DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014 Summary of Lectures (Set - IV)

1 Eigenvalue, Eigenvector and Diagonalizability

Just like the space \mathbb{R}^n , we also define the space \mathbb{C}^n . Indeed,

$$\mathbb{C}^n = \{ [x_1, x_2, \dots, x_n]^t : x_1, x_2, \dots, x_n \in \mathbb{C} \}.$$

The definitions of vector addition and scalar multiplication *etc.*, and most of the results that we have studied so far in case of \mathbb{R}^n , can also be accomplished for the space \mathbb{C}^n , in a similar manner.

Definition 1.1. Let A be an $n \times n$ matrix. A complex number λ is called an **eigenvalue** of A if there is a vector $\mathbf{x} \in \mathbb{C}^n, \mathbf{x} \neq \mathbf{0}$ such that $A\mathbf{x} = \lambda \mathbf{x}$. Such a vector \mathbf{x} is called an **eigenvector** of A corresponding to λ .

Example 1.1. The numbers 4, -2 are eigenvalues of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ with corresponding eigenvectors $[1, 1]^t$ and $[1, -1]^t$, respectively.

Definition 1.2. Let λ be an eigenvalue of a matrix A. Then the collection of all eigenvectors of A corresponding to λ , together with the zero vector, is called the eigenspace of λ , and is denoted by E_{λ} .

Result 1.1. Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. Then

- λ is an eigenvalue of A iff $det(A \lambda I) = 0$.
- 0 is an eigenvalue of A iff A is not invertible.
- $E_{\lambda} = null(A \lambda I)$, that is, E_{λ} is a subspace of \mathbb{C}^n .
- Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be eigenvectors of A corresponding to λ and $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k \neq \mathbf{0}$. Then \mathbf{v} is also an eigenvector of A corresponding to λ .
- Eigenvalues of a triangular matrix are its diagonal entries.
- Eigenvalues of $\begin{bmatrix} A_p & C \\ O & B_q \end{bmatrix}$ are the eigenvalues of A and B.

Definition 1.3. Let A be an $n \times n$ matrix. Then

- $P_A(x) = det(A xI)$ is called **characteristic polynomial** of A.
- $P_A(x) = 0$ is called **characteristic equation** of A.

Example 1.2. Find the eigenvalues and the corresponding eigenspaces of the following matrices:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \quad and \quad \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

Result 1.2 (The Fundamental Theorem of Invertible Matrices: Version II). Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. A^t is invertible.
- 3. $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^n .
- 4. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 5. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 6. The reduced row echelon form of A is I_n .

- 7. The rows of A are linearly independent.
- 8. The columns of A are linearly independent.
- 9. rank(A) = n.
- 10. A is a product of elementary matrices.
- 11. nullity(A) = 0.
- 12. The column vectors of A span \mathbb{R}^n .
- 13. The column vectors of A form a basis for \mathbb{R}^n .
- 14. The row vectors of A span \mathbb{R}^n .
- 15. The row vectors of A form a basis for \mathbb{R}^n .
- 16. **det** $A \neq 0$.
- 17. 0 is not an eigenvalue of A.

Result 1.3. Let A be a matrix with eigenvalue λ and corresponding eigenvector \mathbf{x} .

- 1. For any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \mathbf{x} .
- 2. If A is invertible, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eigenvector \mathbf{x} .
- 3. If A is invertible then for any integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \mathbf{x} .

Result 1.4. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be eigenvectors of a matrix A with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$, respectively. Let $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_m \mathbf{v}_m$. Then for any positive integer k,

$$A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 + \ldots + c_m \lambda_m^k \mathbf{v}_m.$$

Result 1.5. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be distinct eigenvalues of a matrix A with corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$, respectively. Then the set $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\}$ is linearly independent.

Similar Matrices: Let A and B be two $n \times n$ matrices. Then A is said to be **similar** to B if there is an $n \times n$ invertible matrix T such that $T^{-1}AT = B$.

- If A is similar to B, we write $A \approx B$.
- If $A \approx B$, we can equivalently write that $A = TBT^{-1}$ or AT = TB.

Example 1.3. Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$ and $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Then $A \approx B$ since $AT = TB$.

Result 1.6. Let A, B and C be $n \times n$ matrices. Then

- 1. $A \approx A$.
- 2. If $A \approx B$ then $B \approx A$.
- 3. If $A \approx B$ and $B \approx C$ then $A \approx C$.

Result 1.7. Let A and B be two matrices such that $A \approx B$. Then

- 1. det A = det B.
- 2. A is invertible iff B is invertible.
- 3. A and B have the same rank.
- 4. A and B have the same characteristic polynomial.
- 5. A and B have the same set of eigenvalues.

- 6. λ is an eigenvalue of B with corresponding eigenvector \mathbf{v} iff λ is an eigenvalue of A with corresponding eigenvector $T\mathbf{v}$.
- 7. The $dim(E_{\lambda})$ for A is same as $dim(E_{\lambda})$ for B.

Diagonalizable Matrix: A matrix A is said to be **diagonalizable** if there is a diagonal matrix D such that $A \approx D$, that is, if there is an invertible matrix T and a diagonal matrix D such that AT = TD.

Example 1.4. The matrix
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
 is diagonalizable, since if $D = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$ and $T = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$ then $AT = TD$.

Result 1.8. Let A be an $n \times n$ matrix. Then A is diagonalizable iff A has n linearly independent eigenvectors.

• Let A be an $n \times n$ matrix. Then there exists an invertible matrix T and a diagonal matrix D satisfying $T^{-1}AT = D$ iff the columns of T are n linearly independent eigenvectors of A and the diagonal entries of D are the eigenvalues of A corresponding to the columns (eigenvectors of A) of T in the same order.

Example 1.5. Check for the diagonalizablity of the following matrices. If they are diagonalizable, find invertible matrices T that diagonalizes them:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \quad and \quad \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

Result 1.9. If A is an $n \times n$ matrix with n distinct eigenvalues then A is diagonalizable.

Result 1.10. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of a matrix A. If \mathcal{B}_i is a basis for the eigenspace E_{λ_i} , then $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \ldots \cup \mathcal{B}_k$ is a linearly independent set.

Definition 1.4. Let λ be an eigenvalue of a matrix A.

- The algebraic multiplicity of λ is the multiplicity of λ as a root of the characteristic polynomial of A.
- The geometric multiplicity of λ is the dimension of E_{λ} .

Result 1.11. The geometric multiplicity of each eigenvalue of a matrix is less than or equal to its algebraic multiplicity.

Result 1.12 (The Diagonalization Theorem). Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \lambda_2, \dots, \lambda_k$. Then the following statements are equivalent:

- 1. A is diagonalizable.
- 2. The union \mathcal{B} of the bases of the eigenspaces of A contains n vectors.
- 3. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.