About Me

- Postdoc in AMPLab
 - Led initial development of MLlib
- Technical Advisor for Databricks
- Assistant Professor at UCLA
- Research interests include scalability and easeof-use issues in statistical machine learning

MLIib: Spark's Machine Learning Library

Ameet Talwalkar AMPCAMP 5 November 20, 2014

History and Overview

Example Applications

Ongoing Development

MLbase and MLlib

MLbase aims to simplify development and deployment of scalable ML pipelines

MLlib: Spark's core ML library

MLI, Pipelines: APIs to simplify ML development

Tables, Matrices, Optimization, ML Pipelines

MLOpt: Declarative layer to automate hyperparameter tuning

History of MLlib

Initial Release

- Developed by MLbase team in AMPLab (11 contributors)
- · Scala, Java
- Shipped with Spark v0.8 (Sep 2013)

15 months later...

- 80+ contributors from various organization
- · Scala, Java, Python
- Latest release part of Spark v1.1 (Sep 2014)

What's in MLlib?

Collaborative Filtering for Recommendation Alternating Least Squares lasso Ridge Regression Prediction Logistic Regression **Decision Trees** Naïve Bayes Support Vector Machines Clustering K-Means Gradient descent L-BFGS Optimization Random data generation Linear algebra Feature transformations Many Utilities Statistics: testing, correlation **Evaluation** metrics

Benefits of MLlib

- Part of Spark
 - Integrated data analysis workflow
 - Free performance gains

Benefits of MLlib

- Part of Spark
 - Integrated data analysis workflow
 - Free performance gains
- Scalable
- Python, Scala, Java APIs
- Broad coverage of applications & algorithms
- Rapid improvements in speed & robustness

History and Overview

Example Applications

Use Cases
Distributed ML Challenges
Code Examples

Ongoing Development

Given data points

Choose cluster centers

Choose cluster centers

Choose cluster centers

Choose cluster centers

Data distributed by instance (point/row)

Smart initialization

Limited communication (# clusters << # instances)

K-Means: Scala

```
// Load and parse data.
val data = sc.textFile("kmeans data.txt")
val parsedData = data.map { x =>
   Vectors.dense(x.split(' ').map( .toDouble))
(cache ()
// Cluster data into 5 classes using KMeans.
val clusters = KMeans.train(
   parsedData, k = 5, numIterations = 20)
// Evaluate clustering error.
val cost = clusters.computeCost(parsedData)
println("Sum of squared errors = " + cost)
```

K-Means: Python

```
# Load and parse data.
data = sc.textFile("kmeans data.txt")
parsedData = data.map(lambda line:
   array([float(x) for x in line.split(' ')])).cache()
# Cluster data into 5 classes using KMeans.
clusters = KMeans.train(parsedData, k = 5, maxIterations = 20)
# Evaluate clustering error.
def error(point):
    center = clusters.centers[clusters.predict(point)]
    return sqrt(sum([x**2 for x in (point - center)]))
cost = parsedData.map(lambda point: error(point)) \
   .reduce(lambda x, y: x + y)
print("Sum of squared error = " + str(cost))
```

Recommendation

Goal: Recommend movies to users

Recommendation

Collaborative filtering

Goal: Recommend movies to users

Challenges:

- Defining similarity
- Dimensionality
 Millions of Users / Items
- Sparsity

Recommendation

Solution: Assume ratings are determined by a small number of factors.

25M Users, 100K Movies

→ 2.5 trillion ratings
With 10 factors/user

→ 250M parameters

Recommendation with Alternating Least Squares (ALS)

<u>Algorithm</u>

Alternating update of user/movie factors

Recommendation with Alternating Least Squares (ALS)

Algorithm

Alternating update of user/movie factors

Can update factors in parallel

Must be careful about communication

Recommendation with Alternating Least Squares (ALS)

```
// Load and parse the data
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map( .split(',') match {
   case Array(user, item, rate) =>
     Rating(user.toInt, item.toInt, rate.toDouble)
})
// Build the recommendation model using ALS
val model = ALS.train(
   ratings, rank = 10, numIterations = 20, regularizer = 0.01)
// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product, rate) =>
  (user, product)
val predictions = model.predict(usersProducts)
```

ALS: Today's ML Exercise

- Load 1M/10M ratings from MovieLens
- Specify YOUR ratings on examples
- Split examples into training/validation
- Fit a model (Python or Scala)
- Improve model via parameter tuning
- Get YOUR recommendations

History and Overview

Example Applications

Ongoing Development

Performance New APIs

Performance

Spark: 10-100X faster than

Hadoop & Mahout

On a dataset with 660M users, 2.4M items, and 3.5B ratings MLlib runs in 40 minutes with 50 nodes

Performance

Algorithms

In Spark 1.2

- Random Forests: ensembles of Decision Trees
- Boosting

Under development

- Topic modeling
- (many others)

Many others!

ML Pipelines

Typical ML workflow

ML Pipelines

Typical ML workflow is complex.

ML Pipelines

Typical ML workflow is complex.

Pipelines in 1.2 (alpha release)

- Easy workflow construction
- Standardized interface for model tuning
- Testing & failing early

Inspired by MLbase / Pipelines Project (see Evan's talk)
Collaboration with Databricks
MLbase / MLOpt aims to autotune these pipelines

Datasets

ML pipelines require Datasets

- Handle many data types (features)
- Keep metadata about features
- Select subsets of features for different parts of pipeline
- Join groups of features

ML Dataset = SchemaRDD

Further Integration with SparkSQL

Inspired by MLbase / MLI API

Resources

MLIib Programming Guide

<u>spark.apache.org/docs/latest/mllib-guide.html</u>

Databricks training info databricks.com/spark-training

Spark user lists & community

spark.apache.org/community.html

edX MOOC on Scalable Machine Learning

www.edx.org/course/uc-berkeleyx/uc-berkeleyx-cs190-1x-scalable-machine-6066

4-day BIDS minicourse in January