

Sistemas Operacionais

Marcos Grillo

 MACHADO, Francis Berenger; MAIA, Luiz Paulo (orgs.). Arquitetura de Sistemas
 Operacionais. 4ª ed. Rio de Janeiro: LTC -Livros Técnicos e Científicos, 2008

Programa Livro-Texto.

Conteúdo Programático
Conceitos básicos de sistemas operacionais, uma visão geral:
Sistemas Monoprogramáveis/Monotarefa,
Sistemas Multiprogramáveis/Multitarefa,
Sistemas com Múltiplos processadores,
Sistemas Fortemente acoplados,
Sistemas Fracamente acoplados.
Estrutura do Sistema Operacional
Processo:
Modelo de processo, estados, mudanças de estados,
Subprocesso e Thread,
Tipos de processos.
Comunicação entre processos
Especificação de concorrência em programas,
Problemas de compartilhamento de recursos,
Problemas de sincronização,
Deadlock.
Gerência do Processador:
Critérios de Escalonamento,
Escalonamento Não-preenptivo,
Escalonamento Preenptivo,
Escalonamento com Múltiplos Processadores
Gerência de Memória:
Alocação Contígua Simples,
Alocação Particionada,
Memória Virtual,
Segmentação, segmentação com paginação,
Proteção,
Compartilhamento de memória.

Sistema de Arquivos:	
Organização de Arquivos,	
Métodos de acesso, operações de I/O e Atributos,	
Diretórios,	
Alocação de espaço em disco,	
Proteção de acesso,	
Implementação de Cachês.	
Gerência de Dispositivos:	
Operações de I/O,	
Subsistemas de I/O,	
Device Drivers,	
Controladores,	
Dispositivos de Entrada/Saída	

Ementa – 1ª etapa.

- Introd
 a sistemas operaçios;
- Visão general e sistemas oponais;
- Conceitos basos de Sondware e software; Conceitos basos de Sondware e
- Estrutura do Sisten eracional;
- Tipos de proces rocessos e Threads;
- Processos e ds;
- Sincronize é comunica entre proces reads;
- Revisão exercícios, seminários;

Ementa - 2° etapa.

- Gerência do processador;
- Gerência de memória;
- Gerência de dispositivos;
- Sistemas com múltiplos processadores;
- Sistemas operacionais comerciais/Livre;
- Prova escrita oficial;
- Revisão;
- Prova Substitutiva;

Horários.

- ▶ 1ª aula 19:10 20:00
- ▶ 2ª aula 20:00 20:50
- ▶ 3ª aula 21:10 22:00
- ▶ 4ª aula 22:00 22:50 Orientação ATPS

Avaliação.

- ▶ 1° Bimestre peso 4;
 - ▶ Prova + ATPS
- ▶ 2° Bimestre peso 6;
 - ▶ Prova + ATPS

Gerência de memória.

- Programas em execução necessitam que os dados acessados pelos seus processos estejam em memória, porém a memória principal é mais cara, assim o sistema operacional deve gerenciar da melhor forma possível os acessos a este espaço, compartilhando com diferentes processos e ainda mantendo integridade e segurança;
- Base da multiprogramação.

Gerência de memória, principais características.

- Diminuir ao máximo a necessidade de acesso à memória secundária durante a execução de um processo;
- Maximizar o número de processos residentes na memória principal;
- Permitir a criação e execução de novos processos, mesmo que não haja mais espaço livre na memória principal (swapping: transferência temporária de processos para a memória secundária).

Gerência de memória, principais características.

- Divisão da memória em duas partes: uma para o S.O. e uma para processos do usuário;
- Necessidade de um registrador contendo limite de endereço da memória para proteção da área do sistema (registrador de fronteira);
- Sempre que o programa do usuário faz referência a um endereço de memória, ocorre a comparação com esse registrador para saber se o endereço acessado faz parte da área do usuário.

Memória Principal

Sistema Operacional Área para programa

Overlay:

- A definição das áreas de overlay é função do programador (áreas sempre do tamanho do maior módulo);
- Risco: transferência excessiva de módulos entre memória principal e memória secundária;
- Permite ao programador expandir os limites da memória principal;

Overlay:

- Programador divide em módulos o programa, Ex: um programa principal, um de cadastramento e um de impressão;
- Se o processo do usuário é maior que o tamanho da memória principal, ele é dividido em módulos;
- A área da memória compartilhada por esses módulos é chamada de área de overlay.

Técnica de Overlay

Alocação Particionada:

 Sistemas multiprogramáveis mais eficientes (uso do processador);

- Precisam de mais programas em memória ao mesmo tempo;
- Proteção dos programas em memória.

Alocação Particionada Estática ou fixa.

- Memória dividida em pedaços fixos, na inicialização do sistema;
- Baseado nos tamanhos dos programas que irão executar no ambiente;
- Para alterar o tamanho das partições de memória é necessário reiniciar o sistema;

- Dois tipos:
 - Partições estáticas absolutas;
 - Partições estáticas relocável;

Tabela de partições

Partição	Tamanho
1	2 Kb
2	5 Kb
3	8 Kb

Programas a serem executados:

Memória Principal

Alocação Particionada Relocável.

- Referências são no inicio do código do programa;
- Loader calcula todos endereços a partir da posição inicial onde o programa foi locado;
- O programa não é mais carregado a partir de um endereço já previamente definido;
- Maior combinações de possibilidades de carregamento na memória.

Partição	Tamanho	Livre
1	2 Kb	Não
2	5 Kb	Sim
3	8 Kb	Não

Sistema Operacional Programa C Área livre Programa B

2

Proteção na Alocação Particionada

Memória Principal

Fragmentação Interna

Fragmentação interna:

 Porção de memória de uma determinada partição que não é utilizada devido aos requisitos reduzidos dos processos.

Fragmentação externa:

Ocorre quando existe espaço suficiente de memória livre para satisfazer uma requisição, porém não é continuo e portanto não pode ser utilizado.

Alocação Particionada Dinâmica

Objetivo: reduzir o problema da fragmentação interna:

- Cada programa utiliza somente o espaço necessário;
- Problema: fragmentação externa (várias partições livres pequenas);
- ▶ Possíveis soluções:
 - ▶ Reunir os espaços livres adjacentes;
 - Reunir as partições ocupadas, criando uma partição livre única;
- Algoritmo complexo -> consumo de recursos do sistema;
- Recebe o nome de alocação particionada dinâmica com relocação.

Fragmentação Externa

Memória Principal

Solução para a Fragmentação Externa

Áreas livres	Tamanho
1	4 Kb
2	5 Kb
3	3 Kb

Sistema Operacional Área livre 1 4 Kb Programa C Área livre 2 5 Kb Programa A Área livre 3 3 Kb

Memória Principal

Modos de seleção de espaço para um programa

- Best-fit: é escolhida a partição livre que resultar em menor espaço sem utilização;
 - Desvantagem: surgimento de pequenas áreas não contíguas;
- Worst-fit: é escolhida a partição que resultar em maior espaço livre;
- First-fit: é escolhida a primeira partição livre com tamanho suficiente;
 - Estratégia mais simples (menor consumo de recursos).

First-Fit

Swapping

- Técnica utilizada para execução de processos quando não existir partição livre com tamanho suficiente;
- Retira temporariamente da memória principal processos que não estão sendo executados (em espera ou pronto), colocando-os em disco;
- Deve ser retirado da memória principal o processo com menor chance de ser executado (menor prioridade);
- É necessário que o loader faça a relocação a cada swap in;
- A técnica de swapping é utilizada no gerenciamento da memória virtual.
- Problema: elevado custo das operações de I/O;

