ARITHMÉTIQUE MODULAIRE

1. L'anneau $\mathbb{Z}/n\mathbb{Z}$

Dans toute cette section n est un entier strictement positif

Congruences modulo *n*

On définit une **relation d'équivalence**, notée \equiv , sur \mathbb{Z} par

$$x \equiv y \mod n \ (\ll x \text{ congru à } y \text{ modulo } n \gg)$$

si $n \text{ divise } x - y$

L'ensemble des classes d'équivalences est noté $\mathbb{Z}/n\mathbb{Z}$.

On note $\dot{a} \in \mathbb{Z}/n\mathbb{Z}$, ou encore $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$, la classe de l'entier $a \in \mathbb{Z}$.

Proposition

Pour tous entiers a, et b, on a équivalence de

- $a \equiv b \mod n$
- a et b ont le même reste dans la division euclidienne par n.

Par conséquent, un système « naturel » de représentants des classes est l'ensemble des entiers compris entre 0 et n-1: chaque entier est représenté par son reste dans la division euclidienne

par n.

Remarque.

Il peut être intéressant (surtout pour les calculs « à la main ») de travailler avec un autre système de représentants :

$$\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$
$$= \{\overline{-2}, \overline{-1}, \overline{0}, \overline{1}, \overline{2}\}$$

Structure d'anneau

Plus précisément, on définit sur $\mathbb{Z}/n\mathbb{Z}$:

Pour $n \geq 2$, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ « hérite » de \mathbb{Z} une structure d'anneau commutatif, c'est-à-dire de deux lois internes + et \times qui partagent les propriétés de l'addition et de la multiplication des entiers.

$$\begin{cases} +: & \overline{a} + \overline{b} = \overline{a+b} \\ \times: & \overline{a} \times \overline{b} = \overline{ab} \end{cases}$$

vérifiant

- + est une loi de groupe abélien sur $\mathbb{Z}/n\mathbb{Z}$: loi interne, associative, $\overline{0}$ est élément neutre, toute classe admet une classe opposée : $-\overline{x} = \overline{-x}$, commutative
- \times est une loi interne, associative, et commutative, admettant $\overline{1}$ pour élément neutre
- l'addition est distributive par rapport à la multiplication

0000

- Chacune de ces propriétés mérite une vérification, la plus importante étant de s'assurer que les opération sont bien définies: le résultat ne dépend que des classes et non des représentants particuliers choisis.
- À partir de ces lois, de la multiplication en particulier, on peut définir
 - l'élévation au carré $a \mapsto a^2$
 - plus généralement, l'élévation à la puissance $n, n \ge 2$: $a \mapsto a^n$
 - l'exponentiation de base $B: a \mapsto B^a$

puis éventuellement, avec quelques précautions, leurs réciproques : « racine carrée », racine n^e , logarithme en base $B ext{ ... }$

Plan

1. L'anneau $\mathbb{Z}/n\mathbb{Z}$

2. Théorème Chinois

3. Éléments inversibles

Soit a, b deux entiers strictement positifs, soit $x \in \mathbb{Z}$.

Si l'on connaît la classe x_{ab} de x modulo ab, on peut obtenir la classe x_a de x modulo a, en réduisant x_{ab} modulo a.

Et de même modulo b!

En fait, si a et b sont premiers entre eux, on a une sorte de réciproque :

Théorème chinois des restes

Soit a, b des entiers strictement positifs tels que pgcd(a, b) = 1, et soit u, v des entiers tels que au + bv = 1.

L'application

$$\varphi: \quad \mathbb{Z}/(ab)\mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$$
$$x \mod (ab) \quad \mapsto \quad (x \mod a, \ x \mod b)$$

est un isomorphisme d'anneau (une bijection respectant la structure d'anneau), de réciproque :

$$\psi: \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \longrightarrow \mathbb{Z}/(ab)\mathbb{Z}$$
$$(x_a, x_b) \mapsto x_a b v + x_b a u$$

Exemple.

avec
$$a = 7$$
, $b = 5$ (noter que $3 \times 7 - 4 \times 5 = 1$)

$$\begin{cases} x \equiv 3 \mod 7 \\ x \equiv 1 \mod 5 \end{cases} \Leftrightarrow x \equiv 3 \times (-4) \times 5 + 1 \times 3 \times 7 \equiv 31 \mod 35$$

Démonstration.

