ATT. IN MUNCOUN

## IONOSPHERIC DATA

ISSUED OCTOBER 1951

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.



# NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON,D.C.

Issued 24 Oct. 1951

## IONOSPHERIC DATA

### CONTENTS

|                                                | Page          |
|------------------------------------------------|---------------|
| Symbols, Terminology, Conventions              | 2             |
| World-Wide Sources of Ionospheric Data         | 5             |
| Hourly Ionospheric Data at Washington, D. C    | 7. 12. 24. 55 |
| Ionospheric Storminess at Washington, D. C     | 7. 36         |
| Radio Propagation Quality Figures              | 7. 37         |
| Observations of the Solar Corona               | 8, 38         |
| Relative Sunspot Numbers                       | 9. 48         |
| Observations of Solar Flares                   | 9, 49         |
| Indices of Geomagnetic Activity                | 10, 50        |
| Sudden Ionosphere Disturbances                 | 10, 51        |
| Errata                                         | 11            |
| Tables of Ionospheric Data                     | 12            |
| Graphs of Ionospheric Data                     | 55            |
| Index of Tables and Graphs of Ionospheric Data | 91            |

#### SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conforms as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Tonospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

#### c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

#### d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

| 1950<br>86<br>87<br>90<br>91                 | 1949<br>108<br>112<br>114<br>115              | 1948<br>114<br>115<br>116<br>117                               | 1947<br>126<br>124<br>119<br>121                                                                                                                      | 1946<br>85<br>83<br>81<br>79                                                                                                                                                                         | 1945<br>38<br>36<br>23<br>22                                                                                                                                                                                                                   |
|----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87<br>90<br>91                               | 112<br>114                                    | 115<br>116                                                     | 124                                                                                                                                                   | 83<br>81                                                                                                                                                                                             | 36<br>23                                                                                                                                                                                                                                       |
| 96<br>101<br>103<br>102<br>101<br>103<br>103 | 111<br>108<br>108<br>108<br>109<br>111<br>113 | 123<br>125<br>129<br>130<br>133<br>133                         | 122<br>116<br>112<br>109<br>107<br>105<br>90<br>88                                                                                                    | 77<br>73<br>67<br>67<br>62<br>51<br>46                                                                                                                                                               | 20                                                                                                                                                                                                                                             |
|                                              | 101<br>103<br>102<br>101<br>103               | 101 108<br>103 108<br>102 108<br>101 109<br>103 111<br>103 113 | 101     108     125       103     108     129       102     108     130       101     109     133       103     111     133       103     113     133 | 101     108     125     116       103     108     129     112       102     108     130     109       101     109     133     107       103     111     133     105       103     113     133     90 | 101     108     125     116     73       103     108     129     112     67       102     108     130     109     67       101     109     133     107     62       103     111     133     105     51       103     113     133     90     46 |

#### WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is. Fraserburgh, Scotland Singapore, British Malaya Slough, England

Defence Research Board, Canada:
Churchill, Canada
Fort Chimo, Canada
Ottawa, Canada
Prince Rupert, Canada
St. John's, Newfoundland
Winnipeg, Canada

Radio Wave Research Laboratories, National Taiman University, Taipeh Formosa, China:
Formosa, China

French Ministry of Naval Armaments (Section for Scientific Research)
Dakar, French West Africa
Fribourg, Germany

Mational Laboratory of Radio-Electricity (French Ionospheric Bureau)
Domont, France
Poitiers. France

The Royal Metherlands Meteorological Institute: De Bilt. Holland

Icelandic Post & Telegraph Administration: Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Radio Regulatory Commission, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norwey:

Oslo, Norway Tromso, Norway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

Mational Bureau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Mani, Hawaii

Maui, Hawaii Narsarssuak, Greenland Panama Canal Zone Puerto Rico, W. I.

San Francisco, California (Stanford University) Washington, D. C.

White Sands, New Mexico

#### HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 to 84 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

#### IONOSPHERIC STORMINESS AT WASHINGTON, D. C.

Table 85 presents ionosphere character figures for Washington, D. C., during September 1951, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

### RADIO PROPAGATION QUALITY FIGURES

Table 86 gives provisional radio propagation quality figures for the North Atlantic and North Facific areas, for 01 to 12 and 13 to 24 GCT, August 1951, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths; the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31. "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945." issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal

of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRFL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over Borth Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

#### OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during September 1951 obtained at Climax, Colorado, by the High Altitude Observator, of Earward University and the University of Colorado. Tables 90 through 95 list the coronal observations obtained at Sacramento Peak, New Mexico, during August and September 1951, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the rearest tenth of a day, GCT.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in September 1951.

Tables 90 and 93 give the intensities of the green (5303A) coronal line; tables 91 and 94, the intensities of the first red (6374A) coronal line; and tables 92 and 95, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in August and September 1951.

The following symbols are used in tables 87 through 95: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

#### RELATIVE SUNSPOT NUMBERS

Table 96 lists the daily provisional Zurich relative sunspot numbers, Rz, as communicated by the Swiss Federal Observatory. The American sunspot numbers which in the past were included in this table are now being prepared on a slower schedule and therefore do not appear in this issue.

#### OBSERVATIONS OF SOLAR FLARES

Table 97 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity.

I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

#### INDICES OF GEOMAGNETIC ACTIVITY

Table 98 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale O (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published-in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorelogical Office, De Bilt, Holland, collects the data and compiles Kw. C and selected days. The Chairman of the Committee computes the planetary index.

#### SUDDEN IONOSPHERE DISTURBANCES

Tables 99 through 104 list respectively the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, September 1951; in England, August and September 1951; at Lindau, Harz, Germany, August 1951; at Riverhead, New York, September 1951; at Hong Kong, China, April, May, and June 1951; and at Point Reyes, California, September 1951.

#### ERRATUM

CRPL-F85, p. 20, table 57 and p. 72, fig. 113: In both table and figure, the foE data presented for hours 16 through 19 should be 3.3, 2.9, 2.4, and 2.1, respectively. Dashes in the table for hours 21 through 23 should be omitted.

|         |          |          |          |           | la l  |        |     |             |
|---------|----------|----------|----------|-----------|-------|--------|-----|-------------|
| Washing | cton, D. | 0. (38.7 | °E. 77.1 | OM)       | >     |        | Sep | tember 1951 |
| Time    | h¹F2     | foF2     | h'Fl     | foFl      | h'E   | foE    | fEs | (M3000)F2   |
| 00      | 300      | 3.6      |          |           |       |        |     | 2,8         |
| 01      | 300      | 3.5      |          |           |       |        |     | 2.7         |
| 02      | 290      | 3.1      |          |           |       |        |     | 2,8         |
| 03      | 300      | 2.9      |          |           |       |        |     | 2.8         |
| 04      | 300      | 2.6      |          |           |       |        |     | (2,8)       |
| 05      | 300      | 2.5      |          |           |       |        |     | 2,8         |
| 06      | 260      | 3.6      | mound)   | -         | 130   | 400000 |     | 3.1         |
| 07      | 270      | 4.8      | 230      | etirotim) | 110   | 2.3    |     | 3.2         |
| 80      | 300      | 5.7      | 220      | 4.0       | 110   | 2.8    |     | 3.2         |
| 09      | 320      | 6.2      | 210      | 4.2       | 110   | 3.1    |     | 3.0         |
| 20      | 320      | 6.4      | 210      | 4.5       | 110   | 3.3    |     | 3.0         |
| 11      | 330      | 6,8      | 200      | 4.6       | 110   | 304    |     | 3.0         |
| 12      | 330      | 7.0      | 210      | 407       | 110   | 3.4    |     | 3.0         |
| 13      | 330      | 7.0      | 220      | 4.6       | 110   | 3.4    |     | 3.0         |
| 14      | 320      | 7.0      | 220      | 4.5       | 110   | 3.2    |     | 2,9         |
| 15      | 310      | 7.0      | 230      | 4.4       | 110   | 3.2    |     | 3.0         |
| 1.6     | 290      | 7.1      | 230      | 4.1       | 110   | 2.9    |     | 3.0         |
| 17      | 270      | 7.0      | 240      | 3.6       | 110   | 204    |     | 3.0         |
| 18      | 250      | 7.0      | spinist. | 40 m/3    | (130) | 1.8    |     | 3.0         |
| 19      | 240      | 6.8      |          |           |       |        |     | 3.0         |
| 20      | 240      | 5.8      |          |           |       |        |     | 3.0         |
| 21      | 250      | 5.0      |          |           |       |        |     | 2.9         |
| 22      | 280      | 4.4      |          |           |       |        |     | 2.8         |
| 23      | 280      | 4,0      |          |           |       |        |     | 2,8         |

Time: 75.00%. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Anchorage, Alaska (61.2°N, 149.9°W) August 1951 Time h'F2 foF2 h'F1 h E foE 130 SE(000EM) 00 320 320 3.2 2.8 3.1 3.1 3.3 3.4 3.8 2.2 2.7 330 320 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 340 280 3.2 3.5 3.8 4.0 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.2 3.9 2.8 2.7 2.6 2.5 2.7 2.8 2.6 2.7 2.7 2.8 2.8 2.3 2.7 2.9 3.0 3.1 250 240 230 110 110 400 420 4.2 4.5 4.7 5.0 500 220 500 460 110 100 5.1 4.9 5.0 210 210 220 430 3.2 3.2 3.2 110 460 470 440 5.1 5.0 210 110 3.2 3.0 2.8 100 440 5.0 220 110 5.0 5.0 230 110 2.8 340 300 270 240 3.0 \*\*\* ---5.0 250 3.0 3.0 ---260 270 4.7 3.8 22 3.0 23 280

Time: 150.0 H. Sweeps 1.0 Mc to 25.0 Mc in 15 zeronds.

| San Fr                                                                                                                                       | ancisco,                                                                                                                                                                                      | Californ                                                                                                                                                             | ia (37.4                                                                         | Table<br>N, 122                                                       | 5<br>(2 <sup>年</sup> )                                                    |                                                                                                  | A                                                                                                                                                                                                                   | ugust 1951                                                                                                                                                                             |   |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Time                                                                                                                                         | h'F2                                                                                                                                                                                          | foF2                                                                                                                                                                 | h:P1                                                                             | foF1                                                                  | h ! E                                                                     | foE                                                                                              | TEo                                                                                                                                                                                                                 | (M3000)F2                                                                                                                                                                              | _ |
| 00<br>01<br>02<br>03<br>04<br>05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>22<br>22<br>22<br>23 | (300)<br>(300)<br>(290)<br>(390)<br>(290)<br>300<br>(290)<br>340<br>420<br>420<br>420<br>420<br>420<br>400<br>380<br>350<br>350<br>360<br>340<br>310<br>280<br>250<br>(250)<br>(260)<br>(260) | (4.0)<br>(4.0)<br>(3.0)<br>(3.0)<br>(3.3)<br>(3.3)<br>(3.3)<br>4.1<br>5.6<br>5.6<br>6.1<br>5.9<br>6.1<br>6.2<br>6.1<br>6.2<br>6.1<br>6.2<br>6.1<br>6.2<br>6.1<br>6.2 | 260<br>230<br>210<br>200<br>200<br>200<br>210<br>220<br>220<br>220<br>230<br>240 | 3.2<br>4.0<br>4.4)<br>(4.5)<br>4.6<br>4.7<br>4.6<br>4.4<br>4.1<br>3.6 | (120)<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>1 | (2.0)<br>(2.5)<br>(2.8)<br>(3.1)<br>(3.3)<br>(3.4)<br>(3.5)<br>3.4<br>3.2<br>3.1<br>2.8<br>(2.2) | 3.7<br>3.7<br>3.2<br>2.5<br>2.4<br>2.4<br>2.4<br>3.8<br>4.1<br>5.4<br>4.0<br>4.2<br>4.0<br>9<br>3.9<br>4.7<br>3.8<br>4.7<br>3.8<br>4.0<br>4.2<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | (2.8)<br>(2.8)<br>(2.8)<br>(2.8)<br>(2.8)<br>(2.8)<br>(2.8)<br>3.0<br>2.9<br>2.8<br>2.7<br>2.3<br>2.8<br>2.5<br>2.8<br>2.9<br>2.8<br>2.9<br>3.1<br>3.1<br>3.1<br>3.0<br>(3.1)<br>(3.0) | - |

Time: 120.0%. Sweep: 1.0 Me to 25.0 Mc in 15 seconds.

| Tromso, | Norway       | (69.7°N, | 19-0°E) | Table | 2   |       | Au    | igust 1951 |
|---------|--------------|----------|---------|-------|-----|-------|-------|------------|
| Time    | h122         | foF2     | h'F1    | foF1  | h'E | foE   | 15a   | (H3000)F2  |
| 90      |              | (4.5)    |         |       |     |       | (5.2) | 100 00     |
| 01      |              | ~        |         |       |     |       |       |            |
| 02      | Dr. nor and  |          |         |       |     |       |       |            |
| 03      |              | ~        |         |       |     |       |       |            |
| C4      |              |          |         |       |     |       |       |            |
| 05      |              |          |         |       |     |       |       |            |
| 06      | (400)        | (5.4)    | 225     |       |     |       | (5.4) | (2.8)      |
| 07      | 390          | 5.1      | 210     | 4.1   | 100 | 2.7   | 5.4   | 2.8        |
| 08      | 3 <b>7</b> 0 | 5.4      | 225     | 4.2   | 100 | 2.8   | 5.4   | 2.8        |
| 09      | 375          | 5.4      | 220     | 4 -4  | 100 | 2.9   | 5.5   | 2.9        |
| 10      | 350          | 5.6      | 210     | 4.4   | 100 | 3.0   | 5.5   | 3.0        |
| 11      | 355          | 5.6      | 210     | 4.4   | 100 | (3.0) | 5+5   | 3.0        |
| 12      | 380          | 5.7      | 215     | 4.4   | 105 | (3.0) | . 3-5 | 2.9        |
| 13      | 380          | 5.6      | 210     | 4.4   | 100 | 3.0   | 5.4   | 2.9        |
| 14      | 370          | 5.5      | 215     | 4.3   | 105 | (2.9) | 5.3   | 3.0        |
| 15      | 395          | 5.1      | 220     | 4.3   | 105 | 2.9   | 5.4   | 3.0        |
| 16      | (360)        | 5.0      | 230     | (4.2) | 105 | 2.8   | 4.6   | 3.0        |
| 17      | 330          | 5.0      | 250     | (4.0) | 105 | 2.6   | 4.9   | 3.1        |
| 18      | 300          | 5.0      | ~~~     |       | 105 | (2.3) | 5.1   | 3.0        |
| 19      | 300          | 4.7      |         |       | 105 |       | 5.1   | 3.1        |
| 20      | 300          | 4.7      |         |       | 105 | ~~~   | 4.4   | 3.0        |
| 2]      | 330          | 4.7      |         |       |     |       | 4.5   | 2.9        |
| 22      | (335)        | 4.6      |         |       |     |       | 5.6   | (2.9)      |
| 23      |              | (402)    |         |       |     |       | 5.3   |            |

Time:  $15 \cdot 0^{\circ}$ E. Sweeps U.6 Kc to 25.0 Mc in 5 minutes, automatic operation.

|         |           |           |      | Table | 4     |     |     |            |
|---------|-----------|-----------|------|-------|-------|-----|-----|------------|
| Oslo, N | lornay (6 | 0.6°N, 11 | 0°E) |       |       |     | Δţ  | igust 1951 |
| Time    | h:32      | foF2      | h'Fl | foFl  | h'E   | foE | fle | (MZ000)#2  |
| 00      | 300       | 3.2       |      |       |       |     |     | 2,8        |
| 01      | 310       | 3.1       |      |       |       |     |     | 2.8        |
| 02      | 310       | 2.8       |      |       | ~ ~ ~ | ~~~ |     | 2.8        |
| 03      | 305       | 2.6       |      |       |       |     | 2-6 | 2.8        |
| 04      | 300       | 2.7       |      |       |       | E   |     | 2.9        |
| 95      | 280       | 3.3       | 265  | 2.3   |       | 1.6 | 1.7 | 2.9        |
| 06      | 320       | 3.9       | 240  | 3.3   | 120   | 2.1 | 2.1 | . 3.0      |
| 07      | 370       | 4.4       | 225  | 3.6   | 120   | 2.3 | 3.2 | 2.9        |
| 08      | 350       | 5.0       | 220  | 3.8   | 115   | 2.5 | 3.5 | 2.9        |
| 09      | 350       | 5.1       | 210  | 4.0   | 110   | 2.7 | 3.5 | 3.0        |
| 10      | 350       | 5.2       | 205  | 4.1   | 110   | 2.8 | 3.6 | 3.0        |
| 11      | 360       | 5.4       | 210  | 4.2   | 105   | 3.0 | 4.3 | 3.0        |
| 12      | 370       | 5.4       | 210  | 4.2   | 105   | 3.0 | 3.5 | 2.9        |
| 13      | 355       | 5.4       | 205  | 4.2   | 105   | 3.0 | 3.5 | 3.0        |
| 14      | 355       | 5.3       | 210  | 4.2   | 105   | 3.0 | 3.2 | 3.0        |
| 15      | 350       | 5.4       | 210  | 4.1   | 110   | 2.8 | 2.8 | 2.9        |
| 16      | 330       | 5.5       | 220  | 4.0   | 110   | 2.8 | 2.6 | 3.0        |
| 17      | 310       | 5.6       | 230  | 3.9   | 120   | 2.6 | 3.2 | 3.0        |
| 18      | 300       | 5.6       | 240  | 3.4   | 120   | 2.3 | 3.2 | 3.0        |
| 19      | 260       | 5.6       | 250  |       | 125   | 2.0 | 2.5 | 3.0        |
| 20      | 250       | 5.5       |      |       |       |     |     | 3.C        |
| 21      | 255       | 5.4       |      |       |       |     |     | (3.0)      |
| 22      | 260       | 5.0       |      |       |       |     |     | (2.9)      |
| 23      | 275       | (3.4)     |      |       |       |     |     | (2.8)      |

Time: 15.0°Z. Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation.

| White :                                                                                                                     | Sands, Nov                                                                                                                               | Mexico                                                                                         | (32.3°N,                                                                         | Table                                                       |                                                                    |                                                                                  | A.                                                                                                                                              | ngust 1951                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Time                                                                                                                        | h'F2                                                                                                                                     | foF2                                                                                           | hiFl                                                                             | foFl                                                        | ₽IE                                                                | foE                                                                              | fFs                                                                                                                                             | (M3000)\$2                                                                                                          |
| 00<br>01<br>62<br>09<br>04<br>05<br>66<br>07<br>08<br>09<br>10<br>12<br>13<br>14,<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | 280<br>280<br>270<br>270<br>270<br>280<br>310<br>350<br>380<br>390<br>420<br>310<br>320<br>340<br>320<br>310<br>220<br>230<br>240<br>260 | 4.2<br>4.2<br>3.6<br>3.5<br>4.4<br>5.1<br>5.5<br>6.0<br>6.0<br>7.1<br>7.9<br>7.0<br>6.3<br>5.4 | 250<br>220<br>210<br>200<br>190<br>190<br>200<br>200<br>210<br>220<br>220<br>240 | 3.9<br>4.5<br>4.7<br>4.7<br>4.7<br>4.7<br>4.7<br>4.3<br>4.1 | 110<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | (1 )<br>(2 s)<br>2 s9<br>3 s2<br>(3 s)<br>3 s6<br>3 s5<br>3 s4<br>2 s6<br>(2 s0) | 3.1<br>2.9<br>2.5<br>2.1<br>2.2<br>2.4<br>3.0<br>3.6<br>4.0<br>4.5<br>4.5<br>4.5<br>4.5<br>4.0<br>4.0<br>3.9<br>4.0<br>4.0<br>3.9<br>4.0<br>3.6 | 2.8<br>2.8<br>3.0<br>3.0<br>2.9<br>3.0<br>2.9<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>3.1<br>3.1<br>3.1 |
| 21                                                                                                                          | 240                                                                                                                                      | 5.4                                                                                            |                                                                                  |                                                             |                                                                    |                                                                                  |                                                                                                                                                 |                                                                                                                     |

Time: 105.0°W. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

| Maui, I | Натаіі (2    | 20.8°N, 1 | .56.5°W) | Table | 7   | A         | ugust 1951 |           |
|---------|--------------|-----------|----------|-------|-----|-----------|------------|-----------|
| Time    | p.12         | foF2      | h'F1     | foFl  | h'E | foE       | fE2        | (M3000)F2 |
| 00      | 300          | 5.5       |          |       |     |           | 3.6        | 2.7       |
| 01      | 280          | 5.3       |          |       |     |           | 2.7        | 2.8       |
| 02      | 270          | 5.7       |          |       |     |           | 2.4        | 2.9       |
| 03      | 240          | 5.1       |          |       |     |           | 1.6        | 3.1       |
| 04      | 250          | 4.6       |          |       |     |           | 1.6        | 3.0       |
| 05      | 260          | 3.8       |          |       |     |           | 2.1        | 3.0       |
| 06      | 270          | 4.1       |          |       |     | -07 mm mb | 2.4        | 3.0       |
| 07      | 250          | 5.8       | 230      | ***   | 120 | 2.2       | 3.0        | 3.2       |
| 08      | 280          | 6.2       | 220      | 4.1   | 110 | 2.8       | 4.0        | 3.1       |
| 09      | 370          | 6.5       | 210      | 4.7   | 110 | 3.2       | 4.3        | 2.7       |
| 10      | 420          | 6.9       | 200      | 5.0   | 110 | 3.4       | 4.5        | 2.4       |
| 11      | 440          | .7.9      | 200      | 5.0   | 110 | 3.4       | 5.0        | 2.4       |
| 12      | 410          | 9.0       | 220      | 5.0   | 110 | 3.6       | 4.6        | 2.5       |
| 13      | 380          | 9.9       | 220      | 4.9   | 110 | 3.6       | 4.4        | 2.6       |
| 14      | 360          | 10.1      | 210      | 4.8   | 110 | 3.5       | 4.7        | 2.7       |
| 15      | 330          | 10.6      | 220      | 4.8   | 110 | 3.4       | 4.8        | 2.8       |
| 16      | 3 <b>1</b> 0 | 10.9      | 230      | 4.5   | 110 | 3.2       | 4.7        | 3.0       |
| 17      | 280          | 11.0      | 230      | (4.2) | 100 | 2.8       | 4.8        | 3.1       |
| 18      | 260          | 10.7      | 240      |       | 120 | 2.3       | 4.6        | 3.2       |
| 19      | 240          | 9.4       |          |       |     |           | 4.1        | 3.2       |
| 20      | 240          | 8.0       |          |       |     |           | 4.4        | 3.0       |
| 21      | 250          | 7.0       |          |       |     |           | 3.8        | 2.8       |
| 22      | 280          | 7.0       |          |       |     |           | 4.0        | 2.7       |
| 23      | 300          | 5.9       |          |       |     |           | 2.8        | 2.8       |

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

|         |          |          |      | Table | 9     |       |     |            |
|---------|----------|----------|------|-------|-------|-------|-----|------------|
| Guam I. | (13.6°N, | 144.9°E) |      |       | -arti |       | rΔ  | igust 1951 |
| Time    | P112     | foF2     | h'F1 | foF1  | h E   | foE   | fEe | (M3000)F2  |
| 00      | 300      | 7.0      |      |       |       |       | 2.4 | 2.8        |
| Ol      | 280      | 6.2      |      |       |       |       |     | 2.9        |
| 02      | 270      | 5.8      |      |       |       |       |     | 3.0        |
| 03      | 260      | 5.2      |      |       |       |       |     | 3.0        |
| 04      | 260      | 5.0      |      |       |       |       |     | 3.0        |
| 05      | 240      | 5.0      |      |       |       |       |     | 3.3        |
| 06      | 250      | 4.4      |      |       |       |       |     | 3.2        |
| 07      | 230      | 6.2      |      |       | 120   | 2.2   | 2.7 | 3.2        |
| 08      | (270)    | 7.8      | 210  |       | 110   | 2.8   | 4.8 | 3.0        |
| 09      | 300      | 8.6      | 210  |       | 110   | (3.1) | 4.8 | 2.8        |
| 10      | 330      | 9.2      | 200  | (4.8) | 110   | 3.6   | 5.0 | 2.7        |
| 11      | 350      | 9.6      | 200  | (4.8) | 110   | 3.6   | 5.4 | 2.6        |
| 12      | 370      | 9.9      | 210  | (4.9) | 110   | (3.7) | 5.2 | 2.5        |
| 13      | 370      | 10.1     | 200  | (4.9) | 110   | 3.7   | 4.9 | 2.5        |
| 14      | 360      | 10.2     | 200  | (4.9) | 110   | 3.6   | 4.7 | 2.6        |
| 15      | 360      | 10.8     | 210  | (4.8) | 110   | (3.5) | 4.4 | 2.6        |
| 16      | 340      | 11.1     | 210  | 4.6   | 110   | 3.2   | 4.9 | 2.7        |
| 17      | (300)    | 11.2     | 220  |       | 110   | 2.7   | 4.8 | 2.8        |
| 18      | 250      | 11.4     |      |       | 120   |       | 4.8 | 2.5        |
| 19      | 260      | 11.2     |      |       |       |       | 4.8 | 2.9        |
| 20      | 260      | 10.2     |      |       |       |       | 3.5 | 2.8        |
| 21      | 260      | 9-4      |      |       |       |       | 2.8 | 2.8        |
| 22      | 270      | 8.4      |      |       |       |       | 2.8 | 2.9        |
| 23      | 290      | 7-6      |      |       |       |       | 2.5 | 2.7        |

| De Bilt | Holland | (52.10 | N, 5.2°E) | Table | 11       |     |     | July 1951 |
|---------|---------|--------|-----------|-------|----------|-----|-----|-----------|
| Time    | P.LS    | foF2   | h'F1      | foFl  | h'E      | foE | fEa | SA(000EM) |
| 00      | 270     | 5.2    |           |       |          |     |     | 2.8       |
| 01.     | 280     | 4.6    |           |       |          |     | 2.3 | 2.8       |
| 02      | 280     | 4.2    |           |       |          |     |     | 2.8       |
| 03      | 290     | 4.0    |           |       | es es-co | E   | 2.8 | 2.9       |
| 04      | 270     | 4.3    | 270       |       |          | 1.6 | 3.6 | 2.8       |
| 05      | 310     | 4.8    | 235       | 3.5   | 105      | 2.2 | 4.0 | 2.9       |
| 06      | 320 -   | 5.6    | 220       | 4.0   | 100      | 2.6 | 4.2 | 3.1       |
| 07      | 340     | 5.7    | 210       | 4.2   | 100      | 2.9 | 4.6 | 3.0       |
| 08      | 320     | 6.2    | 210       | 4.5   | 100      | 3.1 | 4.8 | 2.9       |
| 09      | 335     | 6.0    | 205       | 4.6   | 100      | 3.2 | 4.9 | 3.0       |
| 10      | 360     | 6.2    | 210       | 4.8   | 100      | 3.4 | 4.9 | 2.9       |
| 21      | 320     | 6.2    | 200       | 4.8   | 100      | 3.5 | 4.7 | 3.0       |
| 12      | 340     | 6.0    | 200       | 4.8   | 100      | 3.5 | 4.8 | 3.0       |
| 13      | 345     | 6.2    | 205       | 4.8   | 100      | 3.4 | 4.6 | 3.0       |
| 14      | 360     | 6.2    | 205       | 4.7   | 100      | 3.4 | 4.3 | 3.0       |
| 15      | 325     | 6.0    | 205       | 4.6   | 100      | 3.2 | 4.2 | 3.0       |
| 16      | 310     | 6.0    | 210       | 4.4   | 100      | 3.0 | 4.2 | 3.0       |
| 37      | 305     | 6.5    | 220       | 4.2   | 100      | 2.8 | 3.9 | 3.0       |
| 18      | 295     | 6.6    | 230       | 3.7   | 100      | 2.4 | 4.3 | 3.1       |
| 19      | 270     | 6.9    | (245)     |       | 110      | 1.9 | 3.8 | 3.1       |
| 20      | 250     | 7.2    |           |       | T0-07-00 | E   | 3.0 | 3.0       |
| 21      | 250     | (7.4)  |           |       |          |     | 3.0 | (3.0)     |
| 22      | 245     | 6.2    |           |       |          |     | 2.4 | 2.9       |
| 23      | 260     | 5.5    |           |       |          |     | 2.2 | 2.9       |

Time: 0.0°. Sweep: 1.4 Me to 16.0 Me in 7 minutes, automatic operation.

| Puerto | Rico, F. | A    | August 1951 |      |       |       |     |             |
|--------|----------|------|-------------|------|-------|-------|-----|-------------|
| Tims   | FILS     | foF2 | h'3'1       | IoF1 | h I E | foE   | 1Bs | (M3000)MS   |
| 00     | 280      | 5.6  |             |      |       |       |     | 2.8         |
| 01     | 260      | 5.8  |             |      |       |       | 2.5 | 3.0         |
| 02     | (260)    | 5.8  |             |      |       |       | 2.0 | 3.0         |
| 03     | 240      | 5.0  |             |      |       |       | 2.3 | 3.0         |
| 04     | 260      | 4.6  |             |      |       |       | 2.3 | 2.9         |
| 05     | 250      | 4.2  |             |      |       |       | 2.1 | 3.0         |
| 06     | 260      | 4.2  |             |      | -     |       | 2.4 | 3.1         |
| 07     | 230      | 5.6  | 220         |      | 310   | 2.2   | 2.8 | 3.4         |
| 03     | 300      | 5.1  | 210         | 4.1  | 100   | 2.8   | 4.5 | 3.2         |
| 09     | 310      | 6.9  | 200         | 4.4  | 1.00  | 3.2   | 4.4 | 3.0         |
| 10     | 340      | 7.1  | 200         | 4.8  | 100   | 3.4   |     | 2.9         |
| 11     | 7'0      | 7.7  | 210         | 4.9  | 100   | 3.6   |     | 2.8         |
| 12     | 550      | 8.7  | 200         | 5.0  | 3.00  | 3.7   |     | 2.€         |
| 13     | 3.40     | 9.3  | 220         | 4.9  | 100   | 3.7   | 4.6 | 2.8         |
| 14     | 320      | 9.9  | 210         | 408  | 100   | 3.6   | 4.8 | 2.9         |
| 15     | 320      | 9.4  | 210         | 4.6  | 100   | 3.5   |     | 2.9         |
| 16     | 300      | 9.4  | 220         | 4.5  | 100   | 3.2   | 3.9 | 2.9         |
| 17     | 300      | 9.4  | 220         | 4.2  | 100   | 2.8   | 4.2 | 3.0         |
| 13     | 260      | 9.4  | 230         |      | 110   | (2.2) | 3.3 | 3. <b>1</b> |
| 19     | 240      | 8.6  |             |      |       |       | 2.9 | 3.1         |
| 20     | 230      | 7.3  |             |      |       |       | 2.8 | 3.0         |
| 21     | 240      | 6.7  |             |      |       |       |     | 2.9         |
| 22     | (270)    | 6.0  |             |      |       |       |     | 2.8         |
| 23     | 280      | 6.0  |             |      |       |       | 2.2 | 2.8         |

Time: 60.0°W.
Sweep: 1.0 Me to 25.0 Me to 15 seconds.

|         |          |          |         | Table | 10  |      |     |            |
|---------|----------|----------|---------|-------|-----|------|-----|------------|
| Huancay | ro, Peru | (12.0°S, | 75.397) |       |     |      | 22  | igust 1951 |
| Time    | P.L.S    | foF2     | h131    | foFl  | h!E | foE  | fB2 | (M3000)F2  |
| 00      | 230      | 6.3      |         |       |     |      |     | 3.2        |
| 01      | 230      | 6.4      |         |       |     |      | 2.5 | 3.2        |
| 02      | 240      | 6.0      |         |       |     |      | 2.5 | 3.2        |
| 03      | 260      | 5.4      |         |       |     |      |     | 3.2        |
| 04      | 280      | 404      |         |       |     |      |     | 3.2        |
| 05      | 300      | 3.9      |         |       |     |      | 2.6 | 3.1        |
| 06      | 280      | 4.4      |         |       | 110 |      | 3.1 | 3.0        |
| 07      | 240      | 6.9      |         |       | 100 | 2.4  | 4.7 | 3.1        |
| 08      | 280      | 8.4      | 220     |       | 109 | 2.9  | 4.7 | 3.0        |
| 09      | 300      | 8.3      | 210     | 4.6   | 100 | 3.2  | 4.8 | 2.7        |
| 20      | 320      | 8.8      | 210     | 4.7   | 100 |      | 8.0 | 2.6        |
| 11      | 340      | 8.7      | 200     | 4.8   | 100 |      | 8.0 | 2.5        |
| 12      | 350      | 8.4      | 200     | 4.8   | 100 |      | 8.0 | 2.5        |
| 13      | 360      | 8.4      | 200     | 4.8   | 100 | **** | 8.0 | 2.5        |
| 3.4     | 340      | 8.7      | 200     | 4.7   | 100 |      | 8.0 | 2.5        |
| 15      | 310      | 8.5      | 200     | 4.5   | 100 | 3.0  | 8.0 | 2.5        |
| 16      | 260      | 8.4      | 210     |       | 100 | 2.8  | 4.8 | 2.5        |
| 17      | 260      | 8.4      |         |       | 100 | 2.2  | 4.7 | 2.5        |
| 18      | 300      | 8.1      |         |       | 100 |      | 4.1 | 2.5        |
| 19      | 300      | 8.0      |         |       |     |      |     | 2.5        |
| 20      | 300      | 7.9      |         |       |     |      |     | 2.6        |
| 22      | 260      | 7.7      |         |       |     |      |     | 2.9        |
| 22      | 240      | 7.8      |         |       |     |      |     | 3.1        |
| 23      | 230      | 7.3      |         |       |     |      |     | 3.1        |

23 | 230 1.5 Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

| Schwar | July 1951 |      |      |      |      |     |     |           |
|--------|-----------|------|------|------|------|-----|-----|-----------|
| Timo   | h'F2      | foFŻ | h'Fl | foFl | h 'E | foE | fRe | SE(0002M) |
| 00     | 280       | 5.9  |      |      |      |     |     |           |
| 01     | 290       | 5.4  |      |      |      |     |     |           |
| 02     | 300       | 5.2  |      |      |      |     |     |           |
| 03     | 300       | 4.8  |      |      |      |     |     |           |
| 04     | 290       | 604  |      |      |      |     |     |           |
| 05     | 295       | 4.4  |      |      | 120  | 1.8 |     |           |
| 06     | 250       | 5.2  | 250  | 3.3  | 110  | 2.1 |     |           |
| 07     | 300       | 5.9  | 230  | 4.0  | 100  | 2.5 |     |           |
| 80     | 320       | 6.1  | 215  | 4.3  | 100  | 2.9 |     |           |
| 09     | 300       | 6.8  | 205  | 4.5  | 100  | 3.1 | 5.0 |           |
| 10     | 330       | 6.9  | 200  | 4.6  | 100  | 3.2 |     |           |
| 11     | 340       | 7.0  | 200  | 4.8  | 100  | 3.4 | 5.4 |           |
| 12     | 355       | 6.8  | 200  | 4.8  | 100  | 3.5 | 5.9 |           |
| 13     | 350       | 6.5  | 200  | 4.8  | 100  | 3.5 |     |           |
| 14     | 340       | 6.5  | 200  | 4.8  | 100  | 3.5 |     |           |
| 15     | 340       | 6.4  | 210  | 4.8  | 100  | 3.4 |     |           |
| 16     | 340       | 6.2  | 23.0 | 4.5  | 1.00 | 3.1 |     |           |
| 17     | 320       | 6.4  | 220  | 4.4  | 100  | 3.0 |     |           |
| 18     | 300       | 6.3  | 240  | 4-2  | 100  | 2.6 | 4.2 |           |
| 19     | 270       | 6.9  | -70  |      | 100  | 2.1 | 4.2 |           |
| 20     | 250       | 7.2  |      |      |      |     | 3.6 |           |
| 21     | 250       | 7.1  |      |      |      |     | 4.5 |           |
| 22     | 260       | 7.1  |      |      |      |     | 4.5 |           |
| 23     | 270       | 6.5  |      |      |      |     |     |           |

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

| Panama | Panama Canel Zone (9.4°N, 79.9°F) |      |                   |      |     |     |     |          |  |  |  |  |
|--------|-----------------------------------|------|-------------------|------|-----|-----|-----|----------|--|--|--|--|
| Time   | h112                              | foF2 | h <sup>1</sup> Fl | foFl | h'E | foZ | fEg | (KZ000)F |  |  |  |  |
| 00     | 250                               | 7.5  |                   |      |     |     |     | 3.0      |  |  |  |  |
| 01     | 240                               | 7.2  |                   |      |     |     |     | 3.0      |  |  |  |  |
| 02     | 250                               | 6.6  |                   |      |     |     |     | 3.0      |  |  |  |  |
| 03     | 250                               | 6.1  |                   |      |     |     | 1.7 | 3.0      |  |  |  |  |
| 04     | 250                               | 5.4  |                   |      |     |     | 2.0 | 3.3      |  |  |  |  |
| 05     | 250                               | 4.7  |                   |      |     |     | 1.1 | 3.1      |  |  |  |  |

| Time | P115  | foF2   | h'F1 | foFl  | h'E | foZ   | fEg | (KE000)F2 |
|------|-------|--------|------|-------|-----|-------|-----|-----------|
| 00   | 250   | 7.5    |      |       |     |       |     | 3.0       |
| 01   | 240   | 7.2    |      |       |     |       |     | 3.0       |
| 02   | 250   | 6.6    |      |       |     |       |     | 3.0       |
| 03   | 250   | 6.1    |      |       |     |       | 1.7 | 3.0       |
| 04   | 250   | 5.4    |      |       |     |       | 2.0 | 3.1       |
| 05   | 250   | 4.7    |      |       |     |       | 1.1 | 3.1       |
| 06   | 260   | 4.5    |      |       |     |       | 2.7 | 3.0       |
| 07   | (250) | 5.9    | 220  | (3.4) | 110 | 2.3   | 4.0 | 3.1       |
| 08   | 300   | 6.8    | 220  | 4.5   | 110 | 2.9   | 4.1 | 3.0       |
| 09   | 380   | 6.8    | 210  | 4.9   | 100 | 3.3   | 4.2 | 2.6       |
| 10   | 400   | 8.0    | 220  | 5.0   | 110 | 3.5   | 4.0 | 2.5       |
| 11   | 420   | 9.0    | 210  | 5.0   | 110 | 3.7   | 4.2 | 2.5       |
| 1.2  | 420   | 9.8    | 200  | 5.0   | 100 | 3.8   | 4.3 | 2.5       |
| 13   | 400   | 10.2   | 210  | 4.9   | 100 | 3.7   | 5.0 | 2.6       |
| 14   | 380   | 10.6   | 210  | 4.9   | 100 | 3.7   | 4.5 | 2.7       |
| 15   | 360   | 10.7   | 230  | 4.8   | 100 | 3.5   | 4.6 | 2.7       |
| 16   | 340   | 11.0   | 220  | 4.6   | 110 | 3.2   | 4.9 | 2.8       |
| 27   | 320   | 10.6   | 230  | 4.3   | 110 | (2.8) | 4.2 | 2.8       |
| 18   | 280   | (10.6) | 240  | (3.9) | 110 | (2.2) | 3.4 | (2.9)     |
| 19   | 240   | (9.6)  |      |       |     |       | 2.4 | (2.9)     |
| 20   | 260   | 8.8    |      |       |     |       |     | 2.8       |
| 21   | 260   | (8.5)  |      |       |     |       |     | (2.8)     |
| 22   | 260   | (8.3)  |      |       |     |       |     | (2.9)     |
| 23   | 270   | 7.8    |      |       |     |       |     | 2.9       |

23 270 7.8

Time: 75.0°E.

Sweeps d.0 Me to 25.0 Me in 15 seconds.

Boykjevik, Icoland (64.1°H, 21.8°W) Juna 1951 Timo h'F2 2035 h'Fl forl h ! E (M5000)F2 for TEo (2.6) (2.5) (2.6) 2.6 2.6 2.8 (4.4) (4.3) (4.5) (4.1) (4.1) (4.1) (4.1) (4.1) 00 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4.5 4.8 4.6 4.7 4.9 4.0 (395) 360 360 ---(2.6) 360 405 400 110 3.4.3 4.0 4.3 4.4 4.4 4.4 4.4 4.0 4.0 2.6 2.6 2.7 2.7 2.7 260 250 420 430 420 240 120 3.1 3.2 3.2 3.2 3.2 240 110 240 230 240 240 430 445 450 420 420 405 365 370 355 330 330 110 2.7 2.6 2.7 2.7 2.7 110 240 240 110 3.2 3.1 240 110 2.7 2.7 2.8 2 260 280 120 (2.9) 4.1 4.3 4.8 5.6 **5.4** ------280 ---(2.7)

---

71203

>.0 %. 1.0 Ms to 25.0 Ms in 20 seconds. **ವಿಪ್**ಕಾಶಾ ಚ

|         |            |          |         | Tabla | 17    |       |     |           |
|---------|------------|----------|---------|-------|-------|-------|-----|-----------|
| Churchi | ill, Canad | ia (58.8 | T, 94.2 | 图)    |       |       |     | June 1951 |
| Timo    | h'F2       | foF2     | h'Fl    | foF1  | h ! E | fol   | fEs | (M3000)IS |
| 00      | 280        | 4.3      |         |       |       |       | 7.7 | 2.8       |
| -51     | 270        | 4.0      |         |       |       | -     | 6.0 | (3.0)     |
| 02      | 260        | 4.4      |         |       | 120   | 1.8   | 4.0 | 2.8       |
| .03     | -290       | 4.8      |         |       | 110   | 2.0   | 3.5 | 3.1       |
| 04      | 290        | 3.9      |         |       | 320   | 2.0   | 2.9 | 2.9       |
| 05      | 300        | 4.2      |         |       | 110   | 2.5   |     | 2.8       |
| 06      | 390        | 4.6      | 230     | 3.6   | 110   | 3.0   |     | 2.6       |
| 07      | 140        | 4.5      | 240     | 4.0   | 100   | 3.2   |     | 2.4       |
| 08      | 430        | 4.7      | 230     | 4.0   | 100   | 3.3   |     | 2.5       |
| 09      | 420        | 5.0      | 220     | 4.3   | 100   | 3.3   |     | 2.8       |
| 20      | (420)      | 5.1      | 220     | 4.4   | 100   | 3.4   |     | (2.6)     |
| 11      | 390        | 5.1      | 210     | 404   | 100   | 3.3   |     | 2.7       |
| 12      | 430        | 5.3      | 220     | 4.4   | 100   | 3.2   | 3.2 | 2.6       |
| 13      | 400        | 5.8      | 210     | 404   | 100   | 3.4   |     | 2.6       |
| 14      | 400        | 5.4      | 220     | 404   | 100   | 3.0   |     | 2.7       |
| 15      | 400        | 5.8      | 220     | 404   | 100   | 3.0   |     | 2.7       |
| 16      | 360        | 6.0      | 220     | 404   | 100   | 3.0   |     | 2.8       |
| 27      | 350        | 5.8      | 230     | 4.2   | 110   | 3.0   |     | 2.8       |
| 18      | 350        | 5.7      | 270     | 4.0   | 210   | 3.0   |     | 2.8       |
| 29      | 320        | 5.0      | 270     | 3.8   | 110   | 3.0   |     | 2.8       |
| 20      | 310        | 4.9      |         | -     | 120   | 3.0   | 5.0 | 2.8       |
| 23      | 300        | 4.6      |         |       | 230   | 2.4   | 5.2 | 2.8       |
| 22      | 290        | 4.8      |         |       | 120   | 2.4   | 7.5 | 2.9       |
| 23      | 290        | 4.5      |         |       |       | 40.00 | 8.0 | 2.9       |

Time: 90.0%.

Sweeps 0.6 He to 20.0 Ms in 15 seconds.

| Enancay | o, Peru | (12.0°S, | 75。3 <sup>0</sup> ₹) | Table    | 1/.  |          |      | July 1951 |
|---------|---------|----------|----------------------|----------|------|----------|------|-----------|
| Time    | p.13.5  | foF2     | h'F1                 | foFl     | h1E  | foE      | 2Ze  | (ME000)F2 |
| 00      | 230     | 5.9      |                      |          |      |          | 2.5  | 3.2       |
| 01      | 230     | 5.8      |                      |          |      |          | 2.6  | 3.2       |
| 02      | 230     | 5.6      |                      |          |      |          | 2.5  | 3.3       |
| 03      | 240     | 4.9      |                      |          |      |          | 2.6  | 3.2       |
| 04      | 250     | 4.4      |                      |          |      |          | 2.5  | 3.2       |
| 05 .    | 260     | 4.2      |                      |          |      |          | 2.6  | 3.1       |
| 06      | 290     | 4.4      |                      |          | 100  |          | 2.7  | 2.8       |
| 07      | 240     | 6.0      |                      |          | 100  | 2,2      | 4.8  | 3.0       |
| 08      | 280     | 7.8      | 220                  |          | 100  | 2.7      | 8.0  | 2.8       |
| 09      | 310     | 8.0      | 210                  | 4.5      | 100  | 3.1      | 8.2  | 2.6       |
| 20      | 320     | 8.2      | 210                  | 4.7      | 100  |          | 8.2  | 2.5       |
| 11      | 340     | 8.0      | 200                  | 4.8      | 100  |          | 10.2 | 2.5       |
| 12      | 370     | 7.9      | 200                  | 4.8      | 100  |          | 10.4 | 2.5       |
| 33      | 360     | 8.0      | 200                  | 4.8      | 100  | C2 40 EE | 8.8  | 2.5       |
| 14      | 350     | 8.0      | 210                  | 6.7      | 1.00 | 3.2      | 8.0  | 2.4       |
| 15      | 320     | 7.9      | 210                  | 4.6      | 100  | 3.1      | 8.0  | 2.4       |
| 16      | 280     | 8.1      | 210                  | er 63 59 | 200  | 2.7      | 8.0  | 2.5       |
| 17      | 250     | 8.1      |                      |          | 100  | 2.1      | 4.9  | 2.5       |
| 28      | 290     | 8.0      |                      |          |      |          |      | 2.6       |
| 19      | 300     | 7.6      |                      |          |      |          |      | 2.6       |
| 20      | 280     | 7.7      |                      |          |      |          |      | 2.7       |
| 22      | 250     | 7.5      |                      |          |      |          | 2.2  | 2.9       |
| 22      | 240     | 7.2      |                      |          |      |          |      | 3.0       |
| 23      | 230     | 6.0      |                      |          |      |          | 2.3  | 3.1       |

Time: 75.00%.

