Соответствия

Соответствия

- Если определен способ сопоставления элементов Y элементам X, то говорят, что между множествами Xи Y установлено соответствие.
- Множество $Q \subseteq X \times Y$
- \bullet (x, y)
- q = (X, Y, Q).
- X- область отправления соответствия,
- Y- область прибытия соответствия,
- Q-график соответствия.

Множества:

- $\operatorname{пр}_{\mathbf{1}} Q$ область определения соответствия,
- $\operatorname{пр}_2 \boldsymbol{Q}$, область значений соответствия
- $(x,y) \in Q$
- $x \rightarrow y$

Определения

- Если $\pi p_1 Q = X$, то соответствие называется всюду определенным, или отображением X в Y(в противном случае соответствие называется частичным).
- Если $\operatorname{пр}_2 Q = Y$, то соответствие называется сюръективным (сюръекцией).

Определения

- Множество всех $y \in Y$, соответствующих элементу $x \in X$, называется образом x в Y при соответствии q. Множество всех $x \in X$, которым соответствует элемент $y \in Y$, называется прообразом y в X при соответствии q.
- Если $C \subseteq \pi p_1 Q$, то образом множества C называется объединение образов всех элементов C. Аналогично определяется прообраз множества D для любого $D \subseteq \pi p_2 Q$.
- Соответствие q называется uнъективным (инъекцией), если любые различные x_1 и x_2 из пр $_1Q$ имеют различные образы и любые различные y_1 и y_2 из пр $_2Q$ имеют различные прообразы при соответствии q.

Определения

- Соответствие q называется функциональным (или однозначным), если образом любого элемента $x \in \operatorname{пр}_1 Q$ является единственный элемент $y \in \operatorname{пр}_2 Q$.
- Соответствие q между множествами X и Y называется взаимно однозначным, или биективным (биекцией) (иногда пишут «1-1-соответствие»), если оно всюду определено, сюръективно и инъективно.
- Однозначное отображение называется ϕ ункцией. Функция является инъективной, если различным x_1 и x_2 из Xсоответствуют различные y_1 и y_2 из Y, и сюръективной, если она сюръективна как соответствие. Функция называется биективной, если она одновременно инъективна и сюръективна.

Пример. Пусть $X = \{1, 2\}, Y = \{3, 5\},$ значит, $X \times Y = \{(1, 3), (1, 5), (2, 3), (2, 5)\}$. Это множество дает возможность получить 16 различных соответствий. Графики соответствий:

$$Q_0 = \{(\)\} = \emptyset,$$
 $Q_8 = \{(1, 5), (2, 3)\},$ $Q_1 = \{(1, 3)\},$ $Q_9 = \{(1, 5), (2, 5)\},$ $Q_1 = \{(1, 5)\},$ $Q_1 = \{(2, 3)\},$ $Q_1 = \{(2, 3)\},$ $Q_1 = \{(2, 3)\},$ $Q_1 = \{(2, 3), (1, 5), (2, 3)\},$ $Q_2 = \{(1, 3), (1, 5), (2, 3)\},$ $Q_4 = \{(2, 5)\},$ $Q_4 = \{(2, 5)\},$ $Q_5 = \{(1, 3), (1, 5)\},$ $Q_{13} = \{(1, 3), (2, 3), (2, 5)\},$ $Q_6 = \{(1, 3), (2, 3)\},$ $Q_{14} = \{(1, 5), (2, 3), (2, 5)\},$ $Q_7 = \{(1, 3), (2, 5)\},$ $Q_{15} = \{(1, 3), (1, 5), (2, 3), (2, 5)\} = X \times Y.$

Обозначим q_i соответствие с графиком $oldsymbol{Q}_i$

- Рассмотрим соответствие q_9 .
- Областью определения соответствия q_9 является $\pi p_1 Q_9 = \{1,2\} = X$. отображение
- Областью значений q_9 является пр $_2 Q_9 = \{5\} ≠ Y не сюръективно$
- - не инъективно
- {5} образ X
- *X* прообраз {5}
- - функционально

Геометрическое представление соответствий

 q_{11} и q_{11}^{-1}

Графиком обратного соответствия q_{11}^{-1} является множество $Q_{11}^{-1}=\{(\mathbf{3},\mathbf{1}),(\mathbf{5},\mathbf{1}),(\mathbf{3},\mathbf{2})\}$

Примеры

Отображениями являются соответствия q_6 — q_9, q_{11} — q_{15} .

Сюръективными соответствиями являются q_5, q_7, q_8, q_{10} – q_{15} .

Функциональные соответствия: q_1 – q_4 , q_6 – q_9 . Инъективные соответствия: q_1 – q_4 , q_7 , q_8 . Функциями являются q_6 – q_9 .

Биективные функции: q_7 , q_8 .

Примеры соответствий

- Англо-русский словарь
- кодирование букв азбукой Морзе
- представления чисел в различных системах счисления
- секретные шифры
- кодирование телефонов г. Минска
- Множество всех векторов вида $(n, 2^n)$.

