Geometria 1 16 nov 2021

1 Orientazione di uno spazio vettoriale

In generale V non ha un'orientazione canonica, ma nei casi in cui V abbia una base canonica \mathcal{B}_0

 $\implies V$ ha l'orientazione canonica $[\mathscr{B}_0]$; ad esempio in \mathbb{R}^n si considera la base canonica $\mathscr{B}_0 = \{e_1, \cdots, e_n\}$, e ci si riferisce a $[B_0]$ come all'orientazione di \mathbb{R}^n

2 Complementi ortogonali

Sia (V,\cdot) uno spazio vettoriale euclideo, e sia $W\subseteq V$ sottospazio vettoriale. Si definisce

$$W^{\perp} = \{ v \in V \mid v \cdot w = 0 \,\forall \, w \in W \}$$

Questi sono i vettori di V ortogonali a tutti i vettori di $W,\,W^\perp\subseteq V$

Esempi (2.1)

- $1. \ W = \{\underline{0}\}$
 - $\implies W^{\perp} = V$
- 2. W = V

$$\implies W^{\perp} = \{0\}$$

3. $W\subseteq V$ sottospazio vettoriale, dim W=k. Fisso $\mathscr{B}=\{w_1,\cdots,w_k\}$ base di W.

Si osserva che

$$W^{\perp} = \{ v \in V \mid v \cdot w_r \, \forall \, r = 1, \cdots, k \}.$$

Lo dimostro con la doppia inclusione. L'inclusione \supseteq è ovvia, dimostro $\subseteq.$

Sia $v \in V$ tale che $v \cdot w_r = 0 \ \forall r = 1, \dots, k$. Sia $w \in W$ generico. Posso scrivere $w = a_1 w_1 + \dots + a_k w_k$ per qualche $a_1, \dots, a_k \in \mathbb{R}$

$$v \cdot w = v(a_1w_1 + \dots + a_kw_k) =$$

= $a_1v \cdot w_1 + a_2v \cdot w_2 + \dots + a_kv \cdot w_k = 0$

$$\implies v \cdot w = 0 \ \forall w \in W$$

$$\implies v \in W^{\perp}$$

Esercizio Sia $W \subseteq \mathbb{R}^3$ il sottospazio vettoriale di equazioni

$$\begin{cases} x + y = 0 \\ x + z = 0 \end{cases}$$

Determinare W^{\perp} rispetto al prodotto scalare canonico

Soluzione dim W = 1. Una base di W è data da $\mathcal{B} = \{(1, -1, -, 1)\}$.

$$W^{\perp} = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y, z) \cdot (1, -1, -1) = 0\}$$

$$(x, y, z) \cdot (1, -1, -1, 1) = x - y - z$$

$$W^{\perp} = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$
 piano in \mathbb{R}^3

Teorema I Sia (V,\cdot) uno spazio vettoriale euclideo, e sia $W\subseteq V$ un sottospazio vettoriale. Allora

- 1. W^{\perp} è un sottospazio vettoriale di V
- $2. \ W \oplus W^{\perp} = V$
- 3. $(W^{\perp})^{\perp} = W$

dim. (I)

1. Siano $v_1,\,v_2\in W^\perp,$ e $\lambda,\,\mu\in\mathbb{R},$ dimostriamo che $\lambda v_1+\mu v_2\in W^\perp$

$$v_1 \in W^{\perp} \implies v_1 \cdot w = 0 \,\forall \, w \in W$$

 $v_2 \in W^{\perp} \implies v_2 \cdot w = 0 \,\forall \, w \in W$

Sia $w \in W$

$$(\lambda v_1 \cdot \mu v_2) \cdot w = \lambda \underbrace{v_1 \cdot w}_{0} + \mu \underbrace{v_2 \cdot w}_{0} = 0$$

 $\implies \lambda v_1 \cdot \mu v_2 \in W^{\perp}$

 $\implies W^{\perp}$ sottospazio vettoriale.

