LC15 : Solvants

Prérequis : Niveau : CPGE

- Intéractions intermoléculaires
- Moment dipolaire
- Constantes d'équilibres
- Réactions d'oxydoréduction
- Méthodes expérimentales (séparation, purification, contrôle de pureté)

Bibliographie:

Chimie PCSI, Tout-en-un, B. Fosset, J-B. Baudin, F. Lahitète, DUNOD	[1]
Vidéo de la solvatation du NaCl	[2]
© Cours VB	[3]
Les solvants et la chimie verte	[4]
Des infos sur le diode	[5]
Florilège de chimie pratique, F. Daumaire	[6]
[6] Pour l'expérience du diiode et l'entretien (en fait il y a aussi beaucoup d'info dans [1	.])

Rapports de jury:

 ${\bf 2017}: {\it Extrait\ rapports}$

Table des matières

1		priétés des solvants	2
	1.1	Polarité	2
	1.2	Permittivité relative ϵ_r	3
	1.3	Proticité	3
	1.4	Généralisation	3
2	Util	lisation des solvants en chimie expérimentale	4
	2.1	Choix du solvant pour une extraction liquide-liquide	4
		2.1.1 Phase aqueuse	
		2.1.2 Phase organique	4
	2.2	Choix du solvant pour une recristallisation	4
3	Idée	es de manipulations :	6
	3.1	Constante de partage du diiode dans l'eau et le cyclohexane	6
	3.2		
4	Ren	marques et questions	7

Introduction

Multiples rôles du solvant en chimie :

Les solvants jouent un rôle fondamental en chimie : ils permettent de dissoudre des réactifs, permettent ou non la rencontre de réactifs pour effectuer ou non une réaction, ou peuvent encore purifier ou isoler un produit.

Problématique: Rien ne vaut la pratique pour savoir quel rôle aura un solvant, mais comment prédire quel solvant utiliser pour l'utilisation que l'on veut en faire?

On va étudier ces propriétés, en déduire les capacités qu'il a (ce qu'il exerce sur les réactifs), et voir comment bien choisir en pratique un solvant.

Proposition de plan:

Tout est expliqué dans [1] p378 et dans [3] p6.

1 Propriétés des solvants

Trois éléments caractérisent bien les propriétés d'un solvant :

1.1 Polarité

La valeur de son moment dipolaire confère deux propriétés :

Prérequis : moment dipolaire

☆ Effet ionisant: H-Cl devient une paire d'ions H+Cl-.

 \approx Effet **solvatant** : Entre les ions et les molécules dipolaires, interactions attractives stabilisantes entre ces espèces et le solvant.

Diapo: Solvants polaires et apolaires

- Defintion de la polarite
- En prtaique, il faut des atomes d'électronégativités différentes
- Solvant polaire =??
- exemples
- Effet sur la dissolution d'un sel : pouvoir ionisant (propriétés d'un solvant)
- Exemple de l'etape avec NaCl
- **Remarque**: Parfois certaines molecules sont a la fois polaire et apolaire (2 zones differentes, peuvent etre stabilisees dans les deux) Plutot en parler dans le 4???

Transition : Formation de paire d'ions reste electriquement neutres, or eau salee voit un courant passer. Quelle proriete possede l'eau qui permet de separer la paire d'ions

1.2 Permittivité relative ϵ_r

Nous permet de savoir si un solvant est pratique pour séparer les paires d'ions, c'est à dire si il est dissociant.

☆ Effet dissociant : (def p378 [1])

Diapo: Différentes valeurs de permittivités relatives

- Loi de Coulomb dans le solvant
- Exeple de l'eau et interpretation physique
- Pouvoir dissociant (ou dispersant)
- Ecriture pour NaCl
- Parler des electrolytes forts et faibles?

Transition : Nous venons donc de voir les 3 grandeurs qui peuvent caractériser un solvant, le pouvoir **ionisant** le pouvoir **solvatant** et le pouvoir **dissociant**. Cependant, dans l'étape de solvatation la création d'interactions attractives ne proviennent pas seulement du moment dipolaire, les liaisons hydrogènes jouent aussi un rôle.

