PREPROCESSING

Prof. Nielsen Rechia nielsen.machado@uniritter.edu.br

Dados (dataset)

		Colunas	(M): Atrib	cterísticas	Classe, Rótulo, Label		
		X^1	X^2	•••	X ^m	y	
Linhas (N):	x ₁	X ₁ ⁽¹⁾	X ₁ ⁽²⁾	•••	X ₁ ^(m)	y ₁	
Instâncias Objetos	\mathbf{x}_2	x ₂ ⁽¹⁾	x ₂ ⁽²⁾	•••	x ₂ ^(m)	y ₂	
Exemplos	•					•	
Tuplas Amostras	•	•			•••	•	
Casos	•	•	•	•		•	
Registros	\mathbf{x}_{n}	X _n ⁽¹⁾	X _n ⁽²⁾		x _n ^(m)	\mathbf{y}_{n}	

Exemplo

Atributos

ID	Nome	Temperatura	Enjôo	Mancha	Dor	Salário	Diagnóstico
01	Ana	37.7	sim	pequena	sim	1000	doente
02	Marcia	37	não	pequena	não	1100	saudável
03	José	38.2	sim	grande	não	600	saudável
04	Pedro	39	não	pequena	sim	2000	doente
05	Paulo	37.3	não	grande	sim	1800	saudável
06	Juliana	37.7	não	grande	sim	900	doente
	<u></u>	<u> </u>		<u>†</u>		<u>†</u>	

Nominal Intervalar

Ordinal

Racional

Exemplo

	Tipo de Atributo	Descrição	Exemplo
órico ativo)	Nominal	Valores são nomes diferentes, compara-se com = e ≠	Estado Civil, CEP, CPF, Sexo,
Categórico (qualitativo)	Ordinal	Valores possuem informações para ordenação, compara-se com =, ≠, > e <	Grau de Instrução, Número de endereço, patente militar, Grau de educação
rico ativo)	Intervalar	A diferença entre valores faz sentido. Existe unidade de medida com referência (zero) arbitrário. Compara-se com todas as operações anteriores incluindo + e -	Datas, temperatura em Fahrenheit
Numérico (quantitativo)	Racional	A razão entre valores tem sentido (zero é absoluto). Compara-se com todas as anteriores e também com * e /	Contagens, Massa, Largura, Corrente Elétrica, Valores Monetários

Exemplo

Atributos contínuos:

Quantidade incontável de valores (número infinito de valores em um determinado intervalo.

ex: peso, temperatura, distância, tempo ...

Atributos Discretos:

Número contável de valores (se tem noção da quantidade de valores)

ex: cores elementares, n° de anos, n° de filhos ...

Atributos Simétricos / Assimétricos:

O valor indica que instância "não possui" / "possui" determinada característica (valor do atributo "não importa" / "importa")

Entender as características dos datasets

Inconsistências, ruídos, redundâncias, outliers, ausentes ...

Permitir a definição das técnicas de pré-processamento ou aprendizado mais apropriadas

Frequência dos dados, distribuição ou formato, Informações estatísticas

Frequência

Proporção de vezes que um atributo assume um dado valor

Normalmente utilizada para a verificação de atributos categóricos

ID	Nome	Temperatura	Enjôo	Mancha	Dor	Salário	Diagnóstico
01	Ana	37.7	sim	pequena	sim	1000	doente
02	Marcia	37	não	pequena	não	1100	saudável
03	José	38.2	sim	grande	não	600	saudável
04	Pedro	39	não	pequena	sim	2000	doente
05	Paulo	37.3	não	grande	sim	1800	saudável
06	Juliana	37.7	não	grande	sim	900	doente

Medidas de localidade

Para dados categóricos:

Moda

Para dados numéricos:

Média

Mediana

Percentil

Moda para o atributo Dor: Sim Média de temperatura: 37.2 Mediana de temperatura: 37.7

ID	Nome	Temperatura	Enjôo	Mancha	Dor	Salário	Diagnóstico
01	Ana	37.7	sim	pequena	sim	1000	doente
02	Marcia	37	não	pequena	não	1100	saudável
03	José	38.2	sim	grande	não	600	saudável
04	Pedro	39	não	pequena	sim	2000	doente
05	Paulo	37.3	não	grande	sim	1800	saudável
06	Juliana	37.7	não	grande	sim	900	doente

