MAC0338 - Entrega da lista 8

Exercício 3

Uma fórmula booleana \mathcal{C} sobre um conjunto X de variáveis booleanas (não necessariamente em CNF) é uma tautologia se toda atribuição a X satisfaz \mathcal{C} . O problema tautologia consiste em, dado X e \mathcal{C} , decidir se \mathcal{C} é ou não uma tautologia. Prove que o problema tautologia está em coNP.

Resposta:

Vamos provar que o problema TAUT (tautologia) está em coNP. Podemos provar, equivalentemente, que o complemento de TAUT (ou seja, $\overline{\text{TAUT}}$) está em NP. O problema $\overline{\text{TAUT}}$ consiste nas fórmulas booleanas que não são tautologias. Para verificar que uma fórmula não é uma tautologia, basta encontrar uma atribuição que a falsifique. Existem algoritmos que fazem essa verificação **em tempo polinomial**. Logo, $\overline{\text{TAUT}}$ está em NP, o que implica que TAUT está em coNP.

Exercício 6

Seja G = (V, E) um grafo. Um conjunto $S \subseteq V$ é independente se quaisquer dois vértices de S não são adjacentes. Ou seja, não há nenhuma aresta do grafo com as duas pontas em S. O problema IS consiste no seguinte: dado um grafo G e um inteiro $k \ge 0$, existe um conjunto indepentente em G com K vértices? Mostre que o problema IS é NP-completo. Não pode usar o fato que o problema CLIQUE é NP-completo, mas pode se inspirar na prova deste teorema.

Resposta:

Vamos mostrar que o problema IS é tanto NP quanto o problema NP-completo 3-SAT pode ser reduzido para IS.

Primeiramente, vamos provar que o problema IS está em NP apresentando um algoritmo polinomial que, dado um grafo G=(V,E) e um conjunto de vértices S (um certificado), verifica se S é independente. O algoritmo consiste em verificar se existe aresta para cada par de vértices em S. Se não existir, então S é independente. Caso contrário, S não é independente. A complexidade desse algoritmo é O(|V|+|E|), polinomial.

Agora, vamos provar que 3-SAT \leq_P IS. Seja ϕ uma fórmula booleana em **3-CNF** com n variáveis e exatamente k cláusulas. Considere um grafo G=(V,E). Cada vértice de G representa um literal de cada cláusula de ϕ . Vamos criar as arestas de forma que

- os 3 vértices de literais de cada cláusula sejam ligados 2 a 2, formando um triângulo é necessário que exatamente 1 literal de cada cláusula seja verdadeiro para garantir a independência do conjunto;
- os vértices de literais complementares sejam ligados (ou seja, todos os x_i e $\neg x_i$) isso garante que x_i e $\neg x_i$ nunca serão simultaneamente verdadeiros ao escolher um conjunto independente.

Agora vamos provar que ϕ é satisfatível \iff G tem um conjunto independente com k vértices.

- (\Rightarrow) Seja α uma atribuição que torna ϕ verdadeira. Logo, todas as cláusulas são verdadeiras. Como temos exatamente k cláusulas e queremos montar um conjunto independente S com exatamente k vértices, então exatamente 1 literal em cada cláusula é verdadeiro para que todas as cláusulas sejam verdadeiras. Pelas propriedades citadas anteriormente, não há conflito de literais complementares. Logo, S é um conjunto independente.
- (\Leftarrow) Seja S um conjunto independente com k vértices. Como S é independente, não há conflito de literais complementares. Como S tem k vértices e temos k cláusulas em ϕ , então exatamente 1 literal em cada cláusula é verdadeiro para que todas as cláusulas sejam verdadeiras. Como S é independente, então todas as cláusulas são verdadeiras. Logo, ϕ é satisfatível.

Logo, 3-SAT \leq_P IS, o que implica que IS é NP-completo.

Exercício 9

Mostre que o problema abaixo é NP-completo.

Problema Mochila: Dado um número W, um número V, um número inteiro positivo n, uma coleção de números w_1, \ldots, w_n , e uma coleção de números v_1, \ldots, v_n , decidir se existe um subconjunto S de $\{1, \ldots, n\}$ tal que

$$\sum_{i \in S} w_i \le W \in \sum_{i \in S} v_i \le V.$$

Pode assumir que o problema PARTIÇÃO (Exercício 8) é NP-completo.

Resposta: