$12n_{0159} \ (K12n_{0159})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{34} + 2u^{33} + \dots + b - 1, -u^{34} + 5u^{32} + \dots + a + 3u, u^{35} + 2u^{34} + \dots - 2u - 1 \rangle$$

$$I_2^u = \langle -u^5 + u^3 - u^2 + b - u, -u^7 + u^5 - u^4 - u^3 + a - 1, u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{34} + 2u^{33} + \dots + b - 1, -u^{34} + 5u^{32} + \dots + a + 3u, u^{35} + 2u^{34} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{34} - 5u^{32} + \dots + 3u^{2} - 3u \\ -u^{34} - 2u^{33} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{9} + 2u^{7} - 3u^{5} + 2u^{3} - u \\ -u^{9} + u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{34} + u^{33} + \dots - 3u - 1 \\ -u^{29} + 5u^{27} + \dots - u^{3} + 3u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{26} - 5u^{24} + \dots + 3u^{2} - 1 \\ u^{26} - 4u^{24} + \dots + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{34} + u^{33} + \dots - 4u - 1 \\ u^{34} + u^{33} + \dots - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{14} + 3u^{12} - 6u^{10} + 7u^{8} - 6u^{6} + 4u^{4} - 2u^{2} + 1 \\ -u^{14} + 2u^{12} - 3u^{10} + 2u^{8} + u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -7u^{34} - 6u^{33} + 39u^{32} + 43u^{31} - 141u^{30} - 173u^{29} + 355u^{28} + 506u^{27} - 686u^{26} - \\ 1134u^{25} + 1034u^{24} + 2071u^{23} - 1204u^{22} - 3115u^{21} + 1010u^{20} + 3917u^{19} - 424u^{18} - \\ 4134u^{17} - 365u^{16} + 3614u^{15} + 1028u^{14} - 2600u^{13} - 1314u^{12} + 1451u^{11} + 1204u^{10} - \\ 562u^{9} - 821u^{8} + 77u^{7} + 436u^{6} + 85u^{5} - 158u^{4} - 75u^{3} + 20u^{2} + 26u + 9 \end{array}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 49u^{34} + \dots + 102u + 1$
c_2, c_4	$u^{35} - 9u^{34} + \dots - 14u + 1$
c_3, c_7	$u^{35} - u^{34} + \dots - 640u + 256$
c_5, c_8	$u^{35} - 2u^{34} + \dots + 108u - 36$
c_6, c_{10}	$u^{35} + 2u^{34} + \dots - 2u - 1$
c_{9}, c_{11}	$u^{35} - 12u^{34} + \dots + 2u - 1$
c_{12}	$u^{35} + 36u^{33} + \dots - 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} - 117y^{34} + \dots + 6150y - 1$
c_2, c_4	$y^{35} - 49y^{34} + \dots + 102y - 1$
c_3, c_7	$y^{35} + 51y^{34} + \dots + 835584y - 65536$
c_5, c_8	$y^{35} - 12y^{34} + \dots + 6840y - 1296$
c_6, c_{10}	$y^{35} - 12y^{34} + \dots + 2y - 1$
c_9,c_{11}	$y^{35} + 24y^{34} + \dots + 2y - 1$
c_{12}	$y^{35} + 72y^{34} + \dots + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.003180 + 0.076770I		
a = -0.427602 + 0.732202I	1.87836 + 2.29361I	9.35864 - 3.99437I
b = 0.040765 - 1.055450I		
u = 1.003180 - 0.076770I		
a = -0.427602 - 0.732202I	1.87836 - 2.29361I	9.35864 + 3.99437I
b = 0.040765 + 1.055450I		
u = -0.792898 + 0.645336I		
a = -0.232938 - 0.928895I	-1.72435 - 2.14542I	5.01876 + 4.63119I
b = 0.112888 - 0.720959I		
u = -0.792898 - 0.645336I		
a = -0.232938 + 0.928895I	-1.72435 + 2.14542I	5.01876 - 4.63119I
b = 0.112888 + 0.720959I		
u = -0.698567 + 0.764106I		
a = 0.18575 + 2.20654I	-3.83985 + 2.10941I	1.06203 - 1.84479I
b = -1.02864 + 2.02071I		
u = -0.698567 - 0.764106I		
a = 0.18575 - 2.20654I	-3.83985 - 2.10941I	1.06203 + 1.84479I
b = -1.02864 - 2.02071I		
u = 0.753011 + 0.738009I		
a = 1.37904 - 1.86948I	-4.73261 + 0.86629I	0.579778 - 0.147183I
b = -0.93662 - 2.24841I		
u = 0.753011 - 0.738009I		
a = 1.37904 + 1.86948I	-4.73261 - 0.86629I	0.579778 + 0.147183I
b = -0.93662 + 2.24841I		
u = -0.650584 + 0.839948I		
