# Preprocessing & Feature extraction

Hyunjoong Kim

soy.lovit@gmail.com

github.com/lovit

- 데이터를 테이블 형식으로 표현하는 경우가 많습니다.
  - 하나의 데이터 (row, data, point, instance, record, ...) 는 이를 설명하는 변수 (column, feature, column, variables) 로 구성되어 있습니다.

|       | datetime     | temperature | humidity | wind speed | demand |
|-------|--------------|-------------|----------|------------|--------|
| row 1 | 2016. 06. 25 | 33          | 45       | 3.5        | 254    |
| row 2 | 2016. 05. 21 | 23          | 21       | 4.3        | 761    |
| row 3 | 2016. 05. 23 | 27          | 57       | 2.1        | 340    |
| row 4 |              |             |          |            |        |

- 데이터의 종류는 다양합니다.
  - 테이블 외에도 "이미지", "텍스트", "음성", "영상", "그래프" 등이 있습니다.
  - 앞서 살펴본 선형회귀나 로지스틱 분류모델을 이용하기 위해서는 데이터를 벡터로 표현해야 합니다.

- 때로는 변수를 "정보력이 더 좋은 벡터"로 가공해야 합니다.
  - 명목형 변수는 dummy variables 로 치환이 가능합니다.
  - 범위가 다른 연속형 변수들은 스캐일링 (scaling) 이 필요할 때도 있습니다.
  - 연속형 변수를 명목형 변수로 묶을 수도 있습니다 (binning)

categorical different scaled variable numerical variable

|             | Survived  | Pclass | Sex    | Age  | Fare    |
|-------------|-----------|--------|--------|------|---------|
|             | Jul viveu | PCIdSS | Sex    | Age  | raie    |
| Passengerld | <br>      |        |        |      |         |
| 1           | 0         | 3      | male   | 22.0 | 7.2500  |
| 2           | 1         | 1      | female | 38.0 | 71.2833 |
| 3           | 1         | 3      | female | 26.0 | 7.9250  |
| 4           | 1         | 1      | female | 35.0 | 53.1000 |
| 5           | 0         | 3      | male   | 35.0 | 8.0500  |
| 6           | 0         | 3      | male   | NaN  | 8.4583  |
| 7           | 1<br>1 0  | 1      | male   | 54.0 | 51.8625 |
| 8           | 0         | 3      | male   | 2.0  | 21.0750 |
| 9           | 1         | 3      | female | 27.0 | 11.1333 |
| 10          | 1         | 2      | female | 14.0 | 30.0708 |
|             |           |        |        | L    | i       |

- 벡터 공간을 이용하는 머신러닝 알고리즘이 잘 작동하기 위해서는 과업에 적합한 형태로 정보를 가공할 필요가 있습니다.
  - Feature engineering 은 정보력이 좋은 변수들을 가공하여 과업의 성능을 향상하기 위한 일련의 과정입니다.
  - feature generation / vectorizing : 새로운 변수를 생성하거나 데이터를 벡터로 표현
  - feature selection : 변수 중 필요한 것을 선택
  - feature extraction/transformation : 주어진 변수를 이용하여 새로운 변수를 생성

• 벡터 공간을 이용하는 머신러닝 알고리즘이 잘 작동하기 위해서는 과업에 적합한 형태로 정보를 가공할 필요가 있습니다.



직교좌표계에서 선형 모델로 두 클래스를 구분할 수 없지만, 동일한 데이터를 극좌표계로 표현하면 구분이 가능하기도 합니다.

• 벡터 공간을 이용하는 머신러닝 알고리즘이 잘 작동하기 위해서는 과업에 적합한 형태로 정보를 가공할 필요가 있습니다.



• 이미지는 그 자체로 벡터로 인식될 수 있습니다.



- 이미지 파일을 읽으면 주로 RGB 색체계를 이용한 3차원 tensor 가 됩니다.
  - 3차원 tensor 는 행렬이 3개 겹쳐져 있는 형식입니다.

```
from matplotlib.pyplot import imshow
from matplotlib.pyplot import figure
from skimage.io import imread

image = imread('lalaland.jpg')
print(type(image))
print(image.shape)

<class 'numpy.ndarray'>
(1377, 2000, 3)
```



• 각 행렬을 flatten 한다음 이어붙이면 벡터로 표현됩니다.



