

中华人民共和国国家标准

GB/T 17626.2—2006/IEC 61000-4-2:2001 代替 GB/T 17626.2—1998

电磁兼容 试验和测量技术 静电放电抗扰度试验

Electromagnetic compatibility—
Testing and measurement techniques—
Electrostatic discharge immunity test

(IEC 61000-4-2:2001, Electromagnetic compatibility (EMC)— Part 4-2: Testing and measurement techniques— Electrostatic discharge immunity test, IDT)

2006-12-19 发布

2007-09-01 实施

目 次

前	言	•	***	• • • •	••••	••••	• • • •	• • • •	••••	••••	• • • •	••••	••••	• • • •	• • • •	• • • •	•••	••••	• • • •	***	• • • • •	• • • •	• • • •	••••	• • • •	• • • •	••••	• • • •	••••	••••			III
																															••••		
2	敖	见茅	世色	时	用)	文件	· ••		• • • •	••••	••••	• • • •	•••	••••	•••	• • • •	• • • •		••••	• • • •	• • • •	••••	••••	••••	• • • • •			••••	• • • •		••••	••••	•]
3	棋	筅ì	롼	••••	• • • •	••••	••••		• • • •	••••	** * * *	• • • •	•••	••••	•••	• • • • •	• • • •	• • • •	••••	• • • •	• • • •	••••	• • • • •	••••	• • • • •			••••	• • • •		••••	• • • • •	• 1
4	オ	Ri	吾希	定	义	••••	••••		• • • •	••••	••••	• • • •	••••	••••	•••	••••	• • • •	• • • •	••••	• • • •	• • • •	••••	• • • • •	••••	• • • • •	• • • •	••••	••••	• • • •		•••••	••••	• 1
5	ā	式星	金 等	級	•••	••••	••••	• • • •	• • • •	••••	• • • • •	• • • •	••••	• • • •	•••	••••	• • • •	• • • •	••••	• • • •	• • • •	•••		••••	••••	• • • •	••••	••••	• • • •	•	•••••	• • • • •	. 3
6	ũ	建	金发	生	器	••••	••••		• • • •	••••	••••	• • • •	••••	• • • •	•••	• • • • •	• • • •		••••	• • • •	••••	• • • •		••••	••••	• • • •	••••	••••	• • • •		•••••	••••	. 3
7	र्ध	红星	金酉	置	•••	••••	••••	• • • •	• • • •	••••	** * * *	• • • •	••••	• • • •	•••	••••	• • • •	***	••••	• • • •	••••	• • • •	• • • •	••••	••••	• • • •	••••	••••	• • • •	••••	•••••	••••	. 5
8	ū	£¥	金君	序	•••	••••	••••	• • • •	• • • •	••••	••••	• • • •	••••	• • • •	• • • •	••••	• • • •	••••	• • • •	• • • •	••••	• • • •	• • • •	••••	••••	••••	••••	••••		••••		••••	. 7
9	ū	红	金红	果	的词	平价	• ••	• • • •	• • • •	••••	••••		••••	••••	• • • •	• • • •	• • • •	••••	• • • •	• • • •	••••	••••	• • • •	••••	••••	• • • •	••••	••••	• • • •	****	•••••	••••	. g
10		试	验:	报台	<u></u>	••••	••••	• • • •		••••	••••		••••	•••	••••	• • • •	• • • •	••••	••••	• • • •	••••	••••	• • • •	••••	••••	••••	***		• • • •	••••	• • • • •	••••	. 9
附	录	A	(资	料	性的	付录	:)	说	明	•••	••••	••••		• • • •	•••	••••		••••	••••	•••	••••	• • • •	••••	••••	• • • •	••••		••••		••••	••••	• • • •	16
附	录	В	(资	料	性附	录)	元	件	的详	羊细	结	构	•••	•••	••••	••••	••••	••••	••••	••••	• • • •	••••	• • • •	• • • •	••••	· • • • •	••••		••••	••••	• • • •	19
图	1	#	静申	己放	电	发生	:器	简	图	•••	••••	••••		• • • •	•••	••••	••••	••••	••••	••••	• • • • •	• • • •	••••	• • • •	• • • • •	••••	• • • •	••••	••••	· • • • •	••••	• • • •	10
图	2	Ĭ	硷i	E静	电	汝电	发	生	器物	寺性	的	布冒	置多	[例		••••	••••	• • • • •	••••	••••	• • • •	• • • •	•••	• • • •	• • • •	• • • • •	• • • • •	••••	***	• • • • •	••••	• • • •	10
图	3	į	静申	息放	电	发生	器	输	ЩE	电流	的:	典型	型边	发形		••••	••••	••••	••••	••••	••••	• • • •	••••	• • • •	••••	••••		••••	•••	• • • •	•••••	•••	11
图	4	#	静申	1放	电	发生	器	的	放月	电电	极	••	• • • •	• • • •	•••	••••	••••	•••••	••••	••••	• • • • •	• • • •	••••	• • • •	••••	••••		••••	••••		••••	• • • •	11
图	5	73.7	实验	全室	试	脸的	† , €	左右	议	备	武玉	全布	置	的多	实包	列・	••••	• • • • •	••••	••••	••••	• • • •	•••	• • • •	••••	••••		••••	••••		•••••	•••	12
图	6	73	实验	全全	试	俭时	, ,	存地	也式	设	备证	C验	布	置的	的多	实例	j	••••	••••	••••	• • • •	•••	••••	- • • •	••••	••••		••••	••••		•••••	•••	13
图	7	1	生多	そ装	后	的词	金	中	,落	地	式设	备	试	验す	布置	置的	的实	例	••••	••••	• • • •	•••	••••		••••	••••	• • • •	••••	••••		•••••	•••	14
图	8	7	不擅	美地	台	式设	备	的	试到	硷布	置	••	• • • •	•••	•••	••••	••••	• • • •	••••	••••	• • • •	•••	••••	• • • •	••••	••••	• • • •	••••	••••	• • • • •	•••••	•••	14
图	9	7	不 技	线地	落均	也式	设	备!	的证	式验	:布:	置	•••		•••	• • • •	••••	• • • •	••••	••••	• • • •	••••	• • • • •	• • • •	••••	••••		••••	••••		•••••	•••	15
图	A.	. 1	اِ	与 A	1.2	所:	提到	引的	材	料	接触	埘	, I	了能	对	操	作ノ	人员	充	电静	笋电	电	压	的最	大	值	•••	••••	••••		••••	•••	18
图	В.	1	<u>k</u>	且性	负	载的	的结	构	图	•••	••••	** **	• • • •	•••	•••	••••	••••	• • • •	****	••••	• • • •	••••	••••	••••	••••	••••	• • • •	••••	••••	• • • • •	•••••	•••	20
图	B.	2		•••	••••	• • • •	••••			• • • •	••••	• • • • (• • • •	•••	•••	••••	••••		••••	••••	••••	••••	• • • • •	• • • •	••••	•••	• • • •	••••	••••	• • • •	••••	•••	21
																															•••••		
																															••••		
																															• • • • • •		_
																															•••••		_
图	В.	7		••••	••••	• • • •	••••	••••	* * * 	• • • •	••••	• • • •	• • • •	•••	••••	••••	• • • •	• • • •	••••	••••	• • • •	••••	••••	• • • •	••••	••••	• • • • •	••••	• • • •	• • • • •	•••••	•••	24
																															• • • • •		•
																															• • • • •		_
表	A.	1	ì	战验	等	级岁	蜂	的	导见	则	• • • • •	• • • •	, 	••••	••••	••••	• • • •	• • • • •	••••	••••	• • • •	••••	••••	• • • •	••••	••••	(••••		• • • • •	••••	•••	17