a = -0.26514 - 2.94245I	-13.3967 + 6.2863I	1.00799 - 1.99078I
b = 1.70386 - 2.51843I		
u = -0.650584 - 0.839948I		
a = -0.26514 + 2.94245I	-13.3967 - 6.2863I	1.00799 + 1.99078I
b = 1.70386 + 2.51843I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.597910 + 0.716545I		
a = -0.474108 + 0.553918I	0.466250 - 0.951396I	10.00295 + 0.38249I
b = 0.273509 + 0.526339I		
u = 0.597910 - 0.716545I		
a = -0.474108 - 0.553918I	0.466250 + 0.951396I	10.00295 - 0.38249I
b = 0.273509 - 0.526339I		
u = -0.922847		
a = -1.31041	0.182011	10.8590
b = -1.21035		
u = -1.08201		
a = 0.437613	5.82108	17.0620
b = 0.472974		
u = 1.111560 + 0.128216I		
a = 1.138050 - 0.133066I	-6.72567 + 5.75996I	7.32314 - 3.54445I
b = 0.300334 + 1.303030I		
u = 1.111560 - 0.128216I		
a = 1.138050 + 0.133066I	-6.72567 - 5.75996I	7.32314 + 3.54445I
b = 0.300334 - 1.303030I		
u = -0.934946 + 0.641378I		
a = -0.922641 - 0.641680I	-1.26680 - 2.86899I	5.76020 + 1.94310I
b = 0.090797 - 0.681520I		
u = -0.934946 - 0.641378I		
a = -0.922641 + 0.641680I	-1.26680 + 2.86899I	5.76020 - 1.94310I
b = 0.090797 + 0.681520I		
u = -1.036700 + 0.513296I		
a = 0.468566 + 0.238758I	-9.06115 - 1.11837I	4.93303 + 2.48933I
b = 0.355938 - 0.949026I		
u = -1.036700 - 0.513296I		
a = 0.468566 - 0.238758I	-9.06115 + 1.11837I	4.93303 - 2.48933I
b = 0.355938 + 0.949026I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.958291 + 0.699514I		
a = 1.42433 - 1.41318I	-4.10408 + 4.62202I	2.53243 - 5.37025I
b = -0.04365 - 2.87306I		
u = 0.958291 - 0.699514I		
a = 1.42433 + 1.41318I	-4.10408 - 4.62202I	2.53243 + 5.37025I
b = -0.04365 + 2.87306I		
u = 0.878474 + 0.799434I		
a = -2.09357 + 2.58300I	-17.4916 + 2.9871I	-0.26712 - 2.67515I
b = 0.51980 + 3.81456I		
u = 0.878474 - 0.799434I		
a = -2.09357 - 2.58300I	-17.4916 - 2.9871I	-0.26712 + 2.67515I
b = 0.51980 - 3.81456I		
u = 1.021530 + 0.658784I		
a = -0.388047 + 0.431455I	1.70279 + 6.25040I	12.13050 - 4.97456I
b = -0.012993 + 0.931220I		
u = 1.021530 - 0.658784I		
a = -0.388047 - 0.431455I	1.70279 - 6.25040I	12.13050 + 4.97456I
b = -0.012993 - 0.931220I		
u = -0.993451 + 0.702180I		
a = 2.14762 + 0.79394I	-2.94898 - 7.68050I	3.12136 + 6.96771I
b = 0.45485 + 2.36980I		
u = -0.993451 - 0.702180I		
a = 2.14762 - 0.79394I	-2.94898 + 7.68050I	3.12136 - 6.96771I
b = 0.45485 - 2.36980I		
u = -0.263163 + 0.716876I		
a = -1.150580 + 0.479086I	-11.29280 - 3.30354I	1.02998 + 2.25929I
b = 0.686293 - 0.231426I		
u = -0.263163 - 0.716876I		
a = -1.150580 - 0.479086I	-11.29280 + 3.30354I	1.02998 - 2.25929I
b = 0.686293 + 0.231426I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.039590 + 0.718934I		
a = -2.70067 - 0.80992I	-12.2131 - 12.1134I	2.82361 + 6.65221I
b = -1.22822 - 3.37949I		
u = -1.039590 - 0.718934I		
a = -2.70067 + 0.80992I	-12.2131 + 12.1134I	2.82361 - 6.65221I
b = -1.22822 + 3.37949I		
u = 0.515516		
a = -0.450972	0.694754	14.6380
b = 0.317465		
u = -0.169379 + 0.388841I		
a = 0.57383 - 1.55781I	-1.66775 - 0.90576I	-1.19698 + 2.88649I
b = -0.578952 - 0.351526I		
u = -0.169379 - 0.388841I		
a = 0.57383 + 1.55781I	-1.66775 + 0.90576I	-1.19698 - 2.88649I
b = -0.578952 + 0.351526I		

