Insper

Intervalo de confiança para média populacional assumindo variância populacional conhecida

A probabilidade da média amostral não se afastar da verdadeira média, para mais ou para menos, em mais do que a margem de erro ε é quantificada, de maneira geral, por γ .

A expressão literalmente equivalente a essa frase é dada por:

$$P(-\varepsilon < \overline{X} - \mu < \varepsilon) = \gamma \tag{1}$$

Seja Z uma normal padrão $Z \sim N(0, 1)$, então:

$$P(-z < Z < z) = \gamma \tag{1}$$

Sabemos que $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$. Logo, substituindo em (1), temos

$$P\left(-z<\frac{X-\mu}{\sigma/\sqrt{n}}< z\right)=\gamma$$

Insper

Passando o denominador multiplicando os valores z, temos

$$P\left(-z\frac{\sigma}{\sqrt{n}} < \overline{X} - \mu < z\frac{\sigma}{\sqrt{n}}\right) = \gamma$$

Isolando μ , finalmente, temos

$$P\left(\overline{X}-z\frac{\sigma}{\sqrt{n}}<\mu<\overline{X}+z\frac{\sigma}{\sqrt{n}}\right)=\gamma$$

Logo, a expressão abaixo deve ser interpretada do seguinte modo: se pudéssemos construir uma grande quantidade de intervalos (aleatórios) da forma

$$\left(\overline{X}-z\frac{\sigma}{\sqrt{n}};\overline{X}+z\frac{\sigma}{\sqrt{n}}\right)$$

todos baseados em amostras de tamanho n, $\gamma \%$ deles conteriam o parâmetro μ .

Convém lembrar que <u>µ NÃO</u> é variável aleatória e <u>SIM um parâmetro</u>.

Simulações assumindo $\gamma = 95\%$

Utilizando a única estimativa \bar{x} , a expressão a seguir pode ser interpretada do seguinte modo: o intervalo

$$\left(\overline{x}-z\frac{\sigma}{\sqrt{\mathbf{n}}}\;;\;\overline{x}+z\frac{\sigma}{\sqrt{\mathbf{n}}}\right)$$

pode ou não conter o verdadeiro valor μ , mas espera-se que esse acima, em particular, seja um entre os $\gamma\%$ dos possíveis

intervalos que conteriam o parâmetro μ .

Insper

Logo, para uma dada amostra o intervalo de confiança para μ com coeficiente de confiança γ será indicado da seguinte maneira:

$$IC(\mu; \gamma) = \left(\overline{x} - z \frac{\sigma}{\sqrt{n}}; \overline{x} + z \frac{\sigma}{\sqrt{n}}\right)$$

sendo μ denota a média populacional;

 γ o coeficiente de confiança ($\gamma \geq 0, 90$);

z um valor obtido da distribuição normal padrão;

 \overline{x} a estimativa da média amostral;

σ o desvio padrão populacional; e

n tamanho da amostra.

Insper

Comprar ou não comprar um lote de resistores de um determinado fabricante?

- ightharpoonup A equipe recebeu uma amostra de 10 resistores do lote de compra e gerou uma estimativa para a média $\overline{x} = 1024 \text{ k}Ω$.
- Assumindo $\sigma=25~k\Omega$, calcule o intervalo de confiança para a verdadeira resistência média dos resistores do lote com coeficiente de confiança igual a 95% ${}_{Insper}$

Pesquisa sobre preço de combustive W

Exemplo 2

Suponha que você deseja estimar o atual preço médio da gasolina na cidade de São Paulo.

Para uma amostra de 25 postos de combustível da cidade de São Paulo selecionados aleatoriamente, o preço médio amostral estimado foi de R\$ 3,350.

Suponha que o desvio padrão populacional (verdadeiro) seja conhecido e igual a 0,25 reais.

Construa um intervalo de confiança para o verdadeiro preço médio de gasolina na cidade de São Paulo, considerando um coeficiente de confiança de 90%.

Exercícios

Exercício 1

Você foi contratado para ocupar o cargo de estagiário na Martins & Bruscato, que é uma das mais importantes empresas de consultoria do mercado.

A diretora da empresa, Tatiana Melhado, que está envolvida no planejamento de uma pesquisa encomendada pela Secretaria de Turismo de uma cidade do litoral de Pernambuco, cujo principal objetivo é o de conhecer o comportamento dos visitantes brasileiros da cidade no que diz respeito ao valor médio diário gasto por esse tipo de turista, pede para você executar a seguinte tarefa:

Insper

Exercício 1 (cont.)