直流电源输入端口电压暂降、短时中断和

前言

GB/T 17626《电磁兼容 试验和测量技术》系列标准目前包括以下部分: GB/T 17626.1—2006 电磁兼容 试验和测量技术 抗扰度试验总论 GB/T 17626.2—2006 电磁兼容 试验和测量技术 静电放电抗扰度试验 GB/T 17626.3—2006 电磁兼容 试验和测量技术 射频电磁场辐射抗扰度试验 电快速瞬变脉冲群抗扰度试验 GB/T 17626.4—1998 电磁兼容 试验和测量技术 GB/T 17626.5—1999 电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验 GB/T 17626.6—1998 电磁兼容 试验和测量技术 射频场感应的传导骚扰抗扰度 GB/T 17626.7—1998 电磁兼容 试验和测量技术 供电系统及相连设备谐波、谐间波的测量和 测量仪器导则 GB/T 17626.8—2006 电磁兼容 试验和测量技术 工频磁场抗扰度试验 GB/T 17626.9—1998 电磁兼容 试验和测量技术 脉冲磁场抗扰度试验 GB/T 17626. 10—1998 电磁兼容 试验和测量技术 阻尼振荡磁场抗扰度试验 GB/T 17626.11—1999 电磁兼容 试验和测量技术 电压暂降、短时中断和电压变化抗扰度 试验 GB/T 17626. 12—1998 电磁兼容 试验和测量技术 振荡波抗扰度试验 GB/T 17626.13—2006 电磁兼容 试验和测量技术 交流电源端口谐波、谐间波及电网信号的 低频抗扰度试验 GB/T 17626. 14—2005 电磁兼容 试验和测量技术 电压波动抗扰度试验 GB/T 17626. 17—2005 电磁兼容 试验和测量技术 直流电源输入端口纹波抗扰度试验 GB/T 17626. 27—2006 电磁兼容 试验和测量技术 三相电压不平衡抗扰度试验 GB/T 17626. 28—2006 电磁兼容 试验和测量技术 工频频率变化抗扰度试验

本部分为 GB/T 17626 的第 2 部分。

GB/T 17626.29—2006

电压变化抗扰度试验

本部分等同采用国际标准 IEC 61000-4-2:2001(第 1.2 版)。

电磁兼容

本部分从实施之日起,替代 GB/T 17626.2—1998《电磁兼容 试验和测量技术 静电放电抗扰度试验》。

试验和测量技术

本部分与 GB/T 17626.2-1998 的主要差异如下:

- 1) 修改了不接地的设备的试验方法。
- 2) 修改了对受试设备直接施加放电的方法。
- 3) 修改了对水平耦合板施加放电的方法。
- 4) 修改了试验结果的评价方法。
- 5) 修改了试验报告的要求。
- 6) 修改了图 5 对水平耦合板(HCP)间接放电的典型位置。
- 7) 增加了图 8 和图 9。
- 本部分的附录 A 和附录 B 均为资料性的附录。
- 本部分由全国电磁兼容标准化技术委员会提出。
- 本部分由全国电磁兼容标准化技术委员会归口。
- 本部分负责起草单位:上海工业自动化仪表研究所、上海电器科学研究所(集团)有限公司。
- 本部分主要起草人:王英、洪济晔、寿建霞、杨彦。

电磁兼容 试验和测量技术静电放电抗扰度试验

1 范围

GB/T 17626 的本部分规定电气和电子设备遭受直接来自操作者和对邻近物体的静电放电时的抗 扰度要求和试验方法,还规定了不同环境和安装条件下试验等级的范围和试验程序。

