MATH 503: Mathematical Statistics

Lecture 4: Properties of Point Estimators II

Reading: Sections 6.1-6.2, 7.3

Kimberly F. Sellers

Department of Mathematics & Statistics

Today's Topics

- · Recap: Sufficient statistics
- Uniform minimum variance unbiased estimators (UMVUEs)
 - Rao-Blackwell Theorem
 - Completeness
 - Lehmann-Scheffé Theorem
 - Uniqueness
- · Exponential families
- Comments connecting Rao-Blackwell and Lehmann-Scheffé

Sufficiency

Let X_1, \ldots, X_n denote a random sample of size n from a distribution that has pdf/pmf $f(x;\theta), \theta \in \Omega$. Let $Y_1 = u_1(X_1, \ldots, X_n)$ be a statistic whose pdf/pmf is $f_{Y_1}(y_1;\theta)$. Then Y_1 is a sufficient statistic for θ iff.

$$\frac{f(x_1;\theta)f(x_2;\theta)\cdots f(x_n;\theta)}{f_{Y_1}[u_1(x_1,\ldots,x_n);\theta]}=H(x_1,\ldots,x_n),$$

where $H(x_1, ..., x_n)$ does not depend on $\theta \in \Omega$.

Neyman-Fisher Factorization Thm

Let $X_1, ..., X_n$ denote a random sample from a distribution that has pdf/pmf $f(x; \theta), \theta \in \Omega$. The statistic $Y_1 = u_1(X_1, ..., X_n)$ is a sufficient statistic for θ iff. we can find two nonnegative functions, k_1 and k_2 , such that

$$f(x_1;\theta)f(x_2;\theta)\cdots f(x_n;\theta)=k_1[u_1(x_1,\ldots,x_n);\theta]\cdot k_2(x_1,\ldots,x_n)$$

where $k_2(x_1, ..., x_n)$ does not depend on θ .

Uniform Minimum Variance Unbiased Estimators (UMVUEs)

- For a given positive integer $n, Y = u(X_1, ..., X_n)$ is a <u>uniform minimum variance unbiased</u> <u>estimator</u> (UMVUE) of the parameter θ
 - if Y is unbiased, and
 - if the variance of Y is less than or equal to the variance of every other unbiased estimator of θ .

Rao-Blackwell Theorem

(Hogg, McKean, & Craig)

C.R. Rao

David Blackwe

Let $X_1, ..., X_n$, n a fixed positive integer, denote a random sample from a distribution that has pdf/pmf $f(x;\theta), \theta \in \Omega$. Let $Y_1 = u_1(X_1, ..., X_n)$ be a sufficient statistic for θ , and let $Y_2 = u_2(X_1, ..., X_n)$, not a function of Y_1 alone, be an unbiased estimator of θ . Then $E(Y_2 \mid y_1) = \varphi(y_1)$ defines a statistic $\varphi(Y_1)$. This statistic $\varphi(y_1)$ is a function of the sufficient statistic for θ ; it is an unbiased estimator of θ ; and its variance is less than that of Y_2 .

Rao-Blackwell Theorem

(Casella & Berger)

David Blackwell

Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic of θ . Define $\phi(T) = E(W|T)$. Then $E_{\theta}\phi(T) = \tau(\theta)$ and $\operatorname{Var}_{\theta} \phi(T) \leq \operatorname{Var}_{\theta} W$ for all θ , that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Notes re. Rao-Blackwell Thm.

- If we know a sufficient statistic for the parameter exists, the MVUE will be a function of the sufficient statistic.
- · This does not mean that we first need to find an unbiased statistic!
- Focus on functions of sufficient statistics.

Theorem

- Let X₁, ..., X_n denote a random sample from a distribution that has pdf/pmf f(x; θ), θ ∈ Ω. If a sufficient statistic Y₁ = u₁(X₁, ..., X_n) for θ exists and if a MLE θ̂ of θ, also exists uniquely, then θ̂ is a function of Y₁ = u₁(X₁, ..., X_n).
- The point: MLEs are functions of sufficient statistics.

