On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel $n, u_{n+1} = 3u_n - 2n + 3$.

- 1. Calculer u_1 et u_2 .
- 2. (a) Démontrer par récurrence que, pour tout entier naturel $n, u_n \ge n$.
 - (b) En déduire la limite de la suite (u_n) .
- 3. Démontrer que la suite (u_n) est croissante.
- 4. Soit la suite (v_n) définie, pour tout entier naturel n, par $v_n = u_n n + 1$.
 - (a) Démontrer que la suite (v_n) est une suite géométrique.
 - (b) En déduire que, pour tout entier naturel n, $u_n = 3^n + n 1$.
- 5. Soit p un entier naturel non nul.
 - (a) Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0, \ u_n \ge 10^p$?

On s'intéresse maintenant au plus petit entier n_0 .

- (b) Justifier que $n_0 \leq 3p$.
- (c) Déterminer à l'aide de la calculatrice cet entier n_0 pour la valeur p=3.
- (d) Proposer un programme écrit en Python qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier n_0 tel que, pour tout $n \ge n_0$, on ait $u_n \ge 10^p$.

On considère la suite (u_n) à valeurs réelles définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{u_n + 8}.$$

Partie A: Conjectures

Les premières valeurs de la suite (u_n) ont été calculées à l'aide d'un tableur dont voici une capture d'écran :

	A	В
1	n	u_n
2	0	1
3	1	0,111 111 11
4	2	0,013 698 63
5	3	0,001 709 4
6	4	0,000 213 63
7	5	2,670~3E-05
8	6	$3,337 \text{ 9E}{-06}$
9	7	$4{,}172~3\mathrm{E}{-}07$
10	8	5,215 4E-08
11	9	6,519 3E-09
12	10	8,149 1E-10

- 1. Quelle formule peut-on entrer dans la cellule B3 et copier vers le bas pour obtenir les valeurs des premiers termes de la suite (u_n) ?
- 2. Quelle conjecture peut-on faire sur les variations de la suite (u_n) ?
- 3. Quelle conjecture peut-on faire sur la limite de la suite (u_n) ?
- 4. Écrire un algorithme calculant u_{30} .

Partie B : Étude générale

- 1. Démontrer par récurrence que, pour tout entier naturel $n, u_n > 0$.
- 2. Étudier les variations de la suite (u_n) .
- 3. La suite (u_n) est-elle convergente? Justifier.

Partie C : Recherche d'une expression du terme général

On définit la suite (v_n) en posant, pour tout entier naturel n,

$$v_n = 1 + \frac{7}{u_n}.$$

- 1. Démontrer que la suite (v_n) est une suite géométrique de raison 8 dont on déterminera le premier terme.
- 2. Justifier que, pour tout entier naturel n,

$$u_n = \frac{7}{8^{n+1} - 1}.$$

- 3. Déterminer la limite de la suite (u_n)
- 4. On cherche dans cette question le plus petit entier naturel n_0 tel que, pour tout entier naturel n supérieur ou égal à n_0 , $u_n < 10^{-18}$.

Justifier l'existence d'un tel entier n_0 et déterminer sa valeur.