

Foundations of Tidy Machine Learning

Dmitriy (Dima) Gorenshteyn Sr. Data Scientist, Memorial Sloan Kettering Cancer Center

The Core of Tidy Machine Learning

The Core of Tidy Machine Learning

List Column Workflow

```
1 Make a list column nest()
```

```
Work with list columns

map()
```

```
Simplify the list columns

unnest()

map_*()
```


The Gapminder Dataset

- dslabs package
- Observations: 77 countries for 52 years per country (1960-2011)
- Features:
 - year
 - infant_mortality
 - life_expectancy
 - fertility
 - population
 - gdpPercap

List Column Workflow

1 Make a list column nest()

Work with list columns

map()

Simplify the list columns

unnest()

map_*()

Step 1: Make a List Column - Nest Your Data

country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
Algeria	1960	148	47.5	7.65	11124892	1242
Algeria	1961	148	48	7.65	11404859	1047
Algeria	1962	148	48.6	7.65	11690152	820
Argentina	1960	59.9	65.4	3.11	20619075	5253
Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	1960	20.3	70.9	3.45	10292328	9393
Australia	1961	20	71.1	3.55	10494911	9428
Australia	1962	19.5	70.9	3.43	10691220	9381
Austria	1960	37.3	68.8	2.7	7065525	7415
Austria	1961	35	69.7	2.79	7105654	7781
Austria	1962	32.9	69.5	2.8	7151077	7937

Step 1: Make a List Column - Nest Your Data

			country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
			Algeria	1960	148	47.5	7.65	11124892	1242
			Algeria	1961	148	48	7.65	11404859	1047
			Algeria	1962	148	48.6	7.65	11690152	820
country	data		Argentina	1960	59.9	65.4	3.11	20619075	5253
Algeria	<tibble 66]="" [52="" x=""></tibble>		Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	<tibble 66]="" [52="" x=""></tibble>		Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	<tibble 66]="" [52="" x=""></tibble>		Australia	1960	20.3	70.9	3.45	10292328	9393
Austria	<tibble 66]="" [52="" x=""></tibble>		Australia	1961	20	71.1	3.55	10494911	9428
	•		Australia	1962	19.5	70.9	3.43	10691220	9381
			Austria	1960	37.3	68.8	2.7	7065525	7415
			Austria	1961	35	69.7	2.79	7105654	7781
			Austria	1962	32.9	69.5	2.8	7151077	7937
		nest()							
		1163 ()							
		•							

Nesting By Country

country	(lata		
Algeria	<tibble< td=""><td>[52</td><td>Х</td><td>66]></td></tibble<>	[52	Х	66]>
Argentina	<tibble< td=""><td>[52</td><td>Х</td><td>66]></td></tibble<>	[52	Х	66]>
Australia	<tibble< td=""><td>[52</td><td>Х</td><td>66]></td></tibble<>	[52	Х	66]>
Austria	<tibble< td=""><td>[52</td><td>Х</td><td>66]></td></tibble<>	[52	Х	66]>

country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
Algeria	1960	148	47.5	7.65	11124892	1242
Algeria	1961	148	48	7.65	11404859	1047
Algeria	1962	148	48.6	7.65	11690152	820
Argentina	1960	59.9	65.4	3.11	20619075	5253
Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	1960	20.3	70.9	3.45	10292328	9393
Australia	1961	20	71.1	3.55	10494911	9428
Australia	1962	19.5	70.9	3.43	10691220	9381
Austria	1960	37.3	68.8	2.7	7065525	7415
Austria	1961	35	69.7	2.79	7105654	7781
Austria	1962	32.9	69.5	2.8	7151077	7937

Viewing a Nested Tibble

			Algeria	1960	148
		7.1	Algeria	1961	148
		nested\$data[[1]]	Algeria	1962	148
country	data	-ted\$aa*			
Algeria	<tibble 66]="" [52="" x=""></tibble>	nesta			
Argentina	<tibble 66]="" [52="" x=""></tibble>				
Australia	<tibble 66]="" [52="" x=""></tibble>				
Austria	<tibble 66]="" [52="" x=""></tibble>	nested\$data[[4]]			
		ced\$d-			
		Fuata[[//]	Austria	1960	37.3
		14/]	Austria	1961	35

Austria	1960	37.3	68.8	2.7	7065525	7415
Austria	1961	35	69.7	2.79	7105654	7781
Austria	1962	32.9	69.5	2.8	7151077	7937

