

Week 9 Contents / Objectives

- Why Generative Models?
- Bayesian Inference
- Bayesian Linear Regression
- Variational Autoencoder (VAE)
- VAE Unboxing

Week 9 Contents / Objectives

- Why Generative Models?
- Bayesian Inference
- Bayesian Linear Regression
- Variational Autoencoder (VAE)
- VAE Unboxing

The holy grail in ML: understand data -> create data

Generating Faces (VAE)

https://www.youtube.com/watch?v=XNZIN7Jh3Sg

Digital Generative Art (VAE)

Generating Images (GAN)

https://www.youtube.com/watch?v=XOxxPcy5Gr4

DeepFakes

Which image is real?

DeepFakes

Neither!

No glasses!

No smile!

Image Super Resolution

Conditional generative model
 P(high res image | low res image)

Ledig et al., 2017

Image Translation / Colorization

Conditional generative model
 P(zebra images | horse images)

Zhu et al., 2017

Week 9 Contents / Objectives

- Why Generative Models?
- Bayesian Inference
- Bayesian Linear Regression
- Variational Autoencoder (VAE)
- VAE Unboxing

Question

- Which year was this photo taken?
 - A. 1996
 - B. 2006
 - C. 2016
 - D. 2026

Bayes' Rule

Given data x and parameters θ , their joint probability can be written as

$$p(\theta|x)p(x) = p(x,\theta)$$
 $p(x,\theta) = p(x|\theta)p(\theta)$

Eliminating $p(x, \theta)$ gives Bayes' rule:

Key Concepts

- Prior probability: the estimate of the probability of the model before the data (evidence) is observed
- Posterior probability: the probability of the model after observing the data (evidence)
- **Likelihood**: the probability of observing a (random) data point given a model (*fixed*) → the **compatibility** of the data (evidence) with the given model
- Marginal likelihood: "model evidence", the probability of observing a (random) data point under all possible model variations

Principles of Bayesian Inference

⇒ Formulation of a generative model

likelihood $p(x|\theta)$ prior distribution $p(\theta)$

Observation of data

 $\boldsymbol{\mathcal{X}}$

□ Update of beliefs based upon observations, given a prior state of knowledge

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

Week 9 Contents / Objectives

- Why Generative Models?
- Bayesian Inference
- Bayesian Linear Regression
- Variational Autoencoder (VAE)
- VAE Unboxing

Bayesian Linear Regression (1)

Aim: Estimate model parameters $w_0 \& w_1$

Bayesian inference: placing a probability distribution (prior density) over the model parameters $w_0 \& w_1$ Now: No data points are observed.

Bayesian Linear Regression (2)

1 data point observed \rightarrow soft constraint.

This posterior \rightarrow prior for the next data point observed

Bayesian Linear Regression (3)

A second data point observed

Bayesian Linear Regression (4)

20 data points \rightarrow very close to true values of $w_0 \& w_1$

How about making **probabilistic** predictions for any x? **Bayesian inference**: Evaluate the predictive **distribution**

Predictive Distribution (1)

- Data: green curve + noise → sinusoidal data (blue circles)
- Model: 9 Gaussian basis functions

- Aim: Predict the output distribution
- Now: 1 data point. Red: model; shade: model uncertainty

Predictive Distribution (2)

 2 data points observed → reduced uncertainty near the points

- Left: the predictive distribution
- Right: samples from the predictive distribution

Predictive Distribution (3)

 4 data points observed → further reduced uncertainty near the points

Predictive Distribution (4)

• 25 data points -> significantly reduced uncertainty

Gaussian/Normal Distribution

- Knowing the mean and (co)variance (std) is sufficient to specify the distribution (<u>sufficient statistics</u>)
 - Closed form solution often feasible
- Density estimation: estimate mean and (co)variance

Bayesian Regression Ingredients

- Data: + pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: basis function chosen,
 e.g. poly, Gaussian
 - Hyper-parameter: for basis function (e.g., degree) & prior
 - Parameters (theta): weights and bias
- Evaluation metric: MSE
- Optimisation: closed form for Gaussian distributions, SGD etc. otherwise

Pros and Cons of Bayesian Methods

Pros

- Provide **uncertainty estimation**, e.g. predicting an output distribution with mean and (co)**variance**
- Make use of more information (prior, if available)
- Less overfitting in general

Cons

- Complexity
- Subjectivity: all inferences are based on beliefs.
 Which prior to choose? If prior is wrong, ...

