令和3年度

神奈川県公立高等学校入学者選抜学力検査問題 共通選抜 全日制の課程(追検査)

Ⅲ数学

注 意 事 項

- 1 開始の合図があるまで、この問題冊子を開いてはいけません。
- 2 問題は 問6まであり、1ページから9ページに印刷されています。
- 3 計算は、問題冊子のあいているところを使い、答えは、解答用紙の決められた欄に、記入またはマークしなさい。
- 4 数字や文字などを記述して解答する場合は、解答欄からはみ出さないよう に、はっきり書き入れなさい。
- 5 マークシート方式により解答する場合は、その番号の の中を塗りつぶ しなさい。
- 6 答えに無理数が含まれるときは、無理数のままにしておきなさい。根号が含まれるときは、根号の中は最も小さい自然数にしなさい。また、分母に根号が含まれるときは、分母に根号を含まない形にしなさい。
- 7 答えが分数になるとき、約分できる場合は約分しなさい。
- 8 終了の合図があったら、すぐに解答をやめなさい。

受 検 番 号		番
---------	--	---

問1 次の計算をした結果として正しいものを、それぞれあとの1~4の中から1つ選び、その番号を答え なさい。

(7) 5-(-8)

- 1. -13
- **2.** -3
- **3.** 3
- 4. 13

 $(4) \quad -\frac{1}{3} + \frac{3}{5}$

- 1. $-\frac{14}{15}$ 2. $-\frac{4}{15}$
- 3. $\frac{4}{15}$
- 4. $\frac{14}{15}$

 $(7) \quad \frac{2x-y}{3} - \frac{x+2y}{2}$

- 1. $\frac{x-8y}{6}$ 2. $\frac{x+4y}{6}$ 3. $\frac{7x-8y}{6}$ 4. $\frac{7x+4y}{6}$

 $(x) \quad \frac{21}{\sqrt{3}} - \sqrt{75}$

- 1. $\sqrt{3}$
- 2. $2\sqrt{3}$
- 3. $3\sqrt{3}$
- 4. $4\sqrt{3}$

(x) $(x+4)(x-7)-(x+2)^2$

- 1. -7x-32 2. -7x-24 3. x-32
- 4. x-24

- 問2 次の問いに対する答えとして正しいものを、それぞれあとの1~4の中から1つ選び、その番号を答 えなさい。
 - (ア) 連立方程式 $\begin{cases} ax+by=6 \\ bx-ay=8 \end{cases}$ の解がx=1, y=-3 であるとき, a, b の値を求めなさい。

1.
$$a = -6$$
, $b = -1$

2.
$$a = -6$$
, $b = -3$

3.
$$a=3$$
, $b=-1$

4.
$$a=3$$
, $b=-3$

(イ) 2次方程式 $3x^2-7x-1=0$ を解きなさい。

1.
$$x = \frac{-7 \pm \sqrt{37}}{6}$$

1.
$$x = \frac{-7 \pm \sqrt{37}}{6}$$
 2. $x = \frac{-7 \pm \sqrt{61}}{6}$ 3. $x = \frac{7 \pm \sqrt{37}}{6}$ 4. $x = \frac{7 \pm \sqrt{61}}{6}$

3.
$$x = \frac{7 \pm \sqrt{37}}{6}$$

4.
$$x = \frac{7 \pm \sqrt{61}}{6}$$

(ウ) x の値が 2 から 4 まで増加するとき、2 つの関数 $y=ax^2$ と y=-3x の変化の割合が等しくなるよ うなαの値を求めなさい。

1.
$$a = -\frac{1}{2}$$

1.
$$a = -\frac{1}{2}$$
 2. $a = -\frac{1}{4}$ 3. $a = \frac{1}{4}$ 4. $a = \frac{1}{2}$

3.
$$a = \frac{1}{4}$$

4.
$$a = \frac{1}{2}$$

- (エ) Aさんは、ある商店に買い物に行き、持っていた金額の4割を使った。次に、別の商店に買い物に行 き、残っていた金額の3割を使ったところ1260円残った。このとき、Aさんがはじめに持っていた金 額を求めなさい。

- 1. 2500 円 2. 3000 円 3. 3500 円 4. 4000 円
- $\sqrt{468n}$ が自然数となるようなnのうち、小さい方から数えて3番目のものを求めなさい。ただし、 nは自然数とする。
 - 1. n = 13 2. n = 26
- 3. n = 52 4. n = 117
- (カ) 右の図において, 4 点 A, B, C, D は円 O の周 上の点であり、AB // DC である。

また、点Eは線分ABと線分DOの延長との交 点である。

このとき、 ∠BED の大きさを求めなさい。

4. 132°

問3 次の問いに答えなさい。

(ア) 右の図1のように、平行四辺形ABCDの辺CD上に点EをCE < DEとなるようにとり、線分AEと線分BDとの交点をFとする。また、線分BD上に点Gを、EA // CGとなるようにとる。</p>

