Customer Satisfication Prediction

```
In [1]: # importing all the libraries
In [54]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler,LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
import warnings
warnings.filterwarnings("ignore")
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,confusion_matrix,

In [3]: #import dataset
```

In [4]: df=pd.read_csv("C:/Users/user/Downloads/customer_support_tickets.csv")

Out[4]:

	Ticket ID	Customer Name	Customer Email	Customer Age	Customer Gender	Product Purchased	Date of Purchase	Ticket Type	Ticket Subject	
0	1	Marisa Obrien	carrollallison@example.com	32	Other	GoPro Hero	2021-03- 22	Technical issue	Product setup	{
1	2	Jessica Rios	clarkeashley@example.com	42	Female	LG Smart TV	2021-05- 22	Technical issue	Peripheral compatibility	{
2	3	Christopher Robbins	gonzalestracy@example.com	48	Other	Dell XPS	2020-07- 14	Technical issue	Network problem	 {
3	4	Christina Dillon	bradleyolson@example.org	27	Female	Microsoft Office	2020-11- 13	Billing inquiry	Account access	{
4	5	Alexander Carroll	bradleymark@example.com	67	Female	Autodesk AutoCAD	2020-02- 04	Billing inquiry	Data loss	{
8464	8465	David Todd	adam28@example.net	22	Female	LG OLED	2021-12- 08	Product inquiry	Installation support	{
8465	8466	Lori Davis	russell68@example.com	27	Female	Bose SoundLink Speaker	2020-02- 22	Technical issue	Refund request	{
8466	8467	Michelle Kelley	ashley83@example.org	57	Female	GoPro Action Camera	2021-08- 17	Technical issue	Account access	{
8467	8468	Steven Rodriguez	fpowell@example.org	54	Male	PlayStation	2021-10- 16	Product inquiry	Payment issue	{
8468	8469	Steven Davis MD	lori20@example.net	53	Other	Philips Hue Lights	2020-06- 01	Billing inquiry	Hardware issue	Т
8469 r	ows × 1	17 columns								

Exploratory Data Analysis

In [5]: df.head()

Out[5]:

	Ticket ID	Customer Name	Customer Email	Customer Age	Customer Gender	Product Purchased	Date of Purchase	Ticket Type	Ticket Subject	Ticl
0	1	Marisa Obrien	carrollallison@example.com	32	Other	GoPro Hero	2021-03- 22	Technical issue	Product setup	l 'm {proc
1	2	Jessica Rios	clarkeashley@example.com	42	Female	LG Smart TV	2021-05- 22	Technical issue	Peripheral compatibility	I 'm {proc
2	3	Christopher Robbins	gonzalestracy@example.com	48	Other	Dell XPS	2020-07- 14	Technical issue	Network problem	I'm fa
3	4	Christina Dillon	bradleyolson@example.org	27	Female	Microsoft Office	2020-11- 13	Billing inquiry	Account access	I 'm {proc
4	5	Alexander Carroll	bradleymark@example.com	67	Female	Autodesk AutoCAD	2020-02- 04	Billing inquiry	Data loss	l'm {proc

In [6]: df.tail()

Out[6]:

	Ticket ID	Customer Name	Customer Email	Customer Age	Customer Gender	Product Purchased	Date of Purchase	Ticket Type	Ticket Subject	Ticket
8464	8465	David Todd	adam28@example.net	22	Female	LG OLED	2021-12- 08	Product inquiry	Installation support	{product_ is ma
8465	8466	Lori Davis	russell68@example.com	27	Female	Bose SoundLink Speaker	2020-02- 22	Technical issue	Refund request	I'm hav {product
8466	8467	Michelle Kelley	ashley83@example.org	57	Female	GoPro Action Camera	2021-08- 17	Technical issue	Account access	I'm hav {product
8467	8468	Steven Rodriguez	fpowell@example.org	54	Male	PlayStation	2021-10- 16	Product inquiry	Payment issue	I'm hav {product
8468	8469	Steven Davis MD	lori20@example.net	53	Other	Philips Hue Lights	2020-06- 01	Billing inquiry	Hardware issue	There se hardw
4										•

