Lista 2

Zadanie 1

Niech $B\in\{2,3,4...\}$. Pokażmy, że każda niezerowa liczba rzeczywista x ma jednoznaczne przedstawienie w postaci $x=smB^c$, gdzie $s=sgnx,\ c\in\mathbb{Z},\ m\in[\frac{1}{B},1)$.

Załóżmy nie wprost, że istnieją dwie różne reprezentacje takiej liczby x i oznaczmy je jako:

$$x = s_1 m_1 B^{c_1} = s_2 m_2 B^{c_2},$$

gdzie $m_1, m_2 \in [rac{1}{B}, 1)$ oraz $c_1, c_2 \in \mathbb{Z}$.

Przy czym $s=s_1=s_2$. Mamy zatem:

$$egin{aligned} sm_1B^{c_1} &= sm_2B^{c_2} \ m_1B^{c_1} &= m_2B^{c_2} \ rac{m_1}{m_2} &= rac{B^{c_2}}{B^{c_1}} \ rac{m_1}{m_2} &= B^{c_2-c_1} \end{aligned}$$

Rozpatrzmy przypadki:

$$1^{\circ} c_1 = c_2$$

Wtedy:

$$\frac{m_1}{m_2}=1 \implies m_1=m_2$$

Sprzeczność z założeniem o dwóch różnych reprezentacjach.

$$2^{\circ} c_1 > c_2 \implies c_2 - c_1 \leq -1$$

Czyli $B^{c_2-c_1} \leq rac{1}{B}.$

$$rac{m_1}{m_2}=B^{c_2-c_1}\leq rac{1}{B}$$
 $m_1\leq m_2rac{1}{B}$

Z założenia $m_2 < 1$, więc otrzymujemy:

$$m_1 < rac{1}{B}$$

A ponieważ $m_1 \in \left[rac{1}{B}, 1
ight)$ to otrzymujemy sprzeczność.

$$3^{\circ} \ c_1 < c_2 \implies c_2 - c_1 \geq 1$$

Czyli $B^{c_2-c_1} \geq B.$

$$\frac{m_1}{m_2} = B^{c_2-c_1} \geq B$$

$$m_1 \geq Bm_2$$

Ponieważ $m_2 \geq rac{1}{B}$ otrzymujemy:

$$m_1 \geq 1$$

Sprzeczność, ponieważ $m_1 \in [\frac{1}{B},1)$.

Zadanie 2

$m_{(2)}$	$m_{(10)}2^0$	$m_{(10)}2^{-1}$	$m_{(10)}2^1$
± 0.1111	$\pm \frac{15}{16}$	$\pm \frac{15}{32}$	$\pm \frac{15}{8}$
± 0.1110	$\pm \frac{14}{16}$	$\pm \frac{14}{32}$	$\pm \frac{14}{8}$
± 0.1101	$\pm \frac{13}{16}$	$\pm \frac{13}{32}$	$\pm \frac{13}{8}$
± 0.1100	$\pm \frac{12}{16}$	$\pm \frac{12}{32}$	$\pm \frac{12}{8}$
± 0.1011	$\pm \frac{11}{16}$	$\pm \frac{11}{32}$	$\pm \frac{11}{8}$
± 0.1010	$\pm \frac{10}{16}$	$\pm \frac{10}{32}$	$\pm \frac{10}{8}$
± 0.1001	$\pm \frac{9}{16}$	$\pm \frac{9}{32}$	$\pm \frac{9}{8}$
± 0.1000	$\pm \frac{8}{16}$	$\pm \frac{8}{32}$	$\pm \frac{8}{8}$

Najmniejszy przedział zawierający wszystkie te liczby to $[-\frac{15}{8},\frac{15}{8}]$

Rozkład liczb na osi w tym przedziale:

Zauważmy, że im większe (co do modułu) liczby, tym bardziej 'rozrzucone' są na osi OX, czyli tracimy

możliwość precyzyjnego zaprezentowania liczby. A dla liczb co modułu mniejszych od $\frac{1}{4}$ tracimy możliwość reprezentacji (w przyjętym modelu).

Zadanie 3

Niech

$$x=sm2^c$$
 , gdzie $s=sgnx,\ c\in\mathbb{Z},\ m\in[rac{1}{2},1),$ $rd(x)=sm_t^r2^c$, gdzie $\ m_t^r\in[rac{1}{2},1)$ oraz $\ |m-m_t^r|\leqrac{1}{2}2^{-t}$

Pokazać, że

$$\frac{|rd(x)-x|}{|x|} \leq 2^{-t}$$

Dowód:

$$egin{split} rac{|rd(x)-x|}{|x|} &= \left|rac{sm_t^r 2^c - sm2^c}{sm2^c}
ight| = \left|rac{m_t^r - m}{m}
ight| = \ & rac{|m-m_t^r|}{m} \leq rac{1}{2}2^{-t}rac{1}{m} \stackrel{(1)}{\leq} 2^{-t} \end{split}$$

(1)
$$m \in [\frac{1}{2},1) \implies \frac{1}{m} \in (1,2]$$

Zadanie 4

25 lutego 1991r. bateria American Patriot Missile nie zdołała wyśledzić oraz przechwycić nadlatującego irackiego pocisku. Jak się okazuje, śmierć 28 żołnieży i zranienie kolejnych 100 osób spowodował błąd w obliczeniach.

