Social Insurance and Occupational Mobility

German Cubas and Pedro Silos

Tate Mason

Tate.Mason@uga.edu

John Munro Godfrey Sr. Department of Economics The University of Georgia

September 19, 2025

Outline

- Introduction
- Methodology
- Results
- Conclusion

Motivation

- Social insurance provides a cushion for workers.
- Differs across countries, affecting labor market dynamics.
- How can we model this effect?

Research Question

Main Question

How does social insurance effect occpational experimentation?

Research Question

Main Question

How does social insurance effect occpational experimentation?

Hypothesis

Providing more social insurance allows for riskier occupational choices.

Model

- Build upon Roy (1951) model of occupational choice.
- Add interaction between earnings risk, social insurance, and occupational choice.

Human Capital

Workers have two types of ability:

- Innate
 - occupation specific
 - discovered through work experience

Human Capital

Workers have two types of ability:

- Innate
 - occupation specific
 - discovered through work experience
- General
 - applicable to all occupations
 - will experience occupation-specific shocks to this human capital

Model Environment

Household:

- Lives for S periods
- endowed one unit of time each period, with no leisure value
- workers dislike risk
- ullet rank levels of consumption c according to a utility function u(c)

Model Environment

Household:

- Lives for S periods
- endowed one unit of time each period, with no leisure value
- workers dislike risk
- rank levels of consumption c according to a utility function u(c)

Labor Market:

- J occupations, j = 1, ..., J
- workers can only work in one occupation at a time, but can switch between periods
- receive wage w_i per unit of human capital

Value Functions

Value of staying in occupation j:

$$V_s(\Omega_s, z, \epsilon, j) = \{u(c) + \beta \int W_{s+1}(\Omega_{s+1}, z', \epsilon', j') dF(\epsilon')\},$$

$$s.t.$$

$$c = T(w_j e^{\theta_j} e^z e^{\epsilon})$$

$$z' = z + \epsilon$$

$$\Omega_{s+1} = \Omega_s$$

Value Functions, cont.

Value of switching to occupation j':

$$H_{s}(\Omega_{s}, \theta_{j'}, z, \epsilon, j') = \{u(c) + \beta \int W_{s+1}(\Omega_{s+1}, z', \epsilon', j') dF(\epsilon')\},$$

$$s.t.$$

$$c = T(w_{j'}e^{z}e^{\theta'_{j}}e^{\epsilon'_{j}}e^{-c(s,\kappa)})$$

$$z' = z + \epsilon'$$

$$\Omega_{s+1} = \{\Omega_{s}, j', \theta_{j'}\}$$

Data

- Describe your dataset
- Number of observations, variables
- Time period, source

Main Results

example-figure.pdf

Table of Results

Variable	Coef.	Std. Error
X	0.45	0.12
Ζ	-0.23	0.08

Table: Regression results

Conclusion

- Summarize findings
- Contributions
- Future work

References I