In [7]: df.shape

Out[7]: (8469, 17)

```
In [8]: df.columns
Out[8]: Index(['Ticket ID', 'Customer Name', 'Customer Email', 'Customer Age',
                  'Customer Gender', 'Product Purchased', 'Date of Purchase',
                 'Ticket Type', 'Ticket Subject', 'Ticket Description', 'Ticket Status', 'Resolution', 'Ticket Priority', 'Ticket Channel',
                 'First Response Time', 'Time to Resolution',
                  'Customer Satisfaction Rating'],
                dtype='object')
In [9]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 8469 entries, 0 to 8468
          Data columns (total 17 columns):
           #
               Column
                                               Non-Null Count Dtype
                                               -----
           0
               Ticket ID
                                               8469 non-null
                                                                int64
                                               8469 non-null
           1
               Customer Name
                                                                object
           2
               Customer Email
                                               8469 non-null
                                                                object
           3
                                               8469 non-null
               Customer Age
                                                                int64
           4
               Customer Gender
                                               8469 non-null
                                                                object
           5
               Product Purchased
                                               8469 non-null
                                                                object
           6
               Date of Purchase
                                               8469 non-null
                                                                object
           7
               Ticket Type
                                               8469 non-null
                                                                object
           8
               Ticket Subject
                                               8469 non-null
                                                                object
           9
               Ticket Description
                                               8469 non-null
                                                                object
           10 Ticket Status
                                               8469 non-null
                                                                object
           11 Resolution
                                               2769 non-null
                                                                object
           12 Ticket Priority
                                                                object
                                               8469 non-null
           13 Ticket Channel
                                               8469 non-null
                                                                object
           14 First Response Time
                                               5650 non-null
                                                                object
           15 Time to Resolution
                                               2769 non-null
                                                                object
           16 Customer Satisfaction Rating 2769 non-null
                                                                float64
          dtypes: float64(1), int64(2), object(14)
          memory usage: 1.1+ MB
In [10]: df.describe().T
Out[10]:
                                    count
                                                             std min
                                                                        25%
                                                                               50%
                                                                                     75%
                                                mean
                                                                                            max
                           Ticket ID 8469.0 4235.000000 2444.934048
                                                                  1.0
                                                                      2118.0
                                                                             4235.0
                                                                                    6352.0
                                                                                          8469.0
                      Customer Age 8469.0
                                            44.026804
                                                        15.296112
                                                                 18.0
                                                                        31.0
                                                                               44.0
                                                                                      57.0
                                                                                             70.0
          Customer Satisfaction Rating 2769.0
                                                         1.407016
                                                                         2.0
                                                                               3.0
                                                                                       4.0
                                                                                             5.0
                                             2.991333
                                                                  1.0
```

In [11]: df.drop(columns=["Ticket ID","Customer Name","Customer Email","Ticket Description"],axis=1,inplace

In [12]: df

Out[12]:

	Customer Age	Customer Gender	Product Purchased	Date of Purchase	Ticket Type	Ticket Subject	Ticket Status	Resolution	Ticket Priority	Ticket Channel	Fi Respor Ti
0	32	Other	GoPro	2021-03-	Technical	Product	Pending Customer	NaN	Critical	Social	2023-1
Ū	32	Other	Hero	22	issue	setup	Response	Naiv	Ontical	media	12:15
1	42	Female	LG Smart TV	2021-05- 22	Technical issue	Peripheral compatibility	Pending Customer Response	NaN	Critical	Chat	2023-i 16:45
2	48	Other	Dell XPS	2020-07- 14	Technical issue	Network problem	Closed	Case maybe show recently my computer follow.	Low	Social media	2023-l 11:14
3	27	Female	Microsoft Office	2020-11- 13	Billing inquiry	Account access	Closed	Try capital clearly never color toward story.	Low	Social media	2023-l 07:29
4	67	Female	Autodesk AutoCAD	2020-02- 04	Billing inquiry	Data loss	Closed	West decision evidence bit.	Low	Email	2023-I 00:12
8464	22	Female	LG OLED	2021-12- 08	Product inquiry	Installation support	Open	NaN	Low	Phone	N
8465	27	Female	Bose SoundLink Speaker	2020-02- 22	Technical issue	Refund request	Open	NaN	Critical	Email	N
8466	57	Female	GoPro Action Camera	2021-08- 17	Technical issue	Account access	Closed	Eight account century nature kitchen.	High	Social media	2023-l 09:44
8467	54	Male	PlayStation	2021-10- 16	Product inquiry	Payment issue	Closed	We seat culture plan.	Medium	Email	2023-i 18:28
8468	53	Other	Philips Hue Lights	2020-06- 01	Billing inquiry	Hardware issue	Open	NaN	High	Phone	N

8469 rows × 13 columns

In [13]: df.columns

'First Response Time', 'Time to Resolution',

'Customer Satisfaction Rating'], dtype='object')

In [14]: df.drop('Resolution',axis=1,inplace=True)

```
In [15]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 8469 entries, 0 to 8468
         Data columns (total 12 columns):
              Column
                                           Non-Null Count Dtype
                                            -----
              Customer Age
                                           8469 non-null int64
          0
              Customer Gender
          1
                                           8469 non-null object
              Product Purchased
          2
                                           8469 non-null object
              Date of Purchase
          3
                                           8469 non-null
                                                           object
          4
             Ticket Type
                                           8469 non-null
                                                           object
          5
             Ticket Subject
                                           8469 non-null
                                                           object
             Ticket Status
                                           8469 non-null
                                                           object
          7
             Ticket Priority
                                           8469 non-null
                                                           object
          8
             Ticket Channel
                                           8469 non-null
                                                           object
          9
             First Response Time
                                           5650 non-null
                                                           object
          10 Time to Resolution
                                           2769 non-null
                                                           object
          11 Customer Satisfaction Rating 2769 non-null
                                                           float64
         dtypes: float64(1), int64(1), object(10)
         memory usage: 794.1+ KB
In [16]: df['Date of Purchase']=pd.to_datetime(df['Date of Purchase'],errors="coerce")
         df['First Response Time']=pd.to datetime(df['First Response Time'],errors='coerce')
         df['Time to Resolution']=pd.to_datetime(df['Time to Resolution'],errors='coerce')
In [17]: df["total_time_taken"]=(df["Time to Resolution"]-df["First Response Time"]).dt.total_seconds()/360
In [18]: df["total_time_taken"]=df["total_time_taken"].fillna(df["total_time_taken"].median())
         df["First Response Time"]=df["First Response Time"].fillna(df["First Response Time"].median())
         df["Time to Resolution"]=df["Time to Resolution"].fillna(df["Time to Resolution"].median())
         df["Customer Satisfaction Rating"]=df["Customer Satisfaction Rating"].fillna(df["Customer Satisfac
In [19]: |df["Customer Satisfaction Rating"].value counts()
Out[19]: Customer Satisfaction Rating
         3.0
                6280
         1.0
                 553
         2.0
                 549
         5.0
                 544
         4.0
                 543
         Name: count, dtype: int64
```

In [20]: sns.countplot(x="Customer Gender",data=df,color="Green")

Out[20]: <Axes: xlabel='Customer Gender', ylabel='count'>


```
In [21]:
         plt.figure(figsize=(15,4))
         sns.displot(y="Customer Age",hue="Customer Satisfaction Rating",data=df,color="Blues")
         plt.title("Age v/s Rating")
         C:\Users\user\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout
```

has changed to tight

self._figure.tight_layout(*args, **kwargs)