Example

Let $X_1, ..., X_n$ denote a random sample from a distribution that has pdf $f(x; \theta) = \theta e^{-\theta x}$, $0 < x < \infty$.

- 1. Find a sufficient statistic for θ .
- 2. Find the MLE of θ .
- 3. Determine a MVUE of θ .

$$X_{1}, -1, X_{n} \sim f(x_{i}, \theta) = \theta e^{-\theta x}, 0 < x < \infty$$
 (Note: $X_{1}, -1, X_{n} \sim \text{Exp}(Y_{\theta})$)

$$\hat{\mathbf{I}} = \mathbf{I} = \mathbf{I} + \mathbf{I$$

2
$$\mathcal{L}(\theta;x) = \prod_{i=1}^{n} f(x_i;\theta) = \theta^n e^{-\theta \sum_{i=1}^{n} x_i}$$

$$\frac{\partial ln \mathcal{L}}{\partial \theta} = \frac{n}{\theta} - \sum_{i}^{n} X_{i} = 0 \quad \therefore \quad \frac{n}{\theta} = \sum_{i} X_{i}$$

$$\Rightarrow \left[\hat{\theta} = \frac{n}{\sum_{i} X_{i}} = \frac{1}{X_{i}} \right]$$

Pf
$$M_{ZX_i}(t) = \mathbb{E}(e^{t \Sigma X_i}) = \mathbb{E}(e^{t(X_i + \dots + X_n)}) = \mathbb{E}(e^{tX_i + \dots + tX_n})$$

$$= \mathbb{E}(e^{t X_i}) \dots \mathbb{E}(e^{t X_n}) \text{ because } X_i \text{ ind}$$

$$= \mathbb{E}(e^{t X}) \text{ because } X_i \text{ ind}$$

=
$$\left[M_{\chi}(t)\right]^{n} = \left(\frac{1}{1-t_{10}}\right)^{n}$$
 which is the mgf of Gamma $(n, \frac{1}{2})$
r.v. $\Sigma \chi \sim Gamma(n, \frac{1}{2})$

$$\mathbb{E}\left(\frac{n}{\Sigma_{X}}\right) = n \mathbb{E}\left(\frac{1}{\Sigma_{X}}\right) = n \int_{0}^{\infty} \frac{1}{\Gamma(n)(\lambda_{0})^{n}} y^{n-1} \frac{-y_{h/0}}{e^{y_{h/0}}} dy$$

$$= \frac{n \Gamma(n-1) \int_{0}^{\infty} \frac{1}{\Gamma(n)(\lambda_{0})^{n}} \int_{0}^{\infty} \frac{1}{\Gamma(n-1)(\lambda_{0})^{n}} \frac{1}{e^{y_{h/0}}} dy$$

$$= \frac{n \Gamma(n-1) \Theta}{\Gamma(n-1) \Theta} = \frac{n \Theta}{n-1}$$

Example

3 cont.

$$= \mathbb{E}(\hat{\theta}) = \mathbb{E}\left(\frac{\Sigma_{K'}}{\Sigma_{K'}}\right) = \frac{N\theta}{N-1}$$

$$\Rightarrow \frac{N-1}{N} \mathbb{E}(\hat{\theta}) = \frac{N}{N} \left(\frac{N\theta}{N-1} \right) = \theta$$

where
$$\frac{n-1}{n} \mathbb{E}(\hat{\theta}) = \mathbb{E}\left(\frac{n-1}{n} \hat{\theta}\right) = \mathbb{E}\left(\frac{n-1}{n} \cdot \frac{n}{\Sigma X_i}\right) = \mathbb{E}\left(\frac{n-1}{\Sigma X_i}\right)$$

 $\frac{n-1}{\Sigma X_i}$ is unbiased estimator of θ : by Rao-Blackwell Thm.,

 $\frac{n-1}{\Sigma x_i}$ is MVUE of θ .