本部分的目的在于建立通用的和可重现的基准,以评估电气和电子设备遭受静电放电时的性能。此外,它还包括从人体到靠近关键设备的物体之间可能发生的静电放电。

本部分的规定包括:

- ——放电电流的典型波形;
- ——试验等级的范围;
- ——试验设备:
- ——试验配置;
- ----试验程序。

本部分对"实验室"试验和"设备安装完成后的试验"提出了技术要求。

本部分不对特殊设备和系统的试验进行规定。其主要目的是为所有有关专业标准化技术委员会提供一个通用的基本准则。有关专业标准化技术委员会(或设备的使用者和制造者)负责选择试验和确定试验条件的严酷等级。

为了不妨碍协调和标准化的任务,极力建议有关专业标准化技术委员会或用户和制造商考虑(在其未来的工作或原标准的修改中)采用本部分中规定的相关抗扰度试验。

2 规范性引用文件

下列文件中的条款通过 GB/T 17626 的本部分的引用而成为本部分的条款。凡是注日期的引用文件, 其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的 各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。

GB/T 4365-2003 电工术语 电磁兼容(IEC 60050(161):1990,IDT)

GB/T 2421-1999 电工电子产品环境试验 第1部分:总则(idt IEC 60068-1:1988)

3 概述

本部分所涉及的是处于静电放电环境中和安装条件下的装置、系统、子系统和外部设备,例如,低相对湿度,使用低导电率(人造纤维)地毯、乙烯基服装等,这种情况存在于同电气和电子设备有关标准的分类规定中(详细情况见附录 A 的 A.1)。

本部分规定的试验被认为是对第 1 章提到的所有电气与电子设备性能质量评估进行统一试验的方向上迈出的第一步。

注: 从技术观点上看,这些现象的精确英语术语应是"static electricity discharge"(静电放电),但是,在技术领域里和技术文献中,广泛使用了英语术语"electrostatic discharge"(静电放电),因此,决定在本部分的英语术语标题中仍然保留"electrostatic discharge"(静电放电)术语。

4 术语和定义

本部分采用下列术语和定义,这些术语和定义适用于静电放电领域,并非所有的这些术语和定义都

GB/T 17626.2-2006/IEC 61000-4-2:2001

包括在 GB/T 4365-2003 之中。

4.1

(性能)降低 degradation (of performance)

装置、设备和系统的工作性能与正常性能的非期望偏离。(见 GB/T 4365—2003) 注:"降低"一词可用于暂时失效或永久失效。

4.2

电磁兼容性 electromagnetic compatibility; EMC

设备或系统在其电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。(见 GB/T 4365-2003)

4.3

抗静电材料 antistatic material

在同种材料或与其他类似材料相互摩擦或分离时,具有产生电荷量最小的材料。

4.4

储能电容器 energy storage capacitor

静电放电发生器中的电容器,用以代表人体充电至试验电压值时的电容量,它可以是分立元件或分布电容。

4.5

ESD electrostatic discharge

见本部分 4.10 静电放电。

4.6

EUT equipment under test

受试设备。

4.7

接地参考平面 ground reference plane; GRP

一块导电平面,其电位用作公共参考电位。(见 GB/T 4365-2003)

4.8

耦合板 coupling plane

一块金属片或金属板,对其放电用来模拟对受试设备附近物体的静电放电。HCP:水平耦合板; VCP:垂直耦合板。

4.9

保持时间 holding time

放电之前,由于泄漏而使试验电压下降不大于10%的时间间隔。

4. 10

静电放电 electrostatic discharge; ESD

具有不同静电电位的物体相互靠近或直接接触引起的电荷转移。(见 GB/T 4365-2003)

4.11

(对骚扰的)抗扰度 immunity (to a disturbance)

装置、设备或系统面临电磁骚扰不降低运行性能的能力。(见 GB/T 4365-2003)

4. 12

接触放电方法 contact discharge method

试验发生器的电极保持与受试设备的接触并由发生器内的放电开关激励放电的一种试验方法。

4. 13

空气放电方法 air discharge method

将试验发生器的充电电极靠近设备并由火花对受试设备激励放电的一种试验方法。

4. 14

直接放电 direct application

直接对受试设备实施放电。

4. 15

间接放电 indirect application

对受试设备附近的耦合板实施放电,以模拟人员对受试设备附近的物体的放电。

5 试验等级

表 1 给出静电放电试验时,试验等级的优先选择范围。

试验还应满足表1中所列的较低等级。

有关可能影响对人体带电电压电平的各种参数的详细情况见附录 A 中的 A. 2。A. 4 还包括一些与环境安装等级有关的试验等级的实例。

接触放电是优先选择的试验方法,空气放电则用在不能使用接触放电的场合中。每种试验方法的电压列于表 la 和表 lb 中,由于试验方法的差别,每种方法所示的电压是不同的。两种试验方法的严酷程度并不表示相等的。

附录 A 中 A. 3、A. 4 和 A. 5 中提供了更详细的资料。

 1a 接触放电
 1b 空气放电

 等级
 试验电压/kV

 1
 ·2
 1
 2

 2
 4
 2
 4

 3
 6
 3
 8

 4
 8
 4
 15

 ×"
 特殊
 *"
 特殊

表 1 试验等级

1) "×"是开放等级,该等级必须在专用设备的规范中加以规定,如果规定了高于表格中的电压,则可能需要专用的试验设备。

6 试验发生器

试验发生器的主要部分包括:

- ——充电电阻 R_{c} ;
- ——储能电容器 C_{\bullet} ;
- ——分布电容 C_a ;
- ——放电电阻 R_a ;
- ——电压指示器;
- ——放电开关;
- ——可更换的放电电极头(见图 4);
- ---放电回路电缆;
- ——电源装置。

