# Chapitre 12 : Suites numériques

## I. Parties de ℝ

Déf. 1

Une partie non vide I de  $\mathbb{R}$  est dite convexe si pour tous  $(a, b) \in I^2$ , avec a < b, le segment [a, b] est inclus dans I.

#### Proposition 1

Les sous-ensembles non vides convexes de  $\mathbb{R}$  sont les intervalles.

### Exemples 1

**1.** L'intervalle I = [1; 5[ est convexe : si  $1 \le a < b < 5$ , le segment [a, b] est inclus dans I.



**2.** La réunion d'intervalles  $E = [1;3[ \cup [4;6]$  n'est pas convexe, puisque (par exemple) le segment [2;5] n'est pas inclus dans E.



#### Remarque.

Étant donnés a < b, le segment [a, b] est l'ensemble des points qui peuvent s'exprimer sous la forme

$$(1-t)a + tb$$
,

avec  $0 \le t \le 1$ .

$$t = 0$$
  $t = \frac{1}{4}$   $t = \frac{1}{2}$   $t = \frac{3}{4}$   $t = 1$ 

C'est donc aussi l'ensemble des barycentres de la forme

$$bary A_{1-t}B_t$$
,

avec  $0 \le t \le 1$ .

Soit E une partie non vide de  $\mathbb{R}$ .

ightharpoonup On dit que E est majorée s'il existe un réel M supérieur à tous les éléments de E:

$$\exists M \in \mathbb{R}, \ \forall x \in E, \ x \leq M.$$

Dans ce cas, on dit que M est un majorant de E.

ightharpoonup On dit que E est minorée s'il existe un réel m inférieur à tous les éléments de E:

$$\exists m \in \mathbb{R}, \ \forall x \in E, \ m \leq x.$$

Dans ce cas, on dit que m est un minorant de E.

▶ On dit que *E* est bornée si elle est à la fois majorée et minorée.

#### **Exemples 2**

1. Soit E = [0; 2].



- m = 0 est un minorant de E (mais aussi m = -2, m = -6, etc.).
- M = 2 est un majorant de E (mais aussi M = 3, M = 5, etc.).
- **2.** Soit  $E = \mathbb{N} = \{0; 1; 2; 3; \dots \}$ .
  - m = 0 est un minorant de E.
  - E n'est pas majorée.

**3.** Soit  $E = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} = \{\frac{1}{1}; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \dots \}$ .



- m = 0 est un minorant de E.
- M = 1 est un majorant de E.

# Déf. 3

- Soit E une partie majorée de  $\mathbb{R}$ . On appelle borne supérieure de E le plus petit des majorants de E. On note  $\sup(E)$  cette borne supérieure.
- Soit E une partie minorée de  $\mathbb{R}$ . On appelle borne inférieure de E le plus grand des minorants de E. On note inf(E) cette borne inférieure.

Les résultats des exemples ci-dessous, donnés sans justification, doivent permettre de consolider l'intuition. Certaines preuves seront données en exercices.

### Exemples 3

- **1.** Soit E = [0; 2].
  - $\sup(E) = 2$ .
  - $\inf(E) = 0$ .
- **2.** Soit  $E = \mathbb{N} = \{0; 1; 2; 3; \dots\}$ .
  - *E* n'a pas de borne supérieure.
  - $\inf(E) = 0$ .

- **3.** Soit  $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\} = \left\{ \frac{1}{1}; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \cdots \right\}$ .
  - $\sup(E) = 1$ .
  - $\inf(E) = 0$ .

#### Théorème 1

- Toute partie non vide majorée de  $\mathbb R$  admet une borne supérieure.
- Toute partie non vide minorée de  $\mathbb R$  admet une borne inférieure.



# II. Généralités sur les suites

Définition 4

Définition 5

Une suite est une fonction  $u : \mathbb{N} \to \mathbb{R}$ . Au lieu de u(n), l'image d'un entier n est souvent notée  $u_n$ . Le nombre  $u_n$  s'appelle

terme de rang n, ou terme d'indice n.

La suite u est notée  $(u_n)_{n\in\mathbb{N}}$ .

On parle de « suite de terme général  $u_n$  ».

#### Remarque.

Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel  $n_0 \ge 0$ , on note alors  $(u_n)_{n \ge n_0}$ . Ce qui suit est présenté dans le cadre des suites définies à partir du rang 0 mais peut aisément se prolonger aux suites définies à partir d'un rang  $n_0$ .

#### On rappelle quelques cas particuliers:

### ► Suite arithmétique :

Soit  $r \in \mathbb{R}$ . On dit que  $(u_n)_{n \in \mathbb{N}}$  est arithmétique de rayon r si

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + r.$$

Dans ce cas

$$\forall n \in \mathbb{N}, \ u_n = u_0 + n \times r.$$

### ► Suite géométrique :

Soit  $q \in \mathbb{R}$ . On dit que  $(v_n)_{n \in \mathbb{N}}$  est géométrique de rayon q si

$$\forall n \in \mathbb{N}, \ v_{n+1} = v_n \times q.$$

Dans ce cas

$$\forall n \in \mathbb{N}, \ v_n = v_0 \times q^n.$$

#### Suite arithmético-géométrique:

On dit que  $(u_n)_{n\in\mathbb{N}}$  est arithméticogéométrique si

$$\exists (a,b) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_{n+1} = au_n + b.$$

#### Suite constante :

Soit  $c \in \mathbb{R}$ . On dit que  $(u_n)_{n \in \mathbb{N}}$  est constante égale à c si

$$\forall n \in \mathbb{N}, u_n = c.$$

#### **▶** Suite stationnaire :

On dit que  $(u_n)_{n\in\mathbb{N}}$  est stationnaire si

$$\exists c \in \mathbb{R}, \ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ u_n = c.$$



#### On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est :

► majorée par le réel *M* si tous ses termes sont inférieurs à *M* :

$$\forall n \in \mathbb{N}, u_n \leq M$$
;

ightharpoonup minorée par le réel m si tous ses termes sont supérieurs à m:

$$\forall n \in \mathbb{N}, u_n \geq m$$
;

bornée si elle est à la fois minorée et majorée. On dit qu'une suite  $(u_n)_{n\in\mathbb{N}}$  est :

croissante si

$$\forall n \in \mathbb{N}, \ u_{n+1} \ge u_n$$

(ou de façon équivalente  $u_{n+1} - u_n \ge 0$ );

décroissante si

$$\forall n \in \mathbb{N}, u_{n+1} \leq u_n$$

(ou de façon équivalente  $u_{n+1} - u_n \le 0$ ).

