Outline

Apprentissage Statistique II

Méthodes pénalisées

rtiuge

Lasso

lastic Net

Group-Lasso

Extensions

ython

Références

Méthodes pénalisées & Lasso

Master parcours SSD - UE Apprentissage Statistique II

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Ce cours

Outline

Apprentissage Statistique II

Méthodes pénalisées :

- un cadre plus général que les SVMS
- basé (ici) sur des modèles linéaires
- mettant en jeu un critère de régularisation/pénalisation
 - ▶ joué par la marge des SVMs
- dont la pénalité Lasso
- qui conduit à des modèles parcimonieux
 - sélection de variables
- ainsi que ses extensions
 - elastic-net, group-lasso, ...

Plan

Outline

Apprentissage Statistique II

léthodes énalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

vthon

Références

1. SVMs & méthodes pénalisées

2. Régressions Ridge

3. Pénalité Lasso

4. Pénalité Elastic-Net

5. Pénalité Goup-Lasso

6. Mise en oeuvre en Python

Outline

Apprentissage Statistique II

Méthodes pénalisées

rtiage

Lasso

Elastic Net

Group-Lasso

Extensions

Python

léférences :

SVMs & méthodes pénalisées

Group-Lasso

Extensio

Dáfárancac

Références

Soft-margin SVM: problème primal

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}, \\ \xi \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \quad i = 1, \dots, n,$ $\xi_i > 0, \quad i = 1, \dots, n.$

On notera $f(x) = \langle w, x \rangle + b$:

- ▶ $y_i f(x_i) > 0 \Leftrightarrow (x_i, y_i)$ bien classé
- $y_i f(x_i) > 1 \Leftrightarrow (x_i, y_i)$ bien classé en dehors de la marge
- \Rightarrow la variable $\xi_i = 1 y_i f(x_i), \ \xi_i \ge 0$:
 - quantifie l'erreur faite au point (x_i, y_i)
 - est une variable "ressort" ("slack" variable)

Lasso

Elastic Net

Group-Lass

_

Références

Slack-variable $\xi_i = 1 - y_i f(x_i), \ \xi_i \ge 0$:

- \triangleright $\xi_i = 0$: point (x_i, y_i) bien classé en dehors de la marge
- ▶ $0 < \xi_i < 1$: point (x_i, y_i) bien classé mais dans la marge
- $\xi_i > 1$: point (x_i, y_i) mal classé

Hinge loss

Fonction de coût associée = hinge loss ("charnière") :

$$h(y, f(x)) = \max(0, 1 - yf(x))$$
$$= (1 - yf(x))_{+}$$

$$\Rightarrow \xi_i = 1 - y_i f(x_i), \ \xi_i \geq 0$$

Interprétation:

- ▶ pas de perte si $yf(x) \ge 1$: hors de la marge
- perte linéaire dès qu'on rentre dans la marge

Remarque : toujours \geq au coût 0/1

- plus facile à manipuler car continue
- ▶ $\sum_i h(y_i, f(x_i)) > \#$ erreurs de classification

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

asso

Elastic ivet

Group-Lasso

Python

SVMs & hinge-loss

Outline

Apprentissage Statistique II

Soft-margin SVM : problème primal

$$(w^*, b^*) = \underset{\substack{w \in \mathbb{R}^p, b \in \mathbb{R}, \\ \xi \in \mathbb{R}^n}}{\operatorname{argmin}} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \quad i = 1, \dots, n,$$

$$\xi_i > 0, \qquad i = 1, \dots, n.$$

Méthodes pénalisées

viuge

Group-Lasso

Extension

y 2...0..

éférences

⇒ ré-écriture du problème SVM :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n h(y_i, f(x_i))$$

où
$$f(x) = \langle w, x \rangle + b$$
 et $h(y, f(x)) = (1 - yf(x))_+$.

asso

Elastic Net

Group-Lasso

Références

On peut alors écrire :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n h(y_i, f(x_i))$$

$$= \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \frac{1}{2C} ||w||^2 + \sum_{i=1}^n h(y_i, f(x_i))$$

$$= \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n h(y_i, f(x_i)) + \frac{1}{2C} ||w||^2$$

$$= \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n h(y_i, f(x_i)) + \lambda ||w||^2$$

⇒ formulation de risque empirique pénalisé.

pénalisées

Formulation de risque empirique pénalisé :

 $(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1} h(y_i, f(x_i)) + \frac{\lambda ||w||^2}{}$

- risque empirique : erreur faite sur le jeu d'apprentissage
 - selon la fonction de coût h(y, f(x))
- penalisation : pour contrôler le sur-apprentissage
 - ▶ risque empirique seul = risque de sur-apprentissage
 - e.g., haute dimension ou classes de fonctions complexes
 - pénalisation = régularisation
 - pour les SVMs : liée directement à la notion de marge

Python

Références

Risque empirique pénalisé : formulation générale

 $(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \Omega(w)$

où:

- ▶ L(y, f(x)) est une fonction de coût / de perte
 - ▶ grand quand y et f(x) sont différents
- $ightharpoonup \Omega(w)$ est une fonction de régularisation

pénalisées

Risque empirique pénalisé : formulation générale

 $(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1} L(y_i, f(x_i)) + \lambda \Omega(w)$

où:

- ▶ L(y, f(x)) est une fonction de coût / de perte
 - grand quand y et f(x) sont différents
- $\triangleright \Omega(w)$ est une fonction de régularisation

⇒ ici on considèrera :

- des modèles linéaires : $f(x) = \langle w, x \rangle + b$
- des fonctions de perte et de régularisation convexes

Fonctions de perte classiques

Régression:

▶ perte quadratique : $L(y, f(x)) = (y - f(x))^2$

Classification:

▶ perte hinge : $L(y, f(x)) = (1 - yf(x))_+$

▶ perte logistique : $L(y, f(x)) = \log (1 + e^{-yf(x)})$

(la quantité yf(x) est parfois appelée la marge de (x, y))

