Bayesian Inference for Switching Linear Dynamical Systems

D. Bacilieri, L. Barbiero, G. Bordin, A. Pitteri

6th March 2024

1 Model description

A switching linear dynamical system – also known as *switching state space model* – is defined, borrowing the notation from Linderman et al. [3], by the set of discrete-time stochastic equations

$$x_t = A_{z_t} x_{t-1} + b_{z_t} + v_t, (1)$$

$$y_t = C_{z_*} x_t + d_{z_*} + w_t, (2)$$

where $v_t \in \mathbb{R}^M$ and $w_t \in \mathbb{R}^N$ are Gaussian-distributed random vectors with mean zero and variance Q_{z_t} , S_{z_t} respectively. The vectors $y_t \in \mathbb{R}^N$, $t = 1, \ldots, T$ may represent a time series of observations, while the $x_t \in \mathbb{R}^M$ are a set of continuous latent states linked together by linear dynamics defined by the matrices $A_k \in \mathbb{R}^{M \times M}$ and bias vectors $b_k \in \mathbb{R}^M$. The transformation between x and y is also linear, through the matrices $C_k \in \mathbb{R}^{N \times M}$ and bias vectors $d_k \in \mathbb{R}^N$.

The linear parameters A_k , b_k , C_k , d_k form a discrete set of K elements, and a discrete latent variable $z_t \in \{1, \ldots, K\}$ sets the specific instances in use at time step t. The variable z evolves over time as a Markov process, meaning that z_t is conditionally independent of all previous states except for its immediate predecessor z_{t-1} :

$$p(z_t \mid z_{t-1}, z_{t-2}, \dots, z_1) = p(z_t \mid z_{t-1}).$$
 (3)

We will denote the probability to transition from $z_{t-1} = j$ to $z_t = k$ with π_{jk} . The transition $z_{t-1} \to z_t$ effectively modifies the linear dynamics from x_{t-1} to x_t and the linear transformation from x_t to y_t , switching from one regime to another.

Given a set of data points y_t , the goal is then to infer the posterior distribution of the parameter set

$$\vartheta = \{\pi_k, A_k, b_k, Q_k, C_k, d_k, S_k\},\tag{4}$$

where $x_{1:T}$ denotes the whole sequence x_1, x_2, \ldots, x_T , and π_k the kth row of the transition matrix.

2 Implementation in Stan

To set up a Monte Carlo sampling scheme, we chose to work with the Stan [5] programming language and its implementation in R through the package rstan [4]. Sampling in Stan is done by default using a variant of the Hamiltonian Monte Carlo scheme called 'No-U-Turn sampler' or NUTS [1].

The model cannot be implemented directly as it is, in the sense of specifying a categorical likelihood for the transition $z_t \to z_{t+1}$ and Gaussian likelihoods for $x_t \mid x_{t-1}$ and $y_t \mid x_t$, because Stan does not allow the definition of integer parameters: so, one should marginalize over the hidden discrete states. Besides Stan's limitations in this regard, the resulting strategy – known in the literature as forward algorithm – is more efficient than the straightforward implementation in sampling low-probability states, and is commonly used in similar inference problems involving hidden Markov models or other state space models [2].

The basic idea behind the forward algorithm is to exploit a recursive relationship to build the full likelihood: indeed, consider the quantity

$$\Gamma_t(k) := p(z_t = k, x_{1:t}, y_{1:t}). \tag{5}$$

By summing over the z states at t-1 first and then using the chain rule repeatedly, we can write

$$\Gamma_{t}(k) = \sum_{j=1}^{K} p(z_{t} = k, z_{t-1} = j, x_{1:t}, y_{1:t})$$

$$= p(y_{t} \mid z_{t} = k, x_{t}) p(x_{t} \mid z_{t} = k, x_{t-1})$$

$$\cdot \sum_{j=1}^{K} \pi_{jk} p(z_{t-1} = j, x_{1:t-1}, y_{1:t-1}),$$
(6)

where we have recognized the conditional probability $p(z_t = k \mid z_{t-1} = j, x_{1:t-1}, y_{1:t-1}) = p(z_t = k \mid z_{t-1} = j)$ as the element (j, k) of the transition matrix π . The first two terms outside the sum are the likelihoods of y_t and x_t , and because of the model definition they only depend on z_t , x_t and x_{t-1} . Also, they are simply Gaussian densities:

$$\mathcal{L}_k(y_t) := p(y_t \mid z_t = k, x_t) = \mathcal{N}(C_k x_t + d_k, S_k), \tag{7}$$

$$\mathcal{L}_k(x_t) := p(x_t \mid z_t = k, x_{t-1}) = \mathcal{N}(A_k x_{t-1} + b_k, Q_k).$$
 (8)

