Why might $\epsilon(\sum_{r=1}^{p} v_r a_{rp}) = 0$?

- (1) It suffices to show that $\epsilon(\sum_{r=1}^p v_r a_{rp}) = \epsilon(w_{2p+1,p})$. (2) It suffices to show that $\epsilon(\phi_{i_p(\tau)}^n(-a_{2p+1,p})) = 0$.

Note that $-a_{2p+1,p} = \phi_{i_p(\tau)}(\sum_{S \subset X_n^{(p)}} (-1)^{|S|} a_{p+1,s_1} a_{s_1,s_2} \dots a_{s_k,np})$ Well, since $\phi_{i_p(\alpha)}(\mathbf{A}) = \Phi^L_{i_p(\alpha)} \mathbf{A} \Phi^R_{i_p(\alpha)}$ and so for i > p and j > p, $\epsilon(a_{ij}) = 0$ $\epsilon(\phi_{i_n(\alpha)}(a_{ij}))$ and so

$$\begin{split} \sum_{S \subset X_n^{(p)}} (-1)^{|S|} \epsilon(a_{p+1,s_1} a_{s_1,s_2} \dots a_{s_k,np}) &= \sum_{S \subset X_n^{(p)}} (-1)^{|S|} \epsilon(\phi_{\imath_p(\alpha)}(a_{p+1,s_1} a_{s_1,s_2} \dots a_{s_k,np})) \\ &= \epsilon(\phi_{\imath_p(\tau)}^n(-a_{2p+1,p})) \end{split}$$

- (3) It also suffices to show that $\epsilon(\sum_{S \subset X_3^{(p)}} (-1)^{|S|} a_{2p+1,s_1} a_{s_1,s_2} \dots a_{s_k,np}) = 0.$ This was verified for T((4,2),(5,1)).
- (4) Along another line of thought...Each of the entries in Φ_{22}^{n+1} are sent to same place as entries in Φ_{12}^2 and the first row of this looks like $w_{2p+1,j}$ for $p+1 \le j \le 2p$. Because of this, $\epsilon(w_{2p+1,j}) = 0$ for $p+1 < j \le 2p$ and $\epsilon(w_{2p+1,p+1}) = 1$. Hence, $\epsilon(w_{2p+1,p}) = \epsilon(-a_{2p+1,p}) + \epsilon(a_{2p+1,p+1}a_{p+1,p})$. Note that $1 = \epsilon(w_{2p+1,p+1}) = \epsilon(-a_{2p+1,p+1})$ and so

$$\epsilon(a_{2p+1,p}) = -\epsilon(a_{p+1,p}).$$

Now, an argument like you give in the paper so far would show that $\epsilon(a_{2p+1,p})=0$ if n=3+1. That is, you may be able to just pass the buck up to the next row... and have an argument that $\epsilon(a_{(n-1)p+1,p}) = 0$.

Let's just make sure:

Claim: For any $1 \le i < n-1$ we have $\epsilon(a_{ip+1,p}) = \pm \epsilon(a_{(i+1)p+1,p})$.

Proof. Note that $\epsilon(w_{ip+1,p}) = \epsilon((\Psi_{11}^i)_{1p})$ which agrees with $(\epsilon \text{ of})$ the $((i - \epsilon)_{1p})_{1p}$ 1)p+1,p) entry of $\Phi^L_{i_p(\alpha)}$. (more general statement replacing p with any j such that $j \leq ip$).

Case i=1. For any $j\leq 2p$ we have that $\epsilon(w_{2p+1,j})$ agrees with the (p+1,j) entry. Since these are zero for j>p+1 we can use the relation in \mathscr{S}_{np} to get that $1 = \epsilon(w_{2p+1,p+1}) = \epsilon(-a_{2p+1,p+1}) \ (w_{2p+1,p+1})$ is a sum of $-a_{2p+1,p+1}$ and terms with $w_{2p+1,j}$, j > p+1 in them). Now, again using the spanning arc relation,

$$0 = \epsilon(w_{2p+1,p}) = \epsilon(-a_{2p+1,p}) - \epsilon(w_{p+1,p}) = -\epsilon(a_{2p+1,p}) + \epsilon(a_{p+1,p}).$$

What happens for i = 2? First, the $\epsilon(w_{3p+1,j}) = 0$ for $2p + 1 < j \le 3p$. Also, $\epsilon(w_{3p+1,2p+1}) = -\epsilon(a_{3p+1,2p+1}) = 1$ and hence

$$0 = \epsilon(w_{3p+1,2p}) = -\epsilon(a_{2p+1,2p}) - \epsilon(a_{3p+1,2p}).$$

Also $0 = \epsilon(w_{3p+1,2p-1}) = -\epsilon(a_{2p+1,2p-1}) - \epsilon(a_{3p+1,2p-1})$, and so on for $\epsilon(w_{3p+1,j})$ with $j=2p-2,\ldots,p$ (to p in particular) so we have $\epsilon(a_{3p+1,p})=$ $-\epsilon(a_{2p+1,p}) = \epsilon(a_{p+1,p})$. The induction argument should be apparent.