1. Which of the following statements is(are) TRUE?

- (i) $TeCl_2$ is a bent molecule.
- (ii) All of the atoms of TeCl₃⁺ are in the same plane.
- (iii) TeCl₄ has one nonbonding pair of electrons on tellurium.
- A) iii
- B) i
- C) i, iii
- D) ii
- E) i, ii
- (i) True. It is AX₂E₂
- (ii) False. It is trigonal pyramidal (AX₃E) which is not planar.
- (iii) True. It is AX₄E

- 2. Choose the **FALSE** statement about the Lewis structure of the peroxide anion, O_2^{2-} :
- A) Two resonance forms are required to describe bonding in this anion.
- B) The oxygen-oxygen bond is a single bond.
- C) Each oxygen atom has 3 nonbonding electron pairs.
- D) Each oxygen atom carries a formal charge of -1.
- E) Each oxygen atom obeys the octet rule.

3. Which of the following statements are **TRUE**?

- (i) Br atoms are smaller than As atoms.
- (ii) O has a higher first ionization energy than N.
- (iii) Li has a higher magnitude of electron affinity than O.
- (iv) Ba is easier to ionize than Sr.
- (v) Cl^- is a larger ion than Ca^{2+} .

- A) i, iii, v
- B) all
- C) i, iv, v
- D) ii, iii, v
- E) i, ii, iv
- (i) True. Br is to the right of As in the fourth period.
- (ii) False. N has a half-filled subshell.
- (iii) False. O is to the right of Li in the second period.
- (iv) True. Ba is below Sr in group II. It has a lower ionization energy.
- (v) True. Cl⁻ and Ca²⁺ have the same number of electrons (same as Ar i.e., 18), while Ca²⁺ has a higher nuclear charge (20 versus 17).

- 4. The O-H bond enthalpy in water is approximately 467 kJ mol⁻¹. What is the wavelength of the photon with just enough energy to break one O-H bond?
- A) 23.7 nm
- B) 4130 nm
- C) 467 nm
- D) 256 nm
- E) 213 nm

The energy required to break one O-H bond is $E = 467 \text{ kJ mol}^{-1} / 6.022 \times 10^{23} \text{ mol}^{-1} = 7.755 \times 10^{-19} \text{ J}$ The frequency of light that can break this bond is

$$v = E/h = 7.755 \times 10^{-19} \text{ J} / 6.626 \times 10^{-34} \text{ J s} = 1.170 \times 10^{15} \text{ s}^{-1}$$

The associated wavelength is $\lambda = c / v = 2.9979 \times 10^8 \text{ m s}^{-1} / 1.170 \times 10^{15} \text{ s}^{-1} = 2.56 \times 10^{-7} \text{ m} = 256 \text{ nm}$

Name: Student number:	
-----------------------	--

- 5. Identify the **incorrect** combination of quantum numbers (n, ℓ, m_{ℓ}) for the given atomic orbitals:
- A) 4s (4, 0, 0)
- B) 2p (2, 1, 0)
- C) 2p (2, 1, -1)
- D) 3s (3, 0, 1)
- E) 3d (3, 2, -2)

 m_{ℓ} cannot be 1, if $\ell = 0$

6. During experiment 2, Cycles of Copper, a student obtains a percent yield of 108%. What is the most likely source of error?

A) Copper oxide was lost during the decanting step.

- B) 108% is a valid yield as the atomic weight of copper at the end of the experiment is higher than at the start.
- C) There was residual solvent left within the copper precipitate at the end of the experiment.
- D) Not all of the zinc reacted with the Cu^{2+} (aq) to yield Cu(s).
- E) The student accidently added too much nitric acid in the first step.
- A. Losing copper oxide will give too low a yield.
- B. 108% is not a valid yield.
- C. Water in the final stage copper powder gives an anomalously high mass of copper.
- D. Zinc is in excess not all of it will react anyway.
- E. Nitric acid is in excess.

7. Identify the **oxidizing agent** in the following reaction.

16
$$HCl(aq) + 2 KMnO_4(aq) \rightarrow 5 Cl_2(g) + 2 MnCl_2(aq) + 8 H_2O(l) + 2 KCl(aq)$$

- A) MnCl₂(aq)
- B) K⁺(aq)
- C) H⁺(aq)
- D) Cl⁻(aq)
- E) MnO_4 (aq)

The oxidation number of Mn in MnO_4^- is +7. It goes to +2 in Mn^{2+} - i.e., in $MnCl_2(aq)$.