• 이후 모델에 벡터가 입력되어 과업을 수행할 수 있습니다.

$$y = f(x \mid W, b) = W \cdot x + b$$



#### Text as vector

• 문서/문장은 등장한 단어의 빈도를 이용하여 벡터로 표현할 수 있습니다.

|       | 기계  | 학습  | 이니  | 텍스트 | 마이닝 | 니   |
|-------|-----|-----|-----|-----|-----|-----|
| Doc 1 | 3   | 2   | 5   | 0   | 0   | 0   |
| Doc 2 | 0   | 0   | 0 3 |     | 5   | 5   |
| •••   | ••• | ••• | ••• | ••• | ••• | ••• |

Doc 1 = [(0, 3), (1, 2), (2, 5)]

Doc 2 = [(3, 3), (4, 5), (5, 5)]



|       | 0   | 1   | 2   | 3   | 4   | 5   |
|-------|-----|-----|-----|-----|-----|-----|
| Doc 1 | 3   | 2   | 5   | 0   | 0   | 0   |
| Doc 2 | 0   | 0   | 0   | 3   | 5   | 5   |
| •••   | ••• | ••• | ••• | ••• | ••• | ••• |

#### Text as vector

#### article



박태환이 금지 약물 양성반응 통보를 받은 이후에 '도핑 파문'이 일어난 T 병원 김모 원장과 나눈 대화 내용을 녹음해 검찰에 제출한 것으로 알려졌다. 일부 매체는 이에 대해 "박태환이 김 원장에게 '아무 문제가 없는 주사약이라고 해놓고 이게 무슨 일이냐'라고 강하게 따진 것으로 전해졌 …



토크나이징/ 품사판별 후

[박태환/N] [이/J] [금지/N] [약물/N] [양성반응/N] [통보/N] [를/J] …



| Feature extraction | Term      | 박태환/N | - <del>01/J</del> | 금지/N | 약물/N | 양성반응/N | 통보/N | 를/J | ••• |
|--------------------|-----------|-------|-------------------|------|------|--------|------|-----|-----|
|                    | frequency | 28    | 35                | 12   | 15   | 13     | 5    | 32  |     |



| Vector representation | Term      | 1  | 55 | 21 | 3  | 27 | • • • |
|-----------------------|-----------|----|----|----|----|----|-------|
|                       | frequency | 28 | 12 | 15 | 13 | 5  |       |

#### Sound as vector

• 음성은 한 시점 t 에서의 주파수 별 에너지량을 이용하여 시계열 형식의 벡터로 표현할 수 있습니다.



- 이미지/텍스트/음성 등 복잡한 데이터는 특징을 더 잘 표현하는 벡터로 변환하기 위하여 인코딩 과정을 거치는 경우가 많습니다.
  - 데이터마다 적합한 인코딩 과정은 대체로 다릅니다.



- 이미지/텍스트/음성 등 복잡한 데이터는 특징을 더 잘 표현하는 벡터로 변환하기 위하여 인코딩 과정을 거치는 경우가 많습니다.
  - 공통된 목적은 각 과업을 더 쉬운 문제로 만들기 위함입니다.



- 변수  $X^{j}$  의 크기/분포를 조절하는 과정입니다.
  - centering :  $X^j \leftarrow X^j mean(X^j)$
  - Standardization :  $X^j \leftarrow \frac{X^j mean(X^j)}{\sigma_{X^j}}$
  - min-max scaling : 특정 범위내에 값이 존재하도록 특정합니다.
    - $X^j \leftarrow \alpha_j \times (X^j \beta_j)$
    - [0, 1] scaling :  $X^j \leftarrow \frac{X^j \min(X^j)}{\max(X^j) \min(X^j)}$
    - [-1, 1] scaling :  $X^j \leftarrow 2 \times \left(\frac{X^j \min(X^j)}{\max(X^j) \min(X^j)} 0.5\right)$

- 변수  $X^{j}$  의 크기/분포를 조절하는 과정입니다.
  - 변수 별 scale 이 다를 경우, 점들 간 거리를 정의할 때 특정 변수의 영향력이 큽니다.
    - 첫번째 변수의 범위는 [150, 200], 두번째 변수의 범위는 [20.5, 22.5] 라면 두번째 변수가 변화량이 큰 경우이지만, 거리 척도가 이를 반영하지 못합니다.

$$d = |(170, 22) - (160 - 21)|_2$$

• 변수 별 정규화를 통하여 두번째 변수의 영향력이 크도록 벡터를 수정합니다.

$$d = |(0.5, 0.75) - (0.45 - 0.25)|_2$$

- 변수  $X^{j}$  의 크기/분포를 조절하는 과정입니다.
  - 변수 별 scale 이 다를 경우, 내적을 취할 때 특정 변수의 영향력이 큽니다.