GB/T 17626.2-2006/IEC 61000-4-2:2001

图 1 表示静电放电发生器的简图,未提供详细的结构图。发生器应满足 6.1 和 6.2 条给出的要求。

6.1 静电放电发生器的特性

规范:

——储能电容(C_s+C_d) 150(1±10%)pF ——放电电阻(R_d) 330(1±10%)Ω

——充电电阻(R_c) 50 MΩ与 100 MΩ之间

——输出电压(见注 1) 接触放电 8 kV(标称值)

空气放电 15 kV(标称值)

—输出电压示值的容许偏差 ±5%

——输出电压极性 (可切换的)

——保持时间 至少5 s

——放电,操作方式(见注 2) 单次放电(连续放电之间的时间至少 1 s)

——放电电流波形 见 6.2

注 1. 在储能电容器上测得的开路电压。

注 2: 仅为了探测的目的,发生器应能以至少 20 次/s 的重复频率产生放电。

对发生器应采取措施,以防止非期望的脉冲和连续形式的辐射或传导发射,以便使受试设备或辅助试验设备不受额外的骚扰。

储能电容器、放电电阻以及放电开关应尽可能靠近放电电极。

图 4 提供了放电头的尺寸。

就空气放电试验方法而言,可使用相同发生器,且放电开关必须闭合。发生器应备有图 4 所示的圆形头。

试验发生器中放电回路的电缆一般长为 2 m,其构成应使发生器满足波形的要求。它应有足够的绝缘以防止在静电放电试验期间放电电流不通过其端口而流向人员或导电表面。

若 2 m 长的放电回路电缆不够长(例如有一些受试设备较高),可以采用不超过 3 m 长的电缆,但必须校验是否符合波形的技术规范。

6.2 静电放电发生器特性的校验

为了比较不同试验发生器所获得的试验结果,必须利用试验时所用的放电回路电缆来验证表 2 所示的特性。

等级	指示电压/kV	放电的第一个峰 值电流/A(±10%)	放电开关操作时的上 升时间 t _r /ns	在 30 ns 时的电流/A (±30%)	在 60 ns 时的电流/A (±30%)
1	2	7.5	0.7~1	4	2
2	4	15	0.7~1	8	4
3	6	22.5	0.7~1	12	6
4	8	30	0.7~1	16	8

表 2 波形参数

静电放电发生器在验证过程中的输出电流波形应与图 3 相符。

放电电流的特性参数应使用 1 000 MHz 带宽的测量仪器进行验证。

带宽较窄,则意味着上升时间和第一个电流峰值测量受到限制。

验证时,放电电极头应与电流传感器直接接触,而且发生器以接触放电方式工作。

图 2 给出了验证静电放电发生器性能时的典型布置,靶的带宽必须大于 1 GHz,附录 B 中给出了电流传感器结构设计的详细资料。

其他的一些布置,包括使用和图 2 尺寸不同的实验室法拉第笼,或将法拉第笼与靶平面分开都是允许的。但两种情况下,均应考虑传感器与静电放电发生器接地端点之间的距离(1 m)以及放电回路电缆的布置。

静电放电发生器应在规定的时间内,按照认可的质量保证体系重新进行校准。

7 试验配置

试验配置由试验发生器、受试设备和以下列方式对受试设备直接和间接放电时所需的辅助仪器组成。

- a) 对导电表面和对耦合板的接触放电;
- b) 在绝缘表面上的空气放电。

试验可分为两种不同的类型:

- 一一在实验室进行的型式(符合性)试验;
- ——在最终安装条件下对设备进行的安装后试验。

优先选用的试验方法是在实验室内进行的型式试验。

受试设备应根据制造厂家的安装说明书(如果有的话)进行布置。

7.1 实验室试验的配置

下述要求适用于 8.1 中规定的参考环境条件下的实验室试验。

实验室的地面应设置接地参考平面,它应是一种最小厚度为 0.25 mm 的铜或铝的金属薄板,其他金属材料虽可使用但它们至少有 0.65 mm 的厚度。

接地参考平面的最小尺寸为 1 m²,实际的尺寸取决于受试设备的尺寸,而且每边至少应伸出受试设备或耦合板之外 0.5 m,并将它与保护接地系统相连。

应始终遵守国家有关安全规程的规定。

受试设备应按其使用要求布置和连线。

受试设备与实验室墙壁和其他金属性结构之间的距离最小1 m。

按照受试设备的安装技术条件,应该将它与接地系统连接。不允许有其他附加的接地线。

电源与信号电缆的布置应能反映实际安装条件。

静电放电发生器的放电回路电缆应与接地参考平面连接,该电缆的总长度一般为2 m。

如果这个长度超过所选放电点需要的长度,如可能将多余的长度以无感方式离开接地参考平面放置,且与试验配置的其他导电部分保持不小于 0.2 m 的距离。

与接地参考平面连接的接地线和所有连接点均应是低阻抗的,例如在高频场合下采用夹具等。

规定有耦合板的地方,例如允许采用间接放电的地方,这些耦合板采用和接地参考平面相同的金属和厚度,而且经过每端带有一个 470 kΩ 电阻的电缆与接地参考平面连接,当电缆置于接地参考平面上时,这些电阻器应能耐受住放电电压且具有良好的绝缘,以避免对接地参考平面的短路。

不同类型设备的其他技术要求如下。

7.1.1 台式设备

试验设备包括一个放在接地参考平面上 0.8 m 髙的木桌。

放在桌面上的水平耦合板(HCP)面积为 1.6 m×0.8 m,并用一个厚 0.5 mm 的绝缘衬垫将受试设备和电缆与耦合板隔离。

如果受试设备过大而不能保持与水平耦合板各边的最小距离为 0.1 m,则应使用另一块相同的水平耦合板,并与第一块短边侧距离 0.3 m。但此时必须将桌子扩大或使用二个桌子,这些水平耦合板不必焊在一起,而应经过另一根带电阻电缆接到接地参考平面上。

