assignment

August 24, 2023

1 Machine Learning Intern Assessment Assignment

1.1 Customer Churn Prediction

1.1.1 Import Libraries

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.preprocessing import LabelEncoder
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import ExtraTreesClassifier
     from sklearn.model_selection import cross_val_score
     from sklearn.linear_model import LogisticRegression
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.naive_bayes import BernoulliNB
     from sklearn.metrics import mean_absolute_error
     from sklearn.metrics import mean_squared_error
     import warnings
     warnings.filterwarnings('ignore')
```

1.1.2 Meet and Greet Data

In this phase we will import csv and analyze it

```
[3]: customer = pd.read_excel("D:\Data Analysis\Machine Learning Intern

→Task\customer_churn_large_dataset.xlsx")

[4]: cust_copy = customer.copy()

[5]: cust_copy.head()
```

```
[5]:
         CustomerID
                           Name
                                 Age Gender
                                                 Location \
      0
                  1 Customer_1
                                  63
                                        Male Los Angeles
      1
                  2 Customer 2
                                  62 Female
                                                 New York
      2
                  3 Customer_3
                                  24 Female Los Angeles
                  4 Customer 4
                                  36 Female
                                                     Miami
      3
      4
                  5 Customer 5
                                  46 Female
                                                     Miami
         Subscription_Length_Months
                                     Monthly_Bill Total_Usage_GB
                                            73.36
      0
                                 17
                                                               236
                                                                        0
                                            48.76
                                                                        0
      1
                                  1
                                                               172
      2
                                  5
                                            85.47
                                                               460
                                                                        0
      3
                                  3
                                            97.94
                                                               297
                                                                        1
      4
                                            58.14
                                                                        0
                                 19
                                                               266
 [6]: print("The shape of customer churn dataset: ", cust_copy.shape)
      cust copy.info()
     The shape of customer churn dataset:
                                            (100000, 9)
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 100000 entries, 0 to 99999
     Data columns (total 9 columns):
      #
          Column
                                       Non-Null Count
                                                        Dtype
          _____
                                       100000 non-null
      0
          CustomerID
                                                        int64
      1
          Name
                                       100000 non-null object
      2
                                       100000 non-null
                                                        int64
          Age
      3
          Gender
                                       100000 non-null
                                                        object
          Location
                                       100000 non-null object
      5
          Subscription_Length_Months
                                      100000 non-null
                                                        int64
      6
          Monthly_Bill
                                       100000 non-null float64
      7
          Total_Usage_GB
                                       100000 non-null int64
                                       100000 non-null
          Churn
                                                        int64
     dtypes: float64(1), int64(5), object(3)
     memory usage: 6.9+ MB
[43]: print("Sum of all the null values in customer churn dataset: \n", cust_copy.
       →isnull().sum())
     Sum of all the null values in customer churn dataset:
      CustomerID
                                     0
     Name
                                    0
                                    0
     Age
     Gender
                                    0
     Location
                                    0
     Subscription_Length_Months
                                    0
                                    0
     Monthly_Bill
     Total_Usage_GB
                                    0
     Churn
                                    0
```

dtype: int64

[8]: cust_copy.dtypes

[8]: CustomerID int64 Name object Age int64 Gender object Location object ${\tt Subscription_Length_Months}$ int64 float64 Monthly_Bill Total_Usage_GB int64Churn int64

dtype: object

1.1.3 Statistical Paramteres

[9]: cust_copy.describe()

[9]:		${\tt CustomerID}$	Age	Subscription_Length_Months	\
	count	100000.000000	100000.000000	100000.000000	
	mean	50000.500000	44.027020	12.490100	
	std	28867.657797	15.280283	6.926461	
	min	1.000000	18.000000	1.000000	
	25%	25000.750000	31.000000	6.000000	
	50%	50000.500000	44.000000	12.000000	
	75%	75000.250000	57.000000	19.000000	
	max	100000.000000	70.000000	24.000000	
		${ t Monthly_Bill}$	Total_Usage_GB	Churn	
	count	100000.000000	100000.000000	100000.000000	
	mean	65.053197	274.393650	0.497790	
	std	20.230696	130.463063	0.499998	
	min	30.000000	50.000000	0.00000	
	25%	47.540000	161.000000	0.000000	
	50%	65.010000	274.000000	0.000000	
	75%	82.640000	387.000000	1.000000	
	max	100.000000	500.000000	1.000000	

1.1.4 Correlation of Data

[10]: cust_copy.corr()

[10]:		${\tt CustomerID}$	Age	Subscription_Length_Months	\
	CustomerID	1.000000	-0.001085	0.005444	
	Age	-0.001085	1.000000	0.003382	
	Subscription_Length_Months	0.005444	0.003382	1.000000	
	Monthly Bill	0.001265	0.001110	-0.005294	

Total_Usage_GB	-0.004025	0.001927	-0.002203
Churn	-0.004586	0.001559	0.002328

	Monthly_Bill	Total_Usage_GB	Churn
CustomerID	0.001265	-0.004025	-0.004586
Age	0.001110	0.001927	0.001559
Subscription_Length_Months	-0.005294	-0.002203	0.002328
Monthly_Bill	1.000000	0.003187	-0.000211
Total_Usage_GB	0.003187	1.000000	-0.002842
Churn	-0.000211	-0.002842	1.000000