- a) Dimensionar o tamanho da amostra que deverá ser investigada para que a estimativa do gasto médio diário feito por esses turistas não se distancie do seu verdadeiro valor por mais do que 5% do verdadeiro desvio padrão dos gastos, para mais ou para menos, em 90% das vezes que esse mesmo tipo de estudo for reproduzido.
- b) Se no item (a) quiséssemos elevar para 99% das vezes que esse mesmo tipo de estudo fosse reproduzido, mantendo a mesma margem de erro, qual deveria ser o novo tamanho amostral?
- c) E se, no item (a), optássemos por diminuir a margem de erro em 70%, mantendo os 90% citado no item (a), qual deveria ser, então, o novo tamanho amostral?

Insper

Exercício 2

Uma seguradora fez uma campanha publicitária que dizia que quando um cliente seu tem o carro roubado, a indenização é paga, em média, em 8 dias após a entrega de toda a documentação pelo cliente. Uma auditoria obteve uma amostra de 100 clientes dessa seguradora que tiveram o carro roubado e observou um prazo médio para o pagamento da indenização de 8,35 dias.

- a) Se o verdadeiro desvio padrão do prazo para o pagamento da indenização é de 1 dia e a afirmação da seguradora é verdadeira, qual a probabilidade de, em uma amostra de 100 clientes ser observado um prazo médio para o pagamento da indenização de 8,35 dias ou mais?
 - Resp.: 1-0,9998=0,0002
- b) Baseado no item a), se o verdadeiro desvio padrão do prazo para o pagamento da indenização for realmente de 1 dia, o que você acha que a auditoria vai concluir a respeito da afirmação da seguradora?

Exercício 3

Após entrevistar 100 membros de uma categoria profissional, um pesquisador encontrou um salário médio de R\$ 1.582,85.

Segundo alguns órgãos governamentais, o verdadeiro desvio padrão dos salários dessa categoria é da ordem de R\$ 256,70.

- a) Adotando um coeficiente de confiança de 95%, qual a margem de erro desse estudo? $\varepsilon = 50,31 \, reais$
- b) Construa um intervalo de confiança (I.C.), com 95% de confiança, para o salário médio dos membros desta categoria. Interprete-o.

$$IC(\mu; 95\%) = (1532, 54; 1633, 16)$$

c) Se soubermos que essa categoria profissional possui, no total, 2.800 membros, o intervalo de confiança mudaria? Justifique. Caso ele mude, explique como poderia proceder.

Insper

le z	
<u> </u>	
Parte inteira e primeira decimal de	
0	
<u>a</u>	
읱	
B	
<u></u>	
鲁	
=	
불	
5	

	Segunda decimal de z													
	O	1	2	3	4	5	6	7	8	9				
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359				
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753				
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141				
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517				
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879				
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224				
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549				
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852				
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133				
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389				
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621				
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830				
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015				
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177				
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319				
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441				
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545				
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633				
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706				
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767				
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817				
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857				
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890				
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916				
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936				
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952				
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964				
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974				
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981				
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986				
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990				
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993				
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995				
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997				
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998				
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998				
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999				
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999				
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999				
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				

Insper

Teste de Hipóteses para média populacional com variância populacional desconhecida

Objetivos desta aula!

- ✓ Estender a metodologia de teste de hipóteses que aborda média populacional, mas agora com σ² desconhecido;
- ✓ Buscar estatística de teste adequada e usá-la para tomada de decisão via Região Crítica e via valor-p.

O número médio de pontos em um exame de inglês tem sido historicamente igual a 80.

Foram sorteados 10 estudantes que fizeram recentemente esse exame e observadas as notas:

Especialistas desconfiam que o rendimento médio dos alunos diminuiu e desejam testar essa afirmação por meio de um teste de hipóteses, com nível de significância de 5%.

Fazendo as suposições necessárias, qual seria a conclusão do teste?

| X= 74,80 | S= 8,48 | Insper

Passos para Construção de um Teste de Hipóteses (via RC)

<u>1º.Passo</u>: Fixe qual a hipótese nula, H_0 , a ser testada e qual a hipótese alternativa (H_A).

2º.Passo: Defina a *estatística de teste* sob H₀. Não se esqueça de levantar as propriedades dessa estatística.

☐ Uma estatística é qualquer função da amostra que não depende de parâmetros desconhecidos.

