2SAT

Задача:

2SAT (2-satisfiability) выполнимость функции — задача распределения аргументов в булевой КНФ функции, записанной в виде 2-КНФ (КНФ Крома), таким образом, чтобы результат данной функции был равен 1.

Содержание

- 1 Алгоритм решения
- 2 Примеры решения 2SAT
 - 2.1 Первый пример
 - 2.2 Второй пример
- 3 Использование 2SAT
- 4 См. также
- 5 Примечания
- 6 Источники информации

Алгоритм решения

Рассмотрим любой дизьюнкт функции: $a\vee b$. Несложно заметить, что это равнозначно записи $(\overline{a}\to b\wedge \overline{b}\to a)$.

Построим ориентированный граф, где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: $\overline{a} o b$ и $\overline{b} o a$ для каждого дизъюнкта функции $a \lor b$.

Теорема:

Для того, чтобы данная задача $2{\rm SAT}$ имела решение, необходимо и достаточно, чтобы для любой переменной x из вершины x нельзя достичь \overline{x} и из вершины \overline{x} нельзя достичь x одновременно. $(\overline{x} \to x) \wedge (x \to \overline{x})$.

Доказательство:

 \triangleright

 (\Leftarrow) Докажем достаточность: Пусть для любой переменной x из вершины x нельзя достичь \overline{x} и из вершины \overline{x} нельзя достичь x одновременно. Докажем, что этого достаточно, чтобы $2\mathrm{SAT}$ имело

решение. Пусть из \overline{x} можно достичь x, но из вершины x нельзя достичь \overline{x} . Докажем, что из x не достижимо такой y, что из y достижимо \overline{y} . (т.е. $x \to y \to \overline{y}$ (x=1,y=0)). Если из $x \to y$, то $\overline{x} \lor y$, отсюда следует $\overline{y} \to \overline{x}$. Тогда $x \to y \to \overline{y} \to \overline{x}$. Следовательно $x \to \overline{x}$. Противоречие.

Теперь мы можем собрать весь алгоритм воедино:

- 1. Построим граф импликаций.
- 2. Найдём в этом графе компоненты сильной связности за время O(N+M), где N- количество вершин в графе (удвоенное количество переменных), а M- количество ребер графа (удвоенное количество дизьюнктов).
- 3. Пусть comp[v] это номер компоненты сильной связности, которой принадлежит вершине v. Проверим, что для каждой переменной x вершины x и \overline{x} лежат в разных компонентах, т.е. $comp[x] \neq comp[\overline{x}]$. Если это условие не выполняется, то вернуть pewenue не cywecmsyem.
- 4. Если $comp[x] > comp[\overline{x}]$, то переменной x выбираем значение ${\tt true}$, иначе ${\tt false}$.

Компоненты сильной связности найдем за O(N+M), затем проверим каждую из N переменных за O(N). Следовательно асимптотика O(N+M).

Примеры решения 2SAT

Первый пример

Рассмотрим следующую функцию: $(a \lor b) \land (a \lor c) \land (\overline{b} \lor c) \land (\overline{b} \lor a)$

Данная функция эквивалентна функции

$$\overline{a} o b \wedge \overline{b} o a \wedge \overline{a} o c \wedge \overline{c} o a \wedge b o c \wedge \overline{c} o \overline{b} \wedge \overline{a} o \overline{b} \wedge a o b.$$

Построим ориентированный граф со следующими множествами вершинам и ребер: множество вершин

$$V=\{a,b,c,\overline{a},\overline{b},\overline{c}\},$$
 множество ребер

$$E = \{ (\overline{a}, b), (\overline{b}, a), (\overline{a}, c), (\overline{c}, a), (b, c), (\overline{c}, \overline{b}), (\overline{a}, \overline{b}), (b, a) \}.$$

Рассмотрим в графе следующие пути:

- $lacksquare \overline{a}
 ightarrow b
 ightarrow a$
- $lacksquare \overline{a}
 ightarrow \overline{b}
 ightarrow a$
- $lacksquare \overline{c}
 ightarrow a$
- $a \rightarrow c$
- $ullet \ \overline{a} o b o c.$

T.K.
$$\overline{a}
ightarrow a$$
, to $a=1, \overline{a}=0$.

Т.к.
$$a
ightarrow c$$
 и $a=1$, то $c=1, \overline{c}=0$.

Значения b может быть любым, т.к. все вершины, из которых можно добраться в b имеют значение ноль.

Ответ: a=1, b=0, c=1 или a=1, b=1, c=1.

Второй пример

Рассмотрим следующую функцию: $(\overline{a}\lor c)\land (\overline{c}\lor \overline{a})\land (a\lor b)\land (\overline{b}\lor a)$

Данная функция эквивалентна функции

$$a
ightarrow c \wedge \overline{c}
ightarrow \overline{a} \wedge c
ightarrow \overline{a} \wedge a
ightarrow \overline{c} \wedge \overline{a}
ightarrow b \wedge \overline{b}
ightarrow a \wedge b
ightarrow a \wedge \overline{b}
ightarrow \overline{a}$$

Построим ориентированный граф со следующими множествами вершинам и ребер: множество вершин

V =
$$\{a,b,c,\overline{a},\overline{b},\overline{c}\}$$
, множество ребер

$$E = \{(a,c), (\overline{c},\overline{a}), (c,\overline{a}), (a,\overline{c}), (\overline{a},b), (\overline{b},a), (b,a), (\overline{b},\overline{a})\}.$$

Заметим следующий путь: $a o c o \overline{a} o b o a$.

Отсюда следует, что $a o \overline{a} o a$.

Следовательно по ранее доказанной теореме, у данной функции решений нет.

Ответ: Решений нет.

Использование 2SAT

Решение **2SAT** может потребоваться в следующих задачах:

- латинские квадраты^[1],
- квазигруппы^[2],
- числа Рамсея^[3]
- система Штейнера^[4],
- проектирование протоколов (пример: для сетевых коммуникаций),
- электронная коммерция (Электронные аукционы и автоматизированные брокеры,
- теории кодирования, криптографии,
- проектирование и тестирование лекарств (мед. препаратов).

См. также

№-полнота задачи о выполнимости булевой формулы в форме 3-КНФ

Примечания

- 1. Википедия Латинские квадраты (https://ru.wikipedia.org/wiki/Латинский_квадрат)
- 2. Википедия Квазигруппы (https://ru.wikipedia.org/wiki/Квазигруппа_(социология))
- 3. Википедия Числа Рамсея (https://ru.wikipedia.org/wiki/Teopema_Pamceя#.D0.A7.D0.B8.D1.81.D0. BB.D0.B0 .D0.A0.D0.B0.D0.BC.D1.81.D0.B5.D1.8F)
- 4. Википедия Система Штейнера (https://ru.wikipedia.org/wiki/Система Штейнера)

Источники информации

- MAXimal :: algo :: Задача 2SAT (2-CNF) (http://e-maxx.ru/algo/2_sat)
- Википедия 2-satisfiability (https://en.wikipedia.org/wiki/2-satisfiability)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=2SAT&oldid=85338»

■ Эта страница последний раз была отредактирована 4 сентября 2022 в 19:29.