Lorsqu'une suite est croissante ou lorsqu'elle est décroissante, on dit qu'elle est monotone.

**Définition 7** 

### **Proposition 2**

**1.** Si  $(u_n)_{n\in\mathbb{N}}$  est croissante, alors

$$\forall n \in \mathbb{N}, \ u_n \ge u_0.$$

**2.** Si  $(u_n)_{n\in\mathbb{N}}$  est décroissante, alors

$$\forall n \in \mathbb{N}, \ u_n \leq u_0.$$

#### **Proposition 3**

Une suite  $(u_n)_{n\in\mathbb{N}}$  est bornée si, et seulement si,  $(|u_n|)_{n\in\mathbb{N}}$  est majorée.

#### Remarque.

Avec des définitions analogues, on parle également de suite croissante (ou décroissante) à partir d'un certain rang.

#### Exemple 4

On pose  $u_n = e^{-n}$  pour tout  $n \in \mathbb{N}$ .

- $(u_n)_{n\in\mathbb{N}}$  est minorée par 0, car une exponentielle est positive.
- $\forall n \in \mathbb{N}$ ,  $u_{n+1} u_n = e^{-(n+1)} e^{-n} = e^{-n-1} e^{-n} = e^{-n} \times e^{-1} e^{-n} \times 1 = e^{-n} \left( e^{-1} 1 \right)$ . Or  $e^{-n} > 0$  et  $e^{-1} - 1 < 0$ , donc  $u_{n+1} - u_n < 0$ . Par conséquent  $(u_n)_{n \in \mathbb{N}}$  est décroissante.
- $(u_n)_{n\in\mathbb{N}}$  étant décroissante, elle est majorée par  $u_0=\mathrm{e}^{-0}=1$ . On a vu qu'elle était minorée, donc elle est bornée.



# III. Suites convergentes

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite et  $\ell\in\mathbb{R}$ . On dit que  $(u_n)_{n\in\mathbb{N}}$  a pour limite  $\ell$  si tout intervalle de la forme  $[\ell-\epsilon;\ell+\epsilon]$ , avec  $\epsilon>0$ , contient tous les termes de la suite à partir d'un certain rang N. Plus formellement :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N \implies \ell - \epsilon \le u_n \le \ell + \epsilon).$$

Ou encore:

Définition 8

$$\forall \epsilon > 0, \; \exists N \in \mathbb{N}, \; \forall \, n \in \mathbb{N}, \; (n \geq N \Longrightarrow |u_n - \ell| \leq \epsilon) \, .$$



Définition 9

On dit que la suite  $(u_n)_{n\in\mathbb{N}}$  converge si elle a une limite finie  $\ell$ , qu'elle diverge sinon.

▶ On note au choix  $\lim u_n = \ell$  ou  $u_n \to \ell$ .

**Proposition 4** 

Si une suite converge, sa limite est unique.

#### Exemple 5

La suite  $(u_n)_{n \in \mathbb{N}^*}$  est définie par

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n}.$$

On prouve que  $u_n \to 0$ .

Soit  $\epsilon > 0$ . On a les implications :

$$n \ge \frac{1}{\epsilon} \implies \frac{1}{n} \le \frac{1}{\frac{1}{\epsilon}}$$
 (car deux nombres > 0 sont rangés en sens contraire de leurs inverses)  
  $\implies u_n \le \epsilon$ .

Comme il est clair par ailleurs que  $u_n \ge -\epsilon$ , on obtient :

$$n \ge \frac{1}{\epsilon} \implies -\epsilon \le u_n \le \epsilon.$$

Cela prouve que  $u_n \rightarrow 0$ .

#### Remarque.

On peut prendre l'entier naturel  $N = \lfloor \frac{1}{\epsilon} \rfloor + 1$  dans la définition 8, puisque

$$n \geq \lfloor \frac{1}{\epsilon} \rfloor + 1 \implies n \geq \frac{1}{\epsilon}.$$



**1.** Si  $(u_n)_{n\in\mathbb{N}}$  est constante égale à c, alors

Proposition 5 (limites de référence)

2. Si  $\lim_{x \to +\infty} f(x) = \ell$ , alors  $\lim_{x \to +\infty} f(n) = \ell$ .



#### **Attention**

Attention à l'ordre des quantificateurs dans la définition 8, il n'est pas arbitraire! Si l'on demandait que

$$\exists N \in \mathbb{N}, \ \forall \epsilon > 0, \ \forall n \in \mathbb{N}, \ (n \ge N \Longrightarrow |u_n - \ell| \le \epsilon),$$

on voudrait qu'à partir d'un certain rang N, tous les termes de la suite soient arbitrairement proches de  $\ell$ . Ce ne serait possible que pour une suite stationnaire.

## Exemples 6

 $\lim u_n = c$ .

- 1.  $\lim_{x \to +\infty} xe^{-x} = 0$  (par croissance comparée), donc  $\lim ne^{-n} = 0$ .
- **2.**  $\left| \frac{1}{3} \right| < 1$ , donc  $\lim \left( \frac{1}{3} \right)^n = 0$ .

**3.** Si |q| < 1, alors  $\lim q^n = 0$ .



Exercices 11 à 13

#### **Proposition 6**

Toute suite convergente est bornée.

#### **Démonstration**

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite convergente. Notons  $\ell$  sa limite.

Par définition de la limite, avec  $\epsilon = 1$ :

$$\exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N \Longrightarrow |u_n - \ell| \le 1).$$

Donc pour  $n \ge N$  et d'après l'inégalité triangulaire :

$$|u_n| = |u_n - \ell + \ell| \le |u_n - \ell| + |\ell| \le 1 + |\ell|$$
.

Et finalement,  $\forall n \in \mathbb{N}, |u_n| \le \max(|u_0|, |u_1|, ..., |u_{N-1}|, 1 + |\ell|)$ .



#### **Attention**

La réciproque est fausse! Par exemple, la suite  $((-1)^n)_{n\in\mathbb{N}}=(1;-1;1;-1;\cdots)$  est bornée, mais ne converge pas (voir exple 10).

Les propriétés suivantes recensent les règles de calcul avec les limites.

#### **Proposition 7**

Soient  $(u_n)_{n\in\mathbb{N}}$  une suite et  $\ell\in\mathbb{R}$ .

