上海交通大学试卷 (月考卷) (2020至2021学年第2学期)

班级号	学号 1301P 高等数学 I		姓名(中&法) _ 成绩						
我承诺,我将严 格遵守考试纪律。	题号								
承诺人:	得分								
	批阅人(流水 阅卷教师签名 外)								

Avertissements:

- 1. Les exercices sont indépendants. Ils peuvent être traités dans un ordre quelconque. 各个题目是不相关的,可以按照任何顺序来完成。
- 2. Tous les documents sur papiers et les outils électroniques (téléphone, smartphone, ordinateur, tablette, etc.) sont interdits.

不能使用任何参考资料和电子设备包括手机、翻译器和计算器。

1 Question de cours (20 Points)

Donner la définition de k-ième application partielle de f en $\overrightarrow{x_0} \in \Delta$ et de k-ième fonction dérivée partielle de f où $f:\Delta \subset \mathbb{R}^n \to \mathbb{R}^p$ avec $(n,p) \in (\mathbb{N}^*)^2$ et n>1.

Réponse

Vu au cours

2 \mathbb{R}^n euclidien (35 Points)

Soit A = (1, 2, 3), B = (2, -1, 1) et C = (1, 1, 1) trois points de \mathbb{R}^3 .

1. Les points A, B et C sont-ils alignés? (Justifier)

Réponse

On a : $\overrightarrow{AB} = (1, -3, -2)$ et $\overrightarrow{AC} = (0, -1, -2)$. Ces vecteurs ne sont pas colinéaires donc, Les points A, B et C ne sont pas alignés. Les points A, B et C ne sont pas alignés.

Dans la suite, on note P_1 le plan passant par A, B et C.

2. Déterminer une équation cartésienne de P_1 .

Réponse

Un vecteur normal à P_1 est :

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = (4, 2, -1).$$

Comme le point C appartient à P_1 , un équation cartésienne de P_1 est :

$$4(x-1) + 2(y-1) - (z-1) = 0.$$

Ainsi, P_1 : 4x + 2y - z - 5 = 0.

On considère la droite D d'équation cartésienne :

$$\left\{ \begin{array}{ll} 2\,x + y + z - 5 & = 0 \\ -2\,x - y + z + 3 & = 0 \end{array} \right.$$

3. Déterminer un point de D, un vecteur directeur de D et un vecteur normal à D.

Réponse

 \triangleright On trouve par exemple le point E = (0, 4, 1).

 \triangleright La droite D est l'intersection du plan d'équation 2+y+z-5=0 et du plan d'équation

-2x-y+z+3=0. Un vecteur normal du premier plan est (2,1,1) et un vecteur normal du

second est (-2, -1, 1). Un vecteur directeur de D est obtenu en calculant le produit vectoriel de ces deux vecteurs : (2, -4, 0). Ainsi, D est la droite passant par E = (0, 4, 1) et dirigée par $\overrightarrow{u} = (1, -2, 0)$.

On considère le point A' = (2, -2, -3).

4. Le point A' est-il dans D? (Justifier)

Réponse

Comme $2 \times 2 - 2 - 3 - 5 \neq 0$, le point A' n'appartient pas à D.

On note P_2 le plan passant par A' et contenant D.

On rappelle que deux plans sont parallèles si et seulement si un vecteur normal de l'un est colinéaire à un vecteur normal de l'autre.

5. Déterminer un vecteur normal de P_2 .

Réponse

Un vecteur normal à P_2 est $\overrightarrow{AE} \wedge \overrightarrow{u} = (-4, -2, 0)$. Un vecteur normal à P_2 est (4, 2, -1)

6. Montrer que les plans P_1 et P_2 sont parallèles et que $P_1 \neq P_2$.

Réponse

 \triangleright Un vecteur normal à P_2 est $\overrightarrow{A'E} \wedge \overrightarrow{u} = (8, 4, -2)$.

Un vecteur normal à P_1 est $\overrightarrow{v} = (-4, -2, 1)$.

Les vecteurs sont colinéaires donc les plans P_1 et P_2 sont donc parallèles.

 \triangleright On a $4 \times 2 + 2 \times (-2) + 3 - 5 \neq 0$. Donc, A' n'appartient pas P_1 .

Ainsi, les plans P_1 et P_2 sont parallèles et $P_1 \neq P_2$.

Soit α et β deux réels tels que $\alpha + \beta = 1$. Pour tout $M \in P_1$, on note

$$G_M = \text{Bar}((A', \alpha), (M, \beta)).$$

7. Dans cette question, on pose M = A. On note $G_A = (a, b, c)$. Déterminer une expression de a, b et c en fonction de α et β .

Réponse

Par définition du barycentre, on a : $\overrightarrow{AG_A} = \alpha.\overrightarrow{AA'}$. Autrement dit : $G_A = A + \alpha.\overrightarrow{AA'}$. Comme A = (1, 2, 3) et $\overrightarrow{AA'} = (1, -4, -6)$. Donc, $G_A = (1 + \alpha, 2 - 4\alpha, 3 - 6\alpha)$.