 $\text{II. } I_2^u = \langle -u^5 + u^3 - u^2 + b - u, \ -u^7 + u^5 - u^4 - u^3 + a - 1, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{7} - u^{5} + u^{4} + u^{3} + 1 \\ u^{5} - u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} - u^{4} + 2u^{2} - 1 \\ -u^{7} + u^{6} + 2u^{5} - u^{4} - 2u^{3} + 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{7} - u^{6} - u^{5} + 2u^{4} + u^{3} - 2u^{2} + 2 \\ u^{7} - u^{6} - u^{5} + u^{4} + u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} - u^{6} - 2u^{5} + u^{4} + 2u^{3} - 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - u^{5} + u^{4} + u^{3} + 1 \\ u^{5} - u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^7 + u^6 5u^5 + 5u^3 u^2 4u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^{8}$
c_3, c_7	u^8
C4	$(u+1)^8$
<i>c</i> ₅	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
c_6	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_8, c_{12}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
<i>c</i> ₉	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
c_{10}	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{11}	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_7	y^8
c_5, c_8, c_{12}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_6, c_{10}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_{9}, c_{11}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.570868 + 0.730671I		
a = 0.325934 + 0.693334I	-0.604279 - 1.131230I	1.47926 + 0.84929I
b = 0.972127 + 0.565636I		
u = 0.570868 - 0.730671I		
a = 0.325934 - 0.693334I	-0.604279 + 1.131230I	1.47926 - 0.84929I
b = 0.972127 - 0.565636I		
u = -0.855237 + 0.665892I		
a = -1.03462 - 0.99451I	-3.80435 - 2.57849I	2.50535 + 3.23297I
b = 0.39611 - 1.88650I		
u = -0.855237 - 0.665892I		
a = -1.03462 + 0.99451I	-3.80435 + 2.57849I	2.50535 - 3.23297I
b = 0.39611 + 1.88650I		
u = -1.09818		
a = 0.801005	4.85780	7.45240
b = -0.165005		
u = 1.031810 + 0.655470I		
a = -0.842429 - 0.289836I	0.73474 + 6.44354I	3.27544 - 5.90525I
b = -0.699541 + 1.033710I		
u = 1.031810 - 0.655470I		
a = -0.842429 + 0.289836I	0.73474 - 6.44354I	3.27544 + 5.90525I
b = -0.699541 - 1.033710I		
u = 0.603304		
a = 1.30123	-0.799899	3.02750
b = 0.827616		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{35} + 49u^{34} + \dots + 102u + 1)$
c_2	$((u-1)^8)(u^{35} - 9u^{34} + \dots - 14u + 1)$
c_3, c_7	$u^8(u^{35} - u^{34} + \dots - 640u + 256)$
c_4	$((u+1)^8)(u^{35} - 9u^{34} + \dots - 14u + 1)$
c_5	$(u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1)(u^{35} - 2u^{34} + \dots + 108u - 36)$
c_6	$(u^8 + u^7 + \dots - 2u - 1)(u^{35} + 2u^{34} + \dots - 2u - 1)$
<i>C</i> ₈	$(u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1)(u^{35} - 2u^{34} + \dots + 108u - 36)$
c_9	$(u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1)$ $\cdot (u^{35} - 12u^{34} + \dots + 2u - 1)$
c_{10}	$(u^8 - u^7 + \dots + 2u - 1)(u^{35} + 2u^{34} + \dots - 2u - 1)$
c_{11}	$(u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1)$ $\cdot (u^{35} - 12u^{34} + \dots + 2u - 1)$
c_{12}	$ (u8 + u7 - 3u6 - 2u5 + 3u4 + 2u - 1)(u35 + 36u33 + \dots - 4u + 1) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{35} - 117y^{34} + \dots + 6150y - 1)$
c_2,c_4	$((y-1)^8)(y^{35}-49y^{34}+\cdots+102y-1)$
c_3, c_7	$y^8(y^{35} + 51y^{34} + \dots + 835584y - 65536)$
c_5, c_8	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{35} - 12y^{34} + \dots + 6840y - 1296)$
c_6, c_{10}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{35} - 12y^{34} + \dots + 2y - 1)$
c_9, c_{11}	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{35} + 24y^{34} + \dots + 2y - 1)$
c_{12}	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{35} + 72y^{34} + \dots + 2y - 1)$