- 8. Which statement is **FALSE** regarding the following three product-favored reactions?
 - (i) $HCI(g) + NH_3(g) \rightarrow NH_4CI(s)$
 - (ii) $H_2SO_3(aq) + NaOCI(aq) \rightarrow NaHSO_3(aq) + HOCI(aq)$
 - (iii) $KH_2PO_4(aq) + KOH(aq) \rightarrow H_2O(I) + K_2HPO_4(aq)$
- A) All of these reactions are Brønsted-Lowry acid-base reactions.
- B) In reaction (ii), H₂SO₃ is acting as a Brønsted-Lowry acid.
- C) NH₄⁺ is the conjugate acid of NH₃.
- D) HOCl is the conjugate acid of OCl⁻.
- E) HOCl is a stronger acid than H₂SO₃.

Equilibrium shifts away from the stronger acid. Therefore,

 $HCl > NH_4^+$ $H_2SO_3 > HOCl - i.e$, statement E is false.

The other statements are true.

 $H_2PO_4^- > H_2O$

- 9. Dichromate ions, $Cr_2O_7^{2-}(aq)$, react with zinc metal in acid solution to produce $Cr^{3+}(aq)$ and $Zn^{2+}(aq)$ ions. When the reaction is balanced, such that the smallest possible integers appear as stoichiometric coefficients, what is the **coefficient** of Zn^{2+} ?
- A) 2
- B) 6
- C) 4
- D) 1
- E) 3

+6 +3
$$Cr_2O_7^{2-}(aq) + 6 e^- \rightarrow 2 Cr^{3+}(aq)$$

0 +2

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-} \times 3$$

$$Cr_2O_7^{2-}(aq) + 3 Zn(s) \rightarrow 2 Cr^{3+}(aq) + 3 Zn^{2+}(aq)$$

We could balance the O's and H's. But, we already have the answer.

- 10. Which statement is **TRUE** regarding the following three reactions?
 - (i) $Cd(s) + NiO_2(s) + 2 H_2O(I) \rightarrow Cd(OH)_2(s) + Ni(OH)_2(s)$
 - (ii) $2 \text{ MnO}_4^-(aq) + 5 \text{ H}_2\text{SO}_3(aq) \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ SO}_4^{2-}(aq) + 4 \text{ H}^+(aq) + 3 \text{ H}_2\text{O}(I)$
 - (iii) $KH_2PO_4(aq) + KOH(aq) \rightarrow H_2O(I) + K_2HPO_4(aq)$
- A) In reaction (iii), $\mbox{HPO}_4{}^{2-}$ is the conjugate acid of $\mbox{H}_2\mbox{PO}_4{}^-.$
- B) In reaction (i), NiO₂ is the reducing agent.
- C) In reaction (i), Cd(s) is oxidized.
- D) In reaction (ii), sulfur is reduced.
- E) In reaction (iii), $H_2PO_4^-$ is acting as a Brønsted-Lowry base.
- A. HPO_4^{2-} is the conjugate *base* of $H_2PO_4^{-}$.
- B. NiO₂ is the *oxidizing* agent.
- D. Oxidation number of S increases (from 4 to 6). It is *oxidized*.
- E. H₂PO₄⁻ acts as a Brønsted-Lowry acid. It loses H⁺.

- 11. An unknown aqueous solution contains either KNO₃ or K₃PO₄. Addition of which **one** of the following aqueous solutions provides a simple visual test that identifies the unknown?
- A) CaBr₂
- B) Na₂SO₄
- C) RbOH
- D) LiBr
- E) NaCl

 $Ca_3(PO_4)_2(s)$ precipitates.

12. Select the one **false** statement concerning the equilibrium,

$$MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$$

for which $\Delta H^{\circ} = 100.6 \text{ kJ}.$

.

- A) Adding MgO(s) does not change the amount of MgCO₃(s).
- B) Removing CO₂(g) increases the amount of MgO(s).
- C) Doubling the amount of all three species (with the volume of the reaction vessel fixed) has no effect on the equilibrium.
- D) Halving the size of the reaction vessel increases the amount of MgCO₃(s).
- E) Increasing the temperature increases the amount of MgO(s).

Doubling the amount of all species with volume fixed doubles the partial pressure of CO₂. Net reverse reaction ensues.

13. For the heterogeneous reaction,

$$CaCO_3(s)$$
 \Longrightarrow $CaO(s) + CO_2(g)$,

the equilibrium constant at 112°C is $K_p = 0.220$. If the partial pressure of $CO_2(g)$ is 0.50 bar at this same temperature, which one of the following statements is **TRUE**?