```
[45]: plt.figure(figsize=(12,10))
    sns.heatmap(cust_copy.corr(), annot=True, cmap='coolwarm')
    plt.title("Correlation of Data")
    plt.show()
```


• In this correlation we can see that mostly are not much correlated with each other

1.1.5 Feature Engineering

Handling Outliers

```
[12]: fig, ax = plt.subplots(2, 2, figsize=(15,10))
    ax[0, 0].boxplot(cust_copy['Age'])
    ax[0, 0].set_title('Age')
    ax[0, 1].boxplot(cust_copy['Subscription_Length_Months'])
    ax[0, 1].set_title('Subscription Length Months')
    ax[1, 0].boxplot(cust_copy['Monthly_Bill'])
    ax[1, 0].set_title('Monthly Bill')
    ax[1, 1].boxplot(cust_copy['Total_Usage_GB'])
    ax[1, 1].set_title('Total Usage GB')
    plt.show()
```


- We can see that there are not a single outliers in our dataset
- So we don't have to remove outliers, proceed to enocoding phase

Label Encoding

• So we Encode the Gender column with Label encoder

```
[13]: le = LabelEncoder()
  cust_copy['Gender'] = le.fit_transform(cust_copy['Gender'])

[14]: # cust_copy['Gender'] = cust_copy['Gender'].map({'Male':0, 'Female':1})
```

Encode through Mapping

- In this phase we encode location column through mapping
- For this we find out unique values of it
- Mapping enocding is efficient method for encoding

```
[15]: cust_copy.Location.unique()
[15]: array(['Los Angeles', 'New York', 'Miami', 'Chicago', 'Houston'],
           dtype=object)
[16]: cust_copy['Location'] = cust_copy['Location'].map({'Los Angeles':0, 'New York':
       [17]: cust_copy.head()
[17]:
        CustomerID
                          Name
                                    Gender
                                           Location
                                                      Subscription_Length_Months
                               Age
     0
                 1
                   Customer_1
                                63
                                         1
                                                                             17
                 2 Customer_2
                                         0
     1
                                62
                                                   1
                                                                              1
     2
                 3 Customer_3
                                24
                                         0
                                                   0
                                                                              5
                 4 Customer_4
                                                   2
     3
                                36
                                         0
                                                                              3
     4
                    Customer_5
                                46
                                         0
                                                   2
                                                                             19
        Monthly_Bill Total_Usage_GB
     0
               73.36
                                 236
                                         0
     1
               48.76
                                172
                                         0
     2
               85.47
                                460
                                         0
     3
               97.94
                                297
                                         1
     4
               58.14
                                266
                                         0
```

• So we encode all the necessary columns, now move forward

Feature Selection

• First, we'll find out which feature are most important for our model to work well. Then, we'll remove any unnecessary feature to make our model perform even better.

```
[18]: x = cust_copy.drop(['Name', 'CustomerID', 'Churn'], axis=1)
y = cust_copy['Churn']
[19]: et = ExtraTreesClassifier()
et.fit(x,y)
```

[19]: ExtraTreesClassifier()

```
[20]: feature_imp = pd.Series(et.feature_importances_, index=x.columns)
    feature_imp.nlargest(6).plot(kind='barh')
    plt.show()
```


- From the bar plot we can see the importances of features based on it's impact towards output.
- Let's take up the top 6 features, and from that we select 4

1.1.6 Train Test Split

• Let's drop the required and split the data into train and test

1.1.7 Model Selection

• Let's do the process and select the best model

```
[25]: lr_cv = LogisticRegression(random_state=0)
dt_cv = DecisionTreeClassifier()
rf_cv = RandomForestClassifier()
kn_cv = KNeighborsClassifier()
bn_cv = BernoulliNB()

cv_dict = {0: 'Logistic Regression', 1: 'Decision Tree Classifier', 2: 'Random_
Forest Classifier', 3: 'KNeighbour Classifier', 4: 'Bernoulib'}

cv_model = [lr_cv, dt_cv, rf_cv, kn_cv, bn_cv]

for i,model in enumerate(cv_model):
    score = cross_val_score(model, x, y, cv=10, scoring='accuracy').mean()
    print("{} Test Accuracy: {}".format(cv_dict[i], score))
```

Logistic Regression Test Accuracy: 0.50011

Decision Tree Classifier Test Accuracy: 0.502769999999999

Random Forest Classifier Test Accuracy: 0.50038

KNeighbour Classifier Test Accuracy: 0.50205

Bernoulib Test Accuracy: 0.50221

Logistic Regression with Hypyerparameter tuning

• Let's fit the model in Logistic Regression to figure out Accuracy of our mode

LogisticRegression(C=0.0020235896477251557, random_state=0) The mean accuracy of the model is: 0.50275

• The accuracy of this model is not much, let's try more