- 1.  $u_n \to \ell \iff (u_n \ell) \to 0 \iff |u_n \ell| \to 0$ .
- **2.**  $u_n \to \ell \Longrightarrow |u_n| \to |\ell|$ .

#### Proposition 9

Soient  $(u_n)_{n\in\mathbb{N}}$ ,  $(v_n)_{n\in\mathbb{N}}$  deux suites convergentes.

- **1.** Si  $u_n \to \ell$ , alors pour  $\lambda \in \mathbb{R}$ ,  $\lambda u_n \to \lambda \ell$ .
- **2.** Si  $u_n \to \ell$  et  $v_n \to \ell'$ , alors

$$(u_n + v_n) \to \ell + \ell',$$

$$(u_n \times v_n) \to \ell \times \ell'$$
.

**3.** Si  $u_n \to \ell$  et  $v_n \to \ell'$ , avec  $\ell' \neq 0$ , alors  $v_n \neq 0$  pour n assez grand et  $\frac{u_n}{v_n} \to \frac{\ell}{\ell'}$ .

### **Proposition 8**

Si  $u_n \to 0$  et  $(v_n)_{n \in \mathbb{N}}$  est bornée, alors  $u_n \times v_n \to 0$ .

#### Démonstration (point 2 de la proposition 9, pour le produit uniquement)

Soit  $n \in \mathbb{N}$ . On commence par un calcul préparatoire :

$$u_n \times v_n - \ell \times \ell' = (u_n - \ell) \times v_n + \ell \times \left(v_n - \ell'\right).$$

On examine chacun des deux termes dans le membre de droite ci-dessus :

- On sait que  $u_n \to \ell$  donc  $(u_n \ell) \to 0$  (proposition 7). De plus  $(v_n)_{n \in \mathbb{N}}$  converge, donc elle est bornée (proposition 6). On en déduit que  $(u_n \ell) \times v_n \to 0$  (proposition 8).
- On sait que  $v_n \to \ell'$  donc  $(v_n \ell') \to 0$  (proposition 7). Et donc, d'après le point 1,  $\ell \times (v_n \ell') \to 0$ .

On a prouvé que  $(u_n - \ell) \times v_n \to 0$  et que  $\ell \times (v_n - \ell') \to 0$ . En utilisant le point 2 (pour la somme), on en déduit que  $u_n \times v_n - \ell \times \ell' = (u_n - \ell) \times v_n + \ell \times (v_n - \ell')$  a pour limite 0. La proposition 7 permet alors de conclure.

6

#### Exemple 7

 $(u_n)_{n\in\mathbb{N}}$  est la suite arithmético-géométrique définie par  $u_0=3$  et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = -\frac{1}{2}u_n + 1.$$

En utilisant une suite géométrique annexe, on a démontré la formule (voir exercice 7) :

$$\forall n \in \mathbb{N}, \ u_n = \frac{7}{3} \left( -\frac{1}{2} \right)^n + \frac{2}{3}.$$

 $\left|-\frac{1}{2}\right| < 1$ , donc  $\left(-\frac{1}{2}\right)^n \to 0$ , et donc

$$u_n \to \frac{7}{3} \times 0 + \frac{2}{3} = \frac{2}{3}$$
.



#### Proposition 10 (passage à la limite dans une inégalité)

- **1.** Si  $u_n \to \ell$  et si  $(u_n)_{n \in \mathbb{N}}$  est majorée par M, alors  $\ell \le M$ .
- **2.** Si  $u_n \to \ell$  et si  $(u_n)_{n \in \mathbb{N}}$  est minorée par m, alors  $\ell \ge m$ .

#### Théorème 2 (des gendarmes.)

Si  $u_n \to \ell$ ,  $w_n \to \ell$  et si  $u_n \le v_n \le w_n$  pour tout  $n \in \mathbb{N}$ , alors  $v_n \to \ell$ .

#### **Démonstration**

Soit  $\epsilon > 0$ . Par hypothèse  $\lim u_n = \ell$  donc pour n assez grand, disons  $n \ge N_1$ ,  $\ell - \epsilon \le u_n \le \ell + \epsilon$ .

De même  $\lim w_n = \ell$  donc pour n assez grand, disons  $n \ge N_2$ ,  $\ell - \epsilon \le w_n \le \ell + \epsilon$ .

Enfin, pour tout  $n \in \mathbb{N}$ ,  $u_n \le v_n \le w_n$ .

Posons  $N = \max(N_1, N_2)$ . Alors pour  $n \ge N$ :

$$\ell - \epsilon \le u_n \le v_n \le w_n \le \ell + \epsilon$$
.

On a donc  $\ell - \epsilon \le v_n \le \ell + \epsilon$ , et par suite  $\lim v_n = \ell$ .

#### Exemple 8

 $(u_n)_{n\in\mathbb{N}}$  est définie par  $\forall n\in\mathbb{N},\ u_n=\frac{(-1)^n}{n^2+1}.$  On a l'encadrement  $\forall n\in\mathbb{N},\ \frac{-1}{n^2+1}\leq u_n\leq \frac{1}{n^2+1}.$  Or  $\lim\frac{-1}{n^2+1}=\lim\frac{1}{n^2+1}=0,$  donc d'après le théorème des gendarmes  $\lim u_n = 0$ .

Remarque. On ne peut pas « passer à la limite » dans les inégalités strictes. Par exemple, il est vrai dans l'exemple précédent que  $\forall n \in \mathbb{N}$ ,  $\frac{-2}{n^2+1} < u_n < \frac{2}{n^2+1}$ ; en revanche il faut des inégalités larges quand on prend les limites :  $0 \le 0 \le 0$ .

7

#### Exemple 9

On reprend l'exemple 7 :  $(u_n)_{n \in \mathbb{N}}$  est définie par  $u_0$  = 3 et la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n),$$

avec 
$$f(x) = -\frac{1}{2}x + 1$$
.

On propose une nouvelle méthode pour étudier la limite de  $(u_n)_{n\in\mathbb{N}}$ .



