First Name:	Last Name:
Student Number:	

ECE 421S — Introduction to Machine Learning

Midterm Examination Monday, Febrary 24th, **2020** 6:15 p.m. – 8:00 p.m.

Instructors: Ashish Khisti and Ben Liang

Circle your tutorial section:

- $\begin{array}{l} \bullet \text{ }^{\text{TUT0101}}\text{ Thu } \text{ }^{\text{8-5}}\text{ } \text{ }^{\text{(SF2202)}}\text{ ent Project Exam Help} \\ \bullet \text{ }^{\text{TUT0102}}\text{ }^{\text{Thu }}\text{ }^{\text{8-5}}\text{ }^{\text{(SF2202)}}\text{ ent Project Exam Help} \end{array}$
- TUT0103 Tue 10-12 (SF2202)
- TUT0104 Fri 9-1 https://powcoder.com

Instructions

- Please read the former instruction at powcoder
- You have one hour forty-five minutes (1:45) to complete the exam.
- Please make sure that you have a complete exam booklet.
- $\bullet\,$ Please answer all questions. Read each question carefully.
- $\bullet\,$ The value of each question is indicated. Allocate your time wisely!
- No additional pages will be collected beyond this answer book. You may use the reverse side of each page
 if needed to show additional work.
- \bullet This examination is closed-book; One 8.5 \times 11 aid-sheet is permitted. A non-programmable calculator is also allowed.
- Good luck!

1. (20 MARKS) Consider a binary linear classification problem where the data points are two dimensional, i.e., $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ and the labels $y \in \{-1, +1\}$. Throughout this problem consider a data-set with the following four points:

$$\mathcal{D} = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \}$$

where the input data-vectors are given by

$$\mathbf{x}_1 = (0,0)^T$$
, $\mathbf{x}_2 = (0,1)^T$, $\mathbf{x}_3 = (1,1)^T$, $\mathbf{x}_4 = (1,0)^T$.

and the associated labels are given by

$$y_1 = +1$$
, $y_2 = -1$, $y_3 = +1$, $y_4 = -1$.

Our aim is to find a linear classification rule $w_0 + w_1x_1 + w_2x_2$, with weight vector $\mathbf{w} = (w_0, w_1, w_2)^T$, that classifies this dataset.

[Important: Recall that, in our learning algorithms and their analysis, we transform the data vectors to include the constant term, i.e., $\mathbf{x}_1 = (0,0)^T$ must be transformed to $\tilde{\mathbf{x}}_1 = (1,0,0)^T$ etc.]

5 marks

(a) Is there a weight vector **w** that satisfies the following property?

$$y_n(\mathbf{w}^T\mathbf{x}_n) > 0$$
 for all $n \in \{1, 2, 3, 4\}$.

 $\begin{array}{c} \text{If your answer is yes, find such Project Exam Help} \\ \text{Assignment Project Exam Help} \end{array}$

https://powcoder.com

(b) Suppose we implement the perceptron learning algorithm as discussed in class with the initial weight vector $\mathbf{w} = (3.5, 0, 1)^T$ and the standard update rule for mis-classified points. Assume that each point that falls on the boundary is treated as a mis-classified point. The algorithm visits the points in the following order:

$$\mathbf{x}_1 \to \mathbf{x}_2 \to \mathbf{x}_3 \to \mathbf{x}_4 \to \mathbf{x}_1 \to \mathbf{x}_2 \cdots$$

until the training error $E_{\text{in}}(\mathbf{w}) \leq \frac{1}{4}$, at which time the algorithm terminates. Here the training error is defined as usual:

$$E_{\rm in}(\mathbf{w}) = \frac{1}{4} \sum_{n=1}^{4} \mathbf{1}(\hat{y}_n \neq y_n),$$

where $\mathbf{1}(\cdot)$ is the indicator function and \hat{y}_n is the output of the classifier.

Show the output of the perceptron learning algorithm in each step and sketch the final decision boundary when the algorithm terminates.

Assignment Project Exam Help

https://powcoder.com

[continue part (b) here]

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

total/10 Page 4 of 11

(c) Suppose we now consider binary logistic regression to classify the points in \mathcal{D} , with the following sigmoid function for likelihood:

$$\hat{P}(y = +1|\mathbf{x}) = \theta(\mathbf{w}^T\mathbf{x}) = \frac{e^{\mathbf{w}^T\mathbf{x}}}{1 + e^{\mathbf{w}^T\mathbf{x}}}.$$

Assume that we use the log-loss function (i.e., log-likelihood) to measure training error as discussed in class. Among the following two possible solutions for \mathbf{w} , which one would we prefer?

$$\mathbf{w}_1 = (0.5, -1, -1)^T$$

$$\mathbf{w}_2 = (0.5, -1, 0)^T$$

Assignment Project Exam Help

https://powcoder.com

2. (20 MARKS) Consider linear regression over dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$. Suppose the labels $y_n \in \{-1, +1\}$, for $n = 1, 2, \dots, N$. For any given model parameter \mathbf{w} , instead of the usual squared error, we use the following loss function for each example \mathbf{x}_n :

$$e_n(\mathbf{w}) = (\max(0, 1 - y_n \mathbf{w}^T \mathbf{x}_n))^2.$$

The training error $E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} e_n(\mathbf{w})$.

10 marks

(a) Derive the gradient $\nabla E_{\rm in}(\mathbf{w})$.

Assignment Project Exam Help

https://powcoder.com

(b) Write the pseudo code for the Stochastic Gradient Descent method to minimize $E_{\rm in}(\mathbf{w})$, with minibatch size 1.

Assignment Project Exam Help https://powcoder.com

(c) What does it mean to have $e_n(\mathbf{w}) = 0$ for some given \mathbf{w} and \mathbf{x}_n ? You should give a **geometric** interpretation. (Hint: consider two cases depending on the value of y_n .)

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

total/5 Page 8 of 11

3. (20 MARKS) Consider a binary linear classification problem where the data points are two dimensional, i.e., $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ and the labels $y \in \{-1, +1\}$. We wish to build a multi-layer perceptron to classify the dataset as shown below, where the "+" and "-" signs indicate examples with labels +1 and -1, respectively.

Assignment Project Exam Help

6 marks

(a) Design two perceptrons to implement the two lines shown in the figure above. The lines are $x_2 = x_1$ and $x_2 = -\frac{1}{2}x_1 + 1$. To ensure uniformity for easy marking by the teaching staff, each of your perceptrons must classify the region above the line to +1.

(b) Design a (**single-layer**) perceptron to implement the NAND function. Recall that NAND(a, b) = NOT(AND(a, b)) = OR(NOT(a), NOT(b)), where a and b are binary variables. You should use $\{-1, +1\}$ to label a binary variable as shown in class.

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

total/6 Page 10 of 11

(c) Use **only** the perceptrons in parts (a) and (b) to build a multi-layer perceptron to classify the dataset in the figure. You may use as many copies of these perceptrons as you need. **Draw** your design and clearly label all edges and weights.

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

total/8 Page 11 of 11