Sweeps 16.0 Mc to 0.5 Mc in 15 minutes, sutcaetic operation.

|         |         |          |          | Table  | 16    |        |      |           |
|---------|---------|----------|----------|--------|-------|--------|------|-----------|
| Karasra | susk, G | rsonland | (61.2°E, | 45.48) |       |        |      | June 1951 |
| Time    | h'F2    | STol     | h'Fl     | foFl   | h1E   | foB    | fFs  | (M3000)F2 |
| 00      | 320     | (4.2)    |          |        |       |        | 4.4  | (2.6)     |
| 01      | 320     | (3,6)    |          |        |       |        | 4.4  | (2.6)     |
| 02      | <370    | (3.6)    |          |        |       |        | 4.0  | 2.6       |
| 03      | (340)   | (3.9)    |          |        |       |        | 4.0  | (2.7)     |
| 04      | (320)   | (4.0)    |          |        |       |        | 4.2  | (2.8)     |
| 05      | (340)   | (4.3)    | 270      | 3.7    | (110) |        | 4.3  | (2.9)     |
| 06      | 370     | (4.5)    | 270      | 3.9    | 110   | (3.1)  | 4.0  | 2.8       |
| 07      | 4.00    | 4.8      | 250      | 4.0    | 110   | (2.9)  | 3.7  | 2.7       |
| 08      | 400     | 5.0      | 250      | 4.1    | 110   | 3.1    |      | 2.7       |
| 09      | 410     | 5.0      | 230      | 4.3    | 130   | (3.2)  |      | 2.8       |
| 10      | 410     | 5.3      | 230      | 4.3    | 110   | (3.3)  |      | 2.7       |
| 17      | 430     | 5.4      | 230      | 4.04   | 110   | (3.2)  |      | 2.6       |
| 12      | 430     | 5.5      | 230      | . 404  | 110   | (3.3)  |      | 2.6       |
| 13      | 420     | 5.6      | 230      | 4.4    | (110) | 3.2    |      | 2.6       |
| 14      | 420     | 5.7      | 230      | 404    | (110) | (3.3)  |      | 2.7       |
| 15      | 420     | 5.6      | 240      | 4.3    | (110) | (3.2)  |      | 2.7       |
| 16      | 380     | 5.6      | <250     | 4.2    | 110   | 3.0    |      | 2.7       |
| 17      | 400     | 5.4      | 260      | 4.2    | (110) | (2.9)  |      | 2.6       |
| 18      | 340     | 5.1      | 270      | 4.0    | 110   | (2.7)  | Lote | 2.7       |
| 19      | (340)   | (5.0)    | (260)    | (3.9)  | 120   | (2.5). | 4.2  | 2.6       |
| 20      | 340     | (5.0)    | (260)    | (3.4)  | 120   | (2,4)  | 5.7  | (2.8)     |
| 21      | 320     | (4.5)    |          |        |       |        | 6.4  | (2.9)     |
| 22      | (300)   | (>4.3)   |          |        |       |        | 6.6  | (2.7)     |
| 23      | (320)   | (4.2)    |          |        |       |        | 4.0  | (2.6)     |

Times 45.0°%. Steeps 1.0 Me to 25.0 Me in 15 seconds.

| POST OF | imo, Can | 108 (700. | 11, 000. | 2.H./ |     |     |      | June 1951 |
|---------|----------|-----------|----------|-------|-----|-----|------|-----------|
| Time    | p.LS     | foF2      | h'31     | foFl  | p.E | foE | fEs  | Sa(OOOEH) |
| 00      | 300      | 3.9       |          |       |     |     | 4.4  | 40 -0 40  |
| 01.     | 300      | 4.0       |          |       | 320 |     | 3.8  | 40.00     |
| 02      | 290      | 3.8       |          |       | 100 | 2.2 | 3.1  | (2.8)     |
| 03      | 290      | 4.0       |          |       | 210 | 2.8 | 4.2  | (2.8)     |
| 04      | 310      | 4.0       |          |       | 100 | 3.4 | 3.4  | (2.9)     |
| 05      | 300      | 4.2       | 260      | 3.7   | 100 | 3.5 |      | 2.7       |
| 06      | 440      | 4-2       | 270      | 4.0   | 100 | 3.4 | 3.6  | (>2.7)    |
| 07      | 390      | 5.0       | 260      | 4.2   | 100 | 3.6 |      | 2.8       |
| 08      | 400      | 4.9       | 230      | 4.3   | 100 | 3.6 |      | 2.6       |
| 09      | 400      | 5.2       | 220      | 404   | 100 | 3.3 |      | 2.7       |
| 1.0     | 430      | 5.2       | 220      | 4.5   | 100 | 3.4 |      | 2.7       |
| 11      | 400      | 5.3       | 210      | 4.5   | 100 | 3.6 |      | 2.8       |
| 12      | 390      | 5.5       | 210      | 4.5   | 100 | 3.5 |      | 2.6       |
| 13      | 380      | 5.6       | 200      | 4.5   | 100 | 3.5 |      | 2.7       |
| 1/4     | 400      | 5.8       | 210      | 4.5   | 100 | 3.5 |      | 2.6       |
| 15      | 380      | 5.8       | 220      | 4.3   | 100 | 3-2 |      | 2.7       |
| 16      | 370      | 5.7       | 240      | 4.3   | 100 | 3.3 | 3-2  | 2.6       |
| 17      | 370      | 5-2       | 270      | 4.0   | 100 | 3.5 | 2.8  | 2.7       |
| 16      | 350      | 5.0       | 250      | 3.9   | 100 | 2.8 | 4.2  | 2.6       |
| 19      | 300      | 4.8       | ~ = +    |       | 110 | 2.8 | 4.8  | 2.8       |
| 20      | 280      | 4.5       |          |       | 120 | 2.3 | 7.2  | (2.9)     |
| 21      | 280      | 4.4       |          |       | 110 | 2.2 | 6.0  | (2.6)     |
| 22      | 300      | 4.3       |          |       |     |     | 4.3  | 2.6       |
| 23      | 280      | 3.9       |          |       | 110 |     | 4.09 | (2.6)     |

Time: 75.0%. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

|        |         |        | 4        | Table    | 19    |       |     |           |
|--------|---------|--------|----------|----------|-------|-------|-----|-----------|
| Prince | Rupert, | Canada | (54.3 N, | 130.3 W) |       |       |     | Juna 1951 |
| Time   | F.LS    | folk   | h'Fl     | rofi     | h * E | roE   | 1Za | (H3000)35 |
| 00     | 290     | 4.0    |          |          |       |       | 2.4 | 2.8       |
| 01     | 290     | 3.5    |          |          |       |       | 1.1 | 2.7       |
| 02     | 300     | 3.0    |          |          |       |       | 1.5 | 2.7       |
| 03     | 305     | 3.0    |          |          |       |       | 2.7 | 2.8       |
| 04     | 300     | 3.2    |          | 40.40.40 | 110   | ***** | 1.8 | 2.8       |
| 05     | 400     | 4.0    | 260      | 3.0      | 110   | 2.0   | 2.0 | 2.6       |
| 06     | 400     | 4.4    | 240      | 3.5      | 100   | 2.4   | 2.2 | 2.6       |
| 07     | 440     | 4.8    | 220      | 3.8      | 100   | 2.3   |     | 2.5       |
| 08     | 440     | 5.0    | 210      | 4.0      | 100   | 3.0   |     | 2.6       |
| 09     | 420     | 5.0    | 210      | 4.2      | 100   | 3.1   | 3.7 | 2.6       |
| 10     | 450     | 5.2    | 210      | 4-4      | 100   | 3.2   | 4.3 | 2.6       |
| 11     | 430     | 5.3    | 210      | 4.5      | 100   | 3.3   | 4.5 | 2.7       |
| 12     | 405     | 5.5    | 210      | 4.5      | 100   | 3-4   | 4.6 | 2.7       |
| 13     | 440     | 5.5    | 220      | 4.7      | 100   | 3.4   | 4.9 | 2.6       |
| 14     | 420     | 5.5    | 210      | 4.6      | 100   | 3.4   | 4.0 | 2.7       |
| 15     | 410     | 5.6    | 210      | 4.6      | 100   | 3.4   | 3.8 | 2.7       |
| 16     | 470     | 5.5    | 210      | 4.5      | 100   | 3-2   | 4.0 | 2.7       |
| 17     | 370     | 5.4    | 220      | 4.3      | 100   | 3.0   |     | 2.8       |
| 18     | 340     | 5-5    | 230      | 4.1      | 100   | 2.9   | 3.2 | 2.9       |
| 19     | 300     | 5.4    | 250      | 3.8      | 110   | 2.5   | 4.0 | 3.0       |
| 20     | 230     | 5.4    | 250      | 3.1      | 115   | 2.0   | 1.7 | 3.0       |
| 21     | 260     | 5.6    |          |          |       | 1.8   | 4.2 | 3-0       |
| 22     | 260     | 5.4    |          |          |       |       | 3.2 | 2.9       |
| 23     | 280     | 4.8    |          |          |       |       | 3.0 | 2.9       |

Time: 120.0 %. Sweep: 0.6 Mc to 20.0 Mc, automatic operation.

| St. Joh | n's, Newi | Coundland | (47.6°N,    | Table     |          |         |     | June 1951 |
|---------|-----------|-----------|-------------|-----------|----------|---------|-----|-----------|
| Time    | Pils      | foFS      | h'Fl        | foFl      | h1E      | FoE     | fEe | (H3000)F2 |
| 00      | 280       | 5.0       |             |           |          |         | 3.0 | 2.9       |
| Ol      | 280       | 4.5       |             |           |          |         | 3.3 | 2.8       |
| 02      | 280       | 4.5       |             |           |          |         | 4.0 | 2.8       |
| 03      | 290       | 4.0       |             |           |          |         | 3.6 | 2.9       |
| 04      | 270       | 3.7       |             |           | ~~~      | 4999.40 | 3.5 | 2.9       |
| 05      | 260       | 4.5       | 240         | 3.4       | 100      | 2.3     | 4.0 | 3-1       |
| 06      | 340       | 4.9       | 230         | 4.0       | 100      | 2.8     | Lak | 3.0       |
| 07      | 360       | 5=0       | 230         | 4.2       | 100      | 3.0     | 5-0 | 3-0       |
| 08      | 360       | 5.3       | 210         | 4.4       | 100      | 3.2     | 5.2 | 3.0       |
| 09      | 380       | 5.5       | 210         | 4.6       | 100      | 3.4     | 50  | 2,9       |
| 10      | 380       | 5.8       | 210         | 4.6       | 100      | 3.5     | 6.0 | 2.9       |
| 11      | 370       | 5.8       | 210         | 4.7       | 100      | 3.6     | 5.2 | 2.9       |
| 12      | 380       | 6.0       | 210         | 4.7       | 100      | 3.6     | 5.0 | 2.8       |
| 13      | 370       | 6.0       | 210         | 4.6       | 100      | 3.5     | 5.0 | 2.9       |
| 14      | 370       | 6.2       | 210         | 4.5       | 100      | 3.5     | 5.6 | 2.8       |
| 15      | 360       | 6.0       | 220         | 4.5       | 100      | 3.3     | 5.0 | 2.8       |
| 16      | 340       | 6.4       | 220         | 4.3       | 100      | 3.1     | 5.0 | 2.9       |
| 17      | 310       | 6.6       | 240         | 4.0       | 100      | 2.3     | 4.2 | 2.9       |
| 18      | 290       | 7.0       | 250         | 3.5       | 110      | 2.3     | 4.0 | 2.9       |
| 19      | 260       | 7.0       | Million and | 00 etc 40 | 17 41 41 |         | 305 | 2.9       |
| 20      | 260       | 7-0       |             |           |          |         | 3.2 | 2.8       |
| 21      | 260       | 6.4       |             |           |          |         | 4.1 | 2.8       |
| 22      | 270       | 6.2       |             |           |          |         | 3.2 | 2.8       |
| 23      | 290       | 5.2       |             |           |          |         | 2,6 | 2.8       |

Time: 60.0° R.
Steep: 0.6 Mc to 20.0 Mc, automatic operation.

|         |          |          |           | Table    | 23_      |         |     |           |
|---------|----------|----------|-----------|----------|----------|---------|-----|-----------|
| Ottawa, | , Canada | (45.4°N, | 75.771)   |          |          |         |     | June 1951 |
| Timo    | pils     | foF2     | h'Fl      | foFl     | h1Z      | foB     | Ba  | (M3000)F2 |
| 00      | 270      | 4.1      |           |          |          |         | 1.8 | 2.9       |
| 01      | 280      | 3.6      |           |          |          |         | 1.8 | 2.9       |
| 02      | 290      | 3.3      |           |          |          |         | 1.8 | 2.9       |
| 03      | 280      | 3.2      |           | 0.00     |          |         | 2.0 | 2.9       |
| 04      | 280      | 3.1      | ange or . | 40.00-00 | error un | 00-2-00 | 2.0 | 3.0       |
| 05      | 230      | 3.8      | 230       | 3.0      | 110      | 2.0     | 1.6 | 3-1       |
| 96      | 290      | 4-3      | 220       | 3.8      | 100      | 2.6     | 1.9 | 3.0       |
| 97      | 360      | 4.6      | 210       | 4.0      | 100      | 3.0     |     | 2.8       |
| 0.5     | 400      | 4.8      | 210       | 4.2      | 100      | 3.3:    |     | 2.8       |
| 69      | 380      | 5.1      | 200       | 4.3      | 103      | 3.2     | 3.6 | 2.8       |
| 10      | 370      | 5.4      | 200       | 4.7      | 100      | 3.4     | 3.2 | 2.5       |
| 11      | 360      | 5.7      | 290       | 4.7      | 103      | 3.4     | 4.0 | 2.9       |
| 12      | 370      | 5.7      | 210       | 4.6      | 190      | 3.6     | 3.8 | 2.9       |
| 13      | 390      | 5.5      | 200       | 4.7      | 100      | 3.5     |     | 2.8       |
| 14      | 390      | 5.5      | 210       | 4.6      | 100      | 3.5     |     | 2.8       |
| 15      | 360      | 5.9      | 200       | 4.5      | 150      | 3.3     |     | 2.8       |
| 16      | 350      | 6.1      | 260       | 4.3      | 190      | 3.2     |     | 2.9       |
| 17      | 329      | 6.3      | 229       | 4.0      | 100      | 3.0     |     | 2.8       |
| 18      | 299      | 6.4      | 220       | 3.8      | 100      | 2.7     |     | 2.5       |
| 19      | 260      | 6.5      | 220       | 3.0      | 110      | 2.2     | 3.1 | 3.0       |
| 20      | 240      | 6.2      | 97.40.40  | 40.004   |          |         | 2.3 | 3.0       |
| 21      | 250      | 6.1      |           |          |          |         | 2.9 | 2.9       |
| 22      | 250      | 5.4      |           |          |          |         | 3.0 | 2.8       |
| 23      | 260      | 4.8      |           |          |          |         | 1.9 | 2.9       |
| 74      | 75 09m   |          |           |          |          |         |     |           |

Time: 75.0°M.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

| erunrb | eg, Canad | 4 174.4. | 112 9/0% | 11)  |       |        |     | June 1951 (#2000)#2 (2.6) (2.7) (2.9) (2.7) 3.0 2.7 2.6 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 |
|--------|-----------|----------|----------|------|-------|--------|-----|-------------------------------------------------------------------------------------------------|
| Time   | h'1/2     | 2025     | E13.7    | foFl | h ! E | fol    | fFs | (M3000)#2                                                                                       |
| 00     | 500       | 3.8      |          |      |       |        | 3.3 | (2.6)                                                                                           |
| 01     | 290       | 3.6      |          |      |       |        | 3.5 |                                                                                                 |
| 02     | 300       | 3.4      |          |      |       |        | 3.5 | (2.7)                                                                                           |
| 03     | 300       | 3.4      |          |      |       |        | 3.8 |                                                                                                 |
| 0.4    | 300       | 3.4      |          |      |       |        | 4.0 |                                                                                                 |
| 05     | 320       | 4.0      | 240      | 3.2  | 120   | (2.6)  | 3,7 |                                                                                                 |
| 06     | 380       | 4.5      | 240      | 3.5  | 110   | 2.4    | 1.7 |                                                                                                 |
| 07     | 420       | 4.8      | 230      | 3.9  | 110   | 25     |     |                                                                                                 |
| 03     | 420       | 5.0      | 220      | 4.0  | 110   | 3.0    |     |                                                                                                 |
| 09     | 430       | 5.0      | 220      | 4.2  | 110   | 3.3    |     |                                                                                                 |
| 10     | 430       | 5.4      | 210      | 4.3  | 110   | 3.4    | 3.4 |                                                                                                 |
| 2.1    | 420       | 5.4      | 23.0     | 4.5  | 110   | 3.5    | 3.1 |                                                                                                 |
| 12     | 420       | 5.6      | 210      | 4.5  | 110   | 3.5    | 3.9 |                                                                                                 |
| 13     | 420       | 5.8      | 210      | 4.5  | 110   | 3.7    | 4.5 |                                                                                                 |
| 14     | 400       | 5.6      | 220      | 4.5  | 110   | 3.5    | 3.6 |                                                                                                 |
| 15     | 410       | 5.8      | 220      | 4.5  | 110   | 3.6    | 3.4 |                                                                                                 |
| 16     | 390       | 5.5      | 220      | 4.5  | 110   | 3.3    | 3.4 | 2.6                                                                                             |
| 17     | 360       | 5.0      | 2:30     | 4.3  | 110   | 3.0    |     | 2,5                                                                                             |
| 18     | 330       | 6.0      | 240      | 4.0  | 110   | 2.3    | 1.4 | 2.7                                                                                             |
| 19     | 300       | 6-0      | 240      | 3.5  | 310   | 2.2    | 2.6 | 2.8                                                                                             |
| 20     | 270       | 5.0      |          |      |       |        | 2.2 | 2.9                                                                                             |
| 22     | 260       | 5.5      | FF-sh 48 |      |       | 0-10-0 | 1.7 | 2.9                                                                                             |
| 22     | 260       | 5.0      |          |      |       |        | 1.9 | 2.8                                                                                             |
| 23     | 270       | 3.9      |          |      |       |        | 1.8 | 2.8                                                                                             |

Time: 90.0°H. Swoop: 0.6 Mc to 20.0 Mc in 15 seconds.

| Schwar | zenburg, | Switzerl | end (46. | Table | 22<br>E) |     | J    | u.a 1951  |
|--------|----------|----------|----------|-------|----------|-----|------|-----------|
| Time   | h'F2     | foF2     | h'Fl     | foFl  | h'E      | foE | fBs  | (H3000)F2 |
| 00     | 300      | 6.2      |          |       |          |     |      |           |
| 02     | 300      | 6.0      |          |       |          |     | 2.5  |           |
| G2     | 300      | 5,6      |          |       |          |     | 2.2  |           |
| 03     | 300      | 5.5      |          |       |          |     | 2.9  |           |
| 04     | 300      | 5.0      |          |       |          |     | 3.0  |           |
| 05     | 300      | 5.2      |          |       | 120      | 2.0 | ,,,, |           |
| 06     | 295      | 5.9      | 270      | 3.6   | 110      | 2.4 | 4.2  |           |
| 07     | 330      | 6.4      | 250      | 4.4   | 110      | 2.9 | 4.2  |           |
| 0.8    | 330      | 6.8      | 260      | 4.6   | 100      | 3.1 | 5.7  |           |
| 09     | 330      | 7.0      | 240      | 4.6   | 100      | 3.4 | 5.0  |           |
| 10     | 345      | 7.1      | 230      | 4.8   | 100      | 3.5 | 4.9  |           |
| 11     | 335      | 7.7      | 225      | 4.8   | 100      | 3.5 | 4.5  |           |
| 12     | 335      | 7.4      | 220      | 4.9   | 100      | 3.5 | 4.8  |           |
| 13     | 365      | 6.6      | 220      | 4.9   | 100      | 3.5 | 400  |           |
| 14     | 390      | 7.0      | 220      | 4.9   | 100      | 3.5 |      |           |
| 15     | 370      | 6.9      | 220      | 4.8   | 100      | 3.5 | 4.4  |           |
| 16     | 350      | 7.5      | 225      | 4.6   | 100      | 3.3 | 4.8  |           |
| 17     | 320      | 7.0      | 250      | 4.5   | 100      | 3.1 | 4.00 |           |
| 18     | 300      | 7.1      |          |       | 100      | 2.8 | 4.8  |           |
| 19     | 285      | 7.4      |          |       | 110      | 2.4 | 5.0  |           |
| 20     | 275      | 7.5      |          |       | 220      | 204 | 5.5  |           |
| 21     | 260      | 7.1      |          |       |          |     | 5.5  |           |
| 22     | 290      | 6.7      |          |       |          |     | 3.2  |           |
| 23     | 300      | 6 /      |          |       |          |     | 200  |           |

23 300 6.4 Time: 15.0°E. Sweep: 1.0 Mc te 25.0 Mo in 30 seconds.

| Wakkan | ai, Japan | (45.4°N, | 141.7° | Table | 24_ |             |     | June 1951 |
|--------|-----------|----------|--------|-------|-----|-------------|-----|-----------|
| Time   | h!T2      | foF2     | hIFI   | foFl  | h B | fol         | fFa | (M3000)F2 |
| 00     | 300       | 6.4      |        |       |     |             | 3.4 | 2.7       |
| 01     | 300       | 6.0      |        |       |     |             | 3.2 | 2.7       |
| 02     | 300       | 5.8      |        |       |     |             | 2.2 | 2.7       |
| 03     | 300       | 5.6      |        |       |     |             | 3.2 | 2.7       |
| 04     | 300       | 5.3      |        |       |     |             | 2.8 | 2.7       |
| 95     | 300       | 6.0      | 280    | 3.6   | 120 | 2.2         | 3.5 | 2.8       |
| 06     | 320       | 6.4      | 280    | 4.3   | 120 | 2.7         | 5.2 | 2.8       |
| 07     | 340       | 6.4      | 280    | 4.4   | 110 | 3.0         | 6.2 | 2.8       |
| 08     | 360       | 6.6      |        | 4.6   | 110 | 3.2         | 7-0 | 2.9       |
| 09     | (320)     | 6.6      |        |       | 110 | 3.3         | 7.2 | (2.9)     |
| 10     | (380)     | 6.6      | 300    | 5.0   | 110 | 3.4         | 7.3 | (2.9)     |
| 11     | 400       | 6.5      |        | 5.0   | 110 | 60-rd 65    | 6.7 | 2.7       |
| 12     | 420       | 6.2      | 300    | 5.0   | 110 |             | 6-0 | 2.6       |
| 13     | 400       | 6.5      | 250    | 4.8   | 110 |             | 5-2 | 2.8       |
| 14     | 400       | 6.2      | 270    | 4.6   | 120 | 100 AUD 100 | 5.7 | 2.7       |
| 15     | 400       | 6.3      | 280    | 4.6   | 110 |             | 4.9 | 2.7       |
| 16     | 380       | 6.3      | 280    | 4.5   | 110 | 3.1         | 3-4 | 2.7       |
| 17     | 360       | 6.4      | 290    | 4.2   | 110 | 2,7         | 5.7 | 2.8       |
| 18     | 320       | 6.6      | 300    | 3.8   | 110 | 2.4         | 6.0 | 2.8       |
| 19     | 300       | 7.2      |        |       |     |             | 5.8 | 2.9       |
| 20     | 300       | 7.3      |        |       |     |             | 5.0 | 2.8       |
| 21     | 300       | 7.0      |        |       |     |             | 4.4 | 2.7       |
| 2.2    | 310       | 6.7      |        |       |     |             | 4.7 | 2.7       |
| 23     | 300       | 6.6      |        |       |     |             | 3.5 | 2.6       |

23 | 300 6.6 3.8 Tims: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

| Akita, | Japan (3 | 9.7°N, 1 | 40.1°E) | Table | <u>22</u> |     |     | June 1951 |
|--------|----------|----------|---------|-------|-----------|-----|-----|-----------|
| Time   | h'F2     | foF2     | h'Fl    | foWl  | h1E       | fol | fEs | SI(COCEN) |
| 00     | 300      | 6.2      |         |       |           |     | 404 | 2.9       |
| 01     | 280      | 6.0      |         |       |           |     | 4.1 | 2.9       |
| 02     | 270      | 6.0      |         |       |           |     | 3.9 | 2.9       |
| 03     | 280      | 5.6      |         |       |           |     | 3.6 | 2.9       |
| 04     | 280      | 5.4      |         |       |           |     | 3.4 | 2.9       |
| 05     | 280      | 5.7      |         |       | 110       | 2.0 | 4.0 | 3.0       |
| 06     | 290      | 6.6      | 250     |       | 110       | 2.6 | 5.9 | 3.1       |
| 07     | 280      | 7.1      | 240     | 40 EP | 110       | 2.9 | 5.9 | 3.1       |
| 08     | 300      | 6.9      |         |       | 110       | 3.2 | 6.9 | 3.1       |
| 09     | 310      | 6.7      | -       | 4.8   | 110       | 3.4 | 6.9 | 3.0       |
| 10     | 320      | 6.8      | 260     | 4.8   | 110       | 3.3 | 7.0 | 2.9       |
| 11     | 350      | 7.0      | 260     | 4.8   | 110       |     | 7.0 | 2.9       |
| 12     | 340      | 7.0      | 220     | 4.7   | 110       |     | 6.4 | 2.9       |
| 13     | 320      | 7.3      | 240     | 4.8   | 110       |     | 6.4 | 3.0       |
| 14     | 340      | 7-4      | 250     | 4.7   | 110       | 3.3 | 6.2 | 2.9       |
| 15     | 330      | 7.0      | 270     | 4.6   | 110       | 3.4 | 5.6 | 3.0       |
| 16     | 320      | 7.0      | 290     | 4.3   | 110       | 3.1 | 5.0 | 3.0       |
| 17     | 300      | 7.4      |         |       | 110       | 2.8 | 6.2 | 2.9       |
| 18     | 300      | 7.1      |         | -     | 110       | 2.2 | 5.9 | 3.0       |
| 19     | 280      | 7.5      |         |       |           |     | 6.0 | 3.1       |
| 20     | 270      | 7.0      |         |       |           |     | 6.8 | 3.0       |
| 21     | 300      | 6.5      |         |       |           |     | 6-4 | 2.9       |
| 22     | 300      | 6.8      |         |       |           |     | 6.4 | 2.9       |
| 23     | 300      | 6.6      |         |       |           |     | 5.6 | 2,8       |

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

|           |       |          | _        | Table 27 |      |      |
|-----------|-------|----------|----------|----------|------|------|
| Yamagawa, | Japan | (31.2°N, | 130.6°E) |          | June | 1951 |
|           |       |          |          |          |      |      |

| Time | צעות | foF2 | h'Fl | foFl | hig | foE | fEs | (MZO00)F2 |
|------|------|------|------|------|-----|-----|-----|-----------|
| 00   | 320  | 6.8  |      |      |     |     | 4.9 | 2.8       |
| 01   | 300  | 7.1  |      |      |     |     | 5.6 | 2.8       |
| 02   | 290  | 7.0  |      |      |     |     | 4.6 | 3.0       |
| 03   | 290  | 6.7  |      |      |     |     | 4.6 | 3.0       |
| 04   | 300  | 5.8  |      |      |     |     | 3.9 | 2.9       |
| 05   | 280  | 5.8  |      |      |     |     | 3.8 | 3.0       |
| 06   | 260  | 6.2  |      |      | 110 | 2.0 | 3.6 | 3.1       |
| 07   | 280  | 6.8  | 260  |      | 110 | 2.6 | 5.5 | 3.1       |
| 08   | 280  | 7.4  | 240  |      | 100 | 3.0 | 8.0 | 3.2       |
| 09   | 310  | 7.2  | 240  |      | 100 | 3.4 | 8.7 | 3.0       |
| 10   | 310  | 7.8  |      |      | 100 | 3.5 | 9.2 | 3.0       |
| 11   | 400  | 7.4  |      |      | 100 | 3.5 | 9.4 | 2.7       |
| 12   | 360  | 8.1  |      |      | 100 | 3.5 | 8.9 | 2.8       |
| 13   | 350  | 8.2  | 220  |      | 100 | 3.6 | 7.3 | 2.8       |
| 14   | 340  | 9.1  | 220  | 4.8  | 100 | 3.7 | 7.2 | 2.8       |
| 15   | 350  | 8.8  | 250  | 4.6  | 100 | 3.6 | 6.4 | 2.8       |
| 16   | 330  | 9.0  | 260  | 4.6  | 100 | 3.4 | 6.0 | 2.8       |
| 17   | 300  | 9.4  | 270  | 4.5  | 110 | 3.0 | 5.0 | 2.9       |
| 18   | 300  | 8.7  | 260  |      | 110 | 2.5 | 6.2 | 3.0       |
| 19   | 280  | 8.2  |      |      |     |     | 6.0 | 3.1       |
| 20   | 280  | 7.9  |      |      |     |     | 5.8 | 3.1       |
| 21   | 280  | 7.2  |      |      |     |     | 5.8 | 2.9       |
| 22   | 330  | 7.0  |      |      |     |     | 5.6 | 2.8       |
| 23   | 320  | 6.7  |      |      |     |     | 5.5 | 2.7       |

Time: 135.00E. Sweep: 1.0 Mc to 18.5 Mc in 15 minutes, manual operation.

|  | Johannesburg, | Union | of | s. | Africa | Table 29<br>(26.2°5, 28.1°E) | June | 1951 |
|--|---------------|-------|----|----|--------|------------------------------|------|------|
|--|---------------|-------|----|----|--------|------------------------------|------|------|

| Johanne | sburg, U | nion of S | S. Africa | 26.20 | 5, 28. | 1°E)  |     | June 1951 |
|---------|----------|-----------|-----------|-------|--------|-------|-----|-----------|
| Time    | P115     | foF2      | h'Fl      | foFl  | h'E    | foE   | fEe | (H2000)F2 |
| 00      | 280      | 2.8       |           |       |        |       | 1.6 | 2.9       |
| 01      | 270      | 2.8       |           |       |        |       |     | 2.9       |
| 02      | 270      | 3.0       |           |       |        |       |     | 2.9       |
| 03      | 260      | 3.0       |           |       |        |       |     | 3.0       |
| 04      | 240      | 3.0       |           |       |        |       | 2.0 | 3.2       |
| 05      | 250      | 2.6       |           |       |        |       |     | 3.1       |
| 06      | 250      | 2.5       |           |       |        |       | 3.6 | 3.0       |
| 07      | 230      | 4.8       |           |       |        | 1.8   | 2.5 | 3.3       |
| 08      | 230      | 6.6       | 230       |       | 120    | 2.5   |     | 3.4       |
| 09      | 250      | 7.2       | 220       | 4.0   | 110    | 3.0   |     | 3.4       |
| 10      | 250      | 8.0       | 220       | 4.4   | 110    | 3.3   |     | 3.3       |
| 11      | 250      | 8.0       | 210       | 4.5   | 110    | (3.4) |     | 3.3       |
| 12      | 260      | 8-1       | 210       | 4.5   | 110    | 3.5   |     | 3.2       |
| 13      | 260      | 8.3       | 210       | (4.5) | 110    | 3.5   | 3.7 | 3.3       |
| 14      | 260      | 7.7       | 220       | 404   | 120    | 3.3   | 4.0 | 3.2       |
| 15      | 260      | 7.8       | 220       | 4.0   | 110    | 3.0   | 3.8 | 3.2       |
| 16      | 240      | 8.0       | 230       | 3.3   | 110    | 227   | 3.6 | 3.3       |
| 17      | 230      | 7.2       | 1000      |       | 110    | (2.0) | 3.2 | 3.3       |
| 18      | 220      | 5.6       |           |       |        |       | 2.7 | 3.4       |
| 19      | 220      | 3.5       |           |       |        |       | 2.3 | 3.3       |
| 20      | 230      | 3.0       |           |       |        |       | 2.3 | 3.3       |
| 21      | 240      | 2.9       |           |       |        |       | 1.8 | 3.2       |
| 22      | 250      | 3.0       |           |       |        |       |     | 3.1       |
| 23      | 260      | 2.9       |           |       |        |       |     | 2.9       |

23 260 2.9
Times 20.0°E.
Sweeps 1.0 Me to 15.0 Me in 7 seconds.

| Tokyo, | Japan (3 | 5.7°N, l | 39.5°E) |      |     |     |       | June 1951 |
|--------|----------|----------|---------|------|-----|-----|-------|-----------|
| Time   | P.ES     | STof     | h'Fl    | foFl | hIE | foE | flic  | (M2000)12 |
| 00     | 300      | 6.7      |         |      |     |     | 5.7   | 2.8       |
| 01     | 260      | 6.2      |         |      |     |     | 5.2   | (2.8)     |
| 02     | 260      | 5.9      |         |      |     |     | 4.6   | 2.9       |
| 03     | 270      | 5.6      |         |      |     |     | 3.7   | 2.9       |
| 04     | 270      | 5-4      |         |      |     |     | 3.5   | 2.9       |
| 05     | 250      | 5.8      |         |      | 120 | 1.8 | 3.4   | 3.0       |
| 06     | 270      | 6.8      | 240     |      | 100 | 2.4 | 5.4   | 3.0       |
| 07     | 290      | 7.0      |         |      | 100 | 2.9 | 7.0   | 3-1       |
| 08     | 290      | 7.0      |         |      | 100 | 3.2 | 6.8   | 3.1       |
| 09     | 300      | 6.6      |         |      | 100 | 3.3 | 6.8   | 3.0       |
| 10     | 330      | 7.0      |         |      | 100 | 3.5 | 7.8   | 2.9       |
| 11     | 350      | 7,2      |         | 4.9  | 100 | 3.5 | 7.5   | 2.8       |
| 12     | 330      | 7.6      |         |      | 100 |     | 6.9   | 2.9       |
| 13     | 330      | 8.4      |         |      | 100 | 3.4 | 6.7   | 2.8       |
| 14     | 340      | 8.2      |         |      | 100 | 3.4 | 6.4   | 2.9       |
| 15     | 320      | 8.2      |         |      | 100 | 3.3 | . 6.8 | 2.9       |
| 16     | 300      | 7.8      | 260     |      | 100 | 3.2 | 5.6   | 3.0       |
| 17     | 310      | 7.7      | 250     |      | 100 | 2.7 | 6.0   | 2.9       |
| 18     | 280      | 7.7      | 260     |      | 110 | 2.0 | 5.9   | 9.0       |
| 19     | 260      | 7.8      |         |      |     |     | 6.6   | 3.1       |
| 20     | 260      | 7.0      |         |      |     |     | 5.2   | 3.0       |
| 21     | 280      | 6.4      |         |      |     |     | 5.8   | 2.8       |
| 22     | 300      | 6.4      |         |      |     |     | 5.8   | 2.7       |
| 23     | 310      | 6-6      |         |      |     |     | 5.4   | (2.7)     |

310

Time: 135.0°E. Steep: 1.0 Mc to 17.2 Mc in 2 minutes.

|         | / a.e. a.Du                                                    | 202 002)                                                                                                                                                                  | Table                     | 28                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 30.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , China | (25.0°N)                                                       | 121.0 E)                                                                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | June 1951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P.LS    | foF2                                                           | h'Fl                                                                                                                                                                      | foFl                      | h1E                                                                                                                                                                                                                                                                                                                                                                                               | foE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f∑a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M3000)F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 320     | 8.2                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 285     | 8.0                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 270     | 7.0                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 280     | 6.0                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 280     | 6.0                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 290     | 5.8                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 275     | 6.8                                                            | 240                                                                                                                                                                       | 4.3                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 275     | 7.0                                                            | 240                                                                                                                                                                       | 4.4                       |                                                                                                                                                                                                                                                                                                                                                                                                   | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 300     | 7.5                                                            | 230                                                                                                                                                                       | 4.6                       | 320                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 325     | 7.9                                                            | 240                                                                                                                                                                       | 4.9                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 360     | 7.8                                                            | 220                                                                                                                                                                       | 5.0                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 390     | 9.6                                                            | 240                                                                                                                                                                       | 5.2                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 360     | 10.8                                                           | 235                                                                                                                                                                       | 5.3                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 360     | 11.2                                                           | 230                                                                                                                                                                       |                           | 120                                                                                                                                                                                                                                                                                                                                                                                               | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 340     | 11.4                                                           |                                                                                                                                                                           |                           | 120                                                                                                                                                                                                                                                                                                                                                                                               | ** 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 325     | 11.5                                                           |                                                                                                                                                                           | 5.4                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 320     | 11.5                                                           | 240                                                                                                                                                                       | 5.2                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 300     | 32.0                                                           | 240                                                                                                                                                                       | 4.9                       | 320                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 290     | 11.2                                                           | 250                                                                                                                                                                       | 4.4                       | 120                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 280.    | 10.2                                                           | 245                                                                                                                                                                       |                           | 120                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 310     | 8.2                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 315     | 7.4                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 330     | 7.8                                                            |                                                                                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | h W 2 320 285 270 280 290 295 360 360 360 325 320 390 280. 315 | h'F2 foF2  320 8.2 285 8.0 270 7.0 280 6.0 280 6.0 290 5.8 275 6.8 275 7.0 300 7.5 325 7.9 360 10.8 360 11.2 340 11.4 325 11.5 320 11.5 320 11.2 280 10.2 310 8.2 315 7.4 | h   F2   f   o F2   h   T | , Chine (25.0°N, 121.0°E)  h'F2 foF2 h'F1 foF1  320 8.2 285 8.0 270 7.0 280 6.0 280 6.0 275 6.8 240 4.3 275 7.0 220 4.4 300 7.5 230 4.6 325 7.9 240 4.9 360 7.8 220 5.0 360 10.8 235 5.3 360 11.2 230 340 11.4 325 11.5 320 11.5 240 5.2 300 12.0 240 4.9 220 11.5 240 5.2 300 12.2 230 340 11.4 325 11.5 320 11.5 240 5.2 300 12.0 240 4.9 290 11.2 250 4.4 280 10.2 245 310 8.2 310 8.2 311 7.4 | h'F2         f0F2         h'F1         f0F1         h'F           320         8.2         285         8.0           270         7.0             280         6.0             280         6.0             290         5.8             275         6.8         240         4.4         120           300         7.5         230         4.6         120           325         7.9         240         4.9         120           360         7.8         220         5.0         120           390         9.6         240         5.2         120           360         10.8         235         5.3         120           360         11.2         230          120           340         11.4           120           320         11.5         240         5.2         120           300         12.0         240         4.9         120           320         11.5         240         5.2         120           300 | , Chine (25.0°N, 121.0°E)  h'F2 foF2 h'F1 foF1 h'E foE  320 8.2 285 8.0 270 7.0 280 6.0 290 5.8 275 6.8 240 4.3 120 3.0 275 7.0 240 4.4 120 3.4 325 7.9 240 4.9 120 3.8 360 7.8 220 5.0 120 4.0 360 10.8 235 5.3 120 4.2 360 10.8 235 5.3 120 4.2 360 11.2 230 120 4.5 340 11.4 325 11.5 320 11.5 240 5.2 120 4.5 300 12.0 2.0 240 4.9 325 120 4.2 326 11.5 240 5.2 120 4.2 327 128 220 5.0 120 4.2 328 120 240 4.9 120 3.2 320 11.4 230 320 11.5 240 5.2 120 3.6 320 12.0 240 4.9 120 3.2 320 11.5 240 5.2 120 3.6 320 12.0 240 4.9 120 3.2 280 10.2 245 120 3.4 310 8.2 310 8.2 311 8.2 | , Chine (25.0°N, 121.0°E)  h'F2 foF2 h'F1 foF1 h'E foE fNe  320 8.2 285 8.0 270 7.0 6.2 280 6.0 3.7 290 5.8 3.8 275 6.8 240 4.3 120 3.0 4.6 275 7.0 240 4.4 120 3.4 5.8 300 7.5 230 4.6 120 3.4 5.8 360 7.8 220 5.0 120 4.0 6.8 390 9.6 240 5.2 120 4.0 6.8 390 9.6 240 5.2 120 4.0 6.8 390 9.6 240 5.2 120 4.2 6.1 360 10.8 235 5.3 120 4.2 6.1 360 11.2 230 120 4.5 6.2 340 11.4 5.4 120 3.6 6.2 340 11.4 5.4 120 3.6 6.2 320 11.5 240 5.2 120 3.6 6.2 320 11.5 240 5.2 120 3.6 6.2 320 11.2 250 4.4 120 3.6 6.2 280 10.2 245 120 3.4 6.6 310 8.2 355 7.4 |

23 360 7.8 6.6

Time: 120.0°E.

Sweep: 2.3 Mc to 14.5 Mc in 15 minutes, manual operation.

| Capeton | n, Union | of S.Afi | rica (34 | Table | 3g<br>3 E) |     |     | June 1951 |
|---------|----------|----------|----------|-------|------------|-----|-----|-----------|
| Time    | F.LS     | foF2     | h'Fl     | foFl  | h1E        | fol | fEa | S2(0002K) |
| 00      | 280      | 2.6      |          |       |            |     | 2.0 | 2.9       |
| 01      | 290      | 2.7      |          |       |            |     | 1.7 | 2.9       |
| 02      | 270      | 2.8      |          |       |            |     | 1.4 | 2.9       |
| 03      | 270      | 2.8      |          |       |            |     |     | 3.0       |
| 04      | 260      | 2.8      |          |       |            |     |     | 3.0       |
| 05      | 260      | 2.8      |          |       |            |     |     | 3.1       |
| 06      | 250      | 2.4      |          |       |            |     |     | 3.0       |
| 07      | 250      | 2.4      |          |       |            | E   |     | 3.0       |
| 08      | 230      | 4.9      |          |       |            | 1.9 |     | 3.3       |
| 09      | 230      | 6.2      |          |       | 120        | 2.5 |     | 3.4       |
| 10      | 250      | 7.1      | 240      | 3.6   | 120        | 2.9 |     | 3.4       |
| 11      | 250      | 7.1      | 230      | 4.1   | 310        | 3.1 |     | 3.3       |
| 12      | 260      | 7-6      | 230      | 4.4   | 110        | 3-3 |     | 3.2       |
| 13      | 260      | 8.2      | 230      | 4.4   | 110        | 3-3 |     | 3.2       |
| 14      | 260      | 8.2      | 220      | 4.2   | 110        | 3.2 | 4.0 | 3.2       |
| 15      | 260      | 8.2      | 230      | 4.0   | 110        | 3.0 | 4.0 | 3.2       |
| 16      | 250      | 8.4      | 240      | 3.6   | 120        | 2.7 | 3.4 | 3.2       |
| 17      | 230      | 7,6      |          |       | 110        | 2.1 | 2.8 | 3.3       |
| 18      | 220      | 5.7      |          |       |            |     | 2.2 | 3.3       |
| 19      | 230      | 3.4      |          |       |            |     | 2.1 | 3.2       |
| 20      | 240      | 2.8      |          |       |            |     | 2.0 | 3.2       |
| 21      | 240      | 2.5      |          |       |            |     | 1.8 | 3.2       |
| 22      | 250      | 2.3      |          |       |            |     | 1.7 | 3.2       |
| 23      | 280      | 2.4      |          |       |            |     | 1.8 | 2.9       |

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

|                |          |          |        | TEDIO | 51    |     |     |            |
|----------------|----------|----------|--------|-------|-------|-----|-----|------------|
| Dolhi,         | India (2 | 8.6°N, 7 | 7.1°£) |       |       |     |     | April 1951 |
| Time           | •        | foF2     | h'F1   | foF1  | h ! E | foE | fBa | S#(0002M)  |
| 00             | 320      | 3.5      |        |       |       |     |     | (3.3)      |
| 01             |          | (3.0)    |        |       |       |     |     |            |
| 02             |          |          |        |       |       |     |     |            |
| 03             |          |          |        |       |       |     |     |            |
| 04             | 300      | 4.1      |        |       |       |     |     | (3.4)      |
| 05             | 290      | 4.9      |        |       |       |     |     |            |
| 04<br>05<br>06 | 280      | 6.4      |        |       |       |     |     |            |
| 07             | 270      | 7.8      |        |       |       |     |     |            |
| 08             | 280      | 8.5      |        |       |       |     |     | (3.4)      |
| 09             | 290      | 9.4      |        |       |       |     |     |            |
| 10             | 300      | 10.4     |        |       |       |     |     |            |
| 11             | 320      | 11.7     |        |       |       |     |     |            |
| 11<br>12<br>13 | 320      | 12.8     |        |       |       |     |     | (3.3)      |
| 13             | 300      | 13.1     |        |       |       |     |     |            |
| 14             | 300      | 13.5     |        |       |       |     |     |            |
| 15             | 290      | 13.0     |        |       |       |     |     |            |
| 16             | 280      | 12.2     |        |       |       |     |     | (3-4)      |
| 17             | 300      | 11.2     |        |       |       |     |     |            |
| 18             | 290      | 9.4      |        |       |       |     |     |            |
| 19             | 280      | 7.9      |        |       |       |     |     |            |
| 20             | 300      | 6.9      |        |       |       |     |     | (3.4)      |
| 21             | 300      | 5.8      |        |       |       |     |     |            |
| 22             | 310      | 4.7      |        |       |       |     |     |            |
| 23             | 320      | 3.8      |        |       |       |     |     |            |

23 1 320 245
Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
\*Height at 0.83 for2.
\*\*Average values; other columns, median values.

|        |          |          | ^       | Table | .33   |       |     |            |
|--------|----------|----------|---------|-------|-------|-------|-----|------------|
| Puerto | Rico, K. | I. (13.5 | N, 67.2 | 77)   |       |       |     | April 1951 |
| Time   | h'F2     | foF2     | h'#1    | roF1  | h · E | foE   | fSe | (M3000)#2  |
| 00     | 290      | 7.0      |         |       |       |       | 2.3 | 2.8        |
| 01     | 270      | 7.0      |         |       |       |       |     | 2.9        |
| 02     | 260      | 6.6      |         |       |       |       |     | 3.0        |
| 03     | 250      | 5.8      |         |       |       |       |     | 3.0        |
| 04     | 250      | 5.3      |         |       |       |       |     | 3.0        |
| 05     | 250      | 5.3      |         |       |       |       |     | 3.0        |
| 06     | 240      | 5.0      |         |       |       |       | 2.4 | 3.0        |
| 07     | 240      | 6.4      |         |       | 110   | 2.1   | 3.0 | 3.2        |
| 08     | 250      | 7.3      | 220     |       | 100   | (2.7) | 3.6 | 3.2        |
| 0ċ     | 290      | 8.0      | 210     | 4.4   | 100   | 3.2   | 3.9 | 3.1        |
| 10     | 300      | 8.6      | 210     | 4.7   | 3.00  | (3.5) | 4.2 | 2.9        |
| 11     | 320      | 9.4      | 220     | 4.8   | 100   | 3.6   |     | 2.8        |
| 12     | 310      | 10.4     | 220     | 4.9   | 100   | 3.7   | 4.2 | 2.9        |
| 13     | 310      | 11.0     | 220     | 4.9   | 100   | 3.8   |     | 2.9        |
| 14     | 300      | 11.0     | 220     | 4.8   | 100   | 3.7   | 4.6 | 3.0        |
| 15     | 300      | 10.7     | 230     | 4.6   | 100   | 3.5   |     | 3.0        |
| 16     | 290      | 10.6     | 220     | 4.3   | 110   | 3.2   | 4.4 | 3.0        |
| 17     | 270      | 11.0     | 230     | 4.0   | 110   | 2.8   | 4.1 | 3.0        |
| 18     | 250      | 10.4     |         |       | 110   | (2.2) | 3.8 | 3.2        |
| 19     | 220      | 9.2      |         |       |       |       | 2.9 | 3.0        |
| 20     | 240      | 7.8      |         |       |       |       | 2.2 | 2.8        |
| 21     | 270      | 7.4      |         |       |       |       |     | 2.8        |
| 22     | 280      | 7.0      |         |       |       |       |     | 2.8        |
| 23     | 300      | 6.9      |         |       |       |       |     | 2.7        |

Time: 60.00%. Sweep: 1.0 Mc to 25.0 Mc in 15 eaconds.

| riruch   | , India    | (10.8°N,     | 78.8°E) |      |                  |     |     | April 1951 |
|----------|------------|--------------|---------|------|------------------|-----|-----|------------|
| Time     | - 5        | foF2         | h'Fl    | foF1 | h <sup>s</sup> E | foE | fEs | SA(0005M)  |
| 00       | i          |              |         |      |                  |     |     |            |
| 01       |            |              |         |      |                  |     |     |            |
| 02       |            |              |         |      |                  |     |     |            |
| 03       | 1          |              |         |      |                  |     |     |            |
| 04       |            |              |         |      |                  |     |     |            |
| 06       | 360        | 6.4          |         |      |                  |     |     |            |
| 07       | 390        | 8.5          |         |      |                  |     |     |            |
| 08       | 450        | 10.2         |         |      |                  |     |     | (2.6)      |
| 09       | 480        | 10.4         |         |      |                  |     |     |            |
| 10       | 480        | 10.2         |         |      |                  |     |     |            |
| 11       | 510        | 9.8          |         |      |                  |     |     | ()         |
| 13       | 510<br>540 | 10.2<br>10.1 |         |      |                  |     |     | (2.3)      |
| 14       | 540        | 10.5         |         |      |                  |     |     |            |
| 14<br>15 | (540)      | (11.8)       |         |      |                  |     |     |            |
| 16       | (540)      | (11.9)       |         |      |                  |     |     | (2.5)      |
| 17       | 510        | 11.4         |         |      |                  |     |     | *          |
| 18       | 510        | 11.4         |         |      |                  |     |     |            |
| 19       | 500        | 11.2         |         |      |                  |     |     | (0.1)      |
| 20<br>21 | 510        | 11.0<br>10.4 |         |      |                  |     |     | (2.4)      |
| 22       | 480        | 10.4         |         |      |                  |     |     | (2.8)      |
| 23       | 1          |              |         |      |                  |     |     | (2.00)     |

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
\*\*Height at 0.83 fcr2.
\*\*Average values; other columns, medien valuee.

| ombay    | , India (  | 19.0°N, 7  | 3.0°E) | Table | 32  |     |     | April 1951 |
|----------|------------|------------|--------|-------|-----|-----|-----|------------|
| Time     |            | fo#2       | h'#1   | foF1  | h'E | foE | fEn | (M3000)F   |
| 00       |            |            |        |       |     |     |     |            |
| 01       |            |            |        |       |     |     |     |            |
| 02       |            |            |        |       |     |     |     |            |
| 03       |            |            |        |       |     |     |     |            |
| 04       | ì          |            |        |       |     |     |     |            |
| 05       | 1          |            |        |       |     |     |     |            |
| 06       | 200        |            |        |       |     |     |     |            |
| 07<br>08 | 300<br>330 | 7.3<br>9.2 |        |       |     |     |     | 2.9        |
| 09       | 360        | 10.2       |        |       |     |     |     | 2.09       |
| 10       | 390        | 11.4       |        |       |     |     |     |            |
| 11       | 420        | 12.5       |        |       |     |     |     |            |
| 12       | 440        | 13.6       |        |       |     |     |     | 2.8        |
| 13       | 450        | 14.0       |        |       |     |     |     |            |
| 14       | 450        | 14.8       |        |       |     |     |     |            |
| 15       | (450)      | (14.7)     |        |       |     |     |     |            |
| 16       | (420)      | (14.9)     |        |       |     |     |     | (2.9)      |
| 17       | (390)      | (15.0)     |        |       |     |     |     |            |
| 18       | 390        | (14.4)     |        |       |     |     |     |            |
| 19       | 390        | 13.6       |        |       |     |     |     |            |
| 20       | 390        | 13.0       |        |       |     |     |     | 2.9        |
| 21       | 380        | 12.1       |        |       |     |     |     | 2.3        |
| 22       | 360        | 10.9       |        |       |     |     |     | 3.1        |
| 23       | l 360      | 10.0       |        |       |     |     |     |            |

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
\*\*Height at 0.23 for2.
\*\*Avorage values; other columne, median values.

| Madras,                          | India (     | 13.0°N,      | 80.2°E) | Table | 24    |     |     | Apr11 1951 |
|----------------------------------|-------------|--------------|---------|-------|-------|-----|-----|------------|
| Time                             |             | STof         | h'#1    | foFl  | h ! E | foB | fBo | (M3000)F2  |
| 00                               |             |              |         |       |       |     |     |            |
| 01                               |             |              |         |       |       |     |     |            |
| 02<br>03                         | ĺ           |              |         |       |       |     |     |            |
| 04                               |             |              |         |       |       |     |     |            |
| 05                               |             |              |         |       |       |     |     |            |
| 05<br>06                         |             |              |         |       |       |     |     |            |
| 07                               | 360         | 7.8          |         |       |       |     |     | 4>         |
| 08                               | 390         | 9.1          |         |       |       |     |     | (2.7)      |
| 09                               | 420<br>4,20 | 9.9<br>9.9   |         |       |       |     |     |            |
| 11                               | 450         | 9.9          |         |       |       |     |     |            |
| 10<br>11<br>12<br>13<br>14<br>15 | 480         | 10.4         |         |       |       |     |     | (2.4)      |
| 13                               | 480         | 10.8         |         |       |       |     |     |            |
| 14                               | 510         | 11.6         |         |       |       |     |     |            |
| 15<br>16                         | 510<br>510  | 12.1<br>12.6 |         |       |       |     |     | (2.4)      |
| 17                               | 510         | 13.0         |         |       |       |     |     | (2.4)      |
| 18                               | 510         | 12.8         |         |       |       |     |     |            |
| 19                               | 430         | 12.4         |         |       |       |     |     |            |
| 20                               | 450         | (11-4)       |         |       |       |     |     | (2.5)      |
| 21                               | (420)       | (10.4)       |         |       |       |     |     |            |
| 22                               |             | (10.0)       |         |       |       |     |     |            |

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
#[Beight et 0.83 forz.
#Average values; other columns, median values.

|        |        |           |        | Tal       | le 36 |     |     |            |
|--------|--------|-----------|--------|-----------|-------|-----|-----|------------|
| Buenoa | Aires, | Argentina | (34.50 | 8, 58.5°1 | 1)    |     |     | April 1951 |
| Time   | h'F2   | foF2      | h'Fl   | foFl      | h*E   | foE | fEs | (M3000)F2  |
| 00     | 300    | 5.6       |        |           |       |     |     | 2.8        |
| 01     | 300    | 5.6       |        |           |       |     | 3.5 | 2.8        |
| 02     | 300    | 5.7       |        |           |       |     | 3.7 | 2.8        |
| 03     | 280    | 6.2       |        |           |       |     | 3.8 | 3.1        |
| 04     | 220    | 5.2       |        |           |       |     | 2.2 | 3.4        |
| 05     | 260    | 4.0       |        |           |       |     | 2.2 | 3.0        |
| 06     | 260    | 4.6       |        |           |       |     |     | 3.0        |
| 07     | 230    | 7.0       |        |           |       |     |     | 3.4        |
| 08     | 230    | 8.2       | 230    |           |       |     |     | 3.4        |
| 09     | 250    | 9.0       | 230    |           |       |     | 3.8 | 3.4        |
| 10     | 250    | 9.3       | 230    |           |       |     | 4.7 | 3.3        |
| 11     | 260    | 10.2      | 220    |           |       |     | 5.0 | 3.2        |
| 12     | 270    | 10.9      | 230    |           |       |     | 5.2 | 3.1        |
| 13     | 280    | 11.5      | 240    |           |       |     | 5.2 | 3.1        |
| 14     | 270    | 12.0      | 250    |           |       |     | 5.0 | 3.1        |
| 15     | 260    |           | 250    |           |       |     | 4.6 | 3.2        |
| 16     | 240    |           | 240    |           |       |     | 4.5 | 3.4        |
| 17     | 230    |           |        |           |       |     | 3.9 | 3.5<br>3.4 |
| 18     | 210    | 9.6       |        |           |       |     | 4.0 | (3.1)      |
| 19     | 220    |           |        |           |       |     | 3.2 | (3.0)      |
| 20     | 250    |           |        |           |       |     |     | 3.2        |
| 21     | 240    |           |        |           |       |     |     | 3.0        |
| 22     | 270    |           |        |           |       |     |     |            |
| _23    | 280    | 6.4       |        |           |       |     |     | 3.0        |

Time: 60.00W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

|        |           |          |          | Table    | 51        |          |     |           |
|--------|-----------|----------|----------|----------|-----------|----------|-----|-----------|
| Roykja | vik, Icel | and (64. | 2 H, 21. | 8 g)     |           |          | 1   | arch 1951 |
| Time   | h'F2      | foF2     | h'Fl     | foFl     | hIE       | foE      | 13e | (M3000)F2 |
| 00     | (340)     | (3.0)    |          |          |           |          | 4.8 | 2.6       |
| 01     | (380)     | (2.9)    |          |          |           |          | 4.0 | (2.5)     |
| 02     | (390)     | (2.8)    |          |          | -38 60 65 |          | 4.2 | (2.6)     |
| 03     | (370)     | (3.0)    |          |          | m - in eq |          | 4.8 | (2.5)     |
| 04     |           | (2.3)    |          |          | 000       | 0=0      | 4.4 | (2.6)     |
| 05     | (350)     | (3.2)    |          |          | ******    | e> == =0 | 4.2 | (2.6)     |
| 06     | 320       | 2.7      |          |          |           |          | 3.4 | 267       |
| 07     | 280       | 3.8      |          |          | en en ez  |          |     | 3.0       |
| 08     | 270       | 4.3      | (< 255)  | 000      | 110       | 2.3      |     | 3.1       |
| 09     | 280       | 4.8      | 240      |          | 110       | 2.4      |     | 3.0       |
| 10     | 320       | 5.0      | 240      | 3.8      | 100       | (2.6)    |     | 3.0       |
| 22     | 320       | 5.8      | 240      | 4.0      | 110       | 2.8      |     | 2.9       |
| 12     | 350       | 6.0      | 220      | 4.0      | 2.00      | 2.8      |     | 2.9       |
| 13     | 330       | 6.0      | 240      | 400      | 105       | 4000     |     | 2.9       |
| 24     | 320       | 6.0      | 235      | 4.0      | 110       | 2.8      |     | 2.9       |
| 15     | 320       | 5.8      | 240      | 3.7      | 110       | 2,8      |     | 2.8       |
| ă6     | 290       | 5.8      | 250      | 08 F- 03 | 100       |          |     | 2.9       |
| 17     | 280       | 5.6      | 250      |          | 110       | 2.2      | 2.1 | 2.9       |
| 28     | 260       | 50%      | 40.00    | 995      |           | 40 O O   | 3.0 | 3.0       |
| 19     | 270       | 4.3      |          |          | 990       |          | 3.8 | 2.9       |
| 20     | 300       | 4.2      |          |          |           |          | 3.5 | 2.9       |
| 21     | 280       | (4.0)    |          |          |           |          | 4.8 | (2.9)     |
| 22     | (350)     | (3.8)    |          |          |           |          | 5.6 | (2.7)     |
| 23     |           | 0.00     |          |          |           |          | 5.0 | GP 60°C*  |

Time: 15.00%.