On démontre par récurrence que pour tout  $n \in \mathbb{N}$ :

$$\left| u_n - \frac{2}{3} \right| \le \frac{7}{3} \left( \frac{1}{2} \right)^n. \tag{1}$$

- La propriété 1 est vraie pour n = 0, puisque  $|u_0 \frac{2}{3}| = |3 \frac{2}{3}| = \frac{7}{3}$  et  $\frac{7}{3}(\frac{1}{2})^0 = \frac{7}{3}$ .
- Soit  $k \in \mathbb{N}$  tel que  $\left| u_k \frac{2}{3} \right| \le \frac{7}{3} \left( \frac{1}{2} \right)^k$ . On a alors

$$\left|u_{k+1} - \frac{2}{3}\right| = \left|-\frac{1}{2}u_k + 1 - \frac{2}{3}\right| = \left|-\frac{1}{2}u_k + \frac{1}{3}\right| = \left|-\frac{1}{2}\left(u_k - \frac{2}{3}\right)\right| = \frac{1}{2}\left|u_k - \frac{2}{3}\right| \le \frac{1}{2} \times \frac{7}{3}\left(\frac{1}{2}\right)^k = \frac{7}{3}\left(\frac{1}{2}\right)^{k+1},$$

et ainsi la propriété est héréditaire. Elle est donc vraie pour tout  $n \in \mathbb{N}$ .

L'inégalité 1 se réécrit

$$\forall n \in \mathbb{N}, -\frac{7}{3} \left(\frac{1}{2}\right)^n \le u_n - \frac{2}{3} \le \frac{7}{3} \left(\frac{1}{2}\right)^n.$$

Or  $\lim \frac{7}{3} \left(\frac{1}{2}\right)^n = \lim \left(-\frac{7}{3} \left(\frac{1}{2}\right)^n\right) = 0$ , puisque  $\left|\frac{1}{2}\right| < 1$ . Donc d'après le théorème des gendarmes  $\lim \left(u_n - \frac{2}{3}\right) = 0$ ; et finalement  $\lim u_n = \frac{2}{3}$ .

La limite  $\ell = \frac{2}{3}$  de la suite  $(u_n)_{n \in \mathbb{N}}$  de l'exemple précédent est un point fixe de la fonction f, c'està-dire que  $\ell$  est solution de l'équation  $-\frac{1}{2}x+1=x$ .

# Exercices 18 à 20

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite. Une suite extraite, ou sous-suite, est une suite de la forme  $(u_{\phi(n)})_{n\in\mathbb{N}}$ , où  $\phi:\mathbb{N}\to\mathbb{N}$  est strictement croissante.

#### Exemple 10

Soit  $(u_n)_{n\in\mathbb{N}}$  la suite de terme général  $u_n=(-1)^n$ .

- Si on prend  $\phi: \mathbb{N} \to \mathbb{N}$ ,  $n \mapsto 2n$ , alors la suite extraite est la suite des termes de rang pair  $(u_{2n})_{n \in \mathbb{N}} = (u_0, u_2, u_4, u_6, ...)$ , dont le terme général est  $(-1)^{2n} = 1$ . Autrement dit,  $(u_{2n})_{n \in \mathbb{N}}$  est la suite constante égale à 1.
- Si on prend  $\phi: \mathbb{N} \to \mathbb{N}$ ,  $n \mapsto 2n+1$ , alors la suite extraite est la suite des termes de rang impair  $(u_{2n+1})_{n \in \mathbb{N}} = (u_1, u_3, u_5, u_7, ...)$ , dont le terme général est  $(-1)^{2n+1} = -1$ . Autrement dit,  $(u_{2n+1})_{n \in \mathbb{N}}$  est la suite constante égale à -1.



#### Exemple 11

En examinant le graphique de l'exemple 9, on devine que  $(u_n)_{n\in\mathbb{N}}$  n'est pas monotone, mais que  $(u_{2n})_{n\in\mathbb{N}}$  et  $(u_{2n+1})_{n\in\mathbb{N}}$  le sont (la première est décroissante, la deuxième est croissante). Une technique pour étudier la convergence de  $(u_n)_{n\in\mathbb{N}}$  consiste à étudier la convergence de chacune de ces deux sous-suites.

#### **Proposition 11**

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite. Si  $\lim u_n = \ell$ , alors pour toute suite extraite  $(u_{\phi(n)})_{n\in\mathbb{N}}$  on a  $\lim u_{\phi(n)} = \ell$ .

#### Remarques.

- En appliquant la proposition précédente à  $\phi: n \mapsto n+1$ , on voit que si  $u_n \to \ell$ , alors  $u_{n+1} \to \ell$ . Ce résultat est crucial pour l'étude des suites définies par une relation de récurrence (voir exercices).
- On utilisera la réciproque de la propriété 11 pour prouver la divergence d'une suite. Par exemple, la suite  $((-1)^n)_{n\in\mathbb{N}}$  diverge puisque la sous-suite des termes de rang pair est constante égale à 1 (et donc a pour limite 1), et la sous-suite des termes de rang impair est constante égale à -1 (et donc a pour limite -1).

#### **Proposition 12**

Une suite  $(u_n)_{n\in\mathbb{N}}$  converge vers une limite  $\ell$  si, et seulement si, chacune des deux suites extraites  $(u_{2n})_{n\in\mathbb{N}}$  et  $(u_{2n+1})_{n\in\mathbb{N}}$  converge vers  $\ell$ .



# IV. Suites de limite infinie

Définition 11

On dit qu'une suite  $(u_n)_{n\in\mathbb{N}}$  tend vers  $+\infty$  si  $u_n$  dépasse n'importe quel réel M>0 à partir d'un certain rang N. Plus formellement :

$$\forall M > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow u_n \ge M).$$

On note  $\lim u_n = +\infty$  ou  $u_n \to +\infty$ .

Remarque.

On définit de façon analogue  $u_n \to -\infty$ .



#### **Proposition 13**

Si q > 1, alors  $\lim q^n = +\infty$ .

#### **Démonstration**

Soit q > 1. On souhaite prouver que la suite  $(q^n)_{n \in \mathbb{N}}$  tend vers  $+\infty$ , c'est-à-dire :

$$\forall M > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow q^n \ge M).$$

Prenons donc M > 0. La fonction ln est strictement croissante sur  $]0; +\infty[$ , donc :

$$q^n \ge M \iff \ln(q^n) \ge \ln M \iff n \ln q \ge \ln M.$$

Or q > 1 donc  $\ln q > 0$  et la dernière inégalité ci-dessus est équivalente à  $n \ge \frac{\ln M}{\ln q}$ .

Conclusion : on pose  $N = \lfloor \frac{\ln M}{\ln q} \rfloor + 1$ . Alors  $(n \ge N) \implies n \ge \frac{\ln M}{\ln q} \implies (q^n \ge M)$ . Cela prouve que  $q^n \to +\infty$ .

## **Proposition 14**

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite.

