Université Paris-Cergy, CYTECH

E.I.S.T.I. Département Mathématiques

PARCOURS MATH INFORMATIQUE 2020-2021

EDP et Différences Finies

TP 1: Résolution numérique des équations paraboliques

Le but de ce TP 1 est la résolution numérique des équations par la méthode explicite d'Euler avec les conditions aux limites de Dirichlet et de Neumann

Equation 1. Conditions aux limites de Dirichlet

L'équation et les conditions aux limites de Dirichlet s'ecrit de la forme:

$$\begin{cases} u_t = u_{xx} + 10u + (t-1)(x-1) \\ u(t=0,x) = 1 + \cos(5\pi x) \\ u(t,x=0) = 2 - 20t \\ u(t,x=1) = 100t^2 \end{cases}$$
 (1)

Utilisez les valeurs suivantes:

$$\begin{cases}
L = 1 \\
T = 0.1 \\
M = 4999 \\
N = 19
\end{cases}$$

Attention: T=0.1.

Implementation MATLAB (Scilab, Python)

Discrétisation de l'espace temps

Si on programme en Matlab (ou Scilab) on déplace tout les indices fixes de 1.

• Définir les vecteurs dont les coordonées sont les vraies valeurs:

$$x = (0:N+1) \cdot \Delta x \qquad ou \quad x = linspace(0,L,N+2)$$

Par conséquent les coordonnées portent les vraies valeurs :

$$x(1) = 0,$$

$$x(2) = \Delta x,$$

$$x(3) = 2\Delta x, ...,$$

$$x(N+2) = (N+1) * \Delta x \equiv L$$

Il y a N+2 composantes.

$$t = (0: M+1) \cdot \Delta t \qquad ou \quad t = linspace(0, T, M+2)$$

Par conséquent les coordonnées portent les vraies valeurs :

$$t(1) = 0,$$

$$t(2) = \Delta t$$
,

$$t(3) = 2\Delta t, ...,$$

$$t(M+2) = (M+1) * \Delta t \equiv T$$

Il y a M + 2 composantes.

Travail à faire

- Programmer la condition initiale
- Tracer la condition initiale
- Programmer les conditions aux limites
- Tracer les conditions aux limites
- Ecrire le Programme principal
- Visualiser la fonction $u(t_n, x_i)$ aux instants t différents (t = 0, t = T/2, t = T).
- Visualiser la surface solution $u(t_n, x_i)$.
- Preparer un fichier PDF nommé "Rapport TP1" et copier dedans tout les graphes.
- Copier votre programme dans un Dossier "TP1-Problème 1".

Equation 2. Conditions aux limites de Neumann

L'équation et les conditions aux limites de Neumann s'écrit de la forme:

$$\begin{cases} u_t = u_{xx} - u_x + t \cos(\pi x) \\ u(t = 0, x) = (x - 1)^2 \\ u_x(t, x = 0) = -2 + 2t \\ u_x(t, x = 1) = 20 \sin(\pi t) \end{cases}$$
 (2)

Utilisez les valeurs suivantes:

$$\begin{cases}
L = 1 \\
T = 1 \\
M = 4999 \\
N = 19
\end{cases}$$

Travail à faire

- Programmer la condition initiale
- Tracer la condition initiale
- Ecrire le Programme principal et programmer à l'interieur (entre deux boucles) les conditions aux limites
 - Visualiser la fonction $u(t_n, x_i)$ aux instants t différents (t = 0, t = T/2, t = T)
 - Tracer les conditions aux limites
 - Visualiser la surface solution $u(t_n, x_i)$
 - Copier dans le fichier PDF nommé "Rapport TP1" tout les graphes.
 - Copier votre programme dans un Dossier "TP1-Problème 2".

Equation 3. Schéma Leap Frog.

L'équation et les conditions aux limites de Dirichlet s'écrit de la forme:

$$\begin{cases}
 u_t = u_{xx} \\
 u(t = 0, x) = \cos(\pi x) \\
 u(t, x = 0) = 1 \\
 u(t, x = 1) = -1
\end{cases}$$
(3)

Résoudre numériquement l'équation avec les valeurs suivantes:

$$\begin{cases}
L = 1 \\
T = 0.1 \\
M = 4999 \\
N = 19
\end{cases}$$

et montrer que le schéma Leap-Frog pour l'équation de la chaleur diverge.

Pour discrétiser l'équation (1) on utilise: pour
$$\frac{\partial u}{\partial t} = \frac{u_i^{n+1} - u_i^{n-1}}{2\Delta t}$$
 la dérivée centrée, pour $\frac{\partial^2 u}{\partial x^2}$ la seconde dérivée, centrée.

Travail à faire

- Trouver l'équation discrete.
- Imposer les conditions initiales artificielles:

$$\frac{\partial u}{\partial t}(0,x) = 0$$
 soit $u_i^1 = u_i^0$

- Visualiser la surface solution $u(t_n, x_i)$
- Copier dans le fichier PDF nommé "Rapport TP1" tout les graphes.
- Copier votre programme dans un Dossier "TP1-Problème 3".

Equation 4. Conditions aux limites de Neumann et de Dirichlet

L'équation et les conditions aux limites de Dirichlet et de Neumann s'écrit de la forme:

$$\begin{cases} u_t = u_{xx} + 3\sin(6\pi t) \cdot x \cdot u_x - t \cdot u - 1 - \frac{x^2}{2} \\ u(t = 0, x) = \frac{3}{2}x^2 \\ u(t, x = 0) = \sin(2\pi t) \\ u_x(t, x = 1) = 3 - t^2 \end{cases}$$

$$(4)$$

Résoudre numériquement l'équation avec les valeurs suivantes:

$$\begin{cases}
L = 1 \\
T = 1 \\
M = 4999 \\
N = 19
\end{cases}$$

Travail à faire

- Visualiser la surface solution $u(t_n, x_i)$.
- Tracer les conditions aux limites.
- Copier dans le fichier PDF nommé "Rapport TP1" tout les graphes.
- Copier votre programme dans un Dossier "TP1-Problème 4".

Déposer sur AREL le fichier PDF nommé "Rapport TP1" avec tout les graphes dedans et les Dossiers: "TP1-Problème 1", "TP1-Problème 2", "TP1-Problème 3", "TP1-Problème 4".