PROTOCOALE DE COMUNICATIE № 1

Universitatea Politehnica din Bucuresti

15/03/2020

1 Prezentare generala

In cadrul temei vom implementa procesul de dirijare a pachetelor dintr-un router (forwading in engleza). Un router are doua parti, astfel:

- Data-plane care implementeaza procesul de dirijare. Tema voastra este implementarea acestei componente. In cele ce urmeaza, in lipsa altor precizari, toate referintele la router din textul temei se refera la partea de dirijare a pachetelor.
- Control plane componenta care implementeaza algoritmii de rutare e.g. RIP, OSPF, BGP; acesti algoritmi distribuiti calculeaza routele pentru fiecare retea destinatie si le insereaza in dataplane. NU este nevoie sa implementati acesti algoritmi pentru aceasta tema. Routerul vostru va functiona cu o tabela de rutare statica, data intr-un fisier de intrare, si care nu se schimba in timpul rularii routerului.

Un router are mai multe interfete si poate receptiona datagrame pe oricare dintre acestea. Routerul trebuie sa transmita pachetul mai departe, catre un calculator sau alt router direct conectat, in functie de regulile din tabela de rutare. Se cere implementarea procesului de dirijare a routerului.

2 Procesul de dirijare

Procesul de dirijare constă în primirea unui pachet, investigarea tabelei de rutare, descoperirea rutei corespunzătoare și dirijarea pachetului. Dirijarea este un proces care are loc la nivelul 3 (Retea) din stiva OSI, lucrând cu adresa IP destinatie din pachetele dirijate.

Rutele (in numar arbitrar de mare) se găsesc în tabela de rutare și constau din două elemente:

- partea de match: adresa de rețea destinație (adresă și mască de rețea).
- partea de acțiune: următorul dispozitiv de rutare (next hop) (sau interfața de ieșire)

Tabela de routare din cadrul temei va fi structurata ca in exemplul de mai jos.

Listing 1: Tabela de rutare

```
Prefix Next hop Mask Interface
192.168.0.0 192.168.0.2 255.255.255.0 0
192.168.1.0 192.168.1.2 255.255.255.0 1
```

```
192.168.2.0 192.168.2.2 255.255.255.0 2
192.168.3.0 192.168.3.2 255.255.255.0 3
```

Nota: tabela de mai sus este data cu scop informativ. Tabelele folosite pentru testarea temelor pot contine oricate intrari, oricate interfete, si adrese next hop si masti arbitrare.

În momentul în care un dispozitiv care rutează primește un pachet, extrage adresa IP destinație, localizează cea mai specifica intrare din tabela de rutare care se potriveste cu pachetul si dirijează (retransmite) pachetul către următorul ruter (next hop).

Functionalitatile routerului, executate intr-o bucla infinita, sunt:

- 1. Primeste un pachet de la oricare din interfetele adiacente.
- 2. Daca este un pachet IP destinat routerului, raspunde doar in cazul in care acesta este un pachet ICMP ECHO request. Arunca pachetul original.
- 3. Dace este un pachet ARP Request catre un IP al routerului, raspunde cu ARP Reply cu adresa MAC potrivita.
- 4. Daca este un pachet ARP Reply, updateaza tabela ARP; daca exista pachete ce trebuie dirijate catre acel router, transmite-le acum.
- 5. Daca este un pachet cu TTL <= 1, sau un pachet catre o adresa inexistenta in tabela de rutare, trimite un mesaj ICMP corect sursei (vezi mai jos); arunca pachetul.
- 6. Daca este un pachet cu checksum gresit, arunca pachetul.
- 7. Decrementeaza TTL, updateaza checksum.
- 8. Cauta intrarea cea mai specifica din tabela de rutare (numita f) astfel incat (iph-> daddr&f.mask == f.prefix). Odata identificata, aceasta specifica next hop pentru pachet. In cazul in care nu se gaseste o ruta, se trimite un mesaj ICMP sursei; arunca pachetul
- 9. Modifica adresele source si destination MAC. Daca adresa MAC nu este cunoscuta local, genereaza un ARP request si transmite pe interfata destinatie. Salveaza pachetul in coada pentru transmitere. atunci cand adresa MAC este cunoscuta (pasul 4).
- 10. Trimite pachetul mai departe folosind functia send_packet(...).

