Categorical: Repeated measures

Table of contents

1	Goals	2
	1.1 Goals	2
2	Review	2
	2.1 Linear mixed models	2
3	Data example	5
	3.1 Data example	5
4	Marginal model	9
	4.1 Marginal model	9
	4.2 Example	
	4.3 Marginal wrap-up	
5	Conditional model	13
	5.1 Conditional model	13
	5.2 Example	
	5.3 Conditional wrap-up	16
6	Quick comparison	17
	6.1 Quick comparison	17
7	Summary	18
	7.1 Summary	18

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- Mixed model for categorical outcomes
 - Marginal model: ${\bf R}$ matrix, GEE
 - Conditional model: **G** matrix, GLMM

2 Review

2.1 Linear mixed models

2.1.1 Repeated measures = non-independence

- Repeated measures from the same person are **not independent**
 - An observation from a person provides information about other observations from that person
 - Observations from the same person are more like one another than observations from different people
 - Observations from the same person are **correlated**

2.1.2 Linear mixed models

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- Very general model
- Allows for repeated measures via
 - Random effects: **Z**
 - Correlated residuals: ϵ

2.1.3 Linear mixed model: Marginal approach

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- Fixed effects: $\mathbf{X}\beta$
 - $-\mathbf{X}$ is a matrix of the predictors
 - $-\beta$ are regression coefficients

2.1.4 Linear mixed model: Marginal approach

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- Random effects: Z
 - No random effects
 - * No predictors in \mathbf{Z}
 - * This term drops out

2.1.5 Linear mixed model: Marginal approach

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- Residuals: ϵ
 - Residuals are correlated / covary across timepoints
 - * $t \times t$ matrix

2.1.6 Linear mixed model: Conditional approach

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- Fixed effects: $\mathbf{X}\beta$
 - **X** is a matrix the predictors
 - $-\beta$ are regression coefficients

2.1.7 Linear mixed model: Conditional approach

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- \bullet Random effects: ${f Z}$
 - **Z** is a matrix of random effects predictors (dummy codes)
 - * Which observations go with which subject
 - is a variance-covariance matrix of random effects
 - * Intercept variance, slope variance, intercept-slope covariance

2.1.8 Linear mixed model: Conditional approach

$$\mathbf{Y}_{ij} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z} + \boldsymbol{\epsilon}$$

- Residuals: ϵ
 - Residuals aren't correlated
 - Single residual variance value
 - * Variance of all residuals across all people and timepoints

2.1.9 Marginal vs conditional

- Deal with non-independence in different ways: Different interpretation
 - Marginal: Effect based on all observations, then adjust standard errors
 - Conditional: Effect for each subject, then average across subjects
- For linear models, marginal and conditional don't differ numerically
 - Average of linear function = linear function of average

2.1.10 Marginal vs conditional

- For non-linear models, marginal and conditional differ numerically
 - Average of a **non-linear** function \neq **non-linear** function of average
 - Remember from GLiM: Non-linear function of predicted value \neq predicted value of non-linear function
- Again, that's ok
 - Marginal and conditional models are actually answering different questions

2.1.11 Comparison

- Marginal models
 - Cluster (person) is nuisance
 - Population average
 - Usually repeated measures, also cross-sectional
 - GEE
- Conditional models
 - Cluster (person) is of interest

- Person-specific
- Repeated measures or cross-sectional
- GLMM

3 Data example

3.1 Data example

3.1.1 Schizophrenia over time

- Schizophrenia treatment effects over the course of 7 weeks (N=437), measured by the Inpatient Multidimensional Psychiatric Scale (IMPS)
 - id: ID variable
 - imps79: Continuous measure of schizophrenia (1 to 7)
 - imps79b: Binary measure of schizophrenia (3.5+)
 - -imps
790: Ordinal measure of schizophrenia (Cuts: 2.5+, 4.5+, 5.5+)
 - tx: Placebo (0) or treatment (1)
 - week: Week of study (0, 1, 3, 6)