• 
$$cos(u, v) = \frac{u \cdot v}{|u|_2 \cdot |v|_2} = \left(\frac{u}{|u|_2}\right) \cdot \left(\frac{v}{|v|_2}\right)$$

- $cos((3,0,4),(4,3,0)) = \frac{12}{5\times5} = 0.48$
- $cos((300,0,4),(400,3,0)) \cong 1$

- 변수  $X^{j}$  의 크기/분포를 조절하는 과정입니다.
  - L2 regularization 은 변수의 스캐일에 영향을 받습니다. 또한 경사하강법을 이용할 때 변수의 스캐일에 따라 gradient 의 값이 달라집니다.
  - 뉴럴 네트워크 모델들은 변수 별 스캐일이 다르면 학습이 잘 이뤄지지 않기도 합니다.

NLL: 
$$\sum_{i=1}^{n} \sum_{j=1}^{K} I(y_i = j) \left( -x_i^T \beta_j + \log \sum_{j}^{K} \exp \left( x_i^T \beta_j \right) \right)$$
$$\frac{\partial l(x_i, y_i)}{\partial \beta_{jq}} = x_{iq} \frac{\exp \left( x_i^T \beta_j \right)}{\sum_{j}^{K} \exp \left( x_i^T \beta_j \right)} - x_{iq} = \mathbf{x}_{iq} (\pi_i - 1)$$

# Binning

- 연속형 변수라 하더라도 유형별로 구분할 때가 있습니다. 이때는 범위를 지정하여 연속형 변수를 이산형으로 변형합니다.
  - (예시) if age < 15 children, else adult
  - (예시) histogram



# Binning

• Multimodal distribution 의 경우에도 standardization 보다 변수의 특징을 잘 표현할 수 있습니다.



#### Feature extraction

- 변수 추출 (extraction) 은 중복된 변수를 제거하는데 이용될 수 있습니다.
  - PCA 는 경향이 비슷한 여러 features 를 하나의 새로운 feature 로 묶을 수 있습니다.
  - Features 의 개수가 줄어들기 때문에 모델의 regularization cost 가 감소합니다.

#### Feature extraction

- 변수 추출은 고차원의 데이터를 2, 3차원으로 압축하여 고차원을 시각적으로 확인하는데 이용될 수 있습니다.
  - t-SNE, UMAP 은 새로운 features 를 만드는 용도가 아닙니다.
  - Input space 에서 가까이 위치한 점들을 2 차원 (임베딩) 공간에서도 가깝게 위치시켜 고차원 공간의 모습을 짐작할 수 있도록 도와줍니다.

- p 차원 X 의 방향적 분포를 잘 설명하는 새로운  $(q \le p)$  차원 직교 좌표를 학습합니다.
- 데이터는 평균이 원점이라 가정합니다





find the most principal component (PC1)

$$w_1 = argmax_{||w||=1} \left\{ \frac{w^T X^T X w}{w^T w} \right\}$$
  $wX^T X w$  (Covariance) 이 가장 큰 방향 벡터  $w$  를 찾습니다



• PC1 을 제외한 값에서 Covariance 가 가장 큰 방향 벡터  $w_{i+1}$  를 찾습니다.



new coordinate system

$$w_k = argmax_{||w||=1} \left\{ \frac{w^T \widehat{X_k}^T \widehat{X_k} w}{w^T w} \right\}$$
  
 $w\widehat{X_k}^T \widehat{X_k} w$  (Covariance) 이 가장 큰 방향 벡터  $w$  를 찾습니다

- PCA 에서 variance 가 큰 방향벡터를 탐색하는 방법으로 Singular Vector Decomposition (SVD) 가 이용됩니다.
  - PCA 는 데이터 평균이 원점이라 가정하기 때문에, 주어진 학습데이터에서 평균값을 뺀 뒤, SVD 를 적용합니다.

• SVD 는 행렬 A 를 다음처럼 세 개의 행렬로 분해합니다.