- 1. Si  $u_n \to +\infty$ , alors  $\frac{1}{u_n} \to 0$ .
- 2. Si  $u_n \to 0$  et  $u_n > 0$  pour n assez grand, alors  $\frac{1}{u_n} \to +\infty$ .
- 3. Si  $\lim_{x \to +\infty} f(x) = +\infty$ , alors  $\lim_{x \to +\infty} f(n) = +\infty$ .

#### Proposition 15 (limite par comparaison)

Si  $u_n \to +\infty$  et si  $u_n \le v_n$  pour tout  $n \in \mathbb{N}$ , alors  $v_n \to +\infty$ .

### Exemple 12

On pose  $u_n = n - \sin n$  pour tout  $n \in \mathbb{N}$ .

 $\sin n \le 1$  pour tout  $n \in \mathbb{N}$ , donc

$$u_n \ge n-1$$
.

Or  $\lim(n-1) = +\infty$ , donc  $\lim(n-\sin n) = +\infty$ .



## V. Limites des suites monotones

#### Théorème 3

- Si  $(u_n)_{n\in\mathbb{N}}$  est croissante majorée par M, alors  $(u_n)_{n\in\mathbb{N}}$  converge et sa limite vérifie  $\lim u_n \leq M$ .
- Si  $(u_n)_{n \in \mathbb{N}}$  est croissante non majorée, alors  $\lim u_n = +\infty$ .

On dispose de résultats analogues pour les suites décroissantes.

#### **Démonstration**

**Premier point.** L'ensemble  $E = \{u_n \mid n \in \mathbb{N}\} = \{u_0 ; u_1 ; u_2 ; ...\}$  est un sous-ensemble non vide de  $\mathbb{R}$  majoré par M, donc il admet une borne supérieure  $\ell \leq M$ .

Soit  $\epsilon > 0$ . Par définition de la borne supérieure,  $\ell$  est le plus petit majorant de E, donc  $\ell - \epsilon$  n'est pas un majorant de E. Il existe donc  $N \in \mathbb{N}$  tel que  $\ell - \epsilon \leq u_N$ .

Comme  $(u_n)_{n\in\mathbb{N}}$  est croissante et que  $\ell = \sup(E)$ , pour tout entier  $n \ge N$ :

$$\ell - \epsilon \le u_N \le u_n \le \ell$$
.

On a ainsi prouvé:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow |u_n - \ell| \le \epsilon),$$

c'est-à-dire que  $u_n \to \ell$ .

**Deuxième point.** Soit M > 0. La suite  $(u_n)_{n \in \mathbb{N}}$  est non majorée, donc  $\exists N, u_N \ge M$ . Et comme  $(u_n)_{n \in \mathbb{N}}$  est croissante,

$$\forall n \in \mathbb{N}, (n \ge N \Longrightarrow u_n \ge M).$$

Cela prouve que  $u_n \to +\infty$ .

#### Remarques.

- On a prouvé plus que ce qui était annoncé dans le premier point : si  $(u_n)_{n\in\mathbb{N}}$  est croissante majorée, alors sa limite est la borne supérieure de  $\{u_n\mid n\in\mathbb{N}\}$ .
- La limite de la suite n'est pas nécessairement égale au majorant M ce serait d'ailleurs absurde, il y a une infinité de majorants.

#### Exemple 13

Soit  $(u_n)_{n \in \mathbb{N}^*}$  la suite de terme général

$$u_n = \sum_{k=1}^n \frac{1}{k \times 2^k} = \frac{1}{1 \times 2^1} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} + \dots + \frac{1}{n \times 2^n}.$$

Cette suite est bien sûr croissante, car on ajoute des termes positifs. De plus, pour tout  $n \in \mathbb{N}^*$ :

$$u_n \leq \underbrace{\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}}_{S_n}.$$

#### Exemple 13 - Suite

On a déjà rencontré la somme  $S_n$  en exercice; on a vu que  $S_n = 1 - \frac{1}{2^n}$ . On a donc

$$u_n \le S_n \le 1 - \frac{1}{2^n} \le 1.$$

Conclusion :  $(u_n)_{n\in\mathbb{N}^*}$  est croissante et majorée par 1, donc elle converge. On peut prouver que sa limite est égale à ln2.



Ne dites surtout pas que le majorant est  $1 - \frac{1}{2^n}$  : ce majorant doit être indépendant de n.



Deux suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  sont dites Deux suites  $(u_n)_{n \in \mathbb{N}}$  et  $(v_n)$  adjacentes si :

•  $(u_n)_{n \in \mathbb{N}}$  est croissante,

•  $(v_n)_{n \in \mathbb{N}}$  est décroissante,

•  $v_n - u_n \to 0$ .



#### Théorème 4 (Des suites adjacentes)

Deux suites adjacentes convergent vers la même limite.

#### **Démonstration**

On prend les notations de la définition 12.

Montrons d'abord que  $\forall n \in \mathbb{N}$ ,  $u_n \le v_n$ , en raisonnant par l'absurde : si ce n'était pas le cas, il existerait  $N \in \mathbb{N}$  tel que  $u_N > v_N$ . Donc  $u_N - v_N = \alpha > 0$ .

Or  $(u_n)_{n\in\mathbb{N}}$  est croissante et  $(v_n)_{n\in\mathbb{N}}$  est décroissante, donc  $(u_n-v_n)_{n\in\mathbb{N}}$  est croissante; et donc

$$\forall n \in \mathbb{N}, (n \ge N \implies u_n - v_n \ge u_N - v_N = \alpha).$$

Faisant tendre n vers l'infini dans cette inégalité, d'après la proposition 10 on aurait

$$0 = \lim (u_n - v_n) \ge \alpha$$
,

ce qui est absurde puisque  $\alpha > 0$ .

Nous savons maintenant que  $\forall n \in \mathbb{N}$ ,  $u_n \leq v_n$ . Comme  $(v_n)_{n \in \mathbb{N}}$  est décroissante,  $\forall n \in \mathbb{N}$  $\mathbb{N}$ ,  $u_n \leq v_n \leq v_0$ . La suite  $(u_n)_{n \in \mathbb{N}}$  étant croissante majorée par  $v_0$ , elle converge vers une limite finie  $\ell$ .