Sweep: 1.0 Me to 25.0 Me in 18 seconds.

| 03 5    | 97      | / = 2 C C C C C C C C C C C C C C C C C C | n 20m | Table | 222  |        |     | Marroll 2052 |
|---------|---------|-------------------------------------------|-------|-------|------|--------|-----|--------------|
| STORER, | Bogland |                                           |       |       |      |        |     | March 1951   |
| Time    | h'E2    | foF2                                      | h'F1  | feFl  | h'E  | foli   | fSe | (M3000) F2   |
| 00      | 310     | 3.4                                       |       |       |      |        | 2.3 | 2.6          |
| 02      | 330     | 3.3                                       |       |       |      |        | 2.5 | 2.6          |
| 0/3     | 300     | 3.0                                       |       |       |      |        | 2.6 | 2.6          |
| 03      | 295     | 2.5                                       |       |       |      |        | 2.6 | 2.6          |
| 04      | 295     | 2.6                                       |       |       |      |        | 3.8 | 2.7          |
| 05      | 290     | 2.3                                       |       |       |      |        | 3.8 | 2.8          |
| 06      | 275     | 2-0                                       |       |       |      | (1.9)# | 3.9 | 3.0          |
| 07      | 260     | 45                                        | 240   | 3.2   | 130  | 2.0    | 3.9 | 3.2          |
| 08      | 265     | 5.4                                       | 235   | 3.6   | 325  | 2.4    | 3.9 | 3.2          |
| 09      | 290     | 6.3                                       | 230   | 4.1   | 120  | 2.7    | 3.9 | 3.2          |
| 26      | 295     | 5.8                                       | 225   | 4.3   | 120  | 2.9    | 4.0 | 3.1          |
| 22      | 290     | 7.0                                       | 225   | 4.4   | 320  | 3.0    | 4.0 | 3.2          |
| 3.2     | 290     | 7.2                                       | 220   | 4.5   | 120  | 3.3    | 400 | 3.1          |
| 13      | 290     | 7.1                                       | 220   | hody  | 1.20 | 3.1    | 400 | 3.1          |
| 14      | 280     | 7.3                                       | 230   | 4-3   | 120  | 3.0    | 4.0 | 3.1          |
| 35      | 275     | 7.2                                       | 530   | 4.2   | 120  | 2.9    | 4.2 | 3.1          |
| 26      | 260     | 7.1                                       | 21,0  | 3.9   | 1215 | 2.6    | 3.8 | 3.2          |
| 17      | 250     | 7.0                                       | 250   | 3.4   | 125  | 2.2    | 2.7 | 3.2          |
| 28      | 240     | 7.0                                       |       |       | 140  | 1.6    | 2.4 | 3.2          |
| 19      | 245     | 6.3                                       |       |       |      |        | 2.0 | 3.0          |
| 20      | 245     | 5.9                                       |       |       |      |        |     | 3.0          |
| 2.1     | 260     | 4.04                                      |       |       |      |        | 1.7 | 3.0          |
| 22      | 290     | 3.9                                       |       |       |      |        |     | 2.7          |
| .33     | 320     | 3.5                                       |       | -     |      |        | 1.8 | 2.6          |

Time: 0.00.

Times 0.00. Steeps 0.55 Ms to 26.5 Ms in 5 minutes, substatic operation. Through Talles except fort and fire, which are sedien values. Fine or two observations only.

| elmi,     | India (2) |       | March 1951 |      |      |     |     |           |
|-----------|-----------|-------|------------|------|------|-----|-----|-----------|
| nine      | -0        | foF2  | h'Fl       | foF1 | h.†E | foE | fEs | (M3000)F2 |
| 00        | 290       | (3.0) |            |      |      |     |     | (3.5)     |
| 02        | (300)     | 3.0   |            |      |      |     |     |           |
| 02        | 040       |       |            |      |      |     |     |           |
| 03        |           |       |            |      |      |     |     |           |
| 04.<br>05 | 290       | 3.2   |            |      |      |     |     | (3.7)     |
| 05        | 298       | 3.8   |            |      |      |     |     | 40        |
| 05        | 280       | 4.06  |            |      |      |     |     |           |
| 07        | 250       | 6.8   |            |      |      |     |     |           |
| 08        | 270       | 8.1   |            |      |      |     |     | (3.5)     |
| 09        | 280       | 904   |            |      |      |     |     | 12-27     |
| 10        | 280       | 20.2  |            |      |      |     |     |           |
| 11        | 200       | 11.2  |            |      |      |     |     |           |
| lä        | 290       | 12.2  |            |      |      |     |     | (3.4)     |
| 13        | 300       | 12.3  |            |      |      |     |     | (5 4)     |
| 14        | 300       | 11.8  |            |      |      |     |     |           |
| 15        | 280       | 11.2  |            |      |      |     |     |           |
| 16        | 260       | 10.2  |            |      |      |     |     | (3.4)     |
| 1.7       | 250       | 9.8   |            |      |      |     |     | (0.14)    |
| 18        | 280       | 8.9   |            |      |      |     |     |           |
| 19        | 280       | 6.2   |            |      |      |     |     |           |
| 20        | 280       | 5.8   |            |      |      |     |     | (3.5)     |
| 21        | 280       | 4.5   |            |      |      |     |     | 12-77     |
| 22        | 290       | 3.8   |            |      |      |     |     |           |
| 23        | 300       | 3.2   |            |      |      |     |     |           |

Time: Lecal.
Seep: 1.8 He to 16.0 Me in 5 minutes, manual operation.
\*\*Seight at 0.83 forth.
\*\*Average values; other columns, median values.

|         |          |          | Table 38* |  |
|---------|----------|----------|-----------|--|
| rburgh, | Scotland | (57.6°N, | 2.1%)     |  |

| Fraser | burgh, Sc | cotland ( | 57.6°N, | 2.1%) |       |       | 14  | arch 1951 |
|--------|-----------|-----------|---------|-------|-------|-------|-----|-----------|
| Time   | h'F2      | foF2      | h'Fl    | foFl  | h'E   | foE   | fEe | (M3000)F2 |
| 00     | 330       |           |         |       |       |       |     |           |
| 81.    | 325       |           |         |       |       |       |     |           |
| 02     | 320       |           |         |       |       |       | 2.4 | (2.6)     |
| 03     | 315       |           |         |       |       |       | 1.0 |           |
| 04     | 315       |           |         |       |       |       |     | 2.4       |
| 05     | 300       | (1.8)     |         |       |       |       |     | (2.6)     |
| 66     | 290       | 2.8       |         |       | (170) | (1.7) |     | 2.9       |
| 07     | 250       | 3.9       |         |       | 135   | 2.0   |     | 3.1       |
| 68     | 245       | 4.9       |         |       | 125   | 2.2   |     | 3.1       |
| 09     | 270       | 5.6       | 230     | 3.8   | 120   | 2.5   |     | 3.1       |
| 10     | 300       | 5.8       | 225     | 4.0   | 120   | 2.7   |     | 3.2       |
| 13     | 305       | 6.3       | 220     | 4.1   | 1.20  | 2.8   |     | 3.0       |
| 12     | 295       | 6.5       | 225     | 4.2   | 120   | 2.9   |     | 3.0       |
| 13     | 290       | 6.4       | 220     | 4.1   | 120   | 2.9   |     | 3.0       |
| 14     | 285       | 6.9       | 230     | 4.0   | 120   | 2.8   |     | 3.1       |
| 15     | 275       | 6.8       | 230     | 3.8   | 1.25  | 2.6   |     | 3.1       |
| 1.6    | 255       | 6.7       | 235     | (3.3) | 125   | 2.4   |     | 3.1       |
| 17     | 250       | 6.6       |         |       | 140   | 2.1   |     | 3.1       |
| 18     | 245       | 6.5       |         |       | 155   | 1.8   |     | 3.1       |
| 19     | 255       | (6.3)     |         |       |       |       |     | 3.0       |
| 20     | 265       | (5.6)     |         |       |       |       |     | 2.9       |
| 21     | 285       | (4.5)     |         |       |       |       |     | 2.9       |
| 22     | 300       | 3.7       |         |       |       |       |     | 2.9       |
| 23     | 320       | (2.8)     |         |       |       |       |     | 2.7       |

0.00. Time:

Steep: 0.67 Mo to 15.0 Mo in 4 minutes.
\*Avarage values except feF2 and fEs, which are median values.

Fribourg, Germany (48.1°H, 7.8°E) March 1951 h!F2 foF2 (M3000) T2 Time h'F1 h'E foF1 for fEa 00 300 3.6 2.7 2.7 2.7 2.8 2.8 2.9 01 300 3.6 02 290 290 280 04 05 05 07 08 09 270 1.4 1.9 2.4 2.8 2.9 3.0 3.1 3.1 3.0 3.0 3.3 3.2 3.2 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 121 118 115 113 114 115 113 115 115 119 245 2.2 3.3 2.8 3.9 240 3.8 4.1 4.4 4.5 4.4 4.3 4.3 230 230 228 280 10 11 12 13 14 15 16 17 18 19 290 290 230 230 230 290 290 3.0 290 290 275 260 2.8 2.5 2.0 240 4.2 250 250 245 235 123 2.0 20 240 250 4.4 22 280 23 295

Times Local.

Sweep: 1.25 Me to 20.0 Me in 10 minutes, automatic operation.

| Bombay,                    | India                           | (19.0°¤,                             | 73.0°E)           | Table | 12  |     |     | Maggh 1951 |
|----------------------------|---------------------------------|--------------------------------------|-------------------|-------|-----|-----|-----|------------|
| Time                       | 4                               | foF2                                 | h <sup>t</sup> Tl | foFl  | hII | foE | fEs | (M3000)F2  |
| 00<br>01<br>02<br>09<br>04 |                                 |                                      |                   |       |     |     |     |            |
| 05<br>06<br>07<br>08<br>09 | 300<br>330<br>330               | 7.0<br>9.7<br>10.6                   |                   |       |     |     |     | 3.1        |
| 10<br>11<br>12<br>13       | 360<br>390<br>420<br>450<br>420 | 11.9<br>12.8<br>13.5<br>14.1<br>14.2 |                   |       |     |     |     | (2.7)      |
| 14<br>15<br>16<br>17<br>18 | 390<br>360<br>360<br>360        | 14.4<br>14.1                         |                   |       |     |     |     | (2.9)      |
| 19<br>20                   | 360<br>330                      | 11.6                                 |                   |       |     |     |     | 2.6        |
| 21<br>22<br>23             | 330<br>330<br>330               |                                      |                   |       |     |     |     | 3.1        |

Times Local.

Sweeps 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. \*Height at 0.83 fer2. \*\*Average values; other columns, median values.

|        |        |           |          | Table    | 43  |     |     |             |
|--------|--------|-----------|----------|----------|-----|-----|-----|-------------|
| Dakar, | French | Nost Afri | ca (14.6 | N, 17.4  | °F) |     |     | Warch 1951  |
| Time   | p.ls   | foF2      | h'F1     | foFl     | h1E | foE | fEq | (113000)373 |
| 00     | 265    | 11.8      |          |          |     |     |     | 3.2         |
| 01     | 250    | (>10.2)   |          |          |     |     |     | (3.2)       |
| 02     | 228    | (9.6)     |          |          |     |     |     | 3.4         |
| 03     | 215    | (>7.0)    |          |          |     |     |     | 3.1         |
| 04     | 220    | 5.0       |          |          |     |     |     | 3.3         |
| 05     | 245    | 3.8       |          |          |     |     | 2.0 | 3.0         |
| 06     | 270    | 4.2       |          |          |     | E   | 2.8 | 3.2         |
| 07     | 240    | 7.8       | 245      |          | 113 | 2.3 | 3.3 | 3.4         |
| 80     | 265    | 9.4       | 230      |          | 111 | 2.9 | 4.4 | 3.4         |
| 09     | 280    | 11.0      | 218      |          | 111 | 3.3 | 3.8 | 3.2         |
| 10     | 290    | 12.4      | 210      |          | 110 | 3.5 | 4.0 | 3.1         |
| 11     | 300    | 13.2      | 210      | 5.1      | 109 | 3.7 |     | 3.0         |
| 12     | 302    | 13.3      | 205      | 5.1      | 109 | 3.0 |     | 2.8         |
| 13     | (310)  | 13.6      | 200      | 5.1      | 109 | 3.7 |     | 2.8         |
| 14     | (300)  | 13.8      | 210      | 4.8      | 112 | 3.6 |     | 2.7         |
| 15     | 300    | >14.0     | 225      | 60 at an | 111 | 3.1 | 4.0 | (2.9)       |
| 16     | (290)  | >14.0     | 225      | 200      | 111 | 3.0 | 3.8 | 2-9         |
| 17     | (250)  | 13.6      | 240      | 60 mm    | 111 | 2.5 | 3.8 | 2.9         |
| 18     | 250    | 13.1      | 900      |          |     | 1.7 | 3.4 | 2.9         |
| 19     | 295    | 13.0      |          |          |     |     | 3.4 | 2.6         |
| 20     | 300    | 12.2      |          |          |     |     |     | 2.7         |
| 21     | 292    | 12.8      |          |          |     |     | 2.4 | 2.9         |
| 22     | 290    | 11.8      |          |          |     |     |     | (2.8)       |
| 23     | 295    | 11.9      |          |          |     |     |     | (2.8)       |

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

| Tiruch   | , India    | (10.8°N,   | 78.8°E) | Table . | 45  |     |     | March 1951 |
|----------|------------|------------|---------|---------|-----|-----|-----|------------|
| Time     |            | foF2       | h'Fl    | foFl    | h'E | foE | fEe | (M3000)F2  |
| 00       |            |            |         |         |     |     |     |            |
| 01       |            |            |         |         |     |     |     |            |
| 02       |            |            |         |         |     |     |     |            |
| 03       |            |            |         |         |     |     |     |            |
| 04       |            |            |         |         |     |     |     |            |
| 05       | 2(0        | 4.0        |         |         |     |     |     |            |
| 06       | 360        | 4.9        |         |         |     |     |     |            |
| 07<br>03 | 390<br>450 | 7.3<br>9.7 |         |         |     |     |     | (2.5)      |
| 09       | 480        | 9.8        |         |         |     |     |     | (40)       |
| 10       | 480        | 9.5        |         |         |     |     |     |            |
| 11       | 480        | 9.3        |         |         |     |     |     |            |
| 12       | 510        | 9.3        |         |         |     |     |     | (2.3)      |
| 13       | 510        | 9.7        |         |         |     |     |     | ()         |
| 14       | 510        | 10.2       |         |         |     |     |     |            |
| 14<br>15 | 510        | 10.2       |         |         |     |     |     |            |
| 16       | 510        | 11.1       |         |         |     |     |     | (2.8)      |
| 17       | 510        | 10.9       |         |         |     |     |     |            |
| 13       | 510        | 10.8       |         |         |     |     |     |            |
| 19       | 510        | 10.4       |         |         |     |     |     |            |
| 20       | 510        | 10.4       |         |         |     |     |     | (2.7)      |
| 21       | 480        | 10.0       |         |         |     |     |     | 4          |
| 22<br>23 | 480        | 10.1       |         |         |     |     |     | (2.8)      |
| 23       | 000        | 000        |         |         |     |     |     |            |

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual eperation. \*Height at 0.83 faf2.

\*\*Average values; other columns, median values.

| Buenes | Aires, | Argentina | (34.5°S, | Table       |                  |           |     | March 1951 |
|--------|--------|-----------|----------|-------------|------------------|-----------|-----|------------|
| Time   | h'E2   | STof      | h'Tl     | foFl        | h <sup>1</sup> E | foE       | fEe | (M3000)F2  |
| 00     | 300    | 5.8       |          |             |                  |           |     | 2.8        |
| 01     | 300    | 5.7       |          |             |                  |           |     | 2.8        |
| 02     | 290    | 5.6       |          |             |                  |           | 2.2 | 2.8        |
| 03     | 270    | 5.9       |          |             |                  |           |     | 3.0        |
| 04     | 260    | 4.9       |          |             |                  |           |     | 3.1        |
| 05     | 270    | 4.2       |          |             |                  |           |     | 2.9        |
| 06     | 230    | 5.3       |          |             |                  |           |     | 3.3        |
| 07     | 230    | 6.7       |          | CO48 40     | The co. 10       | -         |     | 3.5        |
| 90     | 240    | 7.1       | 220      |             |                  |           | 3.3 | 3.4        |
| 09     | 270    | 7.8       | 210      |             | 100              | 3.1       | 3.8 | 3.2        |
| 10     | 290    | 8.9       | 210      |             | 100              | 3.3       | 4.5 | 3.0        |
| 23     | 300    | 9.8       | 220      | sie o       |                  |           | 4.8 | 3.0        |
| 12     | 300    | 11.0      | 23.0     |             | -                | 40-43 (5) | 5.2 | 3.0        |
| 13     | 300    | 11.5      | 210      | 0.010       | -00              |           | 5.0 | 3.1        |
| 3.4    | 290    | 12.5      | 220      | 400 min 100 | -                |           | 4.8 | 3.1        |
| 15     | 230    | 12.2      | 220      | ette en en  |                  |           | 4.6 | 3.2        |
| 16     | 270    | 12.2      | 250      |             |                  |           | 4.4 | 3.3        |
| 17     | 260    | 12.4      | 250      | WHO 99      |                  |           | 3.6 | 3.6        |
| 18     | 230    | 11.5      |          |             |                  |           | 3.6 | 3.4        |
| 19     | 220    | 9.5       |          |             |                  |           |     | 3.3        |
| 20     | 220    | 8.5       |          |             |                  |           |     | 3.1        |
| 21     | 260    | 8.0       |          |             |                  |           |     | 2.9        |
| 22     | 270    | 7.4       |          |             |                  |           |     | 2.8        |
| 23     | 290    | 6.5       |          |             |                  |           |     | 2.8        |

Time: 60.0°W. Sweep: 1.0 Mo to 25.0 Mc in 30 seconds.

| Medrae,                                                  | , India (                       | 19.0°5,                      | 80.2°E) | Table | 4   |     |     | March 1951 |
|----------------------------------------------------------|---------------------------------|------------------------------|---------|-------|-----|-----|-----|------------|
| Time                                                     | 8                               | foF2                         | h'Fl    | foFl  | h'E | foE | 1Ee | (M3000)F2  |
| 60<br>01<br>03<br>04<br>05<br>06<br>07<br>06<br>09<br>10 | 350<br>390<br>420<br>420<br>420 | 7.1<br>3.5<br>9.8<br>9.6     |         |       |     |     |     | (2.8)      |
| 11<br>12<br>13<br>14<br>15                               | 440<br>450<br>450<br>450        | 9-9<br>10-1<br>10-4<br>11-0  |         |       |     |     |     | (2.6)      |
| 15<br>17<br>18<br>19                                     | 480<br>480<br>480<br>480        | 11.4<br>11.4<br>10.9<br>10.7 |         |       |     |     |     | (2.6)      |
| 20<br>21<br>22                                           | 460<br>400<br>(390)             | 10.4<br>(10.0)<br>(9.5)      |         |       |     |     |     | (2.7)      |

23

Time: Local. Sweep: 1.8 % to 16.0 %c in 5 minutes, manual operation. \*Height at 0.89 for2.

\*\*Average values; other oclume, median values.

|         |          |           |          | Table     | 1910 |     |     |            |
|---------|----------|-----------|----------|-----------|------|-----|-----|------------|
| Singapo | ro, Brit | dah Malay | 7a (1.3° | 1, 103.8° | B)   |     | 1   | terch 1951 |
| Time    | h'F2     | foF2      | h151     | foFl      | h1E  | foB | fEs | (M3000)F2  |
| CO      | 205      | 8.7       |          | -         |      |     |     | 3.2        |
| 01      | 230      | 6.6       |          |           |      |     |     | 2.9        |
| 02      | 245      | 5.8       |          |           |      |     |     | 2.9        |
| 03      | 240      | 5.7       |          |           |      |     |     | 2.9        |
| 04      | 240      | 5.2       |          |           |      |     |     | 3.2        |
| 05      | 230      | 4.2       |          |           |      |     |     | 3.2        |
| 06      | 245      | 400       |          |           |      |     |     | 3.0        |
| 07      | 235      | 7.5       |          |           | 135  | 2.5 | 3.2 | 3.2        |
| 68      | 225      | 8.6       | 220      |           | 220  | 3.0 | 3.9 | 2.9        |
| 09      | 280      | 9.7       | 220      |           | 225  | 3.4 | 4.2 | 2.5        |
| 20      | 320      | (10.2)    | 205      | (4,8)     | 125  | 3.6 | 4.2 | 2.9        |
| 11      | 325      | (9.8)     | 200      | (4.9)     | 125  | 3.7 | 4+3 | 2.3        |
| 12      | 340      | 9.8       | 195      | (5.2)#    | 125  | 3.7 | 4.3 | 2.2        |
| 13      | 325      | 10.5      | 200      | (4.8)#    | 125  | 3.7 | 4.2 | 2.3        |
| 14      | 315      | 10.5      | 300      | (5.3)#    | 220  | 3.6 | 4.0 | 2.5        |
| 15      | 295      | 11.0      | 200      |           | 125  | 3.5 | 4.0 | 2.5        |
| 16      | 260      | 11.2      | 200      |           | 125  | 3.1 | 3.7 | 2.5        |
| 27      | 235      | 11.3      | 215      |           | 130  | 2.5 | 3.2 | 2.6        |
| 18      | 255      | (11.3)    |          |           |      |     |     | 2.5        |
| 19      | 300      | (11.1)    |          |           |      |     |     | (2.4)\$    |
| 20      | 280      | (11.3)    |          |           |      |     |     |            |
| 22      | 245      | (11.2)    |          |           |      |     |     | 2.8        |
| 22      | 215      | (10.4)    |          |           |      |     |     | 3.0        |
| 23      | 205      | (10.9)    |          |           |      |     |     | 3.2        |

Time: 295.005. Sweep: 2.2 Mb to 16.0 Mc in 1 minute. \*Average values except feP2 and fEe, which are sedien values. #One or two observations only.

| Fraser | burgh, Sc | otland ( | 57.6°N, | 2.1°W) |      |        | Febr | ebruary 1951 |  |
|--------|-----------|----------|---------|--------|------|--------|------|--------------|--|
| Time   | h'32      | foF2     | h'Fl    | foFl   | h E  | foE    | fEe  | (M3000) 72   |  |
| 00     | 335       |          |         |        |      |        |      | (2.7)#       |  |
| 01     | 340       | (2,2)    |         |        |      |        |      | (2.5)∳       |  |
| 02     | 335       |          |         |        |      |        |      | (2.6)#       |  |
| 03     | 335       | (1.8)    |         |        |      |        |      | (2.4)#       |  |
| 04     | 340       | (1.8)    |         |        |      |        |      | 2.7          |  |
| 05     | 325       | (1.7)    |         |        |      |        |      |              |  |
| 06     | 310       | (2.4)    |         |        |      |        |      |              |  |
| 07     | 295       | (2.3)    |         |        | 145# | (1,7)# |      | (2.8)#       |  |
| 08     | 250       | 4.2      |         |        | 125  | 1.9    |      | 3.0          |  |
| 09     | 245       | 5.1      |         |        | 135  | 2.0    | 3.0  | 3.2          |  |
| 10     | 240       | 6.0      | 240     |        | 130  | 2.4    | 3.0  | 3.2          |  |
| 11     | 250       | 6.3      | 220     | (3.9)# | 130  | 2.5    |      | 3.2          |  |
| 12     | 265       | 6.7      | 230     | 3.9    | 130  | 2.6    |      | 3.2          |  |
| 13     | 260       | 6.9      | 230     | (4.0)  | 130  | 2.6    |      | 3.2          |  |
| 14     | 250       | 7.0      | 235     | (3.8)  | 135  | 2.5    |      | 3.2          |  |
| 15     | 245       | 6.9      | 250     | (3,7)∳ | 135  | 2.3    | 3.0  | 3.2          |  |
| 16     | 240       | 6.5      |         |        | 140  | 2.0    | 3.0  | 3.3          |  |
| 17     | 235       | 6.3      |         |        | 150  | 1.8    |      | 3.2          |  |
| 18     | 240       | 5.0      |         |        |      |        |      | 3.1          |  |
| 19     | 255       | (4.1)    |         |        |      |        |      | 3.1          |  |
| 20     | 280       | (3,2)    |         |        |      |        |      | (2.9)        |  |
| 21     | 290       | (3.0)    |         |        |      |        |      | (8.9)        |  |
| SS     | 315       | (2.6)    |         |        |      |        |      | (2.9)        |  |
| 23     | 330       | (2.4)    |         |        |      |        |      | (8.8)        |  |

Time: 0.0°.
Sweep: 0.67 Mo to 15.0 Mc in 4 minutes.
\*Average values except foF2 and fEs, which are median values.
\*\*One or two observations only.

|         | Table 49° |          |        |      |       |     |     |             |  |  |  |
|---------|-----------|----------|--------|------|-------|-----|-----|-------------|--|--|--|
| Slough, | England   | (51.5°H, | 0.6°W) |      |       |     | Fe  | bruary 1951 |  |  |  |
| Time    | p.ls      | fol2     | h'F1   | foFl | h ! E | foE | fBe | S#(0008M)   |  |  |  |
| 00      | 305       | -2.8     |        |      |       |     | 2.4 | 2.6         |  |  |  |
| 01      | 300       | 2.6      |        |      |       |     | 3.4 | 2.6         |  |  |  |
| 02      | 310       | 2.7      |        |      |       |     | 3.5 | 2.6         |  |  |  |
| 03      | 310       | 2.4      |        |      |       |     | 3.4 | 2.6         |  |  |  |
| 04      | 310       | 2.1      |        |      |       |     | 3.8 | 2.6         |  |  |  |
| 05      | 305       | 2.0      |        |      |       |     | 3.8 | 2.8         |  |  |  |
| 06      | 305       | 2.0      |        |      |       |     | 3.8 | 2.8         |  |  |  |
| 07      | 270       | 3.1      |        |      | 125#  | 1.8 | 3.7 | 3.0         |  |  |  |
| 08      | 240       | 4.8      | 260#   | 3.2  | 130   | 2.0 | 4.0 | 3.3         |  |  |  |
| 09      | 245       | 5.9      | 240    | 3.6  | 125   | 2.4 | 4.5 | 3.3         |  |  |  |
| 10      | 260       | 6.6      | 230    | 3.9  | 125   | 2.7 | 4.2 | 3.3         |  |  |  |
| 11      | 255       | 7.0      | 225    | 4.1  | 125   | 2.8 | 4.6 | 3, 3        |  |  |  |
| 12      | 260       | 7.2      | 220    | 4.1  | 125   | 2.9 | 4.8 | 3.2         |  |  |  |
| 13      | 255       | 7.2      | 225    | 4.1  | 125   | 2.9 | 4.6 | 3,2         |  |  |  |
| 14      | 250       | 7.2      | 225    | 3.9  | 125   | 2.7 | 4.4 | 3,2         |  |  |  |
| 15      | 245       | 7.4      | 230    | 3.7  | 125   | 2.6 | 4.2 | 3.2         |  |  |  |
| 16      | 235       | 7.2      | 255    | 3.5  | 125   | 2.3 | 4.0 | 3.4         |  |  |  |
| 17      | 225       | 6.3      |        |      | 140   | 1.8 | 3.4 | 3.2         |  |  |  |
| 18      | 230       | 5.8      |        |      |       |     | 2.4 | 3,2         |  |  |  |
| 19      | 245       | 5.0      |        |      |       |     |     | 3.0         |  |  |  |
| 20      | 265       | 3.9      |        |      |       |     |     | 3.0         |  |  |  |
| 21      | 290       | 3.2      |        |      |       |     |     | 2.8         |  |  |  |
| 22      | 305       | 3.1      |        |      |       |     |     | 2.7         |  |  |  |
| 23      | 310       | 2.9      |        |      |       |     | 2.4 | 2.6         |  |  |  |

Time: 0.0°.
Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation.
"Average values except foF2 and fFe, which are median values.
#One or two observations only.

|      |    |      |       |     |       | Tabl | 9 51   |
|------|----|------|-------|-----|-------|------|--------|
| D. L | en | 00 A | 4.0-4 | 100 | 1 Ben | 0.00 | · On h |

| Dakar, | French E | est Africa | (14.6 | E, 17.4 | (B)   |     | Feb | ruary 1951 |
|--------|----------|------------|-------|---------|-------|-----|-----|------------|
| Time   | h1F2     | foF2       | h IF2 | fo#1    | h ! E | foB | 13e | (M3000)I2  |
| 00     | 250      | (>7.0)     |       |         |       |     |     |            |
| 01     | 245      | 7.0        |       |         |       |     |     |            |
| 02     | 225      | (>7.0)     |       |         |       |     |     |            |
| 03     | 215      | 6.2        |       |         |       |     |     | 3.4        |
| 04     | 232      | 4.0        |       |         |       |     |     | 3.2        |
| 05     | 262      | 2.9        |       |         |       |     | 2.6 | 3.0        |
| 06     | 280      | 3.0        |       |         |       |     | 2.5 | 3.0        |
| 07     | 250      | 6.8        |       |         | 121   | 2.2 | 3.2 | 3.3        |
| 03     | 260      | 9.5        | 235   |         | 111   | 2.8 | 4.2 | 3.3        |
| 09     | 288      | 11.5       | 220   |         | 111   | 3.2 | 4.2 | 3.3        |
| 10     | 290      | 13.0       | 218   | 5.0     | 111   | 3.5 | 4.3 | 3.1        |
| 11     | 305      | 13.8       | 208   | 5.0     | 111   | 3.6 | 4.4 | 2.8        |
| 12     | 305      | 13.8       | 210   | 5.1     | 111   | 3.7 |     | 2.8        |
| 13     | 298      | 13-3       | 210   | 5.0     | 111   | 3.6 | 4.0 | 2.7        |
| 14     | 292      | 13.0       | 210   |         | 111   | 3.5 |     | 2.8        |
| 15     | (290)    | 12.8       | 220   | -       | 111   | 3.4 |     | 2.9        |
| 16     | 270      | 12.9       | 230   |         | 111   | 3.1 | 3.5 | 3.0        |
| 17     |          | 12.7       | 240   | -00     | 116   | 2.4 | 3.4 | 2.9        |
| 18     | 260      | 12.0       |       |         | 141   | 1.7 | 3.2 | 2.8        |
| 19     | 290      | 11.8       |       |         |       |     | 2.4 | 2.7        |
| 20     | 285      | 12.5       |       |         |       |     |     | -          |
| 22     | 275      | 11.2       |       |         |       |     |     |            |
| 22     | 270      | 10.4       |       |         |       |     |     |            |
| 23     | 260      | 9.0        |       |         |       |     |     |            |

Times Lecal. Sweeps 1.25 Me to 20.0 Me in 10 minutes, automatic operation.

Table 53

| Buenos | Aires, I |       | Pebruary 1951 |       |       |     |     |           |
|--------|----------|-------|---------------|-------|-------|-----|-----|-----------|
| Time   | h'F2     | folts | h'F1          | foF1  | h I E | foB | fBe | (M3000)F2 |
| 00     | 320      | 6.5   |               |       |       |     |     | 2.8       |
| 02     | 290      | 6.5   |               |       |       |     | 2.6 | 2.9       |
| 02     | 290      | 6.3   |               |       |       |     |     | 3.1       |
| 03     | 280      | 5.8   |               |       |       |     | 2.4 | 3.0       |
| 04     | 280      | 5.3   |               |       |       |     | 1.9 | 3.0       |
| 05     | 300      | 5.0   |               |       |       |     |     | 2.9       |
| 06     | 250      | 5.6   |               |       |       |     | 2.7 | 3.3       |
| 07     | 240      | (6.0) | 240           |       |       |     |     | (3.2)     |
| 08     | 300      | (7.0) | 230           | 0=0   |       |     |     | (3.1)     |
| 09     | 310      | (8.0) | (230)         |       |       |     |     | (2.8)     |
| 10     | 340      | 9.2   | 220           |       |       |     |     | 2.8       |
| 11     | 350      | 10.2  |               | (4.8) |       |     |     | 2.8       |
| 12     | 340      | 11.0  |               |       |       |     |     | 2.9       |
| 13     | 320      | 11.9  | 220           | (4.8) |       |     |     | 3.0       |
| 3.4    | 300      | 12.0  | (220)         |       |       |     |     | 3.1       |
| 15     | 290      | 11.7  | (230)         | -     |       |     |     | 3.2       |
| 16     | 280      | 10.0  | (220)         | ***** |       |     |     | 3.2       |
| 17     | 270      | 9.0   | 250           | -     |       |     |     | 3.2       |
| 18     | 270      | 9.0   |               |       |       |     |     | 3.2       |
| 19     | 260      | (8.4) |               |       |       |     |     | (3.2)     |
| 20     | 270      | (7-4) |               |       |       |     |     | (2.9)     |
| 21     | 330      | (7.0) |               |       |       |     |     | (2.8)     |
| 22     | 330      | (7.0) |               |       |       |     |     | (2.6)     |
| 23     | 330      | (6,6) |               |       |       |     |     | (2.8)     |

Time: 60.0°W.
Groeps 1.0 Ms to 25.0 Mc in 30 seconds.

| Wad hone | g, German |      | Fehr | mry 1951 |       |     |     |           |
|----------|-----------|------|------|----------|-------|-----|-----|-----------|
| Time     | h'ES      | foF2 | h'F1 | foF1     | h'E   | foE | fBe | (M3000)F2 |
|          |           |      | 4.21 | 1021     | 11 25 | 102 | 146 |           |
| 00       | 289       | 3.2  |      |          |       |     |     | 2.7       |
| 01       | 285       | 3.2  |      |          |       |     |     | 2.7       |
| 02       | 280       | 3-2  |      |          |       |     |     | 2.7       |
| 03       | 290       | 2.9  |      |          |       |     |     | 2.7       |
| 0.4      | 285       | 2.8  |      |          |       |     |     | 2.8       |
| 05       | 270       | 2.3  |      |          |       |     |     | 2.7       |
| 06       | 260       | 2.2  |      |          |       |     |     | 2.9       |
| 07       | 255       | 3.8  |      |          |       | 600 | 2.2 | 3.1       |
| 08       | 240       | 5.9  |      |          | 119   | 2.0 | 2.0 | 3.4       |
| 09       | 240       | 6.7  | 228  | 3.5      | 124   | 2.4 |     | 3.3       |
| 10       | 240       | 6.8  | 230  | 3.9      | 113   | 2.6 |     | 3.3       |
| 11       | 250       | 7.3  | 225  | 4.1      | 115   | 2.8 |     | 3.3       |
| 12       | 258       | 7.6  | 220  | 4.0      | 115   | 2.9 |     | 3.3 -     |
| 13       | 260       | 7.6  | 228  | 4.0      | 119   | 2.9 |     | 3.4       |
| 14       | 245       | 7.4  | 230  | 4.0      | 118   | 2.8 |     | 3-3       |
| 15       | 245       | 7.4  | 230  | 3.8      | 121   | 2.5 |     | 3.3       |
| 36       | 235       | 7.2  | 240  |          | 121   | 2.2 |     | 3.4       |
| 17       | 225       | 6.5  |      |          | 141   | 1.8 | 1.6 | 3.3       |
| 18       | 220       | 5.4  |      |          |       |     |     | 3.2       |
| 19       | 230       | 5.0  |      |          |       |     |     | 3.1       |
| 20       | 240       | 4.0  |      |          |       |     |     | 3.0       |
| 21       | 270       | 3.2  |      |          |       |     |     | 2.9       |
| 22       | 280       | 3.2  |      |          |       |     |     | 2.7       |
| 23       | 290       | 3-2  |      |          |       |     |     | 2.8       |

Times Local. Sweeps 1.25 Me to 20.0 Me in 10 minutes, automatic operation.

Table 52°

|      |       | ieh Mala |      |        |      |     |     | uary 1951 |
|------|-------|----------|------|--------|------|-----|-----|-----------|
| Time | P.ES  | foF2     | h'J1 | foF1   | h'E  | foE | fBe | (M3000)F2 |
| 00   | 220   | 5.7      |      |        |      |     |     | 3.1       |
| 01   | 250   | 4.7      |      |        |      |     |     | 2.9       |
| 02   | 250   | 4.9      |      |        |      |     |     | 3.0       |
| 03   | 245   | 4.1      |      |        |      |     |     | 2.9       |
| 04   | 260   | 3.8      |      |        |      |     |     | 3.0       |
| 05   | 245   | 3,4      |      |        |      |     |     | 3.1       |
| 06   | 250   | 3.4      |      |        |      |     |     | 2.8       |
| 07   | 235   | 6.9      |      |        | 120  | 2.4 | 3.2 | 3.1       |
| 80   | 235   | 8.1      | 215  |        | 115  | 3.0 | 3.8 | 2,8       |
| 09   | 285   | 8.9      | 205  | (4.8)# | 120  | 3,4 | 4.1 | 2.4       |
| 10   | 330   | 9.0      | 200  | (4.8)# | 120  | 3.6 | 4.4 | 2.1       |
| 11   | 360   | (8.8)    | 200  | (5.3)  | 120  | 3.8 | 4.4 | 2.1       |
| 12   | 360   | 9.6      | 200  | (4.9)  | 120  | 3.8 | 4.3 | 2.1       |
| 13   | 350   | 9.7      | 190  | (5.0)  | 125  | 3.8 | 3.8 | 2.3       |
| 14   | 345   | 10.0     | 200  | (4.8)# | 120  | 3.6 | 4.4 | 2.2       |
| 15   | 330   | 10.2     | 205  |        | 120  | 3.5 | 3.9 | 2.3       |
| 16   | 285   | 10.7     | 210  |        | 120  | 3.2 | 3.6 | 2.5       |
| 17   | 240   | 10.8     | 230  |        | 125  | 2.6 | 3.3 | 2.5       |
| 18   | 245   | 10.6     |      |        | 130# | 2.4 | 2.6 | 2.7       |
| 19   | 275   | (10.0)   |      |        |      |     |     | (2.6)     |
| 20   | 290   | (9.6)    |      |        |      |     |     | (2.6)     |
| 21   | 255   | 9.6      |      |        |      |     |     | 2.9       |
| 22   | 235   | 9.8      |      |        |      |     |     | 3.1       |
| 23   | . 220 | 9.3      |      |        |      |     |     | 3.2       |

Time: 105.0°E.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

\*Average values except foF2 and fEe, which are median values.

#One or two observations only.

| Palkla | nd Is. (5 | 1.7°s, 5 | 7.8°T) | Table | 342 |     | Feb | roary 1951 |
|--------|-----------|----------|--------|-------|-----|-----|-----|------------|
| Time   | Pils      | foF2     | h'Fl   | foF1  | h'E | fol | fFs | (M3000)F2  |
| 00     | 320       | 6.0      |        | _     |     |     | 2.7 | 2.5        |
| 01     | 320       | 6.0      |        |       |     |     |     | 2.6        |
| 02     | 320       | 5.8      |        |       |     |     |     | 2.6        |
| 03     | 320       | 5.5      | 260#   | 2.6#  |     |     | 2.8 | 2.6        |
| 04     | 330       | 4.9      |        |       |     |     |     | 2.5        |
| 05     | 310       | 4.8      | 270#   | 3.2   |     |     |     | 2.6        |
| 06     | 320       | 5.7      | 270    | 3.7   | 150 | 2.4 |     | 2.7        |
| 07     | 310       | 6.0      | 260    | 4.2   | 130 | 2.6 |     | 2.9        |
| 80     | 320       | 6.3      | 250    | 4.6   | 130 | 2.9 | 4.1 | 2.8        |
| 09     | 330       | 6.8      | 240    | 4.7   | 120 | 3.1 | 4.8 | 2.8        |
| 10     | 320       | 7.6      | 250    | 4.8   | 110 | 3.3 | 5.0 | 2.9        |
| 11     | 320       | 8.3      | 240    | 4.8   | 120 | 3.4 | 4.8 | 2.9        |
| 12     | 310       | 8.3      | 230    | 4.8   | 110 | 3.3 | 5.1 | 2.9        |
| 13     | 310       | 7.9      | 220    | 4.8   | 120 | 3.3 | 5.2 | 3.0        |
| 14     | 290       | 7.6      | 230    | 4.7   | 110 | 3.2 | 4.4 | 3.1        |
| 15     | 300       | 7.2      | 230    | 4.6   | 110 | 3.2 | 4.5 | 3.0        |
| 26     | 290       | 7.2      | 230    | 4.4   | 120 | 3.0 | 4.2 | 3.1        |
| 17     | 270       | 7.0      | 240    | 4.1   | 130 | 2.7 | 4.1 | 3.1        |
| 18     | 260       | 6.7      | 260    | 3.9#  | 140 | 2.3 | 3.0 | 3.1        |
| 19     | 260       | 6.8      |        |       |     |     | 3.7 | 3.0        |
| 20     | 280       | 6.8      |        |       |     |     | 3.0 | 2.8        |
| 21     | 300       | 6.6      |        |       |     |     | 3.2 | 2.7        |
| 22     | 310       | 6.6      |        |       |     |     | 3.3 | 2.6        |
| 23     | 330       | 6.4      |        |       |     |     | 3.2 | 2.5        |

Times 60.09w.
Sweeps 2.2 No to 16.0 No in 1 minute.
\*\*Average values except feF2 and fEe, which are median values.
\*\*One or two observations only.

|        |           |          |                         | 18010 2 | 2      |       |     |            |
|--------|-----------|----------|-------------------------|---------|--------|-------|-----|------------|
| Fraser | burgh, 3c | otland ( | 57.6 <sup>0</sup> 11. 2 | 2.10%)  |        |       | Ja  | nuar: 1951 |
| Time   | h'F2      | foF2     | h'F1                    | foFl    | h'E    | fol   | fBs | (M3000)#2  |
| 00     | 345       |          |                         |         |        |       |     | (2,4)*     |
| 01     | 315       | (1.8)    |                         |         |        |       |     |            |
| 02     | 320       |          |                         |         |        |       |     | (2.7)₽     |
| 03     | 325       | -        |                         |         |        |       |     | 2.79       |
| 04     | 315       | (1.8)    |                         |         |        |       |     |            |
| 05     | 295       | (1.8)    |                         |         |        |       |     | 2.8#       |
| 06     | 310       | (2.0)    |                         |         |        |       |     |            |
| 07     | 290       | (2.1)    |                         |         |        |       |     | (2.9)#     |
| 08     | 255       | (3.2)    |                         |         |        |       |     | 3.2#       |
| 09     | 230       | 5. C     |                         |         | 130    | (1.8) | 2.8 | 3.3        |
| 10     | 230       | 6.0      |                         |         | 135    | 2.0   | 3.1 | 3.4        |
| 11     | 235       | ô.4      | 270#                    | 3.6#    | 135    | 2.2   | 3.1 | 3.4        |
| 12     | 235       | 6.7      | 260₽                    | (3.6)#  | 130    | 2.3   | 3.1 | 3.4        |
| 13     | 225       | 6.8      |                         |         | 140    | 2.3   | 3,1 | 3.4        |
| 14     | 230       | 6.8      |                         |         | 135    | 2.1   | 3.1 | 3.5        |
| 15     | 225       | 6.3      |                         |         | (145)  | (2.2) |     | 3.4        |
| 16     | 225       | 5.8      |                         |         | (160)# | 1.75  |     | 3.3        |
| 17     | 230       | 5.3      |                         |         |        |       |     | 3.2        |
| 18     | 245       | 3.6      |                         |         |        |       |     | 3.1        |
| 19     | 27(       | (2.6)    |                         |         |        |       |     | 2.9        |
| 20     | 335       | (2.6)    |                         |         |        |       |     | 2.9        |
| 21     | 385       | (2.1)    |                         |         |        |       |     | 2.9#       |
| 25     | 350       | (1.8)    |                         |         |        |       |     | (2.9)₽     |

22 | 550 (1.87)
23 | 330 | --Time: 0.0°.
Sweep: 0.67 Mc to 15.0 Mc in 4 minutes.
\*Average values except fo72 and fBs, which are median values.
\*One or two observations only.

|         |        |          |        | Table     | 57_ |     |     |           |
|---------|--------|----------|--------|-----------|-----|-----|-----|-----------|
| Demont, | France | (49.0°N, | 2.3°E) |           |     |     | Jam | ary 1951  |
| Time    | P.LS   | foF2     | h'F1   | foFl      | h1E | fo≖ | fBe | (N3000)F2 |
| 00      | (<230) | 3.0      |        |           |     |     |     | 3.0       |
| 01      | (<240) | 3.1      |        |           |     |     |     | 3.0       |
| 02      | (<240) | 3.1      |        |           |     |     |     | 3.0       |
| 03      | (<230) | 2.7      |        |           |     |     |     | 3.1       |
| 0.6     | (<230) | 2.5      |        |           |     |     |     | 3.2       |
| 05      | (<200) | 2.2      |        |           |     |     |     | 3.2       |
| 06      | (<210) | 2.2      |        |           |     |     |     | 3.2       |
| 07      | (<210) | 2.8      | ****   | 40-co sit |     |     |     | 3.2       |
| 80      | 200    | 5.7      | 190    |           | 120 | 1.7 |     | 3.7       |
| 09      | 200    | 7.0      | 190    |           | 100 | 2.1 |     | 3.7       |
| 10      | 210    | 7.6      | 190    |           | 100 | 2.3 |     | 3.8       |
| 11      | 200    | 7.7      | 180    | 3.6       | 100 | 2.5 |     | 3.7       |
| 12      | 210    | 7.6      | 190    | 3.7       | 100 | 2.6 |     | 3.8       |
| 13      | 220    | 7.1      | 190    |           | 100 | 2.5 |     | 3.7       |
| 14      | 220    | 7.0      | 200    |           | 100 | 2.4 |     | 3.7       |
| 15      | 210    | 6.6      | 200    | 0.00      | 100 | 2.3 |     | 3.7       |
| 16      | 200    | 6.2      | 190    |           | 100 | 1.8 |     | 3-6       |
| 17      | 200    | 5.1      | 190    |           |     |     | 2.2 | 3.6       |
| 18      | (<200) | 4.0      |        |           |     | 4   | 2.1 | 3.5       |
| 19      | (<200) | 3.4      |        |           |     |     |     | 3.3       |
| 20      | (<220) | 3.0      |        |           |     |     |     | 3.1       |
| 21      | (<220) | 2.9      |        |           |     |     |     | 3.0       |
| 22      | (<240) | 3.0      |        |           |     |     |     | 3.0       |
| 23      | (<230) | 3.2      |        |           |     |     |     | 3.0       |

Time: 0.00. Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

| Poitie | rs, France | (16.69 | W. 0.30E) | Table    | 59_   |     | Ja  | muary 1951 |  |
|--------|------------|--------|-----------|----------|-------|-----|-----|------------|--|
| Time   | P11.S      | foF2   | h'F1      | foFl     | h I E | foE | fEs | (M3000)F2  |  |
| 00     | (<330)     | 3.4    |           |          |       |     | ·   |            |  |
| 01     | (<220)     | 3.4    |           |          |       |     |     | P-0-4      |  |
| 02     | (<320)     | 3.5    |           |          |       |     |     | ***        |  |
| 03     |            | 3.4    |           |          |       |     |     |            |  |
| 04     | (<350)     | 3.2    |           |          |       |     |     |            |  |
| 05     |            | E      |           |          |       |     |     | er-m m     |  |
| 06     |            | E      |           |          |       |     |     |            |  |
| 07     |            | 3.0    |           |          |       |     |     | - due      |  |
| 08     | 225        | 5.4    |           |          |       |     |     |            |  |
| 09     | 230        | 6.8    | 225       |          |       |     |     | (3.6)      |  |
| 10     | 230        | 7.5    | 225       | 00-00 co |       |     |     | 3.6        |  |
| 11     | 230        | 7.6    | 225       | 4940.40  |       |     |     | 3.6        |  |
| 12     | 230        | 7.4    | 225       |          |       |     |     | 3.6        |  |
| 13     | 230        | 6.9    | 225       |          |       |     |     | 3.5        |  |
| 14     | 230        | 6.8    | 230       |          |       |     |     | 3.4        |  |
| 15     | 235        | 6.8    | 230       |          |       |     |     | 3.5        |  |
| 16     | 230        | 6.4    | 225       |          |       |     |     | 3.6        |  |
| 17     | 230        | 5.4    |           |          |       |     |     | 3.4        |  |
| 18     | 240        | 406    |           |          |       |     |     | (3.4)      |  |
| 19     | 260        | 4.0    |           |          |       |     |     | (3.4)      |  |
| 20     | (< 325)    | 3.4    |           |          |       |     |     | on advanta |  |
| 21     | (<350)     | 3.5    |           |          |       |     |     |            |  |
| 22     | (<330)     | 3.6    |           |          |       |     |     |            |  |
| 23     | (< 310)    | 3.6    |           |          |       |     |     |            |  |

Times 0.00. Sweeps 3.1 Mc to 11.8 Mc in 1 minute 15 seconds.

| Stouas. | AT -T ann | 1-1.51% | , = "W) | Table 56 |       |     | T.  | nuary 1981 |
|---------|-----------|---------|---------|----------|-------|-----|-----|------------|
| Time I  | PILS      | Tols:   | h'F1    | fo71     | h1E   | foS | fBe | (M2000)F2  |
|         |           |         | 17 2 7  | 1031     | 77.79 | 105 |     |            |
| CL      | 39.5      | 3.9     |         |          |       |     | 2.3 | 2.8        |
| ul      | 25        | 2.9     |         |          |       |     | 2.6 | 2.9        |
| -2      | 380       | 3.0     |         |          |       |     | 2.0 | 2.7        |
| U3      | 250       | 2.6     |         |          |       |     | 2.6 | 2.8        |
| 0.4     | 27        | 2.8     |         |          |       |     | 3.8 | 2.8        |
| Ü.5     | 265       | 2.3     |         |          |       |     | 3.6 | 3.0        |
| C6      | 280       | 2.2     |         |          |       |     | 3.0 | 3.0        |
| 07      | 280       | 2.2     |         |          |       |     | 3.6 | 3.0        |
| CB.     | 230       | 4.3     |         |          | 100   | 1.6 | 3.6 | 3.3        |
| 0.9     | 225       | 6.2     |         |          | 135   | 2.5 | 3.8 | 3,4        |
| 10      | 230       | 7.1     | 235₩    | 3.7#     | 130   | 2.4 | 3.9 | 3,4        |
| 11      | 230       | 7.6     | 225     | 3.7      | 13.   | 2.5 | 4.0 | 3.4        |
| 12      | 230       | 7.5     | 225     | 3.7      | 130   | 2.6 | 4.0 | 3.4        |
| 13      | 235       | 7.2     | 220     | 3.6      | 1.30  | 2.6 | 4.5 | 3.4        |
| 14      | 230       | 6.9     | 220.4   | 3.4+     | 130   | 2.5 | 4.4 | 3.4        |
| 15      | 235       | 6.8     |         |          | 135   | 5.5 | 4.2 | 3.4        |
| 16      | 225       | 6.3     |         |          | 140   | 1.8 | 3.5 | 3.4        |
| 17      | 225       | 5.5     |         |          | 2 10  | 1.0 | 2.6 | 3.2        |
| 18      | 2.50      | 4.0     |         |          |       |     | ~.0 | 3.2        |
| 19      | 250       | 0.3     |         |          |       |     | 2.0 | 3.0        |
| 50      | 275       | 2.9     |         |          |       |     | 0.0 | 2.9        |
| 21      | 295       | 2.9     |         |          |       |     |     | 2.8        |
| 55      | 305       | 2.9     |         |          |       |     |     | 2.8        |
| 23      | 300       | 2.9     |         |          |       |     | 2.3 | 2.8        |

Time: 0.0°.
Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation.
\*Average values except fo?2 and fEs, which are median values.
\*One or two observations only.

| Fribous | rg, German | w (48.1 | <sup>0</sup> N, 7.8 <sup>9</sup> . | E) Table |     |      | J   | 250mary 1951 |
|---------|------------|---------|------------------------------------|----------|-----|------|-----|--------------|
| Time    | P.LS       | foF2    | h'F1                               | foFl     | hIE | foE  | fFs | (N3000)F:    |
| 00      | 280        | 3.4     |                                    |          |     |      |     | 2.9          |
| 01      | 280        | 3.3     |                                    |          |     |      |     | 2.8          |
| 02      | 285        | 3-5     |                                    |          |     |      |     | 2.8          |
| 03      | 280        | 3.4     |                                    |          |     |      |     | 2.8          |
| 04      | 265        | 2.9     |                                    |          |     |      |     | 3.0          |
| 05      | 250        | 2.7     |                                    |          |     |      |     | 3.1          |
| 06      | 255        | 2.4     |                                    |          |     |      | 2.0 | 3.0          |
| 07      | 260        | 2.7     |                                    |          |     |      |     | 2.9          |
| 08      | 230        | 5-2     |                                    |          | -   | <1.6 | 2.5 | 3.3          |
| G9      | 232        | 6.9     |                                    |          | 128 | 2.0  | 2.1 | 3.3          |
| 10      | 240        | 7.6     |                                    |          | 127 | 2.4  | 2.0 | 3-3          |
| 11      | 235        | 7.4     |                                    |          | 125 | 2.7  |     | 3.4          |
| 12      | 235        | 7.3     |                                    |          | 121 | 2.3  |     | 3.4          |
| 13      | 235        | 6.9     |                                    |          | 121 | 2.8  |     | 3.4          |
| 14      | 240        | 6.9     |                                    |          | 123 | 2.4  | 2.2 | 3.4          |
| 15      | 240        | 6.6     |                                    |          | 129 | 2.2  |     | 3.3          |
| 16      | 230        | 6.2     |                                    |          | 134 | 1.8  | 2.2 | 3.3          |
| 17      | 225        | 5+3     |                                    |          |     |      |     | 3.3          |
| 18      | 225        | 4.5     |                                    |          |     |      | 2.3 | 3.1          |
| 19      | 240        | 3.6     |                                    |          |     |      | 2.2 | 3.1          |
| 20      | 270        | 3.2     |                                    |          |     |      |     | 2.9          |
| 21      | 282        | 3.2     |                                    |          |     |      | 2.0 | 2.5          |
| 22      | 290        | 3.2     |                                    |          |     |      |     | 2.7          |
| 23      | 285        | 3.4     |                                    |          |     |      |     | 2,9          |

Time: Local. Sweep: 1.25 Mc to 20.0 Mo in 10 minutes, automatic operation.

|     |      |      |     |       | Table | 60   |
|-----|------|------|-----|-------|-------|------|
| 101 | Mark | 0110 | 6.5 | 70 ht | 105   | - 00 |

| Singap | ore, Brit | is: Kala | ya (1.3° | N, 103.8° | E)  |     | Jan | uary 1951 |
|--------|-----------|----------|----------|-----------|-----|-----|-----|-----------|
| Time   | P.LS      | foF2     | n'F1     | foFl      | h1E | foE | fRa | (M3000)ES |
| 00     | 260       | 4.1      |          |           |     |     |     | 2.7       |
| 01     | 275       | 3.9      |          |           |     |     |     | 3.0       |
| 0.5    | 280       | 3.6      |          |           |     |     |     | 2.9       |
| 03     | 290       | 3.0      |          |           |     |     |     | 2.9       |
| 04     | 590       | 3,1      |          |           |     |     |     | 3.0       |
| 05     | 2.70      | 2.8      |          |           |     |     |     | 3.2       |
| 06     | 275       | 3.5      |          |           |     |     |     | 2,9       |
| 07     | 240       | 6.2      |          |           | 130 | 2.4 | 3.3 | 3.0       |
| C8     | 240       | 7.8      | 210      |           | 130 | 3.9 | 4.0 | 2.6       |
| 0.9    | . 0       | 9.       | 210      | (4.8)∌    | 115 | 3.4 | 4.2 | 2.5       |
| 10     | * H       | 8.7      | 305      | 4.9       | 115 | 3.0 | 4.5 | 5.2       |
| 11     | 4.3       | (9.0)    | 2 .      | 4.9       | 120 | 3.7 | 4.6 | 1.9       |
| 12     | 401       | 9.9      | 500      | 4.8       | 115 | 3.9 | 4 4 | 2.1       |
| 13     | 391       | (9.2)    | 300      | 4.9       | 120 | 3.9 | 4.2 | 2.1       |
| 14     | 410       | 1.2      | 300      | 4.8#      | 115 | 3.7 | 4.0 | 2         |
| 15     | 360       | 0.3      | 205      |           | 115 | 3.5 | 4.) | 2.1       |
| 16     | 265       | 9.3      | 20.5     |           | 170 | 3.1 | 3.3 | 2.3       |
| 17     | 260       | 2.2      | 245      |           | 115 | 2.6 | 3,3 | 2.3       |
| 18     | 550       | 9.3      | 25∪#     |           |     |     | 2.6 | 2.3       |
| 19     | 325       | (9.0)    |          |           |     |     |     | 2.5       |
| 20     | 305       | (9.1)    |          |           |     |     |     | 3.0       |
| 21     | 260       | (8.8)    |          |           |     |     |     | 2.9       |
| SS     | 230       | 8.2      |          |           |     |     |     | 2 9       |

23 235

Time: 105.0°E.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

\*Average values except fof3 and fEs, which are medium values.