Out[21]: Text(0.5, 1.0, 'Age v/s Rating')

<Figure size 1500x400 with 0 Axes>


```
In [23]: sns.countplot(x="Customer Satisfaction Rating",data=df,palette="hls")
```

Out[23]: <Axes: xlabel='Customer Satisfaction Rating', ylabel='count'>


```
In [24]: plt.figure(figsize=(8, 6))
    sns.barplot(x='Ticket Type', y='Customer Satisfaction Rating',data=df,palette="magma")
    plt.title('Average Customer Satisfaction by Ticket Type')
    plt.xlabel('Ticket Type')
    plt.ylabel('Average Customer Satisfaction Rating')
    plt.show()
```



```
In [25]: plt.figure(figsize=(8, 6))
    sns.scatterplot(x='total_time_taken', y='Customer Satisfaction Rating', data=df)
    plt.title('Scatter Plot: Total Time Taken vs. Customer Satisfaction Rating')
    plt.xlabel('Total Time Taken (Seconds)')
    plt.ylabel('Customer Satisfaction Rating')
    plt.show()
```



```
In [26]: correlation_matrix = df[['Customer Satisfaction Rating', 'total_time_taken', 'First Response Time'
    plt.figure(figsize=(8, 6))
    sns.heatmap(correlation_matrix,annot=True,cmap="mako")
```

Out[26]: <Axes: >


```
In [27]: df["purchase_day"]=df["Date of Purchase"].dt.day
    df['Purchase_Month'] = df['Date of Purchase'].dt.month
    df['Purchase_year'] = df['Date of Purchase'].dt.year

In [28]: df['First Response Year'] = df['First Response Time'].dt.year
    df['First Response Month'] = df['First Response Time'].dt.month
```

```
In [28]: df['First Response Year'] = df['First Response Time'].dt.year
    df['First Response Month'] = df['First Response Time'].dt.month
    df['First Response Day'] = df['First Response Time'].dt.day
    df['First Response Hour'] = df['First Response Time'].dt.hour
    df['First Response Minute'] = df['First Response Time'].dt.minute
    df['Resolution Year'] = df['Time to Resolution'].dt.year
    df['Resolution Month'] = df['Time to Resolution'].dt.month
    df['Resolution Day'] = df['Time to Resolution'].dt.day
    df['Resolution Hour'] = df['Time to Resolution'].dt.hour
    df['Resolution Minute'] = df['Time to Resolution'].dt.minute
```

```
In [29]: df.drop(columns=["Date of Purchase"],inplace=True,errors="ignore")
```

```
In [30]: df.drop(columns=["First Response Time","Time to Resolution"],inplace=True,errors="ignore")
```

In [31]: df

Out[31]:

	Customer Age	Customer Gender	Product Purchased	Ticket Type	Ticket Subject	Ticket Status	Ticket Priority	Ticket Channel	Customer Satisfaction Rating	total_time_taken	
0	32	Other	GoPro Hero	Technical issue	Product setup	Pending Customer Response	Critical	Social media	3.0	0.166667	
1	42	Female	LG Smart TV	Technical issue	Peripheral compatibility	Pending Customer Response	Critical	Chat	3.0	0.166667	
2	48	Other	Dell XPS	Technical issue	Network problem	Closed	Low	Social media	3.0	6.850000	
3	27	Female	Microsoft Office	Billing inquiry	Account access	Closed	Low	Social media	3.0	-5.533333	
4	67	Female	Autodesk AutoCAD	Billing inquiry	Data loss	Closed	Low	Email	1.0	19.683333	
8464	22	Female	LG OLED	Product inquiry	Installation support	Open	Low	Phone	3.0	0.166667	
8465	27	Female	Bose SoundLink Speaker	Technical issue	Refund request	Open	Critical	Email	3.0	0.166667	
8466	57	Female	GoPro Action Camera	Technical issue	Account access	Closed	High	Social media	3.0	-5.216667	
8467	54	Male	PlayStation	Product inquiry	Payment issue	Closed	Medium	Email	3.0	-12.933333	
8468	53	Other	Philips Hue Lights	Billing inquiry	Hardware issue	Open	High	Phone	3.0	0.166667	
8469 r	8469 rows × 23 columns										