Week 9 Contents / Objectives

- Why Generative Models?
- Bayesian Inference
- Bayesian Linear Regression
- Variational Autoencoder (VAE)
- VAE Unboxing

Autoencoders

 The decoder reproduces the input from a representation (the code) learned by the encoder

Variational Autoencoder (VAE)

- Make both the encoder and decoder probabilistic
- **Encoder**: draw latent variables z (the code) from a probability distribution conditioned on the input x
- **Decoder**: reconstruct x probabilistically conditioned on z

VAE Encoder

- Take the input x and output parameters for a probability distribution $q_{\phi}(z \mid x)$. For Gaussian: output the mean and standard deviation
 - Use a neural network with parameter $\,\phi\,$ to do this
- Sample from this distribution to get random values of the lower-dimensional representation \boldsymbol{z}

VAE Decoder

- Takes latent variable z and out parameters for a distribution $p_{\theta}(x \mid z)$, e.g. the mean and standard deviation for each pixel in the output
 - Use a neural network with parameter θ to do this
- Sample $p_{\theta}(x \mid z)$ to get the reconstruction \tilde{x}

33

VAE Loss Function

- Objective: learn parameters of two probability distributions ϕ and θ
- For a single data point, the loss function is

$$l_i(\phi, \theta) = -\mathbb{E}_{z \sim q_{\phi}(z|x_i)}[\log p_{\theta}(x_i \mid z)] + \mathbb{KL}(q_{\phi}(z \mid x_i) \mid\mid p(z))$$

- Term #1: the expected negative log-likelihood → the reconstruction loss
- Term #2: a regularisation, the Kullback-Leibler divergence between the encoder's distribution $q_{\phi}(z \mid x)$ and the marginal distribution p(z), measuring their mismatch
 - $q_{\phi}(z\mid x)$ is an approximation to the true posterior $p(z\mid x)$ based on variational inference, hence the name **variational**

Optimization Challenge

• The expectation in the loss function will be approximated by choosing samples and averaging. This is not differentiable w.r.t. ϕ and θ .

$$l_i(\phi, \theta) = -\mathbb{E}_{z \sim q_{\phi}(z|x_i)}[\log p_{\theta}(x_i \mid z)] + \mathbb{KL}(q_{\phi}(z \mid x_i) \mid\mid p(z))$$

Reparameterization Trick

• If z is $N(\mu(x_i), \Sigma(x_i))$, then we can sample z using $z = \mu(x_i) + \sqrt{(\Sigma(x_i))} \, \epsilon$, where ϵ is N(0,1). So we can draw samples from N(0,1), which doesn't depend on the parameters.

Generative Mode of VAE

• After training, sample any z from N(0,1) and decode it to get a sample of the entire data distribution p(x) \rightarrow Generate new samples that look like the input but aren't in the input.

Week 9 Contents / Objectives

- Why Generative Models?
- Bayesian Inference
- Bayesian Linear Regression
- Variational Autoencoder (VAE)
- VAE Unboxing

Probabilistic Modelling in VAE

Generative Modelling in VAE

We want to estimate the true parameters θ^* of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. Gaussian.

Likelihood p(x|z) is complex (generates image) \rightarrow represent with a neural network

Intractability Challenge

Evidence
$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$
 (Marginal likelihood)

Intractible to compute p(x|z) for every z!

Posterior also intractable:

$$p_{ heta}(z|x) = p_{ heta}(x|z)p_{ heta}(z)/p_{ heta}(x)$$
 Intractable evidence

Solution: Define an additional encoder network $q_{\phi}(z \mid x)$ that approximates $p_{\theta}(z \mid x)$ to make the problem tractable \rightarrow the **variational** inference method

Variational Autoencoder Construction

Generating Data with VAE

Use decoder network. Sample z from prior.

Data manifold for 2-d z

Face Generation & Interpretation

- Diagonal prior on z → independent latent variables
- Different dimensions of z encode interpretable factors of variation

Variational Autoencoder Ingredients

- Data: + pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: layered network
 - Hyper-parameter: layer specs, e.g. #layers #units, (convolutional) kernel size
 - Parameters (theta): layer weights and biases
- Evaluation metric: max evidence lower bound
- Optimisation: backprop, SGD or the like

Pros and Cons of VAE

Pros

- Principled approach to generative models
- Inference of $q(z|x) \rightarrow$ useful feature representation for other tasks

Cons

 Samples blurrier and lower quality compared to state-of-the-art (GANs) Acknowledgement

• The slides used materials from: Christopher Bishop, Neil Lawrence, Lee Harrison, John Gosling, Chuck Huber, Greg Buzzard, Mike Mozer, Stefano Ermon, Aditya Grover, Martin Krasser, Dhruv Batra, Fei-Fei Li, Justin Johnson, Serena Yeung

Recommended Reading

- PRML book: Section 3.3 on Bayesian Linear Regression
- <u>CS231n: Convolutional Neural</u>
 <u>Networks for Visual Recognition</u>

 <u>from Stanford</u> (Lecture 11-2020)
- CS236: Deep Generative Models
 @Stanford
- Wikipedia entries on related topics
- The lab notebook and references