WASA GR-

Department of Physics and Astronomy

THE UNIVERSITY OF IOWA

Iowa City, Iowa

FINAL PROJECT REPORT
FOR THE
RADIATION MONITOR
COSMIC X-RAY EXPERIMENT
OSO-I

Prepared by Roger F. Randall

1 March 1973

Department of Physics and Astronomy
University of Iowa
Iowa City, Iowa
52242

Contract NAS5-23112

FINAL PROJECT REPORT FOR THE RADIATION MONITOR, COSMIC X-RAY EXPERIMENT, OSO-I

SUBMITTED BY:

PROJECT MANAGER

APPROVED BY:

J.A. VAN ALLEN, HEAD
DEPT. OF PHYSICS AND ASTRONOMY

PRECEDING PAGESBLANK NOT FILMED

TABLE OF CONTENTS

			Page
1.0	SUMM	IARY	1
	1.1 1.2 1.3 1.4	OBJECT OF REPORT UI PROJECT PERSONNEL COGNIZANT GOVERNMENT AGENCY PERSONNEL SCOPE OF WORK	1 1 2 3
		1.4.1 FLIGHT INSTRUMENTS	3 3
	1.5	GENERAL DESCRIPTION OF THE RADIATION MONITOR	4
2.0	THEO	RY OF OPERATION	5
	2.1 2.2		5 5
		2.2.1 COMMAND INTERFACE CIRCUIT 2.2.2 POWER SWITCHING RELAY/INPUT FILTER 2.2.3 SATURABLE CORE MULTIVIBRATOR 2.2.4 LOW VOLTAGE POWER SUPPLY 2.2.5 HIGH VOLTAGE POWER SUPPLY 2.2.6 GM SIGNAL AMPLIFIER 2.2.7 DETECTOR ASSEMBLY	5 6 7 8 9 10
3.0	FABR	ICATION AND ASSEMBLY	13
	3.1 3.2 3.3	CORDWOOD MODULES	13
4.0	CONE	ANGLE DETERMINATION	15
5.0	REQU:	IRED PRESSURE CONDITIONS FOR INSTRUMENT TURN-ON	16

TABLE OF CONTENTS

(Continued)

Page

APPENDIX A - RADIATION MONITOR (SN29-1) ENVIRONMENTAL/CALIBRATION DATA

APPENDIX B - RADIATION MONITOR (SN29-2) ENVIRONMENTAL/CALIBRATION DATA

APPENDIX C - UNIT LEVEL TEST PROGRAM

LIST OF DRAWINGS AND FIGURES

Number	Title	Page
76D0001	OSO-I Housing GM Detector	17
760002	Cover, GM Detector Housing, OSO-I	18.
76A0003	Spacer, GM Tube, Radiation Monitor, OSO-I	19
76A0004	Potting Mould, GM Tube, Radiation Monitor, OSO-I.	20
76A0005	Front, Potting Mould, Radiation Monitor, OSO-I	21
76A0006	Back, Potting Mould, Radiation Monitor, OSO-I	22
76A0007	Front Spacer	23
76A0008	Front Pressure Plate	24
76A0009	Rear Pressure Plate	25
76B0010	Feed Through Insulator, Radiation Monitor, OSO-I.	26
7600011	Retaining Ring, GM Detector	27
76B0012	Wrench, Retaining Ring, GM Detector	28
76B0013	Red Tag Cover, Radiation Monitor, OSO-I	29
76A0017	Feedthrough, Radiation Monitor, OSO-I	30
76C1000	Radiation Monitor Package	31
76B1001	Rate Meter Board, Radiation Monitor, OSO-I	32
76B1002	GM Tube, Foamed, Radiation Monitor, OSO-I	33

LIST OF DRAWINGS AND FIGURES

(Continued)

Number	Title	Page
7601003	Mechanical Assembly, Radiation Monitor, OSO-I	35
7603000	Radiation Monitor Processor OSO-I	37
7603001	Wiring Diagram, Radiation Monitor, OSO-I	38
7603002	Block Diagram, Radiation Monitor, OSO-I	39
7604000	Relay Driver, Radiation Monitor, OSO-I	40
7604001	Chopper, Radiation Monitor, OSO-I	42
76D4002	Signal Amp, Radiation Monitor, OSO-I	43
7604003	Signal Amp, and Power Switching Motherboard Assembly, Radiation Monitor, OSO-I	46
76D4004	High Voltage Motherboard Assembly, Radiation Monitor, OSO-I	48
37 B0060	Foil Holder and Spacer Aperture Type 5	50
Figure 1	Eon 6213	51
Figure 2	Cone Angle Determination Diagram	52

1.0 SUMMARY

1.1 OBJECT OF REPORT

The object of this report is to provide a comprehensive technical description of the Radiation Monitor which is part of the GSFC cosmic x-ray experiment to be flown on the OSO-I satellite. Design and fabrication of this instrument was contracted under UI/GSFC Contract NAS5-23112.

1.2 UI PROJECT PERSONNEL

University of Iowa personnel directly involved in the project management, conception, planning, design, fabrication, testing or delivery of the Radiation Monitor are as follows:

Dr. J. A. Van Allen Head, Dept. of Physics and Astronomy

Dr. D. C. Enemark Senior Electrical Engineer

R. F. Randall Engineer IV/Project Manager

K. Henry Engineer III

H. Owens Research Physicist General director of the project and responsible for the scientific design criteria of the GM detector.

Served as electronic design consultant and responsible for final electrical design approval.

Responsible for execution of project and design of all electronics.

Responsible for mechanical design, electronic packaging, and production of finished drawings.

Responsible for the procurement, selection, qualification testing, assembly and physical calibration of the GM detector.

E. Kruse Engineer III Responsible for Quality Assurance aspects of project. Performed in-process and final inspection of flight hardware.

T. Robertson Contracts Administrator Responsible for negotiation of contract and financial analysis.

E. Williams
Design Draftsman

Executed mechanical design layouts and electronic packaging layouts.

D. Cramer Electronic Technician Responsible for part procurements, final assembly, testing, and delivery of instrument.

R. Wenman Lab. Technician Responsible for assembly of all electronic modules and harnessing of instrument.

E. A. Freund Machine Shop Foreman Responsible for all fabrication of mechanical parts.

Dr. B. A. Randall Research Associate Performed electron and proton calibration on Radiation Monitor SN29-2.

D. Baker Graduate Research Assistant Assisted in electron and proton calibrations on Radiation Monitor SN29-2.

P. Johnson Lab. Technician

Provided assistance during thermal vacuum testing.

J. Birkbeck Inker Preparation of final graphs, charts, etc.

L. Williams Secretary Typist for all correspondence, technical reports, etc.

1.3 COGNIZANT GOVERNMENT AGENCY PERSONNEL

Office of Naval Research personnel directly involved in the project Quality Assurance aspects are as follows:

D. Byal Quality Assurance Engineer

R. Alabaugh Quality Control Specialist Administered Quality Assurance aspects of contract as delegated by GSFC.

Performed in-process and final inspection of flight hardware.

1.4 SCOPE OF WORK

1.4.1 FLIGHT INSTRUMENTS

As required by subject contract the University of

Iowa furnished all non-special type materials, all personnel,

facilities and equipment necessary to furnish the items

below in accordance with GSFC specification for Radiation

Monitor (Cosmic X-Ray Experiment, OSO-I) dated January

1972.

- 1.4.1.1 Design, fabricate, test and deliver two (2) flight unit Radiation Monitors.
- 1.4.1.2 Design, fabricate, test and deliver two (2) removable radiation source fixtures.
- 1.4.1.3 Demonstrate successful operation of each flight unit at GSFC.
- 1.4.1.4 Prepare and deliver a reproducible design manual.

1.4.2 DOCUMENTATION

The University of Iowa prepared and submitted, in accordance with subject contract, with following reports.

- 1.4.2.1 Monthly Progress Report submitted by the fifteenth (15) day of each month. This report included the following: Work Completed During Reporting Period; Projected Activity for Next Reporting Period; Signficant Problem Areas; Affirmation of Delivery; Expenditures to Date and Cost to Complete.
- 1.4.2.2 Final Project Report. As set forth in this document, this report includes performance specifications, design details, and test data.

1.5 GENERAL DESCRIPTION OF THE RADIATION MONITOR

The Radiation Monitor is designed to detect, within the Van Allen Belts and the South Atlantic Anomaly, electron flux with energies ≥ 80 keV. A pulse rate proportional to the density of the electrons is provided as an output from the monitor to the GSFC rate meter. The Radiation Monitor consists of a single EON 6213 GM detector, a signal conditioning circuit, and a power converter. The Monitor electronics is contained within a rectangular aluminum structure which has the peripheral dimensions of $7.000 \times 3.125 \times 1.340$ inches. The average power consumption and weight of the Radiation Monitor is 72 mw and 0.85 lbs.

2.0 THEORY OF OPERATION

2.1 GENERAL

The Radiation Monitor consists of seven components as illustrated by the functional block diagram in drawing 76 C 3002.

Following in Section 2.2 is a detailed description of each of these components.

2.2 DETAILED

2.2.1 COMMAND INTERFACE CIRCUIT

The command interface circuit chosen for this instrument is a standard input buffer IC (supplied by Hughes Aircraft Co.) which is designed to be compatible with the S/C command subsystem (see drawing 76 C 3000). This buffer is used to drive two darlington amplifiers (Q_6 , Q_7 and Q_8 , Q_9) which control the set and reset coils on a Teledyne 422 (basic) relay. Supply voltage for the relay amplifiers is supplied from the +12.0 volt bus via a 10K resistor (R_2) . The purpose of R, is to provide short circuit protection to the bus from the relay/amplifier combination. Due to current limiting of R_2 , capacitor C_{1h} (15 μ f) is required to supply latching current during the presence of an input command to the buffer. Since a finite time is required to recharge C11, after a command has been executed, the maximum ON/OFF command rate will be limited by the time constant of R_2C_{14} . Diodes D_{13} and D_{14} provide transient protection to the transistor collectors during turnoff of the transistors. Presence of a discrete pulse command on pins 6 and 7 of the input burfer will cause the relay to latch in a position to supply the +12.0 volt bus to the input filter.