\*One or two observations only.

| Buenos | Alras, | Argentina | (34,5°S, | Table      |          |          | J    | anuary 1951 |
|--------|--------|-----------|----------|------------|----------|----------|------|-------------|
| Time   | h'F2   | fol2      | h'F1     | foFl       | h'E      | foB      | 1Ba  | (M3000)F2   |
| 00     | 300    | 6.9       |          |            |          |          | 3.5  | 2.8         |
| 01     | 290    | 6.5       |          |            |          |          | 2.8  | 2.9         |
| 02     | 280    | 6.2       |          |            |          |          | 3.0  | 2.9         |
| 03     | 270    | 6.0       |          |            |          |          | 2.3  | 2.8         |
| 04     | 290    | 5.3       |          |            |          |          | 2.2  | 2.7         |
| 05     | 280    | 5.0       | -        | 000        | 140      | (1.8)    |      | 2.8         |
| 06     | 260    | 6.0       | 260      | all street | 110      | 2.6      | 3.2  | 3.3         |
| 07     | 270    | 6.6       | 230      |            |          | ****     | 3.6  | 3.1         |
| 08     | 300    | 6.7       | 230      |            |          | 49 Chap  | 4.0  | (2.9)       |
| 09     | 380    | 7.6       | 220      | (4.6)      | Ø-69-60  | 494942   | 4.06 | 2.6         |
| 10     | 390    | 8.5       | 210      | (4.6)      |          | 49 to 49 | 4.5  | 2.6         |
| 11     | 400    | 9.1       | 200      | 1949 40    | \$100 m  | 490 to   |      | 2.6         |
| 12     | 380    | 9.9       | 200      | (5.0)      |          | ==0      |      | 2.7         |
| 13     | 350    | 10.9      | 220      | (4.9)      | 000      |          |      | 2.8         |
| 1A     | 320    | 10.8      | 220      | (4.8)      | 00-00-00 |          |      | 3.0         |
| 15     | 300    | 10.7      | 220      | (4.6)      | ch (D 00 | Charles  |      | 3.0         |
| 16     | 300    | 10.4      | 220      | (4.6)      | 000      | 0000     |      | 3.2         |
| 17     | 290    | 9.6       | 230      | 0000       |          | 4000 00  |      | 3.2         |
| 18     | 270    | 8.3       | 250      | Marks.     |          |          | 3.7  | 3.2         |
| 19     | 270    | 7.3       |          |            |          |          |      | 3.0         |
| 20     | 290    | 6.9       |          |            |          |          |      | 2.8         |
| 21     | 320    | 7.0       |          |            |          |          |      | 2.6         |
| 22     | 320    | 6-9       |          |            |          |          | 3.0  | 2.6         |
| 23     | 320    | 7.2       |          |            |          |          |      | 2.7         |

Mess 60.00%.

Sweeps 1.0 Ms to 25.0 Mc in 30 seconds.

Table 63\*

| Fraser | burgh, Sc | Dece      | December 1950 |      |       |        |     |           |
|--------|-----------|-----------|---------------|------|-------|--------|-----|-----------|
| Pime   | h'72      | foF2      | h'F1          | foFl | h * E | foB    | fEs | (M3000)F2 |
| 00     | 330       | (1.9)     |               |      |       |        | 2.3 | (2.5)#    |
| 01     | 315       | (1.9)     |               |      |       |        |     | (2.5)#    |
| 02     | 305       | 1.7       |               |      |       |        | 3.0 | (2,5)     |
| 03     | 310       | 1.7       |               |      |       |        | 3.0 | (2.8)     |
| 04     | 305       | (1.7)     |               |      |       |        | 2.9 | 2.6       |
| -05    | 305       | (1.7)     |               |      |       |        | 2.9 | 2.7       |
| 06     | 290       | (1.8)     |               |      |       |        | 2.9 | (3.0)     |
| 07     | 290       | (1.8)     |               |      |       |        |     | (2.8)#    |
| 80     | 260       | (3.3)     |               |      |       |        | 2.9 | (3.5)#    |
| 09     | 235       | 4.4       |               |      | 125   | 1.8    | 3.0 | 3.3       |
| 10     | 230       | 5.4       |               |      | 150   | (2.0)  | 3.1 | 3.4       |
| 11     | 230       | 6.2       |               |      | 135   | 2.1    | 3.1 | 3.5       |
| 12     | 230       | 6.6       |               |      | 145   | 2,2    | 3.3 | 3.5       |
| 13     | 225       | 6.5       |               |      | 150   | 2,2    | 3.2 | 3.5       |
| 14     | 225       | 6.5       |               |      | 160   | 2.1    | 3.1 | (3.4)     |
| 15     | S50       | 6.2       |               |      |       | 1.8    | 3.0 | 3.4       |
| 16     | 220       | (5.0)     |               |      |       | (1.9)# |     | 3.3       |
| 17     | 230       | (4.2)     |               |      |       |        |     | 3.2       |
| 18     | 245       | (3.7)     |               |      |       |        |     | 3.2#      |
| 19     | 290       | 2.5       |               |      |       |        |     | (2.8)     |
| 20     | 305       | (2.4)     |               |      |       |        |     | (3.1)#    |
| 21     | 275       | (2.4)     |               |      |       |        |     | (3,4)#    |
| 22     | 325       | 90 Ser 44 |               |      |       |        |     |           |
| 23     | 365       |           |               |      |       |        |     |           |

Time: 0.0°.

Surence: 0.67 Me to 15.0 Mc in 4 minutes.
\*Average values except foF2 and fFe, which are median values.

#One or two observations only.

Table 650 103.8°E)

| Singar | ore, brit | ish Mala | ya (1.3° | M, 103.8 | E)    |      | 7/8 C6 | Mper 1950 |
|--------|-----------|----------|----------|----------|-------|------|--------|-----------|
| Time   | p.12      | foF2     | h'F1     | foF1     | h I E | foE  | fEe    | (M3000)F2 |
| 00     | 250       | 5.2      |          |          |       |      |        | 2.9       |
| 01     | 260       | 5.0      |          |          |       |      |        | 2.8       |
| 02     | 275       | 4.8      |          |          |       |      |        | 2.8       |
| 03     | 270       | 4.2      |          |          |       |      |        | 2.8       |
| 04     | 265       | 4.0      |          |          |       |      |        | 3.0       |
| 05     | 255       | 3.6      |          |          |       |      |        | 3.0       |
| 06     | 255       | 4.6      |          |          |       |      |        | 3.1       |
| 07     | 240       | 6.6      |          |          | 130   | 2.5  | 3.2    | 3.1       |
| 80     | 265       | 7.8      | 225      |          | 125   | 3.1  | 3.6    | 2.9       |
| 09     | 325       | 8.5      | 220      |          | 130   | 3.4  | 3.8    | 2.4       |
| 10     | 365       | 8.9      | 210      | 4.8      | 135   | 3.6  | 4.0    | 2.3       |
| 11     | 395       | 8.9      | 205      | 4.9      | 130#  | 3.6∯ | 3.8    | 2.2       |
| 12     | 380       | 9.0      | 205      | 4.9      | 130   | 3.7  | 4.0    | 2.1       |
| 13     | 375       | 9.2      | 200      | 4.9      | 130'  | 3.6  |        | 2.2       |
| 14     | 365       | 9.6      | 200      | 4.8      | 125   | 3.5  | 4,0    | 2.2       |
| 15     | 340       | 9.6      | 205      | (5.0)#   | 125   | 3.3  | 3.7    | 2,3       |
| 16     | 340       | 9.6      | 235      |          | 125   | 2.9  | 3,5    | 2.3       |
| 17     | 270       | (9.7)    | 240      |          | 145   | 2.6  | 3.1    | 2.4       |
| 18     | 275       | (9.6)    |          |          |       |      |        | 2.4       |
| 19     | 325       | 9.0      |          |          |       |      |        |           |
| 20     | 315       | 8.9      |          |          |       |      |        | 2.5       |
| 21     | 265       | 9.3      |          |          |       |      |        | 2.6       |
| 22     | 230       | 9.2      |          |          |       |      |        | 3.3       |
| 23     | 240       | 5.6      |          |          |       |      |        | 3.1       |

Time: 105.0°E.

Sweep: 2.2 Mo to 16.0 Mc in 1 minute.

\*Average values except foF2 and TBe, which are median values.

#One or two observations only.

| E-12-1 | nd Ie. (5 | 1 700 E | a 0011/ | Table 6 | 29    |      | 7   | 2002       |
|--------|-----------|---------|---------|---------|-------|------|-----|------------|
|        |           |         |         |         |       |      |     | nuary 1951 |
| Time   | F.ES      | STOS    | h II    | foFl    | h ! E | foE  | 2Bs | (N3000)F2  |
| 00     | 310       | 7.4     |         |         |       |      | 2.4 | 2.6        |
| 01     | 310       | 7.4     |         |         |       |      | 2.3 | 2,6        |
| 02     | 300       | 7.0     |         |         |       |      |     | 2.6        |
| 03     | 300       | 6.5     |         |         |       |      |     | 2.6        |
| 04     | 320       | 6.4     | 280     | 3.0     |       |      |     | 2,5        |
| 05     | 300       | 6.7     | 260     | 3.9     | 150   | 2.2  |     | 2.6        |
| 06     | 310       | 6.8     | 260     | 4.1     | 140   | 2,5  |     | 2.7        |
| 07     | 370       | 6.9     | 250     | 4.4     | 1.30  | 2.9  | 4.0 | 2,6        |
| 08     | 380       | 6.7     | 240 .   | 4.5     | 120   | 3.1  | 4.8 | 2.6        |
| 09     | 380       | 7.2     | 240     | 4.7     | 120   | .3.3 | 5.0 | 2.6        |
| 10     | 370       | 7.6     | 230     | 4.8     | 120   | 3.4  | 4.8 | 2.7        |
| 11     | 350       | 8.0     | 230     | 4.8     | 120   | 3.5  | 4.8 | 2.7        |
| 12     | 350       | 8.0     | 230     | 4.9     | 120   | 3.5  | 4.4 | 2.8        |
| 13     | 350       | 7.3     | 210     | 4.8     | 120   | 3.5  | 4.1 | 2.8        |
| 14     | 350       | 6.8     | 240     | 4.8     | 120   | 3.4  | 4.4 | 2.8        |
| 15     | 350       | 6.4     | 230     | 4.7     | 120   | 3.3  | 4.8 | 2.9        |
| 16     | 340       | 6.6     | 240     | 4.6     | 120   | 3.1  | 4.7 | 2.9        |
| 17     | 330       | 6.8     | 250     | 4.3     | 120   | 2,9  | 4.3 | 2.9        |
| 18     | 300       | 6,9     | 250     | 4.0     | 140   | 2.6  | 5.1 | 2.9        |
| 19     | 290       | 6.7     | 270#    | 3.6#    |       | 2.3# | 4.8 | 2.9        |
| 20     | 290       | 6.8     |         |         |       |      | 4.7 | 2.8        |
| 21     | 310       | 7.0     |         |         |       |      | 3.0 | 2.7        |
| 22     | 320       | 7.5     |         |         |       |      | 3.4 | 2.6        |
| 23     | 310       | 7.6     |         |         |       |      | 3.4 | 2.6        |

Time: 60.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. °average values except foF2 and fEs, which are median values. #One or two observations only.

|         |         |          |        | Table 6 | N <sub>th</sub> |     |      |            |
|---------|---------|----------|--------|---------|-----------------|-----|------|------------|
| Slough, | England | (51.5°N, | 0.6°W) |         |                 |     | Dec  | ember 1950 |
| Time    | P115    | foF2     | h'F1   | foF1    | h ! E           | foE | fEs  | (H3000)F2  |
| 00      | 288     | 2.9      |        |         |                 |     | 2.6  | 2.7        |
| 01      | 277     | 3.0      |        |         |                 |     | 3, 4 | 2.8        |
| 02      | 286     | 2.8      |        |         |                 |     | 3.1  | 2.7        |
| 03      | 282     | 2.6      |        |         |                 |     | 3.8  | 2.7        |
| 04      | 280     | 2.3      |        |         |                 |     | 4.0  | 2.8        |
| 05      | 267     | 2.3      |        |         |                 |     | 4.0  | 2.8        |
| 06      | 272     | 2.2      |        |         |                 |     | 4.0  | 2.9        |
| 07.     | 273     | 2.2      |        |         |                 |     | 4.0  | 2.9        |
| 80      | 230     | 4.2      |        |         | 135             | 1.4 | 3.7  | 3.3        |
| 09      | 226     | 5.9      |        |         | 138             | 2.0 | 4.3  | 3.5        |
| 10      | 226     | 6.6      | 235    | 3.4     | 129             | 2.3 | 4.5  | 3,4        |
| 11      | 231     | 7.2      | 223    | 3.4     | 130             | 2.5 | 4.3  | 3.4        |
| 12      | 225     | 7.3      | 221    | 3.5     | 127             | 2.5 | 4.7  | 3.4        |
| 13      | 225     | 7.1      | 228    | 3.8     | 130             | 2.4 | 4.6  | 3.4        |
| 14      | 227     | 7.0      | 223#   | 3.2#    | 130             | 2.3 | 4.6  | 3.4        |
| 15      | 221     | 6.7      |        |         | 136             | 2.0 | 4.3  | 3.5        |
| 16      | 220     | 5.8      |        |         |                 |     | 3.5  | 3.4        |
| 27      | 229     | 4.5      | 210#   | 3.3#    |                 |     | 3.3  | 3.2        |
| 18      | 248     | 3.6      |        |         |                 |     | 2,3  | 3.1        |
| 19      | 264     | 3.1      |        |         |                 |     | 2,2  | 3,0        |
| 20      | 284     | 3.0      |        |         |                 |     |      | 2.8        |
| 21      | 292     | 2.7      |        |         |                 |     |      | 2, 8       |
| \$5     | 309     | 2.8      |        |         |                 |     | 2.3  | 2.7        |
| 23      | 299     | 2.9      |        |         |                 |     | 2.5  | 2.7        |

Time: 0.00

Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation.
\*Average values except foF2 and fEs, which are median values. #One or two observations only.

Table 66° Falkland Ie. (51.7°S, 57.8°W)

(M3000)F2 Time hIF2 fol2 h'Fl foFl h!E foE fEs 2.5 2.6 2.6 00 320 7.4 3,2 01 310 7.4 2.7 2.2 02 300 03 310 6.9 2.6 300 6,9 280 3.3 1.8# 2.5 05 150 2.3 2.6 310 7.3 7.6 260 3.9 06 360 250 4.4 130 2.6 2.5 07 350 250 4.5 4.7 130 3.0 2.5 3.2 120 390 240 08 120 5.4 2.6 09 370 8.2 240 3.3 350 8.4 230 4.8 3.4 2.6 2.7 2.7 360 8.3 240 3.5 120 3.5 4.5 12 350 8.1 230 4.8 7.8 7.8 7.5 7.7 13 350 220 4.9 230 4.7 4.6 3.3 3.1 2.8 15 330 230 120 4.1 240 120 330 16 2.9 310 240 130 18 19 290 290 2.4 250 4.1 140 4.5 2.8 20 280 3.2 2.6 300

December 1950

2.5

2.8

60.0°W. Time:

310

320

22

23

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.
\*Average values except fo 72 and fEs, which are median values.
\*Ons or two observations only.

Hovember 1950

| Table 67° |
|-----------|
|-----------|

| Fraser | burgh, Sc | Nov   | November 1950 |        |     |       |     |           |
|--------|-----------|-------|---------------|--------|-----|-------|-----|-----------|
| Time   | Pils      | foF2  | h'T1          | foFl   | h*E | foE   | fEa | (M3000)F2 |
| 00     | 365       | (2.1) |               |        |     |       |     |           |
| 01     | 355       | (2.0) |               |        |     |       |     |           |
| 02     | 340       | (2.0) |               |        |     |       | 8.8 | (2.5)\$   |
| 03     | 320       | (1.9) |               |        |     |       | 2.8 | 2.6       |
| 04     | 31.5      | (1.8) |               |        |     |       |     | 2.6       |
| 05     | 305       | (1.8) |               |        |     |       |     | (2.8)#    |
| 06     | 300       | (1.8) |               |        |     |       | 2.5 | 3.25      |
| 07     | 290       | 2.0   |               |        |     |       |     |           |
| 08     | 240       | 4.1   |               |        | 125 | (1.7) |     | 3,2       |
| 09     | 230       | 5.6   |               |        | 145 | 2.0   | 2.0 | 3.3       |
| 10     | 235       | 6.6   |               |        | 130 | 2.1   | 3.1 | 3,4       |
| 11     | 235       | 6.9   | 215           | (3,4)# | 125 | 2.3   | 3.1 | 3.4       |
| 12     | 230       | 7.4   | 240#          | (3.6)₽ | 130 | 2.4   | 3.1 | 3.4       |
| 13     | 230       | 7.5   | 250#          |        | 135 | 2.4   | 3.1 | 3,3       |
| 14     | 230       | 7.4   | 220#          | 2.9#   | 145 | 2.2   | 3.1 | 3.3       |
| 15     | 230       | 6.8   |               |        | 160 | 5.0   |     | . 3,3     |
| 16     | 230       | 6.6   |               |        |     |       | 3.0 | 3,3       |
| 17     | 240       | 5.9   |               |        |     |       | 0.0 | 3.2       |
| 18     | 245       | 5.4   |               |        |     |       |     | 3,2       |
| 19     | 260       | 3.7   |               |        |     |       |     | 3.1       |
| 20     | 2RO       | (3.0) |               |        |     |       |     | (3.0)#    |
| 21     | 350       | (2.2) |               |        |     |       |     | (2.7)#    |
| 22     | 385       | (2.2) |               |        |     |       |     | (~. //#   |
| 23     | 380       | (2.2) |               |        |     |       |     |           |

Time: 0.00. Sweep: 0.67 Mc to 15.0 Mc in 4 minutes. \*Average values except foF2 and fEs, which are median values.

| ngapore, | British | Halaya | (1.3°N, | 103.8°E |
|----------|---------|--------|---------|---------|
|          |         |        |         |         |

| Singap | ore, Brit |        | NoA  | ember 1950 |      |      |     |           |
|--------|-----------|--------|------|------------|------|------|-----|-----------|
| Time   | p. ES     | STof   | h'F1 | foFl       | F.E  | foE  | 1Ze | (MS000)F2 |
| 00     | 260       | 6.0    |      |            |      |      |     | 2.7       |
| 01     | 270       | 5.7    |      |            |      |      |     | 2.7       |
| 05     | 275       | 5.2    |      |            |      |      |     | 2.8       |
| 03     | 270       | 4.8    |      |            |      |      |     | 2.9       |
| 04     | 270       | 4.3    |      |            |      |      |     | 2.9       |
| 05     | 255       | 4.0    |      |            |      |      |     | 3.1       |
| 06     | 250       | 5.6    |      |            | 130₽ | 2.6  | 2.4 | 3.0       |
| 07     | 245       | 8.0    |      |            | 130  | 2.7  | 3.3 | 3.1       |
| 08     | 235       | 8.8    | 225  |            | 125  | 3.2  | 3.9 | 2.6       |
| 09     | 280       | 9.0    | 215  |            | 130  | 3.4  | 3.6 | 2.4       |
| 10     | 340       | (9.3)  | 215  | (4.9)      | 135  | 3.6  | 3.4 | 2.3       |
| 11     | 350       | (9.4)  | 205  | (4.9)      | 1304 | 3.74 | 3.6 | (2.3)     |
| 12     | 345       | 9.8    | 205  | (4.9)      | 130  | 3.8  |     | 2.2       |
| 13     | 350       | 9.7    | 205  | (4.8)      | 130  | 3.7  |     | 2.2       |
| 14     | 345       | (9.9)  | 210  | (4,4) €    | 130  | 3.6  | 3.4 | 2.1       |
| 15     | 315       | 30.3   | 220  | (5.0)₽     | 125  | 3.2  | 3.6 | 2.3       |
| 16     | 270       | (10.4) | 230  | (3.9)      | 125  | 2.9  | 3.4 | 2.3       |
| 17     | - 250     | (10.3) | 250∳ |            | 145  | 2.5  | 2.8 | 2,5       |
| 18     | 280       | (10.4) |      |            |      |      |     | (2.5)     |
| 19     | 325       | (10.0) |      |            |      |      |     | 2.5%      |
| 20     | 300       | (10.1) |      |            |      |      |     | 2.6       |
| 21     | 255       | (10.4) |      |            |      |      |     | 3.0       |
| SS     | 215       | 10.1   |      |            |      |      |     | 3,3       |
| 53     | 550       | 6.6    |      |            |      |      |     | 2,9       |

Table 69°

Time: 105.0°E.
Sweep: 2.2 Mc to 16.0 Mc in 1 minute.
\*Average values except foF2 and fEs, which are median values.

#One or two observations only.

| Fribour | g, Garmany | (48.1 | H, 7.8°E) | Table | 71  |     | Oc. | tober 1950 |
|---------|------------|-------|-----------|-------|-----|-----|-----|------------|
| Time    | P.LS       | foF2  | h'F1      | foFl  | h!E | foE | fBe | (M3000)F2  |

|      | Dy   | - /  |      | -,   |         |        | -   | 0 00 00 0 2//0 |
|------|------|------|------|------|---------|--------|-----|----------------|
| Time | P.ES | foF2 | h'F1 | foFl | h'E     | foE    | fBs | (M3000)F2      |
| 00   | 305  | 3.8  |      |      |         |        | 2.2 | 2.7            |
| 01   | 305  | 3.6  |      |      |         |        | 2.3 | 2.6            |
| 02   | 310  | 3.8  |      |      |         |        | 2.3 | 2.6            |
| 03   | 310  | 3.4  |      |      |         |        | 2.4 | 2.6            |
| 04   | 292  | 3.4  |      |      |         |        | 2.4 | 2.7            |
| 05   | 280  | 2.7  |      |      |         |        |     | 2.8            |
| 06   | 275  | 3.3  |      |      | orto    | 000    | 2.4 | 2.9            |
| 07   | 250  | 5.4  | -    | -    | 137     | 1.8    | 2.1 | 3.1            |
| 03   | 255  | 6.1  | 245  | 3.0  | 121     | 2.2    | 3.3 | 3-2            |
| 09   | 262  | 7.0  | 240  | 4.0  | 120     | 2.6    | 3.7 | 3.2            |
| 20   | 270  | 7.2  | 230  | 3.9  | 121     | 2.8    | 3.9 | 3.2            |
| 11   | 268  | 8.1  | 225  | 4.3  | 135     | 2.9    | 3.9 | 3.1            |
| 12   | 290  | 8.2  | 225  | 403  | 179     | 2.9    | 3.9 | 3.1            |
| 13   | 275  | 8.8  | 235  | 400  | 117     | 3.0    | 3.3 | 3.1            |
| 14   | 270  | 8.2  | 240  | 4.2  | 113     | 2.8    | 3.6 | 3.1            |
| 15   | 260  | 8.4  | 250  | 3.8  | 121     | 2.6    | 2.8 | 3.1            |
| 3.6  | 250  | 8.0  | 250  | 900  | 129     | 2.2    | 2.5 | (3.2)          |
| 17   | 245  | 6.9  |      |      | 1049 (h | (<1.8) | 2.4 | 3-2            |
| 18   | 250  | 6.0  |      |      |         | -      | 2.5 | 3.1            |
| 19   | 252  | 5.4  |      |      |         |        | 2.4 | 3.0            |
| 20   | 250  | 4.7  |      |      |         |        | 2.4 | 3.0            |
| 21   | 265  | 3.9  |      |      |         |        | 2.3 | 2.7            |
| 22   | 290  | 3.9  |      |      |         |        | 2.2 | 2.7            |
| 23   | 312  | 3.5  |      |      |         |        | 2.1 | 2.6            |

Time: Local. Swoop: 1.25 % to 20.0 % in 10 minutes, automatic operation.

| Time | h'F2 | Seor | h'T1 | foll | h E | foE | 1Bo | (H3000)F2 |
|------|------|------|------|------|-----|-----|-----|-----------|
| 0.0  | 300  | 3.0  |      |      |     |     | 2.6 | 2,6       |
| 01   | 295  | 3.0  |      |      |     |     | 3.8 | 2.6       |
| ()2  | 29.5 | 3.0  |      |      |     |     | 3.2 | 2.7       |
| 03   | 286  | 2,6  |      |      |     |     | 4.0 | 2,7       |
| 04   | 277  | 3.2  |      |      |     |     | 4.2 | 2.8       |
| 05   | 277  | 2.1  |      |      |     |     | 4.0 | 2.9       |
| 0.6  | 230  | 2.2  |      |      |     |     | 4.0 | 2.9       |
| 07   | 251  | 3.4  |      |      |     |     | 3.9 | 3.0       |
| 08   | 251  | 5.8  | 250₽ | 3.3₽ | 136 | 1.9 | 4.1 | 3.4       |
| 0.9  | 230  | 6.6  | 237  | 3.3  | 125 | 2.2 | 4.0 | 3.4       |
| 10   | 234  | 7.2  | 221  | 3.7  | 123 | 2.5 | 4.4 | 3.3       |
| 2.1  | 231  | 7.8  | 226  | 3.8  | 122 | 2.7 | 4.5 | 3.4       |
| 12   | 233  | 7.8  | 221  | 3.8  | 124 | 2.7 | 4.4 | 3.4       |
| 13   | 231  | 8.1  | 259  | 3,7  | 125 | 2.6 | 4.5 | 3.3       |
| 14   | 230  | 7.9  | 245# | 3.46 | 126 | 2.4 | 4.5 | 3,4       |
| 15   | 226  | 7.4  |      |      | 133 | 2.1 | 4.4 | 3.4       |
| 2.0  | 000  | 0.0  |      |      |     |     |     |           |

4.0

145

Table 68.

230 245

263 306

6.8

55 51 50

Slough, England (51.5°H, 0.6°W)

Time: 0.0°.
Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation, \*Arorage values except for and fre, which are median values.

Table 20\*

| Falkla | nd Is. (5 | 1.7°S, 5 | 7.8°V) | 12018 70 |     |     | November 1950 |           |  |  |  |
|--------|-----------|----------|--------|----------|-----|-----|---------------|-----------|--|--|--|
| Time   | h172      | foF2     | h'F1   | foF1     | h'l | foE | fEo           | (M3000)F2 |  |  |  |
| 00     | 320       | 7.6      |        |          |     |     | 3.0           | 2.5       |  |  |  |
| 01     | 320       | 7.3      |        |          |     |     | 2.4           | 2,5       |  |  |  |
| 02     | 310       | 7.2      |        |          |     |     |               | 2,6       |  |  |  |
| 03     | 300       | 7.0      |        |          |     |     |               | 2.6       |  |  |  |
| 04     | 300       | 6.9      | 310    | 3.1      |     |     |               | 2.6       |  |  |  |
| 05     | 31.0      | 7.0      | 260    | 4.0      |     | 2.0 |               | 2.6       |  |  |  |
| 0.6    | 310       | 7.1      | 250    | 4.1      | 140 | 2.5 |               | 2.7       |  |  |  |
| 07     | 320       | 7.6      | 240    | 4.6      | 120 | 2.8 | 2.6           | 8.8       |  |  |  |
| 08     | 340       | 7.9      | 250    | 4.7      | 130 | 3.1 | 4.6           | 2.6       |  |  |  |
| 09     | 3 30      | 8.4      | 240    | 4.6      | 120 | 3.3 | 5.0           | 2.7       |  |  |  |
| 10     | 330       | 8.3      | 230    | 4.8      | 120 | 3.3 | 5.0           | 2.7       |  |  |  |
| 11     | 320       | 8.6      | 240    | 4.9      | 120 | 3.4 | 5.0           | 2.7       |  |  |  |
| 12     | 330       | 8.6      | 240    | 4.9      | 120 | 3.4 | 4.8           | 8.8       |  |  |  |
| 13     | 310       | 8.8      | 240    | 4.8      | 130 | 3.4 | 6.2           | 2,9       |  |  |  |
| 14     | 300       | 8.6      | 240    | 4.8      | 120 | 3.3 | 4.7           | 3.0       |  |  |  |
| 15     | 300       | 8.0      | 240    | 4.7      | 120 | 3.2 | 4.6           | 2.9       |  |  |  |
| 16     | 300       | 7.9      | 240    | 4.5      | 120 | 2,9 | 4.7           | 3.0       |  |  |  |
| 17     | 290       | 7.9      | 250    | 4.3      | 130 | 2.6 | 4.4           | 3.0       |  |  |  |
| 18     | 280       | 8.0      | 250    | 4.2      | 140 | 2.2 | 4.5           | 3.0       |  |  |  |
| 19     | 270       | 7.6      |        |          |     |     | 4.7           | 2.9       |  |  |  |
| 50     | 290       | 7.6      |        |          |     |     | 8.8           | 2.7       |  |  |  |
| 21     | 300       | 7.6      |        |          |     |     | 2.9           | 2.6       |  |  |  |
| 22     | 310       | 7.6      |        |          |     |     | 2.4           | 2.5       |  |  |  |
| 23     | 320       | 7.5      |        |          |     |     | 2.5           | 2.5       |  |  |  |

Time: 60.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. "Average values except foF2 and fEs, which are median values.

| Falkle | nd Is. (5 | 1.70S. 5 | 7.804) | Table | 720  |      | 0.0 | tober 1950 |
|--------|-----------|----------|--------|-------|------|------|-----|------------|
| Time   | P,ES      | foF2     | h'F1   | foFl  | hiE  | foB  | 1Ts | (HZ000)F2  |
| 00     | 330       | 6.4      |        |       |      |      |     | 2,5        |
| 01     | 330       | 6.4      |        |       |      |      |     | 2.5        |
| 02     | 310       | 6.3      |        |       |      |      |     | 2.6        |
| 03     | 290       | 6.0      |        |       |      |      |     | 2.7        |
| 04     | 390       | 4.9      |        |       |      |      |     | 2.7        |
| 05     | 260       | 5.8      |        |       |      | 2.09 |     | 2,8        |
| 06     | 240       | 6.8      |        |       | 150  | 2.2  |     | 3.0        |
| 07     | 250       | 6.8      | 250    | 4.5   | 1.30 | 2.6  |     | 3.0        |
| 08     | 270       | 8.0      | 240    | 4.5   | 120  | 2,9  |     | 2.9        |
| 09     | 280       | 8.8      | 230    | 4.7   | 120  | 3.1  |     | 2.9        |
| 10     | 290       | 9.8      | 230    | 4.9   | 120  | 5.2  | 4.6 | 2.9        |
| 11     | 280       | 10.0     | 550    | 4.7   | 120  | 5,3  | 4.1 | 3.0        |
| 12     | 280       | 10.3     | 220    | 4.7   | 120  | 3.3  | 4.0 | 3,0        |
| 13     | 270       | 10.1     | 230    | 4.7   | 120  | 3.3  |     | 3.0        |
| 14     | 270       | 9.0      | 220    | 4.5   | 120  | 3.2  | 3.6 | 3.1        |
| 15     | 260       | 8.8      | 830    | 4.5   | 130  | 3.0  |     | 5,1        |
| 16     | 250       | 8.5      | 310    | 4.0   | 130  | 2.7  |     | 3.1        |
| 17     | 250       | 8.0      | 240    | 3.3∮  | 1.40 | 2.3  |     | 3,1        |
| 18     | 250       | 8.2      |        |       |      |      | 2.7 | 3.1        |
| 19     | 250       | 7.5      |        |       |      |      |     | 3.0        |
| 20     | 270       | 7.3      |        |       |      |      |     | 2.8        |
| 21     | 290       | 7.0      |        |       |      |      |     | 2.6        |
| 22     | 300       | 6.8      |        |       |      |      |     | 2.6        |
| 23     | 320       | 6.8      |        |       |      |      |     | 2.5        |

23 | 620 b.d Time: 60.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute. "Arer-ge values except for 2 and fre, which are median values. Fone or two observations only.

Standards

National Bureau of

Form adopted June 1946

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC

September, 1951

Km (Unit)

Observed at

Ø

ьO  Ø O -

ιΩ

Scaled by: MC

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Median Count

 Manual [] Automatic [3]

4.0

4.4

5.0 00

5.00

6.9

7.0

9.0

7:1

7.0 29

2.0

7.0 29

70

00.9

6.4

6.3

5.7 30

4.00 30

3.6 39

2.5

3.6

2.9 27

3.1 27

3.5

3.6

Median Count

27

28

25

2 t

30

30

23

30

29

8

53

39

300

20

Form odopted June 1946

 $\begin{tabular}{ll} TABLE & 74 \\ \end{tabular} Centrol Radio Propagatian Loboratory, National Bureau of Standards, Washington 25, D.C. \\ \end{tabular}$ 

IONOSPHERIC

September , 1951

Mc (Unit)

Observed of Washington, D.C

DATA

National Bureau of Standards Scaled by: Mc C., H.C.C.

(4.2) E (3.0)x NX 3.75 (25)x 4.8 % X(4.0) K (3.4) K 3.0 % 13.5) K 4.03 3.5 E 4.4 4.9 5.5 23 6.0 67 5.0 4.7 4.6 2.3x (47) 5 (3.3) x (5.0)5 4.3 F 3.48 (3.9) F (B.1) 5 5.03 2.9 K (4.0)× (42)5 7 5.0 4.9 4.2 4.7 5.7 22 4:0 4.8 15(5.9) 6.0 F 5.0 X 5.9 F 4.3 K S X 4.04 50.5 (3.2)x 3.9 K 3.0 K Calculated by: Mc C. (4.0) 5 6.45 0.0 カシア 4.4 100 5.4 4.9 2 5.0 3:6 28 5.0 97 6.5 635 6.65 5.6× 3.0 K 4.8x 7.05 (4.0) × J(4.21)5 (41)X 6.4 80 P 10 4:5 50 7.0 20.9 6.00 20 6.0 X (5.0) S (5.5)x 6.65 5.3 K 6.25 (6.2)7 8.0 S 5.45 455 4.8K 74.0 K 2.0 0.9 00 7.4 7.3 7.8 8.9 6 8.4 7.0 3.6 7.6 7.8 0.9 6.5K 80 X (2.5)5 7.45 5.8 K 6.0 S (8.2) F V(5.8)" 7.0 × 4.7K 7.0 S 5.6 K ω π× 08 4.9 8.2 9.00 7.8 4.9 8.0 7.0 1: 6.6 S <u>@</u> 6.9x 6.0x 6.83 7.0 x 5.8x 7.7x 6.2 K 8.0 K 4.7× 6.6 % 6.5 % (46)E 4.4 8.2 0.8 8.0 4.2 8.3 6.5 2.9 7.7 4.6 7.0 1.8 7 Ó 5.0 K K 0.9 5.9 K 4.6 × 58K 10.1 7.0 X 63x 6 85 20 0 000 7.8 4.4 1.8 0.8 6.00 600 7.5 00 9 1:/ 0 0.0 3.6 1 2.8 U 17.570 5.4 K 5.8 X 5.47 4.7K 6.1 X 6.0 8 X 8.01 6.4× 6.83 6.5 6.4 1.4 98 7.0 6.9 6.0 00 8.0 4.6 1.8 200 2 ė 7.8 1 0 5-6 X 14.1 K 6.1× 55 K (6.6)4 56 77 XLis 4.4 4 7.0 7.0 7.7 700 10.5 4.8 6.8 9.9 7.3 7.6 83 0.0 7.3 00 00 C (0.0 H < 4.2 K x 6.3 5.4 X ×4.2% 5.6 5.2 X 5.8 H N 6.8 5.8 E (6.0) FJ (7.6) H 9.6 8.9 10 9.9 0.8 7.6 oo e 8.5 7.0 4:4 8.3 0.0 O 8 SSK ×4.28 T(8.7) 14.24 5.3 K (6.0)8 7.0F 6.0 X 5.4K 1.4 75°W 6.0 7.8 2.0 7.6 2.8 7.0 6.2 0.00 800 7.6 7.00 2 6.6 1.8 3.6 5.3K 7.5 H 7.1K 5.9.K ×4.0 G 78.9 5.2 K 6.2 X J. 4.7 17/4V 4+2 G 7.0 5.2 6.0 7.4 4.9 9.8 6.0 5.0 8.0 = H.TK 5.2 X 5.83 5.8 X 5.8 K 442K 5.1 K 141x × 4.0 G 6.2 × 7 6.2 K 4.9 4.7 1 7.0 6.0 5.7 4.5 7.8 7.6 7.6 7.0 2.00 80 6.8 7.3 <u>0</u> 6.5H 24.8 52 x 48 x 5.2 F 5.0 X 1. t. o × 4.0 G 4.9 K x 3.8 x 1 (2.9) 7.6 X 4 4.0% 7.3 7.3 1. 1.4 0.0 2.0 5.8 1.9 7.2 5.6 3:6 60 8.0 H ×3.48 5.0 K 55H 1.4.TX 6.0x × 3.8 % 0 / + V 8.9 4.4 0.0 7.2 2.0 5.9 2:6 9 4.5 7.0 5.0 90 6.0 5.3 5.0 5.0 1.9 5.8 4.54 (3.2)B 3.5 X Q1.6 > 9.57 X 4.2× X07 4.5× 40x 477 5.6 7 4.0 \*\* 4.5 49 0.9 4.9 5.0 5.2 4.0 5.3 8.4 0.0 4.8 4.5 07 3.0 K 3.18 3.6F X 3.0 X 3.47 3.8 L (4.7)F F & 3.0K (2.6)B 2.5K (2.0) K (2.0) K 3(44)7 [3.3] [44) 5 42 3.5 3.6 4.2 3.7 4.9 3.6 90 3.3 3.0 5.0 4.3 7 7 1.77 K (2.1) 5 2.3 P XE 3.0 F (2.0) F 3.0 K 9.15 (2.4)8 (2.2)3 [1.9]F [3.3]F [2.1]5 (2.4)5 1.75 Bx EK (2.9)F 2.5F (2.5) / (2.8) / TX 3(22) 3(7.6) 3 3.0 3.0 3,5 3.3 4.8 3.0 05 2.7 BXB 8(2.6) (3.4) 2.4 F (2.0) F FX 2.3K (26)E 3.2.E 2 2x TX , Lang. 7 7.1° W X X X 3.4 0 3.6 3.0 3.2 9.1 Ц (3.4)8 F(1.9) 2.1 K 2.4× 3.1)\$ (1.4) X (3.7)z (3.0)5 3.85 (3.3) I 3.2 F 2.3 K (2.5)K (2.3) S 3 8 (1.8) F (1.8) X 8(1.6) K (1.8) K (1.6) K BX 5.0 2.9 3.6 03 8.2 4.3 2.0 6.1 3 3.6 3.0 K (4:0)5 (3.4)B 3.1 F 3.55 3.4F F(2.0)# 13 × 29.8 1.8 × J.0. 3.6 T 3.0 K 52.8 K Lat 38.7°N F BX 200 4.0 4.8 3.4 4.7 30 8 3.1 02 3.7 3.1 3.9 4.35 3.73 2.4 3.5 (3.9) 3 3.1 7 3.6 F 2.6 F (2.5)" (3.2) T(3.2) K S 73.6 x 2.1 K 3.1 H 4.4 T 3.0 S 4.0 0,5 5.0 3. 5 3. 3.00 (3.0) H 2.7 8 2.9 K 2.8 x 4.75 3.18 424 2.3 K 2.9 E (2.5)B 1.9) S [1.9] (5.2) 4.0 10 X 4.5 4.5 4.3 FS 5.0 3.1 3.6 00 7 3.6 Ų Day Ю 4 S Ø 9 ~ ø 0 4 5 \_ တ = 2 <u>m</u> 9 8 6 2 2 24 25 56 27 59 8 22 23 28

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min 30

Manual 

Automatic 

Manual

Standards

Bureau of

Scoled by: Mc C.

TABLE

Central Rodio Propagation Laboratary, National Bureou of Standards, Washington 25, D.C. ONOSPHERIC

September 1951

S N

fo F2

Washington, D.C.

Observed at

National

(4.3)B (3.5) (4.6) J 3 5.0 1(2.5) 2330 4.2 3.4 3  $\geq$ 4.0 3.0 30 1(34)6 (3.2) 3.0 K X X 3.7.K 353 2.7 K 2230 (8.4) K[2.9]5 (5.0) K 5. 2. S. C. 4.00 405 4.5 4.7 4.5 0.0 15 4.2 5.0 5.2 50 6.3 5.0 3.1 87 PA 20 (2.7) (3.2) K (4.0) 5 3.0 x 4.0 x 1 2 S 6.3 13 2130 4.7 4.7 4.7 5.0 7 3.7 5.0 52 0.5 4.3 8.7 6.0 PQ 4.3 9 8.6 33 3.6 X (7.5) (0.0) 4.1 4 Calculated by: 6.03 693 564 4.03 5.4.5 2030 25 45 t e 2 62 5.7 4:5 4.9 6 4.9 S 60.50 1 35 R (2.6) 5.8 K 4.4 (53) 40.0 4.0 x 5.6 7 4.6 K N PO X 5.65 1930 4.7 0.0 6.0 69 (25) ر جي 6.0 2.0 72 4.5 20 79 5.9 5.8 X X 6.0 2.0 2.0 9.9 29 4.6 X 5.4 4.5 4.73 7.6 % 5.0 A (6.1) x 6.8 (6.2) 9.0 4 5.40 1830 29 7.2 2.0 63 6.0 7.2 00.9 00.0 6.2 6.9 1.4 7.0 8 7.2 7.8 0.0 72 8.9 7 6.5× 5.8 K 78K (5.4) H X8.4 6.0 1 500 ور 7 2 1730 7.2 7.0 6.3 7.9 7.0 20 0 2. 8.0 99 0 2.8 20 73 6.0 8.0 7.7 × 0.9 4.9 K 4.7 K 6.9 X 6.0 4 7.03 70% (6.6) S (5.2) / × 0 9 5.51 P. 4.7 1630 0 8.2 4% 4.9 8.9 6.7 9 77 8.4 6.9 7.6 4.6 2.8 7 2.8 20 670 2.0 4.6 K X8.9 4.94 180 1.0 X 6.41 1530 2.0 6.8 7 6.6 0 0.0 8.5 6.9 2.0 3 70 72 5.9 6.8 4.8 7 4 5.7 20 8 J U 2 44x6 6.3 K 5.6 X 6.0 × 4.6. 10.1" 7.1 × 1430 5.0 5 2.0 2 2.0 7, 8.0 2.0 2.8 7.2 2.2 3. 2.0 6.9 4.7 2.0 60 9.9 8.2 2. 1.8 7 U z O Mean Time < 45 g 10.01 (4.2% 00 3. 1330 5.6 00 9.9 9.9 8.4 6 P. 7.0 63 7.0 8.2 8.4 1 00.00 2.9 8.3 82 7.7 5.2 7.2 3 7.1 7.6 50 U 29 [72] 5147 8.0 X (6 0) H (4.2 g 6.2 X 5.9 X X 78) H 5.7 x 5.6 K 1230 75°W 4.9 00 7.5 7.5 5.6 0.0 600 72 6.3 80 2.0 8 28 20 7.6 8 11 7.2 53 60 <3.98 <+18 K(1+2)0 <+28 A 0.0 S.1 X x 8.3 4 4.9 10.9 5.7% (4.0 G (4.1 G < 4.1 G 7.0 3 5 2 8.0 1.4 رم د 1130 7.3 2.8 80 ~ 7.4 8.9 8 6 6 50 2.8 7.6 7.0 4.9 30 X 0.9 \$ 0. t> 5.8 X (5.0) X (20) رم الم 5.0 A 4.9 4.9 1030 6.0 20 0.9 73 7.2 00. 7.2 18 29 62 6.6 7.0 1.4 29 00 8 6.3 3.8 8.4 6 13 39 S.3 X \$ 0 t> 4.8 X x 8.7 6.2.7 4 4.6 4.7 6.4 0930 2.0 2.5 69 9.9 0. 59 6.3 5.6 8.2 20 7.2 7.3 0 30 7.6 الم 9 4.9 7.0 2.6 (3.7 K 6.2 6.0 5 4.5 K 0830 5.4 5.22 5.0 48 X 7.2 4.9 5.7 3.2 6.2 7.3 3.6 5.4 7.2 28 5.6 3 7.7 9.9 3.6 7.2 30 H(0.7) 521 3.0 K (3.4 G (38) \$ (38 g X 17 5.0 K 53 4.2% 0730 3. 50 5.6 4.5 442 5.0 6.2 P 13 7 00 6.3 6.0 20 500 5.7 6.00 7 6.3 5.2 1. 7 30 X 1.4 (L) (S) (N) 5.6 H 4.5 3.7 3.51 +3 x 0630 7.4 7 4 P P 4.4 3.6 3.2 4.4 7 / 52 57 0.5 6.3 4.4 5.0 7.4 9 3.5 5.3 30 (3.4) (27)5 A F (2.1) B B K (2.0) 2 (30)5 3.1 33 (2.5) (3.0)X (1.9) X (3 /) 2.3 0530 8 8 12.01 3  $\omega$ 3 35 3 8 4.4 4 ż 8.9 3.3 p 8.9 26 [2.4]B 3 (4 2) 3.1.5 3.0 % 0430 [2.5] (1.8) x (7.7) x hr x K(1.9) B [2.5] m N X FI X 3.6 (2.5)5 Lang 77.1° W みらら 8.51 30 s P (1.7) 3 74.8 3 3.2 2.7 32 po A(25) (3.4) 3 8.3× (3 2) (26)8 PO X [22] K (28) 3 (2.6) 0330 2.00 (1.3) 40 33 7 (28) 0 1. 3.2 3.5 3 3.6 3.1 Pa 3. oo V 2.7 P 74 9 (3.7) 8 (3.6) 3 423 Lot 38.7°N (2.3) H D> N N 3.0 5 (20)3 Y PO 200 1.9 × re pe X X (2.8) 5 0230 ς η 7 7 3 3.7 3.7 % ∞ 7 39 (0.9) 5/K(1.2) 2.9 3 25 (2.6) x (3.0) 5 405 5 4 X S 3.6 E (2.0) 3.85 424 2 2.4× 1.7 1 1 (4.4) 30 KKA63 (3 9) 3.5 0130 6 4 64 3.0 w s 3 4.0 3 36 0.0 8 3. N [2.9]73 (3.0) H (3.1) 5 0030 S L 2 7 7 (3.5) マ ナ 4.0 4.2 6.0 5.0 6 1 3.9 3 3. 27 PQ B 2 2 Wedlon Count 23 4 S 9 œ Doy m თ 2 13 5 9 17 = 4 8 6 20 2 22 23 24 25 56 27 28 59 30 10

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual 

Automatic 

Manual

 $TABLE \quad 76$  Central Rodio Propogation Loboratory, National Bureou of Stondords, Washington 25, D. C.

