CENG 415 Evrimsel Hesaplama

Bölüm 5: Uygunluk, Seçim ve Popülasyon Yönetimi

Şevket Umut Çakır

Pamukkale Üniversitesi

25 Kasım 2020

Uygunluk, Seçim ve Popülasyon Yönetimi

- Seçim, evrimsel sistemler için ikinci temel güçtür
- Bileşenler şunlardan oluşur:
 - Popülasyon yönetim modelleri
 - Seçim operatörleri
 - Çeşitliliği korumak

Evrimsel Hesaplama Şeması

Genel Şema

Popülasyon Yönetim Modelleri

Giriș

- İki farklı popülasyon yönetim modeli mevcuttur:
 - Kuşak(generational) modeli:
 - Her birey tam olarak bir nesil boyunca hayatta kalır
 - Tüm ebeveyn kümesinin yerini yavrular alır
 - μ bireyli popülasyonda λ yavru üretilir(tipik olarak $\frac{\lambda}{\mu} \in [5,7]$)
 - Kararlı durum(steady-state) modeli:
 - Nesil başına bir yavru üretilir
 - Popülasyonun bir üyesi değiştirilir
 - Genellikle $\lambda < \mu$, tipik olarak $\lambda = 1$
- Nesil Boşluğu(Generation Gap):
 - Değiştirilen popülasyon oranı
 - Kuşak modeli için = 1.0, kararlı durum modeli için $= \frac{1}{pop\"ulasyon\ boyutta}$

Poülasyon Yönetim Modelleri

Uygunluk(Fitness) Temelli Rekabet

- Seçim iki yerde gerçekleşebilir:
 - Çiftleşmede yer almak için mevcut nesilden seçim (ebeveyn seçimi)
 - Gelecek nesile gitmek için {ebeveynler + yavrulardan} seçim (hayatta kalan seçimi)
- Seçim operatörleri tüm birey üzerinde çalışırlar
 - Yani temsilden bağımsızdırlar
- Seçim işlemleri arasındaki ayrım:
 - Operatörler: Seçim olasılıklarını belirler
 - Algoritmalar: Olasılıkların nasıl uygulanacağını belirler

Uygunluk-Orantılı Seçim(Fitness-Proportionate Selection, FPS)

ullet μ boyutlu popülasyondaki i bireyinin FPS ile seçilme olasılığı:

$$P_{FPS}(i) = \frac{f_i}{\sum_{j=1}^{\mu} f_j}$$

- Sorunlar:
 - Nüfusun geri kalanı çok daha az uygunsa, çok formda bir üye hızla baskınlaşabilir: **Erken Yakınsama**(Premature Convergence)
 - Uygunluk değerlerinin benzer olduğu koşuların/nesillerin sonunda seçim baskısı kaybolur
 - ► Amaç fonksiyonu değişimine oldukça duyarlı(sonraki slayt)
- Ölçeklendirme son iki problemi çözebilir:
 - Pencereleme(windowing): $f'(i) = f(i) \beta^t$ β , son n nesildeki en kötü uygunluk(fitness) değeri
 - Sigma ölçekleme(sigma scaling): $f'(i) = max(f(i) (\overline{f} c \cdot \sigma_f), 0)$ c genellikle 2 olarak seçilen bir sabit, \overline{f} : ortalama f, σ_f : standart sapma

Uygunluk-Orantılı Seçim(Fitness-Proportionate Selection, FPS)

Individual	Fitness	Sel. prob.	Fitness	Sel. prob.	Fitness	Sel. prob.
	for f	for f	for $f + 10$	for $f + 10$	for $f + 100$	for f + 100
A	1	0.1	11	0.275	101	0.326
В	4	0.4	14	0.35	104	0.335
C	5	0.5	15	0.375	105	0.339
Sum	10	1.0	40	1.0	310	1.0

Şekil: Uygunluk fonksiyonunun değişimi ile seçim olasılıklarının değişmesi

Sıralamaya Dayalı(Rank-based) Seçim

- Seçim olasılıkları mutlak uygunluk yerine göreli uygunluğa dayandırılarak FPS sorunları ortadan kaldırılmaya çalışılır
- Popülasyonu uygunluğa göre sıralayın ve ardından sıralamaya göre seçim olasılıklarını temel alın (en iyi birey $\mu-1$, en kötü birey 0 sırasına sahiptir)
- Bu, algoritmaya bir sıralama ek yükü getirir, ancak bu genellikle uygunluk değerlendirme süresine kıyasla ihmal edilebilir düzeydedir