Prérequis : Intéractions intermoléculaires

1.3 Proticité

- Definition solvant protique et aprotique
- exemple de formation de liaisons H
- Animation : Video de la solvatation du sel [2]
- **Remarque :** solvatation des ions aussi favorisées quand on a un solvant avec un grand moment dipolaire et une grande permittivité relative

Transition : Nous pouvons donc résumer les différentes étapes de la dissolution d'un composé et classer les solvants.

1.4 Généralisation

- On a vu les étapes pour la dissolution d'ions + remontrer toutes les etapes
- existe aussi des reactifs moleculaires, on veut juste les solvater
- Interprétation microscopique de la solvatation : Quand meme interaction se solvate bien => Choix du solvant
- on classe donc les solvants dans 3 categories (polaire protique, polaire, aprotique, apolaire, aprotique)

Diapo: Classements de solvants

☆ Conclusion de toute cette partie : Ce qui se ressemble s'assemble.

Transition : Nous verrons par la suite que le choix d'un solvant est primordial en chimie expérimentale.

2 Utilisation des solvants en chimie expérimentale

Nous pouvons dès lors traiter un exemple afin d'appliquer ce que nous venons de voir : Le diiode. C'est une molécule qui est **apolaire** et **aprotique**, elle sera donc soluble dans un solvant **apolaire aprotique**, comme le cyclohexane ou le toluène. En revanche elle sera faiblement soluble dans l'eau, qui est **polaire protique**.

Manip: Une bille de diode dans le cyclohexane et l'eau

Dans un tube à essai on a mis de l'eau et du cyclohexane. L'eau est en dessous, car elle a un densité plus importante $(0.78; 0.780 \text{ kg/m}^3 \text{ pour le cyclohexane})$. Le diiode est mauve dans le cyclohexane et jaune dans l'eau.

Diapo : de l'expérience

Transition: On voit donc que le diode est plus soluble dans le cyclohexane que dans l'eau, mais peut on quantifier à quel point?

2.1 Choix du solvant pour une extraction liquide-liquide

Un solvant ne sert pas qu'à dissoudre un composé pour réaliser un réaction chimique. En effet on peut aussi les utiliser pour réaliser un lavage ou une extraction.

Prérequis : Méthodes expérimentales (séparation, purification, contrôle de pureté)

Expliquer la manip p389 [1]

Manip : Mesure expérimentale du coefficient de partage

Prérequis : Constantes d'équilibres

Prérequis : Réaction d'oxydoréduction

2.1.1 Phase aqueuse

On titre la phase aqueuse. C'est un titrage colorimétrique donc il faut utiliser de l'empois d'amidon et l'équivalence nous donne la concentration de diiode. Attention au facteur 2 sur le volume équivalent!

2.1.2 Phase organique

Échelle de teinte pour la phase organique, on trouve la concentration de la phase orga via l'équation que nous donne le spectro.

Transition: Mais le choix de solvant est aussi important pour des techniques de purification

2.2 Choix du solvant pour une recristallisation

Voir fiche STL sur la recristallisation.

Conclusion:

Finalement, le choix d'un solvant en chimie est primordial, et il n'existe pas de "solvant universel". Il y en a un adapté pour chaque usage. En plus de l'efficacité du solvant en laboratoire, il y a d'autres critères de choix très importants que nous devons prendre en compte : Nous devons faire de la chimie verte!

Critères de choix d'un solvant : sécurité, toxicité pour l'Homme, toxicité pour l'environnement.

Nouveaux solvants : fluides supercritiques, notamment CO2 supercritique (CO2 au-delà du point critique à 31 °C et 74 bar). Celui-ci est intéressant car il est naturellement abondant, non dangereux et non toxique. Il est apolaire et aprotique.

Le CO2 supercritique est utile pour extraire la caféine du café à la place du dichlorométhane.

