Ideas of mathematical proof. Practical class week 29

Note that solutions must be by the methods specified in the problems – even if you can see another solution, even if an easier one.

Reminder: Definition. A sequence (a_n) has a finite limit $\lim_{n\to\infty} a_n = L$ if for any $\varepsilon > 0$ there exists $N(\varepsilon)$ (depending on ε) such that $|a_n - L| < \varepsilon$ for all $n > N(\varepsilon)$. Another notation: $a_n \to L$ as $n \to \infty$.

- **8.1.** Prove from first principles, by verifying the definition, that
 - (a) $\lim_{n \to \infty} \frac{2n 20}{n + 5} = 2.$

(Note that there is no need to simplify the expression for $N(\varepsilon)$.)

- (b) $\lim_{n \to \infty} \frac{1}{\log(n+1)} = 0.$
- **8.2.** Based on the definition of a finite limit, prove that the sequence $a_n = \sqrt{n}$ has no (finite) limit.
- **8.3.** Prove by contrapositive that if 5n+6 is even for $n \in \mathbb{N}$, then n is even.
- **8.4.** By considering all possible cases of remainders after division of k by 3, prove that k(k+1)(2k+1) is divisible by 3 for any $k \in \mathbb{N}$.
- **8.5.** Prove that if 120 points are chosen in a square 10×10 cm, then there must exist two of these points at distance less than 1.5 cm from each other.
- **8.6.** Let $\mathcal{U} = \mathbb{N}$. Determine which of these statements are true:
 - (a) $\forall n_0 \, \forall n \, ((n > n_0) \Rightarrow (\frac{1}{n} < 0.003));$
 - (b) $\exists n_0 \, \forall n \, ((n > n_0) \Rightarrow (\frac{1}{n} < 0.003));$
 - (c) $\exists n_0 \exists n ((n < n_0) \land (\frac{1}{n} < 0.003)).$
- **8.7.** Use the formula in the lectures for $a^{2k+1}+1$ to prove that 8^n+1 cannot be a prime number for any $n \in \mathbb{N}$.