Contents

1	Thesis Overview					
	1.1	General Introduction	6			
	1.2	Contributions	6			
	1.3	Thesis Overview	6			
2	Introduction					
	2.1	Introduction	8			
	2.2	Fluorescence Microscopy	8			
	2.3	Forster Resonance Energy Transfer	8			
	2.4	Single Molecule Fluorescence Microscopy	9			
		2.4.1 Overview	9			
		2.4.2 Confocal Microscopy	9			
		2.4.3 Total Internal Fluorescence Miroscopy	10			
		2.4.4 Epifluorescent Microscopy	10			
		2.4.5 Super-Resolution Microscopy	10			
	2.5	Probabilistic Inference and Bayesian Statistics	10			
		2.5.1 Bayesian Statistics	10			
		2.5.2 Sampling Techniques	10			
3	Ana	lysis Tools for Single Molecule Confocal Microscopy 1	1			
	3.1	Overview	11			
	3.2 Introduction					
		3.2.1 The Single Molecule Fluorescence Experiment	12			
	3.3	Data Analysis in Confocal smFRET Experiments	13			
		3.3.1 Continuous Excitation	14			
		3.3.2 Alternating Laser Excitation	15			

	3.4	Develo	opment of Scientific Software	16
	3.5	pyFRI	ET: Design and Implementation	17
		3.5.1	Code Layout and Design	17
		3.5.2	Simple Event Selection and Denoising	19
		3.5.3	Burst Search Algorithms	22
	3.6	RASP	: Recurrence Analysis of Single Particles	22
		3.6.1	Compatibilities	23
	3.7	Exper	imental Methods	24
		3.7.1	Benchmarking the Gaussian Fitting Using Simulated Datasets	24
		3.7.2	Data to Evaluate the Simple Event Selection Algorithms	24
		3.7.3	Data to Evaluate Event Selection Using the Burst Search Algorithms	25
		3.7.4	Performance Analysis Using Mixtures of DNA Duplexes	26
		3.7.5	Testing the RASP Algorithm	26
	3.8	Perfor	mance Analysis of smFRET Analysis Algorithms	27
		3.8.1	Evaluating Performance with DNA Duplexes	27
		3.8.2	Evaluating the Burst Search Algorithms	28
		3.8.3	Evaluating Performance of the Gaussian Mixture Model	32
		3.8.4	Benchmarking the RASP Algorithm	35
	3.9	Conclu	usions	36
	3.10	Availa	bility and Future Directions	38
4	Bay	esian I	Inference of Intramolecular Distances Using Single Molecule FRE	T 39
	4.1	Overv	iew	39
	4.2	Introd	uction	40
		4.2.1	A smFRET Experiment	40
		4.2.2	Approaches to Analysis of smFRET Data	42
		4.2.3	Model Based Inference	44
	4.3	Theor	y	49
		4.3.1	A Physical Model of a smFRET Experiment	49
		4.3.2	Inference of Model Parameters	57
		4.3.3	The Metropolis-Hastings Algorithm	61
	4.4	Exper	imental Methods	63
	4.5	Result	s	67
		4.5.1	Justification of the Gamma-Poisson Mixture Model	77
	4.6	Conclu	usions and Future Work	79

5	Bay	esian i	Inference of Oligomer Sizes Using Single Molecule FRET	81
	5.1	Overv	iew	81
	5.2	Introd	luction	82
		5.2.1	Diseases of Protein Aggregation	82
		5.2.2	Studying Protein Aggregation	83
		5.2.3	The Relationship Between Size and Photon Emission is Complex	84
		5.2.4	The Effect of Confocal Excitation Heterogeneity on Photon Emission	85
		5.2.5	Controlling Confocal Excitation Heterogeneity	86
		5.2.6	The DNA Holliday Junction as a Model Oligomer	87
	5.3	Theor	y	87
		5.3.1	A Simple Poisson Model of Oligomer Photon Emission	90
		5.3.2	A Gamma-Poisson Mixture Model of Oligomer Photon Emission	91
	5.4	Exper	imental Methods	93
		5.4.1	Labelling of Protein Monomers	93
		5.4.2	Protein Aggregation Experiments	93
		5.4.3	Preparation of DNA Holliday Junctions	93
		5.4.4	Simple FRET Measurements of DNA Holliday Junctions	94
		5.4.5	Flattening the Confocal Volume Using Acousto-Optic Deflection: A	
			Modified Single Molecule Fluorescence Microscope	94
		5.4.6	Preparation of Microfluidic Channels	95
		5.4.7	smFRET Measurements to Determine the Effect of Unequal Excitation	
			on Photon Emission	95
		5.4.8	Counting Photobleaching Steps Using TIRF Imaging	96
	5.5	Result	ts	96
		5.5.1	The need for a Generative Model	96
		5.5.2	Understanding the Relationship Between Size and Photon Emission $. $	96
		5.5.3	Inferring Event Brightness Using the Gamma-Poisson Model	102
		5.5.4	How Bright Are Holliday Junction Events	108
		5.5.5	Photobleaching Steps Analysis Reveals Additional Source of Overdis-	
			persal	112
	5.6	Concl	usions	113
		5.6.1	Complex Relationship between Size and Photon Emission	113
		5.6.2	Implications for Future Work on Molecular Sizing	114

6 Probabilistic Inference for Error Detection in De Novo Genome Assem-

	blies						
	6.1	Overview	116				
	6.2	Introduction	116				
	6.3	Theory	119				
	6.4	Experimental Methods	124				
	6.5	Results	128				
	6.6	Conclusions	130				
7	Con	aclusions and Future Work	134				
	7.1	General Conclusions	134				
	7.2	Applications	134				
	7.3	Future Work	134				