Podemos ter:

- ruídos
- ausentes
- inconsistentes
- redundantes
- outliers (exceções)

Média

Jia facilmente calculada, porém é sensível a $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Mediana

Menos sensível a outliers

Necessário ordenar valores

$$mediana(x) = \begin{cases} x_{(r+1)} & \text{se n \'e impar} \\ \frac{1}{2}(x_r + x_{(r+1)}) & \text{se n \'e par} \end{cases}$$

$$r = \frac{n}{2}$$
 divisão inteira

Exercício

Dado um atributo x = [1,2,3,4,5,80], calcular em Python:

Média

Distribuição dos dados

Boxplot

Resumo das informações em gráfico

Box plot feature sepal do dataset Iris

```
# encoding=utf-8
In [2]:
        from matplotlib import pyplot as plt
        from sklearn.datasets import load iris
        dataset = load iris()
        feature = 1 # pegando largura da sépala
        plt.boxplot(
        dataset.data[:, feature]
        plt.ylabel(
        dataset.feature names[feature]
        plt.show()
```


Medidas de espelhamento

Medem a dispersão de um conjunto de valores Intervalo, Variância e Desvio padrão

Standard Deviation = SD

Intervalo

Ruim para atributos com valores concentrados ao redor de um ponto, com poucos valores extremos

Variância

$$r(x) = \max(x) - \min(x)$$

Medida preferida

Desvio padrão

Raiz quadrada da Variância.

$$\sigma^{2}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Outras métricas: **Obliquidade** e **Curtose**. (ver com histogramas)

Dados multivariados

Covariância

Mede o grau com que os atributos variam juntos

Atributos independentes têm covariância zero

Não indica com clareza a correlação entre atributos

$$cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Correlação Pearson

Mede o grau de correlação linear, positiva (1) ou negativa (-1), entre dois atributos $corr(x,y) = \frac{cov(x,y)}{\sigma_x * \sigma_y}$

Correlação

Exercícios

Com o dataset pesos_alturas_english.csv, faça:

Análise de boxplot para os atributos (plt.boxplot)

Análise de Distribuição (plt.scatter)

Calcule:

Correlação entre os atributos

Intervalos

Desvio padrão

Variâncias

Médias

Medianas

Existe correlação?

Histogramas

Forma de visualização gráfica da distribuição dos dados.

Podemos visualizar, por exemplo, frequência, obliquidade e

curtose.

Exercício

Com o mesmo dataset de peso e altura, plotar histogramas dos atributos.

```
In [73]: dataset.hist()
   plt.show()

plt.hist(dataset.values)
   plt.show()
```

Transformação de dados

Vários algoritmos de ML trabalham somente com dados numéricos.

Redes Neurais, SVM, etc.

Necessário converter atributos

Necessário verificar ordem

Como converter, por exemplo: (Comum é associar inteiros crescentes = {1,2,3,4})

```
In [ ]: cores = ['amarelo', 'vermelho', 'verde', 'azul', 'branco']
   temperaturas = ['quente', 'frio', 'morno']
   avaliacoes = ['bom', 'ruim', 'otimo', 'pessimo']
```

Transformação de dados

Não existe ordem, então transformamos em inteiro e depois binário assimétrico.

Valor	Valor Inteiro	A1	A2	А3
Amarelo	0	0	0	0
Vermelho	1	0	0	1
Verde	2	0	1	0
azul	3	0	1	1
branco	4	1	0	0

Transformação de dados

```
In [76]: from sklearn import preprocessing
         X = [[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]]
         print X
         binarizer = preprocessing.Binarizer(threshold=0.0).fit(X)
         binarizer.transform(X)
         [[1.0, -1.0, 2.0], [2.0, 0.0, 0.0], [0.0, 1.0, -1.0]]
Out[76]: array([[ 1., 0., 1.],
               [ 1., 0., 0.],
                [ 0., 1., 0.11)
        In [79]: enc = preprocessing.OneHotEncoder()
                  enc.fit([[0], [1], [2], [0]])
                  enc.transform([[0], [1], [2]]).toarray()
        Out[79]: array([[ 1., 0., 0.],
                        [ 0., 1., 0.],
                        [ 0., 0., 1.]])
```

Exercícios

Com o dataset de acidentes 2005, transforme as colunas TIPO_ACID e REGIAO em binário.

```
In [95]: import pandas as pd

df = pd.read_csv('acidentes-2005.csv', sep=';')
    print df
    x = df['TIPO_ACID'].unique()
    print x
    pd.get_dummies(df['TIPO_ACID'])
```

```
In [94]: import pandas as pd

df = pd.read_csv('acidentes-2005.csv', sep=';')
    x = df['REGIAO'].unique()
    print x
    pd.get_dummies(df['REGIAO'])
```

Tranformação de Dados

Vários algoritmos de ML trabalham somente com dados categóricos.

