Fundamentos de Ingeniería Eléctrica

Tema 9: Trifásica

Contenidos

- Alternador trifásico
- Carga trifásica
- Línea trifásica
- Sistemas trifásicos equilibrados
- Circuitos monofásicos equivalentes

Resuelve el circuito usando el método de mallas y calcula

- a) I_1 [A] c) I_2 [A] e) I_3 [A] g) I_n [A] b) ϕ_1 [\circ] d) ϕ_2 [\circ] f) ϕ_3 [\circ] h) ϕ_n [\circ]
- $\text{donde } \overline{\mathcal{I}}_1 = I_1 \underline{/\phi_1^\circ} \quad \overline{\mathcal{I}}_2 = I_2 \underline{/\phi_2^\circ} \quad \overline{\mathcal{I}}_3 = I_3 \underline{/\phi_3^\circ} \quad \overline{\mathcal{I}}_n = I_n \underline{/\phi_n^\circ}$

$$\overline{\mathcal{V}}_{g1} = 200 + 10 \cdot \alpha \underline{/0^{\circ}} \, [V], \overline{\mathcal{V}}_{g2} = 200 + 10 \cdot \alpha \underline{/120^{\circ}} \, [V], \overline{\mathcal{V}}_{g3} = 200 + 10 \cdot \alpha \underline{/240^{\circ}} \, [V] \\
\overline{\mathcal{Z}}_{l1} = \overline{\mathcal{Z}}_{l2} = \overline{\mathcal{Z}}_{l3} = \beta + j\gamma \, [\Omega], \overline{\mathcal{Z}}_{c1} = \overline{\mathcal{Z}}_{c2} = \overline{\mathcal{Z}}_{c3} = \delta + j\epsilon \, [\Omega], \overline{\mathcal{Z}}_{n} = \eta + j\theta \, [\Omega]$$

Resuelve el circuito usando el método de mallas y calcula

- a) I_1 [A] c) I_2 [A] e) I_3 [A] g) I_n [A] b) ϕ_1 [\circ] d) ϕ_2 [\circ] f) ϕ_3 [\circ] h) ϕ_n [\circ]
- $\operatorname{donde} \, \overline{\mathcal{I}}_1 = I_1 \underline{/\phi_1^\circ} \quad \overline{\mathcal{I}}_2 = I_2 \underline{/\phi_2^\circ} \quad \overline{\mathcal{I}}_3 = I_3 \underline{/\phi_3^\circ} \quad \overline{\mathcal{I}}_n = I_n \underline{/\phi_n^\circ}$

$$\overline{\mathcal{V}}_{g1} = 200 + 10 \cdot \alpha / 0^{\circ} \text{ [V]}, \overline{\mathcal{V}}_{g2} = 200 + 10 \cdot \alpha / 120^{\circ} \text{ [V]}, \overline{\mathcal{V}}_{g3} = 200 + 10 \cdot \alpha / 240^{\circ} \text{ [V]}$$

$$\overline{\mathcal{Z}}_{l1} = \overline{\mathcal{Z}}_{l2} = \overline{\mathcal{Z}}_{l3} = \beta + j\gamma \text{ [}\Omega\text{]}, \overline{\mathcal{Z}}_{c1} = \delta + j\epsilon \text{ [}\Omega\text{]}, \overline{\mathcal{Z}}_{c2} = \kappa + j\lambda \text{ [}\Omega\text{]}$$

$$\overline{Z}_{c3} = \alpha + i\beta [\Omega], \overline{Z}_n = \eta + i\theta [\Omega]$$

Ejercicio 9-1 y 9-2

Compara los resultados de los ejercicios 9-1 y 9-2. ¿Qué conclusiones se derivan de los resultados?