Completeness

Let the random variable Z have a pdf/pmf that is one member of the family $\{h(z;\theta)\colon\theta\in\Omega\}$. If the condition E[u(Z)]=0, for every $\theta\in\Omega$, requires that u(z) be zero except on a set of points that has probability zero for each $h(z;\theta)\colon\theta\in\Omega$, then the family $\{h(z;\theta)\colon\theta\in\Omega\}$ is called a <u>complete family</u> of pdfs/pmfs.

Note: One-to-one functions of complete sufficient statistics are themselves complete sufficient.

Example 1

Let $X_1, ..., X_n \sim Poisson(\theta)$ iid.

- 1. Determine a sufficient statistic for θ .
- 2. What is the pdf associated with this statistic?
- 3. Show that this statistic is complete.

$$X_1, -7 \times_n \sim \text{Poisson}(\theta) \text{ iid} \quad f(x_5, \theta) = \frac{e^{-\theta} \theta^{\times}}{\times !}; \quad x = 0,1,2,...$$

: by NFFT, $Y = \sum X_i$ is sufficient for Θ .

=
$$(e^{\theta(e^{t}-1)})^n = e^{n\theta(e^{t}-1)}$$
, which is the mgf of Poisson (no) rv.

⇒ Y~ Poisson (no)

3
$$\mathbb{E}(g(r)) = \sum_{y=0}^{\infty} g(y) \cdot \frac{e^{-n\theta}(n\theta)^{y}}{y!} = e^{-n\theta} \sum_{y=0}^{\infty} g(y) \frac{(n\theta)^{y}}{y!} = 0$$

where
$$\sum_{y=0}^{\infty} g(y) \frac{(n\theta)^y}{y!} = g(0) + g(1)(n\theta) + g(2) \frac{(n\theta)^2}{2} + g(3) \frac{(n\theta)^3}{6} + \dots = 0$$
 where $n, \theta > 0$

$$\mathbb{E}(g(Y)) = 0 \quad \forall \theta \iff \begin{cases} g(0) = 0 \\ g(1)(n\theta) = 0 \Rightarrow g(1) = 0 \\ g(2)\frac{(n\theta)^{2}}{2} = 0 \Rightarrow g(2) = 0 \end{cases} \Rightarrow g(k) = 0 \quad \forall k = 0, 1, 2, \dots$$

⇒ Y is complete sufficient for O.

Example 2 (C&B, Ex. 6.2.23)

Let $X_1, ..., X_n \sim \mathsf{Uniform}(0, \theta)$ iid, $\theta > 0$. Show $X_{(n)}$ is complete sufficient for θ .

$$\frac{1}{\prod_{i}}f(x_{i}) = \frac{1}{\prod_{i}}\frac{1}{\Theta}\prod_{(0,\Theta)}(x_{i}) = \frac{1}{\Theta^{h}}\prod_{(0,\Theta)}(x_{(m_{i})}) = \frac{1}{\Theta^{h}}\prod_{(0,\Theta)}(x_{(m_{i})}) \cdot \frac{1}{L_{2}(x_{i})}$$

: by NFFT,
$$Y = X_{cn_1}$$
 is sufficient for θ .

 $f_Y(y) = nF^{n-1}(y)f(y) = n(\frac{y}{2})^{n-1}(\frac{y}{2}) = \frac{ny^{n-1}}{y^n}$, $0 < y < \theta$
 $E(g(Y)) = \int_0^x g(y) \cdot \frac{ny^{n-1}}{y^n} dy = 0 \quad \forall \theta > 0$
 $= \int_0^x \int_0^x g(y) y^{n-1} dy = 0$

Differentiating both sides wit 0 => g(0)0 =0 40>0

:. Xen, is complete sufficient.

