

## COMP20008 Elements of Data Processing

Semester 2 2018

Lecture 8: Hierarchical Clustering and Dimension Reduction



#### Plan today

- · Hierarchical clustering
  - Another alternative for k-means to extract clusters, visualise their relationships
- · Dimension reduction
  - A technique for visualising high dimensional data (reducing many features/columns to few)





#### **Hierarchical Clustering**

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits. On LHS, y-axis is distance







### **Strengths of Hierarchical Clustering**

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)







# • Two main ty

#### **Hierarchical Clustering**

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time



#### Agglomerative Clustering Algorithm

Let's see a step-by-

step example

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
  - Compute the proximity matrix
  - Let each data point be a cluster

Repeat

- Merge the two closest clusters
- Update the proximity matrix Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms



#### **Starting Situation**

• Start with clusters of individual points and a proximity matrix







#### **Intermediate Situation**

· After some merging steps, we have some clusters







#### Intermediate Situation









 p1
 p2
 p3
 p4
 p5
 . .

 p1
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .

- We define the similarity to be the minimum distance between the clusters. This is also known as single linkage.

  Proximity Matrix
  - Other choices also possible (e.g. max or average, but we won't cover the average linkage method)



#### How to Define Inter-Cluster Similarity



MIN (Single Linkage)



• MAX (Complete Linkage)



**Proximity Matrix** 



#### Hierarchical Clustering: MIN or Single Linkage

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph.













#### **Clustering Reflections: Agglomerative (1)**

## THE UNIVERSITY OF MELBOURNE

#### Clustering Reflections: Agglomerative (3)

#### Strength of MAX: Complete linkage

· Less susceptible to noise and outliers





Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized

#### Limitations of Max: Complete linkage

Tends to break large clusters





Original Points





#### Dimension reduction



· Principal components analysis



#### Motivation: High dimensional data

- The curse of dimensionality: "Data analysis techniques which work well at lower dimensions (fewer features), often perform poorly as the dimensionality of the analysed data increases (lots of features"
- As dimensionality increases, data becomes increasingly sparse and all the distances between pairs of points begin to look the same. Impacts any algorithm that is based on distances between objects.



#### **Dimensionality Reduction**

MELBOURNE

#### **Dimensionality Reduction**

- · Purpose:
  - Avoid curse of dimensionality
  - Reduce amount of time and memory required by data processing algorithms
  - Allow data to be more easily visualized
  - May help to eliminate irrelevant features or reduce noise
- Input: A dataset with N features and K objects
- Output: A transformed dataset with n<<N features and K objects</li>
  - n is often set to 2 or 3, so that the transformed dataset can be easily visualised
- E.g if n=2

| Object id |      |      |
|-----------|------|------|
| 1         | <br> | <br> |
|           | <br> | <br> |
| K         | <br> | <br> |

Transformation

| Object id | NewFeatureB |
|-----------|-------------|
| 1         | <br>        |
|           | <br>        |
| K         | <br>        |



## Transforming from N dimensions to n<<N dimensions

- The transformation must preserve the characteristics of the data
  - In particular, preserve distances between pairs of points
- If a pair of objects is close before the transformation, they should still be close after the transformation
- If a pair of objects is far apart before the transformation, they should still be far apart after the transformation
- The set of nearest neighbors of an object before the transformation should ideally be the same after the transformation



#### Question

- Suppose we are given a dataset with the following N features, describing individuals in this class. Which two features would you select to represent people, in such a way that "distances" between pairs of people are likely to be preserved in the reduced dataset?
- Input: N=7 features
  - 1. Weighted average mark (WAM)
  - 2. Age (years)
  - 3. Height (cm)
  - 4. Weight (kg)
  - 5. Number of pets owned
  - 6. Number of subjects passed so far
  - 7. Amount of sleep last night (0=little, 1=medium, 2=a lot)
  - Output: Select 2 of the above features



#### **Dimension Reduction**

- Basic method: To reduce dimensionality, can just select a subset of the original features.
  - Scatter plots for Iris dataset shown earlier 2D visualisations of a 4D dataset. 2 features were selected from the original 4.
- In general, when transforming a dataset from N to n<<N features</li>
  - The output n features do not need to be a subset of the input N features. Rather, they can be new features whose values are constructed using some function applied to the input N features



#### **Principal Components Analysis (PCA)**

- Find a new set of features that better captures the variability of the data
  - First dimension chosen to capture as much of the variability as possible.
  - The second dimension is orthogonal to the first, and subject to that constraint, captures as much of the remaining variability as possible.
  - The third dimension is orthogonal to the first and second, and subject to that constraint, captures as much of the remaining variability as possible.
- · We will not be covering the mathematical details
  - Many tutorials available on the Web if you are interested.
     Nice application of linear algebra.



#### **Dimensionality Reduction: PCA**

 Goal is to find a projection that captures the largest amount of variation in data. Below – the 1-D direction capturing most of the variation in the data. Use this to transform from 2D to 1D.



## THE UNIVERSITY OF MELBOURNE

#### **PCA Example**

- A good visualisation for PCA
  - http://setosa.io/ev/principal-component-analysis/









AFL Football Dataset: PCA in 2D



#### **Principal Components Analysis Code**

## THE UNIVERSITY OF MELBOURNE

#### Acknowledgements

- Code
  - PCA in sklearn.decomposition
  - Will practice in workshop

- Material partly adapted from
  - "Data Mining Concepts and Techniques", Han et al, 2<sup>nd</sup> edition 2006.
  - "Introduction to Data Mining", Tan et al 2005.