Procesul se reia pe următorul router până când pachetul ajunge la destinație. In cadrul temei, va exista un singur router care este conectat direct la un numar de calculatoare gazda emulate (host-uri).

Implementarea routerului se va face in router.c. Datagramele primite/trimise de router vor avea urmatorul format:

Listing 2: Functionalitati router.

```
typedef struct {
```

```
int len;
    char payload[MAX_LEN];
    int interface;
} packet;
```

In scheletul routerului se gasesc doua functii get_packet care primeste o datagrama si send_packet care trimite o datagrama pe o interfata specificata.

Listing 3: Functionalitati router.

```
/*
    send_packet nu va elibera memoria pachetului. intoarce zero in caz
    de eroare.
*/
int send_packet(int interface, packet *m);

/*
    receive_packet scrie un pachet la adresa primita
    intoarce 0 in caz de eroare.
*/
int get_packet(packet *m);
```

3 Protocoale utilizate

In schelet apar urmatoarele structuri pentru headere protocoalelor utilizate. Puteti sa le folositi sau sa va definiti propria voastra structura.

3.1 Ethernet

In cadrul temei o sa lucrati cu frame-uri de Ethernet. Trebuie sa intelegeti ideea de MAC destinatie si sursa si faptul ca atunci cand un packet este trimis catre next hop schimbam adresa sursa si adresa destinatie a pachetului.

In headerul de sistem netinet/if_ether.h, puteți găsi o descriere C a antetului de Ethernet sub forma structurii struct ether_header.

3.2 IP

Un pachet IP poate avea ca destinatie una din adresele IP ale routerulu sau poate fi destinat in alta retea. Pachetele cu destinatia diferita de interfetele routerului urmaresc procesul normal de forwarding.

În headerul de sistem netinet/ip.h, puteți găsi o descriere C a antetului de Ethernet sub forma structurii struct iphdr.

3.3 ARP

Protocolul ARP este utilizat pentru a determina adresa MAC a next hop-ului. Astfel, routerul va trebui sa genereze mesaje de tip ARP REQUEST si ARP RESPONSE. Pentru a evita poluarea retelei cu cereri ARP va trebui sa stocati datele intr-o tabela ARP. Structura tabelei este la latitudinea voastra.

Cererile ARP vor fi trimise ca broadcast(ff:ff:ff:ff). Raspunsurile ARP sunt trimise catre adresa MAC a host-ului ce a facut cererea.

În headerul de sistem net/if_arp.h, puteți găsi o descriere C a antetului de Ethernet sub forma structurii struct arphdr.

3.4 ICMP

Un pachet IP poate contine un mesaj ICMP. Routerul va trebui sa genereze urmatoarele mesaje ICMP ca raspuns:

- Echo reply (type 0) Trimis ca raspuns la un echo request(ping). Trebuie sa raspundeti doar mesajelor ICMP care sunt adresate routerului.
- **Destination unreachable** (type 3, code 0) Trimis in cazul in care nu exista ruta pana la destinatie, atunci cand pachetul nu este destinat routerului.
- Time exceeded Trimis daca TTL-ul este 0.

În headerul de sistem netinet/ip_icmp.h, puteți găsi o descriere C a antetului de Ethernet sub forma structurii struct icmphdr.

4 API suplimentar

Vă punem la dispoziție în schelet un API pentru folosirea unei cozi. Urmăriți comentariile din fișierul include/queue.h.

