

Transition Systems and Bisimulation

Giuseppe De Giacomo

Transition Systems

Concentrating on behaviors: Vending Machine

3

Concentrating on behaviors: Another Vending Machine

Concentrating on behaviors: Vending Machine with Tilt

5

Example (Clock)

TS may describe (legal) nonterminating processes

Example (Slot Machine)

Nondeterministic transitions express **choice** that is **not** under the **control** of clients

Example (Vending Machine - Variant 1)

8

Example (Vending Machine - Variant 2)

9

Transition Systems

- A transition system TS is a tuple $T = \langle A, S, S^0, \delta, F \rangle$ where:
 - A is the set of actions
 - S is the set of states
 - S^0 ⊆ S is the set of initial states
 - δ ⊆ $S \times A \times S$ is the transition relation
 - $F \subseteq S$ is the set of final states

(c.f. Kripke Structure)

- Variants:
 - No initial states
 - Single initial state
 - Deterministic actions
 - States labeled by propositions other than Final/¬Final

Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

- A binary relation R is a reachability-like relation iff:
 - $(s,s) \in R$ - if ∃ a, s'. s \rightarrow_a s' \land (s',s'') ∈ R then <math>(s,s'') ∈ R
- A state s_0 of transition system S **reaches** a state s_f iff for **all** a **reachability-like relations** R we have $(s_0, s_f) \in R$.
- Notably that
 - reaches is a reachability-like relation itself
 - reaches is the smallest reachability-like relation

Note it is a inductive definition!

Algorithm ComputingReachability

Input: transition system TS

Output: the reachable-from relation (the smallest reachability-like relation)

Body

```
\begin{split} R &= \emptyset \\ R' &= \{(s,s) \mid s \in S\} \\ \text{while } (R \neq R') \; \{ \\ R &:= R' \\ R' &:= R' \cup \{(s,s'') \mid \exists \, s', a. \, s \rightarrow_a \, s' \, \land \, (s',s'') \in R \, \} \\ \text{return } R' \end{split}
```

YdoB

This algorithm is based on computing iteratively fixpoint approximates for the **least fixpoint**, starting from the empty set.

13

Intuition:

Two (states of two) transition systems are bisimilar if they have the same behavior.

In the sense that:

- Locally they (the two **states**) look indistinguishable
- Every **action** that can be done on one of them can also be done on the other remaining indistinguishable

Bisimulation

A binary relation R is a bisimulation iff:

```
(s,t) ∈ R implies that
s is final iff t is final
for all actions a
if s →<sub>a</sub> s' then ∃ t' . t →<sub>a</sub> t' and (s',t')∈ R
if t →<sub>a</sub> t' then ∃ s' . s →<sub>a</sub> s' and (s',t')∈ R
```

- A state s₀ of transition system S is **bisimilar**, or simply **equivalent**, to a state t₀ of transition system T iff there **exists** a **bisimulation** between the initial states s₀ and t₀.
- Notably
 - bisimilarity is a bisimulation
 - **bisimilarity** is the largest bisimulation

Note it is a co-inductive definition!

15

Computing Bisimulation on Finite Transition Systems


```
Algorithm ComputingBisimulation
```

Input: transition system TS_S = < A, S, S⁰, δ_S , F_S> and transition system TS_T = < A, T, T⁰, δ_T , F_T>

Output: the bisimilarity relation (the largest bisimulation)

Body

```
\begin{array}{l} R = S \times T \\ R' = R - \{(s,t) \mid \neg (s \in F_S \equiv t \in F_T)\} \\ \text{while } (R \neq R') \{ \\ R := R' \\ R' := R' - (\{(s,t) \mid \exists \, s', a. \, s \rightarrow_a \, s' \, \land \, \neg \exists \, t' \, . \, t \rightarrow_a \, t' \, \land \, (s',t') \in R' \, \} \\ \{(s,t) \mid \exists \, t', a. \, t \rightarrow_a \, t' \, \land \, \neg \exists \, s' \, . \, s \rightarrow_a \, s' \, \land \, (s',t') \in R' \, \}) \\ \text{return } R' \end{array}
```

Ydob

This algorithm is based on computing iteratively fixpoint approximates for the **greatest fixpoint**, starting from the total set (SxT).

Example of Bisimulation

Example of Bisimulation

Automata vs. Transition Systems

Automata

 define sets of runs (or traces or strings): (finite) length sequences of actions

TSs

 - ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

Example of Bisimulation

Are S and T bisimilar?

Computing Bisimulation

We need to compute the greatest fixpoint (gfp): we do it by computing approximates starting from the Cartesian product:

- $R0=\{(t0,s0), (t0,s1), (t0,s2), (t1,s0), (t1,s1), (t1,s2)\}$ Cartesian product
- $R1=\{(t0,s0),(t1,s1),(t1,s2)\}$ removed those pairs that violate local condition on final (final iff final)
- $R2=\{(t0,s0),(t1,s1),(t1,s2)\}$ removed those pairs where one can do action and other cannot copy remaining in the relation.

21

Example of NON Bisimulation

Are S and T bisimilar?

SAPIENZA UNIVERSITÀ DI ROMA

Computing Bisimulation

We need to compute the greatest fixpoint: we do it by computing approximates starting from the cartesian product:

- R0={(t0,s0), (t0,s1), (t0,s2), (t1,s0), (t1,s1),(t1,s2)} cartesian product
- R1={(t0,s0),(t1,s1),(t1,s2)} removed those pairs that violate local condition on final (final iff final)
- $R2=\{(t0,s0),(t1,s1)\}$ removed (t1,s2) since t1 can do c but s2 cannot.
- R3={(t1,s1)} removed (t0,s0) since t0 can do b, s2 can do b as well, but then the resulting states (t1,s2) are NOT in R2.
- R4 = {} removed (t1,s1) since t1 can do c, s1 can do c as well, but then the resulting states (t0,s0) are NOT in R3.
- $R5 = \{\}$

R4=R5 greatest fixpoint reached!

S and T are NOT **bisimilar** ((t0,s0) do not belong to gfp)

23