2.2.2 POWER SWITCHING RELAY/INPUT FILTER

Bus voltage to the input filter (L_1, C_1, D_1) is supplied through contacts 2 and 4 of a Teledyne 422 magnetic latching relay (see drawing 76 C 3000). At t = 0, when contacts 2 and 4 make, the input filter sees a voltage step with a magnitude of +12.0 volts. The initial surge current due to the voltage step, as seen on the +12.0 volt line, will have a peak amplitude of approximately 125 ma. In the absence of diode D_1 the surge current waveform would be a damped sinusoid with a natural frequency of approximately $1/2\pi\sqrt{LC}$ H₇ and a duration dependent upon the inherent resistance of the bus and inductor. However the presence of $\mathbf{D}_{\mathbf{l}}$ limits the transient duration to a period of approximately $\pi \sqrt{LC}/2$ sec. At t = 0 the line current begins to increase in a sinusoidal fashion until ~ $\pi \sqrt{LC}/2$ sec. at which time D₁ becomes forward biased and the surge current drops to the operating quiescent level of the instrument. The transient current duration will be approximately .0125 amp-milliseconds. During the period of time when contacts 3 and 4 initially make, diode D, suppresses possible contact arcing due to L1's collapsing field.

The primary function of the input filter is to reduce the noise current fed back onto the bus due to the switching action of the saturable-core multivibrator. The noise current fed back onto the bus will be approximately 2 ma peak to peak at a fundamental frequency of 2 $\rm kHz$.

2.2.3 SATURABLE-CORE MULTIVIBRATOR

A single transformer saturable-core multivibrator operating at 2 kHz from the +12 volt bus is used to generate the required low and high voltages (see drawing 76 C 3000). The transformer was specially designed at the UI for this application and was fabricated by Rayco Electronics in Los Angeles, California. The transformer core was manufactured by Magnetics Inc. and consists of a tape wound square permalloy 80 material. The tape material is .001 inches thick and the effective core cross sectional area is .151 cm². The saturation flux density of the core is approximately 7000 gauss. The primary collector drive winding and the base feedback windings are wound with 30 AWG wire. The secondary low and high voltage windings are wound with 36 AWG wire. The number of turns required for the drive winding were computed from the following relationship:

$$N = \frac{V}{(4.44 \text{ BmAcf})10} - 8$$

where Bm = 7000 gauss

 $Ac = .151 \text{ Cm}^2$

f = 2 kHz

v = 12 volts

Based on core parameters and operating frequency a core loss of approximately 41 mw would be realized with this design.

Bias for initial turn on of the multivibrator is supplied by the resistive network of R_3 and R_4 . Initial unbalance for starting requirements is enhanced by capacitor C_2 which is connected between the collectors of Q_1 and Q_2 . Diodes D_2 and D_3 suppress negative transients which may occur on the collectors of Q_1 and Q_2 due to the switching action of the transformer.

With no secondary load on the transformer approximately 45 mw of power is required to operate the multivibrator.

41 mw can be accounted for due to core loss, 3 mw can be attributed to bias network dissipation. Under a normal secondary load of 26 mw the input power requirement is 73 mw. Based on these figures the system efficiency is approximately 36%.

2.2.4 LOW VOLTAGE POWER SUPPLY

The capacitive filtered fullwave rectifier made up of D₄, D₅ and C₃ make up the low voltage power supply which feeds +6.8 volts to the GM Signal Amplifier and the Command Verification network (see drawing 76 C 3000). The AC voltage developed on the secondary winding which feeds the fullwave rectifier is 7.4 volts peak in amplitude.

The output of the Command Verification network made up of R_5 and R_6 is +3.4 volts. This dc level, when present, signifies the ON state of the Radiation Monitor.

2.2.5 HIGH VOLTAGE POWER SUPPLY

Diodes D_7 through D_{12} and capacitors C_7 through C_{12} make up the high voltage multiplier which yields +890 volts (see drawing 76 C 3000). The AC voltage developed on the secondary high voltage winding is approximately 150 volts peak in amplitude. Capacitors C_8 through C_{12} will charge to twice the peak amplitude of the AC driving voltage, while C_7 charges to only the peak amplitude. Consequently, the output of the multiplier will be the sum of the voltages developed across capacitors C_{10} through C_{12} . The AC ripple at the node of C_{12} , D_{12} is approximately 10 volts peak to peak as measured with a 10 M ohm input impedance scope. However, under normal operating conditions with only R_{20} and VR_1 loading the multiplier, a peak to peak ripple of approximately 3 volts is expected. A first order approximation of the expected peak to peak ripple at the output of the multiplier can be expressed as follows:

$$Vrp = (V_H - V_R)(1 - e^{\frac{-t}{T}}) \quad where$$

$$T = (\frac{c_{12}}{3}) R_{20}$$

t = .25 m sec.

V_H = High Voltage out

 $V_R = VR_1$ Voltage

Voltage regulator tube VR₁ is selected to match the operating level of the 6213 GM tube. Resistor R₂₀ is selected to provide 30 μ a of current to VR₁ (R₂₀ = (V_H - V_R)/30 μ a). Capacitor C₁₃ serves to supply the current pulses required during the firing of the GM tube. Thus the voltage level across VR₁ is maintained relatively constant with only a slight drop in voltage. The voltage change normally seen across VR₁ in this case is approximately 0.5 volts. Without C₁₃ a voltage excursion of approximately 20 volts would occur. 2.2.6 GM SIGNAL AMPLIFIER

The output from the cathode of the GM tube is a pulse of approximately 30 volts in amplitude. This pulse is applied to the three stage amplifier, depicted in drawing 76 C 3000, made up of transistors Q_3 , Q_4 , and Q_5 . The first two stages of the amplifier make up a standard GM pre-amp which has been flown on numerous other UI instruments. The input sensitivity of the first stage is increased by the use of the forward biased diode D_6 . This diode compensates for base to emitter drift over temperature to maintain a relatively constant discrimination point. The third stage, transistor Q_5 , has been added to satisfy the interface requirements imposed by the subject contract. The characteristics of the output pulse as seen at the collector of Q_5 are as follows:

Reference during input pulse absence: +4.75 v.

Pulse transition: +4.75 V, negative going to ~0.2 V.

Leading edge transition time: ~ 0.02 µsec. when loaded with 47pf.

Trailing edge transition time: $\sim 0.8 \mu \text{sec.}$ when loaded with 47 pf. and $\sim 0.3 \mu \text{sec.}$ when unloaded.

Nominal pulse width: ~ 6.0µsec.

Current sinking: ~ 0.60 ma assuming worst case β of 10 on Q_5 . 2.2.7 DETECTOR ASSEMBLY

The Detector Assembly consists of an EON 6213 GM tube and its associated quenching resistor R₂₁ (see drawing 76 C 3000). The 6213 is a mica end-window (1.3 mg/cm²) tube having a cylindrical volume of detecting gas 0.6 cm in length and 0.24 cm in diameter (see figure 1.0). The effective area of the tube is ~ 0.05 cm². The inert gas contained in tube is approximately 98% Neon and 2% Argon with a trace of chlorine. The overall dimensions of the tube are 1.360" in length and .345" in diameter. The tube housing is constructed of stainless steel and ceramic.

The gas-filled chamber has two electrodes, consisting of the outer stainless steel cylinder (cathode) and the thin wire (.011" diameter) along the cylinder axis (anode). The wire is maintained at a high positive voltage (~600 to 700 volts) with respects to the cylinder. Entry of charged particles into the chamber ionizes some of the gas molecules which in turn causes a current to flow between the anode and cathode. In

the configuration shown (see drawing 76 C 3000) a pulse of ~ 30 volts is developed across resistor $\rm R_8$.

The GM tube and quenching resistor R₂₁ are potted in Eccofoam FP. Drawing 76 B 1002 depicts the potted configuration. For assembly location of the encapsulated GM tube and quenching resistor refer to drawing 76 C 1003.

3.0 FABRICATION AND ASSEMBLY

3.1 HOUSING

Drawing 76 D 0001 depicts the detailed configuration of the Radiation Monitor housing. A three dimensional view can be seen in drawing 76 C 1000. The housing is milled out of a 6061-T6 aluminum block with finished overall outside dimensions of 7.000" in length, 3.125" in width, and 1.340" in height. The housing consists of four compartments, each isolated from each other by a wall in order to minimize EMI. Three of the compartments house the UI subassemblies and the fourth will contain the GSFC rate meter electronics.

Drawing 76 B 1001 shows the area allotted for the rate meter electronics. Access to the electronics after integration is gained by removing a .032" thick aluminum cover plate (see drawing 76 C 0002).

All aluminum parts are finished with gold iridite.

3.2 CORDWOOD MODULES

Wherever feasible the cordwood module concept of packaging was used in order to increase packaging density. Drawings 76 C 4000, 76 C 4001 and 76 D 4002 show the module layout and PC configuration for the Teledyne Relay Drives electronics, the Saturable-Core Multi-vibrator/Low Voltage Rectifier electronics, and the GM Signal Amplifier. For respective module locations on motherboards, see drawings 76 C 4003 and 76 D 4004.

3.3 MOTHERBOARD ASSEMBLIES

The standard input buffer IC and all discrete components, with the exception of those fabricated in the cordwood modules, are located in a planar fashion on the motherboard assemblies depicted in drawings 76 C 4003 and 76 D 4004. For respective assembly locations in the housing compartments see drawing 76 C 1003.

The wiring interface between the 18 pin Continental connector and the different subassemblies is shown in drawing 76 C 3001.

4.0 CONE ANGLE DETERMINATION

Figure 2.0 shows in detail the mechanical configuration which determines the 90° cone angle of the Radiation Monitor detector.

5.0 REQUIRED PRESSURE CONDITIONS FOR INSTRUMENT TURN-ON

Due to high voltage developed in the instrument, <u>do not</u> operate instrument during a pressure transition from sea level to 10^{-5} mm of mercury. Operate instrument only at sea level pressure or a pressure less than or equal to 10^{-5} mm of mercury. Operation during the aforementioned pressure transition will cause corona discharge and damage to electronic components may occur.