	Ejercicio 9-1	Ejercicio 9-2
I_1 [A]		
ϕ_1 [°]		
I_2 [A]		
ϕ_2 [°]		
I_3 [A]		
ϕ_3 [°]		
I_n [A]		
ϕ_n [°]		

Circuito trifásico

Alternador monofásico

Alternador trifásico

Un alternador trifásico está formado por tres fuentes de tensión sinusoidales de misma amplitud y frecuencia y desfasados 120°

La secuencia de fase establece el orden en el que se suceden los fasores de tensión (a-b-c, 1-2-3, R-S-T)

Secuencia directa

Secuencia inversa

 $\overline{\mathcal{V}}_a$, $\overline{\mathcal{V}}_b$ y $\overline{\mathcal{V}}_c$ forman un sistema trifásico de tensiones equilibrado (s. directa)

- El módulo de la tensión entre dos fases es $\sqrt{3}$ veces el de la tensión de fase
- La tensión entre dos fases **adelanta** 30° a la tensión de fase

 $\overline{\mathcal{V}}_a$, $\overline{\mathcal{V}}_b$ y $\overline{\mathcal{V}}_c$ forman un sistema trifásico de tensiones equilibrado (s. inversa)

- El módulo de la tensión entre dos fases es $\sqrt{3}$ veces el de la tensión de fase
- La tensión entre dos fases **retrasa** 30° a la tensión de fase

 $\overline{\mathcal{V}}_{ab},\,\overline{\mathcal{V}}_{bc}$ y $\overline{\mathcal{V}}_{ca}$ forman un sistema trifásico de tensiones equilibrado (s. directa)

La tensión entre dos fases coincide con la tensión de fase

 $\overline{\mathcal{V}}_a$, $\overline{\mathcal{V}}_b$ y $\overline{\mathcal{V}}_c$ forman un sistema trifásico de tensiones equilibrado (s. inversa)

• La tensión entre dos fases coincide con la tensión de fase

Tenemos un alternador trifásico equilibrado. Calcula el módulo de la intensidad $\overline{\mathcal{I}}$ [A] para los siguientes casos:

- a) Alternador trifásico en estrella y secuencia directa
- b) Alternador trifásico en triángulo y secuencia directa
- c) Alternador trifásico en estrella y secuencia inversa
- d) Alternador trifásico en triángulo y secuencia inversa

Datos:

$$V = 200 + 10 \cdot \alpha \text{ [V]}, f = 50 \text{ [Hz]}, L = 10 + \beta \text{ [mH]}, C = \gamma \text{ [}\mu\text{F]}, R = \delta \text{ [}\Omega\text{]}$$

Solución 9-3

- Dibuja los fasores de las tensiones de fase del alternador trifásico. Ten en cuenta si la secuenca es directa o inversa
- Dibuja los fasores de las tensiones en bornas de la bobina, el condensador y la resistencia
- Dibuja los fasores de las intensidades que atraviesan la bobina, el condensador y la resistencia
- Determina el módulo de las intensidades que atraviesan la bobina, el condensador y la resistencia
- ullet Dibuja el fasor de $\overline{\mathcal{I}}$ aplicando leyes de Kirchhoff
- ullet Calcula el módulo de $\overline{\mathcal{I}}$

- Lo que nos interesa de un alternador trifásico es:
 - El módulo de la tensión entre dos fases (tensión compuesta)
 - La secuencia

Alternador trifásico real

Conexión en estrella de un alternador trifásico equilibrado y real

Alternador trifásico real

Conexión en triángulo de un alternador trifásico equilibrado y real

 $\overline{\mathcal{V}}_{ab}, \overline{\mathcal{V}}_{bc}, \overline{\mathcal{V}}_{ca} \rightarrow \text{ Tensiones de fase}$

Alternador trifásico real

Conversión estrella-triángulo de un alternador trifásico equilibrado y real

$$\overline{\mathcal{Z}}_g^{\Delta} = 3\overline{\mathcal{Z}}_g^Y \quad \overline{\mathcal{V}}_a^{\Delta} = \sqrt{3}\underline{/30^{\circ}} \cdot \overline{\mathcal{V}}_a^Y \quad \overline{\mathcal{V}}_b^{\Delta} = \sqrt{3}\underline{/30^{\circ}} \cdot \overline{\mathcal{V}}_b^Y \quad \overline{\mathcal{V}}_c^{\Delta} = \sqrt{3}\underline{/30^{\circ}} \cdot \overline{\mathcal{V}}_c^Y$$

