Examen del bloque 2 de SIN (tipo A)

ETSINF, Universitat Politècnica de València, 14 de enero de 2020

Apellidos:	Nombre:	

Grupo: \Box 3A \Box 3B \Box 3C \Box 3D \Box 3E \Box 3F \Box 3G \Box 4IA

Test (1,75 puntos)

Marca cada recuadro con una única opción. Puntuación: máx(0, (aciertos – errores / 3) · 1,75 / 9).

- 1 Sea \mathbf{x} un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):
 - A) $c(\mathbf{x}) = \underset{c=1}{\operatorname{arg\,max}} p(c \mid \mathbf{x})^2$.
 - B) $c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} \log p(\mathbf{x}, c)$
 - C) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \sqrt{p(\mathbf{x},c)} / p(\mathbf{x})$
 - D) Los tres clasificadores anteriores son de error mínimo.
- Sea un clasificador en tres clases basado en las funciones discriminantes lineales bidimensionales de vectores de pesos: $\mathbf{w}_1 = (0,0,1)^t$, $\mathbf{w}_2 = (0,1,0)^t$ y $\mathbf{w}_3 = (0.5,0,0)^t$. Indica cuál de las figuras dadas a continuación es coherente con las fronteras y regiones de decisión que define dicho clasificador.

Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos no define un clasificador equivalente al dado?

B)
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 y $\mathbf{w}_2 = (0, 0, 1)^t$.

C)
$$\mathbf{w}_1 = (0, -1, 0)^t$$
 y $\mathbf{w}_2 = (0, 0, -1)^t$.

D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.

Durante la aplicación del algoritmo Perceptrón ($\alpha=1.0$ y b=0) en un problema de clasificación en dos clases, se han obtenido los vectores de pesos $\mathbf{w}_1=(-1,1,0)^t$ y $\mathbf{w}_2=(1,0,1)^t$. Supón que el siguiente paso en la aplicación de Perceptrón consiste en procesar una cierta muestra de entrenamiento \mathbf{x} de clase c. Indica cuál de las siguientes opciones daría como resultado un conjunto de pesos que define la frontera y regiones de decisión de la figura de la derecha.

A)
$$\mathbf{x} = (-1, 1)^t \text{ y } c = 2.$$

B)
$$\mathbf{x} = (0,0)^t$$
 y $c = 2$.

C)
$$\mathbf{x} = (-1, 1)^t \text{ y } c = 1$$

D)
$$\mathbf{x} = (0,0)^t$$
 y $c = 1$.

5 Sea un problema de clasificación en tres clases para objetos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la derecha. ¿Cuál es el error de Bayes, ε^* , en este problema?

B)
$$0.2 < \varepsilon^* < 0.4$$
.

C)
$$0.4 \le \varepsilon^* < 0.7$$
.

D)
$$0.7 < \varepsilon^*$$
.

2	ĸ	$P(c \mid \mathbf{x})$			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.6	0.2	0.2	0.2
0	1	0.1	0.1	0.8	0.3
1	0	0.3	0.5	0.2	0.2
1	1	1/3	1/3	1/3	0.3

- 6 Se tiene un problema de clasificación para el cual se ha aprendido un clasificador. Asimismo, se tiene un conjunto de M = 100 muestras de test con el cual se ha estimado:
 - La probabilidad de error del clasificador aprendido, $\hat{p} = 0.10 = 10 \%$.
 - Un intervalo de confianza al 95 % para dicha probabilidad de error, $\hat{I} = [0.04, 0.16] = [4\%, 16\%]$.

Se considera que la probabilidad de error estimada es razonable y que la misma no variará significativamente aunque usemos muchas más muestras de test. Ahora bien, el intervalo de confianza (al 95 %) estimado, $\hat{I}=10\,\%\pm6\,\%$, nos parece un poco amplio y nos preguntamos si es posible reducir su amplitud mediante el uso de más de M=100 muestras de test. Además, si ello fuera posible, nos preguntamos si sería posible reducir dicha amplitud a la mitad o menos; esto es, tal que $\hat{I}=10\,\%\pm\hat{R}$ con $\hat{R}\leq3\,\%$. En relación con estas cuestiones, indica cuál de las siguientes afirmaciones es correcta.

- A) En general, no es posible reducir la amplitud de \hat{I} pues \hat{I} no depende significativamente de M.
- B) No es posible reducir la amplitud de \hat{I} ya que hemos considerado que \hat{p} no variará significativamente y, siendo así, la amplitud de \hat{I} tampoco puede variar significativamente.
- C) Sí es posible reducir la amplitud de \hat{I} , a la mitad o menos, si doblamos M al menos ($M \ge 200$).
- D) Sí es posible reducir la amplitud de \hat{I} , a la mitad o menos, si empleamos al menos cuatro veces más muestras de test aproximadamente $(M \ge 400)$.
- 7 Dado el conjunto de muestras de 2 clases (o y •) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?

- 8 La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La transferencia del punto $(3,2)^t$ del cluster \bullet al cluster \circ :
 - A) produce un incremento en la Suma de Errores Cuadráticos (SEC).
 - B) produce un decremento en la SEC.
 - C) no altera la SEC.
 - D) produce una SEC negativa.

- 9 En relación al cálculo de la probabilidad $P(y \mid M)$ con la que un modelo de Markov M genera una cadena de símbolos y, indica qué afirmación es cierta:
 - A) La única forma de calcular $P(y \mid M)$ consiste en generar explícitamente todas las secuencias de estados, calcular la probabilidad de que cada secuencia de estados haya generado y y posteriormente sumar todas las probabilidades obtenidas.
 - B) Una forma eficiente computacionalmente de calcular $P(y \mid M)$ consiste en aplicar el algoritmo Forward.
 - C) Una forma eficiente computacionalmente de calcular $P(y \mid M)$ consiste en aplicar el algoritmo de Viterbi.
 - D) La única forma de calcular $P(y \mid M)$ consiste en generar explícitamente todas las secuencias de estados mediante el algoritmo de Viterbi, calcular la probabilidad de que cada secuencia haya generado y y sumar todas las probabilidades obtenidas.

Problema (2 puntos)

Sea un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$ y conjunto de símbolos $\Sigma = \{a, b\}$. Se pide:

a) (1 punto) Sean el vector de probabilidades iniciales (π) , matriz de transición entre estados (A) y matriz de generación de símbolos (B):

π	1	2	
	0.6	0.4	

A	1	2	F
1	0.6	0.3	0.1
2	0.3	0.4	0.3

B	a	b
1	0.3	0.7
2	0.8	0.2

Realiza una traza del algoritmo de Viterbi para la cadena y=aab obteniendo la mejor secuencia de estados.

b) (1 punto) Sean las tres cadenas de símbolos: $y_1 = bbaa$, $y_2 = abab$ y $y_3 = aabbb$. Al aplicar el algoritmo de Viterbi con un cierto modelo de Markov M, se obtienen, respectivamente, las siguientes secuencias óptimas de estados: 1122F, 2121F y 22111F. A partir de dichas cadenas y sus respectivas secuencias óptimas de estados, re-estima las probabilidades iniciales (π) , de transición (A) y de emisión (B) de M (del mismo modo que se hace en una iteración del algoritmo de re-estimación de Viterbi).