Example 3 (CAB, Ex. 6.2.22)

Let
$$T \sim \text{Binomial}(n, p)$$
, $0 . Show T is complete.

$$\mathbb{E}(g(t)) = \sum_{t=0}^{n} g(t) \binom{n}{t} p^{t} \binom{p}{t-p}^{n-t} = (1-p)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} \binom{p}{t-p}^{t} = 0 \quad \forall 0
$$= g(0) + g(1) \left[n \binom{p}{t-p} \right] + g(2) \left[\frac{n(n-1)}{2} \binom{p}{1-p}^{2} \right] + \dots + g(n) \binom{p}{1-p}^{n} = 0 \quad \forall 0$$$$$

This can only hold for all p,
$$0 iff.
$$\begin{cases}
g(0) = 0 \\
ng(1) = 0 \\
\frac{n(n-1)}{2}g(2) = 0
\end{cases}$$

$$\Rightarrow g(0) = g(1) = g(2) = ... = g(n) = 0$$$$

· Tis complete sufficient for p.

Lehmann-Scheffé Theorem

Let $X_1, ..., X_n$, n a fixed positive integer, denote a random sample from a distribution that has pdf/pmf $f(x;\theta), \theta \in \Omega$, let $Y_1 = u_1(X_1, ..., X_n)$ be a sufficient statistic for θ , and let the family $\{f_{Y_1}(y_1;\theta):\theta \in \Omega\}$ be complete. If there is a function of Y_1 that is an unbiased estimator of θ , then this function of Y_1 is the unique UMVUE of θ .

Uniqueness

- In most instances, if there is one function $\varphi(Y_1)$ that is unbiased, then it is the only unbiased estimator based on the sufficient statistic Y_1
- Lehmann-Scheffe ⇒ unbiased estimators based on complete sufficient statistics are unique.

How to Determine UMVUEs?

- Expected value of complete sufficient statistic
- Conditional expectation of unbiased estimate given sufficient statistic

Example 4

Let a random sample of size n be taken from a distribution of the discrete type with pmf $f(x;\theta) = \frac{1}{\theta}$, $x = 1,2,...,\theta$, where θ is an unknown positive integer.

- 1. Show that the largest observation, say $Y = X_{(n)}$, of the sample is a complete sufficient statistic for θ .
- 2. Prove that $[Y^{n+1} (Y-1)^{n+1}]/[Y^n (Y-1)^n]$ is the unique UMVUE of θ .

Example 4

$$\frac{1}{\prod_{i=1}^{n} f(x_{i};\theta)} = \frac{1}{\prod_{i=1}^{n} \frac{1}{\theta}} \frac{1}{\prod_{i=$$

$$f_{X_{cn}}(\mathbf{g}) = \mathbb{P}(X_{cn} = \mathbf{g}) = \mathbb{P}(X_{cn} \leq \mathbf{g}) - \mathbb{P}(X_{cn} \leq \mathbf{g}_{-1}) \text{ because discrete pmf}$$

$$= \mathbb{P}^{n}(\mathbf{g}) - \mathbb{P}^{n}(\mathbf{g}_{-1}) = \left(\frac{\mathbf{g}}{\theta}\right)^{n} - \left(\frac{\mathbf{g}_{-1}}{\theta}\right)^{n} = \frac{1}{\theta^{n}} \left[\mathbf{g}^{n} - (\mathbf{g}_{-1})^{n}\right]$$

$$\mathbb{E}(g(r)) = \sum_{y=1}^{b} g(y) \cdot \frac{1}{\theta^{n}} [y^{n} - (y-1)^{n}] = \frac{1}{\theta^{n}} \sum_{y=1}^{b} g(y) [y^{n} - (y-1)^{n}] \doteq 0$$

$$= g(1)(1-0) + g(2)(2^{n} - 1) + g(3)(3^{n} - 2^{n}) + ... +$$

$$+ g(\theta - 1)((\theta - 1)^{n} - (\theta - 2)^{n}) + g(\theta)(\theta^{n} - (\theta - 1)^{n}) \doteq 0$$

$$= [g(1) - g(2)] + 2^{n} [g(2) - g(3)] + ... + (\theta - 1)^{n} [g(\theta - 1) - g(\theta)] + \theta^{n} g(\theta) = 0$$

Because this relationship must hold $\forall \theta > 0$, this implies $g(\theta) = 0 \implies g(\theta-1) - g(\theta) = 0$ $\Rightarrow \dots = 0$

$$\Rightarrow$$
 $g(2) - g(3) = 0$

$$\Rightarrow$$
 $g(1) - g(2) = 0$

: $g(i) = 0 \ \forall i \implies \times_{cn}$, complete sufficient for θ .

