

Introduction to Git and GitHub

Instructor: Adrien Osakwe

June 22nd 2022

<u>Mission</u>: aims to deliver inter-disciplinary research programs and empower the use of data in health research and health care delivery

https://www.mcgill.ca/micm

Outline for this workshop:

- 1. Intro to Git and Version Control Systems
- 2. Basic Git functions
- 3. Advanced Git functions
- 4. Working with GitHub
- 5. Conclusions

Hands-on Activities:

- Quick Review Polls
- Git/GitHub exercises

What you will need:

- 1. GitHub Desktop App
- 2. A Text editor

What you WILL learn

- Basic theory and features behind Git and GitHub
- How to manage local and remote repositories

What you will NOT learn

- How to code
- Data Analysis

"FINAL".doc

FINAL.doc!

FINAL_rev. 2. doc

FINAL_rev.6.COMMENTS.doc

FINAL_rev.8.comments5. CORRECTIONS. doc

JORGE CHAM @ 2012

FINAL_rev.22.comments49. corrections.10.#@\$%WHYDID ICOMETOGRADSCHOOL????.doc

WWW. PHDCOMICS. COM

Version Control Systems

- Make it easier to document changes
- Less confusion
- Like an unlimited "undo" button

Groceries.txt

Git

A type of version control system

Open-source

- Most popular VCS currently in use
- Creates a "Git Repository" which stores all the modified instances of your project

What kind of files does Git track?

- Can track any file, but works best for pure text files (.txt,.R,.py etc.)
- Word documents, PowerPoint slides are in binary; Git has no support for displaying the changes occurring in these files
- Still useful for storing such files, just doesn't make the most of all of Git's features
- Markdown and LaTeX can be used instead of these binary files

Git vs. GitHub

 A version control system A server that hosts Git repositories

Works locally and remotely

 Works solely as a cloudbased service

Is open-source

Owned by Microsoft

Working Directory ≠ Git Repository

- Working directory is your project folder
- Git Repository is a hidden file stored inside your working directory
- The Git Repository contains the staging area and your commit history/local repository

What is a commit?

A commit is a saved instance of your project

 It has a unique ID and can be used to revert your project to a previous version

 Each commit keeps track of all modifications made since the previous commit

Commit Messages

- Every commit MUST have an attached message/description
- This helps others identify what changes have been made and why

[filename added/changed; what change; why]

```
git commit -m 'add user.rb'
GOOD:
git commit -m 'create user model to
store user session information'
```


Summary

- Untracked or modified files are first added to the staging area
- Changes that have been staged can then be committed to the local repository
- Commits can then be used to revert to previous instances of the project or simply to keep track of what changes have been made

Poll #1

T/F – Both untracked and modified files must be **added** to the staging area

Where are pending changes kept prior to committing them?

T/F - GitHub is a type of VCS

Part II — Basic Git Features

Activity #0 – Initialize a Git Repository

Activity #0 – Initialize a Git Repository

Create a new Git Repository (File → new repo OR "create a new repository on your hard drive")

2. Open the generated project folder, what do you see?

Activity #1 – Create and track a Text File with Git

Activity #1 - Create and track a Text File with Git

- 1. Create a text file (or code script) in the project folder
- Open the GitHub Desktop App and add + commit the file to track it.
- 3. Look at your commit history to see your commit!
- 4. Modify the file and commit the changes. Try and make informative commit messages!

Activity #2 – Revert a file to a previous commit

Activity #2 – Revert a file to a previous commit

- 1. Make an unwanted change to your file
- Use your commit history to revert to the previous commit

- 3. Make another unwanted change and commit it
- 4. Now use your commit history to revert the commit!

Poll #2

T/F – After initialisation, a project folder becomes a git repository

Where in the git repository is a modification stored after it is "added"?

Is it possible for two commits to have the same ID?

Part III – Advanced Git Features

What if you want to test out a new feature without affecting your current version of the code?

Branching

What is a Branch?

 Allows us to implement new features without harming viable releases

Activity #3 – Create a new branch

Activity #3 – Create a new branch

1. Click the "current branch" button and select "new branch"

2. Make changes to your file in the new branch and commit it

3. Switch back to the main branch and open the file, what do you notice?

Now that your test feature works, you might want to make it part of your official release

Merge

What is a Merge?

Action that will "merge" the commits from one branch into another

Activity #4 – Merging Branches

Activity #4 – Merging Branches

1. Switch to the main branch

- Open the branch menu
- 3. Select the "choose a branch to merge into main" button and select your second branch.