In [32]: df.select_dtypes(include="object")

Out[32]:

	Customer Gender	Product Purchased	Ticket Type	Ticket Subject	Ticket Status	Ticket Priority	Ticket Channel
0	Other	GoPro Hero	Technical issue	Product setup	Pending Customer Response	Critical	Social media
1	Female	LG Smart TV	Technical issue	Peripheral compatibility	Pending Customer Response	Critical	Chat
2	Other	Dell XPS	Technical issue	Network problem	Closed	Low	Social media
3	Female	Microsoft Office	Billing inquiry	Account access	Closed	Low	Social media
4	Female	Autodesk AutoCAD	Billing inquiry	Data loss	Closed	Low	Email
8464	Female	LG OLED	Product inquiry	Installation support	Open	Low	Phone
8465	Female	Bose SoundLink Speaker	Technical issue	Refund request	Open	Critical	Email
8466	Female	GoPro Action Camera	Technical issue	Account access	Closed	High	Social media
8467	Male	PlayStation	Product inquiry	Payment issue	Closed	Medium	Email
8468	Other	Philips Hue Lights	Billing inquiry	Hardware issue	Open	High	Phone

8469 rows × 7 columns

```
In [33]: label_encoder=LabelEncoder()
    df['Customer Gender'] = label_encoder.fit_transform(df['Customer Gender'])
    df['Ticket Priority'] = label_encoder.fit_transform(df['Ticket Priority'])
    df['Ticket Status'] = label_encoder.fit_transform(df['Ticket Status'])
```

```
In [34]: df=pd.get_dummies(df,["Product Purchased","Ticket Type","Ticket Subject","Ticket Channel"])
```

In [35]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8469 entries, 0 to 8468
Data columns (total 86 columns):

