3. TRUSSES

TRUSSES	FRAMES	
Forces passes through the joints.	Forces passes in between the joints.	
Subjected to Only Axial load	Subjected to Axial load + Bending	

TRUSS ANALYSIS: Finding the forces/ Stresses in each member.

ASSUMPTIONS IN TRUSS ANALYSIS:

- 1. All member & external forces are in one plane.
- 2. Pin joint is friction less.
- 3. Weight of joining member is very small with respect to force applied.
- 4. Only axial load is occurring in each member.

$No. of \ Unknown = m + r$		m = No. of Members,	
No. of Equation Per joint $= 2j$		j = No. of Joints,	
$Total\ No.\ of\ Equation=2j$		r = No. of Constrains or Reactions	
m+r < 2j: Un-Stable/	m + r = 2j: Determinate/ Stable/		m + r > 2j: Indeterminate/ Over-stable/
Deficient System	Prefect System		Redundant System

NOTE:

- 1. Only Axial Forces acting in member of Truss due to Coplanar Equilibrium Condition.
- 2. Member which is subjected to load more location than the end points are known as Frames.
- 3. Direction of Tension in the Member is taken toward the other end.

METHOD OF JOINTS: Applicable only when at the end there is only 3 coplanar and concurrent forces acting.

- 1. Draw the FBD at the joints.
- 2. Apply the Lami's theorem at the joint point.

METHOD IS SECTION:

- 1. Quick and useful method to find internal force in a perpendicular member.
- 2. A section or cut is to be taken which cuts the system into two completely separate parts.
- 3. Section can be along a line or it can be curved also. Avoid taking section through joints.
- 4. Out of the two cut parts, only one part can be considered to find internal forces in members. Select the part which has less number of unknowns.
- 5. In FBD, consider forces in cut members only. Internal forces in any non-cut member should not considered.
- 6. FBD will consist, internal forces of cut members, external forces and support reaction.
- 7. Try to cut maximum three members at a time.

SPECIAL CASE-I: If three members are connected at a point and two members of them are collinear and no external force is acting at the joint, then the axial force is the non-collinear member is zero.

SPECIAL CASE-II: If two members are connected at a joint and the members are non-collinear and no external force is acting at that joint, then the axial force is the both members in zero.

PRIORITY ORDER OF METHOD: FINDING SUPPORT REACTIONS:	
1. Special Cases	1. Draw total body FBD
2. Method of Joints	2. Apply Coplanar Equilibrium condition
3. Method of Sections	