Welcome to STA 101!

Statistics is a confrontation with uncertainty.

Statistics confronts uncertainty by quantifying it.

Data analysis

Transforming messy, incomplete, imperfect data into knowledge:

subject	variable_1	variable_2							
1	-1.65692830	-2.16524631							
2	-0.90396488	-2.97993045			4	*			1
3	1.37141732	0.09720280				1			:
4	-0.43176527	0.27970110	ggplot	\Longrightarrow		* -	٠		
5	0.40649190	0.69143221	1>	,	4 4 9 2 4			9989 T	
6	1.47092198	4.47233461	17	\Longrightarrow	Age by Grose				
7	-0.78625051	-1.24276055			-: T -: T T				
	0.64835135	-0.06749005					mean	median	std
8					1 4 2				0.300
- 8 9	0.06363568	0.33517580				Variable 1 Variable 2			0.834

Statistical inference

Quantifying our uncertainty about that knowledge:

• Question: What's the number?

• **Answer**: best-guess \pm margin-of-error

One model, but two lines?

One model, but two lines?

We fit a model with a numerical predictor (x_1) and a categorical predictor (x_2) with two level:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2.$$

The categorical predictor works like this:

$$x_2 = \begin{cases} 0 & \text{if book is hardback} \\ 1 & \text{if book is paperback.} \end{cases}$$

This essentially nests two models:

$$\hat{y} = \begin{cases} \hat{\beta}_0 + \hat{\beta}_1 x_1 & \text{if book is hardback} \\ \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 & \text{if book is paperback.} \end{cases}$$

The intercept shifts.

What are models good for?

"All models are wrong but some are useful."

- We would love to use models to draw causal conclusions from messy, non-experimental data, but this is very very difficult;
- A slightly easier task that some models are very good at is prediction...

Prediction, summary

Collect data:

$$(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_n, y_n)$$

Fit a model:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Prediction: Someone hands you an x^* you've never seen before. What's your best guess at what y is going to be?

$$\hat{y}^{\star} = \hat{\beta}_0 + \hat{\beta}_1 x^{\star}.$$

Historical Data + Model = Predictions you can use to aid decision making in an uncertain world.

How well does a linear model fit the data?

Question: can we quantify this?

Recall the residuals

How variable are the residuals compared to the data?

Idea: Fit a model, and compare histogram of $\{y_1, y_2, ..., y_n\}$ to histogram of $\{\hat{\varepsilon}_1, \hat{\varepsilon}_2, ..., \hat{\varepsilon}_n\}$:

- Variation in y_i is what we seek to "explain" with a model;
- Variation in $\hat{\varepsilon}_i$ is the leftover that our model does not explain;
- If there's not a lot of leftover, we did pretty well.

How variable are the residuals compared to the data?

Idea: Fit a model, and compare histogram of $\{y_1, y_2, ..., y_n\}$ to histogram of $\{\hat{\varepsilon}_1, \hat{\varepsilon}_2, ..., \hat{\varepsilon}_n\}$.

- Variation in y_i is what we seek to "explain" with a model;
- Variation in $\hat{\varepsilon}_i$ is the leftover that our model does not explain;
- If there's not a lot of leftover, we did pretty well:

How do we quantify this comparison?

Summarize variation with a measure of *spread* and compare:

$$\begin{aligned} &\text{fit quality} = \text{proportion of variation explained} \\ &= \frac{\text{explained variation}}{\text{total data variation}} \\ &= \frac{\text{total data variation} - \text{unexplained variation}}{\text{total data variation}} \\ &= \frac{\text{spread of } y_i - \text{spread of } \hat{\varepsilon}_i}{\text{spread of } y_i}. \end{aligned}$$

How do we measure spread?

With the variance:

the average squared distance from the mean. "how far are the data, typically, from their center?"

Left: data are typically close to the center (low variance)

Right: data are typically farther from the center (higher variance).

How do we measure spread?

With the variance:

the average squared distance from the mean.

"how far are the data, typically, from their center?"

Recall that the mean is the same thing as the average:

$$\bar{y} = \frac{y_1 + y_2 + y_3 + \dots + y_n}{n} = \frac{1}{n} \sum_{i=1}^n y_i.$$

So in formulas...

$$var(y_i) = \frac{(y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + ... + (y_n - \bar{y})^2}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= sd(y_i)^2.$$

And similarly for $var(\hat{\varepsilon}_i)$

Back to measuring fit

Before:

fit quality = proportion of variation explained by the model

$$= \frac{\mathsf{spread} \ \mathsf{of} \ y_i - \mathsf{spread} \ \mathsf{of} \ \hat{\varepsilon}_i}{\mathsf{spread} \ \mathsf{of} \ y_i}.$$

Now:

$$R^{2} = \frac{\operatorname{var}(y_{i}) - \operatorname{var}(\hat{\varepsilon}_{i})}{\operatorname{var}(y_{i})}$$
$$= 1 - \frac{\operatorname{var}(\hat{\varepsilon}_{i})}{\operatorname{var}(y_{i})}.$$

 R^2 is called the **coefficient of determination**.

Facts about R^2

- $var(y_i)$ is always bigger than $var(\hat{\varepsilon}_i)$, so R^2 is a number between zero and one;
- If $var(\hat{\varepsilon}_i) = 0$, then the model explained everything. The fit is perfect (poifect!), and $R^2 = 1$;
- If $var(\hat{\varepsilon}_i) = var(y_i)$, then the model explained absolutely nothing and $R^2 = 0$;
- Most of the time we are somewhere in between, and we can use R^2 to quantify the quality of a model's fit and rank competing models.

Adjusted R^2

Possible use of R^2 :

decide which covariates to include in a big multiple regression.
 The set of covariates that delivers the highest R² is the winner;

Problem:

 R² has a nasty mathematical property that it always goes up every time you add any covariate to the model, even if that covariate is silly and useless;

Goal:

 We want a measure of fit that will not give all variables a participation trophy just for showing up, but actually rewards honest-to-goodness improvements in fit;

Solution:

Adjusted R².

Variable selection: backward elimination

Start with the *full model* (the model that includes all potential predictor variables). Variables are eliminated one-at-a-time from the model until we cannot improve the model any further.

Procedure:

- 1. Start with a model that has all predictors we consider and compute the adjusted R^2 .
- 2. Next fit every possible model with 1 fewer predictor.
- 3. Compare adjusted R^2 s to select the best model (highest adjusted R^2) with 1 fewer predictor.
- 4. Repeat steps 2 and 3 until adjusted R^2 no longer increases.

Variable selection: forward stepwise

Forward stepwise regression is the reverse of the backward elimination technique. Instead, of eliminating variables one-at-a-time, we add variables one-at-a-time until we cannot find any variables that improve the model any further.

Procedure:

- 1. Start with a model that has no predictors.
- 2. Next fit every possible model with 1 additional predictor and calculate adjusted R^2 of each model.
- 3. Compare adjusted R^2 values to select the best model (highest adjusted R^2) with 1 additional predictor.
- 4. Repeat steps 2 and 3 until adjusted R^2 no longer increases.