Data	columns (total 86 columns):		
#	Column	Non-Null Count	Dtype
0	Customer Age	8469 non-null	int64
1	Customer Gender	8469 non-null	int32
2	Ticket Status	8469 non-null	int32
3	Ticket Priority	8469 non-null	int32
4	Customer Satisfaction Rating	8469 non-null	float64
5	total_time_taken	8469 non-null	float64
6	purchase day	8469 non-null	int32
7	Purchase_Month	8469 non-null	int32
8	Purchase year	8469 non-null	int32
9	First Response Year	8469 non-null	int32
10	First Response Month	8469 non-null	int32
11	First Response Day	8469 non-null	int32
12			int32
	First Response Hour	8469 non-null	
13	First Response Minute	8469 non-null	int32
14	Resolution Year	8469 non-null	int32
15	Resolution Month	8469 non-null	int32
16	Resolution Day	8469 non-null	int32
17	Resolution Hour	8469 non-null	int32
18	Resolution Minute	8469 non-null	int32
19	Product Purchased_Adobe Photoshop	8469 non-null	bool
20	Product Purchased_Amazon Echo	8469 non-null	bool
21	Product Purchased_Amazon Kindle	8469 non-null	bool
22	Product Purchased_Apple AirPods	8469 non-null	bool
23	Product Purchased_Asus ROG	8469 non-null	bool
24	Product Purchased_Autodesk AutoCAD	8469 non-null	bool
25	Product Purchased_Bose QuietComfort	8469 non-null	bool
26	Product Purchased_Bose SoundLink Speaker	8469 non-null	bool
27	Product Purchased_Canon DSLR Camera	8469 non-null	bool
28	Product Purchased Canon EOS	8469 non-null	bool
29	Product Purchased Dell XPS	8469 non-null	bool
30	Product Purchased_Dyson Vacuum Cleaner	8469 non-null	bool
31	Product Purchased_Fitbit Charge	8469 non-null	bool
32	Product Purchased_Fitbit Versa Smartwatch	8469 non-null	bool
33	Product Purchased_Garmin Forerunner	8469 non-null	bool
34	Product Purchased_GoPro Action Camera	8469 non-null	bool
35	Product Purchased_GoPro Hero	8469 non-null	bool
36	Product Purchased_Google Nest	8469 non-null	bool
37	Product Purchased_Google Pixel	8469 non-null	bool
38	Product Purchased HP Pavilion	8469 non-null	bool
	-		
39	Product Purchased_LG OLED	8469 non-null	bool
40	Product Purchased_LG Smart TV	8469 non-null	bool
41	Product Purchased_LG Washing Machine	8469 non-null	bool
42	Product Purchased_Lenovo ThinkPad	8469 non-null	bool
43	Product Purchased_MacBook Pro	8469 non-null	bool
44	Product Purchased_Microsoft Office	8469 non-null	bool
45	Product Purchased_Microsoft Surface	8469 non-null	bool
46	Product Purchased_Microsoft Xbox Controller	8469 non-null	bool
47	Product Purchased_Nest Thermostat	8469 non-null	bool
48	Product Purchased_Nikon D	8469 non-null	bool
49	Product Purchased_Nintendo Switch	8469 non-null	bool
50	<pre>Product Purchased_Nintendo Switch Pro Controller</pre>	8469 non-null	bool
51	Product Purchased_Philips Hue Lights	8469 non-null	bool
52	Product Purchased_PlayStation	8469 non-null	bool
53	Product Purchased Roomba Robot Vacuum	8469 non-null	bool
54	Product Purchased_Samsung Galaxy	8469 non-null	bool
55	Product Purchased_Samsung Soundbar	8469 non-null	bool
56	Product Purchased_Sony 4K HDR TV	8469 non-null	bool
57	Product Purchased Sony PlayStation	8469 non-null	bool
58	Product Purchased Sony Xperia	8469 non-null	bool
59	Product Purchased_Xbox	8469 non-null	bool
60	Product Purchased_iPhone	8469 non-null	bool
61	Ticket Type_Billing inquiry	8469 non-null	bool
OΙ	Trever The printing Tudati.	0405 HOH-HULL	DOOT

```
62 Ticket Type_Cancellation request
                                                      8469 non-null
                                                                     bool
63 Ticket Type Product inquiry
                                                      8469 non-null
                                                                     bool
64 Ticket Type Refund request
                                                      8469 non-null
                                                                     bool
65 Ticket Type_Technical issue
                                                      8469 non-null
                                                                     bool
66 Ticket Subject Account access
                                                     8469 non-null
                                                                     bool
67 Ticket Subject_Battery life
                                                     8469 non-null
                                                                     bool
68 Ticket Subject_Cancellation request
                                                     8469 non-null
                                                                     bool
69 Ticket Subject_Data loss
                                                     8469 non-null
                                                                     bool
70 Ticket Subject_Delivery problem
                                                     8469 non-null
                                                                     bool
71 Ticket Subject_Display issue
                                                     8469 non-null
                                                                     bool
72 Ticket Subject_Hardware issue
                                                     8469 non-null
                                                                     bool
73 Ticket Subject_Installation support
                                                     8469 non-null
                                                                     bool
74 Ticket Subject_Network problem
                                                     8469 non-null
                                                                     bool
75 Ticket Subject_Payment issue
                                                      8469 non-null
                                                                     bool
76 Ticket Subject Peripheral compatibility
                                                     8469 non-null
                                                                     bool
77 Ticket Subject_Product compatibility
                                                      8469 non-null
                                                                     bool
78 Ticket Subject_Product recommendation
                                                     8469 non-null
                                                                     bool
79 Ticket Subject_Product setup
                                                      8469 non-null
                                                                     bool
80 Ticket Subject_Refund request
                                                      8469 non-null
                                                                     bool
81 Ticket Subject_Software bug
                                                      8469 non-null
                                                                     bool
82 Ticket Channel_Chat
                                                      8469 non-null
                                                                     bool
83 Ticket Channel Email
                                                      8469 non-null
                                                                     bool
84 Ticket Channel Phone
                                                      8469 non-null
                                                                     bool
85 Ticket Channel Social media
                                                      8469 non-null
                                                                     bool
dtypes: bool(67), float64(2), int32(16), int64(1)
```