さらに,辺AD上に点HをAH>DHとなるようにとり、線分CHと線分AEとの交点を I,線分CHと線分BDとの交点をJとする。 このとき,次の(i),(ii)に答えなさい。

-(a)の選択肢 ——

- 1. $\angle AED = \angle GCD$
- 2. $\angle AIH = \angle GCH$
- 3. $\angle BFE = \angle BGC$
- 4. $\angle BJC = \angle DJH$

-(b)の選択肢 —

- 1. 1組の辺とその両端の 角がそれぞれ等しい
- 2. 2組の辺とその間の角 がそれぞれ等しい
- 3. 3組の辺がそれぞれ等
 しい
- 2組の角がそれぞれ等
 しい
- (ii) AB=3cm, BC=4cm, CE=DH=1cm, ∠ABC=60°のとき, 四角形 DJIE の面積を求めなさい。

(イ) ある中学校のバスケットボール部に所属する1年 生20人と2年生25人が、シュートの練習を行った。 右の表は、その練習でそれぞれがシュートの成功し た数を記録し、結果を学年ごとに度数分布表にまと めたものである。

この表から考えられることについて説明した次の あ~えの文のうち、正しいものをすべて選び、その 記号を書きなさい。

成功し	→、彩	٠ (-k-)	度数(人)			
成切し	/ご安	((A)	1年生	2年生		
以上		未満				
0	~	2	0	1		
2	~	4	4	4		
4	~	6	8	7		
6	~	8	3	8		
8	~	10	4	3		
10	~	12	1	1		
12	~	14	0	1		
	計		20	25		

- あ. 成功した数の中央値が含まれる階級は、1年生と2年生で同じである。
- い. 成功した数が8本以上の人の割合は、1年生より2年生の方が小さい。
- う. 1年生における成功した数の最頻値は、4本以上6本未満の階級の階級値である。
- え. 2年生における成功した数の範囲は、14本である。

(ウ) 四角形 ABCD があり、点 P は点 A を出発点とし、辺上を毎秒 1 cm の速さで B, C の順に通り、点 D に着いたところで止まる。点 P が点 A を出発してから x 秒後の、三角形 APD の面積を y cm² として x と y の関係を表すグラフを考える。ただし、グラフにおいて D は原点である。

四角形 ABCD が、図 2 のような 1 辺の長さが $30~\mathrm{cm}$ の正方形であるとき、x と y の関係を表す グラフは図3のようになる。 図 2 図3 (cm^2) A D 500 400 300 200 P 100 В C 30 40 50 60 70

四角形 ABCD が、次の(i)、(ii)であるとき、x と y の関係を表すグラフとして最も適するものを、あ との $1 \sim 6$ の中からそれぞれ 1 つ選び、その番号を答えなさい。

- (i) AB=30 cm, BC=15 cm の長方形
- (ii) AB=CD=15 cm, BC=45 cm, DA=27 cm の台形

(エ) 箱に入ったりんごと、りんごを分けるために用意された紙袋がある。紙袋に5個ずつりんごを入れると、りんごが4個と紙袋が8袋余る。また、紙袋に3個ずつりんごを入れると、りんごと紙袋のどちらも余らない。

A さんは、このときの箱に入ったりんごの個数を次のように求めた。 (i) にあてはまる式を、 (ii) にあてはまる数を、それぞれ書きなさい。

箱に入ったりんごの個数をx個として方程式をつくると,

となる。

この方程式を解くと、解は問題に適しているので、

箱に入ったりんごの個数は (ii) 個である。

問 4 右の図において、直線①は関数 y=x のグラフ、直線②は関数 y=-x-3 のグラフであり、曲線③は関数 $y=ax^2$ のグラフである。

点 A は直線①と曲線③との交点で,そのx座標は 3 である。点 B は y 軸上の点で,線分 AB はx 軸に平行である。点 C は直線②上の点で,線分 AC は y 軸に平行である。

また、点 D は直線②とx軸との交点である。点 E は線分 AC上の点で AE: EC=2:1 である。

さらに、原点を O とするとき、点 F は直線①上の点 で AO:OF=3:4 であり、その x 座標は負である。

このとき,次の問いに答えなさい。

(r) 曲線③の式 $y=ax^2$ の a の値として正しいものを次の $1\sim 6$ の中から1 つ選び,その番号を答えなさい。

1.
$$a = \frac{1}{6}$$

2.
$$a = \frac{1}{4}$$

3.
$$a = \frac{1}{3}$$

4.
$$a = \frac{3}{8}$$

5.
$$a = \frac{1}{2}$$

6.
$$a = \frac{3}{4}$$

- (イ) 直線 EF の式を y=mx+n とするときの(i) m の値と, (ii) n の値として正しいものを、それぞれ次 の $1\sim 6$ の中から 1 つ選び、その番号を答えなさい。
 - (i) mの値

