LOIS CONTINUES CLASSIQUES

1	Loi	uniforme	2
	1.1	Description et transformations affines	2
	1.2	Moments	
2	Loi exponentielle		
	2.1	Desription et transformations linéaires	3
	2.2	Moments	
	2.3	Caractérisation par l'absence de mémoire	3
3	Loi	gamma	4
	3.1	Description	4
	3.2	Moments	
	3.3	Stabilité	
4	Loi	normale ou gaussienne	5
	4.1	Description et transformations affines	5
	4.2	Étude de la loi normale centrée réduite	5
	4.3	Moments	
	4 4	Stabilité	

willing to 11d. Eth

while tolly.

Dans tout le chapitre, $(\Omega, \mathcal{A}, \mathbb{P})$ désigne un espace de probabilité.

1. Loi uniforme

Dans tout ce paragraphe, a < b désignent deux réels.

1.1 Description et transformations affines

DÉFINITION 1.1 On dit qu'une variable aléatoire réelle X suit une loi uniforme sur l'intervalle [a, b], et l'on note $X \hookrightarrow \mathcal{U}([a, b])$, si X admet pour densité la fonction

$$f_{\mathrm{X}}:x\in\mathbb{R}\longmapsto\begin{cases} rac{1}{b-a} & \mathit{si}\;x\in[a,b]\ 0 & \mathit{sinon} \end{cases}.$$

Remarque 1.2 La loi précédente est qualifiée d'uniforme car si X suit la loi $\mathcal{U}([a,b])$, la probabilité que X appartienne à un intervalle $[\alpha,\beta] \subset [a,b]$ donné $(\alpha < \beta)$ ne dépend que de la longueur $\beta - \alpha$ de celui-ci.

Proposition 1.3 Soit X une variable aléatoire de loi $\mathcal{U}([a,b])$. La variable aléatoire X admet pour fonction de répartition

$$F_X: x \longmapsto egin{cases} 0 & \textit{si } x < a \ \dfrac{x-a}{b-a} & \textit{si } x \in [a,b] \ 1 & \textit{si } x > b \end{cases}.$$

Ci-dessous les représentations de la densité et de la fonction de répartition de la loi uniforme $\mathcal{U}([a,b])$.

PROPOSITION 1.4 Soient $\alpha, \beta \in \mathbb{R}$ et X une variable aléatoire réelle. Si X suit une loi $\mathcal{U}([a,b])$ et $\alpha > 0$, alors $\alpha X + \beta$ suit une loi $\mathcal{U}([\alpha a + \beta, \alpha b + \beta])$.

1.2 Moments

Proposition 1.5 Soit X une variable aléatoire de loi $\mathcal{U}([a,b])$. On a:

$$\mathbb{E}(X) = \frac{a+b}{2} \qquad et \qquad \mathbb{V}(X) = \frac{(b-a)^2}{12}.$$

2. Loi exponentielle

2.1 Desription et transformations linéaires

Définition 2.1 On dit qu'une variable aléatoire réelle X suit une **loi exponentielle** de paramètre $\lambda > 0$, et l'on note $X \hookrightarrow \mathcal{E}(\lambda)$ si elle admet pour densité la fonction

$$f_{\mathrm{X}}: x \in \mathbb{R} \longmapsto egin{cases} \lambda \mathbf{e}^{-\lambda x} & si \ x \geqslant 0 \\ 0 & si \ x < 0 \end{cases}.$$

Proposition 2.2 Soit X une variable aléatoire de loi $\mathcal{E}(\lambda)$, $\lambda > 0$. La variable aléatoire X admet pour fonction de répartition

$$F_X: x \longmapsto egin{cases} 0 & \textit{si } x < 0 \ 1 - \mathbf{e}^{-\lambda x} & \textit{si } x \geqslant 0 \end{cases} \; .$$

Ci-dessous les représentations de la densité et de la fonction de répartition de deux lois exponentielles $\mathcal{E}(\lambda_1)$ et $\mathcal{E}(\lambda_2)$ avec $\lambda_1 < \lambda_2$. On constate que plus λ est grand, plus la variable est concentrée au voisinage de 0 (à droite).

