100 BÀI TẬP TỰ LUYỆN TRẮC NGHIỆM SỐ PHỨC

Bài 15. Điểm M trong hình vẽ là điểm biểu diễn số phức z. Khi đó phần thực và phần ảo của số phức z là

- A. Phần thực bằng 4 và phần ảo bằng -2
- B. Phần thực bằng −2 và phần ảo bằng 4
- C. Phần thực bằng -4 và phần ảo bằng 2
- D. Phần thực bằng 2 và phần ảo bằng 4

Bài 16. Tìm số phức liên hợp của số phức z = (2+i)-(3+4i)

A.
$$\bar{z} = 1 + 3i$$

B.
$$\bar{z} = -1 + 3i$$

C.
$$\bar{z} = -1 - 3i$$

D.
$$\bar{z} = 1 - 3i$$

Bài 17. Phần gạch chéo trong hình bên là tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện nào?

B.
$$|z| \le 3$$

C.
$$1 \le |z| \le \sqrt{3}$$

D.
$$|z| \ge 1$$

Bài 18. Tìm số phức liên hợp của số phức $z = \frac{2+i}{1-2i}$

D. *P*= 4

A.
$$z = \frac{1}{5} + i$$

B.
$$z = \frac{2}{5} + i$$

C.
$$z = i$$

D.
$$z = \frac{1}{5}i$$

Bài 19. Cho số phức $z = a + bi(a, b \in \mathbb{R})$ thỏa mãn $(1+3i)z + (2+i)\overline{z} = -2+4i$. Tính

P = ab.

A.
$$P = 8$$

$$P = -4$$

C.
$$P = -8$$

Bài 20. Điểm M trong hình vẽ là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z.

- A. Phần thực là -3 và phần ảo là 2
- B. Phần thực là 2 và phần ảo là −3
- C. Phần thực là -3 và phần ảo là 2i
- D. Phần thực là 2 và phần ảo là -3i

Bài 21. Cho hai số phức $z_1 = 1 - i$ và $z_2 = 2 + 3i$. Tìm môđun của số phức $z_2 - iz_1$.

A.
$$\sqrt{3}$$

C.
$$\sqrt{5}$$

D.
$$\sqrt{13}$$

Bài 22. Cho số phức z = -4 + 2i. Trong mặt phẳng phức, điểm biểu diễn của z có tọa độ là

A.
$$M(2;-4)$$

B.
$$M(-4i;2)$$

C.
$$M(-4;2)$$

D.
$$M(-4;2i)$$

Bài 23. Tìm số phức liên hợp của số phức z = (2+i)(-3i)

A.
$$z = 3 - 6$$

B.
$$z = 3 + 6$$

C.
$$z = -3 - 6i$$

D.
$$\bar{z} = -3 + 6i$$

A. $\overline{z}=3-6i$ B. $\overline{z}=3+6i$ C. $\overline{z}=$ **Bài 24.** Cho số phức z thỏa mãn điều kiện $2z+\overline{z}=3+i$. Tính A=|iz+2i+1|

B.
$$\sqrt{2}$$

Bài 25. Tính môđun của số phức z thỏa mãn điều kiện 5i + (i-3)z = 4

A.
$$|z| = \frac{410}{10}$$

B.
$$|z| = \sqrt{\frac{410}{10}}$$

C.
$$|z| = \sqrt{\frac{410}{100}}$$
 D. $|z| = \frac{410}{\sqrt{10}}$

D.
$$|z| = \frac{410}{\sqrt{10}}$$

Bài 26. Cho hai số phức $z_1 = 5 - 2i$ và $z_2 = 3 - 4i$. Tìm số phức liên hợp của số phức $w = \overline{z_1} + z_2 + 2\overline{z_1}.\overline{z_2}$ A. $\overline{w} = 54 + 26i$ B. $\overline{w} = -54 - 26i$ C. $\overline{w} = 54 - 26i$ D. $\overline{w} = 54 - 26i$

