Problem

For languages A and B, let the *shuffle* of A and B be the language

$$\{w \mid w = a_1b_1 \cdots a_kb_k, \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ each } a_i, b_i \in \Sigma^*\}.$$

Show that the class of regular languages is closed under shuffle.

Step-by-step solution

Step 1 of 2

Consider the two languages A and B. The language shuffle on A and B is as follows:

 $\{w \mid w = a_1b_1...a_kb_k, \text{ where } a_1...a_k \in A \text{ and } b_1...b_k \in B, \text{ each } a_i,b_i \in \Sigma^*\}.$

Assume, $DFA_A = (Q_A, \Sigma, \delta_A, S_A, F_A)$ and $DFA_B = (Q_B, \Sigma, \delta_B, S_B, F_B)$ be two DFAs that recognize A and B respectively. $DFA_{shuffle} = (Q, \Sigma, \delta, S, F)$ recognizes the language perfect shuffle on A and B. For each character read, $DFA_{shuffle}$ may move from running DFA_A to running DFA_B . The NFA is more flexible when compared to the DFA. In this case, $NFA_{shuffle} = (Q, \Sigma, \delta, S, F)$ has to be constructed to allow more flexibility.

The $NFA_{shuffle}$ keeps track the current states of DFA_A and DFA_B . For each character read, $NFA_{shuffle}$ makes moves in the corresponding DFA (either DFA_A or DFA_B). After the whole string is read, if both DFA_A and DFA_B reaches to the final state, then the input string is accepted by $NFA_{shuffle}$.

Comment

Step 2 of 2

The $NFA_{shuffle}$ can be defined as follows:

- $m{\cdot} \ Q = (Q_A imes Q_B) \cup \{q_0\}$. The set of all possible states of DFA_A and DFA_B which should match with $NFA_{shuffle}$. Here, q_0 denotes the initial state.
- q = q₀
- $F = (F_A \times F_B) \cup \{q_0\}$: F_A and F_B are the final states for DFA_A and DFA_B respectively. The $NFA_{shuffle}$ accepts the string if both DFA_A and DFA_B are in accept states or $NFA_{shuffle}$ accepts the empty string.
- S is as follows
- o $\delta(q_0, \varepsilon) = (q_A, q_B)$: At the start state q_0 , the current state of DFA_A is q_A and the current state of DFA_B is q_B without reading anything.
- o $(\delta_A(m,a),n) \in \delta((m,n),a)$: Change the current state of A to $\delta_A(m,a)$ when the character a is read. Here, the current state of D_A is m and the current state of D_R is n.
- o $(m, \delta_B(n, a)) \in \delta((m, n), a)$: Change the current state of B to $\delta_B(n, a)$ when the character a is read. Here, the current state of D_A is m and the current state of D_B is n.

The language L is said to be regular if there exist an FA that recognizes the language L. Here, the NFA, thut le NFA, the language shuffle.

Therefore, the class of regular languages is closed under shuffle.

Comment