On montre de la même façon que  $(v_n)_{n\in\mathbb{N}}$  converge vers une limite finie  $\ell'$ . On a alors 0= $\lim (v_n - u_n) = \ell' - \ell, \text{ d'où } \ell = \ell'.$ 

### Exemple 14

Dans l'exemple 9, la suite  $(u_{2n})_{n\in\mathbb{N}}=(u_0,u_2,u_4,\cdots)$  est décroissante, la suite  $(u_{2n+1})_{n\in\mathbb{N}}=$  $(u_1, u_3, u_5, \cdots)$  est croissante (ces deux affirmations mériteraient d'être démontrées rigoureusement). Elle sont adjacentes et convergent vers la même limite  $\ell = \frac{2}{3}$ .



# Comparaison de suites

Dans cette section, lorsqu'on étudie la limite de  $\frac{u_n}{v_n}$ , cela sous-entend que les termes de  $(v_n)_{n\in\mathbb{N}}$ sont non nuls à partir d'un certain rang:

 $\exists N \in \mathbb{N}, \ \forall n \geq N, \ \nu_n \neq 0.$ 

- ▶ On dit que  $(u_n)_{n \in \mathbb{N}}$  est dominée par  $(v_n)_{n \in \mathbb{N}}$  si  $\left(\frac{u_n}{v_n}\right)_{n \in \mathbb{N}}$  est une suite bornée. On note alors  $u_n = O(v_n)$  (lire «  $u_n$  est un grand O de  $v_n$  »).
- ▶ On dit que  $(u_n)_{n \in \mathbb{N}}$  est négligeable devant  $(v_n)_{n \in \mathbb{N}}$  si  $\frac{u_n}{v_n} \to 0$ . On note alors  $u_n = o(v_n)$  (lire «  $u_n$  est un petit o de  $v_n$  »).
- ▶ On dit que les suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  sont équivalentes si  $\frac{u_n}{v_n} \to 1$ . On note alors  $u_n \sim v_n$ .

#### Exemples 15

- **1.**  $\ln n = o(n)$ , car  $\frac{\ln n}{n} \to 0$  par croissance comparée.
- **2.**  $n \sin n = O(n)$ . En effet, si  $n \ge 1$ ,  $\frac{n \sin n}{n} = \sin n$ , et la suite  $(\sin(n))_{n \in \mathbb{N}}$  est bornée.
- 3.  $n+1 \sim n$ , car  $\frac{n+1}{n} = 1 + \frac{1}{n} \to 1$ .

# Exercices Exercices 34 à 36

#### Proposition 16 (relation d'équivalence)

Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  deux suites.

- **1.** Réflexivité.  $u_n \sim u_n$ .
- **2. Symétrie.** Si  $u_n \sim v_n$ , alors  $v_n \sim u_n$ .
- **3. Transitivité.** Si  $u_n \sim v_n$  et  $v_n \sim w_n$ , alors  $u_n \sim w_n$ .

# Proposition 17 (croissances comparées)

Si  $\alpha$ ,  $\beta$ ,  $\gamma$  sont trois réels strictement positifs, alors:

$$(\ln n)^{\beta} = o(n^{\alpha})$$
  $n^{\alpha} = o(e^{\gamma n}).$ 

### Proposition 18

Soient  $(u_n)_{n\in\mathbb{N}}$ ,  $(v_n)_{n\in\mathbb{N}}$ ,  $(w_n)_{n\in\mathbb{N}}$  trois suites.

- 1. Si  $u_n = o(v_n)$  ou  $u_n \sim v_n$ , alors  $u_n = O(v_n)$ .
- **2.** Si  $u_n = o(v_n)$  et  $v_n = o(w_n)$ , alors  $u_n =$  $o(w_n)$ .

Ce sont les deux propositions suivantes qui seront les plus utiles en pratique :

#### **Proposition 19**

Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  deux suites.

- **1.**  $u_n = o(1)$  si et seulement si  $u_n \to 0$ .
- **2.**  $u_n \sim v_n$  si et seulement si  $u_n v_n = o(v_n)$ .
- **3.** Si  $u_n \sim v_n$  et  $u_n \to \ell$ , alors  $v_n \to \ell$ .

#### **Proposition 20**

Si  $u_n \sim a_n$ ,  $v_n \sim b_n$ , et  $k \in \mathbb{N}$ , alors :

- $u_n \times v_n \sim a_n \times b_n$ .



#### **Attention**

La relation  $\sim$  n'est pas compatible avec l'addition. Par exemple:

$$n^2 - 2n \sim n^2 - n$$
 et  $-n^2 \sim -n^2$ ;

mais en ajoutant membre à membre :

$$-2n \nsim -n$$
.



# VII. Exercices

#### Exercice 1.

Donner sans justification les bornes supérieures et inférieures de chacun des ensembles suivants :

- A = [3;7].  $B = [0;1] \cup [2;3]$ .  $C = \{\sin x \mid x \in \mathbb{R}\}$ .  $D = \{\frac{1}{n} + \frac{1}{m} \mid n \in \mathbb{N}^*, m \in \mathbb{N}^*\}$

### Exercice 4 (6).

Soit  $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$ .

- 1. Déterminer le plus petit entier naturel n tel que  $\frac{1}{n} < \epsilon$  dans chacun des cas suivants :

#### Exercice 2.

Justifier la réponse pour la borne supérieure de l'ensemble C dans l'exercice précédent.

#### Exercice 3.

Si x est un réel, la partie entière de x est le plus grand entier n qui est inférieur ou égal à x. On note  $\lfloor x \rfloor$  cette partie entière.

- 1. Donner les valeurs de  $\lfloor \frac{3}{4} \rfloor$ ,  $\lfloor \pi \rfloor$ ,  $\lfloor 2 \rfloor$  et  $\lfloor -1, 5 \rfloor$ .
- **2.** Construire la courbe de la fonction  $x \mapsto |x|$ .
- 3. Donner sans justification un encadrement de  $\lfloor x \rfloor$  qui n'utilise pas la partie entière.
- **4.** En déduire que pour tous réels *a*, *b* :

$$\lfloor a \rfloor + \lfloor b \rfloor \leq \lfloor a + b \rfloor$$
.

#### Exercice 5.

La suite  $(u_n)_{n\in\mathbb{N}}$  est définie par  $u_0 = 1$  et la relation de récurrence

$$u_{n+1} = 0.5u_n + 3$$

pour tout  $n \in \mathbb{N}$ .

- 1. Calculer  $u_1$ ,  $u_2$  et  $u_3$ .
- 2. Tracer dans un même repère les droites d'équations y = x et y = 0.5x + 3 sur l'intervalle [0; 10] (on prendra 1 cm ou 1 carreau comme unité graphique).
- **3.** Construire  $u_1$ ,  $u_2$  et  $u_3$  sur l'axe des abscisses.

