

LICENCE DE MATHÉMATIQUES OPTIMISATION - HAX606X - 2023/2024

TD 1 - ALGORITHMES UNIDIMENSIONNELS

Exercice 1. Minimisation d'une fonction par dichotomie

Soit $f \in C^0([a, b], \mathbb{R})$. On dit que f est unimodale sur l'intervalle [a, b] si il existe un point $\bar{x} \in [a, b]$, telle que f soit strictement décroissante sur $[a, \bar{x}[$ et strictement croissante sur $]\bar{x}, b]$.

Pour chercher \bar{x} , nous allons générer une suite strictement décroissante d'intervalles dont le diamètre tend vers zéro et qui encadrent le minimum cherché.

Supposons connus cinq points $a = x_1 < x_2 < x_3 < x_4 < x_5 = b$. Cinq situations se présentent :

i)
$$f(x_1) < f(x_2) < f(x_3) < f(x_4) < f(x_5)$$
: \bar{x} appartient alors à $]x_1, x_2[$,

ii)
$$f(x_1) > f(x_2)$$
, $f(x_2) < f(x_3) < f(x_4) < f(x_5)$: \bar{x} appartient alors à $]x_1, x_3[$,

iii)
$$f(x_1) > f(x_2) > f(x_3)$$
, $f(x_3) < f(x_4) < f(x_5)$: \bar{x} appartient alors à $|x_2, x_4|$,

iv)
$$f(x_1) > f(x_2) > f(x_3) > f(x_4)$$
, $f(x_4) < f(x_5)$: \bar{x} appartient alors à $]x_3, x_5[$,

v)
$$f(x_1) > f(x_2) > f(x_3) > f(x_4) > f(x_5)$$
: \bar{x} appartient alors à $|x_4, x_5|$.

- (1) Utiliser ces propriétés pour construire un algorithme permettant de génèrer une suite d'intervalles $([a_k, b_k])_{k \in \mathbb{N}}$ telle que
 - $\bar{x} \in [a_k, b_k]$
 - $b_k a_k = \frac{b_{k-1} a_{k-1}}{2}$,
 - mis à part pour le premier pas, 2 évaluations de f sont nécessaires à chaque itérations,
- (2) Montrer que $a_k \to \bar{x}$ et $b_k \to \bar{x}$.

Exercice 2. Méthode de la section dorée

Nous reprenons le principe de la méthode de dichotomie précédente mais à chaque itération, nous allons maintenant chercher à diviser l'intervalle d'approximation en 3 parties (au lieu de 4 pour la dichotomie). Plus précisément, nous allons construire une suite décroissante d'intervalles $[a_k; b_k]$ qui contiennent tous le minimum \bar{x} . Pour passer de $[a_k; b_k]$ à $[a_{k+1}; b_{k+1}]$, on introduit deux nombres x_2^k et x_3^k de l'intervalle $[a_k; b_k]$. Puis, on calcule les valeurs $f(x_2^k)$ et $f(x_3^k)$. Deux possibilités se présentent alors :

- i) si $f(x_2^k) \le f(x_3^k)$, alors, le minimum se trouve nécessairement à gauche de x_3^k . Ceci définit alors le nouvel intervalle en posant $a_{k+1} = a_k$ et $b_{k+1} = x_3^k$,
- ii) si $f(x_2^k) \ge f(x_3^k)$, alors, le minimum se trouve nécessairement à droite de x_2^k . Ceci définit alors le nouvel intervalle en posant $a_{k+1} = x_2^k$ et $b_{k+1} = b_k$.

La question suivante se pose : comment choisir x_2^k et x_3^k en pratique ? On privilégie deux aspects :

i) on souhaite que le facteur de réduction γ , qui représente le ratio de la longueur du nouvel intervalle, notée L_{k+1} , par rapport à la longueur du précédent, notée L_k , soit constant:

$$\frac{L_{k+1}}{L_k} = \gamma,$$

- ii) on désire, comme pour la méthode de dichotomie, réutiliser le point qui n'a pas été choisi dans l'itération précédente afin de diminuer les coûts de calcul : ceci permettra en effet de n'évaluer f qu'une fois par itération au lieu de deux (sauf pour la première itération, où deux évaluations sont nécessaires). Rappelons que pour la dichotomie, il est nécessaire d'évaluer f deux fois par itération.
- (1) traduire ces contraintes permettant de choisir x_2^k , x_3^k , a_{k+1} , b_{k+1} , proposer un algorithme et montrer qu'il n'y a qu'une seule valeur possible pour γ ,
- (2) montrer que pour tout k, $b_k a_k = \gamma^k (b a)$. Conclure.