Вопрос №1.13

Понятие аппроксимации, устойчивости и сходимости численного решения ДУЧП. Основные методы анализа устойчивости разностных схем (модельное уравнение, дифференциальное приближение, метод фон Неймана).

1 Понятие аппроксимации, устойчивости и сходимости численного решения ДУЧП

Пусть имеется область $G \subset \mathbb{R}^p$ с границей Γ и поставлена корректная задача для дифференциального уравнения с граничными условиями:

$$Au(x) - f(x) = 0,$$
 $x \in G,$
 $Ru(x) - \mu(x) = 0,$ $x \in \Gamma.$

Введем в области $G \cup \Gamma$ сетку с шагом h, состоящую из множества внутренних (регулярных) узлов ω_h и множества граничных (нерегулярных) узлов γ_h . Заменим исходную задачу разностным аналогом:

$$A_h u_h(x) - f_h(x) = 0, x \in \omega_h,$$

$$R_h u_h(x) - \mu_h(x) = 0, x \in \gamma_h.$$

Близость разностной схемы к исходной задаче будем определять по величине невязки:

$$\psi_h(x) = (Au - f) - (A_h u - f_h), \qquad x \in \omega_h,$$

$$\nu_h(x) = (Ru - \mu) - (R_h u - \mu_h), \qquad x \in \gamma_h.$$

Разностное решение u_h сходится к точному решению u, если $||u_h - u|| \to 0$ при $h \to 0$; разностное решение имеет порядок точности p, если $||u_h - u|| = O(h^p)$ при $h \to 0$.

Разностная схема аппроксимирует задачу, если $||\psi_h|| \to 0$, $||\nu_h|| \to 0$, при $h \to 0$; аппроксимация имеет порядок p, если $||\psi_h|| = O(h^p)$, $||\nu_h|| = O(h^p)$, при $h \to 0$.

Разностная схема устойчива, если решение системы разностных уравнений непрерывно зависит от входных параметров f и μ , причем равномерно по h.

Разностная схема корректна, если она устойчива и ее решение существует и единственно при любых f и μ из некоторого класса функций.

Теорема. Если решение задачи существует, разностная схема корректна и аппроксимирует задачу на данном решении, то разностное решение сходится к точному.

 ${f 2}$ Основные методы анализа устойчивости ${f TODO}$