- *U,V* 는 각각 orthonormal matrix 입니다.
  - 각 행과 열의 벡터의 크기는 1 이며 (normal)
  - $U_i \times U_i^T = 0$ ,  $U_i \cdot U_i^T = 1$  입니다.
  - V 도 동일합니다.



- $\Sigma$  는 PCA 에서의 각 component 별 중요도 (variance proportion) 입니다.
  - min(m,n) 개의 components 에 대한 중요도로 해석할 수 있습니다.



- truncated SVD 는  $\Sigma$  에서 중요한 k 개의 components 만 이용합니다.
  - U, V = k 차원으로 축소한 것으로 해석할 수 있습니다.



- Top principal components 에서 중요한 정보들은 추출이 되었기 때문에 정보의 손실이 적습니다.
- 비슷한 points 에서 함께 등장한 features 의 정보가 각 components 에 저장됩니다.

#### SVD vs PCA



- PCA 는 데이터의 방향적인 경향이 있을 때 잘 작동합니다.
- 데이터의 경향이 방향적이지 않는 경우는 주요 축을 찾을 수 없습니다.



# Kernel Principal Component Analysis (KPCA)

- Kernel PCA 는 분포의 경향을 보존하는 새로운 직교 좌표를 학습합니다.
  - 데이터의 개수가 n 일 때, n 보다 작은 q 차원의 공간을 학습합니다.

• 
$$w_1 = argmax_{||w||=1} \left\{ \frac{w^T K(X,X)w}{w^T w} \right\}$$



$$k(x,y) = (x^Ty + 1)^2$$



#### Kernel Principal Component Analysis (KPCA)

• Kernel 은 데이터 간의 유사성 (proximity) 으로 해석할 수 있습니다.

For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a <u>user-specified feature map</u>:



- Kernel 은 데이터 간의 유사성 (proximity) 으로 해석할 수 있습니다.
  - n 개의 데이터를 유사도 벡터로 representation 을 변환한 뒤, PCA 를 적용한 것과 같습니다.
  - $n \times n$  크기의 kernel matrix 는 점들 간의 유사도 행렬과 같습니다.
  - "유사한 점들이 비슷한 점들"은 kernel PCA 변환 뒤에도 유사한 벡터를 지닙니다.

• 일반적으로 이용되는 kernels 은 아래와 같습니다.

| kernel name | K(x,y)                  |  |  |  |
|-------------|-------------------------|--|--|--|
| Linear      | $x^Ty+c$                |  |  |  |
| Polynomial  | $(x^Ty+a)^d$            |  |  |  |
| RBF kernel  | $\exp(-\beta x-y _2^2)$ |  |  |  |
| Sigmoid     | $tanh(x^Ty+c)$          |  |  |  |
| Cosine      | cos(x, y)               |  |  |  |
| etc         |                         |  |  |  |

• Kernel 의 종류에 따라 같은 데이터도 서로 다른 features 로 변환됩니다.



• Kernel 의 종류에 따라 같은 데이터도 서로 다른 features 로 변환됩니다.



- t-SNE 는 SNE 알고리즘의 문제를 개선한 방법이며, 이후 LargeVis, UMAP으로 발전합니다.
  - SNE  $\rightarrow$  t-SNE  $\rightarrow$  LargeVis  $\rightarrow$  UMAP 의 목적은 모두 input space 에서 가까운 두 점  $x_i, x_j$  가 embedding space 에서 가깝고, input space 에서 먼 두 점은 embedding space 에서도 멀리 떨어지도록 좌표값  $y_i, y_i$  를 학습하는 것입니다.

$$v_{j|i} = \exp\left(-\beta_i |x_i - x_j|_2^2\right)$$

$$p_{j|i} = \frac{v_{j|i}}{\sum_{k \neq i} v_{k|i}}$$
 ,  $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ 

$$w_{ij} = \exp\left(-\left|y_i - y_j\right|_2^2\right)$$

$$q_{ij} = \frac{w_{ij}}{\sum_{p,q \neq p} w_{pq}}$$

$$C_{SNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$



 $p_{ij}, q_{ij}$ 는 확률입니다.  $\sum p_{ij} = 1, \sum q_{ij} = 1$  입니다. i 에서 j 로 이동할 확률이기 때문에 stochastic model 이라 부릅니다.

