MA2287: Complex Analysis

60% Exam 30% Continuous Assessment (Homework) Robert Davidson

${\bf Contents}$

1	Pre	sliminary 3
	1.1	The Complex Plane and the Four Quadrants
2	Fou	indations 3
	2.1	Intro to Complex Numbers
	2.2	Polar Form
	2.3	De Moivre's Theorem
	2.4	Roots of Unity
	2.5	Complex Roots
	2.6	Problem Sheet 1
3	Cor	nplex Functions 8
	3.1	Trigonemtric Functions
	3.2	Exponential Functions
	3.3	Complex Logarithms
	3.4	Complex Powers 9
4	Geo	omtric Mappings and Transformations 10
	4.1	Mappings:
		4.1.1 Example Mapping 1:
		4.1.2 Example Mapping 2
	4.2	Circle Preservation Theorem
	4.3	Prelim to Riemann Sphere
		4.3.1 Euclidean Space and Compact Sets
		4.3.2 Compactification of the Complex Plane
	4.4	Riemann Sphere
5	Cor	nplex Analysis 14
	5.1	Mobius Transforms
		5.1.1 Matrix Representation of Mobius Transforms
	5.2	Complex Differentiation
		5.2.1 Open Sets in the Complex Plane
		5.2.2 Differentiation
		5.2.3 Cauchy-Riemann Equations
		5.2.4 Jacobian Matrix
	5.3	Complex Integration

1 Preliminary

1.1 The Complex Plane and the Four Quadrants

The complex plane is a two-dimensional plane where the horizontal axis represents the real part and the vertical axis represents the imaginary part of a complex number. It is divided into four quadrants:

2 Foundations

2.1 Intro to Complex Numbers

Complex numbers can be written as the sum of a real and imaginary part:

$$z = x + iy$$

We denote the **complex conjugate** (\overline{z}) as:

$$\overline{z} = x - iy$$

Geometrically, \overline{z} is the **reflection of z in the real** axis

With help from Pythagoras' we can now define the distance of z from the origin (**modulus**), that is the length of the vector pointing to z.

$$|z|^2 = x^2 + y^2 \Rightarrow |z| = \sqrt{x^2 + y^2}$$

We notice that:

$$z\overline{z} = (x + iy)(x - iy)$$

$$= x^{2} - ixy + ixy - (iy)(iy)$$

$$= x^{2} - (i)^{2}(y^{2})$$

$$= x^{2} - (-1)(y^{2})$$

$$= x^{2} + y^{2}$$

$$= |z|^{2}$$

Thus, we have the distance of z from the origin as: $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$ We refer to this as the **modulus** of z or the **absolute value** of z.

Letting z = x + iy and w = u + iv, we see:

$$|z - w| = \sqrt{(x - u)^2 + (y - z^2)^2}$$

3

That is, |z - w| is the distance between z and w in the complex plane.

2.2 Polar Form

Letting $r = |z| = \sqrt{x^2 + y^2}$, we can define x and y as:

$$cos(\theta) = \frac{x}{r} \quad \Rightarrow \quad x = r \cos \theta,$$

$$sin(\theta) = \frac{y}{r} \quad \Rightarrow \quad y = r \sin \theta.$$

Now:

$$z = x + iy$$

$$= r \cos \theta + ir \sin \theta$$

$$= r(\cos \theta + i \sin \theta).$$

To find θ we usually calculate $\tan^{-1}(y/x)$ and add/subtract π , when appropriate. Recalling $\tan^{-1}(y/x) \in (-\pi/2, \pi/2)$. We denote θ as as the **argument of z**, denoted as $\arg(z)$. Geometrically $\arg(z)$ represent the angle z makes with the positive real axis Thus, the pair $(r, \arg(z))$ is called the **polar coordinates** of z. We introduce the idea that $\arg(z)$ is a version of $\arg(z)$ that can take multiple values outside of $\arg(z)$'s bounds, $(-\pi, \pi)$, more precisely:

$$arg(z) = Arg(z) + 2n\pi, \quad n \in \mathbb{Z}$$

Example Find Arg(i) and arg(i)

