

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Wstęp do Modelu Standardowego

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek Relatywistyka Zderzenia cząstek Akcelaratory CERN i LHC

Mechanika relatywistyczna

- MS jest opisywany przez równania relatywistyczne.
- Obiekty MS opisywane są w 4-wymiarowej przestrzeni.

$$g_{\mu\nu} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Iloczyn skalarny czterowektorów:

$$x \cdot y = g_{\mu\nu} \, x^{\mu} y^{\nu} = x^{\mu} y_{\mu}$$

Transformacja Lorentza

Transformacja Lorentza jest to takie przekształcenie, które nie zmienia iloczynu skalarnego czterowektorów

$$x \to x' = \Lambda x$$

$$x \to x' = \Lambda x$$

 $x' \cdot y' = x \cdot y$

Pola - wymagania

• Pole $\phi(x^{\mu})$ w każdym punkcie czasoprzestrzeni powinno się transformować wzg. transformacji Lorentza (TL) jak: skalar lub wektor lub tensor.

$$x^{\mu} = (x^{0}, x^{1}, x^{2}, x^{3})$$
 $x'^{\mu} = (x'^{0}, x'^{1}, x'^{2}, x'^{3})$

ten sam punkt czasoprzestrzeni - $\phi(x^{\mu}) = \phi'(x'^{\mu})$

• Rozważmy teraz małą zmianę pola $\phi(x^{\mu})$:

$$d\phi = \frac{\partial \phi}{\partial x^{\mu}} \ dx^{\mu}$$

powinna być niezmiennicza wzgl. TL (Lorentz Inwariant – LI)

 dx^{μ} jest 4-wektorem kontrawariantnym, jakim zatem wektorem powinno być $\frac{\partial \phi}{\partial x^{\mu}}$?

Pochodne czterowektorów

Operatory pochodnych (4-gradienty):

transformują się jak:

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right)$$

$$\partial_{\mu} \longrightarrow \partial'_{\mu} = (\Lambda^{-1})^{\nu}_{\mu} \partial_{\mu} \qquad \qquad \partial^{\mu} \longrightarrow \partial'^{\mu} = \Lambda^{\nu}_{\mu} \partial^{\mu}$$

odwrotna TL

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right) \qquad \qquad \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right)$$

niespodziewane?

Jeśli zatem $\phi(x^{\mu})$ jest funkcją skalarną, to pochodne:

$$\frac{\partial \phi}{\partial x^{\mu}} = \left(\frac{1}{c} \frac{\partial \phi}{\partial t}, \nabla \phi\right) \equiv \partial_{\mu} \phi$$

$$\frac{\partial \phi}{\partial x^{\mu}} = \left(\frac{1}{c} \frac{\partial \phi}{\partial t}, \nabla \phi\right) \equiv \partial_{\mu} \phi \qquad \frac{\partial \phi}{\partial x_{\mu}} = \left(\frac{1}{c} \frac{\partial \phi}{\partial t}, -\nabla \phi\right) \equiv \partial^{\mu} \phi$$

kontrawariantny 4-wektor

kowariantny 4-wektor

• Operator d'Alamberta: $\Box \equiv g^{\mu\nu}\partial^{\mu}\partial^{\mu}\partial^{\mu} = \partial_{\mu}\partial^{\mu} = \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2}, \nabla^2\right)$ - również jest niezmiennikiem TL

Pola skalarne i wektorowe

• Dla pola ϕ niezmiennicze również są: $\Box \phi = 0$

$$\partial_{\mu}\phi \ \partial_{\mu}\phi = \left(\frac{1}{c}\frac{\partial\phi}{\partial t}\right)^{2} - (\nabla\phi)^{2}$$

$$\partial_{\mu} (\partial_{\mu} \phi) = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi$$

• Pole może również być wektorowe, np. 4-potencjał $A^{\mu}(x^{\mu})$:

$$A^{\mu} = \left(\frac{1}{c}\phi, \vec{A}\right)$$

dywergencja 4-potencjału:

$$\partial_{\mu}A^{\mu} = \frac{1}{c}\frac{\partial\phi}{\partial t} + \nabla \cdot \vec{A}$$

$$\partial^{\mu}A_{\mu} = \frac{1}{c}\frac{\partial\phi}{\partial t} - \nabla \cdot \vec{A}$$