USED ON CF ON REVISIONS

SYM DESCRIPTION DATE APPROVED

MATERIAL: 1/16 FIBERGLASS

designed a	30 MAY 72 29 MAY 77	A	UNIV DEPT O	LERS	SICS & A	IOWA stronom	Υ
BRAFTIES APPROVAL MECH DSGN APPROVAL ELEC DSGN APPROVAL	3/MAY 72	SPAC RADIAT	CER, G			. *)-I
OTHER APPROVAL	1		DRAWING	IDE	TIFICATIO	, 1	
		೮೦೨€	SERIES	SIZE	DESIG	ATION	REV
PROJECT APPROVAL	7/19/12	02542	76	Δ	00	03_	0
CN-, RUMBEL	1	SCALE 2//	WEIGHT		SHEET	CF	

SALA KNIPFER 30MAY 72 ESIGNED ENGLISH APPROVAL LEC DSGN APPROVAL THER APPROVAL THER APPROVAL DEPT OF PHYSICS & ASTRONOMY LOWA CITY, IOWA DEPT OF PHYSICS & ASTRONOMY LOWA CITY, IOWA POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I DRAWING IDENTIFICATION	USED ON	CF ON		REVISIO	NS		
ANTERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON UNIVERSITY OF 10 MAY 72 DEPT OF PHYSICS & ASTRONOMY JUNIVERSITY OF 10 MAY 10 MA CITY, 10			SYM	DESCRIPTION		DATE	APPROVED
ANTERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON UNIVERSITY OF 10 MAY 72 DEPT OF PHYSICS & ASTRONOMY JUNIVERSITY OF 10 MAY 10 MA CITY, 10	- !	,					-
ANTERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON UNIVERSITY OF 10 MAY 72 DEPT OF PHYSICS & ASTRONOMY JUNIVERSITY OF 10 MAY 10 MA CITY, 10	-						
ANTERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON MATERIAL: TEFLON UNIVERSITY OF 10 MAY 72 DEPT OF PHYSICS & ASTRONOMY JUNIVERSITY OF 10 MAY 10 MA CITY, 10		•				•	_
AND	#4-9	10 UNC X.25	TDP -	1	O DIA.		
AANNA KNIPFER DATE ONAY 72 DEPT OF PHYSICS & ASTRONOMY BIGGING APPROVAL PRIVATE POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL PRIVATE PRAYING IDENTIFICATION					•		
MATERIAL: TEFLON BANN SALA KMIPFER DAYE SOMAY 72 DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY 10WA CITY, 10WA 1		BOTH END	05-				
MATERIAL: TEFLON BANN SALA KMIPFER DAYE SOMAY 72 DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY 10WA CITY, 10WA 1							
MATERIAL: TEFLON BANN SALA KMIPFER DAYE SOMAY 72 DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY 10WA CITY, 10WA 1			-{*} (+-}+			
MATERIAL: TEFLON BANN SALA KMIPFER DAYE SOMAY 72 DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY 10WA CITY, 10WA 1			/i/				
MATERIAL: TEFLON BANN SALA KMIPFER DAYE SOMAY 72 DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY MATERIAL: TEFLON DEPT OF PHYSICS & ASTRONOMY 10WA CITY, 10WA 1							
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM STRUNGS EPH DOSCH APPROVAL WILLIAM STRUNG POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION				75	O DIA.		
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM STRUNGS EPH DOSCH APPROVAL WILLIAM STRUNG POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION							
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM STRUNGS EPH DOSCH APPROVAL WILLIAM STRUNG POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION							
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM STRUNGS EPH DOSCH APPROVAL WILLIAM STRUNG POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION		•					
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM STRUNGS EPH DOSCH APPROVAL WILLIAM STRUNG POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION							
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM STRUNGS EPH DOSCH APPROVAL WILLIAM STRUNG POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION				•			
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM WILLIAM POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION						•	•
MATERIAL: TEFLON RAWN SALA KNIPFER 30MAY 72 BISINES WINVERSITY OF IONA DEPT OF PHYSICS & ASTRONOMY IONA CITY, IONA PARTING APPROVAL WILLIAM WILLIAM POTTING MOULD, GM TUBE RADIATION MONITOR, 050-I THER APPROVAL DRAWING IDENTIFICATION			F919)	 			
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDVAL ECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HER APPROVAL DRAWING IDENTIFICATION			[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDYAL ECH DSGN APPROVAL MINEY POTTING MOULD, GM TUBE RADIATION MONITOR, OSO-I OTHER APPROVAL DRAWING IDENTIFICATION							
UNIVERSITY OF IOWA DEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA DEPT OF PHYSICS & IOWA DEP	•	•	1 1				
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDVAL ECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HER APPROVAL DRAWING IDENTIFICATION			1 1	55			
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDVAL ECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HER APPROVAL DRAWING IDENTIFICATION				6:			
UNIVERSITY OF IOWA DEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA DEPT OF PHYSICS & IOWA DEP		·	1.1		•		
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDVAL ECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HECH DSGN APPROVAL HER APPROVAL DRAWING IDENTIFICATION	•		<u>.</u>				
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDYAL ECH DSGN APPROVAL MINEY POTTING MOULD, GM TUBE RADIATION MONITOR, OSO-I OTHER APPROVAL DRAWING IDENTIFICATION				<u> </u>			
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDYAL ECH DSGN APPROVAL MINEY POTTING MOULD, GM TUBE RADIATION MONITOR, OSO-I OTHER APPROVAL DRAWING IDENTIFICATION			. 1				
UNIVERSITY OF IOWA SALA KNIPFER 30MAY 72 ESIGNED WILLIAM Y TO BEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA PAFFEDYAL ECH DSGN APPROVAL MINEY POTTING MOULD, GM TUBE RADIATION MONITOR, OSO-I OTHER APPROVAL DRAWING IDENTIFICATION				MATERI	$AI \cdot TEEI$	ON	
PAFFING APPROVAL LEC DSGN APPROVAL LEC DSGN APPROVAL THER APPROVAL DRAWING IDENTIFICATION				771111111111111111111111111111111111111	12. 1212	.0/0	
PAFFING APPROVAL LEC DSGN APPROVAL LEC DSGN APPROVAL THER APPROVAL DRAWING IDENTIFICATION	GAIA VIIDE	ER BATE	2	UNIVER:	SITY OF	10//	Δ
PAFFING APPROVAL ELLIPSIS APPROVAL ECHLOSON APPROVAL LEC DSGN AFPROVAL THER APPROVAL DRAWING IDENTIFICATION	DESIGNED		-	DEPT OF PH	irsics &	ASTRON	OMY
THER APPROVAL DRAWING IDENTIFICATION		77/194/					
THER APPROVAL DRAWING IDENTIFICATION OF THE APPROVAL DRAWING IDENTIFICATION	MECH DSGN APPROX	AL	4 10///	NG MOUL	D.GM	TUF	3 <i>E</i>
THER APPROVAL DRAWING IDENTIFICATION	K. HENRY	1 HUNY 7	4 DADIA	TIONI NAM	111700		
SKAWING IDENTIFICATION		AL.	KADIH	11014 11101	VIIOK	$, \mathcal{O}$	$\mathcal{L}^{-}\mathcal{U}$
CONC 1 croses 1 and 1	OTHER APPROVAL						
			COOE	SERIES SIZE	DESIG	NATION	REV
	PROJECT APPROVAL		7111/2042	161A)()<	
2 F. Kandell 7/19/72 SCALE 1/1 WEIGHT CHEET OF	R.F. Kanda	St 7/19/7	2 SCALE ///		1.00		<u> </u>

USED ON CF CN REVISIONS

SYM DESCRIPTION DATE APPROVED

MATERIAL: .125 THK TEFLON

DRAWN SALA KNIPFER DESIGNED.	31 MAY 72 29 MAY 72	P	UNI\ DEPT O	ERS	ITY OF IOWA	AY
DRAFTING APPROVAL MECH USGN APPROVAL ELEC DSGN APPROVAL	3/MAY72 4 July 72	BACK, RADIA			MOULD NITOR,OSC	ΟI
OTHER APPROVAL			DRAWING	IDE	NTIFICATION	
		CODE	SERIES	SIZE	DESIGNATION	R€V
PROJECT APPROVAL	7/10/22	02542	76	A	0006	0
1C, Farance	17.1776	SCALE 2//	WEIGHT		SHEET OF	

USED ON	CF ON	REVISIONS					
		SYM	DESCRIPTION	DATE	APPR OVED		
		/	.375 DIA.,WAS .360 DIA.	21JUN72	SK _		

MATERIAL: 1/32 THK FIBERGLASS

K, Y, Kastana	11.71	SCALE 2//	WEIGHT		SHEET	OF	
PROJECT APPROVAL R.F. Pandall	Thate	02542	76	А	OC	07	/
OTHER APPROVAL		COOE	DRAWING SERIES	SIZE	NTIFICATIO DESIG	N NATION	bë√
DRAFTING APPROVAL E. WILL (A/1)5 MECH DSGY APPROVAL ELEC DSGN APPROVAL	31MAY72 14 Tuy 72	FA	PONT	TC	5PAC	ZER.	
SALA KNIPFER DESIGNED E INClusion	31 MAY 72 29916472	19	DEPT O		ITY OF	IOWA astronom	Y

USED ON CF ON REVISIONS

SYM DESCRIPTION DATE APPROVED

MATERIAL: 1/64 THK FIBERGLASS

SALA KNIPFER	MAY 31,72		UNIV	ERS	ITY OF IOWA	
T Williams	2991172		DLI I O	AWO!	CITY, IOWA	
BRAFTING APPROVAL	3/MAY77	COOM	$T \cap \cap C$	-	INC OLATE	
MECH DSGN APPROVAL	V& JULY 72	FRON	I PKE.	ンンと	IRE PLATE	
ELEC DSGN APPROVAL			•			
OTHER APPROVAL	1		DRAWING	IDEI	NTIFICATION	
		CODE	SERIES	SIZE	DESIGNATION	REV
PROJECT APPROVAL	7/19/22	02542	76	Д	0008	0
LIP, I STREET	1.7.77	SCALE 2/1	WEIGHT -		SHEET OF	

USED ON	CF CA		REVISIONS					
		SYM	DESCRIPTION	DATE	APPROVED			
_ '		1	THICKNESS WAS 1/32	7/13/72	EW			

MATERIAL: . 085 THK FIBERGLASS

PROJECT APPROVAL		1025/12	76	Λ	0009	1
OTHER APPROVAL		CODE	DRAWING SERIES	SIZE	NTIFICATION DESIGNATION	वह र
MECH OSGN APPROVAL MECH OSGN APPROVAL ELEC DSGN APPROVAL	31MAY77 1+JULY 72	REI	AR PA	RES	SURE PLA	TE
SALA KNIPFER DESIGNED.	31 May 72 29906472	P	DEPT	VERS	SITY OF IOWA YSICS & ASTRONOM' CITY, 10WA	1