[4] pour la culture

3 Idées de manipulations :

3.1 Constante de partage du diiode dans l'eau et le cyclohexane

Objectif : Calculer la constante de partage du diode, donc à calculer la concentration de diode dans la phase aqueuse et la phase organique.

Produits	Matériel
Cyclohexane	Ampoule à décanter (250mL?)
$Na_2S_2O_3^{-2} 0.01M$	Burette 25mL
Diiode pastille ou paillettes	Agitateur + barreau magnétique
	Agitateur chauffant + grand barreau
	2 Erlen 250 mL
Acide 2M	Éprouvette graduée 100ml

L'acide sert à éviter que le diode ne se dismute.

En préparation: Théorie p390

- ✓ Dissoudre 1g de diiode dans 90ml de cyclohexane dans l'erlen, mélanger et chauffer
- ✓ Après une bonne 40aine de minutes (1h?) mettre le tout dans la fiole jaugée de 100mL, compléter avec du cylohexane.
- ✓ Réaliser une échelle de teinte pour la spectro
- ✓ Mélanger 200mL d'eau avec 20mL de cyclohexane, agiter dans un erlen 30min (à faire en double pour le direct)
- ✓ Mettre dans une ampoule à décanter, mélanger, laisser reposer. Titrer la phase aqueuse.

En direct:

/

3.2 Bille de diiode dans l'eau et le cyclohexane

Objectif: On met une bille de diiode dans le cyclohexane et on le regarde se dissoudre en montrant qu'il est plus soluble dans le cyclohexane. A faire sous hotte.

Produits	Matériel
Eau distillée	Tubes à essais et bouchons
Cyclohexane	Porte tube
Bille de diode	3 Bechers 25ml
	éprouvette graduée 10ml

En préparation:

✓ Préparer 5ml d'eau et 5 ml de cyclohexane, les verser dans un tube à essai.

En direct:

✓ Mettre une bille de diode dans le tube

4 Remarques et questions

Remarques:

— Fin à 35 min

Questions:

- Diapo final, énergies d'activation pour la réaction de retour, mais on a toujours parlé de polarité du produit et du solvant, mais retour ne suffit pas : il faudrait aussi parler de l'état de transition.
- Dans le cyclohexane la coloration bleue part très vite, les explications que tu as donné n'explique pas du tout ca. a juste dit que l'une est plus stable que l'autre. A juste parlé du fait que le trait rouge est plus bas que le noir, mais les énergies d'activation dépend aussi de l'ET, et cela permettrait alors d'expliquer la vitesse
- L'état de transition est moins polaire, donc les écarts en énergie entre les ET est plus petit que celui entre les produits donc ce la explique que l'une des energies d'activation est plus faible que l'autre et donc la réaction va plus vite.
- A quoi sert le spectro sur la paillase : il est toujours la
- Commentaires sur l'expérience : solution completement incolore donc ne sert à rien de la titrer. On a voulu diviser par 10 la quantité de I2 à dissoudre, mais en fait il n'y avait pas assez de quantité de I2 dans la phase aqueuse et donc il n'y a rien à titrer.
- Ne comprends pas pourquoi s'ets aussi décoloré dans le temps
- Quel pH de la solution? On va regarder avec du papier pH, car I2 se dismute, car si on est dans un milieu basique, il a dû se dismuter. Quand on regarde au papier pH, on a un pH=7, donc I2 s'est dismuté. On en a pas transféré assez dasn la phase aqueuse et en plus il s'est dismuté. Donc penser à ajouter une ou deux gouttes d'acide.
- Pour doser avec le thiosulfate, il n'y avait pas besoin de protons.
- Le bilan est donc de suivre le protocole du Florilège, et penser à ajouter de l'acide. Agiter pendant 1h si il faut agiter pendant 1h. A mettre directement en marche dès qu'on arrive.
- Cette manip la il faut faire le dosage dans la phase organique avec un spectro et des solutions étalons et dans la phase aqueuse avec un titrage au thiosulfate.
- mettre quantite de depart au hasard une fois que c'est bien violet on filtre et on titre les solutions.
- Si tout n'a pas été dissout, il faudra partir d'un peu plus bas pour l'échelle de teintes, mais sinon a pas le temps tant pis le point ne sera pas entre les deux, c'est pas idéal mais c'est mieux que rien.
- Essayer de refaire cette manip, parce que très pénalisant d'avoir pas pu faire cette manip
- Propriétés des solvants, pas la plus passionnante, a été bien faite, mais pas sur ça qu'on va captiver le jury. Ce qui a été raconté c'était bien, les semblables dissolvent les semblables il faut insister dessus
- Plus insister sur la discussion sur les liaisons. Le plus important c'est qu'une molécule de solvant, qu'elle voit une molécule de solvant ou une molécule de soluté à cote, ça change beaucoup si pas les mêmes interactions. Si elles sont similaires, ne change pas et donc le soluté peut prendre la place des molécules de solvant.
- peut valoir le coup de montrer l'extraction liquide-liquide, mettre un cristal de I2 et montrer que le cyclohexane devient violet et l'eau ne se colore pas du tout.

