CLAIMS

We claim:

1. A compound of the structure

$$A \xrightarrow{S} R^1 R^2$$

$$R^5 \xrightarrow{R^4} R^3$$

5

wherein R¹, R², R³, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, halogen, alkyl, haloalkyl, alkoxy, cyano, nitro, cycloalkyl and carboxaldehyde;

with the proviso that at least one of R^1 or R^3 is

10

wherein D, B, Y and Z at each occurrence are independently selected from the group consisting of $-CR^6$ =, $-CR^7R^8$ -, -C(O)-, -O-, $-SO_2$ -, -S-, -N=, and $-NR^9$ -;

n is an integer of zero to three;

15

 R^6 , R^7 , R^8 and R^9 , at each occurrence, are each independently selected from the group consisting of hydrogen, alkyl, carboxy,

hydroxyalkyl, alkylaminocarbonyl alkyl,

dialkylaminocarbonylalkyl and carboxyalkyl; and

R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl, heterocyclyl, heterocyclylalkyl and

heterocyclylamino;

wherein R¹⁰ and R¹¹ may be joined to form a three to seven membered heterocyclyl ring, said ring being optionally substituted with one or more substituents R¹³, wherein R¹³, at each occurrence is independently selected from the group consisting of alkyl, alkylene, alkoxy, alkoxyalkyl, cycloalkyl, aryl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylalkylaminocarbonyl, hydroxy, hydroxyalkyl, hydroxyalkoxyalkyl, carboxy, carboxyalkyl, carboxycarbonyl, carboxaldehyde, alkoxycarbonyl, arylalkoxycarbonyl, aminoalkyl, aminoalkanoyl, aminocarbonyl, carboxamido, alkoxycarbonylalkyl, carboxamidoalkyl, cyano, tetrazolyl, alkanoyl, hydroxyalkanoyl, alkanoyloxy, alkanoylamino, alkanoyloxyalkyl, alkanoylaminoalkyl, sulfonate, alkylsulfonyl, alkylsulfonylaminocarbonyl, arylsulfonylaminocarbonyl and heterocyclylsulfonylaminocarbonyl;

wherein A is an aryl or heterocyclyl group, said aryl or heterocyclyl group having at least one substituent R¹², wherein R¹², at each occurrence, is independently selected from the group consisting of hydrogen, halogen, alkyl, aryl, haloalkyl, hydroxy, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyalkoxy, hydroxyalkyl, aminoalkyl,

10

5

15

5

10

aminocarbonyl, alkyl(alkoxycarbonylalkyl) aminoalkyl, heterocyclyl, heterocyclylalkyl, carboxaldehyde, carboxaldehyde hydrazone, carboxamide, alkoxycarbonylalkyl, carboxy, carboxyalkyl, carboxyalkoxy, hydroxyalkylaminocarbonyl, cyano, amino, heterocyclylalkylamino, carboxythioalkoxy, carboxycycloalkoxy, thioalkoxy, carboxyalkylamino, transcinnamyl and heterocyclylalkylaminocarbonyl; and wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are unsubstituted or substituted with at least one electron donating or electron withdrawing group;

or a pharmaceutically-acceptable salt, optical isomer or prodrug thereof.

2. The compound of claim 1 wherein R³ is

D, B, Y and Z at each occurrence are independently selected from the group consisting of $-CR^6$ =, $-CR^7R^8$ -, -C(O)-, -O-, $-SO_2$ -, -S-, -N=, and $-NR^9$ -;

n is an integer of zero to three;

 R^6 , R^7 , R^8 and R^9 , at each occurrence, are each independently selected from the group consisting of hydrogen, alkyl, carboxy,

hydroxyalkyl, alkylaminocarbonyl alkyl, dialkylaminocarbonylalkyl and carboxyalkyl;

R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl, heterocyclyl, heterocyclylalkyl and heterocyclylamino;

wherein R¹⁰ and R¹¹ may be joined to form a three to seven membered heterocyclyl ring, said ring optionally being substituted with one or more substituents R¹³, wherein R¹³ at each occurrence is independently selected from the group consisting of alkyl, alkylene, alkoxy, alkoxyalkyl, cycloalkyl, aryl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylalkylaminocarbonyl, hydroxy, hydroxyalkyl, hydroxyalkoxyalkyl, carboxy, carboxyalkyl, carboxycarbonyl, carboxaldehyde, alkoxycarbonyl, arylalkoxycarbonyl, aminoalkyl, aminoalkanoyl, aminocarbonyl, carboxamido, alkoxycarbonylalkyl, carboxamidoalkyl, cyano, tetrazolyl, alkanoyl, hydroxyalkanoyl, alkanoyloxy, alkanoylamino, alkanoyloxyalkyl, alkanoylaminoalkyl, sulfonate, alkylsulfonyl, alkylsulfonylaminocarbonyl, arylsulfonylaminocarbonyl, arylsulfonylaminocarbonyl and heterocyclylsulfonylaminocarbonyl;

 R^1 and R^2 are each independently selected from the group consisting of hydrogen, halogen, haloalkyl and nitro; and

R⁴ and R⁵ are each independently selected from the group of hydrogen and alkyl.

