Plant Modeling Using Environmental Parameters

by Andre Philipp, Andy Spencer & Haakon Garseg Moerk

Abstract

 Modeling plants using environment parameters

Genetic algorithms

Introduction

Karl Sims

LSystem

Panspermia

Existing framework

- OpenAlea
 - VPlants: L-py
 - PlantGL

"OpenAlea is an open source project primarily aimed at the plant research community......

OpenAlea includes modules to analyse, visualize and model the functioning and growth of plant architecture."

Existing framework

- Algorithmic Botany
 - VLAB
 - L-studio
 - TreeSketch

"The [Biological Modeling and Visualization] group studies the modeling, simulation, and visualization of plants."

L-systems in L-py

```
# floral apex = Receptacle internodes + lateral organs.
# p corresponds to relative height in the receptacle (flower
profile):
# (p ranges from 0 to 1)
# State corresponds to zone (1=sepal,2=petal,3=stamen,
4=carpel)
FA(t):
 0=q
 for s in xrange(4): # loop on the states (=zones)
  zone_size = pth[s+1]-pth[s] # height of the current zone
  len = zone_size/nbwhorls[s] # length of an internode in
this zone
  for i in xrange(nbwhorls[s]):
   p=p+len
   w = receptacleProfile(p) # normalized width
   len2 = len * receptacleHeight # scaling length
   w2 = w * receptacleWidth # and width
   beta = computeNormal(receptacleProfile,p,dp)
   #print "beta = ", beta
```


Architecture and Models

Simulation

- 8 tick is one season
- Plants grows over one season
- World evolves over multiple seasons

Genetics

- Asexual vs sexual
- Mutation

Environment parameters

Demo

Future work

- Seasons should be controlled by sun and water factors
- Plants reaction to sun, water and nutrition