# Riconoscimento e tracciamento di elementi su video ad alta risoluzione

Studente: Davide Liu

Relatore: Prof. Lamberto Ballan

Tutor aziendale: Leonardo Dal Zovo

Università degli studi di Padova Corso di Laurea Triennale in informatica

Esame di laurea

#### Azienda - Studiomapp

- Startup innovativa fondata a fine 2015 con sede a Ravenna
- Sviluppa algoritmi di intelligenza artificiale applicati alla computer vision
- Studio del territorio tramite analisi di immagini satellitari
- Classificata al quarto posto nella sfida di object detection xView Challenge organizzata dal Pentagono



### Computer vision

''If we want machines to think, we need to teach them to see'' Li Fei Fei

Object detection



Object tracking



### Object detection

- Interpretare il contenuto di un immagine
- Riconoscere gli elementi presenti in essa:
  - Bounding box
  - Categoria
  - Probabilità
- Stato dell'arte:
  - Convolutional neural network
  - Faster R-CNN





## Difficoltà nell'elaborare immagini in alta risoluzione

- I modelli esistenti ridimensionano automaticamente le immagini troppo grandi per adattarle al loro input:
  - Perdita di risoluzione
- Processare immagini a bassa risoluzione è più efficiente:
  - Meno pixels da elaborare
- I datasets utilizzati per allenare i modelli sono composti da milioni di immagini in bassa risoluzione (ImageNet):
  - Immagini in alta definizione più difficili da reperire

### Object detection con frammentazione

- Suddividere un' immagine in regioni
- Effettuare la detection su una regione alla volta
- Eliminare le boxes molto sovrapposte
  - Non-Max Suppression
- Problema: uno stesso elemento può venire individuato più volte
- Algoritmo per ricomporre le detections frammentate



### Algoritmo per ricomporre le detections frammentate

- Si raggruppano tutte le boxes che potrebbero appartenere allo stesso elemento:
  - Stessa categoria
  - Vicine tra loro o intersecate
  - Individuate su regioni diverse
  - Dimensioni compatibili
- Queste boxes vengono sostituite con una nuova box che le racchiude tutte



#### Risultati detection

- Dataset xView composto da immagini satellitari (60 categorie diverse)
- Molti oggetti risultano molto piccoli e sfocati
- Metriche mAP e F1 circa al 25%
  - mAP migliora fino al 1.7%
  - F1 migliora fino al 16.9%
- I miglioramenti sono dovuti ad un incremento della precision e della recall



### Object tracking

- Tracciare specifici elementi attraverso una sequenza di frames
- Assegnazione di un ID univoco ad ogni elemento tracciato
- Tracciando un oggetto in movimento possono sorgere alcuni dei seguenti problemi:
  - Occlusione
  - Sfocatura
  - Luminosità
  - Etc...



### Algoritmo di tracking

- Effettuare una detection per ogni frame
- Sfruttare dei trackers per tracciare gli elementi presenti nel video
- Ogni tracker usa un filtro per prevedere la prossima locazione dell'oggetto tracciato a partire dalle locazioni precedenti
  - Filtro di Kalman
- Assegnare ad ogni tracker il rispettivo oggetto tracciato individuato tramite la nuova detection







### Assegnazione trackerdetection

- Calcolare un valore di similarità per ogni coppia trackerdetection:
  - Intersection over Union (IoU)
  - Dimensione delle aree
  - Rapporto tra i lati
- Effettuare gli assegnamenti massimizzando il valore di similarità
- Creare nuovi tracker per tracciare eventuali nuovi oggetti
- Cancellare i trackers che da troppo frames non sono più stati assegnati



### Risultati tracking

- Dataset VisDrone2019 formato da video ripresi da un drone
- Solo 5 categorie di elementi:
  - Detections molto più semplici rispetto al precedente dataset
- Circa il 70% degli oggetti vengono tracciati per almeno l'80% della loro durata
- Metriche IDF1 e MOTA circa al 50%
- Aumentando la qualità della detection aumenta anche la qualità del tracking