Carga trifásica

Conexión en estrella de una carga trifásica equilibrada

 $\overline{\mathcal{V}}_{an}, \overline{\mathcal{V}}_{bn}, \overline{\mathcal{V}}_{cn} \rightarrow \text{ Tensiones de fase}$ $\overline{\mathcal{I}}_a, \overline{\mathcal{I}}_b, \overline{\mathcal{I}}_c \rightarrow \text{ Intensidades de fase}$

Carga trifásica

Conexión en triángulo de una carga trifásica equilibrada

 $\overline{\mathcal{V}}_{ab}, \overline{\mathcal{V}}_{bc}, \overline{\mathcal{V}}_{ca} \rightarrow \text{Tensiones de fase}$ $\overline{\mathcal{I}}_{ab}, \overline{\mathcal{I}}_{bc}, \overline{\mathcal{I}}_{ca} \rightarrow \text{Intensidades de fase}$

Carga trifásica

Conversión estrella-triángulo de cargas trifásicas equilibradas

$$\overline{\mathcal{Z}}_{\Delta} = 3\overline{\mathcal{Z}}_{Y}$$

Línea trifásica

Una línea trifásica conecta un alternador trifásico y una carga trifásica

- Normalmente la conexión es a 3 cables (circuitos equilibrados)
- La conexión a 4 cables sólo es posible para alternador y carga en estrella

Línea trifásica

Una línea trifásica conecta un alternador trifásico y una carga trifásica

 $\overline{\mathcal{V}}_g^L/\overline{\mathcal{V}}_g^S \to \operatorname{Tensi\'on}$ de línea/simple en bornas del generador $\overline{\mathcal{V}}_c^L/\overline{\mathcal{V}}_c^S \to \operatorname{Tensi\'on}$ de línea/simple en bornas de la carga $\overline{\mathcal{I}}_L \to \operatorname{Intensidad}$ de línea

 $\overline{\mathcal{V}}_L o Caída de tensión en la línea$

Magnitudes en circuitos trifásicos

- Magnitudes en generadores y cargas
 - Tensión de fase: tensión en cada fase del generador/carga
 - Intensidad de fase: intensidad en cada fase del generador/carga
- Magnitudes en líneas
 - Intensidad de línea: intensidad por cada conductor
 - Tensión de línea/fase-fase/compuesta: tensión entre dos fases
 - Tensión fase-neutro/simple: tensión entre fase y neutro
 - Se puede calcular la tensión de línea en bornes de generadores y cargas
 - No confundir tensión de línea con caída de tensión en la línea

Circuitos trifásicos equilibrados

- Un circuito trifásico equilibrado está compuesto por
 - Un alternador trifásico equilibrado (tensiones con mismo módulo y desfasadas $\pm 120^\circ$)
 - Líneas trifásica (misma impedancia)
 - Cargas trifásicas equilibradas (misma impedancia en cada fase)
- En un circuito trifásico equilibrado se cumple que:
 - Las tres intensidades de línea están equilibradas (mismo módulo y desfasadas $\pm 120^\circ$)
 - Las tensiones de línea y simples en cualquier punto de la línea trifásica también están equilibradas (mismo módulo y desfasadas $\pm 120^\circ$)

Circuitos trifásicos equilibrados

$$\overline{\mathcal{V}}_c^F o$$
 Tensión de fase carga $\overline{\mathcal{I}}_c^F o$ Intensidad de fase carga

 $\overline{\mathcal{I}}^F_a o$ Intensidad de fase generador

 $\mathcal{I}_c
ightarrow \,$ intensidad de fase carga $\overline{\mathcal{V}}_l
ightarrow \,$ Caída de tensión en la línea

ga $\overline{\mathcal{V}}_c^L o$ Tensión de línea carga carga $\overline{\mathcal{I}}_c^L o$ Intensidad de línea carga

 $\overline{\mathcal{I}}^L_a
ightarrow \,$ Intensidad de línea generador

 $\overline{\mathcal{I}}_l o ext{Intensidad de la línea}$

Circuitos trifásicos equilibrados

 $\overline{\mathcal{V}}_c^F o$ Tensión de fase carga $\overline{\mathcal{I}}_c^F o$ Intensidad de fase carga