- Pour la partie morphisme, il y a beaucoup de choses faciles à vérifier.
- Le plus important est de saisir que la structure d'anneau sur un produit cartésien d'anneaux, est celle qu'on pense (addition et multiplication composante par composante).
- Pour l'aspect « bijection », on vérifie facilement que $\varphi \circ \psi = \mathrm{Id}_{\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}}$ grâce à l'identité de Bézout
- Et réciproquement, il faut voir que $\psi \circ \varphi(x) = x_a b v + x_b a u \mod a b$. On peut calculer avec des représentants dans \mathbb{Z}

$$x_abv + x_bau = (x + ak)bv + (x + b\ell)au$$
$$= x(au + bv) + ab(kv + \ell u)$$

Plan

1. L'anneau $\mathbb{Z}/n\mathbb{Z}$

2. Théorème Chinois

3. Éléments inversibles

Définition

Soit $a \in \mathbb{Z}/n\mathbb{Z}$.

On dit que a est un (élément) inversible s'il existe $b \in \mathbb{Z}/n\mathbb{Z}$ tel que $ab = 1 \in \mathbb{Z}/n\mathbb{Z}$.

Par exemple $7 \times 8 = 1 + 5 \times 11$ implique que 7 et 8 sont inverses modulo 11.

Remarques.

- Un tel élément *b* est un inverse de *a*, et il est facile de voir que si *a* est inversible, l'inverse est unique.
- $\overline{0}$ n'est jamais inversible, $\overline{1}$ l'est toujours.
- Si $a \neq \overline{0}$, et s'il existe $b \in \mathbb{Z}/n\mathbb{Z}$, $b \neq \overline{0}$, tel que $ab = 0 \in \mathbb{Z}/n\mathbb{Z}$, on dit que a est un diviseur de zéro, et on voit facilement que a n'est alors pas inversible.

On note $(\mathbb{Z}/n\mathbb{Z})^{\times}$ l'ensemble des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Proposition

L'ensemble $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est stable par multiplication et passage à l'inverse.

Remarques.

- La démonstration est une vérification immédiate.
- On résume cette propriété en disant que $((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$ est un **groupe abélien** (avec la classe de 1 pour élément neutre).

Proposition

Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{Z}$. On a équivalence entre

- \overline{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$

Démonstration.

C'est simplement l'Identité de Bézout!

Corollaire

On a équivalence entre

- p est un nombre premier
- ② tout élément non nul de $\mathbb{Z}/p\mathbb{Z}$ est inversible

Autrement dit, si si n est premier, $(\mathbb{Z}/n\mathbb{Z})^{\times} = \mathbb{Z}/n\mathbb{Z} \setminus \{\overline{0}\}$: $\mathbb{Z}/n\mathbb{Z}$ est alors un corps (un anneau dont tout élément non nul est inversible).

Définition

Soit $n \in \mathbb{Z}$.

On appelle indicatrice d'Euler de n ,et on note $\phi(n)$,le nombre d'éléments de $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Remarques.

- $\phi(n)$ est simplement le nombre d'entiers m, tels que 0 < m < n, et pgcd(m, n) = 1
- Pour un nombre premier $p, \phi(p) = p 1$
- si p et q sont des nombres premiers distincts, et n = pq, $\phi(n) = (p-1)(q-1)$ (simple comptage, ou théorème chinois)
- mais le comportement (et le calcul) général de $\phi(n)$ ne semble ni simple, ni prévisible : il reflète la complexité de la relation de divisibilité dans $\mathbb{Z}\dots$
 - Calculer par exemple : $\phi(11)$, $\phi(12)$, $\phi(13)$, $\phi(14)$.

Théorème d'Euler

Soit n un entier. Pour tout entier a, premier à n, on a

$$a^{\phi(n)} \equiv 1 \mod n$$
.

Démonstration.

Soit $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, on considère l'application :

$$\mu_a: (\mathbb{Z}/n\mathbb{Z})^{\times} \longrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$$
 $x \mapsto ax$

C'est une bijection de $(\mathbb{Z}/n\mathbb{Z})^{\times}$ (d'inverse $\mu_{a^{-1}}$), donc

$$\prod_{x \in (\mathbb{Z}/n\mathbb{Z})^{\times}} x = \prod_{x \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \mu_{a}(x) = \prod_{x \in (\mathbb{Z}/n\mathbb{Z})^{\times}} ax = a^{\phi(n)} \left(\prod_{x \in (\mathbb{Z}/n\mathbb{Z})^{\times}} x \right)$$

Et on simplifie par $\prod_{x \in (\mathbb{Z}/n\mathbb{Z})^{\times}} x$ aux deux extrémités des égalités !

Corollaire : Petit théorème de Fermat

Pour tout nombre premier p, et tout entier a tel que 0 < a < p, on a : $a^{p-1} \equiv 1 \mod p$.