#### Exercice 6.

Soit  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto -x^2 + 2x$ .

La suite  $(u_n)_{n\in\mathbb{N}}$  est définie par  $u_0=0,5$  et la relation de récurrence

$$u_{n+1} = f\left(u_n\right)$$

pour tout  $n \in \mathbb{N}$ .

- 1. Étudier les variations de f sur l'intervalle [0;1].
- **2.** Tracer dans un même repère les courbes d'équations y = x et y = f(x) sur l'intervalle [0;1] (on prendra 10 cm ou 10 carreaux comme unité graphique). Construire  $u_1$ ,  $u_2$  et  $u_3$  sur l'axe des abscisses.

#### Exercice 7 (11).

La suite  $(u_n)_{n\in\mathbb{N}}$  est définie par  $u_0 = 3$  et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n),$$

où  $f: x \mapsto -\frac{1}{2}x + 1$ 

- **1. a.** Construire dans un même repère, sur l'intervalle [-1;4], la droite d'équation y = x et la droite représentant la fonction f.
  - **b.** Construire  $u_1$ ,  $u_2$  et  $u_3$  sur l'axe des abscisses.
- **2.** On pose  $v_n = u_n \frac{2}{3}$  pour tout  $n \in \mathbb{N}$ .
  - **a.** Prouver que  $(v_n)_{n\in\mathbb{N}}$  est géométrique.
  - **b.** Soit  $n \in \mathbb{N}$ . Exprimer  $v_n$ , puis  $u_n$ , en fonction de n.

### Exercice 8 (8).

La suite  $(u_n)_{n\in\mathbb{N}}$  est définie par  $u_0=1$ ,  $u_1=4$  et la formule de « récurrence double » :

$$\forall n \in \mathbb{N}, \ u_{n+2} = 5u_{n+1} - 6u_n.$$

- 1. Calculer  $u_2$  et  $u_3$ .
- **2.** Démontrer que pour tout  $n \in \mathbb{N}$ :

$$u_n = 2 \times 3^n - 2^n$$

#### Exercice 9 (11).

Dans chaque cas, dire si la suite est majorée, minorée, croissante, décroissante.

- 1.  $u_n = 0.5^n$  pour tout  $n \in \mathbb{N}$ .
- **2.**  $v_n = n^2$  pour tout  $n \in \mathbb{N}$ .
- 3.  $w_n = \frac{n}{n+1}$  pour tout  $n \in \mathbb{N}$ .

#### Exercice 10 (11).

On reprend la suite de l'exercice 5.

1. Démontrer par récurrence que

$$u_n \le u_{n+1} \le 6$$

pour tout  $n \in \mathbb{N}$ .

**2.** La suite  $(u_n)_{n\in\mathbb{N}}$  est-elle croissante? Décroissante? Majorée? Minorée? Bornée?

#### Exercice 11 (**6**).

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite constante égale à c. Prouver que  $\lim u_n = c$ .

#### Exercice 12 (8).

Soit 0 < q < 1. Prouver que  $\lim q^n = 0$ .

#### Exercice 13 (8).

Soient  $(v_n)_{n\in\mathbb{N}}$  une suite bornée et  $(u_n)_{n\in\mathbb{N}}$  une suite qui converge vers 0. Prouver que  $\lim (u_n \times v_n) = 0$ .

#### Exercice 14.

Calculer les limites des suites de termes généraux :

- 1.  $u_n = 3 + \frac{1}{n}$
- **2.**  $v_n = \frac{\ln n}{n}$ .
- 3.  $w_n = \frac{3n-5}{4n+1}$
- **4.**  $x_n = \frac{1 \frac{1}{2^n}}{1 + \frac{1}{2^n}}$
- 5.  $y_n = \frac{3^n 1}{3^n + 2^n}$

#### Exercice 15 (11).

La suite  $(u_n)_{n\in\mathbb{N}}$  est définie par  $u_0=6$  et la relation de récurrence

$$u_{n+1} = 0.6u_n - 4$$

pour tout  $n \in \mathbb{N}$ .

On admet qu'elle converge. Calculer sa limite.

#### Exercice 16 (**1** 6).

Pour tout  $n \ge 2$ , on pose  $S_n = \sum_{k=2}^n \frac{1}{k(k-1)}$ .

- 1. Soit  $n \ge 2$ . En remarquant que  $\frac{1}{k(k-1)} = \frac{1}{k-1} \frac{1}{k}$  pour tout  $2 \le k \le n$ , prouver que  $S_n = 1 \frac{1}{n}$ .
- 2 En déduire lim S

#### Exercice 17 $(\hat{\mathbf{1}})$ .

Soit q un réel tel que |q| < 1. On pose  $S_n = \sum_{k=0}^n q^k$ .

- 1. Rappeler la formule pour  $S_n$  vue dans le chapitre 7.
- **2.** En déduire la limite de  $(S_n)_{n \in \mathbb{N}}$ .
- **3.** Calculer également  $\lim S'_n$ , où  $S'_n = \sum_{k=1}^n q^k$ .

Exercice 18 ( $\stackrel{\frown}{m}$ ). Calculer  $\lim \frac{\sin n}{n}$  et  $\lim \frac{(-1)^n}{n}$ .

#### Exercice 19 $(\underline{\hat{\mathbf{m}}})$ .

**1.** Prouver que pour tout  $n \in \mathbb{N}^*$ :

 $ln(n!) \le n ln n$ .

**2.** Calculer  $\lim \frac{\ln(n!)}{n^2}$ .

#### Exercice 20 ( $\stackrel{\frown}{\blacksquare}$ $\stackrel{\frown}{\bullet}$ ).

La suite  $(u_n)_{n \in \mathbb{N}}$  est définie par  $u_0 = \frac{3}{2}$  et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = 1 + \frac{2}{u_n}.$$

**1.** Démontrer que pour tout  $n \in \mathbb{N}$  :

$$\frac{3}{2} \le u_n \le 4.$$

**2.** En déduire que pour tout  $n \in \mathbb{N}$ :

$$|u_n-2| \le \frac{1}{2} \left(\frac{2}{3}\right)^n.$$

3. Prouver que  $(u_n)_{n\in\mathbb{N}}$  converge et déterminer sa

#### Exercice 21 (informel).

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite. On sait que toute sous-suite est de la forme  $(u_{\phi(n)})_{n\in\mathbb{N}}$ , où  $\phi:\mathbb{N}\to\mathbb{N}$  est strictement croissante.