Then, the remaining terms in the sum in (6) are nothing else than $\Gamma_{t-1}(j)$, giving us the recursive relation we needed:

$$\Gamma_t(k) = \mathcal{L}_k(y_t) \,\mathcal{L}_k(x_t) \sum_{j=1}^K \pi_{jk} \Gamma_{t-1}(j). \tag{9}$$

Indeed, to retrieve the full joint likelihood of the sequences $x_{1:T}$ and $y_{1:T}$ we only need to marginalize the Γ at the last time step T over the discrete states k = 1, 2, ..., K:

$$p(x_{1:T}, y_{1:T}) = \sum_{k=1}^{K} p(z_t = k, x_{1:T}, y_{1:T}) = \sum_{k=1}^{K} \Gamma_T(k).$$
 (10)

To recursively build Γ_t up to time T we need $\mathcal{O}(TK^2)$ operations, because of the double marginalization over z_t and z_{t-1} . To initialize the recursion,

$$\Gamma_1(k) = p(z_1 = k, x_1, y_1)$$

= $\mathcal{L}_1(y_1) p(x_1 \mid z_1 = k) p(z_1 = k).$ (11)

The last two terms are the prior distributions on x_1 and z_1 . We chose a multivariate Gaussian for the first and a uniform distribution over the K states for the second.

At this point, we also need the prior distributions for the dynamical parameters. Following the suggestion from Linderman et al. [3], we chose matrix-normal-inverse-Wishart priors:

$$(A_k, b_k), Q_k \sim \text{MNIW}(M_x, \Omega_x, \Psi_x, \nu_x)$$
 (12)

$$(C_k, d_k), S_k \sim \text{MNIW}(M_y, \Omega_y, \Psi_y, \nu_y).$$
 (13)

Here $M_x \in \mathbb{R}^{M \times M+1}$ and $M_y \in \mathbb{R}^{N \times (M+1)}$ are the mean matrices of the matrix normals, $\Omega_x, \Omega_y \in \mathbb{R}^{(M+1) \times (M+1)}$ their between-column covariance matrices, while $\Psi_x \in \mathbb{R}^{M \times M}$ and $\Psi_y \in \mathbb{R}^{N \times N}$ are the scale matrices of the inverse Wisharts and ν_x, ν_y their degrees of freedom. The returned random matrices with M+1 columns are then split between the matrices A_k and C_k and their corresponding bias vectors b_k and d_k .

References

- [1] Bob Carpenter et al. 'Stan: A Probabilistic Programming Language'. In: Journal of Statistical Software 76.1 (2017), pp. 1-32. DOI: 10.18637/jss.v076.i01. URL: https://www.jstatsoft.org/index.php/jss/article/view/v076i01.
- [2] Luis Damiano, Brian Peterson and Michael Weylandt. 'A tutorial on hidden Markov models using Stan'. In: StanCon 2018 (Asilomar Conference Center, California, 10th Jan. 2018). Asilomar. Zenodo, 10th Jan. 2018. DOI: 10.5281/zenodo.1284341. URL: https://doi.org/10.5281/zenodo.1284341.
- [3] Scott W. Linderman et al. 'Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems'. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Ed. by Aarti Singh and Jerry Zhu. Vol. 54. Proceedings of Machine Learning Research. PMLR, Apr. 2017, pp. 914–922. URL: https://proceedings.mlr.press/v54/linderman17a.html.
- [4] Stan Development Team. RStan: the R interface to Stan. R package version 2.32.6. 2024. URL: https://mc-stan.org/.
- [5] Stan Development Team. Stan Modeling Language Users Guide and Reference Manual. Version 2.34. 2024. URL: https://mc-stan.org.