Example 4 (cont.)

$$\frac{2}{2} \left(\frac{Y^{n+1} - (Y-1)^{n+1}}{Y^{n} - (Y-1)^{n}} \right) = \sum_{y=1}^{\theta} \frac{y^{n+1} - (y-1)^{n+1}}{y^{n} - (y-1)^{n}} \cdot \frac{1}{\theta^{n}} (y^{n} - (y-1)^{n})$$

$$= \frac{1}{\theta^{n}} \sum_{y=1}^{\theta} \left[y^{n+1} - (y-1)^{n+1} \right]$$

$$= \frac{1}{\theta^{n}} \left[(Y-\theta) + (2^{n+1} - Y) + (3^{n+1} - 2^{n+1}) + ... + (6^{n+1} - (61)^{n+1}) \right]$$

$$= \frac{6}{\theta^{n+1}} = 6$$

: $\frac{Y^{n+1}-(Y-1)^{n+1}}{Y^n-(Y-1)^n}$ is unbiased for θ and Y is complete sufficient for $\theta \Rightarrow by$ Lehmann-Scheffe, $\frac{Y^{n+1}-(Y-1)^n}{Y^n-(Y-1)^n}$ is UMNUE of θ .

Exponential Family/Class

A pdf of the form

$$f(x;\theta) = \exp[p(\theta)K(x) + S(x) + q(\theta)], x \in S^*$$

is said to be a member of the regular exponential class of probability density or mass functions if

- 1. S^* , the support of X, does not depend on θ
- 2. $p(\theta)$ is a nontrivial continuous function of $\theta \in \Omega$
- 3. Finally,
 - If X is a continuous rv then each of $K'(x) \not\equiv 0$ and S(x) is a continuous function of $x \in S^*$
 - If X is a discrete rv then K(x) is a nontrivial function of $x \in S^*$

Example 5

Show that the Normal $(0, \sigma^2 = \theta)$ distribution is a member of

the regular exponential class.
$$f(x) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2\theta}(x-0)^2} = (2\pi\theta)^2 \exp\left(\frac{-1}{2\theta}x^2\right), -\infty < x < \infty$$

$$= \exp\left(-\frac{1}{2\theta}(x-0)^2\right) - \frac{1}{2\theta}x^2 + 0$$

$$= \exp\left(-\frac{1}{2\theta}(x-0)^2\right) - \frac{1}{2\theta}x^2 + 0$$

$$= \exp\left(-\frac{1}{2\theta}(x-0)^2\right) - \frac{1}{2\theta}x^2 + 0$$

ie.
$$S(x)=0$$

$$p(\theta) = \frac{1}{20} \text{ nontrivial}$$

$$K(x) = x^{2} \text{ (ie. } K'(x) \neq 0)$$

$$q(\theta) = \frac{1}{2} \ln(2\pi\theta)$$

Example 6

Is the Uniform $(0, \theta)$ distribution a member of the regular exponential class?

$$f(x) = \frac{1}{\theta}$$
, $0 < x < \theta$
Support for x depends on θ

NO! Unif (0,0) is not a member

What about for a random sample?

$$TTf(x_{i}) = Texp \left[p(\theta)K(x_{i}) + S(x_{i}) + q(\theta) \right]$$

$$= exp \left[p(\theta) \sum_{i=1}^{n} K(x_{i}) + \sum_{i=1}^{n} S(x_{i}) + nq(\theta) \right]$$

$$= exp \left[p(\theta) \sum_{i=1}^{n} K(x_{i}) + nq(\theta) \right] exp \left[\sum_{i=1}^{n} S(x_{i}) \right]$$

$$K_{1}\left(\sum_{i=1}^{n} K(x_{i}), \theta\right) \qquad K_{2}(x_{i})$$

Result: $Y_1 = \sum_{i=1}^n K(x_i)$ is a sufficient statistic for θ .