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

LACCITOTO

Python

Régression logistique :

$$\begin{cases} P(Y = 1|x) = \sigma(f(x)) = \frac{1}{1 + e^{-f(x)}} \\ P(Y = -1|x) = 1 - \sigma(f(x)) = \frac{1}{1 + e^{+f(x)}} \end{cases}$$

$$\Rightarrow$$
 on a donc $\forall (x_i, y_i) : P(Y = y_i | x_i) = \frac{1}{1 + e^{-y_i f(x_i)}}$

Régression logistique :

$$\begin{cases} P(Y = 1|x) = \sigma(f(x)) = \frac{1}{1 + e^{-f(x)}} \\ P(Y = -1|x) = 1 - \sigma(f(x)) = \frac{1}{1 + e^{+f(x)}} \end{cases}$$

$$\Rightarrow$$
 on a donc $\forall (x_i, y_i) : P(Y = y_i | x_i) = \frac{1}{1 + e^{-y_i f(x_i)}}$

Solution du maximum de (log) vraisemblance :

$$(\hat{w}, \hat{b}) = \operatorname{argmax} \prod_{i=1}^{n} \frac{1}{1 + e^{-y_i f(x_i)}}$$
$$= \operatorname{argmin} \sum_{i=1}^{n} \log(1 + e^{-y_i f(x_i)})$$

$$L(y, f(x)) = \log (1 + e^{-yf(x)})$$

= $-\log (P(Y = y|x)).$

⇒ utiliser la perte logistique = faire une régression logistique

Méthodes pénalisées

Kidge

asso

Elastic Net

Group-Lasso

$$L(y, f(x)) = \log (1 + e^{-yf(x)})$$

= $-\log (P(Y = y|x)).$

⇒ utiliser la perte logistique = faire une régression logistique

Conséquence : prédiction probabiliste :

$$P(Y=1|x)=rac{1}{1+e^{-f(x)}}$$
 \Rightarrow critère de confiance

Méthodes pénalisées

lage

Lasso

Elastic Net

Group-Lasso

2666.....

Perte logistique

Outline Apprentissage

Perte logistique:

$$L(y, f(x)) = \log (1 + e^{-yf(x)})$$

= $-\log (P(Y = y|x)).$

 \Rightarrow utiliser la perte logistique = faire une régression logistique

Conséquence : prédiction probabiliste :

$$P(Y=1|x) = \frac{1}{1+e^{-f(x)}}$$
 \Rightarrow critère de confiance

En pratique :

- lacktriangle logistique et hinge sont proches : \sim performances
- ► logistique dérivable partout
- "charnière" des SVMs ⇒ vecteurs supports
 - ▶ pas de VS en logistique, mais inutile dans le primal

Statistique II

pénalisées Ridge

Lasso

Elastic Net

Group-Lasso

ython

étérences

Fonctions de pénalisation incontournables

Pénalité Ridge (ou
$$L_2$$
): $\left|\Omega_{\text{Ridge}}(w) = \left|\left|w\right|\right|_2^2 = \sum_{j=1}^p w_j^2\right|$

Pénalité Lasso (ou
$$L_1$$
) : $\left|\Omega_{\mathsf{Lasso}}(w) = \left|\left|w\right|\right|_1 = \sum_{j=1}^p \left|w_j\right|\right|$

Outline

Apprentissage Statistique II

Méthodes pénalisées

Lasso

Elastic Net

Group-Lasso

Extensions

Python

Fonctions de pénalisation incontournables

Pénalité Ridge (ou
$$L_2$$
) : $\left|\Omega_{\mathsf{Ridge}}(w) = \left|\left|w\right|\right|_2^2 = \sum_{j=1}^p w_j^2\right|$

Pénalité Lasso (ou
$$L_1$$
) : $\left|\Omega_{\mathsf{Lasso}}(w) = \left|\left|w\right|\right|_1 = \sum_{j=1}^p \left|w_j\right|$

Même effet : pénaliser les valeur élevées ⇒ régularisation

▶ intuition : pente élevée → y varie + vite quand x varie mais avec une géométrie différente :

- ▶ lasso : des coefficients w_j exactement = 0
- ▶ ridge : coefficients w_i petits mais jamais nuls
- ⇒ Lasso = méthode parcimonieuse, sélection de variables

Outline

Apprentissage Statistique II

Méthodes pénalisées

...gc

Lasso

Elastic Net

Group-Lasso

_ .

Combinaisons pertes / pénalités :

	Quadratique	Hinge	Logistique
Ridge	ridge regression	SVM	ridge logistic-regression
Lasso	Lasso	L1-SVM	L1 logistic-regression

⇒ pour la suite on s'intéressera principalement aux pertes quadratiques et logistiques

- cadre des modèles linéaires généralisés
- ▶ logistique et SVM très proches

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

lastic Net

Group-Lasso

Extensions

Python

léférences :

Régression Ridge

Lasso

Elastic Net

Group-Lasso

.

éférences

Régression linéaire avec perte quadratique et pénalité L2 :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||w||_2^2$$

$$= \underset{w \in \mathbb{R}^{p}, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} (y_{i} - b - \sum_{j=1}^{p} w_{j} x_{ij})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$

asso

Elastic Net

Group-Lasso

Extensions

J -----

Références

Régression linéaire avec perte quadratique et pénalité L_2 :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||w||_2^2$$

$$= \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^n (y_i - b - \sum_{j=1}^p w_j x_{ij})^2 + \lambda \sum_{j=1}^p w_j^2$$

Pour le résoudre : centrer les variables $o ilde{x}_{ij} = x_{ij} - ar{x}_{j}$

- 1. on estime alors l'intercept b par $b^* = \hat{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- 2. on obtient w avec le même problème sans intercept.
- 3. solution : $\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y} \mid \text{où } \mathbf{X}[i,j] = \tilde{x}_{ij}$

Ridge regression

Régression linéaire vs régression ridge :

$$w^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} y \quad \Rightarrow \quad w^* = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} y$$

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Ridge regression

Régression linéaire vs régression ridge :

$$w^* = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}y \quad \Rightarrow \quad w^* = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\top}y$$