Finding  $\beta_i$  for each point i to meet certain perplexity with  $v_{i|i}$ 

$$v_{j|i} = \exp\left(-\beta_i \left| \frac{x_i}{x_i} - \frac{x_j}{x_j} \right|_2^2\right)$$

Perplexity =  $2^{H(p)}$ ,  $2^{entropy}$ 



•  $\beta_i$  에 의하여  $v_{j|i}$  분포가 변화합니다.  $\beta_i$  가 크면 가까운 점들만 큰  $v_{j|i}$  가 만들어집니다.

- Entropy 는 확률 분포의 불확실성을 정의하는 방법입니다.
  - $entropy(p) = -\sum_{p} p \log p$

•  $P(x) = \{a: 0.3, b: 0.4, c: 0.3\}$  에서 하나를 선택할 때, 결과를 예상하기 어렵습니다.  $entropy(P(x)) = -(0.3 \times \log 0.3 + 0.4 \times \log 0.4 + 0.3 \times \log 0.3)$ 

- Entropy 는 확률 분포의 불확실성을 정의하는 방법입니다.
  - $entropy(p) = -\sum_{p} p \log p$

•  $P(x) = \{a: 0.99, b: 0.005, c: 0.005\}$  에서 하나를 선택하면 거의 a 일 것입니다.  $entropy(P(x)) = -(0.99 \times \log 0.99 + 0.005 \times \log 0.005 + 0.005 \times \log 0.005) = 0.063$ 

Finding  $\beta_i$  for each point i to meet certain perplexity with  $v_{j|i}$ 

$$v_{j|i} = \exp\left(-\beta_i \left| \frac{x_i}{x_i} - \frac{x_j}{x_j} \right|^2\right)$$

Perplexity =  $2^{H(p)}$ ,  $2^{entropy}$ 



• 사용자에 의하여 특정 perplexity 가 주어지면 이를 맞추기 위해  $\beta_i$  를 조절합니다. Perplexity 가 작을수록 주위의 (local) 점들만 집중하여  $v_{j|i}$  가 큰 값이 만들어집니다.

$$C_{SNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

$$\frac{dC_{SNE}}{dy_i} = 4\sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j)$$



Input space 에서  $x_i, x_j$  가 가깝다면 ( $p_{ij}$  가 크다면) embedding space 에서  $y_i, y_j$  도 가깝도록  $y_i$  를 이동합니다.



$$C_{SNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

$$\frac{dC_{SNE}}{dy_i} = 4\sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j)$$

embedding space 에서  $y_i, y_j$  가 지나치게 가깝다면 두 점을 조금 떨어트립니다.





$$C_{SNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

$$\frac{dC_{SNE}}{dy_i} = 4\sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j)$$

Gradient descent 를 이용하여  $p_{ij}$  와 유사한  $q_{ij}$  를 만들도록  $y_i, y_j$  를 조금씩 움직입니다.

- 모든 (*i*, *j*) 가 동일한 중요도로 학습됩니다.
  - $p_{ij} = 0.01, q_{ij} = 0.009$  과  $p_{ij} = 0.002, q_{ij} = 0.001$  모두  $p_{ij} q_{ij} = 0.001$  이기 때문에 동일한 중요도로 학습됩니다.
  - 하지만 우리는 원 공간에서 가까운  $(p_{ij} \ 0) \ = 0$  점들이 더 잘 학습되길 원합니다.

$$C_{SNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
$$\frac{dC_{SNE}}{dy_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j)$$

$$v_{j|i} = \exp\left(-\beta_i |x_i - x_j|_2^2\right)$$

$$p_{j|i} = rac{v_{j|i}}{\sum_{k 
eq i} v_{k|i}}$$
 ,  $p_{ij} = rac{p_{j|i} + p_{i|j}}{2n}$ 

$$w_{ij} = \frac{1}{1 + |y_i - y_j|_2^2}$$

$$q_{ij} = \frac{w_{ij}}{\sum_{p,q \neq p} w_{pq}}$$

$$C_{tSNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Embedding space 에서의 점들 간 유사도를 재정의합니다. 학습이 더욱 안정적으로 이뤄집니다.

$$C_{tSNE} = \sum_{i,j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

$$\frac{dC_{tSNE}}{dy_i} = 4\sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j) \times \frac{1}{1 + |y_i - y_j|_2^2}$$

 $q_{ij}$  가 크거나  $p_{ij}$  가 큰 점에 집중적으로 학습합니다.