Композиция двух соответствий

$$q = (X, Y, Q), Q \subseteq X \times Y;$$

 $p = (Y, Z, P), P \subseteq Y \times Z.$

$$x \in \operatorname{пp}_1 Q$$
 $y \in \operatorname{пp}_2 Q = \operatorname{пp}_1 P$
 $z \in \operatorname{пp}_2 P$

Обозначения

- Композиция соответствий $oldsymbol{q} \circ oldsymbol{p}$
- График композиции соответствий $oldsymbol{Q} \circ oldsymbol{P}$
- $q \circ p = (X, Z, Q \circ P), Q \circ P \subseteq X \times Z$.

Пусть X— множество людей q(x) множество его детей. Тогда $q^2(x)$ — множество внуков x; $q^3(x)$ — множество правнуков x; $q^{-1}(x)$ — множество родителей x

Функции

- Пусть $f: X \to Y функция$
- $oldsymbol{D}(oldsymbol{f})$ область определения функции
- E(f) область значений функции f.
- Каждому элементу $x \in X$ f ставит в соответствие единственный элемент $y \in Y$. Это обозначается записью f(x) = y либо $f: x \to y$.
- Тождественной функцией на множестве X называется функция $e: X \to X$, такая что e(x) = x для любого $x \in X$.
- Если $X, Y \subseteq R$, то функцию f называют вещественной.

Функции

- Пусть даны функции $f: X \to Y$ и $g: Y \to Z$. Функция $h: X \to Z$ является композицией функций f и g, $(h = f \circ g)$, если для любого $x \in X$ h(x) = g(f(x)). Часто говорят, что функция h получена подстановкой f в g.
- Функция, полученная из $f_1, ..., f_n$ некоторой подстановкой их друг в друга и переименованием аргументов, называется суперпозицией $f_1, ..., f_n$.

Способы задания функций

- Если $f = (X, Y, Q_f)$, то
- $Q_f = \{(x, y) \in X \times Y | y = f(x)\} = \{(x, f(x)) \in X \times Y\}.$

Способы задания функций f: X o Y

- 1) табличный
- 2) аналитический (формулой)

X	Железная дорога	Автобус	Катер
f(x)	9 000	8 000	10 000

$$X \coloneqq \{1, 2, 3\}$$

• $\alpha: 1 \to 3, 2 \to 3, 3 \to 1$ и

$$\beta$$
: 1 \rightarrow 2, 2 \rightarrow 1, 3 \rightarrow 1;

• α и $oldsymbol{eta}$ могут быть заданы таблично:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}$.

• Композиции преобразований также можно задать таблично:

$$\boldsymbol{\beta}\boldsymbol{\alpha} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}, \boldsymbol{\alpha}\boldsymbol{\beta} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}.$$

Свойства функций и их композиций

- 1. Композиция **сюръективных** функций **сюръективна** (следует из определений).
- 2. Композиция **инъективных** функций **инъективна** (следует из определений).
- 3. Композиция **биективных** функций **биективна**(следует из определений).
- 4. Композиция функций в общем случае **не** коммутативна. $oldsymbol{eta} pprox pprox oldsymbol{eta} oldsymbol{eta}$
- 5. Композиция функций ассоциативна.

Композиция функций ассоциативна

- Пусть $f: X \to Y, g: Y \to Z, h: Z \to W-$ произвольные функции.
- Рассмотрим произвольный элемент $x \in X$. f(x) = y, g(y) = z, h(z) = w.
- Тогда $f \circ g \circ h = hgf(x) = h\big(gf(x)\big) = h\big(g(y)\big) = h(z) = w$, $(hg)f(x) = hg\big(f(x)\big) = hg(y) = h\big(g(y)\big) = h(z) = w$; т. е. для любого $x \in X$
- h(gf)(x) = (hg)f(x).
- Значит, h(gf) = (hg)f.

Оператор

- Оператором называется функциональное отображение $l: X \to Y$, в котором X и Y являются множествами функций одного аргумента t.
- l = (X, Y, L), где $L = \{(x(t), y(t)) \in X \times Y\}$, $L \subseteq X \times Y$. В этом случае говорят, что оператор l преобразует функцию x(t) в функцию y(t) = l[x(t)].

Функциональное отображение (управляемая система)

Пример: $M = \{a, b, c, d, e\}$

- фон Нейман
- блок-схема ЭВМ
- $T(m_i, m_j)$
- Опишем отношение T как множество упорядоченных пар: $T \subseteq M^2$
- $T = \{(a,b), (a,c), (a,d), (b,c), (b,d), (b,e), (c,a), (c,b), (c,d), (c,e), (d,b), (d,c), (d,e), (e,c)\}$

Пример: $\pmb{M} = \{\pmb{a}, \pmb{b}, \pmb{c}, \pmb{d}, \pmb{e}\},$ матрица данного соответствия

$$C = \begin{bmatrix} a & b & c & d & e \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ c & 1 & 1 & 0 & 1 & 1 \\ d & 0 & 1 & 1 & 0 & 1 \\ e & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$