MAT'L- TEFLON

E.WILLIAMS	18 AUG72	P	UNI\ DEPT O	F PH	SITY OF LOWA YSICS & ASTRONOL	MY
DECEMPT APPROVAL ELEC DIGN APPROVAL	Placent	FEED			GH DR, 050]	
OTHER APPROVAL		CODE	DRAWING SERIES	SIZE	NTIFICATION DESIGNATION	Rt. v
PROJECT APPROPAL	8/21/72	02542	76	Α	0017	0

UNIVERSITY OF IOWA DEPT OF PHYSICS O ASTRONOMY IOWA CITY, IOWA REV NOITITLE 02542 GM TUBE, FOAMED, RADIATION MONITOR OSO-I SIZE CF OH 76-C-1003 USED ON OSO-I er. no. a gty. PART COMP MAME DRAWING NO., DESCRIPTION MFS. NO. NO. 6213 GM Tube 76-A-0003 1 Spacer UofI 10 M, 1/4 W, RCRO7G106JS 1 Resistor R21 AB **Foam** DATE/13/72 ELEC DEGN APPROVAL DATE PARTS LIST FOR DRAVIN E. Williams OTHER APPROVAL DESIGNED 76-B-1002 DRAFTING APPROVAL PROJECY APPROVAL MECH DSGN APPROVAL CONT ON SHEET SH NO.

MECHANICAL ASSEMBLY, RADIATION MONITOR

UNIVERSITY OF IOWA DERT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA

REV NO TITLE 02542

\$	-		used on OSO-I	,	CF O対	
GR. NO	. a or	TRAS	NAME	COMP NO.	DRAWING NO., DESCRIPTION	MFR.
			Housing		76-D-0001	UofI
	1	+	Helicoil		1185-06CN .138 Helicoil Inserts	Helicoil
						11.07
		L	Rear Plate		76-A-0009	UofI
		L	GM Tube		76-B-1002	UofI
·	-	L	Front Spacer		76-A-0007	UofI
ľ		L	Front Plate		76-A-0008	UofI
		L	Foil Holder		37-B-0060	UofI
		L	Retaining Ring		76-C-0011	UofI
		L	Red Tag Cover	·	76-B-0013	UofI
		1	Feed Through	·	76-A-0017	Uof
		2	Feed Through	·	76-B-0010	UofI
		 L	Signal Amp MB		76-c-4003	UofI
		i .	Screws		#2-56 x 3/16 SH Screws	
		1	H.V. Motherboard		76-D-140014	UofI
		5	Screws		#2-56 x 3/16 SH Screws	
		1	Connector		MM18-22	Continental
	+	1	Cover		76-D-0002	UofI
		8	Screws		#2-56 x 1/8 SH Screws	
	1		Wire			

047E 7/13/72 DATE ELEC DOON APPROVAL NWARD E. Williams OTHER APPROVAL DESIGNED DRAFTING APPROVAL PROJECT APPROVAL MECH DSGN APPROVAL

76-C-1003

CONT ON SHEET

PARTS LIST FOR

SH NO.

EA

UNIVERSITY OF IOWA

,	Ž	1				DE		OWA CIT		astronom Na	Y		
	e W			rev na	TITLE	R	RELAY DRIV		-				
SIZ	E	1			used on OS	50-I				cf ox 76-c	-4003		
GR.	NO.	8 0	TY.		NAME	JO-1	COMP NO.	DRAWING	NO., DES				HFR.
17000-4		M. William Co.	1		End Board			76-2000	<u>r</u>				
			1		End Board			76-2000 1	В				
,			1		Resistor		R1. R23	100Ω, RC	R07G101	JS			AB
			3		Resistor		R2, R22,	10K, RCR	07G103J	S ·			AB
			2		Diodes		D13, D14	1N645JAN	гX				ITT
			4		Transistors		Q8, Q9 Q6, Q7,	2N2222A	JANTX			Fair	child
			4		Transistor (Pads		7717-16N				Therm	alloy
				 									
													
			_				·		<u> </u>	,	·		
	 			· 									
		_		ļ								· · · · · · · · · · · · · · · · · · ·	
					DATE	lei ec n	3GN APPRO	VAL DATE		PARTS LIST FOR	}		
	Wil Wil		tms		⁰ ት 13/72	<u> </u>	APPROVAL						_
			APP	ROVAL						76-0	C-4()OC	\mathbf{C}
ME	CH C	3GN	I AP	PROVAL		PROJEC	T APPROVA			ACN'T AN EUTET		NO.	

CONT ON SHEET

SH NO.

University of Iowa DEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA CODE NO. REV NO TITLE 02542 CHOPPER MODULE SIZE CF ON 76-C-4004 USED ON OSO-I GR. HO. & GTY. PARY COMP NAME MFR. DRAWING NO., DESCRIPTION NO. NO. 76-2001T 1 Endb**o**ard 76-2001B 1 Endboard 56K, RCRO7G563JS AB 1 Resistor R3 $R^{!}$ 5.6K, RCR07G562JS 1 AB Resistor D4, D5 1N645 JANTX Diodes D2, D3, 1 Capacitor Cl $1.0\mu f$, CSR13G105KP Kemet C2 $.0047\mu$ f, CKR12BX472KP Kemet 1 Capacitor C3 3.3µf, CSR13D335KP Kemet 1 Capacitor Q1, Q2 Fairchild 2 2N2222A JANTX Transistors Transistor Pads **7**717-16N Thermalloy

DRAWN
E. Williams
DESIGNED

DRAFTING APPROVAL

MECH DOGN APPROVAL

/13/72

ELEC DSGN APPROVAL DATE

OTHER APPROVAL

PROJECT APPROVAL

PARTS LIST FOR

76-C-4001

CONT ON SHEET

SH NO.

-	M		* · · · · · · · · · · · · · · · · · · ·			ERBITY C F Physics 8 Iowa city, i	ASTRONOMY		
1	e 110. 254	- 1	VRATITLE	SIGNAL	AMP				
317	e.	.		20. 7	•		75. 74. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75	00	
GA.	HO. 33 G		USEO OH (LRT AH -O-	ME	COMP NO.	DRAWING NO., D	c c c e	03	MFR.
14:417:42		1	Endboard			76-2002T	metar-drokelikeradheramakinytak karanganayi-akinanye-en cehirilike meh		
	`	1	Endb o ard			76-2002В			
		2	Resistor	t ritta dir - Protessa er ana satusa canana erano.	R5, R6	10K, 1%, RNC5	5H1002FR		Mepco
		1	Resistor		R7	100Ω, RCRO7G10	Oljs		AB
		1	Resistor	···	R14	820Ω, RCR07G82	21JS	·	A B
		1	Resistor		R13	1K, RCR07G102	JS .		AB
T TOTAL CONTRACTOR		1	Resistor		R1.5	3.3K, RCR07G33			A B
		1	Resistor		R17	4.7 K, RCRO7G			AΒ
		2	Resistor		RIO, RI	6.8k, RCR07G68			AΒ
		1	Resistor		R12	8.2K, RCR07G82			A B
		1	Resistor	********	R19	15K, RCR07G153			A B
		2	Resistor		R16	22K, RCR07G22	3JS		AΒ
		1	Resistor		R8	100K, RCRO7G10			AB
		1	Resistor		Rll	1M, RCRO7G105			AB
		1	Diode		D6	1N3064 JANTX		Fairch	ild
		1	Capacitor	•		220 pf, CKR12	BX221KP		K emet
-		1	Capacitor		c 6	33 pf, CKRl2BX	K330KP		Kemet
		2	Transisto	or	Q3,Q5	2N2222A JANTX		Fairch	i 1d
		1	Transisto	or `	Q ¹ I	2N2907A JANTX		Fairch	ild
		3	Transisto	r Pad	·	7717-16N		Thermal	loy
DRA E	ww Willia	ms	0ATE 7/13/72		SGN APPRO	AL DATE	PARTS LIST FOR		
	HONED	1000		OTHER	APPROVAL		76-D-	4002)
	FTING A			PROJE	CT APPROVA	L .			P
,,,,,,					dente projektich de primeryczni	ka.	CONT ON SHEET	SH NO.	*****

UNIVERSITY OF 10WA DEPT OF PHYSICS & ASTRONOMY Reproduced from best available copy. IOWA CITY, IOWA REV HOLTITLE 02542 SIGNAL AMP & POWER SWITCHING MOTERBOARD ASSEMBLY SIZE used on OSO-I cf on 76-C-1003GR. NO. B GTY. | PART COMP NAME DRAWING NO., DESCRIPTION MFT. MO. NO. Motherboard 76-2003 T&B 76-D-4002 Signal Amp Mod UorI 76-C-4000 Relay Driver Mod UofI 1 IC Dual Input Buffer Hughes 1 Relay 422-12 Teledyme Relay Pad 7717-111 Thermalloy C14 1 Capacitor 15 μf, CSR13E156KP Kemet C4 Capacitor 3.3 \(\mathcal{H} \text{f} \), CSR13D335KP 1 Kenet Capacitor .01 μ f, CKR12BX103KP Kemet X2043-B Cambion 1 Terminal ⁵47/13/77 E. Williams ELEC DIGN APPROVAL DATE PARTS LIST FOR OTHER APPROVAL DESIGNED 76-C-4003 DRAFTING APPROVAL PROJECT APPROVAL MECH DSGN APPROVAL CONT ON SHEET

UNIVERSITY OF IOWA DEPT OF PHYSICS & ASTRONOMY IOWA CITY, IOWA CUDE NO. REV NO TITLE 02542 HIGH VOLTAGE MOTHERBOARD ASSEMBLY USED ON OSO-I CF ON 76-C-1003 GR. NO. & GTY. PART COMP MFQ. DRAWING NO., DESCRIPTION NAME NO. NO. 76-2004 Motherboard ī 76-C-4001 UofI Chopper Module 3T642 1 Tl Rayco Transformer 44-0010 P 14 UofI 1 Insert #4-40 x 3/4 SH Screw Screw 1 Inductor Ll 10mh, V50-5-W Torotel 44-0010P2 Insert UoiI #4-40 x 9/16 SH Screw 1 Screw D1 | IN3064 JANTX D10,D11,D12 D7,D8,D9, 1N4249 JANTX ITT 1 **Dio**de Semtech D**io**de .01 μ f, Kemet 1 Capacitor 6 .0075 µf at 1000VDC DD-7521X5U Capacitor Centralac .0033 μf, CK64AW332M Capacitor C13 1 Aerovox i Voltage Regulator VRL GVlA Victoreen RZ4 Resistor 100Ω, RCRO7G10LJS AB 2 Resistor R20 Trim RCRO7G---JS AB 8 X 2042 B Terminal Cambion X 2041 B Cambion Terminal X 2044 B 2 Terminal Cambion ^{∂ΔΤ}€/13/72 ELEC DEGN APPROVAL DATE PARTS LIST FOR E. Williams OTHER APPROVAL DESIGNED 76-D-4004 DRAFTING APPROVAL PROJECT APPROVAL HECH DSON APPROVAL CONT ON SHEET SH NO.