3 Fonctions de plusieurs variables (25 points)

Soit f la fonction définie pour tout $(x, y) \in \mathbb{R}^2$ par :

$$f(x,y) = \begin{cases} \sqrt{|x|} \times \sqrt{|y|} \times \ln(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

1. Montrer que la fonction f est continue sur \mathbb{R}^2 .

Réponse

- Les fonctions $\sqrt{\cdot}$ et ln sont continues sur $]0, +\infty[$ donc, par composition de fonctions continues, la fonction f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- Étude en (0,0). Soit $(x,y) \neq (0,0)$, on a,

$$|f(x,y) - f(0,0)| = \sqrt{|x|} \times \sqrt{|y|} \times \ln\left(||(x,y)||^2\right) \le 2||(x,y)|| \times \ln\left(||(x,y)||\right) \xrightarrow{||(x,y)|| \to 0} 0.$$

Donc f est continue en (0,0).

La fonction f est continue sur \mathbb{R}^2 . La fonction f est continue sur \mathbb{R}^2 .

2. Montrer que, pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $\frac{\partial f}{\partial x}(x,y)$ existe et donner son expression.

Réponse

Les fonctions $\sqrt{\cdot}$ et ln sont dérivables sur $]0, +\infty[$ et comme x et y sont strictement positifs, les valeurs absolues ne sont pas un problème.

Donc, on peut calculer la dérivée partielle par rapport à la deuxième variable de la fonction f sur $(\mathbb{R}_+^*)^2$. On a :

$$\partial_1 f(x,y) = \frac{\sqrt{y} \times \ln(y^2 + x^2)}{2\sqrt{x}} + \frac{2 \times \sqrt{x} \times \sqrt{y}}{y^2 + x^2}$$

3. Montrer que $\frac{\partial f}{\partial x}(0,0)$ existe et calculer sa valeur.

Réponse

Pour tout $t \neq 0$, on a :

$$\frac{f(t,0) - f(0,0)}{t} = 0 \xrightarrow[t \to 0]{} 0.$$

Donc, $\partial_1 f(0,0)$ existe et vaut 0. $\partial_1 f(0,0)$ existe et vaut 0.

4. La fonction f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Réponse

On remarque que, pour tout t > 0,

$$\partial_1 f(t,t) = \frac{1}{2} \times \ln\left(2\ t^2\right) + 1 \xrightarrow[t \to 0,\ t > 0]{} -\infty.$$

Donc, $\partial_1 f$ n'est pas continue en (0,0). Ainsi, La fonction f n'est pas de classe \mathcal{C}^1 sur \mathbb{R}^2 .

4 Fonctions de plusieurs variables (20 points)

Soit ϕ et ψ deux fonctions de $\mathcal{C}^2(\mathbb{R}_+^*, \mathbb{R})$ et f la fonction :

$$f: \begin{cases} (\mathbb{R}_+^*)^2 \longrightarrow \mathbb{R} \\ (x,y) \longmapsto \sqrt{xy} \,\phi(\frac{y}{x}) + \psi(xy) \end{cases}$$

Pour tout $(x,y) \in \mathbb{R}_+^*)^2$, calculer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$ et $\frac{\partial^2 f}{\partial y^2}$ après avoir justifié leurs existences.

Réponse

Par composée, produit et somme de fonctions C^2 , f admet des dérivées partielles d'ordre 1 et 2 et on a, pour tout $(x, y) \in \mathbb{R}^2_+$:

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= \frac{\sqrt{y}}{2\sqrt{x}}\phi(\frac{y}{x}) - \frac{y\sqrt{y}}{x\sqrt{x}}\phi'(\frac{y}{x}) + y\psi'(xy) \\ \frac{\partial f}{\partial y}(x,y) &= \frac{\sqrt{x}}{2\sqrt{y}}\phi(\frac{y}{x}) + \frac{\sqrt{y}}{\sqrt{x}}\phi'(\frac{y}{x}) + x\psi'(xy) \\ \frac{\partial^2 f}{\partial x^2}(x,y) &= \frac{\sqrt{y}\left(4y\left(x^{7/2}\sqrt{y}\psi''(xy) + x\phi'\left(\frac{y}{x}\right) + y\phi''\left(\frac{y}{x}\right)\right) - x^2\phi\left(\frac{y}{x}\right)\right)}{4x^{7/2}} \\ \frac{\partial^2}{\partial y^2}(x,y) &= \frac{4y\left(x^{7/2}\sqrt{y}\psi''(xy) + x\phi'\left(\frac{y}{x}\right) + y\phi''\left(\frac{y}{x}\right)\right) - x^2\phi\left(\frac{y}{x}\right)}{4x^{3/2}y^{3/2}} \end{split}$$