

• Meteorites:

- How are meteorites found?
- Main types
- Where do they come from?
- Meteorites as time capsules

The main points: Meteorites

- Each year the Earth sweeps up ~80,000 tons of extraterrestrial matter, from microscopic dust particles to large rocks
- Some are identifiable pieces of the Moon, Mars; most are pieces of asteroids
- Meteorites were broken off their parent bodies 10's to 100's of million years ago (recently compared to age of Solar System)
- Oldest meteorites (chondrites) contain bits of interstellar dust, organic molecules and amino acids (building blocks of life), tiny spherules left over from the very early Solar System
- Direct insight into pre-solar system matter, solar system formation

What are meteorites?

- Chunks of rock or iron-nickel that fall to Earth from space
- Pieces of asteroids, comets, Moon, Mars, interstellar dust
 - Can weigh from < 1 ounce to a few tons (!)
- "The Poor Man's Space Probe"
 - From parts of the Solar System astronauts may never explore
- Usually named after the place where they fall
 - Examples: Prairie Dog Creek (US), Zagora (Morocco), Campo del Cielo (Argentina), Mundrabilla (Australia)

Meteor showers

- Time
 exposure
 image,
 tracking
 stellar motion
- Stars stay still, meteorites make trails

Table 12.1 Major Annual Meteor Showers

Shower Name	Approximate Date	Associated Comet
Quadrantids	January 3	?
Lyrids	April 22	Thatcher
Eta Aquarids	May 5	Halley
Delta Aquarids	July 28	?
Perseids	August 12	Swift-Tuttle
Orionids	October 22	Halley
Taurids	November 3	Encke
Leonids	November 17	Tempel-Tuttle
Geminids	December 14	Phaeton
Ursids	December 23	Tuttle

Rocks Falling from the Sky

- meteor a flash of light caused by a particle which enters Earth's atmosphere.
 - most of these particles are the size of a pea or smaller
 - they completely burn up in Earth's atmosphere
- meteorite a rock which is large enough to have survived its fall to Earth

- How can you tell that you have a meteorite?
 - they have a higher metal content than terrestrial rocks
 - they contain Iridium and other isotopes not found in terrestrial rocks

What do meteorites look like?

Mars meteorit e

Allen Hills (Moon)

Variety of meteorite "falls"

- Tiny pieces of cosmic dust
 - Collected by special airplanes, in clay under the oceans, or in Antarctic ice
- Find single small chunks of rock
 - Sometimes at random, sometimes by following trajectory of a "fireball" or meteor trail
- A several-ton meteorite breaks up during descent, falls as separate pieces
 - Biggest pieces can make large craters if they hit land

Small particles: spherules

- Tiny droplets from space
- Formed by melting and re-solidification after impacts

Spherule from Moon
Collected by Apollo 11 astronauts

Spherule from bottom of the Indian Ocean

Small particles: cosmic dust

 Sometimes from comets, sometimes left over from the cosmic dust cloud from which the Solar System formed

Single small chunks of rock

Iron-nickel
meteorite
A few inches across

Allende Carbonaceous chondrite

Several-ton boulders

Hoba Meteorite, Namibia

Worldwide frequency of meteorites as function of size

Impact Frequencies				
size	frequency	destruction area		
Pea	10/hr			
Walnut	18hr			
Grapefruit	1/10 hrs			
Basketball	1/mo			
50 meters	1/century	New York City		
1 kilometer asteroid	1/100,000 yrs	Virginia		
2 kilometer asteroid	1/500,000 yrs	France		
10 kilometer asteroid	1/100,000,000 yrs	worldwide?		

Tonguska meteorite in Siberia caused widespread devastation

Fortunately it hit in an unpopulated area!

How meteorites are found

- Random "finds" lying on ground
- Fragments around meteor craters
- Follow glowing trail of meteor or fireball
- Systematic searches in Antarctica
- Special high-flying airplanes (for dust)

Random "finds"

- Rare: a big meteorite in desert of Oman
- Pretty rare: random "finds" of smaller chunks

Fragments around meteor craters

- Very large meteorites vaporize when they hit ground, form big craters
- Sometimes small pieces are found around crater

Macroscopic features of the Almahata Sitta meteorite.

P Jenniskens *et al. Nature* **458**, 485-488 (2009)

Systematic searches in Antarctica

Systematic searches in Antarctica

Searching for rare meteorites amidst thousands of Earth-rocks

Victory!

Where do meteorites come from, and how do we know?

- Spectra: reflection of sunlight as function of wavelength of light
- Spectra of some meteorites and asteroids can be identical
- Implies asteroid was parent body

Primitive vs. processed meteorites

Based on composition, meteorites fall into two basic

categories:

primitive

- about 4.6 billion years old
- accreted in the Solar nebula
- processed
 - younger than 4.6 billion years
 - matter has differentiated
 - fragments of a larger object which processed the original Solar nebula material

Origin of Meteorites

- Primitive meteorites condensed and accreted directly from the Solar nebula.
 - the stony ones formed closer than 3 AU from the Sun
 - the Carbon-rich ones formed beyond 3 AU from the Sun, where it was cold enough for Carbon compounds to condense
- Processed meteorites come from large objects in the inner Solar System.
 - the metallic ones are fragments of the cores of asteroids which were shattered in collisions
 - the rocky ones were chipped off the surfaces of asteroids,
 Mars, and the Moon by impacts

Main types of meteorites

- Chondrites
 - Carbonaceous
 - Non-carbonaceous
- Achondrites
- Iron
- Stony-Iron

Chondrites

 Rocky, inhomogeneous, contain round "chondrules"

Microscope image

Carbonaceous Chondrites contain complex organic molecules

- Amino acids, fatty acids, other so-called "building blocks of life"
- Did building blocks of life come to Earth from space?
- Did life itself come to Earth from space?

Carbonaceous Chondrites: Insights into Planet Formation?

- The oldest meteorites; quite rare
- Chondrules (round): primitive chunks of early Solar System

Iron meteorites

- Made of iron and nickel
- Pits made during atmospheric entry (hot!)

Iron meteorites: from core of differentiated asteroids

The making of future meteorites!

Crystalization pattern of the iron is unique

- Characteristic of very slow cooling of iron within an asteroid core
- Due to diffusion of nickel atoms into solid iron as core cools
- Says original asteroid must have been large enough to be differentiated

Stony-Iron meteorites - the prettiest

- Crystals of olivene (a rock mineral) embedded in iron
- From boundary between core and mantle of large asteroids?

Achondrites: from Mars and Moon

From Mars:

 Tiny inclusions have same elements and isotope ratios as Martian atmosphere (measured by spacecraft on Mars)

From the Moon:

- Astronauts brought back rocks from several regions on the Moon
- Some achondrites match these rock types exactly