AGH, WIET	Laboratorium – elementy	Kierunek : EiT
	elektroniczne	
Nr ćwiczenia	Temat:	Ocena:
5	Tranzystory bipolarne	
Data wykonania:	Imię i nazwisko:	
22.05.2022	Hubert Mąka, Jakub Wojtycza	

Celem tych laboratoriów było poznanie bliżej budowy tranzystora bipolarnego npn, wyznaczenie jego charakterystyk prądowo napięciowych i innych danych niezbędnych do jego opisu.

Badany tranzystor: BC540

1. Połączenie inwersyjne

Dla połączenia inwersyjnego			
Ice0 [mA]	0,2933		
Beta	7,5261		
Alfa	0,8827		
Ue [V]	-13,076		

Wnioski:

Charakterystyka przejściowa jest zgodna z przewidywaniami teoretycznymi. Prąd emitera i kolektora zależą od siebie liniowo. Współczynnik beta wyznaczyliśmy obliczając współczynnik kierunkowy a regresji liniowej, a prąd zerowy jako punkt przecięcia z osią OY. Mierzyliśmy tranzystor rzeczywisty więc można zaobserwować zakrzywienie charakterystyki, które spowodowane są napięciem Early'ego. Przedłużając je do przecięcia z osią OX je otrzymamy.

2. Połączenie normalne

Dla połączenia normalnego			
Ice0 [mA] 0,385			
beta	254,12		
alfa	0,996		
Ue [V]	-111,885		

Wnioski:

Charakterystyka przejściowa jest zgodna z przewidywaniami teoretycznymi. Prąd emitera i kolektora zależą od siebie liniowo ale prąd kolektora jest o 3 rzędy wielkości większy od prądu bazy (duży współczynnik beta tranzystora). Współczynnik beta wyznaczyliśmy obliczając współczynnik kierunkowy a regresji liniowej, a prąd zerowy jako punkt przecięcia z osią OY. Mierzyliśmy tranzystor rzeczywisty więc można zaobserwować zakrzywienie charakterystyki, które spowodowane są napięciem Early'ego. Przedłużając je do przecięcia z osią OX je otrzymamy. Z powodu dużego rozrzutu otrzymanych napięć wyznaczyliśmy napięcie Early'ego jako średnią tych napięć.

3. Wyznaczanie charakterystyk diody emiterowej

n – współczynnik nieidealności złącza

IEO – prąd zerowy diody emiterowej

Obliczone wartości dla diody emiterowej		
IE0 [uA]	8*10^-11	
n	1,029	

Zmierzone wartości:

U [V]	I [mikroA]
0,11334	0,0002
0,36584	0,0003
0,43983	0,0012
0,47448	0,0041
0,48517	0,006
0,50447	0,0123
0,53192	0,0351
0,54161	0,0506
0,56106	0,1062
0,587	0,2824
0,60257	0,5077
0,60892	1,0057
0,57503	3,0322
0,56688	5,0387
0,63739	10,0678

Wnioski:

Z powodu braku pomiaru napięcia VPS - nie mogliśmy dokładnie określić prądu emitera przez co biorąc przybliżenie Ie=Ic udało się znaleźć szukane wartości. Szukane wartości wyznaczyliśmy poprzez poprowadzenie prostej regresji w skali półlogarytmicznej i odczytanie jej współczynników. Współczynnik kierunkowy to odwrotność współczynnika nieidealności diody, a parametr przemnażający eksponente to prąd zerowy diody.

Uwaga:

Z powodu niespodziewanego zachowania się tranzystora na zakresie od 0,6 V aby wyznaczyć szukane wartości musieliśmy zawężyć zakres branych do obliczeń danych.

4. Wyznaczanie charakterystyki diody kolektorowej

n – współczynnik nieidealności złącza

Ico – prąd zerowy diody emiterowej

Obliczone wartości dla diody emiterowej		
IC0 [uA]	4*10^-10	
n	1,024	

Zmierzone wartości:

U [V]	I [mikroA]		
0,11304	0,0001		
0,391	0,0002		
0,41504	0,0004		
0,45109	0,0019		
0,48328	0,006		
0,50115	0,0119		
0,532	0,0371		
0,54389	0,0573		
0,56478	0,1232		
0,59038	0,3047		
0,60552	0,5098		
0,62629	1,0194		
0,66106	3,0276		
0,67893	5,0578		
0,70479	9,9605		

Wnioski:

Z powodu braku pomiaru napięcia VPS - nie mogliśmy dokładnie określić prądu emitera przez co biorąc przybliżenie Ie=Ic udało się znaleźć szukane wartości. Szukane wartości wyznaczyliśmy poprzez poprowadzenie prostej regresji w skali półlogarytmicznej i odczytanie jej współczynników. Współczynnik kierunkowy to odwrotność współczynnika nieidealności diody, a parametr przemnażający eksponente to prąd zerowy diody.

5. Równanie Ebersa-Mola

Biorąc obliczone wcześniej wartości:

ÎES	NE.	LR	UT	Ics	n c	LF.
8.1377	7,029	0,8827	27·15 ³	4.10	1,024	0,996
[A]			[v]	[A]		

i podstawiając je do równań Ebersa-Mola, gdzie UBC i UBE są zmiennymi zmierzonymi w podpunktach 3 i 4 zewnętrznym woltomierzem

$$\begin{cases} \dot{t}_{E} = -8 \cdot 10^{-17} \left(exp \left(\frac{MBE}{1.029 \cdot 27 \cdot 10^{-3}} \right) - 1 \right) + 0.8827 \cdot 4.10^{-16} \left(exp \left(\frac{MBE}{1.024 \cdot 27 \cdot 10^{-3}} \right) - 1 \right) \\ \dot{t}_{C} = 0.996 \cdot 8.10^{-17} \left(exp \left(\frac{MBE}{1.029 \cdot 27 \cdot 10^{-3}} \right) - 1 \right) - 4.10^{-16} \left(exp \left(\frac{MBE}{1.026 \cdot 27 \cdot 10^{-3}} \right) - 1 \right) \end{cases}$$