Federated Learning

Main Principle: Train Locally – Average Globally

Foundations

- Model Aggragation
- Data Heterogenity
- No/Weak Labels Unsupervised FL

Scalability

- Resource Constrained FL (Small edge models, large server model)
- Convergence: 1K users to 1M Users
- Federated neural architecture search.

Trustworthiness

- Secure and resilient model aggregation
- Adversarial users (data/model poisoning)
- Leveraging trusted computing environments

Ensuring Privacy by avoiding Data Movement from the users

Secure aggregation is a multi-round secure MPC problem with user dropouts.

Partial user participation leads to privacy leakage.

- Random selection may reveal all individual models.
- Exp
 - N=40 users
 - o MNIST dataset with non iid distribution
 - o K=8 users are selected at random at each round
 - The server estimates the individual gradients through least-squares.

Federated averaging with partial user participation

• Participation matrix
$$\mathbf{P}^{(J)} = \begin{pmatrix} \mathbf{p}^{(0)} \\ \vdots \\ \mathbf{p}^{(J-1)} \end{pmatrix} \in \{0,1\}^{J \times N}$$
, J : number of rounds

Method 1:Multi-round Privacy (T)

$$a_1 \sum_{j \in \mathcal{S}_1} x_j + a_2 \sum_{j \in \mathcal{S}_2} x_j + \dots + a_n \sum_{j \in \mathcal{S}_n} x_j$$
, where $|\mathcal{S}_i| \geq T$.

Baseline

- 1. User partitioning
 - Large multi-round privacy *T=group size*
 - In many rounds, however, no groups are available.
- 2. Random Selection
 - Small multi-round privacy *T=1*
 - Any subset of available users can be selected in any round.

Method 2: Average Aggregation Cardinality (C)

C = Average number of participating users over all rounds

Method 3: Aggregation Fairness Gap (F)

- Aggregation Fairness Gap F
- F = max. average participation frequency min. average participation frequency

Proposed Approach: Multi Round Sec Agg

1. Batch Partitioning

 Idea: Partition users into T-user batches; allow selection of any K/T available batches

- Input: N, K<= N, 1<= T <= K
- Output: A family of K User sets satisfying the multi-round privacy T
 - This Family is represented by a matrix B.

2. Available batch selection to guarantee fairness.

- **Idea:** Select based in the minimum frequency of participation
- Input: Set of available users at round t and B
- Output: Set of users that will participate at round t.