```
[32]: lr = LogisticRegression(C=0.0020235896477251557, random_state=0)
lr.fit(x_train,y_train)
lr_predict = lr.predict(x_test)
lr.score(x_train,y_train)
```

[32]: 0.5042125

```
[38]: print("Logistic Regrssion Mean Absolute Error: ", __

¬mean_absolute_error(y_test,lr_predict))
      print("Logistic Regrssion Mean Square Error: ",,,

¬mean_squared_error(y_test,lr_predict))
      print("Logistic Regrssion Test Score: ", lr.score(x_test,y_test))
     Logistic Regrssion Mean Absolute Error: 0.49725
     Logistic Regrssion Mean Square Error: 0.49725
     Logistic Regrssion Test Score: 0.50275
     Decision Tree Classifier
[31]: dt = DecisionTreeClassifier()
      dt.fit(x_train,y_train)
      dt_predict = dt.predict(x_test)
      dt.score(x_train,y_train)
[31]: 0.9999875
[37]: print("Decision Tree Classifier Mean Absolute Error: ",
       →mean_absolute_error(y_test,dt_predict))
      print("Decision Tree Classifier Mean Square Error: ", _

¬mean_squared_error(y_test,dt_predict))
      print("Decision Tree Classifier Test Score: ", dt.score(x_test,y_test))
     Decision Tree Classifier Mean Absolute Error: 0.4896
     Decision Tree Classifier Mean Square Error: 0.4896
     Decision Tree Classifier Test Score: 0.5104
     Random Forest Classifier
[33]: rf = RandomForestClassifier()
     rf.fit(x_train,y_train)
      rf_predict = rf.predict(x_test)
      rf.score(x_train,y_train)
[33]: 0.9999875
[39]: print("Random Forest Classifier Mean Absolute Error: ",
       mean_absolute_error(y_test,rf_predict))
      print("Random Forest Classifier Mean Square Error: ", __
       →mean_squared_error(y_test,rf_predict))
      print("Random Forest Classifier Test Score: ", rf.score(x_test,y_test))
     Random Forest Classifier Mean Absolute Error: 0.50035
     Random Forest Classifier Mean Square Error: 0.50035
     Random Forest Classifier Test Score: 0.49965
```

KNeighbour Classifier

```
[34]: kn = KNeighborsClassifier()
      kn.fit(x_train,y_train)
      kn_predict = kn.predict(x_test)
      kn.score(x_train,y_train)
[34]: 0.6842375
[40]: print("KNeighbour Classifier Mean Absolute Error: ", __
       →mean_absolute_error(y_test,kn_predict))
      print("KNeighbour Classifier Mean Square Error: ", 
       →mean_squared_error(y_test,kn_predict))
      print("KNeighbour Classifier Test Score: ", kn.score(x_test,y_test))
     KNeighbour Classifier Mean Absolute Error: 0.4914
     KNeighbour Classifier Mean Square Error: 0.4914
     KNeighbour Classifier Test Score: 0.5086
     BernoulliNB Classifier
[35]: bn = BernoulliNB()
      bn.fit(x_train,y_train)
      bn_predict = bn.predict(x_test)
      bn.score(x_train,y_train)
[35]: 0.501175
[41]: print("Bernoulib Classifier Mean Absolute Error: ", __

¬mean_absolute_error(y_test,bn_predict))
      print("Bernoulib Classifier Mean Square Error: ", u
       →mean_squared_error(y_test,bn_predict))
      print("Bernoulib Classifier Test Score: ", bn.score(x_test,y_test))
     Bernoulib Classifier Mean Absolute Error: 0.49365
     Bernoulib Classifier Mean Square Error: 0.49365
     Bernoulib Classifier Test Score: 0.50635
        • From all of this Decision Tree has best accuracy
        • So we try that as user input prediction
```

1.1.8 User Input Prediction

```
[42]: def predication():
    age = int(input("Enter your age: "))
    months = int(input("Enter the months of subsciption: "))
    bill = float(input("Enter the bill amount: "))
    gb = float(input("Enter the GB used: "))

col = [age, months, bill, gb]
```

```
dt_pre = dt.predict([col])
print("Churn Prediction: ", dt_pre)
predict = predication()
predict
```

Enter your age: 63

Enter the months of subsciption: 17

Enter the bill amount: 73.36

Enter the GB used: 236 Churn Prediction: [0]

• It Predicted correct and We built accurate model of Churn Prediction

1.1.9 Conclusion

After analyzing the data for Churn Predication we can say that Age, Length of Monthly Subscription, Bill Amount, GB used are major feature for prediction of Churn.

- For making customer not to churn we have to understand the need of customer
- Provide better service to customers
- Deliver good quality of service
- Continuously Make imporvement in service