4. Compare the branches again, the file should now be identical in both!

Merging is not the only way to combine branches

Rebasing

Rebasing

Instead of merging the other branch's changes as a new commit, rebasing rewrites the target branch's commit history to add the commits directly

Conflicts

If branches have competing commits, git will raise a **conflict** and not be able to merge/rebase

Can occur if:

- Both branches edit the same line
- Both added a file of the same name
- One branch edited a file, the other deleted it

Activity #5 – Resolving Conflicts

Activity #5 – Resolving Conflicts

- In both branches, make a change on the same line and commit it
- 2. Try and merge your second branch into the main
- When the merge conflict occurs, open the text file and resolve the issue
- 4. Try to merge again
- 5. Look at your commit history, how is your resolved merge shown in the commit?

Summary

 Branches can be used to develop new features without affecting a previous, viable version of your code

 Merges or Rebases can be used to combine the commits of two different branches

Conflicts prevent branches from being combined

Poll #3

When could it be more useful to rebase a branch instead of merging?

T/F – Merging branches with changes in the same file will ALWAYS create a merge conflict

How could we prevent conflicts from occurring?

Part IV — Hosting Projects on GitHub

GitHub Interface

Why use remote repositories like GitHub?

- Backup for your code
 - Can access the repository from anywhere

🚹 2. git push

3. leave building

- Collaborations
 - Easy to keep track of changes made by you and collaborators
- Open Science
 - Easy to access, download and use others' code
 - Easy to discuss with users of your code

McGill initiative in Computational Medicine

Pushing and Pulling

• **Push:** Updates your **remote** repository with recent commits from your **local** repository

 Pull: Updates your local repository with recent commits from your remote repository

Activity #6 – Pushing commits to GitHub

Activity #6 - Pushing commits to GitHub

1. Click the "Publish Repository" button

2. Now open your GitHub account in the browser and find your repository. See if your commit history is the same as in your local repo.

Activity #7 – Pulling Commits from GitHub

Activity #7 – Pulling Commits from GitHub

- From the GitHub website, open your file and select the edit option
- 2. Make a change to the file and commit it.
- 3. Return to the desktop app and do Repository -> Pull

4. Look at your commit history and your file, what do you see?

Create a local copy of a GitHub Repository

- "Cloning"
- Usually done to use published code
 - Reproduce results
 - Use code on a dataset of interest
- Creates a direct link to the original repository
 - Anything changes you push will affect the original repository
 - Any changes in the original repo can be pulled into your clone

Activity #8 – Clone a Repository

- Find a GitHub repo that interests you and clone it!

Activity #8 – Clone a Repository

 Go to the GitHub website and search for a repo that interests you.

2. Copy the repo's URL

3. In the Desktop App, do File → Clone a repository and paste the URL.

4. Open the cloned repo and explore!

Create a remote copy of a GitHub Repository

• "Fork"

- Usually used to contribute to published code
 - Can then edit the forked repository locally
 - Can then push local changes to your forked copy
 - When your changes are done, you can make a pull request to add your changes to the original repo
- Much safer way to contribute to source code

Activity #9 – Fork a Repo and make a Pull Request

- Fork the repo I made for this course and add a text file to it. Then, make a pull request!

Activity #9 – Fork a Repo and make a Pull Request

- 1. Open the link in chat to access the repo I made.
- Click the "fork" button
- 3. Clone your forked copy to your computer and add a text file with one thing you have learned today. Commit the file.
- 4. Push the commit to your forked repo.
- 5. On the GitHub website. Look at your forked repo and select the "create Pull Request" button

Poll #4

What command lets you update your remote repo with local changes?

T/F - Cloning a repository is the best way to contribute new features

T/F – You will always be able to push changes from a cloned repo to the original

What is the advantage of using a Pull Request prior to merging changes from a contributor?

Part V — Conclusion

What have we learned?

What VCS, Git and GitHub are

Why they are so useful

How to undertake basic tasks in a local and remote repository

 How services like GitHub improve code collaboration and Open Science

What next?

- Just use Git!
 - Track your hobby projects
 - Track your research
 - Use open-access code or software from publications
 - Consider trying Git on the command line

Questions?

Image Sources

https://betterexplained.com/articles/a-visual-guide-to-version-control/

https://github.com/qw3rtman/git-fire

https://walkingrandomly.com/?p=6653

