Exercício 9.2.11

(a) Claro que $0 \in V_{\lambda}$, e se $a, b \in V_{\lambda}$, então $T(a + \gamma b) = T(a) + \gamma T(b) = \lambda(T)a + \gamma\lambda(T)b = \lambda(T)(a + \gamma b)$ para toda $T \in \mathcal{T}$. Agora, seja $V'_{\lambda} = \{v \in V : T(v) = \lambda(T)v, \ \forall \ T \in \mathbb{T}\}$. Claro que $V'_{\lambda} \subset V_{\lambda}$. Se $v \in V_{\lambda}$, então para toda $Q = \sum_{i} x_{i} T_{i}$ com $T_{i} \in \mathcal{T}$,

$$Q(v) = \sum_{i} x_i T_i(v) = \sum_{i} x_i \lambda(T_i) v = \lambda\left(\sum_{i} x_i T_i\right) v = \lambda(Q) v.$$

- (b) Suponha que $\lambda, \lambda' \in \mathbb{T}^*$ com $\lambda \neq \lambda'$. Seja $v \in V_{\lambda} \cap V_{\lambda'}$. Então existe ao menos um $T \in \mathbb{T}$ tal que $\lambda(T) \neq \lambda'(T)$. Mas pelo item (a) sabemos que $T(v) = \lambda'(T)v = \lambda(T)v$, logo v = 0.
- (c) Seja $\{\tau_i\}_{i\in\mathcal{I}}$ a referida base de \mathbb{T} , e note que a questão é equivalente a existir uma base $\nu=\{v_j\}_{j\in\mathcal{J}}$ de V em que os elementos de τ são simultaneamente diagonais: se isso é verdade, para cada $j\in\mathcal{J}$, seja $\lambda_j\in\mathbb{T}^*$ o funcional definido por $\lambda_j(\tau_i)=([\tau_i]_{\nu}^{\nu})_{j,j}$. Assim, $v_j\in V_{\lambda_j}$, e como $\{v_j\}_{j\in\mathcal{J}}$ é base, fica claro que $V=\bigoplus_{j\in\mathcal{J}}V_{\lambda_j}$. Por outro lado, se $V=\bigoplus_{\lambda\in\mathbb{T}^*}V_{\lambda}$, tomando α_j base de V_{λ_j} para todo $j\in\mathcal{J}$ a família $\nu=\bigcup_{j\in\mathcal{J}}\alpha_j$ é uma base de V com $[\tau_i]_{\nu}^{\nu}$ diagonal para todo $i\in\mathcal{J}$.

Agora, precisamos mostrar que $\{v_j\}_{j\in\mathcal{J}}$ existe. Fixando $i\in\mathcal{I}$, seja $\omega=\{w_j\}_{j\in\mathcal{J}}$ base de V que diagonaliza τ_i e para cada $j\in\mathcal{J}$ defina $a_j=([\tau_i]_{\omega}^{\omega})_{j,j}$. Como da primeira hipótese temos $\tau_{i'}\tau_i=\tau_i\tau_{i'}$ para todo $i'\in\mathcal{I}$ (estão no subespaço gerado por \mathcal{T}), vale $\tau_i(\tau_{i'}w_j)=\tau_{i'}\tau_iw_j=a_j(\tau_{i'}w_j)$, ou seja, o subespaço $\mathcal{N}(\tau_i-a_j\mathrm{id})$ é invariante por $\tau_{i'}$.