Regras de Associação, etc.

Necessário converter atributos

Necessário discretizar em intervalos

Como converter, por exemplo: (Comum é identificar intervalos):

```
In []: tempos = [1.0, 1.1, 1.5, 1.7, 2.0, 3.0, 5.0, 7.0, 8.0]
utilizacoes = [345.5, 345.6, 564.5, 566.6, 78989.0, 90798.1]
```

Transformação de atributos contínuos em intervalos

Atributo se transforma em categórico ordinal

Necessário definir número de intervalos (na maioria dos casos pelo próprio usuário)

Necessário definir como mapear os valores contínuos para os intervalos (categorias)

Tipos:

Supervisionado (utilizam valores e classes das instâncias)

Não-supervisionado (Somente os valores das instâncias)

Discretização Não-supervisionada

Exercício

Discretizar os seguintes atributos numéricos com as 3 formas de discretização não supervisionada (sugestão 3 intervalos):

$$a = [0, 1, 2, 6, 6, 9, 10, 10, 10, 13, 18, 20, 21, 21, 25]$$

 $x = [0, 1, 2, 2, 6, 6, 7, 8, 9, 10, 10, 10, 13, 18, 20, 21, 21, 25]$

Qual das abordagens é mais afetada por outliers?

```
largura = [[0,1,2,6,6], [9,10,10,10,13], [18,20,21,21,25]]
frequencia = [[0,1,2,6,6], [9,10,10,10,13], [18,20,21,21,25]]
```

```
largurax = [[0,1,2,2,6,6,7,8], [9,10,10,13], [18,20,21,21,25]]
frequenciax = [[0,1,2,2,6,6], [7,8,9,10,10,10], [13,18,20,21,21,25]]
```

Discretização supervisionada

Objetivo é escolher os intervalos considerando a pureza (máxima ou mínima) das classes.

Para isso, utilizamos a **Entropia**.

Intervalo de dados *S_i* Probabilidade de que o intervalo i seja da classe j

$$E(S_i) = -\sum_{j=1}^{c} p_{ij} \log_2 p_{ij}$$

Para cada classe *j* no conjunto de todas as classes *c*

A definição de entropia E(S_i) calcula a pureza de um único intervalo

Para a discretização devemos mensurar (e minimizar) a entropia de todos os n intervalos

Nesse caso, a entropia total de um conjunto de intervalos S1, S2, ..., Sn é a média das entropias individuais ponderada pelas respectivas quantidades de elementos mi:

Calcular entropia com 3 partições

ID	Nome	Temperatura	Enjôo	Mancha	Dor	Salário	Diagnóstico
03	José	38.2	sim	grande	não	600	saudável
 06	Juliana	37.7	não	grande	sim	900	doente
01	Ana	37.7	sim	pequena	sim	1000	doente
02	Marcia	37	não	pequena	não	1100	saudável
05	Paulo	37.3	não	grande	sim	1800	saudável
07	Maria	37.5	sim	pequena	sim	2000	doente
04	Pedro	39	não	pequena	sim	2000	doente

Calcular entropia com 3 partições

ID	Nome	Temperatura	Enjôo	Mancha	Dor	Salário	Diagnóstico
03	José	38.2	sim	grande	não	600	saudável
06	Juliana	37.7	não	grande	sim	900	doente
01	Ana	37.7	sim	pequena	sim	1000	doente
02	Marcia	37	não	pequena	não	1100	saudável
05	Paulo	37.3	não	grande	sim	1800	saudável
07	Maria	37.5	sim	pequena	sim	2000	doente
04	Pedro	39	não	pequena	sim	2000	doente

Se um intervalo possuir apenas uma classe a entropia é 100% pura (zero ou 1) Se a distribuição é 50 - 50 acontece a impureza máxima (0.5)

Exemplo: (2 classes)

$$-pi1 = 1 - pi2$$

impureza mínima

impureza máxima

$$pi1 = pi2 = 0.5$$

Transformação dos dados

Muita vezes é necessário que os dados originais sejam transformados ou consolidados em diferentes formatos (uma mesma escala).