1.
$$m = \frac{1}{8}$$

2.
$$m = \frac{1}{7}$$

3.
$$m = \frac{1}{6}$$

4.
$$m = \frac{2}{7}$$

5.
$$m = \frac{3}{8}$$

6.
$$m = \frac{5}{6}$$

(ii) nの値

1.
$$n = -\frac{24}{5}$$

2.
$$n = -4$$

3.
$$n = -\frac{23}{6}$$

4.
$$n = -\frac{24}{7}$$

5.
$$n = -\frac{13}{4}$$

6.
$$n = -\frac{16}{5}$$

(ウ) 点Gは直線①上の点である。四角形ABDCの面積をS, 三角形CGDの面積をTとするとき、S: T=2:1となる点Gのx座標を求めなさい。ただし、点Gのx座標は正とする。

図 1

問5 右の図1のように、1、2、3、4、5、6、7の数が1つずつ書かれた7枚のカードがある。これらのカードは、書かれた数の小さい順に左から横一列に並べられている。大、小2つのさいころを同時に1回投げ、大きいさいころの出た目の数をa、小さいさいころの出た目の数をbとする。出た目の数によって、次の【操作1】、【操作2】を順に行い、左の端にあるカードに書かれた数と、右の端にあるカードに書かれた数について考える。

1	2	3	4	5	6	7

【操作1】左から数えてlpha番目のカードを,右の端にあるカードと入れ替える。

【操作2】右から数えて b 番目のカードを、左の端にあるカードと入れ替える。

- 例

大きいさいころの出た目の数が 3, 小さいさいころの出た目の数が 5 のとき, a=3, b=5 だから,

【操作1】 図1の, 左から数えて3番目の3 のカードと, 右の端にある7 のカードを入れ替えるので、図2のようになる。

 $\begin{array}{c|c} 1 & 2 & 7 & 4 & 5 & 6 & 3 \end{array}$

【操作2】 図2の、右から数えて5番目の7のカードと、左の端にある1のカードを入れ替えるので、図3のようになる。

 $\lceil 7 \rceil \lceil 2 \rceil \lceil 1 \rceil \lceil 4 \rceil \lceil 5 \rceil \lceil 6 \rceil \lceil 3 \rceil$

図 3

図 2

この結果、左の端にあるカードに書かれた数は7、右の端にあるカードに書かれた数は3となる。

いま,図1の状態で,大,小2つのさいころを同時に1回投げるとき,次の問いに答えなさい。ただし、大,小2つのさいころはともに、1から6までのどの目が出ることも同様に確からしいものとする。

- (ア) 左の端にあるカードに書かれた数と、右の端にあるカードに書かれた数の和が12以上となる確率として正しいものを次の1~6の中から1つ選び、その番号を答えなさい。
 - 1. $\frac{1}{36}$

2. $\frac{1}{18}$

3. $\frac{1}{9}$

4. $\frac{1}{6}$

5. $\frac{1}{4}$

- 6. $\frac{1}{3}$
- (イ) 左の端にあるカードに書かれた数が、右の端にあるカードに書かれた数より小さくなる確率を求めなさい。

問6 右の図1は、長方形 ABCD を底面とし、頂点をEと する四角すいである。

また、点Fは、頂点Eから底面 ABCD に引いた垂線と底面 ABCD との交点で、辺BC の中点である。点Gは、線分EFの中点である。

AB=3cm, BC=BE=CE=4cm のとき, 次の問いに答えなさい。

- (ア) この四角すいの体積として正しいものを次の $1 \sim 6$ の中から1つ選び,その番号を答えなさい。
 - 1. $4\sqrt{3}$ cm³
- 2. 8 cm³
- 3. $8\sqrt{3}$ cm³
- 4. 16 cm³
- 5. $12\sqrt{3}$ cm³
- 6. 32 cm³
- (イ) この四角すいにおいて、3点 A、D、Gを結んでできる三角形の面積として正しいものを次の $1\sim 6$ の中から1つ選び、その番号を答えなさい。
 - 1. $2\sqrt{3}$ cm²
- 2. $3\sqrt{3}$ cm²

3. 6 cm²

4. $4\sqrt{3}$ cm²

5. 12 cm^2

- 6. 16 cm²
- (ウ) この四角すいの側面上に、図2のように点Aから辺BE、辺CEと交わるように、点Dまで線を引く。このような線のうち、長さが最も短くなるように引いた線の長さを求めなさい。

図 1

Ē

(問題は、これで終わりです。)