所有受试设备的安装脚架应保持原位。

图 5 提供了台式设备试验配置的实例。

7.1.2 落地式设备

受试设备与电缆用厚度约为 0.1 m 的绝缘支架与接地参考平面隔开。

图 6 提供了落地设备试验配置的实例。

任何与受试设备有关的安装脚架应保持原位。

7.1.3 不接地设备的试验方法

本条款描述的试验方法适用于安装规范或设计不与任何接地系统连接的设备或设备部件。设备或设备部件,包括便携式、电池供电和双重绝缘设备(II类设备)。

基本原理:不接地设备或设备的不接地部件不能如 I 类供电设备自行放电。若在下一个静电放电脉冲施加前电荷未消除,受试设备或受试设备的部件上的电荷累积可能使电压为预期试验电压的两倍。因此,双重绝缘设备的绝缘体电容经过几次静电放电累积,可能充电至异常高,然后以高能量在绝缘击穿电压处放电。

试验配置应分别与7.1.1和7.1.2的描述相同。

为模拟单次静电放电(空气放电或者接触放电),在施加每个静电放电脉冲之前应消除受试设备上的电荷。

在施加每个静电放电脉冲之前,应消除施加静电放电脉冲的金属点或部位上的电荷,如连接器外壳、电池充电插脚、金属天线。

当对一个或几个可接触到的金属部分进行静电放电试验,由于不保证能给出产品上该点和其他点间的电阻,应消除施加静电放电点的电荷。

应使用类似于水平耦合板和垂直耦合板用的带有 470 kΩ 泄放电阻的电缆,见 7.1。

因受试设备和水平耦合板(台式)之间以及受试设备和接地参考平面(落地式)之间的电容取决于受试设备的尺寸,静电放电试验时,如果功能允许,应安装带泄放电阻的电缆。放电电缆的一个电阻应尽可能靠近受试设备的试验点,最好小于 20 mm。第二个电阻应靠近电缆的末端,对于台式设备电缆连接于水平耦合板上(见图 8),对于立式设备电缆连接于接地参考平面上(见图 9)。

带泄放电阻电缆的存在会影响某些设备的试验结果。有争议时,若在连续放电之间电荷能有效地衰减,施加静电放电脉冲时断开电缆的试验优先于连接上电缆的试验。

以下选择可作为替代方法:

- ——连续放电的时间间隔应长于受试设备的电荷自然衰减所需的时间;
- ——使用带泄放电阻和炭纤维刷的接地电缆(例如,2×470 kΩ);
- ——使用加速受试设备的电荷"自然"泄放到环境的空气-离子发生器。

当施加空气放电时,离子发生器应关闭。任何替代方法的使用应在试验报告中注明。

注:在电荷衰减有争议时,可用非接触电场计监视受试设备上的电荷。当放电衰减至低于初始值的 10%后,受试设备被认为已放电。

静电放电发生器的电极头通常应垂直于受试设备的表面。

7.1.3.1 台式设备

对于台式设备,如 7.1.1 和图 5 所述,受试设备放于绝缘衬垫(厚 0.5 mm)上,绝缘衬垫位于水平耦合板上。

对受试设备上可触及的金属部分施加静电放电,其金属部分和水平耦合板之间应使用带泄放电阻的电缆连接(见图 8)。

7.1.3.2 落地式设备

对于与接地参考平面无任何金属连接的落地式设备,安装应类似于 7.1.2 和图 6。

对受试设备上可触及的金属部分施加静电放电,其金属部分和接地参考平面(GRP)之间应使用带泄放电阻的电缆连接(见图 9)。

7.2 安装后试验的配置

对鉴定试验来说,安装后试验只供验证试验时有选择地进行,不强制实施,只有经制造商和用户双

方同意时才能进行。必须考虑相邻的设备可能受到不利的影响。

设备和系统应在其最终安装完毕条件下进行试验。

为了便于放电回路电缆的连接,应将接地参考平面铺设在地面上并保持与受试设备约 0.1 m 的距离,该平面应当是厚度不小于 0.25 mm 的铜或铝板,也可使用其他的金属材料,但其最小厚度为 0.65 mm,条件允许时接地参考平面应是宽约 0.3 m 和长约 2 m。

应将这个接地参考平面连接到保护接地系统上,如不能连接,而受试设备有接地端能接的话,应连接在此。

静电放电发生器的放电回路电缆应接到靠近受试设备的接地参考平面某个点上。当受试设备安装在金属桌上时,应将桌子通过每端接有 470 kΩ 的电缆连接到参考平面上,以防止电荷的累积。

图 7 提供了安装后试验配置的实例。

8 试验程序

8.1 实验室的参考条件

为了使环境参数对试验结果的影响减至最小,试验应在 8.1.1 和 8.1.2 规定的气候和电磁参考条件下进行。

8.1.1 气候条件

在空气放电试验的情况下,气候条件应在下述范围内:

- ----环境温度:15℃~35°C
- ——相对湿度:30%~60%
- ——大气压力:86 kPa~106 kPa
- 注:其他的数值在产品规范中规定。

受试设备应在其规定的气候条件下工作。

8.1.2 电磁环境条件

实验室的电磁环境不应影响试验结果。

8.2 受试设备的考核

应对试验程序和软件进行选择,使受试设备进行所有正常运行方式。虽然鼓励采用专门的考核软件,但只有证明受试设备能得到全面考核时才允许。

对于符合性试验,受试设备应在由初步试验所确定的最敏感方式下连续地运行(程序循环)。如果要求有监测设备,那么为了减少出现故障误指示的可能性,应对监测设备去耦。

8.3 试验的实施

试验应按照试验计划,采用对受试设备直接和间接的放电方式进行。它包括:

- ——受试设备典型工作条件;
- ——受试设备是按台式设备还是落地式设备进行试验;
- ——确定施加放电点;
- 一一在每个点上,是采用接触放电还是空气放电;
- ——所使用的试验等级;
- ——符合性试验中在每个点上施加的放电次数;
- ——是否还进行安装后的试验。

为了制定试验计划,可能需要进行某种调查性试验。

8.3.1 对受试设备直接施加的放电

除非在通用标准、产品标准或产品类标准中有其他规定,静电放电只施加在正常使用时人员可接触到的受试设备上的点和面。以下是例外的情况(亦即,放电不施加在下述点):

a) 在维修时才接触得到的点和表面。这种情况下,特定的静电放电简化方法应在相关文件中

注明。

- b) 最终用户保养时接触到的点和表面。这些极少接触到的点,如换电池时接触到的电池、录音电话中的磁带等。
- c) 设备安装固定后或按使用说明使用后不再能接触到的点和面,例如,底部和/或设备的靠墙面 或安装端子后的地方。
- d) 外壳为金属的同轴连接器和多芯连接器可接触到的点。该情况下,仅对连接器的外壳施加接 触放电。

非导电(例如,塑料)连接器内可接触到的点,应只进行空气放电试验。试验使用静电放电发生器的圆形电极头。

法帝	应来	起III T	下六种	椿况.
))))))	ハルクダ	応以し	じノンがぜ	用ひに

例	连接器外壳	涂层材料	空气放电	接触放电
1	金属	无		外壳
2	金属	绝缘	涂层	可接触的外壳
3	金属	金属		外壳和涂层
4	绝缘	无	a	
5	绝缘	绝缘	涂层	
6	绝缘	金属		涂层

e) 由于功能原因对静电放电敏感并有静电放电警告标签的连接器或其他接触部分可接触到的点,如测量、接收或其他通讯功能的射频输入端。

基本原理: 许多连接器端子用于处理模拟或数字的高频信息,因而不能使用充分的过压保护装置。过压保护二极管的寄生电容妨碍受试设备工作频段内的工作。对于模拟信号,带通滤波器可能是解决方案。

在上述情况中,推荐的特定静电放电简化步骤应在相关文件中注明。

为了确定故障的临界值,试验电压应从最小值到选定的试验电压值逐渐增加(见第5章)。最后的试验值不应超过产品的规范值,以避免损坏设备。

试验应以单次放电的方式进行。在预选点上,至少施加十次单次放电(最敏感的极性)。

连续单次放电之间的时间间隔建议至少 1 s,但为了确定系统是否会发生故障,可能需要较长的时间间隔。

注:放电点通过以 20 次/s 或以上放电重复率来进行试探的方法加以选择。

静电放电发生器应保持与实施放电的表面垂直,以改善试验结果的可重复性。

在实施放电的时候,发生器的放电回路电缆与受试设备的距离至少应保持0.2 m。

在接触放电的情况下,放电电极的顶端应在操作放电开关之前接触受试设备。

对于表面涂漆的情况,应采用以下的操作程序:

如设备制造厂家未说明涂膜为绝缘层,则发生器的电极头应穿入漆膜,以便与导电层接触。如厂家指明涂漆是绝缘层,则应只进行空气放电。这类表面不应进行接触放电试验。

在空气放电的情况下,放电电极的圆形放电头应尽可能快地接近并触及受试设备(不要造成机械损伤)。每次放电之后,应将静电放电发生器的放电电极从受试设备移开,然后重新触发发生器,进行新的单次放电,这个程序应当重复至放电完成为止。在空气放电试验的情况下,用作接触放电的放电开关应当闭合。

8.3.2 间接施加的放电

对放置于或安装在受试设备附近的物体的放电应用静电放电发生器对耦合板接触放电的方式进行模拟。

除了 8.3.1 中论述的程序之外,还需满足 8.3.2.1 和 8.3.2.2 中所提出的要求。

8.3.2.1 在受试设备下面的水平耦合板

对水平耦合板放电应在水平方向对其边缘施加。

在距受试设备每个单元(若适用)中心点前面的 0.1 m 处水平耦合板边缘,至少施加 10 次单次放电(以最敏感的极性)。放电时,放电电极的长轴应处在水平耦合板的平面,并与其前面的边缘垂直。

放电电极应接触水平耦合板的边缘(见图 5)。

另外,应考虑对受试设备的所有面都施加放电试验。

8.3.2.2 垂直耦合板

对耦合板的一个垂直边的中心至少施加十次的单次放电(以最敏感的极性)(图 5 和图 6),应将尺寸为 0.5 m×0.5 m 的耦合板平行于受试设备放置且与其保持 0.1 m 的距离。

放电应施加在耦合板上,通过调整耦合板位置,使受试设备四面不同的位置都受到放电试验。

9 试验结果的评价

试验结果应依据受试设备在试验中的功能丧失或性能降低现象进行分类,相关的性能水平由设备的制造商或需要方确定,或由产品的制造商和购买方双方协商同意。推荐按如下要求分类:

- a) 在制造商、委托方或购买方规定的限值内性能正常;
- b) 功能或性能暂时丧失或降低,但在骚扰停止后能自行恢复,不需要操作者干预;
- c) 功能或性能暂时丧失或降低,但需操作者干预才能恢复;
- d) 因设备硬件或软件损坏,或数据丢失而造成不能恢复的功能丧失或性能降低。