Since i = 0 + 1i, we have x = 0 and y = 1. Using $\tan^{-1}\left(\frac{y}{x}\right) \Rightarrow \arg(z) = \tan^{-1}\left(\frac{1}{0}\right) = \frac{\pi}{2}$ Therefore:

$$\operatorname{Arg}(i) = \frac{\pi}{2}$$
 and $\operatorname{arg}(i) = \frac{\pi}{2} + 2n\pi$, $n \in \mathbb{Z}$

2.3 De Moivre's Theorem

Theorem: Let $z_1, z_2 \in \mathbb{C}$, be nonzero numbers

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

Then:

$$z_1 z_2 = r_1 r_2 [(\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2) + i(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)]$$

= $r_1 r_2 [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$

Thus, we have:

$$|z_1 z_2| = |z_1||z_2|$$

 $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$

Theorem Corollary: De Moivre's Theorem

Let $n \in \mathbb{Z}$, and $z = |z|(\cos \theta + i \sin \theta)$, then:

$$z^{n} = |z|^{n} = [\cos(n\theta) + i\sin(n\theta)]$$

2.4 Roots of Unity

Roots of unity are solutions to $z^n=1$, where z is a complex number on the unit circle. Eulers formula states that $e^{i\alpha}=\cos\alpha+i\sin\alpha$.

Given z = x + iy, then:

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Since z lies on the unit circle, we know R=1, thus we have

$$z = e^{i\theta}$$

Also, we can rewrite 1 as:

$$1 = 1 + 0i = \cos(0) + i\sin(0)$$

$$= \cos(2\pi) + i\sin(2\pi) = \cos(2\pi k) + i\sin(2\pi k) \quad \text{(Periodic with } 2\pi \text{ k multiples don't change the result)}$$

$$= e^{i2\pi k} \quad \text{where } k \in \mathbb{Z} \quad \text{(By Eulers Formula)}$$

So we have, $z^n = e^{n(i\theta)}$:

$$e^{in\theta} = e^{i2\pi k}$$
$$in\theta = i2\pi k$$
$$n\theta = 2\pi k$$
$$\theta = \frac{2\pi k}{n}$$

So θ is the angle corresponding to the *n*-th roots of unity. Using eulers formula again, the solutions are given as:

$$z^k = e^{i\theta} = e^{i(\frac{2\pi k}{n})} = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$

Proof: Conjugate Roots Theorem

Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ be a polynomial with real coefficients $a_i \in \mathbb{R}$ for all $i \in \{0, 1, \dots, n\}$.

Suppose that $w \in \mathbb{C}$ is a root of p(z), meaning that p(w) = 0. We aim to prove that the complex conjugate \overline{w} is also a root of p(z), i.e., $p(\overline{w}) = 0$.

Let's evaluate $p(\overline{w})$ step by step:

$$p(\overline{w}) = a_n(\overline{w})^n + a_{n-1}(\overline{w})^{n-1} + \dots + a_1(\overline{w}) + a_0 \tag{1}$$

We'll use the fundamental property of complex conjugates: for any complex number z and any integer k, $(\overline{z})^k = \overline{z^k}$.

Applying this property to each term:

$$p(\overline{w}) = a_n(\overline{w})^n + a_{n-1}(\overline{w})^{n-1} + \dots + a_1(\overline{w}) + a_0$$
(2)

$$= a_n \overline{w^n} + a_{n-1} \overline{w^{n-1}} + \dots + a_1 \overline{w} + a_0 \tag{3}$$

Now, we use a critical property of real numbers: for any $a \in \mathbb{R}$, we have $\overline{a} = a$. Since all coefficients a_i are real, this means $\overline{a_i} = a_i$ for all i.

