Database Normalization

Dr. Seema Gupta Bhol

Definition

- This is the process which allows the elimination of redundant data from database.
- This involves restructuring the tables to successively meeting higher forms of Normalization.
- A properly normalized database should have the following characteristics
 - Scalar values (as opposed to list of values) in each fields
 - Absence of redundancy.
 - Minimal use of null values.
 - Minimal loss of information.

Normal Forms

- A set of conditions on table structure that improves maintenance. Normalization removes processing anomalies:
 - Update
 - Inconsistent Data
 - Addition
 - Deletion

Levels of Normalization

- Levels of normalization based on the amount of redundancy in the database.
- Various levels of normalization are:
 - First Normal Form (1NF)
 - Second Normal Form (2NF)
 - Third Normal Form (3NF)
 - Boyce-Codd Normal Form (BCNF)
 - Fourth Normal Form (4NF)
 - Fifth Normal Form (5NF)
 - Domain Key Normal Form (DKNF)

Most databases should be 3NF or BCNF in order to avoid the database anomalies.

Levels of Normalization

Each higher level is a subset of the lower level

Normalization

- Normalization is a multi-step process beginning with an "unnormalized" relation.
- Process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations.

First Normal Form (1NF)

A table is considered to be in 1NF if all the fields contain only scalar values (as opposed to list of values).

Example: Books (Not 1NF)

ISBN	Title	AuName	AuPhone	PubName	PubPhone	Price
0-321-32132-1	Balloon	Sleepy, Snoopy, Grumpy	321-321-1111, 232-234-1234, 665-235-6532	Small House	714-000-0000	\$34.00
0-55-123456-9	Main Street	Jones, Smith	123-333-3333, 654-223-3455	Small House	714-000-0000	\$22.95
0-123-45678-0	Ulysses	Joyce	666-666-6666	Alpha Press	999-999-9999	\$34.00
1-22-233700-0	Visual Basic	Roman	444-444-4444	Big House	123-456-7890	\$25.00

Author and AuPhone columns are not scalar

1NF - Decomposition

- Place all items that appear in the repeating group in a new table
- 2. Designate a primary key for each new table produced.
- 3. In the new table, add primary key which is the primary key of the table from which the repeating group was extracted or vice versa.

Example (1NF)

ISBN	Title	PubName	PubPhone	Price
0-321-32132-1	Balloon	Small House	714-000-0000	\$34.00
0-55-123456-9	Main Street	Small House	714-000-0000	\$22.95
0-123-45678-0	Ulysses	Alpha Press	999-999-9999	\$34.00
1-22-233700-0	Visual Basic	Big House	123-456-7890	\$25.00

ISBN	AuName	AuPhone
0-321-32132-1	Sleepy	321-321-1111
0-321-32132-1	Snoopy	232-234-1234
0-321-32132-1	Grumpy	665-235-6532
0-55-123456-9	Jones	123-333-3333
0-55-123456-9	Smith	654-223-3455
0-123-45678-0	Joyce	666-666-6666
1-22-233700-0	Roman	444-444-4444

1st Normal Form

- Table has a primary key
- Table has no repeating groups

- A <u>multivalued attribute</u> is an attribute that may have several values for one record.
- A repeating group is a set of one or more multivalued attributes that are related.

Example1

(a)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
A	1	A	A
			į

(b)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Diocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	Dnumber	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

Figure 10.8

Normalization into 1NF.

(a) A relation schema that is not in 1NF. (b)

Example state of relation DEPARTMENT. (c) 1NF version of the same relation with redundancy.

Example 2

(a)

EMP_PROJ		Projs	
Ssn	Ename	Pnumber	Hours

(b)

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya, AliciaJ.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
		20	15.0
888665555	Borg, James E.	20	NULL

(c)

EMP_PROJ1

Ssn	Ename
- Secretary	Mar 1 (41) 7 (41)

EMP_PROJ2

number	Hours
	number

Figure 10.9

Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ relation with a nested relation attribute PROJS. (b) Example extension of the EMP_PROJ relation showing nested relations within each tuple. (c) Decomposition of EMP_PROJ into relations EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

Second Normal Form (2NF)

For a table to be in 2NF, there are two requirements

- The database is in first normal form.
- All nonkey attributes in the table must be fully functionally dependent on the primary key

Note: Remember that we are dealing with non-key attributes

Example 1 (Not 2NF)

Scheme → {Title, PubId, AuId, Price, AuAddress}

- 1. Key → {Title, PubId, AuId}
- 2. {Title, PubId, AuID} → {Price}
- 3. $\{AuID\} \rightarrow \{AuAddress\}$
- 4. AuAddress does not belong to a key
- 5. AuAddress functionally depends on AuId which is a subset of a key

Example 2 (Not 2NF)

Scheme → {City, Street, HouseNumber, HouseColor, CityPopulation}

- key → {City, Street, HouseNumber}
- 2. {City, Street, HouseNumber} → {HouseColor}
- 3. $\{City\} \rightarrow \{CityPopulation\}$

- CityPopulation does not belong to any key.
- CityPopulation is functionally dependent on the City which is a proper subset of the key.

Example 3 (Not 2NF)

Scheme → {studio, movie, budget, studio_city}

- 1. Key → {studio, movie}
- 2. {studio, movie} → {budget}
- 3. {studio} → {studio_city}

- studio_city is not a part of a key
- studio_city functionally depends on studio which is a proper subset of the key

2NF - Decomposition

- 1. If a data item is fully functionally dependent on only a part of the primary key, move that data item and that part of the primary key to a new table.
- 2. If other data items are functionally dependent on the same part of the key, place them in the new table also
- 3. Make the partial primary key copied from the original table the primary key for the new table. Place all items that appear in the repeating group in a new table

Example 1 (Convert to 2NF)

Old Scheme → Table {<u>Title, PubId, AuId</u>, Price, AuAddress}

New Scheme → Table1 {<u>Title, PubId, AuId</u>, Price}

New Scheme → Tabl2 {AuId, AuAddress}

2NF - Decomposition

Example 2 (Convert to 2NF)

```
Old Scheme → Table (Studio, Movie, Budget, StudioCity)
```

New Scheme → Table 1{Movie, Studio, Budget}

New Scheme → Table2 (Studio, City)

Example 3 (Convert to 2NF)

Old Scheme → {City, Street, HouseNumber, HouseColor, CityPopulation}

New Scheme → {City, Street, HouseNumber, HouseColor}

New Scheme → {City, CityPopulation}

2nd Normal Form

No partial dependencies

No attribute depends on only some of the attributes of a concatenated key.