Passive Second Order Low Pass Filter

Sam Protsenko

February 9, 2017

Abstract

Article shows calculating of passive 2nd order LPF (Low Pass Filter) parameters, using Linux software like Maxima and Qucs.

1 Transfer function calculation

Figure 1: Passive 2nd order LPF

Let's find out v_O using **node method**. All currents:

$$i_1 = \frac{v_I - v_{C_1}}{R_1}$$

$$i_2 = \frac{v_{C_1}}{X_{C_1}} = \frac{v_{C_1}}{\frac{1}{sC_1}}$$

$$i_3 = \frac{v_{C_1}}{R_2 + X_{C_2}} = \frac{v_{C_1}}{R_2 + \frac{1}{sC_2}}$$

KCL for v_{C_1} node:

$$i_1 - i_2 - i_3 = 0$$

Substitute currents equations to KCL and solve it for v_{C_1} :

$$v_{C_1} = v_I \frac{R_2 C_2 s + 1}{(R_1 C_1 s + 1)(R_2 C_2 s + 1) + R_1 C_2 s}$$

Output voltage:

$$v_O = v_{C_1} - i_3 R_2 = v_I \frac{1}{(R_1 C_1 s + 1)(R_2 C_2 s + 1) + R_1 C_2 s}$$

Transfer function:

$$H(s) = \frac{v_O}{v_I} = \frac{1}{(R_1C_1s + 1)(R_2C_2s + 1) + R_1C_2s}$$

$$= \frac{1}{R_1R_2C_1C_2s^2 + (R_1C_1 + R_1C_2 + R_2C_2)s + 1}$$

$$= \frac{1}{ms^2 + bs + k}$$

Where coefficients:

$$m = R_1 R_2 C_1 C_2$$

$$b = R_1 C_1 + R_1 C_2 + R_2 C_2$$

$$k = 1$$

Transfer function was calculation in Maxima, see listing 1.

Listing 1: Transfer function calculation

- 1 i1: (vI vC1) / R1\$
- 2 i2: vC1 / (1/s/C1)\$
- 3 i3: vC1 / (R2 + 1/s/C2)\$
- 4 eq1: i1 i2 i3 = 0\$
- 5 sol: solve(eq1, vC1)\$
- 6 vC1: **rhs**(sol[1]);
- 7 i1: ev(i1, sol)\$
- 8 i2: **ev**(i2, sol)\$
- 9 i3: ev(i3, sol)\$
- 10 vO: ratsimp(vC1 i3*R2);
- 11 define(H(s), vO/vI);

1.1 Standard form of transfer function

Standard form of transfer function for second order LPF:

$$H(s) = \frac{k_{dc}}{\frac{s^2}{\omega_n^2} + 2\frac{\zeta}{\omega_n}s + 1} = \frac{k_{dc}\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Let's calculate coefficients for standard form from our transfer function:

$$k_{dc} = \frac{1}{k} = 1$$

$$\omega_n = \sqrt{\frac{k}{m}} = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

$$\zeta = \frac{b}{2m\sqrt{k/m}} = \frac{R_1 C_1 + R_1 C_2 + R_2 C_2}{2\sqrt{R_1 R_2 C_1 C_2}}$$

where

- k_{dc} gain
- ω_n natural frequency
- ζ damping ratio

Also, quality factor is:

$$Q = \frac{1}{2\zeta} = \frac{m\sqrt{k/m}}{b} = \frac{\sqrt{R_1R_2C_1C_2}}{R_1C_1 + R_1C_2 + R_2C_2}$$

Let's check if calculations are correct so far (see listing 2).

Listing 2: Verify if transfer function in standard form is correct

- 1 omega_n: 1 / sqrt(R1*R2*C1*C2)\$
- 2 zeta: (R1*C1+R1*C2+R2*C2) / (2*sqrt(R1*R2*C1*C2))\$
- 3 $H(s) := omega_n^2 / (s^2 + 2*zeta*omega_n*s + omega_n^2)$
- 4 expand(H(s));

2 Cut-off frequency calculation

From Laplace transform to Fourier transform:

$$H(j\omega) = H(s)\big|_{s=j\omega} = \frac{\omega_n^2}{-\omega^2 + 2\zeta\omega_n j\omega + \omega_n^2}$$