Sıralamaya Dayalı Seçim

Doğrusal Sıralama(Linear Ranking)

$$P_{lin_rank}(i) = \frac{2-s}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- s faktörü ile parametrelendirilmiş: $1 < s \le 2$
 - En iyi bireyin avantajını ölçer
- Basit 3 elemanlı örnek

Individual	Fitness	Rank	P_{selFP}	P_{selLR} $(s=2)$	P_{selLR} $(s = 1.5)$
A	1	0	0.1	0	0.167
В	4	1	0.4	0.33	0.33
C	5	2	0.5	0.67	0.5
Sum	10		1.0	1.0	1.0

Sıralamaya Dayalı Seçim

Üstel Sıralama(Exponential Ranking)

$$P_{exp_rank}(i) = \frac{1 - e^{-i}}{c}$$

- Doğrusal Sıralama, seçim baskısında sınırlıdır
- Üstel Sıralama, en uygun kişiye 2'den fazla kopya ayırabilir
- Normalleştirme faktörü c, olasılıkların toplamı bir olacak şekilde seçilir, yani popülasyon büyüklüğünün bir fonksiyonu

Çiftleşme havuzu, seçim olasılık dağılımları ile örneklenir(rulet çarkı, stokastik evrensel örnekleme)

Rulet Çarkı Algoritması

```
Input: Kümülatif olasılık dağılımı a
Result: Çiftleşme havuzundan \lambda eleman seçilir
mevcut \leftarrow 1
while mevcut < \lambda do
    [0,1] aralığından tekörnek olarak rastgele r sayısını seç
    i \leftarrow 1
    while a_i < r do
        i \leftarrow i + 1
    end
    havuz[mevcut] \leftarrow ebeveyn[i]
    mevcut \leftarrow mevcut + 1
end
```


Rulet Çarkı Algoritması Örnek

Eleman	Α	В	С	D	Е
Olasılık	0.1	0.25	0.15	0.2	0.3
Kümülatif(a)					

$$\lambda = 3$$
, $r_1 =$, $r_2 =$, $r_3 =$

Stokastik Evrensel Örnekleme(Stochastic Universal Sampling)

```
Input: Kümülatif olasılık dağılımı a
Result: Ciftleşme havuzundan \lambda eleman seçilir
mevcut \leftarrow 1
i \leftarrow 1
[0, \frac{1}{\lambda}] aralığından tekörnek olarak rastgele r sayısını seç
while mevcut \leq \lambda do
    while r < a_i do
         havuz[mevcut] \leftarrow ebeveyn[i]
         r \leftarrow r + \frac{1}{\lambda}
         mevcut \leftarrow mevcut + 1
    end
    i \leftarrow i + 1
end
```


Algorithm 2: Stokastik evresel örnekleme algoritması

25 Kasım 2020

Stokastik Evrensel Örnekleme Algoritması Örnek

Eleman	Α	В	С	D	Е
Olasılık	0.3	0.2	0.15	0.2	0.15
Kümülatif(a)					

$$\lambda = 3, r = r \in [0, \frac{1}{3}]$$

Turnuva Seçimi

- Önceki tüm yöntemler küresel popülasyon istatistiklerine dayanır
 - Özellikle paralel makinelerde, popülasyonun büyük olduğu durumlarda darboğaz oluşabilir
 - Var olmayan harici uygunluk işlevinin varlığına dayanır: ör. gelişen oyun oyuncuları
- Yalnızca yerel uygunluk bilgisini kullanan bir prosedür için fikir:
 - Rastgele k üye seçin ve bunlardan en iyisini seçin
 - Daha fazla birey seçmek için tekrarlayın