Theorem

Let $X_1, ..., X_n$, denote a random sample from a distribution that represents a regular case of the exponential class, with pdf/pmf given by

$$f(x;\theta) = \exp[p(\theta)K(x) + S(x) + q(\theta)], x \in S^*$$

Consider the statistic $Y_1 = \sum_{i=1}^n K(x_i)$. Then,

- 1. The pdf/pmf of Y_1 has the form, $f_{Y_1}(y_1;\theta) = R(y_1) \exp[p(\theta)y_1 + nq(\theta)]$ for $y_1 \in S_{Y_1}^*$ and some function $R(y_1)$. Neither $S_{Y_1}^*$ nor $R(y_1)$ depend on θ .
- 2. $E(Y_1) = -nq'(\theta)/p'(\theta)$
- 3. $Var(Y_1) = n[1/p'(\theta)]^3 \{p''(\theta)q'(\theta) q''(\theta)p'(\theta)\}$

Example 7

- 1. Consider $X \sim \text{Poisson}(\theta)$. Show that it is a member of the regular exponential class.
- 2. For a random sample, $X_1, ..., X_n \sim \text{Poisson}(\theta)$, determine the sufficient statistic, Y_1 .
- 3. Use the above theorem to verify $E(Y_1)$ and $V(Y_1)$.

(i)
$$X \sim Possion(\theta)$$
 : $f(x;\theta) = \frac{e^{-\theta} \theta^{\times}}{x!}$, $x = 0, 1, 2, ...$
 $f(x;\theta) = exp \left[ln\left(\frac{e^{-\theta} \theta^{\times}}{x!}\right) \right]$

$$= exp \left[-\theta + x ln\theta - ln(x!) \right]$$

$$= g(\theta) \quad K(x) p(\theta) \quad S(x)$$

: it is a member of the regular exponential class.

$$\begin{array}{ll}
9(\theta) = \ln \theta & 9(\theta) = -\theta \\
p'(\theta) = \frac{1}{\theta} = \theta^{-1} & 9'(\theta) = -1 \\
p''(\theta) = -\theta^{-2} = \frac{-1}{\theta^2} & 9''(\theta) = 0
\end{array}$$

$$\frac{1}{r} E(r_{i}) = \frac{-nq'(\theta)}{p'(\theta)} = \frac{-n(-1)}{\sqrt{\theta}} = n\theta$$

$$V(\Upsilon_{i}) = n \left(\frac{1}{p'(\Theta)}\right)^{3} \left(p''(\Theta) q'(\Theta) - q''(\Theta) p'(\Theta)\right)$$

$$= n \left(\frac{1}{V_{\Theta}}\right)^{3} \left(\left(\frac{-1}{\Theta^{2}}\right)(-1) - (O)(V_{\Theta})\right)$$

$$= n \Theta^{3} \left(\frac{1}{\Theta^{2}}\right)$$

$$= n \Theta \checkmark$$

Theorem

Let $f(x; \theta), \gamma < \theta < \delta$, be a pdf/pmf of a rv X whose distribution is a regular case of the exponential class. Then if $X_1, X_2, ..., X_n$ (where n is a fixed positive integer) is a random sample from the distribution of X, the statistic $Y_1 = \sum_{i=1}^n K(X_i)$ is a sufficient statistic for θ and the family $\{f_{Y_1}(y_1;\theta): \gamma < \theta < \delta\}$ of pdfs of Y_1 is complete. That is, Y_1 is a complete sufficient statistic for θ .

Implication: After determining the sufficient statistic, $Y_1 = \sum_{i=1}^n K(X_i)$, we form a function, $\varphi(Y_1)$, so that $E(\varphi(Y_1)) = \theta$ implies $\varphi(Y_1)$ is unique and UMVUE of θ .

Example 8

Consider $X_1, ..., X_n \sim Normal(\theta, \sigma^2)$ iid, σ known.

Show that $Y_1 = \sum_{i=1}^n X_i$ is complete sufficient.