La matrice $\mathbf{X}^{\top}\mathbf{X}$ (de taille $p \times p$) est :

- ▶ non inversible si p > n
 - résolution du problème impossible
- mal conditionnée si descripteurs corrélés
 - ▶ instabilité numérique, forte variance dans l'estimation

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

asso

Elastic Net

Group-Lasso

Extension

Python

Ridge regression

Régression linéaire vs régression ridge :

$$w^* = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}y \quad \Rightarrow \quad w^* = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\top}y$$

La matrice $\mathbf{X}^{\top}\mathbf{X}$ (de taille $p \times p$) est :

- ▶ non inversible si p > n
 - résolution du problème impossible
- mal conditionnée si descripteurs corrélés
 - ▶ instabilité numérique, forte variance dans l'estimation

\Rightarrow ajout du terme $\lambda I = \text{régularisation}$:

- permet de travailler en <u>haute dimension</u> (p >> n)
 - ▶ sans faire de sélection de variables, parfois instable
- stabilise l'estimation en présence de variables corrélées
 - ▶ poids "partagé" entre variables fortement corrélées

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic ivet

Group-Lasso

LALCHSIO

Python

Ridge regression - illustration

Illustation: Prostate dataset 1

⇒ "shrinkage" : réduction de l'amplitude des coefficients

 \Rightarrow regularisation path : coefficients en fonction de λ ou $||w||_1$

1. https://web.stanford.edu/~hastie/ElemStatLearn/

Outline

Apprentissage Statistique II

Méthodes

Ridge

2550

asso

Flastic Net

Group-Lasso

Dáfássassas

0/67

Ridge regression - remarques

Méthode simple, efficace et stable (e.g., en haute dimension)

▶ question clé : régler le paramètre de régularisation

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Xtciisioi

Flastic Net

Group-Lasso

Extension

Références

Méthode simple, efficace et stable (e.g., en haute dimension)

question clé : régler le paramètre de régularisation

Inteprétation bayésienne :

- ▶ moindres carrés = maximum de vraisemblance sous hypothèse de bruit Gaussien : $y \to \mathcal{N}(\langle w, x \rangle + b ; \sigma^2)$
- régularisation $L_2 = a$ priori $w_i \to \mathcal{N}(0, \sigma_0^2)$
- ⇒ moindres carrés pénalisé : estimateur du MAP
- $\Rightarrow \lambda \sim 1/\sigma_0^2$

Méthode simple, efficace et stable (e.g., en haute dimension)

question clé : régler le paramètre de régularisation

Inteprétation bayésienne :

- moindres carrés = maximum de vraisemblance sous hypothèse de bruit Gaussien : $y \to \mathcal{N}(\langle w, x \rangle + b ; \sigma^2)$
- régularisation $L_2 = a$ priori $w_i \to \mathcal{N}(0, \sigma_0^2)$
- ⇒ moindres carrés pénalisé : estimateur du MAP
- $\Rightarrow \lambda \sim 1/\sigma_0^2$

Ridge logistic-regression : même mécanisme

▶ pas de "closed form" solution, algorithme itératif

Ridge regression - remarques

Méthode simple, efficace et stable (e.g., en haute dimension)

▶ question clé : régler le paramètre de régularisation

Inteprétation bayésienne :

- ▶ moindres carrés = maximum de vraisemblance sous hypothèse de bruit Gaussien : $y \to \mathcal{N}(\langle w, x \rangle + b ; \sigma^2)$
- régularisation $L_2=$ a priori $w_j o \mathcal{N}(0,\sigma_0^2)$
- ⇒ moindres carrés pénalisé : estimateur du MAP
- $\Rightarrow \lambda \sim 1/\sigma_0^2$

Ridge logistic-regression : même mécanisme

▶ pas de "closed form" solution, algorithme itératif

Limite : pas de sélection de variables

► coefficients "shrinkés" vers 0 mais jamais nuls

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

lastic Net

Group-Lasso

Extensions

Python

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lass

_

Python

éférences

Lasso

Lasso

Régression linéaire avec perte quadratique et pénalité L_1 :

$$egin{aligned} ig(w^*,b^*ig) &= \mathop{
m argmin}_{w \in \mathbb{R}^p,b \in \mathbb{R}} & \sum_{i=1}^n ig(y_i - f(x_i)ig)^2 + \lambda igig|ig|wig|ig|_1 \end{aligned}$$

$$= \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n \left(y_i - b - \sum_{j=1}^p w_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |w_j|$$

Régression linéaire avec perte quadratique et pénalité L_1 :

$$(w^*, b^*) = \underset{w \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||w||_1$$
$$= \underset{x \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^n (y_i - b - \sum_{i=1}^p w_i x_{ii})^2 + \lambda ||w||_1$$

$$= \underset{w \in \mathbb{R}^{p}, b \in \mathbb{R}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} (y_{i} - b - \sum_{j=1}^{p} w_{j} x_{ij})^{2} + \lambda \sum_{j=1}^{p} |w_{j}|$$

Par rapport à pénalité ridge :

- même effet de régularisation : shrinkage des coefficients
- mais conduit à des coefficients exactement = 0
- ⇒ solution parcimonieuse (sparse) : sélection de variables.

Group-Lass

Références

Formulation équivalente :

 $(w^*,b^*)=\operatorname*{argmin}_{w\in\mathbb{R}^p,b\in\mathbb{R}}\quad\sum_{i=1}^n\left(y_i-f(x_i)\right)^2$ tel que $\left|\left|w\right|\right|_1\leq t$.

- $\lor \forall \lambda, \exists t \text{ tels que les deux solutions soient identiques.}$
 - ▶ i.e., mêmes chemins de régularisation.
- valable aussi pour ridge (et autres).
- \triangleright pas de relation directe entre t et λ .
- en pratique, λ plus simple à optimiser que t.
 - ▶ la solution varie moins vite en fonction de λ que de t.
- version sous contrainte : aide à intepréter la pénalisation.