- Czteropęd układu cząstek: $P^{\mu} = P_1^{\mu} + P_2^{\mu} = (1/c (E_1 + E_2), \vec{p}_1 + \vec{p}_2)$ określamy jako masą (niezmienniczą): $m=\sqrt{1/c^2(E_1+E_2)^2-(\vec{p}_1+\vec{p}_2)^2}$
- Masa układu jest równa lub większa od sumy mas poszczególnych cząstek (nawet, gdy nie oddziałują).
- Masa układu jest niezmiennicza wygodny sposób na obliczenia kinematyki procesu w różnych układach.
- Uwaga na różne pojęcia masy:
 - masa relatywistyczna i masa spoczynkowa: $m = m_0 \gamma$,
 - masa kwarków? 1/3 masy protonu? Trudna do określenia bez teorii.
- Niezmienniki relatywistyczne (zawsze kombinacja kwadratu 4-pędu):

$$s = (P_a + P_b)^2 \quad s \ge 0$$

$$t = (P_c - P_a)^2 \quad t \le 0$$

$$u = (P_d - P_a)^2 \quad u \le 0$$

$$gdy \ L \gg m, to$$

$$s \approx 2P_a P_b$$

$$t \approx -2P_a P_c$$

$$u \approx -2P_a P_d$$

gdy
$$E \gg m$$
, to:
 $s \approx 2P_a P_b$
 $t \approx -2P_a P_c$
 $u \approx -2P_a P_d$

Zderzenia cząstek o czteropędach P₁ i P₁:

kwadrat czteropędu (
$$c = 1$$
): $M^2 \equiv s = (P_1 + P_2)^2$

- jest to niezmiennik s;
- jest to masa niezmiennicza układu cząstek 1 i 2:

Liczymy:

$$s = (P_1 + P_2)^2 = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 = \dots$$

$$= m_1^2 + m_2^2 + 2(E_1 E_2 - |\vec{p}_1| |\vec{p}_2| \cos \langle (\vec{p}_1, \vec{p}_2))$$

Przy zderzeniach cząstek przeciwbieżnych: $\cos \sphericalangle(\vec{p}_1,\vec{p}_2) = -1$,

a dla cząstek relatywistycznych: E = p i mamy:

$$s = 4E_1E_2$$

Kwadrat sumy czteropędów zderzanych cząstek to niezmiennik *s* i zarazem masa niezmiennicza tego układu. Masa układu zależy od kierunku pędów cząstek!

Wybieramy teraz pewien układ – środka masy, w którym całkowity pęd cząstek wynosi zero:

$$\sum \vec{p} = 0$$

zatem czteropęd zapiszemy jako:

$$P = (E_1^* + E_2^*, 0)$$

Jeżeli policzymy w nim niezmiennik s, to otrzymamy:

$$s = \left(\sum E_i^*\right)^2$$

$$s = \left(\sum E_i^*\right)^2$$

$$s = (P_1 + P_2)^2 = (E_1^* + E_2^*)^2 - (\vec{p}_1 + \vec{p}_2)^2 = (\sum E_i^*)^2$$

$$= 0$$

Kwadrat czteropędu układu jest kwadratem całkowitej energii w układzie środka masy (CMS).

MASA układu jest równa całkowitej energii w CMS (układzie środka masy):

$$m=\sqrt{s}=\sum E_i^*$$

 \sqrt{s} jest maksymalną energią w oddziaływaniu, która może być wykorzystana do produkcji nowych stanów.

• Określany jest jako układ, w którym jedna cząstka (tarcza) spoczywa, czyli:

$$P_1 = (E_1, \vec{p}_1)$$
 $P_2 = (m_2, 0)$

 $\vec{p}_2 = 0$

czteropęd układu: $P=(E_1+m_2,\vec{p}_1)$ a niezmiennik s:

$$s = (P_1 + P_2)^2 = m_1^2 + m_2^2 + 2(E_1 m_2)$$

$$\sqrt{s} = \sqrt{2E_1m_2}$$

Przykłady:

- proton o energii 100 GeV zderza się z tarczą: $\sqrt{s}=\sqrt{2E_pm_p}=14$ GeV
- dwie wiązki 100 GeV protonów: $\sqrt{s}=2E=200$ GeV

W zderzeniach ze stałą tarczą większość energii protonu jest zmarnowana – unoszona jest jako pęd układu, a nie do produkcji nowych cząstek.

Przy projektowaniu eksperymentu należy przeliczyć, co się bardziej "opłaca"...

jednostki??? naturalnie!