Determine the unique UMVUE of
$$\theta$$
.

$$f(x) = \frac{1}{12\pi} \frac{1}{\sigma} e^{\frac{1}{2\sigma^2}(x-\theta)^2} = (2\pi\sigma^2)^2 \exp\left[\frac{1}{2\sigma^2}(x-\theta)^2\right]$$

$$= \exp\left[\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x^2-2\theta x + \theta^2)\right]$$

$$= \exp\left[\frac{1}{2}\ln(2\pi\sigma^2) - \frac{\theta^2}{2\sigma^2} - \frac{x^2}{2\sigma^2} + \frac{\theta}{\sigma^2}x\right] \text{ is exponential family}$$

$$\frac{1}{2\sigma^2} \frac{1}{2\sigma^2} \frac{1}{$$

:
$$Y_i = \sum_{i=1}^{n} K(x_i) = \sum_{i=1}^{n} X_i$$
 is complete sufficient for Φ
 $E(Y_i) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \Phi = n\Phi$

$$\Rightarrow \frac{Y_i}{n} = \frac{\sum X_i}{n} = \overline{X}$$
 is unbiased for θ

Example 9

Let $X_1, ..., X_n \sim \text{Bernoulli}(\theta)$ iid, $0 < \theta < 1$. Find the UMVUE of θ .

$$f(x;\theta) = \theta^{\times}(1-\theta)^{1-x}, \quad x=0,1 \quad \text{support does not depend on } \theta$$

$$= \exp\left[x \ln \theta + (1-x) \ln (1-\theta) \right]$$

$$= \exp\left[x \ln \left(\frac{\theta}{1-\theta} \right) + \ln (1-\theta) + 0 \right] \text{ is an exponential family } \theta$$

$$= \exp\left[x \ln \left(\frac{\theta}{1-\theta} \right) + \ln (1-\theta) + 0 \right] \text{ is an exponential family } \theta$$

:
$$Y = \sum_{i=1}^{n} K(x_i) = \sum_{i=1}^{n} X_i$$
 is complete sufficient for Φ
 $E(Y) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \theta = n\theta$

 $\frac{1}{n} = \frac{\sum X}{n} = \overline{X}$ unbiased for $\theta : \overline{X}$ UMVVE by Lehmann-Scheffé Thm.

SEE ATTACHED for alternate solution to Example 9.

Example 10

Let a random sample of size n, i.e. $X_1, ..., X_n$, be taken from a distribution that has the pdf $f(x; \theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) I_{(0,\infty)}(x)$. Find the MLE and the UMVUE of $P(X_1 \le 2)$.

$$X_1, -1, X_n \sim \text{Bernoulli}(\theta)' \text{ iid}, 0 < \theta < 1 \Rightarrow f(x) = \theta^{x} (1-\theta)^{1-x}; x = 0, 1$$

$$\prod_{i=1}^{n} f(x_i) = \theta^{x} (1-\theta)^{x} = \left(\frac{\theta}{1-\theta}\right)^{x} (1-\theta)^{x} \cdot 1$$

$$K_1(\tilde{\Sigma}_{X_1}, \theta) = K_2(x)$$

Consider
$$X_1 = \begin{cases} 1 & \text{up.} \theta \\ 0 & \text{pp.} 1-\theta \end{cases}$$
 By definition, $\mathbb{E}(X_1) = 1 \cdot \mathbb{P}(X_1 = 1) + 0 \cdot \mathbb{P}(X_1 = 0)$
$$= 1(\theta) + 0(1-\theta)$$
$$= \theta$$

:. X_i unbiased for $\hat{\theta}$. Thus, by the Rao-Blackwell Thm., consider $\mathbb{E}(X_i | \hat{\Sigma}_{X_i=y}) = \mathbb{P}(X_i=1 | \hat{\Sigma}_{X_i=y}) = \mathbb{P}(X_i=1, \hat{\Sigma}_{X_i=y})$ $\mathbb{P}(\hat{\Sigma}_{X_i=y}) = \mathbb{P}(\hat{\Sigma}_{X_i=y}) = \mathbb{P}(\hat{\Sigma}_{X_i=y})$ $\mathbb{P}(\hat{\Sigma}_{X_i=y}) = \mathbb{P}(\hat{\Sigma}_{X_i=y})$

