ICCS310: Assignment 4

Possawat Sanorkam possawat2017@hotmail.com February 24, 2021

1: Eh? They Have The Same Cardinality?

Prove the following statements using rigorous mathematical reasoning:

(1)
$$|[0,\frac{1}{2})| = |[0,1)|$$

Proof: We want to show that $|[0, \frac{1}{2})| = |[0, 1)|$ by direct proof. By definition, let A and B be sets. Say A and B have the same cardinality (size), denoted by |A| = |B|, if there exists a bijection between them.

We want to show that there exist a function f such that f is a bijection. Let $f:A\to B$, $A=[0,\frac{1}{2})$, and B=[0,1). Then, let f(x)=2x. Let $a\in A$ and $a'\in A$. From observation, f(a) is unique for any arbitrary a. We have that $(\forall a\neq a')[f(a)\neq f(a')]$, so f is injective. Let $b\in B$. From observation, every b can be obtain from some f(a). We have that $(\forall b)(\exists a)[f(a)=b]$, so f is also surjective. According to the definition we stated before, f is a bijective function. Hence, |A|=|B|. Therefore, $|[0,\frac{1}{2})|=|[0,1)|$. \square

(2)
$$|[0,1)| = |(-1,1)|$$

Proof: We want to show that |[0,1)| = |(-1,1)| by direct proof. By definition, let A and B be sets. Say A and B have the same cardinality (size), denoted by |A| = |B|, if there exists a bijection between them. In addition, |A| = |B| if and only if $|A| \le |B|$ and $|B| \le |A|$.

We want to show that there exist functions f that is injective and g that is also injective. Let $f:A\to B, g:B\to A, A=[0,1),$ and B=(-1,1). Then, let f(x)=x. Let $a\in A$ and $a'\in A.$ From observation, f(a) is unique for any arbitrary a. We have that $(\forall a\neq a')[f(a)\neq f(a')],$ so f is injective. Then, let $g(x)=\frac{(x+1)}{2}.$ Let $b\in B$ and $b'\in B.$ From observation, g(b) is unique for any arbitrary b. We have that $(\forall b\neq b')[f(b)\neq f(b')],$ so g is injective. Hence, $|A|\leq |B|$ and $|B|\leq |A|$ which implies that |A|=|B|. Therefore, |[0,1)|=|(-1,1)|. \square

(3)
$$|[0,1)| = |\mathbb{R}|$$

Proof: We want to show that $|[0,1)| = |\mathbb{R}|$ by direct proof. Besides, we have that |[0,1)| = |(-1,1)| which means we can show that $|\mathbb{R}| = |(-1,1)|$ instead. Say A and B have the same cardinality (size), denoted by |A| = |B|, if there exists a bijection between them. In addition, |A| = |B| if and only if $|A| \le |B|$ and $|B| \le |A|$.

We want to show that there exist a function f such that f is a bijection. Let $f:A\to\mathbb{R}$, and A=(-1,1). Then, let $f(x)=\frac{x}{1-x^2}$. This function is continuous on domain A when $x\neq 1$ and $x\neq -1$. Let $a\in A$ and $a'\in A$. From observation, f(a) is unique for any arbitrary a. We have that $(\forall a\neq a')[f(a)\neq f(a')]$, so f is injective. Let $b\in B$. From observation, every b can be obtain from some f(a). We have that $(\forall b)(\exists a)[f(a)=b]$, so f is also surjective. According to the definition we stated before, f is a bijective function. So, $|A|=|\mathbb{R}|$ or $|\mathbb{R}|=|(-1,1)|$. Hence, $|\mathbb{R}|=|(-1,1)|$ implies that $|\mathbb{R}|=|[0,1)|$ also. Therefore, $|[0,1)|=|\mathbb{R}|$. \square

2: The Power Set of A

(1) Prove that $|2^A| = |\{0,1\}^A|$.

Proof:

(2) Prove that $|A| < |\{0,1\}^A|$ and conclude that $|A| < |2^A|$. *Proof*:

3: Hamming Code

Consider applying the Hamming coding scheme to send 8 bits of data. This will require 4 parity bits, so an encoded code word in this scheme is 12 bits long.

(1) If the data bits are $d_1, d_2, d_3...d_8$, what is β_2 in terms of d_i 's? Solution: $\beta_2 = d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7$

(2) Encode the following 8-bit data: 01101010.