Estatística de Teste

Caso 2

(variância populacional desconhecida)

Vamos considerar a seguinte hipótese nula:

$$H_0$$
: $\mu = \mu_0$

Vimos que um estimador com boas propriedades para o parâmetro $\,\mu\,$ é $\,\overline{X}\,.$

Sob algumas suposições, temos que

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Sob a hipótese nula, vem que

$$\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$$

Porém, a quantidade anterior não pode ser usada como estatística de teste pois σ é parâmetro desconhecido.

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0; 1)$$

também não pode ser considerada uma estatística de teste, uma vez que σ é desconhecido.

FATO

Se o desvio padrão populacional σ for desconhecido, o desvio padrão amostral, S, é usado para estimar σ .

Entretanto, a padronização da média amostral \overline{X} utilizando o desvio padrão amostral segue uma distribuição de probabilidades conhecida como distribuição t-Student, desde que uma a.a.s. tenha sido coletada de uma população em que X~Normal.

Insper

Assim, utilizando o estimador S^2 para σ^2 e supondo que a a.a.s. foi coletada de uma população cuja variável de interesse seja normalmente distribuída, temos, sob H_0 , que

$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t_{(n-1)}$$

pode ser considerada uma estatística de teste.

Passos para Construção de um Teste de Hipóteses (via RC)

- <u>1º.Passo</u>: Fixe qual a hipótese nula, H_0 , a ser testada e qual a hipótese alternativa (H_A).
- **2º.Passo**: Use a teoria estatística e as informações disponíveis para decidir qual *estatística de teste* será usada sob H₀. Não se esqueça de levantar as propriedades dessa estatística.
- <u>3º.Passo</u>: Fixe a probabilidade α de cometer erro de rejeitar H₀, sob H₀ verdadeiro, e use este valor para construir a região crítica RC. Lembre que esta região é construída para a estatística definida no segundo passo, usando o valor hipotetizado em H₀.
- 4º.Passo: Use as informações fornecidas pela amostra para encontrar o valor observado da estatística de teste.
- <u>5º.Passo</u>: Se o valor observado da *estatística de teste* pertencer à região crítica, rejeite H₀; caso contrário, não rejeite.

Valor-p do Teste

Valor-p é o menor nível de

significância que leva à rejeição de

H₀ com base na amostra.

Passos para Construção de um Teste de Hipóteses (via valor-p)

- <u>1º.Passo</u>: Fixe qual as hipóteses H_0 e H_A .
- **2º.Passo**: Use a teoria estatística e as informações disponíveis para decidir qual *estatística de teste* será usada sob H₀. Não se esqueça de levantar as propriedades dessa estatística.
- <u>3º.Passo</u>: Use as informações fornecidas pela amostra para encontrar o valor observado da *estatística de teste*.
- <u>4º.Passo</u>: Use o valor observado da *estatística de teste* para encontrar o valor-p, ou seja, a probabilidade de encontrar valores tão ou mais desfavoráveis à H₀ quanto a *estatística de teste* observada pela amostra.
- <u>5º.Passo</u>: Se o valor-p for menor do que algum α fixado, rejeite H_0 ; caso contrário, não rejeite.

Teste unilateral ou unicaudal à direita

$$H_0: \mu = \mu_0$$

$$H_A: \mu > \mu_0$$

Estatística do teste observada (sob H₀):

$$t_{obs} = \frac{\bar{x}_{obs} - \mu_0}{S / \sqrt{n}}$$

Regra de rejeição, ao nível α de significância:

α=P(erro I)
estará na
cauda à
direita!

Rejeito
$$H_0$$
 se $t_{obs} > t_{(n-1)}^{(\alpha)} = t_c$

Teste unilateral ou unicaudal à esquerda

$$H_0: \mu = \mu_0$$

$$H_A: \mu < \mu_0$$

Estatística do teste observada (sob H₀):

$$t_{obs} = \frac{\bar{x}_{obs} - \mu_0}{S / \sqrt{n}}$$

Regra de rejeição, ao nível α de significância:

α=P(erro I)
estará na
cauda à
esquerda!

Rejeito
$$H_0$$
 se $t_{obs} < -t_{(n-1)}^{(\alpha)} = t_c$

Inspe

Teste bilateral ou bicaudal

$$H_0: \mu = \mu_0$$

$$H_A: \mu \neq \mu_0$$

Estatística do teste observada (sob H₀):

$$t_{obs} = \frac{\bar{x}_{obs} - \mu_0}{S / \sqrt{n}}$$

Regra de rejeição, ao nível α de significância:

Rejeito H₀ se
$$|t_{obs}| > t_{(n-1)}^{(\alpha/2)} = t_c$$

α/2 estaráem cadacauda! Asoma é α!

