
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2010; month=1; day=20; hr=15; min=8; sec=51; ms=192;]

Validated By CRFValidator v 1.0.3

Application No: 10584183 Version No: 3.0

Input Set:

Output Set:

Started: 2010-01-05 12:14:32.943 **Finished:** 2010-01-05 12:14:35.841

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 898 ms

Total Warnings: 21
Total Errors: 0

No. of SeqIDs Defined: 39
Actual SeqID Count: 39

Err	or code	Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(27)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(28)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(29)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(30)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(31)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(32)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(33)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(34)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(36)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(37)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(38)

Input Set:

Output Set:

Started: 2010-01-05 12:14:32.943

Finished: 2010-01-05 12:14:35.841

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 898 ms

Total Warnings: 21
Total Errors: 0

No. of SeqIDs Defined: 39

Actual SeqID Count: 39

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110		UNAHA SHII,													
<120)> PI	REVEI	NTIVE	E/REN	⁄IEDY	FOR	CANO	CER							
<130	0> 6!	5792	(463	342)											
		10584		_											
<141	L> 2	2010-	-01-0)5											
<150)> P(CT/JI	2004	1/019	9724										
<151	L> 20	004-1	12-24	1											
		200 003-1			2										
				_											
<160)> 3!	9													
<170)> Pa	atent	In v	ersi	Lon 3	3.5									
<210															
	L> 8: 2> PI														
		omo :	sapie	ens											
< 400)> 1														
Met 1	Leu	Arg	Thr	Ala 5	Met	Gly	Leu	Arg	Ser 10	Trp	Leu	Ala	Ala	Pro 15	Trp
Gly	Ala	Leu	Pro	Pro	Arg	Pro	Pro	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu
			20					25					30		
Leu	Leu	Leu	Gln	Pro	Pro	Pro	Pro	Thr	Trp	Ala	Leu	Ser	Pro	Ara	Ile
Leu	Lea	35	0111	110	110	110	40		TTP	1114	Lea	45	110	1119	110
Ser	Leu	Pro	Leu	Gly	Ser	Glu	Glu	Arg	Pro	Phe	Leu	Arg	Phe	Glu	Ala
	50					55					60				
	50					55					60				
Glu		Ile	Ser	Asn	Tyr		Ala	Leu	Leu			Arg	Asp	Gly	Arg
Glu 65		Ile	Ser	Asn	Tyr 70		Ala	Leu	Leu	Leu 75		Arg	Asp	Gly	Arg 80
65	His				70	Thr				75	Ser				80
65	His				70	Thr				75	Ser		Asp		80
65	His			Gly	70	Thr			Leu	75	Ser			Ser	80

Asp	Ala	Glu 115	Lys	Lys	Gln	Gln	Cys 120	Ser	Phe	Lys	Gly	Lys 125	Asp	Pro	Gln
	Asp 130					135	_				140				
145	Leu				150					155					160
	Asn			165					170					175	
	Leu		180		_			185					190		
	Phe	195					200					205			
Pro	210 Thr	Lys	Thr	Glu	Ser	215 Ser	Leu	Asn	Trp	Leu	220 Gln	Asp	Pro	Ala	Phe
225 Val	Ala	Ser	Ala	Tyr	230 Ile	Pro	Glu	Ser	Leu	235 Gly	Ser	Leu	Gln	Gly	240 Asp
Asp	Asp	Lys	Ile	245 Tyr	Phe	Phe	Phe	Ser	250 Glu	Thr	Gly	Gln	Glu	255 Phe	Glu
Phe	Phe		260 Asn	Thr	Ile	Val		265 Arg	Ile	Ala	Arg		270 Cys	Lys	Gly
Asp	Glu	275 Gly	Gly	Glu	Arg		280 Leu	Gln	Gln	Arg	_	285 Thr	Ser	Phe	Leu
_	290 Ala	Gln	Leu	Leu	_	295 Ser	Arg	Pro	Asp	_	300 Gly	Phe	Pro	Phe	
305 Val	Leu	Gln	Asp	Val 325	310 Phe	Thr	Leu	Ser	Pro 330	315 Ser	Pro	Gln	Asp	Trp 335	320 Arg
				525					550					555	

