Exercice 1 (Cours). Énoncer rigoureusement et complètement le théorème du cours sur les identités (2) remarquables.

Exercice 2. Soit $t \in \mathbb{R}$. Développer et réduire les expressions suivantes (répondre sur l'énoncé) : (5)

- a) 2(t+7) =
- b) $(t+5)^2 =$
- c) (t-1)(t+3) =
- d) 1 t(t+1) =
- e) $(t-1)^2 (t+3)(t-3) =$

Exercice 3. Soit $t \in \mathbb{R}$. Factoriser et réduire les expressions suivantes (répondre sur l'énoncé) : (4)

- a) $3t t^2 =$
- b) $(t+5)^2 + t(t+5) =$
- c) (t-1)-(t-1)(t+2)=
- d) $9 t^2 =$

Exercice 4. Résoudre, pour $x \in \mathbb{R}$ les équations suivantes : (5)

- a) 2x + 3 = x 1
- b) $(x+1)^2 = (x-1)^2 + 4$
- c) $(x+1)^2 = 4x^2$
- d) (x+2)(x-3) = 0
- e) $x^2 = 3x$

Exercice 5. Pour chacune des affirmations \mathcal{A} suivantes, écrire la négation $NON(\mathcal{A})$, dire si \mathcal{A} est vraie ou fausse et démontrer la réponse choisie.

- 1. $A : \text{``A Pour tout } a \in \mathbb{R}, \ a(a-1)(a-2) = a^3 2a^2 + a.\ \text{``}$
- 2. \mathcal{A} : « Pour tous nombres réels a et b, $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$. »

Exercice 6. Au choix: (2)

1. Démontrer que les nombres 1 et 2 sont les seules solutions de l'équation :

$$x^2 - 3x + 6 = 0.$$

2. Quels sont les nombres réels égaux à leur cube? Justifier.