EON 6213

FIGURE 1

7

C-G72-356

CONE ANGLE DETERMINATION DIAGRAM

FIGURE 2

APPENDIX A

RADIATION MONITOR (SN29-1)

ENVIRONMENTAL/CALIBRATION DATA

TABLE OF CONTENTS

		Page
1.0	ENVIRONMENTAL TEST DATA (SN29-1)	Al
	1.2 PHYSICAL PROPERTIES. 1.3 PRE-VIBRATION O.O.E. 1.4 VIBRATION TEST. 1.5 POST VIBRATION O.O.E. 1.6 TEMPERATURE TEST. 1.7 THERMAL VACUUM TEST.	A3 A4 A4 A4 A5
2.0	SCREEN/TEST DATA EON 6213 (SNA3270)	A7
3.0	CALIBRATION DATA	8A

LIST OF FIGURES

Number		Title	age
Figure	Al	Physical Properties Measurements External Dimensions/Mounting Hole Location (SN29-1)	#II
Figure	A2	Physical Properties Measurements Mounting Surface Flatness (SN29-1)	/ 12
Figure	АЗ	Unit Level Temperature Test Unit No. 1 (SN29-1) A	113
Figure	A4	Unit Level Thermal Vacuum Test Unit No. 1 (SN29-1)	114
Figure	A5	Eon 6213 Plateau -40 °C Before Screening	115
Figure	A 6	Eon 6213 Plateau +50 °C Before Screening	4 16
Figure	A7	Eon 6213 Plateau +25 °C Before Screening	117
Figure	A8	Eon 6213 Plateau -40 °C After Screening	4 18
Figure	A 9	Eon 6213 Plateau -20 °C After Screening	119
Figure	AlO	Eon 6213 Plateau +20 °C After Screening	120
Figure	All	Eon 6213 Plateau +40 °C After Screening	A21
Figure	Al2	Eon 6213 X-Ray "Life" Test	A 22
Figure	Al3	Eon 6213 Background Test	A23
Figure	Al4	Eon 6213 Temperature Test	A24

LIST OF FIGURES

(Continued)

Number	Title	Page
Figure Al5	r VS R Curve, Radiation Monitor SN29-1, GM Tube A3270, Temperature -20 °C	A25
Figure Al6	r VS R Curve, Radiation Monitor SN29-1, GM Tube A3270, Temperature +25 °C	A26
Figure Al7	r VS R Curve, Radiation Monitor SN29-1, GM Tube A3270, Temperature +40 °C	A27

1.0 ENVIRONMENTAL TEST DATA (SN29-1)

With the exception of test deviations noted, all tests were performed in accordance with the document titled <u>UNIT-LEVEL TEST</u>

PROGRAM, RADIATION MONITOR, COSMIC X-RAY EXPERIMENT, OSO-I, dated

30 June 1972. (See Appendix C - Unit Level Test Program)

1.1 FUNCTIONAL TEST

1.1.1 INPUT POWER

BUS VOLTAGE	BUS CURRENT	AVE. POWER
12.0 Volts	6.0 ma	72.0 mw
12.2 Volts	6.2 ma	75.64 mw
11.8 Volts	5.8 ma	68.44 mw

1.1.2 OPERATING FREQUENCY

BUS VOLTAGE	MULTIVIBRATOR FREQUENCY
12.0 Volts 12.2 Volts 11.8 Volts	1.884 kHz 1.913 kHz 1.852 kHz

1.1.3 SECONDARY RECTIFIED VOLTAGES

BUS VOLT.	LOW VOLT.	UNREG. HIGH*	REG. HIGH
12.2 Volts	6.87 Volts	848 Volts	646.2 Volts
	7.00 Volts	863 Volts	646.4 Volts
	6.74 Volts	836 Volts	645.9 Volts

Low Voltage Ripple: 30 mv peak to peak at osc. freq.

*High Voltage Ripple: 10 volts peak to peak at osc. freq. (measurements made with

X10 Tektronix probe).

1.1.4 COMMAND VERIFICATION OUTPUT

BUS VOLTAGE	CMD. VER. VOLTAGE
12.0 Volts	3.44 Volts
12.2 Volts	3.51 Volts
11.8 Volts	3.38 Volts

Command Verification Ripple: 20 mv peak to peak at osc. freq.

1.1.5 TURN-ON CURRENT TRANSIENT

Peak Current:

125 ma (bus 12.0 v)

Transient Current Duration: ~ .0125 amp-msec.

Current Envelope Waveform: Quarter Sine Wave

1.1.6 BUS CURRENT NOISE

2.6 ma peak to peak at osc. freq. Current envelope half sine wave in nature.

1.1.7 GM OUTPUT PULSE

28 volts peak measured at the input to signal amplifier.

1.1.8 AMPLIFIER OUTPUT CHARACTERISTICS (BUS 12.0 VOLTS)

Reference During Input Pulse Absence: 4.68 volts

Pulse Transition:

4.68 volts negative

going to ~ 0.2 Volts

Leading Edge Transition Time:

 $\sim 0.02 \, \mu \text{sec}$ when

loaded with 47 of

Trailing Edge Transition Time:

1.1 usec when

loaded with 47 pf and 0.6 usec when

unloaded

1.1.9 SIGNAL GROUND (DC ISOLATION TO CHASSIS)

Resistance from pin C of J29 to chassis in excess of 2000 MΩ.

1.2 PHYSICAL PROPERITIES

- 1 2 1 WEIGHT: 387.8 grams (0.856 lbs.)
- 1.2.2 EXTERNAL DIMENSIONS: SEE FIGURE AL.
- 1.2.3 MOUNTING SURFACE FLATNESS: SEE FIGURE A2.

1.3 PRE-VIBRATION O.O.E.

1.3.1 100 µCURIE Co⁶⁰ STIMULUS (SOURCE SN1059-1)

	TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.
	2104290	3610 sec.	582.91	.402
1.3.2	BACKGROUND			
	TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.
	28	3600 sec.	.0078	.0015

1.4 VIBRATION TEST

The Qualification Level Vibration Test was performed satisfactory with no instrument anomalies noted. The thrust axis sinusoidal specifications and random specifications were modified as follows in order to accommodate the maximum DA displacement of the vibration table. Table trip-out occurred at 0.8 inches DA.

THRUST AXIS (Z) - SINUSOIDAL

FREQ. (HZ)	ACCELERATION (O-PK) G	DISPLACEMENT INCHES DA	
5 - 23		0.6	
23 - 35	22.0	-	
35 - 100	5.0	-	
100 - 200	18.0	-	
200 - 2000	5.0	••	

RANDOM VIBRATION

FREQ. (HZ)	ACCELERAT	ION PSD	OVERALL GRMS
	g ² /Hz	db/OCT	
20 - 40 40 - 200 200 - 560 560 - 2000	0.176 0.70 - 0.09	6 - -6 -	18.43

1.5 POST VIBRATION O.O.E.

1.5.1 100 μ CURIE Co⁶⁰ STIMULUS (SOURCE SN1059-1)

TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.
2094115	3590 sec.	583.32	.403
BACKGROUND			
TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.

3450 sec. .0061 .0013

1.6 TEMPERATURE TEST

21

1.5.2

1.6.1 COMMAND VERIFICATION/BUS CURRENT VS. TEMPERATURE (BUS 12.0 VOLTS)

TEMPERATURE	CMD. VER.	BUS CURRENT
25 °C -20 °C	3.43 Volts -3.38 Volts	6.0 ma 5.7 ma
+40 °C	3.44 Volts	6.0 ma

1.6.2 -20 °C SOURCE AND BACKGROUND DATA (SOURCE SN1059-1)

TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.	
(co ⁶⁰)2005546	3440 sec.	583.01	.412	
(BKG) 18	3600 sec.	.005	.0012	

1.6.3 +40 °C SOURCE AND BACKGROUND DATA (SOURCE SN1059-1)

TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.	
(co ⁶⁰)2077359	3600 sec.	577.04	.400	
(BKG) 21	3580 sec.	.00 <i>5</i> 9	.0013	

1.6.4 +25 °C SOURCE AND BACKGROUND DATA (SOURCE SN1059-1)

TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.
(co ⁶⁰)2092597	3590 sec.	582.84	.403
(BKG) 20	3570 sec.	.0056	.0013

(See Figure A3 for a plot of temperature test data.)

1.7 THERMAL VACUUM TEST

The qualification thermal vacuum test consisted of 84 hours of low temperature soak (-20 °C) and 84 hours of high temperature soak (+40 °C) while maintaining the chamber pressure between 5×10^{-8} mm of mercury and 6×10^{-6} mm of mercury. The instrument was commanded ON for 16 consecutive hours out of every 24 hours and the detector was excited during the entire test with a 100 µcurie $\rm Co^{60}$ source (SN1059-1). Thermal control of the instrument was maintained by placing the instrument inside of a shroud which was heated and cooled with a temperature controlled glycol solution. The instrument was mounted on a plate which was suspended from the ceiling of the chamber.