Asp Thr Leu Phe Tyr Gly Val Phe Thr Ser Gln Trp His Arg Gly Thr

340 345 350

Thr Glu Gly Ser Ala Val Cys Val Phe Thr Met Lys Asp Val Gln Arg 355 360 365 Val Phe Ser Gly Leu Tyr Lys Glu Val Asn Arg Glu Thr Gln Gln Trp 375 380 Tyr Thr Val Thr His Pro Val Pro Thr Pro Arg Pro Gly Ala Cys Ile 385 390 395 400 Thr Asn Ser Ala Arg Glu Arg Lys Ile Asn Ser Ser Leu Gln Leu Pro 410 405 Asp Arg Val Leu Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gln 420 425 430 Val Arg Ser Arg Met Leu Leu Gln Pro Gln Ala Arg Tyr Gln Arg 435 440 Val Ala Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu 450 455 Phe Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly 465 470 475 Pro Arg Val His Ile Ile Glu Glu Leu Gln Ile Phe Ser Ser Gly Gln 490 485 495 Pro Val Gln Asn Leu Leu Asp Thr His Arg Gly Leu Leu Tyr Ala 500 505 510 Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn Cys Ser Leu 515 520 Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp Pro Tyr Cys Ala 530 535 540 Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu Tyr Gln Pro Gln Leu 550 555 545

Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu Gly Ala Ser Ala Lys Asp

570

575

565

Leu Cys Ser	Ala Ser 580	Ser Val	Val Sei 585		Phe Val	Pro Thr 590	Gly
Glu Lys Pro 595	Cys Glu	Gln Val	Gln Phe	e Gln Pro	Asn Thr	Val Asn	Thr
Leu Ala Cys 610	Pro Leu	Leu Ser 615		ı Ala Thr	Arg Leu 620	Trp Leu	Arg
Asn Gly Ala 625	Pro Val	Asn Ala	Ser Ala	a Ser Cys 635		Leu Pro	Thr 640
Gly Asp Leu	Leu Leu 645	Val Gly	Thr Glr	n Gln Leu 650	Gly Glu	Phe Gln 655	Cys
Trp Ser Leu	Glu Glu 660	Gly Phe	Gln Glr 665		Ala Ser	Tyr Cys 670	Pro
Glu Val Val 675	Glu Asp	Gly Val	Ala Asr	o Gln Thr	Asp Glu 685	Gly Gly	Ser
Val Pro Val 690	Ile Ile	Ser Thr	-	g Val Ser	Ala Pro	Ala Gly	Gly
Lys Ala Ser 705	Trp Gly	Ala Asp	Arg Ser	Tyr Trp	_	Phe Leu	Val 720
Met Cys Thr	Leu Phe 725	Val Leu	Ala Val	. Leu Leu 730	Pro Val	Leu Phe 735	Leu
Leu Tyr Arg	His Arg	Asn Ser	Met Lys		Leu Lys	Gln Gly 750	Glu
Cys Ala Ser 755	Val His	Pro Lys	Thr Cys	s Pro Val	Val Leu 765	Pro Pro	Glu
Thr Arg Pro 770	Leu Asn	Gly Leu 775	_	Pro Ser	Thr Pro	Leu Asp	His
Arg Gly Tyr 785	Gln Ser	Leu Ser 790	Asp Sei	Pro Pro		Arg Val	Phe 800

Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu 805 810 815

Val Ser Pro Val Cys Pro Arg Pro Arg Val Arg Leu Gly Ser Glu Ile 820 825 830

Arg Asp Ser Val Val 835

<210> 2

<211> 2511

<212> DNA

<213> Homo sapiens

<400> 2

<400> 2						
atgctgcgca	ccgcgatggg	cctgaggagc	tggctcgccg	ccccatgggg	cgcgctgccg	60
cctcggccac	cgctgctgct	gctcctgctg	ctgctgctcc	tgctgcagcc	gccgcctccg	120
acctgggcgc	tcagcccccg	gatcagcctg	cctctgggct	ctgaagagcg	gccattcctc	180
agattcgaag	ctgaacacat	ctccaactac	acageeette	tgctgagcag	ggatggcagg	240
accctgtacg	tgggtgctcg	agaggccctc	tttgcactca	gtagcaacct	cagcttcctg	300
ccaggcgggg	agtaccagga	gctgctttgg	ggtgcagacg	cagagaagaa	acagcagtgc	360
agcttcaagg	gcaaggaccc	acagcgcgac	tgtcaaaact	acatcaagat	cctcctgccg	420
ctcagcggca	gtcacctgtt	cacctgtggc	acagcagcct	tcagccccat	gtgtacctac	480
atcaacatgg	agaacttcac	cctggcaagg	gacgagaagg	ggaatgtcct	cctggaagat	540
ggcaagggcc	gttgtccctt	cgacccgaat	ttcaagtcca	ctgccctggt	ggttgatggc	600
gagctctaca	ctggaacagt	cagcagcttc	caagggaatg	acccggccat	ctcgcggagc	660
caaagccttc	gccccaccaa	gaccgagagc	tccctcaact	ggctgcaaga	cccagctttt	720
gtggcctcag	cctacattcc	tgagagcctg	ggcagcttgc	aaggcgatga	tgacaagatc	780
tactttttct	tcagcgagac	tggccaggaa	tttgagttct	ttgagaacac	cattgtgtcc	840
cgcattgccc	gcatctgcaa	gggcgatgag	ggtggagagc	gggtgctaca	gcagcgctgg	900
acctccttcc	tcaaggccca	gctgctgtgc	tcacggcccg	acgatggctt	ccccttcaac	960
gtgctgcagg	atgtcttcac	gctgagcccc	agcccccagg	actggcgtga	cacccttttc	1020
tatggggtct	tcacttccca	gtggcacagg	ggaactacag	aaggctctgc	cgtctgtgtc	1080
ttcacaatga	aggatgtgca	gagagtcttc	agcggcctct	acaaggaggt	gaaccgtgag	1140

