and does not have he completeness property. Recall:  $x^2 = 2$  does not have a solution in Q. Note that  $a^2 = 2$  if and only if  $(-a)^2 = 2$ . solution in the set of all positive rational numbers. Que. ? Does there exists a solution of the equation n=2 in IR? Ans. Yes! Thanks to Axiom 3. Consider E = \2.x>0 \ x^2 < 2}. • More generally, for a so and neIN, there is a (unique) solution x & IR such that x = a. ( see Rudin: Thurs 1:37 for the proof) Back to the question on the compldeness of Q: Idea! Consider S:= }x & Q | 270 and x2 < 2 }. S has the supremum in R (Why?). Let t := sup S. HW- t satisfies t= 2. And, we have just seen that to Therefore, sup S & Q. Hence Q does not have the completeness prop. R has gaps in 1R [1] Q is "dowe" in R. That is, Theoven: Given x, y & IR such that x < y, then there exists v & Q such that x < x < y. WLOG assume 200 (why?). Since y-20, 7 nEM such that OC IN < y-x.) Hence nx+1 < ny. Note that nx >0, so I mEN st. (m-1 & nx < m.) (Consequences of the Archimedean property) Therefore, m < nx +1 < ny => nx < m < ny

If x, y & IR such that x < y, then I an invational number Z HW: such that x < z < y. Rationals are device in R and Irrationals are also device in 1R. Upshot: Sequences and Sets of Real Numbers. HW: Every real number is the limit of a (monotone) segment of vational numbers.

(Every real number is the limit of a (monotone) segment of (irrational numbers.) A monotone bounded segmence of real nos, converges. Pf. Consider (xn) monotone and bounded. Suppose (xn) is increasing. Since (xn) bounded, by the least upper bound proporty

of R, sup [xny < ao. Let x:= sup [xny. (Axiom 3) of R, sup [xn] < a. Let x:= sup [xn]. Claim; lim xn = xc Pf of claim: For E>O, I NEETH such that x-E< xNs. Since  $x_n$ 's increasing,  $z-\epsilon < x_n + n > N_\epsilon$  as  $x_N \leq x_{N+1} \leq \cdots$  (for all) But also,  $x_n \in x$  because  $x = \sup \{x_n\}$ . So, U n7 Ng, x- 2 < xn < x < x+ 2 · , | χη-χ| < ξ. Suppose (xn) is decreasing than (-zn) is increasing.

Hw: Complete the proof!





|       | Also note that length (II) = 6,-91                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                  |
|       | There In's are non-empty, closed, and bounded, nested seg, with                                                  |
|       | There In's one non-empty, closed, and bounded, nested seq. with length decreasing to O. By Nested Interval them, |
|       | (Recall that in the proof of Nosted Interval them lim an = a.)                                                   |
|       | (Recall that in the proof of Nosted Interval Hum lim an = a.)                                                    |
|       | Since an $\rightarrow$ s as $n + \infty$ , s is the least upper bound of A.                                      |
|       | Recall (HW): For A S IR such that A is bounded above, the following are equivalent  (i) S = sup A                |
|       | (ii) I an & A such that an + s as n + 00.                                                                        |
|       |                                                                                                                  |
| Shot: | Least oppor bound axion (=> Monotone bdd. seg). convergence                                                      |
|       | Nested Interval Than.                                                                                            |
|       | Wester thong inn.                                                                                                |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |