

Contents

- History of computer network
- Computer network
- Network topology
- Network protocol
- Network Components
- Data transmission: Switching Techniques
- Packet-Switched Networks problems:
 - o Delay, Loss, and Throughput in
- Protocol Layers and Their Service Models
- OSI model
- ▼ TCP/IP model

Switching Techniques

Circuit Switching Vs Packet Switching

Circuit Switching	Packet Switching
Physical path between source and destination	No physical path
All packets use same path	Packets travel independently
Reserve the entire bandwidth in advance	Does not reserve
Bandwidth Wastage	No Bandwidth wastage
No store and forward transmission	Supports store and forward transmission

21/08/2022

Circuit Switching: FDM and TDM

- 50 FDM (frequency-division multiplexing): the frequency spectrum of a link is divided up among the connections established across the link (with analog signals)
 - Ex: In telephone/tivi networks, FDM=4 kHz (4,000 cycles/s) => bandwidth
- 50 TDM (time-division multiplexing): time is divided into frames of fixed duration, and each frame is divided into a fixed number of time slots (with analog & digital signals)
 - o TDM is efficient, has low conflict
 - Ex: the link transmits 8.000 frames/s and each slot consists of 8 bits, then the transmission rate of a circuit is 64 kbps (8000x8)

4 users frequency time TDM Slot time slots AAA BBB C C C Multiplexer

Example:

21/08/2022

Packet-switching: store-and-forward

- store and forward: entire packet must arrive at router before it can be transmitted on next link
- a packet of L bits (size) over a link with transmission rate R bits/sec, then the time to transmit the packet is L/R seconds (1 packet on 1 link)

- Example: time (source -> des)
 - L = 7.5 Mbits
 - R = 1.5 Mbps
 - o time to transmit 1pkt/1link: 5s
 - o transmission delay (2links, 1 pkts): 2L/R
 - o 3pkts: 4L/R

the general case of sending one packet from source to destination over a path consisting of Ninks each of rate R (using N-1 router) between source and destination

$$d_{end-to-end} = N \frac{L}{R}$$

21/08/2022

Data transmission: Switching Techniques

The switching technique will decide the best route for data transmission.

Contents

- History of computer network
- so Computer network
- Network topology
- n Network protocol
- Network Components
- Packet-Switched Networks problems
 - o Delay, Loss, and Throughput in
- Protocol Layers and Their Service Models
- SI model
 Si model
- ▼ TCP/IP model

21/08/2022

Packet-Switched Networks

- Store and forward:
 - entire packet must arrive at router before it can be transmitted on next link
- Ideally,
 - Internet services need to move as much data as we want between any two end systems, instantaneously, without any loss of data.
- But:
 - computer networks necessarily constraints throughput (the amount of data per second that can be transferred) between end systems, introduce delays between end systems, and can actually lose packets
- ⇒ Problems: Delay, Loss, and Throughput

Delay in Packet-Switched Networks

- Packets experience delay on end-to-end path
- Four sources of delay at each hop

1. Processing delay:

 The time to examine the packet's header and determine where to direct the packet

2. Queueing delay

- The time waiting to be transmitted onto the link
- Depends on congestion level of router

Delay in Packet-Switched Networks

3. Transmission Delay: T

The time required to transmit all of the packet's bits into the link

R = Link bandwidth (bps)

L = Packet length (bits)

T = L/R

Note: s and R are very different quantities

4. Propagation Delay: dprop

The time required to propagate from the beginning of the link to router

d = Length of physical link

s = propagation speed in medium $(\sim 2 \times 10^8 \text{ m/sec})$

 $d_{prop} = d/s$

Fiber: $v = velocity of light = 3x10^8 \text{m/s}$

Queueing delay

- d_{queue} is the time it takes for the packet to be transmitted onto the link
- the length of this time is defined by the number of packets that was added to the queue prior to this packet

R = Link bandwidth (bps)

L = Packet length (bits)

a = Average packet arrival rate

Traffic intensity = La/R

- La/R ~ 0: Average queueing delay small
- □ $La/R \rightarrow 1$: Delays become large
- La/R > 1: More "work" arriving than can be serviced, average delay infinite!

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- $polesize{1}{m} d_{proc} = processing delay: typically a few microsecs or less$

 $d_{\rm proc}$ and $d_{\rm queue}$ depend on the speed of processor speed of processor is very high, $d_{\rm queue}$ and $d_{\rm proc}$ are less

- ø d_{trans} = transmission delay: significant for low-speed links
- ю d_{prop} = propagation delay: a few microsecs to hundreds of msecs

"Real" Internet Delays and Routes

traceroute (or tracert): Routers, round-trip delays on source-dest path Also: pingplotter, various Windows programs

Three delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu cs-gw (128.119.240.254) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms trans-oceanic 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms 18 * * *

means no response (probe lost, router not replying)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

Packet loss

- gueue (aka buffer) preceding link in buffer has finite capacity
 - o a packet can arrive to find a full queue.
 - With no place to store such a packet, a router will drop that packet; that is, the packet will be lost
- so lost packet may be retransmitted by previous node, by source end system, or not at all

Latency, Throughput, bandwidth

- Latency The time taken for <u>a packet</u> to be transferred across a network. You can measure this as one-way to its destination or as a round trip.
- 50 Throughput The quantity of data being sent and received within a unit of time
- 50 The **bandwidth** of a network specifies the maximum number of conversations that the network can support

21/08/2022 21

Latency vs Throughput

- The more routers a packet has to travel through the more latency there is because each router has to process the packet
- Throughput is a good way to measure the performance of the network connection because it tells you how many messages are arriving at their destination successfully
- Both network latency and throughput are important because they have an effect on how well your network is performing.
- The bandwidth of your network is <u>limited to the standard of your internet</u> <u>connection</u> and the capabilities of your network devices
- Tools for Measuring Network Throughput, BW
 - SolarWinds Flow Tool Bundle
 - speedtest

Excersices

- _ജ 1.
 - How long does it take a packet of length 1,000 bytes to propagate over a link of distance 2,500 km, propagation speed 2.5 x 10⁸ m/s, and transmission rate 2 Mbps?
 - More generally, <u>how long</u> does it take a packet of length L to propagate over a link of distance d, propagation speed s, and transmission rate R bps?
 - o Does this delay depend on packet length?
 - o Does this delay depend on transmission rate?
- 2. Suppose Host A wants to send a large file to Host B. The path from Host A to Host B has **three** links, of rates $R_1 = 500$ kbps, $R_2 = 2$ Mbps, and $R_3 = 1$ Mbps.
 - a. Assuming no other traffic in the network, what is <u>the throughput</u> for the file transfer?
 - b. Suppose the file is 4 million bytes. Dividing the file size by the throughput, roughly how long will it take to transfer the file to Host B?

 $_{21/08/2022}$ c. Repeat (a) and (b), but now with R2 reduced to 100 kbps.

23