EPFL

MAN

Mise à niveau

Maths 2A Prepa-032(A)

Student: Arnaud FAUCONNET

Professor: Sacha FRIEDLY

Printemps - 2019

Chapter 5

Transformation géométriques dans l'espace

But: Obtenir une expression analytique

$$P\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \to P' \begin{pmatrix} x'_0 \\ y'_0 \\ z'_0 \end{pmatrix}$$

5.1 Projection orthogonales sur un plan

Remarques

1.
$$p \circ p = p$$
 " $p^2 = p$ "

2. Si
$$A' = p(A)$$
 et $B' = p(B)$ alors

$$\overrightarrow{AA'}$$
 est \parallel à $\overrightarrow{BB'}$

(utile pour la série 14!)

Exemple Projection orthogonale sur $\pi: y + z = 2$ (dans un ROD)

Insérons (*) dans y + z = 2:

$$(y_0 + \lambda) + (z_0 + \lambda) = 2 \implies \lambda = 1 - \frac{y_0 + z_0}{2}$$

Donc:

$$P'\begin{pmatrix} x_0' \\ y_0' \\ z_0' \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \left(1 - \frac{y_0 + z_0}{2}\right) \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Donc la projection:

$$P\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \to P'\begin{pmatrix} x_0' \\ y_0' \\ z_0' \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}}_{\text{partie linéaire}} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Exemple Soit p la projection qui projette A(4,-1,1) sur A'(3,1,0). Calculer p (analytiquement)