Inspe

- As latas de certa marca de refrigerante apresentam em seu rótulo o volume de 350 ml.
- O fabricante deseja testar se o conteúdo médio das latas é igual a 350 ml, como anunciado no rótulo. Isto equivale a verificar se a máquina está regulada para colocar 350 ml, ou não, nas latas.
- Para averiguar a afirmação do fabricante, foi coletada uma amostra de 36 latas do refrigerante em pontos de comercialização e mediu-se o conteúdo destas latas.
- Os resultados obtidos na amostra foram: $\bar{x} = 347 \text{ ml e s} = 10,5 \text{ ml}$
- Será que as latas contêm 350 ml de líquido com 95% de confiança?

Com base nas hipóteses do fabricante, rejeita-se a hipótese nula para valores pequenos ou grandes. H₀: $\mu = 350 \text{ ml}$

 $H_1: \mu \neq 350 \text{ ml}$

Insper

Região crítica: se o valor da estatística t_{obs} for menor que -2,03 ou maior que 2,03, então rejeita-se a hipótese nula (o produto não está de acordo com as especificações do fabricante).

Estatística do Teste (obtida da amostra)

Padronização dos dados amostrais sob a hipótese nula (H_0), ou seja μ_0 = 350.

$$t_{obs} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$
 amostra $t_{obs} = \frac{347 - 350}{10,5 / \sqrt{36}} = -1,71$
 $s = 10,5 \ ml$

<u>Conclusão:</u> Não rejeitamos a hipótese nula, isto é, não existem evidências estatísticas de que o conteúdo das latas esteja fora das especificações do fabricante, ao nível de significância de 5% (ou com 95% de confiança). Insper

Para calcular o valor-p para testes bicaudais devemos multiplicar por 2 o valor da probabilidade calculada com a estatística do teste, já que rejeitamos a hipótese nula tanto para pequenos como para grandes valores amostrais.

Dessa forma:
$$t_{obs} = -1,71$$

$$valor-p = 2*0,0481 = 0,0962$$

$$valor-p = 2*scipy.stats.t.cdf(-1.71,35) = 0,0962$$

Portanto, não rejeitamos a hipótese nula (pois valor-p = 0,0962 > $0.05 = \alpha$), isto é, não existem evidências estatísticas de que o conteúdo das latas esteja fora das especificações do fabricante. 37 Insper

Supondo as hipóteses a seguir, calcule e interprete o valor-p.

$$H_0: \mu = \mu_0$$

$$H_A: \mu > \mu_0$$

$$n = 30$$
; $s = 6$; $\mu_0 = 30$; $\bar{x} = 31,87$; $\alpha = 0.05$

Resp.:

valor – p =
$$P(t_{(29)} > 1,707) = 4,92\% < 5\% \Rightarrow rejeita H0!$$

Supondo as hipóteses a seguir, calcule e interprete o valor-p.

$$H_0: \mu = \mu_0$$

$$H_A: \mu < \mu_0$$

$$n = 30$$
; $s = 6$; $\mu_0 = 30$; $\bar{x} = 28,13$; $\alpha = 0.05$

Resp.:

valor – p =
$$P(t_{(29)} < -1.707) = P(t_{(29)} > 1.707) =$$

= 4.92% < 5% \Rightarrow rejeita $H_0!$

Supondo as hipóteses a seguir, calcule e interprete o valor-p.

$$H_0: \mu = \mu_0$$

$$H_A: \mu \neq \mu_0$$

$$n = 30$$
; $s = 6$; $\mu_0 = 30$; $\bar{x} = 31,87$; $\alpha = 0.05$

Resp.:

valor – p = 2 *
$$P(t_{(29)} > 1,707) = 2 * 4,92\% =$$

= 9,84% > 5% \Rightarrow NÃO rejeita $H_0!$

Exercícios

Exercício 1

O índice de poluição no município de Curitiba segue uma distribuição normal com média e variância desconhecidas. O departamento ambiental deseja estimar o índice médio de poluição no município. Para isso, ele medirá a poluição em uma amostra de dias escolhidos aleatoriamente.

- a) Dimensione a amostra de modo que o erro amostral de estimação seja no máximo 10% do desvio padrão, com uma confiança de 95%.
- b) Pretende-se extrair, em Curitiba, uma amostra aleatória de 16 dias. Em uma cidade com características similares, verificou-se que o índice médio de poluição é de 9**diasper**₄₂

Exercício 1 (cont.)