10

5

15

3. The compound of claim 1 of the structure

$$P^{(R^{12})} = P^{(R^{12})} = P^{($$

wherein R¹, R², R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, halogen, alkyl, haloalkyl, alkoxy, cyano, nitro, cycloalkyl and carboxaldehyde;

D, B, Y and Z at each occurrence are independently selected from the group consisting of -CR⁶=, -CR⁷R⁸-, -C(O)-, -O-, -SO₂-, -S-, -N=, and -NR⁹-; n is an integer of zero to three;

wherein R⁶, R⁷, R⁸ and R⁹, at each occurrence, are each independently selected from the group consisting of hydrogen, alkyl, carboxy, hydroxyalkyl, alkylaminocarbonyl alkyl, dialkylaminocarbonylalkyl and carboxyalkyl;

R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl, heterocyclyl, heterocyclylalkyl and heterocyclylamino;

wherein R¹⁰ and R¹¹ may be joined to form a three to seven membered heterocyclyl ring, said ring optionally being substituted with one or more

10

15

CECEPTO JEST

5

10

15

substituents R¹³, wherein R¹³ at each occurrence is independently selected from the group consisting of alkyl, alkylene, alkoxy, alkoxyalkyl, cycloalkyl, aryl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylalkylaminocarbonyl, hydroxy, hydroxyalkyl, hydroxyalkoxyalkyl, carboxy, carboxyalkyl, carboxycarbonyl, carboxaldehyde, alkoxycarbonyl, arylalkoxycarbonyl, aminoalkyl, aminoalkanoyl, aminocarbonyl, carboxamido, alkoxycarbonylalkyl, carboxamidoalkyl, cyano, tetrazolyl, alkanoyl, hydroxyalkanoyl, alkanoyloxy, alkanoylamino, alkanoyloxyalkyl, alkanoylaminoalkyl, sulfonate, alkylsulfonyl, alkylsulfonylaminocarbonyl, arylsulfonylaminocarbonyl and heterocyclylsulfonylaminocarbonyl;

R¹², at each occurrence, is independently selected from the group consisting of hydrogen, halogen, alkyl, haloalkyl, alkoxy, carboxyalkoxy, carboxyalkyl and heterocyclyl; and,

p is an integer of zero to five;

wherein R¹, R², R⁴, R⁵, R¹⁰, R¹¹, R¹² and R¹³ are unsubstituted or substituted with at least one electron donating group or electron withdrawing group.

5

10

4. The compound of claim 3 wherein p is one;

R⁴ and R⁵ are hydrogen;

R¹² is selected from the group consisting of halogen, alkyl, alkoxy, carboxyalkoxy, carboxyalkyl and heterocyclyl; and

R¹⁰ and R¹¹ are joined to form a three to seven membered heterocyclyl ring; said ring selected from the group consisting of piperidine, piperazine, morpholine, pyrrolidine and azetidine.

5. The compound of claim 1 of the structure

$$p(R^{12}) = \begin{bmatrix} R^1 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

wherein D and B are each independently selected from the group consisting of -N= and $-CR^6=$;

 R^1 and R^2 are each independently selected from the group consisting of hydrogen, halogen and haloalkyl;

R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl,

10

15

20

carboxyalkyl, hydroxyalkyl, heterocyclyl, heterocyclylalkyl and heterocyclylamino;

wherein R¹⁰ and R¹¹ may be joined to form a three to seven membered heterocyclyl ring, said ring optionally substituted with one or more substituents R¹³, wherein R¹³ at each occurrence is independently selected from the group consisting of alkyl, alkylene, alkoxy, alkoxyalkyl, cycloalkyl, aryl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylalkylaminocarbonyl, hydroxy, hydroxyalkyl, hydroxyalkoxyalkyl, carboxy, carboxyalkyl, carboxycarbonyl, carboxaldehyde, alkoxycarbonyl, arylalkoxycarbonyl, aminoalkyl, aminoalkanoyl, aminocarbonyl, carboxamido, alkoxycarbonylalkyl, carboxamidoalkyl, cyano, tetrazolyl, alkanoyl, hydroxyalkanoyl, alkanoyloxy, alkanoylamino, alkanoyloxyalkyl, alkanoylaminoalkyl, sulfonate, alkylsulfonyl, alkylsulfonylaminocarbonyl; arylsulfonylaminocarbonyl and heterocyclylsulfonylaminocarbonyl;

R¹², at each occurrence, is independently selected from the group consisting of hydrogen, halogen, alkyl, haloalkyl, alkoxy, carboxyalkoxy, carboxyalkyl and heterocyclyl; and,

p is an integer of zero to five;

wherein R^1 , R^2 , R^{10} , R^{11} , R^{12} and R^{13} are unsubstituted or substituted with at least one electron donating group or electron withdrawing group.

- 6. The compound of claim 5 wherein p is one;
- R¹² is selected from the group consisting of halogen, alkyl, alkoxy, carboxyalkoxy, carboxyalkyl and heterocyclyl; and
 - R^{10} and R^{11} are joined to form a three to seven membered heterocyclyl ring; said ring selected from the group consisting of piperidine, piperazine, morpholine, pyrrolidine and azetidine.

15

20

benzo(1,4)dioxin-6-ylsulfanyl)-3-trifluoromethyl-phenyl)-pyridin-2-yl)-pyrrolidin-3-yl)-acetamide, 4'-(4-(2,3-dihydro-benzo(1,4)dioxin-6-ylsulfanyl)-3-trifluoromethyl-phenyl)-3,4,5,6-tetrahydro-2*H*-(1,2')bipyridinyl-4-carboxylic acid and 4'-(4-(2,3-dihydro-benzo(1,4)dioxin-6-ylsulfanyl)-3-trifluoromethyl-phenyl)- 3,4,5,6-tetrahydro-2*H*-(1,2')bipyridinyl-3-carboxylic acid.

8. A composition comprising:

a compound of claim 1 in a pharmaceutically acceptable carrier.

 A method of inhibiting inflammation or suppressing immune response in a mammal comprising administering to said mammal a therapeutic amount of a compound of claim 1.