 $\overline{\mathcal{I}}_a^F \to \text{Intensidad de fase generador}$

 $\overline{\mathcal{V}}_l o$ Caída de tensión en la línea

carga $\overline{\mathcal{I}}_c^L o ext{Intensidad de línea carga}$

 $\overline{\mathcal{I}}^L_a
ightarrow \,$ Intensidad de línea generador

 $\overline{\mathcal{V}}_c^L \to \text{Tensión de línea carga}$

 $\overline{\mathcal{I}}_l \rightarrow \text{Intensidad de la línea}$

28 / 40

Para el circuito trifásico equilibrado de la figura (s. directa) calcula

- a) $|\overline{\mathcal{I}}_a|$ [A] d) $/\overline{\mathcal{I}}_b$ [$^{\circ}$] g)
 - b) $/\overline{\mathcal{I}}_a$ [°] e) $|\overline{\mathcal{I}}_c|$ [A]
 - c) $|\overline{\mathcal{I}}_b|$ [A] f) $/\overline{\mathcal{I}}_c$ [°]
- g) $|\overline{\mathcal{I}}_{ab}|$ [A] j) $\sqrt{\overline{\mathcal{I}}_{bc}}$ [$^{\circ}$]
- e) $|\overline{\mathcal{I}}_c|$ [A] h) $\underline{\overline{\mathcal{I}}_{ab}}$ [°] k) $|\overline{\mathcal{I}}_{ca}|$ [A]
 - i) $|\overline{\mathcal{I}}_{bc}|$ [A] i) $|\overline{\mathcal{I}}_{ca}|$ [$^{\circ}$]

Datos:
$$\overline{\mathcal{V}}_a = 200 + 10 \cdot \lambda / \underline{0^{\circ}}, \overline{\mathcal{V}}_b = 200 + 10 \cdot \lambda / \underline{-120^{\circ}}, \overline{\mathcal{V}}_c = 200 + 10 \cdot \lambda / \underline{120^{\circ}}, \overline{\mathcal{Z}}_c = \alpha + \beta j [\Omega]$$

Para el circuito trifásico equilibrado de la figura (s. directa) calcula

- a) $|\overline{\mathcal{I}}_a|$ [A]
- d) $/\overline{\mathcal{I}}_b$ [$^{\circ}$] g) $|\overline{\mathcal{V}}_a|$ [A]
- j) $/\overline{\mathcal{V}}_b$ [$^{\circ}$]

- b) $/\overline{\mathcal{I}}_a$ [°] c) $|\overline{\mathcal{I}}_b|$ [A]
- f) $/\overline{\mathcal{I}}_c$ $[^{\circ}]$
- e) $|\overline{\mathcal{I}}_c|$ [A] h) $/\overline{\mathcal{V}}_a$ [$^{\circ}$]
- k) $|\overline{\mathcal{V}}_c|$ [A] I) $/\overline{\mathcal{V}}_c$ $[^\circ]$

Datos:
$$\overline{\mathcal{V}}_{ab} = 200 + 10 \cdot \lambda / 0^{\circ}, \overline{\mathcal{V}}_{bc} = 200 + 10 \cdot \lambda / -120^{\circ}, \overline{\mathcal{V}}_{ca} = 200 + 10 \cdot \lambda / 120^{\circ}, \overline{\mathcal{Z}}_{c} = \alpha + \beta j [\Omega]$$

Circuitos monofásicos equivalentes

- En los circuitos trifásicos equilibrados (CTE) todas las tensiones e intensidades están equilibradas (mismo módulo y desfasadas 120°).
- El análisis de CTE se suele hacer usando el circuito monofásico equivalente
- En un circuito monofásico equivalente solo consideramos una de las fases
- Los circuitos monofásicos equivalentes que vamos a ver son dos:
 - Conexión estrella-estrella
 - Conexión triángulo-triángulo
- Si el circuito no tiene ninguna de estás disposiciones aplicaremos transformación de fuentes o cargas trifásicas

