MATH.APP.270 Algorithms for graphs

Programming assignment 1

2022

In this assignment it can be assumed that one starts with a connected, undirected graph G = (V, E). One such graph is the following:

Let $s \in V$ be one particular vertex (the *starting vertex*). Let subgraph $T = (V_T, E_T)$ of graph G_1 have the following properties:

property 1 $V_T = V$ and T is a tree.

property 2 For all vertices x, the distance d(s,x) for G_1 and d(s,x) for T are equal.

We will call a tree satisfying these properties a $minimal\ path\ spanning\ tree$. As long as G is connected, at least one such minimal path spanning tree will exist.

If we perform a breadth-first search (BFS) on G_1 , we can obtain one particular minimal path spanning tree T. For example, for the above graph G_1 and s=4, we we might obtain the following minimal path spanning tree from a BFS:

Even though the original graph G_1 was undirected, we have used directed edges in T_1 to emphasize that paths are being sought from vertex s = 4.

Graph G_1 actually has 4 minimal path spanning trees. Here are the remaining three:

Your task in this assignment is to produce and test a function (method) called allMinSpanT that fulfills the following specifications:

- ullet allMinSpanT takes as input a graph G and a starting vertex s
- allMinSpanT generates all minimal path spanning trees. The tree can be generated in two different ways:

- as an edge set E_T , with all edges pointing away from the starting vertex
- as a parent function:

$$p(u) = \begin{cases} x & \text{when there is a directed edge } (x, u) \text{ in the minimal path spanning tree} \\ \infty & \text{for } u = s \end{cases}$$

Either of these formats is acceptable in other words allMinSpanT need not generate both formats. As an example, consider tree T_1 shown above. Its edge set is

$$E_T = \{(4,3), (4,1), (1,2), (2,6), (3,5)\}$$

and its parent function is

• allMinSpanT or some auxiliary function should store each tree in a separate file. These files should have some sequential numbering in the filename. For example, assuming 4 trees were generated, then the following filenames would be reasonable: tree01.txt, tree02.txt, tree03.txt and tree04.txt.

Strategy

It will not be possible to solve this problem simply by using a standard BFS algorithm (see exercise set 1). In a standard BFS, each vertex u, except s, is assigned a single parent p(u). To obtain all minimal path spanning trees, it will be necessary to form a set of parents for each vertex (except s). Then one must form all possible combinations of parents.

Data for testing

A set of graphs for testing purposes will be published separately.