Régression Lasso & sélection de variables

Illustration : Lasso vs Ridge (image de Hastie et al. (2001)) :

- problèmes à 2 dimensions, coefficients $\beta = [\beta_1 \ \beta_2]$
- $ightharpoonup \hat{eta}$: solution des moindres carrés (fonction quadratique)
- régions admissibles : $||\beta||_1 \le t$ et $||\beta||_2^2 \le t$
- \Rightarrow solution = projection de \hat{eta} sur les régions admissibles
- \Rightarrow points de singularité de $||.||_1$ = solution parcimonieuse

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

Python

Pénalité Lasso & sélection de variables ²

Why does the ℓ_1 -norm induce sparsity?

Regularizing with the ℓ_1 -norm

The projection onto a convex set is "biased" towards singularities.

Julien Mairal

2. Slide tirée d'une présentation de Julien Mairal (INRIA Grenoble)/67

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Flastic Net

Group-Lasso

Extension

ython

Pénalité Lasso & sélection de variables ³

Why does the ℓ_1 -norm induce sparsity?

Regularizing with the ℓ_2 -norm

The ℓ_2 -norm is isotropic.

(D) (B) (E) (E) E 990

Sparse Estimation for Image and Vision Processing

3. Slide tirée d'une présentation de Julien Mairal (INRIA Grenoble) /67

Outline

Apprentissage Statistique II

Méthodes nénalisées

Ridge

Lasso

Group-Lasso

Extensions

Python

Pénalité Lasso & sélection de variables

Boules L_1 et L_2 en 3D: 4 :

⇒ sphère vs diamant.

4. Image tirée de Bach et al. (2012)

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

Python

Ridge

Lasso

LIASTIC IVE

Group-Lasso

. . . .

Références

On va considérer une version sensiblement différente :

 $w^* = \underset{w \in \mathbb{R}^p}{\operatorname{argmin}} \quad \frac{1}{2n} \sum_{i=1}^n (y_i - \langle w, x \rangle)^2 + \lambda ||w||_1$

où les y_i sont centrés et les x_{ij} standardisés.

- ▶ dans ce cas, on peut travailler sans intercept b
- ▶ le terme 1/2n rend l'effet de λ indépendant de n

Lasso - résolution

Outline

Apprentissage Statistique II

ethodes nalisées

dage

Lasso

Group-Lass

Dark Land

Références

Statistique II

On va considérer une version sensiblement différente :

 $w^* = \underset{w \in \mathbb{R}^p}{\operatorname{argmin}} \quad \frac{1}{2n} \sum_{i=1}^n (y_i - \langle w, x \rangle)^2 + \lambda ||w||_1$

où les y_i sont centrés et les x_{ij} standardisés.

- dans ce cas, on peut travailler sans intercept b
- ▶ le terme 1/2n rend l'effet de λ indépendant de n

Résolution:

- contrairement à ridge : pas de solution analytique
- ▶ mais problème convexe (QP) : différents algorithmes
- ⇒ ici : algorithme de "coordinate descent"
 - ▶ simple, intuitif et efficace à la base du package glmnet

Lasso - résolution

Outline

Apprentissage Statistique II

Méthodes sénalisées

Ridge

Lasso

ilastic ivet

Group-Lassi

Références

RO /67

Pour un seul prédicteur le problème s'écrit :

$$w^* = \underset{w}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda |w|$$

Approche standard : calculer la dérivée selon w et l'annuler

Problème : la fonction |.| n'est pas dérivable en 0.

Pour un seul prédicteur le problème s'écrit :

$$w^* = \underset{w}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda |w|$$

Approche standard : calculer la dérivée selon w et l'annuler

Problème : la fonction |.| n'est pas dérivable en 0.

 \Rightarrow On sépare les cas $\{w < 0; w = 0; w > 0\}$ et on obtient :

$$w^* = \begin{cases} \frac{1}{n} \langle x, y \rangle - \lambda & \text{si} \quad \frac{1}{n} \langle x, y \rangle > \lambda, \\ 0 & \text{si} \quad \frac{1}{n} |\langle x, y \rangle| \leq \lambda, \\ \frac{1}{n} \langle x, y \rangle + \lambda & \text{si} \quad \frac{1}{n} \langle x, y \rangle < -\lambda. \end{cases}$$

Lasso

Elastic Net

Group-Lass

_

éférences

Solution pour un prédicteur unique :

$$w^* = \begin{cases} \frac{1}{n}\langle x,y\rangle - \lambda & \text{si} \quad \frac{1}{n}\langle x,y\rangle > \lambda, \\ 0 & \text{si} \quad \frac{1}{n}|\langle x,y\rangle| \leq \lambda, \\ \frac{1}{n}\langle x,y\rangle + \lambda & \text{si} \quad \frac{1}{n}\langle x,y\rangle < -\lambda. \end{cases}$$

Solution pour un prédicteur unique :

$$w^* = \begin{cases} \frac{1}{n} \langle x, y \rangle - \lambda & \text{si} & \frac{1}{n} \langle x, y \rangle > \lambda, \\ 0 & \text{si} & \frac{1}{n} |\langle x, y \rangle| \leq \lambda, \\ \frac{1}{n} \langle x, y \rangle + \lambda & \text{si} & \frac{1}{n} \langle x, y \rangle < -\lambda. \end{cases}$$

⇒ interprétation :

- 1. $\frac{1}{n}\langle x,y\rangle$ = solution des moindres carrés
 - régression linéaire classique avec x standardisé
- 2. on le "shrinke" vers 0 d'une valeur λ :

$$ightharpoonup \frac{1}{n}\langle x,y\rangle > 0 \Rightarrow \frac{1}{n}\langle x,y\rangle - \lambda$$

$$ightharpoonup \frac{1}{n}\langle x,y\rangle < 0 \Rightarrow \frac{1}{n}\langle x,y\rangle + \lambda$$

- 3. s'il est trop petit : on le met à zéro
 - $\blacktriangleright \frac{1}{2} |\langle x, y \rangle| < \lambda$