.

- A) Q > K, the reaction will proceed to the right.
- B) Q < K, the reaction will proceed to the left.
- C) Q < K, the reaction will proceed to the right.
- D) Q = K, the system is at equilibrium.
- E) Q > K, the reaction will proceed to the left.

 $Q = P[CO_2] = 0.50 > K_p = 0.220$. There will be net reverse reaction.

14. 1.41 bar of PCl₅(g), 7.95 bar of PCl₃(g) and 7.95 bar of Cl₂(g) are at equilibrium in a reaction vessel. Calculate the **equilibrium constant** K_p for

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

at the temperature of the equilibrium mixture.

A) 9.71

- B) -1.30
- C) 28.6
- D) 51.8
- E) 44.8

$$K_p = P[PCl_3] P[Cl_2] / P[PCl_5] = 7.95 \times 7.95 / 1.41 = 44.8$$

15. The equilibrium constant K_p for

$$C(s) + CO_2(g) \implies 2 CO(g)$$

is 1.52 at 700°C. If the partial pressure of CO in an equilibrium mixture at 700°C is 1.30 bar, what is the partial pressure of CO₂ (in bar)?

- A) 1.30
- B) 1.11
- C) 0.900
- D) 0.860
- E) 1.17

$$K_p = P^2[CO] / P[CO_2] = 1.52 = 1.30^2 / P[CO_2]$$

Therefore,
$$P[CO_2] = 1.30^2 / 1.52 = 1.11$$
 bar

- 16. A student creates a calibration curve relating the absorbance of FeSCN²⁺(aq) to the concentration of FeSCN²⁺(aq). The slope of this plot is 1.68. If a student mixes 10.0 mL of 0.20 M Fe³⁺(aq) with 10.0 mL of 0.40 M SCN⁻(aq) an absorbance of 0.084 is observed. What is the **equilibrium constant** for the reaction?
- A) 3.2
- B) 6.7
- C) 12
- D) 120
- E) 44
- $1.68 [FeSCN^{2+}] = 0.084 \rightarrow [FeSCN^{2+}] = 0.084 / 1.68 = 0.05$

Fe³⁺(aq) + SCN⁻(aq) FeSCN²⁺(aq)

I 0.10 0.20 0 note dilution of Fe³⁺ and SCN⁻

C
$$-x$$
 $-x$ x

E $0.10-x$ $0.20-x$ x

$$K = [FeSCN^{2+}] / ([Fe^{3+}] [SCN^{-}]) = 0.05 / ((0.10 - 0.05) (0.20 - 0.05)) = 6.7$$

- 17. Heroin, a derivative of morphine, is a powerful analgesic and a powerful narcotic agent. **Calculate** K_b for heroin if the pH of a 1.7×10^{-3} M solution was found to be 9.60.
- A) 9.5 x 10⁻⁷
- B) 2.3 x 10⁻²
- C) 8.3×10^{-7}
- D) 1.5 x 10⁻⁷
- E) 3.7 x 10⁻⁷

Heroin(aq) +
$$H_2O(I)$$
 \longrightarrow HHeroin⁺(aq) + $OH^-(aq)$
I 1.7 x 10^{-3} 0 0
C $-x$ x x
E 1.7 x $10^{-3} - x$ x

pH = 9.60
$$\rightarrow$$
 pOH = 4.40 \rightarrow [OH⁻] = 10^{-4.40} = 3.98 x 10⁻⁴ = x

$$K_b = [HHeroin^+] [OH^-] / [Heroin] = 3.98 \times 10^{-4} \times 3.98 \times 10^{-4} / (1.7 \times 10^{-3} - 3.98 \times 10^{-4}) = 9.5 \times 10^{-7}$$

- 18. Your stomach (volume = 2.5 L) has a pH of 1.00 because of the presence of HCl. **How many** grams of $Mg(OH)_2$ (58.3 g mol⁻¹) do you need to add to completely neutralize the acid in your stomach?
- A) 7.3 g
- B) 15 g
- C) 21 g
- D) 2.9 g
- E) 5.8 g

 $[H^+]$ = $10^{-1.00}$ mol L⁻¹ = 0.10 mol L⁻¹ in the stomach Number of moles of H⁺ = n = 2.5 L × 0.10 mol L⁻¹ = 0.25 mol Number of moles of OH⁻ to neutralize H⁺ = 0.25 mol Number of moles of Mg(OH)₂ = 0.125 mol (two OH⁻ for every Mg(OH)₂)