- $v_{j|i} = \exp(-\beta_i |x_i x_j|_2^2)$  는 안정적인 임베딩 결과를 도출합니다.
  - 데이터 분포와 거리 척도에 관계없이 대체로 비슷한  $p_{i|i}$  를 생성합니다.
  - 데이터에 관계없이 비슷한 input  $p_{ij}$  가 만들어지기 때문에 비슷한 (안정적인) 임베딩 결과가 학습됩니다.
- 하지만  $\beta_i$  가 지나치게 크면 점들 간 유사도의 변별력이 사라집니다.
  - 임베딩이 제대로 학습되지 않습니다.

- $P_{j|i} \gg 0$  인 점들의 개수는 perplexity 에 의하여 조절됩니다.
  - Perplexity 가 클수록 더 많은 점들을 고려합니다.
  - 그 값이 지나치게 크면 모든 점들 간의  $P_{j|i}$  가 비슷한 값이 되어 점들 간 유사도가 uniform 하게 변환됩니다. 반대로 지나치게 작은 값은 한 두 개의 이웃만 고려합니다.
  - 적은 수의 데이터를 학습할 때에는 perplexity 를 신경써야 합니다.

#### sklearn.manifold.TSNE

class sklearn.manifold. TSNE (n\_components = 2, perplexity=30.0, early\_exaggeration=4.0, learning\_rate=1000.0, n\_iter=1000, n\_iter\_without\_progress=30, min\_grad\_norm=1e-07, metric='euclidean', init='random', verbose=0, random\_state=None, method='barnes\_hut', angle=0.5) ¶ [source]

• 데이터의 개수에 따라 perplexity 를 조절해야 합니다.



• 데이터의 개수에 따라 perplexity 를 조절해야 합니다.





• 손글씨 숫자 데이터 (MNIST)의 시각화 예시



•  $w_{ij} = \frac{1}{1 + |y_i - y_j|_2^2} q_{ij} = \frac{w_{ij}}{\sum_{p,q \neq p} w_{pq}}$  이므로 gradient descent 의 매 iteration step 마다 정규화를 포함한  $q_{ij}$  를 재계산 해야 합니다. 이 계산비용은  $O(n^2)$  으로 큰 데이터에 t-SNE 를 적용하지 못하게 만듭니다.

#### Barnes hut t-SNE

• t-SNE (Maaten & Hinton, 2008) 는 계산 복잡도가 높아서 큰 데이터의 시각화에 사용되지 못했습니다. 이후 개선된 Barnes hut t-SNE (Maaten, 2014)이 제안되었으며, 대부분의 패키지는 이 알고리즘을 쓰고 있습니다.

#### sklearn.manifold.TSNE

class sklearn.manifold. TSNE (n\_components=2, perplexity=30.0, early\_exaggeration=4.0, learning\_rate=1000.0, n\_iter=1000, n\_iter\_witheut\_progress=30, min\_grad\_norm=1e-07, metric='euclidean', init='random', verbose=0, random\_state=None, method='barnes\_hut', angle=0.5) ¶ [source]

#### Barnes hut t-SNE

• 비슷한 위치에 존재하는 점들을 한번에 비슷한 방향으로 학습시킴으로써 계산비용을 줄였습니다.



- LargeVis 는 Barnes hut t-SNE 와 다른 방법으로 계산비용을 줄입니다.
  - 이미 멀리 떨어진 점  $(y_i, y_i)$  는 열심히 학습할 필요가 없습니다.
  - 샘플링을 통하여 일부만 선택한 뒤,  $p_{ij}$  가 작지만  $q_{ij}$  가 큰 점들을 많이 학습합니다.

$$\frac{dC_{tSNE}}{dy_i} = 4\sum_{j \neq i} (p_{ij} - q_{ij}) (y_i - y_j) \times \frac{1}{1 + |y_i - y_j|_2^2}$$

- 세 단계로 임베딩 공간을 학습합니다.
  - k-NNG 를 계산하는 비용은 최대  $O(n^2)$  입니다.
  - 이를 해결하기 위하여 approximated neighbor search 방법을 이용합니다.