Lasso

Elastic Net

Group-Lass

éférences

Solution pour un prédicteur unique :

$$w^* = \begin{cases} \frac{1}{n}\langle x,y\rangle - \lambda & \text{si} \quad \frac{1}{n}\langle x,y\rangle > \lambda, \\ 0 & \text{si} \quad \frac{1}{n}|\langle x,y\rangle| \leq \lambda, \\ \frac{1}{n}\langle x,y\rangle + \lambda & \text{si} \quad \frac{1}{n}\langle x,y\rangle < -\lambda. \end{cases}$$

Lasso - résolution

Outline

Apprentissage Statistique II

léthodes énalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

ython

Références

Solution pour un prédicteur unique :

$$w^* = \begin{cases} \frac{1}{n} \langle x, y \rangle - \lambda & \text{si} \quad \frac{1}{n} \langle x, y \rangle > \lambda, \\ 0 & \text{si} \quad \frac{1}{n} |\langle x, y \rangle| \le \lambda, \\ \frac{1}{n} \langle x, y \rangle + \lambda & \text{si} \quad \frac{1}{n} \langle x, y \rangle < -\lambda. \end{cases}$$

Notons
$$\beta = \frac{1}{n} \langle x, y \rangle$$
:

$$w^* = egin{cases} \operatorname{sign}(eta)(|eta| - \lambda) & \operatorname{si}|eta| > \lambda, \ 0 & \operatorname{sinon}. \end{cases}$$

$$\Rightarrow \boxed{w^* = \operatorname{sign}(\beta)(|\beta| - \lambda)_+ = \mathcal{S}_{\lambda}(\beta)}$$

La fonction $S_{\lambda}(x)$ est le "soft-thresholding operator".

Group-Lasso

Python

Références

Si $x_i \in \mathbb{R}^p$, on "boucle" sur les p descripteurs :

- ightharpoonup on met à jour le coefficient w_j en gardant les autres fixés
- on applique le même principe sur les résidus :

$$\boxed{w_j^* = \mathcal{S}_{\lambda}(\frac{1}{n}\langle x^{(j)}, r^{(j)}\rangle)} \quad \text{où} \quad r_i^{(j)} = y_i - \sum_{k \neq j} w_k x_{ik}$$

(au lieu de $w^* = S_{\lambda}(\frac{1}{n}\langle x, y \rangle)$ si un seul descripteur x)

Si $x_i \in \mathbb{R}^p$, on "boucle" sur les p descripteurs :

- on met à jour le coefficient w_i en gardant les autres fixés
- on applique le même principe sur les résidus :

$$\boxed{w_j^* = \mathcal{S}_{\lambda}(\frac{1}{n}\langle x^{(j)}, r^{(j)}\rangle)} \quad \text{où} \quad r_i^{(j)} = y_i - \sum_{k \neq j} w_k x_{ik}$$

(au lieu de $w^* = S_{\lambda}(\frac{1}{2}\langle x, y \rangle)$ si un seul descripteur x)

- ⇒ algorithme de coordinate-descent.
 - converge sur ce problème (convexe)
 - simple à mettre en oeuvre, pas de paramètres
 - "warm start" pour obtenir un chemin de régularisation

lastic Net

Group-Lasso

Références

Coordinate descent : ré-écriture du problème selon w_i :

$$\frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} w_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |w_{j}|$$

$$\Leftrightarrow \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \sum_{k \neq j} w_{k} x_{ik} - w_{j} x_{ij} \right)^{2} + \lambda \sum_{k \neq j}^{p} |w_{k}| + \lambda |w_{j}|$$

$$\Leftrightarrow \frac{1}{2n} \sum_{i=1}^{n} \left(r_{i}^{(j)} - w_{j} x_{ij} \right)^{2} + \lambda \sum_{k \neq j}^{p} |w_{k}| + \lambda |w_{j}|$$

$$\Rightarrow$$
 proche de $\left| \frac{1}{2n} \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda |w| \right|$ (pour 1 variable)

 $ightharpoonup \sum_{k\neq j}^{p} |w_k|$ disparait quand on dérive par rapport à w_j

Lasso

Group-Lass

Python

Références

- \Rightarrow au bout du chemin : même solution = moindres carrés
 - ▶ pas de pénalisation
- ⇒ Lasso : inclusion graduelle des variables

10.0 12.5 15.0 17.5

Lasso : méthode de sélection de variables "embedded"

réalisée lors de la construction du modèle

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Lasso: méthode de sélection de variables "embedded"

réalisée lors de la construction du modèle

Nombreux développements théoriques

► consistence, optimisation, ...

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

.....

Lasso: méthode de sélection de variables "embedded"

réalisée lors de la construction du modèle

Nombreux développements théoriques

► consistence, optimisation, ...

Coordinate descent: 1 algorithme d'optimisation

- ▶ alternatives : proximal, LARS/homotopie, ...
- ► adaptaté à la régression logistique

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lass

2/6/

Lasso: méthode de sélection de variables "embedded"

réalisée lors de la construction du modèle

Nombreux développements théoriques

► consistence, optimisation, ...

Coordinate descent: 1 algorithme d'optimisation

- ▶ alternatives : proximal, LARS/homotopie, ...
- ► adaptaté à la régression logistique

Limites:

- \triangleright sélectionne au plus min(n, p) variables
- solution pas toujours unique
 - e.g., si prédicteurs identiques ou antagonistes
- {prédicteurs corrélés} : tend à prendre 1 représentant

Outline

Apprentissage Statistique II

/léthodes jénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Python

Outline

Apprentissage Statistique II

Méthodes pénalisées

. uage

Lasso

Elastic Net

Group-Lass

_ .

Python

Références

Elastic Net

Group-Lass

Python

Références

Pénalité elastic-net : compromis L_1/L_2

 $\Omega_{\alpha}(w) = \alpha ||w||_{1} + (1 - \alpha)||w||_{2}^{2}$

ou:

$$\Omega_{\alpha}(w) = \alpha ||w||_{1} + \frac{(1-\alpha)}{2} ||w||_{2}^{2}$$

 $\Rightarrow \alpha = 1$: Lasso , $\alpha = 0$: Ridge.

