ARQUITETURA DE COMPUTADORES

Conjunto de Instruções 03 *Propriedades de uma ISA*

Tipos de instrução

- □ Processamento de dados
- □ Armazenamento de dados (memória principal)
- ☐ Movimentação de dados (I/O)
- □ Controle do fluxo do programa

Tipos de operação Transferência de dados Aritméticas Lógicas Transferência de controle Conversão I/O Controle do sistema

Transferência de dados Especificam Origem Destino Quantidade de dados

Aritmética Soma, subtrai, multiplica, divide Inteiros com sinais Ponto flutuante Pode incluir Incremento (a++) Decremento (a--) Negação (-a)

Lógica ☐ Operações com bits (set/reset) ☐ AND, OR, NOT

Transferência de Controle □ Salto/desvio (Jump/Branch) ■ Ex. desvia para x se resultado é zero □ Chamada Sub-rotina ■ Ex. call x

Conversão ☐ Ex. Binário para Decimal

Input/Output

- □ Podem ser instruções específicas
- □ Podem ser usadas instruções de movimento de dados (I/O mapeado em memória)

Controle do sistema

- ☐ Instruções privilegiadas
- ☐ CPU precisa estar em um estado específico
 - Kernel mode
- □ Para uso do sistema operacional

Arquiteturas de endereços

- Número de Endereços
- Modos de endereçamento

1

Número de Endereços (a)

- □ 4 endereços
 - Operando 1, Operando 2, Resultado, Próxima Instrução
 - □ INSTR E1 E2 E3 E4
 - Precisa de palavras de instrução longas
 - Registrador PC
 - Não existem instruções de desvio

Número de Endereços (b)

- □ 3 endereços
 - Operando 1, Operando 2, Resultado
 - □ INSTR E1 E2 E3
 - Ex.: E3 = E1 + E2;
 - Precisa de palavras de instrução longas
 - Registrador PC
 - Instruções explícitas de desvio

13

Número de Endereços (c)

- ☐ 2 endereços
 - Um endereço define um operando e o resultado
 - □ INSTR E1 E2
 - Ex.: E1 = E1 + E2;
 - Reduz o tamanho da instrução
 - Requer algum trabalho extra
 - ☐ Armazenamento temporário de algum resultado
 - ☐ Instrução de movimentação de dados

Número de Endereços (d)

- □ 1 endereço
 - Segundo endereço é implícito
 - ☐ INSTR E1
 - Usualmente possui um registrador específico (acumulador)
 - Instrução de movimento de dados indica o sentido (Load/Store)

15

Número de Endereços (e)

- □ 0 (zero) endereços
 - Todos endereços implícitos
 - Uso de pilha (stack)
 - □ Ex.: c = a + b
 - push a
 - push b
 - add
 - pop c
 - Não apresenta vantagens significativas sobre arquiteturas de 1 ou 2 endereços

Modos de endereçamento Imediato Direto Indireto Registrador Registrador Indireto Deslocamento (Indexado) Pilha

Endereçamento Imediato □ O operando é parte da instrução □ Operando É o campo de endereço da instrução □ Ex.: ADD 5 ■ Soma 5 ao conteúdo do acumulador ■ 5 é o operando □ Não há referência a memória para busca de dados □ Rápido □ Faixa (range) limitado

Diagrama para endereçamento imediato Instrução Opcode Operando Sem referência à memória Magnitude do operando é limitada

Endereçamento Direto □ Campo de endereço contém endereço do operando □ Endereço Efetivo (EA) = Campo de Endereço (X) □ Ex.: ADD X ■ Soma o conteúdo de X ao acumulador ■ Busca pelo operando na memória no endereço X □ Sem cálculos adicionais para obter o endereço efetivo □ Espaço de endereçamento limitado

Endereçamento Indireto (1)

- □ Posição de memória apontada pelo campo de endereço contém endereço do ponteiro do operando
- \square EA = (X)
 - Busca em X, encontra o endereço e busca lá o operando
- □ Ex.: ADD (X)
 - Soma o conteúdo da posição de memória apontada pelo conteúdo de X ao acumulador

Endereçamento Indireto (2)

- □ Largo espaço de endereçamento
 - 2ⁿ , onde n = tamanho da palavra
- Múltiplos acessos à memória para obter o operando
 - Logo, mais lento.

23

Diagrama para endereçamento indireto Instrução Opcode Endereço X Memória Ponteiro p/ operando Operando Operando Espaço de endereçamento grande Múltiplas referências à memória

Endereçamento por Registrador (1)

- ☐ Operando está em um registrador cujo nome vai no campo de endereço
- \square EA = R
- □ Numero de registradores é limitado
- □ Campo de endereço reduzido
 - Instruções curtas
 - Tempo de busca por instrução reduzido

25

Endereçamento por Registrador (2)

- ☐ Sem acessos à memória
- □ Execução rápida
- ☐ Espaço de endereçamento limitado
- Múltiplos registradores melhora o desempenho
 - Requer um bom compilador (ou um bom programador Assembly)
 - Programação C: register int a;
- ☐ Semelhante ao endereçamento direto

Resumo Tipos de instrução / operação Número de endereços Modos de endereçamento

Um erro aqui, outro lá... fazem parte da descoberta de novos caminhos.

Mas, para perder mesmo, você devé ser perseverante nos erros.

Anônimo

Questões adicionais...

- ☐ Identificar as propriedades apresentadas no conjunto de instruções dos processadores abaixo:
 - PowerPC (IBM)
 - □ ARM7TDMI
 - □ 8051 (INTEL)
 - □ 8086 X86 (INTEL)
 - □ ColdFire (Motorola Freescale)
 - ☐ SPARC (SUN)
 - ☐ TMS320C6000 (Texas Instruments)

 - ☐ Z-80 (Zilog)☐ NIOS (Altera)
 - □ PIC 18F (Microchip)
 - ☐ XScale (Întel)
 - □ OMAP (Texas Instruments)
 - MicroBlaze (Xilinx) DLX