1 NO Ques Ans

21 The appropriate fitness function who would be a function that can check if the function a chromosome's book is in the aveignt limit and the recovared is by higher than the others. Also the It node should be present.

for 1 -> weight = 17 and Revard = 71

for 2 -> weight = 10 and Reward = 62

for 3 -> weight = 11 and Revard = 47

for 4 -> weight = 26 and Revard = 91

From the 4 chromosomes, we can find out the best fillest 2 chromosome.

Forc 1), the Reward is high but weight limit got exceeded.

Same goes for 4.

forc 2 and 3, the weight limit is in reange and the recovered is also good so, this two are the fittest forc chassover.

31 From 2	<u></u>	P2 H	ead-		1	- P2	, tait	119
Parcent 1)	0	1	O	0	1	0	1
	-	P2 lte	ead_		1-	- P2	taîl-	AL IV
Parcent 2	0	٥	1	0	0	1	0	1
						*		• ,

4 To perform mutation we can assume that child I will go through the mutation and the 3rd index would change.

so, after mutation the child chromosome

would be 22 min songering of

101101 L> changed 0 to 1 because of mutation.

the final aeight = 18

the final reward = 10x

the recoard 2. 9 gotten higher than the parcents bet it a costed the weight limit more making the child chromosome untit.

2 NO Gues Ans

<u> </u>							
A	F	B	C	D	G	E	
В	E	CI	D	e	t	A	votrog of le
1. 10	22/0	(2)(3)	375	danni v			kan indi da k
D	A	of Em	Boy	C	9	E	Tito DALIS
				10 H	0000	()	hat hop at
t	Α	6	В	£	4	D	

21. The appropriate fitness function con would select the best chicomosome by checking if they visited all nodes and also & visiting in minimum cost.

For I the cost Pais -> 49 for 2 the cost is - 40 for 3 the cost 9s -> 33 forcy the cost is -> 53

So, the two fittest chromosome are 2 and 3.

the both children are not eligible as a solution because they are missing some nodes and also has repeatorion.

41 No, the usual mutation will not work because In this case & from child we will not always get the about all nodes are visited.

Also, sometimes it will not have the path the a children has.

3 NO Ques Ans

GBFS

Aio

The optimal Path:

 \mathcal{B}^{8} A16 FG

A>F>H-JI-J

Path cost: 3+7+2+3=15

E6 H3 C15 B810 A10

H3 [1, 95 Fc B8 A10

J. H3 E3 G5 G5 F6 B8 A6

Jo H3 E3 G15 G15 F6 BC Ano

11 = IE

1Ē: 18

A10 Fg B14

Fg [C13 H13 B14 A16

Cto [18 F11 H13 B14 A16

Jo FII HI3 BIY GIS FIS A16 A17

FINHIS BIY ING CIS EIG AICHIF EI8

A = 10+0 = 10

AF = 3+6 = 9

pA = 3+3+10 = 16 pC4 = 4+5 = 9 pH = 10+3 = 13

af = 5+6 = 11

9I = 7+1 = 8

14 = 14+3 = 17

1E = 12+3 = 15

- 10+0 =

Total path cost = 10
Path : A + > F > G -> I -> J

4 NO Ques Ans

Total & cost - 9

5 NO Ques Ans

For this Houristics, the greaph is consistent.

H(A) & HOS Cost (A, C) + H(G)

For this value the grouph is admissable

H(A) & tool Actual cost

el fore from a,

we know

for B,

if H(G)=7 the greaph will be admissable but not sconsistent.