A
$$\overline{w} = 54 + 26$$

B.
$$w = -54 - 26i$$

C.
$$\overline{w} = 54 - 26$$

D.
$$\overline{w} = 54 - 30i$$

D. a+b = -1

A. $a+b=\frac{11}{5}$ B. $a+b=\frac{19}{5}$ C. a+b=1

- **Bài 45.** Tìm phần thực, phần ảo của số phức sau: $z = \frac{3-i}{1+i} + \frac{2+i}{i}$.
 - A. Phần thực bằng 2; phần ảo bằng -4i.
- C. Phần thực bằng 2; phần ảo bằng -4.
- B. Phần thực bằng 2; phần ảo bằng 4i.
- D. Phần thực bằng 2; phần ảo bằng 4.
- **Bài 46.** Cho số phức $z_1 = 3 + 2i$; $z_2 = 5 + 6i$. Tính $A = z_1 z_2 + 5z_1 + 6z_2$.
 - A. 48 + 74i
- B.18 + 54i
- C. -42-18i

- D. 42 + 18i
- **Bài 47.** Tìm các số thực x, y biết: (-x+2y)i+(2x+3y+1)=(3x-2y+2)+(4x-y-3)i.

 - A. $x = \frac{9}{11}$; $y = \frac{4}{11}$ B. $x = -\frac{9}{11}$; $y = -\frac{4}{11}$ C. x = -3; $y = -\frac{5}{2}$ D. x = 3; $y = \frac{5}{2}$.
- **Bài 48.** Tìm số phức z thỏa mãn $|z| = \sqrt{13}$ và $|z+2-i| = \sqrt{2}|z+1-i|$.
 - A. $z = 3 \pm 2i$

- D. $z = \pm 3 2i$
- **Bài 49.** Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện 2|z-i| = |z-z+2i|.
 - A. Là Parabol: $y = \frac{x^2}{2}$

C. Là Parabol: $y = \frac{x^2}{4}$

B. Là Parabol: $y = \frac{x^2}{9}$

- D. Là Parabol: $y = x^2$
- **Bài 50.** Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện |z-2i| = |z-4+4i|.
 - A. Là đường thẳng 2x+3y-7=0
- C. Là đường thẳng 2x-3y-7=0
- B. Là đường thẳng -2x+3y-7=0
- D. Là đường thẳng 2x+-3y+7=0
- **Bài 51.** Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện $|z| = |\overline{z} 3 + 4i|$.
 - A. Là đường thẳng 6x+8y-15=0
- C. Là đường thẳng 6x+8y-5=0
- B. Là đường thẳng 6x+8y-21=0
- D. Là đường thẳng 6x+8y-25=0
- **Bài 52.** Tìm |z| biết rằng z có phần thực bằng hai lần phần ảo và điểm biểu diễn của số phức z nằm trên đường thẳng d: 2x + y - 10 = 0.
 - A. $|z| = 2\sqrt{5}$
- B. $|z| = \sqrt{5}$ C. $|z| = 2\sqrt{3}$ D. $|z| = \sqrt{3}$
- **Bài 53.** Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện |z-(2-i)|=1.
 - A. Đường tròn tâm I(2; 1), bán kính R = 1.
- C. Đường tròn tâm I(2; -1), bán kính R = 1.
- B. Đường tròn tâm I(-2; 1), bán kính R = 1. D. Đường tròn tâm I(-2; -1), bán kính R = 1.
- **Bài 54.** Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện $1 \le |z (3 2i)| \le 5$.
 - A. Hình vành khăn giới hạn bởi hai đường tròn đồng tâm bán kính là 1 và 5.
 - B. Hình vành khăn giới hạn bởi hai đường tròn đồng tâm bán kính là 2 và 5.
 - C. Hình vành khăn giới hạn bởi hai đường tròn đồng tâm bán kính là 1 và 4.
 - D. Hình vành khăn giới hạn bởi hai đường tròn đồng tâm bán kính là 2 và 4.
- **Bài 55.** Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện |z-2+i|=|z+1-3i|.
 - A. Là đường thẳng có phương trình: 6x+4y+5=0.
 - B. Là đường thẳng có phương trình: 6x+2y+5=0.
 - C. Là đường thẳng có phương trình: 3x+4y+5=0.
 - D. Là đường thẳng có phương trình: 2x+3y-5=0.