Turnuva Seçimi

Algorithm 3: Turnuva seçimi algoritması

Turnuva Seçimi

- i'yi seçme olasılığı şunlara bağlı olacaktır:
 - i'nin sırası
 - Örnekleme boyutu k
 - yüksek k değeri seçim basıncını artırır
 - Yarışmacıların değiştirilerek seçilip seçilmeyeceği
 - Değiştirmeden seçme, seçim basıncını artırır
 - En uygun(iyi) yarışmacı her zaman kazanır mı(deterministik) yoksa bu bir p olasılığı ile mi gerçekleşir

Tekörnek(Uniform)

$$P_{uniform}(i) = \frac{1}{\mu} \tag{1}$$

- Operatörler bir ebeveyne ihtiyaç duyduğunda, ebeveynler tekörnek rastgele dağılımla seçilirler
- Tekörnek ebeveyn seçimi tarafsızdır, her birey aynı seçilme olasılığına sahiptir
- Çok büyük popülasyonlarla çalışırken aşırı seçim kullanılabilir
 - Popülasyon uygunluk değerine göre sıralanır
 - %x ve %(100-x) olarak iki parçaya ayrılır
 - Seçilenlerin %80'i ilk parçadan, kalan %20'si de ikinci parçadan seçili

- Evrimsel algoritmanın çalışma belleğini μ ebeveyn ve λ çocuktan oluşan kümeden, μ bireye indirme sürecidir
- Ebeveyn seçim mekanizmaları, hayatta kalanları seçmek için de kullanılabilir
- Hayatta kalan seçimi iki yaklaşıma ayrılabilir:
 - Yaşa dayalı seçim
 - Uygunluk hesaba katılmaz
 - Kararlı durum genetik algoritmalarda(SSGA) "rastgele silme(delete random)" (önerilmez) veya "ilk giren ilk çıkar(fifo)" (en eskiyi sil) olarak uygulanabilir
 - Uygunluk tabanlı değişim

Uygunluk Tabanlı Değiştirme

- Elitizm(Elitism)
 - O ana kadarki en iyi(en uygun) çözümün bir kopyası saklanır
 - Her iki popülasyon modelinde de(kuşak, kararlı durum) yaygın olarak kullanılır
- GENITOR(en kötüyü sil)
 - Whitley'in orjinal kararlı durum algoritmasından[3](aynı zamanda ebeveyn seçimi için doğrusal sıralama kullandı)
 - Hızlı devralma: büyük popülasyonlarla ya da "kopya yok" politikası ile kullanılmalı

Uygunluk Tabanlı Değiştirme

- Round-Robin Turnuva
 - ightharpoonup P(t): μ ebeveyn, P'(t): μ yavru
 - Round-robin biçiminde ikili yarışmalar:
 - $P(t) \bigcup P't()$ kümesindeki her **x** çözümü, rastgele seçilen **q** diğer çözüme karşı değerlendirilir
 - Her karşılaştırma için, x rakibinden daha iyiyse bir "galibiyet" atanır
 - $\bullet\,$ En fazla galibiyete sahip μ çözümleri, gelecek neslin ebeveynleri olmaya devam eder
 - q parametresi seçim basıncının ayarlanmasına izin verir
 - ▶ Tipik olarak q = 10

Uygunluk Tabanlı Değiştirme

- (μ, λ) seçim
 - ightharpoonup Yalnızca çocuk kümesine göre $(\lambda > \mu)$
 - ightharpoonup En iyi μ tanesini seç
- $(\mu + \lambda)$ seçim
 - Ebeveyn ve çocukların kümesine göre
 - ightharpoonup En iyi μ tanesini seç
- Genellikle (μ, λ) seçimi aşağıdakiler için tercih edilir
 - ► Yerel optimumdan ayrılmada daha iyi
 - ► Hareketli optimumu takip etmede daha iyi
 - + stratejisini kullanıldığında kötü σ değerleri, eğer x değerleri çok uygunsa, $\langle x, \sigma \rangle$ içinde çok uzun süre hayatta kalabilir
- $\lambda \approx 7 \cdot \mu$ geleneksel olarak iyi bir ayardır(son yıllarda oran biraz azalmıştır, $\lambda \approx 3 \cdot \mu$ son zamanlarda daha popüler)