Circuitos monofásicos equivalentes (Estrella-Estrella)

Como el circuito trifásico es equilibrado

$$\overline{\mathcal{I}}_n = 0 \implies \overline{\mathcal{V}}_{nn'} = 0 \implies \overline{\mathcal{V}}_n = \overline{\mathcal{V}}_{n'}$$

Aplicando LKT entre n y n^\prime por la fase a obtenemos la siguiente ecuación

$$-\overline{\mathcal{V}}_a + \overline{\mathcal{Z}}_q \overline{\mathcal{I}}_a + \overline{\mathcal{Z}}_l \overline{\mathcal{I}}_a + \overline{\mathcal{Z}}_c \overline{\mathcal{I}}_a = 0$$

Circuitos monofásicos equivalentes (Estrella-Estrella)

Construimos el siguiente circuito monofásico equivalente

Aplicamos la LKT al circuito monofásico

$$-\overline{\mathcal{V}}_a + \overline{\mathcal{Z}}_g \overline{\mathcal{I}}_a + \overline{\mathcal{Z}}_l \overline{\mathcal{I}}_a + \overline{\mathcal{Z}}_c \overline{\mathcal{I}}_a = 0$$

Observamos que la ecuación es exactamente la misma que en el caso del circuito trifásico. El monofásico de un CTE estrella-estrella incluye:

- Las impedancias originales de generador, líneas y cargas
- Las tensiones simples o de fase-neutro
- La intensidad de línea

Usa el circuito monofásico equivalente Y-Y del CTE de la figura y calcula

Datos: $V = 200 + 10 \cdot \gamma \, [V], \overline{Z}_1 = \delta + j\epsilon \, [\Omega], \overline{Z}_2 = \eta - j\theta \, [\Omega]$

Una red trifásica equilibrada (RTE) alimenta dos cargas. Usa el circuito monofásico equivalente Y-Y para calcular

Datos:
$$V = 200 + 10 \cdot \kappa \text{ [V]}, A_2 = 10 + \alpha \text{ [A]}, \overline{\mathcal{Z}}_1 = a \text{ [}\Omega\text{]}, \overline{\mathcal{Z}}_2 = ja \text{ [}\Omega\text{]}$$

Los dos alternadores del CTE tienen secuencia directa. Usa el equivalente monofásico Y-Y para calcular

- a) $|\overline{\mathcal{I}}_1|$ [A] b) $|\overline{\mathcal{I}}_2|$ [A] c) $|\overline{\mathcal{I}}_3|$ [A]
- d) $|\overline{\mathcal{I}}_4|$ [A]

Datos:
$$\overline{\mathcal{V}}_{g1} = 200 + 10 \cdot \beta \underline{/0^{\circ}} \, [V], \overline{\mathcal{V}}_{g2} = 200 + 10 \cdot \gamma \underline{/30^{\circ}} \, [V], \overline{\mathcal{Z}}_{g1} = j\delta \, [\Omega], \overline{\mathcal{Z}}_{l1} = \epsilon + j\eta \, [\Omega], \overline{\mathcal{Z}}_{c} = \theta - j\kappa \, [\Omega], \overline{\mathcal{Z}}_{l2} = \lambda + j\alpha \, [\Omega], \overline{\mathcal{Z}}_{g2} = j\beta \, [\Omega]$$

Circuitos monofásicos equivalentes (Triángulo-Triángulo)

Suponemos secuencia directa y obtenemos

$$\overline{\mathcal{I}}_{a} = \overline{\mathcal{I}}_{a'b'} - \overline{\mathcal{I}}_{c'a'} = \sqrt{3}/(-30^{\circ})\overline{\mathcal{I}}_{a'b'} \\
\overline{\mathcal{I}}_{a} = \overline{\mathcal{I}}_{ba} - \overline{\mathcal{I}}_{ac} = \sqrt{3}/(-30^{\circ})\overline{\mathcal{I}}_{ba}$$

$$\overline{\mathcal{I}}_{a} - \overline{\mathcal{I}}_{b} = \sqrt{3}/(30^{\circ})\overline{\mathcal{I}}_{a} = \sqrt{3}/(30^{\circ})\sqrt{3}/(-30^{\circ})\overline{\mathcal{I}}_{a'b'} = 3\overline{\mathcal{I}}_{a'b'}$$

