Получение и измерение вакуума (2.3.1)

Ляпин Александр, Б05-207 10 апреля 2023 г.

1 Введение

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

2 Экспериментальна установка

Рис. 1: Схема экспериментальной установки

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ΦB), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (M) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ΦH) и соединительных кранов ($K_1, K_2, \ldots K_6$) (Рис. 1). Кроме того, в состав установки входят: реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Устройство масляного диффузионного насоса схематически показано на Рис. 2 (в лабораторной установке используется несколько откачивающих ступеней). Масло, налитое в сосуд, подогревается электрической печкой. Пары масла поднимаются по трубе и вырываются из сопла. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку. Дальше смесь попадает в вертикальную трубу. Здесь масло осаждается на стенках трубы и маслосборников после чего стекает вниз, а оставшийся газ откачивается форвакуумным насосом.

3 Теоретические сведения

3.1 Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm H}$, десорбция с поверхностей внутри сосуда $Q_{\rm H}$, обратный ток через насос $Q_{\rm H}$. Тогда

имеем:

$$-VdP = \left(PW - \sum Q_i\right)dt$$

При достижении предельного вакуума устанавливается $P_{\rm np}$, и dP=0. В таком случае:

$$W = \left(\sum Q_i\right) / P_{\rm np}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V}t\right) \tag{1}$$

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

3.2 Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При переходе к высокому вакууму столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками.

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{P_2 - P_1}{l}$$

Если труба соединяет установку с насосом, то давлением P_1 у его конца можно пренебречь. Давление в сосуде $P = P_2$. Тогда пропускная способность трубы:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l}\sqrt{\frac{2\pi RT}{\mu}} \tag{2}$$

4 Ход работы

4.1 Определение объемов форвакуумной и высоковакуумной частей установки

- 1. Перед началом работы проверим, что все краны приведены в правильное положение.
- 2. Запустим воздух в систему (для этого нужно открыть кран K_2 и подождать пару минут пока воздух заполнит установку).
- 3. Запустим форвакуумный насос, чтобы он откачал воздух из установки. Пронаблюдаем за тем, как давление в установке уменьшается и продолжим откачку до момента, пока давление не будет порядка 10^{-2} торр.
- 4. Отсоединим установку от форвакуумного насоса, а затем объем, заключенный в кранах и капиллярах форвакуумной части, откроем на всю форвакуумную часть. Тогда давление изменится
- 5. Запишем показания масляного манометра, а именно высоту масла в обоих коленах:

$$h_1 = (38.4 \pm 0.2) \text{ см},$$
 $h_2 = (11.6 \pm 0.2) \text{ см},$ $\sigma_{\Delta h} = \sqrt{\sigma_{h1}^2 + \sigma_{h2}^2} \approx 0.3 \text{см}$ $\Delta h_{\Phi B} = (26.8 \pm 0.3) \text{ см}$

$$\varepsilon_{\Lambda h} = 1 \%$$

6. Зная объем "запертой" части установки $V_{\rm кап}=50~{\rm cm}^3$ и используя соотношение $P_{\rm A}V_{\rm кап}=P_2V_2$ вычислим объем форвакуумной части установки. При этом давление $P_1=P_{\rm atm}=(98.7)~{\rm к}\Pi a$ относительная погрешность полученного значения равна относительной погрешности величины $\Delta h_{\rm dp}$:

$$P_2 = \rho_{\text{масл}} g \Delta h_{\phi \text{в}} = 2.33 \text{ кПа}, \quad \rho_{\text{масл}} = 885 \frac{\text{кг}}{\text{м}^3}$$

$$V_{\Phi^{\mathrm{B}}} = rac{P_1 V_{\mathrm{кап}}}{P_2} - V_{\mathrm{кап}} = 2.1 \; \mathrm{л}$$

7. Проведем те же самые измерения с диффузионным насосом и получим объем установки, из которой вычитанием объема форвакуумной части получается объем высоковакуумной части.

$$h_3 = (33.5 \pm 0.2) \text{ cm},$$
 $h_4 = (16.6 \pm 0.2) \text{ cm},$

$$\Delta h_{\text{полн}} = (16.9 \pm 0.3) \text{ см.}$$

Погрешности высот определяются аналогично предыдущему пункту. Как и формула для полного объема установки, тогда:

$$V_{\text{полн}} = \frac{P_1}{\rho q \Delta h_{\text{полн}}} V_{\text{кап}} \approx 3.4 \text{ л},$$
 $\varepsilon_{V_{\text{полн}}} = \varepsilon_{\Delta h} \approx 2 \%.$

В результате искомая величина равна:

$$V_{ ext{\tiny BB}} = V_{ ext{\tiny ПОЛН}} - V_{ ext{\tiny ФВ}} = 1.3 \ \text{л}, \qquad \qquad \sigma_{V_{ ext{\tiny BB}}} = \sqrt{\sigma_{V_{ ext{\tiny ПОЛН}}}^2 + \sigma_{V_{ ext{\tiny ФВ}}}^2} = 0.07 pprox 0.1 \ \text{л},$$

$$V_{\text{\tiny BB}} = (1.3 \pm 0.1)$$
 л.

