NOIP 2018

$\mathrm{dy}0607$

October 28, 2018

题目名称	Odyssey	Necklace	Polygon	
源文件名	odyssey	necklace	polygon	
输入文件名	odyssey.in	necklace.in	polygon.in	
输出文件名	odyssey.out	necklace.out	polygon.out	
题目类型	传统型	传统型	传统型	
每个测试点时限	1.0s	1.0s	1.5s	
空间限制	512MB	512MB	512MB	
编译命令	-lm -O2 -std = c + +11			

Notes:

- 1. 评测在Ubuntu16.04(64bit)上进行,评测时开启无限栈;
- 2. 评测机配置为Intel® Pentium(R) CPU G2030 @ 3.00GHz × 2, 内存4GB;
- 3. 题目难度与顺序无关。

NOIP 2018 Simulation 1 ODYSSEY

1 Odyssey

1.1 Description

 $Santiago f_n$ 个梦想中的地点,于是他决定进行一次长途旅行。

整个世界可以视为一个二维平面,而Santiago的家乡Andalusia就在原点上,而另外n个点都在第一象限内,其中第i个点的坐标为 (X_i,Y_i) 。如果对于两个点i,j(将原点视为0号点),满足 $\max(X_i,Y_i) \leq \max(X_j,Y_j)$,那么i到j有一条有向道路,道路长度为 $|X_i-X_j|+|Y_i-Y_j|$ 。 Santiago希望找一条从Andalusia开始的路径,经过所有的点至少一次,并最小化路径总长度。

1.2 Input

```
从文件odyssey.in中读入数据.
```

第一行一个整数n。

接下来n行,每行两个整数 X_i,Y_i 。

1.3 Output

输出到文件odyssey.out中.

一行一个整数表示最小的路径长度,如果路径不存在,输出 $\binom{2333^{2333}}{233^{2333}}$ 的值。

1.4 Sample1

1.4.1 Input

8

2 2

1 4

2 3

3 1

3 4

1 1

4 3

1 2

1.4.2 Output

15

NOIP 2018 Simulation 1 ODYSSEY

1.5 Sample2

见选手目录下的odyssey/odyssey2.in与odyssey/odyssey2.ans.

1.6 Subtasks

对于所有数据,有 $1 \le n \le 2 \times 10^5, 1 \le X_i, Y_i \le 10^9$,可能有重复的点。

- Subtask1(24%), $n \le 8$.
- Subtask2(18%), $n \le 18$.
- Subtask3(16%), $n \le 5000$.
- Subtask4(16%), X_i, Y_i 在[1, n]內随机生成。
- Subtask5(26%), 没有特殊的约束。

2 Necklace

2.1 Description

Scout在Boo的盒子中找到了一条项链,这条项链由n个珍珠构成,第i颗的重量为 w_i 。项链是环形的,在项链上第i颗珍珠和 $(i \mod n) + 1$ 相邻。

Scout希望将项链从若干个位置切开,将切成的每一份分别藏在不同的地方,并保证每一份的重量之和均不超过m。

现在Scout会给出q次询问,每次给出一个m,你需要回答对于每个m,至少要将项链切成多少份,才能使每一份的重量之和均不超过m。

2.2 Input

```
从文件necklace.in中读入数据.
```

第一行两个整数n,q。

第二行n个整数表示 w_i 。

接下来q行,每行一个整数m表示询问。

2.3 Output

输出到文件necklace.out中.

输出q行,按顺序给出每一个询问的答案。

2.4 Sample1

2.4.1 Input

6 3

2 4 2 1 3 2

7

4

6

2.4.2 Output

2

4

3

NOIP 2018 Simulation 2 NECKLACE

2.4.3 Explanation

对于第一个询问,一种划分方案为2)(421)(32. 对于第二个询问,一种划分方案为2)(4)(21)(3)(2. 对于第三个询问,一种划分方案为(24)(213)(2).