注意事項

- 1 HBまたはBの鉛筆(シャープペンシルも可)を使用して, の中を 塗りつぶすこと。
- 2 答えを直すときは、きれいに消して、消しくずを残さないこと。
- 3 数字や文字などを記述して解答する場合は、解答欄からはみ出さないように、はっきり書き入れること。
- 4 解答用紙を汚したり、折り曲げたりしないこと。

良い例		悪い例	
•	○ 線○ 丸囲み	小さいレ点	はみ出し うすい

	受 検 番 号								
1	0	0		0	0	0			
	1	1	1	1		1			
① ② ③ ④	1 2	2	2	2	1 2	2			
3	3	3		34	3	3			
4	4	4		4	4	4			
(5)	5	5		5	5	5			
6	6	6		6	6	6			
(6) (7) (8)	(6) (7) (8)	7		678	(6) (7) (8)	7			
8	8	8		8	8	8			
9	9	9		9	9	9			

	(\mathcal{P})	① ② ③ ④
	(1)	① ② ③ ④
問 1	(ウ)	① ② ③ ④
	(工)	① ② ③ ④
	(才)	① ② ③ ④
		*

各3点

	(ア)	① ② ③ ④
	(1)	1 2 3 4
問 2	(ウ)	① ② ③ ④
	(工)	1 2 3 4
	(4)	① ② ③ ④
	(カ)	1 2 3 4

各4点

		(i)	① ② ③ ④
	(ア)	(b)	① ② ③ ④
		(ii)	*解答欄は裏面にあります。
問3	(1)		*解答欄は裏面にあります。
P] 3	(ウ)	(i)	① ② ③ ④ ⑤ ⑥
_	(1)	(ii)	① ② ③ ④ ⑤ ⑥
	(I)	(i)	*解答欄は裏面にあります。
		(ii)	*解答欄は裏面にあります。

(ア)(i)(a)(b)は両方できて 4 点, (ii)は 4 点, (イ)は 5 点, (ウ)(i)は 2 点, (ii)は 3 点, (工)は 5 点

	(ア)		1 2 3 4 5 6
問 4	(3)	(i)	① ② ③ ④ ⑤ ⑥
向 4	(1)	(ii)	① ② ③ ④ ⑤ ⑥
	(ウ)		*解答欄は裏面にあります。

(ア)は 4 点, (イ)は両方できて 5 点, (ウ)は 5 点

四 5	(\mathcal{T})	1 2 3 4 5 6
[P] 3	(イ)	*解答欄は裏面にあります。

各5点

	(ア)	① ② ③ ④ ⑤ ⑥
問 6	(1)	① ② ③ ④ ⑤ ⑥
	(ウ)	*解答欄は裏面にあります。

アは4点,他は各5点

氏名	3		受検番号		
問3	3 (7)(ii)	cm²			
問	13 (4)				
問	3 (エ)	(i)	(ii)		
問	4 (ウ)				
問	5 (イ)				
問	6 (ウ)	cm			

問 1	(ア)	4	3点
	(4)	3	3点
	(ウ)	1	3点
	(エ)	2	3点
	(壮)	1	3点

問 2	(ア)	3	4 点
	(Y)	4	4 点
	(ウ)	1	4点
	(포)	2	4点
	(才)	4	4点
	(カ)	3	4点

	(T)	(i)	(a)	3	両方 できて 4点
		(1)	(b)	1	
		(ii)		$\frac{\sqrt{3}}{2}$ cm ²	4点
問3	(1)		٧٠, j	5点
	(ウ)	(i)		2	2点
		(ii)		6	3点
	(工)	(i)		$\frac{x-4}{5} + 8$	5点
		(ii)		54	

問 4	(ア)		3	4点
	(1)	(i)	2	両方 できて 5点
		(ii)	4	
	(ウ)		98	5点

問 5	(ア)	2	5 点
	(1)	$\frac{11}{36}$	5点

問 6	(ア)	3	4点
	(イ)	4	5点
	(ウ)	$(4+3\sqrt{3})$ cm	5点

採点上の注意

【問題全般について】

- 中間点は、問3年以外には設けないこと。
- 疑問点は複数の採点者及び点検者によって判断し、校内で統一すること。
- 正の数については、+の符号をつけても可とする。
- 多項式の項の順序、積の順序は入れかわっても可とする。
- 有限小数で表される分数は小数で表しても可とする。循環小数になるものを有限小数で表した ものや、「…」を用いて表したものは不可とする。

【中間点のある記述問題について】

- 問3年について
 - ・ (i), (ii)の内容がそれぞれ正しく記述されていれば,正答として5点を与える。 なお,次の得点項目において中間点を与えるものとする。

得点項目A (i)について正しく記述されていて、3点を与える。

得点項目B 得点項目A に基づき(ii)について正しく記述されていて、2点を与える。

- ・ したがって、中間点は3点となる。
- ・ 正答例以外の解答については、上記に準じて点を与える。