48

48.6

fertility population gdpPercap

11404859

7.65 11690152

11124892 1242

1047

820

year infant_mortality life_expectancy

Viewing a Nested Tibble

```
> nested$data[[4]]
# A tibble: 52 x 6
   year infant mortality life expectancy fertility population gdpPercap
                                                           <dbl>
   <int>
                    <dbl>
                                     <dbl>
                                               <dbl>
                                                                     <int>
                                                2.70
   1960
                     37.3
                                      68.8
                                                         7065525
                                                                      7415
                                                2.79
   1961
                     35.0
                                                                      7781
                                      69.7
                                                         7105654
                     32.9
                                                2.80
   1962
                                      69.5
                                                         7151077
                                                                      7937
                     31.2
                                      69.6
                                                2.82
                                                                      8209
   1963
                                                         7199962
   1964
                     29.7
                                      70.1
                                                2.80
                                                         7249855
                                                                      8652
   1965
                                                                      8893
                     28.3
                                      69.9
                                                2.70
                                                         7298794
```


Step 3: Simplify List Columns - unnest()

		country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
		Algeria	1960	148	47.5	7.65	11124892	1242
		Algeria	1961	148	48	7.65	11404859	1047
		Algeria	1962	148	48.6	7.65	11690152	820
country	/ data	Argentina	1960	59.9	65.4	3.11	20619075	5253
Algeria	<pre>< <tibble 66]="" [52="" x=""></tibble></pre>	Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentin	na <tibble 66]="" [52="" x=""></tibble>	Argentina	1962	59.6	65.6	3.09	21287682	5318
Australi	ia <tibble 66]="" [52="" x=""></tibble>	Australia	1960	20.3	70.9	3.45	10292328	9393
Austria	<pre>a <tibble 66]="" [52="" x=""></tibble></pre>	Australia	1961	20	71.1	3.55	10494911	9428
		Australia	1962	19.5	70.9	3.43	10691220	9381
		Austria	1960	37.3	68.8	2.7	7065525	7415
		Austria	1961	35	69.7	2.79	7105654	7781
		Austria	1962	32.9	69.5	2.8	7151077	7937

unnest()

Step 3: Simplify List Columns - unnest()

```
nested %>%
  unnest (data)
# A tibble: 4,004 x 7
   country year infant mortality life expectancy fertility population
   <fct> <int>
                            <dbl>
                                            <dbl>
                                                      <dbl>
                                                                 <dbl>
                                                                          . . .
 1 Algeria 1960
                                             47.5
                              148
                                                       7.65
                                                              11124892
 2 Algeria 1961
                                             48.0
                             148
                                                       7.65
                                                              11404859
                                                                          . . .
 3 Algeria
           1962
                             148
                                             48.6
                                                       7.65
                                                              11690152
                                                                          . . .
 4 Algeria 1963
                             148
                                             49.1
                                                       7.65
                                                              11985130
                                             49.6
 5 Algeria 1964
                              149
                                                       7.65
                                                              12295973
                                                                          . . .
 6 Algeria 1965
                                             50.1
                              149
                                                       7.66
                                                              12626953
```


Let's Get Started!

The map family of functions

Dmitriy (Dima) Gorenshteyn Sr. Data Scientist, Memorial Sloan Kettering Cancer Center

List Column Workflow

```
1 Make a list column nest()
```

```
Work with list columns

map()
```

```
Simplify the list columns

unnest()

map_*()
```


List Column Workflow

1 Make a list column nest()

Work with list columns map()

```
Simplify the list columns

unnest()

map_*()
```


The map Function

$$map(.x = , .f =)$$

The map Function

```
map(.x = , .f = )
.x = [vector]
                   .f = function()
or
.x = [[list]]
                      or
= ~formula
```


The map Function

```
map(.x = , .f = )
.x = [vector]
or
.x = [[list]]
                              mean
                        or
• mean(.x)
```


Population Mean by Country

		nested\$data[[1]]
country	data	cted\$data2
Algeria	<tibble 66]="" [52="" x=""></tibble>	ness
Argentina	<tibble 66]="" [52="" x=""></tibble>	
Australia	<tibble 66]="" [52="" x=""></tibble>	
Austria	<tibble 66]="" [52="" x=""></tibble>	

year	infant_mortality	life_expectancy	fertility	population	gdpPercap
1960	148	47.5	7.65	11124892	1242
1961	148	48	7.65	11404859	1047
1962	148	48.6	7.65	11690152	820

mean(nested\$data[[1]]\$population)
[1] 23129438

Population Mean by Country

```
map(.x = nested$data, .f = ~mean(.x$population))

[[1]]
[1] 23129438

[[2]]
[1] 30783053

[[3]]
[1] 16074837

[[4]]
[1] 7746272
```