Temperature observation of the instrument was performed by monitoring, with a recorder, two sets of thermocouples. One of the thermocouples was attached to the top center of the instrument

box and the other to the bottom of the plate. Once each hour during the thermal vacuum test temperature, pressure, and instrument parameters were noted and logged. The following outlines the daily statistics of the data taken:

TEMPERATURE	DATE	TOTAL COUNTS ACCUMULATED	ACCUMULATION TIME (SEC)	AVE. C/S	DEV.
-20 °C -20 °C -20 °C -20 °C +40 °C +40 °C +40 °C +40 °C	9/07/72 9/08/72 9/09/72 9/10/72 9/11/72 9/12/72 9/13/72 9/14/72	31,968,945 33,739,794 33,578,099 25,143,114 33,238,621 32,054,770 33,254,379 6,187,889	53,520 56,490 56,240 42,129 56,230 54,240 56,280 10,470	597.33 597.27 597.05 596.81 591.12 590.98 590.87 591.01	.106 .103 .103 .119 .103 .104 .102

(See Figure A4 for a plot of daily averaged test data.)

1.8 POST THERMAL VACUUM O.O.E

1.8.1 100 μ CURIE Co⁶⁰ STIMULUS (SOURCE SN1059-1)

	TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.
	2069914	3560 sec.	581.44	.404
1.8.2	BACKGROUND			
	TOTAL COUNTS	ACCUMULATION TIME	AVE. C/S	DEV.
	25	3870 sec.	.0065	.0013

2.0 SCREEN/TEST DATA EON 6213 (SNA3270)

Figures A5 through All depict the before screening and after screening plateau characteristics of the EON 6213 GM tube (SNA3270).

Figures Al2 and Al3 show the tube background characteristics taken during a 24 hour life test and during a 3000 sec quiet run. Figure Al4 depicts the tubes counting rate temperature dependence prior to integration with the remaining instrument.

3.0 CALIBRATION DATA

(RADIATION MONITOR SN29-1, GM TUBE A3270)

The following data was prepared by Dr. J. A. Van Allen, Head, Department of Physics and Astronomy, University of Iowa.

3.1 APPROXIMATE PHYSICAL CHARACTERISTICS AS A PARTICLE DETECTOR

3.1.1 INTRODUCTION

In order to use this detector for precision observations of absolute intensities and angular distributions of electrons it will be necessary to:

- (a) Determine experimentally a full set of angular response curves, and
- (b) Determine experimentally the transmission curve vs particle energy of the composite absorber comprised of the gold foil and the mica window of the tube.

These experimental determinations have not been made. The following data are synthesized from various reference material and previous experimental experience with similar detectors.

The data are considered adequate for the monitoring function on OSO-I.

- 3.1.2 UNIDIRECTIONAL GEOMETRIC FACTOR
- (a) Half-angle of Maximum Look-Angle Cone = 45°.
- (b) Half-angle of Effective Look-Angle Cone = 28° .
- (c) Effective Solid Angle, $\Omega = 0.74$ steradian.
- (d) Effective Detection Area, $A = 0.045 \text{ cm}^2$.

(e) Unidirectional Geometric Factor,

$$g' = A \cdot \Omega = 3.3 \times 10^{-2} \text{ cm}^2 \text{ steradian.}$$

- (f) Typical Electron Efficiency, $\epsilon = 0.83$.
- (g) Effective Unidirectional Geometric Factor, g = ∈g'
 = 2.8 x 10⁻² cm
 steradian.

Thus, the absolute particle intensity,

$$j (cm^2 sec sterad)^{-1} = R/g$$

where R (sec)⁻¹ is the true counting rate of the detector caused by particles entering through the collimator. The factor $1/g = 36 \text{ (cm}^2 \text{ sterad)}^{-1}$ with an overall uncertainty of about + 30%.

- 3.1.3 EFFECTIVE ENERGY THRESHOLD FOR ELECTRONS
- (a) The transmission of the mica window of the GM tube was measured experimentally with the proton beam from the U. of I. Van de Graaff accelerator and found to be 50% at 611 keV. This corresponds to a window thickness of 1.67 mg cm⁻² of mica.
- (b) The gold foil was weighed and found to have an areal density of 7.2 mg cm⁻².
- (c) The transmission of the composite absorber (gold foil plus mica window) is estimated to be zero for 50 keV electrons and 50% for 120 keV electrons.

Thus, the estimated effective energy threshold for <u>electrons</u> is 120 keV.

3.1.4 EFFECTIVE ENERGY THRESHOLD FOR PROTONS

The estimated effective energy threshold for protons is 1.1 MeV.

3.1.5 X-RAY SENSITIVITY AT NORMAL INCIDENCE

λ	Calculated Transmission of Gold Foil	Estimated erg cm ⁻² per GM Count
9.87 A° 5.39 4.15 3.03 1.93 1.0 λ < 0.5	2.3 x 10 ⁻⁶ % 7 x 10 ⁻⁴ 9 x 10 ⁻³ 1.2 x 10 ⁻¹ 6.3 29. > 70	87 0.2 1.7 x 10 ⁻² 2 x 10 ⁻³ 1.6 x 10 ⁻⁴ 3.8 x 10 ⁻² > 1.4 x 10 ⁻²

3.2 r VS R CURVES

Figures A15, A16 and A17 show the relationship between the "Apparent Counting Rate" (r) and the "True Counting Rate" (R) for GM tube A3270 and its associated circuitry. The calibration runs were made using the UI/Westinghouse 240 KV D.C. X-ray machine. The family of curves shown represent the r vs R characteristics at -20 °C, +25 °C and +40 °C.

PHYSICAL PROPERTIES MEASUREMENTS

EXTERNAL DIMENSIONS/MOUNTING HOLE LOCATION (SN29-I)

FIGURE Al

PHYSICAL PROPERTIES MEASUREMENTS MOUNTING SURFACE FLATNESS (SN29-I)

A REFERENCE POINT

FIGURE A2

FIGURE A4

FIGURE A5

FIGURE A6

FIGURE A7

FIGURE A8

FIGURE A9

FIGURE AlO

FIGURE All

FIGURE Al2

FIGURE Al3

FIGURE A14

APPENDIX B

RADIATION MONITOR (SN29-2)

ENVIRONMENTAL/CALIBRATION DATA

TABLE OF CONTENTS

		Page
1.0	ENVIRONMENTAL TEST DATA (SN29-2)	Bl
	1.1 FUNCTIONAL TEST. 1.2 PHYSICAL PROPERTIES. 1.3 PRE-VIBRATION O.O.E. 1.4 VIBRATION TEST. 1.5 POST VIBRATION O.O.E. 1.6 TEMPERATURE TEST. 1.7 THERMAL VACUUM TEST. 1.8 POST THERMAL VACUUM O.O.E.	
2.0	SCREEN/TEST DATA EON 6213 (SNA3514)	в6
3.0	CALIBRATION DATA	B7

LIST OF FIGURES

Number		Title	Page
Figure	Bl	Physical Properties Measurements External Dimensions/Mounting Hole Location (SN29-2)	Bll
Figure	B2	Physical Properties Measurements Mounting Surface Flatness (SN29-2)	B12
Figure	В3	Unit Level Temperature Test Unit No. 2 (SN29-2)	B13
Figure	В4	Unit Level Thermal Vacuum Test Unit No. 2 (SN29-2)	B14
Figure	B5	Eon 6213 Plateau -40 °C Before Screening	B15
Figure	в6	Eon 6213 Plateau +20 °C Before Screening	в16
Figure	B7	Eon 6213 Plateau +40 °C Before Screening	B17
Figure	B8	Eon 6213 Plateau -40 °C After Screening	в18
Figure	В9	Eon 6213 Plateau +20 °C After Screening	B19
Figure	B10	Eon 6213 Plateau +40 °C After Screening	B20
Figure	Bll	Eon 6213 X-Ray "Life" Test	B21
Figure	B12	Eon 6213 Background Test	B22
Figure	B13	Eon 6213 Temperature Test	B23
Figure	B14	r VS R Curve, Radiation Monitor SN29-2, GM Tube SNA3514, Temperature -20 °C	B24
Figure	B15	r VS R Curve, Radiation Monitor SN29-2, GM Tube SNA3514, Temperature +24 °C	B25

LIST OF FIGURES

(Continued)

Number		Title	Page
Figure	B16 ·	r VS R Curve, Radiation Monitor SN29-2, GM Tube SNA3514, Temperature +40 °C	в26
Figure	B17	Electron Transmission through 7.2 mg/cm ² Gold Foil	B27
Figure	B18 [°]	Electron Angular Response, Radiation Monitor SN29-2	B28

1.0 ENVIRONMENTAL TEST DATA (SN29-2)

All tests were performed in accordance with the document titled UNIT-LEVEL TEST PROGRAM, RADIATION MONITOR, COSMIC X-RAY EXPERIMENT, OSO-I, dated 30 June 1972. (See Appendix C - Unit Level Test Program)

1.1 Functional Test

1.1.1 Input Power

Bus Voltage	Bus Current	Ave. Power
12.0 volts 12.2 volts	5.7 ma 5.9 ma	68.40 mw 71.98 mw
11.8 volts	5.5 ma	64.90 mw

1.1.2 Operating Frequency

1.1.3 Secondary Rectified Voltages

Bus Voltage	Low Voltage	Unreg. High	Reg. High
12.0 volts	6.88 volts	887 volts	664.2 volts
12.2 volts	7.01 volts	904 volts	664.3 volts
11.8 volts	6.75 volts	870 volts	663.8 volts

Low Voltage Ripple: 30 mv peak to peak at osc. freq.

1.1.4 Command Verification Output

Cma. ver. voltage
3.43 volts
3.50 volts
3.37 volts

Command Verification Ripple: 20 mv peak to peak at osc. freq.

1.1.5 Turn-On Current Transient

Peak Current: 135 ma (Bus 12.0 volts)

Transient Current Duration: ~ .0135 amp-msec

Current Envelope Waveform: Quarter Sine Wave

1.1.6 Bus Current Noise

Peak to Peak Current: 2.7 ma

Current Envelope: Half Sine Wave

1.1.7 GM Output Pulse

30 volts peak measured at the input to signal amplifier.

1.1.8 Amplifier Output Characteristics (Bus 12.0 Volts)

Reference During Input Pulse

Absence: 4.75 volts

Pulse Transition: 4.75 volts negative going to ~ 0.2 volts.

Leading Edge Transition Time: ~ 0.02 μsec when loaded with 47 pf.