acacagcagt	ggtacaccgt	gacccacccg	gtgcccacac	cccggcctgg	agcgtgcatc	1200
accaacagtg	cccgggaaag	gaagatcaac	tcatccctgc	agctcccaga	ccgcgtgctg	1260
aactttctca	aggaccactt	cctgatggac	gggcaggtcc	gaagccgcat	gctgctgctg	1320
cagccccagg	ctcgctacca	gcgcgtggct	gtacaccgcg	tccctggcct	gcaccacacc	1380
tacgatgtcc	tcttcctggg	cactggtgac	ggccggctcc	acaaggcagt	gagcgtgggc	1440
ccccgggtgc	acatcattga	ggagctgcag	atcttctcat	cgggacagcc	cgtgcagaat	1500
ctgctcctgg	acacccacag	ggggctgctg	tatgcggcct	cacactcggg	cgtagtccag	1560
gtgcccatgg	ccaactgcag	cctgtaccgg	agctgtgggg	actgcctcct	cgcccgggac	1620
ccctactgtg	cttggagcgg	ctccagctgc	aagcacgtca	gcctctacca	gcctcagctg	1680
gccaccaggc	cgtggatcca	ggacatcgag	ggagccagcg	ccaaggacct	ttgcagcgcg	1740
tcttcggttg	tgtccccgtc	ttttgtacca	acaggggaga	agccatgtga	gcaagtccag	1800
ttccagccca	acacagtgaa	cactttggcc	tgcccgctcc	tctccaacct	ggcgacccga	1860
ctctggctac	gcaacggggc	ccccgtcaat	gcctcggcct	cctgccacgt	gctacccact	1920
ggggacctgc	tgctggtggg	cacccaacag	ctgggggagt	tccagtgctg	gtcactagag	1980
gagggettee	agcagctggt	agccagctac	tgcccagagg	tggtggagga	cggggtggca	2040
gaccaaacag	atgagggtgg	cagtgtaccc	gtcattatca	gcacatcgcg	tgtgagtgca	2100
ccagctggtg	gcaaggccag	ctggggtgca	gacaggtcct	actggaagga	gttcctggtg	2160
atgtgcacgc	tctttgtgct	ggccgtgctg	ctcccagttt	tattcttgct	ctaccggcac	2220
cggaacagca	tgaaagtctt	cctgaagcag	ggggaatgtg	ccagcgtgca	ccccaagacc	2280
tgccctgtgg	tgctgcccc	tgagacccgc	ccactcaacg	gcctagggcc	ccctagcacc	2340
ccactcgatc	accgagggta	ccagtccctg	tcagacagcc	ccccggggtc	ccgagtcttc	2400
actgagtcag	agaagaggcc	actcagcatc	caagacagct	tcgtggaggt	atccccagtg	2460
tgcccccggc	cccgggtccg	ccttggctcg	gagatccgtg	actctgtggt	g	2511

