CSE2209: Digital Electronics and Pulse Techniques

Course Conducted By:

Nowshin Nawar Arony Lecturer, Dept of CSE, AUST

Logic Families

- Diode Logic (DL)
- Diode Transistor Logic (DTL)
- Transistor Transistor Logic (TTL)
- Resistor-Transistor Logic (RTL)
- Direct Coupled Transistor Logic (DCTL)
- Emitter Carbon Logic (ECL)
- High Threshold Logic (HTL)
- Complementary Metal Oxide Semiconductor Logic (CMOS)

Logic System

AND Operation

Α	В	V_0	
0 V	0 V	0 V	
0 V	5 V	0 V	
5 V	0 V	0 V	
5 V	5 V	5 V	

Α	В	V_0
V(0)	V(0)	V(0)
V(0)	V(1)	V(0)
V(1)	V(0)	V(0)
V(1)	V(1)	V(1)

Α	В	V ₀
V(1)	V(1)	V(1)
V(1)	V(0)	V(1)
V(0)	V(1)	V(1)
V(0)	V(0)	V(0)

Positive Logic
AND Gate

Negative Logic
OR Gate

Diode Logic (DL)

A diode is a terminal electrical device that allows current to flow in one direction.

Registers and diodes are used to implement logic.

• The purpose of diode is to perform OR and AND operation, and logic switch.

• Disadvantages: diodes can not perform NOT operation, diode cannot work for multiple states, states, only one stage at a time, tend to degrade signals quickly.

Forward Biased

Forward Bias (switch closed)

Reversed Biased

Reverse Bias (switch open)

V-I characteristics of Silicon Diode

Ideal Case

Constant Voltage Source Model

Piece-wise Linear Model

Prove that this circuit works like a negative logic OR gate.

Prove that this circuit works like a positive logic AND gate.

Prove that this circuit works like a negative logic AND gate.

Prove that this circuit works like a positive logic OR gate.

Transistor

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power.

There are two types of transistor, namely NPN transistor and PNP transistor.

- The transistor which has two blocks of n-type semiconductor material and one block of P-type semiconductor material is known as NPN transistor.
- Similarly, if the material has one layer of N-type material and two layers of P-type material then it is called PNP transistor.

Common Emitter Gain,

$$h_{fe} = \frac{I_c}{I_B}$$

Transistor Operation Modes

Four distinct modes of operation-

- Saturation -- The transistor acts like a short circuit. Current freely flows from collector to emitter.
- Cut-off -- The transistor acts like an open circuit. No current flows from collector to emitter.
- Active -- The current from collector to emitter is proportional to the current flowing into the base.
- Reverse-Active -- Like active mode, the current is proportional to the base current, but it flows in reverse. Current flows from emitter to collector.

Saturation Mode

Saturation is the on mode of a transistor. A transistor in saturation mode acts like a short circuit between collector and emitter.

Cutoff Mode

Cutoff mode is the opposite of saturation. A transistor in cutoff mode is off -- there is no collector current, and therefore no emitter current. It almost looks like an open circuit.

BE	BC	Transistor State	
$(V_{BE} < 0.7V) R$	$(V_{BC} < 0.7V) R$	Cut off	
		$I_C = I_B = I_E = 0$	
$(V_{BE} > 0.7V) F$	$(V_{BC} < 0.7V) R$	Active	
		$I_C = h_{fe} * I_B$	
$(V_{BE} < 0.7V) R$	$(V_{BC} > 0.7V) F$	Inverse active	
$(V_{BE} > 0.7V) F$	$(V_{BC} > 0.7V) F$	Saturation	
		$I_C \le h_{fe} * I_B$	
		V_{CE} (sat) = 0.2V	
		V_{BE} (sat) = 0.8V	

Table 3-1 Typical n-p-n transistor-junction voltages[†] at 25°C

Material	V _{CE(sat)}	$V_{BE(\mathrm{sat})} \equiv V_{\sigma}$	V _{BE(active)}	$V_{BE({ m cutin})} \equiv V_{\gamma}$	$V_{BE(\text{cutoff})}$
Si	0.2	0.8	0.7	0.5	0.0
Ge	0.1	0.3	0.2	0.1	-0.1

Pg = 79 in Book

Output characteristics of npn transistor

Output Characteristic Curve

Transistorized NOT Gate (Positive Logic)

- Prove that the circuit works like a positive logic NOT gate.
- Find the minimum value of h_{fe} for proper operation of the circuit.

DTL Positive Logic NAND Gate

- Prove that the circuit works like a positive logic NAND gate.
- Prove that the circuit works like a negative logic NOR gate.
- Find the minimum value of h_{fe} and mode operation of the circuit.

