2014 级《微积分 A》期末试卷(A)

班	纽	学 号	姓 名
7	7)	1 1	A 1

(注:本试卷共6页,九个大题。请撕下试卷最后一张空白纸做草稿。)

题号	_	 [11]	四	五	六	七	八	九	总分
得									
分									
评阅									
人									

- 一、填空(每小题 4 分, 共 28 分)
- 1、已知平面π 过两点 M_1 (1,0,-1), M_2 (-2,1,3), 并且与向量 $\vec{a} = 2\vec{i} \vec{j} + \vec{k}$ 平行, 则此平 面的方程为
- 2、设函数 z = z(x, y) 由方程 $\sin x + 3y z = e^z$ 所确定,则 dz =
- 3、设L 是曲线弧 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ (0 $\leq t \leq 2$), 则曲线积分

$$\int_L \frac{dl}{x^2 + y^2 + z^2} = \underline{\qquad}.$$

- 4、设 Ω 是由圆锥面 $z = \sqrt{x^2 + y^2}$ 与抛物面 $z = 2 x^2 y^2$ 所围成的均匀立体(密度 $\mu=1$).则 Ω 绕z轴的转动惯量=_____.
- 5、设 $u(x,y,z) = x^y z$,记其梯度为grad(u),则散度div $(\operatorname{grad}(u)) = ____.$

则S(π)=_____.

二、(8分) 设
$$f(x,y) = \begin{cases} \frac{2x^3 - 3y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 求 $f'_x(0,0)$ 和 $f'_y(0,0)$.

三、(8分) 计算二重积分 $\iint_D |x+y| dx dy$, 其中 D为平面区域 $\{(x,y)|x^2+y^2\leq 1\}$

五、(8 分) 已知函数z=f(x,y)的全微分为 dz=2xdx-2ydy, 且f(1,1)=2, 求函数 f 在椭圆域 $D=\{(x,y)|4x^2+y^2\leq 4\}$ 上的最大值和最小值。

六、 $(10\, eta)$ 设 f(u) 在 $(-\infty, +\infty)$ 内有连续的导函数, k 是一个待定常数. 已知曲线积 $\iint_{\Gamma} (x^2y^3 + 2x^5 + ky) dx + [xf(xy) + 2y] dy$ 与路径无关,且对任意的 t ,

$$\int_{(0,0)}^{(t,-t)} (x^2 y^3 + 2x^5 + ky) dx + [xf(xy) + 2y] dy = 2t^2$$

求 f(u) 的表达式和k 的值, 并求 $(x^2y^3+2x^5+ky)dx+[xf(xy)+2y]dy$ 的原函数.

七、 $(10 \, \mathcal{G})$ 计算曲面积 $\mathcal{G}I = \iint_S xz \, dy \, dz + 2yz \, dz \, dx + 3xy \, dx \, dy$, 其中,S 为曲面: $z = 1 - x^2 - y^2$, $(0 \le z \le 1)$ 的上侧。

八、
$$(10 \, \text{分})$$
 讨论级数 $\sum_{n=2}^{\infty} \frac{1}{n \ln^p n}$ 的收敛性

九、 $(10\,

ota)$ 试求面密度为常数 μ_0 的均匀上半球壳 Σ : $z=\sqrt{1-x^2-y^2}$ 对位于原点的质量为常数 m 的质点的引力