2.5 Sample2

见选手目录下的necklace/necklace2.in与necklace/necklace2.ans.

2.6 Subtasks

对于所有数据,有 $1 \le n \le 10^6, 1 \le q \le 50, 0 \le w_i \le 10^9, \max\{w_i\} \le m \le 10^{15}.$

- Subtask1(22%), $n \le 15$.
- Subtask2(21%), $n \le 10^3$.
- Subtask3(34%), $n \le 5 \times 10^4$.
- Subtask4(23%), 没有特殊的约束.

NOIP 2018 Simulation 3 POLYGON

3 Polygon

3.1 Description

Amir有一个 $n \times n$ 的矩阵A,初始时每个位置都是0;他还有一个k条边的简单多边形(即除了相邻的边之外,不会有两条边相交),满足所有的边都与坐标轴平行,且所有顶点的坐标都是非负整数。

对于任意 $x,y\geq 0$,如果以(x,y),(x+1,y),(x,y+1),(x+1,y+1)为顶点的正方形在多边形内部,那么设f(x,y)=1,否则f(x,y)=0;而 $g(x,y)=\sum_{i=0}^{x}\sum_{j=0}^{y}f(i,j)$ 。

现在Amir会进行q次操作,有两种类型:

- 1 a b 对所有 $a \le x \le n, b \le y \le n$, $\Diamond A[x][y] = A[x][y] + (a+b) \times f(x-a, y-b)$

方便起见,所有操作在模232意义下进行。

Amir想考考Hassan所有操作结束后矩阵中所有元素的异或和是多少,但他自己也算不出结果,于是这个问题就交给你了。

3.2 Input

从文件polygon.in中读入数据.

第一行三个整数n, k, q.

接下来k行,每行两个整数 X_i,Y_i ,逆时针给出多边形的顶点坐标.

接下来q行,每行三个整数描述一次操作。

3.3 Output

输出到文件polygon.out中.

输出一个整数表示答案.

3.4 Sample1

3.4.1 Input

- 3 4 2
- 0 0
- 2 0
- 2 2
- 0 2

```
1 1 1
2 2 2
3.4.2 Output
20
3.4.3 Explanation
  f(i,j)构成的矩阵:
: : :
0 0 0 ...
1 1 0 ...
1 1 0 ...
  g(i,j)构成的矩阵:
: : :
2 4 4 ...
2 4 4 ...
1 2 2 ...
  第一次操作后, A矩阵为: (左下角为A[1][1])
0 0 0
2 2 0
2 2 0
  第二次操作后:
0 8 16
2 6 8
2 2 0
  求异或和,得到答案为20。
```

3.5 Sample2

见选手目录下的polygon/polygon2.in与polygon/polygon2.ans.

NOIP 2018 Simulation 3 POLYGON

3.6 Sample3

见选手目录下的polygon/polygon3.in与polygon/polygon3.ans.

3.7 Subtasks

对于所有数据,满足 $1\leq n\leq 5\times 10^3, 0\leq q\leq 2\times 10^5, 4\leq k\leq 200, 0\leq X_i, Y_i\leq n, 1\leq a,b\leq n$ 。

数据保证多边形不自交,且所有内角均不为 π (即内角均不为平角)。

本题共20个测试点,每个测试点5分。各个测试点还满足如下约束:

测试点编号	k	n	q	操作种类
1	=4	≤ 100	= 0	1
2			≤ 100	
3				1,2
4		$\leq 5 \times 10^3$	$\leq 5 \times 10^3$	1
5				1, 2
6			$\leq 2 \times 10^5$	1
7				1,2
8				1, 2
9	≤ 40	≤ 100	$\leq 10^3$	1
10				1,2
11				
12		$\leq 5 \times 10^3$	$\leq 2 \times 10^5$	1
13				
14				
15				
16				1,2
17				1, 2
18	≤ 200			1
19				1
20				1,2