Bài 70. Cho số phức z thỏ	oa mãn $ z =1$. Tìm giá trị lớn	nhất của $ z^3 - z + 2 $
A. $\max z = \sqrt{13}$	B. $\max z = 5$	C. $\max z = \sqrt{2}$

Bài 71. Biết số phức z = x + yi, $(x, y \in \mathbb{R})$, thỏa mãn điều kiện |z| = |z + 4 - 3i| và biểu thức P = |z + 1 - i| + |z - 2 + 3i| đạt giá trị nhỏ nhất. Tính P = x + 2y.

A.
$$P = -\frac{61}{10}$$

B.
$$P = -\frac{253}{50}$$

C.
$$P = -\frac{41}{5}$$

D.
$$P = -\frac{18}{5}$$

D. max $|z| = \sqrt{29}$

Bài 72. Với các số phức z thỏa mãn $|z-3+4i|=\sqrt{5}$ và biểu thức $P=|z+2|^2-|z-i|^2$ đạt giá trị lớn nhất. Tìm giá trị của |z|.

A.
$$|z| = \sqrt{33}$$

B.
$$|z| = 50$$

C.
$$|z| = \sqrt{10}$$

D.
$$|z| = 5\sqrt{2}$$

Bài 73. Cho $z \in \mathbb{C}$ thỏa mãn 2+i $\left|z\right|=\frac{\sqrt{10}}{z}+1-2i$. Biết tập hợp các điểm biểu diễn cho số phức $w=\ 3-4i\ z-1+2i$ là đường tròn I, bán kính R. Khi đó

A.
$$I -1; -2, R = \sqrt{5}$$

B. I 1;2,
$$R = \sqrt{5}$$

C.
$$I - 1; 2, R = 5$$

D.
$$I 1; -2, R = 5$$

Bài 74. Cho số phức z thỏa mãn |2| = 2 và số phức w thỏa mãn $i.\overline{w} = (3-4i)z + 2i$. Biết rằng tập hợp điểm biểu diễn số phức w là một đường tròn. Tính bán kính r của đường tròn đó.

A.
$$r = 5$$

B.
$$r = 10$$

C.
$$r = 14$$

D.
$$r = 20$$

Bài 75. Cho các số phức z thỏa mãn $\left|z-1\right|=2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w=1+i\sqrt{3}$ z+2 là một đường tròn. Tính bán kính của đường tròn đó.

A.
$$r = 4$$

B.
$$r = 25$$

C.
$$r=9$$

D.
$$r = 16$$

Bài 76. Cho hai số phức z_1 và z_2 thỏa mãn $z_1, z_2 \neq 0$, $z_1 + z_2 \neq 0$ và $\frac{1}{z_1 + z_2} = \frac{1}{z_1} + \frac{2}{z_2}$. Tính $\left| \frac{z_1}{z_2} \right|$

A.
$$\frac{\sqrt{2}}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$2\sqrt{3}$$

D.
$$\frac{2}{\sqrt{3}}$$

Bài 77. Cho số phức z thỏa mãn $\left|z\right|=2$. Tìm môđun của số phức $w=\frac{5-12i}{z}$?

A.
$$|w| = 13$$

$$B. \left| w \right| = \frac{\sqrt{13}}{2}$$

C.
$$|w| = \frac{17}{2}$$

D.
$$|w| = \frac{13}{2}$$

Bài 78. Cho số phức $z = \left(\frac{1+i}{1-i}\right)^{2017}$. Tính $z^5 + z^6 + z^7 + z^8$.

