MSO201A: PROBABILITY & STATISTICS Problem Set # 10

[1] Let $X_1, X_2, ... X_n$ be a random sample from an exponential distribution with p.d.f.

$$f_{X}(x) = \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right); x > 0$$

Show that $\overline{X} = \sum_{i=1}^{n} X_i / n$ is an unbiased estimator of β .

- [2] Let $X_1, X_2, ... X_n$ be a random sample from $U(0, \theta)$; $\theta > 0$. Show that $\frac{n+1}{n} X_{(n)}$ and $2 \overline{X}$ are both unbiased estimators of θ .
- [3] Let $X_1, X_2, ... X_n$ be a random sample from an exponential distribution with p.d.f.

$$f(x) = \beta \exp(-\beta x); x > 0$$

Show that \bar{X} is an unbiased estimator of $1/\beta$.

- [4] Let $X_1, X_2, ... X_n$ be a random sample from $N(\theta, \theta^2)$, $\theta > 0$. Show that $\left(\sum_{i=1}^n X_i\right)^2 / n(n+1)$ and $\sum_{i=1}^n X_i^2 / 2n$ are both unbiased estimators of θ^2 .
- [5] Let $X_1, X_2, ... X_n$ be a random sample from $P(\theta)$; $\theta > 0$. Find an unbiased estimator of $\theta e^{-2\theta}$
- [6] Let $X_1, X_2, ... X_n$ be a random sample from $B(1, \theta); 0 \le \theta \le 1$.
 - (a) Show that the estimator $T(X) = \frac{\frac{1}{2}\sqrt{n} + \sum_{i=1}^{n} X_i}{n + \sqrt{n}}$ is not unbiased θ ?
 - **(b)** Show that $\lim_{n\to\infty} E(T(X)) = \theta$.

(An estimator satisfying the condition in (b) is said to be unbiased in the limit)

- [7] $X_1,...,X_n$ be a random sample from $N(\mu,\sigma^2), \mu \in \Re, \sigma \in \Re^+$. Find unbiased estimators of μ/σ^2 and μ/σ .
- [8] Let $X_1, X_2, ... X_n$ be a random sample from $B(1, \theta); 0 \le \theta \le 1$. Find an unbiased estimator of $\theta^2(1-\theta)$.
- [9] Using Neyman Fisher Factorization Theorem, find a sufficient based on a random sample $X_1, X_2, ... X_n$ from each of the following distributions

(a)
$$f_{\alpha}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{x}{\alpha}\right) & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

(b) $f_{\beta}(x) = \begin{cases} \exp\left(-\left(x - \beta\right)\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$

(b)
$$f_{\beta}(x) = \begin{cases} \exp(-(x-\beta)) & \text{if } x > \beta \\ 0 & \text{otherwise} \end{cases}$$

(c)
$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{(x-\beta)}{\alpha}\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$$

(d)
$$f_{\mu,\sigma}(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2\pi}} \exp\left(-\frac{(\log x_i - \mu)^2}{2\sigma^2}\right) & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

(e)
$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & -\theta/2 \le x \le \theta/2 \\ 0 & \text{otherwise} \end{cases}$$

- [10] Let X_1 and X_2 be independent random samples with densities $f_1(x_1) = \theta e^{-\theta x_1}$ and $f_2(x_2) = 2\theta e^{-2\theta x_2}$ as the respective p.d.f.s where $\theta > 0$ is an unknown parameter and $0 < x_1, x_2 < \infty$. Using Neyman Fisher Factorization Theorem find a sufficient statistic for
- [11] Let $X_1,...,X_n$ be a random sample with densities

$$f_{X_i}(x) = \begin{cases} \exp(i\theta - x) & \text{if } x \ge i\theta \\ 0 & \text{otherwise.} \end{cases}$$

Using Neyman Fisher Factorization Theorem find a sufficient statistic for θ .

[12] Let $X_1, X_2, ... X_n$ be a random sample from a $Beta(\alpha, \beta)$ distribution $(\alpha > 0, \beta > 0)$ with p.d.f.

$$f(x) = \begin{cases} \frac{\alpha + \beta}{\alpha \beta} x^{\alpha - 1} (1 - x)^{\beta - 1} & 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that

- (a) $\prod_{i=1}^{n} X_i$ is sufficient for α if β is known to be a given constant.
- (b) $\prod_{i=1}^{n} (1-X_i)$ is sufficient for β if α is known to be a given constant.
- (c) $\left(\prod_{i=1}^{n} X_{i}, \prod_{i=1}^{n} (1 X_{i})\right)$ is jointly sufficient for (α, β) if both the parameters are unknown.

- [13] Let T and T^* be two statistic such that $T = \psi(T^*)$. Show that if T is sufficient then T^* is also sufficient.
- [14] $X_1,...,X_n$ be a random sample from $U(\theta-1/2,\theta+1/2)$, $\theta \in \Re$. Find a sufficient statistic for θ .
- [15] Let $X_1,...,X_n$ be independent random variables with X_i (i=1,2,...,n) having the probability density function

$$f_i(x_i) = \begin{cases} i \theta e^{-i\theta x_i} & x_i > 0\\ 0 & \text{otherwise} \end{cases}$$

Find a sufficient statistic for θ .