2. Supponiamo dim W = k, sia $\{v_1, \dots, v_k\}$ una base di W. Possiamo completare $\{v_1, \dots, v_k\}$ ad una base

$$\{v_1,\cdots,v_k,v_{k+1},\cdots,v_n\}$$

base di tutto V

Utilizziamo l'algoritmo di Gram-Schmidt e troviamo una base ortonormale $\{e_1, \cdots, e_n\}$ di V tale che

$$\mathscr{L}(e_1, \dots, e_r) = \mathscr{L}(v_1, \dots, v_r) \quad \forall r = 1, \dots, n.$$

Quindi $\{e_1, \dots, e_k\}$ è una base di W.

Sia $v \in V$. Possiamo scrivere

$$v = \sum_{r=1}^{n} \lambda_r e_r$$

$$v \in W^{\perp} \iff v \cdot e_i = 0 \ \forall i = 1, \cdots, k$$

$$\iff \underbrace{\sum_{r=1}^{n} (\lambda_r e_r) \cdot e_1}_{\lambda_i} = 0 \ \forall i = 1, \cdots, k$$

$$\iff \lambda_i = 0 \ \forall i = 1, \cdots, k$$

$$\iff v \in \mathcal{L}(e_{k+1}, \cdots, e_n)$$

Cioè
$$W^{\perp} = \mathcal{L}(e_{k+1}, \cdots, e_n)$$

$$\implies V = \mathcal{L}(e_1, \cdots, e_k) + \mathcal{L}(e_{k+1}, \cdots, e_n) = W \oplus W^{\perp}$$

In particolare $W \cap W^{\perp} = \{\underline{0}\}$, infatti se $\overline{v} \in W \cap W^{\perp}$

$$\implies \overline{v} \cdot \overline{v} = 0$$

$$\implies \overline{v} = 0$$

3. $(W^{\perp})^{\perp}$:

$$v \in (W^{\perp})^{\perp} \iff v \cdot z = 0 \,\forall \, z \in W^{\perp} \iff v \in W$$

Proposizione p.i Sia (V,\cdot) uno spazio vettoriale Euclideo, siano W_1 e $W_2 \in V$ sottospazi vettoriali

1. Se
$$W_1 \subseteq W_2 \implies W_2^{\perp} \subseteq W_1^{\perp}$$

2.
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$

3.
$$(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$

dim. (p.i) Dimostrazione per esercizio

Esercizio Prendiamo $\mathbb{R}^{2,2}$ con il prodotto scalare canonico, considero

$$A = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix},$$

e prendo $W=\{X\in\mathbb{R}^{2,2}\,|\,AX=XA\}$ sottospazio vettoriale di $\mathbb{R}^{2,2}.$ Trovare W^\perp

Soluzione Trovo una base di W. Sia

$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$

matrice generica in $\mathbb{R}^{2,2}$ e impongo AX = XA

$$AX = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 3x_3 & x_2 + 3x_4 \\ -x_3 & -x_4 \end{pmatrix}$$
$$XA = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} x_1 & 3x_1 - x_2 \\ x_3 & 3x_3 - x_4 \end{pmatrix}$$

Otteniamo il sistema

$$\begin{cases} x_1 + 3x_3 = x_1 \\ x_2 + 3x_4 = 3x_1 - x_2 \\ x_3 = -x_3 \\ -x_4 = 3x_3 - x_4 \end{cases} \implies \begin{cases} x_1 = x_1 \\ x_2 = \frac{3}{2}(x_1 - x_4) \\ x_3 = 0 \\ x_3 = 0 \end{cases} \implies \dim W = 2$$

Una base di W è data da

$$A_1 = \begin{pmatrix} 2 & 3 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & -3 \\ 0 & 2 \end{pmatrix}$$

Impongo per $Y \in \mathbb{R}^{2,2}$, $Y \cdot A_1 = Y \cdot A_2 = 0$

$$Y = \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix}$$

$$Y \cdot A_1 = \operatorname{tr}({}^t Y A_1) =$$

$$= \operatorname{tr}\left(\begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 0 & 0 \end{pmatrix}\right) =$$

$$= \operatorname{tr}\left(\begin{pmatrix} 2y_1 & 3y_1 \\ 2y_2 & 3y_2 \end{pmatrix} = 2y_1 + 3y_2$$

$$Y \cdot A_2 = \operatorname{tr}({}^t Y A_2) =$$

$$= \operatorname{tr}\left(\begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix} \begin{pmatrix} 0 & -3 \\ 0 & 2 \end{pmatrix}\right) =$$

$$= \operatorname{tr}\begin{pmatrix} 0 & -3y_1 + 2y_3 \\ 0 & -3y_2 + 2y_4 \end{pmatrix} = -3y_2 + 2y_4$$