 $(i,j) \in E$ : nodes in neighbor graph

$$C_{LV} = \sum_{(i,j)\in E} p_{ij} \log w_{ij} + \gamma \sum_{(i,j)\in \bar{E}} \log(1 - w_{ij})$$

$$\frac{dc_{LV}^{+}}{dy_{i}} = \frac{-2}{1 + d_{ij}^{2}} p_{ij} (y_{i} - y_{j})$$

$$\frac{dC_{LV}^{-}}{dy_{i}} = \frac{2\gamma}{\left(0.1 + d_{ij}^{2}\right)\left(1 + d_{ij}^{2}\right)} \left(y_{i} - y_{j}\right)$$

Input space 에서 이웃한 점들은 embedding space 에서 가까워지도록 학습합니다.





$$C_{LV} = \sum_{(i,j)\in E} p_{ij} \log w_{ij} + \gamma \sum_{(i,j)\in \bar{E}} \log(1 - w_{ij})$$

$$\frac{dC_{LV}^{+}}{dy_{i}} = \frac{-2}{1 + d_{ij}^{2}} p_{ij} (y_{i} - y_{j})$$

$$\frac{dC_{LV}^{-}}{dy_i} = \frac{2\gamma}{\left(0.1 + d_{ij}^2\right)\left(1 + d_{ij}^2\right)} \left(y_i - y_j\right)$$



Input space 에서 이웃하지 않은 점들은 embedding space 에서 멀어지도록 학습합니다.

이미 충분히 멀다면  $(d_{ij}^2 \rightarrow \exists \Box \Box \Box)$  크게 신경쓰지 않습니다.



$$\frac{dC_{LV}^{+}}{dy_{i}} = \frac{-2}{1 + d_{ij}^{2}} p_{ij} (y_{i} - y_{j})$$

$$\frac{dC_{LV}^{-}}{dy_i} = \frac{2\gamma}{\left(0.1 + d_{ij}^2\right)\left(1 + d_{ij}^2\right)} \left(y_i - y_j\right), \text{ min dist} = 0.1, 분모가 0 이 되는 것을 방지합니다.}$$

- $(i,j) \in E$  는 모든 마디에 대하여,  $(i,j) \in \overline{E}$  는 일부를 샘플링하여 선택적 학습을 합니다.
- 샘플링은  $d_i = \sum_i v_{i|i}$  에 비례하게 이뤄집니다.

사실 임베딩 학습 결과는 비슷합니다.무엇이 더 좋은 임베딩인 걸까요?



- UMAP 도 input data X 를 이용하여 k-nearest neighbor graph,  $G_x$  를 생성한 뒤 이를 임베딩 학습에 이용합니다.
- $v_{i|i}$ ,  $v_{ij}$  를 정의하는 방법이 조금 다릅니다.

$$v_{j|i} = \exp\left(-\beta_i |r_{ij} - \rho_i|_2^2\right)$$
$$v_{ij} = \left(v_{j|i} + v_{i|j}\right) - v_{j|i} \cdot v_{i|j}$$

 $\rho_i$ : distance between i and the most closest point

 $\beta_i$  such that  $\sum_i v_{i|i} = \log k$ , k is the number of neighbors in graph

- $\rho_i$  최인접이웃과의 거리를 뺌으로써 input space 의  $x_i$  주변의 거리 분포를 반영합니다.
- $G_x$  에 포함되지 않으면  $v_{i|i}=0$  입니다 (disconnected).

$$v_{j|i} = \exp\left(-\beta_i |r_{ij} - \rho_i|_2^2\right)$$

$$v_{ij} = \left(v_{j|i} + v_{i|j}\right) - v_{j|i} \cdot v_{i|j}$$

$$w_{ij} = \frac{1}{1 + ad_{ij}^{2b}}$$

$$C_{UMAP} = \sum_{ij} v_{ij} \log \left( \frac{v_{ij}}{w_{ij}} \right) + \left( 1 - v_{ij} \right) \log \left( \frac{1 - v_{ij}}{1 - w_{ij}} \right)$$

 $G_x$  에 포함된 점들은 임베딩 공간에서 서로 가깝도록 당겨오고,  $G_x$  에 포함되지 않은 점들은 어느 정도 멀어질때까지 밀어냅니다.

$$C_{UMAP} = \sum_{ij} v_{ij} \log \left( \frac{v_{ij}}{w_{ij}} \right) + \left( 1 - v_{ij} \right) \log \left( \frac{1 - v_{ij}}{1 - w_{ij}} \right)$$

$$\frac{dC_{UMAP}^{+}}{dy_{i}} = \frac{-2}{1 + d_{ij}^{2}} v_{ij} (y_{i} - y_{j})$$

$$\frac{dC_{UMAP}^{-}}{dy_{i}} = \frac{b}{\left(0.001 + d_{ij}^{2}\right)\left(1 + d_{ij}^{2}\right)} \left(1 - v_{ij}\right) \left(y_{i} - y_{j}\right)$$

 $\frac{dC_{UMAP}^-}{dy_i}$  에 이용할  $y_i$ ,  $y_j$  는 분포를 이용하지 않고 임의로 선택합니다.