For any complex number z and real number a, we have the property $\overline{az} = \overline{a} \cdot \overline{z} = a \cdot \overline{z}$. Using this property:

$$p(\overline{w}) = a_n \overline{w^n} + a_{n-1} \overline{w^{n-1}} + \dots + a_1 \overline{w} + a_0 \tag{4}$$

$$= \overline{a_n w^n} + \overline{a_{n-1} w^{n-1}} + \dots + \overline{a_1 w} + \overline{a_0}$$
 (5)

Another important property of complex conjugation is that it distributes over addition: $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. Applying this property:

$$p(\overline{w}) = \overline{a_n w^n} + \overline{a_{n-1} w^{n-1}} + \dots + \overline{a_1 w} + \overline{a_0}$$
(6)

$$= \overline{a_n w^n + a_{n-1} w^{n-1} + \dots + a_1 w + a_0} \tag{7}$$

$$= \overline{p(w)} \tag{8}$$

Since we assumed that p(w) = 0, we have:

$$p(\overline{w}) = \overline{p(w)} \tag{9}$$

$$= \overline{0} \tag{10}$$

$$=0 \tag{11}$$

The last step follows because the complex conjugate of zero is zero: $\overline{0} = 0$.

Therefore, we have proven that if w is a root of p(z) (i.e., p(w) = 0), then \overline{w} is also a root of p(z) (i.e., $p(\overline{w}) = 0$).

This result has an important corollary: the non-real roots of polynomials with real coefficients always occur in complex conjugate pairs.

2.5 Complex Roots

Recall, square roots can be written as $4^{1/2} = \sqrt{4} = 2$, thus, we can write the *n*-th root as $x^{1/n}$. What if we wanted to find the *n*-th root of a complex number?

Consider $f(z) = z^{1/n}$, where $n \in \mathbb{Z}$. To solve this, we aim to find some w such that $w^n = z$.

$$z = R[\cos(\theta) + i\sin(\theta)]$$
 and $w = r[\cos(\phi) + i\sin(\phi)]$

From De Moivre's Theorem, we have:

$$w^{n} = r^{n} [\cos(n\phi) + i\sin(n\phi)] = R[\cos(\theta) + i\sin(\theta)]$$

We see:

$$r^n = R \to r = \sqrt[n]{R} = R^{1/2}$$

$$n\phi = \theta = \theta + 2\pi k \to \phi = \frac{\theta}{n} + \frac{2\pi k}{n}$$

Note that since sin and cos are periodic with 2π , the addition of $2\pi k$ doesn't change the result. So we have:

$$z^{1/n} = R^{1/n} [\cos \phi + i \sin \phi] \quad \text{with} \quad \phi = \frac{\theta + 2k\pi}{n}, \quad k \in (0, 1, 2, \dots, n-1)$$

Note that we reserve the notation $\sqrt[n]{z}$ to denote the **principal root**, defined when k=0.

Example Find the cube roots of z = -1 + i

$$R = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$

We know z is in the second quadrant, so must adjust θ accordingly:

$$\theta = \pi - \tan^{-1}\left(\frac{1}{1}\right) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

We have k = 0, 1, 2 for the cube roots.

Thus, the cubic roots are:

$$w_k = \sqrt[3]{2} \left[\cos \left(\frac{\theta + 2\pi k}{3} \right) + i \sin \left(\frac{\theta + 2\pi k}{3} \right) \right]$$

2.6 Problem Sheet 1

1. Simplify the following (write in form a + ib)

(a)
$$3\left(\frac{1+i}{1-i}\right)^2 - 2\left(\frac{1-i}{1+i}\right)^3$$

3 Complex Functions

3.1 Trigonemtric Functions

Recall:

cosine is an even function
$$\Rightarrow \cos(-\theta) = \cos(\theta)$$

sine is an odd function $\Rightarrow \sin(-\theta) = -\sin(\theta)$

Also recall Eulers formula states $e^{iz} = \cos(z) + i\sin(z)$ also that:

$$e^{-iz} = \cos(-z) + i\sin(-z)$$
$$= \cos(z) - i\sin(z)$$

If we add these expressions, we get an expression for $\cos(z)$:

$$\begin{split} e^{iz} + e^{-iz} &= (\cos(z) + i\sin(z)) + (\cos(z) - i\sin(z)) \\ e^{iz} + e^{-iz} &= 2\cos(z) \Rightarrow \cos(z) = \frac{e^{iz} + e^{-iz}}{2} \end{split}$$

If we subtract the expressions, we get an expression for $\sin(z)$:

$$e^{iz} - e^{-iz} = (\cos(z) + i\sin(z)) - (\cos(z) - i\sin(z))$$
$$e^{iz} - e^{-iz} = 2i\sin(z) \Rightarrow \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