3.1.2 Data

id	imps79	imps79b	imps79o	tx	week
1103	5.5	1	4	1	0
1103	3.0	0	2	1	1
1103	2.5	0	2	1	3
1103	4.0	1	2	1	6
1104	6.0	1	4	1	0
1104	3.0	0	2	1	1
1104	1.5	0	1	1	3
1104	2.5	0	2	1	6
1105	4.0	1	2	1	0
1105	3.0	0	2	1	1
1105	1.0	0	1	1	3
1105	NA	NA	NA	1	6

3.1.3 Means and N by week

week	mean_c	mean_b	N
0	5.367	0.986	434
1	4.571	0.843	426
3	4.020	0.711	374
6	3.310	0.484	335

3.1.4 Plot: Continuous measure by week

3.1.5 Plot: Binary measure by week

3.1.6 Plot: Marginal effect of time

3.1.7 Plot: Conditional effect of time

3.1.8 Plot: Marginal and conditional lines

3.1.9 Plot: Marginal and conditional lines

3.1.10 Overall model

- Research question: Now
 - 1. How does schizophrenia diagnosis **change** over these 7 weeks?
- Research question: Class
 - 1. How does schizophrenia diagnosis **change** over these 7 weeks?
 - 2. How do the **treatment** groups differ (at baseline)?
 - 3. Does **change in diagnosis differ** depending on treatment condition?

4 Marginal model

4.1 Marginal model

4.1.1 Marginal model: Generalized estimating equations (GEE)

$$\eta = \mathbf{X}\beta$$

• η : Transformation of predicted value (from GLiM)

- Depends on the specific model (i.e., logistic, Poisson)
- Variance
 - $-\epsilon$: Matrix of correlated residuals
 - * $t \times t$ matrix: t is number of repeated measures

4.1.2 Marginal model: Generalized estimating equations (GEE)

- Fixed effects (regression coefficients)
 - Population-averaged effects
 - * Averaging across all observations (ignore people)
 - For "people", not for "a person"
 - * Public health application

4.2 Example

4.2.1 Example

- Time predicts schizophrenia diagnosis
 - week as a predictor of imps79b
 - week: 0, 1, 3, 6
 - imps79b: 0 (less than 3.5 on imps79), 1 (3.5+ on imps79)
- In this example, I'm using unstructured R matrix
 - We'll look at others in class
 - We'll also look at treatment effects (tx)

4.2.2 Marginal model

```
Call:
```

Correlation structure = unstructured Estimated Scale Parameters:

Estimate Std.err (Intercept) 0.9646 0.1007 Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha.1:2 0.05390 0.05343

alpha.1:3 -0.02855 0.03265

alpha.1:4 -0.01890 0.03342

alpha.2:3 0.56341 0.10114

alpha.2:4 0.15242 0.06617

alpha.3:4 0.51550 0.07964

Number of clusters: 437 Maximum cluster size: 4

4.2.3 Plot: Marginal model

4.3 Marginal wrap-up

4.3.1 Population-averaged effects

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1(week)$$

- b_1 : Time effect
 - $-e^{b_1} = \frac{odds\ of\ event\ at\ week\ t+1}{odds\ of\ event\ at\ week\ t}$ Ignoring the repeated measures
 - - * But standard errors are adjusted for non-independence

4.3.2 Population-averaged effects: Pros

- Robust to mis-specification of the R matrix
 - You use compound symmetry but that's not very close to reality
- Can account for unobserved or unknown dependence
 - Things besides repeated measures
- Easier to estimate than conditional models
 - Marginal values are readily available

4.3.3 Population-averaged effects: Cons

- Ignores that *individuals* make up these effects
 - Just wants to deal with correlated observations
- Ignores that individuals may have different patterns over time
 - Are some individuals *helped a lot* by the treatment? Who knows.
- Documentation for newer R package says it requires complete data
 - Worked fine here so ???
 - You can delete all NA rows, but an additional step

4.3.4 Why is it called "marginal"?

tx	week0	week1	week3	week6
0	0.972	0.880	0.713	0.463
1	0.982	0.802	0.574	0.340

- Estimated using only marginal proportions
 - Not joint proportions: Therefore no conditional values either