Medidas de similaridade e algoritmos são muitas vezes influenciados.

Tipos:

Re-escalar (normalization, minmax)

Padronização (standardization, z-score)

Transformação logarítmica (logarithmic transformation)

Re-escalar (minmax):

Dados de um atributo x o são individualmente reescalados em um pequeno intervalo (0 e 1 ou -1 e +1).

$$x' = \frac{(x - min_x)}{(max_x - min_x)}$$

```
In [111]: import numpy as np
    a = np.arange(20)
    print 'maximo antigo:', a.max()
    print 'minimo antigo:', a.min()

b = np.array(map(lambda x: (x - a.min())/(a.max() - a.min()), a))
    print 'maximo novo:', b.max()
    print 'minimo novo:', b.min()

maximo antigo: 19
    minimo antigo: 0
    maximo novo: 1
```

minimo novo: 0

Re-escalar (minmax):

Dados de um atributo x o são individualmente reescalados em um pequeno intervalo (0 e 1 ou -1 e +1).

$$X' = \frac{(x - min_x)}{(max_x - min_x)}$$

```
In [116]: from sklearn.preprocessing import MinMaxScaler as minmax
    scaler = minmax()
    scaler.fit(a.reshape(-1,1))
    c = scaler.transform(a.reshape(-1,1))
    print 'maximo novo:', c.max()
    print 'minimo novo:', c.min()
```

maximo novo: 1.0 minimo novo: 0.0

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScale r.html

Padronização (z-score):

Dados de um atributo x são individualmente padronizados com base na média e no desvio-padrão.

$$\mathbf{X}' = \frac{(\mathbf{X} - \mu_{\mathbf{X}})}{(\sigma_{\mathbf{X}})}$$

```
In [120]: import numpy as np
d = np.arange(20)
print 'media antiga:', d.mean()
print 'desvio padrao antigo:', d.std()

e = np.array(map(lambda x: (x - d.mean())/d.std(), d))
print 'media nova:', e.mean()
print 'desvio padrao novo:', e.std()

media antiga: 9.5
desvio padrao antigo: 5.76628129734
media nova: 0.0
desvio padrao novo: 1.0
```

Padronização (z-score):

Dados de um atributo x são individualmente padronizados com base na média e no desvio-padrão.

$$\mathbf{X}' = \frac{(\mathbf{X} - \mu_{\mathbf{X}})}{(\sigma_{\mathbf{X}})}$$

```
In [121]: from sklearn.preprocessing import StandardScaler as zscore
    scaler = zscore()
    scaler.fit(d.reshape(-1,1))
    f = scaler.transform(d.reshape(-1,1))
    print 'media nova:', f.mean()
    print 'desvio padrao novo:', f.std()
```

desvio padrao novo: 1.0

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler

Transformação logarítmica (logarithmic transformation):

Dados de um atributo x são individualmente transformados por meio da aplicação de logaritmo.

$$x' = \log(x)$$

```
In [130]: import numpy as np
   g = np.array([5,6,7,8,9,10,11,12,13,14])
   print 'maximo novo:', g.max()
   print 'minimo novo:', g.min()

e = np.array(map(lambda x: np.log(x), g))
   print 'maximo novo:', e.max()
   print 'minimo novo:', e.min()

maximo novo: 14
   minimo novo: 5
   maximo novo: 2.63905732962
   minimo novo: 1.60943791243
```

Centralizar valores na média

```
In [140]: import numpy as np
          from sklearn.preprocessing import scale
          X = \text{np.array}([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]])
          print X
          X scaled = scale(X)
          print X scaled
          mean = X scaled.mean(axis=0)
          print mean
          std = X scaled.std(axis=0)
          print std
          [[ 1. -1. 2.]
           [ 2. 0. 0.]
           [ 0. 1. -1.]]
          [[ 0. -1.22474487 1.33630621]
           [ 1.22474487 0. -0.26726124]
          [-1.22474487 1.22474487 -1.06904497]]
          [ 0. 0. 0.]
          [ 1. 1. 1.]
```