由制造商提出的技术规范可以规定对受试设备产生的某些影响是不重要的,因而是可接受的试验影响。

这种分类可以由负责相关产品的通用标准、产品标准和产品类标准的专业标准化技术委员会作为明确表达功能准则的指南。在没有合适的通用、产品或产品类标准时,可作为制造商和购买方协商的性能规范的框架。

10 试验报告

试验报告应包	括能重现试验	的全部信息。	特别是下列内容	Ŀ.
M(131, 1)	111 いひ マティンク ねんごご	. H J HF HI 1/2/ 0	12 W1VC 1 \ 1 L1 L1 L1	•

- ——本部分中第8章要求的在试验计划中规定的项目内容;
- ——受试设备和辅助设备的标识,例如商标、产品型号、序列号;
- ——试验设备的标识,例如商标、产品型号、序列号;
- ——任何进行试验所需的专门环境条件,例如屏蔽室;
- ---进行试验所需的任何特定条件;
- ——制造商、委托方或购买方规定的性能水平;
- ——在通用、产品或产品类标准中规定的性能要求;
- ——试验时在骚扰施加期间及以后观察到的对受试设备的任何影响,及其持续时间;
- ——试验通过/失败的判断原因(根据通用标准、产品标准或产品类标准规定的性能判据或制造商和购买方达成的协议);
- ——采用的任何特殊条件,例如电缆长度或类型,屏蔽或接地,或受试设备运行条件,均要符合规定。

注:图中省略的 Ca 是存在于发生器与受试设备,接地参考平面以及耦合板之间的分布电容。由于此电容分布在整个发生器上,因此,在该回路中不可能标明。

图 1 静电放电发生器简图

图 2 验证静电放电发生器特性的布置实例

具体值在表 2 中给出。

图 3 静电放电发生器输出电流的典型波形

单位为毫米

a) 空气放电

b) 接触放电

注:放电开关(例如真空继电器)应尽可能靠近放电电极头安装。

图 4 静电放电发生器的放电电极

图 5 实验室试验时,台式设备试验布置的实例

图 6 实验室试验时,落地式设备试验布置的实例

图 7 在安装后的试验中,落地式设备试验布置的实例

图 8 不接地台式设备的试验布置

图 9 不接地落地式设备的试验布置

附录 A (资料性附录) 说 明

A.1 一般的考虑

保护设备免受静电放电影响的问题对制造厂和用户来说都是相当重要的。

随着微电子元件的广泛应用,为了提高产品和系统的可靠性,迫切需要确定这一问题的各种因素,寻找一种解决方法。

静电的累积以及随后放电的问题由于不可控制的环境条件以及设备和系统在厂矿中的广泛使用而变得更加令人关切了。

无论什么时候人员对附近物体发生静电放电时,设备都可能遭受电磁能量的侵害。此外,放电还可能在设备附近的金属物体之间,如桌椅之间发生。但是,根据目前得到的有限经验,可以认为,本部分阐明的一些试验足够模拟后者现象的影响。这方面的问题将进行调查并可能使这个标准得到修改。

操作人员放电的影响可以是单纯地使设备误动作或电子元件损坏。其主要影响可以认为是由放电电流的参数引起的(上升时间,持续时间等)。

对这个问题的认识以及需要某种手段来防止静电放电对设备非期望的影响,促使我们制定这个标准中的标准试验程序。

A.2 环境条件对充电量的影响

合成纤维与干燥的气候相结合特别有助于静电电荷的产生。充电过程的变化有多种可能性,一种常见的情况是某操作者在地毯上面走动,每走一步将其身体上的电子传给化纤织物或从化纤物上获得电子,操作者的衣服与其座椅之间的摩擦也会产生电荷的交换。操作者的身体可能被直接充电或静电感应,在后者的情况下,除非操作者是充分通地的,否则,即使导电的地毯也不会对其提供任何保护。

图 A.1 的曲线表示,由大气的相对湿度决定不同纤维的充电电压值。

视合成纤维的种类和环境的相对湿度而定,设备直接遭受放电的电压值可能高达几千伏。

A.3 环境级别与空气和接触放电的关系

作为一种可测量的量,一直将实际环境中得到的静电电压电平作为抗扰度要求,但是,现已证明,能量转移与其说是放电之前存在的静电电压的函数,不如说是放电电流的函数。此外,还发现在较高的电压电平范围内,放电电流一般不与预放电电压成正比。

预放电电压与放电电流之间的非正比关系的可能原因是:

- ——高压电荷的放电一般经过使上升时间增加的长电弧通道来实现,因此使得放电电流中的高频 分量低于与预放电电压成正比例的值。
- ——假定在一个典型的充电过程中充电量为常数,那么高充电电压电平更可能出现在小电容量的情况下,反之,大电容两端的高充电电压则需有一系列连续发生的过程,而它不太可能发生,这意味着用户环境中所获得的高充电电压下电荷能量有变成稳定的趋向。

由以上得到的结论,对于某个给定的用户环境、抗干扰要求根据放电电流的大小来确定。

弄清了这个概念后,测试装置的设计就变得容易了。可通过对充电电压和放电阻抗的合理选择得 到所希望的放电电流幅值。

A.4 试验等级的选择

试验等级应按照最切合实际的安装和环境条件来选择,表 A.1 中提供了一个指导原则。

级别	相对湿度/%	抗静电材料	合成材料	最大电压/kV
1	35	×		2
2	10	×		4
3	50		×	. 8
4	10	-	×	. 15

表 A.1 试验等级选择的导则

所推荐的安装与环境的级别与本部分第5章列出的试验等级有关。

对于某些材料如木材、混凝土和陶瓷,其可能的电平不大于2级。

注: 当考虑选择一个适用于特殊环境合适的试验等级时,弄清静电放电效应的关键参数是十分重要的。

最关键的参数也许是放电电流的变化速率,它可通过充电电压、峰值放电电流和上升时间的不同组合来获得。例如,利用本部分规定的静电放电发生器接触放电的 8 kV/30 A 第 4 级试验,就足以满足 15 kV 合成材料的环境对静电放电的要求。