Mass of Mg(OH)₂ = $0.125 \text{ mol} \times 58.3 \text{ g mol}^{-1} = 7.3 \text{ g}$

- 19. A 2.60 g sample of propanoic acid (CH₃CH₂COOH, molar mass = 74.1 g mol⁻¹, K_a = 1.40 x 10⁻⁵) was dissolved in water and made up to a final volume of 100. mL in water. What is the pH of this solution?
- A) 2.66
- B) 4.85
- C) 3.26
- D) 2.32
- E) 1.82

moles of $CH_3CH_2COOH = 2.60 \text{ g} / 74.1 \text{ g mol}^{-1} = 0.0351 \text{ mol}$ $[CH_3CH_2COOH] = 0.0351 \text{ mol} / 0.100 \text{ L} = 0.351 \text{ mol L}^{-1}$

$$CH_3CH_2COOH(aq) + H_2O(I) \longrightarrow CH_3CH_2COO^-(aq) + H_3O^+(aq)$$
 $I = 0.351 = 0 = 0$
 $C = -x = x = x$
 $E = 0.351 - x = x = x$

$$K_a = 1.40 \times 10^{-5} = x^2 / (0.351 - x)$$

$$x = 0.00221 = [H_3O^+]$$

$$pH = -log_{10}(0.00221) = 2.66$$

20. Order the following species according to increasing acid dissociation constant, K_a :

 $\mathsf{CH_3COOH},\,\mathsf{CF_3COOH},\,\mathsf{CH_2FCOOH},\,\mathsf{CH_3CH_2OH}$

- .
- A) $CH_3COOH < CF_3COOH < CH_2FCOOH < CH_3CH_2OH$
- B) CH₃COOH < CH₂FCOOH < CF₃COOH < CH₃CH₂OH
- C) CH₃CH₂OH < CF₃COOH < CH₂FCOOH < CH₃COOH
- D) CH₃CH₂OH < CH₃COOH < CH₂FCOOH < CF₃COOH
- E) CF₃COOH < CH₂FCOOH < CH₃CH₂OH < CH₃COOH

CH₃CH₂OH is weakest. The others are carboxylic acids with (1) the inductive effect of a second O bonded to C (it pulls harder on the O bearing the minus charge, in the conjugate base), and (2) two resonance structures of the conjugate base spreading out the minus charge. The three carboxylic acids are distinguished by the inductive effect due to F. Three F's have greater effect than one F.

- 21. Dissolving 4.24 g of CaF₂ in 50.0 mL of pure water at 20.00°C results in a solution with temperature 16.79°C. What is the **enthalpy of dissolution of CaF₂ (in kJ mol⁻¹)?** Assume that the specific heat of the solution equals 4.18 J K⁻¹ g⁻¹.
- A) +13.4
- B) +1.05
- C) -1.05
- D) -13.4
- E) -671

The solution has mass = $4.24 \text{ g} + 50.00 \text{ mL} \times 1.00 \text{ g mL}^{-1} = 54.24 \text{ g}$ The solution has heat capacity, C = $54.24 \text{ g} \times 4.18 \text{ J K}^{-1} \text{ g}^{-1} = 226.7 \text{ J K}^{-1}$ The dissolution consumes heat, causing the temperature to decrease.

$$q = C(20.00 - 16.79) = 226.7 \text{ J K}^{-1} \times 3.21 \text{ K} = 727.8 \text{ J}$$

Note that, in calorimetry, q is the heat required to return the system to its initial temperature.

The enthalpy of dissolution of CaF_2 is for dissolution of one mole of CaF_2 . Moles of $CaF_2 = 4.24 \, \text{g} / 78.07 \, \text{g mol}^{-1} = 0.0543 \, \text{mol}$

 $\Delta H = 727.8 \text{ J} / 0.0543 \text{ mol} = 13401 \text{ J} \text{ mol}^{-1} = 13.4 \text{ kJ mol}^{-1}$

Student number:

- ^{22.} A chemical reaction with an enthalpy change $\Delta H^{\circ} = -400$ kJ is carried out in a calorimeter containing 1500 cm³ of pure water initially at 25.0°C. What is the **final temperature** (in °C) of the water?
 - .
- A) 67.5
- B) -28.7
- C) 336.7
- D) 69.3
- E) 88.8

Since the reaction is exothermic, the temperature goes up.

$$\Delta T = 400 \text{ kJ} / C$$

where
$$C = 1500 \text{ cm}^3 \times 1.00 \text{ g cm}^{-3} \times 4.18 \text{ J K}^{-1} \text{ g}^{-1} = 62700 \text{ J K}^{-1}$$

Therefore,
$$\Delta T = 400 \times 10^3 \,\text{J} / 62700 \,\text{J} \,\text{K}^{-1} = 63.8 \,\text{K}$$

The final temperature is 25.0 + 63.8 °C = 88.8 °C

23. PCl₅(s) can be prepared by the reaction,

$$PCl_3(I) + Cl_2(g) \rightarrow PCl_5(s)$$
.