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html

Exercícios

Idade	Salário	Re-escalar	Padronização
20	2.000,00		
19	845,00		
32	7.580,00		
55	19.430,00		
49	12.300,00		
37	3.500,00		
26	4.950,00		

Em geral, qualquer função decrescente pode ser utilizada para a transformação de atributos em diferentes escalas

- Média e desvio padrão são influenciados por outliers
- Pode-se utilizar mediana e desvio padrão absoluto
- Pode-se utilizar Agregação e Generalização

Exercícios

Modifique 3 atributos nominais do dataset de acidentes em categóricos numéricos

```
In [157]: import pandas as pd
  base = pd.read_csv('acidentes-2005.csv', sep=';')
  base['colunal'] = base['colunal'].astype('category')
  categories = base.select_dtypes(['category']).columns
  base[categories] = base[categories].apply(lambda x: x.cat.codes)
```

Exercícios

Modifique 3 atributos nominais do dataset de acidentes em categóricos numéricos

```
In [165]: import pandas as pd
    df = pd.read_csv('acidentes-2005.csv', sep=';')
    # print df
    df['LOCAL'] = df['LOCAL'].astype('category')
    df['TIPO_ACID'] = df['TIPO_ACID'].astype('category')
    df['REGIAO'] = df['REGIAO'].astype('category')
    categories = df.select_dtypes(['category']).columns
    # print df[categories]
    df[categories] = df[categories].apply(lambda x: x.cat.codes)
    print df[categories]
```

	LOCAL	TIPO_ACID	REGIAO
0	1	3	1
1	1	4	4
2	1	2	1
3	1	3	1
4	1	3	4
5	1	3	3

Transformação de Dados

Um problema bastante comum é a ausência de valores em determinados atributos, ou seja, registros com dados incompletos, seja por falhas no processo de seleção ou de revisão.

Imputação de dados faltantes (como?)

Técnicas de imputação de valores

Média dos valores

Exclusão da instância ou atributo

Transformação de Dados

```
In [176]: import numpy as np
                                                            5]: import numpy as np
         from sklearn.preprocessing import Imputer
                                                                 from sklearn.preprocessing import Imputer
         X = np.array([[np.nan, 2], [6, np.nan], [7, 6]])
                                                                 X = np.array([[np.nan, 2], [6, np.nan], [7, 6]])
         print X
                                                                 print X
         imp = Imputer(missing values='NaN', strategy='mean')
         imp.fit(X)
                                                                 T = np.array([[1, 2], [np.nan, 3], [7, 6]])
         print imp.transform(X)
                                                                 print T
                                                                 imp = Imputer(missing values='NaN', strategy='mean')
                                                                 imp.fit(T)
          [[ nan
                  2.1
                                                                 print imp.transform(X)
                 nanl
                  6.11
                                                                 [[ nan
                                                                          2.1
            6.5 2. 1
                                                                         nan]
                 4. ]
           [ 7. 6. ]]
                                                                          6.11
                                                                         2.1
                                                                          3.1
                                                                    nan
                                                                          6.11
                                                                                 3.666666671
                                                                  [ 6.
          Pandas: df.dropna() e df.fillna()
                                                                  ſ 7.
                                                                                 6.
```

https://pandas.pydata.org/pandas-docs/stable/missing_data.html

Alguns algoritmos de Agrupamento e também outras tarefas de Aprendizado de Máquina necessitam de um valor de similaridade entre instâncias que compõem um conjunto de dados.

Similaridade

Medida que indica nível de semelhança entre dois objetos

Quanto mais semelhantes, maior o seu valor

Geralmente valor \in [0, 1]

Dissimilaridade

Medida que indica o quanto dois objetos são diferentes

Quanto mais diferentes, maior o seu valor

Geralmente valor \in [0, dmax] ou [0, + ∞]

Calcular a distância entre as características dos objetos

Distâncias: Euclidiana, SMC, Jaccard (variações), Manhattan, Minkowski e Cosseno.