IONOSPHERIC DATA

|                                                                           |                  |                   |       |           |                 |          |            |           |           |         |            |            |       |          |          |          |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   |         | 2     | 7                                   |
|---------------------------------------------------------------------------|------------------|-------------------|-------|-----------|-----------------|----------|------------|-----------|-----------|---------|------------|------------|-------|----------|----------|----------|---------|--------|------------|-------|---------|---------|----------|--------------------------|-------|----------|----------|----------|---------|---------|-----------|---------|---------|---|---------|-------|-------------------------------------|
|                                                                           | Standards        |                   | _     |           |                 |          |            |           |           |         |            |            |       |          |          |          |         | - Sand |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   |         |       | 1,2,19                              |
|                                                                           | 0 f              |                   | 23    | _         |                 |          |            |           | -         |         |            |            |       |          |          |          |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   |         |       | U S GOVERNMENT PRINTING OFFICE 1946 |
|                                                                           | Buredu of        |                   | 22    |           |                 |          |            |           |           |         |            |            |       |          |          |          |         |        |            |       |         |         |          | _                        |       |          |          |          |         |         |           |         |         |   |         |       | U S GOYERNM                         |
|                                                                           | ١.               | Mc C.             | H     | _         |                 |          |            |           | -         |         |            |            |       | -        |          |          |         |        |            |       |         |         |          | Application of Assessing |       |          |          |          |         |         |           |         |         |   |         |       |                                     |
| :                                                                         | Mc C             | Colculated by: Mc | 20    |           |                 |          |            |           |           |         |            |            |       |          |          |          |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   |         |       |                                     |
| •                                                                         | Scaled by: Mc    | Colculate         | 61    | _         | _               |          |            |           |           |         |            |            |       |          |          |          |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   |         |       |                                     |
|                                                                           |                  |                   | 8     |           |                 |          | 270        | 240       | -         |         |            |            |       |          |          |          |         |        |            |       |         |         |          | 280 A                    |       |          |          |          |         |         |           |         |         |   | 1       | 25    |                                     |
| D. C.                                                                     |                  |                   | 17    | (250)A    | 240             | 240      | 260 2      | -         | U         | 340     | 0          | 250        | 7     | 260 K    | 250 K    | 260      | 040     | 240    | 280 K      | 240   | 0       | 240 1   | 260 K    | P.                       | 240   | 9 1      | 240 1    | 2.90 K   | 230 K   | X o pro | 8         | 8       | 0       |   | 240     | 77    |                                     |
| gton 25,                                                                  |                  |                   | 91    | [240]B (2 | 230 2           | 240 2    | 230 2      |           | J         | 250 2   |            | 0          | 4     | 230 2    | 250 x 2  | 240 2    | 240 2   | -      |            |       | 220     | 230 K 2 |          | 230 K                    |       |          |          | 240 K 2  | 220 K 2 | 200 H 2 | 210       | 200     | 200     |   | 230 2   | 42    |                                     |
| Propogation Loboratory, National Bureou of Stondords, WashIngton 25, D.C. |                  |                   | 15    | 220 [2    |                 | 230 2    | 220 11 2.  | 240 230   | J         | 220 2   | (250) B B  | (230)B 2   |       | 240 2    | 230 K 2  |          | [220] 2 |        | IV.        | 230 2 | 230 2   | 220K 2  |          |                          |       |          |          |          |         |         |           |         | 200     |   | 230 2   | 28    |                                     |
| Stondord                                                                  | DATA             |                   | 41    | 220 2     | (220) B [220] S | 2        | 220 2      | -         | J         | 210 H 2 | [230] B (2 | 240 [2     |       |          | 230 K 2  |          | 210 [2  | 230 2  | 7-         | 210 2 | 250 2   | 220 H 2 |          | 3                        |       |          |          |          |         | 200 x   | 220 0     | 200     | 210 2   |   | 220 2   | 28    | 5 min                               |
| ureou of                                                                  |                  | _ Mean Time       | 13    | 220 2     | 200 (2          | 89       | 210        | 220 2     | J         | 220 H 2 | 210 [2     | E E        | 0     | 230 2    | 230 1 2  |          |         | 230 2  | ×          |       | 210 2   | 240 X   | 220 K 3  |                          | 210 6 | 2201     |          | 260 X    | 200 H   | 220 K 2 |           | 200 2   | 190 H 2 |   | 220     | 2,3   | Sweep_1.0 Mc to 25.0 Mc in 0.25 mtn |
| ational B                                                                 | ERI(             | - 1               | 12    |           | (220)B 2        |          | 200 H 2    |           | 220       | 190 2   | 210 2      |            | 200 2 | 220. 2   | 250 1 2  | 210 2    |         | _      | K          |       |         | 21012   |          |                          |       | - 1      |          | 220 K 2  |         |         |           | (220) 2 |         |   | 210 2   | 28    | to 25.0 1                           |
| oratory, N                                                                | SPH              | 75°W              | H     |           |                 |          | I          |           |           | 4       |            | (230)B B   |       | 230 H Z. | 230 K 2. |          | _       |        | 200 # 22   | 200   | 200 H 2 | 250 1 2 | 7        | ¥                        |       | 2/04     |          | 210 + 2  |         | 1       | (180)# 2  |         | 200     |   | -       | -     | 1.0 Mc                              |
| tion Lobe                                                                 | IONOSPHERIC      | ı                 | -     | 200 200   | 210 210         | B H O    | 20 220     | 0 4 200   | 30 11 210 | 10 200  | 200        | [220]B (2. | 240 2 | $\vdash$ | 210 # 2  | 210 H 2  |         | 230    | E X        |       | 210 2   | 7       | 2-       |                          |       | 220 x    | 120 K 13 | 210 4 2, |         |         | 200 # (18 | 190 21  | 200 2   |   | 210 200 | 30 29 | Sweep-                              |
| Propoga                                                                   | _                |                   | 01 60 | 0         | 210 21          | 200      | 220 H 220  | 210 # 210 | 220 200   | 220 210 | 200        | 0          | 230 2 | 220 2,   | 210 K 21 | 220 # 31 |         | -      | XX.        | 0     |         |         | 210 1 21 | 220 K 20                 |       | 220K d.  |          | 20 x x1  |         |         |           | 190 1   | _       |   | 210 2   | -     |                                     |
| Central Rodio                                                             |                  |                   | H     | 2,        |                 |          |            |           | -         | -       | 0 21       |            |       |          | ~        |          |         | -      | F          | -     |         |         | ¥        | 27                       |       | 220 K 24 |          |          | -       | *       |           |         | 200     |   |         | 30    |                                     |
| Centr                                                                     |                  |                   | 08    | 0 220     | 4               | 0 [220]B | (220)B 210 | 0 220     | 0 240     | 210     | _          | 230        | 240   | 220      | 0 + 220  | 230      | 0 210   | 0 220  | 250 \$ 250 | 230   | 220 220 | 0 240   | +        | T 210                    | 220   | 2        | -        | 0 x 240  | Y       | 1 210   | 0 210     | 200     | S       |   | 230 220 | 1 29  |                                     |
|                                                                           |                  |                   | 5 07  | 0) 230    | [087] 0         | 230      | (42        | 230       | 250       | 210     | 240        | 230        | Q     | A        | 230      | 240      | 230     | 220    | 3          | Q     | 22      | 250     | R        | a                        | 0     | 250      | 250      | 250      | 250     | Q       | 440       | 0       | 0       |   | 7       | 77    |                                     |
|                                                                           |                  |                   | 90 9  | (260)5    | 240             |          |            |           |           |         |            |            |       |          | _        |          |         |        | _          |       |         |         |          |                          |       |          |          | _        |         |         |           |         |         |   | 1       | ۲     |                                     |
| 4                                                                         | <u> </u>         | 3                 | 4 05  |           |                 |          |            |           |           |         |            |            |       |          |          |          |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   | -       |       |                                     |
| 4                                                                         | (Month)          | , Lang_77.1°W     | 5 04  |           |                 |          |            |           | _         |         |            |            |       |          |          |          |         | -      |            |       |         |         |          |                          |       |          |          | _        |         |         |           |         |         | - | +       |       |                                     |
| C                                                                         | Washington D.C.  | N, Lan            | 03    |           |                 |          |            |           |           |         | _          |            |       |          |          | _        |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   |         | -     |                                     |
| 1                                                                         | Washingt         | Lot 38.7°N        | 02    |           |                 |          |            |           |           |         |            |            |       |          |          |          |         |        |            |       |         | _       |          |                          |       |          |          |          |         |         |           |         |         |   |         |       |                                     |
|                                                                           |                  | ٦                 | ō     |           |                 |          |            |           |           |         |            |            |       |          |          |          |         |        | _          |       |         |         |          |                          |       |          |          |          |         | _       |           |         |         | _ |         |       |                                     |
| 1                                                                         | (Characteristic) | Ubserved of _     | 00    |           |                 |          |            |           |           |         |            |            | _     |          |          |          |         |        |            |       |         |         |          |                          |       |          |          |          |         |         |           |         |         |   | c       |       |                                     |
|                                                                           | 1 .              | San               | Day   | -         | 2               | 10       | 4          | 5         | 9         | 7       | 80         | 0          | 2     | =        | 12       | 13       | 4       | 5      | 91         | 17    | 8       | 6       | 20       | 21                       | 22    | 23       | 24       | 25       | 26      | 27      | 28        | 29      | 30      | 3 | Medion  | Count |                                     |

Sweep 1. 0 Mc to 25.0 Mc in 0.25 min Manual 

Autamatic 

Manual

28

 $\mathsf{TABLE} \quad \mathsf{77}$  Central Rodio Propagatian Laboratary, Natianal Bureau of Standards, Woshington 25, D.C

IONOSPHERIC DATA

fo FI (Characteristic) (Unit) (Month) (Month)

National Bureau of Standards

Sweep 1.0 Mc to 25.0 Mc In 0. 25 min

Manual C Automatie IX

Standards

National Bureau of

Scaled by: Mc C.

 $TABLE \quad 78$  Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

September, 1951

Km (Unit)

(Characteristic)

Observed at

Washington, D.C.

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

Manual | Automatic [3]

30

redu of Standards (Institution)

Bureau

National

Central Rodio Propagation Labaratory, National Bureou of Standards, Washington 25, D.C.

September 1951

Mc (Unit) fo E

Washington, D.C. Observed of

Lot. 38.7°N. Long 77.1°W

IONOSPHERIC DATA

12°W

Meon Time 3.5 10

| 00 | ₹       | 1.7    | 8.7   |
|----|---------|--------|-------|
| 17 | 2.6     | 25     | 2.6 P |
| 91 | [3.0]B  | (2.9)B | (3.0) |
| 15 | ري<br>ن | В      | æ     |
|    | 1       |        |       |

| 2 2 | 10     |      | 30 < | 2 |
|-----|--------|------|------|---|
| 0 8 | (2.9)B | 2 5  | T.   |   |
| 80  | (3.0)  | 2.6P | -    |   |
|     | 29     | 2.5  | 6.1  |   |

Q Q

 $\omega$ æ

30

[3.0]A 3.2 H

5.0

1.97A

00

=

08

07

90

0.5

04

03

02

õ

00

Day

Ø m 4 2 9

œ ~

တ

0 = 2 10 4

T

8

| ¥     | 1.7   | % ./   |   |
|-------|-------|--------|---|
| 2.6   | 25    | 2.6P   |   |
| 3.0]B | 2.9)B | 3.0) P | 5 |

| Mc           | 21 |   |
|--------------|----|---|
| Iculoted by: | 20 |   |
| Colculoted   | 61 |   |
|              | 00 | V |

23,

|        | O      |
|--------|--------|
|        | Mc     |
|        | by:    |
| Dy:    | oted   |
| Scoled | Colcul |

| . (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | L | <br>L | <br>L., |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-------|---------|
| The state of the s | 22 |   |       |         |
| The state of the s | 21 |   |       |         |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 |   |       |         |
| The state of the s | 19 |   |       |         |

|    |  |  | - |
|----|--|--|---|
| 61 |  |  |   |
| 20 |  |  |   |
| 21 |  |  |   |

| 21 |   |    |   |   |   |
|----|---|----|---|---|---|
| 20 |   |    |   |   |   |
| 6  |   |    |   |   |   |
|    | 7 | 00 | 8 | 0 | Г |

| 2 |   |   |          |    |   |   |
|---|---|---|----------|----|---|---|
| b |   |   |          |    |   | - |
| 0 | A | 7 | <b>∞</b> | 6. | 6 |   |

| <br> |  | - |
|------|--|---|

| -T | 7 | 00 | 0 | 6 |  |
|----|---|----|---|---|--|

| 17 |  |  |  |  |
|----|--|--|--|--|
| 2  |  |  |  |  |
| Ď  |  |  |  |  |

| 21 |  |  |  |
|----|--|--|--|
| 20 |  |  |  |
| 61 |  |  |  |

J 3

J

J

ีย

J

3.5P

3.4

3

2.9P [3.]B

4

(34)0 3.6

(3.2)P

[2.6]A

w.

3

(2.5)8

3.0

83

3.4

3.6 P

الم

3.6 H

3.5P

(3.3)P

30

2.5

3.0

34

3.4

5.5

(3.6)P

2

3.5 P 3.4 3

3.4

Q

T

T T

|  |  |  | L |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |

|  | 8.1 | ۲ | 1.8 K | 1.8 × | 1.8 | 0 1 |
|--|-----|---|-------|-------|-----|-----|

2.4K

ンチエング から

500

3.2 ×

33 ×

3.4K

34)8

3418

(3.2)

3.1 ×

2.9×

400

13. 13.

3

3.5P

3.4

3

3.0

[2.4]A 2.4× (2.3)P

1.0

30

3.F

3.4

3.4

3 3.5 40

3

[30]

3.3

3.5 P

3.5 P

3.5

3.2B

3.9 8

ε. W

200

4.4

2.9

3.5

3.0

[3.2]8

3.4 3

Q

മ

0

Ø

3

24P

3.4

3.50

(35)

Ø

Θ

Œ

7.4

Q

[3.6]B (3.5)P

3.6

2.6

3.2

4.9 30

2.5 A

1.8 %

|   | <br>        | _ | netiless: |   |
|---|-------------|---|-----------|---|
|   |             |   |           |   |
| _ | <br>$\perp$ |   | <br>      | L |

|  |  |  |  | 5 |
|--|--|--|--|---|
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | ĺ |
|  |  |  |  | - |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |

|  | - | - |  | Paucon . |
|--|---|---|--|----------|

|      | L     |   |  |   | į |
|------|-------|---|--|---|---|
|      |       |   |  |   |   |
|      |       |   |  |   |   |
|      |       |   |  |   | ĺ |
|      |       |   |  |   |   |
|      |       |   |  |   |   |
| <br> | <br>- |   |  | - |   |
|      |       | õ |  |   |   |

1, W.X

ンン.X

N

3.3 K

3.4K

BAK

S.4K

33 X

3.2 x

2.94

8.3×

8,5

2 9 \_ 8 <u>\_</u> 20 21 22 23 24 25 25 27 28 29 8 K

2.5

3.6

Sign

3

80

3

3 33

m

3

3 3 *w*,

3.0

5.5 00

[3.4]B 34K

3.5

\_ mj 2.0

ς ∞ π

٠ ٢ 3

|   |   |   |   |   |   |       | _ |
|---|---|---|---|---|---|-------|---|
|   |   |   |   |   |   |       |   |
|   |   |   |   |   |   |       |   |
|   |   |   |   |   | ì |       |   |
| - | - | - | - | - | - | OICHE |   |
|   |   |   |   |   |   |       |   |

|   |   |   |       | _ |
|---|---|---|-------|---|
|   |   |   |       |   |
|   |   |   |       |   |
|   |   |   |       |   |
|   |   |   |       |   |
| - | - | - | OICES |   |

|  | W. VERTICAL D | 1 |   |   |
|--|---------------|---|---|---|
|  |               |   | - | - |
|  |               |   |   |   |
|  |               |   |   |   |
|  |               |   |   |   |

1.6K

[3.2]

(D) × 2.6 X

2000

X0 X

5. K

W.O.K

[3.0]B

3.20

ひなが 2.6 %

37

3.3K

S.FK

K. K.

ストス

29 K ₩. ×

2.5 K B

1.7 ×

3

X4X

334

N

7

m

4.8

N.4 Z

(3.3)8

2,2 K

2.8x 2.7K

2.9

|  | - |     |  |  |
|--|---|-----|--|--|
|  |   |     |  |  |
|  |   |     |  |  |
|  |   | 1 1 |  |  |

ンジス

3.0 K

ンプス

3.0 K

328 3.3 K [3.2]A

ススス

(3.2) F

3 2

ß

3.6

2.2 13

[3.2]

3.0 X

2. SK

ر ا ا

2.2 K

(2)

7.

3.

3 3.2

3.4

w. w)

3

2. 0 0

3 2.7

2.7

338

3

€. J.

er.

3

3

S. C.

20° K

യ ×

3.0K

(3.1) B [3.0] B ω Ω

(3.4) R [3.1] B

32% (3.3)K

3.0 X x 9.8 800 A

3

2.2 ×

di di

3.1K (3.2)P 32K 33K

33K (3.2)R

[3.2] 3.0 K

| TA SECTION OF THE PERSON OF TH |  |  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|----|
| CONTRACTOR SERVICE TO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  | ,. |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |    |

٨

から

29

3.

3.2

3.4

シャ

3.4

J. 3

100

₹. W

1 3

ledion

ount

7

7

4

27 3

34

Sweep 1.0 Mc to 25.0 Mc In 0.25 min 76 23

Monuol 

Automotic 

M

Bureau of Standards (Institution)

d National

TABLE 80 Central Radia Propagation Laboratory, Notional Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

September 1951

Mc,km

(Characteristic)

Es

140 29 23 ш ш  $\alpha$ ш E ш Ш Ш W ш Ш ч ·W Ш ш щ Щ E Ш ш ш ш لنا aa \*\* 120 28 22 ш E Ш ш Ш W Ш ш Ш ليا Ш  $\omega$ ш Ш \* ü ш Ч Ш Ш ш W Ш Ш Calculated by: McC \*\* 28 2 ш Ц Ш Ш لنا Ш 9 Ш Scaled by: Mc 2.3/120 128120 48/20 29 20 Ш 8 Ш H Ш W W Ш \*\* ч ш Ш Ш ш W Ш Ш Ш 111 Ш 22 110 58 120 32/100 22110 6 120 30 6 W W W 业水 Ш W Ш ш Ш Ш Ш ш Ш Ш Ш Ш Ш Ш ш Ш ш W  $\alpha$ ш Ш 0710 3.2/20 33/10 \* 29 b Ó 6 ш 8 b P Ą B Y b 6 6 P b P W Θ نبا Ш Ш Ü Ш 4.3/20 50/120 42,30 130 3.3/20 P b b b b P \* b Ġ U b B J 6 29 7 6 P P G P b P 6 6 P Y P b 10.0 100 \* b b b b b Ġ r B P b b b J Ġ 6 29 P b 6 b P b B 00 P 00 6 78 \* Ġ P P Ŷ ( 2 P Ç P 6 U P b Ġ 6 6 b 6 b b 6 b P G Y 8  $\alpha$ **(**b Ġ 011/01 4.1/20 8.8 120 B b B \* 29 4 b P b P P 6 b P b P P P b B P P P P b B  $\alpha$ U 8 Time 4.6 120 8.3 100 621/20 58 110 \* 49 8 B B 10 b b 6 b b B P 6 B 6 B Y b b B 6 B U b b b B 7.0190 30 75°W \*\* Y ( P b B B 6 00 G b J 6 6 Y b b b b b B b B b b b 6 2 011/58 30 \*\* = 6 b Y S G P 6 B 8 6 P Ó 6 b b b S b 6 **(**b B B B B O b Y 10.8 110 30 100 581130 30 B b y 5 G b P b B P 6 b B 6 6 P 6 P P \* 9 S B B 9 b b 5.51/10 011/0 62 140 30 60 B b b b G 6 Ġ Ġ B 6 P b B B B S \*\* 6 P 6 P. 6 6 Ó P 6 S 36/110 04199 35 110 86/120 P 30 08 P b G B b G b \*  $\omega$ b 6 6 6 b B 5 6 B 6 P G P 6 0 6 7.2 /120 33/130 56 110 38 110 32 100 9.2 100 130 32 130 120 30 b B \* b B P P B b P b B 6 V 07 B b 0 B P B U 301/30 2.81/20 2.0/20 2.3/120 4.0 100 2.7/20 130 30 110 1.8 120 110 10.4.00 24/20 30 B b \* 90 b b Ш b W W Ø Ш P Ш ш ш U 011 49 2.5 110 110 35/20 \* ш ш 05 ш B ш ш Ш Ш aq ш ш Ш Ш Ω  $\alpha$ 20 ш Ш W U H W ندا 2.8/120 6.8 1,00 42,000 29/110 120 Lot 38.7°N , Long 77.1°W 27 04 8 Ш ¥ ш Ш ш \* Ш Ш ш ш ш ш ш 0 W Ш Ш Q Ш ш ليا Ш 00 3.0 5 001/89 23/20 Washington, D.C. \* 28 03 ш 8 ш Ш ш  $\alpha$ Ш ш Ш Ш Ш ш Ш Ш ш Ы ш Ł Ш ш w ш 8 02 \*\* 28 E Щ ш ш ш B ш ш IJ F ш ш ш W ш Ш W ш Ø ш Ш Ш w Ш 100 \* 23 ш Ш ш Ш ш ш ш ш ш ш Ш ш Ш W ш ш ō Ш ш ш ш Ш 00 Ш ш ш Ш Ш 00 27 ш 4 ш Ш لنا ш إيا Ш 9 9 20 \* ш Ш L. ш ш Observed of Medlan Count Day S 9 ø 0 0 8 = 2 50 4 2 9 <u>ი</u> 2 27 29 17 2 22 23 24 25 26 28 30 <u>ار</u>

MEDIAN fes LESS THAN MEDIAN foE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORER \*\*

Sweep 1.0 Mc to 25.0 Mc to 0.25 min

31

Monual 

Autamatic 

Manual

32

Standards

0

Bureau

National

Central Rodia Prapagation Laboratary, National Bureau af Standords, Washington 25, D.C.  $\overline{\omega}$ TABLE

100

September

M1500) F2

Observed at

00

ONOSPHENO ONOSPH

(1.9) F 1.9F 0.1 3.0 0.00 6. 00 23 (2.0) 5 (1.9) 5 1.9 22 1.7 KK N 81 2.07 3 % (2.0) 3 (2.1) 5 (2.0) 5 Ö 2.0 6 61 Mc 2 Mc 19 K Calculated by:\_ 6.1 201 0 2.0 2.0 0.0 0 6.1 20 1.1 Scaled by:\_ 1.8 K (2.1) 2 2.0% 3.0 6.7 2.0 8. 00 6 3.0 2.0 7.7 6.1 7.7 X (p.1) X 1.918 ×0 % 2.1 K (2.0) 5 3.0 0:0 00 v 1.8 K 1.9 x 1.84 2.15 12 8.0 30 3.0 6.1 2.1 2.0 2.0 3.0 2.1 1 2.0 0 X 6.7 1.7K 1.9 K 1.9K 2.1 K 3.0 2.0 2.1 3.0 2.2 1.7 (0) 6.1 2.0 0.0 2.0 7.6 O. 2.0 K 20K 18 6.1 6.1 10 6. 7.9 K 2.11 1.9 % 2.0 2.0 2.0 2.0 2.0 6.1 2.1 0.0 0.8 6.1 4 2.0 0.8 Time XX C 1.9 T 1.87 2.0 K 6.7 2.0 8.0 2.0 2.0 2.0 6. 2.0 0.0 10 1.20 0.1 6.1 1.8 1 X 8.1 2.0% (20)0 (2.0) F 2.0 2.0 1.9 2.0 21 0 6. 1.70 0.8 6.1 6.1 0.8 2.1 M. S. 2 X 9 CX 2.0 K CK 6. 0.70 2.0 0 2.0 2.0 6. 7.1 \_\_ 7 2.0 6:1 LITK J 7 (8.1) 2.0 # K K (C) 1.95 1.9K 61 3 2.2 05.0 2.0 1.20 120 3.0 6.1 61 2.1 0 2.1 E ST 2.0 M 2.0 K OK 2.0 x 2.2 2.0 6.1 3.0 3 60 2.1 1.8 S X 1.9 4 2.0 x 2.3 2.2 1.2 2.2 1.8 6.1 0 000 2.3 6 2.0 13 O 2.1 H S. K. 2.0 X 13 K (23)B 2.4 (2.3) 6.3 1.7 2.2 3 8.0 1 70 7:7 2.0 6.3 7.1 07 2.1 7.8 1.9 E (1.9) Z. 2.2 (3.1) 3.0 F (2.2)5 2.1 K 2.10 2.0 K 91.8) × (4.0)8 208 S (1.8) P 4.1 2.1 3.0 4.1 000 1.20 3 20F 3(6.7) X (.95 06.7 1.8 F (1.8)3 (1.9)5 (1.8) K (1.8) (17)F u y 2.1 0.5 6.1 (17)5 J(61) (4.1)8 18 K X(8.1) 1.9 5 (2.0)3 (2.1) 5 X 60 1.8 K Lang 77.1°W Ų 04 0.5 2.0 6.1 6.1 19 F 8(6.7) 1.7 K 13 % H (81) 205 (1.8) (2.0)5 1.95 1.9K 1.8 H (1.7) F F. 8 (19)5 1.7 6.1 61 Washington, D.C. 03 7(81) 19 F 8(1.50) JUDE JUDE Lat. 38.7°N 1.8 F (1.9)5 DX 0 > 00 0 02 61 1.8 6.1 1.8 # (8.1.8) #F 1.8 % 1.9 K 1.96 1.9 F (2.1) 5 i FX 56.7 I) XO 1.8 H N 1.8 60:1 13 1.8 0 6.7

(2.1) 3

1.9 €

5 4 28.1

4 2 9

6.1 6.7 5 (8.1)

6.1

00

\* C.

9

33 Sweep 1, 0 Mc ta 25,0 Mc In 0.25

27.6) S 1.93

X 8.

F30 8

2.18

00.

J(2.0) %

(1.8)K BK 21.K 2.25, 2.1 K F 2.0 S

87. X

A.1K

2.1 E 1.8 T

8.0 TX

2.0 K 1.9 K

8.1x X6.7

× 0.50

A(6.1)

13 X E NX NX

x0.8

XO

S, X

BX SX

5/1.6) KF(1.7) 5 8 (1.8) 8 (1.9) 8

BK (1.8) B

27 80

2.0 x

X 8:

1.8 K

1.9K

X 6.7

(2.0)3

H (6:1)

2.1 05.0

23

X(8.1)

X8.7

1.9K 2.0 K

1.8 K 1.9 K

(1.6) K J (1.5) K

BX

(9.0) X (19) 5

(2.2) S X

2.2 K

2.1 S

2.0 X

1.9 K

X8.7 S. X 9.1 K

1:1

7.8.

2.1

x 0. 8

FX

61

1.08 TO.VE

7.8 K

FR (1.7)K 1.8 ×

1.9 N

B

T XN

1.8 K 2.15

2.2 K

X

30

2.0

2

2.0

2.3

3

2.2

2.2

2.1

2.0

4.6 3.3

2.5

2.4

2.3

3.3

2.3

2.2

2.0F

3.0

2.0K

2.0 K 2.0 F

1.9 K

67

2.0

6:1

2(6.1)

30 53

10

7.7

2.1

6

(1.9)5 1.95

6.

03.03

20

8

6.

6.

20 39

2.0

2.0

0.00

2.0

2.0

2.0

2.0

2.0

2.0 30

2.0

3.0

2. 30

2.2

7.6

6.1

(6.1)

6.9 26

00

001

1.8

Median Count

7

26

27

26

30

29

30

30

80

30

839

80

20

29

Manual 

Autamatic 

Manual

 $\begin{tabular}{ll} $TABLE 82 \\ Central Radio Propagatian Labaratary, National Bureau of Standards, Washington 25, D. C. \\ \end{tabular}$ 

DATA IONOSPHERIC

September, 1951

(M3000) F2

Washington, D. C.

Observed at

275

മ

00

u

2.9

N

8

Day

(27) 5

σ

2 27

0

(31)3

3

œ

29

2 8 X

3

7

12

28 F

00

4 5 127 K

2

2.7

9

2.7

8

National Bureau of Standards

Mc C.

Scaled by:

Mc C.

トト (2.9) (26) 2 2 00 20 77 23 2 30 2.8 2.7 00 7 23 7  $\alpha$ (3.0) 5 (2.9) 3 (27) 29 30 2 ~ 00 2.7 2.7 2 22  $\alpha$ (2.9)5 2 6 x 30 (31)5 (26)x 30 × 200 X 27 K 30 3 2-00 (30) 30 4.9 2 30 200 2.9 2.7 27 200 80 30 K 3.05 200 30 x 30 2.6 x Calculated by 27 K 30 9 30 8 30 N 30 73 30 2 20 3 30 30 30 30 30 3 29 3.0 30 2 00 3 <u>ග</u> 1 E (3.0)5 30 × 30 X 3.1 x 1 (8 E) 3 30 30 2 3.1 30 DO 14 30 30 30 30 29 3  $\underline{\infty}$ U 7 6 X 308 2.9 X 29 K 30 % 30 30 30 30 30 3 / 2.9 30 3 / 30 3 3.1 <u>\_</u> U 7 8 X V 00 X 200 X 26 X 30 9 30 30 30 30 30 30 3 2 30 3 30 3 29 29 3 / U 9 13 X 30 K NO X 24x 23 x 9 30 0 00 30 30 30 30 2.9 29 29 29 2.9 200 3/ 5 U U #8C W 0 17 29 X 29 K 30 30 3.0 3.0 30 3.0 6 V 30 5 50 31 ς γ 2.9 29 30 4 U 1 Ġ Mean Time 3/# 7 00 X 29 1 27 X 30 3.0 0 0.0 3.0 30 29 200 3.0 3.0 30 30 2.7 300 P <u>10</u> B U (30)8 27 K (30) 200 B X 2.7 % 75°W 30 3.0 8 30 0.0 30 2.9 30 00 3.1 200 3 7 5 2 y 29 F (26)7 X JAT (3.1)7 7 +X () X 00 30 3.0 29 0 29 30 30 3.1 28 3.1 20 200 3 29 b = スクシュ 30 5 r P 32 0 30 3.0 31 0.0 30 30 3/ 30 29 7 6 30 53 3 2.9 0 6 31 X 304 30 F 3.0 H (2.9) H 3 32 30 0.0 32 3 31 5 3 6.0 3 3 27 22 60 y P 2.8 H 34 # 2/ E 3.2 (P 32 30 3.0 3.2 34 33 3.2 33 3 500 33 3 18 3/ b 90 31 Ŋ J. O. P. 3.1# 32 32 33 (33) 32 3 3.2 34 3 00 3 32 31 3 31 07 b (2.8)x E X (3.2)5 30 % (3.0)8 32 3.2 (3.1)F 30F 30K (28)5 32 32 3.2 3.0 3.0 32 3 3. 90 3 3.1 3.1 295 29 2 20 X n x (28)E (2.8)5 (25)8 (27)F (26)K B 200 K (2.7) 8 275 200 5.0 3.0 20 3.1 2.8 (27) 05 4 L (2.6)5 NEX Lat 38.7°N , Lang 77.1°W (30)3 (31)5 (30)8 2.7 x (27)K πO \* 20 X (2.8) (27) 5 (2.6)5 17 100 (27)5 30 28F 30 04 2.0 S 200 (27)3 (30) 5 (29)8 285 26 K 2 CX 200 X (27) # T 2 2.7 200 30 (26) (29) 50 29 2 00 03 27 B 5 (8 2) 1 × × 29 F (31)8 285 K (74)3 K (25) F 30 F (27)5 TT 80 8 3 K (26) F 30 2.7 1 2 2.7 4 02 4 2000 27 7 (27)3 28 x e× æ æ X E (26) F 200 (31) 1(25)# (26)F K(27) F 8 5.9 2.7 30 2.7 27 30 27 5

Sweep 1.0 , Mc to 25.0 Mc In 0.25 , min.

3,3

N 00

00

2.9

30

30

3.0

30

30

30

2.9

30

30

90

30

0.0

3.4 30

3.2

3

00

(28)

2

30

2 27

2.00 7

Median Caunt

30

29

7

12

36

76

28

78

28

29

57

78

73

29

28

29

29

30

20

30

30

(27) S

(28)x

(31) S

(32) %

32 X

3-NX

29

3.0

2

25 b

X P Y

B

 $\alpha$ 

×e ×e

(27)

2 8 X (3.0)x

(3.0)x

(30)

32 32

30 % 3 / X 2 C

31 K

50 E

3.0 x

30 K

20

0

3.0 2.7 27

30

(28)

(26) (26)

LL.

2.7

2.7 X

(2 6) B

(26) H

e X

285

<u>ი</u> 20 2 22 23 24 25 26 27 28 29 30. 100

7 / X

K (25)3

(26)F

17 X

30 X

M WX

X 32

(74) 30

x 27 5

(30)5

32 x

30 K

30

3.0 x

314

N/K

3 / K 2 8 X

3. L.X 3 - X

30 K

(28)r

B

A A

(26) E

x (25) 5

K (25) F (2.7) X

0 9

(28)B 30

30 K

B W

β × M x

32 0.0

2.9 X

29 K

ω,

(27)x

23

(23)4

(23)F

P

P

300

3

30

30 K

20

30

3

30

34

32

32

3

30

3.0

32

35

3.5

34

2.9

(29) 5

30

30 0.0

30

2

(28)5

N Ø

30 K

2.9 X

33

3.3

1 8

3

32

34

3

308

32 30

3 -

33 3

(30)3

(2.9)#

3

34

32 3

3.1

3

30

32

3.4

Manual 

Automatic 

Manual

34

IONOSPHERIC DATA

September 1951

(M 3000)FI (UIII)

National Bureau of Standards

| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                |
|------------------------------------------------------|
|                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                                      |

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual (1) Automatic (8)

Form odopted June 1946

National Bureau of Standards (Institution)

 $\begin{tabular}{ll} $\mathsf{TABLE}$ & $\mathsf{84}$ \\ & \mathsf{Central}$ & \mathsf{Radia}$ & \mathsf{Prapagation}$ & \mathsf{Laboratory}, \mathsf{National}$ & \mathsf{Bureau}$ & \mathsf{of}$ & \mathsf{Standards}, \mathsf{Washington}$ & \mathsf{25}, D.C. \\ \end{tabular}$ 

IONOSPHERIC DATA

September, 1951

(M 1500) E (Characteristic) (Unit)

Calculated by: Mc C. Scaled by: Mc C. 75°W Mean Time Lat 38.7°N , Lang 77.1°W Washington, D.C. Observed at

|               |     |     |         |       | 8      |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3     | 5 5                                            |
|---------------|-----|-----|---------|-------|--------|----------|------|---------|--------|------|--------|-------|----------|--------|-------|-------|-------|-----|-------|--------|-------|-------|-----|---------|--------|-------|-------|-------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------------------------------------|
|               | -   |     |         |       |        |          |      |         |        |      |        | -     |          |        |       |       | -     |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | 16 0 - 702519                                  |
| -             |     |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       | L     |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | U S GOVERNMENT PRINTING OFFICE 1945 O . TOESIS |
|               | Z 3 |     |         |       |        |          |      |         |        |      |        |       |          |        |       | _     |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | VERNMENT PR                                    |
|               | 22  |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | DS 8.0                                         |
|               | N   |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| concurred by: | 202 |     |         |       |        |          |      |         |        |      |        | L     |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| 3000          | 6   |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| -             | 20  | T   | 7 7     | 4.1   | 3.9    | 3.0      | U    |         |        | 4.0  | A      | 1     | 1        |        | 4.3   | 8     | _     |     |       |        |       | ¥.0.4 | 1   | _       |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0    | 01    |                                                |
|               | -   | 4.3 |         | 4.07  |        | 7:4      | J    | 4.0     | P      | 4.0  | 1.1    | 4.0 X |          | 4.0    | 4.7   | 4.0   | 1     | 4.3 | 4.7   | 1      | 1     | R     | 1   |         | 4      | 1 4   | 9     | -     | l l  | B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Suddenside Organistic or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1    | **    |                                                |
| 9             | ٥   | P   | 8 (4.4) | (41)P | 4.1    | 4.0      | U    | 4.7     | B      | 4.2  | * 7    | 4.3   | _        | 4.1    | 4.5   | 1.7   | 1     |     | 7.7   |        |       | ľ     | 1   |         |        |       | 4.0 K | ¥ 1.7 |      | 4.4 | J. 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 26    |                                                |
|               | Ω   | 42  | P       | ES    | 42     | 4.1      | U    | 4.3     | 8      | B    | 1.4    | 4.4   | X 1.4    | 1      | U     | 07    | i     | 1   | 4.0   | 1      |       | 1     |     |         | 1      |       | 0     |       | i    | 4.4 | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | and the second s | 4.2    | 22    |                                                |
| 2             | 3   | 4.2 | B       | 28    | 43     | 43       | U    | 4.3     | 1      |      | 4.1    | 4.3   |          | 1      |       |       | 1     |     | 17    | 1      | l .   | 8     | 1   |         | 1      |       |       | 4.2K  |      | 4.3 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 43    | 3.25 min                                       |
|               | 2   | 4.3 | PA      | 8     | 4.3    | 1 7      | J    | 4.47    | (4.2)F | A    | '      |       | 4.14     | ı      | 4.7.4 | +     | 1     |     | 4.2   | (4.4)B |       |       |     | 1       | ~      |       |       |       |      | 4.3 | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 25    | Sweep 1.0 Mc to 25.0 Mc in 0.25 min            |
| 2             | 71  | 4.2 | 13      | p     | (4.3)P | 4.3      | 4.27 | 4.3     | P      | R    | 1      |       | 4. 3. J. |        | 4.27  | 4.0   |       | l . | B     | 414    |       |       |     | (4.4) X |        |       |       |       |      | 19  | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 77    | Moning Cl                                      |
|               | =   | 4.1 | to      | B     | 43     | 4.4      | 4.0  | 4.3 H   | 4.4    | P    | (4.3)F | 407   | × P      | 4.1    | 4.1   | 9.6   | 4.2 K |     | 1.4   | 4.0 X  |       | 8     | 1   | 14.5)   | (4.2)K | 4.3K  |       |       | 4.1  | 4.3 | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 25    | Monit                                          |
| 2             | 2   | 4.3 | 4.2     | 4.17  | 73     | a(+.4)   | 4.3  |         | 7.4    | 8    | B      | 7:4   |          | 4.2    | 4.1   | 4.0   |       | 4.2 | 7.7   | 4.7    |       | R     | l   | 4.3 K   |        |       | 1     |       | 4.7  | 43P | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 25    | Swe                                            |
| 0             | 60  | A   | 4.1 H   | 4.6   | 4.5    | (4 () F) | 73   | (4.2) P | 4.2    | 4.2  | B      | 4.1   | 4.3 K    | 1.7    | Pa    | 3.8   | X.0.4 | 4.3 | 4.3   | 4.1    | 4.3 K | 4.2 K | 1 1 |         |        | 4.5-K |       |       | 4.3  | 4.4 | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2    | 25    |                                                |
| ac            | 0   | 4.3 | 4.0     | 3     | 4.6    | A        | 4.27 | 4.3     | 43     | 4.2  | PA     | 4.0   | 434      | 4.1    | 4.0   | مين م | 4.0 × | 1.4 | 4.1 # | 3.9 H  | 4.2K  | 73 K  |     | 4.5 K   |        | 4.24  | X +.+ | 4.4 K | 43   | 44  | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7    | 26    |                                                |
| 22            | 5   | V   | T       | A     | (4.4)B | 4.3      | A    | 27      | 3.9 A  | 4.07 | 1.4    | 7     | X 1.4    | 4(1.4) | 3.1   | 3.8   | 4.1 K | 4.0 | 4.0   | 4.0    | X Q   | X B   | 4.1 | X 9.4   | x.x.   | 4.24  |       | 4.0 x | 4.17 | 4.0 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1    | 44    |                                                |
| 30            | 3   | S   | 4.1     | A     | A      | S        |      |         | 4.1 #  |      |        | 4.0   |          |        | 4.0   |       |       |     |       |        |       |       |     |         |        | BX    |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 7     |                                                |
| 200           | 3   |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| 0             |     |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        | -     |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| 24            | 3   |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     | AL STREET, STR | Wheelmal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| 00            |     |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| ō             |     |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| 00            |     |     |         |       |        |          |      |         |        |      |        |       |          |        |       |       |       |     |       |        |       |       |     |         |        |       |       |       |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                |
| D'ov          |     | -   | 2       | ю     | 4      | 2        | 9    | 7       | 00     | 6    | 0      | =     | 12       | 13     | 4     | 15    | 91    | 17  | 18    | 61     | 20    | 21    | 22  | 23      | 24     | 25    | 56    | 27    | 28   | 59  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Median | Caunt |                                                |

Table 85

Ionospheric Storminess at Washington, D. C.

September 1951

| Day              | Ionospheric | character*       | Principa<br>Beginnin | al storms | Geomagnetic                     | character**                          |
|------------------|-------------|------------------|----------------------|-----------|---------------------------------|--------------------------------------|
|                  | 00-12 GCT   | 12-24 GCT        | GCT                  | GCT       | 00-12 GCT                       |                                      |
| 1                | 1           | 2                |                      |           | 2                               | 2                                    |
|                  | 1           | 2                |                      |           |                                 | 2                                    |
| 2<br>3<br>4      | 1           | 0                |                      |           | 3                               | 2                                    |
|                  | 1           | 2                |                      |           | 2                               | 2                                    |
| 5<br>6<br>7<br>8 | 1           | 2                |                      |           | 2<br>3<br>2<br>3<br>3<br>2<br>2 | 2<br>2<br>3<br>3<br>2<br>2<br>2<br>3 |
| 6                | 1.          | 3<br>2<br>3<br>3 |                      |           | 3                               | 3                                    |
| 7                | 1           | 2                |                      |           | 2                               | 2                                    |
| 8                | 2           | 3                |                      |           | 2                               | 2                                    |
| 9                | 2           | 3                |                      |           | 2                               | 3                                    |
| 10               | 2           |                  |                      |           | 5<br>3                          |                                      |
| 11               | 1           | 3                | 2200                 |           | 3                               | 4                                    |
| 12               | 4           | 24               |                      |           | 4                               | 4                                    |
| 13               | 4           | 1                |                      | 1000      | 4                               | 5<br>3<br>4                          |
| 14               | 2           | 1                |                      |           | 4                               | 3                                    |
| 15               | 1           | 1                | 0000                 |           | 5                               | 4                                    |
| 16               | 3<br>4      | 5<br>2           | 0900                 | 3000      | 5<br>5<br>5<br>4                | 5<br>4                               |
| 17<br>18         | 1           | 3                |                      | 1000      | )                               | 2                                    |
| 19               | i           | )<br>4           | 1600                 |           |                                 | 2                                    |
| 20               | 4           | 7                | 1000                 |           | 3                               | 3<br>5<br>5<br>4                     |
| 21               |             | 7                |                      |           | 5                               | 4                                    |
| 22               | 5<br>5      | 2                |                      | 1200      | 3<br>6<br>5<br>6                | 5                                    |
| ~~               |             | ₩                | 2300                 |           |                                 | ,                                    |
| 23               | 4           | 4                |                      | ~~~       | 5                               | 4                                    |
| 24               | 4           |                  |                      |           | 5<br>5<br>4                     | 4                                    |
| 25               | 4           | 5                |                      |           | 4                               | 6                                    |
| 26               | 6           | 5                | 40 TO -0 -0          | GD 55000  | 5                               |                                      |
| 27               | 6           | 5<br>6           | cm 40-ce-40          |           | 5<br>5<br>3<br>3                | 2<br>3<br>2<br>3                     |
| 28               | 4           | 3                | E                    | 1100      | 3                               | 2                                    |
| 29               | 1           | 1                |                      |           | 3                               | 3                                    |
| 30               | 2           | 2                |                      |           | 3                               | 1                                    |
|                  |             |                  |                      |           |                                 |                                      |

<sup>\*</sup>Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

<sup>\*\*</sup>Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 86

#### Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and Forecasts) August 1951

| Bay                              | North Atlantic quality figure                     | CRPL*<br>Warning                          | CRPL** Forecasts (J_reports)                                | North*** Pacific quality figure   | Geo<br>mag<br>netic<br><sup>K</sup> Ch         | Scales:                                                                                                                         |
|----------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                  | Half day<br>GCT<br>(1) (2)                        | Half day<br>GCT<br>(1) (2)                |                                                             | Half day<br>GCT<br>(1) (2)        | Half day<br>GCT<br>(1) (2)                     | Quality Figures (1)- Useless (2)- Very poor (3)- Poor (4)- Poor to fair                                                         |
| 1<br>2<br>3<br>4<br>5            | (4) 5<br>(3) 5<br>5 6<br>6 6                      | W U (U)                                   | X                                                           | 5 6<br>6 8<br>6 8<br>6 7          | 3 (4)<br>(4) 3<br>2 2<br>2 (4)<br>2 3          | 5 - Fair 6 - Fair to good 7 - Good 8 - Very good 9 - Excellent  Geomagnetic Kch - O to 9, 9 representing the greatest           |
| 6<br>7<br>8<br>9<br>10           | 7 6<br>7 6<br>7 7<br>7 6<br>6 7                   |                                           |                                                             | 6 7<br>6 7<br>7 8<br>6 8<br>8 7   | 2 3<br>3 3<br>2 2<br>2 3<br>2 3                | disturbance; Kch > 4 indicates significant disturbance, enclosed in ( ) for emphasis.  Symbols: W Disturbed conditions expected |
| 11<br>12<br>13<br>14<br>15       | 7 6<br>5 5<br>5 (4)<br>6 6                        | U U                                       |                                                             | 8 8<br>7 5<br>6 7<br>6 7<br>6 5   | (4) (4)<br>(4) 3<br>(4) (4)<br>1 3<br>3 (4)    | U Unstable conditions expected  N No disturbance expected  X Probable disturbed date                                            |
| 16<br>17<br>18<br>19<br>20       | 5 5<br>5 6<br>6 6<br>7 6<br>(4) (3)               | W W                                       | X<br>X                                                      | (4) 7<br>6 7<br>7 7<br>6 7<br>5 8 | (4) 3<br>3 3<br>3 1<br>2 3<br>(5) 3            | Scoring:  H Storm (Q < 4) hit  (M) Storm severer than predicted  M Storm missed                                                 |
| 21<br>22<br>23<br>24<br>25       | (2) (3)<br>(1) (3)<br>(4) 5<br>(3) (4)<br>(3) (4) | W W<br>W U<br>W W<br>W W                  | X<br>X<br>X                                                 | 5 (4)<br>5 6<br>7<br>6 7          | (5) (4)<br>(5) 3<br>3 3<br>(4) 3<br>(5) 3      | G Good day forecast  O Overwarning  Scoring by half day according to following table:  Quality Figure  43 4 5 > 6               |
| 26<br>27<br>28<br>29<br>30<br>31 | (4)<br>(4)<br>(4)<br>566                          | (U)<br>W W<br>U U                         | X<br>X                                                      | 6555555                           | (5) (4)<br>(4) 3<br>3 3<br>(4) 3<br>2 3<br>3 3 | W H H O O U (M) H H O N M M G G X H H O O                                                                                       |
| Score:  H (M) M G                |                                                   | Warming N.A. N.P. 24 5 0 0 1 0 31 32 6 25 | Forecast<br>N.A. N.P.<br>8 0<br>0 0<br>9 2<br>37 44<br>8 16 | 0                                 |                                                |                                                                                                                                 |

\*Broadcast on WWV, Washington, D.C. Times of warnings recorded to hearest half day as broadcast.

) broadcast for one quarter day. Blanks signify N.

\*\*In addition to dates marked X, the following were designated as probable disturbed days on

\*\*\*Low weight.

orecast more than eight days in advance of said dates: August 25, 26 and 29.