<210> 3

<211> 3766

<212> DNA

<213> Homo sapiens

<400> 3

getetgeeca ageegagget geggggeegg egeeggeggg aggaetgegg tgeecegegg 60
aggggetgag tttgeeaggg eccaettgae ectgtteec aceteeegee ecceaggtee 120

ggaggcgggg	gcccccgggg	cgactcgggg	gcggaccgcg	gggcggagct	gccgcccgtg	180
agtccggccg	agccacctga	gcccgagccg	cgggacaccg	tcgctcctgc	tctccgaatg	240
ctgcgcaccg	cgatgggcct	gaggagctgg	ctcgccgccc	catggggcgc	gctgccgcct	300
cggccaccgc	tgctgctgct	cctgctgctg	ctgctcctgc	tgcagccgcc	gcctccgacc	360
tgggcgctca	gcccccggat	cagcctgcct	ctgggctctg	aagagcggcc	attcctcaga	420
ttcgaagctg	aacacatctc	caactacaca	gcccttctgc	tgagcaggga	tggcaggacc	480
ctgtacgtgg	gtgctcgaga	ggccctcttt	gcactcagta	gcaacctcag	cttcctgcca	540
ggcggggagt	accaggagct	gctttggggt	gcagacgcag	agaagaaaca	gcagtgcagc	600
ttcaagggca	aggacccaca	gcgcgactgt	caaaactaca	tcaagatcct	cctgccgctc	660
agcggcagtc	acctgttcac	ctgtggcaca	gcagccttca	gccccatgtg	tacctacatc	720
aacatggaga	acttcaccct	ggcaagggac	gagaagggga	atgtcctcct	ggaagatggc	780
aagggccgtt	gtcccttcga	cccgaatttc	aagtccactg	ccctggtggt	tgatggcgag	840
ctctacactg	gaacagtcag	cagcttccaa	gggaatgacc	cggccatctc	gcggagccaa	900
agccttcgcc	ccaccaagac	cgagagctcc	ctcaactggc	tgcaagaccc	agcttttgtg	960
gcctcagcct	acattcctga	gagcctgggc	agcttgcaag	gcgatgatga	caagatctac	1020
tttttcttca	gcgagactgg	ccaggaattt	gagttctttg	agaacaccat	tgtgtcccgc	1080
attgcccgca	tctgcaaggg	cgatgagggt	ggagagcggg	tgctacagca	gcgctggacc	1140
tccttcctca	aggcccagct	gctgtgctca	cggcccgacg	atggcttccc	cttcaacgtg	1200
ctgcaggatg	tcttcacgct	gagccccagc	ccccaggact	ggcgtgacac	ccttttctat	1260
ggggtcttca	cttcccagtg	gcacagggga	actacagaag	gctctgccgt	ctgtgtcttc	1320
acaatgaagg	atgtgcagag	agtcttcagc	ggcctctaca	aggaggtgaa	ccgtgagaca	1380
cagcagtggt	acaccgtgac	ccacccggtg	cccacacccc	ggcctggagc	gtgcatcacc	1440
aacagtgccc	gggaaaggaa	gatcaactca	tccctgcagc	tcccagaccg	cgtgctgaac	1500
tttctcaagg	accacttcct	gatggacggg	caggtccgaa	gccgcatgct	gctgctgcag	1560
ccccaggctc	gctaccagcg	cgtggctgta	caccgcgtcc	ctggcctgca	ccacacctac	1620
gatgtcctct	tcctgggcac	tggtgacggc	cggctccaca	aggcagtgag	cgtgggcccc	1680
cgggtgcaca	tcattgagga	gctgcagatc	ttctcatcgg	gacagcccgt	gcagaatctg	1740
ctcctggaca	cccacagggg	gctgctgtat	gcggcctcac	actcgggcgt	agtccaggtg	1800
cccatggcca	actgcagcct	gtaccggagc	tgtggggact	gcctcctcgc	ccgggacccc	1860

