Deep LearningBuilding and improving deep learning architectures

Dr Chris Willcocks

Department of Computer Science

Aims

- 1. How to design the mind?
- 2. State-of-the-art components

Lecture Overview

Today's lecture

- Convolutional layers
 - Convolution arithmetic
 - Stride, padding, and dilations
 - Common patterns
 - Transpose convolutions
- Pooling layers
 - Mean pool, max pool, adaptive pooling, interpolation
- Regularisation techniques
 - o L1. L2
 - Dropout
 - Normalisation layers
- Residual learning

Materials:

https://github.com/cwkx/ml-materials

https://colab.research.google.com/gist/cwkx /1a4da17e2e9c1081f93631f5b51e5bae/convnet .ipynb

Building and improving architectures

Fully-connected layer properties

- Big inputs = lots of parameters
- Expensive
 - Memory
 - Processing
- Fixed

- 6 GB of memory if float 32-bit
- Just 1 layer
- And that's only 512 output features...

Convolutional layers (1D, 2D, 3D)

Kernel slides a window over input...

- http://setosa.io/ev/image-kernels/ interactive 2D demo
- https://github.com/vdumoulin/conv_arithmetic detailed diagrams
- https://arxiv.org/pdf/1603.07285.pdf great paper (diagrams above)

Convolution arithmetic

- More advanced usage helps us control the shape of the architecture
 - Kernel size, stride, padding, and dilations

Common Patterns

- Input: (N,C_{in},L_{in}) Spatial dimension(s)
 Output: (N,C_{out},L_{out}) where

$$L_{out} = \left\lfloor rac{L_{in} + 2 imes \mathrm{padding} - \mathrm{dilation} imes (\mathrm{kernel_size} - 1) - 1}{\mathrm{stride}} + 1
ight
floor$$

nn.Conv2d(in_channels=3, out_channels=14, kernel_size=3, stride=1, padding=1, dilation=1)

 $[B\times3\times64\times64] \rightarrow [B\times14\times64\times64]$ - don't change spatial dimension

nn.Conv2d(in_channels=3, out_channels=1, kernel_size=1, stride=1, padding=0, dilation=1)

 $[B\times3\times64\times64] \rightarrow [B\times1\times64\times64]$ - don't change spatial dimension

nn.Conv2d(in_channels=3, out_channels=14, kernel_size=4, stride=2, padding=1, dilation=1)

 $[B\times3\times64\times64] \rightarrow [B\times14\times32\times32]$ - half spatial dimension

<u>First layer</u> weights respond to edges, color variation, texture...

Transpose convolutions

- ullet Input: (N,C_{in},L_{in})
- ullet Output: (N,C_{out},L_{out}) where

$$L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{kernel_size} + \text{output_padding}$$

- "The gradient of a convolution with respect to its input"
- Useful for going back up (increasing spatial dimension)
 - E.g. generators and decoder components

nn.Conv2d(in_channels=3, out_channels=14, kernel_size=4, stride=2, padding=1, dilation=1)

 $[B\times3\times64\times64] \rightarrow [B\times14\times128\times128]$ - doubled the spatial dimension

Other ways to change spatial dimension

- In contrast to fully-convolutional (recommended)
- Other ways to change the spatial dimension
 - Mean pool
 - Max pool
 - Interpolation (can go up or down)
- Adaptive pooling (can go up or down)
 - o The kernel can be altered based on the size of the input
- Common approaches
 - Can implemented in the forward pass using nn.functional interface as these methods don't require parameters

nn.AdaptiveAvgPool2d((5,71))

 $[B\times3\times64\times64] \rightarrow [B\times3\times5\times71]$ - output is fixed

nn.AdaptiveAvgPool2d((1,1))

 $[B\times3\times27\times19] \rightarrow [B\times3\times1\times1]$ - good for last layer

Regularisation

- "Regularization is <u>any modification</u> we make to a learning algorithm that is intended to reduce its generalization error but not its training error."
 - Goodfellow's book, Section 5.2.2
- Approaches
 - o Add "error", e.g.:
 - Dataset augmentation
 - Dropout
 - o Constrain manifold, e.g.:
 - Smooth the optimization landscape

Augmentation

- A form of adding prior knowledge to the model, e.g. fundamentally these are all recognizable images of dogs
- Examples:
 - Random rotations
 - Random horionztal flips
 - Random blur
 - Random noise
- Would 180 degree rotations be suitable data augmentation for MNIST?

56799370

L1 and L2 regularisation

Recall Hebbian theory and synaptic plasticity...

It'd be nice if some of the weights could $\rightarrow 0$

L1 regularizer is not differentiable everywhere but allows sparsity

$$\mathcal{L}' = \mathcal{L} + \lambda \sum_{i} |w_{i}|$$
$$= \mathcal{L} + \lambda \|\mathbf{w}\|_{1}$$

L2 regularizer is convex and differentiable everywhere

$$\mathcal{L}' = \mathcal{L} + \lambda \sum_{i} w_i^2$$
$$= \mathcal{L} + \lambda \|\mathbf{w}\|_2^2$$

Stochastic Regularisation Dropout & Label Noise

- Each hidden unit is set to zero with some probability (e.g. 0.2)
- Cannot rely on any one weight.
 - Spreads out its weights
 - Shown formally to have similar effect to 12 regularisation

(a) Standard Neural Net

(b) After applying dropout.

Normalisation

Batch Normalization: Accelerating Deep Network Training by ...

https://arxiv.org > cs ▼

by S loffe - 2015 - Cited by 8392 - Related articles

11 Feb 2015 - Applied to a state-of-the-art image classification model, **Batch Normalization** achieves the same accuracy with 14 times fewer training steps, ...

- Batch normalisation in particular is a very important technique
- Recently it seems main results come from smoothing optimisation landscape rather than preventing covariance shift
 - https://arxiv.org/abs/1805.11604
- Other normalisation layers (useful in different scenarios):

Different normalisation layers (figure from Group Norm paper: https://arxiv.org/pdf/1803.08494.pdf). N=batch axis, C=channel axis, H,W = spatial axes. Blue voxels are normalized to have same mean and variance, computed by aggregating values of those voxels.

Deep Residual Learning

Durham University

- What if we want to go really deep?
 - Vanishing gradient problem
- Residual blocks

Deep Residual Learning
https://arxiv.org > cs ▼
by K He - 2015 - Cited by 17392 10 Dec 2015 - We present a reside evidence showing that these residence.

(a) original

Example Convnet Implementation


```
class ResidualBlock(nn.Module):
 def init (self, in features):
   super(ResidualBlock, self).__init__()
   conv_block = [ nn.Conv2d(in_features, in_features, 3, stride=1, padding=1, bias=False),
                   nn.BatchNorm2d(in features),
                   nn.ReLU(inplace=True),
                   nn.Conv2d(in_features, in_features, 3, stride=1, padding=1, bias=False),
                   nn.BatchNorm2d(in features) ]
   self.conv_block = nn.Sequential(*conv_block)
 def forward(self, x):
   return torch.relu(x + self.conv block(x))
```

Take away points

- Convolutions are great when you have spatial or temporal coherence
- Enforcing smoothness (where applicable)
 generally improves stability and test accuracy
 - Smoothness as regularizer
 - Smoothness during data transformation
- Regularize if you are overfitting
- The shape of the architecture is important to the application
- Residual layers help go deep without vanishing gradients