We can now also derive tan(z) and cot(z):

$$\tan(z) = \frac{\sin(z)}{\cos(z)} = \frac{\frac{e^{iz} - e^{-iz}}{2i}}{\frac{e^{iz} + e^{-iz}}{2}} = i\frac{e^{iz} + e^{-iz}}{e^{iz} + e^{-iz}}$$
$$\cot(z) = \frac{\cos(z)}{\sin(z)} = \frac{\frac{e^{iz} + e^{-iz}}{2}}{\frac{e^{iz} - e^{-iz}}{2}} = -i\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$$

Proposition. Let $z, z_1, z_2 \in \mathbb{C}$

(i)
$$\sin(z + 2\pi) = \sin(z)$$
 and $\cos(z + 2\pi) = \cos(z)$

(ii)
$$\cos^2(z) + \sin^2(z) = 1$$

(iii)
$$\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)$$

3.2 Exponential Functions

Recall the **Taylor Series** for e^x , that is: $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ We can now define the exponential function for complex numbers as:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!}$$

Recall also, that $z = rei\theta = e^{i\theta}$ it then follows:

$$z = e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \underbrace{\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots\right)}_{\cos\theta} + i\underbrace{\left(1 - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots\right)}_{\cos\theta} = \cos(\theta) + i\sin(\theta)$$

3.3 Complex Logarithms

Recall the log rule: $\log(e^x) = x$. Also recall we defined $\theta = \text{Arg}(z)$ with $\text{arg}(z) = \text{Arg}(z) + 2\pi k$. Lastly, recall the polar form of z:

$$z = |z|(\cos(\theta) + i\sin(\theta)) = e^{i\theta} = |z|e^{i\operatorname{Arg}(z)} = e^{\ln|z| + i\operatorname{Arg}z}$$

We can now define the **Logarithm of a Complex Number**:

$$Log(z) = \log \left(e^{\ln|z| + i \operatorname{Arg}(z)} \right) = \ln|z| + i \operatorname{Arg}(z)$$
$$\log(z) = \ln|z| + i \operatorname{Arg}(z) + 2\pi k$$

Note: Denote Log(z) as the **principal branch** of the complex logarithm and denote $\log(z)$ as any branch with $k \neq 0$.

We can also write the **Complex logarithm** as:

$$\log(z) = \ln|z| + i \arg(z)$$

$$= \ln|z| + i(\operatorname{Arg}(z) + 2k\pi)$$

$$= \ln|z| + i\operatorname{Arg}(z) + 2k\pi i$$

3.4 Complex Powers

Recall the Logarithm Rule: $\log(a^b) = b \log(a)$. We want to define z^{α} , in such a way that $\log(z^{\alpha}) = \alpha \log(z)$. That is the **Complex Power** is defined as:

$$z^{\alpha} = e^{\alpha \log(z)} = e^{\alpha(\operatorname{Log}(z) + 2k\pi i)}$$
 for $k \in \mathbb{Z}$

So that we have:

$$\log(z^{\alpha}) = \log(e^{\alpha(\operatorname{Log}(z) + 2k\pi i)})$$
$$= \alpha(\operatorname{Log}(z) + 2k\pi i)$$
$$= \alpha \log(z)$$

As example, consider z = 1 + 0i:

$$1^{\alpha} = e^{\alpha(Log(1) + 2k\pi i)}$$
$$= e^{2k\alpha\pi i}$$

If
$$\alpha \in \mathbb{Z} (1, 2, 3, \dots)$$

$$1^{\alpha} = (e^{2k\pi i})^{\alpha} = (\cos(2\pi k) + \sin(2\pi k))^{\alpha} = 1^{\alpha} = 1$$

If $\alpha = \frac{m}{n} \in \mathbb{Q}$, then 1^{α} is the set of all *n*-th roots of unity:

$$1^{\alpha} = e^{\frac{2k\pi i m}{n}} = \cos\left(\frac{2\pi k m}{n}\right) + i\sin\left(\frac{2\pi k m}{n}\right)\cos\left(\frac{2\pi r}{n}\right) + i\sin\left(\frac{2\pi r}{n}\right)$$

If $\alpha = i$ then we see:

$$1^{\alpha} = 1^{i} = e^{2k\pi i \cdot i} = e^{-2k\pi}$$

4 Geomtric Mappings and Transformations

4.1 Mappings:

Recall we defined the principal branch as

$$Log(z) = \ln|z| + iArg(z)$$

So, when we take the principal branch of the logarithm, we see that it maps to the complex number w = u + iv where $u = \ln |z|$ and v = Arg(z).