Seçim Basıncı

- **Seçim basıncı**: Daha iyi(uygun) bireylerin ebeveyn olma veya hayatta kalma olasılığının fazla olması
- ullet Devralma(takeover) süresi au*, seçim basıncını ölçmek için bir ölçüdür
- Popülasyonu en iyi bireyin kopyalarıyla doldurana kadar geçen süre
- Goldberg ve Deb[2] formülleştirmiştir:

$$\tau * = \frac{\ln \lambda}{\ln(\mu/\lambda)} \tag{2}$$

• Bir genetik algoritmada uygunluk orantılı seçim(FPS) için devralma süresi $\tau*=\lambda \ln\!\lambda$

Multimodalite/Çok Modluluk(Multimodality)

En ilginç problemler birden fazla yerel optimuma sahiptir

Multimodalite/Çok Modluluk(Multimodality)

Genetik Sürüklenme

- Popülasyon boyutunun sonlu olması, herhangi iki ebeveyn arasında çaprazlama yapılabilmesi genetik sürüklenme olarak bilinen fenomene yol açar ve bir optimum etrafında yakınsar
- Neden?
- Genellikle birkaç olası zirveyi belirlemek isteyebilir
- Alt-optimum daha çekici olabilir

Çeşitliliği Koruma Yaklaşımları

- Açık ve Örtülü
- Örtülü yaklaşımlar
 - Bir coğrafi ayrım eşdeğerini dayatır
 - Türleşme eşdeğerini dayatır
- Açık yaklaşımlar
 - Kaynaklar için rekabet eden bireyler oluşturur(uygunluk)
 - Hayatta kalmak için birbirleriyle mücadele eden bireyler oluşturur

Çeşitliliği Koruma Yaklaşımları

- Farklı uzaylar
 - Genotip uzayı
 - Temsil edilebilen çözümlerin kümesi
 - Fenotip uzayı
 - Sonuç
 - Komşuluk yapısı genotip uzayındaki ile çok az benzerlik gösterir
 - Algoritmik uzay
 - Dünyadaki yaşamın evrildiği coğrafi alanla eşdeğerdir
 - Aday çözümlerden oluşan popülasyon yapılandırılabilir(popülasyonu işlemcilere veya çekirdeklere dağıtmak)

Uygunluk Paylaşımı(Fitness Sharing)

- Verilen bir nişteki¹ bireylerin sayısı, seçim sonrası uygunluk değerlerinin paylaşımı ile kontrol edilir.
- Bireylerin nişlere yerleştirilmesi niş uygunluğuna oranlı olarak yapılır
- ullet Genotip veya fenotip uzayda niş boyutu $\sigma_{\it share}$ 'in ayarlanması gerekir
- Evrimsel algoritmayı normal çalıştır, ancak her nesil kümesinden sonra

$$F'(i) = \frac{F(i)}{\sum_{j} sh(d(i,j))'}$$

• d(i,j), i ve j bireyleri arasındaki uzaklık(örn. ikili temsil için Hamming uzaklığı)

$$sh(d) = egin{cases} 1 - (d/\sigma_{share})^{lpha} & ext{e \"ger } d \leq \sigma_{share} \ 0 & ext{aksi halde} \end{cases}$$

ullet α , paylaşım fonksiyonunun şeklini belirler, $\alpha=1$ için doğrusal

¹niş: yaşamda veya istihdamda rahat veya uygun bir pozisyon,₀oyuk 🗈 🔻 📑 🕒

Uygunluk Paylaşımı(Fitness Sharing)

- Eğer $d < \sigma_{share}$ için sh(d) = 1 kullansaydık, uygunluğu azaltan toplam, basitçe komşuların sayısını, yani σ_{share} 'den daha yakın bireyleri sayacaktır
- Bu komşulukta yalnız kalma avantajı oluşturur
- 1 yerine $1 d/\sigma_{share}$ kullanmak, uzaktaki komşuların daha az sayıldığı anlamına gelir

Kalabalık(Crowding)

- Bireyleri nişler arasında eşit olarak dağıtmaya çalışır
- Yavruların ebeveynlere yakın olma eğiliminde olacağı varsayımına dayanır
- Fenotip/genotip uzayında bir uzaklık metriği kullanır
- Ebeveynleri rastgele karıştır ve eşleştir, 2 yavru üret
- Ebeveyn ve çocuk turnuvalarını, turnuva arası mesafeleri minimum olacak şekilde ayarlayın

