- 1. The prime subfield of F is isomorphic to \mathbb{F}_p . Suppose the dimension of F over \mathbb{F}_p is n > 0. Then, there is a basis $\{\alpha_1, \ldots, \alpha_n\}$ where each $\alpha_i \in F$. Any element in F may be written as $\sum_{i=1}^n c_i \alpha_i$ with $c_i \in \mathbb{F}_p$. This immediately implies the conclusion.
- 2. The main idea is as follows. Let $f(x) \in \mathbb{F}_p[x]$ be irreducible and α be a root of f(x) in some extension E of \mathbb{F}_p . Consider the field $\mathbb{F}_p(\alpha)$, which has degree deg f over \mathbb{F}_p and therefore is a field of size $p^{\deg f}$.
- 3. (a) 1+i: $f(x) = x^2 + 2x + 2$
 - (b) $\underline{2+\sqrt{3}}$: $g(x) = x^2 4x + 1$
 - (c) $1 + \sqrt[3]{2} + \sqrt[3]{4}$: $h(x) = x^3 3x^2 3x 1$
- 5. Trivial
- 6. 2 since $\sqrt{3+2\sqrt{2}} = 1 + \sqrt{2}$.
- 7. Obviously, $F(\alpha^2) \subseteq F(\alpha)$. It suffices to show that $[F(\alpha) : F(\alpha^2)] = 1$. Indeed, we have the equality $n = [F(\alpha) : F] = [F(\alpha) : F(\alpha^2)][F(\alpha^2) : F]$. But since α is a root of $m_{\alpha}(x) = x^2 \alpha^2 \in F(\alpha)[x]$, we must have $[F(\alpha) : F(\alpha^2)] \leq 2$. It cannot be equal to 2 since n is odd and therefore must be equal to 1, giving us the desired conclusion.
- 8. Obviously R is an integral domain. It suffices to show that every non-zero element in R has an inverse. Indeed, let $a \in R \setminus \{0\}$. Since K/F is algebraic, a must be algebraic over F. Then, there is a monic polynomial $m_a(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ with $a_0 \neq 0$ such that $a_0 \neq 0$ and $m_a(a) = 0$. It is now obvious that the inverse of a must lie in R.
- 11. Note that since both β and $\sqrt[3]{2}$ have the same minimal polynomial $m(x) = x^3 2$ and therefore $\mathbb{Q}(\beta) \cong \mathbb{Q}(\sqrt[3]{2})$. The isomorphism maps -1 to -1. And thus if -1 is the sum of squares in $\mathbb{Q}(\beta)$ then it is also a sum of squares in $\mathbb{Q}(\sqrt[3]{2})$ a contradiction. This finishes the proof.
- 12. Trivial. Just note the parities of f(2k) and f(2k+1) for $k \in \mathbb{Z}$.
- 13. Suppose $\mathbb{C} \subsetneq R$. Let $a \in R \setminus \mathbb{C}$ and let R have dimension n. Then, the elements $1, a, \ldots, a^n$ are not linearly independent and therefore there is a polynomial $f \in \mathbb{C}[x]$ such that f(a) = 0 but this is contradictory to the fact that \mathbb{C} is algebraically closed.