In essence. Log maps \mathbb{C} to the horizontal strip:

$$\{w = u + iv : -\pi < v \leq \pi\}$$

Diagram of the Logarithm Mapping:

4.1.1 Example Mapping 1:

Let
$$f(z) = z^3$$

Using exponential rules and polar representation:

$$z = |z|e^{i\theta}$$

$$z^3 = (|z|e^{i\theta})^3$$

$$= |z|^3e^{i3\theta}$$

$$= |z|^3(\cos(3\theta) + i\sin(3\theta))$$

Letting z=1+1i, we see: $\theta=\tan^{-1}\left(\frac{1}{1}\right)=45^\circ=\frac{\pi}{4}$, and $|z|=\sqrt{1^2+1^2}=\sqrt{2}$. Thus, we have:

$$z^{3} = |z|^{3} \cdot \left[\cos(3\theta) + i\sin(3\theta)\right]$$

$$= (\sqrt{2})^{3} \cdot \left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right]$$

$$= -2\sqrt{2} + i2\sqrt{2}$$

In essence, the mapping $f(z)=z^3$ rotates the complex number z by 3θ and scales it by $|z|^3$. We can imagine this, for the complex numbers with |z|=1, and $0<\theta\leq\frac{\pi}{2}$, as an arc of radius 1, from the angle $0\to 90^\circ$, mapped to an arc of radius 8, from the angles $0\to 270^\circ$.

4.1.2 Example Mapping 2

We wish to find the image of the line x = 1 under

$$f(z) = \frac{1}{z}, \quad z = x + iy, \quad w = u + iv.$$

For
$$z = x + iy$$
 we have

$$w = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2},$$

so that

$$u=\frac{x}{x^2+y^2},\quad v=-\frac{y}{x^2+y^2}.$$

Setting x = 1 yields

$$u = \frac{1}{1+y^2}, \quad v = -\frac{y}{1+y^2}.$$

Since

$$|w|^2 = u^2 + v^2 = \frac{1}{1+y^2} = u,$$

it follows that

$$u^2 + v^2 = u \implies u^2 - u + v^2 = 0.$$

Completing the square in u by adding and subtracting $\frac{1}{4}$:

$$u^{2} - u + \frac{1}{4} + v^{2} = \frac{1}{4} \implies \left(u - \frac{1}{2}\right)^{2} + v^{2} = \frac{1}{4}.$$

Thus, the image of x = 1 is the circle

$$\left(u - \frac{1}{2} \right)^2 + v^2 = \frac{1}{4} \,,$$

centered at $(\frac{1}{2},0)$ with radius $\frac{1}{2}$

In general, $f(z) = \frac{1}{z}$ maps circle and lines to circles and lines, respectively.

4.2 Circle Preservation Theorem

Consider the equation:

$$A(x^2 + y^2) + Bx + Cy + D = 0$$

We can we that if $A \neq 0$, then we can divide by A:

$$x^{2} + y^{2} + \frac{B}{A}x + \frac{C}{A}y + \frac{D}{A} = 0$$

Completing the square yields:

$$\left(x + \frac{B}{2A}\right)^2 + \left(y + \frac{C}{2A}\right)^2 = \left(\frac{B^2 + C^2 - 4AD}{4A^2}\right)$$

Thus, if $A \neq 0$, we have a circle with center (-B/2A, -C/2A) and radius $\sqrt{\frac{B^2+C^2-4AD}{4A^2}}$. If A=0, then the equation represents a line:

$$Bx + Cy + D = 0$$

If D = 0, the circle or line contains 0:

$$Bx + Cy + D \mid_{(0,0)} = D = 0$$

Why is This Important?

Under the inversion $f(z) = \frac{1}{z}$ with z = x + iy and w = u + iv, one can show that the general equation

$$A(x^{2} + y^{2}) + Bx + Cy + D = 0$$
 maps to $D(u^{2} + v^{2}) + Bu - Cv + A = 0$.