Pénalité Flastic-Net

Outline

Apprentissage Statistique II

Méthodes pénalisées

Kiage

Lasso

Elastic Net

Group-Lasso

Références

Pénalité elastic-net : compromis L_1/L_2

 $\Omega_{\alpha}(w) = \alpha ||w||_{1} + (1 - \alpha)||w||_{2}^{2}$

ou:

$$\Omega_{\alpha}(w) = \alpha ||w||_{1} + \frac{(1-\alpha)}{2} ||w||_{2}^{2}$$

 $\Rightarrow \alpha = \mathbf{1}$: Lasso , $\alpha = \mathbf{0}$: Ridge.

Intérêts:

- stabilise l'estimation du Lasso
- permet de sélectionner plus que n variables
- prend en compte de la corrélation entre variables
 - ▶ tend à sélectionner des "blocs" de variables corrélées

Pénalité Flastic-Net

Outline

Apprentissage Statistique II

Méthodes

Ridge

Lasso

Elastic Net

Group-Lasso

Duthon

Références

Régression Lasso avec deux variables identiques x_1 et x_2 :

- $\{w_1 = 0 ; w_2 = \beta\}$ ou $\{w_1 = \gamma\beta ; w_2 = (1 \gamma)\beta\}$ équivalent en terme de loss et pénalité
- \Rightarrow solution mal définie (ridge : répartit le poids $\beta/2$)

Pénalité Elastic-Net

Outline

Apprentissage Statistique II

Méthodes

Ridge

_asso

Elastic Net

Group-Lass

ython

Références

Régression Lasso avec deux variables identiques x_1 et x_2 :

- $\{w_1 = 0 ; w_2 = \beta\}$ ou $\{w_1 = \gamma\beta ; w_2 = (1 \gamma)\beta\}$ équivalent en terme de loss et pénalité
- \Rightarrow solution mal définie (ridge : répartit le poids $\beta/2$)

Plus généralement : instable si variables fortement corrélées ⁵

- ≥ 2 × 3 variables très corrélées (~ 0.97)
- ▶ gauche : Lasso
- droite : elastic-net

- \Rightarrow terme ridge : stabilise le lasso
- ⇒ tend à sélectionner des groupes de variables corrélées

Pénalité Flastic-Net

Outline

Apprentissage Statistique II

Méthodes pénalisées

Tiage

Elastic Net

Group-Lasso

Extensions

Python

Références

Illustration: boules Lasso, Enet et Ridge en 2D

(image tirée d'une présentation de Julien Mairal)

Pénalité Elastic-Net

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

extensions

Python

Références

Illustration: boules Lasso et elastic-net en 3D

(image tirée de (Hastie et al., 2015), $\alpha = 0.7$)

Pénalité Elastic-Net & sélection de variables ⁶

The elastic-net

vs other penalties

Outline

Apprentissage Statistique II

Méthodes pénalisées

Elastic Net

Group-Lasso

_ . . .

Julien Mairal Sparse Estimation for Image and Vision Processing 38/187

Elastic-net - illustration

Illustation: Prostate dataset, ridge & Lasso vs eNet

Outline

Apprentissage Statistique II

Méthodes

Ridge

Lasso

Elastic Net

Group-Lass

Elastic-net - remarques

- Pénalité elastic-net : compromis Lasso / Ridge
 - stabilise le Lasso
 - permet de retenir plus que n variables
 - effet de "grouping"
- Sélection de "groupes" de variables corrélées
 - ightharpoonup relation α et degré de corrélation
- ► Un paramètre de plus à régler
- ► Solution unique dès qu'on considère un terme ridge
 - plus de solution mal définies quand prédicteurs identiques avec le Lasso
- ► Implémentation par coordinate-descent similaire
- ► Intéressant notamment pour données post-génomiques
 - ▶ fortes corrélations entre les variables (e.g., pathways)
 - compromis performance / inteprétabilité

Outline

Apprentissage Statistique II

Méthodes pénalisées

Kidge

Lasso

Elastic Net

Group-Lasso

extension

ython

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

Python

léférences :

Group-Lasso

Group-Lasso

Outline Apprentissage

Statistique II

Group-Lasso

Les données sont parfois intrinsèquement groupées :

- ▶ gènes intervant dans un même "pathway" biologique
- variables qualitatives encodées par one hot encoding
- ⇒ intéressant / souhaitable de les sélectionner ensemble
 - ▶ interprétabilité et pertinence du modèle

Les données sont parfois intrinsèquement groupées :

- ▶ gènes intervant dans un même "pathway" biologique
- variables qualitatives encodées par one hot encoding
- ⇒ intéressant / souhaitable de les sélectionner ensemble
 - ▶ interprétabilité et pertinence du modèle

Pénalité Group-Lasso :

$$\Omega_{\mathcal{G}}(w) = \sum_{g \in \mathcal{G}} \left| \left| w[g] \right| \right|_2$$

où \mathcal{G} définit une partition des variables en groupes.

Group-Lasso - illustration

Illustration tirée de Bach et al. (2012) :

- ▶ 3 variables x_1, x_2, x_3
- $\triangleright \mathcal{G} = \{[1,2],[3]\}$

$$\Rightarrow \Omega_{\mathcal{G}}(w) = ||w[1,2]||_{2} + ||w[3]||_{2}$$
$$= ||w[1,2]||_{2} + |w[3]|$$

 \Rightarrow disque sur le plan (x_1, x_2) :

- encourage $w_3 = 0$
- ightharpoonup active (w_1, w_2) en même temps (comportement ridge)
- \Rightarrow "pointe" selon x_3 :
 - encourage $(w_1 = 0 ; w_2 = 0)$

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Evtonsions

Python

Group-Lasso - interprétation

Outline

Lasso

Elastic Net

Group-Lasso

éférences

Pénalité Group-Lasso :

 $\Omega_{\mathcal{G}}(w) = \sum_{g \in \mathcal{G}} \left| \left| w[g] \right| \right|_2$

où ${\cal G}$ définit une partition des variables en groupes.

