ARPANET

- ARPANET was developed to provide a test bed for researching packetswitching networks
 - → Developed in the late 1960s; it was the first major effort to interconnect computers across a Wide Area Network (WAN)
 - ▶ For Packet-Switching Research:
 - Packet = Header + Data
 - ARPANET = Packet Switches + 56 Kbps Leased Lines
 - Distributed Routing
 - Congestion Control
 - Flow Control
 - ARPANET led to many innovations:
 - The TCP/IP protocols as the basis for Internet
 - Several lasting applications such as Email, remote login, file transfer

Cpr E 489 -- D.Q.

What did ARPANET look like?

What did ARPANET look like?

ARPANET Birthday: Oct. 29, 1969

Cpr E 489 -- D.Q.

Local Area Network (LAN)

- In 1980s, affordable computers become available
- Need for low-cost, high-speed networks
 - **♦** to interconnect local computers
 - to access locally shared resources (e.g., printers, storage, servers)
- Networks with limited distances (< 1 km) are called LANs
 - Short distance → high-speed communication with low error rate over cheap coaxial cable becomes possible
 - Messages are broadcasted to all machines in the LAN
 - Network Interface Card (NIC) of each machine has a globally unique address
 - A Medium Access Control (MAC) protocol becomes essential to coordinate access to the transmission medium

Various LAN Topologies

Cpr E 489 -- D.Q.

The OSI Reference Model

- OSI (Open System Interconnection) Model
 - developed by ISO (International Organization of Standardization)
 - describes a 7-layer abstract reference model for a network architecture
 - provides a common framework for the development of standard protocols

7-Layer OSI Reference Model

Cpr E 489 -- D.Q.

One or More Network Nodes

Physical Layer (Layer 1)

- Transfers bits across a communication link
 - Twisted-pair cable, coaxial cable, optical fiber
 - Radio, infrared, ...
- Definition and specification of the physical aspects of a communication link
 - Mechanical: cable, plugs, pins...
 - ▶ Electrical/optical: modulation, signal strength, voltage levels, ...
 - Functional/procedural: how to activate, maintain, and deactivate physical links, ...

Cpr E 489 -- D.Q.

Data Link Layer (Layer 2)

- Transfers frames across direct connections
- Framing: groups bits into frames
- Detection of bit errors; retransmission of frames
- Flow Control
- Medium Access Control for LANs (Local Area Networks)

Network Layer (Layer 3)

- Transfers packets across multiple links and/or multiple networks
- Addressing must scale to large networks
- Nodes jointly execute routing algorithm to determine paths across the network
- Best-effort connectionless service (no guarantee)

Cpr E 489 -- D.Q.

Transport Layer (Layer 4)

- Transfers segments from process in one machine to process in another machine (end-to-end transfer)
- Reliable stream transfer or quick-and-simple single-block transfer
- Port numbers enable multiplexing
- Connection setup, maintenance, and release
- Congestion control, flow control

Upper Layers (Layers 5, 6, 7)

 Application Layer: provides services that are frequently required by applications – DNS, web access, file transfer, email, ...

 Presentation Layer: machine-independent representation of data, ...

 Session Layer. dialog management, recovery from errors, ...

Been incorporated into Application Layer

Cpr E 489 -- D.Q.

Headers & Trailers

- Each protocol uses a header to carry control information such as addresses, sequence numbers, flag bits, length indicators, etc.
- CRC check bits are appended at Data Link Layer for error detection

TCP/IP Network Architecture

Cpr E 489 -- D.Q.

Features of the Internet

- It is a digital transmission system
 - ◆ Information is converted to symbols (zeros and ones)
 - ➡ Transmission system is designed to convey symbols
- It is a packet-switching network
 - ➡ Transfer mode: packet switching
- It is a global network of networks
 - → WAN (Wide Area Network)
 - ▶ LAN (Local Area Network)
- It has a layered network architecture
 - OSI reference model
 - ▶ TCP/IP architecture

Cpr E 489 -- D.Q.

