Calculus I, Tutorial Problem Sheet, Week 3

Functions: Even, odd and inverse functions

Q1. Are the following functions even, odd or neither? Justify your answers.

(a)
$$f(x) = (x-1)(x-2)$$

(b)
$$f(x) = \sum_{k=0}^{n} x^{2k+1}$$

(c)
$$f(x) = \frac{x}{(x^2+1)\cos x}$$

Q2. If $f: \mathbb{R} \mapsto \mathbb{R}$ is an even function and $g: \mathbb{R} \mapsto \mathbb{R}$ is an odd function then determine whether the following functions are even, odd or neither? Justify your answers.

(a)
$$f_1(x) = \begin{cases} f(x) & \text{if } x > 0 \\ -f(x) & \text{if } x < 0 \end{cases}$$

(d)
$$f_2(x) = (g \circ g)(x)$$

Q3. Which of the following functions are injective? Find the inverses of those which are and specify the domain of the inverse.

(a)
$$f(x) = (1-x)^2$$
 in [1,2]

(b)
$$f(x) = (x-1)/(x+2)$$
 in $\mathbb{R} \setminus \{-2\}$

(c)
$$f(x) = x^2 + 2x - 1$$
 in $[-2, 2]$

Limits

Q4. Consider the given graph of the function f(x). Are the following statements true or false?

(a) $\lim_{x\to 2} f(x)$ does not exist, (b) $\lim_{x\to 2} f(x) = 1$, (c) $\lim_{x\to 1} f(x)$ does not exist,

(d) $\lim_{x\to a} f(x)$ exists $\forall a \in (-1,1)$ (e) $\lim_{x\to a} f(x)$ exists $\forall a \in (1,3)$.

1

- Q5. In each case either evaluate the limit, or state that no limit exists

 - (a) $\lim_{x \to \pi/2} x \sin x$, (b) $\lim_{x \to 1} \frac{x^4 1}{x^3 1}$, (c) $\lim_{x \to \pi} \frac{\cos x}{1 \pi}$. (d) $\lim_{x \to 1} \frac{x 1}{\sqrt{x + 3} 2}$, (e) $\lim_{x \to 0} \frac{x^2}{1 \cos 2x}$ (f) $\lim_{x \to 3} \frac{(x^2 + x 12)}{(x 3)^2}$, (g) $\lim_{h \to 0} \frac{1 + 1/h}{1 + 1/h^2}$.
- Q6. If $f(x)>0 \ \forall \ x \neq a \ \text{ and } \lim_{x \to a} f(x)=L,$ can we conclude that L>0? Justify your answer.
- Q7. Does $\lim_{x\to 0} \frac{\sin(x+|x|)}{x}$ exist? If the limit exists then find it.
- Q8. Calculate the limit as $x \to \infty$ of the following
 - (a) $\frac{6x+7}{1-2x}$, (b) $\frac{x^2}{x^2+\sin^2 x}$.