Interprétation / remarques :

- ightharpoonup peut-être interprétée comme la norme L_1 des groupes
- ▶ si groupes = variables uniques : le Lasso

$$\mathcal{G}\{[1],[2],...,[p]\}, ||w_i||_2 = |w_i|$$

- en pratique : pondération des groupes
- par rapport à elastic-net : groupes définis a priori

Group-Lasso & apprentissage multi-tâches

Régression multivariée :

- K réponses : $y_i = [y_i^{(1)}, ..., y_i^{(K)}] \in \mathbb{R}^K$
- chaque réponse = 1 modèle linéaire $w^{(k)} \in \mathbb{R}^p$
- ▶ fonction de perte = moindres carrés (sur les K réponses)

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

Python

Régression multivariée :

- *K* réponses : $y_i = [y_i^{(1)}, ..., y_i^{(K)}] \in \mathbb{R}^K$
- chaque réponse = 1 modèle linéaire $w^{(k)} \in \mathbb{R}^p$
- ▶ fonction de perte = moindres carrés (sur les K réponses)

Stratégie classique : apprendre les modèles séparemment

⇒ peut s'écrire comme un problème global :

$$W = \operatorname{argmin} \sum_{k=1}^{K} \sum_{i=1}^{n} \left(y_{i}^{(k)} - \langle W_{.,k}, x_{i} \rangle \right)^{2} + \lambda \sum_{k=1}^{K} \left| |W_{.,k}| \right|_{1},$$

où
$$W \in \mathbb{R}^{p \times K}$$
 et $W_{.,k} = w^{(k)}$.

⇒ problèmes découplés (résolus indépendamment)

Group-Lasso & apprentissage multi-tâches

Régression multivariée : approche "mono-tâche"

$$W = \operatorname{argmin} \sum_{k=1}^{K} \sum_{i=1}^{n} \left(y_{i}^{(k)} - \langle W_{.,k}, x_{i} \rangle \right)^{2} + \lambda \sum_{k=1}^{K} \left| |W_{.,k}| \right|_{1}$$

 \Rightarrow chaque tâche "sélectionne" ses propres variables.

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

asso

Elastic Net

Group-Lasso

Extensions

Python

léférences

Group-Lasso & apprentissage multi-tâches

Régression multivariée : approche "mono-tâche"

$$W = \operatorname{argmin} \sum_{k=1}^{K} \sum_{i=1}^{n} \left(y_{i}^{(k)} - \langle W_{.,k}, x_{i} \rangle \right)^{2} + \lambda \sum_{k=1}^{K} \left| |W_{.,k}| \right|_{1}$$

 \Rightarrow chaque tâche "sélectionne" ses propres variables.

Pénalisation group-lasso selon les tâches :

$$\left[\sum_{k=1}^{K} \left| \left| W_{.,k} \right| \right|_{1} \quad \Rightarrow \quad \sum_{j=1}^{p} \left| \left| W_{j,.} \right| \right|_{2} \right]$$

- coefficients d'une variable groupés selon les tâches
- ▶ actives ou inactives dans toutes les tâches à la fois
- ⇒ apprentissage multi-tâche (résolu conjointement)

Outline

Apprentissage Statistique II

Méthodes pénalisées

Kidge

Group-Lasso

Enterediene

Python

Références

0/67

Group-Lasso & apprentissage multi-tâches

$$\Omega(W) = \sum_{k=1}^{K} \left| \left| W_{\cdot,k} \right| \right|_{1}$$

$$\Omega(W) = \sum_{j=1}^{p} \left| \left| W_{j,.} \right| \right|_{2}$$

Applications:

- régression multivariée
- classification multiclasse par régression multinomiale

$$P(Y = k|x) = e^{\langle w^{(k)}, x \rangle + b_k} / \sum_{l=1}^K e^{\langle w^{(l)}, x \rangle + b_l}$$

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

Python

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Elastic Net

Group-Lasso

Extensions

Python

léférences :

Extensions

Pénalités L_q et pénalités non convexes.

Pénalités
$$L_q^7$$
: $\Omega_q(w) = \sum_{j=1}^p |w_j|^q$

Outline

Apprentissage Statistique II

Méthodes pénalisées

Kidge

asso

Elastic Net

Group-Lasso

Extensions

Python

Références

- ightharpoonup q = 2: ridge; q = 1: Lasso
- ightharpoonup q = 0 : compte le nombre de variables $\neq 0$
 - ▶ problème combinatoire
- ightharpoonup q < 1: non-convexes
 - ▶ + sparse, mais plus de solution unique

 \Rightarrow Lasso : plus petite relaxation convexe de L_0 .

Fused Lasso

Fused-Lasso 8:
$$\Omega_{\mathsf{FL}}(w) = \lambda_1 \sum_{j=1}^p |w_j| + \lambda_2 \sum_{j=2}^p |w_j - w_{j-1}|$$

- selectionne blocs de variables contigues
- ▶ applications en génomique et imagerie (extension 2D)

Outline

Apprentissage Statistique II

Méthodes pénalisées

.go

Lasso

Flastic Net

Group-Lass

Extensions

Python

Et bien d'autres

▶ Group-Lasso & "structured sparsity"

spatialement, ...

