Consistency and cut elimination: two ways to restrict Resolution

Gilles Dowek

A proof search method

Polarized resolution modulo

A restriction of Resolution

That is complete under some conditions

Why restricting Resolution?

$$A, A \Rightarrow B, B \Rightarrow C, C \Rightarrow D, D \Rightarrow E, E$$
?

$$A, \neg A \lor B, \neg B \lor C, \neg C \lor D, \neg D \lor E, \neg E$$

Many ways to derive the empty clause \perp .

Resolution with set of support, Ordered resolution, ...

From Resolution to Equational resolution	

An example

Assume
$$+$$
 associative, $P((a+b)+c)+(d+e)$

Try to prove
$$P(a + (b + (c + d) + e))$$

Many ways to use the associativity axiom

Instead: orient associativity $x+(y+z) \longrightarrow (x+y)+z$ and normalize

$$P((((a+b)+c)+d)+e)$$

$$P((((a+b)+c)+d)+e)$$

Another example

Assume P((a+b)+c) try to prove $\exists z\ P(a+z)$

$$(X + Y) + Z = X + (Y + Z)$$

$$\neg X = Y \lor \neg P(X) \lor P(Y)$$

$$P((a + b) + c)$$

$$\neg P(a + Z)$$

Another example

Assume
$$P((a+b)+c)$$
 try to prove $\exists z\ P(a+z)$

$$P((a+b)+c)$$
$$\neg P(a+Z)$$

Replace unification by equational unification modulo associativity

Deduction modulo

Proving soundness and completeness

$$\Gamma$$
, Assoc $\vdash C$ iff

$$cl(\Gamma, \neg C) \leadsto_{\mathsf{Assoc}} \bot$$

Deduction modulo

Proving soundness and completeness

$$\Gamma, \operatorname{Assoc} \vdash C \quad \mathrm{iff} \quad \Gamma \vdash_{\operatorname{\mathsf{Assoc}}} C \quad \mathrm{iff} \quad cl(\Gamma, \neg C) \leadsto_{\operatorname{\mathsf{Assoc}}} \bot$$

⊢_{Assoc?}

$$\frac{P((a+b)+c) \vdash_{\mathsf{Assoc}} P(a+(b+c))}{P((a+b)+c) \vdash_{\mathsf{Assoc}} \exists x \, P(a+x)} \, \exists \text{-right}$$

Completeness

The completeness of Resolution:

- (1) If the sequent $\Gamma \vdash C$ has a proof then it has a cut free proof
- (2) If the sequent $\Gamma \vdash C$ has a cut free proof then

$$cl(\Gamma, \neg C) \leadsto \bot$$
 (simple induction)

Both lemmas generalize to Deduction modulo associativity

I. From Equational	resolution to	Resolution modu	olu

Rewrite rules

Rewrite rules on terms

$$x + (y+z) \longrightarrow (x+y) + z$$

Or

$$0 + y \longrightarrow y$$
$$S(x) + y \longrightarrow S(x + y)$$

$$X + 2 = 4$$

More rewrite rules

What about the rewrite rule

$$x \subseteq y \longrightarrow \forall z \ (z \in x \Rightarrow z \in y)$$

?

PA, HOL, Z

Resolution modulo (2003)

Term rewrite rules used by the (equational) unification algorithm

But proposition rewrite rules used to directly rewrite (narrow) clauses

Resolution modulo

$$P \longrightarrow (Q \Rightarrow R)$$

P

Q

 $\neg R$

Besides the Resolution rule, another rule:

from P derive $Q \Rightarrow R$

Dynamic clausification

But $Q \Rightarrow R$ not a clause: put it in clause form

P

Q

 $\neg R$

 $\neg Q \lor R$

R

 \perp

Dynamic clausification

In general: skolemization

$$P(x) \longrightarrow \exists y \ Q(x,y)$$

from P(X) derive Q(X, f(X))

Terrible to prove complete, horrible to implement

Transforming rewrite rules

Why not transform the rule into

$$P \longrightarrow (\neg Q \lor R)$$

?

Because P can also occur negatively in a clause

e.g.
$$\neg P \lor S$$
 rewrites to $\neg (Q \Rightarrow R) \lor S$

i.e.
$$Q \vee S$$
, $\neg R \vee S$

To transform the rewrite rules

polarize them

$$P \longrightarrow_{-} (\neg Q \lor R)$$

$$P \longrightarrow_{+} \neg Q$$

$$P \longrightarrow_{+} \neg \neg R$$

so that a clause always rewrites to a clause

One-way clauses

$$P \longrightarrow_{-} (\neg Q \vee R)$$

Transforms the clause $P \vee S$ into $\neg Q \vee R \vee S$

What is the difference with the clause $\neg P \lor \neg Q \lor R$?

$$\underline{\neg P} \lor \neg Q \lor R$$

Social rules

Resolution between two one-way clauses is prohibited

Resolution between an ordinary clause and a one-way clause is permitted only if the resolved literal is the <u>selected</u> one

A restriction of (equational) Resolution

A rewrite rule $P \longrightarrow_{-} (\neg Q \lor R)$

A one-way clause $\underline{\neg P} \lor \neg Q \lor R$

An axiom $P \Rightarrow (\neg Q \lor R)$

A clause $\neg P \lor \neg Q \lor R$

More restricted than Resolution with set of support

In Resolution with set of support

Resolution between two theory clauses is prohibited

Resolution between an ordinary clause and a theory clause is always permitted

Restrictions of Resolution

Restrictions — efficiency

Two choices: the clauses, the literals in the clauses

Two types of restrictions: clause restrictions (Set of support,

Semantic resolution, ...),

literal restrictions (Ordered resolution, ...)

Here: mixing both both types

Completeness

The completeness of Resolution:

- (1) If the sequent $\Gamma \vdash C$ has a proof then it has a cut free proof
- (2) If the sequent $\Gamma \vdash C$ has a cut free proof then

$$cl(\Gamma, \neg C) \leadsto \bot$$
 (simple induction)

Completeness

(2) If $\Gamma \vdash C$ has a cut free proof then $cl(\Gamma, \neg C) \leadsto \bot$ Generalizes to Deduction modulo and still a simple induction But (1) not all $\mathcal R$ enjoy cut elimination in Deduction modulo Polarized resolution modulo $\mathcal R$ complete if (and only if following Hermant) Deduction modulo $\mathcal R$ has the cut elimination property

Lessons learned from the completeness theorem

When can we replace the clause $\neg P \lor \neg Q \lor R$

by the one-way clause $\underline{\neg P} \lor \neg Q \lor R$?

When Deduction modulo the rule

$$P \longrightarrow_{-} \neg Q \lor R$$

has the cut elimination property

More generally

When can we replace a set of clauses by one-way clauses?

When Deduction modulo the associated rewrite system has the cut elimination property

Notice the parallel: When can we replace a set of clauses by theory clauses?

When this set is consistent

Concluding remarks

New connections between proof search methods and proof theory

- (1) set of support: only consistency, here: cut elimination
- (2) unlike other restrictions, Polarized resolution modulo not an instance of Ordered resolution (Gödel's theorem, with Burel)

Promising implementation (Burel)

Part of a trend in proof theory (and automated theorem proving): focus on theories (from a theory of proofs to a theory of theories)