5 Conditional model

5.1 Conditional model

5.1.1 Conditional model: Generalized linear mixed model

$$\eta = \mathbf{X}\beta$$

- η : Transformation of predicted value (from GLiM)
 - Depends on the specific model (i.e., logistic, Poisson)
- Variance
 - $-\gamma$: Matrix of random effects
 - * Intercept variance, slope variance, intercept-slope covariance
 - $-\epsilon$: Residual variance
 - * Single number (depends on model: e.g., fixed at $\pi^2/3$ in logistic)

5.1.2 Conditional model as multi-level model

- Two parts ("levels" for multi-level models) of the model
 - Within-person / within-cluster
 - Between-person / between-cluster
- Equations at each level
 - Combine into the full model

5.1.3 Conditional model as multi-level model

• Level 1: Within-person equation

$$-\eta = \pi_{0i} + \pi_{1i}(week) + e_{ij}$$

• Level 2: Between-person equation

$$- \pi_{0i} = \beta_{00} + r_{0i} - \pi_{1i} = \beta_{10} + r_{1i}$$

• Combined equation

$$- \eta = \beta_{00} + \beta_{10}(week) + r_{0i} + r_{1i}(week) + e_{ij}$$

5.2 Example

5.2.1 Example

- Time predicts schizophrenia diagnosis
 - week as a predictor of imps79b
 - week: 0, 1, 3, 6
 - imps79b: 0 (less than 3.5 on imps79), 1 (3.5+ on imps79)
- In this example, we have random intercepts and random slopes
 - We'll also look at treatment effects (tx) in class
 - For that model, we'll only be able to use **random intercepts**

5.2.2 Conditional model

```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
```

Family: binomial (logit)

Formula: imps79b ~ 1 + week + (1 + week | id)

Data: schizx1

Scaled residuals:

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 4.413 2.101

week 0.711 0.843 -0.13

Number of obs: 1569, groups: id, 437

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.386 0.539 8.14 0.0000000000000001 ***
week -0.793 0.118 -6.71 0.0000000001954283 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr)

week -0.817

5.2.3 Plot: Conditional model

5.3 Conditional wrap-up

5.3.1 Person-specific effects

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1(week)$$

- b_1 : Time effect

 - $-e^{b_1} = \frac{odds\ of\ event\ at\ week\ t+1}{odds\ of\ event\ at\ week\ t}$ Estimated **separately** for each person
 - * Average individual effects together to get the average effect

5.3.2 Person-specific effects: Pros

- Individual trajectories are estimated
 - Not just correlations between repeated measures
- More *flexibility* in individual *variability*
 - Random intercepts and random slopes with respect to time
- Conceptually, fits better with how psychologists think
 - Individuals, trajectories, etc.

5.3.3 Person-specific effects: Cons

- Often harder to **estimate**
 - Much more complex model than marginal model
- Deciding on random effects can be difficult
 - Both choosing and estimation
- Accounts for specific sources of non-independence
 - Cannot account for e.g., multiple members of same family

6 Quick comparison

6.1 Quick comparison

6.1.1 Example: Conditional vs marginal effects

- Marginal effect
 - For people, one week of time has a certain effect
 - Population level: Interest is the group of people
- Conditional effect (GLMM):
 - For a person, one week of time has a different effect
 - Individual level: Interest is *individuals*

6.1.2 Plot: Comparison of marginal and conditional

7 Summary

7.1 Summary

7.1.1 Summary of this week

- Extended mixed models to categorical outcomes
 - Marginal: R matrix, population averaged, GEE, cluster robust
 - Conditional: **G** matrix, generalized linear mixed models (GLMM)
- Different interpretations, different numbers
 - Population-averaged: Adjusts for non-independence, doesn't care about repeated measures
 - Conditional: Analyzes each person separately and averages

7.1.2 In class

- Look at models including week, tx, and their product
 - Think about how that more complex model works
 - See some errors you might get

7.1.3 Next week

- All Some of the additional crucial details
 - Estimation issues
 - * Maximum likelihood?
 - * Tips and tricks to get models to run?
 - Model comparisons
 - Multi-level issues: Adding and centering predictors, contextual effects
 - More on predicted values