Table 87a

Coronal observations at Climax, Colorado (5303A), east limb

| Date     |    |      |       | Deg  | ree           | 8 I  | ort  | sh c | f t  | he    | sol  | ar   | equ  | ato    | T   |     |          |    | 100 |     |    |    | Deg | gree | 3 3  | out | h c | f t | he  | SO  | lar | equ | ato  | r  |    |      |
|----------|----|------|-------|------|---------------|------|------|------|------|-------|------|------|------|--------|-----|-----|----------|----|-----|-----|----|----|-----|------|------|-----|-----|-----|-----|-----|-----|-----|------|----|----|------|
| GCT      | 90 | 85   | 80    | 75   | 70            | 65   | 69   | 55   | 50   | 45    | 40   | 35   | 30   | 25     | 20  | 15  | 10       | 5  |     | 5   | 10 | 15 | 20  | 25   | 30   | 35  | 40  | 45  | 50  | 55  | 60  | 65  | 70 ' | 75 | 80 | 85 9 |
| L951     |    |      |       |      |               |      |      |      |      |       |      |      |      |        |     |     |          |    |     |     |    |    |     |      |      |     |     |     |     |     |     |     |      |    |    |      |
| Sep. 1.6 | -  | _    | -     | **** | $\rightarrow$ | -    | 60   | 000  | 3    | 3     | 5    | 5    | 5    | 8      | 12  | 13  | 12       | 12 | 12  | 15  | 20 | 25 | 28  | 15   | 12   | 5   | 3   | 3   | 2   | 2   | 3   | 3   | 3    | 3  | -  | _    |
| 2.6      | -  | _    | _     | 600  | 078           | 010  | 4539 | ~    | -    | 3     | 3    | 3    | 3    | 5      | 5   | 8   | 10       | 10 | 12  | 115 | 22 | 20 | 22  | 12   | 12   | 8   | 5   | 3   | 2   | 2   | 3   | 3   | 3    | 3  | -  | _    |
| 3.6      | -  | -    | AND   | -    | 6337          | 679  | _    | -    | eno  | 3     | 5    | 5    | 5    | 8      | 8   | 8   | 10       | 8  | 12  | 15  | 20 | 20 | 15  | 12   | 12   | 12  | 8   | 5   | 3   | 2   | 2   | 3   | 3    | 3  | -  | _    |
| 4.7      | -  | -    | _     | -    | 609           | ano  | ccsh | sub  | 850  | 480   | 3    | 3    | 3    | 5      | 8   | 8   | 8        | 8  | 8   | 10  | 10 | 8  | 5   | 3    | 3    | 3   | 3   | -   | _   | _   | _   | _   | _    | 3  | 3  | 3    |
| 5.6      | -  | _    | -     | -    | _             | 000  | _    | call | -    | -     | 3    | 3    | 5    | 5      | 8   | 5   | 8        | 8  | 8   | 5   | 3  | 3  | _   | -    | _    | _   | _   | -   | _   | _   | _   | -   | -    | _  | _  | _    |
| 7.9a     | -  | _    | -     | _    | _             | -    | carp | con  | 600  | _     | _    | 3    | 3    | 3      | 5   | 3   | 12       | 8  | 5   | 5   | 5  | 5  | 5   | 3    | 3    | 3   | _   | _   | -   | _   | -   | _   | _    | -  | χ  | X    |
| 8.7      | -  | _    | -     | _    | _             | 100  | -    | -    | _    | _     | _    | _    | _    | _      | -   | 630 | 3        | 3  | 5   | 3   | 5  | 3  | _   | -    | _    | _   | -   | _   | -   | _   | -   | -   | _    | -  |    | -    |
| 9.6      | 3  | -    | _     | -    | 609           | 9    | 000  | -00  | 999  | colli | 6100 | rmo  | eim  | 609    | 3   | 5   | - 5      | ~  | 5   | 5   | 5  | 10 | 12  | 13   | 5    | 3   | 3   | 3   | 3   | 3   | _   | _   | -    | -  | _  | _    |
| 10.7     | -  | -    | _     | -    | -             | en   | call | 600  | essi | 610   | con  | -    | 113  | ees    | cm  | 3   | 5        |    | 12  | 10  | 12 | 12 | 14  | 10   | 5    | 3   | 2   | 2   | 3   | 3   | -   | _   | -    | _  | -  | -    |
| 11.7     | -  | -    | _     | 6539 | _             | 000  | cum  | WC)  | am   | 60    | 60   | 423  | :::0 | ex     | -   | - 3 |          | 2  |     | 1 3 | 5  | 8  | 8   | 10   | 8    | 3   | -   | -   |     | _   | _   | _   | _    | -  | _  | _    |
| 12.7     | 3  | _    | 600   | 999  | 673           | -    | -    | _    | este | 402   | 000  | 60   | 010  | coll   | 600 | 50  | 4.0      |    | >   | 11. | 12 | 10 | 10  | 8    | 5    | 10  | 8   | 3   | 2   | 3   | 3   | 3   | _    | _  | _  | _    |
| 13.6     | -  | 458  | 11.00 | -    | -             | _    | 609  | 600  | -    | co    | 000  | 6239 | 3    | 3      | 3   | 3   | 5        | 3  | 5   | 5   | 8  | 5  | 5   | 3    | 3    | 3   | 5   | 5   | 3   | _   | _   | _   |      | _  | _  | _    |
| 14.6     |    | -    | -     | _    | ora           | -    | -    | 900  | 3    | 3     | 3    | 3    | 3    | 3      | 5   | 8   | 8        | 10 | 3   | 8   | 10 | 5  | 3   | 3    | 3    | -   | _   | _   | _   | _   | _   | _   | _    | _  | _  | _    |
| 15.7     | _  | -    | _     |      | ***           | _    | 110  | -    | _    | -     | esm. | 80   | _    | 400    | 000 | 3   | 12       | 15 | 5   | 3   | 5  | 3  | 3   | 638  | _    | -   | -   | _   | _   | -   | _   | _   | -    | _  | _  | -    |
| 16.6     | -  | _    | _     | -    | chin          | 3    | 3    | 3    | 3    | 3     | 5    | 5    | 3    | 3      | 3   | 3   | 12       | 15 | 20  | 5   | 3  | 3  | 3   | 000  | _    |     | _   | _   | _   | -   | _   | _   | _    | -  | _  | _    |
| 17.7     | -  | 400  | -     | -    | _             | _    | -    | 400  | -    | 100   | 1010 | 6.3  | 00   | _      | 0.0 | -   | -3       | 3  | . 3 | 3   | 3  | 3  | 3   | 3    | 100  | _   | -   | _   | _   | _   | _   | _   | _    | _  | _  | _    |
| 18.6     | -  | -    | eng   | 600  | 600           | care | GED  | -0   | 6013 | 600   | coli | -    | 60   | collin | 3   | 3   | - 5      | 5  | 3   | 3   | 3  | 3  | 80  | _    | eno. | -   | 600 | 000 | 453 | 609 | -   | 609 | _    | -  | -  | _    |
| 19.6     | -  | -    | _     | =3   | -0            |      | ,3   | 3    | 3    | 3     | 3    | 3    | 3    | 3      | 3   | 5   | 5        | 5  | 5   | 3   | 3  | 3  | ee  | -    | 600  | _   | 100 | _   | 100 | _   |     | _   | _    | _  | _  | _    |
| 20.6     | _  | /one | _     | -    | -             | -    |      | -    | 90   | _     | CIR. | _    | 3    | 3      | 3   | 3   | 3        | 3  | 3   | 3   | 3  | 3  | 3   | 629  | -    | _   | gon | 600 | -   | -   | 628 | _   | _    | _  | _  | _    |
| 22.7     | _  | _    | _     | 3    | 3             | 3    | 3    | 3    | 3    | 3     | 3    | 3    | 5    | 5      | 8   | 70  | 15       | 72 | 8   | 5   | 3  | 3  | 3   | 600  | _    | _   |     | _   | -   | cal | -   | _   | _    | _  |    | _    |
| 23.9     | _  | _    | 000   | _    | _             | _    | _    |      | _    | 3     | 3    | 3    | 3    | 3      | 3   | 3   | -5       | 3  | 3   | 3   | 3  | 3  | 3   | 3    | 653  |     | -   | _   | cen | _   | _   | _   | _    |    | v  | Y    |
| 24.7     | _  | -    | _     | -    |               | 0007 | 660  | 628  | 620  | -     | 600  | 2    | 2    | 3      | 3   | 5   | 5        | 5  | 1 5 | 3   | 3  | 3  | 3   | 3    |      | _   | _   | _   | -   | _   | _   | _   | _    | _  | _  | Λ.   |
| 25.6     | -  | -    | -     | _    | _             | -    | 600  | chie | 3    | 3     | 5    | 5    | 8    | 8      | 8   | 72  | 70       | 12 | 10  | 10  | 12 | 2  | 7   | 3    | 3    | 3   |     |     |     |     |     | 3   | 3    | 3  | _  | _    |
| 26.7     | _  | -    | _     | 600  |               | _    | -    | CO   | 90   |       | 3    | 3    | 3    | 3      | 5   | 8   | <u> </u> | 8  | 70  | 8   | 10 | 8  | Į,  | 3    | 7    | _   | _   |     | _   | -   | _   | _   | )    | _  | _  | _    |
| 28.7     | _  | 400  | -     | 659  | 773           | _    | 600  | con  | 3    | 3     | 3    | 3    | 2    | 5      | 8   | 8   | 70       | 10 | 73  | 12  | 12 | 12 | 70  | 8    | 7.0  | _   | 3   | 2   | 2   | 2   | 3   | 3   | 3    | 2  | _  | _    |
| 30.6     |    | _    | -     | _    | _             | _    | #10a | 629  | )    | 3     | 5    | 8    | 10   | 10     | 10  | 10  | 8        | 2  | 10  | 12  | 75 | 12 | 8   | 5    | 70   | 2   | 2   | 5   | 2   | 2   | 2   | 2   | )    | 3  | 2  | _    |
| 7000     |    |      | -     |      |               |      | 210  | -09  | -000 | )     | 2    |      | 10   | 10     | 70  | 70  | U        | 0  | 110 | 1-6 | 72 | 26 | O   | 2    | 2    | 2   | )   | )   | ~   | 6   | 4   | 3   | 3    | 3  | 3  | -    |

Table 88a

Coronal observations at Climax, Colorado (6374A), east limb

| Date                 |    |     | 1    | Deg | ree   | s n | ort  | h o  | l t   | he   | sol  | ar  | equ  | ato | T    |      |        |     | 00 |     |    |     | Deg | ree | S S | out | h o | f t | he  | sol | ar e | equa  | ator | ,   |               |      |     |
|----------------------|----|-----|------|-----|-------|-----|------|------|-------|------|------|-----|------|-----|------|------|--------|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|------|-----|---------------|------|-----|
|                      | 90 | 85  | 80 ' | 75  | 70 1  | 65  | 60   | 55   | 50    | 45   | 40   | 35  | 30   | 25  | 20   | 15   | 10     | 5   |    | 5   | 10 |     | 20  |     |     |     |     |     |     |     |      |       |      |     | 30 8          | 35 9 | 90  |
| 1951                 |    |     |      |     |       |     |      |      |       |      |      |     |      |     |      |      |        |     |    |     |    |     |     |     |     |     |     |     |     |     |      |       |      |     |               |      |     |
| Sep. 1.6             | 3  | 3   | 3    | 3   | 3     | 3   | 3    | 3    | 3     | 3    | 3    | 2   | -    | _   | -    | nco  | elizah | 3   | 3  | 3   | 3  | 15  | 10  | 5   | 2   | 3   | 3   | 3   | 3   | 3   | 2    | 2     | 2    | 2   | 2             | 3    | 3   |
| 2.6                  | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | -     | 600  | 100  | 600 | etro | 630 | -    | c=   | 4000   | esa | 2  | 12  | 5  | 15  | 3   | 3   | 2   | 2   | emo | _   | -   | 2   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |
| 3.6                  | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | 2     | 2    | 2    | 2   | 2    | 659 | -    | 600  | _      | 000 | 15 | 15  | 10 | 10  | 15  | 5   | 3   | 3   | 2   | 2   | 2   | 2   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |
| 4-7                  | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | 2     | 2    | 2    | 2   | 2    | 2   | chin | call | 603    | 2   | 10 | 13  | 12 | 13  | 8   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |
| 5.6                  | -  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | 2     | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 3      | 3   | 10 | 8   | 3  | 2   | 2   | 3   | 2   | 2   | 2   | 2   | 600 | -   | _    | china | _    | *** | -             | _    | _   |
| 7.9a                 | -  | -   | -    | -   | -     | -   | 800  | 2    | 2     | 2    | _    | 415 | _    | _   | 2    | 2    | 3      | 5   | 12 | 3   | 5  | 10  | 8   | 3   | _   | _   | *** | ~ 1 | -   | _   | -    | -     | -    | -   | X             | X    | X   |
| 8.7                  | -  | _   | _    | -   | -     | _   | -    | call | -     | -    | _    | -   | _    | -   | 3    | 3    | 5      | 5   | 3  | 3   | 3  | 5   | 5   | 050 | cre | _   | 493 | -   | _   | 000 | -    | -     | -    | _   | -             | -    | -   |
| 9.6                  | -  | _   | emp  | _   | cline | 450 | -    | _    | (523) | -    | 612) | _   | _    | 2   | 3    | 3    | 5      | 3   | 3  | 3   | 8  | 5   | 10  | 14  | 8   | _   | _   | _   | _   | 3   | 3    | 2     | _    | _   | _             | _    | _   |
| 10.7                 | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | 2     | 3    | 3    | 8   | 5    | 5   | 10   | 8    | 12     | 10  | 12 | 8   | 10 | 10  | 12  | 15  | 8   | 2   | 2   | 2   | 3   | 5   | 5    | 3     | 3    | 3   | _             | ***  | 400 |
| 11.7                 | _  | _   | -    | om  | -     | _   | come |      | 6310  |      | 2    | 2   | 2    | 2   | 2    | 3    | 5      | 5   | 3  | 3   | 3  | 2   | 10  | 3   | - 8 | 2   | 2   | 2   | 2   | 2   | 2    | 2     | _    | -   | _             |      | _   |
| 12.7                 | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | 2     | 2    | 3    | 3   | 3    | 3   | 2    | 3    | 3      | Tõ  | TO | 8   | 3  | 4   | 73  | 8   | 15  | 12  | P,  | 3   | 3   | 3   | 3    | 3     | 3    | 3   | ž             | 2    | 2   |
| 13.6<br>14.6         | _  | ۵.  | ۵.   | ~   | ~     | ۵.  | ۵.   | 4    | _     | ۵,   | 2    | 2   | 2    | 2   | 2    | 2    | 1.     | 3   | 3  | 1 5 | 3  | 2   | 2   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |
| 15.7                 | _  | _   | _    | _   | _     | _   | _    | _    | _     | _    | -    | _   | _    | 2   | 2    | 3    | 3      | 72  | 15 | 3   | 2  | 2   | 2   | 3   | 3   | 2   | 2   | 2   | 2   | 2   | _    | _     | _    | _ ` | -             | _    | _   |
| 16.6                 |    | _   | _    | _   | _     | _   | _    | _    | _     | -    | -    | _   | _    | -   | 3    | 10   | 12     | 15  | 25 | 15  | 3  | 2   | 2   | 2   | 5   | 3   | 2   | 3   | 2   | 2   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |
| 17.7                 | _  | _   | _    | _   | _     | _   | _    | -    | _     | _    | _    | _   | 609  | =   | _    | 2    | 2      | -8  | 10 | 8   | 3  | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2    | 2     | -    | _   | _             | -    | -   |
| 18.6                 | _  | *** | -    | _   | -     |     | chie | 4000 | _     | call | _    | _   | 4    | (0) | 2    | 2    | 8      | 5   | 3  | 3   | 2  |     | 3   | 3   | 3   | 3   | .3  | 2   | 2   | 2   | 2    | 2     | -    | -   | _             | _    | -   |
| 19.6                 | _  | _   | -    | -   | -     | -   | _    | -    | -     | _    | _    |     | -    | 2   | 2    | 2    | 2      | 2   | 2  | 2   | 2  | 2   | 2   | 3   | 3   | 5   | 5   | 3   | 3   | 2   | 2    | 3     | 3    | 3   | 2             | 2    | 2   |
| 20.6                 | -  | _   | _    | _   | -     | _   | -    | -    | -     | -    | _    | _   | -    | am  | emp  | mo   | 200    | *** | -  | 053 | -  | 600 | 650 | _   | _   | _   | _   | -   | 600 | -   | _    | _     | -    | -   | _             | ***  | _   |
| 22.7                 | -  | _   | _    | _   | -     | -   | -    | -    | -     | -    | _    | -   | 2    | 2   | 2    | 2    | 2      | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2    | 2     | 2    | 2   | $\overline{}$ | _    | _   |
| 23.9                 | -  | _   | _    | _   | _     | -   | _    | _    | _     | 609  | -    | -   | 2    | 2   | 2    | 2    | 2      | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 3   | 3   | 3   | 3   | 2   | 2   | 2    | 2     | 2    | 2   | X             | Х    | X   |
| 23.9<br>24.7<br>25.6 | -  | _   | -    | -   | -     | 990 | _    | ***  | ***   | _    | _    | 2   | 2    | 2   | 2    | 2    | 2      | 2   | 2  | 3   | 5  | 5   | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 900  | -     | -    | _   | -             |      | _   |
| 25.6                 | 2  | 2   | 2    | 2   | 2     | 2   | -    | -    | -     | -    | _    | _   | -    | 2   | 3    | 3    | 3      | 3   | 2  | 8   | 15 | 8   | 2   | 2   | 3   | 3   | 3   | 3   | 2   | 2   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |
| 26.7                 | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | 2     | 2    | 2    | 2   | 2    | 2   | . 2  | 2    | 2      | 2   | 2  | 2   | 5  | 8   | 3   | 3   | 3   | 3   | 2   | 2   | 2   | 2   | 2    | 2     | 2    | 2   | -             | _    | _   |
| 28.7                 | 2  | 2   | 2    | 2   | 2     | 2   | 2    | 2    | -     | 2    | 2    | 3   | 3    | 3   | 2    | 2    | 2      | 8   | 10 | 12  | 3  | 5   | 3   | Ţţ  | 2   | 2   | 3   | 5   | 3   | 2   | 2    | 3     | 3    | 3   | -             | _    | _   |
| 30.6                 | 2  | 2   | 2    | 2   | 3     | 3   | 2    | 2    | 2     | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2      | 3   | 10 | 15  | 8  | 8   | Ţį  | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2    | 2     | 2    | 2   | 2             | 2    | 2   |

Table S7b

Coronal observations at Climax, Colorado (5303A), west limb

<sup>\*</sup>Note: Yellow line (5694A): September 30.6, suggestion of yellow line at N15 west limb, intensity 2.

Table 88b

Coronal observations at Climax, Colorado (6374A), west limb

| Date                         |    |    |     | Deg | gree | 8 8 | out | h c | f_t | he | sol | ar | equ | uto | T   |     |    |    | 00  |     |     |      | Deg | ree | s n | ort | h o           | f t | he  | sol | ar | equ | ato  | r  |               |     |     |
|------------------------------|----|----|-----|-----|------|-----|-----|-----|-----|----|-----|----|-----|-----|-----|-----|----|----|-----|-----|-----|------|-----|-----|-----|-----|---------------|-----|-----|-----|----|-----|------|----|---------------|-----|-----|
| GCT                          | 90 | 85 | 80  | 75  | 70   | 65  | 60  | 55  | 50  | 45 | 40  | 35 | 30  | 25  | 20  | 15  | 10 | 5  | 1   | 5   | 10  | 15   | 20  | 25  | 30  | 35  | 40            | 45  | 50  | 55  | 60 | 65  | 70 ' | 75 | 80            | 85  | 90  |
| 1951                         |    |    |     |     |      |     |     |     |     |    |     |    |     |     |     |     |    |    |     |     |     |      |     |     |     |     |               |     |     |     |    |     |      |    |               |     |     |
| Sep. 1.6                     | 3  | 3  | 3   | 3   | 3    | 3   | 3   | 3   | 3   | 3  | 3   | 3  | 3   | 3   | 3   | 3   | 12 | 10 | 10  | 15  | 5   | 12   | 3   | 2   | 3   | 8   | 5             | 3   | 3   | 3   | 3  | 3   | 3    | 3  | 3             | 3   | 3   |
| 2.6                          | 2  | 2  | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 2  | 3   | 2  | 2   | 2   | 2   | 3   | 3  | 8  | 3   | 3   | 15  | 2    | 8   | _   | -   | _   | _             | _   | _   | -   | _  | _   | -    | _  | -             |     | 2   |
| 3.6                          | 2  | 2  | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 3  | 3   | 2  | 2   | 2   | 2   | 3   | 10 | 5  | 5   | 3   | 20  | 3    | 3   | 2   | 2   | 2   | 2             | 3   | 3   | 2   | 2  | 3   | 3    | 3  | 2             | 2   | 2   |
| 4.7                          | 2  | 2  | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2   | _   | -             | -   | -   | _   | _  | _   | _    | 2  | 2             | 2   | 2   |
| 5.6                          | -  | -  | -   | _   | -    | _   | 2   | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2   | 2    | _   | _   | -   | -   | _             | _   | _   | -   | -  | -   | -    | _  | -             | 700 | -   |
| 7.9                          | X  | X  | X   | X   | -    | -   | -   | _   | _   | _  | -   | -  | _   | -   | -   | *** | -  | _  | _   | -   | _   | -    | _   | _   | -   | Х   | X             | X   | X   | X   | X  | _   | -    | _  | _             | -   | -   |
| 8.7                          | -  | -  | -   | -   | -    | _   | 2   | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2.  | -   | _  | -  | -   | -   | _   | _    | -   | _   | -   | -   | _             | -   | -   |     | -  | _   | _    | _  | $\overline{}$ | -   | -   |
| 9.6                          | -  | -  | -   | _   | -    | -   | -   | _   | -   | 2  | 2   | 2  | _   | -   | -   | -   | -  | -  | 2   | 3   | 3   | 3    | 2   | 2   | 2   | 2   | $\rightarrow$ | -   | _   | _   | _  | -   | -    | -  | -             | -   | -   |
| 10.7                         | -  | -  | • • | _   | _    | _   | _   | _   | -   | _  | -   | -  | _   | -   | -   | 2   | 2  | 2  | 5   | 5   | 3   | 3    | 2   | _   | _   | -   | -             | -   | _   | -   | _  | _   | -    | -  | -             | -   | 2   |
| 11.7                         | -  | -  |     | _   | -    | -   | -   | -   | -   | -  | -   | -  | ••• | -   | -   | 2   | 3  | 2  | 2   | 3   | 3   | 3    | 2   | 2   | 2   | 2   | 2             | 2   | _   | -   | _  | _   | _    | _  | -             | _   | -   |
| 12.7                         | 2  | 2  | 2   | 2   | 2    | 2   | 2   | 2   | 2   | 2  | 2   | 2  | 2   | 3   | 3   | 2   | 10 | 8  | 2   | 3   | 15  | 3    | 2   | 2   | 2   | 2   | _             | -   | _   | _   | _  | _   | _    | _  | -             | 2   | 2   |
| 13.6<br>14.6<br>15.7         | 2  | 2  | 2 2 | _   | _    | -   | _   | -   | -   | _  | _   | _  | _   | 2   | 2   | 2   | 2  | 2  | 3   | 2   | 3   | 10   | 3   | 2   | 2   | 2   | 2             | 2   | *** | -   | _  | _   | ***  | 2  | 2             | 2   | 2   |
| 14.6                         | 2  | -  |     | -   | _    | _   | _   | _   | -   | -  | _   | -  | 2   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2   | 2    | _   | _   | _   | -   | _             | _   | _   | _   | _  | _   | _    | _  | _             | _   | _   |
| 15.7                         | -  | -  |     | -   | _    | -   | _   | -   | _   | _  | -   | -  | 2   | 2   | 3   | 5   | 3  | 3  | 3   | 2   | 2   | 2    | 2   | 2   | _   | -   | -             | -   | -   | _   | _  | -   | -    | _  | -             | _   | _   |
| 16.6                         | 2  | -  |     | -   | _    | _   | -   | _   | _   | _  | _   | _  | _   | _   | *** | -   | 3  | 3  | 3   | 3   | 3   | _    | -   | _   | _   | _   | -             | •   | *** | -   | _  | _   | _    | _  | _             | _   | _   |
| 17.7                         | -  | -  | -   | _   | _    | -   | 2   | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2  | 3  | 5   | 2   |     | _    | _   | _   | _   | _   | _             | *** | -   | -   | _  | _   | _    | _  | -             | _   | -   |
| 18.6                         | -  | -  |     | _   | _    | *** | _   | _   | _   | -  | _   | -  | _   | -   | 2   | 2   | 2  | 2  | 2   | 2   | 2   | 2    | 2   | 2   | _   | _   | _             | -   | _   | _   | _  | _   | _    | -  | -             | -   | _   |
| 19.6                         | 2  | 2  | 2   | 2   | 2    | 2   | 2   | 2   | 3   | 3  | 3   | 3  | 2   | 3   | 3   | 5   | 3  | 8  | 5   | 10  | 3   | 2    | 2   | 2   | _   | _   | _             | _   | -   | 2   | 2  | 2   | 3    | 2  | _             | _   | -   |
| 20.6                         | -  | -  |     |     | _    | -   | -   | -   | -   | -  | -   | -  | _   | _   |     | -   | _  | 3  | 3   | 13  | 3   | 3    | 3   | 3   |     | -   | _             | _   | _   | _   | _  | _   |      | _  | _             | _   | 400 |
| 22.7                         | -  | -  |     | _   | _    | _   | -   | _   | _   | _  | _   | _  |     | 2   | 15  | Τ0  | 2  | 2  | 2   | 12  | 17  | 12   | 8   | 3   | -   | _   | _             | -   | _   | _   | _  | _   | -    | _  | _             | _   | _   |
| 23.9                         | X  | Х  | -   | _   | _    | _   | -   | -   | _   | _  | _   | -  | _   | _   | , 2 | 2   | 2  | 2  | 1 2 | 12  | 3   | 3    | 3   | 3   | _   | -   | _             | _   | _   | *** | _  | _   | _    | _  | _             | -   | _   |
| 24.7<br>25.6<br>26.7<br>28.7 | -  | -  |     | -   | -    | _   | _   | _   | _   | -  | _   | -  | _   |     | 3   | 3   | 3  | 3  | 1 3 | -   | - 0 | 7.5  | -   | -   | _   | _   | -             | -   |     | 2   | 2  | _   |      | 2  | 2             | 2   | 2   |
| 25.0                         | 2  | 2  | 2   | 2   | 2    | 2   | 2   | 2   | 3   | 3  | 2   | 2  | 3   | 2   | 3   | 2   | 15 | 3  | 2   | 1 2 | 0   | 72   | 3   | 2   | 3   | 3   | 2             | 2   | 2   | 2   | 2  | 3   | 2    | 2  | 2             | 2   | 2   |
| 20.7                         | -  | -  |     | . 2 | 2    | 2   | 2   | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 1 5 | 15  | ٥   | 3    | 7.2 | 10  | 2   | 2   | 2             | 2   | 4   | 4   | ~  | 4   | 2    | 2  | 2             | 2   | 2   |
| 20.62                        | 2  | -  | 2   |     | _    | -   | -   | 2   | 2   | 2  | 3   | J. | 1.  | 1.  | 1.  | ر   | 5  | 2  | 3   | 17  | 7 5 | ı l. | Τ2  | 10  | 2   | ر   | 3             | 3   | 2   | 2   |    | -   | 2    | 2  | 2             | 2   | 2   |
| 30.6a                        | 2  | 4  | 2   | . 4 | 3    | 2   | 2   | 2   | 3   | 3  | 3   | 4  | 11  | 4   | 4   | 5   | ک  | 3  | 3   | 14  | TD  | 14   | 0   | TO  | >   | 3   | 4             | 2   | 4   | )   | )  | )   | 4    | 4  | 4             | 2   | 4   |

Table 89a

Coronal observations at Climax, Colorado (6702A), east limb

| ate          |       |      | 1      | Deg   | ree   | s n  | ort  | h o  | f t  | he   | sol  | ar   | equ   | иtс   | T    |      |      |      | 00  |      |     | 1    | Deg. | ree  | 3 3   | out  | h o  | f t  | he  | SO    | lar | eqi | 18 tc      | r     |    |     |    |
|--------------|-------|------|--------|-------|-------|------|------|------|------|------|------|------|-------|-------|------|------|------|------|-----|------|-----|------|------|------|-------|------|------|------|-----|-------|-----|-----|------------|-------|----|-----|----|
| GCT          | 90    | 85   | 80     | 75    | 70    | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30    | 25    | 20   | 15   | 10   | 5    | U   | 5    | 10  | 15   | 20   | 25 . | 30    | 35 . | 40   | 45   | 50  | 55    | 60  | 65  | uato<br>70 | 75    | 80 | 85  | 90 |
| 951          |       |      |        |       |       |      |      |      |      |      |      |      |       |       |      |      |      |      |     |      |     |      |      |      |       |      |      |      |     |       |     |     |            |       |    |     |    |
| p 1.6        | -     | _    | _      | _     | 440   | 460  | 900  | 430  | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 3    | 3    | 3   | 3    | 3   | 5    | 5    | 3    | `3    | 3    | 2    | 2    | 2   | 2     | _   | _   | _          | _     | _  | _   |    |
| 2.6          | 673   | -    | eus    | _     | _     | 2600 | 1210 | 659  | ero. | _    | _    | -    | comp  | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | 2 .  | 2    | 2   | _     | _   | _   | _          | _     | -  | _   |    |
| 3.6          | C79   | one  | conj   | -     | (800) | _    | -    | 800  | esso | -    | ,    | 1000 | 000   | 800   | 400  | _    | 2    | 2    | 2   | 3    | 5   | 3    | 3    | 2    | 2     | 2    | 2    | 2    | _   | _     | _   | _   | -          | _     | -  | _   |    |
| 4.7          |       | omp  | 430    | steth | 85    | aua  | 4070 | 639  | ara  | eto  | 630  | -    | 629   | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | -    | _    | -    | -   | _     | _   | -   | _          | _     | _  | _   |    |
| 5.6          | -     | _    | -      | -     | cosp  | _    | 639  | _    | 475  | -    | _    | 500  | 400   | 9200  | _    | com  | essi | (00) | 2   | 2    | 2   | 2    | _    | -    | _     | _    | -    | -    | _   | -     | -   | -   | _          | _     | _  | _   |    |
| 7.9a         | . 600 | -    | -      | ca4   | -     | om   | 6788 | _    | _    | _    | 100  | стр  | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | _    | _    | _    | _   | _     | _   | _   | _          | _     | Х  | Х   | χ  |
| 8.7          | -     | -    |        | -     | _     | 600  | _    | -    | 100  | _    | -    | 430  | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | _    | _    | -    | _   | _     | _   | _   | -          | -     | _  | -   |    |
| 9.6          | - 00  | _    | con    | -     | 4208  | -    | 600  | 679  | _    | 679  | CD   | 138  | 000   | cica  | ecch | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | -    | _    | _   | _     | _   | _   | . =        | _     | _  | _   |    |
| 10.7         | -     | _    | 49     | -     | 060   | -    | -    | _    | _    | _    | 60   | emp  | -     | alo   | 2    | 2    | 2    | 2    | 2   | 2    | 3   | 3    | 3    | 3    | 2     | 2    | 2    | 2    | -   | _     | _   | _   | -          | _     | _  | -   | -  |
| 11.7         | -     | 630  | _      | -     | _     | 600  | _    | 600  | emo  | 439  | -    | 600  | 439   | 800   | 677  | 855  | 69   | 6772 | 65  | 2    | 2   | 2    | 2    | 2    | 2     | 2    | 2    | 2    | 2   | 2     | -   | _   | _          | _     | _  | _   | -  |
| 12.7         | -     | 100  | _      | omp   | _     | -    | mp   | -    | -    | _    | gno  | -    | 410   | 800   | 62.0 | 019  | **** | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | 2    | 2    | -   | _     | _   | _   | -          | -     | _  | ٠ _ |    |
| 13.6         | -     | _    | -      | _     | _     |      | _    | -    | _    | _    | _    | 850  | stets | _     | -    | _    | 600  | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | 2    | 2    | 2   | 2     | _   | _   | _          | _     | _  | _   | -  |
| 14.6         | -     | -    | _      | _     | -     | _    | _    | -    | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | gen  | _    | _    | _     | _    | _    | _    | _   | _     | _   | _   | _          | _     | _  | _   | -  |
| 15.7         | -     | _    | _      | -     | -     | -    | _    | _    | _    | -    | _    | _    | -     | -     | 2    | 2    | 3    | 3    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | -    | _    | _    | _   | -     | _   | _   | -          | _     | -  | _   | -  |
| 16.6         | -     | -    | _      | -     | _     | _    | -    | _    | con  | -    | _    | 2    | 2     | 2     | 2    | 2    | 2    | 4    | 3   | 2    | 2   | 2    | _    | 1000 | _     | _    | -    | _    | -   | _     | _   | _   | -          | _     | _  | _   | -  |
| 17.7         | 800   | _    | -      | _     | _     | -    | 690  | -    | 430  | omo  | -    | -    | _     | -     |      | C210 | CER  | 2220 | -   | deco | -   | _    | -    | 410  | and . | 400) | -    | -    | -   | 630   | -   | -   | -          | _     | _  | -   | -  |
| 18.6         | 610   | 610  | 600    | -     | -     | om   | _    | -    | 983  | 439  | 600  | -    | 600   | sisti | 0.0  | 673  | 627  | 600  | 100 | 600  | 860 | core | -    | ess  | 800   | 800  | -    | -    | _   | _     | _   | -   | _          | -     | _  | 980 | -  |
| 19.6         | -     | -    |        | -     | 600   | emp  | 600  | and  | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | amo  | -    | -   | -     | 800 | -   | -          | _     | -  | -   | -  |
| 20.6         |       | 400) | 603    | 679   | 629   | nes  | 600  | 639  | -    | _    | -    | 000  | 4310  | -     | cmp  | 6003 | 859  | 639  | 639 | 658  | _   | 800  | 439  | 120  | ero   | 000  | (35h | -    | _   | -     | -   |     | _          | -     | -  |     | -  |
| 22.7         | 603   | C010 | 625    | -     | _     | can  | gent | -    | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | cro  | 478) | 660  | -     | _    | _    | -    | _   | -     | 423 | ent | -          | _     | _  | -   | -  |
| 23.9<br>24.7 | -     | omp  | -      | 1000  | (000) | _    | -    | 845  | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | cao  |      | -     | des  | -    | emo  | -   | _     | _   | -   | -          | _     | X  | Х   | Σ  |
| 24.7         |       | ded  | -      | an    | -     | -    | -    | 1010 | 419  | -    | cma  | 0123 | 3     | 3     | 3    | 3    | _3   | 3    | 3   | 3    | 3   | 3    | 3    | 3    | 3     | 3    | 3    | 3    | dio | _     | _   | 410 | _          | -     | _  | _   |    |
| 25.6         | -     | -    | positi | desk  | 800   | 400) | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 3     | 3    | 3    | 3    | 3    | 3   | 2    | 2   | 2    | 2    | 2    | . 5   | 2    | 2    | 2    | em  | -     |     | -   | -          | -     | -  | -   | -  |
| 26.7         | -     | 610  | C210   | -     | -     | -    | -    | own  | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | ì    | 2    | 2    | -     | -    |      | cost | œ   | _     | _   | 610 | _          | cré   | -  | -   | -  |
| 28.7         | C10   | 00   | 6902   | er23  | 410   | wes  | 9673 | CEED | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | 2    | 2    | 2   | (535) | 430 | cmp | _          | _     | -  | _   | -  |
| 30.6         | -     | 420  | one    | 620   | -     | -    | alo  | 600  | 400  | comp | C210 | _    | (60)  | 620   | 2    | 2    | 2    | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2     | 2    | 2    | 2    | 2   | 2     | 000 | -   | -          | wheth | _  | 810 | -  |

Table 90a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

| ate     |    |     |    | Deg | ree   | 33 | nort | h  | of t | he  | so. | lar | eq | uat | or |     |    |    | 0   | 0  |    |     | De | gree | 9 <b>S</b> : |     |    |    |    |    |    |     | uato |    |    |    |    |
|---------|----|-----|----|-----|-------|----|------|----|------|-----|-----|-----|----|-----|----|-----|----|----|-----|----|----|-----|----|------|--------------|-----|----|----|----|----|----|-----|------|----|----|----|----|
| GCT     | 90 | 85  | 80 | 75  | 70    | 65 | 60   | 55 | 50   | 45  | 40  | 35  | 30 | 25  | 20 | 15  | 10 | 5  |     | 5  | 10 | 15  | 20 | 25   | 30           | 35  | 40 | 45 | 50 | 55 | 60 | 65  | 70   | 75 | 80 | 85 | 91 |
| 951     |    |     |    |     |       |    |      |    |      |     |     |     |    |     |    |     |    |    |     |    |    |     |    |      |              |     |    |    |    |    |    |     |      |    |    |    |    |
| ug. 3.0 | X  | X   | Х  | X   | X     | Х  | X    | X  | X    | X   | Х   | Х   | X  | X   | Х  | X   | Х  | X  | 12  | 12 | 15 | 20  | 15 | 8    | 5            | 3   | _  | -  | _  | _  | _  | ·X  | Х    | Х  | Х  | Х  | 3  |
| 4.8     | 3  | _   | _  | _   | 100   | _  | _    | -  | 3    | 3   | 3   | 5   | 8  | 3   | 3  | 3   | 3  | 3  | 8   | 12 | 35 | 35  | 38 | 25   | 15           | 10  | 5  | 5  | 5  | 5  | 8  | 8   | 5    | 5  | 3  | _  |    |
| 5.6     | 3  | _   |    | _   | wiets | -  | -    | 3  | 3    | 3   | 5   | 8   | 8  | 12  | 13 | 12  | 12 | 8  | 8   | 8  | 12 | 35  | 35 | 38   | 20           | 15  | 8  | 5  | 5  | 5  | 8  | 5   | 5    | ź  | 3  | 3  |    |
| 6.7     | _  | -   | _  | _   | _     | _  | -    | _  | 3    | 3   | 5   | 8   | 10 | 12  | 15 | 15  | 14 | 12 | 5   | 12 | 15 | 20  | 18 | 22   | 22           | 1/1 | 8  | 5  | 3  | 3  | 3  | 3   | 3    | 3  | 3  | _  |    |
| 9.9     | _  | 800 | -  | _   | 400   | _  | 986  | -2 | -    | -   | 3   | 3   | 8  | 10  | 13 | 15  | 12 | 8  | 5   | 3  | 3  | 3   | 3  | 3    | -            | _   | _  | _  | _  | _  |    | _   | _    | _  | _  | -  |    |
| 10.7    |    | 400 | _  | -   | _     | _  | _    | _  | 630  | -   | 5   | 5   | 5  | 8   | 10 | 12  | 10 | 5  | 5   | 5  | 8  | 8   | 5  | 5    | 5            | 600 | _  | _  | -  | _  |    | (m  | _    | -  | _  | _  |    |
| 11.7    | -  | 400 | -  | _   | _     |    | -    | _  | _    | _   | 3   | 8   | 10 | 12  | 12 | 12  | 10 | 10 | 8   | 12 | 15 | 3/1 | 13 | 12   | 8            | 5   | 3  | 3  | 3  | 3  | _  | _   | _    | _  | _  | _  |    |
| 13.7    | 3  | _   | _  | _   | _     | _  | _    | _  | -    | ann | 3   | 3   | 3  | 3   | -5 | - 8 | 8  | 10 | 110 | 13 | 15 | 25  | 28 | 28   | 11           | 8   | 5  | 3  | 3  | 3  | _  | _   | _    | _  | _  | _  |    |
| 14.7    | 5  | -   | -  | -   | _     | _  | _    | _  | _    | -   | _   | _   | 3  | 3   | 3  | 5   | 10 | 15 | 12  |    | 14 | 18  | 28 | 20   | 17           | 10  | 5  | 3  | 3  | 3  | 3  | 000 | -    | _  | _  | _  |    |
| 15.7    | 3  | 3   | -  | _   | Х     | Х  | Х    | X  | X    | X   | Х   | Х   | X  | X   | X  | X   | X  | X  | X   | Х  | X  | X   | X  | Y    | X            | -x  | x  | x  | x  | X  | Ÿ  | Y   | Y    | Y  | Y  | Y  |    |
| 17.6    | 3  | 3   | 3  | _   | -     | -  | _    | _  | -    | -   | _   | _   | -  | 3   | 5  | 5   | 8  | 8  | 8   | 12 | 15 | 13  | 10 | 8    | 3            | 3   |    | _  | _  | _  | _  | _   | _    | -  | _  | _  |    |
| 18.7    | 3  | 3   | 3  | 3   | 3     | 3  | -    | _  | 3    | 3   | 3   | 3   | 3  | 5   | 8  | 10  | 14 | 15 | 12  |    |    | 15  | 12 | 8    | ź            | 3   | 3  | _  | _  | _  | _  | _   | _    | _  | _  | _  |    |
| 19.9    | _  | _   | -  | _   | _     | _  | _    | _  | _    | _   | _   | _   | _  | _   | -  |     | 12 |    | 15  |    | 12 | 8   | 5  | 3    | 3            | 3   | _  | _  | _  | _  |    | _   | -    | _  | _  | _  |    |
| 20.7    | 3  | 3   | 3  | 3   | 3     | 3  | 3    | 5  | ζ    | 5   | 5   | 5   | 5  | 8   | 8  |     |    |    | 28  | 15 | 13 | 8   | 7  | 3    | 3            | 3   | -  | _  | _  | _  | _  | _   | _    | _  | _  | _  |    |
| 21.6    | 3  | 3   | 3  | 3   | 3     | ź  | 8    | 12 | 10   | 10  | 5   | 8   | 8  | 12  | 12 | 12  | 12 | 15 | 1   | 10 | 15 | 18  | 10 | 8    | Į,           | 3   | 3  | 3  | _  | _  | _  | _   | _    | _  | _  | _  |    |
| 22.7    | x  | x   | X  | x   | x     | ¥  | У    | Y  | Y    | Y   | ¥   | Y   | Y  |     | У  | Y   | Y  | y  | Y   | v  | Y  | Y   | Y  | Y    | v            | y   | _  | _  | _  | _  | _  | _   | _    | _  | _  | _  |    |
| 24.6    | 3  | 5   | i, | 8   | 8     | 10 | 12   | 13 | 12   | ζ   | 5   | 10  | 10 | 10  | 12 | 15  | 25 | 28 | 31  | 28 | 12 | 70  | 70 | 8    | Ľ,           | Ę,  | 3  | 3  | 3  | _  | _  | _   | _    | _  | _  | _  |    |
| 29.6    | _  | _   | _  | _   | 5     | -8 | 12   | 8  |      | 7   |     |     |    |     | 15 |     | 38 | 35 | 117 | 28 | 25 | 17  | 28 | 25   | 15           | 8   | 7  | 7  | 3  | 3  | _  | 3   | 3    | _  | _  | _  |    |
| 30.9    | _  | _   | _  | _   | _     | 3  | 3    | 3  | 70   | 8   |     | 12  |    |     | 15 | 33  | 38 | ũ  | 38  | 33 | 33 | 33  | 35 | 38   | 28           | 8   | 7  | 7  | 7  | 7  | 7  | ٦   | 7    | 3  | _  | _  |    |
| 31.7    |    |     |    |     | 2     | 2  | 2    | 2  |      | 2   |     | 12  | 10 | 12  | 12 | 18  | 25 | 28 | 31  | 22 | 31 | 22  | 27 |      | 33           | 10  | 7  | 2  | 2  | 2  | 2  | 7   | 2    | 2  | 2  | _  | ľ  |

lable 89b

Coronal observations at Climax, Colorado (6702A), west

| GCT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 | Date    |    |    |    |    | ree  |    |    |     |    |     |    |    |      |    |    |     |    |   | 00 |    |    |    | Deg | ree | s n  | ort  | h o | f t | he  | sol | ar   | equ | ato: | r    |     |     |    |
|----------------------------------------------------------|---------|----|----|----|----|------|----|----|-----|----|-----|----|----|------|----|----|-----|----|---|----|----|----|----|-----|-----|------|------|-----|-----|-----|-----|------|-----|------|------|-----|-----|----|
| Sep. 1.6  3.6                                            | GCT     | 90 | 85 | 80 | 75 | 70   | 65 | 60 | 55  | 50 | 45  | 40 | 35 | 30   | 25 | 20 | 15  | 10 | 5 |    | 5  | 10 | 15 | 20  | 25  | 30 . | 35 1 | 40  | 45  | 50  | 55  | 60   | 65  | 70 ' | 75 8 | 30  | 85  | 90 |
| Sep. 1.66                                                | 1951    |    |    |    |    |      |    |    |     |    |     |    |    |      |    |    |     |    |   |    |    |    |    |     |     |      |      |     |     |     |     |      |     |      |      |     |     |    |
| 2.66                                                     | ep. 1.6 | -  | _  | _  | _  | _    | -  | -  | _   | _  | _   | -  | _  | -    | -  | -  | 2   | 2  | 3 | 3  | 3  | 3  | 2  | 2   | 2   | -    | -    | _   | -   | -   | _   | _    | -   | -    | _    | -   | -   |    |
| 14.7                                                     | 2.6     | _  | _  | _  | -  | _    | _  | _  | _   | -  | -   | -  | -  |      | _  | _  | -   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | -   | *** | _   | _   | -    | _   | _    | -    | _   | -   |    |
| 14.7                                                     |         | -  | -  | _  | -  | -    | -  | -  | -   | _  | -   | _  | -  | -    | -  | _  | _   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | -    | -    | _   | -   | _   | _   | -    | -   | -    | _    | -   | _   |    |
| 5.6                                                      |         | -  | _  | _  | _  | **** | _  | _  | _   | _  | -   | -  | _  | -    | -  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | 2   | 2   |      | _   | -    | _    | -   | _   |    |
| 7.99                                                     | 5.6     | _  | -  |    | -  | _    | _  | -  | -   | _  | -   | -  | -  | _    | _  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | 2   | 2   | _    | -   | _    | -    | _   | _   |    |
| 9.6                                                      | 7.9     | Х  | Х  | Х  | Х  | _    | -  | _  | _   | _  | _   | 2  | 2  | 2    | 2  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | X    | X   | X   | X   | X   | X    | -   | _    | _    | -   | _   |    |
| 9.6                                                      | 8.7     | -  | _  | _  | _  | -    | -  | _  |     | -  | -   | -  | -  | genn | _  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | _    | -    | _   | _   | _   | _   | -    | -   | _    | _    | -   | -   |    |
| 10.7                                                     | 9.6     | -  | -  | -  | -  | _    | _  | -  | _   | -  | _   | _  | -  | -    | _  | _  | 2   | 2  | 2 | 2  | 2  | 3  | 3  | 3   | 3   | 3    | 3    | 2   | 2   | 2   | 2   | 2    | 2   | -    | -    | -   | -   |    |
| 11.7                                                     |         | _  | -  | _  | -  | -    | -  | _  | _   | _  | -   | _  | _  | _    | 2  | 2  | 2   | 2  | 2 | 2  | .2 | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | 2   | 2   | _    | -   | -    | _    | _   | -   |    |
| 12.7                                                     |         | _  | _  | _  | -  | _    | _  |    | _   | -  | -   | _  | _  | 2    | 2. | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | 2   | 2   | _    | _   | -    | -    | -   | -   |    |
| 13.66                                                    |         | _  | _  | _  | _  | _    | _  | 2  | 2   | 2  | 2   | 2  | 2  | 2    | 2  | 3  | 3   | 3  | 2 | 3  | 3  | 3  | 5  | 3   | 3   | 2    | 2    | 3   | 3   | 3   | 3   | 3    | 3   | -    | -    | _   | _   |    |
| 14.66 2 2 2 2 2 2 2 2 2 2 2 2 2                          | 13.6    | _  |    | _  | _  | _    | _  | _  | _   | -  | -   | 2  | 2  | 2    | 2  | 2  | 3   | 3  | 3 | 3  | 3  | 3  | 5  | 3   | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 2    | 2   | -    | -    | _   | _   |    |
| 15.7                                                     | 11,.6   | _  | _  | _  | _  | _    | _  | 2  | 2   | 2  | 2   | 2  | 2  | 2    | 2  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | _   | -   | _   | _   | _    | -   | -    | -    | _   | -   |    |
| 16.6                                                     | 15.7    | _  | _  | _  | _  | _    | _  | _  | _   | 2  | 2   | 2  | 2  | 2    | 2  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | -    | _    | -   | _   | _   | _   | _    | _   | _    | -    | -   | _   |    |
| 17.7 18.6                                                | 16.6    | _  | _  | _  | _  | -    | _  | -  | _   | _  | _   | -  | _  | _    | _  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | .5 | 2   | 2   | dia  | -    |     | _   | -   | _   | -    | _   | -    | _    | _   | _   |    |
| 18.6                                                     |         | _  | _  | _  | _  | _    | _  | _  | -   | _  | _   | _  | -  | 2    | 2  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | _   | _    | 00   | -   | _   | -   | -   | -    | *** |      | _    | -   | _   |    |
| 19.6   2 2 2 2 2 2                                       | 18-6    | -  | _  |    | _  | -    | _  | -  | _   | -  | 400 | _  | _  |      | -  | _  | 409 | 60 | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | -   | -   | _    | _   | -    | _    | _   | -   |    |
| 20.6                                                     | 19.6    | _  | _  | _  | _  | _    | _  | -  | 400 | _  | -   | _  | _  | 2    | 2  | 2  | 2   | 2  | 3 | 3  | 3  | 3  | 3  | 3   | 2   | 2    | 2    | 2   | 2   | 2   | 2   | _    | _   | _    | _    | _   | -   |    |
| 22.7                                                     | 20.6    | -  | _  | _  | -  | 100  |    | -  | _   | -  | _   | _  | _  | 2    | 2  | 2  | 2   | 2  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | 00  | 963 | _    | _   | -    | -    | -   | _   |    |
| 23.9 X X 2 2 2 2 2 2 2 2 2 2 2 2 2                       |         | _  |    | _  | _  | _    | _  | _  | -   | _  | _   | -  | 00 | 2    | 2  | 2  | 2   | 2  | 2 | 2  | 3  | 3  | 3  | 2   | 2   | 2    | 2    | 2   | 2   | 2   | 2   | -    | -   | _    | _    | _   | -   |    |
| 2h.7                                                     |         | Y  | Y  | _  | -  | _    | _  | _  | -   | _  | -   | 2  | 2  | 2    | 2  | 2  | 2   | 2  | 2 |    | 2  | 2  | 2  | 2   | 629 | _    | _    | -   | _   | ess | -   | _    | -   | -    | -    | _   | _   |    |
| 25.6 2 2 2 2 2 2 2 2 2 3 3 3 3 3                         | 21, 7   | _  | -  | _  | -  | _    | _  |    | -   | -  | _   | 3  | 3  | 3    | 3  | 3  | 3   | 3  | 3 |    | 3  | 3  | -  | -   | -   | 000  | -    | -   | 60  | -   | 00  | -    | 010 | -    | -    | _   | _   |    |
| 26.7                                                     | 25-6    | _  | _  | _  | _  | _    | -  | _  | -   | 2  | 2   | 2  | 2  | 2    | 2  | 2  | 3   | 3  | 3 | 3  | 3  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | _   | _   | -    | -   | _    | _    | _   | -   |    |
| 28.7 2 2 2 3 3 3 3 3 3 3                                 | 26.7    | -  | _  | _  | _  | _    | _  | _  | _   | _  | 900 | _  | _  | cue  |    | _  | 2   | 2  | 2 | _  | 2  | 2  | 2  | 2   | 2   | 2    | 2    | 2   | 2   | 2   | 2   | -    | _   | _    | -    |     | *** |    |
|                                                          | 28.7    | _  | _  | _  | _  | -    | _  | _  | _   | _  | _   | _  | -  | _    | -  | 2  | 2   | 2  | _ | _  | 3  | 3  | 3  | 3   | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 0139 | 863 | _    | _    | _   | -   |    |
| 20.60 2 2 2 2 2                                          | 30.6a   |    | _  | _  | _  | _    | _  | _  | _   | _  | _   | _  | _  | _    | _  | _  | 2   | 2  | 2 | 2  | 3  | 7  | 7  | 7   | 7   | 2    | 2    | 2   | 2   | 2   | 2   | 2    | 2   |      | _    | 100 | _   |    |

