BRAC UNIVERSITY CSE460 VLSI DESIGN Assignment - 1

		Section:
Name:	ID:	Section.

Question 1:[10 Marks]

Design a CMOS implementation of the following functions:

(a)
$$Y = ((A . B . C) + D) . E$$

(b)
$$Y = (A + (B \cdot C)) \cdot (D + E)$$

(a)

BRAC UNIVERSITY CSE460 VLSI DESIGN Assignment - 1

Name:	ID:	Section:

Question 1:[10 Marks]

Design a CMOS implementation of the following functions:

(a)
$$Y = ((A \cdot B \cdot C) + D) \cdot E$$

(b)
$$Y = (A + (B \cdot C)) \cdot (D + E)$$

Question 2:[10 Marks]

Complete the truth table from the given circuit. Floating state or Z is also a possible answer.

Question 3:[10 Marks]

Find the value of Out for each of the above pass transistor circuits.

Question 4:[20 Marks]

Consider you need to design a temperature control system for your classroom at BRAC University. Your system has 1 Output \mathbf{D} , and 3 inputs \mathbf{A} , \mathbf{B} , and \mathbf{C} that come directly from three different sensors installed in the room. When a certain threshold of the temperature is crossed, each sensor gives a logical HIGH output. Your logic circuit should turn on the AC ($\mathbf{D} = \mathbf{1}$) when the **majority** of inputs are **HIGH**.

- (a) Convert the problem statement into a Truth Table and write the simplified Boolean expression.
- (b) Implement the logic with a CMOS implementation.
- (c) How many transistors are required in the CMOS implementation?
- (d) Can you implement the logic with only NAND gates? If so, show the implementation.

(a)

A	B	C	® D
0	Ó	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	Ò	0	0
1	0	1	1
1	1	O	1
1	1	1	1

Question 4:[20 Marks]

Consider you need to design a temperature control system for your classroom at BRAC University. Your system has 1 Output \mathbf{D} , and 3 inputs \mathbf{A} , \mathbf{B} , and \mathbf{C} that come directly from three different sensors installed in the room. When a certain threshold of the temperature is crossed, each sensor gives a logical HIGH output. Your logic circuit should turn on the AC ($\mathbf{D} = \mathbf{1}$) when the majority of inputs are HIGH.

- (a) Convert the problem statement into a Truth Table and write the simplified Boolean expression.
- (b) Implement the logic with a CMOS implementation.
- (c) How many transistors are required in the CMOS implementation?
- (d) Can you implement the logic with only NAND gates? If so, show the implementation.

Question 5:[10 Marks]

Imagine a logic circuit with 1 output f, and 4 input lines d3, d2, d1, and d0.

- Let's define a 2-bit selector input S = s1 s0
- The output **f** is determined as follows:

S	ſ
00	d3
01	/d2
10	d1
11	d0
11	ao

(a) Write the Boolean expression for this logic and implement the circuit using basic gates.

(b) Implement this logic using a 2-to-1 multiplexer.

(a) $f = \frac{1}{50} = \frac{1}{50}$

Question 5:[10 Marks] Imagine a logic circuit with 1 output f, and 4 input lines d3, d2, d1, and d0.

- Let's define a 2-bit selector input $S = sI s\theta$
- The output **f** is determined as follows:

S	f
00	d3
	d2'
01	dl
10	d0 •
11	40

- (a) Write the Boolean expression for this logic and implement the circuit using basic gates.
- (b) Implement this logic using a 2-to-1 multiplexer.