Proposition 2.3 Soient $\lambda > 0$, $\alpha \in \mathbb{R}$ et X une variable aléatoire réelle. Si X suit une loi $\mathcal{E}(\lambda)$ et $\alpha > 0$, alors αX suit une loi $\mathcal{E}(\lambda/\alpha)$.

2.2 Moments

Proposition 2.4 Soit X une variable aléatoire de loi $\mathcal{E}(\lambda)$, $\lambda > 0$.

On a:

$$\mathbb{E}(X) = \frac{1}{\lambda}$$
 et $V(X) = \frac{1}{\lambda^2}$.

2.3 Caractérisation par l'absence de mémoire

Théorème 2.5 Une variable aléatoire réelle X suit une loi exponentielle si, et seulement si, $X(\Omega) \subset \mathbb{R}_+$, $\mathbb{P}(X > x) > 0$ pour tout $x \in \mathbb{R}_+$ et:

$$\forall x,y\in\mathbb{R}_+,\quad \mathbb{P}_{[X>y]}(X>x+y)=\mathbb{P}(X>x).$$
 (2.1) la condition (2.1) en disant que X suit une loi sans mémoire.

Remarque 2.6 On interprète la condition (2.1) en disant que X suit une loi sans mémoire.

3. Loi gamma

3.1 Description

Lemme 3.1 *Pour* v > 0, *la fonction*

$$x \in \mathbb{R} \longmapsto \begin{cases} \frac{x^{\nu-1}}{\Gamma(\nu)} \mathbf{e}^{-x} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$$
 (3.1)

est une densité de probabilité.

Définition 3.2 Soient X une variable aléatoire réelle et v > 0.

On dit que X suit une **loi** γ de paramètre ν , et l'on note $X \hookrightarrow \gamma(\nu)$, si elle admet la fonction (3.1) pour densité.

Remarques 3.3 • Pour $b, \nu > 0$ et X une variable aléatoire de loi $\gamma(\nu)$, la variable bX est à densité donnée par

$$x \in \mathbb{R} \longmapsto egin{cases} rac{x^{
u-1}}{\Gamma(
u)b^{
u}} \mathbf{e}^{-x/b} &= rac{1}{b\Gamma(
u)} \left(rac{x}{b}
ight)^{
u-1} \mathbf{e}^{-x/b} & ext{si } x > 0 \\ 0 & ext{si } x \leqslant 0 \end{cases}$$

Cette loi (hors-programme) est notée $\Gamma(b,\nu)$ et le réel b est appelé paramètre d'échelle. La loi $\gamma(\nu)$ est parfois appelée loi γ -standard par opposition aux lois Γ générales.

• La loi exponentielle $\mathcal{E}(\lambda)$ coïncide avec la loi $\Gamma(\frac{1}{\lambda}, 1)$. En particulier, la loi $\mathcal{E}(1)$ coïncide avec la loi $\gamma(1)$.

Ci-dessous la représentation graphique de la densité de la loi $\gamma(\nu)$ pour différentes valeurs de ν .

3.2 Moments

Proposition 3.4 Soit X une variable aléatoire de loi $\gamma(\nu)$, $\nu > 0$. On a:

$$\mathbb{E}(X) = \nu$$
 et $\mathbb{V}(X) = \nu$.

3.3 Stabilité

Théorème 3.5 Soient X_1 et X_2 deux variables aléatoires de lois $\gamma(\nu_1)$ et $\gamma(\nu_2)$ avec $\nu_1, \nu_2 > 0$. Si X_1 et X_2 sont indépendantes, alors la variable aléatoire $X_1 + X_2$ suit la loi $\gamma(\nu_1 + \nu_2)$.

COROLLAIRE 3.6 Soient X_1, \ldots, X_n des variables aléatoires réelles mutuellement indépendantes.

- (i) Si pour tout $i \in [1, n]$, X_i suit une loi $\gamma(\nu_i)$, alors $X_1 + \cdots + X_n$ suit la loi $\gamma(\nu_1 + \cdots + \nu_n)$.
- (ii) $Si X_1, \ldots, X_n$ suivent toutes la loi exponentielle $\mathcal{E}(1)$, alors $X_1 + \cdots + X_n$ suit la loi $\gamma(n)$.