Medidas de proximidade e distância

Geralmente entre 0 e 1

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_{-}d}{mn_{-}d}$
		$s = 1 - \frac{d - min_d}{max_d - min_d}$

Distância Euclidiana (uma das mais utilizadas)

para valores numéricos

Número de atributos

Dist_E
$$(X_i, X_j) = \sqrt{\sum_{k=1}^{m} (X_{i,k} - X_{j,k})^2}$$

Valor do k-ésimo atributo na iésima instância

Distância Euclidiana

```
In [183]: from sklearn.metrics.pairwise import euclidean_distances
    A = [3, 2, 0, 5, 0, 0, 0, 2, 0, 0]
    B = [1, 0, 0, 0, 0, 0, 0, 1, 0, 2]
    # distance between rows of X
    print euclidean_distances(np.array(A).reshape(1,-1), np.array(B).reshape(1,-11))
    [[ 6.164414]]
```

Para valores binários

```
Exemplo M<sub>pq</sub>:
```

M₀₁ = atributos onde p é 0 e q é 1

 M_{10} = atributos onde p é 1 e q é 0

 M_{00} = atributos onde p é 0 e q é 0

M₁₁ = atributos onde p é 1 e q é 1

Simple Matching (SMC)

SMC = número de valores combinados / número de valores

$$= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

exemplo: verdadeiro/falso

Jaccard Index (J)

J = 1 - (número de valores combinados não ambos zero / número de valores não ambos zero)

$$= 1 - ((M_{11}) / (M_{01} + M_{10} + M_{11}))$$

exemplo: valores de ações executadas

Exercícios

Qual a similaridade das instâncias (SMC e J):

```
p = 1 0 0 0 0 0 0 0 0 0 0 q = 0 0 0 0 0 0 1 0 0 1
```

$$\begin{split} \mathbf{M}_{00} &= 7 \\ \mathbf{M}_{01} &= 2 \\ \mathbf{M}_{10} &= 1 \\ \mathbf{M}_{11} &= 0 \\ \mathbf{SMC} &= (\mathbf{M}_{11} + \mathbf{M}_{00}) / (\mathbf{M}_{01} + \mathbf{M}_{10} + \mathbf{M}_{11} + \mathbf{M}_{00}) = (0 + 7) / (2 + 1 + 0 + 7) = 0.7 \\ \mathbf{J} &= 1 - ((\mathbf{M}_{11}) / (\mathbf{M}_{01} + \mathbf{M}_{10} + \mathbf{M}_{11})) = 1 - (0 / (2 + 1 + 0)) = 1 \end{split}$$

Vetores assimétricos podem ter magnitudes diferentes ou ainda serem não-binários.

Contagem de palavras em um dataset textual

Lista de produtos comprados

Nestes casos, utilizamos Variação do **Jaccard** ou **similaridade cosseno**

Similaridade

Para listas (números e textos)

Exemplo:

$$Dist_J(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|} = 1 - \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

Jaccard Index (J)

$$J = 1 - (2 / 5) = 1 - 0.4 = 0.6$$

Jaccard

```
In [185]: from sklearn.metrics.pairwise import euclidean_distances
import numpy as np
A = [23, 45, 'frio']
B = [23, 50, 75, 'frio']

union = float(len(np.unionld(A, B)))
intersection = float(len(np.intersectld(A, B)))
j = 1 - (intersection/union)
print j
0.6
```

Coseno

$$\cos(\mathbf{d}_1, \mathbf{d}_2) = (\mathbf{d}_1 \cdot \mathbf{d}_2) / \|\mathbf{d}_1\| \|\mathbf{d}_2\|$$

Calcule a similaridade cosseno entre os dois documentos:

$$d1 = 3205000200$$

$$d2 = 1000000102$$

$$d1 \cdot d2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d1|| = raiz(3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0) = raiz(42) = 6.48$$

$$||d2|| = raiz(1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) = raiz(6) = 2.44$$

$$cos(d1, d2) = 0.316$$

Exemplo

```
In [177]: from sklearn.metrics.pairwise import cosine_similarity
A = [3, 2, 0, 5, 0, 0, 0, 2, 0, 0]
B = [1, 0, 0, 0, 0, 0, 1, 0, 2]
print cosine_similarity(A, B)
[[ 0.31497039]]
```

Exercícios

Para o datatset peso e altura, calcule a distância euclidiana e o cosseno entre os atributos Peso e Altura

Métodos para calcular manualmente

np.corrcoef(x, y)[0, 1]

np.dot(x, y)

np.linalg.norm(x)

np.sum()

np.cov(x, y)

np.std(x)

Conlusão

Leitura recomendada:

Capítulo 2 e 3 de Introduction to Data Mining

