Gradual Typing from a Categorical Perspective

Harley Eades III

June 2016

1 Quotient Model

Definition 1. Suppose C is a category and \sim is an equivalence relation on objects. Then we extend \sim to arrows as follows:

- for any arrows $f: A \longrightarrow C$ and $g: B \longrightarrow D$, $f \sim g$ if and only if $A \sim B$ and $C \sim D$.

We call an equivalence relation extended to the arrows of a category a **congruence relation** on the category.

Definition 2. Suppose C is a category and \sim is a congruence relation on objects and arrows of C. Then we define the **quotient category** C/\sim as follows:

- objects are equivalence classes, [A], of objects of C, and
- arrows are equivalence classes, $[f]:[A] \longrightarrow [B]$, of arrows, $f:A \longrightarrow B$, of \mathcal{C} .

References

A The Complete Spec of Grady

```
termvar, x
index, k
                            term
                               variable
             triv
                               unit
             squash
                               injection of the retract
             split
                               surjection of the retract
                               generalize to the untyped universe
             gen
                               specialize the untyped universe to a specific type
             spec
             \lambda x : T.t
                               \lambda-abstraction
                               function application
             t_1 t_2
             (t_1, t_2)
                               pair constructor
```