- Construa um teste de hipóteses para verificar se Curitiba é mais poluída do que a outra cidade. Adote um nível de significância de 10%.
- c) Interprete os erros do tipo I e II relacionados ao teste acima, em termos do problema em questão.
- d) Extraída uma amostra aleatória de 16 dias verificou-se, em Curitiba, um índice médio amostral de poluição de 95 u.m., com desvio padrão amostral igual a 10 u.m.. Conclua o T.H. por meio da construção da R.C.. Insper₄₃

Exercício 1 (cont.)

- e) Através do cálculo do valor-p, conclua o teste de hipóteses. Interprete o valor-p.
- f) Descreva as suposições necessárias para as conclusões acima serem confiáveis.
- g) Um técnico resolveu medir a poluição em 16 dias consecutivos. A amostra obtida satisfaz as suposições necessárias para a realização do teste? Por quê?

Exercício 2

- O volume diário de negócios da corretora K. B. Sashata, em reais, segue uma distribuição normal. O diretor da corretora deseja fazer inferências sobre o volume médio diário negociado.
- a) Numa corretora de mesmo porte verificou-se que, em média, o volume negociado diariamente é de R\$ 116.000,00. Formule as hipóteses de um teste para verificar essas duas corretoras apresentam, diariamente, o mesmo volume de negociações.
- b) Interprete os erros tipo I e tipo II relacionados ao teste acima, em termos do problema em questão.
- c) Extraída uma amostra de 25 dias, verificou-se que o volume médio negociado diariamente na corretora K. B. Sashata é igual a R\$ 115.000,00, com desvio padrão amostral igual a R\$2.000,00. Conclua o teste descrito no item (a) com base na RC e no cálculo do valor-p.

																11	
ade:															10/	10	
liberdade:	Distribuição t-Student												p/2/1-	p/2			
de lib	Corpo da tabela fornce os valores tc tais que P(-tc < t < tc) = 1 - p																
												O t _c					
graus	90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	3%	2%	1%	0,50%	0,25%	0,10%
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	15,895	21,205	31,821	63,657	127,321	254,647	636,619
		0,289									4,849	5,643	6,965	9,925	14,089	19,962	31,599
	1 .	0,277	•	•	•	•	•	•	•	3,182	3,482	3,896	4,541	5,841	7,453	9,465	12,924
	1 .	0,271	•	•	•	•	•	•	•	2,776	2,999	3,298	3,747	4,604	5,598	6,758	8,610
		0,267								2,571	2,757	3,003	3,365	4,032	4,773	5,604	6,869
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	2,612	2,829	3,143	3,707	4,317	4,981	5,959
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	2,517	2,715	2,998	3,499	4,029	4,595	5,408
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,449	2,634	2,896	3,355	3,833	4,334	5,041
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,398	2,574	2,821	3,250	3,690	4,146	4,781
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,359	2,527	2,764	3,169	3,581	4,005	4,587
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,328	2,491	2,718	3,106	3,497	3,895	4,437
12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	2,303	2,461	2,681	3,055	3,428	3,807	4,318
13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	2,282	2,436	2,650	3,012	3,372	3,735	4,221
		0,258								2,145	2,264	2,415	2,624	2,977	3,326	3,675	4,140
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,249	2,397	2,602	2,947	3,286	3,624	4,073
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,235	2,382	2,583	2,921	3,252	3,581	4,015
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,224	2,368	2,567	2,898	3,222	3,543	3,965
18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,214	2,356	2,552	2,878	3,197	3,510	3,922
19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,205	2,346	2,539	2,861	3,174	3,481	3,883
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,197	2,336	2,528	2,845	3,153	3,455	3,850
21		0,257								2,080	2,189	2,328	2,518	2,831	3,135	3,432	3,819
22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	2,074	2,183	2,320	2,508	2,819	3,119	3,412	3,792
		0,256								2,069	2,177	2,313	2,500	2,807	3,104	3,393	3,768
24	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	2,064	2,172	2,307	2,492	2,797	3,091	3,376	3,745
		•	•	•	•	•	•	•	•		2,167	2,301	•	2,787	3,078	3,361	3,725
											2,162		2,479		3,067	3,346	3,707
										2,052		2,291	2,473	2,771	3,057	3,333	3,690
		0,256									2,154	2,286	2,467	2,763	3,047	3,321	3,674
										2,045		2,282	2,462	2,756	3,038	3,310	3,659
											2,147		2,457		3,030		nsper
								-		•	·	·	•	-	·	1.	isper