Trailing Edge Transition Time: 0.9 µsec when loaded with 47 pf and 0.6 µsec when unloaded.

1.1.9 Signal Ground (DC Isolation to Chassis)

Resistance from Pin C of J29 to chassis in excess of 200 M Ω .

- 1.2 Physical Properties
 - 1.2.1 Weight: 404.8 gr. (.892 lbs)
 - 1.2.2 External Dimensions: (See Figure Bl)
 - ~ 1.2.3 Mounting Surface Flatness: (See Figure B2)

1.3 Pre-Vibration 0.0.E

1.3.1 Source and Background Data (Source: 100 µc Co⁶⁰ SN1059-2)

	Total Counts	Accumulation Time	Ave c/s	Dev.
(Co ⁶⁰)	1164995	3600 sec	323.61	.300
(BKG)	59	3600 sec	.016	.0021

1.4 Vibration Test

No instrument anomalies were noted during the performance of the acceptance level vibration test. A post axis electrical checkout of the instrument was performed after each axis of vibration.

1.5 Post Vibration 0.0.E

1.5.1 Source and Background Data (Source: 100 µc Co⁶⁰ SN1059-2)

	Total Counts	Accumulation Time	Ave c/s	Dev.
(Co ⁶⁰)	1182583	3650 sec	324.00	.298
(BKG)	74	3700 sec	.0200	.0023

1.6 Temperature Test

1.6.1 Command Verification/Bus Current Vs. Temperature

Temperature	Cmd. Ver.	Bus Current
+20 °C	3.428 volts	5.6 ma
-20 °C	3.391 volts	5.35 ma
+40 °C	3.453 volts	5.75 ma

1.6.2 -20 °C Source and Background Data (Source SN1059-2)

	Total Counts	Accumulation Time	Ave c/s	Dev.
(Co ⁶⁰)	1152573	3600 sec	320.16	.298
(BKG)	71	3600 sec	.0197	.0023

1.6.3 +40 °C Source and Background Data (Source 1059-2)

	Total Counts	Accumulation Time	Ave c/s	Dev.
(Co ⁶⁰)	1152955	3610 sec	319.38	.297
(BKG)	80·	3600 sec	.0222	.0025

1.6.4 +20 °C Source and Background Data (Source 1059-2)

	Total Counts	Accumulation Time	Ave c/s	Dev.
(co ⁶⁰)	1166240	3600 sec	323.96	.300
(BKG)	82	3600 sec	.0228	.0025

(See Figure B3 for a plot of temperature test data.)

1.7 Thermal Vacuum Test

The acceptance thermal vacuum test consisted of 84 hours of low temperature soak (-20 °C) and 84 hours of high temperature soak (+40 °C) while maintaining the chamber pressure between 1 x 10^{-9} mm of mercury and 2 x 10^{-6} mm of mercury. The instrument was commanded on for 16 consecutive hours out of every 24 hours and the detector was excited during the entire test with a 100 μ curie Co⁶⁰ source (SN1059-2). Thermal control of the instrument was maintained by placing the instrument inside of a shroud which was heated and cooled with a

temperature controlled glycol solution. The instrument was mounted on a plate which was suspended from the ceiling of the chamber.

Temperature observation of the instrument was performed by monitoring, with a recorder, two sets of thermocouples. One of the thermocouples was attached to the top center of the instrument box and the other to the bottom of the support plate. Once each hour during the thermal vacuum test temperature, pressure and instrument parameters were noted and logged. The following outlines the daily statistics of the data taken:

Temperature	Date	Total Counts Accumulated	Accumulation Time (sec)	Ave. c/s	Dev.
-20 °C -20 °C -20 °C -20 °C +40 °C +40 °C +40 °C	1/26/73 1/27/73 1/28/73 1/29/73 1/30/73 1/31/73 2/01/73 2/02/73	17,468,833 17,687,949 16,941,842 13,323,901 17,892,360 18,395,488 18,831,952 4,596,016	54720 55660 53450 42090 54910 55400 56680 13900	319.24 317.79 316.97 316.56 325.85 332.05 332.25 330.65	.076 .076 .077 .087 .077 .077 .077

(See Figure B4 for a plot of daily averaged test data.)

1.8 Post Thermal Vacuum 0.0.E

1.8.1 Source and Background Data (Source: 100 µc Co⁶⁰ SN1059-2)

	Total Counts	Accumulation Time	Ave c/s	Dev.
(Co ⁶⁰)	1169355	3600 sec	324,82	.300
(BKG)	71	3600 sec	.0197	.0023

2.0 SCREEN/TEST DATA EON6213 (SNA3514)

Figure B5 through B10 depict the before and after screening plateau characteristics of the EON 6213 GM tube (SNA3514). Figures B11 and B12 show the tube background characteristics taken during a 24 hour life test and during a 3000 sec quiet run. Figure B13 depicts the tubes counting rate temperature dependence prior to integration with the remaining instrument.

3.0 CALIBRATION DATA

(Radiation Monitor SN 29-2, G.M. Tube SNA3514)

The following material was prepared by Dr. J. A. Van Allen with the help of Dr. B. A. Randall and D. N. Baker.

3.1 Physical Characteristics as a Particle Detector

3.1.1 Introduction

Radiation Monitor SN 29-2 has been subjected to a rather full set of particle calibrations. The data are believed to be equally applicable to SN 29-1 because of the essential identity of the two instruments. Hence section 7 of the "Design Manual" of 20 September 1972 should be replaced by the current material.

3.1.2 Transmission Curve for Electrons

The absolute electron transmission of the complete window system of the assembled detector was measured at normal incidence with monoenergetic electrons from the new University of Iowa 300 keV electron accelerator. The result is shown in Figure 17. The transmission tends to level at a value of about 31% as the electron energy is increased from 200 to 300 keV. The fact that it is not nearly 100% is believed to be due to a combination of backscattering and the angular diffuseness of the electron beam as it emerges from the inner side of the gold foil, which has a significant stand-off distance

from the active volume of the G.M. tube. The transmission curve presumably continues to rise gradually with increasing energy. The extrapolated threshold is 100 keV. A transmission of 15% occurs at 170 keV.

3.1.3 Angular Response

The angular response of the assembled detector was measured with ${\rm Sr}^{90}$ β rays (546 keV upper limit) (Figure Bl8). The full width at half height is 82°.

3.1.4 Unidirectional Geometric Factor

- (a) Half angle of Maximum Look-Angle cone = 45°.
- (b) Half angle of Effective Look-Angle cone = 41°.
- (c) Effective Solid Angle, $\Omega = 1.54$ steradian.
- (d) Effective Detector Area, A = 0.045 cm².
- (e) Unidirectional Geometric Factor, $g' = A \cdot \Omega$ = 6.93 × 10⁻² cm² steradian.

3.1.5 Effective Unidirectional Geometric Factor for Electrons

The effective unidirectional geometric factor g for electrons is the product of the transmission as read from Figure B17 and g' as given in 3.1.4.

For 300 keV monoenergetic electrons, for example, $g = (0.31)(6.93 \times 10^{-2}) = 2.2 \times 10^{-2} \text{ cm}^2 \text{ steradian}$ and the absolute particle intensity,

 $j (cm^2 sec sterad)^{-1} = R/g = 47 R$

where R (sec)⁻¹ is the true counting rate of the G.M. tube caused by particles entering through the collimator. For any known or assumed electron spectrum the corresponding relationship between j and R can be worked out using the experimental transmission curve and the data of 3.1.4.

- 3.1.6 Energy Threshold for Protons

 The energy threshold of the assembled detector was

 measured for protons using the University of Iowa 2 MeV

 Van de Graaff. It was found to be 1.1 + 0.05 MeV.
- 3.1.7 Effective Unidirectional Geometric Factor for Protons

For protons

$$g = g' = 6.93 \times 10^{-2} \text{ for } E_p > 1.1 \text{ MeV}$$

and $g = 0$ for $E_p < 1.1 \text{ MeV}$.

Hence

3.1.8 X-Ray Sensitivity at Normal Incidence

λ	Calculated Transmission of Gold Foil	Estimated erg cm ⁻² per GM Count
9.87 A° 5.39 4.15 3.03 1.93 1.0 λ ≤ 0.5	2.3 x 10 ⁻⁶ 7 x 10 ⁻⁴ 9 x 10 ⁻³ 1.2 x 10 ⁻¹ 6.3 29.	87 0.2 1.7 x 10 ⁻² 2 x 10 ⁻³ 1.6 x 10 ⁻⁴ 3.8 x 10 ⁻⁴ > 1.4 x 10 ⁻²

3.2 r Vs R Curves

Figures B14, B15 and B16 show the relationship between the "Apparent Counting Rate" (r) and the "True Counting Rate" (R) for GM tube SNA3514 and its associated circuitry. The calibration runs were made using the UI/Westinghouse 240 KV D.C. X-ray machine. The family of curves shown represent the r vs R characteristics at -20 °C, +24 °C and +40 °C.

PHYSICAL PROPERTIES MEASUREMENTS
EXTERNAL DIMENSIONS / MOUNTING HOLE LOCATION (SN29-2)

REFERENCE POINT

BT.

FIGURE B4

FIGURE B7

FIGURE B9

FIGURE Bll

FIGURE B12

FIGURE B13

FIGURE B15

FIGURE B17

FIGURE B18

APPENDIX C

UNIT-LEVEL TEST PROGRAM

TABLE OF CONTENTS

		Page
1.0	SCOPE	Cl
2.0	DOCUMENTATION/NOTIFICATION REQUIREMENTS	C2
3.0	UNIT-LEVEL TEST SEQUENCE	c3
4.0	FUNCTIONAL CHECKOUT	C5
5.0	PHYSICAL PROPERTIES MEASUREMENTS	c8
6.0	ENVIRONMENTAL TESTS	C 9
7.0	INSTRUMENT OUTGAS	C17

1.0 SCOPE

- 1.1 This document outlines the Unit-Level Tests to be performed by the University of Iowa on the OSO-I Cosmic X-Ray Experiment Radiation Monitors.
- 1.2 The Unit-Level Tests shall consist of the following:
 - 1.2.1 Functional Checkout
 - 1.2.2 Physical Properties Measurements
 - 1.2.3 Environmental Tests
 - 1.2.3.1 Overall Operational Evaluation
 - 1.2.3.2 Vibration
 - 1.2.3.3 Temperature
 - 1.2.3.4 Thermal Vacuum

2.0 DOCUMENTATION/NOTIFICATION REQUIREMENTS

- 2.1 A detailed test log shall be kept in a Coop Computation Book in a neat precise legible form. All data entries shall be logged according to date, time, type of test, and person making entry. Tests being performed shall also be logged in the Instrument Logbook.
- 2.2 At least twenty-four (24) hours prior to commencement of any given test phase notification of test start time shall be given to the UI and ONR QA representatives.
- 2.3 After completion of each phase the Instrument Logbook shall be submitted to the UI and ONR QA representatives for proper certification of data and test sequence.