5 Cerinte tema

Descarcati arhiva temei intr-un director nou si dezarhivati-o; implementati solutia in acest director.. Creati reteaua virtuala folosind comanda de mai jos. Aceasta va porni 6 terminale: 4 pentru hosts, 1 pentru router si 1 pentru controller(nu vom interactiona cu el). Pe hosts se pot rula comenzi precum ping, wget, nc etc. Pe router vom rula programul rezultat in urma rularii comenzii make. In cadrul temei vom lucra in fisierul router.c.

- Scrieti cod care parseaza tabela de rutare (10p). Daca folositi functia de parsare din laboratorul 4 (parser.o + parser.h), pierdeti cele 10p pentru aceasta cerinta.
- Implementati protocolul ARP (30p). Tema se poate preda si cu o tabela de ARP statica, cu pierderea punctajului aferent.

• Implementati procesul de dirijare (25p).

Algoritmul de cautare in tabela de rutare trebuie sa aiba o complexitate O(log(n)) sau O(1), unde n este dimensiunea tabelei de rutare (15p). Implementarea unei cautari liniare duce la pierderea celor 15p.

Atentie: In cazul in care un pachet trebuie trimis mai departe dar inainte de dirijare se face un ARP Request, atunci pachetul va fi pus intr-o coada si va fi dirijat dupa ce s-a primit ARP Reply-ul.

- Implementati suport pentru protocolul ICMP (20p).
- BONUS: Implementati modificarea checksumului dupa decrementarea TTL folosind algoritmul incremental din RFC 1624. (10p)

6 Testare

Vom folosi mininet pentru a simula o rețea cu următoarea topologie:

Aveți la dispoziție un script de Python3, topo.py, pe care îl puteți rula pentru a realiza setupul de testare. Acesta trebuie rulat ca root:

\$ sudo python3 topo.py

Astfel, se va inițializa topologia virtuală și se va deschide câte un terminal pentru fiecare host, cât și un terminal pentru router și unul pentru controller (cu care nu vom interacționa); terminalele pot fi identificate după titlu. Din terminalele cu nume de forma "h-X", puteți folosi comenzi care generează trafic în IP pentru a testa funcționalitatea routerului implementat. Vă recomandăm arping, ping și netcat.

Deasemenea, vă punem la dispoziție și o suită de teste, pe care o puteți rula cu argumentul "tests":

În urma rulării testelor, va fi generat un folder host_outputs care conține, pentru fiecare test, un folder cu outputul tuturor hoștilor (ce au scris la stdout și stderr). În cazul unui test picat, s-ar putea să găsiți utilă informația de aici, mai ales cea din fișierele de stderr.

Notă: Scopul testelor este de a ajuta cu dezvoltarea și evaluarea temei. Mai presus de rezultatul acestora, important este să implementați *cerința*. Astfel, punctajul final poate diferi de cel tentativ acordat de teste, în situațiile în care cerința temei nu este respectată (un caz extrem ar fi hardcodarea outputului pentru fiecare test în parte). Vă încurajăm să utilizați modul interactiv al topologiei pentru a explora și alte moduri de testare a temei (e.g. ping, arping).

Trimitere

Tema trebuie trimisă pe vmchecker v2, la această adresă. Pentru trimitere este necesară o arhivă zip cu numele Nume_Prenume_Grupa.zip care să conțină, in radacina urmatoarele fisiere:

- README: în care să explicați pe larg abordarea implementării și problemele întâmpinate.
- Codul sursă al routerului, inclusiv scheletul pentru tema (include/ etc.) si eventual alte fisiere adaugate de voi in rezolvare.
- Makefile: checkerul va rula make fără niciun argument.

Nu este nevoie să includeti fisierele din checker sau tabela de rutare.

Notă: Nu folositi Vmchecker2 pentru a face debugging la tema. Tema trebuie dezvoltata si testata temeinic pe calculatorul vostru, cu trafic serios (e.g. iperf), cu multe intrari in tabela de routare (de exemplu 100K), si incarcata doar atunci cand sunteti convinsi ca este corecta.

