a) Let $\frac{d\alpha}{dt}$ be the rate of drange of the amount of chemical per unit time. By the input-output principle the accumulation of chemical is $\lambda - \beta$, therefore a differential equation satisfied by α would be

dx - d - B

b) At steady-state de =0, so the model predicts a=B, ie. the rates of input and decay are equal.

21)
a) Recronging into the form $\frac{dx}{dx} = g(x)h(y)$ $\frac{dx}{dx} = \frac{1}{x^2} \times \frac{1}{y}$

applying the separation of variables method

$$\int y \, dy = \int c^{-2} \, dx$$

$$\frac{1}{2}y^2 = -\frac{1}{x} + C$$

$$y^2 = 2C - \frac{2}{x}$$

where D is an arbitrary constant

b) Substituting y = 1 and x = 1 into the solution gives

$$1 = \int_{0}^{2} 0 - 2$$

 $1 = 0 - 2$
 $0 = 3$

So the particular solution sortisfying y(1)=1 $y = 3 - \frac{2}{3}$

a) In matrix form this system is

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

b) The coefficient matrix is triangular, so the eigenvalues are the diagonal elements I and -1. An eigenvector for $\lambda = 1$ is a solution of

$$\begin{pmatrix} 1-1 & 0 \\ 1 & -|-| \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

which gives
$$x - 2y = 0$$

 $x - 2y = 0$

so (21) T is an eigenvector Lor 1=1

An eigenvector for $\lambda : -1$ is a solution of

$$\begin{pmatrix} 1 - (-1) & 0 \\ 1 & -1 - (-1) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

which gives

$$2x = 0$$

 $x = 0$

So (OI) is an eigenvector for \=-1

c) The general solution is therefore
$$(\dot{x}) = d(2)e^{t} + \beta(0)e^{-t}$$

$$(\dot{y}) = d(1)e^{t}$$

where a and B are arbitrary constants.

a)
$$X(x)$$
 must satisfy the boundary conditions $X(0) = 0$ and $\frac{\partial}{\partial x} X(\pi) = 0$

$$X(x) = A\cos(Fxx) + B\sin(Fxx)$$

Using the boundary condition
$$X(0)=0$$
:

Therefore
$$X(x) = Bsin(J-Kx)$$

And
$$\frac{\partial}{\partial x} X(x) = \int -u B \cos(\int -u x)$$

As
$$K \neq O$$
 and $B \neq O$, $\cos(J - k + T)$ must equal zero for a non-trivial solution.

 $\cos(J - k \times x) = O$
 $\Rightarrow J - k \times = \frac{1}{2} tT(2n-1)$

The value integral in cylindrical coordinates is

$$\int dV = \int f(\rho, \phi, z) \rho \, dz \, d\phi \, d\rho$$
In this example, $f(\rho, \phi, z) = \cos \phi$, the limits
of integration are
$$z = 0, \quad z = h + x$$

$$\phi = -\pi, \quad \phi = \pi$$

$$\rho = 0, \quad \rho = 0$$
Hence the volume integral is
$$\rho = \int_{\rho=0}^{\infty} \int_$$

2:

a) The linear moment of the two perticles before collision is

 $p_1 = m_1 \dot{r}_1 = mu\dot{r}_1$ $p_2 = m_2 \dot{r}_2 = mu\dot{r}_1$

After collision the particles have mass (m,+m2) and velocity w. The principle of conservation of linear momentum tells us that

mui + mu] = 2m W

1. Ui + UJ = 2W W = Zi + Zj

The speed after collision is $|W| = \int (\frac{4}{2})^2 + (\frac{4}{2})^2$

= $\frac{\sqrt{2}}{2}$

b) The kinetic energy before collision is

E= ± mu + ± mu

The Kinetic energy after collision is $E_2 = \frac{1}{2}(2m) \left[\frac{u^2}{2} \right]$

= mu 1 2

The ratio of Kinetic energy is musting = 52

2m4

2)

 $\frac{H_{2}}{3kg}$ $\frac{1}{V}$ $\frac{1}{V}$ $\frac{1}{V}$

where W is the weight of P, H, is the spring force of AP.

b) W = 3gj, where g is acceleration due to gravity. Hi, and He are found in the table below.

Socina		اره	l-lo	K	3	H .
,H',	3-2	2	$-\frac{1}{2}-\infty$	30	j	30(-1-5)
<u>+</u> +,	\propto		oc -1	18	ا آ- آ	-18(x-1)j
					•	

Therefore $H_1 = 30(-\frac{1}{2} - x)J$ $H_2 = -18(x-1)J$

$$3\dot{x} = 3g\dot{j} + 30(-\dot{z} - x)\dot{j} - 18(x-1)\dot{j}$$

$$0 = 39^{\frac{1}{2}} + 30(-\frac{1}{2} - 30)^{\frac{1}{2}} - 18(x-1)^{\frac{1}{2}}$$

Resolving in the 1 direction and rearraging

$$0 = 3g - 15 - 30x - 18x + 18$$

$$48x = 3g + 3$$

$$x = 3g + 3$$

$$x = 3g + 3$$

$$48$$

$$= \frac{g+1}{16}$$

d) When the particle is in motion we have
$$3\dot{x} = 3g\dot{j} + 30(-\dot{z} - x)\dot{j} - 18(x-1)\dot{j}$$

$$3\dot{x} = 3g - 15 - 30x - 18x + 18$$

 $3\dot{x} + 48x = 3g + 3$
 $\dot{x} + 160c = g + 1$

$$x + 160c = g + 1$$

e) Let
$$w^2 = 16$$
 then the equation of motion can be rewritten as

$$\dot{x} + \omega^2 x = \omega^2 xeq$$

$$x(t) = B \cos(\omega t) + C \sin(\omega t) + x eq$$

$$= B \cos(4t) + C \sin(4t) + 9 + 1$$

where B and C are constants. At t=0
we have
$$x(0) = \frac{9+1}{16} - \frac{1}{4}$$

$$\frac{9+1}{16} - \frac{1}{4} = B\cos(0) + C\sin(0) + \frac{9+1}{16}$$

6) The tension in the rod is

The resistive force is R = - WV ED

The weight of the bob is

W = mgcosoer-mgsin0eo

The position of the bob in polar coordinates is

c) The total torque about 0 is the sun of the torques of all forces acting on the bob. As the lines of action of I and R pass through 0, they contribute no torque. The torque due to 12 is

T = Ler x (mgcosoer - mgsin0eo) = mgl sin O V