3.0 UNIT LEVEL TEST SEQUENCE

3.1 Figure 1.0 depicts the test sequence which shall be implemented during unit-level testing. Deviations from this sequence can be granted by the Project Manager providing sufficient cause for deviation is presented.

4.0 FUNCTIONAL CHECKOUT

- 4.1 Input Power Measurements
 - 4.1.1 Measure instrument power at the following bus voltages:
 - (a) 12.0 VDC
 - (b) 12.2 VDC
 - (c) 11.8 VDC
- 4.2 Operating Frequency
 - 4.2.1 Measure the operating frequency of the saturablecore multivibrator at the following bus voltages:
 - (a) 12.0 VDC
 - (b) 12.2 VDC
 - (c) 11.8 VDC
 - 4.2.2 Verify proper waveform characteristics on the primary and secondary windings of the transformer at a bus voltage of 12.0 VDC.
- 4.3 Secondary Rectified Voltages
 - 4.3.1 Measure the dc level and ripple content of the low and high rectified voltages at the following bus voltages:
 - (a) 12.0 VDC
 - (b) 12.2 VDC
 - (c) 11.8 VDC

- 4.4 Command Verification Output
 - 4.4.1 Measure the Command Verification dc level and ripple content at the following bus voltages:
 - (a) 12.0 VDC
 - (b) 12.2 VDC
 - (c) 11.8 VDC
- 4.5 Turn-ON Current Transient
 - 4.5.1 Measure the following current transient characteristics at a bus voltage of 12.0 VDC:
 - (a) peak current
 - (b) transient current duration
 - (c) current envelope waveform
- 4.6 Bus Current Noise
 - 4.6.1 With the instrument operating at a bus voltage of 12.0 VDC measure the bus current noise.
- 4.7 GM Output Pulse Characteristics
 - 4.7.1 With the GM tube excited with a 100 μcurie Co⁶⁰ source measure the output characteristics of the GM tube pulse at the input to the signal amplifier.
 (Bus Voltage 12.0 VDC)

- 4.8 Amplifier Output Characteristics
 - 4.8.1 With the GM tube excited with a 100 μ curie Co⁶⁰ source measure the following amplifier output pulse characteristics (Bus Voltage 12.0 VDC):
 - (a) Reference during input pulse absence;
 - (b) Pulse transition;
 - (c) Leading edge transition time;
 - (d) Trailing edge transition time;
 - (e) Nominal pulse width.
 - 4.8.2 Repeat Section 4.8.1 with an output capacitive load of 47 pf.
- 4.9 ON/OFF Command Checkout
 - 4.9.1 Cycle instrument through several ON/OFF commands with a one second duration between commands (Bus Voltage 12.0 VDC).
 - 4.9.2 With instrument left in the ON state, command instrument ON and OFF by removing and applying the +12.0 VDC bus.
- 4.10 Signal Ground Checkout
 - 4.10.1 Verify an infinite dc resistance between pin C of J29 and chassis.

5.0 PHYSICAL PROPERTIES MEASUREMENTS

- 5.1 The following mechanical properties of each unit comprising the Radiation Monitor, in flight configuration, shall be measured:
 - 5.1.1 Weight: To within 0.01 pounds or 4.5 grams.
 - 5.1.2 External Dimensions: To within 0.010 inches.
 - 5.1.3 Mounting Surface Flatness: To within 0.001 inches.

6.0 ENVIRONMENTAL TESTS

- 6.1 Overall Operational Evaluation (0.0.E.)
 - 6.1.1 This test shall be performed at ambient temperature and atmospheric pressure. All output pulse data will be monitored with a counter and printer.

 Ten (10) second accumulation periods will be used when recording data. Bus voltage will be +12.0 VDC.
 - 6.1.2 Perform the following tasks:
 - (a) Section 4.9 ON/OFF Command Checkout.
 - (b) Measure Command Verification Output voltage.
 - (c) With 100 µcurie Co⁶⁰ excitation verify proper output pulse waveform.
 - (d) Record sixty (60) minutes of background data.
 - (e) Record sixty (60) minutes of 100 μcurie Co⁶⁰ stimulus data.

6.2 Vibration Test

6.2.1 Mount instrument and control accelerometer to the Radiation Monitor shake fixture. During test the maximum allowable tolerance for vibration amplitude shall be ± 10 percent and for frequency shall be ± 2 percent. During test do not operate instrument.

After each axis of vibration perform Section 6.1.2 (a), (b), and (c) to verify satisfactory operation of instrument. Radiation Monitor SN29-1 shall be subjected to Qualification Levels. Radiation Monitor SN29-2 shall be subjected to Acceptance Levels.

6.2.2 Sinusoidal

The instrument will be exposed in three mutually perpendicular axes to the level indicated in the schedule shown. See Figure 2 for instrument axis identification.

QUALIFICATION LEVEL

LATERAL AXES (X AND Y) - SINUSOIDAL

FREQ. (HZ)	ACCELERATION (O-PEAK) G	DISPLACEMENT INCHES DA
5-20 20-30 30-90 90-150	10.0 4.0 13.0	0.5 - - -
150-2000	5.0 THRUST AXIS (Z) - SINUSOI	DAL
5-23 23-35 35-100 100-200 200-2000	- 22.0 5.0 18.0 5.0	0.8 - -

NOTE: Sweep Rate = 2 octaves/minute

INSTRUMENT AXIS IDENTIFICATION

FIGURE 2.0

ACCEPTANCE LEVEL

LATERAL AXES (X AND Y) - SINUSOIDAL

FREQ. (HZ)	ACCELERATION (O-PEAK) G	DISPLACEMENT INCHES DA
5-20 20-30 30-90 90-150 150-2000	6.67 2.67 8.67 3.33	.33 - - - -
	THRUST AXIS (Z) - SINUSOIDAI	L
5-23 23-35 35-100 100-200 200-2000	14.67 3.33 12.0 3.33	.53 - - -

NOTE: Sweep Rate = 4 octaves/minute

6.2.3 Random

The instrument will be exposed in three mutually perpendicular axes to the random level indicated in the schedule shown.

QUALIFICATION LEVEL

RANDOM VIBRATION

FREQ. (HZ)	ACCELERATION g ² /HZ	PSD db/oct.	OVERALL grms
20 to 200 200 to 560 560 to 2000	0.7	-6 -	18.6

NOTE: Dwell time per axis = 4 minutes.

ACCEPTANCE LEVEL

RANDOM VIBRATION

FREQ. (HZ)	ACCELERATION g ² /HZ	PSD db/oct.	OVERALL grms
20 to 200 200 to 560 560 to 2000	0.31 - 0.04	-6 -	12.4

NOTE: Dwell time per axis = 2 minutes.

6.3 Temperature Test

.3.1 The instrument will be subjected, while operating,
to the following thermal routine, with performance
monitored throughout the test. All output pulse
data will be monitored with a counter and printer.
Ten (10) second accumulation periods will be used
when recording data. Bus voltage will be +12.0 VDC.

6.3.1.1 From room ambient, decrease temperature to -20 °C in no less than one hour at a uniform rate to prevent excessive thermal shock. During transition time stimulate instrument with a 100 μcurie Co⁶⁰ source and record data. Log the Command Verification output level and bus current every 10 °C change in temperature. Periodically monitor pulse output waveform on scope.
Verify satisfactory operation.

- 6.3.1.2 Stabilize at -20 °C for a minimum of 30 minutes. During stabilization period perform Section 4.9, ON/OFF Command Checkout. After stabilization take sixty (60) minutes of Co⁶⁰ stimulus data and sixty (60) minutes of background data. Check output pulse waveform on scope, and log command verification output and bus current. Verify satisfactory operation.
- 6.3.1.3 Increase temperature from -20 °C to +40 °C in no less than one hour at a uniform rate.

 During transition do not allow moisture to condense on instrument surface. Repeat

 Section 6.3.1.1 for instrument checkout.
- 6.3.1.4 Stabilize at +40 °C for a minimum of 30 minutes. Repeat Section 6.3.1.2 for instrument checkout.
- 6.3.1.5 Decrease temperature from +40 °C to +25 °C
 in no less than 30 minutes. Repeat Section
 6.3.1.1 for instrument checkout.
- 6.3.1.6 Stabilize at +25 °C for a minimum of 30 minutes. Repeat Section 6.3.1.2 for instrument checkout.

6.4 Thermal Vacuum

6.4.1 Mount instrument in thermal vacuum chamber and subject instrument, while operating, to the following thermal routine. Attach 100 µcurie Co⁶⁰ source to red tag cover. All output pulse data will be monitored with a counter and printer.

Ten (10) second accumulation periods will be used when recording data. Bus voltage will be +12.0 VDC.
6.4.1.1 Low Temperature Soak

Decrease temperature from ambient to
-20 °C in no less than one hour at a
uniform rate to prevent excessive thermal
shock and draw a vacuum to 10⁻⁵ mm of
mercury. After stabilization of environment, turn on instrument and operate at
the following duty cycle for 84 hours:

During on period, break up data printouts into one hour segments. Once every hour log bus current, bus voltage, chamber pressure, chamber temperature, and command verification output. Periodically monitor pulse output waveform on scope and verify correct. At the end of each 16 hour on period perform Section 4.9, ON/OFF Command Checkout.

6.4.1.2 While holding chamber pressure at 10-5 mm of mercury increase temperature to +40 °C in no less than one hour. Repeat operating duty cycle and instrument checkout as delineated in Section 6.4.1.1.

7.0 INSTRUMENT OUTGAS

7.1 Prior to Thermal Vacuum Test instrument shall be outgassed for a minimum of 48 hours at a vacuum of no greater than 10⁻⁵ mm of mercury.