This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(a) SU (ii) 1009405 A

3(50) A 23 L, 3/28; A 23 C 3/02

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3338008/28-13
- (22) 14.08.81
- (46) 07.04.83.Бюл. № 13
- (72) Ю.Н.Маршенов, Х.Х.Туганов. и В.Г.Гизатулин
- (53) 664.036.8(088.8)
- (56) 1. Дэвис Д.Г. Словарь-справочник по молочному хозяйству, М., 1961, с. 523.
- 2. "Механизация и электрификация социалистического сельского хозяйства", 1974, № 1, с. 20

(54)(57) АППАРАТ ДЛЯ ОБЛУЧЕНИЯ ЖИДКОСТЕЙ, содержащий коаксиально ус-

тановленный корпус с отражательной внутренней поверхностью; оптически прозрачную
трубку для прохода жидкости и окружающий трубку спиралеобразный излучатель
о т л и ч а ю щийся тем, что, с целью
снижения энергопотерь и увеличения производительности аппарата, он снабжен дополнительной кварцевой трубкой; установленной вокруг излучателя с образованием
между нею и корпусом зазора служащего
дополнительным каналом для прохода
жидкости, при этом корпус снабжен патрубком для подвода жидкости и изогнутым трубопроводом для снабжения каналов.

Изобретение относится к оборудованию для обработки жидкостей и может быть использовано в пищевой промышленности и сельскохозяйственном производстве.

Известны устройства для обработки жидкостей оптическим излучением, которые при различном конструктивном исполнении имеют ряд общих узлов: источник оптического излучения, поверхность облучения и коммуникации [1].

Недостатком данного устройства является то, что требуются дополнительные затраты, связанные с промывкой и дезинфикацией системы соприкасающейся с жидкостью.

Известен аппарат для облучения жидкости, содержащий коаксиально Фустановленный корпус с отражательной внутренней поверхностью, оптически прозрачную трубку для прохода жидкости и окружающий трубку спиралеобразный излучатель [2].

Основным недостатком данного устройства является потеря части энергии излучателя.

Цель изобретения - снижение энергопотерь и увеличение производительности.

Пель достигается тем, что аппарат для облучения жидкостей, содержащий коаксиально установленные корпус с отражительной внутренней поверхностью, оптически прозрачную трубку для прохода жидкости и окружающий трубку спиралеобразный излучатель, снабжен дополнительной кварцевой трубкой, установленной вок-35 руг излучателя с образованием между нею и корпусом зазора, служащего дополнительным каналом для прохода жидкости, при этом корпус снабжен патрубком для жидкости и изогнутым трубопроводом для сообщения каналов.

Дополнение аппарата новыми рабочими органами сводит к минимуму потери энергии излучения, что позволяет повысить производительность аппарата и снижает энергопотери. Это достигается за счет ограничения источника излучения внешней камерой. Во внешней камере скорость потока и облученность ниже, чем во внутрешей камере. Однако дозы облучения в камерах будут равны, так как доза облучения определяется зависимостью $H=E_{CD}$ х

ка ср., где Еср- средняя облученность, Вт/м2; с - коэффициент поглощения; ср. - среднее время облучения, с. При облучении пищевых жидкостей в аппаратах с кварцевыми трубками устраняется пригар, в том случае если источник изпучения генерирует преимущественно в интервале длин волн от 750 до 3500 нм, то-есть в зоне прозрачности труб из кварцевого стекла.

На чертеже изображена схема предлагаемого аппарата для облучения жидкос-15 тей.

Аппарат содержит корпус 1 с отражательной внутренней поверхностью, с патрубками для подвода и отвода жидкости, оптически прозрачные трубки 2 и 3, излучатель 4, трубопровод 5, заглушки 6.

Корпус 1 вместе с оптически прозрачной трубкой 2, установленной внутри него, образует рабочее пространство внешней камеры облучения. Заглушки 6 обэспечивают монтаж трубки 2 соосно корпусу 1, герметичность системы внешней камеры облучения и осевое размещение трубки 3, которая выполяет и роль несущего стержня при использовании спирального излучателя 4, выполненного из проводника высокого сопротивления. Трубопровод 5, соединяющий внешнюю и внутреннюю камеры облучения, обеспечивает выход жидкости через выводной патрубок корпуса 1 в трубку 3.

Аппарат работает следующим образом. Подается напряжение к излучателю 4, и через вводной патрубок аппарата во внешнюю камеру облучения нагнетается жидкость, которая облучается первоначально во внешней камере, а затем, выходя из аппарата направляется через трубопровод 5 в трубу 3, образующую внутреннюю камеру облучения. По мере прохождения жидкости через зоны облучения обеспечивается ее обработка в соответствии с режимами заданными технологией. Предложенное устройство позволяет полностью поглощать излучение без потерь и обеспечивает возможность безразборной циркуляционной промывки системы. соприкасающейся с жидкостью, и дезинфекцию аппарата.

SU 1009405 APR 1783

84-041136/07

D14 X25 MARSHENOV YU N

MARS/ 14.08.81 *SU 1009-405-A

D(3-H2, 9-A2)

2!

14.08.81-SU-338008 (07.04.83) A23c-03/02 A23I-03/28

Appts. for irradiating liquids - has internal and external coaxial optically transparent tubes linked by bent pipe to ensure circulation

disinfection of the apparatus, are all guaranteed. Bul.13/7.4.8. (2pp Dwg.No 1/1)

C84-017537

The process is used in the food industry and in agriculture and requires a body with internal reflective surface (1), inside which is an optically-transparent tube (3) positioned coaxially, around which the irradiating spiral (4) is wound. To reduce power losses and increase the productivity of the apparatus, an extra quartz tube (2) is installed around the radiator, and between it and the outer wall of the body a gap is formed, which serves as an additional channel for passing the liquid through. The body is also fitted with a supply pipe for the liquid and a bent pipe (5) to deliver the liquid to the channels.

A voltage is fed to the radiator (4) and the liquid is delivered under pressure to the outer chamber to be irradiated. The initial irradiation takes place around the outside, and then the liquid travels along the pipe (5) to the inside of the centre tube (3), where further irradiation takes place. The speed at which the liquid circulates through the apparatus guarantees the performance of the desired level of irradiation. Complete absorption of radiation without loss, and circulation which does not breakdown, ensuring

