1.

In the Wumpus world is shown in fig 4b2. The initial situation after the percept [none, none, none, none, none] is given in fig 4b1.

1,4	2,4	3,4	4,4
1,3 W!	2,3 S,G,B	3,3	4,3
1,2 0k	2,2	3,2	4,2
1,1 0k ^A	2,1 0K B	3,1	4,1

Fig	Ah	1
LIE	40	1

A	Agent	
В	Breeze	
G	Glitter,g,gold	
ОК	Safe square	
P	Pit	
S	Stench	
V	Visited	
W	Wumpus	

SSEERCKS S		Beeza	PIT
400 A	Skench S Cott	PIT	Breeze
S Stench S		Bleeze	
START	8/ceze	PIT	Breeze

Fig 4b2

Give the stages for the following:

- a. After one move with percept [None, Breeze, None, None, None, None]
- b. After the Third move with percept [Stench, None, None, None, None]
- c. After the fifth move with percept [Stench, Breeze, Glitter, None, None]

Write, describe and analyze in detail the MINIMAX algorithm with an example.

7 2;4

6

2:3

 Describe in detail, the Constraint Satisfaction Problem(CSP). Explain how to solve map coloring for the following map of Australia, in figure 5b, formulating it as CSP.

- 4.
- In the Wumpus-World, the initial situation, after the percept [None, None, None, None, None] is given below.

Give the stages for the following

- a) After the move, with percept [None, Breeze, None, None, None]
- b) After the third move with percept [Stench, None, None, None, None]
- c) After the fifth move, with percept [Stench, Breeze, Glitter, None, None]

=Agent,B=Breeze,G=Glitter,Gold,OK=SafeSquare,P=Pit,S=Stench, W=Wumpus,V=Visited

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 OK A	2,1 OK	3,1	4,1

5.

6.

7.

Show the stages in the calculation of the optimal decision for the game tree shown below using Alpha-Beta pruning.

Example: 2-ply game

Marks

06

06 Marks

What is local consistency? Describe in detail the following with respect to local consistency.

A) Node consistency

B)Arc consistency

C)Path Consistency

D)K-Consistency

6 Marks

Give the PEAS description of the following wumpus world

Shench		Breeze	PIT
J.J.	Breede Stench Glitter	PET	Reere
stench		Breeze	
START	Breeze	PIT	Romenete

06 Marks

- 8. Write and explain the MIN-CONFLICTS algorithm for constraint satisfaction problem with an example.
- 9. Solve the following Cryptarithmatic problem using CSP. (a.)

10.Show the stages of calculation of optimal decision for the game tree shown below using MINMAX algorithm