Real part:

$$Re(H(j\omega)) = \frac{\omega_n^2(\omega_n^2 - \omega^2)}{(\omega_n^2 - \omega^2)^2 + 4\zeta^2\omega^2\omega_n^2}$$

Imaginary part:

$$\operatorname{Im}(H(j\omega)) = -\frac{2\zeta\omega\omega_n^3}{(\omega_n^2 - \omega^2)^2 + 4\zeta^2\omega^2\omega_n^2}$$

Magnitude:

$$|H(j\omega)| = \sqrt{\operatorname{Re}(H(j\omega))^2 + \operatorname{Im}(H(j\omega))^2} = \frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega^2)^2 + 4\zeta^2 \omega^2 \omega_n^2}}$$

Cut-off frequency is where magnitude at half-power point, which is $\frac{1}{\sqrt{2}}$ (approximately at -3 dB):

$$20\log_{10}K = 20\log_{10}\frac{1}{\sqrt{2}} \approx -3\,\mathrm{dB}$$

So the equation is:

$$|H(j\omega)| = \frac{1}{\sqrt{2}}$$

$$\frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega^2)^2 + 4\zeta^2 \omega^2 \omega_n^2}} = \frac{1}{\sqrt{2}}$$

Solve it for $\omega = \omega_c$:

$$\omega_c = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

All calculations were done in Maxima, see listing 3.

Listing 3: Calculate cut-off frequency

- 1 _H(s) := omega_n^2 / (s^2 + $2*zeta*omega_n*s + omega_n^2$)
- 2 $H(omega) := subst([s = \%i*omega], _H(s))$ \$
- 3 R(omega) := realpart(H(omega))\$
- 4 X(omega) := imagpart(H(omega))\$
- 5 A(omega) := cabs(H(omega))\$
- 6 /* Print values */
- 7 H(omega);R(omega);X(omega);A(omega);
- 8 eq1: A(omega) = 1/sqrt(2)\$
- 9 sol: solve(eq1, omega)\$
- 10 omega_c: **rhs**(sol[2]);

3 Modelling the filter

3.1 Simplification

To simplify calculations, let's make an assumption:

$$R = R_1 = R_2$$

$$C = C_1 = C_2$$

Then transfer function parameters will be:

$$\omega_n = \frac{1}{RC}$$

$$\zeta = 1.5$$

The quality factor:

$$Q = \frac{1}{3}$$

 $Q < \frac{1}{2}$, so the system is overdamped (doesn't oscillate). For calculated ζ and ω_N , we can recalculate out ω_c :

$$\omega_c = \frac{\omega_n}{2.672}$$

The cut-off frequency can be calculated:

$$f_c = \frac{\omega_c}{2\pi} = \frac{\omega_n}{16.789} = \frac{1}{16.789RC}$$

3.2 RC calculations

Let's calculate R and C values for given cut-off frequency:

$$f_c \geqslant 16 \,\mathrm{kHz}$$

Let's choose resistors from E24 series, and capacitors from E6 series, so that $f_c \ge 16 \, \mathrm{kHz}$:

$$R = 11 \,\mathrm{k}\Omega$$

$$C = 330 \, \text{pF}$$

Then real cut-off frequency is:

$$f_c = \frac{1}{16.789RC} = 16.408 \,\mathrm{kHz}$$

Or in angular form:

$$\omega_c = 2\pi f_c = 103\,094.5\,\frac{\text{rad}}{\text{s}}$$

3.3 Modelling in Maxima

Listing 4 shows the way to plot bode diagrams in Maxima.

Listing 4: Bode plot

```
1 R: 11e3$
2 C: 330e-12$
3 omega_n: 1/R/C$
4 zeta: 1.5$
5 H(s) := omega_n^2 / (s^2 + 2*zeta*omega_n*s + omega_n^2)$
6 load("bode")$
7 omega_from: 2*%pi*100$
8 omega_to: 2*%pi*10000$
9 bode_gain(H(s), [omega, omega_from, omega_to])$
```

The resulting plot is shown on figure 2.

Figure 2: Bode gain plot from Maxima

One can also use COMA package in Maxima for Control Engineering calculations and visualization.

3.4 Modelling in Ques

Figure 3: Scheme from Ques

Figure 4: Plot from Ques