 $\underline{\text{Table 90b}}$  Coronal observations at Sacramento Peak, New Mexico ( $\underline{5303A}$ ), west limb

| Date                  |    |    |    | Deg | gree | 8 8 | out | h c | f t | he | so]           | ar  | equ         | nt  | OP  |           |          |            | Too |     | *************************************** |      | Deg  | ree     | 8 r | ort | h   | of t | the | 30] | lar | equ | nato | r   |    |     |    |
|-----------------------|----|----|----|-----|------|-----|-----|-----|-----|----|---------------|-----|-------------|-----|-----|-----------|----------|------------|-----|-----|-----------------------------------------|------|------|---------|-----|-----|-----|------|-----|-----|-----|-----|------|-----|----|-----|----|
| GCT                   | 90 | 85 | 80 | 75  | 70   | 65  | 60  | 55  | 50  | 45 | 40            | 35  | 30          | 25  | 20  | 15        | 10       | . 5        |     | 5   | 10                                      | 15   | 20   | 25      | 30  | 35  | 40  | 45   | 50  | 55  | 60  | 65  | 70   | 75  | 80 | 85  | 90 |
| 1951                  |    |    |    |     |      |     |     |     |     |    |               |     |             |     |     |           |          |            |     | F   |                                         |      |      |         |     |     |     |      |     |     |     |     |      |     |    |     |    |
| Aug. 3.0              | X  | Х  | X  | X   | X    | X   | . X | X   | X   | X  | qui           | 991 | $\vec{\to}$ | -   | 3   | 5         | 8        | 12         | 12  | 12  | 8                                       | 8    | X    | X       | X   | X   | X   | X    | X   | X   | X   | X   | X    | X   | X  | X   | X  |
| 4.8                   | -  | -  | -  | -   | _    | _   | -   | -   | _   | _  | -             | -   | ***         | 3   | 8   | 10        |          |            | 28  | 31  | 15                                      | 15   | 5    | 3       | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   | 3    | 3   | 3  | 3   | 3  |
| 5.6                   | -  | -  | -  | -   | -    | _   | _   | -   | -   | -  | -             | _   | -           | 3   | 3   | 8         | 12       |            | 25  | 28  |                                         | 15   | 12   | 8       | 5   | 5   | 3   | 3    | 3   | 3   | 3   | 3   | 3    | 3   | 3  | 3   | 3  |
| 6.7                   | -  | -  | _  | -   | -    | -   | -   | _   | _   | _  | -             | _   | _           | -   | 3   | 10        | 12       | 12         | 15  | 15  | 20                                      | 22   | 12   | 8       | 5   | 3   | . 3 | 3    | 3   | 5   | 5   | _ 5 | 5    | 3   | 3  | 3   | _  |
| 9.9a                  | -  | -  | -  | -   | -    | -   | -   | -   | _   | -  | $\rightarrow$ | _   | _           | -   | 3   | 3         | 3        | 3          | 5   | 10  | 12                                      | 13   | 15   | 15      | 8   | 3   | 3   | 3    | 5   | 8   | 10  | 10  | - 8  | . 5 | 3  | 3   |    |
| 10.7                  | -  | _  | -  | -   | _    | _   | _   | -   | _   | _  | -             | _   | _           | _   | _   | 8         | 8        | 8          | 10  | 12  | 15                                      | 17   | 17   | 12      | 12  | - 8 | . 5 | 5    | 5   | 12  | 12  | 15  | 15   | 12  | 8  | 5   | _  |
| 11.7                  | -  | -  | _  | _   | 3    | 3   | 3   | 3   | 3   | 3  | 3             | 3   | 3           | - 5 | - 5 | - 8       | - 8      | 8          | 10  | 20  |                                         | 38   | 35   | 27      | 20  | 15  | 12  | 8    | 5   | 5   | 12  | 15  | 17   | 15  | 10 | 3   | _  |
| 13.7                  | -  | -  | -  | 3   | 3    | 3   | 3   | 3   | 3   | 3  | 3             | 5   | 8           | 10  | 12  | 12        | 12       | 5          | 5   | 20  | 43                                      | 40   | 33   | 35      | 35  | 25  | 15  | 12   | . 5 | 5   | 8   | 12  | 13   | 14  | 13 | 8   | 3  |
| 14.7                  | -  | _  | _  | 3   | 3    | 3   | 5   | 5   | 3   | 3  | 3             | 3   | 5           | 8   | TO  | 7.5       | T.S.     | 14         | T.5 | 172 | 25                                      | 38   | 40   | 35      | 28  | 30  | 22  | 72   | 15  | 2   | 2   | 15  | 13   | 72  | T5 | TO  | 5  |
| 15.7                  | X  | X  | X  | X   | X    | X   | X   | X   | X   | X  | X             | Ä   | X           | . X | 20  | 27        | X        | 3]         | X   | 1 X | - X                                     | 22   | A.O. | X       | ı.  | 10  | 10  | ¥    | 5   | 5   | 2   | 0   | 0    | TO  | 5  | 2   | 3  |
| 17.6                  | -  | _  | _  | _   | 3    | 3   | ۲   | ۲   | 3   | 3  | 3             | کے  | TO          | ز⊥  | 12  | 31.<br>25 | 33<br>28 | 20         | 25  | 14  | T行                                      | . j⊥ | 20   | 20      | TO  | TO  | T 2 | 5    | 0   | 0   | 2   | 2   | 2    | 0   | 0  | 2   | 2  |
| 18.7                  | -  | _  | _  | 3   | 3    | 3   | 5   | >   | 3   | 2  | 3             | 3   | 2           | 0   | 72  | 1/1       | 20       | 20         | 12  | 8   | 7.0                                     | ı.   | A.   | 2 l.    | 10  | Α.  | Ā   | Y    | 2   | 2   | >   | >   | 0    | 0   | 0  | >   | )  |
| 19 <b>.9.</b><br>20.7 | -  | _  | _  | -   | _    | _   | -   | -   | _   | _  | ز             | 3   | 2           | 5   | 0   | 77        | 20       | 28         | 12  | 0   | TO                                      | T. C | 10   | 74      | 14  | TO  | 2   | 2    | 2   | 2   | 2   | 2   | 2    | 2   | 2  | 2   | 2  |
| 21.6                  | _  | _  | _  | _   | _    | _   | _   | _   | _   | 2  | 2             | 2   | 2           | 2   | 0   | 72        | 20       | 20         | 15  | 0   | 5                                       | 0    | 10   | 10      | TO  | TO  | 0   | 2    | 2   | 5   | 2   | 2   | 2    | 2   | 2  | 2   | 2  |
| 22.7                  |    | _  | _  | _   | _    | _   | - 2 | 2   | 2   | 2  | 2             | 2   | 2           | 2   | 2   | 2         | 2        | 2          | 2   | 12  | - 2                                     | 0    | 7.7  | A<br>T) | 0   | 2   | 2   | , v  | 2   | 2   | 2   | 2   | 2    | 2   | 2  | 2   | 2  |
| 24.6                  | _  | _  | _  | _   | Ξ    | _   | ر   | ر   | ر   | ر  | 5             | 2   | חו          | 10  | 77  | 15        | 22       | 15         | 12  | 12  | 70                                      | 2    | 10   | 12      | ٦Ē  | 7 6 | 12  | 3    | _   | Δ.  | Λ.  | Λ.  | Λ.   | Α.  | Λ. | . 2 | Δ. |
| 29.6                  |    | _  | _  | _   | _    | _   | 2   | _   | 2   | 2  | 2             | 3   | TO          | 12  | 12  | 15        | 20       | 22         | 20  | 15  | 15                                      | 12   | 70   | 7.7     | 72  | 72  | 75  | 3    | 3   | _   | _   | _   | _    | _   | _  | -   | _  |
| 30.9                  |    | _  | _  | _   | _    | _   | _   | _   | _   | _  | 2             | 5   | 7           | Ľ,  | 8   | 10        |          |            |     | 1-  |                                         | 12   | 10   | 8       | 5   | 5   | ٦   | 3    | _   | _   | _   | _   | _    | _   | _  | _   | -  |
|                       | _  | _  | _  | _   | _    | _   | _   | _   | _   | _  | 3             | 3   | 3           | 3   | 3   | 5         | 10       |            |     |     |                                         |      | 12   | 8       | . 5 | 3   | 3   | 3    | 3   | 3   | _   | _   | _    | _   | _  | _   | _  |
| 31.7                  | -  | _  | _  | _   | -    | _   | _   | _   | _   | _  | 3             | 3   | 3           | 3   | 3   | 5         | T0       | <b>T</b> 3 | 15  | 20  | 15                                      | 15   | T2   | 8       | 5   | 3   | 3   | 3    | 3   | 3   | _   | _   | _    | -   | -  | _   | _  |

Table 91a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

| Date                                    |                  |                            |             |                       |                  |                       |                       |                       |                       | he                    |                  |                       |                       |                       |             |                       |                                         |                        | 00                    |                         |                         |                         |                              |                               |                        |                   |                       |                   |                            |                  | lar              |                       |                       |                       |                       |                       |                       |
|-----------------------------------------|------------------|----------------------------|-------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-------------|-----------------------|-----------------------------------------|------------------------|-----------------------|-------------------------|-------------------------|-------------------------|------------------------------|-------------------------------|------------------------|-------------------|-----------------------|-------------------|----------------------------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| GCT                                     | 90               | 85                         | 80          | 75                    | 70               | 65                    | 60                    | 55                    | 50                    | 45                    | 40               | 35                    | 30                    | 25                    | 20          | 15                    | 10                                      | 5                      | L.                    | 5                       | 10                      | 15                      | 20                           | 25                            | 30                     | 35                | 40                    | 45                | 50                         | 55               | 60               | 65                    | 70                    | 75                    | 80                    | 85                    | 90                    |
| 1951                                    |                  |                            |             |                       |                  |                       |                       |                       |                       |                       |                  |                       |                       |                       |             |                       |                                         |                        |                       |                         |                         |                         |                              |                               |                        |                   |                       |                   |                            |                  |                  |                       |                       |                       |                       |                       |                       |
| Aug. 3.0   4.8   5.6   6.7   9.9   10.7 | X 2 2 2 2 2 2    | X<br>2<br>2<br>3<br>2<br>2 | X 2 2 3 2 3 | X 2 2 3 2 3           | X 2 2 3 2 2      | X 2 2 3 2 2           | X 2 2 3 - 2           | X 2 2 3 - 2           | X 2 2 2 2 2 2 2       | X 2 2 2 - 2           | X 2 2 2 - 2      | X 2 2 2 - 2           | X 2 2 2 2 2           | X 2                   | X 2         | X 2                   | X = = = = = = = = = = = = = = = = = = = | X 2                    | 3 1 1 1 3             |                         |                         | 15                      | 10<br>8<br>12<br>8<br>2<br>3 | 3<br>14<br>12<br>10<br>2<br>3 | 335323                 | 333523            | 332223                | 322223            | 323323                     | 323323           | 3223             | X 2 2 3 - 3           | X 2 2 4 - 3           | X 2 2 3 - 3           | X 2 2 3 - 3           | X 2 2 3 - 3           | X 2 2 3 - 3           |
| 11.7<br>13.7<br>14.7<br>15.7            | 2 2 2 2          | 3 2 2 2 2                  | 3 2 2 2 2 2 | 3<br>2<br>2<br>X<br>2 | 2<br>2<br>X<br>2 | 2<br>2<br>2<br>X<br>2 | 2<br>2<br>2<br>X<br>2 | 2<br>2<br>2<br>X<br>2 | 2<br>2<br>2<br>X<br>2 | 2<br>2<br>2<br>X<br>2 | 2<br>2<br>X<br>2 | 3<br>2<br>2<br>X<br>3 | 2<br>2<br>3<br>X<br>5 | 3<br>3<br>5<br>X<br>8 | 2 3 5 X 8   | 2<br>5<br>3<br>X<br>8 | 3<br>10<br>5<br>X<br>8                  | 8<br>3<br>8<br>X<br>5  | 5<br>3<br>3<br>X<br>2 | 52 Li X 8               | 3<br>10<br>5<br>X<br>15 | 3<br>15<br>8<br>X<br>12 | 3<br>10<br>20<br>X<br>5      | 3<br>15<br>22<br>X            | 3<br>8<br>15<br>X<br>8 | 3<br>5<br>X<br>10 | 3<br>2<br>3<br>X<br>8 | 3<br>3<br>3<br>8  | 3<br>3<br>3<br>3<br>8<br>5 | 535 x 3          | 353X3            | 3<br>3<br>3<br>8<br>8 | 3<br>3<br>3<br>X<br>3 | 2<br>3<br>2<br>X<br>3 | 2<br>3<br>2<br>X<br>3 | 2<br>3<br>2<br>X<br>3 | 3<br>2<br>2<br>X<br>3 |
| 18.7<br>19.9<br>20.7<br>21.6            | X<br>2<br>2      | 2 2                        | X<br>2<br>2 | X<br>-<br>2<br>2      | X<br>2<br>2      | X<br>2<br>2           | X<br>2<br>2           | X<br>-<br>2<br>2      | X<br>2<br>2           | X<br>2<br>2           | X<br>2<br>2<br>2 | X<br>2<br>2<br>2      | 2 2                   | X<br>2<br>2           | X<br>2<br>2 | X<br>3<br>2<br>2      | X<br>10<br>8<br>3                       | X<br>10<br>10          | X 8 5 5               | X<br>8<br>12<br>2       | X<br>3<br>2             | X<br>5<br>12            | X<br>5<br>3<br>12            | X 52 5                        | X<br>2<br>2            | X<br>3<br>5       | X 3 3 5 0             | X 3 3 3 1         | X<br>2<br>3                | X<br>2<br>2<br>2 | X<br>2<br>2<br>2 | 2 2 2                 | X<br>2<br>2<br>2      | X<br>2<br>2<br>2      | X<br>2<br>2<br>2      | 2 2 2                 | 2 2 2                 |
| 22.7<br>24.6<br>29.6<br>30.9            | X<br>2<br>2<br>2 | X 3 2 3 3                  | X 3 3 3 3   | X<br>3<br>3<br>3      | X<br>2<br>3<br>3 | X 2 3 3 3             | X 2 2 3 3             | X 2 2 3 2             | 2 2 2 2               | X<br>2<br>2<br>2      | X - 2 2 2        | X - 2 2 2             | X - 2 2 2             | X 3 3 3 2             | X 3 3 3 2   | X 3 3 2 3             | X<br>8<br>3<br>3                        | X<br>5<br>8<br>12<br>5 | 12<br>15<br>3         | X<br>3<br>13<br>12<br>5 | 12<br>8<br>2            | X 2 5 5 5               | X 3 5 3 4                    | X 3 5 5 5                     | X<br>3<br>3<br>3<br>2  | X<br>3<br>3<br>2  | 3832                  | 5<br>8<br>10<br>3 | 3 5 12 5                   | 33553            | 3 3 3 2          | 22533                 | 2 3 3 2               | 2 3 2 2               | 2 3 2 2               | 2 3 2 3               | 2 3 3 2 3             |

 $\frac{{\tt Table~92a}}{{\tt Coronal~observations~at~Sacramento~Peak,~New~M_{\tt exico}~(\underline{6702A}),~\underline{east~limb}}$ 

| Date         |    |               |    | Deg | ree | s r           | ort | h c  | f 1 | the | sol           | ar | equ | ato | T  |      | `  |   | 0   | į. |    |    | Deg           | ree | 8 8 | out | h c | of 1 | the | so. | lar | egt | a to          | T   |               |    |     |
|--------------|----|---------------|----|-----|-----|---------------|-----|------|-----|-----|---------------|----|-----|-----|----|------|----|---|-----|----|----|----|---------------|-----|-----|-----|-----|------|-----|-----|-----|-----|---------------|-----|---------------|----|-----|
| GCT          | 90 | 85            | 80 | 75  | 70  | 65            | 60  | 55   | 50  | 45  | 40            | 35 | 30  | 25  | 20 | 15   | 10 | 5 | 10- | 5  | 10 | 15 | 20            | 25  | 30  | 35  | 40  | 45   | 50  | 55  | 60  | 65  | 70            | 75  | 80            | 85 | 90  |
| 1951         |    |               |    |     |     |               |     |      |     |     |               |    |     |     |    |      |    |   |     |    |    |    |               |     |     |     |     |      |     |     |     |     |               |     |               |    |     |
| Aug. 3.0     | X  | X             | X  | X   | X   | X             | X   | X    | X   | X   | X             | X  | X   | X   | X  | X    | X  | X | 3   | 3  | 3  | 3  | 3             | 3   | 3   | 2   | 2   | 2    | 2   | 2   | 2   | X   | X             | X   | X             | X  | - 2 |
| 4.8          |    | -             | _  | _   | _   | -             | 450 | 100  | -   | -   | _             | _  | _   | -   | _  | _    | -  | - | 3   | 5  | 8  | 8  | 8             | 5   | 5   | 3   | 2   | 2    | 2   | 2   | -   | -   | _             | 400 |               | _  | -   |
| 5.6          | -  | _             | _  | _   | _   | _             | -   | _    | _   | -   | _             | _  | 2   | 2   | 2  | 2    | 2  | 2 | 2   | 2  | 3  | 5  | 5             | 5   | 3   | 3   | 2   | 2    | 049 | _   | _   | _   | _             | _   | _             | -  |     |
| 6.7          |    | _             | _  | _   | _   | _             | _   | _    | _   | _   | 2             | 2  | 2   | 2   | 2  | 2    | 2  | 2 | 2   | 2  | 3  | 3  | 3             | 5   | 3   | 2   | 2   | 2    | -   | _   | _   | _   | _             | -   | _             | -  |     |
| 9.9          | -  | -             | _  | 2   | 2   | 2             | 2   | 2    | 2   | 2   | 2             | 2  | 2   | 2   | 2  | 2    | 2  | 2 | 2   | -  | -  | _  | _             | _   | -   | _   | -   | -    | -   | -   | _   | -   | $\rightarrow$ | _   | -             |    |     |
| 10.7         | _  | _             | X  | . Х | X   | X             | X   | X    | 2   | 2   | 2             | 2  | 2   | 2   | 2  | X    | X  | X | X   | 2  | 2  | 2  | 2             | 2   | 2   | 2   | 2   | 2    |     | -   | _   | _   | _             | _   | _             | _  | ,   |
| 11.7         | -  | -             | _  | _   | -   | _             | -   | _    | _   | _   | 2             | 2  | 2   | 2   | 2  | 2    | 2  | _ | _   | -  | _  | -  | -             | _   | _   | _   | _   | -    | _   | _   | -   | _   | 2             | _   | _             | _  |     |
| 13.7         | _  | _             | _  | -   | -   | $\rightarrow$ | _   | _    | -   | _   | 2             | 2  | 2   | 2   | 2  | 2    | 2  | 2 | 2   | 3  | 3  | 3  | 3             | 3   | 2   | 2   | 2   | 2    | _   | _   | -   | _   | _             | _   | _             | _  |     |
| 14.7         | _  | $\rightarrow$ | _  | _   |     | _             | _   | _    | 000 | _   | _             | _  | -   | _   | _  | cost | -  | 2 | 2   | 2  | 2  | 3  | 3             | 3   | 3   | 2   | _   | _    | -   | _   | _   | _   | _             | -   | _             | _  |     |
| 15.7<br>17.6 | _  | _             | _  | X   | X   | X             | X   | X    | X   | X   | X             | X  | X   | X   | X  | X    | X  | X | X   | X  | X  | X  | X             | X   | X   | X   | X   | X    | X   | X   | X   | X   | Х             | X   | X             | X  |     |
| 17.6         | -  | _             | _  | _   | 400 | 010           | _   | _    | _   | 110 | 2             | 2  | 2   | 2   | 2  | 2    | 2  | 2 | 2   | 2  | 2  | 2  | 2             | 2   | 2   | 2   | -   | _    | _   | _   | _   | -   | _             | _   | _             | _  |     |
| 18.7         | X  | X             | X  | X   | X   | X             | X   | X    | X   | X   | X             | X  | X   | X   | X  | X    | X  | Х | X   | Х  | X  | Х  | X             | X   | X   | X   | X   | X    | X   | Х   | X   | X   | X             | X   | X             | X  | - 3 |
| 19.9         | _  | _             | _  | _   | _   | -             | _   | _    | _   | -   | $\rightarrow$ | _  | -   | _   | -  | _    | -  | _ | 2   | 2  | 2  | 2  | 2             | 2   | 2   | 2   | 2   | 2    | -   | _   | _   | _   | _             | -   | _             | _  |     |
| 20.7         | _  | $\rightarrow$ | _  | -   | _   | _             | -   | _    | _   | _   | _             | _  | 2   | 2   | 2  | 2    | 2  | 3 | 3   | 3  | 2  | 2  | _             | _   | -   | _   | _   | _    | _   | _   | _   | -   | -             | _   | _             | -  |     |
| 21.6         | -  | _             | _  | _   | _   | _             | -   | _    | 2   | 2   | 2             | 2  | 2   | 2   | 2  | 2    | 2  | 2 | 2   | 2  | 2  | 2  | $\rightarrow$ | -   | _   | _   | _   | -    | -   | _   | _   | _   | _             | _   | _             | _  | -   |
| 22.7         | X  | X             | X  | X   | Χ   | X             | X   | X    | X   | X   | X             | X  | X   | X   | X  | X    | X  | X | X   | X  | X  | X  | X             | X   | X   | X   | -   | _    | _   | -   | 010 | 400 | _             | _   | _             | -  |     |
| 24.6         | _  | _             | _  | _   | _   | _             | _   | -    | 2   | 2   | 2             | 2  | 2   | 2   | 2  | 3    | 3  | 3 | 3   | 3  | 2  | 2  | 2             | 2   | -   | -   | _   | _    | -   | -   | _   | _   |               | _   | $\rightarrow$ | _  |     |
| 29.6         | -  | _             | _  | 2   | 2   | 2             | 2   | 2    | 2   | 2   | 2             | 2  | 2   | 2   | 3  | 3    | 3  | 3 | 3   | 2  | 2  | 2  | 2             | 2   | 2   | -   | _   | -    | _   | _   | _   | 410 | _             | -   | -             | _  |     |
| 30.9         | -  | -             | _  | -   | _   | _             | _   | ero. | -   | -   | _             | _  | 2   | 2   | 2  | 2    | 3  | 3 | 3   | 3  | 3  | 3  | 3             | 3   | 3   | 2   | 2   | _    | _   | -   | _   | _   | _             | -   | -             | -  |     |
| 31.7         | _  | _             | _  | _   | _   | -             | _   | _    | -   | _   | _             | _  | _   | 2   | 2  | 2    | 2  | 3 | 3   | 3  | 3  | 3  | 3             | 3   | 2   | 2   | 2   | _    | _   | _   | _   | -   | _             | _   | _             | _  |     |

12110 .50

#### Coronal observations at a remento heak, M. M. o 374A), west

| t.e    |    |    |    |    |    |    |    |    |    | the |    |    |    |     |    |     |      |    | 00  |    |    |     | Deg  | gree | 9 n | ort | h c   | of t | he            | 30] | Lar |    | To |   |    |   |  |
|--------|----|----|----|----|----|----|----|----|----|-----|----|----|----|-----|----|-----|------|----|-----|----|----|-----|------|------|-----|-----|-------|------|---------------|-----|-----|----|----|---|----|---|--|
| CT     | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45  | 40 | 35 | 30 | 25  | 20 | 15  | 10   | 5  | 1   | 15 | 10 | 15  | 20   | 25   | 30  | 35  | 40    | 45   | 50            | 55  | 60  | 65 |    |   |    |   |  |
| 51     |    |    |    |    |    |    |    |    |    |     |    |    |    |     |    |     |      |    |     |    |    |     |      |      |     |     |       |      |               |     |     |    |    |   |    |   |  |
| g. 3.0 | Х  | X  | Х  | X  | X  | Х  | Х  | X  | Х  | X   | 3  | 3  | 3  | 3   | 3  | 3   | 8    | 10 | 15  | 15 | 3  | 3   | X    | X    | Х   | X   | X     | X    | X             | X   | Х   | X  |    |   |    | 8 |  |
| 4.8    | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 5  | 8  | 5   | 8  | - 5 | 1.0  | 12 | 12  | 15 | 10 | 8   | 5    | 5    | 8   | 8   | 5     | 3    | 2             | 2   | 2   | 2  | 8  |   | 2  |   |  |
| 5.6    | 2  | 2  | 2  | 3  | 3  | 2  | 2. | 2  | 2  | 3   | 3  | 3  | 5  | 8   | ã  | - 8 | 8    | 8  | 1 3 | 5  | 14 | 12  | 8    | 12   | 8   | 8   | 5     | 5    | 3             | 2   | 2   | 2  | 2  |   |    | 8 |  |
| 6.7    | 3  | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 2  | 3   | 3  | 3  | 3  | 3   | 2  | 3   |      | 3  |     | 3  | 14 | 3   | 3    | 2    | 3   | 3   | 5     | 3    | 3             | 3   | 2   | 2  | 2  | - |    |   |  |
| 9.9a   | _  | _  | 2  | 2  | 2  | -  | _  | _  | _  | -   | _  | _  | 2  | 2   | 2  | 2   |      | 2  | , 2 | 2  | 3  | 3   | 3    | 2    | -   | _   | _     | _    | _             | _   | _   | _  | _  | 2 |    | 2 |  |
| 10.7   | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 3   | 3  | 5  | 5  | 5   | 5  | 3   |      |    | 3   | 1  | 11 | 10  | 12   | 12   | _   | _   | _     | _    | _             | _   | _   | _  | 2  | 2 |    |   |  |
| 11.7   | .3 | 3  | 3  | 3  | 3  | 2  | 2  | 2  | 2  | 2   | 2  | 3  | 3  | 3   | 2  |     |      | -  |     |    | 15 | 5   | 8    | 12   | _   | _   | -     | _    | _             | _   | _   | _  | _  | 2 | i, | 3 |  |
| 13.7   | 2  | 2  | 2  | 2  | 2  | 3  | 3  | 2  | 2  | 2   | 2  | 5  | 3  | - 5 | 3  | 4   | 1900 | ^  |     | 16 | 20 | 10  | 8    | 8    | 3   | 2   | _     | _    | _             | _   | _   | _  | _  | _ | 2  |   |  |
| 14.7   | 2  | 3  | 2  | 2  | 2  | 2  | 2  | 3  | 3  | 2   | 2  | 3  | ,  | 5   |    |     | -    |    |     |    | 10 | 1,  | 1    | _5   | 3   | 3   | 3     | 2    | _             | _   | _   | _  | 2  | 2 | 2  | 2 |  |
| 15.7   | X  | X  | Х  | Χ  | X  | X  | X  | X  | Х  | X   | Х  | X  | Х  | X   |    |     | λ    |    |     | a. | X  |     |      |      |     | 4.  |       | X    | $\rightarrow$ | _   | _   | _  | _  | _ | 2  | 2 |  |
| 17.6   | 3  | 3  | 3  | 2  | 3  | 3  | 2  | 2  | 2  | 2   | 2  | 2  | 8  | 5   | 5  | 5   | 12   |    |     | EO |    | 15  | ~ 3  |      |     | 3   | 3     |      | 2             | 2   | 2   | 2  | 2  | 2 | 2  | 2 |  |
| 18.7   | Х  | Χ  | X  | Х  | X  | Χ  | Х  | Χ  | X  | X   | X  | X  | Х  | X   | X  | Z.  | X    | X  | X   | X  | X  | - A |      |      | 4.4 |     |       | V,   | X             | Y   | X   | X  | X  | X | X  | X |  |
| 19.9   | 2  | 2  | 2  | 2  | _  | _  | _  | _  | _  | -   | _  | 2  | 2  | 2   | 2  | - 8 | 10   | 20 | -8  | 3  | 2  | - 2 | 2    | 2    |     |     | 6/80- | -    |               | _   | -   | _  | _  | _ | _  | _ |  |
| 20.7   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 3  | - 5 | 12   | 18 |     |    | 2  | 2   |      | _    |     | `   | · .   | 2    | 3             |     | 3   | 3  | 2  | 2 | 2  | 2 |  |
| 21.6   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 3  | 3  | 3   | 3  | 3   | 10   | 12 | 12  | 5  |    |     | Aug. | 6    |     | -   |       | 2    | - 3           | 3   | 3   | 2  | 2  | 2 | 2  | 2 |  |
| 22.7   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 3  | 3   | 3  | 3  | 3  | 3   | 3  | 8   | 10   | 8  | 3   | -8 |    | X   | Υ    |      |     | X   |       |      | X             |     | X   | X  | X  | Y | Y  | Y |  |
| 24.6   | 3  | 3  | 2  | 2  | 3  | 3  | 2  | 2  | 2  | 2   | 3  | 3  | 2  | 2   | 10 | 12  | 12   | 8  | 30  | 5  |    | 3   |      |      |     |     |       | 2    | - 2           |     | 3   | 3  | 3  | 3 | 3  | 3 |  |
| 29.6   | 3  | 3  | 2  | 3  | 2  | 2  | 3  | 3  | 5  | 3   | 3  | 8  | 8  | 10  | 15 | 8   | C    | 10 | 12  | 2  |    | - 5 | 10   |      |     |     |       |      |               |     | 2   | ~  | 2  | 3 | 3  | 3 |  |
| 30.9   | 2  | 2  | 3  | 3  | 3  | 2  | 2  | 2  | 2  | 2   | 3  | 2  | 5  | 8   | 8  | 3   | 3    | 2! | 3   | 3  | 8  | - 6 | -5   |      |     |     | 7.1   |      | 3             |     |     | 2  | 3  | 3 | 3  | 3 |  |
| 31.7   | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 3  | 3   | 3  | 2   | 2    | 3  | 15  | h  | 3  | - 1 |      |      |     |     |       | 3    | 3             | 2   |     | 3  | 5  | 5 | 5  | 2 |  |

Table 02b

Coronal observations at Sacramento Peak, New Mexico (6702A), west Limb

| ha     |    |               |               | Deg | ree | 9 8           | sout | th o | of 1 | the | 90.           | ar            | 901 | 1ato | or |    |    |   | 00 | d   |    |    |      |   |     |     |               |      |               |     |     |      | uato |        |      |     |   |
|--------|----|---------------|---------------|-----|-----|---------------|------|------|------|-----|---------------|---------------|-----|------|----|----|----|---|----|-----|----|----|------|---|-----|-----|---------------|------|---------------|-----|-----|------|------|--------|------|-----|---|
| CT     | 90 | 85            | 80            | 75  | 70  | 65            | 60   | 55   | 50   | 45  | 40            | 35            | 30  | 25   | 20 | 15 | 10 | 5 |    | 5   | 10 | 15 | 20   |   |     | 35  | 40            | 4.5  | 50            | 55  | 60  | 65   | 70   | 75     | 80   | 85  | 5 |
| 51     |    |               |               |     |     |               |      |      |      |     |               |               |     |      |    |    |    |   |    |     |    |    |      |   |     |     |               |      |               |     |     |      |      |        |      |     |   |
| g. 3.0 | X  | Х             | X             | X   | X   | X             | Х    | Х    | X    | X   | 2             | 2             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | 2  | X    | X | X   | X   | y.            | X    | X             | X   | X   | X    | X    | Y      | y    | 7   |   |
| 4.8    | -  | -             | _             | -   | _   | _             | _    | -    | _    | _   | _             | -             | 40  | _    | -  | _  | 2  | 2 | 3  | i 3 | 3  | 2  | 2    | 2 | 2   | 2   | 60            | _    | _             | _   | _   | _    | 600  | _      |      | 27. |   |
| 5.6    | -  | _             | _             | _   | _   | -             | _    | _    | _    | -   | _             |               | _   | _    | _  | _  | _  | 2 | 2  | 3   | 2  | 2  | 2    | 2 | 2   | 2   | 2             | er.5 | pio           | -   | _   |      | -    | Willia | .000 | 60  |   |
| 6.7    | _  | _             | -             | _   | _   | -             | _    | _    | -    | -   | _             | _             | _   | _    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | 2  | 2    | 2 | 2   | 2   |               | cree | CIB           | 0.0 | _   | _    |      |        | 10.0 | 6-3 |   |
| 9.9a   | -  | _             | $\rightarrow$ | _   | _   | _             | -    | _    | _    | _   | _             | -             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | 2  | 2    | 2 | 2   | 2   | 2             | 2    | 2             | 2   | 2   | 2    | 2    | 2      | 2    | _   |   |
| 10.7   | -  | -             | X             | Х   | X   | _             | _    | _    | _    | -   | 2             | 2             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | 2  | 2    | 2 | 2   | 2   | 2             | 2    | 2             | 2   | 2   | 2    | 2    | 2      | 2    | 504 |   |
| 11.7   | -  | $\rightarrow$ | _             | -   | _   | -             | _    | _    | _    | _   | -             | $\rightarrow$ | _   | _    | 2  | 2  | 2  | 2 | 2  | 2   | 3  | 5  | 5    | 3 | 3   | 3   | 2             | 2    | 2             | 2   | 2   | 2    | 2    | 2      | 2    |     |   |
| 13.7   | _  | -             | _             | -   | -   | -             | -    | -    | _    | _   | _             | _             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 3   | 8  | 8  | 5    | 5 | 5   | 3   | 3             | 3    | 2             | 2   | 2   | 2    | 2    | 2      | 2    | 610 |   |
| 14.7   | -  | -             | -             | -   | _   | •             | -    | _    | _    | _   | _             | $\rightarrow$ | _   | 6:0  | 2  | 2  | 2  | 2 | 2  | 2   | 3  | 3  | 5    | 5 | 5   | 5   | 3             | 3    | 2             | 2   | 2   | 2    | 2    | 2      | 2    | 2   |   |
| 15.7   | X  | Х             | Х             | X   | X   | X             | X    | X    | X    | X   | Х             | X             | X   | X    | X  | X  | X  | X | X  | X   | X  | X  | X    | X | X   | X   | X             | X    | _             | _   | _   | -    | _    | 200    | _    | 963 |   |
| 17.6   | -  | -             | -             | _   | _   | 2             | 2    | 2    | 2    | 2   | 2             | 2             | 2   | 2    | 3  | 3  | 5  | 3 | 2  | 2   | 2  | 3  | 2    | 2 | 2   | 2   | 2             | 2    | _             | _   | _   | _    | 1000 | -      | c.20 | 6-0 |   |
| 18.7   | X  | X             | X             | Х   | X   | Х             | X    | Х    | Х    | X   | X             | X             | X   | X    | X  | X  | X  | X | X  | X   | X  | X  | X    | X | X   | X   | X             | X    | X             | X   | X   | X    | .X   | X      | X    | X   |   |
| 19.9   | _  | -             | -             | -   | -   | $\rightarrow$ | -    | _    |      | _   | _             | _             | 2   | 2    | 2  | 2  | 2  | > | 2  | 2   | 2  | 2  | 2    | 2 | 2   | 2   | 2             | 2    | 2             | 2   | 2   | 2    | 2    | _      | _    | _   |   |
| 20.7   | _  | _             | _             | -   | _   | -             | _    | _    | _    | -   | 2             | 2             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | 2  | 2    | 2 | _   | _   |               | _    | sitos         |     | -10 | -    | -    | _      | _    | _   |   |
| 21.6   | -  | _             | _             | -   | -   | -             | -    | _    | _    | -   | $\rightarrow$ | _             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | 2  | 2    | 2 | 2   | 2   | $\rightarrow$ | _    | _             | _   | _   | _    | _    | -      | _    | -   |   |
| 22.7   | -  | _             | _             | _   | _   | -             | _    | -    | -    | _   | _             | _             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | X  | X    | X | X   | Х   | X             | X    | X             | X   | χ   | X    | X    | X      | X    | X   |   |
| 24.6   | -  | -             | -             | -   | _   | -             | _    | -    | -    | _   | 2             | 2             | 2   | 2    | 3  | 3  | 3  | 3 | 2  | 2   | 2  | 2  | 2    | 2 | 963 | _   | _             | 640) | _             | _   | _   | _    | -    | -      | _    | _   |   |
| 29.6   | -  | -             | -             | -   | _   | _             | _    | _    | _    | -   | 2             | 2             | 2   | 2    | 2  | 2  | 2  | 2 | 2  | -   | _  | _  | _    |   | -   | -   | _             | -    | -03           | -   |     | 6073 | _    | _      | _    | _   |   |
| 30.9   | -  | -             | _             | -   | _   | -             | _    | -    | -    | _   | -             | _             | -   | _    | -  |    | -  | 2 | 2  | 2   | 2  | 2  | 2    | 2 | 5   | 2   | -             | -    | 860           | -   | _   | _    | -    | _      | -    | -   |   |
| 31.7   | _  | -             | -             | _   | _   | _             | -    | _    | _    | _   | _             | _             | _   | _    | 2  | 2  | 2  | 2 | 2  | 2   | 2  | _  | 46.0 | - | -   | 760 | _             | -    | $\rightarrow$ | _   | -   | -    | _    |        | _    | _   |   |

Table 93a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

| Date                                                                                                                                                                                |    |     |           | 1                | Deg | ree | s r | ort | th c                           | of 1 | the                                 | so                            | lar                                            | ea:                                                                          | uato                                           | or                                                                                                                                                                                   |                                                                                                                    |                                                                                                                                                      |                      | 00                                                                                                                                              | 1  |    |                                                                          | Des                                                                      | ree        | 98 8                                | out                                                 | h o                                           | f t                      | he                     | sol                  | Lar         | eat  | ato  | r                  |         |    |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------|------------------|-----|-----|-----|-----|--------------------------------|------|-------------------------------------|-------------------------------|------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----|----|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------------|------------------------|----------------------|-------------|------|------|--------------------|---------|----|----|
| GCT                                                                                                                                                                                 | 90 | 8 ( | 5 8       | 30 '             | 75  | 70  | 65  | 60  | 55                             | 50   | 45                                  | 40                            | 35                                             | 30                                                                           | 25                                             | 20                                                                                                                                                                                   | 15                                                                                                                 | 10                                                                                                                                                   | 5                    | 0                                                                                                                                               | 5  | 10 |                                                                          |                                                                          |            |                                     |                                                     |                                               |                          |                        |                      | 60          |      |      |                    | 80      | 85 | 90 |
| 1951<br>Sep. 1.6<br>2.7<br>4.7<br>5.7<br>6.7<br>9.8<br>10.7<br>11.9<br>12.6<br>13.7<br>17.7<br>18.7<br>19.7<br>20.7<br>21.8<br>22.7<br>23.8<br>24.7<br>25.7<br>25.7<br>26.9<br>30.9 |    | -   | 353333033 | 3 3 10 3 3 - 3 3 |     |     | 3   | 3   | 3 10 10 8 3 8 5 8 5 3 3 10 5 - | 33   | 38 - 5 - 1 - 1 - 1 - 888 3555585535 | 81238 - 3 888853508<br>108858 | 12 10 5 8 3 3 10 10 8 5 8 8 12 12 12 8 12 8 10 | 100<br>8 100<br>8 5<br>- 3<br>2 100<br>100 5<br>122 155 15<br>13 8 8 5<br>12 | 122 100 155 100 8 8 8 100 122 155 122 8 8 8 12 | 12<br>12<br>10<br>12<br>12<br>8<br>3<br>3<br>5<br>-<br>10<br>8<br>8<br>8<br>10<br>12<br>15<br>18<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 15<br>12<br>12<br>13<br>8<br>3<br>3<br>3<br>5<br>3<br>12<br>10<br>8<br>8<br>12<br>17<br>20<br>15<br>12<br>10<br>13 | 15<br>13<br>12<br>15<br>10<br>5<br>3<br>5<br>12<br>15<br>10<br>8<br>12<br>15<br>15<br>15<br>11<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | 17<br>15<br>15<br>12 | 12<br>20<br>15<br>15<br>8<br>15<br>5<br>20<br>35<br>20<br>12<br>8<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | 17 | 22 | 13<br>8<br>15<br>8<br>-<br>3<br>3<br>5<br>5<br>5<br>10<br>15<br>15<br>20 | 20<br>12<br>12<br>10<br>8<br>8<br>-<br>3<br>3<br>5<br>5<br>8<br>13<br>20 | 3528858855 | 335855550<br>150215533 - 3355821520 | 1515 10 5 3 10 8 17 10 5 3 3 3 3 5 5 5 5 5 10 21 10 | 100 8 5 3 5 3 8 5 5 3 3 - 1 - 3 3 3 3 3 5 8 0 | 8855353353311111 3333358 | 3333333333311111113353 | 2333333311311-113353 | 33333 - 3 1 | 3833 | 5533 | 353311111111113515 | 33333-3 |    |    |

| Date         |    |     |    | Deg | ree | s r | nort | h c | r t | he | 80. | lar | 0q1 | 1ato | T  |    |     |     | 100 |     |     |    | De | gre | 98 8 | sout | th c | of t | he | SO. | lar | equ | ato | r  |    |    |    |
|--------------|----|-----|----|-----|-----|-----|------|-----|-----|----|-----|-----|-----|------|----|----|-----|-----|-----|-----|-----|----|----|-----|------|------|------|------|----|-----|-----|-----|-----|----|----|----|----|
| GCT          | 90 | 85  | 80 | 75  | 70  | 65  | 60   | 55  | 50  | 45 | 40  | 35  | 30  | 25   | 20 | 15 | 10  | 5   | 7 0 | 5   | 10  | 15 | 20 | 25  | 30   | 35   | 40   | 45   | 50 | 55  | 60  | 65  | 70  | 75 | 80 | 85 | 90 |
| 1951         |    |     |    |     |     |     |      |     |     |    |     |     |     |      |    |    |     |     |     |     |     |    |    |     |      |      |      |      |    |     |     |     |     |    |    |    |    |
| Sep. 1.6     | 3  | 3   | 3  | 3   | 3   | 3   | 2    | 2   | 2   | 2  | 2   | 2   | 2   | 2    | 2  | 2  | 2   | . 5 | 3   | 5   | 12  | 3  | 5  | 5   | 2    | 2    | 3    | 5    | 8  | 5   | 3   | 3   | 3   | 2  | 2  | 2  | 2  |
| 2.7          | 3  | 3   | 3  | 3   | 3   | 3   | 3    | 2   | 3   | 3  | 2   | 2   | 2   | 3    | 2  | 2  | 2   | 2   | 12  | 15  | 5   | 20 | 5  | 3   | 4    | 3    | 2    | 2    | 3  | 3   | 3   | 3   | 3   | 3  | 2  | 2  | 2  |
| 4.7a         | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | .2  | 2    | 2  | 2  | 2   | 2   | 5   | 12  | 15  | 10 | 3  | 5   | 3    | 3    | 3    | 3    | 3  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 5•7          | 2  | 3   | 3  | 2   | 3   | 3   | 3    | 2   | 2   | 2  | 2   | 2   | 2   | 2    | 2  | 2  | 3   | 2   | 3   | 15  | 10  | 8  | 5  | 3   | 3    | 2    | 2    | 2    | 3  | 3   | 2   | 2   | 3   | 3  | 2  | 2  | 2  |
| 6.7a         | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 2   | 2    | 2  | 2  | 2   | 2   | 10  | 15  | 10  | 10 | 5  | 3   | 2    | 2    | 2    | 2    | 3  | 4   | 3   | 2   | 2   | 2  | 2  | 2  | 2  |
| 9.8          | 2  | . 2 | 2  | 2   | 2   | 2   | 3    | 3   | 3   | 2  | 2   | 3   | 3   | 3    | 5  | 8  | 10  | 10  | 10  | 5   | 15  | 12 | 20 | 12  | 20   | 3    | 2    | 2    | 3  | 5   | 3   | 3   | 3   | 2  | 2  | 2  | 2  |
| 10.7         | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 3   | 3   | 5   | 5    | 8  | 8  | 12  | 10  | 10  | 3   | 5   | 8  | 12 | 15  | 15   | 5    | 2    | 2    | 3  | 5   | 4   | 3   | 2   | 2  | 2  | -  | -  |
| 11.9a        | 3  | 2   | 2  | 2   | 3   | 3   | 2    | 3   | 2   | 2  | 2   | 3   | 3   | 8    | 10 | 5  | 5   | 8   | 12  | 5   | 5   | 3  | 2  | 15  | 12   | 15   | 5    | 2    | 5  | 3   | 3   | 3   | 2   | 2  | 2  | 2  | 2  |
| 12.6         | 3  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 3   | 3   | 3   | 5    | 5  | 3  | 3   | 12  | 8   | 3   | 8   | 2  | 3  | β   | 5    | 8    | 5    | 3    | 3  | 3   | 3   | 3   | 3   | 2  | 2  | 2  | 2  |
| 13.7         | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 3   | 3    | 3  | 2  | 2   | 2   | 3   | 3   | 3   | 3  | 2  | 3   | 3    | 5    | 3    | 5    | 3  | 3   | 3   | 3   | 2   | 2  | 2  | 2  | 2  |
| 15.7         | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 2   | 2    | 2  | 3  | _ 3 | _ 5 | 15  | 5   | _ 3 | 5  | 3  | 3   | 2    | 2    | 5    | 5    | 3  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 17.7         | 3  | 3   | 3  | 3   | 3   | 3   | 3    | 2   | 2   | 2  | 2   | 2   | 2   | 2    | 3  | 8  | 10  | 15  | 20  | 15  | 12  | 5  | 5  | 8   | 8    | 10   | 5    | 3    | 3  | 3   | 3   | 3   | 3   | 3  | 3  | 3  | 5  |
| 18.7         | 5  | 3   | 3  | 3   | 3   | 2   | 2    | 2   | ,-  | _  | -   | _   | _   | _    | _  | _  | 2   | 12  | 8   | 8   | 5   | 3  | 3  | 5   | 5    | 5    | 5    | 5    | 5  | 5   | 3   | 3   | 2.  | 2  | 2  | 2  | 3  |
| 19.7a        | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | _   | _  | -   | -   | -   | scap | 2  | 2  | 2   | 2   | 2   | 2   | 2   | 2  | 3  | 3   | 3    | 3    | 5    | 3    | 3  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 20.7         | -  | _   | _  | _   | _   | _   | _    | _   | _   | _  | _   | _   | -   | _    | 2  | 2  | 2   | 2   | 2   | 2   | 2   | 2  | 2  | 2   | 3    | 3    | 3    | 3    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 21.8         | 2  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 2   | 2    | 2  | خ  | 3   | 2   | 2   | 2   | 2   | 2  | 2  | 3   | 3    | 2    | 2    | 2    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 22.7         | 2  | 2   | 2  | 2   | 2   | 2   | _    | _   | _   | _  | *** | _   | _   | _    | 2  | 2  | 2   | 2   | 2   | 2   | 2   | 2  | 2  | 2   | 2    | 3    | 3    | 2    | 2  | <   | 2   |     | 2   | 2  | 2  | 2  | 2  |
| 23.8         | 2  | 2   | 2  | 2   | 2   | . 2 | 2    | 2   |     | _  |     | _   | 2   | 3    | 3  | 3  | 3   | 2   | 3   | 3   |     |    | 2  | 2   | 2    | 3    | 3    | 2    | 2  | _   | - : | ÷ — | -   | _  | -  | _  | 2  |
| 24.7         | 2  | 3   | 3  | 3   | 3   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 2   | 5    | 3  | 3  | 3   | ٥   | 3   | 2   | 12  | 12 | 3  | 2   | 2    | 3    | 5    | 2    | 2  | 2   | 2   | _   | _   | _  | _  | _  | _  |
| 25•7<br>26•9 | 2  | 3   | 3  | 3   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 3   | 3    | 5  | 3  | 3   | 8   | 3   | 8   | 17  | 12 | 3  | 4   | 3    | 5    | 8    | 8    | 5  | 3   | 3   | 3   | 3   | 3  | 3  | 3  | 3  |
| 27.7         | 3  | 2   | 2  | 2   | 2   | 2   | 2    | 2   | 2   | 2  | 2   | 2   | 2   | Ş    | 3  | 2  | 2   | 2   | 2   | 2   |     | 15 | ٥  | 3   | 3    | 3    | 4    | 3    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 28.8         | 3  | 3   | 3  | 3   | 3   | 3   | 2    | 2   | 2   | 2  | 2   | 3   | 3   | 2    | 3  | 3  | 2   | 8   | 10  | 3   | 8   |    | 3  | 4   | 2    | 3    | 5    | 2    | 3  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 2  |
| 30.9         | 3  | 3   | 2  | 2   | 2   | 2   | 3    | 2   | 3   | 3  | 3   | 1,  | 3   | . 2  | 4  | 3  | 3   | 3   | 15  | 20  | 2   | 2  | 3  | 3   | 3    | 3    | 2    | 2    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 3  | 3  |
| 500)         | )  | )   | )  | )   | )   | )   | )    | )   | )   | )  | )   | 4   | )   | )    | )  | )  | )   | )   | 1-7 | 120 | )   | )  | )  | )   | )    | )    | _    | _    | _  | _   | _   | _   | 4   | -  | -  | ,  | _  |

Table 93b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

| Date         | ,   |    |    | Deg | ree | 9 9 | out | h c | ſ t | he | sol | ar  | eq | uat | 01°        |     |     |    | م  |     |          |    |     | ree |         |     |     |     |    |    |    |    |     |         |    |         |    |
|--------------|-----|----|----|-----|-----|-----|-----|-----|-----|----|-----|-----|----|-----|------------|-----|-----|----|----|-----|----------|----|-----|-----|---------|-----|-----|-----|----|----|----|----|-----|---------|----|---------|----|
| GCT          | 90  | 85 | 80 | 75  | 70  | 65  | 60  | 55  | 50  | 45 | 40  | 35  | 30 | 25  | 20         | 15  | 10  | 5  | Ľ  | 5   | 10       | 15 | 20  | 25  | 30      | 35  | 40  | 45  | 50 | 55 | 60 | 65 | 70  | 75      | 80 | 85      | 90 |
| 1951         |     |    |    |     |     |     |     |     |     |    |     |     |    |     |            |     |     |    |    |     |          |    |     |     |         |     |     |     |    |    |    |    |     |         |    |         |    |
| Sep. 1.6     | ĺ – | -  | -  | -   | -   | -   | _   | -   | _   | -  | -   | -   | 3  | 3   | 3          | 5   | 8   | 12 | 13 | 18  | 25       | 28 | 15  | 10  | 8       | 5   | 3   | 3   | 5  | 3  | 3  | _  | -   | -       | _  | -       | -  |
| 2.7          | -   | -  | _  | -   | -   | -   | _   | -   | _   | -  | -   | 3.  | 3  | 3   | 5          | 5   | 12  | 15 | 15 | 20  | 25       | 33 | 15  | 12  | 8       | 8   | 5   | 3   | 5  | 5  | 3  | 2  | 2   | -       | _  | -       | -  |
| 4.7a         | -   | -  | _  | _   | -   | -   | -   | -   | _   | _  | _   | 3   | 3  | 3   | 3          | 5   | 8   | 10 | 12 | 10  | 15       | 20 | 15  | 13, |         | 8   | 5   | 5   | 5  | 8  | 10 | 8  | _ 5 | 5       | 3  | 3       | _  |
| 5-7          | -   | -  | _  | _   | -   | _   | _   | -   | 3   | 3  | 3   | 5   | 5  | - 8 | 8          | 8   | 8   | 8  | 10 | 12  | 13       | 12 |     | 13  | 10      | 8   | 5   | 5   | 8  | 10 | 10 | 10 | 10  | _ 5     | 3  | 3       | _  |
| 6.7a         | -   | _  | -  | _   | -   | -   | _   | -   | _   | -  | _   | _   | 3  | _ 3 | _ 3        | _ 3 | _ 3 | 5  | 8  | 15  | 15       | 15 | 18  |     | 12      | 10  | - 8 | - 5 | 5  | 5  | 8  | 10 | 10  | 10      | _5 | _ 3     | _  |
| 9.8          | -   | -  | _  | -   | 3   | 3   | 3   | 3   | 3   | 3  | 5   | 8   | 8  | 10  | 12         | 12  | 10  | 8  | 10 | 15  | 28       | 33 | 33  | 31  | 25      | 15  | 15  | 12  | 8  | 5  | 8  | TO | 12  | 15      | 15 | 12      | 3  |
| 10.7         | -   | -  | 3  | 3   | 3   | 3   | 3   | 5   | 3   | 3  | 3   | 3   | 5  | - 8 | 78         | - 8 | TO  | 78 | 10 | 15  | 18       | 20 | 25  | T3  | 15      | 12  | 12  | 12  | 10 | 2  | ż  | ğ  | ğ   | 10<br>8 | 12 | 5       | 3  |
| 11.9a        | _   | -  | _  | 3   | 3   | 3   | 5   | 5   | 2   | 2  | 2   | 2   | 0  | 12  | 7.7<br>7.7 | 75  | 13  | 15 | 15 | 12  | 20       | 20 | 25  | 20  | 20<br>a | 10  | 15  |     | 12 | 8  | 2  | 2  | 70  | 7.2     | 75 | Ω       | 2  |
| 12.6         | -   | -  | -  | -   | 3   | 3   | 5   | 2   | 2   | 5  | 2   | 2   | 0  | 12  | 15         | 15  | 20  | 72 | 15 | 20  | 25<br>18 | 20 | 75  | 1/  | 0       | 2   | 72  | 75  | 75 | 5  | 2  | .0 | TO  | T       | 5  | 5       | 2  |
| 13.7         | _   | _  | _  | _   | _   | -   | _   | 3   | 3   | 3  | 3   | ځ   | ٥  | 0   | TO         | 72  | 28  | 31 | 15 | 117 | T0       | 20 | 70  | 10  | 7.7     | 2   | 2   | 2   | 2  | 2  | 5  | 2  | 2   | 2       | 2  | 2       | 2  |
| 15.7         | -   | _  | _  | -   | _   | _   | _   | _   | _   | 3  | ٥   | 2 2 | 12 | 7.2 | 12         | 20  | 20  | 15 | 25 | 25  | 12       | 12 | 12  | 13  | 10      | 10  | 0   | 2   | 2  | 2  | 2  | 2  | 3   | 2       | 5  | 2       | 2  |
| 17.7         | _   | -  | 3  | 3   | 2   | 2   | 2   | 2   | 2   | 0  | 2   | 75  | 10 | 72  | Τς         | 8   | 8   | 10 | 12 | 20  | 17       | 15 | 15  | 15  | 17      | 10  | ファ  | 2   | 2  | _  | _  |    |     | )       | 3  | 2       | ر  |
| 18.7<br>19.7 | 7   | _  | _  | _   | 3   | 2   | ر   | 2   | 2   | ٥  | 2   | Ľ   | ŦÜ | g   | g          | 10  | 10  | 10 | 10 | 12  | 15       | 15 | 15  | -   | 15      | 12  | 12  | Ω   | 2  | _  | _  |    | _   | _       | )  | - 3     | )  |
| 20.7         | _   | _  | _  | _   | _   | )   | 2   | 2   | _   | 2  | 2   | 2   | 2  | 8   | 8          | 10  | 10  | 8  | 8  | 12  |          | 10 | 15  | 15  | 10      | 3   | 8   | 5   | 2  | 2  | _  | _  | _   | _       | _  | _       | _  |
| 21.8         | _   | _  | _  |     | _   | _   | _   | 2   | -   | ~  | 0   | Ω   | 2  | 8   | 7.0        | 12  |     | 12 | 10 | 15  | 20       | 28 | 71. | ノー  | 10      | 0   | 0   | 2   | 2  | _  |    |    | _   | _       | _  | _       | _  |
| 22.7a        | _   | _  | _  | _   | _   | _   | _   | 2   | 5   | 2  | 2   | 8   | 2  | 70  | 12         | 15  |     | 12 | 10 | 18  | 22       | 18 | 15  | 10  | 10      | 8   | 0   | 2   | 2  | 2  | _  | _  | -   | _       | _  | _       | _  |
| 23.8         |     | _  | _  | _   | _   | _   | _   | _   | 2   | 2  | 2   | Ę   | 10 | 12  | 12         | 15  | 18  | 18 | 12 | 12  | 7.2      | 10 | Z)  | .5  | 70      | -10 | 2   | 2   | ر  | 2  | _  |    | _   | _       | _  | _       | _  |
| 23.8<br>24.7 | _   | _  | _  | _   | _   | _   | _   | _   | _   | _  | 2   | 2   | B  | 8   | 10         | 10  | 12  | 15 | 12 | 10  | 12       | 8  | ž   | 5   | 2       | 2   | - 2 | 2   | 3  | 2  | _  | _  | _   | _       | _  |         | _  |
| 25.7         | _   | _  | -  | -   | _   | _   | -   | _   | 3   | 3  | á   | á   | 8  | 10  | 12         | 13  | 15  | 20 | 20 | 15  | 15       | 18 | 32  | 73  | 72      | =   | 3   | 3   | _  |    | _  | 7  | -   |         | =  | _       |    |
| 26.9         | -   | _  | -  | _   | -   | _   | _   | -   | -   | _  | _   | -   | ٦  | 3   | 7          | 7   | 8   | 12 | 15 | 15  | 15       | 15 | 17  | 15  | 10      | 7   | 7   | 7   |    | _  | -  | 82 | _   | _       | _  | _       | _  |
| 27.7         | _   | _  | _  | _   | -   | -   | _   | _   | _   | _  | _   | 3   | 3  | 3   | 5          | 8   | 10  |    | 15 | 22  | 20       | 28 | 28  | 15  | 13      | 12  | 5   | 3   | 3  | 3  | _  | _  | _   | -       | _  | _       | _  |
| 28.8         | -   | _  | 95 | -   | _   | _   | _   | _   | _   | _  | _   | _   | 3  | 3   | 3          | 5   | 8   | 10 | 12 | 12  | 17       | 17 | 17  | 11  | 10      | 8   | 2   | 3   | _  | _  | _  |    | -   | -       | _  | <u></u> | _  |
| 30.9         | -   | _  | _  | _   | -   | _   | _   | _   | -   | _  | -   | -   | _  | _   | 3          | 5   | 8   | 10 | 13 |     | 25       | 28 | 22  | 30  | 8       | 5   | 3   | 3   | 3  | 3  | 3  | 3  | 3   | -       | _  | 100     | -  |