memory usage: 1.3 MB

In [36]: df[df.select_dtypes(include='bool').columns] = df.select_dtypes(include='bool').astype(int)

In [37]: |df

Out[37]:

		Customer Age	Customer Gender	Ticket Status	Ticket Priority	Customer Satisfaction Rating	total_time_taken	purchase_day	Purchase_Month	Purchase_year
_	0	32	2	2	0	3.0	0.166667	22	3	2021
	1	42	0	2	0	3.0	0.166667	22	5	2021
	2	48	2	0	2	3.0	6.850000	14	7	2020
	3	27	0	0	2	3.0	-5.533333	13	11	2020
	4	67	0	0	2	1.0	19.683333	4	2	2020
	8464	22	0	1	2	3.0	0.166667	8	12	2021
	8465	27	0	1	0	3.0	0.166667	22	2	2020
	8466	57	0	0	1	3.0	-5.216667	17	8	2021
	8467	54	1	0	3	3.0	-12.933333	16	10	2021
	8468	53	2	1	1	3.0	0.166667	1	6	2020

8469 rows × 86 columns

In [38]: x=df.drop(columns=["Customer Satisfaction Rating"],axis=1) y=df['Customer Satisfaction Rating']

localhost:8888/notebooks/ratings.ipynb

```
In [39]: | scaler=StandardScaler()
         scaler.fit transform(x)
Out[39]: array([[-0.7863118 , 1.26253802, 1.20827849, ..., -0.5820315 ,
                 -0.58003172, 1.73000805],
                [-0.13251232, -1.2039982, 1.20827849, ..., -0.5820315,
                 -0.58003172, -0.57803199],
                [0.25976737, 1.26253802, -1.24066504, ..., -0.5820315]
                 -0.58003172, 1.73000805],
                [0.84818691, -1.2039982, -1.24066504, ..., -0.5820315]
                 -0.58003172, 1.73000805],
                [0.65204706, 0.02926991, -1.24066504, ..., 1.71812006,
                 -0.58003172, -0.57803199],
                [0.58666711, 1.26253802, -0.01619327, ..., -0.5820315]
                  1.72404363, -0.57803199]])
In [40]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
In [41]: model=LogisticRegression()
         model.fit(x_train,y_train)
         y_pred=model.predict(x_test)
         accuracy_lr=accuracy_score(y_test,y_pred)
         accuracy lr
         C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear model\ logistic.py:465: ConvergenceWarni
         ng: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/m
         odules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (https://scikit
         -learn.org/stable/modules/linear_model.html#logistic-regression)
           n_iter_i = _check_optimize_result(
Out[41]: 0.731995277449823
In [42]: print("confusion metrix of Logistic Regression")
         cm=confusion_matrix(y_test,y_pred)
         confusion metrix of Logistic Regression
Out[42]: array([[
                    2,
                         18,
                               91,
                                            0],
                                            7],
                               75,
                    3,
                         15,
                                      7,
                                            5],
                    0,
                         10, 1215,
                    5,
                                            5],
                               93,
                                      7,
                         16,
                          8,
                               92,
                                      5,
                                            1]], dtype=int64)
```


