Ride Allocation Optimization

Ride Allocation Optimization

Decision Variables

- $t_{ij} \in \{0,1\}$: Binary decision variable indicating if driver j is assigned to passenger i.
- $d_{ij}^k \in \{0,1\}$: Binary variable indicating if driver j is assigned to area k for rider i.
- D_k : Number of drivers allocated to area k, where k = 1, 2, ..., K.

Parameters

- N_r^k : Number of riders in area k.
- N_d^k : Number of drivers in area k.
- H_k : Historical ride data for area k.
- C_{ij}^k : Cost of assigning driver j to rider i in area k (based on distance, preferences, etc.).
- P_k : Past ride count for area k.
- R_i : Rating of driver j.
- α, β, γ : Weights for balancing demand, cost, and quality.
- f_{ij} : Binary value indicating whether driver j satisfies passenger i's preferences.
- d_{ij} : Distance between passenger i and driver j.
- s_j : Status of driver j ($s_j = 0$ if available, $s_j = 1$ if unavailable).
- p_{ij} : Revenue contribution of assigning driver j to passenger i.
- c_{ij} : Cancellation likelihood score for pairing passenger i with driver j.
- e_j : Emission score of driver j's vehicle (lower is better).
- λ_k : Minimum percentage of demand to satisfy in area k.
- w_i : Normalized weight representing how early passenger i booked:

$$w_i = \frac{\text{latest_time} - \text{booking_time}_i}{\text{latest_time} - \text{earliest_time}}$$

Objective Functions

1. Maximize Total Assignments:

$$Z_1 = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} \cdot (1 - s_j) \cdot t_{ij}$$

2. Minimize Assignment Costs:

$$Z_2 = \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij} \cdot (1 - s_j) \cdot f_{ij} \cdot t_{ij}$$

3. Maximize Driver Ratings:

$$Z_3 = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} \cdot (1 - s_j) \cdot r_j \cdot t_{ij}$$

4. Maximize Assignments Based on Booking Time:

$$Z_4 = \sum_{i=1}^n \sum_{j=1}^m w_i \cdot f_{ij} \cdot t_{ij}$$

5. Maximize Revenue:

$$Z_5 = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} \cdot t_{ij}$$

6. Minimize Driver Workload Deviation:

$$Z_6 = \sum_{j=1}^{m} \left(\frac{\sum_{i=1}^{n} t_{ij}}{n} - u_j \right)^2$$

7. Minimize Cancellation Probability:

$$Z_7 = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \cdot t_{ij}$$

8. Promote Eco-Friendly Rides:

$$Z_8 = \sum_{i=1}^n \sum_{j=1}^m e_j \cdot t_{ij}$$

9. Prioritize Subscription Users:

$$Z_9 = \sum_{i \in \text{premium}} \sum_{j=1}^m p_{ij} \cdot t_{ij}$$

2

Constraints

1. One Driver per Passenger:

$$\sum_{j=1}^{m} t_{ij} \le 1 \quad \forall i \in \{1, 2, \dots, n\}$$

2. One Passenger per Driver:

$$\sum_{i=1}^{n} t_{ij} \le 1 \quad \forall j \in \{1, 2, \dots, m\}$$

3. Driver Availability:

$$s_j = 0$$
 if driver is available, else $s_j = 1$

4. Driver Allocation Limit:

$$\sum_{k=1}^{K} D_k \le M$$

5. Demand Satisfaction:

$$D_k \ge \lambda_k \cdot N_r^k, \quad \forall k$$

6. Driver Assignment to One Area:

$$\sum_{k=1}^{K} d_{ij}^{k} \le 1, \quad \forall i, j$$

7. Binary Decision Variables:

$$t_{ij}, d_{ij}^k \in \{0, 1\}, \quad \forall i, j, k$$