- Ou mettre diiode dans l'eau, ok si pas tout dissout, puis on met du cyclohexane, et l'eau se décolore (dans un tube à essai) . Serait bien car ajoute une manip qualitative, et donc enrichi si le titrage ne marche pas très bien.
- Et même revenir à ce moment là et même à la fin du I, faire cette manip qualitative, à ce moment là pour illustrer le bilan.
- Peut être essayer de dissoudre des paillettes et voir si ça marche mieux que des billes
- Dans le II, ça laisse une mauvaise impression, par ce que la manip est un peu foirée, et les explications de la cinétique étaient pas complètes
- Pour la manip qualitative, le faire sous hotte et on peut avoir déjà un tube à essai prêt avec de l'eau et du cyclohexane.

Préparation pour les questions

Historique de la classification périodique :

- & Connaître un peu plus les détails de la réalisation du tableau périodique (cf[1])
- & Connaître les noms associés aux symboles des éléments cités

Généralités historique

- 🛭 Découverte du noyau et de l'électron
- 🗸 Comment on obtient des éléments artificiellement

Culture chimie

8

Manip 1

& Pourquoi les précipités ont des couleurs différentes

2. Molécules et solvants

Notions et contenus	Capacités exigibles
Description des entités chimiques moléculaires	
Schéma de Lewis d'une molécule ou d'un ion polyatomique. Liaison covalente localisée. Ordres de grandeur de la longueur et de l'énergie d'une liaison covalente.	Établir un schéma de Lewis pour une entité donnée.
Liaison polarisée. Molécule polaire. Moment dipolaire.	Relier la structure géométrique d'une molécule à l'existence ou non d'un moment dipolaire permanent. Déterminer direction et sens du vecteur moment dipolaire d'une molécule ou d'une liaison.
Forces intermoléculaires	
Interactions de van der Waals. Liaison hydrogène. Ordres de grandeur énergétiques.	Lier qualitativement la valeur plus ou moins grande des forces intermoléculaires à la polarité et la polarisabilité des molécules.

[©] Ministère de l'enseignement supérieur et de la recherche, 2013

 $\underline{http://www.enseignementsup\text{-recherche.gouv.}fr}$

Les solvants moléculaires	Prévoir ou interpréter les propriétés physiques de corps purs par l'existence d'interactions de van der Waals ou de liaisons hydrogène intermoléculaires.
Grandeurs caractéristiques : moment dipolaire, permittivité relative. Solvants protogènes (protiques). Mise en solution d'une espèce chimique moléculaire ou ionique.	Interpréter la miscibilité ou la non-miscibilité de deux solvants. Justifier ou proposer le choix d'un solvant adapté à la dissolution d'une espèce donnée, à la réalisation d'une extraction et aux principes de la chimie verte.

 $FIGURE\ 1-Programme\ de\ PTSI$

29