

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

□05.570ℜ15ℜ01ℜ14ℜΠς<∈ 05.570 15 01 14 PV

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Prova

Aquesta prova només la poden realitzar els estudiants que han aprovat l' Avaluació Continuada

Fitxa tècnica de la Prova

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 1 h.
- En cas que els estudiants puguin consultar algun material durant la prova, quin o quins materials poden consultar?
- Valor de cada pregunta: Totes igual
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquesta prova:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Activitat 1 (10+15%)

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Feu servir els àtoms que s'indica.
 - 1) El gat està content quan miola i no esgarrapa

 $\mathsf{M} \wedge \neg \mathsf{E} \to \mathsf{G}$

2) Perquè el gat estigui content és necessari que atrapi un ratolí.

 $G \rightarrow A - \parallel - \neg A \rightarrow \neg G$

Àtoms:

- E: El gat esgarrapa
- M: El gat miola
- G: El gat està content
- A: El gat atrapa un ratolí
- b) Formalitzeu utilitzant la lògica de predicats les frases següents. Feu servir els predicats que s'indica
 - 1) Totes les motos vermelles són noves

 $\forall x [M(x) \land V(x) \rightarrow N(x)]$

2) En Pere és un mecànic que no és propietari de totes les motos vermelles

 $T(a) \land \neg \forall x [M(x) \land V(x) \rightarrow P(a,x)]$

Predicats:

- M(x): x és una moto
- V(x): x és vermella
- N(x): x és nou
- P(x,y): x és el propietari d' y (y és propietat de x)
- T(x): x és un mecànic

Constants:

- a: en Pere

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Activitat 2 (25%)

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Només podeu fer servir les regles primitives, no es poden fer servir els equivalents deductius.

$$A \rightarrow (\neg B \rightarrow C), A \land \neg C \therefore B$$

1.	$A \rightarrow (\neg B \rightarrow C),$		Р
2.	A∧¬C		Р
3.		¬B	Н
4.		Α	E∧ 2
5.		¬B→C	$E \rightarrow 1, 4$ $E \rightarrow 3, 5$
6.		С	$E \rightarrow 3, 5$
7.		¬C	E∧ 2
8.	В		l _¬ 3, 6, 7

Activitat 3 (25%)

El raonament següent és vàlid, Utilitzeu el mètode de resolució lineal amb l'estratègia del conjunt de suport per a demostrar-ho. Si podeu aplicar la regla de subsumpció o la regla del literal pur, apliqueu-les i indiqueu-ho

El conjunt de clàusules resultant és:

 $S = \{ \neg F \lor G, \neg G \lor H, \neg H, \neg P \lor H, P \lor F, \neg H \lor G \}$ El conjunt de suport està format per les dues darreres clàusules (negreta)

La clàusula $\neg H$ subsumeix la clàusula $\neg H \lor G$ i amb això el conjunt de clàusules potencialment útils es redueix a :

$$S' = \{ \neg F \lor G, \neg G \lor H, \neg H, \neg P \lor H, P \lor F \}$$

No és possible aplicar la regla del literal pur

Troncals	Laterals
P∨F	⊣F∨G
PvF PvG PvH	⊸G∨H
P∨H	⊣H
P	¬P∨H
H	⊣H

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Activitat 4 (25%)

Considereu el següent raonament (incorrecte)

 $\forall xM(x) \rightarrow \exists x\exists yN(x,y)$ $\exists x\exists y\neg N(x,y)$ $\therefore \exists x\neg M(x)$

Doneu una interpretació en el domini {1,2} que en sigui un contraexemple.

Un contraexemple ha de fer certes les premisses i falsa la conclusió. En el domini {1,2} la conclusió és equivalent a

¬M(1)∨¬M(2)

Perquè aquest enunciat sigui fals ha de passar que M(1)=V i que M(2)=V

Amb M(1)=V i M(2) V es té que $\forall xM(x) = V$ ja que $\forall xM(x)$ és equivalent a M(1) \land M(2). Així, perquè $\forall xM(x) \rightarrow \exists x\exists yN(x,y)$ sigui cert ha de ser-ho $\exists x\exists yN(x,y)$

 $\exists x \exists y N(x,y)$ és equivalent a $N(1,1) \lor N(1,2) \lor N(2,1) \lor N(2,2)$. Perquè aquest enunciat sigui cert n'hi ha prou amb que ho sigui un dels dos disjuntands. Posem que sigui N(1,1)=V

Per a fer certa la segona premissa s'ha de fer cert l'enunciat $\neg N(1,1) \lor \neg N(1,2) \lor \neg N(2,1) \lor \neg N(2,2)$. Perquè aquest enunciat sigui cert n'hi ha prou amb que ho sigui algun dels seus disjuntands. Posem que sigui N(1,2) = F

Així, una interpretació que és un contraexemple és

<{1,2}, {M(1)=V, M(2)=V, N(1,1) = V, N(1,2)=F, N(2,1)=V, N(2,2)=V}, \varnothing >

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	15/01/2014	13:30