2: Work with List Columns - map() and mutate()

```
pop_df <- nested %>%
  mutate(pop_mean = map(data, ~mean(.x$population)))
```


3: Simplify List Columns - unnest()

```
pop_df %>%
  unnest (pop mean)
# A tibble: 77 x 3
  country
             data
                             pop mean
  <fct> <list>
                                  <dbl>
1 Algeria <tibble [52 × 6]> 23129438
 2 Argentina <tibble [52 × 6]> 30783053
 3 Australia <tibble [52 × 6]> 16074837
 4 Austria
          <tibble [52 × 6]> 7746272
 5 Bangladesh <tibble [52 × 6]> 97649407
 6 Belgium
             <tibble [52 × 6]> 9983596
```


List Column Workflow

```
Make a
list column

group_by(gapminder, country) %>%
nest() %>%

mutate(pop_mean =
map(data, ~mean(.x$population)) %>%
unnest(pop_mean)
```


Work With + Simplify List Columns With map_*()

function	returns		
map()	list		
map_dbl()	double		
map_lgl()	logical		
map_chr()	character		
map_int()	integer		

Work With + Simplify List Columns With map_dbl()

Build Models with map()

Let's map something!

Tidy your models with broom

Dmitriy (Dima) Gorenshteyn Sr. Data Scientist, Memorial Sloan Kettering Cancer Center

List Column Workflow

1 Make a list column

2 Work with list columns

library(broom)
library(yardstick)
library(rsample)

3 Simplify the list columns

List Column Workflow

1 | Make a list column

2 Work with list columns

library(broom)

library(yardstick)
library(rsample)

3 Simplify the list columns

Broom Toolkit

- tidy(): returns the statistical findings of the model (such as coefficients)
- glance(): returns a concise one-row summary of the model
- augment(): adds prediction columns to the data being modeled

Summary of algeria_model

```
> summary(algeria_model)
Call:
lm(formula = life_expectancy ~ year, data = .x)
Residuals:
  Min
          1Q Median
                        3Q
                             Max
-4.044 -1.577 -0.543 1.700 3.843
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.197e+03 3.994e+01 -29.96 <2e-16 ***
            6.349e-01 2.011e-02 31.56 <2e-16 ***
year
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.177 on 50 degrees of freedom
Multiple R-squared: 0.9522, Adjusted R-squared: 0.9513
F-statistic: 996.2 on 1 and 50 DF, p-value: < 2.2e-16
```


tidy()

```
> summary(algeria_model)
Call:
lm(formula = life_expectancy ~ year, data = .x)
Residuals:
          1Q Median
   Min
                              Max
-4.044 -1.577 -0.543 1.700 3.843
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.197e+03 3.994e+01 -29.96 <2e-16 ***
            6.349e-01 2.011e-02 31.56
                                          <2e-16 ***
year
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.177 on 50 degrees of freedom
Multiple R-squared: 0.9522, Adjusted R-squared: 0.9513
```

F-statistic: 996.2 on 1 and 50 DF, p-value: < 2.2e-16

tidy()

```
library(broom)

tidy(algeria_model)

term estimate std.error statistic p.value
1 (Intercept) -1196.5647772 39.93891866 -29.95987 1.319126e-33
2 year 0.6348625 0.02011472 31.56209 1.108517e-34
```


glance()

```
> summary(algeria_model)
Call:
lm(formula = life_expectancy ~ year, data = .x)
Residuals:
  Min
          1Q Median
                       3Q Max
-4.044 -1.577 -0.543 1.700 3.843
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.197e+03 3.994e+01 -29.96 <2e-16 ***
            6.349e-01 2.011e-02 31.56 <2e-16 ***
year
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.177 on 50 degrees of freedom
Multiple R-squared: 0.9522, Adjusted R-squared: 0.9513
F-statistic: 996.2 on 1 and 50 DF, p-value: < 2.2e-16
```


glance()

```
glance(algeria_model)

r.squared adj.r.squared sigma statistic p.value df logLik
0.9522064 0.9512505 2.176948 996.1653 1.108517e-34 2 -113.2171

AIC BIC deviance df.residual
232.4342 238.288 236.9552 50
```


augment()

Plotting Augmented Data

```
augment(algeria_model) %>%
  ggplot(mapping = aes(x = year)) +
  geom_point(mapping = aes(y = life_expectancy)) +
  geom_line(mapping = aes(y = .fitted), color = "red")
```


Let's use broom!