				<u> </u>
wielkość	zależność	SI	[\hbar , c . GeV]	NU $\hbar=c=1$
Energia	E	$kg m^2 s^{-1}$	GeV	GeV
Pęd	p = E/c	$kg \; m \; s^{-1}$	GeV/c	GeV
Masa	$E = mc^2$	kg	GeV/c^2	GeV
Czas	$E \cdot t = \hbar/2$	S	ħ/GeV	GeV^{-1}
Długość	$p \cdot x = \hbar/2$	m	ħc/GeV	GeV^{-1}
Powierzchnia	χ^2	m^2	(ħc/GeV)²	GeV^{-2}

NU \rightarrow SI przemnażamy przez brakujące czynniki $(c, \frac{1}{c}, ..., h, hc)$

Quantity	natural units SI				
energy momentum	GeV GeV	x 1/c	1.6 10 ⁻¹⁰ J 5.34 10 ⁻¹⁹ kg m/s		
mass	GeV	x 1/c ²	1.78 10 ⁻²⁷ kg		
time	GeV⁻¹	хћ	1.5 10 ²⁴ s		
length	GeV ⁻¹	х ћс	0.197 fm		
area	GeV⁻¹	x (ħc)²	$0.389 \text{ mb} = 0.389 \ 10^{-31} \ \text{m}^2$		

Fizyka akceleratorów w pigułce

Akceleratory to urządzenia do przyspieszania cząstek, głównie naładowanych.

- Najefektywniej jest przyspieszać je wielokrotnie w tych samych elementach.
- Musimy zatem mieć:

pole magnetyczne do zakrzywiania toru i ogniskowania cząstek, pole elektryczne do przyspieszania

Zadania dla akceleratorów

- Przyspieszać możemy wiązki przeciwbieżne cząstek lub jedną wiązkę i zderzać ją z tarczą.
- W akceleratorach zależy nam na uzyskaniu odpowiedniej energii:
 - największej, gdy chodzi o produkcję nowych cząstek,
 - dokładnie określonej, gdy celem jest zbadanie konkretnych stanów, np. produkcja \mathbb{Z}^0 czy mezonów \mathbb{B} .
- Ważne również jest, aby było możliwie dużo zderzeń dlatego zderza się wiązki z pęczkami cząstek , np. o liczności rzędu $10^{11}\,$.
- Zderzenia będą częstsze, gdy wiązki mają małe przekroje poprzeczne, np. 10 µm.

Świetlność akceleratorów

- O jakości akceleratora świadczy parametr nazywany świetlnością (luminosity).
- Jest to liczba decydująca o tym ile i jak częstych zderzeń możemy oczekiwać.
- Jeżeli świetlność będzie za mała, to np. rzadkich procesów możemy się nie doczekać.

Świetlność akceleratora

$$\mathcal{L} = n_b \frac{N_1 N_2}{\sigma_x \sigma_y} f$$

$$[\mathcal{L}] = \frac{1}{cm \ cm} \frac{1}{s} = cm^{-2} s^{-1}$$

Świetlność podawana jest w pewnym okresie zbierania danych, jako "scałkowana" (integrated) świetlność:

$$\int \mathcal{L} \, dt = L$$
$$[L] = cm^{-2}$$

$$[L] = cm^{-2}$$

$$[L] = GeV^{-2}$$

Świetlność akceleratorów – uzysk (yield)

- Świetlność LHC w latach 2015-18 wynosiła (proszę obliczyć):
 - zderzano wiązki $1.6 \cdot 10^{11}$ protonów o przekrojach poprzecznych 40 µm z częstością 25 ns.
 - znając rozmiar protonów, można oszacować, ile pustej przestrzeni było pomiędzy protonami (długość pęczku to ok. 4 cm) oraz prawdopodobieństwo zderzenia.
- Jeżeli eksperyment trwa 3 miesiące, to ile wynosi scałkowana świetlność?
- Liczba obserwowanych przypadków zależy od:
 - przekroju czynnego,
 - świetlności akceleratora,
 - wydajności (detekcji, rekonstrukcji, identyfikacji, itp.)
 - ☐ liczba przypadków/czas (*rate*)

liczba przypadków/rok (yield)

$$\frac{dN}{dt} = \mathcal{L} \, \sigma \, \mathcal{E}$$

$$\left[\frac{1}{s} = \frac{1}{cm^2} \frac{1}{s} cm^2\right]$$

$$\mathcal{Y} = \int \frac{dN}{dt} dt = \int \mathcal{L} \, \sigma \, \mathcal{E} \, dt = L \, \sigma \, \mathcal{E}$$
$$[cm^{-2} \, cm^2] \qquad [fb^{-1} \, fb^1]$$

Przykład: Eksperyment zebrał 100 fb⁻¹ danych, a przekrój czynny na produkcję cząstki Higgsa wynosi 1 fb¹. Ile cząstek Higgsa zaobserwowano przy wydajności 1%?

Zderzenia z tarczą

Zderzenia z tarczą

Dla zderzeń z tarczą:

Wiązka 10¹³ protonów zderzana z tarczą wodorową o grubości 1m:

$$\mathcal{L} = 10^{38} \text{ cm}^{-2} \text{ s}^{-1}$$

po zderzeniu wiązka jest tracona.

Akceleratory - ograniczenia

Podstawowym parametrem akceleratora jest maksymalna energia.