A. 4

Bài 79. Cho các số phức z thỏa mãn 2+i $\left|z\right|=\frac{5}{z}-1-3i$. Biết rằng tập hợp các điểm biểu diễn các số phức

w = 3 - 4i z + 1 là một đường tròn. Tính bán kính của đường tròn đó.

Α.

B.
$$r = 1$$

C.
$$r=\sqrt{5}$$

D.
$$r=5$$

Bài 80. Cho hai số phức z_1 và z_2 thỏa mãn $\left|z_1\right|=3, \left|z_2\right|=4$ và $\left|z_1+z_2\right|=5$. Khi đó $\left|z_1-z_2\right|$ bằng

A. $\frac{5}{2}$

B. 6

C. 5

. ./12

Bài 81. Cho số phức z thỏa mãn điều kiện $\left|z-2-4i\right|=\left|z-2i\right|$. Tìm số phức z có môđun nhỏ nhất.

A.
$$z = -1 + i$$

B.
$$z = -2 + 2i$$

C.
$$z = 2 + 2i$$

D.
$$z = 3 + 2i$$

Bài 86. Cho hai số phức z_1 và z_2 thỏa mãn $\left|z_1\right|=\left|z_2\right|=1$. Khi đó $\left|z_1+z_2\right|^2+\left|z_1-z_2\right|^2$ bằng

A. 2

Bài 87. Cho hai số phức z_1 và z_2 thỏa mãn $\left|z_1\right| = \left|z_2\right| = \left|z_1 - z_2\right| = 1$. Tính giá trị của biểu thức $P = \left|\frac{z_1}{z}\right|^2 + \left|\frac{z_2}{z}\right|^2$.

D. P = 1 + i

D.

A. P = 1 - i**Bài 88.** Cho z=a+bi thỏa mãn $3z+z=2+i\sqrt{3}|z|$. Tính $S=\frac{a+b}{a-b}$?

C. $S = -2 + \sqrt{3}$ D. $S = 2 - \sqrt{3}$ B. $S = 2 + \sqrt{3}$ A. $S = -2 - \sqrt{3}$

Bài 89. Cho số phức z thỏa mãn $\left|z+\frac{1}{z}\right|=2\sqrt{3}$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của $\left|z\right|$?

A. $\max |z| = 2 + \sqrt{3}, \min |z| = 2 - \sqrt{3}$ B. $\max |z| = 1 + \sqrt{3}, \min |z| = 2 - \sqrt{3}$

C. $\max |z| = 3 + \sqrt{3}, \min |z| = 4 - \sqrt{3}$ D. $\max |z| = 2 + \sqrt{3}, \min |z| = 4 - \sqrt{3}$

Bài 90. Cho số phức z thỏa mãn $\frac{1}{|z|-z}$ có phần thực bằng 4. Tính |z|?

D. $|z| = \frac{1}{16}$ A. $|z| = \frac{1}{4}$ B. $|z| = \frac{1}{2}$ C. |z| = 4

Bài 91. Cho số phức $z \neq 1$ thỏa mãn $\frac{z+1}{z-1}$ là số thuần ảo. Tìm |z|?

B. $|z| = \frac{1}{2}$ C. |z| = 2A. |z| = 1**Bài 92.** Cho số phức z thỏa mãn . Kí hiệu M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

 $P=\left|z^{3}+3z+\overline{z}
ight|-\left|z+\overline{z}
ight|$. Tính mô
đun của số phức w=M+mi .

D. $\frac{3\sqrt{13}}{1}$ B. $\frac{3\sqrt{17}}{100}$ C. $\frac{15}{4}$

Bài 93. (Chuyên Biên Hòa – Hà Nam lần 2) Cho ba số phức z_1 , z_2 , z_3 thỏa mãn điều kiện $|z_1| = |z_2| = |z_3| = 1$ và $z_1 + z_2 + z_3 = 0$. Tính $A = z_1^2 + z_2^2 + z_3^2$.