Solution: Hamming Code = $(\beta_1\beta_2d_1\beta_4d_2d_3d_4\beta_8d_5d_6d_7d_8)$

Encode 01101010 by adding the parity bits as followed

$$\beta_1 = d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 1 \tag{1}$$

$$\beta_2 = d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0 \tag{2}$$

$$\beta_4 = d_2 \oplus d_3 \oplus d_4 \oplus d_8 = 1 \oplus 1 \oplus 0 \oplus 0 = 0 \tag{3}$$

$$\beta_8 = d_5 \oplus d_6 \oplus d_7 \oplus d_8 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \tag{4}$$

Therefore, encoded bits are 100011001010

(3) Assuming that at most a single single bit flip, decide the following codewords (indicate also whether there was any error):

Solution: Hamming Code = $(\beta_1\beta_2d_1\beta_4d_2d_3d_4\beta_8d_5d_6d_7d_8)$

(i) 010011111000

So,
$$\beta_1 = 0, \beta_2 = 1, \beta_4 = 0, \text{and } \beta_8 = 1.$$

$$\beta_1 \oplus d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1 \tag{5}$$

$$\beta_2 \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1 \tag{6}$$

$$\beta_4 \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_8 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1 \tag{7}$$

$$\beta_8 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_8 = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0 \tag{8}$$

Error Position is $0111_2 = 7$. Corrected Data is 010011011000.

(ii) 011101010010

So,
$$\beta_1 = 0, \beta_2 = 1, \beta_4 = 1, \text{and } \beta_8 = 1.$$

$$\beta_1 \oplus d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1 \tag{9}$$

$$\beta_2 \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 1 \tag{10}$$

$$\beta_4 \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_8 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0 \tag{11}$$

$$\beta_8 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_8 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0 \tag{12}$$

Error Position is $0011_2 = 3$. Corrected Data is 01010101010010.

4: Same Number of 0s and 1s

Consider the language $L = \{w \in \{0,1\}^* | \text{w contains an equal number of 0s and 1s} \}$. Show that L is (Turing) decidable by providing a TM that decides it (a medium-level detail is preferred).

Proof:

5: Infinite DFA

Show that the following language is (Turing) decideable:

IDFA =
$$\{\langle M \rangle | M \text{ is a DFA and L(M) is an infinite language } \}$$
.

Proof: We want to show that IDFA is decidable. So, we will construct a TM T that decides IDFA. For all DFAs M, we want $T(\langle M \rangle)$ to accepts if L(M) is infinite language, else it will reject.

6: Lucky 9

(1) Let $L_1 \subseteq \Sigma^*$ be defined as

$$L_1 = \begin{cases} \emptyset & \text{if } 2^{74207281} - 1 \text{ is prime} \\ \{99\} & \text{if } 2^{74207281} - 1 \text{ is not prime} \end{cases}$$

Prove that L_1 is (Turing) decidable.

Proof:

(2) Let $L_2 \subseteq \Sigma^*$ be defined as

 $w \in L_2 \iff w$ appears somewhere (not necessarily consecutively) in the decimal expansion of π Prove that L_2 is (Turing) decidable.

Proof:

7: β -reduction

(1) $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$

Solution:

$$(\lambda z.z)(\lambda z.zz)(\lambda z.zy) \rightarrow_{\beta} (\lambda z.zz)(\lambda z.zy)$$

$$\rightarrow_{\beta} (\lambda z.zy)(\lambda z.zy)$$

$$(13)$$

$$(14)$$

$$\rightarrow_{\beta} (\lambda z.zy)(\lambda z.zy)$$
 (14)

$$\rightarrow_{\beta} (\lambda z. zy)y$$
 (15)

$$\rightarrow_{\beta} yy$$
 (16)

(2)
$$(((\lambda x.\lambda y.(xy))(\lambda y.y))w)$$

Solution:

$$(((\lambda x.\lambda y.(xy))(\lambda y.y))w) \rightarrow_{\beta} (\lambda y.(xy))w \tag{17}$$

$$\rightarrow_{\beta} xw$$
 (18)

Possawat Sanorkam

8: Fibonacci

Using the functions we have developed (e.g., pred, if_then_else, mult, add, etc.), write down an explicit λ -term fib such that $\overline{fib} \ \overline{n} =_{\beta} \overline{f(n)}$.

Solution: $\overline{fib} \ \overline{n} =_{\beta} \overline{f(n)}$.

9: Power Of 2

Implement a λ -term for the $pow(n) = 2^n$

Solution: $\overline{pow} \ \overline{n} = (\lambda z.\lambda y.(zy)\overline{n})\overline{2} = (\lambda z.\lambda y.(zy)\lambda fx.f^nx)\lambda f.\lambda x.(f(fx))$