• UMAP 은 항상 빠르고, LargeVis 는 데이터가 클 때만 t-SNE 보다 몇 배 빠릅니다.
LargeVis 는 확률에 기반한 샘플링의 비용이 크기 때문에 데이터가 매우 커야 t-SNE 보다 빨라집니다.

|                             | <b>UMAP</b> | FIt-SNE | t-SNE  | LargeVis | Eigenmaps | Isomap |
|-----------------------------|-------------|---------|--------|----------|-----------|--------|
| Pen Digits<br>(1797x64)     | 9s          | 48s     | 17s    | 20s      | 2s        | 2s     |
| COIL20<br>(1440x16384)      | 12s         | 75s     | 22s    | 82s      | 47s       | 58s    |
| <b>COIL100</b> (7200x49152) | 85s         | 2681s   | 810s   | 3197s    | 3268s     | 3210s  |
| scRNA<br>(21086x1000)       | 28s         | 131s    | 258s   | 377s     | 470s      | 923s   |
| <b>Shuttle</b> (58000x9)    | 94s         | 108s    | 714s   | 615s     | 133s      | -      |
| MNIST (70000x784)           | 87s         | 292s    | 1450s  | 1298s    | 40709s    | -      |
| F-MNIST (70000x784)         | 65s         | 278s    | 934s   | 1173s    | 6356s     | -      |
| Flow (100000x17)            | 102s        | 164s    | 1135s  | 1127s    | 30654s    | -      |
| Google News<br>(200000x300) | 361s        | 652s    | 16906s | 5392s    | -         | -      |

• t-SNE 의 perplexity 의 역할을 UMAP 에서 n\_neighbors 가 합니다.



• `spread`, `min\_dist` 에 의하여 경향이 달라질 수 있습니다.



- UMAP 은 label 정보를 이용한 supervised embedding 을 지원합니다.
  - y 를 이용하여  $G_y$  를 만든 뒤,  $v_{ij}$  를 만들 때  $\alpha G_x + (1-\alpha)G_y$  를 이용합니다.
  - y 가 명목변수이면 {0, 1}, 연속형변수이면 L1, L2 거리를  $G_y$  의 weight 로 이용합니다.
  - `target\_metric` 은 'categorical', 'I1', 'I2' 중 선택, `target\_weight` 는 α 입니다.

• 레이블을 이용하면 서로 다른 클래스의 객체들이 구분되어 임베딩 됩니다.



unsupervised embedding



supervised embedding

- Partial labeled (semi-supervised) embedding 도 가능합니다.
  - 클래스를 알지 못하는 데이터들은 label 을 -1 로 지정합니다.



unsupervised embedding



semi-supervised embedding

• UAMP 의 학습결과로 embedding mapper 를 얻기 때문에, 새로운 데이터에 대한 임베딩 벡터 추정이 가능합니다.

```
import umap

mapper = umap.UMAP(n_neighbors=10).fit(train_data, train_label)
test_embedding = mapper.transform(test_data)
```

#### t-SNE vs PCA

• 동일한 데이터 (760 차원) 를 PCA 와 t-SNE 로 임베딩한 결과입니다. 서로 경향이 다릅니다.



#### t-SNE vs PCA

• 각 클래스별로 pairwise distance (Euclidean, cosine) 를 계산하여 분포를 살펴봅니다.



#### t-SNE vs PCA

- 녹색 클래스의 데이터가 전체 공간에 골고루 펼쳐져 있기 때문에 Cosine distance 가 1이 넘는 경우들이 많습니다. 하지만 그 개체수는 가장 적습니다.
- PCA 는 특정 방향에 데이터가 몰려있을 경우, 그 방향을 우선적으로 탐색합니다.
- PCA 임베딩 그림만으로는 녹색이 한 곳에 몰려있다고 곡해할 수 있습니다.