Calculate the **enthalpy change** (in kJ) that accompanies the production of 100.0 g of PCl₅(s) by the above reaction, given the following data.

$$P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(I)$$
 $\Delta H^{\circ} = -1280 \text{ kJ mol}^{-1}$
 $P_4(s) + 10 Cl_2(g) \rightarrow 4 PCl_5(s)$ $\Delta H^{\circ} = -1774 \text{ kJ mol}^{-1}$

- A) +124.7
- B) -258.1
- C) +59.31
- D) -124.7
- E) -59.31

Note

$$P_{4}(s) + 10 Cl_{2}(g) \rightarrow 4 PCl_{5}(s)$$

$$- P_{4}(s) + 6 Cl_{2}(g) \rightarrow 4 PCl_{3}(l)$$

 $4 \times PCl_3(I) + Cl_2(g) \rightarrow PCl_5(s)$

Therefore, ΔH of the target reaction is

$$\Delta H = (-1774 + 1280)/4 \text{ kJ mol}^{-1} = -123.5 \text{ kJ mol}^{-1}$$

100.0 g of PCl₅(s) produced \rightarrow 100.0 g /208.24 g mol⁻¹ = 0.4802 mol of PCl₅(s) produced = the extent of reaction

The desired change in enthalpy = $-123.5 \text{ kJ mol}^{-1} \times 0.4802 \text{ mol} = -59.31 \text{ kJ}$.

24. Determine the **enthalpy of formation** (in kJ mol⁻¹) of hydrogen chloride gas using the following bond enthalpy data:

 $\begin{array}{lll} \text{CI-CI} & 243 \text{ kJ mol}^{-1} \\ \text{H-H} & 436 \text{ kJ mol}^{-1} \\ \text{H-CI} & 431 \text{ kJ mol}^{-1} \\ \end{array}$

- .
- A) 17.1 B) -91.5
- C) 91.5
- D) -17.1
- E) -53.4

The formation reaction of HCl(g) is

$$\frac{1}{2}$$
 H₂(g) + $\frac{1}{2}$ Cl₂(g) \rightarrow HCl(g)

For this reaction,

$$\Delta H = \frac{1}{2}D(H-H) + \frac{1}{2}D(Cl-Cl) - D(H-Cl) = \frac{1}{2}436 + \frac{1}{2}243 - 431 \text{ kJ mol}^{-1}$$

= -91.5 kJ mol⁻¹

25. Considering the reaction

$$2 B(s) + 3 F_2(g) \rightarrow 2 BF_3(g)$$

and the data below, identify the **FALSE** statement(s). enthalpy of formation of B(g) = 563 kJ mol^{-1} bond enthalpy of F-F bond = 159 kJ mol^{-1} bond enthalpy of B-F bond = 646 kJ mol^{-1}

- (i) The reaction is a redox reaction.
- (ii) The reaction of boron and fluorine is endothermic.
- (iii) The sublimation of boron is an endothermic process.
- (iv) $F_2(g)$ is a highly reactive species.

A) <mark>ii</mark>

- B) ii, iv
- C) i, iii
- D) ii, iii
- E) iii, iv

(i) True. Oxidation numbers change: B (0 to +3) and F (0 to -1)

(ii) False

$$2 B(g) + 3 F_2(g) \rightarrow 2 BF_3(g)$$

 $2 B(s) \rightarrow 2 B(g)$

$$2 B(s) + 3 F_2(g) \rightarrow 2 BF_3(g)$$

Therefore,

 $\Delta H = 2 \Delta H_f[B(g)] + \Delta H[gas phase reaction]$

$$= 2 \times 563 \text{ kJ mol}^{-1} + 3 D(F-F) + 2 \times 3 D(B-F)$$

 $= -2273 \text{ kJ mol}^{-1}$

The reaction is exothermic.

- (iii) True. Sublimation (solid \rightarrow gas) is always endothermic bonds are only broken.
- (iv) True. Fluorine is the most reactive element.