Lasso & stability selection

sélection de variables

Outline

Apprentissage Statistique II

Extensions

► Lasso & inférence en haute dimension

"selective inférence" : de la sélection de variables à

procédure de ré-échantillonnage pour stabiliser la

groupes "chevauchants", imbriqués, organisés

l'estimation de p-valeurs

Outline

Apprentissage Statistique II

Méthodes pénalisées

Riuge

Lasso

Elastic Net

Group-Lass

Extensions

Python

Références

Mise en oeuvre Python

Mise en oeuvre Python

Outline Apprentissage

Statistique II

Python

Scikit-Learn: module linear_model

- Lasso, ridge, elastic-net
 - + versions par chemin de régularisation & validation croisée
 - + versions multi-tâches
- eco-système habituel
 - ▶ i.e., fit, predict
- différentes stratégies d'optimisation
 - coordinate descent. LARS

MAIS: essentiellement pour la régression

moins développé pour régresion logistique

Mise en oeuvre Python

Package glmnet:

- implémenté en Fortran, interfacé en R et Python
 - package python : glmnet_python 9
 - ▶ package R : glmnet
- pénalité elastic-net (dont Lasso et ridge)
- modèles linéaires généralisés
 - ► linéaire, logistique, multinomiale
 - + versions multi-tâches
- ► approche de chemin de régularisation
 - optimisation par coordinate-descent + warm start
- ► fonctions de visualisation
- ightharpoonup optimisation de λ par validation croisée

 \Rightarrow TP basé sur glmnet.

Apprentissage Statistique II

Méthodes

Ridge

Lasso

Elastic Net

Group-Lass

vtensions

Python

Outline

Apprentissage Statistique II

Python

Fonctions principales:

- ▶ glmnet() & cvglmnet()
 - construit les modèles + estime performance par VC
- ▶ glmnetPlot() & cvglmnetPlot()
 - visualisation des résultats
- ▶ glmnetCoef() & cvglmnetCoef()
 - \triangleright extraits les coefficients pour une valeur de λ
- ▶ glmnetPredict() & cvglmnetPredict()
 - \triangleright réalise la prédiction pour une valeur de λ

⇒ exemple détaillé de mise en oeuvre ici :

https://github.com/bbalasub1/glmnet_python/blob/ master/test/glmnet_examples.ipynb

glmnet_python, en pratique...

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

Group-Lasso

Extensions

Python

Références

Installation de glmnet_python parfois difficile...

▶ compatibilité python-3, requiert librairie fortran, ...

On pourra faire le TP en R.

Ou alors essayer cette implémentation :

https://github.com/civisanalytics/python-glmnet

- ► compatible "écosystème" scikit-learn
- ▶ mais moins complète...

glmnet_python : équivalent en R

Fonctions principales de la librairie R :

- ► glmnet() & cv.glmnet()
 - construit les modèles + estime performance par VC
- ▶ plot.glmnet() & plot.cv.glmnet()
 - visualisation des résultats
- ► coef.glmnet() & coef.cv.glmnet()
 - extraits les coefficients pour une valeur de λ
- ▶ predict.glmnet() & predict.cv.glmnet()
 - lacktriangle réalise la prédiction pour une valeur de λ
- ⇒ exemple détaillé de mise en oeuvre ici : https://web. stanford.edu/~hastie/glmnet/glmnet_alpha.html

Outline

Apprentissage Statistique II

Méthodes pénalisées

Ridge

Lasso

lastic Net

Group-Lass

Evtonciona

Python

glmnet() & cvglmnet() - point clés :

- arguments : X, y, family et alpha
 - ▶ family : gaussian, binomial, multinomial, ...
 - ► + ptype pour CV : critère de performance (e.g., class ou auc pour classif)
- définit automatiquement une grille de valeurs pour λ
 - ▶ 100 valeurs définis par une heuristique (paramétrable)
- renvoie un dictionnaire contenant :
 - ▶ lambdau : grille de λ
 - beta : coefficients obtenus (p × 100 pour régression)
 - ▶ en + pour cvglmnet() :
 - **v** cvm : performance moyenne par fold (pour les λ)
 - ► cvsd, cvlo, cvup : écart-type + intervalle
 - ▶ lambda_min : λ donnant meilleure performance
 - ▶ lambda_1se : λ > lambda_min donnant meilleure performance à 1 SE près.

Outline

Apprentissage Statistique II

Méthodes énalisées

Klage

asso

Elastic Net

Group-Lass

Extensions

Python

Outline

Apprentissage Statistique II

Python

glmnet() & cvglmnet() - point clés :

- ▶ en pratique, cvglmnet() commence par fitter un modèle global, puis estime les performances par VC.
- ▶ les deux fonctions considèrent la même grille de valeurs
- cvglmnet() peut réaliser ensuite la prédiction à partir (1) du modèle global et (2) du meilleur λ .

Outline

Apprentissage Statistique II

Python

glmnetPlot() & cvglmnetPlot() - point clés :

- ▶ glmnetPlot() : trace chemin de régularisation
- cvglmnetPlot() : trace performances de validation croisée en fonction de λ

Outline

Apprentissage Statistique II

Python

glmnetCoef() & cvglmnetCoef() : extraction des coefficients obtenus à partir :

- 1. du modèle obtenu (par glmnet() ou cvglmnet())
- 2. de la valeur de λ souhaitée :
 - glmnetCoef() : une valeur numérique
 - cvglmnetCoef() : une valeur numérique ou 'lambda min' ou 'lambda 1se'

Outline Apprentissage Statistique II

Méthodes

Kiage

Lasso

oroup-Lasso

Python

Références

66/67

glmnetPredict() & cvglmnetPredict() : extraction des
prédictions obtenues à partir :

- du modèle obtenu (par glmnet() ou cvglmnet())
- 2. de nouvelles données
- 3. de la valeur de λ souhaitée :
 - ▶ glmnetPredict() : une valeur numérique
 - cvglmnetPredict() : une valeur numérique ou 'lambda_min' ou 'lambda_1se'
- 4. du type de prédiction souhaité :
 - ptype='link' : score du modèle linéaire
 - ptype='response' : probabilité associée (idem link pour régression)
 - ptype='class' : classe prédite (pas valable pour régression ou cox)

Références

Outline

Apprentissage Statistique II

Méthodes pénalisées

Tiage

Lasso

Elastic Net

Group-Lasso

Extensions

vthon

Références

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization. *Statistical Science*, 27:450–469, 2012.

- T. Hastie, R. Tibshirani, and J.. Friedman. *The Elements of Statistical Learning*. Springer, 2001.
- T. Hastie, R. Tibshirani, and M. Wainwright. *Statistical Learning with Sparsity*. CRC Press, 2015.