tactgtgctt	ggagcggctc	cagctgcaag	cacgtcagcc	tctaccagcc	tcagctggcc	1920	
accaggccgt	ggatccagga	catcgaggga	gccagcgcca	aggacctttg	cagcgcgtct	1980	
tcggttgtgt	ccccgtcttt	tgtaccaaca	ggggagaagc	catgtgagca	agtccagttc	2040	
cagcccaaca	cagtgaacac	tttggcctgc	cegeteetet	ccaacctggc	gacccgactc	2100	
tggctacgca	acggggcccc	cgtcaatgcc	teggeeteet	gccacgtgct	acccactggg	2160	
gacctgctgc	tggtgggcac	ccaacagctg	ggggagttcc	agtgctggtc	actagaggag	2220	
ggcttccagc	agctggtagc	cagctactgc	ccagaggtgg	tggaggacgg	ggtggcagac	2280	
caaacagatg	agggtggcag	tgtacccgtc	attatcagca	catcgcgtgt	gagtgcacca	2340	
gctggtggca	aggccagctg	gggtgcagac	aggtcctact	ggaaggagtt	cctggtgatg	2400	
tgcacgctct	ttgtgctggc	cgtgctgctc	ccagttttat	tcttgctcta	ccggcaccgg	2460	
aacagcatga	aagtetteet	gaagcagggg	gaatgtgcca	gcgtgcaccc	caagacctgc	2520	
cctgtggtgc	tgccccctga	gacccgccca	ctcaacggcc	tagggccccc	tagcacccca	2580	
ctcgatcacc	gagggtacca	gtccctgtca	gacagccccc	cggggtcccg	agtcttcact	2640	
gagtcagaga	agaggccact	cagcatccaa	gacagcttcg	tggaggtatc	cccagtgtgc	2700	
ccccggcccc	gggtccgcct	tggctcggag	atccgtgact	ctgtggtgtg	agagctgact	2760	
tccagaggac	gctgccctgg	cttcaggggc	tgtgaatgct	cggagagggt	caactggacc	2820	
teceeteege	tctgctcttc	gtggaacacg	accgtggtgc	ccggcccttg	ggagccttgg	2880	
ggccagctgg	cctgctgctc	tccagtcaag	tagcgaagct	cctaccaccc	agacacccaa	2940	
acagccgtgg	ccccagaggt	cctggccaaa	tatgggggcc	tgcctaggtt	ggtggaacag	3000	
tgctccttat	gtaaactgag	ccctttgttt	aaaaaacaat	tccaaatgtg	aaactagaat	3060	
gagagggaag	agatagcatg	gcatgcagca	cacacggctg	ctccagttca	tggcctccca	3120	
ggggtgctgg	ggatgcatcc	aaagtggttg	tctgagacag	agttggaaac	cctcaccaac	3180	
tggcctcttc	accttccaca	ttatcccgct	gccaccggct	gccctgtctc	actgcagatt	3240	
caggaccagc	ttgggctgcg	tgcgttctgc	cttgccagtc	agccgaggat	gtagttgttg	3300	
ctgccgtcgt	cccaccacct	cagggaccag	agggctaggt	tggcactgcg	gccctcacca	3360	
ggtcctgggc	tcggacccaa	ctcctggacc	tttccagcct	gtatcaggct	gtggccacac	3420	
gagaggacag	cgcgagctca	ggagagattt	cgtgacaatg	tacgcctttc	cctcagaatt	3480	
cagggaagag	actgtcgcct	gccttcctcc	gttgttgcgt	gagaacccgt	gtgccccttc	3540	

ccaccatate cacceteget ccatetttga acteaaacae gaggaactaa etgeaecetg	3600
gtcctctccc cagtccccag ttcaccctcc atccctcacc ttcctccact ctaagggata	3660
tcaacactgc ccagcacagg ggccctgaat ttatgtggtt tttatacatt ttttaataag	3720
atgcacttta tgtcattttt taataaagtc tgaagaatta ctgttt	3766
<210> 4 <211> 837 <212> PRT <213> Homo sapiens	
<400> 4	
Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro Trp 1 10 15	
Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu Leu Leu Leu 20 25 30	
Leu Leu Gln Pro Pro Pro Pro Thr Trp Ala Leu Ser Pro Arg Ile 35 40 45	
Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu Arg Phe Glu Ala 50 55 60	
Glu His Ile Ser Asn Tyr Thr Ala Leu Leu Leu Ser Arg Asp Gly Arg 65 70 75 80	
Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu Phe Ala Leu Ser Asn 85 90 95	
Leu Ser Phe Leu Pro Gly Gly Glu Tyr Gln Glu Leu Leu Trp Gly Ala 100 105 110	
Asp Ala Glu Lys Lys Gln Gln Cys Ser Phe Lys Gly Lys Asp Pro Gln 115 120 125	
Arg Asp Cys Gln Asn Tyr Ile Lys Ile Leu Leu Pro Leu Ser Gly Ser 130 135 140	
His Leu Phe Thr Cys Gly Thr Ala Ala Phe Ser Pro Met Cys Thr Tyr 145 150 155 160	

Ile Asn Met Glu Asn Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val

Leu Leu Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro Asn Phe Lys
180 185 190

Ser Thr Ala Leu Val Val Asp Gly Glu Leu Tyr Thr Gly Thr Val Ile 195 200 205

Ser Phe Gln Gly Asn Asp Pro Ala Ile Ser Arg Ser Gln Ser Leu Arg 210