$$= \frac{\mathbb{P}(X_1 = 1, \sum_{i=1}^{n} X_i = y - 1)}{\mathbb{P}(\sum_{i=1}^{n} X_i = y)} = \frac{\mathbb{P}(X_1 = 1) \mathbb{P}(\sum_{i=1}^{n} X_i = y - 1)}{\mathbb{P}(\sum_{i=1}^{n} X_i = y)} \text{ by independence}$$
where $\sum_{i=1}^{n} X_i \sim \text{Bin}(n-1, \theta)$ and $\sum_{i=1}^{n} X_i \sim \text{Bin}(n, \theta)$

$$= \frac{(0)\binom{n-1}{y-1}0^{y-1}}{\binom{n}{y}0^{y-1}}0^{y-1} + \frac{(n-1)-(y-1)}{\binom{n}{y}} = \frac{(n-1)!}{\binom{n}{y}} = \frac{(n-1)!}{\binom{n$$

: by the Rao-Blackwell Thm., \bar{X} is UMVUE of θ .

:- by NFFT, $Y = \sum X$: sufficient for θ .

Alternatively,
$$f(x;\theta) = \frac{1}{\theta} e^{-x/\theta} = \exp\left[\ln\left(\frac{1}{\theta} e^{-x/\theta}\right)\right]$$

$$= \exp\left[-\ln\theta - \frac{1}{\theta}x + 0\right] \text{ is an exponential family}$$

: $Y = \sum_{i=1}^{n} K(x_i) = \sum_{i=1}^{n} X_i$ complete sufficient for θ .

Let
$$Z = \begin{cases} 1 & X_1 \le 2 \end{cases}$$
. Then $\mathbb{E}(Z) = 1 \cdot \mathbb{P}(X_1 \le 2) + 0 \cdot \mathbb{P}(X_1 \ge 2) = \mathbb{P}(X_1 \le 2)$
0 otherwise

 \Rightarrow Z unbiased for $\mathbb{P}(X_1 \leq 2)$.

By Rao-Blackwell Thm.,
$$\mathbb{E}(Z|Y=y) = \mathbb{P}(X_1 \le 2|Y= \tilde{L}X_1 = y)$$
 where $f(x_1|y) = f(x_1|\tilde{L}X_1 = y) = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$

$$= \frac{f(x_1)f_{n-1}(y-x_1)}{f_n(y)} \text{ by independence, where } \tilde{L}X_1 \sim G_{lamma}(n-1, \theta)$$

$$= \frac{f(x_1)f_{n-1}(y-x_1)}{f_n(y)} \text{ by independence, where } \tilde{L}X_1 \sim G_{lamma}(n, \theta)$$

$$= \frac{f(x_1)f_{n-1}(y-x_1)}{f_n(y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1)f_{n-1}(y-x_1)}{f(n-1)f_{n-1}(y-x_1)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)}$$

$$= \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_1, \tilde{L}X_1 = y)}{f(\tilde{L}X_1 = y)} = \frac{f(x_$$

Example 10 (cont.)

$$P(X_{1} \leq 2|y) = \int_{0}^{2} f(x_{1}|y) dx_{1} = \int_{0}^{2} \frac{(n-1)(y-x_{1})^{n-2}}{y^{n-1}} dx_{1}$$

$$= \frac{1}{y^{n-1}} \int_{0}^{2} (n-1)(y-x)^{n-2} dx_{1}$$

$$= \frac{1}{y^{n-1}} \left(-(y-x)^{n-1} \right)_{0}^{2}$$

$$= \frac{-1}{y^{n-1}} \left[(y-2)^{n-1} - y^{n-1} \right]$$

$$= \left[-\left(\frac{y-2}{y} \right)^{n-1} \right]$$

$$\Rightarrow 1 - \left(\frac{\sum x_i - 2}{\sum x_i}\right)^{n-1}$$
 is UMVUE of $P(x_i \le 2)$ by Rao-Blackwell Thm.