In this transformed equation:

- If the original set does not contain the origin image is a circle.
- If the original set does contain the origin then the equation becomes linear:
- If the original set is a line (with A = 0), if it does not pass through the origin, its inversion is a circle that passes through the origin.

Examples Illustrating the Inversion Effects

4.3 Prelim to Riemann Sphere

Our goal is to define the **Riemann Sphere**, which is the complex plane \mathbb{C} , together with an extra point at infinity. In essence The Riemann sphere is a way to "wrap up" the entire complex plane into a compact, closed surface that is **homeomorphic** (toplogically equivalent) to the sphere S^2 and the connection between them is made via the **stereographic projection**.

4.3.1 Euclidean Space and Compact Sets

Euclidean space, denoted as \mathbb{R}^n , is the collection of all points in *n*-dimensional space, where each point is described by *n* real numbers. In Euclidean spaces (such as the real line \mathbb{R} or the plane \mathbb{R}^2), a set is **compact** if it is both: **Closed** (contains all its limit points), and **Bounded** (contained within a finite region).

Examples of Compact Sets:

The closed interval
$$[0,1] \subset \mathbb{R}^1$$
,
A closed disk $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \subset \mathbb{R}^2$

Examples of Non-Compact Sets:

The open interval $(0,1) \subset \mathbb{R}^1$ (not closed), The entire real line \mathbb{R} (not bounded)

4.3.2 Compactification of the Complex Plane

The complex plane $\mathbb C$ is not compact - it streches out infinitely in all directions. By adding a single point at infinity, we "close" the plane, turning it into a compact set. This new space, is **homeomorphic** (a one-to-one mapping that is continuous in both directions or toplogically equivalent) to to the Riemann Sphere . We define the new space as:

$$\tilde{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

4.4 Riemann Sphere

Define $\tilde{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Then $\tilde{\mathbb{C}} \stackrel{\text{1:1}}{\longleftrightarrow} S^2\{X = (x, y, z) : x^2 + y^2 + z^2 = 1\}$ (homeomorphic) via the sterographic projection, denoted St, defined as follows:

1. Projection from $S^2 \to \tilde{\mathbb{C}}$:

For a point $(x, y, z) \in S^2$, with $z \neq 1$ (the point is not the north pole) the projection is defined as:

$$St(x, y, z) = \frac{1}{1 - x_3}(x_1, x_2)$$
 for $z \neq 1$

This takes a point on the sphere and maps it to a point in the complex plane.

2. Projection from $\tilde{\mathbb{C}} \to S^2$:

For a point $z \in \mathbb{C}$, the inverse projection is defined as:

$$St^{-1}(z) = \frac{1}{|z|^2 + 1} \langle 2\text{Re}(z), 2\text{Im}(z), |z|^2 - 1 \rangle$$

This takes a complex number, z, written in terms of its real (Re(z)) and imaginary (Im(z)) parts, and maps it to the sphere

3. Mapping the North Pole:

The projection leaves out the north pole from projection onto \mathbb{C}

$$St(N) = \infty$$
 and $St^{-1}(\infty) = N$ where $N = \langle 0, 0, 1 \rangle$

The north pole is mapped to the point at infinity, and vice versa.

5 Complex Analysis

5.1 Mobius Transforms

Recall: The complex plane \mathbb{C} can be throught as points $(x,y) \in \mathbb{R}^2$, but we usually label a point as z = x + iy. We can extend \mathbb{C} by adding a point at infinity, the resulting set is called the **Riemann Sphere** \mathbb{C} . Visually, we can imaigine wrapping the complex plane onto the surface of a sphere, where ∞ is the north pole of the sphere.

Now, letting a, b, c, d be complex numbers (i.e. $a = x_a + iy_a$), we define a Mobius Transform as a function $T: \tilde{\mathbb{C}} \to \tilde{\mathbb{C}}:$

$$T(z) = \frac{az+b}{cz+d}$$

where $ad - bc \neq 0$ (that is the determinant $\neq 0 \rightarrow$ matrix is invertible).