Czas w zegarze komputera liczony był w dziesiątkach sekund (od rozpoczęcia pracy) i był reprezentowany liczbami całkowitymi. Do uzyskania czasu w sekundach ta liczba mnożona była przez $\frac{1}{10}$ (operacja na liczbach zmiennoprzecinkowych). Ponieważ $\frac{1}{10}$ ma nieskończone rozwinięcie w systemie binarnym, a rejestry w tym komputerze były 24-bitowe to każda taka operacja obarczona była małym błedem.

Do odpowiedniego przewidzenia, gdzie rakieta powinna się znajdować użyto funkcji korzystającej z jej prędkości oraz czasu, w którym ostatni raz została wykryta przez radar. Tamtego dnia system pracował około 100 godzin, co przekłada się na 0.34s błędu. Biorąc pod uwagę, że owy typ rakiety leci z prędkością 1676 $\frac{m}{s}$ to wykroczył poza monitorowany obszar.

Zadanie 5

Kodowanie liczby zmiennoprzecinkowej pojedynczej precyzji:

Mamy format numeryczny: $(-1)^s 2^E M$, gdzie $M \in [1,2), s \in \{0,1\}$.

Bit znaku kodowany jest jako 0 (dodatnia) lub 1 (ujemna).

$$E = wyk adnik - BIAS$$

 $BIAS=2^{k-1}-1$, gdzie k to ilość bitów przeznaczonych na wykładnik Mantysa w słowie maszynowym to M zapisane bez wiodącej jedynki, czyli Mantysa $\in [0,1)$

W przypadku wykładnik=1-BIAS mamy liczby zdenormalizowane (-0,+0 oraz liczby bardzo blisko zera).

Dla wykładnik=BIAS możemy otrzymać $-\infty,+\infty$ (dla Mantysy równej 0) oraz NaN (gdy Matysa nie jest równa 0) - powstający np. z pierwiastkowania liczby ujemnej.

Teoretyczny model reprezentacji liczb maszynowych z wykładu:

$$x=sm2^c$$
, gdzie $s\in\{-1,1\}, m\in[rac{1}{2},1), c\in\mathbb{Z}$

Mamy d+1 bitów na liczbę rzeczywistą ze znakiem, z czego kolejno:

- 1 bit na znak s liczby,
- b bitów na mantysę m,
- ullet d-b bitów na cechę c (z czego jeden na jej znak).

Główne różnice między reprezentacjami:

- w uproszczonej reprezentacji nie można zapisać 0, nieskończoności, NaN, ani liczb bardzo blisko 0.
- korzystając ze standardu IEEE 754 możemy zapisać więcej liczb mając do dyspozycji tą samą ilość bitów,
- przedział możliwych do zaprezentowania liczb jest symetryczny (dla wersji z wykładu).

Zadanie 6

Algorytm do obliczania wartości $d:=\sqrt{x^2+y^2}$:

```
u := x*x;
u := u + y*y;
d := sqrt(u)
```

Pokażmy, że przy zaproponowanym algorytmie może wystąpić zjawisko nadmiaru.

Niech $X_{fl} = [-16, 16]$ oraz x = y = 8, stosując algorytm:

Jak widzimy, w miejscach (1) oraz (2) algorytmu wystąpiło zjawisko nadmiaru, mimo że $d=\sqrt{128}=8\sqrt{2}\approx 11, 3\in X_{fl}.$

Niech M=max(|x|,|y|)
eq 0Wtedy:

$$\sqrt{x^2+y^2} = M\sqrt{rac{x^2}{M^2} + rac{y^2}{M^2}} = M\sqrt{(rac{x}{M})^2 + (rac{y}{M})^2} \leq \sqrt{2}max(|x|,|y|) \in X_{fl}$$

Algorytm unikający zjawiska nadmiaru:

Długość euklidesowa wektora (w \mathbb{R}^n):

$$||x|| = \sqrt{x \cdot x} = (\sum_{i=1}^n x_i^2)^{rac{1}{2}}$$

Niech $M=max(|x_1|,|x_2|,...|x_n|)$, oraz wiedząc, że $max(|x_1|,|x_2|,...,|x_n|)\sqrt{n}\in X_{fl}$

$$egin{split} \sqrt{x_1^2+x_2^2+...+x_n^2} &= M\sqrt{rac{x_1^2}{M^2}+rac{x_2^2}{M^2}+...+rac{x_n^2}{M^2}} = \ & M\sqrt{(rac{x_1}{M})^2+(rac{x_2}{M})^2+...+(rac{x_n}{M})^2} \leq M\sqrt{n} = max(|x_1|,|x_2|,...,|x_n|)\sqrt{n} \end{split}$$

Algorytm:

Zadanie 8

$$f(x) = 4040 rac{\sqrt{x^{11}+1}-1}{x^{11}}$$

Z poprzedniej listy wiemy, iż już f(0.001) daje niewiarygodny wynik. Dzieje się tak ze względu na zjawisko utraty cyfr znaczących.

Dla małych $x, \sqrt{x^{11}+1}-1$ interpretowany jest jako 0, dlatego też dla całego wyrażenia otrzymujemy 0.

Wzór możemy przekształcić:

$$f(x) = 4040rac{\sqrt{x^{11}+1}-1}{x^{11}} = 4040rac{(\sqrt{x^{11}+1}-1)(\sqrt{x^{11}+1}+1)}{x^{11}(\sqrt{x^{11}+1}+1)} = rac{4040}{\sqrt{x^{11}+1}+1}$$

Tym samym pozbywając się zjawiska utraty cyfr znaczących dla małych x.

tags: anl