# Be Appropriate and Fun: Automatic Entity Morph Encoding

Pole, Brother Huang, The Boy, The Wanted, Kim Warrior

Authentic Text, Sunshine, Godfather, The Spy











Rensselaer

# Starring







Boliang Zhang [Pole] Hongzhao Huang [Brother Huang]





Xiaoman Pan [The Boy]



Heng Ji [The Wanted]



Kevin Knight [Kim Warrior]



Zhen Wen [Authentic Text]



Yizhou Sun [Sunshine]



Jiawei Han [Godfather]



Bulent Yener [The Spy]

# The Secret Weapon: "Morphing" Rensselaer



















# Morphs by Intentions





# Morphs by Encoding Methods





#### M1: Phonetic Substitution





|             |             | Bilabial                                                                    |              | Labiodental  | Alveolar      |              | Retroflex      |                             | Alveolo-palatal | Velar         |
|-------------|-------------|-----------------------------------------------------------------------------|--------------|--------------|---------------|--------------|----------------|-----------------------------|-----------------|---------------|
|             |             | Voiceless                                                                   | Voiced       | Voiceless    | Voiceless     | Voiced       | Voiceless      | Voiced                      | Voiceless       | Voiceless     |
| Nasal       |             |                                                                             | <b>m</b> [m] |              |               | <b>n</b> [n] |                |                             |                 |               |
| Plosive     | Unaspirated | <b>b</b> [p]                                                                |              |              | d [t]         |              |                |                             |                 | <b>g</b> [k]  |
|             | Aspirated   | <b>p</b> [ph]                                                               |              |              | <b>t</b> [th] |              |                |                             |                 | <b>k</b> [kʰ] |
| Affricate   | Unaspirated |                                                                             |              |              | Z [ts]        |              | zh [ts]        |                             | <b>j</b> [tɕ]   |               |
|             | Aspirated   |                                                                             |              |              | C [tsh]       |              | ch [tɛʰ]       |                             | <b>q</b> [tɕʰ]  |               |
| Fricative   |             |                                                                             |              | <b>f</b> [f] | <b>S</b> [s]  |              | <b>sh</b> [ន្] | <b>r</b> [ҳ~ɹ] <sup>1</sup> | <b>X</b> [s]    | <b>h</b> [x]  |
| Lateral     |             |                                                                             |              |              |               | 1 [1]        |                |                             |                 |               |
| Approximant |             | $\mathbf{y}^3$ []/[ $\mathbf{q}$ ] $^2$ and $\mathbf{w}^3$ [ $\mathbf{w}$ ] |              |              |               |              |                |                             |                 |               |

- Replace the phonetically similar part of the entity name
- Prefer candidates including more negative words (derived from HowNet (Dong and Dong, 1999)) or rare words (Valitutti et al., 2013)

# M2: Spelling Decomposition





Decompose complex character to simple radicals.

#### M3: Nickname Generation



• In baby talk, parents give kids lovely nick name by repeating the last character of the name.

#### M4: Translation & Transliteration





# M5: Semantic Interpretation



Interprete one character of the entity name based on Xinhua character dictionary.

# M6: Historical/Fictional Figure Mapping Rensselaer





Chris Christie — the Hutt



- They both governed the west of China and started a rebellion and were defeated at last.
- Collected 38 famous historical figures and their descriptions. Applied morph resolution approach (Huang et al., 2013) to rank candidates based on semantic contexts.

# M7: Characteristics Modeling







• We compute the semantic relationship between the query entity and each word from a positive and negative words corpora by using word2vec (Mikolov et al., 2013).

● 金正恩 (Kim Jong-un) → 金胖子 (Kim Fat)

# M8: Reputation & Public Perception Rensselaer



苏亚雷斯(Suarez)





苏牙(Sua-tooth)

#### Data and Evaluation



- Data
  - 1,553,347 tweets from Sina Weibo 05/01/2013-06/30/2013
- 55 person names
  - Human created 187 morphs
  - System created 382 morphs
- Human Evaluation
  - 9 Chinese native speakers to help evaluate morphs based on Perceivability, Funniness and Appropriateness
- Automatic Evaluation
  - Use each system created morph to replace its corresponding human created morphs in tweets and form a "morphed" data set
  - Apply a morph decoder: Candidate identification based on anomaly analysis + morph resolution (Huang et al., 2013)

## Human Evaluation: Perceivability





- Translation & transliteration: system outperforms human in perceivability because system can search larger vocabulary, similar observation to (Knight and Graehl, 1998)
- Only 64 human created morphs and 72 system created morphs are perceivable by all human assessors

#### Human Evaluation: Funniness





- Spelling Decomposition: human created morphs are much more funny
- Radicals reflect character meaning or reflect some characteristic of the entity
- The radicals are funny and vivid, express strong sentiment/sarcasm

### Human Evaluation: Appropriateness





#### Human Evaluation: Overall





- Our system achieves 66% of the human performance
- The assessors were asked to recite the morphs after the survey: 20.4% remembered morphs are generated by our system

#### **Automatic Evaluation**





Human morphs are discovered more easily because the decoder was trained based on human morph related features.

#### Resolution Acc@K (%)



System generated morphs are more easily resolved than human generated ones because they are more implicit.

#### Related Work



- Our pronunciation, lexical and semantic similarity measurements were inspired from the methods to map between Chinese formal and informal words (Xia et al., 2005&2006; Li and Yarowsky, 2008; Wang et al., 2013; Wang and Kan, 2013)
- Some selection criteria were inspired from previous work on generating humors (Valitutti et al., 2013; Petrovic and Matthews, 2013)

#### Conclusions and Future Work



• Proposed a new problem of encoding entity morphs and developed a wide variety of novel automatic approaches

#### Future Work

- Improve the language-independent approaches based on historical figure mapping and culture and reputation modeling
- Extend to other types of information including sensitive events, satires and metaphors to generate fable stories
- Track morphs over time to study the evolution of Internet language
- Online applicatio



# 3Q, Bricks?