Notă: Supraincarcarea Vmchecker2 prin submisii succesive ale aceeasi versiuni ale temei, poate duce la depunctare.

Notă: Orice probleme de punctare a temelor de catre Vmchecker2, daca exista, vor fi solutionate de catre echipa de la PC pana punctajele finale vor fi anuntate. Nu vor fi acordate extensii ale termenului daca unele teste din Vmchecker2 sunt gresite; daca gasiti astfel de teste, va rugam sa le semnalati. Ele vor fi rezolvate pana la anuntarea notelor finale pe tema.

Notă: Punctajul raportat de Vmchecker2 este informativ, nu final. Laborantii vor verifica temele si pot decide sa scada punctajul daca solutia este gresita (e.g. hardcoding), daca indentarea si alte reguli de lizibilitate nu sunt respectate (maxim 5% din punctaj), etc.

Deadline

Tema trebuie trimisa pana pe data de 5 aprilie 2020, ora 23:59, pentru obtinerea punctajului total de 100p. Pentru fiecare zi intarziere dupa acest termen, punctajul maxim pentru tema scade cu 10p. Numarul maxim de zile de intarziere este 7.

Termenul este hard: nu vor fi acordate nici un fel de extensii.

Dependinte tema

Pentru a simula o retea virtuala in care sa testam ruterul nostru, vom folosi emulatorul de retea Mininet. Vom avea nevoie de urmatoarele pachete: mininet si openvswitch-testcontroller. Tema va fi rulata pe Linux (recomandam Ubuntu 18.04). Aici puteti gasi o masina virtuala cu Ubuntu 18.04.

Listing 4: Instalare software necesar pentru tema

```
sudo apt install mininet openvswitch-testcontroller xterm python3-pip
sudo cp /usr/bin/ovs-testcontroller /usr/bin/ovs-controller
sudo pip3 install scapy
sudo pip3 install pathlib
sudo pip3 install git+https://github.com/mininet/mininet.git
```

7 FAQ

· Nu imi apar terminalele cand rulez mininet.

```
sudo apt install xterm
```

In cazul in care portul este ocupat rulati sudo fuser -k 6653/tcp

```
Exception: Please shut down the controller which is running on \hookleftarrow port 6653
```

 Daca aveti eroarea de mai jos trebuie sa instalati openvswitch-testcontroller si creat fisierul /usr/bin/ovs-controller

```
raise Exception( 'Could not find a default OpenFlow controller')
```

Cum extrag header-ul IP dintr-un pachet de tip msg?

```
struct iphdr *ip_hdr = (struct iphdr *)(packet.payload + sizeof(
    struct ether_header));
```

Cum pot vedea traficul de pe interfata X?

```
tcpdump -n -i X
```

• Cum pot reprezenta o adresa IP in memorie?

```
uint32_t
```

· Cum afisez interfetele unui host?

```
ip a s
```

Valorile primite pe retea nu coincid cu valorile la care ma asteptam, ce fac?

Pachetele primite sunt in format big endian, folositi urmatoarele functii pentru a face trecerea intre Little Endian si Big Endian.

```
uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);
```

· Cum initializez o coada?

```
queue q;
q = queue_create();
```

· Cum adaug un element in coada?

```
queue_enq(q, packet);
```

• Am implementat totul si nu imi trec testele.

In cazul in care ati sortat tabela de rutare la pornirea router-ului, aveti grija ca sortarea sa aiba o complexitate de O(n log n). Mai mult, aveti grija ca router-ul sa porneasca in maxim 2 secunde.

References

- [1] RFC 791 Internet Protocol
- [2] RFC 826 An Ethernet Address Resolution Protocol

- [3] RFC 894 A Standard for the Transmission of IP Datagrams over Ethernet Networks
- [4] RFC 792 Internet Control Message Protocol
- [5] RFC 1624 Computation of the Internet Checksum via Incremental Update