

No need for numerous approximation

Can exactly apply GD framework

Difference Between { Bottzmann Machine Generative Stochastic Notworks}

{ Boltzmann Machine -> learn the parametric distribution}

{ Generative Stochastic Nets -> learn the Approximate Generative Model

[LIMITS] -> No parametric distribution

[EDGES] -> Computationally tractable

- C) VAE -> Variational Auto-Encoder
- d) Predictability Minimization

6. GAN Algo

a) <u>Idea:</u>

Suppose that, we have a <u>Game</u> that generates images
Our aim is to generate More images from this <u>Game</u>.

Method 1: write the code of this game
learn the exact probability distribution
Samples
Method 2: focus on the images we have and learn to
generate new images from our samples
$ \begin{array}{c c} \hline \end{array} $ $ \begin{array}{c c} \hline \end{array} $
No exact distribution latent inage
[LIMITS] ⇒ 无论(很叫)控制生成的内容 Architecture
(高层生成)
inverse problem: given an image, find its latent variable
b) Details:
$\{Generator: G(2;0g): Z \in \mathbb{R}^d \longrightarrow x \in \mathbb{R}^D$
Generator: $G(2;0g): Z \in \mathbb{R}^d \longrightarrow x \in \mathbb{R}^D$ Discriminator: $D(x;0d): x \in \mathbb{R}^D \longrightarrow scalar \in [0,1] \subseteq \mathbb{R}$
interpretation: the prob. that x comes from data not
generator
Objective: $(\tilde{G}, \tilde{D}) = \operatorname{argmin} \operatorname{argmax} V(G, D)$
GD
Here, $V(G,D) = \mathbb{E}_{x \sim P_{dotn}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim P_{z}(z)} \left[\log (1 - D(G(z))) \right]$
Rmk: 1. argmin — Generator wants to make Disenmator make
mistakes

Note:
$$\widehat{D}(G(2)) \equiv 0$$
 if the Early-Stage Generator \widehat{G} is very poor \Rightarrow Gradient $\nabla_{Q}V(G,\widehat{D})$ saturates!!!

Modification:
$$G = argmax \quad [exp_2(2)] \quad [eg D(G(2))]$$

8. Theoretical Result

a) Fix Generator G, then Discriminator D is optimal

i.f.f
$$D(x) = \frac{P_{\text{data}}(x)}{P_{\text{data}}(x) + P_{\text{G}}(x)}$$

Rmk: A trivial result for Binary Classification task when given the class conditional probability
$$\{P(Y=0 \mid x)\}$$

Actually,
$$P(Y=1|X) = P_{data}(X)$$

$$P(Y=0|X) = P_{g}(X)$$

=
$$V(G, D_G^*)$$

= $\mathbb{E}_{x \sim Pdata(x)} \left[log \frac{P_{data}(x)}{P_{data}(x) + P_g(x)} \right] + \mathbb{E}_{x \sim P_g} \left[log \frac{P_g(x)}{P_{data}(x) + P_g(x)} \right]$

=
$$KL(Pdota | \frac{Pdota + Pg}{2}) + KL(Pg | \frac{Pdota + Pg}{2}) \sim log 4$$

 $\Rightarrow -log 4$
Note that the equality holds i.f.f $\begin{cases} Pdota = \frac{Pdota + Pg}{2} \\ Pg = \frac{Pdota + Pg}{2} \end{cases}$
 $\frac{1.f.f}{F} = \frac{Pg}{2} = \frac{Pdota}{2}$
 $\Rightarrow the global optimal for min max $V(G, D)$ is $-log 4$
 $G = P$
and achieve when $\begin{cases} Pg(x) = Pdota(x) & for all x \end{cases}$
 $D(x) = \frac{V}{2} = \frac{V}{2}$$