4.2 Получение высокого вакуума и измерение скорости откачки

- 8. Не выключая форвакуумного насоса убедимся в том, что в установке не осталось запертых объемов.
- 9. Откачав установку до давления порядка 10^{-2} торр, приступим к откачке ВБ с помощью диффузионного насоса.
- 10. С помощью термопарного манометра пронаблюдаем за тем, как идет откачка ВБ. Мы должны продолжать процесс откачки до тех пор, пока там не установится давление порядка $3 \cdot 10^{-4}$ торр.
- 11. С помощью ионизационного манометра измерим значение предельного давления в системе со стороны высоковакуумной части:

$$P_{\rm np} = (6.1 \pm 0.1) \cdot 10^{-5} \text{ Topp.}$$

12. Найдем скорость откачки по ухудшению и улучшению вакуума, для этого открывая и закрывая кран K_3 будем то подключать насос к объему, то отключать его, при этом на видео зафиксируем показания манометра от времени и построим графики необходимых зависимостей (каких именно подробнее описано в соответствующих пунктах ниже), для которых определим коэффициенты наклона прямых и их погрешности (с помощью МНК).

Для случая улучшения вакуума воспользуемся формулой (1) и построим график зависимости $-(ln(P-P_{\rm np}))$ от t. При построении такого графика из МНК получим коэффициент наклона -k, с помощью которого можно найти $W=kV_{\rm BB}$. Построим эти графики:

Рис. 3: Улучшение вакуума 1

$k \cdot 10^{-1}, \frac{1}{c}$	$\sigma_k^{\text{сл}} \cdot 10^{-1}, \frac{1}{\text{c}}$	$W \cdot 10^{-1}, \frac{\pi}{c}$	ε_W	$\sigma_W \cdot 10^{-1}, \frac{\pi}{c}$
1.81	0.07	2.4	7 %	0.2
1.82	0.03	2.4	6 %	0.1

Таблица 1: Коэффициенты наклона при улучшении вакуума

13. Оценим величину потока газа $Q_{\rm H}$. Для этого воспользуемся данными, полученными при ухудшении вакуума. А именно построим графики зависимости P(t) и определим для них коэффициенты угла наклона прямой. Примем погрешность показаний термопарного манометра за 2% в среднем. Поскольку $V_{\rm BB}dP=(Q_{\rm H}+Q_{\rm H})dt$ получим $(Q_{\rm H}+Q_{\rm H})=\alpha V_{\rm BB}$. По графикам получаем: Используя

$\alpha \cdot 10^{-6}, \frac{\text{Topp}}{\text{c}}$	$\sigma_{\alpha}^{\text{сл}} \cdot 10^{-6}, \frac{\text{торр}}{\text{c}}$	ε_{lpha}	$\sigma_{\alpha} \cdot ^{-6}$, $\frac{\text{Topp}}{\text{c}}$	$Q_{\mathrm{M}} + Q_{\mathrm{H}}$, торр $\cdot \frac{\mathrm{M}}{\mathrm{c}}$	$\sigma_{Q_{\mathrm{A}}+Q_{\mathrm{u}}}, \text{ ropp} \cdot \frac{\pi}{\mathrm{c}}$
8.9	0.05	2.1 %	0.2	$1.16 \cdot 10^{-5}$	$0.07 \cdot 10^{-5}$
8.1	0.04	2.1	0.2	$1.05 \cdot 10^{-5}$	$0.06 \cdot 10^{-5}$

Таблица 2: Коэффициенты наклона при ухудшении вакуума

Рис. 4: Ухудшение вакуума 1

формулу $Q_{\rm H}=P_{\rm np}W-(Q_{\rm H}+Q_{\rm H}),$ а значит $\sigma_{Q_{\rm H}}=\sqrt{\sigma_{P_{\rm np}W}^2+\sigma^2}\approx 1.1\cdot 10^{-6}$ получим, что: $Q_{\rm H}=(3.6\pm 1.1)\cdot 10^{-6}$ торр \cdot л/с.

14. Параметры трубки:

$$L = 10.8 \text{ cm};$$
 $d = 0.8 \text{ mm},$

15. Введем в систему искусственную течь и запишем значение установившегося при этом давления и давления P_{obs} :

$$P_{\text{yct}} = (9.1 \pm 0.1) \cdot 10^{-5} \text{ Topp.}$$
 $P_{\text{db}} = (1.0 \pm 0.1) \cdot 10^{-4} \text{ Topp.}$

16. Поскольку

$$P_{\text{пр}}W = Q_1, \quad P_{\text{уст}}W = Q_1 + \frac{d(PV)_{\text{кап}}}{dt},$$

то с учетом (2), получаем:

$$W = \frac{P_{\Phi B}}{P_{ycr} - P_{np}} \frac{4r^3}{3L} \sqrt{\frac{2\pi RT}{\mu}} \approx 0.167 \cdot 10^{-2} \frac{J}{c}$$

17. Следуя указаниям в методичке выключаем установку.

5 Вывод

- Измерили объемы форвакуумной, высоковакуумной части установки, так же как и объем всей установки.
- Определили скорость откачки двумя способами.

Возможными причинами расхождения полученных результатов на один порядок могло послужить изменение температуры, созданное нагреваемым масляным высоковакуумным насосом. Также возможна разница из-за принципа работы высоковакуумного насоса — при уменьшении давления в нем, производительность начинает падать.

• Оценили поток газа, поступающего из насоса в откачиваемую систему.

6 Приложение

Рис. 5: Улучшение вакуума 2

Рис. 6: Ухудшение вакуума 2