Déterminer  $\phi$  pour chacune des sous-suites cidessous:

- 1.  $(u_1, u_3, u_5, u_7, u_9, ...)$ .

#### Exercice 22.

On pose  $u_n = \sin\left(\frac{n\pi}{4}\right)$  pour tout  $n \in \mathbb{N}$ . Prouver que  $(u_n)_{n\in\mathbb{N}}$  diverge.

#### Exercice 23 (6).

On pose  $u_n = \cos n$  et  $v_n = \sin n$  pour tout  $n \in \mathbb{N}$ . On suppose que  $(u_n)_{n\in\mathbb{N}}$  converge vers une limite

**1.** En utilisant la sous-suite  $(u_{2n})_{n\in\mathbb{N}}$ , prouver que

$$\ell = 2\ell^2 - 1.$$

Quelles sont les valeurs possibles de  $\ell$  d'après cette égalité?

2. On a vu dans la leçon sur les nombres complexes que pour tout  $x \in \mathbb{R}$ ,

$$\cos^3 x = \frac{1}{4}\cos(3x) + \frac{3}{4}\cos x.$$

En déduire que  $\ell = 1$ , puis que  $(v_n)_{n \in \mathbb{N}}$ converge vers 0.

**3.** En utilisant la sous-suite  $(u_{n+1})_{n\in\mathbb{N}}$ , aboutir à une contradiction. Conclusion?

#### Exercice 24 (6).

En utilisant la définition, prouver que

$$\lim \frac{n-3}{4} = +\infty.$$

### Exercice 25 (6).

Démontrer la proposition de limite par comparaison (proposition 15).

### Exercice 26 $(\hat{\mathbf{m}})$ .

On reprend la suite des exercices 5 et 10.

Démontrer qu'elle converge et déterminer sa limite.

## Exercice 27 (**1 6**).

On reprend la suite de l'exercice 6. On rappelle qu'elle est définie par  $u_0 = 0.5$  et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n),$$

où  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto -x^2 + 2x$ .

- 1. Rappeler les variations de f sur [0;1].
- **2.** Démontrer que pour tout entier naturel n:

$$0 \le u_n \le u_{n+1} \le 1$$
.

**3.** En déduire que  $(u_n)_{n\in\mathbb{N}}$  converge, puis déterminer sa limite.

#### Exercice 28 (**1 6**).

La suite  $(u_n)_{n\in\mathbb{N}}$  est définie par  $u_0 = 4$  et la relation

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n),$$

- **1.** Étudier les variations de f sur [1;4].
- **2.** Démontrer que pour tout entier naturel n:

$$1 \le u_{n+1} \le u_n \le 4.$$

**3.** En déduire que  $(u_n)_{n\in\mathbb{N}}$  converge, puis déterminer sa limite.

#### Exercice 29 (**1 6**).

Pour tout entier  $n \ge 1$ , on pose  $T_n = \sum_{k=1}^n \frac{1}{k^2}$ .

- 1. Démontrer que pour tout entier  $n \ge 2$ ,  $T_n \le$  $1+S_n$ , où  $(S_n)_{n\geq 2}$  est la suite définie dans l'exer-
- **2.** En déduire que  $(T_n)_{n\geq 1}$  converge.

#### Exercice 30 $(\hat{\mathbf{m}})$ .

On définit une suite  $(w_n)_{n\in\mathbb{N}}$  par  $w_0 = 2$  et

$$w_{n+1} = w_n + \frac{1}{w_n}$$

pour tout  $n \in \mathbb{N}$ . On admet que cette suite est à termes positifs.

- **1.** Étudier les variations de  $(w_n)_{n \in \mathbb{N}}$ .
- 2. En raisonnant par l'absurde, prouver que

### Exercice 31 (**6**).

Pour tout entier  $n \ge 1$ , on pose  $H_n = \sum_{k=1}^{n} \frac{1}{k}$ .

**1.** Démontrer que pour tout entier  $n \ge 1$ ,

$$H_{2n} - H_n \ge \frac{1}{2}.$$

**2.** En déduire la limite de  $(H_n)_{n \in \mathbb{N}^n}$ 

On pose  $u_n = \sum_{k=1}^{n} \frac{1}{k^2}$  et  $v_n = u_n + \frac{1}{n}$  pour tout entier

Prouver que les suites  $(u_n)_{n\in\mathbb{N}^*}$  et  $(v_n)_{n\in\mathbb{N}^*}$  sont ad-

#### Exercice 33 (6).

On pose  $u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$  pour tout entier  $n \ge 0$ .

- 1. Écrire en extension les termes  $u_0$  à  $u_5$ .
- **2.** Prouver que  $(u_{2n})_{n\in\mathbb{N}}$  est décroissante.

On admet que  $(u_{2n+1})_{n\in\mathbb{N}}$  est croissante (la preuve est similaire).

- **3.** Prouver que les suites  $(u_{2n})_{n\in\mathbb{N}}$  et  $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- En déduire que  $(u_n)_{n\in\mathbb{N}}$  converge.

#### Exercice 34 $(\hat{\mathbf{1}})$ .

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse. Justifier.

#### Exercice 35 $(\underline{\mathbf{m}})$ .

- **1.** Que peut-on dire d'une suite  $(u_n)_{n\in\mathbb{N}}$  vérifiant
- **2.** Que peut-on dire d'une suite  $(u_n)_{n\in\mathbb{N}}$  vérifiant

#### Exercice 36 $(\hat{\mathbf{1}})$ .

Les trois questions sont indépendantes.

- **1.** On suppose que  $u_n \sim v_n$  et que  $v_n \sim w_n$ . Prou-
- **2.** On suppose que  $u_n \to \ell$  et que  $v_n \sim u_n$ . Prouver
- 3. Démontrer l'équivalence :

$$u_n \sim v_n \iff u_n - v_n = o(v_n)$$
.

#### Exercice 37 $(\hat{\mathbf{m}})$ .

Démontrer les propositions :

- 1.  $\frac{1}{n} \frac{1}{n+1} \sim \frac{1}{n^2}$ . 2.  $\frac{(n+1)\ln n}{n\ln(2n)} \to 1$ . 3.  $\exists N \in \mathbb{N}, \forall n \ge N, n^2 \le e^{0.1n}$ .
- **4.**  $\exists N \in \mathbb{N}, \forall n \ge N, n^{0.03} \ge 100(\ln n)^2$ .