13,17,21,25,29,33,37,41,44)]) \cong D44$

 $N_3 = Group([(1,2)(3,5)(4,42)(6,40)(7,44)(8,38)(9,43)(10,36)(11,41)(12,34)(13,39)(14,32)(15,37)(16,30)(17,35)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,31)(30,33)(32,35)(34,37)(36,39)(38,41)(40,43)(42,44)]) \cong C2 \times C2$ $N_1 = Group([(1,5)(3,2)(4,42)(6,42)(7,42)(8,41)(9,42)(12,2$

 $N_4 = Group([(1,5)(2,3)(4,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,32)(15,37)(16,30)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,27)(24,27)(24,27)(24,27)(24,27)(24,27)(24,27)(24,27)(24$

 $N_5 = Group([(1,2)(3,5)(4,42)(6,40)(7,44)(8,38)(9,43)(10,36)(11,41)(12,34)(13,39)(14,32)(15,37)(16,30)(17,35)(18,28)(19,33)(20,26)(21,31)(22,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,3)(2,24)(23,27), \\ (1,$