B. 0 $C_{-} - 1$

Bài 94. (Chuyên Lương Thế Vinh – lần 1) Cho số phức z thỏa mãn $|z^2-2z+5|=|(z-1+2i)(z-1+3i)|$. Tính môđun nhỏ nhất của số phức w = z - 2 + 2i.

A. $\min |w| = \frac{3}{2}$ C. $\min |w| = 1$ D. $\min |w| = \frac{1}{2}$ B. $\min |\mathbf{w}| = 2$

Bài 95. (Thanh Chương – Nghệ An – lần 1) Cho z_1 , z_2 là hai số phức thỏa mãn |2z-i|=|2+iz|, biết $|z_1-z_2|=1$. Tính giá trị biểu thức $P = |z_1 + z_2|$.

A.
$$P = \frac{\sqrt{3}}{2}$$

B.
$$P = \frac{\sqrt{2}}{2}$$

C.
$$P = \sqrt{2}$$
 D. $P = \sqrt{3}$

D.
$$P = \sqrt{3}$$

Bài 96. (Chuyên Lương Thế Vinh – lần 2) Cho số phức z thỏa mãn |z-1-2i|=4. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z+2+i|. Tính $T=M^2+m^2$.

A.
$$T = 50$$

B.
$$T = 64$$

C.
$$T = 68$$

D.
$$T = 16$$

Bài 97. Cho số phức z thỏa mãn |(z+2)i+1|+|(z-2)i-1|=6. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Tính T = M + m.

$$A. \quad T=5$$

B.
$$T = 4$$

C.
$$T = 10$$

D.
$$T = 16$$

Bài 98. Tìm môđun của số phức z biết z-4=(1+i)|z|-(4+3z)i.

A.
$$|z|=4$$

B.
$$|z| = 1$$

C.
$$|z| = \frac{1}{2}$$

D.
$$|z| = 2$$

Bài 99. (Toán học tuổi trẻ) Xét số phức z thỏa mãn $2|z-1|+3|z-1| \le 2\sqrt{2}$. Mệnh đề nào dưới đây đúng?

A.
$$\frac{3}{2} < |z| < 2$$

B.
$$|z| > 2$$

C.
$$|z| < \frac{1}{2}$$

D.
$$\frac{1}{2} < |z| < \frac{3}{2}$$

Bài 100. Xét số phức z thỏa mãn $(1-i\sqrt{5})|z| = \frac{2\sqrt{42}}{z} + \sqrt{15} + i\sqrt{13}$. Mệnh đề nào dưới đây đúng?

A.
$$\frac{3}{2} < |z| < 3$$

B.
$$\frac{5}{2} < |z| < 4$$

C.
$$\frac{1}{2} < |z| < 2$$

B.
$$\frac{5}{2} < |z| < 4$$
 C. $\frac{1}{2} < |z| < 2$ D. $\frac{1}{2} < |z| < \frac{3}{2}$

ĐÁP ÁN BÀI TẬP TỰ LUYỆN

1	A	26	C	51	D	76	A
2	В	27	A	52	A	77	D
3	A	28	A	53	A	78	В
4	A	29	В	54	A	79	D
5	В	30	В	55	A	80	C
6	A	31	C	56	A	81	D
7	D	32	C	57	С	82	В
8	D	33	D	58	A	83	C
9	С	34	A	59	В	84	С
10	С	35	A	60	С	85	A
11	В	36	D	61	В	86	В
12	D	37	C	62	D	87	D
13	C	38	В	63	D	88	C
14	D	39	C	64	С	89	В
15	A	40	A	65	A	90	C
16	В	41	C	66	D	91	A
17	A	42	В	67	В	92	В
18	C	43	C	68	A	93	C
19	A	44	C	69	С	94	C
20	В	45	C	70	A	95	D
21	C	46	A	71	D	96	C
22	В	47	A	72	D	97	A
23	В	48	D	73	С	98	C
24	D	49	C	74	В	99	D
25	C	50	C	75	A	100	A