Predicted

```
In [49]: model_2=DecisionTreeClassifier()
    model_2.fit(x_train,y_train)
    y_pred_dt=model_2.predict(x_test)
    accuracy_dt=accuracy_score(y_test,y_pred_dt)
    accuracy_dt
```

Out[49]: 0.718417945690673

```
In [51]: print("confusion metrix of Logistic Regression")
    cm_dt=confusion_matrix(y_test,y_pred_dt)
    cm_dt
```

confusion metrix of Logistic Regression

```
Out[51]: array([[
                            26,
                                   24,
                                          25,
                                                 22],
                                   19,
                     28,
                            23,
                                          17,
                                                 22],
                  [
                     25,
                            19, 1139,
                                          29,
                                                 25],
                  [
                     23,
                            24,
                                   33,
                                          19,
                                                 27],
                     15,
                                   27,
                                          29,
                                                18]], dtype=int64)
                            18,
```


Predicted: 0 Predicted: 1

Predicted

```
In [57]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)
    y_pred_rfc=rfc.predict(x_test)
    accuracy_rfc=accuracy_score(y_test,y_pred_rfc)
    accuracy_rfc
```

Out[57]: 0.7378984651711924

```
In [59]: print("confusion metrix of Logistic Regression")
    cm_rfc=confusion_matrix(y_test,y_pred_rfc)
    cm_rfc
```

confusion metrix of Logistic Regression

```
Out[59]: array([[
                                          10,
                      22,
                             27,
                                   35,
                                                 21],
                      20,
                             20,
                                   35,
                                          16,
                                                 18],
                      22,
                             24, 1154,
                                          17,
                                                 20],
                  [
                                                 28],
                  [
                      17,
                             19,
                                   31,
                                          31,
                                   40,
                                          15,
                                                 23]], dtype=int64)
                  [
                      14,
                             15,
```

```
In [58]:
    svc=SVC()
    svc.fit(x_train,y_train)
    y_pred_svc=svc.predict(x_test)
    accuracy_svc=accuracy_score(y_test,y_pred_svc)
    accuracy_svc
```

Out[58]: 0.7302243211334121

```
In [60]:
         print("confusion metrix of Logistic Regression")
         cm svc=confusion matrix(y test,y pred svc)
         cm_svc
         confusion metrix of Logistic Regression
Out[60]: array([[
                           0, 115,
                                             0],
                             109,
                     0,
                           0,
                                             0],
                0,
                           0, 1237,
                                       0,
                                             0],
                    0,
                           0, 126,
                                       0,
                                             0],
                             107,
                                             0]], dtype=int64)
```

CONCLUSION

Random Forest outperforms the other models, achieving the highest accuracy of 0.7379, followed closely by Logistic Regression (0.7320) and Support Vector Classifier (SVC) (0.7302). The Decision Tree model shows the lowest accuracy at 0.7184. This suggests that, at least for this dataset, ensemble models like Random Forest tend to deliver better generalization and predictive performance than individual models like Decision Tree or Logistic Regression.

Hyperparameter Tunning

```
In [62]: from sklearn.model_selection import GridSearchCV
In [66]: rfc=RandomForestClassifier()
         param grid = {
             'n_estimators': [50, 100, 200],
             'max depth': [None, 10, 20, 30],
             'min_samples_split': [2, 5, 10],
             'min_samples_leaf': [1, 2, 4],
             'max_features': ['auto', 'sqrt', 'log2'],
         grid_search = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
         grid_search.fit(x_train, y_train)
         print("Best parameters found: ", grid_search.best_params_)
         Fitting 5 folds for each of 324 candidates, totalling 1620 fits
         Best parameters found: {'max_depth': 30, 'max_features': 'log2', 'min_samples_leaf': 1, 'min_sam
         ples_split': 2, 'n_estimators': 50}
In [68]: | best_rf = grid_search.best_estimator_
         print("Best Random Forest model accuracy: ", best rf.score(x test, y test))
         Best Random Forest model accuracy: 0.7331759149940968
In [ ]:
```