Quindi

$$Y \in W^{\perp} \iff 2y_1 + 3y_2 = 0 \land -3y_2 + 2y_4 = 0$$

 $y_1 = -3/2y_2, \quad y_4 = 3/2y_2, \quad y_3 = y_3$

Una base di W^\perp è data da

$$A_3 = \begin{pmatrix} -3/2 & 1\\ 0 & 3/2 \end{pmatrix}, A_4 = \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}.$$

$$W = \mathcal{L}(A_3, A_4)$$

Esercizio $\mathbb{R}^{n,n}$ con il prodotto scalare canonico,

$$\mathcal{S}(\mathbb{R}^{n,n}) = \{ A \in \mathbb{R}^{n,n} \mid {}^t A = A \} \qquad \mathcal{A}(\mathbb{R}^{n,n}) = \{ A \in \mathbb{R}^{n,n} \mid {}^t A = -A \}$$

Dimostrare $\mathcal{S}(\mathbb{R}^{n,n})^{\perp} = \mathcal{A}(\mathbb{R}^{n,n})$

Soluzione

$$\mathcal{S}(\mathbb{R}^{n,n}) \cap \mathcal{A}(\mathbb{R}^{n,n}) = \{0\}.$$

infatti una matrice è sia simmetrica che antisimmetrica \iff è la matrice nulla.

$$\dim \mathcal{A}(\mathbb{R}^{n,n}) + \dim \mathcal{S}(\mathbb{R}^{n,n}) = n^2 = \dim \mathbb{R}^{n,n}$$

$$\implies \mathbb{R}^{n,n} = \mathcal{S}(\mathbb{R}^{n,n}) \oplus \mathcal{A}(\mathbb{R}^{n,n})$$

Mi basta dimostrare che date $A \in \mathcal{A}(\mathbb{R}^{n,n})$ e $S \in \mathcal{S}(\mathbb{R}^{n,n})$ risulta $A \cdot S = 0$

$$A \cdot S = \operatorname{tr}({}^{t}A \cdot S) = -\operatorname{tr}(A \cdot S)$$

ma

$$A \cdot S = S \cdot A = \operatorname{tr}({}^{t}SA) = \operatorname{tr}(SA) = \operatorname{tr}(AS).$$

Quindi $A \cdot S = -A \cdot S$

 $\implies A \cdot S = 0$. Segue l'esercizio.

2.1 Proiezioni ortogonali

 (V,\cdot) spazio vettoriale Euclideo, $W\subseteq V$ sottospazio. $V=W\oplus W^{\perp}$. Ogni $v\in V$ si scrive in modo unico come v=v'+v'' con $v'\in W$ e $v''\in W^{\perp}$.

Si definisce

$$pr_w: V \to W$$

 $v \mapsto v'$

 pr_w si dice la proiezione ortogonale su W. pr_w è lineare, suriettiva, e $pr_w =_W$, $\ker(pr_w) = W^{\perp}$

Sia $F \in End(V)^1$, $F : V \to V$ è lineare. F è un'isometria se $F(v) \cdot F(w) = v \cdot w$ $\forall v, w \in V$.

Teorema II Se F è una isometria,

 $\implies F$ è un automorfismo di V (cio
èF è un isomorfismo $V \to V)$

dim. (II) Basta verificare che F iniettiva, ovvero che ker $F = \{\underline{0}\}$. Sia $v \in \ker F$, cioè v è tale che F(v) = 0

 $\implies F(v)\cdot F(v) = \underline{0}\cdot \underline{0} = \underline{0},$ ma poiché Fisometria risulta che $F(v)\cdot F(v) = v\cdot v$

 $\implies v \cdot v = 0$

 $\implies v = 0$

Quindi $\ker F = \{\underline{0}\}\ e\ F$ è iniettiva.

Esempio (2.2) e – sono isometrie su V rispetto a tutti i prodotti scalari.

Esercizio Sia $F \in End(V)$ tale che $||F(v)|| = ||v|| \ \forall v \in V$. Si dimostri che F è un'isometria

Soluzione Da risolvere.

¹ è un endomorfismo