Kalabalık(Crowding)

- Yani, iki p'yi (ebeveynler) ve iki o'yu (yavrular), öyle ki
- $d(p_1, o_1) + d(p_2, o_2) < d(p_1, o_2) + d(p_2, o_1)$
- o_1 'in p_1 ile o_2 'nin p_2 ile mücadele etmesine izin verin

Kalabalık veya Uygunluk Paylaşımı

Şekil: Uygunluk paylaşımı(üstte) ve kalabalığa(altta) göre popülasyon dağılımı

Otomatik Türleşme(Speciation)

- Ya sadece genotipik / fenotipik olarak benzer üyelerle çiftleşme veya
- Problem temsiline bitler eklenir
 - başlangıçta rastgele ayarlanmış
 - rekombinasyon ve mutasyona tabi
 - rekombinasyon için partner seçerken, sadece iyi eşleşen üyeleri seçin

Ada(Island) Modeli Paralel Evrimsel Algoritmalar

Bireysel çözümlerin popülasyonlar arasında periyodik göçü

Ada(Island) Modeli Paralel Evrimsel Algoritmalar

- Birden çok popülasyon paralel olarak çalıştırılır
- Bir (genellikle sabit) nesilden (bir Epoch) sonra, komşularla bireyleri değiştirilir
- Bitiş kriterleri karşılanana kadar tekrarlanır
- Paralel / kümelenmiş sistemlerden kısmen esinlenmiştir

Ada(Island) Modeli

Parametreler

- Bireyler ne sıklıkla değiş tokuş edilir?
 - Çok hızlı: bütün alt popülasyonlar aynı çözüme yakınsar
 - Çok yavaş: zaman kaybı
 - ▶ Çoğu yazar ~ 25-20 nesil aralığı kullanır
 - Adaptif olarak yapılabilir(25 nesil boyunca hiçbir gelişme olmadığında tüm popülasyonlarda eğitimi durdur)
- Kaç tane ve hangi bireyler değiş tokuş edilecek?
 - ► Genellikle ~2-5, ancak popülasyo büyüklüğüne bağlıdır
 - Kopyalama veya taşıma
 - Martin vd. en iyi bireyi değil de rastgele seçilen bireyleri takas etmenin daha iyi olduğunu bulmuşlardır[1]
- Operatörler alt popülasyonlar arasında farklılık gösterebilir

Hücresel Evrimsel Algoritmalar

• 1 popülasyonda uzamsal yapı (genellikle ızgara) uygulanır

Hücresel Evrimsel Algoritmalar

- Her bireyin bir (genellikle dikdörtgen toroid) ızgara üzerinde bir noktada var olduğunu düşünün
- Seçim (dolayısıyla rekombinasyon) ve değiştirme, bir komşuluk(deme) kavramı kullanılarak gerçekleşir
- İzgaranın farklı bölümlerinin uzayın farklı bölümlerini aramasına yol açar, iyi çözümler birkaç nesil boyunca ızgaraya yayılır

Hücresel Evrimsel Algoritmalar

- Her bir bireyin 8 yakın komşusu olacak şekilde dikdörtgen ızgara olduğunu varsayın
- 1 neslin eşdeğeri:
 - popülasyondaki bireyi rastgele seç
 - rulet tekerleğini kullanarak komşularından birini seç
 - 1 çocuk üretmek için çaprazla, mutasyona uğrat
 - daha uygunsa bireyi değiştirin
 - bitene kadar popülasyon içinde uygula

Kaynaklar I

James P Cohoon, Shailesh U Hegde, Worthy N Martin, and D Richards.

Punctuated equilibria: a parallel genetic algorithm.

In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987., 1987.

David E. Goldberg and Kalyanmoy Deb.

A comparative analysis of selection schemes used in genetic algorithms.

In Foundations of Genetic Algorithms, pages 69–93. Morgan Kaufmann, 1991.

Kaynaklar II

Darrell Whitley.

The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best.

In Proceedings of the Third International Conference on Genetic Algorithms, page 116–121, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