- Akceleratory elektrostatyczne po przekroczeniu pewnej wartości gradientu pola następuje
 przebicie elektryczne. Obecnie generatory Van de Graffa osiągają 20-30 MV i są używane jako
 pierwszy stopień przyspieszający np. ciężkich jonów.
- Akceleratory liniowe dodając kolejne km wnęk rezonansowych można osiągnąć coraz wyższe energie, ale zawsze decyduje tu koszt urządzenia, bowiem:

$$E_{max} \propto L \times \text{\'srednie pole el.}$$

Dla przyspieszaczy kołowych:

protony – wymagają coraz większego pola magnetycznego, które musi je utrzymać wewnątrz rury.
 Maks pole, to ok. 8 T.

Ogranicza to dostępne energie do:

$$E_{max} = e c R B_{max}$$

(magnesy nadprzewodzące).

Po przekroczeniu E_{max} , protony "uciekną" z akceleratora.

Akceleratory elektronów

Elektrony krążące po orbicie tracą energię na promieniowanie synchrotronowe.

Średnia energia tracona na obieg:

$$\Delta E^- \propto \frac{E^4}{R} \frac{1}{m^4}$$

a energia dostarczana:

$$\Delta E^+ \propto 2\pi R \times pole \ el.$$

maksymalna osiągana energia:

$$E_{max} \propto \sqrt{R}$$

LEP: przy R= 4 300 m, E = 45 GeV
$$\Delta$$
E- = 84 MeV/obieg przy E = 100 GeV Δ E- = GeV/obieg

był to ostatni akcelerator kołowy elektronów,

planuje się budowę ILC (International Linear Collider) z energiami wiązek elektron – pozyton po 500 GeV

Large Hadron Collider 2010-2030

LHC to zespół akceleratorów protonów, zbudowany pod Genewą, w ośrodku CERN

Największy pierścień ma 27 km obwodu, urządzenia zbudowane są w tunelu, na głębokości do 100 metrów.

Large Hadron Collider 2010-2030

Do zakrzywienia toru protonów konieczne jest pole magnetyczne. Im większy pęd, tym pola musi być większe. Pole magnetyczne wytwarzane jest przez prąd – żeby utrzymać 4 TeV-owe protony na orbicie indukcja pola musi być ponad 8 Tesli, a natężenie prądu ponad 10 000 Amperów!

NADPRZEWODZĄCE cewki magnesu

$$E_{max} = e c R B_{max}$$

Large Hadron Collider 2023-2030 i dalej

W LHC Run 3 co 25 ns zderzane są wiązki (ok. 10¹¹) protonów.

Jednak czekanie na bardzo rzadkie procesy (jak powstanie cząstki Higgsa) jest zbyt długie i planowane jest zwiększenie efektywności zderzeń.

Najważniejsza modernizacja LHC (2023-2026) polegać będzie na projekcie nowego systemu prowadzenia i zderzania protonów, co zwiększy liczbę zderzeń o 5-7 razy.

Zniszczone (?) magnesy będą wymienione na nowe, a detektory zostaną gruntownie przebudowane.

CERN

Europejska Rada Badań Jądrowych^[1] (fr. **C**onseil **E**uropéen pour la **R**echerche **N**ucléaire

Europejska Organizacja Badań Jądrowych CERN (<u>fr.</u> Organisation Européenne pour la Recherche Nucléaire)

Sur le terrain du futur institut nucléaire

conduite de M. A. Picot, les membres du Conseil européen pour la he nucléaire se sont rendus hier à Meyrin pour reconnaître le ain où s'élèvera le Centre nucléaire (voir en Dernière heure)

(Photo Freddy Bertrand, Genève)

La Suisse du 30 octobre 1953

Large Hadron Collider 2023-2030 i dalej

FCC?

W roku 2019 zatwierdzony został plan konstrukcji nowego akceleratora o długości 100 km o nazwie:

Future Circular Collider (FCC).

Budowa planowana jest na lata 2028-2038 (ciągła zmniana dat).

W pierwszym okresie (2038-2053) przyspieszane i zderzane mają być elektrony.

W drugim: protony (2063-2090).

Oczekuje się, że wiązkę protonów o energii **100 T** utrzyma na orbicie o promieniu 16 km pole magnetyczne o indukcji **16 T**.

FCC!

Future Circular Collider - CERN

FCC ma stać się kluczem do Nowej Fizyki:

- wyższe energie zbliżają nas coraz bardziej do Wielkiego Wybuchu,
- oczekujemy obserwacji nowych cząstek i zjawisk,
- rozwiązania zagadek neutrin,
- wyjaśnienia składu ciemnej materii,
-

Polska – stawia projekt FCC jako strategiczny dla rozwoju fizyki cząstek