 $\underline{\text{Table 94b}}$  Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

|          |    |    |     |           |     |            |           |             |    |    | _   |    |     |      |    |    |    |     |     | ÷      |     |    |     |    |    | -  |    |    |     |    |    |    |     |    |    |     |     |
|----------|----|----|-----|-----------|-----|------------|-----------|-------------|----|----|-----|----|-----|------|----|----|----|-----|-----|--------|-----|----|-----|----|----|----|----|----|-----|----|----|----|-----|----|----|-----|-----|
| Date     |    |    |     | Deg       | ree | <u>s</u> s | out       | h o         | ft | he | sol | ar | эqи | u to | r  |    |    |     | 109 | يـــاد |     |    |     |    |    |    |    |    |     |    |    |    | uto |    |    | A   |     |
|          | 90 | 85 | 80  | <u>75</u> | 70  | <u>65</u>  | <u>60</u> | <u>55</u> _ | 50 | 45 | 40  | 35 | 30  | 25   | 20 | 15 | 10 | . 5 | L   | 5      | 10  | 15 | 20  | 25 | 30 | 35 | 40 | 45 | 50_ | 55 | 60 | 65 | 70  | 75 | 80 | 85_ | 90. |
| 1951     |    |    |     |           |     |            |           |             |    |    |     |    |     |      |    |    |    |     |     |        |     |    |     |    |    |    |    |    |     |    |    |    |     |    |    |     | ,   |
| Sep. 1.6 | 2  | 3  | 3   | 3         | 3   | 3          | 2         | 3           | 2  | 2  | 3   | 5  | 3   | 3    | 4  | 3  | 2  | 3   | 8   | 15     | 5   | 12 | 2   | 2  | 3  | 3  | 5  | 3  | 2   | 2  | 2  | 2  | 3   | 3  | 3  | 3   | 3   |
| 2.7      | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 5  | 3   | 3    | 3  | 3  | 3  | 8   | 10  | 3      | 18  | 2  | 12  | 2  | 2  | 3  | 3  | 3  | 3   | 3  | 3  | 3  | 3   | 3  | 3  | 3   | 3   |
| 4.7a     | 2  | .2 | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 5  | 5   | 3    | 3  | 2  | 2  | 2   | 3   | 3      | 5   | 3  | 3   | 3  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 5.7      | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 3  | 3   | 3    | 2  | 2  | 3  | 3   | 2   | 3      | . 3 | 3  | . 3 | 3  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 6.7a     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 3  | 5   | 14   | 4  | 3  | 3  | 3   | 3   | 3      | 3   | 3  | 5   | 12 | 3  | -  | _  | _  | _   | -  | _  | -  | _   | 2  | 2  | 2   | 2   |
| 9.8      | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 8   | 5  | 5   | 5    | 3  | 2  | 2  | 2   | 2   | 3      | . 3 | 8  | 14  | 3  | 3  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 10.7     | -  | _  | -   | _         | _   | _          | _         | _           | -  | _  | 2   | 3  | 3   | 3    | 2  | 2  | 2  | 2   | 2   | 2      | 3   | 1  | . 3 | 3  | 2  | 2  | -  | -  | -   | _  | _  | -  | _   | -  | _  | 2   | 2   |
| 11.9a    | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 5  | 5   | 5    | 5  | 2  | 2  | 2   | 15  | 10     | 5   | 10 | 3   | 3  | 2  | 3  | 3  | 2  | _   | _  | -  | -  | 2   | 2  | 2  | 2   | 3   |
| 12.6     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 5  | 3   | 3    | 5  | 5  | 2  | 2   | 15  | 2      | 3   | 12 | 3   | 2  | 2  | 3  | _  | -  | -   | -  | -  | _  | 2   | 2  | 2  | 3   | 3   |
| 13.7     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 2   | 2  | 2   | 2    | 2  | 8  | 3  | 2   | 10  | 2      | 2   | 10 | 5   | 2  | 2  | 3  | 3  | 3  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 15.7     | 2  | 2  | 2 . | . 2       | 2   | 2          | 2         | 2           | 2  | 2  | 2   | 2  | 2   | 2    | 2  | 8  | 3  | 12  | 3   | 12     | 2   | 3  | 3   | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 72  | 2   |
| 17.7     | 5  | 5  | 5   | 3         | 3   | 3          | 3         | 3           | 3  | 3  | 3   | 3  | 3   | 3    | 3  | 3  | 5  | 5   | 3   | 3      | 2   | 2  | 2   | 2  | 3  | 3  | 3  | 3  | 5   | 3  | 5  | 5  | 3   | 3  | 3  | 3   | 3   |
| 18.7     | 3  | 3  | 3   | 2         | 2   | 2          | 3         | 3           | 5  | 3  | 3   | 3  | 3   | 3    | 3  | 3  | 5  | 8   | 5   | 12     | 5   | 3  | 2   | 3  | 3  | 5  | 3  | 3  | 5   | 3  | 3  | 3  | 3   | 3  | 3  | 3   | 5   |
| 19.7     | 2  | 3  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 2   | 2  | 2   | 2    | 3  | 3  | 3  | 3   | 3   | 8      | 12  | 3  | 3   | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 3   | 2   |
| 20.7     | 2  | 2  | 2   | 2         | 2   | 2          | _         | _           | _  | _  | -   | _  | -   | 2    | 3  | 5  | 3  | 2   | 2   | 8      | 5   | 3  | 3   | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | _  | _   | _  | -  | _   | _   |
| 21.8     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 2  | 2   | 2    | 2  | 20 | 12 | 5   | 2   | 8      | 15  | 17 | 10  | 8  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 22.7     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 2   | 2  | 2   | 2    | 2  | 18 | 13 | 8   | 3   | 5      | 12  | 18 | 10  | 5  | 3  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 23.8     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 2   | 2  | 3   | 3    | 10 | 5  | 11 | 10  | 15  | 8      | 10  | 12 | 15  | 5  | 3  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 5   |
| 24.7     | -  | _  | -   | _         | _   | _          | -         | _           | _  | -  | 2   | 2  | 2   | 2    | 2  | 3  | 3  | -5  | 13  | 3      | -8  | 10 | -3  | 3  | 3  | 3  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 5   |
| 25.7     | 3  | 3  | 3   | 3         | 3   | 3          | 3         | 3           | 3  | 5  | 5   | 5  | 8   | 18   | 8  | 3  | 3  | IÓ  | 8   | 3      | 10  | 18 | 12  | 5  | 5  | 5  | 3  | 2  | 2   | 2  | 2  | 2  | 2   | 2  | 2  | 2   | 2   |
| 26.9     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 2  | 3  | Ś   | ź  | 5   | 5    | 8  | g  | 3  | 3   | 5   | 3      | 3   | 12 | 12  | 10 | 8  | 15 | 8  | 2  | 2   | 2  | 2  | 2  | 3   | 3  | 3  | 3   | 3   |
| 27.7     | 2  | 2  | 2   | 2         | 3   | 3          | 3         | 3           | 2  | 2  | 8   | 8  | 8   | 10   | 8  | 5  | 3  | 3   | 3   | 12     | 3   | 12 | 5   | 10 | 5  | 8  | 3  | 2  | 3   | 2  | 2  | 2  | 3   | 3  | 3  | 3   | 3   |
| 28.8     | 2  | 2  | 2   | 2         | 2   | 2          | 2         | 2           | 3  | 3  | 5   | 5  | 5   | 8    | 5  | 5  | 3  | 3   | 2   | 15     | 20  | 13 | 12  | 15 | 10 | 3  | 5  | 3  | 2   | 2  | 2  | 2  | 3   | 3  | 3  | 3   | 3   |
| 30.9     | 3  | 3  | 3   | 2         | 2   | 2          | 2         | 2           | 2  | 2  | 3   | 3  | 3   | 3    | 3  | 3  | 3  | 8   | 3   | 2      |     |    | 8   | 8  | 3  | 3  | 5  | 8  | 5   | 3  | 2  | 2  | 2   | 2  | 3  | 3   | 3   |
|          |    |    |     |           |     |            |           |             |    |    |     |    | _   |      |    |    |    |     |     |        |     |    |     |    |    |    |    |    |     |    |    |    |     |    |    |     |     |

Table 95a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

| Date     |     |      |     |    |      |     |    |     |    | the |     |     |     |    |    |     |     |   | 00 |    |    |    | Deg | ree | 8 8 | sout | th o | of ' | the | so. | lar | eqi | ua t | or |    |    |    |
|----------|-----|------|-----|----|------|-----|----|-----|----|-----|-----|-----|-----|----|----|-----|-----|---|----|----|----|----|-----|-----|-----|------|------|------|-----|-----|-----|-----|------|----|----|----|----|
| GCT      | 90  | 85   | 80  | 75 | 70   | 65  | 60 | 55  | 50 | 45  | 40  | 35  | 30  | 25 | 20 | 15  | 10  | 5 | ľ  | 5  | 10 | 15 | 20  | 25  | 30  | 35   | 40   | 45   | 50  | 55  | 60  | 65  | 70   | 75 | 80 | 85 | 90 |
| 1951     |     |      |     |    |      |     |    |     |    |     |     |     |     |    |    |     |     |   |    | -  |    |    |     |     |     |      |      |      |     |     |     |     |      |    |    |    |    |
| Sep. 1.6 | -   | _    | _   | _  | -    |     | _  | _   | _  | _   | _   | -   | _   | _  | 2  | 2   | 2   | 2 | 2  | 2  | 3  | 4  | 3   | 3   | 3   | 2    | 2    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 2.7      | -   | _    | _   | _  | _    | _   | -  | _   | _  | _   | _   | _   | _   | _  | _  | -   | 2   | 2 | 3  | 3  | 3  | 3  | 3   | 2   | 2   | 2    | 2    | _    | _   | _   | _   | _   | _    | _  | -  | _  | _  |
| 4.7a     |     | _    | _   | -  | _    | -   | _  | -   | _  | -   | _   | _   | -   | -  | -  | 2   | 2   | 2 | 3  | 3  | 3  | 3  | 2   | 2   | 2   | _    | _    | _    | -   | _   | _   | _   | _    | _  | _  | -  | -  |
| 5.7      | -   | _    | _   | _  | _    | _   | _  | _   | _  | -   | _   | _   | _   | _  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | _    | _    | _   | _   | _   | -   | -    | _  | _  | _  | _  |
| 6.7a     | -   | _    | _   | _  | _    | -   | _  | _   | _  | _   | -   | 400 | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | -    | -    | _   | _   | _   | _   | _    | _  | -  | _  | -  |
| 9.8      | _   | _    | _   | _  | -    | _   | _  | _   | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 4  | 4  | 4  | 3   | 5   | 3   | 2    | 2    | 2    | _   | _   | _   | _   | -    | _  | _  | _  | _  |
| 10.7     | -   | _    | -   | -  | _    | _   | _  | _   | _  | _   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 3  | 3   | 3   | 2   | 2    | -    | _    | _   | -   | -   | _   | -    | _  | _  | _  | _  |
| 11.9a    | -   | _    | _   | _  | -    | _   | -  | 660 | -  | _   | _   | _   | _   | _  | _  | 460 | 60  | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | 2    | 2    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 12.6     | -   | -    | _   | _  | _    | _   | -  | _   | -  | _   | 680 | _   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | -   | _    | _    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 13.7     | -   | _    | -   | _  | _    | _   | _  | _   | _  | _   | _   | _   | 900 | -  | _  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | 2    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 15.7     | -   | _    | _   | _  | _    | _   | -  | _   | _  | _   | -   | _   | _   |    | -  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | _   | _   | _   | _    | _    | _    | _   | _   |     | _   | _    | _  | _  | _  | _  |
| 17.7     | -   | -    | _   | _  | -    | _   | _  | _   | _  | _   | _   | _   | _   | _  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | _    | _    | _   | _   | _   |     | _    | _  | _  | _  | _  |
| 18.7     | -   | _    | _   | _  | _    | _   | _  | _   | _  | _   | _   | -   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | -   | _   | _   | _    | _    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 19.7 a   | _   | _    | -   | _  | _    | _   | _  | _   | _  | _   | -   | _   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | _   | _   | _   | _    | _    | _    | _   | _   | _   | -   | _    | _  | _  | _  | _  |
| 20.7     | -   | come | _   | _  | _    | _   | _  | _   | _  | _   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | -    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 21.8     | -   | _    | _   | _  | _    | _   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2  | 3  | 3   | 3 - | 3 | 3  | 2  | 2  | 2  | 2   | _   | _   | _    | _    | _    | _   | _   | _   |     |      |    |    |    |    |
| 22.7a    | -   | _    | _   | _  | _    | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2   | 2  | 3  | 3   | 3   | 3 | 12 | 12 | 2  | 2  | 2   | 2   | 2   | _    | _    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 23.8     | -   | 670  | _   | _  | _    | _   | 2  | 2   | 2  | 2   | 2   | 2   | 3   | 3  | 3  | 3   | 3   | 3 | 3  | 12 | 2  | 2  | 2   | 2   | 2   | 2    | _    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 24.7     | -   | _    | 440 | _  | -    | 800 | 2  | 2   | 2  | 2   | 2   | 2   | 3   | 3  | 3  | 3   | 3   | 3 | 13 | 3  | 2  | 2  | 2   | 2   | _   | 807  | _    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 25.7     | 840 | _    | -   | _  | /    | _   | _  | one | 2  | 2   | 2   | 2   | 2   | 3  | 3  | 3   | 3   | 3 | 13 | 13 | 3  | 3  | 2   | 2   | 2   | 2    | 2    | _    | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 26.9     | 959 | _    | -   | 2  | 2    | 2   | 2  | 2   | 2  | 2   | 2   | 3   | 3   | 3  | 3  | 3   | 3   | 3 | 13 | 12 | 2  | 2  | 2   | 2   | 2   | 2    | 2    | 2    | 2   | _   | _   | _   | _    | _  | _  | _  | _  |
| 27.7     | _   | _    | _   | -  | _    | _   | _  | esc | _  | -   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 3 | 13 | 3  | 3  | 3  | 3   | 2   | 2   | 2    | _    | _    | _   | _   | _   | _   | _    | _  | _  | _  |    |
| 28.8     | -   | _    | _   | -  | 0.79 | _   | _  | _   | _  | -   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 12 | 2  | 2  | 2   | 2   | 2   | 2    | 2    |      | _   | _   | _   | _   | _    | _  | _  | _  | _  |
| 30.9     | -   | _    | -   | _  | _    | _   | _  | -   | _  | _   | 2   | 2   | 2   | 2  | 2  | 2   | 2   | 2 | 2  | 2  | 2  | 2  | 2   | 2   | 2   | 2    | 2    |      | _   |     | _   | _   | _    | _  | _  | _  | _  |

Table 95b

Coronal observations at Macramento Poal, New Mexico (6702A), west limb

| Date     |    | _  |    | Dea | ree | 98 | sou | th  | of | the | 30. | lar | 901 | ato           | or |    |    |     | 00  |    |     |    | Deg | ree | s r | ort      | h c | of t | the  | 30.   | lar | 001   | ia to | or° |    |    | -     |
|----------|----|----|----|-----|-----|----|-----|-----|----|-----|-----|-----|-----|---------------|----|----|----|-----|-----|----|-----|----|-----|-----|-----|----------|-----|------|------|-------|-----|-------|-------|-----|----|----|-------|
| GCT      | 90 | 85 | 80 |     |     |    |     |     |    | 45  |     |     |     |               |    | 15 | 10 | 5   | 00  | 5  | 10  | 15 | 20  | 25  | 30  | 35       | 40  | 45   | 50   | 55    | 60  | 65    | 70    | 75  | 80 | 85 | 90    |
| 1951     |    |    |    |     |     |    |     |     |    |     |     |     |     |               |    |    |    |     |     |    |     |    |     |     |     |          |     |      |      |       |     |       |       |     |    |    |       |
| Sep. 1.6 | _  | _  | _  | _   | -   | _  | _   | _   | -  | _   | _   | _   | _   | _             | 2  | 2  | 2  | 2   | 2   | 2  | 2   | 2  | 2   | 2   | -   | _        | _   | _    | _    | -     | _   | -     | _     | _   | -  | _  | -     |
| 2.7      | -  | _  | _  | _   | _   | -  | _   |     | -  | -   | 2   | 2   | 2   | 2             | 2  | 2  | 2  | 2   | 2   | 2  | 3   | 3  | 3   | 2   | 2   | _        | _   | _    | _    | _     | _   | _     | _     | _   | _  | _  | _     |
| 4.7a     | _  | _  | -  | _   | _   | _  | _   | -   | -  | _   | -   | -   | -   | $\rightarrow$ | 2  | 2  | 2  | 2   | 2   | 2  | 2   | 2  | 2   | 2   | _   | _        | _   | _    | _    | _     | _   | _     | _     | _   | _  | _  | - 000 |
| 5.7      | -  | _  | -  | _   | _   | _  | _   | _   | _  | _   | _   | -   | -   | _             | -  | -  | 2  | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | 2   | 2  | -  | -     |
| 6.7a     | -  | -  | -  | _   | _   | _  | _   | -   | _  | _   | -   | _   | _   | _             | _  | _  | 2  | 2   | 2   | 3  | 3   | 3  | 3   | 2   | 2   | 2        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | 2   | 2  | _  | -     |
| 9.8      | -  | -  | -  | _   | _   | -  | _   | -   | _  | _   | 2   | 2   | 2   | 2             | 2  | 2  | 2  | 6.0 | 2   | 3  | 3   | 3  | 3   | 3   | 3   | 2        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | 2   | 2  | _  | -     |
| 10.7     | -  | _  | -  | -   | -   | _  | _   | -   | -  | _   | _   | _   | -   | 2             | 2  | 2  | 2  | 2   | 2   | 2  | 3   | 4  | 4   | 3   | 3   | 2        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | 2   | 2  | -  | _     |
| 11.9a    | _  | -  | -  | _   | _   | -  | _   | -   |    | -   | 2   | 2   | 2   | 2             | 2  | 2  | 2  | 2   | 5   | 2  | 3   | 3  | 3   | 3   | 3   | 3        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | _   | _  | _  | -     |
| 12.6     | _  | _  | _  | _   | -   | _  | _   | _   | -  | _   | 2   | 2   | 2   | 2             | 2  | 2  | 3  | 3   | 3   | -3 | 3   | 3  | _5  | 3   | 3   | 2        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | -   | _  | _  | _     |
| 13.7     | _  | -  | -  | -   | _   | -  | _   | -   | _  | _   | -   | 2   | 2   | 2             | 2  | 2  | 2  | - 2 | 2   | 3  | - 3 | ز  | 3   | 3   | 3   | 4        | 2   | 2    | 2    | 2     | 2   | 2     | 2     | 2   | 2  | _  | _     |
| 15.7     | _  | -  | -  | -   | _   | _  | _   | -   | _  | _   | _   | -   | _   | 2             | 2  | 2  | 2  | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | ~        | 2   | 2    | _    | _     | _   | _     | _     | _   | _  | _  | -     |
| 17.7     | _  | -  | -  | _   | -   | _  | _   | -   | _  | _   | _   | -   | 2   | 2             | 2  | 2  | 2  | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 2   | 2        | 2   | _    | 4010 | _     | _   | _     | _     | _   | -  | _  | -     |
| 18.7     | -  | _  | _  | _   | _   | -  | -   | _   | _  | _   | -   | _   | _   | _             | 2  | 2  | 2  | 2   | 1 2 | 2  | 2   | 2  | 2   | 2   | 2   | 2        | _   | _    | _    | _     | _   | _     | _     | _   | -  | _  | _     |
| 19.7     | -  | -  | _  | -   | _   | -  | _   | -   | _  | _   | -   | -   | _   | _             | _  | -  | 2  | - 4 | 12  | 4  | 2   | 2  | 2   | 2   | <   | <u> </u> | 4   | - 4  | 200  | _     | _   | _     | _     | _   | _  | _  | _     |
| 20.7     | -  | -  | -  | -   | -   | -  | _   | -   | _  | _   | -   | _   | 2   | 2             | 2  | 2  | 2  | 2   | 2   | 3  | 3   | 3  | 3   | 3   | 3   | 2        |     | 4    | _    | _     | _   | _     | _     | _   | _  | _  | _     |
| 21.8     | -  | -  | _  | _   | _   | _  | _   | -   | _  | _   | _   | _   | 2   | 2             | 2  | 2  | 2  | 2   | 2   | 3  | 3   | 3  | 3   | 2   | 4   | 2        | 2   | <    | _    | _     | _   | _     | _     | _   | _  | _  | _     |
| 22.7a    | -  | -  | -  | _   | 2   | 2  | 2   | 2   | 2  | 2   | 2   | 2   | 2   | 2             | 3  | 3  | 3  | 2   | 2   | 2  | 2   | 2  | 2   | 2   | 4   | 4        | 2   | _    | _    | _     | _   | _     | _     | _   | _  | _  | _     |
| 23.8     | _  | -  | -  | ~   | _   | -  | _   | _   | 2  | 2   | 2   | 2   | 2   | 2             | 2  | 3  | 3  | 3   | 2   | 2  | 2   | 2  | -   | _   |     | _        | _   |      | _    | -     | _   | _     | _     | _   | _  | _  | _     |
| 211.7    | -  | -  | 3  | 3   | 3   | 3  | 3   | 3   | 3  | 3   | 3   | 3   | 3   | 3             | 3  | 3  | 3  | 3.  | 3   | 3  | _   | _  | _   | _   | _   | _        | _   | C-10 | _    | cmi   | 40  | _     | -     | _   | _  | _  | _     |
| 25.7     | -  | -  | _  | _   | _   | -  | _   | _   | _  | -   | _   | 2   | 2   | 2             | 2  | 2  | 3  | 3   | 3   | 3  | 3   | 3  | 3   | 3   | 2   | 2        | 2   |      | -    | _     | _   | _     | _     | _   | _  | _  | _     |
| 26.9     | -  | -  | _  | -   | -   | -  | -   | -   | -  | -   | -   | _   | -   | 2             | 2  | 2  | 2  | 2   | 2   | 3  | 3   | 3  | 3   | 3   | 3   | 2        | 4   | _    | _    | _     | _   | 100.0 | _     | -   | _  | _  |       |
| 27.7     | -  | -  | -  | -   | -   | -  | -   | -   | -  | -   | -   | -   | -   | -             | 2  | 2  | 2  | 2   | 2   | 2  | 3   | 3  | 3   | 2   | 2   | 4        | 2   | 2    | 2    | _     | _   | gicle | _     | _   | _  | _  | _     |
| 28.8     | -  | -  | -  | -   | -   | -  | -   | CP4 | -  | _   | -   |     | -   | -             | 2  | 2  | 2  | _   | 2   | 2  | 2   | 4  | 2   | 2   | 2   | 2        | 2   | 2    | 2    |       | _   | _     | _     | _   | _  | _  | _     |
| 30.9     | -  | -  | -  | -   | -   | -  | -   | -   | -  | -   | *** | -   | -   | -             | 2  | 2  | 2  | 2   | 2   | 3  | 3   | 3  | 3   | 3   | <   | 2        | 2   | 4    | -    | (00.9 | _   | _     | _     | -   | _  | _  | _     |

Table 96

Zürich Provisional Relative Sunspot Numbers

September 1951

| Date | R <sub>Z</sub> * | Date  | Ř <sub>Z</sub> ∗ |
|------|------------------|-------|------------------|
| 1    | 46               | 17    | 93               |
| 2    | 47               | 18    | 98               |
| 3    | 48               | 19    | 89               |
| 14   | 55               | 20    | 91               |
| 5    | 64               | 21    | 104              |
| 6    | 84               | 22    | 109              |
| 7    | 77               | 23    | 104              |
| 8    | 91               | 24    | 80               |
| 9    | 108              | 25    | 76               |
| 10   | 118              | ` 26  | 70               |
| 11   | 129              | 27    | 63               |
| 12   | 123              | 28    | 58               |
| 13   | , 117            | 29    | 23               |
| 14   | 107              | 30    | 31               |
| 15   | 100              |       |                  |
| 16   | 89               | Mean: | 83.0             |

<sup>\*</sup>Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Note: The American sunspot numbers for September will appear in a later issue of this bulletin.

Table 97 Solar Flares, August 1951

| SID<br>Observed                                 |                                                                                                                                                      |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Import-<br>ance                                 | 64 644 6 46 <b>4</b><br>+                                                                                                                            |
| Rela-<br>tive<br>Area of<br>Haximum<br>(Tenths) | I<br>HH NOO T MM TNOTMO                                                                                                                              |
| Int.<br>of<br>Maxi-<br>mum                      | 7777 8 8 6 7 7 6 8 8 8                                                                                                                               |
| Tine<br>of<br>Maxi-<br>mum<br>(GCT)             | 1720<br>2300<br>1350<br>1446<br>1640<br>1802<br>1755<br>2353<br>1430<br>1820                                                                         |
| tion<br>Long-<br>itude<br>Diff<br>(Deg)         | E74<br>E03<br>E03<br>E28<br>E88<br>E88<br>W70<br>W13<br>W13<br>W15<br>W15<br>W15<br>W25<br>W29                                                       |
| Position Lati- Long tude itud Diff              | \$03<br>\$09<br>\$09<br>\$15<br>\$15<br>\$01<br>\$01<br>\$15<br>\$15<br>\$10<br>\$10<br>\$10<br>\$10<br>\$11<br>\$11<br>\$11<br>\$11                 |
| Area (Will) (Visible) (Hemisph)                 | 110<br>180<br>90<br>60<br>120<br>70<br>90<br>20<br>70                                                                                                |
| Dura-<br>tion<br>(Min)                          | App.25 130 130 App.70 App.20 25 25 25                                                                                                                |
| Time Observed in End in (GCT)                   | 1740<br>2310<br>1595<br>1595<br>1430<br>1820<br>1820<br>1818<br>2030<br>2030<br>2030<br>2030<br>2030<br>1840<br>2150<br>1340<br>1340<br>1340<br>1340 |
| Ti<br>Obse<br>Begin-<br>ning<br>(GCT)           | 1401<br>1710<br>2255<br>1330<br>1334<br>1600<br>1630<br>1630<br>1715<br>0845<br>2030<br>2350<br>2350<br>1026<br>1420<br>1805<br>1215<br>1340<br>1455 |
| Date<br>1951                                    | Aug. 5<br>10<br>11<br>12<br>13<br>14<br>16<br>19                                                                                                     |
| Observa_<br>tory                                | Sac.Peak "" "McMath "Sac.Peak "Ranzel McMath "Sac.Peak McMath "Sac.Peak McMath Sac.Peak McMath Sac.Peak McMath Sac.Peak                              |

#### Table 98

#### Indices of Geomagnetic Activity for August 1951

Preliminary values of mean K-indices, Kw, from 36 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

|                                  |                                                                                                                                                                                                 |                                              |                                 |                                                                                                                            |                                        | 1                          |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|
| Gr.<br>Day<br>1951               | Values Kw                                                                                                                                                                                       | Sum                                          | С                               | Values Kp                                                                                                                  | Sum                                    | Firl<br>Sel<br>Day         |
| 1<br>2<br>3<br>4<br>5            | 3.7 2.5 1.7 3.1 2.6 5.0 4.8 5.1<br>4.6 4.6 3.2 2.7 2.5 2.7 2.4 2.6<br>2.6 1.9 1.8 2.7 2.7 1.6 1.6 2.3<br>3.2 3.2 1.5 1.6 3.1 2.9 3.2 3.5<br>3.9 2.6 1.8 1.7 2.4 3.1 2.5 2.5                     | 28.5<br>25.3<br>17.2<br>22.2<br>20.5         | 1.5<br>1.1<br>0.5<br>0.8<br>0.7 | 403-2-30 2+606-60<br>6-504-3- 3-2+302+<br>3-2-2030 3-1+1+2+<br>3+3+2-1+ 3+3+404-<br>4+2+2-1+ 2+3+2+3-                      | 31+<br>27+<br>170<br>24,0<br>20+       | Fix Quit                   |
| 6<br>7<br>8<br>9<br>10           | 2.8 0.6 1.6 1.5 2.8 3.3 1.8 2.6 1.6 2.9 2.0 2.7 1.6 2.1 2.6 3.1 2.1 2.1 1.8 1.4 1.6 1.4 1.8 2.1 1.5 1.6 2.3 2.8 3.0 2.3 2.2 3.0 1.6 1.9 2.4 2.5 3.1 1.5 2.0 2.3                                 | 17.0<br>18.6<br>14.3<br>18.7<br>17.3         | 0.6<br>0.5<br>0.2<br>0.6<br>0.5 | 3+1-201+ 3-4-2-30<br>1+3+2-30 2-2+3-3+<br>2+2+2+1+ 1+102-2+<br>2-2-2+30 3+202+3+<br>1+2-3-2+ 3+2-203-                      | 18+<br>19+<br>15-<br>20-<br>18-        | 18<br>30                   |
| 11<br>12<br>13<br>14<br>15       | 2.2 2.3 2.5 2.9 3.6 2.9 2.9 3.3 3.3 2.8 3.1 3.1 3.3 2.8 3.2 3.5 2.4 4.6 4.6 3.8 4.4 4.6 4.7 2.2 1.4 1.2 1.1 2.8 2.4 2.5 2.6 3.1 3.2 2.2 3.0 1.6 2.5 2.9 4.4 3.3                                 | 22.6<br>25.1<br>31.3<br>17.1<br>23.1         | 0.8<br>0.9<br>1.5<br>0.6<br>1.0 | 2+2+303+ 4-303040<br>403+3+3+ 4-304-4-<br>2+6-5+4+ 505+6-2+<br>1+101030 2+3-303+<br>4-2+3+1+ 3-3+5040                      | 25-<br>280<br>360<br>18-<br>26-        | Fiv<br>Dis.                |
| 16<br>17<br>18<br>19<br>20       | 1.7 2.8 4.6 5.0 3.1 2.7 1.9 3.1 3.2 2.1 2.8 1.6 2.6 4.0 2.9 2.9 2.4 2.0 2.2 0.8 1.1 1.1 0.8 1.2 0.9 1.6 2.7 2.9 3.2 3.2 2.7 2.1 4.8 4.4 4.4 3.7 3.4 3.2 4.1 3.9                                 | 24.9<br>22.1<br>11.6<br>19.3<br>31.9         | 1.3<br>1.0<br>0.2<br>0.6<br>1.3 | 1+306-6+ 3030203+<br>3+20301+ 3-5-3-3-<br>3-3-3-1- 101-0+10<br>101+3+30 4-3+3-20<br>6-5+5+4+ 403+5-5-                      | 28-<br>22+<br>12-<br>20+<br>37+        | 21<br>25<br>Ten<br>Qui:    |
| 21<br>22<br>23<br>24<br>25       | 5.1 3.7 3.9 4.1 4.3 4.9 4.2 4.6<br>4.8 4.4 4.5 3.4 4.1 2.7 3.5 2.6<br>3.0 2.1 2.7 3.0 3.0 3.9 3.4 5.2<br>3.7 3.9 3.5 3.6 3.2 2.4 3.1 3.3<br>3.1 4.6 4.8 4.4 3.1 4.5 4.6 2.2                     | 34.8<br>30.0<br>26.3<br>26.7<br>31.3         | 1.6<br>1.3<br>1.1<br>1.0<br>1.4 | 6+4+5-50 506-505+<br>5+5+5+4- 50304-3-<br>3+2-3-3+ 3+5-3+60<br>4+5-4040 3+3-303+<br>4-6-6-50 3+505+3-                      | 41+<br>340<br>28+<br>29+<br>36+        | 36789                      |
| 26<br>27<br>28<br>29<br>30<br>31 | 3.9 3.6 4.4 3.8 3.4 3.3 3.9 4.2 2.4 3.1 3.4 3.2 3.2 3.9 4.3 4.2 2.6 2.9 2.7 3.4 3.0 2.4 3.6 3.7 3.1 2.7 2.5 3.0 3.1 3.1 1.8 2.5 1.1 1.3 0.8 1.8 2.6 2.9 2.9 2.8 2.0 1.4 3.1 2.7 3.8 3.3 2.5 3.7 | 30.5<br>27.7<br>24.3<br>21.8<br>16.2<br>22.5 |                                 | 5-4+605- 4-4-404+<br>2+4-403+ 3+4+505-<br>303+304- 3+3-4040<br>4-3+3+3+ 3+3+2-3-<br>101+1-20 3-30303-<br>2+2-4-3+ 404-3-40 | 35+<br>31-<br>270<br>25-<br>16+<br>25+ | 10<br>14<br>18<br>19<br>30 |
| Mean                             | 2.83 2.82 2.96 3.00<br>2.70 2.82 3.00 3.12                                                                                                                                                      | 2.91                                         | 0.91                            |                                                                                                                            |                                        |                            |

Table 99
Sudden Ionosphere Disturbances Observed at Washington, D. C.

#### September 1951

| 1951<br>Day | GC<br>Beginni |      | Location of transmitters                  | Relative intensity at minimum* | Other phenomena                                                     |
|-------------|---------------|------|-------------------------------------------|--------------------------------|---------------------------------------------------------------------|
| Septem      |               |      |                                           |                                |                                                                     |
| 3           | 1224          | -    | Chic. D. C., Colombia,<br>England         | 600                            |                                                                     |
| 3           | 1240          | 1410 | Ohio, D. C., Colombia,<br>England         |                                | Solar flare <sup>as</sup><br>1320<br>Solar flare <sup>asa</sup>     |
| 5           | 1715          | 1750 | Ohio, D. C., Colombia,<br>England         | 400-000                        | 1330<br>Solar flare**<br>1715                                       |
| 7           | 1055          | 1255 | England                                   | 0.02                           |                                                                     |
| 9           | 1957          | 2040 | Ohio, D. C., Colombia,<br>England, Mexico | 0.0                            | Solar flare*** 2002                                                 |
| 14          | 1352          | 1425 | Ohio, D. C., Colombia,<br>Mexico          | 0.0                            | Solar flare** 1345 Solar flare*** 1330 Solar flare*** 1400          |
| 15          | 1510          | 1600 | Ohio, D. C., Colombia,<br>England, Mexico | 0.0                            | Terr.meg.pulse***** 1510-1530 Solar flare** 1510 Solar flare** 1500 |
| 17          | 2058          | 2125 | Ohio, D. C., Colombia,<br>Mexico          | 0.0                            | Solar flarens<br>2100<br>Solar flarens<br>2055                      |
| 19          | 1533          | 1600 | Ohio, D. C.                               | ***                            | Solar flare***                                                      |
| 20          | 1530          | 1550 | Ohio, D. C., Mexico                       | 0.1                            | Solar flare** 1540 Solar flare** 1525                               |
| 29          | 1450          | 1540 | Ohio, D. C.                               | 0.0                            |                                                                     |

\*Ratio of received field intensity during SID to average field intensity before and after, for station KQZXAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant for all SID except the following: Station GLH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on September 7.

<sup>\*\*</sup>Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

<sup>\*\*\*</sup>Time of observation at Sacramento Peak, New Mexico.
\*\*\*\*Time of observation at Meudon Observatory, France.

<sup>\*\*\*\*\*</sup>As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

<sup>---</sup> Insufficient data.

<sup>---</sup> Incomplete recovery of SID.

Table 100

Sudden Ionosphers Disturbances Reported by Engineer-in-Chief, Cable and Wireless, Ltd., as Observed in England

| Other<br>phenomena       | Solar flere" 1345 Solar flere" 1330 Solar flere"                                                                                                    | Terrang.<br>Folsefff<br>1510-1530<br>Solar flere*<br>1510                                                                                         | Solar flares 1500<br>Terrange,<br>pulsesses                                                                           | 1,140-1,550<br>Solar flare<br>1510<br>Solar flare                                                                                                                                          |                                                                                            |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Location of transmitters | Argontina                                                                                                                                           | Canary 1s., Chils, Colombia,<br>Urnguay, Venezuela                                                                                                | Argentine, Cenada                                                                                                     | Mew York<br>Canada, Wew York                                                                                                                                                               |                                                                                            |
| Receiving<br>station     | Somerton                                                                                                                                            | george of                                                                                                                                         | Somerton                                                                                                              | Brentwood                                                                                                                                                                                  |                                                                                            |
| & End                    | 1430                                                                                                                                                | 1615                                                                                                                                              | 1620                                                                                                                  | 1530                                                                                                                                                                                       |                                                                                            |
| GCT<br>Beginning Bod     | 1353                                                                                                                                                | 1510                                                                                                                                              | 1510                                                                                                                  | 1510                                                                                                                                                                                       |                                                                                            |
| 1951<br>Day              | September<br>14                                                                                                                                     | 15                                                                                                                                                | 15                                                                                                                    | 25                                                                                                                                                                                         |                                                                                            |
| Other                    | Solar flare*                                                                                                                                        | Solar flare"<br>1320<br>Solar flare"<br>1330                                                                                                      | Solar flare" 1320 Solar flare" 1330                                                                                   |                                                                                                                                                                                            | Solar flare* 1345 Solar flare** 1330 Solar flare** 1400                                    |
| Location of transmitters | Austria, Belgian Congo, Brazil,<br>Canary Is., Grecco, Palestina,<br>Portugal, Spain, Switzerland,<br>Trans-Jordan, Turkey, Yugoslavia,<br>Zansibar | Barbados, Brazil, Chile, Colombia,<br>Oresce, India, Pelestine, Southern<br>Phodesia, Spain, Syria, Thailand,<br>Turkey, Uruguay, U.S.S.3., Vens- | Arganina, Canada, Ceylon, Cyprus,<br>Egypt, Gold Cosst, India, Iraq,<br>Malay States, New York, Union of<br>S. Africa | Afghanisten, Behrein I., Belgran Congo, Brazil, Canary Is., Chile, Greec, India, Palestina, Suthern Rhodesia, Spain, Switzerland, Syria, Thailand, Trans-Jordan, Turkey, Uruguay, U.S.S.R. | of S. Africa<br>Barbados, Brazil, Canary Is.,<br>Chile, Colombia, Portugal, Vene-<br>ruela |
| Receiving                | Brentwood                                                                                                                                           | Brentwood                                                                                                                                         | Somerton                                                                                                              | Brentwood                                                                                                                                                                                  | Brentwood                                                                                  |
| pug ;                    | 1045                                                                                                                                                | 1335                                                                                                                                              | 1330                                                                                                                  | 1120                                                                                                                                                                                       | 1420                                                                                       |
| GCT<br>Beginning End     | 1028                                                                                                                                                | 1255                                                                                                                                              | 1255                                                                                                                  | 1058                                                                                                                                                                                       | 1355                                                                                       |
| 1951<br>Day              | August<br>14                                                                                                                                        | Soptomber<br>3                                                                                                                                    | С.                                                                                                                    | c c                                                                                                                                                                                        | 77                                                                                         |

\*Time of observation at McMath-Hulbert Observatory, Pontisc, Michigan, \*\*\*Time of observations at Sacramento Peak, New Mexico.
\*\*\*Time of observation at Meudon Observatory, France.
\*\*\*\*\*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Table 101

# Sudden Ionosphere Disturbances Reported by Institut für Ionosphärenforschung,

## as Observed at Lindau, Harz, Germany

| 1951<br>Dey        | GC1<br>Beginnir      |                      | Location of                                                   | transmitters            | Relative<br>intensity<br>at<br>minimum? | Other phenomena |
|--------------------|----------------------|----------------------|---------------------------------------------------------------|-------------------------|-----------------------------------------|-----------------|
| August<br>10<br>12 | 1304<br>0838<br>1025 | 1310<br>0846<br>1038 | München**, München**, München**, München*, München*, München* | Lindau <sup>***</sup> , | 0.3<br>0.05<br>0.1                      |                 |

<sup>\*</sup>Ratio of received field intensity during SID to average field intensity before and after, for station München, 6160 kilocycles, 400 kilometers distant, \*\*Station München, 6160 kilocycles,

#### Table 102

# Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,

## as Observed at Riverhead, New York

| 1951<br>Day | GCT<br>Beginning End | Location of transmitters                                   | Other phenomena                     |  |
|-------------|----------------------|------------------------------------------------------------|-------------------------------------|--|
| Septem<br>3 | ber<br>1300 1400     | Argentina, England, France, Italy,<br>Netherlands, Tangier | Solar flare* 1320 Solar flare* 1330 |  |

<sup>\*</sup>Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.
\*\*Time of observation at Sacramento Peak, New Mexico.

<sup>\*\*\*</sup>Station Lindau, 1850 kilocycles, pulse, transmitter and receiver at Lindau. #Station Wiesbaden, 2985 kilocycles.

Table 103

# Sudden Ionosphere Disturbances Reported by Engineer-in-Chief, Cable and Wireless, Ltd., as Observed at Hong Kong, China

|       |                            |      |                                                                                                  | · · · · · · · · · · · · · · · · · · · |
|-------|----------------------------|------|--------------------------------------------------------------------------------------------------|---------------------------------------|
| 1951  | 1951 GCT Day Beginning End |      | CT                                                                                               | Other                                 |
| Day   |                            |      | eginning End Location of transmitters                                                            |                                       |
| April |                            | -/   |                                                                                                  |                                       |
| 19    | 0 <i>5</i> 3 <i>5</i>      | 0620 | China, Formosa, French Indo-China,<br>Japan, Korea, Halay States, Phil-<br>ippine Is., Thailand  |                                       |
| 20    | 0152                       | 0220 | California, Ceylon, China, Formosa,<br>Japan, Korea, Malay States, Phil-<br>ippine Is., Thailand |                                       |
| May   | 1                          |      |                                                                                                  |                                       |
| 21    | 0154                       | 0215 | California, China, Formosa, French<br>Indo-China, Japan, Korea, Philippine<br>Is Thailand        |                                       |
| 22    | 0052                       | 0130 | California, China, Formosa, French<br>Indo-China, Japan, Korea, Philippine<br>Is., Thailand      |                                       |
| 23    | 0120                       | 0215 | California, China, Japan, Korea,<br>Thailand                                                     |                                       |
| June  |                            |      |                                                                                                  |                                       |
| 13    | 0555                       | 0725 | China, England, Formosa, French<br>Indo-China, Japan, Malay States,<br>Philippine Is., Thailand  |                                       |
| 19    | 0250                       | 0305 | Australia, China, Formosa, French<br>Indo-China, Japan, Philippine Is.,<br>Thailand              |                                       |
| 19    | 2342                       | 2400 | China, Formosa, Japan, Philippine Is.                                                            | Solar flare*                          |
| 26    | 0556                       | 0615 | China, Formosa, French Indo-China,<br>Japan, Philippine Is., Thailand                            |                                       |

<sup>\*</sup>Time of observation at Sacramento Peak, New Mexico.

Table 104

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Point Reyes, California

| 1951<br>Day  | GCT<br>Beginning End | Location of transmitters                | Other phenomena                      |  |
|--------------|----------------------|-----------------------------------------|--------------------------------------|--|
| Septem<br>17 | ber 2102 2200        | China, Hawaii, Japan, Philippine<br>Is. | Solar flare* 2050 Solar flare** 2100 |  |

<sup>\*</sup>Time of observation at Sacramento Peak, New Mexico.

<sup>\*\*</sup>Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.





























































































































































































































































z

HEIGHT





































#### Index of Tables and Graphs of Ionospheric Data

### in CRPL-186

| Table                           | page Figure page |
|---------------------------------|------------------|
| Akita, Japan                    |                  |
| June 1951                       | 67               |
| Anchorage, Alaska               | -1               |
| August 1951                     | 56               |
| Bombay, India                   |                  |
| April 1951 17                   | 70               |
| March 1951                      |                  |
| Buenos Aires, Argentina         | 6 2              |
| April 1951 17                   | 72               |
| March 1951                      |                  |
| February 1951 20                | •                |
| January 1951                    |                  |
| Capetown, Union of South Africa |                  |
| June 1951                       | 69               |
| Churchill, Canada               | 0)               |
| June 1951                       | 63               |
| Dakar, French West Africa       | 0)               |
| March 1951                      | 76               |
| February 1951 20                | 80               |
| De Bilt, Holland                | 99               |
| July 1951                       | 60               |
| Delhi, India                    | 90               |
| April 1951                      | 70               |
|                                 | •                |
|                                 | 75               |
| Domont, France                  | 92               |
| January 1951                    | 83               |
|                                 | 81               |
| February 1951                   | - <del></del>    |
| January 1951                    | 85               |
| December 1950                   | 87               |
| November 1950                   | 89               |
| October 1950 23                 | 90               |
| Formosa, China                  | 40               |
| June 1951                       | 68               |
| Fort Chimo, Canada              |                  |
| June 1951 14                    | 63               |
| Fraserburgh, Scotland           |                  |
| March 1951 18                   | 23               |
| February 1951 19                | 78               |
| January 1951 21                 | 82               |
| December 1950                   | 86               |
| Movember 1950 23                | 88               |
| Fribourg, Germany               |                  |
| March 1951 18                   | 74               |
| February 1951 20                | 79               |
| January 1951 21                 | 83               |
| October 1950                    | 90               |
|                                 |                  |

## Index (CRPL-F86, continued)

|                                          | Table page | Figure page |
|------------------------------------------|------------|-------------|
| Guan I.                                  |            |             |
| August 1951                              | 13         | 59          |
| Huancayo, Peru                           |            |             |
| August 1951                              | 13         | 59          |
| July 1951                                | 14         | 61          |
| Johannesburg, Union of S. Africa         |            |             |
| June 1951                                | 16         | 69          |
| Madras, India                            |            | _           |
| April 1951                               | 17         | 71          |
| March 1951                               | 19         | 76          |
| Maui, Hawaii                             |            |             |
| August 1951                              | 13         | 58          |
| Marsarssuak, Greenland                   | - 4        |             |
| June 1951                                | 14         | 62          |
| Oslo, Norway                             |            |             |
| August 1951                              | 12         | 56          |
| Ottawa, Canada                           |            |             |
| June 1951                                | 15         | 66          |
| Panana Canal Zone                        | - 4        | 4-          |
| July 1951                                | 14         | 61          |
| Poitiers, France                         |            |             |
| January 1951                             | 21         | 84          |
| Prince Rupert, Canada                    |            |             |
| June 1951                                | 15         | 64          |
| Puerto Rico, W. I.                       |            |             |
| August 1951                              | 13         | 58          |
| April 1951                               | 17         | 71          |
| Reykjavik, Iceland                       | 4          | 1.5         |
| June 1951                                | 14         | 62          |
| March 1951                               | 18         | 73          |
| St. John's, Newfoundland                 |            |             |
| June 1951                                | 15         | 65          |
| San Francisco, California                |            |             |
| August 1951                              | 12         | 57          |
| Schwarzenburg, Switzerland               | 3.0        | 60          |
| July 1951                                | 13         | _           |
| June 1951                                | 15         | 65          |
| Singapore, British Malaya                | 3.0        | 20          |
| March 1951                               | 19         | 77<br>80    |
| Tebruary 1951                            | 20         | 84          |
| January 1951                             | 21<br>22   | 87          |
| December 1950                            | 23         | 89          |
| Slough, England                          | رے         | 0,9         |
|                                          | 18         | 74          |
| March 1951                               | 20         | 79          |
| February 1951                            | 21         | 82          |
| December 1950                            | 22         | 86          |
| Movember 1950                            | 23         | 88          |
| 300 10 m m m m m m m m m m m m m m m m m | 4)         | 30          |

# Index (CRPL-186, continued)

|                         | Table page | Figure page |
|-------------------------|------------|-------------|
| Tiruchy, India          |            |             |
| April 1951              | 17         | 72          |
| March 1951              | 19         | 77          |
| Tokyo, Japan            |            |             |
| June 1951               | 16         | 67          |
| Tromso, Norway          |            |             |
| August 1951             | 12         | 55          |
| Wakkanai, Japan         |            |             |
| June 1951               | 15         | 66          |
| Washington, D. C.       |            |             |
| September 1951          | 12         | 55          |
| White Sands, New Mexico | 2.0        | e* #10      |
| August 1951             | 12         | 57          |
| Winnipeg, Canada        | 17         | 64          |
| June 1951               | 15         | 04          |
| Yamagawa, Japan         | 16         | 68          |
| June 1951               | 10         | 90          |



### CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weeklu:

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports. Monthly:

CRPL-D. Basic Radio Propagation Predictions-Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 ( ) series; Dept. of the Air Force, TO 16-1B-2 series.)

Ionospheric Data.

\*IRPL—A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

\*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

Criteria for Ionospheric Storminess.

\*\*R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R7. R9.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

\*\*R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

\*\*R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients. \*\*R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

\*\*R17. Japanese Ionospheric Data-1943.

- R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures-October 1943 Through May 1945.
- \*\*R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

\*\*R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

\*\*R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System. \*\*R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena. R26. The Ionosphere as a Measure of Solar Activity.

- R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
- \*\*R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

\*\*R33. Ionospheric Data on File at IRPL.

\*\*R34. The Interpretation of Recorded Values of fEs.
R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

Reports on tropospheric propagation:

T1. Radar operation and weather. (Supersided by JANP 101.)
T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

<sup>\*\*</sup>Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