These functions occur on the Riemann Sphere, because we need to define that happens when cz + d = 0 and when $z = \infty$:

If
$$c \neq 0$$
: $T(\infty) = \frac{a}{c}$ and $T\left(-\frac{d}{c}\right) = \infty$

If
$$c = 0$$
: $T(z) = \frac{az+b}{d}$ and $T(\infty) = \infty$

Mobius transforms can be uniquely determined by its action on three distinct points. For example, we'll find a mobius transform that maps three points $\{z_1, z_2, z_3\}$ to $\{1, 0, \infty\}$

1. We want $T(z_2) = 0$: $az_2 + b = 0 \Rightarrow b = -az_2$, then T(z) becomes:

$$T(z) = \frac{az+b}{cz+d} = \frac{az-az_2}{cz+d} = \frac{a(z-z_2)}{cz+d}$$

2. We want $T(z_3) = \infty : cz_3 + d = 0 \Rightarrow d = -cz_3$, then T(z) becomes:

$$T(z) = \frac{a(z - z_2)}{c(z - z_3)}$$

3. We want $T(z_1) = 1$, then $T(z_1)$ becomes:

$$T(z_1) = \frac{a(z_1 - z_2)}{c(z_1 - z_3)} = 1 \Rightarrow \frac{a}{c} = \frac{z_1 - z_3}{z_1 - z_2}$$

Finally, we see that T(z) is:

$$T(z) = \frac{z_1 - z_3}{z_1 - z_2} \cdot \frac{z - z_2}{z - z_3}$$

We can now solve problems, such as : Find the Mobius Transform that maps the 3 points $z_1 = -i, z_2 = -1, z_3 = 1$ to $1, 0, \infty$

$$T(z) = \frac{-1-1}{i+1} \cdot \frac{z+1}{z-1} = (-i)\frac{z+1}{z-1} = \frac{-iz-i}{z-1}$$

14

5.1.1 Matrix Representation of Mobius Transforms

We associate a 2×2 matrix M to a Mobius Transform T(z):

$$T(z) = \frac{az+b}{cz+d} \longleftrightarrow M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Note that: $kM \longleftrightarrow T(z)$ for any $k \in \mathbb{C}, k \neq 0$.

We can also define the **inverse map** T^{-1} as the Mobius transform:

$$T^{-1} \longleftrightarrow \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

We can also define the **composition** of two Mobius Transforms, if $T_1(z) = \frac{az+b}{cz+d}$ with matrix M and $T_2(z) = \frac{ez+f}{gz+g}$ with matrix M_2 , then:

$$T \circ T_2 \longleftrightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

Putting it all together, we can map any three points to any other three point:

Theorem Three-Point Theorem for Möbius Transformations

If $T \longleftrightarrow M: (z_1,z_2,z_3) \mapsto (1,0,\infty)$ and if $T_2 \longleftrightarrow M_2: (z_1',z_2',z_3') \mapsto (1,0,\infty)$ then:

$$T^{-1} \circ T_2 \longleftrightarrow M^{-1} : (z_1, z_2, z_3) f \mapsto (z'_1, z'_2, z'_3)$$

This can be visualized like so:

$$z'_1, z'_2, z'_3 \xrightarrow{T^{-1} \circ T'} z_1, z_2, z_3$$

$$T_2 \mapsto M_2 \xrightarrow{1, 0, \infty} T \mapsto M$$

Note that, M, M_2 and $T^{-1} \circ T_2$ have matrices: Three-Point Theorem for Mobius Transformations

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad M_2 = \begin{bmatrix} e & f \\ g & g \end{bmatrix}, \quad T^{-1} \circ T_2 = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

Example Find a Mobius transformation, $T:(0,-i,-1)\mapsto (i,1,0)$

If we can find a map $T_1:(0,-i,1)\mapsto (1,0,\infty)$ and a map $T_2:(1,-i,-1)\mapsto (i,1,0)$. Then, by the Theorem above, we can find a T such that: $T:(0,-i,-1)\mapsto (i,1,0)$ Recall, we define a general transform T, that takes 3 points $(z_1,z_2,z_3)\mapsto (1,0,\infty)$

$$T(z) = \frac{z_1 - z_3}{z_1 - z_2} \cdot \frac{z - z_2}{z - z_3}$$

 T_1 becomes:

$$T_1(z) = \frac{0+1}{0+i} \cdot \frac{z+i}{z+1}$$

$$= \frac{1}{i} \cdot \frac{z+i}{z+1}$$

$$= \frac{z+1}{iz+i}$$

$$\Rightarrow \begin{bmatrix} 1 & i \\ i & i \end{bmatrix}$$

$$T_2(z) = \frac{i-0}{i-1} \cdot \frac{z-1}{z-0}$$

$$= \frac{i}{i-1} \cdot \frac{z-1}{z}$$

$$= \frac{iz-i}{(i-1)z}$$

$$\Rightarrow \begin{bmatrix} 1 & i \\ i & i \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$$

Thus, T is:

$$T = T_2^{-1} \circ T_1 \leftrightarrow \begin{bmatrix} 1 & i \\ i & i \end{bmatrix} \cdot \begin{bmatrix} i & -i \\ i - 1 & 0 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & i \\ i & i \end{bmatrix} \cdot \begin{bmatrix} 0 & i \\ 1 & i - 1 \end{bmatrix} = \begin{bmatrix} 1 & i \\ i & i \end{bmatrix} \cdot \begin{bmatrix} i & -i \\ i - 1 & 1 \end{bmatrix} = \begin{bmatrix} 0(1) + (i)(i) & (0)(i) + (i)(i) \\ (1 - i)(1) + (i)(i) & (1 - i)(i) + (i)(i) \end{bmatrix} = \begin{bmatrix} i^2 & i^2 \\ -i & i \end{bmatrix}$$

$$T(z) = -\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \longleftrightarrow = -i\frac{z+1}{z-1}$$

5.2 Complex Differentiation

First we must define what is meant for a set to be **open** in the complex plane.

5.2.1 Open Sets in the Complex Plane

Definition

We say a subset $\mathbb{U} \subseteq \mathbb{C}$ is **open** if $\forall z_0 \in \mathbb{U} \quad \exists \varepsilon > 0$ such that the open disc centered at z_0 of radius ε is contained in \mathbb{U} :

$$D_{\varepsilon}(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < \varepsilon \}$$

In essence, a set \mathbb{U} in the complex plane is defined as open if for every point z_0 in \mathbb{U} , you can draw a small circle around z_0 that fits entirely within \mathbb{U} . This radius of this circle is ε . The radius can be very small but must be positive.

5.2.2 Differentiation

Definition

Let $\mathbb{U} \subseteq \mathbb{C}$ be open, let $f: \mathbb{U} \to \mathbb{C}$ be a function and let $z_0 = x_0 + iy_0 \in \mathbb{U}$.

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

If the limit exists, independant of the direction of approach we say f is **holomorphic** (or complex differentiable / complex analytic) at z_0 . We also call $f'(z_0)$ the derivative of f at z_0 . Similarly, if f is holomorphic $\forall z \in \mathbb{U}$ we say f is holomorphic on \mathbb{U} .

5.2.3 Cauchy-Riemann Equations

Theorem: Cauchy-Riemann Equations

If $f: \mathbb{U} \to \mathbb{C}$ is holomorphic on $\mathbb{U} \subseteq \mathbb{C}$, then for z = x + iy and f(z) = u(x,y) + iv(x,y), we have:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

16

5.2.4 Jacobian Matrix

The Jacobian matrix represents how a function transforms small regions in space. For a function that maps n dimensional space $\to m$ dimensional space, the Jacobian contains all partial derivatives arranged in an $m \times n$ matrix. For example, f as a map $f: \mathbb{R}^2 \to \mathbb{R}^2$, has the Jacobian matrix: $Df = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$ Which for $(x_0, y_0) \in \mathbb{R}^2$ gives an 2×2 matrix:

$$Df(x_0, y_0) = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$$

Now, f statisfies the Cauchy-Riemann equations:

$$\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Where, the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is the rotation matrix for $\pi/2$ (90°). Meaning that the map Df is \mathbb{C} -linear, that is it preserves addition and complex scalar multiplication:

$$f(x+y) = f(x) + f(y)$$

$$f(\alpha x) = \alpha f(x), \quad \forall \alpha \in \mathbb{C}$$

5.3 Complex Integration