Aplicando LKT

$$\overline{\mathcal{V}}_a = \overline{\mathcal{Z}}_q \overline{\mathcal{I}}_{ba} + \overline{\mathcal{Z}}_l \overline{\mathcal{I}}_a + \overline{\mathcal{Z}}_c \overline{\mathcal{I}}_{a'b'} - \overline{\mathcal{Z}}_l \overline{\mathcal{I}}_b = (\overline{\mathcal{Z}}_q + 3\overline{\mathcal{Z}}_l + \overline{\mathcal{Z}}_c) \overline{\mathcal{I}}_{a'b'}$$

Circuitos monofásicos equivalentes (Triángulo-Triángulo)

Construimos el siguiente circuito monofásico equivalente

Aplicamos la LKT al circuito monofásico

$$\overline{\mathcal{V}}_a = (\overline{\mathcal{Z}}_g + 3\overline{\mathcal{Z}}_l + \overline{\mathcal{Z}}_c)\overline{\mathcal{I}}_{a'b'}$$

El monofásico de un CTE triángulo-triángulo incluye:

- Las impedancias originales de generador y cargas
- Las impedancias de las líneas multiplicadas por 3
- Las tensiones compuestas o de fase-fase
- La intensidad de fase

Una red trifásica equilibrada (RTE) alimenta dos cargas. Usa el circuito monofásico equivalente D-D para calcular

 $\text{a)} \ |\overline{\mathcal{I}}_1| \ [\text{A}] \qquad \text{b)} \ |\overline{\mathcal{I}}_2| \ [\text{A}] \qquad \text{c)} \ |\overline{\mathcal{I}}_3| \ [\text{A}] \qquad \text{d)} \ |\overline{\mathcal{I}}_4| \ [\text{A}] \qquad \text{e)} \ |\overline{\mathcal{I}}_5| \ [\text{A}]$

Datos: $V = 200 + 10 \cdot \kappa \text{ [V]}, \overline{\mathcal{Z}}_1 = \alpha + j\beta \text{ } [\Omega], \overline{\mathcal{Z}}_2 = 10(\gamma - j\delta) \text{ } [\Omega], \overline{\mathcal{Z}}_3 = \epsilon + j\eta \text{ } [\Omega], \overline{\mathcal{Z}}_4 = 10(\kappa + j\lambda) \text{ } [\Omega]$

Los dos alternadores del CTE tienen secuencia directa. Usa el equivalente monofásico D-D para calcular $\,$

a) $|\overline{\mathcal{I}}_1|$ [A] b) $|\overline{\mathcal{I}}_2|$ [A] c) $|\overline{\mathcal{I}}_3|$ [A] d) $|\overline{\mathcal{I}}_4|$ [A] $\overline{\mathcal{V}}_{g1}$ $\overline{\mathcal{Z}}_{g2}$ $\overline{\mathcal{Z}}_{g1}$ $\overline{\mathcal{Z}}_{l2}$ $\overline{\mathcal{I}}_2$

$$\begin{aligned} &\mathsf{Datos:} \overline{\mathcal{V}}_{g1} = 200 + 10 \cdot \gamma \underline{/0^{\circ}} \; [\mathsf{V}], \overline{\mathcal{V}}_{g2} = 200 + 10 \cdot \delta \underline{/30^{\circ}} \; [\mathsf{V}], \overline{\mathcal{Z}}_{g1} = \\ &j \epsilon \; [\Omega], \overline{\mathcal{Z}}_{l1} = \eta + j \theta \; [\Omega], \overline{\mathcal{Z}}_{c} = \kappa - j \lambda \; [\Omega], \overline{\mathcal{Z}}_{l2} = \alpha + j \beta \; [\Omega], \overline{\mathcal{Z}}_{g2} = j \gamma \; [\Omega]_{\mathbb{Q}_{0}} \end{aligned}$$