但是,在非常干燥环境下的合成材料,则会出现高于 15 kV 的电压。

在试验设备具有绝缘表面的情况下,可使用电压高达 15 kV 的空气放电方法。

A.5 试验点的选择

例如,所考虑的试验点可包括以下位置:

- ----与地绝缘的金属外壳上的一些点。
- ——控制或键盘区域任何点和人机通讯的其他任何点如开关、键、旋钮、按钮以及其他操作人员易于接近的区域。
- ——指示器、发光二极管(LED)、缝隙、栅格、连接器罩等。

A.6 使用接触放电方法的技术原理

一般而言,上述试验方法(空气放电)的再现性受放电头接近速度、湿度和试验设备结构的影响,并导致脉冲上升时间、放电电流幅度的差异。

在静电放电试验装置的原先设计中,静电放电的情况是利用充电的电容器通过放电电极头对受试设备的放电即放电头在受试设备表面上形成一个火花间隙来模拟的。

这种火花放电是一种非常复杂的物理现象。现已查明,在移动火花间隙的情况下,当接近速度变化时,由此产生的放电电流的上升时间(上升速率)能从小于1 ns 和大于 20 ns 发生变化。

即使保持接近速度不变,也不会使上升时间不变。对于电压和速度的某些综合影响,上升时间受到的影响可高达 30 倍。

使上升时间稳定的一个方法是利用一种机械上固定的火花间隙,尽管这个方法能稳定上升时间,但 并不推荐它。因为,它所产生的上升时间要比所模拟的自然过程的上升时间慢得多。

实际静电放电过程的高频含量并不能用这个方法来恰当地模拟。另一种可能的方法是利用不同种类的触发装置(例如气体放电管或闸流管等)来取代间隙的火花,但这类触发装置产生的上升时间仍然比实际静电放电过程的上升时间慢得多。

目前已知的唯一能产生可重现和快速上升的放电电流的触发装置是继电器。继电器应有足够的耐压和单次接触性(以避免上升部分的两次放电),对于较高的电压,真空继电器证明是有用的。经验表明,利用继电器作为触发装置,不仅测量的放电脉冲在其上升部分的可重复性要好得多,而且用实际受试设备作试验的结果重现性也更好。

继电器启动脉冲试验装置是一个能产生特殊电流脉冲(幅值和上升时间)的装置。

这个电流与实际静电放电电压有关,如 A.3 所述。

A.7 静电放电发生器元件的选择

人体电容量的储能电容器,该电容量标称值为 150 pF。

为表示人体握有某个如钥匙或工具等金属物时的源电阻可选用一个 330 Ω 的电阻,现已证明,这种金属放电情况足以严格地表示现场的各种人员的放电。

图 A.1 与 A.2 所提到的材料接触时,可能对操作人员充电静电电压的最大值

附录 B (资料性附录) 元件的详细结构

B.1 电流传感器

图 B.1~图 B.7显示电流传感器结构的详细情况。

应遵守以下安装顺序:

- 1) 将 25 个负载电阻"7"(51 Ω,5%,0.25 W)焊接在输出侧圆盘"3"上,并削平焊接端子。
- 2) 将 5 个匹配电阻"8"(240 Ω,5%,0.25 W)以五边形排列方式焊接在的 N 型同轴结构的输出连接器上。
- 3) 利用 4 个 6.5 mm 的 M2.5 圆柱头螺钉,将装好负载电阻的输出侧圆盘"3"安装在输出连接口法兰"1"上。
- 4) 利用 4 个 M3 螺钉将装好匹配电阻的输出连接器"7"安装在连接器法兰"1"上。
- 5) 将输入圆盘"4"连同拧紧与焊好的电极"6"的螺钉支座焊接到负载与匹配电阻器阻上,并削平 焊接端子。
- 6) 将电极盘"5"拧紧在电极"6"的螺丝支座上,然后利用 8 个 6.5 mm 长的 M3 圆柱头螺钉用来固定"2"的支座。

B.2 感性电流探头

其说明和结构的详细情况正在考虑之中。

单位为毫米

序号	数量		备注	
1	1	圆柱头螺钉	$M3 \times 6.5$	12 只
2	1			
3	1	圆柱头螺钉	M2. 5×5 . 0	3 只
4	1			
5	1			
6	· 1			
7	25		电阻 51 Ω	
8	5		电阻 240 Ω	

图 B.1 阻性负载的结构图

单位为毫米

材料及涂层:镀银的铜或镀银的黄铜

图 B. 2

材料及涂层:镀银的铜或镀银的黄铜

图 B.3

单位为毫米

材料及涂层:1 mm 厚镀银的铜或镀银的黄铜

图 B. 4

单位为毫米

材料及涂层:镀银的铜或镀银的黄铜

图 B.5

单位为毫米

材料及涂层:镀银的铜或镀银的黄铜

图 B.6

单位为毫米

材料及涂层:镀银的铜或镀银的黄铜

图 B.7

中 年 人 民 共 和 国 国 家 标 准 电磁兼容 试验和测量技术 静电放电抗扰度试验

GB/T 17626. 2-2006/IEC 61000-4-2:2001

中国标准出版社出版发行北京复兴门外三里河北街16号邮政编码:100045

网址 www.spc.net.cn 电话:68523946 68517548 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 2 字数 49 千字 2007年6月第一版 2007年6月第一次印刷

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68533533