Exemple 3.7 Déterminer une densité de $X_1 + \cdots + X_n$ lorsque X_1, \ldots, X_n sont des variables indépendantes de loi $\mathcal{E}(\lambda)$, $\lambda > 0$.

4. Loi normale ou gaussienne

4.1 Description et transformations affines

Lemme 4.1 Pour $(m, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$, la fonction

$$x \in \mathbb{R} \longmapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$
 (4.1)

est une densité de probabilité.

Définition 4.2 *Soit* $(m, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$.

On dit qu'une variable aléatoire réelle X suit une **loi normale** (ou **loi gaussienne**) de paramètres (m, σ^2) , et l'on note $X \hookrightarrow \mathcal{N}(m, \sigma^2)$, si X admet pour densité la fonction (4.1).

Remarque 4.3 Le programme définit la notation $\mathcal{N}(m, \sigma^2)$ mais on rencontre aussi la notation $\mathcal{N}(m, \sigma)$ pour désigner la loi précédente.

Ci-dessous la superposition des densités de deux lois normales $\mathcal{N}(m, \sigma_1^2)$ et $\mathcal{N}(m, \sigma_2^2)$ avec $\sigma_1 < \sigma_2$:

PROPOSITION 4.4 Soient $(m, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$, $(\alpha, \beta) \in \mathbb{R}^* \times \mathbb{R}$ et X une variable aléatoire réelle. Si X suit une loi normale $\mathcal{N}(m, \sigma^2)$, alors $\alpha X + \beta$ suit une loi normale $\mathcal{N}(\alpha m + \beta, \alpha^2 \sigma^2)$.

4.2 Étude de la loi normale centrée réduite

La loi normale $\mathcal{N}(0,1)$ est appelée *loi normale centrée réduite* (car elle est centrée réduite comme on le verra plus tard...). Elle a pour densité la fonction

$$f_{0,1}: x \in \mathbb{R} \longmapsto \frac{1}{\sqrt{2\pi}} \mathbf{e}^{-x^2/2}.$$

Proposition 4.5 La fonction $f_{0,1}$ est paire, croissante sur \mathbb{R}_+ , décroissante sur \mathbb{R}_+ . Elle est convexe sur les intervalles $]-\infty,-1[$ et $]1,+\infty[$ et concave sur l'intervalle [-1,1]. Sa courbe représentative présente une tangente horizontale au point d'abscisse 0.

Ci-dessous les représentations graphiques de la densité f et de la fonction de répartition de la loi normale $\mathcal{N}(0,1)$:

On note Φ la fonction de répartition associée à la loi normale centrée réduite :

$$\forall x \in \mathbb{R}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \mathbf{e}^{-t^2/2} \, \mathrm{d}t.$$

C'est une fonction de classe \mathscr{C}^1 sur \mathbb{R} .

Proposition 4.6 On a $\Phi(0) = 1/2$ et:

$$\forall x \in \mathbb{R}, \quad \Phi(-x) = 1 - \Phi(x).$$

Remarque 4.7 La propriété précédente signifie que la courbe représentative de Φ est symétrique par rapport au point de coordonnées (0,1/2). Ce centre de symétrie est aussi point d'inflexion de la courbe, la fonction Φ étant convexe sur \mathbb{R}_- et concave sur \mathbb{R}_+ .

4.3 Moments

Théorème 4.8 Soit X une variable aléatoire suivant une loi normale $\mathcal{N}(m,\sigma^2)$ où $\sigma>0$. On a:

$$\mathbb{E}(X) = m, \qquad V(X) = \sigma^2, \qquad \sigma(X) = \sigma.$$

4.4 Stabilité

Théorème 4.9 Soient X_1, \ldots, X_n des variables aléatoires réelles où pour tout $i \in [1, n]$, X_i suit une loi normale $\mathcal{N}(m_i, \sigma_i^2)$.

Si les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes, alors $X_1 + \cdots + X_n$ suit la loi normale $\mathcal{N}(m_1 + \cdots + m_n, \sigma_1^2 + \cdots + \sigma_n^2)$.